العلامة		/ * "£ *
مجموعة	مجزأة	عناصر الإجابة (الموضوع الأوّل)
	0,25×2	التّمرين الأول: (04 نقاط) .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1
		$u_R(t)$ إيجاد المعادلة التّفاضلية التي يحققها التّوتر الكهربائي بين طرفي النّاقل الأومي.
2	0,25	بتطبیق قانون جمع التّوترات وقانون أوم: $E = u_R(t) + u_b(t)$ $E = u_R(t) + r \cdot i(t) + L \cdot \frac{di}{dt}$ $E = u_R(t) + r \cdot \frac{u_R(t)}{R} + L \cdot \frac{1}{R} \cdot \frac{du_R}{dt}$
	0,25	K K W
	0,25	$\frac{du_R}{dt} + \frac{(R+r)}{L} \cdot u_R(t) = \frac{E \cdot R}{L}$ $u_R(t) = A \left(1 - e^{-\frac{t}{B}}\right); \frac{du_R}{dt} = A \cdot \frac{1}{B} \cdot e^{-\frac{t}{B}} : B \circ A \text{ in } \Delta t $
		$u_R(t)$ باستغلال حل المعادلة التفاضلية نُبيِّن أن منحنى الشَّكل 1 يمثّل $u_R(t)$ عن أجل $u_R(t)+u_L(t)=E$ ومن قانون جمع التوترات $u_R(t)+u_L(t)=0$
	0,5	$u_{R}(t)$ إذن في اللّحظة $u_{b}(0)=E$ ، $t=0$ ومنه منحنى الشّكل $u_{B}(t)$
		$u_R = E$ او: لما $t o \infty$ فإن الم
2	0,25×3	يا. الجدول: $t(s) = 0$ τ $t(s)$
		ملاحظة: تمنح 0,5 في حالة كانت الطريقة دون الوصول للنتيجة.

العلامة		/ t "\$t! c . : t!\
مجموعة	مجزأة	عناصر الإجابة (الموضوع الأوّل)
	0,25	$u_b({ m V})$ يبين طرفي $u_b({ m V})$. $u_b(t)$. u
	0,25	$\int rI_0 = E - RI_0 = 0,7V$
	0,25	$r = \frac{0.7}{I_0} = \frac{0.7}{0.035} = 20$ فيمة r مقاومة الوشيعة المستعملة المستعملة عملة عملة المستعملة ال
		4.2. اختيار الفريق التّقني والتّبرير:
		L لتحديد اختيار الفريق التّقني يجب حساب ذاتية الوشيعة
		au=0.01s حساب ثابت الزمن $ au$: من أحد البيانين نجد
	0,25	$L = \tau (R + r) = 0.01 \times 180 = 1.8H$
	0,25	ومنه الوشيعة المستعملة هي رقم 3
0,25		التّمرين الثّاني: (04 نقاط)
0,20	0,25	1. المرجع المناسب: المرجع الهيليومركزي
0,25	0,25	2. نص القانون الأول لكبلر: تدور الكواكب في مدارات اهليلجية حول الشّمس التي تمثل أحد محرقيه.
		.3
		1.3. عبارة السّرعة المدارية: بتطبيق القانون الثّاني لنيوتن على أحد الكواكب في المرجع $\sum \overline{C}$
		$\sum \overrightarrow{F_{ext}} = m \overrightarrow{a}$:الهيليومركزي الذي نعتبره عطاليا v^2
	0,25	$a_n = rac{v^2_{orb}}{r}$ حيث $F = G rac{M_s m}{r^2} = m \; a_n$ وبالإسقاط على المحور الناظمي نجد
3,5	0,25	$v_{orb} = \sqrt{rac{GM_s}{r}}$ بالتّعويض نجد $Grac{M_s.m}{r^2} = m \; rac{v_{orb}^2}{r}$ نخلص إلى
		$rac{T^2}{r^3} = rac{4\pi^2}{GM_s}$:2.3 إثبات أن القانون الثالث لكبلر يعطى بالعلاقة:
	0, 25 0, 25	$rac{T^2}{r^3} = rac{4\pi^2}{GM_s}$ نجد بالتّغويض نجد $V_{orb} = \sqrt{rac{GM_s}{r}}$ الدينا مما سبق: $V_{orb} = \sqrt{rac{GM_s}{r}}$

رمة (العلا	/ b w E b 1
مجموعة	مجزأة	عناصر الإجابة (الموضوع الأوّل)
	0,25	3.3. حساب كتلة الشّمس:
	-, -	$rac{T^2}{r^3}rac{4\pi^2}{GM_s}$ \Rightarrow $M_s=rac{4\pi^2r^3}{GT^2}$
	0,25	$M_{s} = 2,00 \times 10^{30} \ kg$ باستعمال المعطيات الخاصة بكوكب الأرض: نجد
	$0,5\times2$	$r = 5,20 \; U.A$: المشتري $T = 1,89 \; ans$ المشتري. 4.3
		$v_{orb} = \sqrt{\frac{GM_s}{r}}$ السّرعة المدارية للأرض والمريخ: لدينا .5.3
	0,25	$v_{orb} = \sqrt{\frac{6,67 \times 10^{-11} \times 2,0 \times 10^{30}}{1,5 \times 10^{11}}} = 29,8 \ km \cdot s^{-1}$ النّسبة إلى الأرض لدينا -
	0,25	$v_{orb} = \sqrt{\frac{6,67 \times 10^{-11} \times 2,0 \times 10^{30}}{1,53 \times 1,5 \times 10^{11}}} = 24,1 \; km \cdot s^{-1}$ بالنّسبة إلى المريخ لدينا –
		6.3. تكون السنة الأرضية أقل من السنة المريخية لأن السّرعة المدارية للأرض أكبر من
	0,5	السّرعة المدارية للمريخ ونصف قطر دوران الأرض حول الشّمس أصغر من نصف قطر
		دوران المريخ حول الشّمس فالأرض تقطع المسار الدائري في زمن أقل.
		التّمرين التّالث: (06 نقاط)
	0,5	1.1. النّظائر: هي أنوية من نفس العنصر لها نفس العدد الشحني Z وتختلف في العدد
	0,5	الكتلي A.
		 تتركب نواة التكنيسيوم 99 من: 43 بروتونا، و 56 نيترونا.
	0,25	2.1. يفضل استعمال النظير 99 لأن نصف عمره $t_{\frac{1}{2}}$ أصغر، وهذا يجعله يوفر الوقت.
	0,25	$\frac{E_l(^{99}Tc)}{A} = 8,61 \text{MeV} / nuc$
2.5	0,25	$\frac{E_l(^{97}Tc)}{A} = 8,62 \text{MeV} / nuc$
3,5	0,5	النظير الأكثر استقرارا هو التكنيسيوم 97 لأن طاقة الرّبط لكل نوّية فيه أكبر من طاقة الرّبط
	0,3	لكل نوّية التّكنيسيوم 99.
	0,5	$4.1.$ معادلة التّحول النووي: $e o {}^{99}_{43} Tc + {}^{0}_{-1} e$
	0,25	نمط التّفكك eta^- نمط التّفكاك eta^-
		2.4.1. التّمثيل على مخطط (Z,N)
	0,5	58 57 56 55 41 42 43 44

رمة (العلا	/ • "£•1 - • •1\ " 1
مجموعة	مجزأة	عناصر الإجابة (الموضوع الأوّل)
	0,25	$\lambda=rac{ln2}{t_{1/2}}$:دينا العلاقة: $t_{1/2}$: $t_{1/2}$.1.2
	0,25	. $\lambda = \frac{ln2}{6 \times 3600} = 3,2 \times 10^{-5} s^{-1}$ ت.ع:
	0,25	$t=0$: $t=0$ اللّٰوية N_0 اللّٰهِ N_0 اللّٰهِ عدد الأنوية N_0 الدينا: N_0 ا
	0,25	. $N_0 = \frac{5 \times 10^8}{3,2 \times 10^{-5}} = 1,56 \times 10^{13} $ noyaux
2,5		$:t_1$: تحدید اللّحظة 3.2.
	0,25	$A(t) = A_0.e^{-\lambda t}$ نكتب: $ln\left(\frac{A_0}{A(t)}\right)$ من قانون التّناقص الإشعاعي: $ln\left(\frac{A_0}{A(t)}\right)$
	0,25	$ln(A(t)) = ln(A_0e^{-\lambda t}) \Rightarrow -\lambda t = \frac{ln(A(t))}{lnA_0} \Rightarrow t = \frac{ln(\frac{A_0}{A(t)})}{\lambda} = -\frac{ln(0,6)}{\lambda}$
	0,25	$t = -\frac{\ln(0,6)}{3,2 \times 10^{-5}} = 15963 s = 4,43 h$ ت.ع:
	0,25	وهي الفترة التي يجب على المريض انتظارها من أجل أخذ صورة للعظام.
	0,25×2	4.2. مدة اختفاء النّشاط: $t_2 = 5\tau = 5\frac{1}{\lambda} = \frac{5}{3.2 \times 10^{-5}} = 156250 s = 1,8 jours$
		التّمرين التّجريبي: (06 نقاط)
		1. 1.1. معادلة انحلال النّشادر في الماء:
	0,25	$NH_3(g) + H_2O(\ell) = NH_4^+(aq) + HO^-(aq)$
0	0,25×2	ينسبة التّقدم النّهائية $ au_f$ لهذا التّفاعل $ au_f = rac{x_f}{x_{max}} = rac{\left[ext{HO}^{ au} ight]_f}{c_B} = rac{10^{pH-14}}{c_B}$
3	0,25	$\tau_f = \frac{10^{10,25-14}}{2 \times 10^{-2}}$
	0,25	$ au_f = 2.8 imes 10^{-2}$ نستنتج أن التّفاعل غير تام لأن $ au_f < 1$

رمة (العلا	/ * "É* ! * !\ " 1
مجموعة	مجزأة	عناصر الإجابة (الموضوع الأوّل)
		$ au_f$ عبارة ثابت التّوازن K لهذا التّفاعل بدلالة رو c_B و c_B
		$\begin{bmatrix} HO^{-} \end{bmatrix} \begin{bmatrix} NH_{4}^{+} \end{bmatrix} \begin{bmatrix} HO^{-} \end{bmatrix}^{2} $
	$0,25\times3$	$K = \frac{\left[\operatorname{HO}^{-}\right]_{f}\left[\operatorname{NH}_{4}^{+}\right]_{f}}{\left[\operatorname{NH}_{3}\right]_{f}} = \frac{\left[\operatorname{HO}^{-}\right]_{f}^{2}}{c_{B} - \left[\operatorname{HO}^{-}\right]_{f}} \Rightarrow K = c_{B} \frac{\tau_{f}^{2}}{1 - \tau_{f}}$
	0,25	$K = 2 imes 10^{-2} rac{\left(2,8 imes 10^{-2} ight)^2}{1 - \left(2,8 imes 10^{-2} ight)} \Rightarrow K = 1,6 imes 10^{-5}$ حساب قیمته:
		$ ho Ka$ التّحقق من علاقة $ ho Ka$ الثنائية: $ ho NH_4^+$ / $ ho NH_3$ الثنائية: $ ho NH_4^+$
	0,25	$Ka = \frac{\left[\mathbf{H}_{3}\mathbf{O}^{+}\right]_{f}\left[\mathbf{N}\mathbf{H}_{3}\right]_{f}}{\left[\mathbf{N}\mathbf{H}_{4}^{+}\right]_{f}} = \frac{K_{e}}{K}$
	0,25	$-\log Ka = -\log \frac{K_e}{K} \Rightarrow pKa = \log \frac{K}{K_e}$
	0,25	$pKa = log \frac{1,6 \times 10^{-5}}{10^{-14}} \Rightarrow pKa = 9,2$ حساب قیمته:
0.25	0.25	2. معادلة التّفاعل الكيميائي المنمذج للتّحول الحادث أثناء المعايرة:
0,25	0,25	$NH_3 + H_3O^+ = NH_4^+ + H_2O$
		3.
	0,25	1.3. تعريف نقطة التكافؤ: هي النّقطة التي يكون فيها المزيج في شروط ستوكيومترية.
	0,25	$E(V_{AE} = 30mL; pH_E = 5,6)$ إحداثيتا نقطة التّكافؤ: بطريقة المماسين نجد
		: عند التّكافؤ c_A عند: c_A عند التّكافؤ
2,25	$0,25\times2$	$c_A V_{AE} = c_B V_B \Rightarrow c_A = \frac{c_B V_B}{V_{AE}} \Rightarrow c_A = \frac{2 \cdot 10^{-2} \times 30}{30} \Rightarrow c_A = 2 \times 10^{-2} \text{mol} \cdot L^{-1}$
	0,25	3.3. كاشف ملون: مركب كيميائي يتميز بالثّنائية $In^- HIn / In^-$ يختلف عن
		لون [–] In
	0,25	2.3.3. الكاشف الملون أحمر الكلوروفينول مناسب في هذه المعايرة لأن مجال تغيره اللوني
	0,23	$\cdot pH_{\scriptscriptstyle E}=5,6$ يحتوي على القيمة

تابع للإجابة النموذجية لموضوع اختبار مادة: العلوم الفيزيائية/ الشعب(ة): رياضيات + تقني رياضي/ بكالوريا 2020

العلامة		(1 15t) c . in . t()
مجموعة	مجزأة	عناصر الإجابة (الموضوع الأوّل)
		$\left[NH_{4}^{+} \right]_{f} = 5 \left[NH_{3} \right]_{f}$: حجم الحمض المضاف لكي تتحقق النسبة
	0,25×2	$\left[\mathrm{NH}_{4}^{+}\right]_{f} = 5\left[\mathrm{NH}_{3}\right]_{f} \Rightarrow \frac{\left[\mathrm{NH}_{3}\right]_{f}}{\left[\mathrm{NH}_{4}^{+}\right]_{f}} = \frac{1}{5} = \frac{\mathscr{S}_{B} V_{B} - \mathscr{S}_{A} V_{A}}{\mathscr{S}_{A} V_{A}} \Rightarrow \frac{1}{5} = \frac{V_{B}}{V_{A}} - 1$
	0,25	$\frac{V_B}{V_A} = \frac{6}{5} \Rightarrow V_A = \frac{5}{6} \times 30 \Rightarrow V_A = 25 mL$
		$pH = 8.5$ ومنه: $pH = pKa + log \frac{\left[NH_3\right]_f}{\left[NH_4^+\right]_f} = pKa + log \frac{1}{5}$
		$V_A=25m$ وباستعمال المنحنى نجد: $V_A=25m$
0,5	0,25	$pH=pKa$ يكون $V_{\scriptscriptstyle B}=rac{V_{\scriptscriptstyle BE}}{2}=15mL$ عند نقطة نصف التّكافؤ
0,3	0,25	pH = pKa = 9,2 :وباستعمال المنحنى نجد

العلامة		/ ****ti
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثاني)
	0,25	التمرين الأول: (04 نقاط) 1. 1.1. يحدث شحن للمكثفة حيث تتراكم الشحنات الكهربائية السّالبة على اللبوس المتصل بالقطب السّالب للمولد وبالتّالي تظهر شحنات كهربائية موجبة على اللبوس المتصل بالقطب الموجب للمولد.
	0,25	2.1. بالتّحليل البعدي:
1,75	0,25	auحساب قيمته العددية: $ au=0,15$ $ au=0,15$
		التي تخزنها المكثفة: E_{Cmax} التي تخزنها المكثفة:
	0,25	$E_{Cmax} = \frac{1}{2}CU_2^2 \Rightarrow E_{Cmax} = \frac{1}{2} \times 150 \times 10^{-6} \times (300)^2 \Rightarrow E_{Cmax} = 6,75 \text{ J}$
	0,25	$U_1 = 1,5 \mathrm{V}$ المخزنة في المكثفة حالة استعمال مولد توتر $E'_{Cmax} = \frac{1}{2} \times 150 \times 10^{-6} \times \left(1,5\right)^2 \Rightarrow E'_{C\mathrm{max}} = 168,75 \times 10^{-6} \mathrm{J}$
	0,25	$E_{Cmax} = 4 \times 10^4 E'_{Cmax}$ ومنه $\frac{E_{Cmax}}{E'_{Cmax}} = \frac{6,75}{168,75 \times 10^{-6}} = 4 \times 10^4$ المقارنة: 2.4.1
	0,25	الفائدة من شحن المكثفة بالتّوتر U_2 : الطاقة العالية التي تخزنها المكثفة تسمح بتوهج كافي للمصباح من أجل أخذ صورة واضحة.
2,25	0,25	ري تمثيل الدارة U_c U_c U_r U_r U_r U_r
	0,25	2.2. المعادلة التفاضلية التي يحققها التوتر u_C بين طرفي المكثفة: $u_C - u_R = 0 \Rightarrow u_C - ri = 0 \Rightarrow u_C - r(-C\frac{du_C}{dt}) = 0$ حسب قانون جمع التوترات $\Rightarrow \frac{du_C}{dt} + \frac{1}{rC}u_C = 0$

امة	العلا	/ •1 ² • • • • • • • • • • • • • • • • • • •
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثاني)
	0,25	ي.3.2 .1.3.2 : $Lnu_{C}\left(t\right)=f\left(t\right)$.1.3.2 : $u_{C}\left(t\right)=U_{2}e^{\frac{-t}{\tau}}\Rightarrow lnu_{C}\left(t\right)=\ln U_{2}e^{\frac{-t}{\tau}}\Rightarrow lnu_{C}\left(t\right)=-\frac{1}{\tau}t+lnU_{2}$ $lnu_{C}\left(t\right)=at+b$ معادلة المنحنى:
		بالمطابقة الحل يتوافق مع البيان. 2.3.2.
	0,25	$-\frac{1}{\tau} = a$
		$a = \frac{0-5,7}{(4,5-0)10^{-3}} = -1,27 \times 10^3$ حساب قيمة ثابت الزمن τ :
	0,25	$\tau' = \frac{1}{1,27 \times 10^3}$ $\tau' = 7,87 \times 10^{-4} s$
	0,25	مقاومة مصباح الفلاش: $\tau' = rC \Rightarrow r = \frac{\tau'}{C}$
	0,25	$r = \frac{7,87 \times 10^{-4}}{150 \times 10^{-6}}$ $r = 5,2\Omega$
	0,25	$\frac{\tau}{\tau} = \frac{0.15}{7.87 \times 10^{-4}} = 190.6$: وأن قيمتي τ وأن أن أ
	0,25	au = 190,6 au' هذه القيمة تتوافق مع استعمال آلة التّصوير (مدة التّفريغ صغيرة جدا أمام مدة الشحن).
		التّمرين الثّاني: (04 نقاط)
	0,25	1. تعریف الاندماج: هو تفاعل نووي یحدث فیه اندماج نواتین خفیفتین لتشکیل نواة أثقل
		منهما مع تحرير طاقة عالية ونيترونات.
	0,25	Δm .1.2.1 كنتلي للتفاعل (1)
2,5	0,25	النقص الكتلي لنواة الهيليوم 4. Δm_2
		Δm , $\Delta m_{_1}$, $\Delta m_{_2}$ حساب کل من $2.2.1$
	0,25	$\Delta m_1 = 5,04054 - 5,02905 = 0,01149u$
	0,25	$\Delta m_2 = 5,01016 - 5,04054 = -0,03038u$
	0,25	$\Delta m = 5,01016 - 5,02905 = -0,01889u$

امة	العلا	/ *1 ² ****
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثاني)
		3.1. استنتاج طاقة الربط النووي
	0,25	$E_{\ell}({}_{1}^{3}\mathrm{H}) + E_{\ell}({}_{1}^{2}\mathrm{H}) = \Delta m_{1} \times 931,5$
	0,23	$E_{\ell}({}^{3}_{1}H) = \Delta m_{1} \times 931, 5 - E_{\ell}({}^{2}_{1}H)$
		$E_{\ell}(^{3}_{1}\text{H}) = 8,477\text{MeV}$
		4.1. حساب طاقة الربط النووي للهيليوم4 والطاقة المحررة من التّفاعل (1):
	0,25	$E_{\ell}({}_{2}^{4}\mathrm{He}) = \left \Delta m_{2} \right \times 931,5$
		$E_{\ell}({}_{2}^{4}\text{He}) = 28,3\text{MeV}$
	0,25	$E_{1lib} = \Delta m \times 931,5$
	-, -	$E_{1lib} = -17,6 \text{MeV}$
	0,25	$(^2_1 ext{H} + ^3_1 ext{H})$ حساب المحررة من تفاعل اندماج الدماج الهيدروجين E'_{1lib}
	0,23	$\left E_{1lib}^{'} \right = \frac{m}{M(_{1}^{2}\text{H}) + M(_{1}^{3}\text{H})} \cdot N_{A} \cdot \left E_{1lib} \right = 2,12 \times 10^{27} \text{ MeV}$
		.2
		1.2. تركيب نواة اليورانيوم235:
	0,25	عدد البروتونات هو 92 ، عدد النيترونات هو 143
	0,25	تحدید x,z بتطبیق قانوني الانحفاظ:
		$235+1=137+97+x \Rightarrow x=2$ 92+0=z+39+0\Rightarrow z=53
	0.25	92+0-2+39+0 حالية الله التفاعل (2) تفاعل الانشطار النووي.
	0,25	
		4.2. حساب الطاقة المحررة من التّفاعل (2): 5 - 2011 من التّفاعل (3):
1,5		$\left E_{2lib} \right = \left \Delta m \right \times 931,5$
	0,25	$\left E_{2lib}\right = 138,6 \text{MeV}$
		حساب E'_{2lib} المحررة من تفاعل انشطار kg من اليورانيوم 235
	0,25	$\left E_{2lib}^{'} \right = \frac{m}{M {\binom{235}{92} \text{U}}} \cdot N_{\text{A}} \cdot \left E_{2lib} \right = 3,55 \times 10^{26} \text{MeV}$
		5.2. المقارنة بين الطاقتين المحررتين:
	0,25	$\frac{\left E_{1lib}^{'}\right }{\left E_{2lib}^{'}\right } = 5,97 \Rightarrow \left E_{1lib}^{'}\right = 5,97 \left E_{2lib}^{'}\right $
		نستنتج أن الطاقة المحررة من تفاعل الاندماج أكبر من 5مرات من الطاقة المحررة من تفاعل
		الانشطار عند استعمال نفس كتلة الوقود.

العلامة		/ ****\
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثّاني)
0.25	0.25	التّمرين الثّالث: (06 نقاط)
0,25	0,25	1. التَّفاعل الحادث بطيء لأن مدته تقدر بعدة دقائق (الشَّكل 5).
0,75	$0,25\times3$	2. الأفراد الكيميائية المسؤولة عن الناقلية: 'Na ⁺ ,HO ⁻ ,HCOO
		3. جدول تقدم التّفاعل:
		$HCOOCH_2CH_3 + HO^- = HCOO^- + CH_3CH_2OH$
0,5	0,25	الحالة الابتدائية n_0 الحالة الابتدائية 0 الحالة الابتدائية
		الحالة الانتقالية n_0-x c_0V-x x
	0,25	الحالة النهائية n_0-x_f c_0V-x_f x_f x_f
		4. عبارة الناقلية:
	0,25	$G = K\sigma$; $\sigma = \lambda_{\text{HCOO}^{-}} \left[\text{HCOO}^{-} \right] + \lambda_{\text{HO}^{-}} \left[\text{HO}^{-} \right] + \lambda_{\text{Na}^{+}} \left[\text{Na}^{+} \right]$
1	0,25	$G = K(\lambda_{\text{HCOO}^{-}} \left[\text{HCOO}^{-} \right] + \lambda_{\text{HO}^{-}} \left[\text{HO}^{-} \right] + \lambda_{\text{Na}^{+}} \left[\text{Na}^{+} \right])$
1	0,25	$G = K(\lambda_{\text{HCOO}}, \frac{x}{V} + \lambda_{\text{HO}}, \frac{c_0 V - x}{V} + \lambda_{\text{Na}^+} c_0)$
	0,25	$G = \frac{K}{V} (\lambda_{\text{HCOO}} - \lambda_{\text{HO}}) x + K c_0 (\lambda_{\text{Na}^+} + \lambda_{\text{HO}})$
	0,23	V . الخلية K . الخلية K . الخلية K
	0,25	G=a.x+b :4 من الشّكك 4
	0,25	$a=-0,75~\mathrm{S}\cdot mol^{-1}$ حيث a الميل a
1.25	0,25	$b = 2.5 \times 10^{-3} \text{ S}$
,	0,25	$K = \frac{aV}{(\lambda{\text{HCOO}} - \lambda_{\text{HO}})}$ $a = \frac{K}{V}(\lambda_{\text{HCOO}} - \lambda_{\text{HO}})$:بالمطابقة مع العلاقة النظرية:
	0,25	ness ne
		$c_0 = \frac{2.5 \times 10^{-3}}{K(\lambda_{\text{Na}^+} + \lambda_{\text{HO}^-})}$
		t=15min التّركيب المولى للمزيج عند $t=15min$
	0,25	G=1,6mS من الشّكل 5 عند $t=15min$ يكون
		x=1,2mmol يكون $G=1,6mS$ عند $G=1,6mS$
1.25		$n_0=2mmol$ لدينا
		$HCOOCH_2CH_3 + HO^- = HCOO^- + CH_3CH_2OH$
	$0,25 \times 4$	$t = 15min \qquad n_0 - x \qquad c_0 V - x \qquad x \qquad x$
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

العلامة		, . , .,
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثاني)
1	0,25 0,25 0,25	$v_{V} = \frac{1}{V} \frac{dx}{dt}$ $v_{V} = \frac{1}{V} \frac{dx}{dt}$ $G = \frac{K}{V} (\lambda_{\text{HCOO}} - \lambda_{\text{HO}}) x + K c_{0} (\lambda_{\text{Na}^{+}} + \lambda_{\text{HO}})$ $x(t) = \frac{G(t) - K c_{0} (\lambda_{\text{Na}^{+}} + \lambda_{\text{HO}})}{\frac{K}{V} (\lambda_{\text{HCOO}} - \lambda_{\text{HO}})}$ $\frac{dx(t)}{dt} = \frac{1}{\frac{K}{V} (\lambda_{\text{HCOO}} - \lambda_{\text{HO}})} \cdot \frac{dG(t)}{dt}$ $v_{V} = \frac{1}{V} \frac{1}{\frac{K}{V} (\lambda_{\text{HCOO}} - \lambda_{\text{HO}})} \cdot \frac{dG(t)}{dt}$ $v_{V} = \frac{1}{K(\lambda_{\text{HCOO}} - \lambda_{\text{HO}})} \cdot \frac{dG(t)}{dt}$ $v_{V} = \frac{1}{K(\lambda_{\text{HCOO}} - \lambda_{\text{HO}})} \cdot \frac{dG(t)}{dt}$ $v_{V} = \frac{1}{K(\lambda_{\text{HCOO}} - \lambda_{\text{HO}})} \cdot \frac{dG(t)}{dt}$ $v_{V} = \frac{1}{V_{V}} \cdot \frac{dG(t)}{dt} = -0.035 ms. min^{-1}$ $v_{V} = -\frac{1}{725V} \cdot \frac{dG(t)}{dt} = \frac{G = -725x + 2.5}{x = \frac{2.5 - G}{725}}$ $v_{V} = -\frac{1}{725.02} \cdot \frac{(0 - 2.15}{(61 - 0).60} \cdot \frac{(0 - 2.15)}{(61 - 0).60}$ $v_{V} = 4.05.10^{-6} mol / L.s$
0,5	0,25 0,25	التّمرين التّجريبي: (60 نقاط) $\frac{P}{\Pi} = \frac{mg}{\rho_{air} V g} = \frac{\rho}{\rho_{air}} = \frac{88.5}{1.3} = 68 : \frac{P}{\Pi} = \frac{1}{1.5}$ $\frac{P}{P} = \frac{mg}{\rho_{air} V g} = \frac{88.5}{\rho_{air}} = \frac{1}{1.3} = 68 : \frac{P}{\Pi} = \frac{1}{1.5}$ $\frac{P}{P} = \frac{1}{1.3} = 68 : \frac{P}{\Pi} = \frac{1}{1.3} = \frac{1}{1.3}$ $\frac{P}{P} = \frac{1}{1.3} = \frac{1}{1.3} = \frac{1}{1.3}$ $\frac{P}{P} = \frac{1}{1.3} = \frac{1}{1.3} = \frac{1}{1.3} = \frac{1}{1.3}$ $\frac{P}{P} = \frac{1}{1.3} = \frac{1}{1.3} = \frac{1}{1.3} = \frac{1}{1.3}$ $\frac{P}{P} = \frac{1}{1.3} = \frac{1}{1.3} = \frac{1}{1.3} = \frac{1}{1.3} = \frac{1}{1.3}$ $\frac{P}{P} = \frac{1}{1.3} = \frac{1}{1.3$

رمة (العلا	/ •1 ² *•1 - • •1\ 1 \ 1 \ 1 \ 1 \ 1 \ 1
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثاني)
1	$0,25$ $0,25 \times 2$ $0,25$	3. المعادلة التّفاضلية التي تحققها سرعة مركز عطالة الكرة: \overline{F}_{ext} القانون الثّاني لنيوتن على الكرة في مرجع سطحي أرضي الذي نعتبره غاليليا: $\sum \overline{F}_{ext} = m \overline{a_G} \Leftrightarrow \overline{P} + \overline{f} = m \overline{a_G}$ $m g - k v = m \frac{dv}{dt} : P - f = m a_G : \frac{dv}{dt} + \frac{k}{\rho V} v = g : : \frac{dv}{dt} + \frac{k}{m} v = g : : : : : : : : : $
	0,25	$rac{dv}{dt}=0$:عند بلوغ الكرية السّرعة الحدّية: $v_{lim}=rac{ ho V\ g}{k}$
0,5	0,25	
	0,25	$v_{lim} = 5 m \cdot s^{-1}$ نجد: 1.5 من البيان (1) نجد: 1.5
	0,25×2	د.2.5 التّحليل البعدي: $k = \frac{f}{v} \Rightarrow [k] = \frac{[f]}{[v]} = \frac{[M] \cdot [L] \cdot [T]^{-2}}{[L] \cdot [T]^{-1}}$
	0,25	$igl[kigr] = igl[Migr] \cdot igl[Tigr]^{-1}$ وحدة k في الجملة الدولية هي: $kg\cdot s^{-1}$
3,25	0,25×2	$k = \frac{\rho V g}{v_{lim}} = \frac{88.5 \times 1.13 \times 10^{-4} \times 9.8}{5} = 1.96 \times 10^{-2} kg \cdot s^{-1}$: $k = \frac{\rho V g}{v_{lim}} = \frac{88.5 \times 1.13 \times 10^{-4} \times 9.8}{5} = 1.96 \times 10^{-2} kg \cdot s^{-1}$
	0,25	$t=0$ في اللّحظة (1) في اللّحظة (Δv) في اللّحظة (Δv) في اللّحظة δv
	0,23	$\left(\frac{\Delta v}{\Delta t}\right)_{t=0} = \frac{5}{0.5} = 10 \ m \cdot s^{-2}$
	0,25	ويمثل فيزيائيا تسارع حركة الكرة في اللّحظة $t=0$
	0,25	t = 4s، $y = 17,6m$ المدة الزّمنية للسقوط: من البيان (2)، لدينا من أجل $t = 4s$ ، المدة الزّمنية للسقوط:
	0,25	$\Delta t_1 = 2,75s$. مدة النّظام الانتقالي: $\Delta t_1 = 2,75s$
	0,25	$\Delta t_2 = 1,25s$ مدة النّظام الدّائم: $\Delta t_2 = 1,25s$

تابع للإجابة النموذجية لموضوع اختبار مادة: العلوم الفيزيائية/ الشعب(ة): رياضيات + تقني رياضي/ بكالوريا 2020

		6.5. التّأكد من قيمة السّرعة الحدّية باستعمال المنحنى (2)
		قيمة السّرعة الحدّية تمثل ميل المنحنى (2) في لحظة من المجال الزّمني للنّظام الدّائم.
	0,25	$y = (dy)$ $-5m \cdot s^{-1}$
	0,25	$v_{lim} = \left(\frac{dy}{dt}\right)_{2,75s \le t \le 4s} = 5 m \cdot s^{-1}$
		أمام $v(m.s^{-1})$ أمام أمام $v(m.s^{-1})$
0,5	0, 25 0, 25	t(s) وقل الكرة: $t(s)$ وقال الكرة: $t(s)$ وقال الكرة مستقيمة متسارعة بانتظام (سقوط حر).