

Napredni algoritmi i strukture podataka

Nasumični algoritmi

- Osnove
- MTSP 2-približni algoritam
- Vertex Cover 2-približni algoritam
- 0-1 knapsack FPTAS

Predavanje bazirano na:

Skripta "Advanced algorithms and data structures", 2022.

[WS11] D.P. Williamson, D. Shmoys, "The Design of Approximation Algorithms", 2011; potpoglavlja 1.1.-1.3, 2.4, 3.1

Približni algoritmi?

$$\bullet NP = ?P$$

- NP-teški diskretni problemi
 - Želimo dobiti što bolje rješenje u polinomijalnom vremenu
 - Garancije gubitka performanse
 - Tradeoff resurs-kvaliteta
- APX klasa (aproksimabilni)

Približni algoritmi?

- Česti alati za dizajn približnih algoritama
 - Pohlepni algoritmi
 - Lokalno pretraživanje
 - Dinamičko programiranje
 - Randomizacija
 - Kvantizacija (zaokruživanje)
 - Osnovno
 - Adaptivno
 - Slučajno
 - Konveksna optimizacija (npr. LP)

α–približni algoritam

- α–približni algoritam za optimizaciju
 - Vremenski polinomijalan
 - Rješenje z u najgorem slučaju unutar faktora α od optimuma x*
 - Za maksimizaciju z $\geq \alpha \cdot x^*$, $\alpha < 1$
 - Za minimizaciju z $\leq \alpha \cdot x^*$, $\alpha > 1$

PTAS

- Vremenski polinomijalna približna shema
 - engl. polynomial-time approximation scheme (PTAS)
 - Familija algoritama $\{A_{\epsilon}\}$, za svaki $\epsilon>0$ postoji A_{ϵ} takav da je:
 - ullet Za maksimizaciju $(1-\epsilon)$ približni algoritam
 - Za minimizaciju $(1+\epsilon)$ približni algoritam
- Recept, meta-algoritam za konstrukciju približni algoritama
 - Parametar €

PTAS

- Recept, meta-algoritam za konstrukciju približni algoritama
 - Parametar *€*

• Polinomijalan sa obzirom na ulazni problem, **ne nužno** s $1/\epsilon$

FPTAS

• Još restriktivnije!

- Vremenski potpuno polinomijalna približna shema
 - engl. fully polynomial-time approximation scheme (FPTAS)
 - PTAS takav da je vrijeme izvođenja svakog A_ϵ vrijeme izvođenja ograničeno odozgo polinomom u $1/\epsilon$

Približni algoritmi

Tri ključna pitanja za svakog kandidata

- 1. Ispravnost izvedivo rješenje?
- 2. Efikasnost polinomijalno vrijeme?
- 3. Kvaliteta striktne garancije na udaljenost od optimuma?

Primjeri NEprikladnih problema

 Neaproksimabilni u polinomijalnom vremenu (osim ako P=NP)

- Općeniti problem trgovačkog putnika
- Maksimalna klika

Maksimalni nezavisni skup

Primjeri prikladnih problema

- Metrički problem trgovačkog putnika
 - minimizacija

- Problem vršnog pokrivača (vertex cover)
 - minimizacija

- 0-1 problem naprtnjače
 - maksimizacija

Metrički problem trgovačkog putnika (MTSP)

- TSP + nejednakost trokuta u udaljenostima
- NP-težak problem

- 2-aproksimacija (2-MST heuristika)
 - Naivna Eulerizacija MST-a
- 3/2-aproksimacija (Christofides, 1976)
 - Eulerizacija MST-a à la CPP
- $(3/2 \epsilon)$ aproksimacija (<u>Karlin et al., 2020</u>)
 - Christofides, slučajno stablo umjesto MST

Metrički problem trgovačkog putnika (MTSP)

NP-težak problem

- Granica aproksimabilnosti?
 - NP-teško aproksimirati sa faktorom $\alpha < 123/122$ (Karpinski et al. 2013)

2-MST heuristika

Ulaz: $G(V, V \times V)$

- Pronađi MST u G, težina x O(|V|²)
- DFS obilazak svim bridovima dvaput, zapisati vrhove u listu L, duljina obilaska 2x
 O(|V|)
- Filtriraj L čuvajući samo prva pojavljivanja vrhova (kratko spajanje) i spremi u FL, duljina obilaska z O(|V|)

2-MST heuristika - primjer

Iz vrha a
 L=[a,b,c,e,d,e,c,b,a]
 FL =[a,b,c,e,d]

2-MST heuristika: analiza

• Ispravnost – FL sadrži svaki vrh jednom, a krajeve interpretiramo kao spojene. Valjan obilazak ✓

• Efikasnost — 2-MST se izvodi u polinomijalnom vremenu. ✓

Kvaliteta?

2-MST heuristika: kvaliteta

• Lema 12.3. Za težinu x MST-a, vrijedi x≤z.

• Lema 12.4. 2-MST je 2-približni algoritam. ✓

Problem vršnog pokrivača

• Dani neusmjereni graf G(V,E) i vršne troškove $c\colon V\to\mathbb{R}$

• **Vršni pokrivač** je $V' \subseteq V$ takav je za svaki brid u E jedan od vrhova unutar V'

 Vršni pokrivač minimalnog troška – V' takav da je suma troškova u njemu minimalna

Problem vršnog pokrivača

 Vršni pokrivač minimalnog troška – V' takav da je suma troškova u njemu minimalna

- Jednostavni 2-približni algoritam baziran na:
 - linearnom programiranju i
 - determinističkom zaokruživanju decimalnih brojeva

Problem vršnog pokrivača

Modeliran kao cjelobrojni linearni program

$$\min c^T x$$

$$Ax \ge 1$$

$$x \in \{0,1\}^{|V|}$$

A - matrica incidencije

$$x_i = \begin{cases} 0 & ako \ i \notin V' \\ 1 & ako \ i \in V' \end{cases}$$

• NP-teško, optimum $x_{II.P}^*$

Problem vršnog pokrivača - relaksacija

Kontinuirani raspon

$$\min c^T x$$

$$Ax \ge 1$$

$$x \in [0,1]^{|V|}$$

Efikasno rješavanje!

• Optimum x^* , potencijalno decimalan

$$c^T x^* \leq c^T x_{ILP}^*$$

Približni algoritam -DetRoundLP

Ulaz:
$$G = (V, E), c: V \to \mathbb{R}$$

1.
$$x^*$$
 = rješenje LP relaksacije

2.
$$z = round(x^*)$$

3. vrati
$$V' = \{i \in V | z_i = 1\}$$

DetRoundLP: analiza

- Ispravnost sume dvije varijable na bridovima barem
 - 1. Barem jedna mora biti ≥ 0.5
 - Zaokruživanje za svaki brid odabere barem jedan incidentni vrh. Valjani vršni pokrivač √

• Efikasnost – svaki korak se može obaviti u polinomijalnom vremenu (i rješavanje LP) ✓

DetRoundLP: kvaliteta

• Lema 12.2. DetRoundLP je 2-približni algoritam.

DetRoundLP: kvaliteta

• Lema 12.2. DetRoundLP je 2-približni algoritam.

- Striktna gornja granica?
 - Postoje instance grafova za koje DetRoundLP proizvodi rješenje dvostruko gore od optimuma

Vršni pokrivač – granice aproksimabilnosti

• [WS11] Ako postoji α -približni algoritam sa $\alpha < 10\sqrt{5} - 21 \approx 1.36$, onda P=NP

• Ako je istinita konjektura jedinstvenih igara (engl. unique games conjecture), gornja granica postaje lpha < 2

0-1 knapsack

NP-težak problem

- Stvari $I=\{1,\ldots,n\}$, svaka veličine $s_i\in\mathbb{N}$, i vrijednosti $v_i\in\mathbb{N}$
- Kapacitet naprtnjače $B \in \mathbb{N}$
- Pronaći podskup stvari koje stanu u naprtnjaču i imaju maksimalnu sumu vrijednosti

0-1 Knapsack

- NP-težak problem
- Rješavanje s DP pseudo-polinomijalni algoritam
 - O(nB) B numerički parametar
- Unarno enkodiranje enkodiranje uzastopnim jedinicama
- Def. Algoritam je pseudo-polinomijalan ako se izvodi u vremenu polinomijalnom ulazu kada je numerički dio enkodiran unarno (a ne binarno).

0-1 Knapsack

- Ako su numerički parametri polinomijalni u n
 - Polinomijalan algoritam!!

- FPTAS agregiranje numeričkih parametara u pretince
 - Broj pretinaca ovisi polinomijalno o n

0-1 Knapsack – nova DP tablica!

- Retci stupci vrijednosti, retci vrijednosti naprtnjače
- Ćelija A[i, v] -> najmanji potrebni trošak koji ostvaruje vrijednost v koristeći neke od prvih i stvari.
- Potrebna promjena za približni algoritam
 - Provjerite što se događa kad probate isti trik sa narendih slideova nad uobičajenom (stvari,troškovi) tablicom
- Vrijednost najvrjednije stvari $N = \max_i v_i$
- ullet nN max vrijednost koju može ostvariti knapsack sa n stvari i N

0-1 Knapsack – DP algoritam!

DPKnapsackByValue

- 1. A[:,1] = B + 1
- 2. $A[0,1] = 0, A[v_1,1] = \min(A[v_1,1], s_1)$
- 3. For each i = 2,...,n
 - 1. A[:,i] = A[:,i-1]
 - 2. For each $v = v_i, ..., nN$ 1. $A[v, i] = \min(A[v, i - 1], A[v - v_i, i - 1] + s_i)$
- 4. $Return \max\{v: A[v,n] \leq B\}$

 $O(n^2N)$ pseudopolinomijalno
- radi N

0-1 Knapsack – aproksimacija

- Moramo ograničiti N polinomom po n
- Kvantizacija vrijednosti na jedinice μ

BucketizedDP za knapsack – parametar ϵ

1.
$$\mu = \frac{\epsilon N}{n}$$

1.
$$\mu = \frac{\epsilon N}{n}$$
2. $v'_i = \left| \frac{v_i}{\mu} \right|, \forall i \in I$

Riješi izmijenjeni problem koristeći DPKnapsackByValue

Primjer 0-1 knapsack FPTAS

 Riješite problem naprtnjače kapaciteta 8 sa sljedećih 5 stvari 0.25-približnim algoritmom

	1	2	3	4	5
V	2	4	8	16	20
S	1	4	2	5	7

Primjer 0-1 knapsack FPTAS

0.25-približni algoritam

•
$$B = 8$$
, $N = 20$

•
$$\epsilon = 0.75$$

$$\bullet \mu = \frac{\epsilon N}{n} = \frac{0.75 \cdot 20}{5} = 3$$

•
$$\mu = \frac{\epsilon N}{n} = \frac{0.75 \cdot 20}{5} = 3$$
• $v'_i = \left[\frac{v_i}{\mu}\right], \forall i \in I \longrightarrow v' = [0, 1, 2, 5, 6]$

	1	2	3	4	5
V	2	4	8	16	20
S	1	4	2	5	7

0-1 knapsack FPTAS: analiza

 Ispravnost – DP vraća rješenje koje zadovoljava ograničenje kapaciteta √

• **Efikasnost** – N se nakon skaliranja transformira u $\frac{n}{\epsilon}$. Složenost upretinčenog DP jest $O(\frac{n^3}{\epsilon})$ \checkmark

Kvaliteta?

0-1 knapsack FPTAS: kvaliteta

 Lema 12.5. Prezentirani algoritam jest FPTAS za 0-1 naprtnjaču. √

• Tj. rješenje je vrijednosti barem $(1-\epsilon)$ od optimalne vrijednosti

Dokaz u skripti, baziran na načinu konstrukcije veličine pretinaca

Zaključak

- Za neke probleme možemo naći približne algoritme
 - MTSP 2-približni, 1.5-približni
 - NP-teško za $\alpha < \frac{123}{122}$
 - Vršni pokrivač 2-približni
 - NP-teško za lpha < 1.36, MOŽDA čak i lpha < 2
 - 0-1 knapsack FPTAS
 - Familija algoritama za sve $lpha \in (0,1)$
- ullet Za neke probleme NE možemo ni za koji $oldsymbol{lpha}$
 - TSP, maksimalna klika i maksimalna antiklika

Zaključak

- Koristili smo sljedeće tehnike u dizajnu algoritama
 - Kvantizacija (zaokruživanje)
 - Adaptivno zaokruživanje ulaza knapsack
 - Osnovno zaokruživanje izlaza vršni pokrivač
 - Linearno programiranje vršni pokrivač
 - Dinamičko programiranje knapsack
 - Pohlepni algoritmi MTSP
 - Lokalno pretraživanje MTSP

