НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ ІМЕНІ ІГОРЯ СІКОРСЬКОГО»

Факультет прикладної математики Кафедра прикладної математики

Звіт

із лабораторної роботи №3 із дисципліни «Системний аналіз»

на тему

«Рішення слабоструктурованих задач методом аналізу ієрархій (MAI)»

Виконав: студент групи КМ-02 Пилипченко Б. О. Перевірила: доцент кафедри ПМА Вовк Л. Б.

Зміст

Вступ	3
Мета	3
Постановка задачі	3
Теоретичні відомості	4
Практична частина	5
Опис програмної реалізації	5
Тестування реалізації на прикладі, наданому у практичному занятті 3	5
Ваги критеріїв, узгодженість критеріїв	6
Значення локальних пріорітетів для кожного з критеріїв	8
Глобальні пріорітети	9
Варіант 14	10
Висновки	16
Список використаних джерел	17

Вступ

Мета

- ознайомлення з поняттям слабоструктурованої задачі, зокрема з одним з класів таких задач задачами багатокритеріального вибору альтернатив;
- опанування метода аналізу ієрархій і використання його для розв'язання слабоструктурованих задач.

Постановка задачі

I Початок роботи

Взяти завдання з наведеного у Додатку 1 переліку. Номер завдання відповідає номеру студента в списку групи.

Перелік альтернатив (не менше шести) та критеріїв (не менше п'яти) задати самостійно. Альтернативи обирати реальні (наприклад, з Інтернету). Значення критеріїв для обраних альтернатив навести у вигляді таблиці (зразок – Табл. 1).

II Зобразити схему ієрархічної декомпозиції задачі (мета – критерії – альтернативи).

III Створити матриці попарних порівнянь на основі підібраних значень.

IV Обчислити оцінки важливості (ваги) критеріїв.

V Обчислити вектори локальних пріоритетів альтернатив за кожним з критеріїв.

VI Пересвідчитися в несуперечливості заданих вами матриць попарних порівнянь критеріїв та альтернатив. Схема перевірки у Додатку 2. Якщо виявиться суперечливість — виправити матрицю (переконатися в її несуперечливості) і переробити п. ІІІ та IV.

VII Обчислити глобальні пріоритети. Зробити висновок щодо вибору об'єкта.

VIII Оформити звіт.

Теоретичні відомості

Слабоструктуровані задачі — задачі, в постановці яких містяться як об'єктивні дані (числові співвідношення, формули,...), так і суб'єктивні, тобто оцінки чи вимоги, задані в вербальній формі.

Типовий приклад слабоструктурованих задач – задачі багатокритеріального вибору альтернатив. В таких задачах кожне з можливих рішень (альтернатив) оцінюється за декількома показниками (критеріями). Оцінки за критеріями можуть мати різний вигляд:

- числові (наприклад, вартість, продуктивність, швидкість, відстань і т. ін.);
- якісні («відмінно», «добре», «погано», «зручно», «незручно», «надійно» та різні їх ступені «дуже», «трохи» і т. ін.);
- критерії «так-ні».

Крім того, критерії можуть бути різними за важливістю, тобто при виборі слід деяким з них надавати більшого значення, ніж іншим. Все це ускладнює рішення таких задач. Для їх рішення використовуються методи системного аналізу, що поєднують математичні методи та методи експертного аналізу.

Практична частина

Опис програмної реалізації

Обчислення, що виконуються у методі аналізу ієрархій, були запрограмовані мовою С. Посилання на репозиторій (проект lab-3):

https://github.com/Bohdan628318ylypchenko/system-analysis-labs.git

Тестування реалізації на прикладі, наданому у практичному занятті З

Задача 2. Сім'я обирає будинок для придбання. На сімейній нараді було обрано 5 критеріїв, за якими прийматиметься рішення:

К1: розміри будинку

К2: наявність поруч міського транспорту

Кз: загальний стан будинку

К4: фінансові умови

К5: район розміщення будинку

Після довгих дискусій з'ясувалося, що критерій K_1 трохи більш важливий, ніж критерії K_3 та K_4 , причому з цих двох K_4 важливіший. Крім того, K_1 важливіший за K_5 і значно важливіший за K_2 . Що до K_2 , він не набагато менш важливий за K_5 , але K_3 та K_4 значно важливіші за нього. K_3 та K_4 важливіші за K_5 .

В результаті було обрано 3 будинки (Б1, Б2 та Б3). За кожним з критеріїв складено матриці попарних порівнянь.

K ₁ :	Б1	Б2	Б3
Б1	1	6	8
Б2	1/6	1	4
Б3	1/8	1/4	1

K3:	Б1	Б2	Б3
Б1	1	1/2	1/2
Б2	2	1	1
Б3	2	1	1

K ₂ :	Б1	Б2	Б3
Б1	1	7	1/5
Б2	1/7	1	1/8
Б3	5	8	1

K4:	Б1	Б2	Б3
Б1	1	1/7	1/5
Б2	7	1	3
Б3	5	1/3	1

K ₅ :	Б1	Б2	Б3
Б1	1	8	6
Б2	1/8	1	1/4
Б3	1/6	4	1

	K ₁	K ₂	К3	K4	K ₅
K ₁	1	7	3	2	5
К2	1/7	1	1/7	1/9	1/3
К3	1/3	7	1	1/5	4
K4	1/2	9	5	1	5
K ₅	1/5	3	1/4	1/5	1

Матриця порівнянь критеріїв

Введення матриць в програмі

Ваги критеріїв, узгодженість критеріїв

Очікуваний результат:

$$C_1 = \sqrt[5]{1 \cdot 7 \cdot 3 \cdot 2 \cdot 5} = 2,91, C_2 = \sqrt[5]{\frac{1}{7} \cdot 1 \cdot \frac{1}{7} \cdot \frac{1}{9} \cdot \frac{1}{3}} = 0,24, C_3 = \sqrt[5]{\frac{1}{3} \cdot 7 \cdot 1 \cdot \frac{1}{5} \cdot 4} = 1,13,$$

$$C_4 = \sqrt[5]{\frac{1}{2} \cdot 9 \cdot 5 \cdot 1 \cdot 5} = 2,57, C_5 = \sqrt[5]{\frac{1}{5} \cdot 3 \cdot \frac{1}{4} \cdot \frac{1}{5} \cdot 1} = 0,50.$$

$$C = \sum_{i=1}^{5} C_i = 2,91 + 0,24 + 1,13 + 2,57 + 0,50 = 7,35;$$

$$L_{K1} = \frac{2,91}{7,35} = 0,40, L_{K2} = \frac{0,24}{7,35} = 0,03, L_{K3} = \frac{1,13}{7,35} = 0,15, L_{K4} = \frac{2,57}{7,35} = 0,35, L_{K5} = \frac{0,50}{7,35} = 0,07.$$

Перевіряємо матрицю попарних порівнянь для критеріїв на узгодженість.

Перевіржемо матрицю попарних порівнянь для критернь на узгодженість.
$$R_1 = 1 + \frac{1}{7} + \frac{1}{3} + \frac{1}{2} + \frac{1}{5} = 2,18, \qquad R_2 = 7 + 1 + 7 + 9 + 3 = 27,$$

$$R_3 = 3 + \frac{1}{7} + 1 + 5 + \frac{1}{4} = 9,39, \qquad R_4 = 2 + \frac{1}{9} + \frac{1}{5} + 1 + \frac{1}{5} = 3,51,$$

$$R_5 = 5 + \frac{1}{3} + 4 + 5 + 1 = 15,33;$$

$$\lambda_{\text{max}} = \sum_{i=1}^{N} R_i \cdot L_{Ki} = 2,18 \cdot 0,4 + 27 \cdot 0,03 + 9,39 \cdot 0,15 + 3,51 \cdot 0,35 + 15,33 \cdot 0,07 = 5,39;$$

$$BY = \frac{\lambda_{\text{max}} - N}{\nu_N \cdot (N - 1)} = \frac{5,39 - 5}{1,12 \cdot 4} = 0,087.$$

Результат виконання програми:

======> cc

cost array:

| 0: 2.9137 | 1: 0.2375 | 2: 1.1330 | 3: 2.5718 | 4: 0.4959 |

total cost: 7.3519

weight arr:

| 0: 0.3963 | 1: 0.0323 | 2: 0.1541 | 3: 0.3498 | 4: 0.0675 |

r arr:

| 0: 2.1762 | 1: 27.0000 | 2: 9.3929 | 3: 3.5111 | 4: 15.3333 |

lambda max: 5.4448

coherence coefficient: 0.0993, max coherence: 0.2000

Бачимо достатнє співпадіння, різниця в результатах пов'язана з округленнями обчислень, наведених у матеріалах до практичного заняття.

Значення локальних пріорітетів для кожного з критеріїв

Очікуваний результат:

Шукаємо значення локальних пріоритетів для кожного з критеріїв.

$$K_1$$
: $C_1 = \sqrt[3]{1 \cdot 6 \cdot 8} = 3,63$, $C_2 = \sqrt[3]{\frac{1}{6} \cdot 1 \cdot 4} = 0,87$, $C_3 = \sqrt[3]{\frac{1}{8} \cdot \frac{1}{4} \cdot 1} = 0,31$, $C = 3,63 + 0,87 + 0,31 = 4,81$; $L_{E1}^{K1} = \frac{3,63}{4,81} = 0,75$, $L_{E2}^{K1} = \frac{0,87}{4,81} = 0,18$, $L_{E3}^{K1} = \frac{0,31}{4,81} = 0,06$. Аналогічно K_2 : $L_{E1}^{K2} = 0,23$, $L_{E2}^{K2} = 0,05$, $L_{E3}^{K2} = 0,71$.

$$K_2$$
: $L_{E1}^{K2} = 0.23$, $L_{E2}^{K2} = 0.05$, $L_{E3}^{K2} = 0.71$.
 K_3 : $L_{E1}^{K3} = 0.2$, $L_{E2}^{K3} = 0.4$, $L_{E3}^{K3} = 0.4$.
 K_4 : $L_{E1}^{K4} = 0.07$, $L_{E2}^{K4} = 0.65$, $L_{E3}^{K4} = 0.28$.
 K_5 : $L_{E1}^{K5} = 0.75$, $L_{E2}^{K5} = 0.07$, $L_{E3}^{K5} = 0.18$.

3 B1 / / B2 / / B3

Результат виконання програми:

======> cb1

```
cost array:
0: 1.1187 | 1: 0.2614 | 2: 3.4200 |
total cost: 4.8000
weight arr:
0: 0.2331 | 1: 0.0545 | 2: 0.7125 |
r arr:
0: 6.1429 | 1: 16.0000 | 2: 1.3250 |
lambda max: 3.2470
coherence coefficient: 0.1102, max coherence: 0.2000
=======> cb2
cost array:
0: 0.6300 | 1: 1.2599 | 2: 1.2599 |
total cost: 3.1498
weight arr:
0: 0.2000 | 1: 0.4000 | 2: 0.4000 |
0: 5.0000 | 1: 2.5000 | 2: 2.5000 |
lambda max: 3.0000
coherence coefficient: -0.0000, max coherence: 0.2000
```

```
=======> cb3
cost array:
0: 0.3057 | 1: 2.7589 | 2: 1.1856 |
total cost: 4.2503
weight arr:
0: 0.0719 | 1: 0.6491 | 2: 0.2790 |
r arr:
0: 13.0000 | 1: 1.4762 | 2: 4.2000 |
lambda max: 3.0649
coherence coefficient: 0.0290, max coherence: 0.2000
=======> cb4
cost array:
0: 3.6342 | 1: 0.3150 | 2: 0.8736 |
total cost: 4.8228
weight arr:
0: 0.7536 | 1: 0.0653 | 2: 0.1811 |
r arr:
0: 1.2917 | 1: 13.0000 | 2: 7.2500 |
lambda max: 3.1356
coherence coefficient: 0.0605, max coherence: 0.2000
```

Результати співпадають (в межах похибки, спричиненою округленнями в оригінальних обчисленнях).

Варто зауважити, що всі матриці порівнянь ϵ узгодженими.

Глобальні пріорітети

Очікуваний результат:

Шукаємо значення глобальних пріоритетів, в яких враховуються локальні пріоритети альтернатив за кожним з критеріїв та вага критеріїв.

```
\begin{split} G_{E1} &= L_{E1}^{K1} \cdot L_{K1} + L_{E1}^{K2} \cdot L_{K2} + L_{E1}^{K3} \cdot L_{K3} + L_{E1}^{K4} \cdot L_{K4} + L_{E1}^{K5} \cdot L_{K5} = \\ &= 0.75 \cdot 0.4 + 0.23 \cdot 0.03 + 0.2 \cdot 0.15 + 0.07 \cdot 0.35 + 0.75 \cdot 0.07 = 0.4139; \\ G_{E2} &= L_{E2}^{K1} \cdot L_{K1} + L_{E2}^{K2} \cdot L_{K2} + L_{E2}^{K3} \cdot L_{K3} + L_{E2}^{K4} \cdot L_{K4} + L_{E2}^{K5} \cdot L_{K5} = \\ &= 0.18 \cdot 0.4 + 0.05 \cdot 0.03 + 0.4 \cdot 0.15 + 0.65 \cdot 0.35 + 0.07 \cdot 0.07 = 0.3659; \\ G_{E3} &= L_{E3}^{K1} \cdot L_{K1} + L_{E3}^{K2} \cdot L_{K2} + L_{E3}^{K3} \cdot L_{K3} + L_{E3}^{K4} \cdot L_{K4} + L_{E3}^{K5} \cdot L_{K5} = \\ &= 0.06 \cdot 0.4 + 0.71 \cdot 0.03 + 0.4 \cdot 0.15 + 0.28 \cdot 0.35 + 0.18 \cdot 0.07 = 0.2159. \end{split}
```

Отже, слід обрати альтернативу Б1.

```
Результат роботи програми:
```

```
=======> global priorities:
```

| 0: 0.4130 | 1: 0.3667 | 2: 0.2203 |

Результати обчислень співпадають.

Варіант 14

Вибір ноутбука

Критерії:

- 1. Кількість потоків СРИ
- Об'єм RAM
- 3. Об'єм VRAM
- 4. Роздільна здатність екрану
- 5. Розмір (екрану)
- 6. Ціна

Альтернативи:

- 1. https://ek.ua/ua/ASUS-G614JIR-N4067.htm
- 2. https://ek.ua/ua/ASUS-GA402XV-N2041.htm
- 3. https://ek.ua/ua/ASUS-G733PZ-LL023.htm
- 4. https://ek.ua/ua/ASUS-G614JV-IS96.htm
- 5. https://ek.ua/ua/DELL-B0CBKZQM34.htm
- 6. https://ek.ua/ua/APPLE-MRX33.htm

Табл.1 – характеристики ноутбуків

	CPU	RAM	VRAM	ррі/10 (роздільна здатність)	size	price, 10^3
A1	32	16	8	18.86	16	91
A2	16	32	8	21.56	14.2	63
A3	32	32	12	17.27	17.3	95
A4	32	32	8	14.15	16	65.6
A5	20	32	8	27.53	15.6	100
A6	11	18	18	25.75	14.2	83

Табл.2 – матриця попарних порівнянь для критеріїв

	K1	К2	К3	К4	K5	К6
К1	1	5	1	4	3	1/2
К2	1/5	1	1/5	1/4	1/2	1/5
К3	1	5	1	7	5	1/2
К4	1/4	4	1/7	1	4	1/2
K5	1/3	2	1/5	1/4	1	1/2
К6	2	5	2	2	2	1

Матриці попарних порівнянь альтернатив за критеріями:

CPU

	A1	A2	A3	A4	A5	A6
A1	1	5	1	1	3	7
A2	1/5	1	1/5	1/5	1/3	2
A3	1	5	1	1	3	7
A4	1	5	1	1	3	6
A5	1/3	3	1/3	1/3	1	2
A6	1/7	1/2	1/7	1/6	1/2	1

RAM

	A1	A2	A3	A4	A5	A6
A1	1	1/6	1/6	1/6	1/6	1/2
A2	6	1	1	1	1	4
A3	6	1	1	1	1	4
A4	6	1	1	1	1	4
A5	6	1	1	1	1	4
A6	2	1/4	1/4	1/4	1/4	1

VRAM

	A1	A2	A3	A4	A5	A6
A1	1	1	1/5	1	1	1/7
A2	1	1	1/5	1	1	1/7
A3	5	5	1	5	5	1/5
A4	1	1	1/5	1	1	1/7
A5	1	1	1/5	1	1	1/7
A6	7	7	5	7	7	1

ppi

	A1	A2	A3	A4	A5	A6
A1	1	1/3	2	3	1/6	1/5
A2	3	1	3	5	1/6	1/5
A3	1/2	1/3	1	3	1/6	1/5
A4	1/3	1/5	1/3	1	1/6	1/5
A5	6	6	6	6	1	2
A6	5	5	5	5	1/2	1

size

	A1	A2	A3	A4	A5	A6
A1	1	5	1/4	1	2	3
A2	1/5	1	1/4	1/3	1/2	1
A3	4	4	1	2	3	4

A4	1	3	1/2	1	2	2
A5	1/2	2	1/3	1/2	1	2
A6	1/3	1	1/4	1/2	1/2	1

price

	A1	A2	A3	A4	A5	A6
A1	1	1/7	2	1/6	3	1/3
A2	7	1	5	2	6	4
A3	1/2	1/5	1	1/3	2	2
A4	6	1/2	3	1	4	3
A5	1/3	1/6	1/2	1/4	1	1/3
A6	3	1/4	1/2	1/3	3	1

Обчислення:

```
======> cc
cost array:
| 0: 1.7627 | 1: 0.3162 | 2: 2.1070 | 3: 0.8116 | 4: 0.5054 | 5: 2.0758 |
total cost: 7.5787
weight arr:
| 0: 0.2326 | 1: 0.0417 | 2: 0.2780 | 3: 0.1071 | 4: 0.0667 | 5: 0.2739 |
| 0: 4.7833 | 1: 22.0000 | 2: 4.5429 | 3: 14.5000 | 4: 15.5000 | 5: 3.2000 |
lambda max: 6.7564
coherence coefficient: 0.1220, max coherence: 0.2000
======> cb0
cost array:
| 0: 2.1720 | 1: 0.4180 | 2: 2.1720 | 3: 2.1169 | 4: 0.7783 | 5: 0.3078 |
total cost: 7.9650
weight arr:
| 0: 0.2727 | 1: 0.0525 | 2: 0.2727 | 3: 0.2658 | 4: 0.0977 | 5: 0.0386 |
| 0: 3.6762 | 1: 19.5000 | 2: 3.6762 | 3: 3.7000 | 4: 10.8333 | 5: 25.0000 |
lambda max: 6.0363
coherence coefficient: 0.0059, max coherence: 0.2000
======> cb1
cost array:
| 0: 0.2698 | 1: 1.6984 | 2: 1.6984 | 3: 1.6984 | 4: 1.6984 | 5: 0.4454 |
total cost: 7.5088
weight arr:
```

```
0: 0.0359 | 1: 0.2262 | 2: 0.2262 | 3: 0.2262 | 4: 0.2262 | 5: 0.0593 |
r arr:
0: 27.0000 | 1: 4.4167 | 2: 4.4167 | 3: 4.4167 | 4: 4.4167 | 5: 17.5000 |
lambda max: 6.0043
coherence coefficient: 0.0007, max coherence: 0.2000
======> cb2
cost array:
0: 0.5529 | 1: 0.5529 | 2: 2.2361 | 3: 0.5529 | 4: 0.5529 | 5: 4.7851 |
total cost: 9.2328
weight arr:
| 0: 0.0599 | 1: 0.0599 | 2: 0.2422 | 3: 0.0599 | 4: 0.0599 | 5: 0.5183 |
0: 16.0000 | 1: 16.0000 | 2: 6.8000 | 3: 16.0000 | 4: 16.0000 | 5: 1.7714 |
lambda max: 6.3976
coherence coefficient: 0.0641, max coherence: 0.2000
======> cb3
cost array:
0: 0.6368 | 1: 1.0699 | 2: 0.5054 | 3: 0.3008 | 4: 3.7063 | 5: 2.6050 |
total cost: 8.8242
weight arr:
0: 0.0722 | 1: 0.1212 | 2: 0.0573 | 3: 0.0341 | 4: 0.4200 | 5: 0.2952 |
r arr:
| 0: 15.8333 | 1: 12.8667 | 2: 17.3333 | 3: 23.0000 | 4: 2.1667 | 5: 3.8000 |
lambda max: 6.5113
coherence coefficient: 0.0825, max coherence: 0.2000
=====> cb4
cost array:
0: 1.3991 | 1: 0.4503 | 2: 2.6960 | 3: 1.3480 | 4: 0.8327 | 5: 0.5246 |
total cost: 7.2506
weight arr:
0: 0.1930 | 1: 0.0621 | 2: 0.3718 | 3: 0.1859 | 4: 0.1148 | 5: 0.0723 |
r arr:
| 0: 7.0333 | 1: 16.0000 | 2: 2.5833 | 3: 5.3333 | 4: 9.0000 | 5: 13.0000 |
lambda max: 6.2770
coherence coefficient: 0.0447, max coherence: 0.2000
=====> cb5
cost array:
| 0: 0.6020 | 1: 3.4479 | 2: 0.7148 | 3: 2.1822 | 4: 0.3637 | 5: 0.8492 |
total cost: 8.1598
weight arr:
0: 0.0738 | 1: 0.4225 | 2: 0.0876 | 3: 0.2674 | 4: 0.0446 | 5: 0.1041 |
0: 17.8333 | 1: 2.2595 | 2: 12.0000 | 3: 4.0833 | 4: 19.0000 | 5: 10.6667 |
```

lambda max: 6.3707

coherence coefficient: 0.0598, max coherence: 0.2000

=======> global priorities:

0: 0.1224 | 1: 0.1712 | 2: 0.1951 | 3: 0.1772 | 4: 0.1137 | 5: 0.2205 |

Всі матриці, крім матриці попарних порівнянь критеріїв, ϵ добре узгодженими. Коефіцієнт узгодженості матриці попарних порівнянь критеріїв = 0.12 < 0.2. Найкращою ϵ альтернатива 2 (https://ek.ua/ua/ASUS-GA402XV-N2041.htm).

Висновки

В ході лабораторної роботи було обрано найкращу альтернативу серед запропонованих методом аналізу ієрархій. Матриці порівняння здебільшого мають гарну узгодженість. При цьому можливе уточнення результату за рахунок перегляду матриці попарних порівнянь критеріїв.

Список використаних джерел

- 1. Теоретичні матеріали надані до лабораторної роботи 3 з предмету "Системний аналіз", тема "Побудова функціональної моделі системи", Вовк Лілія Борисівна.
- 2. Теоретичні матеріали до практичного заняття 3 з предмету «Системний аналіз», тема «Прийняття рішень методом аналітичної ієрархії Сааті», Вовк Лілія Борисівна.