

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k \mathbf{S}_k \mathbf{g}_k$$

$$\mathbf{S}_k = \left\{ egin{array}{ll} \mathbf{I}_n & ext{for the steepest-descent method} \\ \mathbf{H}_k^{-1} & ext{for the Newton method} \end{array}
ight.$$

Quasi-Newton

$$f\left(oldsymbol{x}
ight) = f\left(oldsymbol{x}_{k+1}
ight) + oldsymbol{g}_{k+1}^T * \left(oldsymbol{x} - oldsymbol{x}_{k+1}
ight) + rac{1}{2} \left(oldsymbol{x} - oldsymbol{x}_{k+1}
ight)^T oldsymbol{G}_{k+1} \left(oldsymbol{x} - oldsymbol{x}_{k+1}
ight) \ oldsymbol{x} = oldsymbol{g}_{k+1} + oldsymbol{G}_{k+1} \left(oldsymbol{x} - oldsymbol{x}_{k+1}
ight) \ oldsymbol{\chi} = oldsymbol{g}_{k+1} + oldsymbol{G}_{k+1} \left(oldsymbol{x}_k - oldsymbol{x}_{k+1}
ight) \ oldsymbol{\chi} = oldsymbol{g}_{k+1} - oldsymbol{x}_k, oldsymbol{\gamma}_k = oldsymbol{g}_{k+1} - oldsymbol{g}_k \ oldsymbol{G}_{k+1}^{-1} oldsymbol{\gamma}_k = oldsymbol{\delta}_k \ oldsymbol{G}_{k+1} - oldsymbol{g}_{k+1} - oldsymbol{g}_k \ oldsymbol{g}_{k+1} - oldsymbol{g}_k = oldsymbol{g}_{k+1} - oldsymbol{g}_k \ oldsymbol{G}_{k+1} - oldsymbol{g}_k \ oldsymbol{g}_{k+1} - oldsymbol{g}_k = oldsymbol{g}_k \ oldsymbol{G}_{k+1} - oldsymbol{g}_k \ oldsymbol{g}_{k+1} - oldsymbol{g}_k \ oldsymbol{g}_{k+1} - oldsymbol{g}_k \ oldsymbol{g}_k \ oldsymbol{g}_{k+1} - oldsymbol{g}_k \ oldsymbol{g}_{k+1} - oldsymbol{g}_k \ oldsymbol{g}_k \ oldsymbol{g}_{k+1} - oldsymbol{g}_k \ oldsymbol{g}_{k+1} - oldsymbol{g}_k \ oldsymbol{g}_k \ oldsymbol{g}_{k+1} - oldsymbol{g}_k \ oldsymbol{g}_{k+1} - oldsymbol{g}_k \ oldsymbol{g}_{k+1} - oldsymbol{g}_k \ oldsymbol{g}_k$$

$$oldsymbol{x}_{k+1} = oldsymbol{x}_k - lpha oldsymbol{G}_k^{-1} oldsymbol{g}_k = oldsymbol{x}_k - lpha oldsymbol{S}_k oldsymbol{g}_k$$

Quasi-newton

$$\boldsymbol{\delta}_k = \mathbf{x}_{k+1} - \mathbf{x}_k$$

$$\gamma_k = \mathbf{g}_{k+1} - \mathbf{g}_k$$

Rank-one

$$\mathbf{S}_{k+1}\boldsymbol{\gamma}_k = \boldsymbol{\delta}_k$$

假定

$$\mathbf{S}_{k+1} = \mathbf{S}_k + \beta_k \boldsymbol{\xi}_k \boldsymbol{\xi}_k^T \rightarrow \text{*ex}$$

代入上式

$$\boldsymbol{\delta}_k = \mathbf{S}_k \boldsymbol{\gamma}_k + \beta_k \boldsymbol{\xi}_k \boldsymbol{\xi}_k^T \boldsymbol{\gamma}_k$$

$$\mathbf{\gamma}_k^T (\mathbf{\delta}_k - \mathbf{S}_k \mathbf{\gamma}_k) = \beta_k \mathbf{\gamma}_k^T \mathbf{\xi}_k \mathbf{\xi}_k^T \mathbf{\gamma}_k$$

$$= \beta_k (\mathbf{\xi}_k^T \mathbf{\gamma}_k)^2$$

$$(\boldsymbol{\delta}_k - \mathbf{S}_k \boldsymbol{\gamma}_k) = \beta_k \boldsymbol{\xi}_k \boldsymbol{\xi}_k^T \boldsymbol{\gamma}_k = \beta_k (\boldsymbol{\xi}_k^T \boldsymbol{\gamma}_k) \boldsymbol{\xi}_k$$
$$(\boldsymbol{\delta}_k - \mathbf{S}_k \boldsymbol{\gamma}_k)^T = \beta_k \boldsymbol{\gamma}_k^T \boldsymbol{\xi}_k \boldsymbol{\xi}_k^T = \beta_k (\boldsymbol{\xi}_k^T \boldsymbol{\gamma}_k) \boldsymbol{\xi}_k^T$$

since $\boldsymbol{\xi}_k^T \boldsymbol{\gamma}_k$ is a scalar. Hence

$$(\boldsymbol{\delta}_k - \mathbf{S}_k \boldsymbol{\gamma}_k)(\boldsymbol{\delta}_k - \mathbf{S}_k \boldsymbol{\gamma}_k)^T = \beta_k (\boldsymbol{\xi}_k^T \boldsymbol{\gamma}_k)^2 \beta_k \boldsymbol{\xi}_k \boldsymbol{\xi}_k^T$$

$$\beta_k \boldsymbol{\xi}_k \boldsymbol{\xi}_k^T = \frac{(\boldsymbol{\delta}_k - \mathbf{S}_k \boldsymbol{\gamma}_k)(\boldsymbol{\delta}_k - \mathbf{S}_k \boldsymbol{\gamma}_k)^T}{\beta_k (\boldsymbol{\xi}_k^T \boldsymbol{\gamma}_k)^2}$$
$$= \frac{(\boldsymbol{\delta}_k - \mathbf{S}_k \boldsymbol{\gamma}_k)(\boldsymbol{\delta}_k - \mathbf{S}_k \boldsymbol{\gamma}_k)^T}{\boldsymbol{\gamma}_k^T (\boldsymbol{\delta}_k - \mathbf{S}_k \boldsymbol{\gamma}_k)}$$

$$\mathbf{S}_{k+1} = \mathbf{S}_k + \frac{(\boldsymbol{\delta}_k - \mathbf{S}_k \boldsymbol{\gamma}_k)(\boldsymbol{\delta}_k - \mathbf{S}_k \boldsymbol{\gamma}_k)^T}{\boldsymbol{\gamma}_k^T (\boldsymbol{\delta}_k - \mathbf{S}_k \boldsymbol{\gamma}_k)}$$

验证quasi-newton为下降方向

$$\gamma_{i}^{T}\mathbf{S}_{k+1}\boldsymbol{\gamma}_{i} = \boldsymbol{\gamma}_{i}^{T}\mathbf{S}_{k}\boldsymbol{\gamma}_{i} + \frac{\boldsymbol{\gamma}_{i}^{T}(\boldsymbol{\delta}_{k} - \mathbf{S}_{k}\boldsymbol{\gamma}_{k})(\boldsymbol{\delta}_{k}^{T} - \boldsymbol{\gamma}_{k}^{T}\mathbf{S}_{k})\boldsymbol{\gamma}_{i}}{\boldsymbol{\gamma}_{k}^{T}(\boldsymbol{\delta}_{k} - \mathbf{S}_{k}\boldsymbol{\gamma}_{k})}$$

$$= \boldsymbol{\gamma}_{i}^{T}\mathbf{S}_{k}\boldsymbol{\gamma}_{i} + \frac{(\boldsymbol{\gamma}_{i}^{T}\boldsymbol{\delta}_{k} - \boldsymbol{\gamma}_{i}^{T}\mathbf{S}_{k}\boldsymbol{\gamma}_{k})(\boldsymbol{\delta}_{k}^{T}\boldsymbol{\gamma}_{i} - \boldsymbol{\gamma}_{k}^{T}\mathbf{S}_{k}\boldsymbol{\gamma}_{i})}{\boldsymbol{\gamma}_{k}^{T}(\boldsymbol{\delta}_{k} - \mathbf{S}_{k}\boldsymbol{\gamma}_{k})}$$

$$= \boldsymbol{\gamma}_{i}^{T}\mathbf{S}_{k}\boldsymbol{\gamma}_{i} + \frac{(\boldsymbol{\gamma}_{i}^{T}\boldsymbol{\delta}_{k} - \boldsymbol{\gamma}_{i}^{T}\mathbf{S}_{k}\boldsymbol{\gamma}_{k})^{2}}{\boldsymbol{\gamma}_{k}^{T}(\boldsymbol{\delta}_{k} - \mathbf{S}_{k}\boldsymbol{\gamma}_{k})}$$

$$\downarrow \mathbf{S}_{k+1} \quad \text{Eff}$$

Algorithm 7.2 Basic quasi-Newton algorithm

Step 1

Input \mathbf{x}_0 and initialize the tolerance ε .

Set k = 0 and $\mathbf{S}_0 = \mathbf{I}_n$.

Compute g_0 .

Step 2

Set $\mathbf{d}_k = -\mathbf{S}_k \mathbf{g}_k$.

Find α_k , the value of α that minimizes $f(\mathbf{x}_k + \alpha \mathbf{d}_k)$, using a line search.

Set $\delta_k = \alpha_k \mathbf{d}_k$ and $\mathbf{x}_{k+1} = \mathbf{x}_k + \delta_k$.

Step 3

If $\|\boldsymbol{\delta}_k\| < \varepsilon$, output $\mathbf{x}^* = \mathbf{x}_{k+1}$ and $f(\mathbf{x}^*) = f(\mathbf{x}_{k+1})$, and stop.

Step 4

Compute \mathbf{g}_{k+1} and set

$$\boldsymbol{\gamma}_k = \mathbf{g}_{k+1} - \mathbf{g}_k$$

Compute S_{k+1} using Eq. (7.20).

Set k = k + 1 and repeat from Step 2.

Davidon-Fletcher-Powell (DFP)

$$\mathbf{S}_{k+1} = \mathbf{S}_k + \frac{\boldsymbol{\delta}_k \boldsymbol{\delta}_k^T}{\boldsymbol{\delta}_k^T \boldsymbol{\gamma}_k} - \frac{\mathbf{S}_k \boldsymbol{\gamma}_k \boldsymbol{\gamma}_k^T \mathbf{S}_k}{\boldsymbol{\gamma}_k^T \mathbf{S}_k \boldsymbol{\gamma}_k}$$

$$\mathbf{S}_{k+1}\boldsymbol{\gamma}_k = \mathbf{S}_k\boldsymbol{\gamma}_k + \frac{\boldsymbol{\delta}_k\boldsymbol{\delta}_k^T\boldsymbol{\gamma}_k}{\boldsymbol{\delta}_k^T\boldsymbol{\gamma}_k} - \frac{\mathbf{S}_k\boldsymbol{\gamma}_k\boldsymbol{\gamma}_k^T\mathbf{S}_k\boldsymbol{\gamma}_k}{\boldsymbol{\gamma}_k^T\mathbf{S}_k\boldsymbol{\gamma}_k}$$

$$\mathbf{S}_{k+1}\boldsymbol{\gamma}_k = \boldsymbol{\delta}_k$$

Broyden-Fletcher-Goldfarb-Shanno Method----BFGS

$$\mathbf{S}_{k+1} = \mathbf{S}_k + \left(1 + \frac{\boldsymbol{\gamma}_k^T \mathbf{S}_k \boldsymbol{\gamma}_k}{\boldsymbol{\gamma}_k^T \boldsymbol{\delta}_k}\right) \frac{\boldsymbol{\delta}_k \boldsymbol{\delta}_k^T}{\boldsymbol{\gamma}_k^T \boldsymbol{\delta}_k} - \frac{(\boldsymbol{\delta}_k \boldsymbol{\gamma}_k^T \mathbf{S}_k + \mathbf{S}_k \boldsymbol{\gamma}_k \boldsymbol{\delta}_k^T)}{\boldsymbol{\gamma}_k^T \boldsymbol{\delta}_k}$$

The Broyden Family

$$\mathbf{S}_{k+1} = (1 - \phi_k)\mathbf{S}_{k+1}^{DFP} + \phi_k\mathbf{S}_{k+1}^{BFGS}$$

Comparison of quasi-Newton method vs Newton's method

quasi-Newton method	Newton's method
Only need the function values	Need the function values,
and gradients	gradients and Hessians
$\{H_k\}$ maintains positive definite	$\{G_k\}$ is not sure to be
for several updates	positive definite
Need $O(n^2)$ multiplications	Need $O(n^3)$ multiplications
in each iteration	in each iteration