

Ricostruzione da proiezioni

Problema: ricostruire A e B a partire da un numero di proiezioni p1, p2, ...pn

Lezione 10 AA 2010-11

1

Corso di Elaborazione di Segnali e Immagini Biomedici – Il parte

Proiezioni RX

- le immagini radiografiche (RX) classiche rappresentano una proiezione su di un piano P (piano della lastra fotografica) a partire da un centro C (punto focale dell'anodo nel tubo a vuoto) delle strutture interne al volume del corpo V
- un generico punto di proiezione A dipende da tutte le strutture incontrate dalla retta di proiezione r sul segmento L (interno a V)

Lezione 10 AA 2010-11

2

Proiezioni RX

- il valore di intensità rappresentato in A, I_A, si può ricondurre all'integrale sulla linea L della **attenuazione lineare** μ(x, y, z) funzione delle coordinate tridimensionali in V
- infatti, la legge di Lambert-Beer indica la dipendenza della intensità finale I_A incidente sulla pellicola (od altro detettore) dal valore della attenuazione lineare lungo il percorso L data la intensità di emissione I_n:

$$I_{A}(x,y) = I_{0} \exp\left(-\int_{L} \mu(x,y,z) dL\right)$$
$$\int_{L} \mu(x,y,z) dL = -\ln\left(\frac{I_{A}}{I_{0}}\right)$$

Lezione 10 AA 2010-11 3

Corso di Elaborazione di Segnali e Immagini Biomedici - Il parte

Tomografia da movimento (stratigrafia)

Con il movimento sincronizzato di sorgente e rivelatore vengono focalizzate selettivamente le strutture interne in uno strato preselezionato con sfocatura degli elementi fuori dal piano.

Problema 3D computazionale

Si supponga che l'oggetto venga suddiviso in **elementi di volume** (voxel) in cui il coefficiente di attenuazione si può supporre costante (per semplicità l'oggetto è tutto contenuto in un cubo di N³ voxel).

Si vuole stimare il coefficiente μ_{ijk} per tutti i voxel dato un insieme di misure. Sia h una direzione di proiezione, si ha:

$$I_h = I_0 \exp(-\sum_{ijk} \mu_{ijk} \Delta w_h)$$

con Δw diverso da 0 quando ci si trova sul raggio di direzione h.

Passando ai logaritmi
$$\sum_{ijk} \mu_{ijk} \Delta w_h = \ln \frac{I_0}{I_h} = p_h$$

Si ottiene un sistema di N³ equazioni in N³ incognite

Lezione 10 AA 2010-11 5

Corso di Elaborazione di Segnali e Immagini Biomedici – Il parte

Ricostruzione del piano tomografico 2D

Motivazioni: la complessità computazionale 3D è intrattabile per matrici di dimensione elevata.

Una scansione di 200 x 200 x200 voxels comporta 8 milioni di equazioni in 8 milioni di incognite.

Il piano tomografico (2D)

 Si seleziona un piano detto piano tomografico. Su di esso viene rappresentata una grandezza fisica f(x,y); in realtà questa grandezza integra secondo una distribuzione di energia a campana le strutture contenute in un volume il più possibile schiacciato. Si risolve un problema di complessità N²

Corso di Elaborazione di Segnali e Immagini Biomedici – Il parte

Il piano tomografico - la risoluzione assiale

- abbiamo visto che tanto i RX che la scintigrafia raccolgono informazioni **integrali** lungo segmenti L di rette di proiezione
- il problema della rappresentazione tomografica richiede di costruire una sezione virtuale dalle informazioni integrali
- macchine CT raccolgono proiezioni relative a piani assiali per la ricostruzione di sezioni trasversali
- il piano di sezione S(z) rappresenta una **astrazione ideale**; in realtà i RX coprono un volume schiacciato; l'energia lungo z si distribuisce su una campana molto stretta (ordine di 5 mm) la cui larghezza a metà ampiezza (FWHM, full width half maximum) rappresenta la **risoluzione assiale** fra sezioni tomografiche
- in scintigrafia la γ camera raccoglie contemporaneamente proiezioni relative a più piani assiali con una risoluzione assiale inferiore alla CT e legata al collimatore; una rotazione su 360° della γ camera raccoglie le proiezioni necessarie per ogni piano tomografico

Metodi analitici

- I metodi analitici consentono teoricamente di ricostruire la funzione incognita in ogni punto del suo dominio.
- Si considerano le ricostruzioni 2D di oggetti 3D usando proiezioni 1D **a raggi paralleli**
- L'oggetto da ricostruire è pertanto una funzione f(x,y) definita in un dominio D sul piano.
- Si assume che la f(x,y) abbia trasformata di Fourier bidimensionale.

$$F(u,v) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y)e^{-j2\pi(ux+vy)}dxdy$$

Condizione affinché F(u,v) esista è che f(x,y) sia a energia finita, ovvero

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \left| f(x, y) \right|^2 dx dy < \infty$$

Lezione 10

9

Corso di Elaborazione di Segnali e Immagini Biomedici - Il parte

Ricostruzioni Tomografiche da proiezioni

- fissato z, la ricostruzione del piano tomografico S(z) richiede come dato di partenza le proiezioni dell'oggetto su più angolazioni φ (e.g. su 180 direzioni con 1° di diff.)
- fissato ϕ , traslando la retta di proiezione r si ottiene il profilo della proiezione in funzione di x_{ϕ} , $P(\phi, x_{\phi})$, pari all'integrale lungo il segmento $L(\phi, x_{\phi})$ $P(\phi, x_{\phi}) = \int_{L(\phi, x_{\phi})} f(x, y) dL$

Corso di Elaborazione di Segnali e Immagini Biomedici - Il parte

Il sinogramma e la trasformata di Radon

 come risulta dalla figura il nome è dovuto al fatto che un punto percorre un arco di sinusoide al variare di φ

• la funzione 2D $P(\phi, x_{\phi})$ rappresenta la **trasformata di Radon** della funzione f(x,y): $P(\phi, x_{\phi}) = R\{f(x,y)\}$ la ricostruzione tomografica può essere vista come il *calcolo della antitrasformata*

 X_{ϕ}

Proprietà della trasformata di Radon

La trasformata R è periodica con periodo 2π . Inoltre è simmetrica rispetto allo zero per cui ci si può limitare allo studio nell'intervallo $[0, \pi]$.

Un operatore importante associato alla TR è la cosiddetta retroproiezione. Data una generica proiezione lungo la retta $t=x \cos\phi + y \sin\phi$, la retroproiezione consiste nell'attribuire a tutti i punti del piano immagine sulla retta t, il valore $P(\phi,t)$

Corso di Elaborazione di Segnali e Immagini Biomedici – Il parte

La retroproiezione

- consideriamo inizialmente una semplice retroproiezione che intuitivamente permette una ricostruzione tomografica; vedremo di seguito come questa ricostruzione sia affetta da un errore sistematico sotto forma di PSF che offusca la tomografia vera
- la retroproiezione consiste nel **riportare il valore di proiezione** su tutto il segmento di integrazione L
- la somma di retroproiezioni da numerosi angoli φ tende a rinforzare i punti con f(x,y) elevato approssimando la mappa tomografica che si vuole ricostruire

Retroproiezione e conseguente sfocamento (1)

FIGURE B.2. (a) A series of projections P_1-P_4 acquired for a simple circular object. The dashed lines represent the FOV of the image. (b) A simple backprojection reconstruction using only projections P_1 and P_3 . (c) The "star artifact" produced by the reconstruction of a moderate number of projections. (d) The radial blurring produced using simple backprojection of an infinite number of projections.

Lezione 10 AA 2010-11 15

Corso di Elaborazione di Segnali e Immagini Biomedici – Il parte

Integrando i contributi della retroproiezione per tutti gli angoli ottengo

$$\int_{0}^{\pi} p(\phi, x\cos\phi + y\sin\phi)d\phi = f(x, y) \otimes \frac{1}{\sqrt{x^2 + y^2}}$$

Ovvero la funzione di partenza sfocata dal filtro avente risposta impulsiva $1/(x^2+y^2)^{1/2}=1/\rho$, con ρ distanza dal centro

La retroproiezione

$$I_{1} = I_{0}e^{-(\mu_{1} + \mu_{2})x}$$

$$I_{2} = I_{0}e^{-(\mu_{3} + \mu_{4})x}$$

$$I_{3} = I_{0}e^{-(\mu_{1} + \mu_{3})x}$$

$$I_{4} = I_{0}e^{-(\mu_{2} + \mu_{4})x}$$
(1.21)

FIGURE 1.27. (Left) Two projections acquired from an elliptical test object. (Right) Two projections acquired from an object consisting of a simple 2 × 2 matrix of tissue attenuation coefficients.

Corso di Elaborazione di Segnali e Immagini Biomedici - Il parte

Retroproiezione e conseguente sfocamento (2) Retroproiezione(x,y) = $p_{\theta}(x \cos \theta + y \sin \theta)$

$$\sum_{\theta} \phi_{\theta} (x \cos \theta + y \sin \theta) d\theta \quad \Delta\theta \rightarrow 0^{\circ}$$

$$\int P_{\theta} \left(\times \cos \theta + y \sin \theta \right) d\theta = f(x,y) * \frac{1}{\sqrt{x^2 + y^2}}$$

BACKPROJECTION and FILTER

$$\left[f(x,y)*\frac{1}{\sqrt{x^2+y^2}}\right]*\left(fitto inverso PASSA ALTO)$$

PSF della retroproiezione

- 5 retroproiezioni delle proiezioni di un impulso: si nota un forte artefatto a stella (da F.Rocca, 1998)
- 100 retroproiezioni: per un grande numero di retroproiezioni si ottiene la **PSF** prodotta dalla retroproiezione che ha andamento $1/\rho$, con ρ distanza dall'impulso; la PSF offusca l'immagine con un effetto di **filtro passa basso** diminuendo la risoluzione spaziale

• si può dimostrare che la **MTF** (trasformata di Fourier della PSF) ha andamento $1/|\Omega|$, con $|\Omega|$ frequenza spaziale in una generica

Una volta nota la trasformata di Fourier esistono metodi per risalire alla funzione stessa. Pertanto se si conosce il legame tra T di Radon e TdF si può teoricamente risalire alla funzione f(x,y).

Teorema della Sezione Centrale

Lezione 10 AA 2010-11 21

Corso di Elaborazione di Segnali e Immagini Biomedici – Il parte

Teorema della sezione centrale

La trasformata di Fourier di una **proiezione** ottenuta ad un angolo θ rispetto all'asse x, coincide con la trasformata di Fourier 2D F(u,v) della f(x,y) calcolata lungo **la retta** nel piano (u,v) che forma un angolo θ con l'asse u.

Se F(u,v) è la TdF di f(x,y) e $S_{\theta}(\omega)$ è la TdF delle proiezioni lungo la generica retta t , P(θ ,t), allora

$$F(\omega,\theta) = S_{\theta}(\omega)$$

Con $u=\omega \cos\theta$, $v=\omega \sin\theta$

In teoria si può utilizzare questa relazione per ricavare la f(x,y), ma sorge il problema di dover operare con dati discreti.

Lezione 10

23

Corso di Elaborazione di Segnali e Immagini Biomedici - Il parte

Th della Sezione Centrale o delle Proiezioni (1)

$$F(u,v) = f_2 \left(f(x,y)^2 \text{ trost at Fourier &D}\right)$$

$$(F(u,v) = f_2 \left(f(x,y)^2 \text{ dx dy} < \infty\right)$$
europio finta
$$F(u,v) = f(x,y) e^{-j2\pi(ux+vy)} \text{ dx dy}$$
proprietà di suporossane sistetto agli assi
$$F(u,v) = f(x,y) e^{-j2\pi vy} \text{ dy} = -j2\pi ux \text{ dx}$$

$$F(u,v) = f(x,y) e^{-j2\pi vy} \text{ dy} = -j2\pi ux \text{ dx}$$

$$F(u,v) = f(x,v) = f(u,v)$$

Lezione 10

AA 2010-11

24

Th della Sezione Centrale o delle Proiezioni

Lezione 10 AA 2010-11 25

Corso di Elaborazione di Segnali e Immagini Biomedici – Il parte

La retroproiezione filtrata

- Indichiamo con (ρ, Ω) le coordinate polari della MTF
- l'inverso della MTF (2D) ha andamento $|\Omega|$ ed applicata all'immagine è in grado di correggere l'offuscamento
- lo stesso risultato si ha filtrando **ogni riga del sinogramma** con un **filtro a rampa** (1D) con amplificazione | $H(\omega_{\phi})$ | lineare in ω_{ϕ} e sfasamento nullo; da questa si ricava la risposta all'impulso $h(x_{\phi})$

Corso di Elaborazione di Segnali e Immagini Biomedici - II parte

Retroproiezione Filtrata -Filtered Back Projection FB

$$f(x,y) = \int_{2}^{+\infty} \left\{ F(u,v) \right\} =$$

$$= \iint_{-\infty}^{+\infty} F(u,v) e^{j2\pi(xu+yv)} du dv$$

$$|J| = \det \left| \frac{\partial u}{\partial \omega} \frac{\partial v}{\partial \omega} \right| = \det \left| \frac{\partial v}{\partial \omega} \right| = \omega$$

$$-\omega \sin \omega \cos \omega$$

 $f(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}$

29

Corso di Elaborazione di Segnali e Immagini Biomedici - II parte

Retroproiezione Filtrata - Filtered Back Projection F

PROIEZIONE FILTRATA

PILTRO A RAMPA SIMMETRICA (FASE = 0)

30

Lezion

Corso di Elaborazione di Segnali e Immagini Biomedici – Il parte

Il filtro a rampa

- il filtro a rampa ideale prende il nome di Ram-Lak (dai due ideatori indiani)
- l'incremento a rampa è comunque limitato alla freq. di Nyquist
- altre versioni impongono, in aggiunta, uno smussamento per limitare l'amplificazione del rumore in alta freq.

migliora al crescere del numero di proiezioni

Lezione 10 AA 2010-11 33

Corso di Elaborazione di Segnali e Immagini Biomedici – II parte (a) (b) (c) (d) (e)

FIGURE B.7. The effect of the number of projections on the final image using filtered backprojection with a Shepp-Logan filter. (a) The original Shepp-Logan phantom. (b-e) The effect of increasing the number of projections for reconstruction: (b) 20 projections, (c) 45 projections, (d) 90 projections, and (e) 180 projections.

Campionamento del Sinogramma

X > diviews, aggetto $\Delta t \leq \Delta \times$ $\Delta \theta \in \Delta \times / X/2 = \frac{2}{N}$ rad Almeno N <u>campioni</u> per professione

Almeno $M_{\theta} = \frac{\pi}{\Delta \theta} = \frac{\pi}{2}N$ Projection

Compiolis sinogrames $\supset N.M_{\theta} = \frac{\pi}{1} N^2 = 1.57 N^2$ Il sinogramus he une vidoudourse del 57%, o fin vispetto all'immagine

Lezione 10

D = 2 2 2 acl

Mo > 1 N = 1.57 N

36

Problemi fisici della ricostruzione

In pratica vi sono tre fonti di errore:

- 1. Fenomeni di aliasing nel campionamento delle proiezioni
- 2. Effetti delle non linearità del processo di imaging
- 3. Fluttuazioni statistiche dei dati legate ai fenomeni aleatori.

Il campionamento introduce errori da tre diverse sorgenti:

- Angolo di vista
- Proiezioni
- Uso di matrice quadrata M X M

Le non linearità sono dovute sia ai sensori, sia ai tessuti (per il diverso assorbimento)

Il rumore non è normalmente un processo stazionario a media nulla.