2.0 inch (50.80mm)

5X7 DOT MATRIX LED DISPLAY UVP-2X57A SERIES

DESCRIPTION

The UVP-2057/2157 is 2.0 inch (50.80mm) height 5X7 dot matrix display.

Single color display have the of choices of three bright colors-AlGaAs red/green/red orange.

Multicolor display are applicable to two colors: green and red orange.

All device have gray face and white dot.

The AlGaAs red LED chip are made from AlGaAs on a non-transparent GaAs substrate.

The green LED chip are made from GaP on a transparent GaP substrate.

The red orange LED chip are made from GaAsP on a transparent GaP substrate.

FEATURES

- Industuy standard size
- Wide viewing angle
- Continuous uniform dot matrix.
- Excellent characters appearance
- Low power requirement

DEVICES

PART NO.	DESCRIPTION	PACKAGE DIMENSION	INTERNAL CIRCUIT DIAGRAM	
UVP-2057A	Column Anode	Fig. 1	Fig. 2	
UVP-2157A	Column Cathode	Fig. 1		

ABSOLUTE MAXIMUM RATINGS

@ $T_A = 25^{\circ}C$

PARAMETER	AlGaAs RED	GREEN	RED ORANGE	UNIT			
Power Dissipation Per Dot	36	36	36	mW			
Peak Forward Current Per Dot	125	100	100	mA			
Continuous Forward Current Per Dot	15	13	13	mA			
Derating Linear From 25°C Per Dot	0.20	0.17	0.17	mA/°C			
Reverse Voltage Per Dot	5 5 5 V						
Operating Temperature Range	-35°Cto+85°C						
Storage Temperature Range	-35°Cto+85°C						
Solder Temperature 1/16 inch Below Seating Plane for 3 Seconds at 260°C							

TYPICAL ELECTRICAL/OPTICAL CHARACTERISTIC CURVES

(Ambient Temperature =25°C Unless Otherwise Noted)

Relative Luminous Intensity

Relative Luminous Intensity

4.0 3.0 2.0 1.0 0.0 10 15 20 25 30 0

FIG.1 RELATIVE LUMINOUS INTENSITY VS. WAVELENGTH

Forward Current I_r (mA)

Forward Current $I_F(mA)$ FIG.2 RELATIVE LUMINOUS INTENSITY VS. FORWARD CURRENT

Relative Luminous Intensity

Ambient Temperature (°C) FIG.3 ALLOWABLE DC CURRENT VS. AMBIENT TEMPERATURE

Forward Current I_r(mA)

FIG.4 FORWARD CURRENT

VS.FORWARD VOLTAGE

Forward Current I_F (mA) FIG.2 RELATIVE LUMINOUS INTENSITY VS. FORWARD CURRENT

Forward Current I_r(mA)

Forward Voltage (V) FIG.4 FORWARD CURRENT VS. FORWARD VOLTAGE

PACKAGE DIMENSIONS

Fig. 1

INTERNAL CIRCUIT DIAGRAM

Fig. 2

PIN CONNECTION

Pin	CONNECTION					
No.	UVP-2657AA	UVP-2757AA				
1	ANODE COLUMN 1 GREEN	CATHODE COLUMN 1 GREEN				
2	ANODE COLUMN 1 RED ORANGE	CATHODE COLUMN 1 RED ORANGE				
3	CATHODE ROW 7 GREEN	ANODE ROW 7 GREEN				
4	CATHODE ROW 7 RED ORANGE	ANODE ROW 7 RED ORANGE				
5	ANODE COLUMN 2 GREEN	CATHODE COLUMN 2 GREEN				
6	ANODE COLUMN 2 RED ORANGE	CATHODE COLUMN 2 RED ORANGE				
7	ANODE COLUMN 3 GREEN	CATHODE COLUMN 3 GREEN				
8	ANODE COLUMN 3 RED ORANGE	CATHODE COLUMN 3 RED ORANGE				
9	CATHODE ROW 5 GREEN	ANODE ROW 5 GREEN				
10	CATHODE ROW 5 RED ORANGE	ANODE ROW 5 RED ORANGE				
11	CATHODE ROW 4 GREEN	ANODE ROW 4 GREEN				
12	CATHODE ROW 4 RED ORANGE	ANODE ROW 4 RED ORANGE				
13	CATHODE ROW 6 GREEN	ANODE ROW 6 GREEN				
14	CATHODE ROW 6 RED ORANGE	ANODE ROW 6 RED ORANGE				
15	ANODE COLUMN 5 GREEN	CATHODE COLUMN 5 GREEN				
16	ANODE COLUMN 5 RED ORANGE	CATHODE COLUMN 5 RED ORANGE				
17	CATHODE ROW 1 GREEN	ANODE ROW 1 GREEN				
18	CATHODE ROW 1 RED ORANGE	ANODE ROW 1 RED ORANGE				
19	ANODE COLUMN 4 GREEN	CATHODE COLUMN 4 GREEN				
20	ANODE COLUMN 4 RED ORANGE	CATHODE COLUMN 4 RED ORANGE				
21	ANODE COLUMN 3 GREEN	CATHODE COLUMN 3 GREEN				
22	ANODE COLUMN 3 RED ORANGE	CATHODE COLUMN 3 RED ORANGE				
23	CATHODE ROW 3 GREEN	ANODE ROW 3 GREEN				
24	CATHODE ROW 3 RED ORANGE	ANODE ROW 3 RED ORANGE				
25	CATHODE ROW 4 GREEN	ANODE ROW 4 GREEN				
26	CATHODE ROW 4 RED ORANGE	ANODE ROW 4 RED ORANGE				
27	CATHODE ROW 2 GREEN	ANODE ROW 2 GREEN				
28	CATHODE ROW 2 RED ORANGE	ANODE ROW 2 RED ORANGE				

Pin	CONNECTION					
No.	UVP-2057	UVP-2157				
1	CATHODE ROW 5	ANODE ROW5				
2	CATHODE ROW 7	ANODE ROW 7				
3	ANODE COL. 2	CATHODE COL. 2				
4	ANODE COL. 3*1	CATHODE COL. 3*1				
5	CATHODE ROW 4*2	ANODE ROW 4*2				
6	ANODE COL. 5	CATHODE COL. 5				
7	CATHODE ROW 6	ANODE ROW 6				
8	CATHODE ROW 3	ANODE ROW 3				
9	CATHODE ROW 1	ANODE ROW 1				
10	ANODE COL. 4	CATHODE COL. 4				
11	ANODE COL. 3*1	CATHODE COL. 3*1				
12	CATHODE ROW 4*2	ANODE ROW 4*2				
13	ANODE COL. 1	CATHODE COL. 1				
14	CATHODE ROW 2	ANODE ROW 2				

ELECTRICAL/OPTICAL CHARACTERISTICS

AlGaAs RED (UVP-2057AC/2157AC)

@ $T_A = 25^{\circ}C$

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITION
Average Luminous Intensity	I_V	6300	12000		μcd	$I_p = 80 \text{ mA} 1/16 \text{ Duty}$
Peak Emission Wavelength	λp/Hue		660/638		nm	$I_F = 20 \text{ mA}$
Spectral Line Half-Width	Δλ		35		nm	$I_F = 20 \text{ mA}$
Forward Voltage, any Dot	V_{F}		1.8	2.4	V	$I_F = 20 \text{ mA}$
Reverse Current, any Dot	I_R			100	μΑ	$V_R = 5 \text{ V}$
Luminous Intensity Matching Ratio	I _V -m			2:1		$I_F = 10 \text{ mA}$

GREEN (UVP-2057AG/2157AG) & (UVP-2657AA/2757AA GREEN) @ T_A=25°C

GREEN CONTROL DE LA CONTROL DE						
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITION
Average Luminous Intensity	I_{V}	1780	4800		μcd	$I_p = 80 \text{ mA} 1/16 \text{ Duty}$
Peak Emission Wavelength	λp/Hue		565/569		nm	$I_F = 20 \text{ mA}$
Spectral Line Half-Width	Δλ		30		nm	$I_F = 20 \text{ mA}$
Forward Voltage, any Dot	V_F		2.1	2.6	V	$I_F = 20 \text{ mA}$
Reverse Current, any Dot	I_R			100	μΑ	$V_R = 5 \text{ V}$
Luminous Intensity Matching Ratio	I _V -m			2:1		$I_F = 10 \text{ mA}$

RED ORANGE (UVP-2057E/2157E)&(UVP-2657AA/2757AA RED ORANGE) @ $T_A = 25^{\circ}C$

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITION
Average Luminous Intensity	I_V	3000	9600		μcd	$I_p = 80 \text{ mA} 1/16 \text{ Duty}$
Peak Emission Wavelength	λp/Hue		630/621		nm	$I_F = 20 \text{ mA}$
Spectral Line Half-Width	Δλ		35		nm	$I_F = 20 \text{ mA}$
Forward Voltage, any Dot	$V_{\rm F}$		2.0	2.6	V	$I_F = 20 \text{ mA}$
Reverse Current, any Dot	I_R			100	μΑ	$V_R = 5 \text{ V}$
Luminous Intensity Matching Ratio	I _V -m			2:1		$I_F = 10 \text{ mA}$