Danning Yu, 305087992 CS M146 Discussion 1A PS5 3/8/2020

1. (a) Denoting the cost function as *J*:

$$\frac{\partial J}{\partial \beta_t} = \frac{\partial}{\partial \beta_t} \left(\left(e^{\beta_t} - e^{-\beta_t} \right) \mathcal{E}_t + e^{-\beta_t} \right)$$

Note that ε_t is not dependent on β_t , so we can treat it as a constant. Setting the derivative to 0:

$$\begin{split} \frac{\partial}{\partial \beta_{t}} \Big(\Big(e^{\beta_{t}} - e^{-\beta_{t}} \Big) \varepsilon_{t} + e^{-\beta_{t}} \Big) &= 0 \\ \Big(e^{\beta_{t}} + e^{-\beta_{t}} \Big) \varepsilon_{t} - e^{-\beta_{t}} &= 0 \\ \varepsilon_{t} e^{\beta_{t}} &= e^{-\beta_{t}} \left(1 - \varepsilon_{t} \right) \\ \frac{e^{\beta_{t}}}{e^{-\beta_{t}}} &= \frac{1 - \varepsilon_{t}}{\varepsilon_{t}} \\ e^{2\beta_{t}} &= \frac{1 - \varepsilon_{t}}{\varepsilon_{t}} \\ \beta_{t} &= \frac{1}{2} \log \left(\frac{1 - \varepsilon_{t}}{\varepsilon_{t}} \right) \end{split}$$

(b) If the training set is linearly separable and no slack is allowed, then there will be no misclassification error, and so ε_t will go to 0, and based on the result of part (a), if ε_t goes to 0, then β_1 will go to infinity.

2. (a) Plotting these points on a number line, we get:

For the case of K = 3, the optimal clustering is to have the centers at $\mu_1 = 1.5$, $\mu_2 = 5$, and $\mu_3 = 7$, where x_1 and x_2 are assigned to μ_1 , μ_2 is assigned to μ_3 . The value of the objective is

$$(1-1.5)^2 + (2-1.5)^2 + (5-5)^2 + (7-7)^2 = 0.5$$

(b) A possible suboptimal assignment would be $\mu_1 = 1$, $\mu_2 = 2$, and $\mu_3 = 6$, where x_1 is assigned to μ_1 , x_2 is assigned to μ_2 , and x_3 and x_4 are assigned to μ_3 . The value of the objective is

$$(1-1)^2 + (2-2)^2 + (5-6)^2 + (7-6)^2 = 2$$

which is clearly greater than the value of 0.5 obtained in part (a), but if Lloyd's algorithm is applied to this current assignment, x_1 is closest to μ_1 , x_2 is closest to μ_2 , and x_3 and x_4 are closest to μ_3 , thus resulting in no change of assignments or centroids, so we are at a suboptimal solution that is only a local minimum and not the global minimum.

3. (a) The multivariate normal distribution of a variable with d dimensions is defined as:

$$N(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^d |\boldsymbol{\Sigma}|}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$$

Substituting this into the expression for $l(\theta)$ and taking the gradient with respect to μ_i :

$$l(\mathbf{\theta}) = \sum_{k} \sum_{n} \gamma_{nk} \log \omega_{k} + \sum_{k} \sum_{n} \gamma_{nk} \log \left(\frac{1}{\sqrt{(2\pi)^{d} |\mathbf{\Sigma}_{k}|}} \exp\left(-\frac{1}{2} (\mathbf{x}_{n} - \mathbf{\mu}_{k})^{T} \mathbf{\Sigma}_{k}^{-1} (\mathbf{x}_{n} - \mathbf{\mu}_{k})\right) \right)$$
$$l(\mathbf{\theta}) = \sum_{k} \sum_{n} \gamma_{nk} \log \omega_{k} + \sum_{k} \sum_{n} \gamma_{nk} \left(\left(\log \frac{1}{\sqrt{(2\pi)^{d} |\mathbf{\Sigma}_{k}|}} \right) - \frac{1}{2} (\mathbf{x}_{n} - \mathbf{\mu}_{k})^{T} \mathbf{\Sigma}_{k}^{-1} (\mathbf{x}_{n} - \mathbf{\mu}_{k}) \right)$$

The first summation is not a function of μ_i and the first term within the second summation is a constant, so the gradient of both evaluates to 0. Take the gradient to get:

$$\nabla_{\boldsymbol{\mu}_{j}} l(\boldsymbol{\theta}) = \frac{\partial}{\partial \boldsymbol{\mu}_{j}} \sum_{n} \left(-\frac{1}{2} \gamma_{nj} \left(\mathbf{x}_{n} - \boldsymbol{\mu}_{j} \right)^{T} \boldsymbol{\Sigma}_{j}^{-1} \left(\mathbf{x}_{n} - \boldsymbol{\mu}_{j} \right) \right)$$

$$\nabla_{\boldsymbol{\mu}_{j}} l(\boldsymbol{\theta}) = \sum_{n} \left(-\frac{1}{2} \gamma_{nj} (2) (-1) \left(\mathbf{x}_{n} - \boldsymbol{\mu}_{j} \right) \boldsymbol{\Sigma}_{j}^{-1} \right)$$

$$\nabla_{\boldsymbol{\mu}_{j}} l(\boldsymbol{\theta}) = \boldsymbol{\Sigma}_{j}^{-1} \sum_{n} \left(\gamma_{nj} \left(\mathbf{x}_{n} - \boldsymbol{\mu}_{j} \right) \right)$$

(b) Setting the answer obtained in part (a) to $\mathbf{0}$ and solving for μ_i to obtain the desired answer:

$$\nabla_{\boldsymbol{\mu}_{j}} l(\boldsymbol{\theta}) = \boldsymbol{\Sigma}_{j}^{-1} \sum_{n} (\gamma_{nj} (\mathbf{x}_{n} - \boldsymbol{\mu}_{j})) = \mathbf{0}$$

$$\sum_{n} \gamma_{nj} \mathbf{x}_{n} = \boldsymbol{\mu}_{j} \sum_{n} \gamma_{nj}$$

$$\boldsymbol{\mu}_{j} = \frac{\sum_{n} \gamma_{nj} \mathbf{x}_{n}}{\sum_{n} \gamma_{nj}}$$

(c) From the lecture notes, ω_k and μ_k are given by

$$\omega_k = \frac{\sum_{n} \gamma_{nk}}{\sum_{k} \sum_{n} \gamma_{nk}} \qquad \qquad \mu_k = \frac{\sum_{n} \gamma_{nk} \mathbf{X}_n}{\sum_{n} \gamma_{nk}}$$

Substituting in the values from the table, we get the following values:

Substituting in the values from the table, we get the following values
$$\omega_1 = \frac{0.2 + 0.2 + 0.8 + 0.9 + 0.9}{0.2 + 0.2 + 0.8 + 0.9 + 0.9 + 0.8 + 0.8 + 0.2 + 0.1 + 0.1} = \frac{3}{5} = 0.6$$

$$\omega_2 = \frac{0.8 + 0.8 + 0.2 + 0.1 + 0.1}{5} = \frac{2}{5} = 0.4$$

$$\mu_1 = \frac{1}{3} (0.2(5) + 0.2(15) + 0.8(25) + 0.9(30) + 0.9(40)) = 29$$

$$\mu_2 = \frac{1}{2} (0.8(5) + 0.8(15) + 0.2(25) + 0.1(30) + 0.1(40)) = 14$$