Topological Band Theory

Amir Shapour Mohammadi

PHY 525 Princeton University

December 2022

Anomalous Quantum Hall Effect

Electron equation of motion

$$\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} = \frac{1}{\hbar} \nabla_{\mathbf{k}} E_{\mathbf{k}} - \frac{\mathrm{d}\mathbf{k}}{\mathrm{d}t} \times \mathcal{B}(\mathbf{k}), \frac{\mathrm{d}\mathbf{k}}{\mathrm{d}t} = -\frac{e}{\hbar} \mathsf{E}$$
 (1)

Current density

$$j = \sigma E + \sigma_{AH} \hat{\mathbf{n}} \times E \tag{2}$$

Quantized anomalous Hall current (for band insulator)

$$\sigma_{AH}^n \hat{\mathbf{n}} = \frac{\sigma_0}{2\pi} \int_{BZ} d^2 \mathbf{k} \ \mathcal{B}_n(\mathbf{k}) := \sigma_0 C_n \hat{\mathbf{n}}. \tag{3}$$

Symmetries of Chern Number

Assuming time-reversal $(\Theta | \mathbf{k} \rangle = | -\mathbf{k} \rangle)$ symmetry, we have

$$\mathcal{B}(k) = \Theta^{\dagger} \mathcal{B}(k) \Theta = -\mathcal{B}(-k) \text{ (odd)}.$$
 (4)

Assuming (space) inversion symmetry ($\mathcal{I}|r\rangle=|-r\rangle$, $\mathcal{I}|k\rangle=|-k\rangle$), we have

$$\mathcal{B}(\mathsf{k}) = \mathcal{I}^{\dagger} \mathcal{B}(\mathsf{k}) \mathcal{I} = \mathcal{B}(-\mathsf{k}) \text{ (even)}.$$
 (5)

 Θ + inversion symmetry implies $\mathcal{B}(\mathsf{k})$ vanishes identically.

Haldane Model (1988)

Goal: craft a Chern insulator (time-reversal breaking topological insulator), not the simplest model.

Recall the continuum model for graphene

$$H = v_F(\tau_z \sigma_x k_x + \sigma_y k_y) \tag{6}$$

where σ acts on sublattice space. We must break Θ and/or chiral (sublattice, \mathcal{C}) symmetry to open a band gap.

$$m_R \sigma_z \ (\mathcal{C} \text{ broken, } \Theta \text{ obeyed})$$
 (7)

To yield non-zero Chern number, we must break Θ symmetry (i.e. make the Berry curvature have the same sign at both Dirac points)

$$m_H \tau_z \sigma_z \ (\mathcal{C}, \Theta \text{ broken})$$
 (8)

where au acts on the valley space.

Haldane Model (tight-binding realization)

Haldane did this by adding an imaginary, or directional, (recall $\Theta \propto \mathcal{K}$) next-to-nearest neighbor hopping induced by a magnetic field ($\Phi_{net}=0$)

$$H = \Delta \sum_{i} (-1)^{\tau_{i}} c_{i}^{\dagger} c_{i} + t_{1} \sum_{NN} (c_{i}^{\dagger} c_{j} + h.c.) + t_{2} \sum_{NNN} (i c_{i}^{\dagger} c_{j} + h.c.).$$
 (9)

The new term is restricted to $\alpha\alpha$ sublattice hoppings.

Thus, we have a Chern insulator by modifying the graphene model. Can we find a topological insulator which obeys Θ symmetry (i.e. not a Chern insulator)?

5 / 14

Kane-Mele Model (2005), \mathbb{Z}_2 Index

Essentially, we consider two copies of Haldane's model, one per spin, induced by graphene's spin-orbit coupling

$$\lambda_{SO} s_z \tau_z \sigma_z \tag{10}$$

which is Θ invariant (C=0). We use the Chern number of each spin system C_{σ} to define a topological index

$$\nu = \frac{1}{2}(C_{\uparrow} - C_{\downarrow}) \mod 2 \in \mathbb{Z}_2 \tag{11}$$

This model leads to the QSHE where there are counter-propagating electron spins on each edge (to obey Θ). However, ν is not well-defined when we include Rashba spin-orbit coupling, and in general terms which are s_z non-conserving. We now aim at deriving a \mathbb{Z}_2 index without the use of spin Chern numbers.

Modern Theory of (Charge) Polarization

Polarization is hard to define. Total charge polarization (for 1D system)

$$\frac{\mathrm{dP}(t)}{\mathrm{d}t} = \mathsf{j}(t), \mathsf{P} = \sum_{\mathsf{n} \text{ filled}} \int d\mathsf{x} \, \langle W_{n0}(\mathsf{x}) | \, \hat{\mathsf{x}} \, | W_{n0}(\mathsf{x}) \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} d\mathsf{k} \mathcal{A}(\mathsf{k})$$
(12)

where $\mathcal{A}(k)$ is the summed over all filled bands. P only defined modulo eR/Ω (lattice vector), but ΔP (due to smooth change in parameters) is gauge-invariant

$$H(k_y = -\pi) \to H(k_y = \pi) \tag{13}$$

$$\Delta P = \frac{1}{2\pi} \int_{-\pi}^{\pi} dk_y \int_{-\pi}^{\pi} dk \mathcal{B}(k, k_y) = C$$
 (14)

given a closed loop in parameter space. Note that ΔP disappears in Θ symmetry.

Kramer's Degeneracy

In d dimensions, there are 2^d Θ invariant momenta at the center and boundary of the BZ $(k_i = -k_i + G)$. If our Hamiltonian is Θ symmetric then

$$H|n\rangle = E|n\rangle \to H(\Theta|n\rangle) = E(\Theta|n\rangle)$$
 (15)

In general, $\Theta |n\rangle \neq |n\rangle$ (e.g. \bot for fermionic systems). We can apply this to get a picture of what we expect the band structure of a Θ symmetric system to look like.

Intuition for \mathbb{Z}_2 Invariant

Time-reversal Polarization

We define the time-reversal polarizations

$$\mathsf{P}^{s} = \frac{1}{2\pi} \int_{-\pi}^{\pi} dk A^{s}(k) \tag{16}$$

where s = I, II. Due to Θ symmetry, $P = P^I + P^{II}$ will vanish, but the difference $P^{\Theta} = P^I - P^{II}$ is generally non-zero and can be expressed

$$\mathsf{P}^{\Theta} = \frac{1}{i\pi} \log \left(\frac{\sqrt{\det(B(\pi))}}{\mathsf{Pf}(B(\pi))} \frac{\mathsf{Pf}(B(0))}{\sqrt{\det(B(0))}} \right) \mod 2 \tag{17}$$

where $B_{mn}(k) = \langle \phi_m(-k) | \Theta | \phi_n(k) \rangle$ is the sewing matrix. Note that P^{Θ} is only dependent on the Θ symmetric momenta. The expression simplifies greatly in the presence of inversion symmetry.

Pair-switching

$$\nu = \prod_{l=1}^{2} \frac{\sqrt{\det B(k_{l})}}{\mathsf{Pf}(B(k_{l}))}, v_{k} = \frac{1}{\hbar} \frac{\partial E_{k}}{\partial k} \hat{y}$$
 (18)

Generalization to Higher Dimension

In 3D (and higher dimensions), we can define weak and strong \mathbb{Z}_2 topological indices respectively

$$\boldsymbol{\nu} = (\nu_s; \nu_x, \nu_y, \nu_z). \tag{19}$$

Classification of Topological Insulators

Time-reversal (Θ) , charge-conjugation (Ξ) , chiral symmetry (Π) .

Symmetry				d							
AZ	Θ	Ξ	Π	1	2	3	4	5	6	7	8
A	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
AIII	0	0	1	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0
AI	1	0	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}
BDI	1	1	1	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2
D	0	1	0	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2
DIII	-1	1	1	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0
AII	-1	0	0	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}
CII	-1	-1	1	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0
С	0	-1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0
CI	1	-1	1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0

Works Cited

Bernevig, B. Andrei, and Taylor L. Hughes. Topological Insulators and Topological Superconductors. Princeton University Press, 2013.

Links to lecture notes:

- https://www.physics.upenn.edu/~kane/pubs/chap1.pdf
- https://ethz.ch/content/dam/ethz/special-interest/phys/theoretical-physics/cmtm-dam/documents/tqn/05.pdf