Tutorial 2

- 1. Write an algorithm that reverses the array s[1], ..., s[n].
- 2. Given an array s[1], ..., s[n] such that n > 1 and $s[i] \le s[i+1]$ for all i. Write an algorithm that insert an input value x into the array so that $s[i] \le s[i+1]$ for all i.
- 3. The algorithm for finding the maximum element of an array is in the following

```
Algorithm arrayMax(A, n)
Input array A of n integers
Output maximum element of A
currentMax = A[0]
for i = 1 to n - 1 do
  if A[i] > currentMax then
    currentMax = A[i]
return currentMax
```

Determine the number of times that the statement "currentMax = A[i]" will be executed in the best case and in the worst case.

4. Order the following functions according to their order of growth (from the lowest to the highest).

$$n!$$
, $5\lg(n+100)^{10}$, 2^{2n} , n^4+3n^3+1 , $n\lg n$ 3^n

5. Prove the following assertion:

If
$$f(n) = O(g(n))$$
, then $g(n) = \Omega(f(n))$.

- 6 (i) If $f(n) = 2n^2 + 1$, prove that $f(n) = O(n^2)$ (ii) If $f(n) = 2^{n+2}$, prove that $f(n) = O(2^n)$

 - (iii) If $f(n) = 3 \lg n + 2$, prove that $f(n) = O(\lg n)$