Interpretable Machine Learning

Pitfalls and Best Practices

Learning goals

- General pitfalls of interpretation methods
- Practices to avoid pitfalls

SOURCES OF PITFALLS Moinar et. al (2021)

ISSUES OF ML MODEL Molnar et. al (2021)

• **Proper training and evaluation**: To gain insights into data generating process, deployed model should at least generalize well to unseen data (garbage in, garbage out)

ISSUES OF ML MODEL Molnar et. al (2021)

Average prediction (PDP)

• **Proper training and evaluation**: To gain insights into data generating process, deployed model should at least generalize well to unseen data (garbage in, garbage out) Example: Three features are drawn from a uniform distribution, and the target is generated as $Y = X_1^2 + X_2 - 5X_1X_2 + \epsilon$, with $\epsilon \sim \mathcal{N}(0,5)$. Figure: PDPs for the DGP and for a linear regression model (underfitted), a random forest (overfitted) and a support vector machine with radial basis kernel (good fit).

ISSUES OF ML MODEL Molnar et. al (2021)

• **Proper training and evaluation**: To gain insights into data generating process, deployed model should at least generalize well to unseen data (garbage in, garbage out) Example: Three features are drawn from a uniform distribution, and the target is generated as $Y = X_1^2 + X_2 - 5X_1X_2 + \epsilon$, with $\epsilon \sim \mathcal{N}(0,5)$. Figure: PDPs for the DGP and for a linear regression model (underfitted), a random forest (overfitted) and a support vector machine with radial basis kernel (good fit).

Avoid unnecessary complexity: Prefer simple interpretable models and use them as baseline

ISSUES OF IML METHOD Molnar et. al (2021)

● **Consider dependencies**: Some interpretation methods suffer when features are dependent → Check presence of dependencies and use suitable methods

ISSUES OF IML METHOD Moinar et. al (2021)

ISSUES OF IML METHOD Molnar et. al (2021)

 ■ Beware of simplifications: Mapping of complex models to low-dim. explanations
→ Information loss, e.g., some interpretation methods hide interactions (Figure: PDP and ICE Curves)

slides/03_feature-effects/f

ISSUES DUE TO WRONG USE OF IML METHOD Molnar et. al (2021)

- Quantify uncertainty: Interpretation methods are often (statistical) estimators
 - → Beware of uncertainty, we may need confidence intervals

ISSUES DUE TO WRONG USE OF IML METHOD Molnar et. al (2021)

 Quantify uncertainty: Interpretation methods are often (statistical) estimators → Beware of uncertainty, we may need confidence intervals Example: Left plot (IML method output) misleading compared to fitted models in right plot

ISSUES DUE TO WRONG USE OF IML METHOD (* Moinar et. al (2021)

 Quantify uncertainty: Interpretation methods are often (statistical) estimators → Beware of uncertainty, we may need confidence intervals Example: Left plot (IML method output) misleading compared to fitted models in right plot

 Careful with causality: Do you want to understand the model or the nature of DGP? → Your goal should guide the choice of interpretation method