Neutrino Production

From ATLAS IP to FASER

- At s = 13 TeV, the inelastic cross section is approximately, σ_{inel} 13 $TeV \sim 75$ mb
- For LHC Run 3 (250 fb-1), this corresponds to ~10^16 light particles produced
 - Angular spread of meson decays $\theta \sim m\pi/E(TeV)$ ~ mrad

Particle	Decay mode	Branching fraction (approx.)
π^+	$\pi^+ \to \mu^+ \nu_\mu$	99.9877%
	$\pi^+ \to e^+ \nu_e$	1.23×10^{-4} (helicity suppressed)
K^+	$K^+ o \mu^+ \nu_\mu$	63.56%
	$K^+ \to \pi^0 e^+ \nu_e \; (\mathrm{Ke}3)$	5.07%
D^0	Inclusive semileptonic	$\mathcal{B}(D^0 \to Xe^+\nu_e) \approx 6.46\%$
D^+	Inclusive semileptonic	$\mathcal{B}(D^+ \to X e^+ \nu_e) \approx 16.13\%$
D_s^+	$D_s^+ \to au^+ u_ au$	5.36%

More physics

FASER physics

- Light mesons $(\pi, K) \rightarrow$ dominate the low-energy v flux: Precision SM tests: Cross-sections of ve, vµ, vτ.
 - High-energy v (TeV scale) come mainly from charm and beauty decays.
 - Tau neutrinos (ντ) are almost entirely from Ds → τντ → ... chains.
 - Testing lepton universality (does ντ interact as predicted, same as νμ, νe?).
 - Study neutrino CC interactions with charm production ($\nu s \rightarrow lc$) (No charmed hadron has been observed in νeCC interactions)
 - Long-Lived Particles (LLPs) are hypothetical particles predicted by many extensions of the Standard Model. (Decay inside a detector like FASER → visible signatures (e.g. e⁺e⁻, μ⁺μ⁻, γγ).
- QCD uncertainties
 - Forward production of charm and beauty is not well measured by ATLAS/CMS (θ ≤ 1 mrad), because they don't cover the
 extreme forward region.
 - Models (PYTHIA, EPOS, SIBYLL, etc.) disagree significantly.
- By measuring neutrino rates and spectra FASER indirectly constrains how many charm/beauty hadrons were produced.