ET4020 - Xử lý tín hiệu số Chương 4: Thiết kế bộ lọc số

TS. Đặng Quang Hiếu http://dsp.edabk.org

Trường Đại học Bách Khoa Hà Nội Viện Điện tử - Viễn thông

Năm học 2012 - 2013

Outline

Tổng quan

Thiết kế bộ lọc FIR

Thiết kế bộ lọc IIR

Thiết kế bộ lọc chọn lọc tần số

Các chỉ tiêu kỹ thuật:

- lacktriangle Tần số cắt (ω_c) , và dải chuyển tiếp (ω_p,ω_s)
- lacktriangle Độ gợn sóng dải thông δ_1
- lacktriangle Độ gợn sóng dải chắn δ_2

Qui trình

- (1) Specifications: Xác định các chỉ tiêu kỹ thuật dựa trên ứng dụng thực tế.
- (2) Approximation: Tổng hợp hệ thống LTI có chỉ tiêu xấp xỉ với yêu cầu đặt ra.
- (3) Realization: Thực hiện hệ thống dựa trên các công cụ phần cứng / phần mềm hiện có.

Khóa học này chỉ nghiên cứu #2: Tìm các tham số a_k, b_r, M, N sao cho đáp ứng tần số $H(e^{j\omega})$ của hệ thống LTI dưới đây có các thông số xấp xỉ với các chỉ tiêu kỹ thuật mong muốn $\omega_s, \omega_p, \delta_1, \delta_2$.

$$y(n) = -\sum_{k=1}^{N} a_k y(n-k) + \sum_{r=0}^{M-1} b_r x(n-r)$$

Phân loại bộ lọc số

Có thể thực hiện được trên thực tế:

- ► Hệ thống LTI
- ► Nhân quả
- ▶ ổn định

Phân loại theo chiều dài đáp ứng xung:

- ► Bộ lọc FIR
- ▶ Bộ lọc IIR

Phân loại theo cách thiết kế:

- ► Sử dụng các công thức
- Mang tính giải thuật (vòng lặp)

Outline

Tổng quan

Thiết kế bộ lọc FIR

Thiết kế bộ lọc IIR

Bộ lọc có đáp ứng xung chiều dài hữu hạn

$$y(n) = \sum_{r=0}^{M} b_r x(n-r)$$
 $o h(n) = \left\{ egin{array}{l} b_n, & 0 \leq n \leq (M-1) \ 0, & n ext{ còn lại} \end{array}
ight.$

Ưu điểm của bô loc FIR:

- ► Luôn ổn định
- ► Có thể thực hiện với hiệu năng cao (sử dụng FFT)
- Dễ tổng hợp bộ lọc pha tuyến tính

Khái niệm pha tuyến tính

Tại sao pha tuyến tính?

- ► Trễ nhóm không đổi
- ▶ Độ phức tạp tính toán giảm

Khi nào pha tuyến tính?

- (i) h(n) đối xứng: h(n) = h(M-1-n)
- (ii) h(n) phản đối xứng: h(n) = -h(M-1-n) và $h\left(\frac{M-1}{2}\right) = 0$ với M lẻ.

Phân loại bộ lọc pha tuyến tính

$$M$$
 lẻ M chẵn $h(n)$ đối xứng loại 1 loại 2 $h(n)$ phản đối xứng loại 3 loại 4

$$\begin{array}{lcl} H_{1}(e^{j\omega}) & = & e^{-j\omega\frac{M-1}{2}} \left[h\left(\frac{M-1}{2}\right) + 2\sum_{n=0}^{\frac{M-3}{2}} h(n)\cos\omega\left(\frac{M-1}{2}-n\right) \right] \\ H_{2}(e^{j\omega}) & = & e^{-j\omega\frac{M-1}{2}} \cdot 2\sum_{n=0}^{\frac{M}{2}-1} h(n)\cos\omega\left(\frac{M-1}{2}-n\right) \\ H_{3}(e^{j\omega}) & = & e^{-j\left[\omega\frac{M-1}{2}+\frac{\pi}{2}\right]} \cdot 2\sum_{n=0}^{\frac{M-3}{2}} h(n)\sin\omega\left(\frac{M-1}{2}-n\right) \\ H_{4}(e^{j\omega}) & = & e^{-j\left[\omega\frac{M-1}{2}+\frac{\pi}{2}\right]} \cdot 2\sum_{n=0}^{\frac{M}{2}-1} h(n)\sin\omega\left(\frac{M-1}{2}-n\right) \end{array}$$

Vị trí các điểm không

• Khi h(n) đối xứng / phản đối xứng, dễ dàng chứng minh được:

$$H(z) = \pm z^{-(M-1)}H(z^{-1})$$

- Nếu H(z) có nghiệm z_1 thì cũng có các nghiệm sau: $z_1^*, 1/z_1, 1/z_1^*$
- Biểu diễn vị trí các điểm không trên mặt phẳng phức?

Phương pháp cửa sổ - Khái niệm

Giả sử cần thiết kế bộ lọc có đáp ứng tần số mong muốn $H_d(e^{j\omega})$ thỏa mãn các chỉ tiêu kỹ thuật. Khi đó:

$$h_d(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_d(e^{j\omega}) e^{j\omega n} d\omega$$

Tuy nhiên, trong trường hợp lý tưởng, $h_d(n)$ có chiều dài vô hạn và không nhân quả \to dịch đi (M-1)/2 mẫu và nhân với hàm cửa sổ w(n)

$$h(n) = h_d(n - \frac{M-1}{2}) \cdot w(n)$$

trong đó

$$w(n) = 0, \forall n < 0, \forall n > (M-1)$$

Phương pháp cửa sổ - Các bước thiết kế

- (1) Cho các chỉ tiêu kỹ thuật : $\delta_1, \delta_2, \omega_p, \omega_s$
- (2) Chọn loại cửa sổ và tính w(n) với chiều dài M, tâm đối xứng tại (M-1)/2.
- (3) Tính các hệ số $h_d(n)$ của bộ lọc lý tưởng, sau đó tính các hệ số h(n) nhờ trễ và nhân với hàm cửa sổ w(n).
- (4) So sánh $H(e^{j\omega})$ với các chỉ tiêu kỹ thuật. Nếu không thỏa mãn thì tăng M và quay lại bước (2).

Phương pháp cửa sổ - Cửa sổ chữ nhật (1)

Xét một bộ lọc thông thấp lí tưởng với $\omega_c=\frac{\pi}{3}$.

Hiện tượng Gibbs:

$$H(e^{j\omega}) = rac{1}{2\pi} \int_{-\pi}^{\pi} H_d(e^{j\lambda}) W(e^{j(\omega-\lambda)}) d\lambda$$

Phương pháp cửa sổ - Cửa sổ chữ nhật (2)

$$W(e^{j\omega}) = rac{\sin(\omega M/2)}{\sin(\omega/2)} e^{-j\omega(M-1)/2}$$

Điều gì xảy ra khi M tăng?

- lacktriangle Độ rộng búp chính giảm ightarrow độ rộng dải chuyển tiếp giảm
- ▶ Phần diện tích dưới các búp phụ ko thay đổi \rightarrow độ gợn sóng không thay đổi.
- lacktriang Bậc bộ lọc tăng o độ phức tạp tính toán tăng

Phương pháp cửa số - Giải pháp

- \blacktriangleright Chọn loại cửa sổ thay đổi mềm hơn trên miền thời gian \rightarrow các búp phụ thấp hơn.
- ► Khi đó, dải chuyển tiếp rộng hơn.
- ► Tăng bậc của bộ lọc nhằm giảm độ rộng dải chuyển tiếp.

Phương pháp cửa sổ - Cửa sổ Hamming

$$w(n) = 0.54 - 0.46\cos(2\pi n/(M-1))$$

Phương pháp cửa sổ - Các loại cửa sổ (2)

Loại cửa số	Búp chính	Búp chính / búp phụ	$20\log_{10}\delta$ tại đỉnh
Chữ nhật	$4\pi/M$	-13 dB	-21 dB
Hanning	$8\pi/M$	-32 dB	-44 dB
Hamming	$8\pi/M$	-43 dB	-53 dB
Blackman	$12\pi/M$	-58 dB	-74 dB

Phương pháp cửa sổ - Thiết kế

Một số điểm cần lưu ý khi thiết kế

- ► Tần số cắt nằm giữa dải chuyển tiếp
- Độ gợn sóng dải thông và dải chắn xấp xỉ bằng nhau. Thường được tính đơn vị dB $(20\log_{10}(\delta))$.
- Dộ rộng dải chuyển tiếp nhỏ hơn độ rộng búp chính.
- Khoảng cách giữa 2 đỉnh ở hai đầu dải chuyển tiếp xấp xỉ bằng độ rộng búp chính.

Các phương pháp khác

- ► Lấy mẫu tần số
- Các phương pháp lặp

Tu hoc!

Bài về nhà

- (1) Vẽ phổ bộ lọc pha tuyến các loại (1,2,3,4) và nhận xét?
- (2) Vẽ dạng cửa sổ (trên miền thời gian), và phổ bộ lọc thông thấp lý tưởng sử dụng các loại cửa sổ trên? So sánh?
- (3) Vẽ phổ bộ lọc được thiết kế sử dụng phương pháp lấy mẫu tần số cho các loại?
- (4) Viết chương trình thiết kế bộ lọc bằng phương pháp lặp?

Outline

Tổng quan

Thiết kế bộ lọc FIR

Thiết kế bộ lọc IIR

Bộ lọc IIR

$$y(n) = -\sum_{k=1}^{N} a_k y(n-k) + \sum_{r=0}^{M} b_r x(n-r)$$

Hàm truyền đạt:

$$H(z) = \frac{\sum_{r=0}^{M} b_r z^{-r}}{1 + \sum_{k=1}^{N} a_k z^{-k}}$$

So sánh với bô loc FIR:

- Khi không cần có pha tuyến tính, bộ lọc IIR có độ phức tạp tính toán thấp hơn (với cùng chỉ tiêu kỹ thuật).
- Khó thiết kế
- Phải đảm bảo tính ổn định của hệ thống

Tổng hợp bộ lọc IIR từ bộ lọc tương tự

- Khó tính trực tiếp các hệ số của bộ lọc từ các chỉ tiêu kỹ thuật
- Kỹ thuật thiết kế bộ lọc tương tự đã được phát triển từ rất lâu, có nhiều thành quả để tận dụng.
- Nhiều bộ lọc IIR tương tự có công thức đơn giản, do vậy, bộ lọc số tương ứng dễ thực hiện.

Tổng hợp bộ lọc IIR từ bộ lọc tương tự: Nguyên lý

- $ightharpoonup Xấp xỉ hàm truyền đạt hoặc đáp ứng xung: <math>H_a(s), h_a(t) \to H(z), h(n).$
- ▶ Bảo toàn một số đặc tính cơ bản trên miền tần số:
 - (i) Ánh xạ trục ảo trên mặt phẳng s lên vòng tròn đơn vị trên mặt phẳng z.
 - (ii) Tính ổn định: hệ tương tự có các điểm cực ở nửa bên trái mặt phẳng $s \to h$ ệ số có các điểm cực nằm trong vòng tròn đơn vị ở mặt phẳng z.

Phương pháp bất biến xung

Lấy mẫu đáp ứng xung $h_a(t) \to h(n) = h_a(nT_s)$. Tương tự như định lý lấy mẫu, $H(e^{j\omega})$ có dạng như hình vẽ (khi $|\Omega_{max}| \leq \frac{\pi}{T_s}$).

Phương pháp bất biến xung - Hàm truyền đạt

Hàm truyền đạt của bộ lọc tương tự:

$$H_a(s) = \sum_k \frac{A_k}{s - s_{pk}}$$

Biến đổi Laplace ngược, lấy mẫu chu kỳ T_s , có thể tính được hàm truyền đạt của bộ lọc số:

$$H(z) = \sum_{k} \frac{A_k}{1 - e^{s_{pk}T_s}z^{-1}}$$

Ví dụ: Cho bộ lọc tương tự có hàm truyền đạt

$$H_a(s) = \frac{4}{(s+3)(s+5)}$$

- (a) Hãy tìm hàm truyền đạt H(z) của bộ lọc số bằng phương pháp bất biến xung
- (b) Vẽ sơ đồ thực hiện bộ lọc số

Phương pháp bất biến xung - Tính ổn định

Nếu điểm cực của bộ lọc tương tự nằm bên trái mặt phẳng phức:

$$s_{pk} = \sigma + j\Omega, \quad \sigma < 0$$

thì điểm cực của bộ lọc số nằm trong vòng tròn đơn vị:

$$z_{pk} = e^{s_{pk}T_s} \rightarrow |z_{pk}| = e^{\sigma T_s} < 1$$

Phương pháp bất biến xung - Tính chất

- Duy trì được bậc và tính ổn định của bộ lọc tương tự
- Không áp dụng được cho tất cả các loại bộ lọc (thông cao, chắn dải)
- ► Có thể xảy ra méo dạng đáp ứng tần số do chồng phổ

Phương pháp biến đổi song tuyến

Tránh hiện tượng chồng phổ, ánh xạ toàn bộ trục ảo $j\Omega$ trên mặt phẳng s thành vòng tròn đơn vị trên mặt phẳng z.

$$H_a(s) o H(z), \quad s = rac{2}{T} \cdot rac{1 - z^{-1}}{1 + z^{-1}}$$

với T bất kỳ.

- ▶ Trục ảo $\sigma = 0 \leftrightarrow$ vòng tròn đơn vị |z| = 1.
- ▶ Nửa trái mặt phẳng phức $\sigma < 0 \leftrightarrow$ phần mặt phẳng nằm trong vòng tròn đơn vị |z| < 1.

So với bộ lọc tương tự:

- ► Đáp ứng tần số giống nhau
- Đáp ứng xung có thể rất khác nhau

Phương pháp biến đổi song tuyến: Tính chất

Nếu $s=\sigma+j\Omega$ và $z=r\mathrm{e}^{j\omega}$, dễ dàng tính được

$$\omega=2\arctan(rac{T}{2}\Omega), \quad \Omega=rac{2}{T}\tan(\omega/2)$$

Các bước thiết kế:

- Xấp xỉ các chỉ tiêu kỹ thuật của bộ lọc số sang bộ lọc tương tự
- 2. Thiết kế bộ lọc tương tự
- 3. Áp dụng biến đổi song tuyến

$$s = \frac{2}{T} \cdot \frac{1 - z^{-1}}{1 + z^{-1}}$$

Phương pháp tương đương vi phân

 $X\hat{a}p \times \hat{c}$: phương trình vi phân \rightarrow phương trình sai phân, ví dụ:

$$\frac{d}{dt}y_a(t) \to \frac{1}{T_s}[y(n) - y(n-1)]$$

Hàm truyền đạt:

$$H_a(s) \rightarrow H(z), \quad s = \frac{1-z^{-1}}{T_s}$$

Phương pháp biến đổi z thích ứng

Ánh xạ các điểm cực và điểm không:

$$H_a(s) = rac{\prod_{r=1}^{M}(s-s_{0r})}{\prod_{k=1}^{N}(s-s_{pk})} \
ightarrow H(z) = rac{\prod_{r=1}^{M}(1-e^{s_{0r}T_s}z^{-1})}{\prod_{k=1}^{N}(1-e^{s_{pk}T_s}z^{-1})}$$