Lecture 3 Linear Regression I

STAT 441/505: Applied Statistical Methods in Data Mining

Linglong Kong

Department of Mathematical and Statistical Sciences University of Alberta

Winter, 2016

Outline

Simple Linear Regression

Simple Linear Regression

Estimation

Inference

Summary and Remark

Simple Linear Regression

- Linear regression is a simple approach to supervised learning. It assumes that the dependence of Y on X_1, X_2, \dots, X_p is linear.
- ➤ True regression functions are never linear! although it may seem overly simplistic, linear regression is extremely useful both conceptually and practically.

Simple Linear Regression

► Simple Linear Regression Model (SLR) has the form of

$$Y = \beta_0 + \beta_1 X + \varepsilon,$$

where β_0 and β_1 are two unknown parameters (coefficients), called intercept and *slope*, respectively, and ε is the error term.

▶ Given the estimates $\hat{\beta}_0$ and $\hat{\beta}_1$, the estimated regression line is

$$y = \hat{\beta}_0 + \hat{\beta}_1 x.$$

► For X = x, we predict Y by $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$, where the hat symbol denotes an estimated value.

Estimate the parameters

- Let (y_i, x_i) be the *i*-th observation and $\hat{y_i} = \hat{\beta_0} + \hat{\beta_1}x_i$, we call $e_i = y_i \hat{y_i}$ the *i*th residual.
- ► To estimate the parameters, we minimized the residual sums of squares (RSS),

RSS =
$$\sum_{i} e_i^2 = \sum_{i} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i,)^2$$
.

▶ Denote $\bar{y} = \sum_i y_i / n$ and $\bar{x} = \sum_i x_i / n$. The minimized values are

$$\hat{\beta}_{1} = \frac{\sum_{i} (y_{i} - \bar{y})(x_{i} - \bar{x})}{\sum_{i} (x_{i} - \bar{x})^{2}} = \left(r \frac{\sqrt{\sum_{i} (y_{i} - \bar{y})^{2}}}{\sqrt{\sum_{i} (x_{i} - \bar{x})^{2}}} \right),$$

$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1}\bar{x}.$$

Example

- Advertising data: the least square fit for the regression of sales and TV.
- ► Each grey line segment represents an error, and the fit makes a compromise by averaging their squares.
- ▶ In this case a linear fit captures the essence of the relationship, although it is somewhat deficient in the left of the plot.

6/12

Assess the coefficient estimates

► The standard error of an estimator reflects how it varies under repeated sampling.

$$SE(\hat{\beta}_1) = \sqrt{\frac{\sigma^2}{\sum (x_i - \bar{x})^2}}, \qquad SE(\hat{\beta}_0) = \sqrt{\sigma^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{\sum (x_i - \bar{x})^2}\right)},$$

where $\sigma^2 = \text{Var}(\varepsilon)$.

- ► A 95% confidence interval is defined as a range of values such that with 95% probability, the range will contain the true unknown value of the parameter.
- ▶ It has the form

$$\hat{\beta}_1 \pm 2 \cdot \text{SE}(\hat{\beta}_1).$$

▶ For the advertising data, the 95% confidence interval for β_1 is [0.042, 0.053], which means, there is approximately 95% chance this interval contains the true value of β_1 (under a scenario where we got repeated samples like the present sample).

Hypothesis testing

 Standard errors can also be used to perform hypothesis tests on the coefficients. The most common hypothesis test involves testing the null hypothesis of

 H_0 : There is no relationship between X and Y versus the alternative hypothesis

 H_A : There is some relationship between X and Y.

► Mathematically, we test

$$H_0: \beta_1 = 0 \text{ versus } H_A: \beta_1 \neq 0,$$

since if $\beta_0 = 0$ then the model reduces to $Y = \beta_0 + \varepsilon$, and X is not associated with Y.

Hypothesis testing

Simple Linear Regression

► To test the null hypothesis, we compute a t-statistics,

$$t = \frac{\hat{\beta}_1 - 0}{\text{SE}\left(\hat{\beta}_1\right)}.$$

- ▶ This statistics follows t_{n-2} under the null hypothesis $\beta_1 = 0$.
- ▶ Using statistical software, it is easy to compute the probability of observing any value equal to |t| or larger. We call this probability the p-value.
- Results for the advertising data

```
(Intercept) 7.032594 0.457843 15.36 <2e-16 ***
          0.047537 0.002691 17.67 <2e-16 ***
TV
Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1
```

Estimate Std. Error t value Pr(>|t|)

Measure of fit

▶ We compute the Residual Standard Error

RSE =
$$\sqrt{\frac{1}{n-2}}$$
RSS = $\sqrt{\frac{1}{n-2}\sum_{i}(y_{i}-\hat{y}_{i})^{2}}$,

where the residual sum-of-squares is RSS = $\sum_{i} (y_i - \hat{y}_i)^2$.

R-squared or fraction of variance explained is

$$R^2 = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS},$$

where TSS = $\sum_{i} (y_i - \bar{y})^2$ is the total sum of squares.

It can be shown that in this simple linear regression setting that $R^2 = r^2$, where r is the correlation between Y and X:

$$r = \frac{\sum_{i} (y_{i} - \bar{y})(x_{i} - \bar{x})}{\sqrt{\sum_{i} (y_{i} - \bar{y})^{2}} \sqrt{\sum_{i} (x_{i} - \bar{x})^{2}}} = \left(\hat{\beta}_{1} \frac{\sqrt{\sum_{i} (x_{i} - \bar{x})^{2}}}{\sqrt{\sum_{i} (y_{i} - \bar{y})^{2}}}\right).$$

R code

Simple Linear Regression

```
> TVadData = read.csv('... Advertising.csv')
> attach(TVadData)
> TVadlm = lm(Sales~TV)
```

Coefficients:

> summary(TVadlm)

```
Estimate Std. Error t value Pr(>|t|) (Intercept) 7.032594 0.457843 15.36 <2e-16 *** TV 0.047537 0.002691 17.67 <2e-16 ***
```

Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

Residual standard error: 3.259 on 198 degrees of freedom Multiple R-squared: 0.6119, Adjusted R-squared: 0.6099 F-statistic: 312.1 on 1 and 198 DF, p-value: < 2.2e-16

Summary and Remark

- ► Simple linear regression
- ► Estimation and inference
- Measure of fit R^2
- Read textbook Chapter 3
- ▶ Do R lab