

Figure 8.4 (a) Potential energy of an electron in the electric field of two nearby protons. The total energy of a ground-state electron in the hydrogen atom is indicated. (b) Two nearby protons correspond quantum-mechanically to a pair of boxes separated by a barrier.

shared by two protons is less confined than one belonging to a single proton, which means that it has less kinetic energy. The total energy of the electron in ${\rm H_2}^+$ is therefore less than that of the electron in H + H⁺. Provided the magnitude of the proton-proton repulsion in ${\rm H_2}^+$ is not too great, then, ${\rm H_2}^+$ ought to be stable.

8.3 THE H₂+ MOLECULAR ION

Bonding requires a symmetric wave function

What we would like to know is the wave function ψ of the electron in H_2^+ , since from ψ we can calculate the energy of the system as a function of the separation R of the protons. If E(R) has a minimum, we will know that a bond can exist, and we can also determine the bond energy and the equilibrium spacing of the protons.

Solving Schrödinger's equation for ψ is a long and complicated procedure. An intuitive approach that brings out the physics of the situation is more appropriate here. Let us begin by trying to predict what ψ is when R, the distance between the protons, is large compared with a_0 , the radius of the smallest Bohr orbit in the hydrogen atom. In this event ψ near each proton must closely resemble the 1s wave function of the hydrogen atom, as pictured in Fig. 8.5. The 1s wave function around proton a is called ψ_a and that around proton b is called ψ_b .

Figure 8.5 (a)–(d) The combination of two hydrogen-atom 1s wave functions to form the symmetric H_2^+ wave function ψ_5 . The result is a stable H_2^+ molecular ion because the electron has a greater probability of being between the protons than outside them. (e) If the protons could join together, the resulting wave function would be the same as the 1s wave function of a H_2^+ ion.

We also know what ψ looks like when R is 0, that is, when the protons are imagined to be fused together. Here the situation is that of the He⁺ ion, since the electron is now near a single nucleus whose charge is +2e. The 1s wave function of He⁺ has the same form as that of H but with a greater amplitude at the origin, as in Fig. 8.5e. Evidently ψ is going to be something like the wave function sketched in Fig. 8.5d when R is comparable with a_0 . There is an enhanced likelihood of finding the electron in the region between the protons, which corresponds to the sharing of the electron by the protons. Thus there is on the average an excess of negative charge between the protons, and this attracts the protons together. We have still to establish whether this attraction is strong enough to overcome the mutual repulsion of the protons.

The combination of ψ_a and ψ_b in Fig. 8.5 is symmetric, since exchanging a and b does not affect ψ (see Sec. 7.3). However, it is also conceivable that we could have an antisymmetric combination of ψ_a and ψ_b , as in Fig. 8.6. Here there is a node between a and b where $\psi=0$, which implies a reduced likelihood of finding the electron between the protons. Now there is on the average a deficiency of negative charge between the protons and in consequence a repulsive force. With only repulsive forces acting, bonding cannot occur.

An interesting question concerns the behavior of the antisymmetric H_2^+ wave function ψ_A as $R \to 0$. Obviously ψ_A does not become the 1s wave function of He^+ when R=0. However, ψ_A does approach the 2p wave function of He^+ (Fig. 8.6e), which has a node at the origin. But the 2p state of He^+ is an excited state whereas the 1s state is the ground state. Hence H_2^+ in the antisymmetric state ought to have more energy than when it is in the symmetric state, which agrees with our inference from the shapes of the wave functions ψ_A and ψ_S that in the former case there is a repulsive force and in the latter, an attractive one.

System Energy

A line of reasoning similar to the preceding one lets us estimate how the total energy of the ${\rm H_2}^+$ system varies with R. We first consider the symmetric state. When R is large, the electron energy $E_{\rm S}$ must be the -13.6-eV energy of the hydrogen atom, while the electric potential energy U_p of the protons,

$$U_p = \frac{e^2}{4\pi\epsilon_0 R} \tag{8.1}$$

falls to 0 as $R \to \infty$. (U_p is a positive quantity, corresponding to a repulsive force.) When $R \to 0$, $U_p \to \infty$ as 1/R. At R = 0, the electron energy must equal that of the He⁺ ion, which is Z^2 , or 4 times, that of the H atom. (See Exercise 35 of Chap. 4; the same result is obtained from the quantum theory of one-electron atoms.) Hence $E_S = -54.4$ eV when R = 0.

Both E_S and U_p are sketched in Fig. 8.7 as functions of R. The shape of the curve for E_S can only be approximated without a detailed calculation, but we do have its value for both R=0 and $R=\infty$ and, of course, U_p obeys Eq. (8.1).

The total energy $E_5^{\rm total}$ of the system is the sum of the electron energy E_5 and the potential energy U_p of the protons. Evidently $E_5^{\rm total}$ has a minimum, which corresponds to a stable molecular state. This result is confirmed by the experimental data on H_2^+ which indicate a bond energy of 2.65 eV and an equilibrium separation R of 0.106 nm. By "bond energy" is meant the energy needed to break H_2^+ into H_2^+ . The total

Figure 8.6 (a)—(d) The combination of two hydrogen-atom 1s wave functions to form the antisymmetric H_2^+ wave function ψ_A . A stable H_2^+ molecular ion is not formed because now the electron has a smaller probability of being between the protons than outside them. (e) If the protons could join together, the resulting wave function would be the same as the 2p wave function of a He^+ ion. In the 2p state a He^+ ion has more energy than in the 2s state.

Figure 8.7 Electron, proton repulsion, and total energies in H_2^+ as a function of nuclear separation R for the symmetric and antisymmetric states. The antisymmetric state has no minimum in its total energy.

energy of ${\rm H_2}^+$ is the -13.6 eV of the hydrogen atom plus the -2.65-eV bond energy, or -16.3 eV in all.

In the case of the antisymmetric state, the analysis proceeds in the same way except that the electron energy E_A when R=0 is that of the 2p state of He^+ . This energy is proportional to Z^2/n^2 . With Z=2 and n=2, E_A is just equal to the -13.6 eV of the ground-state hydrogen atom. Since $E_A \rightarrow 13.6$ eV also as $R \rightarrow \infty$, we might think that the electron energy is constant, but actually there is a small dip at intermediate distances. However, the dip is not nearly enough to yield a minimum in the total energy curve for the antisymmetric state, as shown in Fig. 8.7, and so in this state no bond is formed.

8.4 THE HYDROGEN MOLECULE

The spins of the electrons must be antiparallel

The H_2 molecule has two electrons instead of the single electron of H_2^+ . According to the exclusion principle, both electrons can share the same **orbital** (that is, be described by the same wave function ψ_{nlm}) provided their spins are antiparallel.

With two electrons to contribute to the bond, H_2 ought to be more stable than H_2^+ —at first glance, twice as stable, with a bond energy of 5.3 eV compared with

2.65 eV for H_2^+ . However, the H_2 orbitals are not quite the same as those of H_2^+ because of the electric repulsion between the two electrons in H_2 , a factor absent in the case of H_2^+ . This repulsion weakens the bond in H_2 , so that the actual energy is 4.5 eV instead of 5.3 eV. For the same reason, the bond length in H_2 is 0.074 nm, which is somewhat larger than the use of unmodified H_2^+ wave functions would indicate. The general conclusion in the case of H_2^+ that the symmetric wave function ψ_5 leads to a bound state and the antisymmetric wave function ψ_4 to an unbound one remains valid for H_2 .

In Sec. 7.3 the exclusion principle was formulated in terms of the symmetry and antisymmetry of wave functions, and it was concluded that systems of electrons are always described by antisymmetric wave functions (that is, by wave functions that reverse sign upon the exchange of any pair of electrons). However, the bound state in H_2 corresponds to both electrons being described by a symmetrical wave function ψ_5 , which seems to contradict the above conclusion.

A closer look shows that there is really no contradiction. The *complete* wave function $\Psi(1, 2)$ of a system of two electrons is the product of a spatial wave function $\psi(1, 2)$ which describes the coordinates of the electrons and a spin function s(1, 2) which describes the orientations of their spins. The exclusion principle requires that the complete wave function

$$\Psi(1,2) = \psi(1,2) s(1,2)$$

be antisymmetric to an exchange of both coordinates and spins, not $\psi(1, 2)$ by itself. An antisymmetric complete wave function Ψ_A can result from the combination of a symmètric coordinate wave function ψ_5 and an antisymmetric spin function s_A or from the combination of an antisymmetric coordinate wave function ψ_A and a symmetric spin function s_S . That is, only

$$\Psi(1, 2) = \psi_S s_A$$
 and $\Psi(1, 2) = \psi_A s_S$

are acceptable.

If the spins of the two electrons are parallel, their spin function is symmetric since it does not change sign when the electrons are exchanged. Hence the coordinate wave function ψ for two electrons whose spins are parallel must be antisymmetric:

Spins parallel
$$\Psi(1, 2) = \psi_A s_S$$

On the other hand, if the spins of the two electrons are antiparallel, their spin function is antisymmetric since it reverses sign when the electrons are exchanged. Hence the coordinate wave function ψ for two electrons whose spins are antiparallel must be symmetric:

Spins antiparallel
$$\Psi(1, 2) = \psi_S s_A$$

Schrödinger's equation for the H_2 molecule has no exact solution. In fact, only for H_2^+ is an exact solution possible, and all other molecular systems must be treated approximately. The results of a detailed analysis of the H_2 molecule are shown in Fig. 8.8 for the case when the electrons have their spins parallel and the case when their spins are antiparallel. The difference between the two curves is due to the exclusion principle, which leads to a dominating repulsion when the spins are parallel.

Figure 8.8 The variation of the energy of the system H + H with their distances apart when the electron spins are parallel and antiparallel.

8.5 COMPLEX MOLECULES

Their geometry depends on the wave functions of the outer electrons of their atoms

Covalent bonding in molecules other than H_2 , diatomic as well as polyatomic, is usually a more complicated story. It would be yet more complicated but for the fact that any alteration in the electronic structure of an atom due to the proximity of another atom is confined to its outermost, or valence, electron shell. There are two reasons for this:

- 1 The inner electrons are much more tightly bound and hence less responsive to external influences, partly because they are closer to their parent nucleus and partly because they are shielded from the nuclear charge by fewer intervening electrons.
- 2 The repulsive interatomic forces in a molecule become predominant while the inner shells of its atoms are still relatively far apart.

The idea that only the valence electrons are involved in chemical bonding is supported by x-ray spectra that arise from transitions to inner-shell electron states. These spectra are virtually independent of how the atoms are combined in molecules or solids.

We have seen that two H atoms can combine to form an H_2 molecule; and, indeed, hydrogen molecules in nature always consist of two H atoms. The exclusion principle is what prevents molecules such as H_2 and H_3 from existing, while permitting such other molecules as H_2O to be stable.

Every He atom in its ground state has a 1s electron of each spin. If it is to join with another He atom by exchanging electrons, each atom will have two electrons with the same spin for part of the time. That is, one atom will have both electron spins up $(\uparrow\uparrow)$ and the other will have both spins down $(\downarrow\downarrow)$. The exclusion principle, of course,