# **Probability Theory and Statistics**



ALY6010, WINTER 2022

Week -6

Module-6- Final Project

Submitted by: Abhinav Jain

NUID: 002938209

Submitted To: Prof. Tom Beur

Date: 04/02/2022

### Introduction:

### USA flight statistics (2009)

We are investigating US air traffic in this dataset, which will give various visuals and potential indicators to better understand transportation operations through hypothesis testing, correlation, and linear regression. The population's origin and destination parameters, flight details, seats available, people traveling, travel lengths, and origin and destination airports are all included in the dataset.

| • | Origin_airport <sup>‡</sup> | Destination_airport | Origin_city     | Destination_city | Passengers <sup>‡</sup> | Seats | Flights <sup>‡</sup> | Distance <sup>‡</sup> | Fly_date  | Orig |  |
|---|-----------------------------|---------------------|-----------------|------------------|-------------------------|-------|----------------------|-----------------------|-----------|------|--|
| 1 | LAX                         | RDM                 | Los Angeles, CA | Bend, OR         | 1962                    | 2354  | 31                   | 726                   | 12/1/2009 |      |  |
| 2 | STS                         | RDM                 | Santa Rosa, CA  | Bend, OR         | 36                      | 76    | 1                    | 406                   | 12/1/2009 |      |  |
| 3 | EUG                         | RDM                 | Eugene, OR      | Bend, OR         | 64                      | 150   | 1                    | 103                   | 12/1/2009 |      |  |
| 4 | EUG                         | RDM                 | Eugene, OR      | Bend, OR         | 726                     | 2280  | 30                   | 103                   | 12/1/2009 |      |  |
| 5 | OAK                         | RDM                 | Oakland, CA     | Bend, OR         | 68                      | 70    | 1                    | 454                   | 12/1/2009 |      |  |
| c | ۸7۸                         | DDM                 | Dhooniy A7      | Pond OD          | 1220                    | 1500  | 10                   | 011                   | 12/1/2000 |      |  |

**Explanatory Data Analysis:** In this dataset, we have passengers with an average of 2536 and a standard deviation of 4808, seats available on flights with an average of 3363 and a standard deviation of 6131, average flights lasting 33, and an average distance of 692 miles. We are primarily interested in these models.

# **Summary Statistics**

| Variable               | N    | Mean            | Std. Dev.       | Min      | Pctl. 25 | Pctl. 75 | Max      |
|------------------------|------|-----------------|-----------------|----------|----------|----------|----------|
| Passengers             | 5211 | 2536.33         | 4808.92         | 0        | 46       | 2989.5   | 67934    |
| Seats                  | 5211 | 3363.908        | 6131.183        | 0        | 100      | 4102     | 89927    |
| Flights                | 5211 | 33.894          | 47.917          | 0        | 2        | 49       | 491      |
| Distance               | 5211 | 692.542         | 570.302         | 0        | 284      | 920      | 4962     |
| Fly_date               | 5211 |                 |                 |          |          |          |          |
| 12/1/2009              | 5211 | 100%            |                 |          |          |          |          |
| Origin_population      | 5211 | 5650104.<br>4   | 7845570.<br>21  | 13005    | 857903   | 6815696  | 38139592 |
| Destination_population | 5211 | 9101247.<br>169 | 7016887.<br>234 | 13346    | 1705075  | 19069796 | 19161134 |
| Org_airport_lat        | 5197 | 37.65           | 5.903           | 20.899   | 33.637   | 41.709   | 64.815   |
| Org_airport_long       | 5197 | -90.943         | 15.628          | -157.922 | -95.894  | -80.291  | -68.828  |
| Dest_airport_lat       | 5198 | 37.686          | 5.639           | 19.721   | 32.969   | 41.979   | 58.355   |
| Dest_airport_long      | 5198 | -87.788         | 11.528          | -155.048 | -95.888  | -82.533  | -68.828  |

#### **Correlation Between the Variables**

The Correlation Matrix clearly reveals the positive association between the variables of passengers, seats, and flights, whereas the rest of the variables in this dataset are negatively associated. The diagonal value of 1 in the following correlation matrix indicates that all variables in the matrix are correlated, although the distance origin population and destination correlation are not. On this premise, we can observe that if one variable grows, the other increases as well, and if one variable decreases, the other decreases as well, demonstrating a positive association.

```
> #Correlation
> df$Passengers<- as.numeric(df$Passengers)</pre>
> df$Seats<- as.numeric(df$Seats)
> df$Flights<- as.numeric(df$Flights)
> df$Distance<- as.numeric(df$Distance)
> df$Origin_population<- as.numeric(df$Origin_population)
> df$Destination_population<- as.numeric(df$Destination_population)
> df_cor <- df[,c("Passengers","Seats","Flights","Distance","Origin_population","Destination_population")]</pre>
> df_corre<- cor(df_cor)
> round(df_corre,2)
                          Passengers Seats Flights Distance Origin_population Destination_population
Passengers
                                 1.00 0.99
                                                 0.86
                                                           0.10
                                                                               0.13
                                                                                                          0.08
Seats
                                 0.99
                                       1.00
                                                 0.88
                                                           0.07
                                                                               0.12
                                                                                                         0.06
Flights
                                                1.00
                                                          -0.06
                                                                               0.07
                                 0.86
                                       0.88
Distance
                                 0.10 0.07
                                                -0.06
                                                           1.00
                                                                               0.12
                                                                                                         0.16
Origin_population
                                       0.12
                                                 0.07
                                                           0.12
                                                                               1.00
                                                                                                         -0.06
                                 0.13
Destination_population
                                 0.08 0.08
                                                 0.06
                                                           0.16
                                                                              -0.06
                                                                                                         1.00
```



### **Correlation Between the Passengers and the Seats**

**Question1:** Is the relationship between the number of passengers booking flight tickets and the availability of the seats?

It's fascinating to see the interaction between the seat and the passenger to the left, which demonstrates that the efficiency of reserving airline tickets is at 1 fill before the scheduled departure time. However, at 20,000 passengers and 25000 seats, practically every aircraft is fully booked.



**Question2:** What is the connection between the number of people flying and the flight distance?

According to the correlation graph, most passengers travel within 2000 miles of the United States, hence seat availability is lower in contrast to the number of passengers who go long distances via aircraft.



## **Regression Analysis**

The most commonly used statistical tool for comparing two or more variables that are of equivalent importance. Throughout the regression analysis, pay attention to the influence of the dependent variable or one or more independent variables. The coefficient of determination, on the other hand, is a measure for the statistical observation in a regression model that allows us to explain the proportion of variation in the independent variable that can be measured by independent variables. R squared provides information about the regression model's fitness as well as the model's efficiency.

The flight is the dependent variable in the regression model below, although seats, distance, and passengers are the independent variables. After running the model, the data fit the regression model with an r-squared of 79 percent accuracy. In comparison to statistical model analysis, this suggests that the model is better fitted.

# **Hypothesis testing**

**Question 3:Find the hypothesis testing to perform the best statistics outcome based on the data?** Here, we are collecting dataset from USA flight statistics. IN this case we will do the hypothesis testing wheather is null hypothesis or alternative hypothesis by using **z-test:** as the sample size is more than 30, in this case we decided to use z-test

**Normal Q-Q plot:** The usual Q-Q plot was used in this work to verify the implementation of hypothesis testing. Whereas y=x shows that the data is connected to the line and there is no departure from the data, it allows us to proceed with the test with the knowledge that the data is normal. We can begin with the hypothesis test.



**One Sample z-Test** As we can see the value of p is greater than 0.05, which signifies that we do not have enough sufficient evidence to reject the null hypothesis.

### Two sample z-test

The value of p is 1.76, even though the result of the two-sample test z-test is equal to -7.7. We can reject the null hypothesis since we do not have enough evidence, as the p-value is not less than 0.05.

**Summary:** The interaction between the seat and the customer to the left is intriguing, demonstrating that the efficiency of reserving airline tickets is at 1 fill before the scheduled departure time. However, with a capacity of 20,000 people and 25000 seats, nearly every aircraft is completely booked. According to the correlation graph, most passengers fly within 2000 miles of the United States, hence seat availability is smaller in comparison to the number of passengers who travel vast distances by plane.

The most frequent statistical method for comparing two or more variables of comparable significance. Pay attention to the effect of the dependent variable or one or more independent variables throughout the regression analysis. The coefficient of determination, on the other hand, is a statistic that allows us to explain the amount of variation in the independent variable that can be assessed by independent variables in a regression model. R squared gives you information about the regression model's fitness as well as its efficiency. In the regression model below, flight is the dependent variable, while seats, distance, and people are the independent variables. The data fit the regression model with an r-squared of 79% after running the model.

In this work, the standard Q-Q plot was employed to validate the hypothesis testing implementation. Whereas y=x indicates that the data is linked to the line and that there is no deviation from the data, it allows us to continue with the test knowing that the data is normal. We'll start with the hypothesis test. As we can see, the value of p is more than 0.05, indicating that we lack sufficient evidence to reject the null hypothesis. Even though the outcome of the two-sample test z-test is -7.7, the value of p is 1.76. We may reject the null hypothesis since there is insufficient evidence, and the p-value is more than 0.05.

#### Reference:

[1]https://www.datavedas.com/inferential-statistics-in-r/

[2] How to Perform One Sample & Two Sample Z-Tests in R

Zach

https://www.statology.org/z-test-in-r/

[3]R-Squared

https://corporatefinanceinstitute.com/resources/knowledge/other/r-squared/

[4] z.test: Z-test

https://www.rdocumentation.org/packages/BSDA/versions/1.2.1/topics/z.test

[5] https://cran.r-project.org/web/packages/distributions3/vignettes/one-sample-z-test.html

[6] Introduction to Hypothesis Testing in R - Learn every concept from Scratch!

https://data-flair.training/blogs/hypothesis-testing-in-r/

## **Appendix:**

```
1 install.packages("BSDA")
   install.packages("dplyr")
3
   library(ggplot2)
5 library(dplyr)
   library(vtable)
library("Hmisc")
6
8 library(fs)
9 library(corrplot)
10 library(PerformanceAnalytics)
11 library(jtools)
12 library(car)
13 library(BSDA)
14
15 df<- read.csv("Airports2.1.csv")</pre>
16 df
17
18
   unique(df$Fly_date)
19
20
   summary(df)
21
   st(df)
   dfl<- plot(df$Passengers,df$Seats,main = "Scatterplot between Passangers and Seats")
22
23
24
    boxplot(df$Passengers,df$Seats, main ="Box Plot of Passangers and Seats")
25
26
    #make the gaplot
27
28
29
   ggnorm(df$Seats)
    qqline(df$Seats)
30
31
   sd(df$Seats)
32
33
   #One-Sample z-Test Passengers
34
35 z.test(x=df$Passengers, mu= 2536.33, sigma.x=4808)
36
   #As we can see the value of p is greater than 0.05,
37
   #which signify that we do not have the enough of sufficient evidence
38
39 #to reject the null hypothesis
40
41
   z.test(x=df$Seats, mu= 3363, sigma.x=6131)
42
43
   #Two Sample Test
44
   z.test(x=df$Passengers, sigma.x=4808.92, y=df$Origin_population, sigma.y=7845570.21)
45
46 #As the value of two sample test z-test is equal to -7.7,
   #however the value of p is 1.76. As we can see the p-value is
47
48 #not less then 0.05, we can reject the null hypotheisis
49 #because we do not have enough evidence.
50
```

```
52
53
54
55 #Correlation
56 df$Passengers<- as.numeric(df$Passengers)</pre>
offSeats<- as.numeric(dfSeats)
dfSFlights<- as.numeric(dfSFlights)
dfSDistance<- as.numeric(dfSDistance)
df$origin_population<- as.numeric(df$origin_population)
df$Destination_population<- as.numeric(df$Destination_population)
62
63 df_cor <- df[,c("Passengers","Seats","Flights","Distance","Origin_population","Destination_population")]
64
65
66 df_corre<- cor(df_cor)
   round(df_corre,2)
ggplot(df_cor, aes(Passengers,Seats, color = Flights))+
67
68
        geom_point()+
69
        geom_abline()+
labs(title = "Correlation Between Passengers and Seats")
70
71
72
    chart.Correlation(df_corre, histogram= TRUE, pch=19)
73
74
    df_corre<- cor(df_cor)
     round(df_corre,2)
ggplot(df_cor, aes(Passengers,Distance, color=Seats))+
75
76
        geom_point()+
77
78
79
        geom_abline()+
labs(title = "Correlation Between Distance and Passengers")
80
81
82 chart.Correlation(df_corre, histogram= TRUE, pch=19)
83
    #Regression Testing
84
85
df1_r <- as.data.frame(df_cor)
fit <- lm(Flights ~ Seats+ Distance+ Passengers, data = df1_r)
summ(fit)
89
90
```

| > summary(df) Origin_airport Length:5211 Class :character Mode :character                                                        | Class :character                                                                                                                     | Origin_city<br>Length:5211<br>Class :character<br>Mode :character | Destination_city<br>Length:5211<br>Class :character<br>Mode :character | Passengers<br>Min. : 0<br>1st Qu.: 46<br>Median : 702<br>Mean : 2536<br>3rd Qu.: 2990<br>Max. :67934 | Seats<br>Min. : 0<br>1st Qu.: 100<br>Median : 1000<br>Mean : 3364<br>3rd Qu.: 4102<br>Max. :89927                           | Flights Min. : 0.00 1st Qu.: 2.00 Median : 16.00 Mean : 33.89 3rd Qu.: 491.00 Max. :491.00 | Distance<br>Min. : 0.0<br>1st Qu.: 284.0<br>Median : 554.0<br>Mean : 692.5<br>3rd Qu.: 920.0<br>Max. :4962.0 | Fly_date<br>Length:5211<br>Class :character<br>Mode :character |
|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| Origin_population<br>Min. : 13005<br>1st Qu.: 857903<br>Median : 2082421<br>Mean : 5650104<br>3rd Qu.: 6815696<br>Max. :38139592 | Destination_populati<br>Min. : 13346<br>1st Qu.: 1705075<br>Median : 8806874<br>Mean : 9101247<br>3rd Qu.:19069796<br>Max. :19161134 | Min. :20.90<br>1st Qu.:33.64<br>Median :38.75<br>Mean :37.65      | Min. :-157.92<br>1st Qu.: -95.89                                       | Min. :19.72<br>1st Qu.:32.97                                                                         | Dest_airport_10<br>Min. :-155.0!<br>1st Qu.: -95.8!<br>Median : -84.4!<br>Mean : -87.7!<br>3rd Qu.: -82.5!<br>Max. : -68.8! | 5<br>9<br>3<br>9                                                                           |                                                                                                              |                                                                |

### **Scatterplot between Passangers and Seats**



## **Box Plot of Passangers and Seats**

