Writeup

Extinction Probability

Using a branching process as an approximation

$$\tau = G_X(\tau)$$

We're interested in $E[\tau_i]$ for individual i with riskiness ρ_i .

$$G_X(s) = P(X = 0) + P(X = 1)s^1 + P(X = 2)s^2 + \dots$$

$$P(X = 0) = \rho_i \prod_{j} (1 - \rho_j \alpha_r) \prod_{j} (1 - \alpha_c) + (1 - \rho_i) \prod_{j} (1 - \alpha_c)$$

$$E[P(X=0)] = E[\rho_i \prod_j (1 - \rho_j \alpha_r) \prod_j (1 - \alpha_c) + (1 - \rho_i) \prod_j (1 - \alpha_c)]$$

= $E[\rho_i] \prod_j (1 - E[\rho_j] \alpha_r) \prod_j (1 - \alpha_c) * (1 - E[\rho_i]) \prod_j (1 - \alpha_c)$

The same result will hold for all P(X = x), so $E[G_X(\tau_i)] = E[\tau_i]$ depends only on $E[\rho]$