- 3.27.2) (X, d) metric space; $A \subset X$.
 - (a) Show that $d(x, A) = 0 \iff x \in \overline{A}$.
 - (\Rightarrow) Suppose $x \in \overline{A}$.

Then $\forall \epsilon > 0$, $B(x, \epsilon) \cap A \neq \emptyset$. Thus $\exists a \in A \text{ s.t. } d(x, a) < \epsilon$. Since d(x, a) > 0, it follows that

$$d(x, A) = \inf\{d(x, a) \mid a \in A\} = 0.$$

 (\Leftarrow) Suppose 0 = d(x, A).

Then $0 = \inf\{d(x, a) \mid a \in A\}$ so that $\forall \epsilon > 0$, $\exists a \in A$ s.t.

$$0 < d(x, a) < \epsilon$$
.

This implies that every $B(x, \epsilon)$ intersects A. Thus $x \in \overline{A}$.

(b) Show that if A is compact, d(x, A) = d(x, a) for some $a \in A$.

$$d(x, A) = \inf\{d(x, a) \mid a \in A\}$$
. Then for all $\epsilon > 0$,

$$\exists a_n \text{ s.t. } k \leq d(x, a_n) < k + \epsilon.$$

Consequently, \exists sequence $\{a_n\}$ s.t. $\{f(a_n)\} \to d(x, A)$.

A being compact in a metric space implies it is closed and bounded. So there is a convergent subsequence $\{a_{n_k}\} \to a_0$. By Lemma 21.2, $a \in \overline{A}$. Therefore, a_0 is the element of A s.t.

$$d(x,A) = d(x,a_0).$$

(c) Show $U(A, \epsilon) = \bigcup_{a \in A} B_d(a, \epsilon)$.

$$U(A, \epsilon) = \{x \mid d(x, A) < \epsilon\}.$$

 (\Rightarrow) Let $x \in U(A, \epsilon)$ and define the distance of x to A to be $\delta = d(x, A)$. We have that the following inequality holds

$$\delta < \epsilon$$
.

It follows that \exists some point $a_x \in A$ s.t.

$$\delta \le d(x, a_x) < \epsilon,$$

implying that $x \in B_d(a_x, \epsilon)$. Thus

$$U(A, \epsilon) \subset \bigcup_{a \in A} B_d(a, \epsilon).$$

 (\Leftarrow) Now let $u \in \bigcup_{a \in A} B_d(a, \epsilon)$. Then u is contained is some $B_d(a, \epsilon)$ so that

$$d(u, a) < \epsilon$$
.

But $d(u, a) \ge d(u, A)$. Chaining the inequalities together

$$d(u, A) \le d(u, a) < \epsilon$$

tells us that $u \in U(A, \epsilon)$; i.e. u is in the ϵ -neighborhood of A. Thus $\bigcup_{a \in A} B_d(a, \epsilon) \subset U(A, \epsilon)$. Finally,

$$\bigcup_{a \in A} B_d(a, \epsilon) = U(A, \epsilon).$$

- (d) Suppose A compact; $U \supset A$ open (U contains A). Show there exists some $U(A, \epsilon)$ contained in U.
 - (\Rightarrow) We know that A is closed implying that X-A is open and $\overline{A}=A$. For all $u\in U-A$,

$$d(u, A) > 0$$
 since $u \notin \overline{A}$.

We know that d(u, A) is continuous so that some \exists

$$\delta := \min\{d(u, A) \mid u \in U - A\}.$$

We now show that this δ neighborhood of A is contained in U

$$A \subset U(A, \delta) \subset U$$
.

Let $v \in U(A, \delta)$. Letting $\delta' = min\{d(v, A), \delta - d(v, A)\}$, we have that

$$B_d(v, \delta') \subset U$$
.

(e) Show (d) need not hold if A closed but not compact. In the discrete topology, every set is open and every set is closed. So (0,1) is closed in this topology but is not compact. With U = (0,1), there is no $(U, \epsilon > 0)$ s.t.

$$(0,1) \subset ((0,1),\epsilon) \subset (0,1).$$

3.28.6) Let (X, d) compact metric space, $f: X \to X$. isometry. Show f is bijective and hence homeomorphism.

f is continuous by choosing $\delta = \epsilon$ and using the metric version of $\epsilon - \delta$ continuity.

$$d(f(x), f(y)) = d(x, y) < \delta = \epsilon.$$

We now show f is injective by contrapositive. By definition, f injective if

$$f(a) = f(b) \longrightarrow a = b.$$

So,

$$(a \neq b) \Rightarrow d(a, b) \geq \epsilon$$
$$\Rightarrow d(f(a), f(b)) \geq \epsilon$$
$$\Rightarrow f(a) \neq f(b).$$

Now we show f is surjective by contradiction. Let $a \notin f(X)$. Then $\exists B(a, \epsilon)$ disjoint from f(X). Create a sequence

$$x_1 = a$$

$$x_2 = f(x_1)$$

$$\vdots$$

$$x_{n+1} = f(x_n).$$

Now we note that for all $n \neq m$, $d(x_n, x_m) < \epsilon \Rightarrow d(x_1, x_{m-n+1}) < \epsilon$. This contradicts that $B(a, \epsilon) = B(x_1, \epsilon)$ is disjoint from f(X). Thus,

$$d(x_n, x_m) \ge \epsilon \ \forall \ n \ne m.$$

Since X is limit point compact, $x_n \to x$ for some x. But no $B(x, \epsilon)$ can contain infinitely many points because of above. Therefore, we have a contradiction and f is therefore surjective.

- 3.28.7) Let (X, d) metric space.
 - (a) f contraction, X compact; show f has unique fixed point.
 - (\Rightarrow) f contraction

$$d(f(x), f(y)) \le \alpha d(x, y)$$

implies f is continuous and X metric implies X Hausdorff.

By hypothesis of X compact, we have that f(X) is closed and also compact. It follows that $f^n(X)$ is closed and compact $\forall n$.

Define $A_n = f^n(X)$. Since images under f are nested

$$f^{n+1}(X) \subset f^n(X),$$

so that $A = \bigcap_{n=1}^{\infty} f^n(X)$ is non-empty.

The diameter $d\{f^n(X)\} \leq \alpha^n d\{X\}$ implies points of A are arbitrarily close. Therefore A contains one point.

$$A = \{a\}.$$

How can I show a is a fixed point?

(b) f shrinking map and X compact, show f has unique fixed point.

f is continuous since

$$d(f(x), f(y)) \le \alpha \cdot d(x, y) < d(x, y).$$

Let $x \in A$ and define x_n s.t. $x = f^{n+1}(x_n)$. x^n is n+1 hops away from x under f.

Figure 1: Caption

I'm stuck.

(c) Show f(x) is a shrinking map but not contraction on X = [0, 1].

$$f(x) = x - \frac{x^2}{2}.$$

 (\Rightarrow) f is a shrinking map:

$$d(f(a), f(b)) = \left| \left(a - \frac{a^2}{2} \right) - \left(b - \frac{b^2}{2} \right) \right| \tag{1}$$

$$= \left| (a-b) - \frac{1}{2}(a^2 - b^2) \right| \tag{2}$$

$$= \left| (a-b) \left[1 - \frac{1}{2}(a+b) \right] \right| \tag{3}$$

$$= |a - b| \left| 1 - \frac{1}{2}(a + b) \right| \tag{4}$$

$$<|a-b|\tag{5}$$

$$=d(a,b). (6)$$

But f is not because of line (4). Since $a \neq b$, a > b WLOG and $\frac{1}{2}(a+b)$ never 0 or 1. Thus,

$$\left|1 - \frac{1}{2}(a+b)\right| \in (0,1).$$

The above term can be made arbitrarily close to 1 implying no such α exists to make f a contraction.

3.29.1) Show $\mathbb{Q} \subset \mathbb{R}$ not locally compact.

Consider the set $[a,b] \cap \mathbb{Q}$. This set is closed in \mathbb{Q} as it is the intersection of \mathbb{Q} and a closed set in \mathbb{R} . Because rationals and irrationals are dense, we can construct a sequence in [a,b] that converges to an irrational number. But such sequence doesn't converge in $[a,b] \cap \mathbb{Q}$ implying it is not sequentially compact. Therefore, sets of the form

$$[a,b] \cap \mathbb{Q}$$

are not compact.

Now, let $x \in \mathbb{Q}$ and suppose \exists compact subset $C \subset \mathbb{Q}$ containing some neighborhood $(c,d) \cap \mathbb{Q}$ of x. i.e.,

$$(c,d) \cap \mathbb{Q} \subset C$$
.

Density of irrationals implies that some $[a,b] \subset (c,d)$ contains x. Consequently, C contains the closed set $[a,b] \cap \mathbb{Q}$ implying that

$$[a,b] \cap \mathbb{Q}$$

is compact, which is a contradiction. Thus, $\mathbb Q$ is not locally compact at any point and therefore $\mathbb Q$ not locally compact.

3.29.2) $\{X_{\alpha}\}$ indexed family of non-empty spaces.

(a) Suppose $\prod X_{\alpha}$ is locally compact.

First show each X_{α} is locally compact. Let $x_{\alpha} \in X_{\alpha}$. Then $\pi^{-1}(x) \in \prod X_{\alpha}$ and by hypothesis

$$C\supset U_x\ni\pi^{-1}(x_\alpha)$$

is some compact subspace containing some neighborhood of x. Under the projection map, which is continuous, we have

$$\pi_{\alpha}(C) \supset \pi_{\alpha}(U_x) \ni x_{\alpha}.$$

Thus X_{α} is locally compact $\forall \alpha$.