Hasta el momento

Nos hemos enfocado en GNNs y sus variantes para grafos no dirigidos

- Existen otros modelos de grafos relevantes en la práctica:
 - Grafos dirigidos
 - Grafos etiquetados o Knowledge graphs
- Veremos algunas versiones de GNNs para estos modelos

Knowledge graphs

- Grafos con distintos tipos de relaciones
- Formalmente: un knowledge graph es un triple G = (V, E, R) donde
 - V es un conjunto de nodos
 - E es un conjunto de arcos o triples de la forma $(u, r, v) \in V \times R \times V$
 - R es un conjunto de tipos de relaciones

R-GCN

- Introducido el 2018:
 Modeling Relational Data with Graph Convolutional Networks.
 M. Schlichtkrull, T. N. Kipf, P. Bloem, R. van den Berg, I. Titov, and M. Welling.
- Aplicado a clasificación de nodos y predicción de links
- Computación de una R-GCN: similar a la de una GNN clásica
 - Ahora la entrada es un knowledge graph + vectores iniciales en los nodos
 - La R-GCN tiene la capacidad de distinguir relaciones a la hora de agregar la información de los vecinos

R-GCN: definición

Tenemos un knowledge graph G = (V, E, R)

• Denotamos por R^{\pm} al conjunto

$$R^{\pm} = R \cup \{r^- \mid r \in R\}$$

(conjunto de las relaciones y sus inversos)

• Para $r \in R$ decimos que

$$(u, r^-, v) \in E \iff (v, r, u) \in E$$

• Para $p \in R^{\pm}$ y $v \in V$ definimos la vecindad con respecto a r como

$$N_p(v) = \{ u \in V \mid (u, p, v) \in E \}$$

R-GCN: definición


```
N_{
m Sigue}({
m Danilo}) = \{{
m Raimundo}\} N_{
m Sigue}({
m Danilo}) = \{{
m Paulina}\} N_{
m Vive}({
m Santiago}) = \{{
m Paulina}, {
m Leticia}\}
```

R-GCN: definición

• Versión sin inversos:

Actualización para nodo v en la capa $t \in \{1, ..., T\}$:

$$h_v^{(t)} = \sigma \left(W_0^{(t)} h_v^{(t-1)} + \sum_{r \in R} \sum_{w \in N_r(v)} W_r^{(t)} h_w^{(t-1)} + b^{(t)} \right)$$

Versión con inversos:

Actualización para nodo v en la capa $t \in \{1,...,T\}$:

$$h_{v}^{(t)} = \sigma \left(W_{0}^{(t)} h_{v}^{(t-1)} + \sum_{p \in R^{\pm}} \sum_{w \in N_{p}(v)} W_{p}^{(t)} h_{w}^{(t-1)} + b^{(t)} \right)$$

Por simplicidad asumimos la versión sin inversos

Poder expresivo de R-GCNs

• En general, podemos usar las herramientas que ya vimos (WL y lógica) para estudiar el poder expresivo de las R-GCNs

Hay algunas pequeñas diferencias

Weisfeiler and Leman go Relational P. Barceló, M. Galkin, C. Morris, M.R.

A Theory of Link Prediction via Relational Weisfeiler-Leman on Knowledge Graphs X. Huang, M. R., I. Ceylan, P. Barceló

El test Relational Weisfeiler-Leman (1-RWL)

- 1-RWL: Dado un knowledge graph G = (V, E, R)
 - Comenzamos con un coloreo para los nodos $(c_v^{(0)})_{v \in V}$
 - En la iteración $t \ge 1$, actualizamos el color de cada nodo según los colores de sus vecinos:

$$c_v^{(t)} = \text{Relabel} \left((c_v^{(t-1)}, \{ \{ (c_w^{(t-1)}, r) \mid r \in R, w \in N_r(v) \} \}) \right)$$

 Podemos aplicar el test una cantidad fija de iteraciones o hasta que el coloreo se estabilice (Es decir, hasta que la partición obtenida no cambie)

1-RWL y R-GCNs

- Fuerte conexión entre R-GCNs y 1-RWL:
 - El poder expresivo de las R-GCNs para distinguir nodos coincide con el de 1-RWL

Cota superior: Las R-GCNs no son más poderosas que 1-RWL

Teorema (Barceló et al. 2022):

Sea G = (V, E, R) un knowledge graph y $T \ge 1$ un entero positivo.

Sean $(c_v^{(0)})_{v \in V}$ y $(h_v^{(0)})_{v \in V}$ coloreos y features iniciales equivalentes (generan la misma partición).

Entonces, toda R-GCN con T capas cumple:

$$c_u^{(t)} = c_v^{(t)} \implies h_u^{(t)} = h_v^{(t)}$$

para todo $0 \le t \le T$, y para todo par de nodos $u, v \in V$

1-RWL y R-GCNs

- Fuerte conexión entre R-GCNs y 1-RWL:
 - El poder expresivo de las R-GCNs para distinguir nodos coincide con el de 1-RWL

Cota inferior: Las R-GCNs pueden ser igual de poderosas que 1-RWL

Teorema (Barceló et al. 2022):

Sea G = (V, E, R) un knowledge graph y $T \ge 1$ un entero positivo.

Sea $(c_v^{(0)})_{v \in V}$ un coloreo inicial para G.

Entonces, existen features iniciales $(h_v^{(0)})_{v \in V}$ equivalentes a $(c_v^{(0)})_{v \in V}$ y una R-GCN con T capas tal que:

$$c_u^{(t)} = c_v^{(t)} \iff h_u^{(t)} = h_v^{(t)}$$

para todo $0 \le t \le T$, y para todo par de nodos $u, v \in V$

Lógica y R-GCNs

Para grafos no dirigidos: Conexión GNNs vs Graded Modal Logic (GML)

The Logical Expressiveness of Graph Neural Networks P. Barceló, E. Kostylev, M. Monet, J. Pérez, J. Reutter, J. Silva

Teorema (Barceló et al. 2020):

Sea φ un clasificador lógico de nodos. Entonces

 φ se puede expresar con una GNN $\Longleftrightarrow \varphi$ se puede expresar en GML

GML

- Las fórmulas en GML son unarias, es decir, tienen una variable libre
- Tenemos dados un conjunto de colores de nodos $\operatorname{\mathscr{C}}$
- Las fórmulas en GML se definen como:
 - Si $a \in \mathscr{C}$ es un color, entonces $\varphi(x) = a(x)$ es una fórmula
 - Si $\varphi(x)$ y $\psi(x)$ están en GML, y N es un natural, entonces

$$\neg \varphi(x) \qquad \varphi(x) \land \psi(x) \qquad \exists^{\geq N} y (\varphi(y) \land E(y, x))$$

también son fórmulas en GML

R-GML

- Las fórmulas en R-GML son unarias, es decir, tienen una variable libre y se evalúan sobre knowledge graphs (con colores en los nodos)
- Tenemos dados un conjunto de colores de nodos $\mathscr C$ y tipos de relaciones R
- Las fórmulas en R-GML se definen como:
 - Si $a \in \mathscr{C}$ es un color, entonces $\varphi(x) = a(x)$ es una fórmula
 - Si $\varphi(x)$ y $\psi(x)$ están en R-GML, $r \in R$ y N es un natural, entonces

$$\neg \varphi(x)$$
 $\varphi(x) \land \psi(x)$ $\exists^{\geq N} y (\varphi(y) \land r(y, x))$

también son fórmulas en R-GML

R-GML y R-GCNs

Teorema (X. Huang et al. 2023):

Sea φ un clasificador lógico de nodos para knowledge graphs. Entonces

 φ se puede expresar con una R-GCN $\iff \varphi$ se puede expresar en R-GML

GNNs con readout

Teorema (Barceló et al. 2020):

Todo clasificador lógico de nodos en FOC₂ se puede expresar con una GNN

No existe un teorema análogo para R-GCNs

CompGCNs

- Introducido el 2020: Composition-based multi-relational graph convolutional networks
 S. Vashishth, S. Sanyal, V. Nitin, and P. P. Talukdar.
- Aplicado a clasificación de nodos y predicción de links
- Motivación: Disminuir la cantidad de parámetros

Actualización para nodo v en la capa $t \in \{1, ..., T\}$:

$$h_v^{(t)} = \sigma \left(W_0^{(t)} h_v^{(t-1)} + \sum_{r \in R} \sum_{w \in N_r(v)} W_1^{(t)} \phi(h_w^{(t-1)}, z_r^{(t)}) + b^{(t)} \right)$$

Ahora los parámetros son $W_0^{(t)}$, $W_1^{(t)}$, $Z_r^{(t)}$, $b^{(t)}$

CompGCNs

Actualización para nodo v en la capa $t \in \{1,...,T\}$:

$$h_v^{(t)} = \sigma \left(W_0^{(t)} h_v^{(t-1)} + \sum_{r \in R} \sum_{w \in N_r(v)} W_1^{(t)} \phi(h_w^{(t-1)}, z_r^{(t)}) + b^{(t)} \right)$$

- Opciones comunes para ϕ :
 - $\phi(h,z) = h + z$ (suma)
 - $\phi(h,z) = (h,z)$ (concatenación)
 - $\phi(h, z) = h * z$ (multiplicación coordenada a coordenada)

R-GCN y CompGCNs

- El poder expresivo de las CompGCNs dependen de la elección de ϕ
- Si ϕ puede expresar escalamiento de vectores, entonces alcanza el mismo poder expresivo que las R-GCNs
 - E.g. si ϕ es la multiplicación coordenada a coordenada

Teorema (Barceló et al. 2022) (informal):

El poder expresivo de 1-RWL coincide con el de las CompGCNs, siempre y cuando la función ϕ pueda expresar escalamiento de vectores.

R-GCN y CompGCNs

- ¿Qué pasa para suma y concatenación?
- Se puede demostrar que en estos casos las CompGCNs son más débiles que las R-GCNs
- Esto es consecuencia del siguiente teorema:

Teorema (Barceló et al. 2022) (informal):

El poder expresivo de weak 1-RWL coincide con el de las CompGCNs, cuando la función ϕ es suma o concatenación.

Weak 1-RWL

- Weak 1-RWL: Dado un knowledge graph G = (V, E, R), donde $R = \{1, ..., q\}$
 - Comenzamos con un coloreo para los nodos $(c_v^{(0)})_{v \in V}$
 - En la iteración $t \ge 1$, actualizamos el color de cada nodo según los colores de sus vecinos:

$$c_v^{(t)} = \text{Relabel} \left((c_v^{(t-1)}, \{\!\!\{ c_w^{(t-1)} \mid r \in R, w \in N_r(v) \}\!\!\}, |N_1(v)|, ..., |N_q(v)|) \right)$$

 Podemos aplicar el test una cantidad fija de iteraciones o hasta que el coloreo se estabilice (Es decir, hasta que la partición obtenida no cambie)

Mas allá de knowledge graphs

 Existen modelos más generales que knowledge graphs (e.g. property graphs)

¿Cómo extendemos las GNNs a estos modelos?

- Podemos ir más allá de grafos:
 - Hipergrafos
 - Estructuras relacionales

¿Cómo extendemos las GNNs a estos modelos?

Link Prediction with Relational Hypergraphs X. Huang, M. R., I. Ceylan, P. Barceló