PROBLEM 3.71

KNOWN: Temperature distribution in a composite wall.

FIND: (a) Relative magnitudes of interfacial heat fluxes, (b) Relative magnitudes of thermal conductivities, and (c) Heat flux as a function of distance x.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction, (3) Constant properties.

ANALYSIS: (a) For the prescribed conditions (one-dimensional, steady-state, constant k), the parabolic temperature distribution in C implies the existence of heat generation. Hence, since dT/dx *increases* with *decreasing* x, the heat flux in C *increases* with *decreasing* x. Hence,

$$q_{3}'' > q_{4}''$$

However, the linear temperature distributions in A and B indicate no generation, in which case

$$q_{2}'' = q_{3}''$$

(b) Since conservation of energy requires that $q_{3,B}'' = q_{3,C}''$ and $dT/dx)_B < dT/dx)_C$, it follows from Fourier's law that

$$k_B > k_C$$
.

Similarly, since $q_{2,A}'' = q_{2,B}''$ and $dT/dx)_A > dT/dx)_B$, it follows that

$$k_A < k_B$$
.

(c) It follows that the flux distribution appears as shown below.

COMMENTS: Note that, with $dT/dx)_{4,C} = 0$, the interface at 4 is adiabatic.