Mole Concept

DPP-3

Ashish BibyanB.Tech (IIT Delhi)

Referral Code: ABSIRLIVE

- 1. How much 83.4% pure salt cake (Na_2SO_4) could be produced from 250 kg of 94.5% pure salt in the reaction $2NaCl + H_2SO_4 \rightarrow Na_2SO_4 + 2HCl$?
- 2. Carbon disulfide, CS_2 can be made from by-product SO_2 . The overall reaction is $5C + 2SO_2 \rightarrow CS_2 + 4CO$. How much CS_2 can be produced from 540 kg of waste SO_2 with excess coke, if the SO_2 conversion is 82.0%?
- 3. (i) A solution of lead nitrate prepared by dissolving 2.07 g of pure lead in nitric acid was treated with HCl, Cl₂ gas and NH₄Cl. What will be the maximum weight of (NH₄)₂ PbCl₅ so produced? (N = 14, H = 1, Pb = 207, Cl = 35.5)
 - (ii) if on performing the experiment, 2.28 g of $(NH_4)_2$ PbCl₆ was produced, calculate the percentage yield of $(NH_4)_2$ PbCl₆.
- **4.** What is the molar concentration of a solution containing 16.0 g CH₃OH in 200 cm³ solution?
- 5. The concentration of glucose ($C_6H_{12}O_6$) is normal blood is approximately 90 mg per 100 mL. What is the molarity of the glucose?
- **6.** Calculate the volume occupied by 100 g of sodium hydroxide solution of density 1.20 g/mL.
- 7. How much NH₄Cl is required to prepare 100 mL of a solution containing 70 mg NH₄Cl per mL?
- **8.** Determine the molar concentration of each of the following solutions :
 - (a) 166 g KI per L solution

(b) 33.0 g $(NH_4)_2SO_4$ in 200 mL solution

(c) 12.5 g CuSO_4 $.5\text{H}_2\text{O}$ in 100 mL solution

- (d) $10.0 \text{ mg A} l^{3+} \text{ per mL solution}$.
- **9.** A litre of milk weighs 1.032 kg. The butterfat it contains to the extent of 4.0% by volume has a density of 865 kg/m³. What is the density of the fat-free "skimmed" milk?
- 10. Anmonia gas is passed into water, yielding a solution of density of 0.93 g/cm 3 and containing 18.6% NH $_3$ by weight. What is the mass of NH $_3$ per cm 3 of solution ?
- 11. What is the concentration of sugar $(C_{12}H_{22}O_{11})$ in mol L^{-1} if its 20 g are dissolved in enough water to make a final volume up to 2L? (NCERT Problem)
- 12. Calculate the mass of sodium acetate (CH_3COONa) required to make 500 mL of 0.375 molar aqueous solution. Molar mass of sodium acetate is 82.0245 g mol⁻¹.

(NCERT Problem)

13. Calculate the concentration of nitric acid in moles per litre in a sample which has a density, 1.41 g mL⁻¹ and the mass percent of nitric acid in it being 69%.

(NCERT Problem)

- 14. If the density of methanol is 0.793 kg L⁻¹, what is its volume needed for making 2.5 L of its 0.25 M solution? (NCERT Problem)
- 15. A sample of drinking water was found to be severely contaminated with chloroform, CHCl₃, supposed to be carcinogenic in nature. The level of contamination was 15 ppm (by mass). (NCERT Problem)
 - (i) Express this in percent by mass.
 - (ii) Determine the molality of chloroform in the water sample.
- **16.** Calculate the molarity of a solution of ethanol in water in which the mole fraction of ethanol is 0.040 (assume the density of solution to be 1g/mL). (**NCERT Problem**)
- 17. The number of water molecules present in a drop of water (volume = 0.0018 ml) at room temperature is (density of $H_2O = 1 \text{ g/mL}$)
 - (a) 6.023×10^{19}
- (b) 1.084×10^{18}
- (c) 4.84×10^{17}
- (d) 6.023×10^{23}
- **18.** The number of water molecules in 1 litre of water is (density of $H_2O = 1 \text{ g/mL}$)
 - (a) 18
- (b) 18×1000
- (c) N_A
- (d) 55.55 N_A

How many moles of potassium chlorate to be heated to produce 11.2 litre oxygen at STP? $KClO_3 \rightarrow KCl + \frac{3}{2}O_2$ (b) 1/3 mol (c) 1/4 mol (d) 2/3 mol (a) 1/2 mol20. The number of atoms present in 0.5 mole of nitrogen is same as the atoms in (a) 12 g of C (b) 64 g of S (c) 8 g of O (d) 48 g of Mg One mole of a mixture of CO and $\rm CO_2$ requires exactly 20 gram of NaOH in solution for complete conversion of all the $\rm CO_2$ into $\rm Na_2 \, CO_3$. How many moles more of NaOH would it require for conversion into $\rm Na_2 \, CO_3$ if the mixture (one mole) is completely oxidised to $\rm CO_2$. 21. (a) 0.2(c) 0.4(d) 1.5 22. The mole fraction of a given sample of I_2 in C_6H_6 is 0.2. The molality of I_2 in C_6H_6 is (b) 3.2(c) 0.03223. The number of atoms in 558.5 g Fe (At. wt. of Fe = 55.85 g mol⁻¹) is (a) $558.5 \times 6.023 \times 10^{23}$ (b) Half that in 8 g of He (d) 6.02×10^{22} (c) twice in 60 g of C What volume of 0.4 M FeCl₃. 6H₂O will contain 600 mg of Fe³⁺? 24. (a) 49.85 mL (b) 26.78 mL (c) 147.55 mL (d) 87.65 mL A solution contain 50% NaCl mass by volume, hence the strength of NaCl in the given 25. solution is (Given density of the solution is 1.25g/cc)

ANSWERS

(c) 6.25 M

(d) 8.547 m

(b) 40% by mass

(a) 50% by strength

4. 2.5M **5.** 5×10^{-3} M **1.** 343.93 Kg **2.** 262.91kg **3.** (a) 4.56g, (b) 50% 6.83.33 mL **7.** 7g 8. (a) 1M, (b) 1.25M, (c) 0.5M, (d) 0.37M 9. 1039 kg/m³ 10.0.173g/mL **11.** 0.029M **12.** 15.379 g **14.** 25.22 mL **15.** (i) 15×10^{-4} % (ii) 1.2577×10^{-4} m **13.** 15.44M **16.** 2.09M **17.** (a) **19.** (b) **20**. (a) **18.** (d) **21.** (d) **22.** (b) **23.** (c) **24.** (b) **25.** (b)