ECE2 - Mathématiques

DS1 (79 PTS)

Exercice 1 (22 pts)

Partie I

1. Posons Q = $\begin{pmatrix} 1 & -1 & 1 \\ 1 & 0 & 1 \\ 1 & -1 & 2 \end{pmatrix}$. Un calcul montre que :

$$PQ = QP = I_3$$
.

Ainsi P est inversible et $P^{-1} = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 0 & 1 \\ 1 & -1 & 2 \end{pmatrix}$.

1 pt

2. On trouve:

$$D_1 = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{pmatrix} \quad \text{et} \quad D_2 = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

2 pts

3. Soit $(a, b, c) \in \mathbb{R}^3$. Alors on a:

$$\begin{pmatrix} 6 & -2 & -6 \\ -8 & 14 & -9 \\ 0 & 1 & 12 \end{pmatrix} = aA + bB + cP \Longleftrightarrow \begin{cases} 2a + b + c & = 6 \\ a - b + c & = -2 \\ -2a - b - c & = -6 \\ -3b - c & = -8 \\ -3b & = -9 & \Longleftrightarrow \begin{cases} b = 3 \\ a = 2 \\ c = -1 \end{cases}$$
$$\begin{vmatrix} a + b - c & = 0 \\ -a + b & = 1 \\ 5a + b + c & = 12 \end{cases}$$

Ainsi:

$$\begin{pmatrix} 6 & -2 & -6 \\ -8 & 14 & -9 \\ 0 & 1 & 12 \end{pmatrix} = 2A + 3B - P.$$

Donc, cette matrice est bien combinaison linéaire de A, B et P.

2pts

Partie II

1. Soit $n \in \mathbb{N}$. Comme $P^{-1}A = D_1P^{-1}$ et $P^{-1}B = D_2P^{-1}$ alors on a :

$$\begin{aligned} \mathbf{Y}_{n+2} &= \mathbf{P}^{-1} \mathbf{X}_{n+2} = \mathbf{P}^{-1} \left(\frac{1}{6} \mathbf{A} \mathbf{X}_{n+1} + \frac{1}{6} \mathbf{B} \mathbf{X}_{n} \right) \\ &= \frac{1}{6} \mathbf{P}^{-1} \mathbf{A} \mathbf{X}_{n+1} + \frac{1}{6} \mathbf{P}^{-1} \mathbf{B} \mathbf{X}_{n} \\ &= \frac{1}{6} \mathbf{D}_{1} \mathbf{P}^{-1} \mathbf{X}_{n+1} + \frac{1}{6} \mathbf{D}_{2} \mathbf{P}^{-1} \mathbf{X}_{n} \\ &= \frac{1}{6} \mathbf{D}_{1} \mathbf{Y}_{n+1} + \frac{1}{6} \mathbf{D}_{2} \mathbf{Y}_{n}. \end{aligned}$$

Ainsi:

$$\forall n \in \mathbb{N} \qquad \mathbf{Y}_{n+2} = \frac{1}{6}\mathbf{D}_1\mathbf{Y}_{n+1} + \frac{1}{6}\mathbf{D}_2\mathbf{Y}_n.$$

2. Soit $n \in \mathbb{N}$. Alors:

$$\begin{pmatrix} a_{n+2} \\ b_{n+2} \\ c_{n+2} \end{pmatrix} = \mathbf{Y}_{n+2} = \frac{1}{6} \mathbf{D}_1 \mathbf{Y}_{n+1} + \frac{1}{6} \mathbf{D}_2 \mathbf{Y}_n$$

$$= \begin{pmatrix} \frac{1}{2} a_{n+1} + \frac{1}{2} a_n \\ \frac{1}{2} b_{n+1} \\ \frac{2}{3} c_{n+1} + \frac{1}{3} c_n \end{pmatrix}.$$

Ainsi:

$$\forall n \in \mathbb{N} \qquad \begin{cases} a_{n+2} &= \frac{1}{2} a_{n+1} + \frac{1}{2} a_n \\ b_{n+2} &= \frac{1}{2} b_{n+1} \\ c_{n+2} &= \frac{2}{3} c_{n+1} + \frac{1}{3} c_n \end{cases}$$

1 pt

3. Un calcul donne:

$$Y_0 = P^{-1}X_0 = \begin{pmatrix} 2\\2\\1 \end{pmatrix}$$
 et $Y_1 = P^{-1}X_1 = \begin{pmatrix} 1\\1\\-1 \end{pmatrix}$.

1 pt

- 4. D'après les questions 2 et 3.
 - La suite $(a_n)_{n\in\mathbb{N}}$ est la suite récurrente linéaire d'ordre 2 d'équation caractéristique $x^2-\frac{1}{2}x-\frac{1}{2}=0$ et de premiers termes $a_0=2$ et $a_1=1$. Le discriminant de l'équation caractéristique est $\frac{9}{4}$ donc les solutions de l'équation sont $x_1=-\frac{1}{2}$ et $x_2=1$. Ainsi :

$$\exists (a,b) \in \mathbb{R}^2 \ \forall n \in \mathbb{N} \ a_n = a + b \left(-\frac{1}{2}\right)^n.$$

Comme $a_0 = 2$ et $a_1 = 1$ alors :

$$\begin{cases} a+b = 2 \\ a-\frac{b}{2} = 1 \end{cases} \quad \text{donc} \quad \begin{cases} a = \frac{4}{3} \\ b = \frac{2}{3} \end{cases}.$$

Ainsi:

$$\forall n \in \mathbb{N}, \quad a_n = \frac{4}{3} + \frac{2}{3} \left(-\frac{1}{2}\right)^n.$$

2 pts

• La suite $(b_n)_{\in \mathbb{N}}$ * est géométrique de raison $\frac{1}{2}$ et $b_1 = 1$ donc :

$$\forall n \in \mathbb{N}^* \quad b_n = \left(\frac{1}{2}\right)^{n-1}.$$

On vérifie que cette expression est aussi valable pour n=0 d'où :

$$\forall n \in \mathbb{N} \quad b_n = \left(\frac{1}{2}\right)^{n-1}.$$

1 pt

• La suite $(c_n)_{n\in\mathbb{N}}$ est la suite récurrente linéaire d'ordre 2 d'équation caractéristique $x^2-\frac{2}{3}x-\frac{1}{3}=0$ et de premiers termes $c_0=1$ et $c_1=-1$. Le discriminant de l'équation caractéristique est $\frac{16}{9}$ donc les solutions de l'équation sont $x_1=-\frac{1}{3}$ et $x_2=1$. Ainsi :

$$\exists (a,b) \in \mathbb{R}^2 \ \forall n \in \mathbb{N} \ c_n = a + b \left(-\frac{1}{3}\right)^n.$$

Comme $c_0 = 1$ et $c_1 = -1$ alors :

$$\begin{cases} a+b &= 1 \\ a-\frac{b}{3} &= -1 \end{cases} \quad \text{donc} \quad \begin{cases} a &= -\frac{1}{2} \\ b &= \frac{3}{2} \end{cases}.$$

Ainsi:

$$\forall n \in \mathbb{N}, \quad c_n = -\frac{1}{2} + \frac{3}{2} \left(-\frac{1}{3}\right)^n.$$

2 pts

5. Soit $n \in \mathbb{N}$. On a

$$\mathbf{X}_n = \mathbf{PY}_n = \begin{pmatrix} 1 & 1 & -1 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_n \\ b_n \\ c_n \end{pmatrix} = \begin{pmatrix} a_n + b_n - c_n \\ -a_n + b_n \\ -a_n + c_n \end{pmatrix}.$$

Ainsi:

$$\forall n \in \mathbb{N} \qquad \begin{cases} \alpha_n &= \frac{11}{6} + \frac{2}{3} \left(-\frac{1}{2} \right)^n + \left(\frac{1}{2} \right)^{n-1} - \frac{3}{2} \left(-\frac{1}{3} \right)^n \\ \beta_n &= \left(\frac{1}{2} \right)^{n-1} - \frac{2}{3} \left(-\frac{1}{2} \right)^n - \frac{4}{3} \\ \gamma_n &= -\frac{11}{6} - \frac{2}{3} \left(-\frac{1}{2} \right)^n + \left(\frac{1}{2} \right)^{n-1} + \frac{3}{2} \left(-\frac{1}{3} \right)^n . \end{cases}$$

2 pts

6. (a)

```
function res=X(n)
    Xold=[3;0;-1]
    Xnew=[3;0;-2]
    A=[2,1,-2;0, 3,0; 1, -1, 5]
    B=[1,-1,-1; -3,3,-3;-1, 1, 1]
    for i=2:n
        Aux= 1/6*A*Xnew+1/6*B*Xold
        Xold=Xnew
        Xnew=Aux
    end
    res=Xnew
endfunction
```

3 pts

(b) D'après la question 5, on sait que

$$\lim_{n \to +\infty} \alpha_n = \frac{11}{6} \quad ; \quad \lim_{n \to +\infty} \beta_n = -\frac{4}{3} \quad ; \quad \lim_{n \to +\infty} \gamma_n = -\frac{11}{6}.$$

Donc la suite $(\alpha_n)_{n\in\mathbb{N}}$ correspond aux \times , la suite $(\beta_n)_{n\in\mathbb{N}}$ aux \oplus et la suite $(\gamma_n)_{n\in\mathbb{N}}$ aux \diamond .

3 pts

Exercice 2 (17 pts)

- 1. Soit $n \in \mathbb{N}^*$.
 - (a) La fonction f_n est une somme de fonctions dérivables sur \mathbb{R} donc elle est dérivable sur \mathbb{R} . De plus, pour tout $x \in \mathbb{R}$ on a

$$f_n'(x) = n + e^x > 0.$$

2 pts: 1 pt pour la dérivabilité, 1 pt pour la dérivée

(b) D'après la question précédente, f_n est strictement croissante sur \mathbb{R} . De plus, $\lim_{x\to +\infty}e^{-x}=0$ donc, par somme, on trouve

$$\lim_{x \to +\infty} f_n(x) = \lim_{x \to +\infty} nx = +\infty \quad \text{car } n > 0.$$

D'autre part, $\lim_{x\to-\infty}e^{-x}=+\infty$ et $\lim_{x\to-\infty}nx=-\infty$ (car n>0) donc par différence :

$$\lim_{x\to-\infty}f_n(x)=-\infty.$$

2 pts: 1 pt pour les variations, 1pt pour les limites

(c) La fonction f_n est continue sur $\mathbb R$ (car dérivable sur $\mathbb R$) et strictement croissante. D'après le théorème de la bijection, f_n réalise une bijection de $\mathbb R$ sur $f_n(\mathbb R)$ et sa bijection réciproque est continue et strictement croissante. D'après la question précédente, $f_n(\mathbb R) = \mathbb R$ donc, $0 \in f_n(\mathbb R)$. En particulier, 0 admet un unique antécédent par f_n , i.e, l'équation $f_n(x) = 0$ possède une unique solution. On note u_n cette solution.

2 pts : 1 pt le théorème de la bijection réciproque ou le corrolaire du TVI parfaitement énoncé, 1 pt la conclusion.

2. (a) Soit $n \in \mathbb{N}^*$. On a:

$$f_n(0) = -1$$
 et $f_n\left(\frac{1}{n}\right) = 1 - e^{-\frac{1}{n}}$.

1 pt

(b) Soit $n \in \mathbb{N}^*$. D'après la question précédente :

$$f_n(0) < f_n(u_n) < f_n\left(\frac{1}{n}\right).$$

Par croissance stricte de f_n^{-1} , on a donc :

$$0 < u_n < \frac{1}{n}.$$

Ainsi:

$$\forall n \in \mathbb{N}^*, \quad 0 < u_n < \frac{1}{n}.$$

1 pt

(c) On sait que : $\lim_{n \to +\infty} \frac{1}{n} = 0$. D'après la question précédente, on peut conclure par encadrement que $(u_n)_{n \in \mathbb{N}}$ converge et que sa limite est 0.

1 pt

3. (a) Par définition de $(u_n)_{n\in\mathbb{N}}$, pour tout $n\in\mathbb{N}^*$ on a :

$$0 = f_n(u_n) = nu_n - e^{-u_n}$$
.

Ainsi, pour tout $n \in \mathbb{N}^*$: $u_n = \frac{e^{-u_n}}{n}$.

1 pt

(b) Or : $\lim_{n\to+\infty}u_n=0$. Donc, par composition et continuité de l'exponentielle en zéro, on obtient :

$$\lim_{n\to+\infty}e^{-u_n}=1.$$

En particulier, $e^{-u_n} \sim 1$.

Par compatibilité des équivalents avec le produit, on en déduit :

$$\frac{e^{-u_n}}{n} \underset{n \to +\infty}{\sim} \frac{1}{n}.$$

Ainsi : $u_n \sim \frac{1}{n \to +\infty} \frac{1}{n}$.

3 pts : 1 pt pour la limite, 1 pt pour l'équivalent de e^{-u_n} et un point pour l'équivalent de u_n

4. (a) On a, pour tout $n \in \mathbb{N}^*$:

$$v_n = u_n - \frac{1}{n} = \frac{e^{-u_n}}{n} - \frac{1}{n} = \frac{e^{-u_n} - 1}{n}.$$

Or: $\lim_{n \to +\infty} -u_n = 0$.

Donc, par équivalent usuel, on a : $e^{-u_n} - 1 \sim u_n$.

Par transitivité, on obtient alors : $e^{-u_n} - 1 \underset{n \to +\infty}{\sim} -\frac{1}{n}$.

Enfin, par compatibilité des équivalents avec le produit, on en déduit :

$$v_n = u_n - \frac{1}{n} = \frac{e^{-u_n} - 1}{n} \underset{n \to +\infty}{\sim} - \frac{1}{n^2}.$$

(b) D'après la caractérisation de l'équivalence et la question précédente, on a :

$$u_n - \frac{1}{n} = -\frac{1}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2}\right).$$

Ainsi,

$$u_n = \frac{1}{n} - \frac{1}{n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2}\right).$$

1 pt

Exercice 3 (21 pts)

- 1. (a) Pour tout $n \in \mathbb{N}$, soit $\mathscr{P}(n)$ la proposition « $0 \le u_n < 1$ » et montrons par récurrence que : $\forall n \in \mathbb{N}$, $\mathscr{P}(n)$ est vraie.
 - *Initialisation*: comme $u_0 = 0$, $\mathcal{P}(0)$ est vraie.
 - *Hérédité* : supposons $\mathcal{P}(n)$ vraie pour un certain entier naturel n et montrons que $\mathcal{P}(n+1)$ est vraie.

Par hypothèse de récurrence, on sait que $0 \le u_n < 1$. On a donc :

$$0 \le u_{n+1} = \frac{u_n^2 + 1}{2} < \frac{1+1}{2} = 1.$$

Ainsi $\mathcal{P}(n+1)$ est vraie.

• Conclusion : par le principe de récurrence

$$\forall n \in \mathbb{N}, \quad 0 \leq u_n < 1.$$

2 pts

(b) Soit $n \in \mathbb{N}$. Alors, on a :

$$u_{n+1} - u_n = \frac{u_n^2 + 1}{2} - u_n = \frac{u_n^2 - 2u_n + 1}{2} = \frac{(1 - u_n)^2}{2} \geqslant 0.$$

Ainsi : $\forall n \in \mathbb{N}$, $u_{n+1} \geqslant u_n$.

La suite $(u_n)_{n\in\mathbb{N}}$ est donc croissante.

2 pts

(c) La suite $(u_n)_{n\in\mathbb{N}}$ est croissante et majorée par 1. D'après le théorème de convergence monotone, elle est donc convergente. On note ℓ sa limite.

Comme la fonction $x \mapsto \frac{x^2+1}{2}$ est continue sur \mathbb{R} , ℓ en est un point fixe. Or, pour tout $x \in \mathbb{R}$:

$$\frac{x^2+1}{2} = x \Longleftrightarrow x^2 - 2x + 1 = 0 \Longleftrightarrow (x-1)^2 = 0 \Longleftrightarrow x = 1.$$

Ainsi la fonction $x \mapsto \frac{x^2+1}{2}$ admet comme unique point fixe 1 et par conséquent $\ell = 1$.

3 pts

- 2. Pour tout entier naturel n on pose, $v_n = 1 u_n$.
 - (a) Soit $n \in \mathbb{N}$. On a

$$\begin{split} \frac{1}{v_{n+1}} - \frac{1}{v_n} &= \frac{1}{1 - u_{n+1}} - \frac{1}{1 - u_n} \\ &= \frac{1 - u_n - 1 + u_{n+1}}{(1 - u_n)(1 - u_{n+1})} \\ &= \frac{u_{n+1} - u_n}{(1 - u_n)(1 - \frac{u_n^2 + 1}{2})} \\ &= \frac{(1 - u_n)^2}{(1 - u_n)(1 - u_n^2)} \quad \text{(voir le calcul de la question 1.b)} \\ &= \frac{(1 - u_n)^2}{(1 - u_n)^2(1 + u_n)} \\ &= \frac{1}{1 + u_n}. \end{split}$$

Ainsi: $\forall n \in \mathbb{N}, \frac{1}{v_{n+1}} - \frac{1}{v_n} = \frac{1}{1 + u_n}.$

(b) D'après la question 1.c on sait que

$$\lim_{n\to+\infty}u_n=1.$$

Donc, par opérations sur les limites, on obtient

$$\lim_{n \to +\infty} \left(\frac{1}{\nu_{n+1}} - \frac{1}{\nu_n} \right) = \frac{1}{2}.$$

1 pt

(c) En appliquant le résultat admis en début d'exercice avec la suite $(a_n)_{n\in\mathbb{N}} = \left(\frac{1}{v_{n+1}} - \frac{1}{v_n}\right)_{n\in\mathbb{N}}$ on ob-

tient que la suite
$$\left(\frac{1}{n}\sum_{j=0}^{n-1}\left(\frac{1}{\nu_{j+1}}-\frac{1}{\nu_{j}}\right)\right)_{n\in\mathbb{N}^{*}}$$
 converge vers $\frac{1}{2}$.

1 pt

(d) Par télescopage, pour tout entier naturel n on a

$$\sum_{j=0}^{n-1} \left(\frac{1}{\nu_{j+1}} - \frac{1}{\nu_j} \right) = \frac{1}{\nu_n} - \frac{1}{\nu_0}.$$

Par conséquent : $\lim_{n \to +\infty} \frac{\frac{1}{\nu_n} - \frac{1}{\nu_0}}{n} = \frac{1}{2}$.

D'où, puisque $\lim_{n\to+\infty} \frac{\frac{1}{v_0}}{n} = 0$, on tire :

$$\lim_{n\to+\infty}\frac{\frac{1}{v_n}}{n}=\frac{1}{2}.$$

Finalement

$$\lim_{n \to +\infty} \frac{\frac{1}{\nu_n}}{\frac{n}{2}} = 2 \times \lim_{n \to +\infty} \frac{\frac{1}{\nu_n}}{n} = 1.$$

Donc:
$$\frac{1}{v_n} \sim \frac{n}{n \to +\infty} \frac{n}{2}$$
.

2pts

(e) Par la question précédente, on obtient en passant au quotient :

$$v_n \underset{n\to+\infty}{\sim} \frac{2}{n}.$$

D'après la caractérisation de la relation d'équivalence cela donne :

$$1-u_n=v_n=\frac{2}{n}+\mathop{o}\limits_{n\to+\infty}\left(\frac{2}{n}\right)=\frac{2}{n}+\mathop{o}\limits_{n\to+\infty}\left(\frac{1}{n}\right).$$

Ainsi

$$u_n = 1 - \frac{2}{n} + \underset{n \to +\infty}{o} \left(\frac{1}{n}\right).$$

2 pts

3 pts

Soit $i \in \{1, 2, ..., n\}$. L'événement $(X_i = 1)$ est réalisé si et seulement si l'urne i contient toujours n boules au bout des n épreuves, si et seulement si, pour tout $k \in [1, n]$ l'urne i n'est pas choisie à la $k^{\text{ième}}$ épreuve. Ainsi

1. (a) Soit $i \in \{1, 2, ..., n\}$. L'événement $(X_i = 1)$ est réalisé si et seulement si l'urne i contient toujours n boules au bout des n épreuves, si et seulement si, pour tout $k \in [1, n]$ l'urne i n'est pas choisie à la $k^{\text{ième}}$ épreuve. Ainsi

$$(X_i = 1) = \bigcap_{k=1}^n \overline{U}_{i,k}.$$

Les choix des urnes étant indépendants, les événements $\left(\overline{\mathbf{U}}_{i,k}\right)_{k\in [\![1,n]\!]}$ sont mutuellement indépendants. Donc :

$$P(X_i = 1) = P\left(\bigcap_{k=1}^{n} \overline{U}_{i,k}\right) = \prod_{k=1}^{n} P\left(\overline{U}_{i,k}\right)$$

Or, pour tout $k \in \{1, 2, ..., n\}$, on a:

$$P\left(\overline{\mathbf{U}}_{i,k}\right) = 1 - P\left(\mathbf{U}_{i,k}\right) = 1 - \frac{1}{n}$$

car les urnes sont équiprobables. Par conséquent :

$$P(X_i = 1) = \left(1 - \frac{1}{n}\right)^n.$$

Ainsi:

$$\forall i \in \{1, 2, ..., n\}, \ P(X_i = 1) = \left(1 - \frac{1}{n}\right)^n.$$

4 pts : 2 pt pour l'expression avec les $U_{i,k}$ (avec justification), 1 pt pour l'utilisation de l'indépendance, 1 pt pour le calcul de $P(U_{i,k})$ et le résultat final

(b) Soient i et j deux entiers distincts, éléments de $\{1, 2, ..., n\}$,. L'événement $[X_i = 1] \cap [X_j = 1]$ est réalisé si et seulement si pour tout $k \in [1, n]$ les urnes i et j ne sont pas choisies à l'étape k. Ainsi,

$$[X_i = 1] \cap [X_j = 1] = \bigcap_{k=1}^n \overline{U}_{i,k} \cap \overline{U}_{j,k}.$$

Les choix des urnes étant indépendants, les événements $\left(\overline{\mathbf{U}}_{i,k} \cap \overline{\mathbf{U}}_{j,k}\right)_{k \in [\![1,n]\!]}$ sont mutuellement indépendants. Donc :

$$P([X_i = 1] \cap [X_j = 1]) = P\left(\bigcap_{k=1}^n \overline{U}_{i,k} \cap \overline{U}_{j,k}\right) = \prod_{k=1}^n P\left(\overline{U}_{i,k} \cap \overline{U}_{j,k}\right).$$

Pour tout $k \in \{1, 2, ..., n\}$, les urnes étant équiprobables et les événements $U_{i,k}$ et $U_{j,k}$ étant disjoints on a :

$$P\left(\overline{\mathbf{U}}_{i,k} \cap \overline{\mathbf{U}_{j,k}}\right) = 1 - P\left(\mathbf{U}_{i,k} \cup \mathbf{U}_{j,k}\right) = 1 - P\left(\mathbf{U}_{i,k}\right) - P\left(\mathbf{U}_{j,k}\right) = 1 - \frac{2}{n}.$$

Par conséquent,

$$P([X_i = 1] \cap [X_j = 1]) = \left(1 - \frac{2}{n}\right)^n.$$

3 pts : 1 pt pour l'utilisation de l'indépendance, 2pt pour le calcul et le résultat final

(c) On a

$$\left(1 - \frac{1}{n}\right)^2 = 1 - \frac{2}{n} + \frac{1}{n^2} > 1 - \frac{2}{n} \ge 0$$
 car $n \ge 2$.

Par croissance stricte de $x \mapsto x^n$ sur \mathbb{R}_+ , on en déduit que

$$\left(1-\frac{1}{n}\right)^{2n} > \left(1-\frac{2}{n}\right)^n.$$

Soient i et j deux entiers distincts, éléments de $\{1, 2, ..., n\}$. Alors

$$P([X_i = 1])P([X_j = 1]) = \left(1 - \frac{1}{n}\right)^{2n} > \left(1 - \frac{2}{n}\right)^n = P([X_i = 1] \cap [X_j = 1]).$$

En particulier, $P([X_i = 1])P([X_j = 1]) \neq P([X_i = 1] \cap [X_j = 1])$ ce qui signifie que les événements $[X_i = 1]$ et $[X_j = 1]$ ne sont pas indépendants.

2pts: 1pt pour la comparaison, 1 pt pour en déduire la non indépendance

2. (a) Pour tout $i \in [1, n]$, la variable X_i est une variable de Bernoulli donc possède une espérance et

$$E(X_i) = \left(1 - \frac{1}{n}\right)^n.$$

D'après le résultat rappelé au début de l'exercice, Y_n possède donc une espérance et

$$\mathrm{E}(\mathrm{Y}_n) = \sum_{k=1}^n \mathrm{E}(\mathrm{X}_k) = n \left(1 - \frac{1}{n}\right)^n.$$

3pts : 1pt l'espérance des X_i , 1 pt pour utiliser le résultat rappeler au début de l'exercice, 1 pt pour le calcul correct

(b) Par conséquent, pour tout n > 0, on a

$$\frac{\mathrm{E}(\mathrm{Y}_n)}{n} = \left(1 - \frac{1}{n}\right)^n = e^{n\ln\left(1 - \frac{1}{n}\right)}.$$

Or, d'après les équivalents usuels, on a

$$\ln\left(1-\frac{1}{n}\right) \underset{n\to+\infty}{\sim} -\frac{1}{n}.$$

Donc, par compatibilité des équivalents avec le produit, on obtient

$$n\ln\left(1-\frac{1}{n}\right) \underset{n\to+\infty}{\sim} -1.$$

Ainsi, $\lim_{n \to +\infty} n \ln \left(1 - \frac{1}{n} \right) = -1$ puis, par continuité de l'exponentielle en -1:

$$\lim_{n\to+\infty}\frac{\mathrm{E}(\mathrm{Y}_n)}{n}=e^{-1}.$$

Comme $e^{-1} \neq 0$, cela signifie que $\frac{\mathrm{E}(\mathrm{Y}_n)}{n} \underset{n \to +\infty}{\sim} e^{-1}$. Par compatibilité des équivalents avec le produit, on en déduit que

$$E(Y_n) \sim ne^{-1}$$
.

2pts pour la limite

1pt pour l'équivalent

3. (a) La variable aléatoire N_i compte le nombre de succès d'une répétition de n épreuves de Bernoulli indépendantes de paramètre $\frac{1}{n}$. Donc $N_i \hookrightarrow \mathcal{B}(n, \frac{1}{n})$. Ainsi

$$E(N_i) = n \times \frac{1}{n} = 1.$$

2 pts : 1pt pour reconnaître une loi binomiale (avec les bons paramètres et justification), 1 pt pour l'espérance.

(b) Si $N_i \neq 0$ alors c'est que l'urne i a été choisie au moins une fois.

Dans ce cas $X_i = 0$ et par conséquent $N_i X_i = 0$.

Si $N_i = 0$ alors $N_i X_i = 0$.

Par conséquent, $N_i X_i = 0$.

2 pts: 1 pt pour le premier cas de la disjonction, 1 pt pour le second.