Blight Violations in the City of Detroit

General Approach

Based on Cross Industry Standard Process for Data Mining

- 1. Look at the big picture.
- 2. Get the data.
- Discover and visualize the data to gain insights.
- 4. Prepare the data for Machine Learning algorithms.
- 5. Select a model and train it.
- 6. Fine-tune your model.

Process

Data collection & Feature Engineering

Detroit Council City of Detroit Open Data Data From Michigan Districts & Portal. Data Science Team Neighborhoods Map Merged and Feature Engineered Data Into One Dataframe. Final Dataframe

Building and Evaluation Models.

Using Scikit-learn package the following classification models were built and evaluated:

- Logistic Regression.
- Logistic Regression with SMOTE.
- Decision Tree.
- Decision Tree with SMOTE.
- Random Forest.
- Decision Tree with GridSearchCV.
- AdaBoost and Gradient Boosting with Weak Learners.

The best results was given by Random Forest and Gradient Boosting with future importance on a right

Implementing The Machine Learning Process

Training and test sets

Trying Appropriate Algorithms

Fitting the Model Parameters

Tuning The Impactful Hyper Parameters

Proper Performance Metric

Systemic Cross Validation

	F-1 Score	Precision
Logistic Regration	0.89	0.60
Decision Tree	0.92	0.61
Random Forest	0.93	0.89
Gradient Bosting	0.91	0.9
Grid Search	0.9	0.96

Final Model Results

AUC = 0.79

Gradient Boosting with Grid Searching

Presented By Ivan Zakharchuk & Kelvin Arellano

Kelvin Arellano <u>Github</u>

Ivan Zakharchuk

<u>Github</u>