TUTORIAL

CSCI361 – Computer Security

Sionggo Japit

sjapit@uow.edu.au

12 February 2024

GENERATOR IN Z_P*

• A **generator** is an element of Z_p^* whose first p-1 powers generate all the nonzero elements of the field F. It is also known as **primitive element** of a finite field F containing p number of elements.

For example, in a finite field GF(11), all the nonzero elements are 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10. If $a^1 \mod 11$, $a^2 \mod 11$, $a^3 \mod 11$, ..., $a^{10} \mod 11$ produce all the nonzero elements of F, then **a** is said to be a generator in GF(11).

For example:

 $2^1 \mod 11 = 2$

 $2^2 \mod 11 = 4$

 $2^3 \mod 11 = 8$

 $2^4 \mod 11 = 5$

 $2^5 \mod 11 = 10$

 $2^6 \mod 11 = 9$

 $2^7 \mod 11 = 7$

 $2^8 \mod 11 = 3$

 $2^9 \mod 11 = 6$

 $2^{10} \mod 11 = 1$

The values 2, 4, 8, 5, 10, 9, 7, 3, 6, and 1 are nonzero elements of F (GF(11)).

Hence **2** is said to be a generator or primitive element.

Generator in Z_{11}^* :

	1	2	3	4	5	6	7	8	9	10
1	1	1								
2	2	4	8	5	10	9	7	3	6	1
3	3	9	5	4	1	3				
4	4	5	9	3	1	4				
5	5	3	4	9	1	5				
6	6	3	7	9	10	5	8	4	2	1
7	7	5	2	3	10	4	6	9	8	1
8	8	9	6	4	10	3	2	5	7	1
9	9	4	3	5	1	9				
10	10	1	10							

- Unfortunately there is NO simple general formula to compute generator is known.
- However, there are methods to determine a generator that are faster than simply trying out all candidates.

Finding generator using $g^{\frac{p-1}{2}} \mod p$ test.

- To use this test, p must be a safe prime.
- A prime number p is a safe prime if p = 2q + 1, and q is a prime.

For a safe prime p, test if $g^{\frac{p-1}{2}} \mod p^{-1}$ 1. If yes, then g is a generator, otherwise $(-g) \mod p$ is a generator.

```
For example, a prime number 11 is a safe prime because 11 = (2 \ 5) + 1, and 5 is a prime number.

Hence in Z_{11}^*,
```

 $2^{\frac{1}{2}}$ mod 11 = 2^5 mod 11 = 10, is not equal to 1. Thus 2 is a generator in Z_{11}^* .

```
Another example using Z_{11}^*:
```

```
3^{\frac{11-1}{2}} mod 11 = 3^5 mod 11 = 1, is equal to 1. Thus 3 is NOT a generator in Z_{11}^*, but (-3) mod 11 = 8 is a generator in Z_{11}^*
```

- •If prime p is **NOT** a safe prime; i.e., p = 2q + 1, and q is NOT a prime,
 - Randomly choose a number g such that $g \hat{l} z_p^*$. Exclude 1 and p-1.
 - Test if $g^{\frac{n}{p_j}}$ 1 1 mod p for all prime numbers p_j where 1 £ j £ k. (k = number of different prime number between 1 and p-1)
 - Note: use this test if *p* is not a safe prime.

For example, find a generator of Z_{13}^* .

For example, to test if 2 is a generator of Z_{13}^* ,

we test if $2^{\frac{13-1}{2}} \mod 13$, $2^{\frac{13-1}{3}} \mod 13$, $2^{\frac{13-1}{5}} \mod 13$,

 $2^{\frac{13-1}{7}}$ mod 13, and $2^{\frac{13-1}{11}}$ mod 13 are not equal 1.

Taking $2^{\frac{1}{2}}$ mod 13 as an example, it is computed as follow:

- 1. Compute $2^{-1} \mod 13 = -6 \mod 13 = 7$
- 2. Compute (13 1) 7 mod 13 = 84 mod 13 = 6
- $3. 2^6 \mod 13 = 12$ Do the same calculation to test the rest.

	1	2	3	4	5	6	7	8	9	10	11	12
1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	4	8	3	6	12	11	9	5	10	7	1
3	3	9	1	3	9	1	3	9	1	3	9	1
4	4	3	12	9	10	1	4	3	12	9	10	1
5	5	12	8	1	5	12	8	1	5	12	8	1
6	6	10	8	9	2	12	7	3	5	4	11	1
7	7	10	5	9	11	12	6	3	8	4	2	1
8	8	12	5	1	8	12	5	1	8	12	5	1
9	9	3	1	9	3	1	9	3	1	9	3	1
10	10	9	12	3	4	1	10	9	12	3	4	1
11	11	4	5	3	7	12	2	9	8	10	6	1
12	12	1	12	1	12	1	12	1	12	1	12	1

2	3	5	7	11
1	1	1	1	1
12	3	6	7	11
1	3	9	9	3
1	9	10	10	4
12	1	5	8	8
12	9	2	11	7
12	9	11	2	6
12	1	8	5	5
1	9	3	3	9
1	3	4	4	10
12	3	7	6	2
1	1	12	12	12

ELGAMAL

- Public-key cryptosystem
- Based on discrete logarithm problem
 - Hard to find k < p, such that $y = g^k \mod p$
 - g is a generator of Z_p^*
 - k is in Z_p^*
- Proposed by Tather Elgamal in 1984
- A variant of Diffie-Hellman providing a one-pass protocol with unilateral key authentication.

Key generation (participant A):

- 1. Choose a prime p and a generator $g \hat{I} Z_p^*$.
- 2. Select a random integer k_A , $1 < k_A < p-1$, and
- 3. Compute public key (receiver)

$$y_A = g^{k_A} \mod p$$

 $public key:(p,g,y_A)$

private key: k_A

To Encrypt (participant B):

- 1. Obtain recipient's (A's) authentic public key (p, g, y_4)
- 2. Represent the message as integer m in the range $\{0, 1, ..., p-1\}$.
- 3. Pick a random k_R
- 4. Compute a shared key $K = (y_A)^{k_B} \mod p$ $k_B = B$'s private key

Note:

5. Encrypt the message m as a pair of integers (C_1, C_2) where

$$C_1 = g^{k_B} \mod p$$

$$C_2 = m \cdot K \mod p$$
for a message $0 < m < p$

The encrypted text (or ciphertext) is (C_1, C_2)

To Decrypt (participant A):

Participant A receives the encrypted message (C_1, C_2) from B.

To decrypt the encrypted message, Participant A does the following:

- recovers the shared key $K = (C_1)^{k_A} \mod p$, then

- computes
$$m = \frac{C_2}{K} \mod p$$

Note: Need to compute the above in 3 steps:

- 1. $K = (C_1)^{k_A} \mod p$ (need to use fast exponentiation)
- 2. $K_i = K^{-1} \mod p$ (need to use extended Euclidean)
- 3. $m = C_2 K_i \mod p \text{ or } m = C_2 K^{-1} \mod p$

Let's see how the encryption can be done:

Example: Encrypt and decrypt "JAPIT" using Elgamal.

The message to encrypt is **JAPIT**

Convert to ASCII decimal:

J	A	Р	1	Т
74	65	80	73	84

Key generation:

1. Choose a prime p and a generator $g \mid Z_p^*$

```
p = 89 Why 89? Is 89 good?
```

$$g \hat{I} Z_p^*$$
 How?

Key generation:

1. Choose a prime p and a generator $g \in \mathbb{Z}_p^*$

```
p = 83
g = 5. Test if 5^{\frac{82}{2}} \mod 83 \neq 1? 5 \times 27 \times 75 \mod 83 = 10125 \mod 83 = 82! = 1 => 5 is a generator!
```

20=1 (1)	5 ¹ mod 83	5 mod 83 = 5
21=2 (1)	5 ² mod 83	5 x 5 mod 83 = 25
22=4 (0)	5 ⁴ mod 83	25 x 25 mod 83 = 625 mod 83 = 44
23=8(0)	58 mod 83	44 x 44 mod 83 = 27
24=16 (1)	5 ¹⁶ mod 83	27 x 27 mod 85 = 729 mod 83 = 65
2 ⁵ =32 (1)	5 ³² mod 83	65 x 65 mod 83 = 4225 mod 83 = 75

- Choose a random number $1 < k_r < p-1$ and generate y_r (a component of the public key.) I choose $k_r=3$.
- With my choices of p=83, g=5, and $k_r=3$, I compute:

```
y_r = g^{k_r} \mod p

y_r = 5^3 \mod 83

y_r = 125 \mod 83 = 42 End of key

generation!
```

: The public key is $(g, y_r, p) = (5, 42, 83)$, and the private key is $(k_r) = 3$.

Key generation:

- Encrypt letter *J* with $k_s = 5$.
- First compute the shared key $K = (y_r)^{k_s} \mod p$

$$K = 42^5 \mod 83$$

$$K = 13$$

Note: The public key (g, y, p) of the recipient is (5, 42, 83)..

How to calculate 42⁵ mod 83?

Need to compute using fast exponentiation.

I will use fast exponentiation!

20=1 (1)	42 ¹ mod 83	42 mod 83 = 42
21=2 (0)	42 ² mod 83	42 x 42 mod 83 = 1764 mod 83 = 21
2 ² =4 (1)	42 ⁴ mod 83	21 x 21 mod 83 = 441 mod 83 = 26

$$\therefore 42^5 \mod 83 = 42 \times 26 \mod 83$$

$$=1092 \mod 83 = 13.$$

• Next calculate C_1 and C_2 pair as follow:

$$C_1 = g^{k_s} \mod p$$

= 5⁵ mod 83
= 54
 $C_2 = Km \mod p \quad where m = 74$
= 13 × 74 mod 83
= 962 mod 83 = 49

Hence the encrypted message $(C_1, C_2) = (54, 49)$

- The sender needs to choose a key $1 < k_S < p-1$.
- NOTE: To introduce, confusion effect, the key for each letter of the message must be different!
- I choose my second $k_S = 11$ to encrypt the letter A.

- Encrypt letter A with $k_s = 11$.
- First compute the shared key $K = (y_r)^{k_s} \mod p$.

$$K = 42^{11} \mod 83$$

20=1 (1)	42 ¹ mod 83	42 mod 83 = 42
21=2 (1)	42 ² mod 83	42 x 42 mod 83 = 1764 mod 83 = 21
22=4 (0)	42 ⁴ mod 83	21 x 21 mod 83 = 441 mod 83 = 26
23=8(1)	428 mod 83	26 x 26 mod 83 = 676 mod 83 = 12

$$\therefore 42^{11} \mod 83 = 42 \times 21 \times 12 \mod 83$$

$$K = 10584 \mod 83$$

$$K = 43$$

• Next, we calculate C_1 and C_2 pair as follow:

$$C_1 = g^{k_s} \mod p$$

= $5^{11} \mod 83$
= $48828125 \mod 83 = 55$
 $C_2 = Km \mod p \quad where m = 65$
= $43 \times 65 \mod 83$
= $2795 \mod 83 = 56$

Hence the encrypted message $(C_1, C_2) = (55, 56)$

- Encrypt letter P with $k_s = 13$
- First compute the shared key $K = (y_r)^{k_s} \mod p$ $K = 42^{13} \mod 83$

20=1 (1)	42 ¹ mod 83	42 mod 83 = 42
21=2 (0)	42 ² mod 83	42 x 42 mod 83 = 1764 mod 83 = 21
22=4 (1)	42 ⁴ mod 83	21 x 21 mod 83 = 441 mod 83 = 26
23=8(1)	42 ⁸ mod 83	26 x 26 mod 83 = 676 mod 83 = 12

$$\therefore 42^{13} \mod 83 = 42 \times 26 \times 12 \mod 83$$
 $K = 13104 \mod 83$
 $K = 73$

• Next, we calculate C_1 and C_2 pair as follow:

```
C_1 = g^{k_s} \mod p
   = 5^{13} \mod 83
   = 1220703125 mod 83
   = 47
C_2 = Km \mod p \quad where m = 80
   = 73 \times 80 \mod 83
   = 5840 \mod 83 = 30
```

Hence the encrypted message $(C_1, C_2) = (47, 30)$

- Encrypt letter I with $k_s = 7$.
- First compute the shared key $K = (y_r)^{k_s} \mod p$

$$K = 42^7 \mod 83$$

20=1 (1)	42 ¹ mod 83	42 mod 83 = 42
2 ¹ =2 (1)	42 ² mod 83	42 x 42 mod 83 = 1764 mod 83 = 21
2 ² =4 (1)	42 ⁴ mod 83	21 x 21 mod 83 = 441 mod 83 = 26

$$\therefore 42^7 \mod 83 = 42 \times 21 \times 26 \mod 83$$

$$K = 22932 \mod 83$$

$$K = 24$$

• Next, we calculate C1 and C2 pair as follow:

$$C_1 = g^{k_s} \mod p$$

= 5⁷ mod 83
= 78125 mod 83 = 22
 $C_2 = Km \mod p$ where $m = 73$
= 24×73 mod 83
= 1752 mod 83 = 9

Hence the encrypted message $(C_1, C_2) = (22, 9)$

- Encrypt letter T with $k_s = 19$.
- First copute the shared key $K = (y_r)^{k_s} \mod p$.

$$K = 42^{19} \mod 83$$

20=1 (1)	42 ¹ mod 83	42 mod 83 = 42
2 ¹ =2 (1)	42 ² mod 83	42 x 42 mod 83 = 1764 mod 83 = 21
2 ² =4 (0)	42 ⁴ mod 83	21 x 21 mod 83 = 441 mod 83 = 26
23=8 (0)	42 ⁸ mod 83	26 x 26 mod 83 = 676 mod 83 = 12
24=16 (1)	42 ¹⁶ mod 83	12 x 12 mod 83 = 144 mod 83 = 61

$$\therefore 42^{19} \mod 83 = 42 \times 21 \times 61 \mod 83$$

$$K = 53802 \mod 83$$

$$K = 18$$

• Next, we calculate C1 and C2 as follow:

$$C_1 = g^{k_s} \mod p$$

= $5^{19} \mod 83$
= $19073486328125 \mod 83 = 74$
 $C_2 = Km \mod 83$
= $18 \times 84 \mod 83$ where $m = 84$
= $1512 \mod 83 = 18$

Hence the encrypted message $(C_1, C_2) = (74, 18)$

The encrypted text:

J	(54, 49)
Α	(55, 56)
Р	(47, 30)
I	(22, 9)
Т	(74, 18)

Decrypt:

Encrypted text: (54, 49)

To decrypt the ciphertext (54, 49), the recipient calculates the following:

1. Recover the shared key *K*:

$$K = C_1^{k_R} \mod p$$

- 2. Compute inverse K; i.e., K^{-1} using Extended Euclidean Algorithm
- 3. Recover the message m:

$$\mathbf{m} = C_2 K^{-1} \bmod p$$

$$K = C_1^{k_r} \mod p$$

= $54^3 \mod 83 = 157464 \mod 83 = 13$
 $K_i = K^{-1} \mod p$
= $13^{-1} \mod 83$ (Using Extended Euclidean Algorithm)
= 32

n1	n2	r	q	a1	b1	a2	b2
83	13	5	6	1	0	0	1
13	5	3	2	0	1	1	-6
5	3	2	1	1	-6	-2	13
3	2	1	1	-2	13	3	-19
2	1	0	2	3	-19	-5	32

```
m = C_2 K^{-1} \mod p
= 49 \times 32 \mod 83
= 1568 \mod 83 = 74
```

- The recovered message is 74.
- Hence (54, 49) = 74 = J (in ASCII) (decrypted)

Decrypt:

Encrypted text: (55, 56)

To decrypt ciphertext (55, 56), the recipient calculates the following:

$$K = C_1^{k_R} \mod p$$

- 2. Compute inverse K; i.e., K^{-1} using Extended Euclidean Algorithm
- 3. Recover the message m:

$$m = C_2 K^{-1} \bmod p$$

$$K = C_1^{k_r} \mod p$$

= $55^3 \mod 83 = 166375 \mod 83 = 43$
 $K_i = K^{-1} \mod p$
= $43^{-1} \mod 83$ (Using Extended Euclidean Algorithm)
= $-27 \mod 83 = 56$

n1	n2	r	q	a1	b1	a2	b2
83	43	40	1	1	0	0	1
43	40	3	1	0	1	1	-1
40	3	1	13	1	-1	-1	2
3	1	0	3	-1	2	14	-27

```
m = C_2 K^{-1} \mod p
= 56 \times 56 \mod 83
= 3136 \mod 83 = 65
```

- The recovered message is 65.
- Hence (55, 56) = 65 = A (in ASCII) (decrypted)

Decrypt:

Encrypted text: (47, 30)

To decrypt ciphertext (47, 30), the recipient calculates the following:

$$K = C_1^{k_R} \mod p$$

- 2. Compute inverse K; i.e., K^{-1} using Extended Euclidean Algorithm
- 3. Recover the message m:

$$m = C_2 K^{-1} \bmod p$$

$$K = C_1^{k_r} \mod p$$

= $47^3 \mod 83 = 103823 \mod 83 = 73$
 $K_i = K^{-1} \mod p$
= $73 \mod 83$ (Using Extended Euclidean Algorithm)
= $-25 \mod 83 = 58$

n1	n2	r	q	a1	b1	a2	b2
83	73	10	1	1	0	0	1
73	10	3	7	0	1	1	-1
10	3	1	3	1	-1	-7	8
3	1	0	3	-7	8	22	-25

```
m = C_2 K^{-1} \mod p
= 30 \times 58 \mod 83
= 1740 \mod 83 = 80
```

- The recovered message is 80.
- Hence (47, 30) = 80 = P (in ASCII) (decrypted)

Decrypt:

Encrypted text: (22, 9)

To decrypt ciphertext (22, 9), the recipient calculates the following:

$$K = C_1^{k_R} \mod p$$

- 2. Compute inverse K; i.e., K^{-1} using Extended Euclidean Algorithm
- 3. Recover the message m:

$$m = C_2 K^{-1} \bmod p$$

$$K = C_1^{k_r} \mod p$$

= 22³ mod 83 = 10648 mod 83 = 24
 $K_i = K^{-1} \mod p$
= 24⁻¹ mod 83 (Using Extended Euclidean Algorithm)
= -38 mod 83 = 45

n1	n2	r	q	a1	b1	a2	b2
83	24	11	3	1	0	0	1
24	11	2	2	0	1	1	-3
11	2	1	5	1	-3	-2	7
2	1	0	2	-2	7	11	-38

$$m = C_2 K^{-1} \mod p$$

= $9 \times 45 \mod 83$
= $405 \mod 83 = 73$

- The recovered message is 73.
- Hence (22, 9) = 73 = I (in ASCII) (decrypted)

Decrypt:

Encrypted text: (74, 18)

To decrypt ciphertext (74, 18), the recipient calculates the following:

$$K = C_1^{k_R} \mod p$$

- 2. Compute inverse K; i.e., K^{-1} using Extended Euclidean Algorithm
- 3. Recover the message m:

$$m = C_2 K^{-1} \bmod p$$

$$K = C_1^{k_r} \mod p$$

= $74^3 \mod 83 = 405224 \mod 83 = 18$
 $K_i = K^{-1} \mod p$
= $18^{-1} \mod 83$ (Using Extended Euclidean Algorithm)
= $-23 \mod 83 = 60$

n1	n2	r	q	a1	b1	a2	b2
83	18	11	4	1	0	0	1
18	11	7	1	0	1	1	-4
11	7	4	1	1	-4	-1	5
7	4	3	1	-1	5	2	-9
4	3	1	1	2	-9	-3	14
3	1	0	3	-3	14	5	-23

```
m = C_2 K^{-1} \mod p
= 18 \times 60 \mod 83
= 1080 \mod 83 = 1
```

- The recovered message is 1.
- Hence (74, 18) = 84 = T (in ASCII) (decrypted)

The decrypted texts are:

$$74 = J$$

$$65 = A$$

$$80 = P$$

$$73 = 1$$

$$84 = T$$