Περιουσιακά στοιχεία που ενέχουν κίνδυνο

Αντώνης Παπαβασιλείου, ΕΜΠ Βασισμένο στον Varian [1]

Περιεχόμενα

- Συνάρτηση χρησιμότητας μέσου διακύμανσης
- Μέτρηση του κινδύνου
- Κίνδυνος αντισυμβαλλομένου
- Ισορροπία σε αγορά στοιχείων που ενέχουν κίνδυνο
- Πώς προσαρμόζονται οι αποδόσεις

Συνάρτηση χρησιμότητας μέσου – διακύμανσης

Το μοντέλο μέσου - διακύμανσης

- Στο προηγούμενο κεφάλαιο είδαμε τις προσδοκώμενες συναρτήσεις χρησιμότητας ως μοντέλο συμπεριφοράς ενός καταναλωτή σε συνθήκες αβεβαιότητας
- Μια εναλλακτική είναι να σκεφτούμε τις κατανομές πιθανοτήτων ως αυτό που επιλέγει ο καταναλωτής, και συγκεκριμένα τις παραμέτρους που καθορίζουν αυτές τις κατανομές πιθανοτήτων
- Το πιο δημοφιλές τέτοιο μοντέλο είναι το **μοντέλο μέσου –** διακύμανσης
- Αντί να θεωρούμε ότι ο καταναλωτής ενδιαφέρεται για την πλήρη κατανομή της περιουσίας του, υποθέτουμε ότι ενδιαφέρεται για τις παραμέτρους της κατανομής της περιουσίας του

Μέση τιμή, διακύμανση, τυπική απόκλιση

- Έστω τυχαία μεταβλητή w που παίρνει τις τιμές w_s για $s=1,\dots,S$ με πιθανότητα π_s
- Η μέση τιμή είναι

$$\mu_w = \sum_{s=1}^S \pi_s w_s$$

• Η **διακύμανση** είναι η μέση τιμή του $(w - \mu_w)^2$:

$$\sigma_w^2 = \sum_{S=1}^{S} \pi_S (w_S - \mu_w)^2$$

- Η διακύμανση είναι ένα μέτρο της μεταβλητότητας της περιουσίας, και άρα δίνει μια ιδέα για το ρίσκο
- Η τυπική απόκλιση είναι $\sigma_w = \sqrt{\sigma_w^2}$

Μέση τιμή και διακύμανση

Η μέση τιμή μετρά το «κέντρο» της κατανομής, η διακύμανση το πόσο διεσπαρμένη είναι η περιουσία του καταναλωτή

Το μοντέλο μέσου - διακύμανσης

- Το μοντέλο μέσου διακύμανσης υποθέτει ότι η χρησιμότητα της κατανομής πιθανοτήτων που δίνει περιουσία w_s με πιθανότητα π_s μπορεί να εκφραστεί ως συνάρτηση $u(\mu_w, \sigma_w^2)$ ή ως συνάρτηση $u(\mu_w, \sigma_w)$
- Είναι μια προσέγγιση του μοντέλου προσδοκώμενης χρησιμότητας που είδαμε στο προηγούμενο κεφάλαιο:
 - Αν μια κατανομή χαρακτηρίζεται πλήρως από το μέσο και τη διακύμανση, τότε οι δύο αναπαραστάσεις είναι ισοδύναμες
 - Αν όχι, και πάλι είναι μια χρήσιμη προσέγγιση
 - Κατά κανόνα θα θεωρούμε την υψηλότερη διακύμανση «κακή», σα να λέμε ότι οι καταναλωτές έχουν αποστροφή προς το ρίσκο

Πρόβλημα χαρτοφυλακίου

- Ας χρησιμοποιήσουμε το μοντέλο μέσου διακύμανσης για την ανάλυση ενός προβλήματος επιλογής χαρτοφυλακίου
- Ας υποθέσουμε ότι μπορούμε να επενδύσουμε σε δύο περιουσιακά στοιχεία
 - Το περιουσιακό στοιχείο χωρίς ρίσκο δίνει απόδοση r_f ανεξαρτήτως έκβασης (π.χ. κρατικό ομόλογο)
 - Το περιουσιακό στοιχείο που ενέχει κίνδυνο δίνει απόδοση m_s αν συμβεί το σενάριο s με πιθανότητα π_s , απεικονίζουμε ως r_m τη μέση απόδοση και ως σ_m την τυπική απόκλιση της απόδοσης (π.χ. αμοιβαία κεφάλαια που αγοράζουν μετοχές)

Μέση τιμή, διακύμανση, και τυπική απόκλιση του χαρτοφυλακίου

• Αν βάλουμε ένα μέρος x της περιουσίας στο περιουσιακό στοιχείο με κίνδυνο (και τα υπόλοιπα στο στοιχείο χωρίς κίνδυνο) η μέση απόδοση είναι

$$r_{x} = \sum_{s=1}^{3} (xm_{s} + (1-x)r_{f})\pi_{s} = x\sum_{s=1}^{3} m_{s}\pi_{s} + (1-x)r_{f}\sum_{s=1}^{3} \pi_{s} = xr_{m} + (1-x)r_{f}$$

• Η διακύμανση είναι

$$\sigma_x^2 = \sum_{S=1}^{S} (xm_S + (1-x)r_f - r_x)^2 \pi_S$$

• Αντικαθιστώντας το $r_{\mathbf{x}}$, έχουμε

$$\sigma_x^2 = \sum_{s=1}^{S} (xm_s - xr_m)^2 \pi_s = \sum_{s=1}^{S} x^2 (m_s - r_m)^2 \pi_s = x^2 \sigma_m^2$$

• Άρα η τυπική απόκλιση του χαρτοφυλακίου είναι $\sigma_x = \sqrt{x^2 \sigma_x^2} = x \sigma_m$

Εισοδηματικός περιορισμός στο πρόβλημα επιλογής χαρτοφυλακίου

- Είναι φυσικό να υποθέσουμε ότι $r_m > r_f$ (γιατί αλλιώς δεν έχουμε λόγο να διαλέξουμε το στοιχείο που ενέχει κίνδυνο)
- Αν επιλέξουμε x=1 (όλη η περιουσία στο στοιχείο που ενέχει κίνδυνο) έχουμε μέση απόδοση και τυπική απόκλιση (r_m, σ_m)
- Αν επιλέξουμε x=0 (όλη η περιουσία στο στοιχείο που δεν ενέχει κίνδυνο) έχουμε μέση απόδοση και τυπική απόκλιση $(r_f,0)$
- Για ενδιάμεσες τιμές *x* έχουμε τη γραμμή εισοδηματικού περιορισμού του σχήματος
- Αφού η τυπική απόκλιση είναι ανεπιθύμητο αγαθό, οι καμπύλες αδιαφορίας έχουν θετική κλίση

Η τιμή του ρίσκου

- Η τιμή του ρίσκου είναι η κλίση της γραμμής εισοδηματικού περιορισμού, αφού ποσοτικοποιεί πόσα € πρέπει να παραχωρήσουμε για να μειώσουμε το ρίσκο (τυπική απόκλιση) κατά μία μονάδα
- Από το γράφημα της προηγούμενης διαφάνειας:

$$p = \frac{r_m - \dot{r_f}}{\sigma_m} \quad (13.1)$$

• Στη βέλτιστη επιλογή, ο ΟΛΥ πρέπει να ισούται με την τιμή του ρίσκου:

$$O\Lambda\Upsilon = -\frac{\Delta U/\Delta\sigma}{\Delta U/\Delta\mu} = \frac{r_m - r_f}{\sigma_m} (13.2)$$

Εισάγοντας ένα νέο περιουσιακό στοιχείο

- Ας υποθέσουμε ότι ο καταναλωτής έχει την επιλογή να επενδύσει σε ένα νέο περιουσιακό στοιχείο y με κίνδυνο, με μέση απόδοση r_y και τυπική διακύμανση σ_y
- Ποια από τα x και y πρέπει να διαλέξει ο καταναλωτής;
- Το αρχικό και το νέο σύνολο καταναλωτικών δυνατοτήτων παρουσιάζονται στο σχήμα
- Αφού με το νέο περιουσιακό στοιχείο ο καταναλωτής μπορεί να διευρύνει το σύνολο καταναλωτικών δυνατοτήτων, ο καταναλωτής πρέπει να μεταθέσει την επένδυσή του από το x στο y
- Αν η απόφαση είναι «όλα ή τίποτα» τότε ο καταναλωτής πρέπει να μείνει με το x

Ερώτηση 13.1

- Αν το επιτόκιο είναι 6%, και αν ένα αγαθό με κίνδυνο είναι διαθέσιμο με απόδοση 9% και με τυπική απόκλιση 3%, ποια είναι η μέγιστη απόδοση που μπορείς να πετύχεις αν είσαι διατεθειμένος να ανεχτείς τυπική απόκλιση 2%;
- Ποιο ποσοστό της περιουσίας σου πρέπει να επενδυθεί στο αγαθό που ενέχει κίνδυνο;

Απάντηση στην ερώτηση 13.1

- Για να πετύχουμε τυπική απόκλιση 2% χρειάζεται να επενδύσουμε $x = \frac{\sigma_x}{\sigma_m} = 2/3$ της περιουσίας μας στο επικίνδυνο αγαθό
- Αυτό οδηγεί σε απόδοση ίση με $(2/3) \cdot 0.09 + (1-2/3) \cdot 0.06 = 8\%$

Ερώτηση 13.2

• Ποια είναι η τιμή του ρίσκου στην παραπάνω άσκηση;

Απάντηση στην ερώτηση 13.2

- Η τιμή του ρίσκου ισούται με $\frac{r_m r_f}{\sigma_m} = \frac{9 6}{3} = 1$
- Δηλαδή, για κάθε επιπλέον μονάδα τυπικής απόκλισης πετυχαίνεις αύξηση 1% στην απόδοση

Μέτρηση του κινδύνου

Μετρώντας τον κίνδυνο ενός περιουσιακού στοιχείου

- Πώς μετράμε το ρίσκο ενός περιουσιακού στοιχείου;
- Δεν είναι η τυπική του απόκλιση, γιατί έχει σχέση με το πώς αλληλοεπιδρά το στοιχείο με άλλα περιουσιακά στοιχεία
- Ας υποθέσουμε ότι αγοράζουμε δύο στοιχεία, και υπάρχουν δύο πιθανά ενδεχόμενα
 - Στοιχείο Α: αξίζει είτε 10 € είτε -5 €
 - Στοιχείο Β: αξίζει είτε -5 € είτε 10 €
 - Αλλά είναι *αρνητικά συσχετισμένα*: όταν το Α αξίζει 10 €, το Β αξίζει -5 €, και αντιστρόφως
- Αν τα δύο ενδεχόμενα είναι ισοπίθανα, η μέση τιμή των δύο στοιχείων είναι 2.5 €
- Αν πρέπει να διαλέξουμε είτε το ένα είτε το άλλο, και έχουμε αποστροφή προς τον κίνδυνο, τότε δεν πληρώνουμε πάνω από 2.5 € για οποιοδήποτε από τα δύο
- Αλλά αν μπορούμε να τα συνδυάσουμε, τότε είμαστε διατεθειμένοι να πληρώσουμε ακριβώς 5 € για να έχουμε μία μονάδα και από τα δύο στοιχεία
- Η αξία ενός περιουσιακού στοιχείου έχει πολύ περισσότερο να κάνει με τη συσχέτισή του με άλλα περιουσιακά στοιχεία της αγοράς, παρά με την ίδια του τη διακύμανση

Το βήτα μιας μετοχής

- Το **βήτα μιας μετοχής** είναι το ρίσκο μιας μετοχής σε σχέση με το ρίσκο της αγοράς
- Σε αδρές γραμμές:

$$\beta_i = \frac{\pi \acute{o}\sigma \acute{o} κίνδυνο ενέχει το στοιχείο i}{\pi \acute{o}\sigma \acute{o} κίνδυνο ενέχει το χρηματιστήριο} = \frac{\text{cov}(\tilde{r}_i, \tilde{r}_m)}{\text{var}(\tilde{r}_m)}$$

- Αν μια μετοχή έχει βήτα ίσο με 1, τότε ενέχει τόσο κίνδυνο όσο όλη η αγορά: όταν η αγορά ανέβει 10%, το ίδιο θα συμβεί με αυτό το περιουσιακό στοιχείο
- Αν μια μετοχή έχει βήτα < 1, τότε αν το χρηματιστήριο ανέβει 10% το περιουσιακό στοιχείο < 10%

Κίνδυνος αντισυμβαλλομένου

Κίνδυνος αντισυμβαλλόμενου

- Ο **κίνδυνος αντισυμβαλλόμενου** είναι ο κίνδυνος να μην αποπληρώσει κάποιος συμβαλλόμενος το δάνειό του
- Έστω τρεις τράπεζες Α, Β, С
 - Η τράπεζα Α χρωστά στην Β 1 δις €
 - Η Β χρωστά στην C 1 δις €
 - Η C χρωστά στην Α 1 δις €
- Αν αθετήσει το δάνειό της η Α, τότε η Β είναι μείον 1 δις
 - Και αν η Β αθετήσει την πληρωμή της στη C, τότε αυτό επιστρέφει στην A, η οποία βρίσκεται σε ακόμη πιο δεινή θέση
 - Αυτό ονομάζεται χρηματοοικονομική μόλυνση ή συστημικός κίνδυνος
 - Είναι μια απλοποιημένη μορφή αυτού που συνέβη στις τράπεζες των ΗΠΑ το 2008
- Μια πιθανή λύση: δανειστής έκτακτης ανάγκης
 - Που στις ΗΠΑ είναι το Ομοσπονδιακό Αποθεματικό Σύστημα
 - Και δανείζει στην Α 1 δις, ώστε να αποπληρώσει η μία τράπεζα την άλλη
 - Στην πράξη οι σχέσεις δανεισμού είναι πολύ πιο περίπλοκες, και εμπλέκουν χιλιάδες χρηματοπιστωτικούς οργανισμούς, που είναι ο λόγος που μπορεί να χρειαστεί ο δανειστής έκτακτης ανάγκης

Ισορροπία σε αγορά στοιχείων που ενέχουν κίνδυνο

Ισορροπία

- Σε μια αγορά με βέβαιες αποδόσεις, είδαμε πως όλα τα περιουσιακά στοιχεία πρέπει να δίνουν την ίδια απόδοση
- Η ίδια αρχή ισχύει εδώ: όλα τα περιουσιακά στοιχεία, όταν προσαρμόσουμε για τον κίνδυνο, πρέπει να δίνουν την ίδια απόδοση
- Πώς προσαρμόζουμε για το ρίσκο;
- Αν r_m και σ_m αντιπροσωπεύουν τη μέση απόδοση και τυπική απόκλιση όλης της αγοράς αντίστοιχα, έχουμε από την εξίσωση (13.1) ότι η τιμή του ρίσκου είναι

$$p = \frac{r_m - r_f}{\sigma_m}$$

- Το συνολικό ρίσκο του περιουσιακού στοιχείου είναι $eta_i \sigma_m$
- Η προσαρμογή ρίσκου είναι το συνολικό ρίσκο επί την τιμή του ρίσκου:

Προσαρμογή ρίσκου =
$$\beta_i \sigma_m p = \beta_i \sigma_m \frac{r_m - r_f}{\sigma_m} = \beta_i (r_m - r_f)$$

Το υπόδειγμα των περιουσιακών στοιχείων (CAPM)

- Η συνθήκη ισορροπίας είναι πως όλα τα περιουσιακά στοιχεία έχουν ίδια απόδοση, προσαρμοσμένη ως προς το ρίσκο
- Αν υπάρχουν δύο περιουσιακά στοιχεία i και j με αποδόσεις r_i και r_j και βήτα β_i και β_j , έχουμε την ακόλουθη συνθήκη ισορροπίας:

$$r_i - \beta_i (r_m - r_f) = r_j - \beta_j (r_m - r_f)$$

- Για το περιουσιακό στοιχείο που δεν ενέχει ρίσκο, έχουμε $\beta_f = 0$
- Άρα για οποιοδήποτε περιουσιακό στοιχείο i έχουμε ότι

$$r_i - \beta_i (r_m - r_f) = r_f - \beta_f (r_m - r_f) = r_f$$

• Αναδιαρρυθμίζοντας, έχουμε

$$r_i = r_f + \beta_i (r_m - r_f)$$

- Ο δεύτερος όρος εκφράζει την επιπλέον απόδοση που απαιτούν οι πράκτορες για να ανεχθούν το ρίσκο του περιουσιακού στοιχείου
- Η τελευταία εξίσωση αποτελεί το υπόδειγμα των περιουσιακών στοιχείων (capital asset pricing model / CAPM)

Ερώτηση 13.3

- Αν μια μετοχή έχει βήτα 1.5, η απόδοση r_m είναι 10%, και η απόδοση του περιουσιακού στοιχείου χωρίς κίνδυνο είναι 5%, τι προσδοκώμενη απόδοση δίνει αυτή η μετοχή κατά το CAPM;
- Αν η προσδοκώμενη αξία της μετοχή είναι 100 €, σε τι τιμή πρέπει να πωλείται η μετοχή σήμερα;

Απάντηση στην ερώτηση 13.3

- Σύμφωνα με την τιμή CAPM, η μετοχή πρέπει να προσφέρει μια προσδοκώμενη απόδοση $r_f+\beta \big(r_m-r_f\big)=0.05+1.5\cdot (0.10-0.05)=0.125$ ή 12.5%
- Η μετοχή πρέπει να πωλείται στην αναμενόμενη παρούσα αξία της, που ισούται με $\frac{100}{1.125} = 88.89$ €

Πώς προσαρμόζονται οι αποδόσεις

Η γραμμή της αγοράς

Δείξαμε προηγουμένως ότι η απόδοση και το βήτα ενός περιουσιακού στοιχείου εκφράζεται από την ακόλουθη σχέση στην οικονομική ισορροπία:

$$r_i = r_f + \beta_i (r_m - r_f)$$

• Η απεικόνιση αυτή ονομάζεται γραμμή της αγοράς

Προσαρμογή τιμής

- Τι γίνεται αν ένα περιουσιακό στοιχείο δε βρίσκεται πάνω στη γραμμή της αγοράς;
- Εξορισμού έχουμε ότι

$$r_i = \mathbb{E}\left[\frac{p_1 - p_0}{p_0}\right]$$

• Ας υποθέσουμε πως έχουμε ένα περιουσιακό στοιχείο για το οποίο

$$r_i - \beta_i (r_m - r_f) > r_f$$

- Τότε πολλοί επενδυτές θέλουν να το αγοράσουν, αυξάνοντας την τιμή του
- Αλλά αυτό ανεβάζει την τιμή του p_0 , με αποτέλεσμα να πέσει το r_i , μέχρι να επιστρέψει το περιουσιακό στοιχείο στη γραμμή της αγοράς

Παράδειγμα: αξία σε κίνδυνο

- Οι επενδυτές συχνά θέλουν να εκτιμήσουν τον κίνδυνο ενός χαρτοφυλακίου
- Αυτό μπορεί να γίνει με την αξία σε κίνδυνο
- Για παράδειγμα, μια τράπεζα μπορεί να κινδυνεύει να χάσει
 1,000,000 € με πιθανότητα 5% σε μία μέρα, άρα έχει «αξία σε κίνδυνο 5% μίας ημέρας» ίση με 1,000,000 €
- Κατά κανόνα η αξία σε κίνδυνο εκτιμάται σε επίπεδο 1% ή 5% ή για μία ημέρα ή δύο εβδομάδες

Παράδειγμα: κατάταξη αμοιβαίων κεφαλαίων

- Τα αμοιβαία κεφάλαια τα διαχειρίζονται οργανισμοί οι οποίοι συλλέγουν κεφάλαια από πολλούς επενδυτές και τα χρησιμοποιούν για να αγοράσουν και να πουλήσουν μετοχές
- Η επιλογή του αμοιβαίου κεφαλαίου εξαρτάται από την ανοχή του καθενός μας για ρίσκο
- Ένα τυπικό διάγραμμα εναλλακτικών παρουσιάζεται στο σχήμα

Δείκτες

- Μια εναλλακτική του να επιλέξουμε τη διαχείριση από επαγγελματίες σε αμοιβαία κεφάλαια είναι οι δείκτες
 - Dow Jones
 - Standard and Poor's (μέση απόδοση 500 μεγάλων μετοχών στις ΗΠΑ)
- Οι δείκτες είναι ένας απλός τρόπος επένδυσης
 - Έχουν βήτα σχεδόν ίσο με 1, γιατί περιλαμβάνει πολλές μετοχές
- Αν τραβήξουμε τη γραμμή από ένα περιουσιακό στοιχείο σε ένα δείκτη, έχουμε μια γραμμή που μπορεί να χρησιμοποιηθεί για να σκοράρουμε τα αμοιβαία κεφάλαια
- Στην πράξη καταλήγουν πολλά αμοιβαία κεφάλαια να είναι κάτω από τη γραμμή!
 - Άρα δεν είναι απαραίτητα συμφέρουσες επενδυτικές κινήσεις

Βιβλιογραφία

[1] Hal Varian, Μικροοικονομική: μια σύγχρονη προσέγγιση, 3^η έκδοση, εκδόσεις Κριτική, 2015