

Automated and Connected Driving Challenges

Section 2 – Sensor Data Processing

Camera-based Semantic Grid Mapping Introduction

Bastian Lampe

Institute for Automotive Engineering

Camera-based Semantic Grid Mapping – Introduction

Computer Vision Approaches

Single Object

Multi Objects

Camera-based Semantic Grid Mapping – Introduction

Semantic Grid Maps

Semantic Grid Maps

- Each cell contains a semantic description of its content
- Semantic classes
 - Road, Sidewalk, Vehicle, ...
- 360° camera setup necessary if computed from cameras
- Gives a more detailed environment than occupancy grid mapping but also harder task, more error prone!

Images: ika

Camera-based Semantic Grid Mapping – Introduction

Approaches

- Geometry-based approach:
 - Inverse Perspective Mapping (IPM)
- Deep Learning-based approaches:
 - Directly predict a semantic grid representation
 - Example: <u>Cross-View</u> uses an attention-based architecture to perform the view transformation
- Hybrid approaches
 - Guide Deep Learning Approaches with geometric approaches
 - Example: <u>Cam2BEV</u> uses IPM to compute Semantic Grid Map and corrects the BEV using a deep learning approach
- → Geometry-based in this subsection

