# DIGITAL SIGNAL PROCESSING WITH BEAGLE BONE BLACK

By Priyanshu Shukla
Dept. of Computer Engineering
PICT, Pune

# DO YOU KNOW: WHAT IS BBB? WHAT IS DSP?

# IFT'S HAVE LOOK



#### **P8**

```
02
     DGND
04
     MMC1 DAT7
06
     MMC1 DAT3
08
     GPIO 67
10
     GPIO 68
12
     GPIO 44
14
     GPIO 26
16
     GPIO 46
18
     GPIO 65
20
     MMC1_CMD
22
     MMC1 DAT5
24
     MMC1_DAT1
26
    GPIO 61
28
    LCD PCLK
30
    LCD AC BIAS E
32
    LCD_DATA_15
34
    LCD_DATA_11
36
     LCD_DATA_10
38
     LCD DATA 09
40
     LCD DATA 07
42
     LCD DATA 05
44
     LCD DATA 03
46
     LCD DATA 01
```

PROBLEM STATEMENT: B17: WRITE A C++/ PYTHON PROGRAM TO GENERATE A SINE WAVE OF PROGRAMMABLE FREQUENCY AND CAPTURE SAMPLES AT PROGRAMMABLE FREQUENCY (MAX UP AS PER NYQUIST SAMPLING THEOREM) AND RECONSTRUCT THE SINE WAVE USING COLLECTED SAMPLES USING ARM CORTEX A5/A9. USE OSCILLOSCOPE TO CALCULATE SIGNAL FREQUENCY.

# THE EXPERIMENT

# THE OLDER WAY WHAT DO YOU NEED

- BBB
- CRO
- Computer
- Hands on Python
- Resistor
- Capacitor

#### 8 PWMs and 4 timers

| P9       |    |    |            | P8       |    |    |          |  |  |
|----------|----|----|------------|----------|----|----|----------|--|--|
| DGND     | 1  | 2  | DGND       | DGND     | 1  | 2  | DGND     |  |  |
| VDD_3V3  | 3  | 4  | VDD_3V3    | GPIO_38  | 3  | 4  | GPIO_39  |  |  |
| VDD_5V   | 5  | 6  | VDD_5V     | GPIO_34  | 5  | 6  | GPIO_35  |  |  |
| SYS_5V   | 7  | 8  | SYS_5V     | TIMER4   | 7  | 8  | TIMER7   |  |  |
| PWR_BUT  | 9  | 10 | SYS_RESETN | TIMER5   | 9  | 10 | TIMER6   |  |  |
| GPIO_30  | 11 | 12 | GPIO_60    | GPIO_45  | 11 | 12 | GPIO_44  |  |  |
| GPIO_31  | 13 | 14 | EHRPWM1A   | EHRPWM2B | 13 | 14 | GPIO_26  |  |  |
| GPIO_48  | 15 | 16 | EHRPWM1B   | GPIO_47  | 15 | 16 | GPIO_46  |  |  |
| GPIO_4   | 17 | 18 | GPIO_5     | GPIO_27  | 17 | 18 | GPIO_65  |  |  |
| I2C2_SCL | 19 | 20 | I2C2_SDA   | EHRPWM2A | 19 | 20 | GPIO_63  |  |  |
| EHRPWMOB | 21 | 22 | EHRPWMOA   | GPIO_62  | 21 | 22 | GPIO_37  |  |  |
| GPIO_49  | 23 | 24 | GPIO_15    | GPIO_36  | 23 | 24 | GPIO_33  |  |  |
| GPIO_117 | 25 | 26 | GPIO_14    | GPIO_32  | 25 | 26 | GPIO_61  |  |  |
| GPIO_125 | 27 | 28 | ECAPPWM2   | GPIO_86  | 27 | 28 | GPIO_88  |  |  |
| EHRPWMOB | 29 | 30 | GPIO_122   | GPIO_87  | 29 | 30 | GPIO_89  |  |  |
| EHRPWMOA | 31 | 32 | VDD_ADC    | GPIO_10  | 31 | 32 | GPIO_11  |  |  |
| AIN4     | 33 | 34 | GNDA_ADC   | GPIO_9   | 33 | 34 | EHRPWM1B |  |  |
| AIN6     | 35 | 36 | AIN5       | GPIO_8   | 35 | 36 | EHRPWM1A |  |  |
| AIN2     | 37 | 38 | AIN3       | GPIO_78  | 37 | 38 | GPIO_79  |  |  |
| AINO     | 39 | 40 | AIN1       | GPIO_76  | 39 | 40 | GPIO_77  |  |  |
| GPIO_20  | 41 | 42 | ECAPPWMO   | GPIO_74  | 41 | 42 | GPIO_75  |  |  |
| DGND     | 43 | 44 | DGND       | GPIO_72  | 43 | 44 | GPIO_73  |  |  |
| DGND     | 45 | 46 | DGND       | EHRPWM2A | 45 | 46 | EHRPWM2B |  |  |

Up to 8 digital I/O pins can be configured with pulse-width modulators (PWM) to produce signals to control motors or create analog voltage levels, without taking up any extra CPU cycles.

## THE NEWER WAY

DAC MCP4725

BBB

Hands on Python

Computer

## 120

I<sup>2</sup>C (Inter-Integrated Circuit), pronounced *I-squared-C*, is a multimaster, multi-slave, single-ended, serial computer bus invented by Philips Semiconductor (now NXP Semiconductors). It is typically used for attaching lower-speed peripheral ICs to processors andmicrocontrollers. Alternatively I<sup>2</sup>C is spelled *I2C* (pronounced *I-two-C*) or *IIC* (pronounced *I-I-C*).



## 2 I2C ports

| P9       |    |    |            | P8 |         |    |    |         |  |
|----------|----|----|------------|----|---------|----|----|---------|--|
| DGND     | 1  | 2  | DGND       |    | DGND    | 1  | 2  | DGND    |  |
| VDD_3V3  | 3  | 4  | VDD_3V3    |    | GPIO_38 | 3  | 4  | GPIO_39 |  |
| VDD_5V   | 5  | 6  | VDD_5V     |    | GPIO_34 | 5  | 6  | GPIO_35 |  |
| SYS_5V   | 7  | 8  | SYS_5V     |    | GPIO_66 | 7  | 8  | GPIO_67 |  |
| PWR_BUT  | 9  | 10 | SYS_RESETN |    | GPIO_69 | 9  | 10 | GPIO_68 |  |
| GPIO_30  | 11 | 12 | GPIO_60    |    | GPIO_45 | 11 | 12 | GPIO_44 |  |
| GPIO_31  | 13 | 14 | GPIO_40    |    | GPIO_23 | 13 | 14 | GPIO_26 |  |
| GPIO_48  | 15 | 16 | GPIO_51    |    | GPIO_47 | 15 | 16 | GPIO_46 |  |
| I2C1_SCL | 17 | 18 | I2C1_SDA   |    | GPIO_27 | 17 | 18 | GPIO_65 |  |
| I2C2_SCL | 19 | 20 | I2C2_SDA   |    | GPIO_22 | 19 | 20 | GPIO_63 |  |
| I2C2_SCL | 21 | 22 | I2C2_SDA   |    | GPIO_62 | 21 | 22 | GPIO_37 |  |
| GPIO_49  | 23 | 24 | I2C1_SCL   |    | GPIO_36 | 23 | 24 | GPIO_33 |  |
| GPIO_117 | 25 | 26 | I2C1_SDA   |    | GPIO_32 | 25 | 26 | GPIO_61 |  |
| GPIO_125 | 27 | 28 | GPIO_123   |    | GPIO_86 | 27 | 28 | GPIO_88 |  |
| GPIO_121 | 29 | 30 | GPIO_122   |    | GPIO_87 | 29 | 30 | GPIO_89 |  |
| GPIO_120 | 31 | 32 | VDD_ADC    |    | GPIO_10 | 31 | 32 | GPIO_11 |  |
| AIN4     | 33 | 34 | GNDA_ADC   |    | GPIO_9  | 33 | 34 | GPIO_81 |  |
| AIN6     | 35 | 36 | AIN5       |    | GPIO_8  | 35 | 36 | GPIO_80 |  |
| AIN2     | 37 | 38 | AIN3       |    | GPIO_78 | 37 | 38 | GPIO_79 |  |
| AINO     | 39 | 40 | AIN1       |    | GPIO_76 | 39 | 40 | GPIO_77 |  |
| GPIO_20  | 41 | 42 | GPIO_7     |    | GPIO_74 | 41 | 42 | GPIO_75 |  |
| DGND     | 43 | 44 | DGND       |    | GPIO_72 | 43 | 44 | GPIO_73 |  |
| DGND     | 45 | 46 | DGND       |    | GPIO_70 | 45 | 46 | GPIO_71 |  |

### THANK YOU

For Queries
priyanshus1@gmail.com