

安卓端离线数据监控

### cpu数据来源可选: (对比后选择busybox top)

| 数据来源            | 性能 (秒) | 精度   | 备注                                                                                       |
|-----------------|--------|------|------------------------------------------------------------------------------------------|
| top             | 0.57   | 个位   | 系统自带                                                                                     |
| busybox top     | 0.22   | 小数1位 | 前置依赖:<br>adb push busybox /data/local/tmp<br>adb shell chmod 755 /data/local/tmp/busybox |
| dumpsys cpuinfo | 0.04   | 小数1位 | 安卓cpuinfo服务提供数据,阶段平均值<br>受dumpsys meminfo获取影响会被拉高平均值                                     |

## 数据源选择

(cpu)

### 内存系统数据来源:

- 1、总内存 (/proc/meminfo)
- 2、系统进程内存 (dumpsys meminfo)

注:由于统计信息中也有总内存,且和/proc/meminfo维度不同也做保存

3、进程内存详细信息 (dumpsys meminfo 包名/PID)

注:除了heap内存信息,额外存储views数量,因为和PSS正相关而且引起的变化幅度大

4、线程数,辅助判定内存问题定位 (/data/local/tmp/busybox ps -T)

注: 上限42991 (adb shell cat /proc/sys/kernel/threads-max)

5、进程FD总数 (Is -I /poc/(进程pid值)/fd 行数)

注: 需root权限; linx限制上线1024 nofiles(descriptors)的值 adb shell ulimit -a 命令获取

6、VSS和RSS内存值,ps命令获取pid时有此两项数据,同时进行保存

注: VSS上限是物理内存+虚拟内存总和, (目前安卓项目的本地存储上通常不分配虚内存)

### 主频系统数据来源:

1、cpu多核主频 (/sys/devices/system/cpu/cpu\*/cpufreq/scaling\_cur\_freq)

注: \*是cpu编号从0开始

2、gpu主频 (/sys/class/kgsl/kgsl-3d0/devfreq/cur\_freq)

注:这是高通芯片的GPU主频节点

### 温升系统数据来源:

- 1、sensor描述 (/sys/devices/virtual/thermal/thermal\_zone\*/type)
- 2、sensor值 (/sys/devices/virtual/thermal/thermal\_zone\*/temp)

### 电量系统数据来源:

- 1、充电状态(dumpsys power 中的mPlugType值)
- 2、电量百分比 (dumpsys power 中的mBatteryLevel值)

### 电流系统数据来源:

1、高通芯片提供了充放电的电流值,负值进电,正数otg放电(/sys/class/power\_supply/battery/current\_now)

### FPS数据来源选择: (采用1, 指定窗口定位场景)

1、指定窗口监控 (dumpsys SurfaceFlinger --latency 窗口名)

注:窗口名对应SurfaceFlinger中的名字,安卓7.0后由于分屏的设计带有编号,例如#0

2、指定包名监控 (dumpsys gfxinfo 包名 framestats 安卓5.0及以上版本)

注:基于android设计的统计数据整体评估,无法定位场景,并且不统计SurfaceView数据

### FPS (原创计算需求, 算法实现):

- 1、帧数据采样间隔1.6S左右(60帧屏127帧=2.116S,为了连续抓数据和平衡抓取开销)
- 2、统计样本帧数/样本时间;只有一帧按硬件绘制耗时的结束时间计算
- 3、Vsync间隔大于500ms算静置,不计算帧率且不输出
- 4、空数据、vsync=最大正整数数据不处理
- 5、Vsync帧数据复用,结束时间加首行绘制间隔

### 硬件掉帧比例算法 (jank%)

- 1、帧数据中第三列和第一列的差值,如果大于首行绘制间隔jank帧数+1
- 2、Jank总帧数/样本数据总帧数
- 3、引导优化方向为framework优化SurfaceFlinger绘制性能,如已优化过则主推精简ui布局及图片资源大小

### 帧间隔超过kpi的帧数比例

- 1、按人眼识别卡顿100ms,可定制
- 2、引导优化肉眼可识别的严重卡顿,降低此比例

### 按人眼视觉的当前认知标准判定:

- 1、严重卡顿:帧间隔≥100ms (按人眼视觉存在100ms的反应时间)
- 2、轻微卡顿: 50ms≤帧间隔<100ms (游戏帧率可玩底线20帧)
- 3、延迟: 42ms<帧间隔<50ms (视频级体验按网络流24帧)

### 流畅度打分评价 (原创计算需求)

1、比例分配:平均帧率/60\*60%+kpi/最大两帧间隔\*20%+帧间隔小于kpi帧数比例\*20% (除法比例最大为1, kpi可定制,按人眼识别卡顿是100ms)

### 显示的窗口信息数据来源:

- 1、FocusedApplication和FocusedWindow(dumpsys input|grep name)
- 2、显示中的窗口层级信息 (dumpsys input|grep "visible=true")

### 依赖文件:

- 1、设备端需存在/data/local/tmp/busybox,以下命令: **(**busybox可到官网对应cpu架构下载) adb push busybox /data/local/tmp adb shell chmod 755 /data/local/tmp/busybox
- 2、监控脚本monitor.sh

脚本执行: adb shell sh /data/local/tmp/monitor.sh "\$monitor\_folder" "\$monitorWindow" "\$monitorPackages" 5 \${meminfo\_type=1} &

### 参数说明:

monitor\_folder = 监控结果文件夹名 monitorWindow = fps监控窗口,不抓取为空"" monitorPackages = 额外抓取heap、views、threads、FD信息的进程,多个用|间隔,不抓取为空"" 5 = 5秒间隔 meminfo\_type = 1,抓所有进程PSS额外抓指定进程详细信息,0则只抓配置进程内存信息

监控停止: adb shell touch /data/local/tmp/stop

### 获取结果:

adb pull /data/local/tmp/\$monitor\_folder pc本地目录位置

### 生成报告:

python monitor.py完整路径 \$monitor\_folder完整路径

### 注:

- 1、需要安装python环境和pandas库
- 2、如果有需要,我可以提供windows的exe版本,由py文件和报告模板打包而成
- 3、本地文件查看浏览器支持
- (1) 火狐, about:config 中 privacy.file\_unique\_origin属性false

### 自 Firefox 68 本地文件安全性的改变



当用户在 Firefox 67 和更早版本中使用 file:/// URI 打开页面时,页面来源被定义为打开页面的目录。同一目录及其子目录中的资源均被视为具有相同的来源,符合 CORS 同源规则。

为响应 CVE-2019-11730, Firefox 68 及更高版本中使用 file:/// URI 定义打开页面的来源 唯一。因此,同一目录或其子目录中的其他资源不再满足 CORS 同源规则。这个新的表现通过 privacy.file\_unique\_origin 这一首选项控制,默认启用。

(2) chrome,由于安全权限不支持,需要打开权限启动后查看 (start chrome.exe --allow-file-access-from-files)

### 模板文件:

1、Report.html — 报告的html布局模板

2、 "head" 文件夹 —— html依赖的js和css

3、" data " --- 结果数据的js文件

### 报告的原理关键点:

- 1、html、js、css都是文本文件,模板化设计
- 2、预期存储数据支持离线本地和在线查看。由于离线文件加载限制,生成为js文件支持动态加载,按选择更新数据变量
- 3、数据的js文件内容有python脚本处理数据后生成
- 4、可交互趋势图展示基于Highcherts框架设计实现
- 5、报告模板按照数据动态切换无数据的图关闭显示

smoke\_check\_ui monitor\_20190703\_034147 选择主题: 灰色(gray)

- 1、随页面滚动浮动
- 2、case名(左侧第一个)为测试结果csv所在文件夹的上级目录名
- 3、测试结果名(左侧第二个)为csv所在目录名,选择后更新数据(数据较大情况需稍等)
- 4、右侧可更改Highcharts支持的官方主题,可按报告需求更改配色

## 报告介绍(浮

### CPU主始走的图 2400 2200 2000 2000 2000 1100 1100 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120 1120



### 报告介绍(

### (主频)

# 报告介绍(cpu)





### 系统内存走势图 \*\*Available\_Memory +\*Active \*\*Inactive \*\*Inac







注: 红点代表进程PID变化,即进程重启过

## 4 (电量和帧率)





注: 帧率包括配置的窗口和系统动效, 选择框选取切换



注:温升sensor没有浮点数,保留了源数据格式,按type定义查看