Traitements sur les images

Transformations globales

ponctuelles : J(x0,y0) = f[I(x0,y0)]**Opération sur les histogrammes**

locales: $J(x0,y0) = \overline{f[I(V)]}$ V: voisinage de (x0,y0) Filtres,...

globales : J(x,y) = f[l(x,y)]**Transformée de Fourier,...**

- Caractéristiques
 - Passage d'un espace naturel (x,y) à un espace transformé (X,Y)
 - Nécessité de réversibilité
 - □ Transformations orthogonales
 - On a un repère orthonormé dans l'espace naturel
 - On obtient un repère orthonormé dans l'espace transformé
 - Permettent un calcul simple pour obtenir la réversibilité

- □ Transformations orthogonales
 - Image numérique f_{ij} de taille MxN
 - Image transformée F_{kl} de taille MxN

$$F_{uv} = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} P_{um} f_{mn} Q_{nv}$$

P et Q de tailles MxM et NxN sont des bases orthogonales pour rendre la réversibilité simple

$$F = P f Q$$
 $f = {}^{T}P F {}^{T}Q$

 □ Dans la pratique c'est le même changement de base pour les lignes et les colonnes

- Transformations orthogonales
 - transformée de Fourier
 - transformée en Cosinus Discrète
 - transformée d'Hadamard
 - transformée de Karhunen-Loeve
 - transformée de Gabor
 - transformée en Ondelettes

- □ Transformée de Fourier
 - décompose le signal en ses fréquences constituantes
 - □ Sorte d'histogramme des fréquences spatiales (image)
 - Passage du domaine spatial au domaine fréquentiel

- Fréquences Rappel
 - Fréquences dans un signal 1D

Source: Gonzalez and Woods. Digital Image Processing. Prentice-Hall, 2002.

- ☐ Fréquences dans une image
 - Permettent de qualifier les changements d'intensité
 - □ Basses fréquences
 - Changements d'intensité lents
 - régions homogènes et floues

- ☐ Fréquences dans une image
 - Permettent de qualifier les changements d'intensité
 - □ Hautes fréquences
 - changement brusque d'intensité
 - contours, bruit

☐ Signal 1D

 Tout signal périodique peut être décrit comme une somme pondérée de sinusoïdes

$$\operatorname{sq}(t) = \sum_{n=-\infty}^{\infty} \frac{1}{2n+1} \sin \left[\frac{2\pi}{\lambda} (2n+1)t \right]$$

The sinusoids are called "basis functions".

The multipliers are called "Fourier coefficients".

Basis functions The Fourier coefficients (of a square wave).

- □ Sinusoïdes
 - Rappels

$$f(t) = A \sin\left(\frac{2\pi}{\lambda}t - \phi\right)$$

 $1/\lambda$ is the frequency of the sinusoid (Hz).

 $2\pi/\lambda$ is the angular frequency (radians/s).

- □ Pour déterminer la similarité d'une sinusoïde f avec un signal g sur un intervalle(-λ/2,λ/2)
 - Calcul du produit scalaire

$$\langle f, g \rangle = \int_{-\lambda/2}^{\lambda/2} f(t) g^*(t) dt$$

where $g^*(t)$ is the complex conjugate of g(t).

- □ peut être vu comme la proportion de g dans f
- ☐ Si égal à 0 alors f et g n'ont rien en commun
- Maximal si f=g

 Produit scalaire – illustration (Source Alan Peters – EECE\CS253 Image Processing)

 Produit scalaire – illustration (Source Alan Peters – EECE\CS253 Image Processing)

☐ Signal 1D

 $X(u) = \sum_{k=0}^{N-1} x(k)e^{uk\frac{-i2\pi}{N}}$

Avec k variable temporelle, u variable fréquentielle

 C'est une transformation de N points de signal en N coefficients de Fourier

$$\begin{pmatrix} X_{0} \\ X_{1} \\ X_{2} \\ \vdots \\ X_{N-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 & \dots & 1 \\ 1 & e^{-i2\pi/N} & e^{-i2\pi2/N} & \dots & e^{-i2\pi(N-1)/N} \\ 1 & e^{-i2\pi2/N} & e^{-i2\pi4/N} & \dots & e^{-i2\pi2(N-1)/N} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & e^{-i2\pi(N-1)/N} & e^{-i2\pi2(N-1)/N} & \dots & e^{-i2\pi(N-1)(N-1)/N} \end{pmatrix} \cdot \begin{pmatrix} x_{0} \\ x_{1} \\ x_{2} \\ \vdots \\ x_{N-1} \end{pmatrix}$$

$$\mathbf{X} = \mathbf{F} \cdot \mathbf{x}$$

TF

- ☐ Signal 2D
 - Changement de base dans les 2 directions du signal

$$F[u,v] = \sum_{x=0}^{M-1} \sum_{v=0}^{N-1} f(x,y) e^{-i2\pi \left(\frac{ux}{M} + \frac{vy}{N}\right)}$$

Comme en 1D, la TFD 2D est périodique de période 2π

TF recentrée de [M/2,N/2]

☐ Signal 2D

hautes fréquences ω basses fréquences

- Interprétation
 - Hautes fréquences : loin du centre de la 🗔
 - Basses fréquences : proche du centre de la TF
 - Composante continue : centre de l'image
 - ☐ fréquence zéro = moyenne de l'image

Rappel nombre complexe

$$i^2 = -1$$

$$(a,b) \Leftrightarrow a+ib \Leftrightarrow R\cos(\alpha)+i\sin(\alpha)$$

Partie réelle Partie imaginaire

$$R = \sqrt{a^2 + b^2}$$
$$\alpha = \arctan(b/a)$$

- → appelé *amplitude* ou *module*
- → appelé *phase*

□ La Transformée de Fourier d'une fonction réelle donne une fonction complexe

☐ Changement de l'origine du repère (recentrage)

□ Transformation inverse

TF partie imaginaire

- amplitude et phase
 - F est généralement représentée par son amplitude et sa phase

$$amplitude(F) = \sqrt{reelle(F)^2 + imaginaire(F)^2}$$

phase(F) = arctan(imaginaire(F) / reelle(F))

amplitude * amplitude = power spectrum

Plutôt que par

Ses parties réelle et imaginaire

- Some example
 - Lignes dans le spectre de Fourier sont perpendiculaires aux lignes de l'image

☐ Effet de la translation ⇒ aucun effet sur l'amplitude – effet phase

■ Effet de la rotation

Rotation d'image ⇒ rotation de la TF (même angle)

- Applications
 - Filtrage dans le domaine spectral
 - □ Suppression du bruit
 - Extraction de contours
 - □ Détection d'inclinaison

- Suppression du bruit
 - Filtre passe bas
 - On efface les hautes fréquences de la TF en mettant les pixels loin du centre à zéro

- Détection de contours
 - Filtre passe haut
 - On efface les basses fréquences de la TF en mettant les pixels au centre à zéro

- □ Détection et élimination de certaines fréquences
 - Filtre passe bande
 - ☐ On met à 0 les fréquences en dehors de la bande

- □ Détection et élimination de certaines fréquences
 - Filtre directionnel

On sélectionne les fréquences dans une direction

donnée

