Read Only Memory

FEATURES

- Uses Patented AIM Programming Element for
 - Superior Reliability
- High Programming Yield
- Fast Programming Speed < 1 sec TTL Processing Compatibility
- Low Power Consumption 1.5 mW/bit
- Operating Speed
 Address to Output 50nS
- Chip Enable to Output 40nS Large Output Drive — 16mA @ 0.45V
- TTL Compatible Inputs & Outputs
- Two Output Designs
- 5600 Open Collector
- 5610 Active Pull-up
- Chip Enable Facilitates Memory Expansion and Use in **Bus Organized Systems**

APPLICATIONS

- **Code Conversion**
- Logic Implementation
- Microprogramming Look-up Tables
- Control of Sequential Circuits
- Character Generation

GENERAL DESCRIPTION

The Intersil IM5600 and IM5610 are high speed, electrically programmable, fully decoded, bipolar 256 bit read only memories organized as 32 words by 8 bits. On-chip address decoding, chip enable input and uncomitted collector or three-state outputs provide for simplified memory expansion and use in bus organized systems.

Unprogrammed AIM elements are sensed as ZERO's or low logic levels at the outputs. Programming with a commercially available programmer irreversibly converts selected elements in the array so that they are sensed as ONE's or high logic

The following companies make programmers approved by Intersil:

- 1. Data I/O Corp., P.O. Box 1603, Bellevue, Wash. 98009
- 2. PRO-LOG Corp., 2411 Garden Rd., Monterey, CA 93940

Detailed programming specifications for all Intersil PROMs are presented in the Intersil BIPOLAR PROM PROGRAMMING SPECIFICATION Data Sheet.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	+7.0V
Input Voltage Applied	1.5V to +5.5V
Output Voltage Applied	0.5V to +Vcc
Output Voltage Applied (Programming Only)	28V
Current Into Output (Programming Only)	210 mA
Storage Temperature	65°C to +150°C
Operating Temperature Range*	
(IM5600C and IM5610C)	0°C to +75°C
(IM5600M and IM5610M)	55°C to +125°C

^{*}Operating temperature is defined as ambient temperature for the DIP and case temperature for the flatpack. Case temperature is measured directly below the die.

DC CHARACTERISTICS

		LIMITS V _{CC} = 5.0V ±5% T = 0°C to +75°C		LIMITS V _{CC} = 5.0V ±10% T = -55°C to +125°C					
SYMBOL	CHARACTERISTICS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS	CONDITIONS
IFA	Address Input Load Current		-0.63	-1.0		-0.63	-1.0		V _A = 0.4V
lFE	Chip Enable Input Load Current		-0.63	-1.0		-0.63	1.0	mA	VCE = 0.4V
IRA	Address Input Leakage Current		5.0	40		5.0	60		V _A = 4.5V
İRE	Chip Enable Input Leakage Current		5.0	40		5.0	60	μA	VCE = 4.5V
VoL	Output Low Voltage		0.3	0.45		0.3	0.45		I _{OL} = 16 mA V _{CE} = 0.4V '0' bit is addressed.
VIL	Input Low Voltage			0.8		1	0.8	V	
ViH	Input High Voltage	2.0			2.0			ľ	
Vc	Input Clamp Voltage		-0.9	-1.5		~0.9	-1.5		I _{IN} = −10 mA
BVIN	Input Breakdown Voltage	5.5	6.5		5.5	6.5			I _{IN} = 1.0 mA
lcc	Power Supply Current		75	100		75	100	mA	Inputs Either Open or at Ground
lo (High R State)	Output Leakage Current		<1.0	40		<1.0	100	•	V ₀ = 5.5V, V _{CE} = 2.4V
I ₀ (High R State)	Output Leakage Current		<-1.0	-40		<-1.0	-100	μΑ	$V_0 = 0.4V$, $V_{CE} = 2.4V$
Cin	Input Capacitance		5.0			5.0			$V_{IN} = 2.0V, V_{CC} = 0V$
Cout	Output Capacitance		7.0			7.0		рF	$V_0 = 2.0V, V_{CC} = 0V$

The following are guaranteed characteristics of the output high level state when the chip is enabled ($\overline{CE} = 0.4V$) and a programmed bit is addressed. These characteristics cannot be tested prior to programming but are guaranteed by design.

lork	Output Leakage Current]	<1.0	100		<1.0	-100	μA	$V_0 = 5.5V, V_{\overline{CE}} = 0.4V$
V _{OH} (IM5610)	Output High Voltage	2.4	3.2		2.4	3.2	_	٧	IOH = -1.0 mA (IM5610M)
									I _{OH} = -2.4 mA (IM5610C)
Isc (IM5610)	Output Short Circuit	-15	-30	-60	-15	-30	-60	mA	$V_0 = 0V$

NOTE 1: Typical characteristics are for $V_{CC} = 5.0V$, $T_A = 25$ °C.

IM5600/IM5610

SWITCHING CHARACTERISTICS

		LIMITS V _{CC} = 5V T _A = 25°C		Vcc =	MITS = 5V ±5% C to +75° C	V _{CC} =		
SYMBOL	CHARACTERISTIC	MIN	MAX	MIN	MAX	MIN	MAX	UNITS
taa	Address Access Time	20	50	20	65	20	75	
t _{dis}	Output Disable Time*	10	40	10	50	10	60	ns
t _{en}	Output Enable Time*	5	40	5	50	5	60	

^{*} Output disable time is the time taken for the output to reach a high resistance state when the chip enable is taken high. Output enable time is the time taken for the output to become active when the chip enable is taken low. The high resistance state is defined as a point on the output waveform equal to a ΔV of 0.5V from the active output level.

SWITCHING WAVEFORMS

FIGURE 1: Access Time Via Address Input

FIGURE 2: Output Disable And Enable Time

FIGURE 3: Output Stage Schematics

SWITCHING TIME TEST CONDITIONS

FIGURE 4: Output Load Circuit

SWITCHING	Ι .	IM5600		IM5610			
PARAMETER	R ₁	R ₁ R ₂ C _L		R ₁	R ₂	CL	
taa	300Ω	600Ω	30 pF	300Ω	600Ω	30 pF	
t _{dis '1'}	∞	3.3 KΩ	10 pF	∞	600Ω	10 pF	
tdis '0'	300Ω	600Ω	10 pF	300Ω	600Ω	10 pF	
t _{en '1'}	∞ ∞	3.3 KΩ	30 pF	∞ ×	600Ω	30 pF	
t _{en ′0′}	3000	600Ω	30 pF	300Ω	600Ω´	30 pF	

INPUT CONDITIONS

Amplitude — 0V to 3V Rise and Fall Time — 5 ns From 1V to 2V Frequency — 1 MHz

8-41