La gerarchia di Chomsky

Linear-Bounded Automa:

Come una Macchina di Turing con una differenza:

Lo spazio dove è memorizzato l'input È il solo spazio che può essere utilizzato

Linear Bounded Automa (LBA)

Tutta la computazione si svolge tra I due limiti

Definiamo I LBA come macchine non deterministiche

Problema aperto:

LBA NonDeterministici

Hanno lo stesso potere dei

LBA Deterministici?

Esempio linguaggio accettato da un LBA:

$$L = \{a^n b^n c^n\} \qquad L = \{a^{n!}\}$$

LBA hanno più potere dei PDA (pushdown automata)

LBA hanno meno potere delle Turing Machines

Grammatiche senza limitazioni:

Produzioni

Stringhe di variabili e terminali

Stringhe di variabili e terminali

Esempio di grammatiche senza restrizioni:

$$S \rightarrow aBc$$

$$aB \rightarrow cA$$

$$Ac \rightarrow d$$

Teorema:

Un linguaggio L è Turing-Acceptable Se e solo se L è generato da una grammatica senza restrizione

https://en.wikipedia.or g/wiki/Unrestricted_g rammar

Grammatica Context-Sensitive:

produzioni

Stringhe di variabili E terminali

Stringhe di variabil E terminali

e:
$$|u| \leq |v|$$

Il linguaggio $\{a^nb^nc^n\}$

è context-sensitive:

$$S \rightarrow abc \mid aAbc$$
 $Ab \rightarrow bA$
 $Ac \rightarrow Bbcc$
 $bB \rightarrow Bb$
 $aB \rightarrow aa \mid aaA$

Theorem:

Un linguaggio L è context sensistive se e solo se È accettato da Linear-Bounded automa

osservazione:

Vi è un linguaggio che è context sensitive e non è decidibile

The Chomsky gerarchia

Non Turing-Acceptable

Turing-Acceptable

decidable

Context-sensitive

Context-free

Regular