Part III - Modular Forms Lectured by Jack Thorne

Artur Avameri

Contents

1	Introduction	2
2	Modular Forms on $\Gamma(1)$	5

1 Introduction

06 Oct 2022, Lecture 1

Definition 1.1. We define the following groups:

$$\mathfrak{h} = \{ \tau \in \mathbb{C} \mid \operatorname{Im}(\tau) > 0 \}$$

$$GL_2(\mathbb{R})^+ = \{ g \in GL_2(\mathbb{R}) \mid \det(g) > 0 \}$$

$$\Gamma(1) = SL_2(\mathbb{Z}) = \{ g \in M_2(\mathbb{Z}) \mid \det(g) = 1 \}.$$

Note that $\Gamma(1)$ is a subgroup of $GL_2(\mathbb{R})^+$.

Lemma 1.1. $GL_2(\mathbb{R})^+$ acts transitively on \mathfrak{h} by Möbius transformations.

Proof. Let
$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{R})^+, \tau \in \mathfrak{h}$$
. Then

$$\operatorname{Im}(g\tau) = \frac{1}{2i} \left(\frac{a\tau + b}{c\tau + d} - \frac{a\overline{\tau} + b}{c\overline{\tau} + d} \right) = \frac{1}{2i} \frac{(ad - bc)(\tau - \overline{\tau})}{|c\tau + d|^2} = \frac{\det(g)\operatorname{Im}(\tau)}{|c\tau + d|^2} > 0,$$

so $g\tau \in \mathfrak{h}$. This action is transitive since

$$x + iy \in \mathfrak{h} \implies \begin{pmatrix} y & x \\ 0 & 1 \end{pmatrix} i = x + iy,$$

so everything in \mathfrak{h} is conjugate to i.

Definition 1.2. If $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{R})^+$ and $\tau \in \mathfrak{h}$, then define

$$j(q,\tau) = c\tau + d.$$

This is called a **modular cocycle**. If $k \in \mathbb{Z}$ and $f : \mathfrak{h} \to \mathbb{C}$, then

$$f|_k[g]:\mathfrak{h}\to\mathbb{C}$$

is defined by

$$f|_k[g](\tau) = \det(g)^{k-1} f(g\tau) j(g,\tau)^{-k}.$$

This is the weight k action of g on f.

Lemma 1.2. This is a right action of $GL_2(\mathbb{R})^+$: if $g, h \in GL_2(\mathbb{R})^+$, then

$$f|_{k}[gh] = (f|_{k}[g])|_{k}[h].$$

Proof. We compute

$$(f|_{k}[g])|_{k}[h](\tau) = \det(h)^{k-1}f|_{k}[g](h\tau)j(h,\tau)^{-k} = \det(h)^{k-1}\det(g)^{k-1}f(gh\tau)j(g,h\tau)^{-k}j(h,\tau)^{-k} \stackrel{?}{=} \det(gh)^{k-1}f(gh\tau)j(gh,\tau)^{-k} = f|_{k}[gh](\tau).$$

Hence we need to check that $j(gh,\tau)=j(gh,\tau)j(h,\tau)$. Note that if $g=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, then

$$g\begin{pmatrix} \tau \\ 1 \end{pmatrix} = \begin{pmatrix} a\tau + b \\ c\tau + d \end{pmatrix} = j(g,\tau)\begin{pmatrix} g\tau \\ 1 \end{pmatrix}.$$

We now get

$$j(gh,\tau)\begin{pmatrix}gh\tau\\1\end{pmatrix}=gh\begin{pmatrix}\tau\\1\end{pmatrix}=g\left(j(h,\tau)\begin{pmatrix}h\tau\\1\end{pmatrix}\right)=j(h,\tau)j(g,h\tau)\begin{pmatrix}gh\tau\\1\end{pmatrix},$$

which finishes the computation and proof.

Formulae. For $g \in GL_2(\mathbb{R})^+, \tau \in \mathfrak{h}$, we have

$$\operatorname{Im}(g\tau) = \det(g) \frac{\operatorname{Im}(\tau)}{|j(g,\tau)|^2} \text{ and } j(g,\tau) \begin{pmatrix} g\tau \\ 1 \end{pmatrix} = g \begin{pmatrix} \tau \\ 1 \end{pmatrix}.$$

Definition 1.3. Let $k \in \mathbb{Z}$ and $\gamma \leq \Gamma(1)$ of finite index¹. A weakly modular function of weight k and level Γ is a meromorphic function $f : \mathfrak{h} \to \mathbb{C}$ which is invariant under the weight k action of Γ , i.e. such that

$$\forall \tau \in \mathfrak{h}, \forall \gamma \in \Gamma, f|_k(\gamma) = f.$$

We will define modular forms next time: they are weakly modular functions which are holomorphic both in \mathfrak{h} and at ∞ .

It is a fact that modular forms of fixed weight and level live in finitedimensional \mathbb{C} -vector spaces called $M_k(\Gamma)$. These form the main objects of study in this course.

Motivation. Why study modular forms?

(1) They are related to the theory of elliptic functions. Let E/\mathbb{C} be an elliptic curve and ω a holomorphic non–zero 1–form. Then there exists a unique lattice² $\Lambda \in \mathbb{C}$ and isomorphism $\phi : \mathbb{C}/\Lambda \to E$ such that $\phi^*(\omega) = dz$. Then

 $^{^1\}mathrm{In}$ other words, γ is a (finite index) subgroup of $\Gamma(1).$

²i.e. a discrete cocompact subgroup, or an abelian subgroup which is freely generated by two elements that are linearly independent over \mathbb{R} .

E is isomorphic to the elliptic curve $y^2 = 4x^3 - 60G_4(\Lambda)x - 140G_6(\Lambda)$ where if $k \in \mathbb{Z}$, then $G_k(\Lambda) = \sum_{\lambda \in \Lambda - \{0\}} \lambda^{-k}$. This converges absolutely for k > 2. If $\tau \in \mathfrak{h}$, then $\Lambda \tau = \mathbb{Z}\tau \oplus \mathbb{Z} \subset \mathbb{C}$ is a lattice and $G_k(\tau) = G_k(\Lambda_\tau)$. This is a modular form of weight k and level $\Gamma(1)$, called an Eisenstein series.

 $\mathfrak{h}/SL_2(\mathbb{Z})$ can be identified with the set of (isomorphism classes of) elliptic curves over \mathbb{C} .

- (2) Modular forms f have Fourier expansions $\sum_{n\in\mathbb{Z}} a_n g^n$, $a_n \in \mathbb{C}$ and they often serve as a generating functions for arithmetically interesting sequences a_n .
 - For example, take $\theta(\tau) = \sum_{n \in \mathbb{Z}} e^{\pi i n^2 \tau}$. If $k \in 2\mathbb{N}$, then θ^k is a modular form with q-expansion $\theta^k = \sum_{n \in \mathbb{Z}} r_k(n) e^{\pi i n \tau}$, where $r_k(n)$ is the number of ways of writing n as a sum of k squares, i.e. $r_k(n) = |\{x \in \mathbb{Z}^k \mid \sum_{i=1}^k x_i^2 = n\}|$. By expressing θ^k in terms of other modular forms, we can prove formulae such as $r_4(n) = 8 \sum_{d|n.4\nmid d} d$.
- (3) The Riemann zeta function $\zeta(s)$ is an important object of study. Its pleasant features include:
 - The Euler product $\zeta(s) = \prod_{p} (1 p^{-s})^{-1}$.
 - It has a meromorphic continuation to \mathbb{C} and has a functional equation relating $\zeta(s)$ and $\zeta(1-s)$.

A Dirichlet series $\sum_{n\geq 1} a_n n^{-s}$ which has similar properties (Euler product, meromorphic extension, some nice function equation) is called an L-function. Modular forms can be used to construct interesting examples of L-functions. In practice, we take $M_k(\Gamma)$ and decompose it under Hecke operators to get Hecke eigenforms, the nicest possible modular forms, which have the above properties.

(4) The Langlands program predicts a relation between modular forms and objects in arithmetic geometry. A special case of this is the modularity conjecture, which says that there is a bijective correspondence between elliptic curves E/\mathbb{C} up to isogeny and the set of Hecke eigenforms of weight 2. This implies Fermat's last theorem. Note that this is formulated in the language of Hecke operators and L-functions.

Homework. There is a handout on Moodle called "Reminder on Complex Analysis". Have a look at it before the next lecture.

Modular Forms on $\Gamma(1)$ $\mathbf{2}$

Reminder. A meromorphic function in an open subset $U \subset \mathbb{C}$ is a closed subset $A \subset U$ and a holomorphic function $f: U \setminus A \to \mathbb{C}$ such that $\forall a \in A$, $\exists \delta > 0$ such that $D^*(a,\delta) \subset U \setminus A$ and $\exists n \geq 0$ such that $(z-a)^n f(z)$ extends to a holomorphic function in $D(a, \delta)$.

09 Oct 2022,

Lecture 2

f then has a Laurent expansion $\sum_{m\in\mathbb{Z}} a_m(z-a)^m$ valid on $D^*(a,\delta)$.

Lemma 2.1. Let f be a weakly modular function of weight k and level $\Gamma(1)$. Then there exists a meromorphic function f in $D^*(0,1)$ such that $f(\tau) =$ $\tilde{f}(e^{2\pi i \tau}).$

Proof. f is meromorphic in \mathfrak{h} by assumption. Take $\gamma = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in \Gamma(1)$. Then $f|_h[\gamma](\tau) = f(\gamma\tau) = f(\tau)$, as f is invariant under the weight k action of γ . But also $f(\gamma \tau) = f(\tau + 1)$, so f is periodic.

Now map a strip of \mathfrak{h} of width 1 to $D^*(0,1)$ by $\tau \mapsto e^{2\pi i \tau}$. Existence of \tilde{f} : Let $a \in D^*(0,1)$ and $\delta > 0$ be such that $D(\alpha,\delta) \subset D^*(0,1)$. Define \tilde{f} on $D(a,\delta)$ by $\tilde{f}(q)=f(\frac{1}{2\pi i}\log q)$, for any branch of log defined in $D(a,\delta)$. This is meromorphic and independent of the choice of the branch of \log , as f is periodic with period 1. This defines \tilde{f} in $D^*(0,1)$.

 \tilde{f} is unique since $\tau \mapsto e^{2\pi i \tau}$ is surjective.

If \tilde{f} extends to a meromorphic function³ in D(0,1), then $\exists \delta > 0$ such that \tilde{f} has a Laurent expansion $\tilde{f}(q) = \sum_{n \in \mathbb{Z}} a_n q^n$ valid in $D^*(0, \delta)$.

In the region $\{\tau \in \mathfrak{h} \mid \operatorname{Im}(\tau) > \frac{1}{2\pi} \log \delta\}$, we have

$$f(\tau) = \sum_{n \in \mathbb{Z}} a_n q^n,$$

where $q = e^{2\pi i \tau}$. This is called the q-expansion of the weakly modular function f.

Definition 2.1. Let f be a weakly modular function of weight k and level $\Gamma(1)$. We say that f is **meromorphic at** ∞ if \tilde{f} extends to a meromorphic function in D(0,1).

We say f is holomorphic at ∞ if \tilde{f} is meromorphic at ∞ and has a removable singularity at q=0. In this case, we define $f(\infty)=\tilde{f}(0)=$ $\lim_{\mathrm{Im}(\tau)\to\infty} f(\tau)$

We say f vanishes at ∞ if f is holomorphic at ∞ and $f(\infty) = 0$.

³This might not be the case if the set of poles has a limit inside the disk.

Definition 2.2. A modular function (of weight k and level $\Gamma(1)$) is a weakly modular function (of weight k and level $\Gamma(1)$) which is meromorphic at ∞ .

A **modular form** is a weakly modular function which is holomorphic in \mathfrak{h} and holomorphic at ∞ .

A cuspidal modular form is a modular form that vanishes at ∞ .

Remark. We let $M_k(\Gamma(1))$ denote the set of modular forms of weight k and level $\Gamma(1)$. We write $S_k(\Gamma(1))$ for the set of cuspidal modular forms of weight k, level $\Gamma(1)$. Note $S_k(\Gamma(1)) \subset M_k(\Gamma(1))$. These are \mathbb{C} -vector spaces. If k is odd, then these both only contain the zero function, since taking $\gamma = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \in \Gamma(1)$ gives $f|_k[\gamma](\tau) = f(\tau)(-1)^k = f(\tau)$.

We now consider even weights only. If $k \in \mathbb{Z}$ is even, let

$$G_k(\tau) = \sum_{\lambda \in \Lambda_{\tau} \setminus 0} \lambda^{-k} = \sum_{(m,n) \in \mathbb{Z}^2 \setminus 0} (m\tau + n)^{-k},$$

where $\Lambda_{\tau} = \mathbb{Z}\tau \oplus \mathbb{Z}$ for any $\tau \in \mathfrak{h}$.

If $\gamma \in \Gamma(1)$, then formally we have

$$G_k|_k[\gamma](\tau) = G_k(\gamma\tau)j(\gamma,\tau)^{-k} = \sum_{\lambda \in \Lambda_{\gamma\tau} \setminus 0} \lambda^{-k}j(\gamma,\tau)^{-k},$$

but $\Lambda_{\gamma\tau} = \mathbb{Z} \frac{a\tau+b}{c\tau+d} \oplus \mathbb{Z} = (c\tau+d)^{-1} (\mathbb{Z}(a\tau+b) \oplus \mathbb{Z}(c\tau+d)) = (c\tau+d)^{-1} \Lambda_{\tau}$. Hence

$$G_k|_k[g](\tau) = \sum_{\lambda \in (c\tau+d)^{-1}\Lambda_\tau \setminus 0} \lambda^{-k} (c\tau+d)^{-k}$$
$$= \sum_{\lambda \in (c\tau+d)^{-1}\Lambda_\tau \setminus 0} ((c\tau+d)^{-1}\lambda)^{-k} (c\tau+d)^{-k} = G_k(\tau).$$

This is justified only when the series defining $G_k(\tau)$ converges absolutely. Hence:

Proposition 2.2. Let k > 2 be an even integer. Then $G_k(\tau)$ converges absolutely and defines a modular form of weight k and level $\Gamma(1)$ with $G_k(\infty) = 2\zeta(k)$. G_k is the **weight** k **Eisenstein series**.

We will later see that $M_2(\Gamma(1)) = 0$.

Proof. We want to show absolute and locally uniform convergence in \mathfrak{h} . This will show that G_k is holomorphic by complex analysis. Let $A \geq 2$ and define

 $\Omega_A = \{ \tau \in \mathfrak{h} \mid \operatorname{Im}(\tau) \geq \frac{1}{A}, \operatorname{Re}(\tau) \in [-A, A] \}.$ We show uniform convergence in Ω_A . If $\tau \in \Omega_A, x \in \mathbb{R}$, then $|\tau + x| \geq \begin{cases} \frac{1}{A} & |x| \leq 2A \\ \frac{|x|}{2} & |x| \geq 2A. \end{cases}$ Hence

$$|\tau + x| \ge \sup\left(\frac{1}{A}, \frac{|x|}{2A^2}\right) \ge \sup\left(\frac{1}{2A^2}, \frac{|x|}{2A^2}\right) = \frac{1}{2A^2}\sup(1, |x|).$$

If $(m, n) \in \mathbb{Z}^2, m \neq 0$, then

$$|m\tau + n| = |m||\tau + \frac{n}{m}| \ge \frac{1}{2A^2} \sup\left(1, \left|\frac{n}{m}\right|\right) \cdot |m| = \frac{1}{2A^2} \sup\left(|m|, |n|\right).$$

This is also valid when m=0 by inspection. If $\tau \in \Omega_A$, then

$$\sum_{(m,n)\in\mathbb{Z}^2\backslash 0} |m\tau + n|^{-k}$$

$$\leq \left(\frac{1}{2n^2}\right)^{-k} \sum_{(m,n)\in\mathbb{Z}^2\backslash 0} \sup(|m|,|n|)^{-k}$$

$$= (2A^2)^k \sum_{d\in\mathbb{N}} d^{-k} \cdot \left| \{(m,n)\in\mathbb{Z}^2 \mid \sup(|m|,|n|) = d \} \right|$$

$$= (2A^2)^k \sum_{d\in\mathbb{N}} d^{-k}8d = 8(2A^2)^k \sum_{d\in\mathbb{N}} d^{1-k}$$

$$< \infty$$

whenever k-1>1, i.e. k>2. This shows absolute convergence, and uniform convergence in Ω_A by the Weierstrass M-test⁴ Hence G_k is holomorphic in \mathfrak{h} and invariant under the weight k action of $\Gamma(1)$. It remains to show that G_k is holomorphic at ∞ with $G_k(\infty)=2\zeta(k)$. For this, it suffices to check that

$$\lim_{\mathrm{Im}(\tau)\to\infty} G_k(\tau) = 2\zeta(k).$$

This follows from uniform convergence in Ω_A : we get

$$\lim_{\mathrm{Im}(\tau)\to\infty}G_k(\tau)=\sum_{(m,n)\in\mathbb{Z}^2\backslash 0}\lim_{\mathrm{Im}(\tau)\to\infty}(m\tau+n)^{-k}=\sum_{n\in\mathbb{Z}\backslash 0}n^{-k}=2\sum_{n\geq 1}n^{-k}=2\zeta(k).$$

⁴If we have a sequence of functions $f_n: \Omega \to \mathbb{C}$, $M_n > 0$, $|f_n(x)| < M_n$ and $\sum M_n < \infty$, then $\sum f_n$ converges uniformly