

An Agile Verification and Validation Process for Generating Regulatory-Grade Evidence

Paulina Rodriguez

paulina.rodriguez@fda.hhs.gov

Ahmad Dibaji, Bruce Murray, Matthew Myers, Tina Morrison Center of Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Applied Mechanics

Outline

- Motivation
- ➤ Agile Framework
- Modified Agile Approach
 - ➤ Integrated V&V40
- Project Management Tools
- > Summary

Motivation

Some obstacles the medical device community faces in adopting computational models:

- Conducting sufficient verification and validation activities
- Implementing credibility assessment
- Identifying the necessary level of rigor
- Reporting activities implemented

Goal: Execute an end-to-end example that utilizes risk-informed credibility assessment to produce a regulatory grade computational model for medical device evaluation.

Verification & Validation (V&V)

FDA

V&V40 - 2018 Standard

V&V10 - 2006 Standard

Agile Principles

- 1. Early and continuous delivery of valuable scientific discoveries
- 2. Even in late development welcome changing requirements
- 3. Knowledge is **delivered frequently** (weeks rather than months)
- 4. Close, **daily cooperation** between researchers
- 5. Projects are built around **motivated individuals**, who should be trusted
- 6. The best form of communication is **face-to-face conversation** (co-location)
- 7. The primary measure of **progress is scientific discoveries**
- 8. Sustainable research, able to maintain a constant pace
- 9. Continuous attention to technical excellence and good design
- **10. Simplicity** -the art of maximizing the amount of work not done -is essential
- 11. Best architectures, requirements, and designs emerge from **self-organizing teams**
- 12. Regularly, the team **reflects on how to become more effective**, and adjusts accordingly

Linear vs. Iterative Approach

Waterfall: Unidirectional

Agile Manifesto

While there is value in the items on the right, we value the items on the left more.

Individuals and Interactions

Scientific Discoveries

Collaboration

Responding to Change

Process and Tools

Comprehensive Documentation

Contract Negotiation

Following a Plan

Modified Agile Framework

(Initial Requirements & Updated Requirements)

3. LEARN

(Review)

2. COLLABORATE

(Develop & QA)

Requirements

Requirements

Requirements

or

Initiation(I):

- Question
- COU
- Model Risk
- Time-box
- Meetings

Knowledge(K):

- Credibility Goals
- PIRT
- Plan iterations (by complexity)
- Time-box

Backlog(B):

- List iterations in order
 - (Trello)

4. SPECULATE

(Updated Requirements)

Initiation(I):

- Question
- COU
- Model Risk
- Time-box
- Meetings

Knowledge(K):

- Credibility Goals
- PIRT
- Plan iterations (by complexity)
- Time-box

Backlog(B):

- List iterations in order (Trello)

Question of Interest

What are the bioeffects arising from deposition of potential chemicals generated by EDDS onto the oral mucosa?

Context of Use (COU)

The CFD model will characterize the flow field and temperature distribution of the flow in representative mouth cavity of an EDDS user.

Model Risk

Model Risk: There is a *modest* possibility that the use of the computational model leads to a decision that results in patient harm and/or other undesirable impacts.

Initiation(I):

- Question
- COU
- Model Risk
- Time-box
- Meetings

Knowledge(K):

- Credibility Goals
- PIRT
- Plan iterations (by complexity)
- Time-box

Backlog(B):

- List iterations in order (Trello)

Question of Interest

What are the bioeffects arising from deposition of potential chemicals generated by EDDS onto the oral mucosa?

Context of Use (COU)

The CFD model will characterize the flow field and temperature distribution of the flow in representative mouth cavity of an EDDS user.

Model Risk

Model Risk: There is a *modest* possibility that the use of the computational model leads to a decision that results in patient harm and/or other undesirable impacts.

Initiation(I):	Knowledge(K):	Backlog(B):
- Question	- Credibility Factors	- List iterations
- COU	- PIRT	in order
- Model Risk	- Plan iterations	(Trello)
- Time-box	(by complexity)	
- Meetings	- Time-box	

PIRT* - Version 1

(Phenomenological Identification and Ranking Table)

Phenomena	Importance	Confidence/Knowledge
Electral Power Input into heat		
Porosity		
Device Geometry		
Mixture of liquid		
Initial Temperature		
Ambient Temperature		
Pressure		
Air Flow Rate		
Augrago Air Volgoitu		

^{*} Diamond, D. J. (2006), "Experience Using the Phenomena Identification and Ranking Technique for Nuclear Analysis," BNL-76750-2006-CP, Brookhaven National Laboratory, Upton, NY

ASME V&V40 Credibility Factors

Verification

- Code
 - Software Quality Assurance
 - Numerical Code Verification
- Calculation
 - Discretization Error
 - Numerical Solver Error
 - Use Error

Validation

- Computational Model
 - Model Form
 - Model Input Quantification of Sensitivities
 - Model Input Quantification of Uncertainties
- Comparator (8 Factors)
 - Test Samples
 - Test Conditions
- Assessment
 - Equivalency of Input Parameters
 - Output Comparison Quantity
 - Equivalency of Output Parameters
 - Rigor of Output Comparisons
 - Agreement of Output Comparisons

Applicability

- Relevance of the Quantities of Interest
- Relevance of the Validation Activities to the COU

Collaborate

3. LEARN (Review)

Develop – Current Iteration

- List of tasks to complete iteration based on **Credibility Goals** (Trello)

Develop – In Progress (Trello)

Quality Assurance(QA)

- Credibility Assessment
- Other items reviewed by team

Requirements

Requirements

Requirements

or

Initiation(I):

- Question
- COU
- Model Risk
- Time-box
- Meetings

Knowledge(K):

- Credibility Goals
- PIRT
- Plan iterations (by complexity)
- Time-box

Backlog(B):

- List iterations in order
 - (Trello)

4. SPECULATE

(Updated Requirements)

QA

FDA

Review:

- Meeting (Entire Team)
- Completed work is presented (demos)
- Did you compare the computational model with the comparator and is the assessment applicable for the COU?

(Based on current evidence)

Develop – Current Iteration

Develop

- List of tasks to complete iteration based on **Credibility Goals** (Trello)

Develop – In Progress (Trello)

Quality Assurance(QA)

- Credibility Assessment
- Other items reviewed by team

Review

Requirements

Requirements

Requirements

or

Initiation(I):

- Question
- COU
- Model Risk
- Time-box
- Meetings

Knowledge(K):

- Credibility Goals
- PIRT
- Plan iterations (by complexity)
- Time-box

Backlog(B):

- List iterations in order
 - (Trello)

4. SPECULATE

(Updated Requirements)

QA

Review:

- Meeting (Entire Team)
- Completed work is presented (demos)
- Did you compare the computational model with the comparator and is the assessment applicable for the COU?

(Based on current evidence)

Develop – Current Iteration

Develop

- List of tasks to complete iteration based on **Credibility Goals** (Trello)

Develop – In Progress (Trello)

Quality Assurance(QA)

- Credibility Assessment
- Other items reviewed by team

Requirements

Requirements

Review

Requirements

or

Initiation(I):

- Question
- COU
- Model Risk
- Time-box
- Meetings

Knowledge(K):

- Credibility Goals
- PIRT
- Plan iterations (by complexity)
- Time-box

Backlog(B):

- List iterations in order
 - (Trello)

Proceed:

- Update PIRT, Credibility Goals
- If necessary, reorganize plan
- Begin next iteration

Tools

Trello*: Web-Based Project Management Application

Manages changes in:

- Project
- Team

PIRT:** Phenomenological Identification and Ranking Table

Monitors flux in knowledge:

- Expertise
- Experiments
- Literature Reviews

PIRT - Version 1

Phenomena	Importance	Confidence/Knowledge
Electral Power Input into heat		
Porosity		
Device Geometry		
Mixture of liquid		
Initial Temperature		
Ambient Temperature		
Pressure		
A-CI D.		

^{*} Commercial Software: https://trello.com/

^{**} Diamond, D. J. (2006), "Experience Using the Phenomena Identification and Ranking Technique for Nuclear Analysis," BNL-76750-2006-CP, Brookhaven National Laboratory, Upton, NY

Tools

PIRT - Version 6

Type of Phenomena	Phenomena	Importance	Confidence in Importance	Confidence in Knowledge	Knowledge we have about what we're simulating	Our ability/knowledge to actually simulate it	How to Improve Confidence in Knowledge	Notes
Input	Conservation of mass/momentum/energy	1	High	High	Laws are solid. No negotiation.	Laws already integrated in software.	N/A	ANSYS
Input	Mode of operation: constant power or constant temperature	1	Medium	High	high knowledge	Upload the measured power profile as the heat source. Note: Can be used for both modes even though the power profile is different.	N/A	constant power assumes constant heat source; constant temperature requires feedback Temperature Mode: (a) off: expect to have constant power output. (b) on: power varies to keep Temperature constant
Output	Temperature through out system	1	High	High	Air/smoke temperature profile	Physics Laws	Experiment for validation	Measured using thermocouples. At different locations inside the atomizer and mouthpiece.
		1	High	High	Heating Coil Temperature/Heat Source	Physics Laws	Experiment for validation	Measured using thermocouples Attach thermocouples to the coil using cement
Output	Nature of the air flow through the stomizer (tube) (assume it's laminar)	1	Medium	Low	mouthpiece particle velocity with PIV Note: May need to do some experiments to confirm Laminar Flow	to better characterize/understand	Experiments using PIV	Based on Reynolds number calculation. Single phase: polystyrene beads Dual phase: smoke particles (if detectable in PIV)
Input	Airflow rate through cylinder	1	High	High	Measured airflow rate put into the	airflow inlet boundary condition	N/A	Entire system, Velocity
	PIRT - Version 1							

Iterations

PIRT

^{*} Based on "Applicability Analysis of Validation Evidence for Biomedical Computational Model" written by Pras Pathmanathan, Richard A. Gray, Vicente J. Romero, Tina M. Morrison, JVVUQ 2017 (*Open Access*)

- Iterations
 - Start
 - Iteration Cycle 1

PIRT

^{*} Based on "Applicability Analysis of Validation Evidence for Biomedical Computational Model" written by Pras Pathmanathan, Richard A. Gray, Vicente J. Romero, Tina M. Morrison, JVVUQ 2017 (*Open Access*)

- Iterations
 - Start
 - Iteration Cycle 1
 - Current
 - Iteration Cycle 2
- PIRT

^{*} Based on "Applicability Analysis of Validation Evidence for Biomedical Computational Model" written by Pras Pathmanathan, Richard A. Gray, Vicente J. Romero, Tina M. Morrison, JVVUQ 2017 (*Open Access*)

- Iterations
 - Start
 - Iteration Cycle 1
 - Current
 - Iteration Cycle 2
- PIRT
 - Start :
 - Version 1

VVUQ

^{*} Based on "Applicability Analysis of Validation Evidence for Biomedical Computational Model" written by Pras Pathmanathan, Richard A. Gray, Vicente J. Romero, Tina M. Morrison, JVVUQ 2017 (*Open Access*)

- Iterations
 - Start
 - Iteration Cycle 1
 - Current
 - Iteration Cycle 2
- PIRT
 - Start :
 - Version 1
 - Current
 - Version 6
- Applicability Analysis*

^{*} Based on "Applicability Analysis of Validation Evidence for Biomedical Computational Model" written by Pras Pathmanathan, Richard A. Gray, Vicente J. Romero, Tina M. Morrison, JVVUQ 2017 (*Open Access*)

- Iterations
 - Start
 - Iteration Cycle 1
 - Current
 - Iteration Cycle 2
- PIRT
 - Start
 - Version 1
 - Current
 - Version 6
- Applicability Analysis*
 - Required final iteration cycle
 - Interpolate or Extrapolate
 - Assess changes in Reality and Computational Model

^{*} Based on "Applicability Analysis of Validation Evidence for Biomedical Computational Model" written by Pras Pathmanathan, Richard A. Gray, Vicente J. Romero, Tina M. Morrison, JVVUQ 2017 (*Open Access*)

Summary - Implications

Enhance Communication

Cultivate Credible Models

Summary - Implications

Enhance Communication

- Team: Regulators, Modelers, & Experimentalists
- Facilitate early interactions between FDA and Industry
 - Pre-Submission*

Cultivate Credible Models

^{*} https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm311176.pdf

Summary - Implications

Enhance Communication

- Team: Regulators, Modelers, & Experimentalists
- Facilitate early interactions between FDA and Industry
 - Pre-Submission*

Cultivate Credible Models

- Adaptable framework that integrates the V&V40 Standard for a credible computational model dependent on a COU
- Iteratively builds credibility assessment into both the model and experiments during development and implementation
- Maintains consistency in expectations by following the FDA Reporting of Computational Modeling Studies in Medical Devices Submissions Guidance**

^{*} https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm311176.pdf

^{**} https://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM381813.pdf

<u>paulina.rodriguez@fda.hhs.gov</u> https://figshare.com/projects/Agile V V Process/32072

ADDITIONAL SLIDES

www.fda.gov 28

Iteration – 1(Completed)

- Time: 3 months
- Theme: Complete Entire Project
- Completed Items:
 - Goal:
 - CFD model of an e-cigarette device
 - End to end integration of VVUQ
 - Model Design:
 - Commercial Software = ANSYS CFX
 - Physical System Simplifications
 - Focus on heat profile within the system
 - Created PIRT Version 1
 - Exploratory experiments for system understanding
- Entire project was <u>NOT</u> completed

Iteration – 2(Current)

- **Time:** 4-5 months
- Theme: Airflow Analysis
- Re-plan: (IF NECESSARY)
 - Project Break Down: 4 Iterations
 - PIRT Update: Versions 4-6
 - Goal Specification: Question of Interest,
 Context of Use, Risk Assessment
 - Establish Credibility Goal(CG) Gradation
 - Experimental Design based on CG
 - Model Design: Airflow model Version 1-7 (Based on System Complexity)

Anticipated Completed Items

- CFD Airflow Model
- Airflow Comparator Experiments
- Model Assessment (Airflow ONLY)
- Validated Review (Validation domain for airflow ONLY)

Iteration - 3

• **Time:** 3-4 months

Theme: Heat Transfer Analysis

• Re-plan: (*IF NECESSARY*)

Anticipated Completed Items:

- Working CFD Heat Transfer Model
- Comparator Experiments specified in Credibility Goals
- Model Assessment
- Validated Review (Validation domain for Heat Transfer)

Iteration - 4

- Time: 2-3 months
- Theme: Applicability Assessment
- Re-plan: (*IF NECESSARY*)
- Anticipated Completed Items:
 - CFD Heat Transfer with Air Flow ModelModified for COU
 - Justification for extrapolating from Validation Domain to COU Domain
 - Review (COU domain for Model)

Phenomena	Importance	Confidence/Knowledge
Electral Power Input into heat		
Porosity		
Device Geometry		
Device Geometry		

- Added Notes Column
- Redefined Phenomena Column

Phenomena	Importance	Confidence/Knowledge	Notes
Airfllow through cylinder			Entire system
Temperature through out system			Measured using thermocouples
Laminar flow			Based on Reynolds number calculation
Wick Difussion			None(will change)

• Split Confidence/Knowledge Column into 2 Columns

Phenomena Importance		Confidence	Knowledge we have about what we're simulating	Notes
Airflow rate through cylinder	1			Entire system
Nature of the air flow through the atomizer (tube) (assume it's laminar)	1	but the confidence is low; may need to do some experiments to confirm	we have some knowledge about the nature of the flow // maybe the entrance of the flow matters more?	Based on Reynolds number calculation
Properties of Air	1		know the viscosity as a function of temp,	constant properties or time varying
Temperature through out system	1			Measured using thermocouples

Added Our Ability to Simulate Column

					1	
Phenomena	Importance	Confidence	Knowledge we have about what we're simulating	Our ability/knowledge to actually simulate it	Notes: Ahmad & Paulina	Notes
Airflow rate through cylinder (puff profile)	1	High	Measured airflow rate put into the system.	airflow inlet boundary condition	elocity	Entire system
Nature of the air flow through the atomizer (tube) (assume laminar)	1	II ∩w	'''	to better characterize &	òingle phase : polystyrene leads Jual phase: smoke larticles (if detectable in PIV)	Based on Reynolds number calculation
Properties of Air	1	High	know the viscosity as a function of temp,	Ideal Gas Properties/Laws	deal Gas for air introduced nto the system. Dutlet mouthpiece is air with mall particles/smoke	constant properties or time varying
Temperature through out system	1(0,000)	Maratica.	A::(:-	Dhi I	t different locations inside	Manager de la companya de la company
					<u> </u>	

- Added Type of Phenomena Column
- Split Confidence Column into 2 Columns

Type of Phenomena	Phenomena	Importance	Confidence in Importance	Confidence in Knowledge	Knowledge we have about what we're simulating	Our ability/knowledge to actually simulate it	Notes
Driving Physics??	Conservation of mass/momentum/energy	1	High	High	.aws are solid. No negotiation.	Laws already integrated in software.	ANSYS
Condition	Mode of operation: constant power or constant temperature	1	Medium	High	nigh knowledge	Upload the measured power profile as the heat source. Note: Can be used for both modes even though the power profile is different.	constant power assumes constant heat source; constant temperature requires feedback Temperature Mode; (a) off: expect to have constant power output. (b) on: power varies to keep Temperature constant
Output	Temperature through out system	1	High	Medium	Air/smoke temperature profile	Physics Laws	Measured using thermocouples. At different locations inside the atomizer and mouthpiece.
		1	High	lYledium l	leating Coil Temperature/Heat Source	Physics Laws	Measured using thermocouples Attach thermocouples to the coil using cement
Output & Input ??	Nature of the air flow through the atomizer (tube) (assume it's laminar)	1	Medium	Low	nouthpiece particle velocity with PIV Vote: May need to do some experiments to confirm Laminar Flow	to better characterize/understand	Based on Reynolds number calculation. Single phase: polystyrene beads Dual phase: smoke particles (if detectable in

- Added *How to Improve Confidence in Knowledge* Column
- Reordered items 1-14

Type of Phenomena	Phenomena	Importance	Confidence in Importance	Confidence in Knowledge	Knowledge we have about what we're simulating	Our ability/knowledge to actually simulate it	How to Improve Confidence in Knowledge	Notes
Input	Conservation of mass/momentum/energy	1	High	High	Laws are solid. No negotiation.	Laws already integrated in software.	N/A	ANSYS
Input	Mode of operation: constant power or constant temperature	1	Medium	High	high knowledge	Upload the measured power profile as the heat source. Note: Can be used for both modes even though the power profile is different.	N/A	oonstant power assumes oonstant heat source; oonstant temperature requires feedback Temperature Mode: (a) off: expect to have constant power output. (b) on: power varies to keep Temperature constant
Output	Temperature through out system	1	High	High	Air/smoke temperature profile	Physios Laws	Experiment for verification validation	Measured using thermocouples. At different locations inside the atomizer and mouthpiece.
		1	High		Heating Coil Temperature/Heat Source	Physics Laws	Experiment for perification validation	Measured using thermocouples Attach thermocouples to the coil using cement
Output	Nature of the air flow through the atomizer (tube) (assume it's laminar)	1	Medium	Low	mouthpiece particle velocity with PIV Note: May need to do some experiments to confirm Laminar Flow	to better characterize/understand		Based on Reynolds number calculation. Single phase: polystyrene beads Dual phase: smoke particles (if detectable in PIV)
Input	Airflow rate through cylinder (puff profile)	1	High	High I	Measured airflow rate put into the system.	airflow inlet boundary condition	N/A	Entire system, Velocity