# Lab 1: Theory vs. Simulation

#### Robin Mejia

Email: rjmejia@berkeley.edu

Office Hours: Thursday, 9am-10:45am, 111A Haviland

September 2, 2015

- 1 Theory
  - Distribution of Data
  - Prediction

- 2 Simulation
  - Estimates and Inference
  - Asymptotic Properties

# Stata Code for Simulation 1, n=100

```
clear
**n=100
set obs 100
gen X1=runiform()
gen X2=1*X1+rnormal(-0.25,0.25)
scalar b0 = 0.5
scalar b1 = 1.0
scalar b2 = 0.0
gen Y = b0+b1*X1+b2*X2+ rnormal(0, 0.5)
```

### Describe the True Distribution

Based on the code used to simulate the data, describe the true distribution of the data including the model of regression.

Example model of regression:

$$\mathbb{E}(Y|X_1 = x_1, X_2 = x_2) = b_0 + b_1x_1 + b_2x_2$$
  
where  $b_0 = 1.2, b_1 = 0.5, b_2 = 0.3$ 

### Solution

Here we are interested in the joint probability distribution of the data, that is how do you describe  $Pr(Y = y, X_1 = x_1, X_2 = x_2)$ ? Remember, if Y,  $X_1$ , and  $X_2$  were independent, we would have

$$Pr(Y = y, X_1 = x_1, X_2 = x_2) = Pr(Y = y) \times Pr(X_1 = x_1) \times Pr(X_2 = x_2)$$

However, a glance at the simulation code tells us that we definitely do not have independent random variables. We turn to conditional probability:

$$Pr(Y, X_1, X_2) = Pr(Y|X_1, X_2) * Pr(X_1, X_2)$$
  
=  $Pr(Y|X_1, X_2) * Pr(X_2|X_1) * Pr(X_1)$ 

### Solution

#### Theoretical distribution of:

- $lacksquare X_1$  We used gen X1=runiform() to generate  $X_1$ , so we say  $X_1 \sim \textit{Uniform}(0,1)$
- $X_2$  Stata code: gen X2 = X1 + rnormal(-0.25,0.25)  $X_2 \sim X_1 + Normal(\mu = -0.25, \sigma = 0.25)$
- Y Stata code: gen Y = b0+b1\*X1+b2\*X2+ rnormal(0, 0.5)  $Y \sim b_0 + b_1 X_1 + b_2 X_2 + Normal(\mu = 0, \sigma = 0.5)$

# Model of Regression

#### Because we are given

```
scalar b0 = 0.5
scalar b1 = 1.0
scalar b2 = 0.0
gen Y = b0+b1*X1+b2*X2+ rnormal(0, 0.5)
```

We can say our model of regression is

$$\begin{split} \mathbb{E}\big(Y|X_1 = x_1, X_2 = x_2\big) &= \mathbb{E}\big(b_0 + b_1 X_1 + b_2 X_2 + e | X_1 = x_1, X_2 = x_2\big) \\ &= \mathbb{E}\big(0.5 + 1.0 X_1 + 0 X_2 + e | X_1 = x_1, X_2 = x_2\big) \\ &= 0.5 + 1.0 x_1 + 0.0 x_2 + \mathbb{E}\big(e | X_1 = x_1, X_2 = x_2\big) \\ &\text{Expectation of a normal random variable is } \dots \\ &= 0.5 + x_1 \end{split}$$

## **Next Question**

Calculate the predicted value at  $X_1 = 0, X_2 = 1$ .

### Solution

$$\mathbb{E}(Y|X_1=0,X_2=1)=0.5+0=0.5$$

Note: remember that predicted values come from regressions.

#### Last but not Least

- What is the true change in the mean of Y when  $X_1$  changes by 0.5?
- What is the true change in the mean of Y when  $X_2$  changes at all?

### Solution

Please remember that changes in the mean of Y are calculated using expectations.

$$\mathbb{E}(Y|X_1 = x_1 + 0.5, X_2 = x_2) - \mathbb{E}(Y|X_1 = x_1, X_2 = x_2)$$

$$= 0.5 + b_1(x_1 + 0.5) - [0.5 + b_1x_1]$$

$$= 0.5 * b_1 = 0.5$$

There is no change in the mean of Y when  $X_2$  changes.

### Simulation

- Run the simulation with n=100.
- Try to graph (as a scatterplot)  $Y \sim X1$  and  $Y \sim X2$  in the same window.

Your Stata code should look something like:

```
scatter Y X1
graph save "x1_scatter.gph"
scatter Y X2
graph save "x2_scatter.gph"
gr combine "x1_scatter.gph" "x2_scatter.gph"
Be sure you know what your working directory is before saving the graphs!
```

# Graphical Representation of Simulation



### Distribution

•  $X_1$ ,  $X_2$ , and Y follow the same distributions as seen on slides 5 & 6.

• What is the model of regression? Run regress Y X1 X2 to find the values of  $\hat{b}_0$ ,  $\hat{b}_1$ , and  $\hat{b}_2$ .

# Simulation 1, n=100

#### . regress Y X1 X2

| Source                | SS                                    | df                              | MS                   |       | Number of obs =                 | = 100                            |
|-----------------------|---------------------------------------|---------------------------------|----------------------|-------|---------------------------------|----------------------------------|
| Model  <br>Residual   | 10.2006733<br>24.268438<br>34.4691113 | 2 5.100<br>97 .250              | 033664<br>190083<br> |       | R-squared = Adj R-squared =     | = 0.0000<br>= 0.2959             |
| Y                     | Coef.                                 | Std. Err.                       |                      |       | [95% Conf. ]                    |                                  |
| X1  <br>X2  <br>_cons | .7669233                              | .2690555<br>.197214<br>.1116183 | 2.85<br>1.63<br>4.82 | 0.005 | .2329225<br>0703567<br>.3165729 | 1.300924<br>.7124738<br>.7596357 |

# Model of Regression

According to the previous slide, we have

$$\hat{b_0} = 0.538$$
  $\hat{b_1} = 0.767$   $\hat{b_2} = 0.321$ 

$$\hat{b_1}=0.767$$

$$\hat{b_2} = 0.321$$

So our model of regression is:

$$\mathbb{E}[Y|X_1 = x_1, X_2 = x_2] = 0.538 + 0.767x_1 + 0.321x_2$$



### **Exercises**

I Calculate the predicted value at  $X_1 = 0, X_2 = 1$  and provide a 95% confidence interval for your estimate.

2 What is the true change in the mean of Y when  $X_1$  changes by 0.5? Provide a 95% confidence interval.

## Solution #1

By hand,

$$\mathbb{E}[Y|X_1 = 0, X_2 = 1] = 0.538 + 0.767 * 0 + 0.321 * 1 = 0.859$$

Or use Stata's lincom command to do this!

$$(1)$$
 X2 + \_cons = 0

| Y | Std. Err. |  |          |  |
|---|-----------|--|----------|--|
| • |           |  | .3243675 |  |

Note: Calculating the confidence interval by hand is possible, but not covered in this course.



### Solution #2

From slide 10, we know the true change in the mean of Y when  $X_1$  changes by 0.5 is 0.5 $b_1$ . We can therefore see

$$\mathbb{E}(Y|X_1 = x_1 + 0.5, X_2 = x_2) - \mathbb{E}(Y|X_1 = x_1, X_2 = x_2)$$
$$= 0.5\hat{b_1} = 0.5 * 0.767 = 0.3835$$

Using the lincom command to get our confidence interval:

. lincom 0.5\*X1

$$(1) .5*X1 = 0$$

| Y |  |  | [95% Conf. |  |
|---|--|--|------------|--|
|   |  |  | .1164613   |  |

# Interpretation

Interpret to the best of your ability all the numbers in the row of the regression output corresponding to X2.

| • | Std. Err. |  | [95% Conf. | Interval] |
|---|-----------|--|------------|-----------|
| • |           |  | 0703567    | .7124738  |

# Interpretation

- Coef =  $\hat{b_2}$  = 0.321: For a one unit increase in  $X_2$ , there is a 0.321 unit increase in the mean of Y holding  $X_1$  constant.
- Std. Err. = 0.197: This is the estimated standard error of  $b_2$ , the coefficient of  $X_2$  in the regression.
- t=1.63: Test statistic, comes from  $H_0: b_2=0$ . Is calculated by  $t=\frac{\hat{b_2}-0}{se(b_2)}=\frac{0.321-0}{0.197}$
- P> |t| = 0.107: Assuming the null is true, this is the probability of getting a t-statistic this extreme or more extreme.
- 95% Conf. Int. = [-0.070, 0.712]: If the experiment is repeated infinitely many times and 95% confidence intervals are calculated each time, 95% of those intervals would contain the true parameter,  $b_2 = 0$ .



### Precision

What happens to the bias and standard error of  $\hat{b_1}$  when we increase the sample size from n = 100 to n = 500?

Remember the following definition:

$$bias(\hat{b_1}) = \mathbb{E}[\hat{b_1} - b_1]$$

# Simulation 1, n=100

#### . regress Y X1 X2

| Source              | SS                      | df                  | MS               |                | Number of obs =            | 100                                 |
|---------------------|-------------------------|---------------------|------------------|----------------|----------------------------|-------------------------------------|
| Model  <br>Residual | 10.2006733<br>24.268438 | 2 5.100<br>97 .250  | 033664<br>190083 |                | Prob > F = R-squared =     | 20.39<br>0.0000<br>0.2959<br>0.2814 |
| Total               | 34.4691113              |                     |                  |                | Adj R-squared = Root MSE = | .50019                              |
| Y                   |                         | Std. Err.           |                  |                | [95% Conf. In              | terval]                             |
| X1                  | .7669233                | .2690555            | 2.85             | 0.005          | .2329225 1                 | .300924                             |
| X2  <br>_cons       | .3210585<br>.5381043    | .197214<br>.1116183 | 1.63<br>4.82     | 0.107<br>0.000 |                            | 7124738<br>7596357                  |
|                     |                         |                     |                  |                |                            |                                     |

# Simulation 2, n=500

. regress Y X1 X2

| Source                    | SS                             | df                  | MS                     |                | Number of obs =                                                | 500                                           |
|---------------------------|--------------------------------|---------------------|------------------------|----------------|----------------------------------------------------------------|-----------------------------------------------|
| Model  <br>Residual  <br> | 44.4286117                     | 2 2:<br>497 .:      | 2.2143059<br>247275602 |                | F( 2, 497) = Prob > F = R-squared = Adj R-squared = Root MSE = | 89.84<br>0.0000<br>0.2655<br>0.2626<br>.49727 |
| Y                         | Coef.                          |                     | r. t                   |                | [95% Conf. In                                                  | terval]                                       |
| X1  <br>X2  <br>_cons     | .917903<br>.1205967<br>.498836 | .1160903<br>.086487 | 7.91<br>5 1.39         | 0.000<br>0.164 | 0493294                                                        | .145991<br>2905229<br>5971459                 |

### Precision

#### Bias

- Sim 1:  $bias(\hat{b_1}) = 0.767 1 = -0.233$
- Sim 2:  $bias(\hat{b_1}) = 0.918 1 = -0.082$

#### Standard Error

- Sim 1:  $se(\hat{b_1}) = 0.269$
- Sim 2:  $se(\hat{b_1}) = 0.116$

Note: bias decreases (in absolute value) as n increases, and se decreases as n increases  $\implies \hat{b_1} \rightarrow b_1$  as  $n \rightarrow \infty$ .