Leveraging SO(3) symmetry for Object Pose Estimation from 2D Images

David Klee

Object pose prediction is an important problem in robotics, AR, and medicine.

Pose prediction is an equivariant mapping.

$$f_{\theta}(\mathcal{T}_g x) = \mathcal{T}_g f_{\theta}(x)$$

Image inputs destroy end-to-end SO(3) equivariance.

Idea: map learned features to SO(3) transformable space to restore desired equivariance.

- 1. Extract Image features
- 2. Map to Features to Sphere
- 3. Convert to Fourier Basis
- 4. Perform SO(3) equivariant convolutions
- 5. Normalize distribution in spatial domain

$$P: S^2 \to \mathbb{R}^2$$

$$P(x, y, z) = (x, y)$$

$$\Psi(x) = f(P(x))$$

l:		Spherical Harmonics (Y _k ¹)												
0	s													γZ
1	р						00	8	•				X/	∕_у
2	d					96	×2	÷	8	e/p				
3	f				2/6	×	×	4	×	*	46			
4	g			9/0	*	×	*	ê	÷	*	冰	4/6		
5	h		960	絲	*	×	¥	٥	*	*	*	淋	20	
6	i	*	淋	*	*	×	*	÷	*	*	*	*	*	2/0

$$\Psi(x) \approx \sum_{l=0}^{L} \sum_{k=0}^{2l+1} c_k^l Y_k^l(x)$$
$$f(g) \approx \sum_{l=0}^{L} \sum_{m=0}^{2l+1} \sum_{n=0}^{2l+1} c_{mn}^l D_{mn}^l(g)$$

Training with cross entropy loss

1. Calculate signal over equi-volumetric grid

$$f(g) \approx \sum_{l=0}^{L} \sum_{m=0}^{2l+1} \sum_{n=0}^{2l+1} c_{mn}^{l} D_{mn}^{l}(g)$$

2. Perform softmax operation to normalize distribution

$$p(g) = \frac{\exp f(g)}{\sum_{h} \exp f(h)}$$

3. Minimize negative log likelihood

$$\mathcal{L}(p, g^*) = -\log p(g^*)$$

The SO(3) <u>HEALPix</u> grid is generated recursively to achieve different resolutions

Colab Guide

Full paper

