李立颖 lily@sustech.edu.cn, 理学院 M622

2023 秋季

目录

引言

第一章: 概率 (Probability)

- 1 引言
- ② 样本空间 (Sample space)
- ③ 概率测度 (Probability measure)
- 4 概率计算: 计数方法
 - 古典概型
 - 几何概型

为什么学习概率论与统计?

引言

•00000

- 现实生活中的随机现象主要来源于复杂系统:
 - 人口普查
 - 分子热运动
 - 天气预报
 - 量子力学?
- 概率论与统计提供了研究随机现象的工具
 - 概率论: 建立于现代分析学基础上, 主要提供理论基础, 得到的很多结果简洁 而深刻, 如大数定律、中心极限定理、遍历定理等
 - 统计学: 解决与复杂系统相关的实际问题 (估计、判断、决策), 如参数估计、 假设检验、分类、机器学习等

目录

引言 ○●○○○○

目录

(a) 高考成绩 1

¹图片来源: https://blog.csdn.net/HugoChen_cs/article/details/107650258

例 2: 核物理、随机矩阵与黎曼猜想

图: 铀原子能量光谱 2

• 薛定谔方程

000000

$$i\frac{\partial}{\partial t}\phi=\hat{H}\phi.$$

• 能级 = 特征值

$$\hat{H}\phi = \lambda \phi, \quad \lambda \in \mathbb{R}.$$

● 重原子对应的算子 <u>Ĥ 类似于</u>一个高维对称矩阵 X
 https://www.mdpi.com/2218-2004/5/3/24

李立颖

目录

• 对称随机矩阵

000000

$$X = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1N} \\ x_{21} & x_{22} & \cdots & x_{2N} \\ & & & \ddots \\ x_{N1} & x_{N2} & \cdots & x_{NN} \end{bmatrix}$$

在满足 $x_{ii} = x_{ii}$ 条件下, 矩阵元素 随机选取

- 特征值 λ 满足 Xv = λv. 对称矩阵 的特征值都是实数.
- 相邻特征值 $\lambda_{i+1} \lambda_i$ 的分布是什 么?

目录

例 2: 核物理、随机矩阵与黎曼猜想. |||

黎曼 (-函数, Re z > 1

$$\zeta(z) = \sum_{n=1}^{\infty} \frac{1}{n^z}.$$

以上函数可延拓至 $z \in \mathbb{C} = \{a + b \cdot i : a, b \in \mathbb{R}\}, i = \sqrt{-1}.$

- 黎曼猜想: 黎曼函数的全部零点在 $\{a=\frac{1}{2}\}$ 上.
- Montgomery 猜想: $\{a=\frac{1}{2}\}$ 上相邻零点的距离分布由 Dyson-Wigner 分 布给出
- 小结:
 - 概率问题: 怎么定义随机性? 怎么刻画极限过程?
 - 统计问题·怎么比较两个分布?

如何学习概率统计?

引言

00000

目录

- 学思想: 概率统计特殊的研究对象包含了许多独特的思维方法和思想方 法,特别是如何看待和处理随机规律,这是其他学科中没有的。例如,以 比较各种事件出现的可能性的大小进行决策的思想。
- 学方法: 定量描述随机现象及其规律的方法, 收集、整理、分析数据, 从 而建立统计模型的方法。
- 学应用: 尽可能多地了解各种概念的背景、各种方法和模型的实际应用。 不仅要学课程中提及的, 也要自己收集、寻找各种实例。
- 课前预习、课中认真听讲、课后多做练习。

试验: 科学实验, 或者对某一事物的某一特征进行观察

例

- 抛一枚硬币, 观察正面 H, 反面 T 出现的情况
- 将一枚硬币连抛三次, 观察正面 H 出现的次数
- 掷一颗骰子, 观察出现的点数
- 从一批产品中抽取 n 件, 观察次品出现的数量
- 对某厂生产的电子产品进行寿命测试
- 观察某地区的日平均气温和日平均降水量

问题:

这些实验都有什么特点?

试验前无法预知结果.

随机实验与样本空间

试验的特征

- 试验可以在相同的条件下重复进行
- 试验的结果可能不止一个, 但试验前知道所有可能的全部结果
- 在每次试验前无法确定会出现哪个结果

定义

具有上述特征的称为随机试验, 或简称试验

例

实验 E: 掷一颗骰子, 观察出现的点数.

- E 的结果
 - "1 点"、"2 点"、...、"6 点" (基本结果, 不可分)
 - "出现的点数不超过 3"、"至少出现 4点"(复合结果,可分解)

- 称基本结果为样本点、基本事件
- 称试验的全部样本点构成的集合为样本空间.

例

- 离散样本空间:
 - 掷一颗骰子, 观察出现的点数, 其样本空间为 $\Omega = \{1, 2, 3, 4, 5, 6\}$
 - 抛两枚硬币, 观察正、反两面出现的情况, 其样本空间为

$$\Omega = \{(H, T), (H, H), (T, H), (T, T)\}.$$

- 连续样本空间:
 - 记录深圳地区的日平均气温,其样本空间为 $\Omega = (-60, 60)$
 - 播种飞机对位置为 (x_0,y_0) 的目标进行播种, 观察其所覆盖的范围 (x,y), 其样本空间为

$$\Omega = \{(x, y) \mid (x - x_0)^2 + (y - y_0)^2 < \infty\}.$$

引言

目录

基本结果 不可分 样本点、基本事件

基本结果 不可分 样本点、基本事件 复合结果 可分解 随机事件、事件

表: 试验的结果

• 从集合看: 事件是样本空间的子集

从试验看:事件是基本事件的复合

定义

满足一定条件的样本点的集合称为随机事件, 简称事件. 事件用大写字母 A, B, C, ...等表示.

例

掷一颗骰子, 观察出现的点数, 其样本空间为 $\Omega = \{1, 2, 3, 4, 5, 6\}$

- 事件 A "至少出现 3 点": A = {3,4,5,6}
- 事件 B "出现最小或最大点的点": $B = \{1, 6\}$

几个特殊事件:

- 基本事件: 一个样本点构成的单点集 {ω}.
- 必然事件: 每次试验都总发生的事件 Ω \subset Ω .
- 不可能事件: 每次试验都不会发生的事件 Ø (空集 Ø \subset Ω).

定义

记

$$A = \{A \mid A \subset \Omega, A$$
 是事件 $\}.$

称 A 为试验的事件域, 即试验产生的所有事件为元素构成的集合.

事件语言	基本结果	全体基本试验	事件 A	事件 A 发生
集合语言	样本点 ω	样本空间 Ω	子集 A	$\omega \in A$

表: 小结 — 随机试验的数学描述

事件间的关系与运算 I

设 A, B 以及 $A_k, k = 1, 2, ...$ 为事件

- A 是 B 的 子集, 记作 A ⊂ B: A 发生必然导致 B 发生
- 集合 A 与 B 相等. 记作 A = B: A ⊂ B. B ⊂ A
- 生, 即 A. B至少有一个发生, 称为事件 A 和 B 的和,

(b) $A \cup B$

- 集合 $A \subseteq B$ 的交, 记作 $A \cap B = \{\omega \mid \omega \in A, \omega \in B\}$: A, B 同时发生, 称 为事件 A. B 的积. 也记作 AB.
- 类似地,可以定义 n 个事件或者可列个事件的积

$$\bigcap_{i=1}^{n} A_i = \{\omega \mid \omega \in A_i, i = 1, 2, ..., n\}$$

$$\bigcap_{i=1}^{\infty} A_i = \{ \omega \mid \omega \in A_i, \ i = 1, 2, 3, \ldots \}$$

• 集合 $A \cap B$ 的差集, 记作 $A - B = A \setminus B = \{\omega \mid \omega \in A, \omega \notin B\}$: $A \not \subseteq B$ 而 B 不发生

(b) A \ B

- 若 $A \cap B = \emptyset$, 则称 A, B 互不相容 (互斥).
- 若 $A \cup B = \Omega$, 且 $A \cap B = \emptyset$, 则称 A, B 为逆事件或对立事件, 记为

$$A = \Omega \setminus B = B^c$$
, $B = \Omega \setminus A = A^c$.

(a) $A \cap B = \emptyset$, $A \subseteq B \subseteq \mathbb{R}$

(b) A 与 B 为对立事件

事件的运算定律

• 交换律.

$$A \cup B = B \cup A$$
, $A \cap B = B \cap A$.

结合律:

$$A \cup (B \cup C) = (A \cup B) \cup C, \quad A \cap (B \cap C) = (A \cap B) \cap C.$$

• 分配律:

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C), \quad A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$$

• De Morgan 律:

$$(A \cup B)^c = A^c \cap B^c, \quad (A \cap B)^c = A^c \cup B^c,$$
$$\left(\bigcup_{k=1}^n B_k\right)^c = \bigcap_{k=1}^n B_k^c, \quad \left(\bigcap_{k=1}^n B_k\right)^c = \bigcup_{k=1}^n B_k^c.$$

分配律

如何用定义进行证明

命题

$$\left(\bigcup_{k=1}^n B_k\right)^c = \bigcap_{k=1}^n B_k^c.$$

证明

令
$$P = \left(\bigcup_{k=1}^{n} B_{k}\right)^{c}$$
, $Q = \bigcap_{k=1}^{n} B_{k}^{c}$. 欲证 $P = Q$, 我们只需分别证明 $P \subset Q$ 与

 $Q \subset P$. 我们这里只示范前者的证明. 由包含关系的定义, 对任意的 $\omega \in P$, 我们要推出 $\omega \in Q$. 事实上,

$$\omega \in P = \Big(\bigcup_{k=1}^n B_k\Big)^c \qquad \qquad \stackrel{(\mathring{+} \$ \acute{n} \not \in \mathbb{X})}{\Longrightarrow} \omega \not \in \bigcup_{k=1}^n B_k$$

$$\stackrel{(\mathring{+} \$ \acute{n} \not \in \mathbb{X})}{\Longrightarrow} \omega \not \in B_k, \ \forall k$$

$$\stackrel{(\mathring{\hat{+}} \$ \acute{n} \not \in \mathbb{X})}{\Longrightarrow} \omega \in \bigcap_{k=1}^n B_k^c = Q.$$

可列

目录

引言

- 可列集: 指一个无穷集 S, 其元素可与自然数形成一一对应,因此可表为 $S = \{s_1, s_2, ...\}$.
- 至多可列: 指可列或有限
- 可以证明: 可列是"最小的"无穷,即任何一个无穷集合均含有可列子集

- P20: 5, 6
- 补充题:

引言

- ① 设随机事件 A, B 满足条件 $AB = A^cB^c$, 试求 $A \cup B$.
- ② 试把事件 $A_1 \cup A_2 \cup ... \cup A_n$ 表示成 n 个两两互不相容事件之并.

概率测度

概率论公理化的三种学派

1921, J. M. Keynes, "主观概率学派"

凯恩斯主张把任何命题都看作事件, 例如"明天将下雨","土星上有生命"等等 都是事件, 人们对这些事件的可信程度就是概率, 而与随机试验无关, 通常称为 主观概率.

概率测度

0000000000000000000

1928, von Mises, "客观概率学派"

米泽斯定义事件的概率为该事件出现的频率的极限, 而作为公理就必须把这一 极限的存在作为第一条公理, 通常称为客观概率,

1933, Komolgorov (柯尔莫哥洛夫), "以测度论为基础的概率公理化体系"

目前, 绝大多数教科书都是采用柯尔莫哥洛夫的概率公理化体系.

概率论是研究随机现象的统计规律性的数学学科

问题一: 什么是统计规律性?

统计规律性是指在大量试验中呈现出的数量规律 (用频率来刻画).

问题二: 什么是概率?

概率是指刻划随机事件在一次试验中发生的可能性大小的数量指标, 这个数量 指标应该满足,

- 它是事件固有的. 不随人们主观意愿而改变: 可以在相同条件下通过大量 重复试验予以识别和检验
- 符合常情:事件发生可能性大,该值就大,反之就小;不可能事件的值最小 (0); 必然事件的值最大 (1)

频率的定义

设 A 为一随机事件, 在相同条件上进行 n 次重复实验. 令

$$n_A = n$$
 次实验中 A 发生的事件 $f_n(A) = \frac{n_A}{n}$

称 n_A 为事件 A 的频数, $f_n(A)$ 为事件 A 的频率 (frequency).

频率的一般特性

- 一般地, n 越大, 则 n_A 越大.
- n_A、f_n(A) 的值是"随机的".
- $\bullet \ 0 \le f_n(A) \le 1.$

问题

频率是否有统计规律性?

李立颖

将一枚硬币连续抛 n 次, 记 $H = \{$ 出现正面 $\}$.

问题

目录

f_n(H) 有什么规律?

实验者	n	n _K	$f_n(H)$	
德摩根	2048	1061	0.5181	
蒲丰	4048	2048	0.5069	
皮尔逊	12000	6019	0.5016	
皮尔逊	24000	12012	0.5005	

表: 历史上有名的抛硬币实验

实例二: "蒲丰投针实验"

引言 000000

记投针的总数为 n, 针与平行线相交的次数为 nA, 则

$$\frac{n_A}{n} \approx \frac{1}{\pi}, \quad \dot{\mathbb{R}} \frac{n}{n_A} \approx \pi.$$

目录

实例 3: 英文字母 (密码破译)

考察英语文章中 26 个字母出现的频率, 当观察次数 n 较大时, 每个字母出的频 率呈现稳定性, 下面是 Deway 统计了 438023 个字母得到的统计表.

概率测度

00000 00000000000000000

字母	频率	字母	频率	字母	频率	字母	频率
Е	0.1268	R	0.0594	М	0.0244	K	0.0060
Α	0.0788	L	0.0394	Y	0.0202	J	0.0010
0	0.0776	D	0.0389	G	0.0187	Q	0.0009
I	0.0707	U	0.0280	Р	0.0186	Z	0.0006
N	0.0706	С	0.0268	В	0.0156		
S	0.0634	F	0.0256	V	0.0102		

随机事件的统计规律性

频率的稳定性 (大数定律)

当 n 很大时, 事件 A 的频率 $f_n(A)$ 接近一个常数, 即有

$$f_n(A) \to p, \quad n \to \infty$$

- 常数 p 就是事件 A 发生的可能性大小, 即概率.
- 由于频率的取值是"随机的",那么上述极限是在什么意义下成立呢? (第 五章研究此问题)

目录

实例四: "掷骰子" 实验

问题

目录

记事件

$$A_i = \{ \exists \exists \exists i \exists i, i = 1, 2, \dots, 6. \}$$

将一颗骰子连续掷 n 次, $f_n(A_i)$ 有什么规律?

如果一颗骰子六个面是均匀的, 则当 n 很大时应有

$$f_n(A_i) = \frac{n_{A_i}}{n} \approx \frac{1}{6}, \quad n = 1, 2, \dots, 6.$$

频率的基本性质

- **1** $0 \le f_n(A) \le 1$
- $f_n(\Omega) = 1$
- ③ (有限可加性) 若 A_1 , ..., A_m 两两不相容 $(A_i \cap A_j = \emptyset, \forall i \neq j)$, 则

$$f_n(\cup_{i=1}^m A_i) = \sum_{i=1}^m f_n(A_i).$$

概率的公理化定义

设 A 为样本空间 Ω 上的事件域. 对任意 $A \in A$, 若存在实数 $\mathsf{P}(A)$ 与之对应, 且满足

- **①** 非负性: P(A) > 0, $\forall A \in A$;
- 2 规范性: P(Ω) = 1;
- **③** 可列可加性: 对两两不相容的事件列 $\{A_k\}_{k=1}^{\infty}$, 有 $P\Big(\bigcup_{k=1}^{\infty}A_k\Big)=\sum_{k=1}^{\infty}P(A_k)$;

则称 P(A) 为事件 A 的概率, 称 (Ω, A, P) 为概率空间 (probability space).

引言

设 A 为样本空间 Ω 上的事件域. 对任意 $A \in A$, 若存在实数 P(A) 与之对应, 且满足

- ① 非负性: P(A) > 0, $\forall A \in A$;
- ② 规范性: P(Ω) = 1;
- ③ 可列可加性: 对两两不相容的事件列 $\{A_k\}_{k=1}^{\infty}$, 有 $P\Big(\bigcup_{k=1}^{\infty}A_k\Big)=\sum_{k=1}^{\infty}P(A_k)$;

则称 P(A) 为事件 A 的概率, 称 (Ω, A, P) 为概率空间 (probability space).

注:

- 1933 年苏联的 Kolmogorov 测度论基础上提出的概率论公理化体系.
- 概率是定义在事件域上的特殊函数.
- 物体的长度、区域的面积都具有"非负性"与"可加性"故"概率"实际上 是对"事件"发生可能性大小的一种"度量"

在半径为r的圆C内"任意"作一弦, 试求此弦长度 ℓ 大于圆内接等边三角形 边长 $\sqrt{3}r$ 的概率 p. (何为正确的概率空间 (Ω, A, \mathbb{P}) ?)

解—

目录

作半径为 r/2 的同心圆 C_1 . 设弦 AB 的中点 M "任意" 落干圆 C 内.

若 M 落于圆 C_1 内,则 $\ell > \sqrt{3}r$. 于是

$$p = \frac{\pi (r/2)^2}{\pi r^2} = \frac{1}{4}.$$

解二

设弦 AB 的一端 A 固定于圆周上. 另一端任意. 考虑等 边 $\triangle ADE$, 如 B 落于角 A 所对应的弧 DE 上, 则 $\ell > \sqrt{3}r$. 于是

$$p = \frac{DE \text{ } 66 \text{ } 66 \text{ } 66 \text{ } 66}{\text{ } 66 \text{ } 66 \text{ } 66 \text{ } 66} = \frac{1}{3}$$

概率的基本性质

性质 1

 $P(\emptyset) = 0.$

证明: 因为 $\emptyset = \emptyset \cup \emptyset$, 所以 $P(\emptyset) = P(\emptyset) + P(\emptyset)$, 故 $P(\emptyset) = 0$.

性质 2 (有限可加性)

若 $A_1, A_2, ..., A_n$ 是两两不相容事件, 则 $P\left(\bigcup_{k=1}^{n} A_k\right) = \sum_{k=1}^{n} P(A_k)$.

证明: 因为 $\bigcup_{k=1}^{n} A_k = A_1 \cup \cdots \cup A_n \cup \emptyset \cup \emptyset \cup \cdots$. 由可列可加性,

$$P\Big(\bigcup_{k=1}^n A_k\Big) = \sum_{k=1}^n P(A_k) + P(\varnothing) + P(\varnothing) + \cdots = \sum_{k=1}^n P(A_k).$$

若 $A \subset B$, 则 P(A) < P(B).

证明: 因为 $A \subset B$, 故 B 为不相容事件 $A \subseteq B \setminus A$ 之和. 由有限可加性,

$$P(B) = P(A) + P(B \setminus A).$$

概率测度

0000000000000000000

再由非负性, $P(B \setminus A) \ge 0$. 证毕.

性质 4

目录

$$0 \le \mathsf{P}(A) \le 1$$
.

由 $\emptyset \subset A \subset \Omega$ 及单调性.

性质 5

$$\mathsf{P}(\mathsf{A}^\mathsf{c}) = 1 - \mathsf{P}(\mathsf{A}).$$

由 $A \cup A^c = \Omega$, $A \cap A^c = \emptyset$ 及有限可加性.

性质 6: 容斥原理 (inclusion-exclusion principle)

两事件容斥原理

引言

对任何事件 A, B 有

$$P(A \cup B) = P(A) + P(B) - P(AB).$$

三事件容斥原理

引言

对任何事件 A, B, C 有

$$P(A \cup B \cup C) = P(A) + P(B) + P(C)$$
$$- P(AB) - P(CA) - P(BC)$$
$$+ P(ABC).$$

目录

性质 6: 容斥原理 (inclusion-exclusion principle)

多事件容斥原理

对于 n 个事件. 有

$$P(A_1 \cup A_2 \cup \dots \cup A_n) = \sum_{i=1}^n P(A_i)$$

$$- \sum_{1 \le i < j \le n} P(A_i A_j)$$

$$\sum_{1 \le i < j < k \le n} P(A_i A_j A_k)$$

$$+ \dots + (-1)^{n-1} P(A_1 A_2 \dots A_n).$$

规律

奇加偶减.

目录

已知空气中 PM2.5 含量一般在 0.0-120.4 ($\mu g/m^3$) 之间, SO_2 含量一般在 0.000-0.304 (ppm) 之间,假设在上述范围内取值为等可能的. 一般认为, PM2.5 含量在 100.5 $\mu g/m^3$ 以上或 SO_2 含量在 0.225 ppm 以上为对人体有 害. 问空气质量为有害的概率是多少?

解

$$P(A) = 0.165, P(B) = 0.260, P(AB) = 0.043.$$

 $P(A \cup B) = P(A) + P(B) - P(AB) = 0.382.$

或利用对立事件计算: $(A \cup B)^c = A^c B^c$.

作业

目录

- P20: 4, 7
- 补充题:
 - ① 设 A, B, C 是三个随机事件, 且 $P(A) = P(B) = P(C) = \frac{1}{4}$, P(AB) = P(BC) = 0, $P(AC) = \frac{1}{8}$. 求 A, B, C 至少发生一个的概率.
 - ② 已知 A, B 两个事件满足条件 $P(AB) = P(\bar{A}\bar{B})$, 且 P(A) = p. 求 P(B).

古典概型

"抛硬币"、"掷骰子"等随机试验的特征:

- 只有有限个基本结果 (样本空间为有限集)
- 每个基本结果的出现是等可能的

古典概型

引言

设随机试验的样本空间为 Ω . 若

- ① Ω 只含有有限个样本点, 即 $\Omega = \{\omega_1, \omega_2, \ldots, \omega_n\}$;
- ② 每个样本点的出现是等可能的, 即

$$P(\omega_1) = P(\omega_2) = \cdots = P(\omega_n) = \frac{1}{n},$$

则称该实验为等可能概型, 也称为古典概型,

问题:

怎样计算古典概型中一般事件的概率?

目录

古典概型的概率计算

设事件 A 含 k 个样本点, 记为 $A = \{\omega_{i_1}, \omega_{i_2}, \ldots, \omega_{i_k}\}$. 则由有限可加性:

$$P(A) = P(\omega_{i_1}) + P(\omega_{i_2}) + \cdots + P(\omega_{i_k}) = \frac{1}{n} \times n = \frac{k}{n}.$$

$$P(A) = \frac{A \text{ of } A \text{$$

例

抛两枚硬币, 求出现一个正面一个反面的概率.

解

该实验的样本空间为

$$\Omega = \{HT, HT, TH, TT\}.$$

这是一个古典概型. 事件 $A = \{ - \Lambda \in \{$

$$P(A) = \frac{2}{4} = \frac{1}{2}.$$

历史趣闻

18 世纪著名法国数学家达朗贝尔取样本空间 $\Omega = \{HH, HT, TT\}$ 得到

$$\mathsf{P}(A) = \frac{1}{3}.$$

他错在了哪里? 这不是古典概型!

目录

加法原理 (Addition Principle)

加法原理

引言

做一件事一共有 n 类方法, 第一类有 m_1 种方法, 第二类有 m_2 种方法, ..., 第 n 类有 mn 种方法, 则完成这件事的方法总数为

$$N=m_1+m_2+\cdots+m_n.$$

乘法原理 (Multiplication principle, basic principle of counting)

乘法原理

做一件事有n个步骤,第一步有 m_1 种方法,第二步有 m_2 种方法,...,第n步有 m_n 种方法,则完成这件事的方法总数为

$$N = m_1 \cdot m_2 \cdot \cdots \cdot m_n$$
.

排列与组合

选排列 (Arrangement)

从 n 个不同的元素中, 任取 $k(\leq n)$ 个元素, 按照一定的顺序排成一列, 全部排列个数为

$$A_n^k = \frac{n!}{(n-k)!} = n(n-1)\cdots(n-k+1).$$

全排列 (Permutation)

当 k = n 时, 称为全排列.

$$A_n^k = n!$$

组合 (Combination)

从n个不同的元素中,任取 $k(\leq n)$ 个元素并成一组,全部组合数为

$$\binom{n}{k} = C_n^k = \frac{A_n^k}{A_k^k} = \frac{n!}{k!(n-k)!} = \frac{n(n-1)\cdots(n-k+1)}{k!}.$$

目录 ○ 古典概型

组合数的推广

引言

一般地, 把 n 个球随机地分成 r 组 (n > r), 要求第 i 组恰好有 n_i 个球, $i = 1, \ldots, r$, 共有分法

$$\frac{n!}{n_1!n_2!\cdots n_r!}=\binom{n}{n_1\ n_2\ \cdots\ n_r}.$$

排列与组合的区别

• 排列: 方法数与次序有关

• 组合: 方法数与次序无关.

袋中有 a 只红球, b 只白球, 从袋中随机地将球一个一个取出. 求第 k 次取出的是红球的概率 $(1 \le k \le a+b)$.

思路一

假设除颜色外, 球是可区分的, 将取出的球依次排成一行

把每一种排法作为一个样本点. 有利场合为第 k 个位置为红球, 其它位置的 (a+b-1) 个球可任意放置.

解

样本点总数为 (a+b)!, 有利场合数为 $C_a^1 \cdot (a+b-1)!$. 故所求概率为

$$p_k = \frac{a(a+b-1)!}{(a+b)!} = \frac{a}{a+b}, \quad 1 \le k \le a+b.$$

袋中有 a 只红球, b 只白球, 从袋中随机地将球一个一个取出. 求第 k 次取出的是红球的概率 $(1 \le k \le a + b)$.

思路二

假设除颜色外, 球是不可的, 将取出的球依次排成一行,

把每一种红球可能出现的位置作为一个样本点. 有利场合为第 k 个位置为红球, 其它位置 (a+b-1) 个位置中出现 (a-1) 个红球

解

样本点总数为 C_{a+b}^a , 有利场合数为 C_{a+b-1}^{a-1} . 故所求概率为

$$p_k = \frac{(a+b-1)!/(a-1)!b!}{(a+b)!/a!b!} = \frac{a}{a+b}, \quad 1 \le k \le a+b.$$

古典概型

总结

目录

结果

$$p_k = \frac{a}{a+b}, \quad 1 \le k \le a+b.$$

- 思路一用了排列的思路, 假设除颜色外球是可区分的
- 思路二用了组合的思路, 假设除颜色外球是不可区分的
- 确定了样本空间的结构后, 有利场合的构造必须与样本空间结构一致.
- 概率与 k 无关: 抽签结果与顺序无关.
- 很多实际问题都可以归结为"摸(或扔)球模型".

古典概型

例题

将 n 只 (可区分的) 球随机放入 N ($N \ge n$) 个 (可区分的) 盒子中去, 试求每个盒子至多有一个球的概率.

分析

任意一只球放进任一盒子是等可能的. 我们把盒子编号为 1, 2, ..., N, 并把每个球放入的盒子编号 (a_1,a_2,\ldots,a_n) 作为样本点, 并用古典概型求解.

解

我们样本点总数为 N^n . 每个盒子至多有一个球, 意味着 $(a_1,a_2,...,a_n)$ 互不相同, 因此有利场合数为选排列数 $A_N^n=N(N-1)\cdots(N-n+1)$. 故所求概率为

$$p = \frac{A_N^n}{N^n} = 1 \cdot \left(1 - \frac{1}{N}\right) \cdots \left(1 - \frac{n-1}{N}\right).$$

目录

生日问题

问题

参加某次聚会共 n 个人, 求没有两人生日相同的概率.

分析

此即为 n 个球 (人) 放入 365 个盒子中的问题.

解

$$p = 1 \cdot \left(1 - \frac{1}{365}\right) \cdot \left(1 - \frac{2}{365}\right) \dots \left(1 - \frac{n-1}{365}\right).$$

n	20	25	30	40	50	55	100
1 - p	0.41	0.57	0.71	0.89	0.97	0.99	0.999997

古典概型

例题

从数字 0, 1, ..., 9 中随机地 (可重复) 抽 5 个数字, 则抽出的 5 个数字都不相同的概率是

$$p = \frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6}{10^5} = 0.3024$$

无理数的随机特征

考虑无理数 e = 2.71828 · · · .

将 e 的前 800 位小数分成 160 组, 每组 5 个数字视为从 0,1,2,...,9 中随机抽 出. 数得 5 个数字都不相同的共有 52 组, 其频率为

$$\frac{52}{160} = 0.325 \approx 0.3024.$$

这仍然只是一个猜想! (Normal numbers)

引言

某接待站在某周接待了 12 次来访, 已知这 12 次来访都是在周二和周四进行 的, 问是否可以推断接待站的接待时间是有规定的?

解

假设接待站的时间没有规定, 且认为来访者每周任一天到达是等可能的. 则

$$P\Big(\{12$$
 次来访都在周二和周四 $\}\Big) = \frac{2^{12}}{7^{12}} = 3 \times 10^{-7}.$

定义

概率非常小的事件, 称为小概率事件.

实际推断原理: 小概率事件在一次试验中是几乎不可能发生的.

由实际推断原理, 可推断接待站的时间是有规定的.

计数方法

目录 ○ 几何概型

古典概型的特点

有限样本点,等可能性

问题

如何将样本空间推广到"无限"个样本点,同时又有某种"等可能性"?

目录

几何概型

引言

定义

随机试验 向平面有界区域投掷一个点

样本空间 Ω

事件 点落在可测量面积的平面区域 A

事件概率 $P(A) = \frac{A \text{ 的面积}}{\Omega \text{ 的面积}}$.

称上述试验为几何概型.

注记

- 事件 A 发生的概率与位置无关, 只与 A 的面积有关, 这体现了某种"等可能性".
- 如果样本空间为有界区间、空间有界区域 (或更高维的几何体),则"面积" 改为"长度"、"体积"(或高维推广).

在一次演习中, 某部队 A 接到命令要赶到某小河 D 岸为行进中的 B 部队架设浮桥. 假设 A 部队将于 7 点到 7 点 30 分之间到达 D 岸, 架桥需要 20 分钟时间; B 部队将于 7 点 30 分至 8 点到达 D 岸. 试求 B 部队到达 D 岸时能立即过河的概率.

解

用 $x,y \in [0,60]$ 表示 A 与 B 部队到达 D 岸的时间,则 $(x,y) \in \Omega = [0,30] \times [30,60]$. B 部队能立即过河的充要条件是 $x+20 \le y$. 我们用几何概型求解,所求概率为

$$p = \frac{30^2 - 20^2/2}{30^2} = \frac{7}{9}.$$

三个人去参加某个集合的概率均为 0.4, 其中至少有两个参加的概率为 0.3, 都参加的概率为 0.05. 求 3 人中至少有一个参加的概率.

解

以 A, B, C 分别记 3 个人参加的事件. 由条件知,

$$P(A) = P(B) = P(C) = 0.4, P(AB \cup CA \cup BC) = 0.3, P(ABC) = 0.05.$$

由容斥原理,

$$P(A \cup B \cup C) = 0.4 \times 3 - 0.3 + 0.05 = 0.85.$$

引言

设甲、乙两人同时向同一目标进行射击,已知甲击中的概率为 0.7. 乙击中目标 的概率为 0.6, 两人同时击中目标的概率为 0.4. 求

- (1) 目标不被击中的概率:
- (2) 甲击中目标而乙未击中的概率.

解

记事件 A. B 为甲、乙击中目标的事件, 干是由条件知

$$P(A) = 0.7$$
, $P(B) = 0.6$, $P(AB) = 0.4$.

干是.

$$P($$
 目标不被击中 $)=P(\bar{A}\bar{B})=P(\overline{A\cup B})=1-\left[P(A)+P(B)-P(AB)\right]=0.1.$

伯努利信封问题

n 封信随机送到 n 个人手中. 求所有人都没收到自己的信的概率.

解

用 $A_{i, i} = 1, 2, ..., n$ 表示第 i 个人拿到自己的信的事件. 于是由容斥原理, 至少一个人拿到信件的概率为

$$P(A_1 \cup A_2 \cup \cdots \cup A_n) = \sum_{i=1}^n P(A_i) - \sum_{1 \le i_1 < i_2 \le n} P(A_{i_1} A_{i_2}) + \cdots + (-1)^{n-1} P(A_1 A_2 \cdots A_n).$$

由乘法原理, 我们有 $P(A_{i_1}A_{i_2}\cdots A_{i_k})=\frac{(n-k)!}{n!}$. 这样的项一共有 C_n^k 项. 所以前述概率为

$$\sum_{k=1}^{n} (-1)^{k-1} C_n^k \frac{(n-k)!}{n!} = \sum_{k=1}^{n} (-1)^{k-1} \frac{1}{k!}.$$

故没有人拿到自己的信的概率为

$$1 - \sum_{k=1}^{n} (-1)^{k-1} \frac{1}{k!} = \sum_{k=0}^{n} (-1)^{k-1} \frac{1}{k!} \to e^{-1}, \quad n \to \infty.$$

目录 几何概型

作业

- P21: 28, 29
- 补充题:

引言

- ① 从 n 双尺码不同的鞋子中任到 2r(2r < n) 只, 求下列事件的概率:
 - a 所取 2r 只鞋子中没有两只成对:
 - b 所取 2r 只鞋子中只有两只成对:
 - c 所取 2r 只鞋子恰好配成 r 对.
- ② (匹配问题) 将 4 把能打开 4 间不同房门的钥匙随机发给 4 个人. 试求至少有 一人能打开门的概率