EL6463 Advanced Hardware Design

Lab #2

Name: Chen Shen

netID: cs5236

Block diagram

In the above shows the block diagrams of a down counter and an up counter.

Notice that this diagram only includes the IO of a counter. We can use D flip-flop or JK flip-flop to implement a counter in gate level.

Functional and timing simulation

Down Counter

Up Counter

Notice that in my test bench, I have already initialized signal reset to 0. Thus, I can set the signal reset to 1 at the very beginning.

From the figures above, we can see that the two counter keep counting up/down at each positive edge of clock signal clk. Each counter counts from one pre-set value to the other pre-set value (in this lab, from 52 to 36 or from 36 to 52). Besides, when the signal reset is set to 0, the output counter will be reset to the intial value (52 or 36).

Resource utilization

Since the down counter shares a common basic architecture with the up counter, they have the same resource utilization.

	Synthesis stage	Place and Route stage
LUT and FF pairs usage	11	6
IOB usage	8	8
RAM/DSP blocks used (if any)	0	0

Speed of the design

Down counter

Setup		Hold		Pulse Width	
Worst Negative Slack (WNS):	19.018 ns	Worst Hold Slack (WHS):	0.187 ns	Worst Pulse Width Slack (WPWS):	9.650 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Falling Endpoints:	0	Number of Falling Endpoints:	0	Number of Falling Endpoints:	0
Total Number of Endpoints	6	Total Number of Endpoints	6	Total Number of Endpoints	6

Up counter

Setup		Hold		Pulse Width	
Worst Negative	18.392	Worst Hold Slack	0.219	Worst Pulse Width Slack (WPWS):	9.500
Slack (WNS):	ns	(WHS):	ns		ns
Total Negative Slack (TNS):	0.000	Total Hold Slack	0.000	Total Pulse Width Negative	0.000
	ns	(THS):	ns	Slack (TPWS):	ns
Number of Falling Endpoints:	0	Number of Falling Endpoints:	0	Number of Falling Endpoints:	0

Setup		Hold		Pulse Width	
Total Number of Endpoints	6	Total Number of Endpoints	6	Total Number of Endpoints	6

Demo video

https://youtu.be/5N9O-4sxTKQ