15-151 Math Foundations CS – EXCEL

Topic: Number Sets, Proof Techniques, Induction, Logic, Sets

EXCEL Leader: Sam Yong

Email: myong@andrew.cmu.edu

Session Date: Thu Sep 13

Academic Development

Cyert Hall B5 | 412-268-6878

Services available: Supplemental Instruction (SI), Academic Counseling in Study Skills, Individual & Walk-in Tutoring

I.		Warn	n Up [20]			
1.	De	a. Pib. Tic. Lo	ne following terroposition heorem emma orollary	ns in mathematical contex	xt. [3]	
2.	a.	A set is a se	et and x is an obtained the following N	ject, then we write	in the set are called to denote the assert	
3.	Ex	a. Pi	hese proof techi roof by Contrad			

4.	Induct	ion. [5]					
	a.	a. What is weak induction on natural numbers?					
	b.	What is strong induction on natural numbers?					
	c.	What is "strong" about strong induction?					
5.	Logic	and sets. [8]					
	a.	Define the following terms.					
		Conjunction					
		Disjunction					
		Negation					
		Implication					
		➤ Bi-implication					
		Exclusive or					
		Contrapositive of a proposition					
		Converse of a proposition					
		> Tautology					
	b.	What is the universal quantifier?					
	c.	What is the existential quantifier?					
	d.	The empty set, denoted, is the set with elements.					
	e.	What is the set-builder notation?					
	f.	Let X and Y be sets. We say X is a subset of Y if We abbreviat					
		this proposition by writing $X_{\underline{}}$ Y , and we write $\underline{}$ for its negation.					
	g.	What is the power set of $\{2, 3\}$?					
	h.	What is the power set of $\{\emptyset, \{\emptyset\}\}\$					

II. Practice [35]

1. (Induction) Prove the given formula on natural numbers. [7]

$$\sum_{i=1}^{n} i^2 = \frac{1}{6}n(n+1)(2n+1)$$

- 2. (Sets) Let *X* and *Y* be sets. Prove that $X \subseteq Y$ if and only if $X \cap Y = X$. [|5|]
- 3. (Sets) Let *X* and *Y* be sets. Prove that $X \subseteq Y$ if and only if $X \cup Y = Y$.
- 4. (Sets) Let *X* be a set. Prove that $X \times \emptyset = \emptyset$.

5.	(Number sets) Prove $\sqrt{3}$ is irrational. [5]
6.	(Number sets) Is natural numbers closed under addition? Subtraction? Multiplication? Division?
7.	(Number sets) Is integers closed under addition? Subtraction? Multiplication? Division?

8	(Integers) ((*Hard)	Find all	integers x	such that	the follo	wing is	an integer	[7]
· ·	(11100 5010)	(11414)	I III WII	11100 5010 00	Davi dia	tile rolle	*****	an mice per.	

$$\frac{x^6-3}{x^2+2}$$

9. (Integers) Prove that if for some integers
$$a$$
, b , c we have $9|a^3 + b^3 + c^3$, then at least one of the numbers a , b , c is divisible by 3. [5]

10. (Integers) (Take home) Prove that if for integers a, b we have $7|a^2 + b^2$, then 7|a and 7|b.

11. (Integers) Show that for all positive integers n, the number $4^n - 3n + 8$ is divisible by 9. [5]