We Claim:

1. A polybenzoxazole precursor comprising a partial structure selected from the group consisting of

wherein each of A^1 to A^7 is a univalent substituent independently selected from the group consisting of H, F, CH_3 , CF_3 , OCH_3 and OCF_3 ;

T is a residue selected from the group consisting of

wherein each of A^8 to A^{21} is a univalent substituent independently selected from the group consisting of H, F, CH_3 , CF_3 , OCH_3 and OCF_3 ;

$$6 - 1$$
 or $- 1$

wherein X is selected from the group consisting of $-CH_2-$, $-CF_2-$, $-C(CH_3)_2-$, $-C(CF_3)_2-$, $-C(CCF_3)_2-$, $-C(CH_3)(C_6H_5)-$, $-C(C_6H_5)_2-$, $-O_7-(NH)_7-$, $-(N-CH_3)_7-$ and $-(N-C_6H_5)_7-$;

8
 or 9

wherein M is selected from the group consisting of residues $\\ \text{represented by formulas } \\ 10\text{--}14$

in which Q is selected from the group consisting of C-H, C-F, C-CH₃, C-CF₃, C-OCH₃, C-OCF₃ and N,

and residues represented by formulas 15-34 shown below:

wherein Q is defined as above, provided that $\$ at least one Q signifies N and a maximum of two N atoms are present per ring.

- The polybenzoxazole precursor of claim 1, further comprising at least one acetylene group.
- 3. The polybenzoxazole precursor of claim 2, wherein said acetylene group is present in the main chain.
- The polybenzoxazole precursor of claim 2, wherein said acetylene group is present in a side chain.

- 5. The polybenzoxazole precursor of claim 2, wherein said acetylene group is present in a chain terminating group.
- 6. The polybenzoxazole precursor of claim 2, wherein said acetylene group is present in the residue of a carboxylic acid selected from the group consisting of

- 7. A photoresist solution, comprising a polybenzoxazole precursor of claim 1, a diazoketone photoactive component, and an organic solvent.
- 8. The photoresist solution of claim 7, wherein the weight ratio of polybenzoxazole precursor to diazoketone is in the range from 1:20 to 20:1.
- 9. The photoresist solution of claim 8, wherein a weight ratio of polybenzoxazole precursor to diazoketone is in a range from 1:10 to 10:1.

10. A polybenzoxazole containing a partial structure selected from the group consisting of

49
 $-c_{N}^{0}$ $+c_{-T-0}$ $+c_{N}^{0}$ $+c_{-T-0}$ $+c_{N}^{0}$ $+c_{-T-0}$ $+c_{N}^{0}$ $+c_{-T-0}$ $+c_{N}^{0}$ $+c_{-T-0}$ $+c_{N}^{0}$ $+c_{-T-0}$ $+c$

wherein each of A^1 to A^7 is a univalent substituent independently selected from the group consisting of H, F, CH_3 , CF_3 , OCH_3 and OCF_3 ; and

T is a residue selected from the group consisting of the residues represented by formulas 5-34 defined above.

11. The polybenzoxazole precursor of claim 1, wherein said partial structure is

wherein each of A^1 to A^3 is a univalent substituent independently selected from the group consisting of H, F, CH_3 , CF_{3} , OCH_3 and OCF_{3} ; and

T is a residue selected from the group consisting of the residues represented by formulas 5-34 defined above.

12. The polybenzoxazole precursor of claim 1, wherein said partial structure is

wherein each of A^1 to A^7 is a univalent substituent independently selected from the group consisting of H, F, CH_3 , CF_3 , OCH_3 and OCF_3 ; and

T is a residue selected from the group consisting of the residues represented by formulas 5--34 defined above.

- 13. The polybenzoxazole precursor of claim 1, wherein each of ${\tt A}^1$ to ${\tt A}^7$ is H.
- 14. The polybenzoxazole precursor of claim 1, wherein T is

in which each Q is CH and M is

15. The polybenzoxazole precursor of claim 1, wherein T is

in which each O is CH and M is

16. The polybenzoxazole precursor of claim 1, wherein T is

in which ${\bf Q}$ in each outside ring is ${\bf N}$ and each ${\bf Q}$ in the middle ring is CH.

17. The polybenzoxazole precursor of claim 1, wherein T is

in which six of the substituents A^8 to A^{21} are CH_3 and the remainder of the substituents A^8 to A^{21} are H.

18. The polybenzoxazole precursor of claim 5, wherein said chain terminating group is a residue of

19. The polybenzoxazole precursor of claim 18, wherein T is

in which each Q is CH and M is

20. A process for preparing a polybenzoxazole precursor / containing a partial structure selected from the group consisting of

$$-\underbrace{c_{HN}}_{A^{1}-A^{3}}\underbrace{c_{-T-o}}_{A^{1}-A$$

wherein each of ${\tt A}^1$ to ${\tt A}^7$ and T are as defined above, comprising the steps of

providing at least one reactant selected from the group consisting of bis-o-aminophenols and o-aminophenolcarboxylic acids,

causing the reactant to react with at least one dicarboxylic acid compound,

mixing the reaction mixture with a precipitating agent to precipitate a solid polybenzoxazole precursor,

and isolating the polybenzoxazole precursor from the reaction $\ensuremath{\operatorname{mixture}}$.