GEOMETRIA III

III Foglio di Esercizi - 31 Marzo 2014

Gruppo fondamentale - Omologia Singolare

Esercizio 1. Si considerino i seguenti sottospazi di $(\mathbb{R}^3, \varepsilon)$:

- il toro T ottenuto facendo ruotare la circonferenza di centro (2,0) e raggio unitario nel piano xz attorno all'asse z;
- la sfera S^2 centrata in (0,0,0) e di raggio 1:
- il disco D_1 centrato nell'origine e di raggio unitario che sta nel piano xy;
- il disco D_2 è il disco centrato in (0,2,0) e di raggio unitario che sta nel piano yz.

Suddividere i seguenti spazi topologici in classi d'omotopia e calcolare il loro gruppo fondamentale:

$$X = T \cup D_1$$
 $Y = T \cup D_2$ $Z = S^2 \cup \mathbb{R}_z$ $W = S^1 \vee S^1$

Esercizio 2. Calcolare il gruppo fondamentale dei seguenti spazi topologici e suddividere gli spazi in classi di omotopia:

- i) $\mathbb{R}^2 \setminus \{3 \text{ punti}\};$ ii) $S^2 \setminus \{3 \text{ punti}\};$
- iii) $(S^1 \times I) \setminus \{2 \text{ punti}\}.$

Esercizio 3. Si considerino in $(\mathbb{R}^3, \varepsilon)$ i seguenti sottospazi:

$$X_1 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$$

$$X_2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + 2z^2 = 1\}$$

$$X_3 = \{(x, y, z) \in \mathbb{R}^3 : 3x^2 + 3y^2 + 2z^2 = 1\}$$

Calcolare il gruppo fondamentale di $X = X_1 \cup X_2$ e $Y = X_2 \cup X_3$.

Esercizio 4. Sia X lo spazio topologico ottenuto togliendo al toro un disco aperto e identificando il disco come in figura. Calcolare il gruppo fondamentale di X.

Esercizio 5. Sia X lo spazio topologico così definito: X è l'unione degli spigoli di un tetraedro. Calcolare il gruppo fondamentale di X.

Esercizio 6. Si considerino i due generatori del gruppo fondamentale del toro: $[\alpha]$ e $[\beta]$. Sia X lo spazio topologico ottenuto contraendo ad un punto α , sia Y lo spazio topologico ottenuto contraendo ad un punto β e sia Z lo spazio topologico ottenuto contraendo ad un punto $\alpha \cup \beta$. Calcolare i gruppi fondamentali di X, Y, Z rispetto al punto immagine di P, il punto dove si intersecano α e β . Suddividere inoltre questi spazi topologici in classi di omotopia ed omeomorfismo.

Esercizio 7. Sia \mathbb{RP}^2 il piano proiettivo reale e sia $\gamma \simeq S^1 \subset \mathbb{RP}^2$ come in figura.

Si stabilisca se γ è un retratto e/o un retratto di deformazione di \mathbb{RP}^2 .

Esercizio 8. Sia X il disco con due punti identificati e sia $A \subset X$ il bordo del disco con due punti identificati. Si stabilisca se A è un retratto e/o un retratto di deformazione di X.

Esercizio 9. Sia X il quadrato in figura quozientato rispetto alle identificazioni mostrate, e siano Q e R i punti di X come in figura.

Si calcoli il gruppo fondamentale di $X \setminus \{Q, R\}$.

Esercizio 10. Sia X lo spazio topologico ottenuto identificando i vertici del 2-simplesso standard Δ_2 . Calcolare il gruppo fondamentale di X.

Esercizio 11. Calcolare il gruppo fondamentale dello spazio topologico X ottenuto come quoziente rispetto alle identificazioni in figura.

Esercizio 12. Calcolare il gruppo fondamentale dello spazio topologico X ottenuto come quoziente rispetto alle identificazioni in figura.

Esercizio 13. Siano $A \in B$ i poligoni in figura:

Si calcolino i gruppi fondamentali dei seguenti spazi topologici:

- X_1 ottenuto contraendo a un punto il sottospazio $a \cup b \cup \alpha \cup \beta$;
- X_2 ottenuto contraendo a un punto c ed identificando punto a punto a con α e b con β .

 X_1 e X_2 sono superfici topologiche?

Esercizio 14. Classificare la superficie topologica compatta ottenuta come quoziente di un poligono con le identificazioni in figura:

Esercizio 15. Calcolare i gruppi di omologia ridotta di $X = \mathbb{S}^1 \vee \mathbb{S}^2$.

Esercizio 16. Calcolare i gruppi di omologia ridotta dello spazio topologico ottenuto come quoziente di un triangolo con le identificazioni in figura::

Questo spazio topologico è una superficie topologica?

Esercizio 17. Sia \mathbb{RP}^3 lo spazio proiettivo reale, visto come quoziente della sfera piena rispetto all'identificazione dei punti antipodali sul bordo.

- Calcolare il gruppo fondamentale di \mathbb{RP}^3 .
- Calcolare i gruppi di omologia ridotta di \mathbb{RP}^3 .

Esercizio 18. Si consideri lo spazio topologico X ottenuto unendo due circonferenze ed una sfera come in figura:

- \bullet Calcolare il gruppo fondamentale di X.
- \bullet Calcolare i gruppi di omologia ridotta di X.
- Dire se X ha lo stesso tipo d'omotopia di un toro.

Esercizio 19. Calcolare i gruppi di omologia ridotta di $X = T \cup S^2$, dove T è il toro ottenuto dalla rotazione della circonferenza unitaria di centro (2,0) nel piano (x,z) attorno all'asse z e S^2 è la sfera unitaria centrata nell'origine di \mathbb{R}^3 .

Esercizio 20. Sia X lo spazio topologico ottenuto dall'unione di un toro e di un disco privato di due punti come in figura:

Calcolare i gruppi di omologia ridotta di X.