

Московский государственный университет имени М.В.Ломоносова Факультет вычислительной математики и кибернетики

Тан Ин

Задача Дирихле для уравнения Пуассона в криволинейной области

Суперкомпьютерное моделирование и технологии

Группа 616, Вариант 2

Содержание

1	Постановка задачи		
	1.1	Математическая постановка задачи	3
	1.2	Метод фиктивных областей	3
	1.3	Разностная схема решения	4
	1.4	Метод минимальных невязок	6
2	Реш	іение	8
3 Результаты			10

1 Постановка задачи

Требуется приближенно решить задачу Дирихле для уравнения Пуассона в криволинейной области. Задание необходимо выполнить на ПВС Московского университета IBM Polus.

1.1 Математическая постановка задачи

В области $D\subset\mathbb{R}^2$, ограниченной контуром γ , рассматривается дифференциальное уравнение Пуассона:

$$-\Delta u = 1 \tag{1.1}$$

с граничным условием Дирихле:

$$u(x,y) = 0, \quad (x,y) \in \gamma. \tag{1.2}$$

Требуется найти функцию u(x,y), удовлетворяющую уравнению (1.1) в области D и краевому условию (1.2) на ее границе.

Область D - остроулольный треугольник с вершинами в точках $\mathrm{C}(-3,0),$ $A(3,0),\,B(0,4),\,D(0,3).$

1.2 Метод фиктивных областей

Пусть область D принадлежит прямоугольнику $\Pi = \{(x,y) \mid A.x < x < B.x, A.y < y < C.y\}$. Обозначим границу прямоугольника Π как Γ .

Разность множеств $\hat{D} = \Pi \setminus \bar{D}$ называется фиктивной областью.

В прямоугольнике П рассмотрим следующую задачу Дирихле:

$$-\frac{\partial}{\partial x}\left(k(x,y)\frac{\partial v}{\partial x}\right) - \frac{\partial}{\partial y}\left(k(x,y)\frac{\partial v}{\partial y}\right) = F(x,y) \tag{2.1}$$

Где $v(x,y) = 0, (x,y) \in \Gamma$,

k(x,y) - кусочно-постоянный коэффициент:

$$k(x,y) = \begin{cases} 1, & (x,y) \in D, \\ \frac{1}{\varepsilon}, & (x,y) \in \hat{D}. \end{cases}$$
 (2.2)

и правой частью:

$$F(x,y) = \begin{cases} 1, & (x,y) \in D, \\ 0, & (x,y) \in \hat{D}. \end{cases}$$
 (2.3)

Требуется найти непрерывную в Π функцию v(x,y), удовлетворяющую дифференциальному уравнению (2.1) всюду в $\Pi \setminus \gamma$, равную нулю на границе Γ прямоугольника, и такую, чтобы вектор потока:

$$W(x,y) = -k(x,y) \left(\frac{\partial v}{\partial x}, \frac{\partial v}{\partial y} \right)$$
 (2.4)

имел непрерывную нормальную компоненту на общей части криволинейной границы области D и прямоугольника Π .

Последнее означает, что в каждой точке $(x_0, y_0) \in \gamma \cap \Pi$ должно выполняться равенство:

$$\lim_{(x,y)\to(x_0,y_0),(x,y)\in D} \frac{\partial v}{\partial \nu} = \lim_{(x,y)\to(x_0,y_0),(x,y)\in \hat{D}} \frac{\partial v}{\partial \nu}.$$
 (2.5)

Известно [2], что функция v(x,y) равномерно приближает решение u(x,y) задачи (1) в области D, а именно,

$$\max_{(x,y)\in\bar{D}} \|v(x,y) - u(x,y)\| \le C\varepsilon, \quad C > 0$$
(2.6)

Таким образом, решение новой задачи (2.1) позволяет получить решение исходной задачи (1) с любой наперед заданной точностью $\varepsilon > 0$, решая при этом задачу Дирихле с кусочно-постоянным коэффициентом k(x,y), но в прямоугольнике Π , содержащем исходную область, что существенно упрощает вычисления.

1.3 Разностная схема решения

В замыкании прямоугольника Π определим равномерную прямоугольную сетку $\bar{\omega}_h = \bar{\omega}_1 \times \bar{\omega}_2$, где

$$\bar{\omega}_1 = \{x_i = A.x + ih_1, i = 0, \dots, M\}, \quad h_1 = (B.x - A.x)/M,$$
 (1)

$$\bar{\omega}_2 = \{ y_j = A.y + jh_2, \ j = 0, \dots, N \}, \quad h_2 = (C.y - A.y)/N.$$
 (2.7)

Множество внутренних узлов сетки $\bar{\omega}_h$ обозначим ω_h .

Рассмотрим линейное пространство H функций, заданных на сетке ω_h . Обозначим через w_{ij} значение сеточной функции H в узле сетки $(x_i, y_j) \in \omega_h$. Определим скалярное произведение и норму в пространстве сеточных функций H:

$$(u,v) = \sum_{i=1}^{M-1} \sum_{j=1}^{N-1} h_1 h_2 u_{ij} v_{ij}, \quad ||u|| = \sqrt{(u,u)}.$$
 (2.8)

Будем использовать метод конечных разностей, который заключается в замене дифференциальной задачи математической физики на конечно-разностную операторную задачу вида:

$$Aw = B, (2.9)$$

где $A: H \to H$. Дифференциальное уравнение задачи (3) во всех внутренних точках сетки аппроксимируется разностным уравнением:

$$-\frac{1}{h_1} \left(a_{i+1,j} \frac{\omega_{i+1,j} - \omega_{ij}}{h_1} - a_{i,j} \frac{\omega_{ij} - \omega_{i-1,j}}{h_1} \right) - \frac{1}{h_2} \left(b_{i,j+1} \frac{\omega_{i,j+1} - \omega_{ij}}{h_2} - b_{i,j} \frac{\omega_{ij} - \omega_{i,j-1}}{h_2} \right) = F_{ij},$$
(2.10)

при всех i = 1, ..., M, j = 1, ..., N.

Коэффициенты:

$$a_{ij} = \frac{1}{h_2} \int_{y_i - h_2/2}^{y_j + h_2/2} k(x_i, y) dt, \tag{2}$$

$$b_{ij} = \frac{1}{h_1} \int_{x_i - h_1/2}^{x_i + h_1/2} k(t, y_j) dt.$$
(2.11)

Правая часть разностного уравнения:

$$F_{ij} = \frac{1}{h_1 h_2} \iint_{\Pi_{ij}} F(x, y) \, dx \, dy, \tag{2.12}$$

где $\Pi_{ij}=\{(x,y): x_{i-1/2}\leq x\leq x_{i+1/2}, y_{j-1/2}\leq y\leq y_{j+1/2}\},\quad i=1,\ldots,M,\,j=1,\ldots,N-1.$

Краевые условия Дирихле в задаче (2.1) аппроксимируются точно равенством

$$w_{ij} = w(x_i, y_j) = 0, \quad (x_i, y_j) \in \Gamma.$$
 (2.13)

Полученные узлы означают $x_{i\pm 1/2}=x_i\pm 0.5h_1,\ y_{j\pm 1/2}=y_j\pm 0.5h_2.$

Полученная система является линейной относительно неизвестных величин и может быть представлена в виде Aw = B с самосопряженным и положительно определенным оператором A. Построенная разностная схема линейна и имеет единственное решение при любой правой части.

Интегралы a_{ij}, b_{ij} будут вычисляться аналитически:

$$a_{ij} = h_2^{-1} l_{ij} + (1 - h_2^{-1} l_{ij}) / \varepsilon,$$
 (3)

$$b_{ij} = h_1^{-1} l_{ij} + \left(1 - h_1^{-1} l_{ij}\right) / \varepsilon, \tag{2.14}$$

где l_{ij} - длина части отрезка $[y_{j-1/2}, y_{j+1/2}]$, которая принадлежит области D.

Аналогично для b_{ij} , где l_{ij} - длина части отрезка $[x_{i-1/2},x_{i+1/2}]$, которая принадлежит области D.

Для вычисления l_{ij} проверяется пересечение соответствующего интеграла интегрирования с прямой, проходящей через вершины трапеции CB.

Правую часть разностной схемы считаем как $F_{ij} = s/(h_1h_2)$, где s - часть площади прямоугольника с центром (x_i, y_j) и сторонами h_1h_2 , принадлежащая области D.

1.4 Метод минимальных невязок

Приближенное решение разностной схемы предлагается вычислять методом наименьших невязок. Метод позволяет получить последовательность сеточных функций $\omega^{(k)} \in H, \ k=1,2,\ldots$, сходящуюся по норме пространства H к решению разностной схемы.

$$\|\omega - \omega^{(k)}\| \to 0, \quad k \to \infty$$
 (2.16)

Начальное приближение $\omega^{(0)}$ выберем равным нулю во всех точках сетки, кроме одной в центре. В центральной устанавливаем значение = 1.

Итерация $\omega^{(k+1)}$ вычисляется по итерации $\omega^{(k)}$ по формуле:

$$\omega_{ij}^{(k+1)} = \omega_{ij}^{(k)} - \tau_{k+1} r_{ij}^{(k)} \tag{2.17}$$

где невязка $r^{(k)} = A\omega^{(k)} - B$, итерационный параметр

$$\tau_{k+1} = \frac{(Ar^{(k)}, r^{(k)})}{\|Ar^{(k)}\|^2} \tag{4}$$

В качестве критерия останова используется условие:

$$||r^{(k)}|| < \delta \tag{2.18}$$

с некоторой положительной константой $\delta>0,$ задающей точность приближенного решения.

Для вычислений использовалась $\delta=10^{-6}.$

2 Решение

Требовалось приближенно найти решение задачи (1), (2) для случая, когда f(x,y) = 1 при всех $(x,y) \in D$. Где область D является внутренностью эллипса $\{(x,y): |4x| + 3y - 12 \le 0 \text{ and } y \ge 0\}.$

- Реализация последовательного кода программы, вычисляющая приближенное решение разностной схемы:
 - вычисление матриц F_{ij} , a_{ij} , b_{ij} ;
 - реализация итерационного метода наименьших невязок;
 - выполнение расчетов на сгущающихся сетках (M,N)(10, 10), (20, 20), (40, 40);
- Разработка параллельного кода программы, вычисляющего приближенное решение разностной схемы, используя средства ОрепМР;
- Разработка параллельного кода программы, вычисляющего приближенное решение разностной схемы, используя средства ОрепМР.
- Выполнение расчетов на сетке (M,N)=(40,40) на одном, четырех, восьми и шестнадцати нитях, сравнение с последовательным вариантом алгоритма.
- Выполнение расчетов на сетках (M, N) = (80, 90), (160, 180) на 2, 4, 8, 16 и 32 нитях, сравнение с последовательным вариантом алгоритма Матрицы F_{ij} , a_{ij} , b_{ij} вычислялись аналитически:

$$F_{ij} = \begin{cases} 0, & \Pi_{ij} \in \hat{D}, \\ 1, & \Pi_{ij} \in D, \\ \frac{S_{ij}}{h_1 h_2}, & \Pi_{ij} \text{ содержит точки оригинальной и фиктивной областей} \end{cases}$$

$$S_{ij} = \text{mes}(\Pi_{ij} \cap D) \text{ - площадь пересечения областей.}$$

где $S_{ij} = \operatorname{mes}(\Pi_{ij} \cap D)$ - площадь пересечения областей.

$$a_{ij} = \begin{cases} \frac{1}{\epsilon}, & [P_{ij}, P_{i,j+1}] \in \hat{D}, \\ 1, & [P_{ij}, P_{i,j+1}] \in D, \\ \frac{l_{ij}}{h_2} + \left(1 - \frac{l_{ij}}{h_2}\right)/\epsilon, & [P_{ij}, P_{i,j+1}] \text{ содержит точки оригинальной и фиктивной областей} \end{cases}$$

- где l_{ij} длина той части отрезка $[P_{ij}, P_{i,j+1}]$, которая принадлежит области D. Аналогичным образом вычисляются коэффициенты b_{ij} .
- Для реализации параллельного кода программы используются директивы OpenMP для распараллеливания циклов и редукций. Использование директив OpenMP позволяет ускорить вычисления на каждом шаге итерационного метода при запуске программы на системах, поддерживающих параллельные вычисления.
- Результаты работы программы демонстрируют эффективность использования параллельного кода для вычисления приближенного решения итерационным методом на системах с многопоточностью по сравнению с использованием последовательного кода.

3 Результаты

Число нитей	Размер сетки	Время (s)	Ускорение
Последовательный вариант	80×90	114	_
2	80×90	91	1.26
4	80×90	74	1.54
8	80×90	63	1.80
16	80×90	49	2.29
Последовательный вариант	160×180	1514	_
4	160×180	811	1.86
8	160×180	575	2.63
16	160×180	513	2.94
32	160×180	433	3.49

Таблица 1: Таблица с результатами расчётов на разном числе нитей и размерах сетки.

Рис. 1: Ускорение на ОРЕММР

Function w(x,y) - Transposed 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.7

Рис. 2: Итоговый результат на сетке 40×40 (ansplot)

Рис. 3: Итоговый результат на сетке 40×40 (ansretu)

Рис. 4: Итоговый результат на сетке 40×40 (ansplot)

Рис. 5: Итоговый результат на сетке 80×90 (ansretu)

Function w(x,y) - Transposed Heatmap

- 0.5

- 0.4

- 0.2

- 0.1

Рис. 6: Итоговый результат на сетке 40×160 (ansplot)

Рис. 7: Итоговый результат на сетке 40×180 (ansretu)