Fundamentals of Plasma Physics - Fusion plasma (IV)

高喆

2023, 12

How to build a fusion device?

- What shape is the device probably?
- What size should the device be?
- How to operate the device for fusion
 - How to heat plasma?

- So how to heat the plasma from 3keV to Ignition?
- Or how to heat the plasma in the stellarator?

Auxiliary Heating

NBI

Charge exchange
$$H_b + H_p^+ \rightarrow H_b^+ + H_p$$

Ionization by ions $H_b + H_p^+ \rightarrow H_b^+ + H_p^+ + e$
Ionization by electrons $H_b + e \rightarrow H_b^+ + 2e$.

Beam penetration depths for a typical JET discharge with n20 = 0.3, a = 1, and a simple reactor with n20 = 1.5, a = 2 (Wesson, J. (2004). *Tokamaks*, third edition. Oxford: Clarendon Press).

Neutralization fraction vs. beam energy for positive and negative ion beams. Also plotted is the penetration depth for n20 = 1.5. (Wesson, J. (2004). *Tokamaks*, third edition. Oxford: Clarendon Press).

rf heating

作业: 简述微波炉加热的原理

Collisional case: AC Ohmic heating

•
$$P=E\cdot j \sim qE\cdot u$$

 $-i\omega m_e u = -eE$

• Collisionless $P=q\mathbf{E}\cdot u$ is a pure imaginary $< P>_t = 0$

$$-i\omega m_e u = -eE - m_e \nu u \qquad u = \frac{e}{m(\nu - i\omega)}E$$

$$< P >_t \neq 0$$

$$\boldsymbol{u} = \frac{e}{m(\nu - \mathrm{i}\omega)}\boldsymbol{E}$$

Landau Damping(朗道阻尼)

- An electrostatic wave $E=E_x \exp(ikx-i\omega t)$ will be damped in a plasma in collisionless case
- the most outstanding achievement in plasma physics
- theoretically derived in 1946 by Landau, experimentally verified in 1966.

$$\begin{split} 1 &= -\frac{\omega_{\mathrm{pe}}^2}{k^2} \int_{-\infty}^{\infty} \mathrm{d}v \, \frac{\partial \hat{f}_0 / \partial v}{(v - \omega / k)}. \\ \mathrm{Im} \left(\frac{\omega}{\omega_{\mathrm{pe}}} \right) &= -0.22 \sqrt{\pi} \left(\frac{\omega_{\mathrm{pe}}}{k v_{\mathrm{th}}} \right)^2 \exp \left(\frac{-1}{2k^2 \lambda_{\mathrm{D}}^2} \right) \end{split}$$

L. Landau Nobel Prize for Physics 1962

FIGURE 7-17 Customary physical picture of Landau damping.

• FF Chen 1974

Consider particle motion in an electrostatic wave

$$\mathbf{E} = E_1(z, t)\mathbf{e}_z = E_{\parallel}\cos(k_{\parallel}z - \omega t)\mathbf{e}_z$$

$$\frac{\mathrm{d}v}{\mathrm{d}t} = -\frac{e}{m_0} E_{\parallel} \cos(\omega t - k_{\parallel} z) \qquad v(0) = v_{\parallel},$$

$$\frac{\mathrm{d}z}{\mathrm{d}t} = v \qquad \qquad z(0) = z_{\mathrm{i}}.$$

$$\frac{\mathrm{d}W}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{m_{\mathrm{e}}v^2}{2} \right) = -e\,\mathbf{v}\cdot\mathbf{E} \qquad \frac{\mathrm{d}\overline{W}}{\mathrm{d}t} = \frac{k_{\parallel}}{2\pi} \int_{0}^{2\pi/k_{\parallel}} \frac{\mathrm{d}W}{\mathrm{d}t} \mathrm{d}z_{\mathrm{i}}$$

$$S_{\rm L}(t) = -\frac{e^2 E_{\parallel}^2 n_0}{2m_{\rm e} k_{\parallel}} \int_{-\infty}^{\infty} \left(\frac{\omega \sin \overline{\omega} t}{\overline{\omega}} - \sin \overline{\omega} t \right) \frac{\partial f_{\parallel}}{\partial v_{\parallel}} \, \mathrm{d}v_{\parallel}$$

$$= -\frac{\pi e^2 E_{\parallel}^2 n_0 \omega}{2m_{\rm e} k_{\parallel}^2} \left(\frac{\partial f_{\parallel}}{\partial v_{\parallel}}\right)_{\omega/k_{\parallel}}$$

It is Landau damping!

 $\overline{\omega} = \omega - k_{\parallel} v_{\parallel}$

Optional homework: derive the Landau damping from the picture of wave-particle energy tranfer

A similar but different collisionless mechanism: Cyclotron Damping(回旋阻尼阻尼)in perpendicular direction

Fig. 1. Mechanism of electron cyclotron heating

Main methods of rf heating in tokamaks

Quite complex physics in rf-plasma physics... ...
(for example the effect of nonuniformity of plasma and magnetic field)

JET

ITER Heating & Current Drive Systems

NB	C	EC	LH
Neutral Beam	Ion Cyclotron	Electron Cyclotron	Lower Hybrid ~5 GHz
- 1 MeV	40-55MHz	170GHz	
		Waveguide Miter bends Internal shield Focusing mirror Co-direction Counter - Orection Port plug Support plate Front shield Steering mirror All months (MA)	Taper excitors PAU If all excitors Note occurrence All de occurrence
33MW*	20MW*	20MW*	0MW*
+16.5MW#	+20MW#	+20MW#	+40MW#
Bulk current drive	Sawtooth control	NTM/sawtooth control	Off-axis bulk current drive
limited modulation	modulation < 1 kHz	modulation up to 5 kHz	

*Baseline Power P _{aux} for Q=10 nominal			130 MW (max installed)	
*Possible Upgrade	scenario: 50MW	(110 M)	W simultaneous)	
IC H&CD		32.2	,	
EC H&CD		77.5		
NB H&CD	HE SHEW HE SHE SHEET OF THE	96.0		
	Heating and CD, subtotal	205.7	~5\$/W	

How to build a fusion device?

- What shape is the device probably?
- What size should the device be?
- How to operate the device for fusion energy?
 - How to heat plasma?
 - Other operations?

