

Informatik 09 - Tabellenkalkulation

Informatik 09 - Tabellenkalkulation

BYCS Drive

Excel Werbung

Tabellenkalkulation

Formeln und Parameter

Excel-Werbung erweitert mit Formeln

Absolute und relative Zellbezüge

Formeln mit Diagrammen darsteller

Exkurs: Abstraktionsebenen

Der Weg der Daten

Datenflussdiagramm

Funktionen und Stelligkeit

Getränkekalkulation

Datenfluss-Puzzle

Verkettung von Funktionen

Übung: Funktionale Modellierung

Umsetzung der DFDs als Tabelle

Wenn-Dann-Funktion

Wenn-Dann-Funktion

Einkaufstabelle filtern

Daten filtern

Optional: Übung Notentabelle

BYCS Drive

- 1. Öffne drive.bycs.de im Internetbrowser und melde dich mit deinen BYCS/Mebis Logindaten an.
- 2. Erstelle einen in deinem persönlichen Bereich einen neuen Ordner mit Name **Informatik_09**
- 3. Wenn du in diesem Ordner auf **+Neu** klickst kannst du neue Dateien (z.B. Kalkulationstabellen) erstellen. WICHTIG: Achte darauf, die Dateiendung (nach dem Punkt, z.B. .xlsx), nicht zu verändern!

Excel Werbung

- 1. Schau das Video unter: mebis.link/inf9 excel-werbung
- 2. Erstelle in BYCS-Drive eine neue Kalkulationstabelle 01_ExcelWerbung.xlsx
- 3. Baue die Tabelle aus dem Video mit den exakt gleichen Schritten in BYCS-Drive nach!
- 4. Füge deiner Tabelle ein Diagramm hinzu, das die Quartalszahlen grafisch darstellt.
- 5. Stellt die Tabelle tatsächlich eine Wachstumsrate von 10% von Quartal zu Quartal dar?
- 6. Falls nein, wie könnte man die Einträge so ändern, dass automatisch 10% Wachstumsrate berechnet werden?

In Tabellenkalkulationsprogrammen können Daten in den Zellen der erfasst und mithilfe

von Formeln verarbeitet werden. Jede Zelle besitzt eine eindeutige Adresse. Diese besteht aus Buchstaben (

) und Zahlen (). Bekannte Tabellenkalkulationsprogramme sind z.B. Microsoft Excel, LibreOffice Calc oder Google Spreadsheets.

von Formeln verarbeitet werden. Jede Zelle besitzt eine eindeutige Adresse. Diese besteht aus Buchstaben () und Zahlen (). Bekannte Tabellenkalkulationsprogramme sind z.B. Microsoft Excel,

LibreOffice Calc oder Google Spreadsheets.

In Tabellenkalkulationsprogrammen können Daten in den Zellen der **Tabellenblätter** erfasst und mithilfe von **Formeln** verarbeitet werden. Jede Zelle besitzt eine eindeutige **Adresse**. Diese besteht aus **Buchstaben** (

Spalten) und Zahlen (

LibreOffice Calc oder Google Spreadsheets.

In Tabellenkalkulationsprogrammen können Daten in den Zellen der Tabellenblätter erfasst und mithilfe von Formeln verarbeitet werden. Jede Zelle besitzt eine eindeutige Adresse. Diese besteht aus Buchstaben (

Spalten) und **Zahlen** (**Zeilen**). Bekannte Tabellenkalkulationsprogramme sind z.B. Microsoft Excel, LibreOffice Calc oder Google Spreadsheets.

berechnen Zellwerte automatisch. Sie

beginnen immer mit einem

Formel und läuft so ab:

gefolgt von einem mathematischen Term oder vorgefertigten Funktionen (z.B.

Mittelwert). Die Grundrechenarten werden darge-

stellt als:

In Formeln können feste Werte (z.B. für MwSt: 1,19) oder Werte anderer Zellen (als Adresse, z.B. B5) als Parameter verwendet werden. Die Berechnung des Ergebnisses nennt man auch Auswertung der

Formel und läuft so ab:

Formeln berechnen Zellwerte automatisch. Sie beginnen immer mit einem

gefolgt von einem mathematischen Term oder vorgefertigten Funktionen (z.B.

Mittelwert). Die Grundrechenarten werden darge-

stellt als:

In Formeln können feste Werte (z.B. für MwSt: 1,19) oder Werte anderer Zellen (als Adresse, z.B. B5) als Parameter verwendet werden. Die Berechnung des Ergebnisses nennt man auch Auswertung der

Formel und läuft so ab:

Formeln berechnen Zellwerte automatisch. Sie beginnen immer mit einem Gleichheitszeichen (=) gefolgt von einem mathemati-

schen Term oder vorgefertigten Funktionen (z.B. Mittelwert). Die **Grundrechenarten** werden darge-

Mittelwert). Die **Grundrechenarten** werden dargestellt als:

In Formeln können feste Werte (z.B. für MwSt: 1,19) oder Werte anderer Zellen (als Adresse, z.B. B5) als Parameter verwendet werden. Die Berechnung des Ergebnisses nennt man auch Auswertung der

Formel und läuft so ab:

Formeln berechnen Zellwerte automatisch. Sie beginnen immer mit einem Gleichheitszeichen (=) gefolgt von einem mathemati-

schen Term oder vorgefertigten Funktionen (z.B. Mittelwert). Die **Grundrechenarten** werden darge-

Mittelwert). Die **Grundrechenarten** werden dargestellt als: + , , ,

In Formeln können feste Werte (z.B. für MwSt: 1,19) oder Werte anderer Zellen (als Adresse, z.B. B5) als Parameter verwendet werden. Die Berechnung des Ergebnisses nennt man auch Auswertung der

Formeln berechnen Zellwerte automatisch. Sie beginnen immer mit einem Gleichheitszeichen (=) gefolgt von einem mathematischen Term oder vorgefertigten Funktionen (z.B.

Mittelwert). Die Grundrechenarten werden darge-

stellt als: +

In Formeln können feste Werte (z.B. für MwSt: 1,19) oder Werte anderer Zellen (als Adresse, z.B. B5) als Parameter verwendet werden. Die Berechnung

des Ergebnisses nennt man auch Auswertung der Formel und läuft so ab:

Formel und läuft so ab:

Formeln berechnen Zellwerte automatisch. Sie beginnen immer mit einem Gleichheitszeichen (=) gefolgt von einem mathemati-

schen Term oder vorgefertigten Funktionen (z.B. Mittelwert). Die **Grundrechenarten** werden darge-

Mittelwert). Die **Grundrechenarten** werden dargestellt als: + , - , * ,

In Formeln können feste Werte (z.B. für MwSt: 1,19) oder Werte anderer Zellen (als Adresse, z.B. B5) als Parameter verwendet werden. Die Berechnung des Ergebnisses nennt man auch Auswertung der

Formeln berechnen Zellwerte automatisch. Sie beginnen immer mit einem *Gleichheits-* zeichen (=) gefolgt von einem mathematischen Term oder vorgefertigten Funktionen (z.B.

Mittelwert). Die **Grundrechenarten** werden darge-

Mittelwert). Die **Grundrechenarten** werden dargestellt als: + , - , * , /

In Formeln können feste Werte (z.B. für MwSt: 1,19) oder Werte anderer Zellen (als Adresse, z.B. B5) als Parameter verwendet werden. Die Berechnung

des Ergebnisses nennt man auch Auswertung der Formel und läuft so ab:

Formeln berechnen Zellwerte automatisch. Sie beginnen immer mit einem Gleichheitszeichen (=) gefolgt von einem mathemati-

schen Term oder vorgefertigten Funktionen (z.B.

Mittelwert). Die Grundrechenarten werden dargestellt als: + , - , * /

In Formeln können feste Werte (z.B. für MwSt: 1,19) oder Werte anderer Zellen (als Adresse, z.B. B5)

des Ergebnisses nennt man auch Auswertung der Formel und läuft so ab:

als Parameter verwendet werden. Die Berechnung

Formel

Formeln berechnen Zellwerte automatisch. Sie beginnen immer mit einem Gleichheitszeichen (=) gefolgt von einem mathemati-

schen Term oder vorgefertigten Funktionen (z.B.

Mittelwert). Die Grundrechenarten werden dargestellt als: + , - , * , /

In Formeln können feste Werte (z.B. für MwSt: 1,19) oder Werte anderer Zellen (als Adresse, z.B. B5) als Parameter verwendet werden. Die Berechnung

des Ergebnisses nennt man auch Auswertung der

Formel und läuft so ab:

Formel

z.B. =1,19*B5

Formel und läuft so ab:

Formeln berechnen Zellwerte automatisch. Sie beginnen immer mit einem *Gleichheits-* zeichen (=) gefolgt von einem mathemati-

schen Term oder vorgefertigten Funktionen (z.B.

Mittelwert). Die **Grundrechenarten** werden dargestellt als: + , - , * , /

In Formeln können feste Werte (z.B. für MwSt: 1,19) oder Werte anderer Zellen (als Adresse, z.B. B5) als Parameter verwendet werden. Die Berechnung des Ergebnisses nennt man auch Auswertung der

Formel

z.B. =1,19*B5

Zellwerte

Formeln berechnen Zellwerte automatisch. Sie beginnen immer mit einem Gleichheitszeichen (=) gefolgt von einem mathemati-

schen Term oder vorgefertigten Funktionen (z.B. Mittelwert). Die Grundrechenarten werden darge-

stellt als: + , - , * , / In Formeln können feste Werte (z.B. für MwSt: 1,19) oder Werte anderer Zellen (als Adresse, z.B. B5)

als Parameter verwendet werden. Die Berechnung des Ergebnisses nennt man auch Auswertung der

Formel und läuft so ab:

Formel

z.B. = 1,19*B5

Zellwerte

z.B. 100

Formeln berechnen Zellwerte automatisch. Sie beginnen immer mit einem *Gleichheits-* zeichen (=) gefolgt von einem mathemati-

schen Term oder vorgefertigten Funktionen (z.B.

Mittelwert). Die **Grundrechenarten** werden dargestellt als: + , , - , * , /

stellt als: + , - , * , /
In Formeln können feste Werte (z.B. für MwSt: 1,19)
oder Werte anderer Zellen (als Adresse, z.B. B5)
als Parameter verwendet werden. Die Berechnung

des Ergebnisses nennt man auch Auswertung der Formel und läuft so ab:

Formel

z.B. =1,19*B5

Zellwerte

z.B. 100

Endergebnis

Formeln berechnen Zellwerte automatisch. Sie beginnen immer mit einem Gleichheitszeichen (=) gefolgt von einem mathemati-

schen Term oder vorgefertigten Funktionen (z.B.

Mittelwert). Die **Grundrechenarten** werden dargestellt als: + , - , * , /

stellt als: + , - , * , / In Formeln können feste Werte (z.B. für MwSt: 1,19) oder Werte anderer Zellen (als Adresse, z.B. B5) als Parameter verwendet werden. Die Berechnung

des Ergebnisses nennt man auch Auswertung der Formel und läuft so ab:

z.B. =1,19*B5

Formel

Zellwerte

z.B. 100

z.B. 119

Endergebnis

Formel und läuft so ab:

Formeln berechnen Zellwerte automatisch. Sie beginnen immer mit einem Gleichheitszeichen (=) gefolgt von einem mathematischen Term oder vorgefertigten Funktionen (z.B. Mittelwert). Die Grundrechenarten werden dargestellt als: + , - , * , / In Formeln können feste Werte (z.B. für MwSt: 1,19) oder Werte anderer Zellen (als Adresse, z.B. B5) als Parameter verwendet werden. Die Berechnung

des Ergebnisses nennt man auch Auswertung der

Formel Zellwerte

z.B. =1,19*B5

Adressen durch

Zellwerte ersetzen

z.B. 119 Endergebnis

Formel und läuft so ab:

Formeln berechnen Zellwerte automatisch. Sie beginnen immer mit einem Gleichheitszeichen (=) gefolgt von einem mathematischen Term oder vorgefertigten Funktionen (z.B. Mittelwert). Die Grundrechenarten werden dargestellt als: + , - , * , / In Formeln können feste Werte (z.B. für MwSt: 1,19) oder Werte anderer Zellen (als Adresse, z.B. B5) als Parameter verwendet werden. Die Berechnung

des Ergebnisses nennt man auch Auswertung der

z.B. 119

Endergebnis

Formel und läuft so ab:

Formeln berechnen Zellwerte automatisch. Sie beginnen immer mit einem Gleichheitszeichen (=) gefolgt von einem mathematischen Term oder vorgefertigten Funktionen (z.B. Mittelwert). Die Grundrechenarten werden dargestellt als: + , - , * , / In Formeln können feste Werte (z.B. für MwSt: 1,19) oder Werte anderer Zellen (als Adresse, z.B. B5) als Parameter verwendet werden. Die Berechnung des Ergebnisses nennt man auch Auswertung der

Formel und läuft so ab:

Formeln berechnen Zellwerte automatisch. Sie beginnen immer mit einem Gleichheitszeichen (=) gefolgt von einem mathematischen Term oder vorgefertigten Funktionen (z.B. Mittelwert). Die Grundrechenarten werden dargestellt als: + , - , * , / In Formeln können feste Werte (z.B. für MwSt: 1,19) oder Werte anderer Zellen (als Adresse, z.B. B5) als Parameter verwendet werden. Die Berechnung des Ergebnisses nennt man auch Auswertung der

Excel-Werbung erweitert mit Formeln

- 1. Öffne deine Excel-Datei von letzter Stunde und lege mit
- 2. Führt die Schritte wie im Video aus, jedoch nur bis zu den Werten der 1. Spalte

dem + am unteren Rand ein neues Tabellenblatt an.

- 3. Vervollständigt die Tabelle so, dass die Wachstumsrate (bisher 10%) in einer eigenen Zelle gespeichert und von euren Formeln verwendet wird.
- 4. Überlegt euch ein System, um die Art der Zelle optisch hervorzuheben, und setzt dies in eurer Tabelle um. Tragt hierfür zunächst jede Art in eine eigene Zelle ein und hebt auch diese Zellen entsprechend hervor. Die Tabelle hat diese Zellarten: Beschriftung, Eingabewert, automatische

Berechnung (=Formel)

ar

eht oder k	opiert	man e	ine F	orme	l in	eine
ndere Zelle,	so ve	ränderr	sich	die	Adre	ssen
ntsprechend	der ve	erändert	en Ze	llposi	tion.	Man

spricht von einem Zellbezug.

Möchte man dies verhindern, setzt man ein \$-Symbol vor den entsprechenden Teil (Zeile oder

oder Zeile einzeln möglich.

Zellbezug. Dies ist auch für Spalte

Spalte) der Adresse und spricht von einem

Art des

Bezugs von A1

relativ

Spalte absolut

Zeile relativ

Spalte relativ

Zeile absolut absolut

Original Formel

2 nach unten + 1 nach rechts

- C3	}	

= \$A1 + C3

= A\$1 + C3

= \$A\$1 + C3

Zieht oder kopiert man eine Formel in eine andere Zelle, so verändern sich die Adressen entsprechend der veränderten Zellposition. Man

spricht von einem **relativen Zellbezug**.

Möchte man dies verhindern, setzt man ein \$-Symbol vor den entsprechenden Teil (Zeile oder

Spalte) der Adresse und spricht von einem Zellbezug. Dies ist auch für Spalte

oder Zeile einzeln möglich.

Art des Original

Bezugs von A1

relativ

Spalte absolut

Zeile relativ

Spalte relativ

Zeile absolut absolut

= \$A1 + C3

= A\$1 + C3

= \$A\$1 + C3

2 nach unten + 1 nach rechts

Formel

= A1 + C3

Zieht ander

absoluten

oder Zeile einzeln möglich.

zient oder kopiert man eine Former in eine			
andere Zelle, so verändern sich die Adressen			
entsprechend der veränderten Zellposition. Man			
spricht von einem relativen Zellbezug .			

Zellbezug. Dies ist auch für Spalte

Möchte man dies verhindern, setzt man ein \$-Symbol vor den entsprechenden Teil (Zeile oder Spalte) der Adresse und spricht von einem

Art des Original

Bezugs von A1 relativ

Spalte absolut

Zeile relativ

Spalte relativ

Zeile absolut absolut

Formel

= A1 + C3

= \$A1 + C3

= A\$1 + C3

= \$A\$1 + C3

verschoben

absoluten

oder Zeile einzeln möglich.

entsprechend der veränderten Zellposition. Man spricht von einem relativen Zellbezug.				

CZ	49.	
n e	in	\$-
ile	od	er
em		

Zellbezug. Dies ist auch für Spalte

Möchte man dies verhindern, setzt mar Symbol vor den entsprechenden Teil (Zei Spalte) der Adresse und spricht von eine Art des Original

relativ

Spalte absolut

Zeile relativ

Spalte relativ

Zeile absolut absolut

Bezugs von A1

Formel

= A1 + C3

= \$A1 + C3

= A\$1 + C3

= \$A\$1 + C3

2 nach unten + 1 nach rechts

=B3 + D5

Zieht oder kopiert man eine Formel in eine andere Zelle, so verändern sich die Adressen entsprechend der veränderten Zellposition. Man

spricht von einem **relativen Zellbezug**. Möchte man dies verhindern, setzt man ein \$-

Symbol vor den entsprechenden Teil (Zeile oder Spalte) der Adresse und spricht von einem

oder Zeile einzeln möglich.

absoluten Zellbezug. Dies ist auch für Spalte

Art des Bezugs von A1

Spalte absolut

Zeile relativ

Spalte relativ

Zeile absolut absolut

relativ

Formel = A1 + C3

= \$A1 + C3

= A\$1 + C3

= \$A\$1 + C3

Original

2 nach unten + 1 nach rechts

verschoben

oder Zeile einzeln möglich.

eht	oder	kopier	t man	eine	Forme	l in	eine	
nder	e Zelle	e, so v	verände	ern si	ch die	Adre	essen	
ntsp	rechen	d der	veränd	erten	Zellposi	tion.	Man	
					1			

andere Zelle, so verändern sich die Adressen					
entsprechend der veränderten Zellposition. Man					
spricht von einem relativen Zellbezug .					
Möchte man dies verhindern, setzt man ein \$-					
Symbol vor den entsprechenden Teil (Zeile oder					
Spalte) der Adresse und spricht von einem					
absoluten Zellbezug. Dies ist auch für Spalte					

= A\$1 + C3

= \$A\$1 + C3

Art des Bezugs von A1

relativ Spalte absolut Zeile relativ

Spalte relativ

Zeile absolut

absolut

Original Formel	+ 1 nach rechts verschoben
= A1 + C3	=B3 + D5
= \$A1 + C3	=\$A3 + D5

2 nach unten

=B\$1 + D5

Spalte) der Adresse und spricht von einem

oder Zeile einzeln möglich.

absoluten Zellbezug. Dies ist auch für Spalte

Zieht oder kopiert man eine Formel in eine andere Zelle, so verändern sich die Adressen entsprechend der veränderten Zellposition. Man

Symbol vor den entsprechenden Teil (Zeile oder

spricht von einem **relativen Zellbezug**. Möchte man dies verhindern, setzt man ein \$-

Bezugs von A1 relativ

Spalte absolut

Zeile relativ

Spalte relativ

Zeile absolut absolut

Art des

Formel = A1 + C3

Original

= \$A1 + C3

= A\$1 + C3

= \$A\$1 + C3

+ 1 nach rechts

2 nach unten

verschoben

=B3 + D5

=\$A3 + D5

Formeln mit Diagrammen darstellen

Diagramme wie im ersten Hefteintrag, die Eingabe, Verarbeitung und Ausgabe darstellen, nennt man Datenflussdiagramm.

- Zeichne für eine Wachstumsberechnung und eine Summe aus deiner Tabelle je ein Datenflussdiagramm.
- Überlege dabei: Wie stellst du die Daten dar und wieso? Zum Beispiel als konkreten Wert, als Zelladresse, als Beschreibung, ...?

Formeln mit Diagrammen darstellen

Diagramme wie im ersten Hefteintrag, die Eingabe, Verarbeitung und Ausgabe darstellen, nennt man Datenflussdiagramm.

- Zeichne für eine Wachstumsberechnung und eine Summe aus deiner Tabelle je ein Datenflussdiagramm.
- Überlege dabei: Wie stellst du die Daten dar und wieso?
 Zum Beispiel als konkreten Wert, als Zelladresse, als Beschreibung, ...?

Exkurs: Abstraktionsebenen

Ein Kerngebiet der Informatik ist es, Programme darzustellen. Die Arbeit eines Computers ist sehr komplex, daher nutzt man

Je nach Anwendung ist ein anderer Detailgrad notwendig. Man spricht dann von verschiedenen . In einem Modell () stellt man alles möglichst auf derselben Ebene dar.

Mögliche Abstraktionsebenen einer Zelle unserer Tabelle (es gibt mehr!):

tatsächlicher Wert	Formel m. Adresse	Beschreibung Einzelwerte	Beschreibung	

Ein Kerngebiet der Informatik ist es, Programme darzustellen. Die Arbeit eines Computers ist sehr komplex, daher nutzt man Abstraktion (Trennung von Konzept und Umsetzung).

Je nach Anwendung ist ein anderer Detailgrad notwendig. Man spricht dann von verschiedenen

. In einem Modell () stellt man alles möglichst auf derselben Ebene dar.

tatsächlicher Wert	Formel m. Adresse	Beschreibung Einzelwerte	Beschreibung

Abstraktionsebenen . In einem Modell (

alles möglichst auf derselben Ebene dar.

) stellt man

Ein Kerngebiet der Informatik ist es, Programme darzustellen. Die Arbeit eines Computers ist sehr komplex, daher nutzt man Abstraktion (Trennung von Konzept und Umsetzung).

Je nach Anwendung ist ein anderer Detailgrad notwendig. Man spricht dann von verschiedenen

Mögliche Abstraktionsebenen einer Zelle unserer Tabelle (es gibt mehr!):

tatsächlicher Wert	Formel m. Adresse	Beschreibung Einzelwerte	Beschreibung

Ein Kerngebiet der Informatik ist es, Programme darzustellen. Die Arbeit eines Computers ist sehr komplex, daher nutzt man Abstraktion (Trennung von Konzept und Umsetzung)

Je nach Anwendung ist ein anderer Detailgrad notwendig. Man spricht dann von verschiedenen Abstraktionsebenen . In einem Modell (= Abbild der Realität, z.B. als Diagramm) stellt man alles möglichst auf derselben Ebene dar.

tatsächlicher Wert	Formel m. Adresse	Beschreibung Einzelwerte	Beschreibung

Ein Kerngebiet der Informatik ist es, Programme darzustellen. Die Arbeit eines Computers ist sehr komplex, daher nutzt man Abstraktion (Trennung von Konzept und Umsetzung)

Je nach Anwendung ist ein anderer Detailgrad notwendig. Man spricht dann von verschiedenen Abstraktionsebenen . In einem Modell (= Abbild der Realität, z.B. als Diagramm) stellt man alles möglichst auf derselben Ebene dar.

tatsächlicher Wert	Formel m. Adresse	Beschreibung Einzelwerte	Beschreibung
3630€			

Ein Kerngebiet der Informatik ist es, Programme darzustellen. Die Arbeit eines Computers ist sehr komplex, daher nutzt man Abstraktion (Trennung von Konzept und Umsetzung)

Je nach Anwendung ist ein anderer Detailgrad notwendig. Man spricht dann von verschiedenen Abstraktionsebenen . In einem Modell (= Abbild der Realität, z.B. als Diagramm) stellt man alles möglichst auf derselben Ebene dar.

tatsächlicher Wert	Formel m. Adresse	Beschreibung Einzelwerte	Beschreibung
3630€	=E5 * \$ <i>C</i> \$3		

Ein Kerngebiet der Informatik ist es, Programme darzustellen. Die Arbeit eines Computers ist sehr komplex, daher nutzt man Abstraktion (Trennung von Konzept und Umsetzung)

Je nach Anwendung ist ein anderer Detailgrad notwendig. Man spricht dann von verschiedenen

Abstraktionsebenen . In einem Modell (= Abbild der Realität, z.B. als Diagramm) stellt man alles möglichst auf derselben Ebene dar.

tatsächlicher Wert	Formel m. Adresse	Beschreibung Einzelwerte	Beschreibung
3630€	=E5 * \$ <i>C</i> \$3	=GolfQ2 * Wachstumsfak.	

) stellt man

Ein Kerngebiet der Informatik ist es, Programme darzustellen. Die Arbeit eines Computers ist sehr komplex, daher nutzt man Abstraktion (Trennung von Konzept und Umsetzung)

Je nach Anwendung ist ein anderer Detailgrad notwendig. Man spricht dann von verschiedenen

alles möglichst auf derselben Ebene dar.

Abstraktionsebenen . In einem Modell (= Abbild der Realität, z.B. als Diagramm

tatsächlicher Wert	Formel m. Adresse	Beschreibung Einzelwerte	Beschreibung
3630€	=E5 * \$C\$3	=GolfQ2 * Wachstumsfak.	Umsatz Golf Q3

Der Weg der Daten

- 1. Öffne im Browser Orinoco: klassenkarte.de/oo/
- 2. Aus der linken Spalte benötigen wir die Elemente Eingabe, Funktion, Ausgabe und Datenfluss.
- 3. Wähle zwei verschiedene Formelfelder deiner Tabelle aus und erstelle ein Diagramm mit den genannten Elementen, das darstellt, welche Daten in die Berechnung einfließen, welche ausgegeben werden und was für eine Berechnung durchgeführt wird.
- 4. Erstellt möglichst viele Diagramme auf verschiedenen Abstraktionsebenen.

Der Weg der Daten

- 1. Öffne im Browser Orinoco: klassenkarte.de/oo/
- 2. Aus der linken Spalte benötigen wir die Elemente Eingabe, Funktion, Ausgabe und Datenfluss.
- 3. Wähle zwei verschiedene Formelfelder deiner Tabelle aus und erstelle ein Diagramm mit den genannten Elementen, das darstellt, welche Daten in die Berechnung einfließen, welche ausgegeben werden und was für eine Berechnung durchgeführt wird.
- 4. Erstellt möglichst viele Diagramme auf verschiedenen Abstraktionsebenen.

Ein paar Beispiele für eine Zelle. Es gibt natürlich seehr viele Möglichkeiten.

Datenflussdiagramm

Datenflussdiagramme stellen die Ein- und Ausgaben von Funktionen übersichtlich dar. Man nutzt sie, um die Umsetzung eines Programms zu planen oder im

Nachhinein zu dokumentieren. Datenflussdiagramme

bestehen aus diesen Elementen:

Schema eines DFDs mit Platzhaltern:

Datenflussdiagramm

Datenflussdiagramme stellen die Ein- und Ausgaben von Funktionen übersichtlich dar. Man nutzt sie, um

die Umsetzung eines Programms zu **planen oder** im Nachhinein zu **dokumentieren**. Datenflussdiagramme

bestehen aus diesen Elementen:

Werte (Eingaben/Ausgaben)

Funktionen

Datenflüsse: --->

Schema eines DFDs mit Platzhaltern:

Datenflussdiagramm

Datenflussdiagramme stellen die Ein- und Ausgaben von Funktionen übersichtlich dar. Man nutzt sie, um die Umsetzung eines Programms zu planen oder im

die Umsetzung eines Programms zu **planen oder** im Nachhinein zu **dokumentieren**. Datenflussdiagramme

bestehen aus diesen Elementen:

Werte (Eingaben/Ausgaben)

Funktionen

Datenflüsse: →

Schema eines DFDs mit Platzhaltern:

Ausgabe (genau eine!)

zwischen Start- und Endzelle an. Zum Beispiel:

usw.

Eine Funktion besitzt in der Informatik genauso wie in Mathe Eingaben (=) und genau eine Ausgabe

Besitzt eine Funktion einen Parameter heißt sie , bei **zwei** Parametern

Funktionen. SUMME und PRODUKT können auch als

Gewöhnliche Rechenoperationen sind fertige Funktion geschrieben werden und sind dann beliebig vielstellig.

Einzelne Parameter trennt man mit Semikolon, alle Zellen innerhalb eines Bereichs gibt man mit Doppelpunkt

usw.

Eine Funktion besitzt in der Informatik genauso wie in Mathe Eingaben (=) und genau eine Ausgabe Parameter

Besitzt eine Funktion einen Parameter heißt sie

, bei **zwei** Parametern Funktionen. SUMME und PRODUKT können auch als

Gewöhnliche Rechenoperationen sind

fertige Funktion geschrieben werden und sind dann beliebig vielstellig. Einzelne Parameter trennt man mit Semikolon, alle Zellen innerhalb eines Bereichs gibt man mit Doppelpunkt

usw.

Eine Funktion besitzt in der Informatik genauso wie in Mathe Eingaben (=) und genau eine Ausgabe Parameter

Rückgabewert

Besitzt eine Funktion einen Parameter heißt sie

, bei **zwei** Parametern Funktionen. SUMME und PRODUKT können auch als

Gewöhnliche Rechenoperationen sind

fertige Funktion geschrieben werden und sind dann beliebig vielstellig. Einzelne Parameter trennt man mit Semikolon, alle Zellen innerhalb eines Bereichs gibt man mit Doppelpunkt

usw.

Eine Funktion besitzt in der Informatik genauso wie in Mathe Eingaben (=) und genau eine Ausgabe Parameter Rückgabewert

Besitzt eine Funktion einen Parameter heißt sie einstellig , bei zwei Parametern Funktionen. SUMME und PRODUKT können auch als

Gewöhnliche Rechenoperationen sind fertige Funktion geschrieben werden und sind dann beliebig vielstellig. Einzelne Parameter trennt man mit Semikolon, alle Zellen innerhalb eines Bereichs gibt man mit Doppelpunkt

usw.

zweistellig

Eine Funktion besitzt in der Informatik genauso wie in Mathe Eingaben (=) und genau eine Ausgabe Parameter Rückgabewert

Besitzt eine Funktion einen Parameter heißt sie einstellig , bei zwei Parametern Funktionen. SUMME und PRODUKT können auch als Gewöhnliche Rechenoperationen sind

fertige Funktion geschrieben werden und sind dann beliebig vielstellig. Einzelne Parameter trennt man mit Semikolon, alle Zellen innerhalb eines Bereichs gibt man mit Doppelpunkt zwischen Start- und Endzelle an. Zum Beispiel:

Eine Funktion besitzt in der Informatik genauso wie in Mathe Eingaben (=) und genau eine Ausgabe Parameter

Rückgabewert Besitzt eine Funktion einen Parameter heißt sie einstellig , bei zwei Parametern zweistellig usw.

Gewöhnliche Rechenoperationen sind zweistellige Funktionen. SUMME und PRODUKT können auch als fertige Funktion geschrieben werden und sind dann beliebig vielstellig. Einzelne Parameter trennt man mit Semikolon, alle Zellen innerhalb eines Bereichs gibt man mit Doppelpunkt

usw.

zweistellig

Eine Funktion besitzt in der Informatik genauso wie in Mathe Eingaben (=) und genau eine Ausgabe Parameter Rückgabewert

Besitzt eine Funktion einen Parameter heißt sie einstellig , bei zwei Parametern Gewöhnliche Rechenoperationen sind zweistellige Funktionen. SUMME und PRODUKT können auch als

fertige Funktion geschrieben werden und sind dann beliebig vielstellig. Einzelne Parameter trennt man mit Semikolon, alle Zellen innerhalb eines Bereichs gibt man mit Doppelpunkt zwischen Start- und Endzelle an. Zum Beispiel:

```
= A1 + B1 + C1 + D1 = SUMME(A1;B1;C1;D1) = SUMME(A1:D1)
```


Ihr macht die Kalkulation für eine große Party mit einer Kalkulationstabelle. Da so eine Planung aufwendig ist, wird sie auf mehrere Personen aufgeteilt.

- 1. Bildet mindestens 4 Gruppen (A1,A2,B1,B2 manche kann es doppelt geben) und nehmt euch gemeinsam einen Zettel. Eure Aufgabenstellung erhaltet ihr von der Lehrkraft
- 2. Zeichnet zu eurer Aufgabenstellung pro Schritt ein Datenflussdiagramm (mit hoher Abstraktion)
- 3. Tauscht euer Diagramm mit der anderen Gruppe eures Buchstabens (also z.B. tauschen A1 und A2) und setzt dieses dann mit der Tabellensoftware in BYCS-Drive um.
 - Färbt auch dieses Mal wieder die Zellen anhand des Typs (Nutzereingabe, Formel, Beschriftung) ein.
 - Zum Testen eurer Formeln könnt ihr einfach Preise und Gäste-Anzahlen erfinden.

Wieso ist es sinnvoll, zuerst ein Diagramm zu zeichnen?

Welche Eigenschaften eines Diagramms machen die Umsetzung leichter?

Ihr macht die Kalkulation für eine große Party mit einer Kalkulationstabelle. Da so eine Planung aufwendig ist, wird sie auf mehrere Personen aufgeteilt.

- 1. Bildet mindestens 4 Gruppen (A1,A2,B1,B2 manche kann es doppelt geben) und nehmt euch gemeinsam einen Zettel. Eure Aufgabenstellung erhaltet ihr von der Lehrkraft (oben als Dateianhang)
- 2. Zeichnet zu eurer Aufgabenstellung pro Schritt ein Datenflussdiagramm (mit hoher Abstraktion)
- 3. Tauscht euer Diagramm mit der anderen Gruppe eures Buchstabens (also z.B. tauschen A1 und A2) und setzt dieses dann mit der Tabellensoftware in BYCS-Drive um.
 - Färbt auch dieses Mal wieder die Zellen anhand des Typs (Nutzereingabe, Formel, Beschriftung) ein.
 - Zum Testen eurer Formeln könnt ihr einfach Preise und Gäste-Anzahlen erfinden.

Wieso ist es sinnvoll, zuerst ein Diagramm zu zeichnen?

Welche Eigenschaften eines Diagramms machen die Umsetzung leichter?

Ihr macht die Kalkulation für eine große Party mit einer Kalkulationstabelle. Da so eine Planung aufwendig ist, wird sie auf mehrere Personen aufgeteilt.

- 1. Bildet mindestens 4 Gruppen (A1,A2,B1,B2 manche kann es doppelt geben) und nehmt euch gemeinsam einen Zettel. Eure Aufgabenstellung erhaltet ihr von der Lehrkraft (oben als Dateianhang)
- 2. Zeichnet zu eurer Aufgabenstellung pro Schritt ein Datenflussdiagramm (mit hoher Abstraktion)
- 3. Tauscht euer Diagramm mit der anderen Gruppe eures Buchstabens (also z.B. tauschen A1 und A2) und setzt dieses dann mit der Tabellensoftware in BYCS-Drive um.
 - Färbt auch dieses Mal wieder die Zellen anhand des Typs (Nutzereingabe, Formel, Beschriftung) ein.
 - o Zum Testen eurer Formeln könnt ihr einfach Preise und Gäste-Anzahlen erfinden.

Wieso ist es sinnvoll, zuerst ein Diagramm zu zeichnen? z.B. Besserer Überblick, Aufbau einer Intuition für den Kontext, geringere Gefahr vor lauter Syntax den Überblick zu verlieren, 'Divide-and-Conquer', erst Planen, dann Umsetzen reduziert Fehler

Welche Eigenschaften eines Diagramms machen die Umsetzung leichter?

Ihr macht die Kalkulation für eine große Party mit einer Kalkulationstabelle. Da so eine Planung aufwendig ist, wird sie auf mehrere Personen aufgeteilt.

- 1. Bildet mindestens 4 Gruppen (A1,A2,B1,B2 manche kann es doppelt geben) und nehmt euch gemeinsam einen Zettel. Eure Aufgabenstellung erhaltet ihr von der Lehrkraft (oben als Dateianhang)
- 2. Zeichnet zu eurer Aufgabenstellung pro Schritt ein Datenflussdiagramm (mit hoher Abstraktion)
- 3. Tauscht euer Diagramm mit der anderen Gruppe eures Buchstabens (also z.B. tauschen A1 und A2) und setzt dieses dann mit der Tabellensoftware in BYCS-Drive um.
 - Färbt auch dieses Mal wieder die Zellen anhand des Typs (Nutzereingabe, Formel, Beschriftung) ein.
 - Zum Testen eurer Formeln könnt ihr einfach Preise und Gäste-Anzahlen erfinden.

Wieso ist es sinnvoll, zuerst ein Diagramm zu zeichnen?

z.B. Besserer Überblick, Aufbau einer Intuition für den Kontext, geringere Gefahr vor lauter Syntax den Überblick zu verlieren, 'Divide-and-Conquer', erst Planen, dann Umsetzen reduziert Fehler

Welche Eigenschaften eines Diagramms machen die Umsetzung leichter? aussagekräftige Namen für Werte auch ohne den Kontext zu kennen, beschreibende Funktionsnamen statt nur Rechenoperationen, ...

Getränkekalkuation A1 Preis Anzahl Kasten Flaschen pro Spezi Kasten Spezi Flaschenpreis Spezi berechnen Flaschenpreis Spezi **Anzahl** Preis Kasten Flaschen pro Kasten Bier Bier Flaschenpreis Bier berechnen

Getränkekalkuation A1 Preis Anzahl Preis Anzahl Kasten Flaschen pro Kasten Flaschen pro Wasser Kasten Wasser Spezi Kasten Spezi Flaschenpreis Flaschenpreis Wasser Spezi berechnen berechnen Flaschenpreis Spezi Flaschenpreis Wasser Preis Anzahl Kasten Flaschen pro Bier Kasten Bier Flaschenpreis Bier berechnen

Getränkekalkuation A1 Preis Anzahl Preis Anzahl Kasten Flaschen pro Kasten Flaschen pro Wasser Kasten Wasser Spezi Kasten Spezi Flaschenpreis Flaschenpreis Wasser Spezi berechnen berechnen Flaschenpreis Spezi Flaschenpreis Wasser Preis Anzahl Kasten Flaschen pro Bier Kasten Bier Flaschenpreis Bier berechnen

Datenfluss-Puzzle

- 1. Trefft euch mit der Gruppe, mit der ihr euer Datenflussdiagramm getauscht habt. Von eurer Lehrkraft bekommt ihr ausgedruckt die Lösungen für eure Einzeldiagramme und ein A3 Blatt als Untergrund.
- 2. Fügt eure einzelnen Datenflussdiagramme zu einem Gesamtdiagramm zusammen. Nutzt hierfür ggf. eine Schere und fügt zusätzliche Datenflüsse und falls notwendig Funktionen ein.
- 3. Überlegt euch:
 Welche Elemente kann man beim Zusammenfügen entfernen (ohne Information zu verlieren) und wieso?

4. Zeichnet nach dem gemeinsamen Vergleich mit der ganzen Klasse ein möglichst stark vereinfachtes Gesamt-DFD zu Gruppe B auf die nächste Seite.

Datenfluss-Puzzle

- 1. Trefft euch mit der Gruppe, mit der ihr euer Datenflussdiagramm getauscht habt. Von eurer Lehrkraft bekommt ihr ausgedruckt die Lösungen für eure Einzeldiagramme und ein A3 Blatt als Untergrund.
- 2. Fügt eure einzelnen Datenflussdiagramme zu einem Gesamtdiagramm zusammen. Nutzt hierfür ggf. eine Schere und fügt zusätzliche Datenflüsse und falls notwendig Funktionen ein.
- 3. Überlegt euch:
 Welche Elemente kann man beim Zusammenfügen entfernen (ohne Information zu verlieren) und wieso?
 Datenblöcke zwischen 2 Funktionen (aber nur wenn Funktionsname aussagekräftig genug ist, um trotzdem zu verstehen, was gerechnet wird)
- 4. Zeichnet nach dem gemeinsamen Vergleich mit der ganzen Klasse ein möglichst stark vereinfachtes Gesamt-DFD zu Gruppe B auf die nächste Seite.

Wenn der einer Funktion als einer anderen Funktion verwendet wird, spricht man von von Funktionen. In Datenflussdiagrammen können zwischen

<u>weggelassen werden.</u> Hierbei ist es dann besonders wichtig, aussagekräftige Funktionsnamen

zu wählen. Mit einem kann ein Datenfluss in zwei aufgeteilt werden.

Ein Beispiel ist das Gesamt-Diagramm aus der vorherigen

Aufgabe.

Wenn der Ausgabewert einer Funktion als einer anderen Funktion verwendet wird, spricht man von von Funktionen. In Datenflussdiagrammen können zwischen

weggelassen werden. Hierbei ist es dann besonders wichtig, aussagekräftige Funktionsnamen

zu wählen. Mit einem kann ein Datenfluss in zwei aufgeteilt werden.

Wenn der **Ausgabewert** einer Funktion als **Eingabewert** einer anderen Funktion verwendet wird, spricht man von von Funktionen. In Datenflussdiagrammen können zwischen

weggelassen werden. Hierbei ist es dann besonders wichtig, aussagekräftige Funktionsnamen

zu wählen. Mit einem kann ein Datenfluss in zwei aufgeteilt werden.

Wenn der Ausgabewert einer Funktion als Eingabewert einer anderen Funktion verwendet wird, spricht man von Verkettung von Funktionen. In Datenflussdiagrammen können zwischen

weggelassen werden. Hierbei ist es dann besonders wichtig, aussagekräftige Funktionsnamen

zu wählen. Mit einem kann ein Datenfluss in zwei aufgeteilt werden.

Wenn der Ausgabewert einer Funktion als Eingabewert einer anderen Funktion verwendet wird, von Funktionen. In Datenflussdiagrammen können Datenblöcke spricht man von Verkettung zwischen

weggelassen werden. Hierbei ist es dann besonders wichtig, aussagekräftige Funktionsnamen

kann ein Datenfluss in zwei aufgeteilt werden. zu wählen. Mit einem

Wenn der Ausgabewert einer Funktion als Eingabewert einer anderen Funktion verwendet wird, spricht man von Verkettung von Funktionen. In Datenflussdiagrammen können Datenblöcke zwischen **2 Funktionen** weggelassen werden. Hierbei ist es dann besonders wichtig, aussagekräftige Funktionsnamen

zu wählen. Mit einem kann ein Datenfluss in zwei aufgeteilt werden.

Ein Beispiel ist das Gesamt-Diagramm aus der vorherigen

Aufgabe.

Wenn der Ausgabewert einer Funktion als Eingabewert einer anderen Funktion verwendet wird, spricht man von Verkettung von Funktionen. In Datenflussdiagrammen können Datenblöcke zwischen 2 Funktionen weggelassen werden. Hierbei ist es dann besonders wichtig, aussagekräftige Funktionsnamen

zu wählen. Mit einem Verteiler kann ein Datenfluss in zwei aufgeteilt werden.

Ein **Reisniel** ist das Gosamt Diagramm aus der **verherigen**

Aufgabe.

Wenn der Ausgabewert einer Funktion als Eingabewert einer anderen Funktion verwendet wird, spricht man von Verkettung von Funktionen. In Datenflussdiagrammen können Datenblöcke zwischen 2 Funktionen weggelassen werden. Hierbei ist es dann besonders wichtig, aussagekräftige Funktionsnamen

zu wählen. Mit einem Verteiler kann ein Datenfluss in zwei aufgeteilt werden.

Bei einer großen Party fallen nicht nur Getränkekosten an. Zeichne jeweils zwei Datenflussdiagramme:

- Eines mit konkreten Rechenoperationen in Funktionen (2-stellige Funktionen) und Daten auf höchster Abstraktionsebene.

• Eines auf höchster Abstraktionsebene für Daten und Funktionen (genau eine Funktion pro Einzel-Diagramm).

Übung: Funktionale Modellierung (a)

Getränkegewinn Durch den Verkauf der Getränke nimmst du Geld ein. Am Ende der Party zählst du die Kassen und erhältst die Gesamteinnahmen. Aus diesem Betrag und den Ausgaben beim Lieferanten errechnest du den Gewinn.

Übung: Funktionale Modellierung (a)

Getränkegewinn Durch den Verkauf der Getränke nimmst du Geld ein. Am Ende der Party zählst du die Kassen und erhältst die Gesamteinnahmen. Aus diesem Betrag und den Ausgaben beim Lieferanten errechnest du den Gewinn.

Übung: Funktionale Modellierung (a)

Getränkegewinn Durch den Verkauf der Getränke nimmst du Geld ein. Am Ende der Party zählst du die Kassen und erhältst die Gesamteinnahmen. Aus diesem Betrag und den Ausgaben beim Lieferanten errechnest du den Gewinn.

Übung: Funktionale Modellierung (b)

Anzahl Gäste Du hast vergessen, am Einlass eine Strichliste zu führen, daher kennst du nur deine Einnahmen durch Eintrittskarten und wie viel eine gekostet hat. Hier raus berechnest du die Anzahl der Gäste.

Übung: Funktionale Modellierung (b)

Anzahl Gäste Du hast vergessen, am Einlass eine Strichliste zu führen, daher kennst du nur deine Einnahmen durch Eintrittskarten und wie viel eine gekostet hat. Hier raus berechnest du die Anzahl der Gäste.

Übung: Funktionale Modellierung (b)

Anzahl Gäste Du hast vergessen, am Einlass eine Strichliste zu führen, daher kennst du nur deine Einnahmen durch Eintrittskarten und wie viel eine gekostet hat. Hier raus berechnest du die Anzahl der Gäste.

Übung: Funktionale Modellierung (c)

Security Weil die Feier deiner besten Freundin beim letzten Mal eskaliert ist, engagierst du einen Sicherheitsdienst. Die Anzahl der benötigten Security-Mitarbeiter berechnest du aus der Anzahl an Gästen und einem Personenschlüssel. Im Anschluss werden aus der Anzahl an Mitarbeitern und den Kosten pro Mitarbeiter die Security-Kosten berechnet.

Übung: Funktionale Modellierung (c)

Security Weil die Feier deiner besten Freundin beim letzten Mal eskaliert ist, engagierst du einen Sicherheitsdienst. Die Anzahl der benötigten Security-Mitarbeiter berechnest du aus der Anzahl an Gästen und einem Personenschlüssel. Im Anschluss werden aus der Anzahl an Mitarbeitern und den Kosten pro Mitarbeiter die Security-Kosten berechnet.

Übung: Funktionale Modellierung (c)

Security Weil die Feier deiner besten Freundin beim letzten Mal eskaliert ist, engagierst du einen Sicherheitsdienst. Die Anzahl der benötigten Security-Mitarbeiter berechnest du aus der Anzahl an Gästen und einem Personenschlüssel. Im Anschluss werden aus der Anzahl an Mitarbeitern und den Kosten pro Mitarbeiter die Security-Kosten berechnet.

Übung: Funktionale Modellierung (d)

Gewinn pro Gast Aus dem Getränke-Gewinn, den Einnahmen aus Eintrittskarten, den Security-Kosten und der Gästeanzahl berechnest du den durchschnittlichen Gewinn pro Gast.

Übung: Funktionale Modellierung (d)

Gewinn pro Gast Aus dem Getränke-Gewinn, den Einnahmen aus Eintrittskarten, den Security-Kosten und der Gästeanzahl berechnest du den durchschnittlichen Gewinn pro Gast.

Übung: Funktionale Modellierung (d)

Gewinn pro Gast Aus dem Getränke-Gewinn, den Einnahmen aus Eintrittskarten, den Security-Kosten und der Gästeanzahl berechnest du den durchschnittlichen Gewinn pro Gast.

Übung: Funktionale Modellierung (e)

Gesamt-Diagramm Füge die abstrakten Einzeldiagramme zu einem abstrakten verketteten Datenflussdiagrammen zusammen. Lasse keine Funktionen aber alle nicht benötigten Datenblöcke weg!

Übung: Funktionale Modellierung (e)

Gesamt-Diagramm Füge die abstrakten Einzeldiagramme zu einem abstrakten verketteten Datenflussdiagrammen zusammen. Lasse keine Funktionen aber alle nicht benötigten Datenblöcke weg!

Umsetzung der DFDs als Tabelle

- 1. Setze die Diagramme aus der vorherigen Aufgabe in einer neuen Tabellendatei um.
- 2. Überlege dir einen sinnvollen Aufbau für die Tabelle und hebe auch diesmal wieder den Typ (Eingabe, berechneter Wert, Beschriftung) der Zelle (z.B. farbig) hervor.
- 3. Achte darauf, dass auch die Zwischenergebnisse wie in den Datenflussdiagrammen in der Tabelle angezeigt werden.

Beschreibe deinen Ansatz grob:

Umsetzung der DFDs als Tabelle

- 1. Setze die Diagramme aus der vorherigen Aufgabe in einer neuen Tabellendatei um.
- 2. Überlege dir einen sinnvollen Aufbau für die Tabelle und hebe auch diesmal wieder den Typ (Eingabe, berechneter Wert, Beschriftung) der Zelle (z.B. farbig) hervor.
- 3. Achte darauf, dass auch die Zwischenergebnisse wie in den Datenflussdiagrammen in der Tabelle angezeigt werden.

Beschreibe deinen Ansatz grob:

- Möglichkeit 1: Einfach untereinander Eingaben und berechnete Werte etwa in Reihenfolge des
 - 'Auftretens'
 - Möglichkeit 2: Strukturell am DFD orientiert, wird ähnlich einer Pyramide
 - weitere Möglichkeiten: ...

Umsetzung der DFDs als Tabelle

Zeichne eine grobe Skizze deiner Tabelle:										
⊿ A	В	С	D	Е	F	G	Н		J	К
1										
2	Lösungmöglichkeit 1			Lösungmöglichkeit 2						
3	Einnahmen Getränke	400,00€				Einnahmen Tickets		Preis pro Ticket		
4	Ausgaben Getränke	100,00€				600	600,00 €			
5	Gewinn Getränke	300,00€					Anzahl Gäste		Gäste pro Security	
6	Einnahmen Tickets	600,00€					120		80	
7	Preis pro Ticket	5		Einnahmen Getränke	Ausgaben Getränke		Anzahl		Security	Kosten pro Secu-Person
8	Anzahl Gäste	120		400,00€	100,00€				2	250,00€
9	Gäste pro Security	80		Gewinn Getränke				Securitykosten		ten
10	Anzahl Security	2		300,00€				500,00€		
11	Kosten pro Secu-Person	250,00€		Gewinn pro Gaste						
12	Kosten Security gesamt	500,00€		3,33 €						
13	Durchn. Gewinn pro Gast	3,33€								

Wenn-Dann-Funktion

- 1. Öffne Studyflix: bycs.link/studyflix-excel-if
- 2. Schaue das Video und baue die beschriebene Tabelle in BYCS Drive nach.

Fasse den Artikel/das Video in einem kurzen Hefteintrag zusammen.

- 4. Ergänze mit Hilfe deines Buchs, die Darstellung der Wenn-Dann-Funktion im Datenflussdiagramm.

Wenn-Dann-Funktion

Mit der Wenn-Dann-Funktion können anhand einer Bedingung verschiedene Werte verwendet werden.

Eine Bedingung kann z.B.

- Gleichheit zweier Werte (=) oder
 - eine Grö∏er-/Kleiner-Bedingung (<,>,<=,>=)

prüfen.

Wenn die Bedingung als wahr ausgewertet (=erfüllt) wird, wird der Dann-Teil in die Zelle eingefügt, ansonsten der Sonst-Teil.

In Excel gibt man die Funktion so ein:

Schema: =WENN(Bedingung; Dann; Sonst)

Beispiel: =WENN(D5 < 10; ∏kleiner als 10°;

∏grö∏er oder gleich 10")

Bei der Darstellung im Datenflussdiagramm ist die Reihenfolge (von links nach rechts), mit der die Pfeile an der Funktion ankommen, wichtig:

- 1. Kopiert die freigegebene Einkaufstabelle in euren BYCS-Drive Ordner und Öffnet sie.
- 2. Findet mit Hilfe der Filter Funktion folgendes heraus:
 - Wie teuer war der teuerste Einkauf?
 - Wie teuer war der teuerste Einkauf, den eine diverse Person mit Karte bezahlt hat?
 - o Wann und was war der erste Einkauf von Kosmetik in der Tabelle?
 - Was ist der Name der alphabetisch ersten weibliche Person?
 - Was war der billigste Einkauf, der mit Karte gezahlt wurde?

- 1. Kopiert die freigegebene Einkaufstabelle in euren BYCS-Drive Ordner und Öffnet sie.
- 2. Findet mit Hilfe der Filter Funktion folgendes heraus:
 - Wie teuer war der teuerste Einkauf? 649,90€
 - Wie teuer war der teuerste Einkauf, den eine diverse Person mit Karte bezahlt hat?
 - $\circ\;$ Wann und was war der erste Einkauf von Kosmetik in der Tabelle?
 - o Was ist der Name der alphabetisch ersten weibliche Person?
 - Was war der billigste Einkauf, der mit Karte gezahlt wurde?

- 1. Kopiert die freigegebene Einkaufstabelle in euren BYCS-Drive Ordner und Öffnet sie.
- 2. Findet mit Hilfe der Filter Funktion folgendes heraus:

 - Wie teuer war der teuerste Einkauf? 649,90€ • Wie teuer war der teuerste Einkauf, den eine diverse Person mit Karte bezahlt hat? 239,00€
 - Wann und was war der erste Einkauf von Kosmetik in der Tabelle?
 - Was ist der Name der alphabetisch ersten weibliche Person?
 - Was war der billigste Einkauf, der mit Karte gezahlt wurde?

- 1. Kopiert die freigegebene Einkaufstabelle in euren BYCS-Drive Ordner und Öffnet sie.
- 2. Findet mit Hilfe der Filter Funktion folgendes heraus:

 - Wie teuer war der teuerste Einkauf? 649,90€ • Wie teuer war der teuerste Einkauf, den eine diverse Person mit Karte bezahlt hat? 239,00€
 - Wann und was war der erste Einkauf von Kosmetik in der Tabelle? 14.01.2006, Haargummi
 - Was ist der Name der alphabetisch ersten weibliche Person?
 - Was war der billigste Einkauf, der mit Karte gezahlt wurde?

- 1. Kopiert die freigegebene Einkaufstabelle in euren BYCS-Drive Ordner und Öffnet sie.
- 2. Findet mit Hilfe der Filter Funktion folgendes heraus:
 - Wie teuer war der teuerste Einkauf? 649,90€
 - Wie teuer war der teuerste Einkauf, den eine diverse Person mit Karte bezahlt hat? 239,00€
 - Wann und was war der erste Einkauf von Kosmetik in der Tabelle? 14.01.2006, Haargummi
 - Was ist der Name der alphabetisch ersten weibliche Person? Alicia Solis
 - Was war der billigste Einkauf, der mit Karte gezahlt wurde?

- 1. Kopiert die freigegebene Einkaufstabelle in euren BYCS-Drive Ordner und Öffnet sie.
- 2. Findet mit Hilfe der Filter Funktion folgendes heraus:
- - Wie teuer war der teuerste Einkauf? 649,90€ • Wie teuer war der teuerste Einkauf, den eine diverse Person mit Karte bezahlt hat? 239,00€
 - Wann und was war der erste Einkauf von Kosmetik in der Tabelle? 14.01.2006, Haargummi
 - Was ist der Name der alphabetisch ersten weibliche Person? Alicia Solis
 - Was war der billigste Einkauf, der mit Karte gezahlt wurde? Milch

die

Verwaltet man große Datenmengen, ist es hilfreich, Filter zu verwenden. Mit diesen kann man:

sortieren.

- verwalter man grobe Bateriniengen, ist es minieren, i neer za verwenden. ivit diesen kann man.
 - nur mit bestimmten Werten in einer anzeigen.

nach den Werten einer bestimmten

Mehrere Filter können miteinander kombiniert werden.

• Menrere Filler konnen mileinander kombiniert werden.

die

Verwaltet man große Datenmengen, ist es hilfreich, Filter zu verwenden. Mit diesen kann man:

anzeigen.

sortieren.

verwanet man grobe Bateliniengen, ist es mineren, i mer zu verwenden. Witt diesen kann mar

nach den Werten einer bestimmten

• nur Zeilen mit bestimmten Werten in einer

- Mehrere Filter können miteinander kombiniert werden.
- Meniere i iller konnen millemander kombiniert werden.

Verwaltet man große Datenmengen, ist es hilfreich, Filter zu verwenden. Mit diesen kann man:

- To market man grobe Bateminengen, ist ee minieren, t met 2a termenaem mit arecen kann mar
 - nur Zeilen mit bestimmten Werten in einer Spalte anzeigen.
 - die nach den Werten einer bestimmten sortieren.
 - Mehrere Filter können miteinander kombiniert werden.

Verwaltet man große Datenmengen, ist es hilfreich, Filter zu verwenden. Mit diesen kann man:

- verwanet man grobe Batenmengen, ist es mineren, i mer zu verwenden. Witt diesen kann mar
- nur Zeilen mit bestimmten Werten in einer Spalte anzeigen.
- die Zeilen nach den Werten einer bestimmten sortieren.
- Mehrere Filter können miteinander kombiniert werden.

Zeilen

die

Verwaltet man große Datenmengen, ist es hilfreich, Filter zu verwenden. Mit diesen kann man:

Spalte

sortieren.

- - Zeilen mit bestimmten Werten in einer Spalte anzeigen. nur nach den Werten einer bestimmten
 - Mehrere Filter können miteinander kombiniert werden.

Optional: Übung Notentabelle

Frau Knust möchte die Noten ihrer Klasse übersichtlich verwalten.

Hierfür benötigt sie eine Tabelle, in der die Gesamtnoten der einzelnen Fächer pro Schüler:in eingetragen werden,

der Durchschnitt berechnet wird und in der letzten Spalte angezeigt wird, ob eine Person in mindestens zwei Fächern

eine Note schlechter als 4 hat.

Die Notentabelle soll man mit der Filterfunktion sortieren und filtern können. Die Tabelle soll außerdem optisch ansprechend sein.

Erstelle in BYCS-Drive eine solche Kalkulationstabelle