Causality in Healthcare

Estimating individual treatment effect: generalization bounds and algorithms

Brief Introduction

What is causality?

Potential Outcomes Framework

- Unobserved Confounds / Simpson's Paradox
- Structural Causal Model Framework

Cause and Effect

- Questions of cause and effect common in biomedical and social sciences
- Such questions form the basis of almost all scientific inquiry
 - Medicine: drug trials, effect of a drug
 - Social sciences: effect of a certain policy
 - Genetics: effect of genes on disease
- So what is causality?
- What does it mean to cause something?

What is causality?

- A fundamental question
- Surprisingly, until very recently---maybe the last 30+ years---we have not had a mathematical language of causation. We have not had an arithmetic for representing causal relationships.

The Three Layer Causal Hierarchy

Pearl, Theoretical Impediments to Machine Learning with Seven Sparks from the Causal Revolution, arXiv:1801.04016v1. 11 Jan 2018

Level	Typical Activity	Typical Question	Examples
1. Association $P(y \mid x)$	Seeing	What is? How would seeing <i>X</i> change my belief in <i>Y</i> ?	What does a symptom tell me about a disease? What does a survey tell us about the election results?
2. Intervention $P(y \mid do(x), z)$	Doing, Intervening	What if? What if I do X ?	What if I take aspirin, will my headache be cured? What if we ban cigarettes?
3. Counterfactuals $P(y_x \mid x', y')$	Imagining, Retrospection	Why? Was it X that caused Y? What if I had acted differently?	Was it the aspirin that stopped my headache? Would Kennedy be alive had Oswald not shot him? What if I had not been smoking the past 2 years?

A practical definition

Definition: T causes Y iff changing T leads to a change in Y, keeping everything else constant.

The **causal effect** is the magnitude by which Y is changed by a unit change in T.

Called the "interventionist" interpretation of causality.

*Interventionist definition [http://plato.stanford.edu/entries/causation-mani/]

Keeping everything else constant: Imagine a counterfactual world

"What-if" questions

Reason about a world that does not exist.

- What if a system intervention was not done?
- What if an algorithm was changed?
- What if I gave a drug to a patient?

What is causality?

Potential Outcomes Framework

- Unobserved Confounds / Simpson's Paradox
- Structural Causal Model Framework

Potential Outcomes framework: Introduce a counterfactual quantity

$$Y_{T=0}$$

Causal effect of treatment =

$$E[Y_{T=1} - Y_{T=0}]$$

 Potential outcomes reasons about causal effects by comparing outcome of treatment to outcome of notreatment

Causal inference is the problem of estimating the counterfactual $Y_{t=\sim t}$

Person	Т	$Y_{T=1}$	$Y_{T=0}$
P1	1	0.4	0.3
P2	0	0.8	0.6
Р3	1	0.3	0.2
P4	0	0.3	0.1
P5	1	0.5	0.5
P6	0	0.6	0.5
P7	0	0.3	0.1

Causal effect: $E[Y_{t=1} - Y_{t=0}]$

Fundamental problem of causal

inference: For any person, observe

only one: either $Y_{t=1}$ or $Y_{t=0}$

Fundamental problem: counterfactual outcome is not observed

Randomized Experiments are the "gold standard"

One way to estimate counterfactual

What is causality?

Potential Outcomes Framework

Unobserved Confounds / Simpson's Paradox

Structural Causal Model Framework

The Simpson's paradox:

Consider success rate analysis of kidney stone treatment based on Observational Data

Kidney Stones	Treatment (A)	Treatment (B)
Success Rate	78%	83%

Which treatment do you think is better? What if there are unobserved features that matter?

The Simpson's paradox: Treatment B is better overall, but worse for each subgroup!

	Treatment (A)	Treatment (B)
Success Rate for small stones	93%	87%
Success Rate for large stones	73%	69%
Overall Success Rate	78%	83%

So, which is better?

From metrics to decision-making

- Did the change to treatment B increase success rate for the patients?
- Answer (as usual):
- Maybe, maybe not (!)

E.g., Treatment B is shown at a different time than A.

There could be other hidden causal variations.

Making sense of such data can be too complex.

Unobserved confounds are a threat to causal reasoning!

What is causality?

Potential Outcomes Framework

- Unobserved Confounds / Simpson's Paradox
- Structural Causal Model Framework

Structural Causal Model: A framework for expressing complex causal relationships

People may have inter-related characteristics

> How are these characteristics associated with each other?

Other factors can influence the observed outcome

➤ How do they affect treatment and outcome?

➤ Which ones to include?

How to identify the causal effect in such cases?

Structural causal model and do-calculus:

- modeling the problem
- making assumptions explicit
- identifying the causal effect
- well-defined mechanisms for reasoning about causal relationships

Potential outcomes-framework:

estimating the causal effect

Predicting Diabetes Onset

- Millions of adults are affected by Type 2
 Diabetes
- The disease has severe symptoms and complications but is often preventable if risk factors are identified
- What is the risk of a person developing diabetes?
- Who is at risk, while we intervene on/ treat differently?

Opioid Addiction

- Millions of people are addicted to opioid medication
- Over 10000 die each year due to overdoses related to prescription opioids
- Try simple things like avoiding larger subscriptions that lead to higher risk
- What are the possible drivers?
- Who should be prescribed what?

Sepsis Management

- Sepsis One of the leading causes of death in ICU
- Sepsis Management is a continuous task of managing patients
- Treat not just the infection but make sure that all the vitals are in the right range.
- How to maximize the long term quality of these patients?

Treating sepsis: the latest evidence

Prediction and decision making in healthcare

Prediction and decision making in healthcare

What treatment will work best for this patient?

Expansion pathology (image from Andy Beck)

- People respond differently to treatment
- Goal: use data from other patients and their journeys to guide future treatment decisions
- What could go wrong if we trained to predict (past) treatment decisions?

"David"
↑ → ■ Treatment A

"John"
↑ → ■ Treatment B

"Juana"
↑ → ■ Treatment A

Best this can do is match current medical practice!

Potential outcomes of medication

Often, we can perform an experiment (e.g. randomized controlled trial).

Can we learn from historical observational data?

Observational datasets

Observe medical records

Patient	Age	Blood pressure	Treatment	Blood sugar
Anna	54	150/95	Α	High
Calvin	52	140/80	Α	Low
John	48	135/70	В	Low
Peter	60	150/80	В	High

Observational datasets

Unobserved counterfactual outcomes

Patient	Age	Blood pressure	Blood sugar (A)	Blood sugar (B)
Anna	54	150/95	High	?
Calvin	52	140/80	Low	?
John	48	135/70	?	Low
Peter	60	150/80	?	High

Observational datasets

Missing not at random!

Unobserved counterfactual outcomes

Patient	Age	Blood pressure	Blood sugar (A)	Blood ugar (B)
Anna	54	150/95	High	?
Calvin	52	140/80	Low	?
John	48	135/70	?	Low
Peter	60	150/80	?	High

Predicting outcomes of interventions

- $X \in \mathbb{R}^k$ Covariate representation of units in k dimensions $T \in \{0,1\}$ Treatment assignments Y(0), Y(1) Potential outcomes under T = 0, 1, respectively
- ▶ Goal: Estimate counterfactual/potential outcome: $\mathbb{E}[Y(t) \mid X = x]$
- Conditional Average Treatment Effect (CATE)

$$\tau(x) = \mathbb{E}[Y(1) - Y(0) \mid X = x]$$

Potential outcomes and CATE

Potential outcomes and CATE

Potential outcomes and CATE

Potential outcomes and CATE

Treatment groups

Treatment effect is confounded by age

Treatment effect is confounded by age

We have several problems

Confounding:

Both the treatment groups and treatment effect vary with age. Naïve estimates are wrong

2. Overlap:

We know very little about older patients off treatment

Identifying assumptions

Ignorability

$$Y(0), Y(1) \perp T \mid X$$

If we control for X, we can estimate τ

Common support

$$\forall x: \ 0 < p(T = 1 \mid X = x) < 1$$

Treatment groups overlap everywhere

Essentially: Assume we don't have the problems I mentioned...

Identifying assumptions

Ignorability

$$Y(0), Y(1) \perp T \mid X$$

If we control for X, we can estimate τ

Common support

$$\forall x: \ 0 < p(T = 1 \mid X = x) < 1$$

Treatment groups overlap everywhere

Consistency

$$Y = TY(1) + (1 - T)Y(0)$$

If we assign treatment, we observe treated

The remaining problem—observed confounding

- We observe only factual outcomes
- Roughly speaking

$$\mathbb{E}[Y(1) | X = x, T = 1]$$
 and $\mathbb{E}[Y(0) | X = x, T = 0]$

We need both outcomes for everyone

$$\mathbb{E}[Y(1) \mid X = x]$$
 and $\mathbb{E}[Y(0) \mid X = x]!$

How do we get there?

Classical solutions

Regression

Fit functions to predict outcomes of interventions

Re-weighting

Adjust for treatment group bias by emphasizing representative samples

Matching

Impute counterfactual outcomes by pairing up similar subjects

All of these rely on overlap!

Regression estimators

▶ Under ignorability with respect to *X*,

$$\mathbb{E}[Y(t) \mid X, T = t] = \mathbb{E}[Y \mid X, T = t]$$

Re-weighting

Inverse propensity re-weighting

Minimize re-weighted loss to make it representative of population

Matching

Avg blood sugar = 250

Avg blood sugar = 280

Matching

Identify pairs of treated and untreated individuals who are very similar or even identical to each other

Very similar ::= $Distance(X_i, X_j) < \epsilon$

Paired individuals provide the counterfactual estimate for each other.

Average the difference in outcomes within pairs to calculate the average-treatment-effect on the treated

Two conflicting observations

- Blessing* of high dimensionality
 - Less likely to have left out confounding variables
- Curse of high dimensionality
 - Less overlap between treatment groups
 - High-variance estimates
 - More likely to introduce selection bias, M-bias etc

^{*} Adjusting for more potential confounders does not always lead to less bias

Mitigating the curse of dimensionality?

- ▶ Can we find a representation of our data $\Phi(X)$ such that
- ▶ Ignorability $Y(0), Y(1) \perp T \mid \Phi(X)$
- Common support

$$\forall z : \epsilon < p(T = 1 \mid \Phi(X) = z) < 1 - \epsilon$$

Consider counterfactual for the treated

Counterfactual prediction & domain adaptation¹

Domain adaptation: Learn from source domain, predict in target

		Counterfactual prediction	Domain adaptation
D-1-	$(x,y) \sim p_0(X,Y(0))$	Factual control	Labeled source
Data	$x \sim p_1(X)$	Treated	Unlabeled target
Goal	$Y(0)$ for $x' \sim p_1(x)$	Counterfactual	Target labels
Assum.	$Y(0) \perp T \mid X$	Ignorability	Covariate shift

¹J, Shalit, Sontag, *ICML*, 2016

Domain adaptation without overlap¹

SVHN

Source (Training)

Target (Test)

MNIST

Target accuracy: ~ 83%

SYN SIGNS

GTSRB

Target accuracy: ~ 93%

Risk minimization

(Machine learning view)

$$\hat{f} := \arg\min_{f \in \mathcal{H}} R(f) \approx Y$$

Risk minimization

Find hypothesis f_0 that minimizes the counterfactual risk $R_1(f_0)$

The risk in predicting the control outcome for the treated

$$R_1(f_0) = \mathbb{E}\Big[\underbrace{\ell\big(f_0(X), Y(0)\big) \mid T = 1}\Big]$$
 Unobserved

- ▶ for e.g. the squared loss, $\ell(y, y') = (y y')^2$
- ▶ Use importance weights? $R_1(f_0) = R_0^{\mathbf{w}}(f_0) \approx \frac{1}{n} \sum_{i=1}^n \frac{p_1(x_i)}{p_0(x_i)} \ell(f_0(x_i), y_i)$

Risk minimization

Find hypothesis f_0 that minimizes the **counterfactual risk** $R_1(f_0)$ The risk in predicting the control outcome for the treated

$$R_1(f_0) = \mathbb{E}\big[\ell\big(f_0(X), Y(0)\big) \mid T = 1\big]$$

▶ for some loss function ℓ such as the squared loss, $\ell(y, y') = (y - y')^2$

No overlap in high dimensions!

We can't do importance weighting!

Domain adaptation bounds

- ► Take inspiration from domain adaptation^{1,2}—bound the risk!
- ▶ Under ignorability w.r.t. X, the following bound holds for any f_0

$$R_1(f_0) \leq R_0(f_0) + d_{\mathcal{H}}(p_0(X), p_1(X))$$

Counterfactual risk

Factual risk

Distributional distance w.r.t. X

¹Ben-David et al., 2008, ²J., Shalit, Sontag, *ICML* 2016

Learn representations to minimize $d(p_0, p_1)$

- Approach 1: Find a new, predictive space which exposes similarities
- $ightharpoonup minimize_{f,\Phi} R_0(f_0) + d_{\mathcal{H}}(p_0(\Phi(X)), p_1(\Phi(X)))$

²Shalit, J., Sontag, ICML 2017

Learn representations to minimize $d(p_0, p_1)$

- Approach 1: Find a new, predictive space which exposes similarities
- $ightharpoonup minimize_{f,\Phi} R_0(f_0) + d_{\mathcal{H}}(p_0(\Phi(X)), p_1(\Phi(X)))$

²Shalit, J., Sontag, ICML 2017

Deep learning architecture

► This halved the error on a widely used causal effect benchmark!

Learn representations to minimize $d(p_0, p_1)$

- Worked well in practice
- Results on the IHDP benchmark
- Semi-synthetic dataset

Error in
conditional effect

Error in average effect

	IHDP	
	$\sqrt{\epsilon_{\text{CATE}}}$	$\epsilon_{ ext{ATE}}$
OLS/LR ₁	$5.8 \pm .3$	$.94 \pm .06$
OLS/LR ₂	$2.5 \pm .1$	$.31 \pm .02$
BLR	$5.8 \pm .3$	$.93 \pm .05$
k-NN	$4.1 \pm .2$	$.79 \pm .05$
TMLE	†	†
BART	$2.3 \pm .1$	$.34 \pm .02$
R.For.	$6.6 \pm .3$	$.96 \pm .06$
C.For.	$3.8 \pm .2$	$.40 \pm .03$
- BNN	$2.1 \pm .1$	$.42 \pm .03$
- TARNET	$.95 \pm .02$	$.28 \pm .01$
∫ CFR _{MMD}	$.78 \pm .02$	$.31 \pm .01$
CFRWASS	$.76 \pm .02$	$.27\pm.01$

Concatenating Φ and TTwin-head neural net ($\alpha = 0$) + IPM regularization

Failure case: variable selection

- Consider predicting the effect of a drug T vs no treatment
- Now, assume that T induces an allergic reaction in some patients
- The allergy indicator will not be predictive of the treated outcome, as treated allergic patients will be rare in data (if this is known)
- Selecting variables based on overlap and prediction will remove the allergy indicator!

Distance metrics matter

Source: MNIST, Target: MNIST (with digits removed)

Takeaways

- Domain adaptation can inspire but are not magic
 - Same old problems from causal inference remain...
- Low-dimensional representations can help with regression, weighting
- New assumptions needed for consistent estimation

Conclusion

- First error bound for individual treatment effect (CATE) that holds under model misspecification
- Gives theoretical guidance for how to change learning objective (loss + regularization) when goal is causal inference
- Ongoing directions:
 - Generalizing to multiple treatments, continuous, etc.
 - Developing similar theory for sequential decision making (i.e., off-policy RL)
 - Algorithms for identifying responders
 - Causal effect variational autoencoders (Louizos et al., NIPS '17)

Thank You!