Contents

	0.1 Example	3
1	Period of a trigonomteric function	4
	1.1 Example	4
	1.2 Example	4
2	Curl	4
3	Laplacian Operator	4
4	Notation	5
5	Example	5
6	Stoke's Theorem	5
7	Laplace Transforms	5
8	Inverse Laplace Transforms 2	5
9	Convolution	6
	9.1 Example	6
10	Laplace Transforms Using 1st Shifting Theorem	6
11	Laplace Transforms Using 2nd Shifting Theorem	7
12	Inverse Laplace Transforms (2 questions)	7
13	Even and Odd Function	7
14	Fourier Series - determining the arguments	8

15	Fourier Series	8
	15.1 convolution	9
16	Laplace Transforms Using 1st Shifting Theorem	9
17	Laplace Transforms Using 2nd Shifting Theorem	9
18	Inverse Laplace Transforms (2 questions)	10
19	Inverse Laplace Transforms 2	10
20	Convolution	10
	20.1 Example	10
	20.2 Example	11
21	Period of a trigonomteric function	11
	21.1 Example	12
	21.2 Example	12
22	Fourier Series - determining the arguments	12
23	Fourier Series	12
24	Curl	13
25	Laplacian Operator	13
26	Notation	13
27	Example	13
28	Laplace Transforms	14

29	Laplace Transforms Using 2nd Shifting Theorem	14
30	Inverse Laplace Transforms 2	14
31	Convolution	15
	31.1 Example	15
	31.2 Example	15
32	Notation	18
33	Example	18
34	Laplace Transforms	19

0.1 Example

Find h(t) when h(t) = f * g(t), with f(t) = t and $g(t) = t^2$.

$$f(t) = t \Leftrightarrow F(S) = \frac{1}{S^2}$$

$$g(t) = t^2 \Leftrightarrow G(S) = \frac{2}{S^3}$$

$$H(S) = F(S) \times G(S) = \frac{2}{S^5}$$

$$(H(S) \text{ is in form } k \frac{n!}{S^{n+1}})$$

With n=4, n!=4!=24. Solving for $k, k\times n!=2$. Therefore $k=\frac{1}{12}$. The solution is $\mathcal{L}^{-\infty}[\mathcal{H}(\mathcal{S})]$

1 Period of a trigonomteric function

Period of a function is denoted 2l. (Sometimes it is denoted as L, with L=2l).

When given a trigonometric function in form f(t) = Cos(kx) or f(t) = Sin(kx), the period of the function can be calculated as follows:

$$2l = \frac{2\pi}{k}$$

1.1 Example

$$f(t) = Cos(\frac{2\pi x}{3})$$

$$2l = \frac{2\pi}{(\frac{2\pi}{3})} = \frac{1}{(\frac{1}{3})} = 3$$

1.2 Example

$$f(t) = Sin(\frac{5x}{2})$$

$$2l = \frac{2\pi}{(\frac{5}{2})} = \frac{4\pi}{5}$$

2 Curl

In vector calculus, the curl is a vector operator that describes the infinitesimal rotation of a 3-dimensional vector field. At every point in the field, the curl of that field is represented by a vector. The attributes of this vector (length and direction) characterize the rotation at that point.

3 Laplacian Operator

$$\Delta f = \nabla^2 f = \nabla \cdot \nabla f$$

4 Notation

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_x & F_y & F_z \end{vmatrix}$$

$$\left(\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} \right) \mathbf{i} + \left(\frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} \right) \mathbf{j} + \left(\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right) \mathbf{k}$$

5 Example

$$f(x,y,z) = 2x + 3y^2 - \sin(z)$$

$$\nabla f = \frac{\partial f}{\partial x}\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j} + \frac{\partial f}{\partial z}\mathbf{k} = 2\mathbf{i} + 6y\mathbf{j} - \cos(z)\mathbf{k}$$

6 Stoke's Theorem

$$\iint_{\Sigma} \nabla \times \mathbf{F} \cdot d\mathbf{\Sigma} = \oint_{\partial \Sigma} \mathbf{F} \cdot d\mathbf{r},$$

7 Laplace Transforms

If $g(t) = k \times f(t)$ then $G(S) = k \times F(S)$ where k is a constant. $\{(\sqcup) = F(S).$

$$f(t) = (t+1)^2$$
 (1)
= $t^2 + 2t + 1$

8 Inverse Laplace Transforms 2

The denominator has form $S^2 - 2aS + a^2 + k$ which is equivalent to $(S - a)^2 + k$. Therefore G(S) will have form F(S - a) The function G(S) may have the form $\frac{S+D}{S^2+(C+D)S+CD}$, where C and D are constants. This expression simplifies $\frac{S+D}{(S+C)(S+D)}$ and again to $\frac{1}{S+C}$. The inverse laplace transform g(t) can be easily determined.

9 Convolution

We are asked to find a function h(t) which is the convolution of two given functions f(t) and g(t). i.e h(t) = h * g(t).

Importantly $H(S) = F(S) \times G(S)$. We determine the laplace transforms, F(S) and G(S), and multiply them to determine H(S). We then find the inverse Laplace transform of H(S) to yield our solution.

9.1 Example

Find h(t) when h(t) = f * g(t), with $f(t) = e^t$ and $g(t) = e^{-t}$.

$$f(t) = e^{t} \Leftrightarrow F(S) = \frac{1}{S - 1}$$
$$g(t) = e^{-t} \Leftrightarrow G(S) = \frac{1}{S + 1}$$
$$H(S) = F(S) \times G(S) = \frac{1}{(S - 1)(S + 1)}$$

10 Inverse Laplace Transforms (2 questions)

Partial fraction expansion is used in questions 4 and 5.

11 Even and Odd Function

Even Functions: Cos(X), |X| (i.e absolute value of X) and X^2 , X^4 etc

Odd Functions: Sin(X), X, X^3 etc

Functions that are products of two even functions are also even functions.

Functions that are products of two odd functions are **even** functions. (e.g $X \times X^3 = X^4$)

Functions that are products of an even function and an odd function are **odd** functions.

12 Fourier Series - determining the arguments

Given a period 2l, we must determine the form of the fourier series. $sin(\frac{nx\pi}{l})$

13 Fourier Series

Χ

MA4005 Syllabus

- Functions of several variables and partial differentiation.
- The indefinite integral. Integration techniques: of standard functions, by substitution, by parts and using partial fractions.
- The definite integral. Finding areas, lengths, surface areas, volumes, and moments of inertial.
- Numerical integration: trapezoidal rule, Simpson's rule.
- Ordinary differential equations.

- First order including linear and separable. Linear second order equations with constant coefficients.
- Numerical solution by Runge-Kutta. The Laplace transform: tables and theorems and solution of linear ODEs.
- Fourier series: functions of arbitary period, even and odd functions, half-range expansions.
- Application of Fourier series to solving ODEs.
- Matrix representation of and solution of systems of linear equations.
- Matrix algebra: invertibility, determinants.
- Vector spaces: linear independence, spanning, bases, row and column spaces, rank.
- Inner products: norms, orthogonanality. Eigenvalues and eignenvectors.
- Numerical solution of systems of linear equations. Gauss elimination, LU decomposition, Cholesky decomposition, iterative methods. Extension to non-linear systems using Newton's method.

13.1 convolution

$$(f * g)(t) = \int_0^t f(\tau)g(t - \tau) d\tau = F(s) \cdot G(s)$$

14 Laplace Transforms Using 1st Shifting Theorem

$$g(t) = e^{at} f(t) \quad \Leftrightarrow \quad G(S) = F(S - a)$$

The function g(t) is presented in a form whereby a and f(t) are easily identifiable. First determine F(S) by finding the Laplace transform of f(t). Then replace all S terms with S-a.

15 Laplace Transforms Using 2nd Shifting Theorem

$$g(t) = u^a f(t - a) \quad \Leftrightarrow \quad G(S) = e^{-aS} F(S)$$

The function g(t) is presented in a form whereby a and f(t-a) are easily identifiable. $(U_a(t))$ is called the unit step function). First determine f(t) by replace all t-a terms in f(t-a) with t. Then calculate the laplace transform of f(t) i.e. F(S). The solutions is in form $G(S) = e^{-aS}F(S)$.

16 Inverse Laplace Transforms 2

The denominator has form $S^2 - 2aS + a^2 + k$ which is equivalent to $(S - a)^2 + k$. Therefore G(S) will have form F(S - a)

The function G(S) may have the form $\frac{S+D}{S^2+(C+D)S+CD}$, where C and D are constants. This expression simplifies $\frac{S+D}{(S+C)(S+D)}$ and again to $\frac{1}{S+C}$. The inverse laplace transform g(t) can be easily determined.

17 Convolution

We are asked to find a function h(t) which is the convolution of two given functions f(t) and g(t). i.e h(t) = h * g(t).

Importantly $H(S) = F(S) \times G(S)$. We determine the laplace transforms, F(S) and

G(S), and multiply them to determine H(S). We then find the inverse Laplace transform of H(S) to yield our solution.

17.1 Example

Find h(t) when h(t) = f * g(t), with $f(t) = e^t$ and $g(t) = e^{-t}$.

$$f(t) = e^{t} \Leftrightarrow F(S) = \frac{1}{S-1}$$
$$g(t) = e^{-t} \Leftrightarrow G(S) = \frac{1}{S+1}$$
$$H(S) = F(S) \times G(S) = \frac{1}{(S-1)(S+1)}$$

17.2 Example

Find h(t) when h(t) = f * g(t), with f(t) = t and $g(t) = t^2$.

$$f(t) = t \Leftrightarrow F(S) = \frac{1}{S^2}$$

$$g(t) = t^2 \Leftrightarrow G(S) = \frac{2}{S^3}$$

$$H(S) = F(S) \times G(S) = \frac{2}{S^5}$$

$$(H(S) \text{ is in form } k \frac{n!}{S^{n+1}})$$

With n=4, n!=4!=24. Solving for k, $k\times n!=2$. Therefore $k=\frac{1}{12}$. The solution is $\mathcal{L}^{-\infty}[\mathcal{H}(\mathcal{S})]$

18 Fourier Series

Χ

19 Laplacian Operator

$$\Delta f = \nabla^2 f = \nabla \cdot \nabla f$$

Laplacian Analysis: convolution

$$(f * g)(t) = \int_0^t f(\tau)g(t - \tau) d\tau = F(s) \cdot G(s)$$

20 Notation

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_x & F_y & F_z \end{vmatrix}$$

$$\left(\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} \right) \mathbf{i} + \left(\frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} \right) \mathbf{j} + \left(\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right) \mathbf{k}$$

21 Example

$$f(x,y,z) = 2x + 3y^2 - \sin(z)$$

$$\nabla f = \frac{\partial f}{\partial x}\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j} + \frac{\partial f}{\partial z}\mathbf{k} = 2\mathbf{i} + 6y\mathbf{j} - \cos(z)\mathbf{k}$$

22 Laplace Transforms

If $g(t) = k \times f(t)$ then $G(S) = k \times F(S)$ where k is a constant. $\{(\sqcup) = F(S).$

$$f(t) = (t+1)^{2}$$

$$= t^{2} + 2t + 1$$
(2)

23 Laplace Transforms Using 2nd Shifting Theorem

$$g(t) = u^a f(t - a) \quad \Leftrightarrow \quad G(S) = e^{-aS} F(S)$$

The function g(t) is presented in a form whereby a and f(t-a) are easily identifiable. $(U_a(t))$ is called the unit step function). First determine f(t) by replace all t-a terms in f(t-a) with t. Then calculate the laplace transform of f(t) i.e. F(S). The solutions is in form $G(S) = e^{-aS}F(S)$.

24 Inverse Laplace Transforms 2

The denominator has form $S^2 - 2aS + a^2 + k$ which is equivalent to $(S - a)^2 + k$. Therefore G(S) will have form F(S - a)

The function G(S) may have the form $\frac{S+D}{S^2+(C+D)S+CD}$, where C and D are constants. This expression simplifies $\frac{S+D}{(S+C)(S+D)}$ and again to $\frac{1}{S+C}$. The inverse laplace transform g(t) can be easily determined.

25 Convolution

We are asked to find a function h(t) which is the convolution of two given functions f(t) and g(t). i.e h(t) = h * g(t).

Importantly $H(S) = F(S) \times G(S)$. We determine the laplace transforms, F(S) and G(S), and multiply them to determine H(S). We then find the inverse Laplace transform of H(S) to yield our solution.

25.1 Example

Find h(t) when h(t) = f * g(t), with $f(t) = e^t$ and $g(t) = e^{-t}$.

$$f(t) = e^{t} \Leftrightarrow F(S) = \frac{1}{S - 1}$$
$$g(t) = e^{-t} \Leftrightarrow G(S) = \frac{1}{S + 1}$$
$$H(S) = F(S) \times G(S) = \frac{1}{(S - 1)(S + 1)}$$

25.2 Example

Find h(t) when h(t) = f * g(t), with f(t) = t and $g(t) = t^2$.

$$f(t) = t \quad \Leftrightarrow \quad F(S) = \frac{1}{S^2}$$

$$g(t) = t^2 \quad \Leftrightarrow \quad G(S) = \frac{2}{S^3}$$

$$H(S) = F(S) \times G(S) = \frac{2}{S^5}$$

$$(H(S) \text{ is in form } k \frac{n!}{S^{n+1}})$$

With n=4, n!=4!=24. Solving for $k, k\times n!=2$. Therefore $k=\frac{1}{12}$. The solution is $\mathcal{L}^{-\infty}[\mathcal{H}(\mathcal{S})]$

Laplace Transforms

$$\mathcal{L}[f(t)] = \int_0^\infty f(t)e^{-st}dt$$

$$\mathcal{L}[4] = \int_0^\infty t^2 e^{-st} dt \tag{3}$$

$$= 4 \int_0^\infty e^{-st} dt \tag{4}$$

$$= 4 \left[\frac{e^{-st}}{-s} \right]_0^{\infty} \tag{5}$$

$$= 4\left[\left(\frac{e^{-\infty}}{-s}\right) - \left(\frac{e^{-0}}{-s}\right)\right] \tag{6}$$

$$= \frac{4}{s} \tag{7}$$

Fourier Series

$$f(x) = \frac{a_o}{2} + sum_1^{\infty} \left(a_n cos(nx) + b_n sin(nx) \right)$$

$$a_0 = \int_{-\pi}^{\pi} f(x) dx$$

Fourier Series

$$f(x) = \frac{a_o}{2} + sum_1^{\infty} \left(a_n cos(nx) + b_n sin(nx) \right)$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx$$

$$b_n = \frac{1}{\pi} \left[\int_{-\pi}^0 -\pi \sin(nx) dx + \int_0^{\pi} \pi \sin(nx) dx \right]$$

$$b_n = \frac{1}{\pi} \left(\left[\frac{pi}{n} cos(nx) \right]_{-\pi}^0 - \left[\frac{pi}{n} cos(nx) \right]_{0}^{\pi} \right)$$

$$b_n = \frac{\pi}{n\pi} \left(\cos(0) - \cos(-n\pi) - \cos(n\pi) + \cos(0) \right)$$

$$b_n = \frac{\pi}{n\pi} \left(2 - 2\cos(n\pi) \right)$$

Heaviside function

 $u_1(t)$

$$[U_a(t) - U_b(t)] \times f(t)$$

Special Cases:

- $U_0(t) = 1$
- $U_{\infty}=0$

26 Notation

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_x & F_y & F_z \end{vmatrix}$$

$$\left(\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} \right) \mathbf{i} + \left(\frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} \right) \mathbf{j} + \left(\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right) \mathbf{k}$$

27 Example

$$f(x,y,z) = 2x + 3y^2 - \sin(z)$$

$$\nabla f = \frac{\partial f}{\partial x}\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j} + \frac{\partial f}{\partial z}\mathbf{k} = 2\mathbf{i} + 6y\mathbf{j} - \cos(z)\mathbf{k}$$

28 Laplace Transforms

If $g(t) = k \times f(t)$ then $G(S) = k \times F(S)$ where k is a constant. $\{(\sqcup) = F(S)\}$.

$$f(t) = (t+1)^{2}$$

$$= t^{2} + 2t + 1$$
(8)

Numerical Methods: Syllabus

- Numerical Differentiation and Integration Approximation formulae for derivatives. Trapezoidal rule, Simpsons rule, Use of error estimates.
- Numerical Linear Algebra Linear least squares approximation. The above algorithms will be used to solve problems in mathematics and science using the Matlab and Derive computer packages.
- Solving Systems of Linear Equations Gaussian and Gauss/Jordan elimination, error accumulation, introduction to iterative techniques (Jacobi method). LU decomposition.
- Solution of Non-Linear Equations Bracketing methods, linear interpolation technique, fixed point iteration, the Newton-Raphson method. Error analysis of iterative methods.
- Mathematical Preliminaries Computer representation of numbers, types of computational error. Condition and stability of numerical algorithms.
- Interpolation Piecewise-linear interpolation and Lagrange interpolating polynomial.

The Secant method

Use the secant method to evaluate a root for each of the equations on Sheet 1, subject to the required accuracy restrictions. Compare the secant method with the previous methods in each case.

Conservative Vector Fields

A vector field A is called conservative if any of the following equivalent conditions holds

- The line integral of A between two points is independent of the path
- The line integral of A over any closed curve C is equal to zero, that is

The exists a scalar field, called the potential, such that

The divergence theorem

Stokes Theorem

The line integral of a vector A taken around a simple closed curve (that is, a non-intersecting closed curve), C, is equal to the surface integral of the curl of A taken over any surface S having C as a boundary.