Parte I

Ruta más corta

1. Formulación de transbordo

1.1. Conjuntos

N =Conjunto de nodos A =Conjunto de arcos

1.2. Parámetros

 $c_{ij} = \text{costo}$ asociado al arco (i, j)o = Nodo de origen

d = Nodo destino

1.3. Variables

 $x_{ij} = \begin{cases} 1 & \text{si el arco } (i,j) \text{ se encuentra en el path} \\ 0 & \text{en caso contrario} \end{cases}$

1.4. Formulación matemática

$$\min \sum_{(i,j)\in A} c_{ij} \cdot x_{ij} \tag{1.1}$$

Sujeto a:

$$\sum_{j \in N} x_{oj} = 1 \tag{1.2}$$

$$\sum_{i \in N} x_{id} = 1 \tag{1.3}$$

$$\sum_{i \in N} x_{ij} = \sum_{k \in N} y_{jk} \qquad \forall j \in N \setminus \{o, d\}$$
 (1.4)

$$x_{ij} \in \{0, 1\} \qquad \qquad \forall (i, j) \in A \qquad (1.5)$$

(1.6)

Parte II

El problema del minimum spanning tree MST

2. Formulación de clásica

2.1. Conjuntos

N =Conjunto de nodos A =Conjunto de arcos

2.2. Parámetros

 $c_{ij} = \cos \cos \operatorname{asociado} \operatorname{al} \operatorname{arco} (i, j)$

2.3. Variables

 $x_{ij} = \begin{cases} 1 & \text{si el arco } (i,j) \text{ se encuentra en el árbol de expansión} \\ 0 & \text{en caso contrario} \end{cases}$

2.4. Formulación matemática

$$\min \sum_{(i,j)\in A} c_{ij} \cdot x_{ij} \tag{2.1}$$

$$\sum_{(i,j)\in A} x_{ij} = |N| - 1 \tag{2.2}$$

$$\sum_{(i,j)\in A: i,j\in S} x_{ij} \le |S| - 1 \qquad \forall S \subseteq N: |S| \ge 2$$
 (2.3)

$$x_{ij} \in \{0, 1\} \qquad \qquad \forall (i, j) \in A \qquad (2.4)$$

Parte III

El problema de la p-mediana

3. Formulación clásica

3.1. Conjuntos

N =Conjunto de nodos A =Conjunto de arcos

3.2. Parámetros

 $d_{ij}=$ Distancia entre el nodo de demanda i y el servidor candidato j p= Cantidad de servidores a localizar

3.3. Variables

$$x_j = \begin{cases} 1 & \text{si se localiza un servidor en } j \\ 0 & \text{en caso contrario} \end{cases}$$

$$y_{ij} = \begin{cases} 1 & \text{si se asigna el nodo } i \text{ al servidor } j \\ 0 & \text{en caso contrario} \end{cases}$$

3.4. Formulación matemática

$$\min \sum_{(i,j)\in A} y_{ij} \cdot d_{ij} \tag{3.1}$$

$$\sum_{j \in N} x_j = p \tag{3.2}$$

$$\sum_{j \in N} y_{ij} = 1 \qquad \forall i \in N \tag{3.3}$$

$$y_{ij} - x_j \le 0 \qquad \forall (i, j) \in A \tag{3.4}$$

$$x_j \in \{0, 1\} \qquad \forall j \in N \tag{3.5}$$

$$y_{ij} \in \{0, 1\} \qquad \qquad \forall (i, j) \in A \tag{3.6}$$

Parte IV

El problema de la p-centro

4. Formulación clásica

4.1. Conjuntos

N =Conjunto de nodos A =Conjunto de arcos

4.2. Parámetros

 $d_{ij}=$ Distancia entre el nodo de demanda i y el servidor candidato j p= Cantidad de servidores a localizar

4.3. Variables

$$x_j = \begin{cases} 1 & \text{si se localiza un servidor en } j \\ 0 & \text{en caso contrario} \end{cases}$$

$$y_{ij} = \begin{cases} 1 & \text{si se asigna el nodo } i \text{ al servidor } j \\ 0 & \text{en caso contrario} \end{cases}$$

W= Distancia máxima entre un nodo de demanda y su servidor asignado

4.4. Formulación matemática

$$min W$$
 (4.1)

$$\sum_{j \in N} x_j = p \tag{4.2}$$

$$\sum_{j \in N} y_{ij} = 1 \qquad \forall i \in N \tag{4.3}$$

$$y_{ij} - x_j \le 0 \qquad \qquad \forall (i, j) \in A \tag{4.4}$$

$$W - \sum_{j \in N} d_{ij} \cdot y_{ij} \ge 0 \qquad \forall i \in N$$

$$(4.5)$$

$$x_j \in \{0, 1\} \qquad \forall j \in N \tag{4.6}$$

$$y_{ij} \in \{0, 1\} \qquad \qquad \forall (i, j) \in A \tag{4.7}$$

$$W \ge 0 \tag{4.8}$$

Parte V

El problema del maximal covering

5. Formulación clásica

5.1. Conjuntos

N =Conjunto de nodos A =Conjunto de arcos

5.2. Parámetros

 $d_{ij}=\mbox{Distancia entre el nodo de demanda}~i$ y el servidor candidato j

 h_i = Demanda del nodo i

S = Radio de cobertura

p =Cantidad de servidores a localizar

 $C_i = \{j \mid d_{ij} \le S\}$

5.3. Variables

$$x_j = \begin{cases} 1 & \text{si se localiza el servidor en } j \\ 0 & \text{en caso contrario} \end{cases}$$

 $y_i = \begin{cases} 1 & \text{si la demanda del nodo } i \text{ es cubierta} \\ 0 & \text{en caso contrario} \end{cases}$

5.4. Formulación matemática

$$\max \sum_{i \in N} y_i \cdot h_i \tag{5.1}$$

$$\sum_{j \in C_i} x_j - y_i \ge 0 \qquad \forall i \in N \tag{5.2}$$

$$\sum_{j \in N} x_j = p \tag{5.3}$$

$$x_j \in \{0, 1\} \qquad \forall j \in N \tag{5.4}$$

$$y_i \in \{0, 1\} \qquad \forall j \in N \tag{5.5}$$

Parte VI

El problema del set-covering

6. Formulación clásica

6.1. Conjuntos

N =Conjunto de nodos A =Conjunto de arcos

6.2. Parámetros

 $d_{ij}=$ Distancia entre el nodo de demanda i y el servidor candidato j S= Radio de cobertura $C_i=\{j\mid d_{ij}\leq S\}$

6.3. Variables

 $x_j = \begin{cases} 1 & \text{si se localiza el servidor en } j \\ 0 & \text{en caso contrario} \end{cases}$

6.4. Formulación matemática

$$\min \sum_{j \in N} x_j \tag{6.1}$$

$$\sum_{j \in C_i} x_j \ge 1 \qquad \forall i \in N \tag{6.2}$$

$$x_j \in \{0, 1\} \qquad \forall j \in N \tag{6.3}$$

Parte VII

El problema del vendedor viajero

7. Formulación de Flujo Entero

7.1. Conjuntos

N =Conjunto de nodos A =Conjunto de arcos

7.2. Parámetros

 $c_{ij} = \text{costo asociado al arco } (i, j)$

7.3. Variables

 $x_{ij} = \begin{cases} 1 & \text{si el arco } (i, j) \text{ se encuentra en el tour} \\ 0 & \text{en caso contrario} \end{cases}$

 $y_{ij}=$ flujo enviado desde el nodo i, hacia el nodo j

7.4. Formulación matemática

$$\min \sum_{(i,j)\in A} c_{ij} \cdot x_{ij} \tag{7.1}$$

$$\sum_{i \in N} x_{ij} = 1 \qquad \forall j \in N \tag{7.2}$$

$$\sum_{j \in N} x_{ij} = 1 \qquad \forall i \in N \tag{7.3}$$

$$\sum_{j \in N \setminus \{0\}} y_{1j} = |N| - 1 \tag{7.4}$$

$$\sum_{i \in N} y_{ik} - \sum_{j \in N} y_{kj} = 1 \qquad \forall k \in N \setminus \{0\}$$
 (7.5)

$$y_{ij} \le (|N| - 1) \cdot x_{ij} \qquad \forall (i, j) \in A$$
 (7.6)

$$x_{ij} \in \{0, 1\} \qquad \qquad \forall (i, j) \in A \tag{7.7}$$

$$y_{ij} \ge 0 \qquad \qquad \forall (i,j) \in A \tag{7.8}$$

8. Formulación MTZ

8.1. Conjuntos

N =Conjunto de nodos A =Conjunto de arcos

8.2. Parámetros

 $c_{ij} = \cos \cos \operatorname{asociado} \operatorname{al} \operatorname{arco} (i, j)$

8.3. Variables

 $x_{ij} = \begin{cases} 1 & \text{si el arco } (i,j) \text{ se encuentra en el tour} \\ 0 & \text{en caso contrario} \end{cases}$

 $t_i = \text{posicion}$ en que se recorre el nodo i en el tour

8.4. Formulación matemática

$$\min \sum_{(i,j)\in A} c_{ij} \cdot x_{ij} \tag{8.1}$$

$$\sum_{i \in N} x_{ij} = 1 \qquad \forall j \in N \qquad (8.2)$$

$$\sum_{j \in N} x_{ij} = 1 \qquad \forall i \in N \qquad (8.3)$$

$$\sum_{j \in N \setminus \{0\}} y_{1j} = |N| - 1 \tag{8.4}$$

$$t_j \ge t_i + 1 - |N| \cdot (1 - x_{ij})$$
 $\forall (i, j) \in A, i \ne 0, j \ne 0$ (8.5)

$$t_0 = 0 \tag{8.6}$$

$$x_{ij} \in \{0, 1\} \qquad \qquad \forall (i, j) \in A \qquad (8.7)$$

$$t_i \in \mathbb{Z}_0^+ \qquad \forall i \in N \qquad (8.8)$$