Álgebra I: Teoría de Grupos Examen parcial 1 (diferido / repetido)

Universidad de El Salvador. Ciclo impar 2018

Problema 1 (1 punto). Sea *G* un grupo.

1) Demuestre que

$$g \sim h \iff h = k g k^{-1}$$
 para algún $k \in G$.

es una relación de equivalencia sobre los elementos de G.

Si $g \sim h$, se dice que los elementos g y h son **conjugados**. Las clases de equivalencia correspondientes se llaman las **clases de conjugación**.

- 2) Demuestre que $g \in G$ forma una clase de conjugación $\{g\}$ si y solamente si $g \in Z(G)$.
- 3) Supongamos que $g \sim h$. Demuestre que $g^n = 1$ si y solamente si $h^n = 1$.

Solución. La relación es reflexiva: para k = 1 tenemos

$$g = 1 \cdot g \cdot 1^{-1}.$$

Es simétrica:

$$g \sim h \iff h = k g k^{-1}$$
 para algún $k \in G \iff g = k^{-1} h k \iff h \sim g$.

Por fin, es transitiva: si $g_1 \sim g_2$ y $g_2 \sim g_3$, entonces $g_2 = k_1 g_1 k_1^{-1}$ y $g_3 = k_2 g_2 k_2^{-1}$ para algunos $k_1, k_2 \in G$. Luego,

$$g_3 = k_2 (k_1 g_1 k_1^{-1}) k_2^{-1} = (k_2 k_1) g_1 (k_2 k_1)^{-1},$$

así que $g_1 \sim g_3$.

En 2) notamos que la clase de conjugación de $g \in G$ viene dada por

$$\{kgk^{-1}\mid k\in G\}.$$

Este conjunto es igual a $\{g\}$ si y solamente si $kgk^{-1} = g$ para todo $k \in G$; es decir, si y solamente si $g \in Z(G)$.

En 3), si $g \sim h$, entonces $h = k g k^{-1}$. Tenemos

$$h^{n} = \underbrace{(k g k^{-1}) \cdot (k g k^{-1}) \cdots (k g k^{-1})}_{n \text{ veces}} = k g^{n} k^{-1}.$$

De aquí se ve que $h^n = 1$ si y solamente si g^n (tenemos $h^n \sim g^n$, pero la identidad 1 puede ser conjugada solamente con sí misma).

Problema 2 (2 puntos). Describa las clases de conjugación en el grupo diédrico $D_4 = \{id, r, r^2, r^3, f, fr, fr^2, fr^3\}$.

Solución. Se podía primero notar que $Z(D_4) = \{id, r^2\}$, lo que ya nos da dos clases de conjugación

$$\{id\}$$
 y $\{r^2\}$

—véase la parte 2) del ejercicio anterior. Luego, $r^3 = r^{-1} = f r f$, así que r y r^3 son conjugados. Los elementos fr^i cumplen $(fr^i)^2 = id$, mientras que $r^2 \neq id$, así que por la parte 3) del ejercicio anterior, ninguna de las reflexiones fr^i puede ser conjugada con r y r^3 . Podemos concluir que

$$\{r, r^3\}$$

es una clase de conjugación. Nos quedan cuatro reflexiones f, fr, fr^2 , fr^3 , y un cálculo directo nos dice que $f \sim fr^2$ (por ejemplo, $frf(fr)^{-1} = fr(fr^{-1}f) = fr^2$) y $fr \sim fr^3$ (por ejemplo, $f(fr)f^{-1} = rf = fr^{-1} = fr^3$), y se puede ver que las reflexiones forman dos clases de conjugación

$${f,fr^2}, {fr,fr^3}$$

(por ejemplo, bastaría notar que conjugando a f por otros elementos, no se puede obtener fr o fr^3). Entonces, la respuesta es

$$\{id\}, \{r^2\}, \{r, r^3\}, \{f, fr^2\}, \{fr, fr^3\}.$$

Para los problemas 3, 4, 5 necesitamos la siguiente noción. Sea G un grupo. Para dos elementos $g,h \in G$ su **conmutador** es el elemento dado por $[g,h] := ghg^{-1}h^{-1}$.

Problema 3 (2 puntos). Consideremos el grupo diédrico $D_n = \{id, r, r^2, \dots, r^{n-1}, f, fr, fr^2, \dots, fr^{n-1}\}$. Demuestre que para cualesquiera $g, h \in D_n$ se tiene $[g, h] = r^{2i}$ para algún $i \in \mathbb{Z}$, y de hecho todo elemento $r^{2i} \in D_n$ puede ser expresado como un conmutador.

Solución. Primero,

$$[r^i, r^j] = r^i r^j r^{-i} r^{-j} = id.$$

Ahora

$$[fr^i, fr^j] = fr^i fr^j (fr^i)^{-1} (fr^j)^{-1} = \underbrace{fr^i f}_{r^{-i}} r^j r^{-i} \underbrace{fr^{-j} f}_{r^j} = r^2 {}^{(j-i)}.$$

Luego,

$$[fr^i,r^j] = fr^i\,r^j\,(fr^i)^{-1}\,r^{-j} = fr^i\,r^j\,r^{-i}\,f\,r^{-j} = fr^i\,r^j\,r^{-i}\,r^j\,f = f\,r^{2j}\,f = r^{-2j}$$

y

$$[r^i, fr^j] = [fr^j, r^i]^{-1} = (r^{-2i})^{-1} = r^{2i}.$$

Problema 4 (1 punto). Demuestre que para cualesquiera $\sigma, \tau \in S_n$ se cumple $[\sigma, \tau] \in A_n$.

Solución. Usando el hecho de que $sgn(\sigma^{-1}) = sgn(\sigma)$ y $sgn(\sigma \tau) = sgn(\sigma)$ $sgn(\tau)$ para cualesquiera $\sigma, \tau \in S_n$, se obtiene

$$\mathrm{sgn}[\sigma,\tau] = \mathrm{sgn}(\sigma\,\tau\,\sigma^{-1}\,\tau^{-1}) = \mathrm{sgn}(\sigma)\,\,\mathrm{sgn}(\tau)\,\,\mathrm{sgn}(\sigma^{-1})\,\,\mathrm{sgn}(\tau^{-1}) = \mathrm{sgn}(\sigma)^2\,\,\mathrm{sgn}(\tau)^2 = +1.$$

Problema 5 (2 puntos).

1) Fijemos un número natural $n \ge 3$. En el grupo simétrico S_n calcule los conmutadores $[(1\ 2), (1\ i)]$ para $i \ge 3$.

Deduzca que todo elemento del grupo alternante A_n es un producto de conmutadores $[\sigma, \tau]$ donde $\sigma, \tau \in S_n$.

2) Fijemos un número natural $n \ge 5$. En el grupo alternante A_n calcule los conmutadores $[(1\ 2\ 4), (1\ 3\ 5)],$ $[(1\ 2\ 3), (1\ 4\ 5)],$ y $[(1\ 2\ 3), (1\ i\ 4)]$ para $i \ge 5$. Deduzca que todo elemento de A_n es un producto de conmutadores $[\sigma, \tau]$ donde $\sigma, \tau \in A_n$.

Indicación. Haga los cálculos de conmutadores y luego recuerde la tarea 1.

Solución. En 1) tenemos

$$[(1\ 2), (1\ i)] = (1\ 2) (1\ i) (1\ 2) (1\ i) = (1\ 2\ i),$$

y todo elemento de A_n es un producto de 3-ciclos de esta forma. De la misma manera, en 2) calculamos

$$[(1\ 2\ 4), (1\ 3\ 5)] = (1\ 2\ 4) \ (1\ 3\ 5) \ (1\ 4\ 2) \ (1\ 5\ 3) = (1\ 2\ 3),$$

$$[(1\ 2\ 3), (1\ 4\ 5)] = (1\ 2\ 3) \ (1\ 4\ 5) \ (1\ 3\ 2) \ (1\ 5\ 4) = (1\ 2\ 4),$$

$$[(1\ 2\ 3), (1\ i\ 4)] = (1\ 2\ 3) \ (1\ i\ 4) \ (1\ 3\ 2) \ (1\ 4\ i) = (1\ 2\ i).$$

Problema 6 (2 puntos). Consideremos el plano \mathbb{R}^2 con la distancia euclidiana d. Una **isometría** de \mathbb{R}^2 es una aplicación $f \colon \mathbb{R}^2 \to \mathbb{R}^2$ que satisface $d(f(\underline{a}), f(\underline{b})) = d(\underline{a}, \underline{b})$ para cualesquiera $\underline{a}, \underline{b} \in \mathbb{R}^2$. Demuestre que las isometrías de \mathbb{R}^2 forman un grupo respecto a la composición. ¿Es abeliano?

Indicación. Se puede asumir el siguiente resultado: toda isometría del plano es una composición de translaciones, rotaciones y reflexiones. Demuestre que las isometrías forman un subgrupo del grupo de biyecciones $\mathbb{R}^2 \to \mathbb{R}^2$.

Solución. Primero, notamos que si f, g son isometrías, entonces $g \circ f$ es también una isometría: para cualesquiera \underline{a} , \underline{b} tenemos

$$d(g(f(\underline{a})), g(f(\underline{b}))) = d(f(\underline{a}), f(\underline{b})) = d(\underline{a}, \underline{b}).$$

La aplicación identidad id es obviamente una isometría y es neutra respecto a la composición. Nos queda ver que toda isometría f posee una aplicación inversa f^{-1} que es también una isometría. Esto no es tan fácil, pero una vez sabemos que f es una composición de traslaciones, rotaciones y reflexiones, es suficiente notar que todas estas aplicaciones tienen inversas que son evidentemente isometrías. Entonces, las isometrías del plano forman un grupo. Por supuesto, no es abeliano: este tiene como sus subgrupos los grupos diédricos D_n .