Announcements

Week 4

The Topics & Reading Assignments Schedule for week 4 lists the topics that we will cover and the reading assignment for the week.

After you complete the reading assignment, complete Reading Quiz Week 4 by Monday, Sept 25 at 8:00 AM.

Pre-lecture slides (posted before each lecture) and post-lecture slides (posted after each lecture):

Section 101	Section 102	Section 103
Sep 25: <u>pre</u> <u>↓</u> / <u>post</u> <u>↓</u> Lecture Slides <u>Water boils at low pressure recorded demo</u>	Sep 25: <u>pre ⊎</u> / <u>post</u> <u>⊎</u> Lecture Slides <u>Water boils at low pressure video</u>	Sep 26: <u>pre</u> <u>↓</u> / <u>post</u> <u>↓</u> Lecture Slides
Sep 27: <u>pre</u> <u>↓</u> / <u>post</u> <u>↓</u> Lecture Slides	Sep 27: <u>pre</u> <u>↓</u> / <u>post</u> <u>↓</u> Lecture Slides	Sep 28: <u>pre</u> <u>↓</u> / <u>post</u> <u>↓</u> Lecture Slides
Sep 29: <u>pre</u> <u>↓</u> / <u>post</u> <u>↓</u> Lecture Slides	Sep 29: <u>pre</u> <u>↓</u> / <u>post</u> <u>↓</u> Lecture Slides	

Tutorial 3: Available in Canvas on Sep 24 at 8 AM; due 10 PM on the day that YOUR tutorial section meets. Solutions 🕹

Homework:

- Mastering Physics 3: Available in Mastering Physics on Wednesday, Sep 27 at 5 PM; due Wednesday, 24 4 at 5 PM
- Written Homework 3: Available in Canvas on Wednesday, Sep 27 at 5 PM; due Wednesday, Oct 4 (t 5 PM. Solutions 🕹

QUIZ 2: Available in Canvas on Thursday, Sep 28 between 5 PM and 10 PM. You will have 25 minutes to complete the questions from when you start.

 Please consider doing reading assignments a bit <u>ahead</u> of the schedule (desynchronization between MWF & TuTh sections due to different timelines)

Last Time

• Ideal Gas Law

$$PV = nRT$$

Q = DF +W

• 1st Law of Thermodynamics

net change in the energy of the object*)

$$\Delta E_{gas} = Q - W$$

heat supplied <u>to</u>
the object
(thermodynamics)

work done
by the object (mechanics)

Lecture 15.
Work done by a gas.
Internal energy.

Q: A gas with pressure P is in a cylinder with a piston of area A. A little man pushes the piston and moves it by a small amount d. If the pressure remains approximately constant during this time, the work W done by the gas in this process is:

- A. W = 0: the little man is doing the work
- B. W is positive and equal to PAd
- C. W is negative and equal to -PAd
- D. Not enough information to answer

$$W = F \cdot \Delta X$$

in the direction of F

Q: A gas with pressure P is in a cylinder with a piston of area A. A little man pushes the piston and moves it by a small amount d. If the pressure remains approximately constant during this time, the work W done by the gas in this process is:

- A. W = 0: the little man is doing the work
- B. W is positive and equal to PAd
- C. W is negative and equal to -PAd
- D. Not enough information to answer

$$F_{gas} = PA$$

Displacement in the direction of the force is $\Delta x_{\parallel} = -d$

$$W = F_{gas} \Delta x_{\parallel} = -PAd$$

Q: A person pulls on a piston to reduce the pressure of the gas inside a cylinder. In this situation:

- A. The work done by the gas and by the person are both negative
- B. The work done by the gas and by the person are both positive
- C. The work done by the gas is negative and the work done by the person is positive
- D. The work done by the gas is positive and the work done by the person is negative

Q: A person pulls on a piston to reduce the pressure of the gas inside a cylinder. In this situation:

- Gas pushes up and expands \Rightarrow positive work
- Person pulls up & piston moves up ⇒ positive work

- A. The work done by the gas and by the person are both negative
- B. The work done by the gas and by the person are both positive
- C. The work done by the gas is negative and the work done by the person is positive
- D. The work done by the gas is positive and the work done by the person is negative

Work done by a gas (constant pressure)

•
$$W = F \cdot \Delta x$$

•
$$P = F/A$$

•
$$\Delta V = A \left(\Delta x \right)$$

$$W_{gas} = P \cdot \Delta V$$

Compression: $\Delta V < 0$

 W_{gas} negative

Expansion: $\Delta V > 0$

 W_{gas} positive

Q: The graph shows how the pressure and volume of the gas in the cylinder change during the process $A \rightarrow B$. How much work does the gas do in this process?

A. -100,000 J

B. 100 J

C. 1,000 J

D. 2,500 J

E. 100,000 J

Q: The graph shows how the pressure and volume of the gas in the cylinder change during the process $A \rightarrow B$. How much work does the gas do in this process?

$$P = 50 kPa$$

 $\Delta V = 20 L$
 $W = P\Delta V = 1000 kPa \cdot L = 1000 J$

• Note:
$$kPa \cdot L = (10^3 Pa) \times (10^{-3} m^3) = J$$

A. -100,000 J

B. 100 J

C. 1,000 J

D. 2,500 J

E. 100,000 J

Work is the area under the P vs V graph (constant pressure)

$$W = P \cdot \Delta V$$

- + if volume is increasing
- if volume is decreasing

Work done by a gas: changing pressure

- Break process into small steps with almost constant P
- Add up dW = P dV for all parts (area of skinny rectangles)
- Result: W is area under the P vs V graph

Result: W is area under the P vs V graph

Math:
$$W = \int_{V_i}^{V_f} P(V) dV$$

In summary: Work done by a gas is the area under the P vs V graph

constant pressure

- + if volume increasing
- if volume decreasing

by hands

changing pressure

W is area under P vs V graph

Q: During which of the processes shown is the work done by the gas negative?

$$A. A \rightarrow B$$

B.
$$A \rightarrow C$$

C.
$$A \rightarrow D$$

D. Both
$$A \rightarrow B$$
 and $A \rightarrow C$

Q: During which of the processes shown is the work done by the gas negative?

$$A. A \rightarrow B$$

B.
$$A \rightarrow C$$

 $C. A \rightarrow D$

W is negative if V decreases, so $A \rightarrow D$

D. Both $A \rightarrow B$ and $A \rightarrow C$

Q: The graph shows how the pressure and volume of the gas in the cylinder change during the process $A \rightarrow B$. How much work does the gas do in this process?

A. 200 J

B. 600 J

C. -600 J

D. 800 J

E. -800 J

Q: The graph shows how the pressure and volume of the gas in the cylinder change during the process $A \rightarrow B$. How much work does the gas do in this process?

Work done by the gas is area under the P vs V graph:

- A. 200 J
- B. 600 J
- C. -600 J
- D. 800 J
- E. -800 J

- W = 200 J + 600 J = 800 J
- *V* is increasing, so *W* is positive

Q: An ideal gas is heated and allowed to expand from a volume 1 L to a volume 2 L in such a way that the pressure is equal to $P = a V^2$ where $a = 100 \text{ kPa/L}^2$.

How much work is done by the gas?

Need:
$$W = \int_{V_i}^{V_f} P(V) dV \leftarrow \text{area under the P vs V graph}$$

- 1) Find a function F(V) whose derivative is P(V)
- 2) The integral is $F(V_f) F(V_i)$

i) F:
$$\frac{d}{dv} F(v) = P(v) = \alpha V^2$$

a)
$$F(v_f=2L) - F(v_i=1L) = answer$$

$$x^{2}$$
 - want to get
 $\frac{d}{dx}x^{n} = n \cdot x^{h-1}$ Step 1
 $\frac{d}{dx}x^{3} = 3x^{2}$

$$\frac{a}{3}\frac{J}{dx}x^3 = \frac{a}{3}\cdot 3x^2 = ax^2$$

$$P(v) = \alpha v^2 \rightarrow F(v) = \frac{\alpha}{3} v^3$$

Step 2: Answer =
$$F(v_s) - F(v_i) = ?$$

 $P = a V^2, a = 100 \text{ kPa/L}^2$

A. 125 J

B. 233.

C. 315 J

D. 410 J

E. 🙁

Q: An ideal gas is heated and allowed to expand from a volume 1 L to a volume 2 L in such a way that the pressure is equal to $P = a V^2$ where $a = 100 \text{ kPa/L}^2$.

How much work is done by the gas?

Need:
$$W = \int_{V_i}^{V_f} P(V) dV$$
 \leftarrow area under the P vs V graph

The mathematical recipe:

- 1) Find a function F(V) whose derivative is P(V)
- 2) The integral is $F(V_f) F(V_i)$

$$\frac{d}{dx}x^n = nx^{n-1} \implies F(V) = \frac{1}{3}aV^3 \implies \frac{d}{dV}F(V) = aV^2 = P(V)$$

$$W = \frac{1}{3}aV_f^3 - \frac{1}{3}aV_i^3 = \frac{100}{3}(2^3 - 1^3) = 233 \text{ J}$$

C. 315 J

D. 410 J

E. 🕾

First Law of Thermodynamics

(conservation of energy)

If the gas does work (or work is done on the gas), its internal energy will change.

^{*)} We called it ΔE_{gas} earlier

Demo: Work done on a gas

