EXPLORING FREQUENT ITEMSET GENERATION

Present by Wei Li

- In lecture talk:
 - Association rule mining and Frequent itemset generation problem
 - ECLAT to generate frequent itemsets in a vertical database
- My project:
 - Implement ECLAT and two algorithms: FP-Growth and Apriori for frequent itemset generation
 - Compare three algorithms in two dataset
- Agenda:
 - Refresh the problem
 - Apriori
 - FP-Grwoth
 - Project Experiments and Results

THE PROBLEM

- Discover association rules
 - if-then relationship based on co-occurrence
 - {Bread, Butter} -> {Milk}
- Break Association Rules Mining into 2 tasks
 - Generating frequent itemsets
 - Generating rules from frequent itemsets
- Three sequential, exhaustive methods
 - ECLAT
 - Apriori
 - FP-growth

TID	List of item_IDs
T10	Coke,Slice,Kurkure
T20	Coke, Kurkure
T30	Slice, pizza

Horizontal database

Itemsets	TID_set
Coke	T10,T20
Slice	T10,T30
Kurkure	T10,T20
Pizza	T30

Vertical database

TERMS/ GENERATE ALL FREQUENT SET

- Commodity set $I = \{i_1, i_2, \dots, i_n\}$
- transaction set $\Omega = \{R_1, R_2, \dots, R_m\}$ where $R_i \subseteq I$.
- Itemset $X \subseteq I$ K- Itemset: $X \subseteq I$ and |X| = k
- **Support count :** $\delta(X) = |\{R_i | X \subseteq R_i \& R_i \in \Omega\}|$
- Frequent Itemset: itemset whose $\delta(X)$ is greater than a threshold (eg, 3)
- Maximal frequent Itemset: An frequent itemset is maximal frequent Itemset if none of its supersets are frequent.
- Problem: frequent itemset generation
 - Input: commodity set I , transaction set Ω , frequent threshold minsup
 - Output: all frequent itemset $\delta(X) > minsup$

APRIORI

- Apriori Property:
 - If an itemset is frequent, all of its subset are frequent
 - If an itemset is not frequent, all of its superset must not be frequent

```
Algorithm 1: Apriori(\Omega, minsup)
    Result: F
 1 GLOBAL VAR, estimate;
 2 k \leftarrow 1;
 3 F_1 \leftarrow all frequent 1-itemsets;
 4 F \leftarrow \{(f, \delta(f)) | f \in F_1\};
 5 while F_k \neq \phi do
         k \leftarrow k + 1;
         C_k \leftarrow candidate(F_{k-1}, \ldots);
         for R_i \in \Omega do
               D_i \leftarrow \{c | c \in C_k \text{ and } c \subseteq R_i\};
 9
               for d \in D_i do
10
                    \delta(d) \leftarrow \delta(d) + 1;
11
               end
12
13
         F_k = \{c | c \in C_k \text{ and } \delta(c) \ge minsup\};

F \leftarrow F \cup \{(f, \delta(f)) | f \in F_k\};
16 end
17 return F;
```


Minsup = 3

TID	Items bought
100	{a, c, d, f, g, i, m, p}
200	{a, b, c, f, i, m, o}
300	{b, f, h, j, o}
400	{b, c, k, s, p}
500	{a, c, e, f, l, m, n, p}

item	freq	rank id
f	4	1
С	4	2
а	3	3
b	3	4
m	3	5
р	3	6

TID = 100

TID	Item bought
100	{f, c, a, m, p}
200	{f, c, a, b, m}
300	{f, b}
400	{c, b, p}
500	{f, c, a, m, p}

TID = 200

TID	Item bought	
100	{f, c, a, m, p}	
200	{f, c, a, b, m}	
300	{f, b}	
400	{c, b, p}	
500	{f, c, a, m, p}	

TID = 300

TID	Item bought
100	{f, c, a, m, p}
200	{f, c, a, b, m}
300	{f, b}
400	{c, b, p}
500	{f, c, a, m, p}

TID = 400

TID	Item bought
100	{f, c, a, m, p}
200	{f, c, a, b, m}
300	{f, b}
400	{c, b, p}
500	{f, c, a, m, p}

TID = 500

TID	Item bought
100	{f, c, a, m, p}
200	{f, c, a, b, m}
300	{f, b}
400	{c, b, p}
500	{f, c, a, m, p}

item	freq		rank id	
f		4	1	F
С		4	2	F
а		3	3	
b		3	4	
m		3	5	F
р		3	6	F

Find frequent itemset {f}

Find frequent itemset {f, c}, {c}

. . .

Find frequent itemset end with 'm'
Find frequent itemset end with 'p'

- Suffix based Divide-and-Conquer
- Find frequent itemset end with 'p'
 - frequent itemset end with 'mp' /(bp, ap, cp, fp)
 - frequent itemset end with 'bmp'.....

generate frequent itemset {P}

Remove non-frequent items

4 FP-tree condition on 'p' Recursively solve the conditional FP-tree

EXPERIMENT

- Data set
 - datasetA: realistic groceries data set, 14963 transactions, 167 unique commodities, average transaction length is 2.54
 - datasetB: synthetic data set with 540455 transactions and 2603 unique items. Average transaction length is 4.37
- Minsup:
 - 5%, 2%, 1.5%, 1%, 0.75%, 0.5%

$$support = \frac{\delta(X)}{|\Omega|}$$

RESULT

(a) Comparing three algorithms on DatasetA

(a) Comparing ECLAT and FP-tree on DatasetA

(b) Comparing three algorithms on DatasetB

(b) Comparing ECLAT and FP-tree on DatasetB

Thanks