AI & CHATBOT

Aula 15 – Visualização de Dados com Python

Prof. Henrique Ferreira

Visualização de Dados

Uma introdução

Visualização de Dados

- A visualização de dados é toda uma área do conhecimento que envolve pensar na melhor maneira de representar informações abstratas com objetivo de:
 - 1. Facilitar a comunicação;
 - 2. Gerar interpretações e ganho de compreensão;
- É preciso se preocupar em colocar todas as informações necessárias para se compreender o gráfico e também com a qualidade estética do resultado.

Gráficos

Alguns tipos de gráficos, diagramas e infografos

Infografos

Infografos (Hype cycle)

Infografos (Hype cycle)

Gráfico de Barras/Colunas (Bar chart)

Gráfico de Pizza (Pie chart)

Treemap

Fluxograma (Flow chart)

Mapas conceituais (Flow chart)

Dendogramas

Gráfico de Gantt (Gantt chart)

ID	Task Name	Predecessors	Duration																													
"	Lask Maille	ricuccessuis	Duration	Jul	23,	'06					Jul	30,	'06					Αu	ıg (5, 10	6					Ai	ug 1:	3, '0	6			
				S	M	Т	W	T	F	S	S	М	Т	W	Т	F	S	S	N	1	T	W	Т	F	S	S	М	T	W	T	F	S
1	Start		0 days		Ŷ Ţ																											
2	a	1	4 days						7																							
3	b	1	5.33 days													=																
4	С	2	5.17 days													⊠ 7.																
5	d	2	6.33 days																	-												
6	е	3,4	5.17 days																					22 7								
7	f	5	4.5 days																												_	
8	g	6	5.17 days																													J.
9	Finish	7,8	0 days																												1	T

Task / week	17	18	19	20	21	22	23	24	25	26
installing & learning soft										
design of the application										
design of the databases										
implementation										
integration										
tests										
documentation										
writen work										
oral presentation										

Gráfico de Radar (Radar plot)

Mapa de calor (Heatmap)

Grafos ou árvores ('Network' plot)

Mapas

Série Temporal

 Scatter plots permitem identificar correlações e grupos:

Valores para a variável

Um item qualquer do conjunto de dados

Nome da variável no eixo vertical

Nome da variável no eixo horizontal Valores para a variável

Temos 2 dimensões: *x* e *y*. Uma terceira dimensão pode ser colocada: a cor do ponto ou seu estilo pode representar uma classe (categoria) diferente à que ele pertence. Uma legenda costuma ser colocada nesse caso para indicar o esquema de cores.

Outra dimensão que pode existir: o tamanho dos pontos pode conter informação também. Os tamanhos são criados proporcionalmente a algum atributo numérico. Uma legenda pode ser utilizada para mostrar o significado de diferentes tamanhos.

Uma matriz de scatter plots pode ser gerada para mostrar todos os possíveis pares de atributos, quando a base de dados possui vários atributos.

Distribuição (Histogramas)

Barra indicando o tamanho da frequência (8) para o valor de *x=44*

O eixo *x* tem valores de um atributo, e o eixo *y* tem a contagem de quantos dados possuem caem em cada valor.

- Se o eixo x for um atributo categórico, temos uma coluna para cada categoria (e podemos chamar de gráfico de barras).
- Se for um atributo numérico, dividimos o intervalo em n sub-intervalos (chamados bins), e contamos quantos dados caem em cada subintervalo.

Frequência (ou contagem) Nome da variável no eixo horizontal

Valores para a variável

27/43

Distribuição (Histogramas)

Distribuição (Histogramas)

Podemos estimar uma curva para o histograma, geralmente chamada de *Kernel Density Estimation* (KDE), que representa a distribuição.

Existe um comportamento em histogramas e distribuições chamado de Distribuição normal ou gaussiana. Ela é uma distribuição com formato de "sino".

A distribuição Gaussiana é centrada na média, e ocorre em diversos dados observáveis do mundo real. A maioria dos dados está perto da média e, quanto mais distante, menor a frequência de encontrarmos um valor.

Na vida real, nem todos os processos são "normais" (gaussianos):

Diagrama de caixa (Boxplot)

E se quiséssemos mostrar um histograma (ou distribuição, num senso mais genérico) de forma compacta? Boxplots fornecem uma "vista superior" da distribuição:

Diagrama de caixa (Boxplot)

Distribuição + Boxplot

Violin plot

Violinplot

Figure 1. Common Components of Box Plot and Violin Plot. Total compensation for all academic ranks.

Exemplo: violinplot na academia

Distribuição + Dispersão

Melhores práticas

- 1) Estabeleça uma hierarquia da informação que quer apresentar;
- **2)** Escolha o tipo de visualização de acordo com o conteúdo;
- 3) Faça um esboço na mão;
- **4)** Produza a imagem (com o código adequado no Matplotlib/seaborn ou outra ferramenta de design).

Gráficos com Python

Bibliotecas

- Existem bibliotecas prontas para se gerar gráficos em Python;
- Boa parte do trabalho está em ler a documentação dessas bibliotecas para se entender como gerar o gráfico desejado;
- Duas muito conhecidas são:

https://matplotlib.org/stable/index.html

seaborn https://seaborn.pydata.org/index.html

Próximos Passos

O que veremos na próxima aula

Nas próxima aulas...

- Ciência de Dados
- Aprendizado de Máquina Supervisionado de Classificação

Copyright © 2023 Slides do Prof. Henrique Ferreira - FIAP

Todos direitos reservados. Reprodução ou divulgação total ou parcial deste documento é expressamente proíbido sem o consentimento formal, por escrito, do Professor (autor).