Apuntes de un curso de

MÉTODOS DE LA FÍSICA MATEMÁTICA II

Departamento de Física Facultad de Ciencias Universidad de Chile

> Víctor Muñoz G. José Rogan C.

Índice

1.	Espacio de funciones	1
	1.1. Definiciones	1
	1.2. Sucesiones de funciones	3
	1.3. Proceso de ortonormalización de Gram-Schmidt	9
	1.4. Coeficientes de Fourier	10
	1.5. Integrales impropias (valor principal)	14
	1.6. Convergencia según Cesàro	15
2.	Series de Fourier	19
3.	Transformada de Fourier	35
	3.1. Definiciones	35
	3.2. Ejemplos	36
	3.3. Propiedades	41
	3.4. Aplicaciones	43
4.	Convolución	45
	4.1. Espacio S	45
	4.2. Producto de convolución	46
	4.3. El espacio S como anillo	49
5 .	Distribuciones temperadas	53
	5.1. Definiciones	53
	5.2. Sucesión de distribuciones	61
	5.3. Producto de distribuciones	71
	5.4. Distribuciones y ecuaciones diferenciales	72
	5.5. Convergencia débil	73
6.	Distribuciones y transformada de Fourier	79
7.	Convolución de distribuciones	87
	7.1. Definiciones	87
	7.2. Propiedades de la convolución de distribuciones	89
	7.3. Uso de convolución en Física	91

IV ÍNDICE

8.	La función Gamma)3
	8.1. La función factorial):
	8.2. La función Gamma) 4
	8.3. Función Beta)(
	8.4. Notación doble factorial	96
	8.5. Fórmula de Stirling	
	8.6. Otras funciones relacionadas	
g	Transformada de Laplace 10	13
υ.	9.1. Definición	
	9.2. Inversión de la transformada de Laplace	
	9.3. Propiedades de la transformada de Laplace	
	9.4. Lista de transformadas de Laplace	
	J.4. Dista de transformadas de Dapiace	LJ
10	Aplicaciones de la transformada de Laplace 11	
	10.1. Ecuaciones diferenciales lineales con coeficientes constantes	
	10.2. Ecuaciones integrales	
	10.3. Ecuaciones en derivadas parciales	
	10.4. Sistema de ecuaciones lineales	2(
11	.Polinomios ortogonales 12	23
	11.1. Definiciones	25
	11.2. Teoremas	
	11.3. Relación de recurrencia	
19	.Polinomios de Hermite	7
12	12.1. Definición	
	12.2. Función generatriz	
	12.3. Ortogonalidad	
	12.4. Algunos resultados interesantes	
	12.5. Solución por serie de la ecuación de Hermite	
13	Polinomios de Laguerre	
	13.1. Definición	
	13.2. Función generatriz	
	13.3. Relaciones de recurrencia	
	13.4. Ecuación de Laguerre	
	13.5. Ortogonalidad	
	13.6. Polinomios asociados de Laguerre	38
14	.El problema de Sturm-Liouville	39
	14.1. Operadores diferenciales autoadjuntos	36
	14.2. Operadores autohermíticos	
	14.3. Problema de autovalores	
	14.4. Ejemplos de funciones ortogonales	

ÍNDICE v

15. Ecuaciones diferenciales con singularidades	145
15.1. Puntos singulares	145
15.2. Solución por serie: método de Frobenius	146
15.3. Limitaciones del método. Teorema de Fuchs	149
15.4. Una segunda solución	151
16. Ecuaciones diferenciales del tipo	155
16.1. Soluciones en puntos regulares	155
16.2. Soluciones en la vecindad de puntos singulares	
16.3. Singularidades en infinito	
16.4. Ejemplos	
16.5. Ecuaciones con $n \leq 3$ singularidades Fuchsianas	
17. Funciones hipergeométricas	177
17.1. La ecuación hipergeométrica general	
17.2. Ecuación indicial	
17.3. Ecuación diferencial de Gauss	
17.4. La serie hipergeométrica	
17.5. Ecuación hipergeométrica confluente	
18. Polinomios de Legendre	183
18.1. Función generatriz	
18.2. Relaciones de recurrencia	
18.3. Coeficientes del polinomio $P_n(x)$	
18.4. Fórmula de Rodrigues $\dots \dots \dots$	
18.5. Ecuación diferencial de Legendre	
18.6. Lugares nulos de $P_n(x)$	
18.7. Relación de ortogonalidad	
18.8. Expresiones integrales para $P_n(x)$	
18.9. Serie de Legendre	
18.10Funciones asociadas de Legendre	
18.11Armónicos esféricos	
18.12Segunda solución de la ecuación de Legendre	
18.13Problema de Sturm-Liouville asociado	
19.La ecuación diferencial de Bessel	205
19.1. La ecuación diferencial de Bessel	
19.1. La écuación diferencial de Bessel	
19.3. Funciones de Bessel de índice entero	
19.4. Función generatriz	
19.5. Fórmulas de adición	
19.6. Representaciones integrales	
19.7. Relaciones de recurrencia	
19.8. Relaciones de ortogonalidad	213

20. Diversos tipos de funciones cilíndricas	217
20.1. Segunda solución de la ecuación de Bessel	217
20.2. Funciones de Hankel	219

Capítulo 9

Transformada de Laplace

versión preliminar 3.3-25 noviembre 2002

9.1. Definición

Definición 9.1 Definimos la transformada de Laplace de una función f(t) por

$$\mathcal{L}\{f(t), s\} = F(s) = \int_0^\infty e^{-st} f(t) dt \quad s \in \mathbb{C} . \tag{9.1}$$

Definición 9.2 Una función $f:[0,\infty) \xrightarrow{f} \mathbb{C}$ es de orden exponencial si f(t) es seccionalmente continua y derivable en $0 \le t < \infty$ y

$$|f(t)| \le Ae^{s_0t} \quad \forall \ t \ge 0 \quad A, \ s_0 \in \mathbb{R}.$$
 (9.2)

Proposición 9.1 Sea f un función de orden exponencial. Entonces la transformada de Laplace, $\mathcal{L}\{f\}$, existe en el semiplano $\text{Re}[s] > s_0$.

Demostración

$$\begin{aligned} |\mathcal{L}\{f\}| &= \left| \int_0^\infty e^{-st} f(t) \, dt \, \right| \le \int_0^\infty \left| \, e^{-st} \, \right| |f(t)| \, dt \le A \int_0^\infty \left| \, e^{-st} \, \right| e^{s_0 t} \, dt \\ &= A \int_0^\infty \left| \, e^{-i \operatorname{Im}[s]t} \, \right| e^{-(\operatorname{Re}[s] - s_0)t} \, dt = A \int_0^\infty e^{-(\operatorname{Re}[s] - s_0)t} \, dt < \infty \quad \forall \ \operatorname{Re}[s] > s_0 \ . \end{aligned}$$

q.e.d.

Proposición 9.2 La integral $\int_0^\infty e^{-st} f(t) dt$ converge uniformemente para todo s tal que $\text{Re}[s] \geq s_1 > s_0$.

Demostración Si $\epsilon > 0$, afirmamos que existe $M(\epsilon)$ independiente de s tal que

$$\left| F(s) - \int_0^M dt \, e^{-st} f(t) \right| = \left| \int_M^\infty dt \, e^{-st} f(t) \right| < \epsilon .$$

En efecto,

$$\left| \int_{M}^{\infty} dt \, e^{-st} f(t) \right| \leq \int_{M}^{\infty} dt \, \left| e^{-st} f(t) \right| \leq \int_{M}^{\infty} dt \, A e^{-t(\operatorname{Re}[s] - s_0)}$$

$$\leq \int_{M}^{\infty} dt \, A e^{-t(s_1 - s_0)} = \frac{A}{s_1 - s_0} e^{-M(s_1 - s_0)} < \epsilon \,,$$

donde la última desigualdad se satisface escogiendo

$$M > \frac{1}{s_1 - s_0} \ln \left[\frac{A}{\epsilon(s_1 - s_0)} \right] .$$

q.e.d.

Proposición 9.3 F(s) es holomorfa (analítica) en $Re[s] \ge s_1 > s_0$, es decir, la derivada F'(s) existe en dicho semiplano.

Demostración En virtud de la convergencia uniforme, podemos pasar la derivada dentro de la integral:

$$F'(s) = \frac{d}{ds} \int_0^\infty e^{-st} f(t) dt = \int_0^\infty \frac{\partial}{\partial s} e^{-st} f(t) dt = -\int_0^\infty e^{-st} t f(t) dt ,$$

luego

$$|F'(s)| \le \int_0^\infty |e^{-st}| t |f(t)| dt \le A \int_0^\infty t e^{(s_0 - s_1)t} dt$$

y la última integral existe (es finita), independiente de s.

q.e.d.

En general, existe

$$F^{(n)}(s) = \int_0^\infty (-t)^n f(t) e^{-st} dt . {(9.3)}$$

Proposición 9.4

$$\lim_{\text{Re}[s] \to \infty} F(s) = 0 . \tag{9.4}$$

Demostración

$$\lim_{\mathrm{Re}[s] \to \infty} \int_0^\infty e^{-st} f(t) \, dt = \int_0^\infty f(t) e^{-i \, \mathrm{Im}[s]t} \left(\lim_{\mathrm{Re}[s] \to \infty} e^{-\, \mathrm{Re}[s]t} \right) \, dt = 0 \ .$$

q.e.d.

Notemos, como consecuencia de esta proposición, que 1, s, s^2 o cualquier polinomio, no pueden ser transformadas de Laplace de ninguna función. Sí pueden serlo, en cambio, 1/s o, en general, funciones racionales con el grado del denominador superior al del numerador.

Ejemplo Sea $f(t) = \cos at$.

$$\mathcal{L}\{\cos at, s\} = \int_0^\infty e^{-st} \cos(at) dt = \frac{1}{2} \int_0^\infty e^{-st} \left(e^{iat} - e^{-iat} \right) dt$$
$$= \frac{1}{2} \left(\frac{1}{s - ia} - \frac{1}{s + ia} \right) \quad \text{(si Re}[s] > 0)$$
$$= \frac{s}{a^2 + s^2} .$$

9.2. Inversión de la transformada de Laplace

Sea f una función de orden exponencial, tal que f(t)=0 si t<0. Sean $F(s)=\mathcal{L}\{f,s\}$ y $\sigma>s_0$. Observemos que

$$g(t) = f(t)e^{-\sigma t} (9.5)$$

es módulo integrable:

$$\int_{-\infty}^{\infty} |g| < \infty ,$$

luego la transformada de Fourier de g(t) existe. Se tiene

$$\mathcal{F}\lbrace g(t), u \rbrace = \frac{1}{\sqrt{2\pi}} \int_0^\infty g(t)e^{itu} dt = \frac{1}{\sqrt{2\pi}} \int_0^\infty f(t)e^{-(\sigma - iu)t} dt$$

$$\mathcal{F}\lbrace g(t), u \rbrace = \frac{1}{\sqrt{2\pi}} \mathcal{L}\lbrace f(t), \sigma - iu \rbrace . \tag{9.6}$$

Usando el teorema de reciprocidad de la transformada de Fourier:

$$g(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \mathcal{F}\{g(t), u\} e^{-iut} du = \frac{1}{2\pi} \int_{-\infty}^{\infty} \mathcal{L}\{f, \sigma - iu\} e^{-iut} du .$$

Con el cambio de variable $s = \sigma - iu$,

$$g(t) = \frac{i}{2\pi} \int_{\sigma+i\infty}^{\sigma-i\infty} \mathcal{L}\{f, s\} e^{(s-\sigma)t} ds = \frac{e^{-\sigma t}}{2\pi i} \int_{\sigma-i\infty}^{\sigma+i\infty} \mathcal{L}\{f, s\} e^{st} ds .$$

Finalmente

$$f(t) = \frac{1}{2\pi i} \int_{\sigma - i\infty}^{\sigma + i\infty} \mathcal{L}\{f, s\} e^{st} ds . \tag{9.7}$$

Por lo tanto, si la transformada de Laplace de una función f(t) está dada por

$$F(s) = \mathcal{L}\{f(t), s\} = \int_0^\infty f(t)e^{-st} dt , \qquad \text{Re } s > s_0 ,$$

entonces f(t) viene dada por la antitransformada de Laplace:

$$f(t) = \mathcal{L}^{-1}{F(s), t} = \frac{1}{2\pi i} \int_{\sigma - i\infty}^{\sigma + i\infty} F(s)e^{st} ds , \qquad \sigma > s_0 .$$

$$(9.8)$$

La expresión (9.8) se conoce como la integral de inversión de Mellin.

Observemos que σ es arbitrario, en tanto sea mayor que s_0 . ¿Cómo es posible que la integral de Mellin [igual a f(t)] sea independiente de σ ? Para verificarlo, necesitamos la siguiente proposición:

Proposición 9.5

$$\lim_{\mathrm{Im}[s]\to\pm\infty} F(s) = 0 \ . \tag{9.9}$$

Demostración Sea $s = s_R + i\omega$. Entonces, por (9.6),

$$\mathcal{L}{f,s} = \mathcal{L}{f,s_R + i\omega} = \sqrt{2\pi}\mathcal{F}{fe^{-s_R t}, -\omega} \xrightarrow[\omega \to \pm \infty]{} 0,$$

donde el último límite se sigue de las propiedades de la transformada de Fourier. Luego hemos demostrado la proposición.

q.e.d.

Ahora podemos discutir la independencia de σ de la integral de Mellin. En efecto, consideremos el circuito de integración:

El contorno ABCD no encierra singularidades, y las integrales a lo largo de CB y AD se van a cero cuando $M = \text{Im}[s] \longrightarrow \infty$ [ver (9.9)]. Luego, por el teorema de Cauchy,

$$\int_{\sigma_1 - i\infty}^{\sigma_1 + i\infty} ds \, e^{ts} F(s) = \int_{\sigma_2 - i\infty}^{\sigma_2 + i\infty} ds \, e^{ts} F(s) , \qquad \sigma_1, \, \sigma_2 > s_0,$$

lo que muestra la independencia en σ .

Una consecuencia del teorema de inversión de la transformada de Laplace es que si dos funciones son distintas, entonces sus transformadas de Laplace también lo son.

Ejemplo Consideremos la función escalón de Heaviside

$$h(t) = \frac{1 + \operatorname{sgn}(t)}{2} .$$

Su transformada de Laplace es

$$H(s) = \mathcal{L}\{h, s\} = \int_0^\infty e^{-st} dt = \frac{1}{s}.$$

Observemos que h(t) es de crecimiento exponencial con $s_0 = 0$ y, consistentemente, H(s) es holomorfa en el semiplano Re[s] > 0.

Invirtiendo la transformada de Laplace, deberíamos tener

$$h(t) = \mathcal{L}^{-1}\left\{\frac{1}{s}, t\right\} = \frac{1}{2\pi i} \int_{\sigma - i\infty}^{\sigma + i\infty} \frac{1}{s} e^{st} ds.$$

¿Será cierto? Comprobarlo exigirá un poco de trabajo al integrar en el plano complejo.

I) t > 0. Consideremos el siguiente camino de integración:

Sobre los segmentos horizontales:

$$\left| \int \frac{e^{ts}}{s} \, ds \, \right| = \left| \int_0^\sigma \frac{e^{t(x \pm iR)}}{x \pm iR} \, dx \, \right| \le \int_0^\sigma \frac{\left| e^{tx} \mid \left| e^{itR} \right|}{\left| x \pm iR \right|} \, dx \le \frac{\sigma e^{t\sigma}}{R} \xrightarrow[R \to \infty]{} 0 \,\,, \qquad t > 0 \,\,.$$

Sobre el segmento circular, se tiene

$$z = iRe^{i\varphi}$$
, $0 \le \varphi \le \pi$.

Luego

$$\left| \int \frac{e^{ts}}{s} \, ds \right| = \left| \int_0^\pi \frac{e^{tz}(-Re^{i\varphi})}{iRe^{i\varphi}} \, d\varphi \right| \le \int_0^\pi e^{-tR \sec \varphi} \, d\varphi \le 2 \int_0^{\pi/2} e^{-\frac{tR\varphi}{2}} \, d\varphi \ .$$

La última desigualdad se sigue del hecho de que

$$\operatorname{sen} \varphi \ge \frac{\varphi}{2} \quad \text{si } 0 \le \varphi \le \pi/2 ,$$

de modo que, si t > 0,

$$-tR \operatorname{sen} \varphi \le -tR \frac{\varphi}{2} \ .$$

Por tanto,

$$\left| \int \frac{e^{ts}}{s} \, ds \, \right| \le 2 \int_0^{\pi/2} e^{-\frac{tR\varphi}{2}} \, d\varphi = \frac{4}{tR} \left(1 - e^{-\frac{tR\pi}{4}} \right) \xrightarrow[R \to \infty]{} 0 \qquad t > 0 .$$

Así, por el teorema del residuo,

$$\int_{\sigma-i\infty}^{\sigma+i\infty} \frac{e^{ts}}{s} \, ds = 2\pi i \frac{e^{ts}}{s} \bigg|_{s=0} = 2\pi i \ ,$$

vale decir

$$h(t) = 1 , \qquad t > 0 .$$

II) Sea t < 0. En este caso es fácil convencerse, a partir de lo visto en el caso anterior, que el camino de integración conveniente es:

Y en tal caso,

$$\int_{\sigma-i\infty}^{\sigma+i\infty} \frac{e^{ts}}{s} \, ds = \int_{\Gamma} \frac{e^{ts}}{s} \, ds = 0 \ ,$$

pues no hay polos dentro del circuito de integración Γ. Entonces

$$h(t) = 0 , \qquad t < 0 .$$

III) Caso t = 0.

La integral queda simplemente

$$\int_{\sigma - iR}^{\sigma + iR} \frac{ds}{s} = \ln(\sigma + ir) \Big|_{r = -R}^{r = R} = \ln(\sqrt{\sigma^2 + r^2}) + i \arctan\left(\frac{r}{\sigma}\right) \Big|_{r = -R}^{r = R} \xrightarrow[R \to \infty]{} i\pi ,$$

de modo que

$$h(0) = \frac{1}{2} .$$

Por lo tanto, al invertir la transformada de Laplace hemos reobtenido la función escalón de Heaviside h(t).

9.3. Propiedades de la transformada de Laplace

En lo sucesivo, el símbolo \circ —— significará "tiene como transformada de Laplace". Además, f(t) y g(t) serán funciones de crecimiento exponencial, con f(t) = g(t) = 0 si t < 0. Finalmente, definimos $F(s) = \mathcal{L}\{f, s\}$ y $G(s) = \mathcal{L}\{g, s\}$.

1) Si $a, b \in \mathbb{C}$, entonces

$$af(t) + bg(t) \circ - \bullet aF(s) + bG(s)$$
.

(La transformada de Laplace es lineal.)

2) Si $\alpha > 0$, entonces

$$f(\alpha t) \circ \longrightarrow \frac{1}{\alpha} F\left(\frac{s}{\alpha}\right)$$
.

3)

$$\int_0^t f(t') dt' \circ \frac{1}{s} F(s) , \qquad \operatorname{Re}(s) > s_0 .$$

Demostración

$$\mathcal{L}\left\{ \int_0^t f(u) \, du, s \right\} = \int_0^\infty e^{-st} \int_0^t f(u) \, du \, dt .$$

Integrando por partes,

$$\mathcal{L}\left\{ \int_{0}^{t} f(u) \, du, s \right\} = -\frac{e^{-st}}{s} \left[\int_{0}^{t} f(u) \, du \right]_{0}^{\infty} + \frac{1}{s} \int_{0}^{\infty} e^{-st} f(t) \, dt = \frac{1}{s} F(s) .$$

4)
$$f'(t) \circ - sF(s) - f(0) , \qquad \operatorname{Re}(s) > s_0 .$$

Demostración Integrando por partes:

$$\mathcal{L}\{f',s\} = \int_0^\infty e^{-st} f'(t) dt = e^{-st} f(t) \Big|_0^\infty + s \int_0^\infty e^{-st} f(t) dt = sF(s) - f(0) .$$

Análogamente,

$$f^{(n)}(t) \circ \longrightarrow s^n F(s) - s^{n-1} f(0) - s^{n-2} f'(0) - \dots - f^{(n-1)}(0)$$
.

5)
$$t^n f(t) \circ - (-1)^n F^{(n)}(s) .$$

6) Desplazamiento en el eje t. Sea $\beta > 0$. Entonces

$$f(t-\beta) \circ - e^{-\beta s} F(s)$$
.

7) Desplazamiento en el plano s. Sea $c \in \mathbb{C}$. Entonces

$$e^{ct}f(t) \circ - F(s-c)$$
.

Demostración

$$\mathcal{L}\lbrace e^{ct}f(t), s\rbrace = \int_0^\infty e^{-st}e^{ct}f(t) dt = F(s-c) .$$

8) Convolución. De la definición de producto de convolución, y puesto que f(t) y g(t) son nulas si sus argumentos son menores que cero, se sigue que

$$p(t) = f * g(t) = \int_0^t f(t - u)g(u) du$$
.

Y se puede mostrar que

$$f * g(t) \circ \longrightarrow F(s)G(s)$$
.

Demostración Ejercicio.

9.4. Lista de transformadas de Laplace

Se supone en lo que sigue que todas las funciones que aparecen a la izquierda del símbolo \circ — son tales que f(t) = 0 si t < 0.

a)

$$0 \circ \longrightarrow 0$$

$$1 \circ \longrightarrow \frac{1}{s}$$

$$c \circ \longrightarrow \frac{c}{s}$$

b) Sea $\alpha > 0$.

$$\mathcal{L}\lbrace t^{\alpha}, s \rbrace = \int_0^{\infty} e^{-st} t^{\alpha} dt = \frac{1}{s^{\alpha+1}} \int_0^{\infty} e^{-u} u^{\alpha} du = \frac{\Gamma(\alpha+1)}{s^{\alpha+1}} .$$

Luego

$$t^{\alpha} \circ \frac{1}{s^{\alpha+1}} \Gamma(\alpha+1) , \qquad \alpha > 0 .$$

$$t^{n} \circ \frac{n!}{s^{n+1}} , \qquad n = 0, 1, 2...$$

$$\sqrt{t} \circ \frac{1}{2s} \sqrt{\frac{\pi}{s}} .$$

c)

$$e^{ct} \circ \frac{1}{s-c} , \qquad c \in \mathbb{C} .$$

$$t^n e^{ct} \circ \frac{n!}{(s-c)^{n+1}} .$$

En efecto,

$$\mathcal{L}\{e^{ct}, s\} = \mathcal{L}\{e^{ct} \cdot 1, s\} = \mathcal{L}\{1, s - c\} = \frac{1}{s - c}$$

У

$$\mathcal{L}\{t^n e^{ct}, s\} = (-1)^n \left[\mathcal{L}\{e^{ct}, s\}\right]^{(n)} = \frac{n!}{(s-c)^{n+1}}.$$

d) Si $s > 0, \, \omega > 0,$

$$\cos \omega t \circ \frac{s}{s^2 + \omega^2}$$

$$\operatorname{sen} \omega t \circ \frac{\omega}{s^2 + \omega^2}$$

$$\frac{1}{2}(e^{\alpha t} + e^{-\alpha t}) \circ \frac{1}{2}\left(\frac{1}{s - \alpha} + \frac{1}{s + \alpha}\right)$$

$$\operatorname{cosh}(\alpha t) \circ \frac{s}{s^2 - \alpha^2} \qquad \alpha \in \mathbb{R}$$

$$\operatorname{senh}(\alpha t) \circ \frac{\alpha}{s^2 - \alpha^2}$$

$$e^{-\gamma t}\cos(\omega t) \circ \frac{\gamma + s}{(s+\gamma)^2 + \omega^2}$$

$$e^{-\gamma t}\sin(\omega t) \circ \frac{\omega}{(s+\gamma)^2 + \omega^2}$$

$$te^{-\gamma t}\cos(\omega t) \circ \frac{(\gamma + s)^2 - \omega^2}{[(s + \gamma)^2 + \omega^2]^2}$$
$$te^{-\gamma t}\sin(\omega t) \circ \frac{2\omega(\gamma + s)}{[(s + \gamma)^2 + \omega^2]^2}$$

g) Si se desea encontrar la antitransformada de una función racional P(s)/Q(s), con el grado de P menor que el grado de Q, la estrategia será descomponerla en fracciones parciales, de la forma

$$\sum \frac{A_n}{(s-c)^n} .$$

Por ejemplo, de este modo podemos mostrar que

$$\frac{as^2 + bs + c\omega^2}{(s^2 + \omega^2)^2} \bullet \frac{a - c}{2} t \cos(\omega t) + \frac{a + bt + c}{2\omega} \sin \omega t .$$

h) Sea q(t) la función escalón desplazada en t_0 hacia la derecha:

$$q(t) = h(t - t_0) = \frac{1}{2}[1 + \operatorname{sgn}(t - t_0)], \quad t_0 > 0.$$

Entonces, de las propiedades de la transformada de Laplace,

$$q(t) = h(t - t_0) \circ - e^{-t_0 s} \frac{1}{s} .$$

Entonces

$$\overline{q(t)}' = \delta(t - t_0) \circ \longrightarrow s\mathcal{L}\{\overline{q(t)}, s\} - \overline{q(0)} = se^{-t_0 s} \frac{1}{s} - 0 = e^{-t_0 s}.$$

Suponiendo entonces que es lícito evaluar la transformada de Laplace de distribuciones, tenemos que

$$\delta(t - t_0) \circ - e^{-t_0 s}$$

$$\delta'(t - t_0) \circ - se^{-t_0 s}$$

$$\delta^{(n)}(t - t_0) \circ - s^n e^{-t_0 s}$$