

# Hello: I bring you announcements from other Autonomous Systems

Building SOC capability for telcos

Tim (Wadhwa-)Brown Engineering Technical Leader, CX CoE Security June 2023

# Background

- I own(ed) an ISP
- I cut my offensive teeth testing various telecoms networks both in labs and in production
- I work closely with with MITRE and other interested parties

# Why give this talk?

- We all rely on secure networks
- Working for Cisco, I'm a technical SME with an interest in keeping our telcos secure
- Purple is the new red

## An approach

- Threat modelling
  - What do you have, what do you need?
  - Suggested use cases as output
- Threat hunting
  - Conduct threat hunts based on threat model
- Detection engineering
  - Combine telemetry from SIEM, queries (Sigma et al) and big data analytics
  - Define specific use cases where big data can identify threats that analysts can't

# Where should we start?

Attacks in the wild...

# Risks to network infrastructure

- A network infrastructure device has:
  - Operating system
  - Free CPU cycles
  - Little / no end point detection
  - Vulnerabilities
  - Potentially overlooked
  - Potentially outsourced
  - Opportunities!!!



#### AMERICA'S CYBER DEFENSE AGENCY

**ALERT** 

# The Increasing Threat to Network Infrastructure Devices and Recommended Mitigations

Last Revised: September 28, 2016

Alert Code: TA16-250A

## More activity

 "Russian state-sponsored cyber actors are using compromised routers to conduct manin-the-middle attacks to support espionage, extract intellectual property, maintain persistent access to victim networks, and potentially lay a foundation for future offensive operations."



NEWS

# Russian state-sponsored cyber actors targeting network infrastructure devices

This advisory provides information on the worldwide cyber exploitation of network infrastructure devices (e.g. routers, switches, firewalls, Network-based Intrusion Detection System (NIDS) devices) by Russian state-sponsored cyber actors.

### **VPNFilter**

- Modular malware affecting 500 000 SOHO routers and network storage systems
- APT28's broken RC4 implementation
- Identified modules hint at objectives



# Modular functionality

- Stage 1 Persistence via crontab, C2 via Tor or SSL
- Stage 2 Execute commands, file upload/download, kill switch, proxy
- Modules:
  - Tor client
  - Wipe system, brick device.
  - Downgrade https to http, inject JS, redirect traffic, record credentials & tokens
  - Capture port 502 (Modbus) traffic
  - Subnet ARP scan, MicroTik network discovery protocol
  - SSH server, SSH connect, port scan IP range
  - Drop traffic, port forward, socks5 proxy, establish VPN to internal network
- Possibly additional modules, probably found most common.

# Cyclops Blink

- Modular malware affecting SOHO network devices
- VPNFilter v2
- Similar C2 weakness



# Modular functionality

- Modules:
  - System reconnaissance
  - File upload / download
  - Store & update C2 IPs
  - Update & persist
- Additional modules?

## Jaguar Tooth

- Exploitation of CVE-2017-6742, SNMP vuln
- Part of wider campaign against network infrastructure (not only Cisco)
- GRE tunnel creation, DNS hijack
- Modifying memory to reintroduce vulns
- Modifying configuration to make insecure
- Traffic capture, exfiltration & modulation
- Additional payloads
- Persist
- Scale & tempo give cause for concern



NEWS

APT28 exploits known vulnerability to carry out reconnaissance and deploy malware on Cisco routers

# What do we know about mobile networks?

...and the threat landscape?

### 4G Mobile Core



- HSS Home
  Subscriber Server
- SPR Subscriber Profile Register
- PCRF Policy and Charging Rules Function
- PCEF Policy and Charging Enforcement Function
- MME Mobility
  Management Entity
- SGSN Serving GPRS Support Node
- IMS IP Multimedia Subsystem
- SBC Session Border Controller

# What does the control plane look like?

- SS7 and Diameter
  - AAA
- GTP-[UC]
  - Establishes tunnels

# SIGTRAN and SS7 protocol stack



### GSMA message categories



| Category   | Description                                                                                                                                                                         |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Category 1 | Contains all the SS7 messages which should normally only be received from within the same network, and not on interconnect links from other networks,                               |
| Category 2 | Composed of MAP messages which should normally only be received in relation to an inbound roaming (visiting) subscriber from that subscriber's own home network.                    |
| Category 3 | Composed of MAP Messages which should normally only be received in relation to an outbound roaming subscriber from the visited network that the subscriber is currently roaming in. |
| Category 4 | Related to SMS InterWorking (SMS terminating only).                                                                                                                                 |
| Category 5 | Related to CAMEL                                                                                                                                                                    |

# Diameter protocol



# SS7/Diameter mappings\*

| Diameter Command                   | Interfa<br>ce Direction |        | rection     | SS7 Equivalence                         |  |  |  |
|------------------------------------|-------------------------|--------|-------------|-----------------------------------------|--|--|--|
| Command Name                       |                         | Source | Destination | Command Name                            |  |  |  |
| Update-Location-Request            |                         | MME    | HSS         | Update-Location-Request                 |  |  |  |
| Update-Location-Request            |                         | SGSN   | HSS         | Update-GPRS-Location-Request            |  |  |  |
| Cancel-Location-Request            |                         | HSS    | MME         | Cancel-Location-Request                 |  |  |  |
| Cancel-Location-Request            |                         | HSS    | SGSN        | Cancel-Location-Request                 |  |  |  |
| Authentication-Information-Request |                         | MME    | HSS         | Send-Authentication-Information-Request |  |  |  |
| Authentication-Information-Request |                         | SGSN   | HSS         | Send-Authentication-Information-Request |  |  |  |

<sup>\*</sup> Illustrative rather than a complete mapping of all operations

### Threat landscape in today's mobile networks















#### **Device Threats**

- SIM manipulation
- Cloning
- Bots DDoS
- Firmware Hacks
- Device Tampering
- Sensor Susceptibility
- TFTP MitM attacks

#### Air Interface Threats

- MitM attack
- Jamming

#### **RAN Threats**

- Rogue Nodes
- Insecure S1, X2
- Insecure Xx, Xn

#### MEC & Backhaul Threats

- DDoS attacks
- LI Vulnerabilities
- Insecure Sx
- Insecure N6
- CP / UP Sniffing
- MEC Backhaul sniff
- API Vulnerabilities
- · Side Channel attacks
- NFVi Vulnerabilities

### 5G Packet Core & OAM Threats

- Virtualization
- LI Vulnerabilities
- Improper Access Control
- Network Slice security
- API vulnerabilities
- NEF vulnerabilities
- IoT Core integration
- Roaming Partner
- DDoS & DoS attacks

### SGi / N6 & External Roaming Threats

- IoT Core integration
- VAS integration
- App server vulnerabilities
- Application vulnerabilities
- API vulnerabilities

# Lightbasin

- Password spray w/ default vendor passwords
- Compromised an eDNS node
- Deployed PAM backdoor known as SLAPSTICK
- Utilised ICMP tunneling
- Used SGSN emulation software to support C2 activities in concert with TinyShell
  - Connect to nine pairs of International Mobile Subscriber Identity (IMSI) and Mobile Subscriber Integrated Services Digital Network (MSISDN) numbers
  - Established GTP tunnels
- Leveraged SIGTRAN for additional G2

# Redressing the balance

# Cyber hygiene is critical

## There's more though...

- <a href="https://mitre-attack.github.io/attack-navigator/">https://mitre-attack.github.io/attack-navigator/</a>
  - Create New Layer
  - Enterprise
  - Filters > Platforms > Network



# How do we go about building SOC capability for a telco?

- Threat model
- Manual hunts
- Automation

# What does the threat model for a telco look like?

# What might a telco graph look like?



- OSS/BSS
- Subscribers
- Routing and switching fabric
- Mobile networks

# Useful generalisations

- Not all systems will be affected by all tactics
  - Initial access
    - Subscribers, maybe OSS/BSS
  - Impact
    - HLR, core routing and switching
- Use CVSS for scoring
  - Imperfect
    - Better than nothing
    - Captures properties of techniques quite nicely
- Think STRIDE
  - Enterprise and mobile techniques can be mapped into a telco specific equivalents
    - E.g. Most directory services are likely to have similar threat models, AD or otherwise

| Fixed Line Subscribers   | 11  |   | 11 | Medium        | 5        | Medium        | 39        |
|--------------------------|-----|---|----|---------------|----------|---------------|-----------|
|                          |     |   |    | High          | 4        | High          | 16        |
|                          |     |   |    | Critical      | 2        | Critical      | 12        |
|                          |     |   |    |               |          |               |           |
| Internet Facing Services | 7   |   | 7  | Unrated       | 3        | Unrated       | 11        |
|                          |     |   |    | Medium        | 2        | Medium        | 8         |
|                          |     |   |    | High          | 1        | High          | 3         |
|                          |     |   |    | Critical      | 1        | Critical      | 2         |
| MPLS Core                | 39  |   | 39 | Unrated       | 1        | Unrated       | 2         |
|                          |     |   |    | Low           | 10       | Low           | 35        |
|                          |     |   |    | Medium        | 17       | Medium        | 59        |
|                          |     |   |    | High          | 10       | High          | 33        |
|                          |     |   |    | Critical      | 1        | Critical      | 4         |
| Mobile Core              | 38  | _ | 20 | 1             | 40       | 1             |           |
| Mobile Core              | 30  |   | 38 | Low Medium    | 10<br>17 | Low Medium    | 54<br>144 |
|                          |     |   |    | High          | 11       | High          | 109       |
|                          |     |   |    | riigii 🚾      | - ''     | High          | 109       |
| Mobile Subscribers       | 13  |   | 13 | Unrated       | 1        | Unrated       | 2         |
|                          |     | _ |    | Medium        | 6        | Medium        | 9         |
|                          |     |   |    | High          | 5        | High          | 13        |
|                          |     |   |    | Critical      | 1        | Critical      | 4         |
| OSS/BSS                  | 75  |   | 75 | Unrated       | 20       | Unrated       | 388       |
| 300,200                  |     |   | 10 | Low           | 10       | Low           | 214       |
|                          |     |   |    | Medium        | 29       | Medium        | 642       |
|                          |     |   |    | High          | 15       | High          | 309       |
|                          |     |   |    | Critical      | 1        | Critical      | 63        |
| Dedic Access Nationals   | 4.0 | _ |    |               |          |               |           |
| Radio Access Network     | 16  |   | 16 | Unrated       | 1        | Unrated       | 6         |
|                          |     |   |    | Low           | 1        | Low           | 7         |
|                          |     |   |    | Medium        | 3<br>10  | Medium        | 14<br>86  |
|                          |     |   |    | High Critical | 10       | High Critical | 4         |
|                          |     |   |    | Chilical      | '        | Chilcal       | 4         |
| SD-WAN Overlay           | 19  |   | 19 | Low           | 2        | Low           | 15        |
|                          |     |   |    | Medium        | 10       | Medium        | 50        |
|                          |     |   |    | High .        | 6        | High          | 20        |
|                          |     |   |    | Critical      | 1        | Critical      | 4         |
| Threat Groups            | 26  |   | 19 | High High     | 26       | High          | 26        |
|                          |     | Ī | 7  | i iigii       | 2.5      | i ngii        | 20        |
|                          |     |   |    |               |          |               |           |
| Tooling                  | 56  |   | 34 | Low           | 1        | Low           | 1         |
|                          |     |   | 22 | Medium        | 20       | Medium        | 20        |
|                          |     |   |    | High          | 32       | High          | 32        |
|                          |     |   |    | Critical      | 3        | Critical      | 3         |
| VoIP Subscribers         | 14  |   | 14 | Medium        | 7        | Medium        | 18        |
|                          |     | _ |    | High          | 5        | High          | 14        |
|                          |     |   |    | Critical      | 2        | Critical      | 5         |
|                          |     |   |    |               |          |               |           |

# OSS/BSS

### Example attack path for OSS/BSS



# Subscribers

### Example attack path for fixed line subscribers



# Routing and switching

# Example attack path for MPLS Core



# Mobile networks

#### Introducing MITRE's FIGHT matrix



#### Example attack path for Radio Access Network



#### Example attack path for Mobile Core



## Let's go hunting

#### Starting point

- Align to a Use Case Framework
  - Leverage understanding of real world threats that could affect you
  - Identify useful data sets from SIEM
  - Define questions we'd like to be able to answer
  - Provide use cases to data engineers as VAL

#### Example hunts on OSS/BSS

- AAA
  - Authentication failures
  - Malformed authentication
  - Use of local + console access
  - Use of default credentials
  - Use of shared accounts
  - Use of privileged access

- AAA
  - Use of unauthorized commands
  - Use of privileged commands
  - Use of FTP and TFTP
  - Credential modification
  - Weak credentials

#### Example hunts on MPLS Core

- MPLS + BGP
  - Control plane
    - Failed SSH authentication attempts
    - Failed SNMP authentication attempts
    - Weak credentials
    - Credential modification
    - Use of unauthorized commands
    - Use of (anonymous) FTP and TFTP
    - Config file transfer

- MPLS + BGP + control plane
  - Operationally
    - Failed BGP authentication attempts
    - Failed LDP, PCEP etc authentication attempts
    - Interface changes
    - System state changes

#### Example hunts on Mobile Core

- SS7 + Diameter + GTP
  - Location
    - Source operator
    - Destination operator
  - Protocol
    - Operation anomalies
    - Sensitive operations
      - IMSI enumeration
      - Subscriber profile enumeration
      - Subscriber location enumeration

- SS7 + Diameter + GTP
  - Protocol
    - Sensitive operations (cont'd)
      - Profile enumeration
      - Operator leakage
      - Traffic interception
      - Fraudulent billing
      - SMS interception + modification
      - Denial of Service
    - Malformed packets

#### How many events are too many for an analyst? ©

- Consider the number of IPs operated
  - IPv4
  - IPv6
  - Millions of firewall events each day
- Consider the number of subscribers, phone calls and text messages
  - Hundreds of millions of events each week

### Insert ML here ->

and here ->

## How can we scale detection?

- ML based detection
  - For example
    - Events that are suspicious
      - Clustered by operations and properties aligned to threats
      - Statistical analysis of
        - Rare clusters
        - Increased cluster rates
        - Decreased cluster rates

#### Refining Use Cases

- Define use case
  - Provide questions
- Analyse data
  - Identify index and sourcetype
- Analyse data sets
  - Define queries
  - SIEM data model
  - Identify correlation points and pivots
- Iterate

# Example threat description for mobile usage

- This UC is all about user equipment interacting with the network and the impact as seen on the control plane
- Operators should typically know the identity of handsets
- Visitors should only be interacting via the relevant gateways e.g. locally vs via international gateways etc
- The protocol implementations should largely be a known quantity and operators should typically not be expect anomalous operations from them
- The aim with this use case is therefore is to identify anomalous usage patterns, which do not fit into expected clusters
- This will primarily focus on protocol operations and network locations, rather than the specifics of individual pieces of user equipment

#### Example questions

- Has there been an increase in activity?
  - We would expect this to be seasonal, but a dramatic change on one particular day is worth investigating
- What is the baseline range of users and locations?
  - Have they changed?
  - Are they feasible?
- What is the baseline range of operations?
  - We mapped all the likely malicious operations into their offensive use cases
  - Have they changed?
  - Are they feasible?
  - Are any malicious?
- What is the baseline range of visiting handsets?
  - Have they changed?
  - Are they feasible?
- What happens when you put all of these different features together?

#### Key Fields

- IP Header Source Address
- IP Header Destination Address
- Gateway Hostname

- Protocol Operation
- Protocol Errors
- Source Operator
- Destination Operator

## Every Use Case benefits from analytics, however...

- Fundamental challenges
  - SOCs often envisage communication of requirements as discrete logic
    - This doesn't really work for ML
  - Lack of familiarity with processes can hamper integration
    - This is a growing pain when deploying new capability
- Splunk performance
  - Source event generation volume too great
  - Source event generation frequency too great
- Data engineering
  - · Insufficient data quality
  - Inability to effectively reliably correlate telemetry to security events
  - Lack of public human labelled data sets

#### Reasoning

- Feasibility can't really be evaluated until data is onboarded into the data lake
  - Samples of log sources are no substitute for real live data
- Once the data has been onboarded, there is always the opportunity for custom statistical analysis
  - Primary aim of moving beyond SIEM should be to identify where ML can help

## Conclusions

## Improving the ecosystem

- https://github.com/SigmaHQ/sigma/tree/ master/rules/network
  - Cisco
    - AAA
    - BGP
    - LDP
  - Huawei
    - BGP
  - Juniper
    - BGP
- https://blogs.cisco.com/security/newforensic-investigation-procedures-forfirst-responder-guides
- https://sec.cloudapps.cisco.com/security/ center/tacticalresources.x

#### Final thoughts...

- Enterprise vs telco
- Operational interlock
- Analytics
  - Need to avoid selecting data from bulky data sources
  - Need to consider ML from the very start of the use case process
    - Align use cases to anomaly, forecasting and classification earlier
    - Where possible, identify open source labelled datasets from the outside
    - For non-ML experts...
      - Consider the questions you would like the model to be able to answer
- Testing

### Questions?

twadhwab@cisco.com

