Programowanie i metody numeryczne

Zadania – seria 8.

Miejsca zerowe funkcji jednej zmiennej.

Zadanie 1. bisection – Metoda bisekcji.

Napisz szablon funkcji

```
template < typename F>
double rootBisection(F f, double a, double b, double eps)
```

która posługując się metodą bisekcji znajduje miejsce zerowe ciągłej funkcji $f: \mathbb{R} \supseteq X \to \mathbb{R}$ położone w przedziale $[a,b] \subset X$, przy czym f(a)f(b) < 0, z dokładnością ε . Funkcja rootBisection przyjmuje argument \mathbf{f} – implementację funkcji f oraz trzy argumenty \mathbf{a} , \mathbf{b} i eps typu double, odpowiadające kolejno liczbom a, b i ε . Wartością zwracaną przez funkcję rootBisection powinno być znalezione przez nią miejsce zerowe funkcji f. Załóż, że w przedziale [a,b] znajduje się co najwyżej jedno miejsce zerowe funkcji f.

Funkcja rootBisection powinna sprawdzać, czy wartości jej argumentów są poprawne oraz czy spełniają założenia (a więc np. czy odpowiadają f(a)f(b) < 0, a < b, $0 < \varepsilon \le b - a$). Jeśli okaże się, że tak nie jest, funkcja powinna zgłosić odpowiedni wyjątek (pochodzący z biblioteki standardowej lub napisany specjalnie na jej potrzeby) opatrzony komunikatem wyjaśniającym przyczynę jego wystąpienia.

Napisz program testowy sprawdzający poprawność działania tego szablonu dla trzech przykładowych funkcji: $f(x) = x^2$, $g(x) = x^2 - 2$ oraz $h(x) = e^x + x - 1$, poszukujący dla każdej z nich miejsca zerowego w przedziale [-1, 6] z różnymi przykładowymi dokładnościami: 0.1, 0.01, 0.001, 0.0001, 0.000001.

Następnie, korzystając z tego szablonu, napisz program bisection, który przyjmuje jako argumenty wywołania trzy liczby zmiennoprzecinkowe określające wartości a, b i ε . Program powinien wczytywać ze standardowego wejścia liczby zmiennoprzecinkowe aż do napotkania znaku końca pliku, następnie konstruować wielomian z tymi liczbami jako współczynnikami i znajdować miejsce zerowe tego wielomianu w zadanym przedziale i z zadaną dokładnością. Możesz założyć, że w zadanym przedziale znajduje się co najwyżej jedno miejsce zerowe tego wielomianu.

Zadanie 2. newton – Metoda Newtona.

Napisz szablon funkcji

```
template < typename F >
double rootNewton(F f, double x0, double eps)
```

która posługując się metodą Newtona znajduje miejsce zerowe ciągłej funkcji $f: \mathbb{R} \supseteq X \to \mathbb{R}$ położone najbliżej punktu $x_0 \in X$ z dokładnością ε . Funkcja rootNewton przyjmuje argument f – implementację funkcji f oraz dwa argumenty x0 i eps typu double, odpowiadające kolejno liczbom x_0 i ε . Wartością zwracaną przez funkcję rootNewton powinno być znalezione przez nią miejsce zerowe funkcji f.

Napisz program testowy sprawdzający poprawność działania tego szablonu dla trzech przykładowych funkcji: $f(x) = x^2$, $g(x) = x^2 - 2$ oraz $h(x) = e^x + x - 1$, poszukujący dla każdej z nich miejsca zerowego w pobliżu punktu $x_0 = 1, 4$ z różnymi przykładowymi dokładnościami: 0.1, 0.01, 0.001, 0.0001, 0.000001.

Następnie, korzystając z tego szablonu, napisz program newton, który przyjmuje jako argumenty wywołania dwie liczby zmiennoprzecinkowe określające wartości x_0 i ε . Program powinien wczytywać ze standardowego

wejścia liczby zmiennoprzecinkowe aż do napotkania znaku końca pliku, następnie konstruować wielomian z tymi liczbami jako współczynnikami i znajdować miejsce zerowe tego wielomianu w pobliżu zadanego punktu i z zadaną dokładnością.

Zadanie 3. steffensen – Metoda Steffensena.

Napisz szablon funkcji

```
template < typename F>
double rootSteffensen(F f, double x0, double eps)
```

która posługując się metodą Steffensena znajduje miejsce zerowe ciągłej funkcji $f: \mathbb{R} \supseteq X \to \mathbb{R}$ położone najbliżej punktu $x_0 \in X$ z dokładnością ε . Funkcja rootSteffensen przyjmuje argument \mathbf{f} – implementację funkcji f oraz dwa argumenty x0 i eps typu double, odpowiadające kolejno liczbom x_0 i ε . Wartością zwracaną przez funkcję rootSteffensen powinno być znalezione przez nią miejsce zerowe funkcji f.

Napisz program testowy sprawdzający poprawność działania tego szablonu dla trzech przykładowych funkcji: $f(x) = x^2$, $g(x) = x^2 - 2$ oraz $h(x) = e^x + x - 1$, poszukujący dla każdej z nich miejsca zerowego w pobliżu punktu $x_0 = 1, 4$ z różnymi przykładowymi dokładnościami: 0.1, 0.01, 0.001, 0.0001, 0.000001.

Następnie, korzystając z tego szablonu, napisz program steffensen, który przyjmuje jako argumenty wywołania dwie liczby zmiennoprzecinkowe określające wartości x_0 i ε . Program powinien wczytywać ze standardowego wejścia liczby zmiennoprzecinkowe aż do napotkania znaku końca pliku, następnie konstruować wielomian z tymi liczbami jako współczynnikami i znajdować miejsce zerowe tego wielomianu w pobliżu zadanego punktu i z zadaną dokładnością.

* Zadanie 4. secant – Metoda siecznych.

Napisz szablon funkcji

```
template < typename F>
double rootSecant(F f, double x0, double x1, double eps)
```

która posługując się metodą siecznych znajduje miejsce zerowe ciągłej funkcji $f : \mathbb{R} \supseteq X \to \mathbb{R}$ dla punktów początkowych $x_0, x_1 \in X$ z dokładnością ε . Funkcja rootSecant przyjmuje argument f – implementację funkcji f oraz trzy argumenty x0, x1 i eps typu double, odpowiadające kolejno liczbom x_0, x_1 i ε . Wartością zwracaną przez funkcje rootSecant powinno być znalezione przez nią miejsce zerowe funkcji f.

Napisz program testowy sprawdzający poprawność działania tego szablonu dla trzech przykładowych funkcji: $f(x) = x^2$, $g(x) = x^2 - 2$ oraz $h(x) = e^x + x - 1$, poszukujący dla każdej z nich miejsca zerowego z punktami początkowymi $x_0 = 1,4$ i $x_1 = -2$ z różnymi przykładowymi dokładnościami: 0.1, 0.01, 0.001, 0.0001, 0.000001.

Następnie, korzystając z tego szablonu, napisz program secant, który przyjmuje jako argumenty wywołania trzy liczby zmiennoprzecinkowe określające wartości x_0 , x_1 i ε . Program powinien wczytywać ze standardowego wejścia liczby zmiennoprzecinkowe aż do napotkania znaku końca pliku, następnie konstruować wielomian z tymi liczbami jako współczynnikami i znajdować miejsce zerowe tego wielomianu z zadanymi punktami początkowymi i z zadaną dokładnościa.

* Zadanie 5. exnewton – Znajdowanie ekstremów funkcji metodą Newtona.

Napisz szablon funkcji

```
template < typename F>
double exNewton(F f, double x0, double eps)
```

która posługując się metodą Newtona znajduje ekstremum ciągłej funkcji $f: \mathbb{R} \supseteq X \to \mathbb{R}$ położone najbliżej punktu $x_0 \in X$ z dokładnością ε . Funkcja rootNewton przyjmuje argument \mathbf{f} – implementację funkcji f

oraz dwa argumenty x0 i eps typu double, odpowiadające kolejno liczbom x_0 i ε . Wartością zwracaną przez funkcję rootNewton powinno być znalezione przez nią ekstremum funkcji f.

Napisz program testowy sprawdzający poprawność działania tego szablonu dla dwóch przykładowych funkcji: $f(x) = (x-3)^2$ oraz $g(x) = \sin x$, poszukujący dla każdej z nich ekstremum w pobliżu punktu $x_0 = 1$ z różnymi przykładowymi dokładnościami: 0.1, 0.01, 0.001.

Następnie, korzystając z tego szablonu, napisz program exnewton, który przyjmuje jako argumenty wywołania dwie liczby zmiennoprzecinkowe określające wartości x_0 i ε . Program powinien wczytywać ze standardowego wejścia liczby zmiennoprzecinkowe aż do napotkania znaku końca pliku, następnie konstruować wielomian z tymi liczbami jako współczynnikami i znajdować ekstremum tego wielomianu w pobliżu zadanego punktu i z zadaną dokładnością.

Opracowanie: Bartłomiej Zglinicki.