EA721 - Princípios de Controle e Servomecanismos

10. Semestre de 2005 - 2a. Prova - Prof. Paulo Valente

RA: Nome: Ass.:

1. No sistema de controle ilustrado na Figura 1, $\tau \geq 0$ representa um atraso de transporte. Determine a faixa de variação de τ dentro da qual o sistema de controle em malha fechada permanece estável.

Figura 1.

2. A equação característica de um determinado sistema de controle é dada por

$$1 + k \frac{1}{(s+1)[(s+4)^2 + 1]} = 0.$$

Esboce o Lugar das Raízes para $0 \le k < \infty$. Indique claramente o sentido dos ramos e utilize todas as regras aplicáveis à equação característica.

3. O *Método do Período Crítico* de Ziegler-Nichols para projeto de controladores PID's na forma

$$C(s) = k_P + \frac{k_I}{s} + k_D s = k_P \left(1 + \frac{1}{T_I s} + T_D s \right),$$

consiste em, dada uma planta P(s), fechar a malha de controle com um controlador proporcional — assuma realimentação unitária — e elevar o ganho do controlador até um valor k_c para o qual o sistema em malha fechada passa a oscilar com período T_c e amplitude constantes. Faz-se então

$$k_P = 0.6k_c, \quad T_I = \frac{T_c}{2} \quad \mathrm{e} \quad T_D = \frac{T_c}{8}. \label{eq:kp}$$

Utilizando o método sugerido acima, determine a função de transferência do controlador PID para a planta

$$P(s) = \frac{1}{s(s+2)(s+4)}.$$

4. Considere o sistema de controle em malha fechada da Figura 2. Determine a equação característica do sistema na forma 1 + C(s)P(s) = 0, onde $P(s) = 1/s^2$ é a planta a

ser controlada e C(s) é o controlador utilizado. Assumindo $k_1 > 0$ e $k_2 > 0$, que tipo de controlador – atraso ou avanço de fase – se encontra implementado ? Justifique.

Figura 2.

5. Considere um sistema de controle em malha fechada com realimentação unitária e planta descrita por

$$P(s) = \frac{2500}{s(s+25)}.$$

Por meio de resposta em freqüência, determine a função de transferência de um compensador C(s) a ser associado em série com P(s), de forma que o sistema compensado apresente margem de fase igual a 45^o , com margem adicional de 10^o ; o compensador não deve modificar a constante de velocidade do sistema. A Tabela 1 representa os Diagramas de Bode de P(s). Utilize os valores que mais de aproximem dos valores teóricos procurados.

6. Considere um sistema de controle em malha fechada com realimentação unitária e planta descrita por

$$P(s) = \frac{1}{s(s+4)(s+6)}.$$

Utilize o método do Lugar das Raízes para projetar um compensador C(s) na forma

$$C(s) = k \frac{s+z}{s+p},$$

tal que o sistema em malha fechada apresente pólos dominantes em $-2\pm j5$. Assuma z=5.

Tabela 1

ω (rad/s)	$ P(j\omega) $ (dB)	$\angle P(j\omega)$ (graus)
1	39.9931	-92.2906
2	33.9517	-94.5739
3	30.3955	-96.8428
4	27.8490	-99.0903
5	25.8503	-101.3099
6	24.1938	-103.4957
7	22.7702	-105.6422
8	21.5148	-107.7447
9	20.3859	-109.7989
10	19.3554	-111.8014
15	15.1428	-120.9638
20	11.8310	-128.6598
25	9.0309	-135.0000
30	6.5837	-140.1944
35	4.4057	-144.4623
40	2.4443	-147.9946
45	0.6621	-150.9454
50	-0.9691	-153.4349
55	-2.4714	-155.5560
60	-3.8625	-157.3801
65	-5.1569	-158.9625
70	-6.3665	-160.3462
75	-7.5012	-161.5651
80	-8.5695	-162.6460
85	-9.5783	-163.6105
90	-10.5337	-164.4759
95	-11.4409	-165.2564
100	-12.3045	-165.9638
200	-24.1497	-172.8750
300	-31.1561	-175.2364
400	-36.1405	-176.4237
500	-40.0108	-177.1376
600	-43.1748	-177.6141
700	-45.8507	-177.9546
800	-48.1690	-178.2101
900	-50.2142	-178.4089
1000	-52.0439	-178.5679

Lugar das Raízes. Considere

$$1 + kG(s) = 1 + k\frac{N(s)}{D(s)} = 0.$$

1. Magnitude e fase: $|kG(s)|=1, \angle G(s)=180^{\circ}\times r, \ r=\pm 1, \pm 3, \ldots$

2. Assíntotas:
$$\theta = \frac{180^{\circ} \times r}{n-m}, \ r = \pm 1, \pm 3, ...$$

3. Ângulos de partida e chegada: satisfazem

$$\sum_{i} \phi_{z_i} - \sum_{j} \phi_{p_j} = 180^o \times r, \ r = \pm 1, \pm 3, \dots$$

4. Pontos de entrada e saída: entre as raízes de

$$D'(s)N(s) - D(s)N'(s) = 0$$

Compensação Avanço:
$$C(s)=k_c\alpha\frac{Ts+1}{\alpha Ts+1},\;T>0,\;0<\alpha<1$$

$$\operatorname{sen} \phi_m = \frac{1-\alpha}{1+\alpha}, \quad \omega_m = \frac{1}{T\sqrt{\alpha}}, \quad 20 \log \left| \frac{jT\omega + 1}{j\alpha T\omega + 1} \right|_{\omega = \omega_m} = 20 \log \frac{1}{\sqrt{\alpha}}.$$

Compensação Atraso:
$$C(s)=k_c\beta\frac{Ts+1}{\beta Ts+1},\ T>0,\ \beta>1$$

$$20\log\left|\frac{jT\omega+1}{j\beta T\omega+1}\right| = -20\log\beta \qquad (\omega >> 1/T).$$

Respostas

- **1.** $0 \le \tau < 1.2092$ s;
- 2. Ponto de entrada: s=-3.8165; ponto de saída: s=-2.1835; cruzamento com o eixo imaginário: $s=\pm j5, k_c=208$; ângulos de partida: $\pm 71.5651^o$;

3.
$$C(s) = 28.8 \left(1 + \frac{1}{1.11s} + 0.27s \right);$$

4.
$$C(s) = k_1(1 + k_2 s)$$
, avanço;

5.
$$C(s) = 2.5611(s + 37.4922)/(s + 96.0201);$$

6.
$$C(s) = 1189(s+5)/(s+39)$$
.