Отчет по исследовательской работе на тему "Композиции алгоритмов для решения задачи регрессии"

Висков Василий, группа 317

Декабрь 2020

Постановка задачи

Целью исследования является анализ зависимости значения фиксированной функции потерь на отложенной выборке и времени работы композиционных алгоритмов при решении задачи регрессии в зависимости от параметров моделей.

Список экспериментов

В рамках этой работы будет рассмотрен:

- градиентный бустинг над решающими деревьями;
- случайный лес;

Функцией потерь в исследовании будет выступать Root Mean Squared Error, задаваемая формулой:

$$RMSE = \sqrt{\frac{\sum_{i}^{N} (y_i - \hat{y}_i)^2}{N}}$$

Здесь y_i - истинное вещественное значение, поставленное в соответствие объекту i, а \hat{y} - предсказание модели.

Исследование будет проводиться на наборе данных, взятых предположительно с конкурса Boston Houses 2020 [1]. В данных содержались категориальный признак, описывающий номер комнаты, и порядковый признак, описывающий дату. Первый из перечисленных преобразуем с помощью dummy-кодирования, а второй переведем в количество прошедших от заданной даты дней, что будет являться монотонным преобразованиям в данных, к которым деревья решений являются инвариантными. Датасет, состоящий из 17280 прецедентов, будет разбит на обучающую и тестовую выборки в соотношении 7:3.

В качестве параметров по умолчанию, один из которых будет варьироваться, возьмем следующие значения:

- RF:
 - 1. n estimators: 1000;
 - 2. feature subsample size: 0.7;

```
3. \max_{\text{depth: } 22;
```

• GBDT:

```
n_estimators: 1000;
feature_subsample_size: 0.7;
max_depth: 6;
learning_rate: 0.1;
```

Эксперимент 1

Цель эксперимента - изучить зависимость RMSE на отложенной выборке и время работы алгоритма случайного леса в зависимости от следующих факторов:

- количество деревьев;
- размерность подвыборки признаков для одного дерева;
- максимальная глубина дерева;

Дизайн эксперимента

Для эксперимента выбраны следующие значения параметров:

- n estimators \in [10, 100, 300, 500, 800, 1000, 2500];
- feature subsample size $\in [0.1, 0.3, 0.5, 0.7, 0.8, 0.9, 1]$;
- max depth $\in [3, 5, 9, 15, 22, 27, 32, 40, 50, None];$

Специфика реализации позволяет находить оптимальное с точки зрения функции потерь на отложенной выборке количество базовых моделей для фиксированных остальных параметров - найдем это значение в рамках исследования влияния количества деревьев на качество.

Результаты эксперимента

Как можно видеть, при увеличении количества деревьев качество увеличивается, но упирается в некоторый предел, так как перестает выполняться условие независимости построенных базовых моделей из-за ограниченности датасета. Время обучения растет при увеличении количества итераций, что очевидно (таб. 1). На основании графика 1 и подсчета найдено, что для заданных по умолчанию параметров наилучшего результата можно достигнуть при использовании 1677 базовых моделей. О качестве тут нет смысла говорить и сравнивать его, так как от запуска к запуску в силу использования операции бутстрапирования оно может варьироваться.

n_estimators	RMSE	duration (sec)
10	124.8002	0.547
100	119.2506	3.917
300	118.9167	12.211
500	118.1341	19.736
800	118.0323	32.271
1000	117.8181	39.685
2500	118.1271	98.544

Таблица 1: Зависимость RMSE и времени работы от количества деревьев (RF)

Рис. 1: RMSE в зависимости от итерации (RF)

Аналогичная ситуация обстоит и с параметром, отвечающим за размер подвыборки признаков: по мере увеличения размера признакового подпространства растет и качество, но достигает своего предела при определенном значении. В рамках эксперимента оно равно 0.9. При этом время работы алгоритма растет по мере увеличения значения параметра, но резко падает при условии, что рассматривается все пространство признаков каждый раз, что связано, видимо, с накладными расходами на сэмплирование признаков в каждой вершине (таб. 2).

feature_subsample_size	RMSE	duration (sec)
0.1	138.6692	18.465
0.3	122.7939	24.906
0.5	118.9703	32.127
0.7	118.7364	38.966
0.8	118.2980	43.305
0.9	118.1342	46.988
1	154.0329	15.142

Таблица 2: Зависимость RMSE и времени работы от размерности подвыборки признаков (RF)

С параметром max_depth та же картина: по мере увеличения максимальной глубины качество растет, но достигает наибольшего при определенном значении, в нашем случае - при глубине, равной 32. Время работы растет по мере увеличения значения параметра (таб. 3).

\max_depth	RMSE	duration (sec)
3	197.2342	12.114
5	160.297	15.795
9	128.6512	21.223
15	118.837	32.874
22	118.4231	38.725
27	118.3923	39.691
32	117.8966	40.679
40	118.4197	42.233
50	118.2913	43.173
None	118.0025	43.905

Таблица 3: Зависимость RMSE и времени работы от максимальной глубины деревьев (RF)

Эксперимент 2

Цель эксперимента - изучить зависимость RMSE на отложенной выборке и время работы алгоритма градиентного бустинга на деревьях в зависимости от следующих факторов:

- количество деревьев;
- размерность подвыборки признаков для одного дерева;
- максимальная глубина дерева;
- темп обучения;

Дизайн эксперимента

Для эксперимента выбраны следующие значения параметров:

- $n_{\text{estimators}} \in [10, 100, 300, 500, 800, 1000, 2500];$
- feature subsample size $\in [0.1, 0.3, 0.5, 0.7, 0.8, 0.9, 1];$
- $\max_{\text{depth}} \in [3, 5, 9, 15, 22, 27, 32, 40, 50, \text{None}];$
- learning rate $\in [0.001, 0.01, 0.05, 0.1, 0.5, 1];$

Специфика реализации, как и в случае со случайным лесом, позволяет находить оптимальное с точки зрения функции потерь на отложенной выборке количество базовых моделей для фиксированных остальных параметров - найдем это значение в рамках исследования влияния количества деревьев на качество.

Результаты эксперимента

Как можно видеть, при увеличении количества деревьев качество увеличивается, но упирается в некоторый предел: модель переобучается под обучающую выборку. Время обучения растет при увеличении количества итераций, что очевидно (таб. 4). На основании графика 2 и подсчета найдено, что для заданных по умолчанию параметров наилучший результат достигается при использовании 626 базовых моделей (RMSE: 108.1772).

$n_{estimators}$	RMSE	duration (sec)
10	265.5242	0.607
100	112.8786	6.327
300	112.0387	17.743
500	110.6598	28.611
800	112.3461	43.275
1000	111.4958	50.626
2500	111.6600	123.285

Таблица 4: Зависимость RMSE и времени работы от количества деревьев (GB)

Рис. 2: RMSE в зависимости от итерации (GB)

Аналогичная ситуация обстоит и с параметром, отвечающим за размер подвыборки признаков: по мере увеличения размера признакового подпространства растет и качество, но достигает своего предела при определенном значении. В рамках эксперимента оно равняется 0.9. При этом время работы алгоритма растет по мере увеличения значения параметра, но резко падает при условии, что рассматривается все пространство признаков каждый раз, что связано, видимо, с накладными расходами на сэмплирование признаков в каждой вершине (таб. 5).

feature_subsample_size	RMSE	duration (sec)
0.1	122.6883	14.745
0.3	108.8641	24.897
0.5	110.7159	35.600
0.7	109.8719	47.492
0.8	110.8404	52.486
0.9	110.6577	58.807
1	128.2873	9.730

Таблица 5: Зависимость RMSE и времени работы от размерности подвыборки признаков (GB)

С параметром max_depth та же картина: по мере увеличения максимальной глубины качество растет, но достигает наибольшего при определенном значении, в нашем случае - при глубине, равной 5. Заметим, что для градиентного бустинга оказалось, что лучше брать неглубокие деревья, в отличие от деревьев из случайного леса (в предыдущем эксперименте наилучшее качество было достигнуто при значении максимальной глубины, равном 32). Время работы растет по мере увеличения значения параметра (таб. 6).

\max_{depth}	RMSE	duration (sec)
3	110.7048	28.193
5	108.8505	40.940
9	115.7349	68.817
15	121.3925	106.287
22	123.2503	125.441
27	123.0779	125.589
32	123.7637	126.333
40	122.4359	124.326
50	123.1098	119.900
None	123.5908	122.479

Таблица 6: Зависимость RMSE и времени работы от максимальной глубины деревьев (GB)

Темп обучения оказывает такое же влияние на качество по мере его увеличения, наилучшее значение RMSE достигнуто при значении 0.05. При этом на время работы алгоритма оно влияния не оказывает, что ожидаемо: принципиального значения величина этого параметра не имеет в рамках измерения времени выполнения операции умножения выхода базовых моделей на некоторое вещественное число (таб. 7).

learning_rate	RMSE	duration (sec)
0.001	275.9895	46.942
0.01	111.6654	49.603
0.05	109.4831	50.18
0.1	111.1591	50.582
0.5	129.2203	49.699
1	177.6525	48.862

Таблица 7: Зависимость RMSE и времени работы от темпа обучения (GB)

Выводы

• параметры модели можно сравнить с веществами, которые при малых дозах используются в лечебным целях, а при больших становятся ядом, - нужно обязательно включать в пайплайн работы над проектом процесс их подбора;

Список литературы

[1] https://drive.google.com/file/d/1IQOuOojfp7UHc9J1PbrsQB2S9SQ_BWN3/view;