Homework #7

Sam Fleischer

April 5, 2016

Problem 1	•						 					 				 						 				2
Problem 2							 					 				 						 			:	3
Problem 3							 				•	 				 						 				4
Problem 4							 					 				 						 				4
Problem 5							 				•	 				 						 				4
Problem 6							 				•	 				 						 				4
Problem 7							 					 				 						 				5
Problem 8							 					 				 						 			(6
Problem 9																										6

Problem 1

If f and g are measurable functions on Ω , then $\|fg\|_1 \le \|f\|_1 \|g\|_\infty$. If $f \in L^1$ and $g \in L^\infty$, then $\|fg\|_1 = \|f\|_1 \|g\|_\infty$ if and only if $|g(x)| = \|g\|_\infty$ a.e. on the set where $f(x) \ne 0$.

Proof. Let f and g be measurable functions on Ω . Then

$$\begin{split} \|fg\|_1 &= \int_{\Omega} \big|(fg)(x)\big| \mathrm{d}\mu \\ &= \int_{\Omega} \big|f(x)\big| \, \big|g(x)\big| \mathrm{d}\mu \\ &\leq \int_{\Omega} \big|f(x)\big| \operatorname*{ess\,sup}_{x \in \Omega} \big|g(x)\big| \mathrm{d}\mu \\ &= \operatorname*{ess\,sup}_{x \in \Omega} \big|g(x)\big| \int_{\Omega} \big|f(x)\big| \mathrm{d}\mu \\ &= \|f\|_1 \|g\|_{\infty} \end{split}$$

Now let $f \in L^1$ and $g \in L^\infty$. First, suppose $|g(x)| = ||g||_{\infty}$ a.e. on the set where $f(x) \neq 0$. In other words, define $A \subset \Omega$ by

$$A = \{x \in \Omega : f(x) \neq 0\}$$

and assume $|g(x)| = ||g||_{\infty}$ for almost all $x \in A$. Again, in other words, define $B \subset A$ by

$$B = \{x \in A : |g(x)| < ||g||_{\infty}\}$$

and assume $\mu(B) = 0$. Then

$$||fg||_1 = \int_{\Omega} |(fg)(x)| d\mu$$

$$= \int_{A} |(fg)(x)| d\mu + \int_{\Omega \setminus A} |(fg)(x)| d\mu$$

since f(x) = 0 for $x \in \Omega \setminus A$ by definition of A. Thus

$$||fg||_1 = \int_A |(fg)(x)| d\mu$$

$$= \int_B |(fg)(x)| d\mu^{-0} + \int_{A\setminus B} |(fg)(x)| d\mu$$

since $\mu(B) = 0$. For $x \in A \setminus B$, $|g(x)| = ||g||_{\infty}$. Thus,

$$\begin{split} \|fg\|_1 &= \int_{A \setminus B} \left| (fg)(x) \right| \mathrm{d}\mu \\ &= \int_{A \setminus B} \left| f(x) \right| \left| g(x) \right| \mathrm{d}\mu \\ &= \int_{A \setminus B} \left| f(x) \right| \|g\|_{\infty} \mathrm{d}\mu \\ &= \|g\|_{\infty} \int_{A \setminus B} \left| f(x) \right| \mathrm{d}\mu \\ &= \|g\|_{\infty} \left[\int_{A \setminus B} \left| f(x) \right| \mathrm{d}\mu + \int_{B} \left| f(x) \right| \mathrm{d}\mu + \int_{\Omega \setminus A} \left| f(x) \right| \mathrm{d}\mu \right] \end{split}$$

since $\mu(B) = 0$ and f(x) = 0 for $x \in \Omega \setminus A$ implies

$$\int_{B} |f(x)| d\mu = 0 \quad \text{and} \quad \int_{O \setminus A} |f(x)| d\mu = 0$$

Thus,

$$\begin{split} \|fg\|_1 &= \|g\|_{\infty} \left[\int_{A \setminus B} |f(x)| \mathrm{d}\mu + \int_B |f(x)| \mathrm{d}\mu + \int_{\Omega \setminus A} |f(x)| \mathrm{d}\mu \right] \\ &= \|g\|_{\infty} \int_{\Omega} |f(x)| \mathrm{d}\mu \\ &= \|f\|_1 \|g\|_{\infty} \end{split}$$

Second, suppose $B \subset A$ (as defined above) has positive measure. Then

$$\int_{B} |(fg)(x)| d\mu = \int_{B} |f(x)| |g(x)| d\mu < \int_{B} |f(x)| ||g||_{\infty} d\mu$$

Thus,

$$\begin{split} \|fg\|_1 &= \int_{\Omega} \left| (fg)(x) \right| \mathrm{d}\mu \\ &= \int_{B} \left| (fg)(x) \right| \mathrm{d}\mu + \int_{A \setminus B} \left| (fg)(x) \right| \mathrm{d}\mu + \int_{\Omega \setminus A} (fg)(x) |\mathrm{d}\mu|^{0} \\ &< \int_{B} \left| f(x) \right| \|g\|_{\infty} \mathrm{d}\mu + \int_{A \setminus B} \left| f(x) \right| \|g\|_{\infty} \mathrm{d}\mu \\ &= \|g\|_{\infty} \int_{A} \left| f(x) \right| \mathrm{d}\mu \\ &= \|g\|_{\infty} \int_{\Omega} \left| f(x) \right| \mathrm{d}\mu \\ &= \|f\|_{1} \|g\|_{\infty} \end{split}$$

Problem 2

 $\|f_n - f\|_{\infty} \to 0$ if and only if there exists a measurable set E such that $\mu(E^C) = 0$ and $f_n \to f$ uniformly on E.

Proof. Assume $||f_n - f||_{\infty} \to 0$. For each n, define K_n by

$$K_n = \inf_K \left\{ \left| f_n(x) - f(x) \right| \le K \text{ for almost all } x \in \Omega \right\}$$

Then define E^C by

$$E^C = \left\{ x \in \Omega \, : \, \left| f_n(x) - f(x) \right| > K_n \right\}$$

Then $\mu(E^C) = 0$. Also,

$$||f_n - f||_{\sup} = \sup_{x \in E} |f_n(x) - f(x)| = K_n \to 0$$

Now assume $f_n \to f$ uniformly on E and $\mu(E^C) = 0$. Then

$$||f_n - f||_{\infty} = \operatorname{ess \, sup}_{x \in \Omega} |f_n(x) - f(x)| = \sup_{x \in E} |f_n(x) - f(x)| \to 0$$

Problem 3

We say $\{f_n\}$ converges in measure to f if for every $\varepsilon > 0$,

$$\mu(\lbrace x: |f_n(x) - f(x)| \ge \varepsilon\rbrace) \to 0 \text{ as } n \to \infty.$$

If $\|f_n - f\|_p \to 0$ $(p < \infty)$ then $f_n \to f$ in measure, and hence some subsequence converges to f a.e. On the other hand if $f_n \to f$ in measure and $|f_n| \le g \in L^p$ for all $n \ (p < \infty)$ then $\|f_n - f\|_p \to 0$.

Proof. \Box

Problem 4

If $f_n, f \in L^p$ $(p < \infty)$ and $f_n \to f$ point-wise a.e., then $||f_n - f||_p \to 0$ if and only if $||f_n||_p \to ||f||_p$.

Proof. Theorem 1.28 is going left

Problem 5

Suppose $0 . Then <math>L^p \not\subset L^q$ if and only if Ω contains sets of arbitrarily small positive measure, and $L^q \not\subset L^p$ if and only if Ω contains sets of arbitrarily large finite measure. [Hint: for the "if" implication: in the first case there is a disjoint sequence $\{E_n\}$ with $0 < \mu(E_n) \le 2^{-n}$, and in the second case there is a disjoint sequence $\{E_n\}$ with $1 \le \mu(E_n) < \infty$. Consider $f = \sum a_n \mathscr{X}_{E_n}$ for suitable constants a_n .]

Proof. \Box

Problem 6

If $f \in L^{\infty}(\Omega) \cap L^{q}(\Omega)$ for some q then $f \in L^{p}(\Omega)$ for all p > q and

$$||f||_{\infty} = \lim_{p \to \infty} ||f||_p.$$

Proof. Let p > q. Then

$$||f||_p^p = \int_{\Omega} |f|^p d\mu$$

$$= \int_{\Omega} |f|^{p-q} |f|^q d\mu$$

$$\leq \int_{\Omega} ||f||_{\infty}^{p-q} |f|^q d\mu$$

$$= ||f||_{\infty}^{p-q} \int_{\Omega} |f|^q d\mu$$

$$= ||f||_{\infty}^{p-q} ||f||_q^q$$

$$< \infty$$

since p-q>0, $\|f\|_{\infty}<\infty$, and $\|f\|_q<\infty$. Thus $f\in L^p(\Omega)$. Next we show $\|f\|_{\infty}=\lim_{p\to\infty}\|f\|_p$. By the above calculation,

$$\begin{split} \lim_{p \to \infty} & \|f\|_p \leq \lim_{p \to \infty} \left[\|f\|_{\infty}^{\frac{p-q}{p}} \|f\|_q^{\frac{q}{p}} \right] \\ & = \lim_{p \to \infty} \|f\|_{\infty}^{\frac{p-q}{p}} \cdot \lim_{p \to \infty} \|f\|_q^{\frac{q}{p}} \\ & = \|f\|_{\infty} \end{split}$$

since as $p \to \infty$, $\frac{p-q}{p} \to 1$ and $\frac{q}{p} \to 0$. Also, the definition of $\|\cdot\|_{\infty}$ implies that for any ε , $\mu(E_{\varepsilon}) > 0$ where

$$E_{\varepsilon} = \left\{ x : \left| f(x) \right| \ge \left\| f \right\|_{\infty} - \varepsilon \right\}.$$

but $\mu(E_{\varepsilon}) \to 0$ and $\varepsilon \to 0$. Thus,

$$\|f\|_{p}^{p} = \int_{\Omega} |f|^{p} d\mu$$

$$= \int_{\Omega \setminus E_{\varepsilon}} |f|^{p} d\mu + \int_{E_{\varepsilon}} |f|^{p} d\mu$$

$$\geq \int_{E_{\varepsilon}} |f|^{p} d\mu$$

$$\geq \int_{E_{\varepsilon}} |\|f\|_{\infty} - \varepsilon|^{p} d\mu$$

$$= \mu(E_{\varepsilon}) \|\|f\|_{\infty} - \varepsilon|^{p}$$

$$\implies \lim_{p \to \infty} \|f\|_{p} = \lim_{p \to \infty} \left[\mu(E_{\varepsilon})^{\frac{1}{p}} \|\|f\|_{\infty} - \varepsilon| \right]$$

$$= \|\|f\|_{\infty} - \varepsilon|$$

Since ε is arbitrarily small, we find $||f||_{\infty} \le \lim_{p \to \infty} ||f||_p$. Thus,

$$||f||_{\infty} = \lim_{p \to \infty} ||f||_p$$

Problem 7

Prove that when $\infty \ge r \ge q \ge 1$, $f \in L^r(\Omega) \cap L^q(\Omega) \implies f \in L^p(\Omega)$ for all $r \ge p \ge q$.

Proof. Let $f \in L^r(\Omega) \cap L^q(\Omega)$. For $p \in [r, q]$, by convexity of \mathbb{R} , $\exists a \in [0, 1]$ such that

$$\frac{1}{p} = \frac{a}{r} + \frac{1-a}{q}$$

Then

$$\begin{split} & \|f\|_p^p = \int_\Omega |f|^p \mathrm{d}\mu \\ & = \int_\Omega |f|^{pa} |f|^{p(1-a)} \mathrm{d}\mu \\ & \leq \left(\int_\Omega |f|^{(pa)\left(\frac{r}{pa}\right)} \mathrm{d}\mu\right)^{\frac{pa}{r}} \left(\int_\Omega |f|^{(p(1-a))\left(\frac{q}{p(1-a)}\right)} \mathrm{d}\mu\right)^{\frac{p(1-a)}{q}} \quad \text{ by H\"older's Inequality} \end{split}$$

Spring 2016

$$\begin{split} &= \left(\int_{\Omega} \left| f \right|^r \right)^{\frac{pa}{r}} \left(\int_{\Omega} \left| f \right|^q \right)^{\frac{p(1-a)}{q}} \\ &= \left\| f \right\|_r^{pa} \left\| f \right\|_q^{p(1-a)} \\ &\Longrightarrow \left\| f \right\|_p \leq \left\| f \right\|_r^a \left\| f \right\|_q^{1-a} < \infty \\ &\Longrightarrow f \in L^p(\Omega) \end{split}$$

Problem 8

Prove that a strongly convergent sequence in $L^p(\mathbb{R}^n)$ is also a Cauchy sequence.

Proof. Let $\{f_n\}_n$ be a strongly convergent sequence in $L^p(\mathbb{R}^n)$ and let $\epsilon > 0$. Then there is some N such that $\|f_N - f\| < \frac{\epsilon}{2}^{\frac{1}{p}}$. Then for all $m, n \geq N$,

$$||f_n - f_m||_p^p \le ||f_n - f||_p^p + ||f_m - f||_p^p$$

since $|a+b|^p \le |a|^p + |b|^p$ for all $a, b \in \mathbb{C}$ and $p \in (0, \infty]$. Then

$$||f_n - f_m||_p^p < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Thus $\{f_n\}_n$ is Cauchy.

Problem 9

Give three different examples of ways for a sequence $f_k \in L^p(\mathbb{R}^n)$ to converge weakly to zero, but not strongly to anything. Verify your claims for these exmples.

Proof.