- 1 a. Show how Theorem 3.1 of the notes to Lecture 1 is a special case of Zorn's lemma.
 - b. Let A be nonempty and let X_{α} be nonempty for every $\alpha \in A$. Let \mathcal{Y} be the collection of all pairs $(B, \{x_{\alpha}\}_{\alpha \in B})$ where $B \subseteq A$ and $x_{\alpha} \in X_{\alpha}$ for all $\alpha \in B$. Define a relation \preceq on \mathcal{Y} by:

$$(B, \{x_{\alpha}\}_{\alpha \in B}) \leq (C, \{y_{\alpha}\}_{\alpha \in C}) \iff B \subseteq C \text{ and } x_{\alpha} = y_{\alpha} \ \forall \alpha \in B.$$

Prove that \mathcal{Y} is nonempty and that \leq is a partial order on \mathcal{Y} .

- c. Prove AC using Zorn's lemma.
- **Solution** a. Zorn's lemma tells us that given a poset such that every chain has an *upper bound*, the poset must have a maximal element.

If we consider the poset (\mathcal{F}, \subseteq) $(\mathcal{F}$ is as in the theorem statement). Condition (i) and (ii) demand that each chain has a *maximal element*, namely, $\cup \mathcal{C}$, which is an upper bound for the chain, since a chain is totally ordered. In this case, \mathcal{F} has a maximal element.

b. Notice that $(\emptyset, \emptyset) \in \mathcal{Y}$, so \mathcal{Y} is non-empty.

Reflexivity:

It's clear that $B \subseteq B$ and $x_{\alpha} = x_{\alpha}$ for all α , so reflexivity holds.

Transitivity:

Let

$$(B, \{x_{\alpha}\}_{\alpha \in B}) \preceq (C, \{y_{\alpha}\}_{\alpha \in C})$$
 and $(C, \{y_{\alpha}\}_{\alpha \in C}) \preceq (D, \{z_{\alpha}\}_{\alpha \in D}).$

For all $\alpha \in B \subseteq C$, $x_{\alpha} = y_{\alpha} = z_{\alpha}$, by definition and transitivity of equality. Since \subseteq is a partial ordering on $\mathcal{P}(A)$, we get $B \subseteq C \subseteq D$ by reflexivity. Thus,

$$(B, \{x_{\alpha}\}_{\alpha \in B}) \leq (D, \{z_{\alpha}\}_{\alpha \in D})$$

so transitivity holds.

Antisymmetry:

Let

$$(B, \{x_{\alpha}\}_{\alpha \in B}) \preceq (C, \{y_{\alpha}\}_{\alpha \in C})$$
 and $(C, \{y_{\alpha}\}_{\alpha \in C}) \preceq (B, \{x_{\alpha}\}_{\alpha \in B}).$

By definition, we have $B \subseteq C \subseteq B$, so B = C. It follows that since $x_{\alpha} = y_{\alpha}$ for all $\alpha \in B = C$, the two pairs are the same, so antisymmetry holds.

Thus, (\mathcal{Y}, \preceq) is a poset.

c. Let $\mathcal{C} \subseteq \mathcal{Y}$ be a chain and write $\mathcal{C} = \{(B_1, \{x_{\alpha}^{(1)}\}), (B_2, \{x_{\alpha}^{(2)}\}), \ldots\}$. We claim that

$$(B, \{x_{\alpha}\}), \text{ where } B = \bigcup_{i=1}^{\infty} B_i$$

and $x_{\alpha} = x_{\alpha}^{(i)}$ if $\alpha \in B_i$. This is well-defined since if $\alpha \in B_i$ and $\alpha \in B_j$, then because chains are totally ordered, we have $B_i \subseteq B_j$ or $B_j \subseteq B_i$. Either way, by definition of the partial ordering, $x_{\alpha}^{(i)} = x_{\alpha}^{(j)}$.

Given any $(B_i, \{x_{\alpha}^{(i)}\}) \in \mathcal{C}$, it's clear that $B_i \subseteq B$. Moreover, if $\alpha \in B_i$, then by definition, $x_{\alpha} = x_{\alpha}^{(i)}$, so $(B_i, \{x_{\alpha}^{(i)}\}) \leq (B, \{x_{\alpha}\})$, so \mathcal{C} has an upper bound.

By Zorn's lemma, \mathcal{Y} has a maximal element, and this element must be of the form $(B, \{x_{\alpha}\}_{{\alpha} \in B})$. We claim that B = A.

If not, then there exists $\alpha_0 \in A \setminus B$. X_{α_0} is non-empty by assumption, so pick an element $x_{\alpha_0} \in X_{\alpha_0}$. But

$$(B, \{x_{\alpha}\}_{\alpha \in B}) \leq (B \cup \{\alpha_0\}, \{x_{\alpha}\}_{\alpha \in B} \cup \{x_{\alpha_0}\}),$$

without equality. This is a contradiction, as we assumed that B was a maximal element, so B = A. Thus, there exists a function $f: A \to \cup X_{\alpha}$, namely $f(\alpha) = x_{\alpha}$ for all $\alpha \in A$, so the axiom of choice is proved. **2** For $A \subseteq \mathbb{R}$ and $f: A \to \mathbb{R}$, consider the **additivity equation**:

$$f(x+y) = f(x) + f(y)$$
 whenever $x, y, x+y$ all lie in A . (1)

a. Prove that, if $A = \mathbb{R}$ and f satisfies (1), then f also satisfies

$$f(ax) = af(x)$$
 whenever $a \in \mathbb{Q}$ and $x \in \mathbb{R}$.

- b. Prove that, if $A = \mathbb{R}$, f satisfies (1), and f is continuous, then f has the form $f(x) = \lambda x$ for some fixed $\lambda \in \mathbb{R}$.
- c. Let $u, v \in \mathbb{R}$ be linearly independent over \mathbb{Q} , meaning that

if
$$a, b \in \mathbb{O}$$
 and $au + bv = 0$ then $a = b = 0$.

Let $A := \{au + bv \mid a, b \in \mathbb{Q}\}$. Prove that there exists a function $f : A \to \mathbb{R}$ which satisfies (1) but is *not* of the form $f(x) = \lambda x$ for any fixed $\lambda \in \mathbb{R}$.

- d. Prove that there is a function $f: \mathbb{R} \to \mathbb{R}$ which satisfies (1) but is not of the form $f(x) = \lambda x$ for any $\lambda \in \mathbb{R}$.
- **Solution** a. First notice that (1) holds whenever $a \in \mathbb{N}$, by induction.

Let $x \in \mathbb{R}$, $a/b \in \mathbb{Q}$, with $a, b \in \mathbb{N}$. Then $(a/b)x \in \mathbb{R}$, and

$$af(x) = f(ax) = f\left(b \cdot \frac{a}{b}x\right) = bf\left(\frac{a}{b}x\right) \implies f\left(\frac{a}{b}x\right) = \frac{a}{b}f(x),$$

so the equation holds for rational coefficients.

b. Let us first consider a function $f|_{\mathbb{Q}}$ satisfying the hypotheses of the problem. Let $\lambda = f|_{\mathbb{Q}}(1)$. Then for any $r \in \mathbb{Q}$,

$$f(r) = f(r \cdot 1) = rf(1) = \lambda r,$$

so $f|_{\mathbb{O}}$ has the desired form.

Let f be a continuous extension of $f|_{\mathbb{Q}}$, and pick $x \in \mathbb{R}$. Since \mathbb{Q} is dense in \mathbb{R} , there exists a sequence $\{r_n\}n \geq 1 \subseteq \mathbb{Q}$ with $r_n \xrightarrow{n \to \infty} x$. Since f is continuous,

$$f(x) = \lim_{n \to \infty} f(r_n) = \lim_{n \to \infty} \lambda r_n = \lambda x,$$

by linearity of the limit. Hence, f has the desired form.

c. Let f(u) = v and f(v) = u, and extend f so that it satisfies that additivity equation, i.e., for any $a, b \in \mathbb{Q}$, set

$$f(au + bv) = af(u) + bf(v).$$

Assume that there exists $\lambda \in \mathbb{R}$ so that $f(x) = \lambda x$. Then

$$v = f(u) = \lambda u \implies v - \lambda u = 0.$$

Since u and v are linearly independent and $1 \neq 0$, we have that $\lambda = 0$, which implies that f is identically 0. But this cannot be the case, since this implies that 0 = f(u) = v, which means that u and v cannot be linearly independent, a contradiction. Hence, f does not have the form given in the question.

d. We will regard \mathbb{R} as a vector space over \mathbb{Q} .

Consider the set $S = \{(A, f) \mid A \subseteq \mathbb{R}, f : A \to \mathbb{R} \text{ and satisfies (1), but is not of the form } \lambda x\}$ with the partial ordering

$$(A, f) \leq (B, g) \iff A \subseteq B \text{ and } g|_A = f.$$

S is non-empty, by part (c).

Let $C \subseteq S$ be a chain, and write $C = \{(A_1, f_1), \ldots\}$. Take $A = \cup A_i$. We claim that (A, f) is an upper bound, where

$$f \colon A \to \mathbb{R}$$
 and $f|_{A_i} = f_i \ \forall i$.

f is well-defined: if $x \in A_i$ and $x \in A_j$, then because \mathcal{C} is a chain, $A_i \subseteq A_j$ or $A_j \subseteq A_i$. Either way, $f_j(x) = f_j\big|_{A_i}(x) = f_i\big|_{A_j}(x) = f_i(x)$.

Let $(A_i, f_i) \in \mathcal{C}$. It's clear that $A_i \subseteq A$ by definition, and furthermore, $f|_{A_i} = f_i$, by definition also. Hence, $(A_i, f_i) \preceq (A, f)$. This shows that f does not have the form λx , since f_i does not have that form, so each chain has an upper bound.

By Zorn's lemma, S has a maximal element (A, f). We claim that $A = \mathbb{R}$. If not, then there is $x \in \mathbb{R} \setminus \operatorname{span} A$, and we can extend f to f' by setting f'(x) to be anything, and letting f'(x+y) = f'(x) + f(y), for $y \in A$. Then $f'|_A = f$ does not have the form λx , which means that f' does not have the same form. But this implies that $(A, f) \preceq (A \cup \operatorname{span}\{x\}, f')$ without equality, a contradiction. So $A = \mathbb{R}$, and this completes the proof.

- **3** Consider the set $\mathcal{P}(\mathbb{N})$ of all subsets of $\mathbb{N} = \{1, 2, \ldots\}$ as a partially ordered set under set inclusion.
 - a. Given an example of an infinite subfamily $\mathcal{F} \subseteq \mathcal{P}(\mathbb{N})$ which has all four of the following properties:
 - i. it is down-closed (meaning that $A \subseteq B \in \mathcal{F} \implies A \in \mathcal{F}$),
 - ii. it is finite-chain-closed (meaning that if $\{C_1,\ldots,C_m\}\subseteq\mathcal{F}$ is a chain, then $C_1\cup\cdots\cup C_m\in\mathcal{F}$),
 - iii. it is not chain-closed, and
 - iv. it has no maximal element.
 - b. Let $\sigma: \mathbb{N} \to \mathbb{N}$ be a permutation, and let \mathcal{C}_{σ} be the family

$$\{\emptyset, \{\sigma(1)\}, \{\sigma(1), \sigma(2)\}, \{\sigma(1), \sigma(2), \sigma(3)\}, \dots, \mathbb{N}\}.$$

Prove that \mathcal{C}_{σ} is a maximal chain in $\mathcal{P}(\mathbb{N})$.

c. Prove that $\mathcal{P}(\mathbb{N})$ contains a chain \mathcal{C} with the property that the set

$$\{C \in \mathcal{C} \mid A \subseteq C \subseteq B\}$$

is uncountable whenever $A, B \in \mathcal{C}$ and $A \subseteq B$.

- **Solution** a. Let $\mathcal{F} = \{ N \subseteq \mathbb{N} \mid N \text{ is finite} \}.$
 - (i) is clear.
 - (ii) follows from the fact that finite unions of finite sets are finite.

 \mathcal{F} satisfies (iii) since

$$\mathbb{N} = \bigcup_{n \in \mathbb{N}} \{1, \dots, n\} \notin \mathcal{F}.$$

Lastly, it satisfies (iv) because given any element N in \mathcal{F} , we can add a new element n to it so that $N \subseteq N \cup \{n\}$ and $N \cup \{n\}$ is finite.

b. It's clear that it's a chain, since each succeeding element contains the previous.

Suppose it were not a maximal chain, so that there exists $N \in \mathcal{P}(\mathbb{N}) \setminus C_{\sigma}$ such that $C_{\sigma} \cup \{N\}$ is a chain. If N is infinite, it must omit some $\sigma(i)$, or else it is \mathbb{N} . But in this case, N cannot be compared with $\{\sigma(1), \ldots, \sigma(i)\}$, a contradiction, so N must be finite.

By definition, there exists $\{\sigma(1), \ldots, \sigma(n)\} \subseteq N \subseteq \{\sigma(1), \ldots, \sigma(m)\}$, with $0 \leq n < m$, so N contains $\sigma(1), \ldots, \sigma(n)$.

But this means that N must contain $\sigma(n+1), \ldots, \sigma(m)$. Otherwise, suppose N does not contain $\sigma(i)$, but contains $\sigma(j)$, with $n+1 \leq i < j \leq m$. This must be the case or else $N \in C_{\sigma}$. But in this case also, N cannot be compared with $\{\sigma(1), \ldots, \sigma(i)\}$, a contradiction. Hence, no such N exists, so C_{σ} is maximal.

c. Notice that $\mathbb{Q} \cap (0,1)$ is countably infinite, so there exists a bijection $\varphi \colon \mathbb{N} \to \mathbb{Q} \cap (0,1)$. Hence, we can consider $\mathcal{P}(\mathbb{Q} \cap (0,1))$ instead of $\mathcal{P}(\mathbb{N})$.

For any real number $x \in (0,1)$, consider $\mathcal{Q}_r = \{x \in \mathbb{Q} \mid x < r\}$, and let $\mathcal{C} = \{\mathcal{Q}_r \mid r \in \mathbb{R}\}$. This is a chain, since $\mathcal{Q}_r \subseteq \mathcal{Q}_s$ whenever $r \leq s \in \mathbb{R}$, which is totally ordered. Moreover, any interval (r,s) is uncountable, so there are uncountably many t so that $\mathcal{Q}_r \subseteq \mathcal{Q}_t \subseteq \mathcal{Q}_s$.

4.8 If X is an infinite set with the cofinite topology and $\{x_j\}$ is a sequence of distinct points in X, then $x_j \to x$ for every $x \in X$.

Solution Let $\{x_i\}$ be as in the problem, and let $x \in X$ be arbitrary.

Let U be an open neighborhood of x, i.e., $U^c = \{y_1, \dots, y_n\}$ for some $n \in \mathbb{N}$. Since $\{x_j\}$ has infinitely many distinct points, there exists $k \in \mathbb{N}$ so that $x_j \notin U^c \iff x_j \in U$ whenever $j \geq k$.

Since U arbitrary, it follows that $x_j \xrightarrow{j \to \infty} x$. Similarly, since x was arbitrary, it follows that x_j converges to every x in X.

4.13 If X is a topological space, U is open in X, and A is dense in X, then $\overline{U} = \overline{U \cap A}$.

Solution "C"

Let $x \in \overline{U}$, and let V be an open neighborhood of x.

Since A is dense, $V \cap A \neq \emptyset$. Since $x \in \overline{U}$, we have that $U \cap V \neq \emptyset$. Hence, $V \cap (U \cap A) \neq \emptyset$. Since V was arbitrary, $x \in \overline{U \cap A}$.

"⊇"

Let $x \in \overline{U \cap A}$, and let V be an open neighborhood of x.

By definition, $V \cap (U \cap A) \neq \emptyset$. In particular, $V \cap U \neq \emptyset$, so as V was arbitrary, $x \in \overline{U}$.

4.15 If X is a topological space, $A \subseteq X$ is closed, and $g \in C(A)$ satisfies g = 0 on ∂A , then the extension of g to X defined by g(x) = 0 for $x \in A^c$ is continuous.

Solution Let $g: X \to \mathbb{C}$ be as described in the problem.

Notice that $\partial A = \partial (A^{c})$. We'll first show that $(A^{\circ})^{c} = \overline{A^{c}}$.

Let $x \in (A^{\circ})^{c}$. By definition, for all open neighborhoods $U \ni x, U \cap A^{c} \neq \emptyset$. Otherwise, $U \subseteq A \implies x \in A^{\circ}$.

Now let $x \in \overline{A^c}$. By definition, for any open neighborhood $U \ni x$, $U \cap A^c \neq \emptyset$, so $U \subsetneq A^\circ$ for any U, so $x \in (A^\circ)^c$, and equality is proved.

Then

$$\partial A = \overline{A} \setminus A^{\circ} = A \cap (A^{\circ})^{c} = A \cap \overline{A^{c}} = \overline{A^{c}} \setminus A^{c} = \overline{A^{c}} \setminus (A^{c})^{\circ} = \partial (A^{c}).$$

Also note that this shows that $\overline{A^c} = \partial A \cup A^c$.

Let C be closed in \mathbb{C} . If C does not contain 0, then

$$g^{-1}(C) = \left(g\big|_A\right)^{-1}(C)$$

is closed, since g doesn't take on any non-zero values on A^{c} and because $g \in C(A)$.

If C contains 0, then

$$g^{-1}(C) = (g|_A)^{-1}(C) \cup A^c \cup \partial A = (g|_A)^{-1}(C) \cup \overline{A^c}.$$

Indeed, let $x \in g^{-1}(C)$. If $x \in A$, then $x \in (g|_A)^{-1}(C)$. Otherwise, $x \in A^c$.

On the other hand, let $x \in (g|_A)^{-1}(C) \cup A^c$. If $x \in A^c$, then $g(x) = 0 \in C \implies x \in g^{-1}(C)$. Otherwise, $x \in A$, so $x \in (g|_A)^{-1}(C) \subseteq g^{-1}(C)$, so the two sets are equal.

Since $g \in C(A)$, $(g|_A)^{-1}(C)$ is closed and by definition, $\overline{A^c}$ is closed. Since finite unions of finite sets are closed, it follows that $g^{-1}(C)$ is closed. Hence, g is continuous.

4