Матричная запись

• Линейная комбинация векторов;

- Линейная комбинация векторов;
- Зависимые и независимые наборы векторов.

Линейная комбинация

Определение

Вектор с называется линейной комбинацией векторов \mathbf{v}_1 , \mathbf{v}_2 , ..., \mathbf{v}_k , если его можно представить в виде их суммы с некоторыми действительными весами α_i :

$$\mathbf{c} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_k \mathbf{v}_k$$

Линейная комбинация

Определение

Вектор с называется линейной комбинацией векторов \mathbf{v}_1 , \mathbf{v}_2 , ..., \mathbf{v}_k , если его можно представить в виде их суммы с некоторыми действительными весами α_i :

$$\mathbf{c} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_k \mathbf{v}_k$$

Пример. Вектор
$$\binom{4}{5}$$
 — это линейная комбинация векторов

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 и $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$:

$$\begin{pmatrix} 4 \\ 5 \end{pmatrix} = -1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 5 \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Линейная комбинация: геометрия

Любой вектор — линейная комбинация

Любой вектор $\mathbf{v} \in \mathbb{R}^2$ — линейная комбинация векторов

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 и $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$:

$$\begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = v_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + v_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Любой вектор — линейная комбинация

Любой вектор $\mathbf{v} \in \mathbb{R}^2$ — линейная комбинация векторов

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 и $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$:

$$\begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = v_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + v_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Аналогично, любой вектор $\mathbf{v} \in \mathbb{R}^3$ представим в виде:

$$\begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = v_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + v_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + v_3 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Линейная зависимость

Определение

Набор A из двух и более векторов называется линейно зависимым, если хотя бы один вектор является линейной комбинацией остальных.

Набор $A = \{ \mathbf{0} \}$ из одного нулевого вектора также называется линейно зависимым.

Линейная зависимость: геометрия

Набор $\{{f a},{f b},{f c}\}$ — линейно зависим.

Набор $\{{f a},{f b},{f d}\}$ — линейно независим.

Линейная зависимость: примеры

Набор
$$A = \left\{ \begin{pmatrix} 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 3 \\ 4 \end{pmatrix} \right\}$$
 — линейно независимый.

Линейная зависимость: примеры

Набор
$$A = \left\{ \begin{pmatrix} 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 3 \\ 4 \end{pmatrix} \right\}$$
 — линейно независимый.

Набор
$$A = \left\{ \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ 4 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right\}$$
 — линейно зависимый:

$$\begin{pmatrix} 3 \\ 4 \\ 0 \end{pmatrix} = 2 \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix} + 3 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

Линейная зависимость: дубль два

Эквивалентное пределение

Набор векторов $A=\{{f v}_1,{f v}_2,...,{f v}_k\}$ называется линейно зависимым, если можно найти такие веса $\alpha_1,\alpha_2,...,\alpha_k$, что

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_k \mathbf{v}_k = \mathbf{0},$$

и при этом хотя бы одно из чисел α_i отлично от 0.

Линейная зависимость: дубль два

Эквивалентное пределение

Набор векторов $A=\{{f v}_1,{f v}_2,...,{f v}_k\}$ называется линейно зависимым, если можно найти такие веса $\alpha_1,\alpha_2,...,\alpha_k$, что

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_k \mathbf{v}_k = \mathbf{0},$$

и при этом хотя бы одно из чисел α_i отлично от 0.

Доказательство эквивалентности

Вектор с ненулевым коэффициентом α_i перед ним можно выразить через остальные.

Линейная зависимость: дубль два

Эквивалентное пределение

Набор векторов $A=\{{f v}_1,{f v}_2,...,{f v}_k\}$ называется линейно зависимым, если можно найти такие веса $\alpha_1,\alpha_2,...,\alpha_k$, что

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_k \mathbf{v}_k = \mathbf{0},$$

и при этом хотя бы одно из чисел α_i отлично от 0.

Доказательство эквивалентности

Вектор с ненулевым коэффициентом α_i перед ним можно выразить через остальные.

Если вектор ${\bf v}_2$ выражен через ${\bf v}_1$ и ${\bf v}_3$, ${\bf v}_2=\alpha_1{\bf v}_1+\alpha_3{\bf v}_3$, то искомая нулевая линейная комбинация имеет вид:

$$\alpha_1 \mathbf{v}_1 + (-1)\mathbf{v}_2 + \alpha_3 \mathbf{v}_3 = \mathbf{0}.$$

Линейная оболочка

• Линейная оболочка векторов;

- Линейная оболочка векторов;
- Базис линейной оболочки векторов;

- Линейная оболочка векторов;
- Базис линейной оболочки векторов;
- Размерность линейной оболочки векторов.

Линейная оболочка

Определение

Множество векторов M, содержащее все возможные линейные комбинации векторов $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k$, называется их линейной оболочкой,

$$M = \mathsf{Span}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$$

Линейная оболочка векторов: картинка

Вектор $\mathbf c$ лежит в плоскости Span $\{\mathbf a, \mathbf b\}$. Вектор $\mathbf d$ не лежит в плоскости Span $\{\mathbf a, \mathbf b\}$.

Базис линейной оболочки

Определение

Набор векторов $A=\{{f v}_1,{f v}_2,...,{f v}_d\}$ называется базисом линейной оболочки ${\sf Span}\{{f x}_1,{f x}_2,...,{f x}_k\}$, если:

- $\operatorname{Span}\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_d\}=\operatorname{Span}\{\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_k\};$
- Набор векторов A линейно независим.

Базис линейной оболочки: картинка

Для линейной оболочки $\mathrm{Span}\{\mathbf{a},\mathbf{b},\mathbf{c}\}$ базисами будут $A_1=\{\mathbf{a},\mathbf{b}\}, A_2=\{\mathbf{b},2\mathbf{c}\}, A_3=\{3\mathbf{a},5\mathbf{c}\}.$

Базис оболочки: примеры

Рассмотрим линейную оболочку

$$M = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 4 \end{pmatrix} \right\}$$

Базис оболочки: примеры

Рассмотрим линейную оболочку

$$M=\operatorname{Span}\left\{\begin{pmatrix}1\\1\end{pmatrix},\begin{pmatrix}3\\0\end{pmatrix},\begin{pmatrix}0\\4\end{pmatrix}\right\}$$
 Набор $A=\left\{\begin{pmatrix}0\\2\end{pmatrix},\begin{pmatrix}3\\4\end{pmatrix}\right\}$ — базис для $M.$

Базис оболочки: примеры

Рассмотрим линейную оболочку

$$M=\operatorname{Span}\left\{\begin{pmatrix}1\\1\end{pmatrix},\begin{pmatrix}3\\0\end{pmatrix},\begin{pmatrix}0\\4\end{pmatrix}\right\}$$
 Набор $A=\left\{\begin{pmatrix}0\\2\end{pmatrix},\begin{pmatrix}3\\4\end{pmatrix}\right\}$ — базис для $M.$ Набор $A=\left\{\begin{pmatrix}1\\0\end{pmatrix},\begin{pmatrix}7\\-4\end{pmatrix}\right\}$ — базис для $M.$

Зачем нужен базис?

Утверждение

Если $\{{\bf v}_1,{\bf v}_2,\dots,{\bf v}_d\}$ — базис линейной оболочки M, то любой вектор ${\bf x}\in M$ единственным образом представим в виде

$$\mathbf{x} = \alpha_1 \mathbf{v}_1 + \dots + \alpha_d \mathbf{v}_d$$

Зачем нужен базис?

Доказательство

Линейная комбинация базиса совпадает с M, значит любой вектор из M представим как линейная комбинация элементов базиса.

Зачем нужен базис?

Доказательство

Линейная комбинация базиса совпадает с M, значит любой вектор из M представим как линейная комбинация элементов базиса.

Если бы для некоторого х нашлось два различных представления

$$\alpha_1 \mathbf{v}_1 + \dots + \alpha_d \mathbf{v}_d = \alpha_1' \mathbf{v}_1 + \dots + \alpha_d' \mathbf{v}_d,$$

то была бы зависимость между элементами базиса, что невозможно.

Свойства базиса линейной оболочки

Утверждение

Если набор векторов $A=\{\mathbf{v}_1,\mathbf{v}_2,\dots,\mathbf{v}_k\}$ линейно независим, то он сам является базисом своей линейной оболочки $\mathrm{Span}\{\mathbf{v}_1,\mathbf{v}_2,\dots,\mathbf{v}_k\}$.

Свойства базиса линейной оболочки

Утверждение

Если набор векторов $A=\{\mathbf{v}_1,\mathbf{v}_2,\dots,\mathbf{v}_k\}$ линейно независим, то он сам является базисом своей линейной оболочки $\mathrm{Span}\{\mathbf{v}_1,\mathbf{v}_2,\dots,\mathbf{v}_k\}$.

Утверждение

Если наборы векторов A и B — являются базисами для линейной оболочки M, то наборы A и B содержат одинаковое количество векторов.

Свойства базиса линейной оболочки

Утверждение

Если набор векторов $A=\{\mathbf{v}_1,\mathbf{v}_2,\dots,\mathbf{v}_k\}$ линейно независим, то он сам является базисом своей линейной оболочки $\mathrm{Span}\{\mathbf{v}_1,\mathbf{v}_2,\dots,\mathbf{v}_k\}$.

Утверждение

Если наборы векторов A и B — являются базисами для линейной оболочки M, то наборы A и B содержат одинаковое количество векторов.

Утверждение

Если набор A содержит k векторов, то базис линейной оболочки Span A содержит k элементов или меньше.

Размерность линейной оболочки

Определение

Если базис линейной оболочки M содержит d элементов, то число d называется размерностью линейной оболочки M.

$$d = \dim M$$

Размерность линейной оболочки: картинка

Размерность линейной оболочки: картинка

Размерность $Span\{a,b,c\}$ равна 2.

Размерность линейной оболочки: картинка

Размерность Span $\{a,b,c\}$ равна 2.

Размерность $Span\{a,b,d\}$ равна 3.

Пространство \mathbb{R}^n

Определение

Пространство \mathbb{R}^n — множество всех возможных векторов из n чисел.

$$\mathbb{R}^n = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \middle| x_1 \in \mathbb{R}, \dots, x_n \in \mathbb{R} \right\}$$

Пространство \mathbb{R}^n

Определение

Пространство \mathbb{R}^n — множество всех возможных векторов из n чисел.

$$\mathbb{R}^n = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \middle| x_1 \in \mathbb{R}, \dots, x_n \in \mathbb{R} \right\}$$

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix} \right\}$$

Пространство \mathbb{R}^n

Определение

Пространство \mathbb{R}^n — множество всех возможных векторов из n чисел.

$$\mathbb{R}^n = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \middle| x_1 \in \mathbb{R}, \dots, x_n \in \mathbb{R} \right\}$$

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix} \right\}$$

Размерность \mathbb{R}^n равна n.

• Векторное пространство;

- Векторное пространство;
- Базис векторного пространства;

- Векторное пространство;
- Базис векторного пространства;
- Размерность векторного пространства.

Определение

Множество V произвольных объектов называется конечномерным векторным пространством, если:

• множество V можно взаимно однозначно сопоставить пространству \mathbb{R}^n ;

Определение

Множество V произвольных объектов называется конечномерным векторным пространством, если:

- множество V можно взаимно однозначно сопоставить пространству \mathbb{R}^n ;
- определено сложение двух объектов ${\bf a}$ и ${\bf b}$ из V, и оно соответствует сложению столбцов из \mathbb{R}^n ;

Определение

Множество V произвольных объектов называется конечномерным векторным пространством, если:

- множество V можно взаимно однозначно сопоставить пространству \mathbb{R}^n ;
- определено сложение двух объектов ${\bf a}$ и ${\bf b}$ из V, и оно соответствует сложению столбцов из \mathbb{R}^n ;
- определено умножение объекта ${\bf a}$ из V на число $\lambda \in \mathbb{R}$, и оно соответствует умножению столбца \mathbb{R}^n на λ .

Определение

Множество V произвольных объектов называется конечномерным векторным пространством, если:

- множество V можно взаимно однозначно сопоставить пространству \mathbb{R}^n ;
- определено сложение двух объектов ${\bf a}$ и ${\bf b}$ из V, и оно соответствует сложению столбцов из \mathbb{R}^n ;
- определено умножение объекта ${\bf a}$ из V на число $\lambda \in \mathbb{R}$, и оно соответствует умножению столбца \mathbb{R}^n на λ .

Определение

Множество V произвольных объектов называется конечномерным векторным пространством, если:

- множество V можно взаимно однозначно сопоставить пространству \mathbb{R}^n ;
- определено сложение двух объектов ${\bf a}$ и ${\bf b}$ из V, и оно соответствует сложению столбцов из \mathbb{R}^n ;
- определено умножение объекта $\mathbf a$ из V на число $\lambda \in \mathbb R$, и оно соответствует умножению столбца $\mathbb R^n$ на λ .

Элементы векторного пространства называют векторами. Векторное пространство также называют линейным.

Многочлены

Множество V всех многочленов от t степени не выше трёх:

$$V = \{at^3 + bt^2 + ct + d \mid a, b, c, d \in \mathbb{R}^n\}$$

Многочлены

Множество V всех многочленов от t степени не выше трёх:

$$V = \{at^3 + bt^2 + ct + d \mid a, b, c, d \in \mathbb{R}^n\}$$

Взаимно однозначное сопоставление:

$$5t^3 + 6t^2 - 3t + 2 \leftrightarrow \begin{pmatrix} 5 \\ 6 \\ -3 \\ 2 \end{pmatrix}.$$

Многочлены

Множество V всех многочленов от t степени не выше трёх:

$$V = \{at^3 + bt^2 + ct + d \mid a, b, c, d \in \mathbb{R}^n\}$$

Взаимно однозначное сопоставление:

$$5t^3 + 6t^2 - 3t + 2 \leftrightarrow \begin{pmatrix} 5 \\ 6 \\ -3 \\ 2 \end{pmatrix}.$$

Сложение двух многочленов и умножение многочлена на число соответствуют операциям над столбцами чисел.

Пример векторного пространства

Множество V всех функций f(t) равных нулю вне двух данных точек:

$$V = \{ f \mid f(t) = 0 \text{ для всех } t \neq \pm 1 \}$$

Пример векторного пространства

Множество V всех функций f(t) равных нулю вне двух данных точек:

$$V=\{f\mid f(t)=0$$
 для всех $t\neq\pm 1\}$

Взаимно однозначное сопоставление:

$$f \leftrightarrow \begin{pmatrix} f(-1) \\ f(1) \end{pmatrix}$$
.

Пример векторного пространства

Множество V всех функций f(t) равных нулю вне двух данных точек:

$$V=\{f\mid f(t)=0$$
 для всех $t\neq\pm 1\}$

Взаимно однозначное сопоставление:

$$f \leftrightarrow \begin{pmatrix} f(-1) \\ f(1) \end{pmatrix}$$
.

Сложение двух таких функций и умножение на число соответствуют операциям над столбцами чисел.

Типичный элемент ${\cal V}$

Аналогия с \mathbb{R}^n

Определение

Вектор с называется линейной комбинацией векторов \mathbf{v}_1 , \mathbf{v}_2 , ..., \mathbf{v}_k , если его можно представить в виде их суммы с некоторыми действительными весами α_i :

$$\mathbf{c} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_k \mathbf{v}_k$$

Аналогия с \mathbb{R}^n

Определение

Вектор с называется линейной комбинацией векторов \mathbf{v}_1 , \mathbf{v}_2 , ..., \mathbf{v}_k , если его можно представить в виде их суммы с некоторыми действительными весами α_i :

$$\mathbf{c} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_k \mathbf{v}_k$$

Определение

Множество векторов M, содержащее все возможные линейные комбинации векторов $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k$, называется их линейной оболочкой,

$$M = \mathsf{Span}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$$

Аналогия с \mathbb{R}^n

Определение

Вектор с называется линейной комбинацией векторов \mathbf{v}_1 , \mathbf{v}_2 , ..., \mathbf{v}_k , если его можно представить в виде их суммы с некоторыми действительными весами α_i :

$$\mathbf{c} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_k \mathbf{v}_k$$

Определение

Множество векторов M, содержащее все возможные линейные комбинации векторов $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k$, называется их линейной оболочкой,

$$M = \operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$$

Полностью аналогично определяются линейно зависимые и независимые наборы векторов.

Базис и размерность пространства

Определение

Базисом векторного пространства V называется любой набор $\{\mathbf{e}_1,\mathbf{e}_2,\dots,\mathbf{e}_n\}$, такой что

- $V = \operatorname{Span}\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\};$
- векторы $\{{\bf e}_1,{\bf e}_2,\ldots,{\bf e}_n\}$ линейно независимы.

Базис и размерность пространства

Определение

Базисом векторного пространства V называется любой набор $\{{\bf e}_1,{\bf e}_2,\dots,{\bf e}_n\}$, такой что

- $V = \operatorname{Span}\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\};$
- векторы $\{{\bf e}_1,{\bf e}_2,\ldots,{\bf e}_n\}$ линейно независимы.

Определение

Число векторов в базисе, n, называют размерностью пространства V, $\dim V = n$.

Продолжаем аналогию

Пространство V взаимнооднозначно сопоставлено с \mathbb{R}^n и при этом сложение в V соответствует сложению в \mathbb{R}^n , а умножение на число в V соответствует умножению на число в \mathbb{R}^n .

Утверждение

Линейная независимость в V соответствует линейной независимости в \mathbb{R}^n .

Базис в V соответствует базису в \mathbb{R}^n .

Размерность V равна размерности \mathbb{R}^n , $\dim V = \dim \mathbb{R}^n = n$.

Формальности

Мы слишком привыкли к свойствам чисел!

Формальности

Мы слишком привыкли к свойствам чисел!

Эквивалентное определение

Множество V называется векторным пространством, если выполнено восемь свойств...

Восемь аксиом: сложение

1. При сложении можно расставлять скобки как хочешь (ассоциативность):

$$\mathbf{a} + (\mathbf{b} + \mathbf{c}) = (\mathbf{a} + \mathbf{b}) + \mathbf{c}$$

2. При сложении можно путать лево и право (коммутативность):

$$a + b = b + a$$

3. Существует **нулевой** вектор 0:

$$\mathbf{a} + \mathbf{0} = \mathbf{a}$$

4. Для любого вектора a найдется противоположный вектор -a:

$$\mathbf{a} + (-\mathbf{a}) = \mathbf{0}$$

Восемь аксиом: умножение

5. Умножение вектора на число совместимо с умножением чисел:

$$\lambda_1(\lambda_2 \mathbf{a}) = (\lambda_1 \lambda_2) \mathbf{a}$$

б. Умножение на единицу не меняет вектор:

$$1 \cdot \mathbf{a} = \mathbf{a}$$

7. Раскрывать скобки вокруг векторов можно (дистрибутивность умножения):

$$\lambda(\mathbf{a} + \mathbf{b}) = \lambda\mathbf{a} + \lambda\mathbf{b}$$

8. Раскрывать скобки вокруг чисел можно (дистрибутивность умножения):

$$(\lambda_1 + \lambda_2)\mathbf{a} = \lambda_1\mathbf{a} + \lambda_2\mathbf{a}$$

Матрица линейного оператора

• Матрица линейного оператора;

- Матрица линейного оператора;
- Примеры;

- Матрица линейного оператора;
- Примеры;
- Обобщение на векторное пространство.

Как записать линейный оператор?

Любой вектор v представим в виде:

$$\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} = v_1 \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + v_2 \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix} + \dots + v_n \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

Как записать линейный оператор?

Любой вектор v представим в виде:

$$\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} = v_1 \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + v_2 \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix} + \dots + v_n \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

По свойству линейности

$$\mathbf{L}\,\mathbf{v} = \mathbf{L} \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} = v_1\,\mathbf{L} \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + v_2\,\mathbf{L} \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix} + \ldots + v_n\,\mathbf{L} \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

Как записать линейный оператор?

Любой вектор v представим в виде:

$$\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} = v_1 \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + v_2 \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix} + \dots + v_n \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

По свойству линейности

$$\mathbf{L}\,\mathbf{v} = \mathbf{L} \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} = v_1\,\mathbf{L} \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + v_2\,\mathbf{L} \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix} + \ldots + v_n\,\mathbf{L} \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

Достаточно понять, что оператор L делает с векторами, содержащими одну единичку и нули на остальных местах.

Запишем оператор по столбцам!

Обозначим \mathbf{e}_i — вектор, у которого на i-м месте стоит 1, а на остальных местах — 0.

$$\mathbf{e}_i = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Запишем оператор по столбцам!

Обозначим \mathbf{e}_i — вектор, у которого на i-м месте стоит 1, а на остальных местах — 0.

$$\mathbf{e}_i = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Определение

Матрицей линейного оператора $\mathsf{L}:\mathbb{R}^n \to \mathbb{R}^k$ назовём прямоугольную табличку чисел, в которой i-ый столбец равен $\mathsf{L}\,\mathbf{e}_i$.

Растягивание компонент

$$\mathsf{L}: \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \to \begin{pmatrix} 2a_1 \\ -3a_2 \end{pmatrix}$$

Растягивание компонент

$$\mathsf{L}: \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \to \begin{pmatrix} 2a_1 \\ -3a_2 \end{pmatrix}$$

Действие оператора L на базисных векторах \mathbf{e}_1 и \mathbf{e}_2 :

$$\mathsf{L}: \begin{pmatrix} 1 \\ 0 \end{pmatrix} \to \begin{pmatrix} 2 \\ 0 \end{pmatrix}, \quad \mathsf{L}: \begin{pmatrix} 0 \\ 1 \end{pmatrix} \to \begin{pmatrix} 0 \\ -3 \end{pmatrix}$$

Растягивание компонент

$$\mathsf{L}: \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \to \begin{pmatrix} 2a_1 \\ -3a_2 \end{pmatrix}$$

Действие оператора L на базисных векторах \mathbf{e}_1 и \mathbf{e}_2 :

$$L: \begin{pmatrix} 1 \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} 2 \\ 0 \end{pmatrix}, \quad L: \begin{pmatrix} 0 \\ 1 \end{pmatrix} \rightarrow \begin{pmatrix} 0 \\ -3 \end{pmatrix}$$

Матрица оператора,
$$\mathbf{L} = \begin{pmatrix} 2 & 0 \\ 0 & -3 \end{pmatrix}$$
 .

Перестановка компонент вектора

$$\mathsf{L}: \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \to \begin{pmatrix} a_3 \\ a_1 \\ a_2 \end{pmatrix}$$

Перестановка компонент вектора

$$\mathsf{L}: \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \to \begin{pmatrix} a_3 \\ a_1 \\ a_2 \end{pmatrix}$$

Действие оператора L на базисных векторах e_1 , e_2 и e_3 :

$$\mathsf{L}: \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \to \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \; \mathsf{L}: \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \to \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \; \mathsf{L}: \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \to \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

Перестановка компонент вектора

$$\mathbf{L}: \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \to \begin{pmatrix} a_3 \\ a_1 \\ a_2 \end{pmatrix}$$

Действие оператора L на базисных векторах e_1 , e_2 и e_3 :

$$\mathsf{L}: \begin{pmatrix} 1\\0\\0 \end{pmatrix} \to \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \; \mathsf{L}: \begin{pmatrix} 0\\1\\0 \end{pmatrix} \to \begin{pmatrix} 0\\0\\1 \end{pmatrix} \; \mathsf{L}: \begin{pmatrix} 0\\0\\1 \end{pmatrix} \to \begin{pmatrix} 1\\0\\0 \end{pmatrix}$$

Матрица оператора, L
$$=$$
 $\begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$.

Поворот плоскости

$$\mathsf{L}: \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \to \begin{pmatrix} 2a_1 \\ -3a_2 \end{pmatrix}$$

Поворот плоскости

$$\mathsf{L}: \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \to \begin{pmatrix} 2a_1 \\ -3a_2 \end{pmatrix}$$

Действие оператора L на базисных векторах \mathbf{e}_1 и \mathbf{e}_2 :

$$\mathsf{L}: \begin{pmatrix} 1 \\ 0 \end{pmatrix} \to \begin{pmatrix} \cos 30^\circ \\ \sin 30^\circ \end{pmatrix}, \quad \mathsf{L}: \begin{pmatrix} 0 \\ 1 \end{pmatrix} \to \begin{pmatrix} -\sin 30^\circ \\ \cos 30^\circ \end{pmatrix}$$

Поворот плоскости

$$\mathsf{L}: \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \to \begin{pmatrix} 2a_1 \\ -3a_2 \end{pmatrix}$$

Действие оператора L на базисных векторах \mathbf{e}_1 и \mathbf{e}_2 :

$$\mathsf{L}: \begin{pmatrix} 1 \\ 0 \end{pmatrix} \to \begin{pmatrix} \cos 30^\circ \\ \sin 30^\circ \end{pmatrix}, \quad \mathsf{L}: \begin{pmatrix} 0 \\ 1 \end{pmatrix} \to \begin{pmatrix} -\sin 30^\circ \\ \cos 30^\circ \end{pmatrix}$$

Матрица оператора, L
$$=$$
 $\begin{pmatrix} \cos 30^\circ - \sin 30^\circ \\ \sin 30^\circ & \cos 30^\circ \end{pmatrix}$.

Оператор бездельника!

$$\mathsf{L}: \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \to \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$

Оператор бездельника!

$$\mathsf{L}: \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \to \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$

Действие оператора L на базисных векторах \mathbf{e}_1 и \mathbf{e}_2 :

$$\mathsf{L}: \begin{pmatrix} 1 \\ 0 \end{pmatrix} \to \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \mathsf{L}: \begin{pmatrix} 0 \\ 1 \end{pmatrix} \to \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Оператор бездельника!

$$\mathsf{L}: \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \to \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$

Действие оператора L на базисных векторах e_1 и e_2 :

$$\mathsf{L}: \begin{pmatrix} 1 \\ 0 \end{pmatrix} \to \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \mathsf{L}: \begin{pmatrix} 0 \\ 1 \end{pmatrix} \to \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Матрица оператора, единичная матрица, $\mathbf{L} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

Дописывание нуля

$$\mathsf{L}: \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \to \begin{pmatrix} a_1 \\ 0 \\ a_2 \end{pmatrix}$$

Дописывание нуля

$$\mathsf{L}: \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \to \begin{pmatrix} a_1 \\ 0 \\ a_2 \end{pmatrix}$$

Действие оператора L на базисных векторах e_1 и e_2 :

$$\mathsf{L}: \begin{pmatrix} 1 \\ 0 \end{pmatrix} \to \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \mathsf{L}: \begin{pmatrix} 0 \\ 1 \end{pmatrix} \to \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Дописывание нуля

$$\mathsf{L}: \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \to \begin{pmatrix} a_1 \\ 0 \\ a_2 \end{pmatrix}$$

Действие оператора L на базисных векторах e_1 и e_2 :

$$\mathsf{L}: \begin{pmatrix} 1 \\ 0 \end{pmatrix} \to \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \mathsf{L}: \begin{pmatrix} 0 \\ 1 \end{pmatrix} \to \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Матрица оператора,
$$\mathbf{L} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix}$$
 .

Матрица размера 3×2 соответствует оператору $L: \mathbb{R}^2 \to \mathbb{R}^3$.

Удаление компоненты вектора

$$\mathsf{L}: \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \to \begin{pmatrix} a_1 \\ a_3 \end{pmatrix}$$

Удаление компоненты вектора

$$\mathsf{L}: \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \to \begin{pmatrix} a_1 \\ a_3 \end{pmatrix}$$

Действие оператора L на базисных векторах e_1 , e_2 и e_3 :

$$\mathsf{L}: \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \to \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \; \mathsf{L}: \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \to \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \; \mathsf{L}: \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \to \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Удаление компоненты вектора

$$\mathsf{L}: \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \to \begin{pmatrix} a_1 \\ a_3 \end{pmatrix}$$

Действие оператора L на базисных векторах e_1 , e_2 и e_3 :

$$\mathsf{L}: \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \to \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \; \mathsf{L}: \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \to \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \; \mathsf{L}: \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \to \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Матрица оператора, L
$$=$$
 $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

Матрица размера 2×3 соответствует оператору $L: \mathbb{R}^3 \to \mathbb{R}^2$.

Нумерация элементов матрицы

Сначала строки, потом столбцы!

Нумерация элементов матрицы

Сначала строки, потом столбцы!

$$A = \begin{pmatrix} 5 & -2 & 8 \\ 7 & 1 & 9 \end{pmatrix}$$

Матрица A имеет размер 2×3 и $a_{12}=-2$.

Нумерация элементов матрицы

Сначала строки, потом столбцы!

$$A = \begin{pmatrix} 5 & -2 & 8 \\ 7 & 1 & 9 \end{pmatrix}$$

Матрица A имеет размер 2×3 и $a_{12} = -2$.

Элемент матрицы A, лежащий в строке i в столбце j, обозначают a_{ij} .

Матрица имеет размер $n \times k$, если в ней n строк и k столбцов.

Пусть оператор L действует из пространства V с базисом $\mathbf{e} = \{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ в пространство W с базисом $\mathbf{f} = \{\mathbf{f}_1, \mathbf{f}_2, \dots, \mathbf{f}_k\}.$

Пусть оператор L действует из пространства V с базисом $\mathbf{e}=\{\mathbf{e}_1,\mathbf{e}_2,\dots,\mathbf{e}_n\}$ в пространство W с базисом $\mathbf{f}=\{\mathbf{f}_1,\mathbf{f}_2,\dots,\mathbf{f}_k\}.$

Определение

Матрицей L_{ef} линейного оператора L называется табличка чисел, определяемая по следующему алгоритму:

1. Находим вектор L $\mathbf{e}_j \in W$.

Пусть оператор L действует из пространства V с базисом $\mathbf{e}=\{\mathbf{e}_1,\mathbf{e}_2,\dots,\mathbf{e}_n\}$ в пространство W с базисом $\mathbf{f}=\{\mathbf{f}_1,\mathbf{f}_2,\dots,\mathbf{f}_k\}.$

Определение

Матрицей L_{ef} линейного оператора L называется табличка чисел, определяемая по следующему алгоритму:

- 1. Находим вектор L $\mathbf{e}_i \in W$.
- 2. Раскладываем этот вектор по базису f:

$$\mathsf{L}\,\mathbf{e}_j = a_{1j}\mathbf{f}_1 + a_{2j}\mathbf{f}_2 + \dots + a_{kj}\mathbf{f}_k$$

Пусть оператор L действует из пространства V с базисом $\mathbf{e}=\{\mathbf{e}_1,\mathbf{e}_2,\dots,\mathbf{e}_n\}$ в пространство W с базисом $\mathbf{f}=\{\mathbf{f}_1,\mathbf{f}_2,\dots,\mathbf{f}_k\}.$

Определение

Матрицей L_{ef} линейного оператора L называется табличка чисел, определяемая по следующему алгоритму:

- 1. Находим вектор L $\mathbf{e}_i \in W$.
- 2. Раскладываем этот вектор по базису f:

$$\mathbf{L}\,\mathbf{e}_j = a_{1j}\mathbf{f}_1 + a_{2j}\mathbf{f}_2 + \dots + a_{kj}\mathbf{f}_k$$

3. Помещаем числа $a_{1j}, a_{2j}, \dots, a_{kj}$ в столбец j таблички.

Пусть оператор L действует из пространства V с базисом $\mathbf{e}=\{\mathbf{e}_1,\mathbf{e}_2,\dots,\mathbf{e}_n\}$ в пространство W с базисом $\mathbf{f}=\{\mathbf{f}_1,\mathbf{f}_2,\dots,\mathbf{f}_k\}.$

Определение

Матрицей L_{ef} линейного оператора L называется табличка чисел, определяемая по следующему алгоритму:

- 1. Находим вектор L $\mathbf{e}_i \in W$.
- 2. Раскладываем этот вектор по базису f:

$$\mathsf{L}\,\mathbf{e}_j = a_{1j}\mathbf{f}_1 + a_{2j}\mathbf{f}_2 + \dots + a_{kj}\mathbf{f}_k$$

- 3. Помещаем числа $a_{1j}, a_{2j}, \dots, a_{kj}$ в столбец j таблички.
- 4. Повторяем шаги 1, 2 и 3 для всех столбцов.

Ранг оператора

Краткий план:

• Множество значений оператора;

Краткий план:

- Множество значений оператора;
- Ранг оператора.

Множество значений оператора

Любой вектор v представим в виде:

$$\mathbf{v} = v_1 \mathbf{e}_1 + v_2 \mathbf{e}_2 + \dots + v_n \mathbf{e}_n$$

Множество значений оператора

Любой вектор v представим в виде:

$$\mathbf{v} = v_1 \mathbf{e}_1 + v_2 \mathbf{e}_2 + \dots + v_n \mathbf{e}_n$$

По свойству линейности

$$\mathbf{L}\,\mathbf{v} = v_1\,\mathbf{L}\,\mathbf{e}_1 + v_2\,\mathbf{L}\,\mathbf{e}_2 + \dots + v_n\,\mathbf{L}\,\mathbf{e}_n$$

Множество значений оператора

Любой вектор v представим в виде:

$$\mathbf{v} = v_1 \mathbf{e}_1 + v_2 \mathbf{e}_2 + \dots + v_n \mathbf{e}_n$$

По свойству линейности

$$\mathbf{L}\,\mathbf{v} = v_1\,\mathbf{L}\,\mathbf{e}_1 + v_2\,\mathbf{L}\,\mathbf{e}_2 + \ldots + v_n\,\mathbf{L}\,\mathbf{e}_n$$

Утверждение

Множество значений оператора L можно записать в виде линейной оболочки:

$$\operatorname{Image} \mathsf{L} = \operatorname{Span} \{ \mathsf{L} \operatorname{\mathbf{e}}_1, \mathsf{L} \operatorname{\mathbf{e}}_2, \dots, \mathsf{L} \operatorname{\mathbf{e}}_n \}$$

Ранг оператора

Определение

Рангом линейного оператора L называют размерность его образа:

 $\operatorname{rank} \mathsf{L} = \dim \operatorname{Image} \mathsf{L} = \dim \operatorname{Span} \{ \mathsf{L} \, \mathbf{e}_1, \mathsf{L} \, \mathbf{e}_2, \dots, \mathsf{L} \, \mathbf{e}_n \}$

$$\mathsf{L}: \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \to \begin{pmatrix} a_1 \\ a_3 \end{pmatrix}$$

$$\mathsf{L}: \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \to \begin{pmatrix} a_1 \\ a_3 \end{pmatrix}$$

Действие оператора L на базисных векторах e_1 , e_2 и e_3 :

$$\mathsf{L}: \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \to \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \; \mathsf{L}: \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \to \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \; \mathsf{L}: \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \to \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$\mathsf{L}: \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \to \begin{pmatrix} a_1 \\ a_3 \end{pmatrix}$$

Действие оператора L на базисных векторах e_1 , e_2 и e_3 :

$$\mathsf{L}: \begin{pmatrix} 1\\0\\0 \end{pmatrix} \to \begin{pmatrix} 1\\0 \end{pmatrix}, \; \mathsf{L}: \begin{pmatrix} 0\\1\\0 \end{pmatrix} \to \begin{pmatrix} 0\\0 \end{pmatrix}, \; \mathsf{L}: \begin{pmatrix} 0\\0\\1 \end{pmatrix} \to \begin{pmatrix} 0\\1 \end{pmatrix}$$

$$\operatorname{Image L} = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$$

$$\mathsf{L}: \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \to \begin{pmatrix} a_1 \\ a_3 \end{pmatrix}$$

Действие оператора L на базисных векторах e_1 , e_2 и e_3 :

$$\mathsf{L}: \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \to \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \; \mathsf{L}: \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \to \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \; \mathsf{L}: \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \to \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$\operatorname{Image L} = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$$

Базис для Image L:
$$\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$$

$$\operatorname{rank} L = \dim \operatorname{Image} L = 2$$

Если оператор H проецирует векторы на прямую ℓ , то Image H = Span a, где a — любой ненулевой вектор, лежащий на прямой ℓ .

Если оператор H проецирует векторы на прямую ℓ , то Image H = Span a, где a — любой ненулевой вектор, лежащий на прямой ℓ .

Ранг оператора проецирования на прямую равен ${\sf rank}\,{\sf H}=1.$

Если оператор H проецирует векторы на прямую ℓ , то Image H = Span a, где a — любой ненулевой вектор, лежащий на прямой ℓ .

Ранг оператора проецирования на прямую равен $\operatorname{rank} \mathsf{H} = 1$.

Ранг оператора проецирования Н равен размерности того множества, на которое проецируют.

Если оператор H проецирует векторы на прямую ℓ , то Image H = Span a, где a — любой ненулевой вектор, лежащий на прямой ℓ .

Ранг оператора проецирования на прямую равен $\operatorname{rank} \mathsf{H} = 1$.

Ранг оператора проецирования Н равен размерности того множества, на которое проецируют.

Определение

Ранг оператора проецирования H также называют следом оператора проецирования, tr H = rank H.

Ранг поворота

Оператор R поворачивает плоскость на 30° градусов против часовой стрелки.

Ранг поворота

Оператор R поворачивает плоскость на 30° градусов против часовой стрелки.

Поворачивая различные векторы, можно получить любой вектор на плоскости, Image $R=\mathbb{R}^2$.

Ранг поворота

Оператор R поворачивает плоскость на 30° градусов против часовой стрелки.

Поворачивая различные векторы, можно получить любой вектор на плоскости, Image $\mathsf{R} = \mathbb{R}^2$.

Базис образа: $\{{\bf e}_1,{\bf e}_2\}$, значит ${\sf rank}\,{\sf R}=2$.

Ограничения на ранг

Утверждение

Ранг оператора L : $\mathbb{R}^n \to \mathbb{R}^k$ не превосходит ни n, ни k.

Ограничения на ранг

Утверждение

Ранг оператора L : $\mathbb{R}^n \to \mathbb{R}^k$ не превосходит ни n, ни k.

Доказательство

Базис во всём \mathbb{R}^k содержит k элементов, значит базис образа не больше.

Ограничения на ранг

Утверждение

Ранг оператора L : $\mathbb{R}^n \to \mathbb{R}^k$ не превосходит ни n, ни k.

Доказательство

Базис во всём \mathbb{R}^k содержит k элементов, значит базис образа не больше.

Образ получается как Span $\{\operatorname{L}\mathbf{e}_1,\operatorname{L}\mathbf{e}_2,\ldots,\operatorname{L}\mathbf{e}_n\}.$

Ранг произведения операторов

Утверждение

Ранг произведения не превосходит ранга сомножителей, $rank(L_2 L_1) \le min\{rank L_1, rank L_2\}$.

Ранг произведения операторов

Утверждение

Ранг произведения не превосходит ранга сомножителей, $rank(L_2 L_1) \le min\{rank L_1, rank L_2\}$.

Доказательство

$$Image(L_2 L_1) \subset Image(L_2)$$

Ранг произведения операторов

Утверждение

Ранг произведения не превосходит ранга сомножителей, $rank(L_2 L_1) \le min\{rank L_1, rank L_2\}$.

Доказательство

$$\mathsf{Image}(\mathsf{L}_2\,\mathsf{L}_1)\subset\mathsf{Image}(\mathsf{L}_2)$$

Если Image
$$\mathsf{L}_1 = \mathsf{Span}\{\mathbf{v}_1,\mathbf{v}_2,\dots,\mathbf{v}_p\}$$
, то
$$\mathsf{Image}(\mathsf{L}_2\,\mathsf{L}_1) = \mathsf{Span}\{\mathsf{L}_2\,\mathbf{v}_1,\mathsf{L}_2\,\mathbf{v}_2,\dots,\mathsf{L}_2\,\mathbf{v}_p\}.$$

Ранг матрицы

Определение

Рангом матрицы называют ранг соответствующего оператора.

Ранг матрицы

Определение

Рангом матрицы называют ранг соответствующего оператора.

Утверждение

Ранг матрицы равен максимальному количеству линейно независимых столбцов матрицы.

Ранг матрицы

Определение

Рангом матрицы называют ранг соответствующего оператора.

Утверждение

Ранг матрицы равен максимальному количеству линейно независимых столбцов матрицы.

Доказательство

Именно эти линейно-независимые столбцы и будут базисом в линейной оболочке Image L.

Умножение матрицы на вектор

Умножение матрицы на матрицу

Три взгляда на умножение матриц

Решение системы уравнений методом Гаусса

Системы линейных уравнений

Краткий план:

• Однородная система и ядро оператора;

Краткий план:

- Однородная система и ядро оператора;
- Структура множества решений.

Варианты записи системы

Скалярный:
$$\begin{cases} 5x_1 + 6x_2 = 8 \\ 3x_1 + 7x_2 = 9 \end{cases}$$

Варианты записи системы

Скалярный:
$$\begin{cases} 5x_1 + 6x_2 = 8 \\ 3x_1 + 7x_2 = 9 \end{cases}$$

Векторный:
$$x_1 \begin{pmatrix} 5 \\ 3 \end{pmatrix} + x_2 \begin{pmatrix} 6 \\ 7 \end{pmatrix} = \begin{pmatrix} 8 \\ 9 \end{pmatrix}$$
.

Варианты записи системы

Скалярный:
$$\begin{cases} 5x_1 + 6x_2 = 8 \\ 3x_1 + 7x_2 = 9 \end{cases}$$

Векторный:
$$x_1 \begin{pmatrix} 5 \\ 3 \end{pmatrix} + x_2 \begin{pmatrix} 6 \\ 7 \end{pmatrix} = \begin{pmatrix} 8 \\ 9 \end{pmatrix}$$
.

Матричный:
$$\begin{pmatrix} 5 & 6 \\ 3 & 7 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 8 \\ 9 \end{pmatrix}$$
.

Однородная и неоднородная системы

Определение

Система уравнений $A\mathbf{x} = 0$ называется однородной.

Однородная и неоднородная системы

Определение

Система уравнений $A\mathbf{x}=0$ называется однородной.

Однородная система:
$$\begin{pmatrix} 5 & 6 \\ 3 & 7 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
.

Однородная и неоднородная системы

Определение

Система уравнений $A\mathbf{x} = 0$ называется однородной.

Однородная система:
$$\begin{pmatrix} 5 & 6 \\ 3 & 7 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
.

Неоднородная система:
$$\begin{pmatrix} 5 & 6 \\ 3 & 7 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 8 \\ 9 \end{pmatrix}$$
.

Ядро оператора

Определение

Ядром линейного оператора $L: \mathbb{R}^n \to \mathbb{R}^k$ называется множество векторов, которые под действием L превращаются в $\mathbf{0} \in \mathbb{R}^k$:

$$\ker\mathsf{L}=\{\mathbf{v}\in\mathbb{R}^n\mid\mathsf{L}\,\mathbf{v}=\mathbf{0}\}$$

Ядро оператора

Определение

Ядром линейного оператора $L: \mathbb{R}^n \to \mathbb{R}^k$ называется множество векторов, которые под действием L превращаются в $\mathbf{0} \in \mathbb{R}^k$:

$$\ker\mathsf{L}=\{\mathbf{v}\in\mathbb{R}^n\mid\mathsf{L}\,\mathbf{v}=\mathbf{0}\}$$

Чтобы найти ядро L нужно решить однородную систему L ${f v}={f 0}.$

Метод Гаусса

Основная идея: по очереди избавиться от всех неизвестных.

Основная идея: по очереди избавиться от всех неизвестных.

Алгоритм

1. Выберем первое уравнение так, чтобы в нём была переменная x_1 .

Основная идея: по очереди избавиться от всех неизвестных.

Алгоритм

- 1. Выберем первое уравнение так, чтобы в нём была переменная x_1 .
- 2. Вычитаем первое уравнение из остальных так, чтобы в них пропала переменная x_1 .

Основная идея: по очереди избавиться от всех неизвестных.

Алгоритм

- 1. Выберем первое уравнение так, чтобы в нём была переменная x_1 .
- 2. Вычитаем первое уравнение из остальных так, чтобы в них пропала переменная x_1 .
- 3. Зафиксируем первое уравнение и работаем с остальными.

Основная идея: по очереди избавиться от всех неизвестных.

Алгоритм

- 1. Выберем первое уравнение так, чтобы в нём была переменная x_1 .
- 2. Вычитаем первое уравнение из остальных так, чтобы в них пропала переменная x_1 .
- 3. Зафиксируем первое уравнение и работаем с остальными.

В финальной системе в каждом следующем уравнении меньше неизвестных, чем в предыдущем.

Ступенчатый вид

После применения метода Гаусса система примет ступенчатый вид:

$$\begin{bmatrix} 2 & 0 & 3 & -1 & 5 & 2 \\ 0 & 1 & 1 & -1 & -2 & 3 \\ 0 & 0 & 0 & 3 & 0 & -1 \end{bmatrix}$$

Ступенчатый вид

После применения метода Гаусса система примет ступенчатый вид:

$$\begin{bmatrix} 2 & 0 & 3 & -1 & 5 & 2 \\ 0 & 1 & 1 & -1 & -2 & 3 \\ 0 & 0 & 0 & 3 & 0 & -1 \end{bmatrix}$$

Неизвестные, лежащие в начале «ступеньки», называются главными, а остальные — свободными.

Главные переменные можно выразить через свободные.

Количество решений

Утверждение

Система уравнений $A\mathbf{x} = \mathbf{b}$ имеет ноль, одно или бесконечное количество решений.

Количество решений

Утверждение

Система уравнений $A\mathbf{x} = \mathbf{b}$ имеет ноль, одно или бесконечное количество решений.

Доказательство

После применения метода Гаусса последнее уравнение, в котором хотя бы один коэффициент отличен от нуля, окажется одного из трёх видов:

 $A:0x_1+0x_2+0x_3+0x_4=7,\;$ нет решений.

 $B:0x_1+0x_2+0x_3+5x_4=7,\;$ хотя бы одно решение.

 $C:0x_1+3x_2+2x_3+5x_4=7,$ бесконечное количество.

Количество решений

Утверждение

Система уравнений $A\mathbf{x} = \mathbf{b}$ имеет ноль, одно или бесконечное количество решений.

Доказательство

После применения метода Гаусса последнее уравнение, в котором хотя бы один коэффициент отличен от нуля, окажется одного из трёх видов:

 $A:0x_1+0x_2+0x_3+0x_4=7,\;$ нет решений.

 $B:0x_1+0x_2+0x_3+5x_4=7,\;$ хотя бы одно решение.

 $C:0x_1+3x_2+2x_3+5x_4=7,\;$ бесконечное количество.

В случае C мы получаем в последнем уравнении свободу выбора x_3 и x_4 .

Структура множества решений

Утверждение

Если решений бесконечное множество, то ответ можно записать в виде:

$$\mathbf{x} = \mathbf{a} + \alpha_1 \mathbf{v}_1 + \dots + \alpha_k \mathbf{v}_k,$$

где ${\bf a}, {\bf v}_1, ..., {\bf v}_k$ — конкретные векторы, а $\alpha_1, ..., \alpha_k$ — произвольные числа.

Структура множества решений

Утверждение

Если решений бесконечное множество, то ответ можно записать в виде:

$$\mathbf{x} = \mathbf{a} + \alpha_1 \mathbf{v}_1 + \dots + \alpha_k \mathbf{v}_k,$$

где $\mathbf{a}, \mathbf{v}_1, ..., \mathbf{v}_k$ — конкретные векторы, а $\alpha_1, ..., \alpha_k$ — произвольные числа.

Для однородной системы ${\bf a}={\bf 0}$, а число k является размерностью множества решений, $k=\dim\ker A$.

• Линейная комбинация и линейная оболочка.

- Линейная комбинация и линейная оболочка.
- Абстрактное векторное пространство.

- Линейная комбинация и линейная оболочка.
- Абстрактное векторное пространство.
- Матрица линейного оператора.

- Линейная комбинация и линейная оболочка.
- Абстрактное векторное пространство.
- Матрица линейного оператора.
- Ранг оператора.

- Линейная комбинация и линейная оболочка.
- Абстрактное векторное пространство.
- Матрица линейного оператора.
- Ранг оператора.
- Умножение матрицы на вектор и на матрицу.

- Линейная комбинация и линейная оболочка.
- Абстрактное векторное пространство.
- Матрица линейного оператора.
- Ранг оператора.
- Умножение матрицы на вектор и на матрицу.
- Решение системы методом Гаусса.

- Линейная комбинация и линейная оболочка.
- Абстрактное векторное пространство.
- Матрица линейного оператора.
- Ранг оператора.
- Умножение матрицы на вектор и на матрицу.
- Решение системы методом Гаусса.
- Бонус: задача о шахматной доске.

- Линейная комбинация и линейная оболочка.
- Абстрактное векторное пространство.
- Матрица линейного оператора.
- Ранг оператора.
- Умножение матрицы на вектор и на матрицу.
- Решение системы методом Гаусса.
- Бонус: задача о шахматной доске.

- Линейная комбинация и линейная оболочка.
- Абстрактное векторное пространство.
- Матрица линейного оператора.
- Ранг оператора.
- Умножение матрицы на вектор и на матрицу.
- Решение системы методом Гаусса.
- Бонус: задача о шахматной доске.

Следующая лекция: Определитель и обратная матрица.

Задача о шахматной доске

Это видеофрагмент с доской, слайдов здесь нет:)