Precalculus

Polynomial division and factorization of cubics with rational root

Todor Miley

2019

Outline

Polynomial division

Outline

Polynomial division

Factoring cubics with rational root

Example (Polynomial long division)

Example (Polynomial long division)

$$x - 1$$
 $x^3 + 2x^2 + 1$

Example (Polynomial long division)

$$x - 1$$
 $x^3 + 2x^2 + 1$

Example (Polynomial long division)

Divide with quotient and remainder $x^3 + 2x^2 + 1$ by x - 1.

$$x - 1$$
 $x^3 + 2x^2 + 1$

Divide x^3 by x.

Example (Polynomial long division)

Divide with quotient and remainder $x^3 + 2x^2 + 1$ by x - 1.

$$\frac{x^2}{x-1} \quad \overline{x^3+2x^2 + 1}$$

Divide x^3 by x.

Divide with quotient and remainder $x^3 + 2x^2 + 1$ by x - 1.

$$x - 1$$
 x^{2} $x^{3} + 2x^{2} + 1$? ?

Multiply x^2 by divisor.

Example (Polynomial long division)

Divide with quotient and remainder $x^3 + 2x^2 + 1$ by x - 1.

Multiply x^2 by divisor.

Divide with quotient and remainder $x^3 + 2x^2 + 1$ by x - 1.

$$\begin{array}{c|cccc}
x^2 \\
x - 1 & x^3 + 2x^2 & +1 \\
 & x^3 - x^2 & \\
\hline
? & ?
\end{array}$$

Example (Polynomial long division)

Divide with quotient and remainder $x^3 + 2x^2 + 1$ by x - 1.

Divide with quotient and remainder $x^3 + 2x^2 + 1$ by x - 1.

Divide $3x^2$ by x.

Example (Polynomial long division)

Divide with quotient and remainder $x^3 + 2x^2 + 1$ by x - 1.

$$\begin{array}{c}
x^2 + 3x \\
x - 1 \\
- \\
x^3 + 2x^2 \\
x^3 - x^2 \\
\hline
3x^2 + 1
\end{array}$$

Divide $3x^2$ by x.

Divide with quotient and remainder $x^3 + 2x^2 + 1$ by x - 1.

Multiply 3x by divisor.

Divide with quotient and remainder $x^3 + 2x^2 + 1$ by x - 1.

$$\begin{array}{c}
x^{2} + 3x \\
x - 1 \\
- \\
x^{3} + 2x^{2} \\
x^{3} - x^{2} \\
3x^{2} + 1 \\
\underline{3x^{2} - 3x}
\end{array}$$

Multiply 3x by divisor.

Divide with quotient and remainder $x^3 + 2x^2 + 1$ by x - 1.

$$\begin{array}{c}
x^{2} + 3x \\
x - 1 \\
- \\
x^{3} + 2x^{2} + 1 \\
\underline{x^{3} - x^{2}} \\
- \\
\underline{3x^{2} + 1} \\
\underline{3x^{2} - 3x} \\
?
?$$

Divide with quotient and remainder $x^3 + 2x^2 + 1$ by x - 1.

$$\begin{array}{c|cccc}
x^2 + 3x \\
x - 1 & x^3 + 2x^2 + 1 \\
x^3 - x^2 & \\
- & 3x^2 + 1 \\
3x^2 - 3x & \\
\hline
3x + 1
\end{array}$$

Divide with quotient and remainder $x^3 + 2x^2 + 1$ by x - 1.

Divide 3x by x.

Divide with quotient and remainder $x^3 + 2x^2 + 1$ by x - 1.

$$\begin{array}{c}
x^{2} + 3x + 3 \\
x - 1 \\
- \\
- \\
- \\
- \\
\frac{x^{3} + 2x^{2}}{3x^{2} + 1} \\
- \\
\frac{3x^{2} - 3x}{3x + 1}
\end{array}$$

Divide 3x by x.

Divide with quotient and remainder $x^3 + 2x^2 + 1$ by x - 1.

$$\begin{array}{c}
x^2 + 3x + 3 \\
x - 1 \\
- \\
x^3 + 2x^2 \\
- \\
3x^2 + 1 \\
3x^2 - 3x \\
3x + 1 \\
?
?$$

Multiply 3 by divisor.

Divide with quotient and remainder $x^3 + 2x^2 + 1$ by x - 1.

$$\begin{array}{c}
x^2 + 3x + 3 \\
x - 1 \\
- \\
x^3 + 2x^2 \\
- \\
3x^2 + 1 \\
3x^2 - 3x \\
3x + 1 \\
3x - 3
\end{array}$$

Multiply 3 by divisor.

Divide with quotient and remainder $x^3 + 2x^2 + 1$ by x - 1.

Example (Polynomial long division)

Divide with quotient and remainder $x^3 + 2x^2 + 1$ by x - 1.

Example (Polynomial long division)

Example (Polynomial long division)

Quotient:
$$x^2 + 3x + 3$$

 $x - 1$ $x^3 + 2x^2 + 1$
 $x^3 - x^2$
 $x^3 - x^2$

(Dividend) = (Quotient) · (Divisor) + (Remainder)

$$(x^3 + 2x^2 + 1) = (x^2 + 3x + 3) · (x - 1) + 4$$

Example (Polynomial long division)

Quotient:
$$x^{2} + 3x + 3$$

 $x - 1$ $x^{3} + 2x^{2} + 1$
 $x^{3} - x^{2}$
 $x^{3} - x^{3}$
Remainder: $x^{3} - x^{2}$

(Dividend) = (Quotient) · (Divisor) + (Remainder)

$$(x^3 + 2x^2 + 1) = (x^2 + 3x + 3) \cdot (x - 1) + 4$$

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$2x-3$$
 $6x^3-19x^2+17x-3$

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$2x - 3 \quad 6x^3 - 19x^2 + 17x - 3$$

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$\begin{array}{c}
? \\
2x - 3 \overline{6x^3 - 19x^2 + 17x - 3}
\end{array}$$

Divide $6x^3$ by 2x.

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$\begin{array}{c|c}
3x^2 \\
2x - 3 & 6x^3 - 19x^2 + 17x - 3
\end{array}$$

Divide $6x^3$ by 2x.

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$\begin{array}{r}
3x^2 \\
2x - 3 \overline{)6x^3 - 19x^2 + 17x - 3} \\
? ?
\end{array}$$

Multiply $3x^2$ by divisor.

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$\begin{array}{r}
3x^2 \\
2x - 3 \overline{)6x^3 - 19x^2 + 17x - 3} \\
\underline{6x^3 - 9x^2}
\end{array}$$

Multiply $3x^2$ by divisor.

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$\begin{array}{r}
3x^{2} \\
2x - 3 \\
- \\
6x^{3} - 19x^{2} + 17x - 3 \\
6x^{3} - 9x^{2} \\
- 10x^{2} + 17x - 3
\end{array}$$

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

Divide $-10x^2$ by 2x.

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

Divide $-10x^2$ by 2x.

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$\begin{array}{r}
3x^2 - 5x \\
2x - 3 \\
- \\
6x^3 - 19x^2 + 17x - 3 \\
6x^3 - 9x^2 \\
- 10x^2 + 17x - 3 \\
?
\end{array}$$

Multiply -5x by divisor.

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$\begin{array}{r}
3x^2 - 5x \\
2x - 3 \\
 - \\
 6x^3 - 19x^2 + 17x - 3 \\
\underline{6x^3 - 9x^2} \\
 - 10x^2 + 17x - 3 \\
\underline{-10x^2 + 15x}
\end{array}$$

Multiply -5x by divisor.

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$\begin{array}{r}
3x^2 - 5x \\
2x - 3 \overline{\smash{\big)}6x^3 - 19x^2 + 17x - 3} \\
- 6x^3 - 9x^2 \\
- 10x^2 + 17x - 3 \\
\underline{-10x^2 + 15x} \\
?
?$$

Subtract last two polynomials.

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$\begin{array}{r}
3x^2 - 5x \\
2x - 3 \overline{\smash{\big)}6x^3 - 19x^2 + 17x - 3} \\
- 6x^3 - 9x^2 \\
- 10x^2 + 17x - 3 \\
- 10x^2 + 15x \\
2x - 3
\end{array}$$

Subtract last two polynomials.

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$\begin{array}{c}
3x^2 - 5x \quad ? \\
6x^3 - 19x^2 + 17x - 3 \\
6x^3 - 9x^2 \\
- 10x^2 + 17x - 3 \\
- 10x^2 + 15x \\
2x - 3
\end{array}$$

Divide 2x by 2x.

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$\begin{array}{r}
3x^2 - 5x + 1 \\
6x^3 - 19x^2 + 17x - 3 \\
6x^3 - 9x^2 \\
- 10x^2 + 17x - 3 \\
- 10x^2 + 15x \\
2x - 3
\end{array}$$

Divide 2x by 2x.

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$\begin{array}{r}
3x^2 - 5x + 1 \\
6x^3 - 19x^2 + 17x - 3 \\
6x^3 - 9x^2 \\
- 10x^2 + 17x - 3 \\
- 10x^2 + 15x \\
2x - 3 \\
?
\end{array}$$

Multiply 1 by divisor.

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

Multiply 1 by divisor.

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

Subtract last two polynomials.

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

Subtract last two polynomials.

Example

Example

Quotient:
$$3x^2 - 5x + 1$$

$$2x - 3 = 6x^3 - 19x^2 + 17x - 3$$

$$- 6x^3 - 9x^2$$

$$- 10x^2 + 17x - 3$$

$$- 10x^2 + 15x$$

$$- 2x - 3$$

$$- 2x - 3$$

(Dividend)=(Quotient) · (Divisor) + (Remainder)

$$(6x^3 - 19x^2 + 17x - 3) = (3x^2 - 5x + 1) \cdot (2x - 3)$$

Example

Quotient:
$$3x^2 - 5x + 1$$

$$2x - 3 | 6x^3 - 19x^2 + 17x - 3$$

$$- 6x^3 - 9x^2$$

$$- 10x^2 + 17x - 3$$

$$- 10x^2 + 15x$$

$$- 2x - 3$$
Remainder: 0

(Dividend)=(Quotient) · (Divisor) + (Remainder)

$$(6x^3 - 19x^2 + 17x - 3) = (3x^2 - 5x + 1) \cdot (2x - 3)$$

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

Quotient:
$$3x^2 - 5x + 1$$

$$2x - 3 | 6x^3 - 19x^2 + 17x - 3$$

$$- 6x^3 - 9x^2$$

$$- 10x^2 + 17x - 3$$

$$- 10x^2 + 15x$$

$$- 2x - 3$$
Remainder: 0

Remainder:

(Dividend)=(Quotient) · (Divisor) + (Remainder)

$$(6x^3 - 19x^2 + 17x - 3) = (3x^2 - 5x + 1) \cdot (2x - 3)$$

Example

$$(6x^3 - 19x^2 + 17x - 3) = (3x^2 - 5x + 1) \cdot (2x - 3)$$

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$(6x^{3} - 19x^{2} + 17x - 3) = (3x^{2} - 5x + 1) \cdot (2x - 3)$$

$$= 3(x - ?) (2x - 3)$$

$$X_1, X_2 = ?$$

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$(6x^{3} - 19x^{2} + 17x - 3) = (3x^{2} - 5x + 1) \cdot (2x - 3)$$

$$= 3\left(x - ?\right) \left(x - ?\right)$$

$$(2x - 3)$$

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$(6x^{3} - 19x^{2} + 17x - 3) = (3x^{2} - 5x + 1) \cdot (2x - 3)$$

$$= 3(x - ?) (x - ?)$$

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-5) \pm \sqrt{(-5)^2 - 4 \cdot 3 \cdot 1}}{2 \cdot 3}$$

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$(6x^{3} - 19x^{2} + 17x - 3) = (3x^{2} - 5x + 1) \cdot (2x - 3)$$

$$= 3(x - ?) (x - ?)$$

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-5) \pm \sqrt{(-5)^2 - 4 \cdot 3 \cdot 1}}{2 \cdot 3}$$

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$(6x^{3} - 19x^{2} + 17x - 3) = (3x^{2} - 5x + 1) \cdot (2x - 3)$$

$$= 3(x - ?) (x - ?)$$

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-5) \pm \sqrt{(-5)^2 - 4 \cdot 3 \cdot 1}}{2 \cdot 3}$$

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$(6x^{3} - 19x^{2} + 17x - 3) = (3x^{2} - 5x + 1) \cdot (2x - 3)$$

$$= 3\left(x - \left(\frac{5 + \sqrt{13}}{6}\right)\right)\left(x - \left(\frac{5 - \sqrt{13}}{6}\right)\right)(2x - 3)$$

$$X_1, X_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-5) \pm \sqrt{(-5)^2 - 4 \cdot 3 \cdot 1}}{2 \cdot 3} = \frac{5 \pm \sqrt{13}}{6}$$

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$(6x^{3} - 19x^{2} + 17x - 3) = (3x^{2} - 5x + 1) \cdot (2x - 3)$$

$$= 3\left(x - \left(\frac{5 + \sqrt{13}}{6}\right)\right)\left(x - \left(\frac{5 - \sqrt{13}}{6}\right)\right)(2x - 3)$$

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-5) \pm \sqrt{(-5)^2 - 4 \cdot 3 \cdot 1}}{2 \cdot 3} = \frac{5 \pm \sqrt{13}}{6}$$

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$(6x^{3} - 19x^{2} + 17x - 3) = (3x^{2} - 5x + 1) \cdot (2x - 3)$$

$$= 3\left(x - \left(\frac{5 + \sqrt{13}}{6}\right)\right)\left(x - \left(\frac{5 - \sqrt{13}}{6}\right)\right)(2x - 3)$$

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-5) \pm \sqrt{(-5)^2 - 4 \cdot 3 \cdot 1}}{2 \cdot 3} = \frac{5 \pm \sqrt{13}}{6}$$
 We are ready to solve the equation.

$$6x^3 - 19x^2 + 17x - 3 = 0$$

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$(6x^3 - 19x^2 + 17x - 3) = (3x^2 - 5x + 1) \cdot (2x - 3)$$

$$= 3\left(x - \left(\frac{5 + \sqrt{13}}{6}\right)\right)\left(x - \left(\frac{5 - \sqrt{13}}{6}\right)\right)(2x - 3)$$

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-5) \pm \sqrt{(-5)^2 - 4 \cdot 3 \cdot 1}}{2 \cdot 3} = \frac{5 \pm \sqrt{13}}{6}$$
 We are ready to solve the equation.

$$6x^{3} - 19x^{2} + 17x - 3 = 0$$

$$3\left(x - \left(\frac{5 + \sqrt{13}}{6}\right)\right)\left(x - \left(\frac{5 - \sqrt{13}}{6}\right)\right)(2x - 3) = 0$$

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$(6x^{3} - 19x^{2} + 17x - 3) = (3x^{2} - 5x + 1) \cdot (2x - 3)$$

$$= 3\left(x - \left(\frac{5 + \sqrt{13}}{6}\right)\right)\left(x - \left(\frac{5 - \sqrt{13}}{6}\right)\right)(2x - 3)$$

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-5) \pm \sqrt{(-5)^2 - 4 \cdot 3 \cdot 1}}{2 \cdot 3} = \frac{5 \pm \sqrt{13}}{6}$$
 We are ready to solve the equation.

$$6x^{3} - 19x^{2} + 17x - 3 = 0$$

$$3\left(x - \left(\frac{5 + \sqrt{13}}{6}\right)\right)\left(x - \left(\frac{5 - \sqrt{13}}{6}\right)\right)\left(\frac{2x - 3}{6}\right) = 0$$

$$2x - 3 = 0 \quad \text{or} \quad x = \left(\frac{5 + \sqrt{13}}{6}\right) \quad \text{or} \quad x = \left(\frac{5 - \sqrt{13}}{6}\right)$$

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$(6x^{3} - 19x^{2} + 17x - 3) = (3x^{2} - 5x + 1) \cdot (2x - 3)$$

$$= 3\left(x - \left(\frac{5 + \sqrt{13}}{6}\right)\right)\left(x - \left(\frac{5 - \sqrt{13}}{6}\right)\right)(2x - 3)$$

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-5) \pm \sqrt{(-5)^2 - 4 \cdot 3 \cdot 1}}{2 \cdot 3} = \frac{5 \pm \sqrt{13}}{6}$$
 We are ready to solve the equation.

$$6x^{3} - 19x^{2} + 17x - 3 = 0$$

$$3\left(x - \left(\frac{5 + \sqrt{13}}{6}\right)\right)\left(x - \left(\frac{5 - \sqrt{13}}{6}\right)\right)(2x - 3) = 0$$

$$2x - 3 = 0 \quad \text{or} \quad x = \left(\frac{5 + \sqrt{13}}{6}\right) \quad \text{or} \quad x = \left(\frac{5 - \sqrt{13}}{6}\right)$$

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$(6x^{3} - 19x^{2} + 17x - 3) = (3x^{2} - 5x + 1) \cdot (2x - 3)$$

$$= 3\left(x - \left(\frac{5 + \sqrt{13}}{6}\right)\right)\left(x - \left(\frac{5 - \sqrt{13}}{6}\right)\right)(2x - 3)$$

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-5) \pm \sqrt{(-5)^2 - 4 \cdot 3 \cdot 1}}{2 \cdot 3} = \frac{5 \pm \sqrt{13}}{6}$$
 We are ready to solve the equation.

$$6x^{3} - 19x^{2} + 17x - 3 = 0$$

$$3\left(x - \left(\frac{5 + \sqrt{13}}{6}\right)\right)\left(x - \left(\frac{5 - \sqrt{13}}{6}\right)\right)(2x - 3) = 0$$

$$2x - 3 = 0 \quad \text{or} \quad x = \left(\frac{5 + \sqrt{13}}{6}\right) \quad \text{or} \quad x = \left(\frac{5 - \sqrt{13}}{6}\right)$$

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$(6x^{3} - 19x^{2} + 17x - 3) = (3x^{2} - 5x + 1) \cdot (2x - 3)$$

$$= 3\left(x - \left(\frac{5 + \sqrt{13}}{6}\right)\right)\left(x - \left(\frac{5 - \sqrt{13}}{6}\right)\right)(2x - 3)$$

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-5) \pm \sqrt{(-5)^2 - 4 \cdot 3 \cdot 1}}{2 \cdot 3} = \frac{5 \pm \sqrt{13}}{6}$$
 We are ready to solve the equation.

$$6x^{3} - 19x^{2} + 17x - 3 = 0$$

$$3\left(x - \left(\frac{5 + \sqrt{13}}{6}\right)\right)\left(x - \left(\frac{5 - \sqrt{13}}{6}\right)\right)(2x - 3) = 0$$

$$2x - 3 = 0 \quad \text{or} \quad x = \left(\frac{5 + \sqrt{13}}{6}\right) \quad \text{or} \quad x = \left(\frac{5 - \sqrt{13}}{6}\right)$$

$$x = \frac{3}{2}$$

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$(6x^{3} - 19x^{2} + 17x - 3) = (3x^{2} - 5x + 1) \cdot (2x - 3)$$

$$= 3\left(x - \left(\frac{5 + \sqrt{13}}{6}\right)\right)\left(x - \left(\frac{5 - \sqrt{13}}{6}\right)\right)(2x - 3)$$

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-5) \pm \sqrt{(-5)^2 - 4 \cdot 3 \cdot 1}}{2 \cdot 3} = \frac{5 \pm \sqrt{13}}{6}$$
 We are ready to solve the equation.

$$6x^{3} - 19x^{2} + 17x - 3 = 0$$

$$3\left(x - \left(\frac{5 + \sqrt{13}}{6}\right)\right)\left(x - \left(\frac{5 - \sqrt{13}}{6}\right)\right)(2x - 3) = 0$$

$$2x - 3 = 0 \quad \text{or} \quad x = \left(\frac{5 + \sqrt{13}}{6}\right) \quad \text{or} \quad x = \left(\frac{5 - \sqrt{13}}{6}\right)$$

$$x = \frac{3}{2}$$

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$(6x^{3} - 19x^{2} + 17x - 3) = (3x^{2} - 5x + 1) \cdot (2x - 3)$$

$$= 3\left(x - \left(\frac{5 + \sqrt{13}}{6}\right)\right)\left(x - \left(\frac{5 - \sqrt{13}}{6}\right)\right)(2x - 3)$$

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-5) \pm \sqrt{(-5)^2 - 4 \cdot 3 \cdot 1}}{2 \cdot 3} = \frac{5 \pm \sqrt{13}}{6}$$
 We are ready to solve the equation.

$$6x^{3} - 19x^{2} + 17x - 3 = 0$$

$$3\left(x - \left(\frac{5 + \sqrt{13}}{6}\right)\right)\left(x - \left(\frac{5 - \sqrt{13}}{6}\right)\right)(2x - 3) = 0$$

$$2x - 3 = 0 \quad \text{or} \quad x = \left(\frac{5 + \sqrt{13}}{6}\right) \quad \text{or} \quad x = \left(\frac{5 - \sqrt{13}}{6}\right)$$

$$x = \frac{3}{2}$$

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$2x^3 + x^2 - 7x - 6 = 0$$

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$2x^3 + x^2 - 7x - 6 = 0$$

Make sure to practice with the graphing calculator you will on your exam(s).

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$2x^3 + x^2 - 7x - 6 = 0$$

Make sure to practice with the graphing calculator you will on your exam(s). The graph appears to intersect the *x* axis at: ?

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$2x^3 + x^2 - 7x - 6 = 0$$

Make sure to practice with the graphing calculator you will on your exam(s). The graph appears to intersect the x axis at: -1.5, -1, 2.

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$2x^3 + x^2 - 7x - 6 = 0$$

Make sure to practice with the graphing calculator you will on your exam(s). The graph appears to intersect the x axis at: -1.5, -1, 2. The left hand side should factor as:

$$?(x - ?$$

$$(x-?)(x-?)(x-?)$$

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$2x^3 + x^2 - 7x - 6 = 0$$

Make sure to practice with the graphing calculator you will on your exam(s). The graph appears to intersect the x axis at: -1.5, -1, 2. The left hand side should factor as:

$$(x-(-1.5))(x-(-1))(x-2)$$

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$2x^3 + x^2 - 7x - 6 = 0$$

Make sure to practice with the graphing calculator you will on your exam(s). The graph appears to intersect the x axis at: -1.5, -1, 2. The left hand side should factor as:

$$2(x-(-1.5))(x-(-1))(x-2)$$

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$2x^3 + x^2 - 7x - 6 = 0$$

Make sure to practice with the graphing calculator you will on your exam(s). The graph appears to intersect the x axis at: -1.5, -1, 2. The left hand side should factor as:

$$2(x-(-1.5))(x-(-1))(x-2)=(2x+3)(x+1)(x-2)$$

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$2x^3 + x^2 - 7x - 6 = 0$$

Make sure to practice with the graphing calculator you will on your exam(s). The graph appears to intersect the x axis at: -1.5, -1, 2. The left hand side should factor as:

$$2(x-(-1.5))(x-(-1))(x-2)=(2x+3)(x+1)(x-2)$$

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$2x^3 + x^2 - 7x - 6 = 0$$

Make sure to practice with the graphing calculator you will on your exam(s). The graph appears to intersect the x axis at: -1.5, -1, 2. The left hand side should factor as:

$$2(x - (-1.5))(x - (-1))(x - 2) = (2x + 3)(x + 1)(x - 2)$$
$$= (2x^{2} + 5x + 3)(x - 2)$$

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$2x^3 + x^2 - 7x - 6 = 0$$

Make sure to practice with the graphing calculator you will on your exam(s). The graph appears to intersect the x axis at: -1.5, -1, 2. The left hand side should factor as:

$$2(x - (-1.5))(x - (-1))(x - 2) = (2x + 3)(x + 1)(x - 2)$$
$$= (2x^2 + 5x + 3)(x - 2)$$

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$2x^3 + x^2 - 7x - 6 = 0$$

Make sure to practice with the graphing calculator you will on your exam(s). The graph appears to intersect the x axis at: -1.5, -1, 2. The left hand side should factor as:

$$2(x - (-1.5))(x - (-1))(x - 2) = (2x + 3)(x + 1)(x - 2)$$
$$= (2x^2 + 5x + 3)(x - 2)$$

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$2x^3 + x^2 - 7x - 6 = 0$$

Make sure to practice with the graphing calculator you will on your exam(s). The graph appears to intersect the x axis at: -1.5, -1, 2. The left hand side should factor as:

$$2(x - (-1.5))(x - (-1))(x - 2) = (2x + 3)(x + 1)(x - 2)$$
$$= (2x^2 + 5x + 3)(x - 2)$$

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$2x^3 + x^2 - 7x - 6 = 0$$

Make sure to practice with the graphing calculator you will on your exam(s). The graph appears to intersect the x axis at: -1.5, -1, 2. The left hand side should factor as:

$$2(x - (-1.5))(x - (-1))(x - 2) = (2x + 3)(x + 1)(x - 2)$$
$$= (2x^{2} + 5x + 3)(x - 2) = (2x^{3} + 5x^{2} + 3x) - (4x^{2} + 10x + 6)$$

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$2x^3 + x^2 - 7x - 6 = 0$$

Make sure to practice with the graphing calculator you will on your exam(s). The graph appears to intersect the x axis at: -1.5, -1, 2. The left hand side should factor as:

$$2(x - (-1.5))(x - (-1))(x - 2) = (2x + 3)(x + 1)(x - 2)$$
$$= (2x^{2} + 5x + 3)(x - 2) = (2x^{3} + 5x^{2} + 3x) - (4x^{2} + 10x + 6)$$

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$2x^3 + x^2 - 7x - 6 = 0$$

Make sure to practice with the graphing calculator you will on your exam(s). The graph appears to intersect the x axis at: -1.5, -1, 2. The left hand side should factor as:

$$2(x - (-1.5))(x - (-1))(x - 2) = (2x + 3)(x + 1)(x - 2)$$

$$= (2x^{2} + 5x + 3)(x - 2) = (2x^{3} + 5x^{2} + 3x) - (4x^{2} + 10x + 6)$$

$$= 2x^{3} + x^{2} - 7x - 6$$

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$2x^3 + x^2 - 7x - 6 = 0$$

Make sure to practice with the graphing calculator you will on your exam(s). The graph appears to intersect the x axis at: -1.5, -1, 2. The left hand side should factor as:

$$2(x - (-1.5))(x - (-1))(x - 2) = (2x + 3)(x + 1)(x - 2)$$

$$= (2x^{2} + 5x + 3)(x - 2) = (2x^{3} + 5x^{2} + 3x) - (4x^{2} + 10x + 6)$$

$$= 2x^{3} + x^{2} - 7x - 6$$

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$2x^3 + x^2 - 7x - 6 = 0$$
$$(2x+3)(x+1)(x-2) = 0$$

Make sure to practice with the graphing calculator you will on your exam(s). The graph appears to intersect the x axis at: -1.5, -1, 2. The left hand side should factor as:

$$2(x - (-1.5))(x - (-1))(x - 2) = (2x + 3)(x + 1)(x - 2)$$

$$= (2x^{2} + 5x + 3)(x - 2) = (2x^{3} + 5x^{2} + 3x) - (4x^{2} + 10x + 6)$$

$$= 2x^{3} + x^{2} - 7x - 6$$

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$2x^3 + x^2 - 7x - 6 = 0$$

 $(2x+3)(x+1)(x-2) = 0$
 $x = -\frac{3}{2}$ or $x = -1$ or $x = 2$

Make sure to practice with the graphing calculator you will on your exam(s). The graph appears to intersect the x axis at: -1.5, -1, 2. The left hand side should factor as:

$$2(x - (-1.5))(x - (-1))(x - 2) = (2x + 3)(x + 1)(x - 2)$$
$$= (2x^{2} + 5x + 3)(x - 2) = (2x^{3} + 5x^{2} + 3x) - (4x^{2} + 10x + 6)$$
$$= 2x^{3} + x^{2} - 7x - 6$$

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

The graph appears to intersect the *x* axis at:

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

The graph appears to intersect the *x* axis at:

? ,? ,3.

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

The graph appears to intersect the *x* axis at:

? ,3. What are the two roots besides 3?

$$x-3$$
 x^3-x^2-8x+6

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

The graph appears to intersect the *x* axis at:

? ,3. What are the two roots besides 3?

$$x-3$$
 x^3-x^2-8x+6

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

The graph appears to intersect the *x* axis at:

? ,3. What are the two roots besides 3?

$$x - 3$$
 $x^3 - x^2 - 8x + 6$

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

The graph appears to intersect the *x* axis at:

? ,3. What are the two roots besides 3?

$$x - 3$$
 $x^3 - x^2 - 8x + 6$

Divide x^3 by x.

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

The graph appears to intersect the *x* axis at:

? ,3. What are the two roots besides 3?

$$\frac{x^2}{x-3}$$
 $\frac{x^3-x^2-8x+6}{x^3-x^2-8x+6}$

Divide x^3 by x.

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

The graph appears to intersect the *x* axis at:

? ,3. What are the two roots besides 3?

$$x-3$$
 x^2 x^3-x^2-8x+6 ? ?

Multiply x^2 by divisor.

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

The graph appears to intersect the *x* axis at:

? ,3. What are the two roots besides 3?

$$\begin{array}{c}
x^2 \\
x - 3 \quad x^3 - x^2 - 8x + 6 \\
x^3 - 3x^2
\end{array}$$

Multiply x^2 by divisor.

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

The graph appears to intersect the *x* axis at:

? ,3. What are the two roots besides 3?

Subtract last two polynomials.

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

The graph appears to intersect the *x* axis at:

? ,3. What are the two roots besides 3?

$$\begin{array}{r}
 x^{2} \\
 x - 3 \quad \overline{\smash{\big|} x^{3} - x^{2} - 8x + 6 \big|} \\
 \underline{x^{3} - 3x^{2}} \\
 \underline{2x^{2} - 8x + 6}
\end{array}$$

Subtract last two polynomials.

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

The graph appears to intersect the *x* axis at:

? ,3. What are the two roots besides 3?

$$\begin{array}{c|cccc}
x & & x^2 & ? \\
\hline
x & & x^3 - x^2 - 8x + 6 \\
& & x^3 - 3x^2 \\
\hline
& & 2x^2 - 8x + 6
\end{array}$$

Divide $2x^2$ by x.

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

The graph appears to intersect the *x* axis at:

? ,3. What are the two roots besides 3?

$$\begin{array}{c}
x^2 + 2x \\
x - 3 \quad x^3 - x^2 - 8x + 6 \\
\underline{x^3 - 3x^2} \\
2x^2 - 8x + 6
\end{array}$$

Divide $2x^2$ by x.

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

The graph appears to intersect the *x* axis at:

? ,3. What are the two roots besides 3?

$$\begin{array}{c}
x^{2} + 2x \\
x^{3} - x^{2} - 8x + 6 \\
\underline{x^{3} - 3x^{2}} \\
2x^{2} - 8x + 6 \\
?
?
\end{array}$$

Multiply 2x by divisor.

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

The graph appears to intersect the *x* axis at:

? ,3. What are the two roots besides 3?

$$\begin{array}{c}
x - 3 \\
 - 3 \\
 - 3 \\
 - 3 \\
 - 3x^{2} \\
 - 3x^{2} \\
 - 3x^{2} \\
 - 3x^{2} \\
 - 2x^{2} - 8x + 6 \\
 - 2x^{2} - 6x
\end{array}$$

Multiply 2x by divisor.

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

The graph appears to intersect the *x* axis at:

? ,3. What are the two roots besides 3?

$$\begin{array}{r}
x^2 + 2x \\
x - 3 \quad x^3 - x^2 - 8x + 6 \\
\underline{x^3 - 3x^2} \\
- \quad \underline{2x^2 - 8x + 6} \\
\underline{2x^2 - 6x} \\
\end{array}$$

Subtract last two polynomials.

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

The graph appears to intersect the *x* axis at:

? ,3. What are the two roots besides 3?

$$\begin{array}{r}
x^2 + 2x \\
x - 3 \quad x^3 - x^2 - 8x + 6 \\
\underline{x^3 - 3x^2} \\
- \quad \underline{2x^2 - 8x + 6} \\
\underline{2x^2 - 6x} \\
\underline{-2x + 6}
\end{array}$$

Subtract last two polynomials.

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

The graph appears to intersect the *x* axis at:

? ,3. What are the two roots besides 3?

$$\begin{array}{c}
x - 3 \\
- 3 \\
- 3 \\
- 3x^2 \\
- 3x^2 \\
- 2x^2 - 8x + 6 \\
- 2x^2 - 6x \\
- 2x + 6
\end{array}$$

Divide -2x by x.

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

The graph appears to intersect the *x* axis at:

? ,? ,3. What are the two roots besides 3?

$$\begin{array}{c}
x - 3 \\
- \\
x - 3
\end{array}$$

$$\begin{array}{c}
x^2 + 2x - 2 \\
x^3 - x^2 - 8x + 6 \\
\underline{x^3 - 3x^2} \\
2x^2 - 8x + 6 \\
\underline{2x^2 - 6x} \\
- \underline{2x + 6}
\end{array}$$

Divide -2x by x.

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

The graph appears to intersect the *x* axis at:

? ,3. What are the two roots besides 3?

Multiply -2 by divisor.

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

The graph appears to intersect the *x* axis at:

? ,3. What are the two roots besides 3?

$$\begin{array}{c}
x^2 + 2x - 2 \\
x^3 - x^2 - 8x + 6 \\
x^3 - 3x^2 \\
- 2x^2 - 8x + 6 \\
2x^2 - 6x \\
-2x + 6 \\
-2x + 6
\end{array}$$

Multiply -2 by divisor.

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

The graph appears to intersect the *x* axis at:

? ,3. What are the two roots besides 3?

$$\begin{array}{r}
x^2 + 2x - 2 \\
x - 3 \quad x^3 - x^2 - 8x + 6 \\
\underline{x^3 - 3x^2} \\
- \quad \underline{2x^2 - 8x + 6} \\
2x^2 - 6x \\
- \quad \underline{-2x + 6} \\
\underline{-2x + 6} \\
2x - 2x + 6
\end{array}$$

Subtract last two polynomials.

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

The graph appears to intersect the *x* axis at:

? ,3. What are the two roots besides 3?

$$\begin{array}{r}
x^2 + 2x - 2 \\
x - 3 \quad x^3 - x^2 - 8x + 6 \\
\underline{x^3 - 3x^2} \\
- \quad \underline{2x^2 - 8x + 6} \\
2x^2 - 6x \\
\underline{-2x + 6} \\
0
\end{array}$$

Subtract last two polynomials.

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

The graph appears to intersect the *x* axis at:

$$\begin{array}{c}
x^2 + 2x - 2 \\
x - 3 \quad x^3 - x^2 - 8x + 6 \\
\underline{x^3 - 3x^2} \\
- \quad \underline{2x^2 - 8x + 6} \\
2x^2 - 6x \\
- 2x + 6 \\
\underline{-2x + 6} \\
0
\end{array}$$

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^{3} - x^{2} - 8x + 6 = 0$$
$$(x - 3)(x^{2} + 2x - 2) + 0 = 0$$

The graph appears to intersect the *x* axis at:

Quotient:	$x^2 + 2x - 2$
x - 3	$x^3 - x^2 - 8x + 6$
_	$x^3 - 3x^2$
	$2x^2 - 8x + 6$
_	$2x^2 - 6x$
	-2x+6
_	-2x+6
	0

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

(x - 3)(x² + 2x - 2) + 0 = 0

The graph appears to intersect the *x* axis at:

Quotient:
$$x^2 + 2x - 2$$

 $x - 3$ $x^3 - x^2 - 8x + 6$
 $x^3 - 3x^2$
 $2x^2 - 8x + 6$
 $2x^2 - 6x$
 $2x + 6$
Remainder: 0

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

(x - 3)(x² + 2x - 2) = 0

The graph appears to intersect the *x* axis at:

Quotient:
$$x^2 + 2x - 2$$

 $x - 3$ $x^3 - x^2 - 8x + 6$
 $x^3 - 3x^2$
 $2x^2 - 8x + 6$
 $2x^2 - 6x$
 $2x + 6$
Remainder: 0

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$
$$(x - 3)(x^2 + 2x - 2) = 0$$

$$x - 3 = 0$$
 or $x =$

The graph appears to intersect the *x* axis at:

?

- ?
- ,3. What are the two roots besides 3?

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

(x - 3)(x² + 2x - 2) = 0

$$x - 3 = 0$$
 or $x =$

$$x = 3$$

The graph appears to intersect the *x* axis at:

?

- ?
- ,3. What are the two roots besides 3?

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^{3} - x^{2} - 8x + 6 = 0$$

$$(x - 3)(x^{2} + 2x - 2) = 0$$

$$x - 3 = 0 \quad \text{or} \quad x = \frac{-2 \pm \sqrt{(2)^{2} - 4 \cdot 1 \cdot (-2)}}{2 \cdot 1}$$

$$x = 3$$

The graph appears to intersect the *x* axis at:

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^{3} - x^{2} - 8x + 6 = 0$$

$$(x - 3)(x^{2} + 2x - 2) = 0$$

$$x - 3 = 0 \quad \text{or} \quad x = \frac{-2 \pm \sqrt{(2)^{2} - 4 \cdot 1 \cdot (-2)}}{2 \cdot 1}$$

$$x = 3$$

The graph appears to intersect the *x* axis at:

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^{3} - x^{2} - 8x + 6 = 0$$

$$(x - 3)(x^{2} + 2x - 2) = 0$$

$$x - 3 = 0 \quad \text{or} \quad x = \frac{-2 \pm \sqrt{(2)^{2} - 4 \cdot 1 \cdot (-2)}}{2 \cdot 1}$$

$$x = 3$$

The graph appears to intersect the x axis at:

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^{3} - x^{2} - 8x + 6 = 0$$

$$(x - 3)(x^{2} + 2x - 2) = 0$$

$$x - 3 = 0 \quad \text{or} \quad x = \frac{-2 \pm \sqrt{(2)^{2} - 4 \cdot 1 \cdot (-2)}}{2}$$

$$x = 3 \quad x = \frac{-2 \pm \sqrt{12}}{2}$$

The graph appears to intersect the *x* axis at:

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^{3} - x^{2} - 8x + 6 = 0$$

$$(x - 3)(x^{2} + 2x - 2) = 0$$

$$x - 3 = 0 \quad \text{or} \quad x = \frac{-2 \pm \sqrt{(2)^{2} - 4 \cdot 1 \cdot (-2)}}{2 \cdot 1}$$

$$x = 3 \quad x = \frac{-2 \pm \sqrt{12}}{2}$$

$$x = \frac{-2 \pm 2\sqrt{3}}{2}$$

The graph appears to intersect the x axis at:

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^{3} - x^{2} - 8x + 6 = 0$$

$$(x - 3)(x^{2} + 2x - 2) = 0$$

$$x - 3 = 0 \quad \text{or} \quad x = \frac{-2 \pm \sqrt{(2)^{2} - 4 \cdot 1 \cdot (-2)}}{2 \cdot 1}$$

$$x = 3 \quad x = \frac{-2 \pm \sqrt{12}}{2}$$

$$x = \frac{-2 \pm 2\sqrt{3}}{2} = -1 \pm \sqrt{3}.$$

The graph appears to intersect the x axis at:

?

- ?
- , 3. What are the two roots besides 3?

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^{3} - x^{2} - 8x + 6 = 0$$

$$(x - 3)(x^{2} + 2x - 2) = 0$$

$$x - 3 = 0 \quad \text{or} \quad x = \frac{-2 \pm \sqrt{(2)^{2} - 4 \cdot 1 \cdot (-2)}}{2 \cdot 1}$$

$$x = 3 \quad x = \frac{-2 \pm \sqrt{12}}{2}$$

$$x = \frac{-2 \pm 2\sqrt{3}}{2} = -1 \pm \sqrt{3}.$$

The graph appears to intersect the x axis at: $-\sqrt{3}-1$, $\sqrt{3}-1$, 3. What are the two roots besides 3? Final answer:

$$x = 3$$

$$x = -1 - \sqrt{3}$$

$$x = 3$$
 or $x = -1 - \sqrt{3}$ or $x = -1 + \sqrt{3}$.

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$

We see only one root, x = ?

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$

We see only one root, $x = 0.5 = \frac{1}{2}$.

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$

$$x - \frac{1}{2}$$
 $2x^3 + x^2 + 5x - 3$

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$

$$x - \frac{1}{2}$$
 $2x^3 + x^2 + 5x - 3$

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$

$$x - \frac{1}{2}$$
 $2x^3 + x^2 + 5x - 3$

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$

$$x - \frac{1}{2}$$
 $2x^3 + x^2 + 5x - 3$

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$

$$\begin{array}{c} 2x^2 \\ x - \frac{1}{2} & 2x^3 + x^2 + 5x - 3 \end{array}$$

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$

We see only one root, $x = 0.5 = \frac{1}{2}$. Is our guess correct? Is there another root (far away from 0)? Factor:

$$\begin{array}{c} 2x^2 \\ x - \frac{1}{2} & \boxed{2x^3 + x^2 + 5x - 3} \\ ? & ? \end{array}$$

Multiply $2x^2$ by divisor.

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$

We see only one root, $x = 0.5 = \frac{1}{2}$. Is our guess correct? Is there another root (far away from 0)? Factor:

Multiply $2x^2$ by divisor.

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$

We see only one root, $x = 0.5 = \frac{1}{2}$. Is our guess correct? Is there another root (far away from 0)? Factor:

Subtract last two polynomials.

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$

We see only one root, $x = 0.5 = \frac{1}{2}$. Is our guess correct? Is there another root (far away from 0)? Factor:

$$\begin{array}{c}
2x^{2} \\
x - \frac{1}{2} \\
- \\
2x^{3} + x^{2} + 5x - 3 \\
\underline{2x^{3} - x^{2}} \\
2x^{2} + 5x - 3
\end{array}$$

Subtract last two polynomials.

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$

We see only one root, $x = 0.5 = \frac{1}{2}$. Is our guess correct? Is there another root (far away from 0)? Factor:

Divide $2x^2$ by x.

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$

We see only one root, $x = 0.5 = \frac{1}{2}$. Is our guess correct? Is there another root (far away from 0)? Factor:

$$\begin{array}{c}
2x^{2} + 2x \\
x - \frac{1}{2} \\
 - 2x^{3} + x^{2} + 5x - 3 \\
 - 2x^{3} - x^{2} \\
 - 2x^{2} + 5x - 3
\end{array}$$

Divide $2x^2$ by x.

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$

We see only one root, $x = 0.5 = \frac{1}{2}$. Is our guess correct? Is there another root (far away from 0)? Factor:

$$\begin{array}{c}
2x^{2} + 2x \\
x - \frac{1}{2} \\
 - 2x^{3} + x^{2} + 5x - 3 \\
2x^{3} - x^{2} \\
 - 2x^{2} + 5x - 3 \\
 - 2x^{2} + 5x - 3
\end{array}$$

Multiply 2x by divisor.

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$

We see only one root, $x = 0.5 = \frac{1}{2}$. Is our guess correct? Is there another root (far away from 0)? Factor:

$$\begin{array}{c}
2x^{2} + 2x \\
x - \frac{1}{2} \\
 - 2x^{3} + x^{2} + 5x - 3 \\
 - 2x^{3} - x^{2} \\
 - 2x^{2} + 5x - 3 \\
 - 2x^{2} - x
\end{array}$$

Multiply 2x by divisor.

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$

We see only one root, $x = 0.5 = \frac{1}{2}$. Is our guess correct? Is there another root (far away from 0)? Factor:

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$

We see only one root, $x = 0.5 = \frac{1}{2}$. Is our guess correct? Is there another root (far away from 0)? Factor:

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$

We see only one root, $x = 0.5 = \frac{1}{2}$. Is our guess correct? Is there another root (far away from 0)? Factor:

Divide 6x by x.

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$

We see only one root, $x = 0.5 = \frac{1}{2}$. Is our guess correct? Is there another root (far away from 0)? Factor:

Divide 6x by x.

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$

We see only one root, $x = 0.5 = \frac{1}{2}$. Is our guess correct? Is there another root (far away from 0)? Factor:

Multiply 6 by divisor.

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$

We see only one root, $x = 0.5 = \frac{1}{2}$. Is our guess correct? Is there another root (far away from 0)? Factor:

Multiply 6 by divisor.

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$

We see only one root, $x = 0.5 = \frac{1}{2}$. Is our guess correct? Is there another root (far away from 0)? Factor:

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$

We see only one root, $x = 0.5 = \frac{1}{2}$. Is our guess correct? Is there another root (far away from 0)? Factor:

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$
$$(x - \frac{1}{2})(2x^2 + 2x + 6) + 0 = 0$$

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$
$$(x - \frac{1}{2})(2x^2 + 2x + 6) + 0 = 0$$

Quotient:
$$2x^{2} + 2x + 6$$

$$x - \frac{1}{2}$$

$$= 2x^{3} + x^{2} + 5x - 3$$

$$= 2x^{3} - x^{2}$$

$$= 2x^{2} + 5x - 3$$

$$= 2x^{2} - x$$

$$= 6x - 3$$
Remainder: 0

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$
$$(x - \frac{1}{2})(2x^2 + 2x + 6) = 0$$

Quotient:
$$2x^{2} + 2x + 6$$

$$x - \frac{1}{2}$$

$$= 2x^{3} + x^{2} + 5x - 3$$

$$= 2x^{3} - x^{2}$$

$$= 2x^{2} + 5x - 3$$

$$= 2x^{2} - x$$

$$= 6x - 3$$
Remainder: 0

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^{3} + x^{2} + 5x - 3 = 0$$

$$\left(x - \frac{1}{2}\right) \left(2x^{2} + 2x + 6\right) = 0$$

$$x - \frac{1}{2} = 0$$
 or $x =$

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$(x - \frac{1}{2})(2x^{2} + 2x + 6) = 0$$

$$(x - \frac{1}{2}) (x - \frac{1}{2}) = 0$$
or $x =$

$$x = \frac{1}{2}$$

Plot the left hand side of the equation with a graphing

calculator. Find all real solutions of the equation.
$$2x^3 + x^2 + 5x - 3 = 0$$
$$\left(x - \frac{1}{2}\right) \left(2x^2 + 2x + 6\right) = 0$$
$$x - \frac{1}{2} = 0 \quad \text{or} \quad x = \frac{-2 \pm \sqrt{2^2 - 4 \cdot 2 \cdot 6}}{2 \cdot 2}$$
$$x = \frac{1}{2}$$

Plot the left hand side of the equation with a graphing

calculator. Find all real solutions of the equation.
$$2x^{3} + x^{2} + 5x - 3 = 0$$

$$(x - \frac{1}{2}) (2x^{2} + 2x + 6) = 0$$

$$x - \frac{1}{2} = 0$$
or $x = \frac{-2 \pm \sqrt{2^{2} - 4 \cdot 2 \cdot 6}}{2 \cdot 2}$

$$x = \frac{1}{2}$$

Plot the left hand side of the equation with a graphing

calculator. Find all real solutions of the equation.
$$2x^{3} + x^{2} + 5x - 3 = 0$$

$$(x - \frac{1}{2}) (2x^{2} + 2x + 6) = 0$$

$$x - \frac{1}{2} = 0$$
or $x = \frac{-2 \pm \sqrt{2^{2} - 4 \cdot 2 \cdot 6}}{2 \cdot 2}$

$$x = \frac{1}{2}$$

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^{3} + x^{2} + 5x - 3 = 0$$

$$(x - \frac{1}{2})(2x^{2} + 2x + 6) = 0$$

$$x - \frac{1}{2} = 0 \quad \text{or} \quad x = \frac{-2 \pm \sqrt{2^{2} - 4 \cdot 2 \cdot 6}}{2 \cdot 2}$$

$$x = \frac{1}{2} \qquad x = \frac{-2 \pm \sqrt{-44}}{2 \cdot 2}$$

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$(x - \frac{1}{2})(2x^{2} + 2x + 6) = 0$$

$$x - \frac{1}{2} = 0 \quad \text{or} \quad x = \frac{-2 \pm \sqrt{2^{2} - 4 \cdot 2 \cdot 6}}{2 \cdot 2}$$

$$x = \frac{1}{2} \quad x = \frac{-2 \pm \sqrt{-44}}{2 \cdot 2}$$

no real solution

 $2x^3 + x^2 + 5x - 3 = 0$