Introducción a los algoritmos genéticos

Siro Moreno

Evolución Natural

Algoritmos genéticos

- Objetivo: optimizar algo
- Individuo: posible solución

Ejemplo:

Objetivo: optimizar resistencia aerodinámica

Individuos

- Conjunto de individuos = población
- Definidos por parámetros.

Ejemplo

Fitness /Aptitud

Transcripción

Tipo	Efecto de cambio de 1 bit	Probabilidad de valores
Bits con peso		
Bits sin peso		

Función de Fitness

- La función más importante del algoritmo
- Condensa en un solo valor la calidad de una solución.
- Suele contener condicionales para desechar zonas no interesantes.

Bucle principal: Generación

Selección

- Mortalidad diferencial, aleatoria o semialeatoria
- Elegir qué individuos mueren y cuáles se reproducen
- Equilibrio:
 - Suficientes plazas para la siguiente generación
 - Pérdida de información

Reproducción

Reproducción diferencial, aleatoria o semi-

aleatoria.

 Genera una población nueva para la siguiente generación.

- 2 fases:
 - Cruzamiento
 - Mutación
- Si se conservan pocos de la generación anterior: Elite Clones

Cruzamiento

- Padre 1: 100101010101010101
- Padre 2: 101010011001001100
- Hijo: 10110100101101001101

- Parámetros:
 - Número de puntos de corte
 - Posición de los puntos de corte

Mutación

- Añade variedad al acervo genético (gene pool)
- Permite explorar soluciones nuevas

- Antes de la mutación: 1001010010101
- Después de la mutación:1011010010001

Apertura y cierre del algoritmo

Población inicial aleatoria

- Criterio de parada:
 - Número de generaciones
 - Estabilidad

Modular el algoritmo: El dilema exploración-explotación

Exploración:

- Buscar soluciones nuevas
- Escapar de máximos locales
- Añade ruido
- Explotación
 - Afinar los máximos encontrados
 - Conservarlos
 - Atasca en máximos locales

Foto: Rob Young

Python

- Fáciles de programar:
 - Individuo: objeto
 - ADN: lista, tupla, np array, etc.
 - Genes, traits, performances: diccionarios
 - Población: lista de objetos
- DEAP (Distributed Evolutionary Algorithms in Python)
 - Google -> "genetic algorithm python"

Muchas gracias

