

Derivative Investments

2017 CFA二级知识框架图

讲师:李斯克 www.pzacademy.com

Reading 40

PRICING AND VALUATION OF FORWARD COMMITMENTS

Pricing And Valuation Of Forward And Futures

原理 Limits to Arbitrage no-arbitrage principle

Price vs. Value 🖈 🖈

Reverse Cash-and-Carry Arbitrage *

Equity Forward VS. Futures

Futures只求Pricing

Non-dividend Paying Stock

Dividend-paying Stock

Equity Index

$$FP = S_0 \times (1 + R_f)^T$$

$$FP = (S_0 - PVD_0) \times (1 + R_f)^T$$

$$FP = S_0 \times e^{(R_f^c - \delta^c) \times T} \quad \Rightarrow R_f^c = \ln (1 + R_f)$$

$$V_{long} = S_t - \frac{FP}{(1+R_f)^{T-t}}$$

$$V_{long} = S_t - \frac{FP}{\left(1 + R_f\right)^{T - t}} \qquad V_{long} = S_t - PVD_t - \frac{FP}{\left(1 + R_f\right)^{T - t}} \qquad V_{long} = \left(\frac{S_t}{e^{\delta^c \times (T - t)}}\right) - \left(\frac{FP}{e^{R_f^c \times (T - t)}}\right)$$

$$V_{long} = \left(\frac{S_t}{e^{\delta^c \times (T-t)}}\right) - \left(\frac{FP}{e^{R_f^c \times (T-t)}}\right)$$

Bond Forward VS. Futures

T-bill (Zero-coupon Bond)

Forward On Coupon Bond

$$FP = S_0 \times (1 + R_f)^T$$

$$FP = (S_0 - PVC_0) \times (1 + R_f)^T$$

$$FP = (Clean \ price - \ PVC) \times (1 + R_f)^T$$

$$V_{long} = S_t - \frac{FP}{(1 + R_f)^{T-t}}$$

$$V_{long} = S_t - \frac{FP}{(1+R_f)^{T-t}}$$
 $V_{long} = (S_t - PVC_t) - \frac{FP}{(1+R_f)^{T-t}}$

$$FP = (\text{full } price) \times (1 + R_f)^T - AI_T - FVC$$

$$QFP = \frac{FP}{CF} = \left[(\text{full } price) \times (1 + R_f)^T - AI_T - FVC \right] \left(\frac{1}{CF} \right)$$

Interest Rate Forward

Currency Forward VS. Futures

$$FP = S_0 \times \frac{(1 + R_D)^T}{(1 + R_F)^T}$$

$$FP = S_0 \times e^{(R_D^c - R_F^c) \times T}$$

$$V_{long} = \frac{S_t}{(1 + R_F)^{T-t}} - \frac{FP}{(1 + R_D)^{T-t}}$$

$$V_{long} = \left(\frac{S_t}{e^{R_F^c \times (T-t)}}\right) - \left(\frac{FP}{e^{R_D^c \times (T-t)}}\right)$$

Pricing And Valuation Of Swap Contracts

interest rate swaps ⇒

估值★★

Price \rightarrow $C = \frac{1 - B_n}{B_1 + B_2 + \dots + B_n}$ 求Swap rate,discount factor会算

Value→ $V_{swap}(X) = B_{flt} - B_{fix}$ 考法很常规,多做例题即可

Currency swaps

估值★★

Price > 各自币种按照利率互换方法求Swap rate,只对固定利率一方定价

Value→ 练习固定换固定,浮动换固定,及浮动换浮动即可

Equity swaps

估值★★

Price→ 按照利率互换方法求Swap rate

Value→ 练习equity换固定跟equity换浮动利率

三种互换的Credit risk特征★

Contract	t=t	t=T
Interest Rate Swap	High	Low
Equity Swap	High	Low
Currency Swap	High	higher

Reading 41

VALUATION OF CONTINGENT CLAIMS

Valuation Of Option Contract

Put-call parity ★ ★

Fiduciary Call=Protective Put 考法3: 套利★

考法1: 计算★

Put call parity for options on forwards and futures

$$C_0 + \frac{X - F_T}{(1 + R_f)^T} = P_0$$
 计算

Binomial Model

股票二叉树

Arbitrage With A One-Period Binomial Model

- · concept of arbitrage
 - Do not use your own money
 - Do not take any price risk
 - · generate positive CF

Hedge Ratio(h)

 $\Rightarrow h = \frac{C^+ - C^-}{S^+ - S^-}$

single-period call option valuation equation

$$C = hS + PV(-hS^{-} + C^{-})$$

与股票二叉树区别

- interest rate tree will be given on the exam.
- interest rates at each node are one-year forward rates.
- π and 1– π , are always 0.5.

利率二叉树

计算,求cap & floor期权价格

Interest rate option估值

Call payoff = notional principal \times [Max(0, reference rate – X)] Put payoff = notional principal \times [Max(0, X – reference rate)]

BSM Model

$$C_0 = [S_0 \times N(d_1)] - [X \times e^{-R_f^c \times T} \times N(d_2)]$$
 计算

BSM

assumptions 🖈 🖈

• Return of the underlying asset → lognormal distribution.

- The (continuous) risk-free rate is known and constant.
- · Volatility of the underlying asset is known and constant.
- · The markets are frictionless.
- There are no cash flows on the underlying asset.
- The options valued are European options.

Interpret The Components Of The BSM

- the PV of the expected option payoff at expiration
- Call=Long N(d1) stock, short N(d2) bond, Put= Short N(-d1) stock, long N(-d2) bond
- · Dynamically managed portfolio of stock and zero coupon bonds

Describe The Usage of The BSM

Carry Benefit-Adjusted BSM Model

$$\rightarrow$$
 substitute $S_0 \times e^{-\delta T}$ for S_0

Options On Currencies

$$C_0 = S_0 e^{-r(B)T} N(d_1) - X e^{-r(P) \times T} N(d_2)$$

The Black Model

$$C_0 = e^{-R_f^c T} [F_T N(d_1) - XN(d_2)]$$

Equivalencies in Interest Rate Derivative

- Long FRA = long interest rate call + short interest rate put
- Short FRA= short interest rate call + long interest rate put
- Payer swap = a long cap + a short floor
- Receiver swap = a short cap + a long floor

- Receiver swap = Long receiver swaption + short payer swaption
- Payer swap = Long payer swaption + short receiver swaption
- Long callable bond = Long option free bond + a short receiver swaption

ì	Sensitivity Factor	Input	Calls	Puts) C	Deep in →1
	Delta	Underlying price (S)	Delta~(0, <i>e</i> -δΤ)	Delta \sim (- $e^{-\delta T}$,0)	→	Deep out →0
	Vega	Volatility (σ)	Vega>0	Vega>0		Gamma→>0, at the
	Rho	Risk-free rate (r)	Rho>0	Rho<0		Dynamic Hedge→ भे
	Theta	Passage of Time (T)	Theta<0	Theta < 0*	=	implied volatility
		Strike price (X)	Negatively related	Positively related		If an option is overve implied volatility is to
8					44.	implied volueility is t

e money最大

valued, too high

Reading 42

DERIVATIVES STRATEGIES

Derivatives Strategies

Changing Risk Exposures

→Increase duration $D_{pay-floating} = D_{fixed} - D_{floating} > 0$ Interest Rate Swap→ modify the duration $D_{pay-fix} = D_{floating} - D_{fixed} < 0$ → Decrease duration With SWAP 改变负债货币 Currency Swap→ 改变组合构成 Equity Swap Interest Rate Futures → modify the duration of a portfolio With Futures Currency Futures → hedge an asset or liability in a foreign currency **Stock Index Futures** → change the exposure of equities in a portfolio

Synthetic Positions

Synthetic Stock	Long Stock = long call +short put	
Synthetic Puts and Calls	Synthetic call= long stock+ long put Synthetic put= long call+ short stock	
Synthetic Assets with Forward/Futures	long futures + risk free asset = long Stock long Stock + short futures = risk free asset	

Option Strategies for Equity Portfolios **

考法 ■

构成 Max Profit & Loss Breakeven point

Covered Call & Protective Put

- Covered call = short call + long stock \rightarrow Profit = $(S_T S_0) [max{0, (S_T X)} C]$
- Protective Put = long stock + long put \rightarrow Profit = $(S_T S_0) + [max\{0, (X S_T)\} P]$

Option Spread

一个strategy只用call或者put,而不是二者混用

Pull sproad	Call	Bull Call Spread = long call at X_L + short call at X_H \rightarrow Profit = $[\max\{0, (S_T - X_L)\} - C_L] - [\max\{0, (S_T - X_H)\} - C_H]$
DIIT		Bull Put Spread = long put at X_L + short put at X_H \rightarrow Profit = $[\max\{0, (X_L - S_T)\} - P_L] - [\max\{0, (X_H - S_T)\} - P_H]$
Bear spread $\Rightarrow \text{Profit} = -\left[\max\{0, (S_T - X_L)\} - C_L\right] + \left[\max\{0, (S_T - X_L)\} - C_L\right] + \left[\min\{0, $		Bear Call Spread = short call at X_L + long call at X_H \rightarrow Profit = - [max{0, $(S_T - X_L)$ } - C_L] + [max{0, $(S_T - X_H)$ } - C_H]
		Bear Put Spread = short put at X_L + long put at X_H \rightarrow Profit = - [max{0, $(X_L - S_T)$ } - P_L] +[max{0, $(X_H - S_T)$ } - P_H]
Calendar Spreads	Call/Put	Long calendar spread: buys the more distant option, short the near-term option. Short calendar spread: buy a near-term option and sell a longer-dated one

Combinations of Calls and Puts

Straddle	 Iong straddle = long call + long put This strategy is profitable when the stock price moves strongly in either direction. This strategy bets on volatility. short straddle = short call + short put bets on little movement in the stock
Collar = protective put + covered call = long stock + short call + long put • If the premium of the two are equal, it is called a zero-cost collar.	

Option Strategies for Equity Portfolios ★★

Investment Objective

- Consistent with the investment objective
- Depends on both market direction and volatility

Breakeven Price Analytics

$$\sigma_{annual} = \% \Delta P \times \sqrt{\frac{252}{trading \ days \ until \ maturity}}$$

Strategy Selection

Future Market Condition	Option Strategy		
strong bullish(bearish)	long calls(puts)		
average bullish(bearish)	long calls and short puts		
weak bullish(bearish)	short puts(calls)		
high(low) of future volatility	long(short) straddle		

