Practical 8

Aim: Write a VHDL Code to implement 8 bit up down counter using behavioral modeling

```
variable t:integer:=0;
                                                   variable t1:STD LOGIC VECTOR(7 downto 0);
Code:
                                                   begin
                                                   if(rising edge(clk)) then
library IEEE;
                                                     if(M='1') then
use IEEE.STD LOGIC 1164.ALL;
                                                     t = t + 1;
use IEEE.std logic arith.all;
entity U D bh 8B is
                                                     elsif(m='0') then
  Port (clk: in STD LOGIC;
                                                    t:=t-1;
      rst: in STD LOGIC;
                                                     end if;
      M: in STD LOGIC;
      q: out STD LOGIC VECTOR (7 downto 0)); end if;
end U D bh 8B;
                                                   t1:= conv std logic vector(t, 8);
architecture Behavioral of U D bh 8B is
                                                 q \le t1;
begin
                                                 end process;
                                                 end Behavioral;
process(clk,rst,M)
```

RTL DIAGRAM:

Test bench Code:

library IEEE;	component U_D_bh_8b is	signal cout1:std_logic_vector(7
use IEEE.STD_LOGIC_1164.ALL;	Port (clk : in STD_LOGIC;	downto 0);
	rst: in STD_LOGIC;	
entity Tb_U_D_bh_8b is	M: in STD_LOGIC;	
Port ();	q:outSTD_LOGIC_VECTOR	begin
end Tb_U_D_bh_8b;	(7 downto 0));	X1:U_D_bh_8b port
	end component U_D_bh_8b;	map(clk1,rst1,m1,cout1);
architecture Behavioral of	signal m1,clk1,rst1:std_logic;	process
Tb_U_D_bh_8b is		begin

 $\begin{array}{lll} \text{rst1}<='0'; & \text{clk1}<='1'; & \text{wait}; \\ \text{wait for 5ns;} & \text{wait for 5ns;} & \text{end process;} \\ \end{array}$

rst1<='1'; end process;

wait; end Behavioral;

end process; process begin

process

 $\begin{array}{ll} \mbox{begin} & \mbox{m1<='1';--upcount} \\ \mbox{clk1<='0';} & \mbox{wait for 500ns;} \\ \mbox{wait for 5ns;} & \mbox{m1<='0';--downcount} \end{array}$

SIMULATION WAVEFORM:

SYNTHESIS SUMMARY:

Name	Slack ^1	Levels	Routes	High Fanout	From	To	Total Delay	Logic Delay	Net Delay	Requirement	Source Clock
Path 1	00	2	2	2	t_reg[0]/C	q[0]	4.076	3.276	0.800	00	
Path 2	00	2	2	3	t_reg[1]/C	q[1]	4.076	3.276	0.800	00	
Path 3	00	2	2	3	t_reg[2]/C	q[2]	4.076	3.276	0.800	00	
Path 4	00	2	2	3	t_reg[3]/C	q[3]	4.076	3.276	0.800	00	
Path 5	00	2	2	3	t_reg[4]/C	q[4]	4.076	3.276	0.800	00	
4 Path 6	00	2	2	3	t_reg[5]/C	q[5]	4.076	3.276	0.800	00	
Path 7	00	2	2	3	t_reg[6]/C	q[6]	4.076	3.276	0.800	00	
3 Path 8	00	2	2	2	t_reg[7]/C	q[7]	4.076	3.276	0.800	-00	
3 Path 9	00	4	5	7	М	t_reg[5]/D	2.804	2.004	0.800	00	input port clock
Path 10	00	4	5	7	M	t_reg[7]/D	2.785	1.985	0.800	00	input port clock