CSE 2500-01: Homework 5

Arturo Salinas-Aguayo

Spring 2025

Electrical and Computer Engineering Department

College of Engineering, University of Connecticut $_{\text{Coded in } \textsc{LAT}_{\textsc{EX}}}$

Problems

Question 1

Prove the following properties. You should follow the procedures discussed and shown in the class.

Theorem 1. The sum, product, and difference of any two even integers are even.

Proof. Suppose: m and n are any even integers.

By Definition of even, m = 2r and n = 2s for some integers r and s.

Then

$$m+n=2r+2s$$
 (by substitution)
= $2(r+s)$ (by algebra)

Hence, the sum is even. Similarly, multiplication and subtraction follow the same pattern.

QED

Theorem 2. The sum and difference of any two odd integers are even.

Proof. Suppose: m and n are any odd integers.

By Definition of odd, m = 2r + 1 and n = 2s + 1 for some integers r and s.

Then

$$m+n = (2r+1) + (2s+1)$$
 (by substitution)
= $2(r+s+1)$ (by algebra)

Thus, the sum is even. Similar steps follow for subtraction.

QED

Theorem 3. The product of any two odd integers is odd.

Proof. Suppose: m = 2r + 1 and n = 2s + 1.

$$m \cdot n = (2r+1)(2s+1)$$
$$= 4rs + 2r + 2s + 1$$
$$= 2(2rs + r + s) + 1$$

Since 2rs + r + s is an integer, $m \cdot n$ is odd.

QED

Theorem 4. The product of any even integer and any odd integer is even.

Proof. Suppose: m is even and n is odd.

$$m \cdot n = (2r)(2s+1)$$
$$= 2(2rs+r)$$

Since 2rs + r is an integer, the product is even.

QED