课时培训计划

- ●课题:电子元件基础知识
- 内容: 1.基本术语的概念;
 - 2. 电阻、电容的辨别;
 - 3.其它常用元件(二极管、三极 管、电感、变压器等)的感官认识;

课时: 4 hours

本堂提纲

- ●第一讲: 电子元件基础知识(一)
- 主要内容: 1.电子常用术语
 - 2.基本元件概论
 - 3. 电阻的辨别
 - 4.几类基本元件辨别(包括电阻、电感、变压器、IC芯片、显示等)
- 重点: ☆常用术语、电阻!

课时: 2hours

1. PTH: 穿孔元件(引脚能穿过PCB板的元件)

SMD: 表面贴装元件

SIP: 单列直插 (一排引脚)

DIP: 双列直插 (两排引脚)

轴向元件: 元件两引脚从元件两端伸出

径向元件:元件引脚从元件同一端伸出

PCB: 印刷电路板

PCP: 成品电路板

引脚: 元件的一部分, 用于把元件焊在电路

2. 单面板: 电路板上只有一面用金属处理;

双面板:上下两面都有线路的电路板;

层 板:除上、下两面都有线路外,在电路板内层也有线路;

元件面: 电路板上插元件的一面;

焊接面: 电路板中元件面的反面, 有许多焊盘提供焊接用;

焊 盘: PCB板上用来焊接元件引脚或金属端的金属部分;

3.金属化孔(PTH):一般用来插元件和布明线的金属化孔;

连接孔: (相对与金属化孔) 一般不用来插元件和布明线的金属化孔;

空焊:零件脚或引线脚与锡垫间没有锡或其它因素造成没有接合。

假焊:假焊之现象与空焊类似,但其锡垫之锡量太少,低于接合面标准。

冷焊:锡或锡膏在回风炉气化后,在锡垫上仍有模糊的粒状附着物。

桥接:有脚零件脚与脚之间焊锡联接短路

4.元件符号: R、C、L、D(CR)、Q、U、X(Y)、S(SW)、BAT 极性元件: 有些元件, 插入电路板时必需定向;

极性标志:印刷电路板上,极性元件的位置印有极性标志;

错件:零件放置之规格或种类与作业规定不符;

缺件:应放置零件之位置,因不正常之缘故而产生空缺失。

- 5.自检:由工作的完成者依据规定的规则对该工作进行的检验;
- 我们的自检包括两部分:
- 一、检验上道工序步骤;
- 二、完成本道工序后,检验本道工序; 在这里,我们要求做到"三不":
- 即: '不接受'不合格产品; '不生产'不合格产
- 品; '不流出'不合格产品;

基本电子元件特性一览表

PCB板上 字母标志	元件名称	特性	极性or方向	计量单位	功能
R	电阻	有色环	SIP/DIP	欧姆	限制电流
(RN/RP)		有SIP/DIP/SMD封装	有方向	$\Omega/\mathbf{K}\Omega/\mathbf{M}\Omega$	
С	电容	色彩明亮、标有 DC/VDC/pF/uF等	部分有	法拉 pF/nF/uF	存储电荷,阻直流、通交流
L	电感	单线圈	无	亨利	存储磁场能量,
				uH/mH	阻直流,通交流
Т	变压器	两个或以上线圈	有	匝比数	调节交流电的电压与电流
D或CR	二极管	小玻璃体,一条色环 标记为1Nxxx/LED	有		允许电流单向流动
Q	三极管	三只引脚,通常标记 为2Nxxx/DIP/SOT	有	放大倍数	用作放大器或开关
U	集成电路IC		有		多种电路的集合
X或Y	晶振crystal	金属体	有	赫兹	产生振荡频率
F	保险丝fuse		无	安增 ^{HZ} A)	电路过载保护
S或SW	开关switch	有触发式、按键式及 旋转式,通常为DIP	有	触点数	通断电路
J或P	连接器		有	引脚数	连接电路板
B或BJT	电池	正负极, 电压	有	伏特 (安	提供直流电流
`\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	大制作			塔)	

----汉达制作----

电 阻

- 表示符号为"R",基本单位是Ω,功率用W表示:
- 种类: 常见的电阻器有下列几种:
 - (1) 金属膜电阻器
 - (3) 线绕电阻器
 - (5) 电阻网络器(排阻)
 - (7) 水泥电阻
- 电阻的主要参数:
 - 1. 标准阻值和允许偏差(误差)
 - 2. 额定功率

- (2) 碳膜电阻器
- (4) 电位器
- (6) 敏感电阻器
- (8) <u>贴片电阻</u>

单位换算

Ω	ΚΩ	ΜΩ
100	0.1	
1, 000	1	
10, 000	10	0.01
100, 000	100	0.1
1, 000, 000	1, 000	1

贴片(SMD)电阻:

- 外观及阻值的标识:片式电阻器一般力表面黑色,底面及两边为白色,一般在外表面标出阻值大小;
- 有两种形式:三号码DDM±5%四号码DDM±1%

三号码 D D M:(误差5%)

用三位数字表示阻值的大小;

三位数的前两位是有效数字,第三位是有效数字后面**0**的个数;

范例:

②: $100 = 10 \times 10^{0} \Omega = 10 \Omega$, $\mathbb{P} 10 \Omega$;

③: 562=5 600 Ω,即5.6k Ω;

四号码 D D D M:(误差1%)

用四位数字表示阻值的大小;

三位数的前三位是有效数字,第四位是有效数字后面0 1963的个数;

范例:

①: 2301表示 230×10¹ Ω=2300 Ω, 即2.3kΩ;

②: $1000 = 100 \times 10^{0} \Omega = 100\Omega$, \mathbb{P}^{1} 100

 Ω ;

V. 当阻值小于10 Ω时用R代替小数点表示,如: 6R8表示6.8 Ω; 5R6表示5.6 Ω; R62表示0.62 Ω。

(最新!!!)数字字母组合代码贴片电阻!

(图暂缺!)

- 高精密电阻,黑色片式封装,底面及两边为白色,在上表面标出代码;
- 代码由两位数字一位字母组成: DD M 前两位数字是代表有效数值的代码,后一位 字母是有效数值后应乘的数;
- 基本单位是 欧姆(Ω)
- 范例:

88A 查代码表: 88→806, A→10⁰, =806Ω

数字代码—数值对照表

		• •					
代码	数值	代码	数值	代码	数值	代码	数值
01	100	25	178	49	316	73	562
02	102	26	182	50	324	74	576
03	105	27	187	51	332	75	590
04	107	28	191	52	340	76	604
05	110	29	196	53	348	77	619
06	113	30	200	54	357	78	634
07	115	31	205	55	365	79	649
08	118	32	210	56	374	80	665
09	121	33	215	57	383	81	681
10	124	34	221	58	392	82	698
11	127	35	226	59	402	83	715
12	130	36	232	60	412	84	732
13	133	37	237	61	422	85	750
14	137	38	243	62	432	86	768
15	140	39	249	63	442	87	787
16	143	40	255	64	453	88	806
17	147	41	261	65	464	89	825
18	150	42	267	66	475	90	845
19	154	43	274	67	487	91	866
20	158	44	280	68	499	92	887
21	162	45	287	69	511	93	909
22	165	46	294	70	523	94	931
23	169	47	301	71	536	95	953
24	174	48	309	72	549	96	976

字母—乘数对照表

字母代码	A	В	С	D	Е	F	G	Н	X	Y	Z
应乘的数	10^{0}	10^1	10^2	10^3	10^4	105	10^6	107	10-1	10-2	10-3

范例:

74A

表示:

 $576 \times 10^{\circ} = 576 \,\Omega$

63B

 $442 \times 10^{1} = 4420 \Omega = 4.42 k \Omega$

92E

 $887 \times 10^4 = 887\ 0000\ \Omega = 8.87 M\ \Omega$

47F

 $301 \times 10^5 = 301\ 00000\ \Omega = 30.1M\ \Omega$

04X

 $107 \times 10^{-1} = 10.7\Omega$

PTH(穿孔)电阻:

电阻类型识别:

- 色环: 色环电阻有3、4、5环分 别代表不同的阻值;
- 数字与字母标志:有数字与字母标记的电阻代表精密电阻,如 SIP或DIP;
- 阻值:用 Ω 标记的元件代表电阻;
- 螺丝或旋钮:电阻上有螺丝或旋钮的是可变电阻;

类型划分:

● 色环电阻、排阻、可变电阻、敏 感电阻、线绕电阻、水泥电阻

色环电阻:(3种)

3、4、5环

色环对照表

颜色	有效数字	乘数	精度(%)
银色		10-2	±10
金色		10-1	±5
黑色	••••	10 ⁰	
棕色	1	10 ¹	±1
红色	2	10 ²	±2
橙色	3	10 ³	
黄色	4	10 ⁴	
绿色	5	10 ⁵	± 0.5
蓝色	6	10 ⁶	± 0.2
紫色	7	10 ⁷	± 0.1
灰色	8	10 8	
白色	9	10 ⁹	

三色环: DDM(数字-数字-0的个数)误差: 一般为20%

- 所有电阻读数均由 左向右, 对三色环 来说, 放置电阻 时, 色环集中的一 端放在左面, 空白 的一端放在右面:
- 第一、二环为数字 范例: D D M 环,第三环表示0 的个数, 合起来代 表的数字即为电阻 的阻值:

1)红紫棕

 $270\Omega + 20\%$ $2 \ 7 \ 0$

2)橙橙红

 $3\ 3\ 00\ 3300\Omega\pm20\%$

3)绿蓝橙

6 000 $56K\Omega \pm 20\%$

四色环: DDM± T(数字-数字-0的个数±误差)

范例: D D M ± T

- 1)黄白棕 金
 - 4 9 0 5%
- $490\Omega \pm 5\%$
- 2)红红橙 金
 - $2\ 2\ 000\ 5\%\ 22000\Omega \pm 5\%$
- 3) 棕 黑 黄 银
 - 1 0 0000 10% 100K $\Omega \pm 10\%$
- 4)蓝黄绿 银
 - 6 4 00000 10% $6.4M\Omega \pm 10\%$

四环电阻:半精密电阻,误差>2%,多为碳膜电阻(RT);

•四环电阻读取时金 (银)色环放置右端, 依次序<u>从左向右</u>读 取;

五色环: DDDM± T(数字-数字-数字-0的个数±误差)

范例: D D D M ± T

- 1)红紫绿红棕
 - 2 7 5 00 1%
- 2) 紫绿 棕 黑 棕

 $751\Omega\pm1\%$

3)棕红紫 金 红

1 2 7
$$10^{-1}$$
 2% $12.7\Omega \pm 2\%$

4)紫绿黑 银 棕

7 5 0 10⁻² 1% 7.50 $\Omega \pm 1\%$

五环电阻:精密电 阻,误差≤2%,多为 金属膜电阻(RJ);

•五环电阻读取时色环密 集一方放置左端, 右端误 差环一般为棕、红色,依 次序从左向右读取;

☆.根据电阻值和误差值找色环

一旦知道了色环的含义,就可以通过色环知道阻值,但要记住进行单位换算! (如: $75 \text{K}\Omega = 75~000~\Omega$)

范例:

- $2)65 \text{ K}\Omega \pm 5\%$
- 65 000Ω±5% 蓝绿橙金(四色环)
- 3)2.65M $\Omega \pm 1\%$
- 2 650 000Ω±1% ── 红蓝绿黄棕(五色环)

∇. 除了四环电阻和五环电阻,还有六环电阻,阻值读法与五环电阻一样,最后一环表示温度系数!

直标型电阻:

大多数的电阻是用色环标注的,但是某些特殊的电阻,是通过把字母和数字印刷在电阻表面,依照一定的规律直接读取的:直标式!

功率电码表

电码	RN55	RN60	RN65	RN70	RN75
功率值	1/8W	1/4W	1/2W	3/4W	1 W

误差代码表

字母代码	C	D	F	G	J	K	M
误差(±%)	0.25	0.5	1	2	5	10	20

范例:

- 1) RN55 1051F \longrightarrow 1/8W 1050 $\Omega \pm 1\%$
- 2) RN65 2001F \longrightarrow 1/2W 2000 $\Omega \pm 1\%$
- 3) RN60 28R1F \rightarrow 1/4W 28.1 $\Omega \pm 0.5\%$

反过来推算: 1/2W 385 Ω ±1% ── RN65 3850F

范例(工程编码):

RW12T160J025 \rightarrow 25W 16 Ω ± 5%

RW03S4020F003 \longrightarrow 3W 402 Ω ± 1%

RW03SR665F001 \longrightarrow 1W 0.665 $\Omega \pm 1\%$

RW12M252J025 \longrightarrow 25W 2500 $\Omega \pm 5\%$

☆.功率电阻功率越大,体积也越大,当功率≥1W时,电阻不得与印制板接触(散热)!

电阻网络(排阻)

电阻网络与色环电阻相比具有整齐、少占空间的优点,它的内部实际上是由很多个电阻整齐的排在一起,所以也叫做排阻! (排阻有方向性)

(SIP) 单列直插排阻

(DIP) 双列直插排阻

方向性:排阻有方向性,如图示,一号管脚由小圆点来表示,当你拿着元件时,使元件主体面对自己,槽或小圆点向上,左边的第一个管脚是

第一号管脚!

25

可变电阻(电位器)

•特点:

- •可变电阻的阻值是可以改变的;
- •可变电阻通常有3个或更多的引脚;
- 1个可调的柄或螺丝;
- •阻值与误差用数字和字母印刷在元件上;

形形色色的可变电阻

敏感电阻(热敏、光敏、压敏)

1.热敏电阻

2.光敏电阻

3.压敏电阻

水泥电阻

水泥电阻:

----汉达制作----

1.电感(L)

电感是电路中用来存储磁场能量的元件,它由单线圈组成,这些线圈有的有铁心,有的则没有,单位通常以微亨(uH)表示; (通直流、阻交流)

2.变压器(T)

变压器是将能量从一个回路传递到另一个回路的电子元件,它由两个or两个以上的线圈组成,其外部由铁芯材料封装,装配到电路时,必须遵从一定的方向,功能为调节交流电的电压和电流;

3.集成电路(IC)

把电阻、电感、二极管等制造在一个元件封装中,就叫做集成电路,我们俗称芯片(IC);

• IC具有方向性; IC的第一号管脚的识别方法: 拿着IC, 使其管脚向外, 元件体面对自

己,极性标志向上 极性标志左边的第一个管脚部是第一是管脚。

1号管脚

----汉达制作----

4. IC插座

- •IC插座的使用是为了使IC的撤换不用撤焊和重新焊接,直接换下即可。IC插座是有极性的,其极性标志是IC插座一端上的挟槽,插入时必须对着板上的极性标志插座。
- •IC插座的管脚必须全部插入孔中。

5.晶振

----汉达制作----

6.液晶显示类

点阵

数码管

