$\overline{\text{Theorem}}$ 3.7. Let A be a densely defined operator on C(K). The following assertions are equivalent.

- (i) A is the generator of an automorphism group.
- (ii) $1 \in D(A)$ and A1 = 0; $(\pm 1 A)D(A) = C(K)$ and A is <u>local</u>, in the sense that for $0 \le f \in D(A)$, f(x) = 0 implies (Af)(x) = 0 (x \in K).

<u>Proof.</u> An invertible operator T such that $T \ge 0$ and $T^{-1} \ge 0$ is an automorphism if and only if T1 = 1. Hence A is the generator of an automorphism group if and only if A and -A generate a positive group, $1 \in D(A)$ and A1 = 0. Thus Theorem 3.7. follows from Theorem 1.13.

Remark. It is remarkable that from locality, the range condition and $1 \in D(A)$, A1 = 0 it follows that D(A) actually is a subalgebra of C(K) and A is a derivation. The "order-theoretical" property of locality is in some aspects stronger than the algebraic property of being a derivation. For example a local, densely defined operator is closable (by Prop.1.11); but there exist derivations on C[0,1] which are not closable (see Bratteli-Robinson (1975)).

Remark (an excursion to C -algebras).

Theorem 3.7 also holds for non-commutative C^* -algebras. More precisely: Let A be a C^* -algebra with unit 1 and let A_h be the real Banach space of all hermitian elements in A. Then A_h is a real ordered Banach space and 1 is an interior point of $(A_h)_+$. Let A be a densely defined operator on A_h .

Then A is the generator of an automorphism group if and only if $1 \in D(A)$ and A1 = 0; $(\pm 1 - A)(D(A)) = A_h$ and A is \underline{local} in the sense that for $0 \le x \in D(A)$, $0 \le \phi \in (A_h)$, $\phi(x) = 0$ implies $\phi(Ax) = 0$.

The proof of Theorem 3.7 can be carried over to this case if one notices the following. A strongly continuous group $T(t)_{t\in\mathbb{R}}$ on A_h is an automorphism group if and only if it is positive and T(t)1=1 for all $t\in\mathbb{R}$ [see Bratteli-Robinson (1979), Cor. 3.2.21].

Now we let X be a locally compact space and consider positive groups on $C_0(X) = C_0(X,\mathbb{R})$, the space of all continuous real-valued functions on X which vanish at infinity. Our aim is to describe their generators as perturbations of generators of automorphism groups; i.e., we will extend Theorem 3.6 by allowing X to be noncompact but