WHAT IS CLAIMED IS:

1	1. A method of etching a noble metal layer disposed on a substrate
2	comprising the steps of:
3	a) providing a substrate supporting a barrier layer, a noble
4	metal layer on said barrier layer, a protective layer on said noble metal layer, a mask layer
5	on said protective layer, and a patterned resist layer on said mask layer;
6	b) etching a portion of said mask layer including employing a
7	plasma of a mask etchant gas to break through and to remove said portion of said mask
8	layer from said protective layer to expose part of said protective layer and to produce said
9	substrate supporting said barrier layer, said noble metal layer on said barrier layer, said
10	protective layer on said noble metal layer, a residual mask layer on said protective layer,
11	and said patterned resist layer on said residual mask layer;
12	c) removing said patterned resist layer from said residual mask
13	layer of step (b) to produce said substrate supporting said barrier layer, said noble metal
14	layer on said barrier layer, said protective layer on said noble metal layer, and said
15	residual mask layer on said protective layer;
16	d) etching said exposed part of said protective layer to expose
17	part of said noble metal layer and to produce said substrate supporting said barrier layer,
18	and said noble metal layer on said barrier layer, a residual protective layer on said noble
19	metal layer, and said residual mask layer on said residual protective layer;
20	e) heating said substrate of step (d) to a temperature greater
21	than about 150°C;
22	f) etching said exposed part of said noble metal layer of step
23	(d) including employing a plasma of an etchant gas selected from the group consisting of
24	a halogen containing gas, a noble gas, nitrogen, oxygen, and mixtures thereof, to produce
25	said substrate supporting said barrier layer, an etched noble metal layer on said barrier
26	layer, said residual protective layer on said etched noble metal layer, and said residual
27	mask layer on said residual protective layer;
28	g) removing said residual mask layer from said residual
29	protective layer to produce said substrate supporting said barrier layer, said etched noble
30	metal layer on said barrier layer, and said residual protective layer on said etched noble
31	metal layer; and

32	h) etching a portion of said barrier layer including employing			
33	a plasma of a barrier etchant gas to expose part of the substrate to produce said substrate			
34	supporting a residual barrier layer, said etched noble metal layer on said residual barrier			
35	layer, and said residual protective layer on said etched noble metal layer.			
1	2. The method of Claim 1 wherein said step (f) etching of said noble			
2	metal layer of step (d) additionally produces a remaining noble metal layer on said barrier			
3	layer, said step (g) removing of said residual mask layer additionally produces said			
4	remaining noble metal layer on said barrier layer, and said method additionally comprises			
5	etching said remaining noble metal layer on said barrier layer prior to said step (h)			
6	etching.			
1	3. The method of Claim 1 additionally comprising removing said			
2	residual protective layer from said etched noble metal layer.			
1	4. The method of Claim 1 wherein said step (f) etching of said noble			
2	metal layer of step (d) additionally produces a remaining noble metal layer on said barrier			
3	layer, said step (g) removing of said residual mask layer additionally produces said			
4	remaining noble metal layer on said barrier layer, and said method additionally comprises			
5	etching said residual protective layer and said remaining noble metal layer on said barrier			
6	layer prior to said step (h) etching.			
1	5. The method of Claim 3 wherein said removing of said residual			
2	protective layer from said etched noble metal is simultaneous with said etching step (h).			
1	6. The method of Claim 1 wherein said mask layer comprises CVD			
2	SiO_2 .			
1	7. The method of Claim 2 wherein said mask layer and said substrate			
2	comprises CVD SiO ₂ .			
1	8. The method of Claim 4 wherein said mask layer comprises CVD			
2	SiO_2 .			
1	9. The method of Claim 1 wherein said mask layer comprises a			

compound selected from the group consisting of TEOS, CVD SiO_2 , $\mathrm{Si}_3\mathrm{N}_4$, BSG, PSG,

3	BPSG, a low dielectric constant material with a dielectric constant less than about 3.0,
4	and mixtures thereof.
1 2 3	10. The method of Claim 1 wherein said barrier layer comprises a compound selected from the group consisting of TiN, TiSiN, Ti, WN, TaN, TaSiN, Ta, and mixtures thereof.
1	11. The method of Claim 1 wherein said protective layer comprises a
2	compound selected from the group consisting of TiN, TiSiN, Ti, WN, TaN, TaSiN, Ta,
3	and mixtures thereof.
1	12. The method of Claim 1 wherein said mask layer has a thickness
2	ranging from about 6000Å to about 9,000Å.
1	13. A method of etching a noble metal layer disposed on a substrate
2	comprising the steps of:
3	a) providing a substrate supporting a barrier layer, a noble
4	metal layer on said barrier layer, a mask layer on said noble metal layer, and a patterned
5	resist layer on said mask layer;
6	b) etching a portion of said mask layer including employing a
7	plasma of a mask etchant gas to break through and to remove said portion of said mask
8	layer from said noble metal layer to expose part of said noble metal layer and to produce
9	said substrate supporting said barrier layer, said noble metal layer on said barrier layer, a
10	residual mask layer on said noble metal layer, and said patterned resist layer on said
11	residual mask layer;
12	c) removing said patterned resist layer from said residual mask
13	layer of step (b) to produce said substrate supporting said barrier layer, said noble metal
14	layer on said barrier layer, and said residual mask layer on said noble metal layer;
15	d) heating said substrate of step (c) to a temperature greater
16	than about 150°C;
17	e) etching said exposed part of said noble metal layer of step
18	(c) including employing a plasma of an etchant gas selected from the group consisting of
19	a halogen containing gas, a noble gas, nitrogen, oxygen, and mixtures thereof, to produce
20	said substrate supporting said barrier layer, an etched noble metal layer on said barrier

layer, and said residual mask layer on said etched noble metal layer;

26

22		f)	removing said residual mask layer from said etched noble
23	metal layer to produc	e said s	substrate supporting said barrier layer and said etched noble
24	metal layer on said b	arrier la	yer; and
25		g)	etching a portion of said barrier layer including employing
26	a plasma of a barrier	etchant	gas to expose part of the substrate to produce said substrate
27	supporting a residual	barrier	layer and said etched noble metal layer on said residual
28	barrier layer.		
_	4.4		
1	14.		hod of etching a noble metal layer disposed on a substrate
2	comprising the steps	of:	
3		a)	providing a substrate supporting a barrier layer, a noble
4	metal layer on said b	arrier la	yer, a protective layer on said noble metal layer, a mask layer
5	on said protective lay	er, and	a patterned resist layer on said mask layer;
6		b)	etching a portion of said mask layer including employing a
7	plasma of a mask etc	hant gas	s to break through and to remove said portion of said mask
8	layer from said prote	ctive la	yer to expose part of said protective layer and to produce said
9	substrate supporting	said bar	rier layer, said noble metal layer on said barrier layer, said
10	protective layer on sa	id nobl	e metal layer, a residual mask layer on said protective layer,
11	and said patterned res	sist laye	er on said residual mask layer;
12		c)	removing said patterned resist layer from said residual mask
13	layer of step (b) to pr	oduce s	aid substrate supporting said barrier layer, said noble metal
14	layer on said barrier	layer, sa	aid protective layer on said noble metal layer, and said
15	residual mask layer o	n said p	protective layer;
16		d)	etching said exposed part of said protective layer to expose
17	part of said noble me	tal laye	r and to produce said substrate supporting said barrier layer,
18	said noble metal laye	r on sai	d barrier layer, a residual protective layer on said noble metal
19	layer, said residual mask layer on said residual protective layer, and said patterned resist		
20	layer on said residual	mask l	ayer;
21		e)	heating said substrate of step (d) to a temperature greater
22	than about 150°C;		
23		f)	etching said exposed part of said noble metal layer of step
24	(d) including employ	ing a pl	asma of an etchant gas selected from the group consisting of

a halogen containing gas, a noble gas, nitrogen, oxygen, and mixtures thereof, to produce

said substrate supporting said barrier layer, an etched noble metal layer on said barrier

8

27	layer, said residual protective layer on said etched noble metal layer, and said residual		
28	mask layer on said residual protective layer;		
29	g) etching a portion of said barrier layer including employing		
30	a plasma of a barrier etchant gas to expose part of the substrate to produce said substrate		
31	supporting a residual barrier layer, said etched noble metal layer on said residual barrier		
32	layer, said residual protective layer on said etched noble metal layer, and said residual		
33	mask layer on said residual protective layer; and		
34	h) removing said residual mask layer from said residual		
35	protective layer to produce said substrate supporting said residual barrier layer, said		
36	etched noble metal layer on said residual barrier layer, and said residual protective layer		
37	on said etched noble metal layer.		
1	15. The method of Claim 14 wherein said barrier layer comprises a		
1	· · · · · · · · · · · · · · · · · · ·		
2	compound selected from the group consisting of TiN, TiSiN, Ti, WN, TaN, TaSiN, Ta,		
3	and mixtures thereof.		
1	16. The method of Claim 14 wherein said protective layer comprises a		
2	compound selected from the group consisting of TiN, TiSiN, Ti, WN, TaN, TaSiN, Ta,		
3	and mixtures thereof.		
1	17. The method of Claim 14 wherein said mask layer has a thickness		
1	17. The method of Claim 14 wherein said mask layer has a thickness ranging from about 6000Å to a about 9,000Å.		
2	ranging from about 6000A to a about 9,000A.		
1	18. The method of Claim 14 wherein said mask layer comprises a		
2	compound selected from the group consisting of Si ₃ N ₄ , BSG, PSG, BPSG, a low		
3	dielectric constant material with a dielectric constant of less than about 3.0, and mixtures		
4	thereof.		
1	19. A method of etching a noble metal layer disposed on a substrate		
1			
2	comprising the steps of: a) providing a substrate supporting an etch-stop layer, a		
3	a) providing a substrate supporting an etch-stop layer, a barrier layer on said etch-stop layer, a noble metal layer on said barrier layer, a mask		
4 5	layer on said noble metal layer, and a patterned resist layer on said mask layer;		
5 6	b) etching a portion of said mask layer including employing a		
U	b) coming a portion of said mask rayor morading omproying a		

plasma of a mask etchant gas to break through and to remove said portion of said mask

layer from said noble metal layer to expose part of said noble metal layer and to produce

4

9	said substrate supporting said etch-stop layer, said barrier layer on said etch-stop layer,
10	said noble metal layer on said barrier layer, a residual mask layer on said noble metal
11	layer, and said patterned resist layer on said residual mask layer;
12	c) removing said patterned resist layer from said residual mask
13	layer of step (b) to produce said substrate supporting said etch-stop layer, said barrier
14	layer on said etch-stop layer, said noble metal layer on said barrier layer, and said residual
15	mask layer on said noble metal layer;
16	d) heating said substrate of step (c) to a temperature greater
17	than about 150°C;
18	e) etching said exposed part of said noble metal layer
19	including employing a plasma of an etchant gas selected from the group consisting of a
20	halogen containing gas, a noble gas, nitrogen, oxygen, and mixtures thereof, to expose
21	part of the barrier layer and to produce said substrate supporting said etch-stop layer, said
22	barrier layer on said etch-stop layer, an etched noble metal layer on said barrier layer, and
23	said residual mask layer on said etched noble metal layer;
24	f) etching said exposed part of said barrier layer to expose part
25	of said etch-stop layer and to produce said substrate supporting said etch-stop layer, a
26	residual barrier layer on said etch-stop layer, said etched noble metal layer on said
27	residual barrier layer, and said residual mask layer on said etched noble metal layer; and
28	g) removing said residual mask layer from said etched noble
29	metal layer to produce said substrate supporting said etch-stop layer, said residual barrier
30	layer on said etch-stop layer, and said etched noble metal layer on said residual barrier
31	layer.
1	20 The mostle of a Claim 10 additionally a commission at this a gold at the
1	20. The method of Claim 19 additionally comprising etching said etch-
2	stop layer.
1.	21. The method of Claim 19 wherein said mask layer comprises a
2	compound selected from the group consisting of CVD SiO ₂ , TEOS, BSG, PSG, BPSG, a
3	low dielectric constant material with a dielectric constant of less than about 3.0.
1	
1	22. A method of etching a noble metal layer disposed on a substrate
2	comprising the steps of:

metal layer on said barrier layer, a first mask layer on said noble metal layer, a second

a)

providing a substrate supporting a barrier layer, a noble

5	mask layer on said first mask layer, and a patterned resist layer on said second mask
6	layer;
7	b) etching a portion of said second mask layer including
8	employing a plasma of a mask etchant gas to break through and to remove said portion of
9	said second mask layer from said first mask layer to expose part of said first mask layer
10	and to produce said substrate supporting said barrier layer, said noble metal layer on said
11	barrier layer, said first mask layer on said noble metal layer, a residual second mask layer
12	on said first mask layer, and said patterned resist layer on said residual second mask
13	layer;
14	c) etching said exposed part of said first mask layer to expose
15	part of said noble metal layer and to produce said substrate supporting said barrier layer,
16	said noble metal layer on said barrier layer, a residual first mask layer on said noble metal
17	layer, said residual second mask layer on said residual first mask layer, and said patterned
18	resist layer on said residual second mask layer;
19	d) removing said patterned resist layer from said residual
20	second mask layer of step (c) to produce said substrate supporting said barrier layer, said
21	noble metal layer on said barrier layer, and said residual first mask layer on said noble
22	metal layer, and said residual second mask layer on said first residual mask layer;
23	e) heating said substrate of step (d) to a temperature greater
24	than about 150°C;
25	f) etching said exposed part of said noble metal layer and said
26	residual second mask layer of step (d) including employing a plasma of an etchant gas
27	selected from the group consisting of a halogen containing gas, a noble gas, nitrogen,
28	oxygen, and mixtures thereof, to produce said substrate supporting said barrier layer, an
29	etched noble metal layer on said barrier layer, and said residual first mask layer on said
30	etched noble metal layer;
31	g) etching said barrier layer to remove a portion of the barrier
32	layer from said substrate to produce said substrate supporting a residual barrier layer, said
33	etched noble metal layer on said residual barrier layer, and said residual first mask layer
34	on said etched noble metal; and
35	h) removing said residual first mask layer from said etched
36	noble metal layer to produce said substrate supporting said residual barrier layer, and said

etched noble metal layer on said residual barrier layer.

1	23. T	he method of Claim 22 wherein said patterned resist layer is
2	removed from said resid	lual second mask layer during said etching step (c).
1	24. T	he method of Claim 22 wherein said first mask layer comprises a
2	compound selected from	n the group consisting of Si ₃ N ₄ , BSG, PSG, BPSG, an organic
3	polymer, a low dielectric	c constant material having a dielectric constant of less than about
4	3.0, and mixtures thereo	·f.
1	25. T	he method of Claim 22 wherein said second mask layer comprises
2	a compound selected fro	om the group consisting of CVD Si ₀₂ , TEOS, Si ₃ N ₄ , BSG, PSG,
3	BPSG, SiC, and mixture	es thereof.
1	26. T	he method of Claim 22 wherein said first mask layer has a
2	thickness ranging from a	about 3000Å to about 8000Å.
1	27. T	he method of Claim 22 wherein said second mask layer has a
2	thickness ranging from a	about 500Å to about 4000Å.
1	28. T	he method of Claim 22 wherein said etching step (g) additionally
2	comprises etching into s	aid substrate.