

TH VOWL

Content

- Basics radar technology
 - Wavelengths
 - Generating radar signals
 - Characteristics: Reflection, range, aperture angle, resolutions
 - Multipath propagation
- Measurement principles
 - Modulation / Demodulation
 - Amplitude modulation / Frequency modulation
 - Doppler effect
- Examples

Radar systems

- Radar: Radio Detection and Ranging
 - Origin in military technology of the 2nd World War
 - First use in traffic: speed monitoring in the 50s
 - First projects for driver assistance in the 70s for rear-end collision protection
 - First series introduction in 1998: adaptive cruise control ACC
 - Four frequency ranges for road traffic applications
 - 24.0 24.5 GHz
 - 76-77 GHz main frequency range by today
 - 77-81 GHz (not yet fully regulated)
 - 21.65-26.65 GHz (for short-range applications only, no longer used)

Frequency spectrum

Image:www.radartutorial.eu

Frequencies in automotive application

Frequency range	Pro	Con
24,0 GHz – 24,25 GHz 21,65 GHz – 26,65 GHz (UWB)	 low line losses low cost component 	 poor radiation characteristics small antenna gains poor angular resolution no further approval since 2013 for UWB systems
76 GHz – 77 Ghz main frequency band	usable worldwidelong rangehigh angular resolution	Expensive componentsHigh line losses
77 Ghz – 81 GHz	 Alternative range for systems with UWB technology 	Expensive componentsHigh line losses

Electromagnetic waves and their propagation OWL

- Electromagnetic waves
 - E.G.: Radio waves, X-rays, thermal radiation, light, etc.
- No medium is needed for movement
- Speed depends on medium
 - Vacuum -> speed of light
 - Air -> approximate speed of light
 - Water -> approx. 1/9 of the speed of light
- Sender/Transmitter and receiver paths

Image: Gamba, J. Radar Signal Processing for Autonomous Driving

Electromagnetic waves and their reflection

- Reflected signal depends on objects size, shape and reflectivity
- Shape of the reflecting surface has a great influence on the reflection
 - a) 90° reflection at a plate
 - b) 90° reflection at a tilted plate
 - c) 90° double mirror
 - d) Corner (Cube) reflector (ideal reflection)

The radar equation

- Radar equation describes the relationship between
 - transmitted signal power P_t
 - received signal power P_r
 - antenna properties defined by gain G_r , G_r , signal wavelength λ
 - characteristics of the reflecting object σ_s (Radar Cross Section, RCS)
 - distance to reflecting object R

$$P_r = \frac{P_t G_t G_r \lambda^2 \sigma_s}{(4\pi)^{\beta} R^4}$$

• Additionally to be considered: atmospheric losses (rain, pollution,...)

Measurement with electromagnetic waves

Measurements are made by reflected electromagnetic waves

- Vehicle is sending radar signal and is receiving the reflected signal
- Two main measurements
 - Distance
 - Relative speed

Disturbances due to environmental influences

- Disturbances at the reflection target:
 - Spoiler on vehicles
 - Radiator grille on vehicles
 - Entrance steps on SUVs
- Interference in the immediate vicinity of the vehicle:
 - Various angular reflectors such as U-profiles of crash barriers
 - Weather influences such as rain, fog or snow
- Interference from sensor housings:
 - Media such as water on the sensor housing, causing distortion of the exit and entry angle.
- Lead to sometimes severe reduction of radar performance and non-optimal functioning of the radar system

Performance and frequency range

- Influence of the frequency on the performance
 - Size of the hardware
 - Proportional to wavelength
 - low frequency = large wavelength → large hardware
 - Radiated power
 - Limited by voltage gradient and heat losses
 - Large systems → high power possible (but also cost issue)
 - Beam width / aperture angle
 - Beam width proportional to ratio of wavelength to width of antenna
 - High frequencies
 small antenna

Performance and frequency range

- Atmospheric attenuation
 - Influenced by absorption and scattering by oxygen, water vapor, water droplets
 - Increasing with frequency
- Ambient noise
 - Electrical noise decreasing with frequency
 - Above 10 GHz atmospheric noise becomes dominant
- Frequency shift
 - Frequency shift (Doppler effect) proportional to frequency

Basic building blocks

Image: Gamba, J. Radar Signal Processing for Atonomous Driving

Beam patterns

• 3-beam sensor

Figure 1: Typical Radiation Patterns, Beams 1-3

Content

- Basics radar technology
 - Wavelengths
 - Generating radar signals
 - Characteristics: Reflection, range, aperture angle, resolutions
 - Multipath propagation
- Measurement principles
 - Modulation / Demodulation
 - Amplitude modulation / Frequency modulation
 - Doppler effect
- Examples

Measuring Distance

- Basic principle: using the echo effect of electromagnetic waves.
- Necessary data:
 - the speed of propagation of the waves
 - the time from sending the waves to receiving them again (measured value)
- Distance to target = speed of light * travel time / 2

$$s = \frac{c * t}{2}$$

- Similar behavior to light waves
 - Straight line propagation
 - Reflection, refraction, diffraction

The Doppler effect to measure the relative velocity velocity.

- Predicted in 1842 by Austrian mathematician and physicist Christian Doppler
- Electromagnetic wave undergoes frequency shift when observer and transmitter move relative to each other
- Measurement of relative velocities
- Distinction between moving and fixed targets

Image: https://www.christian-doppler.net/dopplereffekt/

Image: https://de.wikipedia.org/wiki/Christian_Doppler#/media/File:Cdoppler.jpg

The Doppler effect to measure the relative velocity

Frequency change due to Doppler effect

$$f_{Doppler} = -2r'\frac{1}{\lambda} = -2r'\frac{f_0}{c}$$

- Approaching object $(r' < 0) \rightarrow$ positive
- Departing object (r' > 0) \rightarrow negative

r: distance

r': first derivative of distane (velocity)

 λ : wave length

c: speed of light

 f_{θ} : frequency

Measuring speed

Example

- Carrier wave: 76,5 $GHz \rightarrow f_{Doppler} = -510Hz \cdot r'$
- Approaching object: $r' = -250 \text{ km/h} \approx -70 \text{m/s} \rightarrow f_{Doppler} = 35,7 \text{ kHz}$

- Nyquist sampling theorem must be satisfied
 - f_{sampling} =71,4kHz

Modulation

Carrier signal is not sufficient for measuring distance and speed

- Transmitting constant wave
- Receiving constant wave
- Which elements of the signal do match?

- Frequency: 76 GHz → period 1,3 * 10⁻¹¹ s
- Speed of light : c= 299.792.458 m/s → Range d=0,39 cm

Modulation

- Electromagnetic waves only carriers of information
- $u(t) = A_t \cdot \cos(2\pi f_0 t \pm \Phi_0)$
- Modifying the carrier wave with an information signal → modulation
- Modulable variables:
 - Amplitude A_t
 - Frequency f_0
 - Phase Φ_0
- Automotive: amplitude modulation, frequency modulation

Modulation

• Examples

Frequency modulation

Amplitude modulation

- Most common version: Pulse modulation
- Multiplication with square wave signals
- Used to measure distance and relative velocity
 - spatial resolution depends on pulse duration
 - maximum range depends on repetition frequency of pulses
- Advantages: Simple concept
- Disadvantage:
 - Higher sensitivity to interference
 - High bandwidth → high costs

Frequency modulation - FMCW

• FMCW - Frequency Modulated Continuous Wave

- Continuous radiation of the modulated transmission frequency
- Modulation is ramped
- Frequency shift from e.g. 76.0 GHz to 76.3 GHz
- Phase is not changed

Example:

 f_{Ramp} = 300 MHz and t_{Ramp} = 100 ms.

Distance to object:

runtime: t2 - t1= 30 ms

frequency: f2 - f1= 100 MHz

→ Δf is measure for distance

Problem:

The Doppler effect is also influencing the received signal

Frequency modulation - FMCW

Problem statement:

Equation with two unknown variables (distance, velocity)

Solution:

- Two independent measurements
 - during ramp-up
 - during ramp-down

Image: Handbuch FAS 2015

Handling multiple objects

- Multiple intersections occur with multiple objects
- Using multiple ramps with different slopes

Two additional ramps cause four straight lines to intersect at one

point

Images: Handbuch FAS 2015

Azimuth angle

- Angle measurement
 - Scanning
 - Fast panning of the antenna (lobe)
 - Performing multiple angle-dependent measurements
- Monopulse method
 - One transmitting antenna
 - Double antenna arrangement for reception

$$\phi = \frac{1}{2\pi\Gamma} \arcsin\left(\arctan\left(\frac{A_{\Delta}}{A_{\Sigma}}\right)\right)$$

Micro-Doppler

- Doppler-Effect can be used to measure the velocity of an object.
- Not all elements of an object have the same speed → Micro-Doppler
- Micro-Doppler allows us to recognize details of an object
 - Feet, arms, wheel, pedals

Images: dSPACE, APTIV

TECHNISCHE HOCHSCHULE
OSTWESTFALEN-LIPPE
UNIVERSITY OF
APPLIED SCIENCES
AND ARTS

Examples

Radar system

4D Imaging radar

- Latest development in automotive radar technologies
- Earlier versions:
 - Horizontal angle
 - Distance
 - Relative Speed
- 4th dimension:
 - Vertical angle

Continental: ARS540

- Important to decide about passability : under- / over-drivability
 - Bridges, tunnels, low obstacles
- Usually combined with higher horizontal angle resolution

Conclusion

- Mature technology, proven in practice
- Small installation dimensions
- High range compared to many other sensors
- More expensive than, for example, ultrasound

One of the most important components in driver assistance and autonomous driving for the detection and measurement of objects