1. Explicación explicito

En general un método de un paso para aproximar la solución de una ecuación diferencial es un método que puede ser escrito de la forma $y_{n+1} = y_n + h\phi(t_n, y_n, h)$ donde ϕ es una función de $f, t_n, y_n y h$.

Diremos que el método de un paso anterior es convergente si: i) $y_n \to y(t)$ para todo $0 \le t \le b$ según $n \to \infty$ y ii) $y_0 \to y(0)$ con h = t/n para cualquier ecuación diferencial y' = f(y) que satisfaga una condición de Lipschitz.

Diremos que el método de un paso anterior es estable si para cada ecuación diferencial que satisfaga una condición de Lipschit existen constantes positivas h_0 y K tales que la diferencia entre dos soluciones obtenidas numéricamente y_n e w_n es tal que $||y_n - w_n|| \le K||y_o - w_0||$ para todo $h \in [0, h_0]$.

Teorema Si el método de un paso anterior verifica que ϕ es continua en cada una de sus variables y verifica una condición de Lipschitz en la segunda en todo el dominio $D=(t,y,h): a \leq t \leq b, w \in \mathbb{R}, h \in [0,h_0]$ entonces: i) el método es estable. ii) el método es convergente o, equivalentemente, $\phi(t,y,0)=f(t,y)$ para todo $a \leq t \leq b$. Demostración: i) Puede encontrarse en los ejercicios resueltos de la sección 5.10 del libro de Burden. ii) Puede encontrarse en la sección 4.3 del libro de Gear: "Numerical initial value problems in ordinary differential equations".

Aplicamos este teorema al método del trapecio. En este caso $\phi(t,y,h) = \frac{1}{2}f(t,y) + \frac{1}{2}f(t+h,y+hf(t,y))$. Asumiendo las condiciones que nos dan existencia y unicidad, si f es Lipschitziana en $(t,y): a \le t \le b, y \in \mathbb{R}$ con constante de Lipschitz L entonces:

$$\phi(t,y,h) - \phi(t,y',h) = \frac{1}{2}f(t,y) + \frac{1}{2}f(t+h,y+hf(t,y)) - \frac{1}{2}f(t,y') - \frac{1}{2}f(t+h,y'+hf(t,y')) \le \frac{1}{2}L|y-y'| + \frac{1}{2}L|y+hf(t,y)-y'-hf(t,y')| \le L|y-y'| + \frac{1}{2}L|hf(t,y)-hf(t,y')| = (L+\frac{1}{2}hL^2)|y-y'|$$

Por tanto, ϕ satisface una condición de Lipschitz sobre el conjunto $(t, y, h): a \le t \le b, y \in \mathbb{R}, h \in [0, h_0]$ con constante de Lipschitz $L' = L + \frac{1}{2}h_0L^2$ para cualquier $h_0 > 0$.

Finalmente, si f es continua en (t, y) : $a \le t \le b, y \in \mathbb{R}$ entonces ϕ es continua en (t, y, h) : $a \le t \le b, y \in \mathbb{R}$, $h \in [0, h_0]$ directamente por la propia definición de ϕ .

De este modo podemos aplicar el teorema anterior y tenemos demostrado que el método del trapecio es estable.

Considerando ahora $\phi(t, y, 0) = \frac{1}{2}f(t, y) + \frac{1}{2}f(t, y) = f(t, y)$ tenemos la condición de consistencia expresada anteriormente lo que nos dice que el método es convergente.

Página 1 de 1