TEST REPORT

Reference No	:	WTS19S12083687W
FCC ID	:	2ACQSBMOX1RX
Applicant	:	Guangzhou Si Bao Jian Electronics Co., Ltd.
Address	:	No.7, Nanbei Main Road, Shitan Town, Zengcheng, Guangzhou City Guangdong Province, 511370, China
		Shenzhen Valuelink E-Commerce Co.,Ltd.
Address	:	2207, Building 4, Tian'an Yungu Industrial Park, Bantian Street, Longgang District, Shenzhen, China
Product	:	baby monitor
Model(s)	:	BMO-X1
Standards	:	FCC CFR47 Part 15 Section 15.247
Date of Receipt sample	:	2019-12-04
Date of Test	:	2019-12-04 to 2019-12-12
Date of Issue	:	2019-12-12

Remarks:

Test Result.....: Pass

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By: Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Tel:+86-755-83551033 Fax:+86-755-83552400

Compiled by:	Approved by:
Jack Wen	WALTEK 2 2 h ouf
Jack Wen / Test Engineer	Philo Zhong / Manager

Reference No.: WTS19S12083687W Page 2 of 51

1. Revision History

Test report No.	Date of Receipt sample	Date of Test	Date of Issue	Purpose	Comment	Approved
WTS19S12083687W	2019-12-04	2019-12-04 to 2019-12-12	2019-12-12	original	-	Valid

2. Contents

		Page
GENE		
4.1		
5.2	MEASUREMENT UNCERTAINTY	
5.3	TEST EQUIPMENT CALIBRATION	
• • •		
CONE		
6.1		
6.4		
RADI		
7.1		
7.2	TEST SETUP	
	SPECTRUM ANALYZER SETUP	
8.2	TEST RESULT	
20 DE	B BANDWIDTH MEASUREMENT	22
9.1	Test Procedure	22
9.2	TEST RESULT	22
MA	XIMUM PEAK OUTPUT POWER	24
10.1	TEST PROCEDURE	
10.2	TEST RESULT	
НО	PPPING CHANNEL SEPARATION	27
11.1		
. — . —		
	REVI: CONT TEST 4.1 4.2 4.3 4.4 EQUI 5.1 5.2 5.3 5.4 CONI 6.1 6.2 6.3 6.4 RADI 7.1 7.2 7.3 7.4 7.5 BANI 8.2 20 DE 9.1 9.2 MA 10.1 10.2 11.1 11.2 NU 12.1 12.2 DV 13.1 13.2	4.2 DETAILS OF E.U.T. 4.3 CHANNEL LIST 4.4 TEST MODE EQUIPMENT USED DURING TEST 5.1 EQUIPMENTS LIST 5.2 MEASUREMENT UNCERTAINTY. 5.3 TEST EQUIPMENT CALIBRATION 5.4 TEST FACILITY CONDUCTED EMISSION 6.1 E.U.T. OPERATION. 6.2 EUT SETUP. 6.3 MEASUREMENT DESCRIPTION 6.4 CONDUCTED EMISSION TEST RESULT. RADIATED SPURIOUS EMISSIONS. 7.1 EUT OPERATION. 7.2 TEST SETUP. 7.3 SPECTRUM ANALYZER SETUP. 7.4 TEST PROCEDURE. 7.5 SUMMARY OF TEST RESULTS. BAND EDGE MEASUREMENT 8.1 TEST PROCEDURE 8.2 TEST RESULT. 20 DB BANDWIDTH MEASUREMENT. 9.1 TEST PROCEDURE 9.2 TEST RESULT. MAXIMUM PEAK OUTPUT POWER 10.1 TEST PROCEDURE 10.2 TEST RESULT. HOPPING CHANNEL SEPARATION. 11.1 TEST PROCEDURE 11.2 TEST RESULT. NUMBER OF HOPPING FREQUENCY 12.1 TEST PROCEDURE. 12.2 TEST RESULT. DWELL TIME.

Reference No.: WTS19S12083687W Page 4 of 51

15.	RF	EXPOSURE	35
	15.1	Requirements	35
	15.2	THE PROCEDURES / LIMIT	35
	15.3	MPE CALCULATION METHOD	36
16.	PH	OTOGRAPHS – TEST SETUP	37
	16.1	PHOTOGRAPH – RADIATION SPURIOUS EMISSION TEST SETUP	37
	16.2	CONDUCTED EMISSION	38
17.	PH	OTOGRAPHS - CONSTRUCTIONAL DETAILS	39
	17.1	EXTERNAL PHOTOS	39
	17.2	Internal Photos	43

Reference No.: WTS19S12083687W Page 5 of 51

3. Test Summary

Test Items	Test Requirement	Result			
Conduct Emission	15.207	PASS			
	15.205(a)				
Radiated Spurious Emissions	15.209	PASS			
	15.247(d)				
Dand adaa	15.247(d)	DACC			
Band edge	15.205(a)	PASS			
20dB Bandwidth	15.247(a)(1)	PASS			
Maximum Peak Output Power	15.247(b)(1)	PASS			
Frequency Separation	15.247(a)(1)	PASS			
Number of Hopping Frequency	15.247(a)(1)(iii)	PASS			
Dwell time	15.247(a)(1)(iii)	PASS			
Maximum Permissible Exposure	4.4207/b)/4)	DACC			
(Exposure of Humans to RF Fields)	1.1307(b)(1)	PASS			
Note: Pass=Compliance; NC=Not Compliance; NT=Not Tested; N/A=Not Applicable.					

Reference No.: WTS19S12083687W Page 6 of 51

4. General Information

4.1 General Description of E.U.T

Product: baby monitor

Model(s): BMO-X1

Model Differences: N/A

Frequency Range: 2410.875-2471.625MHz,19 Channels in total

Type of Modulation: GFSK

Antenna installation: Integrated antenna

Antenna Gain: 3dBi

4.2 Details of E.U.T

Ratings: Input: DC 5V, 1A

Battery: DC 3.7V 2000mAh 7.4Wh

4.3 Channel List

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
1	2410.875	2	2414.250	3	2417.625	4	2421.000
5	2424.375	6	2427.750	7	2431.125	8	2434.500
9	2437.875	10	2440.625	11	2441.250	12	2448.000
13	2451.375	14	2454.750	15	2458.125	16	2461.500
17	2464.875	18	2468.250	19	2471.625		

4.4 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectivelyby performing full tests, the worst data were recorded and reported.

Table 1 Tests Carried OutUnderFCC part 15.247

Test mode	Low channel	Middle channel	High channel
Transmitting	2410.875MHz	2441.250MHz	2471.625MHz

5. Equipment Used during Test

5.1 Equipments List

Cond	Conducted Emissions							
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date		
1	EMI Test Receiver	R&S	ESCI 101155		2019-09-17	2020-09-16		
2	LISN	SCHWARZBECK	NSLK 8128	8128-289	2019-09-17	2020-09-16		
3	Limiter	York	MTS-IMP-136	261115-001- 0024	2019-09-17	2020-09-16		
4	Cable	LARGE	RF300	-	2019-09-17	2020-09-16		
3m S	emi-anechoic Chamb	er for Radiation Em	issions					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date		
1	Spectrum Analyzer	R&S	FSP30	100091	2019-04-19	2020-04-18		
2	Broad-band Horn Antenna(1-18GHz)	SCHWARZBECK	BBHA 9120 D	667	2019-04-19	2020-04-18		
3	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	2019-04-19	2020-04-18		
4	Coaxial Cable (above 1GHz)	Тор	1GHz-18GHz	EW02014-7	2019-04-19	2020-04-18		
5	Spectrum Analyzer	R&S	FSP40	100501	2019-09-17	2020-09-16		
6	Broad-band Horn Antenna(18-40GHz)	SCHWARZBECK	BBHA 9170	BBHA917065 1	2019-09-17	2020-09-16		
7	Microwave Broadband Preamplifier (18-40GHz)	SCHWARZBECK	BBV 9721	100472	2019-09-17	2020-09-16		
8	Cable	Тор	18-40GHz	-	2019-09-17	2020-09-16		
3m S	emi-anechoic Chamb	er for Radiation Em	issions					
Item	Equipment	Manufacturer	Model No.	Serial No	Last Calibration Date	Calibration Due Date		
1	Test Receiver	R&S	ESCI	101296	2019-04-20	2020-04-19		
2	Trilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3325	2019-05-24	2020-05-23		
3	Active Loop Antenna	Com-power	AL-130R	10160007	2019-04-28	2020-04-27		
4	Amplifier	ANRITSU	MH648A	M43381	2019-04-19	2020-04-18		
5	Cable Cable	HUBER+SUHNER	CBL2	525178	2019-04-20	2020-04-19		
6	Coaxial Cable (below 1GHz)	Тор	TYPE16 (13M)	-	2019-09-17	2020-09-16		
RF C	onducted Testing							
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date		
1	Spectrum Analyzer	R&S	FSP30	100091	2019-04-19	2020-04-18		
2	Coaxial Cable	Тор	10Hz-30GHz	-	2019-09-17	2020-09-16		

Reference No.: WTS19S12083687W Page 8 of 51

3	Antenna Connector*	Realacc	45RSm	-	2019-09-17	2020-09-16
4	DC Block	Gwave	GDCB-3G-N- SMA	140307001	2019-09-17	2020-09-16

5.2 Measurement Uncertainty

Parameter	Uncertainty
Radio Frequency	$\pm 1 \times 10^{-6}$
RF Power	± 1.0 dB
RF Power Density	± 2.2 dB
	± 5.03 dB
Radiated Spurious	(Bilog antenna 30M~1000MHz)
Emissions test	± 5.47 dB
	(Horn antenna 1000M~25000MHz)

5.3 Test Equipment Calibration

All the test equipments used are valid and calibrated by GUANG ZHOU GRG METROLOGY & TEST CO., LTD. address is No.163, Pingyun Rd. West of Huangpu Ave, Tianhe District, Guangzhou, Guangdong, China.

5.4 Test Facility

FCC Designation No.: CN1201. Test Firm Registration No.: 523476. ISED CAB identifier: CN0013. Test Firm Registration No.: 7760A.

Reference No.: WTS19S12083687W Page 9 of 51

6. Conducted Emission

Test Requirement: FCC CFR 47 Part 15 Section 15.207

Test Method: ANSI C63.10:2013

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class/Severity: Class B

Limit: 66-56 dB_µV between 0.15MHz & 0.5MHz

56 dB μ V between 0.5MHz & 5MHz 60 dB μ V between 5MHz & 30MHz

Detector: Peak for pre-scan (9kHz Resolution Bandwidth)

6.1 E.U.T. Operation

Operating Environment:

Temperature: 21.5 °C
Humidity: 51.9 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in Transmitting mode, the test data were shown in the report.

6.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.10.

6.3 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

Reference No.: WTS19S12083687W Page 10 of 51

6.4 Conducted Emission Test Result

An initial pre-scan was performed on the live and neutral lines.

Only the worst case test data were record in the report.

Live line:

Reference No.: WTS19S12083687W Page 11 of 51

Neutral line:

Reference No.: WTS19S12083687W Page 12 of 51

7. Radiated Spurious Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method: DA 00-705& ANSI C63.10:2013

Test Result: PASS
Measurement Distance: 3m

Limit:

	Field Strength		Field Strength Limit at 3m Measurement Dist		
Frequency (MHz)	uV/m	Distance (m)	uV/m	dBuV/m	
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80	
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40	
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40	
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾	
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾	
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾	
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾	

7.1 EUT Operation

Operating Environment:

Temperature: 23.5 °C
Humidity: 51.1% RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in Transmitting mode, the test data were shown in the report.

7.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.10: 2013.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

Reference No.: WTS19S12083687W Page 14 of 51

The test setup for emission measurement above 1 GHz.

7.3 Spectrum Analyzer Setup

	•	
Below 30MHz		
	Sweep Speed	. Auto
	IF Bandwidth	.10kHz
	Video Bandwidth	.10kHz
	Resolution Bandwidth	.10kHz
30MHz ~ 1GH	z	
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.100kHz
	Video Bandwidth	.300kHz
Above 1GHz		
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.3MHz
	Detector	.Ave.
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.10Hz

Reference No.: WTS19S12083687W Page 15 of 51

7.4 Test Procedure

1. The EUT is placed on a turntable. For below 1GHz, the EUT is 0.8m above ground plane; Forabove1GHz, the EUT is 1.5m above ground plane.

- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions. The spectrum was investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are tested under 3-axes(X,Y,Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.

7.5 Summary of Test Results

Test Frequency: 9kHz ~ 30MHz

The measurements were more than 20 dB below the limit and not reported.

Test Frequency: 30MHz ~ 7.5GHz

Receiver				Turn	RX An	tenna	Corrected	Corrected		
Frequency		Detector	table Angle	Height	Polar	Factor	Amplitude	Limit	Margin	
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
				Low Cha	annel					
486.02	13.67	PK	353	1.3	Н	21.09	34.76	45.00	-10.24	
486.02	13.10	PK	31	1.9	V	21.09	34.19	45.00	-10.81	
4821.75	50.68	PK	262	1.4	V	-1.05	49.63	74.00	-24.37	
4821.75	42.89	Ave	262	1.4	V	-1.05	41.84	54.00	-12.16	
7232.63	46.95	PK	194	1.7	Н	1.34	48.29	74.00	-25.71	
7232.63	41.97	Ave	194	1.7	Н	1.34	43.31	54.00	-10.69	
2313.33	48.54	PK	161	1.4	V	-13.19	35.35	74.00	-38.65	
2313.33	38.50	Ave	161	1.4	V	-13.19	25.31	54.00	-28.69	
2363.46	48.24	PK	58	1.6	Н	-13.15	35.09	74.00	-38.91	
2363.46	37.69	Ave	58	1.6	Н	-13.15	24.54	54.00	-29.46	
2488.38	49.41	PK	328	1.1	V	-13.08	36.33	74.00	-37.67	
2488.38	37.35	Ave	328	1.1	V	-13.08	24.27	54.00	-29.73	

_ Receiver		Turn	RX An	tenna	Corrected	Corrected			
Frequency		Detector	table Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
				Middle Ch	nannel				
486.02	14.88	PK	40	2.0	Н	21.09	35.97	45.00	-9.03
486.02	13.71	PK	104	1.5	V	21.09	34.80	45.00	-10.20
4882.50	49.46	PK	352	1.1	V	-0.63	48.83	74.00	-25.17
4882.50	44.24	Ave	352	1.1	V	-0.63	43.61	54.00	-10.39
7323.75	45.24	PK	246	1.7	Н	2.21	47.45	74.00	-26.55
7323.75	42.79	Ave	246	1.7	Н	2.21	45.00	54.00	-9.00
2310.93	52.17	PK	46	1.3	V	-13.19	38.98	74.00	-35.02
2310.93	38.85	Ave	46	1.3	V	-13.19	25.66	54.00	-28.34
2376.31	50.89	PK	188	1.4	Н	-13.14	37.75	74.00	-36.25
2376.31	38.85	Ave	188	1.4	Н	-13.14	25.71	54.00	-28.29
2496.99	50.28	PK	151	1.8	V	-13.09	37.19	74.00	-36.81
2496.99	38.95	Ave	151	1.8	V	-13.09	25.86	54.00	-28.14

	Receiver		Turn	RX An	tenna	Corrected	Corrected		
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
				High Cha	annel				
486.02	14.19	PK	49	1.0	Н	21.09	35.28	45.00	-9.72
486.02	15.00	PK	337	1.7	V	21.09	36.09	45.00	-8.91
4943.25	50.34	PK	350	1.2	V	-0.25	50.09	74.00	-23.91
4943.25	44.75	Ave	350	1.2	V	-0.25	44.50	54.00	-9.50
7414.88	48.22	PK	239	1.2	Н	2.85	51.07	74.00	-22.93
7414.88	41.31	Ave	239	1.2	Н	2.85	44.16	54.00	-9.84
2320.76	51.84	PK	345	1.0	V	-13.19	38.65	74.00	-35.35
2320.76	38.19	Ave	345	1.0	V	-13.19	25.00	54.00	-29.00
2362.57	50.03	PK	16	1.7	Н	-13.14	36.89	74.00	-37.11
2362.57	36.31	Ave	16	1.7	Н	-13.14	23.17	54.00	-30.83
2499.43	48.09	PK	12	1.3	V	-13.09	35.00	74.00	-39.00
2499.43	38.08	Ave	12	1.3	V	-13.09	24.99	54.00	-29.01

Test Frequency: 7.5GHz ~ 25GHz

The measurements were more than 20 dB below the limit and not reported.

Reference No.: WTS19S12083687W Page 19 of 51

8. Band Edge Measurement

Test Requirement: Section 15.247(d) In addition, radiated emissions which fall in

the restricted bands. as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section

15.209(a) (see Section 15.205(c)).

Test Method: DA 00-705& ANSI C63.10:2013

Test Limit: Regulation 15.247 (d), In any 100 kHz bandwidth outside the

frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Mode: Transmitting and Hopping

8.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz, Sweep = auto Detector function = peak, Trace = max hold Reference No.: WTS19S12083687W Page 20 of 51

8.2 Test Result

Test plots

Reference No.: WTS19S12083687W Page 22 of 51

9. 20 dB Bandwidth Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247
Test Method: DA 00-705& ANSI C63.10:2013

Test Mode: Test in fixing operating frequency at low, Middle, high

channel.

9.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz

9.2 Test Result

Test Channel	Bandwidth
Low	3.640MHz
Middle	3.620MHz
High	3.640MHz

Testplots

Reference No.: WTS19S12083687W Page 24 of 51

10. Maximum Peak Output Power

Test Requirement: FCC CFR47 Part 15 Section 15.247
Test Method: DA 00-705& ANSI C63.10:2013

Test Limit: Regulation 15.247 (b)(1), For frequency hopping systems operating

in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. Forall other frequency hopping systems in the 2400-2483.5 MHz band:

0.125 watts.

Refer to the result "Number of Hopping Frequency" of this

document. The 0.125watts (20.97 dBm) limit applies.

Test mode: Test in fixing frequency transmitting mode.

10.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 10MHz. VBW =10MHz. Sweep = auto; Detector Function = Peak.
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

10.2 Test Result

Test Channel	Output Power (dBm)	Limit (dBm)
Low	16.46	20.97
Middle	16.83	20.97
High	16.55	20.97

Testplots

Low Channel

Middle Channel

Reference No.: WTS19S12083687W Page 27 of 51

11. Hopping Channel Separation

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: DA 00-705& ANSI C63.10:2013

Test Limit: Regulation 15.247(a)(1) Frequency hopping systems shall have

hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 1W.

Test Mode: Test in hopping transmitting operating mode.

11.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- Set the spectrum analyzer: RBW = 100KHz. VBW = 300KHz , Span = 7MHz. Sweep = auto;
 Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

11.2 Test Result

Test Channel	Separation (MHz)	Result
Low	3.374	PASS
Middle	3.374	PASS
High	3.388	PASS

Test plots

Reference No.: WTS19S12083687W Page 30 of 51

12. Number of Hopping Frequency

Test Requirement: FCC CFR47 Part 15 Section 15.247
Test Method: DA 00-705& ANSI C63.10:2013

Test Limit: Regulation 15.247 (a)(1)(iii) Frequency hopping systems in

the 2400-2483.5 MHz band shall use at least 15 channels.

Test Mode: Test in hopping transmitting operating mode.

12.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 1MHz. VBW = 1MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.
- 4. Set the spectrum analyzer: Start Frequency = 2.4GHz, Stop Frequency = 2.483GHz. Sweep=auto;

12.2 Test Result

Test Plots: 19Channels in total

Reference No.: WTS19S12083687W Page 31 of 51

13. Dwell Time

Test Requirement: FCC CFR47 Part 15 Section 15.247
Test Method: DA 00-705& ANSI C63.10:2013

Test Limit: Regulation 15.247(a)(1)(iii) Frequency hopping systems in

the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided

that a minimum of 15 channels are used.

Test Mode: Test in hopping transmitting operating mode.

13.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set spectrum analyzer span = 0. Centreon a hopping channel;
- 3. Set RBW = 1MHz and VBW = 3MHz.Sweep = as necessary to capture the entire dwell time per hopping channel.
- 4. Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

13.2 Test Result

Channel	marker-delta(ms)	Observation Period(s)	Burst (times)	DwellTime(s)	Limits (s)
Low	0.113	7.6	93	0.011	0.4
High	0.112	7.6	85	0.010	0.4

Calculation formula:

Dwell time=0.4s*Number ofHoppingFrequency*Burst(Times)*

(markerdelta/1000)/ObservationPeriod

Remark: Number ofHoppingFrequency=19; ObservationPeriod=7.6s; Low

Channel=2410.875MHz; High Channel=2471.625MHz

Test Plots Low Channel

Burst (times)

marker-delta

14. Antenna Requirement

According to the FCC Part 15 Paragraph 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. This product has a Integrated antenna, fulfil the requirement of this section.

ANT

Reference No.: WTS19S12083687W Page 35 of 51

15. RF Exposure

Test Requirement: FCC Part 1.1307
Evaluation Method: FCC Part 2.1091

15.1 Requirements

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

15.2 The procedures / limit

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time E ², H ²or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz; *Plane-wave equivalent power density

Reference No.: WTS19S12083687W Page 36 of 51

15.3 MPE Calculation Method

P = Peak RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

 $Pd = P_{out}*G/(4*Pi*R^2)$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained.

Antenna Gain (dBi)	Antenna Gain (numeric)	Max. Peak Output Power (dBm)	Peak Output Power (mW)	Power Density (mW/cm2)	Limit of Power Density (mW/cm2)
3.00	1.995	16.83	48.19	0.0191	1

Compliance.

16. Photographs – Test Setup

16.1 Photograph – Radiation Spurious Emission Test Setup

Below 30MHz

30MHz-1GHz

Above 1GHz

16.2 Conducted Emission

17. Photographs - Constructional Details

17.1 External Photos

Reference No.: WTS19S12083687W Page 40 of 51

Reference No.: WTS19S12083687W Page 41 of 51

Reference No.: WTS19S12083687W Page 42 of 51

17.2 Internal Photos

Reference No.: WTS19S12083687W Page 46 of 51

Reference No.: WTS19S12083687W Page 49 of 51

Reference No.: WTS19S12083687W Page 51 of 51

===== End of Report =====