Applications of Deep Learning in GIS -Spatiotemporal data mining and forecasting

Thesis Presentation

Student: Supasin Wuthikulphakdi, TKU#608785068

Advisor: Yihjia Tsai Ph.D.

Contribution

- In ECE), I compared as many models as I could.
 - DEEPFORECAST multi-LSTM is the best
 - ► 1.575 RMSE, 1.159 MAE
 - Among competing models, more complex ones aren't always better.
 - ▶ Proven by metrics to be shown
 - ► PEMS-BAY trained STDL models better than METR-LA.

- ► In my CEHE,
 - ► I chose familiar models of each domain (S/T) to train with my fire event dataset
 - ▶ <u>VAE is the best</u> in the space domain
 - ▶ 0.026348 RMSE, 0.009244 MAE
 - FBProphet is the best in the time domain
 - ▶ 6.97231 RMSE, 5.045342 MAE
 - LSTM doesn't always beat FBProphet

Motivation

Intelligent transport system (ITS)

Disaster & Weather forecast

To study DL-Implementations in STDM

To mine ST-data is laborious

Deep learning can help
 self-feature
 extraction

Do newer STDM-DL models outperform older ones?

Uses of STDM

- Meteorology
- Transportation (Most popular)
 - ► ITS
- On-Demand Services
 - ► Taxi-hailing apps
- LBSN
- Criminology
- ► Etc.

Literature Review -Early WORKS

- Disaster Impact Analysis & Detection
 - ▶ Doshi et al.'s CNN [1,2]
 - ▶ Amit & Aoki FC-CNN [3]
 - ► Fang's LSS-LSTM [6]
- GEO-Feature Detection
 - ▶ Iglovikov et al.'s UNET [4]
- Earlier surveys
 - ▶ Wang et al. [8]
 - ▶ Atluri et al. [19]

Literature Review - Implemented models

2.2 (ECE)

- ▶ DCRNN [7]
- ► STGCN [9]
- ► ST-METANET[16]
- CRANN [15]
- Adaptive GCNN [71]
- Attention-based ST-GCN [72]
- Deepforecast Multi-LSTM[73]
- Spacetimeformer [80]

2.3 (CEHE)

- Autoencoders
 - BAE
 - VAE
 - CVAE
- GAN
 - DCGAN
 - WGAN
 - LSGAN
- FBProphet
- ARIMA
- LSTM
 - ► MMS = Matrix Manipulation System

Hypothesis

- Q1: STDM DL-models can do a variety of learning and predictions, but how well can they do?
 - ► Metrics: MSE, RMSE, & MAE

- Q2: If I have a custom dataset with its data structure visualised, which model to be learned from it?
 - Such as the "NTPC-fire_2015-17" dataset
 - ▶ Which is small.
 - What if I vary some hyperparameters?

Experiment Episode 1: Exploratory Comparative Experiment (ECE)

- ► Hyperparameters: default
- ▶ Optimiser: Adam
- ► Environment: COLAB GPU, TWCC
- ▶ Method: run models, record and compare their metrics.

Architecture	Architecture Description	Dataset Name/Desc	learning rate	Epochs	Major DL Module
Taxi-Simple-LSTM- Pytorch	Simple-LSTM	Time series of Taxi-Uber DS. (2014-15)	0.01	2000	Pytorch
Uber-Simple-LSTM- Pytorch	Simple-LSTM	Time series of Taxi-Uber DS. (2014-15)	0.01	2000	Pytorch
Taxi-Simple-LSTM- Keras	Simple-LSTM	Time series of Taxi-Uber DS. (2014-16)	0.001	100	TensorFlow Keras
Uber-Simple-LSTM- Keras	Simple-LSTM	Time series of Taxi-Uber DS. (2014-17)	0.001	100	TensorFlow Keras
CRANN-Temporal	Bahdanau Att.Mech Autoencoder (LSTM based)	temporal time series of hourly/daily car traffic (in Madrid)	0.01	200	Pytorch
CRANN-Spatial	CNN+ST-Att.Mech	graph data captured by 30 sensors + Timestamps (A 17000x30 matrix)	0.01	200	Pytorch
CRANN-Dense	Fully Connected Feedforward NN (FCFFNN)	dense 3D+ tensor of both preceding modules	0.01	200	Pytorch
Seq2seq (flow)	Improved Seq2eq	Beijing TDrive	0.01	200	MXNET
GAT Seq2seq (flow)	Improved Seq2eq	Beijing TDrive	0.01	200	MXNET
ST-Metanet (flow)	Improved Seq2eq	Beijing TDrive	0.01	200	MXNET
Seq2seq (speed)	Improved Seq2eq	METR-LA	0.01	200	MXNET
GAT Seq2seq (speed)	Improved Seq2eq	METR-LA	0.01	200	MXNET
ST-Metanet (speed)	Improved Seq2eq	METR-LA	0.01	200	MXNET
AGCRN	Attentive Graph CRN	Caltrans PEMS04&08	0.003	100	Pytorch
ASTGCN	Attention Based GCN	Caltrans PEMS04&08	0.001	80	Pytorch
Deepforecast	Multi-LSTM	MS_winds - Wind Speed & Flow Dataset	0.001	80	TensorFlow Keras
DCRNN	R-CNN	PEMS & METR-LA	0.001	100	TensorFlow Keras
STGCN	Graph-CNN	PEMS & METR-LA	0.001	50	Pytorch
Spacetimeformer	Transformer opted for ST-data	METR-LA	0.001	80	Pytorch

ECE results:

- Deepforecast Multi-LSTM
 - ▶ Is the best model to date
 - ► 1.575 RMSE, 1.159 MAE
- ► All model performed well
 - ▶ At least for their arch.
- ▶ LSTM on the TAXI-Uber data
 - ▶ Had a poor metrics
 - Simplicity, overfitting, gradient vanishing & explosion

		Key Metrics		Other Metrics				Key Metrics		Other Metrics	
Architecture	MSE	RMSE	MAE	Туре	Value	Architecture	MSE	RMSE			Value
Taxi-Simple- LSTM-pytorch	72269860	8501.168	5753.569			AGCRN - PeMSD4	1040.76136 7	32.2608333 3	19.6941666 7	MAPE (TWCC)	13.020408
Uber-Simple- LSTM-pytorch	0.033286	0.1824457	0.13018544			AGCRN - PeMSD8	718.910156 3	26.8125	17.0158333 3	MAPE(COLAB)	10.651383
Taxi-Simple- LSTM-Keras	93431556	9666	92.484945			ASTGCN - PeMSD4	1173.7476	34.26	21.84	MAPE	0.1
Uber-Simple- LSTM-Keras	105050200	10249.4	83.21			ASTGCN - PeMSD8	809.4025	28.45	18.5	MAPE	0.1
CRANN- Temporal	6653.663	81.569992	50.3727684	Bias	3.82883501	Deepforecast	2.48188128 5	1.575398 8		NRMSE_maxmin (%)	15.5752
				Relativ e error %	24.8551800 8					NRMSE_mean(%)	43.0971
CRANN-Spatial	55740.71	236.09472	117.740661 6	Bias		DCRNN(Metr- LA)-STA - 15min	75.5161	8.69	4.02	MAPE	9.3
				Relativ e error %		DCRNN(Metr- LA)-STA - 1hr	201.9241	14.21	6.79	MAPE	16.7
CRANN-Dense	67264.05 5	259.35315	138.287933 3	Bias		DCRNN(Metr- LA)-VAR- 15min	60.5284	7.78	4.37	MAPE	10.0
				Relativ e error %		DCRNN(Metr- LA)-VAR - 1hr	114.0624	10.68	6.5	MAPE	15.8
Seq2seq (flow) [14]	1626.98662 3	40.335922	21.3			DCRNN(Pemsba y)-STA - 15min	11.7649	3.43	1.6	МАРЕ	3.2
GAT Seq2seq (flow) [14]	1098.04137 1	33.136707 31	18.3			DCRNN(Pemsba y)-STA - 1hrmin	49.2804	7.02	3.05	MAPE	6.8
ST-Metanet (flow) [14]	813.188514	28.516460 42	16.9			DCRNN(Pemsba y)-VAR - 15min	9.5481	3.09	1.74	MAPE	3.5
Seq2seq (speed) [14]	44.4751941	6.6689724 92	3.55			DCRNN(Pemsba y)-VAR - 1hr	26.1121	5.11	2.92	MAPE	6.4
GAT Seq2seq (speed) [14]	36.9234342 7	07	3.28			STGCN - 15min	16.532356	4.066	2.231	%Wmape	5.20
ST-Metanet (speed) [14]	33.6315896	5.7992749 21	3.05			STGCN - 30 min	33.051001			%Wmape	7.38
D) (T)						STGCN - 45min	46.744569		3.623	%Wmape	8.9 <mark>2</mark>
tion PYTC	JRCH	Time-Series F	Prediction			Spacetimeform er [80]	36.21	6.01747455	2.82	MAPE	7.7
4000		Laanao	laa.					TE V		model.loss	0.25

Time-Series Pre

CEHE - Procedure

EP2: Custom Event Heatmap Experiment (CEHE) *Hyperparameters (HPs)*:

- Épochs: 100
- Optimiser: Adam, LR = 0.001
- OTHERWISE, default according to their origins.
- ▶In the spatial domain
- ► VAE is the Best
 - Due to moderate simplicity & well tuned HPs despite minimal touches
- ▶ Due to my small data size (36samples, 36*784 rpsns)
 - ► GANs did not beat the AEs
- ▶In the temporal domain (1096 samples)
- ► FBProphet is the best
 - Never overfits but can be overtaken by PreMMS LSTM if well tuned.
- Hidden subtest:
 - ► Add lookback steps (+)
 - ► Add more LSTM cells (+)

MODEL	DOMAIN	Batch size		Train I	ain Metrics:			Test I	Test Metrics:		
			MSE	RMSE	MAE	MAPE	MSE	RMSE	MAE	MAPE	
PreMMS LSTM4			91.6306 25	9.57238 9	5.251044	0.24451 7	50.8761 32	7.13275 1	5.399653	0.369033	
PostMMS- LSTM4-noLB	Time	1LB	7.67913 4	2.77112 5	1.556069	0.13390 8	61.4380 13	7.83824	5.954068	0.29369	
PostMMS- LSTM-LB5	Time	5LB	7.58246 5	2.75362 8	1.559106	0.13868 4	57.6924 35	7.59555 4	5.70559	0.283949	
BAE	Space	24tr + 12te	0.00280 751	0.05298 596	0.046023 81	3899906 0	0.00357 825	0.05981 846	0.053716 972	4650421 2	
DCGAN	Space	9	0.02931 224	0.17120 818	0.048474 76	1127299 .4	0.02781 864	0.16678 922	0.046871 6	598425	
FBProphet (37 days)	<mark>Time</mark>	<mark>1 day</mark>	<mark>n/a</mark>	<mark>n/a</mark>	<mark>n/a</mark>	<mark>n/a</mark>	48.6131 08	6.97231	5.045342	0.281977	
CVAE	Space	9	0.00515 399	0.07179 128	0.010002 13	4424340	0.00433 511	0.06584 153	0.009183 249	4546362. 5	
VAE	Space	9	0.00083 985	0.02898 009	0.009215 273	2282401 .2	0.00069 422	0.02634 812	0.009243 97	1.30263E +13	
WGAN-GP	Space	9	0.00812 537	0.09014 085	0.021708 265	8.3067E +11	0.00754 667	0.08687 156	0.020719 65	7.40703E +11	
Weekly ARIMA	Time	7 days	n/a	n/a	n/a	n/a	1436.90 057	37.9064 714	28.42712 296	0.195063 926	
LSGAN	Space	9	0.11268 27	0.33568 244	0.182678 49	0.57419 306	0.10933	0.33065	0.184966	0.547155 8	
PostMMS- LSTM-Weekly	Time	7 days	227.370 864	15.0788 22	10.25048	0.08644 5	852.383 545	29.1956 08	21.00748 1		
PostLSTM9	Time	5LB	7.57861 9	2.75292 9	1.563434	0.13906 8	55.8935 09	5.60772	5.70559	0.281344	

```
#Form dataset matrix
def create_dataset(df, previous=1):
                                                                          <>
                                         PreMMS-LSTM
    dataX, dataY = [], []
    for i in range(len(df)-previous-1):
                                                                         {x}
        a = df[i:(i+previous), 0]
        dataX.append(a)
                                                                          dataY.append(df[i + previous, 0])
    return np.array(dataX), np.array(dataY)
#tensor manipulation
tseries = dftempday['freq'].to_numpy()
dftensor=pd.DataFrame(tseries) #forward dataframe
dftensor=np.array(dftensor).astype('float32') #convert to tensor
#[PRE-MMS] normalize the dataset
scaler = MinMaxScaler(feature_range=(0, 1))
dataset = scaler.fit transform(dftensor)
# split into train and test sets
#here, you can change the test size to make future prediction
train size = int(len(dataset) * 0.67)
test_size = len(dataset) - train_size
train, test = dataset[0:train size,:], dataset[train size:len(dataset),:]
# reshape into X=t and Y=t+1
look back = 1
trainX, trainY = create dataset(train, look back)
testX, testY = create_dataset(test, look_back)
lookback = look back
# reshape input to be [samples, time steps, features]
trainX = numpy.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1]))
testX = numpy.reshape(testX, (testX.shape[0], 1, testX.shape[1]))
```

```
#Form dataset matrix
def create_dataset(df, previous=1):
    dataX, dataY = [], []
    for i in range(len(df)-previous-1):
                                             PostMMS-LSTM
        a = df[i:(i+previous), 0]
        dataX.append(a)
        dataY.append(df[i + previous, 0])
    return np.array(dataX), np.array(dataY)
#tensor manipulation
tseries = dftempday['freq'].to_numpy()
dftensor=pd.DataFrame(tseries) #forward dataframe
dftensor=np.array(dftensor).astype('float32') #convert to tensor
#train-test split
train_size = int(len(dftensor) * 0.8)
test size = len(dftensor) - train size
train, test = dftensor[0:train_size,:], dftensor[train_size:len(dftensor),:]
#[POST-MMS] minmaxscaler
scaler = MinMaxScaler(feature_range=(0, 1))
train = scaler.fit_transform(train)
test = scaler.fit transform(test)
# Lookback period
lookback = 5
trainX, trainY = create dataset(train, lookback)
testX, testY = create_dataset(test, lookback)
# reshape input to be [samples, time steps, features]
trainX = np.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1]))
testX = np.reshape(testX, (testX.shape[0], 1, testX.shape[1]))
```

					TFK-WGAN-		
		TFK-DCGAN	TFK-CVAE	TFK-VAE	GP	TFK-LSGAN	TFK-BAE
Train 9B:	MSE	0.02931224	0.00515399	0.00083985	0.00812537	0.1126827	0.00280751
	RMSE	0.17120818	0.07179128	0.02898009	0.09014085	0.335682439	0.05298596
	MAE	0.04847476	0.01000213	0.00921527	0.02170827	0.18267849	0.04602381
Test 9B:	MSE	0.02781864	0.00433511	0.00069422	0.00754667	0.10933066	0.00357825
	RMSE	0.16678922	0.06584153	0.02634812	0.08687156	0.330651874	0.05981846
	MAE	0.0468716	0.00918325	0.00924397	0.02071965	0.18496665	0.05371697
Train 12B:	MSE	0.02113337	0.00419831	0.00082212	0.02267304	0.40772453	
	RMSE	0.14537322	0.06479436	0.02867267	0.15057571	0.638533108	
	MAE	0.0444729	0.00805869	0.00947048	0.04603831	0.24995048	
Test 12B:	MSE	0.01843591	0.003209	0.00079672	0.02239976	0.41008073	
	RMSE	0.13577889	0.05664803	0.02822621	0.14966548	0.640375461	
	MIVISE	0.133//669	0.03004603	0.02022021	0.14300346	0.0403/3401	
	MAE	0.04102352	0.00706938	0.00987247	0.04573417	0.24851514	

Spatial domain analysis: The Batch Size test

- Expand the training batch (9 -> 12)
 - DCGAN & CVAE improved
 - ► WGAN-GP & LSGAN worsened
 - VAE
 - Somewhat improved train MSE
 - ▶ While slightly worsened others
 - Is the best spatial model

Visualised Frequency Prediction

- ► A = Weekly Auto ARIMA
- ► B = FBProphet
- C = MMS-LSTM-5LB
- ▶ D = MMS-LSTM-noLB
- ► E = Vanilla LSTM
- ► F = LSTM-Weekly

What if I use the weekly model to test the daily data

- ► Top = LSTM4
- Middle = LSTM4 trained with weekly series
- ► Bottom = LSTM9

Findings of my Thesis & Discussion (1/2)

- ► The ECE taught me that
 - ST-METANET, Pems-DRCNN, STGCN & Spacetimeformer performed similarly well.
 - ▶ PEMS bay train each model better than METR-LA
 - ▶ Each model did well for its architecture.
- ► The Spat. CEHE taught me that
 - ▶ AEs are better that GANs for smaller datasets
 - ▶ GANs are harder to train & require more data than AEs
 - Due to the much larger representation size (S:28224(36*28*28) vs T:1096) and milder gradient
 - Spatial models are much better than temporal ones, as they experienced much larger data
- ► Future plans & recommendations
 - More LSTM/AE/GAN variants
 - Daily rasterisation alg.
 - Do more subtests
 - Vary more HPs
 - broader HP-ranges

- ► The Temp. CEHE taught me that
 - As long as FBProphet is better, never trust the LSTM.
 - It's possible that vanilla LSTM will defeat FBProphet (if well tuned)
 - ▶ The more frequent a series, the better a model trains.
- ► The ST-METANET & Spacetimeformer
 - ► Have a RAM problem
- Finally, I've learned that
 - Newer, more complex models doesn't always outperform older, more simple ones
 - The subtests will eventually lead to
 - "HP-Tuning"

Findings of my Thesis & Discussion (2/2)

Open questions

- ▶ Is there any model that are good and dealing with CEHE dataset BOTH in spacial and temporal domain?
 - ► Currently no, because the datasets of most of the explored models involve sensors recording values at each timestamp
 - ▶ But my dataset has no sensors, only list of coordinates with only 1 frequency each. And thus, must be rasterized to predict/reconstruct heatmaps.
- ▶ If you combine the best in temporal model and the best in spatial model for CEHE dataset, what would be the model looked like?
 - ▶ VAE-FBP, VAE-LSTM

References

- [1] Doshi, J., Basu, S. and Pang, G., 2018. From satellite imagery to disaster insights. arXiv preprint arXiv:1812.07033.
- [2] Doshi, Jigar. 2018. Residual Inception Skip Network for Binary Segmentation. Pages 216-219 of: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops.
 - [3] Amit, S.N.K.B. and Aoki, Y., 2017, September. Disaster detection from aerial imagery with convolutional neural network. In 2017 International Electronics Symposium on Knowledge Creation and Intelligent Computing (IES-KCIC) (pp. 239-245). IEEE.
- [4] V. Iglovikov, S. Mushinskiy, and V. Osin, "Satellite Imagery Feature Detection using Deep Convolutional Neural Network: A Kaggle Competition," vol. June 2017.
- [6] Fang, Z., Wang, Y., Peng, L. and Hong, H., 2020. Predicting flood susceptibility using LSTM neural networks. *Journal of Hydrology*, [online] p.125734. Available at: https://doi.org/10.1016/j.jhydrol.2020.125734 [Accessed 18 April 2021].
- [7] Li, Y., Yu, R., Shahabi, C., & Liu, Y. (2017). Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. arXiv preprint arXiv:1707.01926.
- [8] S. Wang, J. Cao, & P. Yu, "Deep Learning for Spatio-Temporal Data Mining: A Survey," in IEEE Transactions on Knowledge and Data Engineering, doi: 10.1109/TKDE.2020.3025580.
- ▶ [9] Yu, B., Yin, H., & Zhu, Z. (2017). Spatiotemporal graph convolutional networks: A deep learning framework for traffic forecasting. *arXiv* preprint *arXiv*:1709.04875.

- ▶ [15] de Medrano, R., & Aznarte, J. L. (2020). A spatiotemporal attention-based spot-forecasting framework for urban traffic prediction. *Applied Soft Computing*, 96, 106615.
- ▶ [16] Luo, X., Li, D., & Zhang, S. (2019). Traffic flow prediction during the holidays based on DFT and SVR. *Journal of Sensors*, 2019.
- ▶ [19] Atluri, G., Karpatne, A., & Kumar, V. (2018). Spatiotemporal data mining: A survey of problems and methods. ACM Computing Surveys (CSUR), 51(4), 1-41.
- [71] Bai, L., Yao, L., Li, C., Wang, X., & Wang, C. (2020). Adaptive graph convolutional recurrent network for traffic forecasting. arXiv preprint arXiv:2007.02842.
- [72] Guo, S., Lin, Y., Feng, N., Song, C., & Wan, H. (2019, July). Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 33, No. 01, pp. 922-929).
- [73] Ghaderi, A., Sanandaji, B. M., & Ghaderi, F. (2017). Deep forecast: Deep learning-based spatiotemporal forecasting. arXiv preprint arXiv:1707.08110.
- [80] Grigsby, J., Wang, Z., & Qi, Y. (2021). Long-Range Transformers for Dynamic Spatiotemporal Forecasting. arXiv preprint arXiv:2109.12218.

Discussion & Conclusion: What have I done?

- Technical basics
 - Applications, DL-Techniques
- Paper survey
 - ▶ SOTA models are compared in my ECE.
 - Common models are implemented to my fire event data
- Comparison tests
 - **▶** ECE
 - ► CEHE
 - ► How STDM works?
 - ▶ Rasterised Heatmap Generation
 - ► Time series prediction
 - ► HP subtests

- Discovered facts
 - (Newer, more complex vs older, more simple models)
 - ▶ [BEST ECE] DEEPFORECAST multi-LSTM
 - ► [BEST CEHE] VAE & FBProphet
- Discussion
 - Gave future subtest recomms.
 - Listed some open problems
 - ► Further discuss the results
 - Pointed out current issues
 - Indicated future research directions.

Question Time!

Q&As.