1. Find the power supplied by the voltage source

2. Determine current in 4Ω resistance using Kirchhoff's laws

3. In the circuit shown in figure, calculate I, I1 and Vab.

$$I = 4A^{\circ}$$

 $I_{1} = 0.25A$
 $VAB = 4V$

4. If the total power dissipated in the circuit is 16 W, calculate the value of 'R' & the total current.

0

5. Determine the voltage across and current through each resistor in the circuit.

$$V_1 = V_2 = 3 \text{ oV}.$$
 $V_3 = 5 \text{ oV}.$
 $E_1 = 7.5 \text{ A}.$
 $E_2 = 2.5 \text{ A}.$
 $E_3 = 10 \text{ A}.$

I 6. Using nodal analysis find the current in different resistances

7. Find the current I using nodal analysis. All resistances are given in Ω

$$V_{A} = 1.5 \text{ V}$$
 $V_{B} = 1.75 \text{ V}$
 $V_{C} = 3.75 \text{ V}$
 $I = 2A$

8. Using nodal analysis find the power supplied by 14V battery

$$V_A = 7 V.$$

$$V_B = 7 V.$$

$$I_{4n} = \frac{7}{4} A$$

9. Find the voltage v using Nodal analysis

10. Find the current 'I' using node-voltage analysis for the given circuit.

$$V_1 = 3.82V$$

 $V_2 = 2.36V$.
 $I = -2.27A$.

11. Evaluate current in 4Ω resistance using nodal analysis

$$V_A = 9.2V$$
.
 $V_B = 11.2V$.

$$I = 0.75A$$

12. Using nodal analysis find the current in 5 Ω resistance.

13. Using nodal analysis find the current in 3Ω resistance.

14. Using nodal voltage method calculate the magnitude and direction of current through 10 Ω resistor.

15. Using nodal analysis find the current i_x .

16. Using nodal analysis, find the power dissipated in 2 Ω resistor.

17. Find the value of current through 5Ω using node voltage method.

18. Using mesh analysis find the current in 4Ω and 20Ω resistance

19. Find the value of E such that the current in 4Ω resistance is 0A. Use mesh analysis method

/20. Using mesh analysis to find the unknown resistance R such that the current I is 2.88A

21. Find the voltage V₀ by using mesh analysis

22. Calculate the current I1, I2 & I3 by mesh analysis

$$I_1 = 2.69 A$$
 $I_2 = -6.961 A$
 $I_3 = -5 A$
 $I_{3,2} = 3.651 A$

24. Using mesh analysis, find the current through 6 Ω , 12 Ω and 30 Ω resistor.

25. Determine the current I_X through 10 Ω resistor (AB branch) and power in 20 Ω resistor (CD branch) using mesh analysis.

Using megh analysis find I, I2 & I3.

27. Using nodal analysis find current in 3.2.

V92-20 2 W

Find current in 12 using mesh analysis.

 $I_1 = -1.03A$, $I_2 = 0.162A$, $I_3 = 0.33A$, I = 1.188A.

29. Find current in all branches using nodal analysis

30. Wring mesh analysis find power in 22 (x-y)

I22 = 2.67 A, P= 14.26 W.

