1. What is Datetime?

Datetime is python's datatype which can handle date and time functions with the help of datetime library.

```
In [ ]: # necessary libraries
        import pandas as pd
        import datetime as dt
In [ ]: dt1 = dt.time(4,30,10)
        print(dt1)
        print(type(dt1))
        #Note - if we want to create time only
        # format - h,m,s
       04:30:10
       <class 'datetime.time'>
In [ ]: dt2 = dt.date(2022,7,7)
        print(dt2)
        print(type(dt2))
        #Note - if we want to creat date only
        # format -Y,m,d
       2022-07-07
       <class 'datetime.date'>
In [ ]: #creating datetime
        dt3 = dt.datetime(2023,7,4,4,30,00)
        print(dt3)
        print(type(dt3))
        #Note - if we want to creat datetime
        # format - Y,m,d,h,m,s
       2023-07-04 04:30:00
       <class 'datetime.datetime'>
```

2. What is Timestamp?

Timestamp is pandas datatype which can handle date and time functions

different ways to create timestamp

```
In [ ]: ts1 = pd.Timestamp("2022/06/05")
    print(ts1)
    print(type(ts1))
    #note we are crating date although it taking time by default

2022-06-05 00:00:00
    <class 'pandas._libs.tslibs.timestamps.Timestamp'>
```

```
In [ ]: ts2=pd.Timestamp('2022 june 25 1:00pm')
    print(ts2)

2022-06-25 13:00:00

In [ ]: ts2=pd.Timestamp('2022 june 25 11:00am')
    print(ts2)

2022-06-25 11:00:00

In [ ]: ts3=pd.Timestamp('1:00:2pm')
    print(ts3)

#we are creating time but it also taking date by default (today's)

2023-07-04 13:00:02
```

if we want only date or time component not datetime we can fetch them using date() and time() function

```
In [ ]: ts4 = pd.Timestamp("2022/06/05").date()
    print(ts4)
    print(type(ts4))

2022-06-05
    <class 'datetime.date'>

In [ ]: ts5=pd.Timestamp('1:00:2pm').time()
    print(ts5)

13:00:02
```

3. why there are two types of datetime what is difference between them?

- Timestamp object offers specialized features and integration with pandas over python datetime
- While Python's datetime module is powerful for general date and time operations, pandas' Timestamp object is optimized for handling time series data within the pandas ecosystem.

4. extracting different components from datetime object

```
In [ ]: x = dt.datetime(2023,1,5,9,21,56)
    print(x)
    print(type(x))
    print(x.year)
    print(x.month)
    print(x.date())
    print(x.hour)
```

```
print(x.minute)
        print(x.second)
       2023-01-05 09:21:56
       <class 'datetime.datetime'>
       2023
       1
       2023-01-05
       21
       56
In [ ]: y = pd.Timestamp("2023 June 25 12:10:5")
        print(y)
        print(type(y))
        # fetching attributes
        print(y.year)
        print(y.month)
        print(y.day)
        print(y.hour)
        print(y.minute)
        print(y.second)
       2023-06-25 12:10:05
       <class 'pandas._libs.tslibs.timestamps.Timestamp'>
       2023
       6
       25
       12
       10
       5
```

5. date_range (period and frequency)

- we can give maximum 3 parameters only at a time
- if we are using period we don't require end

```
In [ ]: pd.date_range(start="2020", end="2022")
Out[]: DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04',
                       '2020-01-05', '2020-01-06', '2020-01-07', '2020-01-08',
                       '2020-01-09', '2020-01-10',
                       '2021-12-23', '2021-12-24', '2021-12-25', '2021-12-26',
                       '2021-12-27', '2021-12-28', '2021-12-29', '2021-12-30',
                       '2021-12-31', '2022-01-01'],
                      dtype='datetime64[ns]', length=732, freq='D')
In [ ]: pd.date range(start="2020", end="2022", freq='MS')
        #Note: M --> month start freq
Out[]: DatetimeIndex(['2020-01-01', '2020-02-01', '2020-03-01', '2020-04-01',
                       '2020-05-01', '2020-06-01', '2020-07-01', '2020-08-01',
                       '2020-09-01', '2020-10-01', '2020-11-01', '2020-12-01',
                       '2021-01-01', '2021-02-01', '2021-03-01', '2021-04-01',
                       '2021-05-01', '2021-06-01', '2021-07-01', '2021-08-01',
                       '2021-09-01', '2021-10-01', '2021-11-01', '2021-12-01',
                       '2022-01-01'],
                      dtype='datetime64[ns]', freq='MS')
        Note: M --> month end freq
            'D' -> 'day': Calendar day
            'B' -> 'business day': Business day (excluding weekends)
```

```
'D' -> 'day': Calendar day
'B' -> 'business day': Business day (excluding weekends)
'H' -> 'hour': Hourly frequency
'T' -> 'min': Minutely frequency
'S' -> 'sec': Secondly frequency
'W' -> 'week': Weekly frequency (on Sundays by default)
'M' -> 'month': Month end frequency
'MS' -> 'month': Month start frequency
'Q' -> 'quarter': Quarter end frequency
'A' -> 'year': Year end frequency
```

5. timedelta

```
In []: my_date = pd.Timestamp('2020 jan 31')
    print(my_date)

my_date2 = my_date+pd.Timedelta(days=20)
    print(my_date2)

print(my_date+pd.Timedelta(weeks=2))
    print(my_date+pd.Timedelta(minutes=10))
    print(my_date+pd.Timedelta(seconds=30))
    print(my_date-pd.Timedelta(days=10))
    print(my_date+pd.Timedelta(days=10))
```

2020-01-31 00:00:00 2020-02-20 00:00:00 2020-02-14 00:00:00 2020-01-31 00:10:00 2020-01-31 00:00:30 2020-01-21 00:00:00 2020-01-21 00:00:00