微積分 III 演習

- (2) 上限・下限,数列の収束・発散 -

担当: 佐藤 弘康

例題 2.1. 集合

$$A = \left\{0, \frac{1}{2}, \frac{2}{3}, \dots, \frac{n-1}{n}, \dots\right\}$$

の上限,下限,最大値,最小値がどうなっているか考察せよ.

解. 任意の n に対して, $0 \le \frac{n-1}{n}$ (等号成立は n = 1 のとき) だから,0 が A の最小値になることは明らか(つまり 0 は下限でもある).

また, $\frac{n-1}{n}=1-\frac{1}{n}<1$ であり, $\frac{1}{n}$ はいくらでも小さくできるから,A の上限は1 であると推測される.このことを背理法を使って厳密に証明してみよう.上限が1 でないと 仮定すると,

- i) $\exists a \in A : a > 1$ (1より大きい A の元 a が存在する), または
- ii) $\exists \varepsilon > 0 \ \forall a \in A : 1 \varepsilon \ge a$ (任意の $a \in A$ に対して $1 \varepsilon \ge a$ が成り立つような $\varepsilon > 0$ が存在する)

のうち、少なくともどちらか一方が成り立つ。条件 i) が成立しないことは明らか。条件 ii) は任意の $n \in \mathbb{N}$ に対して $1-\varepsilon \ge \frac{n-1}{n}$ が成り立つことを意味している。しかし、これを計算すると $n \le \frac{1}{\varepsilon}$ となり、これはアルキメデスの原理 (A) に矛盾する。以上のことから、 $\sup A = 1$ であることが示された。

任意の $n \in \mathbb{N}$ に対して $\frac{n-1}{n} \neq 1$ だから 1 は最大値にはならない.

問題 2.1. 次の集合の上限,下限,最大値,最小値がどうなっているか考察せよ.

- (1) 円周率の少数第 n 位までの値を a_n とおくとき、 $\{a_1, a_2, \ldots a_n, \ldots\}$
- (2) 二乗したものが2以下となる有理数全体の集合

(3)
$$\left\{ \frac{n^2 + n}{n^2 + 1} \mid n = 1, 2, 3, \dots \right\}$$

問題 2.2. 集合 A のすべての元 a について a < b ならば、 $\sup A < b$ となることを示せ、

例題 **2.2.** $\lim_{n\to\infty}\frac{1}{n^2}=0$ を証明せよ.

数列の収束「 $\lim_{n\to\infty}a_n=a$ 」の定義は「任意の $\varepsilon>0$ に対して,ある $n_\varepsilon\in\mathbf{N}$ が存在 し、 $n \ge n_{\varepsilon}$ ならば $|a_n - a| < \varepsilon$ 」が成り立つことである。つまり

$$\forall \varepsilon > 0 \ \exists n_{\varepsilon} \in \mathbf{N} : n \ge n_{\varepsilon} \Longrightarrow |a_n - a| < \varepsilon.$$

したがって、勝手に与えた ε に対し、 $n_{\varepsilon} \in \mathbb{N}$ をどう定めたらよいのかを考えればよい. $\left|\frac{1}{n^2}-0\right|<\varepsilon$ を解くと, $n>1/\sqrt{\varepsilon}$ だから, $n_{\varepsilon}=\left[1/\sqrt{\varepsilon}\right]+1$ とすればよいことがわか る (ただし, [k] は k を越えない最大の整数). また, n_{ε} の選び方は一意的ではないので, 「 $1/\sqrt{\varepsilon}$ より大きい自然数を 1 つ選び,それを n_{ε} とおく」としてもよい(このような n_{ε} の存在性はアルキメデスの原理により保証される).

証明. 任意の ε に対し, $n_{\varepsilon}=[1/\sqrt{\varepsilon}\]+1$ とおくと, $n\geq n_{\varepsilon}$ を満たす $n\in \mathbf{N}$ に対して $n > 1/\sqrt{\varepsilon}$ だから,

$$\left|\frac{1}{n^2}\right| < \varepsilon.$$

したがって、 $1/n^2$ は 0 に収束する.

問題 **2.3.** 次の数列が収束するか発散するかを調べよ $(\varepsilon$ -N 論法を用いて証明せよ).

- $(1) \lim_{n \to \infty} (\sqrt{n+1} \sqrt{n})$
- (2) $\lim_{n \to \infty} \left(\frac{n}{n+1} + \frac{n+1}{n} \right)$
- (3) $\lim_{n \to \infty} \left(2^n + \frac{1}{2^n} \right)$ (4) $\lim_{n \to \infty} \frac{1^2 + 2^2 + \dots + n^2}{n^3}$ (5) $\lim_{n \to \infty} (-1)^n$

問題 **2.4.** 2 つの数列 $\{a_n\}$, $\{b_n\}$ に対し,

- (1) 数列 $\{a_n + b_n\}$ が収束するならば, $\{a_n\}$, $\{b_n\}$ は共に収束するか?
- (2) 数列 $\{a_n \cdot b_n\}$ が収束するならば、 $\{a_n\}$ 、 $\{b_n\}$ は共に収束するか?

注意:この2つの主張の逆は常に成り立つ(教科書 p.246, 定理7.3 参照).

配布日: 2007年12月12日

例題 2.3. 数列 $\{a_n\}$ が a に収束するとき,

$$\lim_{n \to \infty} \frac{a_1 + a_2 + \ldots + a_n}{n} = a$$

を証明せよ.

解. 仮定から, $\varepsilon>0$ が任意に与えられたとき, $n_\varepsilon\in {\bf N}$ を適当にとると, $n\geq n_\varepsilon$ では $|a_n-a|<\varepsilon$ が成り立つので

$$\begin{split} A_n = & \frac{a_1 + a_2 + \ldots + a_n}{n} \\ = & \frac{a_1 + a_2 + \ldots + a_{n_{\varepsilon} - 1}}{n} + \frac{a_{n_{\varepsilon}} + \ldots + a_n}{n} \\ = & \frac{a_1 + a_2 + \ldots + a_{n_{\varepsilon} - 1}}{n} + \frac{(n - n_{\varepsilon} + 1)a}{n} + \frac{(a_{n_{\varepsilon}} - a) + \ldots + (a_n - a)}{n} \\ (= & A_n^{(1)} + A_n^{(3)} + A_n^{(3)} \quad \text{とそれぞれおく}). \end{split}$$

ここで、 $A_n^{(1)}$ の分子は n に依らないので、 $n \to \infty$ のとき 0 に近づく。つまり「 $\exists n_\varepsilon' \in \mathbf{N}$: $n \ge n_\varepsilon' \Longrightarrow |A_n^{(1)}| < \varepsilon$ 」。 $A_n^{(2)} = \frac{(n-n_\varepsilon+1)a}{n} = a - \frac{a(n_\varepsilon-1)}{n}$ より、 $n \to \infty$ のとき a に近づく。つまり「 $\exists n_\varepsilon'' \in \mathbf{N}$

 $: n \ge n_{\varepsilon}^{"} \Longrightarrow |A_n^{(2)} - a| < \varepsilon \rfloor.$

 $A_3^{(3)}$ については

$$|A_3^{(3)}| \le \frac{(n-n_{\varepsilon}+1)\varepsilon}{n} \le \varepsilon.$$

以上のことから、 $n \ge \max\{n_{\varepsilon}, n'_{\varepsilon}, n''_{\varepsilon}\}$ に対して

$$|A_n - a| < \varepsilon + \varepsilon + \varepsilon = 3\varepsilon$$

となり、 A_n が a に収束することが証明された.

問題 **2.5.** 数列 $\{a_n\}$ が a に収束するとき,

$$\lim_{n\to\infty} \frac{a_1 + 2a_2 + \ldots + na_n}{1 + 2 + \ldots + n}$$

は収束するだろうか、収束する場合は極限を求め、例題 2.3 を参考にして証明せよ、

問題 **2.6.** $a_n > 0$ (n = 1, 2, ...), $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = r$ であるとき,

- (1) r < 1 のとき、数列 $\{a_n\}$ は 0 に収束することを示せ.
- (2) r > 1 のとき、 $\{a_n\}$ の極限はどうなるか考察せよ。

実数の連続性に関する命題 -

- (M) 上(下)に有界な非減少(非増加)数列は極限値を持つ.
- (A) 任意の実数 K > 0 に対して、n > K となる自然数 n が存在する.
- (W) 実数の集合 $A \neq \emptyset$ が上(下)に有界ならばその上限 $\sup A$ (下限 $\inf A$)が 存在する.
- (B-W) 数列 $\{a_n\}$ が有界ならば、その適当な部分列 $\{a_{n_k}\}$ は極限をもつ.
 - (C) コーシー列は極限をもつ.
 - **(K)** $a_n \leq b_n \ (n = 1, 2, ...)$ を満たす単調増加列 $\{a_n\}$ と単調減少列 $\{b_n\}$ が任意に与えられたとき,すべての閉区間 $[a_n, b_n]$ に含まれる実数 x が存在する.
 - **(D)** $\{A, B\}$ がデーデキント切断ならば、「A は最大値を持ち、B は最小値を持たない」かまたは「A は最大値を持たず、B は最小値を持つ」のどちらか一方が成り立つ。