InterpretableML Spring 2022

Felix Hohne and Kevin Jiang

May 17, 2022

Problem: Linear Models are limiting for effective inference

- In Machine Learning, the key task is prediction
- In Inference, task is to understand the processes that generate our data
- The classic solution is Linear Regression and its extensions
- Compared to ML, these models are very under-powered
- But are interpretable, and we can do statistics with them
- Can we do better?

Exponential Families

A distribution is a member of the exponential family if it can be expressed as:

$$P(y; \theta, \phi) = a(y, \theta) \exp\left(\frac{y\theta - k(\theta)}{\phi}\right)$$

where T(x), h(x), $\eta(\theta)$ are known, and ϕ is the dispersion term. Examples include the Binomial, Poisson, Normal, and Gamma distributions.

Lemma

The normal distribution is a member of the exponential family.

$$\begin{split} P\left(y;\theta,\sigma^2\right) &= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(y-\mu)^2}{2\sigma^2}\right\} \\ &= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{y^2}{2\sigma^2}\right) \exp\left(\frac{y\mu}{\sigma^2} - \frac{\left(\frac{\mu^2}{2}\right)}{\sigma^2}\right) \\ \operatorname{Let} \mathbf{a}(y,\theta) &= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{y^2}{2\sigma^2}\right), \phi = \sigma^2, \theta = \mu, k(\theta) = \left(\frac{\mu^2}{2}\right) \end{split}$$

The structure of a Generalized Linear Model (GLM)

The Linear Model assumption:

$$\mathbb{E}(Y|X) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots \beta_p x_p, Y|X \sim \mathcal{N}(X\beta, \sigma^2 I)$$

The limitations are:

- The prediction or the conditional mean is linear in the input features.
- The errors are normally distributed.

Generalized Linear Model: (i) Linear predictor.

$$g(\mathbb{E}(Y|X)) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots \beta_p x_p$$

(ii) Random component.

$$Y|X \sim \mathsf{ExpFamily}(\theta, \phi)$$

where the *link function* g connects the linear predictor with the random component.

Examples of GLMs

- (Ordinary) linear model: Identity link g(x) = x, $Y \sim N(\mu, \sigma^2)$
- Logistic regression: Logit link $g(x) = \log(\frac{x}{1-x})$, $Y \sim \text{Binomial}(\mu)$
- Poisson loglinear regression: Log link $g(x) = \log(x)$, $Y \sim \text{Poisson}(\mu)$
- Gamma regression: Log link $g(x) = \log(x)$, $Y \sim \text{Gamma}(\mu)$, shape parameter $\alpha > 0$ fixed
- And many others!

However, still limited in that our link function is *linear* in the parameters β .

The Generalized Additive Model

Generalized Additive Model:

$$g(\mathbb{E}(Y|X)) = b_0 + f_1(x_1) + f_2(x_2) + \dots f_p(x_p), Y|X \sim \mathsf{ExpFamily}(\cdot)$$

where f_i are smooth functions.

Remaining problems:

- How do we choose f_i ?
- How do we fit this model?
- How do we deal with interaction terms?

Constructing smooth functions from basis functions

UNIVARIATE SMOOTH FUNCTIONS

121

Figure 3.1 Illustration of the idea of representing a function in terms of basis functions, using a polynomial basis. The first 5 panels (starting from top left), illustrate the 5 basis functions, $b_j(x)$, for a 4th order polynomial basis. The basis functions are each multiplied by a real valued parameter, β_j , and are then summed to give the final curve f(x), an example of which is shown in the bottom right panel. By varying the β_j , we can vary the form of f(x), to produce any polynomial function of order 4 or lower. See also figure 3.2

LMs, GLMs, and GAMs

The Linear Model assumption:

$$\mathbb{E}(Y|X) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots \beta_p x_p, Y|X \sim \mathcal{N}(X\beta, \sigma^2 I)$$

Generalized Linear Model assumption:

$$g(\mathbb{E}(Y|X)) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots \beta_p x_p, Y|X \sim \mathsf{ExpFamily}(\theta, \phi)$$

Generalized Additive Model:

$$g(\mathbb{E}(Y|X)) = b_0 + f_1(x_1) + f_2(x_2) + \dots + f_p(x_p), Y|X \sim \mathsf{ExpFamily}(\cdot)$$

where f_i are smooth functions, and link function g connects the linear predictor with the random component. The canonical link $\theta = g(\mathbb{E}(Y|X)) = \beta X$ is used for easier interpretability and to simplify calculations.

Reducing GAMs to GLMs

To construct f_i :

- Select set of q functions as bases of function space.
- Given fitted $b_1, \ldots b_q \in \mathbb{R}$:
- Define $f_i(x) = \sum_{i=1}^q b_i \cdot g_i(x)$

Given original data matrix X

•
$$\tilde{X}_i = [1, g_{1,1}(x_i), g_{1,2}(x_i)..., g_{1,q}(x_i), g_{2,1}(x_i), ..., g_{2,q}(x_i), ..., g_{p,q}(x_i)]$$

•
$$\tilde{\beta} = [b_{1,1}, \dots b_{1,q}, b_{2,1}, \dots b_{2,q}, \dots b_{p,q}]^T$$

We can re-write $f_1(x) + f_2(x) + \dots f_p(x) = \tilde{X}\tilde{\beta}$

Our GAM now reduces to a GLM: $g(\mathbb{E}(Y|X)) = \tilde{X}\tilde{\beta}, Y|X \sim \mathsf{ExpFamily}(\cdot)$

Optimizing the Log-Likelihood to fit model parameters

We want to optimize the Log-Likelihood, so apply Newton for optimization.

$$x_{k+1} = x_k - (\nabla^2 f(x))^{-1} f'(x_k)$$

In practice, we replace $\nabla^2 f(x)$ with Fisher Information:

$$I(\theta) = -\mathbb{E}(\nabla^2 f(x))$$

Using properties of exponential family and much multivariate calculus:

$$\beta^{k+1} = \beta_k + (X^T W^k X)^{-1} X^T W^k (\widetilde{Y} - \widetilde{\mu})$$

where W^k is a per iteration weight matrix, \widetilde{Y} , $\widetilde{\mu}$ are pseudo-data.

To get the P-IRLS algorithm, add regularization:

iteratively minimize
$$\|\sqrt{W}(z-Xb)\|^2 + \sum_{i=1}^{i=p} \lambda_i S_i \beta_i \leftrightarrow \|\begin{bmatrix} \sqrt{W} & 0 \\ 0 & I \end{bmatrix} \begin{pmatrix} \begin{bmatrix} z \\ 0 \end{bmatrix} \end{pmatrix} - \begin{bmatrix} X \\ \beta \end{bmatrix} \beta \|^2$$

The Mathematics of GLMs and GAMs

$$\operatorname{argmin}_{\beta} \|y - X\beta\|^2$$

Also recall Maximum Likelihood Estimation(MLE):

For classic linear regression, we use Least Squares:

$$I(\theta; y) = \log(\prod_{i=1}^{n} f(y_i; \theta)) = \sum_{i=1}^{n} \log f(y_i; \theta)$$

Lemma

Least Squares is a special case of MLE under normal errors.

Proof.

$$I(y; X, \beta) = \sum_{i=1}^{n} \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y_i - x_i\beta)^2}{2\sigma^2}\right) \right)$$

$$= \sum_{i=1}^{n} \log \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right) + \log \left(\exp\left(-\frac{(y_i - x_i\beta)^2}{2\sigma^2}\right)$$

$$= \sum_{i=1}^{n} \log \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right) - \frac{(y_i - x_i\beta)^2}{2\sigma^2}$$

$$= \sum_{i=1}^{n} -(y_i - x_i\beta)^2$$

$$= \|y - X\beta\|^2$$

Solving IRLS in practice

Solving IRLS inner loop possible via various Matrix Decompositions:

Inference for GLMs

Large sample theory for MLEs to GLMs yields

$$\hat{\beta} \to \mathcal{N}(\beta, (X^T W X)^{-1})$$

Can be readily obtained from last iteration of IRLS algorithm.

ullet Delta method for fitted values $\hat{\eta}$ and $\hat{\mu}$

$$\hat{\eta} = X\hat{\beta} \to \mathcal{N}(X\beta, X(X^TWX)^{-1}X^T)$$
$$\operatorname{Var}(\hat{\mu}) \approx D\operatorname{Var}(\hat{\eta})D^T = DX(X^TWX)^{-1}X^TD$$

• Standard test statistics from MLE theory can be used.

Likelihood ratio test:
$$-2\log\Lambda \rightarrow \chi_1^2$$

Wald test: $\hat{\beta} - \beta_0/SE \rightarrow \mathcal{N}(0,1)$

Score test: $\frac{[\partial L(\beta)/\partial\beta_0]^2}{-\mathbb{E}[\partial^2 L(\beta)/\partial\beta_0^2]} \rightarrow \chi_1^2$

Inference for GAMs

By Lindeberg-Feller CLT,

$$v := X^T W z \to \mathcal{N}(X^T W X \beta, X^T W X \phi)$$

where $z = X\beta + G(y - \mu)$ is 'working' response, $G = \operatorname{diag}(g'(\mu_i))$, and W is weight matrix as defined in IRLS.

• Frequentist approach: Recall $\hat{\beta} = (X^T W X + \sum_i \lambda_i S_i)^{-1} v$,

$$\hat{\beta} \to \mathcal{N}(\mathbb{E}[\hat{\beta}], V_f)$$

where V_f is known covariance matrix.

• Bayesian approach: for $\beta \propto \exp\{-\frac{1}{2}\beta^T(\sum_i \lambda_i S_i)\beta\}$ for some λ_i ,

$$\beta | \mathbf{v} \sim \mathcal{N}(\hat{\beta}, (\mathbf{X}^T \mathbf{W} \mathbf{X} + \sum_i \lambda_i S_i)^{-1} \phi))$$

Fake News at Twitter (Osmundsen et. al., 2021)

Predict number of 'fake-news' articles a user on Twitter will click on based on their particular characteristics.

Features: Gender, ethnicity, income, political party, ideology.

Model via a Poisson loglinear model $Y \sim \text{Poisson}(\lambda)$, $\log \lambda = \beta_0 + \beta^T X$

Fake news in Twitter

OLS vs GLM Inference

Feature	OLS \hat{eta}	OLS $\hat{\sigma}$	 GLM \hat{eta}	GLM $\hat{\sigma}$
(Intercept)	-2.614	2.538	-3.230	0.145
Female	-0.093	0.968	0.143	0.041
Caucasian	0.846	1.102	0.773	0.059
Income	0.016	0.021	0.019	0.0006
Cynicism	-0.731	1.266	0.058	0.0197
Ideology	1.272	0.387	0.8844	0.0194

Table 1: OLS and GLM coefficients and their std. errors

Fake news in Twitter

Figure 1: *Note:* fit from income not entirely trustworthy – tail is highly variable due to small sample size for larger income values. Cynicism plot more reliable though.

Predicting Civil War Deaths (Lacina, 2006)

- Contains 104 civil wars since 1945
 - 25th quantile deaths: 3246; 75th quantile deaths: 38825
- Paper uses Linear Regression with log transform
- We model with Gamma distribution due to large number of deaths, right-skew
- ullet Model considered: deaths \sim religious frac. + (gdp/sq km) + pop + duration
- Do not include confidence intervals due to small sample size
 - In particular, GAM confidence intervals were extremely large
 - Resulted in numerical stability problems

Civil Wars death estimation results

War deaths vs. religious fractionalization War deaths vs. duration 1.50×10⁵ 13000 12000 1.00×105 battle deaths Battle Deaths 10000 9000 -War deaths vs GDP / km^2 War deaths vs Population 1.250×10⁵ — y1 8.0×10⁴ 1.000×105 Battle Deaths Battle Deaths 6.0×10 7.500×10⁴ 2.500×10⁴ 2.0×10⁴

Figure 2: GAM feature estimates

Ordinal Logistic Regression

 (Latent-variable approach): A 'latent' or hidden variable Z determines the label Y:

$$Z = \alpha + \beta^T X + \epsilon, \epsilon \perp X$$
, with $\epsilon \sim F(\epsilon)$

Y = j if and only if $\delta_{j-1} < Z < \delta_j$ for j = 1, ..., c.

- Different chosen $F(\epsilon)$ yields different models a logistic distribution leads to the widely implemented *Ordinal Logistic Regression* model
- Linearity can be relaxed to smooth functions (e.g. $f_i(X)$) and include interaction between terms (e.g. X_iX_i)
- Fit with a more general framework of P-IRLS for smoothing models (implementation *very* involved, see Wood, Pya, & Safken, 2016)

More Ordinal Regression: (Armaly et. al., 2021)

- Analyze public support for political science in US, including Jan 6. insurrection
- Conducted representative survey of 1100 Americans
- Dependent variable; ordinal response from 1 to 5
- Paper uses linear regression for analysis

A. Capitol Riot Justified

Conclusion: What we have learned

- In many ways, GAMs behave like ML models
 - Very sensitive to hyper-parameters
 - Need much more data than LMs
 - Confidence intervals are less and less based on statistics
- GAMs excellent at visualizing complex relationships
- Excellent for use as diagnostic
- Probably still default to GLMs for most practical applications
- Remaining open questions:
 - GAMs for time series to potentially model underlying seasonal patterns
 - GLMMs and GAMMs account for mixed or random/individual effect
 - Improving interpretability for social sciences + pharmaceutical studies