Visualization Basics

Intro to Data Visualization

Gaston Sanchez

CC BY-SA 4.0

Vision

Data Visualization?

Data visualization is simply mapping data to geometric objects and their visual attributes.

Star Wars data set

weapon	species	jedi	weight	height	gender	name	
lightsaber	human	yes_jedi	77	1.72	male	Luke Skywalker	1
blaster	human	no_jedi	49	1.50	female	Leia Organa	2
lightsaber	human	yes_jedi	77	1.82	male	Obi-Wan Kenobi	3
blaster	human	no_jedi	80	1.80	male	Han Solo	4
unarmed	droid	no_jedi	32	0.96	male	R2-D2	5
unarmed	droid	no_jedi	75	1.67	male	C-3P0	6
lightsaber	yoda	yes_jedi	17	0.66	male	Yoda	7
bowcaster	wookiee	no_jedi	112	2.28	male	Chewbacca	8

How does it (conceptually) work?

Building a Scatterplot

- Dataset: starwars
- ▶ Variables: height, weight, jedi
- ► Geometric objects: points
- Visual attributes:
 - X-axis: height, Y-axis: weight
 - Shape: dots
 - Color: based on jedi categories

Mapping Data

data values

height weight jed	i
neight weight jed	
1.72 77 yes_ji 1.50 49 no_je 1.82 77 yes_ji 1.80 80 no_je 0.96 32 no_je 1.67 75 no_je 0.66 17 yes_ji 2.28 112 no_je	edi edi edi edi edi edi

These values are meaningful to us, but not to the computer

visual attributes

Х	у	color
X ₁ X ₂ X ₃ X ₄ X ₅ X ₆ X ₇ X ₈	y ₁ y ₂ y ₃ y ₄ y ₅ y ₆ y ₇ y ₈	#F8766D #00BFC4 #F8766D #00BFC4 #00BFC4 #00BFC4 #F8766D #00BFC4

They need to be converted from data units to physical units that the computer can display

Supporting Elements

- Axis labels
- Legends (positions, labels, symbols)
- Choice of colors for points
- Background color (i.e. gray)
- Grid lines (major and minor)
- Axis tick marks

In Summary

- Graphs consist of several components
- ► Some components represent quantitative values (e.g. lines, bars, etc.)
- ► Some represent categorical values (e.g. color, shape, orientation)
- ► Some play a supporting role (e.g. grid lines, legends, scales on axes)

Geometric Objects and their Visual Attributes

Mapping Fundamentals

Quantitative & Categorical

Data

Geometric Objects

Visual Attributes

Geometric Objects (primitives)

Example of Graphs with Geometric Objects

Points: e.g. scatterplot

Bars: e.g. bar chart

Lines: e.g. timeline

2D-areas / Polygons: e.g. densities

Geometric objects

Graphical objects (typically) used to encode quantitative values

- Points
- Lines
- Bars
- ▶ 2D areas and polygons

Visual Attributes

Visual Attributes

Visual Attributes of Geometric objects

Used to encode both quantitative and categorical

- Position
- Color
- Size
- Shape
- ▶ Fill pattern
- Border
- ► Line style

Examples of Visual Attributes

Vertical position

Vertical position Horizontal position Color hue

Vertical position Horizontal position

Vertical position Horizontal position Color hue Size (area)

Gallery of Charts

(off-the-self examples)

Examples from Google Charts

Examples from Google Charts

Examples from Google Charts

Examples from ggplot2

Examples from ggplot2

Two Variables Continuous X, Continuous Y Continuous Bivariate Distribution e <- ggplot(mpg, aes(cty, hwy)) h <- ggplot(diamonds, aes(carat, price)) $geom_label(aes(label = cty), nudge_x = 1,$ $h + geom_bin2d(binwidth = c(0.25, 500))$ nudge y = 1, check overlap = TRUE) x, y, alpha, color, fill, linetype, size, weight x, y, label, alpha, angle, color, family, fontface, hjust, lineheight, size, vjust h + geom_density2d() e + geom iitter(height = 2, width = 2) x, v, alpha, colour, group, linetype, size x, v, alpha, color, fill, shape, size h + geom_hex() e + geom point() x, v, alpha, colour, fill, size x, v, alpha, color, fill, shape, size, stroke Continuous Function e + geom quantile() i <- ggplot(economics, aes(date, unemploy)) x, v, alpha, color, group, linetype, size, weight + geom_area() e + geom_rug(sides = "bl") x, v, alpha, color, fill, linetype, size x, y, alpha, color, linetype, size + geom line() e + geom smooth(method = lm) x, y, alpha, color, group, linetype, size x, y, alpha, color, fill, group, linetype, size, weight + geom step(direction = "hv") e + geom text(aes(label = cty), nudge x = 1,x, v, alpha, color, group, linetype, size AB nudge v = 1, check overlap = TRUE) x y label alpha angle color family fontface

So how do you approach graphing data?

Creating graphs . . .

With computer technology, anyone can create graphics, but few of us know how to do it well.

Donna Wong

Approaching graphing data

With so many chart options, and various software tools, how can you determine what type of graph should you use?

In my opinion, there are a couple of aspects to always keep in mind:

- Data encoding (core idea)
- Common analytical tasks
- Visual perception basics
- Effective charts suggestions