# คู่มือปฏิบัติการ ชุดสาธิตการทดลองพลังงานคลื่นผลิตไฟฟ้า



# รายการอุปกรณ์ชุดทดลอง

- 1. มอเตอร์
- 2. อุปกรณ์กำเนิดคลื่น
- 3. อุปกรณ์ดักจับพลังงานคลื่นและเปลี่ยนเป็นพลังงานไฟฟ้า
- 4. ตู้ควบคุม
- 5. หน้าจอแสดงผล
- 6. Emergency Switch
- 7. สวิตซ์ เปิด-ปิด เครื่อง
- 8. เซนเซอร์วัดคลื่น



### <u>หน้าจอแสดงผลและควบคุม</u>



- 1. ปรับระดับความถี่คลื่น
- 2. แสดงผลพิกัดคลื่น (มิลลิเมตร) และคาบคลื่น (วินาที)
- 3. ส่วนควบคุมการ เริ่ม หยุด และรีเซต
- 4. แสดงผลค่าทางไฟฟ้า

แรงดันไฟฟ้า (โวลต์)

กระแสไฟฟ้า (แอมป์)

กำลังไฟฟ้า (วัตต์)

พลังงานไฟฟ้า (วัตต์ - ชั่วโมง)

- 5. แสดงผลการจับเวลา
- 6. แสดงผลอุณหภูมิและความชื้น

#### Web application



- 1. ปุ่มปรับระดับความถี่คลื่น
- 2. ปุ่มกดเชื่อมต่อกับชุดแลปสาธิต เริ่ม หยุด และแสดงผลเวลา
- 3. แสดงผลพิกัดคลื่น (มิลลิเมตร) และคาบคลื่น (วินาที)
- 4. แบบทดสอบ
- 5. แสดงผลอุณหภูมิและความชื้น
- 6. แสดงผลค่าทางไฟฟ้า

แรงดันไฟฟ้า (โวลต์)

กระแสไฟฟ้า (แอมป์)

กำลังไฟฟ้า (วัตต์)

พลังงานไฟฟ้า (วัตต์ - ชั่วโมง)

- 7. คู่มือปฏิบัติการ
- 8. คีย์แสดงผลการจับคู่
- 9. ข้อมูลโรงไฟฟ้าพลังงานคลื่น

#### หลักการและทฤษฎี

พลังงานคลื่นสามารถแบ่งออกได้เป็นสองส่วน คือ พลังงานจลน์ (Kinetic energy) และพลังงานศักย์ (Potential energy) ซึ่งพลังงานจลน์สัมพันธ์กับความเร็วของอนุภาคน้ำในคลื่น ตามทฤษฎีคลื่นเชิงเส้น ความ หนาแน่นของพลังงานจลน์หรือพลังงานจลน์เฉลี่ยต่อหนึ่งหน่วยพื้นที่ในแนวระดับสามารถคำนวณได้จาก

$$\bar{E}_k = \frac{1}{\lambda} \int_x^{x+\lambda} \int_{-h}^{\eta} \rho \frac{u^2 + w^2}{2} dz dx = \frac{1}{16} \rho g H^2$$

และพลังงานศักย์สัมพันธ์กับรูปร่างและความสูงของคลื่น สามารถหาความหนาแน่นของพลังงานศักย์ หรือพลังงานศักย์เฉลี่ยต่อหนึ่งหน่วยพื้นที่ในแนวระดับ สามารถคำนวณได้จาก

$$\bar{E}_p = \frac{1}{\lambda} \int_x^{x+\lambda} \rho g \left( \frac{(\eta + h)^2}{2} - \frac{h^2}{2} \right) dx = \frac{1}{16} \rho g H^2$$

จากสมการทั้งสอง พบว่าความหนาแน่นของพลังงานจลน์เฉลี่ยมีค่าเท่ากับความหนาแน่นของ พลังงานศักย์เฉลี่ย พลังงานทั้งสองนี้รวมกันเป็นพลังงานคลื่นทั้งหมดเฉลี่ยต่อหนึ่งหน่วยพื้นที่และถูกเรียกว่า ความหนาแน่นของพลังงานคลื่น (Specific energy หรือ Energy density) ดังสมการ

$$\bar{E} = \underbrace{\frac{1}{16}\rho g H^2}_{\text{mässtufing}} + \underbrace{\frac{1}{16}\rho g H^2}_{\text{mässtufing}} = \frac{1}{8}\rho g H^2$$

จากสมการที่ผ่านมา มีหน่วยเป็นจูลจ่อตารางเมตร (J/m²) เมื่อ

คือ ความหนาแน่นของน้ำ มีหน่วยเป็นกิโลกรัมต่อลูกบาศก์เมตร (kg/m3)
 g คือ ความเร่งเนื่องจากแรงโน้มถ่วง มีค่าเท่ากับ 9.81 m/s2

H คือ ความสูงคลื่น มีหน่วยเป็นเมตร (m)

พ ลังงาน  $C_g = \frac{qT}{4\pi}$  เฉลี่ยต่อพื้นที่ของคลื่นนี้จะถ่ายเทไปด้วยความเร็วเท่ากับความเร็วของ กลุ่มคลื่น Cg ซึ่งเรียก อัตราการถ่ายเทพลังงานนี้ว่า Wave energy flux หรือ Wave power (P) มีหน่วยเป็นวัตต์ต่อเมตร (W/m) สำหรับคลื่นในน้ำลึก การถ่ายเทพลังงานคลื่นสามารถคำนวณได้ดังนี้

โดยที่ 
$$rac{
ho g^2}{32\pi}pprox 1\,rac{kW}{m^3s}$$
  $ar{P}=ar{E}C_g=rac{
ho g^2}{32\pi}H^2T$ 

สามารถเขียนใหม่ได้เป็น

$$\bar{P} \approx H^2T$$

สมการที่กล่าวมา คือ พลังงานคลื่นต่อหนึ่งหน่วยความยาวท้องคลื่นหรือสันคลื่นสำหรับคลื่นรูปไซน์ ตามทฤษฎีคลื่นเชิงเส้นในน้ำลึก มีหน่วยเป็นกิโลวัตต์ต่อเมตร (kW/m) เมื่อ T คือคาบคลื่นมีหน่วยเป็นวินาที (s) แต่สำหรับคลื่นจริงในทะเล ผิวน้ำทะเลประกอบขึ้นจากคลื่นหลายลูกที่ไม่จำเป็นต้องเป็นคลื่นรูปไซน์และมี ความสูงคลื่นและคาบคลื่นที่หลากหลาย ในทางสมุทรศาสตร์กายภาพ (Physical oceanography) นิยมใช้ ความสูงคลื่นนัยยะ (Significant wave height,  $H_s$ ) เป็นตัวแทนความสูงคลื่นของสภาพท้องทะเลขณะนั้น และใช้ในการคำนวณหาพลังงานคลื่น ความสูงคลื่นนัยยะนี้นิยามจากค่าเฉลี่ยความสูงคลื่นที่มีค่าสูงสุดหนึ่งใน สามของคลื่นทั้งหมด (Highest one-third wave height,  $H_{1/3}$ ) ในบัจจุบัน นิยมกำหนดค่าความสูงคลื่นนัยยะ ให้มีค่าเท่ากับสี่เท่าของค่าเบี่ยงเบนมาตรฐานของระยะยกตัวของผิวน้ำ

ในการคำนวณพลังงานคลื่นของคลื่นจริงในทะเล นิยมกำหนดให้ความสูงคลื่น H ในสมการ มีค่า เท่ากับ  $H_s/\sqrt{2}$  (Falnes, 2007) ดังนั้นในกรณีของคลื่นจริงในทะเล สมการเขียนใหม่ได้เป็น

$$\bar{P} = \bar{E}C_g = \frac{\rho g^2}{64\pi} H_s^2 T$$

หรือ

$$\bar{P}\approx 0.5 H_s^2 T$$

สมการ คือพลังงานคลื่นต่อหนึ่งหน่วยความยาวท้องคลื่นหรือสันคลื่นสำหรับคลื่นทะเล มีหน่วยเป็น กิโลวัตต์ต่อเมตร (kW/m) เมื่อ T คือคาบคลื่นมีหน่วยเป็นวินาที (s)



# ข้อดี-ข้อจำกัดของการผลิตไฟฟ้าจากพลังงานคลื่น

ข้อดีและข้อจำกัดของการผลิตไฟฟ้าจากพลังงานคลื่น สามารถสรุปได้ดังตารางดังนี้

|    | ข้อดี                                                                                                                           | ข้อจำกัด                                                                                                                                                  |
|----|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | คลื่นเป็นพลังงานสะอาดไม่มีวันหมด และไม่<br>ก่อให้เกิดมลภาวะ เป็นมิตรกับสิ่งแวดล้อม<br>ชิ้นส่วนของเครื่องจักรส่วนใหญ่ มีความคงทน | <ol> <li>เป็นเทคโนโลยีที่มีค่าลงทุนสูง</li> <li>ให้พลังงานที่ไม่สม่ำเสมอ ไม่แน่นอน ขึ้นอยู่กับ<br/>ลักษณะของคลื่น</li> </ol>                              |
|    | อายุการใช้งานยาว สามารถดำเนินการได้ในเวลาอันรวดเร็ว และ ควบคุมให้ผลิตกำลังงานออกมาใกล้เคียงกับ ความต้องการ                      | 3. สถานที่ที่เหมาะสมในการติดตั้งโครงสร้างการ<br>ผลิตพลังงานคลื่นหาได้ยากมาก อีกทั้ง<br>เทคโนโลยีในการผลิตพลังงานคลื่นทะเลนั้นยัง<br>ไม่เป็นที่แพร่หลายนัก |
| 4. | การผลิตพลังงานจากคลื่นมีความคุ้มทุน เมื่อ<br>สถานที่ที่จะติดตั้งโครงสร้างมีความเหมาะสม                                          | 6010 0 to Find Fibi 10 to 11                                                                                                                              |

## ขั้นตอนการใช้งาน

- 1. เสียบปลั๊กแหล่งจ่ายไฟฟ้ากระแสสลับ 220 โวลต์ให้กับชุดแลปสาธิต
- 2. ดำเนินการเปิดเบรกเกอร์ตัดต่อไฟฟ้าไปอยู่ตำแหน่ง ON



- 3. บิดสวิชท์ไปยังตำแหน่ง ON ด้านขวา
- 4. เข้า Web application URL : https://encamppowerplant.com/lablite/wave/



และกดปุ่มเชื่อมต่อ กรณีมีการเชื่อมต่ออยู่จะมีหน้าต่างแจ้งเตือน



## เมื่อเชื่อมต่อได้แล้วจะแสดงผลค่าต่าง ๆ และคีย์การเชื่อมต่อ



และสถานะการเชื่อมต่อที่หน้าจอแสดงผลที่ชุดแลปสาธิตขึ้นสถานะ connect



5. กดปุ่มควบคุม On line เพื่อให้ควบคุมการทำงานผ่าน web application



6. เริ่มการทดลองโดยกดปุ่มเริ่มการทำงาน เวลาการทำการทดลองจะเริ่มจับเวลา



7. เมื่อทำการทดลองเสร็จให้กดหยุด และกดยกเลิกการเชื่อมต่อ



## วัตถุประสงค์

- 1. เพื่อศึกษาการทำงานของชุดผลิตกระแสไฟฟ้าโดยพลังงานคลื่น
- 2. เพื่อศึกษาความสัมพันธ์ระหว่างความสูงของคลื่น กับพลังงานที่สามารถผลิตได้

#### วิธีการทดลอง

- 1. ปรับระดับความเร็วมอเตอร์ โดยค่อยๆ เพิ่มความเร็วขึ้นไป จนกระทั่งอยู่ที่ความเร็ว 70 รอบต่อนาที
- 2. อ่านค่าแรงดันและกระแสไฟฟ้าที่ผลิตได้จากอุปกรณ์ดักจับพลังงานคลื่น ทำการบันทึกค่า
- 3. บันทึกค่าความแตกต่างของระดับความสูงของคลื่นที่จุดสูงสุดและต่ำที่สุด ที่เกิดขึ้น ณ ตำแหน่ง อุปกรณ์ดักจับพลังงานคลื่น
- 4. ปรับลดความเร็วมอเตอร์ลง 10 รอบต่อนาที และบันทึกผลการทดลอง
- 5. ทำซ้ำข้อ 2 ถึง 4 อีก 2 รอบ

### ตารางบันทึกผลการทดลอง

| ลำดับ | ระดับความแตกต่างเฉลี่ย | ความเร็วรอบมอเตอร์ | แรงดันไฟฟ้า | กระแสไฟฟ้าที่ได้ | กำลังไฟฟ้าที่ผลิตได้ |
|-------|------------------------|--------------------|-------------|------------------|----------------------|
| สาทบ  | ของคลื่น (cm.)         | (rpm)              | (V)         | (mA)             | (mW)                 |
|       |                        |                    |             |                  |                      |
|       |                        |                    |             |                  |                      |
|       |                        |                    |             |                  |                      |
|       |                        |                    |             |                  |                      |
|       |                        |                    |             |                  |                      |
|       |                        |                    |             |                  |                      |
|       |                        |                    |             |                  |                      |
|       |                        |                    |             |                  |                      |
|       |                        |                    |             |                  |                      |
|       |                        |                    |             |                  |                      |
|       |                        |                    |             |                  |                      |
|       |                        |                    |             |                  |                      |
|       |                        |                    |             |                  |                      |
|       |                        |                    |             |                  |                      |

| การวิเคราะห์ผลการทดลอง |
|------------------------|
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
| สรุปผลการทดลอง         |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |