Matematik og modeller, 2018

Miniprojekt 4: Lineære systemer af differentialligninger

Aflevering Miniprojektet afleveres torsdag den 7.6.2018 kl. 8.00 ved forelæsningen.

Relevante udtryk i R samt resultater og grafer medtages i passende omfang.

Opgave 1

Vi betragter anæstesimodellen

$$\begin{pmatrix} K_B' \\ K_V' \end{pmatrix} = \begin{pmatrix} -(a_1 + a_3) & a_2 \\ a_1 & -a_2 \end{pmatrix} \begin{pmatrix} K_B \\ K_V \end{pmatrix}, \tag{1}$$

hvor $K_B = K_B(t)$ hhv. $K_V = K_V(t)$ betegner koncentrationen af stoffet (målt i mg/l) i blodet hhv. vævet til tiden t målt i timer, og hvor a_1, a_2 og a_3 er positive parametre. (Se overheads fra forelæsningen for yderligere detaljer.) Lad

$$\mathbf{M} = \begin{pmatrix} -(a_1 + a_3) & a_2 \\ a_1 & -a_2 \end{pmatrix}.$$

- (a) Bestem det karakteristiske polynomium $\det(\mathbf{M} \lambda \mathbf{E})$, og vis at der er to forskellige, reelle egenværdier λ_1 og λ_2 for \mathbf{M} .
 - [Vink: Bestem diskriminanten for andengradsligningen $det(\mathbf{M} \lambda \mathbf{E}) = 0$]
- (b) Vis at

$$\lambda_1 + \lambda_2 = -(a_1 + a_2 + a_3)$$
 og $\lambda_1 \lambda_2 = a_2 a_3$. (2)

[Vink: Forsøg ikke at løse ligningen $\det(\mathbf{M} - \lambda \mathbf{E}) = 0$ for at finde λ_1 og λ_2 . Benyt i stedet for at der om andengradspolynomiet $\det(\mathbf{M} - \lambda \mathbf{E})$ må gælde $\det(\mathbf{M} - \lambda \mathbf{E}) = (\lambda - \lambda_1)(\lambda - \lambda_2)$ for alle værdier af λ .]

- Benyt (2) til at slutte, at $\lambda_1 < 0$ og $\lambda_2 < 0$.
- (c) Vis at

$$\mathbf{q}_1 = \begin{pmatrix} a_2 + \lambda_1 \\ a_1 \end{pmatrix}$$

er en egenvektor for **M** hørende til egenværdien λ_1 .

- [Vink: Udregn \mathbf{Mq}_1 og benyt (2)]
- (d) Det oplyses, at

$$\mathbf{q}_2 = \begin{pmatrix} a_2 + \lambda_2 \\ a_1 \end{pmatrix}$$

er en egenvektor for **M** hørende til egenværdien λ_2 . Bestem den fuldstændige løsning $\binom{K_B(t)}{K_V(t)}$ til differentialligningssystemet (1).

(e) Det oplyses, at der til at starte med ikke er noget af stoffet i vævet, mens startkoncentrationen af stoffet i blodet betegnes K_{B0} .

Lad $\binom{K_B(t)}{K_V(t)}$ være den partikulære løsning til differentialligningssystemet (1), som svarer til disse begyndelsesbetingelser. Bestem konstanterne A_1 og A_2 udtrykt ved $a_1, a_2, a_3, \lambda_1, \lambda_2$ samt K_{B0} , således at

$$K_B(t) = A_1 e^{\lambda_1 t} + A_2 e^{\lambda_2 t}. (3)$$

Man har foretaget følgende målinger af koncentrationen K_B af stoffet i blodet som funktion af tiden t:

Tid	Koncentration
0.0	0.846
0.1	0.591
0.2	0.468
0.3	0.385
0.4	0.374
0.5	0.325
1.0	0.229
1.5	0.183
2.0	0.166
2.5	0.132
3.0	0.106
3.5	0.083
4.0	0.070
4.5	0.058

Datasættet findes også i filen anaestesi-data.txt som ligger på Absalon. Gem filen i den mappe på din computer, hvor du arbejder med R (se evt. R-noterne).

(f) Det er muligt at benytte R til at bestemme de værdier af A_1, A_2, λ_1 og λ_2 , der får funktionen $K_B(t) = A_1 e^{\lambda_1 t} + A_2 e^{\lambda_2 t}$ fra (3) til at stemme bedst muligt overens med målingerne. (Vi vil ikke komme ind på den statistiske metode, der ligger bag ved dette.) Dette gøres vha. R-kommandoerne

```
> d=read.table("anaestesi-data.txt", header=TRUE)
> t = d[,1]; K = d[,2]
> fit=nls(K~A1*exp(11*t)+A2*exp(12*t), data=data.frame(t,K),
+ start=list(A1=1, A2=1, 11=-1, 12=-2))
> fit
```

Kør selv disse linier i R.

Af output kan man bl.a. aflæse, at de bedste parameterværdier (med 3 decimaler) er

$$A_1 = 0.378$$
, $A_2 = 0.465$, $\lambda_1 = -0.432$ og $\lambda_2 = -6.739$.

Opstil $K_B(t)$ med de ikke-afrundede værdier af A_1, A_2, λ_1 og λ_2 fra R-outputtet og benyt R til at tegne dens graf sammen med målepunkterne.

(g) Benyt de fundne værdier af A_1, A_2, λ_1 og λ_2 samt $K_{B0} = 0.846$ til at bestemme to forskellige værdier af parameteren a_2 ud fra den partikulære løsning fra (3). Lad så a_2 være gennemsnittet af disse to værdier.

Bestem derefter a_1 og a_3 ud fra de fundne værdier af λ_1, λ_2 og a_2 .

(h) Opstil $K_V(t)$ med de fundne parameterværdier og benyt R til at tegne grafen for $K_V(t)$ for $0 \le t \le 5$.

Vurdér ud fra grafen det tidsrum, hvor $K_V(t) \ge 0.25$ (dvs. det tidsrum, hvori der kan opereres).

I resten af opgaven betragtes den mere generelle model

$$\begin{pmatrix} K_B' \\ K_V' \end{pmatrix} = \begin{pmatrix} -(a_1 + a_3) & a_2 \\ a_1 & -a_2 \end{pmatrix} \begin{pmatrix} K_B \\ K_V \end{pmatrix} + \begin{pmatrix} d_0 \\ 0 \end{pmatrix}, \tag{4}$$

hvor stoffet også tilføres vha. et drop med den konstante hastighed d_0 (målt i mg/(l·time)).

(i) Bestem modellens ligevægt udtrykt ved d_0 samt parametrene a_1, a_2 og a_3 . Afgør om ligevægten er stabil.

Bestem endvidere den fuldstændige løsning til differentialligningssystemet (4).

(j) Lad nu a_1, a_2, a_3, λ_1 og λ_2 antage de samme værdier som fundet i (f) og (g). Bestem d_0 således, at der i det lange løb opnås en koncentration af stoffet i vævet på 0.275 mg/l.

Opstil den fuldstændige løsning til differentialligningssystemet (4) med de fundne parameterværdier.

Bestem derefter den partikulære løsning, som svarer til, at der til at starte med ikke er noget af stoffet i vævet, mens startkoncentrationen af stoffet i blodet er $0.846~\mathrm{mg/l}$ (som i datasættet).

Tegn vha. R grafen for $K_V(t)$ for $0 \le t \le 5$, og benyt grafen til at vurdere det tidsrum, hvor $K_V(t) \ge 0.25$.

Opgave 2

Betragt differentialligningssystemet

$$x' = -2x + y$$

$$y' = -4x - 2y.$$
(5)

- (a) Bestem den fuldstændige løsning (x(t), y(t)) til (5). Løsningen skal angives på reel form, dvs. x(t) og y(t) skal angives som reelle funktioner.
- (b) Bestem den partikulære løsning (x(t), y(t)) til (5), som opfylder (x(0), y(0)) = (3, 4).

Tegn vha. R graferne for de to funktioner x(t) og y(t) i det samme koordinatsystem for $t \in [0, \pi]$.

Tegn endvidere løsningskurven (x(t), y(t)) som vektorfunktion for $t \in [0, \pi]$.

Vejledning: Hvis der laves R-funktioner x og y ud fra udtrykkene for x(t) og y(t), kan man f.eks. bruge følgende kode

```
xer=x(seq(0,pi, length=100))
yer=y(seq(0,pi, length=100))
d=matrix(c(xer,yer),100)
plot(d, type="l")
```

I vektoren **xer** angives værdierne af x(t) for 100 t-værdier mellem 0 og π og i vektoren **yer** angives de tilsvarende værdier af y(t). Disse værdier samles i en matrix **d** med 100 rækker og 2 søjler. Indholdet i matricen plottes med linjestykker (**type="1"**) mellem punkterne (dvs. rækkerne i matricen).

(c) Bestem den fuldstændige løsning (x(t), y(t)) på reel form til differentialligningssystemet

$$x' = -2x + y - e^{2t}$$

$$y' = -4x - 2y + 2e^{2t}.$$

Opgave 3

Vi betragter differentialligningsmodellen

$$\begin{pmatrix} W_S' \\ W_G' \end{pmatrix} = \begin{pmatrix} -K_G & K_D \\ Y_G K_G & -K_D \end{pmatrix} \begin{pmatrix} W_S \\ W_G \end{pmatrix} + \begin{pmatrix} P_G(t) \\ 0 \end{pmatrix}$$
 (6)

for kulstof i toppen af en plante. Her er $W_S = W_S(t)$ og $W_G = W_G(t)$ mængderne (målt i gram) af hhv. mobilt og strukturelt kulstof i toppen til tiden t (målt i dage), mens $P_G(t)$ er den hastighed, hvormed kulstof optages i planten via fotosyntesen. (Se overheads fra forelæsningen for yderligere detaljer.)

- (a) Antag at kulstofoptagelsen i planten er konstant, dvs. $P_G(t) = P_0 > 0$ for alle t. Find ligevægten for (6) udtrykt ved parametrene K_G , K_D , Y_G og P_0 og vis at denne ligevægt er positiv og stabil for alle $K_G > 0$, $K_D > 0$, $0 < Y_G < 1$ og $P_0 > 0$. [Vink: Benyt gerne at begge rødder i ligningen $\lambda^2 + A\lambda + B = 0$ har negativ realdel hvis A > 0 og B > 0]
- (b) Lad $K_G = 2.2$, $K_D = 0.15$, $Y_G = 0.8$ og $P_0 = 10$. Bestem egenværdier og egenvektorer for matricen fra (6) (gerne vha. R) og brug disse til at opskrive den fuldstændige løsning til differentialligningssystemet (6).

Bestem endvidere den partikulære løsning $\binom{WS}{WG}$ som opfylder $W_S(0)=2$ og $W_G(0)=10$. Tegn vha. R graferne for de to funktioner $W_S(t)$ og $W_G(t)$ i det samme koordinatsystem for et passende t-interval. Ser det ud fra graferne ud til, at funktionerne har de rigtige begyndelses- og grænseværdier?