

Développement d'une méthodologie pour l'annotation structurale et fonctionnelle de séquences génomiques fonctionnellement inconnues

Jérémy Rousseau

Sous la supervision de Mathilde Carpentier et Lucie Bittner

Atelier de Bio-Informatique, Institut de SYstématique Evolution Biodiversité

Muséum National d'Histoire Naturelle

Annotation fonctionnelle et structurale

Objectif: attribuer une fonction ou une structure à une séquence

Les méthodes:

- Alignement de séquences => BLAST
- Chaînes de Markov cachées => HMMER

Annotation fonctionnelle et structurale

Objectif : attribuer une fonction ou une structure à une séquence

Les méthodes :

- Alignement de séquences => BLAST
- Chaînes de Markov cachées => HMMER

Biais des banques de données

Annotation fonctionnelle et structurale

Objectif : attribuer une fonction ou une structure à une séquence

Les méthodes :

- Alignement de séquences => BLAST
- Chaînes de Markov cachées => HMMER

Biais des banques de données

Annotation fonctionnelle des organismes "non-modèles" : cela reste un défi!

Pourquoi étudier la structure tridimensionnelle des protéines ?

Une protéine est caractérisé par :

- Une séquence : MKSRKKITPRPPAAQ
- Une structure : appartient à une famille de repliement

Pourquoi étudier la structure tridimensionnelle des protéines ?

Une protéine est caractérisé par :

- Une séquence : MKSRKKITPRPPAAQ
- Une structure : appartient à une famille de repliement

Intérêt de la structure :

- Permet de **préciser** la fonction biologique
- La structure est plus conservée que la séquence
- Recherche d'une fonction aux séquences inconnues en utilisant le repliement

(Schaefer & Rost, 2012)

Pourquoi étudier la structure tridimensionnelle des protéines ?

Comment prédire la structure tridimensionnelle des protéines ?

Pourquoi étudier la structure tridimensionnelle des protéines ?

Comment prédire la structure tridimensionnelle des protéines ?

Par l'expérimentation (ex : cristallographie) => mais non applicable à grande échelle

Pourquoi étudier la structure tridimensionnelle des protéines ?

Comment prédire la structure tridimensionnelle des protéines ?

Par l'expérimentation (ex : cristallographie) => mais non applicable à grande échelle

Prédire la structure, 2 méthodes :

- 1) Utilisation des **profils de séquences** => ne permet de trouver de nouveaux repliements
- 2) Utilisation des **réseaux de neurones profonds** => prédire la structure 3D

Paradoxe

Augmentation du nombre de séquences disponibles

Peu de découverte de nouveaux repliements

Paradoxe

Augmentation du nombre de séquences disponibles

Peu de découverte de nouveaux repliements

Connaissons-nous uniquement les repliements présents chez les organismes modèles ?

Existe-il des repliements encore inconnus dans les données de métagénomiques ou les organismes non modèles?

Paradoxe

Augmentation du nombre de séquences disponibles

Peu de découverte de nouveaux repliements

Connaissons-nous uniquement les repliements présents chez les organismes modèles ?

Existe-il des repliements encore inconnus dans les données de métagénomiques ou les organismes non modèles?

Innovations structurales : repliement d'une protéine inconnu et spécifique à un taxon

Innovations fonctionnelles: Fonction d'une protéine encore inconnue et spécifique à un taxon

Questions de recherches

Quelle est la proportion de séquences annotées fonctionnellement et structurellement chez les organismes non modèles avec les outils classiques ?

Le deep learning peut-il nous permettre d'explorer l'innovation structurale et contribuer à l'annotation fonctionnelle ?

Ornithocercus quadratus

1) Organismes utilisés : dinoflagellés en culture

Ornithocercus quadratus

dinoflagellés en culture

- Rôles écologiques majeurs
- Large distribution océaniques
- Fort potentiel d'innovation évolutive fonctionnelle

Ornithocercus quadratus

dinoflagellés en culture

- Rôles écologiques majeurs
- Large distribution océaniques
- Fort potentiel d'innovation évolutive fonctionnelle

99 transcriptomes et génomes

≈ 6,7 millions de séquences

Ornithocercus quadratus

1) Organismes utilisés :

dinoflagellés en culture

≈ 6,7 millions de séquences

2) Annotations structurales et fonctionnelles

• Outil : InterProScan

Ornithocercus quadratus

1) Organismes utilisés :

dinoflagellés en culture

≈ 6,7 millions de séquences

2) Annotations structurales et fonctionnelles

• Outil: InterProScan

```
______ Annotations : ~ 47%
______ Pas d'annotations : ~ 53%
```


(Jones *et al.*, 2014)

Ornithocercus quadratus

dinoflagellés en culture

≈ 6,7 millions de séquences

2) Annotations structurales et fonctionnelles

• Outil: InterProScan

- Méthodes : graphes
- Regrouper les séquences selon la similarité

Ornithocercus quadratus

dinoflagellés en culture

≈ 6,7 millions de séquences

2) Annotations structurales et fonctionnelles

• Outil: InterProScan

- Méthodes : graphes
- Regrouper les séquences selon la similarité
- Choix des paramètres :
 - pourcentage d'identité : 60%
 - pourcentage d'overlap : 70%
 - e-value : 1e⁻¹⁹

Ornithocercus quadratus

dinoflagellés en culture

≈ 6,7 millions de séquences

2) Annotations structurales et fonctionnelles

• Outil: InterProScan

```
_____ ____ Annotations : ~ 47%
______ ___ Pas d'annotations : ~ 53%
```

- Méthodes : graphes
- Regrouper les séquences selon la similarité
- Choix des paramètres :
 - pourcentage d'identité : 60%
 - o pourcentage d'overlap : 70%
 - e-value : 1e⁻¹⁹
- Objectif:
 - Maximiser les gros clusters
 - Minimiser les petits clusters

Ornithocercus quadratus

dinoflagellés en culture

≈ 6,7 millions de séquences

2) Annotations structurales et fonctionnelles

• Outil: InterProScan

- Méthodes : graphes
- Regrouper les séquences selon la similarité
- Clusters : ≈ 220 000 (≈ 2.9 millions de séquences)

Annotations fonctionnelles, méthode classique

- Annotations fonctionnelles, méthode classique
- Annotations structurales, méthode classique : O

- Annotations fonctionnelles, méthode classique
- Annotations structurales, méthode classique : O
- Taxonomie: espèce 1, espèce 2, ...

- Annotations fonctionnelles, méthode classique
- Annotations structurales, méthode classique : O
- Taxonomie: espèce 1, espèce 2, ...

- Annotations fonctionnelles, méthode classique
- Annotations structurales, méthode classique : O
- Taxonomie: espèce 1, espèce 2, ...

1/3 des clusters sont spécifiques à une espèce et inconnus fonctionnellement et structurellement

5) Prédiction structurale - AlphaFold2 :

Objectif : tester de la faisabilité de la méthode

Choix des séquences

Objectif : tester de la faisabilité de la méthode

Confiance de la prédiction

157 séquences 8 clusters

Temps: 20 min / protéines

Confiance de la prédiction

La taille des séquences influence la qualité de la prédiction

5) Prédiction structurale - AlphaFold2 :

Cohérence structurale

Vérification de l'homogénéité des structures

TM-score : permet de mesurer la similitude des structures prédites

6) Recherche d'une fonction pour les repliements

6) Recherche d'une fonction pour les repliements

6) Recherche d'une fonction pour les repliements

Nouveaux repliements?

Nouvelles fonctions?

Limites

- Qualité des prédiction d'AlphaFold
- Utilisation des annotations Pfam / CATH => utiliser la Gene Ontology
- Temps de calcul (20 minutes / protéine)
- Utilisation d'un seul GPU

- Étude des séquences non retenues pour la construction du graphe
- Étude de la composantes connexes avec plus de 1 millions de séquences
- Étude de l'évolution des structures
- Étude de la biogéographie des structures
- Utilisation d'un supercalculateur (ex. Jean Zay)

- Étude des séquences non retenues pour la construction du graphe
- Étude de la composantes connexes avec plus de 1 millions de séquences
- Étude de l'évolution des structures
- Étude de la biogéographie des structures
- Utilisation d'un supercalculateur (ex. Jean Zay)

Les perspectives seront étudiées lors d'une thèse à l'Atelier de Bio-Informatique

PEPR ATLASea 2023-2030

Projet FORMAL 2023-2027

Les perspectives seront étudiées lors d'une thèse à l'Atelier de Bio-Informatique

Merci pour votre attention!

- Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).
- Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinforma. Oxf. Engl. 30, 1236–1240 (2014).
- Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
- Niang, G. et al. METdb: A GENOMIC REFERENCE DATABASE FOR MARINE SPECIES. F1000Research 9, (2020).
- Richter, D. J. et al. EukProt: A database of genome-scale predicted proteins across the diversity of eukaryotes. Peer Community J. 2, (2022).
- Schaefer, C. & Rost, B. Predict impact of single amino acid change upon protein structure. BMC Genomics 13, S4 (2012).
- van Kempen, M. et al. Fast and accurate protein structure search with Foldseek. Nat. Biotechnol. 1–4 (2023).