Mechanics of Materials

Lecture 2 - Stress

Dr. Nicholas Smith

Wichita State University, Department of Aerospace Engineering

August 20, 2020

schedule

- 20 Aug Stress
- 25 Aug Strain, Homework 1 Due
- 27 Aug Mechanical Properties, Project 1 Due
- 1 Sep Exam Review

office hours

- TBD
- As always, if you can't make it to office hours, just send me an e-mail and we'll try to work something out

outline

- review
- stress
- average normal stress
- average shear stress

,

Find the internal forces at C.

group two

Find the internal forces at C.

group three

Find the internal forces at C.

group four

Find the internal forces at C.

- For a continuous and cohesive material, consider an infinitely small cube of material
- A finite force, ΔF will act on this material, and we can consider its three components, ΔF_x , ΔF_y , and ΔF_z
- The limit of the force divided by the area of the cube is defined as stress

normal stress

 The stress acting normal to a face of the cube is referred to as the normal stress

$$\sigma_{\rm X} = \lim_{\Delta {\rm A}_{\rm X} \to 0} \frac{\Delta F_{\rm X}}{\Delta {\rm A}_{\rm X}} \ \sigma_{\rm Y} \ = \lim_{\Delta {\rm A}_{\rm Y} \to 0} \frac{\Delta F_{\rm Y}}{\Delta {\rm A}_{\rm Y}} \ \sigma_{\rm Z} = \lim_{\Delta {\rm A}_{\rm Z} \to 0} \frac{\Delta F_{\rm Z}}{\Delta {\rm A}_{\rm Z}}$$

- Similarly, forces acting tangent to the face of the cube create shear stresses
- Often (but not always), τ is used instead of σ for shear stresses

$$\tau_{\mathrm{X}\mathrm{y}} = \lim_{\Delta \mathrm{A}_{\mathrm{y}} \to 0} \frac{\Delta \mathrm{F}_{\mathrm{X}}}{\Delta \mathrm{A}_{\mathrm{y}}} \ \tau_{\mathrm{y}\mathrm{z}} \ = \lim_{\Delta \mathrm{A}_{\mathrm{z}} \to 0} \frac{\Delta \mathrm{F}_{\mathrm{y}}}{\Delta \mathrm{A}_{\mathrm{z}}} \ \tau_{\mathrm{X}\mathrm{z}} = \lim_{\Delta \mathrm{A}_{\mathrm{x}} \to 0} \frac{\Delta \mathrm{F}_{\mathrm{z}}}{\Delta \mathrm{A}_{\mathrm{x}}}$$

general stress

Figure 1: A cube with stresses illustrated on each of the faces, following the notation described previously.

units

- stress has units of force per area
- In metric units, this is Pa (or often MPa and GPa)
- In english units, this is psi (or often ksi)

1

average normal stress

- We can use statics to find the statically equivalent normal force acting on some cross-section
- The average normal stress will be the normal force divided by the area of the cross-section
- If a bar is loaded at different points, or if it changes cross-sectional area, the average normal stress can vary, we can find the stress at different cross-sections to find the maximum average normal stress

Figure 2: The bar with a width of 35 mm and a thickness of 10 mm is loaded at multiple locations. From the left end, at point A, there is a 12 kilonewton load (in the left direction) to the right of this at point B load another left-pointing load of 9 kilonewtons is applied. To the right of that, point C, another load of 4 kilonewtons is applied in the right direction, and finally at the right end, point D, a 22 kilonewton load is applied pointing to the right. Find the maximum average normal stress in the bar.

example 1.8

Figure 3: A block 200 mm long has a leg resting against the floor at its right end, point C, and is supported by a vertical handing sol at its left and (points A and R) A 2 kilopoutton.

example

Calculate the stresses for elements in last week's lecture:

- Stress in the workpiece - Stress in the vise screw - Stress in the pinboard - Stress in St. Peter's Cross

4"

shear stress

- If we consider a section from a bridge-like structure we can demonstrate one way shear stress can be formed in a material
- As a reminder, shear stress is formed by forces acting in the plane of a section cut

shear stress

shear stress equilibrium

- If we consider equilibrium of an element subjected to shear on one face, we will find that there must be shear forces on other faces to remain in equilibrium
- In the following example, we will consider the sum of forces in the y-direction and the sum of moments about the x-axis
- We can convert between stresses and forces by recalling that $\sigma = F/A$, or $F = \sigma A$

shear stress equilibrium

21

example 1-9

Determine the average shear stress in the 20-mm diameter pin at A and the 30-mm diameter pin at B.

example 1-11

Figure 4: A wooden block is shown with one leg at a 3-4-5 angle and a 600 pound compressive load acting in the

tion of that log

example

Calculate the average shear stress in the pin connecting the two legs in "St. Peter's Cross" from the leg vise example.