1 Fundamental contents

- Understand the abstract concepts: random experiment, sample space, σ-algebra, probability measure, probability space, filtration, random variables, stochastic processes, Markov process, martingale process, Random walk, Brownian motion, Poisson process, Geometric Brownian motion, Ito lemma, Ito integral, solving stochastic differential equation
- 2. Chapter 1: basic about probability space: random experiment, sample space, σ-algebra, probability measure, probability space, filtration, random variables, probability distribution, joint distribution, conditional distribution, expectation, variance, covariance. Focusing on Bernoulli, uniform, Binomial, Negative binomial, geometric, normal, Poisson, exponential distribution.
- 3. Chapter 2: Introduction to stochastic processes: discrete and continuous random process, filtration, filtered probability space, adapted process, Markov process and Poisson process.
- 4. Chapter 3: Brownian motion. Random walk, Brownian motion: maximum of Brownian, zeros of Brownian motion, first passage time distribution, Brownian with drift, simulating, Brownian bridge... Martingale process
- 5. Chapter 4: Ito's integral definition, Ito's formula, derive solutions for Arithmetic Brownian motion, geometric Brownian motion, Ornstein-Ulenbeck Process

2 Fundamental skills

1. Compute the probability of an event, the expectation variance and covariance of common random variables: binomial, normal, Poisson, exponential random variables

Distribution	Probability mass function		
Bernoulli	$P(X = k) = \begin{cases} p & \text{if } k = 1\\ 1 - p & \text{if } k = 0 \end{cases}$		
Binomial	$P(X = k) = C_n^k p^k (1 - p)^{n-k}, k = 0,, n$		
Poisson	$P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}, k \in \mathbb{N}$		
Uniform	$P(X = k) = \frac{1}{n}, k = 1, 2,, n$		
Distribution	Probability density function		
Uniform	$f(x) = \frac{1}{b-a}, \forall \ a \le x \le b$		
Exponential	$f(x) = \lambda e^{-\lambda x}, x > 0$		

Table 1: Some common discrete and continuous distributions

Let X be a random variable defined on a probability space $(\Omega, \mathcal{F}, \mathcal{P})$. The unconditional expectation of X is

$$E(X) = \begin{cases} \sum_{k=1}^{\infty} x_k P(X = x_k), & \text{if } X \text{ is discrete with values } \{x_1, x_2, \ldots\} \\ \int_{-\infty}^{\infty} x f(x) dx, & \text{if } X \text{ is continuous with density function } f \end{cases}$$

1

Let g is a real-valued function. $E(g(X)) = \begin{cases} \sum_{k=1}^{\infty} g(x_k) P(X = x_k), \\ \int_{-\infty}^{\infty} g(x) f(x) dx \end{cases}$ The unconditional variance of X as

$$Var(X) = E[(X - E[X])^{2}] = E[X^{2}] - (E[X])^{2}.$$

Let Z = g(X, Y) be a function of two random variables.

•
$$E[g(X,Y)] = \begin{cases} \sum_{x \in \mathbf{S}} \sum_{y \in \mathbf{T}} g(x,y) \mathbf{P}(X=x,Y=y) \\ \int_{x \in \mathbf{S}} \int_{y \in \mathbf{T}} f(x,y) g(x,y) dy dx. \end{cases}$$

• Let X and Y be independent random variables. Then for any functions g and h, E[g(X)h(Y)] =E[g(X)]E[h(Y)].

Distribution	Probability mass function	Е	Var
Bernoulli	$P(X=k) = \begin{cases} p & \text{if } k=1\\ 1-p & \text{if } k=0 \end{cases}$	p	p(1-p)
Binomial	$P(X = k) = C_n^k p^k (1 - p)^{n-k}$	np	np(1-p)
Poisson	$P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}, k \in \mathbb{N}$	λ	λ
Uniform	$P(X = k) = \frac{1}{n}, k = 1, 2,, n$	$\frac{n+1}{2}$	$\frac{n^2-1}{12}$

Distribution	Probability density function	E	Var
Uniform	$f(x) = \frac{1}{b-a}, \forall \ a \le x \le b$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
Exponential	$f(x) = \lambda e^{-\lambda x}, x > 0$	$1/\lambda$	$1/\lambda^2$

Table 2: Some common continuous distributions

- Cov(X,Y) = E[XY] E[X]E[Y] = E[(X E[X])(Y E[Y])].
- Cov(X,Y) = 0 if X and Y are independent.
- $Corr(X,Y) = \frac{Cov(X,Y)}{SD[X]SD[Y]}$.
- For constants a < b and c < d,

$$P(a \le X \le b, c \le Y \le d) = \begin{cases} \sum_{x=a}^{b} \sum_{y=c}^{d} \mathbf{P}(X = x, Y = y), \\ \int_{a}^{b} \int_{c}^{d} f(x, y) dy dx \end{cases}$$

• if X and Y are discrete then the probability mass function
$$P_X, P_Y$$
 are determined as:
$$P_X(X=x) = \sum_{y=-\infty}^{\infty} \mathbf{P}(X=x, Y=y) \text{ and } P_Y(Y=y) = \sum_{x=-\infty}^{\infty} \mathbf{P}(X=x, Y=y).$$

If X and Y are continuous then the probability density f_X, f_Y are determined by:

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$$
 and $f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx$.

Law of total probability

Let $B_1, ..., B_k$ be a sequence of events that partition the sample space. That is, the B_i are mutually exclusive (disjoint) and their union is equal to Ω . Then, for any event A, we have

$$P(A) = \sum_{i=1}^{k} P(A \cap B_i) = \sum_{i=1}^{k} P(A|B_i)P(B_i).$$

- 2. Compute the conditional probability $P(A|B) = \frac{P(A \cap B)}{P(B)}$
 - If X and Y are jointly distributed discrete random variables, then the conditional probability mass function of Y given X = x is $P(Y = y | X = x) = \frac{P(X = x, Y = y)}{P(X = x)}$ defined when P(X = x) > 0.
 - For continuous random variable X and Y, the conditional density function of Y given X = x is

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)},$$

where f_X is the marginal density function of X, which is computed by the formula: $f_X(x) = \int_{-\infty}^{\infty} f(x,y)dy$.

- $\bullet \ E(Y|X=x) = \begin{cases} \sum_{y} y P(Y=y|X=x), \text{if X is discrete} \\ \int_{-\infty}^{\infty} y f_{Y|X}(y|x) dy, \text{if X is continuous} \end{cases}$
- E(Y|X=x) is a function of x, i.e., the result depends on the value of x

Law of total expectation

Let $A_1, ..., A_k$ be a sequence of events that partition the sample space. We have $E(Y) = \sum_{i=1}^k E(Y|A_i)P(A_i)$.

Compute the probability and expectation of some events and find the long-term behavior of Markov process.

Let S be a discrete set. A Markov chain is a sequence of random variables $X_0, X_1, ...$ taking values in S with the property that

$$P(X_{n+1} = j | X_0 = x_0, ..., X_{n-1} = x_{n-1}, X_n = i) = P(X_{n+1} = j | X_n = i),$$

for all $x_0, x_1, ..., x_{n-1}, i, j \in S$ and $n \ge 0$. The set S is the state space of the Markov chain.

- If $X_n = i$, we say that the chain visits state i, or hits i, at time n.
- A Markov chain is time-homogeneous if $P(X_{n+1} = j | X_n = i) = P(X_1 = j | X_0 = i) = P_{ij}$, for all n > 0.
- Matrix P, with ij-th elements P_{ij} : one-step transition matrix.
- For states i and j, $n \ge 1$, $P(X_n = j | X_0 = i)$ is the probability that the chain started at stage i and hits state j in n steps.
- The *n*-step transition matrix of the Markov chain includes ij-th entries $P(X_n = j | X_0 = i)$.

- Let $X_0, X_1, ...$ be a Markov chain with transition matrix P. The matrix P^n is the n-step transition matrix of the chain, i.e., $P_{ij}^n = P(X_n = j | X_0 = i), \ \forall \ n \geq 0, i, j$.
- Do not confuse P_{ij}^n , the ijth entry of the matrix P^n , with $(P_{ij})^n$, the number P_{ij} raised to nth power.
- $P(X_n = j) = \sum_i P(X_0 = i) P(X_n = j | X_0 = i) = \sum_i \alpha_i P_{ij}^n$.
- αP^n is the distribution of X_n and $P(X_n = j) = (\alpha P^n)_j$, the j-th element of αP^n , $\forall j$.

Long-term behavior of a discrete Markov chain

- $P(X_n = j | X_0 = i) = \mathbf{P}_{i,i}^n$
- $P(X_n = j) = (\alpha \mathbf{P}^n)_i$
- What happens if n increases to ∞ ? Does the distribution of X_n still depend on initial distribution α .
- If $\lim_{\substack{n\to\infty\\\text{chain.}}} (\alpha \mathbf{P}^n)_j = \lambda_j, \forall \ \alpha$, then $\lambda = (\lambda_1, ..., \lambda_n, ...)$ is called the limiting distribution of the Markov chain.
- λ_i as the long-term probability that the chain hits state j
- If $\lim_{n\to\infty} \mathbf{P}^n = A$ and all rows of A are the same with vector λ then λ is the limiting distribution.

Compute limiting distribution

- (a) Check whether **P** is a regular matrix.
- (b) Solve the linear equation system $\pi \mathbf{P} = \pi$.
- (c) Conclude the solution π is the limiting distribution.

4. Poisson process

A Poisson process with parameter λ is a counting process $(N_t)_{t>0}$ with the following properties:

- (a) $N_0 = 0$.
- (b) For all t > 0, N_t has a Poisson distribution with parameter λt .
- (c) (Stationary increments) For all $s, t > 0, N_{t+s} N_s$ has the same distribution as N_t . That is,

$$P(N_{t+s} - N_s = k) = P(N_t = k) = \frac{e^{-\lambda t} (\lambda t)^k}{k!},$$

for k = 0, 1,

- (d) (Independent increments) For $0 \le q < r \le s < t, N_t N_s$ and $N_r N_q$ are independent random variables.
 - The distribution of the number of arrivals in an interval depends only on the length of the interval
 - The number of arrivals on disjoint intervals are independent random variables
 - $E(N_t) = \lambda t$

5. How to prove a process be a Martingale process

Consider a continuous-time stochastic process $(X_t)_{t\geq 0}$ adapted to the filtration $\{\mathcal{F}_t\}$ and satisfies the condition $E(|X_t|) < \infty$, $\forall t \geq 0$. If $E(X_t|\mathcal{F}_s) = X_s$, $\forall 0 \leq s < t$: martingale process (no tendency to fall or rise)

6. Brownian motion.

Let $(\Omega, \mathcal{F}, (\mathcal{F}_t), \mathcal{P})$ be a filtered probability space and let $(B_t)_{0 \le t < \infty}$ be an adapted process of this space. The process $(B_t)_{0 \le t < \infty}$ is called a standard Brownian motion if it satisfies the following properties:

- (a) $B_0 = 0$
- (b) Independent increments: $B_t B_s$ is independent of \mathcal{F}_s , $0 \le s < t$. That means

$$P(B_t - B_s \le k | \mathcal{F}_s) = P(B_t - B_s \le k).$$

(c) Stationary increments:

$$B_t - B_s \stackrel{d}{=} B_{t-s} \sim N(0, \sqrt{t-s}), \ \forall \ 0 < s < t.$$

(d) Continuous paths: all sample paths of process $(B_t)_{t\geq 0}$ are almost surely continuous, i.e.

$$P(\omega \in \Omega | B_t(\omega) \text{ is a continuous sample path}) = 1.$$

Brownian motion can be thought of as the motion of a particle that diffuses randomly along a line. At each point t, the particle's position B_t is normally distributed about the line with variance t, i.e., $B_t \sim N(0, t)$. As t increases, the particle's position is more diffuse.

First passage time distribution

• The key reflection equality

$$P(\tau_m \le t, B_t \le w) = P(B_t \ge 2m - w), \quad \forall w \le m, m > 0.$$

$$P(\tau_m \le t, B_t \ge w) = P(B_t \le 2m - w), \quad \forall w \ge m, m < 0$$

• For all $m \neq 0$, the random variable τ_m has cumulative distribution function

$$P(\tau_m \le t) = \frac{2}{\sqrt{2\pi}} \int_{m/\sqrt{t}}^{\infty} e^{-y^2/2} dy$$

and the density function:

$$f_{\tau_m}(t) = \frac{d}{dt}P(\tau_m \le t) = \frac{|m|}{t\sqrt{2\pi t}}e^{-m^2/(2t)}, t \ge 0.$$

Brownian motion with drift

- For real value μ and $\sigma > 0$, the process defined by $W_t = \mu t + \sigma B_t$, for $t \geq 0$, is called Brownian motion with drift parameter μ and variance parameter σ^2 .
- For s, t > 0, $W_{t+s} W_t \sim N(\mu s, \sigma^2 s)$.
- $P(W_t W_s \le k | \mathcal{F}_s) = P(\mu(t s) + \sigma(B_t B_s) \le k | \mathcal{F}_s) = P(B_t B_s \le \frac{k \mu(t s)}{\sigma} | \mathcal{F}_s) = P(B_t B_s \le \frac{k \mu(t s)}{\sigma}) = P(\mu(t s) + \sigma(B_t B_s) \le k) = P(W_t W_s \le k).$
- $W_t W_s = \mu(t s) + \sigma(B_t B_s) \stackrel{d}{=} \mu(t s) + \sigma B_{t s} \stackrel{d}{=} W_{t s}, \ \forall \ 0 < s < t.$
- 7. Computing stochastic integral by definition

Let $\{(W_t)_{t\geq 0}\}$ be a standard Brownian motion on the probability space $(\Omega, \mathcal{F}, \mathcal{P})$, and let \mathcal{F}_t be the associated filtration. We consider a function $f(W_t, t)$, which is \mathcal{F}_t -measurable (i.e., $f(W_t, t)$ is a stochastic process adapted to the filtration of a Brownian motion W_t) and is square-integrable $E[\int_0^t f(W_s, s)^2 ds] < \infty$, for all t > 0. The Ito integral of $f(W_t, t)$, with respect to the Brownian motion W_t is defined as:

$$I_t = \int_0^t f(W_s, s) dW_s = \lim_{n \to \infty} \sum_{i=0}^{n-1} f(W_{t_i}, t_i) (W_{t_{i+1}} - W_{t_i})$$

where $t_i = it/n, i = 0...n$.

The Stratonovich integral of $f(W_t, t)$, with respect to the Brownian motion W_t is defined as:

$$I_t = \int_0^t f(W_s, s) dW_s = \lim_{n \to \infty} \sum_{i=0}^{n-1} f(\frac{W_{t_i} + W_{t_{i+1}}}{2}, t_i) (W_{t_{i+1}} - W_{t_i})$$

where $t_i = it/n, i = 0...n$.

Let $(\Omega, \mathcal{F}, \mathcal{P})$ be a probability space and let $\{W_t, t \geq 0\}$ be a standard Wiener process. Show that it has finite quadratic variation such that $\langle W, W \rangle_t = \lim_{n \to \infty} \sum_{i=0}^{n-1} (W_{t_{i+1}} - W_{t_i})^2 = t$, where $t_i = it/n, i = 0...n$. Finally, deduce that $dW_t^2 = dt$.

Let $(\Omega, \mathcal{F}, \mathcal{P})$ be a probability space and let $\{W_t, t \geq 0\}$ be a standard Wiener process. Show that the following cross-variation between W_t and t, and the quadratic variation of t are:

$$\lim_{n \to \infty} \sum_{i=0}^{n-1} (W_{t_{i+1}} - W_{t_i})(t_{i+1} - t_i) = 0 \text{ and } \lim_{n \to \infty} \sum_{i=0}^{n-1} (t_{i+1} - t_i)^2 = 0,$$
 where $t_i = it/n, i = 0, ..., n$. Finally, deduce that $dW_t \cdot dt = 0$ and $dt^2 = 0$.

The Ito integral has the following properties:

i) If
$$I_t = \int_0^t f(W_s, s) dW_s$$
 and $J_t = \int_0^t g(W_s, s) dW_s$ then

$$I_t \pm J_t = \int_0^t [f(W_s, s) \pm g(W_s, s)] dW_s$$

and for a constant c, $cI_t = \int_0^t cf(W_s, s)dW_s$.

ii) I_t is a martingale.

iii)
$$E[I_t^2] = E(\int_0^t f(W_s, s)^2 ds).$$

Let $\{(W_t)_{t\geq 0}\}$ be a standard Brownian motion on the probability space $(\Omega, \mathcal{F}, \mathcal{P})$, and let \mathcal{F}_t be the associated filtration. We consider a function $f(W_t, t)$, which is \mathcal{F}_t -measurable (i.e., $f(W_t, t)$ is a stochastic process adapted to the filtration of a Brownian motion W_t) and is square-integrable $E[\int_0^t f(W_s, s)^2 ds] < \infty$, for all t > 0. The Ito integral of $f(W_t, t)$, with respect to the Brownian motion W_t is defined as:

$$I_t = \int_0^t f(W_s, s) dW_s = \lim_{n \to \infty} \sum_{i=0}^{n-1} f(W_{t_i}, t_i) (W_{t_{i+1}} - W_{t_i})$$

where $t_i = it/n, i = 0...n$.

8. Computing Ito-Doeblin formula for Ito process

For one-variable functions, their second-order Taylor series expansions have the form:

$$df(x) = f'(x)dx + \frac{1}{2}f''(x)dx^{2}.$$

Substituting $x = X_t$ in the above formula, we obtain:

$$df(X_t) = f'(X_t)dX_t + \frac{1}{2}f''(X_t)dX_t^2 = f'(X_t)dX_t + \frac{1}{2}f''(X_t)(\Delta_t dW_t + \Phi_t dt)^2 = f'(X_t)dX_t + \frac{1}{2}f''(X_t)\Delta_t^2 dt.$$

Thus we obtain $df(X_t) = f'(X_t)dX_t + \frac{1}{2}f''(X_t)\Delta_t^2dt$. By integrating both sides, we obtain the integral form:

$$\int_0^t df(X_s) = \int_0^t f'(X_s) dX_s + \frac{1}{2} \int_0^t f''(X_s) \Delta_s^2 ds$$

or

$$f(X_t) - f(X_0) = \int_0^t f'(X_s) dX_s + \frac{1}{2} \int_0^t f''(X_s) \Delta_s^2 ds$$

For two-variable functions, their second-order Taylor series expansions have the form:

$$df(x,t) = f'_x(x,t)dx + f'_t(x,t)dt + \frac{1}{2}f''_{x^2}(x,t)dx^2 + f''_{xt}(x,t)dxdt + \frac{1}{2}f''_{t^2}(x,t)dt^2.$$

Substituting $x = X_t, t = Y_t$ in the above formula, we obtain:

$$df(X_t, Y_t) = f'_x(X_t, Y_t)dX_t + f'_t(X_t, Y_t)dY_t + \frac{1}{2}f''_{x^2}(X_t, Y_t)dX_t^2 + f''_{xt}(X_t, Y_t)dX_tdY_t + \frac{1}{2}f''_{t^2}(X_t, Y_t)dY_t^2$$

$$= f'_x(X_t, Y_t)dX_t + f'_t(X_t, Y_t)dY_t + \frac{1}{2}f''_{x^2}(X_t, Y_t)a_t^2dt + f''_{xt}(X_t, Y_t)a_tc_tdt + \frac{1}{2}f''_{t^2}(X_t, Y_t)c_t^2dt$$

We now consider some special cases. Let f(x,t) = xt then:

$$dX_tY_t = Y_t dX_t + X_t dY_t + dX_t dY_t$$
$$= Y_t dX_t + X_t dY_t + a_t c_t dt$$

Substituting $x = W_t, y = t$ in the general formula and ignore all the terms associated with dt^m , with m > 1, we obtain:

$$df(W_t,t) = f'_x(W_t,t)dW_t + f'_t(W_t,t)dt + \frac{1}{2}f''_{x^2}(W_t,t)dW_t^2 = f'_x(W_t,t)dW_t + [f'_t(W_t,t) + \frac{1}{2}f''_{x^2}(W_t,t)]dt.$$

By integrating both sides, we obtain the integral form:

$$f(W_t,t) - f(W_0,0) = \int_0^t f_x'(W_s,s)dW_s + \int_0^t f_t'(W_s,s)ds + \int_0^t \frac{1}{2}f_{x^2}''(W_s,s)ds$$

9. Solving stochastic differential equation

A diffusion-type stochastic differential equation (SDE) can be described as

$$dX_t = \mu(X_t, t)dt + \sigma(X_t, t)dW_t,$$

where W_t is a standard Brownian motion. We call $\mu(X_t, t)$ the drift and $\sigma(X_t, t)$ be the volatitility of the process. The integral form of the SDE is

$$X_t = X_0 + \int_0^t \mu(X_s, s) ds + \int_0^t \sigma(X_s, s) dW_s,$$

with $X_0 = x_0$ be the initial state of the solution process.

Our objective to solve a SDE:

$$dX_t = \mu(X_t, t)dt + \sigma(X_t, t)dW_t$$

is to find all stochastic processes satisfying the SDE. Such processes are called Ito processes.

Let $\{(W_t)_{t\geq 0}\}$ be a standard Brownian motion on the probability space $(\Omega, \mathcal{F}, \mathcal{P})$. Suppose that the process $(X_t)_{t\geq 0}$ is governed by the SDE: $dX_t = \mu(X_t, t)dt + \sigma(X_t, t)dW_t$, where μ and σ are functions of X_t and t. Show that X_t is a martingale if $\mu(X_t, t) = 0$.

(Bachelier Model: Arithmetic Brownian motion). Let $\{(W_t)_{t\geq 0}\}$ be a standard Brownian motion on the probability space $(\Omega, \mathcal{F}, \mathcal{P})$. Suppose that the process $(X_t)_{t\geq 0}$ is governed by the SDE:

$$dX_t = \mu dt + \sigma dW_t$$

where μ and σ are constant. Show that the random variable $(X_T|X_t=x)$ follows a normal distribution with mean $x + \mu(T-t)$ and variance $\sigma^2(T-t)$.

(Black-Scholes model: Geometric Brownian motion). Let $\{(W_t)_{t\geq 0}\}$ be a standard Brownian motion on the probability space $(\Omega, \mathcal{F}, \mathcal{P})$. Suppose that the process $(X_t)_{t\geq 0}$ is governed by the geometric Brownian motion:

$$dX_t = \mu X_t dt + \sigma X_t dW_t$$

where μ and σ are constant.

- i) By applying Ito formula to $Y_t = \log X_t$, show that $X_T = X_t e^{(\mu \frac{1}{2}\sigma^2)(T-t) + \sigma(W_T W_t)}$.
- ii) Show that the random variable $(X_T|X_t=x)$ follows a lognormal distribution with mean $xe^{\mu(T-t)}$ and variance $x^2(e^{\sigma^2(T-t)}-1)e^{2\mu(T-t)}$.

(Ornstein-Ulenbeck Process). Let $\{(W_t)_{t\geq 0}\}$ be a standard Brownian motion on the probability space $(\Omega, \mathcal{F}, \mathcal{P})$. Suppose that the process $(X_t)_{t\geq 0}$ is governed by the Ornstein-Uhlenbeck process:

$$dX_t = \kappa(\theta - X_t)dt + \sigma dW_t$$

where κ , θ and σ are constant.

- $\text{i) By applying Ito formula to } Y_t = e^{\kappa t} X_t, \text{ show that } X_T = X_t e^{(-\kappa)(T-t)} + \theta[1 e^{-\kappa(T-t)}] + \int_t^T \sigma e^{-\kappa(T-s)} dW_s.$
- ii) Show that the random variable $(X_T|X_t=x)$ follows a normal distribution with mean

$$xe^{-\kappa(T-t)} + \theta[1 - e^{-\kappa(T-t)}]$$

and variance

$$\frac{\sigma^2}{2\kappa} [1 - e^{-2\kappa(T-t)}].$$

References