Week 13 Lecture 0

Jared Brannan

November 29, 2021

1 Administrative drivel

- Exam grades are not in yet
- we're throwing out the senses, since we won't be worried about this till we're in our 50s
- So, we'll proceed to nutrition and digestion
- next week we'll cover ecosystem processes and human impact

2 Nutrition

- Why do we eat?
 - We must acquire from the environment the energy and building blocks to run our activities
 - Building blocks
 - * Things that don't provide energy
 - * provide molecules for building structures, protiens, etc
 - calories (energy)
 - * Plants can turn light into chemical energy, but we have to get our energy through calories in food
 - * the principle form of chemical energy for humans is glucose
 - * The energy we get ultimately comes from plants, who get it from the sun
- Nutrients the things we need to survivie
 - Macronutrients need lots
 - * carbohydrates
 - bulk of the mass of plants
 - * lipids
 - * protiens
 - · Heavy meat intake leads to weight gain, and cardiovascular disease with potential shortened life
 - Micronutrients need small amounts
 - * vitamins
 - * minerals
- macronutrients:
 - Protiens
 - * Amino acids, polypeptides

- * Importantly, they get turned into digestive enzymes
- * Recycle into your own proteins
 - · break apart ingested proteins into individdual amino acids
 - · Assemble amino acids into proteins at the ribosomes
- * Some are built into nucleic acids
 - · recall that both hamino acids are nucleic acides are N-based (nitrogen based)
- * Minor source of energy
 - turned into glucose
 - · They aren't usually stored, and get urinated out
 - · So, a steady supply is needed
 - · when protiens are broken down, there are left over nitrogens in the form of amonia, which is toxic, which needs to be evacuated in the urine

- Carbohydrates

- * Sugars, starches, glycogen
 - · Glycogen is the animal material form of starch
 - · most of which is found in the liver
 - · also a long chain molecule of glucoses
- * Main source of energy
 - · starches and other polysaccharides get broken down to sugar
 - · sugar (esp. glucose) burned to make ATP
 - · carried in the blood to almost all of the cells
- * plants build the starches during the day with excess glucose, so they have energy at night when they don't have the sun

- Lipids

- * Fatty acids, triglycerides, cholesterol
- * build cell membranes
- * secondary source of energy
 - · much more enrgy-dense than carbohydrates
 - · used as a storage molecule
 - have a lot more energy than carbs per pound

• Energy

- All macro nutrients can be used for ATP productionn
- **METABOLISM** == convert food into energy or building blocks
- $-C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O + 36ATP$ respiration (inverse of photosynthesis)
- ATP "density"
 - * Glucose = about 34 ATP per glucose molecule
 - 6 carbons
 - * Fatty acides = about 34 ATP per 4 carbons of the FA (fatty acid)
 - · Chain length can be between 6-22 carbons and up
 - · fatty acids only come in even numbers of carbon

- Calorie density:

- * 4 Calories / gram
- * 9 Calories / gram
- * so, it's much more weight efficient to store exess energy as fat
- * e.g. bird migration is powered by lipids to save weight
- * Cal == 1000 cal
- * 1 calorie = $5 8 \times 10^{19}$ ATP molecules
- \ast So, 1g carbs = 4 Cal = 4000 cal = 200-320 sextillion ATPs

• Energy Balance

- If average energetic demand equals energetic input, all consumed energy is used for body functioning
- if input exceed demand, suprlus energy is stored as glycogen or triglyceride if not used within hours or days
- Obesity one of the leading global causes of preventable eath
 - * 2.5 million/year
 - * Effects: heat disease, diabetes, arthritis, stroke, dimentia
- if demand exceeds input, stored glycogen and triglycerides are mobilized

- Malnutrition :

* Without sufficient calorie intake, body consumes fat reserves, then protein reserves