

74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea

TEL: +82-31-645-6300

FAX: +82-31-645-6401

FCC DTS REPORT

FCC Certification

Applicant Name:

HYUNDAI MOBIS CO., LTD.

Address:

203, Teheran-ro, Gangnam-gu, Seoul, Korea (135-977)

Date of Issue:

August 04, 2016

Test Site/Location:

HCT CO., LTD., 74, Seoicheon-ro 578beon-gil, Majang-myeo, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA

Report No.: HCT-R-1608-F002

HCT FRN: 0005866421

IC Recognition No.: 5944A-5

FCC ID

: TQ8-AVBB0H9AN

APPLICANT

: HYUNDAI MOBIS CO., LTD.

Model(s):

AVBB0H9AN

EUT Type:

Car Audio System

Peak Output Power:

Wi-Fi 802.11b(20.29 dBm) / Wi-Fi 802.11g (22.21 dBm) /

Wi-Fi 802.11n HT20 (22.49 dBm)

Frequency Range:

2412 MHz - 2462 MHz (2.4 GHz Band)

Modulation type:

CCK/DSSS/OFDM

FCC Classification:

Digital Transmission System(DTS)

FCC Rule Part(s):

Part 15.247

Engineering Statement:

The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them.

HCT CO., LTD. Certifies that no party to this application has subject to a denial of Federal benefits that includes FCC benefits pursuant to section 5301 of the Anti-Drug Abuse Act of 1998,21 U.S. C.853(a)

Report prepared by

: Seul Ki Lee

Approved by : Jong Seok Lee

Test Engineer of RF Team

Manager of RF Team

This report only responds to the tested sample and may not be reproduced, except in full, without written approval of the HCT Co., Ltd.

FCC ID: TQ8-AVBB0H9AN

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 2 of 62

Version

TEST REPORT NO.	DATE	DESCRIPTION
HCT-R-1608-F002	August 04, 2016	- First Approval Report

F-TP22-03 (Rev.00) 2 / 62

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 3 of 62

Table of Contents

1. GENERAL INFORMATION	4
2. EUT DESCRIPTION	4
3. TEST METHODOLOGY	5
3.1 EUT CONFIGURATION	5
3.2 EUT EXERCISE	5
3.3 GENERAL TEST PROCEDURES	5
3.4 DESCRIPTION OF TEST MODES	5
4. INSTRUMENT CALIBRATION	6
5. FACILITIES AND ACCREDITATIONS	6
5.1 FACILITIES	6
5.2 EQUIPMENT	6
6. ANTENNA REQUIREMENTS	7
7. MEASUREMENT UNCERTAINTY	8
8. SUMMARY TEST OF RESULTS	9
9. TEST RESULT	10
9.1 DUTY CYCLE	10
9.2 6dB BANDWIDTH	12
9.3 OUTPUT POWER (802.11b/g/n)	16
9.4 POWER SPECTRAL DENSITY (802.11b/g/n)	23
$9.5~\mathrm{OUT}$ OF BAND EMISSIONS AT THE BAND EDGE/ CONDUCTED SPURIOUS EMISSIONS .	
9.6 RADIATED MEASUREMENT	40
9.6.1 RADIATED SPURIOUS EMISSIONS	40
9.6.2 RADIATED RESTRICTED BAND EDGES	55
9.7 POWERLINE CONDUCTED EMISSIONS	60
10. LIST OF TEST EQUIPMENT	61
10.1 LIST OF TEST EQUIPMENT(Conducted Test)	61
10.2 LIST OF TEST FOUIPMENT(Radiated Test)	62

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 4 of 62

1. GENERAL INFORMATION

Applicant: HYUNDAI MOBIS CO., LTD.

Address: 203, Teheran-ro, Gangnam-gu, Seoul, Korea (135-977)

FCC ID: TQ8-AVBB0H9AN

EUT Type: Car Audio System

Model (s): AVBB0H9AN

Date(s) of Tests: July 04, 2016 ~ July 30, 2016

Place of Tests: HCT Co., Ltd.

74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea

2. EUT DESCRIPTION

Model	AVBB0H9	AVBB0H9AN		
EUT Type	Car Audio	o System		
Power Supply	DC 12 V			
Frequency Range	TX: 2412	MHz ~ 2462 MHz		
Frequency Kange	RX: 2412	MHz ~ 2462 MHz		
May DE Outrot Device	Peak	Wi-Fi 802.11b(20.29 dBm) / Wi-Fi 802.11g (22.21 dBm) / Wi-Fi 802.11n_HT20 (22.49 dBm)		
Max. RF Output Power	Average Wi-Fi 802.11b(16.94 dBm) / Wi-Fi 802.11g (13.30 dBm) / Wi-Fi 802.11n_HT20 (13.27 dBm)			
Modulation Type	DSSS/CC	CK(802.11b), OFDM(802.11g, 802.11n)		
Antenna Specification	Manufacturer: eSSys Co., Ltd Antenna type: PCB ANTENNA Peak Gain : 4.11 dBi			

F-TP22-03 (Rev.00) 4 / 62

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 5 of 62

3. TEST METHODOLOGY

FCC KDB 558074 D01 DTS Meas Guidance v03r05 dated April 08, 2016 entitled "Guidance for Performing Compliance Measurements on Digital Transmission Systems(DTS) and the measurement procedure described in ANSI C63.10(Version : 2013) 'the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices'.

3.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

3.2 EUT EXERCISE

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

3.3 GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2 of ANSI C63.10. (Version :2013) Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane below 1GHz. Above 1GHz with 1.5m using absorbers between the EUT and receive antenna. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3.75 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 8 of ANSI C63.10. (Version: 2013)

Conducted Antenna Terminal

See Section from 9.1 to 9.2.(KDB 558074 v03r05)

3.4 DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition. Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

Channel low, mid and high with highest data rate (worst case) is chosen for full testing.

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 6 of 62

4. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipments, which is traceable to recognized national standards.

Especially, all antenna for measurement is calibrated in accordance with the requirements of C63.5 (Version: 2006).

5. FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

The SAC(Semi-Anechoic Chamber) and conducted measurement facility used to collect the radiated data are located at the 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea. The site is constructed in conformance with the requirements of ANSI C63.4. (Version: 2014) and CISPR Publication 22. Detailed description of test facility was submitted to the Commission and accepted dated July 07, 2015 (Registration Number: 90661)

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements. Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

HCT CO.,LTD. F-TP22-03 (Rev.00) 6 / 62

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 7 of 62

6. ANTENNA REQUIREMENTS

According to FCC 47 CFR §15.203:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

* The antennas of this E.U.T are permanently attached.

*The E.U.T Complies with the requirement of §15.203

HCT CO.,LTD. F-TP22-03 (Rev.00) 7 / 62

FCC ID: TQ8-AVBB0H9AN

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 8 of 62

7. MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4:2014.

All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence. The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded Uncertainty (±dB)
Conducted Disturbance (150 kHz ~ 30 MHz)	1.82
Radiated Disturbance (9 kHz ~ 30 MHz)	3.40
Radiated Disturbance (30 MHz ~ 1 GHz)	4.80
Radiated Disturbance (1 GHz ~ 18 GHz)	6.07

F-TP22-03 (Rev.00) 8 / 62

FCC ID: TQ8-AVBB0H9AN

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 9 of 62

8. SUMMARY TEST OF RESULTS

Test Description	FCC Part Section(s)	Test Limit	Test Condition	Test Result
6 dB Bandwidth	§15.247(a)(2)	> 500 kHz		PASS
Conducted Maximum Peak Output Power	§15.247(b)(3)	< 1 Watt		PASS
Power Spectral Density	§15.247(e)	< 8 dBm / 3 kHz Band	CONDUCTED	PASS
Band Edge(Out of Band Emissions)	§15.247(d)	Conducted > 20 dBc		PASS
AC Power line Conducted Emissions	§15.207	cf. Section 8.7		PASS
Radiated Spurious Emissions	§15.205, 15.209	cf. Section 8.6.1	RADIATED	PASS
Radiated Restricted Band Edge	§15.247(d), 15.205, 15.209	cf. Section 8.6.2	RADIATED	PASS

F-TP22-03 (Rev.00) 9 / 62

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 10 of 62

9. TEST RESULT 9.1 DUTY CYCLE

TEST PROCEDURE

According to Section 6.0)b) in KDB 558074 v03r05.

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

TEST CONFIGURATION

■ TEST PROCEDURE

The transmitter output is connected to the Spectrum Analyzer. We tested accroding to the zero-span measurement method, 6.0)b) in KDB 558074 v03r05.

The largest available value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if $T \le 6.25$ microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

- 1. RBW = 8 MHz (the largest available value)
- 2. VBW = 8 MHz (≥ RBW)
- 3. SPAN = 0 Hz
- 4. Detector = Peak
- 5. Number of points in sweep > 100
- 6. Trace mode = Clear write
- 7. Measure T_{total} and T_{on}
- 8. Calculate Duty Cycle = T_{on}/T_{total} and Duty Cycle Factor = 10*log(1/Duty Cycle)

F-TP22-03 (Rev.00) HCT CO.,LTD.

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 11 of 62

■ Duty Cycle Factor

Mode	Data Rate	T _{on}	T _{total}	Duty Cycle	Duty Cycle Factor (dB)
	1 Mbps	8.609	8.709	0.98847964	0.050
	2 Mbps	4.309	4.399	0.97940502	0.090
b	5.5 Mbps	1.624	1.720	0.94455913	0.248
	11 Mbps	0.861	0.956	0.90039059	0.456
	6 Mbps	1.430	1.530	0.93447562	0.294
	9 Mbps	0.959	1.062	0.90272059	0.444
	12 Mbps	0.724	0.826	0.87627119	0.574
_	18 Mbps	0.493	0.595	0.82823529	0.818
g	24 Mbps	0.372	0.475	0.78388943	1.057
	36 Mbps	0.256	0.358	0.71354074	1.466
	48 Mbps	0.196	0.298	0.65606357	1.831
	54 Mbps	0.180	0.283	0.63731401	1.956
	MCS Index 0	1.336	1.439	0.92828702	0.323
	MCS Index 1	0.688	0.791	0.87013066	0.604
	MCS Index 2	0.472	0.575	0.82142963	0.854
LITOC	MCS Index 3	0.364	0.466	0.78111588	1.073
n_HT20	MCS Index 4	0.256	0.358	0.71508380	1.456
	MCS Index 5	0.200	0.303	0.66176349	1.793
	MCS Index 6	0.184	0.287	0.64301414	1.918
	MCS Index 7	0.168	0.270	0.62117796	2.068

Note : Duty Cycle Factor = 10*log(1/Duty Cycle). where, Duty Cycle = T_{on} / T_{total}

HCT CO.,LTD. F-TP22-03 (Rev.00) 11 / 62

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 12 of 62

9.2 6dB BANDWIDTH

Test Requirements and limit, §15.247(a)(2)

The bandwidth at 6dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the receive antenna while the EUT is operating in transmission mode at the appropriate frequencies.

The minimum permissible 6dB bandwidth is 500 kHz.

TEST CONFIGURATION

■ TEST PROCEDURE

The transmitter output is connected to the Spectrum Analyzer.

The Spectrum Analyzer is set to (Procedure 8.1 in KDB 558074 v03r05)

RBW = 100 kHz

VBW ≥ 3 x RBW

Detector = Peak

Trace mode = max hold

Sweep = auto couple

Allow the trace to stabilize

Note: We tested 6 dB bandwidth using the automatic bandwidth measurement capability of a spectrum analyzer. X dB is set 6 dB.

HCT CO.,LTD. F-TP22-03 (Rev.00) 12 / 62

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 13 of 62

■ TEST RESULTS

Conducted 6dB Bandwidth Measurements for 802.11b

802.11b Mode		Measured Bandwidth	Minimum Bandwidth		
Frequency [MHz]	Channel No.	[MHz]	[MHz]	Pass / Fail	
2412	1	8.091	0.500	Pass	
2437	6	8.087	0.500	Pass	
2462	11	8.100	0.500	Pass	

Conducted 6dB Bandwidth Measurements for 802.11g

802.11g Mode		Measured Bandwidth	Minimum Bandwidth		
Frequency [MHz]	Channel No.	[MHz]	[MHz]	Pass / Fail	
2412	1	16.43	0.5	Pass	
2437	6	16.43	0.5	Pass	
2462	11	16.40	0.5	Pass	

Conducted 6dB Bandwidth Measurements for 802.11n_HT20

802.11n Mode		Measured Bandwidth	Minimum Bandwidth		
Frequency [MHz]	Channel No.	[MHz]	[MHz]	Pass / Fail	
2412	1	17.61	0.5	Pass	
2437	6	17.62	0.5	Pass	
2462	11	17.61	0.5	Pass	

Note: In order to simplify the report, attached plots were only the most wide 6 dB BW channel.

HCT CO.,LTD. F-TP22-03 (Rev.00) 13 / 62

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 14 of 62

RESULT PLOTS

FCC ID: TQ8-AVBB0H9AN

6dB Bandwidth plot (802.11b-CH 11)

6dB Bandwidth plot (802.11g-CH 1)

FCC ID: TQ8-AVBB0H9AN

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 15 of 62

6dB Bandwidth plot (802.11n_HT20-CH 6)

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 16 of 62

9.3 OUTPUT POWER (802.11b/g/n)

Test Requirements and limit, §15.247(b)(3)

The transmitter output is connected to the input of an RF power sensor. Measurement is made using a broadband power meter capable of making peak and average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

The maximum permissible conducted output power is 1 Watt.

■ TEST CONFIGURATION(20 MHz BW)

■ TEST PROCEDURE(20 MHz BW)

- Peak Power (Procedure 9.1.2 in KDB 558074 v03r05)
 - 1. Measure the peak power of the transmitter.
- Average Power (Procedure 9.2.3.1 in KDB 558074 v03r05)
 - 1. Measure the duty cycle.
 - 2. Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.
 - 3. Add 10 log (1/x), where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times.

Note:

1. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB. So, 10.7 dB is offset for 2.4 GHz Band.

Actual value of loss for the attenuator and cable combination is below table.

Band	Frequency[MHz]	Loss[dB]
2.4 GHz	2412	10.65
	2437	10.65
	2462	10.66

(Actual value of loss for the attenuator and cable combination)

F-TP22-03 (Rev.00) HCT CO.,LTD.

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 17 of 62

■ TEST RESULTS-Peak

FCC ID: TQ8-AVBB0H9AN

Conducted Output Power Measurements (802.11b Mode)

802.11b Mode		Poto [Mbpo]	Measured	Limit
Frequency[MHz]	Channel No.	Rate [Mbps]	Power[dBm]	[dBm]
		1 Mbps	20.24	30
2412	1	2 Mbps	20.22	30
2412	'	5.5 Mbps	20.06	30
		11 Mbps	20.29	30
	6	1 Mbps	19.91	30
2437		2 Mbps	19.66	30
2437		5.5 Mbps	19.65	30
		11 Mbps	19.94	30
	11	1 Mbps	19.33	30
2462		2 Mbps	19.32	30
		5.5 Mbps	19.11	30
		11 Mbps	19.36	30

F-TP22-03 (Rev.00) HCT CO.,LTD.

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 18 of 62

Conducted Output Power Measurements (802.11g Mode)

		-	, ,	
802.11g Mode		Rate [Mbps]	Measured	Limit
Frequency[MHz]	Channel No.	Rate [wibps]	Power[dBm]	[dBm]
		6 Mbps	20.36	30
		9 Mbps	20.45	30
		12 Mbps	20.15	30
		18 Mbps	20.24	30
2412	1	24 Mbps	22.02	30
		36 Mbps	22.04	30
		48 Mbps	22.21	30
		54 Mbps	21.85	30
	6	6 Mbps	20.10	30
		9 Mbps	20.18	30
		12 Mbps	20.42	30
		18 Mbps	19.94	30
2437		24 Mbps	21.62	30
		36 Mbps	21.64	30
		48 Mbps	21.85	30
		54 Mbps	21.27	30
		6 Mbps	19.76	30
		9 Mbps	19.77	30
		12 Mbps	19.46	30
2462		18 Mbps	19.54	30
	11	24 Mbps	21.08	30
		36 Mbps	21.07	30
		48 Mbps	21.19	30
		54 Mbps	20.87	30

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 19 of 62

Conducted Output Power Measurements (802.11n_HT20 Mode)

802.11n Mode		MCS	Measured	Limit
Frequency[MHz]	Channel No.	Index	Power[dBm]	[dBm]
		0	20.61	30
		1	21.20	30
		2	21.48	30
0440	4	3	22.46	30
2412	1	4	22.30	30
		5	22.49	30
		6	22.46	30
		7	22.42	30
	6	0	20.41	30
		1	21.04	30
		2	20.93	30
2437		3	21.91	30
2437		4	22.00	30
		5	21.85	30
		6	21.93	30
		7	21.92	30
		0	19.84	30
		1	20.05	30
		2	20.46	30
2462	11	3	21.22	30
		4	21.32	30
		5	21.19	30
		6	21.21	30
		7	21.20	30

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 20 of 62

■ TEST RESULTS-Average

FCC ID: TQ8-AVBB0H9AN

Conducted Output Power Measurements (802.11b Mode)

802.11b Mode					Measured	
Frequency [MHz]	Channel No.	Rate [Mbps]	Measured Power[dBm]	Duty Cycle Factor [dB]	Power(dBm) + Duty Cycle Factor[dB]	Limit [dBm]
		1 Mbps	16.89	0.050	16.94	30
2412	1	2 Mbps	16.64	0.090	16.73	30
2412		5.5 Mbps	16.41	0.248	16.66	30
		11 Mbps	16.19	0.456	16.65	30
	6	1 Mbps	16.63	0.050	16.68	30
2437		2 Mbps	16.24	0.090	16.33	30
2437		5.5 Mbps	16.18	0.248	16.43	30
		11 Mbps	15.87	0.456	16.33	30
	11	1 Mbps	15.96	0.050	16.01	30
2462		2 Mbps	15.59	0.090	15.68	30
		5.5 Mbps	15.47	0.248	15.72	30
		11 Mbps	15.16	0.456	15.62	30

F-TP22-03 (Rev.00) 20 / 62

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 21 of 62

Conducted Output Power Measurements (802.11g Mode)

802.11g Mode					Measured	
Frequency [MHz]	Channel No.	Rate [Mbps]	Measured Power[dBm]	Duty Cycle Factor [dB]	Power(dBm) + Duty Cycle Factor[dB]	Limit [dBm]
		6 Mbps	12.65	0.294	12.94	30
		9 Mbps	12.56	0.444	13.00	30
		12 Mbps	12.43	0.574	13.00	30
2412	1	18 Mbps	12.26	0.818	13.08	30
2412	•	24 Mbps	12.21	1.057	13.27	30
		36 Mbps	11.80	1.466	13.27	30
		48 Mbps	11.47	1.831	13.30	30
		54 Mbps	11.27	1.956	13.23	30
	6	6 Mbps	12.46	0.294	12.75	30
		9 Mbps	12.31	0.444	12.75	30
		12 Mbps	12.26	0.574	12.83	30
2437		18 Mbps	11.95	0.818	12.77	30
2437		24 Mbps	11.92	1.057	12.98	30
		36 Mbps	11.45	1.466	12.92	30
		48 Mbps	11.19	1.831	13.02	30
		54 Mbps	10.92	1.956	12.88	30
		6 Mbps	11.91	0.294	12.20	30
	11	9 Mbps	11.77	0.444	12.21	30
2462		12 Mbps	11.61	0.574	12.18	30
		18 Mbps	11.33	0.818	12.15	30
2402		24 Mbps	11.33	1.057	12.39	30
		36 Mbps	10.82	1.466	12.29	30
		48 Mbps	10.61	1.831	12.44	30
		54 Mbps	10.50	1.956	12.46	30

F-TP22-03 (Rev.00) 21 / 62 FCC ID: TQ8-AVBB0H9AN

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 22 of 62

Conducted Output Power Measurements (802.11n_HT20 Mode)

802.11n Mode					Measured	
Frequency [MHz]	Channel No.	MCS Index	Measured Power[dBm]	Duty Cycle Factor [dB]	Power(dBm) + Duty Cycle Factor[dB]	Limit [dBm]
		0	12.67	0.323	12.99	30
		1	12.65	0.604	13.25	30
		2	12.41	0.854	13.26	30
2412	1	3	12.16	1.073	13.23	30
2412	•	4	11.81	1.456	13.27	30
		5	11.41	1.793	13.20	30
		6	11.31	1.918	13.23	30
		7	11.17	2.068	13.24	30
	6	0	12.31	0.323	12.63	30
		1	12.50	0.604	13.10	30
		2	12.21	0.854	13.06	30
2437		3	11.92	1.073	12.99	30
2437		4	11.43	1.456	12.89	30
		5	11.21	1.793	13.00	30
		6	10.97	1.918	12.89	30
		7	10.80	2.068	12.87	30
		0	11.79	0.323	12.11	30
	11	1	11.92	0.604	12.52	30
		2	11.72	0.854	12.57	30
2462		3	11.33	1.073	12.40	30
		4	10.98	1.456	12.44	30
		5	10.59	1.793	12.38	30
		6	10.51	1.918	12.43	30
		7	10.26	2.068	12.33	30

HCT CO.,LTD. F-TP22-03 (Rev.00) 22 / 62

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 23 of 62

9.4 POWER SPECTRAL DENSITY (802.11b/g/n)

Test Requirements and limit, §15.247(e)

The peak power spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies.

Minimum Standard – the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST CONFIGURATION

TEST PROCEDURE

We tested according to Procedure 10.2 in KDB 558074 v03r05

The spectrum analyzer is set to:

Set analyzer center frequency to DTS channel center frequency.

Span = 1.5 times the DTS channel bandwidth.

 $RBW = 3 kHz \le RBW \le 100 kHz$.

VBW ≥ $3 \times RBW$.

Sweep = auto couple

Detector = peak

Trace Mode = max hold

Allow trace to fully stabilize.

Use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

■ Sample Calculation

PSD = Reading Value + ATT loss + Cable loss(1 ea)

Output Power = -5 dBm + 10 dB + 0.8 dB = 5.8 dBm

Note:

- 1. Spectrum reading values are not plot data. The PSD results in plot is already including the actual values of loss for the attenuator and cable combination.
- 2. Spectrum offset = Attenuator loss + Cable loss
- 3. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB. So, 10.7 dB is offset for 2.4 GHz Band.

F-TP22-03 (Rev.00) HCT CO.,LTD.

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 24 of 62

Actual value of loss for the attenuator and cable combination is below table.

Band	Frequency(MHz)	Loss(dB)
	2412	10.65
2.4 GHz	2437	10.65
	2462	10.66

(Actual value of loss for the attenuator and cable combination)

TEST RESULTS

Conducted Power Density Measurements

Frequency Channel		Test Result			
Frequency [MHz]	. ,	Mode	PSD [dBm]	Limit [dBm]	Pass/Fail
2412	1		-5.413	8	Pass
2437	6	802.11b	-6.031	8	Pass
2462	11		-6.641	8	Pass
2412	1		-13.710	8	Pass
2437	6	802.11g	-13.827	8	Pass
2462	11		-14.296	8	Pass
2412	1	000 445	-12.643	8	Pass
2437	6	802.11n	-12.005	8	Pass
2462	11	_HT20	-14.005	8	Pass

Note: In order to simplify the report, attached plots were only the highest PSD channel.

HCT CO.,LTD. F-TP22-03 (Rev.00) 24 / 62

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 25 of 62

RESULT PLOTS

FCC ID: TQ8-AVBB0H9AN

Power Spectral Density (802.11b-CH 1)

Power Spectral Density (802.11g-CH 1)

FCC ID: TQ8-AVBB0H9AN

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 26 of 62

Power Spectral Density (802.11n_HT20-CH 6)

F-TP22-03 (Rev.00) 46 / 62

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 27 of 62

9.5 OUT OF BAND EMISSIONS AT THE BAND EDGE/ CONDUCTED SPURIOUS EMISSIONS Test Requirements and limit, §15.247(d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Limit: 20 dBc

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. (Procedure 11.0 in KDB 558074 v03r05)

RBW = 100 kHz

VBW ≥ 3 x RBW

Set span to encompass the spectrum to be examined

Detector = Peak

Trace Mode = max hold

Sweep time = auto couple

Ensure that the number of measurement points ≥ Span/RBW

Allow trace to fully stabilize.

Use peak marker function to determine the maximum amplitude level.

Measurements are made over the 30 MHz to 10th harmonic range with the transmitter set to the lowest, middle, and highest channels.

Note:

1. The maximum peak conducted output power procedure was used to demonstrate compliance as described in 9.1(KDB558074 v03r05), so the peak output power measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-

HCT CO.,LTD. F-TP22-03 (Rev.00) 27 / 62

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 28 of 62

band peak PSD level in 100 kHz (i.e., 20 dBc).

- 2. The band edge results in plot is already including the actual values of loss for the attenuator and cable combination.
- 3. Spectrum offset = Attenuator loss + Cable loss
- 4. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB. So, 10.7 dB is offset for 2.4 GHz Band. Actual value of loss for the attenuator and cable combination is below table.

Band	Frequency(MHz)	Loss(dB)
	2412	10.65
2.4 GHz	2437	10.65
	2462	10.66

(Actual value of loss for the attenuator and cable combination)

- 5. In case of conducted spurious emissions test, please check factors blow table.
- 6. In order to simplify the report, attached plots were only the worst case channel.

FACTORS FOR FREQUENCY

Freq(MHz)	Factor(dB)
30	11.30
100	9.83
200	10.19
300	10.13
400	10.23
500	10.25
600	10.32
700	10.35
800	10.35
900	10.34
1000	10.39
2000	10.64
2400*	10.65
2500*	10.67
3000	10.68
4000	10.89
5000	11.07
6000	11.06
7000	11.35

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 29 of 62

8000	11.32
9000	11.48
10000	11.56
11000	11.56
12000	11.68
13000	11.83
14000	11.90
15000	11.98
16000	12.04
17000	12.02
18000	12.08
19000	12.07
20000	12.14
21000	12.17
22000	12.31
23000	12.60
24000	12.34
25000	12.53

Note: 1. '*' is fundamental frequency range.

FCC ID: TQ8-AVBB0H9AN

2. Factor = Cable loss + Attenuator loss

F-TP22-03 (Rev.00) 29 / 62

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 30 of 62

RESULT PLOTS

FCC ID: TQ8-AVBB0H9AN

Band Edge (802.11b-CH1)

Band Edge (802.11b-CH11)

FCC ID: TQ8-AVBB0H9AN

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 31 of 62

Band Edge (802.11g-CH1)

Band Edge (802.11g-CH11)

FCC ID: TQ8-AVBB0H9AN

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 32 of 62

Band Edge (802.11n_HT20-CH1)

Band Edge (802.11n_HT20-CH11)

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 33 of 62

30 MHz ~ 1 GHz

Conducted Spurious Emission (802.11n_Ch.01_MCS5)

1 GHz ~ 3 GHz

Conducted Spurious Emission (802.11n_Ch.01_MCS5)

HCT CO.,LTD. F-TP22-03 (Rev.00) 33 / 62

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 34 of 62

3 GHz ~ 5 GHz

Conducted Spurious Emission (802.11n_Ch.01_MCS5)

5 GHz ~ 7 GHz

Conducted Spurious Emission (802.11n_Ch.01_MCS5)

F-TP22-03 (Rev.00) HCT CO.,LTD.

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 35 of 62

7 GHz ~ 9 GHz

Conducted Spurious Emission (802.11n_Ch.01_MCS5)

9 GHz ~ 11 GHz

FCC ID: TQ8-AVBB0H9AN

Conducted Spurious Emission (802.11n_Ch.01_MCS5)

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 36 of 62

11 GHz ~ 13 GHz

Conducted Spurious Emission (802.11n_Ch.01_MCS5)

13 GHz ~ 15 GHz

FCC ID: TQ8-AVBB0H9AN

Conducted Spurious Emission (802.11n_Ch.01_MCS5)

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 37 of 62

15 GHz ~ 17 GHz

17 GHz ~ 19 GHz

FCC ID: TQ8-AVBB0H9AN

Conducted Spurious Emission (802.11n_Ch.01_MCS5)

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 38 of 62

19 GHz ~ 21 GHz

21 GHz ~ 23 GHz

FCC ID: TQ8-AVBB0H9AN

Conducted Spurious Emission (802.11n_Ch.01_MCS5)

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 39 of 62

23 GHz ~ 25 GHz

Conducted Spurious Emission (802.11n_Ch.01_MCS5)

F-TP22-03 (Rev.00) HCT CO.,LTD.

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 40 of 62

9.6 RADIATED MEASUREMENT.

9.6.1 RADIATED SPURIOUS EMISSIONS.

Test Requirements and limit, §15.205, §15.209

Frequency (MHz)	Field Strength (uV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

F-TP22-03 (Rev.00) HCT CO.,LTD.

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 41 of 62

Test Configuration

Below 30 MHz

30 MHz - 1 GHz

F-TP22-03 (Rev.00)
FCC ID: TQ8-AVBB0H9AN
41 / 62

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 42 of 62

Above 1 GHz

TEST PROCEDURE USED

Method 12.1 in KDB 558074 v03r05

Spectrum Setting

- Peak

Peak emission levels are measured by setting the instrument as follows:

RBW = cf. Table 1.

VBW ≥ $3 \times RBW$.

Detector = Peak.

Sweep time = auto.

Trace mode = max hold.

Allow sweeps to continue until the trace stabilizes.

(Note that the required measurement time may be longer for low duty cycle applications).

Table 1 —RBW as a function of frequency

Frequency	RBW
9-150 kHz	200-300 Hz
0.15-30 MHz	9-10 kHz
30-1000 MHz	100-120 kHz
> 1000 MHz	1 MHz

F-TP22-03 (Rev.00) 42 / 62

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 43 of 62

- Average (duty cycle ≥ 98%)

Set RBW = 1 MHz

Set VBW ≥ 3 x RBW

Detector = RMS

Averaging type = power (i.e., RMS).

Sweep time = auto.

Trace mode = average (at least 100 traces).

- Average (duty cycle < 98%, duty cycle variations are less than $\pm 2\%$)

Set RBW = 1 MHz

Set VBW ≥ 3 x RBW

Detector = RMS.

Averaging type = power (i.e., RMS).

Sweep time = auto.

Trace mode = average (at least 100 traces).

A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle.

Note:

- 1. We are performed the RSE and radiated band edge using standard radiated method(RMS).
- 2. According to SVSWR requirement in ANSI 63.4-2014, We performed the radiated test at 3.75 m distance from center of turn table. So, we applied the distance factor(reference distance : 3 m).
- 3. Distance extrapolation factor = 20 log (test distance / specific distance) (dB)
- 4. The duty cycle factor for 802.11 b/g/n_HT20

Mode	Worst Data rate (Mbps)	T _{on}	T _{total}	Duty Cycle (%)	Duty Cycle Factor (dB)
b	1	8.609	8.709	98.85	0.050
g	6	1.430	1.530	93.45	0.294
n_HT20	MCS Index 0	1.336	1.439	92.83	0.323

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 44 of 62

TEST RESULTS

9 kHz - 30MHz

Operation Mode: Normal Mode

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin			
MHz	dBuV/m	dBm/m	dBm	(H/V)	dBuV/m	dBuV/m	dB			
	No Critical peaks found									

Notes:

- 1. Measuring frequencies from 9 kHz to the 30MHz.
- 2. The reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.
- 3. Distance extrapolation factor = 40 log (specific distance / test distance) (dB)
- 4. Limit line = specific Limits (dBuV) + Distance extrapolation factor
- 5. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

HCT CO.,LTD. F-TP22-03 (Rev.00) 44 / 62

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 45 of 62

TEST RESULTS

Below 1 GHz

Operation Mode: Normal Mode

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin			
MHz	dBuV/m	dBm/m	dBm	(H/V)	dBuV/m	dBuV/m	dB			
	No Critical peaks found									

Notes:

- 1. Measuring frequencies from 30 MHz to the 1 GHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made with an instrument using Quasi peak detector mode.
- 3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

F-TP22-03 (Rev.00) HCT CO.,LTD.

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 46 of 62

Above 1 GHz

Operation Mode: 802.11 b

Transfer Rate: 1 Mbps

Operating Frequency 2412

Channel No. 01 Ch

Frequency	Reading	A.F.+C.LA.G+D.F.	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	[dBuV]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4824	51.31	-0.64	V	50.67	73.98	23.31	PK
4824	45.16	-0.64	٧	44.52	53.98	9.46	AV
7236	43.39	8.49	\	51.88	73.98	22.10	PK
7236	31.77	8.49	V	40.26	53.98	13.72	AV
4824	50.08	-0.64	Н	49.44	73.98	24.54	PK
4824	43.79	-0.64	Н	43.15	53.98	10.83	AV
7236	43.45	8.49	Н	51.94	73.98	22.04	PK
7236	31.72	8.49	Н	40.21	53.98	13.77	AV

Operation Mode: 802.11 g

Transfer Rate: 6 Mbps

Operating Frequency 2412

Channel No. 01 Ch

Frequency	Reading	Duty Cycle	A.F.+CL-AMP G	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	dBuV	Factor	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4824	46.24	0.00	-0.64	V	45.60	73.98	28.38	PK
4824	34.39	0.31	-0.64	V	34.06	53.98	19.92	AV
7236	43.65	0.00	8.49	V	52.14	73.98	21.84	PK
7236	31.80	0.31	8.49	V	40.60	53.98	13.38	AV
4824	45.79	0.00	-0.64	Н	45.15	73.98	28.83	PK
4824	34.25	0.31	-0.64	Н	33.92	53.98	20.06	AV
7236	43.33	0.00	8.49	Н	51.82	73.98	22.16	PK
7236	31.69	0.31	8.49	Н	40.49	53.98	13.49	AV

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 47 of 62

Operation Mode: 802.11 n_HT20

Transfer MCS Index: 0

Operating Frequency 2412

Channel No. 01 Ch

Frequency	Reading	Duty Cycle	A.F.+CL-AMP G	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	dBuV	Factor	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4824	46.13	0.00	-0.64	V	45.49	73.98	28.49	PK
4824	34.28	0.33	-0.64	V	33.97	53.98	20.01	AV
7236	44.03	0.00	8.49	V	52.52	73.98	21.46	PK
7236	31.91	0.33	8.49	V	40.73	53.98	13.25	AV
4824	45.82	0.00	-0.64	Н	45.18	73.98	28.80	PK
4824	34.23	0.33	-0.64	Н	33.92	53.98	20.06	AV
7236	43.76	0.00	8.49	Н	52.25	73.98	21.73	PK
7236	31.85	0.33	8.49	Н	40.67	53.98	13.31	AV

^{*}A.F.: Antenna Factor / C.L.: Cable Loss / A.G.: Amplifier Gain / D.F.: Distance Factor

Notes:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain + Distance Factor
- 5. Distance extrapolation factor = 20 log (test distance / specific distance) (dB)
- 6. We have done 802.11b/g/n mode and all data rate. Worst data rate is the lowest data of each mode.
- 7. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

F-TP22-03 (Rev.00) HCT CO.,LTD.

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 48 of 62

Operation Mode: 802.11 b

Transfer Rate: 1 Mbps

Operating Frequency 2437

Channel No. 06 Ch

Frequency	Reading	A.F.+C.LA.G+D.F.	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	[dBuV]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4874	52.55	0.01	V	52.56	73.98	21.42	PK
4874	45.19	0.01	V	45.20	53.98	8.78	AV
7311	44.28	8.94	V	53.22	73.98	20.76	PK
7311	32.11	8.94	V	41.05	53.98	12.93	AV
4874	51.09	0.01	Н	51.10	73.98	22.88	PK
4874	43.55	0.01	Н	43.56	53.98	10.42	AV
7311	43.96	8.94	Н	52.90	73.98	21.08	PK
7311	32.02	8.94	Н	40.96	53.98	13.02	AV

Operation Mode: 802.11 g

Transfer Rate: 6 Mbps

Operating Frequency 2437

Channel No. 06 Ch

Frequency	Reading	Duty Cycle	A.F.+CL-AMP G	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	dBuV	Factor	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4874	47.15	0.00	0.01	V	47.16	73.98	26.82	PK
4874	35.24	0.31	0.01	V	35.56	53.98	18.42	AV
7311	44.20	0.00	8.94	V	53.14	73.98	20.84	PK
7311	32.10	0.31	8.94	V	41.35	53.98	12.63	AV
4874	46.87	0.00	0.01	Н	46.88	73.98	27.10	PK
4874	35.11	0.31	0.01	Н	35.43	53.98	18.55	AV
7311	44.08	0.00	8.94	Н	53.02	73.98	20.96	PK
7311	32.06	0.31	8.94	Н	41.31	53.98	12.67	AV

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 49 of 62

Operation Mode: 802.11 n_HT20

Transfer MCS Index: 0

Operating Frequency 2437

Channel No. 06 Ch

Frequency	Reading	Duty Cycle	A.F.+CL-AMP G	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	dBuV	Factor	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4874	47.05	0.00	0.01	V	47.06	73.98	26.92	PK
4874	35.14	0.33	0.01	V	35.48	53.98	18.50	AV
7311	44.78	0.00	8.94	V	53.72	73.98	20.26	PK
7311	32.14	0.33	8.94	V	41.41	53.98	12.57	AV
4874	46.84	0.00	0.01	Н	46.85	73.98	27.13	PK
4874	35.06	0.33	0.01	Н	35.40	53.98	18.58	AV
7311	43.96	0.00	8.94	Н	52.90	73.98	21.08	PK
7311	32.12	0.33	8.94	Н	41.39	53.98	12.59	AV

^{*}A.F.: Antenna Factor / C.L.: Cable Loss / A.G.: Amplifier Gain / D.F.: Distance Factor

Notes:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain + Distance Factor
- 5. Distance extrapolation factor = 20 log (test distance / specific distance) (dB)
- 6. We have done 802.11b/g/n mode and all data rate. Worst data rate is the lowest data of each mode.
- 7. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

F-TP22-03 (Rev.00) HCT CO.,LTD.

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 50 of 62

Operation Mode: 802.11 b

Transfer Rate: 1 Mbps

Operating Frequency 2462

Channel No. 11 Ch

Frequency	Reading	A.F.+C.LA.G+D.F.	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	[dBuV]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4924	47.60	0.38	V	47.98	73.98	26.00	PK
4924	36.99	0.38	V	37.37	53.98	16.61	AV
7386	44.07	9.02	V	53.09	73.98	20.89	PK
7386	31.76	9.02	V	40.78	53.98	13.20	AV
4924	46.24	0.38	Н	46.62	73.98	27.36	PK
4924	36.13	0.38	Н	36.51	53.98	17.47	AV
7386	43.92	9.02	Н	52.94	73.98	21.04	PK
7386	31.68	9.02	Н	40.70	53.98	13.28	AV

Operation Mode: 802.11 g

Transfer Rate: 6 Mbps

Operating Frequency 2462

Channel No. 11 Ch

Frequency	Reading	Duty Cycle	A.F.+CL-AMP G	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	dBuV	Factor	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4924	46.46	0.00	0.38	V	46.84	73.98	27.14	PK
4924	34.43	0.31	0.38	V	35.12	53.98	18.86	AV
7386	44.17	0.00	9.02	V	53.19	73.98	20.79	PK
7386	31.82	0.31	9.02	V	41.15	53.98	12.83	AV
4924	45.93	0.00	0.38	Н	46.31	73.98	27.67	PK
4924	34.38	0.31	0.38	Н	35.07	53.98	18.91	AV
7386	43.80	0.00	9.02	Н	52.82	73.98	21.16	PK
7386	31.77	0.31	9.02	Н	41.10	53.98	12.88	AV

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 51 of 62

Operation Mode: 802.11 n_HT20

Transfer MCS Index: 0

Operating Frequency 2462

Channel No. 11 Ch

Frequency	Reading	Duty Cycle	A.F.+CL-AMP G	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	dBuV	Factor	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4924	46.28	0.00	0.38	V	46.66	73.98	27.32	PK
4924	34.31	0.33	0.38	V	35.02	53.98	18.96	AV
7386	44.03	0.00	9.02	V	53.05	73.98	20.93	PK
7386	31.84	0.33	9.02	V	41.19	53.98	12.79	AV
4924	45.56	0.00	0.38	Н	45.94	73.98	28.04	PK
4924	34.24	0.33	0.38	Н	34.95	53.98	19.03	AV
7386	43.61	0.00	9.02	Н	52.63	73.98	21.35	PK
7386	31.78	0.33	9.02	Н	41.13	53.98	12.85	AV

^{*}A.F.: Antenna Factor / C.L.: Cable Loss / A.G.: Amplifier Gain / D.F.: Distance Factor

Notes:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain + Distance Factor
- 5. Distance extrapolation factor = 20 log (test distance / specific distance) (dB)
- 6. We have done 802.11b/g/n mode and all data rate. Worst data rate is the lowest data of each mode.
- 7. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

F-TP22-03 (Rev.00) 51 / 62

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 52 of 62

■ RESULT PLOTS (Worst case : X-V)

Radiated Spurious Emissions plot – Average Reading (802.11b, Ch.6 2nd Harmonic)

Date: 4.JUL.2016 16:37:33

Radiated Spurious Emissions plot – Peak Reading (802.11b, Ch.6 2nd Harmonic)

Date: 4.JUL.2016 16:38:31

FCC ID: TQ8-AVBB0H9AN

F-TP22-03 (Rev.00) 52 / 62

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 53 of 62

Radiated Spurious Emissions plot - Average Reading (802.11g, Ch.6 3rd Harmonic)

Date: 7.JUL.2016 15:58:31

Radiated Spurious Emissions plot – Peak Reading (802.11g, Ch.6 3rd Harmonic)

Date: 7.JUL.2016 16:00:41

HCT CO.,LTD. F-TP22-03 (Rev.00) 53 / 62

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 54 of 62

Radiated Spurious Emissions plot – Average Reading (802.11n_HT20, Ch.6 3rd Harmonic)

Date: 7.JUL.2016 15:59:29

Radiated Spurious Emissions plot – Peak Reading (802.11n_HT20, Ch.6 3rd Harmonic)

Date: 7.JUL.2016 15:59:59

Note: Only the worst case plots for Radiated Spurious Emissions.

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 55 of 62

9.6.2 RADIATED RESTRICTED BAND EDGES

Test Requirements and limit, §15.247(d) §15.205, §15.209

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in section 15.209(a) (See section 15.205(c)).

Operation Mode: 802.11g

Transfer Rate: 6 Mbps

Operating Frequency 2412 MHz, 2462 MHz

Channel No. 01 Ch, 11 Ch

Frequency	Reading	Duty Cycle	A.F.+CL	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	dBuV	Factor	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
2390.0	24.67	0.00	32.68	Н	57.35	73.98	16.63	PK
2390.0	13.01	0.31	32.68	Н	46.00	53.98	7.98	AV
2390.0	24.38	0.00	32.68	V	57.06	73.98	16.92	PK
2390.0	12.86	0.31	32.68	V	45.85	53.98	8.13	AV
2483.5	24.28	0.00	33.05	Н	57.33	73.98	16.65	PK
2483.5	12.72	0.31	33.05	Н	46.08	53.98	7.90	AV
2483.5	24.08	0.00	33.05	V	57.13	73.98	16.85	PK
2483.5	12.54	0.31	33.05	V	45.90	53.98	8.08	AV

*A.F.: Antenna Factor / C.L.: Cable Loss / D.F.: Distance Factor

HCT CO.,LTD. F-TP22-03 (Rev.00) 55 / 62

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 56 of 62

Operation Mode: 802.11b

Transfer Rate: 1 Mbps

Operating Frequency 2412 MHz, 2462 MHz

Channel No. 01 Ch, 11 Ch

Frequency	Reading	A.F.+C.L.+D.F.	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	[dBuV]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
2390.0	25.24	32.68	Н	57.92	73.98	16.06	PK
2390.0	13.13	32.68	Н	45.81	53.98	8.17	AV
2390.0	25.18	32.68	V	57.86	73.98	16.12	PK
2390.0	13.02	32.68	V	45.70	53.98	8.28	AV
2483.5	24.13	33.05	Н	57.18	73.98	16.80	PK
2483.5	12.65	33.05	Н	45.70	53.98	8.28	AV
2483.5	23.77	33.05	٧	56.82	73.98	17.16	PK
2483.5	12.47	33.05	V	45.52	53.98	8.46	AV

Operation Mode: 802.11n HT20

Transfer MCS Index: 0

Operating Frequency 2412 MHz, 2462 MHz

Channel No. 01 Ch, 11 Ch

Frequency	Reading	Duty Cycle	A.F.+CL	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	dBuV	Factor	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
2390.0	25.00	0.00	32.68	Н	57.68	73.98	16.30	PK
2390.0	13.01	0.33	32.68	Н	46.02	53.98	7.96	AV
2390.0	24.56	0.00	32.68	V	57.24	73.98	16.74	PK
2390.0	12.89	0.33	32.68	V	45.90	53.98	8.08	AV
2483.5	23.55	0.00	33.05	Н	56.60	73.98	17.38	PK
2483.5	12.38	0.33	33.05	Н	45.76	53.98	8.22	AV
2483.5	23.22	0.00	33.05	V	56.27	73.98	17.71	PK
2483.5	12.21	0.33	33.05	V	45.59	53.98	8.39	AV

Notes:

- 1. Total = Reading Value + Antenna Factor + Cable Loss + Distance Factor
- 2. Distance extrapolation factor = 20 log (test distance / specific distance) (dB)
- 3. We have done 802.11b/g/n mode and all data rate. Worst data rate is the lowest data of each mode.
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 57 of 62

■ RESULT PLOTS (Worst case : X-H)

Radiated Restricted Band Edges plot – Average Reading (802.11b, Ch.1)

Date: 4.JUL.2016 14:36:54

Radiated Restricted Band Edges plot – Peak Reading (802.11b, Ch.1)

Date: 4.JUL.2016 14:49:10

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 58 of 62

Radiated Restricted Band Edges plot – Average Reading (802.11g, Ch.11)

Date: 4.JUL.2016 14:24:02

Radiated Restricted Band Edges plot – Peak Reading (802.11g, Ch.11)

Date: 4.JUL.2016 14:24:50

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 59 of 62

Radiated Restricted Band Edges plot - Average Reading (802.11n_HT20, Ch.1)

Date: 4.JUL.2016 14:56:18

Radiated Restricted Band Edges plot – Peak Reading (802.11n_HT20, Ch.1)

Date: 4.JUL.2016 14:56:54

Note: Only the worst case plots for Radiated Restricted Band Edges.

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 60 of 62

9.7 POWERLINE CONDUCTED EMISSIONS

Test Requirements and limit, §15.207

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Francisco Panes (MIII)	Limits (dBμV)				
Frequency Range (MHz)	Quasi-peak	Average			
0.15 to 0.50	66 to 56	56 to 46			
0.50 to 5	56	46			
5 to 30	60	50			

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

Test Configuration

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

TEST PROCEDURE

- 1. The EUT is placed on a wooden table 80 cm above the reference ground plane.
- 2. The EUT is connected via LISN to a test power supply.
- 3. The measurement results are obtained as described below:
- 4. Detectors Quasi Peak and Average Detector.
- 5. We are performed the AC Power Line Conducted Emission test for worst data rate, channel, operation mode.

Sample Calculation

Quasi-peak(Final Result) = Reading Value + Correction Factor

Note: We don't perform powerline conducted emission test. Because this EUT is used with vehicle.

F-TP22-03 (Rev.00) HCT CO.,LTD.

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 61 of 62

10. LIST OF TEST EQUIPMENT

10.1 LIST OF TEST EQUIPMENT(Conducted Test)

Manufacturer	Model / Equipment	Calibration Date	Calibration Interval	Serial No.
Rohde & Schwarz	ENV216 / LISN	12/28/2015	Annual	100073
Rohde & Schwarz	ESCI / Test Receiver	12/28/2015	Annual	100584
Agilent	N9020A / Signal Analyzer	06/24/2016	Annual	MY51110085
Agilent	N9030A / Signal Analyzer	11/24/2015	Annual	MY49431210
Agilent	N1911A / Power Meter	03/11/2016	Annual	MY45100523
Agilent	N1921A / Power Sensor	03/11/2016	Annual	MY52260025
Agilent	87300B / Directional Coupler	11/30/2015	Annual	3116A03621
Hewlett Packard	11667B / Power Splitter	06/14/2016	Annual	05001
Hewlett Packard	E3632A / DC Power Supply	03/09/2016	Annual	KR75303962
Agilent	8493C / Attenuator(10 dB)	07/15/2016	Annual	07560

HCT CO.,LTD. F-TP22-03 (Rev.00) 61 / 62

FCC ID: TQ8-AVBB0H9AN

Report No.: HCT-R-1608-F002 Model: AVBB0H9AN Page 62 of 62

10.2 LIST OF TEST EQUIPMENT(Radiated Test)

Manufacturer	Model / Equipment	Calibration Date	Calibration Interval	Serial No.
Audix	AM4000 / Antenna Position Tower	N/A	N/A	N/A
Audix	Turn Table	N/A	N/A	N/A
Audix	EM1000 / Controller	N/A	N/A	060520
Rohde & Schwarz	Loop Antenna	02/23/2016	Biennial	1513-175
Schwarzbeck	VULB 9168 / Hybrid Antenna	04/15/2015	Biennial	255
Schwarzbeck	BBHA 9120D / Horn Antenna	05/07/2015	Biennial	937
Schwarzbeck	BBHA9170 / Horn Antenna(15 GHz ~ 40 GHz)	09/03/2015	Biennial	BBHA9170541
Rohde & Schwarz	FSP / Spectrum Analyzer	09/24/2015	Annual	100688
Rohde & Schwarz	FSV40-N / Spectrum Analyzer	09/23/2015	Annual	101068-SZ
Wainwright Instruments	WHK3.0/18G-10EF / High Pass Filter	06/24/2016	Annual	8
Wainwright Instruments	WHFX7.0/18G-8SS / High Pass Filter	05/13/2016	Annual	29
Wainwright Instruments	WRCJV2400/2483.5-2370/2520-60/12SS / Band Reject Filter	07/06/2016	Annual	2
Wainwright Instruments	WRCJV5100/5850-40/50-8EEK / Band Reject Filter	01/26/2016	Annual	2
Agilent	8493C-10 / Attenuator(10 dB)	08/20/2015	Annual	76649
CERNEX	CBLU1183540 / Power Amplifier	07/15/2016	Annual	22964
CERNEX	CBL06185030 / Power Amplifier	07/15/2016	Annual	22965
CERNEX	CBL18265035 / Power Amplifier	07/11/2016	Annual	22966
CERNEX	CBL26405040 / Power Amplifier	07/11/2016	Annual	25956

F-TP22-03 (Rev.00) 62 / 62