图算法篇:单源最短路径问题之 Bellman-Ford算法

北京航空航天大学 计算机学院

算法思想

算法实例

算法分析

算法性质

• 从知春路到其他站点,如何安排路线?

Dijkstra算法可以求解单源最短路径

• 通过松弛操作迭代更新最短距离

Dijkstra算法适用范围:边权为正的图

• 通过松弛操作迭代更新最短距离

Dijkstra算法适用范围:边权为正的图

• 通过松弛操作迭代更新最短距离

Dijkstra算法适用范围:边权为正的图

• 通过松弛操作迭代更新最短距离

Dijkstra算法适用范围:边权为正的图


```
输入: 图G = \langle V, E, W \rangle, 源点s 时间复杂度: O(|V| + |E|) \cdot \log |V|
输出: 单源最短路径P
新建一维数组color[1..|V|], dist[1..|V|], pred[1..|V|]
新建空优先队列Q
                                   //执行单源最短路径算法
//初始化
                                   while 优先队列Q非空 do
for u \in V do
                                      v \leftarrow Q.ExtractMin()
   color[u] \leftarrow WHITE
                                      for u \in G.adj[v] do
                                         if dist[v] + w(v, u) < dist[u] then
   dist[u] \leftarrow \infty
                                             dist[u] \leftarrow dist[v] + w(v, u)
   pred[u] \leftarrow NULL
                                             pred[u] \leftarrow v
end
                                             Q.DecreaseKey((u, dist[u]))
dist[s] \leftarrow 0
                                         end
Q.Insert(V, dist)
                                      end
```

end

 $color[v] \leftarrow BLACK$

 V_A 中顶点

 $V - V_A$ 中顶点

u 被选中顶点

• 图中存在负权边, Dijkstra算法不再适用

$$V - V_A$$
中顶点

u 被选中顶点

$$V - V_A$$
中顶点

u 被选中顶点

• 图中存在负权边, Dijkstra算法不再适用

• 图中存在负权边, Dijkstra算法不再适用

$$V - V_A$$
中顶点

u 被选中顶点

$$V - V_A$$
中顶点

u 被选中顶点

u 被选中顶点

• 图中存在负权边, Dijkstra算法不再适用

Dijkstra算法:到黑色顶点的最短路应该已经计算出

• 图中存在负权边, Dijkstra算法不再适用

Dijkstra算法:到黑色顶点的最短路应该已经计算出

- 图中存在负权边, Dijkstra算法不再适用
- 如果源点 s 可达负环,则难以定义最短路径

- 图中存在负权边, Dijkstra算法不再适用
- 如果源点 s 可达 \mathfrak{o} 环,则难以定义最短路径

- 图中存在负权边, Dijkstra算法不再适用
- 如果源点 s 可达负环,则难以定义最短路径

若源点 s 无可达负环,则存在源点 s 的单源最短路径

单源最短路径问题

Single Source Shortest Paths Problem

输入

- 带权图*G* =< *V*, *E*, *W* >
- 源点编号 *s*

问题定义

单源最短路径问题

Single Source Shortest Paths Problem

输入

- 带权图*G* =< *V*, *E*, *W* >
- 源点编号 s

输出

- 源点 s 到所有其他顶点 t 的最短距离 $\delta(s,t)$ 和最短路径 < s, ..., t >
- 或存在源点 s 可达的负环

单源最短路径问题

Single Source Shortest Paths Problem

输入

- 带权图*G* =< *V*, *E*, *W* >
- 源点编号 s

输出

- 源点 s 到所有其他顶点 t 的最短距离 $\delta(s,t)$ 和最短路径 < s, ..., t >
- 或存在源点 s 可达的负环

挑战1:图中存在负权边时,如何求解单源最短路径?

单源最短路径问题

Single Source Shortest Paths Problem

输入

- 带权图*G* =< *V*, *E*, *W* >
- 源点编号 s

输出

- 源点 s 到所有其他顶点 t 的最短距离 $\delta(s,t)$ 和最短路径 < s,...,t > s
- 或存在源点 s 可达的负环

挑战1:图中存在负权边时,如何求解单源最短路径?

挑战2:图中存在负权边时,如何发现源点可达负环?

算法思想

算法实例

算法分析

算法性质

算法思想

• Dijkstra算法通过松弛操作迭代更新最短距离

• 存在负权边时,需要比Dijkstra算法更多次数的松弛操作

• 存在负权边时,需要比Dijkstra算法更多次数的松弛操作

• 存在负权边时,需要比Dijkstra算法更多次数的松弛操作

问题:图中存在负权边时,如何利用松弛操作求解单源最短路?

Bellman-Ford 算法思想

• 图中存在负权边时:每轮<mark>对所有边</mark>进行松弛,持续迭代 |V| - 1轮

Bellman-Ford 算法思想

• 图中存在负权边时:每轮<mark>对所有边</mark>进行松弛,持续迭代 |V| - 1轮

• 图中存在负权边时:若第 |V| 轮仍松弛成功,存在源点s可达的负环

问题背景

算法思想

算法实例

算法分析

算法性质

V	S	t	x	y	Z
pred	N	N	N	N	N
dist	∞	∞	∞	∞	∞

V	S	t	x	y	Z
pred	N	N	N	N	N
dist	0	∞	∞	∞	∞

V	S	t	x	y	Z
pred	N	N	N	N	N
dist	0	∞	∞	∞	∞

───── 松弛失败

V	S	t	x	y	Z
pred	N	N	N	N	N
dist	0	∞	∞	∞	∞

───── 松弛失败

V	S	t	x	y	Z
pred	N	N	N	N	N
dist	0	∞	∞	∞	∞

──── 松弛失败

V	S	t	x	y	Z
pred	N	N	N	N	N
dist	0	∞	∞	∞	∞

───── 松弛失败

──── 松弛成功

V	S	t	x	y	Z
pred	N	N	N	N	N
dist	0	∞	∞	∞	∞

───── 松弛失败

V	S	t	x	y	Z
pred	N	N	N	N	N
dist	0	∞	∞	∞	∞

───── 松弛失败

V	S	t	x	y	Z
pred	N	N	N	N	N
dist	0	∞	∞	∞	∞

───── 松弛失败

V	S	t	x	y	Z
pred	N	N	N	N	N
dist	0	∞	∞	∞	∞

───── 松弛失败

V	S	t	x	y	Z
pred	N	S	N	N	N
dist	0	6	∞	∞	∞

───── 松弛失败

V	S	t	x	y	Z
pred	N	S	N	S	N
dist	0	6	∞	7	∞

───── 松弛失败

V	S	t	x	y	Z
pred	N	S	N	S	N
dist	0	6	∞	7	∞

──── 松弛失败

V	S	t	x	y	Z
pred	N	S	N	S	N
dist	0	6	∞	7	∞

───── 松弛失败

V	S	t	x	y	Z
pred	N	S	t	S	N
dist	0	6	11	7	∞

V	S	t	x	y	Z
pred	N	S	t	S	N
dist	0	6	11	7	∞

───── 松弛失败

V	S	t	x	y	Z
pred	N	S	t	S	t
dist	0	6	11	7	2

V	S	t	x	y	Z
pred	N	S	y	S	t
dist	0	6	4	7	2

V	S	t	x	y	Z
pred	N	S	y	S	t
dist	0	6	4	7	2

───── 松弛失败

V	S	t	x	y	Z
pred	N	S	y	S	t
dist	0	6	4	7	2

───── 松弛失败

V	S	t	x	y	Z
pred	N	S	y	S	t
dist	0	6	4	7	2

───── 松弛失败

V	S	t	x	y	Z
pred	N	S	y	S	t
dist	0	6	4	7	2

──── 松弛失败

V	S	t	x	y	Z
pred	N	S	y	S	t
dist	0	6	4	7	2

───── 松弛失败

V	S	t	x	y	Z
pred	N	S	y	S	t
dist	0	6	4	7	2

──── 松弛失败

V	S	t	x	y	Z
pred	N	S	y	S	t
dist	0	6	4	7	2

── 松弛失败

V	S	t	x	y	Z
pred	N	x	y	S	t
dist	0	2	4	7	2

── 松弛失败

V	S	t	x	y	Z
pred	N	x	y	S	t
dist	0	2	4	7	-2

V	S	t	x	y	Z
pred	N	x	y	S	t
dist	0	2	4	7	-2

───── 松弛失败

V	S	t	x	y	Z
pred	N	x	y	S	t
dist	0	2	4	7	-2

───── 松弛失败

V	S	t	x	y	Z
pred	N	x	y	S	t
dist	0	2	4	7	-2

───── 松弛失败

V	S	t	x	y	Z
pred	N	x	y	S	t
dist	0	2	4	7	-2

───── 松弛失败

V	S	t	x	y	Z
pred	N	x	y	S	t
dist	0	2	4	7	-2

───── 松弛失败

V	S	t	x	y	Z
pred	N	x	y	S	t
dist	0	2	4	7	-2

───── 松弛失败

V	S	t	x	y	Z
pred	N	x	y	S	t
dist	0	2	4	7	-2

───── 松弛失败

V	S	t	x	y	Z
pred	N	x	y	S	t
dist	0	2	4	7	-2

───── 松弛失败

问题背景

算法思想

算法实例

算法分析

算法性质


```
输入: \[ \mathbf{S}G = < V, E, W > \], 源点\[ \mathbf{s} \] 输出: 单源最短路径\[ \mathbf{E}G = < V, E, W > \], 源点\[ \mathbf{s} \] 新建一维数组\[ \mathbf{d}ist[1..|V|] \], \[ \mathbf{pred}[1..|V|] \] //初始化 for \[ \mathbf{u} \in V \] do \[ | \[ \mathbf{d}ist[u] \leftarrow \infty \]  初始化辅助数组 \[ \mathbf{d}ist[s] \leftarrow 0 \] 初始化辅助数组 \[ \mathbf{d}ist[s] \leftarrow 0 \]
```

伪代码


```
//执行单源最短路径算法 \mathbf{for}\ i \leftarrow 1\ to\ |V|-1\ \mathbf{do}
                                                  进行|V| - 1轮松弛
   for (u,v) \in E do
         if dist[u] + w(u, v) < dist[v] then
             dist[v] \leftarrow dist[u] + w(u,v)
            pred[v] \leftarrow u
         end
     end
 end
 for (u, v) \in E do
     if dist[u] + w(u, v) < dist[v] then
         print 存在负环
         break
     end
 end
```



```
//执行单源最短路径算法
for i \leftarrow 1 to |V| - 1 do
 for (u,v) \in E do
                                   对所有边进行松弛操作
 pred[v] \leftarrow u
     end
  end
end
for (u, v) \in E do
  if dist[u] + w(u, v) < dist[v] then
     print 存在负环
     break
  end
end
```



```
//执行单源最短路径算法
for i \leftarrow 1 to |V| - 1 do
     for (u,v) \in E do
       \begin{vmatrix} \mathbf{if} \ \overline{dist}[u] + w(u,v) < \overline{dist}[v] \mathbf{then} \\ \underline{dist}[v] \leftarrow \overline{dist}[u] + w(u,v) \end{vmatrix} = \\ pred[v] \leftarrow u
                                                                                 更新辅助数组
           end
     end
end
for (u, v) \in E do
     if dist[u] + w(u, v) < dist[v] then
           print 存在负环
           break
     end
end
```



```
//执行单源最短路径算法
for i \leftarrow 1 to |V| - 1 do
   for (u, v) \in E do
       if dist[u] + w(u, v) < dist[v] then
          dist[v] \leftarrow dist[u] + w(u,v)
          pred[v] \leftarrow u
       end
   end
end
for (u,v) \in E do
                                             判断是否存在负环
   if dist[u] + w(u, v) < dist[v] then
       print 存在负环
       break
end
```



```
输入: \mathbf{S}G = \langle V, E, W \rangle, 源点s 输出: 单源最短路径P 新建一维数组dist[1..|V|], pred[1..|V|] //初始化 for u \in V do  \begin{vmatrix} dist[u] \leftarrow \infty \\ pred[u] \leftarrow NULL \end{vmatrix} end  dist[s] \leftarrow 0
```



```
//执行单源最短路径算法
for i \leftarrow 1 to |V| - 1 do
   for (u, v) \in E do
       if dist[u] + w(u, v) < dist[v] then
          dist[v] \leftarrow dist[u] + w(u,v)
         pred[v] \leftarrow u
       end
   end
end
for (u, v) \in E do
   if dist[u] + w(u, v) < dist[v] then
       print 存在负环
       break
   end
end
```



```
//执行单源最短路径算法
for i \leftarrow 1 to |V| - 1 do
     for (u, v) \in E do
         if dist[u] + w(u, v) < dist[v] then
\begin{vmatrix} dist[v] \leftarrow dist[u] + w(u, v) \\ pred[v] \leftarrow u \end{vmatrix} - \mathbf{O}(|\mathbf{E}|)
end
          end
     end
end
for (u, v) \in E do
    if dist[u] + w(u,v) < dist[v] then
| \text{print 存在负环} |
          break
     end
end
```



```
//执行单源最短路径算法
for i \leftarrow 1 to |V| - 1 do
   for (u, v) \in E do
       if dist[u] + w(u, v) < dist[v] then
          dist[v] \leftarrow dist[u] + w(u,v)
         pred[v] \leftarrow u
       end
   end
end
for (u, v) \in E do
   if dist[u] + w(u, v) < dist[v] then
                                            时间复杂度O(|E| \cdot |V|)
       print 存在负环
       break
   end
end
```


问题背景

算法思想

算法实例

算法分析

算法性质

算法思想

• 图中存在负权边时:每轮<mark>对所有边</mark>进行松弛,持续迭代 |V| - 1轮

• 图中存在负权边时:若第 |V| 轮仍松弛成功,存在源点s可达的负环

- 图中存在负权边时:每轮<mark>对所有边</mark>进行松弛,持续迭代 |V| 1轮
- 最坏情况
 - 非环路的路径< $s, v_2, v_3, ..., v_{|V|}$ >至多经过|V| 1条边

- 图中存在负权边时:每轮<mark>对所有边</mark>进行松弛,持续迭代 |V| 1轮
- 最坏情况
 - 非环路的路径< $s, v_2, v_3, ..., v_{|V|}$ >至多经过|V| 1条边

- 图中存在负权边时:每轮<mark>对所有边</mark>进行松弛,持续迭代 |V| 1轮
- 最坏情况
 - 非环路的路径< $s, v_2, v_3, ..., v_{|V|}$ >至多经过|V| 1条边

- 图中存在负权边时:每轮<mark>对所有边</mark>进行松弛,持续迭代 |V| 1轮
- 最坏情况
 - 非环路的路径< $s, v_2, v_3, ..., v_{|V|}$ >至多经过|V| 1条边

- 图中存在负权边时:每轮<mark>对所有边</mark>进行松弛,持续迭代 |V| 1轮
- 最坏情况
 - 非环路的路径< $s, v_2, v_3, ..., v_{|V|}$ >至多经过|V| 1条边

- 图中存在负权边时:每轮对所有边进行松弛,持续迭代 |V| 1轮
- 最坏情况
 - 非环路的路径< $s, v_2, v_3, ..., v_{|V|}$ >至多经过|V| 1条边

- 图中存在负权边时:每轮对所有边进行松弛,持续迭代 |V| 1轮
- 最坏情况
 - 非环路的路径< $s, v_2, v_3, ..., v_{|V|}$ >至多经过|V| 1条边

最坏情况下进行 |V| - 1 轮松弛操作,可以保证求得单源最短路径

- 图中存在负权边时:若第 |V| 轮仍松弛成功,存在源点s可达的负环
- 若源点s可达负环,可松弛成功无限次

- 图中存在负权边时:若第 |V| 轮仍松弛成功,存在源点s可达的负环
- 若源点s可达负环,可松弛成功无限次

第|V|轮仍松弛成功的原因:存在源点可达的负环

	广度优先搜索	Dijkstra算法	Bellman-Ford算法
适用范围	无权图	带权图 (所有边权为正)	带权图
松弛次数		<i>E</i> 次	V · E 次
数据结构	队列	优先队列	
运行时间	O(V + E)	$O((V + E) \cdot \log V)$	$O(E \cdot V)$

图算法篇:所有点对最短路径问题

北京航空航天大学 计算机学院

问题定义

算法思想

算法设计

算法实例

算法分析

问题背景

• 航班价格

如何求出所有城市之间的最低航班价格?

问题定义

所有点对最短路径问题

All Pairs Shortest Paths

输入

• 带权图 $G = \langle V, E, W \rangle$, W 为边权

输出

• $\forall u, v \in V, \, \text{从} u \, \text{到} \, v \, \text{的最短路径}$

问题定义

算法思想

算法设计

算法实例

算法分析

$\begin{array}{c} v \\ u \end{array}$	1	2	3	4	5
1					
2					
3					
4					
5					

u	1	2	3	4	5
1	0	1-2 200	1-3 100	1-3-4 300	1-3-4-5 400
2					
3					
4					
5					

$\begin{array}{c} v \\ u \end{array}$	1	2	3	4	5
1	0	1-2 200	1-3 100	1-3-4 300	1-3-4-5 400
2	2-1 200	0	2-3 200	2-3-4 400	2-3-4-5 500
3					
4					
5					

$\begin{array}{c} v \\ u \end{array}$	1	2	3	4	5
1	0	1-2 200	1-3 100	1-3-4 300	1-3-4-5 400
2	2-1 200	0	2-3 200	2-3-4 400	2-3-4-5 500
3	3-1 100	3-2 200	0	3-4 200	3-4-5 300
4					
5					

v u	1	2	3	4	5
1	0	1-2 200	1-3 100	1-3-4 300	1-3-4-5 400
2	2-1 200	0	2-3 200	2-3-4 400	2-3-4-5 500
3	3-1 100	3-2 200	0	3-4 200	3-4-5 300
4	4-3-1 300	4-3-2 400	4-3 200	0	4-5 100
5					

$\begin{array}{c} v \\ u \end{array}$	1	2	3	4	5
1	0	1-2 200	1-3 100	1-3-4 300	1-3-4-5 400
2	2-1 200	0	2-3 200	2-3-4 400	2-3-4-5 500
3	3-1 100	3-2 200	0	3-4 200	3-4-5 300
4	4-3-1 300	4-3-2 400	4-3 200	0	4-5 100
5	5-4-3-1 400	5-4-3-2 500	5-4-3 300	5-4 100	0

- 使用Dijkstra算法依次求解所有点
- 存在重叠子问题

$\begin{array}{c} v \\ u \end{array}$	1	2	3	4	5
1	0	1-2 200	1-3 100	1-3-4 300	1-3-4-5 400
2	2-1 200	0	2-3 200	2-3-4 400	2-3-4-5 500
3	3-1 100	3-2 200	0	3-4 200	3-4-5 300
4	4-3-1 300	4-3-2 400	4-3 200	0	4-5 100
5	5-4-3-1 400	5-4-3-2 500	5-4-3 300	5-4 100	0

- 使用Dijkstra算法依次求解所有点
- 存在重叠子问题

v u	1	2	3	4	5
1	0	1-2 200	1-3 100	1-3-4 300	1-3-4-5 400
2	2-1 200	0	2-3 200	2-3-4 400	2-3-4-5 500
3	3-1 100	3-2 200	0	3-4 200	3-4-5 300
4	4-3-1 300	4-3-2 400	4-3 200	0	4-5 100
5	5-4-3-1 400	5-4-3-2 500	5-4-3 300	5-4 100	0

- 使用Dijkstra算法依次求解所有点
- 存在重叠子问题

从 1 到 5 的最短路径: $1\rightarrow 3\rightarrow 4\rightarrow 5$

从 3 到 5 的最短路径:3→4→5

- 从1到4的路径更新
 - 可从前 1 个点(即{1})中选择点经过: 1-4,500

- 从1到4的路径更新
 - 可从前 1 个点(即{1})中选择点经过: 1-4,500
 - 可从前 2 个点(即{1,2})中选择点经过: 1-4,500; 1-2-4,1400

- 从1到4的路径更新
 - 可从前1个点(即{1})中选择点经过: 1-4,500
 - 可从前 2 个点(即{1,2})中选择点经过: 1-4,500; 1-2-4,1400
 - 可从前3个点(即{1,2,3})中选择点经过:

1-4, 500; 1-2-4, 1400; 1-3-4, 300; 1-2-3-4, 600

- 从1到4的路径更新
 - 可从前1个点(即{1})中选择点经过: 1-4,500
 - 可从前 2 个点(即{1,2})中选择点经过: 1-4,500; 1-2-4,1400
 - 可从前 3 个点(即{1,2,3})中选择点经过:

1-4, 500; 1-2-4, 1400; 1-3-4, 300; 1-2-3-4, 600

可从前 4 个点(即{1,2,3,4})中选择点经过:

1-4, 500; 1-2-4, 1400; 1-3-4, 300; 1-2-3-4, 600

- 从1到4的路径更新
 - 可从前1个点(即{1})中选择点经过: 1-4,500
 - 可从前 2 个点(即{1,2})中选择点经过: 1-4,500; 1-2-4,1400
 - 可从前 3 个点(即{1,2,3})中选择点经过:

1-4, 500; 1-2-4, 1400; 1-3-4, 300; 1-2-3-4, 600

可从前 4 个点(即{1,2,3,4})中选择点经过:

1-4, 500; 1-2-4, 1400; 1-3-4, 300; 1-2-3-4, 600

可从前 5 个点(即{1,2,3,4,5})中选择点经过:

1-4, 500; 1-2-4, 1400; 1-3-4, 300; 1-2-3-4, 600;

1-2-5-4, 1300; 1-3-5-4, 800; 1-2-3-5-4, 1100;

1-3-2-5-4, 1400

- 从1到4的路径更新
 - 可从前1个点(即{1})中选择点经过: 1-4,500
 - 可从前 2 个点(即{1,2})中选择点经过: 1-4,500; 1-2-4,1400
 - 可从前 3 个点(即{1, 2, 3})中选择点经过:

1-4, 500; 1-2-4, 1400; 1-3-4, 300; 1-2-3-4, 600

可从前 4 个点(即{1,2,3,4})中选择点经过:

1-4, 500; 1-2-4, 1400; 1-3-4, 300; 1-2-3-4, 600

可从前 5 个点(即{1,2,3,4,5})中选择点经过:

1-4, 500; 1-2-4, 1400; 1-3-4, 300; 1-2-3-4, 600;

1-2-5-4, 1300; 1-3-5-4, 800; 1-2-3-5-4, 1100;

1-3-2-5-4, 1400

可经过的中间点越多距离逐渐变短

从1到4的路径更新

最短路径不经过 2

```
可从前 1 个点(即{1})中选择点经过: 1-4,500
可从前 2 个点(即{1,2})中选择点经过: 1-4,500; 1-2-4,1400
可从前 3 个点(即{1,2,3})中选择点经过: 1-4,500; 1-2-3-4,600
可从前 4 个点(即{1,2,3,4})中选择点经过: 最短路径经过: 1-4,500; 1-2-4,1400; 1-3-4,300; 1-2-3-4,600
可从前 5 个点(即{1,2,3,4,5})中选择点经过: 1-4,500; 1-2-4,1400; 1-3-4,300; 1-2-3-4,600; 1-2-5-4,1300; 1-3-5-4,800; 1-2-3-5-4,1100; 1-3-2-5-4,1400
```

可经过的中间点越多距离逐渐变短

● 从1到4的路径更新

最短路径不经过 2

- 可从前1个点(即{1})中选择点经过: 1-4,500
- 可从前 2 个点(即{1,2})中选择点经过: 1-4,500; 1-2-4,1400
- 可从前 3 个点(即{1, 2, 3})中选择点经过:

```
1-4, 500; 1-2-4, 1400; 1-3-4, 300; 1-2-3-4, 600
```


从1到4的路径更新

最短路径不经过 2

- 可从前1个点(即{1})中选择点经过: 1-4,500
- 可从前 2 个点(即{1,2})中选择点经过: 1-4,500; 1-2-4,1400
- 可从前3个点(即{1,2,3})中选择点经过:

```
1-4, 500; 1-2-4, 1400; 1-3-4, 300; 1-2-3-4, 600
```

• 两种情况:

- 加入可经过的新点 k 后,最短路径不经过新点,最短路径长度维持不变
- 加入可经过的新点 k 后,最短路径经过新点,且最短路径长度变小

从1到4的路径更新

最短路径不经过 2

- 可从前1个点(即{1})中选择点经过: 1-4,500
- 可从前 2 个点(即{1,2})中选择点经过: 1-4,500; 1-2-4,1400
- 可从前3个点(即{1,2,3})中选择点经过:

1-4, 500; 1-2-4, 1400; 1-3-4, 300; 1-2-3-4, 600

• 两种情况:

- 加入可经过的新点 k 后,最短路径不经过新点,最短路径长度维持不变
- 加入可经过的新点 k 后,最短路径经过新点,且最短路径长度变小

从1到4的路径更新

最短路径不经过 2

- 可从前1个点(即{1})中选择点经过: 1-4,500
- 可从前 2 个点(即{1,2})中选择点经过: 1-4,500; 1-2-4,1400
- 可从前3个点(即{1,2,3})中选择点经过:

• 两种情况:

- 加入可经过的新点 k 后,最短路径不经过新点,最短路径长度维持不变
- 加入可经过的新点 k 后,最短路径经过新点,且最短路径长度变小

从1到4的路径更新

最短路径不经过 2

- 可从前1个点(即{1})中选择点经过: 1-4,500
- 可从前 2 个点(即{1, 2})中选择点经过: 1-4, 500; 1-2-4, 1400
- 可从前 3 个点(即{1, 2, 3})中选择点经过:

1-4, 500; 1-2-4, 1400; 1-3-4, 300; 1-2-3-4, 600

• 两种情况:

最短路径经过 3

- 加入可经过的新点 k 后,最短路径不经过新点,最短路径长度维持不变
- 加入可经过的新点 k 后,最短路径经过新点,且最短路径长度变小

i 到 j 最短路: i-k-j

重叠子问题、最优子结构启发使用动态规划求解

i 到 k 最短路径

k到j最短路径

问题定义

算法思想

算法设计

算法实例

算法分析

动态规划:问题结构分析

- 给出问题表示
 - D[k,i,j]: 可从前 k 个点选点经过时, i 到 j 的最短距离

动态规划:问题结构分析

- 给出问题表示
 - D[k,i,j]: 可从前 k 个点选点经过时, i 到 j 的最短距离
- 从1到4的路径更新
 - 可从前1个点中选择点经过: D[1,1,4] = 500 (1-4,500)
 - 可从前 2 个点中选择点经过: D[2,1,4] = 500 (1-4,500)
 - 可从前 3 个点中选择点经过: D[3,1,4] = 300 (1-3-4,300)

- 给出问题表示
 - D[k,i,j]: 可从前 k 个点选点经过时, i 到 j 的最短距离
- 如果不选第 k 个点经过
 - D[k, i, j] = D[k 1, i, j]

- 从1到4的路径更新
 - 可从前1个点(即{1})中选择点经过:1-4,500
 - 可从前 2 个点(即{1,2})中选择点经过:1-4,500

此时: k = 2, i = 1, j = 4D[2, 1, 4] = D[1, 1, 4] = 500

- 给出问题表示
 - D[k,i,j]: 可从前 k 个点选点经过时, i 到 j 的最短距离
- 如果不选第 k 个点经过
 - D[k, i, j] = D[k 1, i, j]
- 如果选择第 k 个点经过

- 给出问题表示
 - D[k,i,j]: 可从前 k 个点选点经过时, i 到 j 的最短距离
- 如果不选第 k 个点经过
 - D[k,i,j] = D[k-1,i,j]
- 如果选择第 k 个点经过

- 给出问题表示
 - D[k,i,j]: 可从前 k 个点选点经过时, i 到 j 的最短距离
- 如果不选第 k 个点经过
 - D[k, i, j] = D[k 1, i, j]
- 如果选择第 k 个点经过

从 i 到 k:可经过前 k-1 个点的最短路

从 k 到 j: 可经过前 k-1 个点的最短路

- 给出问题表示
 - D[k,i,j]: 可从前 k 个点选点经过时, i 到 j 的最短距离
- 如果不选第 k 个点经过
 - D[k,i,j] = D[k-1,i,j]
- 如果选择第 k 个点经过
 - D[k, i, j] = D[k-1, i, k] + D[k-1, k, j]

从 i 到 k:可经过前 k-1 个点的最短路

从 k 到 j:可经过前 k-1 个点的最短路

- 给出问题表示
 - D[k,i,j]: 可从前 k 个点选点经过时, i 到 j 的最短距离
- 如果不选第 k 个点经过
 - D[k,i,j] = D[k-1,i,j]
- 如果选择第 k 个点经过
 - D[k, i, j] = D[k-1, i, k] + D[k-1, k, j]

$$D[k, i, j] = \min\{D[k-1, i, j], D[k-1, i, k] + D[k-1, k, j]\}$$

k i 到 j 可经过前 k 个点的最短路 i

从 i 到 k:可经过前 k-1 个点的最短路

从 k 到 j: 可经过前 k-1 个点的最短路

- 给出问题表示
 - D[k,i,j]: 可从前 k 个点选点经过时, i 到 j 的最短距离
- 如果不选第 k 个点经过
 - D[k,i,j] = D[k-1,i,j]
- 如果选择第 k 个点经过
 - D[k, i, j] = D[k-1, i, k] + D[k-1, k, j]

动态规划:自底向上计算(确定计算顺序)

• 初始化

D[k,i,j]: 可从前 k 个点选点经过时, i 到 j 的最短距离

• D[0,i,i] = 0: 起终点重合,路径长度为0

初始化的表格: k=0

i	1	2	3	4	5
1 '	Õ				
2		0			
3			0		
4				0	/
5					Q

动态规划:自底向上计算(确定计算顺序)

• 初始化

D[k,i,j]: 可从前 k 个点选点经过时, i 到 j 的最短距离

• D[0,i,i] = 0: 起终点重合,路径长度为0

• D[0,i,j] = e[i,j]: 任意两点直达距离为边权

初始化的表格:k=0

i j	1	2	3	4	5
1	0	200	100	500	500
2	200	0	200	1200	1000
3	100	200	0	200	600
4	500	1200	200	0	100
5	500	1000	600	100	0

动态规划:自底向上计算(确定计算顺序)

• 初始化

D[k,i,j]: 可从前 k 个点选点经过时, i 到 j 的最短距离

• D[0,i,i] = 0: 起终点重合,路径长度为0

• D[0,i,j] = e[i,j]: 任意两点直达距离为边权

• $D[1, i, j] = \min\{D[0, i, j], D[0, i, 1] + D[0, 1, j]\}$

初始化的表格:k=1

i	1	2	3	4	5
1	0	200	100	500	500
2	200	0	200	1200	1000
3	100	200	0	200	600
4	500	1200	200	0	100
5	500	1000	600	100	0

• 初始化

D[k,i,j]: 可从前 k 个点选点经过时, i 到 j 的最短距离

• D[0,i,i] = 0: 起终点重合,路径长度为0

• D[0,i,j] = e[i,j]: 任意两点直达距离为边权

• $D[1, i, j] = \min\{D[0, i, j], D[0, i, 1] + D[0, 1, j]\}$

i j	1	2	3	4	5
1	0	200	100	500	500
2	200	0	200	700	1000
3	100	200	0	200	600
4	500	1200	200	0	100
5	500	1000	600	100	0

• 初始化

D[k,i,j]: 可从前 k 个点选点经过时, i 到 j 的最短距离

• D[0,i,i] = 0: 起终点重合,路径长度为0

• D[0,i,j] = e[i,j]: 任意两点直达距离为边权

• $D[1, i, j] = \min\{D[0, i, j], D[0, i, 1] + D[0, 1, j]\}$

i	1	2	3	4	5
1	0	200	100	500	500
2	200	0	200	700	700
3	100	200	0	200	600
4	500	1200	200	0	100
5	500	1000	600	100	0

• 初始化

D[k,i,j]: 可从前 k 个点选点经过时, i 到 j 的最短距离

• D[0,i,i] = 0: 起终点重合,路径长度为0

• D[0,i,j] = e[i,j]: 任意两点直达距离为边权

• $D[1, i, j] = \min\{D[0, i, j], D[0, i, 1] + D[0, 1, j]\}$

i	1	2	3	4	5
1	0	200	100	500	500
2	200	0	200	700	700
3	100	200	0	200	600
4	500	700	200	0	100
5	500	1000	600	100	0

• 初始化

D[k,i,j]: 可从前 k 个点选点经过时, i 到 j 的最短距离

• D[0,i,i] = 0: 起终点重合,路径长度为0

• D[0,i,j] = e[i,j]: 任意两点直达距离为边权

• $D[1, i, j] = \min\{D[0, i, j], D[0, i, 1] + D[0, 1, j]\}$

i	1	2	3	4	5
1	0	200	100	500	500
2	200	0	200	700	700
3	100	200	0	200	600
4	500	700	200	0	100
5	500	700	600	100	0

- 递推公式
 - $D[k, i, j] = \min\{D[k-1, i, j], D[k-1, i, k] + D[k-1, k, j]\}$

最终的表格: k = |V|

i j	1	•••	•••	•••	•••	
1						
•••			2			
			•			
•••						
•••						

i j	1	2	3	4	5
1	0	200	100	500	500
2	200	0	200	1200	1000
3	100	200	0	200	600
4	500	1200	200	0	100
5	500	1000	600	100	0

- 递推公式
 - $D[k,i,j] = \min\{D[k-1,i,j], D[k-1,i,k] + D[k-1,k,j]$

最终的表格: k = |V|

i	1	 	
1			
•••		2	
		••	
•••			
•••			

i j	1	2	3	4	5
1	0	200	100	500	500
2	200	0	200	1200	1000
3	100	200	0	200	600
4	500	1200	200	0	100
5	500	1000	600	100	0

- 递推公式
 - $D[k,i,j] = \min\{D[k-1,i,j], D[k-1,i,k] + D[k-1,k,j]$

最终的表格: k = |V|

i j	1	•	•	•	
1					
•••)		
			•		
•••					
•••					

i j	1	2	3	4	5
1	0	200	100	500	500
2	200	0	200	1200	1000
3	100	200	0	200	600
4	500	1200	200	0	100
5	500	1000	600	100	0

- 递推公式
 - $D[k,i,j] = \min\{D[k-1,i,j], D[k-1,i,k] + D[k-1,k,j]$

最终的表格: k = |V|

i j	1	•••	•••	•••	•••
1					
•••			2		
			•		
•••					
•••					

i j	1	2	3	4	5
1	0	200	100	500	500
2	200	0	200	1200	1000
3	100	200	0	200	600
4	500	1200	200	0	100
5	500	1000	600	100	0

- 递推公式
 - $D[k,i,j] = \min\{D[k-1,i,j], D[k-1,i,k] + D[k-1,k,j]$

最终的表格: k = |V|

j	1	•••	•••	•••	
1					
•••)		
			•		
•••					
•••					

i j	1	2	3	4	5
1	0	200	100	500	500
2	200	0	200	1200	1000
3	100	200	0	200	600
4	500	1200	200	0	100
5	500	1000	600	100	0

- 递推公式
 - $D[k,i,j] = \min\{D[k-1,i,j], D[k-1,i,k] + D[k-1,k,j]$

最终的表格: k = |V|

i j	1	•••	•••	•••	•••
1					
•••			2		
			•		
•••					
•••					

i j	1	2	3	4	5
1	0	200	100	500	500
2	200	0	200	1200	1000
3	100	200	0	200	600
4	500	1200	200	0	100
5	500	1000	600	100	0

- 递推公式
 - $D[k, i, j] = \min\{D[k-1, i, j], D[k-1, i, k] + D[k-1, k, j]$

求解当前层只依赖上一层

i j	1	2	3	4	5
1	0	200	100	500	500
2	200	0	200	1200	1000
3	100	200	0	200	600
4	500	1200	200	0	100
5	500	1000	600	100	0

- 递推公式
 - $D[k, i, j] = \min\{D[k-1, i, j], D[k-1, i, k] + D[k-1, k, j]\}$

问题:是否能只需要一层表格?

- 递推公式
 - $D[k, i, j] = \min\{D[k-1, i, j], D[k-1, i, k] + D[k-1, k, j]\}$
- 若k = i

$$D[k-1,i,k] + D[k-1,k,j]$$
= $D[k-1,k,k] + D[k-1,k,j]$
= $0 + D[k-1,i,j] = D[k-1,i,j]$

- 递推公式
 - $D[k, i, j] = \min\{D[k-1, i, j], D[k-1, i, k] + D[k-1, k, j]\}$
- 若k = i
 - D[k, i, j] = D[k-1, i, j]

$$D[k-1,i,k] + D[k-1,k,j]$$
= $D[k-1,k,k] + D[k-1,k,j]$
= $0 + D[k-1,i,j] = D[k-1,i,j]$

i j	1	:	\boldsymbol{k}	:	
1					
•••					
k					
•••					
•••					
i j	1	•••	k	•••	•••
<i>i j</i> 1	1	•••	k	•••	
i	1		k		
i	1		k		•••
1	1	•••	k	•••	•••

- 递推公式
 - $D[k, i, j] = \min\{D[k-1, i, j], D[k-1, i, k] + D[k-1, k, j]\}$
- 若k = i
 - D[k, i, j] = D[k-1, i, j]
 - 值相同,可以直接覆盖

$$D[k-1,i,k] + D[k-1,k,j]$$

- = D[k-1,k,k] + D[k-1,k,j]
- = 0 + D[k-1,i,j] = D[k-1,i,j]

i j	1	 k	
1			
•••			
k			
•••			
•••			
$\overline{}$			

i j	1	 k	
1			
•••			
k			
•••			
•••			

- 递推公式
 - $D[k, i, j] = \min\{D[k-1, i, j], D[k-1, i, k] + D[k-1, k, j]\}$
- 若k = i 或 k = j
 - D[k, i, j] = D[k-1, i, j]
 - 值相同,可以直接覆盖

- 递推公式
 - $D[k, i, j] = \min\{D[k-1, i, j], D[k-1, i, k] + D[k-1, k, j]\}$
- 若k = i 或 k = j
 - D[k, i, j] = D[k-1, i, j]
 - 值相同,可以直接覆盖
- 若k ≠ i且k ≠ j
 - D[k-1,i,j] 和 D[k-1,i,k], D[k-1,k,j]
 不是相同子问题

i j	1		k		
1					
•••					
k					
•••					
•••					
Щ.	L	L			L
i j	1	•••	k	•••	•••
<i>i j</i> 1	1		k		
i	1	•••	k	•••	•••
i	1	•••	k		•••
1	1		k		

- 递推公式
 - $D[k, i, j] = \min\{D[k-1, i, j], D[k-1, i, k] + D[k-1, k, j]\}$
- 若k = i 或 k = j
 - D[k, i, j] = D[k-1, i, j]
 - 值相同,可以直接覆盖
- 若 $k \neq i$ 且 $k \neq j$
 - D[k-1,i,j] 和 D[k-1,i,k], D[k-1,k,j]
 不是相同子问题
 - 求出 D[k,i,j] 后, D[k-1,i,j] 不再被使用,
 可直接覆盖

i j	1		k	•••	•••
1					
•••					
k					
j	4				
i	1	•••	k	•••	•••
1	1	•••	k	•••	•••
	I	•••	k	•••	•••
	1	•••	k	•••	•••
1	1		k	•••	•••

- 递推公式
 - $D[k, i, j] = \min\{D[k-1, i, j], D[k-1, i, k] + D[k-1, k, j]\}$
- 若k = i 或 k = j
 - D[k, i, j] = D[k-1, i, j]
 - 值相同,可以直接覆盖
- 若 $k \neq i$ 且 $k \neq j$
 - D[k − 1, i, j] 和 D[k − 1, i, k], D[k − 1, k, j] 不是相同子问题
 - 求出 D[k, i, j] 后, D[k-1, i, j] 不再被使用,可直接覆盖

求出新值可直接在原位置覆盖,只需存储一层表格

- 递推公式
 - $D_k[i,j] = \min\{D_{k-1}[i,j], D_{k-1}[i,k] + D_{k-1}[k,j]\}$

- 递推公式
 - $D_k[i,j] = \min\{D_{k-1}[i,j], D_{k-1}[i,k] + D_{k-1}[k,j]\}$
- 追踪数组Rec, 记录经过的中间点
 - $D_k[i,j] = D_{k-1}[i,j]: 0$ 表示没有中间点

Rec

i	1	•••	j	 V
1				
•••				
i			0	
•••				
V				

- 递推公式
 - $D_k[i,j] = \min\{D_{k-1}[i,j], D_{k-1}[i,k] + D_{k-1}[k,j]\}$
- 追踪数组Rec, 记录经过的中间点
 - $D_k[i,j] = D_{k-1}[i,j]$: 0 表示没有中间点
 - $D_k[i,j] = D_{k-1}[i,k] + D_{k-1}[k,j]$: k 表示经过中间点k

Rec

松弛时使用的点

i	1	•••	j	•••	V
1					
•••					
i			k		
•••					
V					

• 根据数组Rec, 输出最短路径

Rec

i	1	2	3	4	5
1			0		3
2					
3				0	4
4					0
5					

1-3-5

• 根据数组Rec, 输出最短路径

Rec

i j	1	2	3	4	5
1			0		3
2					
3				0	4
4					0
5					

1-3-5

• 根据数组Rec, 输出最短路径

Rec

i	1	2	[3]	4	5
1			0		3
2					
3				0	4
4					0
5					

1-3-5

• 根据数组Rec, 输出最短路径

Rec

i	1	2	3	4	5
1			0		3
2					
3				0	4
4					0
5					

1-3-5

1-3-4-5

• 根据数组Rec, 输出最短路径

Rec

i	1	2	3	4	5
1			0		3
2					
3				0-	4
4					0
5					

1-3-5

1-3-4-5

• 根据数组Rec, 输出最短路径

Rec

i	1	2	3	4	5
1			0		3
2					
3				$\begin{bmatrix} 0 \end{bmatrix}$	4
4					_0_
5					

1-3-5

1-3-4-5

1到5的最短路径

问题定义

算法思想

算法设计

算法实例

算法分析

i j	1	2	3	4	5
1	0	200	100	500	500
2	200	0	200	1200	1000
3	100	200	0	200	600
4	500	1200	200	0	100
5	500	1000	600	100	0

所有点对都没有经过其他点

Rec

k = 0

i	1	2	3	4	5
1	0	0	0	0	0
2	0	0	0	0	0
3	0	0	0	0	0
4	0	0	0	0	0
5	0	0	0	0	0

• $D_k[i,j] = \min\{D_{k-1}[i,j], D_{k-1}[i,k] + D_{k-1}[k,j]\}$

 \boldsymbol{D}

i	1	2_	3_	_4	5_
1	0	200	100	500	500
2	200	0	200	1200	1000
3	100	200	0	200	600
4	500	1200	200	0	100
5	500	1000	600	100	0

Rec

i	1	2	3	4	5
1	0	0	0	0	0
2	0	0	0	0	0
3	0	0	0	0	0
4	0	0	0	0	0
5	0	0	0	0	0

$$k = 1$$

i j	1	2	3	4	5
1	0	200	100	500	500
2	200	0	200	700	700
3	100	200	0	200	600
4	500	1200	200	0	100
5	500	1000	600	100	0

$$k = 1$$

i j	1	2	3	4	5
1	0	0	0	0	0
2	0	0	0	1	1
3	0	0	0	0	0
4	0	0	0	0	0
5	0	0	0	0	0

i j	1	2	3	4	5	
1	0	200	100	500	500	
2	200	0	200	700	700	
3	100	200	0	200	600	
4	500	700	200	0	100	1
5	500	1000	600	100	0	

$$k = 1$$

i	1	2	3	4	5
1	0	0	0	0	0
2	0	0	0	1	1
3	0	0	0	0	0
4	0	1	0	0	0
5	0	0	0	0	0

i j	1	2	3	4	5
1	0	200	100	500	500
2	200	0	200	700	700
3	100	200	0	200	600
4	500	700	200	_0_	100
5	500	700	600	100	0

$$k = 1$$

i j	1	2	3	4	5
1	0	0	0	0	0
2	0	0	0	1	1
3	0	0	0	0	0
4	0	1	0	0	0
5	0	0	0	0	0

i j	1	2	3	4	5
1	0	200	100	500	500
2	200	0	200	700	700
3	100	200	0	200	600
4	500	700	200	0	100
5	500	700	600	100	0

$$k = 2$$

i j	1	2	3	4	5
1	0	0	0	0	0
2	0	0	0	1	1
3	0	0	0	0	0
4	0	1	0	0	0
5	0	0	0	0	0

i j	1	2	3	4	5
1	0	200	100	500	500
2	200	0	200	700	700
3	100	200	0	200	600
4	500	700	200	0	100
5	500	700	600	100	0

$$k = 2$$

i	1	2	3	4	5
1	0	0	0	0	0
2	0	0	0	1	1
3	0	0	0	0	0
4	0	1	0	0	0
5	0	0	0	0	0

i j	1	2	3	4	5
1	0	200	100	500	500
2	200	0	200	700	700
3	100	200	0	200	600
4	500	700	200	0	100
5	500	700	600	100	0

$$k = 2$$

i	1	2	3	4	5
1	0	0	0	0	0
2	0	0	0	1	1
3	0	0	0	0	0
4	0	1	0	0	0
5	0	0	0	0	0

i j	1	2	3	4	5
1	0	200	100	500	500
2	200	0	200	700	700
3	100	200	0	200	600
4	500	700	200	0	100
5	500	700	600	100	0

$$k = 2$$

i	1	2	3	4	5
1	0	0	0	0	0
2	0	0	0	1	1
3	0	0	0	0	0
4	0	1	0	0	0
5	0	0	0	0	0

i j	1	2	3	4	5
1	0	200	100	500	500
2	200	0	200	700	700
3	100	200	0	200	600
4	500	700	200	_0_	100
5	500	700	600	100	_0_

$$k = 2$$

i	1	2	3	4	5
1	0	0	0	0	0
2	0	0	0	1	1
3	0	0	0	0	0
4	0	1	0	0	0
5	0	0	0	0	0

i j	1	2	3	4	5
1	0	200	100	300	500
2	200	0	200	700	700
3	100	200	0	200	600
4	500	700	200	0	100
5	500	700	600	100	0

$$k = 3$$

i j	1	2	3	4	5
1	0	0	0	3	0
2	0	0	0	1	1
3	0	0	0	0	0
4	0	1	0	0	0
5	0	0	0	0	0

i j	1	2	3	4	5
1	0	200	100	300	500
2	200	0	200	400	700
3	100	200	0	200	600
4	500	700	200	0	100
5	500	700	600	100	0

$$k = 3$$

i	1	2	3	4	5
1	0	0	0	3	0
2	0	0	0	3	1
3	0	0	0	0	0
4	0	1	0	0	0
5	0	0	0	0	0

i j	1	2	3	4	5
1	0	200	100	300	500
2	200	0	200	400	700
3	100	200		200	600
4	500	700	200	0	100
5	500	700	600	100	0

$$k = 3$$

i	1	2	3	4	5
1	0	0	0	3	0
2	0	0	0	3	1
3	0	0	0	0	0
4	0	1	0	0	0
5	0	0	0	0	0

i j	1	2	3	4	5
1	0	200	100	300	500
2	200	0	200	400	700
3	100	200	0	200	600
4	300	400	200	0	100
5	500	700	600	100	0

$$k = 3$$

i j	1	2	3	4	5
1	0	0	0	3	0
2	0	0	0	3	1
3	0	0	0	0	0
4	3	3	0	0	0
5	0	0	0	0	0

i j	1	2	3	4	5
1	0	200	100	300	500
2	200	0	200	400	700
3	100	200	0	200	600
4	300	400	200	0	100
5	500	700	600	100	0

$$k = 3$$

i	1	2	3	4	5
1	0	0	0	3	0
2	0	0	0	3	1
3	0	0	0	0	0
4	3	3	0	0	0
5	0	0	0	0	0

i j	1	2	3	4	5
1	0	200	100	300	400
2	200	0	200	400	700
3	100	200	0	200	600
4	300	400	200	0	100
5	500	700	600	100	0

$$k = 4$$

i j	1	2	3	4	5
1	0	0	0	3	4
2	0	0	0	3	1
3	0	0	0	0	0
4	3	3	0	0	0
5	0	0	0	0	0

i j	1	2	3	4	5
1	0_	200	100	300	400
2	200	0	200	400	500
3	100	200	0	200	600
4	300	400	200	0	100
5	500	700	600	100	0

$$k = 4$$

i	1	2	3	4	5
1	0	0	0	3	4
2	0	0	0	3	4
3	0	0	0	0	0
4	3	3	0	0	0
5	0	0	0	0	0

i j	1	2	3	4	5
1	0	200	100	300	400
2	200	_0_	200	400	500
3	100	200	0_	200	300
4	300	400	200	0	100
5	500	700	600	100	0

$$k = 4$$

i	1	2	3	4	5
1	0	0	0	3	4
2	0	0	0	3	4
3	0	0	0	0	4
4	3	3	0	0	0
5	0	0	0	0	0

i	1	2	3	4	5
1	0	200	100	300	400
2	200	0	200	400	500
3	100	200	0	200	300
4	300	400	200	$\begin{bmatrix} 0 \end{bmatrix}$	100
5	500	700	600	100	0

$$k = 4$$

i j	1	2	3	4	5
1	0	0	0	3	4
2	0	0	0	3	4
3	0	0	0	0	4
4	3	3	0	0	0
5	0	0	0	0	0

i j	1	2	3	4	5
1	0	200	100	300	400
2	200	0	200	400	500
3	100	200	0	200	300
4	300	400	200	0	100
5	400	500	300	100	

$$k = 4$$

i	1	2	3	4	5
1	0	0	0	3	4
2	0	0	0	3	4
3	0	0	0	0	4
4	3	3	0	0	0
5	4	4	4	0	0

i j	1	2	3	4	5
1	0	200	100	300	400
2	200	0	200	400	500
3	100	200	0	200	300
4	300_	400	200	0_	100
5	400	500	<u>300</u>	100	0

$$k = 5$$

i j	1	2	3	4	5
1	0	0	0	3	4
2	0	0	0	3	4
3	0	0	0	0	4
4	3	3	0	0	0
5	4	4	4	0	0

i j	1	2	3	4	5
1	0_	200	100	300	400
2	200	0	200	400	500
3	100	200	0	200	300
4	300_	400	200	0_	100
5	400	500	300	100	0

$$k = 5$$

i j	1	2	3	4	5
1	0	0	0	3	4
2	0	0	0	3	4
3	0	0	0	0	4
4	3	3	0	0	0
5	4	4	4	0	0

i j	1	2	3	4	5
1	0	200	100	300	400
2	200	0	200	400	500
3	100	200	0	200	300
4	300	400	200	0	100
5	400	500	300	100	0

$$k = 5$$

i j	1	2	3	4	5
1	0	0	0	3	4
2	0	0	0	3	4
3	0	0	0	0	4
4	3	3	0	0	0
5	4	4	4	0	0

i j	1	2	3	4	5
1	0	200	100	300	400
2	200	0	200	400	500
3	100	200	0_	200	300
4	300	400	200	0	100
5	400	500	300	100	0

$$k = 5$$

i j	1	2	3	4	5
1	0	0	0	3	4
2	0	0	0	3	4
3	0	0	0	0	4
4	3	3	0	0	0
5	4	4	4	0	0

i j	1	2	3	4	5
1	0	200	100	300	400
2	200	0	200	400	500
3	100	200	0	200	300
4	300	400	200	0	100
5	400	500	300	100	0

$$k = 5$$

i	1	2	3	4	5
1	0	0	0	3	4
2	0	0	0	3	4
3	0	0	0	0	4
4	3	3	0	0	0
5	4	4	4	0	0

D

100

• $D_k[i,j] = \min\{D_{k-1}[i,j], D_{k-1}[i,k] + D_{k-1}[k,j]\}$

● 查询从1到5的最短路

		1
		_

i j	1	2	3	4	5
1	0	200	100	300	400
2	200	0	200	400	500
3	100	200	0	200	300
4	300	400	200	0	100
5	400	500	300	100	0

$$k = 5$$

R	ec	(2)	10	900	
	i j	1	2	3	4	5
	1	0	0	0	3	4
	2	0	0	0	3	4
	3	0	0	0	0	4
	4	3	3	0	0	0
	5	4	4	4	0	0

• $D_k[i,j] = \min\{D_{k-1}[i,j], D_{k-1}[i,k] + D_{k-1}[k,j]\}$

● 查询从1到5的最短路

1	ľ	٦	
1	1	1	

i j	1	2	3	4	5
1	0	200	100	300	400
2	200	0	200	400	500
3	100	200	0	200	300
4	300	400	200	0	100
5	400	500	300	100	0

$$k = 5$$

Rec

1200 000 5		500	
1200 000 5	200		
1000	2	1200 0	5

i j	1	2	3	4	5
1	0	0	0	3	4
2	0	0	0	3	4
3	0	0	0	0	4
4	3	3	0	0	0
5	4	4	4	0	0

100

• $D_k[i,j] = \min\{D_{k-1}[i,j], D_{k-1}[i,k] + D_{k-1}[k,j]\}$

● 查询从1到5的最短路

Rec	

D					
i j	1	2	3	4	5
1	0	200	100	300	400
2	200	0	200	400	500
3	100	200	0	200	300
4	300	400	200	0	100
5	400	500	300	100	0

$$k = 5$$

ec		2)	11	900	
i j	1	2	3	4	5
1	0	0	0	3	4
2	0	0	0	3	4
3	0	0	0	0	4
4	3	3	0	0	0
5	4	4	4	0	0

1200 00.

100

• $D_k[i,j] = \min\{D_{k-1}[i,j], D_{k-1}[i,k] + D_{k-1}[k,j]\}$

● 查询从1到5的最短路

 \boldsymbol{D}

i j	1	2	3	4	5
1	0	200	100	300	400
2	200	0	200	400	500
3	100	200	0	200	300
4	300	400	200	0	100
5	400	500	300	100	0

$$k = 5$$

R	ec	(2)					
	i j	1	2	3	4	5	
	1	0	0	0	3	4	
	2	0	0	0	3	4	
	3	0	0	0	0	4	
	4	3	3	0	0	0	
	5	4	4	4	0	0	

• $D_k[i,j] = \min\{D_{k-1}[i,j], D_{k-1}[i,k] + D_{k-1}[k,j]\}$

● 查询从1到5的最短路

 \boldsymbol{D}

i j	1	2	3	4	5
1	0	200	100	300	400
2	200	0	200	400	500
3	100	200	0	200	300
4	300	400	200	0	100
5	400	500	300	100	0

$$k = 5$$

Rec		2) 1000				
	i j	1	2	3	4	5
	1	0	0	0	3	4
	2	0	0	0	3	4
	3	0	0	0	0	4
	4	3	3	0	0	0
	5	4	4	4	0	0

问题定义

算法思想

算法设计

算法实例

算法分析

伪代码


```
输入: 图G = \langle V, E, W \rangle
 输出: 任意两点最短路径
 新建二维数组D[1..|V|,1..|V|],Rec[1..|V|,1..|V|]
for i \leftarrow 1 to |V| do
                                                         初始化
    for j \leftarrow 1 to |V| do
        Rec[i,j] \leftarrow 0
        if i = j then
           D[i,j] \leftarrow 0
        end
        else
           D[i,j] \leftarrow W[i,j]
        end
    end
end
```



```
输入: 图G = \langle V, E, W \rangle
输出: 任意两点最短路径
新建二维数组D[1..|V|, 1..|V|], Rec[1..|V|, 1..|V|]
for i \leftarrow 1 to |V| do
   for j \leftarrow 1 to |V| do
       Rec[i,j] \leftarrow 0
      if i = j then
                                    起终点相同,距离为0
          D[i,j] \leftarrow 0
      end
       else
          D[i,j] \leftarrow W[i,j]
                                  起终点不同,距离为边权
      \mathbf{end}
   end
end
```



```
\begin{array}{c|c} \mathbf{for} \ k \leftarrow 1 \ to \ |V| \ \mathbf{do} \\ \hline \ | \ \mathbf{for} \ i \leftarrow 1 \ to \ |V| \ \mathbf{do} \\ \hline \ | \ \mathbf{for} \ j \leftarrow 1 \ to \ |V| \ \mathbf{do} \\ \hline \ | \ | \ \mathbf{fif} \ D[i,j] > D[i,k] + D[k,j] \ \mathbf{then} \\ \hline \ | \ | \ D[i,j] \leftarrow D[i,k] + D[k,j] \\ \hline \ | \ | \ Rec[i,j] \leftarrow k \\ \hline \ | \ \mathbf{end} \\ \hline \ \mathbf{end} \\ \hline \ \mathbf{end} \\ \ \mathbf{end} \\ \hline \ \mathbf{end} \\ \hline \ \mathbf{end} \\ \ \mathbf{end} \\ \hline \ \mathbf{end} \\ \ \mathbf
```

伪代码

• Find-Path(Rec, u, v)

```
输入: 备忘数组Rec,起点u,终点v
输出: 最短路径(逆序)

(if Rec[u,v]=0 then 

print v

return
end

k \leftarrow Rec[u,v]

Find-Path(Rec,u,k)

Find-Path(Rec,k,v)
```

伪代码

• Find-Path(Rec, u, v)

```
输入: 备忘数组Rec,起点u,终点v
输出: 最短路径(逆序)
if Rec[u,v]=0 then
print v
return
end
k \leftarrow Rec[u,v]
Find-Path(Rec,u,k)
Find-Path(Rec,k,v)
```

时间复杂度

- 该算法由Floyd和Warshall于1962年分别提出
- 也被称为Floyd-Warshall算法

Robert Floyd 1936-2001

Stephen Warshall 1935-2006

• 直观思路: 使用Dijkstra算法依次求解所有点

```
输入: 图G
输出: 任意两点最短路径
   \begin{array}{c} i \leftarrow 1 \ to \ |V| \ \mathbf{do} \\ Paths[i] \leftarrow Dijkstra - PriQueue(G,i) - - O(|E| \mathbf{log}|V|) - O(|V||E| \mathbf{log}|V|) \end{array}
for i \leftarrow 1 to |V| \operatorname{do}_{-}
\mathbf{end}
return Paths
                           回顾
                                            //执行单源最短路径算法
                                            while 优先队列Q非空 do
                                                v \leftarrow Q.ExtractMin()
                                                for u \in G.adj[v] do
                                                    if dist[v] + w(v, u) < dist[u] then
                                                        dist[u] \leftarrow dist[v] + w(v, u)
                                                       pred[u] \leftarrow v
                                                        Q.DecreaseKey((u, dist[u]))
                                                    end
                                                end
                                                color[v] \leftarrow BLACK
                                                                                         时间复杂度O(|E| \cdot \log |V|)
                                            end
```


• 直观思路: 使用Dijkstra算法依次求解所有点

● Floyd-Warshall算法时间复杂度: *O*(|V|³)

• 直观思路: 使用Dijkstra算法依次求解所有点

• 直观思路: 使用Dijkstra算法依次求解所有点

 $O(|V|^3\log|V|)$ Floyd-Warshall算法时间复杂度: $O(|V|^3)$ 优于

最短路径算法小结

传递闭包

- 给定图 G = (V, E) , 其中 $V = \{1, 2, ..., n\}$ 。图 G 的传递闭包是一个图 $G^* = (V, E^*)$, 其中 $E^* = \{(i, j) | G$ 中有一条从 i 到 j 的路径 $\}$
- 直接使用Floyd-Warshall算法
- 对递推式进行转化

$$D_k[i,j] = \min\{D_{k-1}[i,j], D_{k-1}[i,k] + D_{k-1}[k,j]\}$$

$$D_{k}[i,j] = D_{k-1}[i,j] \lor (D_{k-1}[i,k] \land D_{k-1}[k,j])$$

有向无环图中的单源最短路径

- 有向无环图
 - 可以有负权边
 - 没有源点可达的负环
- 算法
 - 先求得图 *G*的拓扑排序
 - 按照拓扑排序的顶点顺序,对每个节点的关联边进行松驰