PART A - $(5 \times 10 = 50 \text{ Marks})$

1. Municipal Solid Waste (MSW) Management Strategy for a Mid-Sized Indian City

- (a) Dominant Waste Categories & Causes:
- Food and Green Waste (Biodegradable): ~44% of total MSW.
- Paper, Plastics, and Recyclables: High due to rapid urbanization.

Causes:

- * Rapid Urbanization increases residential & commercial waste.
- * Changing Lifestyle packaging materials dominate.
- * Economic Activity diverse waste composition.
- (b) Doorstep Segregation & Collection Scheme:
- Green Bin: Biodegradable waste.
- Blue/Yellow Bin: Recyclables.
- Red Bin: Toxic/Soiled waste.

Schedule: Daily (organic), Twice weekly (recyclables), Monthly (hazardous).

Incentive: "Waste to Wealth" app rewards users for segregation.

- (c) Technology & Routing Tools:
- 1. Smart Bins with IoT sensors track fill levels & prevent overflow.
- 2. Route Optimization Algorithm suggests shortest collection path.

Benefits: Fuel savings, reduced GHG emissions, cleaner city.

2. Waste Management Hierarchy & Community Zero Waste Program

- (a) Waste Management Hierarchy:
- Avoidance -> Reuse -> Recycle -> Recover -> Dispose.
- 4Rs: Reduce, Reuse, Recycle, Recover.

Limitations:

- * Poor Source Segregation in Indian cities.
- * High cost of Waste-to-Energy infrastructure.
- (b) 6-Step Zero Waste Ward Program:
- 1. Mandatory 3-bin segregation.
- 2. Smart Collection Network.
- 3. Decentralized Composting.
- 4. Ward-level Material Recovery Facility (MRF).
- 5. Biogas plants for bulk organic generators.
- 6. Ban on open dumping/burning.

Outcomes: Lower GHG, better soil fertility, cleaner air/water.

3. Smart Bins & Biofuel Concepts

- (a) Smart Bin Applications:
- IoT fill-level sensors -> prevents overflowing.
- Optimized routing -> reduces fuel/time.

Drawbacks:

- * High installation cost.
- * Maintenance/technical issues.
- (b) Food vs Fuel vs Feed Dilemma:
- First-gen biofuels use food crops (corn, sugarcane, soy).
- Increases food prices & reduces food availability.
- (c) Anaerobic Digestion (AD) Stages:
- 1. Hydrolysis -> organic matter -> soluble compounds.
- 2. Acidogenesis -> acids, alcohols.
- 3. Acetogenesis -> acetate + H2 + CO2.

4. Methanogenesis -> CH4 + CO2 (biogas).
4. Decentralized AD System for 300-Cattle Village
Feedstock: 300 cattle manure + water.
System: Anaerobic Digester producing:
- Biogas (CH4) -> Cooking, lighting, pump power.
- Digestate -> Bio-manure (N, P, K enriched).
Outcome: Self-sufficient energy + organic fertilizer cycle.
5. Hydrogen as Future Fuel
(a) Fermentative vs Photosynthetic H2 Production:
Feature Fermentative Photosynthetic
Mechanism Organic fermentation Light-driven (bio-photolysis)
Energy Source Carbon-rich effluents Light & water
Example Clostridia beijerincki Chlamydomonas reinhardtii
Yield Low High
Oxygen Req. Anaerobic Anaerobic/light required
(b) Chlamydomonas reinhardtii in Biohydrogen:
Advantages:
- Cheap & easy to culture.
- High hydrogen yield under anaerobic light.
- Amenable to genetic modification.
Limitations:
- Hydrogenase inhibited by oxygen.
- Requires constant light -> complex setup.
End of Paper.