Собеседование на специализацию «Интеллектуальный анализ данных»

Киселев Никита Б05-002

14 апреля 2022 г.

Московский физико-технический институт (национальный исследовательский университет)

Тестовая задача

Задача 21

Предсказание площади лесных пожаров. На основе погодных измерений необходимо предсказать объем выгоревших лесных массивов на севере Португалии. Выборка состоит из 13 признаков и 517 объектов. Для решения задачи предлагается использовать метод наименьших квадратов с регуляризацией. Нарисовать график весов признаков и общей ошибки на кросс-валидации при изменении параметра регуляризации. Какие признаки наиболее важны для нашей задачи? Что изменится, если предварительно все признаки стандартизовать?

Распределение ответов

Распределение номинальных признаков

Корреляция количественных признаков

Линейная регрессия

- ullet Множество объектов $\mathbb{X} = \mathbb{R}^n$
- Объекту $x \in \mathbb{X}$ соответствует признаковое описание $x = (f_1(x), \dots, f_n(x))$, где $f_j : X \to D_j$
- ullet Множество ответов $\mathbb{Y} = \mathbb{R}$
- ullet Выборка $\mathbb{D}=\{(\mathsf{x}_i,y_i)\mid \mathsf{x}_i\in\mathbb{X},y_i\in\mathbb{Y},i=1,\ldots,m\}$
- Матрица объекты-признаки $X=(\mathsf{x}_1,\dots,\mathsf{x}_m)^T$, вектор ответов у $\in \mathbb{R}^m$
- ullet Вектор параметров модели $\mathbf{w} = (w_1, \dots, w_n)^T$
- ullet Ставится задача минимизации ошибки алгоритма $Q(w,X) = \|X \mathbf{w} y\|_2^2 o \min_{\mathbf{w}}$

Метод наименьших квадратов

$$Q(w, X) = ||Xw - y||_2^2 = (Xw - y)^T (Xw - y) \to \min_{w}$$

Приравняем к нулю производную по вектору w:

$$\nabla_{\mathbf{w}} Q(\mathbf{w}, X) = \nabla_{\mathbf{w}} (-y^T X \mathbf{w} + \mathbf{w}^T X^T X \mathbf{w} + y^T y - \mathbf{w}^T X^T y) =$$

$$= -X^T y + (X^T X + X^T X) \mathbf{w} + 0 - X^T y = 0$$

$$X^T X \mathbf{w} = X^T y$$

$$\mathbf{w}^* = (X^T X)^{-1} X^T y$$

L_2 регуляризация

Могут возникнуть проблемы мультиколлинеарности в случае, если матрица X^TX плохо обусловлена. Один из способов решения — добавление к этой матрице диагональной:

$$\mathbf{w}^* = (X^T X + \alpha E_n)^{-1} X^T y$$

При этом значении вектора w достигается минимум функционала ошибки

$$Q(w, X, \alpha) = ||Xw - y||_2^2 + \alpha ||w||_2^2$$

Изменение параметра α

Стандартизация

При стандартизации происходит преобразование признаков:

$$\hat{f}_j(x_i) = \frac{f_j(x_i) - \bar{f}_j}{S_j},$$

где

$$ar{f_j} = rac{1}{m} \sum_{i=1}^m f_j(\mathsf{x}_i)$$
 — выборочное среднее,

$$S_j = \sqrt{rac{1}{m}\sum_{i=1}^m (f_j(\mathsf{x}_i) - ar{f_j})^2}$$
 — среднеквадратичное отклонение.

Изменение параметра α при стандартизации

Отбор признаков

Преобразования признаков и ответов

- 1. rain номинальный
- 2. FFMC \geq 75
- 3. $ISI \rightarrow In(ISI)$
- 4. area $\rightarrow ln(1 + area)$

Взаимосвязь новых признаков и ответов

Изменение параметра α

График зависимости MSE(α)

Изменение параметра α при стандартизации

Сравнение результатов

Преобразование Стандартизация	До	После
-	616,50	1,82
+	624,78	1,89

Таблица 1: Лучшее значение MSE на кросс-валидации

Стоит отметить, что после преобразования ответами являются $\ln(1+area)$.

Наиболее значимые признаки

Значимость признаков при решении задачи лучше всего оценивается на данных после преобразования. Таковыми являются:

- month месяц года
- wind скорость ветра
- rain количество осадков
- DC и DMC индексы засухи и влажности почвы