LEVEL-I 1. Number of critical points of f (x) = $\frac{|x^2 - 4|}{|x^2 - 1|}$ are (A) 1 (C) 3 (B) 2 (D) none of these

2.	If the function $f(x) = \cos x - 2ax + b$ increa (A) $a \le b$ (C) $a < -1/2$	ses for all $x \in R$, then (B) $a = b/2$ (D) $a \ge -3/2$
3.	Area of the triangle formed by the posit $x^2 + y^2 = 4$ at $(1, \sqrt{3})$ is	ive x-axis and the normal and the tangent to
	(A) $2\sqrt{3}$ sq. units	(B) $\sqrt{3}$ sq. units
	(C) $4\sqrt{3}$ sq. units	(D) none of these
4.	A tangent to the curve $y = \frac{x^2}{2}$ which is para	allel to the line y = x cuts off an intercept from the
	y-axis is (A) 1 (C) 1/2	(B) -1/3 (D) -1/2
5.	A particle moves on a co-ordinate line so Then distance travelled by the particle durin (A) 4/3 (C) 16/3	that its velocity at time t is v (t) = $t^2 - 2t$ m/sec. g the time interval $0 \le t \le 4$ is (B) $3/4$ (D) $8/3$
6.	The derivative of f (x) = $ x $ at x = 0 is (A) 1 (C) -1	(B) 0 (D) does not exist
7.	$f(x) = -[x^2 + 3x^4 + 5x^6 + 5]$ have only	value in (-∞,∞) at x =
8.	If $y = a \log x + bx^2 + x$ has its extremum y	alues at x = -1 and x =2 then a=
	b =	
9.	The value of b for which the function $f(x) = $ is given by	$\sin x$ –bx + c is decreasing in the interval ($-\infty$, ∞)
	(A) b < 1 (C) b > 1	(B) $b \ge 1$ (D) $b \le 1$
10.	Equation of the tangent to the curve $y = e^{- x }$ (A) is $ey + x = 2$ (C) is $ex + y = 1$	at the point where it cuts the line x=1 (B) is x + y = e (D) does not exist
11.	The greatest and least values of the function the interval [0,1] are	$f(x) = ax + b \sqrt{x + c}$, when $a > 0$, $b > 0$, $c > 0$ in
	(A) a+b+c and c	(B) a/2 b√2+c, c
	(C) $\frac{a+b+c}{\sqrt{2}}$, c	(D) None of these

(D) does not exist

Pick up the correct statement of the following where $[\cdot]$ is the greatest integer function, 23.

- (A) If f(x) is continuous at x = a then [f(x)] is also continuous at x = a.
- (B) If f(x) is continuous at x = a then [f(x)] is differentiable at x = a.
- (C) If | f(x) | is continuous at x = a then f(x) is also continuous at x = a.
- (D) None of these

The greatest value of f (x) = $\cos (xe^{[x]} + 7x^2 - 3x)$, $x \in [-1, \infty)$ is (A) -1 (B) 1 (C) 0 (D) none of these. 24.

The equation of the tangent to the curve $f(x) = 1 + e^{-2x}$ where it cuts the line 25.

(A) x + 2y = 2

(C) x - 2y = 1

(B) 2x + y = 2(D) x - 2y + 2 = 0

The angle of intersection of curves $y = 4 - x^2$ and $y = x^2$ is...... 26.

The greatest value of the function f (x) = $\frac{\sin 2x}{\sin \left(x + \frac{\pi}{4}\right)}$ on the interval $\left[0, \frac{\pi}{2}\right]$ is...... 27.

Let $f(x) = x - \sin x$ and $g(x) = x - \tan x$, where $x \in \left(0, \frac{\pi}{2}\right)$. Then for these value of x. 28.

(A) f(x). g(x) > 0

(B) $f(x) \cdot g(x) < 0$

(C) $\frac{f(x)}{g(x)} > 0$

(D) none of these

Suppose that $f(x) \ge 0$ for all $x \in [0, 1]$ and f is continuous in [0, 1] and $\int_{0}^{1} f(x)dx = 0$, then 29.

- $\forall x \in [0, 1], f is$
- entirely increasing (A)
- entirely decreasing (B)

(C) constant

None of these (D)

LEVEL-II

1	(D)	Nothing	can	ha	caio
((U)	INOUIIII	can	bе	Saic

11. A function
$$f(x) = \frac{x^2 - 3x + 2}{x^2 + 2x - 3}$$
 is:

(A) Maximum at x = -3

- (B) Minimum at x = -3 and maximum at x = 1
- (C) No point of maxima or minima
- (D) Function is decreasing in it's domain.

12. Let
$$f(x) = \begin{cases} \sin(x^2 - 3x) & x \le 0 \\ 5x^2 + 6x & x > 0 \end{cases}$$
. Then $f(x)$ has

(A) local maxima at x = 0

- (B) Local minima at x = 0
- (C) Global maxima at x = 0
- (D) Global minima at x = 0
- 13. If a, b, c, d are four positive real numbers such that abcd =1, then minimum value of (1+a) (1+b) (1+c) (1+d) is
 - (A) 8

(B) 12

(C) 16

- (D) 20
- 14. If $f(x) + 2f(1-x) = x^2 + 2 \forall x \in \mathbb{R}$, then f(x) is given as
 - (A) $\frac{(x-2)^2}{3}$

(B) $x^2 - 2$

(C) 1

- (D) None of these
- 15. $\lim_{x\to 5\pi/4} [\sin x + \cos x]$, where [.] denotes the Integral part of x.
 - (A) is equal to -1

(B) is equal to -2

(C) is equal to -3

- (D) Does not exist
- 16. If $f(x) = \frac{\ln(1+x)^{1+x}}{x^2} \frac{1}{x}$, then the value of f(0) so that f(x) is continuous at x = 0, is;
 - (A) 2

(B)

(C)1/2

(D) None of these

17. If f (x) =
$$\frac{x}{1+|x|}$$
, then

- (A) f (x) is differentiable $\forall x \in R$
- (B) f (x) is no where differentiable
- (C) f (x) is not differentiable at finite no. of point
- (D) None of these
- 18. If $f_1(x) = \sin x + \tan x$, $f_2(x) = 2x$ then
 - (A) $f_1(x) > f_2(x) \forall x \in (0, \pi/2)$
 - (B) $f_1(x) < f_2(x) \forall x \in (0, \pi/2)$
 - (C) $f_1(x) f_2(x) = 0$ has exactly one root $\forall x \in (0, \pi/2)$
 - (D) None of these
- 19. Let $f(x) = \begin{cases} |x-1| + a, & x \le 1 \\ 2x + 3, & x > 1 \end{cases}$. If f(x) has a local minima at x = 1. Then exhaustive set of

values of 'a' is;

(A) $a \le 4$

(B) $a \le 5$

(C) $a \le 6$

- (D) $a \le 7$
- 20. A differentiable function f(x) has a relative minimum at x = 0 then the function y = f(x) + ax + b has a relative minimum at x = 0 for

21.	21. The maximum value of $f(x) = x \ln x \ln x \in (0,1)$ is;						
	(A) 1/e (C) 1	(B) e (D) none of these					
22.	If f (x) = $\int_{0}^{x} (t+1) (e^{t}-1) (t-2) (t+4) dt$ then f	(x) would assume the local minima at;					
	(A) $x = -4$ (C) $x = 1$	(B) x = 0 (D) x = 2.					
23.	$f(x) = tan^{-1} (sinx + cosx)$ is an increasing fund (A) $(0,\pi/4)$ (C) $(-\pi/4, \pi/4)$	ction in (B) $(0, \pi/2)$ (D) none of these.					
24.	Let f: $R \rightarrow R$, where $f(x) = x^3 - ax$, $a \in R$. Then its entire domain is; (A) $(-\infty, 0)$ (C) $(-\infty, \infty)$	set of values of 'a' so that $f(x)$ is increasing in (B) $(0, \infty)$ (D) none of these					
25.	The curves $y = 4x^2 + 2x - 8$ and $y = x^3 - x +$	10 touch each other at the point					
26.	Let f be differentiable for all x. if f (1) = -2 ar (A) f (6) < 8 (C) f (6) \geq 5	and f' $(x) \ge 2$ for all $x \in [1, 6]$, then (B) f $(6) \ge 8$ (D) f $(6) \le 5$					
27.	The function f (x) = $\frac{2x^2 - 1}{x^4}$ decreases in the	ne interval					
28.	The function $f(x) = (x + 2) e^{-x}$ increases in decreases in	and					
29.	The function $y = x - \cot^{-1} x - \log (x + \sqrt{x^2 + 1})$ (A) $(-\infty, 0)$ (C) $(0, \infty)$	(B) $(-\infty, \infty)$ (D) $R - \{0\}$					
30.	Let f: $(0, \infty) \to R$ defined by $f(x) = x + \frac{9\pi^2}{x}$ (A) $10\pi - 1$ (C) $3\pi - 1$	+ cos x . Then minimum value of f(x) is (B) 6π - 1 (D) none of these					
31.	Let a, $n \in \mathbb{N}$ such that $a \ge n^3$ then $\sqrt[3]{a+1} - (A)$ less than $\frac{1}{3n^2}$ (C) more than $\frac{1}{n^3}$	$\sqrt[3]{a}$ is always (B) less than $\frac{1}{2n^3}$ (D) more than $\frac{1}{4n^2}$					
32.	The global minimum value of function $f(x) = (A)$	$x^3 + 3x^2 + 10x + \cos \pi x$ in [-2,3] is (B) 3-2 π					

(B) all b if a = 0(D) all $a \ge 0$

(B) all a and all b (D) all b > 0

33.	The m (A) (C)	ninimum value of the function of 0 1	defined (B) (D)	by f(x) = Maximum {x, x+1, 2-x} is 1/2 3/2				
LEVE	L-III							
1.		ctreme values of abc is equal to 500		at $(4, 2)$ and $a \in [1, 3]$, then difference between (B) 144 (D) None of these				
2.		β and $γ$ be the roots of $f(x) =$ eatest integer function, is equal		2 –5x –1 = 0. Then [α] +[β] +[γ], where [.] denotes (B) – 2 (D) – 3				
3.	The n (A) 0 (C) 2	umber of solutions of the equa	ition x ³	$+2x^2 +5x + 2\cos x = 0$ in [0, 2π] is (B) 1 (D) 3				
4.		$2x^3 - 3(2+\lambda)x^2 + 12\lambda x$ has ex S is a subset of $4, \infty$)		of parameter λ for which the equation ne local maximum and exactly one local minimum. (B) (-3, 3) (D) (- ∞ , 3)				
5.	function (A) Di (C) no			etrecally as $x = 2t + t $, $y = t t $, $\forall t \in R$. then (B) non-differentiable at $x = 0$ y at $x = 0$				
6.	If the li	ne $ax + by + c = 0$ is normal to	the cu	rve x y + 5 = 0 then				
	(A) a >	0 , b > 0		(B) $b > 0$, $a < 0$				
	(C) a	< 0 , b < 0		(D) $b < 0$, $a > 0$				
7.	The nu (A) On (C) Thi		n [1,2] is	s/are; (B) Two (D)none of these				
8.		ic $f(x)$ vanishes at $x = -2$ and $f(x) = \dots$	nas extr	rema at x = -1 and x = $\frac{1}{3}$ such that $\int_{1}^{-1} f(x) dx = \frac{14}{3}$				
9.	If g(x)	= f(x) + f(1-x) and $f''(x) < 0, 0$	≤ x ≤ 1,	, then				
	(A) g	(x) is decreasing in (0, 1)		(B) g(x) is decreasing in $\left(0, \frac{1}{2}\right)$				

(D)

-15

(C)

16-2π

ANSWERS

LEVEL -I

1.	Α	2.	С	3.	Α	4.	D
5.	С	6.	D	7.	0	8.	2, -1/2
9.	С	10.	Α	11.	Α	12.	В
13.	С	14.	D	15.	Α	16.	D
17.	Α	18.	С	19.	С	20.	D
21.	С	22.	С	23.	С	24.	В
25.	В	26.	$2\sqrt{2}$	27.	$\sqrt{2}$	28.	В
29.	С						

LEVEL -II

1.	Α	2.	В	3.	С	4.	D
5.	D	6.	В	7.	Α	8.	С
9.	В	10.	Α	11.	С	12.	В
13.	С	14.	Α	15.		16.	С
17.	С	18.	Α	19.	В	20.	В
21.	Α	22.	D	23.	С	24.	Α
25.	3, 34; -1/3, -			26.	В	27.	$\left(-\frac{1}{2},0\right)\cup\left(\frac{1}{2},\infty\right)$
28.	(0, 1); R - (0, 1)		29.	В	30.	В
31.	A	32.	D	33.	С		

LEVEL -III

1. 5.		2. 6. A, C	3. 7.		4. 8.	D $-x^3 - x^2 + x - 2$
9.	С	10. C	11.	В	12.	С
13.	С	14. D	15.	Α	16.	В
17.	В	18. B	19.	В	20.	D