Claim. For finite measure space (X, Σ, μ) , if $\{E_n\}_{n=1}^{\infty} \subset \Sigma$ and $\sum_{n=1}^{\infty} \mu(E_n) < \infty$, then $\mu(\limsup_{n \to \infty} E_n) = 0$.

Proof. By definition, we have

$$\lim_{n\to\infty} \sup E_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k.$$

To tidy things up, we define the inner union as

$$A_n := \bigcup_{k=n}^{\infty} E_k$$

. Substituting our newly defined A_n into the equation, we can write.

$$\limsup_{n \to \infty} E_n = \bigcap_{n=1}^{\infty} A_n.$$

Now we note the descending structure of A_n . Since we only remove elements from $\{A_n\}$ as n increases, we have $A_1 \supset A_2 \supset A_3$ Thus, by continuity from above (a property of measure) we can write

$$\mu(\limsup_{n\to\infty} E_n) = \mu(\bigcap_{n=1}^{\infty} A_n)$$

$$= \lim_{n\to\infty} \mu(A_n) \qquad \text{(by continuity from above)}$$

$$= \lim_{n\to\infty} \mu(\bigcup_{k=n}^{\infty} E_k) \qquad \text{(substituting back)}$$

$$\leq \lim_{n\to\infty} (\sum_{k=n}^{\infty} \mu(E_k)) \qquad \text{(by countable subadditivity property of measure)}$$

$$= 0$$

The last line above follows intuitively. We are given that $\sum\limits_{n=1}^{\infty}\mu(E_n)$ converges, so the tail end of the sum must tend to 0. More formally, but briefly: by definition, the corresponding partial sums S_1,S_2,S_3,\ldots must converge, say, to L. Thus, for any $\epsilon>0$, there exists some N such that for k-1=N, we have $|S_{k-1}-L|<\epsilon$. Decomposing L into the k-1th partial sum and the remaining tail, we subtract the two identical partial sums. We are left with the tail $\sum\limits_{k=N}^{\infty}\mu(E_k)<\epsilon$. This is the limit in the second to last line, and it converges to 0. To complete the proof, by non-negativity of measure, we have the limit superior bounded below by 0, too. Thus, $\mu(\limsup_{n\to\infty}E_n)=0$. \square