For each multiple-choice question below, mark the **single best** answer by completely filling in the circle.

	1)	JSON is an example of
B		 ○ A programming language ○ A data format standard ○ An unstructured data application ○ None of the above
	2)	Which of the following transformations would <i>not</i> be made by a stemmer?
C	,	 ○ going -> go ○ goes -> go ○ went -> go ○ All of the above transformations could be made by a stemmer
	3)	Consider the following sentence:
1		A writer is a person who cares what words mean, what they say, how they say it.
2,		Suppose we use a simple tokenizer that transforms to lowercase and removes punctuation. Which of the following Is a sparse bag of words representation of the sentence?
		 {a:1, writer:1, is:1, a:1, person:1, who:1, cares:1, what:1, words:1, mean:1, what:1, they:1, say:1, how:1, they:1, say:1, it:1} {a:2, writer:1, is:1, person:1, who:1, cares:1, what:2, words:1, mean:1, they:2, say:2, how:1, it:1} {writer:1, person:1, cares:1, words:1, mean:1, say:2} None of the above is a sparse bag-of-words representation of the sentence.
_	4)	Which of the following are characteristics of applications built using the UIMA standard?
8		 Annotation-oriented processing of data streams Use XML for data communication Use a pipeline-like architecture where analyses engines may be chained together All of the above

5)	Suppose you have the matrix V resulting from applying latent semantic analysis to a term-document matrix M. Consider a document d in the corpus that was used to create M.		
	Write a paragraph (about 4-6 sentences) explaining how you could use V to find the 5 documents in the corpus that are most similar to d. (Excluding d itself.) Make sure you clearly describe your notion of similarity.		
	Then describe in 3-5 sentences why this approach may work better for retrieving similar documents than using the term-document matrix M alone.		