Quiz #1: Partial Derivatives and Gradients

Question 1

Given the f(x,y)= x^2 y + $3x^2$, find its derivative with respect to x, i.e., find $\partial f/\partial x$

Question 2

Given that
$$f(x,y) = xy^2 + 2x + 3y$$
 its gradient, i.e., $abla f(x,y)$ is:

a):-

$$\left[egin{array}{c} 2xy+3 \ y^2+2 \end{array}
ight]$$

b):-

$$\left[\begin{array}{c}2xy\\2x+3\end{array}\right]$$

c):-

$$\left[egin{array}{c} y^2+2\ 2xy+3 \end{array}
ight]$$

d):-

$$\left[egin{array}{c} 2y \ 0 \end{array}
ight]$$

Answer:- c

Question 3

Given the f(x,y)= $x^2 + 2y^2 + 8y$, The minimum value of f is:

Hint: The question asks for the minimum value that the function can output, and not the point (x,y) that gives it.

Question 4

The gradient of $f(x,y,z)=x^2+z^2+2xyz$ is, a):-

$$\left[egin{array}{c} 2x+2yz\ 2xz\ 2xy+2z \end{array}
ight]$$

b):-

$$\left[egin{array}{c} 2x+2xz \ 2yz \ 2xy+z \end{array}
ight]$$

c):-

$$\left[egin{array}{c} 2x+2yz\ 2xy\ 2xy+z \end{array}
ight]$$

d):-

$$\left[egin{array}{c} 2yz+2xz \ 2z \ 2x \end{array}
ight]$$

Answer:- a

9-	(x,y,2)= 22+3xy2+22 -0.0 P(x,y,2)= (04/0, 04/03 04/03
	$\frac{\partial F}{\partial n} = 2n + 3y \neq -\infty$ $\frac{\partial F}{\partial y} = 2x \neq -\infty$
	df = 2 my + 2 x → 0
	$\nabla f(x)J(x) = \begin{bmatrix} 3x + 3y + 3x \\ 3xy + 3x \end{bmatrix}.$