Exam1 Review Chapter2

- 1. Show a truth table for the following functions:
- a. F = AB + BC

ABC	AB	ВС	F
000 001 010 011 100 101 110	0 0 0 0 0 0 1 1	0 0 0 1 0 0 0	0 0 0 1 0 0 1 1

b. G = A'B + (A + B)(B + C)

ABC	A'B	A+ B	B + C	G
000	0	0	0	0
001	0	0	1	0
010	1	1	1	1
011	1	1	1	1
100	0	1	0	0
101	0	1	1	1
110	0	1	1	1
111	0	1	1	1

2. (10 points) Write the Boolean equations for f1 and f2 and draw the logic diagram of the circuit whose outputs are defined by the following truth table: Specify the number of gates and inputs (e.g. 2-input AND) for both functions.

Functions of Three Variables

x	y	Z	Function f ₁	Function f ₂
0	0	0	0	0
0	0	1	1	0
0	1	0	0	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$f1 = x'y'z + xy'z' + xyz$$

Number of gates with inputs:

F1: 3---3 input AND gates

1---3 input OR gates

3 inverters

$$f2 = x'yz + xy'z + xyz' + xyz$$

F2: 4---3 input AND gates
1---4 input OR gate
3 inverters