# An Introduction to Regression Trees (CART)

Susan Athey, Stanford University Machine Learning and Causal Inference

## What is the goal of prediction?

- Machine learning answer:
  - Smallest mean-squared error in a test set

#### Formally:

- Let  $S^{te}$  be a test set.
  - ▶ Think of this as a random draw of individuals from a population
- Let  $\hat{\mu}(x_i)$  be a candidate (estimated) predictor
- MSE on test set is:

$$\frac{1}{|S^{te}|} \sum_{i \in S^{te}} (Y_i - \hat{\mu}(X_i))^2$$

## Regression Trees

- Simple method for prediction
  - Partition data into subsets by covariates
  - Predict using average within each subset
- Why are regression trees popular?
  - Easy to understand and explain
  - Businesses often need "segments"
  - Software assigns different algorithms to different segments
- Can completely describe the algorithm and interpretation

# Example: Who survived the Titantic?



## Regression Trees for Prediction

#### Data

- Outcomes  $Y_{i}$ , attributes  $X_{i}$ .
- Support of  $X_i$  is  $\mathcal{X}$ .
- Have training sample with independent obs.
- Want to predict on new sample

#### Build a "tree":

- Partition of  ${\mathcal X}$  into "leaves"  ${\mathcal X}_i$
- Predict Y conditional on realization of X in each region  $\mathcal{X}_j$  using the sample mean in that region
- Go through variables and leaves and decide whether and where to split leaves (creating a finer partition) using in-sample goodness of fit criterion
- Select tree complexity using crossvalidation based on prediction quality

## Regression Trees for Prediction



Outcome: Binary (Y in {0,1})
Two covariates

Goal: Predict Y as a function of X

"Classify" units as a function of X according to whether they are more likely to have Y=0 or Y=1

## Regression Trees for Prediction



- (1) Tree-building: Use algorithm to partition data according to covariates (adaptive: do this based on the difference in mean outcomes in different potential leaves.)
  - (II) Estimation/prediction: calculate mean outcomes in each leaf (III) Use cross-validation to select tree complexity penalty

## Tree Building Details

- Impossible to search over all possible partitions, so use a greedy algorithm
- Do until all leaves have less than 2\*minsize obs:
  - ▶ For each leaf:
    - For each observed value  $x_j$  of each covariate  $x_j$ :
      - $\square$  Consider splitting the leaf into two children according to whether  $\breve{x_j} \leq x_j$
      - □ Make new predictions in each candidate child according to sample mean
      - ☐ Calculate the improvement in "fit" (MSE)
    - Select the covariate j and the cutoff value that lead to the greatest improvement in MSE; split the leaf into two child leaves

#### Observations

- In-sample MSE always improves with additional splits
- What is MSE when each leaf has one observation?

## Problem: Tree has been "over-fitted"

- ▶ Suppose we fit a tree and pick a particular leaf  $\ell$ .
  - Do we expect that if we drew a new sample, we would get the same answer?

## More formally:

Let  $S^{tr}$  be training dataset and  $S^{te}$  be an independent test set

$$\blacktriangleright \text{ Let } \widehat{\mu}(x_i) = \frac{1}{N_{\ell(x_i)}} \sum_{i \in \ell(x_i), S^{tr}} Y_i$$

 $\blacktriangleright \operatorname{ls} E_{i \in S^{te}}[Y_i | X_i \in \ell(x_i)] = \hat{\mu}(x_i)?$ 

## What are tradeoffs in tree depth?

- First: note that in-sample MSE doesn't guide you
  - It always increases with depth
- Tradeoff as you grow tree deeper
  - More personalized predictions
  - More biased estimates

## Regression Trees for Prediction: Components

#### Model and Estimation

- A. Model type: Tree structure
- B. Estimator  $\hat{Y}_i$ : sample mean of  $Y_i$  within leaf
- C. Set of candidate estimators C: correspond to different specifications of how tree is split

#### 2. Criterion function (for fixed tuning parameter $\lambda$ )

A. In-sample Goodness-of-fit function:

Qis = -MSE (Mean Squared Error)=
$$-\frac{1}{N}\sum_{i=1}^{N}(\hat{Y}_i - Y_i)^2$$

- A. Structure and use of criterion
  - i. Criterion:  $Q^{crit} = Q^{is} \lambda \times \#$  leaves
  - Select member of set of candidate estimators that maximizes  $Q^{crit}$ , given  $\lambda$

## 3. Cross-validation approach

- A. Approach: Cross-validation on grid of tuning parameters. Select tuning parameter  $\lambda$  with highest Out-of-sample Goodness-of-Fit Qos.
- B. Out-of-sample Goodness-of-fit function:  $Q^{os} = -MSE$

## How Does Cross Validation Work?



Tuning Set = 1/5 of Training Set

#### Cross-Validation Mechanics

- Loop over cross-validation samples
  - Train a deep tree on CV-training subset
- **Loop** over penalty parameters  $\lambda$ 
  - Loop over cross-validation samples
    - Prune the tree according to penalty
    - Calculate new MSE of tree
  - Average (over c-v samples) the MSE for this penalty
- Choose the penalty  $\lambda^*$  that gives the best average MSE

# Choosing the penalty parameter



## Some example code

```
## Regression tree:
## rpart(formula = linear, data = processed.scaled.train, method = "anova",
      y = TRUE, control = rpart.control(cp = 1e-04, minsplit = 30))
##
## Variables actually used in tree construction:
## [1] bach orhigher
                              city
## [3] employ 20to64
                              g2000
## [5] q2002
                            hh size
## [7] highschool
                            median age
## [9] median income
                              noise1
## [11] noise10
                              noise11
## [13] noise12
                              noise13
## [15] noise2
                              noise3
## [17] noise4
                              noise5
## [19] noise6
                              noise7
## [21] noise8
                              noise9
## [23] p2000
                              p2002
                              percent 62yearsandover
## [25] p2004
## [27] percent black
                              percent hispanicorlatino
## [29] percent male
                              percent white
                               totalpopulation estimate
## [31] sex
## [331 W
                               yob
##
```

```
## Root node error: 3866.8/18000 = 0.21482
##
## n= 18000
##
##
              CP nsplit rel error xerror
## 1
      0.01831622
                          1.00000 1.00020 0.0060337
## 2
                          0.98168 0.98201 0.0061607
      0.01200939
## 3
      0.00903665
                      2
                         0.96967 0.97013 0.0061355
## 4
      0.00555973
                         0.96064 0.96125 0.0062722
## 5
      0.00296112
                         0.95508 0.95571 0.0061583
## 6
      0.00274262
                          0.95212 0.95495 0.0062149
## 7
      0.00267924
                      6 0.94937 0.95394 0.0062370
## 8
                          0.94670 0.95150 0.0062622
      0.00190289
## 9
                          0.94479 0.95162 0.0063299
      0.00183424
## 10
                          0.94296 0.95154 0.0063322
     0.00181651
## 44 0.00066122
                      64
                         0.89338 0.98640 0.0074692
## 45 0.00064984
                         0.89135 0.99433 0.0076063
                      67
## 46 0.00064533
                      68
                         0.89070 0.99997 0.0077120
## 47 0.00063905
                      71
                         0.88876 1.00373 0.0077753
## 48 0.00063765
                      72
                         0.88813 1.00493 0.0078130
                         0.88429 1.00529 0.0078222
## 49 0.00063654
                      78
## 50 0.00063212
                      85
                          0.87957 1.00727 0.0078509
## 51 0.00063205
                      86
                         0.87893 1.00815 0.0078690
## 52 0.00062566
                      94
                         0.87385 1.00952 0.0078949
                         0.87260 1.01128 0.0079362
## 53 0.00062404
                      96
## 54 0.00062352
                      99
                         0.87073 1.01200 0.0079494
## 55 0.00061992
                     102
                         0.86886 1.01396 0.0079794
## 56 0.00061970
                     103
                          0.86824 1.01481 0.0079986
## 57 0.00061887
                     105
                          0.86700 1.01494 0.0080002
## 58 0.00061518
                     112
                          0.86228 1.01661 0.0080294
```

# Pruning Code

```
op.index <- which.min(linear.singletree$cptable[, "xerror"])
cp.vals <- linear.singletree$cptable[, "CP"]
treepruned.linearsingle <- prune(linear.singletree, cp = cp.vals[op.index])</pre>
```

## A Basic Policy Problem

- ▶ Every transfer program in the world must determine...
  - Who is eligible for the transfer
- Typical goal of redistributive programs
  - Transfer to neediest
- But identifying the neediest is easier said than done

Thanks to Sendhil Mullainathan for providing this worked out example....

## Typical Poverty Scorecard

| 1 1 011                                                                                | JOHN TO VOI CV                               | SCOT CCCT C                   |        |      |
|----------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------|--------|------|
| Indicator                                                                              |                                              | Value                         | Points | Scor |
| 1. How many members does the household have?                                           |                                              | A. Five or more               | 0      |      |
|                                                                                        |                                              | B. Four                       | 6      |      |
|                                                                                        |                                              | C. Three                      | 11     |      |
|                                                                                        |                                              | D. Two                        | 17     |      |
|                                                                                        |                                              | E. One                        | 20     |      |
| 2. Do any household members ages 5 to 18 go to private school or private pre-school?   |                                              | A. No                         | 0      |      |
|                                                                                        |                                              | B. Yes                        | 5      |      |
|                                                                                        |                                              | C. No members ages 5 to 18    | 7      |      |
| 3. How many years of schooling has the female head/spouse completed?                   |                                              | A. Three or less              | 0      |      |
|                                                                                        |                                              | B. Four to eleven             | 2      |      |
|                                                                                        |                                              | C. Twelve or more             | 8      |      |
|                                                                                        |                                              | D. No female head/spouse      | 8      |      |
| 4. How many household members work as employees with a                                 |                                              | A. None                       | 0      |      |
|                                                                                        | ct, as civil servants for the government, or | B. One                        | 4      |      |
| in the military?                                                                       |                                              | C. Two or more                | 13     |      |
| 5. In their main occupa                                                                | - 11.110110                                  | 0                             |        |      |
| administrators, professionals in the arts and sciences, mid<br>technicians, or clerks? |                                              | l-level<br>B. One or more     | 8      |      |
| 6. How many rooms does the residence have?                                             |                                              | A. One to four                | 0      |      |
|                                                                                        |                                              | B. Five                       | 2      |      |
|                                                                                        |                                              | C. Six                        | 5      |      |
|                                                                                        |                                              | D. Seven                      | 7      |      |
|                                                                                        |                                              | E. Eight or more              | 11     |      |
| 7. How does the                                                                        | A. Ditch, other, or no bathroom              |                               | 0      |      |
| household                                                                              | B. Simple hole, or directly into river, la   | ke, or ocean                  | 2      |      |
| dispose of                                                                             | C. Septic tank not connected to public s     | sewage/rainwater system       | 3      |      |
| sewage?                                                                                | D. Septic tank connected to public sewa      | age/rainwater system          | 4      |      |
|                                                                                        | E. Direct connection to public sewage/r      | rainwater system              | 5      |      |
| 8. Does the household have a refrigerator?                                             |                                              | A. No                         | 0      |      |
|                                                                                        |                                              | B. Yes, with one door         | 5      |      |
|                                                                                        |                                              | C. Yes, with two doors        | 10     |      |
| 9. Does the household have a washing machine?                                          |                                              | A. No                         | 0      |      |
|                                                                                        |                                              | B. Yes                        | 7      |      |
| 10. Does the household have a cellular or land-line telephone?                         |                                              | A. None                       | 0      |      |
|                                                                                        | •                                            | B. Cellular but not land-line | 5      |      |
|                                                                                        |                                              | C. Land-line but not cellular | 6      |      |
|                                                                                        |                                              | D. Both                       | 11     |      |
|                                                                                        |                                              |                               |        |      |

O .

|   |              | \$2.50/Day/2005 PPP Poverty Line               |                                                |
|---|--------------|------------------------------------------------|------------------------------------------------|
|   | PPI<br>Score | Total Below the<br>\$2.50/Day/2005<br>PPP Line | Total Above the<br>\$2.50/Day/2005<br>PPP Line |
|   | 0-4          | 81.8%                                          | 18.2%                                          |
|   | 5-9          | 77.8%                                          | 22.2%                                          |
|   | 10-14        | 66.1%                                          | 33.9%                                          |
|   | 15-19        | 49.0%                                          | 51.0%                                          |
|   | 20-24        | 37.2%                                          | 62.8%                                          |
|   | 25-29        | 23.9%                                          | 76.1%                                          |
|   | 30-34        | 15.4%                                          | 84.6%                                          |
|   | 35-39        | 8.6%                                           | 91.4%                                          |
|   | 40-44        | 5.2%                                           | 94.8%                                          |
|   | 45-49        | 3.2%                                           | 96.8%                                          |
|   | 50-54        | 2.1%                                           | 97.9%                                          |
|   | 55-59        | 1.2%                                           | 98.8%                                          |
|   | 60-64        | 1.2%                                           | 98.8%                                          |
|   | 65-69        | 0.4%                                           | 99.6%                                          |
|   | 70-74        | 0.6%                                           | 99.4%                                          |
|   | 75-79        | 0.0%                                           | 100.0%                                         |
|   | 80-84        | 0.0%                                           | 100.0%                                         |
|   | 85-89        | 0.0%                                           | 100.0%                                         |
|   | 90-94        | 0.0%                                           | 100.0%                                         |
| • | 95-100       | 0.0%                                           | 100.0%                                         |

#### Can we do better?

- This component of targeting is a pure prediction problem
- We fundamentally care about getting best predictive accuracy
- Let's use this example to illustrate the mechanics of prediction

#### Brazilian Data

- ▶ The data:
  - ▶ 44,787 data points
  - ▶ 53 variables
  - Not very wide?
- Median
  - Annual consumption (in dollars): 3918
  - > 348.85 monthly income
- ▶ 6 percent below 1.90 poverty line
- ▶ 14 percent below the 3.10 poverty line



















## Two Variable Tree







## 28,573 data points to Fit with

8061 8061 8061 8061 Set of Trees

Fit trees on 4/5 of the data Fit a tree for every level of split size

## 28,573 data points to Fit with



REPEAT leaving each fold out





- How do we choose holdout set size?
- How to choose the # of folds?
- What to tune on? (regularizer)



- How do we choose holdout set size?
- How to choose the # of folds?
- What to tune on? (regularizer)
- Which tuning parameter to choose from crossvalidation?

# Tuning Parameter Choice

- Minimum?
- One standard error "rule" (rule of thumb)
  - Which direction?

# Output

- Which of these many trees do we output?
- Even after choosing lambda we have as many trees as folds...
- Estimate one tree on full data using chosen cut size
- Key point: Cross validation is just for choosing tuning parameter
  - Just for deciding how complex a model to choose

- How do we choose holdout set size?
- How to choose the # of folds?
- What to tune on? (regularizer)
- Which tuning parameter to choose from crossvalidation?

Is there a problem tuning on subsets and then outputting fitted value on full set?





What does the tree look like?



What else can we look at to get a sense of what the predictions are?

# Variable Importance

### Empirical loss by noising up x minus Empirical loss



#### How to describe model

- Large discussion of "interpretability"
  - Will return to this
- But one implication is that the prediction function itself becomes a new y variable to analyze.
- Is any of this stable? What would a confidence interval look like?

- How do we choose holdout set size?
- How to choose the # of folds?
- What to tune on? (regularizer)
- Which tuning parameter to choose from crossvalidation?

- Is there a problem tuning on subsets and then outputting fitted value on full set?
- What is stable/robust about the estimated function?

# Measuring Performance

|                   |                                                                                                                        | Predicted condition                                                                                                                                                   |                                                                                                                                                          |                                                                                                                           |                                                                                                  |
|-------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
|                   | Total population                                                                                                       | Predicted Condition positive                                                                                                                                          | Predicted Condition negative                                                                                                                             | $= \frac{\Sigma \text{ Condition positive}}{\Sigma \text{ Total population}}$                                             |                                                                                                  |
| True<br>condition | condition<br>positive                                                                                                  | True positive                                                                                                                                                         | False Negative<br>(Type II error)                                                                                                                        | True positive rate (TPR),  Sensitivity, Recall $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$ | False negative rate (FNR),  Miss rate $= \frac{\sum False\ negative}{\sum\ Condition\ positive}$ |
|                   | condition<br>negative                                                                                                  | False Positive<br>(Type I error)                                                                                                                                      | True negative                                                                                                                                            | False positive rate (FPR),  Fall-out $= \frac{\sum False positive}{\sum Condition negative}$                              | True negative rate (TNR),                                                                        |
|                   | Accuracy (ACC) = $\frac{\Sigma \text{ True positive} + \Sigma \text{ True negative}}{\Sigma \text{ Total population}}$ | Positive predictive value (PPV), $\frac{\text{Precision}}{\sum \text{True positive}}$ $= \frac{\sum \text{Tost outcome positive}}{\sum \text{Test outcome positive}}$ | $\begin{aligned} & \textbf{False omission rate (FOR)} \\ &= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Test outcome negative}} \end{aligned}$    | Positive likelihood ratio (LR+) $= \frac{TPR}{FPR}$                                                                       | Diagnostic odds ratio (DOR) $= \frac{LR+}{LR-}$                                                  |
|                   |                                                                                                                        | False discovery rate (FDR) $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Test outcome positive}}$                                                             | $\begin{aligned} & \text{Negative predictive value (NPV)} \\ &= \frac{\Sigma \text{ True negative}}{\Sigma \text{ Test outcome negative}} \end{aligned}$ | $\begin{aligned} \text{Negative likelihood ratio (LR-)} \\ &= \frac{FNR}{TNR} \end{aligned}$                              |                                                                                                  |



SPC = TN/N = TN/(TN + FP)

# Measuring Performance

- Area Under Curve: Typical measure of performance
- What do you think of this measure?



# Measuring Performance

- ▶ AUC: Typical measure of performance
- What do you think of this measure?
- Getting the domain specific meaningful performance measure
  - Magnitudes
  - Need point of comparison



# This is what we want from econometric theorems

- How do we choose holdout set size?
- How to choose the # of folds?
- What to tune on? (regularizer)
- Which tuning parameter to choose from crossvalidation?

- Is there a problem tuning on subsets and then outputting fitted value on full set?
- What is stable/robust about the estimated function?
- How do we form standard errors on performance?

# Summary

- Regression trees easy to understand and interpret
- Tradeoff between personalized versus inaccurate predictions
- Cross-validation is a tool to figure out the best balance in a particular dataset
  - E.g if truth is complex, may want to go deeper
- ▶ CART is ad hoc, but works well in practice
  - Loses to OLS/logit if true model is linear
  - Good at finding lots of complex interactions