Cross Validation

Andrew Nobel

March, 2020

Stochastic Framework for Classification, revisited

Recall: Two components

- ▶ Population: generic pair $(X,Y) \in \mathcal{X} \times \{0,1\}$ (unobserved)
- ▶ Sample: Observations $(X_1, Y_1), \dots, (X_n, Y_n)$ iid $\sim (X, Y)$

Qu: How do we use observations?

- Training: build a classification rule from data
- ► Testing: assess the performance of a rule
- Validation: select among competing rules or methods

Red flag: Same observations used for more than one task

Rules vs. Procedures

Observations
$$D_n = (X_1, Y_1), \dots, (X_n, Y_n)$$

- 1. Classification rule is a map $\phi: \mathcal{X} \to \{0, 1\}$
 - $\phi(x)$ predicts class label of x
- 2. Classification procedure is a map $\phi_n : \mathcal{X} \times (\mathcal{X} \times \{0,1\})^n \to \{0,1\}$
 - $\hat{\phi}_n(x) = \phi(x:D_n)$ predicts class label of x based on D_n

Key point

- ▶ If data D_n is fixed then $\hat{\phi}_n$ is a classification rule
- Different data sets yield different classification rules

Example

Two classification procedures: $\phi_n = \text{LDA}$ and $\psi_n = \text{LogReg}$

Two data sets: $D_n^a=\{(x_i^a,y_i^a):1\leq i\leq n\}$ and $D_n^b=\{(x_i^b,y_i^b):1\leq i\leq n\}$

- 1. Same data, different method: $\hat{\phi}_n^a(x) = \phi_n(x, D_n^a)$ and $\hat{\psi}_n^a(x) = \psi_n(x, D_n^a)$
 - Two rules. How good are they? Which is better?
- 2. Same method, different data: $\hat{\phi}_n^a(x)=\phi_n(x,D_n^a)$ and $\hat{\phi}_n^b(x)=\phi_n(x,D_n^b)$
 - Two rules. How different are they? Do they perform differently?

Deeper Questions

1. Stability

- ▶ How sensitive is the rule $\hat{\phi}_n = \phi_n(x, D_n)$ to the data D_n ?
- ▶ Does a small change in one of the data points yields a big change in $\hat{\phi}n$?

2. Aggregation and Averaging

- How can we combine a family of rules to get a better one?
- How can we average a family of rules?

Risk of Rules and Procedures

- 1. Classification rule $\phi: \mathcal{X} \to \{0, 1\}$
- 2. Classification procedure $\phi_n: \mathcal{X} \times (\mathcal{X} \times \{0,1\})^n \to \{0,1\}$
 - ▶ Conditional risk $R(\hat{\phi}_n) = \mathbb{P}(\phi_n(X:D_n) \neq Y \mid D_n)$
 - ▶ Overall risk $\mathbb{E}R(\hat{\phi}_n) = \mathbb{P}(\phi_n(X:D_n) \neq Y)$

Importance

- Means of assessing performance
- Way to compare, select among procedures
- Way to assess the difficulty of the classification problem

Estimating the Risk of Rules and Procedures

Problem: Risk measures depend on unknown distribution of (X,Y)

One solution

- Replace probabilities and expectations by averages over observations
- Appeal to the law of large numbers and probability inequalities

Training Error

Definition: Given observations $D_n = (X_1, Y_1), \dots, (X_n, Y_n)$ the *training error* of a rule $\phi : \mathcal{X} \to \{0, 1\}$ is

$$\hat{R}_n(\phi) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}(\phi(X_i) \neq Y_i)$$

Fact: If ϕ is fixed then

- ▶ $\mathbb{E}[\hat{R}_n(\phi)] = R(\phi)$ and $\operatorname{Var}(\hat{R}_n(\phi)) = n^{-1} R(\phi)(1 R(\phi))$
- $\hat{R}_n(\phi) \sim n^{-1} \operatorname{Bin}(n, R(\phi))$
- $\hat{R}_n(\phi) \to R(\phi)$ in probability as n tends to infinity

Training Error, cont.

Fact: (Chebyshev) If ϕ is fixed then for every t > 0

$$\Pr\left(|\hat{R}_n(\phi) - R(\phi)| > t\right) \le \frac{R(\phi)(1 - R(\phi))}{n t^2}$$

Fact: (Hoeffding) If ϕ is fixed then for every t > 0

$$\Pr\left(|\hat{R}_n(\phi) - R(\phi)| > t\right) \le 2\exp\{-2nt^2\}$$

Problems Arising from Double Use of Training Data

Suppose the rule $\hat{\phi}_n$ is obtained from training data D_n

Question: Is $\hat{R}_n(\hat{\phi}_n)$ a good estimate of the conditional risk $R(\hat{\phi}_n)$?

Answer: No!

Root of the problem: $\hat{\phi}_n$ and \hat{R}_n based on *same* observations D_n

- ▶ By design, $\hat{\phi}_n$ is fit to D_n
- $lackbox{}\hat{\phi}_n$ should perform better on D_n than an independent set D_n'
- Expect $\hat{R}_n(\hat{\phi}_n)$ to underestimate $R(\hat{\phi}_n)$

Example: Training error of 1-NN rules is always zero!

Training and Test Sets

- 1. Split observations $(X_1, Y_1), \dots, (X_{n+m}, Y_{n+m})$ into two disjoint groups
 - ▶ Training set $D_n = (X_1, Y_1), \dots, (X_n, Y_n)$
 - ▶ Test set $D_m = (X_{n+1}, Y_{n+1}), \dots, (X_{n+m}, Y_{n+m})$
- 2. Use training set D_n to construct a classification rule $\hat{\phi}_n(x) = \phi_n(x:D_n)$
- 3. Assess performance of $\hat{\phi}_n$ via its average error rate on test set D_m

$$\hat{R}_m(\hat{\phi}_n) = m^{-1} \sum_{i=1}^m \mathbb{I}(\hat{\phi}_n(X_{n+j}) \neq Y_{n+j})$$

Training and Test Sets, cont.

Fact: The sets D_n and D_m are independent. Moreover,

$$\mathbb{E}[\hat{R}_m(\hat{\phi}_n) \mid D_n] = \mathbb{P}(\hat{\phi}_n(X) \neq Y \mid D_n) = R(\hat{\phi}_n)$$

▶ For each t > 0,

$$\mathbb{P}\left(|\hat{R}_m(\hat{\phi}_n) - R(\hat{\phi}_n)| > t \,|\, D_n\right) \leq \frac{R(\hat{\phi}_n)(1 - R(\hat{\phi}_n))}{m \, t^2}$$

Downside: When data is hard to come by or expensive to obtain, splitting into training and test sets is a luxury, and not always feasible.

Cross Validation

Ingredients

- ▶ Observations $D_N = (X_1, Y_1), \dots, (X_N, Y_N)$ iid $\sim (X, Y)$
- ▶ Fold-count $k \ge 2$ such that N = km. Usually $2 \le k \le 10$
- ▶ Classification procedure ϕ for data sets of size (k-1)m

Idea

- Split observations into equal size chunks
- Use each chunk to test rule produced from rest of the observations
- Average resulting error rates

Cross Validation

- 1. Divide $D_N = \tilde{D}_1 \cup \cdots \cup \tilde{D}_k$ into k folds each with m points
 - $\tilde{D}_{\ell} = \{ (X_i, Y_i) : m(\ell 1) < i \le m\ell \}$
 - $\tilde{D}_{\setminus \ell} = \bigcup_{j \neq \ell} \tilde{D}_j$
- 2. Let $\hat{\phi}^\ell(x)=\phi(x:\tilde{D}_{\smallsetminus\ell})$ be the rule derived from training set $\tilde{D}_{\smallsetminus\ell}$
- 3. Evaluate error rate of $\hat{\phi}^\ell$ using test set \tilde{D}_ℓ

$$\hat{R}^{\ell}(\hat{\phi}^{\ell}) = m^{-1} \sum_{m(\ell-1) < i \le m\ell} \mathbb{I}(\hat{\phi}^{\ell}(X_i) \ne Y_i)$$

4. k-fold cross validated risk of procedure ϕ given by

$$\hat{R}^{ ext{k-CV}}(\phi) = k^{-1} \sum_{\ell=1}^k \hat{R}^\ell(\hat{\phi}^\ell)$$

Overview of Cross Validation

For each fold $\ell = 1, \dots, k$

- $lackbox{} ilde{D}_{\diagdown \ell}$ used to train $\hat{\phi}^\ell$
- $lackbox{} ilde{D}_\ell$ used to test $\hat{\phi}^\ell$
- ▶ Test error is $\hat{R}^{\ell}(\hat{\phi}^{\ell})$

CV risk $\hat{R}^{\text{k-CV}}(\phi)$ is just the average of the fold-wise test errors $\hat{R}^{\ell}(\hat{\phi}^{\ell})$

Upshot: $\hat{R}^{\text{k-CV}}(\phi)$ is an estimate of the *expected* error $\mathbb{E}R(\phi)$ of the classification procedure ϕ . It does not estimate conditional error.