

Преподаватель Градов В.М.

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего образования «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»
КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»
Лабораторная работа № 5
Лабораторная работа № 5 Тема Построение и программная реализация алгоритмов численного интегрирования
Тема Построение и программная реализация алгоритмов численного интегрирования

Цель работы: Получение навыков построения алгоритма вычисления двухкратного интеграла с использованием квадратурных формул Гаусса и Симпсона.

1. Исходные данные

1. Двухкратный интеграл:

$$\varepsilon(\tau) = \frac{4}{\pi} \int_0^{\pi/2} d\varphi \int_0^{\pi/2} \left[1 - \exp(-\tau \frac{l}{R})\right] \cos\theta \sin\theta \ d\theta \ ,$$
 где
$$\frac{l}{R} = \frac{2\cos\theta}{1 - \sin^2\theta \cos^2\varphi},$$

 θ , φ - углы сферических координат.

(Применяется метод последовательного интегрирования)

2. Код программы

Интерфейс программы:

Код для написания интерфейса ниже приведен не будет.

```
IMCTUHT 1. solve.py

import tkinter.messagebox
from math import pi, sin, cos, exp

import matplotlib
import matplotlib.pyplot as plt
import numpy as np

def f(tau):
    def auxiliary(x, y):
        return 2 * cos(x) / (1 - (sin(x) ** 2) * (cos(y) ** 2))

def main_func(x, y):
    return (4 / pi) * (1 - exp(-tau * auxiliary(x, y))) * cos(x) * sin(x)
```

```
return main_func
def multi polynomials(polynomial 1, polynomial 2):
   len 1, len 2 = len(polynomial_1), len(polynomial_2)
   result = [0 for _ in range(len_1 + len_2 - 1)]
   for i in range(len 1):
        for j in range(len 2):
            result[i + j] += polynomial_1[i] * polynomial_2[j]
    return result
def derivative(polynomial):
   result = []
   for i in range(1, len(polynomial)):
        result.append(polynomial[i] * i)
   return result
def find legendre(n):
   result = [1]
   on multi = [-1, 0, 1]
   two degree = 1
   factorial = 1
    for i in range (1, n + 1):
        two degree *= 2
        factorial *= i
        result = multi polynomials(result, on multi)
   for i in range(n):
       result = derivative(result)
    for i in range(len(result)):
        result[i] *= 1 / (two degree * factorial)
    return result
def half method(polynomial, left, right, flag):
   m = (left + right) / 2
   if abs(left - right) < 1e-6:</pre>
       return m
    tmp = get value(polynomial, m)
    if flag:
        if tmp > 0:
            return half method(polynomial, left, m, flag)
        elif tmp < 0:</pre>
            return half_method(polynomial, m, right, flag)
    else:
        if tmp < 0:
            return half method(polynomial, left, m, flag)
        elif tmp > 0:
            return half method(polynomial, m, right, flag)
    return m
def get value(polynomial, value):
   result = 0
```

```
for i in range(len(polynomial)):
        result += polynomial[i] * value ** i
    return result
def find roots(polynomial):
   n = len(polynomial) - 1
   if get value(polynomial, - 1) * get value(polynomial, 0) > 0:
       k = 0
   segments = [[-1, 0]]
    t = n / 2
   while k < t:
       tmp = []
        k = 0
        for i in range(len(segments)):
           m = (segments[i][0] + segments[i][1]) / 2
            tmp.append([segments[i][0], m])
            tmp.append([m, segments[i][1]])
            if get value(polynomial, m) == 0:
            else:
                if get_value(polynomial, segments[i][0]) * get_value(polynomial, m)
<= 0:
                if get value(polynomial, segments[i][1]) * get value(polynomial, m)
<= 0:
                    k += 1
        segments = tmp[:]
   roots = []
   for segment in segments:
        left = get value(polynomial, segment[0])
       right = get value(polynomial, segment[1])
       if left == 0:
           roots.append(segment[0])
        if right == 0:
            continue
        if get_value(polynomial, segment[0]) < 0 and get_value(polynomial,</pre>
segment[1]) > 0:
            roots.append(half method(polynomial, segment[0], segment[1], True))
        elif get value(polynomial, segment[0]) > 0 and get value(polynomial,
segment[1]) < 0:
            roots.append(half method(polynomial, segment[0], segment[1], False))
   if get value(polynomial, segments[-1][1]) == 0:
        roots.append(segments[-1][1])
   for i in range (n // 2):
        roots.append(-roots[i])
    return roots
def solve gauss(matrix, n):
   for k in range(n):
        for i in range(k + 1, n):
            coefficient = -(matrix[i][k] / matrix[k][k])
```

```
for j in range(k, n + 1):
                matrix[i][j] += coefficient * matrix[k][j]
   result = [0 for _ in range(n)]
    for i in range(n - 1, -1, -1):
        for j in range (n - 1, i, -1):
            matrix[i][n] -= result[j] * matrix[i][j]
        result[i] = matrix[i][n] / matrix[i][i]
    return result
def find coefficients(nodes):
   matrix = []
    for i in range(len(nodes)):
        array = []
        for j in range(len(nodes)):
           array.append(nodes[j] ** i)
        if i % 2 == 0:
            array.append(2 / (i + 1))
        else:
           array.append(0)
       matrix.append(array)
    result = solve gauss(matrix, len(nodes))
    return result
def gauss(function, a, b, n):
   legendre = find legendre(n)
   args = find roots(legendre)
   coefficients = find_coefficients(args)
   result = 0
    for i in range(n):
        result += (b - a) / 2 * coefficients[i] * function((a + b) / 2 + (b - a) *
args[i] / 2)
   return result
def simpson(function, a, b, n):
   h = (b - a) / (n - 1)
   x = a
   result = 0
    for in range ((n - 1) // 2):
        result += function(x) + 4 * function(x + h) + function(x + 2 * h)
        x += 2 * h
    return result * h / 3
def integrate(function, limit 1, limit 2, nodes, integrate funcs):
    def interior(x):
        return integrate funcs[1](lambda y: function(x, y), limit 2[0], limit 2[1],
nodes[1])
   return integrate_funcs[0](interior, limit_1[0], limit_1[1], nodes[0])
def get from window(window):
    try:
```

```
tau, interior, external, n, m = float(window.tau), window.interior,
window.external, int(window.n), int(window.m)
        if (interior == 'simpson' and (n < 3 or n % 2 == 0)) or (external ==
'simpson' and (m < 3 \text{ or } m % 2 == 0)):
            raise ArithmeticError
        return tau, interior, external, n, m
   except ValueError:
        tkinter.messagebox.showerror('Ошибка', 'Убедитесь, что введены
действительные числв')
       return None
    except ArithmeticError:
       tkinter.messagebox.showerror('Ошибка', 'Проверьте количество узлов для
метода Симпсона')
        return None
def get result(window):
   if get from window(window):
        tau, interior, external, n, m = get from window(window)
        interior = eval(interior)
        external = eval(external)
        result = integrate(f(tau), [0, pi / 2], [0, pi / 2], [n, m], [interior,
external])
        tkinter.messagebox.showinfo('Результат', f'Вычисленное значение (при \u03C4
= \{tau\}) = \{result:.6f\}')
        get graph(integrate, [0, pi / 2], [0, pi / 2], [n, m], [interior, external],
0.05, 10, 0.05)
def get graph (function, limit 1, limit 2, nodes, integrate funcs, start, finish,
step):
   def auxiliary(arg):
        return function(f(arg), limit 1, limit 2, nodes, integrate funcs)
   x, y = [], []
   for tau in np.arange(start, finish + step / 2, step):
        x.append(tau)
        y.append(auxiliary(tau))
    label 1 = f'n = {nodes[0]}, метод = {integrate funcs[0]. name }'
   label 2 = f'm = {nodes[1]}, метод = {integrate funcs[1]. name }'
   matplotlib.use('TkAgg')
   plt.plot(x, y, label=f'{label 1}\n{label 2}')
def show graph():
   plt.legend(loc='lower right')
   plt.xlabel('Значение \u03C4')
   plt.ylabel('Результат')
   plt.show()
```

```
from interface import MainWindow

def main():
    window = MainWindow()
    window.mainloop()

if __name__ == '__main__':
    main()
```

3. Результаты работы

1) Описать алгоритм вычисления n корней полинома Лежандра n-ой степени $P_n(x)$ при реализации формулы Гаусса.

Полиномы Лежандра определяются по формуле:

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} [(x^2 - 1)^n], \quad n = 0,1,2,...$$

Из свойств полиномов Лежандра мы знаем, что полином имеет n действительных и различных корней, лежащих на промежутке [-1, 1]. Можно увидеть, что $(x^2 - 1)^n$ — четная, тогда достаточно найти корни на промежутке [-1, 0]. Затем, пока не будет найдено n / 2 корней, все текущие отрезки разбиваются пополам. В итоге будут найдены отрезки, на каждом из которых по одному корню, и ко всем отрезкам применяется метод половинного деления. Его идея основывается на том, что если на концах отрезка функция имеет разный знак, то корень находится внутри этого отрезка. Деля отрезок пополам, определяем в какой половине лежит корень, тем самым уточняя его значение.

2) Исследовать влияние количества выбираемых узлов сетки по каждому направлению на точность расчетов.

Исследование метода Симпсона (изменяем число узлов для этого метода):

Внешний – метод Гаусса, внутренний – метод Симпсона

Внешний – метод Симпсона, внутренний – метод Гаусса

Заметим, что при применении метода Симпсона на внешнем направлении результат при меньшем количестве узлов менее точный.

Исследование метода Гаусса (изменяем число узлов для этого метода):

Внешний – метод Гаусса, внутренний – метод Симпсона

Внешний – метод Симпсона, внутренний – метод Гаусса

Заметим, что в обоих направлениях метод Гаусса является достаточно точным.

3) Построить график зависимости $\epsilon(t)$ в диапазоне изменения t=0.05-10. Указать, при каком количестве узлов получены результаты.

Можно сделать вывод, что метод Гаусса является более эффективным в любом направлении и вне зависимости от количества узлов. Тогда как метод Симпсона оказывается менее точным при внешнем интегрировании и малом количестве узлов.

10

4. Вопросы при защите лабораторной работы

1) В каких ситуациях теоретический порядок квадратурных формул численного интегрирования не достигается.

Теоретический порядок точности не достигается, если у подынтегральной функции нет производных соответствующего порядка. Так, например, для формулы Симпсона, если на отрезке интегрирования не существует третьей и четвертой производных, то порядок точности будет только второй.

2) Построить формулу Гаусса численного интегрирования при одном узле.

$$P_1(t) = t = 0 \Longrightarrow t_1 = 0$$

$$A_1 = 2$$

$$\int_{a}^{b} f(x)dx = \frac{b-a}{2} * A_{1} * f(\frac{b+a}{2} + \frac{b-a}{2}t_{1})$$

$$\int_{a}^{b} f(x)dx = (b-a) * f(\frac{b+a}{2})$$

3) Построить формулу Гаусса численного интегрирования при двух узлах.

$$P_{2}(t) = \frac{3t^{2} - 1}{2} = 0$$

$$t_{1} = \frac{1}{\sqrt{3}}; \ t_{2} = -\frac{1}{\sqrt{3}}$$

$$\begin{cases} A_{1} + A_{2} = 2\\ \frac{A_{1}}{\sqrt{3}} - \frac{A_{2}}{\sqrt{3}} = 0 \end{cases}$$

$$A_{1} = A_{2} = 1$$

$$\int_{a}^{b} f(x)dx = \frac{b - a}{2} \left(f\left(\frac{a + b}{2} + \frac{b - a}{2\sqrt{3}}\right) + f\left(\frac{a + b}{2} - \frac{b - a}{2\sqrt{3}}\right) \right)$$

4) Получить обобщенную кубатурную формулу для вычисления двойного интеграла методом последовательного интегрирования на основе формулы трапеций с тремя узлами по каждому направлению.

$$\int_{c}^{d} \int_{a}^{b} f(x, y) dx dy = h_{x} \left(\frac{1}{2} (F_{0} + F_{2}) + F_{1} \right)$$

$$= h_{x} h_{y} \left(\frac{1}{4} (f(x_{0}, y_{0}) + f(x_{0}, y_{2}) + f(x_{2}, y_{0}) + f(x_{2}, y_{2}) \right)$$

$$+ \frac{1}{2} (f(x_{0}, y_{1}) + f(x_{2}, y_{1}) + f(x_{1}, y_{0}) + f(x_{1}, y_{2})) + f(x_{1}, y_{1})$$