

KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS <u>MAIN CAMPUS</u>

FIRST SEMESTER, 2019/2020 ACADEMIC YEAR

EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN TELECOMMUNICATION, BACHELOR OF EDUCATION SCIENCE, BACHELOR OF SCIENCE IN COMPUTER FORENSICS, BACHELOR OF SCIENCE IN COMPUTER SCIENCE

PHYS 120: BASIC ELECTRONICS

STREAM: Y1S2 TIME: 9:00-11:00AM

EXAMINATION SESSION: SEP-DEC DATE:4/12/2019

INSTRUCTIONS TO CANDIDATES

- 1. Answer Question 1 and any other two questions in the answer booklet provided.
- 2. Do not write on your question papers. All rough work should be done in your answer booklet.
- 3. Clearly indicate which question you are answering.
- 4. Write neatly and legibly.
- 5. Edit your work for language and grammar errors.
- 6. Follow all the instructions in the answer booklet

SECTION A: (Compulsory) TOTAL MARKS FOR THIS SECTION IS 30.

Question 1 (30 marks)

a)	Explain the	difference between	a PNP and an NPN transistor.	[2]
----	-------------	--------------------	------------------------------	-----

- b) Why are metals better conductors of electricity than semiconductors? [2]
- c) You are given figure 1 below. Copy the diagram and label it to obtain
 - i. pnp transistor [2]
 - ii. npn transistor [2]

Figure 1

- d) What is the source of the leakage current in a transistor? [1]
- e) Give two examples for each of the following:
 - i) donor impurity. [2]
 - ii) acceptor impurity. [2]
- f) Determine the diode current at 20°C for a silicon diode with I_s =0.1 A at a reverse-bias potential of 10 V. Take: Fundamental charge $q = 1.6 \times 10^{-19}$ C; Boltzmann's constant $K_B = 1.38 \times 10^{-23}$ J/K. [4]
- g) Determine α_{DC} of a transistor if $I_E 2.8$ mA and $I_B = 20 \mu$ A. [3]
- h) Justify the following statements giving specific examples:
 - i. "Semiconductor devices can serve as source of power". [2]
 - ii. "Semiconductor based devices saves energy" [2]
- i) In Figure 2, $V_{in} = 12$ Volts.
 - i. Give the name of the circuit. [1]
 - ii. Explain the operation of the circuit. [3]
 - iii. Find voltage across AB. [2]

Page 2 of 5

Figure 2

SECTION B. TOTAL MARKS FOR THIS SECTION IS 40.

ANSWER ANY TWO QUESTIONS FROM THIS SECTION. EACH QUESTION IN THIS SECTION CARRIES 20 MARKS.

Question 2 (20 marks)

- a) Draw the 2D structure illustrating boding Ge and explain why it is an insulator at 0K. [5]
- b) Describe the difference between n-type and p-type semiconductor materials. [6]
- a) Draw a voltage regular circuit and explain its operation. [6]
- b) Determine *ID*, and *Vo* for the circuit of Fig. 3. Take the threshold of silicon to be 0.6 V. [3]

Figure 3

Question 3 (20 marks)

- a) Using the characteristics of Fig. 4: Find
 - i. The value of I_C corresponding to V_{BE} =750 mV and V_{CE} = 5 V. [2]
 - ii. The value of V_{CE} and V_{BE} corresponding to $I_C = 3$ mA and $I_B = 30$ μ A. [2]
 - iii. The dc beta at an operating point of V_{CE} = 8 V and IC =2 mA. [3]

Figure 4

- Explain the desired bias condition for the three labeled operating points in Figure4.
- c) Determine the Q point for the circuit below (Figure 5): [7]

Figure 5

Question 4 (20 marks)

a) Define the Q point of of a transistor circuit.

[2]

[4]

- b) Explain factors which affect the Q point of a transistor circuit.
- c) A Fixed Bias circuit is presented in Figure 6.
 - i. Show that the bias method is unstable. [5]
 - ii. Draw its load line and mark the Q-point. (Take VBE=7 V). [9]

Question 5 (20 marks)

- a) Draw a well-biased circuit –n channel JFET and sketch the transfer curve defined by $I_{DSS} = 12$ mA and $V_P = 6$ V. [8]
- b) Use transistor equations to draw similarities between JFET and BJT [6]
- c) Derive the voltage gain of an amplifier with feedback. [6]