Olimpiada Națională de Matematică Etapa Națională, Deva, 23 aprilie 2019

SOLUȚII ȘI BAREME ORIENTATIVE - CLASA a VIII-a

Problema 1. Considerăm A, mulțimea numerelor naturale cu exact 2019 divizori naturali, și pentru fiecare $n \in A$, notăm

$$S_n = \frac{1}{d_1 + \sqrt{n}} + \frac{1}{d_2 + \sqrt{n}} + \dots + \frac{1}{d_{2019} + \sqrt{n}},$$

unde $d_1, d_2, ..., d_{2019}$ sunt divizorii naturali ai lui n.

Determinați valoarea maximă a lui S_n când n parcurge mulțimea A.

Solutie. Deoarece 2019 = 3.673 și 673 este prim, rezultă că orice număr din A are una din formele: p^{2018} , cu p număr prim, sau $p^2 \cdot q^{672}$, cu p,q prime distincte. Astfel, cel

$$2 \cdot S_n = \sum_{i=1}^{2019} \left(\frac{1}{d_i + \sqrt{n}} + \frac{1}{\frac{n}{d_i} + \sqrt{n}} \right) = \sum_{i=1}^{2019} \left(\frac{1}{d_i + \sqrt{n}} + \frac{1}{\sqrt{n}} \cdot \frac{d_i}{d_i + \sqrt{n}} \right) = \frac{2019}{\sqrt{n}}$$

Rezultă $S_n = \frac{2019}{2 \cdot \sqrt{n}} \le \frac{3 \cdot 673}{2 \cdot \sqrt{3^2 \cdot 2^{672}}} = \frac{673}{2^{337}}$, valoarea maximă a lui S_n , când n par-

......1p

Problema 2. Arătați că dacă numerele $a,b,c\in(0,\infty)$ verifică relația a+b+c=3,atunci:

$$\frac{a}{3a+bc+12} + \frac{b}{3b+ca+12} + \frac{c}{3c+ab+12} \le \frac{3}{16}.$$

Soluție. $3a + bc + 12 = (a + b + c)a + bc + 4 + 8 = a^2 + ab + bc + ca + 4 + 8 = (a + b)(a + c) + 4 + 8 \ge 2\sqrt{(a + b)(a + c) \cdot 4} + 8 = 4\sqrt{(a + b)(a + c)} + 8 \dots 2\mathbf{p}$ Folosind inegalitatea $\frac{1}{x+y} \le \frac{1}{4} \left(\frac{1}{x} + \frac{1}{y} \right)$, urmează că

$$\frac{a}{3a+bc+12} \le \frac{a}{4\sqrt{(a+b)(a+c)}+8} = \frac{a}{4} \frac{1}{\sqrt{(a+b)(a+c)}+2} \le \frac{a}{16} \left(\frac{1}{\sqrt{(a+b)(a+c)}} + \frac{1}{2} \right)$$

Deoarece
$$\frac{a}{\sqrt{(a+b)(a+c)}} = \sqrt{\frac{a}{a+b} \cdot \frac{a}{a+c}} \le \frac{1}{2} \left(\frac{a}{a+b} + \frac{a}{a+c} \right)$$
, rezultă

$$\frac{a}{3a+bc+12} \le \frac{1}{32} \left(\frac{a}{a+b} + \frac{a}{a+c} + a \right)$$

și analoagele

$$\frac{b}{3b+ca+12} \le \frac{1}{32} \left(\frac{b}{b+c} + \frac{b}{b+a} + b \right),$$
$$\frac{c}{3c+ab+12} \le \frac{1}{32} \left(\frac{c}{c+a} + \frac{c}{c+b} + c \right)$$

care prin adunare conduc la inegalitatea cerută......3p

Problema 3. În prisma hexagonală regulată $ABCDEFA_1B_1C_1D_1E_1F_1$, construim P, Q, proiecțiile punctului A pe dreptele A_1B respectiv A_1C și R, S, proiecțiile punctului D_1 pe dreptele A_1D respectiv C_1D .

- a) Determinați măsura unghiului dintre planele (AQP) și (D_1RS) .
- b) Arătați că $\widehat{AQP} \equiv \widehat{D_1RS}$.

Soluție. a) Fie T, proiecția punctului A pe dreapta A_1D . Din proprietățile hexagonului regulat, $DB \perp AB$, iar din $AA_1 \perp (ABC)$ avem $DB \perp AA_1$, deci $DB \perp (A_1AB)$, plan ce include dreapta AP. Rezultă că AP este perpendiculară pe DB și A_1B , deci pe planul lor, (A_1BD) . Conform reciprocei întâi a teoremei celor trei perpendiculare obținem că $PT \perp A_1D$.

Analog, $DC \perp (A_1AC)$, $AQ \subset (A_1AC)$ deci $DC \perp AQ$. Deoarece $AQ \perp A_1C$ obţinem $AQ \perp (A_1DC)$. Conform reciprocei întâi a teoremei celor trei perpendiculare rezultă că $QT \perp A_1D$.

Întrucât dreptele TA, TP, TQ sunt toate perpendiculare pe A_1D , ele sunt sunt incluse în unicul plan dus prin T, perpendicular pe A_1D $\bf{3p}$

Analog $A_1C_1 \perp (CDC_1D_1)$, deci A_1C_1 este perpendiculară şi pe dreapta D_1S , ca dreaptă inclusă în acest plan. Aşadar D_1S este perpendiculară pe două drepte concurente, DC_1 şi A_1C_1 , incluse în planul (DA_1C_1) , deci este perpendiculară pe el şi apoi pe A_1D , ca dreapta inclusă în el. Aşadar A_1D este perpendiculară pe D_1R şi D_1S deci pe planul lor, (D_1RS) .

In concluzie planele (AQP) şi (D_1RS) sunt perpendiculare pe A_1D , deci vor fi paralele şi vor forma un unghi de 0°**2p**

b) Mijlocul O al muchiei AA_1 este egal depărtat de punctele A, P, Q, T, deci este centrul sferei ce conține aceste puncte. Din coplanaritatea demonstrată la la punctul anterior, rezultă că punctele A, P, Q, T sunt conciclice deci $\widehat{AQP} \equiv \widehat{ATP}$. Însă triunghiurile D_1SR și APT sunt dreptunghice în S respectiv P și au $D_1S = AP$ și $D_1R = AT$, deci sunt congruente, rezultând $\widehat{D_1RS} \equiv \widehat{ATP}$. Din egalitățile de mai sus deducem $\widehat{AQP} \equiv \widehat{D_1RS}$.

......2p

Problema 4. Aflați numerele naturale x, y, z care verifică ecuația:

$$2^x + 3 \cdot 11^y = 7^z.$$

Soluție. Dacă $x = 0, 1 + 3 \cdot 11^y = 7^z$, imposibil din motive de paritate.
Deoarece $7^z = \mathcal{M}3 + 1, 3 \cdot 11^y = \mathcal{M}3$ deducem că x este par
Dacă z este impar atunci $x=2$, altfel, dacă prin absurd $x\geq 4$ obținem $2^x=\mathcal{M}8$,

Dacă z este impar atunci x=2, altfel, dacă prin absurd $x\geq 4$ obţinem $2^x=\mathcal{M}8$, şi în funcție de paritatea lui y, $3\cdot 11^y=\mathcal{M}8+3$ sau $3\cdot 11^y=\mathcal{M}8+1$, imposibil căci $7^z=\mathcal{M}8-1$.

Dacă x=2 atunci $4+3\cdot 11^y=7^z\Rightarrow y=0$, altfel dacă $y\geq 1\Rightarrow 7^z\equiv 4\pmod{11}$, imposibil pentru z impar, căci $7^{10k}\equiv 1\pmod{11}, 7^{10k+1}\equiv 7\pmod{11}, 7^{10k+2}\equiv 5\pmod{11}, 7^{10k+3}\equiv 2\pmod{11}, 7^{10k+4}\equiv 3\pmod{11}, 7^{10k+5}\equiv 10\pmod{11}, 7^{10k+6}\equiv 4\pmod{11}, 7^{10k+7}\equiv 6\pmod{11}, 7^{10k+8}\equiv 9\pmod{11}, 7^{10k+9}\equiv 8\pmod{11}.$

Deoarece $(7^{z_1}-2^{2x_1},7^{z_1}+2^{2x_1})=1$ şi $7^{z_1}+2^{2x_1}=\mathcal{M}3+2$, obţinem sistemul de ecuaţii $7^{z_1}-2^{2x_1}=3$, $7^{z_1}+2^{2x_1}=11^y$. Dacă z_1 ar fi par, $z_1=2z_2$, din prima ecuaţie am obţine $(7^{z_2}-2^{x_1})\cdot(7^{z_2}+2^{x_1})=3$, ceea ce este imposibil. Deducem că z_1 este impar şi trecând în a doua ecuaţie, $2^{2x_1}=11^y-7^{z_1}$ este fie $\mathcal{M}8+2$ fie $\mathcal{M}8+4$. Concluzionăm că $x_1=1,z_1=1$ şi de aici soluţia x=4,y=1,z=2.