





#### **SoSe 2024**

# **NLP-gestützte Data Science**

## Übung 1

Manuel Stoeckel Kevin Bönisch Prof. Dr. Alexander Mehler

Frist: 06. Juni 2024

# Übung 1: Word2Vec

50 P

In dieser Übung werden wir uns mit dem word2vec-Modell (Mikolov, Chen et al., 2013; Mikolov, Sutskever et al., 2013) beschäftigen, welches in PyTorch zu implementieren ist. Lesen Sie insb. das Paper Distributed Representations of Words and Phrases and their Compositionality, Mikolov, Sutskever et al. (2013)!

### **Definitionen**

Das word2vec Skip-Gram-Modell für SoftMax und Negative Sampling (NS) sind gegeben als:

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{c=t=0}^{t+C} F_{\text{obj}}(w_c, w_t) \qquad | \quad 0 < c \le T, \ c \ne t$$
 (1)

$$F_{SoftMax}(w_O, w_I) = \log \frac{\exp \left(v'_{w_O}^T v_{w_I}\right)}{\sum\limits_{w=1}^{W} \exp \left(v'_{w}^T v_{w_I}\right)}$$
(2)

$$F_{NS}(w_O, w_I) = \log \sigma \left( v'_{w_O}^T v_{w_I} \right) + \sum_{n=1}^k \log \sigma \left( v'_{w_n}^T v_{w_I} \right)$$
(3)

Hier ist T die Satzlänge, C die Kontextfenstergröße, V und V' sind jeweils die Input- und Output-Embeddings und (2) bzw. (3) sind die objective functions der SoftMax bzw. Negative Sampling Varianten. Die negative samples  $w_n$  in (3) werden zufällig aus der *unigram distribution*  $w_n \sim P_V(w)$  gezogen, wobei  $P(w_n)$  für ein bestimmtes Wort  $w_n$  mit Frequenz  $f(w_n)$  im Trainingskorpus und Vokabulargröße V gegeben ist als:

$$P(w_n) = \frac{f(w_n)^{3/4}}{\sum\limits_{j=0}^{V} f(w_j)^{3/4}}$$
(4)

Kontextwörter  $w_c$  werden dabei im Rahmen des Subsampling of Frequent Words (Mikolov, Sutskever et al., 2013, §2.3) mit Wahrscheinlichkeit  $S(w_c)$  nicht aus einem Kontext entfernt, wobei  $S(w_c)$  abweichend vom Paper wie folgt definiert ist:

$$S(w_c) = \left(\sqrt{\frac{f(w_c)}{t}} + 1\right) \cdot \frac{t}{f(w_c)} \qquad | \quad S(w_c) \in [0, 1]$$
 (5)

Dabei ist t ein Hyper-Parameter, üblicherweise 0.001, und  $f(w_c)$  die Frequenz wie zuvor.

1.1 Text Processing 20 P

- > Implementieren Sie die Klassen:
  - >> TokenizedSentence, PreTokenizer und Tokenizer,
  - >> das Dataset, in welchem die Samples für das aggregiert werden, sowie
  - >> den NegativeSampler und die Dataset-Variante DatasetNegativeSampling.

#### Hinweise

- > Im Gegensatz zu einer Mindestanzahl an Vorkommen im Trainings-Korpus für den Tokenizer, wie im originalen word2vec, sollen Sie einen Tokenizer mit einer maximalen Größe implementieren. Dabei werden die häufigsten Token gespeichert und weniger häufige Token verworfen.
- ▶ Der PreTokenizer soll in der Vorverarbeitung alle Satzzeichen¹ von anderen Wörtern einzeln abtrennen.
- > Achten Sie darauf auch das Subsampling von häufigen Wörtern zu implementieren.

1.2 Word2Vec 25 P

> Implementieren Sie die Klassen SkipGramSoftMax und SkipGramNegativeSampling.

1.3 Ergebnisse 5 P

Verwenden Sie Ihren Code und dokumentieren Sie Ihre Ergebnisse (in einer begleitenden PDF).

- ➤ Trainieren Sie einen Tokenizer an dem kleinen Beispiel-Korpus (data/train\_enwiki.txt.gz). Was sind die häufigsten Token?
- ➤ Trainieren Sie die Modelle auf dem tokenisierten Korpus. Können Sie die Ergebnisse von Mikolov et al. reproduzieren?
  - >> Verwenden Sie Standard-Hyperparameter zum Training. Sie können die GPUs auf den Rechnern der RBI nutzen, um Ihr Training zu beschleunigen.
  - >> Falls das Training zu lange dauert, können Sie es auch frühzeitig unterbrechen.
  - >> Dokumentieren Sie auch Ihre Zwischenergebnisse.
- ➤ Wählen Sie sinnvolle Hyperparameter für den Tokenizer und Ihre word2vec Modelle beim Training!

# Extra-Aufgaben

CBOW 5 P

In Aufgabe 1.2 war nur das Skip-Gram-Modell zu implementieren. Das CBOW-Modell wird im ersten word2vec Papier ausführlicher erläutert (Mikolov, Chen et al., 2013). Im Prinzip unterscheiden sich die Modelle aber nur dahingehend, dass beim Skip-Gram-Modell ein *input* Zielwort mit den Embeddings mehrerer *output* Kontextwörter verglichen wird, während beim CBOW-Modell der Durchschnitt der *input* Kontextwörter mit dem *output* Embedding des Zielworts verglichen wird.

> Implementieren Sie nun die CBOW-Modelle CbowSoftMax und CbowNegativeSampling.

<sup>&</sup>lt;sup>1</sup>Siehe: https://docs.python.org/3/library/string.html

## Literatur

Goldhahn, Dirk, Thomas Eckart und Uwe Quasthoff (2012). "Building Large Monolingual Dictionaries at the Leipzig Corpora Collection: From 100 to 200 Languages". In: *Proceedings of the Eighth International Conference on Language Resources and Evaluation, LREC 2012, Istanbul, Turkey, May 23-25, 2012.* Hrsg. von Nicoletta Calzolari et al. *Die Trainings- und Testdaten für die Übungsaufgabe wurden dieser Korpussammlung entnommen.* European Language Resources Association (ELRA), S. 759–765. URL: http://www.lrec-conf.org/proceedings/lrec2012/summaries/327.html.

Mikolov, Tomás, Kai Chen et al. (2013). "Efficient Estimation of Word Representations in Vector Space". In: 1st International Conference on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013, Workshop Track Proceedings. Hrsg. von Yoshua Bengio und Yann LeCun. arXiv: 1301.3781.

Mikolov, Tomás, Ilya Sutskever et al. (2013). "Distributed Representations of Words and Phrases and their Compositionality". In: Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013. Proceedings of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States. Hrsg. von Christopher J. C. Burges et al., S. 3111–3119. URL: https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html.

### Revisionen

### Rev. 3 mit Änderungen vom 29.05.2024, 10:20 Uhr

> Formel (5) korrigiert.

# Rev. 2 mit Änderungen vom 28.05.2024, 12:30 Uhr

- > Einige Fehler im Code-Template gefixt:
  - $\Rightarrow$  Ein ABC entfernt: class TokenizedSentenceABC(ABC)  $\rightarrow$  class TokenizedSentence(NamedTuple).
  - >> Type Conversion in Tests class TestDataset.test\_\*\_samples(): {tuple(map(int, s)) for s in ...}.

### Rev. 1 mit Änderungen vom 27.05.2024, 12:30 Uhr

- > Formeln angepasst.
- > Einige Fehler im Code-Template gefixt:
  - Class DatasetABC.sentence\_to\_samples → class DatasetABC.\_sentence\_to\_samples umbenannt.
  - >> class DatasetABC.window size Attribut und entsprechenden window size: int Parameter hinzugefügt.
  - ightharpoonup Import: from altair import Self ightarrow from typing import Self
  - >> Input zu .forward in test calculate objective angepasst.