)
$$\Rightarrow$$
 rumus etsplisit: $\frac{\cos nx}{n^2}$; $h=1,2,...$

$$-1 \leq \cos nx \leq 1$$

$$-\frac{1}{n^2} \frac{\cos x}{n^2} \leq \frac{1}{n^2}$$

$$\lim_{n \to \infty} \frac{-1}{n^2} = 0 \qquad \lim_{n \to \infty} \frac{1}{n^2} = 0$$

$$\therefore \text{ Konvergen ke 0}$$

$$n \geq N$$
. $|a_n - l| < 2/2$
 $|a_n - A| < 2/2$

1 h - 13/2 4/2

(terbukti)

c. tentukan kemunutonan, keterbatasan, dan limit barisan berikut.

-) keterbatasan:
$$a_N : \sin \frac{nx}{y}$$

$$-1 \le \sin nx \le 1 \text{ (hidak ada limil)}$$

$$-\frac{1}{y} \le \sin \frac{nx}{y} \le \frac{1}{y}$$

$$= \frac{1}{y} \le \sin \frac{nx}{y} \le \frac{1}{y}$$

2) a. tulis rumus etsplist barisan berikut dan tentukan kekonvergenannya: 1,-1, 1,-1, 1, -1, ...

=) rumus elespiisit:
$$(-1)^{n+1} \left(\frac{1}{n}\right)$$
; $n; 1, 2, 3, ...$

b. Dengan definitionity, buttikan barisan Yang berikut Konvergen: an = 3-8-2"

$$\lim_{n \to \infty} \frac{3 - 8 \cdot 2^n}{5 + 9 \cdot 2^n} = \lim_{n \to \infty} \frac{3 - 16^n}{5 + 8^n}$$

$$= \lim_{n \to \infty} \frac{3/1^n - 16^n}{5 + 8^n}$$

$$\alpha' n = \frac{1}{n^2} \frac{1 - \ln n - \ln n \cdot 1}{n^2}$$

$$= \frac{1 - \ln n}{n^2} \quad \text{(bukan bansan)}$$

The solution
$$\frac{1}{n} = 0$$
 : leavergen $\frac{1}{n} = 0$: leavergen $\frac{1}{n} = 0$: leavergen

$$1 - \frac{1}{10^n}$$
; $n = 1, 2, 3, ...$

Lany berikut konvergen,

$$an = \frac{n+3}{3n-2}$$

=)
$$\lim_{n \to \infty} \frac{n+3}{3n-1} = \frac{n/n + 3/n}{2n/n - 1/n} = \frac{1+0}{3-0} = \frac{1}{3}$$

: Konvergen lee $\frac{1}{3}$

$$\frac{u_{n}}{a_{n+1}} = \frac{\frac{1 \cdot 2 \cdot 3 \cdot \dots n}{10 \cdot 10 \cdot 10 \cdot 10^{n} \cdot 10^{n}}}{\frac{1 \cdot 2 \cdot 3 \cdot \dots n}{10 \cdot 10 \cdot 10^{n} \cdot 10^{n}$$

$$= \frac{1}{n+1} \cdot 10^{n+1}$$

$$= \frac{10^{n+1}}{n+1} > 1 \quad \binom{\text{monoton}}{\text{nack}}$$

=) Kekonvergenah

$$a_n = \frac{n!}{10^n}$$

$$= \frac{1 - 2 \cdot 3 \cdot \cdots \cdot n}{10 \cdot 10 \cdot 10 \cdot \cdots \cdot 10^n} = \frac{30}{30} = \text{fak tentu}$$

: divergen (hidak ada limit)