1. PARÀMETRES S: FONAMENTS I BIPORTS

- 1.1 Per una línia de transmissió de longitud ℓ i impedància característica Z'_{0} ,
 - a) Deduir l'expressió dels seus paràmetres S referits a una impedància de referència Z₀≠Z¹₀.
 - b) Particularitzar les expressions anteriors pels següents casos i comentar el resultat obtingut:
 - 1) $Z'_0 = Z_0$
 - 2) $\ell=\lambda/4$
 - 3) $\ell=\lambda/2$
- 1.2 La matriu de paràmetres S d'un quadripol té la següent expressió, amb τ , ϕ_1 , ϕ_2 i ϕ_3 reals i arbitraris.

$$\begin{bmatrix} S \end{bmatrix} = \begin{bmatrix} \cos\tau \ e^{j\phi_1} & sen\tau \ e^{j\phi_2} \\ sen\tau \ e^{j\phi_3} & -\cos\tau \ e^{j(\phi_2+\phi_3-\phi_1)} \end{bmatrix}$$

- a) Indiqueu les propietats físiques del quadripol
- b) Calculeu la impedància d'entrada del quadripol en el cas de que sigui recíproc i si $\Gamma_L = S^*_{22}$.
- 1.3 Un quadripol té la següent matriu de paràmetres S referida a 50 Ω :

$$[S] = \begin{bmatrix} 0.5 & j0.866 \\ j0.866 & 0.5 \end{bmatrix}$$

Calculeu la matriu de paràmetres S del mateix quadripol però referida a 75 Ω .

1.4 Calculeu els paràmetres S referits a Z_0 =50 Ω d'un quadripol passiu, recíproc, sense pèrdues i simètric en el qual se sap que el corrent I_2 (veure figura) val I_2 =j0,18 A.

1.5 El quadripol de la figura és passiu, recíproc i sense pèrdues, i els seus paràmetres S són tals que s_{22} és real i negatiu i s_{11} real i positiu. Si la tensió en circuit obert present a la porta 2 en la disposició de la figura és igual a $V_2=5 \angle 0^{\circ}$ V:

a) Calculeu els quatre paràmetres S del quadripol.

- b) Dibuixeu el circuit equivalent del mateix, utilitzant un inversor d'impedàncies i trams de línia de transmissió. Cal especificar la constant d'inversió de l'inversor, i les impedàncies característiques i longituds de les línies.
- 1.6 Un quadripol té els següents paràmetres S referits a 50 Ω :

$$[S] = \begin{bmatrix} 0.05 \angle 40^{\circ} & 0.06 \angle 230^{\circ} \\ 0.95 \angle 140^{\circ} & 0.07 \angle 60^{\circ} \end{bmatrix}$$

- a) Quines propietats del quadripol podeu establir per inspecció de la matriu?.
- b) Calculeu el guany de transferència de potència (P_L/P_{avs}) quan es connecta un generador canònic a la porta 1, i una càrrega de valor Γ_L =0,5 \angle 120° a la porta 2.
- c) En les condicions de l'apartat anterior, calculeu el coeficient de reflexió a l'entrada (porta 1) del quadripol.
- d) Calculeu les longituds de línia de transmissió de 50 Ω que cal afegir a les portes 1 i 2 per tal de que els paràmetres S_{11} i S_{22} siguin reals i positius. Escriure la matriu S del quadripol resultant.
- 1.7 Es volen conèixer els paràmetres S referits a 50 Ω d'un circuit de dues portes del qual se sap que és recíproc i simètric. Per aquest motiu es connecta a la porta de sortida una línia de transmissió de 75 Ω i 12,5 cm de longitud, tal com mostra la figura, i s'observa que a la freqüència de 0,6 GHz presenta un coeficient de reflexió a l'entrada Γ_i =5/13. S'observa també que, si es connecta directament la càrrega a la porta de sortida, llavors el coeficient de reflexió a l'entrada és Γ_i =0 a la mateixa freqüència.

- a) A partir d'aquests valors, calculeu la matriu de Scattering [S] del circuit.
- b) Si el circuit és, en realitat, un tram de línia de transmissió, calculi la seva longitud ℓ i la seva impedància característica Z_0 .
- c) Si la frequència passa a ser de 1,2 GHz, calculeu la fracció de potència disponible del generador P_{avs} que es dissiparà a R_L quan es connecten les dues línies (com a la figura)
- 1.8 Es disposa d'una xarxa de dos accessos passiva, recíproca i sense pèrdues de la qual se sap que S_{12} és imaginari i positiu.
 - a) Trobar la seva matriu de paràmetres [S]
 - b) Suposant que la impedància de referència és Z_0 =50 Ω , particularitzeu els valors de la matriu anterior per tal que, si s'insereix la xarxa entre una càrrega de valor Z_L =50+j100 Ω i un generador d'impedància interna 50 Ω , hi hagi adaptació entre ambdós.

1.9 Donada la xarxa de la figura:

- a) Demostrar que si $Z_g=Z_0$, llavors $a_1=\frac{1}{2}\overline{V}_g$ independentment de la impedància d'entrada, Z_{in}
- b) Se sap que la xarxa de dos accessos és recíproca i simètrica. Quan l'accés 2 és en circuit obert es mesura V₂=-j10 Volts, mentre que si l'accés 2 està en curtcircuit es mesura I₂=j0,2Amp. Calculeu els quatre paràmetres S de la xarxa.
- c) Quina potència es lliura a la càrrega Z_L=Z₀?
- 1.10 Pel quadripol de la figura,
 - a) Quina ó quines de les següents propietats té la seva matriu S?. Unitarietat, simetria. Justifiqueu la resposta.
 - b) Calculeu la matriu de paràmetres S a f=3GHz.
 - c) Trobeu l'expressió de l'atenuació de la xarxa, definida com:

$$L = -10 \log \left(\frac{P_L}{P_{DISP}} \right) (dB)$$

essent P_L la potència dissipada a la càrrega i P_{DISP} la potència disponible del generador.

DADES: R=50 Ω , C=1,061 pF, Z₀=50 Ω

- 1.11 Per la xarxa de dos accessos de la figura, considerant impedància de referència $Z_0 \!\!\neq\! R$
 - a) Quines propietats acompleix la seva matriu S?
 - b) Quina és la quantitat mínima de paràmetres que s'han de calcular per tal de caracteritzar totalment l'estructura?, Perquè?
 - c) Determineu el paràmetre S₁₁.

- 1.12 Una xarxa passiva, recíproca i sense pèrdues de dues portes adapta una càrrega de valor Z_L =100+j50 Ω . Calculeu els paràmetres [S] referits a 50 Ω de la xarxa sabent que la fase de s_{21} és igual a 90°
- 1.13 Un biport té els següents paràmetres [s] referits a $Z_o = 50\Omega$:

$$\begin{bmatrix} s \end{bmatrix} = \begin{bmatrix} 0.69_{\angle -126^{\circ}} & 0.03_{\angle 37^{\circ}} \\ 11.6_{\angle 108^{\circ}} & 0.59_{\angle -31^{\circ}} \end{bmatrix}$$

Calculeu el guany de transferència de potència, G_t , i el coeficient de reflexió a l'entrada del biport, Γ_{in} , si aquest es connecta entre un generador d'impedància interna $Z_s = 25\Omega$ i una càrrega $Z_L = 100\Omega$.

- 1.14 Per l'atenuador resistiu en "T" de la figura:
 - a) Calculeu la relació que hi ha d'haver entre R_s i R_p per tal que s_{11} = 0 (la matriu [s] està referida a l'impedància Z_o).

[S]

- c) Suposeu que l'atenuador es connecta entre un generador d'impedància interna $Z_s = Z_0$ i una càrrega $Z_L = Z_0$. En les condicions dels apartats a) i b), trobeu <u>l'expressió</u> del guany de transferència de potència G_t .
- 1.15 Seguint l'esquema de la figura:
 - a) Dissenyeu un atenuador en " π " de 6dB adaptat (calcular R_s i R_p), essent $Z_o = 50 \Omega$.
 - b) Per l'atenuador dissenyat, calculeu G_t i Γ_{in} si es connecta entre un generador d'impedància $Z_s = 50 \Omega$ i una càrrega $Z_L = 100 \Omega$.
 - c) Si la tensió del generador és $V_s = 5V$, calculeu la potència lliurada a la càrrega en les condicions de l'apartat b).

- 1.16 Per a la xarxa de 2 ports de la figura, contesteu les següents qüestions:
 - a) ¿És simètrica? ¿És recíproca? Indiqueu per què i les implicacions pel què fa a la matriu [s].

 Z_o

[S]

b) Calculeu la matriu [s] referida a Z_o (diferent, en general, de Z_o).

Suggeriment: apliqueu la propietat de simetria.

- d) En les condicions de l'apartat b), calculeu el desfasatge que introdueix la xarxa (fase del paràmetre s_{21}) per als següents valors de B: B = $1/Z_o$ i B = $1/Z_o$.
- e) De nou per a les condicions de l'apartat c), suposeu que la xarxa es connecta entre un generador d'impedància interna $Z_s=Z_o$ i una càrrega d'impedància $Z_L=Z_o$. Calculeu la potència lliurada a la càrrega si la tensió del generador és de 5 V i $Z_o=50\,\Omega$.
- f) A la vista dels resultats dels apartats d) i e), indiqueu una possible aplicació de la xarxa.
- 1.17 La matriu ABCD d'un biport, definida com

$$\begin{bmatrix} V_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} V_2 \\ -I_2 \end{bmatrix}$$

és una descripció útil quan s'interconnecten diversos biports en cascada, ja que la matriu ABCD total és el producte (d'esquerra a dreta) de les matrius ABCD individuals.

a) Calculeu la matriu ABCD d'una línia de transmissió ideal, de longitud ℓ i impedància característica Z_o .

- b) Calculeu la matriu ABCD d'una susceptància Y = jB en paral·lel.
- c) Calculeu la matriu ABCD del biport de l'apartat d) de l'exercici 1.16, tot comprovant que $s_{21} = \frac{2}{A + B / Z_o + C Z_o + D}$

1.18 Per a la xarxa de 2 ports de la figura, calculeu la matriu de paràmetres [s] referida a Z_o . Suggeriment: Utilitzeu l'efecte de desplaçament dels plans de referència sobre els paràmetres [s].

1.19 Un biport té els següents paràmetres [s] referits a $Z_o = 50 \Omega$:

$$[s] = \begin{bmatrix} 0.6 & j0.8 \\ j0.8 & 0.6 \end{bmatrix}$$

- a) Indiqueu les propietats que compleix, tot justificant-les.
- b) Calculeu el coeficient de reflexió a l'entrada $\Gamma_{\rm in}$, per a les següents impedàncies de càrrega: $Z_L=50\,\Omega$, $Z_L=0$, $Z_L=-j\,\infty$.
- c) Si el biport es connecta entre un generador d'impedància interna $Z_s=25\Omega$ i una càrrega $Z_L=100\,\Omega$, calculeu el seu guany de transferència de potència, $G_{\rm t}$.

5

- d) Per al cas $Z_L = 50 \,\Omega$, calculeu la potència reflectida a l'entrada P, i la potència lliurada a la càrrega, P_L , ambdues en funció de la potència incident, P⁺.
- 1.20 Un biport té els següents paràmetres [s] referits a $Z_o = 50 \Omega$:

$$[s] = \begin{bmatrix} 0.1 & j0.8 \\ j0.8 & 0.2 \end{bmatrix}$$

- a) Indiqueu les propietats que compleix, tot justificant-les.
- b) Calculeu el coeficient de reflexió a l'entrada $\Gamma_{\rm in}$, per a les següents impedàncies de càrrega: $Z_L=50\,\Omega$, $Z_L=0$, $Z_L=-j\,\infty$.
- c) Per al cas $Z_L = 50 \Omega$, indiqueu quina fracció de la potència P^+ incident al port 1 es dissipa al biport.
- 1.21 Per a la xarxa de 2 accessos de la figura:
 - a) Indiqueu, de manera raonada, les propietats que compleix.
 - b) Calculeu la seva matriu de paràmetres [s] referida a Z_o .
 - c) Calculeu el coeficient de reflexió a l'entrada, Γ_{in}, si l'accés 2 es deixa en circuït obert.

 50Ω

 75Ω

- 1.22 La xarxa de la figura ha de fer d'adaptador d'impedàncies (amb pèrdues) entre els nivells de 50 i 75 Ω (s_{11} = s_{22} = 0).
 - a) Calculeu els valors de R_s i R_p (en Ω), i els de s_{12} i s_{21} , així com la pèrdua de transferència de potència.
 - b) Si accidentalment la xarxa calculada es connecta a l'inrevés (accessos 1 i 2 intercanviats), ¿quant valdrà la relació d'ona estacionària a l'entrada (línia de 50 Ω) i quant valdrà la pèrdua de transferència de potència?. **NOTA:** referiu els paràmetres [s] a 50 Ω a l'accés 1 i a 75 Ω a l'accés 2.
- 1.23 Utilitzant les propietats de simetria del circuit resistiu de la figura:
 - a) Demostreu que perquè el circuit es comporti com un atenuador ideal cal que $Z_a^2 = R_1 R_2$.
 - b) Suposant que $Z_o = 50\Omega$, calculeu R_1 i R_2 perquè l'atenuador sigui de 20 dB.
 - c) Si l'atenuador dissenyat d'aquesta manera es connecta a una càrrega desadaptada d'impedància $Z_L = 50 + j \, 100 \, \Omega$, ¿quina serà la millora en dB de l'adaptació?

1.24 El diafragma de la figura, inserit dins d'una guia rectangular de dimensions a=2.86 mm, b=10.1 mm, equival, per al mode dominant, a una susceptància normalitzada de valor

$$\overline{B} = -\frac{\lambda_g}{a} \operatorname{tg}^2 \left[\frac{2\pi(a-d)}{a} \right]$$

Escriviu les expressions dels camps del mode dominant a la guia a cada banda del diafragma,

suposant que l'excitació és produïda per un generador de freqüència 10 GHz situat a vàries longituds d'ona del diafragma i que, per l'altra banda del diafragma, la guia és infinita (o està acabada en una càrrega adaptada.

1.25 Calculeu la matriu [s] referida a Z_o per a un transformador ideal de relació de transformació n:1.

1.26 Calculeu la matriu de paràmetres [s] d'un tram de línia de transmissió d'impedància característica Z_o , referida a les impedàncies $Z_{o \, 1}$ i $Z_{o \, 2}$ en els accessos 1 i 2 Z_{01} respectivament.

