Desarrollo de Aplicaciones en Visión Artificial

Analí Alfaro

La imagen Digital

• Histograma : Representación estadística de una imagen respecto de la información de intensidad (tonalidades de color) que guarda.

a) Imagen escala de grises

La imagen Digital

La imagen Digital

Cómo se compone una imagen a color?

Cómo almacenamos una imagen a color?

a) Imagen original RGB, b) Imagen R, c) Imagen G, d) Imagen B

Relaciones entre píxeles:

- Adyacencia
- Vecindario : N4(p), N8(p), Nd(p)
- Conectividad

- El análasis de la relación entre píxeles es útil:
 - Segmentación
 - detección y conteo de objetos (componentes conexas)

- El análasis de la relación entre píxeles es útil:
 - Segmentación
 - detección y conteo de objetos (componentes conexas)

- El análasis de la relación entre píxeles es útil:
 - Segmentación
 - detección y conteo de objetos (componentes conexas)

- El análasis de la relación entre píxeles es útil:
 - Segmentación
 - detección y conteo de objetos (componentes conexas)

- El análasis de la relación entre píxeles es útil:
 - Segmentación
 - detección y conteo de objetos (componentes conexas)

Transformaciones Geométricas

- Cambian la proyección de la imagen sobre el plano. Así, la imagen resultante cambia de tamaño y forma.
- Consiste de 2 operaciones:
 - Una transformación espacial que define la nueva ubicación de los píxeles en el plano imagen.
 - Interpolación de los niveles de gris en la imagen transformada
- Las transformaciones Afínes : Rotación, Escalamiento y Traslación

• Es una operación en donde las coordenadas (x', y') de la nueva imagen son expresadas como una combinación linear respecto del punto original (x, y)

$$x' = ax + by + m$$
$$y' = cx + dy + n$$

• Cuando m= n = 0

$$\begin{cases} x' = ax + by \\ y' = cx + dy \end{cases} \longrightarrow \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

• El sistema tiene una solución única si y sólo si :

$$\Delta = \begin{vmatrix} a & b \\ c & d \end{vmatrix} \neq 0$$

- Es decir, la matriz es no singular entonces la transformación inversa existe!!
- Que significa esto en términos de una imagen?

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Para combinar transformaciones, es más fácil si representamos las coordenadas como homogéneas. De esta forma, cualquier transformación afín puede expresarse como una multiplicación de

matrices

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
$$\mathbf{q} = \mathbf{T}\mathbf{p}$$

$$\mathbf{T} = \begin{bmatrix} 1 & 0 & x_0 \\ 0 & 1 & y_0 \\ 0 & 0 & 1 \end{bmatrix}$$
 Traslación (x_0, y_0)

Traslación
$$(x_0, y_0)$$

$$\mathbf{T} = \begin{bmatrix} s_1 & 0 & 0 \\ 0 & s_2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Escala con factores
$$s_1, s_2$$

$$\mathbf{T} = \begin{bmatrix} \cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \text{Rotación con ángulo $\tilde{\alpha}$}$$

 Para combinar transformaciones, es más fácil si representamos las coordenadas como homogéneas. De esta forma, cualquier transformación afín puede expresarse como una multiplicación de matrices

$$\begin{bmatrix} \mathbf{x'} \\ \mathbf{y'} \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$\mathbf{q} = \mathbf{T}\mathbf{p}$$

Si queremos rotar una imagen con respecto a su centro, aplicamos 3 transformaciones

- Trasladar centro al origen T_1
- Rotar T_2
- Trasladar centro a su posición original T_3

$$T = T_3 \cdot T_2 \cdot T_1$$

Traslación

u1

u1 user; 19/09/2020

Aplicación: Alineamiento de imágenes

Dadas dos imágenes, calcular la transformación entre ambas.

1. Encontrar P puntos en la primera imagen que correspondan con puntos Q en la segunda imagen

2. Expresar en coordenadas homogéneas los puntos P y Q

$$\mathbf{P} = \begin{bmatrix} x_0 & x_1 & \dots & x_{n-1} \\ y_0 & y_1 & \dots & y_{n-1} \\ 1 & 1 & \dots & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{p}_0 & \mathbf{p}_1 & \dots & \mathbf{p}_{n-1} \end{bmatrix}$$
$$\mathbf{Q} = \begin{bmatrix} u_0 & u_1 & \dots & u_{n-1} \\ v_0 & v_1 & \dots & v_{n-1} \\ 1 & 1 & \dots & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{q}_0 & \mathbf{q}_1 & \dots & \mathbf{q}_{n-1} \end{bmatrix}$$

3. Hallar la transformación, debe cumplirse que : Q = HP

Por mínimos cuadrados, la solución es

$$\mathbf{H} = \mathbf{Q}\mathbf{P}^T(\mathbf{P}\mathbf{P}^T)^{-1}$$

Todavía hay un problema que enfrentar: la transformación podría dar coordenadas decimales. Qué hacemos?

Interpolación

Es más fácil hacer la proyección inversa, ya que así sabemos los valores reales de píxel a interpolar

$$\mathbf{P} = \mathbf{H}^{-1} \mathbf{Q}_g$$

Interpolación bilinear

Qué hacer cuando puntos transformados no caen en posiciones enteras?

Puede caer en medio de 4 píxeles

$$P_0 = ([x], [y]) P_1 = ([x], [y])$$

$$P_2 = ([x], [y]) P_3 = ([x], [y])$$

 P_a = interpolación lineal entre P_0 y P_1

 P_b = interpolación lineal entre P_3 y P_2

 P_c = interpolación lineal entre P_a y P_b

Notebook

 Actividad: Aprenderemos a implementar transformaciones geométricas sobre una imagen usando python Transformaciones Digitales

Transformaciones en imágenes

 Como con cualquier función, se pueden aplicar operadores a una imagen

• Forma especial de operador: convolución (filtrado lineal)

Filtrado Espacial de imágenes

 Modificar los píxeles de una imagen basado en alguna función de una vecindad local de cada pixel

10	5	3
4	5	1
1	1	7

Local image data

7

Modified image data

- · Operador de filtrado lineal es la convolución o correlación cruzada
- Reemplazar cada píxel por una combinación lineal de sus vecinos
- · La prescripción para la combinación lineal es llamada "kernel"

 Sea f una imagen, w un kernel de (2s+1, 2t +1) y g una imagen de salida:

$$g(x, y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) f(x + s, y + t)$$

donde : s y t son enteros no negativos, la dim(w) debe ser impar en ambas dimensiones

- · La operación de convolución es asociativa y conmutativa
- Tener especial cuidado de píxeles en el borde de la imagen
 - Procesar sólo píxeles válidos
 - Crear una imagen más grande y hacer "padding"
- La aplicación de una convolución genera diferentes efectos: suavizado, perfilado, bordes, contraste.

1	2	3	2	1
3	2	2	1	3
2	1	3	2	3
2	3	3	1	2
3	1	2	2	3

1	1	1
1	1	1
1	1	1

1	2	3	2	1
3	2	2	1	3
2	1	3	2	3
2	3	3	1	2
3	1	2	2	3

1	1	1
1	1	1
1	1	1

1	2	3	2	1
3	2	2	1	3
2	1	3	2	3
2	3	3	1	2
3	1	2	2	3

1	1	1
1	1	1
1	1	1

20	18	

1	2	3	2	1
3	2	2	1	3
2	1	3	2	3
2	3	3	1	2
3	1	2	2	3

1	1	1
1	1	1
1	1	1

20	18	19

1	2	3	2	1
3	2	2	1	3
2	1	3	2	3
2	3	3	1	2
3	1	2	2	3

1	1	1
1	1	1
1	1	1

20	18	19
20	18	19
20	18	21

1	2	3	2	1
3	2	2	1	3
2	1	3	2	3
2	3	3	1	2
3	1	2	2	3

1	1	1		20	18	19
1	1	1	=	20	18	19
1	1	1		20	18	21

Pero hay un problema: la imagen de entrada es de 5x5 y la imagen de salida es de 3x3 Debido principalmente porque no se puede hacer filtrado en ciertas posiciones.

- Dada una imagen I de tamaño $n \times m$ y un filtro de tamaño $k \times k$
- Para que el resultado tenga la misma dimensión
 - Añadir k 1 filas y k 1 columnas en los extremos de I, con valores 0

Filtrado de suavizado

- Filtros promedio o filtros pasa-baja
- Reemplazar el píxel analizado por el producto ponderado de su vecindad.

	1	1	1	
$\frac{1}{9}$ ×	1	1	1	
	1	1	1	

	1	2	1
- ×	2	4	2
	1	2	1

Filtrado de suavizado

- Objetivos
 - Eliminar ruido
 - Hacer que objetos pequeños desaparezcan de la imagen
 - Aplicaciones en reconocimiento de objetos
- Filtros de suavizamiento: promedio , Gaussiano, entre otros

Suavizado: Filtro de Promedio

- Digitalmente :
 - Un kernel o mascara de tamaño nxm (impar)
 - El ancla para el kernel es el píxel central

El kernel de media es Separable !!

Suavizado: Filtro de Promedio

• Ejemplo :

1 Imagen de entrada (340x230)

Media de 5x5

Media de 21x21

Suavizado: Filtro Gaussiano

- Filtro Gaussiano, kernel con pesos asemejando la campana de gauss.
- · La varianza indica la amplitud de la campana

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}}$$

Suavizado: Filtro Gaussiano

- Remueve altas frecuencias (filtro pasa baja)
- La convolución de un Gaussiano con otro Gaussiano, es otro Gaussiano

• Convolucionar dos veces con kernel Gaussiano de ancho σ es igual a convolucionar una sóla vez con kernel de ancho $\sigma\sqrt{2}$

Filtrado Gaussiano

Filtros no lineales

- El más común es el filtro del orden estadístico.
- Orden estadístico (creciente) de una vecindad:
 - Ordenar los tonos de gris de la vecindad y extraer el n-ésimo elemento
 - Reemplazar el píxel (x,y) por el n-ésimo elemento
- El filtro más común es el filtro de mediana

Filtros no lineales: Filtro Mediana

■Considera el n/2-ésimo orden estadístico

Imagen original

Filtro mediana

Filtro promedio

- La idea es realzar detalles en la imagen (filtro pasa alta)
- Concepto clave: la derivada de nuestra función f(x, y)
- En discreto, la derivada es

$$\frac{\partial f}{\partial x} = f(x+1) - f(x)$$

La segunda derivada es

$$\frac{\partial^2 f}{\partial x^2} = f(x+1) + f(x-1) - 2f(x)$$

- La 2da.derivada presenta Zero Crossing produce o realza mejor los finos detalles (bordes sútiles)
- La 1ra derivada resulta en bordes delgados debido a que su valor es distinto de cero a lo largo de la rampa

Laplaciano se puede implementar como un filtro

0	1	0
1	-4	1
0	1	0

 Después de aplicar el filtro hay que normalizar los tonos de gris para que estén en el rango [0..255]

Regla

$$g(x,y) = \begin{cases} f(x,y) - \nabla^2 f(x,y) & \text{Si coeficiente del centro es negativo} \\ f(x,y) + \nabla^2 f(x,y) & \text{Si coeficiente del centro es positivo} \end{cases}$$

Notebook

Actividad: Aprenderemos a realzar la calidad de una imagen

Luego, sumemos el detalle a la imagen original

