Inteligencia Artificial Avanzada Route selection for emergency logistics management

Maximiliano Osorio Bañados

12 de septiembre de 2015

Resumen

Path selection es uno de los problemas fundamentales en logistica para el diseño de rutas en caso de emergencia. Dos modelos matemáticos son presentados para la selección de rutas. El primero, un modelo de un objetivo para la selección es presentado considerando el efecto del desastre en tiempo de viaje entre cada arco, el objetivo del modelo es minimizar el tiempo total de viaje a lo largo del camino.

Path selection is one of the fundamental problems in emergency logistics management. Two mathematical models for path selection in emergency logistics management are presented considering more actual factors in time of disaster. First a single-objective path selection model is presented taking into account that the travel speed on each arc will be affected by disaster extension. The objective of the model is to minimize total travel time along a path. The travel speed on each arc is modeled as a continuous decrease function with respect to time. A modified Dijkstra algorithm is designed to solve the model. Based on the first model, we further consider the chaos, panic and congestions in time of disaster. A multi-objective path selection model is presented to minimize the total travel time along a path and to minimize the path complexity. The complexity of the path is modeled as the total number of arcs included in the path. An ant colony optimization algorithm is proposed to solve the model. Simulation results show the effectiveness and feasibility of the models and algorithms pre-sented in this paper.

1. Introducción

En los recientes años, los frecuentes desastres naturales y no naturales ha producido una gran daño a la población, por ejemplo en Chile: Terremoto de 2010 en Concepción (27F), Gran Incendio de Valparaiso 2014 y Inundación del Norte de Chile en 2015, por lo cual es interesante observar los procedimientos asociados a este tipo de desastres. La logística es una de las mayores actividades durante y después de la emergencia, la entrega de alimentos, medicamentos, abrigo deben ser entregados desde la zona de almacenamiento al área afectada de la manera más rápida posible. Es por eso que el diseño de rutas en casos de emergencia es un tema interesante de desarrollar.

En este documento se busca entender las variables que afectan al problema, su historia, consideraciones a tomar y los avances que se han realizado en la literatura. Para luego, en las próximas secciones describir de manera más amplia el problema, sus modelos y sus formas de resoluciones. Finalizando con las secciones relacionadas a la implementación donde se describirá la utilización de *Ant Colony System* para el problema: representación utilizada, descripción del algoritmo diseñado, resultados y conclusiones.

2. Definición del Problema

Definición de variables y parámetros:

- Una red de emergencia es definida por un grafo directamente conectado G(V, A), donde $V = \{v_1, v_2, \dots, v_n\}$ es el conjunto de nodos y $A \subseteq VxV$ es el conjunto de arcos. Sea $V = \{v_1, v_2, \dots, v_n\}$ los nodos en la red donde v_1 es el nodo inicial y v_n es el nodo final.
- i_{ij} denota el largo de los arcos que se encuentra entre los nodos v_i y v_j , donde $(v_i, v_j) \in A$.
- s_{ij}^0 es la velocidad entre los arcos (v_i, v_j) en condiciones normales. Sea $s_{ij}(t)$ es la velocidad de viaje en el arco (v_i, v_j) bajos las condiciones del desastre en el tiempo t.

Figura 1: Estructura de una red de emergencia

A partir de la observación de desastre como huracanes y inundación. Se afirma que la velocidad de viaje en cada arco de la red decrece con el impacto del desastre. [5] La disminución de la velocidad de viaje es dependiente a la posición del arco, el tipo de desastre, etc. Pero si perdida generalidad, la función de velocidad es dada por:

$$s_{ij}(t) = s_{ij}^0 \cdot \alpha_{ij} e^{-\beta_{ij} \cdot t} \tag{1}$$

Donde α_{ij} y βij son los parámetros decrecientes que determinan la disminución de la velocidad del viaje $s_{ij}(t)$, α_{ij} y βij pueden ser estimados a la distancia desde arco (v_i, v_j) al centro del desastre, la vulnerabilidad del arco, el tipo de desastre, etc.

- Sea t_{ij} el tiempo necesario para viajar a través del arco (v_i, v_j) , se calcula como $t_{ij} = t_j t_i$.
- Sea x_i la ciudad visitada en la posición i
- P denota el camino que realizado, o sea es la secuencia de nodos en la redes que se elige. Sea p_k el numero de la secuencia del nodo v_{p_k} en la red, entonces P puede ser presentado como $(v_{p_1}, v_{p_2}, \cdots, v_{p_k}, \cdots, v_{p_K})$ donde $1 \le p_k \le n$ y k es la secuencia del nodo v_{p_k} en el camino P. P debe iniciar en el nodo inicial $p_1 = 1$ y $p_K = n$. Y no deben existir ciclos.
- Sea $ET(P, v_{p_k})$ denota el tiempo de viaje desde el v_{p_1} hasta v_{p_k} a lo largo de $(v_{p_1}, v_{p_2}, \dots, v_{p_k})$ donde $1 \le p_k \le n$. A partir de eso se determina que:

$$ET(P, v_{p_k}) = \sum_{m=1}^{k-1} t_{p_m p_{m+1}} = (t_{p_2} - t_{p_1}) + (t_{p_3} - t_{p_2}) + \dots + (t_{p_k} - t_{p_{k-1}}) = t_{p_k}$$
 (2)

A partir de lo anterior podemos calcular el tiempo de un camino, dado que:

$$t_{p_1} = t_1 = 0 (3)$$

$$\int_{t_{p_{k-1}}}^{t_{p_k}} s_{p_{k-1}p_k}(t)dt = l_{p_{k-1}p_k} \qquad 2 \le k \le K$$
(4)

En (4) conocemos el límite inferior de la integral, el integrando $s_{p_{k-1}p_k}$ y el resultado de $l_{p_{k-1}p_k}$ por lo tanto se puede obtener el limite superior t_{p_k} Por recursividad se puede obtener los valores de t_{p_k} para los nodos v_{p_k} con $1 \le p_k \le n$.

3. Estado del Arte

Path selection es uno de los problemas fundamentales de logistica. En los recientes años, los frecuentes desastres naturales ha incentivado la investigación en el área, pese a eso, las investigaciones en rutas de emergencias son acotadas. Ozdamar et al. (2004) [3] construyeron un modelo para el diseño de rutas para emergencias, el objetivo es minimizar la demanda insatisfecha en la ruta planeada. El plan logístico de emergencia incluye los puntos óptimos de recoger y entregar los materiales en las rutas. Estos planes son regenerados mientras nuevos materiales y modos de transportes se vuelven disponibles durante el tiempo planeado, pero no considera que el tiempo de viaje en los nodos puede variar según el efecto de la catástrofe. De hecho es importante considerar este aspecto, según Farahmand (1997) [2] y Tufekci (1995) [5] las condiciones de viaje entre los nodos se ven fuertemente afectadas por la extensión del desastre especialmente en desastre como huracanes e inundaciones que se extienden en tiempo y espacio, otros trabajos como Yuan and Wang (2009) [6] construyeron un modelo para expresar el efecto de la extensión de un desastre para la velocidad de viaje, para la resolución de este problema utilizan dos técnicas: la primera basada en el algoritmo de Dijkstra, la idea es encontrar el camino más corto paso a paso y otro algoritmo que está basado en Ant colony optimization (ACO) [6]. Xiaoge et al. (2013) [7] proponen un algoritmo inspirado en biología utilizando el comportamiento de las ameboides para calcular las rutas donde la velocidad los arcos en los nodos son variables. Investigaciones relacionadas han mostrado que las mayores congestiones cuando existe un desastre son producidas en las intersecciones de dos arcos en una ruta de emergencia Southworth (1991) [4] y COVA (2003) [1], de hecho de ahí nace un nuevo problema Lane-based routing donde la estrategia busca eliminar los cruces en las intersecciones. [1]

4. Modelo Matemático

Considerado lo descrito por Southworth (1991) [4] y COVA (2003) [1]: se diseñan dos modelos con distintos objetivos: el primero busca la minimización del tiempo y el segundo busca multiples objetivos: la minimización del tiempo y de la cantidad de nodos.

4.1. Minimización del tiempo

La formulación del path selection model se describe de la siguiente manera:

El objetivo del modelo es minimizar el tiempo empleado en el camino. Las ecuaciones (7), (8) y (9) son parte de la formula de recursión del tiempo total para el camino. En la ecuación (10) la función decreciente de la velocidad de viaje en el arco (v_i, v_j) . La restricción (11) asegura un camino factible desde v_1 hasta v_n y la restricción (12) asegura que no existan ciclos.

$$\sum_{i=1}^{n} \sum_{j=1}^{n} t_{ij} x_{ij} \tag{6}$$

$$\int_{t_i}^{t_j} s_{ij}(t)dt = l_{ij} \tag{7}$$

$$t_{ij} = t_j - t_i \tag{8}$$

$$t_1 = 0 (9)$$

$$s_{ij}(t) = s_{ij}^0 \cdot \alpha_{ij} e^{-\beta_{ij} \cdot t} \tag{10}$$

$$\sum_{\substack{j=1\\j\neq i}}^{n} x_{ij} - \sum_{\substack{j=1\\j\neq i}}^{n} x_{ji} = \begin{cases} 1 & i=1\\-1 & i=n\\0 & eoc \end{cases}$$
 (11)

$$\sum_{\substack{j=1\\j\neq i}}^{n} x_{ij} = \begin{cases} \le 1 & i \neq n\\ = 0 & i = n \end{cases}$$
 (12)

$$x_{ij} = 0, 1; i = 1, 2, \dots, n; j = 1, 2, \dots, n$$
 (13)

4.2. Multi-objetivo path selection

Investigadores han mostrado que la mayor congestion el pánico sucede en las intersecciones de dos arcos en una red de emergencia. [4] [1]. Cuando se viaja en un camino con menor número de arcos es más fácil y rápido seguir el camino. La complejidad del camino puede obtenida por el número de arcos incluidos en un camino.

$$minf_1 = \sum_{i=1}^{n} \sum_{j=1}^{n} t_{ij} x_{ij}$$
 (14)

$$minf_2 = \sum_{i=1}^{n} \sum_{j=1}^{n} x_{ij}$$
 (15)

La restricciones con la misma del modelo anterior.

5. Descripción del algoritmo

El algoritmo utilizado fue una implementación de Ant Colony System con TSP (ACS-TSP). Para la heuristica se propuso en general:

$$\eta_{ij} = r_1 * \frac{f_1 - f_1^*}{f_1} + r_2 * \frac{f_2 - f_2^*}{f_2}$$
(16)

Donde r_1 y r_2 son los pesos asociados al tiempo y a la cantidad de nodos respectivamente, esto permite poder pasar del modelo multi-objetivo al modelo de minimización de tiempo facilmente. f_1^m y f_2^n son los valores de la función objetivo (14) y (15) que corresponde al camino encontrado por la hormiga m, f_1^* y f_2^* el mejor valor obtenido. Además r_1 y r_2 debe cumplir que $r_1 + r_2 = 1$ El algoritmo ACS-TSP modificado para el problema se describe:

• Para cada arco (i,j) se inicia $\tau_{ij}(0) = \tau_0$

- Para las m hormigas, se posiciona cada una en el inicio.
- Iterar por cada hormiga hasta que se cumpla el tour de la siguiente manera:
 - Se construye su camino se elige la siguiente ciudad, el movimiento esta definido por:

$$j = \begin{cases} argmax_{u \in S_k(i)} \{ [\tau(i, u)]^{\alpha} [\eta(i, u)]^{\beta} \} & \text{if } q \leq q_0 \\ J & otherwise \end{cases}$$
 (17)

Donde $J \in J_i^k$ se elige según la probabilidad:

$$P_{ij}^{k}(t) = \frac{[\tau_{ij}(t)]^{\alpha_a} [\eta_{ij}]^{\beta_a}}{\sum_{h \in J_i^k} [\tau_{ij}(t)]^{\alpha_a} [\eta_{ij}]^{\beta_a}}$$
(18)

Y donde i es la ciudad actual.

• Luego se actualiza la feromona

$$t_{ij}(t) = (1 - \rho)t_{ij}(t) + \rho\tau_0 \tag{19}$$

- Salvar la mejor solución T^+ , encontrada hasta el momento.
- Para cada arco $(i, j) \in T^+$, se modifican los niveles de feromona aplicando:

$$t_{ij}(t) = (1 - \rho)t_{ij}(t) + \rho \Delta \tau_{ij}(t) \tag{20}$$

donde $\Delta \tau_{ij}(t) = \frac{1}{L^+}$

Los valores utilizados por $\alpha = 1, \beta = 2, q_0 = 0, 9, m = 10, Q = 100, \tau_0 = (nL_{nn})^{-1}, cl = 15$

6. Experimientos

Basado en el trabajo de [6] se busca estudiar el efecto de un mayor número de desastres y nivel de estos. A partir de (10), se desprende que al disminuir a_{ij} se refleja en la influencia instantánea de los desastres, un a_{ij} representa una gran influencia, b_{ij} puede reflejarse en la influencia de los desastre en un periodo de tiempo donde el desastre sucede y un mayor b_{ij} significa cuan rápido decrece la velocidad del viaje.

En el trabajo [6] se observa, se dividió los 20 nodos en 3 áreas, que se muestra en la figura 2. En cada área los parámetros decrecientes son generados en diferentes intervalos como se muestra en la figura. En cada área los parámetros son generados de forma aleatoria en los diferentes intervalos, los cuales se observan en el cuadro 1. En el caso del desastre 0 es cuando nos encontramos en una situación sin ningún desastre y el desastre 5 es cuando nos encontramos en una situación más compleja.

Figura 2: División de una red de emergencia

En los cuadros 2,3,4,5,6 se muestran los valores para los parametros α_{ij} y β_{ij} de los distintos grados de desastre.

Tipo	Área I	Área II	Área III
Desastre 0	$\alpha = 1, \beta = 0$	$\alpha = 1, \beta = 0$	$\alpha = 1, \beta = 0$
Desastre 1	$\alpha \in (0,9,1,0) \ \beta \in (0,00,0,05)$	$\alpha = 1, \beta = 0$	$\alpha = 1, \beta = 0$
Desastre 2	$\alpha \in (0.8, 0.9) \ \beta \in (0.05, 0.10)$	$\alpha \in (0,9,1,0) \ \beta \in (0,00,0,05)$	$\alpha = 1, \beta = 0$
Desastre 3	$\alpha \in (0,7,0,8) \ \beta \in (0,10,0,15)$	$\alpha \in (0,8,0,9) \ \beta \in (0,05,0,10)$	$\alpha \in (0,9,1,0) \ \beta \in (0,00,0,05)$
Desastre 4	$\alpha \in (0,6,0,7) \ \beta \in (0,15,0,20)$	$\alpha \in (0,7,0,8) \ \beta \in (0,10,0,15)$	$\alpha \in (0.8, 0.9) \ \beta \in (0.05, 0.10)$
Desastre 5	$\alpha \in (0,5,0,6) \ \beta \in (0,20,0,25)$	$\alpha \in (0,6,0,7) \ \beta \in (0,15,0,20)$	$\alpha \in (0,7,0,8) \ \beta \in (0,10,0,15)$

Cuadro 1: Intervalos de los parametros por área

inicio	fin	$l_{i,j}$	$s_{i,j}$	$\alpha_{i,j}$	$\beta_{i,j}$
1	2	50	100	0.9222	0.0381
1	6	30	60	0.9193	0.0143
1	11	70	110	0.9022	0.0499
2	3	30	60	0.9904	0.0277
2	7	40	70	0.9857	0.0305
6	7	30	65	0.9577	0.0123
6	12	60	105	0.906	0.0399
6	16	100	115	0.9049	0.0353
7	8	40	90	0.9153	0.0436
11	16	30	70	0.9967	0.0089
16	17	80	115	0.964	0.0491
16	18	110	120	0.9294	0.0327
3	4	80	100	1	0
3	8	60	95	1	0
4	5	110	120	1	0
4	9	40	75	1	0
5	10	60	110	1	0
8	4	40	85	1	0
8	13	30	75	1	0
9	5	70	110	1	0
9	14	40	90	1	0
10	15	50	105	1	0
12	8	30	65	1	0
12	17	40	100	1	0
13	9	30	80	1	0
13	19	110	120	1	0
14	10	80	115	1	0
14	15	60	105	1	0
15	20	30	90	1	0
17	13	40	80	1	0
17	18	40	75	1	0
18	13	60	115	1	0
18	19	70	110	1	0
18	20	120	120	1	0
19	15	40	75	1	0
19	20	70	105	1	0

Cuadro 2: Parámetros para un desastre grado 1

	fin	$l_{i,j}$	$s_{i,j}$	$\alpha_{i,j}$	$\beta_{i,j}$
1	2	50	100	0.9222	0.0381
1	6	30	60	0.9193	0.0143
1	11	70	110	0.9022	0.0499
2	3	30	60	0.9904	0.0277
2	7	40	70	0.9857	0.0305
6	7	30	65	0.9577	0.0123
6	12	60	105	0.906	0.0399
6	16	100	115	0.9049	0.0353
7	8	40	90	0.9153	0.0436
11	16	30	70	0.9967	0.0089
16	17	80	115	0.964	0.0491
16	18	110	120	0.9294	0.0327
3	4	80	100	0.9153	0.0216
3	8	60	95	0.9562	0.0114
4	5	110	120	0.989	0.0281
4	9	40	75	0.9984	0.0386
8	4	40	85	0.9746	0.0376
8	13	30	75	0.9999	0.0222
12	8	30	65	0.9345	0.0044
12	17	40	100	0.9846	0.0228
13	9	30	80	0.9094	0.0264
13	19	110	120	0.9326	0.0151
17	13	40	80	0.9077	0.035
17	18	40	75	0.947	0.0344
18	13	60	115	0.9669	0.0202
18	19	70	110	0.953	0.0059
18	20	120	120	0.9278	0.0021
5	10	60	110	1	0
9	5	70	110	1	0
9	14	40	90	1	0
10	15	50	105	1	0
14	10	80	115	1	0
14	15	60	105	1	0
15	20	30	90	1	0
19	15	40	75	1	0
19	20	70	105	1	0

Cuadro 3: Parámetros para un desastre grado 2

1 2 50 100 0.7544 0.1026 1 6 30 60 0.7666 0.1394 1 11 70 110 0.7561 0.1276 2 3 30 60 0.7071 0.1089 2 7 40 70 0.7527 0.1276 6 7 30 65 0.7001 0.1062 6 12 60 105 0.7145 0.1209 6 16 100 115 0.7234 0.1361 7 8 40 90 0.7242 0.108 11 16 30 70 0.7378 0.1281 16 17 80 115 0.7048 0.1197 16 18 110 120 0.7639 0.1365 3 4 80 100 0.8912 0.0844 3 8 60 95 0.8242 0.0571 <th>inicio</th> <th>fin</th> <th>$l_{i,j}$</th> <th>$s_{i,j}$</th> <th>$\alpha_{i,j}$</th> <th>$\beta_{i,j}$</th>	inicio	fin	$l_{i,j}$	$s_{i,j}$	$\alpha_{i,j}$	$\beta_{i,j}$
1 11 70 110 0.7561 0.1276 2 3 30 60 0.7071 0.1089 2 7 40 70 0.7527 0.1276 6 7 30 65 0.7001 0.1062 6 12 60 105 0.7145 0.1209 6 16 100 115 0.7234 0.1361 7 8 40 90 0.7242 0.108 11 16 30 70 0.7378 0.1281 16 17 80 115 0.7048 0.1197 16 18 110 120 0.7639 0.1365 3 4 80 100 0.8912 0.0844 3 8 60 95 0.8242 0.0571 4 5 110 120 0.8773 0.0552 4 9 40 75 0.8678 0.099 <td>1</td> <td>2</td> <td>50</td> <td>100</td> <td>0.7544</td> <td>0.1026</td>	1	2	50	100	0.7544	0.1026
2 3 30 60 0.7071 0.1089 2 7 40 70 0.7527 0.1277 6 7 30 65 0.7001 0.1062 6 12 60 105 0.7145 0.1209 6 16 100 115 0.7234 0.1361 7 8 40 90 0.7242 0.108 11 16 30 70 0.7378 0.1281 16 17 80 115 0.7048 0.1197 16 18 110 120 0.7639 0.1365 3 4 80 100 0.8912 0.0844 3 8 60 95 0.8242 0.0571 4 5 110 120 0.8773 0.0552 4 9 40 75 0.8678 0.099 8 4 40 85 0.8801 0.067	1	6	30	60	0.7666	0.1394
2 7 40 70 0.7527 0.1277 6 7 30 65 0.7001 0.1062 6 12 60 105 0.7145 0.1209 6 16 100 115 0.7234 0.1361 7 8 40 90 0.7242 0.108 11 16 30 70 0.7378 0.1281 16 17 80 115 0.7048 0.1197 16 18 110 120 0.7639 0.1365 3 4 80 100 0.8912 0.0844 3 8 60 95 0.8242 0.0571 4 5 110 120 0.8773 0.0552 4 9 40 75 0.8678 0.099 8 4 40 85 0.8801 0.067 8 13 30 75 0.8425 0.0987	1	11	70	110	0.7561	0.1276
6 7 30 65 0.7001 0.1062 6 12 60 105 0.7145 0.1209 6 16 100 115 0.7234 0.1361 7 8 40 90 0.7242 0.108 11 16 30 70 0.7378 0.1281 16 17 80 115 0.7048 0.1197 16 18 110 120 0.7639 0.1365 3 4 80 100 0.8912 0.0844 3 8 60 95 0.8242 0.0571 4 5 110 120 0.8773 0.0552 4 9 40 75 0.8678 0.099 8 4 40 85 0.8801 0.067 8 13 30 75 0.8425 0.0987 12 8 30 65 0.8383 0.0543 <td>2</td> <td>3</td> <td>30</td> <td>60</td> <td>0.7071</td> <td>0.1089</td>	2	3	30	60	0.7071	0.1089
6 12 60 105 0.7145 0.1209 6 16 100 115 0.7234 0.1361 7 8 40 90 0.7242 0.108 11 16 30 70 0.7378 0.1281 16 17 80 115 0.7048 0.1197 16 18 110 120 0.7639 0.1365 3 4 80 100 0.8912 0.0844 3 8 60 95 0.8242 0.0571 4 5 110 120 0.8773 0.0552 4 9 40 75 0.8678 0.099 8 4 40 85 0.8801 0.067 8 13 30 75 0.8425 0.0987 12 8 30 65 0.8383 0.0543 12 17 40 100 0.8785 0.0786 <	2	7	40	70	0.7527	0.1277
6 16 100 115 0.7234 0.1361 7 8 40 90 0.7242 0.108 11 16 30 70 0.7378 0.1281 16 17 80 115 0.7048 0.1197 16 18 110 120 0.7639 0.1365 3 4 80 100 0.8912 0.0844 3 8 60 95 0.8242 0.0571 4 5 110 120 0.8773 0.0552 4 9 40 75 0.8678 0.099 8 4 40 85 0.8801 0.067 8 13 30 75 0.8425 0.0987 12 8 30 65 0.8383 0.0543 12 17 40 100 0.8785 0.0786 13 9 30 80 0.8551 0.0778 </td <td>6</td> <td>7</td> <td>30</td> <td>65</td> <td>0.7001</td> <td>0.1062</td>	6	7	30	65	0.7001	0.1062
7 8 40 90 0.7242 0.108 11 16 30 70 0.7378 0.1281 16 17 80 115 0.7048 0.1197 16 18 110 120 0.7639 0.1365 3 4 80 100 0.8912 0.0844 3 8 60 95 0.8242 0.0571 4 5 110 120 0.8773 0.0552 4 9 40 75 0.8678 0.099 8 4 40 85 0.8801 0.067 8 13 30 75 0.8425 0.0987 12 8 30 65 0.8383 0.0543 12 17 40 100 0.8785 0.0786 13 9 30 80 0.8551 0.0707 13 19 110 120 0.873 0.057 <td>6</td> <td>12</td> <td>60</td> <td>105</td> <td>0.7145</td> <td>0.1209</td>	6	12	60	105	0.7145	0.1209
11 16 30 70 0.7378 0.1281 16 17 80 115 0.7048 0.1197 16 18 110 120 0.7639 0.1365 3 4 80 100 0.8912 0.0844 3 8 60 95 0.8242 0.0571 4 5 110 120 0.8773 0.0552 4 9 40 75 0.8678 0.099 8 4 40 85 0.8801 0.067 8 13 30 75 0.8425 0.0987 12 8 30 65 0.8383 0.0543 12 17 40 100 0.8785 0.0786 13 9 30 80 0.8551 0.0707 13 19 110 120 0.873 0.057 17 13 40 80 0.8191 0.0778	6	16	100	115	0.7234	0.1361
16 17 80 115 0.7048 0.1197 16 18 110 120 0.7639 0.1365 3 4 80 100 0.8912 0.0844 3 8 60 95 0.8242 0.0571 4 5 110 120 0.8773 0.0552 4 9 40 75 0.8678 0.099 8 4 40 85 0.8801 0.067 8 13 30 75 0.8425 0.0987 12 8 30 65 0.8383 0.0543 12 17 40 100 0.8785 0.0786 13 9 30 80 0.8551 0.0707 13 19 110 120 0.873 0.057 17 13 40 80 0.8191 0.0778 17 18 40 75 0.8555 0.0781	7	8	40	90	0.7242	0.108
16 18 110 120 0.7639 0.1365 3 4 80 100 0.8912 0.0844 3 8 60 95 0.8242 0.0571 4 5 110 120 0.8773 0.0552 4 9 40 75 0.8678 0.099 8 4 40 85 0.8801 0.067 8 13 30 75 0.8425 0.0987 12 8 30 65 0.8383 0.0543 12 17 40 100 0.8785 0.0786 13 9 30 80 0.8551 0.0707 13 19 110 120 0.873 0.057 17 13 40 80 0.8191 0.0778 17 18 40 75 0.8555 0.0781 18 13 60 115 0.8965 0.0653	11	16	30	70	0.7378	0.1281
3 4 80 100 0.8912 0.0844 3 8 60 95 0.8242 0.0571 4 5 110 120 0.8773 0.0552 4 9 40 75 0.8678 0.099 8 4 40 85 0.8801 0.067 8 13 30 75 0.8425 0.0987 12 8 30 65 0.8383 0.0543 12 17 40 100 0.8785 0.0786 13 9 30 80 0.8551 0.0707 13 19 110 120 0.873 0.057 17 13 40 80 0.8191 0.0778 17 18 40 75 0.8555 0.0781 18 13 60 115 0.8965 0.0653 18 19 70 110 0.8967 0.0694 <	16	17	80	115	0.7048	0.1197
3 8 60 95 0.8242 0.0571 4 5 110 120 0.8773 0.0552 4 9 40 75 0.8678 0.099 8 4 40 85 0.8801 0.067 8 13 30 75 0.8425 0.0987 12 8 30 65 0.8383 0.0543 12 17 40 100 0.8785 0.0786 13 9 30 80 0.8551 0.0707 13 19 110 120 0.873 0.057 17 13 40 80 0.8191 0.0778 17 18 40 75 0.8555 0.0781 18 13 60 115 0.8965 0.0653 18 19 70 110 0.8967 0.0694 5 10 60 110 0.9476 0.0343	16	18	110	120	0.7639	0.1365
4 5 110 120 0.8773 0.0552 4 9 40 75 0.8678 0.099 8 4 40 85 0.8801 0.067 8 13 30 75 0.8425 0.0987 12 8 30 65 0.8383 0.0543 12 17 40 100 0.8785 0.0786 13 9 30 80 0.8551 0.0707 13 19 110 120 0.873 0.057 17 13 40 80 0.8191 0.0778 17 18 40 75 0.8555 0.0781 18 13 60 115 0.8965 0.0653 18 19 70 110 0.8967 0.0694 18 20 120 120 0.8551 0.0948 5 10 60 110 0.9476 0.0343	3	4	80	100	0.8912	0.0844
4 9 40 75 0.8678 0.099 8 4 40 85 0.8801 0.067 8 13 30 75 0.8425 0.0987 12 8 30 65 0.8383 0.0543 12 17 40 100 0.8785 0.0786 13 9 30 80 0.8551 0.0707 13 19 110 120 0.873 0.057 17 13 40 80 0.8191 0.0778 17 18 40 75 0.8555 0.0781 18 13 60 115 0.8965 0.0653 18 19 70 110 0.8967 0.0694 18 20 120 120 0.8551 0.0948 5 10 60 110 0.9476 0.0343 9 5 70 110 0.9806 0.0484	3	8	60	95	0.8242	0.0571
8 4 40 85 0.8801 0.067 8 13 30 75 0.8425 0.0987 12 8 30 65 0.8383 0.0543 12 17 40 100 0.8785 0.0786 13 9 30 80 0.8551 0.0707 13 19 110 120 0.873 0.057 17 13 40 80 0.8191 0.0778 17 18 40 75 0.8555 0.0781 18 13 60 115 0.8965 0.0653 18 19 70 110 0.8967 0.0694 18 20 120 120 0.8551 0.0948 5 10 60 110 0.9476 0.0343 9 5 70 110 0.9806 0.0484 9 14 40 90 0.9984 0.0219	4	5	110	120	0.8773	0.0552
8 13 30 75 0.8425 0.0987 12 8 30 65 0.8383 0.0543 12 17 40 100 0.8785 0.0786 13 9 30 80 0.8551 0.0707 13 19 110 120 0.873 0.057 17 13 40 80 0.8191 0.0778 18 13 60 115 0.8965 0.0653 18 19 70 110 0.8967 0.0694 18 20 120 120 0.8551 0.0948 5 10 60 110 0.9476 0.0343 9 5 70 110 0.9806 0.0484 9 14 40 90 0.9984 0.0219	4	9	40	75	0.8678	0.099
12 8 30 65 0.8383 0.0543 12 17 40 100 0.8785 0.0786 13 9 30 80 0.8551 0.0707 13 19 110 120 0.873 0.057 17 13 40 80 0.8191 0.0778 17 18 40 75 0.8555 0.0781 18 13 60 115 0.8965 0.0653 18 19 70 110 0.8967 0.0694 18 20 120 120 0.8551 0.0948 5 10 60 110 0.9476 0.0343 9 5 70 110 0.9806 0.0484 9 14 40 90 0.9984 0.0219	8	4	40	85	0.8801	0.067
12 17 40 100 0.8785 0.0786 13 9 30 80 0.8551 0.0707 13 19 110 120 0.873 0.057 17 13 40 80 0.8191 0.0778 17 18 40 75 0.8555 0.0781 18 13 60 115 0.8965 0.0653 18 19 70 110 0.8967 0.0694 18 20 120 120 0.8551 0.0948 5 10 60 110 0.9476 0.0343 9 5 70 110 0.9806 0.0484 9 14 40 90 0.9984 0.0219	8	13	30	75	0.8425	0.0987
13 9 30 80 0.8551 0.0707 13 19 110 120 0.873 0.057 17 13 40 80 0.8191 0.0778 17 18 40 75 0.8555 0.0781 18 13 60 115 0.8965 0.0653 18 19 70 110 0.8967 0.0694 18 20 120 120 0.8551 0.0948 5 10 60 110 0.9476 0.0343 9 5 70 110 0.9806 0.0484 9 14 40 90 0.9984 0.0219	12	8	30	65	0.8383	0.0543
13 19 110 120 0.873 0.057 17 13 40 80 0.8191 0.0778 17 18 40 75 0.8555 0.0781 18 13 60 115 0.8965 0.0653 18 19 70 110 0.8967 0.0694 18 20 120 120 0.8551 0.0948 5 10 60 110 0.9476 0.0343 9 5 70 110 0.9806 0.0484 9 14 40 90 0.9984 0.0219	12	17	40	100	0.8785	0.0786
17 13 40 80 0.8191 0.0778 17 18 40 75 0.8555 0.0781 18 13 60 115 0.8965 0.0653 18 19 70 110 0.8967 0.0694 18 20 120 120 0.8551 0.0948 5 10 60 110 0.9476 0.0343 9 5 70 110 0.9806 0.0484 9 14 40 90 0.9984 0.0219	13	9	30	80	0.8551	0.0707
17 18 40 75 0.8555 0.0781 18 13 60 115 0.8965 0.0653 18 19 70 110 0.8967 0.0694 18 20 120 120 0.8551 0.0948 5 10 60 110 0.9476 0.0343 9 5 70 110 0.9806 0.0484 9 14 40 90 0.9984 0.0219	13	19	110	120	0.873	0.057
18 13 60 115 0.8965 0.0653 18 19 70 110 0.8967 0.0694 18 20 120 120 0.8551 0.0948 5 10 60 110 0.9476 0.0343 9 5 70 110 0.9806 0.0484 9 14 40 90 0.9984 0.0219	17	13	40	80	0.8191	0.0778
18 19 70 110 0.8967 0.0694 18 20 120 120 0.8551 0.0948 5 10 60 110 0.9476 0.0343 9 5 70 110 0.9806 0.0484 9 14 40 90 0.9984 0.0219	17	18	40	75	0.8555	0.0781
18 20 120 120 0.8551 0.0948 5 10 60 110 0.9476 0.0343 9 5 70 110 0.9806 0.0484 9 14 40 90 0.9984 0.0219	18	13	60	115	0.8965	0.0653
5 10 60 110 0.9476 0.0343 9 5 70 110 0.9806 0.0484 9 14 40 90 0.9984 0.0219	18	19	70	110	0.8967	0.0694
9 5 70 110 0.9806 0.0484 9 14 40 90 0.9984 0.0219	18	20	120	120	0.8551	0.0948
9 14 40 90 0.9984 0.0219	5	10	60	110	0.9476	0.0343
	9	5	70	110	0.9806	0.0484
10 15 50 105 0.9937 0.0091	9	14	40	90	0.9984	0.0219
	10	15	50	105	0.9937	0.0091
14 10 80 115 0.9334 0.0486	14	10	80	115	0.9334	0.0486
14 15 60 105 0.9966 0.022	14	15	60	105	0.9966	0.022
15 20 30 90 0.9517 0.0363	15	20	30	90	0.9517	0.0363
19 15 40 75 0.9547 0.0265	19	15	40	75	0.9547	0.0265
19 20 70 105 0.9849 0.029	19	20	70	105	0.9849	0.029

Cuadro 4: Parámetros para un desastre grado 3

1		$l_{i,j}$	$s_{i,j}$	$\alpha_{i,j}$	$\beta_{i,j}$
1 - 1	2	50	100	0.6396	0.1783
1	6	30	60	0.6815	0.1934
1	11	70	110	0.6204	0.1647
2	3	30	60	0.6244	0.1698
2	7	40	70	0.658	0.1674
6	7	30	65	0.6481	0.1515
6	12	60	105	0.6717	0.1957
6	16	100	115	0.6706	0.1672
7	8	40	90	0.6619	0.1864
11	16	30	70	0.6821	0.1645
16	17	80	115	0.6146	0.1858
16	18	110	120	0.6625	0.1918
3	4	80	100	0.7606	0.1184
3	8	60	95	0.7454	0.1348
4	5	110	120	0.7276	0.1178
4	9	40	75	0.7686	0.1192
8	4	40	85	0.7416	0.1484
8	13	30	75	0.7073	0.132
12	8	30	65	0.7911	0.1081
12	17	40	100	0.7222	0.117
13	9	30	80	0.7869	0.1274
13	19	110	120	0.7775	0.1477
17	13	40	80	0.7769	0.1329
17	18	40	75	0.7269	0.1441
18	13	60	115	0.711	0.1483
18	19	70	110	0.7779	0.1018
18	20	120	120	0.7046	0.127
5	10	60	110	0.8334	0.0652
9	5	70	110	0.8208	0.0519
9	14	40	90	0.8827	0.0574
10	15	50	105	0.8225	0.0678
14	10	80	115	0.8736	0.0859
14	15	60	105	0.8742	0.0662
15	20	30	90	0.8935	0.0502
19	15	40	75	0.8001	0.0811
19	20	70	105	0.8535	0.0919

Cuadro 5: Parámetros para un desastre grado $4\,$

inicio	fin	$l_{i,j}$	$s_{i,j}$	$\alpha_{i,j}$	$\beta_{i,j}$
1	2	50	100	0.5335	0.2015
1	6	30	60	0.5102	0.2404
1	11	70	110	0.5288	0.2376
2	3	30	60	0.5413	0.2201
2	7	40	70	0.5049	0.2283
6	7	30	65	0.5423	0.2267
6	12	60	105	0.5016	0.2193
6	16	100	115	0.5914	0.2336
7	8	40	90	0.5212	0.2217
11	16	30	70	0.5772	0.2161
16	17	80	115	0.5936	0.2269
16	18	110	120	0.5795	0.2271
3	4	80	100	0.6196	0.156
3	8	60	95	0.6887	0.1668
4	5	110	120	0.64	0.1504
4	9	40	75	0.6957	0.1961
8	4	40	85	0.6951	0.1611
8	13	30	75	0.6613	0.1619
12	8	30	65	0.6174	0.1741
12	17	40	100	0.6164	0.1711
13	9	30	80	0.6271	0.1899
13	19	110	120	0.6139	0.1851
17	13	40	80	0.6382	0.1995
17	18	40	75	0.6247	0.1973
18	13	60	115	0.6339	0.1579
18	19	70	110	0.6754	0.1805
18	20	120	120	0.6687	0.1729
5	10	60	110	0.7393	0.1177
9	5	70	110	0.7387	0.1479
9	14	40	90	0.7823	0.1425
10	15	50	105	0.7584	0.13
14	10	80	115	0.7348	0.1106
14	15	60	105	0.7513	0.1019
15	20	30	90	0.7585	0.1131
19	15	40	75	0.7808	0.1341
19	20	70	105	0.7903	0.104

Cuadro 6: Parámetros para un desastre grado 5

Otro experimento realizado fue observar la sensibilidad de los resultados de tiempo y largo respecto a cambio de r_1 y r_2 en el intervalo [0,05,0,95] con un salto de 0,05 con el fin de estudiar si existe dependencia de r_1 y r_2 con el problema o las instancias a resolver.

7. Resultados

Para comparar los resultados obtenidos por el algoritmo (ACS-TSP) se usarán los resultados obtenidos por Yuan (2009) [6] donde utiliza un algoritmo de *Best path Dijkstra* y otro de *Static shortest path*.

Como se muestra en los cuadros 7,8,9,10,11 ACS-TSP obtiene los mejores valores del problema al igual que *Best path Dijkstra* y mejores que *Static shortest path* ambos propuestos por Yuan (2009)[6]

Algoritmo	Camino	Tiempo [min]
Best path Dijkstra	$1 \rightarrow 6 \rightarrow 12 \rightarrow 17 \rightarrow 18 \rightarrow 20$	3.136548
Static shortest path	$1 \rightarrow 11 \rightarrow 16 \rightarrow 18 \rightarrow 20$	3.196073
ACS-TSP	$1 \rightarrow 6 \rightarrow 12 \rightarrow 17 \rightarrow 18 \rightarrow 20$	3.136548

Cuadro 7: Resultado grado 1

Algoritmo	Camino	Tiempo [min]
Best path Dijkstra	$1 \rightarrow 6 \rightarrow 12 \rightarrow 17 \rightarrow 18 \rightarrow 20$	3.480311
Static shortest path	$1 \rightarrow 11 \rightarrow 16 \rightarrow 18 \rightarrow 20$	3.694391
ACS-TSP	$1 \rightarrow 6 \rightarrow 12 \rightarrow 17 \rightarrow 18 \rightarrow 20$	3.480311

Cuadro 8: Resultado grado 2

Algoritmo	Camino	Tiempo [min]
Best path Dijkstra	$1 \rightarrow 6 \rightarrow 12 \rightarrow 17 \rightarrow 18 \rightarrow 20$	4.544814
Static shortest path	$1 \rightarrow 11 \rightarrow 16 \rightarrow 18 \rightarrow 20$	4.954273
ACS-TSP	$1 \rightarrow 6 \rightarrow 12 \rightarrow 17 \rightarrow 18 \rightarrow 20$	4.544814

Cuadro 9: Resultado grado 3

Algoritmo	Camino	Tiempo [min]
Best path Dijkstra	$1 \rightarrow 6 \rightarrow 12 \rightarrow 8 \rightarrow 13 \rightarrow 9 \rightarrow 14 \rightarrow 15 \rightarrow 20$	6.365086
Static shortest path	$1 \rightarrow 11 \rightarrow 16 \rightarrow 18 \rightarrow 20$	7.468316
ACS-TSP	$1 \rightarrow 6 \rightarrow 12 \rightarrow 8 \rightarrow 13 \rightarrow 9 \rightarrow 14 \rightarrow 15 \rightarrow 20$	6.365086

Cuadro 10: Resultado grado 4

Algoritmo	Camino	Tiempo [min]
Best path Dijkstra	$1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 9 \rightarrow 14 \rightarrow 15 \rightarrow 20$	12.323639
Static shortest path	$1 {\rightarrow} 11 {\rightarrow} 16 {\rightarrow} 18 {\rightarrow} 20$	19.297973
ACS-TSP	$1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 9 \rightarrow 14 \rightarrow 15 \rightarrow 20$	12.323639

Cuadro 11: Resultado grado $5\,$

Al estudiar la sensibilidad de los resultados cambiando el valor de r_1 tal que $r_1 + r_2 = 1$ se puede observar en las instancias propuestas, los caminos con mayor número de nodos tienen un menor tiempo asociados, esto es producido debido a que al entregar un mayor peso a la minimización de cantidad de nodos en la ruta se eligen rutas con alto tiempo para poder realizar la minimización.

r1	min	tiempo [min]	largo
0.05	0.238405	3.19333	5
0.1	0.22681	3.19333	5
0.15	0.215216	3.19333	5
0.2	0.203621	3.19333	5
0.25	0.192026	3.19333	5
0.3	0.180431	3.19333	5
0.35	0.168837	3.19333	5
0.4	0.157242	3.19333	5
0.45	0.145647	3.19333	5
0.5	0.134052	3.19333	5
0.55	0.122458	3.19333	5
0.6	0.110863	3.19333	5
0.65	0.0992681	3.19333	5
0.7	0.0876734	3.19333	5
0.75	0.0760786	3.19333	5
0.8	0.0644838	3.19333	5
0.85	0.0528891	3.19333	5
0.9	0.0412943	3.19333	5
0.95	0.0237405	3.13239	6

Cuadro 12: Análisis de sensibilidad para grado 1

r1	min	tiempo [min]	largo
0.05	0.246164	7.46814	5
0.1	0.242329	7.46814	5
0.15	0.238493	7.46814	5
0.2	0.234658	7.46814	5
0.25	0.230822	7.46814	5
0.3	0.226987	7.46814	5
0.35	0.223151	7.46814	5
0.4	0.219316	7.46814	5
0.45	0.21548	7.46814	5
0.5	0.211644	7.46814	5
0.55	0.207809	7.46814	5
0.6	0.203973	7.46814	5
0.65	0.187646	6.48896	6
0.7	0.163618	6.48896	6
0.75	0.139591	6.48896	6
0.8	0.115564	6.48896	6
0.85	0.0915365	6.48896	6
0.9	0.0675092	6.48896	6

Cuadro 13: Análisis de sensibilidad para grado $4\,$

r1	min	tiempo [min]	largo
0.05	0.265712	19.2772	5
0.1	0.281425	19.2772	5
0.15	0.297137	19.2772	5
0.2	0.312849	19.2772	5
0.25	0.328562	19.2772	5
0.3	0.344274	19.2772	5
0.35	0.359986	19.2772	5
0.4	0.375699	19.2772	5
0.45	0.382653	15.2718	6
0.5	0.369615	15.2718	6
0.55	0.356576	15.2718	6
0.6	0.375501	15.9283	6
0.65	0.365126	15.9283	6
0.7	0.354752	15.9283	6
0.75	0.250165	12.3264	8
0.8	0.200176	12.3264	8
0.85	0.15622	12.3264	8
0.9	0.100198	12.3264	8
0.95	0.0502092	12.3264	8

Cuadro 14: Análisis de sensibilidad para grado 5

Respecto a los tiempos de uso de computacional del algoritmo, en el cuadro 15 se muestra los tiempos asociados a cada grado de desastre en segundos, se puede afirmar que los tiempos que se encuentran entre [39, 44] ms.

Grado 1 [s]	Grado 2 [s]	Grado 3 [s]	Grado 4 [s]	Grado 5 [s]
$0,03932 \pm 0,0049$	0.04255 ± 0.0069	$0,04206 \pm 0,0048$	0.04131 ± 0.0046	0.04304 ± 0.0462

Cuadro 15: Tiempos del peor caso

8. Conclusiones

El modelo I únicamente considera el efecto del desastre sobre el tiempo y la velocidad de viaje en cada arco, por lo tanto nos entrega un resultado independiente a parámetros, en cambio el modelo II al considerar multiples objetivos quedará dependiente del parámetro del peso. Pero como puede se puede observar en el documento es sumamente importante de considerar el objetivo de la minimización de los nodos dado que afecta directamente al objetivo del tiempo.

Para partir de los resultados, Ant Colony System - TSP es una técnica muy adecuada para este tipo de problema, ya que el problema de Route selection for emergency logistics management tiene similitudes a Traveling Salesman Problem y al ser un problema de rutas, la adaptación del algoritmo es simple.

Pese a que los resultados muestran eficiencia y factibilidad del modelo y algoritmo. Existen varios factores complejos en situaciones de emergencias que se deben considerar, por ejemplo: traducir el costo del pasar por una intersección a tiempo o incluir algoritmo para evitar los cruzamientos en las intersecciones.

9. Referencias

- [1] Thomas J Cova and Justin P Johnson. A network flow model for lane-based evacuation routing. Transportation research part A: Policy and Practice, 37(7):579–604, 2003.
- [2] Kambiz Farahmand. Application of simulation modeling to emergency population evacuation. In *Proceedings of the 29th conference on Winter simulation*, pages 1181–1188. IEEE Computer Society, 1997.
- [3] Linet Özdamar, Ediz Ekinci, and Beste Küçükyazici. Emergency logistics planning in natural disasters. *Annals of operations research*, 129(1-4):217–245, 2004.
- [4] Frank Southworth. Regional evacuation modeling: a state-of-the-art review. 1991.
- [5] Suleyman Tufekci. An integrated emergency management decision support system for hurricane emergencies. Safety Science, 20(1):39–48, 1995.
- [6] Yuan Yuan and Dingwei Wang. Path selection model and algorithm for emergency logistics management. Computers & Industrial Engineering, 56(3):1081 1094, 2009. Intelligent Manufacturing and Logistics.
- [7] Xiaoge Zhang, Zili Zhang, Yajuan Zhang, Daijun Wei, and Yong Deng. Route selection for emergency logistics management: a bio-inspired algorithm. Safety science, 54:87–91, 2013.