$12n_{0501} \ (K12n_{0501})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -4u^{32} + 16u^{31} + \dots + 4b + 5, \ 5u^{32} - 16u^{31} + \dots + 4a + 6, \ u^{33} - 4u^{32} + \dots - 6u + 1 \rangle$$

$$I_2^u = \langle -au + b, \ 2u^2a + a^2 + au + 2u^2 + 3a + u + 4, \ u^3 + u^2 + 2u + 1 \rangle$$

$$I_3^u = \langle u^2 + b + u + 1, \ -u^2 + a - 1, \ u^3 + u^2 + 2u + 1 \rangle$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 42 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -4u^{32} + 16u^{31} + \dots + 4b + 5, \ 5u^{32} - 16u^{31} + \dots + 4a + 6, \ u^{33} - 4u^{32} + \dots - 6u + 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -\frac{5}{4}u^{32} + 4u^{31} + \dots + \frac{7}{4}u - \frac{3}{2} \\ u^{32} - 4u^{31} + \dots + 9u - \frac{5}{4} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{1}{4}u^{32} - \frac{5}{2}u^{30} + \dots + \frac{43}{4}u - \frac{11}{4} \\ u^{32} - 4u^{31} + \dots + 9u - \frac{5}{4} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -\frac{11}{4}u^{32} + \frac{41}{4}u^{31} + \dots - 23u + \frac{11}{2} \\ \frac{3}{4}u^{32} - 3u^{31} + \dots + \frac{63}{4}u - \frac{15}{4} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -\frac{1}{4}u^{32} + \frac{3}{4}u^{31} + \dots - 4u + \frac{1}{4} \\ \frac{1}{4}u^{32} - u^{31} + \dots + \frac{13}{4}u - \frac{1}{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} + 1 \\ -u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -\frac{1}{2}u^{32} + \frac{7}{4}u^{31} + \dots - \frac{29}{4}u + \frac{3}{4} \\ \frac{1}{4}u^{32} - u^{31} + \dots + \frac{17}{4}u - \frac{3}{4} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{3} - 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -\frac{9}{4}u^{32} + \frac{33}{4}u^{31} + \dots - \frac{37}{2}u + \frac{19}{4} \\ \frac{3}{4}u^{32} - \frac{11}{4}u^{31} + \dots + 13u - \frac{13}{4} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-\frac{9}{2}u^{32} + \frac{35}{2}u^{31} + \dots \frac{111}{2}u + \frac{23}{4}$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{33} + 46u^{32} + \dots + 42u + 1$
c_2, c_5	$u^{33} + 4u^{32} + \dots + 4u - 1$
c_3, c_{11}	$u^{33} - 4u^{32} + \dots + 10u - 1$
<i>c</i> ₄	$u^{33} - 3u^{32} + \dots - 31624u - 99623$
c_6, c_7, c_{10}	$u^{33} + 4u^{32} + \dots - 6u - 1$
c ₈	$u^{33} + u^{32} + \dots + 128u^2 - 512$
<i>c</i> 9	$u^{33} - 4u^{32} + \dots - 744u - 137$
c_{12}	$u^{33} + 26u^{31} + \dots + 1410u - 2071$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{33} - 114y^{32} + \dots + 1162y - 1$
c_{2}, c_{5}	$y^{33} - 46y^{32} + \dots + 42y - 1$
c_3, c_{11}	$y^{33} + 26y^{32} + \dots + 42y - 1$
c_4	$y^{33} + 39y^{32} + \dots - 19254673246y - 9924742129$
c_6, c_7, c_{10}	$y^{33} + 34y^{32} + \dots - 6y - 1$
<i>c</i> ₈	$y^{33} + 49y^{32} + \dots + 131072y - 262144$
<i>c</i> ₉	$y^{33} + 26y^{32} + \dots - 461086y - 18769$
c_{12}	$y^{33} + 52y^{32} + \dots - 8631988y - 4289041$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.783955 + 0.550569I		
a = 1.50759 - 1.19961I	-10.85950 + 2.60786I	-1.64483 - 2.62552I
b = -1.84235 + 0.11041I		
u = 0.783955 - 0.550569I		
a = 1.50759 + 1.19961I	-10.85950 - 2.60786I	-1.64483 + 2.62552I
b = -1.84235 - 0.11041I		
u = 0.745301 + 0.601492I		
a = -1.40874 + 1.23496I	-6.97586 - 2.52993I	1.181503 + 0.379753I
b = 1.79275 - 0.07307I		
u = 0.745301 - 0.601492I		
a = -1.40874 - 1.23496I	-6.97586 + 2.52993I	1.181503 - 0.379753I
b = 1.79275 + 0.07307I		
u = 0.799754 + 0.494935I		
a = -1.61442 + 1.19019I	-6.63229 + 7.68298I	1.86058 - 5.38110I
b = 1.88021 - 0.15283I		
u = 0.799754 - 0.494935I		
a = -1.61442 - 1.19019I	-6.63229 - 7.68298I	1.86058 + 5.38110I
b = 1.88021 + 0.15283I		
u = -0.071136 + 1.190150I		
a = 0.658204 - 0.211530I	1.03666 - 2.07532I	3.43845 + 3.26136I
b = -0.204931 - 0.798410I		
u = -0.071136 - 1.190150I		
a = 0.658204 + 0.211530I	1.03666 + 2.07532I	3.43845 - 3.26136I
b = -0.204931 + 0.798410I		
u = -0.688247 + 0.161266I		
a = 0.110580 + 0.396771I	3.61024 - 0.82218I	5.86040 + 0.81952I
b = 0.140092 + 0.255244I		
u = -0.688247 - 0.161266I		
a = 0.110580 - 0.396771I	3.61024 + 0.82218I	5.86040 - 0.81952I
b = 0.140092 - 0.255244I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.182052 + 1.337320I		
a = -0.217943 - 0.164939I	-3.43336 - 2.41737I	0
b = -0.260253 + 0.261432I		
u = -0.182052 - 1.337320I		
a = -0.217943 + 0.164939I	-3.43336 + 2.41737I	0
b = -0.260253 - 0.261432I		
u = -0.294839 + 1.343030I		
a = -0.011030 + 0.323726I	-1.11961 - 4.40985I	0
b = 0.431523 + 0.110260I		
u = -0.294839 - 1.343030I		
a = -0.011030 - 0.323726I	-1.11961 + 4.40985I	0
b = 0.431523 - 0.110260I		
u = -0.212327 + 0.555507I		
a = -0.012738 - 0.990392I	1.64764 - 2.26500I	1.52805 + 4.62369I
b = -0.552874 - 0.203211I		
u = -0.212327 - 0.555507I		
a = -0.012738 + 0.990392I	1.64764 + 2.26500I	1.52805 - 4.62369I
b = -0.552874 + 0.203211I		
u = 0.09222 + 1.42628I		
a = -0.711100 - 0.954177I	-1.79243 + 4.81413I	0
b = -1.29535 + 1.10223I		
u = 0.09222 - 1.42628I		
a = -0.711100 + 0.954177I	-1.79243 - 4.81413I	0
b = -1.29535 - 1.10223I		
u = 0.02669 + 1.47035I		
a = 0.484236 + 0.756490I	-7.20920 + 1.09488I	0
b = 1.099380 - 0.732184I		
u = 0.02669 - 1.47035I		
a = 0.484236 - 0.756490I	-7.20920 - 1.09488I	0
b = 1.099380 + 0.732184I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape	
u = -0.06717 + 1.48459I			
a = -0.340624 - 0.578506I	-4.89325 - 3.34061I	0	
b = -0.881727 + 0.466828I			
u = -0.06717 - 1.48459I			
a = -0.340624 + 0.578506I	-4.89325 + 3.34061I	0	
b = -0.881727 - 0.466828I			
u = -0.497661			
a = -0.331095	0.854180	12.3760	
b = -0.164773			
u = 0.29075 + 1.52597I			
a = -0.056410 + 1.324390I	-13.1973 + 11.6833I	0	
b = 2.03738 - 0.29899I			
u = 0.29075 - 1.52597I			
a = -0.056410 - 1.324390I	-13.1973 - 11.6833I	0	
b = 2.03738 + 0.29899I			
u = 0.27105 + 1.54914I			
a = 0.016042 - 1.254950I	-17.7298 + 6.4903I	0	
b = -1.94844 + 0.31531I			
u = 0.27105 - 1.54914I			
a = 0.016042 + 1.254950I	-17.7298 - 6.4903I	0	
b = -1.94844 - 0.31531I			
u = 0.23795 + 1.56175I			
a = 0.049432 + 1.196740I	-14.1120 + 1.0765I	0	
b = 1.85725 - 0.36197I			
u = 0.23795 - 1.56175I			
a = 0.049432 - 1.196740I	-14.1120 - 1.0765I	0	
b = 1.85725 + 0.36197I			
u = 0.362886 + 0.190995I			
a = 0.83437 - 3.02007I	3.51710 + 3.29019I	-0.48267 - 6.06797I	
b = -0.879597 + 0.936581I			

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.362886 - 0.190995I		
a = 0.83437 + 3.02007I	3.51710 - 3.29019I	-0.48267 + 6.06797I
b = -0.879597 - 0.936581I		
u = 0.154044 + 0.322324I		
a = -0.12190 + 2.14236I	-1.241050 + 0.560760I	-5.36805 - 2.52603I
b = 0.709313 - 0.290729I		
u = 0.154044 - 0.322324I		
a = -0.12190 - 2.14236I	-1.241050 - 0.560760I	-5.36805 + 2.52603I
b = 0.709313 + 0.290729I		

II. $I_2^u = \langle -au + b, 2u^2a + a^2 + au + 2u^2 + 3a + u + 4, u^3 + u^2 + 2u + 1 \rangle$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} a \\ au \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} au + a \\ au \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2}a - 2u^{2} - a - u - 4 \\ au + u^{2} + a + 2 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{2}a - au - a \\ u^{2} + a + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ -u^{2} - u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} - u - 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{2}a - au - u^{2} - 2a - 2 \\ -au + 2u^{2} + a + 2 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} - u - 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{2}a - au - 2u^{2} - a - u - 4 \\ -u^{2}a + au + u^{2} + a + 2 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $5au + 5u^2 + 2a + 5u + 8$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_{10}, c_{11}	$(u^3 - u^2 + 2u - 1)^2$
c_2, c_9	$(u^3 + u^2 - 1)^2$
c_3, c_6, c_7	$(u^3 + u^2 + 2u + 1)^2$
C ₄	$u^6 + u^5 + 4u^4 + u^3 + 2u^2 - 2u + 1$
<i>C</i> ₅	$(u^3 - u^2 + 1)^2$
<i>c</i> ₈	u^6
c_{12}	$(u^3 - u - 1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
$c_1, c_3, c_6 \\ c_7, c_{10}, c_{11}$	$(y^3 + 3y^2 + 2y - 1)^2$
c_2, c_5, c_9	$(y^3 - y^2 + 2y - 1)^2$
c_4	$y^6 + 7y^5 + 18y^4 + 21y^3 + 16y^2 + 1$
C ₈	y^6
c_{12}	$(y^3 - 2y^2 + y - 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.215080 + 1.307140I		
a = 0.447279 - 0.744862I	-5.65624I	3.89456 + 5.95889I
b = 0.877439 + 0.744862I		
u = -0.215080 + 1.307140I		
a = 0.092519 + 0.562280I	-4.13758 - 2.82812I	-4.97655 + 4.84887I
b = -0.754878		
u = -0.215080 - 1.307140I		
a = 0.447279 + 0.744862I	5.65624I	3.89456 - 5.95889I
b = 0.877439 - 0.744862I		
u = -0.215080 - 1.307140I		
a = 0.092519 - 0.562280I	-4.13758 + 2.82812I	-4.97655 - 4.84887I
b = -0.754878		
u = -0.569840		
a = -1.53980 + 1.30714I	4.13758 + 2.82812I	8.08199 - 1.11003I
b = 0.877439 - 0.744862I		
u = -0.569840		
a = -1.53980 - 1.30714I	4.13758 - 2.82812I	8.08199 + 1.11003I
b = 0.877439 + 0.744862I		

III.
$$I_3^u = \langle u^2 + b + u + 1, -u^2 + a - 1, u^3 + u^2 + 2u + 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} - u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u \\ -u^{2} - u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ -u^{2} - u - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u + 2 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ -u^{2} - u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} - u - 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} - u - 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u \\ -u^{2} - u - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_{10}, c_{11} c_{12}	$u^3 - u^2 + 2u - 1$
c_2,c_9	$u^3 + u^2 - 1$
c_3, c_6, c_7	$u^3 + u^2 + 2u + 1$
c_4	$u^3 - 3u^2 + 2u + 1$
<i>C</i> ₅	$u^3 - u^2 + 1$
<i>C</i> ₈	u^3

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_6 c_7, c_{10}, c_{11} c_{12}	$y^3 + 3y^2 + 2y - 1$
c_2, c_5, c_9	$y^3 - y^2 + 2y - 1$
c_4	$y^3 - 5y^2 + 10y - 1$
<i>c</i> ₈	y^3

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.215080 + 1.307140I		
a = -0.662359 - 0.562280I	0	0
b = 0.877439 - 0.744862I		
u = -0.215080 - 1.307140I		
a = -0.662359 + 0.562280I	0	0
b = 0.877439 + 0.744862I		
u = -0.569840		
a = 1.32472	0	0
b = -0.754878		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u^3 - u^2 + 2u - 1)^3)(u^{33} + 46u^{32} + \dots + 42u + 1)$
c_2	$((u^3 + u^2 - 1)^3)(u^{33} + 4u^{32} + \dots + 4u - 1)$
<i>c</i> ₃	$((u^3 + u^2 + 2u + 1)^3)(u^{33} - 4u^{32} + \dots + 10u - 1)$
C ₄	$(u^3 - 3u^2 + 2u + 1)(u^6 + u^5 + 4u^4 + u^3 + 2u^2 - 2u + 1)$ $\cdot (u^{33} - 3u^{32} + \dots - 31624u - 99623)$
<i>C</i> ₅	$((u^3 - u^2 + 1)^3)(u^{33} + 4u^{32} + \dots + 4u - 1)$
c_{6}, c_{7}	$((u^3 + u^2 + 2u + 1)^3)(u^{33} + 4u^{32} + \dots - 6u - 1)$
<i>c</i> ₈	$u^9(u^{33} + u^{32} + \dots + 128u^2 - 512)$
<i>c</i> 9	$((u^3 + u^2 - 1)^3)(u^{33} - 4u^{32} + \dots - 744u - 137)$
c_{10}	$((u^3 - u^2 + 2u - 1)^3)(u^{33} + 4u^{32} + \dots - 6u - 1)$
c_{11}	$((u^3 - u^2 + 2u - 1)^3)(u^{33} - 4u^{32} + \dots + 10u - 1)$
c_{12}	$((u^3 - u - 1)^2)(u^3 - u^2 + 2u - 1)(u^{33} + 26u^{31} + \dots + 1410u - 2071)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y^3 + 3y^2 + 2y - 1)^3)(y^{33} - 114y^{32} + \dots + 1162y - 1)$
c_2,c_5	$((y^3 - y^2 + 2y - 1)^3)(y^{33} - 46y^{32} + \dots + 42y - 1)$
c_3, c_{11}	$((y^3 + 3y^2 + 2y - 1)^3)(y^{33} + 26y^{32} + \dots + 42y - 1)$
c_4	$(y^3 - 5y^2 + 10y - 1)(y^6 + 7y^5 + 18y^4 + 21y^3 + 16y^2 + 1)$ $\cdot (y^{33} + 39y^{32} + \dots - 19254673246y - 9924742129)$
c_6, c_7, c_{10}	$((y^3 + 3y^2 + 2y - 1)^3)(y^{33} + 34y^{32} + \dots - 6y - 1)$
C ₈	$y^9(y^{33} + 49y^{32} + \dots + 131072y - 262144)$
<i>c</i> ₉	$((y^3 - y^2 + 2y - 1)^3)(y^{33} + 26y^{32} + \dots - 461086y - 18769)$
c_{12}	$(y^3 - 2y^2 + y - 1)^2(y^3 + 3y^2 + 2y - 1)$ $\cdot (y^{33} + 52y^{32} + \dots - 8631988y - 4289041)$