I Questions de cours

- 1 Énoncer et démontrer les propriétés algébriques du logarithme et de l'exponentielle.
- 2 Énoncer et démontrer les propriétés algébriques des puissances.
- 3 Énoncer et démontrer les croissances comparées.

II Exercices sur les systèmes linéaires

Exercice 1:

Résoudre les systèmes :

$$\begin{cases} 2x + y - 2z &= 1\\ -2x - 2y + 3z &= 1\\ 4x - y - 2z &= 5 \end{cases} \text{ et } \begin{cases} 2x + y - 2z &= 1\\ -2x - 2y + 3z &= 1 \end{cases}$$

Exercice 2:

Résoudre les systèmes :

$$\begin{cases} 2x + y - 2z & = 1 \\ 4x + y - 3z & = 3 \\ -4x - 4y + 6z & = 1 \end{cases} \text{ et } \begin{cases} x + ay & = b \\ ax + y & = -b \end{cases}, (a, b) \in \mathbb{R}^2$$

Exercice 3:

1 - Résoudre le système linéaire suivant :

$$\begin{cases} 5x + 3y &= -2\\ 2x + y &= 3 \end{cases}$$

2 - Résoudre le système suivant, dépendant de paramètres réels λ et μ :

$$\begin{cases} \lambda x + 3y &= -3\\ 2x + y &= \mu \end{cases}$$

III Exercices sur les fonctions usuelles

$Exercice\ 4$:

Soit f la fonction d'une variable réelle $f: x \longmapsto \sin(2x) - \frac{3}{4}\tan(x)$.

- 1 Étudier la parité et vérifier que f est π -périodique.
- 2 Montrer que f admet un maximum sur $\left[0, \frac{\pi}{2}\right]$ et préciser la valeur de ce maximum.
- 3 Représenter f est un intervalle de longueur trois périodes.

Exercice 5:

Soit f la fonction définie sur \mathbb{R} par $f(x) = 2\sin(x) + \sin(2x)$.

- 1 Étudier la parité et vérifier que f est périodique. En déduire un intervalle $\mathcal D$ suffisant pour étudier f.
- 2 Étudier les variations de f sur \mathcal{D} .
- 3 Représenter f sur un intervalle de longueur trois périodes.
- 4 Résoudre l'équation f(x) = 0 d'inconnue $x \in [-\pi; \pi]$.

Exercice 6:

On considère la fonction définie sur $\left]\frac{1}{e};+\infty\right[$ par :

$$\forall x > \frac{1}{e}, \ f(x) = \frac{x}{\ln(x) + 1}$$

- 1 Préciser les limites de f au bornes du domaine $\left]\frac{1}{e};+\infty\right[.$
- 2 Dresser le tableau de variation de f. Préciser si \widetilde{f} admet ou non un extremum que l'on précisera le cas échéant.
- 3 Préciser si la dérivée f' admet ou non un extremum que l'on précisera le cas échéant.

Exercice 7:

Soient $\omega > 0$ et $f: t \longmapsto \cos(\omega t) + \cos(t)$.

À quelle condition sur ω , la fonction f est-elle périodique?

Indication : On pourra envisager $f'' + \omega^2 f$.

Exercice 8:

On considère la fonction :

$$f: \left| \begin{array}{ccc} \mathbb{R}_0^* & \longrightarrow & \mathbb{R} \\ x & \longmapsto & x^x \end{array} \right|$$

- 1 Donner les limites de f en 0 et $+\infty$.
- 2 Étudier les variations de f.
- 3 On prolonge f par continuité, en posant f(0) = 1. En utilisant $\lim_{u \to 0} \frac{e^u 1}{u} = 1$, vérifier que le graphe de f possède une tangente verticale au point d'abscisse 0.