Métodos Numéricos

Agustín Mista

5 de Febrero de 2018

Índice general \mathbf{I}

Sucesiones y Series		3
Sucesiones Numéricas		
Sucesión Convergente		
Sucesiones Acotadas		
Monotonía		
Operaciones con Sucesiones		. 3
Series Numéricas		. 4
Convergencia y Divergencia de Series		. 4
Condición Necesaria de Convergencia		
Reindexado de Términos		. 5
Propiedad de Linearidad		
Propiedad Telescópica		. 5
Criterios de Convergencia de Series de Términos Positivos		. 5
Criterios de Convergencia de Series Alternadas		. 6
Convergencia Condicional y Absoluta		. 6
n.		
Errores		6
Representación Computacional de Números		. 6
Enteros Binarios		
Fracciones Binarias		
Representación Computacional de Números en Punto Flotante		
Norma IEEE754 para Números en Punto Flotante	•	. 7
Error Absoluto y Relativo		
Cifras Significativas		
Fuentes de Errores en Problemas Matemáticos de Ingeniería		
Polinomio de Taylor		
Error del Polinomio de Taylor		. 9
Solución de Ecuaciones No Lineales		9
Algoritmo		-
Criterios de Terminación		
Orden de Convergencia		
Solución de Ecuaciones No Lineales		
Raíces o Ceros		
Método de la Bisección		
Método de Newton (Newton-Raphson)		
Método de la Secante		
Método de la Falsa Posición		
IVIETOGO GETA FAISA FOSICIOH		. 12

Métodos Iterativos de Punto Fijo		 						12
Punto fijo		 						12
Existencia de Soluciones de $x = g(x) \dots \dots \dots$		 						13
Sistemas de Ecuaciones No Lineales								
Solución de Ecuaciones Lineales								14
Métodos Directos								
Matriz Inversa								
Eliminación de Gauss								
Pivoteo								
Factorización LU								
Factorización LU con Matriz de Permutación								
Matrices Simétricas								
Matrices No Simétricas Reales								
Ortogonalización de Gram-Schmidt		 						17
Factorización QR		 						18
Problema de Mínimos Cuadrados		 						18
Normas Vectoriales y Matriciales		 						19
Estabilidad de la Resolución de Sistemas Lineales								
Métodos Iterativos								
Esquema general de los Métodos Iterativos								
Estabilidad Asintótica de un Sistema Lineal Discreto								
Método de Sobrerelajación (SOR)								
Metodo de Sobierelajación (SOIt)	•	 	٠.	•	•		 •	21
Aproximación de Autovalores								22
Círculos de Gerschgorín		 						22
Método de la Potencia								
Placed de la 1 scolleta	•	 		•			 •	
Interpolación y Ajuste de Curvas								23
Interpolación Polinomial		 						23
Método de Interpolación de Lagrange		 						24
Método de Interpolación por Diferencias Divididas de Newtor	١.	 						24
Error en la Interpolación Polinomial								
Acotación del Error (Caso General)								
Aproximación con Menor V.A. Máximo								
Polinomio de Chebychev								
Aproximación de Mínimos Cuadrados								
Aproximación de Minimos Cuadrados	•	 	• •	•	•	• •	 •	20
Integración Numérica								26
Integración Numérica Basada en Polinomios Interpolantes		 						26
Regla del Trapecio								27
Método Compuesto del Trapecio								27
Regla de Simpson								28
Método Compuesto de Simpson								29
Integración Numérica en Dominio Bidimensional								
miegracion inumerica en Dominio Diumensional		 						- 49

Sucesiones y Series

Sucesiones Numéricas

Definición: una sucesión es una función $f: \mathbb{N} \to \mathbb{R}$. Una sucesión genera una lista infinita de números f(1), f(2), ..., f(n), ... También puede notarse $f_1, f_2, ..., f_n, ...$ ó $\{f(n)\}$ ó $\{f_n\}_{n=1}^{\infty}$.

Sucesión Convergente

Una sucesión f_n es <u>convergente</u> si existe un número real L tal que para cada $\epsilon > 0$ se puede encontrar un número natural $\overline{N(\epsilon)}$ tal que $\forall n > N$ se verifique $|f_n - L| < \epsilon$. Se dice entonces que L es el <u>límite</u> de la sucesión f_n , y se escribe $L = \lim_{n \to \infty} f_n$ ó $f_n \to L$. Decimos entonces que f_n <u>converge</u> a L. Una sucesión no convergente se llama divergente.

Teorema: (Unicidad del límite) una sucesión convergente tiene un único límite.

Sucesiones Acotadas

Definición: una sucesión f_n se dice que está <u>acotada superiormente</u> si existe un número $c \in \mathbb{R}$ tal que $\forall n \in \mathbb{N}, f_n \leq c$. Se dice que está <u>acotada inferiormente</u> si existe un número $k \in \mathbb{R}$ tal que $\forall n \in \mathbb{N}, f_n \geq k$. Se dice que está <u>acotada</u> si lo está superior e inferiormente, es decir que existe M > 0 tal que $\forall n \in \mathbb{N}, |f_n| \leq M$.

Monotonía

Definición: una sucesión f_n es:

- Monótona creciente si $\forall n \in \mathbb{N}, f_n \leq f_{n+1}$.
- Monótona decreciente si $\forall n \in \mathbb{N}, f_{n+1} \leq f_n$.
- Estrictamente creciente si $\forall n \in \mathbb{N}, f_n < f_{n+1}$.
- Estrictamente decreciente si $\forall n \in \mathbb{N}, f_{n+1} < f_n$.

Teorema:

- 1. Toda sucesión monótona creciente y acotada superiormente converge.
- 2. Toda sucesión monótona decreciente y acotada inferiormente converge.

Operaciones con Sucesiones

Teorema: sean a_n y b_n sucesiones convergentes con límites a y b respectivamente. Luego se cumplen las siguientes reglas:

- 1. $\lim_{n\to\infty} (a_n + b_n) = a + b$
- $2. \ \lim_{n\to\infty}(a_n-b_n)=a-b$
- 3. $\lim_{n\to\infty} (a_n \cdot b_n) = a \cdot b$
- 4. $\lim_{n\to\infty} (c \cdot a_n) = c \cdot a \ (c \in \mathbb{R})$
- 5. $\lim_{n\to\infty} (a_n/b_n) = a/b$ (si $b\neq 0$)

Teorema: (del Sándwich) sean a_n, b_n y c_n sucesiones. Si $a_n \leq b_n \leq c_n$ para todo $n > N \in \mathbb{N}$ y $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = L$ entonces $\lim_{n\to\infty} b_n = L$.

Teorema: suponga que f(x) es una función definida para todo $x \ge N$ y que f_n es una sucesión de números reales tal que $f_n = f(n)$ para todo $n \ge N$, entonces $\lim_{x \to \infty} f(x) = L \Rightarrow \lim_{n \to \infty} f_n = L$. Por lo tanto podemos usar la regla de L'Hopital para calcular límites de sucesiones.

Series Numéricas

Definición: dada una sucesión a_n formamos otra S_n para la cual $S_n = a_1 + a_2 + \dots + a_n = \sum_{n=1}^{\infty} a_n$. Luego la sucesión S_n es llamada <u>serie infinita</u> o <u>serie</u> y se indica como $\sum_{n=1}^{\infty} a_n$.

Una serie $\sum_{n=1}^{\infty} a_n$ se dice:

- de términos positivos si $\forall n, a_n > 0$.
- alternada si $a_n = (-1)^n c_n$ para alguna sucesión c_n tal que $\forall n, c_n > 0$.

Ejemplo:

- Serie armónica: $\sum_{n=1}^{\infty} 1/n$
- Serie geométrica (de razón r): $\sum_{n=1}^{\infty} r^n$
 - Si r > 0 es una serie de términos positivos.

 - Si r < 0 es una serie alternada. Si $r \neq 1$ entonces $\sum_{n=1}^{\infty} r^n = \frac{1-r^{n+1}}{1-r}$

Convergencia y Divergencia de Series

Definición: se dice que la serie $\sum_{n=1}^{\infty} a_n$ es convergente cuando la sucesión S_n tiene límite finito, y notamos $\lim_{n\to\infty} (\sum_{k=1}^{\infty} a_k) = \lim_{n\to\infty} S_n = S$.

Ejemplo: la serie armónica $\sum_{n=1}^{\infty} 1/n$ no converge.

Sabemos que $\frac{1}{2} \leq S_{2n} - S_n$, luego suponemos que existe s tal que $\lim_{n\to\infty} S_n = s$:

$$\frac{1}{2} \leq \lim_{n \to \infty} S_{2n} - \lim_{n \to \infty} S_n = s - s = 0 \qquad (ABS!)$$

Condición Necesaria de Convergencia

Teorema: si la serie $\sum_{n=1}^{\infty} a_n$ converge, entonces $\lim_{n\to\infty} a_n = 0$. En cambio, si $\lim_{n\to\infty} a_n \neq 0$ entonces $\sum_{n=1}^{\infty} a_n$ es divergente.

Demostración: suponemos que la serie $\sum_{n=1}^{\infty} a_n$ converge a s, luego:

$$a_k = S_k - S_{k-1} \Rightarrow \lim_{k \to \infty} S_k - \lim_{k \to \infty} S_{k-1} = s - s = 0$$

Ejemplo: Serie geométrica $\sum_{n=0}^{\infty} r^n = \sum_{n=1}^{\infty} r^{n-1}$.

- Si $|r| \ge 1$ entonces $\lim_{n \to \infty} r^n \ne 0 \Rightarrow$ la serie diverge.
- Si |r| < 1 entonces $\lim_{n \to \infty} r^n = \lim_{n \to \infty} \frac{1 r^{n+1}}{1 r} = \frac{1}{1 r}$.

Reindexado de Términos

Si a_n es una serie, entonces.

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1+h}^{\infty} a_{n-h} = \sum_{n=1-h}^{\infty} a_{n+h}$$

Si $\sum_{n=1}^{\infty} a_n$ converge, entonces $\sum_{n=k}^{\infty} a_n$ converge para cualquier k > 1.

$$\sum_{n=1}^\infty a_n = a_1+a_2+\dots+a_{k-1}+\sum_{n=k}^\infty a_n$$

En particular para la serie geométrica $\sum_{n=1}^{\infty} r^n = \frac{r}{1-r}$ si |r| < 1.

Propiedad de Linearidad

Teorema: sean $\sum_{n=1}^{\infty} a_n$ y $\sum_{n=1}^{\infty} b_n$ series convergentes con sumas a y b respectivamente. Si α y β son constantes entonces $\sum_{n=1}^{\infty} (\alpha a_n + \beta b_n)$ es convergente con suma $\alpha a + \beta b$.

Corolario: si $\sum_{n=1}^{\infty} a_n$ converge y $\sum_{n=1}^{\infty} b_n$ diverge entonces $\sum_{n=1}^{\infty} (a_n + b_n)$ diverge.

Demostración: si $\sum_{n=1}^{\infty}(a_n+b_n)$ fuera convergente, entonces también lo sería $\sum_{n=1}^{\infty}b_n$ ya que $\sum_{n=1}^{\infty}b_n=\sum_{n=1}^{\infty}(a_n+b_n)+\sum_{n=1}^{\infty}(-a_n)$.

Propiedad Telescópica

Definición: una serie $\sum_{n=1}^{\infty} a_n$ es <u>telescópica</u> cuando se puede escribir como $\sum_{n=1}^{\infty} (b_n - b_{n+1})$ para alguna sucesión b_n tal que $a_n = b_n - b_{n+1}$. Luego tenemos que $\sum_{k=1}^{n} (b_k - b_{k+1}) = b_1 - b_{n+1}$.

Teorema: sean a_n y b_n sucesiones tales que $a_n = b_n - b_{n+1}$. Luego $\sum_{n=1}^{\infty} a_n$ converge \iff sucesión b_n converge. En cuyo caso $\sum_{n=1}^{\infty} a_n = b_1 - \lim_{n \to \infty} b_n$.

Criterios de Convergencia de Series de Términos Positivos

- Criterio de Acotación: si $\forall n \geq 1, a_n \geq 0$, entonces $\sum_{n=1}^{\infty} a_n$ converge \implies la sucesión de sus sumas parciales está acotada superiormente.
- Criterio de Comparación: si $a_n \geq 0, \, b_n \geq 0$ y existe c>0 tal que $a_n \leq cb_n$ si $n \geq N$ para algún N, entonces:
 - $\begin{array}{lll} & \operatorname{Si} \, \sum_{n=1}^\infty b_n \text{ converge} & \Longrightarrow \, \sum_{n=1}^\infty a_n \text{ converge.} \\ & \operatorname{Si} \, \sum_{n=1}^\infty a_n \text{ diverge} & \Longrightarrow \, \sum_{n=1}^\infty b_n \text{ diverge.} \end{array}$
- Criterio del Límite: sean a_n y b_n sucesiones tales que $a_n \ge 0$ y $b_n \ge 0$ y sea $\lambda = \lim_{n \to \infty} \frac{a_n}{b_n}$. Si λ es finito y $\lambda \neq 0$, entonces $\sum_{n=1}^{\infty} b_n$ converge $\iff \sum_{n=1}^{\infty} a_n$ converge.
- Criterio de la Raíz: sea a_n una sucesión tal que $a_n>0$ y sea $\alpha=\lim_{n\to\infty} \sqrt[n]{a_n}$, entonces:

 - $\begin{array}{lll} \ \alpha < 1 & \Longrightarrow & \sum_{n=1}^{\infty} a_n \ \text{converge.} \\ \ \alpha > 1 & \Longrightarrow & \sum_{n=1}^{\infty} a_n \ \text{diverge.} \\ \ \alpha = 1 & \Longrightarrow & \text{el criterio no decide.} \end{array}$
- Criterio del Cociente: sea a_n una sucesión tal que $a_n > 0$ y sea $\alpha = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$, entonces:

5

$$\begin{array}{lll} -\alpha < 1 & \Longrightarrow & \sum_{n=1}^{\infty} a_n \text{ converge.} \\ -\alpha > 1 & \Longrightarrow & \sum_{n=1}^{\infty} a_n \text{ diverge.} \\ -\alpha = 1 & \Longrightarrow & \text{el criterio no decide.} \end{array}$$

• Criterio de la integral: sea f una función positiva y estrictamente decreciente definida en $[1,\infty)$ tal que $\forall n\in\mathbb{N}, f(n)=a_n$. La serie $\sum_{n=1}^\infty a_n$ converge $\iff \int_1^\infty f(x)dx$ converge.

Criterios de Convergencia de Series Alternadas

• Criterio de Leibniz: si a_n es una sucesión monótona decreciente con límite 0, entonces la serie alternada $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ converge.

Convergencia Condicional y Absoluta

Teorema: si $\sum_{n=1}^{\infty} |a_n|$ converge, entonces $\sum_{n=1}^{\infty} a_n$ converge y además tenemos que $|\sum_{n=1}^{\infty} a_n| \le \sum_{n=1}^{\infty} |a_n|$.

 $\begin{array}{ll} \textbf{\textit{Demostración:}} & \text{definimos la sucesión de términos positivos } b_n = a_n + |a_n|. \text{ Luego resulta } b_n = 0 \\ \text{ó } b_n = 2|a_n| & \text{y siempre vale que } 0 \leq b_n \leq 2|a_n|. \text{ Como además sabemos que } \sum_{n=1}^{\infty} |a_n| & \text{converge y } 2\sum_{n=1}^{\infty} |a_n| & \text{domina a } \sum_{n=1}^{\infty} b_n & \text{luego } \sum_{n=1}^{\infty} b_n & \text{converge. Como } \sum_{n=1}^{\infty} b_n & \text{converge y } \sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} b_n - \sum_{n=1}^{\infty} |a_n| & \text{entonces } \sum_{n=1}^{\infty} a_n & \text{converge por el teorema de linearidad.} \end{array}$

Definición: una serie $\sum_{n=1}^{\infty} a_n$ es <u>absolutamente convergente</u> si $\sum_{n=1}^{\infty} |a_n|$ es convergente.

Definición: una serie $\sum_{n=1}^{\infty} a_n$ es <u>condicionalmente convergente</u> si $\sum_{n=1}^{\infty} a_n$ es convergente pero $\sum_{n=1}^{\infty} |a_n|$ es divergente.

Errores

Representación Computacional de Números

Enteros Binarios

$$x = (a_n a_{n-1} ... a_1 a_0)_2$$
 con $a_i \in \{0, 1\}$

Binario \rightarrow Decimal:

$$x=a_n2^n+a_{n-1}2^{n-1}+\cdots+a_12^1+a_0=\sum_{n=0}^na^n2^n$$

 $\mathbf{Decimal} \to \mathbf{Binario:}$

xnúmero decimal $\,\rightarrow\,$ dividir x por 2 $\,\rightarrow\,$ llamarxal cociente y a_0 al resto $\,\rightarrow\,$ repetir

Fracciones Binarias

$$x = (.a_1 a_2 ... a_m ...)_2$$
 con $a_i \in \{0, 1\}$

 $\mathbf{Binario} \to \mathbf{Decimal:}$

$$x = a_1 2^{-1} + a_2 2^{-2} + \dots + a_m 2^{-m} + \dots = \sum_{n=0}^{\infty} a^n 2^{-n}$$

$\mathbf{Decimal} \to \mathbf{Binario:}$

x número decimal \rightarrow multiplicar x por 2 \rightarrow llamar x a la parte decimal y a_1 a la parte entera \rightarrow repetir

Representación Computacional de Números en Punto Flotante

Sea $x \in \mathbb{R}$, x se representa en punto flotante (fl(x)) como:

$$fl(x) = \delta(.a_1 a_2 ... a_n)_{\beta} \cdot \beta^E$$

Donde:

- β : base de representación
- δ : signo (0 = positivo, 1 = negativo)
- E: exponente $(E \in \mathbb{Z})$

Norma IEEE754 para Números en Punto Flotante

Sea $x \in \mathbb{R}$, x se representa en punto flotante IEEE754 (fl(x)) como:

$$fl(x) = \delta(\mathbf{1}.a_1a_2...a_n)_2 \cdot 2^E$$

Precisión Simple (32 bits) $\rightarrow 18$ 8 23 signo exponente mantisa

Precisión Doble (64 bits) \rightarrow 1 11 52 signo exponente mantisa

Máximo valor del exponente con precisión simple: $(11111111)_2 = 2^8 - 1 = 255$. En IEEE754 se representan del 1 al 254, 0 y 255 está reservados para casos especiales. Utilizando un

En IEEE754 se representan del 1 al 254, 0 y 255 está reservados para casos especiales. Utilizando un sesgo de 127 se pueden representar exponentes en el rango $-126 \le E \le 127$.

¿Cuál es el mayor entero M tal que todo entero x tal que $0 \le x \le M$ se puede representar en forma exacta en punto flotante?

$$(1.11...1)_2 \cdot 2^{23} = 2^{23} + 2^{22} + \dots + 2^1 + 2^0 = 2^{24} + 1$$

¿Cuál es el menor número y representable que es mayor que 1?

$$(1.00...01)_2 \cdot 2^0 = 1 + 2^{-23}$$

Luego el epsilon de la máquina es $\epsilon = y - 1 = 2^{-23}$.

Corte o Truncamiento: si x tiene una mantisa \underline{x} que no cabe en el espacio disponible de n bits, el <u>truncamiento</u> consiste en cortar los dígitos a_{n+1}, a_{n+2}, \dots Luego el error es x - fl(x) y es siempre positivo, lo cual puede generar propagación de errores.

Redondeo en Decimal:

$$fl(x) = \begin{cases} \delta(.a_1a_2...a_n)_{10} \cdot 10^E, & a_{n+1} < 5 & \text{(truncar)} \\ \delta[(.a_1a_2...a_n)_{10} + (.00...01)_{10}] \cdot 10^E, & a_{n+1} \ge 5 & \text{(redondear)} \end{cases}$$

Redondeo en Binario:

$$fl(x) = \begin{cases} \delta(1.a_1a_2...a_n)_2 \cdot 2^E, & a_{n+1} = 0 \\ \delta[(1.a_1a_2...a_n)_2 + (.00...01)_2] \cdot 2^E, & a_{n+1} = 1 \end{cases}$$

Usando redondeo el mayor error posible es la mitad que usando truncamiento. Tiene en promedio la mitad de las veces un signo y la mitad el otro, por lo que reduce la propagación de errores.

Error Absoluto y Relativo

Error Absoluto: |valor verdadero - valor aproximado| = $|x_v - x_a|$

Error Relativo: $\frac{\text{error absoluto}}{|\text{valor verdadero}|} = \frac{|x_v - x_a|}{|x_v|}$

$Cifras \ Significativas$

Definición: se dice que x_a tiene m cifras significativas con respecto a x_v si $|error(x_a)| \le 5$ unidades en el dígito m+1 de x_v , contando de izquierda a derecha desde el primer dígito distinto de 0.

 $\textbf{\textit{Ejemplo:}} \quad x_a = 0.02138, \, x_v = 0.02144, \, \text{luego} \, \left| x_v - x_a \right| = 0.0006 \, \, \text{y} \, \, x_a \, \, \text{tiene 2 cifras significativas}.$

Se puede demostrar que si el error relativo de x_a respecto de x_v es menor a $5 \times 10^{-m-1}$ luego x_a tiene m cifras significativas respecto a x_v .

Fuentes de Errores en Problemas Matemáticos de Ingeniería

- Errores de Modelado Matemático
- Equivocaciones
- Errores Observacionales
- Errores de Redondeo/Truncamiento
- Errores de Aproximación Matemática

Polinomio de Taylor

Definición: sea f(x) una función derivable alrededor de x=a, con tantas derivadas como sea necesario. Buscamos un polinomio P(x) tal que:

$$P(a) = f(a)$$

$$P'(a) = f'(a)$$

$$\vdots$$

$$P^{(n)}(a) = f^{(n)}(a)$$

La fórmula general para dicho polinomio es:

$$P_n(x) = f(a) + f'(a)(x-a) + \frac{1}{2}f''(a)(x-a)^2 + \dots + \frac{1}{n!}f^{(n)}(a)(x-a)^n = \sum_{i=0}^n \frac{f^{(n)}(a)}{n!}(x-a)^n$$

Luego $f(x) \approx P_n(x)$ alrededor de a.

Error del Polinomio de Taylor

Teorema: suponga que f(x) tiene n+1 derivadas continuas en un intervalo $\alpha \le x \le \beta$ y que el punto a pertenece a dicho intervalo. El error del polinomio de Taylor está dado por

$$R_n(x) = f(x) - P_n(x) = \frac{f^{(n+1)}(cx)}{(n+1)!}(x-a)^{n+1}$$

donde cx pertenece al intervalo entre x y a.

Solución de Ecuaciones No Lineales

Algoritmo

Definición: dado un punto inicial $x_0 \in \mathbb{R}^n$, un <u>algoritmo</u> genera la secuencia x_1, x_2, \dots donde $x_{k+1} \in A(x_k)$ para cada k. La transformación de x_k a x_{k+1} constituye una <u>iteración</u> del algoritmo.

Criterios de Terminación

$$(1) \quad ||x_{k+n}-x_k||<\epsilon$$

$$(2) \quad \frac{||x_{k+1}-x_k||}{||x_k||}<\epsilon$$

$$(3) \quad |f(x_{k+n}) - f(x_k)| < \epsilon$$

Orden de Convergencia

Definición: el orden de convergencia de una sucesión $x_k \to \underline{x}$ es el mayor número $\rho > 0$ tal que

$$\lim_{k\to\infty}\frac{||x_{k+1}-\underline{x}||}{||x_k-\underline{x}||^\rho}=\beta<\infty$$

- Si $\rho = 1$ y $\beta \in (0,1)$, la convergencia es lineal y β es la velocidad de convergencia.
- Si $\rho = 2$ y $\beta < \infty$, la convergencia es <u>cuadrática</u>.
- Si $\rho > 1$ ó $\rho = 1$ y $\beta = 0$, la convergencia es superlineal.

Definición: la convergencia es superlineal si

$$\lim_{k\to\infty}\frac{||x_{k+1}-\underline{x}||}{||x_k-\underline{x}||}=0$$

Además, la convergencia cuadrática es superlineal.

Por otro lado, suponemos que la convergencia es de orden ρ , y sea $\alpha > 0$ y β tal que $0 < \beta < \infty$:

$$\lim_{k\to\infty}\frac{||x_{k+1}-\underline{x}||}{||x_k-\underline{x}||^{\rho+\alpha}}=\frac{\beta}{\lim_{k\to\infty}||x_k-\underline{x}||^\alpha}\quad\longrightarrow\quad\infty$$

Por lo tanto, si se tiene convergencia de orden ρ , no se tiene convergencia de orden $\rho + \alpha$ con $\alpha > 0$.

Solución de Ecuaciones No Lineales

Raíces o Ceros

Definición: sea $f : \mathbb{R} \to \mathbb{R}$ una función no lineal. Se llama <u>raíz o cero</u> de la ecuación f(x) = 0 a todo valor α tal que $f(\alpha) = 0$.

Teorema: (de Bolsano) sea f una función continua en $[a,b] \subset \mathbb{R}$ tal que f(a)f(b) < 0, luego existe un $c \in [a,b]$ tal que f(c) = 0.

Método de la Bisección

Suponemos que f(x) es continua en [a,b] y que f(a)f(b) < 0, luego f tiene al menos una raíz en el intervalo. Dada una tolerancia del error $\epsilon > 0$:

- 1. Defina c = (a + b)/2.
- 2. Si $b-c \le \epsilon$, aceptar c como raíz y detenerse.
- 3. Si $b-c > \epsilon$, comparar el signo de f(c) con el de f(a) y f(b).
 - Si $f(b)f(c) \leq 0$, reemplazar $a \operatorname{con} c$.
 - En caso contrario, reemplazar b con c.
- 4. Regresar al paso 1.

Acotación del Error Tenemos que $b_{k+1}-a_{k+1}=\frac{1}{2}(b_k-a_k)$, luego por inducción tenemos que $b_k-a_k=(\frac{1}{2})^{k-1}(b_1-a_1)$. Si α es una solución del sistema, luego $|\alpha-c_k|\leq (\frac{1}{2})^{k-1}(b_1-a_1)$ y c_k converge a α cuando $k\to\infty$.

Si queremos obtener un error $|\alpha-c_k| \leq \epsilon,$ esto se cumple cuando:

$$k \ge \frac{ln(\frac{b-a}{\epsilon})}{ln(2)}$$

Ventajas

- 1. Siempre converge
- 2. Acotación de error garantizado
- 3. Velocidad de convergencia garantizada.

Desventaja

1. La convergencia es lenta en comparación con otros métodos.

Método de Newton (Newton-Raphson)

Sea α una raíz de f(x)=0. Supongamos que $f\in\mathbb{C}^2$ en [a,b] y sea $x_0\in[a,b]$ una estimación "cercana" de α . Consideramos el polinomio de Taylor $f(x)=f(x_0)+(x-x_0)f'(x_0)+\frac{(x-x_0)^2}{2}f''(cx)$ con cx entre x y x_0 . Obtenemos una nueva estimación de α haciendo $P_1(x)=0=f(x_0)+(x_1-x_0)f'(x)$ de donde $x_1=x_0-(f(x_0)/f'(x_0))$. Repitiendo el proceso obtenemos que $x_{n+1}=x_n-(f(x_n)/f'(x_n))$.

Análisis del Error

$$\begin{split} 0 &= f(\alpha) = f(x_n) + (\alpha - x_n)f'(x_n) + (\alpha - x_n)^2 \, \frac{f''(cx)}{2} \\ &= \frac{f(x_n)}{f'(x_n)} + (\alpha - x_n) + (\alpha - x_n)^2 \, \frac{f''(cx)}{2f'(x_n)} \\ &= (x_n - x_{n+1}) + \alpha - x_n + (\alpha - x_n)^2 \, \frac{f''(cx)}{2f'(x_n)} \\ &\Rightarrow \alpha - x_{n+1} = (\alpha - x_n)^2 \, \frac{f''(cx)}{2f'(x_n)} \quad \text{(Error)} \\ &\Rightarrow \frac{|\alpha - x_{n+1}|}{(\alpha - x_n)^2} = \left| \frac{f''(cx)}{2f'(x_n)} \right| \quad \text{(Orden de convergencia)} \end{split}$$

Es decir, suponiendo que el método converge, éste lo hace de manera cuadrática. Sin embargo, la convergencia no está garantizada a partir de cualquier valor inicial x_0 .

Ventajas

- 1. Converge rápidamente en la mayoría de los casos.
- 2. Formulación sencilla.

Desventajas

- 1. Puede no converger.
- 2. Puede ocurrir que $f'(\alpha) = 0$.
- 3. Necesitamos conocer tanto f(x) como f'(x).

Método de la Secante

$$x_{n+1} = x_n - f(x_n) \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}$$

Si x_n converge a α entonces $\rho \approx 1.62$.

Ventajas

- 1. Converge más rápido que la convergencia lineal
- 2. No requiere f'(x).
- 3. Requiere una única evaluación de f(x) por iteración.

Desventajas

- 1. Puede no converger.
- 2. Puede tener dificultades si $f'(\alpha) = 0$.
- 3. El método de Newton se puede generalizar más fácilmente a sistemas de ecuaciones.

Método de la Falsa Posición

Elegimos las aproximaciones iniciales a_1 y b_1 con $f(a_1)f(b_1) < 0$, luego obtenemos c_1 aplicando el método de la secante sobre a_1 y b_1 .

- Si $f(a_1)f(c_1) < 0$, luego $a_2 = a_1$ y $b_2 = c_1$
- Si $f(b_1)f(c_1)<0,$ luego $a_2=c_1$ y $b_2=b_1$
- Si $f(c_1) = 0$, entonces $\alpha = c_1$

Luego c_2 aplicando el método de la secante a a_2 y b_2 , y repetimos el proceso.

Ventajas

1. La convergencia está garantizada.

Desventajas

1. Más lento que el método de la secante.

Métodos Iterativos de Punto Fijo

Fórmula General $x_{n+1} = g(x_n)$ donde g(x) es una función apropiada.

Punto fijo

Definición: dada una función $g: \mathbb{R} \to \mathbb{R}$ continua diremos que α es un punto fijo de g si $g(\alpha) = \alpha$.

- El método puede converger o diverger dependiendo de x_0 .
- El método puede converger a una raíz u otra dependiendo de la elección de g(x).
- La convergencia puede ser más rápida o más lenta dependiendo de q(x).

Ejemplo: el método de Newton es un método iterativo de punto fijo con g(x) = x - (f(x)/f'(x)).

Existencia de Soluciones de x = g(x)

Lema: sea g(x) una función continua en [a,b) y suponga que g satisface que $a \le x \le b \implies a \le g(x) \le b$. Luego x = g(x) tiene al menos una solución en [a,b].

Demostración: consideremos la función continua f(x) = x - g(x) con $a \le x \le b$. Evaluando los puntos extremos, $f(a) \le 0$ y f(b) > 0. Luego por teorema de Bolsano existe $\alpha \in [a,b]$ tal que $f(\alpha) = 0$ y por ende $\alpha = g(\alpha)$.

Teorema: sea $g: \mathbb{R} \to \mathbb{R}$ tal que $g \in \mathbb{C}^1$ en [a,b]. Suponga que g satisface $a \leq x \leq b \implies a \leq g(x) \leq b$. Si $\lambda := \sup |g'(x)| < 1$ con $x \in [a,b]$. Luego se cumplen:

- 1. Existe una solución única α de la ecuación x = g(x) en [a, b].
- 2. Para cualquier valor inicial $x_0 \in [a, b]$, la iteración $x_{n+1} = g(x_n)$ converge a α .
- 3. $|\alpha x_n| \le \lambda^n (x_0 x_1)/(1 \lambda)$
- 4. $\lim_{n\to\infty}(\alpha-x_{n+1})/(\alpha-x_n)=g'(\alpha)$. Por lo tanto para x_n cercano a α tenemos que $\alpha-x_{n+1}\approx g'(\alpha)(\alpha-x_n)$,

Demostración: las hipótesis sobre g permiten aplicar el lema anterior para afirmar que existe al menos una solución de x=g(x) en [a,b]. Luego por el teorema del valor medio tenemos que para $w,z\in [a,b]$ se cumple g(w)-g(z)=g'(c)(w-z) para algún c entre w y z. Luego $|g(w)-g(z)|=|g'(c)||w-z|\leq \lambda |w-z|$.

- 1. Por contradicción. Supongo que existen dos soluciones α y β . Luego $\alpha = g(\alpha)$ y $\beta = g(\beta)$. Restando miembro a miembro tengo que $\alpha \beta = g(\alpha) g(\beta)$ lo cual implica que $|\alpha \beta| \le \lambda |\alpha \beta|$. Luego $(1 \lambda)|\alpha \beta| \le 0$, y como $0 < \lambda < 1$ tenemos que $\alpha = \beta$ y x = g(x) tiene única solución el [a, b].
- 2. La propiedad $a \leq x \leq b \implies a \leq g(x) \leq b$ implica que dado $x_0 \in [a,b]$, las iteraciones $x_k \in [a,b]$. Luego para demostrar que las iteraciones convergen, restar $x_{n+1} = g(x_n)$ de $\alpha = g(\alpha)$, obteniendo $\alpha x_{n+1} = g(\alpha) g(x_{n+1}) = g'(cn)(\alpha x_n)$ para algún cn entre α y x_n . Luego $|\alpha x_{n+1}| \leq \lambda |\alpha x_n|$ (A). Por inducción obtenemos que $|\alpha x_n| \leq \lambda^n |\alpha x_0|$ (B). Como $\alpha < 1$, $\alpha^n \to 0$ cuando $n \to \infty$, y tenemos que $x_n \to \alpha$ cuando $n \to \infty$.
- 3. Por desigualdad triangular tenemos que $|\alpha-x_0| \leq |\alpha-x_1| + |x_1-x_0|$, luego aplicamos (**A**) con n=0 obtenemos $|\alpha-x_0| \leq \lambda |\alpha-x_0| + |x_1-x_0|$ de donde despejamos $|\alpha-x_0| \leq |x_1-x_0|/(1-\lambda)$. Multiplicando ambos lados por λ^n obtenemos $|\alpha-x_0| \leq \lambda^n(x_0-x_1)/(1-\lambda)$ y aplicando (**B**) obtenemos el resultado buscado.
- 4. Vimos que $\alpha x_{n+1} = g'(cn)(\alpha x_n)$ para algún cn entre α y x_n . Luego $\lim_{n \to \infty} (\alpha x_{n+1})/(\alpha x_n) = \lim_{n \to \infty} g'(cn) = g'(\alpha)$ ya que $x_n \to \alpha$ cuando $n \to \infty$.

Corolario: suponga que x=g(x) tiene una solución α y suponga que g y g' son continuas en un intervalo alrededor de α . Luego:

- 1. Si $|g'(\alpha)| < 1$, entonces la iteración $x_{n+1} = g(x_n)$ converge a α para x_0 suficientemente cercano a α .
- 2. Si $|g'(\alpha)| > 1$, entonces la iteración $x_{n+1} = g(x_n)$ no converge a α .
- 3. Si $|q'(\alpha)| = 1$, no se pueden sacar conclusiones.

Demostración:

1. Vimos que $\alpha - x_{n+1} = g'(cn)(\alpha - x_n)$ para algún cn entre α y x_n . Luego $|\alpha - x_{n+1}| = |g'(cn)||\alpha - x_n|$. Siendo g'(x) continua y $|g'(\alpha)| < 1$, existe $\epsilon > 0$ tal que |g'(x)| < 1 para todo $x \in [\alpha - \epsilon, \alpha + \epsilon]$.

Luego cn también pertenece a $[\alpha - \epsilon, \alpha + \epsilon]$ y |g'(cn)| < 1. Por lo tanto x_{n+1} está más próximo a α que x_n , por lo que la iteración converge a α .

2. Vimos que $\alpha - x_{n+1} = g'(cn)(\alpha - x_n)$ para algún cn entre α y x_n . Luego $|\alpha - x_{n+1}| = |g'(cn)||\alpha - x_n|$. Siendo g'(x) continua y $|g'(\alpha)| > 1$, existe $\epsilon > 0$ tal que |g'(x)| > 1 para todo $x \in [\alpha - \epsilon, \alpha + \epsilon]$. Luego cn también pertenece a $[\alpha - \epsilon, \alpha + \epsilon]$ y |g'(cn)| > 1. Por lo tanto x_{n+1} está más alejado a α que x_n , por lo que la iteración no converge a α .

Sistemas de Ecuaciones No Lineales

$$S = \begin{cases} f_1(x_1, x_2) = 0 \\ f_2(x_1, x_2) = 0 \end{cases}$$

En forma vectorial, $f(\underline{x}) = \underline{0}$ con $f = [f_1 \ f_2]^T, \ \underline{x} = [x_1 \ x_2]^T$ y $\underline{0} = [0 \ 0]^T$.

Punto Fijo: reescribimos S como

$$S = \begin{cases} x_1^{(n+1)} = g_1(x_1^{(n)}, x_2^{(n)}) \\ x_2^{(n+1)} = g_2(x_1^{(n)}, x_2^{(n)}) \end{cases}$$

Usando el método de Newton tenemos:

$$\begin{split} 0 &= f_1(x_1^{(0)}, x_2^{(0)}) + (x_1^{(1)} - x_1^{(0)}) \frac{\delta f_1}{\delta x_1}(x_1^{(0)}, x_2^{(0)}) + (x_2^{(1)} - x_2^{(0)}) \frac{\delta f_1}{\delta x_2}(x_1^{(0)}, x_2^{(0)}) \\ 0 &= f_2(x_1^{(0)}, x_2^{(0)}) + (x_1^{(1)} - x_1^{(0)}) \frac{\delta f_2}{\delta x_1}(x_1^{(0)}, x_2^{(0)}) + (x_2^{(1)} - x_2^{(0)}) \frac{\delta f_2}{\delta x_2}(x_1^{(0)}, x_2^{(0)}) \end{split}$$

Denotamos al Jacobiano de f como

$$J = \begin{bmatrix} \frac{\delta f_1}{\delta x_1} & \frac{\delta f_1}{\delta x_2} \\ \\ \frac{\delta f_2}{\delta x_1} & \frac{\delta f_2}{\delta x_2} \end{bmatrix}$$

Luego, en forma matricial, $\underline{x_0} = [x_1^{(0)} \ x_2^{(0)}]^T$ y $\underline{0} = f(\underline{x_0}) + J(\underline{x_0})(\underline{x_1} - \underline{x_0})$, de donde obtenemos que $\underline{x_1} = x_0 - [J(x_0)]^{-1}f(x_0)$ si $\overline{J}(x_0)$ es no singular. Finalmente, la iteración general del método resulta:

$$\underline{x_{n+1}} = \underline{x_n} - [J(\underline{x_n})]^{-1} f(\underline{x_n})$$

Solución de Ecuaciones Lineales

Métodos Directos

Consideramos sistemas de n ecuaciones con n incógnitas:

$$\begin{aligned} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n &= b_1 \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n &= b_2 \\ &\vdots \\ a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n &= b_n \end{aligned}$$

En forma matricial es Ax = b con $A(ij) = a_{ij}$.

Definición: una matriz se dice <u>plena</u> si la mayoría de sus elementos son <u>no nulos</u>. En cambio, se dice rala si la mayoría de sus elementos son nulos.

Definición: decimos que una matriz es <u>p</u>-banda si existe $p \ge \in \mathbb{Z}$ tal que $|i-j| \ge p \implies a_{ij} = 0$. Si p = 1, entonces la matriz es diagonal, si p = 2 la matriz se dice tri-diagonal.

Definición: dado un sistema Ax = b, si b = 0, decimos que el sistema es <u>homogéneo</u>. En caso contrario el sistema es no homogéneo.

Teorema: los siguientes enunciados son equivalentes:

- 1. Para cada b, existe una única solución x.
- 2. Para cada b, existe una solución x.
- 3. El sistema homogéneo Ax = 0 tiene única solución x = 0.
- 4. $det(A) \neq 0$
- 5. Existe A^{-1} .

Regla de Cramer considere el sistema Ax = b con $det(A) \neq 0$. Luego $x_i = det(A_i)/det(A)$ donde $A_i = [a_1|\cdots|a_{i-1}|b|a_{i+1}|\cdots|a_n]$.

Matriz Inversa

Definición: sea $A \in \mathbb{R}^{n \times n}$. Decimos que A^{-1} es la <u>inversa de A</u> si $AA^{-1} = A^{-1}A = I$. Si A^{-1} existe, es única. Luego, un sistema Ax = b puede resolverse haciendo $x = A^{-1}b$, aunque esto es muy ineficiente.

Eliminación de Gauss

Consiste en 2 pasos: eliminación de incógnitas y sustitución regresiva.

$$[A^{(1)}|b^{(1)}] = \begin{bmatrix} a_{11}^{(1)} & \cdots & a_{1n}^{(1)} & b_1^{(1)} \\ \vdots & & \vdots & \vdots \\ a_{n1}^{(1)} & \cdots & a_{nn}^{(1)} & b_n^{(1)} \end{bmatrix} \xrightarrow{\text{reduce en (n-1) pasos a}} [A^{(n)}|b^{(n)}] = \begin{bmatrix} a_{11}^{(1)} & \cdots & a_{1n}^{(1)} & b_1^{(1)} \\ & \ddots & \vdots & \vdots \\ 0 & & a_{nn}^{(n)} & b_n^{(n)} \end{bmatrix}$$

Denotamos $U = A^{(n)}$ y $g = b^{(n)}$, luego Ux = g.

Paso k-ésimo: suponga que para i=1,...,k-1 los x_i ya han sido eliminados de las ecuaciones i+1,...,n. Eliminamos x_k de las ecuaciones k+1,...,n.

$$E_i^{(k+1)} = E_i^{(k)} - m_{ik} E_k^{(k)}$$
 (con $i = k+1, ..., n$)

Donde $m_{ik} = a_{ik}^{(k)}/a_{kk}^{(k)}$. Se llama a a_{kk} el elemento pivote.

Una vez obtenida la matriz triangular superior $A^{(n)} = U$ resolvemos por sustitución regresiva.

$$\begin{split} x_n &= \frac{b_n^{(n)}}{a_{nn}^{(n)}} \\ x_i &= \frac{1}{a_{ii}^{(i)}} \left(b_i^{(i)} - \sum_{j=i+1}^n a_{ij}^{(i)} x_j \right) \end{split}$$

Pivoteo

Si $a_{kk}^{(k)}=0$, se debe examinar los elementos $a_{ik}^{(k)}$ en las filas $E_i^{(k)}$ con i=k+1,...,n. Siendo A no singular, al menos uno de dichos elementos es no nulo. Luego esta fila puede intercambiarse con $E_k^{(k)}$.

Pivoteo Parcial en el paso k calcular $c = \max_{k \le i \le n} |a_{ik}^{(k)}|$. Si $|a_{kk}^{(k)}| < c$ luego intercambiar la ecuación $E_k^{(k)}$ por aquella correspondiente a c. Esto reduce errores debido a la supresión de cifras significativas.

Método de Gauss-Jordan Transforma $[A|b] \longrightarrow [I|x]$. Requiere un mayor número de operaciones que la eliminación de Gauss.

Factorización LU

Queremos resolver Ax = b. Mediante eliminación de Gauss sin pivoteo obtenemos Ux = g, donde

$$U = \begin{bmatrix} u_{11} & u_{12} & \cdots & u_{1n} \\ 0 & u_{22} & \cdots & u_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & u_{nn} \end{bmatrix}, \quad \text{con } u_{ij} = a_{ij}^{(i)}$$

Además introducimos la matriz auxiliar L triangular inferior basada en los coeficientes $m_{ik} = a_{ij}^{(k)}/a_{kk}^{(k)}$.

$$L = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ m_{21} & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ m_{n1} & m_{n2} & \cdots & 1 \end{bmatrix}$$

Teorema: sea $A \in \mathbb{R}^{n \times n}$ una matriz no singular, y sean L y U las matrices definidas anteriormente. Luego, si U es generada sin pivoteo se tiene A = LU.

Luego resolver Ax = b es igual a resolver LUx = b, lo cual es equivalente a resolver dos sistemas triangulares.

 $Lg = b \rightarrow \text{sist.}$ triangular inferior \rightarrow sustitución hacia adelante $Ux = g \rightarrow \text{sist.}$ triangular superior \rightarrow sustitución hacia atrás

Factorización LU con Matriz de Permutación

Definición: una matriz de permutación $P \in \mathbb{R}^{n \times n}$ es una matriz con exactamente una entrada unitaria en cada fila y cada columna, siendo el resto de las entradas nulas.

Propiedad: si P es una matriz de permutación, entonces existe P^{-1} y $P^{-1} = P^{T}$.

Ahora para resolver Ax = b donde A requiere pivoteo, podemos resolver PA = LU donde P incluye los intercambios de filas requeridos por A, y luego resolver Lg = Pb y Ux = g como se mostró antes.

Unicidad de la Factorización LU: si A es tal que la eliminación de Gauss debe realizarse $\underline{\sin}$ pivoteo, luego A puede factorizarse en A = LU y dicha factorización es única.

Definición: una matriz $A \in \mathbb{R}^{n \times n}$ es estrictamente diagonal dominante si

$$|a_{ii}| > \sum_{j=1}^n j \neq i}^n |a_{ij}|, \quad \forall i \in 1..n$$

Teorema: una matriz A diagonal dominante es no singular. Luego, el sistema Ax = b puede resolverse por eliminación de Gauss sin pivoteo.

Matrices Simétricas

Definición: una matriz A es simétrica si $A = A^T$. Toda matriz simétrica posee autovalores reales.

Definición: una matriz es <u>definida positiva</u> si es simétrica y sus autovalores son todos positivos. Una matriz es semidefinida positiva si es simétrica y sus autovalores son todos no negativos.

Teorema: para matrices reales simétricas los siguientes enunciados son equivalentes y sirven como definición de matriz definida positiva.

- Para todo $x \neq 0, x^T A x > 0.$
- Todos los autovalores de A son positivos.
- $A = B^T B$ para alguna matriz B no singular. B no es única pero existe una única matriz triangular superior R con elementos diagonales positivos tal que $A = R^T R$ (factorización de Cholesky).

Matrices No Simétricas Reales

Toda matriz no simétrica A puede expresarse como A = M + C donde:

- $M = \frac{1}{2}(A + A^T)$ es una matriz simétrica.
- $C = \frac{1}{2}(A A^T)$ es una matriz antisimétrica.

Nota para toda matriz antisimétrica C y $x \in \mathbb{R}^n$ se cumple $x^T C x = 0$.

Definición: (extensión de matriz definida positiva a matrices no simétricas)

A es definida positiva \iff la matriz simétrica $M = \frac{1}{2}(A + A^T)$ es definida positiva.

Ortogonalización de Gram-Schmidt

Sea $\beta = \{x_1, x_2, ..., x_n\}$ una base arbitraria, no necesariamente ortogonal de un espacio n-dimensional S. El objetivo es construir una base ortonormal $O = \{u_1, u_2, ..., u_n\}$ de S. La estrategia consta de construir O secuencialmente de manera que $O_k = \{u_1, u_2, ..., u_k\}$ es una base ortonormal de $S_k = span\{x_1, x_2, ..., x_k\}$ para k = 1, ..., n.

Algoritmo:

$$u_1 = \frac{x_1}{||x_1||}, \qquad w_k = x_k - \sum_{i=1}^{k-1} (x_k^T u_i) u_i, \qquad u_k = \frac{w_k}{||w_k||}$$

Factorización QR

Sea $A \in \mathbb{R}^{m \times n}, A = [a_1|a_2|...|a_n]$ una matriz con columnas linealmente independientes. Aplicando Gram-Schmidt resulta una base ortonormal $q_1, q_2, ..., q_n$ de $span\{A\}$ donde:

$$\begin{aligned} q_k &= \frac{a_k - \sum_{i=1}^{k-1} (a_k^T q_i) q_i}{\sqcup_k} \\ \sqcup_k &= \left\| a_k - \sum_{i=1}^{k-1} (a_k^T q_i) q_i \right\| \end{aligned}$$

En forma matricial tenemos:

$$\underbrace{ \begin{bmatrix} a_1 | a_2 | \dots | a_n \end{bmatrix}}_{A} = \underbrace{ \begin{bmatrix} q_1 | q_2 | \dots | q_n \end{bmatrix}}_{Q} \underbrace{ \begin{bmatrix} \Box_1 & a_2^T q_1 & a_3^T q_1 & \cdots & a_n^T q_1 \\ 0 & \Box_2 & a_3^T q_2 & \cdots & a_n^T q_2 \\ 0 & 0 & \Box_3 & \cdots & a_n^T q_3 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \Box_n \end{bmatrix}}_{R}$$

Donde:

- $A \in \mathbb{R}^{m \times n}$ es una matriz de columnas LI.
- $Q \in \mathbb{R}^{m \times n}$ es una base ortonormal de $span\{A\}$.
- $R \in \mathbb{R}^{n \times n}$ es una matriz triangular superior con elementos diagonales positivos.

Toda matriz $A \in \mathbb{R}^{m \times n}$ con columnas LI puede factorizarse de manera única como A = QR. Además, si $A \in \mathbb{R}^{n \times n}$ es no singular, entonces $Q^T = Q^{-1}$. Luego $Ax = b \iff QRx = b \iff Rx = Q^Tb$, y este último es un sistema que se resuelve por sustitución regresiva.

Problema de Mínimos Cuadrados

En puntos discretos t_i obtenemos observaciones b_i , resultando un conjunto de pares ordenados $\{(t_1,b_1),...,(t_m,b_m)\}$. Supongamos que queremos aproximar los datos mediante una ecuación lineal $y=f(t)=\alpha+\beta t$. Tenemos que el error de aproximar cada punto es $\epsilon_i=|f(t_i)-b_i|=|\alpha+\beta t_i-b_i|$. Luego en forma matricial $\epsilon=Ax-b$ (con A=[1|t] y $x=[\alpha \ \beta]^T$) y queremos hallar los valores de α y β que minimicen el error al cuadrado $\sum_{i=1}^m \epsilon_i^2=\epsilon^T\epsilon$.

Problema de mínimos cuadrados general: para $A \in \mathbb{R}^{m \times n}$ y $\in \mathbb{R}^m$, sea $\epsilon = \epsilon(x) = Ax - b$. El problema de los mínimos cuadrados es el de hallar un vector x que minimice $\sum_{i=1}^m \epsilon^2 = \sum_{i=1}^m \epsilon \epsilon^T = (Ax - b)^T (Ax - b)$.

Teorema: el conjunto solución del problema de mínimos cuadrados es el conjunto de soluciones del sistema $A^TAx = A^Tb$. Además, existe una única solución $\iff rank(A) = n$, en cuyo caso $x = (A^TA)^{-1}A^Tb$.

Aplicando factorización QR al problema de mínimos cuadrados: El conjunto solución de mínimos cuadrados es el conjunto solución del sistema $A^TAx = A^Tb$. Suponga que $rank(A^{m\times n}) = n$ y sea A = QR Luego $A^TA = (QR)^TQR = R^TQ^TQR = R^TQ^{-1}QR = R^TR$. Por lo tanto $R^TRx = R^TQ^Tb$. Siendo R no singular nos queda $Rx = Q^Tb$ lo cual se resuelve por sustitución regresiva. Siendo $x = R^{-1}Q^Tb = (A^TA)^{-1}A^Tb$. Si el sistema es consistente, la ecuación anterior da como resultado la solución Ax - b = 0. Si no lo es, da la solución de mínimos cuadrados.

Normas Vectoriales y Matriciales

Definición: dado un espacio vectorial V, una función $||\cdot||:V\to\mathbb{R}$ es una <u>norma vectorial</u> si satisface las siguientes propiedades:

- 1. $\forall x \in V, ||x|| \ge 0$ $(||x|| = 0 \iff x = 0)$
- 2. $\forall x \in V, \lambda \in \mathbb{R}, ||\lambda x|| = |\lambda|||x||$
- 3. $\forall x, y \in V, ||x + y|| \le ||x|| + ||y||$

Norma Euclídea: $||x||_2 = sqrt(x^Tx)$

Norma Infinito: $||x||_{\infty} = max|x_i|$

Norma l1: $||x||_1 = \sum |x_i|$

Normas Matriciales para $A \in \mathbb{R}^{m \times n}$:

- $||A|| = 0 \iff A = 0$
- $\forall \lambda \in \mathbb{R}, ||\lambda A|| = |\lambda|||A||$
- $\forall A, B, ||A + B|| \le ||A|| + ||B||$

Definición: para una matriz cuadrada A, se dice que la norma matricial $||\cdot||$ es <u>submultiplicativa</u> si $\forall A, B, ||AB|| \leq ||A|| \cdot ||B||$.

Definición: dada una norma vectorial se define la <u>norma matricial inducida</u> para $A \in \mathbb{R}^{m \times n}$ como $||A|| = \sup\{||Ax||/||x|| : x \neq 0, x \in \mathbb{R}^n\}.$

Teorema: la norma matricial inducida es submultiplicativa.

Teorema: sea $||\cdot||$ una norma vectorial, luego $\forall x \in \mathbb{R}^n, ||Ax|| \leq ||A|| \cdot ||x||$.

Demostración: para x=0 se verifica trivialmente. Luego supongo $x\neq 0$ y sea v=x/||x|| y ||v||=1. Se tiene

$$||Ax|| = \left\| Ax \frac{||x||}{||x||} \right\| = ||x|| \cdot ||Av|| \le ||x|| \cdot ||v|| \cdot ||A|| = ||x|| \cdot ||A||$$

Estabilidad de la Resolución de Sistemas Lineales

Considerar el sistema Ax = b y el sistema perturbado $A\tilde{x} = \tilde{b}$.

Teorema: sea $A \in \mathbb{R}^{n \times n}$ no singular. Luego las soluciones de Ax = b y $A\tilde{x} = \tilde{b}$ satisfacen

$$\frac{||x - \tilde{x}||}{||x||} \leq ||A|| \cdot ||A^{-1}|| \cdot \frac{||b - \tilde{b}||}{||b||}$$

 $\begin{array}{l} \textbf{\textit{Demostraci\'on:}} \quad \text{tenemos que } Ax - A\tilde{x} = b - \tilde{b}, \text{ y como } A \text{ es no singular obtenemos } x - \tilde{x} = A^{-1}(b - \tilde{b}). \\ \text{Luego, usando la propiedad anterior obtenemos } ||x - \tilde{x}|| \leq ||A^{-1}|| \cdot ||b - \tilde{b}||. \text{ Dividimos cada lado por } ||x|| \\ \text{obteniendo } ||x - \tilde{x}|| / ||x|| \leq ||A^{-1}|| \cdot ||b - \tilde{b}|| / ||x||. \text{ Luego } ||x - \tilde{x}|| / ||x|| \leq ||A|| \cdot ||A^{-1}|| \cdot ||b - \tilde{b}|| / (||A|| \cdot ||x||) \\ \text{y como } ||b|| = ||Ax|| \leq ||A|| \cdot ||x|| \text{ llegamos al resultado buscado.}$

Nota: El número $||A|| \cdot ||A^{-1}||$ se conoce como el <u>número de condición</u> de A (K(A)), y de lo anterior se desprende que:

$$\frac{||\Delta x||}{||x + \Delta x||} \le K(A) \frac{||\Delta A||}{||A||}$$

Lema: $K(A) \ge 1$

Demostración: $1 = ||I|| = ||AA^{-1}|| \le ||A|| \cdot ||A^{-1}|| = K(A).$

Métodos Iterativos

- Generan una sucesión $\{x^{(k)}\}$ que converge a la solución.
- Para n grande, la eliminación de Gauss requiere $\frac{2}{3}n^3$ operaciones, mientras que los métodos iterativos requieren $\approx n^2$.

Esquema general de los Métodos Iterativos

Sea $A \in \mathbb{R}^{n \times n}$, Ax = b el sistema a resolver. Sea $N \in \mathbb{R}^{n \times n}$ no singular. Luego Nx = Nx - Ax + b, de donde obtenemos un proceso iterativo de la forma $Nx^{(k+1)} = (N-A)x^{(k)} + b$, de donde obtenemos $x^{(k+1)} = (I-N^{-1}A)x^{(k)} + N^{-1}b$ y solución del sistema cumple que $x = (I-N^{-1}A)x + N^{-1}b$.

Si A = L + D + U, luego:

- El método de Jacobi utiliza N = D.
- El método de Gauss-Seidel utiliza N = L + D.

Error de aproximación: $e^{(k)} = x - x^{(k)}$ y restando $x = (I - N^{-1}A)x + N^{-1}b$ y $x^{(k+1)} = I - N^{-1}A)x^{(k)} + N^{-1}b$ obtenemos $e^{(k+1)} = (I - N^{-1}A)e^{(k)}$.

Teorema: si $||I - N^{-1}A|| < 1$ entonces la sucesión $\{x^{(k)}\}$ converge a la solución del sistema Ax = b para cualquier estimación inicial $x^{(0)}$.

Demostración:

$$\begin{split} ||e^{(k+1)}|| &= ||(I-N^{-1}A)e^{(k)}|| \leq ||I-N^{-1}A|| \cdot ||e^{(k)}|| \\ &\leq ||I-N^{-1}A|| \cdot ||(I-N^{-1}A)e^{(k-1)}|| = ||I-N^{-1}A||^2 \cdot ||e^{(k-1)}|| \\ &\leq \cdots \leq ||I-N^{-1}A||^{k+1} \cdot ||e^{(0)}|| \end{split}$$

Como además sabemos que $||I-N^{-1}A|| < 1$, luego $||I-N^{-1}A||^{k+1} \to 0$ cuando $k \to \infty$. Finalmente $\lim_{k \to \infty} ||e^{(k+1)||}| = 0 \implies x^{(\infty)} \to x$.

Estabilidad Asintótica de un Sistema Lineal Discreto

Teorema: sea $B \in \mathbb{R}^{n \times n}$. El proceso iterativo $x^{(k+1)} = Bx^{(k)}$ converge a $\underline{x} = \underline{0}$ para todo valor inicial $x^{(0)} \iff \rho(B) < 1$, donde $\rho(B)$ es el radio espectral de B $(max|\lambda_i|)$.

Corolario: la fórmula de iteración $Nx^{(k+1)} = (N-A)x^{(k)} + b$ dará lugar a una sucesión que converge a la solución del sistema Ax = b para cualquier $x^{(0)} \iff \rho(I - N^{-1}A) < 1$.

Teorema: si la matriz A es diagonal dominante, luego la sucesión $\{x^{(k)}\}$ generada por el método de Jacobi converge a la solución del sistema Ax = b para todo $x^{(0)}$ inicial.

Teorema: si la matriz A es diagonal dominante, luego la sucesión $\{x^{(k)}\}$ generada por el método de Gauss-Seidel converge a la solución del sistema Ax = b para todo $x^{(0)}$ inicial.

Método de Sobrerelajación (SOR)

Este método permite mejorar la convergencia usando relajación. La relajación representa una ligera modificación del método de Gauss-Seidel y ésta permite mejorar la convergencia en algunos casos. Después de que se calcula cada nuevo valor de x, ése valor se modifica mediante un promedio ponderado de los resultados de las iteraciones anterior y actual.

$$x_i^{(k+1)} = (1-\omega)x_i^{(k)} + \frac{\omega}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^{i-1} a_{ij} x_j^{(k)} \right)$$

Donde ω es el factor de relajación:

- Si $\omega = 1$, tenemos el método de Gauss-Seidel
- Si $0 < \omega < 1$, tenemos el método de Subrelajación (útil cuando Gauss-Seidel no converge).
- Si $\omega>1$, tenemos el método de Sobrerelajación (acelera la velocidad de convergencia cuando Gauss-Seidel converge).

Si reescribimos la ecuación anterior, obtenemos:

$$a_{ii}x_i^{(k+1)} + \omega \sum_{j=1}^{i-1} a_{ij}x_j^{(k+1)} = (1-\omega)a_{ii}x_i^{(k)} - \omega \sum_{j=i+1}^{i-1} a_{ij}x_j^{(k)} + \omega b_i$$

En forma matricial:

$$(D+\omega L)x^{(k+1)} = [(1-\omega)D - \omega U]x^{(k)} + \omega b$$

Luego, si existe $(D+\omega L)^{-1}$, entonces $x^{(k+1)}=T_\omega x^{(k)}+C_\omega$, donde $T_\omega=(D+\omega L)^{-1}[(1-\omega)D-\omega U]$ y $C_\omega=\omega(D+\omega L)^{-1}b$. Luego el error está dado por $e^{(k+1)}=T_\omega e^{(k)}$, de donde se desprende que el método SOR converge a la solución del Ax=b para todo valor inicial $\iff \rho(T_\omega)<1$.

Teorema: sea $A \in \mathbb{R}^{n \times n}$, luego $\rho(A) \leq ||A||$ para cualquier norma matricial submultiplicativa.

Demostración: sea (λ, v) un par autovalor-autovector de A y $\underline{X} = [v \mid 0 \mid \dots \mid 0] \in \mathbb{R}^{n \times n}$. Luego $\lambda \underline{X} = A\underline{X}$, de donde tenemos que $|\lambda| \cdot ||\underline{X}|| = ||\lambda \underline{X}|| = ||A\underline{X}|| \le ||A|| \cdot ||\underline{X}||$. Luego $|\lambda| \le ||A||$ para todo $\lambda \in \sigma(A)$ (espectro de A), por lo tanto $\rho(A) \le ||A||$.

Aproximación de Autovalores

Definición: sea $A \in \mathbb{R}^{n \times n}$. Si existe un número λ y un vector $v \neq 0$ tales que $Av = \lambda v$ decimos que λ es un <u>autovalor</u> de A y que v es un <u>autovector</u> de A. Además, si v es un autovector de A, luego αv es un autovector de A para cualquier $\alpha \in \mathbb{R} \neq 0$.

¿Cómo calcular λ y v? Sabemos que $Av = \lambda v$, luego $(\lambda I - A)v = 0$ (con $v \neq 0$). Llamamos polinomio característico de A a $f(\lambda) = det(\lambda I - A)$. Además, si $A \in \mathbb{R}^{n \times n}$, luego $f(\lambda)$ es un polinomio de grado n.

Teorema: sea $A \in \mathbb{R}^{n \times n}$ una matriz simétrica real. Luego existe un conjunto de pares autovalor-autovector $\lambda_i, v^{(i)}, i = 1, ..., n$ que satisfacen:

- 1. Los autovalores $\lambda_1,...,\lambda_n$ son las raíces del polinomio característico de A. Todos son números reales
- 2. Los autovectores $v(1), ..., v^{(n)}$ ortogonales entre si, y pueden elegirse de longitud 1. Es decir, $v^{(i)T}v^{(j)}=0$ y $v^{(i)T}v^{(i)}=1$.
- 3. Para cada vector $x=[x_1,x_2,...,x_n]^T$ existe un único vector $c=[c_1,c_2,...,c_n]$ tal que $x=c_1v^{(1)}+\cdots+c_nv^{(n)}$. Las constantes están dadas por $c_i=\sum_{j=1}^n x_jv_j^{(i)}=x^Tv^{(i)}$ donde $long(v^{(i)})=1$.
- 4. Definir la matriz $U=[v^{(1)}\ v^{(2)}\ \cdots v^{(n)}]$. Luego $U^TAU=D$ matriz diagonal con $D_{ii}=\lambda_i$. Además $UU^T=U^TU=I,$ y $A=UDU^T.$

Círculos de Gerschgorín

Definición: sea $A \in \mathbb{R}^{n \times n}$, luego para i = 1, ..., n sean:

$$r_i = \sum_{j=1}^n |a_{ij}|, \qquad \qquad c_i = \{z \in \mathbb{C}: |z-a_{ii}| \leq r_i\}$$

Teorema: sea $A \in \mathbb{R}^{n \times n}$ y sea λ un autovalor de A. Luego $\lambda \in C_i$ para algún i = 1, ..., n.

Demostración: sea λ un autovalor de A y v el autovector asociado. Sea k la componente de v tal que $|v_k| = ||v||_{\infty}$. Luego:

$$\begin{array}{lll} Av = \lambda v & \Longrightarrow & \sum_{j=1}^n a_{kj} v_j = \lambda v_k & \text{(k-\'esimo componente)} \\ \\ & \Longrightarrow & \sum_{j=1}^n a_{kj} v_j + a_{kk} v_k = \lambda v_k \\ \\ & \Longrightarrow & (\lambda - a_{kk}) v_k = \sum_{j=1}^n a_{kj} v_j \\ \\ & \Longrightarrow & |\lambda - a_{kk}| \cdot |v_k| \leq \sum_{j=1}^n a_{kj} |a_{kj}| \cdot |v_j| \leq r_k ||v||_{\infty} \\ \\ & \Longrightarrow & |\lambda - a_{kk}| \leq r_k \end{array}$$

Método de la Potencia

Sea $A \in \mathbb{R}^{n \times n}$ una matriz simétrica y sean $\lambda_1, ..., \lambda_n$ sus autovalores tal que $|\lambda_1| > |\lambda_2| \ge \cdots \ge |\lambda_n|$, es decir, suponemos que existe un único autovalor de módulo máximo. Luego sea $\{v^{(1)}, ..., v^{(n)}\}$ la base de autovectores correspondiente. Sea $z^{(1)}$ una estimación inicial de $v^{(1)}$. Definimos:

$$\omega^{(n+1)} = Az^{(n)}, \qquad \qquad z^{(n+1)} = \frac{\omega^{(n+1)}}{||\omega^{(n+1)}||}$$

Entonces resulta que $z^{(n)} \to v^{(1)}/||v^{(1)}||_{\infty}$ cuando $n \to \infty$, y eligiendo una componente k no nula de $\omega^{(n-1)}$ luego $\lambda^{(n)} = \omega^{(n)}/z_k^{(n-1)} \to \lambda_1$ cuando $n \to \infty$.

Interpolación y Ajuste de Curvas

Dados n+1 puntos distintos $a \le x_1 < \cdots x_{n+1} \le b$ de un intervalo [a,b], llamados <u>nodos</u> de la interpolación, y n+1 números reales $y_1,...,y_{n+1}$ llamados <u>valores</u> de la interpolación, se trata de hallar una función P tal que $P(x_i) = y_i, \ i = 1,...,n+1$.

Interpolación Polinomial

Dados n+1 puntos $\{(x_i,y_i): y_i=f(x_i), i=0,...,n\}$, buscamos encontrar un polinomio P(x) que interpole los datos, es decir que $P(x_i)=y_i, i=1,...,n$.

Teorema: (Existencia y Unicidad del Polinomio Interpolante) dados n+1 puntos distintos $(x_0,y_0),(x_1,y_1),...,(x_n,y_n)$ con $x_0,...,x_n$ números distintos, <u>existe</u> un polinomio P(x) de grado menor o igual a n que interpola dichos puntos. Además, dicho polinomio es <u>único</u> en el conjunto de polinomios de grado menor o igual a n.

Método de Interpolación de Lagrange

Consideramos el polinomio de grado máximo n que pasa por los puntos $(x_0, y_0), (x_1, y_1), ..., (x_n, y_n)$. Para k = 0, ..., n definimos:

$$L_k(x) = \frac{(x-x_0)\cdots(x-x_{k-1})(x-x_{k+1})\cdots(x-x_n)}{(x_k-x_0)\cdots(x_k-x_{k-1})(x_k-x_{k+1})\cdots(x_k-x_n)} = \prod_{i=0}^n \frac{(x-x_i)}{(x_k-x_i)}$$

Donde $L_k(x)$ satisface $L_k(x_k) = 1$ y $L_k(x_i) = 0$ si $i \neq k$. Luego el polinomio interpolador de Lagrange está dado por:

$$P(x) = L_0(x)y_0 + L_1(x)y_1 + \dots + L_n(x)y_n = \sum_{k=0}^n L_k(x)y_k$$

Notar que $P(x_i) = y_i, i = 0, ..., n$.

Método de Interpolación por Diferencias Divididas de Newton

Dados los n+1 puntos $(x_0,y_0),(x_1,y_1),...,(x_n,y_n)$, expresar el polinomio interpolador de la forma:

$$P(x) = a_0 + a_1(x-x_0) + a_2(x-x_0)(x-x_1) + \dots + a_n(x-x_0)(x-x_1) \dots (x-x_{n-1})$$

Luego vemos que:

$$\begin{split} P_1(x) &= a_0 + a_1(x - x_0) \\ P_1(x) &= \underbrace{a_0 + a_1(x - x_0)}_{P_1(x)} + a_2(x - x_0)(x - x_1) \\ &\vdots \\ P_n(x) &= P_{n-1}(x) + a_n(x - x_0) \cdots (x - x_{n-1}) \end{split}$$

Imponiendo las Condiciones de Interpolación: queremos que $P_n(x_i) = f(x_i) = y_i, \ i=1,...,n.$ Luego:

$$\begin{split} P_n(x_0) &= a_0 = y_0 \\ P_n(x_1) &= y_0 + a_1(x_1 - x_0) \quad \Longrightarrow \quad a_1 = \frac{y_1 - y_0}{x_1 - x_0} \\ &\vdots \end{split}$$

Los coeficientes a_i se pueden calcular introduciendo la idea de diferencia dividida.

- Diferencia dividida de primer orden: $f[x_0,x_1]=\frac{f(x_1)-f(x_0)}{(x_1-x_0)}=(y_1-y_0)/(x_1-x_0)$
- Diferencia dividida de segundo orden: $f[x_0, x_1, x_2] = \frac{f[x_1, x_2] f[x_0, x_1]}{(x_2 x_0)}$ Diferencia dividida de orden k: $f[x_i, ..., x_{i+k}] = \frac{f[x_{i+1}, ..., x_{i+k}] f[x_i, x_{i+k-1}]}{(x_{i+k} x_i)}$

Propiedad: sea (i0, i1, ..., in) una permutación de los enteros (0, 1, ..., n), luego se demuestra que $f[x_{i0},x_{i1},...,x_{in}]=f[x_0,x_1,...,x_n]. \label{eq:final}$

Fórmula de la Interpolación por Diferencias Divididas de Newton

$$P_n(x) = f(x_0) + (x - x_0) f[x_0, x_1] + \dots + (x - x_0) \dots (x - x_{n-1}) f[x_0, \dots, x_n] = \sum_{i=0}^n \left(\prod_{j=0}^{i-1} (x - x_j) \right) f[x_0, \dots, x_n]$$

Teorema: suponga que f está definida en [a,b] y que $\{x_0,x_1,...,x_n\}$ sin valores distintos en [a,b]. El polinomio de grado menor o igual a k que interpola f(x) en $\{x_i,...,x_{i+k}\}\subseteq\{x_0,...,x_n\}$ está dado por:

$$P_{i,k}(x) = f(x_i) + (x-x_i)f[x_i, x_{i+1}] + \dots + (x-x_i) \dots (x-x_{i+k-1})f[x_i, ..., x_{i+k}]$$

Teorema: (de Rolle) sea f continua en [a,b] y diferenciable en (a,b). Si f(a)=f(b), entonces existe $c \in (a,b)$ tal que f'(c)=0.

Teorema: (generalizado de Rolle) sea f continua en [a,b] y diferenciable n veces en (a,b). Si f(x) se anula en los n+1 números distintos $x_0, x_1, ..., x_n \in [a,b]$, entonces existe $c \in (a,b)$ tal que $f^{(n)}(c) = 0$.

Error en la Interpolación Polinomial

Teorema: sean $x_0, x_1, ..., x_n \in [a, b]$ números distintos, y sea f(x) diferenciable n veces en [a, b]. Luego para todo $x \in [a, b]$ existe $\xi(x) \in (a, b)$ tal que:

$$f(x)-P(x)=\frac{(x-x_0)(x-x_1)\cdots(x-x_n)}{(n+1)!}f^{(n+1)}(\xi(x))$$

donde P(x) es un polinomio interpolante de grado menor o igual a n.

Acotación del Error (Caso General)

$$f(x)-P(x)=\frac{(x-x_0)(x-x_1)\cdots(x-x_n)}{(n+1)!}f^{(n+1)}(cx)=\frac{\psi_n(x)}{(n+1)!}f^{(n+1)}(cx)$$

Para $x_0, x_1, ..., x_n$ distintos en [a, b] y $x \in [a, b]$ la cota de error $|f(x) - P_n(x)|$ está dada por:

$$|f(x) - P_n(x)| \leq \max_{a \leq x \leq b} |f(x) - P_n(x)| \leq \frac{1}{(n+1)!} \max_{a \leq x \leq b} |\psi_n(x)| \max_{a \leq x \leq b} |f^{(n+1)}(x)|$$

Error para Nodos Uniformemente Espaciados

$$h = \frac{b-a}{n} \qquad x_i = a + ih$$

Luego $\psi_n(x) = x(x-h)(x-2h)\cdots(x-b) = \prod_{i=0}^n (x-ih)$. Usando nodos uniformemente espaciado, en general, el error no está uniformemente distribuido. Además, se tiene que el error no siempre tiende a cero cuando se aumenta la cantidad de puntos.

Teorema: (de Aproximación de Weierstrass) sea f(x) una función continua en [a,b] y sea $\epsilon>0$. Luego existe un polinomio $P_n(x)$ tal que $\max_{a\leq x\leq b}|f(x)-P(x)|\leq \epsilon$.

Aproximación con Menor V.A. Máximo

Dada una función f(x) continua en [a,b] queremos aproximarla con un polinomio P(x) tal que minimice el error de aproximación $E(P) = \max_{a \leq x \leq b} |f(x) - P(x)|$. Definimos el error minimax como $\zeta(f) = \min_{gr(P) \leq n} E(P)$ (esto requiere optimización no lineal). Luego denotamos este polinomio minimax como $m_n(x)$, y se tiene $E(m_n) = \zeta(f)$.

Polinomio de Chebychev

Para $n \ge 0$ definimos la función $T_n(x) = cos(n \cdot cos^{-1}(x))$ para $-1 \le x \le 1$. Luego, T_n verifica que $T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x).$

Propiedades de T_n :

- $|T_n(x)| \le 1, -1 \le x \le 1$ $T_n(x) = 2^{n-1} + \text{términos de menor grado}$

Las raíces de T_n se usan para encontrar los valores de $x_0, ..., x_n$ que minimizan el error de interpolación de grado menor o igual a n-1.

Aproximación de Mínimos Cuadrados

Sea y = g(x) una relación desconocida entre las variables $x \in y$. Experimentalmente se obtienen $\{(x_1,y_1),...,(x_m,y_m)\}$ donde $y_i=g(x_i)+v_i$ con v_i el error de medición. A partir de los datos queremos aproximar g(x) mediante una función f(x) de la forma $f(x)=a_1\varphi_1(x)+a_2\varphi_2(x)+\cdots+a_p\varphi_p(x)$ donde a_i son números y φ_i son funciones dadas. Es decir, queremos hallar los valores de $a_1,...,a_p$ que minimizan $G(a_1,...,a_p)=\sum_{j=1}^m[(a_i\varphi(x_j)+\cdots+a_p\varphi_p(x_j))-y_j]^2$. El mínimo se satisface cuando $\delta G/\delta a_i = 0, \ i = 1, ..., p.$

Aproximación Polinomial de Mínimos Cuadrados: $\varphi_i = x^{i-1}$.

Integración Numérica

Dada una función $f:[a,b]\to\mathbb{R}$ se quiere calcular la integral definida $I(f)=\int_a^b f(x)dx=F(b)-F(a),$ donde F(x) es cualquier antiderivada de f(x). Una aproximación de la misma resulta $\sum_{i=0}^{n} a_i f(x_i)$.

Integración Numérica Basada en Polinomios Interpolantes

Sean $\{x_0, ..., x_n\}$ n+1 nodos distintos en [a, b]. Tenemos que:

$$f(x) = P_n(x) + \prod_{i=0}^{n} (x - x_i) \frac{f^{(n+1)}(\xi(x))}{(n+1)!}$$

Donde $P_n(x) = \sum_{i=0}^n f(x_i) L_i(x)$. Integrando en [a,b] tenemos:

$$\begin{split} \int_{a}^{b} f(x) dx &= \int_{a}^{b} \sum_{i=1}^{n} f(x_{i}) L_{i}(x) + \int_{a}^{b} \prod_{i=0}^{n} (x - x_{i}) \frac{f^{(n+1)}(\xi(x))}{(n+1)!} \\ &= \sum_{i=0}^{n} a_{i} f(x_{i}) + \underbrace{\frac{1}{(n+1)!} \int_{a}^{b} \prod_{i=0}^{n} (x - x_{i}) f^{(n+1)}(\xi(x))}_{\text{error de integración}} \end{split}$$

Donde $\xi(x) \in [a,b]$ para todo $x \in [a,b]$ y $a_i = \int_a^b L_i(x) dx$.

Teorema: (del Valor Intermedio Ponderado para Integrales) si $f \in [a,b]$, y g es integrable en [a,b] y no cambia de signo en [a,b], entonces existe un número $c \in (a,b)$ tal que $\int_a^b f(x)g(x)dx = f(c) \int_a^b g(x)dx$.

Regla del Trapecio

Aproximamos f(x) mediante un polinomio lineal. Sean $x_0=a,\ x_1=b$ y h=b-a. Por Lagrange tenemos que $P_1(x)=\frac{x-x_1}{x_0-x_1}f(x_0)+\frac{x-x_0}{x_1-x_0}f(x_1)$. Luego:

$$\int_a^b f(x) dx = \int_{x_0}^{x_1} \left[\frac{(x-x_1)}{(x_0-x_1)} f(x_0) + \frac{(x-x_0)}{(x_1-x_0)} f(x_1) \right] dx + \frac{1}{2} \int_{x_0}^{x_1} f''(\xi(x)) (x-x_0) (x-x_1) dx$$

Donde:

$$\begin{split} \int_{x_0}^{x_1} \left[\frac{(x-x_1)}{(x_0-x_1)} f(x_0) + \frac{(x-x_0)}{(x_1-x_0)} f(x_1) \right] dx &= \left[\frac{(x-x_1)^2}{2(x_0-x_1)} f(x_0) + \frac{(x-x_0)^2}{2(x_1-x_0)} f(x_1) \right]_{x_0}^{x_1} \\ &= \frac{(x_1-x_0)}{2} (f(x_0) + f(x_1)) = \frac{h}{2} (f(x_0) + f(x_1)) \end{split}$$

Además, como $(x-x_0)(x-x_1)$ no cambia de signo en $[x_0,x_1]$, luego podemos aplicar el teorema anterior para obtener:

$$\begin{split} \frac{1}{2} \int_{x_0}^{x_1} f''(\xi(x))(x-x_0)(x-x_1) dx &= \frac{1}{2} f''(c) \int_{x_0}^{x_1} (x-x_0)(x-x_1) dx \quad \text{p.a. } c \in [x_0,x_1] \\ &= \frac{1}{2} f''(c) \left[\frac{x^3}{3} - \frac{(x_1-x_0)}{2} x^2 + x_0 x_1 \right]_{x_0}^{x_1} \\ &= f''(c) \left[\left(\frac{x_1^3}{3} - \frac{x_1^3}{2} - \frac{x_0 x_1^2}{2} + x_0 x_1^2 \right) - \left(\frac{x_0^3}{3} - \frac{x_1 x_0^2}{2} - \frac{x_0^3}{2} + x_0^2 x_1 \right) \right] \\ &= \frac{1}{2} f''(c) \left[\left(-\frac{x_1^3}{6} + \frac{x_0 x_1^2}{2} \right) - \left(-\frac{x_0^3}{6} + \frac{x_0^2 x_1}{2} \right) \right] \\ &= \frac{f''(c)}{12} \left[x_1^3 - 3 x_0 x_1^2 + 3 x_0^2 x_1 - x_0^3 \right] \\ &= -\frac{f''(c)}{12} (x_1 - x_0)^3 = -\frac{h^3}{12} f''(c) \end{split}$$

Finalmente, la regla del trapecio queda dada por:

$$\int_a^b f(x) dx = \underbrace{\frac{h}{2} [f(x_0) + f(x_1)]}_{\text{integral aproximada}} \underbrace{-\frac{h^3}{12} f''(c)}_{\text{error de aproximación}}$$

Método Compuesto del Trapecio

Utiliza varios subintervalos de igual longitud. Sea n el número de subintervalos, luego h = (b - a)/n y $x_j = a + jh$. Tenemos que la aproximación por n trapecios T_n resulta:

$$\begin{split} T_n(f) &= h\left(\frac{f(x_0) + f(x_1)}{2}\right) + h\left(\frac{f(x_1) + f(x_2)}{2}\right) + \dots + h\left(\frac{f(x_{n-1}) + f(x_n)}{2}\right) \\ &= h\left[\frac{1}{2}f(x_0) + f(x_1) + \dots + f(x_{n-1}) + \frac{1}{2}f(x_n)\right] \end{split}$$

Teorema: (Error de la Integración Trapezoidal) sea $f : \mathbb{R} \to \mathbb{R}$, derivable 2 veces en [a, b], luego el error de integración usando n subintervalos resulta:

$$E_n^T(f)=\int_a^b f(x)dx-T_n(f)=-\frac{h^2(b-a)}{12}f''(cn) \text{ p.a. } cn\in[a,b]$$

Demostración:

- Si n=1 \implies $a=x_0,\,b=x_1$ y h=b-a. Luego $E_1^T(f)=-\frac{h^3}{12}f''(c).$
- Si n>1 $\Longrightarrow h=(b-a)/n, x_j=a+jh$. Luego $E_n^T(f)=-\frac{h^3}{12}f''(\gamma_1)-\frac{h^3}{12}f''(\gamma_2)-\cdots-\frac{h^3}{12}f''(\gamma_n)$, donde $x_{j-1}\leq \gamma_j\leq x_j$. Reagrupando y multiplicando por $\frac{n}{n}$ obtenemos:

$$E_n^T(f) = -\frac{h^3}{12} n \left\lceil \frac{f''(\gamma_1) + \dots + f''(\gamma_n)}{n} \right\rceil$$

Si llamamos $\xi_n=(f''(\gamma_1)+\cdots+f''(\gamma_n))/n$ luego se cumple que $\min_{a\leq x\leq b}f''(x)\leq \xi_n\leq \max_{a\leq x\leq b}f''(x)$. Por hipótesis, f''(x) es continua en [a,b], luego existe $cn\in [a,b]$ tal que $f''(cn)=\xi_n$. Como además hn=b-a tenemos que $E_n^T(f)=-\frac{h^2(b-a)}{12}f''(cn)$.

Estimación del Error Trapezoidal: Sabemos que $E_n^T(f) = -\frac{h^2}{12} [f''(\gamma_1)h + \dots + f''(\gamma_n)h]$, donde $[f''(\gamma_1)h + \dots + f''(\gamma_n)h]$ es una aproximación de $\int_a^b f''(x)dx = f'(b) - f'(a)$. Luego

$$E_n^T(f) \approx -\frac{h^2}{12}[f'(b) - f'(a)]$$

Regla de Simpson

Aproximamos f(x) mediante el polinomio de interpolación de Lagrange de grado 2 con los nodos $x_0 = a, x_1 = a + h$ y $x_2 = b$, donde h = (b - a)/2. Luego resulta:

$$\begin{split} \int_{a}^{b} f(x) dx &= \int_{x_{0}}^{x_{2}} \underbrace{\left[\frac{(x-x_{1})(x-x_{2})}{(x_{0}-x_{1})(x_{0}-x_{2})} f(x_{0}) + \frac{(x-x_{0})(x-x_{2})}{(x_{1}-x_{0})(x_{1}-x_{2})} f(x_{1}) + \frac{(x-x_{0})(x-x_{1})}{(x_{2}-x_{0})(x_{2}-x_{0})} f(x_{2}) \right]}_{P_{2}(x)} dx \\ &+ \int_{x_{0}}^{x_{2}} \underbrace{\frac{(x-x_{0})(x-x_{1})(x-x_{2})}{6} f^{(3)}(\xi(x))}_{\text{aproximación del error}} dx \end{split}$$

Luego, resulta de operar algebraicamente que:

$$\begin{split} &\int_{x_0}^{x_2} P_2(x) dx = \frac{h}{3} [f(x_0) + 4f(x_1) + f(x_2)] \\ &\int_{x_0}^{x_2} \frac{(x - x_0)(x - x_1)(x - x_2)}{6} f^{(3)}(\xi(x)) dx = -\frac{h^5}{90} f^{(4)}(\xi) \text{ p.a. } \xi \in [x_0, x_2] \end{split}$$

Y resulta:

$$\int_a^b f(x)dx = \frac{h}{3}[f(x_0) + 4f(x_1) + f(x_2)] - \frac{h^5}{90}f^{(4)}(\xi) \text{ p.a. } \xi \in [x_0,x_2]$$

Método Compuesto de Simpson

Utiliza varios subintervalos de igual longitud. Sea n el número de subintervalos, luego h=(b-a)/n y $x_j=a+jh$. Tenemos que la aproximación S_n resulta:

$$\begin{split} \int_a^b f(x) dx &= \int_{x_0}^{x_2} f(x) dx + \dots + \int_{x_{n-2}}^{x_n} f(x) dx \\ &= \frac{h}{3} [f(x_0) + 4f(x_1) + f(x_2)] + \frac{h}{3} [f(x_2) + 4f(x_3) + f(x_4)] + \dots + \frac{h}{3} [f(x_{n-2}) + 4f(x_{n-1}) + f(x_n)] \\ &= \frac{h}{3} [f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + \dots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n)] \end{split}$$

Teorema: (Error de la Integración Compuesta de Simpson) sea $f : \mathbb{R} \to \mathbb{R}$, derivable 4 veces en [a, b], luego el error de integración usando $n \in \mathbb{P}^+$ subintervalos resulta:

$$E_n^S(f) = \int_a^b f(x) dx - S_n(f) = -\frac{h^4(b-a)}{180} f^{(4)}(cn) \text{ p.a. } cn \in [a,b]$$

 $\begin{array}{ll} \textbf{\textit{Demostraci\'on:}} & \text{Sabemos que } E_n^S(f) = -\frac{h^5}{90} f^{(4)}(\gamma_1) - \frac{h^5}{90} f^{(4)}(\gamma_2) - \dots - \frac{h^5}{90} f^{(4)}(\gamma_n), \text{ donde } x_{j-1} \leq \\ \gamma_j \leq x_j. & \text{Reagrupando y multiplicando por } \frac{(n/2)}{(n/2)} \text{ obtenemos:} \end{array}$

$$E_n^S(f) = -\frac{h^5}{90} \left(\frac{n}{2}\right) \left[\frac{f^{(4)}(\gamma_1) + \dots + f^{(4)}(\gamma_n)}{(n/2)} \right]$$

Si llamamos $\xi_n=(f^{(4)}(\gamma_1)+\cdots+f^{(4)}(\gamma_n))/(n/2)$ luego se cumple que $\min_{a\leq x\leq b}f^{(4)}(x)\leq \xi_n\leq \max_{a\leq x\leq b}f^{(4)}(x)$. Por hipótesis, $f^{(4)}(x)$ es continua en [a,b], luego existe $cn\in [a,b]$ tal que $f^{(4)}(cn)=\xi_n$. Como además hn=b-a tenemos que $E_n^S(f)=-\frac{h^4(b-a)}{180}f^{(4)}(cn)$.

Estimación del Error de Simpson: Sabemos que $E_n^S(f)=-\frac{h^4}{90}\frac{1}{2}[2nf^{(4)}(\gamma_1)+\cdots+2nf^{(4)}(\gamma_n)],$ donde $[2nf^{(4)}(\gamma_1)+\cdots+2nf^{(4)}(\gamma_n)]$ es una aproximación de $\int_a^b f^{(4)}(x)dx=f^{(3)}(b)-f^{(3)}(a).$ Luego

$$E_n^S(f) \approx -\frac{h^4}{180} [f^{(3)}(b) - f^{(3)}(a)]$$

Integración Numérica en Dominio Bidimensional

Sea desea calcular la integral de una función f(x,y) en un dominio bidimensional $Q=\{(x,y)\in\mathbb{R}^2\mid a\leq x\leq b, c(x)\leq y\leq d(x)\}$. Es decir:

$$I = \int_{a}^{b} \int_{c(x)}^{d(x)} f(x, y) dy dx$$

Para esto, definimos $G(x) = \int_{c(x)}^{d(x)} f(x,y) dy$, luego $I = \int_a^b G(x) dx$, lo cual puede aproximarse como $I \approx \sum_{i=1}^n \omega_i G(x_i)$, donde ω_i es el factor de ponderamiento del método utilizado, y x_i son los nodos equidistantes en x. Por otra parte tenemos que $G(x_i) \approx \sum_{j=1}^m a_{ij} f(x_i, y_j)$.

Cota del Error:

$$|E_n^S| \leq \frac{hx^4(b-a)hy^4(d-c)}{180^2} \cdot \max_{(x,y) \in Q} \left|\frac{\delta^4 f}{\delta x^4}\right| \cdot \max_{(x,y) \in Q} \left|\frac{\delta^4 f}{\delta y^4}\right|$$