

Application of GPS to Enable Launch Vehicle Upper Stage Heliocentric Disposal

Evan Anzalone, PhD (NASA/MSFC)
T. Emerson Oliver (NASA/MSFC/DCI)
ION GNSS+ 2017
September 27, 2017

Overview

- **Exploration Mission-1**
- **Space Launch System Block 1 Vehicle**
- **Core Stage**
 - 2 5-segment SRBs
 - 4 RS-25 engines
 - 70 metric ton lift capability
- **Upper Stage**
 - ULA DCSS-derived ICPS
 - •1 RL-10 engine

- Demonstrates initial SLS vehicle performance
- Provides for challenging, extended (3 week) test of uncrewed Orion systems in the deep space environment
- Demonstrates ability to enter, operate in, and exit DRO

Need for Upper Stage Disposal

◆ NASA-STD-8719.14A

- Inter-agency agreement
- Limit creation of new orbital debris to reduce risks to future missions
- Has led to powered re-entry/lifetime requirements for orbital satellites
- Requires long-lifetime state propagation to assess risk of re-impact with existing assets
- Requirement to dispose of upper stage to have minimal impact to Earth-Moon space
 - Reduce risk of potential re-contact with payload (Orion and secondary payloads)
- Vehicle-level requirement must be assessed with integrated design
 - Core and upper stage performance
 - Guidance capability and targeting
- Options for stage disposal
 - Intentional breakup
 - Lunar Impact
 - Direct heliocentric burn
 - Heliocentric via Lunar Fly-by
- Earth-Moon geometry plays large role in difficulty of maneuver

This NASA-STD is primarily designed to limit the creation of new orbital debris and, therefore, to limit the risk to other current and future space missions.

Disposal Capability with Pure-Inertial Systems

- State of the art inertial systems used through ascent and in-space operations*
- Large state uncertainty at time of disposal maneuver

 - Inertial navigation over long period of time
 Single optimized orbital targets calculated well before launch as function of launch time
- **Inertial Navigation and targets optimized for** heliocentric trajectory post-swingby
 • Probability of Lunar impact: ~42%
 • Probability of Heliocentric disposal: ~48%
- Dispersion at the moon exceeds Lunar diameter
- Inertial-only navigation insufficient to allow for adequate robustness in stage disposal

Design Space for Potential Options

State update from ground

 Additional requirements on communication system (upload and transponder)

♦ State update from payload (if interface)

- Complications and latency in interface definition
- Limited data throughput between elements in stack
- High accuracy navigation solution due to expanded sensor suite

◆ Algorithms to improve on-orbit propagation

- On-orbit calibration of sensors with external measurements
- Neglect accelerometers during orbital cruise in inertial navigation
- Expanded gravity models (higher order, additional bodies)
- In-orbit target generation (optimization based on state knowledge)

◆ Incorporate GPS into upper stage

- Complications with integrating new hardware onto COTS stage
- Orbital environments at high altitude
- Limited time for receiver development and integration

◆ Reduce time in orbit/time to disposal maneuver

• Time for checkouts vs. inertial drift

MPCV Navigation Architecture

NASA/Holt

GPS Integration Algorithms Used

◆ Generic GPS Receiver Model

- Errors modeled as 1-sigma values based on constellation capability
- Modeled as ECEF measurements of position, velocity, time
- Neglecting moment arm effects at GPS sensor
- **◆** Inertial navigation using reference sensor error budget
 - Trapezoidal integration with 100Hz DV and DΘ

♦ 15 State Loosely-Coupled Filter

- Position, velocity, and attitude updates
- Accelerometer bias and gyroscope bias estimation
- Increase of Velocity Error Process Noise during orbital maneuvers
- Covariance Propagation at 50Hz, 1Hz updates

Modeling GPS outage at fixed altitudes for each Monte Carlo set

- Inertial-only, 1000km, 2000km, 4000km, 6000km, 8000km, 10,000km, 12,000km, 14,000km
- Disposal maneuver well into lunar-bound trajectory with high altitude rates

Navigation Results

♦ Seeded by results of Ascent Monte Carlo*

- Requirements-based assessment of initial attitude solution
- Dispersed sensor error terms per run

♦ Simulation Events

- Trans-lunar injection by upper stage
- Separation of payload
- Ends at start of disposal maneuver
- ◆ GPS filter comes online at start of inspace trajectory
 - Pure inertial navigation over ascent
- ◆ All scenarios had pure-inertial periods prior to disposal maneuver
- **◆** Primary inertial error sensitivities
 - Gravity estimation due to position error
 - Numerical integration over long coast
 - Higher order sensor error terms and noise

Dispersions of State vs. Knowledge of State at Disposal

- State knowledge at Disposal Maneuver greatly improved due to GPS integration
- ◆ Consistent dispersions in actual state at disposal with GPS vs. without
- Dispersions of actual state primarily driven by TLI maneuver
 - TLI guidance easily able to hit target within requirements with GPS-state knowledge
 - Insertion accuracy defined by guidance end conditions
 - Upper stage engine tail-off uncertainty has large impact
- Attitude-only maneuvering between TLI and Disposal burns

Navigation Uncertainty (1-sigma) in RTN

Mean State and Uncertainty (1-sigma) in Inertial Frame

Disposal Success Probability

- ◆ Inertial Navigation and targets optimized for heliocentric trajectory post-swingby
 - Optimized for individual lower altitudes until requirement met, then fixed for high altitudes
 - Each individual case propagated with target set to ascertain disposal capability
- ◆ Disposal Maneuver occurs at ~25000km altitude
- ◆ Disposal success (90% heliocentric) achieved with GPS to 4000km

Monte Carlo Case	% Lunar Impact	% Heliocentric
No GPS	41.83	48.88
GPS Outage @ 1000km	28.29	60.17
GPS Outage @ 2000km	25.74	88.66
GPS Outage @ 4000km	03.85	96.30
GPS Outage @ 6000km	00.05	97.65
GPS Outage @ 8000km	00.00	91.85
GPS Outage @ 10000km	00.00	99.95
GPS Outage @ 12000km	00.00	98.45
GPS Outage @ 14000km	00.00	93.70

Conclusions and Design Considerations

High altitude GPS enabled heliocentric disposal with burn in Earth orbit

Design Considerations

- Algorithmic complexity
- High-altitude operation
- Integration of COTS unit into existing systems
- Limited commercial options for high altitude operation
- Performance definition of Service Volume
- Large Earth-moon geometry sensitivity to process

♦ Other options

- Include Heliocentric disposal as part of TLI maneuver
- Further increase accuracy of in-space guidance
- On-orbit autonomous targeting

SMA Achieved in TLI Maneuver

Effect of Higher Altitude Capability

SLS

- **♦** With GPS solution at 4000km, able to meet disposal requirement
- **◆** Higher altitudes enable more robust/concentrated solutions

