SI231 - Matrix Computations, 2022 Fall

Homework Set #1

Prof. Yue Qiu

Acknowledgements:

- 1) Deadline: 2022-10-08 10:59:59
- 2) Late Policy details can be found on piazza.
- 3) Submit your homework in **Homework 1** on **Gradscope**. Entry Code: **4V2N55**. Make sure that you have correctly select pages for each problem. If not, you probably will get 0 point.
- 4) No handwritten homework is accepted. You need to write LaTeX. (If you have difficulties in using LaTeX, you are allowed to use **MS Word or Pages** for the first and the second homework to accommodate yourself.)
- 5) Use the given template and give your solution in English. Solution in Chinese is not allowed.
- 6) Your homework should be uploaded in the PDF format, and the naming format of the file is not specified.

I. SUBSPACE

Problem 1. (Yuhuang Meng, 5 points \times 3) Let V be the space of all $n \times n$ matrices over \mathbb{R} . Which of following sets of matrices A in V are subspaces of V?

- 1) all invertible A.
- 2) all A such that AB = BA, where B is some fixed matrix in V.
- 3) all **A** such that $A^2 = A$.

Solution:

- 1) This is not a subspace. For instance, $\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $\mathbf{B} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$. Both \mathbf{A} and \mathbf{B} are invertible, but $\mathbf{A} + \mathbf{B} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ is not invertible. The subset is not closed w.r.t. matrix addition. Therefore it could not be a subspace. (5 points)
- 2) This is a subspace. Suppose A_1 and A_2 satisfy $A_1B=BA_1$ and $A_2B=BA_2$. Let $\alpha_1,\alpha_2\in\mathbb{R}$,

$$(\alpha_1 \mathbf{A}_1 + \alpha_2 \mathbf{A}_2)\mathbf{B} = \alpha_1 \mathbf{A}_1 \mathbf{B} + \alpha_2 \mathbf{A}_2 \mathbf{B} = \mathbf{B}(\alpha_1 \mathbf{A}_1) + \mathbf{B}(\alpha_2 \mathbf{A}_2) = \mathbf{B}(\alpha_1 \mathbf{A}_1 + \alpha_2 \mathbf{A}_2)$$

Hence $\alpha_1 \mathbf{A}_1 + \alpha_2 \mathbf{A}_2$ is in this subset. (5 points)

3) This is not a subspace. Consider the case $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$, $\mathbf{B} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$, where $\mathbf{A}^2 = \mathbf{A}$, $\mathbf{B}^2 = \mathbf{B}$. However, $(\mathbf{A} + \mathbf{B})^2 \neq \mathbf{A} + \mathbf{B}$. This subset is not closed under addition. (5 points)

II. FOUR FUNDAMENTAL SUBSPACES

Problem 2. (Yuhuang Meng, 5 points \times 3) Consider two matrices $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{B} \in \mathbb{R}^{n \times p}$,

- 1) what is the relationship between $\mathcal{N}(\mathbf{B})$ and $\mathcal{N}(\mathbf{AB})$? Are they necessarily equal? If yes, prove your statement, otherwise, give a counterexample.
- 2) if $\mathcal{N}(\mathbf{A}) = \{\mathbf{0}\}$ and $\mathcal{N}(\mathbf{B}) = \{\mathbf{0}\}$, please find $\mathcal{N}(\mathbf{AB})$.
- 3) if the columns of A and B are linearly independent, are the columns of AB linearly independent as well?

Solution:

1) $\mathcal{N}(\mathbf{B}) \subseteq \mathcal{N}(\mathbf{AB})$

independent as well. (5 points)

$$\forall x \in \mathcal{N}(B), Bx = 0$$
, then we have $(AB)x = A(Bx) = A0 = 0$, i.e., $x \in \mathcal{N}(AB)$. (2 points)

They are not necessarily equal. (1 points) There is a counterexample,

$$\mathbf{A} = \mathbf{B} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \mathbf{AB} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

We have $\mathcal{N}(\mathbf{B}) = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$, $\mathcal{N}(\mathbf{AB}) = \mathbb{R}^2$. In this example, $\mathcal{N}(\mathbf{B})$ is a strict subset of $\mathcal{N}(\mathbf{AB})$. (2 points)

- 2) Suppose that $\mathbf{x} \in \mathcal{N}(\mathbf{AB})$, *i.e.*, $\mathbf{ABx} = \mathbf{0}$. This implies that $\mathbf{Bx} \in \mathcal{N}(\mathbf{A})$. Therefore, $\mathbf{Bx} = \mathbf{0}$, this implies that $\mathbf{x} \in \mathcal{N}(\mathbf{B})$. Thus we have $\mathbf{x} = \mathbf{0}$. From this we conclude that $\mathcal{N}(\mathbf{AB}) = \{\mathbf{0}\}$. (5 points)
- 3) A matrix has linearly independent columns if and only if its nullspace is trivial. Since the columns of A and B are linearly independent, we have $\mathcal{N}(A) = \{0\}, \mathcal{N}(B) = \{0\}$.

 According to the above conclusion, $\mathcal{N}(AB) = \{0\}$, which implies that the columns of AB are linearly

Problem 3. (Bin Li,15 points)

- 1) Let n > 0 and let A be an $n \times n$ matrix. For all $t \ge 0$, let \mathcal{N}_t be the nullspace of A^t , where by convention $A^0 = 1_{n \times n}$ (identity matrix). Prove that:
 - (a) $\mathcal{N}_t \subseteq \mathcal{N}_{t+1}$ for all t.
 - (b) The dimension of \mathcal{N}_t (the nullity of A^t) is eventually constant, that is there is a number d such that $dim(\mathcal{N}_t) = d$ for all sufficiently large t.
 - (c) If T is the least t such that $dim(\mathcal{N}_t) = d$, then $T \leq d$.

Solution:

- 1) (a) If $v \in \mathcal{N}_t$ then $A^t v = 0$, so $A^{t+1} v = A(A^t v) = A0 = 0 \Longrightarrow v \in \mathcal{N}_{t+1}$, then $\mathcal{N}_t \subseteq \mathcal{N}_{t+1}$ for all t. (3 points)
 - (b) $dim(\mathcal{N}_t)$ is an integer, is increasing and bounded above by n, so is eventually constant. (3 points)
 - (c) $\mathcal{N}_t \neq \mathcal{N}_{t+1}$ if and only if $dim(\mathcal{N}_t) < dim(\mathcal{N}_{t+1})$.(2 points) If $\mathcal{N}_t = \mathcal{N}_{t+1}$ then we note that

$$v \in \mathcal{N}_{t+2} \Longrightarrow Av \in \mathcal{N}_{t+1} \Longrightarrow Av \in \mathcal{N}_t \Longrightarrow v \in \mathcal{N}_{t+1}$$

so that $\mathcal{N}_{t+1} = \mathcal{N}_{t+2}$. (3 points)

It follows that as function of t the number $dim(\mathcal{N}_t)$ is strictly increasing for an initial segment of \mathbb{N} , and then becomes constant. Since the eventual value is d, clearly $T \leq d$. (4 points)

Problem 4. (Jianguo Huang.15 points \times 1) In \mathbb{R}^4 , $V_1 = span < \alpha_1, \alpha_2, \alpha_3 >$, $V_2 = span < \beta_1, \beta_2 >$, where

$$\alpha_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \\ 0 \end{bmatrix}, \qquad \alpha_2 = \begin{bmatrix} -1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \qquad \alpha_3 = \begin{bmatrix} 0 \\ 3 \\ 2 \\ 1 \end{bmatrix}, \qquad \beta_1 = \begin{bmatrix} 2 \\ -1 \\ 0 \\ 1 \end{bmatrix}, \qquad \beta_2 = \begin{bmatrix} 1 \\ -1 \\ 3 \\ 7 \end{bmatrix},$$

then, please find a set of bases and the number of dimension of the subspace $V_1 + V_2$ and the subspace $V_1 \cap V_2$.

Solution: $V_1 + V_2 = span < \alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2 >$. So Let

$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 0 & 2 & 1 \\ 2 & 1 & 3 & -1 & -1 \\ 1 & 1 & 2 & 0 & 3 \\ 0 & 1 & 1 & 1 & 7 \end{bmatrix}$$

by the elementary row operation for A, we can get a simple matrix, shown following

$$\begin{bmatrix} 1 & 0 & 1 & 0 & -1 \\ 0 & 1 & 1 & 0 & 4 \\ 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \tag{1}$$

From matrix 1, $<\alpha_1,\alpha_2,\beta_1>$ is the basis of V_1+V_2 (4 points)and $dim(V_1+V_2)=3$ (3 points).

Simultaneously, from matrix 1, we can get that $\{\alpha_1, \alpha_2\}$ are the basis of V_1 and $\{\beta_1, \beta_2\}$ are the basis of V_2 . Then, we have that $dim(V_1)=2$ and $dim(V_2)=2$. then,

$$dim(V_1 \cap V_2) = dim(V_1) + dim(V_2) - dim(V_1 + V_2) = 1$$
(4points)

Since $dim(V_1 \cap V_2) = 1$, finding a basis vector means that finding a nonzero vector $(x_1, x_2, x_3, -1)^T \in V_1 \cap V_2$. For $\{\alpha_1, \alpha_2, \beta_1\}$ is the basis of $V_1 + V_2$ and $\beta_2 \in V_2$, there exist a set of nonzero numbers x_1, x_2, x_3 satisfying

$$\beta_2 = x_1 \alpha_1 + x_2 \alpha_2 + x_3 \beta_1$$

by the matrix 1, we can get the solution $(x_1, x_2, x_3) = (-1, 4, 3)$. then, $-\alpha_1 + 4\alpha_2 = -3\beta_1 + \beta_2 \in V_1 \cap V_2$. So, we can get that $-\alpha_1 + 4\alpha_2 = (-5, 2, 3, 4)^T$. Finally, the base of $V_1 \cap V_2$ is $(-5, 2, 3, 4)^T$. (4 points)

III. SUBSPACE AND MATRIX NORM

Problem 5. (Bin Li, 4 points \times 5 + 5 points)

1) Determine whether or not each of the following is a subspace of \mathbb{R}^2 . Justify your answer.

(a)
$$X_1 = \{(x, y) \in \mathbb{R}^2 | x + y = 0 \}$$

(b)
$$X_2 = \{(x, y) \in \mathbb{R}^2 | x - 1 = 0 \}$$

(c)
$$X_3 = \{(x, y) \in \mathbb{R}^2 | xy = 0 \}$$

(d)
$$X_4 = \{(1,0), (0,1)\}$$

(e)
$$X_5 = \operatorname{span} \{(1,0), (0,1)\}$$

2) Is $||A||_{\max} = \max_{1 \le i,j \le n} |a_{i,j}|$ a matrix norm? If yes, prove your answer. If no, give a counterexample.

Solution:

1) (a) Yes, X_1 is a subspace.(1 points) Given any $(x,y),(x',y') \in X_1$ and $c \in \mathbb{R}$,we must check that $(cx+x',cy+y') \in X_1$.Indeed, $(cx+x')+(cy+y')=c(x+y)+(x'+y')=c\cdot 0+0=0$.(3 points)

(b) No, X_2 is not a subspace.(1 points)It does not contain (0,0).(It also fails to be closed under addition or scalar multiplication.)(3 points)

(c) No, X_3 is not a subspace.(1 points)It is not closed under addition:(1,0) $\in X_3$ and (0,1) $\in X_3$,but their sum (1,1) is not in X_3 .(3 points)

(d) No, X_4 is not a subspace. (1 points) It does not contain the zero vector. (It also fails to be closed under addition or scalar multiplication.) (3 points)

(e) Yes, X_5 is a subspace.(1 points)The span of any set of vectors is always a subspace.(3 points)

2) No,(1 points)take for instance

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \quad \text{and} \quad B = A^T = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$$

wherece

$$AB = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}.$$

Therefore $||AB||_{max} = 2$ and $||A||_{max} ||B||_{max} = 1 \cdot 1 = 1$,and certainly 2 isn't less than or equal to 1,so $||\cdot||_{max}$ isn't submultiplicative and hence isn't a matrix norm.(4 points)

Problem 6. (Jianguo Huang.5 points \times 3)

- 1) show $||AB||_p \le ||A||_p ||B||_p$ where 1 . (Hint: It just only be proved by**definition of matrix norm** $, i.e. <math>||A||_p = \max_x \frac{||Ax||_p}{||x||_p} = \max_{||x||_p = 1} ||Ax||_p$).
- 2) let λ is the eigenvalue of matrix A. show $|\lambda| \leq ||A||$ for any matrix norm.
- 3) $A \in \mathbb{R}^{n \times n}$. if $A^T A = I$, show that $||A||_F = \sqrt{n}$.

Solution:

1) since $||A||_p = \max_x \frac{||Ax||_p}{||x||_n}$,

$$||Ax||_p = ||A\frac{x}{||x||_p}||_p ||x||_p \le \max_x \frac{||Ax||_p}{||x||_p} ||x||_P = ||A||_p ||x||_p (2points)$$

.

$$||AB||_p = \max_{||x||_p = 1} ||ABx||_p \le \max_{||x||_p = 1} ||A||_p ||Bx||_p = ||A||_p \max_{||x||_p = 1} ||Bx||_p = ||A||_p ||B||_p.$$
(3points)

2) x is a eigenvector of λ , $\lambda x = Ax$.

$$|\lambda|||x|| = ||\lambda x|| = ||Ax|| \le ||A||||x||$$

. Finally, $|\lambda| \leq ||A||$

3)

$$||A||_F = \sqrt{tr(A^T A)} = \sqrt{tr(I)} = \sqrt{n}$$
 (5points)