Learning Neural Templates for Text Generation

EMNLP 2018

Sam Wiseman Stuart M. Shieber Alexander M. Rush
Harvard University

Outline

- 1. Author
- 2. Overview
- 3. Motivation
- 4. Task
- 5. Semi-Markov Models
- 6. Neural HSMM Decoder
- 7. Experiment
- 8. Conclusion

Author

- Sam Wiseman
- Research Assistant Professor at TTIC (#田工业大学芝加哥分校)
- Before TTIC
 - a PhD student in Computer Science at Harvard
 - a member of the harvardnlp group

Overview

Task: Generate textual descriptions of knowledge base records.

Given

Source Entity: Cotto

type[coffee shop], rating[3 out of 5], food[English], area[city centre], price[moderate], near[The Portland Arms]

Knowledge base records

Extract by hidden semi-markov model

neural template learned by the system

Encoder-decoder

System Generation:

Cotto is a coffee shop serving English food in the moderate price range. It is located near The Portland Arms. Its customer rating is 3 out of 5.

template-like

system generation

Motivation

- Due to the black-box nature of generic encoderdecoder models
 - Uninterpretable
 - Difficult to control in terms of their phrasing or content.

- Template-like text generation
 - what to say
 - how to say

Motivation

DECODER

Neural Decoder

HSMM Decoder

Continuous latent variable

Discrete latent variable

Segments are independent of each other given the corresponding latent variable and x.

Task

• **Task**: generating a textual description of a knowledge base or meaning representation.

Given

- A collection of records $x = \{r_1 \dots r_J\}$
 - Type: (*r*.*t*)
 - Entity: (*r.e*)
 - Value: (r.m)

Source Entity: Cotto

type[coffee shop], rating[3 out of 5], food[English], area[city centre],

price[moderate], near[The Portland Arms]

• Output: adequate and fluent text description of x

$$\hat{y}_{1:T} = \hat{y}_1, \dots, \hat{y}_T$$

- Dataset:
 - E2E Dataset
 - WikiBio dataset

Dataset

Flat MR	NL reference
name[Loch Fyne], eatType[restaurant], food[French],	Loch Fyne is a family-friendly restaurant providing wine and cheese at a low cost.
priceRange[less than £20], familyFriendly[yes]	Loch Fyne is a French family friendly restaurant catering to a budget of below £20.
	Loch Fyne is a French restaurant with a family setting and perfect on the wallet. reference text

E2E Dataset

Frederick Parker-Rhodes 21 November 1914 **Born** Newington, Yorkshire Died 2 March 1987 (aged 72) UK Residence **Nationality** British **Fields** Mycology, Plant Pathology, Mathematics, Linguistics, **Computer Science** Known for Contributions to computational linguistics, combinatorial physics, bitstring physics, plant pathology, and mycology Author abbrev. Park.-Rhodes (botany)

reference text Frederick Parker-Rhodes (21 March 1914 - 21 November 1987) was an English linguist, plant pathologist, computer scientist, mathematician, mystic, and mycologist.

WikiBio dataset

 A semi-Markov HMM is like an HMM except each state can emit a sequence of observations

HMM

- Observed tokens : $y_1 \dots y_T$
- Latent state : $z_t \in \{1, \ldots, K\}$

Semi-Markov models

- a length variable: $l_t \in \{1, \dots, L\}$
 - the length of the current segment
- a deterministic **binary** variable: f_t
 - whether a segment finishes at time t
 - 0-remain in same state
 - 1-transition

per-timestep variables

Joint-likelihood

$$p(y, z, l, f \mid x; \theta) = \prod_{t=0}^{T-1} p(z_{t+1}, l_{t+1} \mid z_t, l_t, x)^{f_t}$$

$$\times \prod_{t=1}^{T} p(y_{t-l_t+1:t} \mid z_t, l_t, x)^{f_t},$$

Assume

$$p(z_{t+1}, l_{t+1} | z_t, l_t, x) \longrightarrow p(z_{t+1} | z_t, x) \times p(l_{t+1} | z_{t+1})$$

Final

• the probabilities of each discrete state transition

$$p(z_{t+1} \mid z_t, x)$$

• the probability of the length of each segment given its discrete state $p(l_{t+1} \mid z_{t+1})$

• the probability of the **observations** in each segment, given its state and length. $p(y_{t-l_t+1:t} \mid z_t, l_t, x)$

$$p(y, z, l, f \mid x; \theta) = \prod_{t=0}^{T-1} p(z_{t+1}, l_{t+1} \mid z_t, l_t, x)^{f_t} \times \prod_{t=1}^{T} p(y_{t-l_t+1:t} \mid z_t, l_t, x)^{f_t},$$

Given

• **HSMM** (transition + emission) have learned

Probability

the probabilities of each discrete state transition

$$p(z_{t+1} \mid z_t, x)$$

• the probability of the length of each segment given its discrete state $p(l_{t+1} \mid z_{t+1})$

• the probability of the **observations** in each segment, given its state and length. $p(y_{t-l_t+1:t} \mid z_t, l_t, x)$

A Neural HSMM Decoder

Parameterization

$$oldsymbol{r}_j\!\in\!\mathbb{R}^d$$

• real embedding of record $r_j \in x$

$$oldsymbol{x}_a \!\in\! \mathbb{R}^d$$

- real embedding of the entire knowledge base x
- ullet obtained by <u>max-pooling coordinate-wise</u> over all the $oldsymbol{r}_j$

$$oldsymbol{x}_u\!\in\!\mathbb{R}^d$$

- representation of just the unique types of records
- the sum of the embeddings of the unique types appearing in x, plus a bias vector and followed by a ReLU nonlinearity.

Transition & Length

Transition distribution

K x K matrix

$$p(z_{t+1} | z_t, x) \propto \boldsymbol{AB} + \boldsymbol{C}(\boldsymbol{x}_u) \boldsymbol{D}(\boldsymbol{x}_u),$$

$$egin{aligned} oldsymbol{A} \in \mathbb{R}^{K imes m_1}, oldsymbol{B} \in \mathbb{R}^{m_1 imes K} & ext{state embeddings} \ oldsymbol{C} : \mathbb{R}^d
ightarrow \mathbb{R}^{K imes m_2} \ oldsymbol{D} : \mathbb{R}^d
ightarrow \mathbb{R}^{K imes m_2} \end{aligned} egin{aligned} ext{non-linear functions} \ oldsymbol{D} : \mathbb{R}^d
ightarrow \mathbb{R}^{K imes m_2} \end{aligned}$$

- Length distribution
 - Fix all length probabilities $p(l_{t+1} \mid z_{t+1})$ to be uniform up to a maximum length L.

Emission Distribution

- Base this model on an RNN decoder
- Write a segment's probability as a product over token-level probabilities
- RNN decoder uses attention and copy-attention

Fach seg initializing its hidden state with

 z_1 z_4 z_4

Emission Distribution

Copy score(For every r)

$$ho_j = oldsymbol{r}_j^\mathsf{T} anh(oldsymbol{g}_2^k \circ oldsymbol{h}_{i-1}^k),$$

Final Score:

$$\widetilde{\boldsymbol{v}}_{i-1} = \operatorname{softmax}([\boldsymbol{v}_{i-1}, \rho_1, \dots, \rho_J]),$$

Autoregressive Variant

- allow interdependence between tokens (but not segments) by having each next-token distribution depend on all the previously generated tokens
- using an additional RNN run over all the preceding tokens.

$$p(y_{t-l_t+i} | y_{t-l_t+1}; t-l_t+i-1, z_t = k, x)$$
 $p(y_{t-l_t+i} = w | y_1; t-l_t+i-1, z_t = k, x)$

Brief Summary

Learning

Backward algorithm

$$\beta_t(j) = p(y_{t+1:T} \mid z_t = j, f_t = 1, x)$$

$$= \sum_{k=1}^K \beta_t^*(k) p(z_{t+1} = k \mid z_t = j)$$

$$\beta_t^*(k) = p(y_{t+1:T} \mid z_{t+1} = k, f_t = 1, x)$$

$$= \sum_{l=1}^{L} \left[\beta_{t+l}(k) p(l_{t+1} = l \mid z_{t+1} = k) \right]$$

$$p(y_{t+1:t+l} \mid z_{t+1} = k, l_{t+1} = l),$$

Learning

$$eta_T(j) = 1$$
. Already the last time step

$$p(y \mid x) = \sum_{k=1}^{K} ar{eta_0^*}(k) \, p(z_1 = k)$$
 Is a start step use dynamic programming

The final objective function

$$\ln p(y \mid x; \theta) = \ln \sum_{k=1}^{K} \beta_0^*(k) \, p(z_1 = k).$$

What can we do now?

After training (We get HSMM), we could simply condition on a new database and generate with beam search, as is standard with encoder-decoder models.

But what do we mean template-like?

HSMM-Decoding

Given

- HSMM we have already learned
- Data which describes knowledge
 Goal
- Find the best hidden states sequence

Extracting Templates

- Templates: sequences of hidden states
- Each "template" $z^{(i)}$ consists of a sequence of latent states

[The Golden Palace]₅₅ [is a]₅₉ [coffee shop]₁₂ [providing]₃ [Indian]₅₀ [food]₁ [in the]₁₇ [£20-25]₂₆ [price range]₁₆ [.]₂ [It is]₈ [located in the]₂₅ [riverside]₄₀ [.]₅₃ [Its customer rating is]₁₉ [high]₂₃ [.]₂

Figure 4: A sample Viterbi segmentation of a training text; subscripted numbers indicate the corresponding latent state. From this we can extract a template with $S\!=\!17$ segments; compare with the template used at the bottom of Figure 1.

template

visualization

discrete states are replaced by the phrases they frequently generate in the training data.

$$\hat{y}^{(i)} = \underset{y'}{\operatorname{arg\,max}} p(y', z^{(i)} \mid x),$$

Experiment

The E2E task

	BLEU	NIST	ROUGE	CIDEr	METEOR	
	Validation					
D&J	69.25	8.48	72.57	2.40	47.03	
SUB	43.71	6.72	55.35	1.41	37.87	
NTemp	66.50	7.87	69.24	2.20	44.45	
NTemp+AR	67.12	7.98	69.55	2.30	43.21	
	Test					
D&J	65.93	8.59	68.50	2.23	44.83	
SUB	43.78	6.88	54.64	1.39	37.35	
NTemp	58.88	7.54	65.71	2.02	41.21	
NTemp+AR	59.80	7.56	65.01	1.95	38.75	

- the templated baselines underperform neural models
- our proposed model is fairly competitive with neural models, and sometimes even outperforms them.

The WikiBio

	BLEU	NIST	ROUGE-4
Template KN †	19.8	5.19	10.7
NNLM (field) †	33.4	7.52	23.9
NNLM (field & word) †	34.7	7.98	25.8
NTemp	34.2	7.94	35.9
NTemp+AR	34.8	7.59	38.6
Seq2seq (Liu et al., 2018)	43.65	-	40.32

Experiment-Controllable

Travellers Rest Beefeater

name[Travellers Rest Beefeater], customerRating[3 out of 5], area[riverside], near[Raja Indian Cuisine]

- 1. [Travellers Rest Beefeater]₅₅ [is a]₅₉ [3 star]₄₃ [restaurant]₁₁ [located near]₂₅ [Raja Indian Cuisine]₄₀ [.]₅₃
- 2. [Near]₃₁ [riverside]₂₉ [,]₄₄ [Travellers Rest Beefeater]₅₅ [serves]₃ [3 star]₅₀ [food]₁ [.]₂
- 3. [Travellers Rest Beefeater]₅₅ [is a]₅₉ [restaurant]₁₂ [providing]₃ [riverside]₅₀ [food]₁ [and has a]₁₇ [3 out of 5]₂₆ [customer rating]₁₆ [.]₂ [It is]₈ [near]₂₅ [Raja Indian Cuisine]₄₀ [.]₅₃
- 4. [Travellers Rest Beefeater]₅₅ [is a]₅₉ [place to eat]₁₂ [located near]₂₅ [Raja Indian Cuisine]₄₀ [.]₅₃
- 5. [Travellers Rest Beefeater]₅₅ [is a]₅₉ [3 out of 5]₅ [rated]₃₂ [riverside]₄₃ [restaurant]₁₁ [near]₂₅ [Raja Indian Cuisine]₄₀ [.]₅₃

Experiment-Interpretable

kenny warren

name: kenny warren, birth date: 1 april 1946, birth name: kenneth warren deutscher, birth place: brooklyn, new york, occupation: ventriloquist, comedian, author, notable work: book - the revival of ventriloquism in america

- 1. [kenneth warren deutscher]₁₃₂ [(]₇₅ [born]₈₉ [april 1, 1946]₁₀₁ [)]₆₇ [is an american]₈₂ [author]₂₀ [and]₁ [ventriloquist and comedian]₆₉ [.]₈₈
- 2. [kenneth warren deutscher]₁₃₂ [(]₇₅ [born]₈₉ [april 1, 1946]₁₀₁ [)]₆₇ [is an american]₈₂ [author]₂₀ [best known for his]₉₅ [the revival of ventriloquism]₉₆ [.]₈₈
- 3. [kenneth warren]₁₆ ["kenny" warren]₁₁₇ [(]₇₅ [born]₈₉ [april 1, 1946]₁₀₁ [)]₆₇ [is an american]₁₂₇ [ventriloquist, comedian]₂₈ [.]₁₃₃
- 4. [kenneth warren]₁₆ ["kenny" warren]₁₁₇ [(]₇₅ [born]₈₉ [april 1, 1946]₁₀₁ [)]₆₇ [is a]₁₀₄ [new york]₉₈ [author]₂₀ [.]₁₃₃
- 5. [kenneth warren deutscher]₄₂ [is an american]₈₂ [ventriloquist, comedian]₁₁₈ [based in]₁₅ [brooklyn, new york]₈₄ [.]₈₈

particular discrete states correspond in a consistent way to particular pieces of information, allowing us to align states with particular field types. For instance, birth names have the same hidden state (132), as do names (117), nationalities (82), birth dates (101), and occupations (20).

Thanks!