happen the other way round if the MS has initiated the call. After connection acknowledgement, both parties can exchange data.

Closing the connection comprises a user-initiated disconnect message (both sides can do this), followed by releasing the connection and the radio channel.

4.1.6 Handover

Cellular systems require **handover** procedures, as single cells do not cover the whole service area, but, e.g., only up to 35 km around each antenna on the countryside and some hundred meters in cities (Tripathi, 1998). The smaller the cell size and the faster the movement of a mobile station through the cells (up to 250 km/h for GSM), the more handovers of ongoing calls are required. However, a handover should not cause a cut-off, also called **call drop**. GSM aims at maximum handover duration of 60 ms.

There are two basic reasons for a handover (about 40 have been identified in the standard):

- The mobile station **moves out of the range** of a BTS or a certain antenna of a BTS respectively. The received **signal level** decreases continuously until it falls below the minimal requirements for communication. The **error rate** may grow due to interference, the distance to the BTS may be too high (max. 35 km) etc. all these effects may diminish the **quality of the radio link** and make radio transmission impossible in the near future.
- The wired infrastructure (MSC, BSC) may decide that the traffic in one cell
 is too high and shift some MS to other cells with a lower load (if possible).
 Handover may be due to load balancing.

Figure 4.11 shows four possible handover scenarios in GSM:

- Intra-cell handover: Within a cell, narrow-band interference could make transmission at a certain frequency impossible. The BSC could then decide to change the carrier frequency (scenario 1).
- Inter-cell, intra-BSC handover: This is a typical handover scenario. The mobile station moves from one cell to another, but stays within the control of the same BSC. The BSC then performs a handover, assigns a new radio channel in the new cell and releases the old one (scenario 2).
- Inter-BSC, intra-MSC handover: As a BSC only controls a limited number of cells; GSM also has to perform handovers between cells controlled by different BSCs. This handover then has to be controlled by the MSC (scenario 3). This situation is also shown in Figure 4.13.
- Inter MSC handover: A handover could be required between two cells belonging to different MSCs. Now both MSCs perform the handover together (scenario 4).

To provide all the necessary information for a handover due to a weak link, MS and BTS both perform periodic measurements of the downlink and uplink quality respectively. (Link quality comprises signal level and bit error rate.) Measurement reports are sent by the MS about every half-second and contain the quality of the current link used for transmission as well as the quality of certain channels in neighboring cells (the BCCHs).

Figure 4.12 shows the typical behavior of the received signal level while an MS moves away from one BTS (BTS_{old}) closer to another one (BTS_{new}). In this case, the handover decision does not depend on the actual value of the received signal level, but on the average value. Therefore, the BSC collects all values (bit error rate and signal levels from uplink and downlink) from BTS and MS and calculates average values. These values are then compared to thresholds, i.e., the handover margin (HO_MARGIN), which includes some hysteresis to avoid a ping-pong effect (Wong, 1997). (Without hysteresis, even short-term interference, e.g., shadowing due to a building, could cause a handover.) Still, even with the HO_MARGIN, the ping-pong effect may occur in GSM – a value which is too high could cause a cut-off, and a value which is too low could cause too many handovers.

Figure 4.13 shows the typical signal flow during an inter-BSC, intra-MSC handover. The MS sends its periodic measurements reports, the BTS $_{\rm old}$ forwards these reports to the BSC $_{\rm old}$ together with its own measurements. Based on these values and, e.g., on current traffic conditions, the BSC $_{\rm old}$ may decide to perform a handover and sends the message HO_required to the MSC. The task of the MSC then comprises the request of the resources needed for the handover from the new BSC, BSC $_{\rm new}$. This BSC checks if enough resources (typically frequencies or time slots) are available and activates a physical channel at the BTS $_{\rm new}$ to prepare for the arrival of the MS.

Figure 4.12
Handover decision depending on receive level

Figure 4.13
Intra-MSC handover

The ${\rm BTS}_{\rm new}$ acknowledges the successful channel activation, ${\rm BSC}_{\rm new}$ acknowledges the handover request. The MSC then issues a handover command that is forwarded to the MS. The MS now breaks its old radio link and accesses the new BTS. The next steps include the establishment of the link (this includes layer two link establishment and handover complete messages from the MS). Basically, the MS has then finished the handover, but it is important to release the resources at the old BSC and BTS and to signal the successful handover using the handover and clear complete messages as shown.

More sophisticated handover mechanisms are needed for seamless handovers between different systems. For example, future 3G networks will not cover whole countries but focus on cities and highways. Handover from, e.g., UMTS to GSM without service interruption must be possible. Even more challenging is the seamless handover between wireless LANs (see chapter 7) and 2G/3G networks. This can be done using multimode mobile stations and a more sophisticated roaming infrastructure. However, it is still not obvious how these systems may scale for a large number of users and many handovers, and what handover quality guarantees they can give.

4.1.7 Security

GSM offers several security services using confidential information stored in the AuC and in the individual SIM (which is plugged into an arbitrary MS). The SIM stores personal, secret data and is protected with a PIN against unauthorized use. (For example, the secret key K_i used for authentication and encryption procedures is stored in the SIM.) The security services offered by GSM are explained below:

- Access control and authentication: The first step includes the authentication of a valid user for the SIM. The user needs a secret PIN to access the SIM. The next step is the subscriber authentication (see Figure 4.10). This step is based on a challenge-response scheme as presented in section 4.1.7.1.
- Confidentiality: All user-related data is encrypted. After authentication, BTS and MS apply encryption to voice, data, and signaling as shown in section 4.1.7.2. This confidentiality exists only between MS and BTS, but it does not exist end-to-end or within the whole fixed GSM/telephone network.
- Anonymity: To provide user anonymity, all data is encrypted before transmission, and user identifiers (which would reveal an identity) are not used over the air. Instead, GSM transmits a temporary identifier (TMSI), which is newly assigned by the VLR after each location update. Additionally, the VLR can change the TMSI at any time.

Three algorithms have been specified to provide security services in GSM. Algorithm A3 is used for authentication, A5 for encryption, and A8 for the generation of a cipher key. In the GSM standard only algorithm A5 was publicly available, whereas A3 and A8 were secret, but standardized with open interfaces. Both A3 and A8 are no longer secret, but were published on the internet in 1998. This demonstrates that security by obscurity does not really work. As it turned out, the algorithms are not very strong. However, network providers can use stronger algorithms for authentication – or users can apply stronger end-to-end encryption. Algorithms A3 and A8 (or their replacements) are located on the SIM and in the AuC and can be proprietary. Only A5 which is implemented in the devices has to be identical for all providers.

4.1.7.1 Authentication

Before a subscriber can use any service from the GSM network, he or she must be authenticated. Authentication is based on the SIM, which stores the **individual authentication key** K_i , the **user identification IMSI**, and the algorithm used for authentication A3. Authentication uses a challenge-response method: the access