Principio de inducción. El principio de inducción afirma que si P(n) es una propiedad sobre $\eta \in \mathbb{N}$ y se cumple que

- P(1) es cierta (caso base)
- Si P(n) es cierta, entonces P(n+1) es cierta (caso inductivo)

entonces P(n) es cierta para todo n $\in \mathbb{N}$

Si P(n) es una propiedad sobre $n \in \mathbb{Z}$ con $n_o \in \mathbb{Z}$ y se cumple que

- $P(n_0)$ es cierta
- Si P(n) es cierta, entonces P(n+1) es cierta
- entonces P(n) es cierta para todo
 n ∈ Z 」 n ≥ n。

Principio de Inducción completa. Si P(n) es una propiedad sobre $\eta \in \mathbb{N}$ y se cumple que:

- P(1) es cierta (Caso Base)
- Si P(n) es cierta para 1,2, ..., n, entonces P(n+1) es cierta (caso inductivo).

entonces P(n) es cierta para todo $\gamma \in \mathcal{N}$

El principio de inducción completo también es válido si \hbar ϵ del siguiente modo:

Si P(n) es una propiedad sobre $n \in \mathbb{Z}_{J}$ $n_o \in \mathbb{Z}$ y se cumple que:

- P(n_•) es cierta
- Si P(n) es cierta para $n_{\bullet} \leq n$, entonces P(n+1) es cierta

entonces P(n) es cierta para todo $n \in \mathbb{Z} n \geq n$.