Math 235: Mathematics in Population Biology

Problem Set 1

(Due: 03/27/2020)

Instructor: Aurelio de los Reyes Name: Mark Ivan Ugalino, Student Number: 201370180

1. Find the unique solution of the following difference equations satisfying the given initial condition and graph the solutions

(a)
$$x_{t+1} - 5x_t + 4x_{t-1} = 0$$
; $x_1 = 9$, $x_2 = 33$

Let us first assume that the solution x[t] takes the form, $x[t] = \lambda^t$ such that we can recast the difference equation into

$$\lambda^{t+1} - 5\lambda^t + 4\lambda^{t-1} = 0$$
$$\lambda^2 - 5\lambda + 4 = 0$$
$$(\lambda - 4)(\lambda - 1) = 0$$

which yields two eigenvalues, $\lambda_1 = 4$, $\lambda_2 = 1$, implying that there are two solutions to this difference equation

$$x_1[t] = 1$$
$$x_2[t] = 4^t$$

This yields a general solution that is a linear superposition of x_1 and x_2 ,

$$x[t] = C_1 + C_2(4^t)$$

To completely solve this problem, we shall impose initial conditions provided:

$$9 = C_1 + 4C_2$$
$$33 = C_1 + 16C_2$$

from which we can obtain what C_1 and C_2 are. From the first equation, $C_1 = 9 - 4C_2$ which, when substituted to the second equation, yields,

$$33 = 9 - 4C_2 + 16C_2 \longrightarrow C_2 = 2$$

$$C_1 = 9 - 4(2) = 1$$

which gives us a final answer,

$$x[t] = 1 + 2^{1+2t}$$

(b)
$$x_{t+2} + x_{t+1} - 2x_t = 0$$
; $x_0 = 6$, $x_1 = 3$

In the same way as we did in the last item, we assume that the solution x[t] takes the form, $x[t] = \lambda^t$. This gives us a characteristic equation of the form,

$$\lambda^{t+2} + \lambda^{t+1} - 2\lambda^t = 0$$
$$\lambda^2 + \lambda - 2 = 0$$
$$(\lambda + 2)(\lambda - 1) = 0$$

which yields two eigenvalues of the form, $\lambda_1 = -2$, $\lambda_2 = 1$, implying that there are two solutions to this difference equation

$$x_1[t] = 1$$
$$x_2[t] = (-2)^t$$

Hence, the general solution is a linear superposition of x_1 and x_2 ,

$$x[t] = C_1 + C_2(-2)^t$$

Imposing the boundary values provided gives us values for C_1 and C_2 ,

$$6 = C_1 + C_2$$
$$3 = C_1 - 2C_2$$

From the first equation, $C_1 = 6 - C_2$. Substituting this to the second equation, we obtain

$$3 = 6 - C_2 - 2C_2 \longrightarrow C_2 = 1$$

 $C_1 = 6 - 1 = 5$

which gives us a final answer,

$$x[t] = 5 + (-2)^t$$

2. Find the general solutions to the following nonhomogeneous, linear difference equations.

(a)
$$x_{t+2} + x_{t+1} - 6x_t = 5$$

The solution to this difference equation can be written as a sum of the homogeneous solution x_H and the particular solution x_P . Hence, the first step is for us to solve the homogeneous case,

$$x_{t+2}^H + x_{t+1}^H - 6x_t^H = 0$$

We now assume that the homogeneous solution takes the form $x^H[t] = \lambda^t$, which when we plug in to the difference equation gives a characteristic equation of the form,

$$\lambda^2 + \lambda - 6 = 0$$

the roots of which are $\lambda_1 = -3$ and $\lambda_2 = 2$. Therefore, the general solution to the homogeneous case is given by,

$$x^{H}[t] = C_1(-3)^t + C_2(2)^t$$

The next step is to find the particular solution x^P . For a constant nonhomogeneous term, we assume that the solution to the difference equation takes the form $x^P[t] = \alpha$, such that

$$\alpha + \alpha - 6\alpha = 5 \longrightarrow \alpha = -\frac{5}{4}$$

Hence, the general solution to the difference equation is,

$$x[t] = x^{H}[t] + x^{P}[t] = C_{1}(-3)^{t} + C_{2}(2)^{t} - \frac{5}{4}$$

where C_1 and C_2 can be obtained by imposing boundary conditions.

(b)
$$x_{t+2} - 4x_t = 6t - 1$$

In the same way as we did for the previous item, the first step in solving for the general solution is to solve for the homogeneous solution x^H . We assume that $x^H[t] = \lambda^t$ which yields a characteristic equation of the form,

$$\lambda^2 - 4 = 0$$

which has two distinct roots $\lambda_1 = 2$ and $\lambda_2 = -2$. Hence, the homogeneous solution is given by

$$x^{H}[t] = C_1(2)^t + C_2(-2)^t$$

The next step is to find the particular solution x^P whose form we shall guess as $x^P[t] = \beta t + \gamma$, with β and γ still to be determined. We substitute this guess solution to the difference equation,

$$\beta(t+2) + \gamma - 4(\beta t + \gamma) = 6t - 1$$
$$(-3\beta)t + (2\beta - 3\gamma) = 6t - 1$$

Comparing the coefficients on each side of the equation then gives us two equations to solve,

$$-3\beta = 6$$
$$2\beta - 3\gamma = -1$$

yielding $\beta = -2$ and $\gamma = -1$. Hence, the general solution to this difference equation is given by,

$$x[t] = C_1(2)^t + C_2(-2)^t - (2t+1)$$

3. Convert the following linear difference equations to equivalent first-order systems, Determine the eigenvalues and eigenvectors and express the solution in vector form.

(a)
$$x_{t+2} - 16x_t = 0$$

We let $y_1[t] = x[t]$, and $y_2[t] = x[t+1]$ such that

$$y_1[t+1] = y_2[t]$$

 $y_2[t+1] = 16y_1[t]$

which can be written alternatively as,

$$Y[t+1] = AY[t]$$

where

$$Y[t] = \left[\begin{array}{c} y_1[t] \\ y_2[t] \end{array} \right]$$

and

$$A = \left[\begin{array}{cc} 0 & 1 \\ 16 & 0 \end{array} \right]$$

We can obtain the eigenvalues of the matrix A by first calculating for $\det(A - \mathcal{I}\lambda)$,

$$\lambda^2 - 16 = 0$$

which yields two roots, $\lambda_1 = -4$ and $\lambda_2 = 4$. Say the eigenvectors of this matrix can be written as,

$$\mathbf{x}_1 = \left[\begin{array}{c} x_1^1 \\ x_1^2 \end{array} \right] \quad \mathbf{x}_2 = \left[\begin{array}{c} x_2^1 \\ x_2^2 \end{array} \right]$$

which correspond to λ_1 and λ_2 respectively, such that

$$A\mathbf{x}_1 = \lambda_1 \mathcal{I} \mathbf{x}_1$$

$$\begin{bmatrix} 0 & 1 \\ 16 & 0 \end{bmatrix} \begin{bmatrix} x_1^1 \\ x_1^2 \end{bmatrix} = \begin{bmatrix} -4 & 0 \\ 0 & -4 \end{bmatrix} \begin{bmatrix} x_1^1 \\ x_1^2 \end{bmatrix}$$

$$x_1^2 = -4x_1^1$$

such that \mathbf{x}_1 can be written as

$$\mathbf{x}_1 = \left[\begin{array}{c} x_1^1 \\ -4x_1^1 \end{array} \right]$$

with a non-trivial form when we set $x_1^1 = 1$,

$$\mathbf{x}_1 = \left[\begin{array}{c} 1 \\ -4 \end{array} \right]$$

$$A\mathbf{x}_2 = \lambda_2 \mathcal{I}\mathbf{x}_2$$

$$\begin{bmatrix} 0 & 1 \\ 16 & 0 \end{bmatrix} \begin{bmatrix} x_2^1 \\ x_2^2 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} x_2^1 \\ x_2^2 \end{bmatrix}$$

$$x_2^2 = 4x_2^1$$

such that \mathbf{x}_1 can be written as

$$\mathbf{x}_2 = \left[\begin{array}{c} x_2^1 \\ 4x_2^1 \end{array} \right]$$

with a non-trivial form when we set $x_1^1 = 1$,

$$\mathbf{x}_2 = \left[\begin{array}{c} 1 \\ 4 \end{array} \right]$$

Therefore, the eigenvalues of matrix A and their corresponding eigenvectors are given by,

$$\lambda_1 = -4, \quad \mathbf{x}_1 = \begin{bmatrix} 1 \\ -4 \end{bmatrix}, \quad \lambda_2 = 4, \quad \mathbf{x}_2 = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$

(b)
$$x_{t+3} + 5x_{t+2} - x_{t+1} - 5x_t = 0$$

We let $y_1[t] = x[t]$, $y_2[t] = x[t+1]$, $y_3[t] = x[t+2]$, such that

$$\begin{aligned} y_1[t+1] &= y_2[t] \\ y_2[t+1] &= y_3[t] \\ y_3[t+1] &= -5y_3[t] + y_2[t] + 5y_1[t] \end{aligned}$$

which can be alternatively written as,

$$Y[t+1] = AY[t]$$

where

$$Y[t] = \begin{bmatrix} y_1[t] \\ y_2[t] \\ y_3[t] \end{bmatrix}$$

and

$$A = \left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 5 & 1 & -5 \end{array} \right]$$

We can obtain the eigenvalues of the matrix A by first calculating for $\det(A - \mathcal{I}\lambda)$,

$$-\lambda^{2}(\lambda+5) + (\lambda+5) = 0$$
$$(\lambda+5)(\lambda^{2}-1) = 0$$

the roots of which are $\lambda_1 = -5$, $\lambda_2 = 1$, and $\lambda_3 = -1$. Say the eigenvectors of this matrix can be written as,

$$\mathbf{x}_1 = \begin{bmatrix} x_1^1 \\ x_1^2 \\ x_1^3 \end{bmatrix} \quad \mathbf{x}_2 = \begin{bmatrix} x_2^1 \\ x_2^2 \\ x_2^3 \end{bmatrix} \quad \mathbf{x}_3 = \begin{bmatrix} x_3^1 \\ x_3^2 \\ x_3^3 \end{bmatrix}$$

which correspond to λ_1 , λ_2 , and λ_3 respectively, such that

$$A\mathbf{x}_{1} = \lambda_{1} \mathcal{I} \mathbf{x}_{1}$$

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 5 & 1 & -5 \end{bmatrix} \begin{bmatrix} x_{1}^{1} \\ x_{1}^{2} \\ x_{1}^{3} \end{bmatrix} = \begin{bmatrix} -5 & 0 & 0 \\ 0 & -5 & 0 \\ 0 & 0 & -5 \end{bmatrix} \begin{bmatrix} x_{1}^{1} \\ x_{1}^{2} \\ x_{1}^{3} \end{bmatrix}$$

$$x_{1}^{2} = -5x_{1}^{1}$$

$$x_{1}^{3} = -5x_{1}^{2}$$

Hence, \mathbf{x}_1 can be written as,

$$\mathbf{x}_1 = \left[\begin{array}{c} x_1^1 \\ -5x_1^1 \\ 25x_1^1 \end{array} \right]$$

with a non-trivial form when we set $x_1^1 = 1$,

$$\mathbf{x}_1 = \left[\begin{array}{c} 1 \\ -5 \\ 25 \end{array} \right]$$

$$A\mathbf{x}_{2} = \lambda_{2} \mathcal{I} \mathbf{x}_{2}$$

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 5 & 1 & -5 \end{bmatrix} \begin{bmatrix} x_{2}^{1} \\ x_{2}^{2} \\ x_{2}^{3} \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_{2}^{1} \\ x_{2}^{2} \\ x_{2}^{3} \end{bmatrix}$$

$$x_{2}^{2} = -x_{2}^{1}$$

$$x_{2}^{3} = -x_{2}^{2}$$

$$5x_{2}^{1} + x_{2}^{2} = 4x_{2}^{3}$$

Hence, \mathbf{x}_2 can be written as,

$$\mathbf{x}_2 = \left[\begin{array}{c} x_2^1 \\ -x_2^1 \\ x_2^1 \end{array} \right]$$

with a non-trivial form when we set $x_2^1 = 1$,

$$\mathbf{x}_2 = \left[\begin{array}{c} 1 \\ -1 \\ 1 \end{array} \right]$$

$$A\mathbf{x}_3 = \lambda_3 \mathcal{I} \mathbf{x}_3$$

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 5 & 1 & -5 \end{bmatrix} \begin{bmatrix} x_3^1 \\ x_3^2 \\ x_3^3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_3^1 \\ x_3^2 \\ x_3^3 \end{bmatrix}$$

$$x_3^2 = x_3^1$$

$$x_3^3 = x_3^2$$

$$5x_3^1 + x_3^2 = 6x_3^3$$

Hence, \mathbf{x}_3 can be written as,

$$\mathbf{x}_3 = \left[\begin{array}{c} x_3^1 \\ x_3^1 \\ x_3^1 \end{array} \right]$$

with a non-trivial form when we set $x_2^1 = 1$,

$$\mathbf{x}_3 = \left[\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right]$$

Therefore, the eigenvalues of matrix A and their corresponding eigenvectors are given by,

$$\begin{bmatrix} \lambda_1 = -5, & \mathbf{x}_1 = \begin{bmatrix} 1 \\ -5 \\ 25 \end{bmatrix}, & \lambda_2 = -1, & \mathbf{x}_2 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, & \lambda_3 = 1, \mathbf{x}_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

which in vector form is given by,

$$\mathbf{x} = c_1(-5)^t \begin{bmatrix} 1 \\ -5 \\ 25 \end{bmatrix} + c_2(-1)^t \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} + c_3 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

4. Let X(t+1) = AX(t), where $A = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$. The general solution is $X(t) = A^tX(0)$. Find A^2 , A^3 , and A^4 , then find a general expression for A^t and write the general solution.

We proceed in evaluating the matrix operations required in the problem. A^2 , A^3 , and A^4 , can be easily obtained by performing ordinary matrix multiplication,

$$A^{2} = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 1+0 & 1+2 \\ 0 & 4+0 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 0 & 4 \end{bmatrix}$$

$$A^{3} = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 3 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 1+0 & 1+6 \\ 0 & 8 \end{bmatrix} = \begin{bmatrix} 1 & 7 \\ 0 & 8 \end{bmatrix}$$

$$A^{4} = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 7 \\ 0 & 8 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 7 \\ 0 & 8 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1+14 \\ 0 & 16+0 \end{bmatrix} = \begin{bmatrix} 1 & 15 \\ 0 & 16 \end{bmatrix}$$

We use the previously obtained products as our base case and assume that for some arbitrary k > 0,

$$A^k = \left[\begin{array}{cc} 1 & 2^k - 1 \\ 0 & 2^k \end{array} \right]$$

We then proceed by applying this formula to the k+1 case, that is

$$\begin{split} A^{k+1} &= A^k(A) \\ &= \left[\begin{array}{cc} 1 & 2^k - 1 \\ 0 & 2^k \end{array} \right] \left[\begin{array}{cc} 1 & 1 \\ 0 & 2 \end{array} \right] = \left[\begin{array}{cc} 1 & 1 + 2(2^k - 1) \\ 0 & 2^{k+1} \end{array} \right] \\ &= \left[\begin{array}{cc} 1 & 2^{k+1} - 1 \\ 0 & 2^{k+1} \end{array} \right] \end{split}$$

which shows that A^{k+1} indeed holds. Since both the base step(s) and inductive step hold, by mathematical induction, the t-th exponent of A is given by

$$A^t = \left[\begin{array}{cc} 1 & 2^t - 1 \\ 0 & 2^t \end{array} \right]$$

for all $t \ge 0$, where A^0 is the identity matrix. From this result, we can write the general solution X(t) as,

$$X(t) = \begin{bmatrix} 1 & 2^t - 1 \\ 0 & 2^t \end{bmatrix} X(0)$$

- 5. (Edelstein-Keshet 1998) In the circulatory system, red blood cells are constantly being destroyed and replaced. They carry oxygen throughout the body and they must be maintained at a constant level. The spleen filters out and destroys a fraction of the cells daily and the bone marrow produces a number proportional to the number lost on the previous day. The cell count of day t is modeled as follows:
 - R_t is the number of red blood cells in circulation on day t,
 - M_t is the number of red blood cells produced by marrow on day t,
 - f is the fraction of red blood cells removed by spleen, 0 < f < 1, and
 - γ is the production constant, $\gamma > 0$.

The system of difference equations by R_t and M_t is,

$$R_{t+1} = (1 - f)R_t + M_t$$
$$M_{t+1} = \gamma f R_t$$

a Express the system as a matrix equation $X_{t+1} = AX_t$. Find the eigenvalues of A and determine their signs.

We can write the linear system above as a matrix equation $X_{t+1} = AX_t$, where

$$A = \left[\begin{array}{cc} 1 - f & 1 \\ \gamma f & 0 \end{array} \right]$$

and,

$$X_t = \left[\begin{array}{c} R_t \\ M_t \end{array} \right]$$

We can obtain the eigenvalues of matrix A by obtaining the determinant of $(A - \mathcal{I}\lambda)$ and equating it to zero. Doing so yields,

$$-\lambda(1 - (f + \lambda)) - \gamma f = 0$$
$$\lambda^2 - (1 - f)\lambda - \gamma f = 0$$

which has roots,

$$\lambda_{1/2} = \frac{(1-f) \pm \sqrt{(1-f)^2 + 4\gamma f}}{2}$$

Since 0 < f < 1 and $\gamma > 0$,

$$\begin{split} \sqrt{(1-f)^2 + 4\gamma f} > 1 - f \\ (1-f) + \sqrt{(1-f)^2 + 4\gamma f} > 0 \\ (1-f) - \sqrt{(1-f)^2 + 4\gamma f} < 0 \end{split}$$

Hence,

$$\lambda_1 > 0, \quad \lambda_2 < 0$$

b For homeostasis in the red cell count, the total number of red blood cells, R_t , should remain roughly constant. Show that one way of achieving this is by letting $\lambda = 1$. What does this imply about γ ?

Say, we assume that the positive eigenvalue is equal to 1. If so,

$$\lambda_1 = 1 = \frac{(1-f) + \sqrt{(1-f)^2 + 4\gamma f}}{2}$$

$$2 - (1 - f) = \sqrt{(1 - f)^2 + 4\gamma f}$$
$$(f + 1)^2 = (f - 1)^2 + 4\gamma f$$
$$= f^2 + 2(2\gamma - 1)f + 1$$

Matching the coefficients of f^2 , and f, we find that

$$2 = 2(2\gamma - 1)$$

Hence, $\gamma = 1$; that is, if there is homeostasis for this value of γ , it should be the ratio of the number of red blood cells produced per the number that is lost.

c Let $\lambda_1 = 1$. Find λ_2 and describe the behavior of R_t .

Now that we have a value for γ , we find that the value of the second eigenvalue is given by,

$$\lambda_2 = \frac{(1-f) - \sqrt{(1-f)^2 + 4f}}{2}$$

$$= \frac{(1-f) - \sqrt{(f+1)^2}}{2}$$

$$= \frac{(1-f) - (f+1)}{2}$$

$$= -f$$

This implies that the behavior of the solution R_t has a damped oscillatory behavior over different values of t, the general solution of which is given by,

$$R[t] = C_1 + C_2(-f)^t$$

whose value asymptotically reaches C_1 for large values of t. As an illustration, we use values $C_1 = 1$, $C_2 = 1$, for different values of f,

