Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Группа Р3340 Кафедра Систем Управления и Информатики

Лабораторная работа №11 "Исследование математической модели пьезоэлектрического исполнительного устройства" Вариант - 8

Выполнила	Ефимова А.И		(подпись)	
		(фамилия, и.о.)		
Проверил		(фамилия, и.о.)	(подпись)	
"" 20)г.	Санкт-Петербург,	20г.	
Работа выполнена с	оценкой			
Дата защиты ""	20	<u>_</u> Г.		

Цель работы: Изучение математических моделей и исследование характеристик исполнительного устройства, построенного на основе пьезоэлектрического двигателя микроперемещений.

Исходные данные. Исходные данные для выполнения работы приведены в таблице 1.

Таблица 1 – Исходные данные

(C_P	m	K_O	K_d	T_u	F_B	U_{Pm}	U_m
Н	./M	ΚΓ	H/B	Нс/м	мс	Н	В	В
2,5	$\cdot 10^{6}$	0,01	7,1	$0,7\cdot 10^2$	0,2	1,2	300	10

$$K_u = U_{Pm}/U_m = 300/10 = 30$$

 $K_u = U_{Pm}/U_m = 300/10 = 30$ Коэффициенты передачи K_u^{-1}, K_F, K_V, K_X определяются так, чтобы обеспечить соответствие максимального значения измеряемого сигнала уровню 10 В на выходе измерительного устройства.

$$K_u^{-1} = 0,0333$$

$$K_F = 0,0257$$

$$K_V = 2,42$$

$$K_X = 11699$$

1 Математическое моделирование модели пьезоэлектрического исполнительного устройства

Схема моделирования:

Рисунок 1 – Схема моделирования ПД

Построим графики переходных процессов при $F_B = 0 \mathrm{H}$ и U=10B (рисунок 2):

Рисунок 2 – Графики переходных процессов при $F_B=0\mathrm{H}$ и U=10B

2 Исследование влияния массы нагрузки m на вид переходных процессов

Диапазон изменения массы нагрузки m: $\pm 50\%$ от заданного значения. Графики переходных процессов представлены на рисунке 3.

Рисунок 3 – Графики переходных процессов при различных значениях т

По временным диаграммам определим время переходного процесса t_{Π} , величину перерегулирования σ и установившееся значение X_y . Занесём результаты в таблицу 2.

Таблица 2 – Характеристики системы при меняющейся массе нагрузки

т, кг	$t_\Pi,$ мс	$\sigma,\%$	X_y
0,005	1,3	0	1,1
0,01	1,6	1	1,1
0,015	2,4	5	1,1

3 Исследование влияния T_u на вид переходных процессов

Изменение T_u в сторону увеличивая исходного значения постоянной времени в 2, 4 и 6 раз. Графики переходных процессов представлены на рисунке 4.

Рисунок 4 – Графики переходных процессов при различных значениях T_u

По результатам моделирования определим время переходных процессов t_{Π} , величину перерегулирования σ и установившееся значение X_y . Занесём результаты в таблицу 3. Чтобы рассчитать значения корней характеристического уравнения получим передаточную функцию. Для этого будем рассматривать исполнительное пьезоэлектрическое устройство как упругую механическую систему. В этом случае математическая модель может быть получена на основе уравнения баланса сил в пьезодвигателе:

$$F_{\nu} = F_O + F_{\perp} + F_d + F_B, \tag{1}$$

где $F_y = C_p x$ — усилие упругой деформации $\Pi Д$, $F_O = K_O U_p$ — усилие, вызванное обратным пьезоэффектом, $F_{ \Pi } = -m \frac{d^2 x}{dt^2}$ — динамическое усилие в $\Pi Д$, $F_d = -K_d \frac{dx}{dt}$ — демпфирующее усилие, обусловленное механическими потерями, F_B — внешнее воздействие, x — перемещение, C_p — коэффициент упругости, K_O — коэффициент обратного пьезоэффекта, U_p — напряжение на электродах $\Pi Д$, m — масса перемещаемой нагрузки, K_d — коэффициент демпфирования.

Подставив перечисленные равенства в уравнение (1), получим:

$$m\ddot{x} + K_d \dot{x} + C_p x = K_O U_p + F_B \tag{2}$$

Составленная по уравнению (2) передаточная функция будет выглядеть следующем образом:

$$W_{\rm BY}(s) = \frac{K_O U_p + F_B}{ms^2 + K_d s + C_p} \tag{3}$$

Управление ПД осуществляется от высоковольтного усилителя, который, в нашем случае, описывается апериодическим звеном первого порядка:

$$W(s) = \frac{K_u}{T_u s + 1} \tag{4}$$

Исходя из того, что ВУ и $\Pi Д$ соединены последовательно, имеем передаточную следующую функцию:

$$W(s) = \frac{K_u(K_O U_p + F_B)}{(T_u s + 1)(ms^2 + K_d s + C_p)}$$
(5)

Найдем корни характеристического уравнения для всех сочетаний параметров и запишем результат в таблицу 3.

Таблица 3 – Характеристики системы при меняющейся постоянной времени

T_u , MC	$t_\Pi,$ мс	$\sigma,\%$	X_y	s_1	s_2	s_3
0,2	1,6	2	1	-5	-3,5+i1,6	-3,5-i1,6
0,4	2,6	0	1,7	-2,5	-3,5+i1,6	-3,5-i1,6
0,8	4,4	0	3,4	-1,25	-3,5+i1,6	-3,5-i1,6
0,12	5,8	0	5	-0,8	-3,5+i1,6	-3,5-i1,6

4 Исследование влияния коэффициента упругости C_p на вид переходных процессов

Исследования проводились при значениях коэффициента упругости $0.5C_p$ и $2C_p$ при $F_B=80{\rm H}$ и U=0B. Графики переходных процессов изображены на рисунке 5.

Рисунок 5 – Графики переходных процессов при различных значениях коэффициента упругости

5 Построение асимптотической ЛАЧХ исполнительного устройства

Представим передаточную функцию (3) в виде колебательного звена:

$$W(s) = \frac{\frac{K_0}{C_p}}{\frac{m}{C_p}s^2 + \frac{K_d}{C_p}s + 1}.$$
 (6)

Асимптотическая логарифмическая амплитудная характеристика будет иметь нулевой наклон на уровне

$$20\lg\frac{K_0}{C_p} = 20\lg\frac{7,4}{2,5\cdot 10^6} = -135,7\text{дБ}$$
(7)

до сопрягающей частоты

$$\omega_c = \sqrt{\frac{C_p}{m}} = \sqrt{\frac{2, 5 \cdot 10^6}{0, 01}} = 1,58 \cdot 10^4 \text{рад/c.}$$
 (8)

После сопрягающей частоты график пойдёт под наклоном в -40 дБ/дек. Таким образом асимптотическая ЛАЧХ будет выглядить так как показано на рисунке ??:

Рисунок 6 – Асимптотическая ЛАЧХ исполнительного устройства

Вывод

В ходе лабораторной работы было проведено исследование пьезоэлектрического устройства. Были выявлены изменения в переходных процессах системы путём изменения таких параметров как масса нагрузки, постоянная времени, коэффициент упругости.

Как видно из таблицы 2 при уменьшении массы нагрузки установившееся значение перемещения остаётся постоянным, а значение времени переходного процесса и перерегулирования уменьшается.

При исследовании влияния постоянной времени вольтного усилителя было показано, что её увеличение ведёт к уменьшению перерегулирования, а также к уменьшению одного из корней характеристического уравнения, что можно увидеть в таблице 3.

Из графиков (рисунок 5) видно, что при увеличении значения коэффициента упругости пьезоэлемента увеличивается установившееся значение перемещения пьезокерамических пластин.