Standalone package example

Overleaf

May 2021

1 First section

Keystone Derivations in the Vortex Æther Model (VAM) Omar Iskandarani June 2025 Independent Researcher, Groningen, The Netherlands ORCID: 0009-0006-1686-3961 info@omariskandarani.com

Appendix A

Keystone Constant Relations in VAM

Throughout the main text we defined the three primitive æther parameters

$$F_{\text{max}}, \qquad r_c, \qquad C_e, \tag{1}$$

and showed how they fix all familiar quantum and gravitational constants. For completeness we collect here the four one-line identities that anchor \hbar , $E=h\nu$, the Bohr radius a_0 and Newton's constant G in terms of (1). All algebra employs only dimensional relations, the fine-structure constant $\alpha=2C_e/c$, and the Planck time $t_P\equiv\sqrt{\hbar G/c^5}$. Figures quoted use the canonical numerics of Tab. 1.

A.1 Planck's Constant from Æther Tension

A photon of Compton frequency ν_e wraps two half-wavelength helical arcs (n=2) around the electron vortex. Matching angular momenta and adopting a Hookean core gives

$$h = \frac{4\pi F_{\text{max}} r_c^2}{C_e} = 6.626\,070 \times 10^{-34} \,\text{Js};$$
 (2)

see Sec. 3.1.

A.2 Photon Energy: $E = h\nu$

Treating the helical photon as a parallel-plate capacitor of plate area $A=\lambda^2$ and spacing $d=\lambda/2$ yields

$$C = 2\varepsilon_0 \lambda, E = \frac{Q^2}{2C} = \frac{e^2}{4\varepsilon_0 C_e} \nu = h\nu, (3)$$

where $e^2/4\varepsilon_0 C_e = h$ follows from Eq. (2) plus $\alpha = 2C_e/c$.

A.3 Bohr (or Sommerfeld) Radius

Combining Eq. (2) with $\alpha = 2C_e/c$ gives

$$a_0 = \frac{\hbar}{m_e c \alpha} = \frac{F_{\text{max}} r_c^2}{m_e C_e^2} = 5.291772 \times 10^{-11} \text{ m}.$$
 (4)

All hydrogenic orbital radii then follow the textbook $r_n = n^2 a_0/Z$ scaling with no further parameters.

A.4 Newton's Constant

Eliminating \hbar between Eq. (2) and the Planck-time identity $t_P^2 = \hbar G/c^5$ yields

$$G = F_{\text{max}} \alpha \frac{(ct_P)^2}{m_e^2} = \frac{C_e c^5 t_P^2}{2F_{\text{max}} r_c^2} = 6.67430 \times 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2}.$$
 (5)

Either form in Eq. (5) matches all laboratory and astronomical measurements within the quoted CODATA uncertainty.

A.5 Consequences

A single triad $(F_{\text{max}}, r_c, C_e)$ locks $\hbar, a_0, h\nu$, and G. Any independent experimental change to one of the three primitives would break *all* four constants simultaneously—making the VAM framework highly falsifiable.

Numerical Inputs (taken from Tab. 1): $F_{\rm max} = 29.053507 \, {\rm N}, \ r_c = 1.40897017 \times 10^{-15} \, {\rm m}, \ C_e = 1.09384563 \times 10^6 \, {\rm m \, s^{-1}}, \ m_e = 9.10938356 \times 10^{-31} \, {\rm kg}, \ t_P = 5.391247 \times 10^{-44} \, {\rm s}.$

2 Second section

Appendix: The Role of C_e^2 in VAM Dynamics

In the Vortex Æther Model (VAM), the constant C_e — the core tangential swirl velocity — plays a role analogous to the speed of light c in relativity. It governs the scale at which internal vortex motion couples to inertial effects, mass, and time evolution. Its square, C_e^2 , appears throughout the theory as a natural denominator wherever kinetic, energetic, or gravitational effects emerge.

1. Interpretation of C_e^2

- Inertia Coupling: Swirl-induced mass depends on energy-like terms normalized by C_e^2 , mirroring $E = mc^2$ in special relativity.
- Time Dilation: Local time is modified by swirl velocity as:

$$d\tau = dt \cdot \sqrt{1 - \frac{\omega^2 r^2}{C_e^2}}$$

• Swirl Mass Generation: Energy per unit volume from vortex motion ($\sim \frac{1}{2}\rho v^2$) is converted to mass via C_e^2 .

• Gravitational Coupling: Appears in the VAM expression for G, derived from vortex coupling:

$$G \sim \frac{C_e c^5 t_p^2}{2F_{\text{max}} r_c^2}$$

Thus, C_e^2 is fundamental to scaling rotational energy into inertial and gravitational analogues in the VAM framework.

2. Table of Expressions Involving C_e^2

Expression	Physical Meaning	VAM Role
$\frac{r_c}{C_e^2}$	Core radius over swirl velocity squared	Temporal inertia scaling
$\frac{\frac{r_c}{C_e^2}}{\frac{F_{\max}}{C_e^2}}$	Max force per swirl energy unit	Force–mass–energy coupling
	Energy density to mass conversion	Inertial mass from kinetic field
$\begin{bmatrix} \frac{1}{2}\rho v^2/C_e^2 \\ \frac{\omega^2 r^2}{C_e^2} \\ \frac{8\pi\rho_{-r_c^3}}{C_e} \end{bmatrix}$	Time dilation correction	Vortex-clock slowdown
$\frac{8\pi\tilde{\rho}_{-r_c^3}}{C_c}$	VAM prefactor	Total mass contribution per vortex

Table 1: Representative appearances of C_e^2 in core VAM expressions.

3. Symbolic Equivalence $C_e^2 \leftrightarrow c^2$

VAM exhibits a direct analogue to relativistic dynamics where C_e^2 plays the same role as c^2 :

Time Dilation Analogy:

$$\begin{split} \text{Special Relativity:} \quad d\tau &= dt \cdot \sqrt{1 - \frac{v^2}{c^2}} \\ \text{VAM Swirl Clock:} \quad d\tau &= dt \cdot \sqrt{1 - \frac{v_{\text{swirl}}^2}{C_e^2}}, \quad v_{\text{swirl}} = \omega r \end{split}$$

Mass-Energy Equivalence:

Relativity:
$$E=mc^2$$

$${\rm VAM:} \quad E=mC_e^2 \Rightarrow m=\frac{\frac{1}{2}\rho v^2}{C_e^2}$$

Gravitational Redshift Analogy:

GR:
$$g_{tt} \approx 1 + \frac{2\Phi}{c^2}$$

VAM: $g_{tt}^{\text{eff}} \approx 1 - \frac{v^2}{C_s^2}$

Quantity	Relativistic (GR)	VAM Equivalent
Limiting speed	c	C_e
Mass-energy conversion	$E = mc^2$	$E = mC_e^2$
Time dilation	$\sqrt{1-v^2/c^2}$	$\sqrt{1-v^2/C_e^2}$
Gravitational potential scaling	Φ/c^2	v^2/C_e^2

Table 2: Mapping of relativistic quantities to their vortex-based analogues in VAM.

Summary Equivalence Table: We conclude that:

$$C_e^2 \longleftrightarrow c^2$$

This symbolic equivalence formalizes the deep analogy between relativistic spacetime curvature and the VAM framework of swirl-induced gravitational behavior.