MA-108 Differential Equations I

Manoj K Keshari

Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

5th March, 2018 D1-D3 - 1st week lectures

Class Information

- Instructor : Manoj K. Keshari
- Office: 204 D, Dept of Mathematics
- Email: keshari@math.iitb.ac.in
- Reference Text: Elementary Differential Equations by William Trench available at ramanujan.math.trinity.edu/wtrench/texts/index.shtml
- Two short quiz of 5 marks each on 21st March and 18th April in the tutorial classes during 3:00-3:10 PM.
- Main quiz of 30 marks on 4th April from 8:15-9:15 AM.
- End Semester exam of 60 marks.
- Minimum passing marks is 30.
- Be Honest. Cheating in exams will give you <u>atleast</u> an FR grade in the course.

Definition

Let y = y(x) be an unknown function of x.

An Ordinary differential equation (ODE) is an equation involving atleast one derivative of y.

The $\underline{\text{order}}$ of an ODE is the highest order of derivative of y occurring in the ODE.

Example

- (1) $y' = x^2y^2 + x$ is a 1st order ODE.
- (2) $y'' + 2xy' + y = \sin x$ is a 2nd order (linear) ODE.

Definition

An ODE of order n is called linear if it can be written as

$$y^{(n)} + a_1(x)y^{(n-1)} + \ldots + a_n(x)y = b(x),$$

If a < b are real numbers, then

$$(a,b) = \{x \in \mathbb{R} : a < x < b\}$$

is an open interval.

 $\mathbb{R} = (-\infty, \infty)$ is also an open interval.

 $\mathbb{R} - \{0\}$ is not an open interval. It is union of two open intervals.

$$\mathbb{R} - \{0\} = (-\infty, 0) \cup (0, \infty)$$

Definition

An (explicit) solution of an ODE is a function y=f(x) which satisfies the ODE on some open interval.

First simple example of an ODE

Consider the linear (homogeneous) ODE y'+ay=0, $a\in\mathbb{R}.$

Note that $y \equiv 0$ is the (trivial) solution.

Let y = y(x) be a non-trivial solution, i.e. $y(x) \neq 0$.

Since y is a continuous function, there exists an open interval, say I in $\mathbb R$ such that y does not take 0 value on I. Let us solve the ODE on I.

$$y' + ay = 0 \implies \frac{y'}{y} = -a$$

 $\implies \frac{d}{dx} \ln |y| = -a$
 $\implies \ln |y| = -ax + c$

 $\implies |y| = e^c e^{-ax}$

$$\implies y(x) = Ce^{-ax},$$

is a solution of y'+ay=0 on $I=(-\infty,\infty)$, where $C=e^c$ when y(x)>0 and $C=-e^c$ when y(x)<0 on I.

1st order linear homogeneous ODE

Consider the ODE with a(x) continuous on an open interval I,

$$y' + a(x)y = 0 (1)$$

Let y=y(x) be a non-trivial solution, i.e. $y(x)\neq 0$. Since y is a continuous function, there exists an open interval, say $J\subset I$ such that y(x) does not take 0 value on J.

$$y' + a(x)y = 0 \implies y'/y = -a(x)$$

$$\implies \ln |y| = -\int a(x) dx + c$$

$$\implies |y| = e^c e^{-\int a(x) dx}$$

$$\implies y(x) = Ce^{-\int a(x) dx}$$

 $C=e^c$ when y(x)>0 and $C=-e^c$ when y(x)<0 on J. Thus, $y(x)=Ce^{-\int a(x)\,dx}$ is a solution of (1) on J=I.

$\mathsf{Theorem}$

Let p(x) be a continuous function on an open interval (a,b). Then the general solution of

$$y' + p(x)y = 0 (1)$$

on the interval (a,b) is $y(x) = Ce^{-P(x)}$, where P(x) is any anti-derivative of p(x) on (a,b), i.e.

$$P'(x) = p(x), \quad x \in (a, b)$$

- General solution means $y(x) = Ce^{-P(x)}$ is a solution of (1) for all choices of $C \in \mathbb{R}$.
- Further, any solution of (1) can be obtained from the general solution for some choice of C.
- This may not be true for non-linear ODEs.

Second simple example of an ODE

Consider the linear (non-homogeneous) ODE

$$y' + ay = f(x) \tag{1}$$

where f(x) is continuous on some open interval I. The solution of y'+ay=0 is $y_1(x)=e^{-ax}$ on \mathbb{R} . Let us try to look for a solution of (1) of the type $y=u(x)e^{-ax}$.

Substituting into the differential equation (1), we get on I

$$u'e^{-ax} - aue^{-ax} + aue^{-ax} = f(x)$$

$$\implies u' = f(x)e^{ax}$$

$$\implies u(x) = \int f(x)e^{ax} dx + C$$

Thus

$$y(x) = e^{-ax} \left(\int f(x)e^{ax} dx + C \right)$$

is a solution of (1) on the (open) interval I.

1st order Linear non-homogeneous ODE

Let p(x) and f(x) be continuous on (a,b). Let us solve

$$y' + p(x)y = f(x) \tag{1}$$

y'+p(x)y=0 is the Complementary equation of (1). Let $u_1(x)=e^{-\int p(x)\,dx}$ be a solution of C.E.

Substitute $y(x) = u(x)y_1$ into ODE, we get

$$u'y_1 + uy'_1 + p(x)uy_1 = f(x)$$

$$\Rightarrow u'y_1 = f(x)$$

$$\Rightarrow u(x) = \int f(x)e^{\int p(x)dx} + C$$

$$\Rightarrow y(x) = e^{-\int p(x)dx} \left(\int f(x)e^{\int p(x)dx} + C \right)$$

is the general solution of (1) on (a, b).

Theorem (Existence Theorem)

Let p(x) and f(x) be continuous functions on an open interval (a,b). Then the general solution of

$$y' + p(x)y = f(x) \tag{1}$$

on the interval (a, b) is

$$y(x) = e^{-\int p(x)} \left(\int f(x)e^{\int p(x)dx} dx + C \right)$$
 (2)

- General solution means y(x) in (2) is a solution of (1) for all choices of $C \in \mathbb{R}$.
- Further, any solution of (1) can be obtained from the general solution for some choice of C.
- This may not be true for non-linear ODEs.

Solve
$$y' + 2y = x^3 e^{-2x}$$
. (1)

C.E. y' + 2y = 0 has a solution $y_1(x) = e^{-2x}$.

The solution of (1) is $y = uy_1$

$$u'y_1 = x^3 e^{-2x}$$

$$\implies u' = x^3$$

$$\implies u(x) = x^4/4 + C$$

Therefore,

$$y(x) = e^{-2x}(x^4/4 + C)$$

is a solution of ODE on \mathbb{R} .

(1) Solve y' - 2xy = 1.

C.E. y'-2xy=0 has a solution $y_1(x)=e^{\int 2x\,dx}=e^{x^2}$.

The solution of ODE is $y = uy_1$, where

$$u'y_1 = 1$$

$$\implies u(x) = \int e^{-x^2} dx + C$$

$$\implies y(x) = e^{x^2} \left(\int e^{-x^2} dx + C \right)$$

(2) Solve the IVP y' - 2xy = 1, $y(0) = y_0$. Write the solution of ODE as

$$y(x) = e^{x^2} \left(\int_0^x e^{-x^2} dx + C \right)$$

 $y(0) = y_0 \implies C = y_0$

Definition

An Initial value problem (IVP) for 1st order ODE is

$$y' = F(x, y), \quad y(x_0) = y_0.$$

A function y=y(x) defined on some open interval (a,b) containing x_0 is a solution of the IVP if y satisfies the ODE on (a,b) and $y(x_0)=y_0$.

Theorem (Existence and Uniqueness Theorem for IVP)

Let p(x) and f(x) be continuous functions on an interval (a,b). Let $x_0 \in (a,b)$ and $y_0 \in \mathbb{R}$. Then the IVP

$$y' + p(x)y = f(x), y(x_0) = y_0$$

has a unique solution on (a, b).

Definition

Let y(x) be an explicit solution of IVP

$$y' = F(x, y), y(x_0) = y_0$$

on some open interval containing x_0 .

The interval of validity of y(x) is the largest open interval containing x_0 where y(x) is a solution of IVP.

The function

$$y = (x^2/3) + (1/x)$$

satisfies

$$xy' + y = x^2$$

on $(-\infty,0) \cup (0,\infty)$.

For IVP

$$xy' + y = x^2$$
, $y(1) = 4/3$

the interval of validity of y(x) is $(0, \infty)$.

For IVP

$$xy' + y = x^2$$
, $y(-1) = -2/3$

the interval of validity of y(x) is $(-\infty, 0)$.

Definition

- An explicit solution of an ODE is a function y = y(x) which satisfies the ODE on some open interval (a,b).
- A <u>solution curve</u> of an ODE is the graph of an explicit solution of the ODE.
- An implicit solution of an ODE is an equation g(x,y) = 0 that gives an explicit solution of the ODE on some open interval.
- A curve C is an integral curve of an ODE if the following holds: If the graph of a function y = f(x) is a portion of the curve C, then y = f(x) is a solution of the ODE.
- ullet An integral curve C of an ODE is the curve defined by an implicit solution of the ODE.

Note that a solution curve is also an integral curve, but an integral curve may not be a solution curve, since an integral curve C may not be the graph of a single function.

Example

Circle C defined by $x^2 + y^2 = 1$ is an integral curve of

$$y' = -x/y$$

Only functions whose graph is a segment of C are

$$y_1 = \sqrt{1 - x^2}, \quad y_2 = -\sqrt{1 - x^2}$$

on (-1,1).

So graphs of y_1 and y_2 are solution curves.

But C is not a solution curve as C is not the graph of a function.

Separation of variable method: 1st order ODE

Assume that the ODE can be written in the form

$$h(y)y' = g(x)$$

Let H(y) and G(x) be antiderivatives of h(y) and g(x) respectively. Then

$$\frac{d}{dy}H(y) = H'(y) = h(y), G'(x) = g(x)$$

Then our ODE is

$$\frac{d}{dx}H(y) = H'(y)y' = \frac{d}{dx}G(x)$$

Integrating, we get

$$H(y) = G(x) + C$$

This is an implicit solution of ODE.

Separable ODE's

Example

Solve $y' = 2xy^2$.

Assume $y \neq 0$. Rewrite ODE as

$$\frac{1}{y^2}y' = 2x$$

Integrating, we get

$$\frac{-1}{y} = x^2 + C$$

$$\implies y = \frac{-1}{x^2 + C}$$

The solution $y \equiv 0$ cannot be obtained for any choice of C.

Solve IVP

$$y' = 2xy^2, \quad y(0) = y_0$$

and find the interval of validity.

The solution is

$$y = \frac{-1}{x^2 + C}$$

- If $y_0 = 0$, the solution is $y \equiv 0$ and the interval of validity is \mathbb{R} .
- If $y_0 \neq 0$, then $C = -\frac{1}{y_0}$. Hence $y = \frac{-y_0}{y_0 x^2 1}$.
- If $y_0 < 0$, the solution is defined for all x. Hence the interval of validity is \mathbb{R} .
- If $y_0 > 0$, the solution is valid when $x \in \mathbb{R} \{\pm 1/\sqrt{y_0}\}$. Hence the interval of validity is $\left(\frac{-1}{\sqrt{y_0}}, \frac{1}{\sqrt{y_0}}\right)$.

Solve IVP

$$y' = \frac{y \cos x}{1 + 2y^2}; \quad y(0) = 1.$$

Assume $y \neq 0$. Then,

$$\frac{1+2y^2}{y}y' = \cos x$$

$$\ln|y| + y^2 = \sin x + c$$

$$y(0) = 1 \implies c = 1$$

$$\ln|y| + y^2 = \sin x + 1$$

is an implicit solution of IVP.

Note: $y \equiv 0$ is a solution to the ODE, but it is not a solution to the given IVP.

Linear vs Non-Linear ODE

Theorem (Existence and Uniqueness of solution : y' = f(x, y))

Let $D = (a, b) \times (c, d)$ be an open rectangle containing the point (x_0, y_0) and consider the IVP

$$y' = f(x, y), \quad y(x_0) = y_0$$

- (Existence) Assume f(x,y) is continuous on D. Then IVP has at least one solution on some interval $(a_1,b_1) \subset (a,b)$ containing x_0 .
- (Uniqueness) If both f(x,y) and $\frac{\partial f}{\partial y}$ are continuous on D, then IVP has a unique solution on some interval $(a',b')\subset (a,b)$ containing x_0 .

 \bullet Let us prove that if p(x), f(x) are continuous on (a,b) , and $x_0 \in (a,b)$ then IVP

$$y' + p(x)y = f(x), \quad y(x_0) = y_0$$
 (*)

has a <u>unique</u> solution on (a, b).

We know that IVP has one solution

$$y(x) = e^{-\int p(x) dx} \left(\int e^{\int p(x) dx} f(x) dx + C_0 \right)$$

on (a,b) for some C_0 .

Let Y(x) be another solution of IVP on (a,b). Let us write the ODE as

$$y' = F(x, y) := f(x) - p(x)y$$

Then F(x,y) and $\frac{\partial F}{\partial y}=-p(x)$ are continuous on the open rectangle $(a,b)\times (-\infty,\infty)$.

By previous Existence and Uniqueness theorem (*) has a unique solution on some interval $x_0 \in (a',b') \subset (a,b)$. Therefore,

$$y(x) \equiv Y(x) \quad x \in (a', b')$$

We need to show that a = a' and b = b'.

Let a < a'. This means uniqueness holds only in the interval (a',b'). Let

$$\lim_{x \to a'+} y(x) = \lim_{x \to a'+} Y(x) = c$$

The IVP

$$y' + p(x)y = f(x), \quad y(a') = c$$

has a unique solution y(x) on some interval $(a' - \epsilon, a'')$. This means uniqueness of y(x) holds on $(a' - \epsilon, b')$. This contradicts that a < a'.

Similarly, prove that b = b'.

Consider

$$y' = F(x, y), \quad y(x_0) = y_0$$

with F(x,y) and $\frac{\partial F}{\partial y}$ continuous on \mathbb{R}^2 .

Then it does not give that the solution is defined on \mathbb{R} . For an example, the IVP

$$y' = 2xy^2, \ y(0) = 1$$

the solution

$$y(x) = \frac{-1}{x^2 - 1}$$

is defined on (-1,1) only.

But on whatever interval the solution is defined, it will be unique.

Linear vs Non-Linear ODE

- For the solution of a non-linear ODE, the interval where the solution exists, depends on the choice of our initial condition.
- The general solution of a non-linear ODE involving an arbitrary constant, may not give all solutions.
- For example, for non-linear ODE $y'=2xy^2$, our solution $y=-1/(x^2+C)$ does not give the solution $y\equiv 0$ for any value of C.
- In an implicit solution of a non-linear ODE, not every value of C will give an actual solution.

Example

The circle $x^2 + y^2 = C$ is an implicit solution of yy' = -x. For C = -1, it does not give any solution to ODE, since the curve $x^2 + y^2 = -1$ is empty.

Consider the IVP

$$y' = \frac{x^2 - y^2}{1 + x^2 + y^2}, \quad y(x_0) = y_0 \quad (*)$$

$$\begin{split} f(x,y) &= \frac{x^2 - y^2}{1 + x^2 + y^2}, \\ \frac{\partial f}{\partial y} &= \frac{-2y}{1 + x^2 + y^2} + \frac{-2y(x^2 - y^2)}{(1 + x^2 + y^2)^2} \\ &= \frac{-2y(1 + 2x^2)}{(1 + x^2 + y^2)^2} \end{split}$$

Since f(x,y) and $\partial f/\partial y$ are continuous for all $(x,y) \in \mathbb{R}^2$, by existence and uniqueness theorem, for any $(x_0,y_0) \in \mathbb{R}^2$, IVP has a unique solution on some open interval containing x_0 .

Consider the IVP $y' = f(x,y), y(x_0) = y_0$ (*)

$$f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$$

$$\frac{\partial f}{\partial y} = \frac{-2y}{x^2 + y^2} + \frac{-2y(x^2 - y^2)}{(x^2 + y^2)^2}$$

$$= \frac{-4x^2y}{(x^2 + y^2)^2}$$

f and $\partial f/\partial y$ are continuous for all $(x,y) \in \mathbb{R}^2 \setminus (0,0)$.

- Assume $(x_0, y_0) \neq (0, 0)$.

 There is an open rectangle R containing (x_0, y_0) but not containing (0, 0).
 - ullet f(x,y) and $\partial f/\partial y$ are continuous on R.
 - By existence and uniqueness theorem, (*) has a unique solution on some open interval containing x_0 .

Consider the IVP

$$y' = \frac{x+y}{x-y}, \quad y(x_0) = y_0$$
 (*)

lf

$$f(x,y) = \frac{x+y}{x-y}$$
, then $\frac{\partial f}{\partial y} = \frac{2x}{(x-y)^2}$

Here f(x,y) and $\partial f/\partial y$ are continuous everywhere except on the line y=x.

Assume $x_0 \neq y_0$.

- There is an open rectangle R containing (x_0, y_0) that does not intersect with the line y = x.
- f(x,y) and $\partial f/\partial y$ are continuous on R.
- By existence and uniqueness theorem, (*) has a unique solution on some open interval containing x_0 .

Consider the IVP

$$y' = \frac{10}{3} x y^{2/5}, \quad y(x_0) = y_0 \quad (*)$$

$$f(x,y) = \frac{10}{3} x y^{2/5} \quad \text{and} \quad \frac{\partial f}{\partial y} = \frac{4}{3} x y^{-3/5}$$

- Since f(x,y) is continuous for all $(x,y) \in \mathbb{R}^2$, IVP (*) has at least one solution for all $(x_0,y_0) \in \mathbb{R}^2$.
- If $y \neq 0$, then f(x,y) and $\partial f/\partial y$ both are continuous for all $(x,y) \in \mathbb{R}^2$.
- If $y_0 \neq 0$, there is an open rectangle R containing (x_0, y_0) s.t. f and $\partial f/\partial y$ are continuous on R. Hence IVP (*) has a unique solution on some open interval containing x_0 .

Consider the IVP

$$y' = \frac{10}{3} x y^{2/5}, \quad y(0) = 0 \quad (*)$$

Since $\frac{\partial f}{\partial y} = \frac{4}{3} x y^{-3/5}$ is not continuous if y = 0,

(*) may have more than one solution on every open interval containing $x_0 = 0$.

 $y \equiv 0$ is one solution of IVP (*).

Let y be a non-zero solution of ODE.

$$\frac{y'}{y^{2/5}} = (10/3) x$$

$$(5/3) y^{3/5} = (5/3) (x^2 + C)$$

$$y(x) = (x^2 + C)^{5/3}$$

Example (continued ...)

Note that $y(x) = (x^2 + C)^{5/3}$ is defined for all (x, y) and

$$y' = \frac{5}{3} (x^2 + C)^{2/3} (2x) = \frac{10}{3} xy^{2/5}, \quad \forall x \in (-\infty, \infty)$$

Thus y(x) is a solution on \mathbb{R} for all C.

$$y(0) = 0 \implies C = 0$$

Thus, the IVP

$$y' = \frac{10}{3}y^{2/5}, \quad y(0) = 0$$
 (*)

has two solutions, $y_1 \equiv 0$ and $y_2(x) = x^{10/3}$.

We can construct two more solutions of IVP (*). How?

Consider the IVP

$$y' = \frac{10}{3} x y^{2/5}, \quad y(0) = -1 \quad (*)$$
$$f(x,y) = \frac{10}{3} x y^{2/5}, \quad \frac{\partial f}{\partial y} = \frac{4}{3} x y^{-3/5}$$

are continuous in an open rectangle containing (0,-1). Hence the IVP has a unique solution on some open interval containing $x_0=0$.

Question. Find the unique solution and its interval of validity.

Let $y \neq 0$ be the solution of $y' = (10/3) xy^{2/5}$. Then

$$y(x) = (x^2 + C)^{5/3}$$
$$y(0) = -1 \implies C = -1$$
$$\implies y(x) = (x^2 - 1)^{5/3}$$

Example (continued ...)

• $y(x) = (x^2 - 1)^{5/3}$ is a solution on $(-\infty, \infty)$ of IVP

$$y' = (10/3) xy^{2/5}, y(0) = -1$$

Hence interval of validity of this solution is \mathbb{R} .

• We have seen that if $y_0 \neq 0$, then the IVP

$$y' = (10/3) xy^{2/5}, \quad y(x_0) = y_0$$

has a unique solution on some open interval around x_0 .

• $y(x) = (x^2 - 1)^{5/3}$ is non-zero on (-1, 1). Therefore, y(x) is the unique solution on (-1, 1).

To see this, If w(x) is another solution on (-1,1). Then $w(x) \equiv y(x)$ on some interval (ϵ', ϵ) containing 0. We need to show that $\epsilon = 1$ and $\epsilon' = -1$.

Example (continued ...)

- If $\epsilon \neq 1$, then $w(\epsilon) = y(\epsilon) = c \neq 0$ as w and y are continuous. Hence there exists a unique solution of ODE with IV $y(\epsilon) = c \neq 0$. Hence $w \equiv y$ on an open interval around ϵ . Thus $\epsilon = 1$. Similarly, $\epsilon' = -1$.
- (-1,1) is the largest interval on which the ODE with IV y(0)=-1 has a **unique** solution. To see this, we can define another solution

$$y_1(x) = \begin{cases} (x^2 - 1)^{5/3} &, -1 \le x \le 1\\ 0 &, |x| > 1 \end{cases}$$

Exercise. Find largest interval where the IVP

$$y' = \frac{10}{3} x y^{2/5}, \quad y(0) = 1$$

has a unique solution.

Transforming Non-Linear into Separable ODE

A non-linear differential equation

$$y' + p(x)y = f(x)y^r$$

where $r \in \mathbb{R} - \{0, 1\}$ is said to be a **Bernoulli Equation**. For r = 0, 1, it is linear.

If $y_1=e^{-\int p(x)\,dx}$ is a non-zero solution of y'+p(x)y=0, then putting $y=u(x)y_1$ in ODE, we get

$$u'y_1 + uy_1' + puy_1 = fu^r y_1^r$$

$$\Rightarrow u'y_1 = fu^r y_1^r$$

$$\Rightarrow \frac{u'}{u^r} = f(x)(y_1(x))^{r-1}$$

$$\Rightarrow \frac{u^{-r+1}}{-r+1} = \int f(x)(y_1(x))^{r-1} dx + C$$

Example (Bernoulli Equation)

Consider

$$y' + y = xy^2$$

Set $y=u(x)e^{-x}$, where $y_1=e^{-x}$ is solution of homogeneous part.

$$u'e^{-x} - ue^{-x} + ue^{-x} = u^{2}e^{-2x}x$$

$$\Rightarrow u'e^{-x} = u^{2}e^{-2x}x$$

$$\Rightarrow \frac{u'}{u^{2}} = xe^{-x}$$

$$\Rightarrow \frac{-1}{u} = -(1+x)e^{-x} + C$$

$$\Rightarrow u = \frac{1}{(1+x)e^{-x} - C}$$

$$\Rightarrow y = \frac{e^{-x}}{(1+x)e^{-x} - C} = \frac{1}{1+x-Ce^{x}}$$

Consider Bernoulli equation

$$xy' - 2y = \frac{x^2}{v^6} \implies y' - \frac{2}{x}y = \frac{x}{v^6}$$

The solution to homogeneous part is $y_1 = x^2$. Set $y = u(x)y_1$,

$$u'y_{1} = x(uy_{1})^{-6}$$

$$u^{6}u' = x(x^{2})^{5} = x^{11}$$

$$\frac{1}{7}u^{7} = \frac{1}{12}x^{12} + C$$

$$(1/7)y^{7} = [(1/12)x^{12} + C]y_{1}^{7}$$

$$y^{7} = [(7/12)x^{12} + 7C]x^{14}$$

We do not have an explicit solution.

is an implicit solution.

Homogeneous Non-Linear Equations

Definition

An ODE

$$y' = f(x, y)$$

is said to be homogeneous if it can be written as

$$y' = q(y/x)$$

Substitute y = v(x)x in homogeneous ODE, we get

$$v'x + v = q(v)$$

This is a separable ODE.

Solve

$$xy' = y + x$$

Rewrite it as

$$y' = \frac{y}{x} + 1$$

This is homogeneous ODE.

Substitute y = vx. We get

$$v'x + v = v + 1$$

$$\Rightarrow v'x = 1$$

$$\Rightarrow v' = 1/x$$

$$\Rightarrow v(x) = \ln|x| + C$$

$$\Rightarrow y = x(\ln|x| + C)$$