Zerois of an Analytic Function Let I be an analytic function on D and 8(30) =0, 3 & D. We say that zo is a zero of $\int g \text{ order } n \text{ } j \text{ } \lim_{3 \to 3_0} \frac{\int(3)}{\left(3-\frac{3}{2}\right)^{n-1}} = 0 \text{ and}$

 $\lim_{3\to 3_0} \frac{b(3)}{(3-3_0)^n} \neq 0.$

Any analytic function fon Dis either O everywhere on D on the zeroes of of are isolated.

Let $J(3_0) = 0$ for some $3_0 \in \emptyset$. In the neighbour hood of 3_0 , 8(3) = \sum a_K (3-3) \langle where |3-30| \r. ax =0 + K > 0.

Let Il be the set of all points in D, such

(2) Lets choose any random point $3_3 \in D \setminus U$ and $a_K \neq 0$ for some K. We will pick a point 3_4 from the neighbourhood of 3_3 . $\delta(3_4) = \sum_{k=1}^{\infty} a_k(3-3_3)^{\frac{k}{3-3}}$ K>0 2=2

The first non zero term, $b_{\mathcal{K}}\left(3-3_{3}\right)^{\mathcal{K}}$ will dominate the sum of the remaining terms. So $\int \left(3_{4}\right)^{\frac{1}{2}} 0$.

=> D\U is an open set

=> D = U / (D\U)

disjoint

> U = or D since Dis connected.

When M = D, f(z) = 0 everywhere on D.

And when M = 0, the zeroes of f are isolated.