► BTS Polynésie 10 mai 2017 ► Services informatiques aux organisations

Épreuve obligatoire

Exercice 1 11 points

Cinq joueurs, notés A, B, C, 0 et E, jouent régulièrement à un jeu en ligne. Chaque partie de ce jeu oppose deux adversaires.

Le tableau suivant donne, pour chacun des cinq joueurs, la liste des adversaires qu'il a déjà battus.

Le joueur	a déjà battu
A	B, D
В	С
С	B, D
D	Е
Е	D

Ainsi, par exemple, le joueur C a déjà battu les joueurs B et D.

- 1. Graphe orienté associé à la situation
 - **a.** En considérant le tableau précédent comme un tableau de successeurs, représenter la situation par un graphe orienté G, dans lequel un arc relie un sommet x à un sommet y si le joueur x a déjà battu le joueur y.
 - **b.** Écrire la matrice d'adjacence M du graphe G.
 - **c.** Recopier et compléter le tableau des prédécesseurs dans le graphe *G*.

Le joueur	a déjà
A	
В	
С	
D	
Е	

- **d.** Le graphe *G* contient-il un circuit? Contient-il un chemin hamiltonien? Justifier les réponses.
- **2.** Dans cette question, on note $J = \{A, B, C, D, E\}$ l'ensemble des cinq joueurs.

On note V(x; y) le prédicat : « le joueur x a déjà battu le joueur y ».

Ainsi, la valeur V(A; B) est VRAI, et la valeur de V(B; A) est FAUX.

On définit trois prédicats :

P1: $\forall x \in J, \exists y \in J, x \neq y \text{ et } V(x; y)$

P2: $\exists x \in J, \exists y \in J, x \neq y \text{ et } V(x; y)$

P3: $\exists y \in J, \forall x \in J, x \neq y \text{ et } V(x; y)$

Associer à chaque prédicat **P1**, **P2**, **P3**, celle des trois phrases suivantes qui lui correspond parmi les phrases suivantes. Aucune justification n'est demandée.

- « Il existe un joueur qui a été battu par tous les autres joueurs ».
- « Tous les joueurs ont battu au moins un autre joueur ».
- « Il existe un joueur qui a battu tous les autres joueurs ».
- 3. Un joueur reçoit un bonus lorsqu'il vérifie l'un au moins des trois critères suivants :

- le joueur a participé à 20 parties ou davantage, et il a affronté plusieurs adversaires différents:
- le joueur n'a pas affronté plusieurs adversaires différents, et il a obtenu strictement plus de victoires que de défaites;
- le joueur n'a pas obtenu strictement plus de victoires que de défaites, et il a participé à 20 parties ou davantage.

On définit les variables booléennes a, b, c de la façon suivante :

- a = 1 si le joueur a participé à 20 parties ou davantage; a = 0 sinon;
- b = 1 si le joueur a affronté plusieurs adversaires différents; b = 0 sinon;
- c = 1 si le joueur a obtenu strictement plus de victoires que de défaites; c = 0 sinon.
- a. Écrire une expression booléenne F traduisant les conditions permettant à un joueur d'obtenir le bonus.
- **b.** À l'aide d'un tableau de Karnaugh ou d'un calcul booléen, déterminer une écriture simplifiée de *F* sous forme d'une somme de deux termes.
- c. En déduire une formulation simplifiée des critères permettant à un joueur d'obtenir le bonus.
- **4.** On note *S* la relation « successeur »dans le graphe *G*. Ainsi, l'écriture « xSy » signifie que x a pour successeur y dans ce graphe. On rappelle les définitions suivantes.
 - Une relation binaire R sur un ensemble E est symétrique si pour tous x et y dans E:

$$x R y \Rightarrow y R x$$
.

Une relation binaire sur un ensemble E est transitive si pour tous x, y et z dans E:

$$xRy$$
 et $yRz \Rightarrow xRz$.

- **a.** La relation *S* est-elle transitive? Justifier.
- **b.** Quel(s) arc(s) faut-il ajouter au graphe pour rendre la relation S symétrique?

Exercice 2 9 points

Le but de cet exercice est d'étudier une façon de parcourir un fichier de 195 clients, dont les fiches sont numérotées de 0 à 194.

Les deux parties peuvent être traitées de manière indépendante

Partie A - Étude d'une suite

On considère la suite (u_n) définie par

$$u_0 = 5$$
 et, pour tout entier naturel $n: u_{n+1} = 3u_n + 4$.

- **1.** Déterminer u_1 et u_2 .
- **2.** Justifier que la suite (u_n) n'est ni arithmétique ni géométrique.
- **3.** On considère la suite (v_n) définie pour tout entier naturel n par : $v_n = u_n + 2$.
 - **a.** Déterminer v_0 , v_1 et v_2 .
 - **b.** Justifier que (v_n) est une suite géométrique dont on précisera la raison.

- **c.** Déterminer une expression de v_n en fonction de n.
- **4.** En déduire, que pour tout entier naturel n, on a : $u_n = 7 \times 3^n 2$.

Partie B - Étude d'un mode de parcours du fichier

Pour tout entier naturel n, on note w_n le reste de la division euclidienne de $7 \times 3^n - 2$ par 195.

On a ainsi, en particulier : $w_n \equiv 7 \times 3^n - 2$ modulo 195.

On parcourt le fichier à l'aide de la suite (w_n) en déplaçant un curseur de la façon suivante :

- initialement, le curseur est positionné sur la fiche numéro 5, qui correspond à la valeur w_0 ;
- le curseur se déplace ensuite sur la fiche numéro 19, qui correspond à la valeur w_1 ;
- plus généralement, après n déplacements, le curseur est positionné sur la fiche dont le numéro correspond à la valeur de w_n .
- 1. Justifier que $w_5 = 139$.
- **2.** Justifier que $3^{13} \equiv 3$ modulo 195. En déduire que $w_{13} = 19$.
- **3.** Soit n un entier naturel quelconque.
 - **a.** Démontrer que $w_{n+13} w_{n+1} \equiv 7 \times 3^n (3^{13} 3)$ modulo 195.
 - **b.** En déduire, en utilisant la question 2., que $w_{n+13} = w_{n+1}$.
 - c. Interpréter le résultat précédent concernant le positionnement du curseur.
- **4.** On donne la liste des 15 premières valeurs de w_n :

$$5 - 19 - 61 - 187 - 175 - 139 - 31 - 97 - 100 - 109 - 136 - 22 - 70 - 19 - 61$$
.

On considère l'ensemble $E = \{0, 1, 2, 3, ..., 193, 194\}$ et l'application f de E dans E, définie pour tout entier n de l'ensemble E par : $f(n) = w_n$.

- **a.** L'application *f* est-elle injective ? Justifier la réponse.
- **b.** L'application f est-elle surjective? Justifier la réponse.