线性代数

绪论 课程说明

谭 兵 副教授

西南大学数学与统计学院2025年2月27日

目录

- 1 线性代数是什么?
- 2 线性代数的地位和特点
- 3 本门课程的主要内容
- 4 为啥要学习线性代数?
- 5 课程考核方式和比例
- 6 线性代数如何学

2 | 77

目录

- 1 线性代数是什么?
- 2 线性代数的地位和特点
- 3 本门课程的主要内容
- 4 为啥要学习线性代数?
- 5 课程考核方式和比例
- 6 线性代数如何学

2025 年 2 月 27 日

什么是线性 (Linear)

形如 ax + by = c 的方程 (a, b, c) 为常数), 其全部解在平面上构成一条直线, 此时 x, y 之间呈现为线性关系. 方程 ax + by = c 称为线性方程.

推而广之,含有 n 个变量的一次方程

$$k_1x_1 + k_2x_2 + \dots + k_nx_n = b$$

称为线性方程, 这里 x_1, x_2, \dots, x_n 是变量, k_1, k_2, \dots, k_n, b 是常数. 此时变量 x_1, x_2, \dots, x_n 之间呈现为线性关系.

非线性关系的例子:

$$y = 2x^2 + 3$$
, $y = 2\sqrt{x} + 3$, $y = 2\sin x + 3$, $xy = 1$,

上述 x, y 之间为非线性关系.

什么是线性代数

线性代数 (Linear Algebra) 是代数学的一个分支, 主要处理线性关系问题. 它的核心内容是研究 (1) 有限维线性空间的结构, (2) 线性空间的线性变换. 本课程介绍线性代数的基础知识, 核心话题是: 线性方程组的求解.

5 | 77

高斯消元法

一般地, 将含有 n 个未知量 x_1, x_2, \dots, x_n 的线性方程组记为:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m. \end{cases}$$

$$(1)$$

该方程组中含有 m 个方程. 其中 a_{ij} 是系数, b_i 是常数项, $i=1,2,\cdots,m$, $j=1,2,\cdots,n$. 系数 a_{ij} 有两个下标,下标 i,j 分别表示 a_{ij} 在第 i 行、第 j 列. 高斯消元法是求解线性方程组的经典方法,简单实用,永不过时.

例 0.1

求曲线 $y = \lambda_0 + \lambda_1 x + \lambda_2 x^2$ 过点 (1,1), (2,2), (3,0).

 \mathbf{p} : 代入三点, 得到一个关于 λ_0 , λ_1 , λ_2 的线性方程组:

$$\begin{cases} \lambda_0 + \lambda_1 + \lambda_2 = 1, \\ \lambda_0 + 2\lambda_1 + 4\lambda_2 = 2, \\ \lambda_0 + 3\lambda_1 + 9\lambda_2 = 0. \end{cases}$$

使用高斯消元法. 先化为阶梯形:

$$\begin{cases} \lambda_0 + \lambda_1 + \lambda_2 = 1, \\ \lambda_0 + 2\lambda_1 + 4\lambda_2 = 2, & \xrightarrow{r_3 - r_2} \\ \lambda_0 + 3\lambda_1 + 9\lambda_2 = 0. \end{cases} \begin{cases} \lambda_0 + \lambda_1 + \lambda_2 = 1, \\ \lambda_1 + 3\lambda_2 = 1, \\ \lambda_1 + 5\lambda_2 = -2. \end{cases}$$

$$\begin{cases} \lambda_0 + \lambda_1 + \lambda_2 = 1, \\ \lambda_1 + 3\lambda_2 = 1, \\ \lambda_1 + 3\lambda_2 = 1, \end{cases} \begin{cases} \lambda_0 + \lambda_1 + \lambda_2 = 1, \\ \lambda_1 + 3\lambda_2 = 1, \\ \lambda_2 = -3. \end{cases}$$

再回代:

$$\begin{cases} \lambda_0 + \lambda_1 + \lambda_2 = 1, \\ \lambda_1 + 3\lambda_2 = 1, & \frac{r_2 - 3r_3}{r_1 - r_3} \end{cases} \begin{cases} \lambda_0 + \lambda_1 & = \frac{5}{2}, \\ \lambda_1 & = \frac{11}{2}, \frac{r_1 - r_2}{r_2} \end{cases} \begin{cases} \lambda_0 & = -3, \\ \lambda_1 & = \frac{11}{2}, \\ \lambda_2 = -\frac{3}{2}. \end{cases}$$

即所求曲线方程为 $y = -3 + \frac{11}{2}x - \frac{3}{2}x^2$.

以上就是高斯消元法, 主要是两个步骤: 化为阶梯形, 回代.

围绕线性方程组这个主题, 课程还将讨论以下三个概念: 行列式, 矩阵, 向量.

这是求解线性方程组的三个有效工具. 下面我们简单说明这三个工具出现的原因.

高斯消元法 → 矩阵的初等行变换.

前述解法中,未知量并没有参与运算.实际参与运算的只有系数和常数,把 方程组的主要信息记录在一个<mark>矩形阵列</mark>(简称**矩阵**)里:

$$\begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & 2 & 4 & 2 \\
1 & 3 & 9 & 0
\end{pmatrix}$$
(2)

方程的运算与变换,体现为矩阵中,各行元素的相应运算.

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 2 \\ 1 & 3 & 9 & 0 \end{pmatrix} \xrightarrow{r_3 - r_2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 3 & 1 \\ 0 & 1 & 5 & -2 \end{pmatrix} \xrightarrow{r_3 - r_2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 3 & 1 \\ 0 & 0 & 2 & -3 \end{pmatrix} \xrightarrow{r_3 \div 2}$$

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 3 & 1 \\ 0 & 1 & 3 & 1 \\ 0 & 0 & 1 & -\frac{3}{2} \end{pmatrix} \xrightarrow{r_2 - 3r_3} \begin{pmatrix} 1 & 1 & 0 & \frac{5}{2} \\ 0 & 1 & 0 & \frac{11}{2} \\ 0 & 0 & 1 & -\frac{3}{2} \end{pmatrix} \xrightarrow{r_1 - r_2} \begin{pmatrix} 1 & 0 & 0 & -3 \\ 0 & 1 & 0 & \frac{11}{2} \\ 0 & 0 & 1 & -\frac{3}{2} \end{pmatrix}.$$

线性方程组等同于矩阵方程

记

$$m{A} = \left(egin{array}{ccc} 1 & 1 & 1 \ 1 & 2 & 4 \ 1 & 3 & 9 \end{array}
ight), \qquad m{x} = \left(egin{array}{c} x_1 \ x_2 \ x_3 \end{array}
ight), \qquad m{b} = \left(egin{array}{c} 1 \ 2 \ 0 \end{array}
ight).$$

这里 A 记录的是系数, b 记录的是常数. 引入矩阵乘法: Ax 定义为 A 各行的向量与 x 做内积. 例如 A 的第二行与 x 做内积, 有

$$(1,2,4) \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = x_1 + 2x_2 + 4x_3.$$

则

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \triangleq \begin{pmatrix} x_1 + x_2 + x_3 \\ x_1 + 2x_2 + 4x_3 \\ x_1 + 3x_2 + 9x_3 \end{pmatrix}.$$

从而线性方程组可表达为

Ax = b

而这本质上是一个矩阵方程.

如果我们能一般地解决矩阵方程的求解, 事实上就完成了线性方程组的求

解.

线性方程组求解等同于向量组的线性表示问题

把前述线性方程组记为

$$\lambda_0 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \lambda_1 \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \lambda_2 \begin{pmatrix} 1 \\ 4 \\ 9 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix},$$

则"线性方程组"等同于"向量的线性表示"问题. 更重要的是, 用向量的观点, 可以几何地解释线性方程组解的结构问题.

谭兵 (数学与统计学院)

线性方程组与几何联系

从几何角度考虑线性方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1, \\ a_{21}x_1 + a_{22}x_2 = b_2. \end{cases}$$

每一个方程均对应于平面上的一条直线. 求解方程组, 相当于求两条直线的交点.

考虑以下三个不同的线性方程组:

(i)
$$\begin{cases} x_1 + x_2 = 2, \\ x_1 - x_2 = 2. \end{cases}$$

(ii)
$$\begin{cases} x_1 + x_2 = 2 \\ x_1 + x_2 = 1 \end{cases}$$

(i)
$$\begin{cases} x_1 + x_2 = 2, \\ x_1 - x_2 = 2. \end{cases}$$
 (ii)
$$\begin{cases} x_1 + x_2 = 2, \\ x_1 + x_2 = 1. \end{cases}$$
 (iii)
$$\begin{cases} x_1 + x_2 = 2, \\ -x_1 - x_2 = -2. \end{cases}$$

(a) 相交: 唯一解

(b) 平行: 无解

(c) 重合: 无穷多解

两条直线之间的关系有三种情况: 相交、平行、重合. 相应地:

- 一个线性方程组的解,有下列三种情况:
- (1) 有唯一解;
- (2) 无解;
- (3) 有无穷多解.

这个结论将在第3章进行一般讨论.

目录

- 1 线性代数是什么?
- 2 线性代数的地位和特点
- 3 本门课程的主要内容
- 4 为啥要学习线性代数?
- 5 课程考核方式和比例
- 6 线性代数如何学

线性代数的地位

- 线性代数是处理矩阵和线性空间的数学分支;
- 自然科学及工程技术的许多领域都用到线性代数的知识;
- 现代经济及管理科学大量应用线性代数的内容;
- 线性代数为数值计算理论基础的强有力的数学工具;
- 线性代数是高等院校理工,经济及管理类等专业学生的一门必修课.

线性代数的特点

- 高等数学课程讨论函数的解析性,即连,导数和积分,而线性代数讨论代数对象的线性关,即相,数乘和线性相关性等;
- 线性代数具有较强的抽象性和逻辑,有助于培养数学思维能力;
- 线性代数课程相对独,大部分内容只需以高中数学知识为基础;

目录

- 1 线性代数是什么?
- 2 线性代数的地位和特点
- 3 本门课程的主要内容
- 4 为啥要学习线性代数?
- 5 课程考核方式和比例
- 6 线性代数如何学

20 | 77

本门课程的主要内容

线性代数课程所讨论的核心问题是线性方程组的求解、矩阵可对角化判定和二次型的化简.针对要解决的问题,从知识准备的角度首先介绍行列式、矩阵和向量等基础知识作为课程的基础内容,循着知识发展的轨迹,再逐一介绍线性代数课程三大问题,形成基础知识 + 问题解决 + 应用的结构框架.

知识模块顺序及关系图					
基础篇(矩阵代数)	问题篇 (核心问题)	应用			
矩阵	线性方程组求解问题				
行列式	矩阵对角化判定问题				
向量	二次型化标准形问题				

目录

- 1 线性代数是什么?
- 2 线性代数的地位和特点
- 3 本门课程的主要内容
- 4 为啥要学习线性代数?
- 5 课程考核方式和比例
- 6 线性代数如何学

线性代数有什么用?

线性代数学什么?

多元一次方程组的解法、解空间及其变换,包括:

- 矩阵、行列式、多维向量空间
- 特征值和特征向量、二次型及其标准形
- 线性空间和线性变换等 (选学)

线性代数有什么用?

- 经济学, 例: 1973 年、1975 诺奖
- IT 行业,例:谷歌搜索引擎
- 图形处理
- 复杂网络、大数据分析……

由美国统计局的 25 万条经济数据所组成的 42 个未知数的 42 个方程的方程组,他打开了研究经济数学模型的新时代的大门。这些模型通常都是线性的,也就是说,它们是用线性方程组来描述的,被称为列昂惕夫"投入-产出"模型。列昂惕夫因此获得了 1973 年的诺贝尔经济学奖。

列昂惕夫 (Wassily Leontief),哈佛大学教授,1949 年用计算机计算出了

线性代数的应用

配平化学方程式

例 配平下面的化学方程式

$$\underline{x}C_2H_6 + yO_2 \rightarrow \underline{z}CO_2 + \underline{w}H_2O$$

解 需要解决下面的线性方程组

$$\begin{cases} 2x - z = 0 \\ 6x - 2w = 0 \\ 2y - 2z - w = 0. \end{cases}$$

解得 $x = \frac{1}{3}w$, $y = \frac{7}{6}w$, $z = \frac{2}{3}w$, 取 w = 6, 得其中一个解为 x = 2, y = 7, z = 4, w = 6.

为什么要学习线性代数

- 拿学分;
- 考研: 必考科目;
- 提高科研能力: 机器学习基础;
- 找工作:图像处理,运筹学,线性规划
- 线性代数的应用领域几乎可以涵盖所有的工程技术领域。

目录

- 1 线性代数是什么?
- 2 线性代数的地位和特点
- 3 本门课程的主要内容
- 4 为啥要学习线性代数?
- 5 课程考核方式和比例
- 6 线性代数如何学

27 | 77

课终考核包括《线性代数》第一章到第四章内容,采取闭卷笔试的方式,统一命题,全校统考。

- 总成绩评定总评成绩 = 平时成绩 * 30%+ 考试成绩 * 70%
- 平时成绩评定
 - 1 平时成绩 = 考勤 * 10%+ 课堂表现 * 10%+ 平时作业 * 10%
 - 2 平时成绩评价标准

考核 环节	A 90-100	B 80-89	C 70-79	D 60-69	E <60
考勤	按时到课率 100%	全勤但迟到一次	全勤但迟到两次	无故缺勤一次	无故缺勤两次及以上
课堂表现	严格遵守课堂纪律,积极主动参与课堂讨论,按要求完成课堂练习且正确率高。	遵守课堂纪律,经 常参与课堂讨论, 按要求完成课堂练 习且正确率较高。	比较遵守课堂纪律,较少参与课堂讨论,按要求完成课堂练习且有一定正确率。	比较遵守课堂纪律,偶尔参与课堂 讨论,按要求基本 完成课堂练习且 基本正确。	不太遵守课堂纪律, 不参与课堂讨论,未 按要求完成课堂练习 或正确率低。
平时作业	1、每次作业都认真 完成并按时提交; 2、每次作业格式工 整,正确率80%以 上。	1、每次都按时完成 作业并提交; 2、每次作业格式工 整,正确率 60%以 上。	1、除一次作业外都 按时完成并提交; 2、作业格式基本工 整,平均正确率在 60%以上。	1、两次及以上未 按时完成或提交 作业; 2、作业平均正确 率 60% 以下。	1、两次及以上未完成 作业或未提交; 2、每次作业完成情 况不好,平均正确率 50%以下。

课堂表现

平时成绩满分 300 分,考勤 100 分,课堂表现 100 分,平时成绩 100 分。

- 上课坐在前三排 10 次及以上的同学,课堂表现满分;
- 回答问题错误 1 次、课堂表现扣 10 分:
- 回答问题正确 1 次、课堂表现加 10 分;
- 捣乱课堂教学秩序 1 次 (比如上课打游戏, 睡觉),课堂表现扣 20 分。

目录

- 1 线性代数是什么?
- 2 线性代数的地位和特点
- 3 本门课程的主要内容
- 4 为啥要学习线性代数?
- 5 课程考核方式和比例
- 6 线性代数如何学

如何学

- 了解课程问题,对课程框架有初步了解;
- 本门课程上课 48 学时,每周一次 3 学时。同学们投入的时间至少应做到 1:1;
- 上课认真听讲,积极思考,课后认真完成作业;
- 概念抽象, 计算繁杂, 联系紧密. 一旦理解了, 就会感叹, 思路精巧 至极!
- 在线性代数中,概念和计算同样重要,为了掌握线性代数概念,必须 反复阅读教材. 否则会阐述自以为理解了,实际上并不懂的问题.
- 线性代数是一种语言,必须用学习外语的方法每天学习这种语言 (David . C . Lay). 关注代数概念的几何特点,学会不同语言之间的转换.

使用教材

[1] 刘国新、谢成康、刘花编著,线性代数,科学出版社,2013

参考书推荐

- 陈建龙-线性代数第三版 (全国优秀教材建设二等奖)
- 同济大学-线性代数第七版 (全国优秀教材建设二等奖)

视频学习推荐

- 线性代数的本质-3Blue1Brown (博主)https://www.bilibili.com/video/av6731067/?p=4
- ■【线性代数的本质】合集-转载于 3Blue1Brown 官方双语---婆婆町(博主)
- 麻省理工学院 MIT 线性代数 (博主: Python 大本营)
- ■《线性代数》教学视频 2.0 版【宋浩老师】

这一章介绍 n 阶行列式的定义,讨论行列式的性质及计算.最后,介绍行列式在求解一类特殊的线性方程组的克拉默法则.

35 | 77

行列式的来源

行列式的概念来源于线性方程组的求解问题。

17 世纪末由日本数学家关孝和及德国数学家莱布尼茨引入.

为什么要讨论行列式

不妨先看看克拉默法则: 给定线性方程组

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\
\dots \\
a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n.
\end{cases}$$
(4)

如果系数行列式

$$D = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} \neq 0,$$
 (5)

那么线性方程组(4)有解,并且解是惟一的:

$$x_1 = \frac{D_1}{D}, \quad x_2 = \frac{D_2}{D}, \quad \cdots, \quad x_n = \frac{D_n}{D},$$
 (6)

其中 D_j 是把行列式 D 中第 j 列换成方程组的常数项 b_1, b_2, \cdots, b_n 所成的行列 式, 即

$$D_{j} = \begin{vmatrix} a_{11} & \cdots & a_{1,j-1} & b_{1} & a_{1,j+1} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2,j-1} & b_{2} & a_{2,j+1} & \cdots & a_{2n} \\ \vdots & & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & \cdots & a_{n,j-1} & b_{n} & a_{n,j+1} & \cdots & a_{nn} \end{vmatrix} .$$
 (7)

行列式的出现原因可以这样理解: 完美地表达了一部分线性方程组的解的规律. 从这个角度讲, 行列式是人为创造的一个符号, 它形式简洁地、浓缩地记载了一些规律性的内容.

○ 什么是行列式?如何计算?将是课程第1章的内容.

本章内容

这一章关注: 行列式的性质与计算. 学习中要注意以下问题:

- (1) 为什么要讨论行列式?
- (2) 行列式有哪些性质?
- (3) n 阶行列式的计算, 有哪些常见方法?

目录

- 1 线性代数是什么?
- 2 线性代数的地位和特点
- 3 本门课程的主要内容
- 4 为啥要学习线性代数?
- 5 课程考核方式和比例
- 6 线性代数如何学

本节讨论二(三)元一次方程组的解与2(3)阶行列式.

消元法求解方程组

二元一次方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2 \end{cases}$$

若下条件成立

$$a_{11}a_{22} - a_{12}a_{21} \neq 0$$

方程组的解

$$x_1 = \frac{b_1 a_{22} - a_{12} b_2}{a_{11} a_{22} - a_{12} a_{21}}, \ x_2 = \frac{a_{11} b_2 - b_1 a_{21}}{a_{11} a_{22} - a_{12} a_{21}}$$

二阶行列式示意图

定义 2 阶行列式

$$D = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

主对角线两个元素 a_{11} 和 a_{22} 的乘积,减去副对角线两个元素 a_{12} 和 a_{21} 的乘积.

$$\begin{vmatrix} a_{11} & a_{12} \\ \vdots \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

2 阶行列式

2 阶行列式

$$D_1 = \begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{vmatrix} = b_1 a_{22} - a_{12} b_2, \ D_2 = \begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{vmatrix} = a_{11} b_2 - b_1 a_{21}$$

把行列式 D 的第 1 列用常数项 b_1,b_2 替换得 D_1 ; 第 2 列用常数项 b_1,b_2 替换的 D_2 .

方程组的解

$$x_1 = \frac{D_1}{D}, \ x_2 = \frac{D_2}{D}$$

 $D \neq 0$.

- 例 求下列二阶行列式的值.
- (1) $\begin{vmatrix} 3 & 2 \\ 4 & -1 \end{vmatrix} = -11;$ (2) $\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = -2;$ (3) $\begin{vmatrix} 0 & 1 \\ 2 & 6 \end{vmatrix} = -2;$ (4) $\begin{vmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{vmatrix} = 1.$

46 | 77

行列式解方程组

例 1.1 求解二元一次方程组

$$\begin{cases} 3x_1 - 2x_2 = 12 \\ 2x_1 + x_2 = 1 \end{cases}$$

解 因为

$$D = \begin{vmatrix} 3 & -2 \\ 2 & 1 \end{vmatrix} = 3 - (-4) = 7 \neq 0$$

且

$$D_1 = \begin{vmatrix} 12 & -2 \\ 1 & 1 \end{vmatrix} = 12 - (-2) = 14, \ D_2 = \begin{vmatrix} 3 & 12 \\ 2 & 1 \end{vmatrix} = 3 - 24 = -21$$

, 所以方程组的解为

$$x_1 = \frac{D_1}{D} = \frac{14}{7} = 2, \ x_2 = \frac{D_2}{D} = \frac{-21}{7} = -3.$$

三元一次方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3 \end{cases}$$

利用消元法, 可求得它的解为 (设分母不为零):

$$\begin{cases} x_1 = \frac{b_1 a_{22} a_{33} + a_{12} a_{23} b_3 + a_{13} b_2 a_{32} - b_1 a_{23} a_{32} - a_{12} b_2 a_{33} - a_{13} a_{22} b_3}{a_{11} a_{22} a_{33} + a_{12} a_{23} a_{31} + a_{13} a_{21} a_{32} - a_{11} a_{23} a_{32} - a_{12} a_{21} a_{33} - a_{13} a_{22} a_{31}} \\ x_2 = \frac{a_{11} b_2 a_{33} + b_1 a_{23} a_{31} + a_{13} a_{21} b_3 - a_{11} a_{23} b_3 - b_1 a_{21} a_{33} - a_{13} b_2 a_{31}}{a_{11} a_{22} a_{33} + a_{12} a_{23} a_{31} + a_{13} a_{21} a_{32} - a_{11} a_{23} a_{32} - a_{12} a_{21} a_{33} - a_{13} a_{22} a_{31}} \\ x_3 = \frac{a_{11} a_{22} b_3 + a_{12} b_2 a_{31} + b_1 a_{21} a_{32} - a_{11} b_2 a_{32} - a_{12} a_{21} b_3 - b_1 a_{22} a_{31}}{a_{11} a_{22} a_{33} + a_{12} a_{23} a_{31} + a_{13} a_{21} a_{32} - a_{11} a_{23} a_{32} - a_{12} a_{21} a_{33} - a_{13} a_{22} a_{31}} \end{cases}$$

三阶行列式的定义

对表示三元方程组的解, 定义三阶行列式为:

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} \\ -a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} \end{vmatrix}$$

三阶行列式示意图

三阶行列式的图形计算 (沙路法)

谭兵 (數学与統计学院) 线性代數 2025 年

注意:对角线法则只适用于二阶与三阶行列式.

例

计算行列式
$$D = \begin{vmatrix} 1 & 2 & -4 \\ -2 & 2 & 1 \\ -3 & 4 & -2 \end{vmatrix}$$
.

= -14.

解 按对角线法则,有

$$D = 1 \times 2 \times (-2) + 2 \times 1 \times (-3) + (-4) \times (-2) \times 4$$
$$-1 \times 1 \times 4 - 2 \times (-2) \times (-2) - (-4) \times 2 \times (-3)$$
$$= -4 - 6 + 32 - 4 - 8 - 24$$

谭兵 (数学与统计学院)

谭兵 (数学与统计学院)

三元一次线性方程组的解

$$D_1 = \begin{vmatrix} b_1 & a_{12} & a_{13} \\ b_2 & a_{22} & a_{23} \\ b_3 & a_{32} & a_{33} \end{vmatrix}, D_2 = \begin{vmatrix} a_{11} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \\ a_{31} & b_3 & a_{33} \end{vmatrix}, D_3 = \begin{vmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \\ a_{31} & a_{32} & b_3 \end{vmatrix}$$

把行列式 D 的第 i 列用常数项 b_1, b_2, b_3 替换得 D_i , i = 1, 2, 3.

若下述条件成立

$$D \neq 0$$

 \Downarrow

方程组的解

$$x_1 = \frac{D_1}{D}, \ x_2 = \frac{D_2}{D}, \ x_3 = \frac{D_3}{D}$$

n 元一次方程组 (线性方程组) 与 n 阶行列式

线性方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

- 想法: 把二元和三元方程组的结果推广到 n 元一次方程组;
- 途径: 定义 n 阶行列式;
- 由 3 阶行列式可预见, n 阶行列式的计算将很复杂, 因此需讨论其性质, 从而简化计算方法;
- 这一章的内容就是定义 n 阶行列式, 讨论其性质和计算方法, 最终建立线性方程组的**克拉默 (Cramer) 法则**.

目录

- 1 线性代数是什么?
- 2 线性代数的地位和特点
- 3 本门课程的主要内容
- 4 为啥要学习线性代数?
- 5 课程考核方式和比例
- 6 线性代数如何学

56 | 77

为了定义 n 阶行列式,需要用到自然数 $1,2,\cdots,n$ 的全排列及其逆序数

行列式各项的符号

行列式的每一项都是每行每列各取一个元素共 n 个元素相乘所得.

二阶行列式为:
$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

三阶行列式为:

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} \\ -a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} \end{vmatrix}$$

问题: 四阶行列式的表达式应该有多少项?

- 二阶行列式一共有 2 = 2! 项, 正负各半
- 三阶行列式一共有 6 = 3! 项,正负各半
- * 猜测四阶行列式一共应该有 4! = 24 项
- * 猜测四阶行列式取正号和负号的各有 12 项

取正号或负号的关键在于下标的排列.

全排列及其逆序数

定义 1.1 称由自然数 $1, 2, \dots, n$ 组成的一个全排列 $i_1 i_2 \dots i_n$ 为一个 n 级排列.

- 1243 是一个 4 级排列, 32514 是一个 5 级排列;
- 自然数 $1, 2, \dots, n$ 的 n 级排列共有 n! 个;
- 只有自然排列 123···(n-1)n 遵守从小到大的顺序, 其余排列都存在某种"逆序".

定义 1.2 在排列 $i_1i_2\cdots i_n$ 中,若一个较大的数 i_k 排在一个较小的数 i_l 前面,则称 i_k , i_l 构成该排列的一个逆序;称逆序总数为该排列的逆序数,记作 $\tau(i_1i_2\cdots i_n)$.

- 1 $\tau(32514) = 5$; $\tau(453162) = 9$;
- $\tau(123\cdots(n-1)n)=0;$
- 3 $\tau(n(n-1)\cdots 321) = \frac{n(n-1)}{2}$.

奇偶排列

定义 1.3 若一个排列的逆序数为奇 (偶) 数,则称该排列为奇 (偶) 排列.

- **1** 因为 $\tau(2143) = 2$, 所以 2143 是偶排列;
- 2 因为 $\tau(32514) = 5$, 所以 32514 是奇排列.

定义 1.4 交换一个排列中两个数的位置, 称为对该排列作一次对换.

- 交换排列 32514 中 5 与 4 的位置,得到排列 32415,记为 32514 → 32415:
- 排列 32514 是奇排列, 而排列 32415 是偶排列.

定理 1.1 对排列作一次对换改变排列的奇偶性.

二阶行列式的几何意义

二阶行列式 $\begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix}$ 的绝对值等于平行四边形的面积.

三阶行列式的几何意义

三阶行列式 $\begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}$ 的绝对值等于平行六面体的体积.

目录

- 1 线性代数是什么?
- 2 线性代数的地位和特点
- 3 本门课程的主要内容
- 4 为啥要学习线性代数?
- 5 课程考核方式和比例
- 6 线性代数如何学

64 | 77

利用 n 级排列的奇偶性,结合 2(3) 阶行列式,给出 n 阶行列式的定义.

回顾: 2(3) 阶行列式的定义

$$\begin{vmatrix} a_{11} & a_{12} \\ \times \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

回顾: 2(3) 阶行列式的定义

$$= (a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}) - (a_{13}a_{22}a_{31} + a_{11}a_{23}a_{32} + a_{12}a_{21}a_{33})$$

谭兵 (数学与统计学院)

2 阶与 3 阶行列式计算规律分析

3 阶行列式的事实

- 1 3 阶行列式恰好有 3! 项;
- 2 每一项形为 a_{1j1} a_{2j2} a_{3j3};
- 3 下标第一位 (行标) 构成自然排列 123;
- 4 下标第二位 $(列标)_{j_1,j_2,j_3}$ 的排列为 123, 231, 312, 321, 132, 213. 这 6 个排列的逆序数分别为 0, 2, 2, 3, 1, 1. 列标排列为偶排列的项符号为正,列标排列为奇排列的项符号为负.

3 阶行列式

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \sum_{j_1 j_2 j_3} (-1)^{\tau(j_1 j_2 j_3)} a_{1j_1} a_{2j_2} a_{3j_3}$$

2 阶行列式

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = \sum_{j_1 j_2} (-1)^{\tau(j_1 j_2)} a_{1j_1} a_{2j_2}$$

n 阶行列式的定义

定义 1.5 定义*n* **阶行列式**(determinant)

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

为代数和

$$\sum_{j_1 j_2 \cdots j_n} (-1)^{\tau(j_1 j_2 \cdots j_n)} a_{1j_1} a_{2j_2} \cdots a_{nj_n}$$

这里 \sum 表示对所有 n 级排列求和.

 $j_1 j_2 \cdots j_n$

称 a_{ij} 为行列式第 i 行第 j 列的元素, $a_{11},a_{22},\cdots,a_{nn}$ 为主对角线上元素, $a_{1n},a_{2,n-1},\cdots,a_{n1}$ 为副对角线上元素.

记号及定义的含义

- 通常用 D, $|(a_{ij})_{n\times n}|$, $\det(a_{ij})$ 等表示行列式;
- 规定 1 阶行列式 |a₁₁| = a₁₁.
- 由

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \sum_{j_1 j_2 \cdots j_n} (-1)^{\tau(j_1 j_2 \cdots j_n)} a_{1j_1} a_{2j_2} \cdots a_{nj_n}$$

- 1 n 阶行列式是 n! 项的代数和;
- ② 每一项是 n 个元素的乘积,这 n 个元素来自于行列式的不同行与不同列;
- **3** 行标按自然顺序排列时,符号由这 n 个元素的列标排列的逆序数决定.

按定义计算行列式

例 1.2 计算行列式

$$\begin{vmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 3 & 0 & 0 \\ 4 & 0 & 0 & 0 \end{vmatrix}$$

解 由定义,行列式是 4! 项的代数和,每项形为 $a_{1j_1}a_{2j_2}a_{3j_3}a_{4j_4}$.

因为只有 a_{13} , a_{24} , a_{32} , a_{41} 不为零, 所以只有当 $j_1=3$, $j_2=4$, $j_3=2$, $j_4=1$ 时, 项 $a_{1j_1}a_{2j_2}a_{3j_3}a_{4j_4}$ 才不为零. 故

$$\begin{vmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 3 & 0 & 0 \\ 4 & 0 & 0 & 0 \end{vmatrix} = (-1)^{\tau(3421)} 1 \times 2 \times 3 \times 4 = (-1)^5 24 = -24.$$

例 在四阶行列式展开式中,确定下列各项的符号: (1) $a_{13}a_{21}a_{34}a_{42}(-)$; (2) $a_{33}a_{24}a_{12}a_{41}(+)$.

例 设
$$f(x) = \begin{vmatrix} 5x^2 & 1 & 1 & x \\ 2x & 3x & 4 & 5 \\ 0 & 1 & 2 & 6 \\ 3 & 8 & x & 7 \end{vmatrix}$$
, 求 $f(x)$ 的最高次项.

解

$$(-1)^{\tau(1243)} 5x^2 \cdot 3x \cdot 6 \cdot x = -90x^4.$$

谭兵 (数学与统计学院)

线性代数

2025年2月27日

73 | 77

主对角行列式

例 1.3 证明

$$\begin{vmatrix} a_{11} & 0 & \cdots & 0 & 0 \\ 0 & a_{22} & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & a_{n-1,n-1} & 0 \\ 0 & 0 & \cdots & 0 & a_{nn} \end{vmatrix} = a_{11} a_{22} \cdots a_{n-1,n-1} a_{nn}$$

证明 因为形为 $a_{1j_1}a_{2j_2}\cdots a_{n-1,j_{n-1}}a_{nj_n}$ 中不为零的项只有 $a_{11}a_{22}\cdots a_{n-1,n-1}a_{nn}$,

且这一项的符号为正, 所以结论成立.

上三角行列式

例 1.4 证明

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1,n-1} & a_{1n} \\ 0 & a_{22} & \cdots & a_{2,n-1} & a_{2n} \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & a_{n-1,n-1} & a_{n-1,n} \\ 0 & 0 & \cdots & 0 & a_{nn} \end{vmatrix} = a_{11}a_{22}\cdots a_{n-1,n-1}a_{nn}$$

特殊行列式

副对角行列式

$$\begin{vmatrix} 0 & 0 & \cdots & 0 & a_{1n} \\ 0 & 0 & \cdots & a_{2,n-1} & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & a_{n-1,2} & \cdots & 0 & 0 \\ a_{n1} & 0 & \cdots & 0 & 0 \end{vmatrix} = (-1)^{\frac{n(n-1)}{2}} a_{1n} a_{2,n-1} \cdots a_{n-1,2} a_{n1}$$

$$a_{n1}$$
 0 \cdots 0 0

$$\begin{vmatrix} a_{11} & 0 & \cdots & 0 & 0 \\ a_{21} & a_{22} & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots & = a_{11}a_{22}\cdots a_{n-1,n-1}a_{nn} \end{vmatrix}$$

$$\begin{vmatrix} \vdots & \vdots & \vdots & \vdots \\ a_{n-1,1} & a_{n-1,2} & \cdots & a_{n-1,n-1} & 0 \\ a_{n1} & a_{n2} & \cdots & a_{n,n-1} & a_{nn} \end{vmatrix}$$

$$a_{n-1,2}$$
 $a_{n-1,n-1}$ a_{nn} a_{n2} \cdots $a_{n,n-1}$ a_{nn}

行列式列标按自然顺序排列

- 在 n 阶行列式的定义中,每一项的 n 个元素的行标按自然顺序排列;
- 因为数的乘法满足交换律,所以交换每一项中n个元素的顺序,可以使**列标**按自然顺序排列.

行列式列标按自然顺序排列的定义

定理 1.2 对于 n 阶行列式, 有

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \sum_{i_1 i_2 \cdots i_n} (-1)^{\tau(i_1 i_2 \cdots i_n)} a_{i_1 1} a_{i_2 2} \cdots a_{i_n n}$$