Concours Communs Polytechniques

PSI

Mathématiques 2; session 2004

Partie I

- 1. Pour p et q entiers, $a_{p+1,q+1} = a_{p,q} + (p+1) a_{p+1,q}$
 - 1.1. Pour tout q de N, $a_{1,q+1} = a_{0,q} + a_{1,q}$. Donc $a_{1,1} = a_{0,0} + a_{1,0} = 1$ et pour q > 0, $a_{1,q+1} = a_{1,q}$. Pour tout q de N*, $a_{1,q} = 1$.
 - 1.2. $a_{2,1} = a_{1,0} + 2a_{2,0} = 0$; $a_{2,2} = a_{1,1} + 2a_{2,1} = 1$.
 - 1.3. Pour q > 1, $a_{2,q} = a_{1,q-1} + 2a_{2,q-1} = 1 + 2a_{2,q-1}$. D'où $a_{2,3} = 1 + 2 \times 1 = 2$; $a_{2,4} = 1 + 2 \times 3 = 7$; $a_{2,5} = 1 + 2 \times 7 = 15$. On montre par récurrence que $a_{2,q} = 2^{q-1} 1$.
 - 1.4. La propriété P_0 est vraie car pour tout q de N, $a_{0,q}=1$ ou $0\in \Psi$. Supposons la propriété vraie pour un entier p donné : comme $a_{p+1,0}\in \Psi$, la relation de définition permet de montrer, par récurrence sur q, que tous les éléments $a_{p+1,q}$ sont dans N. P_{p+1} est vraie.
 - 1.5. Montrons par récurrence sur q la propriété R_q : $\forall p \in \mathbb{Y}$, $p > q \Rightarrow a_{p,q} = 0$. La propriété R_0 est vraie car, pour tout p de N^* , $a_{p,0} = 0$. Supposons R_q vraie : $\forall p \in \mathbb{Y}$, $p > q + 1 \Rightarrow a_{p,q+1} = a_{p-1,q} + pa_{p,q}$ avec p-1 > q donc $\forall p \in \mathbb{Y}$, $p > q + 1 \Rightarrow a_{p,q+1} = 0$. R_{q+1} est vraie.
 - 1.6. On obtient alors facilement, pour tout p $a_{p,p} = 1$.

Par calcul direct ou en utilisant une procédure Maple

```
> A:=proc(n)
local Z,p,q,k;
Z:=matrix(n+1,n+1);
Z[1,1]:=1;
for k from 2 to n+1 do Z[k,1]:=0; Z[1,k]:=0; od;
for p from 1 to n do for q from 1 to n do Z[p+1,q+1]:=Z[p,q]+
(p)*Z[p+1,q];od;od;
print(Z); end:
```

$$A(2) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}; \ A(3) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{pmatrix}; A(4) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 3 & 7 \\ 0 & 0 & 0 & 1 & 6 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix};$$

$$A(5) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 3 & 7 & 15 \\ 0 & 0 & 0 & 1 & 6 & 25 \\ 0 & 0 & 0 & 0 & 1 & 10 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Partie II

- 1. $M \in M_{n+1}(\mathfrak{c})$
 - 1.1. $\det(M)$ est une somme de produits de coefficients de M, donc d'entiers. $\det(M) \in \mathfrak{c}$.
 - 1.2. Les coefficients de com(M) sont des déterminants d'ordre n extraits de M. Ce sont tous des entiers.
 - 1.3. Sidet $(M) = \pm 1$, M est inversible en tant que matrice de $M_{n+1}(\dagger)$ et son inverse est $M^{-1} = \frac{1}{\det(M)}^{t} (com(M)) = \pm^{t} (com(M)) \in M_{n+1}(\mathfrak{c})$.

Réciproquement si M est inversible dans $M_{n+1}(\mathfrak{k})$, il existe une matrice Q de $M_{n+1}(\mathfrak{k})$ telle que $MQ = QM = I_{n+1}$. Et donc : $\det(M) \times \det(Q) = 1$. Or ces deux déterminants sont des entiers inversibles dans \mathfrak{k} . On a donc $\det(M) = \pm 1$.

- 2. $B_0 = 1$; pour p > 0, $B_p = \prod_{j=0}^{p-1} (X j)$
 - 2.1. Pour tout p de N, $\partial^{\circ}(B_p) = p$. Pour n entier de N, la famille $(B_0,...,B_n)$ est une famille de polynômes étagés en degré. Elle est libre. On obtient une famille libre de n+1 vecteurs de $|A_n| = 1$ qui est de dimension n+1. C'est une base de cet espace.
 - 2.2. On obtient par calcul: $B_0 = 1$, $B_1 = X$, $B_2 = X^2 X$, $B_3 = X^3 3X^2 + 2X$, $B_4 = X^4 6X^3 + 11X^2 6X$.

$$P_4 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 2 & -6 \\ 0 & 0 & 1 & -3 & 11 \\ 0 & 0 & 0 & 1 & -6 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}; \ Q_4 = P_4^{-1}$$

La résolution du système triangulaire $P_4X = B$ donne aisément la

matrice inverse et on a
$$Q_4 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 3 & 7 \\ 0 & 0 & 0 & 1 & 6 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} = A(4)$$

2.3. Pour tout entier k, $0 \le k \le n$, $B_k \in \mathcal{K}[X] = Vect(1, X, ..., X^k)$. La matrice de passage de (H) à (B) est donc triangulaire supérieure. Comme un produit de polynômes à coefficients entiers est un polynôme à coefficients entiers, pour tout k > 0, $B_k = \prod_{j=0}^{k-1} (X-j)$ est à coefficients entiers.

- 2.4. Pour tout entier k B_k est un polynôme de degré k de coefficient dominant 1.
 - Les éléments diagonaux de la matrice P_n sont tous égaux à 1 et, comme cette matrice est triangulaire supérieure, $\det(P_n) = 1$.
- 2.5. Pour tout k, $Vect(B_0,...,B_k) = Vect(1,...,X^k)$ et le vecteur X^k s'exprime donc comme combinaison linéaire des B_j , $0 \le j \le k$. La matrice de passage de (B) à (H) est également triangulaire supérieure. C'est l'inverse de la matrice P_n , matrice à coefficients entiers de déterminant 1. D'après la question 1.3 cette matrice est aussi élément de $M_{n+1}(\mathfrak{c})$.

2.6.
$$X^q = \sum_{p=0}^q \beta_{p,q} B_p$$
.

En particulier $X^0 = 1 = \beta_{0,0} B_0 = \beta_{0,0}$ et pour q > 0, en évaluant la relation en 0, 1 et 2 on a $: 0 = \sum_{p=0}^{q} \beta_{p,q} B_p(1) = \beta_{0,q} \times 1 + 0 = \beta_{0,q}$;

$$1^{q} = \sum_{p=0}^{q} \beta_{p,q} B_{p}(1) = \beta_{0,q} + \beta_{1,q} \times 1_{\mbox{et donc}} \quad \beta_{1,q} = 1 \ \mbox{pour} \ \ q > 0. \ \mbox{De même}$$

$$2^{q} = \sum_{p=0}^{q} \beta_{p,q} B_{p}(2) = \beta_{0,q} + \beta_{1,q} \times 2 + \beta_{2,q} \times 2 \text{ et pour } q > 1, \ \beta_{2,q} = \frac{2^{q} - 2}{2} = 2^{q-1} - 1.$$

2.7. Comme la matrice Q_n est triangulaire supérieure, pour tout entiers p et q, $p > q \Rightarrow \beta_{p,q} = 0$.

Mais pour tout entier q,

$$X^{q+1} = X \sum_{p=0}^{q} \beta_{p,q} B_p = \sum_{p=0}^{q+1} \beta_{p,q+1} B_p = \sum_{p=0}^{q} \beta_{p,q} (X - p + p) B_p$$

soit
$$X^{q+1} = \sum_{p=0}^{q} \beta_{p,q} B_{p+1} + p \sum_{p=0}^{q} \beta_{p,q} B_{p} = \sum_{p=1}^{q+1} \beta_{p-1,q} B_{p} + p \sum_{p=0}^{q} \beta_{p,q} B_{p}$$

Par suite, par unicité de la décomposition dans la base (B) on a, pour tout entier strictement positif p, $p \le q+1$, $\beta_{p,q+1} = \beta_{p-1,q} + p\beta_{p,q}$.

Comme $p > q \Rightarrow \beta_{p,q} = 0$, les coefficients $\beta_{p,q}$ vérifient les conditions de définition des coefficients $a_{p,q}$. D'où, pour tout n de N, $Q_n = A_n$.

Partie III

$$F = C^{\infty}(]0, +\infty[,]) ; \Phi(f) = g \Leftrightarrow \forall x > 0, g(x) = xf'(x).$$

1. On montre facilement que Φ est un endomorphisme de E.

Pour g élément quelconque de F, soit f définie sur $]0,+\infty[$ par $f(x) = \int_1^x \frac{g(t)}{t} dt$

Comme t a $\frac{g(t)}{t}$ est de classe c^{∞} sur t^{**} , f, primitive de cette fonction sur

l'intervalle f^{**} est aussi de classe c^{∞} . De plus : $\forall x > 0, f'(x) = \frac{g(x)}{x}$. Donc

$$\Phi(f) = g.$$

L'application Dest surjective.

$$\Phi(f) = 0 \Leftrightarrow \forall x > 0, f'(x) = 0 \Leftrightarrow f \text{ constante sur } [0, +\infty]$$
.

 $Ker\Phi$ est l'espace vectoriel de dimension 1 constitué des fonctions constantes sur $]0,+\infty[$.

Φn'est pas injective.

2. Soit $\alpha \in \mathbf{i}$. $\Phi(f) = \alpha f$ si et seulement si f est solution sur \mathbf{i}^{+*} de l'équation différentielle $xy' = \alpha y$. La solution générale de cette équation est

$$y(x) = ce^{\int \alpha \frac{dx}{x}} = cx^{\alpha}.$$

L'ensemble des valeurs propres de Φ est \dagger . Pour chaque valeur propre α , l'espace propre associé est la droite vectorielle dirigée par la fonction de F x a x^{α} .

3. Avec les notations précédentes, si $h = \Phi^2(f) = \Phi(g)$, pour tout x strictement positif, $h(x) = xg'(x) = x(f'(x) + xf''(x)) = x^2f''(x) + xf'(x)$.

$$f \in Ker\Phi^2 \iff g \in Ker\Phi \iff \exists c \in [\neg \forall x > 0, xf](x) = c$$

$$f \in Ker\Phi^2 \Leftrightarrow \exists (c,d) \in \mathsf{j}^2 / \forall x > 0, f(x) = c \ln x + d$$

 $Ker\Phi^2$ est un sous-espace vectoriel de F de dimension 2 engendré par les deux fonctions x a $\ln x$ et x a 1.

4. Pour q=1, f élément quelconque de F, x > 0, $\Phi(f)(x) = xf'(x) = 1 \times x^1 f^{(1)}(x)$ La relation demandée est vraie avec $d_{1,1} = 1$.

Supposons la propriété vraie pour q quelconque dans ¥*.

On a :
$$\forall f \in F$$
, $\forall x \in \mathbf{i}^{+*}$, $\Phi^{q+1}(f)(x) = \Phi[\Phi^q(f)](x) = x \frac{d}{dx} \left[\sum_{p=1}^q d_{p,q} x^p f^{(p)}(x) \right]$

$$\Phi^{q+1}(f)(x) = x \sum_{p=1}^{q} p d_{p,q} x^{p-1} f^{(p)}(x) + x \sum_{p=1}^{q} d_{p,q} x^{p} f^{(p+1)}(x)$$

$$\Phi^{q+1}\big(\,f\,\big)\big(\,x\big) = \sum_{p=1}^{q} p d_{p,q} x^{p} \, f^{(\,p)}\,\big(\,x\big) \, + \sum_{p=1}^{q} d_{p,q} x^{p+1} \, f^{(\,p+1)}\,\big(\,x\big) = \sum_{p=1}^{q} p d_{p,q} x^{p} \, f^{(\,p)}\,\big(\,x\big) \, + \sum_{p=2}^{q+1} d_{p-1,q} x^{p} \, f^{(\,p)}\,\big(\,x\big) + \sum_{p=1}^{q+1} d_{p-1,$$

$$\Phi^{q+1}(f)(x) = d_{1,q}xf'(x) + \sum_{p=2}^{q} (pd_{p,q} + d_{p-1,q}) x^{p} f^{(p)}(x) + d_{q,q}x^{q+1} f^{(q+1)}$$

La relation est vraie au rang q+1 avec, pour tout p de $\S 2, q$,

$$d_{p,q+1} = pd_{p,q} + d_{p-1,q} , \ d_{1,q+1} = d_{1,q} , \ d_{q+1,q+1} = d_{q,q} .$$

5. Avec les conventions proposées, les $d_{p,q}$ vérifient les mêmes conditions de définition que les $a_{p,q}$.

Partie IV

1.
$$\varphi(t) = \exp(e^t - 1)$$

1.1.
$$e^{X} = 1 + X + \frac{X^{2}}{2} + \frac{X^{3}}{6} + \frac{X^{4}}{24} + o(X^{4})$$

Par composition

$$\begin{split} & \phi(t) = 1 + \left(t + \frac{t^2}{2} + \frac{t^3}{6} + \frac{t^4}{24}\right) + \frac{1}{2}\left(t + \frac{t^2}{2} + \frac{t^3}{6}\right)^2 + \frac{1}{6}\left(t + \frac{t^2}{2}\right)^3 + \frac{1}{24}t^4 + o\left(t^4\right) \\ & \phi(t) = 1 + t + t^2\left(\frac{1}{2} + \frac{1}{2}\right) + t^3\left(\frac{1}{6} + \frac{1}{2} + \frac{1}{6}\right) + t^4\left(\frac{1}{24} + \frac{1}{8} + \frac{1}{6} + \frac{3}{12} + \frac{1}{24}\right) + o\left(t^4\right) \\ & \phi(t) = 1 + t + t^2 + \frac{5}{6}t^3 + \frac{5}{8}t^4 + o\left(t^4\right). \end{split}$$

1.2. Φ est de classe c^{∞} sur \mathfrak{f} . Son développement limité en 0 est

$$\varphi(t) = \varphi(0) + t\varphi'(0) + \frac{t^2}{2}\varphi''(0) + \frac{t^3}{6}\varphi^{(3)}(0) + \frac{t^4}{24}\varphi^{(4)}(0) + o(t^4)$$

Par unicité du développement limité on a :

$$\varphi'(0) = 1, \varphi''(0) = 2, \varphi^{(3)}(0) = 5, \varphi^{(4)}(0) = 15$$
.

- 2. P_n^j est le nombre de partitions d'un ensemble E de cardinal n en j classes.
 - 2.1. Comme chaque classe comporte au moins un élément, si j est le nombre de classes $j \le n$. Donc si j > n on ne peut construire de partition de E comportant j classes et $P_n^j = 0$.
 - 2.2. Soit $n \in \mathbb{Y}^*$. Il existe une seule partition comportant une classe : la seule classe est E. D'où $P_n^1 = 1$. De même la seule partition comportant n classes est celle où les classes sont constituées de tous les sousensembles à un élément de E. $P_n^n = 1$.
 - 2.3. $j \ge 2$, $n \ge 1$

Soit a un élément fixé de E.

Les partitions de Eà i classes sont de deux sortes :

ou bien $\{a\}$ est une classe de cette partition et les autres classes forment une partition à j-1 classes de $E\setminus \{a\}$, ensemble de cardinal n-1.

Il y en a P_{n-1}^{j-1} de ce type.

ou bien la classe qui contient a n'est pas réduite à $\{a\}$ l'intersection des j classes avec $E\setminus\{a\}$ donne une partition de $E\setminus\{a\}$ en j classes. Une partition de $E\setminus\{a\}$ en j classes étant donnée on peut « remonter » à une partition de E en j classes en conservant j-1 classes et en en ajoutant l'élément a à l'une des j classes de la partition. Il y a donc au total $j\times P_{n-1}^j$ manières de procéder.

Par suite : $P_n^j = P_{n-1}^{j-1} + jP_{n-1}^j$.

- 2.4. Les relations de définition de ces entiers sont les mêmes que dans la partie I.
- 3. P_n est le nombre de partitions de E.

3.1. Si
$$E = \{a\}$$
 , la seule partition de E est celle composée d'une classe $\{a\}$. $P_1 = 1$

Si
$$E = \{a,b\}$$
 2 partitions, $(\{a,b\})$ et $(\{a\},\{b\})$. $P_2 = 2$

Si
$$E = \{a,b,c\}$$
, $P_3 = P_3^1 + P_3^2 + P_3^3 = 2 + P_3^2$

Mais d'après 2.3,
$$P_3^2 = P_2^1 + 2P_2^2 = 3$$
 et $P_3 = 5$

Enfin
$$P_4 = P_4^1 + P_4^2 + P_4^3 + P_4^4 = 2 + P_4^2 + P_4^3$$
 avec $P_4^2 = P_3^1 + 2P_3^2 = 1 + 6 = 7$ et $P_4^3 = P_3^2 + 3P_3^3 = 3 + 3 = 6$; $P_4 = 2 + 7 + 6 = 15$

3.2.
$$P_n = \sum_{j=1}^n P_n^j$$

3.3. Les P_n sont des entiers positifs. Montrons par récurrence que $P_n \le n!$. $P_1 = 1 \le 1$. Supposons que, pour n donné, pour tout k, $0 \le k \le n$, $P_k \le k!$

On a alors
$$P_{n+1} = \sum_{k=0}^{n} C_n^k P_k \le \sum_{k=0}^{n} C_n^k k! = \sum_{k=0}^{n} \frac{n!}{(n-k)!} = n! \left(\frac{1}{n!} + \frac{1}{(n-1)!} + \dots + \frac{1}{(0)!} \right)$$

et $P_{n+1} \le n \times (n+1) = (n+1)!$. La propriété est vraie au rang n+1.

$$4. \quad s(x) = \sum_{n=0}^{+\infty} \frac{P_n}{n!} x^n.$$

4.1. Pour $x \in [0,1]$, $n \in \mathbb{Y}$, $0 \le \frac{P_n}{n!} x^n \le x^n$. Comme $\sum x^n$ est convergente, par

comparaison de séries de termes positifs, $\sum \frac{P_n}{n!} x^n$ est convergente.

Le rayon de convergence de cette série entière est donc supérieur ou égal à 1.

4.2. Si
$$x \in]-1,1[, s'(x) = \sum_{n=1}^{+\infty} n \frac{P_n}{n!} x^{n-1} = \sum_{n=1}^{+\infty} \frac{P_n}{(n-1)!} x^{n-1} = \sum_{n=0}^{+\infty} \frac{P_{n+1}}{n!} x^n$$

En utilisant (1),
$$s'(x) = \sum_{n=0}^{+\infty} \frac{\left(\sum_{k=0}^{n} C_n^k P_k\right)}{n!} x^n$$

La fonction exp est développable en série entière sur []. Pour tout [] de []-1,1[], par produit de Cauchy de deux séries absolument convergente donne :

$$s(x)\exp(x) = \sum_{n=0}^{+\infty} \frac{P_n}{n!} x^n \times \sum_{n=0}^{+\infty} \frac{x^n}{n!} = \sum_{n=0}^{+\infty} c_n x^n \text{ avec, pour tout n de N,}$$

$$c_n = \sum_{k=0}^n \frac{P_k}{k!} \times \frac{1}{(n-k)!} = \sum_{k=0}^n \frac{C_n^k P_k}{n!}.$$

On a donc : $\forall x \in]-1,1[, s'(x) = e^x s(x)]$.

4.3. La solution générale sur ; de l'équation différentielle $y' = e^x y$ est $y(x) = ke^{\int e^x dx} = k \exp(e^x)$, k réel.

En particulier il existe un réel k tel que, pour tout x de]-1,1[,

$$\begin{split} s(x) &= k \exp \left(e^x\right) \\ \text{Comme} \quad s(0) &= P_0 = 1 \text{ et donc } 1 = k \exp \left(1\right) \text{ ; } k = e^{-1}. \\ \text{Par suite } s(x) &= \exp \left(e^x - 1\right) = \varphi \left(x\right) \end{split}$$

4.4. Le développement en série entière est unique $s(x) = \sum_{n=0}^{+\infty} \frac{s^{(n)}(0)}{n!} x^n$ Donc pour tout n de N, $s^{(n)}(0) = \varphi^{(n)}(0) = P_n$.