Natural Language Processing

Dr. Karen Mazidi

Part Three: Sentences

Parsing natural language

- Formal grammars rely on rules; natural language requires a probabilistic approach
- Issues:
 - POS ambiguity, example:
 - My spidey sense senses danger.
 - Structural ambiguity:

Structural ambiguity

- Attachment ambiguity where to place a phrase in the syntax tree (elephant example)
- Coordination ambiguity coordinating conjunctions
 - Old men and dogs

Types of syntax parsers

- Phrase structure grammar parse (PSG)
- Dependency parse
- Semantic role label parse

PSG parse

aka constituent parsing

PSG parse

- Organizes sentence in hierarchy of constituents (phrases)
 - Similar to CFG in that top level is S
 - Next-to bottom level is POS
 - Bottom level is the tokens
- PSG parsers are trained on millions of sentences
- Visualized in bracket notation or a tree
- Sometimes called constituency parsing

PSG

http://mshang.ca/syntree/

```
[S [NP [DT The] [NN butler]]
    [VP [VBN murdered]
       [NP [NNP John]]
       [PP [IN in] [DT the] [NP [NN living] [NN room]]]
```


Figure 10.3: Phrase Structure Parse

AllenNLP

- Expanding boxes instead of tree
- https://demo.allennlp.org/

Expanding

Figure 10.5: Adding Levels to the Phrase Structure

Expanding

Example

Colorless green ideas sleep furiously.

Dependency parse

DAG

Dependency parse

- Words are in an acyclic graph, usually with the main predicate as the root node
- Stanford dependencies in Figure 10.11
- Run at: https://corenlp.run/

Allen NLP

Example

- Colorless green ideas sleep furiously.
- AllenNLP demo problem for this sentence
- Stanford demo:

Copular clauses

- John <u>is</u> handsome.
 - Links subject with adjective
- John <u>is</u> a lawyer.
 - Links subject with noun

Copular clauses

Figure 10.10: The predicate is NN

- Why isn't "is" the predicate?
- Evidence yes:
 - Verb "is" changes tense
 - Verb "is" matches subject
- Evidence no:
 - Move copular clause to subordinate position

Mary thinks that John is handsome. Mary thinks John handsome.

Stanford dependencies

- See p. 118 of the Stanford manual
- Note the structure:
 - root
 - dep
 - aux
 - arg
 - agent
 - comp
 - subj

Universal dependencies

- Dependencies that work across languages
- https://www.asc.ohio-state.edu/demarneffe.1/papers/depling.pdf

- Stanford now uses universal dependencies by default:
- https://nlp.stanford.edu/software/stanford-dependencies.html

Common sentence patterns

In expository text

Pattern	Example	Comment
S-V	The Cowboys lost.	no object or complement
S-V-dobj	The Cowboys lost the game.	direct object
S-V-iobj-dobj	The Cowboys handed them the game.	both direct and indirect objects
S-V-acomp	He looked tired.	'tired' completes the meaning
S-V-ccomp	I hope that you get the job.	'you' is the internal subject
S-V-xcomp	I love to take long walks.	no internal subject in clause
S-V-xcomp	I love walking in the woods.	no internal subject in clause

SRL parse

shallow semantics

SRL Parse

- Semantic role label parse determines a role for each constituent relative to the predicate
- Aka shallow semantic parse
- Two categories of labels:
 - Arguments: actors in the sentence
 - Modifiers: more details such as time and place

SRL

AllenNLP

SRL

AllenNLP

SRL arguments

- Numbered from 0 to 6
- Arguments available for a particular verb, particular sense of the word, vary
- Arg0, A0, is the agent of the sentence, the one doing the action
- Arg1, A1, is often the passive actor
- Arg1 vs. Arg0 has nothing to do with "subject"

```
Arg0 [The butler] murdered Arg1 [John].
Arg1 [John] was murdered by Arg0 [the butler].
```

SRL arguments

- Arg2, A2, is often the 'instrument'
 - With a knife
 - An argument can be a PP as well as a NP

Arg	Meaning	textbfExample
Agent	Entity doing the action	John broke the window.
Patient	Entity that is acted upon	John broke the window.
Instrument	Entity used in action	John broke the window with a hammer.
Beneficiary	Entity recipient	John gave the ring to Mary.

SRL args

More arguments

Thematic Role	Definition	Example
AGENT	The volitional causer of an event	The waiter spilled the soup.
EXPERIENCER	The experiencer of an event	John has a headache.
FORCE	The non-volitional causer of the event	The wind blows debris from the mall into our yards.
THEME	The participant most directly affected by an event	Only after Benjamin Franklin broke the ice
RESULT	The end product of an event	The city built a regulation-size baseball diamond
CONTENT	The proposition or content of a propositional event	Mona asked "You met Mary Ann at a supermarket?"
INSTRUMENT	An instrument used in an event	He poached catfish, stunning them with a shocking device
BENEFICIARY	The beneficiary of an event	Whenever Ann Callahan makes hotel reservations for her boss
SOURCE	The origin of the object of a transfer event	I flew in from Boston.
GOAL	The destination of an object of a transfer event	I drove to Portland.

- Problem: hard to create a standard set of arguments for all verbs
- PropBank: fewer roles

PropBank

 Palmer, Martha, Daniel Gildea, and Paul Kingsbury. 2005. The Proposition Bank: An Annotated Corpus of Semantic Roles. Computational Linguistics, 31(1):71–106

Some roles:

- Arg0: proto-agent
- Arg1: proto-patient
- Arg2: often benefactive, instrument, attribute, end state
- Arg3: start point, benefactive, instrument, attribute
- Arg4: the end point

SRL modifiers

- Not arguments, optional content that adds more info
- Common modifiers:

Mod	Meaning	Example
DIR	Motion along a path	John threw the papers in the trash.
LOC	Where the action happened	John was born in Texas.
MNR	How the action was performed	John broke the window violently.
TMP	When the action happened	John was born in 1960.
CAU	Reason for action	John moved to NY because of his job
PNC	Motivation for an action	John saved money for his move.

PropBank Verb Frames

- Annotation of major verbs and major senses
- Example:

fall.01

Arg1: Logical subject, patient, thing falling

Arg2: Extent, amount fallen

Arg3: start point

Arg4: end point, end state of arg1

Ex1: [Arg1 Sales] fell [Arg4 to \$25 million] [Arg3 from \$27 million].

Ex2: [Arg1 The average junk bond] fell [Arg2 by 4.2%].

PropBank Verb Frames

Example verb frame:

```
increase.01 "go up incrementally"

Arg0: causer of increase

Arg1: thing increasing

Arg2: amount increased by, EXT, or MNR

Arg3: start point

Arg4: end point
```

Clarifies commonalities here:

```
[_{Arg0} Big Fruit Co. ] increased [_{Arg1} the price of bananas].
[_{Arg1} The price of bananas] was increased again [_{Arg0} by Big Fruit Co. ]
[_{Arg1} The price of bananas] increased [_{Arg2} 5%].
```

PropBanking a Sentence

Martha Palmer 2013

The same parse tree PropBanked

Martha Palmer 2013

SRL

- SRL gets closer to the semantics of the sentence
- Some have used SRL parses to extract logical propositions from text

Sasha broke the window Pat opened the door

```
\exists e, x, y \ Breaking(e) \land Breaker(e, Sasha)
 \land BrokenThing(e, y) \land Window(y)
 \exists e, x, y \ Opening(e) \land Opener(e, Pat)
 \land OpenedThing(e, y) \land Door(y)
```

SRL parsers

- Allen NLP
- SENNA

Other Software Tools

- Stanford
- spaCy

```
mirror object to mirror
mirror_object
Peration == "MIRROR_X":
irror_mod.use_x = True
mirror_mod.use_y = False
### irror_mod.use_z = False
 _operation == "MIRROR_Y"
irror_mod.use_x = False
lrror_mod.use_y = True
lrror_mod.use_z = False
 _operation == "MIRROR_Z":
  rror_mod.use_x = False
  irror_mod.use_y = False
 !!rror_mod.use_z = True
 selection at the end -add
  ob.select= 1
  er ob.select=1
   ntext.scene.objects.action
  "Selected" + str(modifier
  irror ob.select = 0
  bpy.context.selected_obje
  hata.objects[one.name].se
 mint("please select exacth
  OPERATOR CLASSES ----
    pes.Operator):
    X mirror to the selected
   ject.mirror_mirror_x"
 ext.active_object is not
```

Stanford CoreNLP

- Toolkit from Stanford NLP group
- Many annotations, including tokenization, POS tagging, dependency parsing, and more
- To use Stanford CoreNLP:
 - 1. download CoreNLP
 - 2. Unzip the download
 - 3. Update classpath variables to point to the expanded directory

Stanford CoreNLP

Setting up annotations in Java

```
Code 10.4.1 — Stanford CoreNLP. Java implementation

// Select the annotations
Properties props = new Properties();
props.setProperty("annotators", "tokenize, ssplit, pos, lemma, ner, parse, dcoref, sentiment");

// Set up the pipeline
StanfordCoreNLP pipeline = new StanfordCoreNLP(props);

// Run all the selected Annotators on this text pipeline.annotate(annotation);
```

Python Wrapper: Stanza

• install:

\$pip3 install stanza
\$stanza.download('en')

('.'. 3. 'punct')

```
Code 10.4.2 — Stanford CoreNLP. Stanza Python wrapper
 import stanza
 # set up the pipeline
 nlp = stanza.Pipeline('en')
 # set up the doc object on text
 text = "Barack Obama was born in Hawaii. He was elected president in 2008."
 doc = nlp(text)
 for sentence in doc.sentences:
     sentence.print_dependencies()
('Barack', 4, 'nsubj:pass')
('Obama', 1, 'flat')
('was', 4, 'aux:pass')
('born', 0, 'root')
('in', 6, 'case')
('Hawaii', 4, 'obl')
('.', 4, 'punct')
('He', 3, 'nsubj:pass')
('was', 3, 'aux:pass')
('elected', 0, 'root')
('president', 3, 'xcomp')
('in', 6, 'case')
('2008', 3, 'obl')
```

spaCY

• See Notebook https://github.com/kjmazidi/NLP/blob/master/Part 3-Sentences/Chapter 10 Parsing/Dependency parse spaCy.ipynb

Practice

• The quick brown fox jumped over the lazy river.

Essential points to note

- NLP practitioners have three types of sentences syntax parsers:
- PSG
- Dependency
- SRL
- And many NLP toolkits to use
- Sentence parsing is an important preprocessing step for many NLP applications

Next topic

Documents

