Theorem 1 Let $\alpha_1 = \langle T_{1,1}, T_{2,1}, \dots, T_{m,1} \rangle$ and $\alpha_2 = \langle T_{1,2}, T_{2,2}, \dots, T_{n,2} \rangle$ be two paths such that their last transitions $T_{m,1}$ and $T_{n,2}$ are parallelisable. Then, α_1 and α_2 are parallelisable.

Proof 1 Let it not be so. From Definition of parallelisable pairs of paths, we have the following cases:

- Case 1: $\alpha_1 > \alpha_2$. From Definition of successor relationship between two paths, there exist at least one set of paths $\alpha_{k_1}, \alpha_{k_2}, \ldots, \alpha_{k_n}$ and a set of places $p_1 \in {}^{\circ}\alpha_1$ and $p_{k_m} \in {}^{\circ}\alpha_{k_m}, 1 \le m \le n$, such that $\langle last(\alpha_2), p_{k_1} \rangle, \langle last(\alpha_{k_1}), p_{k_2} \rangle, \ldots, \langle last(\alpha_{k_n}), p_1 \rangle \in O \subseteq T \times P, n \ge 0$, and none of them is a back edge. Therefore, using the fact that $last(\alpha) > first(\alpha)$, for any path α , and reading the above sequence of edges backward, we have $last(\alpha_1) = T_{m,1} > first(\alpha_1) > last(\alpha_{k_n}) > first(\alpha_{k_n}) > last(\alpha_{k_{n-1}}) > \ldots > first(\alpha_{k_2}) > last(\alpha_{k_1}) > first(\alpha_{k_1}) > last(\alpha_2) = T_{n,2}$. Hence, $T_{m,1} > T_{n,2} \Rightarrow T_{n,2} \not \sim T_{m,1}$ (Contradiction).
- Case 2: $\alpha_2 > \alpha_1$. Following the same argument, as for Case 1, by symmetry with α_1 and α_2 interchanged, we again obtain the refutation of the hypothesis $T_{m,1} \times T_{n,2}$.
- Case 3: $\exists \alpha_k, \alpha_l, (\alpha_k \neq \alpha_l \land \alpha_1 \geq \alpha_k \land \alpha_2 \geq \alpha_l \land \alpha_k \cap \alpha_l \neq \emptyset)$. $\alpha_k \cap \alpha_l \neq \emptyset \Rightarrow \exists t_{i,k} \in \alpha_k, \exists t_{j,l} \in \alpha_l \text{ such that } t_{i,k} \cap t_{j,l} \neq \emptyset$. Let the last transitions of the paths α_k and α_l be $t_{r,k}$ and $t_{s,l}$, respectively. Since $\alpha_1 \geq \alpha_k, T_{m,1} \geq t_{r,k} \geq t_{i,k}$; (recall that $T_{m,1} = \{t_{m,1}\}$). Similarly, since $\alpha_2 \geq \alpha_l, T_{n,2} \geq t_{s,l} \geq t_{j,l}$. Thus, $T_{m,1} \geq t_{i,k}, T_{n,2} \geq t_{j,l}$ and $t_{i,k} \cap t_{j,l} \neq \emptyset$. Therefore, $t_{m,1}$ is not parallelisable with $t_{m,2}$ (from Definition of parallelisable paths).

Theorem 2 Let Π be the set of all paths of a PRES+ model obtained from a set of static cut-points. For any computation μ_p of an out-port p of the model, there exists a reorganized sequence μ_p^r of paths of Π such that $\mu_p \simeq \mu_p^r$.

Construction of a sequence μ_p^r of (concatenation of) paths from μ_p : Algorithm 1 (construct-PathSequence) describes a recursive function for constructing from a given computation μ_p and a set Π of paths the desired reorganized sequence μ_p^r of paths of Π such that $\mu_p^r \simeq \mu_p$. If μ_p is not empty, then a path α is selected from Π such that $\operatorname{last}(\alpha) \cap \operatorname{last}(\mu_p) \neq \emptyset$; if all its transitions are found to occur in μ_p , then it is put as the last member in the reorganized sequence; the member transitions of α are deleted from μ_p examining the latter backward; the transitions in the last member of α are always deleted from μ_p ; each of the other transitions of α is deleted from μ_p only if it does not occur in any other path in Π . If $|\operatorname{last}(\mu_p)| > 1$, then each member transition of $\operatorname{last}(\mu_p)$ will result in one path which has to be processed separately through above steps. Once all these paths are processed, the $\operatorname{last}(\mu_p)$ will get deleted from μ_p . The resulting μ_p is then reordered recursively; the process terminates when the input μ_p becomes empty.

Proof 2 $(\mu_p^r \simeq \mu_p)$: We first prove that Algorithm 1 terminates; this is accomplished in two steps; first, it is shown that each invocation comprising four loops terminate; we next show that there are only finitely many recursive invocations.

Termination of the while loop comprising lines 16-18 is obvious; either i becomes less than one or a member $\mu_p.T_i$ is found to contain last(α') (for some i>1). The for loop comprising lines 22-26 iterates only finitely many times because the number of transitions in any member set of a path (and hence $\mu_p'.T_i$) is finite; the while loop comprising lines 15-29 terminates, because in every iteration, it is examined whether the computation μ_p' contains the last member of α' ; if so, α' loses this member in line 27 and the next iteration of the loop executes with α' having one member less. Finally, the for loop comprising lines 10-35 terminates because the set last(μ_p) of transitions (before entering the loop), and hence the set $\Pi_{last(\mu_p)}$ of paths are finite.

The second step follows from the fact that in each recursive invocation, μ_p has one member (namely, its last member) less than the previous invocation (line 40 in the if statement comprising lines 37-41). Hence, if μ_p has n members, then there are n total invocations (n – 1 of them being recursive).

Now, for proving $\mu_p^r \simeq \mu_p$, let the first parameter μ_p for the k^{th} invocation be designated as $\mu_p^{(k)}$, $1 \leq k \leq n$; the second parameter Π remains the same for all invocations; let the value returned by the k^{th} invocation be $\mu_p^{r(k)}$; specifically, $\mu_p = \mu_p^{(1)}$; $\mu_p^{(n-1)}$ comprises just one member and $\mu_p^{(n)} = \langle \rangle$; $\mu_p^{r(n)} = \langle \rangle$ and $\mu_p^{r(1)}$ is the final reordered sequence of paths μ_p^r .

We prove $\mu_p^{(n-m)} \simeq \mu_p^{r(n-m)}$, $0 \le m \le n-1$, by induction on m. Note that specifically for m=n-1, $\mu_p^{(n-m)} = \mu_p^{(1)} = \mu_p$ and $\mu_p^{r(n-m)} = \mu_p^{r(1)} = \mu_p^r$ (by line 41 of the first invocation). Hence, the inductive proof would help us establish that $\mu_p^r \simeq \mu_p$.

Basis m=0: $\mu_p^{(n)}=\langle\rangle=\mu_p^{r(n)}$ (by line 2 of the n^{th} invocation) Induction Hypothesis: Let for m=k-1, $\mu_p^{(n-k+1)}\simeq\mu_p^{r(n-k+1)}$ Induction step: Let m be k. Let us assume that $\mu_p^{(n-k)}\simeq\mu_p^{(n-k+1)}.\mu_l^{r(n-k)}$ (Lemma 1-proved subsequently) $\simeq\mu_p^{r(n-k+1)}.\mu_l^{r(n-k)}$ (by induction hypothesis) $\simeq\mu_p^{r(n-k)}$ (by line 40 (return statement) for the $(n-k)^{th}$ invocation)

Lemma 1 $\mu_p^{(n-k)} \simeq \mu_p^{(n-k+1)} . \mu_1^{r(n-k)}$

Proof 3 We mould the lemma for the k^{th} invocation directly as

$$\mu_p^{(k)} \simeq \mu_p^{(k+1)} \cdot \mu_l^{r(k)} \simeq \mu_p^{(k+1)} \cdot \langle \alpha_{1,k}, \alpha_{2,k}, \dots, \alpha_{s,k} \rangle, 1 \le k \le n,$$
 (1)

assuming that $\langle \alpha_{1,k}, \alpha_{2,k}, \dots, \alpha_{s,k} \rangle$ is what is extracted as $\mu_l^{r(k)}$ from $\mu_p^{(k)}$ in line 40 of the kth iteration. Now, by step 6, the last transition of all the paths in the sequence $\mu_l^{r(k)}$ are parallelisable; hence, from Theorem 1, the paths of $\mu_l^{r(k)}$ are parallelisable. We prove that their transitions can be suitably placed in the member sets of $\mu_p^{(k+1)}$ (as larger sets of parallelisable transitions) to get back $\mu_p^{(k)}$.

In the k^{th} invocation, $\mu_p^{(k)}$ is the value of μ_p before entry to the for-loop comprising lines 10-35 and $\mu_p^{(k+1)}$ is the value of μ_p at the exit of this loop. Since we are speaking about only the k^{th} invocation, we drop the superfix k for clarity. Instead, we depict $\mu_p^{(k)}$ as μ_p^- , $\mu_p^{(k+1)}$ as μ_p^+ and $\mu_l^{r(k)}$ as μ_l^r . So we have to prove that $\mu_p^- \simeq \mu_p^+ \cdot \mu_l^r$.

Let $\mu_l^r = \langle \alpha_1, \alpha_2, \ldots, \alpha_s \rangle$ before line 37 just after the end of the for-loop comprising lines 10-35, where s is the cardinality $|\Pi_{last}(\mu_p)|$ before entry to the loop (because any path has only one unit set of transitions as its last member). Thus, the for-loop comprising lines 10-35 executes s times visiting step 33; let $\mu_p^{-(i)}$, $\mu_p^{+(i)}$ respectively denote the values of μ_p before and after the i^{th} iteration of the loop. Let $\mu_l^{r(i)}$ be the value of μ_l^r after the i^{th} execution of the loop. We have the following boundary conditions: $\mu_p^- = \mu_p^{-(1)}$, $\mu_p^+ = \mu_p^{+(s)}$, $\mu_l^{r(1)} = \langle \alpha_1 \rangle$ and $\mu_l^r = \mu_l^{r(s)} = \langle \alpha_1, \alpha_2, \ldots, \alpha_s \rangle$. The i^{th} iteration of the for-loop comprising lines 10-35 starts with $\mu_l^{r(i-1)}$ and obtains $\mu_l^{r(i)}$, $1 \le i \le l$; so let $\mu_l^{r(0)} = \langle \rangle$ be the value of μ_l^r with which the first execution of the loop takes place.

Algorithm 1 SEQUENCE constructPathSequence (μ_p, Π)

```
Inputs: \mu_p: computation of an out-port p and \Pi: set of paths
Outputs: A sequence of paths equivalent to \mu_p.
 1: if \mu_v = \langle \rangle then
        return ();
 3: else
 4:
         Let \mu_p be \langle T_1, T_2, \ldots, T_i, \ldots T_n \rangle;
 5:
         Let \mu_i^r = \langle \rangle;
         /* a local sub-sequence of paths which, at the return statement 40, contains the sequence of paths with their last
         transitions in T_n */
 6:
         Let \Pi_{last(\mu_p)} = \{ \alpha \mid last(\alpha) \cap last(\mu_p) \neq \emptyset \};
 7:
         if \Pi_{last(\mu_p)} = \emptyset then
 8:
            \mu_p.T_n = \emptyset; //Ignore intermediary transitions of paths
 9:
         else
10:
            for all \alpha \in \Pi_{last(\mu_v)} do
11:
                \alpha' = \alpha - last(\alpha);
12:
                \mu_p' = \mu_p; // work on a copy of \mu_p
                \mu'_{v}.T_{n} = \mu'_{v}.T_{n} - last(\alpha);
13:
                /* Delete the last transition of \alpha; if it occurs in any other paths (as an intermediary transition), then such
                a path has already been detected. Now detect whether all the remaining transitions of \alpha are available in
                \mu_p(\mu_p'); as a transition is detected, it is deleted from \mu_p' and the copy \alpha' of \alpha only if it does not occur in any
                other path in \Pi. If all the transitions of \alpha do not occur in \mu_p, (i.e., \alpha' does not become empty), then \alpha is
                ignored and the next path from \Pi_{last(\mu_{\nu})} is taken in the next iteration. */
14:
                i \leftarrow n-1; // detection of transitions proceeds backward
15:
                while \alpha' \neq \langle \rangle do
                    while (i \ge 1 \land last(\alpha') \nsubseteq \mu'_n.T_i = \emptyset) do
16:
                        i = i - 1;
17:
                    end while
18:
19:
                    if i = 0 then
20:
                        break;
21:
                    else
22:
                        for all t \in last(\alpha') do
23:
                            if t does not occur in any path in \Pi - \{\alpha\} then
24:
                               \mu_{v}^{\prime}.T_{i} \Leftarrow \mu_{v}^{\prime}.T_{i} - \{t\};
25:
                            end if
26:
                        end for
27:
                        \alpha' = \alpha' - \operatorname{last}(\alpha') \cap \mu_v.T_i;
28:
                    end if
29:
                end while
                /* both \alpha' \neq \langle \rangle and \alpha' = \langle \rangle are possible */
30:
31:
                if \alpha' = \langle \rangle then
32:
                    append (\alpha, \mu_1^r);
33:
                    \mu_p = \mu_p;
                end if
34:
35:
            end for
36:
37:
         if original member \mu_v.T_n is not empty then
38:
            report failure with \mu_{\nu}
39:
         else
40:
             return (concatenate (constructPathSequence(\mu_v, \Pi), \mu_1^r));
41:
         end if
42: end if
```

We prove that $\mu_p^{-(i)} \simeq \mu_p^{+(i)}.\alpha_i, 1 \le i \le s$. If this relation indeed holds, then specifically for i = 1,

$$\begin{split} \mu_p^{-(1)} &\simeq \mu_p^{+(1)}.\alpha_1; \text{for } i=2, \, \mu_p^{-(2)}(=\mu_p^{+(1)}) \simeq \mu_p^{+(2)}.\alpha_2. \, \, \text{Combining these two, therefore,} \\ \mu_p^- &= \mu_p^{-(1)} \simeq \mu_p^{+(1)}.\alpha_1 \simeq (\mu_p^{+(2)}.\alpha_2).\alpha_1 \simeq \mu_p^{+(2)}.(\alpha_2.\alpha_1) \simeq \mu_p^{+(2)}.(\alpha_1.\alpha_2) \simeq \mu_p^{+(2)}.\mu_l^{r(2)}. \\ \text{Proceeding this way, we have } \mu_p^- &= \mu_p^{-(1)} \simeq \ldots \simeq \mu_p^{+(l)}.\mu_l^{r(l)} = \mu_p^+.\mu_l^r. \end{split}$$

Now, let $\mu_p^{-(i)} = \langle T_{1,i}, T_{2,i}, \dots, T_{k_i,i} \rangle$, $\alpha_i = \langle T_{1,i}', T_{2,i}', \dots, T_{l_i,i}' \rangle$ and $\mu_p^{+(i)} = \langle T_{1,i}', T_{2,i}', \dots, T_{n,i}' \rangle$. Note that $\{\alpha_i \mid 1 \leq i \leq s\} \subseteq \Pi_{last(\mu_p)}$ and unless all the paths are extracted out, $T_{k_i,i}$ does not become empty and hence $\mu_p^{-(i)}$, $1 \leq i \leq s$, do not change in length. For each transition set $T_{j,i}$ of α_i , $1 \leq j \leq n$, there exists some transition set $T_{k,i}$ of $\mu_p^{-(i)}$, $1 \leq k \leq k_i$, such that $T_{j,i}' \subseteq T_{k,i}$. Specifically, for $j = l_i$, $T_{l_i,i}' \subseteq T_{k_i,i}$, since $\alpha_i \in \Pi_{last(\mu_p)}$ as ensured in step 6. For other values of $j, 1 \leq j < l_i$, the while-loop in steps 16-18, identifies proper $T_{k,i}$ in $\mu_p^{-(i)}$ such that $T_{j,i}' \subseteq T_{k,i}$; note that since α_i has figured in μ_l^r , step 32 is surely executed for α_i ; so α' has been rendered empty ($\langle \rangle$) through execution of step 27 and hence the while-loop in steps 16-18 does not exit with i = 0. Now, step 13 and the for-loop in steps 22-26 ensure that $T_{k,i}^+ \cup T_{j,i} = T_{k,i}$.

Let
$$T'_{j,i} \subseteq T_{n_j,i}$$
, $1 \le j \le l_i$. So, $T_{k,i} = T^+_{k,i'}$ for $k \ne n_j$, for any $j, 1 \le j \le l_i$.

$$\mu^+_p(i).\alpha_i = \langle T^+_{1,i'}, T^+_{2,i'}, \dots, T^+_{n_i,i'} \rangle \langle T'_{1,i'}, T'_{2,i'}, \dots, T'_{l_{j,i}} \rangle$$

$$= \langle T_{1,i}, \dots, (T^+_{n_1,i} \parallel T'_{1,i}), \dots (T^+_{n_2,i} \parallel T'_{2,i}), \dots, (T^+_{n_{l_i-1},i} \parallel T'_{l_i,i}), \dots, (T^+_{n_i,i} \parallel T'_{l_i,i}) \rangle$$
(by commutativity of independent transitions)
$$= \langle T_{1,i}, \dots, T_{n_1,i}, \dots, T_{n_2,i}, \dots, T_{n_{l_i-1},i}, \dots T_{n_i,i} \rangle$$

$$= \mu^{-(i)}_p$$

Corollary 1 *If* μ_n^r *is of the form* $\langle \alpha_1, \alpha_2, \dots, \alpha_k \rangle$ *, for all* $j, 1 \leq j \leq i-1, \alpha_i \not\succ \alpha_i$.

Theorem 3 A PRES+ model N_0 is contained in another PRES+ model N_1 , denoted as $N_0 \sqsubseteq N_1$, if there exists a finite path cover $\Pi_0 = \{\alpha_1, \alpha_2, ..., \alpha_m\}$ of N_0 for which there exists a set $\Psi_1 = \{\Gamma_1, \Gamma_2, ..., \Gamma_m\}$ of sets of paths of N_1 such that for all $i, 1 \le i \le m$, (i) $\alpha_i \simeq \beta$, for all $\beta \in \Gamma_i$. (ii) For each $\alpha_i, 1 \le i \le m$, each pre-place of α_i has a place-correspondence with some pre-place of β , where $\beta \in \Gamma_i$, (iii) all the post-places of α_i have correspondence with all the post-places of $\beta \in \Gamma_i$.

Proof 4 Consider any computation $\mu_{0,p}$ of an out-port p of N_0 . From Theorem 2, corresponding to $\mu_{0,p}$, there exists a reorganized sequence $\mu_{0,p}^r = \langle \alpha_1^p, \alpha_2^p, \dots, \alpha_n^p \rangle$, say, of not necessarily distinct paths of N_0 such that (i) $\alpha_j^p \in \Pi_0$, $1 \le j \le n$, (ii) for each occurrence of a transition t in $\mu_{0,p}$, there exists exactly one path in $\mu_{0,p}^r$ containing that occurrence, (iii) $p \in (\alpha_n^p)^\circ$ and (iv) $\mu_{0,p} \simeq \mu_{0,p}^r$.

Let us now construct from the sequence $\mu_{0,p}^r$, a sequence $\mu_{1,p'}^r = \langle \Gamma_1^{p'}, \Gamma_2^{p'}, \ldots, \Gamma_n^{p'} \rangle$ of not necessarily distinct sets of paths of N_1 , where (i) $\Gamma_n^{p'} = \{\beta_l\}$ and $p' \in \beta_l^{\circ}$, and for all $j, 1 \leq j \leq n$, for each $\beta \in \Gamma_j^{p'}$, (ii) $\beta \simeq \alpha_j^p$, and (iii) each pre-place of β has correspondence with some pre-place of α_j^p . It is required to prove that (1) $p' = f_{out}(p)$ and (2) there exists a computation $\mu_{1,p'}$ of N_1 such that $\mu_{1,p'} \simeq \mu_{1,p'}^r$.

The proof of (1) is as follows. Since $p' \in \beta_1^{\circ}$ and $\beta_1 \simeq \alpha_n$, from hypothesis (iii) of the theorem, p' has correspondence with p; since the place $p \in P_0$ is an out-port and the place $p' \in P_1$, p' must be an out-port of N_1 and $p' = f_{out}(p)$ (because an out-port of N_0 has correspondence with exactly one out-port of N_1 specifically, its image under the bijection f_{out}).

For the proof of (2), we first give a mechanical construction of $\mu_{1,p'}$ from $\mu_{1,p'}^r$; we then show that they are equivalent; finally, we argue that $\mu_{1,p'}$ is a computation of p' in N_1 .

Algorithm 2 Sequence **parallelizeSeqSetsOfPaths** (μ_v^r)

```
Inputs: \mu_n^r: a sequence of sets of paths
                            a sequence of maximally parallelisable sets of transitions of all the paths in
Outputs: \mu_{\parallel}:
\mu_p^r.
 1: \Gamma = \text{head}(\mu_v^r); \mu_v^r = \text{tail}(\mu_v^r);
 2: \mu_{\parallel} = some path \beta \in \Gamma; \Gamma = \Gamma - \{\beta\}; // \beta chosen arbitrarily
 3: while \mu_n^r \neq \emptyset do
 4:
         if \Gamma \neq \emptyset then
 5:
             \Gamma = head(\mu_n^r); \mu_n^r = tali(\mu_n^r); // \text{ except for the first iteration, if-condition holds}
 6:
         end if
 7:
         for each \beta \in \Gamma do
 8:
             Let c = 1;
             /* index to the members of \mu_{\parallel} - c^{th} member is \mu_{\parallel,c}; for each path of \mu_n^r, checking has to be from the first member
              of \mu_{\parallel}.*/
 9:
             while \beta \neq \emptyset do
10:
                  T_c = \mu_{\parallel,c};
11:
                  T_n = \text{head } (\beta);
                 /* T_p is the maximally parallelisable set (member) of \beta presently being considered for fusion with T_c */
12:
                 while T_p > T_c \land c \le \text{length}(\mu_{\parallel}) do
13:
14:
                     /* T_v succeeds T_c */
15:
                     c + +;
                     T_c = \mu_{\parallel,c};
16:
17:
                  end while
                 if c > \text{length}(\mu_{\parallel}) then
18:
                     /* T_v is found to be parallelisable with none of the members of \mu_{\parallel}; so T_v > T_v \forall T \in \mu_{\parallel} concatenate all the
19:
                     members (including T_p) of \beta after \mu_{\parallel} */
20:
                      \mu_{\parallel} \leftarrow \text{concatenate } (\mu_{\parallel}, \beta); \beta = \emptyset;
21:
                      \mu_{\parallel,c} = \mu_{\parallel,c} \cup T_p; c + +;
                     /* T_c \approx T_p or T_c = T_p – absorb T_p in T_c */
23:
                  end if
              end while
24:
25:
         end for
26: end while
27: return \mu_{\parallel};
```

Construction of $\mu_{1,p'}$ from $\mu_{1,p'}^r$:

Algorithm 2 describes the construction method of $\mu_{1,p'}$ from $\mu_{1,p'}^r$ (and hence will be invoked with its input μ_p^r instantiated with $\mu_{1,p'}^r$). The parallelized version of the input μ_p^r is computed in μ_{\parallel} which is to be assigned to $\mu_{1,p'}$ on return. In the initialization step (step 1), a working set Γ of paths is initialized to the first member of μ_p^r and the latter is removed from μ_p^r . In step 2, some path β is taken from Γ and put into μ_{\parallel} . In the outermost while-loop (steps 3-26), member sets of Γ are taken one by one (in steps 4-6) from μ_p^r ; for each chosen set, its member paths are taken in the loop comprising steps 7-25; for each chosen path β , its member sets (of maximally parallelisable transitions) are examined one after another and checked against the members of μ_{\parallel} from the beginning for fusion with them to construct larger sets of parallelisable transitions (steps 9 – 24). For each chosen set T_p of transitions of β , one of the following two situations may arise:

Case 1: The member T_p of the chosen path β of μ_p^r is found to succeed all the members in μ_{\parallel} , i.e., T_p is not parallelisable with any member of μ_{\parallel} . In this case, all the remaining members (including T_p) of β is concatenated at the end of μ_{\parallel} [Steps 18-20].

Case 2: The member T_p of β is found not to succeed the c^{th} member $\mu_{\parallel,c}$ of μ_{\parallel} , i.e., T_p is parallelisable with $\mu_{\parallel,c}$, as argued later. In this case, T_p is combined (through union) with $\mu_{\parallel,c}$; the successor transition sets of β need to be compared with only the subsequent members of μ_{\parallel} , i.e., with $\mu_{\parallel,c+1}$ onwards [Step 22].

Termination: The algorithm terminates because all the three while loops and the for-loop terminate as given below:

The outer loop (steps 3-26) terminates because μ_p^r is finite to start with; (step 1 outside the loop reduces its length by one;) step 5 inside the loop reduces its length by one on every iteration of the loop. The for-loop (steps 7-25) terminates because the set Γ contains a finite number of paths and loses the chosen path in each iteration as per the semantics of the for-construct. The loop comprising steps 9-24 terminates because every path β in μ_p^r contains a finite number of sets of transitions and step 12 reduces the length by one in every iteration of the loop; if, however, any of these iterations do visit steps 19-20, then in step 20, β becomes empty and hence, this will be the last iteration of the while loop comprising steps 9 to 24. The loop comprising steps 13-17 terminates because at any stage, and hence on entry to the loop, μ_{\parallel} has only a finite number of sets of transitions and in every iteration c increases by one; so finally, the second condition $c \leq length(\mu_{\parallel})$ is bound to become false if the first condition does not become false by then.

Proof of $\mu_{1,p'} \simeq \mu_{1,p'}^r$: Let the initial value of μ_p^r (with which the function in Algorithm 2 is invoked), denoted as $\mu_p^r(-1)$, be of the form $\mu_p^r(-1) = \langle \Gamma_1, \Gamma_2, \dots, \Gamma_n \rangle$, where, for all $i, 1 \leq i \leq n, \Gamma_i = \{\beta_{1,i}, \beta_{2,i}, \dots, \beta_{t_i,i}\}$. So the outermost while-loop (steps 3-26) executes n times; for the i-th execution of this loop, the inner for-loop executes t_i times; together, there are $t_1 \times t_2 \times \dots \times t_n = t$, say, iterations in each of which a path $\beta_{j,i}$ is accounted for. The algorithm treats these paths identically without making any distinction among paths from the same set or different sets. Hence we can treat the members of μ_p^r as a flat sequence of paths of the form $\langle \beta_1, \beta_2, \dots \beta_t \rangle$. Let $\mu_p^r(i)$ and $\mu_\parallel(i)$ respectively indicate the values of μ_p^r and μ_\parallel at step 8 after the i-th path β_i in the above sequence has been treated. So, the first time step 8 is executed, the value of μ_\parallel is $\mu_\parallel(0) = the$ first member β_1 of $\mu_p^r(-1)$ and $\mu_p^r(0)$ contains all the remaining members β_2, \dots, β_t of $\mu_p^r(-1)$. The final value returned by the algorithm (step 27) is $\mu_\parallel(t)$ and $\mu_p^r(t) = \emptyset$ (by negation of the condition of the outermost while loop (steps 3-26)). We have to prove that $\mu_{1,p'} = \mu_\parallel(t) \simeq \mu_p^r(-1) = \mu_{1,p'}^r \simeq \mu_{0,p}^r \simeq \mu_{0,p}$. We prove the invariant

$$\mu_{\parallel}(i).\mu_p^r(i) \simeq \mu_p^r(-1), \forall i, 0 \le i \le t \dots Inv(1)$$
 (2)

by induction on i, where the operator '.' stands for concatenation of two sequences. Note that in this invariant, for i = t,

 $\mu_{\parallel}(t).\mu_p^r(t) \simeq \mu_p^r(-1) \Rightarrow \mu_{1,p'}.\emptyset \simeq \mu_p^r \Rightarrow \mu_{1,p'} \simeq \mu_{1,p'}^r$, which would accomplish the proof as $\mu_{1,p'}^r \simeq \mu_{0,p}^r$ holds because the former has been obtained by equivalence substitution of each member in the latter and $\mu_{0,p}^r \simeq \mu_{0,p}$ by Theorem 2.

Basis (i=0): $\mu_{\parallel}(0).\mu_p^r(0)=\langle \beta_1\rangle.\langle \beta_2,\ldots,\beta_t\rangle=\langle \beta_1,\beta_2,\ldots,\beta_t\rangle\simeq\mu_p^r(-1).$ Induction Hypothesis: Let $\mu_{\parallel}(i).\mu_p^r(i)\simeq\mu_p^r(-1)$, for i=m-1.

Induction step (i=m**):** R.T.P $\mu_{\parallel}(m).\mu_p^r(m) \simeq \mu_p^r(-1)$. Let the m^{th} path chosen be $\beta_m = \langle T_{1,m}, T_{2,m}, \ldots, T_{l_m,m} \rangle$. Let $\mu_{\parallel}(m-1) = \langle T_1, T_2, \ldots, T_k \rangle$. For $T_{1,m}(=T_p)$, comparison starts with the first member $T_1 = T_c$ of $\mu_{\parallel}(m-1)$.

Now we need to consider the inner while loop comprising steps 9-24, where the members of β_m , i.e., $T_{j,m}$, $1 \le j \le l_m$, are taken one by one and compared with the members of $\mu_{\parallel}(m-1)$. Note that the inner loop need not always execute l_m times. Let it execute $n_m \le l_m$ times. Let $\mu_v^r(m-1)(j)$, $1 \le j \le n_m$, represent

the value of $\mu_p^r(m-1)$ after the j^{th} iteration of this loop for the path β_m . Thus, $\mu_p^r(i-1)(0)$ is the value of $\mu_p^r(i-1)$ at step 8 when no members of β_i have yet been considered. Hence, $\mu_p^r(m-1)(0) = \mu_p^r(m-1)$. Also, $\mu_p^r(i-1)(n_i) = \mu_p^r(i)$. Let $\beta_m(j)$ be the value of β_m and $\mu_\parallel(m-1)(j)$ be the value of $\mu_\parallel(m-1)$ after the j^{th} execution of the inner while loop (steps 9-24) for the path β_m . We prove the invariant

$$\mu_{\parallel}(m-1).\beta_m \simeq \mu_{\parallel}(m-1)(j).\beta_m(j), \forall j, 0 \le j \le n_m \dots Inv(2)$$
(3)

Let us first examine how the Inv (2) helps us accomplish the proof of the induction step of Inv (1). Putting $j = n_m$ in Inv (2),

```
\mu_{\parallel}(m-1).\beta_m \simeq \mu_{\parallel}(m-1)(n_m).\beta_m(n_m) = \mu_{\parallel}(m).\emptyset (since, \mu_{\parallel}(m-1)(n_m) = \mu_{\parallel}(m) and \beta_m(n_m) = \emptyset from the termination condition of the loop comprising steps 9-24).
```

Also, $\beta_m.\mu_p^r(m) = \mu_p^r(m-1)$ [when β_m is chosen at step 7]. So for the inductive step proof goal, $\mu_{\parallel}(m).\mu_p^r(m) = (\mu_{\parallel}(m-1).\beta_m).\mu_p^r(m)$ = $\mu_{\parallel}(m-1).(\beta_m.\mu_p^r(m))$ [by associativity of concatenation operation '.']

 $=\mu_{\parallel}(m-1).(\beta_m.\mu_p(m))$ [by association of concatenation operation . $=\mu_{\parallel}(m-1).\mu_p^r(m-1)\simeq \mu_p^r(-1)$ [by induction hypothesis]

We now carry out the inductive proof of Inv (2) by induction on j.

Basis (j = 0): The basis case holds because $\mu_{\parallel}(i - 1)(0) = \mu_{\parallel}(i - 1)$ and $\beta_i(0) = \beta_i$.

Induction Hypothesis: *Let the invariant Inv* (2) *is true for* j = k - 1, *i.e.*,

 $\mu_{\parallel}(m-1).\beta_m \simeq \mu_{\parallel}(m-1)(k-1).\beta_m(k-1).$

Induction step (j = k): $R.T.P \mu_{\parallel}(m-1).\beta_m \simeq \mu_{\parallel}(m-1)(k).\beta_m(k)$. Let $\beta_m(k-1) = \langle T_{k,m}, T_{k+1,m}, \ldots, T_{l_m,m} \rangle$. Without loss of generality, let the iterations $1, \ldots, k-1$ of the loop of steps 9-24 did not visit step 20; otherwise, the loop will not be executed k^{th} time. In the k^{th} iteration of the loop, $T_{k,m}$ is compared with some $T_c \in \mu_{\parallel}(m-1)(k-1)$. We have the following two cases:

Case 1: $T_{k,m}$ is found to succeed all the members of $\mu_{\parallel}(m-1)(k-1)$ from T_c onwards— Hence, $T_{k,m}$ is parallelisable with no members of $\mu_{\parallel}(m-1)(k)$. In this case, step 20 is executed resulting in concatenation of all the transition sets of $\beta_m(k-1)$ with $\mu_{\parallel}(m-1)(k-1)$ and $\beta_m(k)$ becomes empty. So, $\mu_{\parallel}(m-1)(k) = \mu_{\parallel}(m-1)(k-1)$.

```
hence, \mu_{\parallel}(m-1).\beta_m \simeq \mu_{\parallel}(m-1)(k-1).\beta_m(k-1) [by Induction hypothesis]
= \mu_{\parallel}(m-1)(k).\beta_m(k) (since \beta_m(k) = \emptyset)
```

Case 2: $T_{k,m} \not\succ T_c$ — This implies $T_{k,m} \asymp T_c$, as argued below. Note that between the two transition sets $T_{k,m}$ and T_c , there can be three mutually exclusive relations possible namely, $T_{k,m} \gt T_c$, $T_c \gt T_{k,m}$ and $T_{k,m} \asymp T_c$. It is given that $T_{k,m} \not\succ T_c$; now, let $T_c \gt T_{k,m}$. The transition set T_c in $\mu_{\parallel}(m-1)$ is contributed to by paths which precede the path β_m in μ_p^r . Hence T_c does not succeed $T_{k,m}$. Therefore, $T_{k,m} \asymp T_c$. Let $\mu_{\parallel}(m-1) = \langle T_1, T_2, \ldots, T_c, T_{c+1}, \ldots, T_k, \ldots T_{k_{m-1}} \rangle$. For all $s, 1 \le s \le k_{m-1} - c$, $T_c \not\succ T_{c+s}$. By an identical reasoning, $T_{k,m}$ does not also succeed T_{c+s} because otherwise T_{c+s} would have preceded in the path β_m . Therefore, T_{c+s} . $T_{k,m} \simeq T_{k,m}$. So, the concatenation $\langle T_{c+1}, \ldots, T_{k_{m-1}} \rangle$. $\langle T_{k,m}, T_{k+1,m}, \ldots, T_{l_m,m} \rangle$ is computationally equivalent to

```
 \langle T_{k,m}, T_{c+1}, \dots, T_{k_{m-1}} \rangle \langle T_{k+1,m}, \dots, T_{l_m,m} \rangle. \ Now, 
 \mu_{\parallel}(m-1).\beta_m \simeq \mu_{\parallel}(m-1)(k-1).\beta_m(k-1) \ [by \ induction \ hypothesis] 
 = \langle T_1, T_2, \dots T_c, T_{c+1}, \dots T_{k_{m-1}} \rangle \langle T_{k,m}, T_{k+1,m}, \dots, T_{l_m,m} \rangle 
 \simeq \langle T_1, T_2, \dots T_c, T_{k,m}, T_{c+1}, \dots T_{k_m-1} \rangle \langle T_{k+1,m}, \dots, T_{l_m,m} \rangle 
 \simeq \langle T_1, T_2, \dots T_c \cup T_{k,m}, T_{c+1}, \dots T_{k_m-1} \rangle \beta_m(k) 
 [since, by \ step \ 12, \beta_m(k) = \langle T_{k+1,m}, \dots, T_{l_m,m} \rangle] 
 = \mu_{\parallel}(m-1)(k).\beta_m(k) \ [by \ step \ 22].
```

Note that since $T_{k,m} > T_{c-1}$ in $\mu_{\parallel}(m-1)(k-1)$, as identified in the loop steps 13-17, T_c cannot be combined with T_{c-1} through union.

Proof of $\mu_{1,p'}$ **being a computation:** Recall that $\mu_{1,p'}$ is obtained from the sequence $\mu_{1,p'}^r = \langle \Gamma_1^{p'}, \Gamma_2^{p'}, \dots, \Gamma_n^{p'} \rangle = \langle \{\beta_{1,1}, \beta_{2,1}, \dots, \beta_{l_1,1}\} \{\beta_{1,2}, \beta_{2,2}, \dots, \beta_{l_2,2}\}, \dots, \{\beta_n\} \rangle$ of sets of paths of N_1 , which, in turn, was constructed from the sequence $\mu_{0,p}^r = \langle \alpha_1^p, \alpha_2^p, \dots, \alpha_n^p \rangle$ of paths of Π_0 satisfying the following properties: (i) $p' = \beta_n^{\circ}$, (ii) for all $j, 1 \leq j \leq n$, for all $k, 1 \leq k \leq l_j, \beta_{k,j} \approx \alpha_j^p$, (iii) each of the places in $\Gamma_j^{p'}$ has correspondence with some place in Γ_j° and (iv) all the places in Γ_j° have correspondence with with all the places in α_j° .

Let $\mu_{1,p'}$ be $\langle T_1, T_2, \dots, T_l \rangle$, where T_1 is the first member of $\beta_{1,1}$ (by step 1 and first time execution of steps 7 and 11 of Algorithm 2). By property (iii) above, the places in ${}^{\circ}\beta_{1,1} \supseteq {}^{\circ}T_1$ have correspondence with those in ${}^{\circ}\alpha_1^p \subseteq inP_0$. Since only the input places of N_1 have correspondence with the input places of N_0 , ${}^{\circ}T_1 \subseteq {}^{\circ}\beta_{1,1} \subseteq inP_1$. It has already been proved that $p' = f_{out}(p) \in outP_1$. Since Algorithm 2 introduces the transition sets of the paths strictly in order from $\Gamma_1^{p'}$ to $\Gamma_n^{p'}$, T_l is a unit set containing the last transition of β_n and hence, $p' \in T_l^{\circ}$. Now, consider any $T_i \in \mu_{1,p'}$, $1 \le i < l$; $T_{i+1} > T_i$ as ensured by the condition $T_p > T_c$ associated with the while loop of steps 13-17. For any $i, 1 \le i < l$, let $T_{i+1}^{\circ} \subseteq P_{M_{i+1}}$ and $T_i^{\circ} \subseteq P_{M_i}$. It is required to prove that $M_{i+1} = M_i^+$, where $P_{M_i^+} = \{p \mid p \in t^{\circ} \land t \in T_m\} \cup \{p \mid p \in P_M \land p \notin T_m\}$, by first clause of Definition of successor marking. We have the following two cases:

Case 1: $p_1 \in T_{i+1}^{\circ} \subseteq P_{M_{i+1}} - p_1 \in T_{i+1}^{\circ} \Rightarrow \exists t_1 \in T_{i+1} \text{ such that } p \in t_1^{\circ}.$ Now, $T_{i+1} = T_{M_i}$, the set of enabled transitions for the marking M_i . So, $p_1 \in t_1^{\circ}$ and $t_1 \in T_{i+1} = T_{M_i} \Rightarrow p_1 \in P_{M_i^+}$ by virtue of its being in the first subset of $P_{M_i^+}$.

Case 2: $p_1 \notin T_{i+1}^{\circ}$ but $\in P_{M_{i+1}}$ – So, $p_1 \notin T_{i+1}^{\circ} = T_{M_i}$. Hence, $p_1 \in P_{M_i}$ because $p_1 \in T_{i-k}^{\circ}$ for some $k \ge 1$. So $p_1 \in P_{M_i^+}$ by virtue of its being in the second subset of $P_{M_i^+}$. Therefore, $M_{i+1} = M_i^+$.