BIO392-cnv-freq

Hangjia Zhao

9/28/2022

Step 1: Install package

```
if (!require(devtools)){
    install.packages('devtools')
}

## Loading required package: devtools

## Loading required package: usethis

if (!require(pgxRpi)){
    devtools::install_github('progenetix/pgxRpi')
}

## Loading required package: pgxRpi

library(pgxRpi)
```

Step2: Search esophageal adenocarcinoma NCIt code

Step3: Access the CNV frequency data from samples with esophageal adenocarcinoma

The retreived data is an object containing two slots meta and data.

The meta slot looks like this:

freq\$meta

```
## code label sample_count
## 1 NCIT:C4025 Esophageal Adenocarcinoma 865
## 2 total 865
```

The data slot includes two matrices.

names(freq\$data)

```
## [1] "NCIT:C4025" "total"
```

In this case, these two matrices are the same.

head(freq\$data\$`NCIT:C4025`)

##		filters	reference_name	start	end	<pre>gain_frequency</pre>	loss_frequency	no
##	1	NCIT:C4025	1	0	400000	8.902	6.127	1
##	2	NCIT:C4025	1	400000	1400000	13.642	5.665	2
##	3	NCIT:C4025	1	1400000	2400000	9.827	6.243	3
##	4	NCIT:C4025	1	2400000	3400000	13.179	10.983	4
##	5	NCIT:C4025	1	3400000	4400000	12.717	10.058	5
##	6	NCIT:C4025	1	4400000	5400000	10.867	10.636	6

dim(freq\$data\$`NCIT:C4025`)

[1] 3106 7

Step4: Visualize data

By genome

pgxFreqplot(freq)

By chromosome

Step5: Analyse the data

According the plot, we can see frequenct gains on chromosome 7p, 8q, 20p, 20q and frequenct losses on chromosome 4p, 4q, 5q, 9p, 17p, 18q, 21q.

There is a literature where the findings are consistent with the majority of mine. Here is the paper-link.

A more detailed use case see this link.