Decision Trees

Rafael Zambrano rafazamb@gmail.com

 x_1

Regresión

Cliente	Edad	Trabaja	Hipoteca	Ingresos
А	32	SÍ	SÍ	Altos
В	25	SÍ	SÍ	Altos
С	48	NO	NO	Bajos
D	67	NO	SÍ	Bajos
Е	18	SÍ	NO	Bajos

- Pueden utilizarse en regresión y clasificación
- ¿Qué variable utilizar para segmentar en cada nodo?

Cliente	Edad	Trabaja	Hipoteca	Ingresos
Α	32	SÍ	SÍ	Altos
В	25	SÍ	SÍ	Altos
С	48	NO	NO	Bajos
D	67	NO	SÍ	Bajos
E	18	SÍ	NO	Bajos

 Hay que medir cómo de bien separan las variables candidatas a la variable objetivo

 Imaginemos que para un dataset completo obtenemos los siguientes resultados

- Normalmente, ninguna de las variables consigue separar perfectamente a la variable objetivo (existe impureza)
- La métrica más común para medir impurezas se conoce como "Gini"

- Impureza de Gini, para cada nodo hoja:
 - 1- (probabilidad de la clase 1)² (probabilidad de la clase 2)²

Impureza de Gini total de la variable "Trabaja":

$$0.35 \cdot \left(\frac{164}{164 + 133}\right) + 0.37 \cdot \left(\frac{133}{164 + 133}\right) = \mathbf{0.36}$$

- Impureza de Gini total de la variable "Trabaja": 0.360
- Impureza de Gini total de la variable "Hipoteca": 0.364
- La variable "trabaja" tiene menos impureza, por lo que funciona mejor a la hora de separar la variable objetivo, utilizándose como nodo raíz
- Este proceso se repite en los nodos intermedios con las variables distintas a la del nodo raíz
- Un nodo se convierte en hoja cuando ninguna variable separa mejor el resultado de ese nodo

Pasos para construir un árbol de decisión:

- 1. Calcular el índice de Gini para cada variable
- Si el nodo en sí tiene el menor Gini, se convierte en hoja
- Si utilizar una variable para separar mejora el resultado, se utilizará la variable con el menor Gini

Árboles y variables numéricas

Edad	Ingresos
32	Altos
25	Altos
48	Bajos
67	Bajos
18	Bajos

¿Cómo determinar cuál es el mejor corte para dividir el target?

- 1) Ordenar de menor a mayor
- 2) Calcular la media para pares adyacentes
- 3) Calcular el índice Gini para cada media
- 4) Escoger el corte que tenga el menor Gini

Edad	Ingresos	
18 21.5	Bajos	
25	Altos	
28.5 32	Altos	
48	Bajos	
67 57.5	Bajos	

Árboles y variables categóricas

Estado civil Ingresos

Soltero Altos

Casado Altos

Viudo Bajos

Casado Bajos

Soltero Bajos

Se calcula el índice Gini para todas las combinaciones y se escoge el menor

EJEMPLO: Queremos clasificar los ingresos de los jugadores en dos categorías: ALTOS y BAJOS

Jugador	Edad	Primera	Titular	INGRESOS
1	19	SI	SI	ALTOS
2	20	SI	SI	ALTOS
3	20	NO	NO	BAJOS
4	19	NO	NO	BAJOS
5	28	SI	NO	ALTOS
6	24	SI	SI	BAJOS
7	18	NO	NO	BAJOS
8	29	SI	NO	ALTOS
9	30	NO	SI	ALTOS
10	31	NO	NO	BAJOS

- Hay que medir cómo de bien separan las variables candidatos a la variable objetivo
- Normalmente, ninguna de las variables consigue separar perfectamente a la variable objetivo (existe impureza)
- La métrica más común para medir impurezas se conoce como " Gini"

Jugador	Edad	Primera	Titular	INGRESOS
1	19	SI	SI	ALTOS
2	20	SI	SI	ALTOS
3	20	NO	NO	BAJOS
4	19	NO	NO	BAJOS
5	28	SI	NO	ALTOS
6	24	SI	SI	BAJOS
7	18	NO	NO	BAJOS
8	29	SI	NO	ALTOS
9	30	NO	SI	ALTOS
10	31	NO	NO	BAJOS

¿Qué variable tiene menos impureza?

Impureza de Gini, para cada nodo:

1- (probabilidad de la clase 1)² – (probabilidad de la clase 2)²

$$0.375 \cdot \left(\frac{4}{10}\right) + 0.44 \cdot \left(\frac{6}{10}\right) = \mathbf{0.414}$$

Impureza de Gini de la variable "Titular"

Impureza de Gini, para cada nodo:

1- (probabilidad de la clase 1)² – (probabilidad de la clase 2)²

$$0.32 \cdot \left(\frac{5}{10}\right) + 0.32 \cdot \left(\frac{5}{10}\right) = \mathbf{0.32}$$

Impureza de Gini de la variable "Primera"

Modelización y Análisis de Datos

Árboles de Decisión

- En variables numéricas:
 - 1. Ordenar de menor a mayor
 - 2. Calcular la media para pares adyacentes
 - 3. Calcular el índice Gini para cada media
 - 4. Escoger el que tenga el menor Gini

Edad	INGRESOS
¹⁸ 18.5	BAJOS
19 19	ALTOS
19 19.5	BAJOS
20 20	ALTOS
20 22	BAJOS
24 26	BAJOS
28 28.5	ALTOS
29 29.5	ALTOS
30 30.5	ALTOS
31	BAJOS

Edad- Sí	<18.5 No
1 jugador	Altos Bajos 5 4 9 jugadores
$1 - \left(\frac{0}{0+1}\right)^2 - \left(\frac{1}{0+1}\right)^2 = 0$	$1 - \left(\frac{5}{5+4}\right)^2 - \left(\frac{4}{5+4}\right)^2 = 0.49$

Gini(18.5) = $0 \cdot \left(\frac{1}{10}\right) + 0.49 \cdot \left(\frac{9}{10}\right) = \mathbf{0.44}$

Jugador	Edad	Primera	Titular	INGRESOS
1	19	SI	SI	ALTOS
2	20	SI	SI	ALTOS
3	20	NO	NO	BAJOS
4	19	NO	NO	BAJOS
5	28	SI	NO	ALTOS
6	24	SI	SI	BAJOS
7	18	NO	NO	BAJOS
8	29	SI	NO	ALTOS
9	30	NO	SI	ALTOS
10	31	NO	NO	BAJOS

Gini(18.5) = 0.44 Gini(19) = 0.44 Gini(19.5) = 0.48 Gini(20) = 0.48 Gini(22) = 0.48 Gini(26) = 0.42 Gini(28.5) = 0.48 Gini(29.5) = 0.5 Gini(30.4) = 0.44 Modelización y Análisis de Datos

Árboles de Decisión

Impureza Gini de la variable " Edad ": 0.42

Impureza Gini de la variable "Primera ": 0.32

Impureza Gini de la variable " Titular ": 0.41

Jugador Edad Primera Titular 19 SI SI **ALTOS** 20 SI SI **ALTOS** 3 20 NO NO **BAJOS** 19 NO NO **BAJOS** 28 SI NO ALTOS 6 24 SI SI **BAJOS** 18 NO NO **BAJOS** 29 SI NO **ALTOS** 30 NO SI **ALTOS** 10 31 NO NO **BAJOS**

⇒ La variable "Primera" tiene menos impureza, por lo que funciona mejor a la hora de separar la variable objetivo, utilizándose como nodo raíz

Este proceso se repite en los nodos intermedios

 Un nodo se convierte en hoja cuando ninguna variable separa mejor el resultado de ese nodo

Modelización y Análisis de Datos

Árboles de Decisión

Jugador	Edad	Primera	Titular	INGRESOS
1	19	SI	SI	ALTOS
2	20	SI	SI	ALTOS
3	20	NO	NO	BAJOS
4	19	NO	NO	BAJOS
5	28	SI	NO	ALTOS
6	24	SI	SI	BAJOS
7	18	NO	NO	BAJOS
8	29	SI	NO	ALTOS
9	30	NO	SI	ALTOS
10	31	NO	NO	BAJOS

¡Gracias!

Contacto: Rafael Zambrano

rafazamb@gmail.com