Embedded electronic engineering A: Hardware-software codesign seminar

Game theoretic scheduling

By Shahzaib Waseem

Game theory concepts

- Game = strategic situation + game rules
- Player moves = strategies
- Objective of strategies = "payoffs"

Game theory concepts

Games can be of two types:

- Cooperative: joint strategy
- Non-cooperative: individual strategies

Game theory example: Prisoner's Dilemma

	Prisoner A cooperates	Prisoner A defects
Prisoner B cooperates	1 month for both	A: free, B: 10 yrs
Prisoner B defects	A: 10 yrs, B: free	5 years for both

HLS algorithm

```
diffeq {
read(x; y; u; dx; a; n);
do {
     x1 = x + dx;
     u1 = u - (3*u*x*dx) - (3*y*dx);
     y1 = y + u*dx;
     n1 = n + 1
     c = x1 < a
     x = x1;
     u = u1;
     y = y1;
     n = n1;
} while(c)
write(y, n)
```

}

Figure 1: ASAP scheduling

Figure 2: ALAP scheduling

Mobilities (>= 1)

- V6 = 1
- V7 = 1
- V8 = 2
- V9 = 2
- V10 = 2
- V11 = 2
- V12 = 3

Game theoretic scheduling: cooperative

Game Theory	HLS Scheduling
Players	Each clock cycle
Payload	Each operation
Strategy	Operations per clock cycle

Figure 3: Game theoretic scheduling, considering a cooperative game

Resource constraints comparison

	ALAP	ASAP	Game Theoretic
Multipliers	4	2	3
Adders	2	4	3

Remarks

- A non-cooperative game could be explored, with multiple possible approaches
- Changing number of clock cycles