Enhancing Risk Aware Decision in Healthcare with Uncertainty Quantification

Rahul Vishwakarma, Jinha Hwang, Benyamin Ahmadnia California State University Long Beach

Motivation: Risk of wrong prediction!

- Life threating situation in healthcare domain
- Model accuracy for new patients?

 Most of the Machine Learning model lacks calibration.

 No guarantee for uncertainty estimations for new data.

Need of *Uncertainty Quantification* for a reliable decision.

Prior Work

- Bayesian Inference: Require careful selection of prior distributions.
- Confidence intervals: Not be well-suited for complex data and model.

Method: Set valued prediction

- Idea: Instead of calibrating the probabilities for each individual outcome (e.g., Y = 1), apply calibrated probabilities to a set of potential outcomes (e.g., Y ∈ {1, 2, 3}).
- Goal: Forecast a limited collection of reasonable responses.

Conformal Prediction: Uncertainty Quantifier

Proposed Solution

Inference: p-values

$p ext{-}values$							y (sig = 0.20)	
p- 0	p-1	p-2	p - β	p-4	p- 5	<i>p-6</i>	p-7	
0.125	0.122	0.131	0.373	0.122	0.122	0.130	0.124	3
False	False	False	True	False	False	False	False	

Enhancing Risk Aware Decision in Healthcare with Uncertainty Quantification

Rahul Vishwakarma, Jinha Hwang, Benyamin Ahmadnia California State University Long Beach

Metrics: coverage and set size

\overline{sig}	$mean_err$	avg_c
0.5	0.506	0.604
$\overline{0.7}$	0.701	0.371
0.8	0.804	0.251
0.9	0.894	0.115

- Coverage: proportion of true target values that fall within the pred intervals.
- Efficiency: how tight the prediction intervals are.

Guaranteed coverage

c1-value	c2-value	c3-value	c4-value	c5-value	c6-value	c7-value	conf	\mathbf{cred}	y-pred
TRUE	0.824	0.911	2						
TRUE	0.533	0.725	2						
TRUE	0.432	0.603	2						
TRUE	0.488	0.669	7						
	•••	•••		•••	•••		•••	•••	
TRUE	0.423	0.593	1						
FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	0.979	0.989	5
TRUE	0.566	0.779	2						
FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	0.959	0.981	5
TRUE	0.429	0.597	1						

 $new\ data_{(\alpha_{0.05})} = \{Surgery(0.06), Neurology(0.08)\}$ $new\ data_{(\alpha_{0.05})} = \{Neurology\}$

Reject Predictions: null set

sig	conf	prediction
0.5	0.61	{NULL}
0.15	0.86	$\{surgery\}$
0.10	0.87	$\{surgery, others\}$

Algorithm agnostic method for "reject" - model cannot provide a confident prediction for this input.

Confusion matrix

	Multinomial Naive Bayes										
	0	1	2	3	4	5	6	7			
0	57	0	1	1	0	0	1	3			
1	0	28	2	0	0	0	0	2			
2	32	7	404	22	18	17	30	15			
3	0	0	0	34	0	0	2	0			
4	0	0	2	0	32	0	0	1			
5	1	1	5	0	0	29	2	0			
6	0	0	0	1	0	0	21	0			
7	0	1	3	0	0	0	0	12			

Conformal Inference									
	0	1	2	3	4	5	6	7	
0	8	2	34	5	4	1	4	5	
1	3	2	20	0	1	5	0	1	
2	68	34	290	39	27	33	17	37	
3	4	4	17	3	1	3	1	3	
4	2	5	19	4	1	1	1	2	
5	5	0	23	3	0	3	0	4	
6	2	2	10	2	0	0	3	3	
7	2	0	11	1	1	0	0	1	

Applying conformal prediction to a machine learning classifier provides a strict prediction based on the assigned significance level.

Disease Severity Ranking

Confidence $(x) = \sup\{1 - \epsilon : |\Gamma_{\epsilon}(x)| \le 1\}$ Derive the confidence of each predicted label.

 $c(label_1) >, ..., c(label_n)$ Rank the instances of same label based on the confidence.

Contributions

- Incorporates significance level parameter in conformal prediction for guaranteed coverage.
- Uses rejection option (null set) for a more trustworthy model.
- Provides classification labels with confidence and credibility for ranking the decisions.

