APPENDIX A

PROOF OF THEOREM 2

Proof: We first give the recursive equation for $p(\mathbf{S^r},q^r)$:

$$p(\mathbf{S^r}, q^r)$$

$$=p(\mathbf{S^r}|q^r)p(q^r)$$

$$=p(\mathcal{S}^r|q^r)p(\mathbf{S^{r-1}}|q^r)p(q^r)$$

$$=p(\mathcal{S}^r|q^r)p(\mathbf{S^{r-1}}, q^r)$$

$$=p(\mathcal{S}^r|q^r)\int p(\mathbf{S^{r-1}}, q^{r-1}, q^r)\mathrm{d}q^{r-1}$$

$$=p(\mathcal{S}^r|q^r)\int p(\mathbf{S^{r-1}}, q^r|q^{r-1})p(q^{r-1})\mathrm{d}q^{r-1}$$

$$=p(\mathcal{S}^r|q^r)\int p(\mathbf{S^{r-1}}|q^{r-1})p(q^r|q^{r-1})\mathrm{d}q^{r-1}$$

$$=p(\mathcal{S}^r|q^r)\int p(\mathbf{S^{r-1}}|q^{r-1})p(q^r|q^{r-1})\mathrm{d}q^{r-1}$$

$$=p(\mathcal{S}^r|q^r)\int p(\mathbf{S^{r-1}}, q^{r-1})p(q^r|q^{r-1})\mathrm{d}q^{r-1}.$$
(25)

On the other hand, we have

$$p(\mathbf{S}^{\mathbf{r}}, q^r) = p(q^r | \mathbf{S}^{\mathbf{r}}) p(\mathbf{S}^{\mathbf{r}}) = \widehat{\alpha}(q^r) \prod_{t=1}^r p(\mathcal{S}^t | \mathbf{S}^{t-1}).$$
 (26)

Substituting terms $p(\mathbf{S^r}, q^r)$ and $p(\mathbf{S^{r-1}}, q^{r-1})$ in Eq. (25) using Eq. (26), we have

$$\widehat{\alpha}(q^r) \prod_{t=1}^r p(\mathcal{S}^t | \mathbf{S}^{t-1})$$

$$= p(\mathcal{S}^r | q^r) \int \widehat{\alpha}(q^{r-1}) \prod_{t=1}^{r-1} p(\mathcal{S}^t | \mathbf{S}^{t-1}) p(q^r | q^{r-1}) dq^{r-1}.$$
(27)

After eliminating identical terms from both sides of Eq. (27) we can prove Theorem 2.

APPENDIX B PROOF OF THEOREM 3

Before proving Theorem 3, we first give a lemma of marginal distribution for Gaussian variables:

Lemma 5. Given a Gaussian distribution for x and a conditional Gaussian distribution for y given x in the form: $p(x) = \mathcal{N}(x; \mu, \Lambda), p(y|x) = \mathcal{N}(y; Ax + b, L)$, the marginal distribution of y is given by $p(y) = \mathcal{N}(y; A\mu + b, A\Lambda A^{\mathrm{T}} + L)$.

The proof of Lemma 5 can be found in [19]. We then give the proof of Theorem 3 as follows:

Proof: Substituting the terms in Eq. (16) using Eq. (12), (13), and (14), we have

$$p(\mathcal{S}^r|\mathbf{S^{r-1}})\mathcal{N}(q^r; \widehat{\mu}^r, \widehat{\sigma}^r) = \prod_{j} \mathcal{N}(s_j^r; q^r, \eta)$$

$$\int \mathcal{N}(q^{r-1}; \widehat{\mu}^{r-1}, \widehat{\sigma}^{r-1}) \mathcal{N}(q^r; aq^{r-1}, \gamma) dq^{r-1}.$$
(28)

Applying Lemma 5 to the integral item in Eq. (28) we have

$$p(\mathcal{S}^r|\mathbf{S^{r-1}})\mathcal{N}(q^r;\widehat{\mu}^r,\widehat{\sigma}^r)$$

$$= \prod_j \mathcal{N}(s_j^r;q^r,\eta)\mathcal{N}(q^r;a\widehat{\mu}^{r-1},a^2\widehat{\sigma}^{r-1}+\gamma).$$
(29)

Taking logarithm of both sides of Eq. (29):

$$-\frac{(q^r - \widehat{\mu}^r)^2}{2\widehat{\sigma}^r} = -\sum_j \frac{(s_j^r - q^r)^2}{2\eta} - \frac{(q^r - a\widehat{\mu}^{r-1})^2}{2(a^2\widehat{\sigma}^{r-1} + \gamma)} + C,$$

where C contains terms independent of q^r . Compare the first-order and second-order coefficients of q^r on both sides of Eq. (30) we have

$$\eta(a^2\widehat{\sigma}^{r-1} + \gamma) = \widehat{\sigma}^r |\mathcal{S}^r| (a^2\widehat{\sigma}^{r-1} + \gamma) + \widehat{\sigma}^r \eta, \quad (31)$$

$$\eta(a^2\widehat{\sigma}^{r-1} + \gamma)\widehat{\mu}^r = \widehat{\sigma}^r(a^2\widehat{\sigma}^{r-1} + \gamma)\sum_j s_j^r + \widehat{\sigma}^r \eta a \widehat{\mu}^{r-1}.$$
 (32)

Solving the above two equations we derive formula (17) and (18).

Applying Lemma 5 to Eq. (3) we can easily prove formula (19). \Box

APPENDIX C DESCRIPTION OF OPT-UB

OPT-UB is given as the largest i such that $\sum_{j \leq i} Q_j \leq Q_a$ (all Q_j are sorted in ascending order), where Q_a is the total available quality of workers with respect to budget constraint bounded by following three ways:

- If $\sum_{i\in\mathcal{W}} n_i c_i \leq B$, then all bids are possibly acceptable and $Q_a = \sum_{i\in\mathcal{W}} n_i \mu_i$ is the corresponding estimated quality of all workers contributed to all bidding tasks.
- If $\sum_{i\in\mathcal{W}} n_i c_i > B$, then we can modify the above Q_a by subtracting a correction item $(\sum_{i\in\mathcal{W}} n_i c_i B) \cdot \min_{i\in\mathcal{W}} \frac{\mu_i}{c_i}$, which is the least loss of total available quality due to the budget constraint.
- $\hat{Q}_a = B \cdot \max_{i \in \mathcal{W}} \frac{\mu_i}{c_i}$ is an estimated total available quality considering the budget constraint directly.

Overall, OPT-UB is the largest i such that $\sum_{j \leq i} Q_j \leq \min \left\{ \sum_{i \in \mathcal{W}} n_i \mu_i - \left[\sum_{i \in \mathcal{W}} n_i c_i - B \right]^+ \cdot \min_{i \in \mathcal{W}} \frac{\mu_i}{c_i}, B \cdot \max_{i \in \mathcal{W}} \frac{\mu_i}{c_i} \right\}$, where $[x]^+$ returns the larger value between x and 0.

APPENDIX D PROOF OF TRUTHFULNESS OF RANDOM

Note that although RANDOM is a randomized mechanism, worker i cannot increase the probability of being selected into the set of k+1 workers by bidding untruthfully. Therefore, we prove that RANDOM is strongly truthful for workers under any circumstance.

Proof.

1) Cost-truthfulness: We prove that $u_{i,j}(\bar{c}_i) \geq u_{i,j}(c_i)$ holds for the following two cases.

Case 1: Worker i is not selected into the set of k+1 workers for task j. In this case, $u_{i,j}(\bar{c}_i) = u_{i,j}(c_i) = 0$.

Case 2: Worker i is selected into the set of k+1 workers. The proof in this case is the same as in Theorem 4.

In summary, we have $u_{i,j}(\bar{c}_i) \geq u_{i,j}(c_i)$ for all task t_j . Therefore, $u_i(\bar{c}_i) \geq u_i(c_i)$.

2) Frequency-truthfulness: The proof is the same as in Theorem 4. \Box