Exercice 1

Une machine thermique met en jeu une masse constante m d'un gaz parfait et lui fait décrire le cycle suivant selon des transformations réversibles :

- Une transformation isotherme qui fait passer le gaz de l'état A (pression $P_A = 2$ bar, Volume $V_A = 30L$, Température $T_A = 16$ °C) à l'état B (P_B , $V_B = 6L$, T_B).
- Un échauffement isobare de l'état B à l'état C (P_B , $V_C = 18L$, T_C).
- Une détente adiabatique de l'état C à l'état D (P_D, V_D, T_D)
- Un refroidissement isobare de l'état D à l'état A
- 1. Calculer le nombre de moles gazeuses n mises en jeu.
- 2. Calculer les variables d'états dans les états A, B, C et D.

	Pression (Pa)	Volume (m ³)	Température (K)
Etat A			
Etat B			
Etat C			
Etat D			

- 3. Représenter ce cycle dans le diagramme de Clapeyron (P, V).
- **4**. Calculer le travail et la quantité de chaleur échangés au cours de la transformation de l'état B à l'état C. On précisera le sens des échanges.

Données numériques:

- Constantes des gaz parfaits : $R = 8,32 \text{ J.K}^{-1}.\text{mol}^{-1}$
- Capacité calorifique molaire, à pression constante : $C_p = 29.1 \text{ J. K}^{-1}.\text{mol}^{-1}.$
- Dans une transformation adiabatique et réversible d'un gaz parfait, on a : PV^{γ} =Constante, avec $\gamma = 1,4$ pour le gaz considéré.

Exercice 2:

On considère un moteur à essence fonctionnant selon le cycle réversible représenté, sans légende, dans le diagramme de Clapeyron.

- Compression adiabatique : passage de l'état 1 à l'état 2, noté $1\rightarrow 2$;
- Combustion à volume constant : passage de l'état 2 à l'état 3, $(P_3 > P_2)$ noté $2 \rightarrow 3$;
- Détente adiabatique : passage de l'état 3 à l'état 4, noté $3\rightarrow 4$;
- Transformation à volume constant : passage de l'état 4, à l'état 1 noté $4\rightarrow 1$.

Le mélange de gaz décrivant le cycle est considéré comme un gaz parfait.

On donne:
$$R = 8, 32 \text{ J.mol}^{-1}.K^{-1}$$
 $\gamma = \frac{c_P}{c_V} = 1, 4$

- ✓ Capacité thermique molaire à volume constant: $C_V = 20.7 \text{ J.mol}^{-1}.\text{K}^{-1}$
- \checkmark On admettra que C_V est indépendante de la température.
- ✓ Les conditions à l'admission sont : $P_1 = 1,0.10^5 Pa$, $V_1 = 2,0.10^{-3} m^3$, $T_1 = 300 K$
- ✓ Dans une transformation adiabatique et réversible d'un gaz parfait, on a : $TV^{\gamma-1}$ = Constante, avec $\gamma = 1,4$ pour le gaz considéré.

Figure 1.

- **1.** Sur la figure 1, reporter les états 1, 2, 3, 4 et flécher le cycle. Hachurer l'aire représentant le travail reçu par le fluide décrivant le cycle. Quel est le signe de ce travail ? Expliquer.
- 2. Calculer le nombre de moles n de gaz décrivant le cycle.
- 3. On donne $V_2 = 0.25.10^{-3} \text{ m}^3$, ce qui correspond à un rapport volumétrique $\tau = \frac{V_1}{V_2} = 8$, 0.
 - a) Calculer la température T₂ en fin de compression adiabatique.
 - b) Calculer la température T_3 en fin de combustion sachant que T_3 - T_2 = 2,0.10 3 K.
 - c) Calculer la température T₄ en fin de la détente adiabatique.

On prendra pour la suite de l'exercice : $T_4 = 1,17. \ 10^3 \ K$

4.

- a) Quelle est la chaleur reçue, par le gaz, au cours de chacune des quatre transformations du cycle $(Q_{12}, Q_{23}, Q_{34}, \text{ et } Q_{41})$?
- b) Calculer la chaleur Q_{cycle} reçue par le gaz au cours du cycle complet.
- c) En déduire le travail W_{cycle} reçu par le gaz au cours du cycle complet. Quel est le signe de ce travail ?
- d) Calculer le rendement $\eta = \left| \frac{W_{cycle}}{o_{23}} \right|$

Exercice 3 (facultatif)

On fait subir à une masse de gaz parfait une succession de transformations représentées dans le diagramme de Clapeyron par le cycle ABCDA. AB et CD sont des transformations adiabatiques réversibles.

Les rapports $\frac{V_A}{V_B}$ et $\frac{V_C}{V_B}$ sont connus, ainsi que P_A et T_A .

- 1. Comment nomme t- on le rapport $\frac{V_A}{V_B}$ et le rapport $\frac{V_C}{V_B}$?
- 2. Le cycle ABCDA est un cycle moteur, de quel moteur s'agit-il ? Expliquer brièvement le cycle de ce moteur ?
- 3. Déterminer les expressions littérales des quantités de chaleur Q₁ et Q₂ échangées avec le milieu extérieur au cours des transformations BC et DA respectivement. En déduire leurs signes.
- 4. Evaluer les travaux et les variations d'énergie interne pour les quatre transformations.
- 5. Soit ρ le rendement du cycle définit par $\rho = \frac{-W}{Q_1}$ démontrer que son expression peut se mettre sous la forme :

$$\rho = 1 - \frac{1}{\gamma} \frac{T_D - T_A}{T_C - T_B}$$

- 6. En utilisant la loi de la place déterminer les expressions littérales de :
 - a. P_B en fonction de P_A , $\frac{V_A}{V_B}$ et γ .
 - b. T_B en fonction T_A , $\frac{V_A}{V_B}$ et γ .
 - c. T_D en fonction de T_A , $\frac{V_C}{V_R}$ et γ .
- 7. Démontrer que la différence entre la $T_{\text{\tiny C}}$ et $T_{\text{\tiny B}}$ peut se mettre sous la forme :

$$T_C - T_B = T_A \left(\frac{V_A}{V_B}\right)^{\gamma - 1} \left(\frac{V_C}{V_B} - 1\right)$$

b. Déduire que l'expression finale du rendement s'écrit :

$$\rho = 1 - \frac{1}{\gamma} \frac{\left(\frac{V_C}{V_B}\right)^{\gamma} - 1}{\left(\frac{V_A}{V_B}\right)^{\gamma - 1} \left(\frac{V_C}{V_B} - 1\right)}$$

8. Application numérique :

Calculer numériquement P_{B_1} T_{B_2} T_{C_3} T_{C_4} et ρ . Données : P_A = 1 atm, T_A = 300 K, $\frac{v_C}{v_B}$ = 8, $\frac{v_C}{v_B}$ = 3, γ = 1,40