Question 1.

Now we need to prove the proposition 4.1. There are 4 statements, and we need to prove that they are equivalent. Actually we just need to justify that (i) is equivalent to (ii), (iii) and (iv). Then all this 4 statements will be equivalent to each other naturally. Since we can get (i) \Leftrightarrow (ii) \Leftrightarrow (iii) i.e (i) \Leftrightarrow (iii) logically.

(a). (i) is equivalent to (ii)

Proof. Suppose that \mathcal{T} is firmly nonexpansive, then we need to find a nonexpansive operator $\mathcal{N}: \mathbb{R}^n \to \mathbb{R}^n$ such that $\mathcal{T} = (1 - \alpha)\mathcal{I} + \alpha \mathcal{N}$. Firstly, because \mathcal{T} is nonexpansive, we have

$$\|\mathcal{T}x - \mathcal{T}y\|^2 \le \langle \mathcal{T}x - \mathcal{T}y, x - y \rangle.$$

And there is a nonexpansive operator $\mathcal N$ which satisfying

$$\|\mathcal{N}x - \mathcal{N}y\| \le \|x - y\|.$$

Now we want to substitute \mathcal{T} by $\frac{1}{2}\mathcal{I} + \frac{1}{2}\mathcal{N}$. We can get

$$\|(\frac{1}{2}\mathcal{I} + \frac{1}{2}\mathcal{N})x - (\frac{1}{2}\mathcal{I} + \frac{1}{2}\mathcal{N})y\|^2 \le \langle (\frac{1}{2}\mathcal{I} + \frac{1}{2}\mathcal{N})x - (\frac{1}{2}\mathcal{I} + \frac{1}{2}\mathcal{N})y, x - y \rangle$$
$$\|(\mathcal{I} + \mathcal{N})x - (\mathcal{I} + \mathcal{N})y\|^2 \le \langle (\mathcal{I} + \mathcal{N})x - (\mathcal{I} + \mathcal{N})y, 2(x - y) \rangle.$$

If we calculate the left side of this inequation, we can easily get that

$$LHS = (\mathcal{I} + \mathcal{N})^{2} ||x - y||^{2}$$
$$= ||x - y||^{2} + 2\mathcal{N}||x - y||^{2} + ||\mathcal{N}x - \mathcal{N}y||^{2}.$$

And the right side equals to

$$RHS = \langle x - y + \mathcal{N}x - \mathcal{N}y, 2(x - y) \rangle$$
$$= 2\|x - y\|^2 + 2\mathcal{N}\|x - y\|^2.$$

Then we can get that

$$||x - y||^2 + 2\mathcal{N}||x - y||^2 + ||\mathcal{N}x - \mathcal{N}y||^2 \le 2||x - y||^2 + 2\mathcal{N}||x - y||^2$$
$$||\mathcal{N}x - \mathcal{N}y||^2 \le ||x - y||^2.$$

That is to say that, \mathcal{N} is a nonexpansive operator. At the same time, \mathcal{T} is a $\frac{1}{2}$ -averaged nonexpansive operator.

Now let's proof that (ii) \Rightarrow (i). That is to say that there is a nonexpansive operator \mathcal{N} such that \mathcal{T} satisfying $\mathcal{T} = \frac{1}{2}\mathcal{I} + \frac{1}{2}\mathcal{N}$. Then \mathcal{T} is firmly nonexpansive. Since \mathcal{N} is nonexpansive we have

$$\|\mathcal{N}x - \mathcal{N}y\| < \|x - y\|.$$

Substituting this inequaltion by $\mathcal{N} = 2\mathcal{T} - \mathcal{I}$, we can get

$$||(2\mathcal{T} - \mathcal{I})(x - y)|| \le ||x - y||$$

$$||(2\mathcal{T} - \mathcal{I})(x - y)||^{2} \le ||x - y||^{2}$$

$$(2\mathcal{T} - \mathcal{I})^{2}||x - y||^{2} \le ||x - y||^{2}$$

$$4||\mathcal{T}x - \mathcal{T}y||^{2} - 4\mathcal{T}||x - y||^{2} + ||x - y||^{2} \le ||x - y||^{2}$$

$$||\mathcal{T}x - \mathcal{T}y||^{2} \le \mathcal{T}||x - y||^{2}$$

$$||\mathcal{T}x - \mathcal{T}y||^{2} \le \langle \mathcal{T}x - \mathcal{T}y, x - y \rangle.$$

So we can get that \mathcal{T} is firmly nonexpansive. And we can claim that (i) is equivalent to (ii).

(b). (i) is equivalent to (iii)

Proof. Now let's prove (i) \Leftrightarrow (iii). Actually from (a) we can get that \mathcal{T} is firmly nonexpansive and then \mathcal{T} is also $\frac{1}{2}$ -averaged nonexpansive. From that we have $\mathcal{I} - \mathcal{T} = \mathcal{T} - \mathcal{N}$. If \mathcal{T} is firmly nonexpansive, we can get that

$$\|(\mathcal{I} - \mathcal{T})(x - y)\|^2$$

=\|x - y\|^2 + \|\mathcal{T}x - \mathcal{T}y\|^2 - 2\langle \mathcal{T}x - \mathcal{T}y, x - y \rangle.

Also, we have

$$\langle (\mathcal{I} - \mathcal{T})x - (\mathcal{I} - \mathcal{T})y, x - y \rangle$$

= $||x - y||^2 - \langle \mathcal{T}x - \mathcal{T}y, x - y \rangle$.

Since \mathcal{T} is firmly nonexpansive, if we put this 2 into left side and right side respectively, we have

$$\|\mathcal{T}x - \mathcal{T}y\|^2 \le \langle \mathcal{T}x - \mathcal{T}y, x - y \rangle.$$

So $\mathcal{I} - \mathcal{T}$ is firmly nonexpansive. If $\mathcal{I} - \mathcal{T}$ is firmly nonexpansive, we can also get the same result through the same method. Then easily we have (i) \Leftrightarrow (iii).

(c). (i) is equivalent to (iv)

Proof. If \mathcal{T} is firmly nonexpansive, so as it is $\frac{1}{2}$ -averaged nonexpansive, and there is a nonexpansive operator \mathcal{N} satisfying $\mathcal{T} = \frac{1}{2}\mathcal{I} + \frac{1}{2}\mathcal{N}$. That is to say that $\mathcal{N} = 2\mathcal{T} - \mathcal{I}$. And \mathcal{N} is nonexpansive, so as $2\mathcal{T} - \mathcal{I}$.

If $2\mathcal{T} - \mathcal{I}$ is nonexpansive, we can define $\mathcal{N} = 2\mathcal{T} - \mathcal{I}$ as a new nonexpansive operator. Then it satisfying $\mathcal{T} = \frac{1}{2}\mathcal{I} + \frac{1}{2}\mathcal{N}$, it can show that \mathcal{T} is firmly nonexpansive. So (iv) \Rightarrow (i). Then (i) is equivalent to (iv).

We have been proved that (i) \Leftrightarrow (ii), (i) \Leftrightarrow (iii) and (i) \Leftrightarrow (iv). That is to say (i) \Leftrightarrow (ii) \Leftrightarrow (iii) \Leftrightarrow (iv). Then this 4 statements are equivalent. So the proposition 4.1 is true.

Question 2.

Proof. In this question, we need to prove that $\text{prox}_{\|\cdot\|_1}$ is firmly nonexpansive. That is to say $\text{prox}_{\|\cdot\|_1}$ satisfying

$$\|\operatorname{prox}_{\|\cdot\|_{1}}(\boldsymbol{x}) - \operatorname{prox}_{\|\cdot\|_{1}}(\boldsymbol{y})\|^{2} \leq \langle \operatorname{prox}_{\|\cdot\|_{1}}(\boldsymbol{x}) - \operatorname{prox}_{\|\cdot\|_{1}}(\boldsymbol{y}), \boldsymbol{x} - \boldsymbol{y} \rangle. \tag{2.1}$$

From (3.7) we know that for $\boldsymbol{x} \in \mathbb{R}$,

$$prox_{|.|}(x) = \max\{|x| - 1, 0\} \cdot sgn(x). \tag{2.2}$$

From (3.8) we know that for $\boldsymbol{x} \in \mathbb{R}^n$,

$$\operatorname{prox}_{\|.\|_{1}}(\boldsymbol{x}) = (\operatorname{prox}_{|.|}(x_{1}), \operatorname{prox}_{|.|}(x_{2}), \dots, \operatorname{prox}_{|.|}(x_{n}))^{T}.$$
(2.3)

In this question, I denote $\operatorname{prox}_{\|\cdot\|}$ as $\operatorname{prox}_{\|\cdot\|_1}$, since there is only ℓ_1 -norm. So I ignore the 1 index of $\|\cdot\|_1$. And I denote $\operatorname{prox}(x)$ as $\operatorname{prox}_{\|\cdot\|}(x)$.

For $x \in \mathbb{R}$, from the lecture 4 we can rewrite prox(x) as

$$prox(x) = \begin{cases} x - 1, & x \ge 1\\ 0, & -1 \le x \le 1\\ x + 1, & x \le -1 \end{cases}$$

So as $y \in \mathbb{R}$.

Then we can expand the inequaltion (2.1) using (2.3) and get

$$\|\mathrm{prox}_{\|\cdot\|}(\boldsymbol{x}) - \mathrm{prox}_{\|\cdot\|}(\boldsymbol{y})\|^2 \leq \langle \mathrm{prox}_{\|\cdot\|}(\boldsymbol{x}) - \mathrm{prox}_{\|\cdot\|}(\boldsymbol{y}), \boldsymbol{x} - \boldsymbol{y} \rangle$$

$$\|(\operatorname{prox}(x_1), \dots, \operatorname{prox}(x_n)) - (\operatorname{prox}(y_1), \dots, \operatorname{prox}(y_n))\|^2 \le \langle (\operatorname{prox}(x_1) - \operatorname{prox}(y_1), \dots, \operatorname{prox}(x_n) - \operatorname{prox}(y_n)), (x_1 - y_1, \dots, x_n - y_n) \rangle.$$

Continuing we can get

$$\sum_{i=0}^{n} (\text{prox}(x_i) - \text{prox}(y_i))^2 \le \sum_{i=0}^{n} (\text{prox}(x_i) - \text{prox}(y_i))(x_i - y_i).$$

That is what we need to prove. Now we want to prove for any $i \in \{1, 2, ..., n\}$, there exist

$$(\operatorname{prox}(x_i) - \operatorname{prox}(y_i))^2 = (\operatorname{prox}(x_i) - \operatorname{prox}(y_i))(x_i - y_i).$$
 (2.4)

Firstly, if $\mathbf{x} = \mathbf{y}$ i.e $x_i = y_i$ for any $i \in \{1, 2, ..., n\}$, then \mathbf{x} is a fixed point.

And $(\operatorname{prox}(x_i) - \operatorname{prox}(y_i))^2 = (\operatorname{prox}(x_i) - \operatorname{prox}(y_i))(x_i - y_i)$. This satisfies the definition of firmly nonexpansive. Now let's focus on $x \neq y$.

Using the equation of prox(x), we can calculate $prox(x_i) - prox(y_i)$. And there are 8 situations. For $x, y \in \mathbb{R}$, $i \in \{1, 2, ..., n\}$

$$\psi(x_i, y_i) = \operatorname{prox}(x_i) - \operatorname{prox}(y_i) = \begin{cases} x_i - y_i, & x \ge 1, y \ge 1 \text{ and } x \le -1, y \le -1 \\ x_i - 1, & x \ge 1, -1 \le y \le 1 \\ x_i - y_i - 2, & x \ge 1, y \le -1 \\ 1 - y_i, & -1 \le x \le 1, y \ge 1 \\ 0, & -1 \le x \le 1, -1 \le y \le 1 \\ -y_i - 1, & -1 \le x \le 1, y \le -1 \\ x_i - y_i + 2, & x \le -1, y \ge 1 \\ x_i + 1, & x \le -1, -1 \le y \le 1 \end{cases}$$

Let's look at every elements of $(\operatorname{prox}(x_i) - \operatorname{prox}(y_i))^2$ and $(\operatorname{prox}(x_i) - \operatorname{prox}(y_i))(x_i - y_i)$.

(a) $x \ge 1, y \ge 1$ and $x \le -1, y \le -1$ Easily find that $(\text{prox}(x_i) - \text{prox}(y_i))^2 = (x_i - y_i)^2 = (\text{prox}(x_i) - \text{prox}(y_i))(x_i - y_i)$.

(b) $x \ge 1, -1 \le y \le 1$

We get $x_i - 1 \ge 0$ and $x_i - y_i > 0$. Further we have $x_i - y_i > x_i - 1$. If we multiple $(x_i - 1)$ which is greater than 0, we get $(\text{prox}(x_i) - \text{prox}(y_i))^2 = (x_i - 1)^2 \le (x_i - 1)(x_i - y_i) = (\text{prox}(x_i) - \text{prox}(y_i))(x_i - y_i)$.

(c) $x \ge 1, y \le -1$

We get $x_i - y_i - 2 \ge 0$ and $x_i - y_i \ge 0$, so $x_i - y_i > x_i - y_i - 2$. Then $(\operatorname{prox}(x_i) - \operatorname{prox}(y_i))^2 = (x_i - y_i - 2)^2 \le (x_i - y_i - 2)(x_i - y_i) = (\operatorname{prox}(x_i) - \operatorname{prox}(y_i))(x_i - y_i)$.

(d) $-1 \le x \le 1, y \ge 1$

We get $1 - y_i \le 0$ and $x_i - y_i < 0$, so $0 \ge 1 - y_i > x_i - y_i$. Then $(\operatorname{prox}(x_i) - \operatorname{prox}(y_i))^2 = (1 - y_i)^2 \le (1 - y_i)(x_i - y_i) = (\operatorname{prox}(x_i) - \operatorname{prox}(y_i))(x_i - y_i)$.

(e) $-1 \le x \le 1, -1 \le y \le 1$

If $x_i \neq y_i$, two side of it equals to 0. So $(\operatorname{prox}(x_i) - \operatorname{prox}(y_i))^2 = (\operatorname{prox}(x_i) - \operatorname{prox}(y_i))(x_i - y_i)$.

(f) $-1 \le x \le 1, y \le -1$

We get $-y_i - 1 \ge 0$ and $x_i - y_i > 0$, so $x_i - y_i > -y_i - 1$. Then $(\operatorname{prox}(x_i) - \operatorname{prox}(y_i))^2 = (-1 - y_i)^2 \le (-1 - y_i)(x_i - y_i) = (\operatorname{prox}(x_i) - \operatorname{prox}(y_i))(x_i - y_i)$.

(g) x < -1, y > 1

We get $x_i - y_i + 2 \le 0$ and $x_i - y_i \le 0$, so $x_i - y_i + 2 > x_i - y_i$. Then $(\operatorname{prox}(x_i) - \operatorname{prox}(y_i))^2 = (x_i - y_i + 2)^2 \le (x_i - y_i + 2)(x_i - y_i) = (\operatorname{prox}(x_i) - \operatorname{prox}(y_i))(x_i - y_i)$.

(h) $x \le -1, -1 \le y \le 1$

We get $x_i + 1 \le 0$ and $x_i - y_i < 0$, so $x_i - y_i < x_i + 1$. Then $(\operatorname{prox}(x_i) - \operatorname{prox}(y_i))^2 = (x_i + 1)^2 \le (x_i + 1)(x_i - y_i) = (\operatorname{prox}(x_i) - \operatorname{prox}(y_i))(x_i - y_i)$.

So for $i \in \{1, 2, ..., n\}$ we have (2.4)

$$(\operatorname{prox}(x_i) - \operatorname{prox}(y_i))^2 = (\operatorname{prox}(x_i) - \operatorname{prox}(y_i))(x_i - y_i).$$

And if we add them together, also we have

$$\sum_{i=0}^{n} \left(\operatorname{prox}(x_i) - \operatorname{prox}(y_i) \right)^2 \le \sum_{i=0}^{n} \left(\operatorname{prox}(x_i) - \operatorname{prox}(y_i) \right) (x_i - y_i)$$
$$\| \operatorname{prox}_{\|\cdot\|_1}(\boldsymbol{x}) - \operatorname{prox}_{\|\cdot\|_1}(\boldsymbol{y}) \|^2 \le \langle \operatorname{prox}_{\|\cdot\|_1}(\boldsymbol{x}) - \operatorname{prox}_{\|\cdot\|_1}(\boldsymbol{y}), \boldsymbol{x} - \boldsymbol{y} \rangle.$$

That is the statement (2.1). So we can claim that $prox_{\|\cdot\|_1}$ is firmly nonexpansive.