

Exercícios- Diodos e Transistores

ECM305 Sistemas Eletrônicos

Sergio R. Augusto

Assumindo diodos ideais, descreva a característica de transferência ($v_0 \times v_i$) para o circuito abaixo:

$$v_0 = v_i \text{ para } -5 \le v_i \le +5$$

 $v_0 = 1/2 \ v_i -2,5 \text{ para } v_i \le -5$
 $v_0 = 1/2 \ v_i +2,5 \text{ para } v_i \ge 5$

Encontre os valores de I e V para os circuitos abaixo, considerando diodos ideais

Supondo v_i dado por uma senoide de valor máximo v_m , esboce a saída v_0 ao longo do tempo (para um ciclo da senoide)

Deseja-se controlar o acionamento de um relé por um circuito digital com tecnologia TTL. O diodo em paralelo com a bobina serve de proteção do transistor quando se desliga o relé. O transistor utilizado tem como características: β na faixa de 110 a 800, $I_{Cmax} = 100$ mA e $V_{CEmax} = 60$ V. O relé tem uma tensão de alimentação de 5V e uma corrente de acionamento de sua bobina, I_R de 50 mA. Determine o valor de R_B que resulte na saturação do transistor com um fator de sobre-excitação de 2 e permita o acionamento do relé.

Um microcontrolador, durante o processo de inicialização, parte com todas os seus I/Os em nível alto ('1' lógico). De maneira a termos o correto funcionamento de uma parte do circuito eletrônico, utilizamos o circuito inversor abaixo para obtermos a tensão V_o . Determine R_B considerando que o pino do controlador tem uma saída digital com valores de 0,4 V para V_{OL} e 3,3V para V_{OH} . Considere o fator de sobre-excitação igual a 1 e h_{FE} do transistor entre 10 e 50.

R: $R_B = 6.8 \text{ k}\Omega$