$\S 4 \ \mathbb{R}^n$ als euklidischer Vektorraum

Länge, Skalarprodukt und Orthogonalität in \mathbb{R}^n

$$\underbrace{|a|}_{\text{Länge von }a} = \sqrt{a_1^2 + a_2^2}$$

$$|a| = \sqrt{d^2 + a_3^2}$$
 $d = \sqrt{a_1^2 + a_2^2}$
= $\sqrt{a_1^2 + a_2^2 + a_3^2}$

4.1 Definition (Länge)

Für $x \in \mathbb{R}^n$ heißt $|x| := \sqrt{x_1^2 + \ldots + x_n^2}$ Länge von x.

Wir wollen mit Hilfe der Länge Orthogonalität zweier Vektoren a und b definieren:

$$a \perp b : \Leftrightarrow |a - b| = |a + b|$$

$$\Leftrightarrow \sum_{i=1}^{n} (a_i - b_i)^2 = \sum_{i=1}^{n} (a_i + b_i)^2$$

$$\Leftrightarrow 4 \cdot \sum_{i=1}^{n} a_i \cdot b_i = 0$$

4.2 Definition (Kanonisches Skalarprodukt, Orthogonalität)

(a) Für $x, y \in \mathbb{R}^n$ heißt $\langle x, y \rangle := \sum_{i=1}^n x_i y_i$ (kanonisches) Skalarprodukt von x und y.

81

(b) $x,y \in \mathbb{R}^n$ heißen orthogonal, wenn $\langle x,y \rangle = 0$. Schreibweise: $x \perp y$.

Bemerkungen:

1.
$$\langle x, y \rangle = x^T \cdot y = y^T \cdot x \quad (x, y \in \mathbb{R}^n)$$

2.
$$|x| = \sqrt{\langle x, x \rangle} \quad (x \in \mathbb{R}^n)$$

4.3 Lemma

Die Abbildung $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$, $(x,y) \mapsto \langle x,y \rangle$ erfüllt

- (b) $\langle x, y \rangle = \langle y, x \rangle$ $(x, y \in \mathbb{R}^n)$ ("Symmetrie")
- (c) $\langle x, x \rangle > 0$ $(x \in \mathbb{R}^n, x \neq 0)$ ("Positive Definitheit")

Bemerkungen:

- 1. Ersetzt man in Lemma 4.3 \mathbb{R}^n durch einen \mathbb{R} -Vektorraum V, so heißt eine Abbildung $V \times V \to \mathbb{R}$, die (a) erfüllt, *Bilinearform auf* V. Wenn sie zusätzlich (b) und (c) erfüllt, spricht man von einem *Skalarprodukt auf* V. Ein \mathbb{R} -Vektorraum mit einem Skalarprodukt wird als *euklidischer Vektorraum* bezeichnet.
- 2. Für $x, y \in \mathbb{R}^n$ und $\lambda, \mu \in \mathbb{R}$ gilt: $\langle \lambda \cdot x + \mu \cdot y, \lambda \cdot x + \mu \cdot y \rangle = \langle \lambda \cdot x + \mu \cdot y, \lambda \cdot x \rangle + \langle \lambda \cdot x + \mu \cdot y, \mu \cdot y \rangle$ $= \langle \lambda \cdot x, \lambda \cdot x \rangle + \langle \mu \cdot y, \lambda \cdot x \rangle + \langle \lambda \cdot x, \mu \cdot y \rangle + \langle \mu \cdot y, \mu \cdot y \rangle$ $= \lambda^2 \langle x, x \rangle + \lambda \mu \underbrace{\langle y, x \rangle}_{=\langle x, y \rangle} + \lambda \mu \langle x, y \rangle + \mu^2 \langle y, y \rangle$ $= \lambda^2 \langle x, x \rangle + 2\lambda \mu \langle x, y \rangle + \mu^2 \langle y, y \rangle .$

Da nur Eigenschaften (a,),(b) des Skalarprodukts verwendet wurden, gilt diese Beziehung auch in euklidischen Vektorräumen.

4.4 Cauchy-Schwarzsche Ungleichung

Seien $x, y \in \mathbb{R}^n$. Dann gilt: $|\langle x, y \rangle| \le |x| \cdot |y|$.

Gleichheit tritt genau dann ein, wenn x, y linear abhängig sind.

Bemerkung: Die Aussage bleibt gültig, wenn man \mathbb{R}^n durch einen euklidischen Vektorraum V ersetzt.

Beweis:

- 1.F: x=0. Dann sind x,y linear abhängig und es gilt $|\langle x,y\rangle|=0=|x|\cdot|y|$
- 2.F: $x \neq 0$.

[Erinnerung: Seien $a, b, c \in \mathbb{R}, \ a \neq 0$. Betrachte $a \cdot \lambda^2 + b \cdot \lambda + c = 0$ (*)

$$a \cdot \lambda^2 + b \cdot \lambda + c = 0$$
 (*)
 $D := b^2 - 4ac$ (Diskriminante)

- (*) hat genau eine reelle Lösung $\lambda \iff D = 0$
- (*) hat keine reelle Lösung $\lambda \iff D < 0$

$$\begin{aligned} &2.1: \ x,y \ \text{linear unabhängig} &\overset{x\neq 0}{\Longleftrightarrow} \ \forall \, \lambda \in \mathbb{R}: \ y \neq \lambda \cdot x \\ &[\ ``\Rightarrow`` \quad \text{Klar.} \ [\ \text{Sonst} \ \lambda \cdot x + (-1) \cdot y = 0] \\ &``\Leftarrow`` \quad \mu \cdot x + \nu \cdot y = 0. \ \text{Zeige:} \ \mu = \nu = 0. \\ &\quad \text{Wäre} \ \nu \neq 0, \ \text{so würde} \ y = (-\frac{\mu}{\nu}) \cdot x \ \text{folgen im Widerspruch zu} \ y \neq \lambda \cdot x \\ &\quad \text{für jedes} \ \lambda \in \mathbb{R}. \ \text{Daher} \ \nu = 0, \ \text{also} \ \mu \cdot x = 0, \ \text{somit} \ \mu = 0 \ \text{wegen} \ x \neq 0.] \\ &\overset{4.3c}{\Longleftrightarrow} \underbrace{\langle \lambda \cdot x - y, \lambda \cdot x - y \rangle}_{\lambda \cdot x - y \neq 0} > 0 \quad (\lambda \in \mathbb{R}) \\ &\overset{\lambda \cdot x - y \neq 0}{\Longleftrightarrow} \lambda^2 \cdot \langle x, x \rangle - \lambda \cdot 2 \langle x, y \rangle + \langle y, y \rangle > 0 \quad (\lambda \in \mathbb{R}) \\ &\overset{\text{Diskr.} < 0}{\Longleftrightarrow} 4 \langle x, y \rangle^2 - 4 \langle x, x \rangle \cdot \langle y, y \rangle < 0 \\ &\overset{\text{Linear}}{\Longleftrightarrow} |\langle x, y \rangle| < \underbrace{\sqrt{\langle x, x \rangle}_{|x|}}_{|x|} \underbrace{\sqrt{\langle y, y \rangle}_{|y|}}_{|y|} \end{aligned}$$

2.2:
$$x, y$$
 linear abhängig $\stackrel{2.1}{\Longleftrightarrow} \exists \lambda \in \mathbb{R} : y = \lambda \cdot x \iff \exists_1 \lambda \in \mathbb{R} : y = \lambda \cdot x$ [Denn: $y = \lambda \cdot x = \lambda' \cdot x \Rightarrow (\lambda - \lambda') \cdot x = 0 \stackrel{x \neq 0}{\Longrightarrow} \lambda = \lambda'$] $\stackrel{\text{vgl.2.1}}{\Longrightarrow} \exists_1 \lambda \in \mathbb{R} : \lambda^2 \cdot \langle x, x \rangle - \lambda \cdot 2 \langle x, y \rangle + \langle y, y \rangle = 0 \stackrel{\text{Diskr.=0}}{\Longleftrightarrow} |\langle x, y \rangle| = |x| \cdot |y|$

4.5 Lemma

Für die Abbildung $\mathbb{R}^n \to \mathbb{R}$, $x \mapsto |x|$ gilt:

(a)
$$|x| \ge 0$$
 $(x \in \mathbb{R}^n)$
 $|x| = 0 \iff x = 0$ $(x \in \mathbb{R}^n)$

(b)
$$|\lambda \cdot x| = |\lambda||x|$$
 $(\lambda \in \mathbb{R}, x \in \mathbb{R}^n)$

(c)
$$|x+y| \le |x| + |y|$$
 $(x, y \in \mathbb{R}^n)$ (Dreiecksungleichung)

Bemerkung:

Ersetzt man in Lemma 4.5 \mathbb{R}^n durch einen \mathbb{R} -Vektorraum V und die Betragsfunktion $|\cdot|$ durch eine Abbildung $||\cdot||$: $V \to \mathbb{R}$, wobei in (b) $|\lambda|$ nicht ersetzt wird, so heißt diese Abbildung Norm auf V. Ein \mathbb{R} -Vektorraum V mit einer Norm $||\cdot||$ wird als normierter Vektorraum bezeichnet. (Schreibweise: $(V,||\cdot||)$).

Beweis:

(a),(b) Klar.

(c)
$$|x+y|^2 = \langle x+y, x+y \rangle = \langle x, x \rangle + 2\langle x, y \rangle + \langle y, y \rangle$$

$$\leq \underbrace{\langle x, x \rangle}_{|x|^2} + 2\underbrace{\sqrt{\langle x, x \rangle}}_{|x|} \underbrace{\sqrt{\langle y, y \rangle}}_{|y|} + \underbrace{\langle y, y \rangle}_{|y|^2} = (|x| + |y|)^2$$

Bemerkung: Mit der gleichen Argumentation folgt, dass jeder euklidische Vektorraum ein normierter Vektorraum ist. Die Umkehrung gilt aber im allgemeinen nicht.

Winkel

4.6 Lemma und Definition (Winkel)

Seien $x, y \in \mathbb{R}^n \setminus \{0\}$. Dann gibt es genau ein $\varphi \in [0, \pi]$ mit $\cos \varphi = \frac{\langle x, y \rangle}{|x| \cdot |y|}$. φ heißt Winkel zwischen x und y. Schreibweise: $\varphi = \sphericalangle(x, y)$.

Bemerkung: $\langle x, y \rangle = |x| \cdot |y| \cdot \cos \varphi$ mit $\varphi = \sphericalangle(x, y)$.

Beweis:

Aus der Cauchy-Schwarzschen Ungleichung folgt $-1 \le \frac{\langle x, y \rangle}{|x| \cdot |y|} \le 1$.

Der Kosinus bildet $[0, \pi]$ bijektiv auf [-1, 1] ab, also gibt es ein eindeutig bestimmtes $\varphi \in [0, \pi]$ mit $\cos \varphi = \frac{\langle x, y \rangle}{|x| \cdot |y|}$.

4.7 Folgerung

Seien $x, y \in \mathbb{R}^n \setminus \{0\}$. Dann gilt:

(a)
$$|x \pm y|^2 = |x|^2 + |y|^2 \pm 2|x||y|\cos\varphi$$
 mit $\varphi = \sphericalangle(x,y)$

(b)
$$x \perp y \Rightarrow |x+y|^2 = |x|^2 + |y|^2$$
 (Satz des Pythagoras)

Bemerkung: Im Fall der Subtraktion in (a) erhält man den Kosinussatz der ebenen Geometrie.

Beweis:

(a)
$$|x \pm y|^2 = |x|^2 \pm 2\langle x, y \rangle + |y|^2 = |x|^2 \pm 2|x||y|\cos\varphi + |y|^2 \text{ mit } \varphi = \sphericalangle(x, y).$$

(b) Analog.

Orthogonale Matrizen

4.8 Definition

Sei $k \in \mathbb{N}$. $b_1, \ldots, b_k \in \mathbb{R}^n$ heißt Orthonormalsystem (ONS), wenn

$$\langle b_i, b_j \rangle = \delta_{ij} \quad (i, j = 1, \dots, k).$$

Beispiel: e_1, \ldots, e_k ist für $k \leq n$ ein ONS.

4.9 Lemma (Entwicklung nach einer Orthonormalbasis)

Sei $b_1, \ldots, b_n \in \mathbb{R}^n$ ein Orthonormalsystem. Dann ist b_1, \ldots, b_n eine Basis von \mathbb{R}^n (Orthonormalbasis, ONB) und es gilt

$$x = \sum_{j=1}^{n} \langle b_j, x \rangle \cdot b_j \quad (x \in \mathbb{R}^n)$$

Beweis:

 $b_1, \ldots, b_n \text{ ONS} \Rightarrow b_1, \ldots, b_n \text{ linear unabhängig}$

[Denn:
$$\sum_{j=1}^{n} \lambda_{j} b_{j} = 0 \implies \langle b_{i}, \sum_{j=1}^{n} \lambda_{j} b_{j} \rangle = 0 \implies \sum_{j=1}^{n} \lambda_{j} \underbrace{\langle b_{i}, b_{j} \rangle}_{\delta_{ij}} = 0 \implies \lambda_{i} = 0 \quad (i = 1, \dots, n)$$
]
$$\stackrel{\dim \mathbb{R}^{n} = n \text{ und } 3.17}{\Longrightarrow} b_{1}, \dots, b_{n} \text{ Basis von } \mathbb{R}^{n} \Rightarrow \exists_{1} \lambda \in \mathbb{R}^{n} : x = \sum_{j=1}^{n} \lambda_{j} \cdot b_{j}$$

$$\Rightarrow \langle b_{i}, x \rangle = \langle b_{i}, \sum_{j=1}^{n} \lambda_{j} \cdot b_{j} \rangle = \sum_{j=1}^{n} \lambda_{j} \underbrace{\langle b_{i}, b_{j} \rangle}_{\delta_{ij}} = \lambda_{i} \quad (i = 1, \dots, n)$$

4.10 Definition

Sei $n \in \mathbb{N}$. $A \in \mathbb{R}^{n \times n}$ heißt orthogonal, wenn $A^T \cdot A = E_n$.

Bemerkungen:

- (a) Diese Forderung ist äquivalent dazu, dass die Spalten von A ein Orthonormalsystem
- (b) Die Matrix heißt ortho*gonal*, ihre Spalten bilden aber ein Ortho*normal*system.

Beispiele für Orthogonalmatrizen in $\mathbb{R}^{2\times 2}$:

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$$

4.11 Satz

Sei $n \in \mathbb{N}$. Für $A \in \mathbb{R}^{n \times n}$ sind äquivalent:

- (a) A orthogonal.
- (b) A^T orthogonal, d.h. $A \cdot A^T = E_n$.
- (c) A invertierbar und $A^{-1} = A^T$.

[Bemerkung: (b) besagt, dass die Zeilen von A ein Orthonormalsystem (in $\mathbb{R}^{1\times n}$) bilden.]

Beweis:

(a)
$$\Rightarrow$$
(c): $A^T \cdot A = E_n \xrightarrow{2.21} A$ invertier
bar und $A^{-1} = A^T$ (b) \Rightarrow (c): $A^T \cdot A = E_n \xrightarrow{2.21} A$ invertier
bar und $A^{-1} = A^T$

(b)
$$\Rightarrow$$
(c): $A^T \cdot A = E_n \stackrel{2.21}{\Longrightarrow} A$ invertierbar und $A^{-1} = A^T$

(c)
$$\Rightarrow$$
(a): $A^T \cdot A \stackrel{\text{(c)}}{=} A^{-1} \cdot A = E_n$

$$(c) \Rightarrow (b)$$
: analog.

4.12 Satz

Sei $n \in \mathbb{N}$. Für $A \in \mathbb{R}^{n \times n}$ sind äquivalent:

- (a) A orthogonal.
- (b) $\forall x \in \mathbb{R}^n : |A \cdot x| = |x|$ (längentreue Abbildung, Isometrie).
- (c) $\forall x, y \in \mathbb{R}^n : \langle Ax, Ay \rangle = \langle x, y \rangle$.

Beweis:

Sewers.
(a)
$$\Rightarrow$$
 (b): $|Ax|^2 = (Ax)^T \cdot (Ax) = x^T \cdot \underbrace{A^T \cdot A}_{E_n} x = x^T \cdot x = |x|^2$
(b) \Rightarrow (c): Es gilt $\langle x, y \rangle = \frac{1}{4}(|x+y|^2 - |x-y|^2)$ (*) (Übungsaufgabe) also $\langle Ax, Ay \rangle = \frac{1}{4}(|Ax + Ay|^2 - |Ax - Ay|^2) = \frac{1}{4}(|A \cdot (x+y)|^2 - |A \cdot (x-y)|^2)$

$$\stackrel{\text{(b)}}{=} \frac{1}{4}(|x+y|^2 - |x-y|^2) \stackrel{\text{(*)}}{=} \langle x, y \rangle$$
(c) \Rightarrow (a): $\langle x, (A^T \cdot A - E_n) \cdot y \rangle = \langle A \cdot x, A \cdot y \rangle - \langle x, y \rangle \stackrel{\text{(c)}}{=} 0$ $(x, y \in \mathbb{R}^n)$

$$\stackrel{x:=(A^T \cdot A - E_n) \cdot y}{=} |(A^T \cdot A - E_n) \cdot y|^2 = 0$$
 $(y \in \mathbb{R}^n) \Longrightarrow A^T \cdot A = E_n$

Bemerkung (ohne Bew.):

Allgemeiner gilt: Ist $f: \mathbb{R}^n \to \mathbb{R}^n$ eine Isometrie, d.h. $|f(x)-f(y)| = |x-y| \ (x,y \in \mathbb{R}^n)$, dann gibt es eine Orthogonalmatrix $A \in \mathbb{R}^{n \times n}$ und ein $b \in \mathbb{R}^n$, so dass $f(x) = A \cdot x + b \ (x \in \mathbb{R}^n)$.