MAS115 Calculus I 2006-2007

Problem sheet for exercise class 3

- Make sure you attend the excercise class that you have been assigned to!
- The instructor will present the starred problems in class.
- You should then work on the other problems on your own.
- The instructor and helper will be available for questions.
- Solutions will be available online by Friday.

Problem 1: Compute the following limits:

(a)
$$\lim_{x \to 4} \frac{4-x}{5-\sqrt{x^2+9}}$$
, (b) $\lim_{u \to 1} \frac{u^4-1}{u^3-1}$.

Problem 2: Two wrong statements about limits. Show by example that the following statements are wrong.

- (*a) The number L is the limit of f(x) as x approaches x_0 if f(x) gets closer to L as x approaches x_0 .
- (b) The number L is the limit of f(x) as x approaches x_0 if, given any $\epsilon > 0$, there exists a value of x for which $|f(x) L| < \epsilon$.

Explain why the functions in your examples do not have the given value of L as a limit as $x \to x_0$.

Problem 3: Use the graph of the greatest integer function $y = \lfloor x \rfloor$ to determine the limits

$$(*a) \quad \lim_{\theta \to 3^+} \frac{\lfloor \theta \rfloor}{\theta} \;, \quad \lim_{\theta \to 3^-} \frac{\lfloor \theta \rfloor}{\theta} \;, \qquad (b) \quad \lim_{t \to 4^+} (t - \lfloor t \rfloor) \;, \qquad \lim_{t \to 4^-} (t - \lfloor t \rfloor) \;.$$

Problem 4: Compute the following limits:

(*a)
$$\lim_{x \to \infty} \frac{x + \sin x + 2\sqrt{x}}{x + \sin x}$$
, (b) $\lim_{x \to \infty} \frac{x^{2/3} + x^{-1}}{x^{2/3} + \cos^2 x}$

Extra: Roots of a quadratic equation that is almost linear. The equation $ax^2 + 2x - 1 = 0$, where a is a constant, has two roots if a > -1 and $a \neq 0$, one positive and one negative:

$$r_{+}(a) = \frac{-1 + \sqrt{1+a}}{a}$$
, $r_{-}(a) = \frac{-1 - \sqrt{1+a}}{a}$.

- (a) What happens to $r_+(a)$ as $a \to 0$? As $a \to -1^+$?
- (b) What happens to $r_{-}(a)$ as $a \to 0$? As $a \to -1^{+}$?
- (c) Support your conclusions by graphing $r_{+}(a)$ and $r_{-}(a)$ as functions of a. Describe what you see.

Thomas Prellberg, October 2006

$$\lim_{x \to 4} \frac{4 - x}{5 - \sqrt{x^2 + 9}} = \lim_{x \to 4} \frac{(4 - x)(5 + \sqrt{x^2 + 9})}{(5 - \sqrt{x^2 + 9})(5 + \sqrt{x^2 + 9})} = \lim_{x \to 4} \frac{(4 - x)(5 + \sqrt{x^2 + 9})}{25 - (x^2 + 9)}$$

$$= \lim_{x \to 4} \frac{(4 - x)(5 + \sqrt{x^2 + 9})}{(6 - x^2)} = \lim_{x \to 4} \frac{(4 - x)(5 + \sqrt{x^2 + 9})}{(4 - x)(4 + x)} = \lim_{x \to 4} \frac{5 + \sqrt{x^2 + 9}}{4 + x} = \frac{5}{4}$$

$$\lim_{u\to 1} \frac{u^4-1}{u^3-1} = \lim_{u\to 1} \frac{(u^2+1)(u+1)(u-1)}{(u^2+u+1)(u-1)} = \lim_{u\to 1} \frac{(u^2+1)(u+1)}{u^2+u+1} = \frac{(1+1)(1+1)}{1+1+1} = \frac{4}{3}$$

Problem 2(a)

Let $f(x) = x^2$. The function values do get closer to -1 as x approaches 0, but $\lim_{x \to 0} f(x) = 0$, not -1. The $\int_{\mathbb{R}^n} f(x) = \frac{1}{x^2} \int_{\mathbb{R}^n} f(x) = 0$ function $f(x) = x^2$ never gets <u>arbitrarily close</u> to -1 for x near 0. Problem 2(6)

Let $f(x) = \sin x$, $L = \frac{1}{2}$, and $x_0 = 0$. There exists a value of x (namely, $x = \frac{\pi}{6}$) for which $|\sin x - \frac{1}{2}| < \epsilon$ for any x_0 . As another example, let $g(x) = \sin \frac{1}{x}$, $L = \frac{1}{2}$, and $x_0 = 0$. We can choose infinitely many values of x near 0 given $\epsilon > 0$. However, $\lim_{x \to 0} \sin x = 0$, not $\frac{1}{2}$. The wrong statement does not require x to be arbitrarily close to wrong statement does not require $\frac{all}{all}$ values of x arbitrarily close to $x_0 = 0$ to lie within $\epsilon > 0$ of $L = \frac{1}{5}$. Again such that $\sin \frac{1}{x} = \frac{1}{2}$ as you can see from the accompanying figure. However, $\lim_{x \to 0} \sin \frac{1}{x}$ fails to exist. The you can see from the figure that there are also infinitely many values of x near 0 such that $\sin \frac{1}{x} = 0$. If we choose $\epsilon < \frac{1}{4}$ we cannot satisfy the inequality $\left| \sin \frac{1}{x} - \frac{1}{2} \right| < \epsilon$ for all values of x sufficiently near $x_0 = 0$.

Poblem 3

$$\lim_{\theta \to 3^{-}} \frac{|\theta|}{\theta} = \frac{2}{3}$$

$$\theta \to 3^-$$
 0 3
 $t \to 1$
 $t \to 1$

(b) $\lim_{t \to 4^+} (t - [t]) = 4 - 4 = 0$

(a) $\lim_{\theta \to 3^+} \frac{|\theta|}{\theta} = \frac{3}{5} = 1$

Problem 4

$$x \xrightarrow{\lim} x + \sin x + 2\sqrt{x} = x \lim_{x \to \infty} \frac{1 + \frac{\sin x}{x} + \frac{2}{\sqrt{x}}}{1 + \frac{\sin x}{x}} = \frac{1 + 0 + 0}{1 + 0} = 1$$

$$x \xrightarrow{\lim} \frac{x^{2/3} + x^{-1}}{x^{2/3} + \cos^2 x} = x \lim_{x \to \infty} \left(\frac{1 + x^{-5/3}}{1 + \frac{\cos^2 x}{x^{2/3}}} \right) = \frac{1 + 0}{1 + 0} = 1$$

(g)

 \mathcal{S}

Extra:

(a) At
$$x = 0$$
: $\lim_{a \to 0} r_{+}(a) = \lim_{a \to 0} \frac{-1 + \sqrt{1 + a}}{a} = \lim_{a \to 0} \left(\frac{-1 + \sqrt{1 + a}}{a} \right) \left(\frac{-1 - \sqrt{1 + a}}{-1 - \sqrt{1 + a}} \right)$

$$= \lim_{a \to 0} \frac{1 - (1 + a)}{a(-1 - \sqrt{1 + a})} = \frac{-1}{-1 - \sqrt{1 + a}} = \lim_{a \to 0} \frac{1 - (1 + a)}{a(-1 - \sqrt{1 + a})} = \lim_{a \to 0} \frac{-1}{a(-1 - \sqrt{1 + a})} = \lim_{a \to 0} \frac{-1}{a(-1 - \sqrt{1 + a})} = 1$$
At $x = -1$: $\lim_{a \to 0} r_{-}(a) = \lim_{a \to 0} \frac{1 - (1 + a)}{a(-1 - \sqrt{1 + a})} = \lim_{a \to 0} \left(\frac{-1 - \sqrt{1 + a}}{a(-1 - \sqrt{1 + a})} \right) \left(\frac{-1 + \sqrt{1 + a}}{a(-1 + \sqrt{1 + a})} \right) = 1$
(b) At $x = 0$: $\lim_{a \to 0} r_{-}(a) = \lim_{a \to 0} \frac{-1 - \sqrt{1 + a}}{a(-1 + \sqrt{1 + a})} = \lim_{a \to 0} \frac{-1 - \sqrt{1 + a}}{a(-1 + \sqrt{1 + a})} = \lim_{a \to 0} \frac{-1 - \sqrt{1 + a}}{a(-1 + \sqrt{1 + a})} = \lim_{a \to 0} \frac{-1 - \sqrt{1 + a}}{a(-1 + \sqrt{1 + a})} = \infty$ (because the denominator is always negative); $\lim_{a \to 0} r_{-}(a) = \lim_{a \to 0} \frac{-1}{a(-1 + \sqrt{1 + a})} = -\infty$ (because the denominator is always positive). Therefore, $\lim_{a \to 0} r_{-}(a) = \lim_{a \to 0} r_{+}(a) = \lim_{$

At
$$x = -1$$
: $\lim_{a \to -1^+} r_-(a) = \lim_{a \to -1^+} \frac{-1 - \sqrt{1+a}}{a} = \lim_{a \to -1^+} \frac{-1}{-1 + \sqrt{1+a}} = 1$

