Hyperkähler manifolds and Hodge theory

Andrey Soldatenkov

IMECC - UNICAMP

21.03.2025

Let X be a C^{∞} -manifold (without boundary)

Definition

A complex structure on X is an endomorphism

$$I: TX \to TX$$
,

such that $I^2 = -Id$, and I is integrable, i.e.

$$[T^{1,0}X, T^{1,0}X] \subset T^{1,0}X,$$

where $T^{1,0}X \subset TX \otimes \mathbb{C}$ is the eigenbundle for the eigenvalue $\sqrt{-1}$ of I.

Let X be a C^{∞} -manifold (without boundary)

Definition

A complex structure on X is an endomorphism

$$I: TX \to TX$$
,

such that $I^2 = -Id$, and I is integrable, i.e.

$$[T^{1,0}X, T^{1,0}X] \subset T^{1,0}X,$$

where $T^{1,0}X \subset TX \otimes \mathbb{C}$ is the eigenbundle for the eigenvalue $\sqrt{-1}$ of I.

Let X be a C^{∞} -manifold (without boundary)

Definition

A complex structure on X is an endomorphism

$$I: TX \to TX$$
,

such that $I^2 = -Id$, and I is integrable, i.e.

$$[T^{1,0}X,T^{1,0}X]\subset T^{1,0}X,$$

where $T^{1,0}X \subset TX \otimes \mathbb{C}$ is the eigenbundle for the eigenvalue $\sqrt{-1}$ of I.

Let X be a C^{∞} -manifold (without boundary)

Definition

A complex structure on X is an endomorphism

$$I: TX \to TX$$

such that $I^2 = -Id$, and I is integrable, i.e.

$$[T^{1,0}X, T^{1,0}X] \subset T^{1,0}X,$$

where $T^{1,0}X \subset TX \otimes \mathbb{C}$ is the eigenbundle for the eigenvalue $\sqrt{-1}$ of I.

Let X be a C^{∞} -manifold (without boundary)

Definition

A complex structure on X is an endomorphism

$$I: TX \to TX$$
,

such that $I^2 = -Id$, and I is integrable, i.e.

$$[T^{1,0}X, T^{1,0}X] \subset T^{1,0}X,$$

where $T^{1,0}X \subset TX \otimes \mathbb{C}$ is the eigenbundle for the eigenvalue $\sqrt{-1}$ of I.

Let (X, I) be a complex manifold.

Definition

A Hermitian metric on (X, I) is a Riemannian metric $g \in S^2T^*X$, such that

$$g(Iu, Iv) = g(u, v)$$

for all $u, v \in TX$.

For a Hermitian metric g define $\omega(u,v)=g(Iu,v)$. Then $\omega\in\Lambda^2X$.

Definition

Let (X, I) be a complex manifold.

Definition

A Hermitian metric on (X, I) is a Riemannian metric $g \in S^2T^*X$, such that

$$g(Iu, Iv) = g(u, v)$$

for all $u, v \in TX$.

For a Hermitian metric g define $\omega(u,v)=g(Iu,v)$. Then $\omega\in\Lambda^2X$.

Definition

Let (X, I) be a complex manifold.

Definition

A Hermitian metric on (X, I) is a Riemannian metric $g \in S^2T^*X$, such that

$$g(Iu, Iv) = g(u, v)$$

for all $u, v \in TX$.

For a Hermitian metric g define $\omega(u,v)=g(Iu,v).$ Then $\omega\in\Lambda^2X.$

Definition

Let (X, I) be a complex manifold.

Definition

A Hermitian metric on (X, I) is a Riemannian metric $g \in S^2T^*X$, such that

$$g(Iu, Iv) = g(u, v)$$

for all $u, v \in TX$.

For a Hermitian metric g define $\omega(u,v)=g(Iu,v)$. Then $\omega\in\Lambda^2X$.

Definition

Definition

A hyperkähler manifold is a C^{∞} -manifold X with complex structures I, J, K and a Riemannian metric g, such that:

- IJ = -JI = K;
- g is Kähler with respect to I, J and K.

We have three Kähler forms: ω_I , ω_J and ω_K .

Consider the 2-form

$$\sigma_I = \omega_J + \sqrt{-1}\omega_K$$

Definition

A hyperkähler manifold is a C^{∞} -manifold X with complex structures I, J, K and a Riemannian metric g, such that:

- IJ = -JI = K;
- g is Kähler with respect to I, J and K.

We have three Kähler forms: ω_I , ω_J and ω_K .

Consider the 2-form

$$\sigma_I = \omega_J + \sqrt{-1}\omega_K$$

Definition

A hyperkähler manifold is a C^{∞} -manifold X with complex structures I, J, K and a Riemannian metric g, such that:

- IJ = -JI = K;
- g is Kähler with respect to I, J and K.

We have three Kähler forms: ω_I , ω_J and ω_K .

Consider the 2-form

$$\sigma_I = \omega_J + \sqrt{-1}\omega_K$$

Definition

A hyperkähler manifold is a C^{∞} -manifold X with complex structures I, J, K and a Riemannian metric g, such that:

- IJ = -JI = K;
- g is Kähler with respect to I, J and K.

We have three Kähler forms: ω_I , ω_J and ω_K .

Consider the 2-form

$$\sigma_I = \omega_J + \sqrt{-1}\omega_K$$

Definition

A hyperkähler manifold is a C^{∞} -manifold X with complex structures I, J, K and a Riemannian metric g, such that:

- IJ = -JI = K;
- g is Kähler with respect to I, J and K.

We have three Kähler forms: ω_I , ω_J and ω_K .

Consider the 2-form

$$\sigma_I = \omega_J + \sqrt{-1}\omega_K$$

Definition

A hyperkähler manifold is a C^{∞} -manifold X with complex structures I, J, K and a Riemannian metric g, such that:

- IJ = -JI = K;
- g is Kähler with respect to I, J and K.

We have three Kähler forms: ω_I , ω_J and ω_K .

Consider the 2-form

$$\sigma_I = \omega_J + \sqrt{-1}\omega_K$$

Definition

A hyperkähler manifold is a C^{∞} -manifold X with complex structures I, J, K and a Riemannian metric g, such that:

- IJ = -JI = K;
- g is Kähler with respect to I, J and K.

We have three Kähler forms: ω_I , ω_J and ω_K .

Consider the 2-form

$$\sigma_I = \omega_J + \sqrt{-1}\omega_K$$

Let $\Omega_{X,I}^k$ be the bundle of *I*-holomorphic *k*-forms on *X*

Then

$$\sigma_I \in H^0(X, \Omega^2_{X,I}).$$

Since σ_I is symplectic, $\dim_{\mathbb{C}}(X,I) = 2n$, and σ_I^n is a nowhere vanishing section of the canonical bundle $K_{X,I} = \Omega_{X,I}^{2n}$. The canonical bundle of (X,I) is trivial.

Definition

- $\pi_1(X) = 1$
- $H^0(X, \Omega^2_{X,I})$ is spanned by σ_I

Let $\Omega_{X,I}^k$ be the bundle of I-holomorphic k-forms on X. Then

$$\sigma_I \in H^0(X, \Omega^2_{X,I}).$$

Since σ_I is symplectic, $\dim_{\mathbb{C}}(X,I)=2n$, and σ_I^n is a nowhere vanishing section of the canonical bundle $K_{X,I}=\Omega_{X,I}^{2n}$. The canonical bundle of (X,I) is trivial.

Definition

- $\pi_1(X) = 1$
- $H^0(X, \Omega^2_{X,I})$ is spanned by σ_I

Let $\Omega_{X,I}^k$ be the bundle of I-holomorphic k-forms on X. Then

$$\sigma_I \in H^0(X, \Omega^2_{X,I}).$$

Since σ_I is symplectic, $\dim_{\mathbb{C}}(X,I) = 2n$, and σ_I^n is a nowhere vanishing section of the canonical bundle $K_{X,I} = \Omega_{X,I}^{2n}$. The canonical bundle of (X,I) is trivial.

Definition

- $\pi_1(X) = 1$
- $H^0(X, \Omega^2_{X,I})$ is spanned by σ_I

Let $\Omega_{X,I}^k$ be the bundle of *I*-holomorphic *k*-forms on *X*

$$\sigma_I \in H^0(X, \Omega^2_{X,I}).$$

Since σ_I is symplectic, $\dim_{\mathbb{C}}(X,I)=2n$, and σ_I^n is a nowhere vanishing section of the canonical bundle $K_{X,I}=\Omega_{X,I}^{2n}$. The canonical bundle of (X,I) is trivial.

Definition

Then

- $\pi_1(X) = 1$
- $H^0(X, \Omega^2_{X,I})$ is spanned by σ_I

Let $\Omega_{X,I}^k$ be the bundle of *I*-holomorphic *k*-forms on *X*

Then

$$\sigma_I \in H^0(X, \Omega^2_{X,I}).$$

Since σ_I is symplectic, $\dim_{\mathbb{C}}(X, I) = 2n$, and σ_I^n is a nowhere vanishing section of the canonical bundle $K_{X,I} = \Omega_{X,I}^{2n}$. The canonical bundle of (X, I) is trivial.

Definition

- $\pi_1(X) = 1$
- $H^0(X, \Omega^2_{X,I})$ is spanned by σ_I

Let $\Omega_{X,I}^k$ be the bundle of *I*-holomorphic *k*-forms on *X*

$$\sigma_I \in H^0(X, \Omega^2_{X,I}).$$

Since σ_I is symplectic, $\dim_{\mathbb{C}}(X,I)=2n$, and σ_I^n is a nowhere vanishing section of the canonical bundle $K_{X,I}=\Omega_{X,I}^{2n}$. The canonical bundle of (X,I) is trivial.

Definition

Then

- $\pi_1(X) = 1$
- $H^0(X, \Omega^2_{X,I})$ is spanned by σ_I

Let $\Omega_{X,I}^k$ be the bundle of *I*-holomorphic *k*-forms on *X*

Then

$$\sigma_I \in H^0(X, \Omega^2_{X,I}).$$

Since σ_I is symplectic, $\dim_{\mathbb{C}}(X,I)=2n$, and σ_I^n is a nowhere vanishing section of the canonical bundle $K_{X,I}=\Omega_{X,I}^{2n}$. The canonical bundle of (X,I) is trivial.

Definition

- $\pi_1(X) = 1$
- $H^0(X, \Omega^2_{X,I})$ is spanned by σ_I

- \mathbb{H} = the algebra of quaternions, $\mathbb{Z}^4 \subset \mathbb{H}$ a lattice. Then $T = \mathbb{H}/\mathbb{Z}^4$ is hyperkähler: I, J, K — multiplication by imaginary quaternions, g is the standard flat metric.
- Let S be a complex K3 surface, for example

$$S = \{(x_0 : \dots : x_3) \mid x_0^4 + \dots + x_3^4 = 0\} \subset \mathbb{C}P^3$$

S=(X,I), where X is the underlying real 4-fold and I is induced by the complex structure on $\mathbb{C}P^3$.

Calabi-Yau theorem \Rightarrow there exists a hyperkähler structure on S, i.e. there exist J, K and g as in the definition. S is an IHS manifold.

• \mathbb{H} = the algebra of quaternions, $\mathbb{Z}^4 \subset \mathbb{H}$ a lattice.

Then $T = \mathbb{H}/\mathbb{Z}^4$ is hyperkähler: I, J, K — multiplication by imaginary quaternions g is the standard flat metric.

• Let S be a complex K3 surface, for example

$$S = \{(x_0 : \dots : x_3) \mid x_0^4 + \dots + x_3^4 = 0\} \subset \mathbb{C}P^3$$

S = (X, I), where X is the underlying real 4-fold and I is induced by the complex structure on $\mathbb{C}P^3$.

Calabi-Yau theorem \Rightarrow there exists a hyperkähler structure on S, i.e. there exist J, K and g as in the definition. S is an IHS manifold.

- \mathbb{H} = the algebra of quaternions, $\mathbb{Z}^4 \subset \mathbb{H}$ a lattice. Then $T = \mathbb{H}/\mathbb{Z}^4$ is hyperkähler: I, J, K — multiplication by imaginary quaternions, g is the standard flat metric.
- Let S be a complex K3 surface, for example

$$S = \{(x_0 : \ldots : x_3) \mid x_0^4 + \ldots + x_3^4 = 0\} \subset \mathbb{C}P^3.$$

- \mathbb{H} = the algebra of quaternions, $\mathbb{Z}^4 \subset \mathbb{H}$ a lattice. Then $T = \mathbb{H}/\mathbb{Z}^4$ is hyperkähler: I, J, K — multiplication by imaginary quaternions, g is the standard flat metric.
- Let S be a complex K3 surface, for example

$$S = \{(x_0 : \dots : x_3) \mid x_0^4 + \dots + x_3^4 = 0\} \subset \mathbb{C}P^3.$$

- \mathbb{H} = the algebra of quaternions, $\mathbb{Z}^4 \subset \mathbb{H}$ a lattice. Then $T = \mathbb{H}/\mathbb{Z}^4$ is hyperkähler: I, J, K — multiplication by imaginary quaternions, g is the standard flat metric.
- Let S be a complex K3 surface, for example

$$S = \{(x_0 : \ldots : x_3) \mid x_0^4 + \ldots + x_3^4 = 0\} \subset \mathbb{C}P^3.$$

S = (X, I), where X is the underlying real 4-fold and I is induced by the complex structure on $\mathbb{C}P^3$.

Calabi-Yau theorem \Rightarrow there exists a hyperkähler structure on S, i.e. there exist J, K and g as in the definition. S is an IHS manifold.

- \mathbb{H} = the algebra of quaternions, $\mathbb{Z}^4 \subset \mathbb{H}$ a lattice. Then $T = \mathbb{H}/\mathbb{Z}^4$ is hyperkähler: I, J, K — multiplication by imaginary quaternions, g is the standard flat metric.
- Let S be a complex K3 surface, for example

$$S = \{(x_0 : \ldots : x_3) \mid x_0^4 + \ldots + x_3^4 = 0\} \subset \mathbb{C}P^3.$$

S = (X, I), where X is the underlying real 4-fold and I is induced by the complex structure on $\mathbb{C}P^3$.

Calabi-Yau theorem \Rightarrow there exists a hyperkähler structure on S, i.e. there exist J, K and g as in the definition.

S is an IHS manifold

- \mathbb{H} = the algebra of quaternions, $\mathbb{Z}^4 \subset \mathbb{H}$ a lattice. Then $T = \mathbb{H}/\mathbb{Z}^4$ is hyperkähler: I, J, K — multiplication by imaginary quaternions, g is the standard flat metric.
- Let S be a complex K3 surface, for example

$$S = \{(x_0 : \ldots : x_3) \mid x_0^4 + \ldots + x_3^4 = 0\} \subset \mathbb{C}P^3.$$

S = (X, I), where X is the underlying real 4-fold and I is induced by the complex structure on $\mathbb{C}P^3$.

Calabi-Yau theorem \Rightarrow there exists a hyperkähler structure on S, i.e. there exist J, K and g as in the definition. S is an IHS manifold.

• Let S be a complex K3 surface. The symmetric power $S^{(n)}$ parametrizes n-tuples of points in S. It is singular, but it admits a natural resolution of singularities

$$r \colon S^{[n]} \to S^{(n)}$$

where $S^{[n]}$ is the Hilbert scheme of length n subschemes of S. The manifold $S^{[n]}$ admits a hyperkähler structure, and $S^{[n]}$ is IHS.

• Let $T = \mathbb{C}^2/\mathbb{Z}^4$ be a 2-dimensional complex torus. The Albanese morphism:

$$a: T^{[n+1]} \to T, \quad (x_0, \dots, x_n) \mapsto \sum x_i$$

 $K^nT = a^{-1}(0)$ — generalized Kummer variety, it is IHS

• Let S be a complex K3 surface. The symmetric power $S^{(n)}$ parametrizes n-tuples of points in S. It is singular, but it admits a natural resolution of singularities

$$r \colon S^{[n]} \to S^{(n)},$$

where $S^{[n]}$ is the Hilbert scheme of length n subschemes of S. The manifold $S^{[n]}$ admits a hyperkähler structure, and $S^{[n]}$ is IHS.

• Let $T = \mathbb{C}^2/\mathbb{Z}^4$ be a 2-dimensional complex torus. The Albanese morphism:

$$a: T^{[n+1]} \to T, \quad (x_0, \dots, x_n) \mapsto \sum x_i$$

 $K^nT = a^{-1}(0)$ — generalized Kummer variety, it is IHS

• Let S be a complex K3 surface. The symmetric power $S^{(n)}$ parametrizes n-tuples of points in S. It is singular, but it admits a natural resolution of singularities

$$r \colon S^{[n]} \to S^{(n)},$$

where $S^{[n]}$ is the Hilbert scheme of length n subschemes of S. The manifold $S^{[n]}$ admits a hyperkähler structure, and $S^{[n]}$ is IHS.

• Let $T = \mathbb{C}^2/\mathbb{Z}^4$ be a 2-dimensional complex torus. The Albanese morphism:

$$a: T^{[n+1]} \to T, \quad (x_0, \dots, x_n) \mapsto \sum x_i$$

 $K^nT = a^{-1}(0)$ — generalized Kummer variety, it is IHS

• Let S be a complex K3 surface. The symmetric power $S^{(n)}$ parametrizes n-tuples of points in S. It is singular, but it admits a natural resolution of singularities

$$r \colon S^{[n]} \to S^{(n)},$$

where $S^{[n]}$ is the Hilbert scheme of length n subschemes of S. The manifold $S^{[n]}$ admits a hyperkähler structure, and $S^{[n]}$ is IHS.

• Let $T = \mathbb{C}^2/\mathbb{Z}^4$ be a 2-dimensional complex torus. The Albanese morphism:

$$a: T^{[n+1]} \to T, \quad (x_0, \dots, x_n) \mapsto \sum x_i$$

 $K^nT = a^{-1}(0)$ — generalized Kummer variety, it is IHS

• Let S be a complex K3 surface. The symmetric power $S^{(n)}$ parametrizes n-tuples of points in S. It is singular, but it admits a natural resolution of singularities

$$r \colon S^{[n]} \to S^{(n)},$$

where $S^{[n]}$ is the Hilbert scheme of length n subschemes of S. The manifold $S^{[n]}$ admits a hyperkähler structure, and $S^{[n]}$ is IHS.

• Let $T = \mathbb{C}^2/\mathbb{Z}^4$ be a 2-dimensional complex torus. The Albanese morphism:

$$a: T^{[n+1]} \to T, \quad (x_0, \dots, x_n) \mapsto \sum x_i$$

 $K^nT = a^{-1}(0)$ — generalized Kummer variety, it is IHS

Le M be a compact Kähler manifold, $\dim_{\mathbb{C}} M = n$, and $K_M = \Omega_M^n$ its canonical bundle.

Theorem (Beauville-Bogomolov)

Assume that $K_M \simeq \mathcal{O}_M$. Then there exists a finite étale covering $\pi \colon \tilde{M} \to M$ and a unique decomposition

$$\tilde{M} = T \times \prod_{i} Y_i \times \prod_{j} Z_j,$$

where

- T is a complex torus
- Y_i are IHS manifolds
- Z_j are Calabi-Yau manifolds, i.e. $\pi_1(Z_j) = 1$, $K_{Z_j} = \mathcal{O}_{Z_j}$ and $H^0(Z_j, \Omega^2_{Z_j}) = 0$.

Le M be a compact Kähler manifold, $\dim_{\mathbb{C}} M = n$, and $K_M = \Omega_M^n$ its canonical bundle.

Theorem (Beauville-Bogomolov)

Assume that $K_M \simeq \mathcal{O}_M$. Then there exists a finite étale covering $\pi \colon \tilde{M} \to M$ and a unique decomposition

$$\tilde{M} = T \times \prod_{i} Y_i \times \prod_{j} Z_j,$$

where

- T is a complex torus
- Y_i are IHS manifolds
- Z_j are Calabi-Yau manifolds, i.e. $\pi_1(Z_j) = 1$, $K_{Z_j} = \mathcal{O}_{Z_j}$ and $H^0(Z_j, \Omega^2_{Z_j}) = 0$.

Le M be a compact Kähler manifold, $\dim_{\mathbb{C}} M=n$, and $K_M=\Omega_M^n$ its canonical bundle.

Theorem (Beauville-Bogomolov)

Assume that $K_M \simeq \mathcal{O}_M$. Then there exists a finite étale covering $\pi \colon \tilde{M} \to M$ and a unique decomposition

$$\tilde{M} = T \times \prod_{i} Y_i \times \prod_{j} Z_j,$$

where

- T is a complex torus
- Y_i are IHS manifolds
- Z_j are Calabi-Yau manifolds, i.e. $\pi_1(Z_j) = 1$, $K_{Z_j} = \mathcal{O}_{Z_j}$ and $H^0(Z_j, \Omega^2_{Z_j}) = 0$.

Le M be a compact Kähler manifold, $\dim_{\mathbb{C}} M = n$, and $K_M = \Omega_M^n$ its canonical bundle.

Theorem (Beauville-Bogomolov)

Assume that $K_M \simeq \mathcal{O}_M$. Then there exists a finite étale covering $\pi \colon \tilde{M} \to M$ and a unique decomposition

$$\tilde{M} = T \times \prod_{i} Y_i \times \prod_{j} Z_j,$$

where

- T is a complex torus
- Y_i are IHS manifolds
- Z_j are Calabi-Yau manifolds, i.e. $\pi_1(Z_j) = 1$, $K_{Z_j} = \mathcal{O}_{Z_j}$ and $H^0(Z_j, \Omega^2_{Z_j}) = 0$.

Le M be a compact Kähler manifold, $\dim_{\mathbb{C}} M=n$, and $K_M=\Omega_M^n$ its canonical bundle.

Theorem (Beauville-Bogomolov)

Assume that $K_M \simeq \mathcal{O}_M$. Then there exists a finite étale covering $\pi \colon \tilde{M} \to M$ and a unique decomposition

$$\tilde{M} = T \times \prod_{i} Y_i \times \prod_{j} Z_j,$$

where

- T is a complex torus
- Y_i are IHS manifolds
- Z_j are Calabi-Yau manifolds, i.e. $\pi_1(Z_j) = 1$, $K_{Z_j} = \mathcal{O}_{Z_j}$ and $H^0(Z_j, \Omega^2_{Z_j}) = 0$.

Le M be a compact Kähler manifold, $\dim_{\mathbb{C}} M=n$, and $K_M=\Omega^n_M$ its canonical bundle.

Theorem (Beauville-Bogomolov)

Assume that $K_M \simeq \mathcal{O}_M$. Then there exists a finite étale covering $\pi \colon \tilde{M} \to M$ and a unique decomposition

$$\tilde{M} = T \times \prod_{i} Y_i \times \prod_{j} Z_j,$$

where

- T is a complex torus
- Y_i are IHS manifolds
- Z_j are Calabi-Yau manifolds, i.e. $\pi_1(Z_j) = 1$, $K_{Z_j} = \mathcal{O}_{Z_j}$ and $H^0(Z_j, \Omega^2_{Z_j}) = 0$.

Le M be a compact Kähler manifold, $\dim_{\mathbb{C}} M=n$, and $K_M=\Omega^n_M$ its canonical bundle.

Theorem (Beauville-Bogomolov)

Assume that $K_M \simeq \mathcal{O}_M$. Then there exists a finite étale covering $\pi \colon \widetilde{M} \to M$ and a unique decomposition

$$\tilde{M} = T \times \prod_{i} Y_i \times \prod_{j} Z_j,$$

where

- T is a complex torus
- Y_i are IHS manifolds
- Z_j are Calabi-Yau manifolds, i.e. $\pi_1(Z_j) = 1$, $K_{Z_j} = \mathcal{O}_{Z_j}$ and $H^0(Z_j, \Omega^2_{Z_j}) = 0$.

Let M be a compact Kähler manifold, $\dim_{\mathbb{C}} M = n$, with Kähler form ω .

Hodge decomposition:

$$H^k(M,\mathbb{C}) = \bigoplus_{p+q=k} H^{p,q}(M), \qquad H^{p,q}(M) \simeq H^q(M,\Omega_M^p)$$

Hodge filtration: $F^pH^k(X,\mathbb{C}) = \bigoplus_{j\geqslant p} H^{j,k-j}(X)$ We have $[\omega] \in H^{1,1}(M) \cap H^2(M,\mathbb{R})$.

Definition

- $\theta|_{H^k(M,\mathbb{R})} = (k-n) Id$
- The Lefschetz operator $L \colon H^k(M,\mathbb{R}) \to H^{k+2}(M,\mathbb{R})$ is the cup product with $[\omega]$.

Let M be a compact Kähler manifold, $\dim_{\mathbb{C}} M = n$, with Kähler form ω .

Hodge decomposition:

$$H^k(M,\mathbb{C}) = \bigoplus_{p+q=k} H^{p,q}(M), \qquad H^{p,q}(M) \simeq H^q(M,\Omega_M^p).$$

Hodge filtration: $F^pH^k(X,\mathbb{C}) = \bigoplus_{j\geqslant p} H^{j,k-j}(X)$. We have $[\omega] \in H^{1,1}(M) \cap H^2(M,\mathbb{R})$.

Definition

- $\theta|_{H^k(M,\mathbb{R})} = (k-n) Id$
- The Lefschetz operator $L \colon H^k(M,\mathbb{R}) \to H^{k+2}(M,\mathbb{R})$ is the cup product with $[\omega]$.

Let M be a compact Kähler manifold, $\dim_{\mathbb{C}} M = n$, with Kähler form ω .

Hodge decomposition:

$$H^k(M,\mathbb{C}) = \bigoplus_{p+q=k} H^{p,q}(M), \qquad H^{p,q}(M) \simeq H^q(M,\Omega_M^p).$$

Hodge filtration: $F^pH^k(X,\mathbb{C}) = \bigoplus_{j\geqslant p} H^{j,k-j}(X)$. We have $[\omega] \in H^{1,1}(M) \cap H^2(M,\mathbb{R})$.

Definition

- $\theta|_{H^k(M,\mathbb{R})} = (k-n) Id$
- The Lefschetz operator $L \colon H^k(M,\mathbb{R}) \to H^{k+2}(M,\mathbb{R})$ is the cup product with $[\omega]$.

Let M be a compact Kähler manifold, $\dim_{\mathbb{C}} M = n$, with Kähler form ω .

Hodge decomposition:

$$H^k(M,\mathbb{C}) = \bigoplus_{p+q=k} H^{p,q}(M), \qquad H^{p,q}(M) \simeq H^q(M,\Omega_M^p).$$

Hodge filtration: $F^pH^k(X,\mathbb{C}) = \bigoplus_{j\geqslant p} H^{j,k-j}(X)$. We have $[\omega] \in H^{1,1}(M) \cap H^2(M,\mathbb{R})$.

Definition

- $\theta|_{H^k(M,\mathbb{R})} = (k-n) Id$
- The Lefschetz operator $L \colon H^k(M,\mathbb{R}) \to H^{k+2}(M,\mathbb{R})$ is the cup product with $[\omega]$.

Let M be a compact Kähler manifold, $\dim_{\mathbb{C}} M = n$, with Kähler form ω .

Hodge decomposition:

$$H^k(M,\mathbb{C}) = \bigoplus_{p+q=k} H^{p,q}(M), \qquad H^{p,q}(M) \simeq H^q(M,\Omega_M^p).$$

Hodge filtration: $F^pH^k(X,\mathbb{C}) = \bigoplus_{j \geqslant p} H^{j,k-j}(X)$. We have $[\omega] \in H^{1,1}(M) \cap H^2(M,\mathbb{R})$.

Definition

- $\theta|_{H^k(M,\mathbb{R})} = (k-n) Id$
- The Lefschetz operator $L \colon H^k(M,\mathbb{R}) \to H^{k+2}(M,\mathbb{R})$ is the cup product with $[\omega]$.

Let M be a compact Kähler manifold, $\dim_{\mathbb{C}} M = n$, with Kähler form ω .

Hodge decomposition:

$$H^k(M,\mathbb{C}) = \bigoplus_{p+q=k} H^{p,q}(M), \qquad H^{p,q}(M) \simeq H^q(M,\Omega_M^p).$$

Hodge filtration: $F^pH^k(X,\mathbb{C}) = \bigoplus_{j \geqslant p} H^{j,k-j}(X)$. We have $[\omega] \in H^{1,1}(M) \cap H^2(M,\mathbb{R})$.

Definition

- $\theta|_{H^k(M,\mathbb{R})} = (k-n) Id$
- The Lefschetz operator $L \colon H^k(M,\mathbb{R}) \to H^{k+2}(M,\mathbb{R})$ is the cup product with $[\omega]$.

Let M be a compact Kähler manifold, $\dim_{\mathbb{C}} M = n$, with Kähler form ω .

Hodge decomposition:

$$H^k(M,\mathbb{C}) = \bigoplus_{p+q=k} H^{p,q}(M), \qquad H^{p,q}(M) \simeq H^q(M,\Omega_M^p).$$

Hodge filtration: $F^pH^k(X,\mathbb{C}) = \bigoplus_{j \geqslant p} H^{j,k-j}(X)$. We have $[\omega] \in H^{1,1}(M) \cap H^2(M,\mathbb{R})$.

Definition

- $\theta|_{H^k(M,\mathbb{R})} = (k-n) Id$
- The Lefschetz operator $L \colon H^k(M,\mathbb{R}) \to H^{k+2}(M,\mathbb{R})$ is the cup product with $[\omega]$.

Let M be a compact Kähler manifold, $\dim_{\mathbb{C}} M = n$, with Kähler form ω .

Hodge decomposition:

$$H^k(M,\mathbb{C}) = \bigoplus_{p+q=k} H^{p,q}(M), \qquad H^{p,q}(M) \simeq H^q(M,\Omega_M^p).$$

Hodge filtration: $F^pH^k(X,\mathbb{C}) = \bigoplus_{j\geqslant p} H^{j,k-j}(X)$. We have $[\omega] \in H^{1,1}(M) \cap H^2(M,\mathbb{R})$.

Definition

- $\theta|_{H^k(M,\mathbb{R})} = (k-n) Id$
- The Lefschetz operator $L \colon H^k(M,\mathbb{R}) \to H^{k+2}(M,\mathbb{R})$ is the cup product with $[\omega]$.

Reminder: hard Lefschetz theorem

Theorem (Lefschetz)

There exists a unique operator (the dual Lefschetz operator)

$$\Lambda \colon H^k(M,\mathbb{R}) \to H^{k-2}(M,\mathbb{R}),$$

such that L, θ and Λ form an \mathfrak{sl}_2 -triple:

$$[L, \Lambda] = \theta,$$
 $[\theta, L] = 2L,$ $[\theta, \Lambda] = -2\Lambda.$

For any k = 0, ..., n we have isomorphisms

$$L^k \colon H^{n-k}(M,\mathbb{R}) \stackrel{\sim}{\to} H^{n+k}(M,\mathbb{R}).$$

One can decompose $H^{\bullet}(M, \mathbb{C})$ into a direct sum of irreducible \mathfrak{sl}_2 -modules (Lefschetz decomposition).

Reminder: hard Lefschetz theorem

Theorem (Lefschetz)

There exists a unique operator (the dual Lefschetz operator)

$$\Lambda \colon H^k(M,\mathbb{R}) \to H^{k-2}(M,\mathbb{R}),$$

such that L, θ and Λ form an \mathfrak{sl}_2 -triple:

$$[L, \Lambda] = \theta,$$
 $[\theta, L] = 2L,$ $[\theta, \Lambda] = -2\Lambda.$

For any k = 0, ..., n we have isomorphisms

$$L^k \colon H^{n-k}(M,\mathbb{R}) \stackrel{\sim}{\to} H^{n+k}(M,\mathbb{R}).$$

One can decompose $H^{\bullet}(M, \mathbb{C})$ into a direct sum of irreducible \mathfrak{sl}_2 -modules (Lefschetz decomposition).

Reminder: hard Lefschetz theorem

Theorem (Lefschetz)

There exists a unique operator (the dual Lefschetz operator)

$$\Lambda \colon H^k(M,\mathbb{R}) \to H^{k-2}(M,\mathbb{R}),$$

such that L, θ and Λ form an \mathfrak{sl}_2 -triple:

$$[L, \Lambda] = \theta,$$
 $[\theta, L] = 2L,$ $[\theta, \Lambda] = -2\Lambda.$

For any k = 0, ..., n we have isomorphisms

$$L^k \colon H^{n-k}(M,\mathbb{R}) \xrightarrow{\sim} H^{n+k}(M,\mathbb{R}).$$

One can decompose $H^{\bullet}(M,\mathbb{C})$ into a direct sum of irreducible \mathfrak{sl}_2 -modules (Lefschetz decomposition).

Let (X, I, J, K, g) be a compact hyperkähler manifold

We have:

- the Kähler forms: ω_I , ω_J , ω_K ,
- the Lefschetz operators: L_I , L_J , L_K ,
- the dual Lefschetz operators: Λ_I , Λ_J , Λ_K .

Theorem (Verbitsky)

The Lie subalgebra of $\operatorname{End}(H^{\bullet}(X,\mathbb{R}))$ generated by L_I , L_J , L_{K_I} , Λ_I , Λ_J and Λ_K is isomorphic to $\mathfrak{so}(4,1)$. We have

$$[\Lambda_I, \Lambda_J] = 0, \quad [\Lambda_J, \Lambda_K] = 0, \quad [\Lambda_K, \Lambda_I] = 0.$$

$$W_I|_{H_I^{p,q}(X)} = \sqrt{-1}(p-q)Id$$

Let (X, I, J, K, g) be a compact hyperkähler manifold.

We have:

- the Kähler forms: ω_I , ω_J , ω_K ,
- the Lefschetz operators: L_I , L_J , L_K ,
- the dual Lefschetz operators: Λ_I , Λ_J , Λ_K .

Theorem (Verbitsky)

The Lie subalgebra of $\operatorname{End}(H^{\bullet}(X,\mathbb{R}))$ generated by L_I , L_J , L_K , Λ_I , Λ_J and Λ_K is isomorphic to $\mathfrak{so}(4,1)$. We have

$$[\Lambda_I, \Lambda_J] = 0, \quad [\Lambda_J, \Lambda_K] = 0, \quad [\Lambda_K, \Lambda_I] = 0.$$

$$W_I|_{H_I^{p,q}(X)} = \sqrt{-1}(p-q)Id$$

Let (X, I, J, K, g) be a compact hyperkähler manifold.

We have:

- the Kähler forms: ω_I , ω_J , ω_K ,
- the Lefschetz operators: L_I , L_J , L_K ,
- the dual Lefschetz operators: Λ_I , Λ_J , Λ_K .

Theorem (Verbitsky)

The Lie subalgebra of $\operatorname{End}(H^{\bullet}(X,\mathbb{R}))$ generated by L_I , L_J , L_K , Λ_I , Λ_J and Λ_K is isomorphic to $\mathfrak{so}(4,1)$. We have

$$[\Lambda_I, \Lambda_J] = 0, \quad [\Lambda_J, \Lambda_K] = 0, \quad [\Lambda_K, \Lambda_I] = 0.$$

$$W_I|_{H_I^{p,q}(X)} = \sqrt{-1}(p-q)Id$$

Let (X, I, J, K, g) be a compact hyperkähler manifold.

We have:

- the Kähler forms: ω_I , ω_J , ω_K ,
- the Lefschetz operators: L_I , L_J , L_K ,
- the dual Lefschetz operators: Λ_I , Λ_J , Λ_K .

Theorem (Verbitsky)

The Lie subalgebra of $\operatorname{End}(H^{\bullet}(X,\mathbb{R}))$ generated by L_I , L_J , L_K , Λ_I , Λ_J and Λ_K is isomorphic to $\mathfrak{so}(4,1)$. We have

$$[\Lambda_I, \Lambda_J] = 0, \quad [\Lambda_J, \Lambda_K] = 0, \quad [\Lambda_K, \Lambda_I] = 0.$$

$$W_I|_{H_I^{p,q}(X)} = \sqrt{-1}(p-q)Id$$

Let (X, I, J, K, g) be a compact hyperkähler manifold.

We have:

- the Kähler forms: ω_I , ω_J , ω_K ,
- the Lefschetz operators: L_I , L_J , L_K ,
- the dual Lefschetz operators: Λ_I , Λ_J , Λ_K .

Theorem (Verbitsky)

The Lie subalgebra of $\operatorname{End}(H^{\bullet}(X,\mathbb{R}))$ generated by L_I , L_J , L_K , Λ_I , Λ_J and Λ_K is isomorphic to $\mathfrak{so}(4,1)$. We have

$$[\Lambda_I, \Lambda_J] = 0, \quad [\Lambda_J, \Lambda_K] = 0, \quad [\Lambda_K, \Lambda_I] = 0.$$

$$W_I|_{H_I^{p,q}(X)} = \sqrt{-1}(p-q)Id$$

Let (X, I, J, K, g) be a compact hyperkähler manifold.

We have:

- the Kähler forms: ω_I , ω_J , ω_K ,
- the Lefschetz operators: L_I , L_J , L_K ,
- the dual Lefschetz operators: Λ_I , Λ_J , Λ_K .

Theorem (Verbitsky)

The Lie subalgebra of $\operatorname{End}(H^{\bullet}(X,\mathbb{R}))$ generated by L_I , L_J , L_K , Λ_I , Λ_J and Λ_K is isomorphic to $\mathfrak{so}(4,1)$. We have

$$[\Lambda_I, \Lambda_J] = 0, \quad [\Lambda_J, \Lambda_K] = 0, \quad [\Lambda_K, \Lambda_I] = 0.$$

$$W_I|_{H_I^{p,q}(X)} = \sqrt{-1}(p-q)Id$$

Let (X, I, J, K, g) be a compact hyperkähler manifold.

We have:

- the Kähler forms: ω_I , ω_J , ω_K ,
- the Lefschetz operators: L_I , L_J , L_K ,
- the dual Lefschetz operators: Λ_I , Λ_J , Λ_K .

Theorem (Verbitsky)

The Lie subalgebra of $\operatorname{End}(H^{\bullet}(X,\mathbb{R}))$ generated by L_I , L_J , L_K , Λ_I , Λ_J and Λ_K is isomorphic to $\mathfrak{so}(4,1)$. We have

$$[\Lambda_I, \Lambda_J] = 0, \quad [\Lambda_J, \Lambda_K] = 0, \quad [\Lambda_K, \Lambda_I] = 0.$$

$$W_I|_{H_I^{p,q}(X)} = \sqrt{-1}(p-q)Id.$$

Let (X, I, J, K, g) be compact hyperkähler, $\dim_{\mathbb{R}} X = 4n$.

Definition

An element $a \in H^2(X,\mathbb{R})$ has Lefschetz property if for all $k = 0, \dots, 2n$ we have isomorphisms

$$(L_a)^k \colon H^{2n-k}(X,\mathbb{R}) \stackrel{\sim}{\to} H^{2n+k}(X,\mathbb{R}),$$

where L_a is the operator of cup product with a.

If $a \in H^2(X, \mathbb{R})$ has Lefschetz property, then there exists the dual Lefschetz operator Λ_a , such that L_a , θ and Λ_a span \mathfrak{sl}_2 .

Let (X, I, J, K, g) be compact hyperkähler, $\dim_{\mathbb{R}} X = 4n$.

Definition

An element $a \in H^2(X,\mathbb{R})$ has Lefschetz property if for all $k = 0, \dots, 2n$ we have isomorphisms

$$(L_a)^k \colon H^{2n-k}(X,\mathbb{R}) \xrightarrow{\sim} H^{2n+k}(X,\mathbb{R}),$$

where L_a is the operator of cup product with a.

If $a \in H^2(X, \mathbb{R})$ has Lefschetz property, then there exists the dual Lefschetz operator Λ_a , such that L_a , θ and Λ_a span \mathfrak{sl}_2 .

Let (X, I, J, K, g) be compact hyperkähler, $\dim_{\mathbb{R}} X = 4n$.

Definition

An element $a \in H^2(X,\mathbb{R})$ has Lefschetz property if for all $k = 0, \dots, 2n$ we have isomorphisms

$$(L_a)^k \colon H^{2n-k}(X,\mathbb{R}) \xrightarrow{\sim} H^{2n+k}(X,\mathbb{R}),$$

where L_a is the operator of cup product with a.

If $a \in H^2(X, \mathbb{R})$ has Lefschetz property, then there exists the dual Lefschetz operator Λ_a , such that L_a , θ and Λ_a span \mathfrak{sl}_2 .

Theorem (Looijenga-Lunts, Verbitsky)

- The Lie subalgebra $\mathfrak{g}_{tot}(X) \subset \operatorname{End}(H^{\bullet}(X,\mathbb{R}))$ generated by L_a and Λ_a for all $a \in H^2(X,\mathbb{R})$ with the Lefschetz property is isomorphic to $\mathfrak{so}(4,b_2(X)-2)$.
- The grading on $\mathfrak{g}_{tot}(X)$:

$$\mathfrak{g}_{\mathrm{tot}}(X) = \mathfrak{g}_{\mathrm{tot}}^{-2}(X) \oplus \mathfrak{g}_{\mathrm{tot}}^{0}(X) \oplus \mathfrak{g}_{\mathrm{tot}}^{2}(X).$$

The semisimple part of $\mathfrak{g}^0_{\mathrm{tot}}(X)$ is isomorphic to $\mathfrak{so}(V,q)$, where $V=H^2(X,\mathbb{R}),$ and $q\in S^2V^*$ is the Beauville-Bogomolov-Fujiki form of signature $(3,b_2(X)-3)$.

• The algebra $\mathfrak{g}^0_{\mathrm{tot}}(X)$ acts on $H^{\bullet}(X,\mathbb{R})$ by derivations. The Hodge structures on cohomology groups are induced by this action.

Theorem (Looijenga-Lunts, Verbitsky)

- The Lie subalgebra $\mathfrak{g}_{tot}(X) \subset \operatorname{End}(H^{\bullet}(X,\mathbb{R}))$ generated by L_a and Λ_a for all $a \in H^2(X,\mathbb{R})$ with the Lefschetz property is isomorphic to $\mathfrak{so}(4,b_2(X)-2)$.
- The grading on $\mathfrak{g}_{tot}(X)$:

$$\mathfrak{g}_{\mathrm{tot}}(X) = \mathfrak{g}_{\mathrm{tot}}^{-2}(X) \oplus \mathfrak{g}_{\mathrm{tot}}^{0}(X) \oplus \mathfrak{g}_{\mathrm{tot}}^{2}(X).$$

The semisimple part of $\mathfrak{g}^0_{\mathrm{tot}}(X)$ is isomorphic to $\mathfrak{so}(V,q)$, where $V=H^2(X,\mathbb{R})$, and $q\in S^2V^*$ is the Beauville-Bogomolov-Fujiki form of signature $(3,b_2(X)-3)$.

• The algebra $\mathfrak{g}^0_{\mathrm{tot}}(X)$ acts on $H^{\bullet}(X,\mathbb{R})$ by derivations. The Hodge structures on cohomology groups are induced by this action.

Theorem (Looijenga-Lunts, Verbitsky)

- The Lie subalgebra $\mathfrak{g}_{tot}(X) \subset \operatorname{End}(H^{\bullet}(X,\mathbb{R}))$ generated by L_a and Λ_a for all $a \in H^2(X,\mathbb{R})$ with the Lefschetz property is isomorphic to $\mathfrak{so}(4,b_2(X)-2)$.
- The grading on $\mathfrak{g}_{tot}(X)$:

$$\mathfrak{g}_{\mathrm{tot}}(X) = \mathfrak{g}_{\mathrm{tot}}^{-2}(X) \oplus \mathfrak{g}_{\mathrm{tot}}^{0}(X) \oplus \mathfrak{g}_{\mathrm{tot}}^{2}(X).$$

The semisimple part of $\mathfrak{g}^0_{\mathrm{tot}}(X)$ is isomorphic to $\mathfrak{so}(V,q)$, where $V=H^2(X,\mathbb{R})$, and $q\in S^2V^*$ is the Beauville-Bogomolov-Fujiki form of signature $(3,b_2(X)-3)$.

• The algebra $\mathfrak{g}^0_{\mathrm{tot}}(X)$ acts on $H^{\bullet}(X,\mathbb{R})$ by derivations. The Hodge structures on cohomology groups are induced by this action.

Theorem (Looijenga-Lunts, Verbitsky)

- The Lie subalgebra $\mathfrak{g}_{tot}(X) \subset \operatorname{End}(H^{\bullet}(X,\mathbb{R}))$ generated by L_a and Λ_a for all $a \in H^2(X,\mathbb{R})$ with the Lefschetz property is isomorphic to $\mathfrak{so}(4,b_2(X)-2)$.
- The grading on $\mathfrak{g}_{tot}(X)$:

$$\mathfrak{g}_{\mathrm{tot}}(X) = \mathfrak{g}_{\mathrm{tot}}^{-2}(X) \oplus \mathfrak{g}_{\mathrm{tot}}^{0}(X) \oplus \mathfrak{g}_{\mathrm{tot}}^{2}(X).$$

The semisimple part of $\mathfrak{g}^0_{\mathrm{tot}}(X)$ is isomorphic to $\mathfrak{so}(V,q)$, where $V=H^2(X,\mathbb{R})$, and $q\in S^2V^*$ is the Beauville-Bogomolov-Fujiki form of signature $(3,b_2(X)-3)$.

• The algebra $\mathfrak{g}_{tot}^0(X)$ acts on $H^{\bullet}(X,\mathbb{R})$ by derivations. The Hodge structures on cohomology groups are induced by this action.

- X an IHS manifold, $\dim_{\mathbb{C}}(X) = 2n$. Then $V = H^2(X, \mathbb{Q})$ carries a Hodge structure of K3 type, i.e. $\dim V^{2,0} = 1$
- There exists a constant $c_X \in \mathbb{Q}$ and a quadratic form $q \in S^2V^*$ the Beauville-Bogomolov-Fujiki (BBF) form such that:

$$q(a)^n = c_X \int_X a^{2n}$$

for any $a \in H^2(X, \mathbb{Q})$.

- X an IHS manifold, $\dim_{\mathbb{C}}(X) = 2n$. Then $V = H^2(X, \mathbb{Q})$ carries a Hodge structure of K3 type, i.e. $\dim V^{2,0} = 1$
- There exists a constant $c_X \in \mathbb{Q}$ and a quadratic form $q \in S^2V^*$ the Beauville-Bogomolov-Fujiki (BBF) form such that:

$$q(a)^n = c_X \int_X a^{2n}$$

for any $a \in H^2(X, \mathbb{Q})$.

- X an IHS manifold, $\dim_{\mathbb{C}}(X) = 2n$. Then $V = H^2(X, \mathbb{Q})$ carries a Hodge structure of K3 type, i.e. $\dim V^{2,0} = 1$
- There exists a constant $c_X \in \mathbb{Q}$ and a quadratic form $q \in S^2V^*$ the Beauville-Bogomolov-Fujiki (BBF) form such that:

$$q(a)^n = c_X \int_X a^{2n}$$

for any $a \in H^2(X, \mathbb{Q})$.

- X an IHS manifold, $\dim_{\mathbb{C}}(X) = 2n$. Then $V = H^2(X, \mathbb{Q})$ carries a Hodge structure of K3 type, i.e. $\dim V^{2,0} = 1$
- There exists a constant $c_X \in \mathbb{Q}$ and a quadratic form $q \in S^2V^*$ the Beauville-Bogomolov-Fujiki (BBF) form such that:

$$q(a)^n = c_X \int_X a^{2n}$$

for any $a \in H^2(X, \mathbb{Q})$.

The Kuga-Satake construction

- Kuga and Satake (1967): attach to V a Hodge structure W of weight 1
- W = Cl(V, q) the Clifford algebra. Define:

$$W^{1,0} = V^{2,0} \cdot W_{\mathbb{C}}, \quad W^{0,1} = \overline{W^{1,0}}$$

This gives a rational Hodge structure on W, polarizable when X is projective.

Theorem (Kurnosov, S., Verbitsky)

Let X be a hyperkähler manifold of dimension 2n. For some integer m > 0 there exist embeddings of Hodge structures

$$\nu_i \colon H^{i+2n}(X, \mathbb{Q}(n)) \hookrightarrow \Lambda^{i+2d}(W^{\oplus m})(d)$$

where i = -2n, ..., 2n and $d = \frac{1}{4}m \dim_{\mathbb{Q}}(W)$

The Kuga-Satake construction

- • Kuga and Satake (1967): attach to V a Hodge structure W of weight 1
- W = Cl(V, q) the Clifford algebra. Define:

$$W^{1,0} = V^{2,0} \cdot W_{\mathbb{C}}, \quad W^{0,1} = \overline{W^{1,0}}$$

This gives a rational Hodge structure on W, polarizable when X is projective.

Theorem (Kurnosov, S., Verbitsky)

Let X be a hyperkähler manifold of dimension 2n. For some integer m > 0 there exist embeddings of Hodge structures

$$\nu_i \colon H^{i+2n}(X, \mathbb{Q}(n)) \hookrightarrow \Lambda^{i+2d}(W^{\oplus m})(d)$$

where i = -2n, ..., 2n and $d = \frac{1}{4}m \dim_{\mathbb{Q}}(W)$

The Kuga-Satake construction

- Kuga and Satake (1967): attach to V a Hodge structure W of weight 1
- W = Cl(V, q) the Clifford algebra. Define:

$$W^{1,0} = V^{2,0} \cdot W_{\mathbb{C}}, \quad W^{0,1} = \overline{W^{1,0}}$$

This gives a rational Hodge structure on W, polarizable when X is projective.

Theorem (Kurnosov, S., Verbitsky)

Let X be a hyperkähler manifold of dimension 2n. For some integer m > 0 there exist embeddings of Hodge structures

$$\nu_i \colon H^{i+2n}(X, \mathbb{Q}(n)) \hookrightarrow \Lambda^{i+2d}(W^{\oplus m})(d),$$

where i = -2n, ..., 2n and $d = \frac{1}{4}m \dim_{\mathbb{Q}}(W)$

- X/ℂ non-singular projective variety,
 X^{an} the corresponding complex manifold.
- De Rham cohomology:

$$H_{dR}^{\bullet}(X) \simeq H^{\bullet}(X, \Omega_{X/\mathbb{C}}^{\bullet})$$

- Singular cohomology: $H^k(X^{an},\mathbb{C}) \ -\ \text{a}\ \mathbb{C}\text{-vector space}\ +\ \text{a}\ \mathbb{Q}\text{-structure}\ H^k(X^{an},\mathbb{Q})$
- Comparison: $\Omega_{X^{an}}^{\bullet} \simeq \mathbb{C}$ implies $H_{dR}^k(X) \simeq H^k(X^{an}, \mathbb{C})$
- $\alpha \in F^pH^{2p}_{dR}(X)$ is a Hodge class, if under the isomorphism above

$$\alpha \in (2\pi i)^p H^{2p}(X^{an}, \mathbb{Q})$$

- X/\mathbb{C} non-singular projective variety, X^{an} — the corresponding complex manifold.
- De Rham cohomology:

$$H_{dR}^{\bullet}(X) \simeq H^{\bullet}(X, \Omega_{X/\mathbb{C}}^{\bullet})$$

- Singular cohomology: $H^k(X^{an},\mathbb{C}) \ -\ \text{a}\ \mathbb{C}\text{-vector space}\ +\ \text{a}\ \mathbb{Q}\text{-structure}\ H^k(X^{an},\mathbb{Q})$
- Comparison: $\Omega^{\bullet}_{X^{an}} \simeq \mathbb{C}$ implies $H^k_{dR}(X) \simeq H^k(X^{an}, \mathbb{C})$
- $\alpha \in F^pH^{2p}_{dR}(X)$ is a Hodge class, if under the isomorphism above

$$\alpha \in (2\pi i)^p H^{2p}(X^{an}, \mathbb{Q})$$

- X/\mathbb{C} non-singular projective variety, X^{an} — the corresponding complex manifold.
- De Rham cohomology:

$$H_{dR}^{\bullet}(X) \simeq H^{\bullet}(X, \Omega_{X/\mathbb{C}}^{\bullet})$$

- Singular cohomology: $H^k(X^{an},\mathbb{C}) \ -\ \text{a}\ \mathbb{C}\text{-vector space} + \text{a}\ \mathbb{Q}\text{-structure}\ H^k(X^{an},\mathbb{Q})$
- Comparison: $\Omega^{\bullet}_{X^{an}} \simeq \mathbb{C}$ implies $H^k_{dR}(X) \simeq H^k(X^{an}, \mathbb{C})$
- $\alpha \in F^pH^{2p}_{dR}(X)$ is a Hodge class, if under the isomorphism above

$$\alpha \in (2\pi i)^p H^{2p}(X^{an}, \mathbb{Q})$$

- X/\mathbb{C} non-singular projective variety, X^{an} — the corresponding complex manifold.
- De Rham cohomology:

$$H_{dR}^{\bullet}(X) \simeq H^{\bullet}(X, \Omega_{X/\mathbb{C}}^{\bullet})$$

- Singular cohomology: $H^k(X^{an},\mathbb{C})$ a \mathbb{C} -vector space + a \mathbb{Q} -structure $H^k(X^{an},\mathbb{Q})$
- Comparison: $\Omega^{\bullet}_{X^{an}} \simeq \mathbb{C}$ implies $H^k_{dR}(X) \simeq H^k(X^{an}, \mathbb{C})$
- $\alpha \in F^pH^{2p}_{dR}(X)$ is a Hodge class, if under the isomorphism above

$$\alpha \in (2\pi i)^p H^{2p}(X^{an}, \mathbb{Q})$$

- X/\mathbb{C} non-singular projective variety, X^{an} — the corresponding complex manifold.
- De Rham cohomology:

$$H_{dR}^{\bullet}(X) \simeq H^{\bullet}(X, \Omega_{X/\mathbb{C}}^{\bullet})$$

- Singular cohomology: $H^k(X^{an},\mathbb{C}) \ -\ \text{a}\ \mathbb{C}\text{-vector space}\ +\ \text{a}\ \mathbb{Q}\text{-structure}\ H^k(X^{an},\mathbb{Q})$
- Comparison: $\Omega^{\bullet}_{X^{an}} \simeq \mathbb{C}$ implies $H^k_{dR}(X) \simeq H^k(X^{an}, \mathbb{C})$
- $\alpha \in F^pH^{2p}_{dR}(X)$ is a Hodge class, if under the isomorphism above

$$\alpha \in (2\pi i)^p H^{2p}(X^{an}, \mathbb{Q})$$

- X/\mathbb{C} non-singular projective variety, X^{an} the corresponding complex manifold.
- De Rham cohomology:

$$H_{dR}^{\bullet}(X) \simeq H^{\bullet}(X, \Omega_{X/\mathbb{C}}^{\bullet})$$

- Singular cohomology: $H^k(X^{an},\mathbb{C})$ a \mathbb{C} -vector space + a \mathbb{Q} -structure $H^k(X^{an},\mathbb{Q})$
- Comparison: $\Omega^{\bullet}_{X^{an}} \simeq \mathbb{C}$ implies $H^k_{dR}(X) \simeq H^k(X^{an}, \mathbb{C})$
- $\alpha \in F^pH^{2p}_{dR}(X)$ is a Hodge class, if under the isomorphism above

$$\alpha \in (2\pi i)^p H^{2p}(X^{an}, \mathbb{Q})$$

• Let $\tau \in \operatorname{Aut}(\mathbb{C}/\mathbb{Q})$. We have:

$$H_{dR}^k(X) \simeq H_{dR}^k(X) \otimes_{\mathbb{C},\tau} \mathbb{C} \simeq H_{dR}^k(X_{\tau}) \simeq H^k(X_{\tau}^{an},\mathbb{C})$$

where X_{τ} — base change of X via τ

• $\alpha \in F^pH^{2p}_{dR}(X)$ is an absolute Hodge class, if

$$\alpha \in (2\pi i)^p H^{2p}(X_{\tau}^{an}, \mathbb{Q})$$

for any $\tau \in \operatorname{Aut}(\mathbb{C}/\mathbb{Q})$

- If α is an algebraic class, then it is absolute Hodge.
 The Hodge conjecture: every Hodge class is algebraic, therefore absolute Hodge.
- Deligne (1982): any Hodge class on an abelian variety A is absolute Hodge.

Theorem (S.)

Let X be a projective hyperkähler manifold of $\mathrm{K3}^{[n]}$, generalized Kummer, or OG6 or OG10 deformation type. Then all Hodge classes on X are absolute.

• Let $\tau \in \operatorname{Aut}(\mathbb{C}/\mathbb{Q})$. We have:

$$H_{dR}^k(X) \simeq H_{dR}^k(X) \otimes_{\mathbb{C},\tau} \mathbb{C} \simeq H_{dR}^k(X_{\tau}) \simeq H^k(X_{\tau}^{an},\mathbb{C})$$

where X_{τ} — base change of X via τ

• $\alpha \in F^pH^{2p}_{dR}(X)$ is an absolute Hodge class, if

$$\alpha \in (2\pi i)^p H^{2p}(X_{\tau}^{an}, \mathbb{Q})$$

for any $\tau \in \operatorname{Aut}(\mathbb{C}/\mathbb{Q})$

- If α is an algebraic class, then it is absolute Hodge.
 The Hodge conjecture: every Hodge class is algebraic, therefore absolute Hodge.
- Deligne (1982): any Hodge class on an abelian variety A is absolute Hodge.

Theorem (S.)

Let X be a projective hyperkähler manifold of $\mathrm{K3}^{[n]}$, generalized Kummer, or OG6 or OG10 deformation type. Then all Hodge classes on X are absolute.

• Let $\tau \in \operatorname{Aut}(\mathbb{C}/\mathbb{Q})$. We have:

$$H_{dR}^k(X) \simeq H_{dR}^k(X) \otimes_{\mathbb{C},\tau} \mathbb{C} \simeq H_{dR}^k(X_{\tau}) \simeq H^k(X_{\tau}^{an},\mathbb{C})$$

where X_{τ} — base change of X via τ

• $\alpha \in F^pH^{2p}_{dR}(X)$ is an absolute Hodge class, if

$$\alpha \in (2\pi i)^p H^{2p}(X_{\tau}^{an}, \mathbb{Q})$$

for any $\tau \in \operatorname{Aut}(\mathbb{C}/\mathbb{Q})$

- If α is an algebraic class, then it is absolute Hodge. The Hodge conjecture: every Hodge class is algebraic, therefore absolute Hodge.
- Deligne (1982): any Hodge class on an abelian variety A is absolute Hodge.

Theorem (S.)

Let X be a projective hyperkähler manifold of $\mathrm{K3}^{[n]}$, generalized Kummer, or OG6 or OG10 deformation type. Then all Hodge classes on X are absolute.

17/24

• Let $\tau \in \operatorname{Aut}(\mathbb{C}/\mathbb{Q})$. We have:

$$H_{dR}^k(X) \simeq H_{dR}^k(X) \otimes_{\mathbb{C},\tau} \mathbb{C} \simeq H_{dR}^k(X_{\tau}) \simeq H^k(X_{\tau}^{an},\mathbb{C})$$

where X_{τ} — base change of X via τ

• $\alpha \in F^pH^{2p}_{dR}(X)$ is an absolute Hodge class, if

$$\alpha \in (2\pi i)^p H^{2p}(X_{\tau}^{an}, \mathbb{Q})$$

for any $\tau \in \operatorname{Aut}(\mathbb{C}/\mathbb{Q})$

- If α is an algebraic class, then it is absolute Hodge. The Hodge conjecture: every Hodge class is algebraic, therefore absolute Hodge.
- Deligne (1982): any Hodge class on an abelian variety A is absolute Hodge.

Theorem (S.)

Let X be a projective hyperkähler manifold of $\mathrm{K3}^{[n]}$, generalized Kummer, or OG6 or OG10 deformation type. Then all Hodge classes on X are absolute.

17/24

• Let $\tau \in \operatorname{Aut}(\mathbb{C}/\mathbb{Q})$. We have:

$$H_{dR}^k(X) \simeq H_{dR}^k(X) \otimes_{\mathbb{C}, \tau} \mathbb{C} \simeq H_{dR}^k(X_{\tau}) \simeq H^k(X_{\tau}^{an}, \mathbb{C})$$

where X_{τ} — base change of X via τ

• $\alpha \in F^pH^{2p}_{dR}(X)$ is an absolute Hodge class, if

$$\alpha \in (2\pi i)^p H^{2p}(X_\tau^{an}, \mathbb{Q})$$

for any $\tau \in \operatorname{Aut}(\mathbb{C}/\mathbb{Q})$

- If α is an algebraic class, then it is absolute Hodge. The Hodge conjecture: every Hodge class is algebraic, therefore absolute Hodge.
- Deligne (1982): any Hodge class on an abelian variety A is absolute Hodge.

Theorem (S.)

Let X be a projective hyperkähler manifold of $\mathrm{K3}^{[n]}$, generalized Kummer, or OG6 or OG10 deformation type. Then all Hodge classes on X are absolute.

17/24

Let $\pi \colon \mathcal{X} \to \Delta$ be a flat projective morphism, such that

- \mathcal{X} is a smooth complex manifold, $\Delta = \{t \in \mathbb{C} \mid |t| < 1\}$
- π is smooth over $\Delta^* = \Delta \setminus \{0\}$
- for any $t \in \Delta^*$ the fibre $\mathcal{X}_t = X$ is an IHS manifold.

Definition

The limit mixed Hodge structure (MHS) on $H^k(X,\mathbb{Q})$ is given by two filtrations:

• the increasing weight filtration (defined over Q)

$$\ldots \subset W_m H^k(X, \mathbb{Q}) \subset W_{m+1} H^k(X, \mathbb{Q}) \subset \ldots$$

$$\ldots \subset F_{lim}^p H^k(X,\mathbb{C}) \subset F_{lim}^{p-1} H^k(X,\mathbb{C}) \subset \ldots$$

Let $\pi \colon \mathcal{X} \to \Delta$ be a flat projective morphism, such that

- \mathcal{X} is a smooth complex manifold, $\Delta = \{t \in \mathbb{C} \mid |t| < 1\}$
- π is smooth over $\Delta^* = \Delta \setminus \{0\}$
- for any $t \in \Delta^*$ the fibre $\mathcal{X}_t = X$ is an IHS manifold.

Definition

The limit mixed Hodge structure (MHS) on $H^k(X, \mathbb{Q})$ is given by two filtrations:

• the increasing weight filtration (defined over \mathbb{Q})

$$\ldots \subset W_m H^k(X, \mathbb{Q}) \subset W_{m+1} H^k(X, \mathbb{Q}) \subset \ldots$$

$$\ldots \subset F_{lim}^p H^k(X,\mathbb{C}) \subset F_{lim}^{p-1} H^k(X,\mathbb{C}) \subset \ldots$$

Let $\pi: \mathcal{X} \to \Delta$ be a flat projective morphism, such that

- \mathcal{X} is a smooth complex manifold, $\Delta = \{t \in \mathbb{C} \mid |t| < 1\}$
- π is smooth over $\Delta^* = \Delta \setminus \{0\}$
- for any $t \in \Delta^*$ the fibre $\mathcal{X}_t = X$ is an IHS manifold.

Definition

The limit mixed Hodge structure (MHS) on $H^k(X, \mathbb{Q})$ is given by two filtrations:

• the increasing weight filtration (defined over \mathbb{Q})

$$\ldots \subset W_m H^k(X, \mathbb{Q}) \subset W_{m+1} H^k(X, \mathbb{Q}) \subset \ldots$$

$$\ldots \subset F_{lim}^p H^k(X,\mathbb{C}) \subset F_{lim}^{p-1} H^k(X,\mathbb{C}) \subset \ldots$$

Let $\pi: \mathcal{X} \to \Delta$ be a flat projective morphism, such that

- \mathcal{X} is a smooth complex manifold, $\Delta = \{t \in \mathbb{C} \mid |t| < 1\}$
- π is smooth over $\Delta^* = \Delta \setminus \{0\}$
- for any $t \in \Delta^*$ the fibre $\mathcal{X}_t = X$ is an IHS manifold.

Definition

The limit mixed Hodge structure (MHS) on $H^k(X, \mathbb{Q})$ is given by two filtrations:

• the increasing weight filtration (defined over \mathbb{Q})

$$\ldots \subset W_m H^k(X, \mathbb{Q}) \subset W_{m+1} H^k(X, \mathbb{Q}) \subset \ldots$$

$$\ldots \subset F_{lim}^p H^k(X,\mathbb{C}) \subset F_{lim}^{p-1} H^k(X,\mathbb{C}) \subset \ldots$$

Let $\pi: \mathcal{X} \to \Delta$ be a flat projective morphism, such that

- \mathcal{X} is a smooth complex manifold, $\Delta = \{t \in \mathbb{C} \mid |t| < 1\}$
- π is smooth over $\Delta^* = \Delta \setminus \{0\}$
- for any $t \in \Delta^*$ the fibre $\mathcal{X}_t = X$ is an IHS manifold.

Definition

The limit mixed Hodge structure (MHS) on $H^k(X, \mathbb{Q})$ is given by two filtrations:

• the increasing weight filtration (defined over \mathbb{Q})

$$\ldots \subset W_m H^k(X, \mathbb{Q}) \subset W_{m+1} H^k(X, \mathbb{Q}) \subset \ldots$$

$$\ldots \subset F_{lim}^p H^k(X,\mathbb{C}) \subset F_{lim}^{p-1} H^k(X,\mathbb{C}) \subset \ldots$$

Let $\pi \colon \mathcal{X} \to \Delta$ be a flat projective morphism, such that

- \mathcal{X} is a smooth complex manifold, $\Delta = \{t \in \mathbb{C} \mid |t| < 1\}$
- π is smooth over $\Delta^* = \Delta \setminus \{0\}$
- for any $t \in \Delta^*$ the fibre $\mathcal{X}_t = X$ is an IHS manifold.

Definition

The limit mixed Hodge structure (MHS) on $H^k(X, \mathbb{Q})$ is given by two filtrations:

• the increasing weight filtration (defined over \mathbb{Q})

$$\ldots \subset W_m H^k(X, \mathbb{Q}) \subset W_{m+1} H^k(X, \mathbb{Q}) \subset \ldots$$

$$\dots \subset F_{lim}^p H^k(X, \mathbb{C}) \subset F_{lim}^{p-1} H^k(X, \mathbb{C}) \subset \dots$$

Let $\pi: \mathcal{X} \to \Delta$ be a flat projective morphism, such that

- \mathcal{X} is a smooth complex manifold, $\Delta = \{t \in \mathbb{C} \mid |t| < 1\}$
- π is smooth over $\Delta^* = \Delta \setminus \{0\}$
- for any $t \in \Delta^*$ the fibre $\mathcal{X}_t = X$ is an IHS manifold.

Definition

The limit mixed Hodge structure (MHS) on $H^k(X,\mathbb{Q})$ is given by two filtrations:

• the increasing weight filtration (defined over \mathbb{Q})

$$\ldots \subset W_m H^k(X, \mathbb{Q}) \subset W_{m+1} H^k(X, \mathbb{Q}) \subset \ldots$$

$$\ldots \subset F_{lim}^p H^k(X,\mathbb{C}) \subset F_{lim}^{p-1} H^k(X,\mathbb{C}) \subset \ldots$$

Let $\pi: \mathcal{X} \to \Delta$ be a flat projective morphism, such that

- \mathcal{X} is a smooth complex manifold, $\Delta = \{t \in \mathbb{C} \mid |t| < 1\}$
- π is smooth over $\Delta^* = \Delta \setminus \{0\}$
- for any $t \in \Delta^*$ the fibre $\mathcal{X}_t = X$ is an IHS manifold.

Definition

The limit mixed Hodge structure (MHS) on $H^k(X, \mathbb{Q})$ is given by two filtrations:

• the increasing weight filtration (defined over \mathbb{Q})

$$\ldots \subset W_m H^k(X, \mathbb{Q}) \subset W_{m+1} H^k(X, \mathbb{Q}) \subset \ldots$$

$$\ldots \subset F_{lim}^p H^k(X,\mathbb{C}) \subset F_{lim}^{p-1} H^k(X,\mathbb{C}) \subset \ldots$$

$$\pi \colon \mathcal{X} \to \Delta, \quad X = \mathcal{X}_t \text{ for some } t \in \Delta^*$$

The weight filtration $W_{\bullet}H^k(X,\mathbb{Q})$ is determined by the monodromy action on $H^k(X,\mathbb{Q})$.

Recall that the semisimple part of $\mathfrak{g}_{\mathrm{tot}}^{0}(X)$ is isomorphic to $\mathfrak{so}(V,q)$, where $V=H^{2}(X,\mathbb{R})$ and q is the BBF form.

Theorem (S.)

$$e^N \in \mathrm{Spin}(V,q)$$
.

$$\pi \colon \mathcal{X} \to \Delta, \quad X = \mathcal{X}_t \text{ for some } t \in \Delta^*$$

The weight filtration $W_{\bullet}H^k(X,\mathbb{Q})$ is determined by the monodromy action on $H^k(X,\mathbb{Q})$.

Recall that the semisimple part of $\mathfrak{g}_{\mathrm{tot}}^{0}(X)$ is isomorphic to $\mathfrak{so}(V,q)$, where $V=H^{2}(X,\mathbb{R})$ and q is the BBF form.

Theorem (S.)

$$e^N \in \mathrm{Spin}(V,q).$$

$$\pi \colon \mathcal{X} \to \Delta, \quad X = \mathcal{X}_t \text{ for some } t \in \Delta^*$$

The weight filtration $W_{\bullet}H^k(X,\mathbb{Q})$ is determined by the monodromy action on $H^k(X,\mathbb{Q})$.

Recall that the semisimple part of $\mathfrak{g}^0_{\mathrm{tot}}(X)$ is isomorphic to $\mathfrak{so}(V,q)$, where $V=H^2(X,\mathbb{R})$ and q is the BBF form.

Theorem (S.)

$$e^N \in \mathrm{Spin}(V,q).$$

$$\pi \colon \mathcal{X} \to \Delta, \quad X = \mathcal{X}_t \text{ for some } t \in \Delta^*$$

The weight filtration $W_{\bullet}H^k(X,\mathbb{Q})$ is determined by the monodromy action on $H^k(X,\mathbb{Q})$.

Recall that the semisimple part of $\mathfrak{g}^0_{\mathrm{tot}}(X)$ is isomorphic to $\mathfrak{so}(V,q)$, where $V=H^2(X,\mathbb{R})$ and q is the BBF form.

Theorem (S.)

$$e^N \in \operatorname{Spin}(V, q).$$

$N \in \mathfrak{so}(V,q)$ the logarithm of monodromy of $\pi \colon \mathcal{X} \to \Delta$.

The degeneration is

- of type I, if N=0
- of type II, if $N \neq 0$, $N^2 = 0$
- of type III, or maximal, if $N^2 \neq 0$, $N^3 = 0$

Example of a maximal degeneration

$$\mathcal{X}' = \{(x,t) \in \mathbb{C}P^3 \times \mathbb{A}^1 \mid t(x_0^4 + \dots + x_3^4) + x_0 x_1 x_2 x_3 = 0\}$$

 $N \in \mathfrak{so}(V,q)$ the logarithm of monodromy of $\pi \colon \mathcal{X} \to \Delta$.

The degeneration is

- of type I, if N = 0
- of type II, if $N \neq 0$, $N^2 = 0$
- of type III, or maximal, if $N^2 \neq 0$, $N^3 = 0$

Example of a maximal degeneration

$$\mathcal{X}' = \{(x,t) \in \mathbb{C}P^3 \times \mathbb{A}^1 \mid t(x_0^4 + \dots + x_3^4) + x_0 x_1 x_2 x_3 = 0\}$$

 $N \in \mathfrak{so}(V,q)$ the logarithm of monodromy of $\pi \colon \mathcal{X} \to \Delta$.

The degeneration is

- of type I, if N = 0
- of type II, if $N \neq 0$, $N^2 = 0$
- of type III, or maximal, if $N^2 \neq 0$, $N^3 = 0$

Example of a maximal degeneration

$$\mathcal{X}' = \{(x,t) \in \mathbb{C}P^3 \times \mathbb{A}^1 \mid t(x_0^4 + \dots + x_3^4) + x_0 x_1 x_2 x_3 = 0\}$$

 $N \in \mathfrak{so}(V,q)$ the logarithm of monodromy of $\pi \colon \mathcal{X} \to \Delta$.

The degeneration is

- of type I, if N=0
- of type II, if $N \neq 0$, $N^2 = 0$
- of type III, or maximal, if $N^2 \neq 0$, $N^3 = 0$

Example of a maximal degeneration

$$\mathcal{X}' = \{(x,t) \in \mathbb{C}P^3 \times \mathbb{A}^1 \mid t(x_0^4 + \dots + x_3^4) + x_0 x_1 x_2 x_3 = 0\}$$

 $N \in \mathfrak{so}(V,q)$ the logarithm of monodromy of $\pi \colon \mathcal{X} \to \Delta$.

The degeneration is

- of type I, if N=0
- of type II, if $N \neq 0$, $N^2 = 0$
- of type III, or maximal, if $N^2 \neq 0$, $N^3 = 0$

Example of a maximal degeneration

$$\mathcal{X}' = \{(x,t) \in \mathbb{C}P^3 \times \mathbb{A}^1 \mid t(x_0^4 + \dots + x_3^4) + x_0 x_1 x_2 x_3 = 0\}$$

 $N \in \mathfrak{so}(V,q)$ the logarithm of monodromy of $\pi \colon \mathcal{X} \to \Delta$.

The degeneration is

- of type I, if N=0
- of type II, if $N \neq 0$, $N^2 = 0$
- of type III, or maximal, if $N^2 \neq 0$, $N^3 = 0$

Example of a maximal degeneration

$$\mathcal{X}' = \{(x,t) \in \mathbb{C}P^3 \times \mathbb{A}^1 \mid t(x_0^4 + \dots + x_3^4) + x_0 x_1 x_2 x_3 = 0\}$$

 $N \in \mathfrak{so}(V,q)$ the logarithm of monodromy of $\pi \colon \mathcal{X} \to \Delta$.

The degeneration is

- of type I, if N=0
- of type II, if $N \neq 0$, $N^2 = 0$
- of type III, or maximal, if $N^2 \neq 0$, $N^3 = 0$

Example of a maximal degeneration

$$\mathcal{X}' = \{(x,t) \in \mathbb{C}P^3 \times \mathbb{A}^1 \mid t(x_0^4 + \dots + x_3^4) + x_0 x_1 x_2 x_3 = 0\}$$

 $N \in \mathfrak{so}(V,q)$ the logarithm of monodromy of $\pi \colon \mathcal{X} \to \Delta$.

The degeneration is

- of type I, if N = 0
- of type II, if $N \neq 0$, $N^2 = 0$
- of type III, or maximal, if $N^2 \neq 0$, $N^3 = 0$

Example of a maximal degeneration

$$\mathcal{X}' = \{(x,t) \in \mathbb{C}P^3 \times \mathbb{A}^1 \mid t(x_0^4 + \dots + x_3^4) + x_0 x_1 x_2 x_3 = 0\}$$

Limit MHS for a maximal degeneration

Kulikov, 1977: Description of central fibres and their dual complexes for degenerations of K3 surfaces. Further studied by Persson, Pinkham, Friedman, Scattone, Alexeev and many others.

Kollár–Laza–Saccà–Voisin, 2018: For a maximal degeneration of IHS manifolds the dual complex of the central fibre has rational homology of $\mathbb{C}P^n$. For other types of degenerations the dual complex is contractible.

Theorem (S.)

Assume that π is a maximal degeneration of IHS manifolds. Then for all k the limit mixed Hodge structures on $H^k(X,\mathbb{Q})$ are Hodge-Tate, i.e. $\operatorname{gr}_{2j}^W H^k$ are pure of type (j,j) and $\operatorname{gr}_{2j+1}^W H^k = 0$ for all j.

Limit MHS for a maximal degeneration

Kulikov, 1977: Description of central fibres and their dual complexes for degenerations of K3 surfaces. Further studied by Persson, Pinkham, Friedman, Scattone, Alexeev and many others.

Kollár–Laza–Saccà–Voisin, 2018: For a maximal degeneration of IHS manifolds the dual complex of the central fibre has rational homology of $\mathbb{C}P^n$. For other types of degenerations the dual complex is contractible.

Theorem (S.)

Assume that π is a maximal degeneration of IHS manifolds. Then for all k the limit mixed Hodge structures on $H^k(X,\mathbb{Q})$ are Hodge-Tate, i.e. $\operatorname{gr}_{2j}^W H^k$ are pure of type (j,j) and $\operatorname{gr}_{2j+1}^W H^k = 0$ for all j.

Kulikov, 1977: Description of central fibres and their dual complexes for degenerations of K3 surfaces. Further studied by Persson, Pinkham, Friedman, Scattone, Alexeev and many others.

Kollár–Laza–Saccà–Voisin, 2018: For a maximal degeneration of IHS manifolds the dual complex of the central fibre has rational homology of $\mathbb{C}P^n$. For other types of degenerations the dual complex is contractible.

Theorem (S.)

Assume that π is a maximal degeneration of IHS manifolds. Then for all k the limit mixed Hodge structures on $H^k(X,\mathbb{Q})$ are Hodge-Tate, i.e. $\operatorname{gr}_{2j}^W H^k$ are pure of type (j,j) and $\operatorname{gr}_{2j+1}^W H^k = 0$ for all j.

Kulikov, 1977: Description of central fibres and their dual complexes for degenerations of K3 surfaces. Further studied by Persson, Pinkham, Friedman, Scattone, Alexeev and many others.

Kollár–Laza–Saccà–Voisin, 2018: For a maximal degeneration of IHS manifolds the dual complex of the central fibre has rational homology of $\mathbb{C}P^n$. For other types of degenerations the dual complex is contractible.

Theorem (S.)

Assume that π is a maximal degeneration of IHS manifolds. Then for all k the limit mixed Hodge structures on $H^k(X,\mathbb{Q})$ are Hodge-Tate, i.e. $\operatorname{gr}_{2j}^W H^k$ are pure of type (j,j) and $\operatorname{gr}_{2j+1}^W H^k = 0$ for all j.

Kulikov, 1977: Description of central fibres and their dual complexes for degenerations of K3 surfaces. Further studied by Persson, Pinkham, Friedman, Scattone, Alexeev and many others.

Kollár–Laza–Saccà–Voisin, 2018: For a maximal degeneration of IHS manifolds the dual complex of the central fibre has rational homology of $\mathbb{C}P^n$. For other types of degenerations the dual complex is contractible.

Theorem (S.)

Assume that π is a maximal degeneration of IHS manifolds. Then for all k the limit mixed Hodge structures on $H^k(X,\mathbb{Q})$ are Hodge-Tate, i.e. $\operatorname{gr}_{2j}^W H^k$ are pure of type (j,j) and $\operatorname{gr}_{2j+1}^W H^k = 0$ for all j.

Expectation: for a maximal degeneration, the central fibre \mathcal{X}_0 should be rationally connected

Expectation: for a maximal degeneration, the central fibre \mathcal{X}_0 should be rationally connected

- Teichmüller spaces of hyperkähler manifolds, Torelli-type theorems;
- SYZ conjecture for hyperkähler manifolds;
- Lagrangian fibrations of hyperkähler manifolds, degenerate twistor deformations;
- Dynamics of automorphisms of hyperkähler manifolds, rigid currents;
- Hyperbolic geometry of the ample cone of a hyperkähler manifold;

•

- Teichmüller spaces of hyperkähler manifolds, Torelli-type theorems;
- SYZ conjecture for hyperkähler manifolds;
- Lagrangian fibrations of hyperkähler manifolds, degenerate twistor deformations;
- Dynamics of automorphisms of hyperkähler manifolds, rigid currents;
- Hyperbolic geometry of the ample cone of a hyperkähler manifold;

- Teichmüller spaces of hyperkähler manifolds, Torelli-type theorems;
- SYZ conjecture for hyperkähler manifolds;
- Lagrangian fibrations of hyperkähler manifolds, degenerate twistor deformations;
- Dynamics of automorphisms of hyperkähler manifolds, rigid currents;
- Hyperbolic geometry of the ample cone of a hyperkähler manifold;

•

- Teichmüller spaces of hyperkähler manifolds, Torelli-type theorems;
- SYZ conjecture for hyperkähler manifolds;
- Lagrangian fibrations of hyperkähler manifolds, degenerate twistor deformations;
- Dynamics of automorphisms of hyperkähler manifolds, rigid currents;
- Hyperbolic geometry of the ample cone of a hyperkähler manifold;

- Teichmüller spaces of hyperkähler manifolds, Torelli-type theorems;
- SYZ conjecture for hyperkähler manifolds;
- Lagrangian fibrations of hyperkähler manifolds, degenerate twistor deformations;
- Dynamics of automorphisms of hyperkähler manifolds, rigid currents;
- Hyperbolic geometry of the ample cone of a hyperkähler manifold;

- Teichmüller spaces of hyperkähler manifolds, Torelli-type theorems;
- SYZ conjecture for hyperkähler manifolds;
- Lagrangian fibrations of hyperkähler manifolds, degenerate twistor deformations;
- Dynamics of automorphisms of hyperkähler manifolds, rigid currents;
- Hyperbolic geometry of the ample cone of a hyperkähler manifold;

- Teichmüller spaces of hyperkähler manifolds, Torelli-type theorems;
- SYZ conjecture for hyperkähler manifolds;
- Lagrangian fibrations of hyperkähler manifolds, degenerate twistor deformations;
- Dynamics of automorphisms of hyperkähler manifolds, rigid currents;
- Hyperbolic geometry of the ample cone of a hyperkähler manifold;

Thank you!

