

مبانی بینایی کامپیوتر

مدرس: محمدرضا محمدی

پردازش تصویر در حوزه فرکانس

Image Processing in Frequency Domain

كاهش نويز

• مدل نویز جمعشونده:

$$g(x,y) = f(x,y) + n(x,y)$$

- دستگاههای تصویربرداری مختلف دارای مدلهای نویز متفاوتی هستند
 - نویز گاوسی متداول ترین نویز است

n(x,y) |N(u,v)|

|F(u,v)|

n(x, y)|N(u,v)|

كاهش نويز

نویز متناوب

• این نوع نویز وابستگی مکانی دارد و با یک الگوی خاص در تصویر تکرار میشود

نویز متناوب

استخراج شکل

Shape Extraction

تشخیص خط

تشخيص دايره

تشخيص لبه

- شکلهای مورد نظر در مرز اشیاء قرار دارند و به همین دلیل نخستین گام در بسیاری از الگوریتمهای تشخیص شکل، تشخیص مرز اشیاء و لبههای تصویر است
 - یک لبه، مجموعهای از پیکسلهایی به هم پیوسته است که روی مرز دو ناحیه قرار دارند

تشخيص لبه

- حضور مقدار کمی نویز می تواند به میزان زیادی کار تشخیص لبه را توسط مشتق گیری سخت نماید
- هموارسازی تصویر قبل از استفاده از مشتق در کاربردهایی که نویز با چنین سطحی تصویر را تخریب میکند ضروری است
 - به طور ویژه، هموارسازی در جهت عمود بر جهت لبهیابی بسیار موثر است

مشتق افقى

-1 +1

• مشتق یک طرفه

-1 0 +1

• مشتق دو طرفه

مشتق افقى

• عملگر Prewitt