Recherche séquentielle

Idée. Balayer le tableau jusqu'à trouver x.

```
bool trouve=false; int i=0;
while (i<n && !trouve) {
 if (T[i]==x) trouve=true; else i++;
return trouve;
```

Complexité : pire/moyenne O(n), meilleur $\mathcal{O}(1)$ si x en tête.

Recherche dichotomique (binaire)

Précondition : tableau trié.

```
int g=0, d=n-1;
while (g \le d)
 int m=(g+d)/2;
 if (T[m]==x) return true;
 if (T[m]<x) g=m+1; else d=m-1;
return false;
```

Complexité : $O(\log n)$

Tableau vs. Liste chaînée Tableau Accès aléatoire $\mathcal{O}(1)$, taille fixe

Liste chaînée

Insertion/suppression en tête $\mathcal{O}(1)$, accès séquentiel

Piles et files Pile (LIFO)

- Tableau: push/pop en fin $\mathcal{O}(1)$ amorti
- Liste: push/pop en tête $\mathcal{O}(1)$

File (FIFO)

- Tableau: deux indices (tête/fin), opérations O(1)
- Liste: pointeur de fin, en $q/\text{deq }\mathcal{O}(1)$

${f Arbres}$

Déf. Nœud racine et sous-arbres (éventuellement vides).

Parcours: préordre (racine, A_g , A_d), infixe $(A_g$, racine, A_d), postordre $(A_g$, A_d , racine). **Hauteur** h (nœuds n): $\lfloor \log_2 n \rfloor \le h \le n-1$. Schéma AB (ex.)

Tri: borne inférieure

Tout tri par comparaisons $\Rightarrow \Omega(n \log n)$ au pire.

Tri par sélection

Principe : mettre le plus petit au début à chaque passe.

```
for (i=1..n-1){
 k=i;
 for (j=i+1..n) if (T[j]<T[k]) k=j;
 swap(T[i],T[k]);
```

Complexité : $\mathcal{O}(n^2)$ (pire/moyen/meilleur). Tri par insertion

Insérer T[i] dans le préfixe trié.

```
for (i=2..n){
  x=T[i]; j=i-1;
  while (j>=1 \&\& T[j]>x){ T[j+1]=T[j];}
     j--; }
  T[j+1]=x;
}
```

Complexité: pire $\mathcal{O}(n^2)$, meilleur $\mathcal{O}(n)$. Tri rapide (Quicksort)

Partitionner & trier récursivement.

q = partition(T, 1, r);quicksort(T,1,q-1); quicksort(T,q+1,r);

Complexité: moyenne $\mathcal{O}(n \log n)$, pire $\mathcal{O}(n^2)$. Tri par ABR

Insérer dans un ABR puis parcours infixe ⇒ séquence triée.

Construction moyenne $\mathcal{O}(n \log n)$ (pire $\mathcal{O}(n^2)$), parcours $\mathcal{O}(n)$.

Tas (Heap)

Représentation tableau

Indices 1..n: gauche(i) = 2i, droite(i) = 2i + 1, parent $(i) = \lfloor i/2 \rfloor$.

Schéma de tas

Opérations : $heapify \mathcal{O}(\log n)$, build-heap $\mathcal{O}(n)$, insertion/extract-max $\mathcal{O}(\log n)$.

Tri par tas : $\mathcal{O}(n \log n)$.

Hachage

 $\overline{\mathbf{But}}$: appartenance de mots dans une table m

Fonction $h:U\to\{0,\ldots,m-1\}$, facteur de charge $\alpha = n/m$.

Chaînage : coût attendu $\mathcal{O}(1 + \alpha)$ pour recherche/insertion; pire $\mathcal{O}(n)$.

Principe de recherche

- 1. Calculer i = h(x)
- 2. Parcourir la liste du seau i
- 3. Trouvé \Rightarrow succès sinon échec

Gestion des collisions

- Listes chaînées par seau
- Adressage ouvert (linéaire, quadratique, double hachage)

Algorithme de Huffman

Objectif : code préfixe minimisant L \sum_{c} occ(c) $\ell(c)$.

Construction : file de priorité fusionnant toujours les 2 plus petites fréquences.

Complexité : $\mathcal{O}(k \log k)$ pour k caractères.

Schéma (exemple)

Propriété de préfixe : aucun code n'est préfixe d'un autre.

Récapitulatif des complex-

$\mathcal{O}(n)$
$\mathcal{O}(\log n)$
$\mathcal{O}(n^2)$
pire $\mathcal{O}(n^2)$, meilleur
$\mathcal{O}(n)$
moy. $\mathcal{O}(n \log n)$, pire
$\mathcal{O}(n^2)$
$\mathcal{O}(n \log n)$
moy. $\mathcal{O}(n \log n)$, pire
$\mathcal{O}(n^2)$
$\mathcal{O}(n) \ / \ \mathcal{O}(\log n)$
$\mathcal{O}(1)$ par op. si α
borné
$\mathcal{O}(k \log k)$

Graphes (orientation, bases)

Graphe fini simple orienté : G = (X, A), Xensemble fini de sommets, $A \subseteq X \times X$ sans boucle ni multi-arcs.

Degrés: $\deg^+(x) = |\{(x,y) \in A\}|, \deg^-(x) =$ $|\{(y,x)\in A\}|.$

$$n = |X|,$$
 $m = |A|,$ $\sum_{x \in X} \deg^+(x) = \sum_{x \in X} \deg^-$

Chaîne (chemin) : (x_0, \ldots, x_k) avec $(x_i, x_{i+1}) \in A.$

pas de sommet répété; circuit : $x_0 = x_k$; élémentaire : simple et sans répétition d'arcs.

Fortement connexe : $\forall x, y$ chaîne de x vers y. Composante fortement connexe (CFC) : classe d'équivalence par la relation " $x \rightsquigarrow y$ et

Partition en CFC

- Soient C_1, \ldots, C_k les CFC de G:

 1. $X = \bigsqcup_{i=1}^k C_i$ 2. Si $i \neq j$, $C_i \cap C_j = \emptyset$ 3. Le graphe des CFC (condensation) est un DAG.

Représentations

Matrice d'adjacence $M = (m_{xy})$ avec $m_{xy} =$ 1 si $(x, y) \in A$, sinon 0.

Listes d'adjacence : pour chaque x, la liste de ses successeurs (ou prédécesseurs). Coût mémoire : matrice $\Theta(n^2)$, listes $\Theta(n +$

m).

Plus court & plus long chemin

Plus court chemin (pcc). Longueur = somme des poids w(a).

Absorbant (négatif) : un circuit de poids < 0 \Rightarrow pas de pcc.

Plus long chemin. NP-difficile en général; dans un DAG on peut le faire en ordre topologique (changer min \rightarrow max).

Dijkstra (w > 0)

Hyp. poids non négatifs. Idée : invariant d'ensemble S des sommets "figés".

Init: d[s]=0; $d[x]=+\inf$ pour x!=s; $S={}$ Tant que S!=X:

```
u = argmin_{x in X\S} d[x]
S = S U \{u\}
pour (u,v) in A:
  si d[v] > d[u] + w(u,v):
     d[v] = d[u] + w(u,v); pere[v]=u
```

Complexité : $\mathcal{O}(n^2)$ avec matrice; $\mathcal{O}((n +$ $\binom{n}{x} \stackrel{\text{log } n}{=} m$ avec tas binaire. Bellman-Ford (poids quelconques)

Détecte circuits négatifs; calcule les pcc si aucun accessible à s.

```
Init: d[s]=0, d[x]=+inf sinon
Repeter n-1 fois:
  pour chaque arc (u,v):
    d[v] = min(d[v], d[u] + w(u,v))
Verif circuit negatif:
  s'il existe (u,v) avec d[v] > d[u] +
     w(u,v) \rightarrow negatif
```

Complexité : O(n m).

Graphe sans circuit (DAG)

Numérotation/ordre topologique

Déf. Bijection $\tau: X \to \{1, \dots, n\}$ telle que $(x,y) \in A \Rightarrow \tau(x) < \tau(y)$. **Propriété :** G est un DAG \Leftrightarrow un ordre

topologique existe.

Calcul d'un ordre topo (Kahn)

```
Entree: DAG G
S = {sommmets d'indegre 0}; ordre=[]
Tant que S non vide:
  u = extraire(S)
  ordre.ajouter(u)
  pour (u,v) in A:
    enlever (u,v); si indegre(v)==0:
     S.aiouter(v)
```

Complexité : O(n+m).

Pcc dans un DAG (Bellman "topo")

```
Entree: DAG, ordre topologique t(1..n)
Init d[s]=0; d[x]=+inf sinon; pere[x]=nil
Pour i=1..n (dans l'ordre topo):
 u = t[i]
 pour (u,v) in A:
    si d[v] > d[u] + w(u,v):
```

d[v] = d[u] + w(u,v); pere[v]=u

Complexité : O(n+m).

Graphe non orienté

Arêtes non ordonnées $\{x,y\}$. G = (X, E),n = |X|, m = |E|.

Degré d(x) nombre d'arêtes incidentes à x.

$$\sum_{x \in X} d(x) = 2m \quad \text{(handshaking)}.$$

Chaîne : $(x_0, ..., x_k)$ avec $\{x_i, x_{i+1}\} \in E$. Cycle : $x_0 = x_k, k \ge 3$.

Connexité: $\forall x, y$ chaîne entre x et y. Les composantes connexes C_1, \ldots, C_r partitionnent X. Forêt/Arbre couvrant : sous-graphe (X, F), acyclique, connexe, |F| = n - 1.

Pont (arête isthme): arête dont la suppression augmente le nombre de composantes.

Conséquences

- Si G est connexe, alors $m \ge n 1$.
- G connexe \Rightarrow il existe un arbre couvrant.
- Un cycle \Rightarrow on peut retirer une arête du cycle sans perdre la connexité.

Utilisation typique (pères & distances)

Soit un parcours (BFS/DFS) depuis s. On enregistre d(x) (distance/numéro) et p(x) (père).

$$\begin{array}{c|c|c} x & d(x) & p(x) \\ \hline s & 0 & - \\ \dots & \dots & \dots \end{array}$$

Propriété (BFS) : si G non pondéré (ou poids 1), d(x) est la longueur du pcc $s \rightsquigarrow x$ et l'arbre des pères est un arbre des plus courts chemins.

Remarques pratiques

- Choix de structure : matrice pour graphes denses; listes pour graphes clairsemés.
- Chemins longs/courts dans DAG : même DP sur ordre topo avec max ou min.
- Détection de cycles : un ordre topo n'existe pas \Leftrightarrow il y a un cycle.

Lemmes et THM (graphes non orientés)

Lemme 2. Si G est sans cycle alors $m \leq n-1$. **Corollaire.** Un arbre a n sommets, n-1 arêtes. **Lemme 3.** $a \in E$ est un isthme $\Leftrightarrow a$ n'appartient à aucun cycle.

 \overrightarrow{THM} équivalences pour G connexe :

- 1. G connexe et m = n 1
- 2. G est sans cycle
- 3. Il existe une unique chaîne simple entre xet y pour tout $x \neq y$ 4. G est connexe et l'ajout d'une arête crée
- un cycle

Algorithme de Kruskal (ACM poids min)

Principe.

- 1. Trier les arêtes par poids croissant
- 2. Parcourir la liste et ajouter l'arête si elle ne crée pas de cycle

Test de cycle: union-find (composantes). Pseudo-code (schéma).

```
ACM = \{\}
trier E par poids croissant
pour (u,v) dans E:
 if find(u)!=find(v):
     ACM.add((u,v)); union(u,v)
```

Complexité : $\mathcal{O}(m \log m)$ (tri) $+\mathcal{O}(m \alpha(n))$

Détection de cycle par CC (version simple) On maintient CC[i] = numéro de composante du sommet i; fusion si arête choisie.

Complexité illustrée : $\mathcal{O}(m \log m) + n^2$ (naïf).

Algorithme de Prim (ACM)

Principe. Démarre d'un sommet; à chaque étape, ajoute l'arête la moins chère incidente à l'arbre courant.

```
S = \{s\}; poids[v]=+inf; pere[v]=nil
maj voisins de s
tant que |S|<n:
 u = argmin_{v notin S} poids[v]
 S = S U \{u\}
 pour (u,w) arete:
    si w notin S et c(u,w) < poids[w]:
       poids[w]=c(u,w); pere[w]=u
```

Complexité: $\mathcal{O}(n^2)$ (matrice), $\mathcal{O}(m \log n)$ (tas

binaire).

Parcours d'un graphe

Parcours orienté (schéma "marquer/exam-

- Au départ, aucun sommet marqué; aucune arête traversée
- Choisir un sommet x: traverser (x, y) si non traversée
- Si y non marqué \Rightarrow marquer y, $p \ge re(y) = x$

Boucle sur les arêtes jusqu'à ce que tous les sommets soient examinés.

Coût : O(n+m).

Parcours non orienté

Même idée avec arêtes $\{x,y\}$; les composantes connexes émergent naturellement.

BFS (largeur) & DFS (profondeur)

BFS (file)

```
marquer s; d[s]=0; Q=\{s\}
while Q non vide:
 u=dequeue(Q)
 pour (u,v):
    si v non marque:
      marquer v; d[v]=d[u]+1; pere[v]=u;
     enqueue(Q,v)
```

d[v] = distance minimale (non Complexité. $\mathcal{O}(n+m)$. DFS (pile/récursif)

```
DFS(u):
 pre[u]=++time
 pour (u,v):
```

si v non visite: pere[v]=u; DFS(v)

Numérotations pré/postfixe. pre[u] à l'entrée, post[u] à la sortie. Utile pour CFC/-

CFC (composantes fortement connexes)

Kosaraju (2 DFS).

post[u]=++time

- 1. DFS sur G pour obtenir l'ordre décroissant de post.
- 2. DFS sur G^T en suivant cet ordre; chaque $arbre\ découvert \Rightarrow une\ CFC.$

Complexité : O(n+m).

Flot maximum & coupe min-

Réseau. G = (X, A) orienté valué par capacités $: A \to \mathbb{R}_+; \text{ source } s, \text{ puits } t.$

Flot. $f: A \to \mathbb{R}$ tel que :

- (Capacité) $0 \le f(x,y) \le c(x,y)$ (Conservation) $\sum_y f(y,x) = \sum_y f(x,y)$

pour $x \neq s, t$ Valeur. $|f| = \sum_{y} f(s, y) - \sum_{y} f(y, s)$. Résiduel. $c_f(x, y) = c(x, y) - f(x, y)$ et arc retour (y, x) de capacité f(x, y).

Théorème (Max-flow / Min-cut) Pour tout flot f et toute coupe (S, \overline{S}) avec $s \in S$,

$$|f| \le c(S, \bar{S}) = \sum_{x \in S, y \in \bar{S}} c(x, y),$$

avec égalité $\Leftrightarrow f$ est maximum et la coupe est minimum

Ford-Fulkerson (chemins augmentants)

- 1. Initialiser f = 0; calculer le résiduel G_f 2. Tant qu'il existe un chemin P de s à t da
- Tant qu'il existe un chemin P de s à t dans
- G_f : $\Delta = \min\{c_f(e) : e \in P\}$; augmenter fde Δ le long de $\stackrel{\checkmark}{P}$

Complexité. Dépend du choix des chemins. Avec BFS (Edmonds-Karp) : $\mathcal{O}(n \, m^2)$.

Arrêt. Aucun chemin augmentant ⇒ flot max atteint; les sommets atteignables dans G_f définissent une coupe min.

Notes rapides & rappels

- Pont/isthme. Suppression augmente le # de composantes.
- Arbre couvrant. n-1 arêtes; unique chemin simple entre deux sommets
- $\mathbf{D}\mathbf{A}\mathbf{G}.$ Numérotation topologique \Leftrightarrow pas de cycle. Choix structures. Matrice $\Theta(n^2)$
- (dense), listes $\Theta(n+m)$ (sparse). Coûts typiques. BFS/DFS
- $\overrightarrow{BFS}/\overrightarrow{DFS}$ $\mathcal{O}(n +$ m); Kruskal $\mathcal{O}(m \log n)$; Prim $\mathcal{O}(m \log n)$; CFC $\mathcal{O}(n+m)$; Edmonds-Karp $\mathcal{O}(nm^2)$.

Coupes, marquages et flot

Coupe (S, \bar{S}) . $s \in S, t \in \bar{S}$. Capacité $c(S, \bar{S}) =$

 $\sum_{x \in S, \ y \in \bar{S}} c(x,y).$ **Résiduel.** $c_f(x,y) = c(x,y) - f(x,y)$ (arc retour (y, x) de capacité f(x, y)).

Algorithme de marquage (après arrêt).

- Marquer s.
- Tant qu'il existe un sommet marqué x et un voisin y non marqué tel que

 $\begin{array}{l} \text{marquer y.} \\ \grave{\text{A}} \text{ la fin, } S = \{\text{sommets marqu\'es}\} : \textit{les arcs} \\ \textit{traversant de } S \textit{ vers } \bar{S} \textit{ sont satur\'es et ceux de } \bar{S} \end{array}$ vers S portent du flot nul. (S, \bar{S}) est une coupe **minimum** et $|f| = c(S, \bar{S})$.

Ford-Fulkerson (rappel succinct)

f=0: construire G f

tant qu'il existe un chemin P de s a t dans G_f:

Delta = $min{c_f(e) : e dans P}$ augmenter f de Delta le long de P mettre a jour G_f

Complexités usuelles. FF naïf : peut être pseudo-polynomial. Edmonds–Karp (BFS dans G_f) : $\mathcal{O}(nm^2)$.

Application: Couplage maximum biparti

Soit $G = (X \cup Y, E)$ biparti. Construire le réseau

- $\begin{array}{l} \bullet \ \ {\rm arcs} \ s \to x \ (x \in X) \ {\rm de} \ {\rm capacit\'e} \ 1 \ ; \\ \bullet \ \ {\rm arcs} \ x \to y \ {\rm pour} \ (x,y) \in E \ {\rm de} \ {\rm capacit\'e} \ 1 \ ; \\ \bullet \ \ {\rm arcs} \ y \to t \ (y \in Y) \ {\rm de} \ {\rm capacit\'e} \ 1. \end{array}$

Tout flot f correspond a un **couplage** $C = \{(x,y): f(x,y) = 1\}$. Max-flot = taille du couplage maximum.

Complexité (implémentation simple). $\mathcal{O}(mn)$; avec Hopcroft-Karp : $\mathcal{O}(\sqrt{n} m)$.

Théorème de Menger (version arcs)

Pour $a, b \in X$, soient $N_{a,b}$ le # minimal d'arcs à supprimer pour séparer a de b, et $P_{a,b}$ le # maximal de **chemins arc-disjoints** de a à b. Alors

$$N_{a,b} = P_{a,b}$$
.

 $c_f(x,y)>0$ (arc direct disponible) ou $c_f(y,x)>0$ (arc retour), Idée de preuve. Réduction à un réseau : capacité 1 par arc, max-flot = # de chemins arcdisjoints, min-coupe = # d'arcs à retirer. Donc $P_{a,b} = N_{a,b}$.

Taille de codage & problèmes de décision

Une **instance** I est encodée binaire; taille(I) = |I| (en bits).

Un problème de décision attend "oui/non". On dit qu'un algorithme est **polynomial** si son temps est majoré par $|\mathbf{I}|^k$ pour un k constant.

Classes P et NP

- P : problèmes décidables en temps polyno-
- NP : "vérifiables" en temps polynômial : si la réponse est "oui", il existe un **certi**ficat y de taille polynomiale vérifiable en $poly(|\mathbf{I}|)$.

On sait $P \subseteq NP$. On ignore si P = NP.

Réductions polynomiales

 $\Pi_1 \leq_P \Pi_2$ s'il existe une transformation polynomiale T telle que

$$\mathbf{I} \in \Pi_1 \iff T(\mathbf{I}) \in \Pi_2.$$

Si $\Pi_1 \leq_P \Pi_2$ et Π_2 est polynomiale, alors Π_1

NP-difficile / NP-complet

- NP-difficile : tout problème de NP s'y ré-
- NP-complet : dans NP et NP-difficile.

Exemples classiques (NPcomplétude)

- 3-SAT : formule CNF à clauses de taille 3 satisfiable?
- \mathbf{PVC} (Vertex Cover) : existe-t-il k sommets couvrant toutes les arêtes?
- $\mathbf{Stable/IS}:$ existe-t-il un ensemble stable (indépendant) de taille $\geq k$?
- Clique : existe-t-il une clique de taille $\geq k$

Chaîne de réductions standard :

3-SAT \leq_P Clique \equiv_P Stable \leq_P PVC.

Donc $\mathbf{PVC},$ \mathbf{Stable} et \mathbf{Clique} sont NP-complets (et de même pour 3-SAT).

Complexité de quelques algorithmes de flots

Ford-Fulkerson (chemins arbitraires) polynomial Edmonds-Karp (BFS) $O(nm^2)$ Dinic (niveaux + blocs) $\mathcal{O}(n^2m)$ Biparti (Hopcroft-Karp) $\mathcal{O}(m\sqrt{n})$

Notes rapides de cours

- Dans la coupe min issue du marquage, lesarcs retenus par la forte a-b-connexité sont ceux franchissant $S \to \bar{S}$.
- Pour numéroter un DAG, on numéroter de 1 à n en suivant l'ordre topologique.
- Les tableaux de pères/distances (BF-S/DFS) suffisent à reconstruire des chemins.