Методическая разработка для проведения лекции

Занятие 4. Алгебраические структуры. Поля Галуа

Учебные вопросы занятия:

- 1. Недвоичные поля Галуа. Основные понятия.
- 2. Полиномиальная форма представления недвоичного поля. Заключительная часть

Содержание занятия:

1. Недвоичные поля Галуа. Основные понятия.

В различных практических приложениях (кодировании, криптографии) чаще всего приходится использовать четыре основные *операции* (сложение, вычитание, умножение и деление). Это обуславливает необходимость применения в рамках этих приложений теории множеств и конкретно полей. Однако, с учетом того, что вся обработка ведется с применением ПЭВМ, положительные целые числа сохраняются там как п-битовые слова, в которых п обычно принимает значения 8, 16, 32, 64, и так далее. Это означает, что диапазон используемых целых чисел — от 0 до 2ⁿ— 1. Значение модуля равно 2ⁿ. Так что в этой ситуации принципиально возможны два варианта, если есть необходимость использовать *поле*.

- 1. Мы можем задействовать GF(p) с множеством Z_p , где p наибольшее *простое число*, меньшее, чем 2^n . Но эта схема нецелесообразна, так как мы не можем использовать целые числа от p до 2^n 1, и поэтому придется использовать дополнительные процедуры по их исключению. Например, если n = 4, то наибольшее *простое число*, меньшее, чем 2^4 , это 13. Это означает, что мы не можем использовать целые числа 13, 14 и 15. Если n = 8, наибольшее *простое число*, меньшее, чем 2^8 , это 251, так что мы не можем использовать 251, 252, 253, 254 и 255.
- 2. Мы можем работать в $GF(2^n)$ и использовать множество 2^n элементов. Элементы в этом множестве n-битовые слова. Например, если n=3, множество представляет собой:

 $\{000,001,010,011,100,101,110,111\}.$

Однако мы не можем интерпретировать элементы как *целые числа* от 0 до 7, потому что к ним не могут быть применены обычные четыре *операции* (*модуль* 2^{n} — не *простое число*). Поэтому следует определить новое множество 2-битовых слов и две новые *операции*, которые удовлетворяют свойствам, определенным для поля.

Пример 1

Определим $GF(2^2)$ как *поле*, в котором множество имеет четыре слова по 2 бита: $\{00, 01, 10, 11\}$. Мы можем переопределить операции *сложения* и *умножения* для этого поля таким образом, чтобы все свойства этих операций были удовлетворены, как это показано в таблице.

+	00	01	10	11
00	00	01	10	11
01	01	00	11	10
10	10	11	00	01
11	11	10	01	00

Нейтральный элемент 01

×	00	01	10	11
00	00	00	00	00
01	00	01	10	11
10	00	10	11	01
11	00	11	01	10

Каждое *слово* — аддитивная *инверсия* себя. Каждое *слово* (кроме 00) имеет мультипликативную *инверсию*. Мультипликативные обратные пары — (01,01) и (10, 11). *Сложение* и *умножение* будет определено в терминах полиномиалов.

2. Полиномиальная форма представления недвоичного поля.

Хотя мы можем непосредственно определить правила для операций сложения и умножения слов из двух бит, которые удовлетворяют свойствам в $GF(2^n)$, проще работать с полиномиальным степени n-1 побитным представлением слов. Полиномиальное выражение степени n-1 имеет форму

$$f(x) = a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \dots + a_1x^1 + a_0x^0,$$

где x^i назван термином "i-тый элемент", а a_i называется коэффициентом i-того элемента. Хотя мы знаем полиномы в алгебре, но при представлении n-битовых слов полиномами необходимо следовать некоторым правилам:

- 1. степень х определяет позицию бита в n-битовых словах. Это означает, что крайний правый бит находится в нулевой позиции (связан с x^0), самый левый бит находится в позиции n—l (связан с x^{n-l});
- 2. коэффициенты сомножителей определяют значение битов. Каждый бит принимает только значение 0 или 1, поэтому наши полиномиальные коэффициенты могут иметь значение 0 или 1.

Пример 2

Использование полиномов для представления слова из 8 бит (10011001)

показано на рисунке 1.

слово	1	0	0	1	1	0	0	1		
	\downarrow	\downarrow	\downarrow	\rightarrow	\rightarrow	\downarrow	\downarrow	\downarrow		
полином	$1x^7$	$+0x^{6}$	$+0x^{5}$	$+1x^4$	$+1x^3$	$+0x^{2}$	$+0x^{1}$	$+1x^{0}$		

$$1x^7 + 1x^4 + 1x^3 + 1x^0$$

$$x^7 + x^4 + x^3 + x^0$$

Рис. 1. Представление 8-ми битового слова полиномом

Заметим, что элемент пропущен, если его коэффициент равен 0, и пропущен только коэффициент, если это 1. Также заметим, что элемент x^0 равен 1.

Пример 3

Чтобы найти слово из 8 битов, связанное с полиномом x^5+x^2+x , мы сначала восстановим пропущенные сомножители. Имеем n=8, что означает *полином* степени 7. Расширенный *полином* имеет вид

$$0x^7 + 0x^6 + 1x^5 + 0x^4 + 0x^3 + 1x^2 + 1x^1 + 0x^0$$

Он связан со словом из 8 битов 00100110.

Операции

Обратите внимание, что любая операция в полиномиальных формах фактически включает две операции: операции И коэффициентов двух полиномов. Другими словами, мы должны определить два поля: одно для коэффициентов и одно для полиномов. Коэффициенты равны 0 или 1; для этой цели мы можем использовать поле GF(2). Мы уже говорили о таком поле. Для полиномов нам нужно поле $GF(2^n)$, которое коротко обсудим ниже.

Таким образом, полиномы, представляющие n-битовые слова, используют два поля: GF(2) и $GF(2^n)$.

Модуль (неприводимый полином)

Перед определением операций на полиномах мы должны поговорить о полиномах-модулях. Сложение двух полиномов никогда не создает *полином*, выходящий из множества. Однако умножение двух полиномов может создать *полином* со степенью большей, чем n-1. Это означает, что мы должны делить результат на модуль и сохранять только остаток, как это делается в модульной арифметике. Для множеств полиномов в $GF(2^n)$ группа полиномов степени п определена как модуль. Модуль в этом случае действует как *полиномиальное простое число*. Это означает, что никакие полиномы множества не могут делить этот *полином*. Простое полиномиальное число не может быть разложено в полиномы со степенью меньшей, чем n. Такие полиномы называются **неприводимые полиномы**. В таблице 1 показаны примеры полиномов 1-5 степеней.

Таблица 1.

Степень	Неприводимый полином
1	x; x+1
2	x^2+x+1
3	$x^3+x^2+1; x^3+x+1$
4	$x^4+x^3+x^2+x+1; x^4+x^3+1; x^4+x+1$
5	x^5+x^2+1 ; $x^5+x^3+x^2+x+1$; $x^5+x^4+x^3+x+1$; $x^5+x^4+x^3+x^2+1$; $x^5+x^4+x^2+x+1$

Для каждого значения степени часто существует более одного неприводимого *полинома*, — это означает, что когда мы определяем поле $GF(2^n)$, мы должны объявить, какой неприводимый *полином* мы используем как модуль.

Сложение

Теперь определим операцию сложения для полиномов с коэффициентом в GF(2). Операция сложения достаточно проста: мы складываем коэффициенты соответствующих элементов полинома в поле GF(2). Обратите внимание, что сложение двух полиномов степени n-1 всегда дает *полином* со степенью n-1 — это означает, что мы не должны использовать вычитание из модуля их результата.

Пример 4

Произведем сложение x^5+x^2+x и x^3+x^2+1 в GF(2^8). Мы используем символ © для обозначения полиномиального сложения. Ниже показана процедура $0x^7+0x^6+1x^5+0x^4+0x^3+1x^2+1x^1+0x^0$ © $0x^7+0x^6+0x^5+0x^4+1x^3+1x^2+0x^1+1x^0=0x^7+0x^6+1x^5+0x^4+1x^3+0x^2+1x^1+1x^0 \rightarrow x^5+x^3+x+1$.

В упрощенном полиноме сохранены элементы с коэффициентом 1 и удалены элементы с коэффициентом 0. Кроме того, удалены совпадающие элементы обоих полиномов, а несовпадающие сохраняются. Другими словами, x^5 , x^3 , и x^1 сохраняются, а x^2 , который является совпадающим в этих двух полиномах, удален.

Пример 5

Поскольку сложение в GF(2) означает операцию *ИСКЛЮЧАЮЩЕЕ ИЛИ* (*XOR*), мы можем получить результат *ИСКЛЮЧАЮЩЕГО ИЛИ* для этих двух слов бит за битом. В предыдущем примере $x^5 + x^2 + x$ есть 00100110, и $x^3 + x^2 + 1$ есть 00001101. Результат — 00101011 или, в полиномиальном представлении, $x^5 + x^3 + x + 1$.

Аддитивный нейтральный элемент — тождество. Аддитивный нейтральный элемент полинома — нулевой полином (полином со всеми коэффициентами, равными нулю), потому что, прибавляя этот полином к самому себе, в результате получаем исходный полином.

 $A\partial \partial$ итивная инверсия полинома с коэффициентами в GF(2) — сам *полином*. Это означает, что операция вычитания та же самая, что и операция сложения.

Операции сложения и вычитания на полиномах — одинаковые операции. Умножение

Умножение в полиномах — сумма умножения каждого элемента одного полинома и каждого элемента второго полинома. Необходимо отметить три особенности.

Первая: умножение коэффициента проводится в поле GF(2).

Вторая: умножение x^i на x^j дает результат x^{i+j} .

Третья: умножение может создать элементы со степенью большей, чем n-1, и это означает, что степень должна быть уменьшена с использованием полинома-модуля.

Сначала проследим, как умножить два полинома согласно вышеупомянутому определению. Позже рассмотрим вариант алгоритма, который может использоваться в программе.

Пример 6

Найдите результат (x^5+x^2+x) ® $(x^7+x^4+x^3+x^2+x)$ в $GF(2^8)$ с неприводимым (неразлагаемым) полиномом $(x^8+x^4+x^3+x+1)$. Обратите внимание, что для обозначения умножения двух полиномов используется символ ®.

Решение

Сначала умножаем эти два полинома так, как это делается в обычной алгебре. Обратите внимание, что в этом процессе пара элементов с равной степенью сокращается. Например, результат $x^9 + x^9$ сокращается, потому что он является нулевым по результатам операции сложения.

$$P_1 @ P_2 = x^5 (x^7 + x^4 + x^3 + x^2 + x) + x^2 (x^7 + x^4 + x^3 + x^2 + x) + x (x^7 + x^4 + x^3 + x^2 + x) = x^{12} + x^9 + x^8 + x^7 + x^6 + x^9 + x^6 + x^5 + x^4 + x^3 + x^2 + x^3 + x^2 + x^3 + x^2 + x^3 + x^2 + x^4 + x^3 + x^4 + x^4 + x^3 + x^4 + x^4$$

Чтобы найти конечный результат, разделим *полином* степени12 на *полином* степени 8 (модуль) и сохраним остаток. Процесс деления тот же самый, что и в обычной алгебре, но необходимо помнить, что в данной ситуации вычитание аналогично сложению.

$x^{12}+x^7+x^2$	$x^8 + x^4 + x^3 + x + 1$
$x^{12}+x^8+x^7+x^5+x^4$	x^4+1
$x^8 + x^5 + x^4 + x^2$	
$x^8 + x^4 + x^3 + x + 1$	
$x^5 + x^3 + x^2 + x + 1$	Остаток

Mультипликативное тождество — всегда равно 1. Например, в $GF(2^8)$ мультипликативная инверсия — в побитном изображении 00000001.

Мультипликативная инверсия. Поиск мультипликативной инверсии требует привлечения расширенного алгоритма Евклида. Алгоритм Евклида следует применять к модулю и полиному, причем алгоритм реализуется таким же образом, как и для целых чисел.

Пример 7

 $B GF(2^4)$ найдите *инверсию* (x^2+1) mod (x^4+x+1).

Решение

q	${f r_j}$	\mathbf{r}_2	r	$\mathbf{t_{j}}$	\mathbf{t}_2	t
(x^2+1)	(x^4+x+1)	(x^2+1)	(x)	(0)	(1)	(x^2+1)
(x)	(x^2+1)	(x)	(1)	(1)	(x^2+1)	(x^3+x+1)
(x)	(x)	(1)	(0)	(x^2+1)	(x^3+x+1)	(0)
	(1)	(0)		(x^3+x+1)	(0)	

Это означает, что $(x^2+1)^{-1}$ mod (x^4+x+1) есть (x^3+x+1) . Ответ может быть проверен просто: надо перемножить эти два полинома и найти остаток. В этом случае результат деления на модуль равен

$$(x^2+1)\mathbb{R}(x^3+x+1) \mod (x^4+x+1)=1.$$

Пример 8

 $B GF(2^8)$ найдите *инверсию* (x^5) mod ($x^8+x^4+x^3+x+1$).

Решение

q	$\mathbf{r_{j}}$	\mathbf{r}_2	r	$\mathbf{t_{j}}$	$\mathbf{t_2}$	t
(x^3)	$(x^8+x^4+x^3+x+1)$	(x^5)	$(x^4+x^3+x^2+x+1)$	(0)	(1)	(x^3)
(x+1)	(x^5)	(x^4+x^3+x+1)	(x^3+x^2+1)	(1)	(x^3)	(x^4+x^3+1)

(x)	(x^4+x^3+x+1)	(x^3+x^2+1)	(1)	(x^3)	(x^4+x^3+1)	$(x^5+x^4+x^2+x)$
	(x^3+x^2+1)	(1)	(0)	(x^4+x^3+1)	$(x^5+x^4+x^2+x)$	(0)
	(1)	(0)		$(x^5+x^4+x^2+x)$	(0)	

Это означает, что $(x^5)^{-1}$ mod $(x^8+x^4+x^3+x+1)$ есть $(x^5+x^4+x^2+x)$.

Результат может быть легко проверен умножением этих двух полиномов и определением остатка деления по модулю

$$(x^5)$$
® $(x^5+x^4+x^2+x)$ mod $(x^8+x^4+x^3+x+1)=1$.

Умножение с использованием ПЭВМ

Операция деления порождает проблему написания эффективной программы умножения двух полиномов. Лучший алгоритм для компьютерной реализации использует неоднократное умножение полинома на \mathbf{x} . Например, вместо того чтобы находить результат (\mathbf{x}^2) $\mathbb{R}(P_2)$, программа находит результат (\mathbf{x}^2) Преимущество этой стратегии будет обсуждаться далее, но сначала рассмотрим пример, чтобы проиллюстрировать алгоритм.

Пример 9

Найдите результат умножения $P_1 = (x^5 + x^2 + x)$ на $P_2 = (x^7 + x^4 + x^3 + x^2 + x)$ в поле $GF(2^8)$ с неприводимым полиномом $(x^8 + x^4 + x^3 + x + 1)$, используя алгоритм, изложенный выше.

Решение

Результат показан в таблице. В начале находится промежуточный результат умножения x^0 , x^1 , x^2 , x^3 , x^4 и x^5 . Заметим, что необходимы только три составляющие произведения (x^m) ® P_2 для m от 0 до 5, каждое вычисление зависит от предыдущего результата.

Таблица. Алгоритм перемножения полиномов

,	1 1									
Степень	Операция	Новый результат	Вычитание							
$\mathbf{x}^0 \mathbf{\mathbb{R}} \mathbf{P}_2$		$x^7 + x^4 + x^3 + x^2 + x$	HET							
$\mathbf{x}^1 \mathbf{\mathbb{R}} \mathbf{P}_2$	$x \otimes (x^7 + x^4 + x^3 + x^2 + x)$	x^5+x^2+x+1	ДА							
$\mathbf{x}^2 \mathbb{R} \mathbf{P}_2$	$x \otimes (x^5+x^2+x+1)$	$x^6 + x^3 + x^2 + x$	HET							
x^3 $\mathbb{R}P_2$	$X \otimes (x^6 + x^3 + x^2 + x)$	$x^7 + x^4 + x^3 + x^2$	HET							
$\mathbf{x}^4 \mathbf{\mathbb{R}} \mathbf{P}_2$	$x \cdot (x^7 + x^4 + x^3 + x^2)$	$x^5 + x + 1$	ДА							
\mathbf{x}^{5} \mathbb{R} \mathbf{P}_{2}	$x \otimes (x^5 + x + 1)$	x^6+x^2+x	HET							
$P_1 \otimes P_2 = (x_1 \otimes x_2)$	$P_1 \otimes P_2 = (x^6 + x^2 + x) + (x^6 + x^3 + x^2 + x) + (x^5 + x^2 + x + 1) = x^5 + x^3 + x^2 + x + 1$									

Рассмотренный выше алгоритм имеет два преимущества. Первое — умножение полинома на х может быть выполнено простым сдвигом одного бита в п-битовом слове; операция может быть реализована на любом языке программирования. Второе — результат может быть использован, если максимальная степень полинома п—1. В этом случае сокращение может быть сделано просто с помощью применения операции ИСКЛЮЧАЮЩЕЕ ИЛИ с заданным модулем. В нашем примере самая высокая степень — только 8. Мы можем разработать простой алгоритм для нахождения промежуточных результатов.

- 1. Если старший разряд предыдущего результата равен 0, тогда надо сдвинуть предыдущий результат на один бит влево.
- 2. Если старший бит предыдущего результата равен 1: *а*) надо сдвинуть на один бит влево; б) применить к нему операцию *ИСКЛЮЧАЮЩЕЕ ИЛИ* с модулем, исключив из этой операции старший разряд.

Повторим пример 9 для двоичной последовательности размером 8 бит. При этом P_1 =00100110, P_2 =10011110, модуль=100011010 (девять битов). Обозначим операцию *ИСКЛЮЧАЮЩЕЕ ИЛИ* как ©. Пример приведен в таблице.

Таблица. Эффективное умножение с применением п-битового слова

Степень	Операция сдвига влево	ИСКЛЮЧАЮЩЕЕ ИЛИ						
x^0 $\mathbb{R}P_2$		10011110						
$x^1 @ P_2$	00111100	(00111100)©(00011010)=00100111						
$x^2 \mathbb{R}P_2$	01001110	01001110						
x^3 $\mathbb{R}P_2$	10011100	10011100						
$x^4 @ P_2$	00111000	(00111000)©(00011010)=00100011						
x^5 $\mathbb{R}P_2$	01000110	01000110						
$P_1 \otimes P_2 = (000100110) \otimes (01001110) \otimes (01000110) = 001011111$								

В этом случае для умножения данных полиномов необходимо только пять операций левого сдвига и четыре *ИСКЛЮЧАЮЩЕЕ ИЛИ*. Вообще, для умножения двух полиномов степени n-1 необходимо максимально (n-1) операций левого сдвига и 2n операций *ИСКЛЮЧАЮЩЕЕ ИЛИ*.

Таким образом, умножение полиномов в GF(2ⁿ) может быть выполнено с помощью операций левого сдвига и ИСКЛЮЧАЮЩЕЕ ИЛИ.

Пример 10

Поле $GF(2^3)$ состоит из 8 элементов. Рассмотрим процесс умножение и сложение таблиц для этого поля, используя неприводимый *полином* x^3+x^2+1 . Будем оперировать с трехбитовым словом и полиномом. Заметим, что имеется два неприводимых полинома третьей степени (см. таблицу неприводимых полиномов). Другой *полином* (x^3+x+1) для умножения имеет таблицу, полностью отличающуюся от первой. Таблица сложения показывает результаты сложения.

Таблица сложения

©	000 (0)	001 (1)	010 (x)	011	$100 (x^2)$	101	110	111
	· /	()	` '	(x+1)	· /	(x^2+1)	$(\mathbf{x}^2 + \mathbf{x})$	(x^2+x+1)
000 (0)	000(0)	001(1)	010(x)	011	$100 (x^2)$	101	110	111
000 (0)				(x+1)		(x^2+1)	(x^2+x)	(x^2+x+1)
001 (1)	001 (1)	000 (0)	011	$010 (x^2)$	101	100	111	$110(x^2+x)$
001 (1)			(x+1)		(x^2+1)	(x^2+x)	(x^2+x+1)	
010 (x)	010 (x)	011	000(0)	001 (1)	110	111	100	$101(x^2+1)$
010 (X)		(x+1)			(x^2+x)	(x^2+x+1)	(x^2+x)	

011	011	010 (x)	001 (1)	000(0)	111	110	101	$100(x^2)$
(x+1)	(x+1)				(x^2+x+1)	(x^2+x)	(x^2+1)	
100 (x ²)	$100 (x^2)$	101	110	111	000(0)	001 (1)	010(x)	011(x+1)
100 (X)		(x^2+1)	(x^2+x)	(x^2+x+1)				
101	101	$100 (x^2)$	111	110	001 (1)	000(0)	011	010 (x)
(x^2+1)	(x^2+1)		(x^2+x+1)	(x^2+x)			(x+1)	
110	110	111	$100 (x^2)$	101	010 (x)	011	000(0)	001 (1)
$(\mathbf{x}^2 + \mathbf{x})$	(x^2+x)	(x^2+x+1)		(x^2+1)		(x+1)		
111	111	110	101	$100 (x^2)$	011	010 (x)	001 (1)	000 (0)
(x^2+x+1)	(x^2+x+1)	(x^2+x)	(x^2+1)		(x+1)			

Таблица умножения показывает результаты умножения.

Таблица умножения

тиомици умпожения								
R	000 (0)	001 (1)	010 (x)	011	100 (x ²)	101	110	111
	000 (0)	001 (1)	010 (11)	(x+1)	100 (11)	(x^2+1)	$(\mathbf{x}^2+\mathbf{x})$	(x^2+x+1)
000 (0)	000 (0)	000 (0)	000(0)	000(0)	000 (0)	000 (0)	000 (0)	000 (0)
001 (1)	000 (0)	001 (1)	010(x)	011	$100 (x^2)$	101	110	111
				(x+1)		(x^2+1)	(x^2+x)	(x^2+x+1)
010 (x)	000 (0)	010 (x)	100 (x)	110	101	111	001 (1)	011 (x+1)
				(x^2+x)	(x^2+1)	(x^2+x+1)		
011	000 (0)	011	110	101	001 (1)	010 (x)	111	$100 (x^2)$
(x+1)		(x+1)	(x^2+x)	(x^2+1)			(x^2+x+1)	
100 (x ²)	000 (0)	$100 (x^2)$	101	001(1)	111	011	010 (x)	$110 (x^2+x)$
			(x^2+1)		(x^2+x+1)	(x+1)		
101	000 (0)	101	111	010 (x)	011	110	$100(x^2)$	001 (1)
(x^2+1)		(x^2+1)	(x^2+x+1)		(x+1)	(x^2+x)		
110	000 (0)	110	001 (1)	111	010 (x)	$100(x^2)$	011	$101(x^2+1)$
$(\mathbf{x}^2 + \mathbf{x})$		(x^2+x)		(x^2+x+1)			(x+1)	
111	000 (0)	111	011	$100 (x^2)$	110	001 (1)	101	010 (x)
(x^2+x+1)		(x^2+x+1)	(x+1)		(x^2+x)		(x^2+1)	

Использование генератора

Иногда проще определить элементы поля $GF(2^n)$, используя *генератор*, называемый порождающим полиномом. В этом *поле* с неприводимым полиномом f(x) и элементом поля a нужно удовлетворить *отношение* f(a)=0. В частности, если g — *генератор* поля, то f(g)=0. Тогда можно доказать, что элементы поля могут быть сгенерированы как

$$\{0, 1, g^2, \dots g^n\}$$
, где $N = 2^n - 2$.

Пример 11

Для генерирования элементов поля $GF(2^4)$ используйте *полином* $f(x)=x^4+x+1$.

Решение

Элементы 0, g^0 , g^1 , g^2 и g^3 могут быть сгенерированы достаточно просто, потому что в 4-*битовом поле* они представлены 0, x^0 , x^1 , x^2 и x^3 (не требуется деления на *полином*). Элементы от g^4 до g^{14} , которые содержат от x^4 до x^{14} , формируются путем деления на неприводимый *полином*. Для такого деления следует использовать *полином* $f(g)=g^4+g+1=0$. Применив это *отношение*, мы

имеем $g^4 = -g-1$. Поскольку *сложение* полей и *вычитание* полей — та же самая операция, $g^4 = g+1$. Мы используем это *отношение*, чтобы найти *значение* всех элементов в виде 4-битовых слов:

$$\begin{array}{lll} 0=0=0=0=0 -> 0 = (0000) \\ g^0=&g^1=g^1 -> g^1 = (0010) \\ g^2=&g^2=g^2 -> g^2 = (0100) \\ g^3=&g^3=g^3 -> g^3 = (1000) \\ g^4=&g^4=g+1 -> g^4 = (0011) \\ g^5=&g(g+1)=g^2+g->g^5 = (0110) \\ g^6=&g(g^2+g)=g^3+g^2->g^6 = (1100) \\ g^7=&g(g^3+g)=g^3+g+1->g^7 = (1011) \\ g^8=&g(g^3+g+1)=g^2+1->g^8 = (0101) \\ g^9=&g(g^2+1)=g^3+g->g^9 = (1010) \\ g^{10}=g(g^3+g)=g^2+g+1->g^{10} = (0111) \\ g^{11}=g(g^2+g+1)=g^3+g^2+g->g^{11} = (1110) \\ g^{12}=g(g^3+g^2+g)=g^3+g^2+g+1->g^{12} = (1111) \\ g^{13}=g(g^3+g^2+g+1)=g^3+g^2+1->g^{13} = (1101) \\ g^{14}=g(g^3+g^2+1)=g^3+1->g^{14} = (1001) \\ \end{array}$$

Основная идея состоит в том, что *вычисление* элементов поля от g^4 до g^{14} сводится к использованию соотношения $g^4 = g + 1$ и результатов предыдущих вычислений. Например,

$$g^{12}=g(g^{11})=g(g^3+g^2+g)=g^4+g^3+g^2=g^3+g^2+g+1$$

После сокращения можно просто преобразовать степени в n-битовое cnoso. Например, g^3+1 эквивалентно 1001, потому что присутствуют элементы со степенью 0 и 3. Заметим, что элементы с одинаковой степенью при таком процессе вычисления взаимопоглощают друг друга. Например, $g^2+g^2=0$.

Инверсии

Нахождение *инверсий* при использовании приведенного выше метода представления достаточно просто.

Аддитивные инверсии

Аддитивная *инверсия* каждого элемента — непосредственно сам элемент, потому что сложение и вычитание в этом поле — одна и та же операция, например, $g^3 = g^3$.

Мультипликативные инверсии

Найти мультипликативную *инверсию* каждого элемента также несложно. Например, можно найти мультипликативную *инверсию* элемента g^3 , как показано ниже:

$$(g^3)^{-1}=g^{-3}=g^{12}=g^3+g^2+g+1 \rightarrow (1111).$$

Заметим, что в этом случае степень рассчитывается по модулю 2^n-1 , $2^4-1=15$.

Поэтому $-3 \mod 15 = 12 \mod 15$.

Можно легко доказать, что g^3 и g^{12} есть инверсные (обратные числа), потому что $g^3g^{12}{=}g^{15}{=}g^0{=}1$.

Сложение и вычитание

Сложение и вычитание — это одинаковые операции. Промежуточные результаты могут быть упрощены, как проиллюстрировано в следующем примере.

Пример 12

Этот пример показывает результаты операций сложения и вычитания:

a.
$$g^3 + g^{12} + g^7 = g^3 + (g^3 + g^2 + g + 1) + (g^3 + g + 1) = g^3 + g^2 \longrightarrow (1100).$$

b.
$$g^3 - g^6 = g^3 + g^6 = g^3 + (g^3 + g^2) = g^2 \longrightarrow (0100)$$
.

Умножение и деление

Умножение есть сложение степени по модулю $2^{n}-1$. Деление — это умножение, которое использует мультипликативную *инверсию*.

Пример 13

a.
$$g^9 \times g^{11} = g^{20} = g^{20 \text{mod } 15} = g^5 = g^2 + g \rightarrow (0110)$$
.

6.
$$g^3/g^8 = g^3 \times g^7 = g^{10} = g^2 + g + 1 \rightarrow (0111)$$
.

Заключительная часть

Подводя итоги, следует отметить, что конечное *поле* GP (2ⁿ) может использоваться для того, чтобы определить четыре *операции* — *сложение*, *вычитание*, *умножение* и *деление* п-битных слов. Только *деление* на нуль не определено. Каждое п-битовое *слово* может быть представлено как *полином* степени п–1 с коэффициентами в GF(2), — это означает, что *операции* на п-битовых словах могут быть представлены как *операции* на этом полиноме. При умножении двух полиномов необходимо сделать эти *операции* операциями по модулю. Для этого мы должны определить неприводимый *полином* степени п. Чтобы найти мультипликативные *инверсии* к полиномам, может быть применен расширенный *алгоритм Евклида*.

Контрольные вопросы

- 1. Покажите, как полином может представить n-битовое слово.
- 2. Определите неприводимый полином.