

Report No.: EESZG11070040-1 Page 1 of 59

FCC TEST REPORT

Product : Brunswick Sync Tablet

Trade mark : N/A

Model/Type reference : 57-863703-400

Serial number : N/A

Ratings : AC 100-240V, 50/60Hz FCC ID : 2AEGE-57-863703-400

Report number : EESZG11070040-1

Date : Mar. 24, 2015

Regulations : See below

Test Standards	Results
	PASS

Prepared for:

Brunswick Bowling & Billiards Corporation
525 W. Laketon Ave. Muskegon, MI 49441, United States

Prepared by:

Centre Testing International (Shenzhen) Corporation Hongwei Industrial Zone, 70 Area, Bao'an District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested

ov:

kevin Yang

Reviewed by:

df d

Approved by:

12 2

Date:

Mar. 24, 2015

Jimmy L

Lab manager

QY)

Check No.: 1727826104

TABLE OF CONTENTS

Descrip	tion		Pag	je
1. CE	RTIFICATION INFORMATION			4
2. TE	ST SUMMARY		<u></u>	4
3. ME	EASUREMENT UNCERTAINTY			5
4. PR	ODUCT INFORMATION			5
5. SY	STEM TEST CONFIGURATION	<u> </u>	<u> </u>	6
6. TE	ST EQUIPMENT LIST			6
7. SU	PPORT EQUIPMENT LIST	<u> </u>		6
8. 6D	B BANDWIDTH MEASUREMENT			
8.1.	LIMITS			7
8.2.	BLOCK DIAGRAM OF TEST SETUP		(6)	7
8.3.	TEST PROCEDURE			7
8.4.	TEST RESULT			7
9. PC	WER SPECTRAL DENSITY			13
9.1.	LIMITS		<u> </u>	13
9.2.	BLOCK DIAGRAM OF TEST SETUP			
9.3.	TEST PROCEDURE			13
9.4.	TEST RESULT	(33.)	169	13
10. I	MAXIMUM PEAK CONDUCTED OUTPUT	POWER MEASU	REMENT	19
	LIMITS			
10.2.	BLOCK DIAGRAM OF TEST SETUP			19
10.3.	TEST PROCEDURE			19
10.4.	TEST RESULT			19
	AND EDGE EMISSION MEASUREMENT			
11.1.	LIMITS			24
	BLOCK DIAGRAM OF TEST SETUP			
	TEST PROCEDURE			
11.4.	TEST RESULT		(2)	24

12. S	SPURIOUS RF CONDUCTED EMISSIONS MEASUREMENT	28
12.2. 12.3.	BLOCK DIAGRAM OF TEST SETUP TEST PROCEDURE TEST RESULT	28
13. F	RADIATED EMISSIONS MEASUREMENT	34
	LIMITS	
	BLOCK DIAGRAM OF TEST SETUP TEST PROCEDURE	
	TEST RESULT	
14.	CONDUCTED EMISSION TEST	41
	LIMITSBLOCK DIAGRAM OF TEST SETUP	
	PROCEDURE OF CONDUCTED EMISSION TEST	
	GRAPHS AND DATA	
APPEN	DIX 1 PHOTOGRAPHS OF TEST SETUP	44
APPEN	DIX 2 EXTERNAL PHOTOGRAPHS OF PRODUCT	46
APPEN	DIX 3 INTERNAL PHOTOGRAPHS OF PRODUCT	50
N/A me	ans not applicable.	

Report No. : EESZG11070040-1 Page 4 of 59

1. CERTIFICATION INFORMATION

Applicant: Brunswick Bowling & Billiards Corporation

525 W. Laketon Ave. Muskegon, MI 49441, United States

Manufacturer: Shenzhen City Swift Info Technology Limited

303/ R303, Building C, Future Plaza, No.6060, Qiaoxiang Road,

Nanshan Dist., Shenzhen, China 518053

Equipment authorization: Certification

FCC ID: 2AEGE-57-863703-400

Product: Brunswick Sync Tablet

Model/Type reference: 57-863703-400

Trade Name: N/A

Serial Number: N/A

Report Number: EESZG11070040-1

Sample Received Date: Nov. 10, 2014

Sample tested Date: Nov. 10, 2014 to Mar. 24, 2015

The above equipment was tested by Centre Testing International (Shenzhen) Corporation for compliance with the requirements set forth in the FCC Rules and Regulations Part 15, Subpart C and the measurement procedure according to ANSI C63.4:2009.

2. TEST SUMMARY

No.	Test Item	Rule	Result
1	6dB Bandwidth	15.247(a)(2)	PASS
2	Peak Output Power	15.247(b)(3)	PASS
3	Power Spectral Density	15.247(e)	PASS
4	Bandedge Emission	15.247(d)	PASS
5	Spurious RF Conducted Emission	15.247(d)	PASS
6	Radiated Emission	15.247(d)	PASS
7	Conducted Emission	15.207	PASS
8	Antenna requirements	15.203	PASS (See Notes)

Notes: The product uses an internal integral antenna which in accordance with Section 15.203 is considered sufficient to comply with the provisions of this section.

Report No. : EESZG11070040-1 Page 5 of 59

3. MEASUREMENT UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Test item	Value (dB)
Conducted disturbance	3.0
Radiated disturbance	4.9

4. PRODUCT INFORMATION

Items	Description		
Rating	AC 100-240V, 50/60Hz		
Transmit Data Rate	IEEE 802.11b: 1Mbps, 2Mbps, 5.5Mbps, 11Mbps IEEE 802.11g: 6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps IEEE 802.11n HT20: MCS0, MCS1, MCS2, MCS3, MCS4, MCS5, MCS6, MCS7		
Type of Modulation	IEEE 802.11b: DSSS (CCK, QPSK, BPSK) IEEE 802.11g: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK, BPSK)		
Antenna Type	Integral antenna		
Connector	fixed on board		
Gain	0dBi		

Technical Specification of WiFi module (802.11b/g/n)

ltom	Description			
Item	IEEE 802.11b	IEEE 802.11g	IEEE 802.11n	
Operating Frequency band	2412-2462MHz for 802.11b/g/nHT20			
Channel Number	11	11	11	
Channel Bandwidth (MHz)	20	20	20	

Technical Specification of Carrier Frequency

reclinical Specification of Carrier Frequency						
Frequency Band	Channel No.	Frequency	Channel No.	Frequency	Channel No.	Frequency
2412-2462MHz (802.11b/g/n HT20)	1	2412 MHz	6	2437 MHz	11	2462 MHz
	2	2417 MHz	7	2442 MHz	-	-
	3	2422 MHz	8	2447 MHz	(- (1)
	4	2427 MHz	9	2452 MHz		<u></u>
	5	2432 MHz	10	2457 MHz		

Report No. : EESZG11070040-1 Page 6 of 59

5. SYSTEM TEST CONFIGURATION

For emissions testing, the equipment under test (EUT) setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, all cables were manipulated to produce worst case emissions. It was powered by 5DC from 100-240V AC input adaptor. Only the worst case data were recorded in this test report.

The signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance.

All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance. Analyzer resolution is 100 kHz or greater for frequencies below 1000 MHz. The resolution is 1 MHz or greater for frequencies above 1000 MHz. The spurious emissions more than 20 dB below the permissible value are not reported.

Radiated emission measurement were performed the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

6. TEST EQUIPMENT LIST

Equipment	Manufacturer	Model	Serial No.	Due Date
3M Chamber & Accessory Equipment	TDK	SAC-3		06/01/2016
Receiver	R&S	ESCI	100435	07/08/2015
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	618	06/17/2015
Multi device Controller	maturo	NCD/070/10711112		N/A
Horn Antenna	ETS-LINGREN	3117	00057407	07/07/2015
Microwave Preamplifier	Agilent	8449B	3008A02425	03/19/2016
Microwave Preamplifier	Agilent	8449B	3008A02425	03/19/2015
Spectrum Analyzer	R&S	FSP40	100416	07/06/2015
Receiver	R&S	ESCI	100009	07/19/2015
LISN	R&S	ENV216	100098	07/19/2015

7. SUPPORT EQUIPMENT LIST

No.	Device Type	Brand	Model	Series No.	Certification Type
1.	- 155		0		
2.			(,	AD	(3/2)-

Report No. : EESZG11070040-1 Page 7 of 59

8. 6DB BANDWIDTH MEASUREMENT

8.1. LIMITS

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

8.2. BLOCK DIAGRAM OF TEST SETUP

8.3. TEST PROCEDURE

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer.
- 2. Set spectrum analyzer's RBW and VBW to applicable value with Peak in Max Hold.
- 3. A PEAK output reading was taken, a DISPLAY line was drawn 6 dB lower than PEAK level.
- 4. The 6dB bandwidth was determined from where the channel output spectrum intersected the display line.

8.4. TEST RESULT

The test data of worst case are below:

802.11b, 1Mbps

Frequency (MHz)	Measured Value (MHz)	Result
2412	9.02	PASS
2437	9.06	PASS
2462	9.02	PASS

802.11g, 6Mbps

Frequency (MHz)	Measured Value (MHz)	Result
2412	16.34	PASS
2437	16.32	PASS
2462	16.32	PASS

Report No. : EESZG11070040-1 Page 8 of 59

802.11n HT20, MSC0

Frequency (MHz)	Measured Value (MHz)	Result
2412	17.64	PASS
2437	17.54	PASS
2462	17.56	PASS

Please see the following plots (worst case):

802.11b, 1Mbps:

Date: 9.MAR.2015 14:15:09

Low channel

Page 9 of 59

Date: 9.MAR.2015 14:27:29

Page 10 of 59

802.11g, 6Mbps:

Date: 6.MAR.2015 15:20:48

Low channel

Date: 6.MAR.2015 15:53:48

Report No.: EESZG11070040-1

*RBW 100 kHz Delta 1 [T1] 0.66 dB 8 VBW 300 kHz 0.66 dB 9 VBW 300 kHz 0.66 dB 9 VBW 300 kHz 16.320000000 MHz 16.320000000 MHz 16.320000000 MHz 10.379 dBm 2.45320000 CHz 10 0.2 2.4532000000 CHz 10 0.2 2.453200000 CHz 10 0.2 2.45320000 CHz 10 0.2 2.453200000 CHz 10 0.2 2.4532000000 CHz 10 0.2 2.453200000 CHz 10 0.2 2.453200000 CHz 10 0.2 2.45320000000 CHz 10 0.2 2.4532000000 CHz 10 0.2 2.453200000 CHz 10 0.2 2.45

Page 11 of 59

High channel

802.11n HT20, MCS0:

Low channel

Date: 9.MAR.2015 13:29:30

Report No.: EESZG11070040-1

*RBW 100 kHz *VBW 300 kHz SWT 10 ms Marker 2 [T1] 0.15 dBm 2.438280000 GHz 20 dBm halamlan halamland r-maystall topological for the state of the

Page 12 of 59

Date: 9.MAR.2015 13:34:27

Middle channel

Date: 9.MAR.2015 13:40:51

High channel

9. POWER SPECTRAL DENSITY

9.1. LIMITS

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

9.2. BLOCK DIAGRAM OF TEST SETUP

9.3. TEST PROCEDURE

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer.
- 2. Set spectrum analyzer's RBW and VBW to applicable and set span wide enough to capture the whole plot, record the frequency of the max emission in the plot.
- 3. Set the frequency as center frequency, and set RBW = 3 kHz, VBW > RBW, sweep= (SPAN/3 kHz) with Peak detector in Max Hold mode.
- 4. Read the output peak data from the spectrum analyzer directly.

9.4. TEST RESULT

The test data of worst case are below:

802.11b, 1Mbps

Frequency (MHz)	Measured Value (dBm)	Result
2412	-7.82	PASS
2437	-7.45	PASS
2462	-5.94	PASS

802.11g, 6Mbps

Frequency (MHz)	Measured Value (MHz)	Result	
2412	-11.74	PASS	
2437	-12.72	PASS	
2462	-12.34	PASS	

Page 14 of 59

802.11n HT20, MSC0

Frequency (MHz)	Measured Value (MHz)	Result
2412	-15.39	PASS
2437	-14.87	PASS
2462	-14.17	PASS

Please see the following plots (worst case):

802.11b, 1Mbps:

Date: 9.MAR.2015 09:39:40

Low channel

Report No.: EESZG11070040-1

Page 15 of 59

Date: 9.MAR.2015 09:42:09

802.11g, 6Mbps:

Date: 9.MAR.2015 10:34:39

Low channel

Date: 9.MAR.2015 10:39:31

Report No.: EESZG11070040-1

*RBW 3 kHz Marker 1 [T1]
*VBW 10 kHz -12,34 dBm
-12,34 dBm
SWT 2.8 s 2.463600000 GHz

20
-10
-20
-30
-40
-40
-60
-70
-80
Center 2.462 GHz 2.5 MHz/ Span 25 MHz

Page 17 of 59

Date: 9.MAR.2015 10:43:30

High channel

Report No.: EESZG11070040-1

*RBW 3 kHz Marker 1 [T1]
*VBW 10 kHz -14.87 dBm
Ref 20 dBm *Att 30 dB SWT 3 s 2.442008500 GHz

20
-10
-10
-20
-30
-40
-50
-50
-80
Center 2.437 GHz 2.7 MHz/ Span 27 MHz

Page 18 of 59

10. MAXIMUM PEAK CONDUCTED OUTPUT POWER MEASUREMENT

10.1. LIMITS

The maximum peak conducted output power of the intentional radiator shall not exceed the following:

For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt (30dBm).

10.2. BLOCK DIAGRAM OF TEST SETUP

10.3. TEST PROCEDURE

- 1. The transmitter output is connected to the Spectrum analyzer. The Spectrum analyzer is set to the peak power detection.
- 2. Set spectrum analyzer's RBW and VBW to applicable and set span wide enough to capture the whole plot, record the frequency of the max emission in the plot.
- 3. Set the frequency as center frequency, and set RBW = 1 MHz, VBW >RBW, sweep= auto with Peak detector in Max Hold mode.

10.4. TEST RESULT

802.11b:

Frequency (MHz)	(MHz) Data rate (Mbps) Result (dBm)		Limit (dBm)	
	1	20.41	30	
Low Channel: 2412	5.5	20.09	30	
	11	19.98	30	
	1	20.70	30	
Middle Channel: 2437	5.5	20.06	30	
	11	19.99	30	
	1	20.88	30	
High Channel: 2462	5.5	20.00	30	
(24)	11	19.98	30	

Report No. : EESZG11070040-1 Page 20 of 59

802.11g:

0 z . 1 1g.				
Frequency (MHz)	Data rate (Mbps)	Result (dBm)	Limit (dBm)	
	6	20.23	30	
Low Channel: 2412	18	20.11	30	
	54	19.97	30	
	6	20.31	30	
Middle Channel: 2437	18	20.09	30	
	54	19.23	30	
	6	20.41	30	
High Channel: 2462	18	20.18	30	
	54	19.99	30	

802.11n HT20:

Frequency (MHz)	Data rate (Mbps)	Result (dBm)	Limit (dBm)	
	MCS0	18.25	30	
Low Channel: 2412	MCS3	18.22	30	
(6.2)	MCS7	18.21	30	
	MCS0	18.78	30	
Middle Channel: 2437	MCS3	18.78	30	
	MCS7	18.22	30	
	MCS0	18.79	30	
High Channel: 2462	MCS3	18.76	30	
	MCS7	18.67	30	

Please see the following plots (worst case):

802.11b, 1Mbps:

Low channel

High channel

Report No. : EESZG11070040-1 Page 22 of 59

802.11g, 6Mbps:

Low channel

High channel

Report No.: EESZG11070040-1 Page 23 of 59

802.11n HT20, MCS0:

Low channel

High channel

11. BAND EDGE EMISSION MEASUREMENT

11.1. LIMITS

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

11.2. BLOCK DIAGRAM OF TEST SETUP

11.3. TEST PROCEDURE

- a) Set to the maximum power setting and enable the EUT transmit continuously.
- b) Set RBW = 100 kHz, VBW = 300 kHz (≥ RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- c) Enable hopping function of the EUT and then repeat step a and b.
- d) Measure and record the results in the test report.

11.4. TEST RESULT

Worst case data attached.---please see the following plots.

Page 25 of 59

802.11b 1Mbps:

2412MHz:

Date: 9.MAR.2015 09:53:25

2462MHz:

Page 26 of 59

802.11g, 6Mbps:

2412MHz:

Date: 9.MAR.2015 10:56:32

2462MHz:

802.11n HT20, MCS0:

2412MHz:

Date: 9.MAR.2015 14:08:07

2462MHz:

Report No. : EESZG11070040-1 Page 28 of 59

12. SPURIOUS RF CONDUCTED EMISSIONS MEASUREMENT

12.1. LIMITS

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

12.2. BLOCK DIAGRAM OF TEST SETUP

12.3. TEST PROCEDURE

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer.
- 2. Set spectrum analyzer's RBW and VBW to applicable value with Peak in Max Hold.
- 3. Record the peak level of the in-band emission and all spurious emissions from the lowest frequency generated in the product up through the 10th harmonic.

12.4. TEST RESULT

Worst case data---Please see the following plots.

Page 29 of 59

802.11b, 1Mbps:

Date: 5.MAR.2015 17:02:35

Low channel

Date: 9.MAR.2015 09:24:23

Report No.: EESZG11070040-1

*RBW 100 kHz Marker 1 [T1]

*VBW 300 kHz 4.72 dBm

Ref 20 dBm *Att 30 dB SWT 2.5 s 2.452090000 GHz

20 Delta 2 [T1]

-41.30 dB

4.931575000 GHz

B

PARE

-20 D1 -15.28 dBm

-30 Start 30 MHz 2.497 GHz/ Stop 25 GHz

Page 30 of 59

High channel

802.11g, 6Mbps:

(1)

Date: 9.MAR.2015 11:07:57

Date: 9.MAR.2015 09:28:51

Report No.: EESZG11070040-1

*RBW 100 kHz *VBW 300 kHz SWT 2.5 s Marker 1 [T1] 2.09 dBm 2.439605000 GHz 20 dBm 1 PK MAXH Stop 25 GHz

Page 31 of 59

Date: 9.MAR.2015 11:25:09

Page 32 of 59

802.11n HT20, MCS0:

Date: 9.MAR.2015 11:44:02

Low channel

Date: 9.MAR.2015 11:48:45

Report No.: EESZG11070040-1

*RBW 100 kHz Marker 1 [T1]
*VBW 300 kHz -0.59 dBm

Ref 20 dBm *Att 30 dB SWT 2.5 s 2.452090000 GHz

20 Delta 2 [T1]
-42.95 dB 17,953430000 GHz

-10 -10 -20.59 dBm

-30 Delta 2 [T1]
-42.95 dB 17,953430000 GHz

B

STAKE

-30 STAKE

-

Page 33 of 59

High channel

Date: 9.MAR.2015 11:53:56

13. RADIATED EMISSIONS MEASUREMENT

13.1. LIMITS

The field strength of any emissions, which appear outside of operating frequency band and restricted band specified on 15.205(a), shall not exceed the general radiated emission limits as below.

minus de peretti		
Frequency (MHz)	Field strength (μV/m)	Distance (m)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Note: the tighter limit applies at the band edges.

13.2. BLOCK DIAGRAM OF TEST SETUP

For radiated emissions from 9kHz to 30MHz

For radiated emissions from 30 - 1000MHz

Report No. : EESZG11070040-1 Page 35 of 59

For radiated emissions from 1GHz to 25GHz

13.3. TEST PROCEDURE

Below 30MHz:

- a. The product is placed on a turntable 0.8 meters above the ground in the chamber, 1 meter away from the antenna (loop antenna). The maximum values of the field strength are recorded by adjusting the polarizations of the test antenna and rotating the turntable.
- b. For each suspected emission, the product was arranged to its worst case and then turn table was turned from 0 degrees to 360 degrees to find the maximum reading.
- c. The test frequency analyzer system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

30MHz ~ 1GHz:

- a. The Product was placed on the non-conductive turntable 0.8m above the ground at a chamber.
- b. Set the spectrum analyzer/receiver in Peak detector, Max Hold mode, and 100 kHz RBW. Record the maximum field strength of all the pre-scan process in the full band when the antenna is varied between 1~4 m in both horizontal and vertical, and the turntable is rotated from 0 to 360 degrees.
- c. For each frequency whose maximum record was higher or close to limit, measure its QP value (120 kHz RBW): vary the antenna's height and rotate the turntable from 0 to 360 degrees to find the height and degree where Product radiated the maximum emission, then set the test frequency analyzer/receiver to QP Detector and specified bandwidth with Maximum Hold Mode, and record the maximum value.

Above 1GHz:

- a. The EUT was placed on the non-conductive turntable 0.8 m above the ground at a chamber.
- b. Set the spectrum analyzer/receiver in Peak detector, Max Hold mode, and 1MHz RBW. Record the maximum field strength of all the pre-scan process in the full band when the antenna is varied in both horizontal and vertical, and the turntable is rotated from 0 to 360 degrees. RBW 1MHz VBW 3MHz Peak detector for PK value, RMS detector for AV value.

Page 36 of 59

13.4. TEST RESULT

Below 30MHz:

No emissions were found higher than the background below 30MHz and background is lower than the limit, so it deems to compliance with the limit without recorded.

$30 MHz \sim 1 GHz$:

The test data of low channel, middle channel and high channel in IEEE 802.11b/g/n are almost same in frequency bands 30MHz to 1GHz and the data of low channel in IEEE 802.11b of 1Mbps are chosen as representative in below:

H:

Frequency MHz	Level dBµV/m		Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
672.140000 720.640000 769.140000 817.640000 864.200000 912.700000	40.20 42.00 42.90 43.40 40.50 41.10	23.2 24.0 24.7 25.1 25.7 26.3	46.0 46.0 46.0 46.0 46.0	5.8 4.0 3.1 2.6 5.5 4.9	QP QP QP	100.0 100.0 200.0 200.0 200.0 200.0	48.00 48.00 33.00 33.00 321.00 348.00	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Page 37 of 59

V:

Frequency MHz	Level dBµV/m		Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization			
30.000000	35.10	11.4	40.0	4.9	QP	100.0	366.00	VERTICAL			
51.340000	36.10	14.9	40.0	3.9	QΡ	100.0	11.00	VERTICAL			
61.040000	37.60	13.4	40.0	2.4	QP	100.0	366.00	VERTICAL			
769.140000	42.40	24.7	46.0	3.6	QP	200.0	370.00	VERTICAL			
817.640000	42.30	25.1	46.0	3.7	QP	200.0	370.00	VERTICAL			
864.200000	40.70	25.7	46.0	5.3	QP	100.0	10.00	VERTICAL			

Above 1GHz:

The test data of worst case are below:

IEEE 802.11b, 1Mbps:

Frequency Measurement (MHz) (dBuV/m)		Limit (dBuV/m)	Detector Type	Antenna (H/V)	Result (P/F)	
(2)	(25)	Low channel (24	412MHz)	(25)	(32)	
2390.0	34.76	74	PK	Н	Р	
2400.0	48.87	74	PK	Н	Р	
4824.0	56.02	74	PK	Н	Р	
4824.0	50.11	54	AV	н	Р	
2390.0	35.98	74	PK	V	Р	
2400.0	50.11	74	PK	V	Р	
4824.0	54.98	74	PK	V	Р	
4824.0	49.98	54	AV	V	Р	
		Middle channel (2	2437MHz)			
4874.0	60.57	74	PK	Н	Р	
4874.0	52.88	54	AV	Н	Р	
4874.0	58.39	74	PK	V	Р	
4874.0	50.87	54	AV	V	Р	
		High channel (2	462MHz)			
2483.5	43.78	74	PK	Н	Р	
4924.0	58.49	74	PK	H	Р	
4924.0	51.09	54	AV	Н	Р	
2483.5	45.19	74	PK	V	Р	
4924.0	59.08	74	PK	V	Р	
4924.0	49.78	54	AV	V	Р	

IEEE 802.11g, 6Mbps:

IEEE 802.11	g, 6Mbps:	Z'55	73	/3			
Frequency (MHz)	Measurement (dBuV/m)	Limit (dBuV/m)	Detector Type	Antenna (H/V)	Result (P/F)		
		Low channel (2	412MHz)				
2390.0	35.78	74	PK	Н	Р		
2400.0	49.39	74	PK	Н	Р		
4824.0	57.98	74	PK	Н	Р		
4824.0	48.76	54	AV	Н	Р		
2390.0	36.77	74	PK	V	Р		
2400.0	49.39	74	PK	V	Р		
4824.0	58.22	74	PK	V	Р		
4824.0	50.10	54	AV	V	Р		
<i></i>	(3)	Middle channel (2437MHz)		73		
4874.0	59.12	74	PK	Н	Р		
4874.0	50.65	54	AV	Н	Р		
4874.0	60.11	74	PK	V	Р		
4874.0	52.78	54	AV	V	Р		
(6))	High channel (2	462MHz)	6,			
2483.5	44.18	74	PK	Н	Р		
4924.0	58.98	74	PK	Н	Р		
4924.0	50.29	54	AV	Н	Р		
2483.5	45.76	74	PK	V	Р		
4924.0	59.23	74	PK	V	Р		
4924.0	51.87	54	AV	V	Р		

Page 40 of 59 Report No.: EESZG11070040-1

IEEE 802.11n HT20, MCS0:

Frequency (MHz)			Detector Type	Antenna (H/V)	Result (P/F)	
		Low channel (24	412MHz)			
2390.0	35.11	74	PK	Н	Р	
2400.0	50.27	74	PK	Н	Р	
4824.0	56.67	74	PK	Н	Р	
4824.0	48.12	54	AV	Н	Р	
2390.0	36.11	74	PK	V	Р	
2400.0	48.98	74	PK	V	Р	
4824.0	57.98	74	PK	V	Р	
4824.0	48.02	54	AV	V	Р	
20		Middle channel (2	2437MHz)		(38)	
4874.0	58.88	74	PK	Н	Р	
4874.0	50.78	54	AV	Н	P	
4874.0	57.09	74	PK	V	Р	
4874.0	49.22	54	AV	V	Р	
(6)		High channel (2	462MHz)	(0))	
2483.5	46.29	74	PK	Н	Р	
4924.0	58.97	74	PK	Н	Р	
4924.0	50.78	54	AV	Н	Р	
2483.5	45.12	74	PK	V	Р	
4924.0	57.02	74	PK	V	Р	
4924.0	49.76	54	AV	V	Р	

Remark:

- 1. The above tables show that the frequencies peak data are all below the average limit, so the average data of these frequencies are deems to fulfill the average limits and not reported.
- 2. No emission found from 18GHz to 25GHz.
- 3. All outside of operating frequency band and restricted band specified are below 15.209.

14. CONDUCTED EMISSION TEST

14.1. LIMITS

Limits for Class B digital devices

Frequency range	Limits dB(μV)						
(MHz)	Quasi-peak	Average					
0,15 to 0,50	66 to 56	56 to 46					
0,50 to 5	56	46					
5 to 30	60	50					

NOTE: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 to 0.50 MHz.

14.2. BLOCK DIAGRAM OF TEST SETUP

14.3. PROCEDURE OF CONDUCTED EMISSION TEST

- a. The Product was placed on a nonconductive table above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N).
- b. The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.
- c. For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.

Report No. : EESZG11070040-1 Page 42 of 59

14.4. GRAPHS AND DATA

Product: Brunswick Sync Tablet Model/Type reference: 57-863703-400

0.150			C).5		(MHz)			5					30.000
No.	Reading_Level Freq. (dBuV)			<u>-</u>			Measurement (dBuV)			Limit (dBuV)		Margin (dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1860	39.16		26.51	9.90	49.06		36.41	64.21	54.21	-15.15	-17.80	Р	
2	4.9730	35.72	34.78	33.30	9.90	45.62	44.68	43.20	56.00	46.00	-11.32	-2.80	Р	
3	6.5340	36.30		34.22	9.90	46.20		44.12	60.00	50.00	-13.80	-5.88	Р	
4	7.9020	35.17		32.37	9.93	45.10		42.30	60.00	50.00	-14.90	-7.70	Р	
5	20.8980	37.60		33.65	10.38	47.98		44.03	60.00	50.00	-12.02	-5.97	Р	

-20

Page 43 of 59

N:

No.	Freq.	Reading_Level (dBuV)			<u></u>		ent	t Limit (dBuV)		Margin (dB)				
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1900	35.91		23.90	9.90	45.81		33.80	64.03	54.03	-18.22	-20.23	Р	
2	0.2500	31.47		20.11	9.90	41.37		30.01	61.75	51.75	-20.38	-21.74	Р	
3	4.9699	35.08	32.55	30.74	9.90	44.98	42.45	40.64	56.00	46.00	-13.55	-5.36	Р	
4	6.5859	37.47		34.94	9.90	47.37		44.84	60.00	50.00	-12.63	-5.16	Р	
5	7.7659	35.71		32.89	9.93	45.64		42.82	60.00	50.00	-14.36	-7.18	Р	
6	21.6180	37.20		33.84	10.37	47.57		44.21	60.00	50.00	-12.43	-5.79	Р	

Report No. : EESZG11070040-1 Page 44 of 59

APPENDIX 1 PHOTOGRAPHS OF TEST SETUP

TEST SETUP OF RADIATED EMISSION (30MHz-1GHz)

TEST SETUP OF RADIATED EMISSION (above 1GHz)

Page 45 of 59

APPENDIX 2 EXTERNAL PHOTOGRAPHS OF PRODUCT

External View of product-1

External View of product-2

Report No.: EESZG11070040-1

Page 47 of 59

External View of product-3

External View of product-4

Page 48 of 59

External View of product-5

External View of product-6

Page 49 of 59

Report No. : EESZG11070040-1 Page 50 of 59

APPENDIX 3 INTERNAL PHOTOGRAPHS OF PRODUCT

Internal View of product-1

Internal View of product-2

Page 51 of 59

Internal View of product-3

Internal View of product-4

Page 52 of 59

Internal View of product-5

Internal View of product-6

Page 53 of 59

Internal View of product-8

Page 54 of 59

Internal View of product-9

Internal View of product-10

Page 55 of 59

Internal View of product-11

Internal View of product-12

Page 56 of 59

Internal View of product-13

Internal View of product-14

Internal View of product-15

Internal View of product-16

Page 58 of 59

Internal View of product-17

Internal View of product-18

Page 59 of 59

Internal View of product-19

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

