GeeksforGeeks A computer science portal for geeks Custom Search				
COURSES	Login			
HIRE WITH US				

Set Theory & Algebra	
Question 1	1 2 3 4 5 6 7 8 9 10 11 12
A binary operation \bigoplus on a set of integer $+$ y ² . Which one of the following state	gers is defined as x \oplus y = x ² ements is TRUE about \oplus ?
A Commutative but not associ	iative
B Both commutative and asso	ciative
C Associative but not commut	tative
Neither commutative nor as	sociative
GATE CS 2013 Set Theory & Algebra Discuss it	ra
Question 2	
Consider the set S = $\{1, \omega, \omega 2\}$, where unity. If * denotes the multiplication of forms	e ω and w^2 are cube roots of operation, the structure (S, *)
A group	
B A ring	
C An integral domain	
A field	
GATE CS 2010 Set Theory & Algebra Discuss it	ra
Question 3	
Which one of the following in NOT ne Group?	cessarily a property of a
A Commutativity	
B Associativity	
C Existence of inverse for ever	ry element
Existence of identity	

GATE-CS-2 Discuss it	2009 Set The	ory & Algebra		
Question 4				
Consider the {x, y, z}. Wh	ne binary relation	on R = {(x, y), (x following is TF	x, z), (z, x), (z, RUE?	y)} on the set
A R	is symmetric b	ut NOT antisyı	nmetric	
В к	is NOT symme	tric but antisyı	mmetric	
C R	is both symme	tric and antisy	mmetric	
D R	is neither symr	netric nor anti	symmetric	
GATE-CS-2 Discuss it	2009 Set The	ory & Algebra		
For the cor	nposition table			
a	a a	b b	С	d d
b	b	а	d	С
С	С	d	b	а
d	d	С	а	b
A a, B b, C c, D d, GATE-CS-2 Discuss it		rs rs rs rs ory & Algebra		
$\begin{array}{ccc} (P \cap Q \cap R) \\ & A & Q \\ & B & P \end{array}$	e subsets of the ∪(P° ∩ Q ∩ R) ∪ □ U R° U Q° U R° □ U Q° U R°		U, then	

Set Theory & Algebra GATE CS 2008

Discuss it

Question 7

Let S be a set of nelements. The number of ordered pairs in the largest and the smallest equivalence relations on S are:

- A n and n
- B n^2 and n
- n^2 and 0
- n and 1

Set Theory & Algebra GATE-CS-2007

Discuss it

Question 8

How many different non-isomorphic Abelian groups of order 4 are there

- A 2
- R
- C. .
- 5

Set Theory & Algebra GATE-CS-2007

Discuss it

Question 9

Consider the set $S = \{a,b,c,d\}$. Consider the following 4 partitions π_1,π_2,π_3,π_4 on $S:\pi_1 = \overline{\{abcd\}},\pi_2 = \overline{\{ab,cd\}},\pi_3 = \overline{\{abc,d\}},\pi_4 = \overline{\{a,b,c,d\}}$. Let p be the partial order on the set of partitions $S' = \{\pi_1,\pi_2,\pi_3,\pi_4\}$ defined as follows: $\pi_i p \pi_j$ if and only if π_i refines π_j . The poset diagram for (S',p) is:

(A)

(B)

(C)

(D)

- A
- R B
- C

D^-D
Set Theory & Algebra GATE-CS-2007 Discuss it
Question 10
Consider the set of (column) vectors defined by $X = \left\{x \in R^3 \middle x_1 + x_2 + x_3 = 0, \text{ where } x^T = \left[x_1, x_2, x_3\right]^T\right\}$. Which of the following is TRUE? (A) $\left\{\begin{bmatrix}1, -1, 0\end{bmatrix}^T, \begin{bmatrix}1, 0, -1\end{bmatrix}^T\right\}$ is a basis for the subspace X . (B) $\left\{\begin{bmatrix}1, -1, 0\end{bmatrix}^T, \begin{bmatrix}1, 0, -1\end{bmatrix}^T\right\}$ is a linearly independent set, but it does not span X and therefore is not a basis of X . (C) X is not a subspace of R^3 . (D) None of the above
A A
Вв
Сс
\square D
Set Theory & Algebra GATE-CS-2007 Discuss it
There are 115 questions to complete. 1 2 3 4 5 6 7 8 9 10 11 12
Vriting code in comment? Please use ide.geeksforgeeks.org, generate link and share the link here.

Load Comments

A computer science portal for geeks

5th Floor, A-118, Sector-136, Noida, Uttar Pradesh - 201305 feedback@geeksforgeeks.org

COMPANY

About Us Careers Privacy Policy Contact Us LEARN

Algorithms
Data Structures
Languages
CS Subjects
Video Tutorials

PRACTICE

Courses Company-wise Topic-wise How to begin? CONTRIBUTE

Write an Article Write Interview Experience Internships Videos

@geeksforgeeks, Some rights reserved