СПБ НИУ ИТМО

«Университет информационных технологий, механики и оптики»

Кафедра вычислительной техники

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №3

Вариант: интерполирование многочленом Ньютона

Выполнил:

Ощепков А.А. группа: P3202

Преподаватель:

Петрова M.M.

Задание

Требуется написать программу, интерполирующую функцию, заданную таблично, другой функцией. Таблица должна строиться на основе выбранной пользователем функции.

Программно построить график, на котором одним цветом функция (sinx), а другим цветом полученный график в результате интерполяции. На графике должны быть отмечены сами точки (узлы) интерполяции.

Описание метода

Интерполяционный многочлен Ньютона позволяет интерполировать некоторую фунцию f(x), заданную таблично. Для его построения необходимо ввести понятие "разделённая разность". Разделенные разности нулевого порядка совпадают со значениями функции в узлах. Разделенные разности первого порядка определяются через разделенные разности нулевого порядка:

 $f(x_i, x_{i+1}) = \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i}$

Разделенные разности второго порядка определяются через разделенные разности первого порядка:

 $f(x_i, x_{i+1}, x_{i+2}) = \frac{f(x_{i+1}, x_{i+2}) - f(x_i, x_{i+1})}{x_{i+2} - x_i}$ И так далее.

Используя понятие разделенной разности, интерполяционный многочлен Ньютона можно записать в следующем виде:

$$P_n(x) = f(x_0) + f(x_0, x_1) \cdot (x - x_0) + f(x_0, x_1, x_2) \cdot (x - x_0) \cdot (x - x_1) + \dots + f(x_0, x_1, \dots, x_n) \cdot (x - x_0) \cdot (x - x_1) \cdot \dots \cdot (x - x_{n-1})$$

Текст программы

```
public class Approximation {
      public static Function < Number , Number > getApproximateFunction (
     LinkedList < Pair < Double , Double >> table ) {
          int n = table.size();
          Double [][] dif = new Double [n][n];
          for (int i = 0; i < n; i++){
              dif[i][0] = table.get(i).getValue();
          // Вычисляем конечные разности
          for (int j = 1; j < n; j++)
              for (int i = 0; i < n-j; i++){
10
                  11
12
     getKey());
13
          return new Function < Number , Number > () {
14
              @Override
              public Number apply(Number x) {
16
                  // Многочлен Ньютона
17
                  Double ans = 0.;
18
                  Double currentTerm;
19
                  for (int i = 0; i < n; i++) {
20
                      currentTerm = dif[0][i];
^{21}
                      for (int brackets = 0; brackets < i; brackets++) {</pre>
```

```
currentTerm *= (Double)x - table.get(brackets)
23
      .getKey();
24
                           ans += currentTerm;
^{25}
26
27
                      return ans;
28
                 }
29
            };
30
31
32 }
```

Блок-схема

Выводы

Мы взрослеем, когда осознаём простые факты, которые, вроде бы и слышали сотни раз. Во время выполнения этой лабораторной я понял, как сделать работу быстро: не торопясь. Вдумчиво, сосредоточенно, внимательно - качественно.

Интерполяция с помощью многочлена Ньютона удивила меня: я не ожидал увидеть столь близкой аппроксимации при таком малом дискретном наборе данных.