- 5 Approximationsalgorithmen
- 5.1 Scheduling auf identischen Maschinen
- 5.2 Traveling Salesman Problem
- 5.3 Rucksackproblem

Optimierungsproblem

Ein Optimierungsproblem Π besteht aus den folgenden Komponenten.

- Menge \mathcal{I}_{Π} von Instanzen oder Eingaben
- für jedes $I \in \mathcal{I}_{\Pi}$ Menge \mathcal{S}_I von Lösungen
- für jedes $I \in \mathcal{I}_{\Pi}$ Zielfunktion $f_I : \mathcal{S}_I \to \mathbb{R}_{\geq 0}$, die jeder Lösung einen reellen Wert zuweist
- Angabe, ob minimiert oder maximiert werden soll

Für Eingabe I bezeichne OPT(I) den Wert einer optimalen Lösung.

Beispiel: Spannbaumproblem

- Eingabe /: ungerichteter Graph G = (V, E), Kantengewichte $c : E \to \mathbb{N}$
- Lösungsmenge S_l : Menge aller Spannbäume von G
- Zielfunktion f_l : $f_l(T) = \sum_{e \in T} c(e)$ für Spannbaum $T \in \mathcal{S}_l$
- Minimiere f_I

Es gilt
$$OPT(I) = min_{T \in S_I} f_I(T)$$
.

Ein Approximationsalgorithmus A für Π ist ein Polynomialzeitalgorithmus, der zu jeder Instanz I eine Lösung aus S_I ausgibt.

Ein Approximationsalgorithmus A für Π ist ein Polynomialzeitalgorithmus, der zu jeder Instanz I eine Lösung aus S_I ausgibt.

Es sei A(I) die Lösung, die A bei Eingabe I ausgibt, und $w_A(I) = f_I(A(I))$ ihr Wert.

Ein Approximationsalgorithmus A für Π ist ein Polynomialzeitalgorithmus, der zu jeder Instanz / eine Lösung aus S_I ausgibt.

Es sei A(I) die Lösung, die A bei Eingabe I ausgibt, und $w_A(I) = f_I(A(I))$ ihr Wert.

Definition 5.1 (Approximationsfaktor/Approximationsgüte)

Ein Approximationsalgorithmus A für ein Minimierungs- bzw. Maximierungsproblem Π erreicht einen Approximationsfaktor oder eine Approximationsgüte von $r \geq 1$ bzw. $r \leq 1$, wenn

$$w_A(I) \le r \cdot \mathrm{OPT}(I)$$
 bzw. $w_A(I) \ge r \cdot \mathrm{OPT}(I)$

für alle Instanzen $I \in \mathcal{I}_{\Pi}$ gilt. Wir sagen dann, dass A ein r-Approximationsalgorithmus ist.

Ein Approximationsalgorithmus A für Π ist ein Polynomialzeitalgorithmus, der zu jeder Instanz / eine Lösung aus S_I ausgibt.

Es sei A(I) die Lösung, die A bei Eingabe I ausgibt, und $w_A(I) = f_I(A(I))$ ihr Wert.

Definition 5.1 (Approximationsfaktor/Approximationsgüte)

Ein Approximationsalgorithmus A für ein Minimierungs- bzw. Maximierungsproblem Π erreicht einen Approximationsfaktor oder eine Approximationsgüte von $r \geq 1$ bzw. $r \leq 1$, wenn

$$w_A(I) \le r \cdot \mathrm{OPT}(I)$$
 bzw. $w_A(I) \ge r \cdot \mathrm{OPT}(I)$

für alle Instanzen $I \in \mathcal{I}_{\Pi}$ gilt. Wir sagen dann, dass A ein r-Approximationsalgorithmus ist.

Ist Π NP-schwer und gilt P \neq NP, so existiert für Π kein 1-Approximationsalgorithmus.

5 Approximationsalgorithmen

- 5.1 Scheduling auf identischen Maschinen
- **5.2 Traveling Salesman Problem**
- 5.3 Rucksackproblem

Traveling Salesman Problem (TSP)

Eingabe: Menge $V = \{v_1, \dots, v_n\}$ von Knoten

symmetrische Distanzfunktion $d: V imes V o \mathbb{R}_{\geq 0}$

 $(\mathsf{d}.\,\mathsf{h}.\,\forall u,v\in V:d(u,v)=d(v,u)\geq 0)$

Lösungen: alle Permutationen $\pi: \{1, \ldots, n\} \rightarrow \{1, \ldots, n\}$

eine solche Permutation nennen wir auch Tour

Zielfunktion: minimiere $\sum_{i=1}^{n-1} d(v_{\pi(i)}, v_{\pi(i+1)}) + d(v_{\pi(n)}, v_{\pi(1)})$

Traveling Salesman Problem (TSP)

Eingabe: Menge $V = \{v_1, \dots, v_n\}$ von Knoten

symmetrische Distanzfunktion $d: V imes V o \mathbb{R}_{\geq 0}$

 $(\mathsf{d}.\,\mathsf{h}.\,\forall u,v\in V:d(u,v)=d(v,u)\geq 0)$

Lösungen: alle Permutationen $\pi: \{1, \dots, n\} \rightarrow \{1, \dots, n\}$

eine solche Permutation nennen wir auch Tour

Zielfunktion: minimiere $\sum_{i=1}^{n-1} d(v_{\pi(i)}, v_{\pi(i+1)}) + d(v_{\pi(n)}, v_{\pi(1)})$

Theorem 5.4

Falls P \neq NP, so existiert kein 2^n -Approximationsalgorithmus für das TSP.

Beweis:

Hamiltonkreis-Problem (HC): Existiert in einem ungerichteten Graph ein Kreis, der jeden Knoten genau einmal enthält?

HC ist NP-vollständig (das folgt aus einer Reduktion von 3-SAT).

Beweis:

Hamiltonkreis-Problem (HC): Existiert in einem ungerichteten Graph ein Kreis, der jeden Knoten genau einmal enthält?

HC ist NP-vollständig (das folgt aus einer Reduktion von 3-SAT).

Wir konstruieren polynomielle Reduktion von HC auf TSP, die folgenden Schluss zulässt: Falls ein 2ⁿ-Approximationsalgorithmus A für das TSP existiert, so kann HC in polynomieller Zeit gelöst werden.

Beweis:

Hamiltonkreis-Problem (HC): Existiert in einem ungerichteten Graph ein Kreis, der jeden Knoten genau einmal enthält?

HC ist NP-vollständig (das folgt aus einer Reduktion von 3-SAT).

Wir konstruieren polynomielle Reduktion von HC auf TSP, die folgenden Schluss zulässt: Falls ein 2ⁿ-Approximationsalgorithmus A für das TSP existiert, so kann HC in polynomieller Zeit gelöst werden.

Sei G = (V, E) Eingabe für HC. Wir konstruieren TSP-Instanz auf V mit:

$$\forall u, v \in V, u \neq v : d(u, v) = d(v, u) =$$

$$\begin{cases}
1 & \text{falls } \{u, v\} \in E, \\
n2^{n+1} & \text{falls } \{u, v\} \notin E.
\end{cases}$$

Beweis:

Hamiltonkreis-Problem (HC): Existiert in einem ungerichteten Graph ein Kreis, der jeden Knoten genau einmal enthält?

HC ist NP-vollständig (das folgt aus einer Reduktion von 3-SAT).

Wir konstruieren polynomielle Reduktion von HC auf TSP, die folgenden Schluss zulässt: Falls ein 2ⁿ-Approximationsalgorithmus A für das TSP existiert, so kann HC in polynomieller Zeit gelöst werden.

Sei G = (V, E) Eingabe für HC. Wir konstruieren TSP-Instanz auf V mit:

$$\forall u, v \in V, u \neq v : d(u, v) = d(v, u) =$$

$$\begin{cases} 1 & \text{falls } \{u, v\} \in E, \\ n2^{n+1} & \text{falls } \{u, v\} \notin E. \end{cases}$$

G enthält HC. \Rightarrow Es gibt TSP-Tour C der Länge n.

Beweis:

Hamiltonkreis-Problem (HC): Existiert in einem ungerichteten Graph ein Kreis, der jeden Knoten genau einmal enthält?

HC ist NP-vollständig (das folgt aus einer Reduktion von 3-SAT).

Wir konstruieren polynomielle Reduktion von HC auf TSP, die folgenden Schluss zulässt: Falls ein 2ⁿ-Approximationsalgorithmus A für das TSP existiert, so kann HC in polynomieller Zeit gelöst werden.

Sei G = (V, E) Eingabe für HC. Wir konstruieren TSP-Instanz auf V mit:

$$\forall u, v \in V, u \neq v : d(u, v) = d(v, u) =$$

$$\begin{cases}
1 & \text{falls } \{u, v\} \in E, \\
n2^{n+1} & \text{falls } \{u, v\} \notin E.
\end{cases}$$

G enthält HC. ⇒ Es gibt TSP-Tour C der Länge n. ⇒ *A* berechnet Tour *C'* mit $d(C') \le 2^n \cdot d(C) \le n2^n$.

Beweis:

Hamiltonkreis-Problem (HC): Existiert in einem ungerichteten Graph ein Kreis, der jeden Knoten genau einmal enthält?

HC ist NP-vollständig (das folgt aus einer Reduktion von 3-SAT).

Wir konstruieren polynomielle Reduktion von HC auf TSP, die folgenden Schluss zulässt: Falls ein 2ⁿ-Approximationsalgorithmus A für das TSP existiert, so kann HC in polynomieller Zeit gelöst werden.

Sei G = (V, E) Eingabe für HC. Wir konstruieren TSP-Instanz auf V mit:

$$\forall u, v \in V, u \neq v : d(u, v) = d(v, u) =$$

$$\begin{cases}
1 & \text{falls } \{u, v\} \in E, \\
n2^{n+1} & \text{falls } \{u, v\} \notin E.
\end{cases}$$

G enthält HC. \Rightarrow Es gibt TSP-Tour C der Länge n. \Rightarrow A berechnet Tour C' mit $d(C') \leq 2^n \cdot d(C) \leq n2^n$. C' enthält nur Kanten $e \in E \Rightarrow C'$ ist Hamiltonkreis in G.

Beim metrischen TSP bilden die Distanzen d eine Metrik auf V.

Beim metrischen TSP bilden die Distanzen d eine Metrik auf V.

Definition 5.5

Sei X eine Menge und $d: X \times X \to \mathbb{R}_{\geq 0}$ eine Funktion. Die Funktion d heißt Metrik auf X, wenn die folgenden drei Eigenschaften erfüllt sind.

- $\forall x, y \in X : d(x, y) = 0 \iff x = y$ (positive Definitheit)
- $\forall x, y \in X : d(x, y) = d(y, x)$ (Symmetrie)
- $\forall x, y, z \in X : d(x, z) \le d(x, y) + d(y, z)$ (Dreiecksungleichung)

Das Paar (X, d) heißt metrischer Raum.

Beim metrischen TSP bilden die Distanzen *d* eine Metrik auf *V*.

Definition 5.5

Sei X eine Menge und $d: X \times X \to \mathbb{R}_{\geq 0}$ eine Funktion. Die Funktion d heißt Metrik auf X, wenn die folgenden drei Eigenschaften erfüllt sind.

- $\forall x, y \in X : d(x, y) = 0 \iff x = y$ (positive Definitheit)
- $\forall x, y \in X : d(x, y) = d(y, x)$ (Symmetrie)
- $\forall x, y, z \in X : d(x, z) \le d(x, y) + d(y, z)$ (Dreiecksungleichung)

Das Paar (X, d) heißt metrischer Raum.

Das metrische TSP ist ein Spezialfall des TSP.

Es ist noch NP-schwer denn das TSP ist bereits dann NP-schwer, wenn alle Distanzen entweder 1 oder 2 sind.

Eulerkreis: Kreis in einem Graphen, der jede Kante genau einmal enthält.

Erweiterung auf Multigraphen: Ein zusammenhängender Multigraph enthält genau dann einen Eulerkreis, wenn jeder Knoten geraden Grad besitzt. Ein Eulerkreis kann dann in polynomieller Zeit berechnet werden.

Doppelbaum-TSP

Eingabe: Knotenmenge V, Metrik d auf V.

1. Sei G = (V, E) ein vollständiger ungerichteter Graph mit Knotenmenge V. Berechne einen minimalen Spannbaum T von G bezüglich der Distanzen d.

Doppelbaum-TSP

Eingabe: Knotenmenge *V*, Metrik *d* auf *V*.

- 1. Sei G = (V, E) ein vollständiger ungerichteter Graph mit Knotenmenge V. Berechne einen minimalen Spannbaum T von G bezüglich der Distanzen d.
- 2. Erzeuge Multigraph G', der nur die Kanten aus T enthält und jede davon zweimal. In G' besitzt jeder Knoten geraden Grad.

Doppelbaum-TSP

Eingabe: Knotenmenge *V*, Metrik *d* auf *V*.

- 1. Sei G = (V, E) ein vollständiger ungerichteter Graph mit Knotenmenge V. Berechne einen minimalen Spannbaum T von G bezüglich der Distanzen d.
- 2. Erzeuge Multigraph G', der nur die Kanten aus T enthält und jede davon zweimal. In G' besitzt jeder Knoten geraden Grad.
- 3. Finde einen Eulerkreis A in G'.

Doppelbaum-TSP

Eingabe: Knotenmenge *V*, Metrik *d* auf *V*.

- 1. Sei G = (V, E) ein vollständiger ungerichteter Graph mit Knotenmenge V. Berechne einen minimalen Spannbaum T von G bezüglich der Distanzen d.
- 2. Erzeuge Multigraph G', der nur die Kanten aus T enthält und jede davon zweimal. In G' besitzt jeder Knoten geraden Grad.
- 3. Finde einen Eulerkreis A in G'.
- Gib die Knoten in der Reihenfolge ihres ersten Auftretens in A aus.
 Das Ergebnis sei der Hamiltonkreis C.

Doppelbaum-TSP

Doppelbaum-TSP

Doppelbaum-TSP

Eulerkreis A = (c, a, e, d, e, b, e, a, c)

Doppelbaum-TSP

Tour C = (c, a, e, d, b, c)

Doppelbaum-TSP

Tour C = (c, a, e, d, b, c)

Theorem 5.6

Der Algorithmus Doppelbaum-TSP ist ein 2-Approximationsalgorithmus für das metrische TSP.

Beweis: Für $X \subseteq E$ sei $d(X) = \sum_{\{u,v\} \in X} d(u,v)$.

Wir fassen T, A und C als ungeordnete Teilmengen der Kanten auf und benutzen die Bezeichnungen d(T), d(A) und d(C).

Beweis: Für $X \subseteq E$ sei $d(X) = \sum_{\{u,v\} \in X} d(u,v)$.

Wir fassen T, A und C als ungeordnete Teilmengen der Kanten auf und benutzen die Bezeichnungen d(T), d(A) und d(C).

Beobachtung: Sei $C^* \subseteq E$ ein kürzester Hamiltonkreis und T ein MST in G. Dann gilt $d(T) \leq d(C^*)$.

Beweis: Für $X \subseteq E$ sei $d(X) = \sum_{\{u,v\} \in X} d(u,v)$.

Wir fassen T, A und C als ungeordnete Teilmengen der Kanten auf und benutzen die Bezeichnungen d(T), d(A) und d(C).

Beobachtung: Sei $C^* \subseteq E$ ein kürzester Hamiltonkreis und T ein MST in G. Dann gilt $d(T) \leq d(C^*)$.

Beweis der Beobachtung: Entferne aus C^* beliebige Kante e. Es ergibt sich ein Weg P, der jeden Knoten genau einmal enthält. Ein solcher Weg ist ein Spannbaum von G, also gilt $d(P) \ge d(T)$, da T ein minimaler Spannbaum ist. Insgesamt erhalten wir damit

$$\mathrm{OPT} = d(C^*) = d(P) + d(e) \geq d(P) \geq d(T).$$

Beweis: Für $X \subseteq E$ sei $d(X) = \sum_{\{u,v\} \in X} d(u,v)$.

Wir fassen T, A und C als ungeordnete Teilmengen der Kanten auf und benutzen die Bezeichnungen d(T), d(A) und d(C).

Beobachtung: Sei $C^* \subseteq E$ ein kürzester Hamiltonkreis und T ein MST in G. Dann gilt $d(T) \leq d(C^*)$.

Beweis der Beobachtung: Entferne aus C^* beliebige Kante e. Es ergibt sich ein Weg P, der jeden Knoten genau einmal enthält. Ein solcher Weg ist ein Spannbaum von G, also gilt $d(P) \ge d(T)$, da T ein minimaler Spannbaum ist. Insgesamt erhalten wir damit

$$OPT = d(C^*) = d(P) + d(e) \ge d(P) \ge d(T).$$

Insgesamt erhalten wir

$$d(C) \leq d(A) = 2d(T) \leq 2 \cdot \text{OPT}.$$

 $M \subseteq E$ heißt Matching in G = (V, E), wenn kein Knoten zu mehr als einer Kante aus M inzident ist. Perfektes Matching ist ein Matching M mit $|M| = \frac{|V|}{2}$.

 $M \subseteq E$ heißt Matching in G = (V, E), wenn kein Knoten zu mehr als einer Kante aus M inzident ist. Perfektes Matching ist ein Matching M mit $|M| = \frac{|V|}{2}$.

In einem vollständigen Graphen mit einer geraden Anzahl an Knoten kann ein perfektes Matching mit minimalem Gewicht in polynomieller Zeit berechnet werden.

 $M \subseteq E$ heißt Matching in G = (V, E), wenn kein Knoten zu mehr als einer Kante aus M inzident ist. Perfektes Matching ist ein Matching M mit $|M| = \frac{|V|}{2}$.

In einem vollständigen Graphen mit einer geraden Anzahl an Knoten kann ein perfektes Matching mit minimalem Gewicht in polynomieller Zeit berechnet werden.

Christofides-Algorithmus

1. Sei G = (V, E) ein vollständiger ungerichteter Graph mit Knotenmenge V. Berechne einen minimalen Spannbaum T von G bezüglich der Distanzen d.

 $M \subseteq E$ heißt Matching in G = (V, E), wenn kein Knoten zu mehr als einer Kante aus M inzident ist. Perfektes Matching ist ein Matching M mit $|M| = \frac{|V|}{2}$.

In einem vollständigen Graphen mit einer geraden Anzahl an Knoten kann ein perfektes Matching mit minimalem Gewicht in polynomieller Zeit berechnet werden.

- 1. Sei G = (V, E) ein vollständiger ungerichteter Graph mit Knotenmenge V. Berechne einen minimalen Spannbaum T von G bezüglich der Distanzen d.
- 2. Sei $V' = \{v \in V \mid v \text{ hat ungeraden Grad in } T\}$. Berechne auf der Menge V' ein perfektes Matching M mit minimalem Gewicht.

 $M \subseteq E$ heißt Matching in G = (V, E), wenn kein Knoten zu mehr als einer Kante aus M inzident ist. Perfektes Matching ist ein Matching M mit $|M| = \frac{|V|}{2}$.

In einem vollständigen Graphen mit einer geraden Anzahl an Knoten kann ein perfektes Matching mit minimalem Gewicht in polynomieller Zeit berechnet werden.

- 1. Sei G = (V, E) ein vollständiger ungerichteter Graph mit Knotenmenge V. Berechne einen minimalen Spannbaum T von G bezüglich der Distanzen d.
- 2. Sei $V' = \{v \in V \mid v \text{ hat ungeraden Grad in } T\}$. Berechne auf der Menge V' ein perfektes Matching M mit minimalem Gewicht.
- 3. Sei $\tilde{G} = (V, T \cup M)$ ein Multigraph, der jede Kante $e \in T \cap M$ zweimal enthält. Finde einen Eulerkreis A in dem Multigraphen \tilde{G} .

 $M \subseteq E$ heißt Matching in G = (V, E), wenn kein Knoten zu mehr als einer Kante aus M inzident ist. Perfektes Matching ist ein Matching M mit $|M| = \frac{|V|}{2}$.

In einem vollständigen Graphen mit einer geraden Anzahl an Knoten kann ein perfektes Matching mit minimalem Gewicht in polynomieller Zeit berechnet werden.

- 1. Sei G = (V, E) ein vollständiger ungerichteter Graph mit Knotenmenge V. Berechne einen minimalen Spannbaum T von G bezüglich der Distanzen d.
- 2. Sei $V' = \{v \in V \mid v \text{ hat ungeraden Grad in } T\}$. Berechne auf der Menge V' ein perfektes Matching M mit minimalem Gewicht.
- 3. Sei $\tilde{G} = (V, T \cup M)$ ein Multigraph, der jede Kante $e \in T \cap M$ zweimal enthält. Finde einen Eulerkreis A in dem Multigraphen \tilde{G} .
- Gib die Knoten in der Reihenfolge ihres ersten Auftretens in A aus.
 Das Ergebnis sei der Hamiltonkreis C.

Christofides-Algorithmus

Theorem 5.7

Der Christofides-Algorithmus ist ein $\frac{3}{2}$ -Approximationsalgorithmus für das metrische TSP.

Beweis: Der Christofides-Algorithmus kann ausgeführt werden:

- 1. Auf der Menge V' existiert ein perfektes Matching.
- 2. Der Multigraph $\tilde{G} = (V, T \cup M)$ enthält einen Eulerkreis.

Beweis: Der Christofides-Algorithmus kann ausgeführt werden:

- 1. Auf der Menge V' existiert ein perfektes Matching.
- 2. Der Multigraph $\tilde{G} = (V, T \cup M)$ enthält einen Eulerkreis.

zu 1: G ist vollständig. Zu zeigen: |V'| ist gerade.

Für $v \in V$ bezeichne $\delta(v)$ den Grad des Knotens v in dem Graph (V, T). Dann ist

$$\sum_{\mathbf{v}\in V}\delta(\mathbf{v})=2|T|$$

eine gerade Zahl.

Beweis: Der Christofides-Algorithmus kann ausgeführt werden:

- 1. Auf der Menge V' existiert ein perfektes Matching.
- 2. Der Multigraph $\tilde{G} = (V, T \cup M)$ enthält einen Eulerkreis.

zu 1: G ist vollständig. Zu zeigen: |V'| ist gerade.

Für $v \in V$ bezeichne $\delta(v)$ den Grad des Knotens v in dem Graph (V, T). Dann ist

$$\sum_{\mathbf{v}\in V}\delta(\mathbf{v})=2|T|$$

eine gerade Zahl. Bezeichne q die Anzahl an Knoten mit ungeradem Grad. Da die Summe gerade ist, ist q ebenfalls gerade.

Beweis: Der Christofides-Algorithmus kann ausgeführt werden:

- 1. Auf der Menge V' existiert ein perfektes Matching.
- 2. Der Multigraph $\tilde{G} = (V, T \cup M)$ enthält einen Eulerkreis.

zu 1: G ist vollständig. Zu zeigen: |V'| ist gerade.

Für $v \in V$ bezeichne $\delta(v)$ den Grad des Knotens v in dem Graph (V, T). Dann ist

$$\sum_{\mathbf{v}\in V}\delta(\mathbf{v})=2|T|$$

eine gerade Zahl. Bezeichne q die Anzahl an Knoten mit ungeradem Grad. Da die Summe gerade ist, ist q ebenfalls gerade.

zu 2: In $\tilde{G} = (V, T \cup M)$ besitzt jeder Knoten geraden Grad.

Lemma 5.8

Es sei $V'\subseteq V$ beliebig, sodass |V'| gerade ist. Außerdem sei M ein perfektes Matching auf V' mit minimalem Gewicht d(M). Dann gilt $d(M)\leq \mathrm{OPT}/2$.

Lemma 5.8

Es sei $V'\subseteq V$ beliebig, sodass |V'| gerade ist. Außerdem sei M ein perfektes Matching auf V' mit minimalem Gewicht d(M). Dann gilt $d(M)\leq \mathrm{OPT}/2$.

Beweis: C^* = optimale TSP-Tour auf V C' = durch C^* induzierte Tour auf V'

Lemma 5.8

Es sei $V'\subseteq V$ beliebig, sodass |V'| gerade ist. Außerdem sei M ein perfektes Matching auf V' mit minimalem Gewicht d(M). Dann gilt $d(M)\leq \mathrm{OPT}/2$.

Beweis: $C^* = \text{optimale TSP-Tour auf } V$ $C' = \text{durch } C^* \text{ induzierte Tour auf } V'$

Lemma 5.8

Es sei $V' \subseteq V$ beliebig, sodass |V'| gerade ist. Außerdem sei M ein perfektes Matching auf V' mit minimalem Gewicht d(M). Dann gilt $d(M) \leq \mathrm{OPT}/2$.

Beweis: C^* = optimale TSP-Tour auf V $C' = \text{durch } C^* \text{ induzierte Tour auf } V'$ $d(C') \leq d(C^*) = \text{opt}$

Lemma 5.8

Es sei $V' \subseteq V$ beliebig, sodass |V'| gerade ist. Außerdem sei M ein perfektes Matching auf V' mit minimalem Gewicht d(M). Dann gilt $d(M) \leq \mathrm{OPT}/2$.

Beweis: C^* = optimale TSP-Tour auf V $C' = \text{durch } C^* \text{ induzierte Tour auf } V'$ M_2 $d(M_1) + d(M_2) = d(C') < d(C^*) = \text{opt}$

Lemma 5.8

Es sei $V' \subseteq V$ beliebig, sodass |V'| gerade ist. Außerdem sei M ein perfektes Matching auf V' mit minimalem Gewicht d(M). Dann gilt $d(M) \leq \mathrm{OPT}/2$.

 $C' = \text{durch } C^* \text{ induzierte Tour auf } V'$ **Beweis:** C^* = optimale TSP-Tour auf V M_2 $d(M_1) + d(M_2) = d(C') < d(C^*) = \text{opt}$

$$\Rightarrow d(M_1) \leq OPT/2 \text{ oder } d(M_2) \leq OPT/2$$

Es gilt $d(T) \leq OPT$ und $d(M) \leq OPT/2$.

Es gilt
$$d(T) \leq \text{OPT}$$
 und $d(M) \leq \text{OPT}/2$.

Zusammen bedeutet das

$$d(C) \leq d(A) = d(T) + d(M) \leq \mathrm{OPT} + \frac{1}{2} \cdot \mathrm{OPT} \leq \frac{3}{2} \cdot \mathrm{OPT}.$$

Untere Schranke für den Approximationsfaktor des Christofides-Algorithmus

Sei $n \in \mathbb{N}$ ungerade. Wir betrachten die folgende Instanz des metrischen TSP.

Untere Schranke für den Approximationsfaktor des Christofides-Algorithmus

Sei $n \in \mathbb{N}$ ungerade. Wir betrachten die folgende Instanz des metrischen TSP.

Untere Schranke für den Approximationsfaktor des Christofides-Algorithmus

Sei $n \in \mathbb{N}$ ungerade. Wir betrachten die folgende Instanz des metrischen TSP.

Untere Schranke für den Approximationsfaktor des Christofides-Algorithmus

Sei $n \in \mathbb{N}$ ungerade. Wir betrachten die folgende Instanz des metrischen TSP.

Untere Schranke für den Approximationsfaktor des Christofides-Algorithmus

Sei $n \in \mathbb{N}$ ungerade. Wir betrachten die folgende Instanz des metrischen TSP.

Es gilt OPT = n.

Christofides-Algorithmus berechnet Lösung mit Wert

$$(n-1) + \lfloor n/2 \rfloor \approx \frac{3}{2} \text{OPT}.$$

5 Approximationsalgorithmen

5 Approximationsalgorithmen

- 5.1 Scheduling auf identischen Maschinen
- 5.2 Traveling Salesman Problem
- 5.3 Rucksackproblem

5.3 Rucksackproblem

Definition 5.9

Ein Approximationsschema A für ein Optimierungsproblem Π ist ein Algorithmus, der zu jeder Eingabe der Form (I, ε) mit $I \in \mathcal{I}_{\Pi}$ und $\varepsilon > 0$ eine Lösung $A(I, \varepsilon) \in \mathcal{S}_I$ berechnet.

Definition 5.9

Ein Approximationsschema A für ein Optimierungsproblem Π ist ein Algorithmus, der zu jeder Eingabe der Form (I,ε) mit $I\in\mathcal{I}_\Pi$ und $\varepsilon>0$ eine Lösung $A(I,\varepsilon)\in\mathcal{S}_I$ berechnet. Dabei muss der Wert $w_A(I,\varepsilon)=f_I(A(I,\varepsilon))$ dieser Lösung für jede Eingabe (I,ε) bei einem Minimierungs- oder Maximierungsproblem Π folgende Ungleichung erfüllen:

$$w_A(I,\varepsilon) \leq (1+\varepsilon) \cdot \mathrm{OPT}(I)$$
 bzw. $w_A(I,\varepsilon) \geq (1-\varepsilon) \cdot \mathrm{OPT}(I)$

Definition 5.9

Ein Approximationsschema A für ein Optimierungsproblem Π ist ein Algorithmus, der zu jeder Eingabe der Form (I,ε) mit $I\in\mathcal{I}_\Pi$ und $\varepsilon>0$ eine Lösung $A(I,\varepsilon)\in\mathcal{S}_I$ berechnet. Dabei muss der Wert $w_A(I,\varepsilon)=f_I(A(I,\varepsilon))$ dieser Lösung für jede Eingabe (I,ε) bei einem Minimierungs- oder Maximierungsproblem Π folgende Ungleichung erfüllen:

$$w_A(I,\varepsilon) \leq (1+\varepsilon) \cdot \mathrm{OPT}(I)$$
 bzw. $w_A(I,\varepsilon) \geq (1-\varepsilon) \cdot \mathrm{OPT}(I)$

Ein Approximationsschema A heißt polynomielles Approximationsschema (PTAS), wenn die Laufzeit von A für jede feste Wahl von $\varepsilon > 0$ durch ein Polynom in |I| nach oben beschränkt ist.

Definition 5.9

Ein Approximationsschema A für ein Optimierungsproblem Π ist ein Algorithmus, der zu jeder Eingabe der Form (I,ε) mit $I\in\mathcal{I}_\Pi$ und $\varepsilon>0$ eine Lösung $A(I,\varepsilon)\in\mathcal{S}_I$ berechnet. Dabei muss der Wert $w_A(I,\varepsilon)=f_I(A(I,\varepsilon))$ dieser Lösung für jede Eingabe (I,ε) bei einem Minimierungs- oder Maximierungsproblem Π folgende Ungleichung erfüllen:

$$w_A(I,\varepsilon) \leq (1+\varepsilon) \cdot \mathrm{OPT}(I)$$
 bzw. $w_A(I,\varepsilon) \geq (1-\varepsilon) \cdot \mathrm{OPT}(I)$

Ein Approximationsschema A heißt polynomielles Approximationsschema (PTAS), wenn die Laufzeit von A für jede feste Wahl von $\varepsilon > 0$ durch ein Polynom in |I| nach oben beschränkt ist.

Wir nennen ein Approximationsschema A voll-polynomielles Approximationsschema (FPTAS), wenn die Laufzeit von A durch ein bivariates Polynom in |I| und $1/\varepsilon$ nach oben beschränkt ist.

Beispiellaufzeiten:

Beispielhafte Laufzeit eines PTAS: $\Theta(|I|^{1/\varepsilon})$

Beispielhafte Laufzeit eines FPTAS: $\Theta(|I|^3/\varepsilon^2)$.

Beispiellaufzeiten:

Beispielhafte Laufzeit eines PTAS: $\Theta(|I|^{1/\varepsilon})$

Beispielhafte Laufzeit eines FPTAS: $\Theta(|I|^3/\varepsilon^2)$.

Jedes FPTAS ist ein PTAS.

Rucksackproblem (Knapsack Problem (KP))

Eingabe: Nutzen $p_1, \ldots, p_n \in \mathbb{N}$

Kapazität $t \in \mathbb{N}$

Gewichte $w_1, ..., w_n \in \{1, ..., t\}$

Ausgabe: $x_1, \ldots, x_n \in \{0, 1\}$, sodass Gesamtnutzen $p_1 x_1 + \ldots + p_n x_n$ maximal

unter der Bedingung $w_1x_1 + \ldots + w_nx_n \le t$

Rucksackproblem (Knapsack Problem (KP))

Eingabe: Nutzen $p_1, \ldots, p_n \in \mathbb{N}$

Kapazität $t \in \mathbb{N}$

Gewichte $w_1, \ldots, w_n \in \{1, \ldots, t\}$

Ausgabe: $x_1, \ldots, x_n \in \{0, 1\}$, sodass Gesamtnutzen $p_1 x_1 + \ldots + p_n x_n$ maximal

unter der Bedingung $w_1x_1 + \ldots + w_nx_n \leq t$

Lösung mit dynamischer Programmierung: Wie sehen geeignete Teilprobleme aus?

Sei $P = \max_{i \in \{1,...,n\}} p_i$.

Für jede Kombination aus $i \in \{1, \dots, n\}$ und $p \in \{0, \dots, nP\}$ sei

$$W(i, p) = \min\{w_1x_1 + \ldots + w_ix_i \mid p_1x_1 + \ldots + p_ix_i \geq p\}.$$

Rucksackproblem (Knapsack Problem (KP))

Eingabe: Nutzen $p_1, \ldots, p_n \in \mathbb{N}$

Kapazität $t \in \mathbb{N}$

Gewichte $w_1, \ldots, w_n \in \{1, \ldots, t\}$

Ausgabe: $x_1, \ldots, x_n \in \{0, 1\}$, sodass Gesamtnutzen $p_1 x_1 + \ldots + p_n x_n$ maximal

unter der Bedingung $w_1x_1 + \ldots + w_nx_n \leq t$

Lösung mit dynamischer Programmierung: Wie sehen geeignete Teilprobleme aus?

Sei $P = \max_{i \in \{1,...,n\}} p_i$.

Für jede Kombination aus $i \in \{1, \dots, n\}$ und $p \in \{0, \dots, nP\}$ sei

$$W(i, p) = \min\{w_1x_1 + \ldots + w_ix_i \mid p_1x_1 + \ldots + p_ix_i \geq p\}.$$

D. h. finde unter allen Teilmengen der Objekte $1, \ldots, i$ mit Nutzen mindestens p die mit dem kleinsten Gewicht.

Für jede Kombination aus $i \in \{1, \dots, n\}$ und $p \in \{0, \dots, nP\}$ sei

$$W(i,p) = \min\{w_1x_1 + \ldots + w_ix_i \mid p_1x_1 + \ldots + p_ix_i \geq p\}.$$

Randfälle:

$$W(1,p) = egin{cases} w_1 & ext{falls } p \leq p_1 \ \infty & ext{falls } p > p_1 \end{cases}$$

Für jede Kombination aus $i \in \{1, \dots, n\}$ und $p \in \{0, \dots, nP\}$ sei

$$W(i,p) = \min\{w_1x_1 + \ldots + w_ix_i \mid p_1x_1 + \ldots + p_ix_i \geq p\}.$$

Randfälle:

$$W(1,p) = egin{cases} w_1 & ext{falls } p \leq p_1 \ \infty & ext{falls } p > p_1 \end{cases}$$

Konvention:

$$W(i,0) = 0$$
 für alle $i \in \{1, ..., n\}$ und $p \le 0$.

Sei für ein $i \ge 2$ und für alle $p \in \{0, ..., nP\}$ der Wert W(i – 1, p) bekannt.

Ziel: Berechnung von W(i, p) für $p \in \{0, ..., nP\}$.

Sei für ein $i \ge 2$ und für alle $p \in \{0, ..., nP\}$ der Wert W(i – 1, p) bekannt.

Ziel: Berechnung von W(i, p) für $p \in \{0, ..., nP\}$.

Sei $I \subseteq \{1, \ldots, i\}$ mit $\sum_{i \in I} p_i \ge p$ und kleinstmöglichen Gewicht, d. h. $\sum_{i \in I} w_i = W(i, p)$.

Sei für ein $i \ge 2$ und für alle $p \in \{0, ..., nP\}$ der Wert W(i – 1, p) bekannt.

Ziel: Berechnung von W(i, p) für $p \in \{0, ..., nP\}$.

Sei $I \subseteq \{1, ..., i\}$ mit $\sum_{i \in I} p_i \ge p$ und kleinstmöglichen Gewicht, d. h. $\sum_{i \in I} w_i = W(i, p)$.

• Falls $i \notin I$, so ist $I \subseteq \{1, \ldots, i-1\}$ mit $\sum_{j \in I} p_j \ge p$.

Sei für ein $i \ge 2$ und für alle $p \in \{0, ..., nP\}$ der Wert W(i – 1, p) bekannt.

Ziel: Berechnung von W(i, p) für $p \in \{0, ..., nP\}$.

Sei $I \subseteq \{1, ..., i\}$ mit $\sum_{i \in I} p_i \ge p$ und kleinstmöglichen Gewicht, d. h. $\sum_{i \in I} w_i = W(i, p)$.

• Falls $i \notin I$, so ist $I \subseteq \{1, ..., i-1\}$ mit $\sum_{j \in I} p_j \ge p$. $\Rightarrow W(i, p) = W(i-1, p)$

Sei für ein $i \ge 2$ und für alle $p \in \{0, ..., nP\}$ der Wert W(i – 1, p) bekannt.

Ziel: Berechnung von W(i, p) für $p \in \{0, ..., nP\}$.

Sei $I \subseteq \{1, ..., i\}$ mit $\sum_{i \in I} p_i \ge p$ und kleinstmöglichen Gewicht, d. h. $\sum_{i \in I} w_i = W(i, p)$.

- Falls $i \notin I$, so ist $I \subseteq \{1, ..., i-1\}$ mit $\sum_{j \in I} p_j \ge p$. $\Rightarrow W(i, p) = W(i-1, p)$
- Falls $i \in I$, so ist $I \setminus \{i\} \subseteq \{1, \dots, i-1\}$ mit $\sum_{j \in I \setminus \{i\}} p_j \ge p p_i$.

Sei für ein $i \ge 2$ und für alle $p \in \{0, ..., nP\}$ der Wert W(i – 1, p) bekannt.

Ziel: Berechnung von W(i, p) für $p \in \{0, ..., nP\}$.

Sei $I \subseteq \{1, \ldots, i\}$ mit $\sum_{i \in I} p_i \ge p$ und kleinstmöglichen Gewicht, d. h. $\sum_{i \in I} w_i = W(i, p)$.

- Falls $i \notin I$, so ist $I \subseteq \{1, ..., i-1\}$ mit $\sum_{j \in I} p_j \ge p$. $\Rightarrow W(i, p) = W(i-1, p)$
- Falls $i \in I$, so ist $I \setminus \{i\} \subseteq \{1, \dots, i-1\}$ mit $\sum_{j \in I \setminus \{i\}} p_j \ge p p_i$. $\Rightarrow \sum_{j \in I \setminus \{i\}} w_j = W(i-1, p-p_i)$

Sei für ein $i \ge 2$ und für alle $p \in \{0, ..., nP\}$ der Wert W(i – 1, p) bekannt.

Ziel: Berechnung von W(i, p) für $p \in \{0, ..., nP\}$.

Sei $I \subseteq \{1, \ldots, i\}$ mit $\sum_{i \in I} p_i \ge p$ und kleinstmöglichen Gewicht, d. h. $\sum_{i \in I} w_i = W(i, p)$.

- Falls $i \notin I$, so ist $I \subseteq \{1, ..., i-1\}$ mit $\sum_{j \in I} p_j \ge p$. $\Rightarrow W(i, p) = W(i-1, p)$
- Falls $i \in I$, so ist $I \setminus \{i\} \subseteq \{1, \dots, i-1\}$ mit $\sum_{j \in I \setminus \{i\}} p_j \ge p p_i$. $\Rightarrow \sum_{j \in I \setminus \{i\}} w_j = W(i-1, p-p_i)$ $\Rightarrow W(i, p) = W(i-1, p-p_i) + w_i$

Sei für ein $i \ge 2$ und für alle $p \in \{0, ..., nP\}$ der Wert W(i – 1, p) bekannt.

Ziel: Berechnung von W(i, p) für $p \in \{0, ..., nP\}$.

Sei $I \subseteq \{1, \ldots, i\}$ mit $\sum_{i \in I} p_i \ge p$ und kleinstmöglichen Gewicht, d. h. $\sum_{i \in I} w_i = W(i, p)$.

- Falls $i \notin I$, so ist $I \subseteq \{1, ..., i-1\}$ mit $\sum_{j \in I} p_j \ge p$. $\Rightarrow W(i, p) = W(i-1, p)$
- Falls $i \in I$, so ist $I \setminus \{i\} \subseteq \{1, \dots, i-1\}$ mit $\sum_{j \in I \setminus \{i\}} p_j \ge p p_i$. $\Rightarrow \sum_{j \in I \setminus \{i\}} w_j = W(i-1, p-p_i)$ $\Rightarrow W(i, p) = W(i-1, p-p_i) + w_i$

Insgesamt folgt $W(i,p) = \min\{W(i-1,p), W(i-1,p-p_i) + w_i\}.$

```
DYNKP
    // Sei W(i, p) = 0 für i \in \{1, ..., n\} und p \le 0.
2 P := \max_{i \in \{1,...,n\}} p_i;
3 for (p = 1; p < p_1; p++) W(1, p) := w_1;
   for (p = p_1 + 1; p < nP; p++) W(1, p) := \infty;
5 for (i = 2; i < n; i++)
     for (p = 1; p \le nP; p++)
          W(i, p) = \min\{W(i-1, p), W(i-1, p-p_i) + w_i\};
     return maximales p \in \{1, ..., nP\} mit W(n, p) \le t
8
```

```
DYNKP
    // Sei W(i, p) = 0 für i \in \{1, ..., n\} und p \le 0.
  P:=\max_{i\in\{1,\ldots,n\}}p_i;
   for (p = 1; p < p_1; p++) W(1, p) := w_1;
    for (p = p_1 + 1; p < nP; p++) W(1, p) := \infty;
5 for (i = 2; i < n; i++)
     for (p = 1; p < nP; p++)
          W(i, p) = \min\{W(i-1, p), W(i-1, p-p_i) + w_i\};
    return maximales p \in \{1, ..., nP\} mit W(n, p) \le t
8
```

Theorem 2.12

Der Algorithmus DYNKP bestimmt in Zeit $\Theta(n^2P)$ den maximal erreichbaren Nutzen einer gegebenen Instanz des Rucksackproblems.

FPTAS für das Rucksackproblem

FPTAS-KP

Die Eingabe sei $(\mathcal{I}, \varepsilon)$ mit $\mathcal{I} = (p_1, \dots, p_n, w_1, \dots, w_n, t)$ und $w_i \leq t$ für alle i.

- 1 $P := \max_{i \in \{1,...,n\}} p_i$;
- 2 $K := \frac{\varepsilon P}{R}$; // Skalierungsfaktor
- for i = 1 to n do $p'_i = \lfloor p_i/K \rfloor$; // skaliere und runde die Nutzenwerte
- Benutze Algorithmus DYNKP, um die optimale Lösung für die Instanz $p'_1, \ldots, p'_n, w_1, \ldots, w_n, t$ des Rucksackproblems zu bestimmen.

Theorem 5.11

Der Algorithmus FPTAS-KP ist ein FPTAS für das Rucksackproblem mit einer Laufzeit von $O(n^3/\varepsilon)$.

Theorem 5.11

Der Algorithmus FPTAS-KP ist ein FPTAS für das Rucksackproblem mit einer Laufzeit von $O(n^3/\varepsilon)$.

Beweis:

Laufzeit des Algorithmus: Sei $P' = \max_{i \in \{1,...,n\}} p'_i$. Dann beträgt die Laufzeit von DYNKP $\Theta(n^2P')$. Es gilt

$$P' = \max_{i \in \{1, \dots, n\}} \left\lfloor \frac{p_i}{K} \right\rfloor = \left\lfloor \frac{P}{K} \right\rfloor = \left\lfloor \frac{n}{\varepsilon} \right\rfloor \le \frac{n}{\varepsilon}$$

und somit beträgt die Laufzeit von DYNKP $\Theta(n^2P') = \Theta(n^3/\varepsilon)$.

Korrektheit:

```
Sei I'\subseteq\{1,\ldots,n\} opt. Lösung für die Instanz mit den Nutzenwerten p'_1,\ldots,p'_n. Sei I\subseteq\{1,\ldots,n\} opt. Lösung für die Instanz mit den Nutzenwerten p_1,\ldots,p_n. I' ist auch opt. Lösung für die Nutzenwerte p_1^*,\ldots,p_n^* mit p_i^*=K\cdot p_i'.
```

Korrektheit:

Sei $I'\subseteq\{1,\ldots,n\}$ opt. Lösung für die Instanz mit den Nutzenwerten p'_1,\ldots,p'_n . Sei $I\subseteq\{1,\ldots,n\}$ opt. Lösung für die Instanz mit den Nutzenwerten p_1,\ldots,p_n . I' ist auch opt. Lösung für die Nutzenwerte p_1^*,\ldots,p_n^* mit $p_i^*=K\cdot p_i'$.

Beispiel

Sei
$$n=4$$
, $P=50$ und $\varepsilon=\frac{4}{5}$. Dann ist $K=\frac{\varepsilon P}{n}=10$.

Die verschiedenen Nutzenwerte könnten zum Beispiel wie folgt aussehen:

$$p_1 = 33$$
 $p'_1 = 3$ $p_1^* = 30$
 $p_2 = 25$ $p'_2 = 2$ $p_2^* = 20$
 $p_3 = 50$ $p'_3 = 5$ $p_3^* = 50$
 $p_4 = 27$ $p'_4 = 2$ $p_4^* = 20$

Für eine Teilmenge $J\subseteq\{1,\ldots,n\}$ sei

$$p(J) = \sum_{i \in J} p_i \quad ext{ und } \quad p^*(J) = \sum_{i \in J} p_i^*.$$

Für eine Teilmenge $J\subseteq\{1,\ldots,n\}$ sei

$$p(J) = \sum_{i \in J} p_i$$
 und $p^*(J) = \sum_{i \in J} p_i^*$.

Dann ist p(I') der Wert der Lösung, die der Algorithmus FPTAS-KP ausgibt, und p(I) ist der Wert OPT der optimalen Lösung.

Für eine Teilmenge $J\subseteq\{1,\ldots,n\}$ sei

$$p(J) = \sum_{i \in J} p_i$$
 und $p^*(J) = \sum_{i \in J} p_i^*$.

Dann ist p(I') der Wert der Lösung, die der Algorithmus FPTAS-KP ausgibt, und p(I) ist der Wert OPT der optimalen Lösung.

Es gilt

$$p_i^* = K \cdot \left\lfloor \frac{p_i}{K} \right\rfloor \ge K \left(\frac{p_i}{K} - 1 \right) = p_i - K$$

und

$$p_i^* = K \cdot \left\lfloor \frac{p_i}{K} \right\rfloor \leq p_i.$$

Für eine Teilmenge $J\subseteq\{1,\ldots,n\}$ sei

$$p(J) = \sum_{i \in J} p_i$$
 und $p^*(J) = \sum_{i \in J} p_i^*$.

Dann ist p(I') der Wert der Lösung, die der Algorithmus FPTAS-KP ausgibt, und p(I) ist der Wert OPT der optimalen Lösung.

Es gilt

$$p_i^* = K \cdot \left\lfloor \frac{p_i}{K} \right\rfloor \geq K \left(\frac{p_i}{K} - 1 \right) = p_i - K$$

und

$$p_i^* = K \cdot \left| \frac{p_i}{K} \right| \leq p_i.$$

Dementsprechend gilt für jede Teilmenge $J \subseteq \{1, \dots, n\}$

$$p^*(J) \in [p(J) - nK, p(J)]$$
.

I' ist optimale Lösung für die Nutzenwerte p_1^*, \dots, p_n^* .

Es gilt also insbesondere $p^*(I') \ge p^*(I)$ und somit

$$p(I') \geq p^*(I') \geq p^*(I) \geq p(I) - nK.$$

I' ist optimale Lösung für die Nutzenwerte p_1^*, \ldots, p_n^* .

Es gilt also insbesondere $p^*(I') \ge p^*(I)$ und somit

$$p(I') \geq p^*(I') \geq p^*(I) \geq p(I) - nK.$$

Da jedes Objekt alleine in den Rucksack passt, gilt $p(I) \ge P$ und damit auch

$$\frac{p(I')}{\mathrm{OPT}} = \frac{p(I')}{p(I)} \ge \frac{p(I) - nK}{p(I)} = 1 - \frac{\varepsilon P}{p(I)} \ge 1 - \varepsilon.$$