Examenul de bacalaureat național 2016

Proba E. c)

Matematică *M_pedagogic*

Clasa a XI-a

BAREM DE EVALUARE ŞI DE NOTARE

Simulare

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\left(1 - \frac{1}{2}\right)\left(1 - \frac{1}{3}\right)\left(1 - \frac{1}{4}\right) = \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4} = \frac{1}{4} =$	3 p
	=0,25>0,24	2 p
2.	$f(6-x)=(6-x)^2-6(6-x)+3=36-12x+x^2-36+6x+3=$	3 p
	$= x^2 - 6x + 3 = f(x)$, pentru orice număr real x	2 p
3.	$x^{2} + 4x - 5 = (x - 1)^{2} \Rightarrow x^{2} + 4x - 5 = x^{2} - 2x + 1$	3 p
	x=1, care verifică ecuația	2 p
4.	Sunt 50 de elemente în mulțimea $\{\sqrt{n} n \in \mathbb{N}, n < 50\}$, deci sunt 50 de cazuri posibile	1p
	Sunt 8 numere raționale în mulțimea $\{\sqrt{n} n \in \mathbb{N}, n < 50\}$, deoarece sunt 8 numere naturale	2p
	pătrate perfecte în mulțimea $\{0, 1, 2,, 49\}$, deci sunt 8 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{8}{50} = \frac{4}{25}$	2 p
5.	$m_{AB} = -1$	2p
	$m_{BC} = -1 \Rightarrow m_{AB} = m_{BC}$, deci punctele A, B și C sunt coliniare	3 p
6.	$m(\not AOD) = 90^{\circ}$, unde $\{O\} = AC \cap BD$ și $DO = 3 \Rightarrow AO = 4$	3 p
	$\sin\left(\angle ADB\right) = \frac{AO}{AD} = \frac{4}{5}$	2p

SUBIECTUL al II-lea (30 de puncte)

1.	2*(-4) = 2+(-4)+3=	3p
	=1	2p
2.	(x*y)*z = (x+y+3)*z = (x+y+3)+z+3=x+y+z+6	2 p
	x*(y*z) = x*(y+z+3) = x+(y+z+3)+3 = x+y+z+6 = (x*y)*z, pentru orice numere reale x , y și z , deci legea de compoziție ,,*" este asociativă	3 p
3.	x*(-3) = x + (-3) + 3 = x, pentru orice număr real x	2 p
	(-3)*x=(-3)+x+3=x, pentru orice număr real x , deci $e=-3$ este elementul neutru al legii de compoziție ,,*"	3 p
4.	$9^{x} + 3^{x} - 90 = 0 \Leftrightarrow (3^{x} - 9)(3^{x} + 10) = 0$	3p
	Deoarece $3^x > 0$, soluția ecuației este $x = 2$	2p
5.	$(2n^2 - 2n - 1)*(2n^2 - 2n - 1) = (2n^2 - 2n - 1) + (2n^2 - 2n - 1) + 3 = 4n^2 - 4n + 1 =$	3 p
	$=(2n-1)^2$, care este pătrat perfect pentru orice număr natural n	2p

6.	a = (1*(-3))*(5*(-7))*(9*(-11))*(13*(-15))*(17*(-19)) = 1*1*1*1*1=5*5*1=13*1=	3p
	$=17 = \sqrt{289} \in \left(\sqrt{288}, \sqrt{290}\right)$	2p

SUBIECTUL al III-lea (30 de puncte)

1.	$1 = 1 + 0\sqrt{5}$	3 p	
	Deoarece $0 \in \mathbb{Z}$ și $1 \in \mathbb{Z}$, obținem $1 \in \mathbb{Z}\left[\sqrt{5}\right]$	2p	
2.	$x = a + b\sqrt{5}$, $y = c + d\sqrt{5}$, unde $a, b, c, d \in \mathbb{Z} \Rightarrow x + y = (a + c) + (b + d)\sqrt{5}$	3 p	
	Deoarece $a + c \in \mathbb{Z}$ și $b + d \in \mathbb{Z}$, obținem $x + y \in \mathbb{Z}\left[\sqrt{5}\right]$	2p	
3.	$x = a + b\sqrt{5}$, $y = c + d\sqrt{5}$, unde $a, b, c, d \in \mathbb{Z} \Rightarrow xy = (ac + 5bd) + (ad + bc)\sqrt{5}$	3 p	
	Deoarece $ac + 5bd \in \mathbb{Z}$ și $ad + bc \in \mathbb{Z}$, obținem $xy \in \mathbb{Z}\left[\sqrt{5}\right]$	2 p	
4.	$\frac{1}{9+4\sqrt{5}} = \frac{9-4\sqrt{5}}{\left(9-4\sqrt{5}\right)\left(9+4\sqrt{5}\right)} =$	3p	
	$=\frac{9-4\sqrt{5}}{9^2-\left(4\sqrt{5}\right)^2}=9-4\sqrt{5}$	2 p	
5.	$\frac{1}{9 - 4\sqrt{5}} = 9 + 4\sqrt{5}$	3p	
	Deoarece $9 \in \mathbb{Z}$ și $4 \in \mathbb{Z}$, obținem $\frac{1}{9 - 4\sqrt{5}} \in \mathbb{Z} \left[\sqrt{5} \right]$	2 p	
6.	De exemplu, pentru $x = 9 - 4\sqrt{5}$, avem $x \in \mathbb{Z}\left[\sqrt{5}\right]$ și $x = \frac{1}{9 + 4\sqrt{5}}$	3 p	
	Deoarece $2 < \sqrt{5} \Rightarrow 8 < 4\sqrt{5} \Rightarrow 17 < 9 + 4\sqrt{5}$, obţinem $0 < \frac{1}{9 + 4\sqrt{5}} < \frac{1}{17}$, adică $0 < x < \frac{1}{17}$	2 p	