LES DESCRIPTEURS AUDIO POUR LA PAROLE

MASTER ATAL

MARIE TAHON
MCF, DPT. INFORMATIQUE

8 SEPTEMBRE 2018

PLAN DE LA SECTION ACTUELLE

- Introduction
- 2 LE NIVEAU SPECTRAL
- 3 Le niveau prosodique
- 4 LE NIVEAU PHONÉTIQUE

INTRODUCTION

Le traitement automatique de la parole consiste à réaliser des opérations sur un signal sonore de parole afin d'en extraire des informations de haut-niveau:

- ullet qui parle ?
 ightarrow identification du locuteur
- ullet qu'est-ce qui a été dit ? o reconnaissance des mots
- dans quelle langue ?
- dans quel état psychologique \rightarrow affective computing, détection des émotions.

INTRODUCTION

Complexité de l'oral par rapport à l'écrit:

- ullet un signal continu, coarticulé o il faut le segmenter
- ullet existence de distorsions temporelles o ex: débit de parole variable
- présence de variabilités inter-locuteur (expression), intra-locuteur (timbre), conditions acoustiques.
- aspects non-verbaux → timbre, qualité vocale, prosodie, disfluences, ...

SEGMENTATION

Le choix de la taille de fenêtre détermine le type d'information que l'on peu extraire du signal.

- ullet fenêtre glissante de taille fixe o niveau spectral
- ullet segmentation sur les groupes de souffle (pause > 300 ms) ightarrow niveau prosodique
- ullet segmentation en phonèmes o niveau formantique

La segmentation en phonèmes/mots reste une tâche difficile.

PLAN DE LA SECTION ACTUELLE

- 1 Introduction
- 2 LE NIVEAU SPECTRAL
 - Représentation acoustique d'un flux audio
 - Le cepstre
 - Les coefficients cepstraux
- 3 Le niveau prosodique
- 4 LE NIVEAU PHONÉTIQUE

SEGMENTATION D'UN FLUX AUDIO

Le signal de parole est un flux de paramètres. On ne sait pas a priori où segmenter \to segmentation de taille fixe.

- fenêtre temporelle (Hamming, Hanning, rectangulaire, ...)
- taille de la fenêtre $K \simeq 30 \text{ ms}$
- ullet pas $Q\simeq 10~{
 m ms}$
- overlap $\frac{K-Q}{K} imes 100 \simeq 33\%$

LE VECTEUR ACOUSTIQUE

À chaque pas (Q) on associe un vecteur de k paramètres acoustiques extraits de la fenêtre (cf spectrogramme) statique et dynamique (les Δ et $\Delta\Delta$)

temps	Q	2Q	3Q		nQ	
p_1	a_{11}	a ₁₂	a ₁₃		a _{1n}	
p_2	a ₂₁	a 22	a ₂₃		a_{2n}	
p_k	a_{q1}	a_{q2}	a_{q3}		a_{qn}	
Δa_1	0	$a_{12}-a_{11}$	$a_{13}-a_{12}$		$a_{1n} - a_{1(n-1)}$	
S(0) No Market M						

LE VECTEUR ACOUSTIQUE

Les paramètres du vecteur acoustique peuvent être:

- des descripteurs de spectre:
 - le spectre à court terme (calcul de FFT), généralement 512 points (\simeq 30 ms à $F_e=16$ kHz).
 - les ondelettes (utilisées pour caractériser les signaux de parole)
 - les coefficients LPC (linear prediction coefficients) utilisés pour l'extraction des formants \simeq 40 points
 - l'énergie par bande spectrale (Mel, Bark, Harmonique) entre 10 et 40 points.
 - les coefficients PLP (perceptual linear prediction) coefficients LPC obtenus sur une échelle perceptive de Bark.
- des descripteurs de cepstre:
 - les coeffcients cepstraux (MFCC) généralement 13 points
 - les coefficients LPCC (linear prediction cepstral coefficients) sont des LPC obtenus sur le cepstre

La représentation cepstrale a été conçue pour représenter les modèles source/filtre comme celui de la parole.

- DFT du signal source: G(f)
- DFT du filtre: H(f)
- On définit le cepstre réel du signal fréquentiel $X(f) = F(f) \times H(f)$, avec τ la quéfrence (homogène à un temps).

$$c(\tau) = FFT^{-1} \log |X(f)| = FFT^{-1} \log |G(f)| + FFT^{-1} \log |H(f)|$$

$$c_n = \frac{1}{N} \sum_{k=0}^{N-1} \log |X_k| e^{2j\pi kn/N}$$

$$= \frac{1}{N} \sum_{k=0}^{N-1} \log |\sum_{m=0}^{N-1} x_m e^{-2j\pi km/N}| e^{2j\pi kn/N}$$

La représentation cepstrale a été conçue pour représenter les modèles source/filtre comme celui de la parole.

- DFT du signal source: G(f)
- DFT du filtre: H(f)
- On définit le cepstre réel du signal fréquentiel $X(f) = F(f) \times H(f)$, avec τ la quéfrence (homogène à un temps).

$$c(\tau) = FFT^{-1} \log |X(f)| = FFT^{-1} \log |G(f)| + FFT^{-1} \log |H(f)|$$

$$c_n = \frac{1}{N} \sum_{k=0}^{N-1} \log |X_k| e^{2j\pi kn/N}$$

$$= \frac{1}{N} \sum_{k=0}^{N-1} \log |\sum_{m=0}^{N-1} x_m e^{-2j\pi km/N}| e^{2j\pi kn/N}$$

Qu'est-ce que N?

NB: $F_e = ?$, $\Delta t = ?$, pic à 120 ech.?

Taylor

NB:
$$F_e=2F_{max}=16$$
 kHz, 256 ech. $\rightarrow \Delta t=512/F_e=32$ ms, $F_0=\frac{F_e}{2\cdot 120} \simeq 67$ Hz $\sim 10^{-2}$ Traitement de la parole

Taylor 45

Pas de phase

 $\log \rightarrow$ importance de la périodicité.

 τ petit: conduit vocal, τ grand: source. Master ATAL, Traitement de la parole

LES MFCCs

Echelle Mel:

- Approximation de la sensation psychologique de hauteur d'un son (sonie)
- Formules analytiques [Fant]

$$Mel(f) = \begin{cases} 1000 \log_2 \left(1 + \frac{f}{1000}\right) & f \ge 1000 \\ f & f < 1000 \end{cases}$$

Champ de l'audition humaine (sonie).

LES FILTRES DE MELS

- On définit R filtres triangulaires fréquentiels entre f_{min} et f_{max} . $f_{min} = 300$ et $f_{max} = 4000$ Hz et R = 10
- On détermine R fréquences centrales d'intervalle égaux sur une échelle de Mel:

```
Mel(f_{min}) = 401.25 et Mel(f_{max}) = 2834.99.

mel = [401.25, 622.50, 843.75, 1065.00, 1286.25, 1507.50, 1728.74, 1949.99, 2171.24, 2392.49, 2613.74, 2834.99]

freq = [300, 517.33, 781.90, 1103.97, 1496.04, 1973.32, 2554.33, 3261.62, 4122.63, 5170.76, 6446.70, 8000]
```


LES FILTRES DE MELS

Implémentation classique

- R = 22 filtres fréquentiels
- $f_{min} = 20$
- $f_{max} = F_e/2 = 8000 \text{ Hz}.$
- normalisation de l'aire des triangles à 1

[Rabiner&Schaffer]

Attention: les fréquences centrales des filtres dépendent de F_e et de R!

LES MFCCs

Mel-Frequency Cepstral Coefficients: la paramétrisation la plus répandue.

Avec R filtres de Mel

$$\begin{split} S[k] &= |FFT(s[n])| \\ \hat{S}_r &\simeq \sum_{k=0}^K Mel_r[k] \times S[k] \\ MFCC_n &= \frac{1}{R} \sum_{r=1}^R \log(\hat{S}_r) \cdot \cos\left(\frac{2\pi}{R} \left(r + \frac{1}{2}\right) n\right) \end{split}$$

Typiquement pour la parole:

- $F_e = 8$ kHz, DFT sur 512 échantillons, $\Delta t = 30$ ms, fenêtre de Hamming.
- R = 22 filtres Mel
- $m \in [1, 13] \ (\pm MFCC_0)$
- ullet dérivées premières (Δ) et secondes $(\Delta\Delta)$
- vecteur acoustique: 39 paramètres

DCT vs DFT

DCT: Discrete Cosine Transform

$$X_{DCT}[n] = \sum_{n=0}^{N-1} x[n] \cdot \cos\left(\frac{\pi}{N} \left(n + \frac{1}{2}\right) k\right)$$

DFT: Discrete Fourrier Transform

$$X_{DFT}[n] = \sum_{n=0}^{N-1} x[n] \cdot \left(\cos \left(\frac{2\pi}{N} kn \right) + j \sin \left(\frac{2\pi}{N} kn \right) \right)$$

C'est comme si on avait $X_{DCT}[n] \simeq \Re e(X_{DFT}[n])$

ENVELOPPE SPECTRALE

Les coefficients MFCCs permettent de reconstruire l'enveloppe spectrale:

[Rabiner&Schaffer]

APPLICATIONS

Avantages:

- permet de reconstruire l'enveloppe spectrale
- proche de la perception humaine (échelle log en amplitude et en fréquence).
- dissocie la source (excitation glottique: coefficients élevés) du filtre (conduit vocal: coefficient faibles)
- les coefficients sont décorrélés, cela fait un stockage minimum d'information (moyenne et écart-type) (comme une PCA)
- robuste au bruit de fond

Applications:

- reconnaissance automatique de la parole
- identification du locuteur
- affective computing

PLAN DE LA SECTION ACTUELLE

- Introduction
- 2 LE NIVEAU SPECTRAL
- 3 LE NIVEAU PROSODIQUE
 - La fréquence fondamentale
 - L'énergie
 - Le rythme
 - Le timbre ou qualité vocale
 - Accentuation et proéminences
- 4 Le niveau phonétique

LA PROSODIE

- intonation ou fréquence fondamentale (F_0)
- énergie ou intensité
- rythme
- (timbre et qualité vocale)
- accentuation, proéminences

Segmentation prosodique

- ullet groupe de souffle, délimiteurs = respirations, pauses > 300 ms
- ullet attention segment prosodique eq phrases

Alors je pleurais ce que je voyais si bien, et qui la veille, n'était pour moi que néant.

LA FRÉQUENCE FONDAMENTALE

- correspond à la vibration des cordes vocales
- elle n'est pas définie pour des sons non-voisés (ce ne sont pas des signaux périodiques).
- extraite automatiquement à partir d'un signal:
 - méthode d'auto-corrélation (Praat, YIN),
 - fonction de différences moyennées (ASDF),
 - estimation de maxima de vraisemblance (Doval&Rodet),
 - algorithme de Viterbi,
 - estimation du cepstre.
- En parole la F_0 est estimée par pas de 10 ms.

LA FRÉQUENCE FONDAMENTALE

ATTENTION: tous les algorithmes d'extraction de F_0 sont susceptibles de faire des erreurs.

- erreur de voisement: vérifier le taux de voisement qui donne la confiance dans la détection de périodicité dans le signal (1: voisé, 0: non-voisé)
- ex: $F_0 > 500$ Hz très peu fréquent (surtout chez les adultes) sauf voix très expressive \rightarrow erreur de voisement: détection d'une périodicité dans le bruit fricatif.

LA FRÉQUENCE FONDAMENTALE

ATTENTION: tous les algorithmes d'extraction de F_0 sont susceptibles de faire des erreurs.

- saut d'octave: l'algorithme rate une période $(F_0/2)$ ou bien accroche l'harmonique supérieure $(F_0 \times 2)$
- Saut d'octave entre 150 Hz et 75 Hz \rightarrow adapter la résolution: $F_0 \in [60; 200]$ Hz.

L'INTONATION

La stylisation de la courbe de F_0 permet de modéliser le contour intonatif.

MoMel: courbe continue interpôlée MoMel [Hirst&Espresser]

Prosogramme: alignement signal/phonèmes fondé sur un modèle de perception tonale [d'Alessandro&Mertens]

INTSINT: codage du contour avec des points cibles [Hirst]

ASPECTS PERCEPTIFS

 Pour être plus proche de l'échelle de fréquence perçue (échelle musicale), on peut utiliser les semi-tons (avec une référence à 110 Hz (LA2):

$$F_{st} = 12\log_2\left(\frac{F_{Hz}}{110}\right)$$

 Ainsi on étudiera plutôt les rapports de fréquences (en Hz) plutôt que leur différences

ENERGIE

• Energie du signal:

$$E = \int_{t_0}^{t_1} |x(t)|^2 dt$$

- Intensité: $I = 20 \log_{10}(E)$
- En parole l'intensité est donnée en dB par pas de 10 ms
- L'intensité peut être modulée par un filtre perceptif (on entend moins fort les très hautes fréquences et les basses fréquences) c'est ce qu'on appelle loudness.

RYTHME

Pas de consensus simple sur des mesures simples de rythme dans la parole:

structure chaotique

Durée des parties voisées

• débit de voisement:

Durée totale Nombre de syllabes

• débit syllabique:

Durée totale Nombre de syllabes

débit articulatoire:

Durée totale sans les pauses

• \rightarrow dépend fortement d'un alignement signal/phonème.

RYTHME

Autres mesures directement extraites du signal

- ondelettes
- beat detection: recherche de pulsations basses fréquences (valable en musique mais en parole ?)
- → dépend fortement de la qualité du signal d'origine.

RYTHME

Autres mesures étudiées pour l'identification d'une langue

- %V: proportion d'intervalles vocaliques
- ΔV: écart-type des intervalles vocaliques
- ΔC: écart-type des intervalles de consonnes

Figure 3. The measure %V is plotted on the y-axis, in reverse order. The standard deviation of intervocalic intervals Δ , is given on the x-axis.

TIMBRE

Le timbre se définit comme la répartition spectrale de l'énergie d'un son.

- on peut différencier les instruments de musique par leur timbre (et aussi leur attaque)
- l'humain a la faculté de changer son timbre de voix en modifiant la forme de son conduit vocal (acteur, expressivité)
- les humains se distinguent par leur timbre de voix

TIMBRE

Le timbre se définit comme la répartition spectrale de l'énergie d'un son.

- on peut différencier les instruments de musique par leur timbre (et aussi leur attaque)
- l'humain a la faculté de changer son timbre de voix en modifiant la forme de son conduit vocal (acteur, expressivité)
- les humains se distinguent par leur timbre de voix

DESCRIPTEURS DE TIMBRE

Pour l'identification du locuteur, on utilise principalement les MFCCs

- 13 premiers coefficients (modélisation du conduit vocal)
- ajout du MFCC₀ pour avoir une information sur l'énergie
- ullet éventuellement ajout de la F_0

Quel sens donner à un timbre donné ?

Timbre	sombre / clair
	détimbré / timbré
	sourd / brillant
	dureté
	nasillard
	présence de souffle sur la voix
Oscillations F ₀	vibrato
	tremolo / tremor
	jitter
Mode de production	voix grinçante
	voix criée
	voix chuchotée

[Garnier & Abrilian]

DESCRIPTEURS DE TIMBRE

D'autres descripteurs de qualité vocale sont utilisés pour décrire la qualité vocale (très sensible au bruit de fond):

ullet jitter et shimmer: micro-variations de la F_0 ou énergie

$$J_N = \frac{N}{N-1} \frac{\sum_{0}^{N-1} T_0(k+1) - T_0(k)}{\sum_{0}^{N} T_0(k)}$$

- ullet rapport harmonique sur bruit (HNR) o mesure de voisement
- \bullet coefficient de relaxation \to mesure de relâchement des cordes vocales
- rugosité (modulation de la F_0)
- ullet aire du triangle vocalique o mesure d'articulation

ACCENTUATION / PROÉMINENCES

Accentuation:

- accentuation de certaines syllabes
- le système d'accent est spécifique à une langue
 - Français: accent pas nécessaire à la compréhension mais à l'expression
 - Anglais: accent nécessaire à la compréhension

Proéminence

 manifestation acoustique d'un accent autour d'un noyau syllabique.

- pic F₀
- forte intensité
- élongation (durée de la syllabe allongée)

VECTEUR PROSODIQUE

- Ex: pour la détection automatique des émotions dans la parole.
- Segment acoustique: segment de parole émotionnel correspondant à un groupe de souffle.
- 1 segment = 1 vecteur acoustique de 384 paramètres

LLD (16 × 2)	Functionals (12)
(Δ) ZCR	mean
(Δ) RMS Energy	standard deviation
$(\Delta) F_0$	kurtosis, skewness
(Δ) HNR	extremes: value, relative position, range
(Δ) MFCC1-12	linear regression: offset, slope, MSE
[Schuller]	

APPLICATIONS

Avantages:

- permet de capturer des informations perceptives de haut-niveau.
- proche de la perception humaine.
- multiplicité des descripteurs

Inconvénients:

- très sensible au bruit de fond.
- les paramètres sont très corrélés entre eux.
- lesquels choisir ?

Applications

- détection des émotions,
- traitement du signal social,
- synthèse de la parole,
- ...

LES BOITES A OUTILS

Il existe plusieurs boîtes à outils qui extraient des descripteurs à partir du signal audio (parole et musique) moyennant le choix de quelques paramètres

- HTK: MFCCs principalement
- AUBIO, OpenSmile (C++), Yaafe: descripteurs spectraux et prosodiques
- librosa: librairie Python qui fait plein de choses
- SPRO4, YIN: extraction de la F0
- IrcamDescriptor
- etc...

Pour la visualisation des signaux:

- Praat
- Sonicvizualizer

PLAN DE LA SECTION ACTUELLE

- Introduction
- 2 LE NIVEAU SPECTRAL
- 3 Le niveau prosodique
- 4 LE NIVEAU PHONÉTIQUE
 - La parole
 - Les phonèmes du français
 - IPA

LA PAROLE

Le language est:

- une faculté spécifiquement humaine et universelle
- un système de représentation régi par une grammaire

La langue est:

- une réalisation particulière de language
- constituée de règles et normées partagées par les membres d'une communauté.

La parole correspond à l'usage de la langue orale (par opposition à écrite).

LA PAROLE

Niveaux d'analyse:

Acoustic-phonétique	présence des sons d'une langue
phontactique	fréquence et enchaînement des sons
prosodique	intonation, rythme, accentuation
lexical	mots possible d'une langue
syntaxique	enchaînement possible des mots dans
	une langue
sémantique	sens de l'enchaînement des mots
pragmatique	informations relatives au contexte

PHONEMES

Résonateurs et formants:

- les formants sont les fréquences de résonances de la cavité bucale,
- leur valeur dépend du volume de la cavité et de ses ouvertures,
- les 3 premiers formants permettent de caractériser une voyelle
 - ex: $/i/F_1 = 300$, $F_2 = 2200$, $F_3 = 3000$ Hz.

Paramètres en phonétique articulatoire:

- point d'articulation: position de la langue par rapport au palais
- Aperture: section du conduit vocal au point d'articulation
- Labialisation: forme des lèvres
- Nasalité: passage de l'air par le conduit nasal
- Latéralité: passage de l'air de part et d'autre de la langue

PHONEMES DU FRANÇAIS

- 36 phonèmes en français: 16 voyelles, 3 semi-consonnes (/j w ${
 m u}/)$ + 17 consonnes
- Référence International Phonetic Alphabet

Voyelles orales

Voyelles nasales

```
/\tilde{\alpha}/ an /\tilde{e}/ brun /\tilde{\epsilon}/ matin /\tilde{\jmath}/ bon
```

PHONEMES DU FRANÇAIS

```
Occlusives labiale alvéolaire palatales nasales /m/: mon /n/: nous /\mathfrak{y}/: agneau /\mathfrak{y}/:smoking
```

```
Fricatives dentales alvéolaires post-alvéolaires sourdes /f/: feu /s/: soir /J/: poche voisées /v/: voix /z/: zéro /3/: jeu
```

```
Liquides | /l/: long /ʁ/: rond
```

```
Semi-voyelles | /w/: oui /j/: fille / y/: lui
```

INTERNATIONAL PHONETIC ALPHABET

THE INTERNATIONAL PHONETIC ALPHABET (revised to 2015)

CONSONANTS (PULMONIC)

© 2015 IPA

	Bila	bial	Labio	dental	Den	ıtal	Alveola	ır	Postalveolar	Retr	oflex	Pal	atal	Ve	lar	Uv	ular	Phary	ngeal	Glo	ttal
Plosive	p	b					t c	l		t	d	С	J	k	g	q	G			3	
Nasal		m		ŋ			n	l			η		ŋ		ŋ		N				
Trill		В					r										R				
Tap or Flap				V			ſ				τ										
Fricative	ф	β	f	v	θ	ð	S Z	;	∫ 3	ş	Z _L	ç	j	Х	γ	χ	R	ħ	ſ	h	ĥ
Lateral fricative							1 13	;													
Approximant				υ			J				ŀ		j		щ						
Lateral approximant							1	Ī			l		λ		L						

Symbols to the right in a cell are voiced, to the left are voiceless. Shaded areas denote articulations judged impossible.

CONSONANTS (NON-PULMONIC)

Clicks	Voiced implosives	Ejectives
O Bilabial	6 Bilabial	• Examples:
Dental	d Dental/alveolar	p' Bilabial
(Post)alveolar	f Palatal	t' Dental/alveolar
+ Palatoalveolar	g Velar	k' Velar
Alveolar lateral	G Uvular	S' Alveolar fricative

OTHER SYMBOLS

VOWELS

to the right represents a rounded vowel.

INTERNATIONAL PHONETIC ALPHABET

OTHER SYMBOLS		Open	$a \searrow c - \backslash a \searrow b$
M Voiceless labial-velar fricative	Ç Z Alveolo-palatal fricatives		Where symbols appear in pairs, the one to the right represents a rounded vowel.
W Voiced labial-velar approximant	Voiced alveolar lateral flap		to the right represents a rounded vower.
U Voiced labial-palatal approximant	f ∫ Simultaneous ∫ and X		SUPRASEGMENTALS
H Voiceless epiglottal fricative	Affricates and double articulations		Primary stress found ti[an
Voiced epiglottal fricative	can be represented by two symbols	ts kp	Secondary stress
P Epiglottal plosive	joined by a tie bar if necessary.	U 1	I Long eI
		۵.	' Half-long e'
	y be placed above a symbol with a		Extra-short Č
voiceless n d		Dental t d	Minor (foot) group
voiced § t ~	. 2 2 1	Apical t d	Major (intonation) group
h Aspirated th dh _	Linguolabial ţ d	Laminal t d	. Syllable breakii.ækt
More rounded Q W	Labialized t ^w d ^w	Nasalized \tilde{e}	Linking (absence of a break)
Less rounded 2 j	Palatalized t ^j d ^j n	Nasal release dn	TOUTS AND WORD A COTTUTE
Advanced U Y	Velarized t ^V d ^V 1	Lateral release d1	TONES AND WORD ACCENTS LEVEL CONTOUR
_ Retracted e	Pharyngealized t G G	No audible release d	ế or 7 Extra ě or ∕ Rising
" Centralized Ë ~	Velarized or pharyngealized		é ∃ High ê V Falling
× Mid-centralized Č	Raised e (I = voice	d alveolar fricative)	ē ⊢ Mid ĕ 1 High rising
Syllabic n	Lowered $e (\beta = voice)$	d bilabial approximant)	E - Low E / rising
Non-syllabic e	Advanced Tongue Root e		Downstep → Global rise
Rhoticity 3 a	Retracted Tongue Root e		↑ Upstep \ Global fall

pefaces: Doulos SIL (metatext); Doulos SIL, IPA Kiel, IPA LS Uni (symbols)

COARTICULATION ET ASSIMILATION

La coarticulation:

- \bullet effet d'inertie articulatoire \to minimisation de l'effort articulatoire.
- modification de la réalisation acoustique en fonction du contexte phonétique

L'assimilation:

- élision du /ə/ (schwa) en élocution rapide
 - ex: petite fille $/p \ t \ i \ t \ \int i \ j \ \partial /$ au lieu de $/p \ \partial \ t \ i \ t \ \partial \int i \ j \ \partial /$
- dévoisement des fricatives sonores si la consonnes suivante est sourde
 - ex: médecin $/m\ e\ t\ s\ \tilde\epsilon/$ au lieu de $/m\ e\ d\ a\ s\ \tilde\epsilon/$
- voisement des plosives et fricatives sourdes si la consonnes suivante est voisée
 - ex: pâquebot /p a g b o/ au lieu de /p a k a b o/

APPLICATIONS

Avantages:

- un système international
- modélisation symbolique
- existence de beaucoup d'étude en linguistique pour faire le lien entre phonétique, linguistique, syntaxe et sémantique.

Inconvénients:

- difficulté pour faire le lien entre le symbole et sa réalisation acoustique (le phone)
- outils d'alignement (signal / chaîne phonétique) sensible au bruit et au locuteur

Applications:

- construction de modèles de language
- synthèse de parole