PSYC 3320/5597: Psycholinguistics

Thomas J. Faulkenberry, Ph.D.

Department of Psychological Sciences Tarleton State University

Unit 7 - Word meaning

Word comprehension

Semantic analysis of words

Questions:

- What is meaning?
- ▶ How do words relate to meaning?
- ► How do we store and organize words?

Separation of words and meaning

Words are NOT the same as meaning

- Words are symbols linked to mental representations of meaning (concepts)
- Concepts and words are different things
 - ► Translation argument we can translate words between languages
 - Imperfect mapping some words have more than one meaning (ambiguity); some words have same meaning as other words (synonyms)
 - ► Elasticity of meaning meaning of words can depend on context (e.g., big ant versus big elephant

What is meaning?

- Meaning is more than just associations!
 - "baby" and "cradle" are associated..do they mean the same thing?
 - The child slept in the cradle.
 - The child slept in the baby
- ► Frege (1892) sense versus reference
 - ▶ the planet Venus is often called "the morning star" and "the evening star". Both are different senses for the same reference

Modern views of meaning

- Semantic networks
- ► Feature list models
- ► Instance/exemplar models
- Prototype models

Semantic networks

Semantic networks – words are represented as an interconnected network of sense relations

- Each word is a particular node
- Connections between nodes represent semantic relationships

Semantic networks

Collins & Quillian (1969) - Hierarchical Network Model

- Lexical entries stored in a hierarchy
- ► Hierarchical representation permits cognitive economy (reduces redundancy of semantic features

Semantic network

Semantic network

Testing the model

- give participants a semantic verification task
- ► Example: "An apple has teeth"
- Measure RTs

Problems with Collins & Quillian model

- Difficulty representing some relationships
 - ▶ How are "truth", "justice", and "law" related?
- Effect may be due to frequency of association
 - "A robin breathes" is less frequent than "A robin eats worms"
- The typicality effect
 - People faster to reject "A horse is a fish" than "A whale is a fish", though both horse and whale are mammals (same level in hierarchy)

Problems with Collins & Quillian model

Problems with Collins & Quillian model

- Smith, Shoben & Rips
 (1974) showed that there are
 hierarchies where more
 distant categories can be
 faster to categorize than
 closer ones
 - A chicken is a bird was slower to verify than
 - A chicken is an animal

Feature comparison model

Smith, Rips, & Shoben (1974)

Attribute or feature list model

- Concepts represented in terms of defining features and characteristic features
- ► Two-stage feature comparison process

Feature comparison model

Smith, Rips, & Shoben (1974)

Collins & Loftus (1975)

- Extends Collins & Quillian in the following ways:
 - Concepts and properties are treated equally, and each can be directly accessed
 - ► Links between units of information vary in length according to associative strength

Typicality effect – which is faster to verify?

- A bird is an animal
- An insect is an animal

Typicality effect – which is faster to verify?

- ▶ A bird is an animal ✓
- An insect is an animal

Familiarity effect – which is faster to verify?

- A canary is an animal
- An aardvark is an animal

Familiarity effect – which is faster to verify?

- ▶ A canary is an animal ✓
- An aardvark is an animal

Other models of meaning

Semantic feature lists (Schank, 1972; Katz & Fodor, 1963)

- decomposition of words into smaller semantic primitives
- part of feature comparison model of Smith, Rips, & Shoben (1974)
- Good for early computer models of semantics

Features	"father"	"mother"	"daughter"	"son"
Human	+	+	+	+
Older	+	+	-	-
Female	_	+	+	_

Other models of meaning

Instance theory (Medin & Schaffer, 1978)

- each concept represented as stored instances (also called exemplars
- make comparisons to stored instances
- probabilistic component for example, which instance is more likely to be retrieved for comparison?

Other models of meaning

Prototype theory (Rosch, 1975)

- each concept represented as stored prototype (the average of instances in a category)
- make comparisons to prototype
- example: a robin is closer to prototypical bird than a penguin. Hence, we are quicker to verify that a robin is a bird.

