StarGAN

CVPR

2018

StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

Yunjey Choi^{1,2} Minje Choi^{1,2} Munyoung Kim^{2,3} Jung-Woo Ha² Sunghun Kim^{2,4} Jaegul Choo^{1,2}

¹ Korea University ² Clova AI Research, NAVER Corp.

³ The College of New Jersey ⁴ Hong Kong University of Science & Technology

Figure 1. Multi-domain image-to-image translation results on the CelebA dataset via transferring knowledge learned from the RaFD dataset. The first and sixth columns show input images while the remaining columns are images generated by StarGAN. Note that the images are generated by a single generator network, and facial expression labels such as angry, happy, and fearful are from RaFD, not CelebA.

Abstract

Recent studies have shown remarkable success in imageto-image translation for two domains. However, existing approaches have limited scalability and robustness in handling more than two domains, since different models should be built independently for every pair of image domains. To address this limitation, we propose StarGAN, a novel and scalable approach that can perform image-to-image translations for multiple domains using only a single model. Such a unified model architecture of StarGAN allows simul-

1. Introduction

The task of image-to-image translation is to change a particular aspect of a given image to another, e.g., changing the facial expression of a person from smiling to frowning (see Fig. 1). This task has experienced significant improvements following the introduction of generative adversarial networks (GANs), with results ranging from changing hair color [9], reconstructing photos from edge maps [7], and changing the seasons of scenery images [33].

Given training data from two different domains, these

Medical Artificial Intelligence Laboratory At Yonsei University

StarGAN

Comparison of Approaches

StarGAN

Background & Goal

- Previous research limitation
 - CycleGAN is inefficient in such multi-domain image translation tasks. $(k \times (k-1))$
- Goal
 - Multi-domain image translation using only one generator.

Fig 1. Comparison between cross-domain models and StarGAN

Medical Artificial Intelligence Laboratory At Yonsei University

StarGAN

What is domain?

A set of images sharing the same attribute value.

Medical Artificial Intelligence Laboratory At Yonsei University

StarGAN

Source = Target Scenario

StarGAN

StarGAN

Network Architecture

Fig 2. Overview of StarGAN

Medical Artificial Intelligence Laboratory At Yonsei University

StarGAN

Loss Functions

Fig 4. StarGAN Architecture

Medical Artificial Intelligence Laboratory At Yonsei University

StarGAN

Loss Functions

Why not use a separate classification network?

Medical Artificial Intelligence Laboratory At Yonsei University

StarGAN

Loss Functions

Fig 5. Cycle Consistency Architecture

9

Medical Artificial Intelligence Laboratory At Yonsei University

StarGAN

Depth-wise Concatenation

StarGAN

Loss Functions

GAN loss

- G generates an image G(x,c) conditioned on both the input image x and the target domain c.

$$L_{ ext{adv}} = \mathbb{E}_x[\log D_{ ext{src}}(x)] + \mathbb{E}_{x,c}[\log(1-D_{ ext{src}}(G(x,c)))]$$

Eq 1. Adversarial Loss

Domain classification loss

- A domain classification loss uses an auxiliary classifier. (c': original domain label, c: target domain label)

$$L_{ ext{cls}}^r = \mathbb{E}_{x,c'}[-\log D_{ ext{cls}}(c'|x)] \quad L_{ ext{cls}}^f = \mathbb{E}_{x,c}[-\log D_{ ext{cls}}(c|G(x,c))]$$

Eq 2. Domain Classification Loss

Cycle consistency loss

Apply Cycle consistency loss

$$\mathcal{L}_{rec} = \mathbb{E}_{x,c,c'}[||x - G(G(x,c),c')||_1]$$

Eq 3. Reconstruction Loss

Medical Artificial

StarGAN

Comparison with MUNIT

MUNIT

- Content-style disentanglement
- Diverse outputs within the same domain
- If multiple domains are trained together, there is a risk of e ntanglement between different attributes.

StarGAN

- No disentanglement; relies only on domain labels
- Single output per domain
- Handles multiple domains with a single network

Target domain label

Medical Artificial

StarGAN

Comparison with MUNIT

MUNIT

- Content-style disentanglement
- Diverse outputs within the same domain
- If multiple domains are trained together, there is a risk of en tanglement between different attributes.

StarGAN

- No disentanglement; relies only on domain labels
- Single output per domain
- Handles multiple domains with a single network

Target domain label

Recent Trend

Hybrid: Single network with domain label + Content-style disentanglement

StarGAN

Experiment Results

Fig 6. Results on the CelebA dataset

StarGAN

Experiment Results

Fig 7. Results on the RaFD dataset

15

StarGAN

Comparison with Single-task Network

Pros

- Feature sharing: A single network learns common features (e.g., facial contours, skin texture) across domains, improving data efficiency and generalization.
- Memory efficiency: As the number of domains increases, memory usage remains relatively stable since a single net work is used.

Cons

- Task interference: Handling diverse domain transformations simultaneously can degrade performance.
- Limited specialization: Handling all domains uniformly within a single network may result in suboptimal transformation on performance for each domain.

StarGAN

Comparison with Single-task Network

Pros

- Feature sharing: A single network learns common features (e.g., facial contours, skin texture) across domains, improving data efficiency and generalization.
- Memory efficiency: As the number of domains increases, memory usage remains relatively stable since a single net work is used.

Cons

- Task interference: Handling diverse domain transformations simultaneously can degrade performance.
- Limited specialization: Handling all domains uniformly within a single network may result in suboptimal transformation on performance for each domain.

Recent Trend: MoE (Mixture of Experts)

- Combining shared feature learning with domain-specific expert sub-networks to overcome these limitations.

Medical Artificial Intelligence Laboratory At Yonsei University

StarGAN

Training Strategy

Mask vector

- To ignore unspecified labels and focus on the explicitly known label provided by a dataset

Fig 8. StarGAN with mask vector

StarGAN

Training Strategy

Fig 9. Facial expression synthesis results on the CelebA dataset

StarGAN

Implications & Limitations

Implications

- A scalable image-to-image translation model among multiple domains using a single generator & discriminator
- It can handle multiple datasets with different domain label sets.

Limitations

- Accurately categorized domain labels are essential.
- A discrete model that generates a single deterministic output for a given domain label.