Homework 3

- 1. Consider the group $(\mathbb{R}^2,+)$. Consider the map $f:\mathbb{R}^2\to\mathbb{R}^2$ given by f(x,y)=(x+y,2x-y). Prove that f is a homomorphism. Prove that f is an isomorphism. Is f(x,y)=(x+y,1) a homomorphism? Is f(x,y)=(x+y,0) a homomorphism?
- 2. Let $f: G_1 \to G_2$ be a homomorphism of groups. Prove that Im f is a subgroup of G_2 .
- 3. Let $f: G_1 \to G_2$ be a homomorphism. Prove that $f(g^{-1}) = f(g)^{-1}$, that is, f sends the inverse of an element in G_1 to the inverse of its image in G_2 .
- 4. Let $(R, +, \cdot, 0, 1)$ be a ring. Let $a, b \in R$ and consider their additive inverses -a and -b. Prove that $(-a) \cdot (-b) = a \cdot b$.
- 5. Let X, Y be two finite sets and $\varphi : X \to Y$ a function. Consider the map $\varphi^* : \mathbb{R}(Y) \to \mathbb{R}(X)$ given by: $\varphi^*(f)(x) = f(\varphi(x))$. Prove that φ^* is a homomorphism of rings. Prove that φ^* is an ismorphism of rings iff φ is bijective.
- 6. Consider the set \mathbb{R}^2 . Define the following operations: $+: \mathbb{R}^2 \times \mathbb{R}^2 \longrightarrow \mathbb{R}^2$; $\cdot: \mathbb{R}^2 \times \mathbb{R}^2 \longrightarrow \mathbb{R}$ given by

$$(x,y) + (x',y') = (x+x',y+y'),$$

 $(x,y) \cdot (x',y') = (xx'-yy',yx+xy').$

- (a) Prove that (1,0) is a unit with respect to \cdot .
- (b) Prove that every $(x,y) \neq (0,0)$ admits an inverse with respect to .
- (c) Prove that $(\mathbb{R}^2, +, \cdot, (0,0), (1,0))$ form a field. Can you recognize this field.
- (d) Consider the map $\varphi : \mathbb{R}^2 \to \mathbb{R}^2$ given by $\varphi(x,y) = (x,-y)$. Prove that φ is an isomorphism.
- 7. Let (G,*) be a finite group and $H \subset G$ a subgroup. Consider the equivalence relation on G: $x \sim y$ iff there exists $h \in H$ such that y = x * h. Let P be an equivalence class.
 - (a) Prove that #P = #H.
 - (b) Prove that #H divides #G.
- 8. (*difficult) a prime number. Consider the group $\mathbb{Z}_p^{\times} = \mathbb{Z}_p \{0\}$. Define the map (Legendre character): $\sigma : \mathbb{Z}_p^{\times} \to \{-1,1\}$ by

$$\sigma\left(x\right) = \left\{ \begin{array}{cc} 1 & \text{if } x = y^2 \\ -1 & \text{otherwise} \end{array} \right..$$

- (a) Prove that σ is a homomorphism. (hint: use exersice 7).
- (b) Prove that σ taks the same number of 1 and -1. (hint: use exersice 7).