

Autumn Examinations 2019

Course Instance Code(s)	3BCT
Exam(s)	BSc (CS&IT)
Module Code(s) Module(s)	CT3111 Next Generation Technologies
Paper No.	1
External Examiner(s) Internal Examiner(s)	Dr. Jacob Howe Prof. Michael Madden *Dr. Sam Redfern
All No	nswer any three questions. I questions carry equal marks. ote that the final page of this exam paper lists useful asses from the Unity3D SDK.
Duration No. of Pages Discipline(s) Course Co-ordinator	2 hours 4 Information Technology (s) Dr. Des Chambers
Requirements: Release in Exam Ven	ue Yes No
MCQ Answersheet	Yes No
Handout Statistical/ Log Tables Cambridge Tables Graph Paper Log Graph Paper Other Materials Graphic material in co	None None None None

- (i) Explain how Unity's MonoBehaviour class provides tight integration with the Game Loop. Refer to appropriate methods of the MonoBehaviour class in your answer. [6]
- (ii) What is a Coroutine in Unity, and how do Coroutines integrate with the Game Loop? [4]

(iii) The Game Object depicted has a Box Collider component, whose 'isTrigger' property is true. A script on the game object contains a reference to the Box Collider and to a prefab of a ball.

```
public BoxCollider bc;
public GameObject ball;
public IEnumerator SpawnBallsInBox(){
}
```

Write code for the SpawnBallsInBox() coroutine, so that it continually instantiates balls, at a rate of one ball every two seconds. The balls should be initialised to a random position somewhere inside the Box Collider. (Hint: use the 'bounds' property of the Box Collider, which has 'min' and 'max' properties, each of which are of type Vector3).

[10]

Q.2.

Making appropriate use of local and global co-ordinates, write Unity3D/C# code to perform the following transformations. You may assume that references to the runtime gameobjects are provided:

- rotate a gameobject 5 degrees around its own x axis
 move a gameobject 6 units downwards in the world's co-ordinate system
 move a gameobject 7 units directly towards another gameobject
 move a gameobject 10 units forward in whatever direction it is facing
- (ii) Write code for the following method, which considers the supplied list of objects and returns the one which is furthest away from the specified 3D point: [10]

```
public static GameObject GetFurthestObject(List<GameObject> objects, Vector3 pos) {
}
```

- (i) In 3D games development, what does the term **'raycast'** mean, as supported by various static methods of the Unity3D SDK's Physics class? Explain, with illustrative C# code, how you could use a raycast to allow the user to click with the mouse and select a gameobject from the scene [10]
- (ii) In a shooting game, assume you are using raycasts to determine what the player has hit when they fire their gun. You may assume that you are given a reference to the gun object in the 3D scene.
 - Write appropriate Unity3D/C# code to perform a raycast when the gun is fired, to determine what is hit by the bullet. The gun should have a maximum range of 500 metres. [6]
 - Write appropriate Unity3D/C# code to instantiate an 'explosion' object at the position that the bullet hits. You may assume that a prefab exists for this explosion object. [4]

Q.4.

- (i) Bearing in mind that, in Unity's physics engine, gravity only operates along a fixed world vector, how could you simulate a moon orbiting a planet? Write Unity3D/C# code to achieve this, identifying the appropriate methods in which it should be written, as well as identifying the appropriate component(s) which have been added to the game objects. [10]
- (ii) Write Unity3D/C# code to accomplish the following:
- instantiate a gameobject at runtime, from a prefab [2]
- obtain a reference to the Rigidbody component which is assumed to be attached to
 it
- attach a new Rigidbody to the gameobject, if it did not have one already [3]
- set the gameobject moving in a straight line using the physics engine [3]

Q.5.

Write technical notes on each of the following

 $[5 \times 4]$

- (i) How you would display (and update) a score on the screen while a game is being played, using the Unity GUI system.
- (ii) Garbage collection in Unity, including how to write low-garbage code.
- (iii)Triggers and Colliders in Unity how to use them and why they're useful for games development.
- (iv)Screen space, viewport space and world space in Unity.

Some Useful Unity3D SDK Classes

GameObject: static methods

Instantiate() Destroy() DestroyImmediate() Find()

GameObject: methods

GetComponent() SetActive() AddComponent() SendMessage()

GameObject: data members

activeInHierarchy transform tag

MonoBehaviour: methods

Start() OnDestroy() Awake() Update() LateUpdate() OnDisable() OnEnabled() FixedUpdate() OnBecameInvisible() OnBecameVisible() OnCollisionEnter() OnCollisionExit() OnCollisionStay() OnTriggerEnter() OnTriggerExit() OnTriggerStay() BroadcastMessage() GetComponent() SendMessage() SendMessageUpwards() GetComponentInChildren() GetComponentInParent() GetComponents() GetComponentsInChildren() StartCoroutine()

GetComponentsInParent() GetInstanceID() Invoke()

MonoBehaviour: data members

enabled gameObject transform name

Transform: methods

TransformPoint() Rotate() InverseTransformPoint() Translate() LookAt() RotateAround() SetParent() TransformVector()

InverseTransformVector() TransformDirection() InverseTransformDirection()

Transform: data members

position localPosition rotation localRotation lossyScale localScale parent right

forward gameObject up

RigidBody: methods

AddForce() AddForceRelative() AddForceAtPosition() AddTorque()

AddRelativeTorque() MovePosition() MoveRotation()

RigidBody: data members

angularDrag mass velocity

angularVelocity centerOfMass

Camera: methods

ScreenToWorldPoint() WorldToScreenPoint() ScreenToViewportPoint() ViewportToScreenPoint() WorldToViewportPoint() ViewportToWorldPoint()

ViewportPointToRay() ScreenPointToRay()

Physics: static methods

Raycast() SphereCast() OverlapBox() BoxCast()