

Espace Vectoriels

Exercice 1 (*):

Pour chaque cas vérifier si ${\cal E}$ est un espace vectoriel?

- 1. $E = \{(x, y, z) \mid x + y + 3z = 0\}$
- **2.** $E = \{(x, y, z) \mid x + y + 3z = 2\}$
- 3. $E = \{(x, y, z, t) \mid x = y = 2z = 4t\}$
- **4.** $E = \{(x, y) \mid xy = 0\}$
- 5. $E = \{(x, y) \mid x = y^2\}$
- 6. $F = \{(x, y, z) \mid 2x + 3y 5z = 0\}$ et $G = \{(x, y, z) \in \mathbb{R}^3 \mid x y + z = 0\}$. Vérifier $E = F \cap G$
- 7. Même question mais pour $E = F \cup G$

Exercice 2 (*):

Détéreminer si les ensembles suivants sont des sous espaces vectoriels?

- 1. $E_1 = \{ P \in \mathbb{R}[X] \mid P(0) = P(2) \}$
- 2. $E_2 = \left\{ P \in \mathbb{R}[X] \mid P'(0) = 2 \right\}$
- 3. Pour $A \in \mathbb{R}[X]$ non-nul fixé, $E_3 = \{P \in \mathbb{R}[X] \mid A|P\}$
- 4. \mathcal{D} l'ensemble des fonctions dérivable de \mathbb{R} vers \mathbb{R} .

Exercice 3 (★ ★ ★):

Soit E un espace vectoriel et F et G deux sousespace vectoriels de E. Montrer que $F \cup G$ est un sous espace vectoriel si et seulement si $F \subset G$ ou $G \subset F$.

Exercice 4 (*):

Pour chaque cas vérifier si u est une combinaison linéaire des $(u_i)_i$?

- 1. $u = (1,2), u_1 = (1,-2)$ et $u_2 = (2,3)$
- **2.** $u = (1, 2), u_1 = (1, -2)$ et $u_2 = (2, 3), u_3 = (-4, 5)$

3. $u = (2,5,3), u_1 = (1,3,2) \text{ et } u_2 = (1,-1,4)$

Exercice 5 (★ ★):

- Emilie achète pour sa maman une baque contenant 2g d'or, 5g de cuivre et 4g d'agent. Il paie 6200.
- Paulin achète une bague contenant 3g d'or, 5g de cuivre et 1g d'argent. Il paie 5300.
- Frédéric achète une bague contenant 5g d'or, 12g de cuivre et 9g d'argent. Combien va-t-il payer?

Exercice 6 (*):

Les familles suivantes sont-elle libres?

- 1. u = (1, 2, 3) et v = (-1, 4, 6)
- **2.** u = (1, 2, -1) v = (1, 0, 1) et w = (0, 0, 1).
- 3. u = (1, 2, -1), v = (1, 0, 1) et w = (-1, 2, -3).
- 4. u = (1, 2, 3, 4), v = (5, 6, 7, 8), w = (9, 10, 11, 12)et z = (13, 14, 15, 16.

Exercice 7 (*):

On considère dans \mathbb{R}^3 les vecteurs $v_1 = (1,1,0)$ et $v_2 = (4,1,4)$ et $v_3 = (2,-1,4)$.

- 1. Montrer que la famille (v_1, v_2) est libre. Faire de même pour (v_1, v_3) , puis pour (v_2, v_3) .
- 2. La famille (v_1, v_2, v_3) est-elle libre?

Exercice 8 (♠):

Soit (P_1, \ldots, P_n) une famille de polynômes de $\mathbb{C}[X]$ non nuls à degrés **échelonnés**. C'est à dire

$$\deg(P_1) < \deg(P_2) < \ldots < \deg(P_n)$$

1. Montrer que (P_1, \ldots, P_n) est une famille libre.

Exercice 9 (★ ★):

On considère les vecteurs suivants:

$$v_1 = (1, -1, 1), v_2 = (2, -2, 2), v_3 = (2, -1, 2).$$

- 1. Peut-on trouver un vecteur w tel que (v_1, v_2, w) soit libre? Si oui, construisez-en un.
- 2. Même question en remplaçant v_2 par v_3 .

Exercice 10 (♠):

Donner un système d'équations résumant les espaces vectoriels engendrés par les vecteurs suivants:

- 1. u = (1, 2, 3)
- 2. $u_1 = (1, 2, 3)$ et $u_2 = (-1, 0, 1)$
- 3. $u_1 = (1, 2, 0), u_2 = (2, 1, 0)$ et $u_3 = (1, 0, 1).$

Exercice 11 (♠):

Trouver un système générateur des sous-espaces vectoriels suivants

- 1. $F = \{(x, y, z) \mid x + 2y z = 0\}$
- **2.** $G = \{(x, y, z) \mid x y + z = 0 \text{ et } 2x y z = 0\}$

Exercice 12 (♠):

Dans les exemples suivants, démontrer que les sousespaces F et G sont égaux.

1.
$$u_1 = (1, 1, 3)$$
, $u_2 = (1, -1, -1), v_1 = (1, 0, 1)$, $v_2 = (2, -1, 0)$.

$$F = \text{Vect}(u_1, u_2) \text{ et } G = \text{Vect}(v_1, v_2)$$

2.
$$u_1 = (2,3,-1)$$
, $u_2 = (1,-1,-2), v_1 = (3,7,0)$, $v_2 = (5,0,-7)$.

$$F = \text{Vect}(u_1, u_2) \text{ et } G = \text{Vect}(v_1, v_2)$$

3.
$$v_1 = (1, 1, -2), v_2 = (1, -4, 3).$$

$$F = \{(x, y, z) \mid x + y + z = 0\} \text{ et } G = \text{Vect}(u_1, v_1)$$

Exercice 13 (★ ★):

On considère dans \mathbb{R}^4 les cinc vecteurs suivants $v_1=(1,0,0,1), \ v_2=(0,0,1,0), \ v_3=(0,1,0,0), \ v_4=(0,0,0,1)$ et $v_5=(0,1,0,1).$

Pour chaque cas, vérifier si les sous espaces vectoriels sont **supplémentaires**?

- 1. $Vect(v_1, v_2)$ et $Vect(v_3)$?
- 2. $Vect(v_1, v_2)$ et $Vect(v_4, v_5)$?
- 3. $Vect(v_1, v_3, v_4)$ et $Vect(v_2, v_5)$?
- 4. $Vect(v_1, v_4)$ et $Vect(v_3, v_5)$?

Exercice 14 (★ ★ ★):

Soit $E = \mathbb{R}^4$. On considère (u_1, u_2, u_3, u_4) une famille libre et on pose:

 $F = \text{Vect}(u_1 + u_2, u_3), \ G = \text{Vect}(u_1 + u_3, u_4), \ H = \text{Vect}(u_1 + u_4, u_2)$

- 1. Démonter que $F \cap G = F \cap H = G \cap H = \{0\}$
- 2. La somme F + G + H est-elle directe?

Exercice 15 (*):

Pour chaque cas, vérifier s'il s'agit d'une application linéaire?

- 1. $f: \mathbb{R}^2 \to \mathbb{R}^3, (x, y) \to (x + y, x 2y, 0)$
- **2.** $f: \mathbb{R}^2 \to \mathbb{R}^3, (x, y) \to (x + y, x 2y, 1)$
- 3. $f: \mathbb{R}^2 \to \mathbb{R}, (x, y) \to x^2 y^2$
- **4.** $f: \mathbb{R}[x] \to \mathbb{R}^2, P \to (P(0), P'(1))$

Exercice 16 (*):

Soit $f: \mathbb{R}^2 \to \mathbb{R}^3$ l'application définie par:

$$f(x,y) = (x + y, x - y, x + y)$$

- 1. Détéreminer le noyau de f.
- 2. Calculer son image.
- 3. f est-elle injective? surjective?

Exercice 17 (★ ★):

Soit E un espec vectoriel et p, q deux projecteurs de E tel que $p \neq 0$, $q \neq 0$ et $p \neq q$.

1. Démonter que (p,q) est une famille libre dans l'espace $\mathcal{L}(E)$ des fonctions linéaires entre E et E.

Indice: Si q est une projection, quelle sera q^2 .