Chapitre V - Dérivation

Exercice 71 p. 116

La fonction p est définie sur [0; 25] par $p(t) = -0, 2t^2 + 4t + 25$.

1. Calculer la fonction dérivée de la fonction p et étudier son signe sur $[0\ ;\ 25].$

Remarque : t joue le même rôle que x dans cette fonction.

La fonction p est définie sur [0; 25] par $p(t) = -0, 2t^2 + 4t + 25$.

1. Calculer la fonction dérivée de la fonction p et étudier son signe sur $[0\ ;\ 25].$

Remarque : t joue le même rôle que x dans cette fonction.

$$\overline{p'(t) = -0, 2} \times 2t + 4 + 0 = -0, 4t + 4$$

La fonction p est définie sur [0; 25] par $p(t) = -0, 2t^2 + 4t + 25$.

1. Calculer la fonction dérivée de la fonction p et étudier son signe sur $[0\ ;\ 25].$

Remarque : t joue le même rôle que x dans cette fonction.

$$\overline{p'(t)} = -0, 2 \times 2t + 4 + 0 = -0, 4t + 4$$

 p^\prime est une fonction affine. On résout alors $p^\prime(t)=0$

La fonction p est définie sur [0; 25] par $p(t) = -0, 2t^2 + 4t + 25$.

1. Calculer la fonction dérivée de la fonction p et étudier son signe sur $[0\ ;\ 25].$

Remarque : t joue le même rôle que x dans cette fonction.

$$\overline{p'(t) = -0, 2} \times 2t + 4 + 0 = -0, 4t + 4$$

 p^\prime est une fonction affine. On résout alors $p^\prime(t)=0$ qui donne :

$$-0,4t+4=0$$
 c'est-à-dire $-0,4t=-4$
$$t=\frac{-4}{-0,4}=10$$

La fonction p est définie sur [0; 25] par $p(t) = -0, 2t^2 + 4t + 25$.

1. Calculer la fonction dérivée de la fonction p et étudier son signe sur $[0\ ;\ 25].$

Remarque : t joue le même rôle que x dans cette fonction.

$$p'(t)=-0,2\times 2t+4+0=-0,4t+4$$
 p' est une fonction affine. On résout alors $p'(t)=0$ qui donne : $-0,4t+4=0$ c'est-à-dire $-0,4t=-4$

$$t = \frac{-4}{-0,4} = 10$$

On regarde alors le coefficient devant la variable t (c'est -0,4) et comme -0,4<0, on en déduit que p'(t)<0 après s'être annulé, ce qui donne le tableau :

La fonction p est définie sur [0; 25] par $p(t) = -0, 2t^2 + 4t + 25$.

1. Calculer la fonction dérivée de la fonction p et étudier son signe sur $[0\ ;\ 25].$

Remarque : t joue le même rôle que x dans cette fonction.

$$\overline{p'(t)=-0,2} \times 2t+4+0=-0,4t+4$$
 p' est une fonction affine. On résout alors $p'(t)=0$ qui donne : $-0,4t+4=0$ c'est-à-dire $-0,4t=-4$

$$t = \frac{-4}{-0.4} = 10$$

On regarde alors le coefficient devant la variable t (c'est -0,4) et comme -0,4<0, on en déduit que p'(t)<0 après s'être annulé, ce qui donne le tableau :

t	0		10		25
signe de $p'(t)$		+	0	_	

2. Dresser le tableau de variation de la fonction p sur [0; 25].

On se sert du tableau de signes de la question précédente pour trouver les variations de p :

2. Dresser le tableau de variation de la fonction p sur [0; 25].

On se sert du tableau de signes de la question précédente pour trouver les variations de p:

nations as p:							
0		10		25			
	+	0	_				
	0	0 +		*			

2. Dresser le tableau de variation de la fonction p sur [0; 25].

On se sert du tableau de signes de la question précédente pour trouver les variations de n:

	o ao p	-			
t	0		10		25
p'(t)		+	0	_	
p					_

2. Dresser le tableau de variation de la fonction p sur [0; 25].

On se sert du tableau de signes de la question précédente pour trouver les variations de n:

	t	0		10		25	
	p'(t)		+	0	_		
	p	25		, 45 <u> </u>		0 ,	

- 3. Quel était le pourcentage de malades au début de l'étude.
 - p(0)=25 donc au début de l'épidémie, il y a 25 % de malades dans la population.

4. Quel a été le pourcentage maximum de malades durant l'épidémie? À quel moment ce maximum a-t-il été atteint?

Le tableau de variation de la fonction p nous permet de déterminer son maximum.

4. Quel a été le pourcentage maximum de malades durant l'épidémie ? À quel moment ce maximum a-t-il été atteint ?

Le tableau de variation de la fonction p nous permet de déterminer son maximum.

Ainsi le pourcentage maximum de malades est de 45 %. Il a été atteint au bout de 10 mois.

 Déterminer l'année et le mois durant lesquels la maladie aura disparu du village.

On cherche quand p(t) = 0.

Or d'après le tableau de variation de p, p(t) = 0 lorsque t = 25.

 Déterminer l'année et le mois durant lesquels la maladie aura disparu du village.

On cherche quand p(t) = 0.

Or d'après le tableau de variation de p, p(t)=0 lorsque t=25. Donc la maladie aura disparu du village au bout de 25 mois soit 2 ans et 1 mois. Donc elle aura disparu à partir de février 2019.