

EN 55032:2015/A1:2020 EN 55035:2017/A11:2020

TEST REPORT

For

STM32MP257 Core Board

MODEL NUMBER: ATK-CLMP257B

REPORT NUMBER: E04A25031316E00101

ISSUE DATE: April 15, 2025

Prepared for

Guangzhou Xingyi Electronic Technology Co., Ltd Room 805-808, Room 801, Building 4, No. 1, 3, and 5, Kesheng Road, Guangzhou Private Science and Technology Park, No. 1633 Beitai Road, Baiyun District, Guangzhou City

Prepared by

Guangdong Global Testing Technology Co., Ltd.

Room 101-105, 203-210, Building 1, No.2, Keji 8 Road, Songshan Lake Park, Dongguan city, Guangdong, People's Republic of China, 523808

This report is based on a single evaluation of the submitted sample(s) of the above mentioned product, it does not imply an assessment of the production of the products. This report shall not be reproduced, except in full, without the written approval of Guangdong Global Testing Technology Co., Ltd.

TRF No.: 04-E001-0B TRF Originator: GTG TRF Date: 2023-12-13 Web: www.gtggroup.com E-mail: info@gtggroup.com Tel.: 86-400 755 8988

REPORT NO.: E04A25031316E00101 Page 2 of 31

Revision History

Rev.	Issue Date	Revisions	Revised By
VO	April 15, 2025	Initial Issue	

REPORT NO.: E04A25031316E00101 Page 3 of 31

Summary of Test Results

Emission						
Standard	Test Item	Limit	Result			
EN	Conducted emissions (AC mains power ports)	Clause 5	N/A			
EN 55032:2015/A1:202	Radiated emissions below 1GHz	Clause 5	Pass			
O	Radiated emissions above 1GHz	Clause 5	Pass			

Immunity (EN 55035:2017/A11:2020)						
Basic Standard	Test Item	Test Specification	Criteria	Result		
IEC 61000-4-2:2008	Electrostatic Discharge	Contact +/- 4 kV; Air +/- 2 kV;+/- 4 kV;+/- 8 kV	В	Pass		
IEC 61000-4-3:2006 +A1:2007+A2:2010	Continuous RF electromagnetic field disturbances	3 V/m, 80 %; 1 kHz, AM 80 MHz-1000 MHz; 1800 MHz,2600 MHz,3500 MHz,5000 MHz	А	Pass		
IEC 61000-4-4:2012	Electrical fast transients burst (AC mains power ports)	+/- 1.0 kV 5/50 ns, 5 kHz	В	N/A		
IEC 61000-4-5:2014	Surges (AC mains power ports)	+/-2 kV (Common) +/-1 kV (Differential) 1.2/50 us	В	N/A		
IEC 61000-4-6:2013	Continuous induced RF disturbances (AC mains power ports)	150 kHz-80 MHz 80 %, 1 kHz 0.15 MHz-10 MHz: 3 V 10 MHz-30 MHz: 3 V~1 V 30 MHz-80 MHz: 1 V	A	N/A		
IEC 61000-4-8:2009	Power frequency magnetic field	50 Hz, 1 A/m	А	N/A (NOTE 1, 2)		
IEC 61000-4- 11:2004	Voltage dips and interruptions (AC mains power ports)	Residual < 5 %: 0.5 cycle; Residual 70 %: 25 cycles; Residual < 5 %: 250 cycles;	B,C,C	N/A		

Note:

- 1. N/A: In this whole report not applicable.
- 2. Only applicable to EUT containing devices susceptible to magnetic fields, such as CRT monitors, Hall elements, electrodynamic microphones, magnetic field sensors.

TRF No.: 04-E001-0B

^{*}This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

^{*}The measurement result for the sample received is <Pass> according to <EN 55032:2015/A1:2020, EN 55035:2017/A11:2020> when <Accuracy Method> decision rule is applied.

CONTENTS

1. ATT	ESTATION OF TEST RESULTS	5
2. TES	T METHODOLOGY	6
3. FAC	CILITIES AND ACCREDITATION	6
4. CAL	IBRATION AND UNCERTAINTY	7
4.1.	MEASURING INSTRUMENT CALIBRATION	7
4.2.	MEASUREMENT UNCERTAINTY	7
5. EQU	JIPMENT UNDER TEST	8
5.1.	DESCRIPTION OF EUT	8
5.2.	TEST MODE	8
5.3.	SUPPORT UNITS FOR SYSTEM TEST	8
6. ME <i>A</i>	ASURING EQUIPMENT AND SOFTWARE USED	9
7. EMI	SSION TEST	11
7.1.	Radiated emissions below 1GHz	11
7.2.	Radiated emissions above 1GHz	15
8. IMM	UNITY TEST	19
8.1.	PERFORMANCE CRITERIA	19
8.2.	Electrostatic Discharge	22
8.3.	Continuous RF electromagnetic field disturbances	25
APPEND	DIX: PHOTOGRAPHS OF TEST CONFIGURATION	28
V DDENL	DIY: PHOTOGRAPHS OF THE FILT	30

REPORT NO.: E04A25031316E00101 Page 5 of 31

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: Guangzhou Xingyi Electronic Technology Co., Ltd

Address: Room 805-808, Room 801, Building 4, No. 1, 3, and 5, Kesheng

Road, Guangzhou Private Science and Technology Park, No.

1633 Beitai Road, Baiyun District, Guangzhou City

Manufacturer Information

Company Name: Guangzhou Xingyi Electronic Technology Co., Ltd

Address: Room 805-808, Room 801, Building 4, No. 1, 3, and 5, Kesheng

Road, Guangzhou Private Science and Technology Park, No.

1633 Beitai Road, Baiyun District, Guangzhou City

Factory Information

Company Name: DongGuan ZhiChen Electronic Technology Co.Ltd

Address: Room 201, No. 60, Longbeiling Lane, Lincun, Tangxia Town,

Dongguan City, Guangdong Province, China

EUT Information

Product Description: STM32MP257 Core Board

Model: ATK-CLMP257B

Brand: ALIENTEK
Sample Received Date: 2 April 2025
Sample ID: A25031316 001

Date of Tested: April 2, 2025 to April 15, 2025

APPLICABLE STANDARDS				
STANDARD TEST RESULTS				
EN 55032:2015/A1:2020	Pass			
EN 55035:2017/A11:2020	Pass			

Prepared By:

Jansen Lin

Project Engineer

Laboratory Leader

San Le

Checked By:

Alan He

Approved By:

Shawn Wen

Laboratory Manager

CERTIFICA

REPORT NO.: E04A25031316E00101 Page 6 of 31

2. TEST METHODOLOGY

All tests were performed in accordance with the standard EN 55032:2015/A1:2020, EN 55035:2017/A11:2020

3. FACILITIES AND ACCREDITATION

	A2LA (Certificate No.: 6947.01)	
	Guangdong Global Testing Technology Co., Ltd.	
	has been assessed and proved to be in compliance with A2LA.	
	FCC (FCC Designation No.: CN1343)	
	Guangdong Global Testing Technology Co., Ltd.	
	has been recognized to perform compliance testing on equipment	
Accreditation Certificate	subject to Supplier's Declaration of Conformity (SDoC) and	
	Certification rules	
	ISED (Company No.: 30714)	
	Guangdong Global Testing Technology Co., Ltd.	
	has been registered and fully described in a report filed with ISED.	
	The Company Number is 30714 and the test lab Conformity	
	Assessment Body Identifier (CABID) is CN0148.	

Note: All tests measurement facilities use to collect the measurement data are located at Room 101-105, 203-210, Building 1, No.2, Keji 8 Road, Songshan Lake Park, Dongguan city, Guangdong, People's Republic of China, 523808

REPORT NO.: E04A25031316E00101 Page 7 of 31

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests

performed on the apparatus:

Test Item	Measurement Frequency Range	К	U(dB)
Radiated emissions below 1GHz	30 MHz -1 GHz	2	3.79
Radiated emissions above 1GHz	1 GHz - 18 GHz	2	5.62

Note1: This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level using a coverage factor of k=2.

Note 2: According to the standard CISPR 16-4-2, the MU for the Conducted emissions from the AC mains power ports using AMN should not exceed 3.8 in range of 9kHz to 150kHz and 3.4 in range of 150kHz to 30MHz. We have considered the test results containing the value of Ulab (in dB) for the measurement instrumentation actually used for the measurements.

REPORT NO.: E04A25031316E00101 Page 8 of 31

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name		STM32MP257 Core Board		
Model		ATK-CLMP257B		
EUT Classification		Class B		
Internal Frequency		above 108MHz		
Ratings		INPUT:DC5V 1A		
Power Supply	DC	DC5V from host unit		

5.2. TEST MODE

Test Mode	Description
M01	Normal Working: Operate according to the user manual

5.3. SUPPORT UNITS FOR SYSTEM TEST

The EUT has been tested as an independent unit

REPORT NO.: E04A25031316E00101 Page 9 of 31

6. MEASURING EQUIPMENT AND SOFTWARE USED

Test Equipment of Radiated emissions below 1GHz						
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date	
Chamber	ETS	9*6*6	Q2146	8/30/2022	8/29/2025	
Receiver	R&S	ESCI3	101409	9/14/2024	9/13/2025	
Loop Antenna	ETS	6502	243668	2/22/2025	2/21/2028	
Pre-Amplifier	HzEMC	HPA-9K0130	HYPA21001	9/14/2024	9/13/2025	
Biconilog Antenna	Schwarzbeck	VULB 9168	1315	10/10/2022	10/9/2025	
Biconilog Antenna	ETS	3142E	243651	2/22/2025	2/21/2028	
Test Software for RE	Farad	EZ-EMC	V1.1.4.2	N/A	N/A	

Test Equipment of Radiated emissions above 1GHz						
Equipment Manufacturer Model No. Serial No. Last Cal. Due Date						
Spectrum Analyzer	R&S	FSV40	101413	9/14/2024	9/13/2025	
Pre-Amplifier	HzEMC	HPA-1G1850	HYPA21003	9/14/2024	9/13/2025	
Horn antenna	ETS	3117	246069	2/22/2025	2/21/2028	
Test Software for RE	Farad	EZ-EMC	V1.1.4.2	N/A	N/A	

Test Equipment of Electrostatic Discharge					
Equipment Manufacturer Model No. Serial No. Last Cal. Due Date					
ESD Simulator	TESEQ	NSG437	336	9/14/2024	9/13/2025

Test Equipment of Continuous RF electromagnetic field disturbances					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
Stacked Log-Per- Broadband Antenna	Schwarzbeck	STLP 9129	170	N/A	N/A
Power amplifier	MiCOTOP	MPA-80- 1000-500	MPA220933 6	9/13/2024	9/12/2025
Power amplifier	MiCOTOP	MPA-1000- 6000-100	MPA220933 7	9/13/2024	9/12/2025
EPM Series Power Meter	Keysight	N1914A	MY53240003	9/14/2024	9/13/2025
Average Power Sensor	Keysight	E9304A	MY41498925	9/14/2024	9/13/2025
Average Power Sensor	Keysight	E9304A	MY41497454	9/14/2024	9/13/2025
EXG Analog Signal Generator	Keysight	N5171B	MY61252624	9/14/2024	9/13/2025
Field Probe	Narda	EP 601	811ZX11137	9/14/2024	9/13/2025
Microphone kit	Magasig	MPA 663	220803075	9/14/2024	9/13/2025
Test Software for RS	HzEMC	FASLAB-RS	V2.7.2.3	N/A	N/A

REPORT NO.: E04A25031316E00101 Page 11 of 31

7. EMISSION TEST

7.1. RADIATED EMISSIONS BELOW 1GHZ

LIMITS

(a). Limits up to 1 GHz

	Class A		Class B		
FREQUENCY (MHz)	At 10 m	At 3 m	At 10 m	At 3 m	
	dBμV/m	dBµV/m	dBµV/m	dBμV/m	
30 – 230	40	50	30	40	
230 – 1000	47	57	37	47	

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission level (dBµV/m)=20log Emission level (uV/m).
- (3) If the highest frequency of the internal sources of the EUT is less than 108 MHz, the measurement shall only be made up to 1 GHz. If the highest frequency of the internal sources of the EUT is between 108 MHz and 500 MHz, the measurement shall only be made up to 2 GHz. If the highest frequency of the internal sources of the EUT is between 500 MHz and 1 GHz, the measurement shall only be made up to 5 GHz. If the highest frequency of the internal sources of the EUT is above 1 GHz, the measurement shall be made up to 5 times the highest frequency or 6 GHz, whichever is less.

TEST PROCEDURE

Below 1 GHz and above 30 MHz

The setting of the spectrum analyzer

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak and QP
Trace	Max hold

- 1. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp was used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 2. The EUT was placed on a turntable with 80 cm above ground.
- 3. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- 4. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

TRF No.: 04-E001-0B

REPORT NO.: E04A25031316E00101 Page 12 of 31

- 5. Cables of hand-operated devices, such as keyboards and mice, shall be placed as for normal used.
- 6. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 7. For measurement below 1 GHz, the initial step in collecting Radiated emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.

TEST SETUP

TEST ENVIRONMENT

Temperature	22.8℃	Relative Humidity	53%
Atmosphere Pressure	101kPa		

TEST MODE

Pre-test Mode:	M01 ~ M01
Final Test Mode:	M01

Note: All test modes had been tested, but only the worst data recorded in the report.

REPORT NO.: E04A25031316E00101 Page 13 of 31

TEST RESULTS

Antenna::Horizontal Mode: M01

No	Frequenc	Reading	Correct	Measure-	Limit	Margi	Detecto	Commen
•	y	Level(dBuV	Factor(dB/m	ment(dBuV/m	(dBuV/m	n	r	t
	(MHz)))))	(dB)		
1	166.0680	42.19	-12.61	29.58	40.00	-10.42	QP	
2	240.8304	46.46	-14.00	32.46	47.00	-14.54	QP	
3	290.0172	49.34	-12.32	37.02	47.00	-9.98	QP	
4	350.4768	47.01	-10.87	36.14	47.00	-10.86	QP	
5	393.4723	48.84	-9.30	39.54	47.00	-7.46	QP	
6 *	447.9822	46.96	-7.32	39.64	47.00	-7.36	QP	

REPORT NO.: E04A25031316E00101 Page 14 of 31

Antenna::Vertical	Mode: M01

No	Frequenc	Reading	Correct	Measure-	Limit	Margi	Detecto	Commen
•	y	Level(dBuV	Factor(dB/m	ment(dBuV/m	(dBuV/m	n	r	t
	(MHz)))))	(dB)		
1	55.8047	39.56	-12.26	27.30	40.00	-12.70	QP	
2	75.9773	39.20	-15.60	23.60	40.00	-16.40	QP	
3 *	165.4866	48.54	-12.54	36.00	40.00	-4.00	QP	
4	239.1472	45.14	-14.10	31.04	47.00	-15.96	QP	
5	291.0360	45.06	-12.31	32.75	47.00	-14.25	QP	
6	337.2155	47.80	-10.99	36.81	47.00	-10.19	QP	

Note: 1. Result = Reading +Correct (Amplifier Factor + Cable Loss + Antenna Factor)

2. Margin = Result - Limit

REPORT NO.: E04A25031316E00101 Page 15 of 31

7.2. RADIATED EMISSIONS ABOVE 1GHZ

LIMITS

(a). Limits above 1 GHz

FREQUENCY (MHz)	Class A (at 3 m) dBµV/m		Class B (at 3 m) dBµV/m	
PREQUENCT (IVID2)	Peak	Avg	Peak	Avg
1000-6000	80	60	74	54

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission level (dBµV/m)=20log Emission level (uV/m).
- (3) If the highest frequency of the internal sources of the EUT is less than 108 MHz, the measurement shall only be made up to 1 GHz. If the highest frequency of the internal sources of the EUT is between 108 MHz and 500 MHz, the measurement shall only be made up to 2 GHz. If the highest frequency of the internal sources of the EUT is between 500 MHz and 1 GHz, the measurement shall only be made up to 5 GHz. If the highest frequency of the internal sources of the EUT is above 1 GHz, the measurement shall be made up to 5 times the highest frequency or 6 GHz, whichever is less.

TEST PROCEDURE

Above 1 GHz

The setting of the spectrum analyzer

RBW	1 MHz
VBW	3 MHz
Sweep	Auto
II IATACTOR	Peak: Peak AVG: RMS
Trace	Max hold

- a. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- b. The EUT was placed on a turntable with 80 cm above ground.
- c. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- d. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

REPORT NO.: E04A25031316E00101 Page 16 of 31

- e. Cables of hand-operated devices, such as keyboards and mice, shall be placed as for normal used.
- f. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- g. For measurement above 1 GHz, the peak emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the peak limit. If peak result complies with average limit, average result is deemed to comply with average limit.
- h. The average emission measurement will be measured by the RMS detector and must comply with the average limit.

TEST SETUP

TEST ENVIRONMENT

Temperature	22.5℃	Relative Humidity	51%
Atmosphere Pressure	101kPa		

TEST MODE

Pre-test Mode:	M01 ~ M01
Final Test Mode:	M01

Note: All test modes had been tested, but only the worst data recorded in the report.

REPORT NO.: E04A25031316E00101 Page 17 of 31

TEST RESULTS

Antenna::Vertical Mode: M01

No	Frequenc	Reading	Correct	Measure-	Limit	Margi	Detecto	Commen
	y	Level(dBuV	Factor(dB/m	ment(dBuV/m	(dBuV/m	n	r	t
	(MHz)))))	(dB)		
1	1816.000	59.08	-12.80	46.28	74.00	-27.72	peak	
2	1816.000	48.00	-12.80	35.20	54.00	-18.80	AVG	
3	2144.500	55.05	-11.00	44.05	74.00	-29.95	peak	
4	2144.500	41.80	-11.00	30.80	54.00	-23.20	AVG	
5	2474.500	57.39	-10.02	47.37	74.00	-26.63	peak	
6	2474.500	45.72	-10.02	35.70	54.00	-18.30	AVG	
7	2805.500	53.08	-8.60	44.48	74.00	-29.52	peak	
8	2805.500	40.00	-8.60	31.40	54.00	-22.60	AVG	
9	3697.000	53.84	-4.57	49.27	74.00	-24.73	peak	
10	3697.000	41.47	-4.57	36.90	54.00	-17.10	AVG	
11	4459.500	51.70	-2.66	49.04	74.00	-24.96	peak	
12	4459.500	40.46	-2.66	37.80	54.00	-16.20	AVG	

REPORT NO.: E04A25031316E00101 Page 18 of 31

Antenna::Horizontal	Mode: M01

No	Frequenc	Reading	Correct	Measure-	Limit	Margi	Detecto	Commen
•	y	Level(dBuV	Factor(dB/m	ment(dBuV/m	(dBuV/m	n	r	t
	(MHz)))))	(dB)		
1	1480.000	58.66	-14.84	43.82	74.00	-30.18	peak	
2	1480.000	45.24	-14.84	30.40	54.00	-23.60	AVG	
3	1810.000	61.67	-12.85	48.82	74.00	-25.18	peak	
4	1810.000	48.75	-12.85	35.90	54.00	-18.10	AVG	
5	2470.000	56.65	-10.04	46.61	74.00	-27.39	peak	
6	2470.000	44.74	-10.04	34.70	54.00	-19.30	AVG	
7	2805.000	57.30	-8.60	48.70	74.00	-25.30	peak	
8	2805.000	45.20	-8.60	36.60	54.00	-17.40	AVG	
9	3955.000	58.35	-4.16	54.19	74.00	-19.81	peak	
10	3955.000	45.96	-4.16	41.80	54.00	-12.20	AVG	
11	5555.000	52.33	0.73	53.06	74.00	-20.94	peak	
12	5555.000	39.77	0.73	40.50	54.00	-13.50	AVG	

Note: 1. Result = Reading +Correct (Amplifier Factor + Cable Loss + Antenna Factor)

2. Margin = Result - Limit

REPORT NO.: E04A25031316E00101 Page 19 of 31

8. IMMUNITY TEST

8.1. PERFORMANCE CRITERIA

EN 55035:2017/A11:2020

GENERAL PERFORMANCE CRITERIA

According to EN 55035 standard, the general performance criteria as following:

Criteria A	The equipment shall continue to operate as intended without operator intervention. No degradation of performance, loss of function or change of operating state is allowed below a performance level specified by the manufacturer when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.
During the application of the disturbance, degradation of performance allowed. However, no unintended change of actual operating state or state is allowed to persist after the test. After the test, the equipment shall continue to operate as intended with operator intervention; no degradation of performance or loss of function allowed, below a performance level specified by the manufacturer, who equipment is used as intended. The performance level may be replaced permissible loss of performance. If the minimum performance level (or the permissible performance loss recovery time, is not specified by the manufacturer, then either of these be derived from the product description and documentation, and by who user may reasonably expect from the equipment if used as intended.	
Criteria C	Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions. A reboot or re-start operation is allowed. Information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

REPORT NO.: E04A25031316E00101 Page 20 of 31

PERFORMANCE CRITERIA FOR BROADCAST RECEPTION FUNCTION

The broadcast reception function shall comply with the general performance criteria given in Clause 8 and any relevant annex with the deviations defined in Table A.2.

Table A.2 – Modified test levels for performance criterion A for the broadcast reception function					
Performance	Test type	Group 1	Group 2		
criteria	table clause				
	1.2	The disturbance level is	No test requirements apply		
	1.3	reduced to			
		1 V/m for in-band			
Criterion A		frequencies.			
	2.1	The disturbance level is			
	3.1	reduced to			
	4.1	1 V for in-band frequencies.			

In-band is defined as the entire tuneable operating range of the selected broadcast reception function.

The tuned channel ± 0.5 MHz (lower edge frequency -0.5 MHz up to the upper edge frequency ± 0.5 MHz of the tuned channel) is excluded from testing.

Note: In some countries, there is a requirement to test the tuned channels. Refer to the relevant regional requirements for guidance.

PERFORMANCE CRITERIA FOR PRINT FUNCTION

Criterion A	Refer to chapter B.3.1 of EN 55035:2017/A11:2020
Criterion B	Refer to chapter B.3.2 of EN 55035:2017/A11:2020
Criterion C	Refer to chapter B.3.3 of EN 55035:2017/A11:2020

PERFORMANCE CRITERIA FOR SCAN FUNCTION

Criterion A	Refer to chapter C.3.1 of EN 55035:2017/A11:2020
Criterion B	Refer to chapter C.3.2 of EN 55035:2017/A11:2020
Criterion C	Refer to chapter C.3.3 of EN 55035:2017/A11:2020

PERFORMANCE CRITERIA FOR DISPLAY AND DISPLAY OUTPUT FUNCTION

Criterion A	Refer to chapter D.3.1 and D.3.2 of EN 55035:2017/A11:2020
Criterion B	Refer to chapter D.3.3 of EN 55035:2017/A11:2020
Criterion C	Refer to chapter D.3.4 of EN 55035:2017/A11:2020

PERFORMANCE CRITERIA FOR MUSICAL TONE GENERATING FUNCTION

Criterion A	Refer to chapter E.3.2 of EN 55035:2017/A11:2020
Criterion B	Refer to chapter E.3.3 of EN 55035:2017/A11:2020
Criterion C	Refer to chapter E.3.4 of EN 55035:2017/A11:2020

REPORT NO.: E04A25031316E00101 Page 21 of 31

PERFORMANCE CRITERIA FOR NETWORKING FUNCTION

General requirements for network functions		
Criterion A	Refer to chapter F.3.3.1 of EN 55035:2017/A11:2020	
Criterion B	Refer to chapter F.3.3.2 of EN 55035:2017/A11:2020	
Criterion C	Refer to chapter F.3.3.3 of EN 55035:2017/A11:2020	

Requirements for CPE containing xDSL ports		
Criterion A	Refer to chapter F.4.2 of EN 55035:2017/A11:2020	
Criterion B	Refer to chapter F.4.3 of EN 55035:2017/A11:2020	
Criterion C	Refer to chapter F.4.4 of EN 55035:2017/A11:2020	

PERFORMANCE CRITERIA FOR AUDIO OUTPUT FUNCTION

Criterion A	Refer to chapter G.7.1 of EN 55035:2017/A11:2020
Criterion B	Refer to chapter G.7.2 of EN 55035:2017/A11:2020
Criterion C	Refer to chapter G.7.3 of EN 55035:2017/A11:2020

PERFORMANCE CRITERIA FOR TELEPHONY FUNCTION

Criterion A	Refer to chapter H.4 Table H.1 of EN 55035:2017/A11:2020
Criterion B	Refer to chapter H.4 Table H.1 of EN 55035:2017/A11:2020
Criterion C	Refer to chapter H.4 Table H.1 of EN 55035:2017/A11:2020

REPORT NO.: E04A25031316E00101 Page 22 of 31

8.2. ELECTROSTATIC DISCHARGE

TEST SPECIFICATION

Standard:	EN 55035:2017/A11:2020 IEC 61000-4-2:2008		
Criterion Required:	Performance criteria B		
Discharge Impedance:	330(1±10 %) Ω / 150(1±10 %) pF		
Polarity:	Positive & Negative		
Number of Discharge:	Minimum 10 times at each test point		
Discharge Mode:	Single Discharge		
Discharge Period:	1 second minimum		
Test Level:	Air Discharge: 2 kV, 4 kV, 8 kV (Direct); Contact Discharge: 4 kV (Direct/Indirect)		

TEST PROCEDURE

The test generator necessary to perform direct and indirect application of discharges to the EUT in the following manner:

a. Contact discharge was applied to conductive surfaces and coupling planes of the EUT. During the test, it was performed with single discharges. For the single discharge time between successive single discharges was at least 1 second.

Vertical Coupling Plane (VCP):

The coupling plane, of dimensions $0.5 \text{ m} \times 0.5 \text{ m}$, is placed parallel to, and positioned at a distance 0.1 m from, the EUT, with the Discharge Electrode touching the coupling plane.

The four faces of the EUT will be performed with electrostatic discharge.

Horizontal Coupling Plane (HCP):

The coupling plane is placed under to the EUT. The generator shall be positioned vertically at a distance of 0.1 m from the EUT, with the Discharge Electrode touching the coupling plane. The four faces of the EUT will be performed with electrostatic discharge.

- b. Air discharges at insulation surfaces of the EUT.
 - It was at least ten single discharges with positive and negative at the same selected point.
- c. The test shall be performed with single discharges. On each pre-selected point at least 10 single discharges (in the most sensitive polarity) shall be applied.
- d. For air discharge testing, the test shall be applied at all test levels 2 kV, 4 kV and 8 kV.
- e. For the actual test configuration, please refer to the related Item: EUT Test Photos.

REPORT NO.: E04A25031316E00101 Page 23 of 31

TEST SETUP

TEST ENVIRONMENT

Temperature	22.2 ℃	Relative Humidity	53%
Atmosphere Pressure	101kPa	Test Voltage	

TEST MODE

Test Mode:

REPORT NO.: E04A25031316E00101 Page 24 of 31

TEST RESULTS

Mode	Level(kV)	Polarity	Test Point	Criteria	Result	Judgement
Air Discharge	2,4,8	+	All Slot	В	А	Pass
Air Discharge	2,4,8	ı	All Slot	В	А	Pass
Contact Discharge	4	+	All Metal	В	А	Pass
Contact Discharge	4	ı	All Metal	В	А	Pass
Horizontal Coupling	4	+	Front,rear,left,right	В	А	Pass
Horizontal Coupling	4	-	Front,rear,left,right	В	Α	Pass
Vertical Coupling	4	+	Front,rear,left,right	В	А	Pass
Vertical Coupling	4	-	Front,rear,left,right	В	А	Pass
Air Discharge	15	+	All Slot	/	/	/
Air Discharge	15	-	All Slot	/	/	/
Contact Discharge	8	+	All Metal	/	/	/
Contact Discharge	8	-	All Metal	/	/	/

Observation:

A: No observable change.

Conclusion: The EUT met the requirements of the standard

REPORT NO.: E04A25031316E00101 Page 25 of 31

8.3. CONTINUOUS RF ELECTROMAGNETIC FIELD DISTURBANCES

TEST SPECIFICATION

Standard:	EN 55035:2017/A11:2020 IEC 61000-4-3:2006 +A1:2007+A2:2010			
Criterion Required:	Performance criteria A			
Frequency range:	80 MHz - 1000MHz; 1800 MHz, 2600 MHz, 3500 MHz, 5000 MHz			
Test Level:	Level 2: 3 V/m (measured unmodulated)			
Modulation:	The test signal shall be amplitude modulated to a depth of 80 % by a sinusoidal audio signal of 1 000 Hz.			
Frequency Step:	1 % of fundamental			
Dwell time:	1 seconds			
Antenna Polarization:	Horizontal and vertical			

TEST PROCEDURE

The test procedure was in accordance with IEC 61000-4-3.

- a. The testing was performed in a fully anechoic chamber. The transmit antenna was located at a distance of 3 meters from the EUT.
- b. The disturbance test signal shall be 80 % amplitude modulated by a sine wave, preferably having a frequency of 1 kHz. A frequency other than 1 kHz may be used where permitted within EN 55035 (for example Clause G.3).
- c. 1 % step size is preferred, the frequency range can be swept incrementally with a step size not exceeding 4 % of the previous frequency with a test level of twice the value of the specified test level.
- d. The dwell time at each frequency shall not be less than the time necessary for the EUT to be exercised and to be able to respond. However, the dwell time should not exceed 5 s at each of the frequencies during the scan.
- e. The test was performed with the EUT exposed to both vertically and horizontally polarized fields.

REPORT NO.: E04A25031316E00101 Page 26 of 31

TEST SETUP

TEST ENVIRONMENT

Temperature	23.9℃	Relative Humidity	53%
Atmosphere Pressure	101kPa	Test Voltage	

TEST MODE

Test Mode:

REPORT NO.: E04A25031316E00101 Page 27 of 31

TEST RESULTS

Freq.Range (MHz)	Position (Face)	Polarity (H or V)	Field Strength (V/m) (unmodulated,r.m.s)	Criterion	Result	Judgment
80-1000; 1800; 2600; 3500; 5000;	0°	H&V	3 V/m	А	А	Pass
80-1000; 1800; 2600; 3500; 5000;	90°	H&V	3 V/m	А	А	Pass
80-1000; 1800; 2600; 3500; 5000;	180°	H&V	3 V/m	А	А	Pass
80-1000; 1800; 2600; 3500; 5000;	270°	H&V	3 V/m	А	А	Pass

Observation:

A: No observable change.

Conclusion: The EUT met the requirements of the standard

REPORT NO.: E04A25031316E00101 Page 28 of 31

APPENDIX: PHOTOGRAPHS OF TEST CONFIGURATION

REPORT NO.: E04A25031316E00101 Page 30 of 31

APPENDIX: PHOTOGRAPHS OF THE EUT

External

END OF REPORT