

Motivation

Pneumonia accounts for over 15% of all deaths of children under 5 years old internationally

- Lung image processing is a bottleneck
- Neural nets can automate!

Sample Set of Chest Scans

"Normal" Lungs

- ▶ Black = air
- ▶ White = bone
- Grey = tissue/fluid
- "L" in upper-left corner indicates left side

Lung Opacities

Characteristics

- Hazy grey where black should be
- Boundaries of lungs less distinct

No Lung Opacities/Not Normal

Sample Patient 8 - Increased Vascular Markings + Enlarged Heart

Other Conditions

- Lung nodules and masses
- Pleural effusion
- White lung
- Enlarged heart

"Challenge" vs "Competition"

This is a cooperative effort!

Multiple Approaches

CNNs...

R-CNN

Regional CNN such that the CNN is forced to focus on a single region at a time to minimize interference.

Fast(er) R-Cnn

R-CNN but instead of feeding each region to the CNN, the entire image is processed to develop a convolutional feature map.

Mask R-CNN

Takes Faster R-CNN and instead takes object detection down to the level of pixels..

Demo and Reflections