STAT 4100 Lecture Note

Week Three (Sep 21 & 23, 2022)

Zhiyang Zhou (zhiyang.zhou@umanitoba.ca, zhiyanggeezhou.github.io)

2022/Sep/25 02:36:54

Normal sampling theory (CB Sec. 5.3)

Stochastic representations for χ^2 -, t-, and F-r.v. (HMC Chp. 3)

- $\sum_{i=1}^{n} X_i^2 \sim \chi^2(n)$ if iid $X_1, \dots, X_n \sim \mathcal{N}(0, 1)$;
- $X/\sqrt{Y/n} \sim t(n)$ if $X \sim \mathcal{N}(0,1)$ and $Y \sim \chi^2(n)$ are independent;
- $(X/m)/(Y/n) \sim F(m,n)$ if $X \sim \chi^2(m)$ and $Y \sim \chi^2(n)$ are independent.

Important identities for iid normal samples

Let $X_1, ..., X_n \sim \mathcal{N}(\mu, \sigma^2)$, $\bar{X} = n^{-1} \sum_{i=1}^n X_i$, and sample variance $S^2 = (n-1)^{-1} \sum_{i=1}^n (X_i - \bar{X})^2$

- $n^{1/2}(\bar{X}-\mu)/\sigma \sim \mathcal{N}(0,1)$
- $(n-1)S^2/\sigma^2 \sim \chi^2(n-1)$
- \bar{X} and S^2 are independent of each other
- $n^{1/2}(\bar{X} \mu)/S \sim t(n-1)$

Taylor series (optional, CB Def 5.5.20 & Thm 5.5.21)

Taylor series about $x_0 \in \mathbb{R}$ for univariate functions

• Suppose f has derivative of order n+1 within an open interval of x_0 , say $(x_0 - \varepsilon, x_0 + \varepsilon)$ with $\varepsilon > 0$. Then, for $x \in (x_0 - \varepsilon, x_0 + \varepsilon)$,

$$f(x) \approx \sum_{k=0}^{n} \frac{f^{(n)}(x_0)}{k!} (x - x_0)^k = f(x_0) + \sum_{k=1}^{n} \frac{f^{(n)}(x_0)}{k!} (x - x_0)^k,$$

where $f^{(n)}(x_0) = \frac{d^n}{dx^n} f(x)|_{x=x_0}$.

• Called the Maclaurin series if $x_0 = 0$

Taylor series about $x_0 \in \mathbb{R}^p$ for multivariate functions

Under regularity conditions,

$$f(\boldsymbol{x}) \approx f(\boldsymbol{x}_0) + (\boldsymbol{x} - \boldsymbol{x}_0)^{\top} \nabla f(\boldsymbol{x}_0) + \frac{1}{2} (\boldsymbol{x} - \boldsymbol{x}_0)^{\top} \mathbf{H}(\boldsymbol{x}_0) (\boldsymbol{x} - \boldsymbol{x}_0),$$

where the gradient $\nabla f(\boldsymbol{x}_0) = [\frac{\partial}{\partial x_1} f(\boldsymbol{x}_0), \cdots, \frac{\partial}{\partial x_p} f(\boldsymbol{x}_0)]^{\top}$ and the Hessian $\mathbf{H}(\boldsymbol{x}_0) = [\frac{\partial^2}{\partial x_i \partial x_j} f(\boldsymbol{x}_0)]_{p \times p}$.

Application (optional)

- Approximate unknown or complex f with a polynomial
 - $-\Delta$ -method
 - Asymptotic theory for maximum likelihood estimators
- Moment generating function (mgf): $M_X(t) = \mathbb{E}\{\exp(tX)\} = \sum_{n=0}^{\infty} t^n \mathbb{E}(X^n)/n!$ Maclaurin series of $\exp(tX)$: $\exp(tX) = \sum_{n=0}^{\infty} (tX)^n/n! \Rightarrow \mathbb{E}(X^n) = (\partial^n/\partial t^n) M_X(t) \mid_{t=0}$

Generating functions

Moment generating function (mgf, CB Sec. 2.3)

- Univariate r.v. X
 - mgf $M_X(t) = \mathbb{E}\{\exp(tX)\}\$ if $\mathbb{E}\{\exp(tX)\}\$ < ∞ for t in a neighborhood of 0; otherwise we say that the mgf does not exist or is undefined.
 - * Continuous X: $M_X(t) = \int_{-\infty}^{\infty} \exp(tx) f_X(x) dx$ * Discrete X: $M_X(t) = \sum_{\{x: x \in \text{supp}(X)\}} \exp(tx) p_X(x)$ $-M_{aX+b}(t) = \exp(bt) M_X(at)$
- (Optional) multivariate r.v. $\mathbf{X} = (X_1, \dots, X_p)^{\top} \in \mathbb{R}^p$
 - mgf $M_{\mathbf{X}}(t)$ is defined as

$$M_{\mathbf{X}}(\boldsymbol{t}) = \mathrm{E}\{\exp(\boldsymbol{t}^{\top}\mathbf{X})\} = \begin{cases} \int_{\mathbb{R}^p} \exp(\boldsymbol{t}^{\top}\mathbf{X}) f_{\mathbf{X}}(\boldsymbol{x}) \mathrm{d}\boldsymbol{x} & \text{continuous } \mathbf{X} \\ \sum_{\{\boldsymbol{x}: \boldsymbol{x} \in \text{supp}(\mathbf{X})\}} \exp(\boldsymbol{t}^{\top}\mathbf{X}) p_{\mathbf{X}}(\boldsymbol{x}) & \text{discrete } \mathbf{X} \end{cases}$$

provided that $E\{\exp(\mathbf{t}^{\top}\mathbf{X})\} < \infty$ for $\mathbf{t} = (t_1, \dots, t_p)^{\top}$ in some neighborhood of $\mathbf{0}$; otherwise we say that the mgf does not exist or is undefined.

- $-M_{\mathbf{AX}+\boldsymbol{b}}(\boldsymbol{t}) = \exp(\boldsymbol{b}^{\top}\boldsymbol{t})M_{\mathbf{X}}(\mathbf{A}^{\top}\boldsymbol{t}) = \exp(\boldsymbol{b}^{\top}\boldsymbol{t})\mathrm{E}\{\exp(\boldsymbol{t}^{\top}\mathbf{AX})\}$ X_1,\ldots,X_p are independent $\Rightarrow M_{\mathbf{X}}(\boldsymbol{t}) = \prod_{i=1}^p M_{X_i}(t_i)$

Example Lec6.1

- Find the mgfs of following distributions.
 - $-\mathcal{N}(\mu,\sigma^2)$.
 - $\text{ MVN}(\boldsymbol{\mu}, \boldsymbol{\Sigma}).$
 - Cauchy distribution: $f_X(x) = {\pi(1+x^2)}^{-1}, x \in \mathbb{R}$.