UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO

Bacharelado em Sistemas de Informação Fundamentos de Engenharia de Software

Documentação de Requisitos *Don't Crash Me Bro*Versão 1.0

Aluno: Luiz Carlos Brito de Andrade Lima Filho

Sumário

Histórico de Alterações	
Introdução	04
Visão Geral	04
Proposta	04
Escopo	05
Aplicabilidade	05
Requisitos	05
Plano de desenvolvimento	05
Relação com as propriedades do <i>R-E-A-L FU-CK-IN-G LAWS</i>	06
Diagrama de Caso de Uso	07
Diagrama de Atividades	07
Diagrama de Classes	08
Referências	08

Histórico de Alterações

Data	Versão	Descrição	Autor

Introdução

Estamos em 2025 e cada vez o há um aumento de drones no nosso espaço aéreo, graças a facilidade cada vez maior de conseguir o seu. Como a grande baixa nos preços em 2017. Cada vez mais conseguimos drones maiores e mais complexos (com menos de 25kg, pois a lei no Brasil que só dá permissão especial da Aeronáutica), porém alguns ainda tem os mais simples que tem menos de 2kg. Com isso estamos lançando o projeto DCMB para ajudar tais usuários.

Visão Geral

Com tal aumento de drones no nosso espaço aéreo, está ocorrendo mais acidentes e que os 3 principais fatores que fazem ocorrer tais são:

- 1- Erro humano. Normalmente ocorre quando o operador não tem tanta experiência para pilotar os drones e acaba batendo tal em alguma superfície ou alguém. Possivelmente por também não saber os limites do seu próprio drone (bateria, distância máxima e afins) e não saber as <u>leis</u> que foram feitas em 2015 para pilotar tal aeronave.
- 2- Mal funcionamento do drone. Quando ocorre perca de sinal entre o operador e o drone, fazendo que ele caia ou fique descontrolado. Por exemplo: o último comando antes de perder o sinal era para o drone seguir em frente. Como o comando não foi cancelado na perda de sinal, pode ter a possibilidade do drone continuar indo para frente até bater em algum lugar ou acabar a bateria. Como possivelmente ocorreu nessa noticia antiga num estádio de baseball. Fazendo com que a FAA (Federal Aviation Administration) que cuida do espaço aéreo nos USA, proibisse uso de qualquer aeronave abaixo de 3mil pés num raio de aproximadamente 5 quilômetros em estádios com capacidade de 30 mil pessoas ou mais.
- 3- Condições climáticas. Com grandes ventos ou tempestades, drones de porte menores facilmente perdem o controle por não aguentar as rajadas de ventos ou chuvas, mesmo que até de potes maiores podem não aguentar como no caso de julho/2016 que um drone do facebook foi derrubado por causa de uma ventania.

Com tais fatores o Projeto DCMB tem objetivo de ajudar o operador com os fatores de mal funcionamento e de condições climáticas.

Proposta

O Projeto DCMB visa facilitar o acesso a informações para o operador, seja elas: as condições climáticas e as leis sobre drones e futuramente implementar um firmware que o drone memorize a rota feita e volte quando perder sinal com o operador. Toda informação no seu celular. O aplicativo não só irá mostrar as informações, mas também recomendar para o usuário se é bom ou não utilizar o drone dele em tal lugar.

Escopo

Com o aumento nas vendas de drones nesse ano de 2025 devemos chegar à casa de centena de milhões de drones vendidos, com isso para deixar o aplicativo completamente funcional é necessárias fontes confiáveis e precisa de dados, tanto para clima, como leis de espaço aéreo e áreas de espaço aéreo restritos (como aeroportos), para ser jogado em um algoritmo para aprimorar a saída das informações para facilitar o entendimento do usuário.

O aplicativo irá ficar online, porém se infelizmente o usuário não estiver online o aplicativo ainda irá funcionar, porém algumas das suas funções que são necessárias o usuário está online não estarão disponíveis.

Aplicabilidade

Todos os usuários de drones que querem facilidade na obtenção de informações que os ajudarão na hora na tomada de decisão para saber se é bom utilizar a aeronave nas condições que se encontra em determinada área.

Requisitos

Essencial: Busca e tratamento das informações climáticas e leis aeronáuticas sobre drones.

Esperado: Recomendação se é possível utilizar o drone na área que se encontra o usuário.

Desejável: Prevenção de imprevistos que podem acabar em quedas ou acidentes mais sérios.

Plano de Desenvolvimento

Tarefa	Descrição	Data de Entrega
Definição	Escolha do projeto e desenvolvimento do documento inicial de apresentação de tal.	02/05/2017
CRUD	Implementação das operações básicas do CRUD.	06/06/2017
Documento de Requisitos I	Desenvolvimento do documento de requisitos que tal inclui: motivação, propósito, escopo, descrição geral e aplicabilidade	20/06/2017
Documento de Requisitos II	Refino do escopo, acréscimo dos diagramas UML, plano de desenvolvimento e os porquês que o sistema atende as propriedades do R-E-A-L FU-CK-IN-G laws.	04/07/2017
Documento de Arquitetura	Criação do documento de arquitetura orientado com os UML do documento de requisitos.	11/07/2017
Sistema de Login	Implementação no Sistema de login.	18/07/2017
Documento de Interface de usuário	Desenvolvimento do documento que contêm especificações da interface de usuário.	25/07/2017
Interface de usuário	Implementação da interface de usuário	1/08/2017

Relação com as propriedades do R-E-A-L FU-CK-IN-G LAWS

O sistema obedecerá à propriedade do FUCKING. 1- Estará quase sempre online e quando estiver offline ele terá algum desempenho (as funções offline, como acesso as leis para drone). 2- Irá verificar as condições do seu ambiente operacional e decidir as suas ações em tal situação. 3- Quando não for adequado suas condições irá avisar sobre e se auto concertar ou pedirá uma correção externa.

Haverá uma segurança nas informações do usuário, em caso de invasões no sistema (possivelmente com hash nas informações), pois para que importa a funcionalidade do app, se a não é seguro?

Em relação ao REAL: 1- Ele poderá ser reusado se for criado outro tipo de aeronave. 2- Haverá outros updates, dependendo da necessidade dos usuários (utilizando como referência principalmente do feedback de tais. 3- Haverá um patch notes para que os usuários acompanhem a "evolução" do app.

Diagrama de Caso de Uso

Diagrama de Atividade

As atividades que o usuário poderá fazer em relação ao aplicativo.

Diagrama de Classes

Classes utilizadas no aplicativo

Referências

Projeto de lei que regulamenta a utilização e operação dos drones

http://www.camara.gov.br/sileg/integras/1359983.pdf

Noticia mostrando queda por mal funcionamento no drone.

https://techcrunch.com/2017/05/23/the-faa-gets-a-case-study-with-a-drone-crash-inside-an-mlb-stadium/

Noticia mostrando queda por condição climática.

http://exame.abril.com.br/tecnologia/ventania-derrubou-drone-de-internet-do-facebook/

Noticia mostrando o aumento na facilidade de conseguir um drone.

http://g1.globo.com/tecnologia/noticia/com-preco-menor-3-milhoes-de-drones-devem-ser-vendidos-em-2017-diz-consultoria.ghtml