```
B_1 = \{000, 111\};
B_2 = \{000, 001, 110, 111\};
B_3 = \{000, 010, 101, 111\};
B_4 = \{000, 011, 100, 111\};
B_5 = \{0, 1\}^3.
```

19.40

证明: 令 $X = \{0, x, \bar{x}, 1\}$ 。对任意 $a, b \in X$,分三种情况讨论:

情况一: 若 a = 0 (或 b = 0),则有 $a \land b = 0 \in X$ 和 $a \lor b = b \in X$ (或 $a \lor b = a \in X$)。

情况二: 若 a=1 (或 b=1),则有 $a \wedge b = b \in X$ (或 $a \wedge b = a \in X$) 和 $a \vee b = 1 \in X$ 。

情况三: 若上述两者都不成立,则必有 $a,b \in \{x,\bar{x}\}$,此时,若 a=b,则 $a \wedge b=a \vee b=a=b \in X$ 。若 $a \neq b$,则必有 $a=\bar{b}$,从而有 $a \wedge b=0 \in X$ 和 $a \vee b=1 \in X$ 。

这就是说,对任意 $a,b \in X$,都有 $a \land b \in X$ 和 $a \lor b \in X$ 。

又因为0和1互补,x和 \bar{x} 互补,所以X对补运算封闭。

由于 $0,1 \in X$,所以X对零元运算0和1也封闭。

这就是说,X 对 B 的所有运算都封闭,从而 X 是 B 的子布尔代数。