WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

(11) International Publication Number:

WO 99/29674

C07D 233/56, 249/08, 213/40, 401/12, 403/12, 405/12, 409/12, 417/12

(43) International Publication Date:

17 June 1999 (17.06.99)

(21) International Application Number:

PCT/EP98/08126

A1

(22) International Filing Date:

8 December 1998 (08.12.98)

(30) Priority Data:

97203886.3

11 December 1997 (11.12.97) EP

(71) Applicant (for all designated States except US): JANSSEN PHARMACEUTICA N.V. [BE/BE]; Turnhoutseweg 30, B-2340 Beerse (BE).

(72) Inventors; and

(75) Inventors/Applicants (for US only): MABIRE, Dominique [FR/FR]: 14, rue Jean Moulin, F-27370 La Saussaye (FR). ADELINET, Christophe, Denis [FR/FR]: 11, rue Chignolet, F-27110 Iville (FR). CSOKA, Imré, Christian [FR/FR]; Résidence Les Mésanges, 2, rue de la Côte Verte, F-27400 Louviers (FR). VENET, Marc, Gaston [FR/FR]: 10, square de Bourgogne, F-76240 Le Mesnil-Esnard (FR).

(74) Agent: DAELEMANS, Frank; Janssen Pharmaceutica N.V., Patent Dept., Turnhoutseweg 30, B-2340 Beerse (BE). BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TI, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TI, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: RETINOIC ACID MIMETIC ANILIDES

(57) Abstract

The present invention is concerned with compounds of formula (1) the N-oxides, the pharmaceutically acceptable addition salts and the stereochemically isomeric forms thereof, wherein X represents O, S or NR²; R¹ represents hydrogen, hydroxy, C_{1-salk}yl or aryl; R² represents hydrogen; optionally substituted C₁₋₁ralkyl; C_{2-re}cycloalkyl; C_{2-salkenyl}; aryl; Het¹; or R¹ and R² taken together may form a bivalent radical of formula -(CH₂)m wherein n is 2, 3, 4, 5 or 6; R³ represents hydrogen; optionally substituted C_{1-salky}l, aryl, Het¹; R⁴ represents hydrogen; hydroxy; mercapto; C_{1-salk}yloxy; C_{1-salk}ylthio; aryloxy; arylthio; Het¹-oxy; Het¹-thio; optionally substituted C₁₋₁ralkyl; optionally substituted C₂₋₁recycloalkyl; optionally substituted C₂₋₁recycloalkyl; optionally substituted C₃₋₁recycloalkyl; optionally aryl; Het¹; or -Alk-NR³R³ (i) or -NR³R³ (ii) wherein Alk represents C_{1-salk}yloxycarbonyl; and R³ represents hydrogen, C_{1-salk}yl, aryl, Het¹, (aryl or Het¹)C_{1-salk}yl, (aryl or Het¹)C_{1-salk}yloxycarbonyl; aryl represents optionally substituted indanyl, indenyl, naphtyl, 5,6,7,8-tertahydro-2-naphtalenyl or phenyl; Het represents an optionally substituted unsaturated heterocycle; and Het¹ represents an optionally substituted monocyclic or bicyclic heterocycle; having retinoic mimetic activity; their preparation, compositions containing them and their use as a medicine.

21/02

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania	ES	Spain	LS	Lesotho	SI	Slovenia
Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
Austria	FR	France	LU		SN	Senegal
Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
Azerbaijan	GB	United Kingdom	MC	Monaco		Chad
Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
Barbados	GH	Ghana	MG	Madagascar	TI	Tajikistan
Belgium	GN	Guinea	MK			Turkmenistan
Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
Benin	IR	freland	MN	Mongolia	UA	Ukraine
Brazil	IL	Israel	MR	Mauritania		Uganda
Belarus	IS	Iceland	MW	Malawi		United States of America
Canada	IT	Italy				Uzbekistan
Central African Republic	JP	Japan	NE	Niger		Viet Nam
Congo	KE	Kenya	NL			Yugoslavia
Switzerland	KG	Kyrgyzstan	NO			Zimbabwe
Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
Cameroon		Republic of Korea	PL	Poland		
China	KR	Republic of Korea	PT			
Cuba	KZ	Kazakstan	RO	Romania		
Czech Republic	LC	Saint Lucia	RU	Russian Federation		
Germany	u	Liechtenstein	SD	Sudan		
Denmark	LK	Sri Lanka	SE	Sweden		
Estonia	LR	Liberia	SG			
	Armenia Australia Australia Azerbaijan Bosala and Herzegovina Barbados Belgimm Burkina Faso Bulgaria Bennin Brazil Belamus Central African Republic Congo Switzerland Cite d'Ivoire Cameroon China Cuba Czech Republic Germany	Armenia FI Australia FR Australia GA Azerbaijan GB Bosnia and Herzegovina GE Belgium GN Belgium GN Bulgaria HU Bennin IR Brazzil IL Belarus IS Canada IT Cennada IT Cennada IT Cennada KG Obte d'Ivoire KP Cumeroro Che Cumeroro KZ Cuba KZ Czech Republic LC Germany LI Denmark LK	Armenia FI Finland Australia FR Prance Australia FR Prance Australia GA Gabon Azerbaijan GB United Kingdom Bosala and Herzegovina GB Georgia Barbados GH Ghana Belgimm GN Guinea Burkina Faso GR Greece Bulgaria HU Hungary Benin IR Invitand Brazil IL Israel Belarus IS Iceland Cranda IT Italy Central African Republic JP Japan Congo KE Kenya Switzerland KG Kyrgyzstan China KR Republic of Korea China KR Republic of Korea China KZ Karakstan Czech Republic LC Saint Lucia Germany LL Icelteastein	Armenia FI Finland LT Australia FR Prance LU Australia GA Gabon LV Azerbaijan GB United Kingdom MC Bosnia and Herzegovina GE Georgia MD Barbados GH Ghana MG Belgium GN Guinea MK Belgium GR Greece Bulgaria HU Hungary ML Benin IR hreland MN Brazil IL Israel MR Belarus IS Letland MW Canada IT lady MX Central African Republic JP Japan NE Congo KE Keaya NL Switzerland KG Kyrgyzstan NO Côte d'ivoire KP Democratic People'a NZ Cameroon Republic of Korea PL Cuba KZ	Armenia FI Finland I.T Lithuania Australia GA Gabon LV Lavia Azerbaijan GB United Kingdom MC Monaco Bosnia and Herzegovina GE Georgia MD Republic of Moldova Belgium GN Guinea MK The former Yugoslav Belgium GN Guinea MK The former Yugoslav Belgium GN GR Greece Republic of Macadonia Bulgaria HU Hungary ML Mali Benin IB Treland MN Mongolia Brazil IL Israel MR Mauritania Belarus IS Iceland MW Malawi Brazil IL Israel MR Mauritania Belarus IS Iceland MW Malawi Canada IT Ilaly MX Mecico Central African Republic JP Japan NE Niger Congo KE Kenya NL Netherlands Switzerland KG Kyrgyzstan NO Norvay Cotte d'Ivoire KP Democratic People's NZ New Zealand China KR Republic of Korea PL Poland China KR Republic of Korea Cuba KZ Kazastan RO Romania Czech Republic Cermany LI Liceteastein SD Sudan Denmark LK S' Lanka SE Se weden	Armenia

10

15

20

25

30

35

RETINOIC ACID MIMETIC ANILIDES

The present invention concerns anilides, their N-oxides and addition salts; it further relates to processes for their preparation, compositions comprising them. The compounds of the present invention are potent inhibitors of the retinoic acid metabolism, and hence, their use as a medicine is also described.

EP-A-0,260,744, published on March 23, 1988, discloses (1*H*-imidazol-1-ylmethyl) substituted benzimidazoles as inhibitors of the androgen formation from C₂₁-steroids, as inhibitors of the biosynthesis of thromboxane A₂, and also having the capability to increase the excretion of ureic acid. EP-A-0,371,559, published on June 6, 1990, discloses said benzimidazoles and analogous benzotriazoles as potent suppressers of the plasma elimination of endogenously or exogenously administered retinoic acid.

Retinoic acid (RA) is a key molecule in the regulation of growth and differentiation of epithelial tissues. However, RA is very rapidly metabolized by a series of enzymatic reactions, which results in its deactivation. Inhibition of RA-metabolism leads to enhanced RA levels in plasma and tissue. Therefore, compounds with such an inhibitory action, also called retinoic mimetic activity, have therapeutic and/or preventive potential in the field of dermatology and oncology.

The present invention is concerned with compounds of formula

the N-oxides, the pharmaceutically acceptable addition salts and the stereochemically isomeric forms thereof, wherein:

- X represents O, S or NR³;
- R1 represents hydrogen, hydroxy, C1-6alkyl or aryl;
- represents hydrogen; C1-12alkyl; C3-7cycloalkyl; C2-8alkenyl; aryl; Het¹; or C1-12alkyl substituted with one or two substituents selected from C3-7cycloalkyl, hydroxy, C1-4alkyloxy, cyano, amino, mono- and di(C1-4alkyl)amino, mono- or di(arylC1-4alkyl)amino, di(arylC1-4alkyl)aminocarbonyloxy, (C1-4alkyl) (arylC1-4alkyl)amino, mono- and di(aryl)amino, (C1-4alkyl)(di(C1-4alkyl)-aminoC1-4alkyl)amino, pyrrolidinyl, piperidinyl, piperazinyl optionally substituted with C1-4alkyl, morpholinyl, perhydro-azepinyl, carboxyl,

15

20

25

 C_{1-4} alkyloxycarbonyl, aminocarbonyl, mono- and di(C_{1-4} alkyl)aminocarbonyl, aryl, aryloxy and arylthio; or

- R^1 and R^2 taken together may form a bivalent radical of formula $-R^1-R^2$ wherein $-R^1-R^2$ represents $-(CH_2)_n$ wherein n is 2, 3, 4, 5 or 6;
- 5 R³ represents hydrogen, C₁-6alkyl, aryl, Het¹ or C₁-6alkyl substituted with aryl or Het¹;
 - R⁴ represents hydrogen; hydroxy; mercapto; C₁₋₆alkyloxy; C₁₋₆alkylthio; aryloxy; arylthio; Het¹-oxy; Het¹-thio; C₁₋₁₂alkyl optionally substituted with one, two or three substituents each independently selected from halo, hydroxy, mercapto, C₁₋₆alkyloxy, C₁₋₆alkylthio, aryloxy, arylthio, Het¹-oxy, Het¹-thio, C₃₋₇cycloalkyl optionally substituted with hydroxycarbonylC₁₋₆alkyl, carboxyl, C₁₋₆alkyloxy-carbonyl, arylC₁₋₆alkyloxy, arylC₁₋₆alkylthio, aryl, Het¹; C₂₋₈alkenyl optionally substituted with one, two or three substituents selected from halo, C₃₋₇cycloalkyl, aryl, Het¹; C₂₋₈alkynyl optionally substituted with halo, C₃₋₇cycloalkyl, aryl; C₃₋₇cycloalkyl optionally substituted with C₁₋₆alkyl or aryl; C₅₋₇cycloalkenyl optionally substituted with C₁₋₆alkyl or aryl; aryl; Het¹; or

-Alk-NR 3 R 5 (i) or -NR 3 R 5 (ii)

wherein Alk represents C1-6alkanediyl; and

R⁵ represents hydrogen, C₁₋₆alkyl, aryl, Het¹, (aryl or Het¹)C₁₋₆alkyl, (aryl or Het¹)carbonyl or (aryl or Het¹)C₁₋₆alkyloxycarbonyl;

- aryl represents indanyl, indenyl, naphtyl, 5,6,7,8-tetrahydro-2-naphtalenyl, phenyl; said indanyl, indenyl, naphtyl or phenyl may be substituted with one, two, three, four or five substituents each independently selected from hydroxy, halo, nitro, cyano, amino, azido, mono- or di(C1-6alkyl)amino, C1-6alkylcarbonylamino, C1-6alkyl, polyhaloC1-6alkyl, hydroxyC1-6alkyl, phenyl, phenyloxy, phenylC1-6alkyloxy, pyridinylC1-6alkyloxy, C1-6alkyloxy, formyl, carboxyl and C1-6alkylcarbonyl; or two adjacent carbon atoms on said phenyl may be substituted by a single bivalent radical having the formula C1-12alkanediyl or polyhaloC1-12alkanediyl;
- 30 Het represents an unsaturated heterocycle selected from pyrrolyl, pyrazolyl, imidazolyl, triazolyl, tetrazolyl and pyridinyl; each of said unsaturated heterocycles may optionally be substituted with amino, mercapto, C₁₋₆alkyl, C₁₋₆alkylthio or aryl; and
- Het¹ represents a monocyclic heterocycle selected from pyrrolidinyl, pyrrolyl,

 pyrazolyl, imidazolyl, 1,3,4-triazolyl, 1,2,4-triazolyl, tetrahydrofuranyl, furanyl,
 thiolanyl, thienyl, dioxolanyl, isoxazolyl, oxazolyl, isothiazolyl,
 isoxazolidinyl, oxazolidinyl, isothiazolidinyl, piperidinyl, pyridinyl,

10

piperazinyl, pyridazinyl, pyrimidinyl, pyrazinyl, 1,2,3-triazinyl, 1,2,4-triazinyl, tetrahydropyranyl, pyranyl, morpholinyl and dioxanyl; each of said monocyclic heterocycles may be optionally substituted with one or two substituents each independently selected from C_{1.4}alkyl, hydroxy, amino, halo, aryl, arylcarbonyl or C_{1.4}alkyloxycarbonyl; or a bicyclic heterocycle selected from indolinyl, indolyl, indazolyl, benzimidazolyl, benzotriazolyl, benzofuranyl, benzothienyl, 2*H*-1-benzopyranyl, 3,4-dihydro-2*H*-1-benzopyranyl, benzthiazolyl, isoquinolinyl, quinolinyl, 3,4-dihydroquinolinyl, cinnolinyl, quinazolinyl, quinoxalinyl, chromanyl, 1,4-benzodioxinyl, 1,4-benzoxathianyl, benzodioxanyl and benzodioxolanyl; each of said bicyclic heterocycles may be substituted with one or two substituents each independently selected from C_{1.4}alkyl, hydroxy, amino, halo, aryl, arylcarbonyl or C_{1.4}alkyloxycarbonyl.

As used in the foregoing definitions and hereinafter, halo is generic to fluoro, chloro, bromo and iodo; C3-7cycloalkyl is generic to cyclopropyl, cyclobutyl, cyclopentyl, 15 cyclohexyl and cycloheptyl; C5.7cycloalkenyl is generic to cyclopentenyl, cyclohexenyl and cycloheptenyl; C2-8alkenyl defines straight and branch chained hydro-carbon radicals containing one double bond and having from 2 to 8 carbon atoms such as, for example, ethenyl, 1-propenyl, 2-butenyl, 2-pentenyl, 3-pentenyl, 3-methyl-2-butenyl, 3-hexenyl, 3-heptenyl, 2-octenyl and the like; C1-4alkyl defines straight and 20 branched chain saturated hydrocarbon radicals having from 1 to 4 carbon atoms such as, for example, methyl, ethyl, propyl, butyl, 1-methylethyl, 2-methylpropyl, 2,2-dimethylethyl and the like; C1-6alkyl is meant to include C1-4alkyl and the higher homologues thereof having 5 or 6 carbon atoms such as, for example, pentyl, 2-methylbutyl, hexyl, 2-methylpentyl and the like; C1-12alkyl is meant to include 25 C₁₋₆alkyl and the higher homologues thereof having from 7 to 12 carbon atoms such as, for example, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, 2-methylhexyl, 3ethyloctyl and the like; C1-12alkanediyl defines bivalent straight and branched chain saturated hydrocarbon radicals having from 1 to 12 carbon atoms such as, for example, 1,1-methanediyl, 1,2-ethanediyl, 1,3-propanediyl, 1,4-butanediyl, 1,5-pentanediyl, 30 1,6-hexanediyl, 1,2-propanediyl, 2,3-butanediyl, 1,7-heptanediyl, 1,8-octanediyl, 1,9-nonanediyl, 1,10-decanediyl, 1,11-undecanediyl, 1,12-dodecanediyl, 1,1,4,4-tetramethylbutane-1,4-diyl and the like; polyhaloC1-6alkyl is defined as polyhalosubstituted C_{1-6} alkyl, in particular C_{1-6} alkyl substituted with 1 to 6 halogen atoms, more in particular difluoro- or trifluoromethyl; polyhaloC1-12alkanediyl is defined as polyhalo-35 substituted C_{1-12} alkanediyl, in particular C_{1-12} alkanediyl substituted with 1 to 12 halogen atoms; triazolyl is meant to include 1,2,4-triazolyl and 1,3,4-triazolyl;

tetrazolyl is meant to include 1*H*-tetrazolyl and 2*H*-tetrazolyl; benzodioxanyl is meant to include 2,3-dihydro-1,4-benzodioxinyl.

The unsaturated heteroaryl group represented by Het may be attached to the remainder of the molecule of formula (I) through any ring carbon or heteroatom as appropriate. Thus, for example, when the heteroaryl group is imidazolyl, it may be a 1-imidazolyl, 2-imidazolyl, 4-imidazolyl and 5-imidazolyl; when it is triazolyl, it may be 1,2,4-triazol-1-yl, 1,2,4-triazol-3-yl, 1,2,4-triazol-5-yl, 1,3,4-triazol-1-yl and 1,3,4-triazol-2-yl.

10

15

20

25

35

The pharmaceutically acceptable addition salts as mentioned hereinabove are meant to comprise the therapeutically active non-toxic base and acid addition salt forms which the compounds of formula (I) are able to form. The acid addition salt form of a compound of formula (I) that occurs in its free form as a base can be obtained by treating said free base form with an appropriate acid such as an inorganic acid, for example, hydrohalic acid, e.g. hydrochloric or hydrobromic, sulfuric, nitric, phosphoric and the like acids; or an organic acid, such as, for example, acetic, hydroxyacetic, propanoic, lactic, pyruvic, oxalic, malonic, succinic, maleic, fumaric, malic, tartaric, citric, methanesulfonic, ethanesulfonic, benzenesulfonic, p-toluenesulfonic, cyclamic, salicylic, p-aminosalicylic, pamoic and the like acids.

The compounds of formula (I) containing acidic protons may be converted into their therapeutically active non-toxic base, *i.e.* metal or amine, addition salt forms by treatment with appropriate organic and inorganic bases. Appropriate base salt forms comprise, for example, the ammonium salts, the alkali and earth alkaline metal salts, e.g. the lithium, sodium, potassium, magnesium, calcium salts and the like, salts with organic bases, e.g. the benzathine, *N*-methyl-D-glucamine, hydrabamine salts, and salts with amino acids such as, for example, arginine, lysine and the like.

Conversely said salt forms can be converted into the free forms by treatment with an appropriate base or acid.

The term addition salt as used hereinabove also comprises the solvates which the compounds of formula (I) as well as the salts thereof, are able to form. Such solvates are for example hydrates, alcoholates and the like.

The N-oxide forms of the compounds of formula (I) are meant to comprise those compounds of formula (I) wherein one or several nitrogen atoms are oxidized to the

. . ?

5

10

15

20

25

30

so-called N-oxide.

The term "stereochemically isomeric forms" as used hereinbefore and hereinafter defines all the possible stereoisomeric forms in which the compounds of formula (I) exist. Unless otherwise mentioned or indicated, the chemical designation of compounds denotes the mixture, and in particular the racemic mixture, of all possible stereochemically isomeric forms, said mixtures containing all diastereomers and enantiomers of the basic molecular structure. Stereochemically isomeric forms of the compounds of formula (I) and mixtures of such forms are obviously intended to be encompassed by formula (I).

In particular, some of the compounds of formula (I) and some of the intermediates hereinafter have at least one stereogenic center in their structure. This stereogenic center may be present in a R and a S configuration, said R and S notation is used in correspondance with the rules described in Pure Appl. Chem., 1976, 45, 11-30.

Some of the compounds of formula (I) may also exist in their tautomeric forms. Such forms although not explicitly indicated in the above formula are intended to be included within the scope of the present invention. In particular, compounds of formula (I) wherein \mathbb{R}^3 is hydrogen may exist in their corresponding tautomeric form.

Whenever used hereinafter, the term compounds of formula (I) is meant to include also the N-oxides, the pharmaceutically acceptable addition salts and all stereoisomeric forms.

Whenever used hereinafter, R^1 to R^4 and Het are defined as under formula (I) unless otherwise indicated.

A special group of compounds are those compounds of formula (I) wherein one or more of the following restrictions apply:

- (a) X represents O, S, NH or N(aryl); more in particular X is O or S;
- (b) R1 represents hydrogen, hydroxy or C1-6alkyl;
- (c) R² represents hydrogen; C₁-12alkyl; C₃-7cycloalkyl; C₂-8alkenyl; aryl; Het¹; or C₁-12alkyl substituted with one or two substituents selected from hydroxy,
 35 C₁-4alkyloxy, cyano, mono- and di(C₁-4alkyl)amino, mono- or di(arylC₁-4alkyl)amino, di(arylC₁-4alkyl)aminocarbonyloxy, (C₁-4alkyl)(arylC₁-4alkyl)amino, (C₁-4alkyl)(di(C₁-4alkyl)aminoC₁-4alkyl)amino, piperidinyl, piperazinyl optionally substituted with C₁-4alkyl, morpholinyl, C₁-4alkyloxycarbonyl, aryl,

aryloxy and arylthio; or R^1 and R^2 taken together may form a bivalent radical of formula $-R^1-R^2$ wherein $-R^1-R^2$ represents $-(CH_2)_n$ wherein n is 2;

- (d) R³ represents hydrogen or C₁₋₆alkyl; more in particular R³ is hydrogen;
- (e) R⁴ represents hydrogen; C₁₋₆alkyloxy; aryloxy; C₁₋₁₂alkyl optionally substituted with one, two or three substituents each independently selected from halo, hydroxy, C₁₋₆alkyloxy, C₁₋₆alkylthio, aryloxy, arylthio, Het¹-thio, C₃₋₇cycloalkyl optionally substituted with hydroxycarbonylC₁₋₆alkyl, carboxyl, C₁₋₆alkyloxycarbonyl, arylC₁₋₆alkylthio, aryl, Het¹; C₂₋₈alkenyl optionally substituted with one, two or three substituents selected from halo, C₃₋₇cycloalkyl, aryl, Het¹; C₂₋₈alkynyl optionally substituted with aryl; C₃₋₇cycloalkyl optionally substituted with C₁₋₆alkyl or aryl; C₅₋₇cycloalkenyl; aryl; Het¹; or
 - -Alk-NR3R5
- (i) or
- -NR3R5

15

20

25

30

35

(ii)

wherein Alk represents C₁₋₆alkanediyl; and R⁵ represents hydrogen, C₁₋₆alkyl, aryl, Het¹, arylC₁₋₆alkyl, arylcarbonyl or arylC₁₋₆alkyloxycarbonyl.

Aryl is suitably indenyl, naphtyl, 5,6,7,8-tetrahydro-naphtalenyl, phenyl; said indenyl, naphtyl or phenyl may be substituted with one, two, three, four or five substituents each independently selected from hydroxy, halo, nitro, amino, azido, C₁₋₆alkylcarbonyl-amino, C₁₋₆alkyl, polyhaloC₁₋₆alkyl, phenyl, C₁₋₆alkyloxy.

Het is suitably imidazolyl, triazolyl and pyridinyl; each of said unsaturated heterocycles may optionally be substituted with C₁₋₆alkyl, more in particular, Het is 1*H*-1-imidazolyl or 1.2.4-triazol-1-yl.

Het¹ is suitably pyrrolyl, furanyl, thienyl, isoxazolyl, thiazolyl, piperidinyl, pyridinyl, piperazinyl, pyrimidinyl, pyrazinyl, morpholinyl and dioxanyl; each of said monocyclic heterocycles may be optionally substituted with one or two substituents each independently selected from C₁₋₄alkyl, hydroxy, amino, halo, aryl, arylcarbonyl or C₁₋₄alkyloxycarbonyl; or indolyl, benzimidazolyl, benzotriazolyl, benzofuranyl, benzothienyl, 2*H*-1-benzopyranyl, 3,4-dihydro-2*H*-1-benzopyranyl, benzthiazolyl, isoquinolinyl, quinoxalinyl, 1,4-benzodioxinyl, benzodioxanyl and benzodioxolanyl; each of said bicyclic heterocycles may be substituted with one or two substituents each independently selected from C₁₋₄alkyl, hydroxy, amino, halo, aryl, arylcarbonyl or C₁₋₄alkyloxycarbonyl.

15

25

30

35

Particular compounds are those compounds of formula (I) wherein R^2 is C_{1-12} alkyl optionally substituted with mono- and di(C_{1-4} alkyl)amino, more in particular, R^2 is 3-pentyl, 2-propyl, 2-(dimethylamino)-ethyl or 2-(diethylamino)-ethyl.

Other particular compounds are those compounds of formula (I) wherein R⁴ is C₁₋₁₂alkyl optionally substituted with one, two or three substituents each independently selected from halo, hydroxy, C₁₋₆alkyloxy, C₁₋₆alkylthio, aryloxy, arylthio, Het¹-thio, C₃₋₇cycloalkyl optionally substituted with hydroxycarbonylC₁₋₆alkyl, carboxyl, C₁₋₆alkyloxycarbonyl, arylC₁₋₆alkylthio, aryl, Het¹; aryl; Het¹; or a radical of formula
(ii).

Preferred compounds are those compounds of formula (I) wherein R^3 is hydrogen; X is O and R^4 is aryl or C_{1-12} alkyl optionally substituted with one, two or three substituents each independently selected from halo, hydroxy, C_{1-6} alkyloxy, C_{1-6} alkylthio, aryloxy, arylthio, Het¹-thio, C_{3-7} cycloalkyl optionally substituted with hydroxycarbonyl C_{1-6} alkyl, carboxyl, C_{1-6} alkyloxycarbonyl, aryl C_{1-6} alkylthio, aryl, Het¹; or a radical of formula (ii).

Other preferred compounds are those compounds of formula (I) wherein R³ is hydrogen, X is S and R⁴ is a radical of formula (ii)...

More preferred are the compounds of formula (I) wherein X is O; Het is 1,2,4-triazol-1-yl; R^1 and R^3 are hydrogen; R^2 is C_{1-6} alkyl optionally substituted with dialkylamino; and R^4 is C_{1-4} alkyl optionally substituted with one, two or three substituents each independently selected from halo, hydroxy, C_{1-6} alkyloxy, C_{1-6} alkylthio, aryloxy, arylthio, Het 1-thio, C_{3-7} cycloalkyl optionally substituted with hydroxycarbonyl C_{1-6} alkyl, carboxyl, C_{1-6} alkyloxycarbonyl, aryl C_{1-6} alkylthio, aryl or Het 1.

Most preferred are

4-chloro-N-[4-[2-ethyl-1-(1H-1,2,4-triazol-1-yl)butyl]phenyl]- α -hydroxybenzeneacetamide; the N-oxides, the pharmaceutically acceptable addition salts and stereoisomeric forms thereof.

In general, the compounds of formula (I) can be prepared by reacting an intermediate of formula (II) wherein W^1 is an appropriate leaving group such as, for example, a halogen, hydroxy or an alkylsulfonyloxy group, with an intermediate of formula (III) or a functional derivative thereof. For instance, a functional derivative of imidazole may be 1,1-carbonyldiimidazole.

15

20

25

Said reaction may be performed in a reaction-inert solvent such as, for example, acetonitrile, dichloromethane or tetrahydrofuran, in the presence of a suitable base such as, for example, potassium carbonate. In case W^1 is an hydroxy group, it may be convenient to perform the above reaction in the presence of triphenylphosphine and diethyl azodicarboxylate or a functional derivative of any of said reagents, or in the presence of 1-hydroxy-1H-benzotriazole and dicyclohexylcarbodiimide.

In this and the following preparations, the reaction products may be isolated from the reaction medium and, if necessary, further purified according to methodologies generally known in the art such as, for example, extraction, crystallization, distillation, trituration and chromatography.

Alternatively, compounds of formula (I) may be prepared by N-alkylation of an intermediate of formula (IV) with an intermediate of formula (V) wherein W² is an appropriate leaving group such as, for example, hydroxy, a phenoxy group or a halogen, in a reaction-inert solvent such as, for example, water, N,N-dimethylformamide, dichloromethane, 1,2-dichloroethane, chloroform, N,N-dimethylacetamide, 2-propanone, benzene or the like, and optionally in the presence of a suitable base such as, for example, triethylamine, pyridine or sodiumcarbonate.

Also functional derivatives of intermediates of formula (V) may be used such as, for example, an anhydride, e.g. glutaric anhydride, dihydro-2H-pyran-2,6(3H)-dione, acetic acid anhydride; a cyanate; a thiocyanate; an isocyanate or an isothiocyanate. In some instances, it may be convenient to add an acid to the reaction medium such as, for instance, acetic acid may be used together with a cyanate.

Compounds of formula (I) wherein R⁴ is a Het¹C_{1.12}alkyl or a radical of formula (i), said R⁴ being represented by R⁴ and said compounds being represented by formula 30 (I-a), can be prepared by reacting an intermediate of formula (VI) wherein W³ is a

15

20

suitable leaving group such as, for example, a halogen, with an intermediate of formula R^4 -H (VII) in a reaction-inert solvent such as, for example, acetonitrile, and in the presence of an appropriate base such as, for example, potassium carbonate.

$$R^{4}-H+W^{3}-alkyl-C-N$$

$$(VII)$$

$$(VII)$$

$$X$$

$$R^{3}$$

$$C$$

$$C$$

$$R^{2}$$

$$C$$

$$C$$

$$R^{4}-alkyl-C-N$$

$$R^{4$$

5 Compounds of formula (I) wherein R¹ is hydroxy, said compounds being represented by formula (I-b), may be prepared by reacting an intermediate of formula (VIII) with Het-H (III) or a functional derivative thereof, in the presence of an appropriate reagent such as, for example, n-butyllithium, in a reaction-inert solvent such as tetrahydrofuran and diethylether, and optionally in the presence of chlorotriethylsilane.

Compounds of formula (I) wherein R³ is hydrogen and R⁴ is attached by a nitrogen atom to the remainder of the molecule, said compounds being represented by formula (I—c), may be prepared by reacting a primary or secundary amine of formula(VIII) with an intermediate of formula (IX) in a reaction-inert solvent such as, for example, acetonitrile.

$$R^{5}-N \xrightarrow{R^{3}} + X = C = N \xrightarrow{R^{2}} \xrightarrow{R^{2}} - R^{5}-N \xrightarrow{R^{3}} - R^{5}-N \xrightarrow{R^{3}} - R^{2}$$

$$(IX) \qquad (X) \qquad (I-c)$$

Compounds of formula (I) wherein R² is optionally substituted hydroxymethyl, being represented by formula (I-d), may be prepared by reacting an intermediate of formula (XI) with Het-H (XII) or a functional derivative thereof, in a reaction-inert solvent such as, for example N,N-dimethylformamide.

10

15

20

25

Compounds of formula (I) can also be prepared by reacting an intermediate of formula (XIII) wherein W⁴ is a suitable leaving group such as, for example, hydroxy, with an intermediate of formula (XIV) in an appropriate solvent such as, for example, acetic acid, and in the presence of an acid such as, for example, concentrated sulfuric acid.

Compounds of formula (I) wherein R^2 is C_{1-4} alkyloxy C_{1-12} alkyl can be prepared by reacting an intermediate corresponding to a compound of formula (I) wherein R^2 is $LG-C_{1-12}$ alkyl wherein LG is an appropriate leaving group such as, for example, a alkylsulfonyloxy group, with C_{1-4} alkyl OM^+ wherein M^+ is a suitable metal ion such as, for example Na^+ , in a suitable solvent such as methanol.

Compounds of formula (I) wherein R^2 is optionally substituted C_{1-12} alkyl, said R^2 being represented by R^{2^*} and said compounds being represented by formula (I-e), can be prepared by reducing an intermediate of formula (XV) using a suitable reducing agent such as, for example, sodiumborohydride, in a suitable solvent such as methanol.

Compounds of formula (I) wherein R¹, R³ and R⁴ are hydrogen, said compounds being represented by formula (I-f), can be prepared by reacting an intermediate of formula (XXIII) with formamide in the presence of an acid such as, for example, acetic acid.

Het
$$\stackrel{R^2}{\longrightarrow}$$
 $\stackrel{H}{\longrightarrow}$ $\stackrel{R^2}{\longrightarrow}$ $\stackrel{H}{\longrightarrow}$ $\stackrel{R^2}{\longrightarrow}$ $\stackrel{H}{\longrightarrow}$ \stackrel{H}

The compounds of formula (I) can also be converted into each other following artknown procedures of functional group transformation.

For example, compounds of formula (I) wherein R³ is hydrogen may be converted to compounds of formula (I) wherein R³ is other than hydrogen using art-known techniques.

.7

5

10

15

25

30

35

Compounds of formula (I) containing an aliphatic double bond may be converted to compounds of formula (I) wherein said aliphatic double bond is reduced to a single bond using art-known hydrogenation techniques such as, for example, a reaction with hydrogen in methanol in the presence of palladium on activated charcoal as catalyst.

Compounds of formula (I) containing a carboxyl group may be esterified using art-known esterification techniques. Conversely, compounds of formula (I) containing ester may be hydrolysed to compounds of formula (I) containing the corresponding carboxyl moiety.

Also, compounds of formula (I) containing a C1-6alkyloxycarbonyl substituent, may be transformed to compounds of formula (I) wherein said substituent is reduced to hydroxymethyl using for instance, lithium aluminium hydride in tetrahydrofuran; and if desired, said hydroxymethyl substituent may be further transformed to a formyl group. Said C1-6alkyloxycarbonyl may also be entirely removed. Analogously, other moieties which may serve the purpose of protective group such as, for example, phenylmethyl, may also be removed using art-known techniques.

20 Compounds of formula (I) wherein R¹ is hydroxy can be converted to compounds of formula (I) wherein R¹ is hydrogen using a suitable reagent such as stannous chloride.

Compounds of formula (I) wherein R⁴ is a phenoxy group may be converted to the ureum derivatives thereof using art-known replacement techniques. For instance, a primary or secundary amine may be used optionally in the presence of dimethylamino-pyridine and a base such as triethylamine, and 1,4-dioxane may be used as solvent.

Compounds of formula (I) wherein X is O may be converted to compounds of formula (I) wherein X is S using art-known techniques such as, for example, the use of phosphorous pentasulfide in pyridine.

The compounds of formula (I) may also be converted to the corresponding N-oxide forms following art-known procedures for converting a trivalent nitrogen into its N-oxide form. Said N-oxidation reaction may generally be carried out by reacting the starting material of formula (I) with 3-phenyl-2-(phenylsulfonyl)oxaziridine or with an appropriate organic or inorganic peroxide. Appropriate inorganic peroxides comprise, for example, hydrogen peroxide, alkali metal or earth alkaline metal peroxides, e.g. sodium peroxide, potassium peroxide; appropriate organic peroxides may comprise

15

20

25

30

35

peroxy acids such as, for example, benzenecarboperoxoic acid or halo substituted benzenecarboperoxoic acid, e.g. 3-chlorobenzenecarboperoxoic acid, peroxoalkanoic acids, e.g. peroxoacetic acid, alkylhydroperoxides, e.g. t-butyl hydroperoxide. Suitable solvents are, for example, water, lower alkanols, e.g. ethanol and the like, hydrocarbons, e.g. toluene, ketones, e.g. 2-butanone, halogenated hydrocarbons, e.g. dichloromethane, and mixtures of such solvents.

Some of the compounds of formula (I) and some of the intermediates in the present invention may contain an asymmetric carbon atom. Pure stereochemically isomeric forms of said compounds and said intermediates can be obtained by the application of art-known procedures. For example, diastereoisomers can be separated by physical methods such as selective crystallization or chromatographic techniques, e.g. counter current distribution, liquid chromatography and the like methods. Enantiomers can be obtained from racemic mixtures by first converting said racemic mixtures with suitable resolving agents such as, for example, chiral acids, to mixtures of diastereomeric salts or compounds; then physically separating said mixtures of diastereomeric salts or compounds by, for example, selective crystallization or chromatographic techniques, e.g. liquid chromatography and the like methods; and finally converting said separated diastereomeric salts or compounds into the corresponding enantiomers. Pure stereochemically isomeric forms may also be obtained from the pure stereochemically isomeric forms of the appropriate intermediates and starting materials, provided that the intervening reactions occur stereospecifically.

An alternative manner of separating the enantiomeric forms of the compounds of formula (I) and intermediates involves liquid chromatography, in particular liquid chromatography using a chiral stationary phase such as, for example, a Chiracel AD column.

Some of the intermediates and starting materials are known compounds, may be commercially available or may be prepared according to art-known procedures.

In particular, intermediates of formula (II) wherein R^1 is hydrogen and W^1 is hydroxy, said intermediates being represented by formula (II-1), may be prepared by reducing a ketone of formula (VIII). The reduction may be performed in the presence of a suitable reducing agent in an appropriate reaction-inert solvent such as, for example, sodium-borohydride in methanol or lithiumaluminiumhydride in tetrahydrofuran and water.

15

20

$$R^{4}-C-N \xrightarrow{R^{2}} C \xrightarrow{R^{2}} R^{2} \xrightarrow{\text{reduction}} R^{4}-C-N \xrightarrow{\parallel \parallel \parallel} CH \xrightarrow{\text{CH}} CH$$
(VIII) (II-1)

In some instances, it may be convenient to replace the hydroxy group in intermediates of formula (II-1) by another leaving group such as, for example, a halogen or a sulfonyl derivative, e.g. a p-toluenesulfonyloxy group or a alkylsulfonyloxy group, thus forming intermediates of formula (II-2) or (II-3). Said reaction can be performed in a reactioninert solvent, such as, for example, chloroform, and in the presence of a suitable reagent such as, for example, thionylchloride or methylsulfonyl chloride.

Intermediates of formula (IV) may be prepared by reacting an intermediate of formula (XVI), wherein P is a protective group such as, for example, C₁_4alkylcarbonyl, benzoyl or C₁_4alkyloxycarbonyl, with an intermediate of formula (III), and by subsequently reacting the thus formed amide derivative with an acid such as, for example, hydrochloric acid. The preparation of the intermediate amide derivative may be performed using the same procedure as the one used for the preparation of compounds of formula (I) starting from an intermediate of formula (II) and (III).

$$P = N - \begin{pmatrix} R^{2} & R^{2} & \text{acid} \\ C & W^{1} + (III) & P = N - \begin{pmatrix} R^{3} & C & \text{acid} \\ C & R^{1} & \text{acid} \\ R^{1} & R^{2} & \text{acid} \end{pmatrix}$$
(IV)

Intermediates of formula (IV) wherein R³ is hydrogen, said intermediates being represented by formula (IV-1), may be prepared by reducing a nitro derivative of formula (XVII). Said reduction may be performed in the presence of a suitable reducing agent such as, for example, hydrogen, in an appropriate solvent such as, for example, methanol and in the presence of a suitable catalyst such as, for example, raney nickel.

15

20

$$\begin{array}{c|c}
C & & R^2 \\
C & -Het \\
C & R^1
\end{array}$$

$$\begin{array}{c|c}
R^2 & C & -Het \\
C & R^2 & C & -Het \\
C$$

Intermediates of formula (VI) can be prepared by further reacting an intermediate of formula (IV) with an intermediate of formula (XVIII) wherein W³ is a suitable leaving group such as, for example, a halogen, in a reaction-inert solvent such as, for example, dichloromethane, and in the presence of a base such as, for example, sodium carbonate.

Intermediates of formula (X) may be prepared by reacting an intermediate of formula (IV-1) with a reagent of formula (XIX) in a reaction inert solvent such as, for example, dichloromethane, and in the presence of a suitable base such as, for example, sodium hydroxide.

Intermediates of formula (XI) may be prepared by reductively reacting intramolecularly an intermediate of formula (XX) wherein W⁴ is a suitable leaving group such as, for example, a halogen in the presence of a suitable reagent such as, for example, sodium-borohydride, in a reaction inert solvent such as, for example, methanol, and in the presence of a suitable base such as, for example, sodium hydroxide.

$$X = R^3$$
 optional substituent $R^4 - C - N$ $X = R^3$ optional substituent $R^4 - C - N$ (XI)

Intermediates of formula (XI) can be prepared by first dehydrating and deprotecting an intermediate of formula (XXI) wherein P is a protecting group such as, for example, C₁_4alkylcarbonyl, benzoyl or C₁_4alkyloxycarbonyl, using a suitable reagent such as, for example, an acid, e.g. hydrochloric acid, thus forming an intermediate of formula (XXII). Consequently, said intermediate of formula (XXII) may be further reacted with

10

15

20

25

an intermediate of formula (V) in the same manner as described for the reaction between intermediates (IV) and (V).

Intermediates of formula (XXIII) can be prepared by first reacting an intermediate of formula (XXIV) with Het-H (III) or a functional derivative thereof, in the presence of an appropriate reagent such as, for example, *n*-butyllithium, in a reaction-inert solvent such as tetrahydrofuran and diethylether, and optionally in the presence of chlorotriethylsilane. The thus formed nitro derivative of formula (XXV) may then be reduced using for example a 15 % solution of TiCl₃ in water as reducing agent in a suitable solvent such as, for example, tetrahydrofuran.

The compounds of formula (I) suppress the plasma elimination of retinoids, such as all-trans-retinoic acid, 13-cis retinoic acid and their derivatives, resulting in more sustained plasma and tissue concentrations of retinoic acid and improved control of the differentiation and growth of various cell types. This action of the present compounds is also called retinoic mimetic activity because administering a compound of formula (I) causes the same effect as if retinoids were administered. As such, the present compounds can be used to control the rate of growth and differentiation of normal, preneoplastic and neoplastic cells, whether they are epithelial or mesenchymal; whether they are of ectodermal, endodermal or mesodermal origin.

The property to delay the metabolism of retinoic acid can be evidenced in various in vitro and in vivo experiments. A particular in vitro procedure is described in example C.1 and tests the inhibitory activity of the compounds of formula (I) on the metabolism of retinoic acid in human breast cancer cells. The compounds of the present invention were also effective in suppressing induced vaginal keratinization effects in ovariectomized rats as is described in example C.2.

30 In addition, the compounds of formula (I) show little or no endocrinological side-

10

15

20

25

30

effects and they have good oral availability.

In view of the above described pharmacological properties, in particular their retinoic mimetic activity, the present compounds are useful in the treatment and/or the prevention of disorders characterized by abnormal proliferation and/or abnormal differentiation of cells, in particular of cells of which the growth and differentiation is sensitive to the actions of retinoids. Such disorders are situated in the field of oncology, for example, head- and neck cancer, lung cancer, breast cancer, uterine cervix cancer, gastrointestinal tract cancer, skin cancer, bladder cancer and prostate cancer and similar disorders; and in the field of dermatology, for example, keratinization disorders such as rosacea, acne, psoriasis, severe psoriasis, lamellar ichthyosis, plantar warts, callosities, acanthosis nigricans, lichen planus, molluscum, melasma, corneal epithelial abrasion, geographic tongue, Fox-Fordyce disease, cutaneous metastatic melanoma and keloids, epidermolytic hyperkeratosis, Darier's disease, pityriasis rubra pilaris, congenital ichthyosiform erythroderma, hyperkeratosis palmaris et plantaris, melasma, hyperpigmentation and similar disorders.

Further, the compounds of formula (I) are useful in suppressing the metabolism of exogenously administered and of endogenously formed 1α,25-dihydroxy-vitamin D₃ (calcitriol). The inhibitory activity of the compounds of formula (I) on the metabolic degradation of calcitriol may be evidenced by measuring the impact of said compounds on the calcitriol degradation in human foreskin keratinocytes, pig kidney cells and human hepatoma cells. In view of their inhibitory effect on the calcitriol metabolism, the compounds of formula (I) can be used in the treatment of vitamin D deficiency states. The "classic" application of vitamin D compounds lies in the field of metabolic bone disorders. Calcitriol has also been described to influence the effects and/or production of interleukins. Further, calcitriol is of use in the treatment of diseases characterized by abnormal cell proliferation and/or differentiation, in particular, keratinization disorders such as those described hereinabove (Bouillon et al., Endocrine Reviews, 1995, 16, 200-257).

In view of the above described uses of the compounds of formula (I), it follows that the present invention provides a method of treating warm-blooded animals suffering from diseases which are characterized by an abnormal proliferation and/or abnormal differentiation of normal, preneoplastic or neoplastic cells, whether they are epithelial or mesenchymal; whether they are of ectodermal, endodermal or mesodermal origin. Said method comprises the systemic or topical administration of a retinoic mimetic

amount of a compound of formula (I) effective in treating the above described disorders, in particular oncology disorders and keratinization disorders, optionally in the presence of an effective amount of a retinoic acid, a derivative or a stereochemically isomeric form thereof. The present invention further concerns a method of treating patients suffering from a pathological condition which may be beneficially influenced by the administration of calcitriol or a prodrug thereof, in particular oncology disorders and keratinization disorders, said method consisting of administering to a patient (a) an effective amount of calcitriol or a prodrug thereof and (b) an effective amount of a compound of formula (I).

10

15

20

25

30

35

5

The compounds of formula (I) may conveniently be used in combination with a chemotherapeutic agent, in particular an anti-neoplastic agent such as, e.g. daunorubicin, doxorubicin, vincristine, vinblastine, etoposide, taxol, taxotere, dactinomycin, mitoxantrone, mitomycin, trimetrexate and the like. The combination may be administered separately, simultaneously, concurrently or consecutively, or the combination may also be presented in the form of one pharmaceutical formulation. Thus, the present invention also involves a pharmaceutical product comprising (a) a compound of formula (I) and (b) a chemotherapeutic agent, as a combined preparation for simultaneous, separate or sequential use in the therapeutic or prophylactic treatment of warm-blooded animals suffering from disorders characterized by abnormal proliferation and/or abnormal differentiation of cells. Such a product may comprise a kit comprising a container containing a pharmaceutical composition of a compound of formula (I), and another container comprising a pharmaceutical composition of the chemotherapeutic agent. The product with separate compositions of the two active ingredients has the advantage that appropriate amounts of each component, and timing and sequence of administration can be selected in function of the patient. The present invention further concerns a method of treating patients suffering from disorders characterized by abnormal proliferation and/or abnormal differentiation of cells, said method consisting of administering to a patient (a) an effective amount of a compound of formula (I) and (b) an effective amount of a chemotherapeutic agent.

Thus, the present invention also relates to compounds of formula (I) as defined hereinabove for use as a medicine, in particular, for use in the manufacture of a medicament for the treatment of oncology disorders and keratinization disorders. The present invention further relates to compounds of formula (I) as defined hereinabove in combination with a retinoic acid, a derivative or a stereochemically isomeric form thereof, or in combination with calcitriol or a prodrug thereof, or in combination with a

10

15

20

25

30

35

chemotherapeutic agent, in particular an anti-neoplastic agent, for use as a medicine.

For ease of administration, the subject compounds may be formulated into various pharmaceutical forms. As appropriate compositions there may be cited all compositions usually employed for systemically or topically administering drugs. To prepare the pharmaceutical compositions of this invention, a retinoic mimetic effective amount of the particular compound, optionally in addition salt form, as the active ingredient is combined in intimate admixture with a pharmaceutically acceptable carrier, which may take a wide variety of forms depending on the form of preparation desired for administration. These pharmaceutical compositions are desirably in unitary dosage form suitable, preferably, for administration orally, rectally, percutaneously, or by parenteral injection. For example, in preparing the compositions in oral dosage form, any of the usual pharmaceutical media may be employed, such as, for example, water, glycols, oils, alcohols and the like in the case of oral liquid preparations such as suspensions, syrups, elixirs and solutions; or solid carriers such as starches, sugars. kaolin, lubricants, binders, disintegrating agents and the like in the case of powders. pills, capsules and tablets. Because of their ease in administration, tablets and capsules represent the most advantageous oral dosage unit form, in which case solid pharmaceutical carriers are obviously employed. For parenteral compositions, the carrier will usually comprise sterile water, at least in large part, though other ingredients, for example, to aid solubility, may be included. Injectable solutions, for example, may be prepared in which the carrier comprises saline solution, glucose solution or a mixture of saline and glucose solution. In the compositions suitable for percutaneous administration, the carrier optionally comprises a penetration enhancing agent and/or a suitable wettable agent, optionally combined with suitable additives of any nature in minor proportions, which additives do not cause any significant deleterious effects on the skin. Said additives may facilitate the administration to the skin and/or may be helpful for preparing the desired compositions. These compositions may be administered in various ways, e.g. as a transdermal patch, as a spot-on or as an ointment. Addition salts of compounds of formula (I) due to their increased water solubility over the corresponding base form, are obviously more suitable in the preparation of aqueous compositions.

As appropriate compositions for topical application there may be cited all compositions usually employed for topically administering drugs e.g. creams, gellies, dressings, shampoos, tinctures, pastes, ointments, salves, powders and the like. Application of said compositions may be by aerosol, e.g. with a propellent such as nitrogen, carbon dioxide, a freon, or without a propellent such as a pump spray, drops, lotions, or a

30

35

semisolid such as a thickened composition which can be applied by a swab. In particular compositions, semisolid compositions such as salves, creams, gellies, ointments and the like will conveniently be used.

5 It is especially advantageous to formulate the aforementioned pharmaceutical compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used in the specification and claims herein refers to physically discrete units suitable as unitary dosages, each unit containing a predetermined quantity of active ingredient calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. Examples of such dosage unit forms are tablets (included scored or coated tablets), capsules, pills, powder packets, wafers, injectable solutions or suspensions, teaspoonfuls, tablespoonfuls and the like, and segregated multiples thereof.

Other such compositions are preparations of the cosmetic type, such as toilet waters, packs, lotions, skin milks or milky lotions. Said preparations contain, besides the active ingredient, components usually employed in such preparations. Examples of such components are oils, fats, waxes, surfactants, humectants, thickening agents, antioxidants, viscosity stabilizers, chelating agents, buffers, preservatives, perfumes, dyestuffs, lower alkanols, and the like. If desired, further ingredients may be incorporated in the compositions, e.g. antiinflamatory agents, antibacterials, antifungals, disinfectants, vitamins, sunscreens, antibiotics, or other anti-acne agents.

The present invention also provides particular pharmaceutical or cosmetical compositions which comprise a pharmaceutically acceptable carrier, an effective amount of a compound of formula (I) and an effective amount of a retinoic acid, a derivative thereof or a stereochemically isomeric form thereof. Said retinoic acid containing compositions are particularly useful for treating acne or for retarding the effects of aging of the skin and generally improve the quality of the skin, particularly human facial skin.

Further, the invention also relates to particular pharmaceutical or cosmetical compositions which comprise a pharmaceutically acceptable carrier, an effective amount of a compound of formula (I) and an effective amount of calcitriol or a prodrug thereof. The latter compositions are particularly useful in treating keratinization disorders.

The invention also relates to a product containing retinoic acid or a derivative thereof and a compound of formula (I) as a combined preparation for simultaneous, separate or

sequential use in dermatological or oncological disorders. The invention also relates to a product containing calcitriol or a prodrug thereof and a compound of formula (I) as a combined preparation for simultaneous, separate or sequential use in dermatological or oncological disorders. Such products may comprise, for example, a kit comprising a container with a suitable composition containing a compound of formula (I) and another container with a composition containing calcitriol or a retinoid Such a product may have the advantage that a physician can select on the basis of the diagnosis of the patient to be treated the appropriate amounts of each component and the sequence and timing of the administration thereof.

10

5

Those of skill in the treatment of the disorders described hereinabove could determine the effective therapeutic daily amount from the test results presented in the experimental part. An effective therapeutic daily amount would be from about 0.01 mg/kg to about 40 mg/kg body weight, more preferably from about 0.1 mg/kg to about 10 mg/kg body weight. It may be appropriate to administer the therapeutically effective dose once daily or as two, three, four or more sub-doses at appropriate intervals throughout the day. Said sub-doses may be formulated as unit dosage forms, for example, containing 0.1 mg to 500 mg of active ingredient per unit dosage form.

20 The exact dosage and frequency of administration depends on the particular compound of formula (I) used, the particular condition being treated, the severity of the condition being treated, the age, weight and general physical condition of the particular patient as well as other medication the patient may be taking, as is well known to those skilled in the art. Furthermore, it is evident that said effective daily amount may be lowered or increased depending on the response of the treated patient and/or depending on the evaluation of the physician prescribing the compounds of the instant invention. The effective daily amount ranges mentioned hereinabove are therefore only guidelines. The following examples are intended to illustrate the scope of the present invention.

Experimental part

30 Of some compounds of formula (I) the absolute stereochemical configuration of the stereogenic carbon atom(s) therein was not experimentally determined. In those cases the stereochemically isomeric form which was first isolated is designated as "A" and the second as "B", without further reference to the actual stereochemical configuration. Said "A" and "B" forms of those compounds of formula (I) wherein two asymmetric carbon atoms are present were separated in their pure steroechemically isomeric forms and designated as "A1" and "A2", and "B1" and "B2", without further reference to the actual stereochemical configuration.

As used hereinafter, "THF" is defined as tetrahydrofuran, "EtOAc" is defined as ethylacetate, "DIPE" is defined as diisopropyl ether and "RT" is defined as room temperature.

A) Preparation of the intermediate compounds

Example A1

5

10

15

Methanesulfonyl chloride (0.308 mol) was added dropwise to a solution of $N-[4-(1-hydroxy-2-methylpropyl)phenyl]acetamide (0.1514 mol) and triethylamine (0.308 mol) in CH₂Cl₂(600ml) and the mixture was stirred at 0°C for 1 hour. The solvent was evaporated, yielding 44g (100%) of (<math>\pm$)-4-(acetylamino)- α -(1-methylethyl) benzenemethanol methanesulfonate(ester) (interm. 1).

Example A2

A mixture of (\pm)-N-[4-{2-methyl-1-(1H-1,2,4-triazol-1-yl)propyl]phenyl]acetamide (0.095 mol) in HCl (3N) (250ml) was stirred and heated at 60°C for 5 hours. The mixture was cooled, poured into ice, basified with concentrated NH₄OH and extracted with CH₂Cl₂. The organic layer was dried, filtered off and evaporated. The residue was crystallized from 2-propanone/(C₂H₅)₂O and filtered off, yielding 15.5g (75%) of (\pm)-4-[2-methyl-1-(1H-1,2,4-triazol-1-yl)propyl]-benzenamine (interm. 2; mp.

20 117.8°C).

In a similar manner were also prepared:

- (A)-4-[2-ethyl-1-(IH-1,2,4-triazol-1-yl)butyl]benzenamine (interm. 3);
- (B)-4-[2-ethyl-1-(1H-1,2,4-triazol-1-yl)butyl]benzenamine (interm. 4); and
- (\pm) -4-[2-ethyl-1-(IH-1,2,4-triazol-1-yl)butyl]benzenamine (interm. 5).

25 Example A3

1,2-Dichloroethanone (0.027 mol) was added dropwise at RT to a solution of interme diate (5) (0.0246 mol) in sodium carbonate (10%) (450ml) and CH_2Cl_2 (600ml). The mixture was stirred for 3 hours and then extracted with CH_2Cl_2 . The organic layer was separated, dried, filtered and the solvent was evaporated, yielding 7g (89%) of

30 (\pm)-2-chloro-N-[4-[2-ethyl-1-(1H-1,2,4-triazol-1-yl)butyl]phenyl]acetamide (interm. 6).

Example A4

35

a) (\pm)-4-(2-methyl-3-phenylpropyl)pyridine (0.114 mol) was added portionwise at 0°C to sulfonic acid (63ml), the mixture was stirred at 0°C for 1 hour and then at RT for 2 hours. The mixture was poured into ice, basified with NH₄OH and the precipitate was filtered off, yielding 29.31g (100%) of (\pm)-4-[2-methyl-1-(4-nitrophenyl)propyl-pyridine (interm. 7).

b) Intermediate (7) (0.183 mol) in methanol (470ml), NH₄OH (47ml) and a solution of thiophene in methanol (4%; Iml) was hydrogenated at RT with palladium on activated carbon (10%; 7.7g) as a catalyst over a 2 hour period under a 3 bar pressure in a Parr apparatus. After uptake of hydrogen, the catalyst was filtered through celite and the filtrate was evaporated, yielding 42.79g of product. A sample (3g) was taken up in CH₂Cl₂ and purified on a glass filter over silica gel (eluent: CH₂Cl₂/CH₃OH 99.5/0.5). The pure fractions were collected and evaporated. The residue was purified further by column chromatography over silica gel (eluent: CH₂Cl₂/CH₃OH/NH₄OH 97.5/2.5/0.1). The pure fractions were collected and evaporated. The residue was recrystallized from (C₂H₅)₂O and filtered off, yielding 0.86g of (±)-4-[2-methyl-1-(3-pyridinyl)propyl]benzenamine (interm. 8; mp. 101.5°C).

Example A5

10

20

30

- a) A mixture of N-[4-(2-chloro-1-oxopropyl)phenyl]acetamide (0.19 mol), N-methylmethanamine hydrochloride (1:1)(0.38 mol) and K₂CO₃ (78.8g) in CH₃CN (1400ml)
 15 was stirred and refluxed for 12 hours. The mixture was cooled, poured into water and extracted with CH₂Cl₂. The organic layer was dried, filtered and the solvent was evaporated, yielding 39.77g (89%) of (±)-N-[4-[2-(dimethylamino)-1-oxopropyl]phenyl]-acetamide (interm. 9).
 - b) Sodium tetrahydroborate (2.6 mol) was added portionwise at 0°C under N₂ flow to a mixture of intermediate (9) (2.18 mol) in methanol (5000ml). The mixture was stirred for 1 hour, poured out into ice water (5000ml) and extracted with CH₂Cl₂. The organic layer was separated, dried, filtered and the solvent was evaporated. The residue was stirred in DIPE, filtered off and dried, yielding 357g (70%) of (±)-N-[4-[1-hydroxy-2-(dimethylamino)propyl]phenyl]acetamide (interm. 10).

25 Example A6

Sodium tetrahydroborate (0.0502 mol) was added portionwise at 0°C to a mixture of (±)-N-[4-(2-chloro-1-oxopropyl)phenyl]-3,4-dimethoxybenzeneacetamide (0.0502 mol) in methanol (280ml). The mixture was stirred at 0°C for 1 hour, then poured out into a mixture of NaOH (280ml) and ice, stirred for 1 hour and extracted with CH₂Cl₂. The organic layer was separated, dried, filtered and the solvent was evaporated, yielding 15.48g (94%) of (±)-3,4-dimethoxy-N-[4-(3-methyl-2-oxiranyl)phenyl]benzeneacetamide (interm. 11).

Example A7

a) n-Buthyl-lithium in hexane (1.6M; 71.6ml) was added dropwise at -70°C under N₂
 35 flow to a mixture of 1-methylimidazole (0.1146 mol) in THF (195ml). The mixture was stirred at -70°C for 30 minutes. Chlorotrietylsilane (0.1146 mol) was added. The

71 2mg

5

10

15

20

30

mixture was brought slowly to 10°C and cooled again to -70°C. n-Buthyl-lithium in hexane (1.6M; 71.6ml) was added dropwise. The mixture was stirred at -70°C for 1 hour, brought to -15°C and cooled again to -70°C. A mixture of 4-chlorophenyl-4-nitrophenyl-methanone (0.095 mol) in THF (150ml) was added dropwise. The mixture was stirred at -70°C for 30 minutes, hydrolized and extracted with EtOAc. The organic layer was separated, dried, filtered and the solvent was evaporated. The residue was purified by column chromatography over silica gel (eluent: $CH_2Cl_2/CH_3OH/NH_4OH$ 96/4/0.1). The desired fractions were collected and their solvents were evaporated, yielding 6.5g (20%) of (±)- α -(4-chlorophenyl)-1-methyl- α -(4-nitrophenyl)-1*H*-imidazole-2-methanol (interm 12), 8.7g (26.6%) of (±)- α -(4-chlorophenyl)-1-methyl- α -(4-nitrophenyl)-1*H*-imidazole-5-methanol (interm 13) and 18g (53%) of the mixture of intermediate 12 and 13.

b) A mixture of intermediate 12 and 13 (0.09 mol) in THF (600ml) was cooled on an ice bath. TiCl₃ in H₂O (15%; 400ml) was added dropwise quickly. The mixture was stirred at RT for 90 minutes, poured out on ice, alkalized with NaOH 10N, then filtered over celite, pasted up and extracted with CH₂Cl₂. The organic layer was separated, dried, filtered and the solvent was evaporated. The residue was purified by column chromatography over silica gel (eluent: CH₂Cl₂/CH₃OH 94/6). Two pure fractions were collected and their solvents were evaporated. Both residues were crystallized from CH₃CN and DIPE. Each phe precipitate was filtered off and dried, yielding 2g (7.1%) of (\pm) - α -(4-aminophenyl)- α -(4-chlorophenyl)-1-methyl-1*H*-imidazole-2-methanol (interm. 14) and 1.5g (5.3%) of (\pm) - α -(4-aminophenyl)- α -(4-chlorophenyl)-1-methyl-1*H*-imidazole-5-methanol (interm. 15).

B) Preparation of the compounds of formula (I)

25 Example B1

A mixture of (\pm)-4-(acetylamino)- α -(1-methylethyl)benzenemethanol methane sulfonate (ester) (0.1541 mol), 1H-1,2,4-triazole (0.308 mol) and K_2CO_3 (0.308 mol) in CH₃CN (500ml) was stirred and refluxed for 12 hours. The solvent was evaporated and the residue was taken up in water/CH₂Cl₂. The organic layer was dried, filtered off and the solvent evaporated. The residue was purified by column chromatography over silica gel (eluent : CH₂Cl₂/CH₃OH 97/3). The pure fractions were collected and evaporated, yielding 10g (25%) of (\pm)-N-[4-[2-methyl-1-(1H-1,2,4-triazol-1-yl)propyl]-phenyl]acetamide (compound 153).

Example B2

A solution of 2-methyl-3-phenyl-2-propenoyl chloride (0.0554 mol) in CH₂Cl₂ (50ml) was added dropwise to a solution of (±)-4-[2-methyl-1-(1*H*-1,2,4-triazol-1-yl)propyl]-

benzenamine (0.037 mol) in pyridine (8ml) and CH_2Cl_2 (100ml) and the mixture was stirred at RT for 4 hours. The solvent was evaporated and the residue was taken up in water/EtOAc. The organic layer was dried, filtered and the solvent evaporated. The residue was purified by column chromatography over silica gel (eluent:

5 CH₂Cl₂/CH₃OH/NH₄OH 99/1/0.1). The pure fractions were collected and evaporated. The residue was crystallized from (C₂H₅)₂O/methylethylketone, yielding 2.7g (21%) of (±)-(E)-2-methyl-N-[4-[2-methyl-1-(1H-1,2,4-triazol-1-yl)propyl]phenyl]-3-phenyl-2-propenamide (compound 154).

Example B3

A mixture of 1-hydroxy-1*H*-benzotriazole (0.0227 mol) in THF (90ml) was added dropwise at 5°C under N₂ flow to a solution of (A)-4-[2-ethyl-1-(1*H*-1,2,4-triazol-1-yl)butyl]benzenamine (0.015 mol) and (±)-4-chloro-α-hydroxybenzeneacetic acid (0.0227 mol) in THF (95ml). A mixture of *N*,*N*-methanetetraylbis[cyclohexanamine] (0.0227 mol) in CH₂Cl₂ (37ml) was added dropwise at 5°C under N₂ flow. The mixture was stirred at RT for 15 hours. The precipitate was filtered off and washed with CH₂Cl₂. The filtrate was taken up in K₂CO₃ 10% and extracted with CH₂Cl₂. The organic layer was separated, dried, filtered and the solvent was evaporated. The residue (9.25g) was purified by column chromatography over silica gel (eluent: CH₂Cl₂/CH₃OH 96/4). The pure fractions were collected and the solvent was evaporated, yielding 4.8g (78%) of (±)-(A)-4-chloro-*N*-[4-[2-ethyl-1-(1*H*-1,2,4-triazol-1-yl)butyl]-phenyll-α-hydroxybenzeneacetamide (compound 16).

Example B4

(±)-(E)-N-[4-[1-(1H-imidazol-1-yl)-2-methylpropyl]phenyl]-2-methyl-3-phenyl-2-propenamide (0.0144 mol) in methanol (200ml) was hydrogenated with palladium-on-charcoal 10% (0.52g) as a catalyst at RT over a 5 hour period under a 1 bar pressure in a Parr apparatus. After uptake of hydrogen, the catalyst was filtered through celite and the solvent was evaporated. The residue was crystallized from 2-butanone/DIPE, yielding 4.9g (94%)of (±)-N-[4-[1-(1H-imidazol-1-yl)-2-methylpropyl]phenyl]-α-methylbenzenepropanamide (compound 164).

30 Example B5

25

35

A mixture of 4-[1-(1*H*-imidazol-1-yl)-2-methylpropyl]benzenamine (0.0185 mol) in formic acid (20ml) was stirred and heated at 120°C for 15 minutes. The mixture was poured into water, basified with NaOH 3N and extracted with EtOAc. The organic layer was dried, filtered off and the solvent evaporated, yielding 3.9g (86.6%) of (±)-*N*-[4-[1-(1*H*-imidazol-1-yl)-2-methylpropyl]phenyl]formamide (compound 177).

Example B6

- a) A mixture of 4-[1-(1H-imidazol-1-yl)-2-methylpropyl] benzenamine (0.023 mol) and dihydro-2H-pyran-2,6(3H)-dione (0.03 mol) in THF (200ml) was stirred and refluxed for 12 hours. When the reaction was complete, the solvent was evaporated, yielding 7.5g (±)-5-[[4-[1-(1H-imidazol-1-yl)-2-methylpropyl]phenyl]amino]-5-oxopentanoic acid (compound 218).
- b) A mixture of (compound 218) (0.023 mol) in ethanol (200ml) and H_2SO_4 (3ml) was stirred and refluxed for 12 hours. When the reaction was complete, the solvent was evaporated, the residue was taken up in water and extracted with CH_2Cl_2 . The organic layer was dried, filtered and the solvent evaporated. The residue was purified by column chromatography over silica gel (eluent : $CH_2Cl_2/CH_3OH/NH_4OH$ 97/3/0.1). The pure fractions were collected and evaporated. The residue was crystallized from 2-butanone and DIPE, yielding 1.45g (18%) of (\pm)-ethyl 5-[[4-[1-(1H-imidazol-1-yl)-2-methylpropyl]phenyl]amino]-5-oxopentanoate (compound 219).

15 Example B7

10

20

30

35

A mixture of (A)-N-[4-[1-(1H-imidazol-1-yl)-2-methylpropyl]phenyl]-4-nitrobenzene-acetamide (0.0005 mol) in methanol (50ml) was hydrogenated at RT (p=2 bar) for 4 hours with Raney Nickel (0.2g) as a catalyst. After uptake of hydrogen, the catalyst was filtered off over celite, washed with CH₃OH and the solvent was evaporated. The residue (0.12g) was purified by column chromatography over silica gel (eluent: CH₂Cl₂/CH₃OH/NH₄OH 96.5/3.5/0.1). The pure fractions were collected and the solvent was evaporated. The residue was crystallized from diethyl ether. The precipitate was filtered off and dried, yielding 0.035g (19%) of (A)-4-amino-N-[4-[1-(1H-imidazol-1-yl)-2-methylpropyl]phenyl]benzeneacetamide (compound 145).

25 Example B8

A solution of NaNO₂ (0.0023 mol) in water (6ml) was added at 0°C/-5°C to a solution of (B)-4-amino-N-[4-[1-[(1H-imidazol-1-yl)-2-methylpropyl]phenyl]-3-iodobenzeneacetamide (0.0021 mol) in HCl 2N (17ml). The mixture was stirred at 0°C for 15 minutes. A solution of NaN₃ (0.0023 mol) in water (6ml) was added. The mixture was stirred at 0°C for 2 hours, then neutralized with K₂CO₃ 10% and extracted with CH₂Cl₂. The organic layer was separated, dried, filtered and the solvent was evaporated. The residue was purified by column chromatography over silica gel (eluent: CH₂Cl₂/CH₃OH/NH₄OH 97/3/0.1). The pure fractions were collected and the solvent was evaporated. The residue was crystallized from 2-butanone and DIPE. The precipitate was filtered off and dried, yielding 0.46g (44%) (B)-4-azido-N-[4-[1-(1H-imidazol-1-yl)-2-methyl-propyl]phenyl]-3-iodobenzenacetamide (compound 259).

. ?

Example B9

5

10

25

A mixture of (±)-2-chloro-N-[4-[2-ethyl-1-(1H-1,2,4-triazol-1-yl)butyl]phenyl]acetamide (0.0218 mol), 1-methylpiperazine (0.0436 mol) and K₂CO₃ (0.0436 mol) in CH₃CN (150ml) was stirred and refluxed for 4 hours. The mixture was cooled, poured out into water and extracted with CH₂Cl₂. The organic layer was separated, dried, filtered and the solvent was evaporated. The residue (8.13g) was purified by column chromatography over silica gel (eluent: CH₂Cl₂/CH₃OH/NH₄OH 96/4/0.5). The pure fractions were collected and the solvent was evaporated. The residue was crystallized from diethyl ether. The precipitate was filtered off and dried, yielding 3g (35.8%) (±)-N-[4-[2-ethyl-1-(1H-1,2,4-triazol-1-yl)butyl]phenyl]-4-methyl-1-piperazineacetamide (compound 15).

Example B10

Compound (16) (0.0116 mol) was separated into its enantiomers by column chromatography (eluent: hexane/2-propanol 50/50; column: CHIRACEL OD 20 μm).

Two pure fractions were collected and their solvents were evaporated. The residue was crystallized from diethyl ether. The precipitate was filtered off and dried, yielding 1.77g (35%) (±)-A1-4-chloro-N-[4-[2-ethyl-1-(1H-1,2,4-triazol-1-yl)butyl]phenyl]-α-hydroxybenzeneacetamide (compound 17) and 1.72g (42%) (±)-(A2)-4-chloro-N-[4-[2-ethyl)-1-(1H-1,2,4-triazol-1-yl)butyl]phenyl]-α-hydroxybenzeneacetamide (compound 18).

20 Example B11

HCl conc. (3.6ml) was added at RT to a mixture of (±)-1,1-dimethylethyl 4-[[[4-[2-ethyl-1-(1H-imidazol-1-yl)butyl]phenyl]amino]carbonyl]-1-piperidinecarboxylate (0.0032 mol) in EtOAc (30ml). The mixture was stirred at RT for 4 hours, then basified with a concentrated NaOH solution and extracted with EtOAc and then CH₂Cl₂. The organic layer was separated, dried, filtered and the solvent was evaporated. The residue (1g) was converted into the hydrochloric acid salt (1:1) in 2-propanol. The precipitate was filtered off and dried, yielding 0.85g (68%) (±)-N-[4-[2-ethyl-1-(1H-imidazol-1-yl)butyl]-phenyl]-4-piperidinecarboxamide monohydrochloride (compound 57).

Example B12

30 A mixture of α-(4-chlorophenyl)-3-pyridinemethanol (0.364mol) and N-phenyl acetamide (0.364mol) in HOAc (360ml) and H₂SO₄ 36N (38.6ml) was stirred and refluxed for 6 days. The solvent was evaporated, yielding 122.6g (±)-N-[4-[(4-chlorophenyl)(3-pyridinyl)methyl]phenyl]acetamide (compound 673).

Example B13

35 Butyllithium, 1.6M in hexane (146ml) was added dropwise at -78°C under N₂ flow to a

..?

Ţ...

ŗ.

5

10

15

20

25

30

35

solution of 2-bromopyridine (0.1348 mol) in THF (300ml). The mixture was stirred at -78°C for 20 minutes. A solution of N-(4-formylphenyl) acetamide (0.1226 mol) in THF (300ml) was added at -60°C/-70°C. The mixture was stirred at -60°C/-70°C for 1 hour, then poured out into ice water and extracted with EtOAc. The organic layer was separated, dried, filtered and the solvent was evaporated. The residue (27g) was purified by column chromatography over silica gel (eluent: CH₂Cl₂/CH₃OH/NH₄OH 96/4/0.1). The pure fractions were collected and the solvent was evaporated. The residue was crystallized from diethyl ether and 2-propanone. The precipitate was filtered off and dried, yielding 5.09g (17%) (±)-N-[4-[hydroxy(2-pyridinyl)methyl]phenyl]-acetamide (compound 688).

Example B14

To a solution of 4-[2-methyl-1-(3-pyridinyl)propyl]benzenamine (0.187 mol) into CH_2Cl_2 (400 ml) was added dropwise Al_2O (100 ml). The mixture was stirred for 24 hours at RT. The mixture was hydrolyzed by H_2O and neutralized by NH_4OH . The organic layer was washed with water and dried. The filtrate was evaporated, yielding 50 g of N-[4-[2-methyl-1-(3-pyridinyl)propyl]phenyl]acetamide (compound 671).

Example B15

1H-1,2,4-triazole (0.19 mol) and triphenylphosphine (0.19 mol) were added to a mixture of (\pm)-N-[4-[1-hydroxy-2-(dimethylamino)propyl]phenyl]acetamide (0.1269 mol) in THF (300ml). The mixture was cooled to 0°C. Diethyl 1,2-hydrazinedicarboxylate (0.19 mol) was added dropwise. The mixture was stirred at RT overnight. The solvent was evaporated and the residue was taken up in EtOAc and HCl 1N was added. The mixture was separated into its layers. The aqueous layer was washed with EtOAc, basified with a K_2CO_3 solution and extracted with CH_2Cl_2 . The organic layer was separated, dried, filtered and the solvent was evaporated. The residue was purified by column chromatography over silica gel (eluent: $CH_2Cl_2/CH_3OH/NH_4OH$ 93/7/0.1 and 80/20/0.1). Two pure fractions were collected and their solvents were evaporated. The desired fraction was recrystallized from 2-propanone/EtOAc. The precipitate was filtered off and dried, yielding 1.2g of (\pm)-(B)-N-[4-[2-(dimethylamino)-1-(1H-1,2,4-triazol-1-yl)propyl]phenyl]acetamide (compound 631).

Example B16

A mixture of (\pm)-(E)-N-[4-[1-(1H-imidazol-1-yl)-2-methylpropyl]phenyl]-2-[(4-nitrophenyl)-methylene]propanamide (0.00742 mol) in THF (80ml) and TiCl₃ (30ml) was stirred at 0°C for 15 minutes. The mixture was poured into water, ice and NaOH 3N and extracted with CH₂Cl₂ (2x100ml). The combined organic layers were dried, filtered and the solvent evaporated. The residue was taken up in CH₂Cl₂ and (C₂H₅)₂O. The

precipitate was filtered off and stirred K₂CO₃ 10% and CH₂Cl₂, dried, filtered off and evaporated. The residue was crystallized from 2-propanone. The precipitate was filtered off, taken up in Na₂CO₃ 10% and CH₂Cl₂. The organic layer was dried, filtered off and evaproated. The residue was purified by column chromatography over silica gel (eluent: CH₂Cl₂/CH₃OH/NH₄OH 96/4/0.1). The pure fractions were collected and evaporated. The residue was crystallized from (C₂H₅)₂O, yielding 1.5g (±)-(E)-2-[(4-aminophenyl)methylene]-N-[4-[1-(1H-imidazol-1-yl)-2-methylpropyl]phenyl]propanamide (compound 611).

Example B17

1,1'-Carbonyldiimidazole (0.236 mol) was added at 60°C to a solution of (±)-N-[4-[1-hydroxy-2-methylpropyl]phenyl]acetamide (0.115 mol) in tetrahydrofuran (240ml) and the mixture was stirred at 60°C for 12 hours. The solvent was evaporated and the residue was taken up in water/CH₂Cl₂. The organic layer was dried, filtered and the solvent evaporated. The residue was purified by column chromatography over silica gel
 (eluent: CH₂Cl₂/CH₃OH 95/5). The pure fractions were collected and evaporated. The residue was crystallized from 2-propanone, yielding 28.27g (67%) (±)-N-[4-[1-(1H-imidazol-1-vl)-2-methylpropyl]phenyl]acetamide (compound 521).

Example B18

LiAlH₄ (0.0117 mol) was added portionwise at 0°C to a solution of (±)-ethyl (A)- β -[4-[[(3.4-dimethoxyphenyl)acetyl]amino]phenyl]- α -methyl-1H-imidazol-1-propanoate 20 (0.0117 mol) in THF (78ml). The mixture was allowed to warm to RT overnight and then cooled to 0°C. LiAlH4 (0.0117 mol) was added portionwise at 0°C. The mixture was allowed to warm to RT, then stirred at RT for 2 hours, poured out on ice and filtered over celite. The filtrate was extracted with EtOAc. The organic layer was 25 · separated, dried, filtered and the solvent was evaporated. The residue was purified by column chromatography over silica gel (eluent: CH2Cl2/CH3OH/NH4OH 95/5/0.1 and 90/10/0.2). Two pure fractions (F1 and F2) were collected and their solvents were evaporated. F1 was crystallized from 2-propanone. The precipitate was filtered off and dried, yielding 0.9g (±)-(A)-3,4-dimethoxy-N-[4-[1-(1H-imidazol-1-yl)-2-(hydroxymethyl)propyl]phenyl]benzeneacetamide (19%) (compound 386). F2 was purified by 30 column chromatography over silica gel (eluent: CH2Cl2/CH3OH/NH4OH 95/5/0.2). The pure fractions were collected and the solvent was evaporated. The residue was purified by column chromatography over amino phase (eluent: CH2Cl2/CH3OH 95/5). The pure fractions were collected and the solvent was evaporated, yielding 0.5g (\pm) -(B)-3,4-dimethoxy-N-[4-[1-(1H-imidazol-1-yl)-2-(hydroxymethyl)propyl]phenyl]-35

benzeneacetamide (10%) (compound 394).

Example B19

A mixture of (±)-3,4-dimethoxy-N-[4-[1-(1H-imidazol-1-yl)-2-[methyl(phenylmethyl)-amino]propyl]phenyl]benzenacetamide (0.0066 mol) in ethanol (150ml) was hydrogenated (p=3 bar) for 90 minutes with palladium-on-charcoal 10% (3.3g) as a catalyst. After uptake of hydrogen, the catalyst was filtered off over celite, washed with CH₃OH and the solvent was evaporated. The residue (2.72g) was purified by column chromatography over silica gel (eluent: CH₂Cl₂/CH₃OH/NH₄OH 92/8/1). Two pure fractions were collected and their solvents were evaporated. Each residue was crystallized from 2-butanone and diethyl ether. The precipitate was filtered off and dried, yielding 0.39g (14.5%) of (±)-(A)-3,4-dimethoxy-N-[4-[1-(1H-imidazol-1-yl)-2-(methylamino)propyl]phenyl]benzeneacetamide (compound 400).

Example B20

10

A mixture of (±)-3,4-dimethoxy-N-[4-(3-methyl-2-oxiranyl)phenyl]benzeneacetamide (0.0442 mol) and 1*H*-imidazole (0.221 mol) in DMF (116ml) was stirred and refluxed for 6 hours. The mixture was poured out into water and extracted with EtOAc. The organic layer was separated, dried, filtered and the solvent was evaporated. The residue was purified by column chromatography over silica gel (eluent: CH₂Cl₂/CH₃OH/NH₄OH 96/4/0.3). The desired fraction was taken up in CH₂Cl₂, washed with a saturated NaCl solution, dried, filtered and the solvent was evaporated. The residue was purified by column chromatography over silica gel (eluent: CH₂Cl₂/CH₃OH/NH₄OH 93/7/1). The pure fractions were collected and the solvent was evaporated. The residue was crystallized from 2-propanone. The precipitate was filtered off and dried, yielding 1.53g (9%) of (±)-(B)-3,4-dimethoxy-N-[4-[2-hydroxy-1-(1*H*-imidazol-1-yl)propyl]phenyl]benzeneacetamide monohydrate (compound 402).

25 Example B21

30

35

A mixture of (±)-(A)-3-[4-[[(3,4-dimethoxyphenyl)acetyl]amino]phenyl]-3-(1*H*-imidazol-1-yl)-2-methylpropyl methanesulfonate (0.0011 mol) in NaOCH₃ (1ml) and methanol (5ml) was stirred at 80°C for 3 hours. The mixture was poured out on ice and extracted with CH₂Cl₂. The organic layer was separated, dried, filtered and the solvent was evaporated. The residue (0.56g) was purified by column chromatography over silica gel (eluent: CH₂Cl₂/CH₃OH/NH₄OH 97.5/2.5/0.1). The pure fractions were collected and the solvent was evaporated. The residue was crystallized from diethyl ether. The precipitate was filtered off and dried, yielding 0.2g (43%) of (±)-(A)-3,4-dimethoxy-*N*-[4-[1-(1*H*-imidazol-1-yl)-3-methoxy-2-methylpropyl]phenyl]benzene-acetamide (compound 404).

Example B22

5

10

15

20

25

30

35

- a) A mixture of compound (698) (0.0329 mol) in NaOH 3N (300ml) was stirred and refluxed for 2 hours. The mixture was cooled, poured into ice, neutralized with concentrated HCl and extracted with CH₂Cl₂. The organic layer was dried, filtered and the solvent evaporated, yielding 7.91g (88%) of (±)-4-[1-(1*H*-imidazol-1-yl)-2-methylpropyl]phenylthiourea (compound 699).
- b) An alternative reaction procedure is the following: A solution of trifluoroacetic acid (0.0715 mol) in benzene (5ml) was added dropwise to a solution of 4-[1-(1H-imidazol-1-yl)-2-methylpropyl]benzenamine (0.0511 mol) and NaSCN (0.102 mol) in benzene (70ml), the mixture was stirred at RT for 1 hour and stirred further at 60°C for 24 hours. The mixture was cooled to 30°C, and extracted with CH₂Cl₂ and K₂CO₃ 10%. The organic layer was washed with water, dried, filtered and the solvent evaporated. The residue was purified by column chromatography over silica gel (eluent: CH₂Cl₂/CH₃OH/NH₄OH 95/5/0.5 to 90/10/0.5) (35-70 μ m) and purified further by column chromatography over silica gel (eluent: CH₂Cl₂/CH₃OH/NH₄OH 92/8/0.5) (15-40 μ m). The pure fractions were collected and evaporated. The residue was recrystallized from 2-propanone and (C₂H₅)₂O and filtered off. The product was taken up in CH₂Cl₂, CH₃OH and norit. The product was recrystallized from 2-propanone and (C₂H₅)₂O and filtered off, yielding 1.42g (±)-4-[1-(1H-imidazol-1-yl)-2-methylpropyl]-phenylthiourea (10%) (compound 699).

Example B23

A mixture of compound (206) (0.0104 mol), 2-pyridinamine (0.0104 mol) and N,N-dimethyl-4-pyridinamine (0.0052 mol) in 1,4-dioxane (100 ml) was stirred and refluxed overnight. The solvent was evaporated. The residue was dissolved in CH₂Cl₂. The organic solution was washed with a 10% aqueous K₂CO₃ solution, with water, dried, filtered and the solvent was evaporated. The residue was purified by column chromatography over silica gel (eluent: CH₂Cl₂/CH₃OH/ NH₄OH 97/3/0.1). The pure fractions were collected and the solvent was evaporated. The residue was crystallized from 2-propanone and DIPE. The precipitate was filtered off and dried, yielding 1.10 g (34.3%) (±)-N-(2-pyridinyl)-N'-[4-[1-(1H-imidazol-1-yl)-2-methylpropyl]phenyl]urea (compound 274).

Example B24

n-Butyllithium 1.6M in hexane (101.5ml) was added dropwise at -70°C under N_2 flow to a mixture of 1-methyl-1*H*-imidazole (0.162 mol) in THF (244ml). The mixture was stirred at -70°C for 30 minutes. Chlorotriethylsilane (0.162 mol) was added. The mixture was allowed to warm to RT. n-Butyllithium 1.6M in hexane (101.5ml) was

10

15

20

25

30

35

added dropwise at -70°C. The mixture was stirred at -70°C for 1 hour and brought to -15°C. A mixture of intermediate (9) (0.065 mol) in THF (152ml) was added dropwise at -70°C. The mixture was allowed to warm to RT, stirred overnight, then poured out into a saturated NH₄Cl solution and extracted with EtOAc. The organic layer was separated, dried, filtered and the solvent was evaporated. The residue was purified by column chromatography over silica gel (eluent: $CH_2Cl_2/CH_3OH/NH_4OH$ 96/4/0.5 and 80/20/2). The pure fractions were collected and the solvent was evaporated. The residue was crystallized from 2-propanone. The precipitate was filtered off and dried, yielding 1.5g (\pm)-N-[4-[2-(dimethylamino)-1-hydroxy-1-(3-methyl-3*H*-imidazol-4-yl)-propyl]phenyl]acetamide (compound 771).

Example B25

Benzoylchloride (0.067 mol) was added to a solution of NH₄SCN (5.09g) in 2-propanone (150ml) and the mixture was stirred and refluxed for 20 minutes. A solution of 4-[1-(1*H*-imidazol-1-yl)-2-methylpropyl]benzenamine (0.0557 mol) in 2-propanone (150ml) was added and the mixture was stirred and refluxed at 80°C overnight. The mixture was cooled, filtered through celite and the filtrate was evaporated. The residue was taken up in CH₂Cl₂. The organic layer was dried, filtered and the solvent evaporated. The residue was purified by column chromatography over silica gel (eluent: CH₂Cl₂/CH₃OH/NH₄OH 98/2/0.1). The pure fractions were collected and evaporated. The residue was recrystallized from 2-propanone and DIPE, yielding (±)-*N*-benzoyl-*N*-[4-[1-(1*H*-imidazol-1-yl)-2-methylpropyl]phenyl]thiourea (compound 698).

Example B26

A mixture of compound (689) (0.0309 mol) and iodomethane (0.062 mol) in acetonitrile (100ml) was stirred at 50°C for 2 hours. The solvent was evaporated, yielding 10.9g (91%) (±)-N-[4-[1-hydroxy-1-(3-pyridinium)methyl]phenyl]acetamide iodide (compound 770)

Example B27

A mixture of 1-[2-ethyl-1-(4-isothiocyanatophenyl)butyl]-1*H*-imidazole (0.0123 mol) and 2-benzothiazolamine (0.0148 mol) in acetonitrile (80ml) was stirred and refluxed for 12 hours. The solvent was evaporated and the residue was taken up in H₂O and CH₂Cl₂. The organic layer was separated, dried, filtered and the solvent was evaporated. The residue was purified by column chromatography over silica gel (eluent: CH₂Cl₂/CH₃OH/ NH₄OH 97.5/2.5/0.1). The desired fractions were collected and the solvent was evaporated. The residue was purified again by column chromatography over silica gel (eluent: CH₂Cl₂/CH₃OH/NH₄OH 85/15/0.1). The pure

fractions were collected and the solvent was evaporated. The residue was crystallized from 2-butanone and DIPE. The precipitate was filtered off and dried, yielding 0.44g (9%) (±)-N-(2-benzothiazolyl)-N-[4-[1-(1H-imidazol-1-yl)-2-ethylbutyl]phenyl]-thiourea (compound 705).

5 Example B28

A mixture of compound (651) (0.0136 mol) and phosphorous pentasulfide (0.0136 mol) in pyridine (200ml) was stirred and heated at 120°C for 12 hours. The solvent was evaporated, the residue was taken up in water, NH₄OH, CH₂Cl₂ and CH₃OH (10%), and the mixture was stirred at RT for 15 minutes. The organic layer was decanted off, dried, filtered and evaporated. The residue was purified by column chromatography over silica gel (eluent: CH₂Cl₂/CH₃OH/NH₄OH 97/3/0.1). The desired fractions were collected and evaporated. The residue was recrystallized from 2-propanone and DIPE, filtered off and dried, yielding (22%) 1.15g 4-chloro-*N*-[4-[1-(1*H*-imidazol-1-yl)-2-methylpropyl]phenyl]benzenethane-thioamide (compound 764).

15 Example B29

10

A solution of methyl N'-(3-fluorophenyl)-N-[4-[1-(1H-imidazol-1-yl)-2-methylpropyl]-phenyl]carbamimidothioate (0.0094 mol) in NH₃/CH₃OH (60ml) was stirred and heated in autoclave at 40°C for 3 days. The solvent was evaporated and the residue was purified by column chromatography over silica gel (eluent:

20 CH₂Cl₂/CH₃OH/NH₄OH 94/6/0.2 to 90.10/0.5). The pure fractions were collected and evaporated. The residue was crystallized from 2-propanone and (C₂H₅)₂O and filtered off, yielding 0.89g (46%) N'-(3-fluorophenyl)-N-[4-[1-(1H-imidazol-1-yl)-2-methylpropyl]phenyl]guanidine (compound 744).

Example B30

A solution of KOCN (2.25g) in water was added dropwise at RT to a mixture of 4-[1-(1*H*-imidazol-1-yl)-2-methylpropyl]benzenamine (0.0278 mol) in acetic acid (4ml) and water (50ml) and the mixture was stirred at RT for 1 hour. The mixture was neutralized with NaOH 3N and extracted with CH₂Cl₂ and CH₃OH. The organic layer was washed with water, dried, filtered and the solvent evaporated. The residue was purified by column chromatography over silica gel (eluent : CH₂Cl₂/CH₃OH/NH₄OH 96/4/0.3). The pure fractions were collected and evaporated. The residue was recrystallized from 2-propanone, yielding 2.7g (51.4%) (±)-4-[1-(1*H*-imidazol-1-yl)-2-methylpropyl]phenylurea (compound 266).

Example B31

35 4-Fluorophenylisocyanate (0.017 mol) was added to a solution of 4-[1-(1H-imidazol-1-

yl)-2-methylpropyl]benzenamine (0.014 mol) in dry THF (100ml) and the mixture was stirred and refluxed for 2 hours. The mixture was cooled, the precipitate was filtered off and recrystallized from 2-propanone and CH₃OH, yielding 1.6g (32%) (±)-N-(4-fluorophenyl)-N-[4-[1-(1H-imidazol-1-yl)-2-methylpropyl]phenyl]urea (compound 740).

Example B32

5

10

15

20

25

CH₃I (0.00814 mol) was added at RT to a mixture of compound 792 (0.00814 mol) in 2-propanone (30ml). The mixture was stirred at RT for 6 hours, poured out into H₂O and a concentrated NH₄OH solution and extracted with CH₂Cl₂. The organic layer was separated, dried, filtered and the solvent was evaporated, yielding 3.18g of methyl [4-[(2,5-dichlorophenyl)(1*H*-imidazol-1-yl)methyl]phenyl]carbamimidothioate (comp. 796).

Example B33

Formamide (130ml) was added to a mixture of intermediate 15 (0.043 mol) in acetic acid (130ml). The mixture was stirred at 150°C for 2 hours, cooled, poured out into ice water and basified with a concentrated NH₄OH solution. The precipitate was filtered off, washed with H₂O and taken up in CH₂Cl₂ and a small amount of CH₃OH. The organic solution was dried, filtered and the solvent was evaporated. This fraction was crystallized from CH₂Cl₂, CH₃OH and DIPE. The precipitate was filtered off and dried, yielding 2.2g (15.1%) of (±)-N-[4-[(4-chlorophenyl)(1-methyl-1H-imidazol-5-yl)methyl]-phenyl]formamide (comp. 793).

Example B34

Compound (779) (0.0132 mol) was separated into its enantiomers by column chromatography over silica gel (eluent: hexane/C₂H₅OH 80/20; column: CHIRACEL OD 20 µm). Two pure fractions were collected and their solvents were evaporated. The residue was dissolved in 2-propanone and 2-propanol and converted into the oxalic acid salt (1:1). The precipitate was filtered off and dried, yielding 2.55g of (A)-N-[4-[2-ethyl-1-(1H-imidazol-1-yl)butyl]phenyl]-3-hydroxybenzeneacetamide ethanedioate (1:1) (comp. 780) and 2.95g of (B)-N-[4-[2-ethyl-1-(1H-imidazol-1-yl)butyl]phenyl]-3-hydroxybenzeneacetamide ethanedioate (1:1) (comp. 781).

30

Tables 1 to 20 list the compounds of formula (I) which were prepared analogous to one of the above examples.

Table 1

Co. No	X; R ⁴ ; stereochemical descriptor if	Co. No	X; R ⁴ ; stereochemical descriptor if	
(Ex No)	not racemic and/or addition salt	(Ex No)	not racemic and/or addition salt	
1 (B1)	N; CH ₃	33 (B2)	CH; 3,4-dihydro-2 <i>H</i> -1-	
			benzopyran-3-yl	
2 (B2)	N; C(CH ₃)=CHC ₆ H ₅ ; (E)	34 (B2)	CH; 1,3-benzodioxolan-2-yl	
3 (B2)	N; C ₆ H ₅	35 (B2)	CH; 4-OC₂H₅-C₀H₄	
4 (B3)	(B3) N; CH(OH)(4-Cl-C ₆ H ₄)		CH; (2,3-dihydro-1,4-	
			benzodioxin-6-yl)-CH,	
5 (B2)	N; (1,3-benzodioxolan-5-yl)methyl	38 (B2)	CH; (5,5,8,8-tetramethyl-5,6,7,8-	
			tetrahydro-2-naphtalenyl)-CH,	
6 (B2)	N; (3,4-diOCH ₃)C ₆ H ₃	39 (B2)	CH; (CH ₂) ₂ (4-OC ₂ H ₅ -C ₆ H ₄)	
7 (B2)	N; (2,3-dihydro-1,4-benzodioxin-6-	40 (B5)	CH; H	
	yl)methyl			
8 (B3)	N; (CH ₂) ₃ (3,4-diOCH ₃ -C ₆ H ₃)	41 (B2)	CH; CH ₂ -(4-C ₆ H ₅ -C ₆ H ₄)	
9 (B2)	N; OC₀H₅	42 (B2)	CH; CH₂Cl	
10 (B3)	N; (CH ₂) ₂ (3,4-diOCH ₃ -C ₆ H ₃)	43 (B9)	CH; (1-piperidinyl)methyl	
11 (B3)	N; CH(OH)(3,4-diCH ₃ -C ₆ H ₃)	44 (B9)	CH; (4-CH ₃ -1-piperazinyl)-CH ₂	
12 (B2)	N; CH ₂ O(2-OCH ₃ -C ₆ H ₄)	45 (B3)	CH; 2-methoxy-5-pyridinyl	
13 (B3)	N; (2-NH ₂ -benzothiazol-6-yl)-CH ₂	46 (B3)	CH; 1-(C ₆ H ₅ -CO)-4-piperidinyl	
14 (B2)	N; CH₂Cl	47 (B9)	CH; (4-morpholinyl)-CH ₂	
15 (B9)	N; (4-CH,-1-piperazinyl)-CH,	48 (B3)	CH; (CH ₂) ₃ (4-OC ₂ H ₅ -C ₆ H ₄)	
16 (B3)	N; CH(OH)(4-Cl-C₀H₄); (A)	49 (B3)	CH; CH₂O(2-OH-C₄H₄)	
17(B10)	N; CH(OH)(4-Cl-C₀H₄); (A,A)	50 (B2)	CH; CH(SCH ₃)(C ₆ H ₅)	
18(B10)	N; CH(OH)(4-Cl-C ₆ H₄); (A,B)	51 (B3)	CH; (2-OCH ₃ -5-pyridinyl)-CH ₂	
19 (B3)	N; CH(OH)(4-Cl-C ₆ H ₄); (B)	52 (B3)	CH; (CH ₂) ₃ (3,4-diOCH ₃ -C ₆ H ₃)	
20(B 10)	N; CH(OH)(4-Cl-C ₆ H ₄); (B,A)	53 (B3)	CH; 1-(tert-butoxy-carbonyl)-4-	
			piperdinyl	
21(B10)	N; CH(OH)(4-Cl-C₀H₄); (B,B)	54 (B3)	CH; CH(OH)(4-Cl-C ₆ H ₄)	
22 (B2)		55 (B3)	CH; CH ₂ N(CH ₃) ₂	
23 (B2)	CH; 2,3-dihydro-1,4-benzodioxin-	56 (B3)	CH; CH(OH)(3,4-diOCH ₃ -C ₆ H ₃)	
	2-yl			
24 (B3)	CH; C(OH)(CH ₃) ₂	57(B11)	CH; 4-piperidinyl	
25 (B2)	CH; 1,4-benzodioxin-2-yl	58 (B3)	CH; (2-NH2-6-benzothiazolyl)-CH2	

Co. No	X; R ⁴ ; stereochemical descriptor if	Co. No	X; R4; stereochemical descriptor if
(Ex No)	not racemic and/or addition salt	(Ex No)	not racemic and/or addition salt
26 (B2)	CH; (2,3-dihydro-1,4-benzodioxin-	59 (B3)	CH; 1-methyl-4-piperidinyl
	2-yl)-CH,		
27 (B2)	CH; 2-pyrazinyl	60 (B2)	СН; ОС₀Н₅
28 (B2)	CH; (1,3-benzodioxolan-5-yl)-CH,	61(B10)	CH; (CH ₂) ₂ (4-OC ₂ H ₅ -C ₆ H ₄); (A)
29 (B2)	CH; 3,4-dihydro-2H-1-benzopyran-	62(B10)	CH; (CH ₂) ₂ (4-OC ₂ H ₅ -C ₆ H ₄); (B)
	2-yl		
30 (B2)	CH; 5,5,8,8-tetramethyl-5,6,7,8-	63(B23)	N; 2-benzothiazolyl-NH-
	tetrahydro-2-naphtalenyl		
31 (B2)	CH; 2H-1-benzopyran-3-yl	64(B23)	CH; 2-benzothiazolyl-NH-
32 (B2)	CH; (CH ₂) ₂ (3,4-diOCH ₃ -C ₆ H ₃)	777(B3)	N; 2-benzothiazolyl
37 (B2)	CH; CH ₂ O(2-OCH ₃ -C ₆ H ₄)	778(B3)	CH; 2-benzothiazolyl; oxalic acid
			(1:1)

Table 2

$$(R^b)_{n_1}$$
 CH_2 CH_2 CH_3 CH_4 CH_4 CH_5 CH_5 CH_6 CH_6

Co. No.	Ex. No.	Х	(R ^b) _n ; stereochemical descriptor if not racemic and/or addition salt	Co. No.	Ex. No.	х	(R ^b) _n ; stereochemical descriptor if not racemic and/or addition salt
65	B2	N	4-CH ₃	101	B2	СН	3-OC ₂ H ₅ ; 4-OC ₂ H ₅
66	B2	N	4-Cl	102	B2	СН	2-OCH ₃ ; 3-OCH ₃
67	В3	N	3-OH	103	B2	СН	4-OC ₆ H ₅
68	B2	N	4-F	104	B2	СН	2-CH ₃
69	В3	N	4-OH	105	B2	СН	4-OCH ₃
70	B2	N	3-OCH ₃	106	B2	СН	2-CH ₃ ; 5-CH ₃
71	B2	N	4-OC ₂ H ₅	107	В3	СН	2-OH
72	В3	N	3-OCH ₃ ; 4-OH	108	В3	СН	3-OH; 4-OCH ₃
73	B2	N	3-OCH ₃ ; 4-OCH ₃	109	B3	СН	3-OH; oxalic acid (1:1)
74	B2	N	3-CI; 4-OCH ₃	110	B2	СН	3-O CH ₃ ; 4-CH ₃
75	В2	N	3-CI; 4-OC ₂ H ₅	111	B3	CH	4-OH
76	B2	N	3-CH ₃ ; 4-OC ₂ H ₅	112	B2	СН	3-CH ₃ ; 4-CH ₃
77	B2	N	3-CH ₃ ; 4-CH ₃	113	В2	СН	2-OCH ₃ ; 4-Cl
78	В3	N	3-CH ₃ ; 4-OCH ₃	114	B2	CH	2-OCH ₃ ; 6-OCH ₃
79	В3	N	3-CI; 4-OH	115	B2	СН	2-OCH ₂ C ₆ H ₅ ; 3-OCH ₃

Co.	Ex.	Х	(R ^b) _n ; stereochemical	Co.	Ex.	X	(R ^b) _n ; stereochemical
No.	No.		descriptor if not racemic and/or addition salt	No.	No.		descriptor if not racemic and/or addition salt
80	B2	N	3-OCH ₃ ; 4-OCH ₃ ; 5-OCH ₃	116	B2	СН	3-Cl; 4-OCH ₃
81	B2	N	3-CH ₃ ; 4-CH ₃ ; 5-CH ₃	117	В3	СН	3-Cl; 4-OH
82	В3	N	3-OC ₂ H ₅ ; 4-OC ₂ H ₅	118	B2	СН	3-Cl; 4-OC₂H₅
83	В3	N	3-OCH ₃ ; 4-Cl	119	B2	СН	3-OCH ₃ ; 5-OCH ₃
84	В3	N	3-OCH₃; 4-CH₃	120	B2	СН	2-OCH ₂ C ₆ H ₅ ; 5-OCH ₃
85	B10	N	3-CH ₃ ; 4-OCH ₃ ; (A)	121	В3	СН	4-(2-pyridinylmethoxy)
86	B10	N	3-CH ₃ ; 4-OCH ₃ ; (B)	122	B2	СН	2-OCH ₃ ; 5-CH ₃
87	B2	СН	4-Cl	123	B2	CH	3-CH ₃ ; 4-OCH ₃
88	B2	СН	4-F	124	B3	СН	2-OH; 5-CH ₃
89	B2	СН	2-OCH ₃	125	B2	СН	3-CH₃; 4-OC₂H₅
90	B2	СН	3-OCH ₃	126	В3	СН	2-OCH ₃ ; 4-OCH ₃
91	В2	CH	3-OCH ₃ ; 4-OCH ₃	127	В3	СН	4-(4-pyridinylmethoxy)
92	B2	СН	4-OCH(CH ₃) ₂	128	В3	СН	3-OC ₂ H ₅ ; 4-OCH ₂ C ₆ H ₅
93	B2	СН	4-O(CH ₂) ₂ CH ₃	129	В3	СН	2-CH₃; 4-OH
94	B2	СН	4-CH ₃	130	В3	СН	4-(3-pyridinylmethoxy)
95	B2	СН	4-OC ₂ H ₅	779	В3	СН	3-OH
96	B2	СН	4-O(CH ₂)₃CH ₃	780	B34	СН	3-OH; (A); oxalic acid (1:1)
97	В3	СН	3-OCH ₃ ; 4-OH;	781	B34	СН	3-OH; (B); oxalic acid (1:1)
			oxalic acid (1:1)				
98	B2	СН	2-OCH ₃ ; 5-OCH ₃	782	B34	N	3-OCH ₃ ; 4-CH ₃ ; (A)
99	В3	СН	4-N(CH ₃) ₂	783	B34	N	3-OCH ₃ ; 4-CH ₃ ; (B)
100	B2	СН	3-CH ₃				

Table 3

Co.	Ex.	х	(R ^b) _o ; stereochemical	Co.	Ex.	Х	(R ^b) _n ; stereochemical
No.	No.		descriptor if not racemic	No.	No.		descriptor if not racemic
	L		and/or addition salt				and/or addition salt
131	B2	N	4-C1	142	В3	СН	3-OCH ₃ ; 4-OH
132	B2	N	4-F	143	В3	СН	3-Cl; 4-Cl
133	B2	N	4-CH₃	144	B2	СН	4-NO ₂ ; (A)
134	В3	N	4-OH	145	В7	СН	4-NH ₂ ; (A)

Co.	Ex. No.	х	(R ^b) _n ; stereochemical descriptor if not racemic	Co. No.	Ex. No.	х	(R ^b) _n ; stereochemical descriptor if not racemic
No.	140.		and/or addition salt	110.			and/or addition salt
135	B2	N	4-OC ₂ H ₅	146	В2	СН	4-NO ₂ ; (B)
136	B2	N	3-OCH ₃ ; 4-OCH ₃ ;	147	В7	СН	4-NH ₂ ; (B)
			hydrate (1:1)				·
137	В3	N	3-OH ·	148	В3	СН	3-I; 4-NH ₂
138	В3	N	3-OCH ₃ ; 4-OH	149	В3	СН	3-I; 4-NH ₂ ; (B)
139	B2	СН	3-OCH ₃ ; 4-OCH ₃ ; 5-OCH ₃	150	B3	СН	3-I; 4-NH ₂ ; (A)
140	В2	СН	3-OCH ₃ ; 4-OCH ₃	151	B2	СН	4-NO ₂
141	В3	СН	2-Cl; 4-Cl	152	В7	СН	4-NH ₂

Co No	X; R4; stereochemical descriptor	Co No	X; R4; stereochemical descriptor if
(Ex No)	if not racemic and/or addition salt	(Ex No)	not racemic and/or addition salt
153 (B1)	N; CH ₃	216 (B3)	CH; 2-quinoxalinyl
154 (B2)	N; C(CH ₃)=CHC ₆ H ₅ ; (E)	217 (B2)	CH; 3,4-dihydro-2H-1-benzopyran-
			2-yl
155 (B2)	N; CH=CHC ₆ H ₅ ; (E)	218(B6a)	CH; (CH ₂) ₃ C(=O)OH
156 (B2)	N; C(CH ₃)=CH(3-Cl-C ₆ H ₄); (E)	219(В6Ь)	CH; (CH ₂) ₃ C(=O)OC ₂ H ₅
157 (B2)	N; C(CH ₃)=CH(4-F-C ₆ H ₄); (E)	220 (B2)	CH; 5-bromo-2-furanyl
158 (B2)	N; C(CH ₃)=CH(4-pyridinyl); (E)	221 (B2)	CH; 3-F-C ₆ H₄
159 (B2)	N; C(CH ₃)=CH(4-CF ₃ -C ₆ H ₄); (E)	222 (B3)	CH; C(CH ₃) ₂ [O(4-Cl-C ₆ H ₄)]
160 (B2)	N; CF=CHC ₆ H ₅ ; (Z)	223 (B3)	CH; CH₂-S-C ₆ H ₅
161 (B2)	N; 1,3-benzodioxolan-2-yl	224 (B3)	CH; (2-pyrimidinylthio)methyl
162 (B2)	N; (2,3-dihydro-1,4-benzodioxin-	225 (B3)	CH; 5-methyl-2-pyrazinyl
	2-yl)methyl		
163 (B2)	CH; C₂H₅	226 (B2)	CH; 3-methyl-2-furanyl
164 (B4)	CH; CH(CH ₃)-CH ₂ (C ₆ H ₅)	227 (B3)	CH; 4-quinolinyl
165 (B2)	CH; CH(CH ₃)-CH=CHC ₆ H ₅ ; (E)	228 (B3)	CH; 1,2-dihydro-2(1H)-pyridinone-
			-3-yl
166 (B2)	CH; C₀H₃	229 (B3)	CH; 1-isoquinolinyl
167 (B2)	CH; 2-benzofuranyl	230 (B2)	CH; 2,3-dihydro-1,4-benzodioxin-
		1	5-yl

Co No	V. P4. starred	L	W. D4
	X; R ⁴ ; stereochemical descriptor	Co No	X; R ⁴ ; stereochemical descriptor if
(Ex No)	if not racemic and/or addition salt	1	not racemic and/or addition salt
	CH; 2-benzothienyl	231 (B2)	1 " " " " " " " " " " " " " " " " " " "
	CH; 2-furanyl		CH; 1,3-benzodioxolan-5-yl
1	CH; 2-pyrazinyl	g .	CH; 5-quinoxaliny)
171 (B2)	CH; C(CH ₃)=C(C ₆ H ₅)	234 (B2)	CH; 1,4-benzodioxin-2-yl
	(3-pyridinyl); (E+Z)		
	CH; 3-furanyl		CH; 2-furanylmethyl
1	CH; 3-thienyl		CH; C(OH)(CH ₃) ₂
174 (B2)	CH; 1-cyclohexenyl	237 (B2)	CH; (2,3-dihydro-1,4-benzodioxin-
1_			2-yl)methyl
175 (B2)		238 (B2)	CH; 4-(C ₆ H ₅)-C ₆ H ₄
	dioxin-2-yl		
	CH; C(CH ₃)=C(C ₆ H ₅)(CH ₃); (E)	239 (B3)	CH; (4-pyridinylthio)methyl
177 (B5)			CH; (2-naphtalenyl)methyl
		241 (B3)	CH; 3-quinolinyl
		242 (B3)	CH; 3,5-dimethyl-4-isoxazolyl
180 (B2)	CH; 1-methyl-2-indenyl	243 (B2)	CH; 2,3-dihydro-1,4-benzoxathiin-
			2-yi
		244 (B3)	CH; 2-thienylmethyl
		245 (B3)	CH; 3-thienylmethyl
1		246 (B3)	CH; 1-naphtalenylmethyl
184 (B2)	CH; I-methylbenzotriazol-6-yl	247 (B3)	CH; 2-pyridinylmethyl
185 (B2)	CH; 3-oxolanyl	248 (B2)	CH; 1,3-benzodioxolan-2-yl
		249 (B3)	CH; CH(OH)-CH ₃
187 (B2)	CH; 2-thienyl	250 (B3)	CH; 5-methyl-3-phenyl-4-isoxazolyl
188 (B2)	CH; (CH₂)₂CH₂Cl	251 (B3)	CH; 3-pyridinylmethyl
189 (B2)	CH; C(CH ₃)(C ₆ H ₅) ₂	252 (B2)	CH; 5,6,7,8-tetrahydro-5,5,8,8-
			tetramethyl-2-naphtalenyl
190 (B2)	CH; 1-C ₆ H ₅ -cyclopropyl	253 (B2)	CH; 3,4-dihydro-2H-1-benzopyran-
			3-yl
191 (B2)	CH; 1-C ₆ H ₅ -cyclopentyl	254 (B2)	CH; 2H-1-benzopyran-3-yl
192 (B2)	H		CH;(2,3-dihydro-1,4-benzodioxin-
		l	6-yl)methyl
193 (B2)	CH; cyclohexyl	256 (B2)	CH;(5,6,7,8-tetrahydro-5,5,8,8-
			tetramethyl-2-naphtalenyl)methyl
194 (B3)	CH; 4-pyridinyl	257 (B1)	CH; CH ₃ ; (A)
[194 (B3)]	CH; 4-pyridinyl	257 (B1)	CH; CH ₃ ; (A)

		,	
Co No	X; R4; stereochemical descriptor	Co No	X; R ⁴ ; stereochemical descriptor if
(Ex No)	if not racemic and/or addition salt	(Ex No)	not racemic and/or addition salt
195 (B3)	CH; 1-methyl-2-pyrrolyl	258 (B1)	CH; CH ₃ ; (B)
196 (B3)	CH; 3-pyridinyl	259 (B8)	CH; CH ₂ (3-iodo-4-azido-C ₆ H ₃); (B)
197 (B2)	CH; 2-methylcyclopropyl	260 (B8)	CH; CH ₂ (3-iodo-4-azido-C ₆ H ₃); (A)
198 (B3)	CH; $C \equiv C(C_6H_5)$	261 (B3)	CH; CH ₂ -NH-C(=O)-C ₆ H ₅
199 (B3)	CH; cyclopropyl	262 (B3)	CH; CH ₂ -NH-C(=O)-O-CH ₂ -C ₆ H ₅
200 (B2)	CH; 1-C ₆ H ₅ -cyclohexyl	263(B23)	CH; N(CH ₃)-CH ₂ -C ₆ H ₅
201 (B2)	CH; 1-methylcyclohexyl	264(B6a)	CH; CH ₂ -[1-(CH ₂ COOH)cyclopentyl
202 (B2)	CH; 2-methylcyclohexyl	265(B6a)	CH; (CH ₂) ₂ -C(=O)-OH
203 (B3)	CH; $C(CH_3)=C(C_6H_5)-C_2H_5$; (Z)	266(B30)	CH; NH₂
204 (B2)	CH; 2-phenylcyclopropyl;	267(B23)	CH; NH-CH ₃
	oxalic acid (1:1)		
205 (B2)	CH; 3.4-dihydro-2(1H)-	268(B23)	CH; NH-C(CH₃)₂
	quinolinone-6-yl		
206 (B2)	CH; OC ₆ H ₅	269(B23)	CH; NH-CH ₂ -C ₆ H ₅
207 (B3)	CH; $C(CH_3)=C(C_6H_5)(2-$	270(B23)	CH; NH-(3-pyridinyl)
	furanyl);(E)		
208 (B3)	CH; 2-pyridinyl	271(B23)	CH; NH-(2-pyrazinyl)
209 (B2)	CH; CH(CH ₃)CH ₃	272(B31)	CH; NH-(1-naphtalenyl)
210 (B3)	CH; CH ₂ -S-CH ₂ C ₆ H ₅	273(B23)	CH; NH-CH ₂ -(4-Cl-C ₆ H ₄)
211 (B3)	CH; CH₂-OC₀H₃	274(B23)	CH; NH-(2-pyridinyl)
212 (B3)	CH; CH2-OCH3	275(B23)	CH; NH-(4-pyridinyl)
213 (B3)	CH; CH₂-NH-C ₆ H ₅	276(B23)	CH; NH-(6-benzodioxanyl)
214 (B3)	CH; 6-quinoxalinyl	277(B23)	CH; NH-(1-CH ₃ -2-benzimidazolyl)
215 (B3)	CH; 2-quinolinyl		

$$(\mathbb{R}^{h})_{n} \longrightarrow \mathbb{C}H_{2} - \mathbb{C} - \mathbb{N}H$$

Co. No.			(7m)		Ex. No.		(R ^b) _n ; stereochemical descriptor if not racemic and/or addition salt
278	B2	N	3-OCH ₃ ;4-OCH ₃ ; (A)	301	В3	СН	3-OC ₂ H ₅ ; 4-OC ₂ H ₅ ; (B)

	F.,	1 7/	l mb	T-	T_	1	-h
Co.	Ex.	X	(R ^b) _n ; stereochemical descriptor if not racemic	Co. No.	Ex.	х	(R ^b) _n ; stereochemical descriptor if not racemic
No.	NO.		and/or addition salt	140.	No.		and/or addition salt
279	В3	N	3-Cl; 4-OCH ₃ ; (A)	302	В3	СН	3,4,5-(OCH ₃) ₃ ; (A)
280	B3	N	3-CH ₃ ; 4-CH ₃ ; (B)	303	В3	СН	3-Cl; 4-OH; (A)
281	B3	N	4- OCH ₃ ; 3-CH ₃ ; (B)	304	B2	СН	3-Cl; 4-OCH ₃ ; (A)
282	В3	N	3-CH ₃ ; 4-CH ₃ ; (A)	305	В3	СН	3-Cl; 4-OCH ₃ ; (B)
283	B3	N	4-Cl; (B)	306	B3	СН	3-CH ₃ ; 4-CH ₃ ; (B)
284	В3	N	3-Cl; 4-OH; (A)	307	В3	СН	3-Cl; 4-OH; (B)
285	B3	N	3-OC ₂ H ₅ ; 4-OC ₂ H ₅ ; (A)	308	В3	СН	3-CH ₃ ; 4-CH ₃ ; 5-CH ₃ ; (A)
286	В3	N	3-CH ₃ ; 4-OCH ₃ ; (A)	309	В3	СН	3-CH ₃ ; 4-CH ₃ ; 5-CH ₃ ; (B)
287	В3	N	3-OCH ₃ ; 4-OCH ₃ ; (B)	310	В3	СН	3-OCH ₃ ; 4-Cl; (A)
288	В3	N	3-Cl; 4- OCH ₃ ; (B)	311	В3	СН	3-OCH ₃ ; 4-Cl; (B)
289	B3	N	3-Cl; 4-OH; (B)	312	В3	СН	3-CH ₃ ; 4-OCH ₃ ; (A)
290	B3	N	3-CH ₃ ; 4-CH ₃ ; 5-CH ₃ ; (A)	313	В3	СН	3-CH ₃ ; 4-OCH ₃ ; (B)
291	B3	N	3-CH ₃ ; 4-CH ₃ ; 5-CH ₃ ; (B)	314	В3	СН	3-OCH ₃ ;4-CH ₃ ; (A)
292	В3	И	3,4,5-(OCH ₃) ₃ ; (B)	315	В3	СН	3-OCH ₃ ;4-CH ₃ ; (B)
293	В3	N	3-OC ₂ H ₅ ; 4-OC ₂ H ₅ ; (B)	316	В3	СН	4-OCH(CH ₃) ₂ ; (B)
294	В3	N	3-OCH ₃ ; 4-CH ₃ ; (A)	317	В3	СН	4-N(CH ₃) ₂ ; (A)
295	B3	N	3-OCH ₃ ; 4-CH ₃ ; (B)	318	В3	СН	3-OCH ₃ ;4-OCH ₃ ; (A)
296	B3	N	3-OCH ₃ ; 4-Cl; (A)	319	B3	СН	4-O(CH ₂) ₃ CH ₃ ; (A)
297	В3	N	3-OCH ₃ ;4-Cl; (B)	320	B3	СН	4-O(CH ₂) ₃ CH ₃ ; (B)
298	B10	N	3-CI; 4-OH; (A,A)	321	B3	СН	4- OCH(CH ₃) ₂ ; (A)
299	B10	N	3-Cl; 4-OH; (A,B)	784	B34	N	4-Cl; (B,A)
300	В3	СН	3-OC ₂ H ₅ ; 4-OC ₂ H ₅ ; (A)	785	B34	N	4-Cl; (B,B)

Co No (Ex No)	X; R ⁴ ; stereochemical descriptor if not racemic and/or addition salt		X; R ⁴ ; stereochemical descriptor if not racemic and/or addition salt
322 (B3)	N; (2,3-dihydro-1,4-benzodioxin-6-yl)methyl; (A)	339 (B3)	CH; (2,3-dihydro-1,4-benzodioxin-6-yl)methyl; (B)
323 (B2)	N; OC₀H₅; (A)	340 (B2)	CH; (1,3-benzodioxolan-5-yl) methyl; (A)
324 (B2)	N; 3,4-diOCH ₃ -C ₆ H ₃ ; (A)	341 (B3)	CH; 3,4-diOCH ₃ -C ₆ H ₃ ; (A)

Co No	X; R4; stereochemical descriptor	Co No	X; R ⁴ ; stereochemical descriptor if
(Ex No)	if not racemic and/or addition salt		not racemic and/or addition salt
325 (B2)	N; (1,3-benzodioxolan-5-yl)-	342 (B3)	CH; 3,4-diOCH ₃ -C ₆ H ₃ ; (B)
	methyl;(A)		
326 (B3)	N; (CH ₂) ₃ (3,4-diOCH ₃ -C ₆ H ₃); (A)	343 (B2)	CH; OC ₆ H ₅ ; (A)
327 (B3)	N; 3,4-diOCH ₃ -C ₆ H ₃ ; (B)	344 (B2)	CH; OC₀H₅
328 (B3)	N; (CH ₂) ₂ (3,4-diOCH ₃ -C ₆ H ₃); (B)	345 (B5)	CH; H; (A)
329 (B3)	N; (CH ₂) ₃ (3,4-diOCH ₃ -C ₆ H ₃); (B)	346 (B3)	CH; (CH ₂) ₂ (4-OC ₂ H ₅ -C ₆ H ₄); (A)
330 (B3)	N; (1,3-benzodioxolan-5-	347 (B9)	CH; 4-methylpiperazinyl; (A)
	yl)methyl;(B)		
331 (B5)	N; H; (B)	348 (B3)	CH; (CH ₂) ₂ (4-OC ₂ H ₅ -C ₆ H ₄)
332 (B3)	N; $C(CH_3)=CH(C_6H_5)$; [B-(E)]	349 (B9)	CH; 4-methylpiperazinyl; (B)
333 (B3)	N; (2,3-dihydro-1,4-benzodioxin-	350 (B3)	CH; CH[O(2-OCH ₃ -C ₆ H ₄)]; (A)
	6-yl)methyl; (B)		
334 (B2)	N; OC ₆ H ₅ ; (B)	351 (B3)	CH; CH[O(2-OCH ₃ -C ₆ H ₄)]; (B)
335 (B5)	N, H; (A)	352 (B3)	CH; (4-CH ₃ -piperazinyl)methyl; (A)
336 (B3)	CH; (CH ₂) ₃ (3,4-diOCH ₃ -C ₆ H ₃); (B)	353 (B3)	CH; (4-CH ₃ -piperazinyl)methyl; (B)
337 (B3)	CH; (1,3-benzodioxolan-5-yl)-	354 (B3)	CH; (4-CH ₃ -piperazinyl)ethyl
	methyl; (B)		
338 (B3)	CH; (2,3-dihydro-1,4-benzodioxin-		
	6-yl)methyl; (A)		•

$$CI \longrightarrow CH_2 - C - N \longrightarrow N$$

Co No		Co No	R ¹ ; stereochemical descriptor if not racemic and/or addition salt
(Ex No)	not racemic and/or addition salt	Ex No)	raceinic and/or addition sait
355 (B2)	(CH ₂) ₂ CH(CH ₃) ₂	367 (B2)	CH[N(CH ₃) ₂]CH ₃ ; (A)
356 (B3)	4-Cl-C₀H₄	368 (B2)	CH[N(CH ₃) ₂]CH ₃ ; (B)
357 (B2)	C ₆ H ₅	369 (B2)	CH(S-C ₆ H ₅)CH ₃ ; (B)
358 (B2)	CH ₃	370 (B2)	CH(O-C ₆ H ₅)CH ₃ ; (A)
359 (B2)	CH ₂ CH(CH ₃) ₂	371 (B2)	CH(CH₃)CH₂CN; (A+B)
360 (B2)	CH ₂ -C(CH ₃) ₃	372 (B2)	C ₂ H ₅
361 (B2)	3-CF ₃ -C ₆ H ₄	373 (B2)	5,6,7,8-tetrahydro-5,5,8,8-
			tetramethyl-2-naphtalenyl

Co No	R'; stereochemical descriptor if	Co No	R1; stereochemical descriptor if not
(Ex No)	not racemic and/or addition salt	(Ex No)	racemic and/or addition salt
362 (B2)	cyclohexyl	В74 (B2)	CH(CH ₃)C ₃ H ₇ ; (B)
363 (B2)	(CH ₂) ₂ CH ₃	375 (B2)	CH ₂ [N(CH ₃) ₂]
364 (B2)	CH(CH ₃)CH ₂ CH ₃	376 (B2)	CH(S-C ₆ H ₅)CH ₃ ; (A)
365 (B2)	C(CH ₃) ₃	377 (B2)	CH(CH₃)CH₂C₀H₅
366 (B3)	1-(1-piperidinyl)ethyl; (A)		

Table 8

Co No	R ¹ ; stereochemical descriptor if	Co No	R1; stereochemical descriptor if not
(Ex No)	not racemic and/or addition salt	(Ex No)	racemic and/or addition salt
378 (B2)	CH(C ₃ H ₇) ₂	399 (B3)	CH[N(CH ₃)(CH ₂ C ₆ H ₅)]CH ₃
379 (B3)	CH(CH ₃)[N(CH ₃) ₂]; (B)	400(B19)	CH[NH(CH ₃)]CH ₃ ; (A)
380 (B3)	CH ₂ [N(CH ₃) ₂]	401(B19)	CH[NH(CH ₃)]CH ₃ ; (B); hydrate (1:1)
381 (B3)	$CH[C(=O)OC_2H_5]CH_3; (A)$	402(B20)	CH(OH)CH ₃ ; (B); hydrate (1:1)
382 (B3)	$CH[C(=O)OC_2H_5]CH_3; (B)$	403(B18)	(CH ₂) ₂ (OH)
383 (B3)	CH[N(C ₂ H ₅) ₂]CH ₃ ; (B)	404(B21)	CH(CH ₃)CH ₂ OCH ₃ ; (A)
384 (B3)	CH(CH ₃)C ₅ H ₁₁ ; (A)	405(B21)	CH(CH₃)CH₂OCH₃; (B)
385 (B3)	CH(CH ₃)C ₅ H ₁₁ ; (B)	406 (B3)	CH[N(CH ₃)(C ₄ H ₉)]CH ₃ ; (A)
386(B18)	CH(CH₃)CH₂OH; (A)	407 (B3)	$CH[N(CH_3)[(CH_2)_2N(CH_3)_2]]CH_3; (A)$
387 (B3)	CH[N(C ₂ H ₅) ₂]CH ₃ ; (A)	408 (B3)	I-(4-morpholinyl)ethyl; (A)
388 (B3)	CH[N(CH ₃) ₂]C ₂ H ₅ ; (B)	409 (B3)	1-(4-morpholinyl)ethyl; (B)
389 (B3)	[1-CH ₃ -2-(1-piperidinyl)]C ₂ H ₅ ; (B)	410 (B3)	1-methyl-3-piperidinyl; (A)
390 (B3)	[1-CH ₃ -2-(1-piperidinyl)]C ₂ H ₅ ; (A)	411 (B3)	1-methyl-2-piperidinyl; (A)
391 (B3)	CH(CH ₃)[CH ₂ [N(CH ₃) ₂]]; (B)	412 (B3)	1-(4-methyl-1-piperazinyl)ethyl; (A);
	·		hydrate (1:1)
392 (B3)	CH(CH ₃)[CH ₂ [N(CH ₃) ₂]]; (A)	413 (B3)	CH[N(CH ₃)(C ₃ H ₇)]CH ₃ ; (A)
393 (B3)	[1-N(CH ₃) ₂]C ₃ H ₇ ; (A)	414 (B3)	CH[N(CH ₃)(C ₃ H ₇)]CH ₃ ; (B)
394(B18)	(1-CH ₃)C ₂ H ₅ OH; (B)	415 (B3)	CH[N(CH ₃)[(CH ₂) ₂ C ₆ H ₅]]CH ₃
395 (B3)	CH ₂ C(=O)OC ₂ H ₅	416 (B3)	CH[N(CH ₃)(C ₂ H ₅)]CH ₃ ; (A)
396 (B3)	CH[N(CH ₃)(CH ₂ C ₆ H ₅)]CH ₃ ; (B)	417 (B3)	CH[OC(=0)N(CH ₂ C ₆ H ₅) ₂]CH ₃ ; (A)
397(B17)	CH ₂ OCH ₃	418 (B3)	CH[N(CH ₂ C ₆ H ₅) ₂]CH ₃ ; (B)
398 (B3)	$CH[N(CH_3)(CH_2C_6H_5)]CH_3; (A)$	419 (B3)	CH[N(CH ₂ C ₆ H ₅) ₂]CH ₃ ; (A)

	•••				
Co.	Ex.	х	R ¹	R³	R4; stereochemical descriptor if not
No.	No.				racemic and/or addition salt
420	B3	СН	C ₆ H ₅	H	CH(OH)C ₆ H ₅
421	В2	СН	CH(CH ₃) ₂	CH ₃	$C(CH_3)=CHC_6H_5; (E)$
422	В2	СН	CH(CH ₃) ₂	C ₂ H ₅	$C(CH_3)=CHC_6H_5; (E)$
423	В3	сн	4-Cl-C ₆ H ₄	н	CH(OH)C₀H₃
424	B2	СН	C ₆ H ₅	н	2-pyrazinyl
425	B2	сн	C ₆ H ₅	н	2,3-dihydro-1,4-benzodioxin-2-yl
426	B2	СН	C₅H₅	Н	(2,3-dihydro-1,4-benzodioxin-2-yl)- methyl
427	B2	СН	CH(C ₂ H ₅) ₂	CH ₃	CH ₂ (3,4-diOCH ₃ -C ₆ H ₃)
428	В3	СН	CH[N(CH ₃) ₂]CH ₃	н	CH ₂ (3,4,5-triOCH ₂ -C ₆ H ₂); (B)
429	В3	СН	CH[N(CH ₃) ₂]CH ₃	н	(CH ₂) ₂ (3,4-diOCH ₃ -C ₆ H ₃); (B)
430	В3	СН	CH[N(CH ₃) ₂]CH ₃	н	(CH ₂) ₂ (3,4-diOCH ₂ -C ₆ H ₃); (A)
431	В3	СН	CH[N(CH ₃) ₂]CH ₃	н	(CH2)3(3,4-diOCH2-C6H3); (A); oxalic acid (1:1)
432	В3	СН	2-butyl	Н	CH ₂ (3-OCH ₃ -4-OH-C ₆ H ₃)
433	В3	СН	CH ₂ [N(CH ₃) ₂]	н	CH ₂ (3,4-diCH ₃ -C ₆ H ₃)
434	В3	СН	CH ₂ [N(CH ₃) ₂]	Н	3,4-diOCH ₃ -C ₆ H ₃
435	В2	СН	CH ₂ [N(CH ₃) ₂]	н	OC₀H₃
436	В9	сн	CH ₂ [N(CH ₃) ₂]	н	4-methyl-1-piperazinyl
437	B2	N	CH(CH ₃)[N(CH ₃) ₂]	CH ₃	CH ₂ (3,4-diOCH ₃ -C ₆ H ₃); (B)
438	B2	N	CH(CH ₃)[N(CH ₃) ₂]	CH ₃	CH ₂ (3,4-diOCH ₃ -C ₆ H ₃); (A)
439	B2	СН	CH(CH ₃)[N(CH ₃) ₂]	CH ₃	CH ₂ (3,4-diOCH ₃ -C ₆ H ₃); (A)

Table 10

Co No	R ¹ ; R ⁶ ; stereochemical descriptor	Co No	R1; R6; stereochemical descriptor if
(Ex No)	if not racemic and/or addition salt	(Ex No)	not racemic and/or addition salt
440 (B2)	4-СІ-С ₆ Ң ₄ ; Н	472 (B3)	CH(CH ₃) ₂ ; cyclopentyl; (E)
441 (B2)	3-Cl-C₀H₄; H	473 (B3)	CH(CH ₃) ₂ ; cyclohexyl; (E)
442 (B2)	3-F-C ₆ H ₄ ; H	474 (B2)	CH₂CH(CH₃)₂; CH₃; (E)
443 (B2)	4-F-C₀H₄; H	475 (B2)	(CH ₂) ₂ CH(CH ₃) ₂ ; CH ₃ ; (E)
444 (B2)	C ₆ H ₅ ; C ₆ H ₅	476 (B2)	CH ₂ C(CH ₃) ₃ ; CH ₃ ; (E);
			hydrate (2:1)
445 (B2)	C ₆ H ₅ ; CH ₃	477 (B2)	1,3-dioxan-5-yl; CH ₃ ; (E)
446 (B2)	4-F-C ₆ H₄; CH₃	478 (B2)	CH(C ₂ H ₅) ₂ ; CH ₃ ; (E)
447 (B2)	4-Cl-C ₆ H ₄ ; C ₆ H ₅	479 (B2)	CH=CH-CH(CH ₃) ₂ ; CH ₃ ; (E,E)
448 (B2)	3-Cl-C ₆ H ₄ ; CH ₃	480 (B2)	CH(CH ₃)C ₂ H ₅ ; CH ₃ ; (E)
449 (B2)	3-Cl-C ₆ H₄; C ₆ H₅	481 (B2)	C(CH ₃) ₃ ; CH ₃ ; (E)
450 (B2)	4-F-C ₆ H ₄ ; C ₆ H ₅	482 (B2)	CH(CH ₃)C ₃ H ₇ ; CH ₃ ; [A-(E)]
451 (B2)	4-Cl-C ₆ H ₄ ; CH ₃	483 (B2)	CH(S-C ₆ H ₅)CH ₃ ; CH ₃ ; (A)
452 (B2)	C ₆ H ₅ ; C ₂ H ₅	484 (B2)	CH(S-C ₆ H ₅)CH ₃ ; CH ₃ ; (B)
453 (B2)	C ₆ H ₅ ; C ₃ H ₇	485 (B2)	CH(C ₆ H ₅) ₂ ; CH ₃ ; (E)
454 (B2)	CH(CH ₃) ₂ ; C ₆ H ₅	486 (B2)	CH(C ₃ H ₇) ₂ ; CH ₃ ; (E)
455 (B2)	CH(CH ₃) ₂ ; CH ₃ ; (E)	487 (B2)	CH(CH ₃)C ₅ H ₁₁ ; CH ₃ ; [A-(E)]
456 (B2)	CH(CH ₃) ₂ ; 2-CH ₃ -C ₆ H ₄	488 (B2)	CH(CH ₃)C ₅ H ₁₁ ; CH ₃ ; [B-(E)]
457 (B2)	CH(CH ₃) ₂ ; C ₂ H ₅	489 (B2)	CH(C ₆ H ₅)CH ₃ ; CH ₃ ; [A-(E)]
458(B10)	CH(CH ₃) ₂ ; CH ₃ ; (+)-[A-(E)]	490 (B2)	CH(C ₆ H ₅)CH ₃ ; CH ₃ ; [B-(E)]
459(B10)	CH(CH ₃) ₂ ; CH ₃ ; (-)-[B-(E)]	491 (B2)	5,5,8,8-tetramethyl-5,6,7,8-
			tetrahydro-2-naphtalenyl; CH3; (E)
460 (B2)	C ₂ H ₅ ; CH ₃ ; (E)	492 (B2)	CH(C ₂ H ₅)C ₅ H ₁₁ ; CH ₃ ; [A-(E)]
461 (B2)	CH(CH ₃) ₂ ; F; (E)	493 (B2)	CH(C ₂ H ₅)C ₄ H ₉ ; CH ₃ ; (E)
462 (B2)	C ₄ H ₉ ; CH ₃ ; (E)	494 (B2)	CH(C ₂ H ₅)C ₅ H ₁₁ ; CH ₃ ; [B-(E)]
463 (B2)	cyclohexyl; CH ₃ ; (E)	495 (B2)	CH[N(CH ₃) ₂]CH ₃ ; CH ₃ ; [A-(E)]
464 (B2)	CH(CH ₃) ₂ ; C ₃ H ₇ ; (E)	496 (B3)	CH[N(CH ₃) ₂]CH ₃ ; CH ₃ ; [B-(E)]
465 (B2)	CH(CH ₃) ₂ ; C ₄ H ₉ ; (E)	497 (B2)	C₅H₅; H
466 (B2)	CH ₃ ; CH ₃ ; (E)	498 (B2)	н; н
467 (B2)	C ₃ H ₇ ; CH ₃ ; (E)	499 (B2)	CH(CH ₃) ₂ ; H
468 (B2)	cyclohexyl; C ₆ H ₅ ; (E)	500 (B2)	4-Br-C₀H₄; H
469 (B2)	cyclopropyl; CH3; (E)	501 (B2)	4-CH₃-C₅H₄; H
470 (B2)	cyclopentyl; CH ₃ ; (E)	502 (B2)	CH(CH ₃) ₂ ; H; (E)
471 (B3)	CH(CH ₃) ₂ ; CH(CH ₃) ₂ ; (E)	786 (B3)	2,5-diCl-C ₆ H ₃ ; CH ₃ ; (E)

Table 11

Co No (Ex No)	R ¹ ; R ⁶ ; R ⁷ ; stereochemical descriptor if not racemic and/or addition salt	Co No (Ex No)	R ¹ ; R ⁶ ; R ⁷ ; stereochemical descriptor if not racemic and/or addition salt
503 (B2)	C ₆ H ₅ ; H; C ₆ H ₅	512 (B2)	4-Cl-C₀H₄; H; CH₃
504 (B2)	4-Cl-C₀H₄; H; C₀H₅	513 (B3)	4-Cl-C₀H₄; H; C₄H₀
505 (B2)	3-Cl-C₀H₄; H; C₀H₅	514 (B3)	4-Cl-C ₆ H ₄ ; H; cyclohexyl; (E+Z)
506 (B2)	4-F-C₀H₄; H; C₀H₅	515 (B3)	4-Cl-C ₆ H ₄ ; H; CH(CH ₃) ₂ ; (E+Z)
507 (B2)	4-Cl-C ₆ H₄; H; C ₂ H ₅	516 (B2)	4-Cl-C ₆ H₄; H; 3-pyridinyl
508 (B2)	4-F-C ₆ H₄; H; CH₃	517 (B2)	4-F-C ₆ H ₄ ; H; 3-pyridinyl
509 (B2)	H; H; C ₆ H ₅	518 (B3)	CH(CH ₃) ₂ ; CH ₃ ; 3-thienyl; (E+Z)
510 (B2)	CH ₃ ; H; C ₆ H ₅	519 (B3)	CH(CH₃)₂; CH₃; C₃H₁; (E+Z)
511 (B2)	CH(CH ₃) ₂ ; H; C ₆ H ₅	520 (B3)	4-Cl-C ₆ H ₄ ; H; 3,5-diCl-C ₆ H ₃

Co No	R ¹ ; stereochemical descriptor if	Co No	R1; stereochemical descriptor if
(Ex No)	not racemic and/or addition salt	(Ex No)	not racemic and/or addition salt
521(B17)	CH(CH ₃) ₂	548 (B1)	CH ₂ N(CH ₃) ₂
522 (B1)	3-Cl-C₀H₄	549 (B1)	CH(C ₂ H ₅)(n-C ₄ H ₉)
523 (B1)	3-F-C ₆ H ₄	550(B17)	1-(ethoxycarbonyl)ethyl
524 (B1)	3-CF ₃ -C ₆ H ₄	551 (B1)	CH[N(CH ₃) ₂]CH ₃ ; (A); hydrate (1:1)
525 (B1)	cyclohexyl	552 (B1)	CH[N(CH ₃) ₂]CH ₃ ; (B)
526(B17)	cyclopropyl	553 (B1)	CH(CH ₃)[CH ₂ (C ₆ H ₅)]
527(B17)	cyclopentyl	554 (B1)	CH[N(C ₂ H ₅) ₂]CH ₃ ; (A)
528(B17)	(CH ₂) ₂ CH(CH ₃) ₂	555 (B1)	CH[N(C ₂ H ₅) ₂]CH ₃ ; (B)
529(B17)	CH ₂ C(CH ₃) ₃	556 (B1)	CH[N(C ₂ H ₅) ₂]CH ₃
530(B17)	1,3-dioxan-5-yi	557 (B1)	CH[N(CH3)2]C2H5; (A)
531 (B1)	CH(C₂H₅)₂	558 (B1)	' i

Co No	R1; stereochemical descriptor if	Co No	R1; stereochemical descriptor if
(Ex No)	not racemic and/or addition salt	(Ex No)	not racemic and/or addition salt
532(B17)	CH=CH-CH(CH ₃) ₂	559 (B1)	CH[N(CH ₃) ₂]C ₂ H ₅
533 (B1)	CH(CH ₃)C ₂ H ₅	560 (B1)	(ethoxycarbonyl)methyl
534 (B1)	C(CH ₃) ₃	561(B17)	CH[N(CH ₃)(CH ₂ -C ₆ H ₅)]CH ₃
535 (B1)	CH[N(CH ₃) ₂]CH ₃ ; hydrate (1:1)	562 (B1)	CH[N(CH3)(n-C4H9)]CH3
536 (B1)	CH(CH ₃)(n-C ₃ H ₇)	563 (B1)	CH[N(CH ₃)[(CH ₂) ₂ N(CH ₃) ₂]]CH ₃
537 (B1)	1-(1-piperidinyl)ethyl	564(B17)	1-(4-morpholinyl)ethyl
538 (B1)	CH(S-C ₆ H ₅)CH ₃ ; (A+B)	565 (B1)	CH[N(CH ₃) ₂]C ₂ H ₅
539 (B1)	CH(O-C ₆ H ₅)CH ₃	566 (B1)	CH[N(CH ₃)(C ₂ H ₅)]CH ₃
540 (B1)	CH(CH₃)CH₂CN	567 (B1)	1-methyl-3-piperidinyl
541 (B1)	CH(C ₆ H ₅) ₂	568 (B1)	1-methyl-2-piperidinyl; (A)
542 (B1)	CH(C ₂ H ₅)(n-C ₃ H ₇)	569 (B1)	1-(4-methyl-1-piperazinyl)ethyl
543 (B1)	CH(n-C ₃ H ₇) ₂	570 (B1)	CH[N(CH ₃)(n-C ₃ H ₁)]CH ₃
544(B17)	CH(C ₆ H ₅)CH ₃	571 (B1)	CH[N(CH ₃)(C ₂ H ₅ -C ₆ H ₅)]CH ₃
545(B17)	5,5,8,8-tetramethyl-5,6,7,8-	572 (B1)	CH[N(CH ₂ -C ₆ H ₅) ₂]CH ₃
	tetrahydro-2-naphtalenyl		
546(B17)	CH(CH ₃)(n-C ₅ H ₁₁)	573 (B1)	$CH[OC(=O)N(CH_2-C_6H_5)_2]CH_3$
547(B17)	CH(C ₂ H ₅)(n-C ₅ H ₁₁)	787(B17)	2,5-diCl-C ₆ H ₃

Co No (Ex No)	R ⁷ ; stereochemical descriptor if not racemic and/or addition salt	Co No (Ex No)	R ⁷ ; stereochemical descriptor if not racemic and/or addition salt
574 (B2)	CH ₃ ; (E)	594 (B2)	2-furanyl; (E)
575 (B3)	3-pyridinyl; (E)	595 (B2)	2-thienyl; (E)
576 (B3)	4-pyridinyl; (E)	596 (B2)	3-thienyl; (E)
577 (B2)	3-Cl-C₀H₄; (E)	597 (B3)	Н
578 (B2)	3-CF ₃ -C ₆ H ₄	598 (B2)	2(1H)-quinolinone-6-yl; (E);
			hydrate (2:1)
579 (B2)	4-Cl-C ₆ H ₄ ; (E)	599 (B2)	2-methyl-2H-benzotriazole-5-yl; (E)
580 (B2)	4-CF ₃ -C ₆ H ₄ ; (E)	600 (B2)	2-benzofuranyl; (E)
581 (B2)	cyclohexyl; (E)	501 (B2)	5-methyl-2-furanyl; (E)
582 (B2)	4-OCH ₃ -C ₆ H ₄ ; (E)	602 (B2)	1-methyl-1H-benzotriazole-6-yl; (E)

Co No (Ex No)	•	Co No (Ex No)	R ⁷ ; stereochemical descriptor if not racemic and/or addition salt
583 (B2)	4-F-C ₆ H ₄ ; (E)	503 (B2)	2(1H)-quinolinone-4-yl; (E)
584 (B2)	3-OCH ₃ -C ₆ H ₄ ; (E)	504 (B3)	2-pyridinyl; (E)
585 (B2)	2-F-C ₆ H ₄ ; (E)	605 (B3)	1-methyl-2-pyrrolyl
586 (B2)	3-F-C ₆ H ₄ ; (E)	606 (B2)	2,3,5,6-tetra(F)-4-(OC ₂ H ₅)phenyl; (E)
587 (B2)	(CH ₂) ₂ C ₆ H ₅ ; (E)	607 (B2)	2,4-di(F)-C ₆ H ₃ ; (E)
588 (B2)	CH(CH ₃) ₂ ; (E)	608 (B2)	3-Br-4-F-C ₆ H ₃ ; (E)
589 (B2)	CH ₂ C ₆ H ₅ ; (E)	509 (B2)	2-F-4-CF₃-C₀H₃; (E)
590 (B2)	6-quinolinyl; (E)	610 (B3)	4-NO ₂ -C ₆ H ₄ ; (E)
591 (B2)	2-naphtalenyl; (E)	611(B16)	4-NH ₂ -C ₆ H ₄ ; (E)
592 (B2)	4-quinolinyl; (E); hydrate (2:1)	612 (B3)	4-(NHC(=0)CH ₃)-C ₆ H ₄ ; (E)
593 (B2)	1-naphtalenyl; (E)		

Co No	R ¹ , R ⁴ ; stereochemical descriptor if	Co No	R ¹ , R ⁴ ; stereochemical descriptor if
(Ex No)	not racemic and/or addition salt	(Ex No)	not racemic and/or addition salt
613 (B1)	3-CF ₃ -C ₆ H ₄ ; CH ₃	632 (B2)	CH[N(CH3)2]CH3;
			C(CH ₃)=CHC ₆ H ₅ ; [A-(E)]
614 (B2)	3-CF ₃ -C ₆ H ₄ ; CH ₂ C ₆ H ₅	633 (B1)	CH(CH₃)CH₂C6H5; CH3
615 (B1)	3-F-C ₆ H ₄ ; CH ₃	634 (B2)	CH(CH3)CH2C6H5; CH2(4-Cl-C6H4)
616 (B1)	3-F-C ₆ H ₄ ; CH ₃	635(B15)	1-(methyl-1-piperidinyl)ethyl; CH3
617 (B2)	3-CF ₃ -C ₆ H ₄ ; CH=CHC ₆ H ₅ ; (E)	n , ,	l-(methyl-1-piperidinyl)ethyl; CH ₂ (4-Cl-C ₆ H ₄)
618 (B2)	3-F-C ₆ H ₄ ; CH=CHC ₆ H ₅ ; (E)	637 (B1)	CH(CH ₃)(n-C ₃ H ₇); CH ₃
619 (B2)	3-F-C ₆ H ₄ ; CH ₂ C ₆ H ₅	638 (B2)	CH(CH3)(n-C3H1); CH2(4-Cl-C6H4)
620 (B2)	3-F-C ₆ H ₄ ; C(CH ₃)=CHC ₆ H ₅ ; (E); nitrate (1:1)		CH(CH3)(n-C3H7); CH2(3,4-diOCH3-C6H3)
621 (B2)	CH(C₂H₅)₂; 1,3-benzodioxolan-2-yl		CH(CH3)C2H5; CH2(3,4-diOCH3-C6H3)
622 (B1)	CH ₂ C(CH ₃) ₃ ; CH ₃	641 (B1)	C(CH ₃) ₃ ; CH ₃
623 (B2)	CH ₂ C(CH ₃) ₃ ; CH ₂ (4-Cl-C ₆ H ₄)		C(CH ₃) ₃ ; CH ₂ (3,4-diOCH ₃ -C ₆ H ₃); hydrate (1;1)
624 (B2)	CH[C(=O)OC ₂ H ₅]CH ₃ ;	643 (B1)	CH(n-C ₃ H ₇) ₂ ; CH ₃
	CH ₂ (4-Cl-C ₆ H ₄)		

Co No	R ¹ , R ⁴ ; stereochemical descriptor if	Co No	R ¹ , R ⁴ ; stereochemical descriptor if
(Ex No)	not racemic and/or addition salt	(Ex No)	not racemic and/or addition salt
625 (B1)	CH(CH₃)C₂H₅; CH₃	644 (B2)	CH(n-C ₃ H ₇) ₂ ; CH ₂ (3.4-diOCH ₃ -
			C ₆ H ₃)
626 (B2)	CH(CH₃)C₂H₅; CH₂(4-Cl-C₅H₄)	645 (B1)	CH[N(CH3)2]C2H5; CH3; (A)
627 (B1)	CH[N(CH ₃) ₂]CH ₃ ; CH ₃ ; (A)	646 (B3)	CH[N(CH ₃) ₂]C ₂ H ₅ ;
			CH ₂ (3,4-diOCH ₃ -C ₆ H ₃) ; (A)
628 (B2)	$CH[N(CH_3)_2]CH_3$; $CH_2(4-Cl-C_6H_4)$; (A)	647 (B1)	CH[N(C₂H₅)₂]CH₃; CH₃; (A)
629 (B3)	CH[N(CH ₃) ₂]CH ₃ ;	648 (B1)	CH[N(C ₂ H ₅) ₂]CH ₃ ; CH ₃ ; (A+B)
	(CH ₂) ₂ (3,4-diOCH ₃ -C ₆ H ₃); (A)		
630 (B3)	CH[N(CH ₃) ₂]CH ₃ ;	649 (B3)	$CH[N(C_2H_5)_2]CH_3;$
	CH ₂ (3,4,5-triOCH ₃ -C ₆ H ₂); (A)		CH ₂ (3,4-diOCH ₃ -C ₆ H ₃); (A)
631(B15)	CH[N(CH ₃) ₂]CH ₃ ; CH ₃ ; (B)		

<u>Table 15</u>

Co No (Ex No)	R ⁴ , R ^b ; stereochemical descriptor if not racemic and/or addition salt	Co No (Ex No)	R ⁴ , R ⁵ ; stereochemical descriptor if not racemic and/or addition salt
650 (B2)		561 (B2)	cyclohexyl; H
651 (B2)	H; 4-Cl	662 (B2)	H; 4-OCH ₃
652 (B2)	H; 3-Cl	663 (B2)	H; 4-OC₂H₅
653 (B2)	H; 4-F	664 (B2)	H; 2-Cl
654 (B2)	H; 3-CF ₃	665 (B2)	H; 3-OCH ₃
655 (B2)	C ₆ H ₅ ; H	566 (B3)	H; 4-CH ₃
656 (B2)	H; 3-F	667 (B3)	н; 3-Он
657 (B2)	СН₃; Н	668 (B3)	Н; 4-ОН
658 (B2)	CH(CH ₃) ₂ ; H	669 (B3)	OH; 4-Cl
659 (B2)	cyclopentyl; H	670 (B3)	OCH ₃ ; H; [R-(R*,R*)]+[R-(R*,S*)]
660 (B2)	C ₂ H ₅ ; H		

Table 16

0 R 2 N 3 N 1

		R*-C-NH	4	<u>~</u>	
Co No	pyridinyl	R ¹ , R ⁴ ; stereochemical	Co No	pyridinyl	R ¹ , R ⁴ ; stereochemical
I -	position	descriptor if not racemic	(Ex No)	position	descriptor if not racemic
	[and/or addition salt	<u> </u>		and/or addition salt
671(B14)	3	CH(CH ₃) ₂ ; CH ₃	684 (B3)	3	4-Cl-C ₆ H ₄ ; CH=C(C ₆ H ₅)(3-Cl-C ₆ H ₄)
672 (B2)	3	C6H5; CH=CH-C6H5	685 (B2)	4	CH(CH ₃) ₂ ; CH ₂ (4-Cl-C ₆ H ₄)
673(B12)	3	4-Cl-C ₆ H ₄ ; CH ₃	686 (B3)	3	CH(CH ₃) ₂ ; CH ₂ (4-Cl-C ₆ H ₄)
674 (B2)	1	4-Cl-C ₆ H ₄ ; CH=CH-C ₆ H ₅	687 (B2)	2	CH(CH ₃) ₂ ; CH ₂ (4-Cl-C ₆ H ₄)
675 (B2)	3	C ₆ H ₅ ; C(CH ₃)=CH-C ₆ H ₅	688(B13)	2	OH; CH₃
676 (B2)	3	4-Cl-C6H4; CH=C(C6H5)2	689(B13	3	OH; CH₃
677 (B3)	1	4-Cl-C6H4; CH=CC6H5)2	690(B31	3	CH(CH ₃) ₂ ; NH(3-F-C ₆ H ₄)
678 (B2)	1	3-F-C ₆ H ₄ ; CH=CH-C ₆ H ₅	691(B31	2	CH(CH ₃) ₂ ; NH(3-F-C ₆ H ₄)
679 (B2)	1	CH(CH ₃) ₂ ; C(CH ₃)=CH-C ₆ H ₅ ; (E)	692(B31	4	CH(CH ₃) ₂ ; NH(3-F-C ₆ H ₄)
680 (B3)	2	4-Cl-C ₆ H ₄ ; CH=C(C ₆ H ₅) ₂	788 (B3)	4	H; CH=C(C_6H_5)(3-Cl- C_6H_4)
681 (B2)	i	CH(CH ₃) ₂ ; C(CH ₃)=CH-C ₆ H ₅ ; (E)	789 (B3)	4	CH(CH ₃) ₂ ; CH=C(C ₆ H ₅)(3-Cl-C ₆ H ₄)
682 (B2)	2	CH(CH ₃) ₂ ; C(CH ₃)=CH-C ₆ H ₅ ; (E)	790 (B3)	4	cyclohexyl; $CH=C(C_6H_5)(3-Cl-C_6H_4)$
683 (B3)	3	4-Cl-C ₆ H ₄ ;			
1	1	LCH-CH(3-Cl-C/H ₂) ₂	1		

Table 17

Co No (Ex No)	methyl position	descriptor if not racemic	Co No (Ex No)	methyl position	R ¹ , R ⁴ ; stereochemical descriptor if not racemic and/or addition salt
693 (B2)	5	and/or addition salt 4-Cl-C ₆ H ₄ ; CH=C(C ₆ H ₅)(3-Cl-C ₆ H ₄);	595 (B2)	1 1	CH(CH ₃) ₂ ; CH ₂ (4-Cl-C ₆ H ₄)
694 (B1)	2	(E+Z) CH(CH ₃); CH ₃			

Table 18

Co.	Ex. No.	R ¹	R ⁴	Х	Stereochemical
No.					descriptor if not racemic
					and/or addition salt
696	B31	CH(CH ₃) ₂	СН₃	CH	
697	B31	CH(CH ₃) ₂	C₀H₅	CH	
698	B25	CH(CH ₃) ₂	C ₆ H ₅ .C(=O)-	СН	
699	B22a	CH(CH₃)₂	н	СН	
	В22ь				
700	B31	CH(CH ₃)₂	2F-C ₆ H ₄	СН	
701	B31	CH(CH₃)₂	3F-C ₆ H ₄	СН	
702	B25	$CH(C_2H_5)_2$	C ₆ H ₅ -C(=O)-	CH	
703	B22a	$CH(C_2H_5)_2$	Н	СН	
704	B27	CH(CH ₃)[N(CH ₃) ₂]	2-benzothiazolyl	СН	(A)
705	B27	$CH(C_2H_5)_2$	2-benzothiazolyl	СН	
706	B27	CH(C ₂ H ₅) ₂	2-benzothiazolyl	N	
791	B25	2,5-diCl-C ₆ H ₃	C ₆ H ₅ -C(=O)-	СН	
792	B22a	2,5-diCl-C ₆ H ₃	Н	Н	

Table 19

Co. No.	Ex. No.	(R ^a) _n	R¹	х	Stereochemical descriptor if not racemic
707	B31	4-(O-C ₂ H ₅)	CH(CH ₃) ₂	СН	
708	B23	3,4-di(OCH ₃)	CH(CH ₃) ₂	СН	
709	B31	2,5-di(F)	3-(CF₃)-C₀H₄	СН	
710	B31	2,5-di(F)	CH(C ₂ H ₅) ₂	СН	
711	B31	3-F	3-(CF ₃)-C ₆ H ₄	N	
712	B31	2,5-di(F)	CH(C ₂ H ₅) ₂	N	
713	B31	2-F	CH(C₂H₅)₂	СН	
714	B31	2-F	3-(CF ₃)-C ₆ H ₄	CH	
715	B31	2-F	CH(C ₂ H ₅) ₂	N	
716	B31	4-OCH ₃	3-(CF ₃)-C ₆ H ₄	CH	

Co. No.	Ex. No.	(R ^a) _n	R ¹	Х	Stereochemical descriptor if not racemic
717	B23	3,4-di(OCH ₃)	CH(CH ₃)[N(CH ₃) ₂]	N .	(A)
718	B23	3,4-di(OCH ₃)	CH(C ₂ H ₅) ₂	N	
719	B23	3,4-di(OCH ₃)	CH(CH ₃)[N(CH ₃) ₂]	СН	(A)
720	B23	3,4-di(OCH ₃)	CH(CH ₃)[N(CH ₃) ₂]	N	(B)
721	B23	3,4-di(OCH ₃)	CH ₂ - N(CH ₃) ₂	СН	
722	B31	4-OCH ₃	CH(CH ₃) ₂	СН	
723	B31	3-F	CH(C ₂ H ₅) ₂	N	
724	B31	3-F	CH(C ₂ H ₅) ₂	СН	
725	B31	3-F	CH(CH ₃) ₂	N	
726	B31	2-F	CH(CH ₃) ₂	СН	
727	В7	3-NH ₂	CH(CH ₃) ₂	CH	
728	B31	2,5-di(F)	CH(CH ₃) ₂	CH	
729	B31	3-F	3-(CF ₃)-C ₆ H ₄	СН	
730	B31	3-CF ₃	CH(CH ₃) ₂	CH	
731	B31	3-F	4-Cl-C ₆ H ₄	CH	
732	B31	3,4-di(Cl)	CH(CH ₃) ₂	CH	
733	B31	3-OCH ₃	CH(CH ₃) ₂	CH	
734	B31	2,4-di(F)	CH(CH ₃) ₂	CH	
735	B31	3-F	C ₆ H ₅	CH	
736	B31	3-CH ₃	CH(CH ₃) ₂	CH	
737	B31	3-NO ₂	CH(CH ₃) ₂	CH	
738	B31	3-CI	CH(CH ₃) ₂	CH	
739	B31	4-Ci	CH(CH ₃) ₂	СН	
740	B31	4-F	CH(CH ₃) ₂	CH	
741	B31	3-F	CH(CH ₃) ₂	CH	
742	B31	н	CH(CH ₃) ₂	CH	

Table 20

$$\mathbb{R}^4$$
— \mathbb{C} — \mathbb{N} H— \mathbb{R}^1
 \mathbb{R}^2
Het

Co.No. (Ex.No.)	R¹	R²	R⁴	Х		Stereochemical descriptor if not acemic
743(B29)	CH(CH ₃) ₂	н	NH ₂	N-C ₆ H ₅	1 <i>H-</i> 1-imidazolyl	
744(B29)	CH(CH ₃) ₂	н	NH ₂	N-(3F-	1 <i>H-</i> 1-imidazolyl	

Co.No. (Ex.No.)	R ¹	R ²	R ⁴	Х		Stereochemical descriptor if not
(EX.No.)						acemic
			•	C ₆ H ₄)		
745 (B2)	CH(CH ₃) ₂	CH(CH ₃) ₂	-CH ₂ -(4-Cl-C ₆ H ₄)	0	1,2,4-triazol-1-yl	
746(B31)	CH(CH ₃) ₂	CH(CH ₃) ₂	-NH-(3-F-C ₆ H ₄)	0	1 <i>H-</i> 1-imidazolyl	
747 (B1)	CH(CH ₃) ₂	CH(CH ₃) ₂	CH ₃	0	1,2,4-triazol-1-yl	
748 (B1)	CH(CH ₃) ₂	н	CH ₃	0	1,2,4-triazol-4-yl	•
749 (B2)	CH(CH ₃) ₂	н	-C(CH ₃)=CH-C ₆ H ₅	0	1,2,4-triazol-4-yl	
750 (B1)	CH(CH ₃) ₂	CH(CH ₃) ₂	CH ₃	0	1 <i>H-</i> 1-imidazolyl	
751 (B2)	CH(CH ₃) ₂	CH(CH ₃) ₂	-C(CH ₃)=CH-C ₆ H ₅	0	1 <i>H</i> -1-imidazolyl	(E)
752(B17)	CH ₃	CH ₃	CH ₃	0	1 <i>H</i> -1-imidazolyl	
753 (B2)	CH ₃	CH ₃	-C(CH ₃)=CH-C ₆ H ₅	0	lH-1-imidazolyl	'
754 (B1)	CH(CH ₃) ₂	C ₂ H ₅	CH ₃	0	l <i>H-</i> l-imidazolyl	
755 (B2)	CH(CH ₃) ₂	C ₂ H ₅	(4-Cl-C₀H₄)-CH ₂ -	0	1 <i>H-</i> 1-imidazolyl	:
756 (B1)	C ₂ H ₅	C ₂ H ₅	CH ₃	0	1 <i>H</i> -1-imidazolyl	
757 (B1)	$CH(C_2H_5)_2$	CH(CH ₃) ₂	CH ₃	0	1 <i>H-</i> 1-imidazolyl	
758 (B2)	CH(CH ₃) ₂	C ₂ H ₅	$-C(CH_3)=CH-C_6H_5$	0	1 <i>H</i> -1-imidazolyl	(E)
759 (B1)	CH(CH ₃) ₂	СН₃	CH ₃	0	1 <i>H-</i> 1-imidazolyl	
760 (B1)	CH(CH ₃) ₂	n-C ₄ H ₉	CH ₃	0	1 <i>H-</i> 1-imidazolyl	
761 (B2)	CH(CH ₃) ₂	n-C₄H ₉	-C(CH ₃)=CH-C ₆ H ₅	0	1 <i>H</i> -1-imidazolyl	(E)
762 (B2)	CH(CH ₃) ₂	CH(CH ₃) ₂	CH ₂ -[3,4-di-	0	1 <i>H-</i> 1-imidazolyl	
			(OCH ₃)-C ₆ H ₃]			•
763 (B2)	CH(CH ₃) ₂	CH(CH ₃) ₂	-CH ₂ -(4-Cl-C ₆ H ₄)	0	1 <i>H-</i> I-imidazolyl	
764(B28)	CH(CH ₃) ₂	н	-CH ₂ -(4-Cl-C ₆ H ₄)	s	1 <i>H-</i> 1-imidazolyl	
765 (B9)	CH(C ₂ H ₅) ₂	n-C ₃ H ₇	CH ₃	0	1 <i>H</i> -1-imidazolyl	
766 (B2)	CH(C ₂ H ₅) ₂	n-C ₃ H ₇	-CH ₂ -(4-Cl-C ₆ H ₄)	0	1 <i>H</i> -1-imidazolyl	
767 (B1)	CH(C ₂ H ₅) ₂	C₂H₅	CH ₃	0	1 <i>H-</i> I-imidazolyl	
768 (B2)	CH(C ₂ H ₅) ₂	C₂H₅	-CH ₂ -(4-Cl-C ₆ H ₄)	0	I <i>H</i> -I-imidazolyl	
					N	
769(B25)	ОН	Н	CH ₃	0		
					 N	
770(B25)	ОН	Н	СН3	0		
771(B24)	ОН	CH(CH ₃)-	CH ₃	0	1-methyl-5-	
	l	N(CH ₃) ₂		}	imidazolyl	
772(B24)	ОН	CH(C ₂ H ₅) ₂	СН3	0	1-methyl-5-	
					imidazolyl	

Co.No. (Ex.No.)	R ¹	R ²	R ⁴	Х		Stereochemical descriptor if not acemic
773(B31)	CH(CH ₃) ₂	н	-NH-(3-F-C ₆ H ₄)		2-methyl-1- imidazolyl	,
793(B33)	4-Cl-C ₆ H₄	н	н	l	1-methyl-5- imidazolyl	
794(B3)	4-Cl-C ₆ H ₄	ОН	CH(OH)(3-Cl-C ₆ H ₄)		1-methyl-5- imidazolyl	
795(B3)	4-Cl-C ₆ H₄	н	CH(OH)(3-Cl-C ₆ H ₄)		1-methyl-5- imidazolyl	
796(32)	2,5-diCl-	н	-S-CH₃	NH	I <i>H-</i> 1-imidazolyl	
797(B29)	C ₆ H ₃ 2,5-diCl- C ₆ H ₃	н	-NH-CH ₃	NH	1 <i>H</i> -1-imidazolyl	HCl (1:2)

Table 20

$$\begin{array}{c} 0 \\ \parallel \\ \parallel \\ R^4-C-NH- \end{array} \begin{array}{c} H_2C-(CH_2)_n \\ \sim \\ C-N \end{array}$$

	Co.No.	R⁴	ח
Ì	(Ex.No.)		L
	774 (B17)	-CH ₂ -(4-Cl-C ₆ H ₄)	3
	775 (B17)	CH ₃	3
	776 (B17)	СН3	4

Table 21 lists the experimental elemental analysis values for carbon, hydrogen and nitrogen of some of the compounds as prepared in the experimental part hereinabove.

Comp	C	H	N
No.			
17	64.0	6.2	12.7
18	63.8	6.3	13.0
20	63.5	6.7	12.8
21	64.2	6.6	12.8
30	72.3	8.3	8.4
52	72.0	8.1	9.3
53	68.7	8.6	12.2
61	74.2	8.2	10.0

Comp No.	С	Н	N
64	65.9	5.8	16.3
85	70.8	7.7	13.8
86	70.7	7.8	13.9
87	69.6	6.7	10.6
119	71.3	7.5	10.0
120	75.1	7.0	8.4
121	74.4	6.9	11.9
122	73.9	7.9	10.2

Comp	С	H	N
No.			
123	74.0	7.9	10.3
125	74.3	8.1	10.0
131	64.7	5.7	15.2
142	69.6	6.8	11.0
143	62.7	5.2	10.3
145	71.4	7.0	15.2
147	72.1	7.0	15.4
148	52.6	5.0	11.5

Comp No.	С	Н	N		Comp No.	С	Н	N	Comp No.	С	Н	N
152	72.3	7.2	16.0		417	71.2	6.0	9.0	514	75.2	6.2	8.4
154	73.5	6.8	15.7		419	75.1	6.4	9.5	515	73.7	5.8	9.1
162	66.9	5.9	14.0		420	75.2	5.5	11.0	521	69.9	7.4	16.3
163	70.2	7.8	15.3		425	72.9	5.1	10.2	523	70.0	5.2	13.6
164	76.9	7.6	11.6		426	72.9	5.5	9.6	524	63.4	4.5	11.7
194	71.0	6.4	17.5		438	65.5	7.2	16.1	566	67.6	8.1	18.6
237	70.6	6.5	10.7		445	79.6	5.9	10.7	572	76.2	7.1	12.7
247	71.7	6.6	16.6		454	79.9	6.3	10.0	574	71.4	7.7	14.0
248	69.4	5.6	11.5		455	77.0	7.0	11.7	575	73.3	6.8	15.6
259	50.5	4.3	16.5		456	79.5	6.7	9.5	576	73.2	6.7	15.6
260	50.6	4.4	16.6		457	77.3	7.4	11.2	577	69.5	6.0	10.6
298	60.1	6.0	16.5		458	76.5	7.1	11.5	578	67.3	5.6	9.8
299	60.7	6.0	16.5		459	76.3	7.1	11.5	579	69.7	6.1	10.5
318	68.2	7.3	13.5		460	75.4	6.6	12.0	580	67.4	5.6	9.8
343	68.9	6.5	14.8		461	72.0	6.0	11.3	581	75.6	8.6	11.4
348	69.6	7.5	12.7		462	77.0	7.3	11.2	582	73.7	7.0	10.7
349	65.1	8.2	22.5		463	78.1	7.4	10.4	583	73.3	6.4	11.1
360	69.3	6.6	10.5		464	77.1	7.6	10.7	584	73.4	7.0	10.5
367	67.0	6.2	14.3	ĺ	465	77.5	7.8	10.4	585	72.9	6.4	11.1
368	65.1	6.2	13.8		466	75.6	6.3	12.6	586	72.9	6.4	11.1
369	67.5	5.1	8.9		467	76.9	7.0	11.7	587	76.4	7.5	10.6
376	62.7	4.5	8.3		468	80.8	6.8	9.0	588	74.1	8.6	13.2
383	69.4	7.6	12.1		469	77.4	6.5	11.7	589	77.2	7.4	11.2
389	69.5	7.5	11.0		470	77.8	7.1	10.8	602	68.6	6.2	19.8
391	67.2	7.1	11.7	ļ	471	77.6	7.7	10.9	612	71.9	6.8	13.5
392	68.3	7.4	12.7		472	78.2	7.5	10.1	613	59.8	4.2	15.3
394	64.8	6.2	9.0		482	77.2	7.6	10.8	614	65.9	4.4	12.7
397	66.2	6.3	10.3		483	73.5	6.0	9.1	615	65.8	4.9	18.2
402	64.6	6.5	9.6		484	73.7	6.2	9.1	616	65.7	4.7	18.2
404	67.9	6.9	9.8		485	81.8	5.9	8.6	617	66.9	4.1	12.4
405	67.9	7.0	9.7		497	78.7	5.6	10.8	618	72.1	4.7	14.0
410	66.9	7.2	11.8	j	502	75.9	6.6	12.0	619	71.3	4.9	14.6
411	69.8	7.1	12.1		511	79.7	6.4	9.9	620	64.5	4.7	14.2
414	68.9	7.6	12.1		512	72.8	5.2	9.6	636	66.0	6.6	14.9
415	71.6	7.2	10.8	l	513	74.8	6.2	8.9	644	67.4	7.3	11.5

Comp No.	С	Н	N
650	75.1	6.8	12.5
666	76.1	7.4	11.9
667	71.9	6.5	11.9
676	79.3	5.1	5.5
677	79.8	5.1	5.5
679	80.8	7.0	7.4
680	78.9	5.0	5.6
681	81.4	7.2	7.5
682	80.8	7.1	7.5
695	68.0	6.2	10.7

Comp No.	С	Н	N
	60.0	<i>5</i> ~	10.7
704	60.3	5.7	18.7
705	63.3	6.2	15.7
706	60.5	5.4	19.2
720	61.5	6.6	19.3
734	64.8	5.4	15.2
749	73.4	6.7	15.6
771	63.9	7.7	17.2
777	65.1	. 5.6	17.2
782	70.6	7.7	13.9
783	70.5	7.7	13.8

Comp No.	С	Н	N
786	67.0	4.5	8.9
788	76.0	4.9	6.5
789	76.9	5.8	5.9
793	66.1	4.9	12.7
794	61.8	4.4	8.4
795	63.5	4.6	8.6
797	46.9	4.6	14.5

C. Pharmacological examples

Example C.1: Inhibition of retinoic acid (RA) metabolism

MCF-7 human breast cancer cells were grown as stock cultures according to art-known protocols. One day before the experiment, RA is added to the stock cultures to stimulate RA-metabolism. At the start of the experiment, cell suspensions were incubated in a tissue culture medium containing ³H-RA as the substrate. Different concentrations of the test compound (dissolved in 1% DMSO) were added to the incubation mixtures, and at the end of the incubation, the unmetabolized RA is separated from its polar metabolites. The fraction containing the polar ³H-labelled metabolites was collected and counted in a scintillation counter. For each experiment, a control and a blank incubation were run in parallel. Table 22 list the IC50 value (defined as the concentration in M needed to reduce the amount of metabolites to 50 % of the control).

Table 22

Co.	IC ₅₀										
No.	(in M)										
1	1.38E-10	13	3.57E-11	28	2.76E-09	38	1.04E-09	52	9.07E-10	67	3.34E-10
2	3.00E-11	17	9.99E-10	29	8.12E-09	39	1.04E-10	53	2.12E-09	68	1.72E-09
4	2.11E-09	18	8.72E-10	30	2.58E-08	41	1.98E-09	54	4.86E-09	69	2.50E-10
5	2.70E-10	21	2.89E-09	31	2.63E-09	45	1.72E-10	56	2.51E-11	70	2.95E-10
6	1.65E-09	22	1.04E-09	32	6.97E-10	46	1.95E-09	58	<1.00E-11	71	2.62E-10
7	7.90E-10	23	5.03E-10	33	1.01E-09	47	1.33E-09	61	7.34E-10	72	1.66E-09
8	9.37E-11	24	1.37E-09	34	1.03E-09	48	5.69E-10	63	6.70E-09	73	4.63E-10
10	1.55E-09	25	6.10E-08	35	2.24E-09	49	4.33E-10	64	6.60E-09	75	4.17E-10
11	2.63E-09	26	2.01E-10	36	1.43E-09	50	7.44E-09	65	3.79E-10	76	5.88E-10
12	3.65E-11	27	2.32E-10	37	1.00E-09	51	8.95E-10	66	3.56E-10	77	3.32E-10

C	IC ₅₀		IC.		TC		IC		TC	Γ_	10
Co.	(in M)	Co. No.	IC ₅₀ (in M)	Co. No.	IC ₅₀ (in M)	Co. No.	IC ₅₀	Co.	IC ₅₀	Co.	IC ₅₀
78	2.27E-10	116	6.78E-10	156	3.10E-08	194	(in M) 7.07E-09		(in M)	No.	(in M)
79	3.42E-11	117	2.55E-10	157	1	1 1		232	1.51E-09	270	5.61E-09
80	4.83E-11	118	2.24E-09	1	8.48E-08 >1.00E-07	195 196	3.51E-08 2.23E-08	233	2.43E-09	271	2.45E-09
81	2.31E-10	119	9.40E-10		>1.00E-07	197		234	3.01E-09	272	4.81E-09
82	1.16E-09	120	3.88E-09	160	8.65E-08	198	5.61E-09	235	6.94E-09	273	5.27E-08
83	1.62E-10	121	9.14E-10	161	1.87E-09	199	1.07E-08 7.82E-09	236 237	9.84E-08	274	6.64E-09
84	1.74E-09	122	2.40E-09	162	2.88E-09	200	4.43E-08		1.82E-08 >1.00E-07	275	4.28E-09
85	3.92E-09	123	2.47E-11	163	2.36E-09	201	3.58E-09	239	7.28E-10	276	1.60E-08
86	4.97E-10	124	3.97E-11	164	8.15E-09	202	1.84E-09	240	1.34E-09	277	1.17E-09
87	2.80E-10	125	1.94E-10	165	1.08E-08	203	2.28E-08	241	2.59E-09	288	1.28E-09
88	1.48E-10	1 1	<1.00E-11	166	1.75E-09	204	4.58E-09	242	2.82E-09	290	5.07E-10 1.14E-09
89	1.31E-10	127	2.85E-11	167	4.16E-09	205	1.17E-08	243	3.59E-08	291	4.23E-09
90	2.36E-09	128	1.81E-11	168	2.36E-09	207	2.54E-08	244	2.30E-09	292	1.37E-10
91	9.35E-10	129	2.36E-11	169	5.31E-10	208	6.43E-09	245	2.79E-09	293	6.53E-09
92	2.21E-09	130	1.09E-11	170	1.22E-08	209	8.27E-09	246	2.10E-09	297	7.86E-10
93	1.59E-09	131	4.10E-09	171	8.58E-08	210	2.90E-08	247	3.55E-08	299	7.72E-10
94	1.06E-09	132	4.49E-09	172	3.41E-09	212	4.07E-09	248	1.79E-09	301	6.05E-09
95	1.48E-09	133	4.56E-09	173	5.17E-09	213	2.07E-09	249	7.58E-08	303	3.26E-09
96	1.09E-09	134	2.98E-09	174	1.60E-09	214	3.37E-09	250	1.49E-08	305	8.29E-11
97	1.32E-09	135	1.43E-09	175	4.83E-09	215	3.60E-08	251	3.93E-09	306	1.26E-09
98	1.64E-09	136	4.83E-09	176	1.87E-08	216	1.17E-08	252	2.59E-09	307	7.01E-10
99	5.77E-09	137	1.85E-09	179	3.69E-08	217	5.14E-09	253	5.55E-09	309	3.65E-09
102	6.78E-11	138	6.38E-09	180	5.69E-08	219	3.20E-09	254	6.47E-09	311	6.64E-10
103	7.11E-09	139	1.75E-09	181	1.41E-08	220	1.48E-09	255	6.24E-09	313	2.00E-11
104	4.07E-11	140	2.15E-08	182	1.31E-08	221	1.08E-09	256	3.20E-09	316	4.06E-09
105	5.16E-11	141	1.31E-09	183	7.40E-09	222	3.32E-09	259	9.29E-09	330	1.82E-09
106	1.69E-09	142	3.11E-08	184	5.15E-09	223	1.20E-09	260	2.43E-09	332	1.50E-09
107	1.44E-09	143	4.08E-09	185	3.97E-08	224	4.73E-09	261	2.22E-09	336	1.91E-09
108	2.34E-11	145	3.03E-09	186	>1.00E-07	225	8.28E-08	262	7.48E-09	339	1.23E-09
109	3.21E-10	147	3.30E-08	187	1.88E-08	226	1.69E-08	263	4.66E-09	346	2.04E-09
110	9.53E-10	148	1.86E-09	189	>1.00E-07	227	7.80E-09	264	2.71E-09	351	5.69E-09
111	1.03E-09	151	2.11E-09	190	>1.00E-07	228	7.30E-08	266	3.11E-08	352	2.57E-10
112	9.89E-10	152	5.18E-09	191	>1.00E-07	229	1.64E-09	267	7.75E-09	353	1.97E-09
113	8.52E-10	154	4.14E-09	192	3.34E-09	230	3.89E-09	268	7.79E-09	355	>1.00E-07
115	8.17E-09	155	5.01E-08	193	1.21E-08	231	1.86E-09	269	2.66E-09	356	>1.00E-07

Co.	IC ₅₀										
No.	(in M)										
357	>1.00E-07	426	>1.00E-07	484	3.43E-09	587	3.16E-08	639	1.68E-09	690	>1.00E-07
358	>1.00E-07	427	8.34E-09	485	>1.00E-07	588	4.88E-08	640	2.17E-09	691	>1.00E-07
359	6.25E-09	432	8.10E-10	486	2.77E-08	589	2.75E-09	642	1.16E-09	692	3.80E-08
360	1.08E-09	435	2.80E-09	488	>1.00E-07	590	2.78E-09	644	2.96E-10	693	>1.00E-07
361	>1.00E-07	445	1.92E-07	489	>1.00E-07	591	4.01E-08	645	8.02E-09	695	>1.00E-07
362	1.43E-08	454	5.25E-08	490	>1.00E-07	592	4.15E-09	646	3.07E-09	696	8.07E-09
363	1.42E-09	455	2.87E-09	491	1.84E-09	593	2.70E-09	649	7.32E-09	697	1.71E-08
364	1.41E-09	456	1.40E-07	492	4.07E-09	594	4.81E-09	650	4.86E-09	698	3.96E-08
365	1.08E-09	457	2.50E-08	493	8.77E-09	595	3.83E-09	651	1.05E-08	699	9.69E-09
366	3.05E-09	458	3.22E-09	497	3.76E-08	596	7.92E-09	652	>1.00E-07	700	1.20E-08
367	1.25E-09	459	1.77E-08	502	3.29E-08	597	5.00E-09	653	1.34E-09	707	1.30E-08
368	5.83E-10	460	3.63E-08	511	1.05E-08	598	2.39E-08	654	2.34E-09	708	1.61E-09
369	8.22E-08	461	1.69E-08	512	6.16E-07	599	6.36E-09	655	1.61E-08	709	2.40E-09
370	8.34E-08	462	>1.00E-06	513	8.60E-07	600	3.67E-08	656	1.47E-09	710	1.88E-10
371	3.59E-09	463	2.45E-08	514	>1.00E-06	601	2.00E-08	657	5.36E-09	711	>1.00E-07
372	1.97E-09	464	1.49E-07	515	>1.00E-06	602	2.57E-08	658	5.48E-09	712	4.30E-12
376	<1.00E-10	465	5.04E-08	516	>1.00E-06	603	>1.00E-07	659	>1.00E-07	713	1.38E-09
378	1.74E-09	466	>1.00E-06	517	3.69E-08	604	2.89E-09	660	6.37E-09	715	1.54E-10
383	7.29E-10	467	2.58E-09	518	>1.00E-07	605	1.40E-08	661	3.40E-08	718	1.33E-10
385	6.75E-09	468	>1.00E-07	519	3.80E-09	606	1.36E-08	662	3.58E-10	722	4.14E-09
388	8.29E-10	469	>1.00E-07	524	>1.00E-06	608	6.61E-09	663	1.95E-09	723	1.13E-09
389	5.67E-11	470	1.87E-08	558	1.32E-09	609	1.09E-08	664	1.56E-09	724	1.18E-09
393	9.55E-10	471	>1.00E-07	574	1.78E-09	610	6.53E-09	665	5.91E-09	725	3.29E-09
404	1.35E-09	472	9.51E-08	575	2.57E-08	611	3.42E-09	666	1.45E-08	726	i
405	3.68E-09	473	>1.00E-07	576	2.01E-08	612	1.68E-08	667	1.57E-09	727	1.64E-09
412	3.99E-09	474	1.59E-08	577	4.23E-08	613	1.80E-06	668	3.16E-09	728	1.41E-09
413	5.27E-09	475	>1.00E-07	578	7.67E-09	614	l i	669	8.66E-09	1	>1.00E-07
415	2.64E-09	476	3.55E-08	579	l i	1	>1.00E-06	670		730	j .
416	3.67E-10	477	7 >1.00E-06	580	3.13E-08	616	>1.00E-06	679	>1.00E-06	1	>1.00E-07
420	8.38E-08	478	1.63E-09		>1.00E-07	617		680		732	
421	>1.00E-07	479	>1.00E-07	582	1 1	618		ı	>1.00E-06	733	
422	2 >1.00E-08	480	4.25E-09	583	1	619		1	>1.00E-07	734	i .
423	4.08E-08	48	1 2.83E-09	584	6.51E-09		>1.00E-06	685		H	>1.00E-07
424	1.00E-07	482	1.95E-09	585	1	621	1.25E-09	686		736	1
42	3.81E-08	483	3 1.98E-08	586	3.74E-09	623	1.38E-09	687	>1.00E-07	737	2.36E-09

Co.	IC ₅₀										
No.	(in M)										
738	2.03E-09	743	1.10E-08	751	6.70E-08	762	4.08E-08	774	5.27E-09	782	1.26E-09
739	4.21E-08	744	>1.00E-07	753	>1.00E-07	763	5.62E-09	776	4.39E-09	783	3.98E-08
740			3.87E-09								
741	1.44E-09	746	>1.00E-07	758	1.88E-09	772	1.46E-10	780	4.57E-09		
742	2.61E-10	749	1.26E-07	761	>1.00E-07	773	>1.00E-07	781	3.24E-09		

Example C.2: "Vaginal Keratinization Test on Ovariectomized Rats"

Ovariectomized rats were injected subcutaneously with a sesame oil solution containing 100 µg of estradiol undecylate in a volume of 0.1 ml per 100 g body weight and control animals were injected with sesame oil. On day one, two and three, test animals were treated once daily with a per os dose of the test compound and control animals with the drug vehicle (PEG 200). One day after the last treatment, the animals were sacrificed and their vaginas were processed for histological evaluation according to the method described in J. Pharmacol. Exp. Ther. 261(2), 773-779 (1992). A dose at which 50 % of the tested rats show complete suppression of the estradiol undecylate induced keratinization effects is defined as an active dose. Table 23 lists the lowest active dose (LAD in mg/kg)of the compounds of formula (I) which were tested.

7	a	bì	e	2	3

5

14	010 23											
	LAD			LAD		LAD	Co.	LAD	Co.	LAD	Co.	LAD
No.	(mg/kg)	N	0.	(mg/kg)	No.	(mg/kg)	No.	(mg/kg)	No.	(mg/kg)	No.	(mg/kg)
2	5.00	:	24	2.50	41	2.50	61	2.50	77	2.50	93	2.50
3	>2.50	:	25	10.00	43	2.50	62	>5.00	78	1.25	94	5.00
4	0.60	:	26	5.00	44	2.50	63	>5.00	79	2.50	95	5.00
5	>2.50	:	27	5.00	45	2.50	64	>5.00	80	>2.50	96	2.50
6	2.50	:	28	2.50	46	>2.50	65	5.00	81	2.50	97	2.50
7	>2.50	:	29	5.00	47	2.50	66	2.50	82	2.50	98	5.00
8	>2.50	:	30	>5.00	48	2.50	67	2.50	83	>2.50	99	2.50
10	2.50	:	31	5.00	49	2.50	68	5.00	84	>2.50	102	5.00
11	>2.50	:	32	5.00	50	2.50	69	2.50	85	2.50	103	>2.50
13	>2.50	:	33	5.00	52	2.50	70	5.00	86	2.50	104	2.50
15	>2.50	:	34	2.50	53	>2.50	71	>5.00	87	1.25	105	2.50
18	2.50	:	35	2.50	55	>2.50	72	2.50	88	2.50	106	2.50
20	2.50	:	36	5.00	56	>5.00	73	>2.50	89	2.50	107	>2.50
21	5.00	;	37	5.00	57	>5.00	74	2.50	90	2.50	109	2.50
22	2.50	:	38	5.00	58	5.00	75	2.50	91	2.50	110	>2.50
23	2.50	;	39	0.60	59	>2.50	76	>2.50	92	5.00	111	>2.50

.7

						<u></u>				<u> </u>	K 4 D
Co.		1	LAD (mg/kg)	1 - 1	LAD (mg/kg)		LAD (mg/kg)		LAD (mg/kg)	No.	LAD (mg/kg)
	(mg/kg)		>10.00	194	10.00	234	10.00		>10.00	315	
112	2.50 >2.50	1	>10.00	"	>10.00	235	5.00		>10.00	316	1
114	2.50		>10.00		>10.00	236	5.00		>10.00	317	>5.00
115	>2.50	160	1	- 1 1	>10.00	237	5.00	277	>5.00	318	>2.50
116	2.50	161	>2.50	- 1 - 1	>10.00	238	5.00	278	2.50	319	>5.00
117	>2.50	162	>5.00	- 1	>10.00	239	10.00	279	2.50	320	5.00
118	2.50	163	20.00		>10.00	240	10.00	280	>2.50	322	>2.50
121	>2.50	164		1	>10.00	241	10.00	281	>2.50	324	>2.50
122	>2.50	165		202	>10.00	242	>10.00	283	2.50	325	2.50
123	2.50	166	5.00	203	>10.00	243	10.00	284	2.50	326	>2.50
125	2.50	167	10.00	204	>10.00	244	10.00	285	>2.50	327	>2.50
126	2.50	168	10.00	205	>10.00	245	10.00	286	>2.50	328	>2.50
127	>2.50	169	10.00	207	10.00	246	10.00	287	>2.50	329	>2.50
128	5.00	170	10.00	208	>10.00	247	10.00	288	>2.50	330	2.50
129	2.50	171	>10.00	209	5.00	248	2.50	289	>2.50	332	>2.50
130	5.00	172	10.00	210	20.00	249	5.00	290	2.50	333	>2.50
131	5.00	173	10.00	212	20.00	250	>10.00	291	>2.50	337	2.50
132	5.00	174	10.00	213	20.00	251	10.00	292	>2.50	338	>2.50
133	>5.00	175	10.00	214	20.00	252	>10.00	293	>2.50	339	1 1
134	5.00	176	>10.00	215	20.00	253	>5.00	294	>2.50	340	1 1
135	2.50	178	>10.00	216	20.00	254	>5.00	295	>2.50	34	1 1
136	5.00	179	>10.00	217	10.00	255	5.00	297	>2.50	342	
137	>5.00	180	>10.00	219	20.00	256	>2.50	300	ì	34.	1 1
138	>5.00	181	10.00	220	20.00	261	>10.00			340	
139	10.00	182	10.00	221	10.00	1 1	l			1 1	
140	5.00	183	>10.00	222	1	1 1	>10.00	1 1	i	1 1	
141	>10.00	184	>10.00	223	1	l	>10.00	ł I	1	1 1	
142	5.00	18:	10.00	1 1	>10.00		>10.00	1 1	1	1 1	1
143	10.00	180	5 > 10.00		>10.00		>10.00	l I	1	1 1	1 :
148	>5.00	18	7 >10.00		>10.00		>10.00		1		1
151		189		l I	>10.00	1 1	>10.00	1 1.	1	1	
152		19		1 1	>10.00	1 1	>10.00	1 1			
154		1	1 >10.00	l I	>10.00		1		1	1 1	5 > 10.00
155	ł	1 1	2 >10.00	1 1	>10.00	1 1	>10.00	1 1		1 1	6 >10.00
156	>10.00	19	3 > 10.00) [233	3 >10.00) 273	3 >10.00	314	>2.50	y 133	7 >10.00

Co. LAD No. (mg/kg)	Co. LAD	Co. LAD	Co. LAD	Co. LAD	Co. LAD
1 - 1 - 1	No. (mg/kg)	No. (mg/kg)	No. (mg/kg)	No. (mg/kg)	No. (mg/kg)
358 > 10.00	397 >2.50	436 >5.00	484 >5.00	576 10.00	612 10.00
359 >10.00 360 2.50	398 >5.00	437 >2.50	485 5.00	577 10.00	613 >20.00
360 2.50 361 10.00	400 >2.50	438 >2.50	486 5.00	578 >10.00	614 >20.00
362 10.00	401 >2.50 402 >5.00	439 >2.50	487 >5.00	579 10.00	615 >20.00
363 >10.00	402 >5.00 403 >5.00	445 >20.00 454 >20.00	489 2.50 490 2.50	580 10.00 581 20.00	618 >20.00
364 2.50	404 5.00	455 2.50	490 2.50	582 >10.00	619 >20.00 621 1.25
365 10.00	405 5.00	456 >20.00	492 >2.50	583 10.00	623 >5.00
366 >10.00	406 >5.00	457 >20.00	494 >2.50	584 10.00	624 >2.50
367 2.50	407 >5.00	458 5.00	495 >2.50	585 10.00	626 2.50
368 2.50	408 >5.00	459 20.00	497 >20.00	586 >10.00	627 >2.50
369 10.00	409 5.00	460 >20.00	502 5.00	587 >10.00	628 >2.50
370 >10.00	410 >5.00	461 10.00	511 >20.00	588 10.00	629 >2.50
371 10.00	411 2.50	462 20.00	512 >20.00	589 10.00	630 >2.50
372 5.00	412 >2.50	463 20.00	513 >20.00	590 >10.00	631 >2.50
374 2.50	413 5.00	464 >20.00	514 >20.00	591 >10.00	632 >2.50
375 >5.00	414 5.00	465 >20.00	515 >20.00	592 >10.00	636 2.50
376 2.50	416 >5.00	466 >20.00	518 >10.00	593 >10.00	638 >2.50
378 2.50	417 >5.00	467 >20.00	519 >10.00	594 >10.00	639 2.50
379 >2.50	419 >5.00	468 10.00	521 10.00	595 10.00	640 >2.50
380 >2.50	420 >20.00	469 >10.00	524 20.00	596 10.00	642 2.50
381 >2.50	421 >10.00	470 >20.00	532 >10.00	597 >10.00	644 2.50
383 >2.50	422 >10.00	471 >10.00	551 >2.50	598 >10.00	645 >5.00
384 >2.50	423 20.00	472 >20.00	552 >2.50	599 >20.00	646 5.00
385 >2.50	424 >10.00	473 >10.00	554 2.50	600 >10.00	647 >5.00
386 >2.50	425 >10.00	474 >10.00	555 >2.50	601 10.00	649 5.00
387 >2.50	426 >10.00	475 >10.00	557 >5.00	602 >10.00	650 10.00
389 >2.50	427 2.50	476 >10.00	558 >5.00	603 >10.00	651 5.00
390 >2.50	428 >2.50	477 >10.00	560 >5.00	604 >10.00	652 10.00
391 >5.00	429 >2.50	478 2.50	562 5.00	605 >10.00	653 5.00
392 >5.00	431 >2.50	479 >10.00	566 5.00	606 >10.00	654 5.00
393 5.00	432 >2.50	480 10.00	570 >5.00	608 >10.00	655 >10.00
394 >2.50	433 >2.50	481 10.00	572 >5.00	609 10.00	656 10.00
395 >5.00	434 >2.50	482 10.00	574 20.00	610 >10.00	657 >10.00
396 >2.50	435 >2.50	483 >5.00	575 20.00	611 10.00	658 >10.00

Cal	LAD	Co	LAD	Co	LAD	Co.	LAD	Co.	LAD	Co.	LAD.
1 1	(mg/kg)	1	(mg/kg)		(mg/kg)	1	(mg/kg)	No.	(mg/kg)	No.	(mg/kg)
	>10.00		>20.00	708	>5.00	723	5.00	738	10.00	762	>5.00
1	>10.00		>20.00	709	5.00	724	2.50	739	>10.00	763	>5.00
1	>10.00		>10.00	710	2.50	725	5.00	740	20.00	764	>5.00
662	5.00		>10.00	711	5.00	726	5.00	741	10.00	766	>2.50
663	2.50		>10.00	712	5.00	727	>10.00	742	10.00	768	>2.50
664	5.00		>10.00	713		728	5.00	743	>10.00	772	>5.00
1		1	>10.00	714	1 1	l l'.	ŧ	745	>5.00	773	>10.00
665			i I	715			>10.00	1 1 .	>5.00	774	10.00
666			1 1	716			>10.00	l I	>20.00	776	>20.00
667		1 1	1		! '		>10.00		1	1 1	5.00
668	i		1	717		' ' '					Į į
669	5.00	70-	>5.00	718	l			1 1	i	1 1	
670	>2.50	70.	>5.00	720	>2.50	735	10.00	l I		1 1	1
679	>20.00	70	5.00	721	>2.50	736	>10.00	758	>5.00	784	>5.00
680	>20.00	70	5.00	722	5.00	737	>10.00	761	>5.00	785	5.00

D. Composition examples

5

10

15

20

The following formulations exemplify typical pharmaceutical compositions suitable for systemic or topical administration to animal and human subjects in accordance with the present invention. "Active ingredient" (A.I.) as used throughout these examples relates to a compound of formula (I) or a pharmaceutically acceptable acid addition salt thereof.

Example D.1: oral solution

9 g of methyl 4-hydroxybenzoate and 1 g of propyl 4-hydroxy-benzoate were dissolved in 4 l of boiling purified water. In 3 l of this solution were dissolved first 10 g of 2,3-dihydroxybutanedioic acid and thereafter 20 g of A.I. The latter solution was combined with the remaining part of the former solution and 12 l 1,2,3-propane-triol and 3 l of sorbitol 70% solution were added thereto. 40 g of sodium saccharin were dissolved in 0.5 l of water and 2 ml of raspberry and 2 ml of gooseberry essence were added. The latter solution was combined with the former, water was added q.s. to a volume of 20 l providing an oral solution comprising 5 mg of A.I. per teaspoonful (5 ml). The resulting solution was filled in suitable containers.

Example D.2: oral drops

500 g of the A.I. was dissolved in 0.5 l of 2-hydroxypropanoic acid and 1.5 l of the polyethylene glycol at 60-80°C. After cooling to 30-40°C there were added 35 l of polyethylene glycol and the mixture was stirred well. Then there was added a solution of 1750 g of sodium saccharin in 2.5 l of purified water and while stirring there were

added 2.5 l of cocoa flavor and polyethylene glycol q.s. to a volume of 50 l, providing an oral drop solution comprising 10 mg/ml of A.I. The resulting solution was filled into suitable containers.

Example D.3: capsules

5 20 g of A.I., 6 g sodium lauryl sulfate, 56 g starch, 56 g lactose, 0.8 g colloidal silicon dioxide, and 1.2 g magnesium stearate were vigorously stirred together. The resulting mixture was subsequently filled into 1000 suitable hardened gelatin capsules, each comprising 20 mg of A.I.

Example D.4: injectable solution

10 0.5 mg A.I. 1, 50 mg glucose anhydrous and 0.332 ml concentrated hydrochloric acid were mixed with 0.8 ml water for injections. Sodium hydroxide was added until pH = 3.2 ± 0.1 and water was added to 1 ml. The solution was sterilized and filled in sterile containers.

Example D.5: film-coated tablets

15 Preparation of tablet core

A mixture of 100 g of the A.I., 570 g lactose and 200 g starch was mixed well and thereafter humidified with a solution of 5 g sodium dodecyl sulfate and 10 g polyvinyl-pyrrolidone (Kollidon-K 90 ®) in about 200 ml of water. The wet powder mixture was sieved, dried and sieved again. Then there was added 100 g microcrystalline cellulose (Avicel ®) and 15 g hydrogenated vegetable oil (Sterotex ®). The whole was mixed well and compressed into tablets, giving 10.000 tablets, each comprising 10 mg of the active ingredient.

Coating

20

To a solution of 10 g methyl cellulose (Methocel 60 HG ®) in 75 ml of denaturated
ethanol there was added a solution of 5 g of ethyl cellulose (Ethocel 22 cps ®) in 150
ml of dichloromethane. Then there were added 75 ml of dichloromethane and 2.5 ml
1,2,3-propanetriol. 10 g of polyethylene glycol was molten and dissolved in 75 ml of
dichloromethane. The latter solution was added to the former and then there were
added 2.5 g of magnesium octadecanoate, 5 g of polyvinylpyrrolidone and 30 ml of
concentrated color suspension (Opaspray K-1-2109 ®) and the whole was
homogenated. The tablet cores were coated with the thus obtained mixture in a coating
apparatus.

Example D.6: 2% cream

75 mg stearyl alcohol, 2 mg cetyl alcohol, 20 mg sorbitan monostearate and 10 mg isopropyl myristate are introduced into a doublewall jacketed vessel and heated until

10

15

20

30

the mixture has completely molten. This mixture is added to a separately prepared mixture of purified water, 200 mg propylene glycol and 15 mg polysorbate 60 having a temperature of 70 to 75°C while using a homogenizer for liquids. The resulting emulsion is allowed to cool to below 25°C while continuously mixing. A solution of 20 mg A.I., 1 mg polysorbate 80 and purified water and a solution of 2 mg sodium sulfite anhydrous in purified water are next added to the emulsion while continuously mixing. The cream, 1 g of the A.I. is homogenized and filled into suitable tubes.

Example D.7: 2% topical gel

To a solution of 200 mg hydroxypropyl β -cyclodextrine in purified water is added 20 mg of A.I. while stirring. Hydrochloric acid is added until complete dissolution and then sodium hydroxide is added until pH 6.0. This solution is added to a dispersion of 10 mg carrageenan PJ in 50 mg propylene glycol while mixing. While mixing slowly, the mixture is heated to 50°C and allowed to cool to about 35°C whereupon 50 mg ethyl alcohol 95% (v/v) is added. The rest of the purified water q.s. ad 1 g is added and the mixture is mixed to homogenous.

Example D.8: 2% topical cream

To a solution of 200 mg hydroxypropyl β-cyclodextrine in purified water is added 20 mg of A.I. while stirring. Hydrochloric acid is added until complete dissolution and next sodium hydroxide is added until pH 6.0. While stirring, 50 mg glycerol and 35 mg polysorbate 60 are added and the mixture is heated to 70°C. The resulting mixture is added to a mixture of 100 mg mineral oil, 20 mg stearyl alcohol, 20 mg cetyl alcohol, 20 mg glycerol monostearate and 15 mg sorbate 60 having a temperature of 70°C while mixing slowly. After cooling down to below 25°C, the rest of the purified water q.s. ad 1 g is added and the mixture is mixed to homogenous.

25 Example D.9: 2% liposome formulation

A mixture of 2 g A.I. microfine, 20 g phosphatidyl choline, 5 g cholesterol and 10 g ethyl alcohol is stirred and heated at 55-60°C until complete dissolution and is added to a solution of 0.2 g methyl paraben, 0.02 g propyl paraben, 0.15 g disodium edetate and 0.3 g sodium chloride in purified water while homogenizing. 0.15 g Hydroxypropylmethylcellulose in purified water ad 100 g is added and the mixing is continued until swelling is complete.

Claims

5

10

15

20

25

30

35

1. A compound having the formula

a N-oxide, a pharmaceutically acceptable addition salt or a stereochemically isomeric form thereof, wherein:

X represents -O-, -S- or -NR³-;

R¹ represents hydrogen, hydroxy, C₁₋₆alkyl or aryl;

R² represents hydrogen; C₁₋₁₂alkyl; C₃₋₇cycloalkyl; C₂₋₈alkenyl; aryl; Het¹; or C₁₋₁₂alkyl substituted with one or two substituents selected from C₃₋₇cycloalkyl, hydroxy, C₁₋₄alkyloxy, cyano, amino, mono- and di(C₁₋₄alkyl)amino, mono- or di(arylC₁₋₄alkyl)amino, di(arylC₁₋₄alkyl)arninocarbonyloxy, (C₁₋₄alkyl) (arylC₁₋₄alkyl)amino, mono- and di(aryl)amino, (C₁₋₄alkyl)(di(C₁₋₄alkyl)-aminoC₁₋₄alkyl)amino, pyrrolidinyl, piperidinyl, piperazinyl optionally substituted with C₁₋₄alkyl, morpholinyl, perhydro-azepinyl, carboxyl, C₁₋₄alkyl-oxycarbonyl, aminocarbonyl, mono- and di(C₁₋₄alkyl)aminocarbonyl, aryl, aryloxy and arylthio; or

R¹ and R² taken together may form a bivalent radical of formula -R¹-R²- wherein -R¹-R²- represents -(CH₂)_n- wherein n is 2, 3, 4, 5 or 6;

represents hydrogen, C₁₋₆alkyl, aryl, Het¹ or C₁₋₆alkyl substituted with aryl or Het¹;

represents hydrogen; hydroxy; mercapto; C₁₋₆alkyloxy; C₁₋₆alkylthio; aryloxy; arylthio; Het¹-oxy; Het¹-thio; C₁₋₁₂alkyl optionally substituted with one, two or three substituents each independently selected from halo, hydroxy, mercapto, C₁₋₆alkyloxy, C₁₋₆alkylthio, aryloxy, arylthio, Het¹-oxy, Het¹-thio, C₃₋₇cycloalkyl optionally substituted with hydroxycarbonylC₁₋₆alkyl, carboxyl, C₁₋₆alkyloxy-carbonyl, arylC₁₋₆alkyloxy, arylC₁₋₆alkylthio, aryl, Het¹; C₂₋₈alkenyl optionally substituted with one, two or three substituents selected from halo, C₃₋₇cycloalkyl, aryl, Het¹; C₂₋₈alkynyl optionally substituted with halo, C₃₋₇cycloalkyl, aryl; C₃₋₇cycloalkyl optionally substituted with C₁₋₆alkyl or aryl; C₅₋₇cycloalkenyl optionally substituted with C₁₋₆alkyl or aryl; aryl; Het¹; or

-Alk-NR3R5

(i) or

-NR3R5

(ii)

wherein Alk represents C1-6alkanediyl; and

R⁵ represents hydrogen, C_{1.6}alkyl, aryl, Het¹, (aryl or Het¹)C_{1.6}alkyl, (aryl or Het¹)carbonyl or (aryl or Het¹)C_{1.6}alkyloxycarbonyl;

- aryl represents indanyl, indenyl, naphtyl, 5,6,7,8-tetrahydro-2-naphtalenyl, phenyl; said indanyl, indenyl, naphtyl or phenyl may be substituted with one, two, three, four or five substituents each independently selected from hydroxy, halo, nitro, cyano, amino, azido, mono- or di(C1-6alkyl)amino, C1-6alkylcarbonylamino, C1-6alkyl, polyhaloC1-6alkyl, hydroxyC1-6alkyl, phenyl, phenyloxy, phenylC1-6alkyloxy, pyridinylC1-6alkyloxy, C1-6alkyloxy, formyl, carboxyl and C1-6alkylcarbonyl; or two adjacent carbon atoms on said phenyl may be substituted by a single bivalent radical having the formula C1-12alkanediyl or polyhaloC1-12alkanediyl;
- Het represents an unsaturated heterocycle selected from pyrrolyl, pyrazolyl, imidazolyl, triazolyl, tetrazolyl and pyridinyl; each of said unsaturated heterocycles may optionally be substituted with amino, mercapto, C₁₋₆alkyl, C₁₋₆alkylthio or aryl; and
- Het represents a monocyclic heterocycle selected from pyrrolidinyl, pyrrolyl, pyrazolyl, imidazolyl, 1,3,4-triazolyl, 1,2,4-triazolyl, tetrahydrofuranyl, furanyl, 15 thiolanyl, thienyl, dioxolanyl, isoxazolyl, oxazolyl, isothiazolyl, thiazolyl, isoxazolidinyl, oxazolidinyl, isothiazolidinyl, thiazolidinyl, piperidinyl, pyridinyl, piperazinyl, pyridazinyl, pyrimidinyl, pyrazinyl, 1,2,3-triazinyl, 1,2,4-triazinyl, tetrahydropyranyl, pyranyl, morpholinyl and dioxanyl; each of said monocyclic heterocycles may be optionally substituted with one or two substituents each 20 independently selected from C1-4alkyl, hydroxy, amino, halo, aryl, arylcarbonyl or C₁₋₄alkyloxycarbonyl; or a bicyclic heterocycle selected from indolinyl, indolyl, indazolyl, benzimidazolyl, benzotriazolyl, benzofuranyl, benzothienyl, 2H-1benzopyranyl, 3,4-dihydro-2H-1-benzopyranyl, benzthiazolyl, isoquinolinyl, quinolinyl, 3,4-dihydroguinolinyl, cinnolinyl, quinazolinyl, quinoxalinyl, 25 chromanyl, 1,4-benzodioxinyl, 1,4-benzoxathianyl, benzodioxanyl and benzodioxolanyl; each of said bicyclic heterocycles may be substituted with one or two substituents each independently selected from C14alkyl, hydroxy, amino, halo, aryl, arylcarbonyl or C1-4alkyloxycarbonyl.
- A compound as claimed in claim 1 wherein R¹ represents hydrogen, hydroxy or C₁-6alkyl; and R² represents hydrogen; C₁-12alkyl; C₃-7cycloalkyl; C₂-8alkenyl; aryl; Het¹; or C₁-12alkyl substituted with one or two substituents selected from hydroxy, C₁-4alkyloxy, cyano, mono- and di(C₁-4alkyl)amino, mono- or di(arylC₁-4alkyl)amino, di(arylC₁-4alkyl)aminocarbonyloxy, (C₁-4alkyl) (arylC₁-4alkyl)amino, (C₁-4alkyl)(di(C₁-4alkyl)aminoC₁-4alkyl)amino, piperidinyl, piperazinyl optionally substituted with C₁-4alkyl, morpholinyl, C₁-4alkyloxycarbonyl, aryl, aryloxy and arylthio; or R¹ and R² taken together may

10

20

30

form a bivalent radical of formula -R¹-R²- wherein -R¹-R²- represents -(CH₂)_n-wherein n is 2.

3. A compound according to claim 1 or 2 wherein R³ is hydrogen; X is O and R⁴ is aryl or C₁₋₁₂alkyl optionally substituted with one, two or three substituents each independently selected from halo, hydroxy, C₁₋₆alkyloxy, C₁₋₆alkylthio, aryloxy, arylthio, Het¹-thio, C₃₋₇cycloalkyl optionally substituted with hydroxycarbonyl-C₁₋₆alkyl, carboxyl, C₁₋₆alkyloxycarbonyl, arylC₁₋₆alkylthio, aryl, Het¹; or a radical of formula (ii).

4. A compound according to claim 1 or 2 wherein R³ is hydrogen, X is S and R⁴ is a radical of formula (ii).

- A pharmaceutical composition comprising a pharmaceutically acceptable carrier
 and, as active ingredient, a therapeutically effective amount of a compound as
 claimed in any one of the claims 1 to 4.
 - 6. A process of preparing a pharmaceutical composition as claimed in claim 5, <u>characterized in that</u> a pharmaceutically acceptable carrier is intimately mixed with a therapeutically effective amount of a compound as claimed in any one of claims 1 to 4.
 - 7. A compound as claimed in any one of claims 1 to 4 for use as a medicine.
- 8. Use of a compound as claimed in any one of claims 1 to 4 for the manufacture of a medicament for treating oncology disorders and keratinization disorders.
 - A process of preparing a compound as claimed in claim 1, <u>characterized by</u>
 a) reacting an intermediate of formula (II) wherein W¹ is an appropriate leaving group with an intermediate of formula (III) or a functional derivative thereof in a reaction-inert solvent and in the presence of a suitable base;

and in case W^I is an hydroxy group, in the presence of triphenylphosphine and diethyl azodicarboxylate or a functional derivative of any of said reagents, or in the presence of 1-hydroxy-1H-benzotriazole and dicyclohexylcarbodiimide;

10

15

20

b) N-alkylation of an intermediate of formula (IV) with an intermediate of formula
 (V) wherein W² is an appropriate leaving group in a reaction-inert solvent and optionally in the presence of a suitable base; or

N-alkylation of an intermediate of formula (IV) with an anhydride, a cyanate, a thiocyanate, an isocyanate or an isothiocyanate optionally in the presence of an acid:

c) reacting an intermediate of formula (VI) wherein W³ is a suitable leaving group with an intermediate of formula R⁴ ·H (VII) wherein R⁴ is a Het¹C₁₋₁₂alkyl or a radical of formula (i) in a reaction-inert solvent in the presence of an appropriate base; thus forming compounds of formula (I-a);

$$R^{4}-H+W^{3}-alkyl-C-N \xrightarrow{\stackrel{\stackrel{\longleftarrow}{\parallel}}{\parallel}} R^{3} \xrightarrow{\stackrel{\stackrel{\longleftarrow}{\parallel}}{\parallel}} R^{2}-Het \xrightarrow{\stackrel{\longleftarrow}{\parallel}} R^{4}-alkyl-C-N \xrightarrow{\stackrel{\longleftarrow}{\parallel}} R^{3} \xrightarrow{\stackrel{\longleftarrow}{\parallel}} R^{2}-Het$$

$$(VII) \qquad \qquad (VI) \qquad (I-a)$$

d) reacting an intermediate of formula (VIII) with Het-H (III) or a functional
derivative thereof, in the presence of n-butyllithium or a functional derivative in
a reaction-inert solvent and optionally in the presence of chlorotriethylsilane;
thus obtaining compounds of formula (I) wherein R¹ is hydroxy, said
compounds being represented by formula (I-b);

 e) reacting a primary or secundary amine of formula (VIII) with an intermediate of formula (IX) in a reaction-inert solvent; thus obtaining compounds of formula (I) wherein R³ is hydrogen and R⁴ is attached by a nitrogen atom to the remainder of the molecule, said compounds being represented by formula (I—c);

$$R^{5}-N$$
 H
 $X=C=N$
 R^{2}
 R^{2}
 $R^{5}-N$
 $R^{5}-$

10

15

20

 f) reacting an intermediate of formula (XI) with Het-H (XII) or a functional derivative thereof, in a reaction-inert solvent; thus obtaining compounds of formula (I) wherein R² is optionally substituted hydroxymethyl, being represented by formula (I-d);

$$R^4$$
— C — N

optional substituent

 R^4 — C — N
 R^3
 R^3
 R^4 — C — N
 R^4 — R

g) reacting an intermediate of formula (XIII) wherein W⁴ is a suitable leaving group with an intermediate of formula (XIV) in an appropriate solvent and in the presence of an acid;

- h) reacting an intermediate corresponding to a compound of formula (I) wherein R² is LG-C₁₋₁₂alkyl wherein LG is an appropriate leaving group, with C₁.

 4alkylO'M⁺ wherein M⁺ is a suitable metal ion in a suitable solvent; thus obtaining compounds of formula (I) wherein R² is C₁₋₄alkyloxyC₁₋₁₂alkyl;
 - reducing an intermediate of formula (XV) wherein R² is the same as R² being an optionally substituted C₁₋₁₂alkyl, using a suitable reducing agent in a suitable solvent; thus obtaining a compound of formula (I-e);

 j) reacting an intermediate of formula (XXIII) with formamide in the presence of an acid; thus forming a compound of formula (I-f);

Het
$$\stackrel{R^2}{\longrightarrow}$$
 $\stackrel{NH_2}{\longrightarrow}$ $\stackrel{H}{\longrightarrow}$ $\stackrel{R^2}{\longrightarrow}$ $\stackrel{H}{\longrightarrow}$ $\stackrel{N}{\longrightarrow}$ $\stackrel{R^2}{\longrightarrow}$ $\stackrel{H}{\longrightarrow}$ $\stackrel{N}{\longrightarrow}$ \stackrel

and, if desired, converting compounds of formula (I) into each other following art-known transformations, and further, if desired, converting the compounds of

.7

5

10

15

formula (I), into a therapeutically active non-toxic acid addition salt by treatment with an acid, or into a therapeutically active non-toxic base addition salt by treatment with a base, or conversely, converting the acid addition salt form into the free base by treatment with alkali, or converting the base addition salt into the free acid by treatment with acid; and, if desired, preparing stereochemically isomeric forms thereof.

- 10. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and as active ingredients (a) an effective amount of retinoic acid, a derivative thereof or a stereochemically isomeric form thereof, and (b) an effective amount of a compound of formula (I) as described in any one of claims 1 to 4.
- 11. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and as active ingredients (a) an effective amount of calcitriol or a prodrug thereof, and (b) an effective amount of a compound of formula (I) as described in any one of claims 1 to 4.
- A product containing (a) a pharmaceutical composition containing an effective amount of retinoic acid, a derivative thereof or a stereochemically isomeric form thereof and a pharmaceutical acceptable carrier,, and (b) a pharmaceutical composition containing an effective amount of a compound of formula (I) as described in any one of claims 1 to 4, and a pharmaceutical acceptable carrier, as a combined preparation for simultaneous, separate or sequential use in dermatological or oncological disorders.

25

- 13. A product containing (a) a pharmaceutical composition containing an effective amount of calcitriol or a prodrug thereof and a pharmaceutical acceptable carrier, and (b) a pharmaceutical composition containing an effective amount of a compound of formula (I) as described in any one of claims 1 to 4, and a pharmaceutical acceptable carrier, as a combined preparation for simultaneous, separate or sequential use in dermatological or oncological disorders.
- 14. A product containing a) a pharmaceutical composition comprising a
 pharmaceutically effective amount of a compound according to any of claims 1 to
 4 and a pharmaceutically acceptable carrier; and b) a pharmaceutical composition
 comprising a pharmaceutically effective amount of an anti-neoplastic agent and a
 pharmaceutically acceptable carrier, as a combined preparation for simultaneous,
 separate or sequential use in dermatological or oncological disorders.

donal Application No

PCT/EP 98/08126 A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 C07D233/56 C07E . 7 C070249/08 C070213/40 C07D401/12 C07D403/12 C07D405/12 C07D409/12 C07D417/12 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 6 CO7D Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category * Citation of document, with Indication, where appropriate, of the relevant passages Relevant to claim No. X EP 0 371 564 A (JANSSEN PHARMACEUTICA N. 1-3 V.) 6 June 1990 see page 39, table 3-a X WO 97 16443 A (JANSSEN PHARMACEUTICA N. 1-3 V.) 9 May 1997 see page 7, formula (VI); page 13, formula (VI); page 19, example 1, especially lines 21 and 22 Α EP 0 371 559 A (JANSSEN PHARMACEUTICA N. 1,5,7,8 V.) 6 June 1990 cited in the application see claims 1,10-12,17,18 -/--| X | Further documents are listed in the continuation of box C. Patent family members are listed in annex. X I Special categories of cited documents; To later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory, underlying the invention "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-ments, such combination being obvious to a person skilled in the art. "O" document reterring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 20 April 1999 27/04/1999 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

1

Hass, C

Int. .tional Application No PCT/EP 98/08126

		PCT/EP 98/08126			
C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT		3		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.			
A	EP 0 260 744 A (JANSSEN PHARMACEUTICA N. V.) 23 March 1988 cited in the application see page 14, formula (XLIV); page 25, lines 34-37; claim 1	1			
A,P	see page 14, formula (XLIV); page 25, lines 34-37; claim 1 WO 97 49704 A (JANSSEN PHARMACEUTICA N. V.) 31 December 1997 see claims 1,8-10; tables 1-4,6	1,5-7			

Information on patent family members

Inte. donal Application No PCT/EP 98/08126

			PCT	PCT/EP 98/08126		
Patent document cited in search report	Publicatio date	on	Patent family member(s)	Publication? date		
EP 371564	A 06-06-1	990 AT AU AU CA CN CN CN CY DE BK ES FI GR HK HU IE JP NO PT SU US US US US US	124941 T 620946 B 4564689 A 2002864 A 1042912 A 1106005 A 1920 A 68923430 D 599489 A 2088889 T 101964 B 3017351 T 118196 A 9500329 A 67803 B 2223579 A 174509 B 92448 A 1780536 A 5037829 A 4289 A 4289 A 5441954 A 5612354 A 5185346 A 5268380 A 5268380 A 5268380 A 52686380 A	,B 02-08-1995 ,B 02-08-1995 07-03-1997 17-08-1995 30-05-1990 01-10-1996 30-09-1998 31-12-1995 12-07-1996 30-10-1995 01-05-1996 05-09-1990 07-02-1994		
WO 9716443	A 09-05-19		7493396 A 1200732 A 9801272 A 980928 A 328230 A	29-09-1992 		
EP 371559	A 06-06-19		112681 T 630579 A 1071692 A 623454 B 4564889 A 2002859 A 1867 A 68918809 T 599589 A 0609963 A 2065369 T 114895 A 63877 B 92487 A 10095782 A 2752200 B 3020273 A 92449 A, 50466 A 5420147 A	15-10-1994 29-10-1992 19-03-1992 14-05-1992 07-06-1990 29-05-1990 05-04-1996 17-11-1994 23-03-1995 30-05-1990 10-08-1994 16-02-1995 21-07-1995 14-06-1995 29-12-1994 14-04-1998 18-05-1998 29-01-1991		

Information on patent family members

tnte. Jonel Application No PCT/EP 98/08126

Patent docum cited in search r		Publication date		atent family member(s)	Publication date
EP 371559	A		US	5157046 A	20-10-1992
			US	5342957 A	30-08-1994
EP 260744	A	23-03-1988	AT	83478 T	15-01-1993
			UA	595064 B	22-03-1990
		•	ΑU	7838587 A	14-04-1988
			BG	61321 B	30-05-1997
			CA	1323366 A	19-10-1993
			CN	1020903 B	26-05-1993
			CS	9103826 A	15-04-1992
			DE	3783107 A	28-01-1993
			DK	479487 A	16-03-1988
			ES	2053524 T	01-08-1994
			FI	873977 A,B,	16-03-1988
			GR	3006841 T	30-06-1993
			HK	123694 A	18-11-1994
			ΙE	60514 B	27-07-1994
			JP	1085975 A	30-03-1989
			JP	1875175 C	26-09-1994
			KR	9614353 B	15-10-1996
			KR	9615004 B	23-10-1996
			LT	2087 R	15-07-1993
			LV	5029 A	10-06-1993
			LV	5770 A	20-12-1996
			PH	25022 A	28-01-1991
			PT	85692 A,B	01-10-1987
			SG	118994 G	28-04-1995
			SU	1662350 A	07-07-1991
			US	4859684 A	22-08-1989
WO 9749704	Α	31-12-1997	AU	3435697 A	14-01-1998
			EP	0907650 A	14-04-1999

			•
ή.			٠.