Before the wain lecture, some intro to the course,

Our gools!

- D leaver some numerical wettodo used in CMT
- D leave now of the standard (MT models

The wain would we will study is the

transverse-field Ising model

H= -J & Si * Site - h & Six

To understand this we will reed:

O spin - 1 systems

D wany - body states and operators

We will start the course by raking ourse we are all on the same yage for the things, as well as some basic programming

Here are our plans

Day 1: spin is, tensor product spaces and operators arting

Day ? introduce Desig wodel, use ED to find ground state, includate some basic expertation values, look at energy gap

Pay 3: ED be Heiserberg wodel, introduce symmetries, analysis of computation time, introduce symmetries, dynamics if time permits

Pay 4: Introduce MPS

Jay 5: algorithms for MPS (TEBD & DMRG)

Will start by understanding this H we what you're used to. H = - J Es, 75, 2 - h Es, x $H = \frac{V^2}{2m} + V(r)$ Idea: itam of atoms, one electron on each one 1 + V(r) i = 3 i = 1 i = 2 i = 3 $+ V(r_1 - r_2)$ 10 + V(ro) $H = \sum_{i=1}^{p_i^2} + V(r_i) + \sum_{i < j} V(r_i - r_j)$ This is super band to relie!! Solution: (1) About each local H= f + V(r) reparately, get umal websts: 0, Px. Pt. Pt. Deep just one orbital, in this case Pt Ndepards on details of which are we keep As we have - 3 8 8 8 8 8 8 -(3) assume V(r,-r2) really pushes electrons apart,

no they stay put on their bown locations

(1) Empides 2 mtes

 $\begin{cases} & & \\ &$

4 (r, 1/2, 5, , 52) must be antisymmetric

2 moins: (*) (9, (r,) (2, (r2) + 4, (r2) (2, (r))) (75-17)

 $\left(\frac{\varphi_{1}(r_{1}) \varphi_{2}(r_{2}) - \varphi_{1}(r_{2}) \varphi_{2}(r_{1})}{\sqrt{2}}\right) \left(\frac{1}{\sqrt{2}}\right)$

V(v,-V2) wokes (b) lover in excergy.

The difference in energy between these two is welled $2J(\frac{t}{2})^2$

(5) also apply a wagnetic field in & direction, $\vec{B} = \vec{B}_0 \hat{x}$ This produces Zeeman splitting $\Delta E = \left[\frac{1}{2} \cdot h\right] = \vec{B}_0 \cdot M_B \left(\frac{1}{4}\right)$

Hen we get ar effective model just for the opine of the & whose position is fixed in place. Looks like

This is the I ving wodel!

Now lote undustand what it means mathematically

Numerical CMT
5 letture rowse for Perimetes brothers summer moderated internship program, 2020
Lecture 1: Spin-12, terror product spaces & operad programming baries
Neview of spiritz We unside a spiritz system, whose states are of the
form $ \mathcal{C}\rangle = a \mathcal{T}\rangle + b \mathcal{T}\rangle \text{with} a ^2 + b ^2 = 1 (a,b \in C)$ $2 - \text{dimensional Hilbert space}, \text{form} \text{in} \{11\}, 11\} $
(1117 = (1117 = 1, (1117 = (1117 = 0) In operator O acting on this space is described by four
A transforms the lovis atoles: $O(1) = 0, (1) + 02, (1)$
This can be represented as a watrix, with 17 and 18> represented as a working:
$ \uparrow\rangle \rightarrow (\downarrow)$, $ \downarrow\rangle \rightarrow (\uparrow)$

beck othorowolity:

$$\langle +|1\rangle = (10)(1) = 0 = (01)(1) = \langle +|+\rangle \sim$$

What does I good like in this representation?

Everider waterix Marting on (1):

$$\begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} \begin{pmatrix} u \\ u \end{pmatrix} = \begin{pmatrix} m_{11} \\ m_{21} \end{pmatrix} = m_{11} \begin{pmatrix} 1 \\ u \end{pmatrix} + m_{21} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

br other words
$$M = \left(M.(i) \quad M.(i)\right)$$

No 0 is (011 012)

We are especially interested in Hermitian operators, since they are observables

If
$$O^{\dagger} = O$$
, then $O = \begin{pmatrix} o_{11} & o_{24}^{R} - io_{24}^{T} \end{pmatrix}$ where all 6 numbers are in R

This can be written as:

$$\left[\delta_{z_1}=\delta_{|z|}\right]$$

$$\frac{o_{11}+o_{12}}{2}\cdot\begin{pmatrix}1&0\\0&1\end{pmatrix}+\frac{o_{11}-o_{22}}{2}\begin{pmatrix}1&0\\0&-1\end{pmatrix}+\frac{o_{12}}{2}\begin{pmatrix}0&1\\1&0\end{pmatrix}+\frac{o_{12}}{2}\begin{pmatrix}0&-1\\1&0\end{pmatrix}$$

il every Herwitian uperator is if the form

a. Idz + b.52 + c.5x + d.5x

$$Id = \begin{pmatrix} 10 \\ 01 \end{pmatrix}, \quad 5^{7} = \begin{pmatrix} 10 \\ 0-1 \end{pmatrix}, \quad 5^{8} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad 5^{7} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

Now let's put there back in the original representation.

$$\begin{array}{ccc}
\mathcal{Z} & \delta^{\frac{1}{2}}(1) = (1) & \delta^{\frac{1}{2}}(1) = |1\rangle \\
\delta^{\frac{1}{2}}(0) = (0) & \delta^{\frac{1}{2}}(1) = -|1\rangle
\end{array}$$

Overall we base:

at this point, I want to enoplasing that the bundamental object are the states and quature, not their sector and waterin representations.

· For example, I would shoose instead IT> > (?), ID> (%).

Hen the 4 matrices are

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}$

His is a change of even though the actual operators have not.

· Example 2: we can also try a less truis ety and find a new representation

ok V

Kerult:

Here lot
$$|\rightarrow\rangle \rightarrow (!)$$

 $|\leftarrow\rangle \rightarrow (!)$

in the operators are represented by

The motheries have charged, but the physical eljests the quaters, have not.

Here I want to pause the main story and show how to implement this hang of losis directly in the pratting language

Journat ey 82;

$$\frac{1}{4} \left(\begin{array}{c} 1 \\ 0 \end{array} \right) = 1 \\ 1 \\ 1 \\ 0 \end{array} = 1 \\ 1 \\ 1 \\ 0 \end{array} = \left(\begin{array}{c} 1 \\ 0 \\ -1 \end{array} \right)$$

To get the first rel of the new watering when (1) = 1->> (1) = 16),

want to do the following steps: All To to the Super will

(b) new = \frac{1}{52}(17) + (47) = \frac{1}{52}(1) Rewrite as a vertor in the red borris, soo evening you can apply old 52 matrix
@ apply 82: (10), (1)/52 = (-1)/52
3 transform back to new basis. Here it's easy to see it by ye, it's just 16/ new
() 47 (
to in the new losis, the 1st of 57 = (9)
Now eds with O and 3) is watring multiplications
The first column is: what lappere to (1) rew
2 bd al what happens to (6) new ? Fr (1) and
The production of the second
(tal sud ven mite ven (?) in terms (?) in terms (?) (?) (?)
(3) in terms of ced (3), (4)
3) Ild baris - ven baris.
To (1-1)
(st we i ged (9) Old (1) in in terms of terms of very (6) (9)
terms of very voew (6)(1)

Put it all together: 5 x new = [[[] (1 - 1) . [[] (1 - 1)] (1 - 1) . [[] (1 - 1)] (1 - 1) .

annitated acting on (1) new $\begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{bmatrix} 1 \\ \sqrt{2} \begin{pmatrix} 1 \\ 1 \end{bmatrix} \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{bmatrix} 1 & 0 \\ \sqrt{2} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \end{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ get 1 st wol by ading in ld wes (o) new raply 5t in old lowin transform louch to new busis · matrix on the right is the identity on it can be home votes; I dapped Write it as Onen = V + Odd · V · Id · rolumps of V we the new lasis vectors in terms of the old wee, · the matriges for the tur lovis transformations are Hermitian ronjugites brance: - if you apply loth in succession you wast get lack the

vagerale vector, no they are inverses

- the lucis bling outhoporous nears that Vtv= VVt= Id

(Note; if you ever use a non-ON basis, this procedure will still work and V+ > V + V+7 The top to the top on my evering evering

Note that

H = fz (11) is well to "Hadamard gots" in quantum computers literature. Asswering just seen, it performs a storge of losis between

$$\binom{1}{0} = |\uparrow\rangle \quad \text{where} \quad \delta^{\frac{1}{2}} = \binom{10}{0-1}$$

$$\binom{1}{0} = |\downarrow\rangle \quad \text{where} \quad \delta^{\frac{1}{2}} = \binom{10}{0-1}$$

telled "I bosis become 5 t is diagnal

and

Next up is our first programming exercise.

Hools: - learn to use Jupyte votelook

- lean bow to weste warrays and notrices
- water multiplication and eigenvalue decomposition
- test Hadamord storge of lasis