### Semelle sur pieux sous un effort normal:

#### Semelle reposant sur deux pieux :

On considère que les charges sont transmises aux pieux par l'intermédiaire des bielles de béton.



P: charge transmise aux pieux.

a et b les dimensions du poteau (a<b).

b': entre axe des pieux.

bs : largeur de la semelle.

d : hauteur utile de la semelle.

Où:  $tg\theta = \frac{d}{\frac{b'}{2} - \frac{b}{4}} = \frac{2d}{b' - \frac{b}{2}}$  pour que le fonctionnement de la bielle soit correct on doit avoir :

$$45^{\circ} \le \theta \le 55^{\circ} \iff tg45^{\circ} = 1 \le tg\theta \le tg55^{\circ} = 1.4 \Rightarrow 0.5(b' - \frac{b}{2}) \le d \le 0.7(b' - \frac{b}{2})$$

L'effort P/2 dans un pieu se décompose en :

Fc : force de compression Fc dans la bielle du béton.

F: force de traction dans les armatures.

P/2=Fc.sin
$$\theta$$
 soit : Fc=P/2sin $\theta$  et P/2= F.tg $\theta$  soit : F= $\frac{P(b'-\frac{b}{2})}{4d}$ 

Donc, la section des armatures inférieures  $Ai=F/\sigma_s$ ; mais les essais ont montré qu'il y avait lieu de

majorer ce résultat de 10% 
$$\Rightarrow$$
 Ai=  $\frac{1.1P(b'-\frac{b}{2})}{4d\sigma_s}$ 

En dehors des armatures précédentes il est nécessaire de prévoir pour équilibrer des efforts de torsion éventuels :

- des armatures supérieures As telles que : As ≈ Ai/10
- des cadres verticaux et des cadres horizontaux de faibles diamètres et espacés de 15 à 20cm.

pour les H.A. 
$$\frac{A_{v}}{b_{s}s_{v}} = \frac{A_{h}}{b_{s}s_{h}} \ge \frac{2}{1000}$$

- des épingles reliant les armatures des deux faces :



Pour vérifier la compression des bielles à l'E.LU. :

A la partie supérieure :

$$\sigma_b^s = \frac{P_u}{ab \cdot \sin^2 \theta} \le 0.9 f_{c28}$$

A la partie inférieure :

$$\sigma_b^i = \frac{P_u}{2S_0 \sin^2 \theta} \le 0.9 f_{c28}$$

 $S_0$ : section d'un pieu.

La contrainte de cisaillement :

$$\tau = \frac{V_u}{b_s d} = \frac{P_u}{2b_s d} \le 0.1 f_{c28}$$
 soit  $P_u \le 0.2 b_s d. f_{c28}$ 

### Semelle reposant sur 4 pieux :

Supposons que la semelle et les poteaux ont une forme carrée :



Coupe A-A



$$P_2P_4=b'\sqrt{2}$$
 et 2-4=diagonale du carrée/2= $\frac{b\sqrt{2}}{2}$ 

L'inclinaison de l'axe des bielles a pour valeur : 
$$tg\theta = \frac{d}{\frac{b'\sqrt{2}}{2} - \frac{b\sqrt{2}}{4}} = \frac{d\sqrt{2}}{b' - \frac{b}{2}}$$

$$45^{\circ} \le \theta \le 55^{\circ} \iff tg 45^{\circ} = 1 \le tg\theta \le tg 55^{\circ} = 1.4 \Rightarrow 0.7(b' - \frac{b}{2}) \le d \le (b' - \frac{b}{2})$$

Chaque pieu reçoit un effort égal à : P/4 ; cet effort peut être décomposé en :

- Fc : force de compression dans la bielle du béton.
- F: force de traction dirigée suivant la diagonale (P<sub>2</sub>P<sub>4</sub>)

$$P/4=Fc.\sin\theta$$
 soit :  $Fc=\frac{P}{4.\sin\theta}$ 

P/4=F.tg0 soit: 
$$F = \frac{P}{4.tg\theta} = \frac{P(b' - \frac{b}{2})}{4d\sqrt{2}} = \frac{P(b' - \frac{b}{2})\sqrt{2}}{8d}$$

La force F peut à son tour être décomposée suivant les cotés P<sub>2</sub>P<sub>1</sub> et P<sub>2</sub>P<sub>3</sub>

F1=F2=
$$\frac{P}{8.d}(b'-\frac{b}{2})\sqrt{2}.\frac{\sqrt{2}}{2} = \frac{P}{8.d}(b'-\frac{b}{2})$$

Parmi les solutions possibles pour le ferraillage on peut envisager le schéma suivant :

Qui consiste à équilibrer une partie  $\alpha$  de l'effort par des cerces Ac et l'autre partie par des aciers disposés suivant les diagonales Ad.



$$A_{c} = \frac{\alpha . P}{8.d\sigma} \left( b' - \frac{b}{2} \right); \quad A_{d} = (1 - \alpha) \frac{. P}{8.d\sigma} \left( b' - \frac{b}{2} \right) \sqrt{2} = \frac{(1 - \alpha)}{\alpha} \sqrt{2}.A_{c}$$

Vérification de contrainte de compression dans les bielles de béton :

- A la partie supérieure, la section droite de la bielle :  $S_s = \frac{b^2}{4} \sin \theta$ 

$$\sigma_b^s = \frac{F_c}{S_s} = \frac{P}{b^2 \sin^2 \theta}$$

- A la partie inférieure d'une bielle  $S_0$  est la section d'un pieu :  $S_i\!\!=\!\!S_0.sin\theta$ 

$$\sigma_b^i = \frac{F_c}{S_i} = \frac{P}{4S_0 \sin^2 \theta}$$

Avec : 
$$tg\theta = \frac{d\sqrt{2}}{b' - \frac{b}{2}}$$

On doit vérifier :  $\sigma_b^s$  et  $\sigma_b^i \le 1.5 f_{c28}$ 

# Semelle sur pieux sous un effort normal et un moment fléchissant :

# Semelle reposant sur deux pieux :

L'équilibre de la construction nous donne : R1+R2=P

$$\sum M/o = 0$$

$$R_2(\frac{b'}{2} + e_o) - R_1(\frac{b'}{2} - e_o) = 0$$

$$\Rightarrow$$
  $R_1 = \frac{P}{2} + \frac{M}{b'}$ ;  $R_2 = \frac{P}{2} - \frac{M}{b'}$ 



La hauteur utile de la semelle  ${\bf d}$  est donnée par :  $0.5(b'-\frac{b}{2}) \le d \le 0.7(b'-\frac{b}{2})$ 

- Si la base du poteau est entièrement comprimée c.à.d :  $e_o \le \frac{b}{6}$  , les armatures inférieures seront déterminées par la méthode des bielles :

$$A_i = \frac{1.1R_1(b' - \frac{b}{2})}{2d\sigma_s}$$

- Si :  $e_o > \frac{b}{6}$ , les armatures Ai seront déterminées pour équilibrer le moment M1 existant dans la section (S1), située à 0.35b de l'axe du poteau.

$$M_1 = R_1(\frac{b'}{2} - 0.35b)$$

Le ferraillage de la semelle sera complété par des armatures As et des cadres verticaux et horizontaux.

Semelle reposant sur 4 pieux :



Inclinaison des bielles :  $tg\theta = \frac{2d}{\sqrt{a'^2 + b'^2} - \frac{1}{2}\sqrt{a^2 + b^2}}$  ; On doit avoir :  $1 \le tg\theta \le 1.4$ 

L'équilibre de la construction nous donne : 2R<sub>1</sub>+2R<sub>2</sub>=P

$$2R_2(\frac{b'}{2} + e_o) - 2R_1(\frac{b'}{2} - e_o) = 0$$
; Comme: M=P.e<sub>o</sub>  $\Rightarrow$  R<sub>1</sub>= $\frac{P}{4} + \frac{M}{2b'}$ ; R<sub>2</sub>= $\frac{P}{4} - \frac{M}{2b'}$ 

On peut, pour simplifier le problème et par mesure de sécurité, considérer que toutes les réactions sont égales à R1. R1 peut être décomposé en :

- Une force de compression Fc dans la bielle du béton.
- Une force de traction F dirigée suivant la diagonale (R<sub>1</sub>R<sub>2</sub>)

$$Fc = \frac{R_1}{\sin \theta}$$
;  $F = \frac{R_1}{tg\theta}$ 

F peut à son tour être décomposée suivant les cotés du rectangle R<sub>1</sub>R<sub>2</sub>R<sub>3</sub>R<sub>4</sub>

$$F_{a'} = \frac{F.a'}{\sqrt{a'^2 + b'^2}}$$
;  $F_{b'} = \frac{F.b'}{\sqrt{a'^2 + b'^2}} = \frac{R_1b'}{tg\theta\sqrt{a'^2 + b'^2}}$ 

Comme : b'> a' ; Fb'> Fa'.

- Si  $e_o \le \frac{b}{6}$ ; on peut parmi d'autres solutions possibles pour le ferraillage, retenir la suivante qui consiste à équilibrer une partie  $\alpha$  des efforts à l'aide des cerces de section totale Ac, l'autre partie, soit  $(1-\alpha)$  étant équilibrée par des barres de section Ad disposées suivant chaque diagonale et convenablement ancrées à leur extrémités, généralement :  $0.4 \le \alpha \le 0.6$ 

On a: 
$$A_c = \frac{\alpha . R_1 b'}{\sigma_s tg\theta \sqrt{a'^2 + b'^2}}$$
;  $A_d = \frac{(1 - \alpha) . R_1}{\sigma_s tg\theta}$ 

- Si  $e_o > \frac{b}{6}$ , on calculera A section d'armatures nécessaire pour équilibrer le moment M1=2.R<sub>1</sub>( $\frac{b'}{2}$  - 0.35b).

La section pourra être décomposée en :

- Des cerces de section Ac= $\frac{\alpha . A}{2}$
- Des armatures de section Ad placées suivant les diagonales et telles que : Ad=  $\frac{(1-\alpha)A}{2\cos\beta}$