BITS Pilani Hyderabad Campus CS F214 Logic in Computer Science, I Semester 2021-2022 Lecture Notes Lecture 19

Lemma: A disjunction of literals $L_1 \vee L_2 \vee \vee L_m$ is valid iff there are i,j such that $1 \leq i,j \leq m$, so that L_i is $\neg L_j$

Proof:Consider i,j so that L_i is $\neg L_j$.

Now,

$$L_1 \lor L_2 \lor ... \lor L_m \equiv (L_1 \lor ...) \lor (L_i \lor \neg L_i)$$
 (1)

Now, $(L_i \vee \neg L_i)$ is always true.

Suppose L_i is an atom P. In any valuations, p is either true or false.

Case 1: p is true Then L_i is true. $\therefore (L_i \vee \neg L_i)$ is true. $\therefore (1)$ is true.

Case 2: p is false.

 L_i is false, $\neg L_i$ is true.

 $\therefore (L_i \vee \neg L_i)$ is true.

 \therefore (1) is true.

Suppose L_i is $\neg p$, the formula is valid for similar reasons.

To prove the converse, suppose for all i,j $1 \le i, j \le m$. L_i is not $\neg L_j$ then The formula is $L_1 \lor L_2 \lor ... \lor L_m$.

Now, consider a valuation where each literal is made false. Suppose a literal L_i is P_k . Then set P_k false in the valuation.

Suppose L_i is $\neg P_l$. Then set P_l to true in the valuation.

This procedure will not make any literal evaluate to false because that would imply that such a literal is a negation of a literal that had previously been made false.

Definition: Given a formula ϕ in propositional logic, we say that ϕ is satisfiable if it has a validation in which it evaluates to true.

e.g.

$$(1)p \lor q \to p$$
 is satisfiable $(2)(p \lor q) \land (\neg p) \land (\neg q)$