Would prompt work for graph learning? An exploration of few-shot learning on graphs

Yuan FANG

School of Computing and Information Systems
Singapore Management University

VALSE Webinar 10 Jan 2024

Outline

- Introduction: Data and problems
- Overview of few-shot methodologies
- Can prompt work on graph + text?
- Can prompt work on graph alone?
- Conclusion

Complex big data as graphs

Social networks Biology E-commerce Knowledge graph Concept Co

Data, Problems and Methods

Problems Methods Data Few-shot learning Graphs/Networks Meta-learning on graphs Heterogeneous graphs Self-supervised User interaction graphs learning / Pre-training Node-level Knowledge graph Prompt-based Graph-level learning

Few-shot problems on graphs

Node classification

Graph classification

Outline

- Introduction: Data and problems
- Overview of few-shot methodologies
- Can prompt work on graph + text?
- Can prompt work on graph alone?
- Conclusion

Why supervised learning does not work?

7

Supervised learning

Learn a classifier

$$f_{\theta}(\mathbf{W}) \to \mathrm{dog}$$

Need many, many labelled data! Hard to deal with novel classes.

How humans learn?

One example of toy whale

Even toddlers can learn novel classes very quickly with one/few examples...by generalizing from prior knowledge.

8

Query Support Training Dog Cat tasks Dog Support Query Meta**learning** Apple Banana Apple Banana (MAML [FAL17]) Query Testing **Support** tasks Ship

Learn a classifier

$$f_{\theta}(\mathbf{V}) \to \mathrm{dog}$$

Need many, many labelled data! Hard to deal with novel classes.

[FAL17] Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. C. Finn et al. ICML 2017.

Reconstruction error

9

Same

Different

Self-supervised learning / Pre-training

Graph pre-training: Generative vs. contrastive

Key: Design self-supervised pre-training tasks on graphs

Generative

$\begin{array}{c} 1 \\ 4 \\ X_4 \\ \hline \end{array}$

(d) Generate attributes and masked edges for node 4

(e) Generate attributes and masked edges for node 5

[Image from HDW20]

Contrastive

[Image from QCD20]

Graph pre-training: Spatial vs. Spectral

Spatial

Explicit (local) structures and node features

Spectral

Implicit node (global) positions on graph topology

$$\mathbf{H}_a = f(\mathbf{A}, \mathbf{X})$$

$$\mathbf{H}_e = g(\mathbf{\Lambda}, \mathbf{U})$$

Pre-training on heterogeneous graphs

Pre-training tasks to capture relation- and subgraph-level semantics

Various types of node/edge capture rich semantics

(a) A heterogeneous graph

[CIKM21] X. Jiang, Y. Lu, Y. Fang and C. Shi. Contrastive Pre-training of GNNs on Heterogeneous Graphs

Pre-training on heterogeneous graphs

Pre-training tasks to capture schema-level semantics

Schema Schema-level task

Problem with pre-training approaches

The gap between pre-training and downstream objectives

- And the fine-tuning step...
 - Can be expensive for large pre-trained models
 - may overfit if there are very few labels from downstream tasks

Bridging the gap: Pre-train, prompt

- Problem: Gap between pre-training and downstream tasks
- Prompt [LYF23]: an alternative to "pre-train, fine-tune"
 - Originated in NLP, an instruction to reformulate the original task to unify with pre-trained model (e.g., masked language modeling)

Zero-shot: Handcrafted (prompt engineering)
Few-shot: Learnable word vectors (prompt tuning)

Outline

- Introduction: Data and problems
- Overview of few-shot methodologies
- □ Can prompt work on graph + text?
- Can prompt work on graph alone?
- Conclusion

Graph data often associate with texts

So, if there is a **jointly pre-trained graph-text model**, we can easily apply natural language-based prompts to graphs.

Graph-grounded pre-training and prompting (G2P2)

19

Learns a dual-modal embedding space by jointly training a **text encoder** and **graph encoder**

Exploits three contrastive strategies

- Text-node contrast
- Text-summary contrast
- Node-summary contrast

(a) Graph-grounded contrastive pre-training

[SIGIR23] Z. Wen and Y. Fang. Augmenting Low-Resource Text Classification with Graph-Grounded Pre-training and Prompting.

Graph-grounded pre-training and prompting (G2P2)

Zero-shot node classification with discrete prompts

Label texts of N classes Discrete prompt $y_1 = NLP$ Pre-trained "paper of" + y_i transformer θ_T^0 y_2 = Recommendation y_N = Computer vision \mathbf{W}_2 classification weights target node emb. Pre-trained $|\mathbf{z}_1\mathbf{w}_1|\mathbf{z}_1\mathbf{w}_2$ \mathbf{z}_1 $\mathbf{z}_1 \mathbf{w}_N$ GNN θ_G^0 predict y_1

Few-shot node classification with continuous prompt tuning

Datasets to evaluate G2P2

Dataset	Cora	Art	Industrial	M.I.
# Documents	25,120	1,615,902	1,260,053	905,453
# Links	182,280	4,898,218	3,101,670	2,692,734
# Avg. doc length	141.26	54.23	52.15	84.66
# Avg. node deg	7.26	3.03	2.46	2.97
# Classes	70	3,347	2,462	1,191

Cora is a collection of research papers with citation links

Art, Industrial and Music Instruments (M.I.) are three Amazon review datasets

Empirical performance of G2P2

		Cora		Art		Industrial		M.I.	
		Accuracy	Macro-F1	Accuracy	Macro-F1	Accuracy	Macro-F1	Accuracy	Macro-F1
tin to Man	GCN	41.15±2.41	34.50±2.23	22.47±1.78	15.45±1.14	21.08±0.45	15.23±0.29	22.54±0.82	16.26±0.72
40,4	$SAGE_{sup}$	41.42±2.90	35.14±2.14	22.60 ± 0.56	16.01 ± 0.28	20.74±0.91	15.31 ± 0.37	22.14±0.80	16.69 ± 0.62
1000	TextGCN	59.78±1.88	55.85±1.50	43.47 ± 1.02	32.20 ± 1.30	53.60±0.70	45.97±0.49	46.26±0.91	38.75 ± 0.78
Qreiting Qreiting	GPT-GNN	76.72±2.02	72.23±1.17	65.15±1.37	52.79±0.83	62.13±0.65	54.47±0.67	67.97±2.49	59.89±2.51
10/2	DGI	78.42±1.39	74.58 ± 1.24	65.41 ± 0.86	53.57 ± 0.75	52.29±0.66	45.26 ± 0.51	68.06±0.73	60.64 ± 0.61
0,600	$SAGE_{self}$	77.59±1.71	73.47±1.53	76.13 ± 0.94	65.25 ± 0.31	71.87±0.61	65.09 ± 0.47	77.70 ± 0.48	70.87 ± 0.59
Paritain of the state of the st	BERT	37.86±5.31	32.78±5.01	46.39±1.05	37.07 ± 0.68	54.00±0.20	47.57±0.50	50.14±0.68	42.96±1.02
ilia.	$BERT^*$	27.22±1.22	23.34±1.11	45.31 ± 0.96	36.28 ± 0.71	49.60±0.27	43.36 ± 0.27	40.19±0.74	33.69 ± 0.72
100	RoBERTa	62.10±2.77	57.21±2.51	72.95 ± 1.75	62.25 ± 1.33	76.35±0.65	70.49 ± 0.59	70.67±0.87	63.50 ± 1.11
	RoBERTa*	67.42±4.35	62.72±3.02	74.47 ± 1.00	63.35±1.09	77.08±1.02	71.44 ± 0.87	74.61±1.08	67.78 ± 0.95
20	P-Tuning v2	71.00±2.03	66.76±1.95	76.86 ± 0.59	<u>66.89</u> ±1.14	79.65±0.38	74.33 ± 0.37	72.08±0.51	65.44±0.63
toning toning	G2P2-p	79.16±1.23	74.99±1.35	79.59±0.31	68.26±0.43	80.86±0.40	74.44±0.29	81.26±0.36	74.82±0.45
15	G2P2	80.08 *±1.33	75.91 *±1.39	$81.03*\pm0.43$	$69.86*\pm0.67$	82.46 *±0.29	$76.36*\pm0.25$	$82.77^* \pm 0.32$	$76.48*\pm0.52$
	(improv.)	(+2.12%)	(+1.78%)	(+5.43%)	(+4.44%)	(+3.53%)	(+2.7%)	(+6.53%)	(+7.92%)

G2P2 outperforms the best baseline by around 3–7%.

Outline

- Introduction: Data and problems
- Overview of few-shot methodologies
- Can prompt work on graph + text?
- Can prompt work on graph alone?
- Conclusion

GraphPrompt: Pre-train, prompt on graph only

Two challenges

- How to unify various pre-training and downstream tasks on graph?
- How to design prompts on graph?

Insights

- A unified task template based on subgraph similarity computation
- Use a learnable prompt to guide graph readout for different tasks

GraphPrompt: Pre-train, prompt on graph only

Unified task template

Link prediction

Triplet (v, a, b), s.t. v is linked to a, but not b: $sim(\mathbf{s}_v, \mathbf{s}_a) > sim(\mathbf{s}_v, \mathbf{s}_b)$

Node classification

$$\ell_j = \arg\max_{c \in C} \operatorname{sim}(\mathbf{s}_{v_j}, \tilde{\mathbf{s}}_c)$$

Graph classification

$$L_j = \arg\max_{c \in C} \operatorname{sim}(\mathbf{s}_{G_j}, \tilde{\mathbf{s}}_c)$$

All tasks converted to subgraph similarity computation!

 \mathbf{s}_{x} : (sub)graph embedding of x (x is a node or graph)

 $\tilde{\mathbf{s}}_c$: class c's prototype (a virtual subgraph, by aggregates all subgraph embeddings in the class)

GraphPrompt: Pre-train, prompt on graphs

Prompt design

Different downstream tasks require different subgraph readout → Use task-specific learnable prompts

Prompt vector added to the readout layer of the pre-trained GNN

 $\mathbf{s}_{t,x} = \text{ReadOut}(\{\mathbf{p}_t \odot \mathbf{h}_v : v \in V(S_x)\})$

 $\mathbf{s}_{t,x}$: (sub)graph embedding of x for a task t

 \mathbf{h}_{v} : node v's embedding vector

 \mathbf{p}_t or \mathbf{P}_t : learnable prompt vector or matrix for task t

GraphPrompt: Pre-train, prompt on graphs

Impact of shots on few-shot node classification.

Impact of shots on few-shot graph classification.

Few-shot: Significantly better

Few-shot: Significantly better

<u>10-shot:</u> Still competitive (as graphs are small – 10 shots are a lot) <u>On ENZYMES:</u> worse performance on ≥20 shots (only 600 graphs – 20 shots/class ~ 20% labels)

GraphPrompt: Pre-train, prompt on graphs

Comparison of parameter efficiency

Significantly fewer parameters/FLOPs than:

- Supervised model (GIN [XHL19]),
- "Pretrain, fine-tune" model (GraphPrompt-ft),
- Existing prompt model (GPPT [SZH22])

Methods	Flickr			
	Params	FLOPs		
GIN	22,183	240,100		
GPPT	4,096	4,582		
GraphPrompt	96	96		
GraphPrompt-ft	21,600	235,200		

Mathada	PROT	EINS	ENZYMES		
Methods	Params	FLOPs	Params	FLOPs	
GIN	5,730	12,380	6,280	11,030	
GPPT	1,536	1,659	1,536	1,659	
GRAPHPROMPT GRAPHPROMPT-ft	96	96	96	96	
	6,176	13,440	6,176	10,944	

Generalized Graph Prompt

- Support more pre-training tasks beyond link prediction
 - DGI, InfoGraph, GraphCL, GCC, ...
- Layer-wise prompts

HGPrompt: Extending to heterogeneous graphs

Two challenges

- Gap between homogeneous and heterogeneous graph
- Different downstream tasks focus on heterogeneous aspect

Insights

- Dual-template:
 Task + Graph template
- Dual-prompt:
 Feature + Heterogeneity prompt

Outline

- Introduction: Data and problems
- Overview of few-shot methodologies
- Can prompt work on graph + text?
- Can prompt work on graph alone?
- Conclusion

Conclusion

- Few-shot learning on graphs: different kinds of graphs/tasks
- Learning and transferring/using prior is the key
- Prompt is a promising paradigm...

Jiawei Liu, Cheng Yang, Zhiyuan Lu, Junze Chen, Yibo Li, Mengmei Zhang, Ting Bai, Yuan Fang, Lichao Sun, Philip S. Yu, Chuan Shi. **Towards Graph Foundation Models: A Survey and Beyond.**

https://arxiv.org/pdf/2310.11829.pdf

WWW24 Lecture-Style Tutorial: **Towards Graph Foundation Model.** Tuesday, May 14, 2024, Half-Day (AM), Singapore Chuan Shi, Cheng Yang, Yuan Fang, Lichao Sun and Philip Yu

Acknowledgement

Student/post-doc co-authors

Liu

Zemin Chenghao

Liu

o Zhihao Wen

Xingtong Yu

Deyu Bo

Main collaborators

Prof. Steven Hoi, Singapore Management University

Prof. Chuan Shi, Beijing University of Posts and Telecommunications

Prof. Xinming Zhang, University of Science and Technology of China

Main funding sources

- One-shot learning: A crucial learning paradigm towards human-like learning. National Research Foundation, Singapore under its Al Singapore Programme (AISG Award No: AISG-RP-2018-001).
- Learning with less data. Agency for Science, Technology and Research (A*STAR) under its AME Programmatic Funds (Grant No. A20H6b0151).
- Universal pre-training of graph neural networks. Ministry of Education, Singapore, under its Academic Research Fund Tier 2 (Proposal ID: T2EP20122-0041).
- Lee Kong Chian Fellowship, 2021, Singapore Management University.

Thank you

Questions?

Email: yfang@smu.edu.sg

Full publications, codes and data are available at http://www.yfang.site/