МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Лабораторная работа 5.5 Компьютерная γ -спектроскопия

Б03-104 Куланов Александр • Цель работы: Снять и исследовать спектры излучения различных источников, характеризовать различные пики в спектрах радиоактивных веществ.

1 Теоретические сведения

Фотоэффект - это процесс взаимодействия гамма-кванта с электроном, связанным с атомом, при котором электрону передается вся энергия гамма-кванта. При этом электрону сообщается кинетическая энергия $T_e = E_{\gamma} - I_i$, где E_{γ} - энергия гамма-кванта, I_i - потенциал ионизации i-той оболочки атома. Фотоэффект особенно существенен для тяжелых веществ, где он идет с заметной вероятностью даже при высоких энергиях гамма-квантов. В легких веществах фотоэффект становится заметен лишь при относительно небольших энергиях гамма-квантов.

Эффект Комптона - это упругое рассеяние фотона на свободном электроне, сопровождающееся изменением длины волны фотона. Максимальная энергия образующихся комптоновских электронов соответствует рассеянию гамма-квантов на 180° и равна

$$E_{\text{max}} = \frac{\eta \omega}{1 + \frac{mc^2}{2n\omega}}.$$
 (1)

Процесс образования электрон-позитронных пар. При достаточно высокой энергии гамма-кванта наряду с фотоэффектом и эффектом Комптона может происходить третий вид взаимодействия гамма-квантов с веществом – образование электрон-позитронных пар. Процесс образования пар не может происходить в пустоте, так как в этом случае не выполняются законы сохранения энергии и импульса. В присутствии ядра или электрона процесс образования пары гамма-квантов возможен, так как можно распределить энергию и импульс гамма-кванта между тремя частицами без противоречия с законами сохранения. При этом если процесс образования пары идет в кулоновском поле ядра или протона, то энергия образующегося ядра отдачи оказывается весьма малой, так что пороговая энергия гамма-кванта E_0 , необходимая для образования пары, практически совпадает с удвоенной энергией покоя электрона $E_0 \cong 2mc^2 = 1.022$ МэВ.

Появившийся в результате процесса образования пар электрон свою энергию на ионизацию среды. Таким образом, вся энергия электрона остается в детекторе. Позитрон будет двигаться до тех пор, пока практически не остановится, а затем аннигилирует с электроном среды, в результате чего появятся два гамма-кванта. Т.е., кинетическая энергия позитрона также останется в детекторе. Далее возможны три варианта развития событий:

- 1. оба родившихся гамма-кванта не вылетают из детектора, и тогда вся энергия первичного гамма-кванта останется в детекторе, а в спектре появится пик с $E=E_{\gamma}$;
- 2. один из родившихся гамма-квантов покидает детектор, и в спектре появляется пик, соответствующий энергии $E=E_{\gamma}-E_{0}$, где $E_{0}=mc^{2}=511$ кэB;
- 3. оба родившихся гамма-кванта покидают детектор, и в спектре появляется пик, соотвествующий энергии $E=E_{\gamma}-2E_{0}$, где $2E_{0}=2mc^{2}=1022$ кэВ.

Таким образом, любой спектр, получаемый с помощью гамма-спектрометра, описывается несколькими компонентами, каждая из которых связана с определенным физическим процессом. Как описано выше, основными физическими процессами взаимодействия гамма-квантов с веществом является фотоэффект, эффект Комптона и образование электрон-позитронных пар, и каждый из них вносит свой вклад в образование спектра. Помимо этих процессов, добавляется экспонента, связанная с наличием фона, $nu\kappa$ характеристического излучения, возникающий при взаимодействии гамма-квантов с окружающим веществом, а также $nu\kappa$ обратного рассеяния, образующийся при энергии квантов $E_{\gamma} \gg mc^2/2$

в результате рассеяния гамма-квантов на большие углы на материалах конструктивных элементов детектора и защиты. Положение пика обратного рассеяния определяется по формуле:

$$E_{\text{ofp}} = \frac{E}{1 + 2E/mc^2},\tag{2}$$

где E – энергия фотопика.

Даже при поглощении частиц с одинаковой энергией амплитуда импульса на выходе фотоприёмника сцинтилляционного детектора меняется от события к событию. Это связано:

- 1. со статистическим характером процессов сбора фотонов на фотоприёмнике и последующего усиления,
- 2. с различной вероятностью доставки фотона к фотоприемнику из разных точек сцинтиллятора,
- 3. с разбросом высвечиваемого числа фотонов

В результате в набранном спектре линия (которая для идеального детектора представляла бы дельта-функцию) оказывается размытой, её часто описывают гауссианом.

Энергетическим разрешением спектрометра называется величина

$$R_i = \frac{\Delta E_i}{E_i},\tag{3}$$

где ΔE_i – ширина пика полного поглощения, измеренная на половине высоты, E_i – энергия регистрируемого γ -излучения. Значение E_i пропорционально среднему числу фотонов $\overline{n_i}$ на выходе $\Phi \ni V$, т.е.:

$$E_i = \alpha \overline{n_i}. \tag{4}$$

Полуширина пика полного поглощения ΔE_i пропорциональна среднеквадратичной флуктуации $\overline{\Delta n_i}$. Т.к. n_i является дискретной случайной величиной, которая распределена по закону Пуассона, то $\overline{\Delta n_i} = \sqrt{\overline{n_i}}$ и поэтому

$$\Delta E_i = \alpha \overline{\Delta n_i} = \alpha \sqrt{\overline{n_i}}.$$
 (5)

Получаем, что

$$R_i = \frac{\Delta E_i}{E_i} = \frac{\text{const}}{\sqrt{E_i}}.$$
 (6)

Поскольку энергетическое разрешение зависит от энергии, его следует указывать для конкретной энергии. Чаще всего разрешение указывают для энергии гамма-линии ¹³⁷Cs (661.7 кэВ).

2 Обработка результатов

Проведем измерения гамма-спектров для ^{22}Na , ^{137}Cs , ^{60}Co , ^{241}Am , ^{152}Eu , а также измерение фона.

Найдем пики полного рассеяния для натрия $^{22}{
m Na}$ и цезия $^{137}{
m Cs}$:

$$N_{Na_{1}} = 749.0 \quad N_{Na_{2}} = 1774.2 \quad N_{Cs} = 952.9$$
 (7)

Известно, что этим пикам соответствуют табличные значения энергии 511, 1275 и 662 кэВ соответственно. Тогда проведем калибровку спектрометра, построив линейную зависимость энергии гамма-кванта от номера канала $E_i = f(N_i)$. Результат калибровки:

Рис. 1: Калибровочный график

Используя полученную калибровку, найдем положения фотопиков всех элементов

Элемент	N_i	ΔN_i	E_i , MeV	ΔE_i , MeV	R_i	E, MeV
22 Na	1774	69	1,275	0,051	0,04	1.274
⁶⁰ Co	1635	67	1,171	0,050	0,04	1.173
⁶⁰ Co	1854	81	1,334	0,060	0,05	1.332
$^{137}\mathrm{Cs}$	953	62	0,663	0,046	0,07	0.662
$^{241}\mathrm{Am}$	147	14	0,062	0,010	0,17	0.595
$^{152}\mathrm{Eu}$	232	16	0,125	0,012	0,1	0.122
$^{152}\mathrm{Eu}$	393	31	0,245	0,023	0,09	0.245
$^{152}\mathrm{Eu}$	525	39	0,344	0,029	0,08	0.344

Как мы видим, данные похожи на истинные. Построим график $R^2(1/E)$, чтобы убедиться в справедливости соотношения (6). Действительно, зависимость похожа на прямую.

Рис. 2: График зависимости $R^2(1/E)$

Теперь сравним полученные пики Комптоновского рассеяния с теоретическими значения:

Образец	N_i	$E_{\text{экс}}$, кэ B	$E_{ m reop}$, кэ ${ m B}$
$^{137}\mathrm{Cs}$	707	479,2	477.2
⁶⁰ Co	1363	968,3	960.9

По спектру, например, Натрия, определим пик излучения свинца (самый левый пик на спектре). Он соотвествует каналу с номером 169, или энергии 78 КэВ.

3 Выводы

В ходе работы после калибровки прибора были сняты спектры образцов 22 Na, 60 Co, 137 Cs, 241 Am, 152 Eu. В спектрах были исследованы пики, соответствующие следующим взаимодействиям гамма-квантов с веществом:

- фотоэффект (пики полного поглощения)
- эффект Комптона (характерное распределение энергий в спектре, оканчивающееся комптоновским краем)
- аннигиляция позитронов (пик 511 keV в спектре натрия, по которому проводилась калибровка)

Все значения энергии, опеределённые по спектрам, практически совпадали с табличными и расчётными.

Также была проверена линейная зависимость квадрата спектрального разрешения прибора от величины, обратной энергии полного поглощения.