第二章 极限与连续

- **1.** 函数 $f(x) = \frac{x^2 x}{x^2 1} \sqrt{1 + \frac{1}{x^2}}$ 的第一类间断点的个数为 ().
 - (A) 0
- (B) 1
- (C) 2
- (D) 3

- 2. 下列极限中, 极限不为0 的是 ().
 - (A) $\lim_{x\to\infty} \frac{\arctan x}{x}$
 - (C) $\lim_{x\to 0} x^2 \sin \frac{1}{x}$

- **(B)** $\lim_{x \to \infty} \frac{2\sin x + 3\cos x}{x}$ **(D)** $\lim_{x \to 0} \frac{x^3}{x^5 + x^3}$
- **3**. 下列运算正确的是().
 - (A) $\lim_{x \to 0} \left(\sin x \cdot \cos \frac{1}{x} \right) = 0 \cdot \lim_{x \to 0} \cos \frac{1}{x} = 0$
 - **(B)** $\lim_{x\to 0} \frac{\tan x \sin x}{x^3} = \lim_{x\to 0} \frac{x-x}{x^3} = 0$
 - (C) $\lim_{x \to \infty} \frac{\sin x + 2}{x} = \lim_{x \to \infty} \frac{\sin x}{x} + \lim_{x \to \infty} \frac{2}{x} = 0$
 - **(D)** $\lim_{x \to \pi} \frac{\tan 3x}{\sin 5x} = \lim_{x \to \pi} \frac{3x}{5x} = \frac{3}{5}$
- **4.** 设函数 $f(x) = \frac{x \ln x^2}{|x-1|}$, 则 f(x) 有 ().
 - (A) 两个可去间断点

(B) 一个可去间断点, 一个跳跃间断

(C) 两个无穷间断点

- (D) 一个可去间断点, 一个无穷间断点
- **5.** 当 $x \to 0$ 时, $\sqrt{2+x^3} \sqrt{2}$ 与 x^2 比较是 ().
 - (A) 高阶无穷小量 (B) 等价无穷小量 (C) 低阶无穷小量 (D) 同阶无穷小量
- **6.** 函数 $f(x) = \frac{\sin(x+1)}{x^2-3x-4}$, 下列说法错误的是 ().
 - (A) 有渐近线 y = 0, x = 4

- (B) x = 4 为无穷间断点
- (C) 在区间(1,4)上有界
- **(D)** 若补充定义 $f(-1) = -\frac{1}{5}$, 则 f(x) 在点 x = -1 处连续
- 7. 函数 $f(x) = \frac{\sin(x-1)}{x^2-1}$ 的第二类间断点是 ().
 - **(A)** x = 1

- **(D)** $-\frac{1}{2}$
- 8. 函数 $f(x) = \frac{x}{\cos x}$ 的第一类间断点个数是 ().
 - (A) 0

- (D) 3
- 9. 函数 f(x) 在点 x_0 处有定义是 $\lim_{x \to x_0} f(x)$ 存在的 ().
 - (A) 必要条件
- (B) 充分条件 (C) 充要条件
- (D) 无关条件
- **10.** 函数 $f(x) = \frac{x}{\tan x}$ 的第一类间断点是 ().
 - **(A)** $x = 2\pi$

- **(D)** $x = \pi$

- 11. $\lim_{x\to 1} \frac{\sin(1-x^2)}{x-1} = ($).
 - **(A)** $-\frac{1}{2}$ **(B)** 2
- **(C)** −2
- **(D)** $\frac{1}{2}$

- 12. 下列函数在其定义域内连续的是(
 - **(A)** $f(x) = \frac{1}{x}$

- **(B)** $f(x) = \begin{cases} \frac{\sin x}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$
- (C) $f(x) = \begin{cases} \frac{1}{|x|}, & x \neq 0 \\ 0, & x = 0 \end{cases}$
- **(D)** $f(x) = \begin{cases} \sin x, & x \neq 0 \\ \cos x, & x = 0 \end{cases}$
- **13.** 若 $\lim_{x \to x_0} f(x) = a$, 则必有 ().
 - (A) f(x) 在点 x_0 的某一个去心领域内有定义;
 - (B) f(x) 仕点 x_0 处有定义;
 - (C) f(x) 在点 x_0 的任意一个去心领域内有定义;
 - **(D)** $a = f(x_0)$.

14. 函数 $f(x) = \frac{x}{\sin x}$ 的第一类间断点是 ().

(A)
$$x = \frac{\pi}{2}$$
; (B) $x = -\pi$; (C) $x = 0$; (D) $x = \pi$.

(B)
$$x = -\pi$$

(C)
$$x = 0$$

(D)
$$x = \pi$$
.

15.
$$\lim_{x\to 0} \frac{e^x - e^{-x}}{\sin x} =$$
______.

- **16.** 设函数 $f(x) = \begin{cases} (1 \frac{3x}{2})^{\frac{1}{x}}, & x \neq 0 \\ A, & x = 0 \end{cases}$ 在点 x = 0 处连续,则 A =______.
- 17. 当 $x \to 0$ 时, $1 \cos kx$ 与 x^2 是等价无穷小量, 则 $k = _____.$

18.
$$\lim_{x\to 0} \frac{e^x - e^{-x}}{\sin x} = \underline{\hspace{1cm}}$$

19. 设 $f(x) = x \sin \frac{3}{x} + \frac{\sin x}{x}$, 则 $\lim_{x \to \infty} f(x) =$ ______.

20.
$$\lim_{x\to 0} \frac{x}{e^x - e^{-x}} =$$
______.

21.
$$\lim_{x \to 0} \left(\frac{\sin x}{x} + x \sin \frac{1}{x} \right) = \underline{\hspace{1cm}}$$

22. 若
$$\lim_{x \to \infty} \left(\frac{x+1}{x-1} \right)^{kx} = 9$$
,则 $k =$ ______.

23.
$$\lim_{x \to \infty} \left(\frac{\sin x}{x} + x \sin \frac{1}{x} \right)$$
等于______.

24. 求极限
$$\lim_{n\to\infty} (1-\frac{1}{n})^{\sqrt{n}}$$
.