AP chem

Text: chapter 12

Review - 9 (Kinetics)

- rate laws, integrated rate laws, graphs and half-lives
- energy diagrams
- mechanisms

PROBLEMS 1. A reaction follows the rate law: rate Step 1: NO₂ + CO \rightarrow NO + CO₂

- a. Rate = k[CO]
- b. Rate = $k[CO]^{2}[Cl_{2}]$
- c. Rate = $k[Cl_2]$
- d. Rate = $k[CO][Cl_2]^2$
- e. Rate = $k[CO][Cl_2]$

= $k[A]^2$. Which of the following plots will give a straight line?

- a. 1/[A] vs 1/time
- b. [A]² vs time
- c. 1/[A] vs time
- d. In[A] vs time
- e. [A] vs time
- 2. For the following reaction: $NO_2(g) + CO(g) \rightarrow NO(g) + CO(g)$, the rate law is: rate = $k[NO_2]^2$. If a small amount of gaseous carbon monoxide (CO) is added to a reaction mixture that was 0.10 M in NO_2 and 0.20 M in CO, which of the following statements is true?
 - a. Both k and the reaction rate remain the same
 - b. Both k and the reaction rate increase
 - c. Both k and the reaction rate decrease
 - d. Only k increases; the reaction rate remains the same
 - e. Only the reaction rate increases; k remains the same
- 3. The specific rate constant, k, for radioactive beryllium-11 is 0.049 s⁻¹. What mass of a 0.500 mg sample of beryllium-11 remains after 28 seconds?
 - a. 0.250 mg
 - b. 0.125 mg
 - c. 0.0625 mg
 - d. 0.375 mg
 - e. 0.500 mg
- 4. The slow rate of a particular chemical reaction might be attributed to which of the following?
 - a. a low activation energy
 - b. a high activation energy
 - c. the presence of a catalyst
 - d. the temperature is high
 - e. the concentration of the reactants are high
- The steps below represent a proposed mechanism for the catalyzed oxidation of CO by O₃.

6. The decomposition of ammonia to the elements is a first-order reaction with a half-life of 200 s at a certain temperature. How long will it take the partial pressure of ammonia to decrease from 0.100 atm to 0.00625

Step 2: NO + $O_3 \rightarrow NO_2 + O_2$

catalyzed reaction?

а

b.

C.

CO₂ and O₂

NO and CO₂

NO₂ and O₂

NO and O₂

NO₂ and CO₂

What are the overall products of the

a. 200 s

atm?

- b. 400 s
- c. 800 s
- d. 1000 s
- e. 1200 s

The energy difference between the reactants and the transition state is

- a. the free energy
- b. the heat of reaction
- c. the activation energy
- d. the kinetic energy
- e. the reaction energy

8. The purpose of striking a match against the side of a box to light the match is

- to supply the free energy for the reaction
- b. to supply the activation energy for the reaction
- c. to supply the heat of reaction
- to supply the kinetic energy for the reaction
- e. to catalyze the reaction

9. The table below gives the initial concentrations and rate for three experiments:

	схреннена.			
	Exp	[CO] _o	[Cl ₂]	Rate₀
	1	0.200	0.100	3.9x 10 ⁻²⁵
	2	0.100	0.200	3.9x10 ⁻²⁵
	3	0.200	0.200	7.8x10 ⁻²⁵

The reaction is $CO + Cl_2 \rightarrow COCl_2$. What is the rate law?

- 10. The reaction (CH₃)₃CBr(aq) + H₂O(I) → (CH₃)₃COH(aq) + HBr(aq) follows the rate law: rate = k[(CH₃)₃CBr]. What will be the effect of decreasing the concentration of (CH₃)₃CBr?
 - a. The rate of the reaction will increase.
 - b. More HBr will form.
 - The rate of the reaction will decrease.
 - d. The reaction will shift to the left.
 - The equilibrium constant will increase.
- 11. When the concentration of H⁺(aq) is doubled for the reaction H₂O₂(aq) + 2Fe²⁺(aq) + 2H⁺(aq) → 2Fe³⁺(aq) + 2H₂O(g), there is no change in the reaction rate. This indicates that
 - a. the H⁺ is a spectator ion.
 - b. the rate-determining step does not involve H⁺.
 - c. the reaction mechanism does not involve H⁺.
 - d. the H⁺ is a catalyst.
 - e. the rate law is first order with respect to H⁺.
- **12.** The mechanism below has been proposed for the reaction of CHCl₃ with Cl₂.

1: Cl₂ ≠ 2Cl

2: CI + CHCl₃→CCl₃ + HCl slow

3: CCl₃ + Cl → CCl₄ fast Which of the following rate laws is consistent with this mechanism?

fast

- a. rate = $k[Cl_2]$
- b. rate = $k[CHCl_3][Cl_2]$
- c. rate = $k[CHCl_3]$
- d. rate = $k[CHCl_3]/[Cl_2]$
- e. rate = $k[CHCl_3][Cl_2]^{\frac{1}{2}}$

FREE-RESPONSE

13. A set of experiments were conducted to study the reaction: 2ClO₂(aq) + 2OH⁻(aq) → ClO₃⁻(aq) + ClO₂⁻(aq) + H₂O(l). The initial concentrations and rates are reported in the table below.

Exp	[OH] (<i>M</i>)	[CIO ₂] (M)	Rate of formation of CIO ₃ (M/min)
1	0.030	0.020	0.166
2	0.060	0.020	0.331
3	0.030	0.040	0.661

- a. Write the rate law of the reaction.
- b. Determine the value of the rate constant, including units.
- c. Calculate the initial rate of disappearance of CIO₂ in experiment 1.
- d. The following mechanism has been proposed for this reaction:

```
Step 1: CIO_2 + CIO_2 \rightleftharpoons CI_2O_4
Step 2: CI_2O_4 + OH^- \rightarrow CIO_3^- + HCIO_2
Step 3: HCIO_2 + OH^- \rightarrow CIO_2^- + H_2O
```

Which step is the rate-determining step? Show that the mechanism is consistent with both the rate law for the reaction and with the overall stoichiometry.

```
2.
      Α
3.
      В
4.
      В
5.
      A
      \mathbf{C}
6.
7.
      C
      В
8.
      E
      C
10.
11.
      В
```

12. E

C

```
a. rate = k[\text{ClO}_2]^2[\text{OH}^-]
b. 1.4 \times 10^4 / \text{M}^2\text{min}
c. -0.332 \text{ mol/L·min}
d. Step 1: rate = k_f[\text{ClO}_2]^2 = k_r[\text{Cl}_2\text{O}_4]
Step 2: rate = k[\text{Cl}_2\text{O}_4][\text{OH}^-] = k^*[\text{ClO}_2]^2[\text{OH}^-] (by substituting [\text{Cl}_2\text{O}_4] \propto [\text{ClO}_2]^2 from the fast equilibrium in step 1)
Step 3: rate = k''[\text{HClO}_2][\text{OH}^-]
```

For Step 1, the ratio of $[Cl_2O_4]$ to $[ClO_2]$ is 1:2, based on the coefficients of the reaction in step 1. So the reaction in step 2 can be re-written as: $2ClO_2 + OH^- \rightarrow ClO_3^- + HClO_2$ and the rate becomes rate = $k[ClO_2]^2[OH^-]$, which matches the rate law in part a. This must mean that Step 2 is the rate-determining step.