数据库系统概论新技术篇

数据挖掘

李翠平 中国人民大学信息学院

概览

- ❖ 什么是分类?
- ❖ 分类 vs. 预测
- ❖ 分类的过程
 - ■建立模型阶段
 - ■使用模型阶段
- ❖ 分类过程用到的三类数据集
- ❖ 常用的分类方法
- ❖ 一种典型的分类方法:决策树分类

什么是分类

❖ 属于模型挖掘,更确切地讲,是预测建模的过程

❖ 预测建模的目的是,根据观察到的对象特征值预测它的其他特征值

❖ 例如,根据年龄、收入、是否学生、信用情况这四个方面的特征,预测某个人是否会购买笔记本电脑

❖ 这是一个典型的分类问题

分类 vs. 预测

- ❖ 分类
 - 构造、使用模型来对某个样本的类别进行判别
 - ■主要用于对离散的数据进行预测
 - ■典型应用:信誉评估、医学诊断

- ❖ 预测
 - 构造、使用模型来对某个样本的值进行估计,例如预测 某个不知道的值或者缺失值
 - ■主要用于对连续或有序的数据进行预测
 - ■典型应用:性能预测

分类的过程

- ❖ 第一步,建立模型阶段
 - > 用来构造模型的数据集被称为训练集
 - > 模型一般表示为:分类规则,决策树或者数学公式
- ❖ 第二步,使用模型阶段
 - > 首先测试模型的准确性
 - ・用测试集和由模型进行分类的结果进行比较
 - ・两个结果相同所占的比率称为准确率
 - ・测试集和训练集必须不相关
 - > 如果准确性可以接受的话, 使用模型对新数据进行分类

分类过程:建立模型阶段

NAME	RANK	YEARS	TENURED
Mike	Assistant Prof	3	no
Mary	Assistant Prof	7	yes
Bill	Professor	2	yes
Jim	Associate Prof	7	yes
Dave	Assistant Prof	6	no
Anne	Associate Prof	3	no

分类过程:使用模型阶段

分类过程用到的三类数据集

训练集 💳

	NAME	RANK	YEARS	TENURED
	Mike	Assistant Prof	3	no
	Mary	Assistant Prof	7	yes
\	Bill	Professor	2	yes
/	Jim	Associate Prof	7	yes
	Dave	Assistant Prof	6	no
	Anne	Associate Prof	3	no

测试集 🗆

新数据□□□

NAME	RANK	YEARS	TENURED
Jeff	Professor	4	?

分类方法进行评价

- ❖ 准确性
- ❖ 速度
 - 构造模型的时间 (训练时间)
 - 使用模型的时间 (预测时间)
- ❖ 鲁棒性
 - 能够处理噪声和缺失数据
- ❖ 可伸缩性
 - 对磁盘级的数据库有效
- ❖ 易交互性
 - 模型容易理解,具有较好的洞察力

常用的分类方法

- ❖ 决策树分类
- ❖ 贝叶斯分类
- ❖ 支持向量机
- ❖ 神经网络
- ❖ K近邻分类

决策树分类

决策树分类的主要任务是要确定各个类别的决策区域,或者说,确定不同类别之间的边界。在决策树分类模型中,不同类别之间的边界通过一个树状结构来表示

决策树算法的宏观思考

❖ 最大高度 = 决策属性的个数

❖ 树越矮越好

❖ 要把重要的好的属性放在树根

因此,决策树建树算法就是:选择树根的过程

决策树分类

- 1 开始时,所有的训练集样本都在树根
- 2 属性都是可分类的属性(如果是连续值的话, 先要对其进行离散化)

停止划分的条件:

- 1 某个节点上的所有样本都属于相同的类别
- 2 所有属性都用到了—采用多数有效法对叶子节点分类
- 3 没有样本了

决策树分类第一步:选择属性,作为树根

- ❖比较流行的属性选择方法:信息增益
- ❖信息增益最大的属性被认为是最好的树根

属性选择方法:信息增益计算

- 用S表示训练集,假设分类属性具有m个不同的值,也就是说共有m个不同的分类 C_i(i = 1, ..., m),用s_i表示S中属于分类Ci的样本的个数
- 则信息收益可以用如下三步求出
 - 求information:

$$I(s_1, s_2,...,s_m) = -\sum_{i=1}^m \frac{s_i}{s} \log_2 \frac{s_i}{s}$$

■ 对每个属性求entropy, 假设属性A的值为{a₁,a₂,...,a_v}

$$E(A) = \sum_{j=1}^{\nu} \frac{S_{1j} + ... + S_{mj}}{S} I(S_{1j}, ..., S_{mj})$$

■ 对每个属性求information gain:

$$Gain(A) = I(s_1, s_2,...,s_m) - E(A)$$

属性选择方法:信息增益计算示例

共有5个属性

前4个属性用作 预测属性,最 后一个属性是 类别属性

共有14个样本 ,或者说14条 记录

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

属性选择方法:信息增益计算示例

$$I(p,n) = I(\frac{9}{14}, \frac{5}{14}) = -\frac{9}{14}\log_2\frac{9}{14} - \frac{5}{14}\log_2\frac{5}{14} = 0.940$$

- Class N: buys_computer = "no"
- \blacksquare I(p, n) = I(9, 5) = 0.940
- Compute the entropy for age:

<u> </u>			
age	p _i	n _i	I(p _i , n _i)
<=30	2	3	0.971
3040	4	0	0
>40	3	2	0.971

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

$$E(age) = \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0)$$

$$+ \frac{5}{14}I(3,2) = 0.694$$

$$\frac{5}{14}I(2,3) \text{ means "age <=30" has 5 out of 14}$$

$$Gain(age) = I(p,n) - E(age) = 0.246$$

samples, with 2 yes'es and 3 no's. Hence

$$Gain(income) = 0.029$$

 $Gain(student) = 0.151$
 $Gain(credit_rating) = 0.048$

An Introduction to Database System

根据树根,划分训练集

income	student	credit_rating	class
high	no	fair	yes
low	yes	excellent	yes
medium	no	excellent	yes
high	yes	fair	yes

根据属性 age 进行数据集划分

从决策树中抽取决策规则

- ❖ 决策树中所蕴含的知识可以表达成IF-THEN规则的形式
- ❖ 从根到叶的一条路径生成一条规则
- ❖ 路径上的属性值由AND连接起来,构成IF部分
- ❖ 叶子节点构成THEN部分,指出所属的分类
- Example

```
IF age = "<=30" AND student = "no" THEN buys_computer = "no"

IF age = "<=30" AND student = "yes" THEN buys_computer = "yes"

IF age = "31...40" THEN buys_computer = "yes"

IF age = ">40" AND credit_rating = "excellent" THEN buys_computer = "yes"
```

IF age = "<=30" AND credit_rating = "fair" THEN buys_computer = "no"

谢谢!

