FORMULARIO - INTEGRALES

JORNAL GRALLS							
$1. \qquad \int 1 du = u + C$	$\int \sec^2 u du = \tan u + C$						
2. $\int u^n du = \frac{u^{n+1}}{n+1} + C, \ n \neq -1$	$\int \csc^2 u du = -\cot u + C$						
$n_{\pm 1}$	18. $\int \sec u \cdot \tan u du = \sec u + C$						
3. $\int (ax+b)^n dx = \frac{(ax+b)^{n+1}}{n+1} \frac{1}{a} + C, \ n \neq -1$	$19. \qquad \int \csc u \cdot \cot u du = -\csc u + C$						
$4. \qquad \int \frac{1}{u} du = \ln u + C$	$20. \int \frac{1}{a^2 + u^2} du = \frac{1}{a} \arctan\left(\frac{u}{a}\right) + C$						
$\int \frac{1}{ax+b} dx = \ln ax+b \frac{1}{a} + C$	21. $\int \frac{1}{u^2 - a^2} du = \frac{1}{2a} \ln \left \frac{u - a}{u + a} \right + C$						
$\int e^u du = e^u + C$	22. $\int \frac{1}{a^2 - u^2} du = \frac{1}{2a} \ln \left \frac{u + a}{u - a} \right + C$						
$\int e^{ax+b} dx = e^{ax+b} \frac{1}{a} + C$	$23. \int \frac{1}{\sqrt{a^2 - u^2}} du = \arcsin\left(\frac{u}{a}\right) + C$						
$\int a^u du = \frac{a^u}{\ln a} + C$	24. $\int \frac{1}{\sqrt{u^2 - a^2}} du = \ln \left u + \sqrt{u^2 - a^2} \right + C$						
9. $\int senu du = -\cos u + C$	25. $\int \frac{1}{\sqrt{u^2 + a^2}} du = \ln \left u + \sqrt{u^2 + a^2} \right + C$						
$10. \qquad \int \cos u du = senu + C$	$26. \int \frac{1}{u\sqrt{u^2 - a^2}} du = \frac{1}{a} arc \sec\left(\frac{ u }{a}\right) + C$						
11. $\int \cos(ax+b) dx = sen(ax+b) \frac{1}{a} + C$	$\int_{u}^{2} u \sqrt{u^2 - a^2} \qquad a \qquad (a)$						
$\int \tan u \ du = \ln \sec u + C$	27. $\int \frac{1}{u\sqrt{a^2 - u^2}} du = -\frac{1}{a} \ln \left \frac{a + \sqrt{a^2 - u^2}}{u} \right + C$						
$\int \tan u du = -\ln \cos u + C$	u vu –u						
	28. $\int \frac{1}{u\sqrt{a^2 + u^2}} du = -\frac{1}{a} \csc h^{-1} \left \frac{u}{a} \right + C$						
$13 \int \cot u du = \ln \text{senu} + C$	29. $\int \sqrt{u^2 + a^2} du = \frac{1}{2} \left[u \sqrt{u^2 + a^2} + a^2 \ln \left(u + \sqrt{u^2 + a^2} \right) \right] + C$						
14. $\int \sec u du = \ln \sec u + \tan u + C$	30. $\int \sqrt{u^2 - a^2} du = \frac{1}{2} \left[u \sqrt{u^2 - a^2} - a^2 \ln \left(u + \sqrt{u^2 - a^2} \right) \right] + C$						
$15. \int \csc u du = \ln \csc u - \cot u + C$	31. $\int \sqrt{a^2 - u^2} du = \frac{1}{2} \left[u \sqrt{a^2 - u^2} + a^2 \sin^{-1} \frac{u}{a} \right] + C$						

IDENTIDADES TRIGONOMÉTRICAS

			——————————————————————————————————————
1.	$\sin^2 x + \cos^2 x = 1$	7.	sen2x = 2senx.cosx
2.	$1 + \tan^2 x = \sec^2 x$	8.	senx.cscx = 1
3.	$1 + \cot^2 x = \csc^2 x$	9. 10.	cosx.secx = 1 tanx.cotgx=1
4.	$\cos^2 x = \frac{1}{2} \left(1 + \cos 2x \right)$	11.	$senx.\cos y = \frac{1}{2} (sen(x-y) + sen(x+y))$
5.	$sen^2x = \frac{1}{2}(1-\cos 2x)$	12. co	$\cos x.\cos y = \frac{1}{2} \left(\cos(x-y) + \cos(x+y)\right)$
6.	$\cos 2x = \cos^2 x - \sin^2 x$	13.	$senx.seny = \frac{1}{2} (\cos(x - y) - \cos(x + y))$