### **PCT**

#### RLD INTELLECTUAL PROPER International Bure



### INTERNATIONAL APPLICATION PUBLISHED UNDER :

9608582A2

| (51) | Internat | tional l | l Patent Classification : |       |    |      |      |
|------|----------|----------|---------------------------|-------|----|------|------|
|      | C120     | 1/68.    | C12N                      | 15/11 | // | C12R | 1/68 |

(11) International Publication Number:

WO 96/08582

8

A2 (43) International Publication Date:

21 March 1996 (21.03.96)

(21) International Application Number:

PCT/CA95/00528

(22) International Filing Date:

12 September 1995 (12.09.95)

(30) Priority Data:

08/304,732

12 September 1994 (12.09.94) US

(71)(72) Applicants and Inventors: BERGERON, Michel, G. [CA/CA]; 2069 Brûlard Street, Sillery, Quebec G1T 1G2 (CA). OUELLETTE, Marc [CA/CA]; 975 Casot Street, Quebec, Quebec G1S 2Y2 (CA). ROY, Paul, H. [US/CA]; 28 charles Garnier Street, Loretteville, Quebec G2A 2X8 (CA).

(74) Agents: DUBUC, Jean, H. et al.; Goudreau Gage Dubuc & Martineau Walker, 3400 Stock Exchange Tower, Victoria Square, P.O. Box 242, Montreal, Quebec H4Z 1E9 (CA).

(81) Designated States: AM, AT, AU, BB, BG, BR, BY, CA, CH, ČN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TT, UA, UG, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), ARIPO patent (KE, MW, SD, SZ, UG).

#### **Published**

Without international search report and to be republished upon receipt of that report.

(54) Title: SPECIFIC AND UNIVERSAL PROBES AND AMPLIFICATION PRIMERS TO RAPIDLY DETECT AND IDENTIFY COMMON BACTERIAL PATHOGENS AND ANTIBIOTIC RESISTANCE GENES FROM CLINICAL SPECIMENS FOR ROUTINE DIAGNOSIS IN MICROBIOLOGY LABORATORIES

#### (57) Abstract

The present invention relates to DNA-based methods for universal bacterial detection, for specific detection of the pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, Streptococcus pneumoniae, Staphylococcus aureus, Staphylococcus epiderminis, Enterococcus faecalis, Staphylococcus saprophyticus, Streptococcus pyogenes, Haemophilus influenzae and Moraxella catarrhalis as well as for specific detection of commonly encountered and clinically relevant bacterial antibiotic resistance genes directly from clinical specimens or, alternatively, from a bacterial colony. The above bacterial species can account for as much as 80 % of bacterial pathogens is lated in routine microbiology laboratories. The core of this invention consists primarily of the DNA sequences from all species-specific genomic DNA fragments selected by hybridization from genomic libraries or, alternatively, selected from data banks as well as any oligonucleotide sequences derived from these sequences which can be used as probes or amplification primers for PCR or any other nucleic acid amplification methods. This invention also includes DNA sequences from the selected clinically relevant antibiotic resistance genes.

### FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

| AT  | Austria                  | GB   | United Kingdom               | MR  | Mauritania               |
|-----|--------------------------|------|------------------------------|-----|--------------------------|
| ΑŪ  | Australia                | GE   | Georgia                      | MW  | Malawi                   |
| BB  | Barbados                 | GN   | Guinea                       | NE  | Niger                    |
| BE  | Belgium                  | GR   | Greece                       | NL  | Netherlands              |
| BF  | Burkina Faso             | HU   | Hungary                      | NO  | Norway                   |
| BG  | Bulgaria                 | IE   | Ireland                      | NZ  | New Zealand              |
| BJ  | Benin                    | ΙT   | Italy                        | PL  | Poland                   |
| BR  | Brazil                   | JP   | Japan                        | PT  | Portugal                 |
| BY  | Belarus                  | KE   | Kenya                        | RO  | Romania                  |
| CA  | Canada                   | KG   | Kyrgystan                    | RU  | Russian Federation       |
| CF  | Central African Republic | KP   | Democratic People's Republic | SD  | Sudan                    |
| CG  | Congo                    |      | of Korea                     | SE  | Sweden                   |
| CH  | Switzerland              | KR   | Republic of Korea            | SI  | Slovenia                 |
| CI  | Côte d'Ivoire            | KZ   | Kazakhstan                   | SK  | Slovakia                 |
| CM  | Cameroon                 | LI   | Liechtenstein                | SN  | Senegal                  |
| CN  | China                    | LK   | Sri Lanka                    | TD  | Chad                     |
| CS  | Czechoslovakia           | LU   | Luxembourg                   | TG  | Togo                     |
| CZ  | Czech Republic           | LV   | Latvia                       | TJ. | Tajikistan               |
| DE  | Germany                  | MC   | Monaco                       | TT  | Trinidad and Tobago      |
| DK  | Denmark                  | MD   | Republic of Moldova          | ÜĀ  | Ukraine                  |
| ES  | Spain                    | MG   | Madagascar                   | US  | United States of America |
| FI  | Finland                  | ML   | Mali                         | UZ  | Uzbekistan               |
| FR- |                          | MN   | - Mongolia                   | VN  | Viet Nam                 |
| GA  | Gabon                    | 1721 |                              | VN. | A NCT LASTII             |

AMPLIFICATION PROBES AND UNIVERSAL SPECIFIC AND COMMON IDENTIFY AND DETECT RAPIDLY TO PRIMERS BACTERIAL PATHOGENS AND ANTIBIOTIC RESISTANCE DIAGNOSIS IN ROUTINE SPECIMENS FOR FROM CLINICAL MICROBIOLOGY LABORATORIES.

## BACKGROUND OF THE INVENTION

## Classical identification of bacteria

Bacteria are classically identified by their ability to 10 utilize different substrates as a source of carbon and nitrogen through the use of biochemical tests such as the  $\mathtt{API20E^{TM}}$  system. Susceptibility testing of Gram negative bacilli has progressed to microdilution tests. Although the 15 API and the microdilution systems are cost-effective, at least two days are required to obtain preliminary results due to the necessity of two successive overnight incubations to isolate and identify the bacteria from the specimen. Some faster detection methods with sophisticated and expensive apparatus have been developed. For example, the fastest identification 20 system, the autoSCAN-Walk-Away $^{\text{TM}}$  system identifies both Gram negative and Gram positive from isolated bacterial colonies in 2 hours and susceptibility patterns to antibiotics in only 7 hours. However, this system has an unacceptable margin of error, especially with bacterial species other than 2.5 Enterobacteriaceae (York et al., 1992. J. Clin. Microbiol. 30:2903-2910). Nevertheless, even this fastest method requires primary isolation of the bacteria as a pure culture, a process which takes at least 18 hours if there is a pure culture or 2 to 3 days if there is a mixed culture. 30

## Urine specimens

A large proportion (40-50%) of specimens received in routin diagnostic microbiology laboratories for bacterial identification are urine specimens (Pezzlo, 1988, Clin. Microbiol. Rev. 1:268-280). Urinary tract infections (UTI) are extremely common and affect up to 20% of women and account for

35

extensive morbidity and increased mortality among hospitalized patients (Johnson and Stamm, 1989; Ann. Intern. Med. 111:906-917). UTI are usually of bacterial etiology and require antimicrobial therapy. The Gram negative bacillus Escherichia coli is by far the most prevalent urinary pathogen and accounts for 50 to 60 % of UTI (Pezzlo, 1988, op. cit.). The prevalence for bacterial pathogens isolated from urine specimens observed recently at the "Centre Hospitalier de l'Université Laval (CHUL)" is given in Tables 1 and 2.

10

Conventional pathogen identification in urine specimens. The search for pathogens in urine specimens is so preponderant in the routine microbiology laboratory that a myriad of tests have been developed. The gold standard is still the classical 15 semi-quantitative plate culture method in which a calibrated loop of urine is streaked on plates and incubated for 18-24 hours. Colonies are then counted to determine the total number of colony forming units (CFU) per liter of urine. A bacterial UTI is normally associated with a bacterial count of ≥107 20 CFU/L in urine. However, infections with less than 107 CFU/L in urine are possible, particularly in patients with a high incidence of diseases or those catheterized (Stark and Maki, 1984, N. Engl. J. Med. 311:560-564). Importantly, close to 80% of urine specimens tested are considered negative (<107 CFU/L: 25 Table 3).

Accurate and rapid urine screening methods for bacterial pathogens would allow a faster identification of negative results and a more efficient clinical investigation of the patient. Several rapid identification methods (Uriscreen, UTIscreen, Flash Track, DNA probes and others) were recently compared to slower standard biochemical methods which are based on culture of the bacterial pathogens. Although much faster, these rapid tests showed low sensitivities and specificities as well as a high number of false negative and false positive results (Koening t al., 1992. J. Clin. Microbiol. 30:342-345; Pezzlo et al., 1992. J. Clin. Microbiol. 30:640-684).

30

Urine specimens found positive by culture are further characterized using standard biochemical tests to identify th bacterial pathogen and are also tested for susceptibility to antibiotics.

5

## Any clinical specimens

As with urine specimen which was used here as an example, our probes and amplification primers are also applicable to any other clinical specimens. The DNA-based tests proposed in this invention are superior to standard methods currently used for routine diagnosis in terms of rapidity and accuracy. While 10 a high percentage of urine specimens are negative, in many other clinical specimens more than 95% of cultures are negative (Table 4). These data further support the use of universal probes to screen out the negative clinical specimens. Clinical specimens from organisms other than humans 15 (e.g. other primates, mammals, farm animals or live stocks) may also be used.

## Towards the development of rapid DNA-based diagnostic tests 20

A rapid diagnostic test should have a significant impact on the management of infections. For the identification of pathogens and antibiotic resistance genes in clinical samples, DNA probe and DNA amplification technologies offer several advantages over conventional methods. There is no need for subculturing, hence the organism can be detected directly in clinical samples thereby reducing the costs and tim associated with isolation of pathogens. DNA-based technologies have proven to be extremely useful for specific applications in the clinical microbiology laboratory. For example, kits for the detection of fastidious organisms based on the use of hybridization probes or DNA amplification for the direct detection of pathogens in clinical specimens are commercially Diagnostic Molecular available (Persing et al, 1993. Microbiology: Principles and Applications, American Soci ty for Microbiology, Washington, D.C.).

## SUBSTITUTE SHEET

25

30

The present invention is an advantageous alternative to the conventional culture identification methods used in hospital clinical microbiology laboratories and in private clinics for routine diagnosis. Besides being much faster, DNAbased diagnostic tests are more accurate than standard biochemical tests presently used for diagnosis because the bacterial genotype (e.g. DNA level) is more stable than the bacterial phenotype (e.g. biochemical properties). originality of this invention is that genomic DNA fragments (size of at least 100 base pairs) specific for 12 species of 10 commonly encountered bacterial pathogens were selected from genomic libraries or from data banks. Amplification primers or oligonucleotide probes (both less than 100 nucleotides in length) which are both derived from the sequence of species-15 specific DNA fragments identified by hybridization from genomic libraries or from selected data bank sequences are used as a basis to develop diagnostic tests. Oligonucleotide primers and probes for the detection of commonly encountered and clinically important bacterial resistance genes are also 20 included. For example, Annexes I and II present a list of suitable oligonucleotide probes and PCR primers which were all derived from the species-specific DNA fragments selected from genomic libraries or from data bank sequences. It is clear to individual skilled in the art that oligonucleotide 2.5 sequences appropriate for the specific detection of the above bacterial species other than those listed in Annexes 1 and 2 may be derived from the species-specific fragments or from the selected data bank sequences. For example, the oligonucleotides may be shorter or longer than the on s we 30 have chosen and may be selected anywhere else identified species-specific sequences or selected data bank sequences. Alternatively, the oligonucleotides may be designed for use in amplification methods other than PCR. Consequently, the core of this invention is the identification of speciesspecific g nomic DNA fragments from bacterial genomic DNA 35 libraries and the sel ction of genomic DNA fragments from data bank sequences which are used as a source of species-specific

and ubiquitous oligonucleotides. Although the selection of oligonucleotides suitable for diagnostic purposes from the sequence of the species-specific fragments or from the selected data bank sequences requires much effort it is quite possible for the individual skilled in the art to derive from our fragments or selected data bank sequences suitable oligonucleotides which are different from the ones we have selected and tested as examples (Annexes I and II).

Others have developed DNA-based tests for the detection
and identification of some of the bacterial pathogens for
which we have identified species-specific sequences (PCT
patent application Serial No. WO 93/03186). However, their
strategy was based on the amplification of the highly
conserved 16S rRNA gene followed by hybridization with
internal species-specific oligonucleotides. The strategy from
this invention is much simpler and more rapid because it
allows the direct amplification of species-specific targets
using oligonucleotides derived from the species-specific
bacterial genomic DNA fragments.

Since a high percentage of clinical specimens are negative, oligonucleotide primers and probes were selected from the highly conserved 16S or 23S rRNA genes to detect all bacterial pathogens possibly encountered in clinical specimens in order to determine whether a clinical specimen is infected or not. This strategy allows rapid screening out of the numerous negative clinical specimens submitted for bacteriological testing.

We are also developing other DNA-based tests, to be performed simultaneously with bacterial identification, to determine rapidly the putative bacterial susceptibility to antibiotics by targeting commonly encountered and clinically relevant bacterial resistance genes. Although the sequences from the s lected antibiotic resistance genes are available and have been used to develop DNA-based tests for their detection (Ehrlich and Gr enberg, 1994. PCR-based Diagnostics in Infectious Diseases, Blackwell Scientific Publications, Boston, Massachusetts; Persing et al, 1993. Diagnostic

30

35

Molecular Microbiology: Principles and Applications, American Society for Microbiology, Washington, D.C.), our approch is innovative as it represents major improvements over current "gold standard" diagnostic methods based on culture of the bacteria because it allows the rapid identification of the presence of a specific bacterial pathogen and evaluation of its susceptibility to antibiotics directly from the clinical specimens within one hour.

based on cultivation of the bacteria that we are developing will gradually replace the slow conventional bacterial identification methods presently used in hospital clinical microbiology laboratories and in private clinics. In our opinion, these rapid DNA-based diagnostic tests for severe and common bacterial pathogens and antibiotic resistance will (i) save lives by optimizing treatment, (ii) diminish antibiotic resistance by reducing the use of broad spectrum antibiotics and (iii) decrease overall health costs by preventing or shortening hospitalizations.

20

## SUMMARY OF THE INVENTION

In accordance with the present invention, there is provided sequence from genomic DNA fragments (size of at least 100 base pairs and all described in the sequence listing) 5 selected either by hybridization from genomic libraries or from data banks and which are specific for the detection of commonly encountered bacterial pathogens (i.e. Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, Streptococcus pneumoniae, Staphylococcus aureus, 10 faecalis. Staphylococcus epidermidis, Enterococcus Staphylococcus saprophyticus, Streptococcus pyogenes, Haemophilus influenzae and Moraxella catarrhalis) in clinical specimens. These bacterial species are associated with approximately 90% of urinary tract infections and with a high 1.5 percentage of other severe infections including septicemia, meningitis, pneumonia, intraabdominal infections, infections and many other severe respiratory tract infections. Overall, the above bacterial species may account for up to 80% of bacterial pathogens isolated in routine microbiology 20 laboratories.

DNA amplification (primers) were derived from the above species-specific DNA fragments (ranging in sizes from 0.25 to 5.0 kilobase pairs (kbp)) or from selected data bank sequences (GenBank and EMBL). Bacterial species for which some of the oligonucleotide probes and amplification primers were derived from selected data bank sequences are Escherichia coli, Enterococcus faecalis, Streptococcus pyogenes and Pseudomonas aeruginosa. The person skilled in the art understands that th important innovation in this invention is the identification of the species-specific DNA fragments selected either from bacterial g nomic libraries by hybridization or from data bank sequences. The sel ction of oligonucleotides from thes fragments suitable for diagnostic purposes is also innovativ. Sp cific and ubiquitous oligonucleotides differ nt from the

35

2.5

10

8

ones tested in the practic are considered as embodiements of the present invention.

The development of hybridization (with either fragment or oligonucleotide probes) or of DNA amplification protocols for the detection of pathogens from clinical specimens renders possible a very rapid bacterial identification. This will greatly reduce the time currently required for identification of pathogens in the clinical laboratory since these technologies can be applied for bacterial detection and identification directly from clinical specimens with minimum pretreatment of any biological specimens to release bacterial In addition to being 100% specific, probes and amplification primers allow identification of the bacterial species directly from clinical specimens or, alternatively, 1.5 from an isolated colony. DNA amplification assays have the added advantages of being faster and more sensitive than hybridization assays, since they allow rapid and exponential in vitro replication of the target segment of DNA from the bacterial genome. Universal probes and amplification primers 20 selected from the 16S or 23S rRNA genes highly conserved among bacteria, which permit the detection of any bacterial pathogens, will serve as a procedure to screen out the numerous negative clinical specimens received in diagnostic laboratories. The use of oligonucleotide probes or primers 25 complementary to characterized bacterial genes encoding resistance to antibiotics to identify commonly encountered and clinically important resistance genes is also under the scope of this invention.

30

#### DETAILED DESCRIPTION OF THE INVENTION

### Development of species-specific DNA probes

DNA fragment probes wer developed for the following bacterial species: Escherichia coli, Klebsiella pneumoniae, 35 Pseudomonas aeruginosa, Proteus mirabilis, Streptococcus pneumoniae, Staphylococcus aureus, Staphylococcus epidermidis,

Staphylococcus saprophyticus, Haemophilus influenzae and Moraxella catarrhalis. (For Enterococcus Streptococcus pyogenes, oligonucleotide sequences were exclusively derived from selected data bank sequences). These species-specific fragments were selected from bacterial genomic libraries by hybridization to DNA from a variety of Gram positive and Gram negative bacterial species (Table 5).

The chromosomal DNA from each bacterial species for which probes were seeked was isolated using standard methods. DNA was digested with a frequently cutting restriction enzyme such as Sau3AI and then ligated into the bacterial plasmid vector pGEM3Zf (Promega) linearized by appropriate restriction endonuclease digestion. Recombinant plasmids were then used to transform competent E. coli strain DH5 $\alpha$  thereby yielding a genomic library. The plasmid content of the transformed bacterial cells was analyzed using standard methods. DNA fragments of target bacteria ranging in size from 0.25 to 5.0 15 kilobase pairs (kbp) were cut out from the vector by digestion the recombinant plasmid with various restriction endonucleases. The insert was separated from the vector by agarose gel electrophoresis and purified in low melting point agarose gels. Each of the purified fragments of bacterial 20 genomic DNA was then used as a probe for specificity tests.

For each given species, the gel-purified restriction fragments of unknown coding potential were labeled with the radioactive nucleotide  $\alpha^{-32p}(dATP)$  which was incorporated into the DNA fragment by the random priming labeling reaction. Nonradioactive modified nucleotides could also be incorporated into the DNA by this method to serve as a label.

Each DNA fragment probe (i.e. a segment of bacterial genomic DNA of at least 100 bp in length cut out from clones randomly selected from the genomic library) was then tested for its specificity by hybridization to DNAs from a variety of bacterial species (Tabl 5). Th double-stranded labeled DNA probe was heat-denatured to yield labeled single-stranded DNA which could then hybridize to any singl -stranded target DNA fixed onto a solid support or in solution. The target DNAs

2.5

30

35

5

consisted of total cellular DNA from an array of bacterial species found in clinical samples (Table 5). Each target DNA was released from the bacterial cells and denatured by conventional methods and then irreversibly fixed onto a solid support (e.g. nylon or nitrocellulose membranes) or free in 5 solution. The fixed single-stranded target DNAs were then hybridized with the single-stranded probe. Pre-hybridization, hybridization and post-hybridization conditions were as follows: (i) Pre-hybridization; in 1 M NaCl + 10% dextran sulfate + 1% SDS (sodium dodecyl sulfate) + 100  $\mu$ g/ml salmon 10 sperm DNA at 65°C for 15 min. (ii) Hybridization; in fresh pre-hybridization solution containing the labeled probe at 65°C overnight. (iii) Post-hybridization; washes twice in 3X SSC containing 1% SDS (1% SSC is 0.15M NaCl, 0.015M NaCitrate) and twice in 0.1 X SSC containing 0.1% SDS; all washes were at 15 65°C for 15 min. Autoradiography of washed filters allowed th detection of selectively hybridized probes. Hybridization of the probe to a specific target DNA indicated a high degree of similarity between the nucleotide sequence of these two DNAs. 20 Species-specific DNA fragments selected from various bacterial genomic libraries ranging in size from 0.25 to 5.0 kbp were isolated for 10 common bacterial pathogens (Table 6) based on hybridization to chromosomal DNAs from a variety of bacteria performed as described above. All of the bacterial species tested (66 species listed in Table 5) were likely to 25 be pathogens associated with common infections or potential contaminants which can be isolated from clinical specimens. A DNA fragment probe was considered specific only when it

hybridized solely to the pathogen from which it was isolated. 30 DNA fragment probes found to be specific were subsequently tested for their ubiquity (i.e. ubiquitous probes recognized most isolates of the target species) by hybridization to bacterial DNAs from approximately 10 to 80 clinical isolates of the species of interest (Table 6). The DNAs were denatured, 35

fixed onto nylon membranes and hybridized as described above.

# Sequencing of the species-specific fragment probes

The nucleotide sequence of the totality or of a portion of the species-specific DNA fragments isolated (Table 6) was determined using the dideoxynucleotide termination sequencing method which was performed using Sequenase (USB Biochemicals) or T7 DNA polymerase (Pharmacia). These nucleotide sequences 5 are shown in the sequence listing. Alternatively, sequences selected from data banks (GenBank and EMBL) were used as sources of oligonucleotides for diagnostic purposes for Escherichia coli, Enterococcus faecalis, Streptococcus pyogenes and Pseudomonas aeruginosa. For this strategy, an 10 array of suitable oligonucleotide primers or probes derived from a variety of genomic DNA fragments (size of more than 100 bp) selected from data banks was tested for their specificity and ubiquity in PCR and hybridization assays as described later. It is important to note that the data bank sequences 15 were selected based on their potential of being speciesspecific according to available sequence information. Only sequences from which species-specific oligonucleotides could be derived are included in this 20

Oligonucleotide probes and amplification primers derived invention. from species-specific fragments selected from the genomic libraries or from data bank sequences were synthesized using an automated DNA synthesizer (Millipore). Prior to synthesis, all oligonucleotides (probes for hybridization and primers for DNA amplification) were evaluated for their suitability for hybridization or DNA amplification by polymerase chain reaction (PCR) by computer analysis using standard programs (e.g. Genetics Computer Group (GCG) and OligoTM 4.0 (National Biosciences)). The potential suitability of the PCR primer pairs was also evaluated prior to the synthesis by verifying the absence of unwanted f atures such as long stretches of one nucleotide, a high proportion of G or C residu s at the 3' end and a 3'-terminal T r sidu (Persing et al, 1993. Diagnostic Molecular Microbiology: Principles and Applications, American 35 Society for Microbiology, Washington, D.C.).

25

## Hybridization with oligonucleotide probes

In hybridization experiments, oligonucleotides (size less than 100 nucleotides) have some advantages over DNA fragment probes for the detection of bacteria such as ease of preparation in large quantities, consistency in results from 5 batch to batch and chemical stability. Briefly, hybridizations, oligonucleotides were 5' end-labeled with the radionucleotide  $\gamma^{3.2}$ P(ATP) using T4 polynucleotide kinase (Pharmacia). The unincorporated radionucleotide was removed by passing the labeled single-stranded oligonucleotide through a 10 Sephadex G50 column. Alternatively, oligonucleotides were labeled with biotin, either enzymatically at their 3' ends or incorporated directly during synthesis at their 5' ends, or with digoxigenin. It will be appreciated by the person skilled 15 in the art that labeling means other than the three above labels may be used.

The target DNA was denatured, fixed onto a solid support and hybridized as previously described for the DNA fragment probes. Conditions for pre-hybridization and hybridization washing conditions were as follows: twice in 3X SSC containing 1% SDS, twice in 2X SSC containing 1% SDS and twice in 1X SSC containing 1% SDS (all of these washes were at 65°C for 15 min ), and a final wash in 0.1X SSC containing 1% SDS at 25°C for 15 min. For probes labeled with radioactive labels the detection of hybrids was by autoradiography as described earlier. For non-radioactive labels detection may be colorimetric or by chemiluminescence.

The oligonucleotide probes may be derived from either strand of the duplex DNA. The probes may consist of the bases A, G, C, or T or analogs. The probes may be of any suitable length and may be selected anywhere within the species-specific genomic DNA fragments selected from the genomic libraries or from data bank sequences.

## DNA amplification

5

For DNA amplification by the widely used PCR (polymerase chain reaction) method, primer pairs were derived either from the sequenced species-specific DNA fragments or from data bank sequences or, alternatively, were shortened versions of oligonucleotide probes. Prior to synthesis, the potential primer pairs were analyzed by using the program  $Oligo^{TM}$  4.0 (National Biosciences) to verify that they are likely candidates for PCR amplifications.

During DNA amplification by PCR, two oligonucleotide 10 primers binding respectively to each strand of the denatured double-stranded target DNA from the bacterial genome are used to amplify exponentially in vitro the target DNA by successive thermal cycles allowing denaturation of the DNA, annealing of the primers and synthesis of new targets at each cycle (Persing et al, 1993. Diagnostic Molecular Microbiology: 15 Society American and Applications, Principles Microbiology, Washington, D.C.). Briefly, the PCR protocols were as follows. Clinical specimens or bacterial colonies were added directly to the 50  $\mu L$  PCR reaction mixtures containing 20 50 mM KCl, 10 mM Tris-HCl pH 8.3, 2.5 mM MgCl<sub>2</sub>, 0.4 μM of each of the two primers, 200  $\mu M$  of each of the four dNTPs and 1.25 Units of Taq DNA polymerase (Perkin Elmer). PCR reactions were then subjected to thermal cycling (3 min at 95°C followed by 30 cycles of 1 second at 95°C and 1 second at 55°C) using a 2.5 Perkin Elmer  $480^{TM}$  thermal cycler and subsequently analyzed by standard ethidium bromide-stained agarose gel electrophoresis. It is clear that other methods for the detection of specific amplification products, which may be faster and more practical for routine diagnosis, may be used. Such methods may be based 30 on the detection of fluorescence after amplification (e.g.  $exttt{TaqMan}^{ exttt{TM}}$  system from Perkin Elmer or Amplisensor  $exttt{TM}$  from Biotronics) or liquid hybridization with an oligonucleotide probe binding to internal sequences of the sp cific amplification product. These novel probes can be generated from our species-sp cific fragment prob s. Methods based on 35 the detection of fluorescenc are particularly promising for

15

utilization in routine diagnosis as they are, very rapid and quantitative and can be automated.

To assure PCR efficiency, glycerol or dimethyl sulfoxide (DMSO) or other related solvents, can be used to increase the sensitivity of the PCR and to overcome problems associated with the amplification of target with a high GC content or with strong secondary structures. The concentration ranges for glycerol and DMSO are 5-15% (v/v) and 3-10% respectively. For the PCR reaction mixture, the concentration ranges for the amplification primers and the MgCl<sub>2</sub> are 0.1-1.0 μM and 1.5-3.5 mM, respectively. Modifications of the standard PCR protocol using external and nested primers (i.e. nested PCR) or using more than one primer pair (i.e. multiplex PCR) may also be used (Persing et al, 1993. Diagnostic Molecular Microbiology: Principles and Applications, American Society for Microbiology, Washington, D.C.). For more details about the PCR protocols and amplicon detection methods see examples 7 and 8.

The person skilled in the art of DNA amplification knows 20 the existence of other rapid amplification procedures such as ligase chain reaction (LCR), transcription-based amplification systems (TAS), self-sustained sequence replication (3SR). nucleic acid sequence-based amplification (NASBA), strand displacement amplification (SDA) and branched DNA (bDNA) 25 (Persing et al, 1993. Diagnostic Molecular Microbiology: Principles and Applications, American Society Microbiology, Washington, D.C.). The scope of this invention is not limited to the use of amplification by PCR, but rather includes the use of any rapid nucleic acid amplification 30 methods or any other procedures which may be used to increas rapidity and sensitivity of the tests. Any oligonucleotides suitable for the amplification of nucleic acid by approaches other than PCR and derived from the species-specific fragments and from selected antibiotic resistance gene sequences 35 included in this document are also under the scope of this invention.

# Specificity and ubiquity tests for oligonucleotide probes and primers

The specificity of oligonucleotide probes, derived either from the sequenced species-specific fragments or from data bank sequences, was tested by hybridization to DNAs from the 5 array of bacterial species listed in Table 5 as previously described. Oligonucleotides found to be specific were subsequently tested for their ubiquity by hybridization to bacterial DNAs from approximately 80 isolates of the target species as described for fragment probes. Probes were 10 considered ubiquitous when they hybridized specifically with the DNA from at least 80% of the isolates. Results for specificity and ubiquity tests with the oligonucleotide probes are summarized in Table 6. The specificity and ubiquity of the amplification primer pairs were tested directly from cultures 15 (see example 7) of the same bacterial strains. For specificity and ubiquity tests, PCR assays were performed directly from bacterial colonies of approximately 80 isolates of the target species. Results are summarized in Table 7. All specific and ubiquitous oligonucleotide probes and amplification primers 20 for each of the 12 bacterial species investigated are listed in Annexes I and II, respectively. Divergence in the sequenced DNA fragments can occur and, insofar as the divergence of these sequences or a part thereof does not affect the 25 specificity of the probes or amplification primers, variant bacterial DNA is under the scope of this invention.

#### Universal bacterial detection

In the routine microbiology laboratory a high percentage of clinical specimens sent for bacterial identification is negative (Table 4). For example, over a 2 year period, around 5 80% of urine specimens received by the laboratory at the \*Centre Hospitalier de l'Université Laval (CHUL) \* wer negative (i.e. <107 CFU/L) (Table 3). Testing clinical samples with universal probes or universal amplification primers to the presence of bacteria prior to 10 identification and screen out the numerous negative specimens is thus useful as it saves costs and may rapidly orient the clinical management of the patients. Several oligonucleotides and amplification primers were therefore synthesized from highly conserved portions of bacterial 16S or 23S ribosomal 15 RNA gene sequences available in data banks (Annexes III and IV). In hybridization tests, a pool of seven oligonucleotides (Annex I; Table 6) hybridized strongly to DNA from all bacterial species listed in Table 5. This pool of universal probes labeled with radionucleotides or with any other 20 modified nucleotides is consequently very useful for detection of bacteria in urine samples with a sensitivity range of  $\geq 10^7$ CFU/L. These probes can also be applied for bacterial detection in other clinical samples.

Amplification primers also derived from the sequence of highly conserved ribosomal RNA genes were used as an alternative strategy for universal bacterial detection directly from clinical specimens (Annex IV; Table 7). The DNA amplification strategy was developed to increase the sensitivity and the rapidity of the test. This amplification test was ubiquitous since it specifically amplified DNA from 23 different bacterial species encountered in clinical specimens.

Well-conserv d bacterial genes other than ribosomal RNA genes could also be good candidates for universal bacterial detection dir ctly from clinical sp cimens. Such genes may be associated with proc sses essential for bacterial survival (e.g. protein synthesis, DNA synthesis, cell division or DNA

25

30

repair) and could therefore b highly conserved during evolution. We are working on these candidate genes to develop new rapid tests for the universal detection of bacteria directly from clinical specimens.

5

## Antibiotic resistance genes

Antimicrobial resistance complicates treatment and often leads to therapeutic failures. Furthermore, overuse of antibiotics inevitably leads to the emergence of bacterial 10 resistance. Our goal is to provide the clinicians, within one hour, the needed information to prescribe optimal treatments. Besides the rapid identification of negative clinical specimens with DNA-based tests for universal bacterial detection and the identification of the presence of a specific pathogen in the positive specimens with DNA-based tests for 1.5 specific bacterial detection, the clinicians also need timely information about the ability of the bacterial pathogen to resist antibiotic treatments. We feel that the most efficient resistance to strategy to evaluate rapidly bacterial antimicrobials is to detect directly from the clinical 20 specimens the most common and important antibiotic resistance genes (i.e. DNA-based tests for the detection of antibiotic resitance genes). Since the sequence from the most important and common bacterial antibiotic resistance genes are available from data banks, our strategy is to use the sequence from a 2.5 portion or from the entire gene to design specific oligonucleotides which will be used as a basis for the development of rapid DNA-based tests. The sequence from the bacterial antibiotic resistance genes selected on the basis of their clinical relevance (i.e. high incidence and importance) 30 is given in the sequence listing. Table 8 summarizes some characteristics of the selected antibiotic resistance genes.

#### EXAMPLES

The following examples are intended to be illustrative of the various methods and compounds of the invention.

5

#### EXAMPLE 1:

Isolation and cloning of fragments. Genomic DNAs from Escherichia coli strain ATCC 25922, Klebsiella pneumoniae strain CK2, Pseudomonas aeruginosa strain ATCC 27853, Proteus 10 mirabilis strain ATCC 35657, Streptococcus pneumoniae strain ATCC 27336, Staphylococcus aureus strain ATCC 25923, Staphylococcus epidermidis strain ATCC 12228, Staphylococcus saprophyticus strain ATCC 15305, Haemophilus influenzae reference strain Rd and Moraxella catarrhalis strain ATCC 15 53879 were prepared using standard procedures. understood that the bacterial genomic DNA may have been isolated from strains other than the ones mentioned above. (For Enterococcus faecalis and Streptococcus oligonucleotide sequences were derived exclusively from data 20 banks). Each DNA was digested with a restriction enzyme which frequently cuts DNA such as Sau3AI. The resulting DNA fragments were ligated into a plasmid vector (pGEM3Zf) to create recombinant plasmids and transformed into competent E. coli cells (DH5a). It is understood that the vectors and 25 corresponding competent cells should not be limited to the ones herein above specifically examplified. The objective of obtaining recombinant plasmids and transformed cells is to provide an easily reproducible source of DNA fragments useful as probes. Therefore, insofar as the inserted fragments are 30 specific and selective for the target bacterial DNA, any recombinant plasmids and corresponding transformed host cells are under the scope of this invention. The plasmid content of the transformed bacterial cells was analyzed using standard methods. DNA fragments from target bacteria ranging in size 35 from 0.25 to 5.0 kbp wer cut out from the v ctor by digestion of the recombinant plasmid with various restriction endonucl ases. The insert was separated from th vector by

agarose gel el ctrophoresis and purified in a low melting point agarose gel. Each of the purified fragments was then used for specificity tests.

Labeling of DNA fragment probes. The label used was 5  $\alpha^{32}P(\text{dATP})$ , a radioactive nucleotide which can be incorporated enzymatically into a double-stranded DNA molecule. The fragment of interest is first denatured by heating at 95°C for 5 min, then a mixture of random primers is allowed to anneal to the strands of the fragments. These primers, once annealed, 10 provide a starting point for synthesis of DNA. DNA polymerase, usually the Klenow fragment, is provided along with the four nucleotides, one of which is radioactive. When the reaction is terminated, the mixture of new DNA molecules is once again denatured to provide radioactive single-stranded DNA molecules 1 5 (i.e. the probe). As mentioned earlier, other modified nucleotides may be used to label the probes.

Specificity and ubiquity tests for the DNA fragment probes. Species-specific DNA fragments ranging in size from 20 0.25 to 5.0 kbp were isolated for 10 common bacterial pathogens (Table 6) based on hybridization to chromosomal DNAs from a variety of bacteria. Samples of whole cell DNA for each bacterial strain listed in Table 5 were transferred onto a nylon membrane using a dot blot apparatus, washed and 25 denatured before being irreversibly fixed. Hybridization conditions were as described earlier. A DNA fragment probe was considered specific only when it hybridized solely to the pathogen from which it was isolated. Labeled DNA fragments hybridizing specifically only to target bacterial species 30 (i.e. specific) were then tested for their ubiquity by hybridization to DNAs from approximately 10 to 80 isolates of the species of interest as described earlier. The conditions for pre-hybridization, hybridization and post-hybridization washes were as described earli r. Aft r autoradiography (or 35 other det ction means appropriat for the non-radioactive label used), th specificity of each individual probe can be

determined. Each probe found to be specific (i.e. hybridizing only to the DNA from the bacterial species from which it was isolated) and ubiquitous (i.e. hybridizing to most isolates of the target species) was kept for further experimentations.

5

10

20

#### EXAMPLE 2:

Same as example 1 except that testing of the strains is by colony hybridization. The bacterial strains were inoculated onto a nylon membrane placed on nutrient agar. The membranes were incubated at 37°C for two hours and then bacterial lysis and DNA denaturation were carried out according to standard procedures. DNA hybridization was performed as described earlier.

#### 15 EXAMPLE 3:

Same as example 1 except that bacteria were detected directly from clinical samples. Any biological samples were loaded directly onto a dot blot apparatus and cells were lysed in situ for bacterial detection. Blood samples should b heparizined in order to avoid coagulation interfering with their convenient loading on a dot blot apparatus.

#### EXAMPLE 4:

Nucleotide sequencing of DNA fragments. The nucleotide 25 sequence of the totality or a portion of each fragment found to be specific and ubiquitous (Example 1) was determined using the dideoxynucleotide termination sequencing method (Sanger et 1977, Proc. Natl. Acad. Sci. USA. 74:5463-5467). These DNA are shown in sequences the sequence listing. 30 Oligonucleotide probes and amplification primers were selected from these nucleotide sequences, or alternatively, from selected data banks sequences and were then synthesized on an automated Biosearch synthesizer (Millipore™) using phosphoramidite chemistry.

35

Labeling of oligonucleotides. Each oligonucleotide was 5 end-labeled with  $\gamma^{3}$ P-ATP by the T4 polynucleotide kinase

(Pharmacia) as described earlier. The label could also be nonradioactive.

Specificity test for oligonucleotide probes. All labeled oligonucleotide probes were tested for their specificity by 5 hybridization to DNAs from a variety of Gram positive and Gram negative bacterial species as described earlier. Speciesspecific probes were those hybridizing only to DNA from the bacterial species from which it was isolated. Oligonucleotide probes found to be specific were submitted to ubiquity tests 10 as follows.

Ubiquity test for oligonucleotide probes. Specific oligonucleotide probes were then used in ubiquity tests with approximately 80 strains of the target species. Chromosomal 1.5 DNAs from the isolates were transferred onto nylon membranes and hybridized with labeled oligonucleotide probes described for specificity tests. The batteries approximately 80 isolates constructed for each target species contain reference ATCC strains as well as a variety of 20 clinical isolates obtained from various sources. Ubiquitous probes were those hybridizing to at least 80% of DNAs from the battery of clinical isolates of the target species. Examples of specific and ubiquitous oligonucleotide probes are listed in Annex 1. 2.5

#### EXAMPLE 5:

Same as example 4 except that a pool of specific oligonucleotide probes is used for bacterial identification 30 (i) to increase sensitivity and assure 100% ubiquity or (ii) to identify simultaneously more than one bacterial species. Bacterial identification could be done from isolated colonies or directly from clinical specimens.

#### EXAMPLE 6: 35

PCR amplification. The technique of PCR was used to increase sensitivity and rapidity of the tests. Th PCR

## SUBSTITUTE SHEET

primers used were often shorter derivatives of the extensive sets of oligonucleotides previously developed for hybridization assays (Table 6). The sets of primers were tested in PCR assays performed directly from a bacterial colony or from a bacterial suspension (see Example 7) to determine their specificity and ubiquity (Table 7). Examples of specific and ubiquitous PCR primer pairs are listed in annex II.

The specificity of all selected PCR primer pairs was tested against the battery of Gram negative and Gram positive bacteria used to test the oligonucleotide probes (Table 5). Primer pairs found specific for each species were then tested for their ubiquity to ensure that each set of primers could amplify at least 80% of DNAs from a battery of approximately 80 isolates of the target species. The batteries of isolates constructed for each species contain reference ATCC strains and various clinical isolates representative of the clinical diversity for each species.

Standard precautions to avoid false positive PCR results should be taken. Methods to inactivate PCR amplification products such as the inactivation by uracil-N-glycosylase may be used to control PCR carryover.

25

30

35

#### EXAMPLE 7:

Amplification directly from a bacterial colony or suspension. PCR assays were performed either directly from a bacterial colony or from a bacterial suspension, the latter being adjusted to a standard McFarland 0.5 (corresponds to 1.5 x 10<sup>8</sup> bacteria/mL). In the case of direct amplification from a colony, a portion of the colony was transferred directly to a 50 µL PCR reaction mixture (containing 50 mM KCl, 10 mM Tris pH 8.3, 2.5 mM MgCl<sub>2</sub>, 0.4 µM of each of the two primers, 200 µM of each of th four dNTPs and 1.25 Unit of Taq DNA polymerase (Perkin Elmer)) using a plastic rod. For th bacterial suspension, 4 µL of the cell suspension was added to

## SUBSTITUTE SHEET

46  $\mu L$  of the same PCR reaction mixture. For both strategies, the reaction mixture was overlaid with 50  $\mu L$  of mineral oil and PCR amplifications were carried out using an initial denaturation step of 3 min. at 95°C followed by 30 cycles consisting of a 1 second denaturation step at 95°C and of a 1 second annealing step at 55°C in a Perkin Elmer 480™ thermal cycler. PCR amplification products were then analyzed by standard agarose gel (2%) electrophoresis. Amplification products were visualized in agarose gels containing 2.5  $\mu g/mL$ of ethidium bromide under UV at 254 nm. The entire PCR assay can be completed in approximately one hour.

Alternatively, amplification from bacterial cultures was performed as described above but using a "hot start" protocol. In that case, an initial reaction mixture containing the target DNA, primers and dNTPs was heated at 85°C prior to the addition of the other components of the PCR reaction mixture. The final concentration of all reagents was as described above. Subsequently, the PCR reactions were submitted to thermal cycling and analysis as described above.

20

25

30

15

5

10

Amplification directly from clinical specimens. For EXAMPLE 8: amplification from urine specimens, 4 µL of undiluted or diluted (1:10) urine was added directly to 46  $\mu L$  of the above PCR reaction mixture and amplified as described earlier.

To improve bacterial cell lysis and eliminate the PCR inhibitory effects of clinical specimens, samples were routinely diluted in lysis buffer containing detergent(s). Subsequently, the lysate was added directly to the PCR reaction mixture. Heat treatments of the lysates, prior to DNA amplification, using the thermocycler or a microwave oven could also be performed to increase the efficiency of cell lysis.

Our strategy is to develop rapid and simple protocols to eliminate PCR inhibitory effects of clinical specimens and lyse bacterial cells to perform DNA amplification directly 35 from a variety of biological samples. PCR has th advantage of

10

15

being compatible with crude DNA preparations. For example, blood, cerebrospinal fluid and sera may be used directly in PCR assays after a brief heat treatment. We intend to use such rapid and simple strategies to develop fast protocols for DNA amplification from a variety of clinical specimens.

#### EXAMPLE 9:

Detection of antibiotic resistance genes. The presenc of specific antibiotic resistance genes which are frequently encountered and clinically relevant is identified using the PCR amplification or hybridization protocols described in previous sections. Specific oligonucleotides used as a basis for the DNA-based tests are selected from the antibiotic resistance gene sequences. These tests can be performed either directly from clinical specimens or from a bacterial colony and should complement diagnostic tests for specific bacterial identification.

#### EXAMPLE 10:

Same as examples 7 and 8 except that assays were performed by multiplex PCR (i.e. using several pairs of primers in a single PCR reaction) to (i) reach an ubiquity of 100% for the specific target pathogen or (ii) to detect simultaneously several species of bacterial pathogens.

25 For example, the detection of Escherichia coli requires three pairs of PCR primers to assure a ubiquity of 100%. Therefore, a multiplex PCR assay (using the "hot-start" protocol (Example 7)) with those three primer pairs was developed. This strategy was also used for the other bacterial pathogens for which more than one primer pair was required to reach an ubiquity of 100%.

Multiplex PCR assays could also be used to (i) detect simultaneously several bacterial species or, alternatively, (ii) to simultaneously identify the bacterial pathogen and detect specific antibiotic resistance genes eith redirectly from a clinical specimen or from a bacterial colony.

For these applications, amplicon detection methods should be adapted to differentiate the various amplicons produced. Standard agarose gel electrophoresis could be used because it discriminates the amplicons based on their sizes. Another useful strategy for this purpose would be detection using a variety of fluorochromes emitting at different wavelengths 5 which are each coupled with a specific oligonucleotide linked to a fluorescence quencher which is degraded during amplification to release the fluorochrome (e.g.  $TaqMan^{TM}$ , Perkin Elmer).

### EXAMPLE 11:

10

Detection of amplification products. The person skilled in the art will appreciate that alternatives other than standard agarose gel electrophoresis (Example 7) may be used for the revelation of amplification products. Such methods may be 15 based on the detection of fluorescence after amplification (e.g.  $Amplisensor^{TM}$ , Biotronics;  $TaqMan^{TM}$ ) or other labels such as biotin (SHARP Signal TM system, Digene Diagnostics). These methods are quantitative and easily automated. One of the amplification primers or an internal oligonucleotide probe 20 specific to the amplicon(s) derived from the species-specific fragment probes is coupled with the fluorochrome or with any other label. Methods based on the detection of fluorescence are particularly suitable for diagnostic tests since they are rapid and flexible as fluorochromes emitting different 2.5 wavelengths are available (Perkin Elmer).

## EXAMPLE 12:

Species-specific, universal and antibiotic resistance g n amplification primers can be used in other rapid amplification procedures such as the ligase chain reaction (LCR), transcription-bas d amplification systems (TAS), sustained sequence r plication (3SR), nucleic acid sequencebased amplification (NASBA), strand displacement amplification (SDA) and branch d DNA (bDNA) or any other m thods to increase the sensitivity of the test. Amplifications can be performed

35

25

30

3 5

from an isolated bacterial colony or directly from clinical specimens. The scope of this invention is therefore not limited to the use of PCR but rather includes the use of any procedures to specifically identify bacterial DNA and which may be used to increase rapidity and sensitivity of the tests.

#### EXAMPLE 13:

A test kit would contain sets of probes specific for each bacterium as well as a set of universal probes. The kit is provided in the form of test components, consisting of the set 10 of universal probes labeled with non-radioactive labels as well as labeled specific probes for the detection of each bacterium of interest in specific clinical samples. The kit will also include test reagents necessary to perform the pre-15 hybridization, hybridization, washing steps and hybrid detection. Finally, test components for the detection of known antibiotic resistance genes (or derivatives therefrom) will be included. Of course, the kit will include standard samples to used as negative and positive controls for each 20 hybridization test.

Components to be included in the kits will be adapted to each specimen type and to detect pathogens commonly encountered in that type of specimen. Reagents for the universal detection of bacteria will also be included. Based on the sites of infection, the following kits for the specific detection of pathogens may be developed:

-A kit for the universal detection of bacterial pathogens from most clinical specimens which contains sets of probes specific for highly conserved regions of the bacterial genomes.

-A kit for the detection of bacterial pathogens retrieved from urine samples, which contains eight specific test components (sets of probes for the detection of Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Staphylococcus saprophyticus, Staphylococcus aureus and Staphylococcus epidermidis).

-A kit for the detection of respiratory pathog ns which contains seven specific test components (sets of probes for detecting Streptococcus pneumoniae, Moraxella catarrhalis, Haemophilus influenzae, Klebsiella pneumoniae, Pseudomonas aeruginosa, Streptococcus pyogenes and Staphylococcus aureus).

-A kit for the detection of pathogens retrieved from blood samples, which contains eleven specific test components (sets of probes for the detection of Streptococcus pneumoniae, Moraxella catarrhalis, Haemophilus influenzae, Proteus mirabilis, Klebsiella pneumoniae, Pseudomonas aeruginosa, Escherichia coli, Enterococcus faecalis, Staphylococcus aureus, Streptococcus pyogenes and Staphylococcus epidermidis).

-A kit for the detection of pathogens causing meningitis, which contains four specific test components (sets of probes for the detection of Haemophilus influenzae, Streptococcus pneumoniae, Escherichia coli and Pseudomonas aeruginosa).

-A kit for the detection of clinically important antibiotic resistance genes which contains sets of probes for the specific detection of at least one of the 19 following genes associated with bacterial resistance : blatem, blarob, blashv, aadB, aacC1, aacC2, aacC3, aacA4, mecA, vanA, vanH, vanX, satA, aacA-aphD, vat, vga, msrA, sul and int.

-Other kits adapted for the detection of pathogens from skin, abdominal wound or any other clinically relevant kits 25 will be developed.

## EXAMPLE 14:

Same as example 13 except that the test kits contain all 30 reagents and controls to perform DNA amplification assays. Diagnostic kits will be adapted for amplification by PCR (or other amplification methods) performed directly either from clinical specimens or from a bacterial colony. Components required for universal bacterial det ction, bacterial identification and antibiotic resistance genes d tection will 35 be includ d.

## SUBSTITUTE SHEET

5

10

15

Amplification assays could be performed either in tubes or in microtitration plates having multiple wells. For assays in plates, the wells will be coated with the specific amplification primers and control DNAs and the detection of amplification products will be automated. Reagents and amplification primers for universal bacterial detection will be included in kits for tests performed directly from clinical specimens. Components required for bacterial identification and antibiotic resistance gene detection will be included in kits for testing directly from colonies as well as in kits for testing directly from clinical specimens.

The kits will be adapted for use with each type of specimen as described in example 13 for hybridization-based diagnostic kits.

15

10

5

#### EXAMPLE 15:

It is understood that the use of the probes and amplification primers described in this invention for bacterial detection and identification is not limited to clinical microbiology applications. In fact, we feel that 20 other sectors could also benefit from these new technologies. For example, these tests could be used by industries for quality control of food, water, pharmaceutical products or other products requiring microbiological control. These tests 25 could also be applied to detect and identify bacteria in biological samples from organisms other than humans (e.g. other primates, mammals, farm animals and live stocks). These diagnostic tools could also be very useful for research purposes including clinical trials and epidemiological 30 studies.

Table 1. Distribution of urinary isolates from positive urine samples (≥ 10<sup>7</sup> CFU/L) at the Centre Hospitalier de l'Université Laval (CHUL) for the 1992-1994 period.

|     |                                                     |                  | % of iso        | lates           |                 |
|-----|-----------------------------------------------------|------------------|-----------------|-----------------|-----------------|
| 1 0 |                                                     | Nov 92<br>n=267ª | Apr 93<br>n=265 | Jul 93<br>n=238 | Jan 94<br>n=281 |
|     |                                                     | 53.2             | 51.7            | 53.8            | 54.1            |
|     | Escherichia coli                                    | 13.8             | 12.4            | 11.7            | 11.4            |
|     | Enterococcus faecalis                               | 6.4              | 6.4             | 5.5             | 5.3             |
| 1 5 | Klebsiella pneumoniae<br>Staphylococcus epidermidis | 7.1              | 7.9             | 3.0             | 6.4             |
|     | Proteus mirabilis                                   | 2.6              | 3.4             | 3.8             | 2.5             |
|     | Proteus milabilis Pseudomonas aeruginosa            | 3.7              | 3.0             | 5.0             | 2.9             |
|     | Staphylococcus saprophyticus                        | 3.0              | 1.9             | 5.4             | 1.4             |
| 20  | Others <sup>b</sup>                                 | 10.2             | 13.3            | 11.8            | 16.0            |

 $a_{n}$  = total number of isolates for the indicated month.

b See Table 2.

**Table 2.** Distribution of uncommon<sup>a</sup> urinary isolates from positive urine samples (≥ 10<sup>7</sup> CFU/L) at the Centre Hospitalier de l'Université Laval (CHUL) for the 1992-1994 period.

|    |                            |        | % of isol | ates   |        |
|----|----------------------------|--------|-----------|--------|--------|
| 10 | Organismsa                 | Nov 92 | Apr 93    | Jul 93 | Jan 94 |
|    | Staphylococcus aureus      | 0.4    | 1.1       | 1.3    | 1.4    |
|    | Staphylococcus spp.        | 2.2    | 4.9       | 1.7    | 6.0    |
| 15 | Micrococcus spp.           | 0.0    | 0.0       | 0.4    | 0.7    |
|    | Enterococcus faecium       | 0.4    | 0.4       | 1.3    | 1.4    |
|    | Citrobacter spp.           | 1.4    | 0.8       | 0.4    | 0.7    |
|    | Enterobacter spp.          | 1.5    | 1.1       | 1.3    | 1.4    |
|    | Klebsiella oxytoca         | 1.1    | 1.5       | 2.5    | 1.8    |
| 20 | Serratia spp.              | 0.8    | 0.0       | 0.5    | 0.0    |
|    | Proteus spp.               | 0.4    | 0.4       | 0.0    | 1.1    |
|    | Morganella and Providencia | 0.4    | 0.8       | 0.4    | 0.0    |
|    | Hafnia alvei               | 0.8    | 0.0       | 0.0    | 0.0    |
|    | NEBp                       | 0.0    | 0.4       | 1.3    | 1.1    |
| 25 | Candida spp.               | 0.8    | 1.9       | 0.7    | 0.4    |

a Uncommon urinary isolates are those identified as "Others" in Table 1.

b NFB: non fermentative bacilli (i.e. Stenotrophomonas and Acinetobacter).

Table 3. Distribution of positive<sup>a</sup> (bacterial count ≥ 10<sup>7</sup> CFU/L) and negative (bacterial count < 10<sup>7</sup> CFU/L) urine specimens tested at the Centre Hospitalier de l'Université Laval (CHUL) for the 1992-1994 period.

| •   |           | Number of isolates (%) |                        |                          |                          |  |
|-----|-----------|------------------------|------------------------|--------------------------|--------------------------|--|
| 10  | Specimens | Nov 92                 | Apr 93                 | Jul 93                   | Jan 94                   |  |
|     | received: | 1383(100)<br>267(19.3) | 1338(100)<br>265(19.8) | 1139 (100)<br>238 (20.9) | 1345 (100)<br>281 (20.9) |  |
| 1 5 | negative: | 1116(80.7)             | 1073(80.2)             | 901 (79.1)               | 1064(79.1)               |  |

a Based on standard diagnostic methods, the minimal number of bacterial pathogens in urine samples to indicate an urinary tract infection is normally 10<sup>7</sup> CFU/L.

# SUBSTITUTE SHEET

. 5

Table 4. Distribution of positive and negative clinical specimens tested in the Microbiology Laboratory of the CHUL.

| Clinical specimens <sup>a</sup> | No. of samples tested | <pre>% of negative specimens</pre> | % of positive specimens |
|---------------------------------|-----------------------|------------------------------------|-------------------------|
| Urine                           | 17,981                | 19.4                               | 80.6                    |
| Haemoculture/marrow             | 10,010                | 6.9                                | 93.1                    |
| Sputum                          | 1,266                 | 68.4                               | 31.6                    |
| Superficial pus                 | 1,136                 | 72.3                               | 27.7                    |
| Cerebrospinal fluid             | 553                   | 1.0                                | 99.0                    |
| Synovial fluid-articular        | 523                   | 2.7                                | 97.3                    |
| Bronch./Trach./Amyg./Throat     | 502                   | 56.6                               | 43.4                    |
| Deep pus                        | 473                   | 56.8                               | 43.2                    |
| Ears                            | 289                   | 47.1                               | 52.9                    |
| Pleural and pericardial fluid   | 132                   | 1.0                                | 99.0                    |
| Peritonial fluid                | 101                   | 28.6                               | 71.4                    |

<sup>25</sup> a Specimens tested from February 1994 to January 1995.

Table 5. Bacterial species (66) used for testing the specificity of DNA fragment probes, oligonucleotide probes and PCR primers.

| 10 | Bacterial species                                                                                                                                                                                                                                                                                                                                                                                        | Number<br>of strains<br>tested      | Bacterial species of                                                                                                                                                                                                                                                                                                                                                                                                                                   | umber<br>strains<br>ested                                                                 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| 15 | Proteus mirabilis Klebsiella pneumoniae Pseudomonas aeruginosa Escherichia coli Moraxella catarrhalis Proteus vulgaris Morganella morganii Enterobacter cloacae Providencia stuartii Providencia species Enterobacter agglomera Providencia rettgeri Neisseria mucosa Providencia rustigian Burkholderia cepacia Enterobacter aerogene Stenotrophomonas malt Pseudomonas fluoresce Comamonas acidovorans | iens 1 ii 1 2 ss 2 cophilia 2 ens 1 | Gram negative:  Haemophilus parainfluenzae Bordetella pertussis Haemophilus parahaemolyticus Haemophilus haemolyticus Haemophilus aegyptius Kingella indologenes Moraxella atlantae Neisseria caviae Neisseria subflava Moraxella urethralis Shigella sonnei Shigella flexneri Klebsiella oxytoca Serratia marcescens Salmonella typhimurium Yersinia enterocolitica Acinetobacter calcoaceticu Acinetobacter lwoffi Hafnia alvei Citrobacter diversus | 2<br>1<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>1<br>1<br>1s 1<br>1<br>2<br>1<br>1<br>2<br>1 |
| 35 | Pseudomonas putida                                                                                                                                                                                                                                                                                                                                                                                       | 2                                   | Citrobacter freundii Salmonella species                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                         |

...continued on next page

## SUBSTITUTE SHEET

Table 5 (continued). Bacterial species (66) used for
testing the specificity of DNA fragment probes,
oligonucleotide probes and PCR primers.

| 10  | Bacterial species            | Number<br>of strains<br>tested |  |
|-----|------------------------------|--------------------------------|--|
|     | Gram positive:               |                                |  |
|     | Streptococcus pneumoniae     | 7                              |  |
| 15  | Streptococcus salivarius     | 2                              |  |
|     | Streptococcus viridans       | 2                              |  |
|     | Streptococcus pyogenes       | 2                              |  |
|     | Staphylococcus aureus        | 2                              |  |
|     | Staphylococcus epidermidis   | 2                              |  |
| 20  | Staphylococcus saprophyticus | 5                              |  |
|     | Micrococcus species          | 2                              |  |
|     | Corynebacterium species      | 2                              |  |
|     | Streptococcus groupe B       | 2                              |  |
|     | Staphylococcus simulans      | 2                              |  |
| 25  | Staphylococcus ludgunensis   | 2                              |  |
|     | Staphylococcus capitis       | 2                              |  |
|     | Staphylococcus haemolyticus  | 2                              |  |
|     | Staphylococcus hominis       | 2                              |  |
|     | Enterococcus faecalis        | 2                              |  |
| 30  | Enterococcus faecium         | 1                              |  |
|     | Staphylococcus warneri       | 1                              |  |
|     | Enterococcus durans          | 1                              |  |
|     | Streptococcus bovis          | 1                              |  |
|     | Diphteroids                  | 1                              |  |
| 3 5 | Lactobacillus acidophilus    | 1                              |  |
|     |                              |                                |  |

Table 6. Species-specific DNA fragment and oligonucleotide probes for hybridization.

| Organisms <sup>a</sup>                      | Number o | of fragment | probesb                      | Number of oligonucleotide probe |          |                             |  |
|---------------------------------------------|----------|-------------|------------------------------|---------------------------------|----------|-----------------------------|--|
|                                             | Tested   | Specific    | ubiqui-<br>tous <sup>c</sup> | Synthe-<br>sized                | Specific | Ubiqui<br>tous <sup>C</sup> |  |
|                                             |          |             |                              | 20                              | 12       | 9 £                         |  |
| E. coli <sup>d</sup><br>E. coli             | 14       | 2           | 2 <sup>e</sup>               | -                               | -        | -                           |  |
|                                             |          | _           | -                            | 15                              | 1        | 1                           |  |
| K. pneumoniae <sup>d</sup><br>K. pneumoniae | 33       | 3           | 3                            | 18                              | 12       | 8                           |  |
|                                             | -        | _           | -                            | 3                               | 3        | 2                           |  |
| P. mirabilis <sup>d</sup><br>P. mirabilis   | 14       | 3           | 3 <b>e</b>                   | 15                              | 8        | 7                           |  |
|                                             | -        | -           | -                            | 26                              | 13       | 9                           |  |
| p. aeruginosa <sup>d</sup><br>p. aeruginosa | 6        | 2           | 2 <sup>e</sup>               | 6                               | 0        | 0<br>7                      |  |
| S. saprophyticus                            | 7        | 4           | 4                            | 20                              | 9        | 2                           |  |
|                                             | -        | -           | -                            | 16                              | 2<br>1   | 1                           |  |
| H. influenzae <sup>d</sup><br>H. influenzae | 1        | 1           | 1                            | 20                              | _        |                             |  |
| •                                           | _        | •           | -                            | 6                               | 1<br>1   | 1                           |  |
| s. pneumoniae <sup>d</sup><br>S. pneumoniae | 19       | 2           | 2                            | 4                               | _        | 8                           |  |
| M. catarrhalis                              | 2        | 2           | 2                            | 9                               | 8        |                             |  |
| S. epidermidis                              | 62       | 1           | 1                            | -                               | -        | -                           |  |
| S. aureus                                   | 30       | 1           | 1                            | -                               | -        | -                           |  |
| Universal probes                            | a _      | -           | •                            | 7                               | -        | 79                          |  |

<sup>30</sup>a No DNA fragment or oligonucleotide probes were tested for E.

faecalis and S. pyogenes.

b Sizes of DNA fragments range from 0.25 to 5.0 kbp.

A specific probe was considered ubiquitous when at least 80% of isolates of the target species (approximately 80 isolates) were recognized by each specific probe. When 2 or more probes are combined, 100% of the isolates are recognized.

d These sequences were selected from data banks.

e Ubiquity tested with approximately 10 isolates of the target species.

f A majority of probes (8/9) do not discriminate E. coli and Shigella spp.

<sup>9</sup> Ubiquity tests with a pool f the 7 probes detected all 66 bacterial species listed in Table 5.

**Table 7.** PCR amplification for bacterial pathogens commonly encountered in urine, sputum, blood, cerebrospinal fluid and other specimens.

| Organism         |                | mer pair <sup>a</sup><br>EQ ID NO) | Amplicon<br>size (bp) | <b>Ubiquity</b> b | DNA amplifi           | cation from       |
|------------------|----------------|------------------------------------|-----------------------|-------------------|-----------------------|-------------------|
| ***              |                |                                    |                       |                   | colonies <sup>C</sup> | specimens         |
| E. coli          | 1 <sup>e</sup> | (55+56)                            | 107                   | 75/80             | •                     |                   |
|                  | 2 <b>e</b>     | (46+47)                            | 297                   | 77/80             |                       | •                 |
|                  | 3              | (42+43)                            | 102                   | 78/80             | •<br>•                | +                 |
|                  | 4              | (131+132)                          | 134                   | 73/80             | •                     | <b>+</b>          |
|                  | 1+3+4          |                                    | •                     | 80/80             | •                     | +                 |
| E. faecalis      | 1 <sup>e</sup> | (38+39)                            | 200                   | 71/80             |                       |                   |
|                  | 2 <sup>e</sup> | (40+41)                            | 121                   | 79/80             | +                     | +                 |
|                  | 1+2            | (00/02)                            | -                     | 80/80             | <b>*</b>              | <b>+</b>          |
| K. pneumoniae    | 1              | (67+68)                            | 198                   |                   | •                     | +                 |
| <b>p</b>         | 2              | (61+62)                            | 143                   | 76/80             | •                     | •                 |
|                  | 3h             | •                                  |                       | 67/80             | •                     | •                 |
|                  |                | (135+136)<br>(137+138)             | 148                   | 78/80             | +                     | N.T. <sup>i</sup> |
|                  | 1+2+3          | (13/+138)                          | 116                   | 69/80             | +                     | N.T.              |
|                  | ****           |                                    | -                     | 80/80             | +                     | N.T.              |
| P. mirabilis     | 1              | (74+75)                            | 167                   | 73/80             | •                     | N                 |
|                  | 2              | (133+134)                          | 123                   | 80/80             | •                     | N.T.<br>N.T.      |
| P. aeruginosa    | 10             | (83+84)                            | 139                   | 79/80             | _                     |                   |
|                  | 2 <sup>e</sup> | (85+86)                            | 223                   | 80/80             | •                     | N.T.              |
|                  |                |                                    |                       | 00780             | •                     | N.T.              |
| S. saprophyticus | 1              | (98+99)                            | 126                   | 79/80             | •                     | •                 |
|                  | 2              | (139+140)                          | 190                   | 80/80             | •                     | N.T.              |
| M. catarrhalis   | 1              | (112+113)                          | 157                   | 79/80             | •                     |                   |
|                  | 2              | (118+119)                          | 118                   | 80/80             | · ·                   | N.T.              |
|                  | 3              | (160+119)                          | 137                   | 80/80             | ·<br>•                | N.T.<br>N.T.      |
| H. influenzae    | 10             | (154+155)                          | 217                   | 80/80             | <b>+</b>              | N.T.              |
| S. pneumoniae    | 1 <b>e</b>     | (156+157)                          | 134                   | 80/80             |                       |                   |
|                  | 2 e            | (158+159)                          | 197                   | 74/80             | •                     | N.T.              |
|                  | 3              | (78+79)                            | 175                   | 74/80<br>67/80    | +                     | N.T.              |
|                  | -              |                                    | 2.5                   | 0//60             | +                     | N.T.              |

...continued on next page

Table 7 (continued). PCR amplification for bacterial
pathogens commonly encountered in urine, sputum, blood,
cerebrospinal fluid and other specimens.

|   |                          | Primer paira<br>#(SEQ ID NO)     |                                     | Amplicon          | Ubiquityb               | DNA amplification from |                        |  |  |
|---|--------------------------|----------------------------------|-------------------------------------|-------------------|-------------------------|------------------------|------------------------|--|--|
|   | Organism                 |                                  |                                     | size (bp)         |                         | colonies <sup>C</sup>  | specimens <sup>d</sup> |  |  |
| 0 | S. epidermidis           | 1<br>2                           | (147+148)<br>(145+146)              | 175<br>125        | 80/80<br>80/80          | ÷<br>+                 | N.T.<br>N.T.           |  |  |
| 5 | S. aureus                | 1<br>2<br>3                      | (152+153)<br>(149+150)<br>(149+151) | 108<br>151<br>176 | 80/80<br>80/80<br>80/80 | *<br>*                 | N.T.<br>N.T.           |  |  |
| J | s. pyogenes <sup>£</sup> | 1 <sup>e</sup><br>2 <sup>e</sup> | (141+142)<br>(143+144)              | 213<br>157        | 80/80<br>24/24          | *<br>*                 | N.T.<br>N.T.           |  |  |
|   | Universal                | 1 <b>e</b>                       | (126-127)                           | 241               | 194/195 <sup>g</sup>    | •                      | •                      |  |  |

- 20
- a All primer pairs are specific in PCR assays since no amplification was observed with DNA from 66 different species of both Gram positive and Gram negative bacteria other than the species of interest (Table 5).
- 25 b The ubiquity was normally tested on 80 strains of the species of interest. All retained primer pairs amplified at least 90% of the isolates. When combinations of primers were used, an ubiquity of 100% was reached.
- For all primer pairs and multiplex combinations, PCR amplifications directly performed from a bacterial colony were 100 % species-specific.
  - d pcR assays performed directly from urine specimens.
  - e primer pairs derived from data bank sequences. Primer pairs with no "e" are derived from our species-specific fragments.
- f For S. pyogenes, primer pair #1 is specific for Group A Streptococci (GAS). Primer pair #2 is specific for the GASproducing exotoxin A gene (SpeA).
- 9 Ubiquity tested on 195 isolates from 23 species representative of bacterial pathogens commonly encountered in clinical specimens.
  - h Optimizations are in progress to eliminate non-specific amplification bserved with some bacterial species other than the target species.
- 45 i N.T.: not tested.

Table 8. Selected antibiotic resistance genes for diagnostic purposes.

|     | Genes                                       | Antibiotics                                                                     | Bacteria <sup>a</sup>                                              | SEQ ID NO                 |
|-----|---------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------|
| 1 0 | (blatem) TEM-1                              | β-lactams                                                                       | Enterobacteriaceae,<br>Pseudomonadaceae,<br>Haemophilus, Neisseria | 161                       |
|     | (blarob) ROB-1                              | $\beta$ -lactams                                                                | Haemophilus, Pasteurella                                           | 162                       |
|     | (bla <sub>shv</sub> ) SHV-1                 | β-lactams                                                                       | Rlebsiella and other<br>Enterobacteriaceae                         | 163                       |
| 15  | <pre>aadB, aacC1, aacC2, aacC3, aacA4</pre> | Aminoglycosides                                                                 | Enterobacteriaceae,<br>Pseudomonadaceae                            | 164, 165, 166<br>167, 168 |
|     | mecA                                        | $\beta$ -lactams                                                                | Staphylococci                                                      | 169                       |
|     | vanH, vanA, vanX                            | Vancomycin                                                                      | Enterococci                                                        | 170                       |
|     | satA                                        | Macrolides                                                                      | Enterococci                                                        | 173                       |
| 20  | aacA-aphD                                   | Aminoglycosides                                                                 | Enterococci,<br>Staphylococci                                      | 174                       |
|     | vat                                         | Macrolides                                                                      | Staphylococci                                                      | 175                       |
|     | vga                                         | Macrolides                                                                      | Staphylococci                                                      | 176                       |
|     | msrA                                        | Erythromycin                                                                    | Staphylococci                                                      | 177                       |
| 25  | Int and Sul conserved sequences             | $\beta$ -lactams, trimethoprim, aminoglycosides, anti-, septic, chloramphenicol | Enterobacteriaceae,<br>Pseudomonadaceae                            | 171, 172                  |
|     |                                             |                                                                                 | _                                                                  |                           |

Bacteria having high incidence for the specified antibiotic resistance genes. The presence in other bacteria is not excluded.

Specific and ubiquitous oligonucleotides Annex I: probes for hybridization

| 5 5 | SEQ ID NO            | Nucleotide sequence Origin                                                     | nating     | DNA fragment           |
|-----|----------------------|--------------------------------------------------------------------------------|------------|------------------------|
|     |                      | SI                                                                             | EQ ID      | Nucleotide<br>position |
| 10  |                      |                                                                                |            |                        |
|     | Bacterial speci      | es: Escherichia coli                                                           | 5 <b>a</b> | 213-237                |
|     | 44 5'-CAC            | CCG CTT GCG TGG CAA GCT GCC C                                                  | 5a         | 489-513                |
|     | 45 5'-CGT            | TTG TGG ATT CCA GTT CCA TCC G                                                  | 6a         | 759-783                |
|     | 48 5'-TGA            | AGC ACT GGC CGA AAT GCT GCG T                                                  | 6 <b>a</b> | 898-922                |
| 15  | 49 5'-GAT            | GTA CAG GAT TCG TTG AAG GCT T CGA AGG CGT AGC AGA AAC TAA C                    | 7a         | 1264-1288              |
|     | 50 5'-TAC            | A ACC CGA ACT CAA CGC CGG ATT T                                                | 7 <b>a</b> | 1227-1251              |
|     | 51 5'-GC             | A CAC AAG GGT CGC ATC TGC GGC C                                                | 7a         | 1313-1337              |
|     | 52 5'-AT             | C GTA TGC ATT GCA GAC CTT GTG GC                                               | 7a         | 111-136                |
| 20  | 53 5'-TG<br>54 5'-GC | T TTC ACT GGA TAT CGC GCT TGG G                                                | 7 <b>a</b> | 373-397                |
|     | Bacterial spe        | cies: Proteus mirabilis                                                        | 12         | 23-47                  |
|     | 70b 5'-TG            | G TTC ACT GAC TTT GCG ATG TTT C                                                | 12         | 53-77                  |
|     | 71 51-170            | G AGG ATG GCA TGC ACT AGA AAA T                                                | 12         | 80-109                 |
| 25  | 72b 5'-CG            | C TGA TTA GGT TTC GCT AAA ATC TTA TTA<br>G ATC CTC ATT TTA TTA ATC ACA TGA CCA | 12         | 174-203                |

a Sequences from data banks

b These sequences are from the opposite DNA strand of the sequences given in the Sequence listing 30

Annex I: Specific and ubiquitous oligonucleotides probes for hybridization

| SEQ        | ID NO       | Nucleotide    | e sequence        | Originating | DNA fragment |
|------------|-------------|---------------|-------------------|-------------|--------------|
|            |             |               |                   | SEQ ID      | Nucleotide   |
|            |             | <del></del>   |                   | NO          | position     |
| Bacte      | erial speci | es: Proteus   | mirabilis         |             |              |
| 76         | 5'-CCG C    | CT TTA GCA TT | A ATT GGT GTT TAT | AGT 13      | 246-275      |
| <b>7</b> 7 | 5'-CCT A    | TT GCA GAT AC | TTA AAT GTC TTG   | GGC 13      | 291-320      |
| 80p        | 5'-TTG A    | GT GAT GAT TT | ACT GAC TCC C     | 14          | 18-42        |
| 81         | 5'-GTC A    | GA CAG TGA TG | TGA CGA CAC A     | 15ª         | 1185-1209    |
| 82         | 5'-TGG T    | TG TCA TGC TG | TTG TGT GAA AAT   | 15ª         | 1224-1250    |
| Bacte      | erial speci | s: Klebsiell  | a pneumoniae      |             |              |
| 57         | 5 ' -GTG    | GTG TCG TTC A | GC GCT TTC AC     | 8           | 45-67        |
| 58         | 5 ' -GCG    | ATA TTC ACA C | CC TAC GCA GCC A  | 9           | 161-185      |
| 59b        |             | GAA AAT GCC G | GA AGA GGT ATA CG | 9           | 203-228      |
| 60p        |             | GAG CTG CAG A | CC GGT AAA ACT CA | 9           | 233-258      |
| 63b        | 5 ' -CGT    | GAT GGA TAT T | CT TAA CGA AGG GC | 10          | 250-275      |
| 64b        | 5'-ACC      | AAA CTG TTG A | GC CGC CTG GA     | 10          | 201-223      |
| 65         | 5 ' -GTG    | ATC GCC CCT C | AT CTG CTA CT     | 10          | 77-99        |
| 66         | 5 ' -CGC    | CCT TCG TTA A | GA ATA TCC ATC AC | 10          | 249-274      |
| 69         | 5'-CAG      | GAA GAT GCT G | CA CCG GTT GTT G  | 11ª         | 296-320      |

a Sequences from data banks

b These sequences are from the opposite DNA strand of the sequences given in the Sequence listing

Annex I: Specific and ubiquitous oligonucleotides probes for hybridization

| •  | SEQ ID     | NO                           | Nucl       | .eoti | de s  | eđne  | ence  |       | Ori  | gir   | ating D         | NA fragment |
|----|------------|------------------------------|------------|-------|-------|-------|-------|-------|------|-------|-----------------|-------------|
|    | - <b>-</b> |                              |            |       |       |       |       |       |      |       | SEQ ID          | Nucleotide  |
|    |            |                              |            |       |       |       |       |       |      |       | NO              | position    |
|    |            |                              |            |       |       |       |       |       |      |       |                 |             |
|    |            | 1 acios:                     | p          | eudo  | mona  | is ae | rugin | osa   |      |       |                 |             |
| 0  |            | <u>l species</u> :<br>5'-AAT |            | CCT   | GTA.  | ССТ   | CGG   | CGC   | TGG  | T     | 18 <sup>a</sup> | 2985-3009   |
|    | 87         | 5'-AAT<br>5'-GGC             | GCG        | GCI   | CCA   | CUT.  | GCA   | CCT   | GCC  | A     | 18 <sup>a</sup> | 2929-2953   |
|    | 88         |                              |            | عایای | CCT   | cce   | CAG   | CCT   | CTG  | С     | 18 <sup>a</sup> | 2821-2845   |
|    | 89         |                              |            | GCT   | CAA   | 200   | CAG   | TCA   | GGT  | т     | 18 <sup>a</sup> | 1079-1103   |
|    | 90         | 5'-TGG                       | CTT        | TTG   | CAA   | CCG   | CGI   | TON   | САТ  | G     | 19a             | 705-729     |
| 5  | 91         | 5'-GCG                       | CCC        | GCG   | AGG   | GCA   | 160   | 110   | ምርጥ  | Δ     | 19a             | 668-692     |
|    | 92         | 5'-ACC                       | TGG        | GCG   | CCA   | ACT   | ACA   | AGI   | 200  | <br>G | 19a             | 505-529     |
|    | 93         | 5 ' -GGC                     | TAC        | GCT   | GCC   | GGG   | CTG   | CAG   | 600  |       | 20ª             | 1211-1235   |
|    | 94         | 5 ' -CCG                     | ATC        | TAC   | ACC   | ATC   | GAG   | ATG   | GGC  |       | 20a             | 2111-2135   |
|    | 95         | 5'-GAG                       | CGC        | GGC   | TAT   | GTC   | TTC   | GTC   | GGC  | T     | 20              | 222         |
| 20 |            |                              |            |       |       |       |       |       | • •  |       |                 |             |
|    | Bacter     | ial specie                   | <u>s</u> : | Strep | tococ | cus   | pneui | noniu |      |       | 30              | 423-447     |
|    | 120        | 5 ' -TC'                     | r GT       | CT!   | A GAC | AC'   | r GC  | C CCI | A TT | r C   |                 | 1198-1222   |
|    | 121        | 5 · -CG                      | A TG       | r cr  | r GA  | r TG. | A GC  | A GG  | G TT | A T   | 31-             | 1170        |

<sup>25</sup> a Sequences from data banks

b These sequences are from the opposite DNA strand of the sequences given in the Sequence listing

Annex I: Specific and ubiquitous oligonucleotides probes for hybridization

| SEQ         | ID NO      | Nucle             | otide     | sequ  | ence  | €    |       | Orig | inating D | NA fragment         |
|-------------|------------|-------------------|-----------|-------|-------|------|-------|------|-----------|---------------------|
| <del></del> |            |                   |           |       |       |      |       |      | SEQ ID    | Nucleotide position |
| Bacte       | rial speci | i <u>es</u> : Sti | phyloco   | occus | sapr  | ophi | yticu | s    |           |                     |
| 96          | 5 ' -CGT   | TTT TAC           |           |       |       |      |       |      | 21        | 45-73               |
| 97b         |            | GGC AGA           |           |       |       |      |       |      | 21        | 53-82               |
| 100         |            | CAA GTT           |           |       |       |      |       |      | 22        | 89-115              |
| 101b        | 5'-ATG     | AGT GAA           | GCG GAG   | TCA   | GAT   | TAT  | GTG   | CAG  | 23        | 105-134             |
| 102         |            | TCA TTA           |           |       |       |      |       |      | 24        | 20-44               |
| 103         | 5'-CTG     | GTT AGC           | TTG ACT   | CTT   | AAC   | AAT  | CTT   | GTC  | 24        | 61-90               |
| 104b        |            | GCG ATT           |           |       |       |      |       |      | 24        | 19-48               |
| Bacte       | rial speci | es: Mo            | raxella d | atan  | hali: | 5    |       |      |           |                     |
| 108         | 5'-GCC     | CCA AAA           | CAA TGA   | AAC   | ATA   | TGG  | т     |      | 28        | 91 105              |
| 109         |            | CAG ATT           |           |       |       |      |       |      | 28        | 81-105<br>126-150   |
| 110         |            | TTT GAC           |           |       |       |      |       |      | 28        |                     |
| 111         |            | CGG CAC           |           |       |       |      |       |      | 28        | 165-189<br>232-256  |
| 114         |            | CAA CCT           |           |       |       |      |       |      | 29        | 232-256<br>97-121   |
| 115         |            | CAA ACA           |           |       |       |      |       |      | 29        | 139-163             |
| 116         |            | TCT GCG           |           |       |       |      |       |      | 29        |                     |
| 117         |            | ACT TTG           |           |       |       |      | CA    |      | 29        | 178-200<br>287-312  |

a Sequences from data banks

<sup>30</sup> b These sequences are from the opposite DNA strand of the sequences given in the Sequence listing

Annex I: Specific and ubiquitous oligonucleotides probes for hybridization

| -  | SEQ ID                                                                | NO Nucleotide sequence                                                                                                                                            | Originating D | NA fragment                     |
|----|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------------------|
|    |                                                                       |                                                                                                                                                                   | SEQ ID<br>NO  | Nucleotide position             |
| 0  | Bacterial<br>105 <sup>b</sup><br>106 <sup>b</sup><br>107 <sup>b</sup> | Species: Haemophilus influenzae 5'-GCG TCA GAA AAA GTA GGC GAA ATG A 5'-AGC GGC TCT ATC TTG TAA TGA CAC 5'-GAA ACG TGA ACT CCC CTC TAT ATA                        | A 200         | 138-165<br>770-794<br>5184-5208 |
| 5  | 122 <sup>b</sup><br>123<br>124 <sup>b</sup><br>125 <sup>b</sup>       | Universal probesc  5'-ATC CCA CCT TAG GCG GCT GGC TCC  5'-ACG TCA AGT CAT CAT GGC CCT TAC  5'-GTG TGA CGG GCG GTG TGT ACA AGG  5'-GAG TTG CAG ACT CCA ATC CGG ACT | C - ACG A -   | -<br>-<br>-                     |
| 20 | 128 <sup>b</sup><br>129<br>130 <sup>b</sup>                           | 5'-CCC TAT ACA TCA CCT TGC GGT TTA<br>5'-GGG GGG ACC ATC CTC CAA GGC TAA<br>5'-CGT CCA CTT TCG TGT TTG CAG AGT                                                    | GCA GAG AG -  | -<br>-<br>-                     |

a Sequences from data banks

b These sequences are from the opposite DNA strand of the 25 sequences given in the Sequence listing

C Universal probes were derived from 16S or 23S ribosomal RNA gene sequences not included in the Sequence listing

. 44

Annex II: Specific and ubiquitous primers for DNA amplification

| SEQ I            | D NO 1           | Nucle | otid  | le se | equen  | ce    |    | Originating | DNA fragment |
|------------------|------------------|-------|-------|-------|--------|-------|----|-------------|--------------|
|                  |                  |       |       |       |        |       |    | SEQ ID      | Nucleotide   |
|                  |                  |       |       |       |        |       |    | NO          | position     |
| Bacteri          | al species:      |       | Esc   | heric | hia co | oli   |    |             |              |
| 42               | 5 ' -GCT         | TTC   | CAG   | CGT   | CAT    | ATT   | G  | 4           | 177-195      |
| 43b              | 5 ' -GAT         | CTC   | GAC   | AAA   | ATG    | GTG   | A  | 4           | 260-278      |
| 46               | 5 ' -TCA         | CCC   | GCT   | TGC   | GTG    | GC    |    | 5 <b>a</b>  | 212-228      |
| 47b              | 5 ' -GGA         | ACT   | GGA   | ATC   | CAC    | AAA   | С  | 5 <b>a</b>  | 490-508      |
| 55               | 5 ' -GCA         | ACC   | CGA   | ACT   | CAA    | CGC   | С  | 7a          | 1227-1245    |
| 56b              | 5 ' -GCA         | GAT   | GCG   | ACC   | CTT    | GTG   | T  | 7a          | 1315-1333    |
| 131              | 5 ' -CAG         | GAG   | TAC   | GGT   | GAT    | TTT   | TA | 3           | 60-79        |
| 132 <sup>b</sup> | 5 ' <b>-AT</b> T | TCT   | GGT   | TTG   | GTC    | ATA   | CA | 3           | 174-193      |
| Bacteria         | al species:      | E     | ntero | cocci | ıs fae | calis |    |             |              |
| 38               | 5 ' -GCA         | ATA   | CAG   | GGA   | AAA    | ATG   | TC | 1 <b>a</b>  | 69-88        |
| 39b              | 5 ' -CTT         |       |       |       |        |       |    | _<br>1a     | 249-268      |
| 40               | 5'-GAA           | CAG   | AAG   | AAG   | CCA    | AAA   | AA | 2 <b>a</b>  | 569-588      |
| 41b              | 5 ' -GCA         | ATC   | CCA   | AAT   | AAT    | ACG   | GT | 2 <b>a</b>  | 670-689      |

a Sequences from data banks

b These sequences are from the opposite DNA strand of the sequences given in the Sequence listing

Annex II: Specific and ubiquitous primers for DNA amplification

| _   | SEQ ID N                | Nucleotide sequence                                      | rigi | nating       | DNA fragment           |
|-----|-------------------------|----------------------------------------------------------|------|--------------|------------------------|
| _   | 20 T                    |                                                          | -    | SEQ ID<br>NO | Nucleotide<br>position |
| -   |                         |                                                          |      |              |                        |
|     | <b>Bacterial</b>        | species: Klebsiella pneumoniae                           |      | 9            | 37-55                  |
|     | 61                      | 5'-GAC AGT CAG TTC GTC AGC C                             |      | 9            | 161-179                |
|     | 62 <sup>b</sup>         | 5'-CGT AGG GTG TGA ATA TCG C                             | 1    | 10           | 81-99                  |
|     | 67                      | 5'-TCG CCC CTC ATC TGC TAC T                             | •    | 10           | 260-278                |
| 5   | 68p                     | 5'-GAT CGT GAT GGA TAT TCT T                             |      | 8            | 40-57                  |
|     | 135                     | 5'-GCA GCG TGG TGT CGT TCA                               |      | 8            | 170-187                |
|     | 136 <sup>b</sup>        | 5'-AGC TGG CAA CGG CTG GTC<br>5'-ATT CAC ACC CTA CGC AGC | CA   | 9            | 166-185                |
|     | 137<br>138 <sup>b</sup> | 5'-ATT CAC ACC CIA CGC IIIC                              | GT   | 9            | 262-281                |
| 0   | _                       | al species: Proteus mirabilis                            |      |              |                        |
|     | Bacteri                 | 5'-GAA ACA TCG CAA AGT CAG                               | T    | 12           |                        |
|     | 74                      | 5'-GAA ACA TCG CAA ACT<br>5'-ATA AAA TGA GGA TCA AGT     | TC   | 12           |                        |
|     | 75 <sup>b</sup>         | 5'-ATA AAA TGA GGA TON TOO<br>5'-CGG GAG TCA GTG AAA TCA | TC   | 14           |                        |
| 2 5 | 133<br>134b             | 5'-CGG GAG TCA GIG AND 5'-CTA AAA TCG CCA CAC CTC        | TT   | 14           | 120-139                |

a Sequences from data banks

# SUBSTITUTE SHEET

b These sequences are from the opposite DNA strand of the sequences given in the Sequence listing

Annex II: Specific and ubiquitous primers for DNA amplification

| SEQ I       | D NO         | Nucleotide s    | equence        | Orig | inating     | DNA fragme |
|-------------|--------------|-----------------|----------------|------|-------------|------------|
|             |              |                 |                |      | SEQ ID      | Nucleotic  |
|             |              |                 |                |      | NO          | position   |
| Bacter      | ial species: | Staphylococci   | us saprophytic | cus  |             |            |
| 98<br>99b   |              | TT TAC CCT TAC  | CTT TTC GTA (  | CT   | 21          | 45-70      |
| 139         | 5'-ATC GA    | T CAT CAC ATT   | CCA TTT GTT 1  | A TT | 21          | 143-170    |
| 139<br>140b |              | T AGC TTG ACT   |                |      | 24          | 61-85      |
| 1400        | 5'-TCT TA    | A CGA TAG AAT ( | GGA GCA ACT G  | ;    | 24          | 226-250    |
|             | al species:  | Pseudomonas     | aeruginosa     |      |             |            |
| 83<br>84b   |              | GGT GGT GTT C   |                |      | 16a         | 554-572    |
| 85          |              | GTC GTC GGA G   |                |      | 16ª         | 674-692    |
| 86b         |              | TTC ATC AAG A   |                |      | 17a         | 1423-1441  |
| 80-         | 5CCG YCY     | ACC AGA CTT C.  | AT C           |      | 17 <b>a</b> | 1627-1645  |
| Bacteri     | al species:  | Moraxella cata  | rrhalis        |      |             |            |
| 112         |              | TGA TGT ACC T   |                |      | 28          | 235-252    |
| 113b        |              | TCA CAC GCA TO  |                |      | 28          | 375-391    |
| 118         |              | GAG CTT TTT AT  |                |      | 29          | 41-64      |
| 119b        |              | CGG CTT GTT TO  |                |      | 29          | 137-158    |
| 160         |              | ATC AGG GTC AG  |                |      | 29          | 22-39      |
| 119b        | 5'-CGC TGA   | CGG CTT GTT TO  | T ACC A        |      | 29          | 137-158    |

<sup>30</sup> a Sequences from data banks

b These sequences are from the opposite DNA strand of the sequences given in the Sequence listing

Annex II: Specific and ubiquitous primers for DNA amplification

| SEQ ID NO          | Nucleotide sequence        | Originat  | ing DNA | fragmen  |
|--------------------|----------------------------|-----------|---------|----------|
|                    |                            | SEQ       | ID Nu   | cleotide |
|                    |                            | NO        | po      | sition_  |
| Destarial enecies: | Staphylococcus epider      | midis     |         |          |
| Bacterial species: | A AAG TTG GCG AAC CTT TTC  |           | 36      | 21-45    |
|                    | G AGC GTG GAG AAA AGT ATC  | A         | 36      | 121-145  |
| 146b 5'-CAA AA     | T TTA ATT TCA TCT TCA ATT  | CCA TAG   | 36      | 448-477  |
|                    | AC AAT TAC AGT CTG GTT ATC | CAT ATC   | 36      | 593-622  |
| 148b 5'-AAA CA     | AC AAT TAC AGI CIG GII III |           |         |          |
|                    | Staphylococcus aureu       | s         |         |          |
| Bacterial species: | -                          |           | 37      | 409-438  |
| 149b 5'-CTT C      | AT TTT ACG GTG ACT TCT TAG | CGT TGA   | 37      | 288-317  |
|                    | CT GTA GCT TCT TTA TCC ATA | AAG ATT   | 37      | 409-438  |
| 149b 5'-CTT C      | AT TTT ACG GTG ACT TCT TAG | TATC AAC  | 37      | 263-293  |
| 151 5'-ATA T       | TT TAG CTT TTC AGT TTC TAT | TO ACG    | 37      | 5-34     |
| 152 5'-AAT C       | TT TGT CGG TAC ACG ATA TTC | m aca aca | 37      | 83-112   |
| 153b 5'-CGT        | AAT GAG ATT TCA GTA GAT AA | I YOU YOU |         |          |

a Sequences from data banks 25

WO 96/08582

b These sequences are from the opposite DNA strand of the sequences given in the Sequence listing

Annex II: Specific and ubiquitous primers for DNA amplification

| SEQ ID           | NO Nucleotide sequence             | Or | iginating          | DNA fragm            |
|------------------|------------------------------------|----|--------------------|----------------------|
| <del></del>      |                                    |    | SEQ ID             | Nucleoti<br>position |
| Bacteria:        | species: Haemophilus influenza     | o  |                    | P002000              |
| 154              | 5'-TTT AAC GAT CCT TTT ACT CCT TT  |    | 27 <b>a</b>        | 5074-509             |
| 155b             | 5'-ACT GCT GTT GTA AAG AGG TTA AA  |    | 27ª                | 5266-529             |
| Bacterial        | species: Streptococcus pneumoni    | ae |                    |                      |
| 78               | 5'-AGT AAA ATG AAA TAA GAA CAG GAG |    | 34                 | 164-189              |
| 79b              | 5'-AAA ACA GGA TAG GAG AAC GGG AAA |    | 34                 | 314-338              |
| 156              | 5'-ATT TGG TGA CGG GTG ACT TT      |    | 31a                | 1401-142             |
| 157b             | 5'-GCT GAG GAT TTG TTC TTC TT      |    | 31a                | 1515-153             |
| 158              | 5'-GAG CGG TTT CTA TGA TTG TA      |    | 35 <b>a</b>        | 1342-136             |
| 159b             | 5'-ATC TTT CCT TTC TTG TTC TT      | •  | 35a                | 1519-1538            |
| Bacterial        | species: Streptococcus pyogenes    |    |                    |                      |
| 141              | 5'-TGA AAA TTC TTG TAA CAG GC      |    | 32 <b>a</b>        | 206 205              |
| 142 <sup>b</sup> | 5'-GGC CAC CAG CTT GCC CAA TA      |    | 32a                | 286-305<br>479-498   |
| 143              | 5'-ATA TTT TCT TTA TGA GGG TG      |    | 32-<br>33 <b>a</b> | 479-498<br>966-985   |
| 144b             | 5'-ATC CTT AAA TAA AGT TGC CA      |    | 33ª<br>33a         | 906-985<br>1103-1122 |

a Sequences from data banks

<sup>30</sup> b These sequences are from the opposite DNA strand of the sequences given in the Sequence listing

Annex II: Specific and ubiquitous primers for DNA amplification

| 5  | SEQ ID NO                 | Nucleotide sequence    | Originating DNA fragment      |
|----|---------------------------|------------------------|-------------------------------|
| _  | -                         |                        | SEQ ID Nucleotide NO position |
|    |                           | Universal primers      |                               |
| 10 | 126 5'-GGA<br>127b 5'-ATC | GGA AGG TGG GGA TGA CC | G                             |

a Sequences from data banks

<sup>15</sup> b These sequences are from the opposite DNA strand of the sequences given in the Sequence listing

C Universal primers were derived from the 16S ribosomal RNA gene sequence not included in the Sequence listing

| _              | genes             |
|----------------|-------------------|
| of the         | RNA               |
| s by alignment | and 238 ribosomal |
| . probe        | 168               |
| universal      | bacterial         |
| of             | of                |
| III. Selection | sednences         |
| III            |                   |
| Annex          |                   |

| GGTGGGAT                         | 1510 | TTTTGGAGCC AGCCGCCTAA GGTGGGATAG ATGANNGGGG | TTTGTGATIC ATGACTGGGG             | TAGTCTAACC GCAAGGGGGA CGGTTACCAC GGAGTGATTC ATGACTGGGG | TAGGGTAACC GCAAGGAGTC CGCTTACCAC GGTATGCTTC ATGACTGGGG | TIGCCTAACC GCAAGGAG CGCTTCCTAA GGTAAGACC ATGACNNGG |
|----------------------------------|------|---------------------------------------------|-----------------------------------|--------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------|
| TGGAGCC AGCCGCCTAA               |      | AGCCGCCTAA                                  | TAGCTTAACC TTCGGGAAGGG CGCTTACCAC | CGGTTACCAC                                             | CGCTTACCAC                                             | CGCTTCCTAA                                         |
| TGGAGCC                          |      | TTTTGGAGCC                                  | TTCGGGAGGG                        | GCAAGGGGGA                                             | GCAAGGAGTC                                             | GCAAGGAGGG                                         |
| NO: 122                          | 1461 | TGAGGTAACC                                  | TAGCTTAACC                        | TAGTCTAACC                                             | TAGGGTAACC                                             | TTGCCTAACC                                         |
| Reverse strand of SEQ ID NO: 122 |      | Streptococcus salivarius                    | Proteus vulgaris                  | Pseudomonas aeruginosa                                 | Neisseria gonorrhoeae                                  | Streptococcus lactis                               |

ATCATGGC CCTTACGAGT AGG

ACGTCAAGTC

123

168 and 238 ribosomal RNA genes.

bacterial

sedneuces Selection

III.

Ann x

5

of **y**o

universal probes by alignment of the

| 5 | 1 |
|---|---|

|            | 51                                                                                                                                                                                                                                                                                                                                                                                           |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1300       | AGGGCTACAC AGGGCTTCAC AGGGCTTCAC AGGGCTACAC                                                                                                                                                                                                                                               |
|            | .ATCATGGC CCTTACGAGT AGGGCTACAC .CTCATGGC CCTTATGACC AGGGCTTCAC .ATCATGGC CCTTACGAGT AGGGCTTCAC .ATCATGGC CCTTACGAGT AGGGCTACAC .ATCATGGC CCTTACGAGT AGGGCTACAC .ATCATGGC CCTTACGAGT AGGGCTACAC .ATCATGCC CTTACGAGT AGGGCTACAC .ATCATGCC CTTACGAGT AGGGCTACAC .ATCATGCC CCTTACGAGT AGGGCTACAC .ATCATGCC CCTTACGAGT AGGGCTACAC .ATCATGCC CCTTACGAGT AGGGCTACAC .ATCATGCC CCTTACGCT AGGGCTACAC |
| AcGrean    | ACGTCAAGTC ACGTCAAATC                                                                                                                                                                                                                                               |
| 123        | GGTGGGATG GGTGGGATG GGTGGGGATG GGTGGGGATG GGTGGGGATG GGTGGGGATG GGTGGGGATG GGTGGGGATG GGTGGGGATG GGTGGGGATG                                                                                                                                                                                                                                                                                  |
| SEQ ID NO: | Haemophilus influenzae Neisseria gonorrhoeae Pseudomonas cepacia Serratia marcescens Escherichia coli Proteus vulgaris Pseudomonas aeruginosa Clostridium perfringens Mycoplasma hominis Helicobacter pylori Mycoplasma pneumoniae                                                                                                                                                           |
|            | 10 15 20                                                                                                                                                                                                                                                                                                                                                                                     |

# SUBSTITUTE SHEET

genes. the RNA probes by alignment of 238 ribosomal 168 and universal bacterial o£ of Selection seduences III. × Ann

Reverse of the probe SEQ ID NO: 124 G

5

GCCTTGTACA CACCGCCCGT CACAC

ACGITCCCGG GCCIIGIACA CACCGCCGI CACACCAIGG NNCTTGTACA CACCGCCGT CACACCATGG GTCTTGTACA CACNGCCCGT CACACCATGG GCCTTGTACA CACCGCCGT CACACCATGG GCNTTGTACA CACCGCCGT CACACCATGG GCCTTGTACA CACCGCCGT CACACCATGG CACACCATGG GTCTTGTACA CACCGCNCGT CACACCATGA CACACCATGG CACACCATGG CAAACTATGA GCCTTGTACA CACCGCCGT GICTIGIACA CACCGCCCGT OTCTTGTACT CACCGCCCGT GTCTTGTACA CACCGCCGT ACGTTCCCGG ACGTTCCCGG ACGITCCCNG ACGITCCCGG ACGITCCCGG ACGITCCCGG ACGITCCCGG ACGTTCCCNG ACGTTCTCGG ACGTTCTCGG 1451 Clostridium perfringens Haemophilus influenzae Pseudomonas aeruginosa Neisseria gonorrhoeae Mycoplasma pneumoniae Serratia marcescens Pseudomonas cepacia Helicobacter pylori Mycoplasma hominis Escherichia coli Proteus vulgaris

20

genes. 168 and 238 ribosomal RNA probes by alignment of bacterial Selection of universal of sednences III. Ann x

R verse strand of SEQ ID NO 125:

5

TGGAGTCTGC AACTC TCG TAGTCCGGAT

AAACCGATCG TAGTCCGGAT AAGTACGTCT AAGTCCGGAT AAACCAGTCT CAGTTCGGAT AAGCCGATCT CAGTTCGGAT AAGTATGTCG TAGTCCGGAT AAGTCTGTCG TAGTCCGGAT AAGTGCGTCG TAGTCCGGAT AAACCGATCG TAGTCCGGAT AAACCGATCG TAGTCCGGAT 1361 Clostridium perfringens

TOGAGICIGC AATICGACTC TOTAGGCTGC AACTCGCCTG TOAGGGCTGC AATTCGTCCT CGCAGTCTGC AACTCGACTG TOTAGGCTGA AACTCGCCTA TGGAGTCTGC AACTCGACTC TGGAGTCTGC AACTCGACTC TGCACTCTGC AACTCGAGTG TOGAGTCTGC AACTCGACTC TGCACTCTGC AACTCGAGTG TGGAGTCTGC AACTCGACTC AAGTTGGTCT CAGTTCGGAT ACACC. TCT CAGTTCGGAT

SUBSTITUTE

Serratia marcescens Pseudomonas cepacia

Proteus vulgaris

Neisseria gonorrhoeae

Escherichia coli

Haemophilus influenzae Pseudomonas aeruginosa

Mycoplasma pneumoniae

20

Helicobacter pylori

Mycoplasma hominis

the

**6**1

alignment

probes by

universal

of

Selection

III.

Annex

GCTGACACCT ACTGACTCCT

ACGTATAGGG

CTCTGCGAAG TCGTAAGGCG CCATGCGAAG TCGTAAGACG

AAACACAGGT AAACACAGGT

Bacillus stearothermophilus

Micrococcus luteus

ATGTATATGG

TGTGACGCCT TGTGACGCCT GGTGACGCCT TGTGACGCCT CTCTGCTAAA CCGCAAGGTG ATGTATAGGG AAACACAGCT CTCTGCTAAA CCGCAAGGTG ATGTATAGGG genes. ACGTATACGG ACGTATAGGG ACGTATAGGG RNA and 238 ribosomal CTCTGCAAAC ACGAAAGTGG CTCTGCAAAC ACGAAAGTGG CTGTGCAAAC ACGAAAGTGG 168 E O AAACACAGCA AAACACAGCA AAACACAGCA bacterial 1991 Reverse strand of SEQ ID NO: 128 of sednences Pseudomonas aeruginosa Lactobacillus lactis Pseudomonas cepacia Escherichia coli

# GGGGGGACC ATCCTCCAAG GCTAAATAC

481

ID NO: 129

SEQ

CCTGACTGAC CGTGATCGAC ACTGACTGAC CCTTAGTGAC ACCTGTTGAC TGGGGGGACC ATCCTCCAAG GCTAAATACT GCTAAATACT GCTAAATACT CCTAAATACT CCTGAATACT TGGGGGGACC ATCCTCCAAG TGGGGGGACC ATCCTCCAAG CGGGAGGACC ATCTCCCAAC TGCCAGGACC ACCTGGTAAG TGTCTGAATA TGTCTGAACA TGTCTGAAGA AGTTTGAATC CGTGTGAATC

20

Escherichia coli

Pseudomonas aeruginosa.

Lactobacillus lactis

Micrococcus luteus

Pseudomonas cepacia

geneg. the 23S ribosomal RNA yo probes by alignment 168 and universal bacterial of of Selection sednences III. Annex

AACACAGCA CTCTGCAAAC ACGAAAGTGG ACG Reverse strand of SEQ ID NO: 130

AAACACAGGT CTCTGCGAAG TCGTAAGGCG ACGTATAGGG AAACACAGGT CCATGCGAAG TCGTAAGACG ATGTATATGG AAACACAGCT CTCTGCTAAA CCGCAAGGTG ATGTATAGGG AAACACAGCA CTGTGCAAAC ACGAAAGTGG ACGTATACGG AAACACAGCA CTCTGCAAAC ACGAAAGTGG ACGTATAGGG 2030 AAACACAGCA CTCTGCAAAC ACGAAAGTGG ACGTATAGGG TGTTTATTAA Bacillus stearothermophilus TGTTTATCAA TGTTTATCAA TGTTTAATAA TGTTTATTAA 1981 Pseudomonas aeruginosa Pseudomonas cepacia Escherichia coli

55

TGTTTATCAA Lactobacillus lactis Micrococcus luteus

5

# SUBSTITUTE SHEET

| Annex | IQ. | Selection | of      | the u | niver     |      | PCR 1 | primers | bγ | alignment | o t | the |
|-------|-----|-----------|---------|-------|-----------|------|-------|---------|----|-----------|-----|-----|
|       |     | _         | n<br>Fo | FIE   | ridosomai | ZZZ. | gene  | _       |    |           |     |     |

| <b>PCO</b>    |                |
|---------------|----------------|
| GOTGGGGATG    |                |
| 443545        |                |
| _             | ŗ              |
| 22 TO 100 TEO | SEC ID NO. 127 |
| 2             | ב              |
| 3             | CRO            |
| )<br>1        | ų              |
|               | verse strand   |
|               | Verse          |

| _        |                                                                  |                                            | 56                                                              |                                                                  |                                                                 |                                            |                                                                  |                                                     |                                                                 |                                                                |                                                    |                                                                |
|----------|------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------|
| 1490     | CACACCATGG                                                       | CACACCATGG                                 | CACACCATGG                                                      | CACACCATGG                                                       | CACACCATAGA                                                     | CACACCATIC                                 | CACACCATEG                                                       | CACACCATEG                                          | CACACCATG                                                       | CACACCATG                                                      | CACACCAT                                           | CAMCTAT                                                        |
|          | CACCOCCOR                                                        | CACCOCCCOT                                 | CACNOCCCGT                                                      | CACCOCCCOT                                                       | CACCOCCOT                                                       | CACCOCCCOT                                 | CACCOCCOT                                                        | CACCOCCCOT                                          | CACCOCNCOT                                                      | CACCOCCOT                                                      | CACCOCCCOT                                         | CACCGCCGT                                                      |
| 12701461 | ACTGGAGGAA GGTGGGATG ACGTCAAGTCGCCTTGTACA CACCGCCCGT CACAACCATGG | GCCGGAGGAA GOTGGGAATG ACGTCAAGTCNNCTTGTACA | CCGGAGGAA GGINGGGATG ACGTCAAGTCGICTTGTACA CACNGCCCGT CACACCATGG | ACTGGAGGAA GGTGGGGATG ACGTCAAGTCGCCTTGTACA CACCGCCGGT CACACCATGG | ACCGGAGGAA GGIGGGAIG ACGITAAGICGCCTIGIACA CACCGCCCGT CACACCAAGG | ACOTCAAGTC GCNTTGTACA CACCGCCGT CACACCATGG | ACCGGAGGAA GGCGGGGATG ACGTCAAGTCGCCTTGTACA CACCGCCGT CACACAACAAG | CCGGAGGAA GGTGGGGATG ACGTCAAGTCGCCTTGTACA CACCGCCGT | CCAGGAGGAA GGTGGGGATG ACGINNAATCGTCTTGTACA CACCGCNCGT CACACCATG | FGGGAGGAA GGTGGGGATG ACGTCAAATCGTCTTGTACA CACCGCCGGT CACACCATG | AGGAGGAA GGTGGGGACG ACGTCAAGTCGTCTTGTACT CACCGCCGT | ATTGGAGGAA GGAAGGGATG ACGTCAAATCGTCTTGTACA CACCGCCCGT CAAACTAT |
|          | OGTOGGGATO                                                       | GGTGGGGATG                                 | GOTNOGGATO                                                      | GGTGGGGATG                                                       | GGTGGGGATG                                                      | ACTGGAGGAA GGTNGGGATG                      | GGCGGGGATG                                                       | GGTGGGGATG                                          | GGTGGGGATG                                                      | COTGGGGATG                                                     | GOTOGOGACG                                         | GGAAGGGATG                                                     |
| 1241     | ACTGGAGGAA                                                       | GCCGGAGGAA                                 | ACCGGAGGAA                                                      | ACTGGAGGAA                                                       | ACCGGAGGAA                                                      | ACTGGAGGAA                                 | ACCGGAGGAA                                                       | ACCGGAGGAA                                          | CCAGGAGGAA                                                      | CTGGGAGGAA                                                     | GGAGGAA                                            | ATTGGAGGAA                                                     |
|          | Escherichia coli                                                 | Neisseria gonorrhoeae                      | Pseudomonas cepacia                                             | Serratia marcescens                                              | Prot us vulgaris                                                | Haemophilus influenzae                     | L gionella pneumophila                                           | Pseudomonas aeruginosa                              | Clostridium perfringens                                         | Mycoplasma hominis                                             | Helicobacter pylori                                | Mycoplasma pneumoniae                                          |

#### SEQUENCE LISTING

- GENERAL INFORMATION: (1)
  - BERGERON, Michel G. (i) APPLICANTS: OUELLETTE, Marc ROY, Paul H.
  - (ii) TITLE OF THE INVENTION: SPECIFIC AND UNIVERSAL PROBES AND AMPLIFICATION PRIMERS TO RAPIDLY DETECT AND IDENTIFY COMMON BACTERIAL PATHOGENS AND ANTIBIOTIC RESISTANCE GENES FROM CLINICAL SPECIMENS FOR ROUTINE DIAGNOSIS IN MICROBIOLOGY LABORATORIES
  - (iii) NUMBER OF SEQUENCES: 177
    - (iv) CORRESPONDENCE ADDRESS:
      - (A) ADDRESSEE:
      - STREET: (B)
      - (C) CITY:
      - (D) STATE:
      - (E) COUNTRY:
      - (F) ZIP:
      - (v) COMPUTER READABLE FORM:
        - (A) MEDIUM TYPE: FLOPPY DISK, 800K
        - COMPUTER: Macintosh IIci (B)
        - OPERATING: System 7.0 (C) OPERATING: System 7.
          (D) SOFTWARE: Word 5.1a
      - (vi) CURRENT APPLICATION DATA:
        - (A) APPLICATION NUMBER:
        - (B) FILING DATE:
        - (C) CLASSIFICATION:
    - (vii) PRIOR APPLICATION DATA:
      - APPLICATION NUMBER: (A)
      - FILING DATE: (B)
  - (viii) ATTORNEY/AGENT INFORMATION;
    - NAME: JEAN C. BAKER (A)
    - (B) REGISTRATION NUMBER:
    - (ix) TELECOMMUNICATION INFORMATION:
      - TELEPHONE: (A)
      - TELEFAX: (B)

# SUBSTITUTE SHEET

#### (2) INFORMATION FOR SEQ ID NO: 1:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1817 base pairs
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Enterococcus faecalis
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

|   | ACAGTAAAAA | AGTTGTTAAC | GAATGAATTT | GTTAACAACT | TTTTTGCTAT | 50   |
|---|------------|------------|------------|------------|------------|------|
|   | GGTATTGAGT | TATGAGGGGC | AATACAGGGA | AAAATGTCGG | CTGATTAAGG | 100  |
|   | AATTTAGATA | GTGCCGGTTA | GTAGTTGTCT | ATAATGAAAA | TAGCAACAAA | 150  |
|   | TATTTACGCA | GGGAAAGGGG | CGGTCGTTTA | ACGGGAAAAA | TTAGGGAGGA | 200  |
|   | TAAAGCAATA | CTTTTGTTGG | GAAAAGAAAT | AAAAGGAAAC | TGGGGAAGGA | 250  |
|   | GTTAATTGTT | TGATGAAGGG | AAATAAAATT | TTATACATTT | TAGGTACAGG | 300  |
|   | CATCTTTGTT | GGAAGTTCAT | GTCTATTTTC | TTCACTTTTT | GTAGCCGCAG | 350  |
|   | AAGAACAAGT | TTATTCAGAA | AGTGAAGTTT | CAACAGTTTT | ATCGAAGTTG | 400  |
|   | GAAAAGGAGG | CAATTTCTGA | GGCAGCTGCT | GAACAATATA | CGGTTGTAGA | 450  |
|   | TCGAAAAGAA | GACGCGTGGG | GGATGAAGCA | TCTTAAGTTA | GAAAAGCAAA | 500  |
|   | CGGAAGGCGT | TACTGTTGAT | TCAGATAATG | TGATTATTCA | TTTAGATAAA | 550  |
|   | AACGGTGCAG | TAACAAGTGT | TACAGGAAAT | CCAGTTGATC | AAGTTGTGAA | 600  |
|   | AATTCAATCG | GTTGATGCAA | TCGGTGAAGA | AGGAGTTAAA | AAAATTGTTG | 650  |
|   | CTTCTGATAA | TCCAGAAACT | AAAGATCTTG | TCTTTTTAGC | TATTGACAAA | 700  |
|   | CGTGTAAATA | ATGAAGGGCA | ATTATTTTAT | AAAGTCAGAG | TAACTTCTTC | 750  |
|   | ACCAACTGGT | GACCCCGTAT | CATTGGTTTA | TAAAGTGAAC | GCTACAGATG | 800  |
|   | GAACAATTAT | GGAAAAACAA | GATTTAACGG | AACATGTCGG | TAGTGAAGTA | 850  |
|   | ACGTTAAAAA | ACTCTTTTCA | AGTAACGTTT | AATGTACCAG | TTGAAAAAAG | 900  |
|   | CAATACGGGA | ATTGCTTTAC | ACGGAACGGA | TAACACAGGG | GTTTACCATG | 950  |
|   | CAGTAGTTGA | TGGCAAAAAT | AATTATTCTA | TTATTCAAGC | GCCATCACTA | 1000 |
|   | GCGACATTAA | ATCAGAATGC | TATTGACGCC | TATACGCATG | GAAAATTTGT | 1050 |
|   | GAAAACATAT | TATGAAGATC | ATTTCCAACG | ACACAGTATT | GATGATCGAG | 1100 |
|   | GGATGCCCAT | CTTGTCAGTT | GTTGATGAAC | AACATCCAGA | TGCTTATGAC | 1150 |
|   | AATGCTTTTT | GGGATGGAAA | AGCAATGCGT | TATGGTGAAA | CAAGTACACC | 1200 |
| _ | AACAGGAAAA | ACGTATGCTT | CCTCTTTAGA | TGTAGTTGGT | CATGAAATGA | 1250 |
|   | CACATGGTGT | GACGGAACAT | ACTGCCGGTT | TAGAATATTT | AGGACAATCA | 1300 |
|   | GGTGCCTTGA | ATGAATCTTA | TTCTGATTTG | ATGGGTTATA | TTATTTCGGG | 1350 |

| TGCATCTAAT | CCAGAAATTG | GTGCGGATAC | TCAGAGTGTT | GACCGAAAAA | 1400 |
|------------|------------|------------|------------|------------|------|
| IGCHIOILLI | AAATTTACAA | ACGCCAAGTA | AACACGGACA | ACCAGAAACC | 1450 |
| CVGGTIII   |            |            |            | CTTATTATGA | 1500 |
| ATGGCTCAAT | ACGACGATCG | AGCACGGI   | TATTAATCGG | ATTGGTTACA | 1550 |
| TCAAGGCGGT | GTTCATTATA |            | CACAGACTAT | TTTCTACAGC | 1600 |
| CCATTATCCA |            |            | CAATTCAGTG | ATGCTCGTGC | 1650 |
| TCGTTAGTAA | ATTACTTAAC |            |            |            | 1700 |
| TGCGATGCTT | GCTGCTGCAA |            | TGGCGATGAA |            | 1750 |
| TGGTGTCAGC | AGCCTTTAAC | TCTGCTGGAA |            |            | 1800 |
| CAGGTAAACC | AACCAAGTGA | ATCTGTTCTG | GTCAATGAAT | GAAAAAAAII | 1817 |
| CCCCAATTAA | AAAAATA    |            |            |            | 101/ |

## (2) INFORMATION FOR SEQ ID NO: 2:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 2275 base pairs
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Enterococcus faecalis
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

| GGTACCAAAG | AAAAAAACGA | ACGCCACAAC | CAACAGCCTC | TAAAGCAACA | 50  |
|------------|------------|------------|------------|------------|-----|
| CCTGCTTCTG | AAATTGAGGG | AGATTTAGCA | AATGTCAATG | AGATTCTTTT | 100 |
|            | GATCGTGTCG | GGTCAGCAAC | GATGGGAATG | AAAGTCTTAG | 150 |
| GGTTCACGAT | AGATAAAGAG | AAAATTTCAA | TGCCGATTCG | TAATTAAAA  | 200 |
| AAGAAATTTT | TAACTCAACA | AACACAGGCT | TTAATTGTCA | CAAAAGCTGA | 250 |
| ATTAATGAAT | CAAGCACGTA | AAAAAGCACC | GAAAGCGACA | CACTTATCAG | 300 |
| ACTAACGGAA | TGGTTAATCC | CCAAAAATAT | GAAACAGTGG | GTTTCGCTCT | 350 |
| TAAAAAGTTA |            | GGAAGAAAAC | AATGGAAAAT | CTTACGAATA | 400 |
| TAAAAGAAAG | TGCCTAGAGA | CAGTTTAATA |            | AGCTATTCGC | 450 |
| TTTCAATTGA | ATTAAATCAA | CGAGGCAGGC |            | CCGCTTATAT | 500 |
| TTTTCCGGCC | AGAAACTAGT | ACCAATTGCT |            | ATGGGGAATT | 550 |
| CGAAGCAATG | ATTGAAAGAG |            | CCAAAAAATT |            | 600 |
| TTATTGCCAT |            |            |            |            | 650 |
| TCAGGAATCT |            | AGTCCCAGAG |            |            | 700 |
| AGAAGATGAA | AAAATTGCTA |            |            |            | 750 |
| AAGAACATTI | GCAATTAGTC |            |            |            | 800 |
| GATAACGTGG | TGCAACTTGC | CGATGCATTA | AGTAAAGAAG | AAATAACAGA | 500 |

SUBSTITUTE SHEET

60

| (2) INFO | RMAT              | I NOI                | FOR SEQ                       | ID NO                                               | : 3:       |            |            |     |
|----------|-------------------|----------------------|-------------------------------|-----------------------------------------------------|------------|------------|------------|-----|
| (i)      | (A)<br>(B)<br>(C) | LENG<br>TYP:<br>STR  | GTH: 22<br>E: Nucl<br>ANDEDNE | CTERIST<br>27 base<br>leic ac<br>ESS: Don<br>Linear | pair<br>id |            |            |     |
| (ii)     | MOLE              | ECULE                | TYPE:                         | DNA (g                                              | enomi      | c)         |            |     |
| (vi)     |                   |                      | SOURCE<br>ANISM:              | :<br>Escher                                         | ichia      | coli       |            |     |
| (xi)     | SEQU              | JENCE                | DESCRI                        | PTION:                                              | SEQ        | ID NO: 3:  |            |     |
| GATCCGC  | CAT               | GGGT                 | rgtttt                        | CCGATT                                              | 'GAGG      | ATTTTATAGA | TGGTTTCTGG | 50  |
| CGACCTG  | CAC               | AGGA                 | GTACGG                        | TGATTT                                              | AATT       | TTATTGCAAT | TGCACAAGAG | 100 |
| TCAGTTC  | TCC               | CCCA                 | AAGACA                        | GCACCG                                              | GTAT       | CAATATAATG | CAGGTTGCCA | 150 |
| ATATCCA  | CGC               | GATG                 | GCGCAA                        | AGGTGT                                              | ATGA       | CCAAACCAGA | AATGATCGGC | 200 |
| CACCTGC  | ATC               | GCCA                 | GTTCGC                        | GAGTCG                                              | G          | •          |            | 227 |
| (2) INFO | RMAT              | ION F                | OR SEQ                        | ID NO:                                              | 4:         |            |            |     |
| (i)      | (A)<br>(B)<br>(C) | LENG<br>TYPI<br>STRI | GTH: 27<br>E: Nucl            | TERISTI<br>8 base<br>eic aci<br>SS: Dou<br>Linear   | pair<br>id | s          |            |     |
| (ii)     | MOLE              | ECULE                | TYPE:                         | DNA (ge                                             | enomi      | c)         |            |     |
| (vi)     |                   |                      | SOURCE<br>ANISM:              | :<br>Escheri                                        | ichia      | coli       |            |     |
| (xi)     | SEQU              | JENCE                | DESCRI                        | PTION:                                              | SEQ        | ID NO: 4:  |            |     |
| GATCTAA  | ATC               | AAATI                | TAATTG                        | GTTAAA                                              | GATA       | ACCACAGCGG | GGCCGACATA | 50  |
| AACTCTG  | ACA               | AGAA                 | STTAAC                        | AACCAT                                              | ATAA       | CCTGCACAGG | ACGCGAACAT | 100 |
| GTCTTCT  | CAT               | CCGT                 | ATGTCA                        | CCCAGC                                              | AAAA       | TACCCCGCTG | GCGGACGACA | 150 |
| CCACTCT  | GAT               | GTCC                 | ACTACC                        | GATCTC                                              | GCTT       | TCCAGCGTCA | TATTGGGGCG | 200 |
| CGCTACG  | TTG               | GGGC                 | STGGGC                        | GTAATT                                              | GGTC       | AATCAGGCGC | GGGGTCAGCG |     |

GATAAACATT CACCATTTTG TCGAGATC

# (2) INFORMATION FOR SEQ ID NO: 5:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1596 base pairs

  - (B) TYPE: Nucleic acid
    (C) STRANDEDNESS: Double
    (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Escherichia coli
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

| (xi) SEQUENCE DESCRITTED                               |      |
|--------------------------------------------------------|------|
| CCATANTATC GACTCTTTTA CGTACAACCT 50                    | )    |
| ATGGCTGACA TICTOON COTGGTGATT TACCGCAACC TO            | 00   |
| GGCAGATCAG IIGCCCAT GAGTAATCCG I                       | 50   |
| ATATACCGGC GC.12-0                                     | 00   |
| GTGCTGATGC 111C1CCCATT ATTGGCATTT 2                    | 50   |
| GCCGGAACTC CICAGGTCAG 3                                | 00   |
| GCCTCGGACA TCACCO ACCATTGAAC ATGACGGTCA                | 50   |
| GCGGCGAAA 1101010111 4                                 | 100  |
| GGCGATGTTT GCCCCATTTTT AAACCATCAA CGCCCATTTTT          | 150  |
| CGCTGGTTGG CAGTAACATT CCGGCCGGTCGCG TTTGTGGATT         | 500  |
| AATGGCATGG TGATGGCAGT ACGTCTCOACCCCACGGCGCT CGCCTGCTGG | 550  |
| CCAGTTCCAT CCGGGGGCCAGC CAACACGCTG                     | 600  |
| AACAAACGCT GGCCTCAGACGACGCTTA GCCAACAAGA               | 650  |
| CAACCGATIC IGGILLER AAGCCGGAAC                         | 700  |
| AAGCCACCAG CTGTTTTCAG CGGTGATCCCCGGTGA GCACCCGAAC      | 750  |
| AACTGGCGGC GGCGCTCCC                                   | 800  |
| GAGATCGCCG GGGCACGCTACTGGC GGTGACGGCA                  | 850  |
| GCGCCCGGAT TATCTGTTTG CTGATTCTCGC CGCGGCCTGT           | 900  |
| GCAACAGTAT CAATATTTGG ACCGTCTCCA GTAAATCTGG            | 950  |
| GGGCTGAAAG IGGCCCCG                                    | 1000 |
| TTCGTCCGAT CTGCTTTGCG                                  | 1050 |
| ATAAATCGCG CCAGGGACT                                   | 1100 |
| CCGAAGTATC ACACCOGT                                    | 1150 |
| GAAAACCCGC ACCOTO                                      | 1200 |
| ATCCGCCGC1 GGCC121                                     | 1250 |
| ATTGCCGAAA CC11GCCC                                    | 1300 |
| CAGCGGCGGG AIGGILL                                     | 1350 |
| AACTGCATGA CGGCGAAATT AAAAGCTATC AGCTCHGG              |      |

| GGCCTGACAC  | CCTACCACCA      | GGAGCAACTG | GCAGGCCCAA   | CACCGGAAGA |      |
|-------------|-----------------|------------|--------------|------------|------|
| AAACCGTCAC  | A MMMMM A A A A |            | CCAGGCGGAA   | CACCGGAAGA | 1400 |
| .mrscco10AC | ATTTTAACAC      | GTTTGTTACA | AGGTAAAGGC   | GACGCCGCCC | 1450 |
| ATGAAGCAGC  | CGTCGCTGCG      | AACGTCGCCA | ጥርጥጥል አጥር ርር | CCTGCATGGC | 4430 |
| CATGAAGATC  | MCC3 3 CCC3 3   |            | TOTIMATECE   | CCTGCATGGC | 1500 |
| CATGAAGATC  | TGCAAGCCAA      | TGCGCAAACC | GTTCTTGAGG   | TACTGCGCAG | 1550 |
| TGGTTCCGCT  | TACGACAGAG      | TCACCGCACT | GCCCCCACCA   | 2222       | 1000 |
|             |                 |            | GGCGGCACGA   | GGGTAA     | 1596 |

## (2) INFORMATION FOR SEQ ID NO: 6:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 2703 base pairs
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Escherichia coli
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

| GACGACTTAG      | TTTTGACGGA | 300300300  |               |            |      |
|-----------------|------------|------------|---------------|------------|------|
| AATGAGGAAA      |            | ATCAGCATAG |               | CACTGTGGAA | 50   |
|                 |            | TTTGCGCTTC | GTAATTAATG    | GTTATAAGGT | 100  |
| CGGCCAGAAA      | CCTTTCTAAT | GCAAGCGATG | ACGTTTTTT     | ATGTGTCTGA | 150  |
| ATTTGCACTG      | TGTCACAATT | CCAAATCTTT | ATTAACAACT    | CACCTAAAAC |      |
| GACGCTGATC      | CAGCGTGAAT | ACTGGTTTCC |               |            | 200  |
| TTAAGCAAGG      | GTTTCTTCTT |            | or initiality | TCAGATTCAT | 250  |
|                 |            | CATTCCTGAT | GAAAGTGCCA    | TCTAAAAAGA | 300  |
| TGATCTTAAT      | AAATCTATTA | AGAATGAGAT | GGAGCACACT    | GGATATTTTA | 350  |
| CTTATGAAAC      | TGTTTCACTC | CTTTACTTAA | TTTATAGAGT    | TACCTTCCGC | 400  |
| TTTTTGAAAA      | TACGCAACGG | CCATTTTTTG | CACTTAGATA    | CAGATTTTCT |      |
| GCGCTGTATT      | GCATTGATTT | GATGCTAATC |               |            | 450  |
| AAGTGGTTGA      |            |            | CTGTGGTTTG    | CACTAGCTTT | 500  |
| = = = = = = = = | GATCACATTT | CCTTGCTCAT | CCCCGCAACT    | CCTCCCTGCC | 550  |
| TAATCCCCCG      | CAGGATGAGG | AAGGTCAACA | TCGAGCCTGG    | CAAACTAGCG | 600  |
| ATAACGTTGT      | GTTGAAAATC | TAAGAAAAGT | GGAACTCCTA    | TGTCACAACC |      |
| TATTTTTAAC      | GATAAGCAAT | TTCAGGAAGC | GCTTTCACGT    |            | 650  |
| GTTATGGCTT      | AAATTCTGCG |            |               | CAGTGGCAGC | 700  |
| <del>-</del>    |            | GCTGAAATGA | CTCCTCGCCA    | GTGGTGGCTA | 750  |
| GCAGTGAGTG      | AAGCACTGGC | CGAAATGCTG | CGTGCTCAGC    | CATTCGCCAA | 800  |
| GCCGGTGGCG      | AATCAGCGAC | ATGTTAACTA | CATCTCAATG    | GAGTTTTTGA | 850  |
| TTGGTCGCCT      | GACGGGCAAC | AACCTGTTGA |               |            |      |
| GTACAGGATT      | CGTTGAAGGC |            | _             | GTATCAGGAT | 900  |
| AGAAGAGATC      |            |            | AATCTGACGG    | ACCTGCTGGA | 950  |
|                 | GACCCGGCGC | TGGGTAACGG | TGGTCTGGGA    | CGTCTGGCGG | 1000 |
| CGTGCTTCCT      | CGACTCAATG | GCAACTGTCG | GTCAGTCTGC    | GACGGGTTAC | 1050 |
|                 |            |            |               | 300011AC   | 1050 |

| _          |              | TTTGTTCCGC     | CAGTCTTTTG   | TCGATGGCAA   | 1100        |
|------------|--------------|----------------|--------------|--------------|-------------|
| GGTCTGAACT | ATCAATATGG   | ACTGGCATCG     |              | CCGTGGTTCC   | 1150        |
| ACAGGTTGAA | GCGCCGGATG   | GTGCAGGTAG     | GGATTGGCGG   | TAAAGTGACG   | 1200        |
| GCCACAACGA | AGCACTGGAT   | GGAGTTTACC     | ATTACCGGTC   | AAGCGTGGGA   | 1250        |
| AAAGACGGAC | GCTGGGAGCC   | GTAATGGCGT     | GGCGCAGCCG   | CTGCGTCTGT   | 1300        |
| TCTCCCCGTT | GTCGGCTATC   | CCGTTTGATC     | TGACTAAATT   | TAACGACGGT   | 1350        |
| GGCAGGCGAC | GCACGCGCAT   | GCAGGGCATC     | AATGCGGAAA   | AACTGACCAA   | 1400        |
| GATTTCTTGC | GTGCCGAACA   | ACCATACTGC     |              | CTGCGCCTGA   | 1450        |
| AGTTCTCTAT | CCAAACGACA   |                |              | TTTGCGTCGC   | 1500        |
| TGCAGCAATA | CTTCCAGTGT   | GCCTGTTCGG     |              | ACTAAGTTAT   | 1550        |
| CATCATCTGG |              | ACTGCACGAA     |              | CTGCTGCGCG   | 1600        |
| TCAGCTGAAC |              | CAACTATCGC     |              |              | 1650        |
| TGCTGATCGA |              | ATGAGCTGGG     |              |              | 1700        |
| AGCAAAACTT |              |                | CTGATGCCAG   |              | 1750        |
| ACGCTGGGAT |              |                | ACTGCCGCGC   |              | 1800        |
| TTATTAACGA | AATTAATACT   | _              | CGCTGGTAGA   |              | 1850        |
| CCGGGCGATC |              |                |              |              | 1900        |
| AGTGCATAT  |              |                |              |              | 1950        |
| TTGCGGCGC' | r GCACTCGGAT | ·              | A AAGATCTGTT |              | 2000        |
| CACCAGCTA' | T GGCCGAACAI |                | C GTCACCAAC  |              | 2050        |
| ACGTCGCTG  | G ATCAAACAG  |                |              |              | 2100        |
| AATCACTGC  | A AAAAGAGTG  |                |              |              | 2150        |
| GTTAAATTG  | G CTGATGATG  | _              | T CAGCTTTAT  |              |             |
| GCAGGCGAA  | T AAAGTCCGT  |                |              |              | 2250        |
| TTGACATCA  | A TCCACAGGC  |                |              |              | <del></del> |
| GAGTACAA   | C GCCAGCACC  |                |              |              |             |
| AGAAATTC   | T GAAAACCCG  | -              | CG CGTACCGCG |              |             |
| TCGGCGCG   | AA AGCGGCACC |                | CC TGGCTAAGA |              |             |
| GCGATCAA   | CA AAGTGGCTG | - <del>-</del> | AC AACGATCC  |              | _           |
| TAAGTTGA   | AG GTGGTGTT  |                | TA TTGCGTTTC |              | _           |
| AACTGATC   | CC GGCGGCGG1 |                | AC AAATTTCG  |              |             |
|            | CG GTACCGGC  | A TATGAAAC     | TG GCGCTCAA  | _            |             |
|            | CG CTGGATGG  | G CGAACGTT     |              | AG AAAGTCGGT | _           |
|            | AT CTTTATTT  |                | GG TCAAACAA  | GT GAAGGCAAT | 2703        |
| GAC        |              |                |              |              | 2103        |

#### (2) INFORMATION FOR SEQ ID NO: 7:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1391 base pairs
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Escherichia coli
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

| AGAGAAGCCT | GTCGGCACCG | TCTGGTTTGC | TTTTGCCACT | GCCCGCGGTG | 50   |
|------------|------------|------------|------------|------------|------|
| AAGGCATTAC | CCGGCGGGAT | GCTTCAGCGG | CGACCGTGAT | GCGGTGCGTC | 100  |
| GTCAGGCTAC | TGCGTATGCA | TTGCAGACCT | TGTGGCAACA | ATTTCTACAA | 150  |
| AACACTTGAT | ACTGTATGAG | CATACAGTAT | AATTGCTTCA | ACAGAACATA | 200  |
| TTGACTATCC | GGTATTACCC | GGCATGACAG | GAGTAAAAAT | GGCTATCGAC | 250  |
| GAAAACAAAC | AGAAAGCGTT | GGCGGCAGCA | CTGGGCCAGA | TTGAGAAACA | 300  |
| ATTTGGTAAA | GGCTCCATCA | TGCGCCTGGG | TGAAGACCGT | TCCATGGATG | 350  |
| TGGAAACCAT | CTCTACCGGT | TCGCTTTCAC | TGGATATCGC | GCTTGGGGCA | 400  |
| GGTGGTCTGC | CGATGGGCCG | TATCGTCGAA | ATCTACGGAC | CGGAATCTTC | 450  |
| CGGTAAAACC | ACGCTGACGC | TGCAGGTGAT | CGCCGCAGCG | CAGCGTGAAG | 500  |
| GTAAAACCTG | TGCGTTTATC | GATGCTGAAC | ACGCGCTGGA | CCCAATCTAC | 550  |
| GCACGTAAAC | TGGGCGTCGA | TATCGACAAC | CTGCTGTGCT | CCCAGCCGGA | 600  |
| CACCGGCGAG | CAGGCACTGG | AAATCTGTGA | CGCCCTGGCG | CGTTCTGGCG | 650  |
| CAGTAGACGT | TATCGTCGTT | GACTCCGTGG | CGGCACTGAC | GCCGAAAGCG | 700  |
| GAAATCGAAG | GCGAAATCGG | CGACTCTCAC | ATGGGCCTTG | CGGCACGTAT | 750  |
| GATGAGCCAG | GCGATGCGTA | AGCTGGCGGG | TAACCTGAAG | CAGTCCAACA | 800  |
| CGCTGCTGAT | CTTCATCAAC | CAGATCCGTA | TGAAAATTGG | TGTGATGTTC | 850  |
| GGTAACCCGG | AAACCACTAC | CGGTGGTAAC | GCGCTGAAAT | TCTACGCCTC | 900  |
| TGTTCGTCTC | GACATCCGTC | GTATCGGCGC | GGTGAAAGAG | GGCGAAAACG | 950  |
| TGGTGGGTAG | CGAAACCCGC | GTGAAAGTGG | TGAAGAACAA | AATCGCTGCG | 1000 |
| CCGTTTAAAC | AGGCTGAATT | CCAGATCCTC | TACGGCGAAG | GTATCAACTT | 1050 |
| CTACGGCGAA | CTGGTTGACC | TGGGCGTAAA | AGAGAAGCTG | ATCGAGAAAG | 1100 |
| CAGGCGCGTG | GTACAGCTAC | AAAGGTGAGA | AGATCGGTCA | GGGTAAAGCG | 1150 |
| AATGCGACTG | CCTGGCTGAA | AGATAACCCG | GAAACCGCGA | AAGAGATCGA | 1200 |
| GAAGAAAGTA | CGTGAGTTGC | TGCTGAGCAA | CCCGAACTCA | ACGCCGGATT | 1250 |
| TCTCTGTAGA | TGATAGCGAA | GGCGTAGCAG | AAACTAACGA | AGATTTTTAA | 1300 |

| 65                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TCGTCTTGTT TGATACACAA GGGTCGCATC TGCGGCCCTT TTGCTTTTTT 1350  AAGTTGTAAG GATATGCCAT GACAGAATCA ACATCCCGTC G 1391                                                                                                                                                                            |
| (2) INFORMATION FOR SEQ ID NO: 8:                                                                                                                                                                                                                                                          |
| <ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 238 base pairs</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>                                                                                                      |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                                                                                                                                          |
| <pre>(vi) ORIGINAL SOURCE:    (A) ORGANISM: Klebsiella pneumoniae</pre>                                                                                                                                                                                                                    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:                                                                                                                                                                                                                                                   |
| TCGCCAGGAA GGCGCATTC GGCTGGGTCA GAGTGACCTG CAGCGTGGTG 50  TCGTTCAGCG CTTTCACCCC CAACGTCTCG GGTCCCTTTT GCCCGAGGGC 100  AATCTCGCGG GCGTTGGCGA TATGCATATT GCCAGGGTAG CTCGCGTAGG 150  GGGAGGCTGT TGCCGGCGAG ACCAGCCGTT GCCAGCTCCA GACGATATCC 200  TGCGCTGTAA TGGCCGTGCC GTCAGACCA GTCAGACC 238 |
| (2) INFORMATION FOR SEQ ID NO: 9:                                                                                                                                                                                                                                                          |
| <ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 385 base pairs</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>                                                                                                      |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                                                                                                                                          |
| <ul><li>(vi) ORIGINAL SOURCE:</li><li>(A) ORGANISM: Klebsiella pneumoniae</li></ul>                                                                                                                                                                                                        |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:                                                                                                                                                                                                                                                   |
| CAGCGTAATG CGCCGCGCA TAACGGCGCC ACTATCGACA GTCAGTTCGT 50                                                                                                                                                                                                                                   |
| CAGCCTGCAG CCTGGGCTGA ATCTGGGACC ATGGCGCCTG CCCTACTCC 150                                                                                                                                                                                                                                  |
| GCACCTATAG CCACACCTGG TGGTCGGTAA 200                                                                                                                                                                                                                                                       |
| TATCTTGCCC GCCCCCCCCCCCCCCCCCCCCCCCCCCCC                                                                                                                                                                                                                                                   |
| TACGIAIACC IGIIGO TACCTCCCCGA TAGCCTGCAT GCTTTGCGCC 300                                                                                                                                                                                                                                    |
| AGCTCAGTTC GACAAAGAGA TGCTGCCGGA TAGCCTGCAT GOTTATCAGA 350 GACGATTCGA GGGATCGCGC GCACCACCGC GGAGGTCTCG GTTTATCAGA 350                                                                                                                                                                      |

| ATGGTTACAG CATTTATAAA ACCACCGTCG CTACC                                                                                                                                                |                     | 385        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------|
| (2) INFORMATION FOR SEQ ID NO: 10:                                                                                                                                                    |                     |            |
| <ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 462 base pairs</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul> |                     |            |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                                     |                     |            |
| <pre>(vi) ORIGINAL SOURCE:     (A) ORGANISM: Klebsiella pneumoniae</pre>                                                                                                              |                     |            |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:                                                                                                                                             |                     |            |
| CTCTATATTC AGGACGAACA TATCTGGACC TCTGGCGGGG                                                                                                                                           | <b>ጥር እርጥጥር ርርር</b> | E0         |
| CTTTGATCGC CCTGCACCCG CAGCGGGTGA TCGCCCCTCA                                                                                                                                           | TCTCCTACTC          | 50         |
| CGGCGCTGCA ACAGGCGACG ATCGATGACG TTATTCCTGG                                                                                                                                           | CCAGCAAACA          | 100<br>150 |
| GCAGACCAAT TAAGGTCTGA TAGTGGCTCT CTTCCTCCGG                                                                                                                                           | CGCGCGACA           | 200        |
| TCCAGGCGGC TCAACAGTTT GGTGCATAGC GCTTTGCGGT                                                                                                                                           | TGAGATGACG          |            |
| CCCTTCGTTA AGAATATCCA TCACGATCTC CGTCCATGGA                                                                                                                                           |                     | 300        |
| TATTCCAGAA TAGGGTTTTT CAGGATCTCA TGGATCTGCG                                                                                                                                           | CCTGCTTATC          | 350        |
| GCTATTTTGT AACCAGATCG CATAAAGTGG ACGGGATAAC                                                                                                                                           | GTAGCGCTGT          | 400        |
| CCATGACCGT ATGTAACCCA TGCTTCTCTT TCGCCCAGCG                                                                                                                                           | AGCAGGTAGC          | 450        |
| CAACAGCAGC CG                                                                                                                                                                         |                     | 462        |
| (2) INFORMATION FOR SEQ ID NO: 11:                                                                                                                                                    |                     | 402        |
| <ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 730 base pairs</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul> |                     |            |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                                     |                     |            |
| <ul><li>(vi) ORIGINAL SOURCE:</li><li>(A) ORGANISM: Klebsiella pneumoniae</li></ul>                                                                                                   |                     |            |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:                                                                                                                                             |                     |            |
| GCTGACCGCT AAACTGGGTT ACCCGATCAC TGACGATCTG                                                                                                                                           | GACATCTACA          | 50         |
| CCCGTCTGGG_CGGCATGGTT—TGGCGCGCTG—ACTCCAAAGG                                                                                                                                           |                     |            |
| TCAACCGGCG TTTCCCGTAG CGAACACGAC ACTGGCGTTT                                                                                                                                           | CCCCAGTATT          | 150        |
| TGCTGGCGGC GTAGAGTGGG CTGTTACTCG TGACATCGCT                                                                                                                                           | ACCCGTCTGG          | 200        |
|                                                                                                                                                                                       |                     | 200        |

|            |            | AMCGGCGACG | CGGGCACTGT | GGGTACCCGT | 250   |
|------------|------------|------------|------------|------------|-------|
| AATACCAGTG | GGTTAACAAC | Alcededace |            | TCGGTCAGGA | 300   |
| CCTGATAACG | GCATGCTGAG | CCTGGGCGTT | TCCTACCGCT | TCGGTCAGGA | • • • |
| AGATGCTGCA |            | CTCCGGCTCC | GGCTCCGGCT | CCGGAAGTGG | 350   |
|            |            | -          |            | CTTCAACAAA | 400   |
| CTACCAAGCA | CTTCACCCTG |            |            |            | 450   |
| GCTACCCTGA | AACCGGAAGG | TCAGCAGGCT | CTGGATCAGC | TGTACACTCA |       |
|            |            | AAGACGGTTC | CGCTGTTGTT | CTGGGCTACA | 500   |
| GCTGAGCAAC |            |            |            | TGAGAAACGT | 550   |
| CCGACCGCAT | CGGTTCCGAA |            |            |            |       |
| CCTCAGTCCG | TTGTTGACTA | CCTGGTTGCT | AAAGGCATCC | CGGCTGGCAA | 600   |
|            |            | CTCAATCCAA | CCCGGTTACT | GGCAACACCT | 650   |
| AATCTCCGCT | CGCGGCATGG |            |            |            | 700   |
| GTGACAACGT | GAAAGCTCGC | GCTGCCCTGA | TCGATTGCCT | GGCICCGGAI |       |
|            | AGATCGAAGT | TAAAGGTATC |            |            | 730   |
| CGTCGTGTAG | VOVICOURIO |            |            |            |       |

- (2) INFORMATION FOR SEQ ID NO: 12:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 225 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear
  - (ii) MOLECULE TYPE: DNA (genomic)
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: Proteus mirabilis
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

| COOMS CMCMM: | ጥል አጥርጥር AT | TTGAAACATC | GCAAAGTCAG          | TGAACCACAT | 50  |
|--------------|-------------|------------|---------------------|------------|-----|
| CGCTACTGIT   | CCCATCCACT  | AGAAAATATT | AATAAGATTT          | TAGCGAAACC | 100 |
| ATTCGAGGAT   | GGCAIGCACI  | አ አጥጥልጥጥጥA | GGTATGTTCT          | CTTCTATCCT | 150 |
| TAATCAGCGC   | AATATCGCTT  | MAITAITE   | <b>ጥር አጥጥጥጥ አጥጥ</b> | AATCACATGA | 200 |
| ACAGTCACGA   |             |            | ICHIII              |            | 225 |
| CCAATGGTAT   | AAGCGTCGTC  | ACATA      |                     |            |     |

| (2) INFORMA       | TION FOR SEC                                                         | ID NO: 13:                               |              |            |     |
|-------------------|----------------------------------------------------------------------|------------------------------------------|--------------|------------|-----|
| (A)<br>(B)<br>(C) | QUENCE CHARAC<br>LENGTH: 40<br>TYPE: Nucl<br>STRANDEDNE<br>TOPOLOGY: | 02 base pair<br>Leic acid<br>ESS: Double | 's           |            |     |
| (ii) MOI          | ECULE TYPE:                                                          | DNA (genomi                              | c)           |            |     |
| • • •             | GINAL SOURCE<br>ORGANISM:                                            |                                          | abilis       |            |     |
| (xi) S            | EQUENCE DESC                                                         | RIPTION: SE                              | Q ID NO: 13: |            |     |
| ACATTTTAAA        | TAGGAAGCCA                                                           | CCTGATAACA                               | TCCCCGCAGT   | TGGATCATCA | 50  |
|                   | GGCATTTGGT                                                           |                                          |              |            | 10  |
| CGCCAATTGT        | TAGATGAAAT                                                           | TGGACTATTC                               | TTTTTATTTG   | CTCCGCTTTA | 15  |
| TCACAGTGGT        | TTTCGCTTTG                                                           | CCGCCCCTGT                               | GCGCCAACAG   | CTAAGAACAC | 20  |
| GCACGCTCTT        | TAATGTGTTA                                                           | GGCCCATTAA                               | TTAATCCAGC   | GCGTTCCGCC | 25  |
| TTTAGCATTA        | ATTGGTGTTT                                                           | ATAGTCCTGA                               | ATTATTAATG   | CCTATTGCAG | 300 |
| ATACCTTAAA        | TGTCTTGGGC                                                           | TACAAACGTG                               | CGGCAGTGGT   | CCATAGTGGT | 350 |
| GGAATGGATG        | AAGTGTCATT                                                           | ACATGCTCCC                               | ACACAAGTGG   | CTGAGTTACA | 400 |
| CA                |                                                                      |                                          |              |            | 402 |
| (2) INFORMA       | TION FOR SEQ                                                         | ID NO: 14:                               |              |            |     |
| (A)<br>(B)<br>(C) | UENCE CHARAC<br>LENGTH: 15<br>TYPE: Nucl<br>STRANDEDNE<br>TOPOLOGY:  | 7 base pair<br>eic acid<br>SS: Double    | s            |            |     |
| (ii) MOL          | ECULE TYPE:                                                          | DNA (genomi                              | c)           |            |     |
|                   | GINAL SOURCE<br>ORGANISM:                                            |                                          | abilis       |            |     |
| (xi) SEQ          | UENCE DESCRI                                                         | PTION: SEQ                               | ID NO: 14:   |            |     |
| CTGAAACGCA        | TTTATGCGGG                                                           | AGTCAGTGAA                               | ATCATCACTC   | AATTTTCACC | 50  |
|                   | TCTGTTGAAC                                                           |                                          |              |            |     |
|                   | AGGCCAAGCA                                                           |                                          |              |            |     |
|                   |                                                                      |                                          |              |            |     |

## (2) INFORMATION FOR SEQ ID NO: 15:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1348 base pairs
    (B) TYPE: Nucleic acid
    (C) STRANDEDNESS: Double
    (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Proteus mirabilis
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:

| TTTCTCTTTA | AAATCAATTC   | TTAAAGAAAT  | TATTAATAAT   | TAACTTGATA   | 50   |
|------------|--------------|-------------|--------------|--------------|------|
| 1110101111 | ATACAGTATA   | ATGAGTTTCA  | ACAAGCAAAA   | TCATATACGT   | 100  |
| CTGTATGATT | GTGACCCATC   |             | ACTGCCCAGA   | GGGAGATAAC   | 150  |
| TTTAATGGTA | ATGAAAACAA   | ACAAAAAGCA  | TTGGCCGCAG   | CACTTGGTCA   | 200  |
| ATGGCTATTG | CAATTTGGTA   | AAGGTTCTAT  | CATGCGTCTG   | GGCGAAGACC   | 250  |
| AATTGAAAAG | CAATTIGGTA   | ATCTCTACAG  | GATCTTTATC   | ATTAGACGTT   | 300  |
| GTTCCATGAA |              | GCCACGTGGC  | CGTATTGTTG   | AAATCTATGG   | 350  |
| GCTTTAGGTG | CAGGTGGATT   | CAACCTTGAC  | TCTACAAGTT   | ATTGCCTCTG   | 400  |
| CCCTGAATCT | TCTGGTAAAA   | TGTGCATTTA  |              | ACATGCATTA   | 450  |
| CTCAGCGTGA |              | GCTAGGTGTC  | GATATCGATA   | ATCTACTCTG   | 500  |
| GACCCAATTT |              | AACAAGCTCT  |              | GATGCATTAT   | 550  |
| CTCTCAACCT |              |             |              | GGCAGCATTA   | 600  |
| CTCGCTCTGG |              | GTTATTGTCG  |              | ACGTTGGTTT   | 650  |
| ACACCAAAAG |              |             |              |              | 700  |
| AGCCGCACGT |              |             |              |              | 750  |
| AAAACTCTAA | A TACACTGCTG | •           |              |              | 800  |
| GGTGTTATG? | r TTGGTAACCC |             |              |              | 850  |
| ATTCTATGC  | r TCTGTTCGTT |             |              | _            | 900  |
| ATGGTGATG  | A AGTCATTGGT |             |              |              | 950  |
| AAAGTGGCT  | G CACCGTTTAI | A ACAAGCTGA |              |              | 1000 |
| AGGTATTAA  | T ACCTATGGC  | G AACTGATTG |              |              | 1050 |
| TAGTAGAGA  | A AGCAGGTGC  | T TGGTATAGC |              |              | 1100 |
| CAAGGTAAA  |              | C CAATTACTT | A AAAGAACAT  |              |      |
| CAATGAGTT  |              | T TGCGTGAAA |              |              | 1150 |
| AATTCACA   |              | T TTTGCAGGI | G AAGAGTCAG  |              | 1200 |
| GACGACAC   |              |             | T CATGCTGTT  |              | 1250 |
| AGACCTTA   |              |             | AC AGCATCCCA | T AGAATAACTT | 1300 |
| AGACCITA   |              |             |              |              |      |

GTTTGTATAA ATTTTATTCA GATGGCAAAG GAAGCCTTAA AAAAGCTT 1348

- (2) INFORMATION FOR SEQ ID NO: 16:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 2167 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRANDEDNESS: Double
    - (D) TOPOLOGY: Linear
  - (ii) MOLECULE TYPE: DNA (genomic)
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: Pseudomonas aeruginosa
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:

| GGTACCGCTG | GCCGAGCATC | TGCTCGATCA | CCACCAGCCG   | GGCGACGGGA  | . 50 |
|------------|------------|------------|--------------|-------------|------|
| ACTGCACGAT | CTACCTGGCG | AGCCTGGAGC |              | TCGCTTCGTA  |      |
| CGGCGCTGAG | CGACAGTCAC | AGGAGAGGAA | =            | TCGCACCAGG  | -00  |
| AGCGGCCGCT | GATCGGCCTG | CTGTTCTCCG |              | CACCGCCGAT  | 200  |
| ATCGAGCGCT | CGCACGCGTA | TGGCGCATTG | CTCGCGGTCG   | AGCAACTGAA  | 250  |
| CCGCGAGGGC | GGCGTCGGCG | GTCGCCCGAT |              | TCCCAGGACC  |      |
| CCGGCGGCGA | CCCGGACCGC | TATCGGCTGT |              | CTTCATTCGC  | 300  |
| AACCGGGGGG | TACGGTTCCT | CGTGGGCTGC | TACATGTCGC   | ACACGCGCAA  | 350  |
| GGCGGTGATG | CCGGTGGTCG | AGCGCGCCGA | <del>-</del> | TGCTACCCGA  | 400  |
| CCCCTACGA  | GGGCTTCGAG | TATTCGCCGA |              | CGGCGGTCCG  | 450  |
| GCGCCGAACC | AGAACAGTGC | GCCGCTGGCG | GCGTACCTGA   | TTCGCCACTA  | 500  |
| CGGCGAGCGG | GTGGTGTTCA | TCGGCTCGGA | CTACATCTAT   |             | 550  |
| GCAACCATGT | GATGCGCCAC | CTGTATCGCC | AGCACGGCGG   | CCGCGGGAAA  | 600  |
| GAGGAAATCT | ACATTCCGCT | GTATCCCTCC | GACGACGACT   | CACGGTGCTC  | 650  |
| CGTCGAGCGC | ATCTACCAGG | CGCGCGCCGA | CGTGGTCTTC   | TGCAGCGCGC  | 700  |
| TGGGCACCGG | CACCGCCGAG | CTGTATCGCG |              | TCCACCGTGG  | 750  |
| GACGGCAGGC | GGCCGCCGAT | CGCCAGCCTG | CCATCGCCCG   | TCGCTACGGC  | 800  |
| GGCGAAGATG | GAGAGTGACG | TGGCAGAGGG | ACCACCAGCG   | AGGCGGAGGT  | 850  |
| ACTTCTCCAG | CATCGATACG |            | GCAGGTGGTG   | GTCGCGCCTT  | 900  |
| CATGGTTTCT |            | CCCGCCAGCC | GGGCCTTCGT   | CCAGGCCTGC  | 950  |
| CTACTGGCAG | TCCCGGAGAA | CGCGACCATC | ACCGCCTGGG   | CCGAGGCGGC  | 1000 |
|            | ACCTTGTTGC | TCGGCCGCGC | CGCGCAGGCC   | GCAGGCAACT  | 1050 |
| GGCGGGTGGA | AGACGTGCAG | CGGCACCTGT | ACGACATCGA   | CATCGACGCG  | 1100 |
| CCACAGGGGC | CGGTCCGGGT |            | AACAACCACA   | GCCGCCTGTC- | 1150 |
| TTCGCGCATC | GCGGAAATCG | ATGCGCGCGG | CGTGTTCCAG   | GTCCGCTGGC  | 1200 |
| AGTCGCCCGA | ACCGATTCGC | CCCGACCCTT | ATGTCGTCGT   | GCATAACCTC  | 1250 |
|            |            |            |              |             |      |

H

| GACGACTGGT | CCGCCAGCAT | GGGCGGGGA  | CCGCTCCCAT | GAGCGCCAAC | 1300 |
|------------|------------|------------|------------|------------|------|
| TCGCTGCTCG | GCAGCCTGCG | CGAGTTGCAG | GTGCTGGTCC | TCAACCCGCC | 1350 |
| GGGGGAGGTC | AGCGACGCCC | TGGTCTTGCA | GCTGATCCGC | ATCGGTTGTT | 1400 |
|            | GTGCTGGCCG | CCGCCGGAAG | CCTTCGACGT | GCCGGTGGAC | 1450 |
| CGGTGCGCCA | CCAGCATTTT | CCAGAATGGC | CACCACGACG | AGATCGCTGC | 1500 |
| GTGGTCTTCA | -          | CGCGCACTAC | CCTGGTGGCG | CTGGTGGAGT | 1550 |
| GCTGCTCGCC | GCCGGGACTC | TCGCAGATCA | TCGAGCTGGA | GTGCCACGGC | 1600 |
| ACGAAAGCCC | CGCGGTGCTC | TGCCCACCGG | GTGCTGCCTG | TGCTGGTATC | 1650 |
| GTGATCACCC | AGCCGCTCGA |            | GCTGAAGCAG | AAGACCGAGC | 1700 |
| GGCGCGGCGC | ATCAGCGAGG | AAATGGCGAA |            | GGCCAAGGTG | 1750 |
| AGCTCCAGGA | CCGCATCGCC | GGCCAGGCCC | GGATCAACCA | ACCAGCACCT | 1800 |
| TTGCTGATGC | AGCGCCATGG | CTGGGACGAG | CGCGAGGCGC |            | 1850 |
| GTCGCGGGAA | GCGATGAAGC | GGCGCGAGCC |            | ATCGCTCAGG |      |
| AGTTGCTGGG | AAACGAGCCG | TCCGCCTGAG | CGATCCGGGC | CGACCAGAAC | 1900 |
| AATAACAAGA | GGGGTATCGT | CATCATGCTG | GGACTGGTTC | TGCTGTACGT | 1950 |
| TGGCGCGGTG | CTGTTTCTCA | ATGCCGTCTG | GTTGCTGGGC | AAGATCAGCG | 2000 |
| GTCGGGAGGT | GGCGGTGATC | AACTTCCTGG | TCGGCGTGCT | GAGCGCCTGC | 2050 |
| GTCGCGTTCT |            | TTCCGCAGCA | CCCGGGCAGG | GCTCGCTGAA | 2100 |
| GGCCGGAGC  |            |            | TACCTATCTG | TGGGTGGCCG | 2150 |
| CCAACCAGT  |            |            |            |            | 2167 |
| CCAACCAGI  |            |            |            |            |      |

### (2) INFORMATION FOR SEQ ID NO: 17:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1872 base pairs
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Pseudomonas aeruginosa
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:

|                          | GAGTTCCCGA | CGCAGCCACC | CCCAAAACAC | TGCTAAGGGA | 50  |
|--------------------------|------------|------------|------------|------------|-----|
| GAATTCCCGG<br>GCGCCTCGCA | GAGTTCCCGA | CCACAMACAC | САТСССАТТТ | GGCAAGCCAC | 100 |
| GCGCCTCGCA               | GGGCTCCTGA | GGAGATAGAC | mccmcccccc | GGCCACCGCT | 150 |
| TGGTGGGCAC               | CTTGCTCGCC | TCGCTGACGC | TGCTGGGCCT | CTCCCCCTTC | 200 |
| CACGCCAAGG               | ACGACATGAA | AGCCGCCGAG | CAATACCAGG | GIGCCGCTIC | 250 |
| CGCCGTCGAT               | CCCCC      | TGGTGCGCAC |            |            |     |
| GTGAAAGCGA               | GTTCAACGAG | GCCAAGCAGA |            |            | 300 |
| GGTTGCCACG               |            | CAAGGGCGCC | ACCGGCAAGC | CGCTGACCCC | 350 |
| GGT TGCCUCO              |            |            |            |            |     |

| GGACATCACC | CAGCAACGCG | GCCAGCAATA | CCTGGAAGCG | CTGATCACCT | 400  |
|------------|------------|------------|------------|------------|------|
| ACGGCACCCC | GCTGGGCATG | CCGAACTGGG | GCAGCTCCGG | CGAGCTGAGC | 450  |
| AAGGAACAGA | TCACCCTGAT | GGCCAAGTAC | ATCCAGCACA | CCCCGCCGCA | 500  |
| ACCGCCGGAG | TGGGGCATGC | CGGAGATGCG | CGAATCGTGG | AAGGTGCTGG | 550  |
| TGAAGCCGGA | GGACCGGCCG | AAGAAACAGC | TCAACGACCT | CGACCTGCCC | 600  |
| AACCTGTTCT | CGGTGACCCT | GCGCGACGCC | GGGCAGATCG | CCCTGGTCGA | 650  |
| CGGCGACAGC | AAAAAGATCG | TCAAGGTCAT | CGATACCGGC | TATGCCGTGC | 700  |
| ATATCTCGCG | GATGTCCGCT | TCCGGCCGCT | ACCTGCTGGT | GATCGGCCGC | 750  |
| GACGCGCGGA | TCGACATGAT | CGACCTGTGG | GCCAAGGAGC | CGACCAAGGT | 800  |
| CGCCGAGATC | AAGATCGGCA | TCGAGGCGCG | CTCGGTGGAA | AGCTCCAAGT | 850  |
| TCAAGGGCTA | CGAGGACCGC | TACACCATCG | CCGGCGCCTA | CTGGCCGCCG | 900  |
| CAGTTCGCGA | TCATGGACGG | CGAGACCCTG | GAACCGAAGC | AGATCGTCTC | 950  |
| CACCCGCGGC | ATGACCGTAG | ACACCCAGAC | CTACCACCCG | GAACCGCGCG | 1000 |
| TGGCGGCGAT | CATCGCCTCC | CACGAGCACC | CCGAGTTCAT | CGTCAACGTG | 1050 |
| AAGGAGACCG | GCAAGGTCCT | GCTGGTCAAC | TACAAGGATA | TCGACAACCT | 1100 |
| CACCGTCACC | AGCATCGGTG | CGGCGCCGTT | CCTCCACGAC | GGCGGCTGGG | 1150 |
| ACAGCAGCCA | CCGCTACTTC | ATGACCGCCG | CCAACAACTC | CAACAAGGTT | 1200 |
| GCCGTGATCG | ACTCCAAGGA | CCGTCGCCTG | TCGGCCCTGG | TCGACGTCGG | 1250 |
| CAAGACCCCG | CACCCGGGGC | GTGGCGCCAA | CTTCGTGCAT | CCCAAGTACG | 1300 |
| GCCCGGTGTG | GAGCACCAGC | CACCTGGGCG | ACGGCAGCAT | CTCGCTGATC | 1350 |
| GGCACCGATC | CGAAGAACCA | TCCGCAGTAC | GCCTGGAAGA | AAGTCGCCGA | 1400 |
| ACTACAGGGC | CAGGGCGGCG | GCTCGCTGTT | CATCAAGACC | CATCCGAAGT | 1450 |
| CCTCGCACCT | CTACGTCGAC | ACCACCTTCA | ACCCCGACGC | CAGGATCAGC | 1500 |
| CAGAGCGTCG | CGGTGTTCGA | CCTGAAGAAC | CTCGACGCCA | AGTACCAGGT | 1550 |
| GCTGCCGATC | GCCGAATGGG | CCGATCTCGG | CGAAGGCGCC | AAGCGGGTGG | 1600 |
| TGCAGCCCGA | GTACAACAAG | CGCGGCGATG | AAGTCTGGTT | CTCGGTGTGG | 1650 |
| AACGGCAAGA | ACGACAGCTC | CGCGCTGGTG | GTGGTGGACG | ACAAGACCCT | 1700 |
| GAAGCTCAAG | GCCGTGGTCA | AGGACCCGCG | GCTGATCACC | CCGACCGGTA | 1750 |
| AGTTCAACGT | CTACAACACC | CAGCACGACG | TGTACTGAGA | CCCGCGTGCG | 1800 |
| GGGCACGCCC | CGCACGCTCC | CCCCTACGAG | GAACCGTGAT | GAAACCGTAC | 1850 |
| GCACTGCTTT | CGCTGCTCGC | CA         |            |            | 1872 |
|            |            |            |            |            |      |

### (2) INFORMATION FOR SEQ ID NO: 18:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 3451 base pairs
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Pseudomonas aeruginosa
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:

| TCGAGACGGG | AAGCCACTCT | CTACGAGAAG | ACAGAAGCCC   | CTCACAGAGG   | 50   |
|------------|------------|------------|--------------|--------------|------|
| CCTCTGTCTA | CGCCTACTAA | AGCTCGGCTT | ATTCATATGT   | ATTTATATTC   | 100  |
| TTTCAATAGA | TCACTCAGCG | CTATTTTAAG | TTCACCCTCT   | GTAAGTTCAC   | 150  |
| CTGGGCGCTC | TTTCTTTCCT | TCGGTAAAGC | TGTCGGCCAG   | ACCAAACATT   | 200  |
| AAACTCAAGC | ATCTCCCAAG | CGATGCATCA | TCTTGGGCCA   | GCATCCCTGA   | 250  |
| ATCGCGCGTC | GGACCTCCAA | GTCTTAAAAA | ATTCTTCGCT   | GAAGGTTTTC   | 300  |
| CCATCAATCG | ATGAGGCTAA | TAGCTTCTTT | GCAATATCTA   | TCATTTCCAT   | 350  |
| GCTCACCTTA | AAGCACCTCA | TTTTTCATGT | AAAAATTGTA   | TTGATCCGTG   | 400  |
| CCAGACTCAA | TCCTCCACCC | AGAAACAAAC | ATCCCATCCT   | CTCCAATGAT   | 450  |
| AACAACAATA | TTAGTCCTGG | CATTGTAATG | TACTTTTGAG   | TTTACTTCGG   | 500  |
| AGTGGTAAGT | CCCTTTTTCT | ACGGTTGCAG | GATCAGCAAG   | GTGCTCAAGA   | 550  |
| ATTTTATCCC |            | AAGCGTTCCA | TTGTTGGCGC   | TTTTTTCACC   | 600  |
| CAGCCCAAAA |            | GGCTATCAAA | TTTTTTCTGT   | AGTTGCCTCC   | 650  |
| GTGTGAAGAT |            | AGAGGACTAC | TGAGCATTAC   | ATAAACAGGT   | 700  |
| TTGACTCCAG |            | GAAAATCACG | ATCAGATCGT   | TTAGGTCCAG   | 750  |
| TAGCATTCC  |            | CCGGGCCGGT | CTTCAACGGT   | GTGAGGGCCG   | 800  |
| CTCCCTCATA |            | GGCTTCGGTA | TGACCGGAGT   | GGTACTCGAA   | 850  |
| GGGTTCTGG  |            | ACTCGCCGGC | GTCCAAGTCA   | GGATCAGTGG   | 900  |
| CGGCGCTTC  |            | AGGGAACCGT | AACCTCGTAC   | AGTCCTGTTG   | 950  |
| CGGCGTTAT  |            | GGACCGGAAC | GCTTTCGGAA   | CGCTCACACC   | 1000 |
| ATCGGTCTG  |            | GTCGTCGTGT | TGCCTCGCGC   | CTCGTTGGTC   | 1050 |
| AGGCGCATC  |            | GGTACCGCT  | G GCTTTTGCA  | A CCGCGTTCAG | 1100 |
| GTTTACGCT  |            |            | C GGCATCCATC | CCCAGGGCGT   | 1150 |
| AACGAACGC  |            |            | C ATTGCTCGG  | CAGTCCGGGAG  | 1200 |
| AGTAGGTCA  |            | CACGGCCAT  | C ACCGAGGTG  |              | 1250 |
| ACCGCCAGG  |            | ATCGGAGAT  | C GCTTGAGCA  | A GGGATGCGGC | 1300 |
|            |            |            |              |              |      |

## SUBSTITUTE SHEET

| GCCTGTGCGA         | CCTGGATCAG | ACCCCGCTGC | GGCGGTGGCG           | CACCCGCTGC | 1350 |
|--------------------|------------|------------|----------------------|------------|------|
| CATTGGCTGG         | CATGGCATAA | GTATTGGCAG | CCCTGATCGC           | CGCTTGACGA | 1400 |
| GCGATTTCCT         | TGCGCCTTGC | CGTTTCGGCG | TTCAGCTTGT           | CCAGCCGTGC | 1450 |
| TTGCAGGCTG         | GCGATTTCAT | CCACTAGGTA | GGACATCGGC           | GTTGTAGGTT | 1500 |
| GCCTTTTGTT         | TCTCCAGTGC | ATTGGGTGCC | TTGGCAATCA           | AGGCATTGTT | 1550 |
| TGCAGTCTGC         | AATTCTTCTT | ATTGCGATCG | CCTGCGTAAG           | GAGTTGAGTA | 1600 |
| GCGCGTTCAA         | GCCACTGCTC | TGGCGTTGGA | TTGGTCAGTT           | GAGGCAAAGC | 1650 |
| ATTCCCAGCC         | TGGTCAAGCT | CGGACTGCAC | TTTTTTCTCG           | ACATTTGCCT | 1700 |
| TCCTGGCCTT         | GTAGTCCGCC | TCCACCTCAG | CAGCGGCTCG           | CTGGGCTTCT | 1750 |
| GCTTCCAATG         | ACCGGGCTTT | ATTCTCCAGC | TCTTGAGACG           | TTTGTTTCAA | 1800 |
| GATAGCGATT         | TGCGCCTTAT | AGATATCGGC | GCTGTACGCT           | TTGGCCAGCT | 1850 |
| CACTCATATG         | GCGATCCAGG | AACTCTCCAT | AGAATTTTCG           | GCTGGCCAGC | 1900 |
| AACTGACTCT         | GGTACATCGA | CTCTGACTTC | TGAGGAAAGT           | CTGAAGCCGT | 1950 |
| ATAAAGATTG         | GCCGGGCGAT | CCTCAATGAC | CTTTAGCGAT           | TTTGCTTTGG | 2000 |
| CATCCATGAG         | TGCATCAACG | ATACTCTTTT | CATCGCGGAT           | GTCATTGGCA | 2050 |
| CTGACCGCTT         | TACCTGGCAA | CCCCGCTTCA | CTCTTGAGTT           | CATCAACCTC | 2100 |
| CTTCAGGGTT         | TCATTTTTCA | GGTTTTTCTT | GAGTTCTGAA           | TGGGACTTAT | 2150 |
| CAAGCGTACT         | TCTTAGCTTC | CTGTACTCCT | GCATTCCAGT           | ACCGACATAC | 2200 |
| GGACTTGGTC         | CTGGTGGGAC | AAATGGTGGA | GTACCGTAGC           | TTGATCGAGC | 2250 |
| AGGAATATAC         | TGGATTATGT | CACGCCCACC | ACCCTGCACA           | TGTGTAATAA | 2300 |
| CCATCGAACC         | AGGTTCGTAA | TCATTGACAG | CCATAGATCG           | CCCCTACATT | 2350 |
| <b>AATTTGAAA</b> G | TGTAATGTAT | TGAGCGACTC | CCACCTAGAG           | AACCCTCTCC | 2400 |
| CAGTCAATAA         | GCCCCAATGC | ATCGGCAATA | CACTGCAATC           | AACTTCAATA | 2450 |
| TCCCGTGTTT         | AGATGATCCA | GAAGGTGCGC | TCTCTCGCCT           | CTTATAATCG | 2500 |
| CGCCTGCGTC         | AAACGGTCAT | TTCCTTAACG | CACACCTCAT           | CTACCCCGGC | 2550 |
| CAGTCACGGA         | AGCCGCATAC | CTTCGGTTCA | TTAACGAACT           | CCCACTTTCA | 2600 |
| AAATTCATCC         | ATGCCGCCCC | TTCGCGAGCT | TCCGGACAAA           | GCCACGCTGA | 2650 |
| TTGCGAGCCC         | AGCGTTTTTG | ATTGCAAGCC | GCTGCAGCTG           | GTCAGGCCGT | 2700 |
| TTCCGCAACG         | CTTGAAGTCC | TGGCCGATAT | ACCGGCAGGG           | CCAGCCATCG | 2750 |
| TTCGACGAAT         | AAAGCCACCT | CAGCCATGAT | GCCCTTTCCA           | TCCCCAGCGG | 2800 |
| AACCCCGACA         | TGGACGCCAA | AGCCCTGCTC | CTCGGCAGCC           | TCTGCCTGGC | 2850 |
| CGCCCCATTC         | GCCGACGCGG | CGACGCTCGA | CAATGCTCTC           | TCCGCCTGCC | 2900 |
| TCGCCGCCCG         | GCTCGGTGCA | CCGCACACGG | CGGAGGGCCA           | GTTGCACCTG | 2950 |
| CCACTCACCC         | TTGAGGCCCG | GCGCTCCACC | GGCGAATGCG           | GCTGTACCTC | 3000 |
| GGCGCTGGTG         | CGATATCGGC | TGCTGGCCAG | GGGCGCCAGC           | GCCGACAGCC | 3050 |
| TCGTGCTTCA         | AGAGGGCTGC | TCGATAGTCG | CCAGGACACG           | CCGCGCACGC | 3100 |
| TGACCCTGGC         | GGCGGACGCC |            | GCGGCCGCGA<br>CLIEFT |            | 3150 |

W 96/08582 PCT/CA95/00528

75

| ACCCTGGGTT | GTCAGGCGCC | TGACTGACAG | GCCGGGCTGC | CACCACCAGG | 3200 |
|------------|------------|------------|------------|------------|------|
| CCGAGATGGA |            |            | ATCGGCAAGC |            | 3250 |
| CACATTCACC | ACTCTGCAAT | CCAGTTCATA | AATCCCATAA | AAGCCCTCTT | 3300 |
| CCGCTCCCCG | CCAGCCTCCC | CGCATCCCGC | ACCCTAGACG | CCCCGCCGCT | 3350 |
| CTCCGCCGGC | TCGCCCGACA | AGAAAAACCA | ACCGCTCGAT | CAGCCTCATC | 3400 |
| CTTCACCCAT | CACAGGAGCC | ATCGCGATGC | ACCTGATACC | CCATTGGATC | 3450 |
| C          |            |            |            |            | 3451 |

### (2) INFORMATION FOR SEQ ID NO: 19:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 744 base pairs
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Pseudomonas aeruginosa
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:

| GGGTTCAGCA | AGCGTTCAGG | GGCGGTTCAG | TACCCTGTCC | GTACTCTGCA | 50  |
|------------|------------|------------|------------|------------|-----|
| AGCCGTGAAC |            | TCGCAGAACG | GAGAAACACC | ATGAAAGCAC | 100 |
|            | CTTCATCGCC | ACCGCCCTGC | TGGGTTCCGC | CGCCGGCGTC | 150 |
| CAGGCCGCCG | 323333     | CGGCCTGACC | TGGGGCGAGA | CCAGCAACAA | 200 |
| CATCCAGAAA |            | TGAACCGCAA | CCTGAACAGC | CCGAACCTCG | 250 |
| ACAAGGTGAT |            | GGCACCTGGG | GCATCCGCGC | CGGCCAGCAG | 300 |
| TTCGAGCAGG |            |            | GAGAACATCT | CCGACACCAG | 350 |
| CAGCGGCAAC |            |            | GCTCGGCAGC | TACGACGCCT | 400 |
|            |            |            | TGTTCGGCGG | TGCCACCCTC | 450 |
| TCCTGCCGAT |            |            |            | GCGACAGCGA | 500 |
| GGCCTGGTCA |            |            | TATCCTGCAG |            | 550 |
| TGTCGGCTAC |            |            | ACCTGCGCAC |            | 600 |
| AGAATGCCTC |            | •••        | CTGGGCTCCC |            | 650 |
|            | CCCCGCATGG |            | CTACAAGTTC |            | 700 |
|            | CAATTCTACC |            |            |            | 744 |
| CGCAGCGCCC | GCGAGGGCAT | GCTTCGATGG | CCGGGCCGGA | AGGI       |     |

# SUBSTITUTE SHEET

#### (2) INFORMATION FOR SEQ ID NO: 20:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 2760 base pairs
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Pseudomonas aeruginosa
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:

| CTGCAGCTGG | TCAGGCCGTT | TCCGCAACGC | TTGAAGTCCT | GGCCGATATA | 50   |
|------------|------------|------------|------------|------------|------|
| CCGGCAGGGC | CAGCCATCGT | TCGACGAATA | AAGCCACCTC | AGCCATGATG | 100  |
| CCCTTTCCAT | CCCCAGCGGA | ACCCCGACAT | GGACGCCAAA | GCCCTGCTCC | 150  |
| TCGGCAGCCT | CTGCCTGGCC | GCCCCATTCG | CCGACGCGGC | GACGCTCGAC | 200  |
| AATGCTCTCT | CCGCCTGCCT | CGCCGCCCGG | CTCGGTGCAC | CGCACACGGC | 250  |
| GGAGGGCCAG | TTGCACCTGC | CACTCACCCT | TGAGGCCCGG | CGCTCCACCG | 300  |
| GCGAATGCGG | CTGTACCTCG | GCGCTGGTGC | GATATCGGCT | GCTGGCCAGG | 350  |
| GGCGCCAGCG | CCGACAGCCT | CGTGCTTCAA | GAGGGCTGCT | CGATAGTCGC | 400  |
| CAGGACACGC | CGCGCACGCT | GACCCTGGCG | GCGGACGCCG | GCTTGGCGAG | 450  |
| CGGCCGCGAA | CTGGTCGTCA | CCCTGGGTTG | TCAGGCGCCT | GACTGACAGG | 500  |
| CCGGGCTGCC | ACCACCAGGC | CGAGATGGAC | GCCCTGCATG | TATCCTCCGA | 550  |
| TCGGCAAGCC | TCCCGTTCGC | ACATTCACCA | CTCTGCAATC | CAGTTCATAA | 600  |
| ATCCCATAAA | AGCCCTCTTC | CGCTCCCCGC | CAGCCTCCCC | GCATCCCGCA | 650  |
| CCCTAGACGC | CCCGCCGCTC | TCCGCCGGCT | CGCCCGACAA | GAAAAACCAA | 700  |
| CCGCTCGATC | AGCCTCATCC | TTCACCCATC | ACAGGAGCCA | TCGCGATGCA | 750  |
| CCTGATACCC | CATTGGATCC | CCCTGGTCGC | CAGCCTCGGC | CTGCTCGCCG | 800  |
| GCGGCTCGTC | CGCGTCCGCC | GCCGAGGAAG | CCTTCGACCT | CTGGAACGAA | 850  |
| TGCGCCAAAG | CCTGCGTGCT | CGACCTCAAG | GACGGCGTGC | GTTCCAGCCG | 900  |
| CATGAGCGTC | GACCCGGCCA | TCGCCGACAC | CAACGGCCAG | GGCGTGCTGC | 950  |
| ACTACTCCAT | GGTCCTGGAG | GGCGGCAACG | ACGCGCTCAA | GCTGGCCATC | 1000 |
| GACAACGCCC | TCAGCATCAC | CAGCGACGGC | CTGACCATCC | GCCTCGAAGG | 1050 |
| CGGCGTCGAG | CCGAACAAGC | CGGTGCGCTA | CAGCTACACG | CGCCAGGCGC | 1100 |
| GCGGCAGTTG | GTCGCTGAAC | TGGCTGGTAC | CGATCGGCCA | CGAGAAGCCC | 1150 |
| TCGAACATCA | AGGTGTTCAT | CCACGAACTG | AACGCCGGCA | ACCAGCTCAG | 1200 |
| CCACATGTCG | CCGATCTACA | CCATCGAGAT | GGGCGACGAG | TTGCTGGCGA | 1250 |
| AGCTGGCGCG | CGATGCCACC | TTCTTCGTCA | GGGCGCACGA | GAGCAACGAG | 1300 |

WO 96/08582 PCT/CA95/00528

77

|            | CCCCCCAT     | CAGCCATGCC  | GGGGTCAGCG               | TGGTCATGGC   | 1350 |
|------------|--------------|-------------|--------------------------|--------------|------|
| ATGCAGCCGA | CCGCGCCCGG   |             | GAGCGAATGG               | GCCAGCGGCA   | 1400 |
| CCAGACCCAG |              | CCGCTGGACG  | GGGTCTACAA               | CTACCTCGCC   | 1450 |
| AGGTGTTGTG | CCTGCTCGAC   |             |                          | TCTACCGGGT   | 1500 |
| CAGCAACGCT | GCAACCTCGA   | Commission  | GGACATCAAA               | CCCACGGTCA   | 1550 |
| GCTCGCCGGC | AACCCGGCGA   | CCCGAGGGCG  | GCAGCCTGGC               | CGCGCTGACC   | 1600 |
| TCAGTCATCG | CCTGCACTTT   | GCCGCTGGAG  |                          | GTCATCGCCA   | 1650 |
| GCGCACCAGG | CTTGCCACCT   |             | CGGCTATCCG               | GTGCAGCGGC   | 1700 |
| GCCGCGCGC  |              | _           | CGTGGAACCA               | GGTCGACCAG   | 1750 |
| TGGTCGCCCT |              |             |                          | ACCTGGGCGA   | 1800 |
| GTGATCCGCA |              |             | AGCGGCGGCG<br>TCTGGCCCTG | ACCCTGGCCG   | 1850 |
| AGCGATCCGC |              | AGCAGGCCCG  |                          | CGACGAGGCC   | 1900 |
| CCGCCGAGAG | CGAGCGCTTC   |             | GCACCGGCAA               |              | 1950 |
| GGCGCGGCCA | ACGCCGACGT   | =           | ACCTGCCCGG               |              | 2000 |
| TGAATGCGCC | GGCCCGGCGG   |             | CGCCCTGCTG               |              | 2050 |
| ATCCCACTG  | G CGCGGAGTTC |             |                          |              | 2100 |
| ACCCGCGGC  | A CGCAGAACTG |             | CGGCTGCTCC               |              | 2150 |
| CCAACTGGA  | G GAGCGCGGCT |             |                          |              | 2200 |
| TCGAAGCGG  | C GCAAAGCATC |             | G GGGTGCGCGC             |              | 2250 |
| GACCTCGAC  | G CGATCTGGC  | _           | r ATCGCCGGC              |              | 2300 |
| GGCCTACGG  | C TACGCCCAG  |             |                          |              | 2350 |
| GCAACGGTG  | C CCTGCTGCG  | G GTCTATGTG | C CGCGCTCGA              |              |      |
| TTCTACCGC  | A CCAGCCTGA  | C CCTGGCCGC |                          |              |      |
| CGAACGGCT  |              | C CGCTGCCGC | T GCGCCTGGA              |              |      |
| GCCCGAG    |              | -           | A CCATTCTCG              |              |      |
| GCCGAGCG   |              | TCCCTCGGC   | G ATCCCCACC              |              |      |
| CGTCGGCG   |              | C CGTCCAGCA |                          |              |      |
| TCAGCGCC   |              | C GCCAGCCAC |                          |              |      |
| GACCTGAA   |              |             |                          |              |      |
| TTCTCGGG   |              |             | TT CCTGATGC              | CA GCCCAATCG |      |
| ATATGAAT   |              |             |                          |              | 2760 |
| VIVIAUVI   |              |             |                          |              |      |

# SUBSTITUTE SHEET

| (2) INF           | ORMATION FOR SEQ ID NO: 21:                                                                                                                                           |            |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| (i)               | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 172 base pairs  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear                                         |            |
| (ii)              | MOLECULE TYPE: DNA (genomic)                                                                                                                                          |            |
| (vi)              | ORIGINAL SOURCE: (A) ORGANISM: Staphylococcus saprophyticus                                                                                                           |            |
| (xi)              | SEQUENCE DESCRIPTION: SEQ ID NO: 21:                                                                                                                                  |            |
| TACCCTT           | AAAT GCATCGATTA ATAAATTTTC ATGTACGATT AAAACGTTTT CACC TTTTCGTACT ACCTCTGCCT GAAGTTGACC ACCTTTAAAG GTTG AAATCCATTA TGCTCATTAT TAATACGATC TATAAAAACA ATGT GATGATCGAT GA | 100        |
| (2) INFO          | PRMATION FOR SEQ ID NO: 22:                                                                                                                                           |            |
| (i)               | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 155 base pairs  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear                                         |            |
| (ii)              | MOLECULE TYPE: DNA (genomic)                                                                                                                                          |            |
| (vi)              | ORIGINAL SOURCE: (A) ORGANISM: Staphylococcus saprophyticus                                                                                                           |            |
| (xi)              | SEQUENCE DESCRIPTION: SEQ ID NO: 22:                                                                                                                                  |            |
| GTTCCAT           | TGA CTCTGTATCA CCTGTTGTAA CGAACATCCA TATGTCCTGA                                                                                                                       | 50         |
| AACTCCA           | ACC ACAGGTTTGA CCACTTCCAA mmmcacacaca                                                                                                                                 | 100        |
| CACGTGA:<br>AATAG | AGA TTCATCTTCT AATATTTCGG AATTAATATC ATATTATTTA                                                                                                                       | 150<br>155 |
| (2) INFO          | RMATION FOR SEQ ID NO: 23:                                                                                                                                            |            |
|                   | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 145 base pairs  (B) TYPE: Nucleic acid                                                                                         |            |

(ii) MOLECULE TYPE: DNA (genomic)

STRANDEDNESS: Double TOPOLOGY: Linear

(C)

(D)

| (vi) ORI<br>(A) | GINAL SOURCE: ORGANISM: Staphylococcus saprophytic                                                                            | us        |            |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------|-----------|------------|
| (xi) SEÇ        | QUENCE DESCRIPTION: SEQ ID NO: 23:                                                                                            |           |            |
| ACATAGAAAA      | A ACTCAAAAGA TTTACTTTTT TCAAATGGAA AAT                                                                                        | 'AAGGGTA  | 50         |
| CACACGATAT      | TTCCCGTCAT CTTCAGTTAC CGGTACAACA TCC                                                                                          | CTCTTTAT  | 100        |
| TAACCTGCAC      | C ATAATCTGAC TCCGCTTCAC TCATCAAACT ACT                                                                                        | raa       | 145        |
| (2) INFORM      | ATION FOR SEQ ID NO: 24:                                                                                                      |           |            |
| (A<br>(B<br>(C  | QUENCE CHARACTERISTICS:  LENGTH: 266 base pairs  TYPE: Nucleic acid  STRANDEDNESS: Double  TOPOLOGY: Linear                   |           |            |
| (ii) MO         | DLECULE TYPE: DNA (genomic)                                                                                                   |           |            |
| (vi) OF         | RIGINAL SOURCE:<br>A) ORGANISM: Staphylococcus saprophyti                                                                     | cus       |            |
| (xi) SI         | EQUENCE DESCRIPTION: SEQ ID NO: 24:                                                                                           |           |            |
| TTTCACTGG       | GA ATTACATTTC GCTCATTACG TACAGTGACA AT                                                                                        |           | 50         |
| ATAGTTTCT       | TT CTGGTTAGCT TGACTCTTAA CAATCTTGTC TA                                                                                        |           | 100<br>150 |
| TTAATTCTT       | TT GATTCGTACT AGAAATTTTA CTTCTAATTC CT                                                                                        |           | 200        |
| ATAACTTG(       | CA TTATCATATA AATCATAAGT ATCACATTTT TO                                                                                        |           | 250        |
| TTTGATAT        | AA ATCTGACAAT ACAGGCAGTT GCTCCATTCT AT                                                                                        | ICG11AAGA | 266        |
| ATAGGGTA        | AT TAATAG                                                                                                                     |           | 200        |
| (2) INFOR       | MATION FOR SEQ ID NO: 25:                                                                                                     |           |            |
|                 | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 845 base pairs  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear |           |            |
| (ii) 1          | MOLECULE TYPE: DNA (genomic)                                                                                                  |           |            |
| (vi)            | ORIGINAL SOURCE:<br>(A) ORGANISM: Haemophilus influenzae                                                                      |           |            |

# SUBSTITUTE SHEET

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:

| TGTTAAATTT  | CTTTAACAGG           | GATTTTGTTA | MMM 2 2 2 2 2 2 2 2 2 |            |     |
|-------------|----------------------|------------|-----------------------|------------|-----|
|             |                      | GATTTTGTTA | TTTAAATTAA            | ACCTATTATT | 50  |
| TTGTCGCTTC  | TTTCACTGCA           | TCTACTGCTT | GAGTTGCTTT            | TTCTGAAACC | 100 |
| GCCTCTTTCA  | TTTCACTTGC           | TTTTTCTGAT | GCTGCTTCTT            | TCATTTCGCC | 150 |
| TACTTTTTCT  | GACGCTGCTT           | CTGTTGCTGA | TTTAATTACT            | TCTTTCGCAT | 200 |
| CTTCCACTTT  | CTCTGCTACT           | ТТАТТТТТСА | CGTCTGTAGA            | AAGCTGCTGT | 250 |
| GCTTTTTCCT  | TTACTTCAGT           | CATTGTATTA | GCTGCAGCAT            | CTTTTGTTTC | 300 |
| TGATGCGACT  | GATGCTACAG           | TTTGCTTCGT | ATCCTCAACT            | TTTTGTTTTG | 350 |
| CTTCTTGCTT  | ATCAAAACAA           | CCTGTCACGA |                       | ACCTAAAACC | 400 |
| AATGCTAATG  | TTAATTTTT            | CATTATTTTC |                       | AATTTGATTG |     |
| TTACAAAGCC  | CTATTACTTT           | GATGCAGTTT | AGTTTACGGG            | AATTTTCATA | 450 |
| AAAAGAAAAA  | CAGTAATAGT           | AAAACTTTAC | CTTTCTTTAA            |            | 500 |
| ТТАТАААААА  | እ <i>ርአ</i> መርመል አርአ |            |                       | AAAGATTACT | 550 |
|             |                      | TATTGATTTT | TAATAGATTA            | TAAAAAACCA | 600 |
| TTTTAAAATTT |                      | AAAAAAAAAG | AATAGTTTAT            | ТТТАААТААА | 650 |
| TTACAGGAGA  | TGCTTGATGC           | ATCAATATTT | CTGATTTATT            | ACCATCCCAT | 700 |
| AATAATTGAG  | CAATAGTTGC           | AGGATAAAAT | GATATTGGAT            | TTCGTTTTCC | 750 |
| ATACAGTTCA  | GCAACAATTT           | CTCCCACTAA | GGGCAAATGG            | GAAACAATTA | 800 |
| ATACAGATTT  | AACGCCCTCG           | TCTTTTAGCA | CTTCTAAATA            | ATCAA      | 845 |

#### (2) INFORMATION FOR SEQ ID NO: 26:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1598 base pairs
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Haemophilus influenzae
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:

| GAATAGAGTT | GCACTCAATA   | GATTCGGGCT   | TTATAATTGC | CCAGATTTTT | 50  |
|------------|--------------|--------------|------------|------------|-----|
| ATTTATAACA | AAGGGTTCCA   | AATGAAAAA    | TTTAATCAAT | CTCTATTAGC | 100 |
| AACTGCAATG | TTGTTGGCTG   | CAGGTGGTGC   | AAATGCGGCA | GCGTTTCAAT | 150 |
| TGGCGGAAGT |              | GGTCTTGGTC   | GTGCCTATGC | GGGTGAAGCG | 200 |
| GCGATTGCAG |              | TGTCGTGGCA   | ACTAACCCAG | CTTTGATGAG | 250 |
| TTTATTTAAA |              | TTTCCACAGG   |            |            | 300 |
|            | -GAATGGTGAT- | -GTAACTTCTT- | ATGCTCAGAT | AATAACAAAT | 350 |
| CAGATTGGAA | TGAAAGCAAT   | AAAGGACGGC   | TCAGCTTCAC | AGCGTAATGT | 400 |
| TGTTCCCGGT | GCTTTTGTGC   | CAAATCTTTA   | TTTCGTTGCG | CCAGTGAATG | 450 |

|            |              |             | _          |            | E00  |
|------------|--------------|-------------|------------|------------|------|
| ATAAATTCGC | GCTGGGTGCT   | GGAATGAATG  | TCAATTTCGG | TCTAAAAAGT | 500  |
| GAATATGACG | ATAGTTATGA   | TGCTGGTGTA  | TTTGGTGGAA | AAACTGACTT | 550  |
| GAGTGCTATC | AACTTAAATT   | TAAGTGGTGC  | TTATCGAGTA | ACAGAAGGTT | 600  |
| TGAGCCTAGG | TTTAGGGGTA   | AATGCGGTTT  | ATGCTAAAGC | CCAAGTTGAA | 650  |
| CGGAATGCTG | GTCTTATTGC   | GGATAGTGTT  | AAGGATAACC | AAATAACAAG | 700  |
| CGCACTCTCA | ACACAGCAAG   | AACCATTCAG  | AGATCTTAAG | AAGTATTTGC | 750  |
| CCTCTAAGGA | CAAATCTGTT   | GTGTCATTAC  | AAGATAGAGC | CGCTTGGGGC | 800  |
| TTTGGCTGGA | ATGCAGGTGT   | AATGTATCAA  | TTTAATGAAG | CTAACAGAAT | 850  |
| TGGTTTAGCC | TATCATTCTA   | AAGTGGACAT  | TGATTTTGCT | GACCGCACTG | 900  |
| CTACTAGTTT | AGAAGCAAAT   | GTCATCAAAG  | AAGGTAAAAA | AGGTAATTTA | 950  |
| ACCTTTACAT | TGCCAGATTA   | CTTAGAACTT  | TCTGGTTTCC | ATCAATTAAC | 1000 |
| TGACAAACTT | GCAGTGCATT   | ATAGTTATAA  | ATATACCCAT | TGGAGTCGTT | 1050 |
| TAACAAAATT | ACATGCCAGC   | TTCGAAGATG  | GTAAAAAAGC | TTTTGATAAA | 1100 |
|            |              | CTCTCGTGTT  |            | CAAGTTATAA | 1150 |
| GAATTACAAT |              | TACGTGCGGG  |            | GATCAAGCGG | 1200 |
| TCTTTATGAA |              | GCTGCAATTC  |            | TCGCACTTGG | 1250 |
| CATCTCGTCA |              | TAAATTCACG  |            | CTGTTGATCT | 1300 |
| TATAGTTTAG |              |             |            | GAAGTAAAAA | 1350 |
| TGGCTATGCT |              |             | ATACAACTGC |            | 1400 |
| CAATAGGTGA |              |             |            |            | 1450 |
| TCTCAAGCAC |              |             |            |            | 1500 |
| ATCCGTTAA  |              |             |            | _          | 1550 |
| TTTTCTTTT  |              |             |            |            | 1598 |
| TACCCCTCG  | C CAGTCGGACG | , GCTTTTGMI |            |            |      |

### (2) INFORMATION FOR SEQ ID NO: 27:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 9100 base pairs
    (B) TYPE: Nucleic acid
    (C) STRANDEDNESS: Double

  - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Haemophilus influenzae
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:

GTCAAAAATT GCGTGCATTC TAGCGAAAAA ATGGGCTTTT GGGAACTGTG 50 GGATTTATTT AAAATCTTAG AAAATCTTAC CGCACTTTTA AGCTATAAAG 100 TGCGGTGAAA TTTAGTGGCG TTTATAATGG AGAATTACTC TGGTGTAATC 150

| CATTCGACTC | TCCAGCTTC  | C AGTACCTTC | T GGAACTAAT  | G TTTTTGTGA   | 3 200 |
|------------|------------|-------------|--------------|---------------|-------|
| ATAAGGCAAA |            | A TTTGGGTTT | C TAATGTCCA  |               |       |
| TTACCACCAT | ACCGCTCGC  | A GTCATTCCT | C GTTGATCGC  | _             |       |
| ACGGCGAGTT | CAATTTTTAC | AATTTTTCT   | A ATTCCCGTT  |               |       |
| CTTAAAAATA |            | GTTGGCGTA   | A TACAACAGG  |               |       |
| CATAAGTGCC |            | CGTTTATAG   | C CCTCTTCAA  |               |       |
| ACGAGATCAT | AATCATCTTI | TAATTCATA   | A GGCGGATCG  |               |       |
| GCCTCGGCGT | TCTTTTGGCG | GAAGCGTTG   | C TTTGACTTG  | · —           |       |
| TGTCACATTT | TACGGTGACA | TTTTTGTCG   | T CGCTAAAAT  |               | 550   |
| ATTGGATAAT | CGCTAGGATG | AAGCTCGGT   | C AATAGTGCG  |               |       |
| GCGCAACAAT | TCCGCGGCAA | TTAATGGAG   | A ACCCGCGTA  |               | 700   |
| CTTTGCCACC | ATAATTGAGT | TTTTTGATC   | A TTTTTACATA |               | 750   |
| TCTTCGGGTA | AATCTGTTTG | ATCCCACAGO  | GCTCCAATAC   |               | 800   |
| TTCCCCCGTT | TTTTCTGATT | CATTTGAGGA  | TAAACGATAA   |               | 850   |
| CAGAGTGCGT | ATCCAAATAA | AAAAAGCCTT  | TTTCTTTGAG   |               | 900   |
| TCCAAAATGA | GCATTAAAAC | AATATGTTTC  | AAGACATCGG   | - <del></del> | 950   |
| AGCGTGAAAT | GAGTGATGAT | AACTCAGCAT  | AATATATTCC   |               | 1000  |
| CTTATTTGTT | TAATAACGAA | GGCGAGCCAA  | TTGACTCGCC   |               | 1050  |
| CTAAAGTGCG | GTCATTTTTA | GAAGAGTTCT  | TGTGGTTGCG   |               | 1100  |
| ATTGCCTTCA | TTATTTAAGC | GTTGCTGTAA  | CTCAGTAGGA   |               | 1150  |
| CACGCTCTTG | CATTTCCGAA | AGATAGGTAC  | GTGTCGGTTC   | TGTTCCCGCA    | 1200  |
| ATAAAATATT | CTTTGCGCCC | ACCGTTTGGA  | GAAAGCAAAC   | CTGTCAAAGT    | 1250  |
| ATCAATGTTT | TTTTCCACAA | TTTTTGGCGG  | TAGCGACAAT   | TTACGTTCTG    | 1300  |
| GCTTATCACT | CAAAGCCGTT | TTCATATAAG  | TGATCCAAGC   | AGGCATTGCT    | 1350  |
| GTTTTTGCTC | CTGCTTCTCC | ACGCCCAAGT  | ACTCGTTTGT   | TATCATCAAA    | 1400  |
| CCCGACATAA | GTTGTGGTTA | CTAAGTTTGC  | ACCAAATCCC   | GCATACCAAG    | 1450  |
| CCACTTTTGA | ACTGTTGGTA | GTACCTGTTT  | TACCGCCTAT   | ATCGCTACGT    | 1500  |
| TTAATGCTTT | GTGCAATACG | CCAGCTGGTG  | CCTTTCCAGT   | CTAAACCTTG    | 1550  |
|            | ATTGCCGTAT | TTAAGGCACT  | ACGAATGAGA   | AAAGCAAGTT    | 1600  |
| CGCCACTAAT | GACACGTGGC | GCATATTCTA  | TTTTCGACGA   | AGCATTTTT     | 1650  |
| GCAGCAGCCA | TTAAATCAAT | CGCATCTTCT  | TTAAGTGCGG   | TCATATTTGA    | 1700  |
| TTGTAATTCT | GGCAGTTCAG | GCACAGTTTC  | AGGTTGTTGA   | TCTAATTCTT    | 1750  |
| CGCCATTGGT | GCTGTCATCT | GTTGGTTTTA  | AGGCATTCTC   | GCCTAAAGGA    | 1800  |
| ATATTGGCAA | AGCCGTTGAT | TTTGTCTTTG  | GTTTCGCCAT   | AAATTACAGG    | 1850  |
| TATATCATTA | CATTCAATGC | AAGCAATTTT  | AGGGTTTGCA   | ATAAATAAGT    | 1900  |
| CTTTACCCGT | GTTATCTTGA | ATTTTTTCAA  | TGATATAAGG   | TTCAATGAGG    | 1950  |
| AAGCCACCAT | TATCAAACAC | CGCATAAGCT  | CGCGCCATTT   | CTAATGGTGT    | 2000  |
|            |            |             |              |               |       |

|                                                 | <b>TGATCAC</b> | 2050              |
|-------------------------------------------------|----------------|-------------------|
| GAAAGAGGCI GCGCCCCCCCCCCCCCCCCCCCCCCCCCC        | ACCTGCC        | 2100              |
| GTTTAAAACC AAAACGIIGI AAAAATTT TTGGATTGAC CTA   | ATCCTAC        | 2150              |
| GTTTGGATAG CAUGAATAGC AATTAGCATC AGGCGAGTTT TTC | GGTTGCC        | 2200              |
| GCGTAAACGC ATGGGGCTGTC TTG                      | TAATACG        | 2250              |
| ACATTITITE TECESORE MECHANICET GCCGCGTAAA TAA   | ATGGTTT        | 2300              |
| CTTGAAAGIG IIIIIGGGCTCGA TTG                    | AATTTAC        | 2350              |
| GATAGAAGAA CCCACIIGAA CIIZIIIII                 | ATTATCT        | 2400              |
| TIPIGITCAIA GCIMATO MONATURCOT GCGGGAATTT GTC   | CTAATTG        | 2450              |
| GAATTAAGAG ALAGOTTO CAMCAAMCCA AATTTGCTCG CCC   | SACTTTCA       | 2500              |
| CCATTCCCCA TIMOSTO CARCCOATTC CATTGGTTGA TAI    | AGGTCATT       | 2550              |
| CAGGATIGGI ICIGCOTO                             | ATTCCAAT       | 2600              |
| TITTICCCAG AMOUNTAIN COMOMONATO AGGTAGTTTG CG   | TAGAAAAC       | 2650              |
| CACTGCCGCA GGILLITTE CATTTTTTTG CC              | ATAATGGC       | 2700              |
| CGACAATGCG ATCHTTCA ACCOMMATCG TAATCAATCA AG    | TTATTACG       | 2750              |
| GCGCCACCGC GAILLIOUS COMMOCOCOTTO TGAAAGTACA GT | GGTAAATA       | 2800              |
| CACAGCTTTT TGGGGTTGTT                           | GCACCATT       | 2850              |
| CTTTATAACC ACTOOTOGE CACADAATCG GCTCGAAATT CA   | AATTTTGC       | 2900              |
| TCTTGACGCA CCATTTOTAL MCCCCMCTTT CAATGCAGCA TO  | ATATTCTT       | 2950              |
| GCCTTAGCAC CATAC GGCTTAGCAC CA                  | CATTGCGG       | 3000              |
| CTTTGCTGAT GTATTTTCA TCTAACATAC GGGTTCATTG TT   | CAAGGTGC       | 3050              |
| THE COMPAN CONGCANTAN TOGCONTTO CGATAAGGTO AN   | ATTCATTCA      |                   |
| TOTAL CONTRACT TOTAL CONTRACT A                 | TAAGAACGA      |                   |
| TACCOTARA AGATTTTGTT TAAATAAAGC TCTAATATTT C    | TTGTTTGTT      |                   |
| CACACHAMET TEGATTETA CEGEAAGEAE GGETTEAEGA G    | CTTTACGAA      |                   |
| TAATGGTTTT TTCTGAGGTT AAGAAAAAGT TACGCGCTAA T   | TGTTGAGTA      |                   |
| ATCCTACTTG CGCCTTGTGA TGCACCGCCA TTACTCACTG C   | GACAAACA       |                   |
| THE COURSE ATTECCED TAG GGTCTAATCC GTGATGATCG T | AAAAACGA(      |                   |
| TCTCTTCCGT CGCTAAAAAT GCGTCAATTA AGCGTTGTGG     | ACATCGGC       | 1. 3450<br>- 3500 |
| A ATTTCACTG GAATACGGCG TTGCTCACCC ACTTCGCCAA 1  | TAATTTAC       |                   |
| GTCAGCCGTA TAAATCTGCA TTGGTTGCTG TAATTCAACG     | TAATTTTTE      |                   |
| TTTCTACTGA GGGCAATTCA GATTTTAAGT GGAAATACAA     | CATTCCGCC      |                   |
| CCTACTAAAC CTAAAATACA TAAAGTTAAT AGGGTGTTTA     | TTAATTAATT     | _                 |
| TGCGATCCGC ATCGTAAAAT TCTCGCTTCG TTAATGAATA     | TTCTTGTCA      |                   |
| CAGACCTATG ATTTGGCTGT TAAGTATAAA AGATTCAGCC     | TTTAAAGAA      |                   |
| ACCARACANT ATGCAATTCT CCCTGAAAAA TTACCGCACT     | TTACAAATC      |                   |
| GCATTCATCG TAAGCAGAGT TATTTTGATT TTGTGTGGTT     | TGATGATC       |                   |
|                                                 |                |                   |

| 61161666   |            |                   |              |                  |          |
|------------|------------|-------------------|--------------|------------------|----------|
| GAACAGCCA  |            |                   |              | LALALATTTA 1     | 3900     |
| TCGTTTTTT  |            |                   |              | ACCTTTCCTT       | 3950     |
| TGCAGTTTG  |            |                   |              | GAAAGTATTA       | 4000     |
| ATGTTGCCA  |            |                   | TGTCATCAAC   | AATGTAAATT       | 4050     |
| TGTGATTGA  |            |                   | AGAAGAATTG   | TGGTTTGATT       |          |
| ATCGTTCTAC |            |                   | GATTAGAGGT   | TACTGCAATT       |          |
| CGTAAAAGT  |            |                   | GATTTTCAGC   |                  |          |
| TAATATATTO |            |                   | TTTGCGTGCA   | TTTCAATATC       |          |
| TGTTGAATGA |            | - 0.101227117     | CCTTATTTTT   | ATTTCAAGAA       |          |
| GATGACTATI |            | TTGTGAAAGA        | TCTCAGCAAT   | CACAAATTTT       | 4350     |
| ACAATCTCAC |            | CCGCACTTTA        | TGAACAATTT   | ACCGAACGTT       | 4400     |
| TTGAAGGACA |            | GTTTTTGTTT        | ATCAAATTCC   | CTCAAGTCAT       | 4450     |
| ACACCATTAC |            | GCAGCGAGTA        | GAAACAGAAC   | TCCCTTTTAT       | 4500     |
| TGCGCTGGGC |            | GGCAAAAAGA        | TTTACATCAA   | CAAAAAGTGG       | 4550     |
| GTGGTTAAAT |            | TTATTGCCTT        | GGCGTACTTA   | TCAACATCAA       | 4600     |
| AAGCGTTTAC | GTCGTTTAGC | TTTTTATATC        | GCTTTATTTA   | TCTTGCTTGC       | 4650     |
| TATTAATTTA |            | TTAGCAATTT        | GATTGAACAA   | CAGAAACAAA       | 4700     |
| ATTTGCAGGC | ACAGCAAAAG | TCGTTTGAAC        | AACTTAATCA   | ACAGCTTCAT       | 4750     |
| AAAACTACCA | TGCAAATTGA | TCAGTTACGC        | ATTGCGGTGA   | AAGTTGGTGA       | 4800     |
| AGTTTTGACA | TCTATTCCCA | ACGAGCAAGT        | AAAAAAGAGT   | TTACAACAGC       | 4850     |
| TAAGTGAATT | ACCTTTTCAA | CAAGGAGAAC        | TGAATAAATT   | TAAACAAGAT       | 4900     |
| GCCAATAACT | TAAGCTTGGA | AGGTAACGCG        | CAAGATCAAA   | CAGAATTTGA       | 4950     |
| ACTGATTCAT | CAATTTTTAA | AGAAACATTT        | TCCCAATGTG   | AAATTAAGTC       | 5000     |
| AGGTTCAACC | TGAACAAGAT | ACATTGTTTT        | TTCACTTTGA   | TGTGGAACAA       | 5050     |
| GGGGCGGAAA | AATGAAAGCT | TTTTTTAACG        | ATCCTTTTAC   | TCCTTTTGGA       | 5100     |
| AAATGGCTAA | GTCAGCCTTT | TTATGTGCAC        | GGTTTAACCT   | TTTTATTGCT       | 5150     |
| ATTAAGTGCG |            | GCCCCGTTTT        | AGATTATATA   | GAGGGGAGTT       | 5200     |
| CACGTTTCCA |            | AATGAGTTAG        |              | TTCAGAATTG       | 5250     |
| TTGCATCAAC |            | AACCTCTTTA        |              |                  | 5300     |
| AAAACTTTCT |            | CTGCACAAAT        | TATTCCTTTG . | AATAAACAAA       | 5350     |
| TTCAACGTTT |            | <b>AACGGTTTAT</b> | CTCAGCATTT . | ACGTTGGGAA       | 5400     |
| ATGGGGCAAA | AGCCTATTTT | GCATTTACAG        | CTTACAGGTC   | ATTTTGAAAA       | 5450     |
| AACGAAGACA | TTTTTATCCG | CACTTTTGGC        |              | ~~~~             | 5500     |
| TAAGTCGGTT |            | AAACCCGAAG        | ACGGCCCATT ( | CAAACCCAC        | FFFO     |
| ATCATTTTC  | AGCTAGATAA | GGAAACAAAA        | GAAACATTG    |                  | F.C.O.O. |
| ATTATAT'   | TTTTATGAA  | TTGCAGTTGG (      | GACAAGATC (  | ጉምምምር ያስጥ አ<br>እ | 5650     |
| AACACAGCGT | AACCGTTCTC | AGTTTGATAA (      | GCACAAACA (  |                  | 5700     |
|            |            | ·                 |              |                  | 50       |

WO 96/08582 PCT/CA95/00528

| <i>c</i> .c | AATTTCCTCA               | GATGTGCCTA   | ATAATCTATG   | CGGAGCGGAT   | 5750 |
|-------------|--------------------------|--------------|--------------|--------------|------|
|             | AAGCGGCTGA               |              | AACGCTTTAA   | AATTGGTGGG   | 5800 |
| GAAAATCGCC  | TCTAAAGATA               | AAGCCTTTGC   | CTTGTTGCAA   | GATCAAGGTT   | 5850 |
| GGTAGTGATT  | CAGCGTTTTA               | GAGGGCGTTG   | ATGTGGCTCA   | AGAGGGCTAT   | 5900 |
| TGCAAGTTTA  | AAATCAACCA               | AAACAATGTT   | CAATTTATGC   | GTAAGCTAGG   | 5950 |
| ATTGTAGAAA  | GATAGTAGTG               | •=           | ATTAAGTTTT   | TAAAGGAAGA   | 6000 |
| AGAGCAATGT  |                          | AAGTGCGGTT   | ATTTTTTAGT   | ATGTTTTTGT   | 6050 |
| TTATGAAGAA  | ATATTTTTTA<br>TCGTTTTTGC |              | ACAGATAACG   | AACGTTTTTT   | 6100 |
| TTGCCATTAA  |                          |              | AACACTGGAG   | CAATTAGCTT   | 6150 |
| TATTCGTTTA  | TCGCAAGCAC               |              | ATATATTGGA   | AAACAAGATC   | 6200 |
| TTCAACAAGA  |                          |              | CGTTTGCTAC   | AAATAATCGC   | 6250 |
| TCTTTGAAAT  | TAAACAATAT               | <del>-</del> | TGATGGGATT   | таттатттаа   | 6300 |
| AAAAAGTAAG  |                          |              |              | TACGACAAAT   | 6350 |
| ACGGCAGTCA  |                          | GGTCAGGTTG   | CTCCATTTTG   | CTAAAGCTTC   | 6400 |
| GAACCGCACT  |                          |              |              | CTTTCTCCCG   | 6450 |
| TGAATTAATG  |                          | CAACAGGAAG   |              | TATTCAGGAT   | 6500 |
| CTGGGAGCAT  |                          |              | ATTTGCTGGT   | AAATGGATAA   | 6550 |
| GAACCTCGTT  |                          |              | CTGATTGCTG   |              | 6600 |
| GCCTATTGA   | A CAGATCGCTA             |              | AATTGTGACA   |              | 6650 |
| AGAGTTTGA!  | A AGAACTTGGC             |              | GGATTTTAA    |              | 6700 |
| AATGCAAGA   | GAGTTGCGGG               |              | A GGCAATAGCT |              |      |
| TGCGGATAA!  | r cttaatgtaa             |              |              |              | 6750 |
| CTATAGCAT   | r acaagtcgcc             |              | G GGCGATTGCT |              | 6800 |
| TTGAGTGCG   | T TGGAGCGTGA             |              | A GAAATTATTG |              | 6850 |
| CTTACTCAC   | T ACCAATAAGA             |              | G CATTAAACAG |              | 6900 |
| TTCCTTACA   | T CGTGAGTAAT             |              | G ATACGCAATC |              | 6950 |
| CGTGAGGCG   | G TGCTTGGTT              |              | G CCACATATT  |              | 7000 |
| CAATATCTT   | A CTTGATTTA              |              | A AAATTCCCC  |              | 7050 |
| TCGCTTATG   | G ACAAAATGA              |              |              | A AGAAATTAAT | 7100 |
| ACTCAGGTT   | T TTGCCAAAG              | =            |              | G GCGGCGTATT |      |
| TCACGATAC   | A ATCACGAAA              |              |              | G CTTGGCGATA |      |
| TACCCGTTA   | TAAACGATT                | A TTTAGCAAA  | G AAAGTGAAC  |              |      |
|             | G TGATTTTCG              |              | AAAATTTTAAAA |              |      |
|             | C GTTGAAACA              | A AAAAGTGAG  | G GTAAAAAAT  |              |      |
|             | TTTAATTT TT              | T CGCTGTATO  |              | G CAATCTTCAT |      |
|             | AA ATGGGTTAT             |              | CAAAAACAA    | A TTAAATCTTI | 7450 |
|             | GC GGTCATTGT             |              | TT GCAATATTA | T GCGCAGCATI | 7500 |
|             | TG TCTTAAACA             |              | TT GGGATAAGA | T GGTCATTATT | 7550 |
|             |                          |              |              |              |      |

| GGGCATTATA | TTGAACCTCT | TTCGATATTG   | ATTCAGCGTT        | TTAAATTTCA | 7600 |
|------------|------------|--------------|-------------------|------------|------|
| AAATCAATTI | TGGATTGACC | GCACTTTAGC   | TCGGCTTTT         |            |      |
| TACGTGATGC | TAAACGAACG | CATCAACTTA   | AATTGCCAGA        |            |      |
| CCAGTGCCTT | TATATCATTT | TCGTCAGTGG   | CGACGGGGTT        |            |      |
| AGATTTATTA | TCTCAGCAAT | TAAGTCGTTG   | GCTGGATATT        |            |      |
| ACAATATCGT | AAAGCGTGTG | AAACACACCT   | ATACTCAACG        |            | 7850 |
| GCAAAAGATC | GTCGTCAGAA | TTTAAAAAAT   | GCCTTTTCTC        |            | 7900 |
| GAAAAATGAA | TTTCCTTATC | GTCGTGTTGC   | GTTGGTGGAT        |            | 7950 |
| CTACTGGTTC | TACACTCAAT | GAAATCTCAA   | AATTGTTGCG        |            | 8000 |
| GTGGAGGAGA | TTCAAGTGTG | GGGGCTGGCA   | CGAGCTTAAT        |            | 8050 |
| GGAAAAAAA  | GCGCGATAAG | CGTATTATTC   | CCGATACTTT        |            | 8100 |
| TTTAGGACAT | AATTATGGAA | CAAGCAACCC   | AGCAAATCGC        | TATTTCTGAT | 8150 |
| GCCGCACAAG | CGCATTTTCG | AAAACTTTTA   | GACACCCAAG        | AAGAAGGAAC | 8200 |
| GCATATTCGT | ATTTTCGCGG | TTAATCCTGG   | TACGCCTAAT        | GCGGAATGTG | 8250 |
| GCGTATCTTA | TTGCCCCCCG | AATGCCGTGG   | AAGAAAGCGA        | TATTGAAATG | 8300 |
| AAATATAATA | CTTTTTCTGC | ATTTATTGAT   | GAAGTGAGTT        | TGCCTTTCTT | 8350 |
| AGAAGAAGCA | GAAATTGATT | ATGTTACCGA   | AGAGCTTGGT        | GCGCAACTGA | 8400 |
| CCTTAAAAGC | ACCGAATGCC | AAAATGCGTA   | AGGTGGCTGA        | TGATGCGCCA | 8450 |
| TTGATTGAAC | GTGTTGAATA | TGTAATTCAA   | ACTCAAATTA        | ACCCACAGCT | 8500 |
| TGCAAATCAC | GGTGGACGTA | TAACCTTAAT   | TGAAATTACT        | GAAGATGGTT | 8550 |
| ACGCAGTTTT | ACAATTTGGT | GGTGGCTGTA   | ACGGTTGTTC        | AATGGTGGAT | 8600 |
| GTTACGTTAA | AAGATGGGGT | AGAAAAACAA   | CTTGTTAGCT        | TATTCCCGAA | 8650 |
| TGAATTAAAA | GGTGCAAAAG | ATATAACTGA   | GCATCAACGT        | GGCGAACATT | 8700 |
| CTTATTATTA | GTGAGTTATA | AAAGAAGATT   | TATAATGACC        | GCACTTTTGA | 8750 |
| AAGTGCGGTT | ATTTTTATGG | AGAAAAAATG   | ÀAAATACTTC        | AACAAGATGA | 8800 |
| TTTTGGTTAT | TGGTTGCTTA | CACAAGGTTC   | TAATCTGTAT        | TTAGTGAATA | 8850 |
| ATGAATTGCC | TTTTGGTATC | GCTAAAGATA   | TTGATTTGGA        | AGGATTGCAG | 8900 |
| GCAATGCAAA | TTGGGGAATG | GAAAAATTAT   | CCGTTGTGGC        | TTGTGGCTGA | 8950 |
| GCAAGAAAGT | GATGAACGAG | AATATGTGAG   | TTTGAGTAAC        | TTGCTTTCAC | 9000 |
| TGCCAGAGGA | TGAATTCCAT | ATATTAAGCC ( | GAGGTGTGGA        | AATTAATCAT | 9050 |
| TTTCTGAAAA | CCCATAAATT | CTGTGGAAAG   | <b>IGCGGTCATA</b> | AAACACAACA | 9100 |
|            |            |              |                   |            | -    |

### (2) INFORMATION FOR SEQ ID NO: 28:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 525 base pairs
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear

| (vi) | ORIGINAL SOURCE: (A) ORGANISM: Moraxella catarrhalis |
|------|------------------------------------------------------|
| (xi) | SEQUENCE DESCRIPTION: SEQ ID NO: 28:                 |

AAAAATCGAC TGCCGTCATT TTCAACCACC ACATAGCTCA TATTCGCAAG 50 AATAATAACA GCCCCAAAAC AATGAAACAT 100 CCAATGTATT GACCGTTGGG CTTTCCTGCA GATTTTGGAA TCATATCGCC 150 ATGGTGATGA GCCAAACATA ACCAGTATTT AACGCCATAG ACATGTGTAA 200 ATCAGCACCA GTATGGTTTG AAAAATTAAA TAACGGTGCA AGCATGAGAC CAACGGCACC TGATGTACCT 250 TGTGGCAACC ATACCAAGTC CATTGCCTGT 300 TGTACGATGA CCTCACCTGC GATATTTTTG CGAAAAGACA AACTTACCAC ACAGACCAAG CCGATGATTG 350 AGATGACAAA ATAAAACCAA TCCAAATGCG TGTGAGCTGT TGTGGTCCAA 400 AATCCAGTAA ATAGTGCAAT AAATCCGCAA ACAAACCAAA GTAGCACCCA 450 GCTTGTTGTC CAATCTTTTT TACCAAAGCC TGTGATGTTA TCTAAAATAT 500 525 CAATTTTCAT CAGATTTTCC CTAAT

## (2) INFORMATION FOR SEQ ID NO: 29:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 466 base pairs
  - TYPE: Nucleic acid (B)
  - STRANDEDNESS: Double (C)
  - TOPOLOGY: Linear (D)
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Moraxella catarrhalis
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:

|                  |            | AGCTCAAATC | AGGGTCAGCC | TGTTTTGAGC | 50  |  |
|------------------|------------|------------|------------|------------|-----|--|
| TAATGATAAC       | CVGICITIO  | TGCTTAAGAT |            | ATTTTTTAC  | 100 |  |
| TTTTTATTTT       |            | ATCGCATTTG |            | ACAAACAAGC | 150 |  |
| AACCTGCACC       | ACAAGTCATC | •          |            | TGCGTTCACT | 200 |  |
| CGTCAGCGAC       | ТТАААСАААА | AAAGGCTCAA |            | TTTCATGACC | 250 |  |
| TTTACAAATC       | ACCATGCACC | <b>-</b>   | TGTTGGTGAA | CTTTGTCAGC | 300 |  |
|                  | TTATTATATT | ·          | AAATACGCTA | -          | 350 |  |
|                  | CAGATAATCA |            | ATCATCAGCT | TAACACCTTG | 400 |  |
|                  | ATAGAAGTTA | ACGATATTAA | ATACAGTGTG |            |     |  |
|                  | CAATGAAATT | TATCTACTTA | CTCAATTTAG | CTCTACTGAT | 450 |  |
|                  |            |            |            |            | 466 |  |
| SUBSTITUTE SHEET |            |            |            |            |     |  |

BNSDOCID: <WO 9608582A2 | >

| ( ) Communication for DEC ID NO: 30; | (2) | INFORMATION | FOR | SEO | ID | NO: | 30: |
|--------------------------------------|-----|-------------|-----|-----|----|-----|-----|
|--------------------------------------|-----|-------------|-----|-----|----|-----|-----|

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 631 base pairs
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Streptococcus pneumoniae
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:

| GATCTTTGAT                               | TTTCATTGAG                                     | TATTACTCTC | TCTTGTCACT | 50mm       |     |
|------------------------------------------|------------------------------------------------|------------|------------|------------|-----|
|                                          |                                                |            |            | TCTTTCTATT | 50  |
| TTACCATAAA                               | GTCCAGCCTT                                     | TGAAGAACTT | TTACTAGAAG | ACAAGGGGCT | 100 |
| TCTGTCTCTA                               | TTTGCCATCT                                     | TAGGCATCAA | AAAAGAGGGG | TCATCCCTCT | 150 |
| TTACGAATTC                               | AATGCTACTA                                     | GGGTATCCAA | ATACTGGTTG | TTGATGACTG | 200 |
| CCAAAATATA                               | GGTATCTGCT                                     | TTCAAGAGGT | CATCTGGTCC | AAATTCAACA | 250 |
| TCCAATGGGG                               | AATTTTCCTG                                     | CTCTCGGAAA | CCCAAAATAT | TCAGATTGTA | 300 |
| TTTGCCACGG                               | AGGTCTAATT                                     | TACTTCAGAC | TTTGACCTGC | CCAAGACTGA | 350 |
| GGAATTTTCA                               | TCTCCACGAT                                     | AGACACATTT | TTATCCAACT | GAAAGACATC | 400 |
| AACACTATTA                               | TGAAAAGAAT                                     |            | AGAGACTGCC |            |     |
| CTCTGGCGAG                               | ATAACCGAGT                                     | CAGCTCCAAT |            |            | 450 |
| CCCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCT | MMM. 2. C. |            |            | ACTTTCTTAG | 500 |
| CGGTCTGACT                               | TITGACCTTA                                     | GCAATAACAG | TCGGTACCCC | CAAACTCTTA | 550 |
| CAGTGCATAA                               | CCGCAAGCAC                                     | ACTCGACTCC | AGATTTTCAC | CTGTCGCGAC | 600 |
| TACAACGGTA                               | TCGCAGGTAT                                     | CAATCCCTGC |            |            | 550 |
| 10000                                    |                                                |            | 4          |            | 631 |
| 101                                      |                                                |            |            |            |     |

#### (2) INFORMATION FOR SEQ ID NO: 31:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 3754 base pairs
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Streptococcus pneumoniae
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:

CCAATATTTT GGTCAGCATA GTGTTCTTTT TCAGTGGTAA CAGCTTGCAA 50
TACTTGAGCA GAAATGGCAG ATTTATCAAG GAAAAAGTTA ACGTAAGGTC 100

| TOTAL ANCITTATE AAGGETTGGE TGTTCATTT TTCAGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CCAGT 150     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| CTGTTGCGAC AACTTTTCA AAGGGTTTACGT TCGACTTTTG CAAGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GAAAA 200     |
| TCAGCCGCAA TCATTTGTGG IGCTTTTTAGGG GTTTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CAGTA 250     |
| AGCAGGGAAA GCAATGICIC COMPANICATGATGCT AGATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ATTCG 300     |
| ACTITIAAAAI AGCCTCCTTTT TGGAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TTTTC 350     |
| CTAGCAATCA ATTCTTTGT ATTCTAGA GAAAAATTT TTGAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ATCTC 400     |
| TACTATITA TOMOTOR OF THE ATTACT ATTAC | GTTAT 450     |
| CTGTTTTTTT GGTATAATAT GGTATAGACAA AAAGAGATCG TCATC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CAGTTA 500    |
| AAATATGCAC GGIZIGIIGGGA GGACAAAA AAGAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AATTCA 550    |
| ATAMAMAMA IGNIIII AMAMAMAMAMAMAMAMAMAMAMAMAMAMAMAMAMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rgtctc 600    |
| AGATCGGTTG GAGGCGCACA ATOTTOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATGGTG 650    |
| GTGATTIGCG CGAMAIC COCANANG ATTGATTTGG TGGAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ATTTTT 700    |
| TATTATGIAC TAGTIZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TGCTTC 750    |
| GICTCATCAT TIMESTATE TO THE TOTAL TOTAL AGAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GTAAAC 800    |
| ATACCAAATT GGGAGIZIOO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ATTGGT 850    |
| AAGGATGAAT GGATTITAGG AMONGTON CATGGAAGAT CGTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TGCTAG 900    |
| TATTIGICOA CALCADA COMONDOCCO CONGCOTOTO AGAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TTATTT 950    |
| ATTIGATION NOTICE ADDRESS AND ACCOUNTS AND A | GGCATG 1000   |
| TIGAMAGGA GIONGIA DE SARCONADA CONGRESO TITT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GCTCTT 1050   |
| CAACAGTAIG IGGATATION AND TO TO CACGATGCG GTCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AATGCTG 1100  |
| TCGGATGGGI GAIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CGACAAT 1150  |
| CGCAGATTCI GGALLITIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ATATCGA 1200  |
| CCGATCCCIA IGGEOGRAPA AMARCOTOCO TATOGCAGAG CAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATGGAAG 1250  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GGTCATT 1300  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATAATTT 1350  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TATATGG 1400  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CACGCTG 1450  |
| ATTIGGTORE CONTROL COTCAAGGCT CGAGAAGTGG TGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TGGGTTA 1500  |
| TGACTTGTCT GAGGAAGAAG AACAAATCCT CAGCCGCCAG ATG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EAATCTGG 1550 |
| TGACTIGICI GASGILLA AGAM AGCTTTGAAG ACCTTCATTT ATT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rggatttg 1600 |
| GONTOGONA CCCTGGAGCA AACGGCATCT AGTAAGCTGC TCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CAGTATGT 1650 |
| TO THE CASA CASA CASA CASA CONTRACT GIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TATCCGCT 1700 |
| ACCARATTAR CGATTTCTTG CAGATGGATT ATGCGACCAA GG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CTAGTCTG 1750 |
| ACGAMATTAN GOTTO AGANTGCTCG CTCAGGTAAG AAACAAGGCA GT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CTTTTCTG 1800 |
| COMMUNICAT GARACCARRA CGGCTATGGG GATGCGTCTC TT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GCGTTCTT 1850 |
| GCTTTGGAT CTCCTTGATT GATAAGGAAC GAATCGTCCA AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GTCAAGAA 1900 |
| GTAGTGCAGG TCTTTCTCGA CCATTTCTTT GAGCGTAGTG AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TTGACAGA 1950 |
| <b>41144</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |

| CAGTCTCAAG | GGTGTTTATG               | ACATTGAGCG                              | COMPOSED OF           |            |      |
|------------|--------------------------|-----------------------------------------|-----------------------|------------|------|
| TTGGCAAAAC |                          |                                         |                       |            | 2000 |
| AGTGTGCCAC |                          |                                         |                       |            | 2050 |
| AGCCTATCTC |                          | U.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I | GGGATGGAGC CCCTGAGTTG |            | 2100 |
| TTAGCGCAGC |                          |                                         |                       |            | 2150 |
| ATTATCCGGA |                          |                                         |                       |            | 2200 |
| CAGAGAAGGG |                          |                                         | *************         |            | 2250 |
| ACTCTGGTAT | CAGCACGCTC               | AAGATTGACT                              |                       |            | 2300 |
| TATTTTCATG | TGACCAATTC               | _                                       |                       |            | 2350 |
| CCGCAAGGCG | ACGCTGAAAA               | GCAACTGGGA                              |                       |            | 2400 |
| CCCGTATCGA | GGGAGATATG               | ACTCAGAACG                              |                       | GAAGAATTAG | 2450 |
| GAATACGAAA | TATTTATGCG               | CTTGAGGCGC                              |                       | AGCCAACCTC | 2500 |
| GCGTTTACAA |                          | CATTCGTGAA                              |                       | AGTACATCCA | 2550 |
| GTCTGGCGGT | GCTCTAGCCC               | AAGGAATTGC                              |                       | GTCTTACAGA | 2600 |
| GACGATTCAC | TGTGGCTGAA<br>AAATTGATAT | ACCCAGCATT                              |                       | TGAGTTTGGT | 2650 |
| GGTTATGGGG |                          | CCGGAAAGGG                              |                       | TCGTTGAAAA | 2700 |
| ATACCAGTAT | GCTCAGACCT               | ATATTCCAAA                              |                       | ATGGCAGAAG | 2750 |
| TATATGCGTC | TCAATTGGTT               | ACAGGGCCAA                              |                       | GAAGTCTACC | 2800 |
| TGTTCCTGCT | AGTTAGCCAT               | GACGGCGGTT                              | ATGGCCCAGC            | TGGGTTCCTA | 2850 |
| GTATCGGAGC | GAAAGCGCCC               | ATTTACCGAT                              | TTTTGATGCG            | ATTTTTACCC | 2900 |
| GAGATGATGG | AGCAGATGAC               | TTGGTTTCGG                              | GTCAGTCAAC            | CTTTATGGTG | 2950 |
| CATTCTCTTT | AGGCCAATAA               | TGCCATTTCG                              | CATGCGACCA            | AGAACTCTCT | 3000 |
| CTCTTGCTCA | GATGAATTGG               | GACGTGGAAC                              | TGCAACTTAT            | GACGGGATGG | 3050 |
|            | GTCCATCATC               |                                         | ATGAGCACAT            | CGGAGCTAAG | 3100 |
| ACCCTCTTTG | CGACCCACTA               | CCATGAGTTG                              | ACTAGTCTGG            | AGTCTAGTTT | 3150 |
| ACAACACTTG | GTCAATGTCC               | ACGTGGCAAC                              | TTTGGAGCAG            | GATGGGCAGG | 3200 |
| TCACCTTCCT | TCACAAGATT               | GAACCGGGAC                              | CAGCTGATAA            | ATCCTACGGT | 3250 |
| ATCCATGTTG | CCAAGATTGC               | TGGCTTGCCA                              |                       | TAGCAAGGGC | 3300 |
| GGATAAGATT |                          | TAGAGAATCA                              |                       | AGTCCTCCTC | 3350 |
| CCATGAGACA |                          | GTCACTGAAC                              |                       | CTTTGATAGG | 3400 |
| GCAGAAGAGC |                          | AGCAGAATTA                              |                       | ATGTGTATAA | 3450 |
| TATGACACCT |                          | TGAATGTCTT                              |                       | AAACAGAAAC | 3500 |
| TATAAAACCA |                          | GTTAATCTAG                              | CTGTATCAAG            | GAGACTTCTT | 3550 |
| TGACAATTCT |                          | GCTAGAATAA                              |                       | ACAGAATGAA | 3600 |
| AAGGGCTGAC |                          | TCCCTTTTGT                              |                       | AGGAGAAAGT | 3650 |
| ATGCTGATTC |                          | AACCTACAAG                              | TGGCAGGCCC            | TGCTTCGCTC | 3700 |
| CTGATGACAG | GCTTGATGGT               | TGCTAGTTCA                              | CTTCTGCAAC            | CGCGTTATCT | 3750 |
| GCAG       |                          |                                         |                       |            | 3754 |
|            |                          |                                         |                       |            |      |

BNSDOCID <WO 9608582A2 1 >

91

## (2) INFORMATION FOR SEQ ID NO: 32:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1337 base pairs
  - TYPE: Nucleic acid (B)
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Streptococcus pyogenes
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32:

| (X1) SEQUENCE DEC     |             |                |            |      |
|-----------------------|-------------|----------------|------------|------|
|                       | CTATTTTCC   | TCCAAAATGT     | TTAGCAATCA | 50   |
| AACAAAATAA AAGAACTTAC |             |                | AGCAACTAAT | 100  |
| TCATCTGCAA GGCAACGTAT |             | A TCTAAATAAA   | GATCGAAATG | 150  |
| Aldicini              |             |                | ATTATTACTC | 200  |
| CAGIIII               |             |                | TTGCTAAGTT | 250  |
| ACATTGCCTT AATGTATTT  |             |                | ATTCTTGTAA | 300  |
| AGTAGCGTCA GTTATTCAT  | -           | A TTAATCCTGC   | CCTTGAAGCT | 350  |
| CAGGCTTTGA TCCCTTTGG  |             | A GCAGAAATCA   | AATGTATTGA | 400  |
| ATCAAGAAAT TGCCAGCAA  |             | A TGTGCTCCAG   | CAGCATATCG | 450  |
| AGTTCCAACG GTTTTTCAA  |             | TA TTGGGCAAGC  |            | 500  |
| AAAGCTTTCA ACCTGATGC  |             |                |            | 550  |
| ACTGGACTAA CGCCAGAAC  |             | SA TACACCTATI  |            | 600  |
| TCCTGATAAC GAAGGGAAT  |             | AA TCAAAGCGAT  |            | 650  |
| GTAAAGCAGC TTATTTTT   |             |                |            | 700  |
| ATTCATCAGG CTGGGCTT   |             | CT TTACTTAGT   |            | 750  |
| TGTTTGCAAT CATTTGAT   |             | TA TTCCCTTTA   |            | 800  |
| GTCCAAATGC CAAAGCTG   |             | TG AACCTCGAT   |            | 850  |
| GTTGTTGATA AACCTAAT   |             | GT CGATTTCAA   |            | 900  |
| AGGAATTGAG GCTGCTAT   |             |                |            | 950  |
| ATTTAAAACG TGTAGGGG   |             |                |            | 1000 |
| TATTTTAAAA AAACAGAG   |             |                |            | 1050 |
| AATGAAAGAC CTAGGGAI   |             |                |            |      |
| AATCTAATAC TACTTCT    |             |                |            | 1150 |
| AAACGTTGTT GATCTAA    |             |                |            | 1200 |
| GTAATGGGAC TTATCAA    |             |                |            |      |
| AGGTGGCTAC CACCTTT    |             | <del>-</del> - |            | _    |
| GTTTGCCAAA TATTGGC    |             | CCA TCTACATA   | <u> </u>   | 1337 |
| AAGCATTGAG ATAGGGA    | CAC TTTCTAT | AGC AACTAGT    |            |      |

#### (2) INFORMATION FOR SEQ ID NO: 33:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1837 base pairs
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Streptococcus pyogenes
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33:

| TCATGTTTGA | CAGCTTATCA | TCGATAAGCT | TACTTTTCGA | ATCAGGTCTA | 50   |
|------------|------------|------------|------------|------------|------|
| TCCTTGAAAC | AGGTGCAACA | TAGATTAGGG | CATGGAGATT | TACCAGACAA | 100  |
| CTATGAACGT | ATATACTCAC | ATCACGCAAT | CGGCAATTGA | TGACATTGGA | 150  |
| ACTAAATTCA | ATCAATTTGT | TACTAACAAG | CAACTAGATT | GACAACTAAT | 200  |
| TCTCAACAAA | CGTTAATTTA | ACAACATTCA | AGTAACTCCC | ACCAGCTCCA | 250  |
| TCAATGCTTA | CCGTAAGTAA | TCATAACTTA | CTAAAACCTT | GTTACATCAA | 300  |
| GGTTTTTTCT | TTTTGTCTTG | TTCATGAGTT | ACCATAACTT | TCTATATTAT | 350  |
| TGACAACTAA | ATTGACAACT | CTTCAATTAT | TTTTCTGTCT | ACTCAAAGTT | 400  |
| TTCTTCATTT | GATATAGTCT | AATTCCACCA | TCACTTCTTC | CACTCTCTCT | 450  |
| ACCGTCACAA | CTTCATCATC | TCTCACTTTT | TCGTGTGGTA | ACACATAATC | 500  |
| AAATATCTTT | CCGTTTTTAC | GCACTATCGC | TACTGTGTCA | ССТААААТАТ | 550  |
| ACCCCTTATC | AATCGCTTCT | TTAAACTCAT | CTATATATAA | CATATTTCAT | 600  |
| CCTCCTACCT | ATCTATTCGT | AAAAAGATAA | AAATAACTAT | TGTTTTTTT  | 650  |
| GTTATTTTAT | AATAAAATTA | TTAATATAAG | TTAATGTTTT | TTAAAAATAT | 700  |
| ACAATTTTAT | TCTATTTATA | GTTAGCTATT | TTTTCATTGT | TAGTAATATT | 750  |
| GGTGAATTGT | AATAACCTTT | TTAAATCTAG | AGGAGAACCC | AGATATAAA  | 800  |
| TGGAGGAATA | TTAATGGAAA | ACAATAAAAA | AGTATTGAAG | AAAATGGTAT | 850  |
| TTTTTGTTTT | AGTGACATTT | CTTGGACTAA | CAATCTCGCA | AGAGGTATTT | 900  |
| GCTCAACAAG | ACCCCGATCC | AAGCCAACTT | CACAGATCTA | GTTTAGTTAA | 950  |
| AAACCTTCAA | AATATATATT | TTCTTTATGA | GGGTGACCCT | GTTACTCACG | 1000 |
| AGAATGTGAA | ATCTGTTGAT | CAACTTTTAT | CTCACGATTT | AATATATAAT | 1050 |
| GTTTCAGGGC | CAAATTATGA | TAAATTAAAA | ACTGAACTTA | AGAACCAAGA | 1100 |
| GATGGCAACT | TTATTTAAGG | ATAAAAACGT | TGATATTTAT | GGTGTAGAAT | 1150 |
| ATTACCATCT | CTGTTATTTA | TGTGAAAATG | CAGAAAGGAG | TGCATGTATC | 1200 |
| TACGGAGGG  | TAACAAATCA | TGAAGGGAAT | CATTTAGAAA | ТТССТАААА  | 1250 |
| GATAGTCGTT | AAAGTATCAA | TCGATGGTAT | CCAAAGCCTA | TCATTTGATA | 1300 |
|            |            |            |            |            |      |

|                   |            |            | AAGAATTAGA                              | CTATAAAGTT | 1350 |
|-------------------|------------|------------|-----------------------------------------|------------|------|
| <b>TTGAAACAAA</b> | TAAAAAAATG | GTAACTGCTC | AAGAATTAGA                              | CIMINATOLI |      |
| AGAAAATATC        | TTACAGATAA | TAAGCAACTA | TATACTAATG                              | GACCTTCTAA | 1400 |
| ATATGAAACT        |            | AGTTCATACC | TAAGAATAAA                              | GAAAGTTTTT | 1450 |
| GGTTTGATTT        | TTTCCCTGAA | CCAGAATTTA | CTCAATCTAA                              | ATATCTTATG | 1500 |
| ATATATAAAG        |            | GCTTGACTCA | AACACAAGCC                              | AAATTGAAGT | 1550 |
|                   |            | TTTTTGCTTT | TGGCAACCTT                              | ACCTACTGCT | 1600 |
|                   |            | AATTCTTTTA | ттаатстааа                              | AACCGCTCAT | 1650 |
| GGATTTAGAA        | ATTTATIGC  | AMIICIIII  | • • • • • • • • • • • • • • • • • • • • |            | 1200 |
| TTGATGAGCG        | GTTTTGTCTT | ATCTAAAGGA | GCTTTACCTC                              | CTAATGCTGC | 1700 |
| AAAATTTTAA        | ATGTTGGATT | TTTGTATTTG | TCTATTGTAT                              | TTGATGGGTA | 1750 |
| ATCCCATTTT        |            | TCGTCGTGCC | ACCTCTAACA                              | CCAAAATCAT | 1800 |
|                   |            |            | TATCGTC                                 |            | 1837 |
| AGACAGGAGC        | TIGIAGCIIA | 00.2.01    |                                         |            |      |

### (2) INFORMATION FOR SEQ ID NO: 34:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 841 base pairs
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:

BNSDOCID: <WO 9608582A2 1 >

- (A) ORGANISM: Streptococcus pneumoniae
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34:

| GATCAATATG   | TCCAAGAAAC | CACATGTTCC | TAAGACAAGA   | GCTAACAGAC | 50  |
|--------------|------------|------------|--------------|------------|-----|
| TGGCCGTCAA   |            | GTTCTTTTTT | TCATCATTAC   | TCCTTAACTA | 100 |
| GTGTTTAACT   |            | CCAGTAAATA | GTTTATCTTT   | ATTTACACTA | 150 |
| TCTGTTAAGA   |            | TGAAATAAGA | ACAGGACAGT   | CAAATCGATT | 200 |
| TCTAACAATG   | TTTTAGAAGT | AGAGGTATAC | TATTCTAATT   | TCAATCTACT | 250 |
| ATATTTTGCA   |            | AAAAAAATGA | GAACTAGAAC   | TCACATTCTG | 300 |
| CTCTCATTTT   | TCGTTTTCCC | GTTCTCCTAT | CCTGTTTTTA   | GGAGTTAGAA | 350 |
| AATGCTGCTA   |            | CTCTCCTTTA | ATAAAGCCAA   | TAGTTTTTCA | 400 |
| GCTTCTGCCA   |            | GTTGTCCTGG | GTGCCAAATA   | GTAAATTATT | 450 |
| TTTTAATCCT   |            | CTTTGGCATT | GGACTTGATA   | ATTGGATTCT | 500 |
| <del>-</del> | AAGTAAATCT | TCAGCCTCTC | TCAGTTTTCT   | TAACCTTTCA | 550 |
|              | GAGGTTCTTC | TGATTCCTCT | GGTGATTCTT   | CTGGTGATTC | 600 |
| TTCTTCTGGT   |            | GTTTTGGAGA | CTCTGGTTTC   | TCGCTTTGCG | 650 |
|              | TCGAGGGGTT | TCTTCCTCAG | GTTTTTCTGT   | CTGAGGTTTC | 700 |
|              |            |            | TCAGCTTGAC   | CATTTTTGTT | 750 |
| TCCTCGTTTG   |            |            | A ACCATTATCT |            | 800 |
| TCTTTGAACA   | TGGICGCIAG |            | TE CLIE      |            |     |

#### TTCGTTTGGA TGTTCGACAT AGTACTTGAC AGTCGCCAAA A 841

- (2) INFORMATION FOR SEQ ID NO: 35:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 4500 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRANDEDNESS: Double
    - (D) TOPOLOGY: Linear
  - (ii) MOLECULE TYPE: DNA (genomic)
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: Streptococcus pneumoniae
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35:

| GATCAGGACA | GTCAAATCGA  | TTTCTAACAA | TGTTTTAGAA   | GTAGATGTGT  | 50           |
|------------|-------------|------------|--------------|-------------|--------------|
| ACTATTCTAG | TTTCAATCTA  | TTATATTTAT | AGAATTTTTT   | GTTGCTAGAT  | 100          |
| TTGTCAAATT | GCTTAAAATA  | ATTTTTTTCA | GAAAGCAAAA   | GCCGATACCT  | 150          |
| ATCGAGTAGG | GTAGTTCTTG  | CTATCGTCAG | GCTTGTCTGT   | AGGTGTTAAC  | 200          |
| ACTTTTCAAA | AATCTCTTCA  | AACAACGTCA | GCTTTGCCTT   | GCCGTATATA  | 250          |
| TGTTACTGAC | TTCGTCAGTT  | CTATCTGCCA | CCTCAAAACG   | GTGTTTTGAG  | 300          |
| CTGACTTCGT | CAGTTCTATC  | CACAACCTCA | AAACAGTGTT   | TTGAGCTGAC  | 350          |
| TTCGTCAGTT | CTATCCACAA  | CCTCAAAACA | GTGTTTTGAG   | CTGACTTTGT  | 400          |
| CAGTCTTATC | TACAACCTCA  | AAACAGTGTT | TTGAGCATCA   | TGCGGCTAGC  | 450          |
| TTCTTAGTTT | GCTCTTTGAT  | TTTCATTGAG | TATAAAAACA   | GATGAGTTTC  | 500          |
| TGTTTTCTTT | TTATGGACTA  | TAAATGTTCA | GCTGAAACTA   | CTTTCAAGGA  | 550          |
| CATTATTATA | TAAAAGAATT  | TTTTGAAACT | AAAATCTACT   | ATATTACACT  | 600          |
| ATATTGAAAG | CGTTTTAAAA  | ATGAGGTATA | ATAAATTTAC   | TAACACTTAT  | 650          |
| AAAAAGTGAT | AGAATCTATC  | TTTATGTATA | TTTAAAGATA   | GATTGCTGTA  | 700          |
| AAAATAGTAG | TAGCTATGCG  | AAATAACAGA | TAGAGAGAAG   | GGATTGAAGC  | 750          |
| TTAGAAAAGG | GGAATAATAT  | GATATTTAAG | GCATTCAAGA   | CAAAAAAGCA  | 800          |
| GAGAAAAGA  | CAAGTTGAAC  | TACTTTTGAC | AGTTTTTTTC   | GACAGTTTTC  | 850          |
| TGATTGATTT | ATTTCTTCAC  | TTATTTGGGA | TTGTCCCCTT   | TAAGCTGGAT  | 900          |
| AAGATTCTGA | TTGTGAGCTT  | GATTATATTT | CCCATTATTT   | CTACAAGTAT  | 950          |
| TTATGCTTAT | GAAAAGCTAT  | TTGAAAAAGT | GTTCGATAAG   | GATTGAGCAG  | 1000         |
| GAAGTATGGT | GTAAATAGCA  | TAAGCTGATG | TCCATCATTT   | GCTTATAAAG  | 1050         |
| AGATATTTTA | GTTTAATTGC  | AGCGGTGTCC | TGGTAGATAA   | ACTAGATTGG  | 1100         |
| CAGGAGTCTG | ATTGGAGAAA  | GGAGAGGGGA | AATTTGGCAC   | CAATTTGAGA  | 1150         |
| TAGTTTGTTT | -AGTTCATTTT | TGTCATTTAA | -ATGAACTGTA- | GTAAAAGAAA- | <b>1</b> 200 |
| GTTAATAAAA | GACAAACTAA  | GTGCATTTTC | TGGAATAAAT   | GTCTTATTTC  | 1250         |
| AGAAATCGGG |             | AGAGAGGAAC | AGTATGAATC   | GGAGTGTTCA  | 1300         |
|            |             |            |              |             |              |

WO 96/08582 PCT/CA95/00528

95

|            |                              | GCATTAGGAA | ACTATCGGTA   | GGAGCGGTTT  | 1350    |
|------------|------------------------------|------------|--------------|-------------|---------|
| AGAACGTAAG | TGTCGTTATA                   | GCATTAGGAA | CGTCTCCTGT   | TTTAGCTCAA  | 1400    |
| CTATGATTGT | AGGAGCAGTG                   |            | GAAACTCAAC   | TTTCGGGGGA  | 1450    |
| GAAGGGGCAA | GTGAGCAACC                   | TCTGGCAAAT | CCAGCCTTCT   | TCAGAGACTG  | 1500    |
| GAGCTCAACC | CTAACTGATA                   | CAGAAAAGAG | GGAAAGATAA   | GCAAGAAGAA  | 1550    |
| AACTTTCTGG | CAATAAGCAA                   | GAACAAGAAA | TTGGAAAATG   | TCGAAACAGŤ  | 1600    |
| AAAATTCCAA | GAGATTACTA                   | TGCACGAGAT | TTCAAATGGT   | CAGAGAGTTG  | 1650    |
| GATAGAAAAA | GAAGATGTTG                   | AAACCAATGC | AACTTGAAAA   | CGCAACAGTT  | 1700    |
| ATTTATCAAG | TGAACTAGAT                   | AAACTAAAGA | CCAGCATTCT   | ATAATCTCTT  | 1750    |
| CACATGGAGT | TTAAGCCAGA                   | TGCCAAGGCC |              | ATGGCAGTTT  | 1800    |
| TTCTGTGTCA |                              | AAAAAGATGA |              | GAAACAGTTT  | 1850    |
| ACAATAATAC |                              | GAGGGGCGTG |              | GTCAGTGGAA  | 1900    |
| TACAATAATT |                              | ACCCTTAAAA |              | CCTAAAGGCC  | 1950    |
| TTCTGTGACT |                              | AAAAACCGAC |              |             | 2000    |
| GAGTGCGCCT |                              | GGGGTATTAT |              |             | 2050    |
| GGCAATTTC  |                              |            |              |             |         |
| AACCAAGCG  |                              |            |              | _           |         |
| ATCTCACTG  |                              |            |              |             |         |
| AGTCAACTT  |                              |            |              |             |         |
| GGCTTTAAC. |                              |            |              |             |         |
| CAAATAAAG  |                              |            |              |             |         |
| GATAAAGGA  |                              |            |              |             |         |
| TGACTGGGG  |                              |            |              |             |         |
| AAACTTGGG  |                              |            |              |             |         |
| GCTTCTGAC  |                              |            |              |             | _ :     |
| TCAAGATCO  |                              |            |              |             |         |
| AAGGGAAG   |                              |            |              | - 010111100 |         |
|            | rg gaaaaacci                 |            | GT CTATACACC |             |         |
|            | CC ATTCGAGAA                 |            | TG TTAAACCAG |             | C 2750  |
|            | TA TCGCGTTGT                 |            | TA CTAGGCAAT |             | C 2800  |
|            | TC TATACAAGO                 |            | GC CAAGGATA  |             | A 2850  |
|            | AA ACTTCTCC                  |            | AT GGTCAGCG  |             | rr 2900 |
| TGTCCTAC   | AG TGATGACG                  |            | AA TTCTTGGG  | _           |         |
| ACTCCGAT   |                              |            | CA CAAGGGAC  | _           |         |
|            | ATT GTACTTCG                 |            | ACT TAAATGGC |             |         |
|            | PAC GACTAATA                 |            | AAA ACTTGGCA |             |         |
| CGTATCAT   | rct attcagat<br>sat aaccgtca | GA TCATGGA | TCA AAAGATCO | AC TCTTCTAC | GA 3150 |
| GGTCAAC    | GAT AACCGTCA                 | GG TAGACGG | TE CI        | CCT         |         |

# SUBSTITUTE SHEET

| TGAACAATAG | ACGTGCGCAA | AATACAGAAT | CAACGGTGGT | ACAACTAAAC | 3200 |
|------------|------------|------------|------------|------------|------|
| AATGGAGATG | TTAAACTCTT | TATGCGTGGT | TTGACTGGAG | ATCTTCAGGT | 3250 |
| TGCTACAAGT | AAAGACGGAG | GAGTGACTTG | GGAGAAGGAT | ATCAAACGTT | 3300 |
| ATCCACAGGT | TAAAGATGTC | TATGTTCAAA | TGTCTGCTAT | CCATACGATG | 3350 |
| CACGAAGGAA | AAGAATACAT | CATCCTCAGT | AATGCAGGTG | GACCGAAACG | 3400 |
| TGAAAATGGG | ATGGTCCACT | TGGCACGTGT | CGAAGAAAAT | GGTGAGTTGA | 3450 |
| CTTGGCTCAA | ACACAATCCA | ATTCAAAAAG | GAGAGTTTGC | CTATAATTCG | 3500 |
| CTCCAAGAAT | TAGGAAATGG | GGAGTATGGC | ATCTTGTATG | AACATACTGA | 3550 |
| AAAAGGACAA | AATGCCTATA | CCCTATCATT | TAGAAAATTT | AATTGGGACT | 3600 |
| TTTTGAGCAA | AGATCTGATT | TCTCCTACCG | AAGCGAAAGT | GAAGCGAACT | 3650 |
| AGAGAGATGG | GCAAAGGAGT | TATTGGCTTG | GAGTTCGACT | CAGAAGTATT | 3700 |
| GGTCAACAAG | GCTCCAACCC | TTCAATTGGC | AAATGGTAAA | ACAGCACGCT | 3750 |
| TCATGACCCA | GTATGATACA | AAAACCCTCC | TATTTACAGT | GGATTCAGAG | 3800 |
| GATATGGGTC | AAAAAGTTAC | AGGTTTGGCA | GAAGGTGCAA | TTGAAAGTAT | 3850 |
| GCATAATTTA | CCAGTCTCTG | TGGCGGGCAC | TAAGCTTTCG | AATGGAATGA | 3900 |
| ACGGAAGTGA | AGCTGCTGTT | CATGAAGTGC | CAGAATACAC | AGGCCCATTA | 3950 |
| GGGACATCCG | GCGAAGAGCC | AGCTCCAACA | GTCGAGAAGC | CAGAATACAC | 4000 |
| AGGCCCACTA | GGGACATCCG | GCGAAGAGCC | AGCCCCGACA | GTCGAGAAGC | 4050 |
| CAGAATACAC | AGGCCCACTA | GGGACAGCTG | GTGAAGAAGC | AGCTCCAACA | 4100 |
| GTCGAGAAGC | CAGAATTTAC | AGGGGGAGTT | AATGGTACAG | AGCCAGCTGT | 4150 |
| TCATGAAATC | GCAGAGTATA | AGGGATCTGA | TTCGCTTGTA | ACTCTTACTA | 4200 |
| CAAAAGAAGA | TTATACTTAC | AAAGCTCCTC | TTGCTCAGCA | GGCACTTCCT | 4250 |
| GAAACAGGAA | ACAAGGAGAG | TGACCTCCTA | GCTTCACTAG | GACTAACAGC | 4300 |
| TTTCTTCCTT | GGTCTGTTTA | CGCTAGGGAA | AAAGAGAGAA | CAATAAGAGA | 4350 |
| AGAATTCTAA | ACATTTGATT | TTGTAAAAAT | AGAAGGAGAT | AGCAGGTTTT | 4400 |
| CAAGCCTGCT | ATCTTTTTTT | GATGACATTC | AGGCTGATAC | GAAATCATAA | 4450 |
| GAGGTCTGAA | ACTACTTTCA | GAGTAGTCTG | TTCTATAAAA | TATAGTAGAT | 4500 |
|            |            |            |            |            |      |

- (2) INFORMATION FOR SEQ ID NO: 36:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 705 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRANDEDNESS: Double
    - (D) TOPOLOGY: Linear
  - (ii) MOLECULE TYPE: DNA (genomic)
  - (vi) ORIGINAL SOURCE:
    - -(A) ORGANISM: Staphylococcus epidermidis
  - (xi) SEQUENCE DESCRIPTION: SEO ID NO. 36 EET

|            |            |            |            |            | 50    |
|------------|------------|------------|------------|------------|-------|
| SATCCAAGCT | TATCGATATC | ATCAAAAAGT | TGGCGAACCT | TTTCAAATTT |       |
| TGGTTCAAAT | TCTTGAGATG | TATAGAATTC | AAAATATTTA | CCATTTGCAT | 100   |
|            | CTCAAAGTCT | TGATACTTTT | CTCCACGCTC | TTTTGCAATT | 150   |
| AGTCTGATTG |            | ATAATAGTTC | ATAATCATAA | AGAATATATT | 200   |
| TCCATTGAAC | GTTCGATGGA |            | GCCAATTTTA | TTTTTAGCTA | 250   |
| AGCAAAGTCT | TTTGCTTCTT | CAGATTCATA |            |            | 300   |
| GATAACCATG | TAAGTTCATT | ACTCCTAGTC | CAACAGAATG | TAGTTCACTA | • • • |
| TTCGCTTTTT | TTACACCTGG | TGCATTTTGA | ATATTTGCTT | CATCACTTAC | 350   |
|            | GCATCCATAC | CTGTGAACAC | AGAATCTCTG | AATTTACCTG | 400   |
| AACTGTAAGA |            | TTCAATGAGC |            | TGAAATATCT | 450   |
| ATTCCATAAC | ATTCACTATA |            |            | ATGTCTCTTG | 500   |
| CTTTTAATTT | CATCTTCAAT | TCCATAGTCG |            | -          | 550   |
| TAATTGGAAA | ATTTCAGTAC | ATAAATTACT | CATTTTAATT | TGCCCAATAT | •••   |
| TTGAATTCGC | ATGTACTTTG | TTTGCATTAT | CTTTAAACAT | AAGATATGGA | 600   |
| TAACCAGACT |            | TTGTGCAATC | ATATTTAACA | TTTCACGTGC | 650   |
|            |            | TTTCGAACCC | GGGGTACCGA | ATTCCTCGAG | 700   |
| GTCTTTTTC  | TTTTTATCGA | TITCGMCCC  |            |            | 705   |
| TCTAG      |            |            |            |            |       |

# SUBSTITUTE SHEET

| (2) INFORMATI | ON FOR | SEQ I | D NO: | 37: |
|---------------|--------|-------|-------|-----|
|---------------|--------|-------|-------|-----|

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 442 base pairs
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Staphylococcus aureus
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37:

| GATCAATCTT | TGTCGGTACA | CGATATTCTT | CACGACTAAA | TAAACGCTCA | 50  |
|------------|------------|------------|------------|------------|-----|
| TTCGCGATTT | TATAAATGAA | TGTTGATAAC | AATGTTGTAT | TATCTACTGA | 100 |
| AATCTCATTA | CGTTGCATCG | GAAACATTGT | GTTCTGTATG | TAAAAGCCGT | 150 |
| CTTGATAATC | TTTAGTAGTA | CCGAAGCTGG | TCATACGAGA | GTTATATTTT | 200 |
| CCAGCCAAAA | CGATATTTTT | ATAATCATTA | CGTGAAAAAG | GTTTCCCTTC | 250 |
| ATTATCACAC | AAATATTTTA | GCTTTTCAGT | TTCTATATCA | ACTGTAGCTT | 300 |
| CTTTATCCAT | ACGTTGAATA | ATTGTACGAT | TCTGACGCAC | CATCTTTTGC | 350 |
| ACACCTTTAA | TGTTATTTGT | TTTAAAAGCA | TGAATAAGTT | TTTCAACACA | 400 |
| ACGATGTGAA | TCTTCTAAGA | AGTCACCGTA | AAATGAAGGA | TC         | 442 |
|            |            |            |            |            |     |

- (2) INFORMATION FOR SEQ ID NO: 38:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 20 bases
    - (B) TYPE: Nucleic acid
    - (C) STRANDEDNESS: Single
    - (D) TOPOLOGY: Linear
  - (ii) MOLECULE TYPE: DNA (genomic)
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: Enterococcus faecalis
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38:

GCAATACAGG GAAAAATGTC

| • •                                                                                                                                                                             | •  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| (2) INFORMATION FOR SEQ ID NO: 39:                                                                                                                                              |    |
| <ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 20 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Single</li> <li>(D) TOPOLOGY: Linear</li> </ul> |    |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                               |    |
| <pre>(vi) ORIGINAL SOURCE:    (A) ORGANISM: Enterococcus faecalis</pre>                                                                                                         |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 39:                                                                                                                                       | 20 |
| CTTCATCAAA CAATTAACTC                                                                                                                                                           | 20 |
| (2) INFORMATION FOR SEQ ID NO: 40:                                                                                                                                              |    |
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 20 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear                                                     |    |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                               |    |
| <pre>(vi) ORIGINAL SOURCE:    (A) ORGANISM: Enterococcus faecalis</pre>                                                                                                         |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 40:                                                                                                                                       | 20 |
| GAACAGAAGA AGCCAAAAAA                                                                                                                                                           | 20 |
| (2) INFORMATION FOR SEQ ID NO: 41:                                                                                                                                              |    |
| <ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 20 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Single</li> <li>(D) TOPOLOGY: Linear</li> </ul> |    |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                               |    |
| (vi) ORIGINAL SOURCE: (A) ORGANISM: Enterococcus faecalis                                                                                                                       |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 41:                                                                                                                                       | 20 |
| GCAATCCCAA ATAATACGGT                                                                                                                                                           | 20 |
| TD NO. 42:                                                                                                                                                                      |    |

(2) INFORMATION FOR SEQ ID NO: 42:

(i) SEQUENCE CHARACTERISTICS: SUBSTITUTE SHEET

BNSDOCID: <WO 9608582A2 | >

|          | <ul><li>(A) LENGTH: 19 bases</li><li>(B) TYPE: Nucleic acid</li><li>(C) STRANDEDNESS: Single</li><li>(D) TOPOLOGY: Linear</li></ul> |    |
|----------|-------------------------------------------------------------------------------------------------------------------------------------|----|
| (ii)     | MOLECULE TYPE: DNA (genomic)                                                                                                        |    |
| (vi)     | ORIGINAL SOURCE: (A) ORGANISM: Escherichia coli                                                                                     |    |
| (xi)     | SEQUENCE DESCRIPTION: SEQ ID NO: 42:                                                                                                |    |
| GCTTTCC  | AGC GTCATATTG                                                                                                                       | 19 |
| (2) INFO | RMATION FOR SEQ ID NO: 43:                                                                                                          |    |
| (i)      | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 19 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear             |    |
| (ii)     | MOLECULE TYPE: DNA (genomic)                                                                                                        |    |
| (vi)     | ORIGINAL SOURCE: (A) ORGANISM: Escherichia coli                                                                                     |    |
| (xi)     | SEQUENCE DESCRIPTION: SEQ ID NO: 43:                                                                                                |    |
| GATCTC   | GACA AAATGGTGA                                                                                                                      | 19 |
| (2) INFO | ORMATION FOR SEQ ID NO: 44:                                                                                                         |    |
| (i)      | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 25 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear             |    |
| (ii)     | MOLECULE TYPE: DNA (genomic)                                                                                                        |    |
| (vi)     | ORIGINAL SOURCE: (A) ORGANISM: Escherichia coli                                                                                     |    |
| (xi)     | SEQUENCE DESCRIPTION: SEQ ID NO: 44:                                                                                                |    |
| CACCCG   | CTTG CGTGGCAAGC TGCCC                                                                                                               | 25 |

NOM

| (2) INFORMATION FOR SEQ ID NO: 45:                                                                                          |    |
|-----------------------------------------------------------------------------------------------------------------------------|----|
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 25 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear |    |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                           |    |
| <ul><li>(vi) ORIGINAL SOURCE:</li><li>(A) ORGANISM: Escherichia coli</li></ul>                                              |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 45:                                                                                   | 25 |
| CGTTTGTGGA TTCCAGTTCC ATCCG                                                                                                 | 23 |
| (2) INFORMATION FOR SEQ ID NO: 46:                                                                                          |    |
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 17 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear |    |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                           |    |
| <ul><li>(vi) ORIGINAL SOURCE:</li><li>(A) ORGANISM: Escherichia coli</li></ul>                                              |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46:                                                                                   | 17 |
| TCACCCGCTT GCGTGGC                                                                                                          | -, |
| (2) INFORMATION FOR SEQ ID NO: 47:                                                                                          |    |
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 19 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear |    |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                           |    |
| <ul><li>(vi) ORIGINAL SOURCE:</li><li>(A) ORGANISM: Escherichia coli</li></ul>                                              |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 47:                                                                                   | 19 |
| GGAACTGGAA TCCACAAAC                                                                                                        |    |
| (2) INFORMATION FOR SEQ ID NO: 48:                                                                                          |    |
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: SUBSTITUTE SHEET  BNSDOCID < WO 9608582A2 1 >                                    |    |

BNSDOCID <WO 9608582A2 I >

| (         | (B) TYPE: Nucleic acid<br>(C) STRANDEDNESS: Single<br>(D) TOPOLOGY: Linear                                              |    |
|-----------|-------------------------------------------------------------------------------------------------------------------------|----|
| (ii) M    | MOLECULE TYPE: DNA (genomic)                                                                                            |    |
|           | ORIGINAL SOURCE:<br>(A) ORGANISM: Escherichia coli                                                                      |    |
| (xi) S    | SEQUENCE DESCRIPTION: SEQ ID NO: 48:                                                                                    |    |
| TGAAGCAC  | TG GCCGAAATGC TGCGT                                                                                                     | 25 |
| (2) INFOR | MATION FOR SEQ ID NO: 49:                                                                                               |    |
| (         | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 25 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear |    |
| (ii) M    | MOLECULE TYPE: DNA (genomic)                                                                                            |    |
|           | ORIGINAL SOURCE:<br>(A) ORGANISM: Escherichia coli                                                                      |    |
| (xi) S    | SEQUENCE DESCRIPTION: SEQ ID NO: 49:                                                                                    |    |
| GATGTACA  | AGG ATTCGTTGAA GGCTT                                                                                                    | 25 |
| (2) INFOR | MATION FOR SEQ ID NO: 50:                                                                                               |    |
|           | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 25 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear |    |
| (ii) N    | MOLECULE TYPE: DNA (genomic)                                                                                            |    |
|           | ORIGINAL SOURCE:<br>(A) ORGANISM: Escherichia coli                                                                      |    |
| (xi) 5    | SEQUENCE DESCRIPTION: SEQ ID NO: 50:                                                                                    |    |
| TAGCGAAG  | GC GTAGCAGAAA CTAAC                                                                                                     | 25 |

W 96/08582 PCT/CA95/00528

103

| (2) INFORMATION FOR SEQ ID NO: 51:                                                                                          |    |
|-----------------------------------------------------------------------------------------------------------------------------|----|
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 25 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear |    |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                           |    |
| <pre>(vi) ORIGINAL SOURCE:    (A) ORGANISM: Escherichia coli</pre>                                                          |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 51:                                                                                   | 25 |
| GCAACCCGAA CTCAACGCCG GATTT                                                                                                 | 23 |
| (2) INFORMATION FOR SEQ ID NO: 52:                                                                                          |    |
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 25 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear |    |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                           |    |
| <pre>(vi) ORIGINAL SOURCE:    (A) ORGANISM: Escherichia coli</pre>                                                          |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 52:                                                                                   | 25 |
| ATACACAAGG GTCGCATCTG CGGCC                                                                                                 |    |
| (2) INFORMATION FOR SEQ ID NO: 53:                                                                                          |    |
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 26 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear |    |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                           |    |
| <pre>(vi) ORIGINAL SOURCE:    (A) ORGANISM: Escherichia coli</pre>                                                          |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 53:                                                                                   | 26 |
| TGCGTATGCA TTGCAGACCT TGTGGC                                                                                                | 20 |
| (2) INFORMATION FOR SEQ ID NO: 54:                                                                                          |    |

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 25 bases

SUBSTITUTE SHEET

BNSDOCID <WO 9608582A2 | >

|          | (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single                                                                         |    |
|----------|-------------------------------------------------------------------------------------------------------------------------|----|
|          | (D) TOPOLOGY: Linear                                                                                                    |    |
| (ii) 1   | MOLECULE TYPE: DNA (genomic)                                                                                            |    |
| (vi) (   | ORIGINAL SOURCE:<br>(A) ORGANISM: Escherichia coli                                                                      |    |
| (xi)     | SEQUENCE DESCRIPTION: SEQ ID NO: 54:                                                                                    |    |
| GCTTTCAG | CTG GATATCGCGC TTGGG                                                                                                    | 25 |
| (2) INFO | RMATION FOR SEQ ID NO: 55:                                                                                              |    |
| (i)      | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 19 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear |    |
| (ii)     | MOLECULE TYPE: DNA (genomic)                                                                                            |    |
| (vi)     | ORIGINAL SOURCE: (A) ORGANISM: Escherichia coli                                                                         |    |
| (xi)     | SEQUENCE DESCRIPTION: SEQ ID NO: 55:                                                                                    |    |
| GCAACCC  | GAA CTCAACGCC                                                                                                           | 19 |
| (2) INFO | RMATION FOR SEQ ID NO: 56:                                                                                              |    |
| (i)      | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 19 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear |    |
| (ii)     | MOLECULE TYPE: DNA (genomic)                                                                                            |    |
| (vi)     | ORIGINAL SOURCE: (A) ORGANISM: Escherichia coli                                                                         |    |
| (xi)     | SEQUENCE DESCRIPTION: SEQ ID NO: 56:                                                                                    |    |
| GCAGATO  | GCGA CCCTTGTGT                                                                                                          | 19 |

WO 96/08582 PCT/CA95/00528

| (2) INFORMATION FOR SEQ ID NO: 57:                                                                                          |    |
|-----------------------------------------------------------------------------------------------------------------------------|----|
| (i) SEQUENCE CHARACTERISTICS:                                                                                               |    |
| (B) TYPE: Nucleic acid                                                                                                      |    |
| (C) STRANDEDAME (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: DNA (genomic)                                                      |    |
|                                                                                                                             |    |
| (vi) ORIGINAL SOURCE: (A) ORGANISM: Klebsiella pneumoniae                                                                   |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 57:                                                                                   | 23 |
| GTGGTGTCGT TCAGCGCTTT CAC                                                                                                   |    |
| (2) INFORMATION FOR SEQ ID NO: 58:                                                                                          |    |
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 25 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear |    |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                           |    |
| <pre>(vi) ORIGINAL SOURCE:     (A) ORGANISM: Klebsiella pneumoniae</pre>                                                    |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 58:                                                                                   | 25 |
| GCGATATTCA CACCCTACGC AGCCA                                                                                                 |    |
| (2) INFORMATION FOR SEQ ID NO: 59:                                                                                          |    |
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 26 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear | ·  |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                           |    |
| <ul><li>(vi) ORIGINAL SOURCE:</li><li>(A) ORGANISM: Klebsiella pneumoniae</li></ul>                                         |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 59:                                                                                   | 26 |
| GTCGAAAATG CCGGAAGAGG TATACG                                                                                                |    |
| (2) INFORMATION FOR SEQ ID NO: 60:                                                                                          |    |
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 26 bases  (B) TYPE: Nucleic acid                                                 |    |

| (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear                                                                                                                                   | ,  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                                                                                                                                                                                 |    |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                               |    |
| <ul><li>(vi) ORIGINAL SOURCE:</li><li>(A) ORGANISM: Klebsiella pneumoniae</li></ul>                                                                                             |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 60:                                                                                                                                       |    |
| ACTGAGCTGC AGACCGGTAA AACTCA                                                                                                                                                    | 26 |
| (2) INFORMATION FOR SEQ ID NO: 61:                                                                                                                                              |    |
| <ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 19 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Single</li> <li>(D) TOPOLOGY: Linear</li> </ul> |    |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                               |    |
| <pre>(vi) ORIGINAL SOURCE:    (A) ORGANISM: Klebsiella pneumoniae</pre>                                                                                                         |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 61:                                                                                                                                       |    |
| GACAGTCAGT TCGTCAGCC                                                                                                                                                            | 19 |
| (2) INFORMATION FOR SEQ ID NO: 62:                                                                                                                                              |    |
| <ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 19 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Single</li> <li>(D) TOPOLOGY: Linear</li> </ul> |    |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                               |    |
| <pre>(vi) ORIGINAL SOURCE:     (A) ORGANISM: Klebsiella pneumoniae</pre>                                                                                                        |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 62:                                                                                                                                       |    |
| CGTAGGGTGT GAATATCGC                                                                                                                                                            | 19 |

PCT/CA95/00528 W 96/08582

107

| (2) INFORMATION FOR SEQ ID NO: 63:                                                                                          |    |
|-----------------------------------------------------------------------------------------------------------------------------|----|
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 26 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear |    |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                           |    |
| <ul><li>(vi) ORIGINAL SOURCE:</li><li>(A) ORGANISM: Klebsiella pneumoniae</li></ul>                                         |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 63:                                                                                   | 26 |
| CGTGATGGAT ATTCTTAACG AAGGGC                                                                                                | 20 |
| (2) INFORMATION FOR SEQ ID NO: 64:                                                                                          |    |
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 23 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear |    |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                           |    |
| <ul><li>(vi) ORIGINAL SOURCE:</li><li>(A) ORGANISM: Klebsiella pneumoniae</li></ul>                                         |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 64:                                                                                   | 23 |
| ACCAAACTGT TGAGCCGCCT GGA                                                                                                   |    |
| (2) INFORMATION FOR SEQ ID NO: 65:                                                                                          |    |
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 23 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear |    |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                           |    |
| <ul><li>(vi) ORIGINAL SOURCE:</li><li>(A) ORGANISM: Klebsiella pneumoniae</li></ul>                                         |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 65:                                                                                   | 23 |
| GTGATCGCCC CTCATCTGCT ACT                                                                                                   |    |
| (2) INFORMATION FOR SEQ ID NO: 66:                                                                                          |    |
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 26 bases                                                                         |    |

SURSTITUTE SHEET

BNSDOCID <WO 9608582A2 I >

|          | (B) TYPE: Nucleic acid<br>(C) STRANDEDNESS: Single<br>(D) TOPOLOGY: Linear                                              |    |
|----------|-------------------------------------------------------------------------------------------------------------------------|----|
| (ii)     | MOLECULE TYPE: DNA (genomic)                                                                                            |    |
| (vi)     | ORIGINAL SOURCE: (A) ORGANISM: Klebsiella pneumoniae                                                                    |    |
| (xi)     | SEQUENCE DESCRIPTION: SEQ ID NO: 66:                                                                                    |    |
| CGCCCTT  | CCGT TAAGAATATC CATCAC                                                                                                  | 26 |
| (2) INFO | RMATION FOR SEQ ID NO: 67:                                                                                              |    |
| (i)      | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 19 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear |    |
| (ii)     | MOLECULE TYPE: DNA (genomic)                                                                                            |    |
| (vi)     | ORIGINAL SOURCE: (A) ORGANISM: Klebsiella pneumoniae                                                                    |    |
| (xi)     | SEQUENCE DESCRIPTION: SEQ ID NO: 67:                                                                                    |    |
| TCGCCCC  | CTCA TCTGCTACT                                                                                                          | 19 |
| (2) INFO | DRMATION FOR SEQ ID NO: 68:                                                                                             |    |
| (i)      | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 19 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear |    |
| (ii)     | MOLECULE TYPE: DNA (genomic)                                                                                            |    |
| (vi)     | ORIGINAL SOURCE: (A) ORGANISM: Klebsiella pneumoniae                                                                    |    |
| (xi)     | SEQUENCE DESCRIPTION: SEQ ID NO: 68:                                                                                    |    |
| GATCGT   | GATG GATATTCTT                                                                                                          | 19 |
|          |                                                                                                                         |    |

WO 96/08582 PCT/CA95/00528

| (2) INFORMATION FOR SEQ ID NO: 69:                                                                                          |    |
|-----------------------------------------------------------------------------------------------------------------------------|----|
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 25 bases  (B) TYPE: Nucleic acid  (B) TYPE: Single                               |    |
| (D) TOPOLOGI: DINOC                                                                                                         |    |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                           |    |
| <pre>(vi) ORIGINAL SOURCE:    (A) ORGANISM: Klebsiella pneumoniae</pre>                                                     |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 69:                                                                                   | 25 |
| CAGGAAGATG CTGCACCGGT TGTTG                                                                                                 |    |
| (2) INFORMATION FOR SEQ ID NO: 70:                                                                                          |    |
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 25 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear |    |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                           |    |
| <pre>(vi) ORIGINAL SOURCE:     (A) ORGANISM: Proteus mirabilis</pre>                                                        |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 70:                                                                                   | 25 |
| TGGTTCACTG ACTTTGCGAT GTTTC                                                                                                 |    |
| (2) INFORMATION FOR SEQ ID NO: 71:                                                                                          |    |
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 25 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear |    |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                           |    |
| <pre>(vi) ORIGINAL SOURCE:     (A) ORGANISM: Proteus mirabilis</pre>                                                        |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 71:                                                                                   | 25 |
| TCGAGGATGG CATGCACTAG AAAAT                                                                                                 |    |
| (2) INFORMATION FOR SEQ ID NO: 72:                                                                                          |    |
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 30 bas s  (B) TYPE: Nucleic acid                                                 |    |

|          | (C)<br>(D)        | STRANDEDNESS: Single<br>TOPOLOGY: Linear                                                            |    |
|----------|-------------------|-----------------------------------------------------------------------------------------------------|----|
| (ii)     | MOLEC             | ULE TYPE: DNA (genomic)                                                                             |    |
|          |                   | NAL SOURCE:<br>ORGANISM: Proteus mirabilis                                                          |    |
| (xi)     | SEQUE             | NCE DESCRIPTION: SEQ ID NO: 72:                                                                     |    |
| CGCTGAT  | TAG               | GTTTCGCTAA AATCTTATTA                                                                               | 30 |
| (2) INFO | RMATI             | ON FOR SEQ ID NO: 73:                                                                               |    |
| (i)      | (A)<br>(B)<br>(C) | ENCE CHARACTERISTICS: LENGTH: 30 bases TYPE: Nucleic acid STRANDEDNESS: Single TOPOLOGY: Linear     |    |
| (ii)     | MOLEC             | CULE TYPE: DNA (genomic)                                                                            |    |
| (vi)     |                   | INAL SOURCE:<br>ORGANISM: Proteus mirabilis                                                         |    |
| (xi)     | SEQUE             | ENCE DESCRIPTION: SEQ ID NO: 73:                                                                    |    |
| TTGATC   | CTCA              | TTTTATTAAT CACATGACCA                                                                               | 30 |
| (2) INF  | ORMATI            | ON FOR SEQ ID NO: 74:                                                                               |    |
| (i)      | (A)<br>(B)<br>(C) | ENCE CHARACTERISTICS:  LENGTH: 19 bases  TYPE: Nucleic acid  STRANDEDNESS: Single  TOPOLOGY: Linear |    |
| (ii)     | MOLE              | CULE TYPE: DNA (genomic)                                                                            |    |
| (vi)     |                   | INAL SOURCE:<br>ORGANISM: Proteus mirabilis                                                         |    |
| (xi)     | SEQU              | ENCE DESCRIPTION: SEQ ID NO: 74:                                                                    |    |
| GAAACA   | TCGC              | AAAGTCAGT                                                                                           | 19 |

PCT/CA95/00528 W 96/08582

| (2) INFORMATION FOR SEQ ID NO: 75:                                                                                                                                              |    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 20 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear                                                     |    |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                               |    |
| <pre>(vi) ORIGINAL SOURCE:    (A) ORGANISM: Proteus mirabilis</pre>                                                                                                             |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 75:                                                                                                                                       | 20 |
| ATAAAATGAG GATCAAGTTC                                                                                                                                                           |    |
| (2) INFORMATION FOR SEQ ID NO: 76:                                                                                                                                              |    |
| <ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 30 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Single</li> <li>(D) TOPOLOGY: Linear</li> </ul> |    |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                               |    |
| <pre>(vi) ORIGINAL SOURCE:     (A) ORGANISM: Proteus mirabilis</pre>                                                                                                            |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 76:                                                                                                                                       | 30 |
| CCGCCTTTAG CATTAATTGG TGTTTATAGT                                                                                                                                                |    |
| (2) INFORMATION FOR SEQ ID NO: 77:                                                                                                                                              |    |
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 30 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear                                                     |    |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                               | ٠. |
| <pre>(vi) ORIGINAL SOURCE:     (A) ORGANISM: Proteus mirabilis</pre>                                                                                                            |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 77:                                                                                                                                       | 30 |
| CCTATTGCAG ATACCTTAAA TGTCTTGGGC                                                                                                                                                | _  |
| (2) INFORMATION FOR SEQ ID NO: 78:                                                                                                                                              |    |
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 26 bases  (B) TYPE: Nucleic acid  SUBSTITUTE SHEET                                                                                   |    |

|                  | (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear                                                                           |    |
|------------------|-------------------------------------------------------------------------------------------------------------------------|----|
| (ii)             | MOLECULE TYPE: DNA (genomic)                                                                                            |    |
| (vi)             | ORIGINAL SOURCE: (A) ORGANISM: Streptococcus pneumoniae                                                                 |    |
| (xi)             | SEQUENCE DESCRIPTION: SEQ ID NO: 78:                                                                                    |    |
| AGT <b>A</b> AA? | ATGA AATAAGAACA GGACAG                                                                                                  | 26 |
| (2) INFO         | ORMATION FOR SEQ ID NO: 79:                                                                                             |    |
| (i)              | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 25 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear |    |
| (ii)             | MOLECULE TYPE: DNA (genomic)                                                                                            |    |
| (vi)             | ORIGINAL SOURCE: (A) ORGANISM: Streptococcus pneumoniae                                                                 |    |
| (xi)             | SEQUENCE DESCRIPTION: SEQ ID NO: 79:                                                                                    |    |
| AAAACA           | GGAT AGGAGAACGG GAAAA                                                                                                   | 25 |
| (2) INF          | ORMATION FOR SEQ ID NO: 80:                                                                                             |    |
| (i)              | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 25 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear |    |
| (ii)             | MOLECULE TYPE: DNA (genomic)                                                                                            |    |
| (vi)             | ORIGINAL SOURCE: (A) ORGANISM: Proteus mirabilis                                                                        |    |
| (xi)             | SEQUENCE DESCRIPTION: SEQ ID NO: 80:                                                                                    |    |
| TTGAGT           | GATG ATTTCACTGA CTCCC                                                                                                   | 25 |
| (2) INF          | ORMATION FOR SEQ ID NO: 81:                                                                                             |    |
| (i)              | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 25 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear |    |

(ii) MOLECULE TYPE: DNA (genomic)

| <pre>(vi) ORIGINAL SOURCE:     (A) ORGANISM: Proteus mirabilis  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 81:  GTCAGACAGT GATGCTGACG ACACA  (2) INFORMATION FOR SEQ ID NO: 82:  (i) SEQUENCE CHARACTERISTICS:     (A) LENGTH: 27 bases     (B) TYPE: Nucleic acid     (C) STRANDEDNESS: Single     (D) TOPOLOGY: Linear  (ii) MOLECULE TYPE: DNA (genomic)</pre> | 25 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| <pre>(vi) ORIGINAL SOURCE:    (A) ORGANISM: Proteus mirabilis</pre>                                                                                                                                                                                                                                                                                          |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 82:                                                                                                                                                                                                                                                                                                                    | 27 |
| TGGTTGTCAT GCTGTTTGTG TGAAAAT                                                                                                                                                                                                                                                                                                                                |    |
| (2) INFORMATION FOR SEQ ID NO: 83:                                                                                                                                                                                                                                                                                                                           |    |
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 19 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear                                                                                                                                                                                                                                  |    |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                                                                                                                                                                                                            |    |
| (vi) ORIGINAL SOURCE: (A) ORGANISM: Pseudomonas aeruginosa                                                                                                                                                                                                                                                                                                   |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 83:                                                                                                                                                                                                                                                                                                                    | 19 |
| CGAGCGGGTG GTGTTCATC                                                                                                                                                                                                                                                                                                                                         |    |

| (2) INFO | RMATION FOR SEQ ID NO: 84:                                                                                              |    |
|----------|-------------------------------------------------------------------------------------------------------------------------|----|
| (i)      | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 19 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear |    |
| (ii)     | MOLECULE TYPE: DNA (genomic)                                                                                            |    |
| (vi)     | ORIGINAL SOURCE: (A) ORGANISM: Pseudomonas aeruginosa                                                                   |    |
| (xi)     | SEQUENCE DESCRIPTION: SEQ ID NO: 84:                                                                                    |    |
| CAAGTCG  | TCG TCGGAGGGA                                                                                                           | 19 |
| (2) INFO | DRMATION FOR SEQ ID NO: 85:                                                                                             |    |
| (i)      | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 19 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear |    |
| (ii)     | MOLECULE TYPE: DNA (genomic)                                                                                            |    |
| (vi)     | ORIGINAL SOURCE: (A) ORGANISM: Pseudomonas aeruginosa                                                                   |    |
| (xi)     | SEQUENCE DESCRIPTION: SEQ ID NO: 85:                                                                                    |    |
| TCGCTG   | TTCA TCAAGACCC                                                                                                          | 19 |
| (2) INF  | ORMATION FOR SEQ ID NO: 86:                                                                                             |    |
| (i)      | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 19 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear |    |
| (ii)     | MOLECULE TYPE: DNA (genomic)                                                                                            |    |
| (vi)     | ORIGINAL SOURCE: (A) ORGANISM: Pseudomonas aeruginosa                                                                   |    |
| (xi)     | SEQUENCE DESCRIPTION: SEQ ID NO: 86:                                                                                    |    |
| CCGAGA   | ACCA GACTTCATC                                                                                                          | 19 |
| (2) INF  | ORMATION FOR SEQ ID NO: 87:                                                                                             |    |

- (i) SEQUENCE CHARACTERISTICS:

  - (A) LENGTH: 25 bases
    (B) TYPE: Nucleic acid
    SUBSTITUTE SHEET

| (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear                                                                                                                                   |          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                               |          |
| <pre>(vi) ORIGINAL SOURCE:     (A) ORGANISM: Pseudomonas aeruginosa</pre>                                                                                                       |          |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 87:                                                                                                                                       | 25       |
| AATGCGGCTG TACCTCGGCG CTGGT                                                                                                                                                     | 23       |
| (2) INFORMATION FOR SEQ ID NO: 88:                                                                                                                                              |          |
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 25 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear                                                     |          |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                               |          |
| <pre>(vi) ORIGINAL SOURCE:    (A) ORGANISM: Pseudomonas aeruginosa</pre>                                                                                                        |          |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 88:                                                                                                                                       | 25       |
| GGCGGAGGGC CAGTTGCACC TGCCA                                                                                                                                                     |          |
| (2) INFORMATION FOR SEQ ID NO: 89:                                                                                                                                              |          |
| <ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 25 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Single</li> <li>(D) TOPOLOGY: Linear</li> </ul> |          |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                               |          |
| <pre>(vi) ORIGINAL SOURCE:     (A) ORGANISM: Pseudomonas aeruginosa</pre>                                                                                                       |          |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 89:                                                                                                                                       | ·.<br>25 |
| AGCCCTGCTC CTCGGCAGCC TCTGC                                                                                                                                                     |          |

| (2) INFORMATION FOR SEQ ID NO: 90:                                                                                                                                              |    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| <ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 25 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Single</li> <li>(D) TOPOLOGY: Linear</li> </ul> |    |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                               |    |
| <pre>(vi) ORIGINAL SOURCE:     (A) ORGANISM: Pseudomonas aeruginosa</pre>                                                                                                       |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 90:                                                                                                                                       |    |
| TGGCTTTTGC AACCGCGTTC AGGTT                                                                                                                                                     | 25 |
| (2) INFORMATION FOR SEQ ID NO: 91:                                                                                                                                              |    |
| <ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 25 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Single</li> <li>(D) TOPOLOGY: Linear</li> </ul> |    |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                               |    |
| <pre>(vi) ORIGINAL SOURCE:     (A) ORGANISM: Pseudomonas aeruginosa</pre>                                                                                                       |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 91:                                                                                                                                       |    |
| GCGCCCGCGA GGGCATGCTT CGATG                                                                                                                                                     | 25 |
| (2) INFORMATION FOR SEQ ID NO: 92:                                                                                                                                              |    |
| <ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 25 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Single</li> <li>(D) TOPOLOGY: Linear</li> </ul> |    |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                               |    |
| <pre>(vi) ORIGINAL SOURCE:     (A) ORGANISM: Pseudomonas aeruginosa</pre>                                                                                                       |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 92:                                                                                                                                       |    |
| ACCTGGGCGC CAACTACAAG TTCTA                                                                                                                                                     | 25 |
| (2) INFORMATION FOR SEQ ID NO: 93:                                                                                                                                              |    |
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 25 bases  (B) TYPE: Nucleic acid                                                                                                     |    |

| (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear                                                                                                                                   |    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                               |    |
| <ul><li>(vi) ORIGINAL SOURCE:</li><li>(A) ORGANISM: Pseudomonas aeruginosa</li></ul>                                                                                            |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 93:                                                                                                                                       | 25 |
| GGCTACGCTG CCGGGCTGCA GGCCG                                                                                                                                                     | 25 |
| (2) INFORMATION FOR SEQ ID NO: 94:                                                                                                                                              |    |
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 25 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear                                                     |    |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                               |    |
| <ul><li>(vi) ORIGINAL SOURCE:</li><li>(A) ORGANISM: Pseudomonas aeruginosa</li></ul>                                                                                            |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 94:                                                                                                                                       | 25 |
| CCGATCTACA CCATCGAGAT GGGCG                                                                                                                                                     | 25 |
| (2) INFORMATION FOR SEQ ID NO: 95:                                                                                                                                              |    |
| <ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 25 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Single</li> <li>(D) TOPOLOGY: Linear</li> </ul> |    |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                               |    |
| <pre>(vi) ORIGINAL SOURCE:    (A) ORGANISM: Pseudomonas aeruginosa</pre>                                                                                                        |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 95:                                                                                                                                       | 25 |
| GAGCGCGGCT ATGTGTTCGT CGGCT                                                                                                                                                     | 25 |

| (2) INFORMATION FOR SEQ ID NO: 96:                                                                                                                                              |    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| <ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 29 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Single</li> <li>(D) TOPOLOGY: Linear</li> </ul> |    |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                               |    |
| <ul><li>(vi) ORIGINAL SOURCE:</li><li>(A) ORGANISM: Staphylococcus saprophyticus</li></ul>                                                                                      |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 96:                                                                                                                                       |    |
| CGTTTTTACC CTTACCTTTT CGTACTACC                                                                                                                                                 | 29 |
| (2) INFORMATION FOR SEQ ID NO: 97:                                                                                                                                              |    |
| <ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 30 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Single</li> <li>(D) TOPOLOGY: Linear</li> </ul> |    |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                               |    |
| <ul><li>(vi) ORIGINAL SOURCE:</li><li>(A) ORGANISM: Staphylococcus saprophyticus</li></ul>                                                                                      |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97:                                                                                                                                       |    |
| TCAGGCAGAG GTAGTACGAA AAGGTAAGGG                                                                                                                                                | 30 |
| (2) INFORMATION FOR SEQ ID NO: 98:                                                                                                                                              |    |
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 26 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear                                                     |    |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                               |    |
| <ul><li>(vi) ORIGINAL SOURCE:</li><li>(A) ORGANISM: Staphylococcus saprophyticus</li></ul>                                                                                      |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 98:                                                                                                                                       |    |
| CGTTTTTACC CTTACCTTTT CGTACT                                                                                                                                                    | 26 |
| (2) INFORMATION FOR SEQ ID NO: 99:                                                                                                                                              |    |
| TOTAL CONTROL CONTROL                                                                                                                                                           |    |

(i) SEQUENCE CHARACTERISTICS:

LENGTH: 28 bases (A)

TYPE: Nuclin SUBSTITUTE SHEET (B)

| (C) STRANDEDNESS: Single                                                                                                    |    |
|-----------------------------------------------------------------------------------------------------------------------------|----|
| (D) TOPOLOGY: Linear                                                                                                        |    |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                           |    |
| <ul><li>(vi) ORIGINAL SOURCE:</li><li>(A) ORGANISM: Staphylococcus saprophyticus</li></ul>                                  |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 99:                                                                                   | •  |
| ATCGATCATC ACATTCCATT TGTTTTTA                                                                                              | 28 |
| (2) INFORMATION FOR SEQ ID NO: 100:                                                                                         |    |
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 27 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear |    |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                           |    |
| <ul><li>(vi) ORIGINAL SOURCE:</li><li>(A) ORGANISM: Staphylococcus saprophyticus</li></ul>                                  |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 100:                                                                                  | _  |
| CACCAAGTTT GACACGTGAA GATTCAT                                                                                               | 27 |
| (2) INFORMATION FOR SEQ ID NO: 101                                                                                          |    |
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 30 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear |    |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                           |    |
| <pre>(vi) ORIGINAL SOURCE:     (A) ORGANISM: Staphylococcus saprophyticus</pre>                                             |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 101:                                                                                  | 20 |
| ATGAGTGAAG CGGAGTCAGA TTATGTGCAG                                                                                            | 30 |

# SUBSTITUTE SHEET

| (2) INFORMATION FOR SEQ ID NO: 102:                                                                                                                                             |    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| <ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 25 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Single</li> <li>(D) TOPOLOGY: Linear</li> </ul> |    |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                               |    |
| <pre>(vi) ORIGINAL SOURCE:    (A) ORGANISM: Staphylococcus saprophyticus</pre>                                                                                                  |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 102:                                                                                                                                      |    |
| CGCTCATTAC GTACAGTGAC AATCG                                                                                                                                                     | 25 |
| (2) INFORMATION FOR SEQ ID NO: 103:                                                                                                                                             |    |
| <ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 30 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Single</li> <li>(D) TOPOLOGY: Linear</li> </ul> |    |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                               |    |
| <ul><li>(vi) ORIGINAL SOURCE:</li><li>(A) ORGANISM: Staphylococcus saprophyticus</li></ul>                                                                                      |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 103:                                                                                                                                      |    |
| CTGGTTAGCT TGACTCTTAA CAATCTTGTC                                                                                                                                                | 30 |
| (2) INFORMATION FOR SEQ ID NO: 104:                                                                                                                                             |    |
| <ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 30 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Single</li> <li>(D) TOPOLOGY: Linear</li> </ul> |    |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                               |    |
| <pre>(vi) ORIGINAL SOURCE:    (A) ORGANISM: Staphylococcus saprophyticus</pre>                                                                                                  |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 104:                                                                                                                                      |    |
| GACGCGATTG TCACTGTACG TAATGAGCGA                                                                                                                                                | 30 |
| (2) INFORMATION FOR SEQ ID NO: 105:                                                                                                                                             |    |

- SEQUENCE CHARACTERISTICS:
  - LENGTH: 28 bases (A)
  - (B)

| <ul><li>(C) STRANDEDNESS: Single</li><li>(D) TOPOLOGY: Linear</li></ul>                                                                                                         |    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                               |    |
| <pre>(vi) ORIGINAL SOURCE:    (A) ORGANISM: Haemophilus influenzae</pre>                                                                                                        | •  |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 105:                                                                                                                                      |    |
| GCGTCAGAAA AAGTAGGCGA AATGAAAG                                                                                                                                                  | 28 |
| (2) INFORMATION FOR SEQ ID NO: 106:                                                                                                                                             |    |
| <ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 25 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Single</li> <li>(D) TOPOLOGY: Linear</li> </ul> |    |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                               |    |
| <ul><li>(vi) ORIGINAL SOURCE:</li><li>(A) ORGANISM: Haemophilus influenzae</li></ul>                                                                                            |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 106:                                                                                                                                      |    |
| AGCGGCTCTA TCTTGTAATG ACACA                                                                                                                                                     | 25 |
| (2) INFORMATION FOR SEQ ID NO: 107:                                                                                                                                             |    |
| <ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 25 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Single</li> <li>(D) TOPOLOGY: Linear</li> </ul> |    |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                               |    |
| <pre>(vi) ORIGINAL SOURCE:     (A) ORGANISM: Haemophilus influenzae</pre>                                                                                                       |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 107:                                                                                                                                      |    |
| GAAACGTGAA CTCCCCTCTA TATAA                                                                                                                                                     | 25 |

| (2) INFO | ORMATION FOR SEQ ID NO: 108:                                                                                            |    |
|----------|-------------------------------------------------------------------------------------------------------------------------|----|
| (i)      | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 25 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear |    |
| (ii)     | MOLECULE TYPE: DNA (genomic)                                                                                            |    |
| (vi)     | ORIGINAL SOURCE: (A) ORGANISM: Moraxella catarrhalis                                                                    |    |
| (xi)     | SEQUENCE DESCRIPTION: SEQ ID NO: 108:                                                                                   |    |
| GCCCCAA  | AAAC AATGAAACAT ATGGT                                                                                                   | 25 |
| (2) INFO | PRMATION FOR SEQ ID NO: 109:                                                                                            |    |
| (i)      | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 25 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear |    |
| (ii)     | MOLECULE TYPE: DNA (genomic)                                                                                            |    |
| (vi)     | ORIGINAL SOURCE: (A) ORGANISM: Moraxella catarrhalis                                                                    |    |
| (xi)     | SEQUENCE DESCRIPTION: SEQ ID NO: 109:                                                                                   |    |
| CTGCAGA  | TTT TGGAATCATA TCGCC                                                                                                    | 25 |
| (2) INFO | RMATION FOR SEQ ID NO: 110:                                                                                             |    |
| (i)      | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 25 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear |    |
| (ii)     | MOLECULE TYPE: DNA (genomic)                                                                                            |    |
| (vi)     | ORIGINAL SOURCE: (A) ORGANISM: Moraxella catarrhalis                                                                    |    |
| (xi)     | SEQUENCE DESCRIPTION: SEQ ID NO: 110:                                                                                   |    |
| TGGTTTG  | ACC AGTATTTAAC GCCAT                                                                                                    | 25 |
| (2) INFO | RMATION FOR SEQ ID NO: 111:                                                                                             |    |

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 25 bases
  - (B) TYPE: Nucleic acid

| (C) STRANDEDNESS: Single<br>(D) TOPOLOGY: Linear                                                                                                                                |    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                               |    |
| <ul><li>(vi) ORIGINAL SOURCE:</li><li>(A) ORGANISM: Moraxella catarrhalis</li></ul>                                                                                             |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 111:                                                                                                                                      | 25 |
| CAACGGCACC TGATGTACCT TGTAC                                                                                                                                                     | 25 |
| (2) INFORMATION FOR SEQ ID NO: 112:                                                                                                                                             |    |
| <ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 18 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Single</li> <li>(D) TOPOLOGY: Linear</li> </ul> |    |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                               |    |
| <pre>(vi) ORIGINAL SOURCE:     (A) ORGANISM: Moraxella catarrhalis</pre>                                                                                                        |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 112:                                                                                                                                      | 18 |
| GGCACCTGAT GTACCTTG                                                                                                                                                             |    |
| (2) INFORMATION FOR SEQ ID NO: 113:                                                                                                                                             |    |
| <ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 17 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Single</li> <li>(D) TOPOLOGY: Linear</li> </ul> |    |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                               |    |
| <pre>(vi) ORIGINAL SOURCE:     (A) ORGANISM: Moraxella catarrhalis</pre>                                                                                                        |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 113:                                                                                                                                      | 17 |
| AACAGCTCAC ACGCATT                                                                                                                                                              | 1, |

| (2) INF  | ORMATION FOR SEQ ID NO: 114:                                                                                            |    |
|----------|-------------------------------------------------------------------------------------------------------------------------|----|
| (i)      | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 25 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear |    |
| (ii)     | MOLECULE TYPE: DNA (genomic)                                                                                            |    |
| (vi)     | ORIGINAL SOURCE: (A) ORGANISM: Moraxella catarrhalis                                                                    |    |
| (xi)     | SEQUENCE DESCRIPTION: SEQ ID NO: 114:                                                                                   |    |
| TTACAA   | CCTG CACCACAAGT CATCA                                                                                                   | 25 |
| (2) INF  | ORMATION FOR SEQ ID NO: 115:                                                                                            |    |
| (i)      | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 25 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear |    |
| (ii)     | MOLECULE TYPE: DNA (genomic)                                                                                            |    |
| (vi)     | ORIGINAL SOURCE: (A) ORGANISM: Moraxella catarrhalis                                                                    |    |
| (xi)     | SEQUENCE DESCRIPTION: SEQ ID NO: 115:                                                                                   |    |
| GTACAA   | ACAA GCCGTCAGCG ACTTA                                                                                                   | 25 |
| (2) INFO | DRMATION FOR SEQ ID NO: 116:                                                                                            |    |
| (i)      | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 23 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear |    |
| (ii)     | MOLECULE TYPE: DNA (genomic)                                                                                            |    |
| (vi)     | ORIGINAL SOURCE: (A) ORGANISM: Moraxella catarrhalis                                                                    |    |
| (xi)     | SEQUENCE DESCRIPTION: SEQ ID NO: 116:                                                                                   |    |
| CAATCTG  | SCGT GTGTGCGTTC ACT                                                                                                     | 23 |
| (2) INFO | DRMATION FOR SEQ ID NO: 117:                                                                                            |    |
|          |                                                                                                                         |    |

- (i) SEQUENCE CHARACTERISTICS:

| (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear                                                                                                                                   |    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                               |    |
| <ul><li>(vi) ORIGINAL SOURCE:</li><li>(A) ORGANISM: Moraxella catarrhalis</li></ul>                                                                                             |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 117:                                                                                                                                      |    |
| GCTACTTTGT CAGCTTTAGC CATTCA 26                                                                                                                                                 |    |
| (2) INFORMATION FOR SEQ ID NO: 118:                                                                                                                                             |    |
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 24 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear                                                     |    |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                               |    |
| <ul><li>(vi) ORIGINAL SOURCE:</li><li>(A) ORGANISM: Moraxella catarrhalis</li></ul>                                                                                             |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 118:                                                                                                                                      |    |
| TGTTTTGAGC TTTTTATTTT TTGA 2.                                                                                                                                                   | 4  |
| (2) INFORMATION FOR SEQ ID NO: 119:                                                                                                                                             |    |
| <ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 22 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Single</li> <li>(D) TOPOLOGY: Linear</li> </ul> |    |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                               |    |
| <pre>(vi) ORIGINAL SOURCE:     (A) ORGANISM: Moraxella catarrhalis</pre>                                                                                                        |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 119:                                                                                                                                      |    |
| CGCTGACGGC TTGTTTGTAC CA                                                                                                                                                        | 22 |
|                                                                                                                                                                                 |    |

| (2) INFOR     | RMATION FOR SEQ ID NO: 120:                                                                                             |    |
|---------------|-------------------------------------------------------------------------------------------------------------------------|----|
|               | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 25 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear |    |
| (ii)          | MOLECULE TYPE: DNA (genomic)                                                                                            |    |
|               | ORIGINAL SOURCE: (A) ORGANISM: Streptococcus pneumoniae                                                                 |    |
| (xi)          | SEQUENCE DESCRIPTION: SEQ ID NO: 120:                                                                                   |    |
| TCTGTGC       | TAG AGACTGCCCC ATTTC                                                                                                    | 25 |
| (2) INFO      | RMATION FOR SEQ ID NO: 121:                                                                                             |    |
|               | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 25 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear |    |
| ( <b>i</b> i) | MOLECULE TYPE: DNA (genomic)                                                                                            |    |
| (vi)          | ORIGINAL SOURCE: (A) ORGANISM: Streptococcus pneumoniae                                                                 |    |
| (xi)          | SEQUENCE DESCRIPTION: SEQ ID NO: 121:                                                                                   |    |
| CGATGTC       | TTG ATTGAGCAGG GTTAT                                                                                                    | 25 |
| (2) INFO      | RMATION FOR SEQ ID NO: 122:                                                                                             |    |
| (i)           | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 25 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear |    |
| (ii)          | MOLECULE TYPE: DNA (genomic)                                                                                            |    |
| (xi)          | SEQUENCE DESCRIPTION: SEQ ID NO: 122:                                                                                   |    |
| ATCCCAC       | CCTT AGGCGGCTGG CTCCA                                                                                                   | 25 |

| (2) INFORM | ATION FOR SEQ ID NO: 123:                                                                                               |    |
|------------|-------------------------------------------------------------------------------------------------------------------------|----|
| (A<br>(E   | EQUENCE CHARACTERISTICS:  A) LENGTH: 31 bases  B) TYPE: Nucleic acid  C) STRANDEDNESS: Single  D) TOPOLOGY: Linear      |    |
|            | DLECULE TYPE: DNA (genomic)                                                                                             |    |
|            | EQUENCE DESCRIPTION: SEQ ID NO: 123:                                                                                    |    |
| acgtcaagi  | C ATCATGGCCC TTACGAGTAG G                                                                                               | 31 |
| (2) INFORM | MATION FOR SEQ ID NO: 124:                                                                                              |    |
| (;<br>()   | EQUENCE CHARACTERISTICS:  A) LENGTH: 25 bases  B) TYPE: Nucleic acid  C) STRANDEDNESS: Single  D) TOPOLOGY: Linear      |    |
| (ii) M     | OLECULE TYPE: DNA (genomic)                                                                                             |    |
| (xi) S     | SEQUENCE DESCRIPTION: SEQ ID NO: 124:                                                                                   |    |
| GTGTGACG   | GG CGGTGTGTAC AAGGC                                                                                                     | 25 |
| (2) INFOR  | MATION FOR SEQ ID NO: 125:                                                                                              |    |
|            | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 28 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear |    |
| (ii) 1     | MOLECULE TYPE: DNA (genomic)                                                                                            |    |
| (xi)       | SEQUENCE DESCRIPTION: SEQ ID NO: 125:                                                                                   |    |
| GAGTTGC    | AGA CTCCAATCCG GACTACGA                                                                                                 | 28 |
| (2) INFO   | RMATION FOR SEQ ID NO: 126:                                                                                             | •  |
|            | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 20 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear |    |
|            | MOLECULE TYPE: DNA (genomic)                                                                                            |    |
| (xi)       | SEQUENCE DESCRIPTION: SEQ ID NO: 126:                                                                                   |    |
| 001001     | CCT CCCCATGACG                                                                                                          | 20 |

| (2) INFO | RMATION FOR SEQ ID NO: 127:                                                                                             |    |
|----------|-------------------------------------------------------------------------------------------------------------------------|----|
| (i)      | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 20 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear |    |
| (ii)     | MOLECULE TYPE: DNA (genomic)                                                                                            |    |
| (xi)     | SEQUENCE DESCRIPTION: SEQ ID NO: 127:                                                                                   |    |
| ATGGTGT  | GAC GGGCGGTGTG                                                                                                          | 20 |
| (2) INFO | RMATION FOR SEQ ID NO: 128:                                                                                             |    |
| (i)      | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 32 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear |    |
| (ii)     | MOLECULE TYPE: DNA (genomic)                                                                                            |    |
| (xi)     | SEQUENCE DESCRIPTION: SEQ ID NO: 128:                                                                                   |    |
| CCCTATA  | ACAT CACCTTGCGG TTTAGCAGAG AG                                                                                           | 32 |
| (2) INFO | ORMATION FOR SEQ ID NO: 129:                                                                                            |    |
| (i)      | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 28 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear |    |
| (ii)     | MOLECULE TYPE: DNA (genomic)                                                                                            |    |
| (xi)     | SEQUENCE DESCRIPTION: SEQ ID NO: 129:                                                                                   |    |
| GGGGGG   | ACCA TCCTCCAAGG CTAAATAC                                                                                                | 28 |

| (2) INFORMATION FOR SEQ ID NO: 130:                                                                                                                                             |    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| <ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 32 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Single</li> <li>(D) TOPOLOGY: Linear</li> </ul> |    |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                               |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 130:                                                                                                                                      | 32 |
| CGTCCACTTT CGTGTTTGCA GAGTGCTGTG TT                                                                                                                                             | J. |
| (2) INFORMATION FOR SEQ ID NO: 131:                                                                                                                                             |    |
| <ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 20 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Single</li> <li>(D) TOPOLOGY: Linear</li> </ul> |    |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                               |    |
| <pre>(vi) ORIGINAL SOURCE:    (A) ORGANISM: Escherichia coli</pre>                                                                                                              |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 131:                                                                                                                                      | 20 |
| CAGGAGTACG GTGATTTTTA                                                                                                                                                           |    |
| (2) INFORMATION FOR SEQ ID NO: 132:                                                                                                                                             |    |
| <ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 20 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Single</li> <li>(D) TOPOLOGY: Linear</li> </ul> |    |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                               |    |
| (vi) ORIGINAL SOURCE: (A) ORGANISM: Escherichia coli                                                                                                                            |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 132:                                                                                                                                      | 20 |
| ATTTCTGGTT TGGTCATACA                                                                                                                                                           |    |

## SUBSTITUTE SHEET

| (2) INF  | ORMATION FOR SEQ ID NO: 133:                                                                                            |                |
|----------|-------------------------------------------------------------------------------------------------------------------------|----------------|
| (i)      | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 20 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear |                |
| (ii)     | MOLECULE TYPE: DNA (genomic)                                                                                            |                |
| (vi)     | ORIGINAL SOURCE: (A) ORGANISM: Proteus mirabilis                                                                        |                |
| (xi)     | SEQUENCE DESCRIPTION: SEQ ID NO: 133:                                                                                   |                |
| CGGGAG'  | TCAG TGAAATCATC                                                                                                         | 20             |
| (2) INF  | ORMATION FOR SEQ ID NO: 134:                                                                                            |                |
| (i)      | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 20 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear |                |
| (ii)     | MOLECULE TYPE: DNA (genomic)                                                                                            |                |
| (vi)     | ORIGINAL SOURCE: (A) ORGANISM: Proteus mirabilis                                                                        |                |
| (xi)     | SEQUENCE DESCRIPTION: SEQ ID NO: 134:                                                                                   |                |
| CTAAAA   | PCGC CACACCTCTT                                                                                                         | 20             |
| (2) INFO | DRMATION FOR SEQ ID NO: 135:                                                                                            |                |
| (i)      | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 18 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear |                |
| (ii)     | MOLECULE TYPE: DNA (genomic)                                                                                            |                |
| (vi)     | ORIGINAL SOURCE: (A) ORGANISM: Klebsiella pneumoniae                                                                    |                |
| (xi)     | SEQUENCE DESCRIPTION: SEQ ID NO: 135:                                                                                   |                |
| GCAGCGT  | GGT GTCGTTCA                                                                                                            | 18             |
| (2)INFO  | ORMATION FOR SEQ ID NO: 136:                                                                                            | _ <del>-</del> |
|          | <u> </u>                                                                                                                |                |

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 18 bases
  - (B)

| (         | C) STRANDEDNESS: Single D) TOPOLOGY: Linear                                                                             |    |
|-----------|-------------------------------------------------------------------------------------------------------------------------|----|
| (ii) M    | MOLECULE TYPE: DNA (genomic)                                                                                            |    |
| (vi) (    | ORIGINAL SOURCE:<br>(A) ORGANISM: Klebsiella pneumoniae                                                                 |    |
| (xi) S    | SEQUENCE DESCRIPTION: SEQ ID NO: 136:                                                                                   |    |
| AGCTGGCA  | AAC GGCTGGTC                                                                                                            | 18 |
| (2) INFOR | RMATION FOR SEQ ID NO: 137:                                                                                             |    |
| (i)       | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 20 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear |    |
| (ii)      | MOLECULE TYPE: DNA (genomic)                                                                                            |    |
| ·         | ORIGINAL SOURCE: (A) ORGANISM: Klebsiella pneumoniae                                                                    |    |
| (xi)      | SEQUENCE DESCRIPTION: SEQ ID NO: 137:                                                                                   |    |
| ATTCACA   | ACCC TACGCAGCCA                                                                                                         | 20 |
| (2) INFO  | ORMATION FOR SEQ ID NO: 138:                                                                                            |    |
| (i)       | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 20 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear |    |
| (ii)      | MOLECULE TYPE: DNA (genomic)                                                                                            |    |
|           | ORIGINAL SOURCE: (A) ORGANISM: Klebsiella pneumoniae                                                                    |    |
| (xi)      | SEQUENCE DESCRIPTION: SEQ ID NO: 138:                                                                                   |    |
| ATCCGG    | SCAGC ATCTCTTGT                                                                                                         | 20 |

| (2) INFO | RMATION FOR SEQ ID NO: 139:                                                                                             |    |
|----------|-------------------------------------------------------------------------------------------------------------------------|----|
| (i)      | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 25 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear |    |
| (ii)     | MOLECULE TYPE: DNA (genomic)                                                                                            |    |
| (vi)     | ORIGINAL SOURCE: (A) ORGANISM: Staphylococcus saprophyticus                                                             |    |
| (xi)     | SEQUENCE DESCRIPTION: SEQ ID NO: 139:                                                                                   |    |
| CTGGTTA  | AGCT TGACTCTTAA CAATC                                                                                                   | 25 |
| (2) INFO | RMATION FOR SEQ ID NO: 140:                                                                                             |    |
| (i)      | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 25 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear |    |
| (ii)     | MOLECULE TYPE: DNA (genomic)                                                                                            |    |
| (vi)     | ORIGINAL SOURCE: (A) ORGANISM: Staphylococcus saprophyticus                                                             |    |
| (xi)     | SEQUENCE DESCRIPTION: SEQ ID NO: 140:                                                                                   |    |
| TCTTAAC  | CGAT AGAATGGAGC AACTG                                                                                                   | 25 |
| (2) INFO | DRMATION FOR SEQ ID NO: 141:                                                                                            |    |
| (i)      | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 20 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear |    |
| (ii)     | MOLECULE TYPE: DNA (genomic)                                                                                            |    |
| (vi)     | ORIGINAL SOURCE: (A) ORGANISM: Streptococcus pyogenes                                                                   |    |
| (xi)     | SEQUENCE DESCRIPTION: SEQ ID NO: 141:                                                                                   |    |
| TGAAAAT  | TTCT TGTAACAGGC                                                                                                         | 20 |
| (2) INF  | ORMATION FOR SEQ ID NO: 142:                                                                                            |    |
|          |                                                                                                                         |    |

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 20 bas s
  - (B) TYPE: Nucleic acid

| (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear                                                                                                                                   |    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                               |    |
|                                                                                                                                                                                 |    |
| <ul><li>(vi) ORIGINAL SOURCE:</li><li>(A) ORGANISM: Streptococcus pyogenes</li></ul>                                                                                            |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 142:                                                                                                                                      | 20 |
| GGCCACCAGC TTGCCCAATA                                                                                                                                                           | 20 |
| (2) INFORMATION FOR SEQ ID NO: 143:                                                                                                                                             |    |
| <ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 20 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Single</li> <li>(D) TOPOLOGY: Linear</li> </ul> |    |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                               |    |
| <ul><li>(vi) ORIGINAL SOURCE:</li><li>(A) ORGANISM: Streptococcus pyogenes</li></ul>                                                                                            | -  |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 143:                                                                                                                                      | 20 |
| ATATTTTCTT TATGAGGGTG                                                                                                                                                           | 20 |
| (2) INFORMATION FOR SEQ ID NO: 144:                                                                                                                                             |    |
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 20 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear                                                     |    |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                               |    |
| <ul><li>(vi) ORIGINAL SOURCE:</li><li>(A) ORGANISM: Streptococcus pyogenes</li></ul>                                                                                            |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 144:                                                                                                                                      | 20 |
| ATCCTTAAAT AAAGTTGCCA                                                                                                                                                           | 20 |

|          | 70.2                                                                       |    |
|----------|----------------------------------------------------------------------------|----|
| (2) INF  | FORMATION FOR SEQ ID NO: 145:                                              |    |
|          |                                                                            |    |
| (1)      | SEQUENCE CHARACTERISTICS:                                                  |    |
|          | (A) LENGTH: 25 bases                                                       |    |
|          | (B) TYPE: Nucleic acid                                                     |    |
|          | (C) STRANDEDNESS: Single                                                   |    |
|          | (D) TOPOLOGY: Linear                                                       |    |
| (ii)     | MOLECULE TYPE: DNA (genomic)                                               |    |
| (vi)     | ORIGINAL SOURCE:                                                           |    |
|          | (A) ORGANISM: Staphylococcus epidermidis                                   |    |
| (xi)     | SEQUENCE DESCRIPTION: SEQ ID NO: 145:                                      |    |
| ATCAAA   | AAGT TGGCGAACCT TTTCA                                                      | 25 |
| (2) INF  | ORMATION FOR SEQ ID NO: 146:                                               |    |
|          |                                                                            |    |
| (-)      | SEQUENCE CHARACTERISTICS:                                                  |    |
|          | (A) LENGTH: 25 bases                                                       |    |
|          | (B) TYPE: Nucleic acid<br>(C) STRANDEDNESS: Single<br>(D) TOPOLOGY: Linear |    |
|          | (C) STRANDEDNESS: Single                                                   |    |
|          | (D) TOPOLOGY: Linear                                                       |    |
| (ii)     | MOLECULE TYPE: DNA (genomic)                                               |    |
| (vi)     | ORIGINAL SOURCE:                                                           |    |
|          | (A) ORGANISM: Staphylococcus epidermidis                                   |    |
| (xi)     | SEQUENCE DESCRIPTION: SEQ ID NO: 146:                                      |    |
| CAAAAG   | AGCG TGGAGAAAAG TATCA                                                      | 25 |
| (2) INF  | ORMATION FOR SEQ ID NO: 147:                                               |    |
| (i)      | SEQUENCE CHARACTERISTICS:                                                  |    |
|          | (A) LENGTH: 30 bases                                                       |    |
|          | (B) TYPE: Nucleic acid                                                     |    |
|          | (C) STRANDEDNESS: Single                                                   | •  |
|          | (D) TOPOLOGY: Linear                                                       |    |
| (ii)     | MOLECULE TYPE: DNA (genomic)                                               |    |
| (vi)     | ORIGINAL SOURCE:                                                           |    |
|          | (A) ORGANISM: Staphylococcus epidermidis                                   |    |
|          |                                                                            |    |
|          | SEQUENCE DESCRIPTION: SEQ ID NO: 147:                                      |    |
| rctctti  | TTAA TTTCATCTTC AATTCCATAG                                                 | 30 |
| (2) INFO | PRMATION FOR SEQ ID NO: 148:                                               |    |

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 30 bases
  - SUBSTITUTE SHEET

| (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear                                                                                                                                   |    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                               |    |
| <ul><li>(vi) ORIGINAL SOURCE:</li><li>(A) ORGANISM: Staphylococcus epidermidis</li></ul>                                                                                        |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 148:                                                                                                                                      |    |
| AAACACAATT ACAGTCTGGT TATCCATATC                                                                                                                                                | 30 |
| (2) INFORMATION FOR SEQ ID NO: 149:                                                                                                                                             |    |
| <ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 30 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Single</li> <li>(D) TOPOLOGY: Linear</li> </ul> |    |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                               |    |
| <ul><li>(vi) ORIGINAL SOURCE:</li><li>(A) ORGANISM: Staphylococcus aureus</li></ul>                                                                                             |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 149:                                                                                                                                      |    |
| CTTCATTTTA CGGTGACTTC TTAGAAGATT                                                                                                                                                | 30 |
| (2) INFORMATION FOR SEQ ID NO: 150:                                                                                                                                             |    |
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 30 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear                                                     |    |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                               |    |
| <pre>(vi) ORIGINAL SOURCE:     (A) ORGANISM: Staphylococcus aureus</pre>                                                                                                        |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 150:                                                                                                                                      |    |
| TCAACTGTAG CTTCTTTATC CATACGTTGA                                                                                                                                                | 30 |

| (2) INFO | DRMATION FOR SEQ ID NO: 151:                                                                                            |    |
|----------|-------------------------------------------------------------------------------------------------------------------------|----|
| (i)      | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 30 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear |    |
| (ii)     | MOLECULE TYPE: DNA (genomic)                                                                                            |    |
| (vi)     | ORIGINAL SOURCE: (A) ORGANISM: Staphylococcus aureus                                                                    |    |
| (xi)     | SEQUENCE DESCRIPTION: SEQ ID NO: 151:                                                                                   |    |
| ATATTTT  | PAGC TTTTCAGTTT CTATATCAAC                                                                                              | 30 |
| (2)INFO  | DRMATION FOR SEQ ID NO: 152:                                                                                            |    |
| (i)      | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 30 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear |    |
| (ii)     | MOLECULE TYPE: DNA (genomic)                                                                                            |    |
| (vi)     | ORIGINAL SOURCE: (A) ORGANISM: Staphylococcus aureus                                                                    |    |
| (xi)     | SEQUENCE DESCRIPTION: SEQ ID NO: 152:                                                                                   |    |
| AATCTTT  | CGTC GGTACACGAT ATTCTTCACG                                                                                              | 30 |
| (2) INFO | ORMATION FOR SEQ ID NO: 153:                                                                                            |    |
| (i)      | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 30 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear |    |
| (ii)     | MOLECULE TYPE: DNA (genomic)                                                                                            |    |
| (vi)     | ORIGINAL SOURCE: (A) ORGANISM: Staphylococcus aureus                                                                    |    |
| (xi)     | SEQUENCE DESCRIPTION: SEQ ID NO: 153:                                                                                   |    |
| CGTAATG  | SAGA TTTCAGTAGA TAATACAACA                                                                                              | 30 |
| (2) INFO | DRMATION FOR SEQ ID NO: 154:                                                                                            |    |

- (i) SEQUENCE CHARACTERISTICS:
  - LENGTH: 25 bases
  - (B)

| <pre>(C) STRANDEDNESS: Single (D) TOPOLOGY: Linear</pre>                                                                                                                        |    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                               |    |
| <ul><li>(vi) ORIGINAL SOURCE:</li><li>(A) ORGANISM: Haemophilus influenzae</li></ul>                                                                                            |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 154:                                                                                                                                      |    |
| TTTAACGATC CTTTTACTCC TTTTG                                                                                                                                                     | 25 |
| (2) INFORMATION FOR SEQ ID NO: 155:                                                                                                                                             |    |
| <ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 25 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Single</li> <li>(D) TOPOLOGY: Linear</li> </ul> |    |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                               |    |
| <ul><li>(vi) ORIGINAL SOURCE:</li><li>(A) ORGANISM: Haemophilus influenzae</li></ul>                                                                                            |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 155:                                                                                                                                      |    |
| ACTGCTGTTG TAAAGAGGTT AAAAT                                                                                                                                                     | 25 |
| (2) INFORMATION FOR SEQ ID NO: 156:                                                                                                                                             |    |
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 20 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear                                                     |    |
| (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                               |    |
| <pre>(vi) ORIGINAL SOURCE:     (A) ORGANISM: Streptococcus pneumoniae</pre>                                                                                                     |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 156:                                                                                                                                      |    |
| ATTTGGTGAC GGGTGACTTT                                                                                                                                                           | 20 |

|          | /(う8                                                                                                                    |    |
|----------|-------------------------------------------------------------------------------------------------------------------------|----|
| (2) INFO | DRMATION FOR SEQ ID NO: 157:                                                                                            |    |
| (i)      | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 20 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear |    |
| (ii)     | MOLECULE TYPE: DNA (genomic)                                                                                            |    |
|          | ORIGINAL SOURCE: (A) ORGANISM: Streptococcus pneumoniae                                                                 |    |
| (xi)     | SEQUENCE DESCRIPTION: SEQ ID NO: 157:                                                                                   |    |
| GCTGAGG  | GATT TGTTCTTCTT                                                                                                         | 20 |
| (2) INFO | DRMATION FOR SEQ ID NO: 158:                                                                                            |    |
| (i)      | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 20 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear |    |
| (ii)     | MOLECULE TYPE: DNA (genomic)                                                                                            |    |
| (vi)     | ORIGINAL SOURCE: (A) ORGANISM: Streptococcus pneumoniae                                                                 |    |
| (xi)     | SEQUENCE DESCRIPTION: SEQ ID NO: 158:                                                                                   |    |
| GAGCGGT  | TTTC TATGATTGTA                                                                                                         | 20 |
| (2) INFO | DRMATION FOR SEQ ID NO: 159:                                                                                            |    |
| (i)      | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 20 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Single  (D) TOPOLOGY: Linear |    |
| (ii)     | MOLECULE TYPE: DNA (genomic)                                                                                            |    |
| (vi)     | ORIGINAL SOURCE: (A) ORGANISM: Streptococcus pneumoniae                                                                 |    |
| (xi)     | SEQUENCE DESCRIPTION: SEQ ID NO: 159:                                                                                   |    |
| ATCTTTC  | CCTT TCTTGTTCTT                                                                                                         | 20 |

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 18 bases
  - SUBSTITUTE SHEET (B)

PCT/CA95/00528 WO 96/08582

139

- (C) STRANDEDNESS: Single
- (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Moraxella catarrhalis
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 160:

#### GCTCAAATCA GGGTCAGC

- (2) INFORMATION FOR SEQ ID NO: 161:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 861 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRANDEDNESS: Double
    - (D) TOPOLOGY: Linear
  - (ii) MOLECULE TYPE: DNA
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 161:

| (602)      |              |            | ATTCCCTTTT   | TTGCGGCATT | 50  |
|------------|--------------|------------|--------------|------------|-----|
| ATGAGTATTC | AACATTTCCG   | 1010000    |              | GTAAAAGATG | 100 |
|            | GTTTTTGCTC   | ACCCAGAAAC | GCTGGTGAAA   |            |     |
| 110001100  | GTTGGGTGCA   | CGAGTGGGTT | ACATCGAACT   | GGATCTCAAC | 150 |
| CTGAAGATCA |              |            | GAAGAACGTT   | TTCCAATGAT | 200 |
| AGCGGTAAGA | TCCTTGAGAG   | TATGTGGCGC | _            | CGTGTTGACG | 250 |
| GAGCACTTTT | AAAGTTCTGC   |            |              | GAATGACTTG | 300 |
| CCGGGCAAGA | GCAACTCGGT   | CGCCGCATAC |              |            | 350 |
| GTTGAGTACT | CACCAGTCAC   | AGAAAAGCAT | CTTACGGATG   | GCATGACAGT |     |
|            | TGCAGTGCTG   | CCATAACCAT | GAGTGATAAC   | ACTGCGGCCA | 400 |
| AAGAGAATTA | _            | GGAGGACCGA | AGGAGCTAAC   | CGCTTTTTTG | 450 |
| ACTTACTTCT | GACAACGATC   |            | GATCGTTGGG   | AACCGGAGCT | 500 |
| CACAACATGG | GGGATCATGT   | AACTCGCCTT |              | CCTGCAGCAA | 550 |
| GAATGAAGCC | ATACCAAACG   | ACGAGCGTGA |              |            | 600 |
| TGGCAACAAC |              | CTATTAACTG | GCGAACTACT   | TACTCTAGCT |     |
|            |              | CTGGATGGAG | GCGGATAAAG   | TTGCAGGACC | 650 |
| TCCCGGCAAC | AATTAATAGA   |            |              | GATAAATCTG | 700 |
| ACTTCTGCGC |              |            |              |            | 750 |
| GAGCCGGTG  | A GCGTGGGTCT | CGCGGTATCA |              |            |     |
| GGTAAGCCC' |              |            |              |            |     |
|            | A CGAAATAGAC | AGATCGCTG  | A GATAGGTGCC | TCACTGATTA |     |
|            |              |            |              |            | 861 |
| AGCATTGGT  | A A          |            |              |            |     |

- (2) INFORMATION FOR SEQ ID NO: 162:
  - (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 918 base pairs
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 162:

| ATGTTAAATA | AGTTAAAAAT | CGGCACATTA | TTATTGCTGA | CATTAACGGC | 50  |
|------------|------------|------------|------------|------------|-----|
| TTGTTCGCCC | AATTCTGTTC | ATTCGGTAAC | GTCTAATCCG | CAGCCTGCTA | 100 |
| GTGCGCCTGT | GCAACAATCA | GCCACACAAG | CCACCTTTCA | ACAGACTTTG | 150 |
| GCGAATTTGG | AACAGCAGTA | TCAAGCCCGA | ATTGGCGTTT | ATGTATGGGA | 200 |
| TACAGAAACG | GGACATTCTT | TGTCTTATCG | TGCAGATGAA | CGCTTTGCTT | 250 |
| ATGCGTCCAC | TTTCAAGGCG | TTGTTGGCTG | GGGCGGTGTT | GCAATCGCTG | 300 |
| CCTGAAAAAG | ATTTAAATCG | TACCATTTCA | TATAGCCAAA | AAGATTTGGT | 350 |
| TAGTTATTCT | CCCGAAACCC | AAAAATACGT | TGGCAAAGGC | ATGACGATTG | 400 |
| CCCAATTATG | TGAAGCAGCC | GTGCGGTTTA | GCGACAACAG | CGCGACCAAT | 450 |
| TTGCTGCTCA | AAGAATTGGG | TGGCGTGGAA | CAATATCAAC | GTATTTTGCG | 500 |
| ACAATTAGGC | GATAACGTAA | CCCATACCAA | TCGGCTAGAA | CCCGATTTAA | 550 |
| ATCAAGCCAA | ACCCAACGAT | ATTCGTGATA | CGAGTACACC | CAAACAAATG | 600 |
| GCGATGAATT | TAAATGCGTA | TTTATTGGGC | AACACATTAA | CCGAATCGCA | 650 |
| AAAAACGATT | TTGTGGAATT | GGTTGGACAA | TAACGCAACA | GGCAATCCAT | 700 |
| TGATTCGCGC | TGCTACGCCA | ACATCGTGGA | AAGTGTACGA | TAAAAGCGGG | 750 |
| GCGGGTAAAT | ATGGTGTACG | CAATGATATT | GCGGTGGTTC | GCATACCAAA | 800 |
| TCGCAAACCG | ATTGTGATGG | CAATCATGAG | TACGCAATTT | ACCGAAGAAG | 850 |
| CCAAATTCAA | CAATAAATTA | GTAGAAGATG | CAGCAAAGCA | AGTATTTCAT | 900 |
| ACTTTACAGC | TCAACTAA   |            |            | . ,        | 918 |
|            |            |            |            |            |     |

- (2) INFORMATION FOR SEQ ID NO: 163:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 864 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRANDEDNESS: Double
    - (D) TOPOLOGY: Linear
  - (ii) MOLECULE TYPE: DNA
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 163:

| 2A2   >    | SL         | JBSTITU    | ITE SHE    | ET         |      |
|------------|------------|------------|------------|------------|------|
| GCCAGCTGTC | GGGCCGCGTA | GGCATGATAG | AAATGGATCT | GGCCAGCGGC | 150  |
| GGCGGTACAC |            |            |            |            |      |
| ATGCGTTATA | TTCGCCTGTG | TATTATCTCC | CTGTTAGCCA | CCCTGCCGCT | _5.0 |

|            |            |            |            | TGATGAGCAC | 200     |
|------------|------------|------------|------------|------------|---------|
| CGCACGCTGA | CCGCCTGGCG | CGCCGATGAA | CGCTTTCCCA |            | _       |
| CTTTAAAGTA | GTGCTCTGCG | GCGCAGTGCT | GGCGCGGGTG | GATGCCGGTG | 250     |
|            | GGAGCGAAAG | ATCCACTATC | GCCAGCAGGA | TCTGGTGGAC | 300     |
| ACGAACAGCT |            | ACACCTTGCC | GACGCAATGA | CGGTCGGCGA | 350     |
| TACTCGCCGG | TCAGCGAAAA |            |            |            | 400     |
| ACTCTGCGCC | GCCGCCATTA | CCATGAGCGA | TAACAGCGCC | GCCAATCTGC |         |
| TACTGGCCAC | CGTCGGCGGC | CCCGCAGGAT | TGACTGCCTT | TTTGCGCCAG | 450     |
| _          |            | CCTTGACCGC | TGGGAAACGG | AACTGAATGA | 500     |
| ATCGGCGACA |            | GCGACACCAC | TACCCCGGCC | AGCATGGCCG | 550     |
| GGCGCTTCCC |            |            | AGCGTCTGAG | CGCCCGTTCG | 600     |
| CGACCCTGCG | CAACGTTGGC | CTGACCAGCC |            | _          | • • • • |
| CAACGGCAGC | TGCTGCAGTG | GATGGTGGAC | GATCGGGTCG | CCGGACCGTT | 650     |
| GATCCGCTCC |            | CGGGCTGGTT | TATCGCCGAT | AAGACCGGAG | 700     |
|            |            | GGGATTGTCG | CCCTGCTTGG | CCCGAATAAC | 750     |
| CTGGCGAGCG | GGGTGCGCGC |            |            |            | 800     |
| AAAGCAGAGC | GCATTGTGGT | GATTTATCTG |            |            |         |
| GGCCGAGCGA | AATCAGCAAA | TCGCCGGGAT | CGGCAAGGCG | CTGTACGAGC | 850     |
|            | -          |            |            |            | 864     |
| ACTGGCAACG | CIAA       |            |            |            |         |

#### (2) INFORMATION FOR SEQ ID NO: 164:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 534 base pairs
  - (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double

  - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 164:

| ATGGACACAA | CCACGTCAC  | ATTGATACAC   | AAAATTCTAG    | CTGCGGCAGA | 50  |
|------------|------------|--------------|---------------|------------|-----|
|            | CTGCCGCTCT | <del>-</del> |               | ATCGATGCAC | 100 |
| TGAGCGAAAT | <u> </u>   | AAGCACGATG   | ATATTGATCT    | GACGTTTCCC | 150 |
| GGCTAGGGCG | TGTAACACGC |              | GTTGAAATGC    | TCGGCGGGCG | 200 |
| GGCGAGAGGC | GCGGCGAGCT | CGAGGCAATA   | •••           | GGGGATGAGT | 250 |
| CGTCATGGAG | GAGTTGGACT | ATGGATTCTT   | 1100001111111 |            | 300 |
| TACTTGACTG | CGAACCTGCT | TGGTGGGCAG   | ACGAAGCGTA    |            |     |
| GAGGCTCCGC | AGGGCTCGTG | CCCAGAGGCG   | GCTGAGGGCG    | TCATCGCCGG | 350 |
| GCGGCCAGTC | CGTTGTAACA | GCTGGGAGGC   | GATCATCTGG    | GATTACTTTT | 400 |
| ACTATGCCGA |            | CCAGTGGACT   | GGCCTACAAA    | GCACATAGAG | 450 |
|            |            |              | GCGGAAAAGG    | TTGAGGTCTT | 500 |
| TCCTACAGGC |            |              | СТАА          |            | 534 |
| GCGTGCCGCT | TTCAGGTCGC | GMINIGCOOC   | <b></b> -     |            |     |

- (2) INFORMATION FOR SEQ ID NO: 165:

- (A) LENGTH: 465 base pairs
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 165:

| ATGGGCATCA | TTCGCACATG | TAGGCTCGGC | CCTGACCAAG | TCAAATCCAT | 50  |
|------------|------------|------------|------------|------------|-----|
| GCGGGCTGCT | CTTGATCTTT | TCGGTCGTGA | GTTCGGAGAC | GTAGCCACCT | 100 |
| ACTCCCAACA | TCAGCCGGAC | TCCGATTACC | TCGGGAACTT | GCTCCGTAGT | 150 |
| AAGACATTCA | TCGCGCTTGC | TGCCTTCGAC | CAAGAAGCGG | TTGTTGGCGC | 200 |
| TCTCGCGGCT | TACGTTCTGC | CCAGGTTTGA | GCAGCCGCGT | AGTGAGATCT | 250 |
| ATATCTATGA | TCTCGCAGTC | TCCGGCGAGC | ACCGGAGGCA | GGGCATTGCC | 300 |
| ACCGCGCTCA | TCAATCTCCT | CAAGCATGAG | GCCAACGCGC | TTGGTGCTTA | 350 |
| TGTGATCTAC | GTGCAAGCAG | ATTACGGTGA | CGATCCCGCA | GTGGCTCTCT | 400 |
| ATACAAAGTT | GGGCATACGG | GAAGAAGTGA | TGCACTTTGA | TATCGACCCA | 450 |
| AGTACCGCCA | CCTAA      |            |            |            | 465 |

- (2) INFORMATION FOR SEQ ID NO: 166:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 861 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRANDEDNESS: Double
    - (D) TOPOLOGY: Linear
  - (ii) MOLECULE TYPE: DNA
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 166:

| ATGCATACG  | C GGAAGGCAAT | AACGGAGGCG | CTTCAAAAAC | TCGGAGTCCA | 50  |
|------------|--------------|------------|------------|------------|-----|
| AACCGGTGA  | C CTATTGATGG | TGCATGCCTC | ACTTAAAGCG | ATTGGTCCGG | 100 |
| TCGAAGGAG  | G AGCGGAGACG | GTCGTTGCCG | CGTTACGCTC | CGCGGTTGGG | 150 |
| CCGACTGGC  | A CTGTGATGGG | ATACGCATCG | TGGGACCGAT | CACCCTACGA | 200 |
| GGAGACTCG' | r aatggcgctc | GGTTGGATGA | CAAAACCCGC | CGTACCTGGC | 250 |
| CGCCGTTCG  | A TCCCGCAACG | GCCGGGACTT | ACCGTGGGTT | CGGCCTGCTG | 300 |
| AATCAGTTT  | C TGGTTCAAGC | cccccccc   | CGGCGCAGCG | CGCACCCCGA | 350 |
| TGCATCGAT  | G GTCGCGGTTG | GTCCACTGGC | TGAAACGCTG | ACGGAGCCTC | 400 |
| ACAAGCTCG  | G TCACGCCTTG | GGGGAAGGGT | CGCCCGTCGA | GCGGTTCGTT | 450 |
| CGCCTTGGC  | G GGAAGGCCCT | GCTGTTGGGT | GCGCCGCTAA | ACTCCGTTAC | 500 |
| CGCATTGCA  | C TACGCCGAGG | CGGTTGCCGA | TATCCCCAAC | AAACGGCGGG | 550 |
| TGACGTATG  | A GATGCCGATG | CTTGGAAGCA | ACGGCGAAGT | CGCCTGGAAA | 600 |

| ACGGCATCGG | ATTACGATTC | AAACGGCATT | CTCGATTGCT | TTGCTATCGA | 650 |
|------------|------------|------------|------------|------------|-----|
|            | GATGCGGTCG |            |            |            |     |
|            | AGAAGGTGTC |            |            |            |     |
|            | TCGTGACGTT |            |            |            |     |
|            | ATCGTGCCAG |            |            |            |     |
| CTTCAGGTTA |            |            |            |            | 861 |

- (2) INFORMATION FOR SEQ ID NO: 167:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 816 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRANDEDNESS: Double
    - (D) TOPOLOGY: Linear
  - (ii) MOLECULE TYPE: DNA
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 167:

| ATGACCGATT | TGAATATCCC | GCATACACAC | GCGCACCTTG | TAGACGCATT | 50  |
|------------|------------|------------|------------|------------|-----|
| TCAGGCGCTC | GGCATCCGCG | CGGGGCAGGC | GCTCATGCTG | CACGCATCCG | 100 |
| TTAAAGCAGT | GGGCGCGGTG | ATGGGCGGCC | CCAATGTGAT | CTTGCAGGCG | 150 |
| CTCATGGATG | CGCTCACGCC | CGACGGCACG | CTGATGATGT | ATGCGGGATG | 200 |
| GCAAGACATC | CCCGACTTTA | TCGACTCGCT | GCCGGACGCG | CTCAAGGCCG | 250 |
| TGTATCTTGA | GCAGCACCCA | CCCTTTGACC | CCGCCACCGC | CCGCGCCGTG | 300 |
| CGCGAAAACA | GCGTGCTAGC | GGAATTTTTG | CGCACATGGC | CGTGCGTGCA | 350 |
| TCGCAGCGCA | AACCCCGAAG | CCTCTATGGT | GGCGGTAGGC | AGGCAGGCCG | 400 |
| CTTTGCTGAC | CGCTAATCAC | GCGCTGGATT | ATGGCTACGG | AGTCGAGTCG | 450 |
| CCGCTGGCTA | AACTGGTGGC | AATAGAAGGA | TACGTGCTGA | TGCTTGGCGC | 500 |
| GCCGCTGGAT | ACCATCACAC | TGCTGCACCA | CGCGGAATAT | CTGGCCAAGA | 550 |
| TGCGCCACAA | GAACGTGGTC | CGCTACCCGT | GCCCGATTCT | GCGGGACGGG | 600 |
| CGCAAAGTGT | GGGTGACCGT | TGAGGACTAT | GACACCGGTG | ATCCGCACGA | 650 |
| CGATTATAGT | TTTGAGCAAA | TCGCGCGCGA | TTATGTGGCG | CAGGGCGGCG | 700 |
| GCACACGCGG | CAAAGTCGGT | GATGCGGATG | CTTACCTGTT | CGCCGCGCAG | 750 |
| GACCTCACAC |            | GCAGTGGCTT | GAATCACGGT | TCGGTGACTC | 800 |
| AGCGTCATAC |            |            |            |            | 816 |
|            |            |            |            |            |     |

- (2) INFORMATION FOR SEQ ID NO: 168:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 498 bas pairs
    - (B) TYPE: Nucleic acid
    - (C) STRANDEDNESS: Double
      (D) TOPOLOGY UBSTITUTE SHEET

- (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 168:

| ATGCTCTATG | AGTGGCTAAA | TCGATCTCAT | ATCGTCGAGT | GGTGGGGCGG | 50  |
|------------|------------|------------|------------|------------|-----|
| AGAAGAAGCA | CGCCCGACAC | TTGCTGACGT | ACAGGAACAG | TACTTGCCAA | 100 |
| GCGTTTTAGC | GCAAGAGTCC | GTCACTCCAT | ACATTGCAAT | GCTGAATGGA | 150 |
| GAGCCGATTG | GGTATGCCCA | GTCGTACGTT | GCTCTTGGAA | GCGGGGACGG | 200 |
| ATGGTGGGAA | GAAGAAACCG | ATCCAGGAGT | ACGCGGAATA | GACCAGTTAC | 250 |
| TGGCGAATGC | ATCACAACTG | GGCAAAGGCT | TGGGAACCAA | GCTGGTTCGA | 300 |
| GCTCTGGTTG | AGTTGCTGTT | CAATGATCCC | GAGGTCACCA | AGATCCAAAC | 350 |
| GGACCCGTCG | CCGAGCAACT | TGCGAGCGAT | CCGATGCTAC | GAGAAAGCGG | 400 |
| GGTTTGAGAG | GCAAGGTACC | GTAACCACCC | CAGATGGTCC | AGCCGTGTAC | 450 |
| ATGGTTCAAA | CACGCCAGGC | ATTCGAGCGA | ACACGCAGTG | ATGCCTAA   | 498 |

#### (2) INFORMATION FOR SEQ ID NO: 169:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 2007 base pairs

  - (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 169:

| ATGAAAAAGA | TAAAAATTGT   | TCCACTTATT  | TTAATAGTTG   | TAGTTGTCGG   | 50                |
|------------|--------------|-------------|--------------|--------------|-------------------|
| GTTTGGTATA | TATTTTTATG   | CTTCAAAAGA  | TAAAGAAATT   | AATAATACTA   | 100               |
| TTGATGCAAT | TGAAGATAAA   | AATTTCAAAC  | AAGTTTATAA   | AGATAGCAGT   | 150               |
| TATATTTCTA | AAAGCGATAA   | TGGTGAAGTA  | GAAATGACTG   | AACGTCCGAT   | 200               |
| AAAAATATAT | AATAGTTTAG   | GCGTTAAAGA  | TATAAACATT   | CAGGATCGTA   | 250               |
| AAATAAAAA  | AGTATCTAAA   | AATAAAAAAC  | GAGTAGATGC   | TCAATATAAA   | 300               |
| ATTAAAACAA | ACTACGGTAA   | CATTGATCGC  | AACGTTCAAT   | TTAATTTTGT   | 350               |
| TAAAGAAGAT | GGTATGTGGA   | AGTTAGATTG  | GGATCATAGC   | GTCATTATTC   | 400               |
| CAGGAATGCA | GAAAGACCAA   | AGCATACATA  | TTGAAAATTT   | AAAATCAGAA   | 450               |
| CGTGGTAAAA | TTTTAGACCG   | AAACAATGTG  | GAATTGGCCA   | ATACAGGAAC   | 500               |
| ACATATGAGA | TTAGGCATCG   | TTCCAAAGAA  | TGTATCTAAA   | AAAGATTATA   | 550               |
| AAGCAATCGC | TAAAGAACTA   | AGTATTTCTG  | AAGACTATAT   | CAACAACAAA   | 600               |
| TGGATCAAAA | TTGGGTACAA   | GATGATACCT  | TCGTTCCACT   | TTAAAACCGT   | 650               |
| TAAAAAAATG | -GATGAATATT- | -Taagtgattt | -CGCAAAAAAA- | TTTCATCTTA   | <del>-7</del> 00- |
| CAACTAATGA | AACAGAAAGT   | CGTAACTATC  | CTCTAGAAAA   | AGCGACTTCA   | 750               |
| CATCTATTAG | GTTATGTTGG   | TCCCATTAAC  | TCTGAAGAAT   |              | 800               |
|            |              |             |              | <del>-</del> |                   |

|               |              | ATGATGCAGT  | TATTGGTAAA  | AAGGGACTCG   | 850    |
|---------------|--------------|-------------|-------------|--------------|--------|
| AGAATATAAA    | GGCTATAAAG   |             | AAGATGGCTA  | TCGTGTCACA   | 900    |
| AAAAACTTTA    | CGATAAAAAG   | CTCCAACATG  |             | TAGAGAAAA    | 950    |
| ATCGTTGACG    | ATAATAGCAA   | TACAATCGCA  | CATACATTAA  |              |        |
| GAAAAAAGAT    | GGCAAAGATA   | TTCAACTAAC  | TATTGATGCT  | AAAGTTCAAA   | 1000   |
| AGAGTATTTA    | TAACAACATG   | AAAAATGATT  | ATGGCTCAGG  | TACTGCTATC   | 1050   |
| CACCCTCAAA    | CAGGTGAATT   | ATTAGCACTT  | GTAAGCACAC  | CTTCATATGA   | 1100   |
|               | TTTATGTATG   | GCATGAGTAA  | CGAAGAATAT  | AATAAATTAA   | 1150   |
| CGTCTATCCA    | _            | CTGCTCAACA  | AGTTCCAGAT  | TACAACTTCA   | 1200   |
| CCGAAGATAA    | AAAAGAACCT   |             |             | талаталсал   | 1250   |
| CCAGGTTCAA    |              | ATTAACAGCA  | CGATGGTAAA  | GGTTGGCAAA   | 1300   |
| AACATTAGAC    | GATAAAACAA   | GTTATAAAAT  |             | AGTGGTAAAT   | 1350   |
| AAGATAAATC    | TTGGGGTGGT   | TACAACGTTA  |             |              | 1400   |
| GGTAATATCG    | ACTTAAAACA   | AGCAATAGAA  |             |              |        |
| TGCTAGAGTA    |              | TAGGCAGTAA  | GAAATTTGAA  |              | 1450   |
| AAAAACTAGG    |              | GATATACCA   | GTGATTATCC  | ATTTTATAAT   | 1500   |
| <del></del> - |              |             | GAAATATTAT  | TAGCTGATTC   | 1550   |
| GCTCAAATTI    |              |             |             | ATCCTTTCAA   | 1600   |
| AGGTTACGG!    |              |             |             |              | 1650   |
| TCTATAGCG     |              |             |             |              |        |
| AAAGACACG     | A AAAACAAAGI |             |             |              |        |
| TATCAATCT     | A TTAAATGAT  |             |             |              |        |
| AAGAAGATA     | T TTATAGATC  | TATGCAAAC   |             |              |        |
| GCAGAACTC     |              | A AGGAGAAAG | T GGCAGACAA |              |        |
| ТАТАТСАТА     |              | A ATCCAAACA | T GATGATGGC | T ATTAATGTTA |        |
|               |              |             | T ACAATGCCA | A AATCTCAGG  | 1950   |
| AAGATGTAC     |              |             |             | T ACGATATAG  | A 2000 |
| AAAGTGTAT     | G ATGAGCIAL  |             |             |              | 2007   |
| ТСААТАА       |              |             |             |              |        |

- (2) INFORMATION FOR SEQ ID NO: 170:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 2607 base pairs
    - TYPE: Nucleic acid (B)
    - STRANDEDNESS: Double (C)
    - TOPOLOGY: Linear (D)
  - (ii) MOLECULE TYPE: DNA
  - SEQUENCE DESCRIPTION: SEQ ID NO: 170: (xi)

ATGAATAACA TCGGCATTAC TGTTTATGGA TGTGAGCAGG ATGAGGCAGA 50 TGCATTCCAT GCTCTTTCGC CTCGCTTTGG CGTTATGGCA ACGATAATTA 100 ACGCCAACGT GTCGGAATCC AACGCCAAAT CCGCGCCTTT CAATCAATGT 150 ATCAGTGTGG GACATAAATC AGAGATTTCC CCTCTATTC TTTTGCGCT 200
SUBSTITUTE SHEETTGCGCT 200

| GAAGAGAGCC | GGTGTGAAAT | ATATTTCTAC | CCGAAGCATC | GGCTGCAATC | 250  |
|------------|------------|------------|------------|------------|------|
| ATATAGATAC | 121210101  | AAGAGAATGG | GCATCACTGT |            |      |
| GCGTACTCGC | CGGATAGCGT | TGCCGATTAT | ACTATGATGO | _          | •    |
| GGCAGTACGC | AACGTAAAAT | CGATTGTGCG | CTCTGTGGAA | AAACATGATT |      |
| TCAGGTTGGA | CAGCGACCGT | GGCAAGGTAC | TCAGCGACAT | GACAGTTGGT |      |
| GTGGTGGGAA |            | AGGCAAAGCG | GTTATTGAGC |            | 500  |
| ATTTGGATGT |            | CTTATAGTCG | CAGCCGAAGT | ATAGAGGTAA | 550  |
| ACTATGTACC | GTTTGATGAG | TTGCTGCAAA | ATAGCGATAT | CGTTACGCTT | 600  |
| CATGTGCCGC | TCAATACGGA | TACGCACTAT | ATTATCAGCC | ACGAACAAAT | 650  |
| ACAGAGAATG | AAGCAAGGAG | CATTTCTTAT | CAATACTGGG | CGCGGTCCAC | 700  |
| TTGTAGATAC | CTATGAGTTG | GTTAAAGCAT | TAGAAAACGG | GAAACTGGGC | 750  |
| GGTGCCGCAT |            | GGAAGGAGAG | GAAGAGTTTT | TCTACTCTGA | 800  |
| TTGCACCCAA | AAACCAATTG | ATAATCAATT | TTTACTTAAA | CTTCAAAGAA | 850  |
| TGCCTAACGT | GATAATCACA | CCGCATACGG | CCTATTATAC | CGAGCAAGCG | 900  |
| TTGCGTGATA | CCGTTGAAAA | AACCATTAAA | AACTGTTTGG | ATTTTGAAAG | 950  |
| GAGACAGGAG | CATGAATAGA | ATAAAAGTTG | CAATACTGTT | TGGGGGTTGC | 1000 |
| TCAGAGGAGC | ATGACGTATC | GGTAAAATCT | GCAATAGAGA | TAGCCGCTAA | 1050 |
| CATTAATAAA |            | AGCCGTTATA | CATTGGAATT | ACGAAATCTG | 1100 |
|            | AATGTGCGAA | AAACCTTGCG | CGGAATGGGA | AAACGACAAT | 1150 |
| TGCTATTCAG | CTGTACTCTC | GCCGGATAAA | AAAATGCACG | GATTACTTGT | 1200 |
| TAAAAAGAAC | CATGAATATG | AAATCAACCA | TGTTGATGTA | GCATTTTCAG | 1250 |
| CTTTGCATGG | CAAGTCAGGT | GAAGATGGAT | CCATACAAGG | TCTGTTTGAA | 1300 |
| TTGTCCGGTA | TCCCTTTTGT | AGGCTGCGAT | ATTCAAAGCT | CAGCAATTTG | 1350 |
| TATGGACAAA | TCGTTGACAT | ACATCGTTGC | GAAAAATGCT | GGGATAGCTA | 1400 |
| CTCCCGCCTT | TTGGGTTATT | AATAAAGATG | ATAGGCCGGT | GGCAGCTACG | 1450 |
| TTTACCTATC | CTGTTTTTGT | TAAGCCGGCG |            | CATCCTTCGG | 1500 |
| TGTGAAAAA  |            | CGGACGAATT |            | ATTGAATCGG | 1550 |
| CAAGACAATA |            | ATCTTAATTG |            | TTCGGGCTGT | 1600 |
| GAGGTCGGTT |            |            | GCCGCGTTAG |            | 1650 |
| GGTGGACCAA |            |            | CTTTCGTATT | CATCAGGAAG | 1700 |
| TCGAGCCGGA |            |            | TTATAACCGT | TCCCGCAGAC | 1750 |
| CTTTCAGCAG |            | ACGGATACAG | GAAACGGCAA | AAAAAATATA | 1800 |
| TAAAGCGCTC |            | GTCTAGCCCG |            | TTTTTACAAG | 1850 |
| ATAACGGCCG |            | AACGAAGTCA |            | CGGTTTCACG | 1900 |
| TCATACAGTC |            | TATGATGGCC |            | TTGCACTTCC | 1950 |
| CGAACTGATT |            | TCGTATTAGC |            | TGATAAGCAT | 2000 |
| GGAAATAGGA | TTTACTTTTT | TAGATGAAAT | AGTACACGGT | GTTCGTTGGG | 2050 |

PCT/CA95/00528 W 96/08582

## 147

|                             |              |            |            | GGTTGACGGT     | 2100 |
|-----------------------------|--------------|------------|------------|----------------|------|
| ACGCTAAATA                  | TGCCACTTGG   | GATAATTTCA | CCGGMan    |                | 2150 |
|                             | ATCGCATTGT   | AGGGACATAC | GAGTTGGCTG | AATCGCTTTT     |      |
| INIOMIO                     | -            | CTACCCAAGG | GTACGGATTG | CTTCTATGGG     | 2200 |
| GAAGGCAAAA                  | GAACTGGCTG   |            | GTTTTATGCA | ATGGGCTGCA     | 2250 |
| ACGGTTACCG                  | TCCTAAGCGT   | GCTGTAAACT |            |                | 2300 |
| CAGCCGGAAA                  | ATAACCTGAC   | AAAGGAAAGT | TATTATCCCA | ATATTGACCG     |      |
| <u></u>                     | •            | GATACGTGGC | TTCAAAATCA | AGCCATAGCC     | 2350 |
| AACTGAGATG                  | ATTTCAAAAG   | GAIACOTOS  |            | GGGTGAGCTT     | 2400 |
| GCGGCAGTGC                  | CATTGATCTT   | ACGCTTTATC |            | CTCATCATGC     | 2450 |
| GTACCAATGG                  |              | TGATTTTATG | GATGAACGCT | <del>-</del> - |      |
|                             |              | ATGAAGCGCA | AAATCGCAGA | CGTTTGCGCT     | 2500 |
|                             | ATATCATGCA   |            |            | ATGGTGGCAC     | 2550 |
| CCATCATGGA                  | AAACAGTGGG   | TTTGAAGCAT |            | ATTTCCCCGT     | 2600 |
| <b>ጥ</b> ልጥርጥልጥጥ <b>ል</b> A | GAGACGAACC   | ATACCCCAAT | AGCTATTTG  | ATTICCCO       | 2607 |
|                             | <del>-</del> |            |            |                | 2607 |
| TAAATAA                     |              |            |            |                |      |

# (2) INFORMATION FOR SEQ ID NO: 171:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1288 base pairs
  - TYPE: Nucleic acid (B)
  - (C) STRANDEDNESS: Double
  - TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 171:

| (YI) DDE-             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |       |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|
| CCCAACGACG            | GGCTGCTGCC GGCCATCAGC GG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ACGCAGGG   | 50    |
| GGATCCATCA GGCAACGACG | GTTCGATGCG GCACCGATGG CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TTCGCGCA   | 100   |
| AGGACTTTCC GCAACCGGCC | comes consecretas CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CTCACTAG   | 150   |
| GGGGTAGTGA ATCCGCCAGG | ATTGACTIGE GCIGCOLLO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CCCCAACT   | 200   |
| TGAGGGGCGG CAGCGCATCA | AGCGGTGAGC GCACTGGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TGGCCGAG   | 250   |
| TTCAGCACAT GCGTGTAAAT | CATCGTCGTA GAGACOTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 300   |
| 110.00.00.00.00       | TGTCGTAACC GCTGCGGAGC A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AGGCCGTCG  | • • • |
| CAGNICOLO             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATGCCTGCT  | 350   |
| CGAACGAGTG GCGGAGGGTC | A COTOTOG C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ATACATGTG  | 400   |
| TGTTCTACGG CACGTTTGA  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TGTGCTGCG  | 450   |
| ATGGCGACGC ACGACACCG  | TCCGTGGATC GGTCGALLOG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TACTTCCGC  | 500   |
| CAAAAACCCA GAACCACGG  | C CAGGAATGCC CGGCGCGCGCGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CTGGTCCTT  | 550   |
| TCAAGGGCGT CGGGAAGCG  | C AACGCCGCTG CGGCCCTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 600   |
| 1CANCOCCCC            | C GCGACAGCTG CTCGCGCAGG C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TGGGTGCCA  |       |
| CAGCCHOULE            | TOTAL  | CCCTCCCGC  | 650   |
| AGCTCTCGGG TAACATCAA  | TOTAL TOTAL TOTAL CONTROL OF THE CON | CAGTTGCAA  | 700   |
| ACGATGATCG TGCCGTGAT  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CGAACAAAC  | 750   |
| ACCCTCACTG ATCCGCATG  | C CCGTTCCATA CAGAMOUTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ATCCGGGGTC | 800   |
| GATGCTCGCC TTCCAGAA   | A CCGAGGATGC GASCOILE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | • • • |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TCTCCTGAAG | 650   |
|                       | STITUTE SHEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |       |
| WO 9608582A2 1 >      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |       |

| CCAGGGCAGA | TCCGTGCACA | GCACCTTGCC | GTAGAAGAAC | AGCAAGGCCG | 900  |
|------------|------------|------------|------------|------------|------|
| CCAATGCCTG | ACGATGCGTG | GAGACCGAAA | CCTTGCGCTC | GTTCGCCAGC | 950  |
| CAGGACAGAA | ATGCCTCGAC | TTCGCTGCTG | CCCAAGGTTG | CCGGGTGACG | 1000 |
| CACACCGTGG | AAACGGATGA | AGGCACGAAC | CCAGTGGACA | TAAGCCTGTT | 1050 |
| CGGTTCGTAA | GCTGTAATGC | AAGTAGCGTA | TGCGCTCACG | CAACTGGTCC | 1100 |
| AGAACCTTGA | CCGAACGCAG | CGGTGGTAAC | GGCGCAGTGG | CGGTTTTCAT | 1150 |
| GGCTTGTTAT | GACTGTTTTT | TTGTACAGTC | TATGCCTCGG | GCATCCAAGC | 1200 |
| AGCAAGCGCG | TTACGCCGTG | GGTCGATGTT | TGATGTTATG | GAGCAGCAAC | 1250 |
| GATGTTACGC | AGCAGGGCAG | TCGCCCTAAA | ACAAAGTT   |            | 1288 |

#### (2) INFORMATION FOR SEQ ID NO: 172:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1650 base pairs
  - (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double

  - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 172:

| GTTAGATGCA | CTAAGCACAT | AATTGCTCAC | AGCCAAACTA | TCAGGTCAAG | 50   |
|------------|------------|------------|------------|------------|------|
| TCTGCTTTTA | TTATTTTTAA | GCGTGCATAA | TAAGCCCTAC | ACAAATTGGG | 100  |
| AGATATATCA | TGAAAGGCTG | GCTTTTTCTT | GTTATCGCAA | TAGTTGGCGA | 150  |
| AGTAATCGCA | ACATCCGCAT | TAAAATCTAG | CGAGGGCTTT | ACTAAGCTTG | 200  |
| CCCCTTCCGC | CGTTGTCATA | ATCGGTTATG | GCATCGCATT | TTATTTTCTT | 250  |
| TCTCTGGTTC | TGAAATCCAT | CCCTGTCGGT | GTTGCTTATG | CAGTCTGGTC | 300  |
| GGGACTCGGC | GTCGTCATAA | TTACAGCCAT | TGCCTGGTTG | CTTCATGGGC | 350  |
| AAAAGCTTGA | TGCGTGGGGC | TTTGTAGGTA | TGGGGCTCAT | AATTGCTGCC | 400  |
| TTTTTGCTCG | CCCGATCCCC | ATCGTGGAAG | TCGCTGCGGA | GGCCGACGCC | 450  |
| ATGGTGACGG | TGTTCGGCAT | TCTGAATCTC | ACCGAGGACT | CCTTCTTCGA | 500  |
| TGAGAGCCGG | CGGCTAGACC | CCGCCGGCGC | TGTCACCGCG | GCGATCGAAA | 550  |
| TGCTGCGAGT | CGGATCAGAC | GTCGTGGATG | TCGGACCGGC | CGCCAGCCAT | 600  |
| CCGGACGCGA | GGCCTGTATC | GCCGGCCGAT | GAGATCAGAC | GTATTGCGCC | 650  |
| GCTCTTAGAC | GCCCTGTCCG | ATCAGATGCA | CCGTGTTTCA | ATCGACAGCT | 700  |
| TCCAACCGGA | AACCCAGCGC | TATGCGCTCA | AGCGCGGCGT | GGGCTACCTG | 750  |
| AACGATATCC | AAGGATTTCC | TGACCCTGCG | CTCTATCCCG | ATATTGCTGA | 800  |
| GGCGGACTGC | AGGCTGGTGG | TTATGCACTC | AGCGCAGCGG | GATGGCATCG | 850  |
| CCACCCGCAC | CGGTCACCTT | CGACCCGAAG | ACGCGCTCGA | CGAGATTGTG | 900  |
| CGGTTCTTCG | AGGCGCGGGT | TTCCGCCTTG | CGACGGAGCG | GGGTCGCTGC | 950  |
| CGACCGGCTC | ATCCTCGATC | CGGGGATGGG | ATTTTTCTTG | AGCCCCGCAC | 1000 |
|            |            |            |            |            |      |

PCT/CA95/00528 WO 96/08582

#### 149

| CGGAAACATC | GCTGCACGTG | CTGTCGAACC   | TTCAAAAGCT | GAAGTCGGCG | 1050 |
|------------|------------|--------------|------------|------------|------|
| TTGGGGCTTC |            | CTCGGTGTCG   | CGGAAATCCT | TCTTGGGCGC | 1100 |
|            |            |              | TCCAGCGAGC | CTTGCGGCGG | 1150 |
| CACCGTTGGC |            | GGCGCTGACT   | ACGTCCGCAC | CCACGCGCCT | 1200 |
| AACTTCACGC |            |              | GAAACCCTCG | CGAAATTTCG | 1250 |
| GGAGATCTGC | GAAGCGCAAT |              |            | CATTCACCTT | 1300 |
| CAGTCGCGAC | GCCAGAGACC |              | TCATGCCTAG |            | 1350 |
| CCGGCCGCCC | GCTAGCGGAC |              | TTCCGCGAAG | GTGGGCGCAG |      |
| ACATGCTGGG | CTCGTCAGGA | TCAAACTGCA   | CTATGAGGCG | GCGGTTCATA | 1400 |
| = -        | GGAGCGAATG | GACAGCGAGG   | AGCCTCCGAA | CGTTCGGGTC | 1450 |
| •          | GTGATATCGA | CGAGGTTGTG   | CGGCTGATGC | ACGACGCTGC | 1500 |
|            |            | GAACGCCCGC   |            | GCGCGGATCG | 1550 |
| GGCGTGGATG |            | <del>-</del> | GATCCGAGCT | CCTAGTCGCG | 1600 |
| ACCGGACATT | CGCGGAGACC |              |            |            | 1650 |
| AGTTGCAGCG | ACGGCATCGT | CGGCTGTTGC   | ACCITGICGG |            |      |

## (2) INFORMATION FOR SEQ ID NO: 173:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 630 base pairs
  - (B) TYPE: Nucleic acid
    (C) STRANDEDNESS: Double
    (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 173:

|                   | ATCCTATGAA | AATGTATCCT     | ATAGAAGGAA | ACAAATCAGT | 50  |
|-------------------|------------|----------------|------------|------------|-----|
| ATGGGTCCGA        |            | TAGAAAAATT     | AGAAAATGTT | GAGGTTGGAG | 100 |
| <u>ACAATTTATC</u> | AAACCTATTT |                | AAACTTTTGA | _          | 150 |
| AATACTCATA        | TTATGATTCT | Michael        |            | GTAAATTTTG | 200 |
| TTATATCATT        | ATCCAATCTT | AAACGATAAG     | TTAAAAATAG |            |     |
| CTCAATAGGA        | CCAGGTGTAA | CTATTATTAT     | GAATGGAGCA | AATCATAGAA | 250 |
| TGGATGGCTC        | AACATATCCA | TTTAATTTAT     | TTGGTAATGG | ATGGGAGAAA | 300 |
|                   | AATTAGATCA | ACTACCTATT     | AAGGGGGATA | CAATAATAGG | 350 |
| CATATGCCAA        |            | AAGATGTTGT     | AATTATGCCA | GGAGTAAAAA | 400 |
| TAATGATGTA        |            |                | CTGTTGTTGT | AAAAGATATA | 450 |
| TCGGGGATGG        | TGCAATAGTA | GCTGCTAATT     |            | TAAAACAAAG | 500 |
| GCGCCATACA        | TGTTAGCTGG | AGGAAATCCT     | GCTAACGAAA |            |     |
| ATTTGATCAA        | GATACAATAA | ATCAGCTGCT     | TGATATAAAA | TGGTGGAATT | 550 |
|                   |            | GAGAATATAG     | ATAAAATTCT | TGATAATAGC | 600 |
| GGCCAATAGA        |            |                |            |            | 630 |
| ATCATTAGAG        | AAGTCATAIG | Old a de de de |            |            |     |

- (2) INFORMATION FOR SEQ ID NO: 174:
  - (i) SEQUENCE CHARACTERISTICS:

# SUBSTITUTE SHEET

- (A) LENGTH: 1440 base pairs(B) TYPE: Nucleic acid(C) STRANDEDNESS: Double

- (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 174:

| ATGAATATAG | TTGAAAATGA | AATATGTATA | AGAACTTTAA | TAGATGATGA | 50     |
|------------|------------|------------|------------|------------|--------|
| TTTTCCTTTG | ATGTTAAAAT | GGTTAACTGA | TGAAAGAGTA | TTAGAATTTT | 100    |
| ATGGTGGTAG | AGATAAAAA  | TATACATTAG | AATCATTAAA | AAAACATTAT | 150    |
| ACAGAGCCTT | GGGAAGATGA | AGTTTTTAGA | GTAATTATTG | AATATAACAA | 200    |
| TGTTCCTATT | GGATATGGAC | AAATATATAA | AATGTATGAT | GAGTTATATA | 250    |
| CTGATTATCA | TTATCCAAAA | ACTGATGAGA | TAGTCTATGG | TATGGATCAA | 300    |
| TTTATAGGAG | AGCCAAATTA | TTGGAGTAAA | GGAATTGGTA | CAAGATATAT | 350    |
| TAAATTGATT | TTTGAATTTT | TGAAAAAAGA | AAGAAATGCT | AATGCAGTTA | 400    |
| TTTTAGACCC | TCATAAAAAT | AATCCAAGAG | CAATAAGGGC | ATACCAAAAA | 450    |
| TCTGGTTTTA | GAATTATTGA | AGATTTGCCA | GAACATGAAT | TACACGAGGG | 500    |
| CAAAAAAGAA | GATTGTTATT | TAATGGAATA | TAGATATGAT | GATAATGCCA | 550    |
| CAAATGTTAA | GGCAATGAAA | TATTTAATTG | AGCATTACTT | TGATAATTTC | 600    |
| AAAGTAGATA | GTATTGAAAT | AATCGGTAGT | GGTTATGATA | GTGTGGCATA | 650    |
| TTTAGTTAAT | AATGAATACA | TTTTTAAAAC | AAAATTTAGT | ACTAATAAGA | 700    |
| AAAAAGGTTA | TGCAAAAGAA | AAAGCAATAT | ATAATTTTTT | AAATACAAAT | 750    |
| TTAGAAACTA | ATGTAAAAAT | TCCTAATATT | GAATATTCGT | ATATTAGTGA | 800    |
| TGAATTATCT | ATACTAGGTT | ATAAAGAAAT | TAAAGGAACT | TTTTTAACAC | 850    |
| CAGAAATTTA | TTCTACTATG | TCAGAAGAAG | AACAAAATTT | GTTAAAACGA | 900    |
| GATATTGCCA | GTTTTTTAAG | ACAAATGCAC | GGTTTAGATT | ATACAGATAT | 950    |
| TAGTGAATGT | ACTATTGATA | ATAAACAAAA | TGTATTAGAA | GAGTATATAT | 1000   |
| TGTTGCGTGA | AACTATTTAT | AATGATTTAA | CTGATATAGA | AAAAGATTAT | 1050   |
| ATAGAAAGTT | TTATGGAAAG | ACTAAATGCA | ACAACAGTTT | TTGAGGGTAA | 1100   |
| AAAGTGTTTA | TGCCATAATG | ATTTTAGTTG | TAATCATCTA | TTGTTAGATG | 1150   |
| GCAATAATAG | ATTAACTGGA | ATAATTGATT | TTGGAGATTC | TGGAATTATA | 1200   |
| GATGAATATT | GTGATTTTAT | ATACTTACTT | GAAGATAGTG | AAGAAGAAAT | 1250   |
| AGGAACAAAT | TTTGGAGAAG | ATATATTAAG | AATGTATGGA | AATATAGATA | 1300   |
| TTGAGAAAGC | AAAAGAATAT | CAAGATATAG | TTGAAGAATA | TTATCCTATT | 1350   |
| GAAACTATTG | TTTATGGAAT | TAAAAATATT | AAACAGGAAT | TTATCGAAAA | 1400   |
| TGGTAGAAAA | GAAATTTATA | AAAGGACTTA | TAAAGATTGA |            | _1440_ |
|            |            |            |            |            |        |

(2) INFORMATION FOR SEQ ID NO: 175:

PCT/CA95/00528

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 660 base pairs
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 175:

|             | ACAATGACCA | TGGACCTGAT | CCCGAAAATA | TTTTACCGAT | 50  |
|-------------|------------|------------|------------|------------|-----|
| 11Grant 11. | CGGAATCTTC | AATTTATAAA | ACCTACTATA | ACGAACGAAA | 100 |
| AAAAGGGAAT  |            | TCTTATTATG | ATAGTAAGCG | AGGAGAATCC | 150 |
| ACATTTTGGT  | GGGGGAATAT | TCATTATGAA | GTGATTGGAG | ATAAGTTGAT | 200 |
| TTTGAAGATC  | AAGTCTTATA | 200000000  | AACAACATTT | ATTATGAATG | 250 |
| TATAGGAAGA  | TTTTGTTCAA | TTGGTCCCGG | ATCCTTTTCA | TCTATTCAGG | 300 |
| GTGCAAACCA  | TCGGATGGAT | GGATCAACAT |            | CCTTGAAAGG | 350 |
| ATGGGTTGGG  | AGAAGTATAT | GCCTTCCTTA | AAAGATCTTC | GTAACCATTA | 400 |
| GGACATTGAA  | ATTGGAAATG | ATGTATGGAT | AGGTAGAGAT |            | 450 |
| TGCCTGGGGT  | GAAAATTGGG | GACGGGGCAA |            | AGAAGCTGTT | 500 |
| GTCACAAAGA  | ATGTTGCTCC | CTATTCTATT | GTCGGTGGAA | ATCCCTTAAA |     |
| ATTTATAAGA  | AAAAGGTTTT | CTGATGGAGT | TATCGAAGAA | TGGTTAGCTT | 550 |
| TACAATGGTG  | GAATTTAGAT | ATGAAAATTA | TTAATGAAAA |            | 600 |
| ATAATAAATG  |            | AATGCTGAAG | AGAAAAAGAA | AACTTCTAGA | 650 |
| TGACACTTGA  |            |            |            |            | 660 |
| IGNOROLION  | •          |            |            |            |     |

- (2) INFORMATION FOR SEQ ID NO: 176:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 1569 base pairs
    - (B) TYPE: Nucleic acid
    - (C) STRANDEDNESS: Double
    - (D) TOPOLOGY: Linear
  - (ii) MOLECULE TYPE: DNA
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 176:

|             | mamma CACCC  | ACTTAATATA | AAACATTATG  | TTCAAGATCG  | 50  |
|-------------|--------------|------------|-------------|-------------|-----|
| ATGAAAATAA  | 101111011000 | GCCTAAAGAT |             |             | 100 |
| TTTATTGTTG  |              |            |             |             | 150 |
| GTTTAATTGG  | TAAAAATGGA   | AGTGGAAAAA | CAACGITACT  | TOTAL STATE | 200 |
| TATAAAAAAA  |              | AGAAGGTATT |             |             | 250 |
| тсаасттатт  | CCTCAATTGA   | AGCTCATAGA | ATCAACTAAA  | AGTGGTGGTG  |     |
| 10/21011111 | AAACTATATT   | CGGCAAGCGC | TTGATAAAAA  | TCCAGAACTG  | 300 |
| AAGTAACACG  | ACC 100 100  | AACUAACUAA | GAPAAPAROTT | TATAGAAAA   | 350 |
| CTATTAGCAG  | ATGAACCAAC   | BSTITE     | ILE 2UI     |             |     |

| ATTAGAACAG         | GATTTAAAAA | ATTGGCATGG        | AGCATTTATT | ATAGTTTCAC | 400  |
|--------------------|------------|-------------------|------------|------------|------|
| ATGATCGCGC         | TTTTTTAGAT | <b>AACTTGTGTA</b> | CTACTATATG | GGAAATTGAC | 450  |
| GAGGGAAGAA         | TAACTGAATA | TAAGGGGAAT        | TATAGTAACT | ATGTTGAACA | 500  |
| <b>AAAA</b> GAATTA | GAAAGACATC | GAGAAGAATT        | AGAATATGAA | AAATATGAAA | 550  |
| AAGAAAAGAA         | ACGATTGGAA | AAAGCTATAA        | ATATAAAAGA | ACAGAAAGCT | 600  |
| CAACGAGCAA         | CTAAAAAACC | GAAAAACTTA        | AGTTTATCTG | AAGGCAAAAT | 650  |
| AAAAGGAGCA         | AAGCCATACT | TTGCAGGTAA        | GCAAAAGAAG | TTACGAAAA  | 700  |
| CTGTAAAATC         | TCTAGAAACC | AGACTAGAAA        | AACTTGAAAG | CGTCGAAAAG | 750  |
| AGAAACGAAC         | TTCCTCCACT | TAAAATGGAT        | TTAGTGAACT | TAGAAAGTGT | 800  |
| <b>AAAAA</b> ATAGA | ACTATAATAC | GTGGTGAAGA        | TGTCTCGGGT | ACAATTGAAG | 850  |
| GACGGGTATT         | GTGGAAAGCA | AAAAGTTTTA        | GTATTCGCGG | AGGAGACAAG | 900  |
| ATGGCAATTA         | TCGGATCTAA | TGGTACAGGA        | AAGACAACGT | TTATTAAAAA | 950  |
| AATTGTGCAT         | GGGAATCCTG | GTATTTCATT        | ATCGCCATCT | GTCAAAATCG | 1000 |
| GTTATTTTAG         | ССААААААТА | GATACATTAG        | AATTAGATAA | GAGCATTTTA | 1050 |
| GAAAATGTTC         | AATCTTCTTC | ACAACAAAAT        | GAAACTCTTA | TTCGAACTAT | 1100 |
| <b>TCTAGCTAGA</b>  | ATGCATTTTT | TTAGAGATGA        | TGTTTATAAA | CCAATAAGTG | 1150 |
| <b>PCTTAAGTGG</b>  | TGGAGAGCGA | GTTAAAGTAG        | CACTAACTAA | AGTATTCTTA | 1200 |
| AGTGAAGTTA         | ATACGTTGGT | ACTAGATGAA        | CCAACAAACT | TTCTTGATAT | 1250 |
| GGAAGCTATA         | GAGGCGTTTG | AATCTTTGTT        | AAAGGAATAT | AATGGCAGTA | 1300 |
| PAATCTTTGT         | ATCTCACGAT | CGTAAATTTA        | TCGAAAAAGT | AGCCACTCGA | 1350 |
| ATAATGACAA         | TTGATAATAA | AGAAATAAAA        | ATATTTGATG | GCACATATGA | 1400 |
| ACAATTTAAA         | CAAGCTGAAA | AGCCAACAAG        | GAATATTAAA | GAAGATAAAA | 1450 |
| AACTTTTACT         | TGAGACAAAA | ATTACAGAAG        | TACTCAGTCG | ATTGAGTATT | 1500 |
| SAACCTTCGG         | AAGAATTAGA | ACAAGAGTTT        | CAAAACTTAA | TAAATGAAAA | 1550 |
| AAGAAATTTG         | GATAAATAA  |                   |            |            | 1569 |

- (2) INFORMATION FOR SEQ ID NO: 177:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 1467 base pairs (B) TYPE: Nucleic acid

    - (C) STRANDEDNESS: Double
    - (D) TOPOLOGY: Linear
  - (ii) MOLECULE TYPE: DNA
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 177:

ATGGAACAAT ATACAATTAA ATTTAACCAA ATCAATCATA AATTGACAGA TTTACGATCA CTTAACATCG ATCATCTTTA TGCTTACCAA TTTGAAAAAA 100

|            |            | GGTACTGGTA        | AAACCACATT  | ACTAAATATG   | 150    |
|------------|------------|-------------------|-------------|--------------|--------|
| IAGCILCI   | 100000     | AGAATCTGGA        |             | CGAATGGCGA   | 200    |
| ATTGCTCAAA | AAACAAAACC |                   | TGTGGAAAAT  | GATTTTAACA   | 250    |
| AATTCAATAT | TTTGAACAGC | 111210111         | ATATACCTAT  | GCATACAACC   | 300    |
| CGTTAGACGG | TAGTTTAATG | MOTOLITICA        | TATAAATTAC  | GTAATGTCAT   | 350    |
| GACAGTATGA | GTGGTGGTGA | And a contract    |             | AATCACTTGG   | 400    |
| ATCAAATTAT | AGTCCGATAT | Incara            | TGAACCTACA  | TTACTATGGT   | 450    |
| ATAAAATTGG | TAAAGATTAT | CTGAATAATA        |             | AAATTGCTGA   | 500    |
| ACTTTAATTA | TAGTAAGTCA | CGATAGAGCA        |             | TTTAAAGGTA   | 550    |
| CACAATTTGG | GATATACAAG | AAGATGGCAC        |             |              | 600    |
| ATTACACACA | GTATCAAAAT |                   | AAGAACAGTT  | AGAACAACAA   |        |
| CGTAAATATG | AACAGTATAT |                   | CAAAGATTGT  | CCCAAGCCAG   | 650    |
| TAAAGCTAAA | CGAAATCAAG | CGCAACAAAT        | GGCACAAGCA  | TCATCAAAAC   | 700    |
| AAAAAAAAA  |            | CCAGATCGTT        | TAAGTGCATC  | AAAAGAAAAA   | 750    |
| GGCACGGTTG |            | TCAAAAACAA        | GCTAAGCATA  |              | 800    |
| AATGGAACAT |            | TTGAAAAACC        | ACAAAGTTAT  | CATGAATTCA   | 850    |
| ATTTTCCAC  |            | TATGATATCC        | ATAATAATTA  | TCCAATCATT   | 900    |
| GCACAAAAT  |            | TAAAGGAAGT        | CAAAAACTGC  |              | 950    |
| ACGATTCCA  |            | GCAAAAATAT        | AGCGCTCGTA  | GGTGCAAATG   |        |
| GTGTAGGTA  |            |                   | TTTACCACCA  | AATAGAGGGA   | 1050   |
| ATTGATTGT  |            |                   | TACTATEGT   | AACTTGCTTA   | 1100   |
|            |            |                   | TAATTTAAT   | GATGAAACGG   | 1150   |
| TGAAGACAT  |            | · · · <del></del> |             |              | 1200   |
| ATTCATCAG  |            |                   |             | G AAAGAACGAA | 1250   |
| GAAGCACTT  |            |                   | A AGCGAATAT | G TTAATTTTGO | 1300   |
| ATTATCGTT  |            |                   | A CATTAGAAG |              | 1350   |
| ATGAACCAA  |            |                   |             |              | 3 1400 |
| TTTATGAAT  |            |                   |             |              | A 1450 |
| GTTTGTTA!  |            | G WINNERS         |             |              | 1467   |
| TTCATGAT   | AT AACTTAA |                   |             |              |        |

20

25

30

#### What is claimed is:

- A method using probes (fragments and/or oligonucleotides) and/or amplification primers which are specific, ubiquitous and sensitive for determining the presence and/or amount of nucleic acids from bacterial species selected from the group consisting of Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, Streptococcus pneumoniae, Staphylococcus aureus, Staphylococcus epidermidis, 10 Enterococcus faecalis, Staphylococcus saprophyticus, Streptococcus pyogenes, Haemophilus influenzae and Moraxella catarrhalis in a any sample suspected of containing said bacterial nucleic acid, wherein said bacterial nucleic acid or 15 variant or part thereof comprises a selected target region hybridizable with said probes or primers; said method comprising the steps of contacting said sample with said probes or primers and detecting the presence and/or amount of hybridized probes and/or amplified products as an indication of the presence and/or amount of said bacterial species.
  - A method as defined in claim 1 further using probes 2. (fragments and/or oligonucleotides) and/or amplification primers which are universal and sensitive for determining the presence and/or amount of nucleic acids from any bacteria from any sample suspected of containing said bacterial nucleic acid, wherein said bacterial nucleic acid or variant or part thereof comprises a selected target region hybridizable with said probes or primers; said method comprising the steps of contacting said sample with said probes or primers and detecting the presence and/or amount of hybridized prob s and/or amplified products as an indication of the presence and/or amount of said any bacteria.
- 35 A method as defined in claim 1 further using probes (fragments and/or oligonucleotides) and/or amplification primers which are sp cific, ubiquitous and sensitive for SUBSTITUTE SHEET

determining the presence and/or amount of nucleic acids from an antibiotic resistance gene selected from the group consisting of blatem, Blarob, Blashv, aadB, aacCl, aacC2, aacC3, aacA4, mecA, vanA, vanH, vanX, satA, aacA-aphD, vat, vga, msrA, sul and int in any sample suspected of containing said bacterial nucleic acid, wherein said bacterial nucleic acid or variant or part thereof comprises a selected target region hybridizable with said probes or primers; said method comprising the steps of contacting said sample with said probes or primers and detecting the presence and/or amount of hybridized probes and/or amplified products as an indication of the presence and/or amount of said antibiotic resistance gene.

- 15 4. The method of any one of claims 1, 2 and 3 which is performed directly on a sample obtained from human patients, animals, environment or food.
- The method of any one of claims 1, 2 and 3 which is
   performed directly on a sample consisting of one or more bacterial colonies.
- The method of any one of claims 1 to 5, wherein the bacterial nucleic acid is amplified by a method selected from the group consisting of:
  - a) polymerase chain reaction (PCR),
  - b) ligase chain reaction,
  - c) nucleic acid sequence-based amplification,
  - d) self-sustained sequence replication,
  - e) strand displacement amplification,
  - f) branched DNA signal amplification,
  - g) nested PCR, and
  - h) multiplex PCR.
  - 35 7. The method of claim 6 wh rein said bacterial nucleic acid is amplified by PCR.

# SUBSTITUTE SHEET

15

25

30

35

- 8. The method of claim 7 wherein the PCR protocol is modified to determine within one hour the presence of said bacterial nucleic acids by performing for each amplification cycle an annealing step of only one second at 55°C and a denaturation step of only one second at 95°C without any elongation step.
- A method for the detection, identification and/or quantification of Escherichia coli directly from a test sample or from bacterial colonies, which comprises the following steps:
  - a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or

inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,

- 20 said bacterial DNA being in a substantially single stranded form;
  - b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO:3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, a sequence complementary thereof, a part thereof and a variant thereof, which specifically and ubiquitously anneals with strains or representatives of Escherichia coli, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe;

and

c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of the presence and/or amount of *Escherichia coli* in said test sample.

5

10

15

- 10. A method as defined in claim 9, wherein said probe is selected from the group consisting of:
- 1) an oligonucleotide of 12-227 nucleotides in length which sequence is comprised in SEQ ID NO: 3 or a complementary sequence thereof,
- 2) an oligonucleotide of 12-278 nucleotides in length which sequence is comprised in SEQ ID NO: 4 or a complementary sequence thereof,
- 3) an oligonucleotide of 12-1596 nucleotides in length which sequence is comprised in SEQ ID NO: 5 or a complementary sequence thereof,
  - 4) an oligonucleotide of 12-2703 nucleotides in length which sequence is comprised in SEQ ID NO: 6 or a complementary sequence thereof,
- 20 5) an oligonucleotide of 12-1391 nucleotides in length which sequence is comprised in SEQ ID NO: 7 or a complementary sequence thereof, and

variants thereof which specifically and ubiquitously anneal with strains and representatives of Escherichia coli.

25

30

- 11. The method of claim 10, wherein the probe for detecting nucleic acid sequences from Escherichia coli is selected from the group consisting of SEQ ID NO: 44, SEQ ID NO: 45, SEQ ID NO: 48, SEQ ID NO: 49, SEQ ID NO: 50, SEQ ID NO: 51, SEQ ID NO: 52, SEQ ID NO: 53, SEQ ID NO: 54 and a sequence complementary thereof.
- 12. A method for detecting th pr sence and/or amount of Escherichia coli in a test sample which comprises the following steps:
- a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide prim rs having

at least 12 nucleotides in length, one of said primers b ing capable of hybridizing selectively with one of the two complementary strands of Escherichia coli DNA that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within one of the following sequences: SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6 and SEQ ID NO: 7;

- b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
- c) detecting the presence and/or amount of said amplified target sequence as an indication of the presence and/or amount of Escherichia coli in said test sample.
  - 13. The method of claim 12, wherein said at least one pair of primers is selected from the group consisting of:
    - a) SEQ ID NO: 42 and SEQ ID NO: 43,
      - b) SEQ ID NO: 46 and SEQ ID NO: 47,
      - c) SEQ ID NO: 55 and SEQ ID NO: 56, and
      - d) SEQ ID NO: 131 and SEQ ID NO: 132.
- 25 14. A method for the detection, identification and/or quantification of *Klebsiella pneumoniae* directly from a test sample or from bacterial colonies, which comprises the following steps:
- a) depositing and fixing on an inert support or leaving 30 in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or

inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sampl or isolated bacteria to release the bact rial DNA.

## SUBSTITUTE SHEET

20

15

20

## 159

said bacterial DNA being in a substantially single stranded form;

- b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, a sequence complementary thereof, a part thereof and a variant thereof, which specifically and ubiquitously anneals with strains or representatives of Klebsiella pneumoniae, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and
  - c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of the presence and/or amount of Klebsiella pneumoniae in said test sample.
  - 15. A method as defined in claim 14, wherein said probe is selected from the group consisting of:
- an oligonucleotide of 12-238 nucleotides in length
   which sequence is comprised in SEQ ID NO: 8 or a complementary sequence thereof,
  - 2) an oligonucleotide of 12-385 nucleotides in length which sequence is comprised in SEQ ID NO: 9 or a complementary sequence thereof,
- 30 3) an oligonucleotide of 12-462 nucleotides in length which sequence is comprised in SEQ ID NO: 10 or a complementary sequence thereof,
  - 4) an oligonucleotide of 12-730 nucleotides in length which sequenc is comprised in SEQ ID NO: 11 or a complementary sequence thereof, and

variants thereof which specifically and ubiquitously anneal with strains and representatives of Klebsiella pneumoniae.

- 5 16. The method of claim 15, wherein the probe for detecting nucleic acid sequences from *Klebsiella pneumoniae* is selected from the group consisting of SEQ ID NO: 57, SEQ ID NO: 58, SEQ ID NO: 59, SEQ ID NO: 60, SEQ ID NO: 63, SEQ ID NO: 64, SEQ ID NO: 65, SEQ ID NO: 66, SEQ ID NO: 69 and a sequence complementary thereof.
  - 17. A method for detecting the presence and/or amount of Klebsiella pneumoniae in a test sample which comprises the following steps:
- a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of Klebsiella pneumoniae DNA that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within one of the following sequences: SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, and SEQ ID NO: 11;
  - b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
- 30 c) detecting the presence and/or amount of said amplified target sequence as an indication of the presence and/or amount of Klebsiella pneumoniae in said test sample.
- 18. The method of claim 17, wherein said at least one pair of primers is selected from the group consisting of:
  - a) SEQ ID NO: 61 and SEQ ID NO: 62,
  - b) SEQ ISUBSTITUTE SHEET

- c) SEQ ID NO: 135 and SEQ ID NO: 136, and
- d) SEQ ID NO: 137 and SEQ ID NO: 138.
- 19. A method for the detection, identification and/or quantification of *Proteus mirabilis* directly from a test sample or from bacterial colonies, which comprises the following steps:
- a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or

inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,

said bacterial DNA being in a substantially single stranded form;

- b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15, a sequence complementary thereof, a part thereof and a variant thereof, which specifically and ubiquitously anneals with strains or representatives of Proteus mirabilis, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and
  - c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of the pr sence and/or amount of *Proteus mirabilis* in said test sample.

# SUBSTITUTE SHEET

35

10

15

20

25

#### 1691

- 20. A method as defined in claim 19, wherein said probe is selected from the group consisting of:
- 1) an oligonucleotide of 12-225 nucleotides in length which sequence is comprised in SEQ ID NO: 12 or a complementary sequence thereof,
- 2) an oligonucleotide of 12-402 nucleotides in length which sequence is comprised in SEQ ID NO: 13 or a complementary sequence thereof,
- 3) an oligonucleotide of 12-157 nucleotides in length 10 which sequence is comprised in SEQ ID NO: 14 or a complementary sequence thereof,
  - 4) an oligonucleotide of 12-1348 nucleotides in length which sequence is comprised in SEQ ID NO: 15 or a complementary sequence thereof, and
- 15 variants thereof which specifically and ubiquitously anneal with strains and representatives of *Proteus mirabilis*.
- 21. The method of claim 20, wherein the probe for detecting nucleic acid sequences from *Proteus mirabilis* is selected from the group consisting of SEQ ID NO: 70, SEQ ID NO: 71, SEQ ID NO: 72, SEQ ID NO: 73, SEQ ID NO: 76, SEQ ID NO: 77, SEQ ID NO: 80, SEQ ID NO: 81, SEQ ID NO: 82 and a sequence complementary thereof.
- 25 22. A method for detecting the presence and/or amount of Proteus mirabilis in a test sample which comprises the following steps:
- a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of *Proteus mirabilis* DNA that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from

#### SUBSTITUTE SHEET

within one of the following sequences: SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14, and SEQ ID NO: 15;

- b) synthesizing an extension product of each of said primers which extension products contain the target sequence, 5 and amplifying said target sequence, if any, to a detectable level; and
  - c) detecting the presence and/or amount of said amplified target sequence as an indication of the presence and/or amount of Proteus mirabilis in said test sample.

10

- The method of claim 22, wherein said at least one pair of primers is selected from the group consisting of:
  - a) SEQ ID NO: 74 and SEQ ID NO: 75, and
  - b) SEQ ID NO: 133 and SEQ ID NO: 134.

15

- identification and/or 24. A method for the detection, quantification of Staphylococcus saprophyticus directly from a test sample or from bacterial colonies, which comprises the following steps:
- a) depositing and fixing on an inert support or leaving in 20 solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or

inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated 25 bacteria to release the bacterial DNA,

said bacterial DNA being in a substantially single stranded form;

b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 21, SEQ ID NO: 22, SEQ ID NO: 23, SEQ ID NO: 24, a sequence compl mentary thereof, a part thereof and a variant th r of, which specifically and ubiquitously anneals with strains or representativ s of Staphylococcus 35 saprophyticus, und r conditions such that the nucleic acid of

164

said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and

- c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of the presence and/or amount of Staphylococcus saprophyticus in said test sample.
- 25. A method as defined in claim 24, wherein said probe is selected from the group consisting of:
- an oligonucleotide of 12-172 nucleotides in length
   which sequence is comprised in SEQ ID NO: 21 or a complementary sequence thereof,
  - 2) an oligonucleotide of 12-155 nucleotides in length which sequence is comprised in SEQ ID NO: 22 or a complementary sequence thereof,
- 3) an oligonucleotide of 12-145 nucleotides in length which sequence is comprised in SEQ ID NO: 23 or a complementary sequence thereof,
  - 4) an oligonucleotide of 12-265 nucleotides in length which sequence is comprised in SEQ ID NO: 24 or a complementary sequence thereof, and

variants thereof which specifically and ubiquitously anneal with strains and representatives of Staphylococcus saprophyticus.

30 26. The method of claim 25, wherein the probe for detecting nucleic acid sequences from Staphylococcus saprophyticus is selected from the group consisting of SEQ ID NO: 96, SEQ ID NO: 97, SEQ ID NO: 100, SEQ ID NO: 101, SEQ ID NO: 102, SEQ ID NO: 103, SEQ ID NO: 104 and a sequence complementary thereof.

35

- 27. A method for detecting the presence and/or amount of Staphylococcus saprophyticus in a test sample which comprises the following steps:
- a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of Staphylococcus saprophyticus DNA that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within one of the following sequences: SEQ ID NO: 21, SEQ ID NO: 22, SEQ ID NO: 23, and SEQ ID NO: 24;
- b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
- c) detecting the presence and/or amount of said amplified 20 target sequence as an indication of the presence and/or amount of Staphylococcus saprophyticus in said test sample.
  - 28. The method of claim 27, wherein said at least one pair of primers is selected from the group consisting of:
    - a) SEQ ID NO: 98 and SEQ ID NO: 99, and
      - b) SEQ ID NO: 139 and SEQ ID NO: 140.
  - 29. A method for the detection, identification and/or quantification of Moraxella catarrhalis directly from a test sample or from bacterial colonies, which comprises the following steps:
    - a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sampl, or

inoculating said sampl or said substantially homogenous population of bacteria isolated from this sample on an inert SUBSTITUTE SHEET

35

25

support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,

said bacterial DNA being in a substantially single stranded form;

- 5 b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 28, SEQ ID NO: 29, a sequence complementary thereof, a part thereof and a variant thereof, which specifically and ubiquitously anneals with strains or 10 representatives of Moraxella catarrhalis, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label 15 being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and
- c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of the presence and/or amount of *Moraxella catarrhalis* in said test sample.
- 30. A method as defined in claim 29, wherein said probe is selected from the group consisting of:
  - 1) an oligonucleotide of 12-526 nucleotides in length which sequence is comprised in SEQ ID NO: 28 or a complementary sequence thereof,
- 2) an oligonucleotide of 12-466 nucleotides in length 30 which sequence is comprised in SEQ ID NO: 29 or a complementary sequence thereof, and

variants thereof which specifically and ubiquitously anneal with strains and representatives of Moraxella catarrhalis.

35

31. The method of claim 30, wherein the probe for detecting nucleic acid sequences from Moraxella catarrhalis is selected

from the group consisting of SEQ ID NO: 108, SEQ ID NO: 109, SEQ ID NO: 110, SEQ ID NO: 111, SEQ ID NO: 114, SEQ ID NO: 115, SEQ ID NO: 116, SEQ ID NO: 117 and a sequence complementary thereof.

5

- 32. A method for detecting the presence and/or amount of Moraxella catarrhalis in a test sample which comprises the following steps:
- a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of Moraxella catarrhalis DNA that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within one of the following sequences: SEQ ID NO: 28 and SEQ ID NO: 29;
  - b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
  - c) detecting the presence and/or amount of said amplified 25 target sequence as an indication of the presence and/or amount of Moraxella catarrhalis in said test sample.
    - 33. The method of claim 32, wherein said at least one pair of primers is selected from the group consisting of:
    - a) SEQ ID NO: 112 and SEQ ID NO: 113,
      - b) SEQ ID NO: 118 and SEQ ID NO: 119, and
      - c) SEQ ID NO: 160 and SEQ ID NO: 119.
    - 34. A method for th detection, identification and/or quantification of *Pseudomonas aeruginosa* directly from a test sample or from bacterial colonies, which comprises the following steps:

20

25

30

a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or

inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,

said bacterial DNA being in a substantially single 10 stranded form;

- b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, a sequence complementary thereof, a part thereof and a variant thereof, which specifically and ubiquitously anneals with strains or representatives of Pseudomonas aeruginosa, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member reacting with a second reactive member present on said probe; and
  - c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of the presence and/or amount of *Pseudomonas aeruginosa* in said test sample.
  - 35. A method as defined in claim 34, wherein said probe is selected from the group consisting of:
- an oligonucleotide of 12-2167 nucl otides in length which sequence is comprised in SEQ ID NO: 16 or ;
   complementary sequence thereof,

- 2) an oligonucleotide of 12-1872 nucleotides in 1 ngth which sequence is comprised in SEQ ID NO: 17 or a complementary sequence thereof,
- 3) an oligonucleotide of 12-3451 nucleotides in length 5 which sequence is comprised in SEQ ID NO: 18 or a complementary sequence thereof,
  - 4) an oligonucleotide of 12-744 nucleotides in length which sequence is comprised in SEQ ID NO: 19 or a complementary sequence thereof,
- 5) an oligonucleotide of 12-2760 nucleotides in length which sequence is comprised in SEQ ID NO: 20 or a complementary sequence thereof, and

variants thereof which specifically and ubiquitously anneal with strains and representatives of Pseudomonas aeruginosa.

- 36. The method of claim 35, wherein the probe for detecting nucleic acid sequences from Pseudomonas aeruginosa is selected from the group consisting of SEQ ID NO: 87, SEQ ID NO: 88, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 92, SEQ ID NO: 93, SEQ ID NO: 94, SEQ ID NO: 95 and a sequence complementary thereof.
- 37. A method for detecting the presence and/or amount of Pseudomonas aeruginosa in a test sample which comprises the following steps:
  - a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers b ing capable of hybridizing selectively with one of the two complementary strands of *Pseudomonas aeruginosa* DNA that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an xtension product which contains the target sequence as a template, said at least on pair of primers being chos n from within one of the following sequence s: SEQ

15

20

30

ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19 and SEQ ID NO: 20;

- b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
- c) detecting the presence and/or amount of said amplified target sequence as an indication of the presence and/or amount of Pseudomonas aeruginosa in said test sample.

10

- 38. The method of claim 37, wherein said at least one pair of primers is selected from the group consisting of:
  - a) SEQ ID NO: 83 and SEQ ID NO: 84, and
  - b) SEQ ID NO: 85 and SEQ ID NO: 86.

15

- 39. A method for the detection, identification and/or quantification of Staphylococcus epidermidis directly from a test sample or from bacterial colonies, which comprises the following steps:
- a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or
- inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,

said bacterial DNA being in a substantially single stranded form;

b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 36, a sequence complem ntary thereof, a part thereof and a variant thereof, which specifically and ubiquitously ann als with strains or representatives of Staphylococcus epidermidis, under conditions such that the

nucleic acid of said probe can selectively hybridize with said **SUBSTITUTE SHEET** 

WO 96/08582 PCT/CA95/00528

#### 171

bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and

- c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of the presence and/or amount of Staphylococcus epidermidis in said test sample.
- 40. A method as defined in claim 39, wherein said probe is selected from the group consisting of an oligonucleotide of 12-705 nucleotides in length which sequence is comprised in SEQ ID NO: 36 and variants thereof which specifically and ubiquitously anneal with strains and representatives of Staphylococcus epidermidis.
- 41. A method for detecting the presence and/or amount of Staphylococcus epidermidis in a test sample which comprises the following steps:
  - a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of Staphylococcus epidermidis DNA that complementary strands of Staphylococcus epidermidis DNA that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within the following sequence: SEQ ID NO:
    - b) synthesizing an extension product of each of said primers which extension products contain the targ t sequence, and amplifying said target sequence, if any, to a detectable level; and

# SUBSTITUTE SHEET

5

10

15

25

30

25

30

35

#### 172

- c) detecting the presence and/or amount of said amplified target sequence as an indication of the presence and/or amount of Staphylococcus epidermidis in said test sample.
- 5 42. The method of claim 41, wherein said at least one pair of primers is selected from the group consisting of:
  - a) SEQ ID NO: 145 and SEQ ID NO: 146, and
  - b) SEQ ID NO: 147 and SEQ ID NO: 148.
- 43. A method for the detection, identification and/or quantification of Staphylococcus aureus directly from a test sample or from bacterial colonies, which comprises the following steps:
- a) depositing and fixing on an inert support or leaving
   15 in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or

inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,

said bacterial DNA being in a substantially single stranded form;

b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 37, a sequence complementary thereof, a part thereof and a variant thereof, which specifically and ubiquitously anneals with strains or representatives of Staphylococcus aureus, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the lab l being present on a first reactive member of said labelling means, said first reactive

member reacting with a second reactive member present on said probe; and

c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of the presence and/or amount of Staphylococcus aureus in said test sample.

5

10

15

20

25

- 44. A method as defined in claim 43, wherein said probe is selected from the group consisting of an oligonucleotide of 12-442 nucleotides in length which sequence is comprised in SEQ ID NO: 37 and variants thereof which specifically and ubiquitously anneal with strains and representatives of Staphylococcus aureus.
- 45. A method for detecting the presence and/or amount of Staphylococcus aureus in a test sample which comprises the following steps:
- a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of Staphylococcus aureus DNA that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within the following sequence: SEQ ID NO:
  - b) synthesizing an extension product of each of said primers which extension products contain the target sequenc, and amplifying said target sequence, if any, to a detectabl level: and
  - c) detecting the presence and/or amount of said amplified target sequence as an indication of the presence and/or amount of Staphylococcus aureus in said test sample.
- 35 46. The method of claim 45, wherein said at least one pair of primers is selected from the group consisting of:
  - a) SEQ ID NO: 149 and SEQ ID NO: 150,

20

25

30

35

## 174

- b) SEQ ID NO: 149 and SEQ ID NO: 151, and
- c) SEQ ID NO: 152 and SEQ ID NO: 153.
- 47. A method for the detection, identification and/or quantification of *Haemophilus influenzae* directly from a test sample or from bacterial colonies, which comprises the following steps:
- a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or

inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,

said bacterial DNA being in a substantially single stranded form;

- b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, a sequence complementary thereof, a part thereof and a variant thereof, which specifically and ubiquitously anneals with strains or representatives of Haemophilus influenzae, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and
- c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of the presence and/or amount of *Haemophilus influenzae* in said test sample.

# SUBSTITUTE SHEET

WO 96/08582 PCT/CA95/00528

#### 175

48. A method as defined in claim 47, wherein said probe is selected from the group consisting of:

- 1) an oligonucleotide of 12-845 nucleotides in length which sequence is comprised in SEQ ID NO: 25 or a complementary sequence thereof,
- 2) an oligonucleotide of 12-1598 nucleotides in length which sequence is comprised in SEQ ID NO: 26 or a complementary sequence thereof,
- 3) an oligonucleotide of 12-9100 nucleotides in length which sequence is comprised in SEQ ID NO: 27 or a complementary sequence thereof, and

variants thereof which specifically and ubiquitously anneal with strains and representatives of Haemophilus influenzae.

15

5

10

49. The method of claim 48, wherein the probe for detecting nucleic acid sequences from Haemophilus influenzae is selected from the group consisting of SEQ ID NO: 105, SEQ ID NO: 106, SEQ ID NO: 107 and a sequence complementary thereof.

20

- 50. A method for detecting the presence and/or amount of Haemophilus influenzae in a test sample which comprises the following steps:
- 25 containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of Haemophilus influenzae DNA that contains a target sequence, and the other of said primers contains a target sequence, and the other of said strands so being capable of hybridizing with the other of said strands so as to form an extension product which contains the targ t sequence as a template, said at least one pair of primers being chosen from within one of the following sequences: SEQ ID NO: 25, SEQ ID NO: 26 and SEQ ID NO: 27;
  - 35 b) synthesizing an extension product of each of said primers which extension products contain the target sequence,

# SUBSTITUTE SHEET

and amplifying said target sequence, if any, to a detectable level; and

- c) detecting the presence and/or amount of said amplified target sequence as an indication of the presence and/or amount of Haemophilus influenzae in said test sample.
- 51. The method of claim 50, wherein said at least one pair of primers comprises the following pair: SEQ ID NO: 154 and SEQ ID NO: 155.

10

- 52. A method for the detection, identification and/or quantification of *Streptococcus pneumoniae* directly from a test sample or from bacterial colonies, which comprises the following steps:
- a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or
- inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,

said bacterial DNA being in a substantially single stranded form;

25 b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 34, SEQ ID NO: 35, a sequence complementary thereof, a part thereof and a variant thereof, which specifically and ubiquitously anneals with strains or representatives of Streptococcus pneumoniae, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is form d, said complex being detected by labelling means, the label being present on said

probe or the label being present on a first reactive member of

WO 96/08582 PCT/CA95/00528

177

said labelling means, said first reactive member reacting with a second reactive member present on said probe; and

- c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of the presence and/or amount of Streptococcus pneumoniae in said test sample.
- 53. A method as defined in claim 52, wherein said probe is selected from the group consisting of:
- 1) an oligonucleotide of 12-631 nucleotides in length which sequence is comprised in SEQ ID NO: 30 or a complementary sequence thereof,
  - 2) an oligonucleotide of 12-3754 nucleotides in length which sequence is comprised in SEQ ID NO: 31 or a complementary sequence thereof,
  - 3) an oligonucleotide of 12-841 nucleotides in length which sequence is comprised in SEQ ID NO: 34 or a complementary sequence thereof,
  - 4) an oligonucleotide of 12-4500 nucleotides in length which sequence is comprised in SEQ ID NO: 35 or a complementary sequence thereof, and

variants thereof which specifically and ubiquitously anneal with strains and representatives of Streptococcus pneumoniae.

25

5

15

20

54. The method of claim 53, wherein the probe for detecting nucleic acid sequences from Streptococcus pneumoniae is selected from the group consisting of SEQ ID NO: 120, SEQ ID NO: 121 and a sequence complementary thereof.

- 55. A method for detecting the presence and/or amount of Streptococcus pneumoniae in a test sample which comprises the following steps:
- a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capabl of hybridizing selectively with on of the two

complementary strands of Streptococcus pneumoniae DNA that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within one of the following sequences: SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 34 and SEQ ID NO: 35;

- b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
  - c) detecting the presence and/or amount of said amplified target sequence as an indication of the presence and/or amount of Streptococcus pneumoniae in said test sample.

15

25

10

- 56. The method of claim 55, wherein said at least one pair of primers is selected from the group consisting of:
  - a) SEQ ID NO: 78 and SEQ ID NO: 79,
  - b) SEQ ID NO: 156 and SEQ ID NO: 157, and
- 20 c) SEQ ID NO: 158 and SEQ ID NO: 159.
  - 57. A method for the detection, identification and/or quantification of *Streptococcus pyogenes* directly from a test sample or from bacterial colonies, which comprises the following steps:
  - a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or
- inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,
- said bacterial DNA being in a substantially single 35 stranded form;
  - b) contacting said single stranded DNA with a probe, said probe comprising at 1 ast one single stranded nucleic acid

which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 32, SEQ ID NO: 33, a sequence complementary thereof, a part thereof and a variant thereof, which specifically and ubiquitously anneals with strains or representatives of Streptococcus pyogenes, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and

- c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of the presence and/or amount of Streptococcus pyogenes in said test sample.
- 58. A method as defined in claim 57, wherein said probe is selected from the group consisting of:
- 20 1) an oligonucleotide of 12-1337 nucleotides in length which sequence is comprised in SEQ ID NO: 32 or a complementary sequence thereof,
  - 2) an oligonucleotide of 12-1837 nucleotides in length which sequence is comprised in SEQ ID NO: 33 or a complementary sequence thereof, and

variants thereof which specifically and ubiquitously anneal with strains and representatives of Streptococcus pyogenes.

- 30 59. A method for detecting the presence and/or amount of Streptococcus pyogenes in a test sample which comprises the following steps:
  - a) treating said sample with an aqueous solution containing at 1 ast one pair of oligonucleotide primers having at least 12 nucl otides in length, one of said primers being capabl of hybridizing selectively with one of the two compl mentary strands of Streptococcus pyogenes DNA that

35

5

10

15

10

30

180

contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within one of the following sequences: SEQ ID NO: 32 and SEQ ID NO: 33;

- b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
- c) detecting the presence and/or amount of said amplified target sequence as an indication of the presence and/or amount of Streptococcus pyogenes in said test sample.
- 15 60. The method of claim 59, wherein said at least one pair of primers is selected from the group consisting of:
  - a) SEQ ID NO: 141 and SEQ ID NO: 142, and
  - b) SEQ ID NO: 143 and SEQ ID NO: 144.
- 20 61. A method for the detection, identification and/or quantification of Enterococcus faecalis directly from a test sample or from bacterial colonies, which comprises the following steps:
- a) depositing and fixing on an inert support or leaving 25 in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or

inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,

said bacterial DNA being in a substantially single stranded form;

b) contacting said single stranded DNA with a probe, said probe comprising at least one single strand d nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 2, a sequence

complementary thereof, a part thereof and a variant thereof, which specifically and ubiquitously anneals with strains or representatives of Enterococcus faecalis, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization 5 complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and

c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of the presence and/or amount of Enterococcus faecalis in said test sample.

15

20

25

10

- 62. A method as defined in claim 61, wherein said probe is selected from the group consisting of:
- 1) an oligonucleotide of 12-1817 nucleotides in length which sequence is comprised in SEQ ID NO: 1 or a complementary sequence thereof,
- 2) an oligonucleotide of 12-2275 nucleotides in length which sequence is comprised in SEQ ID NO: 2, and

variants thereof which specifically and ubiquitously anneal with strains and representatives of Enterococcus faecalis.

- 63. A method for detecting the presence and/or amount of Enterococcus faecalis in a test sample which comprises the following steps:
- treating said sample with an aqueous solution 30 containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectiv ly with one of the two complementary strands of Enterococcus faecalis DNA that contains a target sequence, and the other of said primers 35 being capable of hybridizing with the other of said strands so as to form an extension product which contains the target

sequence as a template, said at least one pair of primers being chosen from within one of the following sequences: SEQ ID NO: 1 and SEQ ID NO: 2;

- b) synthesizing an extension product of each of said 5 primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
- c) detecting the presence and/or amount of said amplified target sequence as an indication of the presence and/or amount
   of Enterococcus faecalis in said test sample.
  - 64. The method of claim 63, wherein said at least one pair of primers is selected from the group consisting of:
    - a) SEQ ID NO: 38 and SEQ ID NO: 39, and
- 15 b) SEQ ID NO: 40 and SEQ ID NO: 41.
  - 65. A method for the detection of the presence and/or amount of any bacterial species directly from a test sample or from bacterial colonies, which comprises the following steps:
- a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or
- inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA.

said bacterial DNA being in a substantially single stranded form;

b) contacting said single stranded DNA with a universal probe which sequence is selected from the group consisting of SEQ ID NO: 122, SEQ ID NO: 123, SEQ ID NO: 124, SEQ ID NO: 125, SEQ ID NO: 128, SEQ ID NO: 129, SEQ ID NO: 130 and a sequence complementary thereof, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being

**30** 

20

25

183

present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and

- c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of the presence and/or amount of said any bacterial species in said test sample.
- 10 66. A method for detecting the presence and/or amount of any bacterial species in a test sample which comprises the following steps:
  - a) treating said sample with an aqueous solution containing a pair of universal primers which sequence is defined in SEQ ID NO: 126 and SEQ ID NO: 127, one of said primers being capable of hybridizing selectively with one of the two complementary strands of said any bacterial species DNA that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template;
    - b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable
    - c) detecting the presence and/or amount of said amplified target sequence as an indication of the presence and/or amount of said any bacterial species in said test sample.
  - 30 67. A method for evaluating a bacterial resistance to β-lactam antibiotics mediated by the bacterial antibiotic resistanc gene blatem (TEM-1) directly from a test sample or from bacterial colonies, which comprises the following steps:
  - a) depositing and fixing on an inert support or leaving
    in solution th bact rial DNA of the sample or of a
    substantially homogenous population of bacteria isolated from
    this sample OrbSTITUTE SHEET

inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,

5 said bacterial DNA being in a substantially single stranded form;

- b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 161, a sequence complementary 10 thereof, a part thereof and a variant thereof, which specifically anneals with said bacterial antibiotic resistance gene coding for a  $\beta$ -lactamase, under conditions such that the nucleic acid of said probe can selectively hybridize with said 15 bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said 20 probe; and
  - c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of a bacterial resistance to  $\beta$ -lactam antibiotics mediated by the bacterial antibiotic resistance gene TEM-1.

- 68. A method as defined in claim 67, wherein said probe comprises an oligonucleotide of at least 12 nucleotides in length which hybridizes to SEQ ID NO: 161.
- 30 69. A method for evaluating a bacterial resistance to  $\beta$ -lactam antibiotics mediated by the bacterial antibiotic resistance gene  $bla_{tem}$  (TEM-1) in a test sample which comprises the following st ps:
- a) treating said sample with an aqu ous solution containing at least one pair of oligonucl otide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing sel ctively with one of the two

complementary strands of said bacterial antibiotic resistance gene coding for a  $\beta$ -lactamase that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within the sequence defined in SEQ ID NO: 161;

- b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
- c) detecting the presence and/or amount of said amplified target sequence as an indication of a bacterial resistance to  $\beta$ -lactam antibiotics mediated by the bacterial antibiotic resistance gene TEM-1.
- 70. A method for evaluating a bacterial resistance to  $\beta$ -lactam antibiotics mediated by the bacterial antibiotic resistance gene  $bla_{rob}$  (ROB-1) directly from a test sample or from bacterial colonies, which comprises the following steps:
- a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or
- inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,

said bacterial DNA being in a substantially single 30 stranded form;

b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequenc is select d from the group consisting of SEQ ID NO: 162, a sequence complementary thereof, a part thereof and a variant thereof, which specifically anneals with said bacterial antibiotic resistance gene coding for a  $\beta$ -lactamase, under conditions such that the

35

5

10

15

20

25

30

35

nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and

- c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of
   a bacterial resistance to β-lactam antibiotics mediated by the bacterial antibiotic resistance gene ROB-1.
- 71. A method as defined in claim 70, wherein said probe comprises an oligonucleotide of at least 12 nucleotides in length which hybridizes to SEQ ID NO: 162.
  - 72. A method for evaluating a bacterial resistance to  $\beta$ -lactam antibiotics mediated by the bacterial antibiotic resistance gene  $bla_{rob}$  (ROB-1) in a test sample which comprises the following steps:
  - a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of said bacterial antibiotic resistance gene coding for a  $\beta$ -lactamase that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within the sequence defined in SEQ ID NO: 162;
  - b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
  - c) detecting the presence and/or amount of said amplified target sequence as an indication of a bacterial resistance to

 $\beta\text{--lactam}$  antibiotics mediated by the bacterial antibiotic resistance gene ROB-1.

- 73. A method for evaluating a bacterial resistance to  $\beta$ -lactam antibiotics mediated by the bacterial antibiotic resistance gene  $bla_{shv}$  (SHV-1) directly from a test sample or from bacterial colonies, which comprises the following steps:
- a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or

inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,

said bacterial DNA being in a substantially single stranded form;

- b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 163, a sequence complementary thereof, a part thereof and a variant thereof, which specifically anneals with said bacterial antibiotic resistance gene coding for a  $\beta$ -lactamase, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member reacting with a second reactive member present on said labelling means, said first reactive member reacting with a second reactive member present on said label
  - c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of a bacterial resistance to  $\beta$ -lactam antibiotics mediated by the bacterial antibiotic resistance g ne SHV-1.

5

15

20

25

**30** 

- 74. A method as defined in claim 73, wherein said probe comprises an oligonucleotide of at least 12 nucleotides in length which hybridizes to SEQ ID NO: 163.
- 5 75. A method for evaluating a bacterial resistance to  $\beta$ -lactam antibiotics mediated by the bacterial antibiotic resistance gene  $bla_{shv}$  (SHV-1) in a test sample which comprises the following steps:
- a) treating said sample with an aqueous solution
   10 containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of said bacterial antibiotic resistance gene coding for a β-lactamase that contains a target sequence,
   15 and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within the
- b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and

sequence defined in SEQ ID NO: 163;

- c) detecting the presence and/or amount of said amplified target sequence as an indication of a bacterial resistance to  $\beta$ -lactam antibiotics mediated by the bacterial antibiotic resistance gene SHV-1.
- 76. A method for evaluating a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aadB directly from a test sample or from bacterial colonies, which comprises the following steps:
  - a) d positing and fixing on an inert support or leaving in solution th bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from

this sample, or

inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,

said bacterial DNA being in a substantially single stranded form;

- b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 164, a sequence complementary thereof, a part thereof and a variant thereof, which specifically anneals with said bacterial antibiotic resistance gene coding for an aminoglycoside adenylyltransferase, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and 20
  - c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aadB.

A method as defined in claim 76, wherein said probe comprises an oligonucleotide of at least 12 nucleotides in length which hybridizes to SEQ ID NO: 164.

- 78. A method for evaluating a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial 30 antibiotic resistance gene aadB in a test sample which comprises the following steps:
- a) treating said sample with an aqueous solution containing at 1 ast one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said prim rs being 35 of hybridizing selectiv ly with on of the two capabl

5

10

15

### 190

complementary strands of said bacterial antibiotic resistance gene coding for an aminoglycoside adenylyltransferase that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within the sequence defined in SEQ ID NO: 164;

- b) synthesizing an extension product of each of said 10 primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
- c) detecting the presence and/or amount of said amplified target sequence as an indication of a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aadB.
- 79. A method for evaluating a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aacCl directly from a test sample or from bacterial colonies, which comprises the following steps:
- a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a
   25 substantially homogenous population of bacteria isolated from this sample, or

inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,

said bacterial DNA being in a substantially single stranded form;

b) contacting said single stranded DNA with a probe, said probe comprising at least on single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 165, a sequence complementary thereof, a part thereof and a variant thereof, which

30

specifically anneals with said bacterial antibiotic resistance gene coding for an aminoglycoside acetyltransferase, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and

- on said inert support or in said solution as an indication of a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aacC1.
- 15 80. A method as defined in claim 79, wherein said probe comprises an oligonucleotide of at least 12 nucleotides in length which hybridizes to SEQ ID NO: 165.
  - 81. A method for evaluating a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aacCl in a test sample which comprises the following steps:
    - a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of said bacterial antibiotic resistance gene coding for an aminoglycoside acetyltransferase that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within the sequence defined in SEQ ID NO:
  - 35 b) synth sizing an extension product of each of said primers which extension products contain the target sequence,

# SUBSTITUTE SHEET

5

20

25

10

15

20

25

30

35

### 192

and amplifying said target sequence, if any, to a detectable level; and

- c) detecting the presence and/or amount of said amplified target sequence as an indication of a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aacC1.
- 82. A method for evaluating a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aacC2 directly from a test sample or from bacterial colonies, which comprises the following steps:
- a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or

inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,

said bacterial DNA being in a substantially single stranded form;

b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 166, a sequence complementary thereof, a part thereof and a variant thereof, which specifically anneals with said bacterial antibiotic resistance gene coding for an aminoglycoside acetyltransferase, under conditions such that the nucleic acid of said prob can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a

second reactive member pr sent on said probe; and

### SUBSTITUTE SHEET

c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aacC2.

- 83. A method as defined in claim 82, wherein said probe comprises an oligonucleotide of at least 12 nucleotides in length which hybridizes to SEQ ID NO: 166.
- 10 84. A method for evaluating a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aacC2 in a test sample which comprises the following steps:
- a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of said bacterial antibiotic resistance gene coding for an aminoglycoside acetyltransferase that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within the sequence defined in SEQ ID NO:
  - b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
  - 30 c) detecting the presence and/or amount of said amplified target sequence as an indication of a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aacC2.
  - 35 85. A method for evaluating a bacterial resistance to aminoglycoside antibiotics mediat d by the bacterial antibiotic resistance gene aacC3 directly from a test sample

10

15

20

25

30

35

194

or from bacterial colonies, which comprises the following steps:

a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or

inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,

said bacterial DNA being in a substantially single stranded form;

- b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 167, a sequence complementary thereof, a part thereof and a variant thereof, which specifically anneals with said bacterial antibiotic resistance gene coding for an aminoglycoside acetyltransferase, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and
- c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aacC3.
- 86. A method as defined in claim 85, wherin said probe comprises an oligonucl otide of at least 12 nucleotides in length which hybridizes to SEQ ID NO: 167.

87. A method for evaluating a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial

**SUBSTITUTE SHEET** 

antibiotic resistance gene aacC3 in a test sample which comprises the following steps:

- a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of said bacterial antibiotic resistance gene coding for an aminoglycoside acetyltransferase that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within the sequence defined in SEQ ID NO:
- b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
- c) detecting the presence and/or amount of said amplified 20 target sequence as an indication of a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aacC3.
- 88. A method for evaluating a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aacA4 directly from a test sample or from bacterial colonies, which comprises the following steps:
- a) depositing and fixing on an inert support or leaving 30 in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or

inoculating said sampl or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,

35

5

10

15

20

196

said bacterial DNA being in a substantially single stranded form;

- b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 168, a sequence complementary thereof, a part thereof and a variant thereof, which specifically anneals with said bacterial antibiotic resistance gene coding for an aminoglycoside acetyltransferase, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and
- c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aacA4.
- 89. A method as defined in claim 88, wherein said probe comprises an oligonucleotide of at least 12 nucleotides in length which hybridizes to SEQ ID NO: 168.

25

- 90. A method for evaluating a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aacA4 in a test sample which comprises the following steps:
- a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of said bacterial antibiotic resistance gene coding for an aminoglycoside acetyltransferase that contains a target sequence, and the other of said primers

being capable of hybridizing with thoother of said strands so

as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within the sequence defined in SEQ ID NO:

- b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
- c) detecting the presence and/or amount of said amplified target sequence as an indication of a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aacA4.
  - 91. A method for evaluating a bacterial resistance to β-lactam antibiotics mediated by the bacterial antibiotic resistance gene mecA directly from a test sample or from bacterial colonies, which comprises the following steps:
    - a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or

inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,

said bacterial DNA being in a substantially single stranded form;

b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 169, a sequence complementary thereof, a part thereof and a variant thereof, which specifically anneals with said bacterial antibiotic resistance gene coding for a penicillin-binding prot in, under conditions such that the nucl ic acid of said probe can selectively hybridize with said bact rial DNA, wh reby a hybridization complex is formed, said complex being detected by labelling

35

15

20

25

25

35

means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and

- c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of a bacterial resistance to ß-lactam antibiotics mediated by the bacterial antibiotic resistance gene mecA.
- 10 92. A method as defined in claim 91, wherein said probe comprises an oligonucleotide of at least 12 nucleotides in length which hybridizes to SEQ ID NO: 169.
- 93. A method for evaluating a bacterial resistance to  $\beta$ 15 lactam antibiotics mediated by the bacterial antibiotic resistance gene mecA in a test sample which comprises the following steps:
  - a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of said bacterial antibiotic resistance gene coding for a penicillin-binding protein that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within the sequence defined in SEQ ID NO: 169;
- b) synthesizing an extension product of each of said 30 primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
  - c) detecting the presence and/or amount of said amplified target sequence as an indication of a bacterial resistance to ß-lactam antibiotics mediat d by the bacterial antibiotic

resistanc gene mecA.

## SUBSTITUTE SHEET

10

15

20

25

199

- 94. A method for evaluating a bacterial resistance to vancomycin mediated by the bacterial antibiotic resistance genes vanH, vanA and vanX directly from a test sample or from bacterial colonies, which comprises the following steps:
- a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or

inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,

said bacterial DNA being in a substantially single stranded form;

- b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 170, a sequence complementary thereof, a part thereof and a variant thereof, which specifically anneals with said bacterial antibiotic resistance genes coding for vancomycin-resistance proteins, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and
- c) detecting the presence or the intensity of said label 30 on said inert support or in said solution as an indication of a bacterial resistance to vancomycin mediated by the bacterial antibiotic resistance genes vanH, vanA and vanX.
- 95. A method as defined in claim 94, wherein said probe comprises an oligonucleotid of at least 12 nucleotides in length which hybridizes to SEQ ID NO: 170.

### SUBSTITUTE SHEET

- 96. A method for evaluating a bacterial resistance to vancomycin mediated by the bacterial antibiotic resistance genes vanH, vanA and vanX in a test sample which comprises the following steps:
- a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of said bacterial antibiotic resistance genes coding for vancomycin-resistance proteins that contain a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within the sequence defined in SEQ ID NO: 170;
  - b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
- c) detecting the presence and/or amount of said amplified target sequence as an indication of a bacterial resistance to vancomycin mediated by the bacterial antibiotic resistance genes vanH, vanA and vanX.
- 25 97. A method for evaluating a bacterial resistance to streptogramin A mediated by the bacterial antibiotic resistance gene satA directly from a test sample or from bacterial colonies, which comprises the following steps:
- a) depositing and fixing on an inert support or leaving 30 in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or

inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated

bacteria to release the bacterial DNA,

# SUBSTITUTE SHEET

said bacterial DNA being in a substantially single stranded form;

- b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 173, a sequence complementary thereof, a part thereof and a variant thereof, which specifically anneals with said bacterial antibiotic resistance gene coding for a streptogramin A acetyltransferase, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and
  - c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of a bacterial resistance to streptogramin A mediated by the bacterial antibiotic resistance gene satA.
  - 98. A method as defined in claim 97, wherein said prob comprises an oligonucleotide of at least 12 nucleotides in length which hybridizes to SEQ ID NO: 173.
  - 99. A method for evaluating a bacterial resistance to streptogramin A mediated by the bacterial antibiotic resistance gene satA in a test sample which comprises the following steps:
- a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of said bacterial antibiotic r sistance gene coding for streptogramin A acetyltransf rase that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so

5

10

15

20

as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within the sequence defined in SEQ ID NO: 173;

- b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
- c) detecting the presence and/or amount of said amplified target sequence as an indication of a bacterial resistance to streptogramin A mediated by the bacterial antibiotic resistance gene satA.
- 100. A method for evaluating a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aacA-aphD directly from a test sample or from bacterial colonies, which comprises the following steps:
- a) depositing and fixing on an inert support or leaving
   20 in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or

inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,

said bacterial DNA being in a substantially single stranded form;

b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 174, a sequence complementary thereof, a part thereof and a variant thereof, which specifically anneals with said bacterial antibiotic resistance gene coding for an aminoglycoside acetyltransferase-phosphotransferase under conditions such that the nucleic acid of said probe can sel ctively hybridize with said bacterial

25

30

DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe;

- c) detecting the presence or the intensity of said label and on said inert support or in said solution as an indication of a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aacA-aphD.
- 101. A method as defined in claim 100, wherein said probe comprises an oligonucleotide of at least 12 nucleotides in length which hybridizes to SEQ ID NO: 174.

102. A method for evaluating a bacterial resistance to aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aacA-aphD in a test sample which comprises the following steps:

- a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of said bacterial antibiotic resistance gene coding for an aminoglycoside acetyltransferasephosphotransferase that contains a target sequence, and th other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within the sequence defined 30 in SEQ ID NO: 174;
  - b) synthesizing an extension product of each of said primers which xtension products contain the target s quence, and amplifying said target sequence, if any, to a detectable level; and
  - c) d t cting th presence and/or amount of said amplified target sequ nce as an indication of a bacterial resistance to

35

5

10

15

20

15

20

25

30

35

aminoglycoside antibiotics mediated by the bacterial antibiotic resistance gene aacA-aphD.

- 103. A method for evaluating a bacterial resistance to virginiamycin mediated by the bacterial antibiotic resistance gene vat directly from a test sample or from bacterial colonies, which comprises the following steps:
- a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or

inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,

said bacterial DNA being in a substantially single stranded form;

- b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 175, a sequence complementary thereof, a part thereof and a variant thereof, which specifically anneals with said bacterial antibiotic resistance gene coding for a virginiamycin acetyltransferase, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being det cted by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and
- c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of a bact rial resistance to virginiamycin mediated by the bacterial antibiotic resistance gene vat.

- 104. A method as defined in claim 103, wherein said probe comprises an oligonucleotide of at least 12 nucleotides in length which hybridizes to SEQ ID NO: 175.
- 105. A method for evaluating a bacterial resistance to virginiamycin mediated by the bacterial antibiotic resistance 5 gene vat in a test sample which comprises the following steps:
- a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two 10 complementary strands of said bacterial antibiotic resistance gene coding for a virginiamycin acetyltransferase that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target 15 sequence as a template, said at least one pair of primers being chosen from within the sequence defined in SEQ ID NO:
  - b) synthesizing an extension product of each of said 175; primers which extension products contain the target sequence, 20 and amplifying said target sequence, if any, to a detectable level; and
  - c) detecting the presence and/or amount of said amplified target sequence as an indication of a bacterial resistance to virginiamycin mediated by the bacterial antibiotic resistance 25 gene vat.
  - 106. A method for evaluating a bacterial resistance to virginiamycin mediated by the bacterial antibiotic resistanc gene vga directly from a test sample or from bacterial 30 colonies, which comprises the following steps:
    - a) depositing and fixing on an inert support or leaving in solution the bact rial DNA of th sample or of a substantially homogenous population of bacteria isolated from this sample, or

# SUBSTITUTE SHEET

15

20

25

35

inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,

5 said bacterial DNA being in a substantially single stranded form;

- b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 176, a sequence complementary thereof, a part thereof and a variant thereof, which specifically anneals with said bacterial antibiotic resistance gene coding for an ATP-binding protein, under conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being pres nt on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member pr sent on said probe; and
- c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of a bacterial resistance to virginiamycin mediated by the bacterial antibiotic resistance gene vga.

107. A method as defined in claim 106, therein said probe comprises an oligonucleotide of at least 12 nucleotides in length which hybridizes to SEQ ID NO: 176.

- 30 108. A method for evaluating a bacterial resistanc to virginiamycin mediated by the bacterial antibiotic resistance gene vga in a test sample which comprises the following steps:
  - a) treating said sampl with an agu ous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in 1 ngth, one of said primers being capable of hybridizing selectively with one of the two complementary strands of said bacterial antibiotic resistance

SUBSTITUTE SHEET

gene coding for an ATP-binding protein that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within the sequence defined in SEQ ID NO: 176;

- b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
- c) detecting the presence and/or amount of said amplified target sequence as an indication of a bacterial resistance to virginiamycin mediated by the bacterial antibiotic resistance gene vga.

109. A method for evaluating a bacterial resistance to erythromycin mediated by the bacterial antibiotic resistance gene msrA directly from a test sample or from bacterial colonies, which comprises the following steps:

a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogenous population of bacteria isolated from this sample, or

inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,

said bacterial DNA being in a substantially single stranded form;

b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 177, a sequence complementary thereof, a part thereof and a variant thereof, which specifically ann als with said bacterial antibiotic resistance gene coding for an rythromycin resistance protein under conditions such that the nucleic acid of said probe can

5

10

15

25

30

selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and

- c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of a bacterial resistance to erythromycin mediated by the bacterial antibiotic resistance gene msrA.
- 110. A method as defined in claim 109, wherein said probe comprises an oligonucleotide of at least 12 nucleotides in length which hybridizes to SEQ ID NO: 177.

15

10

- 111. A method for evaluating a bacterial resistance to erythromycin mediated by the bacterial antibiotic resistance gene *msrA* in a test sample which comprises the following steps:
- 20 treating said sample with an aqueous solution a) containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of said bacterial antibiotic resistance 25 gene coding for an erythromycin resistance protein that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers 30 being chosen from within the sequence defined in SEQ ID NO: 177:
  - b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said targ t sequence, if any, to a detectable level; and
  - c) d tecting the presence and/or amount of said amplified target sequence as an indication of a bacterial resistance to

erythromycin mediated by the bacterial antibiotic resistance gene msrA.

- 112. A method for evaluating potential bacterial resistance to chloramphenicol aminoglycosides, trimethoprim mediated by the bacterial antibiotic resistance gene int directly from a test sample or from bacterial colonies, which comprises the following steps:
- a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a 10 substantially homogenous population of bacteria isolated from this sample, or

inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,

said bacterial DNA being in a substantially single stranded form;

- b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 171, a sequence complementary thereof, a part thereof and a variant thereof, which specifically anneals with said bacterial antibiotic resistance gene coding for an integrase, under conditions such that the 25 nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said labelling means, said first reactive member reacting with a second reactive member present on said probe; and
  - c) detecting the presence or th intensity of said label on said inert support or in said solution as an indication of potential bacterial r sistance to  $\beta$ -lactams, aminoglycosides, chloramphenicol and/or trim thoprim m diated by the bacterial antibiotic resistance gene int.

35

30

5

15

- 113. A method as defined in claim 112, wherein said probe comprises an oligonucleotide of at least 12 nucleotides in length which hybridizes to SEQ ID NO: 171.
- 5 114. A method for evaluating potential bacterial resistance to  $\beta$ -lactams, aminoglycosides, chloramphenicol and/or trimethoprim mediated by the bacterial antibiotic resistance gene *int* in a test sample which comprises the following steps:
- a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of said bacterial antibiotic resistance gene coding for an integrase that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within the sequence defined in SEQ ID NO: 171;
- b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
- c) detecting the presence and/or amount of said amplified 25 target sequence as an indication of potential bacterial resistance to  $\beta$ -lactams, aminoglycosides, chloramphenicol and/or trimethoprim mediated by the bacterial antibiotic resistance gene int.
- 30 115. A method for evaluating potential bacterial resistance to β-lactams, aminoglycosides, chloramphenicol and/or trimethoprim mediated by the bacterial antibiotic resistance gene sul directly from a test sample or from bacterial colonies, which comprises the following steps:
- a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a

### **SUBSTITUTE SHEET**

substantially homogenous population of bacteria isolated from this sample, or

inoculating said sample or said substantially homogenous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,

said bacterial DNA being in a substantially single stranded form;

- b) contacting said single stranded DNA with a probe, said probe comprising at least one single stranded nucleic acid 10 which nucleotidic sequence is selected from the group consisting of SEQ ID NO: 172, a sequence complementary thereof, a part thereof and a variant thereof, which specifically anneals with said bacterial antibiotic resistance gene coding for a sulfonamide resistance protein under 15 conditions such that the nucleic acid of said probe can selectively hybridize with said bacterial DNA, whereby a hybridization complex is formed, said complex being detected by labelling means, the label being present on said probe or the label being present on a first reactive member of said 20 labelling means, said first reactive member reacting with a second reactive member present on said probe; and
  - c) detecting the presence or the intensity of said label on said inert support or in said solution as an indication of potential bacterial resistance to  $\beta$ -lactams, aminoglycosides, chloramphenicol and/or trimethoprim mediated by the bacterial antibiotic resistance gene sul.
  - 116. A method as defined in claim 115, wherein said probe 30 comprises an oligonucleotide of at least 12 nucleotides in length which hybridizes to SEQ ID NO: 172.
    - 117. A method for evaluating potential bacterial r sistanc to  $\beta$ -lactams, aminoglycosid s, chloramphenical and/or trimethoprim mediated by the bacterial antibiotic resistance gene sul in a test sample which comprises the following steps:

35

25

15

20

25

30

### 212

- a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers b ing capable of hybridizing selectively with one of the two complementary strands of said bacterial antibiotic resistance gene coding for a sulfonamide resistance protein that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from within the sequence defined in SEQ ID NO: 172;
- b) synthesizing an extension product of each of said primers which extension products contain the target sequence, and amplifying said target sequence, if any, to a detectable level; and
- c) detecting the presence and/or amount of said amplified target sequence as an indication of potential bacterial resistance to  $\beta$ -lactams, aminoglycosides, chloramphenicol and/or trimethoprim mediated by the bacterial antibiotic resistance gene sul.
- 118. A nucleic acid having the nucleotide sequence of any one of SEQ ID NOs: 1 to 37, SEQ ID NOs: 161 to 177, a part thereof and variants thereof which, when in single stranded form, ubiquitously and specifically hybridize with a targ t bacterial DNA as a probe or as a primer.
- 119. An oligonucleotide having a nucleotidic sequence of any one of SEQ ID NOs: 38 to 160.
- 120. A recombinant plasmid comprising a nucleic acid as defined in claim 118.
- 121. A recombinant host which has been transformed by a recombinant plasmid according to claim 120.

### **SUBSTITUTE SHEET**

W 96/08582 PCT/CA95/00528

### 213

- 122. A recombinant host according to claim 121 wherein said host is Escherichia coli.
- 123. A diagnostic kit for the detection and/or quantification of the nucleic acids of any combination of the bacterial species defined in any one of claims 9, 14, 19, 24, 29, 34, 39, 43, 47, 52, 57 and 61, comprising any combination of probes defined therein.
- 10 124. A diagnostic kit for the detection and/or quantification of the nucleic acids of any combination of the bacterial species defined in any one of claims 10, 11, 15, 16, 20, 21, 25, 26, 30, 31, 35, 36, 40, 44, 48, 49, 53, 54, 58, 62 and 65, comprising any combination of oligonucleotide probes defined therein.
  - 125. A diagnostic kit for the detection and/or quantification of the nucleic acids of any combination of the bacterial species defined in any one of claims 12, 13, 17, 18, 22, 23, 27, 28, 32, 33, 37, 38, 41, 42, 45, 46, 50, 51, 55, 56, 59, 60, 63, 64 and 66 comprising any combination of primers defined therein.
  - 126. A diagnostic kit for the detection and/or quantification of the nucleic acids of any combination of the bacterial resistance genes defined in any one of claims 67, 70, 73, 76, 79, 82, 85, 88, 91, 94, 97, 100, 103, 106 and 109 comprising any combination of probes defined therein.
  - 30 127. A diagnostic kit for the detection and/or quantification of the nucleic acids of any combination of the bacterial resistance genes defined in any one of claims 68, 71, 74, 77, 80, 83, 86, 89, 92, 95, 98, 101, 104, 107 and 110 comprising any combination of oligonucleotide probes defined therein.
    - 128. A diagnostic kit for the det ction and/or quantification of the nucleic acids of any combination of the bacterial SUBSTITUTE SHEET

35

resistance genes defined in any one of claims 69, 72, 75, 78, 81, 84, 87, 90, 93, 96, 99, 102, 105, 108 and 111 comprising any combination of primers defined therein.

5 129. A diagnostic kit for the simultaneous detection and quantification of nucleic acids of any combination of the bacterial species defined in claim 123, comprising any combination of the bacterial probes defined therein and any combination of the probes to the antibiotic resistance genes defined in any one of SEQ ID NOs: 161 to 177 in whole or in part.

130. A diagnostic kit for the simultaneous detection and quantification of nucleic acids of any combination of the bacterial species defined in claim 124, comprising any combination of the bacterial oligonucleotide probes defined therein and any combination of oligonucleotide probes that hybridize to the antibiotic resistance genes defined in any one of SEQ ID NOs: 161 to 177.

20

25

131. A diagnostic kit for the simultaneous detection and quantification of nucleic acids of any combination of the bacterial species defined in claim 125, comprising any combination of the primers defined therein and any combination of primers that anneal to the antibiotic resistance genes defined in any one of SEQ ID NOS: 161 to 177.

#### **PCT**

#### RLD INTELLECTUAL PROPERTY ORGANIZA International Bureau



#### INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification <sup>6</sup>: C12Q 1/68, C12N 15/11 // (C12Q 1/68, C12R 1:19, 1:22, 1:385, 1:37, 1:46, C12R 1:445, 1:45, 1:44, 1:21)

(11) International Publication Number:

WO 96/08582

'|

(43) International Publication Date:

21 March 1996 (21.03.96)

(21) International Application Number:

PCT/CA95/00528

(22) International Filing Date:

12 September 1995 (12.09.95)

(30) Priority Data:

08/304,732

12 September 1994 (12.09.94) US

(71)(72) Applicants and Inventors: BERGERON, Michel, G. [CA/CA]; 2069 Brûlard Street, Sillery, Quebec G1T 1G2 (CA). OUELLETTE, Marc [CA/CA]; 975 Casot Street, Quebec, Quebec G1S 2Y2 (CA). ROY, Paul, H. [US/CA]; 28 charles Garnier Street, Loretteville, Quebec G2A 2X8 (CA).

(74) Agents: DUBUC, Jean, H. et al.; Goudreau Gage Dubuc & Martineau Walker, 3400 Stock Exchange Tower, Victoria Square, P.O. Box 242, Montreal, Quebec H4Z 1E9 (CA). (81) Designated States: AM, AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TT, UA, UG, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), ARIPO patent (KE, MW, SD, SZ, UG).

#### Published

With international search report.

Refore the expiration of the time li

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(88) Date of publication of the international search report: 18 July 1996 (18.07.96)

(54) Title: SPECIFIC AND UNIVERSAL PROBES AND AMPLIFICATION PRIMERS TO RAPIDLY DETECT AND IDENTIFY COMMON BACTERIAL PATHOGENS AND ANTIBIOTIC RESISTANCE GENES FROM CLINICAL SPECIMENS FOR ROUTINE DIAGNOSIS IN MICROBIOLOGY LABORATORIES

#### (57) Abstract

The present invention relates to DNA-based methods for universal bacterial detection, for specific detection of the pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, Streptococcus pneumoniae, Staphylococcus aureus, Staphylococcus epiderminis, Enterococcus faecalis, Staphylococcus saprophyticus, Streptococcus pyogenes, Haemophilus influenzae and Moraxella catarrhalis as well as for specific detection of commonly encountered and clinically relevant bacterial antibiotic resistance genes directly from clinical specimens or, alternatively, from a bacterial colony. The above bacterial species can account for as much as 80 % of bacterial pathogens isolated in routine microbiology laboratories. The core of this invention consists primarily of the DNA sequences from all species-specific genomic DNA fragments selected by hybridization from genomic libraries or, alternatively, selected from data banks as well as any oligonucleotide sequences derived from these sequences which can be used as probes or amplification primers for PCR or any other nucleir acid amplification methods. This invention also includes DNA sequences from the selected clinically relevant antibiotic resistance genes.

#### FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

| AT  | Austria                  | GB | United Kingdom               | MR | Mauritania               |
|-----|--------------------------|----|------------------------------|----|--------------------------|
| ΑU  | Australia                | GE | Georgia                      | MW | Malawi                   |
| BB  | Barbados                 | GN | Guinea                       | NE | Niger                    |
| BE  | Belgium                  | GR | Greece                       | NL | Netherlands              |
| BF  | Burkina Faso             | HU | Hungary                      | NO | Norway                   |
| BG  | Bulgaria                 | IE | Ireland                      | NZ | New Zealand              |
| BJ  | Benin                    | IT | Italy                        | PL | Poland                   |
| BR  | Brazil                   | JP | Japan                        | PT | Portugal                 |
| BY  | Belarus                  | KE | Kenya                        | RO | Romania                  |
| CA  | Canada                   | KG | Kyrgystan                    | RU | Russian Federation       |
| CF  | Central African Republic | KP | Democratic People's Republic | SD | Sudan                    |
| CG  | Congo                    |    | of Korea                     | SE | Sweden                   |
| CH  | Switzerland              | KR | Republic of Korea            | SI | Slovenia                 |
| CI  | Côte d'Ivoire            | KZ | Kazakhstan                   | SK | Slovakia                 |
| CM  | Cameroon                 | LI | Liechtenstein                | SN | Senegal                  |
| CN  | China                    | LK | Sri Lanks                    | TD | Chad                     |
| CS  | Czechoslovakia           | LU | Luxembourg                   | TG | Togo                     |
| CZ  | Czech Republic           | LV | Latvia                       | TJ | Tajikistan               |
| DE  | Germany                  | MC | Monaco                       | TT | Trinidad and Tobago      |
| DK  | Denmark                  | MD | Republic of Moldova          | UA | Ukraine                  |
| ES  | Spain                    | MG | Madagascar                   | US | United States of America |
| FI  | Finland                  | ML | Mali                         | UZ | Uzbekistan               |
| FR  | France                   | MN | Mongolia                     | VN | Viet Nam                 |
| -GA | Gabon                    |    |                              | -  |                          |

### INTERNATIONAL SEARCH REPORT

Inter mal Application No

|                                                       |                                                                                                                                                                                                                                                            | <u>.</u>                                                                                                                 | CT/CA 95/052                                                                                                                                                                                               | 28                                                     |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| C 12                                                  | R 1:22, C 12 R 1:385, C 12 R 1:37,                                                                                                                                                                                                                         | , C 12 N 15/11<br>C 12 R 1:46,                                                                                           | /7(C 12 0 1/68                                                                                                                                                                                             | C 12 R 1-19                                            |
|                                                       | R 1:44, C 12 R 1:21)                                                                                                                                                                                                                                       |                                                                                                                          |                                                                                                                                                                                                            |                                                        |
|                                                       | to International Patent Classification (IPC) or to both national cl.                                                                                                                                                                                       | assification and IPC                                                                                                     |                                                                                                                                                                                                            |                                                        |
|                                                       | documentation searched (classification system followed by classifi                                                                                                                                                                                         | ication symbols)                                                                                                         |                                                                                                                                                                                                            |                                                        |
|                                                       | Q, C 12 N                                                                                                                                                                                                                                                  |                                                                                                                          |                                                                                                                                                                                                            |                                                        |
| Document                                              | ation searched other than minimum documentation to the extent th                                                                                                                                                                                           | at such documents are incli                                                                                              | uded in the fields searched                                                                                                                                                                                |                                                        |
|                                                       |                                                                                                                                                                                                                                                            |                                                                                                                          |                                                                                                                                                                                                            |                                                        |
| Electronic o                                          | data base consulted during the international search (name of data                                                                                                                                                                                          | base and, where practical, a                                                                                             | search terms used)                                                                                                                                                                                         | <del></del>                                            |
|                                                       |                                                                                                                                                                                                                                                            |                                                                                                                          | -                                                                                                                                                                                                          |                                                        |
|                                                       |                                                                                                                                                                                                                                                            |                                                                                                                          |                                                                                                                                                                                                            |                                                        |
|                                                       | MENTS CONSIDERED TO BE RELEVANT                                                                                                                                                                                                                            |                                                                                                                          |                                                                                                                                                                                                            |                                                        |
| Category *                                            | Citation of document, with indication, where appropriate, of the                                                                                                                                                                                           | relevant passages                                                                                                        | Refe                                                                                                                                                                                                       | evant to claim No.                                     |
| x                                                     | EP, A, O 438 115<br>(THE PERKIN-ELMER CORP.)<br>24 July 1991 (24.07.91),<br>claims 1-3,25-30.                                                                                                                                                              |                                                                                                                          | 1                                                                                                                                                                                                          | 12,14,17,<br>6,123-125                                 |
| х                                                     | WO, A, 93/03 186<br>(HOFFMANN-LA ROCHE INC.)<br>18 February 1993 (18.02.<br>claims 1,2,4,33.                                                                                                                                                               |                                                                                                                          | 27,3<br>45,4                                                                                                                                                                                               | 9,12,24,<br>9,41,43,<br>7,49,52,<br>5,66,123-          |
| X                                                     | W0, A, 94/02 645 (RESEARCH DEVELOPMENT FO 03 February 1994 (03.02. claims 1-6,14,100-105.                                                                                                                                                                  | UNDATION)<br>94),                                                                                                        | 24,2<br>39,4                                                                                                                                                                                               | 12,14,17,<br>7,34,37,<br>1,45,52,<br>7,59,65,          |
| X Furth                                               | er documents are listed in the continuation of box C.                                                                                                                                                                                                      | Patent family me                                                                                                         | embers are listed in annex.                                                                                                                                                                                |                                                        |
| Special cate                                          | gones of cited documents :                                                                                                                                                                                                                                 | erre later document nubli                                                                                                | that after the interpretional file                                                                                                                                                                         | II dobo                                                |
| consider d<br>E" earlier d<br>filing di<br>L" documer | nt defining the general state of the art which is not red to be of particular relevance locument but published on or after the international ate on the which may throw doubts on priority claim(s) or stated to establish the publication date of another | or priority date and cited to understand t invention  "X" document of particul cannot be considered involve an inventive | thed after the international fil<br>not in conflict with the applic<br>the principle or theory underly<br>ar relevance; the claimed invel<br>i novel or cannot be consider<br>step when the document is ta | eation but<br>ying the<br>ention<br>ed to<br>ken alone |
| O document<br>other m                                 | or other special reason (as specified) nt referring to an oral disclosure, use, exhibition or                                                                                                                                                              | document is combine                                                                                                      | ar relevance; the claimed invi-<br>it to involve an inventive step<br>ed with one or more other su-<br>tion being obvious to a perso                                                                       | when the<br>ch docu-                                   |
| iater (na                                             | in the priority date claimed                                                                                                                                                                                                                               | '&' document member of                                                                                                   | the same patent family                                                                                                                                                                                     |                                                        |
| ate of the a                                          | 18. 05, 98                                                                                                                                                                                                                                                 | 1                                                                                                                        | e international search report<br>D 4. 06. 96                                                                                                                                                               |                                                        |
| ame and ma                                            | uling address of the ISA  European Patent Office, P.B. 5818 Patentiaan 2  NL - 2280 HV Ripwijk  Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,  Fax: (+31-70) 340-3016                                                                                         | Authorized officer                                                                                                       | WOLF e.h.                                                                                                                                                                                                  |                                                        |

Form PCT/ISA/218 (second sheet) (July 1992)

| INTERNATIONAL SEARCH REPORT | Inte | m ional Application No |
|-----------------------------|------|------------------------|
|                             |      | PCT/CA 95/00528        |

|           | ation) DOCUMENTS IDERED TO BE RELEVANT                                             | Relevant to claim No. |
|-----------|------------------------------------------------------------------------------------|-----------------------|
| ategory * | Citation of document, with indication, where appropriate, of the relevant passages |                       |
|           |                                                                                    | 66,123-125            |
|           |                                                                                    | 00,120 120            |
|           | 21/00 205                                                                          | 67-75,91-93,          |
| Α         | WO, A, 91/08 305<br>(U-GENE RESEARCH)                                              | 112-117, 26-131       |
|           | 13 June 1991 (13.06.91),                                                           | 1125117, 20-131       |
|           | claims 6-11.                                                                       |                       |
|           |                                                                                    | 94-96, 126-131        |
| Α         | FR, A, 2 699 539 (INSTITUT PASTEUR)                                                | 94-96, 120-131        |
|           | 1 24 June 1994 (24.06.94),                                                         |                       |
|           | claims 18-23.                                                                      |                       |
|           |                                                                                    | 100 111               |
| Α         | FR, A, 2 584 419 (INSTITUT PASTEUR et al.)                                         | 109-111               |
|           | 09 January 1987 (09.01.87),                                                        | ·                     |
|           | claims.                                                                            |                       |
|           |                                                                                    | 1                     |
| Α         | FR, A, 2 599 743                                                                   | 109-111               |
|           | (INSTITUT PASTEUR et al.) 11 December 1987 (11.12.87),                             |                       |
|           | claims.                                                                            |                       |
|           |                                                                                    |                       |
|           |                                                                                    |                       |
|           |                                                                                    |                       |
|           |                                                                                    |                       |
|           |                                                                                    |                       |
|           |                                                                                    | l                     |
|           |                                                                                    |                       |
|           |                                                                                    |                       |
|           |                                                                                    |                       |
|           |                                                                                    |                       |
|           |                                                                                    |                       |
|           |                                                                                    |                       |
|           |                                                                                    |                       |
|           |                                                                                    |                       |
|           |                                                                                    |                       |
|           |                                                                                    |                       |
|           |                                                                                    |                       |
|           |                                                                                    |                       |
|           |                                                                                    |                       |
|           |                                                                                    |                       |
|           |                                                                                    |                       |
|           |                                                                                    | {                     |

Form PCT/ISA/210 (continuation of second sheet) (July 1992)



| Box I       | Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)                                                                                                                          |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| This inte   | ernational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:                                                                                           |
| ı. 🔲        | Claims Nos.:<br>because they relate to subject matter not required to be searched by this Authority, namely:                                                                                                               |
| 2. 🗌        | Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically: |
| ą. <u> </u> | Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).                                                                                       |
| Box II      | Observations where unity of invention is lacking (Continuation of item 2 of first sheet)                                                                                                                                   |
| This Int    | ernational Searching Authority found multiple inventions in this international application, as follows:                                                                                                                    |
| <u>1</u>    | . Claims: 1-66,118-125, 129-131: Methods for determining the presence of nucleic acids from bacterial species; nucleic acids, digonucleotides, plasmides, hosts and diagnostic kits therefor.                              |
| <u>2</u>    | . Claims: 67-117, 126-128: Methods for evaluating a bacterial resistance to several antibiotics and diagnostic kit therefor.                                                                                               |
| 1. X        | As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.                                                                                   |
| 2. [        | As all searchable claims could be searches without effort justifying an additional fee, this Authority did not invite payment of any additional fee.                                                                       |
| 3.          | As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:                       |
| 4.          | No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:           |
| Remar       | The additi nal search fees were accompanied by the applicant's protest.  X No protest accompanied the payment of additional search fees.                                                                                   |

#### ANHANG

#### ANNEX

#### ANNEXE

zum internationalen Recherchen-bericht über die internationale Patentanmeldung Nr.

to the International Search Report to the International Patent Application No.

au rapport de recherche inter-national relatif à la demande de brevet international n°

#### PCT/CA 95/00528 SAE 117060

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten internationalen Recherchenbericht angeführten Patentdokumente angegeben. Diese Angaben dienen nur zur Unternichtung und erfolgen ohne Bewähr.

This Annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The Diffice is in no way liable for these particulars which are given merely for the purpose of information.

La presente annexe indique les aembres de la famille de brevets relatifs aux documents de brevets cités dans le rapport de recherche international visée ci-dessus. Les reseignements fournis sont donnés à titre indicatif et n'engagent pas la responsibilité de l'Office.

| ange<br>Pa<br>Docu | führtes<br>atent d<br>in sear<br>ment d | rchenbericht<br>: Patentdokument<br>locument cited<br>:ch report<br>le brevet cité<br>port de recherche | Datum der<br>Veröffentlichung<br>Publication<br>date<br>Date de<br>publication | Mitgliedler) der<br>Patentfamilie<br>Patent family<br>member(s)<br>Membre(s) de la<br>famille de brevets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Datum der<br>Veröffentlichung<br>Publication<br>date<br>Date de<br>publication                                       |                           |
|--------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------|
| EP.                | A2                                      | 438115                                                                                                  | 24-07-91                                                                       | AU A1 69475/91<br>AU B2 65310718<br>CA AA 203371554<br>EFI AA 9102564<br>FI AA 571118188<br>FI AA 9101898<br>ND AA 2048<br>ND AAA 2048<br>ND AA 2048<br>ND AAA 2048<br>ND AA | 25-07-91<br>14-07-94<br>20-07-91<br>27-01-91<br>27-01-91<br>24-08-93<br>16-07-91<br>24-08-91<br>26-07-91<br>26-03-92 |                           |
| WO                 | A1                                      | 9303186                                                                                                 | 18-02-93                                                                       | AU A1 24Z02Z92<br>EP A1 613502<br>NZ A 243B02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 02-03-93<br>07-09-94<br>22-12-94                                                                                     |                           |
| WD                 | Al                                      | 9402645                                                                                                 | 03-02-94                                                                       | CN A 1083113<br>IL AO 106273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 02-03-94<br>15-11-93                                                                                                 |                           |
| WO                 | A1                                      | 9108305                                                                                                 | 13-06-91                                                                       | NL A 9002157<br>AU A1 69507/91<br>NL A 8902926                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17-06-91<br>26-06-91<br>17-06-91                                                                                     |                           |
| FR                 | A1                                      | 2 <b>6995</b> 39                                                                                        | 24-06-94                                                                       | WD A1 9414961<br>CA AA 215201377<br>FR A1 26995377<br>FR B1 2699539<br>FR B1 2699539                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 07-07-94<br>07-07-94<br>20-04-95<br>24-04-94<br>17-02-95<br>17-02-95                                                 | ga quin agric ==== dere - |
| FR                 | A1                                      | 2584419                                                                                                 | 09-01-87                                                                       | EF A1 209451<br>FR B1 2584419<br>JF A2 62115299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21-01-87<br>13-11-87<br>24-05-87                                                                                     |                           |
| FR                 | A1                                      | 2599743                                                                                                 | 11-12-87                                                                       | FR B1 2599743                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30-09-88                                                                                                             |                           |

BAD OFIGINAL