Project in Python Data Products Specialization

Dataset - House Prices - Advanced Regression Techniques data from Kaggle Website: https://www.kaggle.com/competitions/house-prices-advanced-regression-techniques/data (https://www.kaggle.com/competitions/house-prices-advanced-regression-techniques/data)

Dataset Description: This data has 79 explanatory variables describing almost every aspect of residential homes in Ames, Iowa. There is a competition on Kaggle to predict the final price of each home.

Variables: Some of the variables have missing values. For such variables statistics such as correlation were computed if at least a 1000 values were common for the two variables. For mean etc also, the missing values are as of now ignored.

Dataset author: The Ames housing dataset was compiled by Dean De Cock for use in data science education.

In [3]:

```
# Load the dataset:
import pandas as pd
import zipfile
df_zip = zipfile.ZipFile('D:\TRL\OneDrive\CourseraPython\ProjectCourse1\KaggleHousePtdf = pd.read_csv(df_zip.open('train.csv'))
type(df)
```

Out[3]:

pandas.core.frame.DataFrame

In [4]:

1 df

Out[4]:

	ld	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandCon
0	1	60	RL	65.0	8450	Pave	NaN	Reg	
1	2	20	RL	80.0	9600	Pave	NaN	Reg	
2	3	60	RL	68.0	11250	Pave	NaN	IR1	
3	4	70	RL	60.0	9550	Pave	NaN	IR1	
4	5	60	RL	84.0	14260	Pave	NaN	IR1	
1455	1456	60	RL	62.0	7917	Pave	NaN	Reg	
1456	1457	20	RL	85.0	13175	Pave	NaN	Reg	
1457	1458	70	RL	66.0	9042	Pave	NaN	Reg	
1458	1459	20	RL	68.0	9717	Pave	NaN	Reg	
1459	1460	20	RL	75.0	9937	Pave	NaN	Reg	

1460 rows × 81 columns

df[10:]

```
In [5]:
```

```
# To select all the rows in the dataframe where Alley value is not NaN
alley_notnan = df[~df['Alley'].isnull()]
alley_notnan
```

Out[5]:

	ld	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandCon
21	22	45	RM	57.0	7449	Pave	Grvl	Reg	_
30	31	70	C (all)	50.0	8500	Pave	Pave	Reg	
56	57	160	FV	24.0	2645	Pave	Pave	Reg	
79	80	50	RM	60.0	10440	Pave	Grvl	Reg	
87	88	160	FV	40.0	3951	Pave	Pave	Reg	
1404	1405	50	RL	60.0	10410	Pave	Grvl	Reg	
1414	1415	50	RL	64.0	13053	Pave	Pave	Reg	
1427	1428	50	RL	60.0	10930	Pave	Grvl	Reg	
1432	1433	30	RL	60.0	10800	Pave	Grvl	Reg	
1454	1455	20	FV	62.0	7500	Pave	Pave	Reg	

91 rows × 81 columns

In [6]:

```
1 df['MSSubClass'].isna()
```

```
Out[6]:
```

```
False
1
        False
2
        False
3
        False
        False
        . . .
1455
        False
        False
1456
1457
        False
1458
        False
1459
        False
Name: MSSubClass, Length: 1460, dtype: bool
```

There are so many variables associated with the house price. Let us see which of them most effect the sale price of the house the most.

df.corr() - to find the correlation

is used to find Pearson's correlation among the columns in the dataframe df. Any NaN value is automatically excluded. Any non- numeric data type or columns are excluded. We can specify min_periods, which is the min number of observations required per pair of columns to have a valid result. Ex: at least 100 obs needed per column to arrive at a valid correlation value.

In [7]:

```
1 df['SalePrice']
Out[7]:
0
        208500
1
        181500
2
        223500
3
        140000
        250000
         . . .
1455
        175000
1456
        210000
1457
        266500
1458
        142125
        147500
1459
Name: SalePrice, Length: 1460, dtype: int64
```

In [8]:

```
# First let us examine the missing data patterns:
df_new = df.drop(['Id'], axis = 1)
correlation_mat = df_new.corr(method = 'pearson', min_periods = 1000)
# min_periods = 1000 means that there are at least 1000 observations
# required per pair of columns to have a valid result.
mat = round(correlation_mat,2)
#mat[35:].iloc[:,31:40]
mat
```

Out[8]:

	MSSubClass	LotFrontage	LotArea	OverallQual	OverallCond	YearBuilt	YearRemodAdd	N
MSSubClass	1.00	-0.39	-0.14	0.03	-0.06	0.03	0.04	
LotFrontage	-0.39	1.00	0.43	0.25	-0.06	0.12	0.09	
LotArea	-0.14	0.43	1.00	0.11	-0.01	0.01	0.01	
OverallQual	0.03	0.25	0.11	1.00	-0.09	0.57	0.55	
OverallCond	-0.06	-0.06	-0.01	-0.09	1.00	-0.38	0.07	
YearBuilt	0.03	0.12	0.01	0.57	-0.38	1.00	0.59	
YearRemodAdd	0.04	0.09	0.01	0.55	0.07	0.59	1.00	
MasVnrArea	0.02	0.19	0.10	0.41	-0.13	0.32	0.18	
BsmtFinSF1	-0.07	0.23	0.21	0.24	-0.05	0.25	0.13	
BsmtFinSF2	-0.07	0.05	0.11	-0.06	0.04	-0.05	-0.07	•
4								>

In [9]:

```
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
sns.heatmap(correlation_mat)
```

Out[9]:

<AxesSubplot:>

From here, we see that the sale price is more correlated with the following variables:

- 1. Overall Quality of the house)
- 2.YearRemodAdd (Year of remodelling/construction)
 - 3. GrLivArea (Above grade ground living area in sq feet)
 - 4. MasVnrArea (Masonry Veneer Area in sq feet),
 - 5. TotalBsmtSF (Total basement area in sq feet),
 - 6. 1stFIrSF (1st floor area in sq feet),
 - 7. FullBath (Full bathrooms above grade).

There is a greater than or equal to 0.5 correlation between these variables and SalesPrice (paired correlation).

In [1]:

```
# Let us calculate a new correlation coefficient for these variables
import pandas as pd

df_new = pd.DataFrame()

df_new = pd.concat([df.SalePrice, df.OverallQual,df.YearRemodAdd,df.GrLivArea,df.Mas'
correlation_matnew = df_new.corr(method = 'pearson', min_periods = 1000)
mat_new = round(correlation_matnew,2)
```

```
NameError
t)
~\AppData\Local\Temp\ipykernel_18448\2312607258.py in <module>
        2 import pandas as pd
        3 df_new = pd.DataFrame()
----> 4 df_new = pd.concat([df.SalePrice, df.OverallQual,df.YearRemodAdd,df.GrLivArea,df.MasVnrArea,df['1stFlrSF'],df.TotalBsmtSF,df.FullBath],axis=
1)
        5 correlation_matnew = df_new.corr(method = 'pearson', min_periods = 1000)
        6 mat_new = round(correlation_matnew,2)
```

NameError: name 'df' is not defined

In [11]:

1 mat_new

Out[11]:

	SalePrice	OverallQual	YearRemodAdd	GrLivArea	MasVnrArea	1stFlrSF	To
SalePrice	1.00	0.79	0.51	0.71	0.48	0.61	
OverallQual	0.79	1.00	0.55	0.59	0.41	0.48	
YearRemodAdd	0.51	0.55	1.00	0.29	0.18	0.24	
GrLivArea	0.71	0.59	0.29	1.00	0.39	0.57	
MasVnrArea	0.48	0.41	0.18	0.39	1.00	0.34	
1stFlrSF	0.61	0.48	0.24	0.57	0.34	1.00	
TotalBsmtSF	0.61	0.54	0.29	0.45	0.36	0.82	
FullBath	0.56	0.55	0.44	0.63	0.28	0.38	
4							•

In [12]:

```
1 | sns.heatmap(mat_new)

Out[12]:

<AxesSubplot:>

SalePrice -

OverallQual -

YearRemodAdd -

GrLivArea -

MasVnrArea -

1stFlrSF -

1stFlrSF -

Out[12]:

- 1.0

- 0.9

- 0.8

- 0.7

- 0.6

- 0.5

- 0.4
```

In [13]:

```
import numpy as np
GrLivArea_mean = np.mean(df['GrLivArea'])
GrLivArea_mean
```

Out[13]:

1515.463698630137

In [14]:

```
1 # Now, let us compare the distribution of data for sales price less than
2 # and greater than the mean.
3 Greater = []
   Lesser = []
4
   for i in range(len(df['SalePrice'])):
 5
       if df['GrLivArea'].iloc[i] >= GrLivArea_mean:
6
7
           Greater.append(df.iloc[i])
 8
       else:
9
           Lesser.append(df.iloc[i])
   #The following doesn't work
10
   #Greater = [df['SalePrice'] for d in df['SalePrice'] if df['SalePrice'] >= GrLivArea
```

In [15]:

```
1 len(df['SalePrice']), df['SalePrice'].iloc[0]
```

Out[15]:

(1460, 208500)

```
In [16]:
```

```
1 df.iloc[0]
Out[16]:
Ιd
                      1
MSSubClass
                     60
MSZoning
                     RL
LotFrontage
                   65.0
LotArea
                   8450
MoSold
                      2
YrSold
                   2008
SaleType
                     WD
SaleCondition
                 Normal
SalePrice
                 208500
Name: 0, Length: 81, dtype: object
In [17]:
 1 len(Greater), len(Lesser), len(df['SalePrice']), type(Greater)
Out[17]:
(653, 807, 1460, list)
```

In [18]:

```
# Stacked bar chart
import matplotlib.pyplot as plt
index = [1]
p1 = plt.bar(index, len(Greater), color = 'pink')
p2 = plt.bar(index, len(Lesser), bottom = len(Greater), color = 'blue')
plt.gca().set(title = "Number of houses sold with above ground living area")
plt.xticks([])
plt.legend((p1[0],p2[0]),('Houses with above avg Living area','Houses with below avg plt.show()
```

Number of houses sold with above ground living area

Is there a relationship between Overall Quality of the house and the SalePrice?

This is our first goal, from the correlation matrix above, there may be a relationship between this variable and SalePrice. Our next question: What is the expected saleprice of the house if we consider only the most correlated variable? The most correlated variable is the OverallQual - i.e the overall material and finish of the house. Let us first look at the scatterplot.

In [19]:

```
import seaborn as sns
sns.scatterplot(x = df['OverallQual'], y = df['SalePrice'])
```

Out[19]:

<AxesSubplot:xlabel='OverallQual', ylabel='SalePrice'>

In [20]:

```
data1 = []
data1 = pd.concat([df['OverallQual'],df['SalePrice']],axis = 1)

#sns.lmplot(x = df['OverallQual'], y = df['SalePrice'], data = data1)

#sns.lmplot(x = data1['OverallQual'], y = data1['SalePrice'], data = data1);

sns.lmplot(x = 'OverallQual', y = 'SalePrice', data = data1);

ax = plt.gca()

ax.set_title("Regression Line Predicting the SalePrice dependant on the Overall Qual:
```

Out[20]:

Text(0.5, 1.0, 'Regression Line Predicting the SalePrice dependant on the Overall Quality of the house ')

Regression Line Predicting the SalePrice dependant on the Overall Quality of the house

In [21]:

```
1 data1['OverallQual']
```

Out[21]:

```
0
          7
1
          6
2
          7
3
          7
          8
4
1455
         6
1456
         6
1457
         7
          5
1458
1459
```

Name: OverallQual, Length: 1460, dtype: int64

In [22]:

```
# Now, let us add the line of best fit:
data1 = []
data1 = pd.concat([df['GrLivArea'],df['SalePrice']],axis =1)
data1
```

Out[22]:

	GrLivArea	SalePrice
0	1710	208500
1	1262	181500
2	1786	223500
3	1717	140000
4	2198	250000
1455	1647	175000
1456	2073	210000
1457	2340	266500
1458	1078	142125
1459	1256	147500

1460 rows × 2 columns

In [29]:

```
1 sns.lmplot(x = 'GrLivArea', y = 'SalePrice', data = data1)
```

Out[29]:

<seaborn.axisgrid.FacetGrid at 0x2b9cac4dfd0>

In [32]:

```
# to calculate the regression line:
from scipy import stats
slope, intercept, r_value, p_value, std_error = stats.linregress(data1["GrLivArea"],
slope, intercept, r_value, p_value, std_error
```

Out[32]:

```
(107.1303589658252,
18569.02585648722,
0.7086244776126522,
4.518033646776791e-223,
2.7936210388899063)
```

The Regression line:

A regression line has been predicted and plotted above. This regression line is given by: SalePrice(i) = 107.13* GrLivArea(i) + 18569.025

p- value = 0 => there is a significant relationship between X and Y. We reject the hypothesis that beta1/ the slope value = 0.

The correlation between X and Y is: r_value = 0.7086 std error = 2.79, this is the stad error for beta1, ie. the slope, this shows that the 95% confidence interval for beta1 is slope +- the standard error.

We conclude that the Sale price of a house is dependent on the GrLivArea (i.e. above grade (ground) living area in square feet).

In []:

```
#### From here, we see that the sale price is more correlated with
##OverallQual, YearRemodAdd, GrLivArea, MasVnrArea, TotalBsmtSF, 1stFlrSF, FullBath.
```

In [42]:

```
# Let us plot the variable: YearRemodAdd and see whether the relationship
 1
   # between YearRemodAdd and SalePrice is strong and whether it is linear.
   # YearRemodAdd is the remodel date (it is the same as construction date if
   # there has been no remodelling)
   data2 = pd.concat([df["YearRemodAdd"],df["SalePrice"]], axis = 1)
   X = list(df["YearRemodAdd"])
 7
   X.sort()
   Y = list(df["SalePrice"])
 8
   Y.sort()
   plt.gca().set(xlabel = 'Year of Remodelling/Construction', ylabel =
10
   'Sale Price of the House', title = 'Plot of Saleprice and Construction Date of house
12 plt.plot(X,Y)
```

Out[42]:

[<matplotlib.lines.Line2D at 0x2b9cb366df0>]

In [43]:

```
# Histogram of the Year of Remodelling or construction
plt.gca().set(xlabel = 'Year of Remodelling or Construction', ylabel = 'Frequency')
plt.hist(X)
```

Out[43]:

In [49]:

```
# Histogram of the first floor square feet (1stFlrSF)
X = list(df['1stFlrSF'])
plt.gca().set(xlabel = 'Area on the First Floor of the house', ylabel = 'Frequency')
plt.hist(X)
```

Out[49]:

In [48]:

```
import numpy
numpy.var(X)**(0.5), numpy.mean(X)

# This shows that the average first floor area is 1160 sq feet.
```

Out[48]:

(386.45532230228963, 1162.626712328767)

In [52]:

Out[52]:

[<matplotlib.lines.Line2D at 0x2b9ccec1a30>]

In [153]:

```
# Scatterplot between SalePrice and OverallQual, YearRemodAdd, GrLivArea,
 2 | # MasVnrArea, TotalBsmtSF, 1stFlrSF, FullBath. There is a greater than or
 3 # equal to 0.5 correlation between these variables and SalesPrice (paired correlation
4 x1 = list(df["OverallQual"])
   x2 = list(df["YearRemodAdd"])
   x3 = list(df["GrLivArea"])
   x4 = list(df["MasVnrArea"])
7
8 x5 = list(df["TotalBsmtSF"])
9 x6 = list(df["1stFlrSF"])
10 x7 = list(df["FullBath"])
11 x8 = list(df["KitchenQual"])
   plt.subplot(2,4,1) # rows =2, columns = 4, count =1
   plt.title("Multiple Scatter Plot")
13
   plt.scatter(x1,Y,c ='r',linewidths = 2, marker = "D", edgecolor = "b",
              s = 70, alpha = 0.5)
15
16 plt.xlabel('Overall Quality')
   plt.subplot(2,4,2)
17
18 plt.scatter(x2,Y, c = "b", linewidths = 2, marker = "p", edgecolor = "red", alpha =
19 plt.xlabel("Year of Remodelling")
20 plt.subplot(2,4,3)
21 plt.scatter(x3,Y, c = 'm')
22 plt.xlabel("Gr Liv Area")
   plt.subplot(2,4,4)
23
24 plt.scatter(x4,Y,c = 'g')
25 plt.xlabel("Masonry Veneer Type")
26 plt.subplot(2,4,5)
27
   plt.scatter(x5,Y,c = 'y')
   plt.xlabel("Total sq feet of Basement area")
29 plt.subplot(2,4,6)
30 plt.scatter(x6,Y)
31 plt.xlabel("First floor area")
32 plt.subplot(2,4,7)
33 plt.scatter(x7,Y, c = 'r')
34 plt.xlabel("Full Bathrooms above grade")
35 plt.subplot(2,4,8)
36 plt.scatter(x8,Y)
37 plt.xlabel("Kitchen Quality")
38 plt.tight layout()
```


Total sq feet of Basement areaFirst floor area Full Bathrooms above grade Kitchen Quality

In [154]:

```
1 category1 = []
2 # this is equal to 1 if the Overall quality is greater than 5,
3 # this is equal to 0, if the overall quality is less than or equal to 5.
4 for i in range(len(x1)):
 5
       if x1[i] > 5:
           category1.append(1)
6
7
       else:
           category1.append(0)
8
9 print(sum(category1)) # number of houses with above 5 category
10 category1 = pd.DataFrame(category1, columns =['Category_OverallQual'])
data3 = pd.concat([df["GrLivArea"],df["SalePrice"],category1], axis = 1)
12 data3
```

922

Out[154]:

	GrLivArea	SalePrice	Category_OverallQual
0	1710	208500	1
1	1262	181500	1
2	1786	223500	1
3	1717	140000	1
4	2198	250000	1
1455	1647	175000	1
1456	2073	210000	1
1457	2340	266500	1
1458	1078	142125	0
1459	1256	147500	0

1460 rows × 3 columns

In [155]:

```
1 sns.lmplot(x = "GrLivArea", y = "SalePrice", hue = "Category_OverallQual", data = da
• **Transport**
```

Out[155]:

<seaborn.axisgrid.FacetGrid at 0x2b9d532d220>

Decription of the plot above:

We can see that we will get better estimates of the sale price of the house by using two different subsets of the data. In both cases, the predictor is Above grade, ground living area in sq feet. In one case values corresponding to Overall quality above rating 5 are taken, and in another case, values corresponding to Overall Quality below rating 5 is taken.

Let us also look at muliple box-plots to describe the above data.

In [156]:

```
ax = plt.boxplot(x1,showmeans = True)
plt.title("Overall material and finish of the house(OverallQual)")
plt.ylabel("Quartiles and mean of OverallQual")
whiskers = [item.get_ydata() for item in ax['whiskers']]
medians = [item.get_ydata() for item in ax['medians']]
boxes = [item.get_ydata() for item in ax['boxes']]
whiskers, medians, boxes
```

Out[156]:

```
([array([5., 2.]), array([ 7., 10.])], [array([6., 6.])], [array([5., 5., 7., 7., 5.])])
```

Overall material and finish of the house(OverallQual)

In [178]:

```
import matplotlib.pyplot as axs
labels = ['x1','x2','x3','x4','x5','x6','x7','x8']
data4= pd.concat([df["OverallQual"],df["YearRemodAdd"],df["GrLivArea"],df["MasVnrAreate df["TotalBsmtSF"],df["1stFlrSF"],df["FullBath"],df["KitchenQual"]],
#data4 = List(data4)
data4, type(data4)
```

Out[178]:

(OverallQual	YearRemodAdd	GrLivArea	MasVnrArea	TotalBsmtSF	1stF
lrSF	\					
0	7	2003	1710	196.0	856	
856						
1	6	1976	1262	0.0	1262	
1262						
2	7	2002	1786	162.0	920	
920						
3	7	1970	1717	0.0	756	
961						
4	8	2000	2198	350.0	1145	
1145						
• • •	• • •	• • •	• • •	• • •	• • •	
• • •						
1455	6	2000	1647	0.0	953	
953	_					
1456	6	1988	2073	119.0	1542	
2073	_					
1457	7	2006	2340	0.0	1152	
1188	_					
1458	5	1996	1078	0.0	1078	
1078	_					
1459	5	1965	1256	0.0	1256	
1256						

	FullBath	KitchenQual
0	2	Gd
1	2	TA
2	2	Gd
3	1	Gd
4	2	Gd
1455	2	TA
1456	2	TA
1457	2	Gd
1458	1	Gd
1459	1	TA

[1460 rows x 8 columns], pandas.core.frame.DataFrame)

In [202]:

```
axnew = data4.boxplot(column = ['GrLivArea', 'MasVnrArea', 'TotalBsmtSF', "1stFlrSF"],
plt.title("Boxplots of different variables, to note the mean and variance at a glance
plt.ylabel("Quartiles and mean")
```

Out[202]:

Text(0, 0.5, 'Quartiles and mean')

Boxplots of different variables, to note the mean and variance at a glance

In [199]:

```
1 axd = data4.boxplot(column = ['OverallQual','FullBath'], showmeans = True)
2 plt.title("Boxplots of different variables, to note the mean and variance at a glance
3 plt.ylabel("Quartiles and mean")
```

Out[199]:

Text(0, 0.5, 'Quartiles and mean')

Boxplots of different variables, to note the mean and variance at a glance

In []:

1