Творческий проект на тему: «Космическая ракета на кислородно-метановом двигателе»

Шифр работы:

РЕФЕРАТ	3
1 ВВЕДЕНИЕ	3
1.2 ПРОБЛЕМА	6
1.3 ТЕМА, ЦЕЛИ И ЗАДАЧИ	6
1.4 ПРИМЕНЕНИЕ МЕТОДОВ ПРОЕКТИРОВАНИЯ И ИССЛЕДОВАНИЯ АНАЛИЗИРУЕМОЙ ПРОБЛЕМЫ	7
1.5 МАРКЕТИНГОВОЕ ИССЛЕДОВАНИЕ ДЛЯ ВЫЯВЛЕНИЯ СПРОС НА СИСТЕМУ	
1.6 ИСТОРИЧЕСКИЕ ПРОТОТИПЫ И СОВРЕМЕННЫЕ АНАЛОГИ	8
1.7 ПАТЕНТНОЕ ИССЛЕДОВАНИЕ	9
2 ОРГАНИЗАЦИОННО-ПОДГОТОВИТЕЛЬНЫЙ ЭТАП	9
2.1 ОБДУМЫВАНИЕ БУДУЩЕГО ИЗДЕЛИЯ	9
2.2 ВЫБОР И ОБОСНОВАНИЕ ТЕМЫ ПРОЕКТА	10
2.3 ИСПОЛЬЗОВАННЫЕ ПРОГРАММЫ И ИНСТРУМЕНТЫ	10
2.4 ПРЕДВАРИТЕЛЬНОЕ ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ	11
3 ТЕХНОЛОГИЧЕСКИЙ ЭТАП	12
3.1 КАРТА ИЗГОТОВЛЕНИЯ ИЗДЕЛИЯ	12
3.2 ОПИСАНИЕ ОКОНЧАТЕЛЬНОГО ВАРИАНТА ИЗДЕЛИЯ	13
4 ЗАКЛЮЧЕНИЕ	13
4.1 ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ	13
4.2 ИТОГИ	14
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	15

РЕФЕРАТ

Отчет 20 с., 4 ч., 1 рис., 8 табл., 8 источников, 7 прил.

КОСМИЧЕСКАЯ РАКЕТА, КИСЛОРОДНО-МЕТАНОВЫЙ ДВИГАТЕЛЬ, РАКЕТНОЕ ТОПЛИВО, КОСМИЧЕСКИЕ АППАРАТЫ, РАКЕТНЫЙ ДВИГАТЕЛЬ

Объектом исследования является топливо, использующееся для двигателей космических ракет.

Цель работы - разработка более дешевого и экологически чистого ракетного двигателя.

В процессе работы проводилось исследование составов двигателей для ракет, моделирование, создание системы.

В результате работы была разработан прототип космической ракеты на кислородно-метановом двигателе.

Основные технико-эксплуатационные показатели:

Определения, обозначения и сокращения:

В настоящей пояснительной записке к проекту применяют следующие термины с соответствующими определениями:

Система автоматизированного проектирования (САПР) — это организационно-техническая система, предназначенная для автоматизации процесса проектирования. Она состоит из персонала и комплекса технических, программных и других средств автоматизации его деятельности.

Программное обеспечение (Π O) — это программа или множество программ, используемых для управления компьютером

1 ВВЕДЕНИЕ

На большинстве современных ракет используется в качестве топлива и окислителя керосин и кислород соответственно, керосин очень сильно загрязняет окружающую среду, а также является дорогим топливом. Следовательно, надо искать замену керосину.

Ракета — летательный аппарат, двигающийся в пространстве за счёт действия реактивной тяги, возникающей только вследствие отброса части собственной массы аппарата и без использования вещества из окружающей

среды. Поскольку полёт ракеты не требует обязательного наличия окружающей воздушной или газовой среды, следовательно, он возможен не только в атмосфере, но и в вакууме. Словом ракета обозначают широкий спектр летающих устройств от праздничной забавы до космической ракетыносителя.

Ракета-носитель (РН), также ракета космического назначения (РКН) — ракета, предназначенная для выведения полезной нагрузки в космическое пространство.

Иногда термин «ракета-носитель» применяется в расширенном значении: ракета, предназначенная для доставки в заданную точку (в космос либо в отдалённый район Земли) полезной нагрузки — например, искусственных спутников Земли, космических кораблей, ядерных и неядерных боевых блоков. В такой трактовке термин «ракета-носитель» объединяет термины «ракета космического назначения» (РКН) и «межконтинентальная баллистическая ракета».

Космические ракеты — это средства доставки на орбиту околоземных и планетарных аппаратов и оборудования. Эти мощные машины позволяют совершать полеты в космос, исследовать удаленные уголки вселенной, а также обеспечивать связь и навигацию на Земле.

История космических ракет берет свое начало во второй половине XX века, когда человечество впервые смогло запустить искусственный спутник Земли. С тех пор ракетостроение активно развивается, появляются все более мощные и эффективные ракеты, способные не только вывести грузы на орбиту, но и отправить их к другим планетам.

Современные космические ракеты бывают различных типов - носители для запуска спутников, грузовые корабли для доставки грузов на МКС, ракеты-носители для запуска межпланетных зондов и даже пилотируемых космических аппаратов. Каждая из них имеет свои особенности и предназначена для выполнения определенной задачи.

Технологии ракетостроения совершенствуются из года в год, и в будущем можно ожидать появления еще более мощных и инновационных ракет, способных открывать новые возможности для исследования космоса.

1.1 АКТУАЛЬНОСТЬ

В наше время развитие космических технологий очень важно для изучения космоса, астрономических исследований, развития телекоммуникаций, освоения новых земель и разработки новых навигационных и двигательных систем.

Развитие космических аппаратов остается актуальным и важным направлением в современном мире по ряду причин:

- 1. Исследование космоса: космические аппараты позволяют нам изучать и понимать завораживающие тайны космоса, открывая новые планеты, галактики, черные дыры и другие удивительные объекты.
- 2. Технологический прогресс: разработка и создание космических аппаратов требует использования самых передовых технологий, что способствует научному, инженерному и технологическому прогрессу.
- 3. Космическая экономика: космические аппараты могут быть использованы для коммерческих целей, таких как спутниковая связь, спутниковая навигация, а также добыча полезных ископаемых на других планетах.
- 4. Национальная безопасность: космические аппараты играют важную роль в обеспечении национальной безопасности путем наблюдения за территориями, обнаружения боеголовок и мониторинга вооруженных конфликтов.
- 5. Космические исследования: космические аппараты позволяют ученым изучать воздействие космической среды на живые организмы, а также проводить эксперименты и исследования, которые невозможно провести на Земле.

Таким образом, развитие космических аппаратов остается актуальным и важным направлением, которое принесет нам много новых знаний и технологических достижений.

1.2 ПРОБЛЕМА

Главные проблемы почему людям затруднительно строить космические аппараты, это высокая стоимость и экологическое загрязнение.

Проблема высокой стоимости заключается, как и в стоимости самой ракеты и материалов для нее, так и в стоимости топлива, которое для нее используется.

Так же есть и проблема экологического загрязнения из-за того, что, во-первых, части корпуса, которые отцепляются при полёте ракеты падают на Землю, но к счастью, большинство космического мусора сгорает в атмосфере перед тем, как упасть на землю, а во-вторых, это топливо, результат сгорания которого загрязняет Землю, и разрушает озоновый слой.

1.3 ТЕМА, ЦЕЛИ И ЗАДАЧИ

Тема: «Космическая ракета на кислородно-метановом двигателе».

Цель: Разработка более дешевого и экологически чистого ракетного двигателя.

Задачи:

- 1. Анализ и исследование рынка топлива.
- 2. Поиск вариантов экологически чистого и дешевого топлива.
- 3. Разработка нового двигателя на основе нового варианта топлива.
- 4. Анализ и исследование рынка ракет.
- 5. Разработка корпуса ракеты с новым двигателем.
- 6. Анализ конкурентов и аналогов проекта.
- 7. Создание прототипа проекта из пластика с использованием 3D печати в уменьшенном масштабе.

1.4 ПРИМЕНЕНИЕ МЕТОДОВ ПРОЕКТИРОВАНИЯ И ИССЛЕДОВАНИЯ АНАЛИЗИРУЕМОЙ ПРОБЛЕМЫ

Использование методов ТРИЗ помогло в постановлении задач и решении проблем проекта.

- 1. С помощью метода вынесения, были отделены части ракеты, у которых нет проблем и части ракеты у которых есть проблемы, которые надо решить. Таким образом было легче улучшить проект во многих сферах.
- 2. С помощью теоретического метода анализа удалось проанализировать и исследовать систему проблемных частей ракеты и найти им решения.
- 3. С помощью практических работ были изучены объемные темы и обобщил полученные знания.

Для создания ракеты на кислородно-метановом двигателе необходимо применить методы проектирования и исследования, чтобы обеспечить эффективную работу двигателя и безопасность полета.

Одним из первоочередных этапов проектирования является математическое моделирование работы двигателя с использованием специализированных программ и методов. Это позволяет оптимизировать конструкцию двигателя, учитывая различные параметры, такие как температура, давление, расход топлива и т.д.

Далее следует проведение экспериментальных исследований, например, испытания отдельных компонентов двигателя, его узлов и систем в различных условиях. Это позволяет выявить возможные проблемы и недостатки, а также оптимизировать работу двигателя.

Также важным этапом проектирования является анализ работы системы управления и стабилизации ракеты, чтобы обеспечить точное управление полетом и безопасное приземление.

Эффективное применение методов проектирования и исследования позволит создать ракету на кислородно-метановом двигателе, которая будет обладать высокой мощностью, минимальным расходом топлива и надежностью в работе.

1.5 МАРКЕТИНГОВОЕ ИССЛЕДОВАНИЕ ДЛЯ ВЫЯВЛЕНИЯ СПРОСА НА СИСТЕМУ

Сейчас спрос на космические аппараты есть, но лишь в некоторых странах. Покупка такого дорогого аппарата недоступна для многих компаний, поэтому данный проект направлен на развитие возможностей запуска космических аппаратов.

Спрос на ракету с кислородно-метановым двигателем зависит от многих факторов, включая потребности космических агентств, коммерческих запусков и исследовательских миссий.

В настоящее время кислородно-метановые двигатели используются в различных ракетах, таких как SpaceX Starship и Blue Origin New Glenn. Эти двигатели считаются более эффективными и экологически чистыми по сравнению со стандартными двигателями на топливе типа RP-1/LOX.

С увеличением интереса к исследованию космоса, развитию коммерческого космического туризма и планам колонизации других планет спрос на ракеты с кислородно-метановыми двигателями может увеличиваться. Однако точный объем спроса зависит от различных факторов и может изменяться со временем.

1.6 ИСТОРИЧЕСКИЕ ПРОТОТИПЫ И СОВРЕМЕННЫЕ АНАЛОГИ

Таблица 1 - Таблица исторических прототипов и современных аналогов

Исторические прототипы	Современные аналоги
К сожалению, люди узнали о возможности делать космические двигатели на метане совсем недавно в 1999 году поэтому как таковых исторических прототипов метановому двигателю не было, но существовали факелы и светильники, использующие в качестве топлива природный газ (в основном в природном газе содержится более 80% метана)	На данный момент в России разрабатывается аналог данному проекту двигатель РД-0169, а также, такие иностранные аналоги как: американский Raptor 1 и 2, китайский TQ-15A, итальянский LM10-MIRA и т.д.

1.7 ПАТЕНТНОЕ ИССЛЕДОВАНИЕ

Таблица 2 - Проведение патентного исследования

Название документа	Основной принцип работы и отличия от представленной системы
RU 2 166 661 C1 СПОСОБ РАБОТЫ ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ С ТУРБОНАСОСНОЙ ПОДАЧЕЙ КИСЛОРОДНО- МЕТАНОВОГО ТОПЛИВА	20-50% поступающего в двигатель метанового горючего расходуют на регенеративное охлаждение камеры, после чего сжигают в ней, а кислородный окислитель подают частично непосредственно в камеру и частично в восстановительный газогенератор, где в окислителе сжигают избыточное горючее, поступающее в газогенератор при давлении выше начального давления хладагента; полученный восстановительный газ срабатывают на турбине, после чего дожигают в камере. Данная система будет состоять из одного из самых лучших сплавов для ракетных двигателей, сплава - Ниобий С103. Такое изменение материала позволит повысить мощность двигателя, без вреда остальной системе.

2 ОРГАНИЗАЦИОННО-ПОДГОТОВИТЕЛЬНЫЙ ЭТАП

2.1 ОБДУМЫВАНИЕ БУДУЩЕГО ИЗДЕЛИЯ

Изучив рынок возможных вариантов топлива, был выбран в качестве замены керосину - метан. Он практически во всем лучше, чем керосин, он дешевле почти в 5 раз, он меньше, чем керосин загрязняет окружающий мир, а также, его больше на земле, поэтому чтобы исчерпать его запасы понадобится много времени в следствие этого такие двигатели будут актуальны на протяжении длительного промежутка времени.

Рисунок 1 - схема работы Кислородно-метанового двигателя

2.2 ВЫБОР И ОБОСНОВАНИЕ ТЕМЫ ПРОЕКТА

Таблица 3 - Сравнение разных видов космического топлива

ВИД ТОПЛИВА	Экологичность	Низкая стоимость	Большая мощность	Мало условий для работы
Керосин	-	-	+	+
Водород	+	+	+	-
Метан	+	+	+	+

После анализа вариантов топлива было принято окончательное решение, что лучшим топливом для проекта будет сжиженный метан.

2.3 ИСПОЛЬЗОВАННЫЕ ПРОГРАММЫ И ИНСТРУМЕНТЫ

Для создания 3D модели в качестве программы САПР было решено выбрать программу КОМПАС 3D по некоторым причинам:

- 1. В данном ПО есть библиотека стандартных изделий и материалов, которые могут помочь при создании моделей.
- 2. Систематическое обновление ПО.

- 3. Удобство работы.
- 4. Наличие инструментария, который включает обширный набор инструментов, включая изменение размеров, геометрию объекта, шероховатость.
- 5. Возможность использования листового материала для создания моделей.

В качестве ПО для создания анимаций была выбрана программу Blender, потому что:

- 1. Программа очень удобна в использовании.
- 2. Есть возможность менять материалы поверхностей моделей.
- 3. Удобная настройка света и камеры.
- 4. Возможность создания своих материалов и текстур.
- 5. Помимо удобства использовании программа достаточно просто и ее использованию легко научится.
- 6. Возможность создания физики объектов.

2.4 ПРЕДВАРИТЕЛЬНОЕ ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ

Таблица 4 - Предварительное экономическое обоснование

Наименование	Цена	Количество	Сумма
Пластик для 3D принтера eSUN PLA+ фиолетовый	1700 руб./1 кг.	1 шт.	1700 руб.
Итого:			1700 руб.

3 ТЕХНОЛОГИЧЕСКИЙ ЭТАП

3.1 КАРТА ИЗГОТОВЛЕНИЯ ИЗДЕЛИЯ

Таблица 5 - Карта изготовления изделия

№ π/π	Операция	Матер иалы	Изображение	Инструмен ты и оборудован ие	Рекоменд ации
1	Создание моделей	-		Компьютер , ПО: КОМПАС 3D	
2	Создание чертежей	-	200100 80160 1 200100 80160 1	Компьютер , ПО: КОМПАС 3D	Выполн ять чертежи согласно ЕСКД
3	Сборка 3D модели	-		Компьютер , ПО: КОМПАС 3D	
4	Рендер изображений	-		Компьютер , ПО: Blender	
5	Создание анимаций	-		Компьютер , ПО: Blender	
6	3D печать	PLA+ пласти к	7.50	Компьютер , 3D принтер	Соблюда ть технику безопасн ости

3.2 ОПИСАНИЕ ОКОНЧАТЕЛЬНОГО ВАРИАНТА ИЗДЕЛИЯ

Заключительный вариант ракеты на кислородно-метановом двигателе представляет собой современное космическое средство, способное осуществлять полёт на большие расстояния. Ракета оборудована двигателем, работающим на кислороде и метане, что обеспечивает высокую эффективность и экономичность использования топлива.

Изделие выполнено из прочных и лёгких материалов, что позволяет снизить вес ракеты и увеличить её грузоподъёмность. На корпусе ракеты расположены крылья и рули управления, что обеспечивает точное управление движением.

В ракете установлена современная система навигации и автоматизированного управления, что обеспечивает точное направление полёта и безопасную посадку. Также в изделии предусмотрены системы безопасности и аварийного сброса, что обеспечивает надёжное функционирование в экстремальных ситуациях.

Заключительный вариант ракеты на кислородно-метановом двигателе представляет собой передовое космическое средство, способное успешно осуществлять межпланетные полёты и исследования космоса.

4 ЗАКЛЮЧЕНИЕ

4.1 ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ

Таблица 6 - Затраты на материалы

Наименование	Стоимость	Количество	Сумма
Пластик для 3D принтера eSUN PLA+ фиолетовый	1700 руб./1 кг.	200 г.	340 руб.
Итого:	340 руб.		

Таблица 7 - Амортизация оборудования

Наименование	Стоимость	Затраченное	Стоимость
		время	использования

3D принтер	70 руб./час	2 часа	140 руб.
Итого:			140 руб.

Таблица 8 - расходы на оплату труда

Наименование	Стоимость	Время работы	Стоимость использования
Специалист 3D моделей и чертежей	450 руб./час.	3 часа	1 350 руб.
Специалист анимаций рендера изображений	350 руб./час.	1 час	350 руб.
Специалист по 3D печати	150 руб./час.	2 часа	300 руб.
Итого:	•		2000 руб.

Итоговая стоимость прототипа ракеты: 2 480 руб.

4.2 ИТОГИ

В итоге, по окончанию работы над проектом удалось создать прототип ракеты на кислородно-метановом двигателе, который частично показывает систему работы задуманного проекта. При создании проекта были получены такие улучшения как:

- 1. Экономия на топливе: кислородно-метановый двигатель является более эффективным и экономичным по сравнению с другими типами ракетных двигателей.
- 2. Увеличение мощности: использование кислородно-метанового топлива позволяет создать более мощный двигатель, что улучшает характеристики космической ракеты.
- 3. Экологическая безопасность: кислородно-метановое топливо более чистое и экологически безопасное, что снижает негативное воздействие ракеты на окружающую среду.

- 4. Надежность: кислородно-метановый двигатель обладает высокой надежностью и долговечностью, что повышает безопасность и эффективность полетов космической ракеты.
- 5. Перспективы развития: использование кислородно-метанового топлива открывает новые возможности для развития космической технологии и исследований в области космоса.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1 Патентный поиск RU 2 166 661 C1 [Электронный ресурс]. — URL: https://yandex.ru/patents/doc/RU2166661C1_20010510 (дата обращения 00.00.00)

2 Российский кислородно-метановый двигатель РД 0-169 [Электронный ресурс]. – URL:

https://www.roscosmos.ru/39600/

- 3 Система работы ракетных двигателей [Электронный ресурс]. URL: https://rostec.ru/news/kak-eto-rabotaet-raketnyy-dvigatel/
- 4 Топлива химических ракетных двигателей [Электронный ресурс]. URL:

http://repo.ssau.ru/bitstream/Uchebnye-posobiya/Topliva-himicheskih-raketnyh-dvigatelei-Elektronnyi-resurs-ucheb-posobie-

55169/1/Егорычев%20В.С.%20Топлива%20%20химических.pdf5 Что такое сжиженный природный газ [Электронный ресурс]. – URL:

https://bcs-express.ru/novosti-i-analitika/szhizhennyi-prirodnyi-gaz-zachem-on-nuzhen-i-kak-ego-proizvodiat

6 Использование и характеристики метана [Электронный ресурс]. – URL: https://onhs.ru/articles/vse-o-metane-i-ego-primenenii/

ПРИЛОЖЕНИЕ

Приложение А: Чертежи

Приложение Б: Рендеры и анимации

Приложение В: Ссылки на сайт

ПРИЛОЖЕНИЕ А

		Формат	Зона	Поз.	Обозначение	Наименование		Кол	Приме-
	ŀ	ϕ	٠.,				- 0		<i>ЧФНИР</i>
примен		-				Детали			
Іерв. пу	ŀ					<u>детили</u>			
Ne	ŀ			1	PA.01.0001.002	Главный отсек	<u> </u>	1	
	ŀ			12	PA.01.0001.003	Отсек 1		1	
Ц					PA.01.0001.004	Отсек 2		1	
				-	PA.01.0001.005	Дополнительные ускор	ители	5	
	Ì				PA.01.0001.006	Крепежи частей ра		5	
	İ			6	PA.01.0001.007	Крепежи частей раке		5	
рав.									
Ŋ									
							4		
19491									
304/104/16HB/									
2000									
u dan		_							
DCCUA Todn.							.00		
11. 14. 14. 14. 14. 14. 14. 14. 14. 14.		Н							
1000 1401									
DEKIN 3. [][-		1	1		3.7		
JHILL JAHL		-							
4.UCM 3. []	1			5 S			į.	9	
CKUH-	ŀ						13		
UUU ALKUH B3AM. UH		Н							
לללו ק									
я © <u>;</u> дат,	ŀ	\dashv							
Унедная версия Подп. и с	ŀ		Г	Т		D. 1.01.0001	221		
едноя 71		Изм	. Au	rm	Паокум. Подп. Дата	PA.01.0001.U	<i>901</i>		
17.1 y 10.1		Pas	враи		Listongri. 1100ri. Huma		/lum. /	Лист	Листов 1
(Прс		\pm		Pakema 📙			/
WHB.		Н.К. Ут.	OHITI B	рр.		uncilla			
He	для к			CKOZO	использования Копи	ροβαπ	Форг	МДП	A4

ПРИЛОЖЕНИЕ Б

ПРИЛОЖЕНИЕ В

Ссылка на сайт: https://sat0t1s.github.io/RocketOM-0001/

