SPTF Scheduling Project

Giacomo Sguotti - 10667547

Used Parameters

 $1/\lambda$ [s]

0.8

 \boldsymbol{L}

0.5

nbIntervals

1000

Conditional Queuing Time

SPTF: Theoretical vs OMNet++ Comparison

MSE_{SPTF}

FCFS vs SPTF Comparison (OMNet++)

General Queuing Time (from OMNet++)

SPTF

 W_q^{SPTF}

0.067272024453848

FCFS

 W_q^{FCFS}

0.075703430027185

Utilization factor

Theoretical

 $ho_{SPTF} = \lambda E[S]$

0.3125

OMNet++

 ρ_{SPTF}

0.31258713738215

Average response Time

OMNet++

 W_{SPTF}

0.31732520810456

 W_{FCFS}

0.32575661555146

Theoretical

$$W_{SPTF}=W^q+E[S]=rac{\lambda E[S^2]}{2}+rac{L}{2}$$

0.30208333333333333

Results

Theoretical and OMNet++ Waiting in queue curves slightly differ and this could be due to the limited amount of samples recorded during the simulation. But as expected, the W_q , and W consequently, is minimized using the SPTF Scheduling. In particular, using the above parameters, with respect to the Queuing System using the FCFS Scheduling the improvement is of 11.7942%.

The statistics used in this comparison can be found in the delivered material as 'Net1FCFS.csv' and 'Net1SPTF.csv'. Using the IPython Notebook file called 'SPTF Scheduling Comparison.ipynb' it is possible to analyze statistics with other parameters by changing the .csv files.