1

Q: Let $\{-1, -\frac{1}{2}, 1, \frac{5}{2}, 3\}$ be a realization of a random sample of size 5 from a population having $N\left(\frac{1}{2}, \sigma^2\right)$ distribution, where $\sigma > 0$ is an unknown parameter. Let T be an unbiased estimator of σ^2 whose variance attains the Cramer-Rao lower bound. Then, based on the above data, the realized value of T (rounded off to two decimal places) equals

Solution:

Definition 1. Unbiased Estimator is defined as

$$E(\hat{\theta}) = \theta$$

where, $E(\hat{\theta})$ represents the expected value of the estimator $\hat{\theta}$ and θ represents the true parameter

Definition 2. Variance of T attains Cramer-Rao lower bound implies that T has attained minimum possible variance and T is an efficient estimator

Therefore,

$$T = \frac{\sum (X_i - \mu)^2}{n}$$

$$n = 5$$
(1)

$$n = 5 \tag{2}$$

$$\mu = \frac{1}{2} \tag{3}$$

$$\frac{\sum (X_i - \mu)^2}{n} = 13.75\tag{4}$$

Hence,

$$T = 2.75 \tag{5}$$