Autor: Petr Dvořáček

Vedoucí práce: Lukáš Sekanina

Evoluční návrh pro aproximaci obvodů

$$Když\ 3*3=9$$

$$Když 3*3 = 8$$

Návrh obvodů

Snaha minimalizace

- plochy
- zpoždění
- příkonu
 - ⇒ Možnost aproximace obvodu. + minimalizace chyby.

Proč aproximovat obvody?

aproximace je přirozená

$$17*49 > 1$$

Metody aproximace obvodů

Modifikace elektrických parametrů obvodu

Změna pracovní frekvence, napájecího napětí.

Funkční aproximace

Odebrání hradla z obvodu.

Metody automatické funkční aproximace

- SALSA (2012)
- SASIMI (2013)
- ABACUS (2014)
- ...
- Evoluční algoritmy
 - Kartézské genetické programování

Kartézské genetické programování

Přirozená metoda

- Vychází z Darwinovy teorie evoluce.
- Slabší jedinci umírají a ti silnější přežívají a rozmnožují se.
- Snaha o zmenšení chybovosti obvodu ⇒ potřeba simulace.

Kartézské genetické programování

Přirozená metoda

- Vychází z Darwinovy teorie evoluce.
- Slabší jedinci umírají a ti silnější přežívají a rozmnožují se.
- Snaha o zmenšení chybovosti obvodu ⇒ potřeba simulace.

S rostoucím počtem vstupů roste doba simulace obvodu exponenciálně → potřeba akceleračních technik

- Paralelní simulace (využití 64 bitových registrů)
- Předkompilace simulace
- Heuristická inicializace CGP obvodem

Ohodnocení přibližného obvodu v CGP

Fitness funkce

$$fit = \sum_{i=1}^{V} | y(i) - t(i) |$$
Referenční výstup

Princip výpočtu

- Bitová transpozice celočíselných hodnot (A0)

Ohodnocení přibližného obvodu v CGP

Fitness funkce

$$fit = \sum_{i=1}^{V} | \overset{\text{Výstup CGP}}{\overset{\text{V}}{\bigvee}} (i) - t(i) |$$
 Referenční výstup

Princip výpočtu

- Bitová transpozice celočíselných hodnot (A0)

Navržená metoda

- výpočet na vektorové úrovni (A1)
- předkompilace metody A1 do strojového kódu (A2)

Ohodnocení přibližného obvodu v CGP

Fitness funkce

$$fit = \sum_{i=1}^{V} | \overset{\text{V\'ystup CGP}}{\overset{\text{V\'ystup CGP}}{\bigvee}} | \overset{\text{V\'ystup CGP}}{\overset{\text{V\'ystup CGP}}{\overset{\text{V\'ystup CGP}}{\bigvee}}} | \overset{\text{V\'ystup CGP}}{\overset{\text{V\'ystup CGP}}{\overset{\text{V}}{\overset{\text{V}}}{\overset{\text{V}}}}}}}}}}} | \overset{\text{V}}{\text{V}}|_{\text{V}} |_{\text{V}} |_{\text{V}}} |_$$

Princip výpočtu

- Bitová transpozice celočíselných hodnot (A0)

Navržená metoda

- výpočet na vektorové úrovni (A1)
- předkompilace metody A1 do strojového kódu (A2)

Násobička	$n_g * 10^6$	A0[<i>eps</i>]	A1[eps]	A2[eps]
4x4	10	54 912	277 923	226 222
5x5	5	12 052	168 688	186 781
6x6	1	2 683	61 673	129 541
7x7	0.1	602	17 644	53 930
8x8	0.01	135	4 782	23 190

170x urychlení

Aproximace v Cannyho detekci hran

Princip detekce

- 1. Rozmazání
- 2. Výpočet gradientu
- 3. Výpočet normál a ztenčení hran
- 4. Dvojité prahování s hysterezí

Vlastnosti aproximovaných násobiček

	Počet hradel		Relativní zpoždení	
	1	40	1.76	
	66	3 472	36.11	
	132	6 760	39.39	
	198	10 096	48.64	
1	264	13 824	52.56	
	>330	16 752	56.66 (P	lně funkční ×)

Vlastnosti aproximovaných násobiček

Počet hradel		Relativní zpoždení
1	40	1.76
66	3 472	36.11
132	6 760	39.39
198	10 096	48.64
264	13 824	52.56
330	16 752	56.66 (F

Vlastnosti aproximovaných násobiček

Počet hradel		Relativní zpoždení	
1	40	1.76	
66	3 472	36.11	
132	6 760	39.39	
198	10 096	48.64	
264	13 824	52.56	
330	16 752	56.66 (F	Plně funkční ×

Počet hradel		Relativní zpoždení
1	40	1.76
66	3 472	36.11
132	6 760	39.39
198	10 096	48.64
264	13 824	52.56
330	16 752	56.66 (F

Počet	Relativní	Relativní	
hradel	plocha	zpoždení	
1	40	1.76	
66	3 472	36.11	
132	6 760	39.39	
198	10 096	48.64	
264	13 824	52.56	
330	16 752	56.66 (F	Plně funkční ×

Počet	Relativní	Relativní	
hradel	plocha	zpoždení	
1	40	1.76	
66	3 472	36.11	
132	6 760	39.39	
198	10 096	48.64	
264	13 824	52.56	
330	16 752	56.66 (Plně fu	ınkční

Hůře aproximované násobičky mohou lépe detekovat hrany!

Přibližná Sobelova filtrace

Sobelovy filtry

Konvoluce kernely ve tvaru:

Výpočet gradientu

Aproximace sčítání implementované podle rychlých Kogge-Stone sčítaček => pro osmibitové sčítání je jen 7 hradel v kritické cestě!

Přibližná Sobelova filtrace

Detekor hran	Plně funkční	Aproximovaný	Zlepšení (ratio)
Počet hradel	897	745	17%
Relativní plocha	41 716	34 868	16.4%
Relativní zpoždění	65.16	61.13	9%

Závěr

Shrnutí práce

- Výpočet fitness významně urychlen 170x oproti naivnímu přístupu.
- Ukázáno, že i nepřesné obvody umí detekovat hrany.
- Aproximační obvody jsou rychlejší, menší a mají nižší příkon.

Možné pokračování

- CGP v aproximaci
 - Aplikačně specifické přibližné obvody
 - Eliminace problému škálovatelnosti CGP
- Hledání nových aplikací k aproximaci
- Implementace Sobelova filtru

Otázka

Q: Můžete komentovat dobu trvání experimentu uvedeného v části 7.2, kde se uvádí Ne=500 000 versus <u>dvoutýdenní</u> běh.

- Jeden běh byl nastaven na 500 000 generací, v každé generaci se ohodnocovali 4 potomci s různě velkým prohledávacím prostorem.
 Doba jednoho běhu CGP trvala průměrně 12 minut.
- Každá evoluční aproximace čítala 50 běhů, využil jsem školního serveru k paralelního spuštění 12 běhů evoluční aproximace.
- Bylo vytvořeno 330 evolučních aproximací tvořily se různě velké přibližné násobičky, které byly sestaveny z 329 hradel, 328 hradel ... 1 hradlo.

 $330*12*50/12 = 15812 \text{ minut} \sim 263 \text{ hodin} \sim 11 \text{ dní}$

- Heuristická inicializace CGP obnáší jistou režii. (seq.)
- Připočteme-li režii k nalezení všech přibližných obvodů, doba běhu algoritmu činila cca. dva týdny.

Aplikace, které tolerují chyby

Zpracování obrazu

Data mining

Rozpoznávaní

Mobilní aplikace (UI)

Můžeme aproximovat cca 83% výpočetního času.