Examen:

Modélisation et simulation

Exercice 1. (Formulation variationnelle (10 points))

On se place dans Ω , un ouvert borné connexe de \mathbf{R}^N , de frontière $\partial\Omega$ régulière. On découpe la frontière en $\partial\Omega = \Gamma_D \cup \Gamma_N$ F, avec $\Gamma_D \cap \Gamma_N = \emptyset$ et soit $\lambda > 0$. On cherche $u \in L^2(\Omega)$ définie sur Ω telle que

$$\begin{cases}
-\Delta u = f & \text{dans} \quad \Omega \\
u_{|\Gamma_D} = 0 \quad (\lambda u + \frac{\partial u}{\partial \nu})_{|\Gamma_N} = g
\end{cases}$$
(1)

avec $f \in L^2(\mathbf{R})$ et $g \in L^2(\Gamma_N)$.

- 1. Etablir la formulation variationnelle (FV) du problème (1).
- 2. Montrer que (FV) est bien posée. Indication : $u \in H^1_{0,\Gamma_D}$ avec $H^1_{0,\Gamma_D} = \{v \in H^1(\Omega): v_{\Gamma_D} = 0\}.$
- 3. Proposer une discrétisation de (FV), basée sur l'élément fini de Lagrange P_1 , lorsque $\Omega=[0,1].$
- 4. Construire le système linéaire équivalent à la formulation variationnelle discrète.
- 5. Rappeler les propriétés principales de la matrice de ce système linéaire.
- 6. En déduire le système linéaire vérifié par la solution de léquation de la chaleur si le temps $t \in [0, T]$ avec u_0 est la solution à l'état initial et en gardant la même configuration du domaine que dans la questions 3).

Exercice 2. (Régression linéaire multiple (10 points))

Le syndic d'un immeuble cherche à savoir l'effet de l'âge et l'expérience sur le revenu des habitants de sa commune

indvidu	âge	expérience	revenu
1	48	5	40125
2	38	4	25955
3	48	10	53383
4	37	13.5	14286
5	52	25.5	10443
6	40	7.3	60384
7	42	2.3	70488
8	45	19	24134
9	55	19	52706
10	24	5	8144
11	36	6	70655
12	39	16	36656

1. Donner un modéle mathématique qui modélise le revenu par rapport à l'âge, l'expérience et l'individue en se basant sur les résultat suivant donnés par Excel.

-3454,538925	2917,857976	4492,315636	-74630,84819
633,5485775	586,3531137	1147,444529	25252,08314
	11538,07893	N/A	N/A
		N/A	N/A
	••••	N/A	N/A

- 2. Que représente chaque case du tableau précédent et remplir les cases manquantes.
- 3. Etudier la validité du modéle.

$$Loi.F(11, 40960392, 3, 8) = 0.0029$$

 $Loi.F(15, 3, 8) = 0.001$
 $Loi.F(24.763, 1, 8) = 0.001$
 $Loi.F(29.731, 1, 8) = 0.0006$
 $Loi.F(15.32, 1, 8) = 0.004$