Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Нижегородский государственный университет им. Н.И Лобачевского»

Отчёт по лабораторной работе «Исследование линейных двухполюсников и четырехполюсников»

Выполнили студенты группы 10191

Елясин Андрей Алексеевич Петрова Ирина Александровна

Проверил: Водопьянов Александр Валентинович

Цель работы: исследовать свойства электрических двухполюсников и четырехполюсников, составленных из линейных элементов, вычислить их импедансы двухполюсников и коэффициенты передачи четырехполюсников

Оборудование: установка для исследования четырехполюсников и двухполюсников, осциллограф, звуковой генератор

I. Теоретическая часть

Двухполюсник – это электрическая цепь, состоящая из произвольного числа элементов и имеющая два наружных контакта, с помощью которых она подключается к другим цепям.

В нашей работе двухполюсники, содержащие электронные лампы и полупроводниковые приборы (нелинейные) рассматриваться не будут. Предполагается, что энергия к ним подводится от идеального генератора напряжения (внутреннее сопротивление равна нулю), а регистрирующие приборы имеют входное сопротивление $R_{\rm Bx} \to \infty$. Аналогично с четырехполюсниками.

Предлагается рассмотреть следующие двухполюсники (см.Рис.1).

При подключении линейных двухполюсников к гармонической ЭДС в них возникают гармонические напряжения и токи той же частоты, что и частота ЭДС. Записываем их в виде:

$$u = U_{\omega}e^{j\omega t}$$
, где $U_{\omega} = U_{0}e^{-j\varphi_{u}}$, тогда $u = U_{0}e^{j(\omega t - \varphi_{u})}$,

$$i=I_{\omega}e^{j\omega t}$$
, где $I_{\omega}=I_{0}e^{-j\varphi_{i}}$, тогда $i=I_{0}e^{j(\omega t-\varphi_{i})}$,

 U_0 и I_0 – амплитуды гармонического напряжения, тока

 φ_u и φ_i – начальные фазы гармонического напряжения, тока

ω – угловая частота переменного тока

 U_{ω} и I_{ω} - комплексные амплитуды

j – мнимая единица

$$Z_{\omega} = \frac{U_{\omega}}{I_{\omega}} = \frac{U_0}{I_0} e^{j(\varphi_i - \varphi_u)} = Z e^{j\varphi}$$

Комплексный импеданс Z_{ω} имеет размерность сопротивления и является основной характеристикой двухполюсника.

Коэффициент передачи K_{ω} является основной характеристикой четырехполюсника:

$$K_{\omega} = \frac{U_{\text{вых}_{\omega}}}{U_{\text{вх}_{\omega}}} = Ke^{j\varphi}$$

Он зависит только от частоты. Модуль коэффициента передачи $K=K(\omega)$ называют амплитудной характеристикой четырехполюсника. Аргумент коэффициента передачи $\varphi=\varphi(\omega)$ называют фазовой характеристикой четырехполюсника.

Четырехполюсники могут применяться в самых различных случаях, например: дифференцирование и интегрирование сигналов, изменение величины и полярности импульса (импульсные трансформаторы), линии задержки, линейные формирующие цепи, фазовращатели.

Схема мостового четырехполюсника, который может использоваться в качестве фазовращателя приведена на Рис.2

На этой схеме $R_1=R_2=R$, $C_1=C_2=C$. Токи i_1 и i_2 имеют одинаковые амплитуды и совпадают по фазе. $U_{\rm BX}$ – подводится к одной диагонали моста (диагональ AB), а $U_{\rm BMX}$ – снимается с другой диагонали моста (диагональ DE). Построим векторную диаграмму для этой схемы (см. Рис.3)

Puc.3

 $U_{\rm BX}$ может быть представлено в виде суммы двух перпендикулярных векторов, изображающих напряжения на C_1 и R_1 (или на C_2 и R_2), а $U_{\rm BыX}$ - в виде разности напряжений на C_2 и R_1 . Из полученной диаграммы следует, что напряжение на выходе по амплитуде равно напряжению на входе, а по фазе сдвинут на угол ϕ , причем:

$$tg\frac{\varphi}{2} = \frac{U_R}{U_C} = \frac{IR}{I\frac{1}{\omega C}} = \omega RC$$

Это соотношение показывает, что сдвиг фаз между входным и выходным напряжениями может меняться от нуля до π .

 $\varphi = 2arctg(\omega RC)$,

 ω R $\mathcal{C} \rightarrow 0$, тогда $\phi \rightarrow 0$

$$\omega$$
RC $\rightarrow \infty$, тогда $\phi \rightarrow 2\frac{\pi}{2} = \pi$.

Получить сдвиг фаз в точности равный π (180°) в такой схеме не удастся т.к. ωRC конечно. Для сдвига фаз в 180° и больше можно использовать четырехполюсник, приведенный на Рис.4.

Его коэффициент передачи можно подсчитать, используя любой из методов расчета электрических цепей. Его амплитудные и фазовые характеристики:

$$K(\omega) = \frac{\Omega^3}{\sqrt{(1 - 6\Omega^2)^2 + \Omega^2(5 - \Omega^2)^2}}$$

$$\phi(\omega) = \frac{3\pi}{2} - \operatorname{arctg} \frac{\Omega(5 - \Omega^2)}{1 - 6\Omega^2}$$

 $\Omega = \omega R C$ здесь – безразмерная циклическая частота. Частота, при которой $U_{\rm BX}$ и $U_{\rm BMX}$ будут противофазны:

$$\omega = \frac{1}{RC\sqrt{6}}$$

Модуль коэффициента передачи: $K = \frac{1}{29}$

Тогда амплитуда напряжения на выходе в 29 раз меньше амплитуды входного напряжения. Изменяя R и C можно в широких пределах менять частоту, для которой $U_{\rm BX}$ и $U_{\rm BMX}$ будут противофазны. Эти частоты могут быть от долей герца до десятков мегагерц, при этом четырехполюсник будет в любом случае иметь достаточно малые габариты. Вместо конденсаторов можно было бы использовать индуктивности, но габариты устройства возрастут, особенно в области низких частот.

II. Экспериментальная часть

1) Рассчитали зависимости модуля импеданса и аргумента от частоты для двухполюсников, изображенных на Рис.1, получили экспериментальные значения, занесли результаты в соответствующие таблицы.

a)
$$\dot{z} = \frac{1}{i\omega C} + R$$
, $|z| = \frac{\sqrt{1 + (\omega RC)^2}}{\omega C}$, $\varphi = \arctan \frac{1}{\omega RC}$, $R = 13$ кОм, $C = 0.05$ мкФ.

ν, Гц	ω, рад/с	$U_{\text{\tiny BX}},B$	U _{вых} , В	arphi, рад	z , кОм
50,00	314,16		2,78	1,45	46,76
100,00	628,32		5,00	0,94	26,00
200,00	1256,64		7,16	0,71	18,16
300,00	1884,96		8,40	0,52	15,48
400,00	2513,27	10,00	8,80	0,47	14,77
500,00	3141,59		9,04	0,37	14,38
1000,00	6283,19		9,60	0,19	13,54
5000,00	31415,93		10,00	0,05	13,00
10000,00	62831,85		10,00	0,02	13,00

Таблица 1. Экспериментальные значения, полученные при исследовании двухполюсника, изображенного на Рис.1a

Рис. 5. Зависимость модуля импеданса от логарифма частоты для двухполюсника с Рис. 1а

Рис.6. Экспериментально и теоретически полученные зависимости аргумента импеданса двухполюсника, изображенного на Рис.1a

б)
$$\dot{z}=i\omega L+R,\;|z|=\sqrt{(\omega L)^2+R^2},\;z=\frac{U_{\text{BX}}}{U_{\text{BAIX}}}R,\;\varphi=arctg\,\frac{\omega L}{R},\;\mathrm{R}=13$$
кОм, $\mathrm{L}=0.25\;\mathrm{\Gamma H}.$

ν, Гц	ω, рад/с	U _{вх} , В	U _{вых} , В	arphi, рад	z , кОм
50,00	314,16		10,00	0,01	13,00
100,00	628,32		10,00	0,02	13,00
200,00	1256,64		10,00	0,03	13,00
300,00	1884,96		10,00	0,04	13,00
400,00	2513,27	10,00	10,00	0,05	13,00
500,00	3141,59		10,00	0,08	13,00
1000,00	6283,19		10,10	0,15	12,87
5000,00	31415,93		8,31	0,62	15,64
10000,00	62831,85		5,92	1,02	21,96

Таблица 2. Экспериментальные значения, полученные при исследовании двухполюсника, изображенного на Рис.16

Рис. 7. Зависимость модуля импеданса от логарифма частоты для двухполюсника с Рис. 16

Рис.8. Экспериментально и теоретически полученные зависимости аргумента импеданса двухполюсника, изображенного на Рис.16

$$\begin{aligned} \mathbf{B}) \, \dot{z}_1 &= \frac{R}{1 + i\omega CR} \,, \ \dot{z} = \dot{z}_1 + R = \frac{R}{1 + i\omega RC} + R = \frac{R(1 - i\omega RC)}{1 + (\omega RC)^2} + R, \ |z| = R \sqrt{\left(1 + \frac{1}{1 + (\omega RC)^2}\right)^2 + \left(\frac{\omega C}{1 + (\omega RC)^2}\right)^2} \\ \varphi &= \arctan \frac{\omega RC}{2 + (\omega RC)^2}; \ \mathbf{R} = 13 \mathrm{KOm}, \ \mathbf{C} = 0.05 \mathrm{mk\Phi}. \end{aligned}$$

ν, Гц	ω, рад/с	U _{вх} , B	U _{вых} , В	arphi, рад	z, кОм
50,0	314,16		5,360	0,23	24,25
100,0	628,32		5,880	0,22	22,11
200,0	1256,64		6,560	0,30	19,82
300,0	1884,96		7,440	0,31	17,47
400,0	2513,27	10,00	7,920	0,31	16,41
500,0	3141,59		8,480	0,28	15,33
1000,0	6283,19		9,360	0,18	13,89
5000,0	31415,93		10,000	0,05	13,00
10000,0	62831,85		10,000	0,02	13,00

Таблица 3. Экспериментальные значения, полученные при исследовании двухполюсника, изображенного на Рис.1в

Рис. 9. Зависимость модуля импеданса от логарифма частоты для двухполюсника с Рис. 1 в

Рис.10. Экспериментально и теоретически полученные зависимости аргумента импеданса двухполюсника, изображенного на Рис.1в

$$\Gamma)\frac{1}{\dot{z_1}} = \frac{1}{R} + \frac{1}{i\omega L} = \frac{\omega L - iR}{\omega RL} \; , \; \; \dot{z}_1 = \frac{\omega^2 L^2 R + i\omega L R^2}{\omega^2 L^2 + R^2} , \; \; \dot{z} = \dot{z}_1 + R = \frac{2\omega^2 L^2 R + R^3}{\omega^2 L^2 + R^2} + i \frac{\omega L R^2}{\omega^2 L^2 + R^2} \; , \; |z| = \frac{\sqrt{(2\omega^2 L^2 R + R^3)^2 + (\omega L R^2)^2}}{\omega^2 L^2 + R^2} \; ; \\ \varphi = arctg \, \frac{\omega L R}{2\omega^2 L^2 + R^2} ; \; R = 13 \text{kOm}, \; L = 0.25 \; \Gamma \text{H}.$$

ν, Гц	ω, рад/с	$U_{\text{\tiny BX}}, \mathrm{B}$	U _{вых} , В	φ , рад	z , кОм
50,0	314,16		10	0,01	13,00
100,0	628,32		10	0,02	13,00
200,0	1256,64		10	0,03	13,00
300,0	1884,96		10	0,05	13,00
400,0	2513,27		10	0,06	13,00
500,0	3141,59		9,9	0,07	13,13
1000,0	6283,19		9,8	0,14	13,16
5000,0	31415,93		7,28	0,34	17,85
10000,0	62831,85	10,00	6,16	0,29	21,14
20000,0	125663,70		5,52	0,22	23,51
50000,0	314159,26		5,2	0,17	25,00
100000,0	628318,52		4,6	0,17	28,26

Таблица 4. Экспериментальные значения, полученные при исследовании двухполюсника, изображенного на Рис.1г

Рис.11. Зависимость модуля импеданса от логарифма частоты для двухполюсника с Рис.1г

Рис.12. Экспериментально и теоретически полученные зависимости аргумента импенданса двухполюсника, изображенного на Рис.1г

2) Для схемы, приведенной на Рис.2 получили экспериментальные и теоретические зависимости $\varphi(R)$ при постоянном значении частоты (см. Таблица 5)

R, кОм	$U_{\scriptscriptstyle m BMX} - U_{\scriptscriptstyle m BX}$, B	arphi, рад
10,00	2,00	0,18626
20,0	3,8	0,359549
30,0	5,6	0,545117
40,0	7,0	0,70515
50,0	8,2	0,867884
60,0	9,0	0,991845
70,0	9,7	1,111346
80,0	10,1	1,208782
90,0	10,4	1,297784
100,0	10,7	1,434608
110,0	10,8	1,570796
120,0	10,8	1,570796
130,0	10,8	1,570796
140,0	10,8	1,570796

Таблица 5. Исследование зависимости $\varphi(R)$

Для сравнения с теоретическими значениями запишем 2 закон Кирхгофа для Рис.2: $U_{\rm BX} = I_1 \left(R - \frac{i}{\omega c}\right)$.

В силу симметрии схемы: $I_2 = I_1 = I$, тогда: $U_{\text{вых}} = -U_{\mathcal{C}_1} + U_{R_2} = I\left(R + \frac{i}{\omega\mathcal{C}}\right) = U_{\text{вх}} \frac{R + \frac{i}{\omega\mathcal{C}}}{R - \frac{i}{\omega\mathcal{C}}}$

$$K_{\omega} \stackrel{\text{def}}{=} \frac{U_{\text{BbIX}}}{U_{\text{BX}}} = \frac{R + \frac{i}{\omega C}}{R - \frac{i}{\omega C}} = \frac{R^2 \omega^2 C^2 - 1}{R^2 \omega^2 C^2 + 1} + i \frac{2R\omega C}{R^2 \omega^2 C^2 + 1}$$

$$tg(\varphi) \stackrel{\text{def}}{=} tg(|\arg(K_{\omega})|) = \left| \frac{2R\omega C}{R^2\omega^2 C^2 - 1} \right|, tg(\varphi) = \frac{2tg(\frac{\varphi}{2})}{1 - tg^2(\frac{\varphi}{2})}$$

$$tg\left(\frac{\varphi}{2}\right) = \omega RC$$

$$\varphi = 2arctg(\omega RC)$$

Рис.13. Графическое представление исследуемой зависимости $\varphi(R)$

3) Для четырехполюсника, изображенного на Рис.4, сняли зависимость $\varphi(w)$

ν, Гц	оу, см	og, cm
20	4,5	2,2
40	4,8	3,6
60	4,8	4,6
70	4,8	4,6
100	4,8	4,4
300	4,8	2,2
500	4,8	1,4
800	4,8	0,8
1000	4,8	0,7
3000	4,8	0

Таблица 6. Исследование зависимости $\varphi(w)$

Рис.14. Графическое представление исследуемой зависимости $\varphi(w)$.

4) Рассчитали коэффициент передачи данного четырехполюсника:

Для параллельно соединенных RL и RC контуров $\frac{1}{\dot{z}_1} = \frac{1}{R+i\omega L} + \frac{i\omega C}{iR\omega C+1}$. С учётом $L = \varkappa R$; $C = \frac{\varkappa}{R}$ получаем $\dot{z}_1 = R$. Тогда $K_\omega = \frac{R}{R+R} = \frac{1}{2}$, а значит, $[\varkappa] = c$

1.1) Первый двухполюсник и его векторная диаграмма:

Так как $U_{\omega} = I_{\omega} Z_{\omega}$, то данное отображение поворачивает I_{ω} на угол $\phi = \operatorname{arctg}\left(\frac{1}{\omega c R}\right)$ по часовой стрелке и растягивает её на величину $\sqrt{R^2 + \frac{1}{(\omega C)^2}}$. При увеличении ω угол будет уменьшаться до 0, а коэффициент растяжения до R, при уменьшении ω угол будет увеличиваться до $\frac{\pi}{2}$, а коэффициент растяжения до ∞ .

1.2) Второй двухполюсник

Так как $U_{\omega} = I_{\omega} Z_{\omega}$, то данное отображение поворачивает I_{ω} на угол $\phi = \operatorname{arctg}\left(\frac{\omega L}{R}\right)$ против часовой стрелки и растягивает её на величину $\sqrt{R^2 + (\omega L)^2}$. При увеличении ω угол будет увеличиваться до $\frac{\pi}{2}$, а коэффициент растяжения до ∞ , а при уменьшении ω угол будет увеличиваться до 0, коэффициент растяжения до R.

1.3) Третий:

Так как $U_{\omega}=I_{\omega}Z_{\omega}$, то данное отображение поворачивает I_{ω} на угол $\phi=\arctan\left(\frac{\omega CR}{2+\omega^2C^2R^2}\right)$ по часовой стрелке и растягивает её на величину $\frac{\sqrt{(2R+\omega^2C^2R^3)^2+\omega^2C^2R^4}}{1+\omega^2C^2R^2}$. При уменьшении ω угол будет уменьшаться до 0, а коэффициент растяжения до 2R. Далее угол растёт до максимума, а при дальнейшем увеличении ω уменьшается до 0, а коэффициент растяжения до R.

1.4) Четвертый:

Так как $U_{\omega} = I_{\omega} Z_{\omega}$, то данное отображение поворачивает I_{ω} на угол $\phi = \operatorname{arctg}\left(\frac{R\omega L}{2\omega^2 L^2 + R^2}\right)$ против часовой стрелки и растягивает её на величину $\frac{\sqrt{(2\omega^2 L^2 R + R^3)^2 + R^4 \omega^2 L^2}}{\omega^2 L^2 + R^2}$. При уменьшении ω угол будет уменьшаться до 0, а коэффициент растяжения до R, потом угол растет до максимума и при дальнейшем увеличении ω угол будет медленно уменьшаться до 0, а коэффициент растяжения стремиться к 2R.

- 5) Источник тока должен быть гармоническим и его внутреннее сопротивление должно быть пренебрежимо мало, а регистрирующие приборы должны иметь очень большое сопротивление.
- 6) В мостовой схеме нельзя непосредственно присоединять осциллограф для измерения сдвига фаз, так как у осциллографа одна из входных клемм усилителя горизонтального отклонения и усилителя вертикального отклонения соединены с корпусом прибора. Таким образом, если непосредственно включить входное и выходное напряжение, то это приведёт к закорачиванию одного из плеч мостовой схемы. В других случаях закорачивания не произойдёт, так как выход подключается параллельно участку имеющее активное сопротивление и не содержит на нём подключение к клемме входа.
- 7) Изобразим векторные диаграммы для мостового четырехполюсника, если емкости в его плечах заменить индуктивностями.

$$U_{\text{\tiny BbIX}} = U_{\text{\tiny BX}} \frac{R - i\omega L}{R + i\omega L} = U_{\text{\tiny BX}} \frac{R^2 - \omega^2 L^2 - i \cdot 2R\omega L}{R^2 + \omega^2 L^2}$$

То есть мы $U_{\rm BX}$ поворачиваем на угол $\varphi=2arctg\left(\frac{R}{\omega L}\right)$ против часовой стрелки.

8) Если на вход линейного четырёхполюсника подать сигнал, представленный в виде суперпозиции отдельных гармоник, то для каждой гармоники будет своё значение коэффициента передачи, при умножении на который комплексная амплитуда изменит своё значение, далее просуммировав новые гармоники, получим $U_{\text{вых}} = \sum K(k\omega)U_{\text{вх}}(k\omega)e^{ik\omega t}$ (То есть амплитуды изменятся в $|K(k\omega)|$ раз, фазы на $\arg(K(k\omega))$, а дискретность спектра останется такой же. При подаче на нелинейный четырёхполюсник изменятся не только значения фаз и амплитуд, но и дискретность спектра, может поменяться значение ω .

Вывод:

- Изучили устройство двухполюсников и четырехполюсников;
- Для двухполюсников были рассчитаны зависимости модуля импеданса и аргумента от частоты и построены соответствующие графики;
- Для четырехполюсника, схема которого представлена на рисунке 2, при постоянном значении частоты построили теоретические и экспериментальные кривые зависимости $\varphi(R)$;
- Для четырехполюсника, изображённого на рисунке 4, сняли зависимость $\varphi(w)$ и определили, что при частоте $\sim 70\Gamma$ ц фаза равна $\frac{\pi}{2}$