

DISPOSITIVOS SEMICONDUCTORES Tema 1 Evaluación Parcial 30 de mayo de 2022

Nombre y apellido:		
Padrón: Turno:	N° de ex	2 102 022

- Es condición necesaria para aprobar el parcial que al menos el 60 % de cada ejercicio esté correctamente planteado.
- Se considerará: La claridad y síntesis conceptual de las respuestas y justificaciones, los detalles de los gráficos/circuitos, la exactitud de los resultados numéricos.
- Cada uno de los dos ejercicios debe estar resuelto en hojas independientes.

Calificación: _____

Constantes: $m_0 = 9.1 \times 10^{-31} \,\mathrm{kg}; \ k = 1.38 \times 10^{-23} \,\mathrm{J/K}; \ h = 6.62 \times 10^{-34} \,\mathrm{Js}; \ q = 1.6 \times 10^{-19} \,\mathrm{C}; \ \epsilon_{r,SiO_2} = 3.9; \ \epsilon_{r,Si} = 11.7; \ \epsilon_0 = 88.5 \,\mathrm{fF/cm}.$

- 1) Se tiene un diodo de silicio de juntura PN simétrica del cual se conocen los siguientes parámetros: $A = 0.1 \,\mathrm{mm^2}$, $I_0 = 1 \,\mathrm{nA}$, $\tau_T = 15 \,\mathrm{ns}$, $V_{D(ON)} = 0.7 \,\mathrm{V}$. Se mide la capacidad del diodo C_D a temperatura ambiente en función de la tensión aplicada y se gráfica de la forma mostrada en la figura.
 - a) ¿Que fenómenos capacitivos dan lugar a la capacidad que presenta el diodo? ¿Cuales predominan en directa y en inversa? Justificar la respuesta basándose en la física que da lugar a estos efectos.
 - b) Hallar el valor de las concentraciones de impurezas a ambos lados de la juntura y el potencial de built-in ϕ_B , indicando cualquier suposición o aproximación usada. ¿Cual es el valor de la capacidad de juntura en equilibrio térmico?
 - c) Se conecta el diodo en directa a un circuito con una resistencia de $R=2\,\mathrm{k}\Omega$ y una fuente de tensión de valor $V_F=7\,\mathrm{V}.$ ¿En cuanto cambia la corriente del circuito cuando el valor de la fuente aumenta en $100\,\mathrm{mV}$?

2) a) Tres materiales semiconductores tienen masas efectivas similares, pero distinta energía de gap. En la tabla, se resumen algunos de sus parámetros físicos a temperatura ambiente. Cada uno de los materiales es dopado con impurezas aceptoras con densidad volumétrica $N=1\times 10^{10}\,\mathrm{cm}^{-3}$. Calcular la conductividad del material semiconductor con menor energía de gap. Justificar la respuesta indicando todas las hipótesis y aproximaciones utilizadas.

	SC 1	SC 2	SC 3
$\frac{n_i \text{ (cm}^{-3})}{\mu_n \text{ (cm}^2/\text{(Vs))}}$	2.1×10^{8} 850	1.2×10^{10} 1300	3.1×10^{12} 2700
$\mu_p \; (\mathrm{cm}^2/(\mathrm{Vs}))$	320	390	600

b) Para el circuito de la figura, donde el transistor MOSFET tiene los siguientes parámetros: $V_T=-1\,\mathrm{V},\ k=\frac{\mu C_{ox}'}{2}\frac{W}{L}=0,35\,\mathrm{mA}\,\mathrm{V}^{-2}$ y $\lambda\to0$, determinar la relación entre las resistencias R_{G1} y R_{G2} para que el transistor presente una transconductancia $g_m=0,56\,\mathrm{m}\,\mathrm{S}.$ Calcular las tensiones y corrientes de polarización del transistor. Considerar $V_{DD}=5\,\mathrm{V}$ y $R_D=8,6\,\mathrm{k}\Omega.$

