# A Novel Linear Recursive Estimator Based on the Frisch Scheme

Stefano Massaroli<sup>1</sup>, Renato Miyagusuku<sup>2</sup>, Federico Califano<sup>3</sup>, Angela Faragasso<sup>1</sup>, Atsushi Yamashita<sup>1</sup> and Hajime Asama<sup>1</sup>

 $^1\mathrm{Department}$  of Prcision Engineering, The University of Tokyo  $^2\mathrm{Department}$  of Mechanical and Intelligent Engineering, Utsunomiya University  $^3\mathrm{Department}$  of Robotics and Mechatronics, University of Twente

# 12<sup>th</sup> Asian Control Conference 2019-06-11





Search for connections between observations ("Laws of Nature")

- ⇒ At the basis of the development of scientific knowledge.
- e.g. Babylonian astronomical diaries (≈ 747 BC)

Given: Variables Observations  $x_1, x_2, ..., x_n \mid x_{i1}, x_{i2}, ..., x_i$ 

**Search** for a relation describing the process generating the data:

$$f(x_1, x_2, \ldots, x_n) = 0$$

satisfied by **every set** of observations, i.e.

$$\forall i \ f(x_{i1}, x_{i2}, ..., x_{in}) = 0$$

Problem: In ALL practical situations, data will NEVER satisfy the relation.

⇒ Observations are affected by noise.





Search for connections between observations ("Laws of Nature")

- ⇒ At the basis of the development of **scientific knowledge**.
- e.g. Babylonian astronomical diaries (≈ 747 BC)

Given: Variables Observations  $x_1, x_2, ..., x_n \mid x_{i1}, x_{i2}, ..., x_{in}$ 

**Search** for a relation describing the process generating the data:

$$f(x_1, x_2, ..., x_n) = 0$$

satisfied by every set of observations, i.e.

$$\forall i \ f(x_{i1}, x_{i2}, ..., x_{in}) = 0$$

Problem: In ALL practical situations, data will NEVER satisfy the relation.

⇒ Observations are affected by noise.





Search for connections between observations ("Laws of Nature")

- ⇒ At the basis of the development of **scientific knowledge**.
- e.g. Babylonian astronomical diaries (≈ 747 BC)

Given: Variables Observations  $x_1, x_2, ..., x_n \mid x_{i1}, x_{i2}, ..., x_{in}$ 

**Search** for a relation describing the process generating the data:

$$f(x_1, x_2, ..., x_n) = 0$$

satisfied by every set of observations, i.e.

$$\forall i \ f(x_{i1}, \ x_{i2}, \ \dots, \ x_{in}) = 0$$

Problem: In ALL practical situations, data will NEVER satisfy the relation.

→ Observations are affected by noise.





Extract linear relations from data affected by additive noise.

# **Approach**

We introduce a **novel estimator**: a **recursive** version of the *Frisch Scheme*.

#### Contribution

- Reduced size of the solutions space w.r.t. standard methods;
- Improved computational efficiency

# Originality





Extract linear relations from data affected by additive noise

# Approach:

We introduce a **novel estimator**: a **recursive** version of the *Frisch Scheme*.

#### Contribution

- Reduced size of the solutions space w.r.t. standard methods;
- Improved computational efficiency

# Originality





Extract linear relations from data affected by additive noise.

# **Approach**

We introduce a **novel estimator**: a **recursive** version of the *Frisch Scheme*.

#### Contribution:

- Reduced size of the solutions space w.r.t. standard methods;
- Improved computational efficiency

# Originality





Extract linear relations from data affected by additive noise

# **Approach**

We introduce a **novel estimator**: a **recursive** version of the *Frisch Scheme*.

#### Contribution

- Reduced size of the solutions space w.r.t. standard methods;
- Improved computational efficiency

# Originality:





#### Linear Relation:

$$\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n = 0$$

with

$$x_i = \hat{x}_i + \tilde{x}_i$$

## Observation matrix

$$\mathbf{X} = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m1} & x_{m2} & \dots & x_{mn} \end{pmatrix} \in \mathbb{R}^{m \times n} \qquad \mathbf{A} = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix} \in \mathbb{R}^n$$

#### Parameters vector

$$\mathbf{A} = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix} \in \mathbb{R}^n$$

It holds:

$$\mathbf{X} = \hat{\mathbf{X}} + \tilde{\mathbf{X}}$$

$$\hat{\mathbf{X}}\mathbf{A} = \mathbf{0}$$





#### Linear Relation:

$$\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n = 0$$

with

# **Practical Examples:**

- *n*-DOF robot:  $\tau = \mathbf{Y}(\mathbf{q}, \dot{\mathbf{q}}, \ddot{\mathbf{q}})\theta$
- Linear ODEs:  $L\ddot{V} + R\dot{V} \frac{1}{C}(V + u) = 0$
- Autoregressive models

X =

 dynamical systems linear w.r.t. some parameters

 $x_{m1}$   $x_{m2}$  ...  $x_{mn}$ 

 $\alpha_n$ 

It holds

$$\mathbf{X} = \hat{\mathbf{X}} + \tilde{\mathbf{X}}$$

$$\hat{\mathbf{X}}\mathbf{A} = 0$$





We define the *sample covariance matrix* of the data:

$$\Sigma = \frac{1}{m} \mathbf{X}^{\top} \mathbf{X} \in \mathbb{R}^{n \times n}$$

Assumption: Noise and noiseless samples are orthogonal:

$$\sum_{t=1}^{m} \hat{x}_{it} \tilde{x}_{jt} = 0 \quad \forall i, j$$

We have

$$\Sigma = \hat{\Sigma} + \tilde{\Sigma}$$
 ,  $\Sigma > 0$ ,  $\tilde{\Sigma} \ge 0$   
 $\hat{\Sigma} A = 0$ 





We define the *sample covariance matrix* of the data:

$$\Sigma = \frac{1}{m} \mathbf{X}^{\top} \mathbf{X} \in \mathbb{R}^{n \times n}$$

Assumption: Noise and noiseless samples are orthogonal:

$$\sum_{t=1}^{m} \hat{x}_{it} \tilde{x}_{jt} = 0 \quad \forall i, j$$

We have

$$\Sigma = \hat{\Sigma} + \tilde{\Sigma}$$
 ,  $\Sigma > 0$ ,  $\tilde{\Sigma} \ge 0$   
 $\hat{\Sigma} A = 0$   
 $\hat{\Sigma} > 0$  and  $\det(\hat{\Sigma}) = 0$ 





We define the *sample covariance matrix* of the data:

$$\Sigma = \frac{1}{m} \mathbf{X}^{\top} \mathbf{X} \in \mathbb{R}^{n \times n}$$

**Assumption:** Noise and noiseless samples are orthogonal:

$$\sum_{t=1}^{m} \hat{x}_{it} \tilde{x}_{jt} = 0 \quad \forall i, j$$

We have

$$\Sigma = \hat{\Sigma} + \tilde{\Sigma}$$
,  $\Sigma > 0$ ,  $\tilde{\Sigma} \ge 0$   
 $\hat{\Sigma} \mathbf{A} = 0$   
 $\hat{\Sigma} \ge 0$  and  $\det(\hat{\Sigma}) = 0$ 





5 / 21

# Problem: Estimation Scheme [Kalmann, 1982]

Given a sample covariance matrix of noisy observations,  $\Sigma$ , determine positive definite or semidefinite noise covariance matrices  $\tilde{\Sigma}$  such that

$$\hat{\Sigma} = \Sigma - \tilde{\Sigma} \succeq 0 \quad \text{ and } \quad \det(\hat{\Sigma}) = 0$$

 $\Rightarrow$  Any basis of null( $\hat{\Sigma}$ ) will describe a set of linear relations compatible with the data

$$\mathbf{A} = \text{null}(\hat{\Sigma})$$





**Frisch Scheme's Assumption:** The noise variables are mutually independent:

$$\sum_{t=1}^{m} \tilde{x}_{it} \tilde{x}_{jt} = 0 \quad \forall i \neq j \quad \Rightarrow \quad \tilde{\Sigma} \text{ is diagonal}$$

## Frisch Scheme Solution:

Every positive definite or semidefinite diagonal matrix  $\tilde{\Sigma}$ 

$$\tilde{\Sigma} = \operatorname{diag}(\tilde{\sigma}_1^2 \quad \tilde{\sigma}_2^2 \quad \cdots \quad \tilde{\sigma}_n^2)$$

such that

$$\hat{\Sigma} = \Sigma - \tilde{\Sigma} \succeq 0 \quad \text{and} \quad \det \hat{\Sigma} = 0$$

is a solution of the Frisch scheme.

In general, the Frisch scheme has infinite solutions.



Define

$$\operatorname{Maxcor}_{F}(\Sigma) = \max_{\tilde{\Sigma} \in \mathscr{D}} \left\{ \operatorname{dim} \left[ \operatorname{null} \left( \Sigma - \tilde{\Sigma} \right) \right] \right\}$$

# Theorem [Kalmann, 1982]

If  $\operatorname{Maxcor}_F(\Sigma) = 1$ , the coefficients  $\alpha_1, \ldots, \alpha_n$  of all linear relations compatible with the Frisch scheme lie (by normalizing one of the coefficients to 1) inside the simplex whose vertices are defined by the *n* least squares solutions.







# **Advantages**

- post-identification degree of freedom in the choice of a single solution
  - ⇒ solve physical feasibility problems
  - ⇒ seek "optimal" solution
- closed form computation of the simplex of solutions

# Disadvantages

- To obtain a simplex of a useful size it is needed a well-conditioned experiment
  - ⇒ not suitable for diagnostics or online estimations
- If the solutions space is too wide, the post-identification process is meaningless





#### Research Aim:

- Reduce the size of the solutions space without introducing any further assumptions (priors)
- Develop a computationally efficient algorithm, suitable for online applications (control, diagnostics, etc.).

#### Recursive Frisch Scheme: Our Intuition

 If we compute the simplices corresponding to two different covariance matrices, the true parameter must lie in both of them, i.e. in their intersection



## **Proposed Approach:**

- Divide the data in several batches and compute the respetive simplexes;
- Intersect those simplexes to obtain a smaller solution space.





#### Remark:

By **successively intersecting** simplexes computed from different data sets it is possible to significantly **reduce the size** of the solutions space.

**\$\$** ize → ↑accuracy

#### Main Issues:

- ⇒ No computationally efficient algorithms compute the intersection of convex objects only from the knowledge of their vertices;
- ⇒ The number of vertices of the intersection may increase with the iterations.

Stefano Massaroli (UT)



How can we approximate the intersection?



ASCC 2019

How can we approximate the intersection?

# **Current Method:** Use particles!



[Massaroli, et al., 2018]





How can we approximate the intersection?

Proposed Method: Use bounding boxes



⇒Bounding-box recursive Frisch scheme







# Geometry of simplexes and bounding boxes

## Simplex Matrix:

$$\mathbf{S}^p = (v_1, v_2, \dots, v_{p+1}) \in \mathbb{R}^{p \times p + 1}$$
  
Simplex:  $\mathfrak{S}(\mathbf{S}^p) = \operatorname{conv}(\mathbf{S}^p)$ 

## Simplex Bounds:

$$\begin{split} l(\mathbf{S}^p) &= (l_1, \dots, l_p), \ u(\mathbf{S}^p) = (u_1, \dots, u_p) \\ \text{with } l_i &= \min_j \left(\mathbf{S}^p_{ij}\right) \text{ and } u_i = \max_j \left(\mathbf{S}^p_{ij}\right) \end{split}$$

## Simplex Bounding Box:

$$\mathfrak{B}(\mathbf{S}^p) = b_1 \times b_2 \times \cdots \times b_p = \prod_{i=1}^p b_i, \quad b_i = [l_i, u_i]$$



## **Proposition:**

Given N simplex matrices  $\mathbf{S}_1^n, \dots, \mathbf{S}_N^n$  it holds

$$\bigcap_{i=1}^{N} \mathfrak{S}(\mathbf{S}_{i}^{n}) \subseteq \bigcap_{i=1}^{N} \mathfrak{B}(\mathbf{S}_{i}^{n})$$

# Proposition:

$$\bigcap_{i=1}^N \mathfrak{B}(\mathbf{S}_i^n) = \prod_{j=1}^n [\max_i l_{ij}, \min_i u_{ij}]$$







#### **BBRF** Iteration

On-line estimation perspective: After the first m measurements, let's keep observing the system.

The state of the system at the time  $t_k$  is:  $\mathbf{x}(t_k) = \begin{pmatrix} x_1(t_k) & x_2(t_k) & \cdots & x_n(t_k) \end{pmatrix}$ 

observation matrix 
$$\mathbf{X}(t_k) = \left(\mathbf{x}(t_{k-m})^\top \quad \mathbf{x}(t_{k-m+1})^\top \quad \cdots \quad \mathbf{x}(t_k)^\top\right)^\top \in \mathbb{R}^{m \times n}$$
 covariance matrix 
$$\Sigma(t_k) = \frac{\mathbf{X}(t_k)^\top \mathbf{X}(t_k)}{m} \in \mathbb{R}^{n \times n}$$

 $\mathbf{S}^{n-1}(t_k) = (\mathbf{A}_1(t_k) \quad \mathbf{A}_2(t_k) \quad \cdots \quad \mathbf{A}_n(t_k)) \in \mathbb{R}^{n-1 \times n}$ simplex matrix

simplex bounding box 
$$\mid \mathfrak{B}(\mathbf{S}^{n-1}(t_k)) = \prod_{i=1}^{n-1} [l_i(t_k), u_i(t_k)]$$

It holds:

$$l_i(t_k) \le \alpha_i \le u_i(t_k) \quad \forall i, k \in \mathbb{N}$$





## Solution of Bounding Box Recursive Frisch Scheme:

Approximate the intersection of simplexes by intersecting their bounding boxes.

#### BBRF scheme:

Lower Solution Bounds

$$\gamma_i(t_k) = \max \left\{ \gamma_i(t_{k-1}), l_i(t_k) \right\}$$

**Upper Solution Bounds** 

$$\mu_i(t_k) = \min \left\{ \mu_i(t_{k-1}), u_i(t_k) \right\}$$

Solution Box

$$T(t_k) = \bigcap_{j=1}^{k} \mathfrak{B}(\mathbf{S}^{n-1}(t_j)) = \prod_{i=1}^{n-1} [\gamma_i(t_k), \mu_i(t_k)]$$

## **Proposition:**

$$\lambda(T(t_k)) \le \lambda(T(t_{k-1}))$$







#### Simulations

#### System:

$$\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 = 0 \Rightarrow 2D$$
 Simplex

where

$$x_1, x_2 \sim \mathcal{N}(0, 1)$$
  $x_3 = -\alpha_1 x_1 - \alpha_2 x_2$ 

and, thus

$$\mathbf{A} = \begin{pmatrix} 1.5 & 1.2 & 1 \end{pmatrix}^{\mathsf{T}}$$

- Independent noise has been added to  $x_1$ ,  $x_2$ ,  $x_3$  ( $\sigma_{\%} = 30$ );
- Observation matrix size: m = 20;
- Monte Carlo simulation: 150 runs.





ASCC 2019

#### Results I.

"Smaller" solutions set w.r.t the simplex obtained with the whole dataset:

⇒ More efficient way to use data in the context of the Frisch scheme as alternative to perform a unique batch identification





#### Results II.

The solution bounds converge to constant values.

⇒ The uncertainty intervals at convergence are considerably smaller than the initial ones.

ASCC 2019



#### Results III.

Volume of solutions sets:

$$\lambda(T(t_k)) = \prod_{i=1}^{n-1} \left| \mu_i(t_k) - \gamma_i(t_k) \right|$$
$$\lambda(\mathfrak{S}(t_k)) = \frac{1}{(n-1)!} \left| \det \begin{pmatrix} \mathbf{S}^{n-1}(t_k) \\ 1 \dots 1 \end{pmatrix} \right|$$

 $\lambda(T(t_k))$  decreases very fast in time  $\Rightarrow$  Quick convergence of the algorithm. In average, for k > 10,

$$\lambda(T(t_k)) \le \lambda(\mathfrak{S}(t_k)) \quad \wedge \quad \lambda(T(t_k)) \le \lambda(\mathfrak{S}_{tot})$$







# **Computational Complexity Analysis**

The computational complexity results to be  $O(n^3)$  due to the extraction of null spaces bases, which is needed to compute the simplex vertices and performed in each iteration, i.e.

$$\mathbf{A}_{i}(t_{k}) = \text{null}\left[\Sigma(t_{k}) - \text{diag}\left(0, \dots, \tilde{\sigma}_{i}^{2}(t_{k}), \dots, 0\right)\right] \quad \forall i = 1, \dots, n$$

computed via SVD.

⇒ Suitable for online applications.





[Results obtained with Intel® Xeon E3-1240v5]



# Conclusions and Future Works

## Approach:

We proposed a **novel estimator**: the BBRF scheme.

#### Contribution:

- Reduced size of the solutions space w.r.t. standard methods;
- Improved computational efficiency
- It is always more convenient to perform the BBRF scheme rather than use the whole data set for a single Frisch estimation;
- The convergence speed and computational complexity of the proposed algorithm make it useful for online applications (diagnostics, control, etc);
- This approach can be modified to treat time-varying systems.
   Use dynamic bounding boxes instead of simple intersections.





# Thank you for your attention Any questions?



