平成28年度(2016年度)日本留学試験

数 学 (80分)

【コース 1 (基本, Basic)・コース 2 (上級, Advanced) 】

※ どちらかのコースを一つだけ選んで解答してください。

I 試験全体に関する注意

- 1. 係員の許可なしに、部屋の外に出ることはできません。
- 2. この問題冊子を持ち帰ることはできません。

Ⅱ 問題冊子に関する注意

- 1. 試験開始の合図があるまで、この問題冊子の中を見ないでください。
- 2. 試験開始の合図があったら、下の欄に、受験番号と名前を、受験票と同じように記入してください。
- 4. 足りないページがあったら、手をあげて知らせてください。
- 5. メモや計算などを書く場合は、問題冊子に書いてください。

III 解答方法に関する注意

- 1. 解答は、解答用紙に鉛筆(HB)で記入してください。
- 2. 問題文中のA, B, C,…には、それぞれ-(マイナスの符号)、または、 0から9までの数が一つずつ入ります。あてはまるものを選び、解答用紙 (マークシート)の対応する解答欄にマークしてください。
- 3. 同一の問題文中に **A . BC** などが繰り返し現れる場合、2度目以降 は、 **A . BC** のように表しています。

解答に関する記入上の注意

- (1) 根号 ($\sqrt{}$) の中に現れる自然数が最小となる形で答えてください。 (例: $\sqrt{32}$ のときは、 $2\sqrt{8}$ ではなく $4\sqrt{2}$ と答えます。)
- (2) 分数を答えるときは、符号は分子につけ、既約分数(reduced fraction) にして答えてください。

(例: $\frac{2}{6}$ は $\frac{1}{3}$, $-\frac{2}{\sqrt{6}}$ は $\frac{-2\sqrt{6}}{6}$ と分母を有理化してから約分し. $\frac{-\sqrt{6}}{3}$ と答えます。)

- (3) $\boxed{ A \sqrt{B} }$ に $\frac{-\sqrt{3}}{4}$ と答える場合は、下のようにマークしてください。
- (4) $\boxed{\textbf{DE}}$ x に -x と答える場合は、 $\boxed{\textbf{De}}$, $\boxed{\textbf{Ee}$ 1 とし、下のようにマークしてください。

【解答用紙】

Α	•	0	1	2	3	4	6	6	0	8	9
В	Θ	0	1	2	•	4	(5)	6	0	8	9
С	Θ	0	1	2	3	•	6	6	0	8	9
D	•	0	1	2	3	4	(5)	6	0	8	9
E	Θ	0	•	2	3	4	(5)	6	0	8	9

4. 解答用紙に書いてある注意事項も必ず読んでください。

※ 試験開始の合図があったら、必ず受験番号と名前を記入してください。

受験番号	*	*		
名 前				

数学 コース 2 (上級コース)

「解答コース」記入方法

解答コースには「コース1」と「コース2」がありますので、どちらかのコースを一つだけ 選んで解答してください。「コース2」を解答する場合は、右のように、解答用紙の「解答コース」の「コース2」を〇で囲み、その下のマーク欄をマークしてください。

選択したコースを正しくマークしないと、採点されません。

問1 2の2次関数

$$y = ax^2 + bx + c$$

を考える。関数 ① は x=1 のとき最大値 16 をとり,そのグラフは x軸と 2 点で交わり,その 2 点を結ぶ線分の長さを 8 とする。このとき,a, b, c の値を求めよう。

条件より, ① は

$$y = a(x - \boxed{A})^2 + \boxed{BC}$$

と表すことができる。また、① のグラフとx軸が交わる 2点の座標は

$$\left(-\boxed{\mathtt{D}},0\right),\left(\boxed{\mathtt{E}},0\right)$$

である。

したがって、 $a = | \mathbf{FG} |$ である。よって

$$b = \boxed{\mathbf{H}}$$
 , $c = \boxed{\mathbf{IJ}}$

である。

問	2	箱の中に	0から	9ま	での数	字が書	かれ	たカー	ードが,	それぞれ	1 枚ずつ,	計 10	枚入って	いる。
	2	この箱の中が	から 3	枚の	カード	を次の	2 通	りの	方法で	取り出す	。このとき	,次	の確率につ	ついて
	7	きえる。												

(1)	3枚の	カー	ドを同	時に取	り出す。	このと	こき
-----	-----	----	-----	-----	------	-----	----

(ii)	最も小さい数が2以下で,	最も大きい数が8以上である確率は	NO PQ	である。
------	--------------	------------------	----------	------

(2) 1 枚のカードを取り出し、数字を見てから元の箱に戻す試行を 3 回続ける。このとき、最も小さい数が 2 以上で、最も大きい数が 6 以下である確率は R である。

 $oxed{I}$ の問題はこれで終わりです。 $oxed{I}$ の解答欄 $oxed{T}$ \sim $oxed{Z}$ はマークしないでください。

II

正の数からなる数列 a1, a2, a3, ... は

$$a_1 = 1,$$
 $a_2 = 10$
$$(a_n)^2 a_{n-2} = (a_{n-1})^3 \quad (n = 3, 4, \cdots) \qquad \cdots \qquad \bigcirc$$

を満たしている。このとき、 $\lim_{n\to\infty} a_n$ を求めよう。

① の両辺の常用対数を考えて

A
$$\log_{10} a_n + \log_{10} a_{n-2} =$$
 B $\log_{10} a_{n-1}$

を得る。いま、 $b_n = \log_{10} a_n (n = 1, 2, \cdots)$ とおくと、この式は

となる。② を変形すると

$$b_n - b_{n-1} = \frac{1}{\boxed{\mathbf{C}}} (b_{n-1} - b_{n-2}) \quad (n = 3, 4, \cdots)$$

となるから

$$b_n - b_{n-1} = \left(\frac{1}{|C|}\right)^{n-|D|} (b_2 - b_1) \quad (n = 2, 3, \dots)$$
 3

が成り立つ。

(II は次ページに続く)

注) 常用対数: common logarithm

ここで、
$$b_1 = \boxed{\mathbf{E}}$$
 , $b_2 = \boxed{\mathbf{F}}$ であるから、③ より

$$b_n = \sum_{k=2}^n \left(\frac{1}{\boxed{\textbf{C}}} \right)^{k-\boxed{\textbf{G}}}$$

を得る。よって

$$b_n = \boxed{\mathbf{H}} - \left(\frac{1}{\boxed{\mathbf{C}}}\right)^{n-\boxed{\mathbf{I}}}$$

である。したがって

$$\lim_{n\to\infty} a_n = \boxed{\mathsf{JKL}}$$

である。

 $oxed{II}$ の問題はこれで終わりです。 $oxed{II}$ の解答欄 $oxed{M}$ \sim $oxed{Z}$ はマークしないでください。

 $oxed{III}$ の問題はこれで終わりです。 $oxed{III}$ の解答欄 $oxed{\mathbf{R}}$ \sim $oxed{\mathbf{Z}}$ はマークしないでください。

III

2 次方程式 $x^2+\sqrt{3}x+1=0$ の 2 つの解を α , β とする。ただし, $0<\arg\alpha<\arg\beta<2\pi$ である。このとき,次の 3 つの条件を満たす複素数 z を考える。

$$\begin{cases} \arg \frac{\alpha - z}{\beta - z} = \frac{\pi}{2} & \dots \\ (1+i)z + (1-i)\overline{z} + k = 0 & \dots \\ \frac{\pi}{2} < \arg z < \pi & \dots \end{cases}$$
 3

ただし、 k は実数とする。

また、複素数平面上で α , β , z を表す点をそれぞれ A, B, P とおく。

(1) α , β の偏角は

である。

(2) 次の文中の $oldsymbol{E}$ \sim $oldsymbol{Q}$ には、下の $oldsymbol{0}$ \sim $oldsymbol{9}$ の中から適するものを選びなさい。

① より、
$$\mathbf{E} = \frac{\pi}{2}$$
 であるから、点 \mathbf{P} は中心 $-\frac{\sqrt{\mathbf{F}}}{\mathbf{G}}$ 、半径 $\frac{\mathbf{H}}{\mathbf{I}}$ の

円周上にある。

また、② より、点 P は傾きが $\boxed{ f J }$ であり、虚軸との交点が $\boxed{ f L }$ ki であるような直線の上にある。

以上より、①、②、③ を同時に満たす複素数 z の個数を n とすると、n の最大値は \mathbf{M} であり、そのときの k の値の範囲は

である。ただし, P < Q とする。

- 0 0 1 2 2 3 3 4 4
- ⑤ 5 ⑥ 6 ⑦ ∠PAB ⑧ ∠PBA ⑨ ∠APB

注) 複素数:complex number,複素数平面:complex plane,偏角:argument,虚軸:imaginary axis

 $oxed{III}$ の問題はこれで終わりです。 $oxed{III}$ の解答欄 $oxed{\mathbf{R}}$ \sim $oxed{\mathbf{Z}}$ はマークしないでください。

問1 x が不等式

$$2\left(\log_{\frac{1}{3}}x\right)^2 + 9\log_{\frac{1}{3}}x + 9 \le 0$$

を満たすとき, 関数

$$f(x) = (\log_3 x) \left(\log_3 \frac{x}{3}\right) \left(\log_3 \frac{x}{9}\right) \qquad \qquad \cdots \qquad \bigcirc$$

の最大値を求めよう。

① を満たす x の値の範囲は

$$lacksquare$$
 A $\sqrt{\ B} \leq x \leq \ CD$

である。

ここで、 $\log_3 x = t$ とおくと、t のとる値の範囲は

$$\frac{\mathsf{E}}{\mathsf{F}} \leq t \leq \mathsf{G}$$

である。

また、② の右辺を t で表して、その式が表す関数を g(t) とおくと、その導関数は

$$g'(t) = \begin{bmatrix} \mathbf{H} \end{bmatrix} t^2 - \begin{bmatrix} \mathbf{I} \end{bmatrix} t + \begin{bmatrix} \mathbf{J} \end{bmatrix}$$

である。したがって、f(x) は $x = \begin{bmatrix} \mathbf{KL} \end{bmatrix}$ で最大値 $\begin{bmatrix} \mathbf{M} \end{bmatrix}$ をとる。

- 問 2 a>0 とする。曲線 $y=\sqrt{x}e^{-x}$ と x 軸および x 軸上の点 A(a,0) を通る直線 x=a で 囲まれた部分を、x 軸の周りに 1 回転してできる立体の体積を V とする。
 - (1) V は a の関数として

$$V = -\frac{\pi}{4} \left\{ \left(\boxed{\mathbf{N}} a + \boxed{\mathbf{O}} \right) e^{-\boxed{\mathbf{P}} a} - \boxed{\mathbf{Q}} \right\}$$

と表される。

(2) 点 A は原点を出発して、x 軸上を正の方向に移動し、その t 秒後の速度を 4t とする。 このとき、t 秒後の V の変化率を求めると

$$\frac{dV}{dt} = \mathbf{R} \pi t^{\mathbf{S}} e^{-\mathbf{T} t^{\mathbf{V}}}$$

である。また、この変化率が最も大きくなるのは

$$t = \frac{\sqrt{V}}{4}$$

のときで、そのときの V の値は

$$V = -\frac{\pi}{8} \left(\boxed{\mathbf{W}} e^{-\frac{\boxed{\mathbf{X}}}{\boxed{\mathbf{Y}}}} - \boxed{\mathbf{Z}} \right)$$

である。

IV の問題はこれで終わりです。

コース 2 の問題はこれですべて終わりです。解答用紙の \boxed{V} はマークしないでください。 解答用紙の解答コース欄に「コース 2」が正しくマークしてあるか, もう一度確かめてください。

この問題冊子を持ち帰ることはできません。

〈数 学〉Mathematics

	コー	ス1 Cou	rse 1
1	引 Q.	解答番号 row	正解 A.
		ABC	116
		D	3
	問 1	E	5
	ID) I	FG	-1
Ι		Н	2
		IJ	15
		KLM	112
	問 2	NOPQ	1340
		RS	18
		Α	2
		ВС	12
		DE	32
	問 1	FGHI	3812
		J	1
		K	2
		L	2
I		М	2 2 2 4
		N	
		OPQ	222
	問 2	RST	441
	[D] Z	UV	32
		W	1
		X	2
		YZ	34
		AB	54
	Fig. 7	С	1
		DE	15
I	all of	FG	26
		Н	9
	Table 1	l l	1
		J	0 3 12
	The same	Α	3
		ВС	12
		DEF	316
T 7		G	4
IV	i i i i i i i i i i i i i i i i i i i	HI	34
		JKL	341
		M	4
		NOP	325

	コー	ス2 Cou	rse 2
II.	引 Q.	解答番号 row	正解 A.
		ABC	116
		D	3
	問 1	E	5
	ID) I	FG	-1
Ι		H	2
		IJ	15
		KLM	112
	問 2	NOPQ	1340
		RS	18
	7874.1	AB	23
		С	2
		D	2
п	建设度	E	0
I		F	1
		G	2
		HI	22
		JKL	100
Dall I		AB	56
		CD	76
		E	9
		FG	32
Ш		HI	12
ш		J	1
		KL	12
		M	2
		NO	13
		PQ	23
	et en ma	AB	33
		CD	27
	BULL I	EF	32
	問 1	G	3
		HIJ	362
V		KL	27
		M	6
		NOPQ	2121
	問 2	RSTU	8342
	[D] Z	V	6
		WXYZ	5322