Решетка Нерона — Севери

1 апреля 2024 года

ОПРЕДЕЛЕНИЕ: Касательным вектором к $X = \operatorname{Spec} A$ в точке x называется гомоморфизм $A \to k[t]/(t^2)$, продолжающий гомоморфизм $A \to A/\mathfrak{m}_x = k$.

ОПРЕДЕЛЕНИЕ: Касательным вектором к $X = \operatorname{Spec} A$ в точке x называется гомоморфизм $A \to k[t]/(t^2)$, продолжающий гомоморфизм $A \to A/\mathfrak{m}_x = k$.

ОПРЕДЕЛЕНИЕ: Если $f^* \colon B \to A$ — гомоморфизм колец, дающий отображение $f \colon \operatorname{Spec} A \to \operatorname{Spec} B$, то есть отображение $df \colon T \operatorname{Spec} A \to T \operatorname{Spec} B$ на касательных векторах.

ОПРЕДЕЛЕНИЕ: Касательным вектором к $X = \operatorname{Spec} A$ в точке x называется гомоморфизм $A \to k[t]/(t^2)$, продолжающий гомоморфизм $A \to A/\mathfrak{m}_x = k$.

ОПРЕДЕЛЕНИЕ: Если $f^* \colon B \to A$ — гомоморфизм колец, дающий отображение $f \colon \operatorname{Spec} A \to \operatorname{Spec} B$, то есть отображение $df \colon T \operatorname{Spec} A \to T \operatorname{Spec} B$ на касательных векторах.

ПРИМЕР: Если $S' \to S$ — раздутие гладкой точки на поверхности, то df — изоморфизм везде, кроме исключительной кривой, где он стягивает ее касательное расслоение.

ОПРЕДЕЛЕНИЕ: Касательным вектором к $X = \operatorname{Spec} A$ в точке x называется гомоморфизм $A \to k[t]/(t^2)$, продолжающий гомоморфизм $A \to A/\mathfrak{m}_x = k$.

ОПРЕДЕЛЕНИЕ: Если $f^* \colon B \to A$ — гомоморфизм колец, дающий отображение $f \colon \operatorname{Spec} A \to \operatorname{Spec} B$, то есть отображение $df \colon T \operatorname{Spec} A \to T \operatorname{Spec} B$ на касательных векторах.

ПРИМЕР: Если $S' \to S$ — раздутие гладкой точки на поверхности, то df — изоморфизм везде, кроме исключительной кривой, где он стягивает ее касательное расслоение.

ПРИМЕР: Пусть $C \subset S$ — кривая на поверхности, $x \in C$ и $S' = \operatorname{Bl}_x S$, а C' — строгий прообраз C. Имеем такую коммутативную диаграмму:

$$\begin{array}{cccc} TC' & \longrightarrow & TS'|_{C'} & \longrightarrow & N(C'/S') \\ \parallel & & \downarrow & & \downarrow \\ TC & \longrightarrow & TS|_{C} & \longrightarrow & N(C/S) \end{array}$$

Значит, отображение справа стягивает прямую над x.

СЛЕДСТВИЕ: $N(C'/S') = N(C/S) \otimes \mathcal{O}_C(-x)$.

Рациональная и численная эквивалентность

ОПРЕДЕЛЕНИЕ: Пересечением двух кривых без общих компонент называется число их точек пересечения с кратностью. Самопересечением кривой называется степень ее нормального расслоения.

ЗАМЕЧАНИЕ: Если $L \to S$ — линейное расслоение, $s \in \Gamma(L,S)$, то пересечение $C \subset S$ и $(s) \subset S$ равняется $\deg L|_C$.

ЗАМЕЧАНИЕ: Про числа пересечения хочется говорить как про **ска- лярные произведения** кривых друг с другом.

Рациональная и численная эквивалентность

ОПРЕДЕЛЕНИЕ: Пересечением двух кривых без общих компонент называется число их точек пересечения с кратностью. Самопересечением кривой называется степень ее нормального расслоения.

ЗАМЕЧАНИЕ: Если $L \to S$ — линейное расслоение, $s \in \Gamma(L,S)$, то пересечение $C \subset S$ и $(s) \subset S$ равняется $\deg L|_C$.

ЗАМЕЧАНИЕ: Про числа пересечения хочется говорить как про **ска- лярные произведения** кривых друг с другом.

ОПРЕДЕЛЕНИЕ: Две кривые называются рационально эквивалентными, если они — две линии уровня рациональной функции. Две кривые называются численно эквивалентными, если для всякой другой кривой их пересечения с нею равны.

ОПРЕДЕЛЕНИЕ: Решеткой Нерона — Севери NS(S) называется группа кривых с точностью до численной эквивалентности.

Рациональная и численная эквивалентность

ОПРЕДЕЛЕНИЕ: Пересечением двух кривых без общих компонент называется число их точек пересечения с кратностью. Самопересечением кривой называется степень ее нормального расслоения.

ЗАМЕЧАНИЕ: Если $L \to S$ — линейное расслоение, $s \in \Gamma(L,S)$, то пересечение $C \subset S$ и $(s) \subset S$ равняется $\deg L|_C$.

ЗАМЕЧАНИЕ: Про числа пересечения хочется говорить как про **ска- лярные произведения** кривых друг с другом.

ОПРЕДЕЛЕНИЕ: Две кривые называются рационально эквивалентными, если они — две линии уровня рациональной функции. Две кривые называются численно эквивалентными, если для всякой другой кривой их пересечения с нею равны.

ОПРЕДЕЛЕНИЕ: Решеткой Нерона — Севери NS(S) называется группа кривых с точностью до численной эквивалентности.

ТЕОРЕМА: (Ф. Севери) Если S проективна, rk $NS(S) < \infty$.

TEOPEMA: (Ходжа об индексе) Индекс формы пересечения на NS(S) равняется (1, n-1).

ПРЕДЛОЖЕНИЕ: Пусть S — гладкая поверхность. Тогда $NS(\mathsf{Bl}_xS)\cong NS(S)\oplus \mathbb{Z}\langle E\rangle$, E.E=-1, и это разложение ортогонально.

ПРЕДЛОЖЕНИЕ: Пусть S — гладкая поверхность. Тогда $NS(\mathsf{Bl}_xS)\cong NS(S)\oplus \mathbb{Z}\langle E\rangle$, E.E=-1, и это разложение ортогонально.

ПРИМЕР: Самопересечение прямой $L\subset \mathsf{P}^2$ равно 1. После раздутия точки оно становится равно $(L-E)^2=L^2+E^2=0$, и она становится слоем. Форму пересечения на $NS(\mathsf{BI}_x\mathsf{P}^2)$ можно представить и как $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, и как $\begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix}$.

ПРЕДЛОЖЕНИЕ: Пусть S — гладкая поверхность. Тогда $NS(\mathsf{Bl}_xS)\cong NS(S)\oplus \mathbb{Z}\langle E\rangle$, E.E=-1, и это разложение ортогонально.

ПРИМЕР: Самопересечение прямой $L\subset \mathsf{P}^2$ равно 1. После раздутия точки оно становится равно $(L-E)^2=L^2+E^2=0$, и она становится слоем. Форму пересечения на $NS(\mathsf{BI}_x\mathsf{P}^2)$ можно представить и как $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, и как $\begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix}$.

ПРИМЕР: Раздуем две точки на плоскости. Тогда самопересечение проходящей через них кривой станет равно -1, и она будет сдуваемой. При этом самопересечение бывших исключительных кривых увеличится на 1 и станет равным нулю. Композиция таких двух раздутий и сдутия — стереографическая проекция. Форму пересечения $\mathrm{BI}_{x,y}(\mathsf{P}^2)$ можно пред-

ставить и как
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
, и как $\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$.

ПРЕДЛОЖЕНИЕ: Пусть S — гладкая поверхность. Тогда $NS(\mathsf{Bl}_xS)\cong NS(S)\oplus \mathbb{Z}\langle E\rangle$, E.E=-1, и это разложение ортогонально.

ПРИМЕР: Самопересечение прямой $L\subset \mathsf{P}^2$ равно 1. После раздутия точки оно становится равно $(L-E)^2=L^2+E^2=0$, и она становится слоем. Форму пересечения на $NS(\mathsf{BI}_x\mathsf{P}^2)$ можно представить и как $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, и как $\begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix}$.

ПРИМЕР: Раздуем две точки на плоскости. Тогда самопересечение проходящей через них кривой станет равно -1, и она будет сдуваемой. При этом самопересечение бывших исключительных кривых увеличится на 1 и станет равным нулю. Композиция таких двух раздутий и сдутия — стереографическая проекция. Форму пересечения $\mathrm{BI}_{x,y}(\mathrm{P}^2)$ можно пред-

ставить и как
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
, и как $\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$.

ПРИМЕР: Раздуем вершины треугольника. Тогда его стороны и бывшие вершины образуют шестиугольник, состоящий из (-1)-кривых. Можно сдуть ту или иную тройку его сторон, идущих через одну, композиция такого раздутия и сдутия будет инволюцией Кремоны.

Кубическая поверхность

ЗАМЕЧАНИЕ: Рассмотрим на P^2 линейную систему **кубик**, проходящих через шесть точек $\{p_i\}_{i=1}^6$ общего положения. Она **четырехмерна**, и задает рациональное отображение $P^2 \longrightarrow P^3$ (не определенное в шести точках p_i). После их раздутия отображение становится регулярным. Плоские сечения его образа суть **кубические кривые.** Иначе говоря, образ такого вложения — **кубическая поверхность.**

Кубическая поверхность

ЗАМЕЧАНИЕ: Рассмотрим на P^2 линейную систему **кубик**, проходящих через шесть точек $\{p_i\}_{i=1}^6$ общего положения. Она **четырехмерна**, и задает рациональное отображение $P^2 \longrightarrow P^3$ (не определенное в шести точках p_i). После их раздутия отображение становится регулярным. Плоские сечения его образа суть **кубические кривые.** Иначе говоря, образ такого вложения — **кубическая поверхность.**

ТЕОРЕМА: (А. Клебш, 1866) Всякая кубическая поверхность получается таким образом.

ЗАМЕЧАНИЕ: Способов выбрать шесть точек на P^2 имеется $6 \cdot 2 - 8 = 4$ -хмерное семейство, и выбрать кубику в $P^3 - \frac{4 \cdot 5 \cdot 6}{6} - 16 = 4$ -хмерное. Отсюда видно, что теорема Клебша верна для **общей кубики.**

Кубическая поверхность

ЗАМЕЧАНИЕ: Рассмотрим на P^2 линейную систему **кубик**, проходящих через шесть точек $\{p_i\}_{i=1}^6$ общего положения. Она **четырехмерна**, и задает рациональное отображение $P^2 \longrightarrow P^3$ (не определенное в шести точках p_i). После их раздутия отображение становится регулярным. Плоские сечения его образа суть **кубические кривые.** Иначе говоря, образ такого вложения — **кубическая поверхность.**

ТЕОРЕМА: (А. Клебш, 1866) Всякая кубическая поверхность получается таким образом.

ЗАМЕЧАНИЕ: Способов выбрать шесть точек на P^2 имеется $6 \cdot 2 - 8 = 4$ -хмерное семейство, и выбрать кубику в $P^3 - \frac{4 \cdot 5 \cdot 6}{6} - 16 = 4$ -хмерное. Отсюда видно, что теорема Клебша верна для **общей кубики.**

TEOPEMA: (Кэли — Сальмон, 1849) На гладкой кубической поверхности над $\mathbb C$ лежит ровно двадцать семь прямых.

ЗАМЕЧАНИЕ: Они суть образы (-1)-кривых на раздутии: шести исключительных, $\frac{6\cdot 5}{2}=15$ прямых по двум точкам, и шести коник по пяти точкам.