

NWChem: Analysis of Potential Energy Surfaces

What is the Potential Energy Surface (PES)?

The Schrodinger equation is

$$H \left(r_{i}, K, R_{I}, K \right) \Psi \left(r_{i}, K, R_{I}, K \right) = E \Psi \left(r_{i}, K, R_{I}, K \right)$$

$$E = \int K \int K \Psi H \Psi dr_{i} K dR_{I} K$$

- It includes all particle interactions as well as kinetic energies of both electrons and nuclei
- The Born-Oppenheimer approximation assumes that the nuclei are stationary
- The electronic energy then becomes

$$E(R_I, K) = \int K \Psi H \Psi dr_i K$$

- The energy as a function of the nuclear coordinates is the Potential Energy Surface (PES)
 - Note: This excludes the kinetic energy of the nuclei (zero point correction)

Why is the PES important?

- The PES determines many important features
 - The minima a stable molecular structures
 - The saddle points are transition states
 - Energy differences are heats of reaction and barrier heights
 - The path of lowest energy connecting 2 minima is the reaction pathway

Ozone + Ethene

- X Minima
- + Transition states

Geometry Optimizations


```
geometry
  0 0.0 0.0 -1.18
  c 0.0 0.0 0.00
  0 0.0 0.0 1.18
end
basis
    library 6-31g*
end
dft
  xc pbe96
End
task (dft) optimize
task dft (frequencies)
```

- Find a stable structure of a molecule
- Energy expression
 - Minimization wrt.

 Nuclear coordinates
 - Check on final point:All frequencies should be positive

Energy expressions and derivatives

- NWChem has a general approach to differentiation
 - If implemented analytic derivatives are used
 - Otherwise numerical differentiation is used
 - Convenient from "ease of use" point of view
 - But numerical differentiation is much more costly
- See table for analytic derivative availability

Method	Gradient	Hessian
SCF	Yes	Yes
DFT (LDA/GGA)	Yes	Yes
DFT (mGGA)	Yes	Yes/No
MP2	Yes	No
CC	No	No
EOM-CC	No	No

Frequencies at equilibrium geometry

- There should be 6 zero frequencies (translational and rotational modes)
- All other modes should have positive frequencies
- Does not always happen due to
 - Noisy numerics
 - Differences in convergence criteria (optimize & frequencies)

Normal	Eigenvalue	11	Proje	Projected Infra Red Intensities		
Mode	[cm**-1]	11	[atomic units]	[(debye/angs)**2]	[(KM/mol)]	[arbitrary]
1	0.000		0.003541	0.082	3.452	4.374
2	0.000	11	0.001074	0.025	1.047	1.327
3	0.000	11	0.000651	0.015	0.634	0.804
4	0.000	11	0.001154	0.027	1.125	1.426
5	0.000	11	0.000702	0.016	0.685	0.868
6	0.000	11	0.005578	0.129	5.438	6.890
7	127.797	11	0.004201	0.097	4.096	5.190
8	418.064	11	0.004610	0.106	4.494	5.694
9	735.938	11	0.002073	0.048	2.021	2.561
10	748.555	11	0.000768	0.018	0.749	0.949
11	798.461	11	0.042998	0.992	41.916	53.112
12	867.327	11	0.000350	0.008	0.341	0.432
13	959.498	11	0.000261	0.006	0.254	0.322
14	970.135	11	0.019309	0.445	18.824	23.851
15	1044.115	11	0.034880	0.805	34.003	43.084

Finding Saddle Points I

Image source: http://ocikbws.uzh.ch/education/qmcourse/8-ts-theory.php

Finding Saddle Points II

Saddle points are transition states

For small molecules traditional search algorithms work

Geometry needs to be close to the TS

Chemical intuition does not always work

Follows the negative frequency mode

Check what was found

Frequencies at transition state

- There should be 6 zero frequencies (translational and rotational modes)
- The should be 1 negative frequency
- All other modes should have positive frequencies

Normal	Eigenvalue	11	Projected Infra Red Intensities			
Mode	[cm**-1]	11	[atomic units]	[(debye/angs)**2]	[(KM/mol)]	[arbitrary]
1	-212.571		0.056435	1.302	55.016	30.327
2	0.000	11	0.000126	0.003	0.123	0.068
3	0.000	11	0.000461	0.011	0.450	0.248
4	0.000	11	0.000129	0.003	0.126	0.070
5	0.000	11	0.000005	0.000	0.005	0.003
6	0.000	11	0.000227	0.005	0.221	0.122
7	0.000	11	0.000206	0.005	0.200	0.110
8	123.628	11	0.000728	0.017	0.710	0.391
9	250.414	11	0.008220	0.190	8.013	4.417
10	347.053	11	0.000139	0.003	0.135	0.075
11	413.274	11	0.001562	0.036	1.523	0.839
12	531.312	11	0.010232	0.236	9.975	5.498
13	777.688	11	0.010324	0.238	10.064	5.548
14	835.210	11	0.001279	0.030	1.247	0.687

Getting close to the TS

- Identify 2 important internal coordinates
- Map out PES as function of these 2 coordinates
- Locate TS in contour plot
- Requires internal coordinates
 - Auto generated, but...
 - Constraints may be inconsistent with symmetry
 - May fail causing constraints to be ignored

AUTOZ failed to generate good internal coordinates. Cartesian coordinates will be used in optimizations.

Path methods I


```
geometry
end
geometry endgeom
end
neb
  nbeads 10
  kbeads 0.1
  maxiter 10
  stepsize 0.1
end
task dft neb
```

- Need to know reactant and product complex
- Use 2 or 3 point interpolation for guess structures along the path
- Consecutive geometries formally connected by a spring
 - Use nocenter noautoz noautosym
 - Atoms must be ordered identically
 - For 3 point interpolation add midgeom and hasmiddle

Path methods II

- Interpolating an appropriate path can be tricky
- Alternative to load a file with geometries in XYZ format

```
3
E = -17.107
O 0.0 -0.02 0.00
H 0.0 0.55 0.75
H 0.0 0.55 -0.75
3
E = -17.095
O 0.0 -0.11 0.00
H 0.0 0.27 0.84
H 0.0 0.27 -0.84
...
```


Final remarks

- Characterization of the PES provides useful information about chemistry
- But it does not tell you everything...
 - The nuclear motion affects the thermodynamics
 - Real reactions do not follow minimum energy paths
 - Instead real reactive paths have to satisfy Newtonian laws of motion
 - Investigating this requires dynamics

Questions?

