Lecture 9 Introduction to Graphs

Graphs

- A graph is a formalism for representing relationships among items. One way to write graphs:
- A graph G = (V, E)
 - A set of vertices, also known as nodes

$$V = \{v_1, v_2, \dots, v_n\}$$

A set of edges

$$E = \{e_1, e_2, ..., e_m\}$$

- Each edge e_i is a pair of vertices
 (v_i, v_k)
- An edge "connects" the vertices
- Graphs can be directed or undirected

Are Graphs An ADT?

- Can think of graphs as an ADT with operations like isEdge ((v_i, v_k)), addVertex(v_{new}), ...
- But it is unclear what the "standard operations" are
- Instead we tend to develop algorithms over graphs and then use data structures that are efficient for those algorithms
- Many important problems can be solved by:
 - 1. Formulating them in terms of graphs
 - 2. Applying a standard graph algorithm
- To make the formulation easy and standard, we have a lot of standard terminology about graphs

Undirected Graphs

- In undirected graphs, edges have no specific direction
 - Edges are always "two-way"

- Thus, $(u, v) \in E$ implies $(v, u) \in E$
 - Only one of these edges needs to be in the set
 - The other is implicit, so normalize how you check for it
- Degree of a vertex: number of edges containing that vertex
 - Put another way: the number of adjacent vertices

Directed Graphs

 In directed graphs (sometimes called digraphs), edges have a direction

- Thus, $(u, v) \in E$ does not imply $(v, u) \in E$.
 - Let $(u, v) \in E \text{ mean } u \rightarrow v$
 - Call u the source and v the destination
- In-degree of a vertex: number of in-bound edges,
 i.e., edges where the vertex is the destination
- Out-degree of a vertex: number of out-bound edges
 i.e., edges where the vertex is the source

Self-Edges, Connectedness

- A self-edge a.k.a. a loop is an edge of the form (u,u)
 - Depending on the use/algorithm, a graph may have:
 - No self edges
 - Some self edges
 - All self edges (often therefore implicit, but we will be explicit)
- A node can have a degree / in-degree / out-degree of zero
- A graph does not have to be connected
 - Even if every node has non-zero degree

More Notation

For a graph G = (V, E)

- |V| is the number of vertices
- **|E|** is the number of edges (assuming no self loops)
 - Minimum?
 - Maximum for directed? $|V| * (|V|-1) \in O(|V|^2)$
 - Maximum for undirected? $(|\nabla| * (|\nabla| 1))/2 \in O(|\nabla|^2)$
- If $(u,v) \in E$
 - Then v is a neighbor of u, i.e., v is adjacent to u (A, B)
 - Order matters for directed edges (B, A)(C, D)}
 - \mathbf{u} is not adjacent to \mathbf{v} unless $(\mathbf{v}, \mathbf{u}) \in \mathbf{E}$

 $E = \{ (C, B),$

 $V = \{A, B, C, D\}$

Weighted Graphs

- In a weighed graph, each edge has a weight a.k.a. cost
 - Typically numeric (most examples use ints)
 - Orthogonal to whether graph is directed
 - Some graphs allow negative weights; many do not

Paths and Cycles

- A path is a list of vertices $[\mathbf{v}_0, \mathbf{v}_1, ..., \mathbf{v}_n]$ such that $(\mathbf{v}_i, \mathbf{v}_{i+1}) \in$ **E** for all $0 \le i < n$. Say "a path from \mathbf{v}_0 to \mathbf{v}_n "
- A cycle is a path that begins and ends at the same node $(\mathbf{v}_0 == \mathbf{v}_n)$

Path: [Seattle, Chicago, Dallas]

Cycle: [Seattle, Salt Lake City, Dallas, San Francisco, Seattle]

Path Length and Cost

- Path length: Number of edges in a path
- Path cost: Sum of weights of edges in a path

Example:

P= [Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]

Simple Paths and Cycles

 A simple path repeats no vertices, except the first might be the last

```
[Seattle, Salt Lake City, San Francisco, Dallas]
[Seattle, Salt Lake City, San Francisco, Dallas, Seattle]
```

- Recall, a cycle is a path that ends where it begins
 [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]
 [Seattle, Salt Lake City, Seattle, Dallas, Seattle]
- A simple cycle is a cycle and a simple path
 [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]

Example:

Is there a path from A to D?

Does the graph contain any cycles?

Example:

Is there a path from A to D? No

Does the graph contain any cycles? No

Example:

Is there a path from A to D?

Does the graph contain any cycles?

Example:

Is there a path from A to D? Yes

Does the graph contain any cycles? No

Example:

Is there a path from A to D?

Does the graph contain any cycles?

Example:

Is there a path from A to D? Yes

Does the graph contain any cycles? Yes

Undirected-Graph Connectivity

An undirected graph is connected if for all pairs of vertices u, v, there exists a path from u to v

Connected graph

Disconnected graph

An undirected graph is complete, a.k.a. fully connected if for all pairs of vertices u, v, there exists an edge from u to v

plus self edges

Directed-Graph Connectivity

 A directed graph is strongly connected if there is a path from every vertex to every other vertex

 A directed graph is weakly connected if there is a path from every vertex to every other vertex ignoring direction of edges

 A complete a.k.a. fully connected directed graph has an edge from every vertex to every other vertex

Trees as Graphs

When talking about graphs,

we say a tree is a graph that is:

- Acyclic (no cycles)
- Connected

So all trees are graphs, but not all graphs are trees

Rooted Trees

- We are more accustomed to rooted trees where:
 - We identify a unique root
 - We think of edges as directed: parent to children
- Given a graph that is a tree, picking a root gives a unique rooted tree

Rooted Trees

- We are more accustomed to rooted trees where:
 - We identify a unique root
 - We think of edges as directed: parent to children
- Given a graph that is a tree, picking a root gives a unique rooted tree

Directed Acyclic Graphs (DAGs)

- A DAG is a directed graph with no (directed) cycles
 - Every rooted directed tree is a DAG
 - But not every DAG is a rooted directed tree

Not every directed graph is acyclic

Density / Sparsity

- Recall: In an undirected graph, $0 \le |E| < |V|^2$
- Recall: In a directed graph: $0 \le |E| \le |V|^2$
- So for any graph, $O(|E|+|V|^2)$ is $O(|V|^2)$
- Because |E| is often much smaller than its maximum size, we do not always approximate |E| as $\textit{O}(|V|^2)$
 - This is a correct upper bound, it just is often not tight
 - If it is tight, i.e., |E| is $\Theta(|V|^2)$ we say the graph is dense
 - If |E| is O(|V|) we say the graph is sparse

How do we implement this?

- The "best" implementation can depend on:
 - Properties of the graph (e.g., dense vs sparse)
 - The common queries (e.g., "is (u,v) an edge?" vs "what are the neighbors of node u?")
- We'll discuss the two standard graph representations
 - Adjacency Matrix and Adjacency List
 - Different trade-offs, particularly time versus space

Adjacency Matrix

- Assign each vertex/node a number from 0 to |V|-1
- A |V| x |V| matrix (i.e., 2-D array) of Booleans (or 1 vs. 0)
 - If M is the matrix, then M[u][v] being true means there is an edge from u to v

	A	В		D
A	F	Т	F	F
В	Т	F	F	F
C	F	Т	F	Т
D	F	F	F	F

Adjacency Matrix Properties

- Running time to:
 - Get a vertex's out-edges: O(|V|)
 - Get a vertex's in-edges: O(|V|)
 - Decide if some edge exists: O(1)
 - Insert an edge: O(1)
 - Delete an edge: O(1)

	A	В	C	D
A	F	Т	F	F
В	Т	F	F	F
C	F	Т	F	Т
D	F	F	F	F

- Space requirements:
 - $|V|^2$ bits
- Better for sparse or dense graphs?
 - Better for dense graphs

Adjacency Matrix Properties

- How will the adjacency matrix vary for an undirected graph?
 - Undirected will be symmetric around the diagonal
- How can we adapt the representation for weighted graphs?
 - Instead of a Boolean, store a number in each cell
 - Need some value to represent 'not an edge'
 - In *some* situations, 0 or -1 works

	O^{D} 2
A O	\bigcirc C
7	A B

ge				
A	-1	7	-1	-1
В	7	-1	4	-1
C	-1	4	-1	2
D	-1	-1	2	28-1

B

Adjacency List

- Assign each node a number from 0 to |V|-1
- An array of length |V| in which each entry stores a list of all adjacent vertices (e.g., linked list)

Adjacency List Properties

R

- Running time to:
 - Get all of a vertex's out-edges:
 O(d) where d is out-degree of vertex
 - Get all of a vertex's in-edges:
 - O(|E| + |V|) (but could keep a second adjacency list for this!)
 - Decide if some edge exists:
 - O(d) where d is out-degree of source
 - Insert an edge: O(1) (unless you need to check if it's there)
 - Delete an edge: O(d) where d is out-degree of source
- Space requirements:
 - O(|V| + |E|)
- Better for dense or sparse graphs?
 - Better for sparse graphs

Undirected Graphs

Adjacency matrices & adjacency lists both do fine for undirected graphs

- Matrix: Can save roughly 2x space
 - But may slow down operations in languages with "proper" 2D arrays (not Java, which has only arrays of arrays)
 - How would you "get all neighbors"?

Lists: Each edge in two lists to support efficient "get all

neighbors"

Example:

	A	В	C	D
A	F			
В	Т	F		
C	F	Т	F	
D	F	F	Т	F
	31			

Some Applications as Graphs

For each of the following examples:

- what are the vertices and what are the edges?
- would you use directed edges? Would they have self-edges?
- Are there 0-degree nodes? Is it strongly or weakly connected?
- Does it have weights? Do negative weights make sense?
- Does it have cycles? Is it a DAG?
- Web pages with links
- Facebook friends
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites
- Political donations to candidates