# Computer Networks Chapter 2.3 ~2.4

Jong-won Lee

Handong University

# Chapter 2: Application layer

- □ 2.1 Principles of network applications
- □ 2.2 Web and HTTP
- □ 2.3 Electronic Mail (SMTP, POP3, IMAP)
- □ 2.4 DNS
- □ 2.5 P2P applications
- 2.6 Video streaming and content distribution networks (CDNs)
- □ 2.7 Socket programming with TCP and UDP

### Electronic Mail

#### Three major components:

- user agents
- mail servers
- simple mail transfer protocol: SMTP

#### <u>User Agent</u>

- □ a.k.a. "mail reader"
- composing, editing, reading mail messages
- e.g., Outlook, elm, Netscape Messenger
- outgoing, incoming messages stored on server



#### Electronic Mail: mail servers

#### Mail Servers

- mailbox contains incoming messages for user
- message queue of outgoing (to be sent) mail messages
- □ SMTP protocol between mail servers to send email messages
  - client: sending mail server
  - o "server": receiving mail server

### **SMTP** [RFC 2821]

- uses to reliably transfer email message from client to server on port
  - three phases of transfer
    - handshaking (greeting)
    - transfer of messages
    - closure
- □ SMTP uses persistent connections
  - Can send several messages over the same TCP connection
  - direct transfer: sending server to receiving server
- The message must be in
- command/response interaction
  - o commands: ASCII text
  - response: status code and phrase

### E-mail scenario



### Sample SMTP interaction

```
S: 220 hamburger.edu
C: HELO crepes.fr
S: 250 Hello crepes.fr, pleased to meet you
C: MAIL FROM: <alice@crepes.fr>
S: 250 alice@crepes.fr... Sender ok
C: RCPT TO: <bob@hamburger.edu>
S: 250 bob@hamburger.edu ... Recipient ok
C: DATA
S: 354 Enter mail, end with "." on a line by itself
C: Subject: sample message
C: From: alice@crepes.fr
C: To: bob@hamburger.edu
C:
C: Do you like ketchup?
C: How about pickles?
C: .
S: 250 Message accepted for delivery
C: QUIT
S: 221 hamburger.edu closing connectiOn
```

# Comparison with HTTP

- ☐ HTTP 1.1 and SMTP: persistent connection
- ☐ HTTP:
- □ SMTP:
- both have ASCII command/response interaction, status codes
- HTTP: each object encapsulated in its own HTTP response msg
- □ SMTP: multiple objects sent in multipart msg

### Mail message format

- □ The message must be in 7-bit ASCII
- for non-ASCII data
  - o RFC 2045, 2056
  - additional lines in msg header declare MIME content type

MIME version

method used
to encode data

type, subtype,
parameter declaration

from: alice@crepes.fr
To: bob@hamburger.edu
Subject: Picture of yummy crepe.
MIME-Version: 1.0
Content-Transfer-Encoding: base64
Content-Type: image/jpeg

base64 encoded data .....
.....base64 encoded data

#### Message format: multimedia extensions

#### encoding

| Value | Code |
|-------|------|-------|------|-------|------|-------|------|-------|------|-------|------|
| 0     | A    | 11    | L    | 22    | W    | 33    | h    | 44    | S    | 55    | 3    |
| 1     | В    | 12    | M    | 23    | X    | 34    | i    | 45    | t    | 56    | 4    |
| 2     | C    | 13    | N    | 24    | Y    | 35    | j    | 46    | u    | 57    | 5    |
| 3     | D    | 14    | O    | 25    | Z    | 36    | k    | 47    | V    | 58    | 6    |
| 4     | E    | 15    | P    | 26    | a    | 37    | l    | 48    | W    | 59    | 7    |
| 5     | F    | 16    | Q    | 27    | b    | 38    | m    | 49    | X    | 60    | 8    |
| 6     | G    | 17    | R    | 28    | c    | 39    | n    | 50    | y    | 61    | 9    |
| 7     | Н    | 18    | S    | 29    | d    | 40    | 0    | 51    | Z    | 62    | +    |
| 8     | I    | 19    | T    | 30    | e    | 41    | p    | 52    | 0    | 63    | /    |
| 9     | J    | 20    | U    | 31    | f    | 42    | q    | 53    | 1    |       |      |
| 10    | K    | 21    | V    | 32    | g    | 43    | r    | 54    | 2    |       |      |

#### Message format: multimedia extensions



### Protocols related to Mail



### Web-based e-mail



Case 1: Only receiver uses HTTP **HTTP** client client server server **HTTP HTTP** transactions transactions 2 Alice Bob **SMTP SMTP** Internet client server Alice site Bob site

Case 2: Both sender and receiver use HTTP

# Mail access protocols

- □ SMTP: delivery/storage to receiver's server
- Mail access protocol: retrieval from server
  - POP3: Post Office Protocol [RFC 1939]
    - authorization (agent <-->server) and download
    - Use TCP connection on port 110
  - IMAP4: Internet Mail Access Protocol [RFC 1730]
    - more features (more complex)
    - manipulation of stored msgs on server
      - provide the folder functionality
  - HTTP: gmail, Hotmail, Yahoo! Mail, etc.

### POP3 protocol

#### authorization phase

- client commands:
  - o user: declare username
  - pass: password
- server responses
  - +OK
  - -ERR

#### transaction phase, client:

- list: list message numbers
- retr: retrieve message by number
- □ dele: delete
- quit

```
S: +OK POP3 server ready
```

C: user bob

S: +OK

C: pass hungry

S: +OK user successfully logged on

C: list

S: 1 498

S: 2 912

S:

C: retr 1

S: <message 1 contents>

S:

C: dele 1

C: retr 2

S: <message 1 contents>

S: .

C: dele 2

C: quit

S: +OK POP3 server signing off

# Chapter 2: Application layer

- □ 2.1 Principles of network applications
- □ 2.2 Web and HTTP
- □ 2.3 Electronic Mail (SMTP, POP3, IMAP)
- ☐ 2.4 DNS
- □ 2.5 P2P applications
- 2.6 Video streaming and content distribution networks (CDNs)
- □ 2.7 Socket programming with TCP and UDP

### DNS: Domain Name System

- □ Name & Address
  - Name
    - Character string for human use, e.g. www.naver.com
    - Mnemonic
  - Address: Where you are
    - IP address (32 bit string): used by a machine

Q: How to map between IP addresses and name?

Mapping a name to an address or an address to a name is called name-address resolution.

#### <u>DNS</u>

- Name resolution
  - Solution 1: Static Mapping
    - Hostname to address mapping file or hosts file. (ARPANET)
  - Solution 2: Dynamic Mapping (DNS)
    - The Internet has too many objects for a single management center
    - uses distributed database system
      - Scalability, maintenance
    - Partition the name space into a hierarchical tree
      - Domain hierarchy

### <u>DNS</u>



- □ The tree can have only 128 levels
  - level 0 (root) to level 127.
- □ In the Internet, the domain name space (tree) is divided into three different sections:
  - generic domains, country domains, and the inverse domain.

#### Overview of DNS



#### Client wants IP for www.amazon.com; 1st approx:

- Client queries a root server to find com DNS server
- Client queries com DNS server to get amazon.com DNS server
- ☐ Client queries amazon.com DNS server to get IP address for www.amazon.com

#### Overview of DNS

- □ Root DNS servers
  - 13 root servers (A-M) in the Internet
    - www.root-servers.org
  - Each server is actually a cluster of replicated servers
- □ Top-level Domain (TLD) servers
  - Responsible for com, org, net, edu, etc, and all top-level country domains uk, fr, ca, jp.
- Authoritative DNS servers:
  - organization's DNS servers, providing authoritative hostname to IP mappings for organization's servers
  - Can be maintained by organization or service provider

#### DNS: Root name servers



### .kr DNS

#### □ 15 .KR name servers



### .kr DNS

|  | <u> 호사트</u> 명 | 배치기관                              | 위치    | IPv4/IPv6 지원 |  |  |
|--|---------------|-----------------------------------|-------|--------------|--|--|
|  | b.dns.kr      | KT                                | 서울 혜화 | IPv4         |  |  |
|  | c.dns.kr      | LG U+                             | 경기 안양 | IPv4         |  |  |
|  |               | ISC (Internet Systems Consortium) | 미국    | IPv4         |  |  |
|  | d.dns.kr      | KINX                              | 서울 도곡 |              |  |  |
|  | a.ans.kr      | 드림라인                              | 1874  |              |  |  |
|  |               | KT                                | 경기 성남 |              |  |  |
|  |               | 한국과학기술정보연구원(KISTI)                | 대전    |              |  |  |
|  | e.dns.kr      | CNNIC                             | 중국    | IPv4/IPv6    |  |  |
|  | e.ans.kr      | Registro.br                       | 브라질   |              |  |  |
|  |               | 세종텔레콤                             | 서울 역삼 | IPv4         |  |  |
|  | f.dns.kr      | SK브로드밴드                           | 서울 동작 | IPv4         |  |  |
|  |               | 한국인터넷진흥원(KISA)                    | 서울서초  | IPv4/IPv6    |  |  |
|  | g.dns.kr      | DENIC                             | 독일    | IPv4/IPv6    |  |  |
|  |               | SK브로드밴드                           | 서울서초  | IPv4         |  |  |

#### Local Name Server

- does not strictly belong to hierarchy
- □ Each ISP (residential ISP, company, university) has one.
  - Also called "default name server"
- □ When a host makes a DNS query, query is sent to its local DNS server
  - o acts as proxy, forwards query into hierarchy

#### Name Resolution: Iterative Queries

#### ■ Example:

 Host at cis.poly.edu wants IP address for gaia.cs.umass.edu

#### □ Iterative queries

- contacted server replies with name of server to contact
- "I don't know this name, but ask this server"
- Typical method



root DNS server

# Name Resolution: Recursive Queries

#### recursive query:

- puts burden of name resolution on contacted name server
- heavy load at upper levels of hierarchy



gaia.cs.umass.edu

2: Application Layer

### DNS Caching and Update Recoreds

- once (any) name server learns mapping, it *caches* mapping
  - o cache entries timeout (disappear) after some time (TTL)
  - TLD servers typically cached in local name servers
    - thus root name servers not often visited
- cached entries may be out-of-date (best effort nameto-address translation!)
  - if name host changes IP address, may not be known Internet-wide until all TTLs expire
- update/notify mechanisms proposed IETF standard
  - RFC 2136

# Services Provided by DNS

#### **DNS**

- DNS can use the services of UDP or TCP using the well-known port 53.
- DNS identify objects on the Internet
  - Host name
    - Canonical hostname
    - Alias hostnames
  - Name server
  - Mail server
  - Information

#### DNS records

**DNS**: distributed db storing resource records (RR)

RR format: (name, ttl, class, type, value)

- □ Type: Specifies the types of the value
  - A: name=host, value = IPv4 address
  - NS (Name server): name = domain name, value= IP address of authoritative name server for this domain
  - O CNAME: name = alias name, value = Canonical name
  - MX (Mail server): value = name of mailserver associated with name
  - HINFO: host information (CPU and OS)
  - TXT: text (uninterpreted ascii text)
- TTL: TTL: how long the resource record is valid

# DNS records: Example

```
; Authoritative data for cs.vu.nl
cs.vu.nl.
            86400 IN SOA
                               star boss (952771,7200,7200,2419200,86400)
                   IN TXT
                               "Faculteit Wiskunde en Informatica."
            86400
cs.vu.nl.
            86400 IN TXT
                               "Vrije Universiteit Amsterdam."
cs.vu.nl.
            86400 IN MX
cs.vu.nl.
                               1 zephyr.cs.vu.nl.
            86400 IN MX
                               2 top.cs.vu.nl.
cs.vu.nl.
flits.cs.vu.nl. 86400
                   IN HINFO Sun Unix
flits.cs.vu.nl. 86400 IN A
                               130.37.16.112
                               192.31.231.165
flits.cs.vu.nl. 86400 IN A
flits.cs.vu.nl. 86400 IN MX
                              1 flits.cs.vu.nl.
flits.cs.vu.nl. 86400
                   IN MX
                               2 zephyr.cs.vu.nl.
flits.cs.vu.nl. 86400 IN MX
                               3 top.cs.vu.nl.
www.cs.vu.nl.86400 IN CNAME star.cs.vu.nl
ftp.cs.vu.nl. 86400 IN CNAME zephyr.cs.vu.nl
rowboat
                    IN A
                               130.37.56.201
                    IN MX
                              1 rowboat
                    IN MX
                               2 zephyr
                    IN HINFO Sun Unix
                               130.37.62.23
little-sister
                    IN A
                    IN HINFO Mac MacOS
laserjet
                    IN A
                               192.31.231.216
                    IN HINFO "HP Laserjet IIISi" Proprietary
```

32

**Type** 

# Inserting records into DNS

- How are new domains added to DNS?
  - This is done through a registrar, a commercial entity accredited by ICANN.
  - A registrar first verifies that the requested domain name is unique and then enters it into the DNS database.
    - Need to provide registrar with names and IP addresses of your authoritative name server (primary and secondary)
    - Registrar inserts two RRs into the com TLD server: (networkutopia.com, dns1.networkutopia.com, NS) (dns1.networkutopia.com, 212.212.212.1, A)
  - A fee is charged.

# Accredited Registrar in KOREA

- Asadal, Inc.Korea,
- Cydentity, Inc. dba Cypack.com
- DotForce Corp. dba DotForce.com
- Dotname Korea Corp.
- Gabia, Inc.
- HANGANG Systems, Inc. dba Doregi.com
- INAMES Corp. (Korea)Korea,
- Information Certificate Authority, Inc. dba DomainCA.com
- Netpia.com, Inc.
- Today and Tomorrow Co., Ltd.
- WOOHO T&C CO., LTD. dba RGNAMES.COM
- YESNIC CO. LTD.