Брожение у микроорганизмов

Брожение

характеризует энергетическую сторону способа существования нескольких групп эубактерий, при котором они осуществляют в анаэробных условиях окислительно-восстановительные превращения органических соединений, сопровождающиеся выходом энергии, которую эти организмы используют.

Процесс брожения связан с расщеплениями органических молекул субстрата, в результате которых на окислительных этапах процесса высвобождается часть свободной энергии, заключенной в молекуле субстрата, и происходит ее запасание в молекулах АТФ

Сбраживаемые субстраты - углеводы, спирты, органические кислоты, аминокислоты, пурины, пиримидины

Продукты брожений - различные органические кислоты (молочная, масляная, уксусная, муравьиная), спирты (этиловый, бутиловый, пропиловый), ацетон, а также CO₂ и H₂

Спиртовое брожение

 $C_6H_{12}O_6 \rightarrow 2CO_2 + C_2H_5OH$

Формы брожения по Карлу Нейбергу (Нойберг) :

<u>І форма</u> брожения по Нейбергу – это нормальное дрожжевое брожение;

<u>II форма</u> брожения по Нейбергу. Изменение состава продуктов брожения. Например, связать ацетальдегид бисульфитом

Комплекс не может больше акцептировать электроны. Они начинают передаваться от НАД Н2 на диоксиацетонфосфат, который восстанавливается до 3-фосфоглицерина и дефосфорилируется с образованием глицерина:

глюкоза + бисульфит натрия → глицерин + ацетальдегидсульфит + CO₂

<u>III форма</u> брожения по Нейбергу. Брожение в присутствии NaHCO₃. Ацетальдегид окисляется НАД-зависимой дегидрогеназой в уксусную кислоту, образовавшийся НАДН+Н⁺ используется для восстановления ацетальдегида в этанол:

2 глюкоза + $H_2O \rightarrow$ этанол + ацетат + 2 глицерин + $2CO_2$

Гликолиз

Спиртовое брожение Zymomonas mobilis

Спиртовое брожение некоторых энтеробактерий и клостридий

 $C_6H_{12}O_6 \rightarrow C_2H_5OH + CH_3COOH + CH_3CH(OH)COOH$

Молочнокислое брожение

Процесс осуществляют филогенетически неродственные м/о, объединяемые по признаку образования молочной кислоты (представители порядков Lactobacillales, Bacillales класса Bacilli и сем. Bifidobacteriaceae класса Actinobacteria). Они различны по морфологии, но все грам+, не образуют спор (кроме представителей сем. Sporobacillaceae)

гомоферментативное молочнокислое брожение характерно сбраживание сахаров через гликолиз. В результате образуется ~90% лактата и только 10% приходится на другие продукты (ацетат, ацетоин, этанол)

гетероферментативное молочнокислое брожение сахара сбраживаются через пентозофосфатный путь и лактата образуется ~50%

Гетероферментативное молочнокислое брожение

 $2C_6H_{12}O_6 \rightarrow CH_3CH(OH)COOH + CH_3COOH + C_2H_5OH$

Гетероферментативное молочнокислое брожение

 $2C_6H_{12}O_6 \rightarrow CH_3CH(OH)COOH + CH_3COOH + C_2H_5OH$

Гетероферментативное молочнокислое брожение,

Гетероферментативное молочнокислое брожение,

Путь брожения у Bifidobacterium bifidum.

- фосфокетолаза-1;
- 2 трансальдолаза;
- 3 транскетолаза;
- 4 рибозо-5-фосфэт-изомераза;
- 5 рибулозо-5-фосфат-эпимераза;
- б фосфокетолаза-2.

 $2C_6H_{12}O_6 \rightarrow 2CH_3CH(OH)COOH + 3CH_3COOH$

Пропионовокислое брожение

Основная группа м/о, способных осуществлять такое брожение, относится к подпорядку *Propionibacterineae* класса *Actinobacteria Метилмалонил-КоА-путь* образование пропионовой кислоты

Пропионовокислое брожение

 Превращение пировиноградной кислоты в пропионовую при пропионовокислом брожении:

 Φ_1 — метилмалонил-КоА-карбоксилтрансфераза; Φ_2 — малатдегидрогеназа; Φ_3 — фумараза; Φ_4 — фумаратредуктаза; Φ_5 — КоА-трансфераза; Φ_6 — метилмалонил-КоА-мутаза (по Dagley, Nicholson, 1973; Rose, 1971)

Пути образования янтарной, уксусной кислот и CO₂ пропионовыми бактериями:

 $\Phi_1 - \Phi$ ЕП-карбокситрансфосфорилаза; $\Phi_2 -$ пируватдегидрогеназа; $\Phi_3 -$ фосфотрансацетилаза; $\Phi_4 -$ ацетаткиназа

Смешанное (муравьинокислое) брожение

Порядок Enterobacteriales содержит несколько родов: Escherichia, Klebsiella, Shigella, Salmonella, Erwinia, Proteus, Enterobacter, Serratia и др.

Смешанное (муравьинокислое) брожение

Порядок Enterobacteriales содержит несколько родов: Escherichia, Klebsiella, Shigella, Salmonella, Erwinia, Proteus, Enterobacter, Serratia и др.

Бутандиоловое (муравьинокислое) брожение

Для родов Enterobacter, Serratia, Erwinia, а также некоторых видов рода Bacillus характерна несколько мидифицированная схема, где преобладают не органические кислоты, а 2,3-бутандиол.

Бутандиоловое (муравьинокислое) брожение

Для родов Enterobacter, Serratia, Erwinia, а также некоторых видов рода Bacillus характерна несколько мидифицированная схема, где преобладают не органические кислоты, а 2,3-бутандиол.

Маслянокислое и ацетонобутиловое брожение

Осуществляют брожение м/о рода *Clostridium*, относящиеся к семейству *Clostridiaceae, с*трогие анаэробы (*C.pasterianum, C.kluyveri*), другие аэротолерантны (*C.histolyticum, C.acetobutylicum*):

Сахаролитические клостридии растут на сахаросодержащих и полисахаридных средах;

протеолитические (или пептидолитические) способны использовать белки и аминокислоты, среди них много болезнетворных форм;

пуринолитические клостридии гидролизуют нуклеиновые кислоты и сбраживают пурины и пиримидины.

Этот вид брожения характеризуется четко выраженной *двуфазностью*.

Двухфазное маслянокислое и ацетонобутиловое брожение клостридий

– – - - биомасса; —— нейтральные продукты; —— кислоты; —— р⊦

Маслянокислое и ацетонобутиловое брожение

Гомоацетатное брожение

Мембраны гомоацетогенов содержат ферменты гидрогеназу, НАДН:ферридоксин-оксидоредуктазу, пирролохинолинхинонзависимую метанолдегидрогеназу, СО-дегидрогеназу, метилен-ТГФ-редуктазу и протонзависимую АТФсинтазу.

Гомоацетогенные м/о распространены во многих таксономических группах. Это представители родов Clostridium (C.thermoaceticum, C.formicoaceticum, C.thermoautotrophicum (растет при 75°С), Acetobacterium, Acetoanaerobium, Acetogenium, Eubacterium, Peptostreptococcus). Это все представители домена Bacteria.

Продукт брожения – уксусная кислота. Часть реакций протекает за счет анаэробного дыхания. М/о, осуществляющие гомоацетатное брожение - это строгие анаэробы, способные перерабатывать богатый набор субстратов.

гомоацетогены расположены между бродильщиками и организмами, дышащими анаэробно, поскольку 2 молекулы ацетата дает брожение, а третья получается за счет анаэробного карбонатного дыхания.

Гомоацетатное брожение

Гомоацетатное брожение

E[Co] – корриноидный белок; FH₄ – тетрагидрофолат;
[H] – водородные эквиваленты в виде NADH₂ или FdH₂;
CO – экзогенная окись углерода, [CO] – связанная.