### Fundamentals of Optimization

**Constraint Programming** 

#### Pham Quang Dung

dungpq@soict.hust.edu.vn

Department of Computer Science

#### Content

- Constraint Satisfaction Optimization Problems
- Constraint Propagation
- Branching and Backtrack Search
- Examples

#### **Constraint Satisfaction Problems**

- Variables
  - $\bullet X = \{X_0, X_1, X_2, X_3, X_4\}$
- Domain
  - $\bullet X_0, X_1, X_2, X_3, X_4 \in \{1,2,3,4,5\}$
- Constraints
  - $\bullet$  C<sub>1</sub>: X<sub>2</sub> + 3  $\neq$  X<sub>1</sub>
  - $C_2$ :  $X_3 \le X_4$
  - $\bullet$  C<sub>3</sub>: X<sub>2</sub> + X<sub>3</sub> = X<sub>0</sub> + 1
  - $C_4$ :  $X_4 \le 3$
  - $C_5$ :  $X_1 + X_4 = 7$
  - $C_6$ :  $X_2 = 1 \Rightarrow X_4 \neq 2$

#### Constraint Satisfaction Problems

- CSP = (X,D,C), in which:
  - $X = \{X_1, ..., X_N\}$  set of variables
  - $D = \{D(X_1), ..., D(X_N)\}$  domains of variables
  - $C = \{C_1, ..., C_K\}$  set of constraints over variables
  - Denote X(c) set of variables appearing in the constraint c

### Constraint Satisfaction Optimization Problems

- $\bullet$  COP = (X,D,C,f), in which:
  - $\bullet X = \{X_1, ..., X_N\}$  set of variables
  - $D = \{D(X_1), ..., D(X_N)\}$  domains of variables
  - $C = \{C_1, ..., C_K\}$  set of constraints over variables
  - Denote X(c) set of variables appearing in the constraint c
  - f: objective function to be optimized

### **Constraint Programming**

- A computation paradigm for solving CSP, COP combining
  - Constraint Propagation: narrow the search space by pruning redundant values from the domains of variables
  - Branching (backtracking search): split the problem into equivalent sub-problems by
    - Instantiating some variables with values of its domain
    - Split the domain of a selected variable into sub-domains

### **Constraint Programming**



**Failure** 

Solution

- Domain consistency (DC)
  - Given a CSP = (X,D,C), a constraint  $c \in C$  is called domain consistent if for each variable  $X_i \in X(c)$  and each value  $v \in D(X_i)$ , there exists values for variables of  $X(c) \setminus \{X_i\}$  such that c is satisfied
  - A CSP is called domain consistent if c is domain consistent for all  $c \in C$

 DC algorithms aim at pruning redundant values from the domains of variables so that the obtained equivalent CSP is domain consistent

- Example: CSP = (X, D, C) in which:
  - $\bullet X = \{X_1, X_2, X_3, X_4\}$
  - $D(X_1) = \{1,2,3,4\}, D(X_2) = \{1,2,3,4,5,6,7\}, D(X_3) = \{2,3,4,5\}, D(X_4) = \{1,2,3,4,5,6\}$
  - $C = \{c_1, c_2, c_3\}$  với
    - $c_1 \equiv X_1 + X_2 \ge 5$
    - $c_2 \equiv X_1 + X_3 \ge X_4$
    - $c_3 \equiv X_1 + 3 \ge X_3$
  - CSP is domain consistent
  - When branching, consider  $X_1 = 1$ , a DC algorithm will transform the given CSP to an equivalent domain consistent CSP<sup>1</sup> having :  $D^1(X_1) = \{1\}$ ,  $D^1(X_2) = \{4,5,6,7\}$ ,  $D^1(X_3) = \{2,3,4\}$ ,  $D^1(X_4) = \{1,2,3,4,5\}$

- A domain consistent CSP does not ensure to have feasible solutions
- Example:
  - $\bullet$   $X = \{X_1, X_2, X_3\}$
  - $\bullet D(X_1) = D(X_2) = D(X_3) = \{0,1\}$
  - $c_1 \equiv X_1 \neq X_2$ ,  $c_2 \equiv X_1 \neq X_3$ ,  $c_3 \equiv X_2 \neq X_3$
  - ☐ The CSP is domain consistent but does not have any feasible solution

```
Algorithm AC3(X,D,C){
 Q = \{(x,c) \mid c \in C \land x \in X(c)\};
 while(Q not empty){
   select and remove (x,c) from Q;
   if ReviseAC3(x,c) then{
    if D(x) = {} then
       return false;
    else
       Q = Q \cup \{(x',c') \mid c' \in C \setminus \{c\} \land x,x' \in X(c') \land x \neq x'\}
 return true;
```

```
Algorithm ReviseAC3(x,c){
 CHANGE = false;
 for v \in D(x) do{
  if there does not exists other values
    of X(c) \setminus \{x\} such that c
      is satisfied then{
     remove v from D(x);
     CHANGE = true;
 return CHANGE;
```

- Some constraints, e.g., binary constraints (related 2 variables)
   have efficient DC algorithm
- Constraint AllDifferent(X<sub>1</sub>,X<sub>2</sub>,...,X<sub>N</sub>), the DC algorithm is efficient based on the matching (Max-Matching) algorithm on bipartite graphs
  - Nodes on the right-hand side are variables and nodes on the left-hand side are values
  - For each edge  $(X_i, v)$ ,  $(v \circ i \ v \in D(X_i))$ , if there does not exist a matching of size N containing  $(X_i, v)$ , then v is removed from  $D(X_i)$

- $\bullet$  X = {X<sub>1</sub>, X<sub>2</sub>, X<sub>3</sub>, X<sub>4</sub>}
- $\bullet$  D(X<sub>1</sub>) = {1,2,4}, D(X<sub>2</sub>) = {1}, D(X<sub>3</sub>) = {4}, D(X<sub>4</sub>) = {3,4}



- $\bullet$  X = {X<sub>1</sub>, X<sub>2</sub>, X<sub>3</sub>, X<sub>4</sub>}
- $\bullet$  D(X<sub>1</sub>) = {1,2,4}, D(X<sub>2</sub>) = {1}, D(X<sub>3</sub>) = {4}, D(X<sub>4</sub>) = {3,4}



 $D(X_1)$ 

- $\bullet$  X = {X<sub>1</sub>, X<sub>2</sub>, X<sub>3</sub>, X<sub>4</sub>}
- $D(X_1) = \{2,4\}, D(X_2) = \{1\}, D(X_3) = \{4\}, D(X_4) = \{3,4\}$



No matching of size 3  $\square$  removed 4 from  $D(X_4)$ 

- $\bullet$  X = {X<sub>1</sub>, X<sub>2</sub>, X<sub>3</sub>, X<sub>4</sub>}
- $D(X_1) = \{2,4\}, D(X_2) = \{1\}, D(X_3) = \{4\}, D(X_4) = \{3\}$



No matching of size  $3 \square$  removed 4 from  $D(X_1)$ 

- $\bullet X = \{X_1, X_2, X_3, X_4\}$
- $\bullet$  D(X<sub>1</sub>) = {2}, D(X<sub>2</sub>) = {1}, D(X<sub>3</sub>) = {4}, D(X<sub>4</sub>) = {3}



- Constraint propagation is not enough for finding feasible solutions
- Combine constraint propagation with branching and backtracking search
  - Split the original CSP  $P_0$  into sub-problems CSP  $P_1,...,P_M$ 
    - Set of solutions of  $P_0$  is equivalent to the union of sets of solutions to  $P_1, \dots, P_M$
    - Domain of each variable in  $P_1, ..., P_M$  is not greater than the domain of that variable in  $P_0$
  - Search Tree
    - Root is the original CSP P<sub>0</sub>
    - Each node of the tree is a CSP
    - If  $P_1, ..., P_M$  are children of  $P_0$  then the set of solutions of  $P_0$  is equivalent to the union of sets of solutions to  $P_1, ..., P_M$
    - Leaves
      - A feasible solution
      - Failure (a variable has an empty domain)







- Search strategies
  - Variable selection
    - dom heuristic: select a variable having the smallest domain
    - deg heuristic: select a variable participating in most of the constraints
    - dom+deg heuristic: first apply dom, then use deg when tie break (when there are more than one variable with the same smallest domain size)
    - dom/deg: select a variable having the smallest dom/deg
  - Value selection
    - Increasing order
    - Decreasing order

- Variables
  - $\bullet X = \{X_0, X_1, X_2, X_3, X_4\}$
- Domain
  - $\bullet X_0, X_1, X_2, X_3, X_4 \in \{1,2,3,4,5\}$
- Constraints
  - $\bullet$  C<sub>1</sub>: X<sub>2</sub> + 3  $\neq$  X<sub>1</sub>
  - $C_2$ :  $X_3 \le X_4$
  - $\bullet$  C<sub>3</sub>: X<sub>2</sub> + X<sub>3</sub> = X<sub>0</sub> + 1
  - $\bullet$  C<sub>4</sub>: X<sub>4</sub>  $\leq$  3
  - $C_5$ :  $X_1 + X_4 = 7$
  - $\bullet$  C<sub>6</sub>:  $X_2 = 1 \Rightarrow X_4 \neq 2$

```
1 6 6
If-Then-Else expression
if x[2] = 1 then x[4] != 2
from ortools.sat.python import cp model
class VarArraySolutionPrinter(cp model.CpSolverSolutionCallback):
         #print intermediate solution
         def init (self, variables):
                  cp model.CpSolverSolutionCallback. init (self)
                  self. variables = variables
                  self. solution count = 0
         def on solution callback(self):
                  self. solution count += 1
                  for v in self. variables:
                           print('%s = %i'% (v,self.Value(v)), end = ' ')
                  print()
         def solution count():
                  return self. solution count
```

```
model = cp model.CpModel()
x = \{\}
for i in range(5):
         x[i] = model.NewIntVar(1,5,'x[' + str(i) + ']')
c1 = model.Add(x[2] + 3 != x[1])
c2 = model.Add(x[3] <= x[4])
c3 = model.Add(x[2] + x[3] == x[0] + 1)
c4 = model.Add(x[4] <= 3)
c5 = model.Add(x[1] + x[4] == 7)
b = model.NewBoolVar('b')
#constraints
model.Add(x[2] == 1).OnlyEnforceIf(b)
model.Add(x[2] != 1).OnlyEnforceIf(b.Not())
model.Add(x[4] != 2).OnlyEnforceIf(b)
```

```
solver = cp_model.CpSolver()

#Force the solver to follow the decision strategy exactly
solver.parameters.search_branching = cp_model.FIXED_SEARCH

vars = [x[i] for i in range(5)]

solution_printer = VarArraySolutionPrinter(vars)
solver.SearchForAllSolutions(model,solution_printer)
```