DEEP LEARNING FINAL PROJECT

Arlette Michelle Perez Espinoza

Miray Yüce

Mostafa Hussein

Task 1: Prediction of the final error using MLP

Two hidden layers with 64 units each, and ReLU activation functions.

Randomized hyperparameter search is done for 10 models for each regularization approach.

Parameter	Min Value	Max Value	Log
Batch size	32	512	No
Learning rate	10 ⁻⁶	10 ⁰	Yes
# units in layer 1	16	1024	Yes
# units in layer 2	16	1024	Yes
# units in layer 3	16	1024	Yes

MLP and Random Forest results for raw data

	Network					Baseline			
Experiment	LR	Alpha	Batch size	Noise	Mean MSE of 3 splits	Max depth	# Estimators	Min leaf	Mean MSE of 3 splits
w/out reg.	0.001	0	265	0	0.0067	32	32	2	0.0109
L1	1e-5	0.0001	64	0	0.007	32	16	4	0.0101
L2	1e-5	0.0001	64	0	0.009	32	16	4	0.0101
Noise	1e-4	1e-5	8	0.02	0.012	16	32	4	0.0099
Decay	1e-4 - 1e-6	0	128	0	0.0083	16	8	4	0.0101
L1-Noise	1e-4	0.001	128	0.02	0.0076	8	16	4	0.0101
L2-Noise	1e-5	1e-5	128	0.02	0.0084	8	16	4	0.0101
L1-Decay	0.01 - 1e-6	1e-4	265	0	0.0087	8	16	4	0.0101
L2-Decay	0.001 - 1e-6	1e-5	265	0	0.0090	8	16	4	0.0101
Noise- Decay	0.001 - 1e-6	0	128	0.02	0.0082	16	8	4	0.0101
L1-Noise- Decay	0.001 - 1e-6	1e-5	265	0.02	0.0071	8	16	4	0.0101
L2-Noise- Decay	0.01 - 1e-6	1e-4	265	0.02	0.0079	8	16	4	0.0101

(Raw Data) True vs Predicted, mean Network MSE = 0.00670126228651, mean Baseline MSE = 0.0109087887552 for network: learning rate = 0.001, alpha = 0, batch size = 265 for baseline: depth = 32, # estimators = 32, min leaf = 2

(Raw Data) True vs Predicted, mean Network MSE = 0.0125285468323, mean Baseline MSE = 0.00998511551141 for network: learning rate = 0.0001, alpha = 1e-05, batch size = 8 for baseline: depth = 16, # estimators = 32, min leaf = 4

MLP and Random Forest results for scaled data

	Network				Baseline				
	LR	Alpha	Batch size	Noise	Mean MSE of 3 splits	Max depth	# Estimators	Min leaf	Mean MSE of 3 splits
w/out reg.	1e-5	0	64	0	0.0040	8	4	4	0.0119
L1	1e-5	0.0001	64	0	0.0109	16	32	4	0.0106
L2	1e-5	0.0001	0.0080	0	0.009	16	32	4	0.0106
Noise	1e-4	1e-5	8	0.02	0.0084	16	32	4	0.0099
Decay	1e-4 - 1e-6	0	128	0	0.0051	16	4	4	0.0123
L1-Noise	1e-5	1e-5	32	0.02	0.0080	32	32	4	0.0106
L2-Noise	1e-6	1e-4	64	0.02	0.0078	32	32	4	0.0106
L1-Decay	0.01 - 1e-6	1e-5	8	0	0.0102	8	16	4	0.0105
L2-Decay	0.001 - 1e-6	1e-5	265	0	0.0087	8	16	4	0.0105
Noise- Decay	1e-4 - 1e-6	0	128	0.02	0.0072	16	4	4	0.0123
L1-Noise- Decay	0.001 - 1e-6	1e-5	265	0.02	0.0059	8	16	4	0.0105
L2-Noise- Decay	0.001 - 1e-6	1e-5	265	0.02	0.0055	8	16	4	0.0105

Scaled Data) True vs Predicted, mean Network MSE = 0.00404068019426, mean Baseline MSE = 0.01199139057! for network: learning rate = 1e-05, alpha = 0, batch size = 64 for baseline: depth = 8, # estimators = 4, min leaf = 4

(Scaled Data) True vs Predicted, mean Network MSE = 0.0109231567702, mean Baseline MSE = 0.010686958906 for network: learning rate = 1e-05, alpha = 0.0001, batch size = 64 for baseline: depth = 16, # estimators = 32, min leaf = 4

Task 2: Extrapolation of learning curves

Architecture

- 2 LSTM layers, 64 units each
- 2 Dense layers, 64 units each, ReLu activation

Regularizations:

- Gaussian Noise of 0.02 between layers, except before the output layer
- L2 regularization of kernels

Optimizations:

- Adam
- Kernel initialization: random uniform [0.01, 0.05]
- Bias initialization: constant 0.1

Results of task 2: RNN's and baselines

	LR	Alpha	Pred 5 MSE	Pred 10 MSE	Pred 20 MSE	Pred 30 MSE
Train 5	0.001 - 1e-6	1e-7	0.0282	0.0267	0.0257	0.0272
Train 10	1e-4 - 1e-6	1e-5	0.0228	0.01011	0.0272	0.0264
Train 20	0.001 - 1e-6	1e-6	0.0279	0.0260	0.0068	0.0283
Random	1e-4 - 1e-7	1e-5	0.0089	0.0066	0.0056	0.0046

	Max depth	# Estimators	Min leaf	MSE
Train 5	32	16	1	0.0015
Train 10	32	32	4	0.0010
Train 20	32	16	1	0.0004
Last 4 point prediction	32	16	8	0.0003

RNN trained with fixed input length: 5

RNN trained with fixed input length: 10

RNN trained with fixed input length: 20

Train on 5, predictions of split 1

ictions with input length 5 and pred time: 5 lr = [0.001, 1e-06], alpha = 1e-07, MSE = 0.002808091071811896_sr

Train on 5, predictions of split 3

tions with input length 5 and pred time: 30 Ir = [0.001, 1e-06], alpha = 1e-07, MSE = 0.0003443994521767081_s

Train on 10, predictions of split 2

ions with input length 10 and pred time: 10 lr = [0.0001, 1e-06], alpha = 1e-05, MSE = 0.0003151189535455408

Train on 10, predictions of split 3

ons with input length 10 and pred time: 10 lr = [0.0001, 1e-06], alpha = 1e-05, MSE = 0.00034683496153194306

Train on 20, predictions of split 1

tions with input length 20 and pred time: 5 lr = [0.001, 1e-06], alpha = 1e-06, MSE = 0.0005551706837362878_s

Train on 20, predictions of split 2

tions with input length 20 and pred time: 10 lr = [0.001, 1e-06], alpha = 1e-06, MSE = 0.002597427724238908_s

Baseline with fixed number of observations: 5

True vs Baseline with depth = 32, # estimators = 16, min leaf = 1, Mean MSE = 0.00155708163596

Baseline with fixed number of observations: 10

True vs Baseline with depth = 32, # estimators = 32, min leaf = 4, Mean MSE = 0.00100825953103

Baseline with fixed number of observations: 20

True vs Baseline with depth = 32, # estimators = 16, min leaf = 1, Mean MSE = 0.000454265344424

RNN trained with random input length, predictions after 5th epoch

Predictions with pred time: $5 \text{ lr} = [0.0001, 1e-07], \text{ alpha} = 1e-05, \text{MSE} = 0.00122717866437_split_1$ 0.60 0.55 0.50 0.40 0.35 0.30 10 15 25 20 30 35

epoch

Predictions with pred time: 5 lr = [0.0001, 1e-07], alpha = 1e-05, MSE = 0.00122717866437_split_1

Baseline to predict next point given previous four

True vs Baseline with depth = 32, # estimators = 16, min leaf = 8, Mean MSE = 0.000357150096076

Comparison between RNN's and last baseline

	LR	Alpha	Pred 5 MSE	Pred 10 MSE	Pred 20 MSE	Pred 30 MSE
Train 5	0.001 - 1e-6	1e-7	0.0282	0.0267	0.0257	0.0272
Train 10	1e-4 - 1e-6	1e-5	0.0228	0.01011	0.0272	0.0264
Train 20	0.001 - 1e-6	1e-6	0.0279	0.0260	0.0068	0.0283
Random	1e-4 - 1e-7	1e-5	0.0089	0.0066	0.0056	0.0046

	Max depth	# Estimators	Min leaf	MSE
Last 4 point prediction	32	16	8	0.0003