Partout, \mathbb{R}^n est muni du produit scalaire canonique noté <, > et de la norme associée notée || ||.

Exercice 1: Extrema

- 1. Soit $f:(x,y) \in \mathbb{R}^2 \mapsto x^4 + 2xy + y^2$.
 - (a) Montrer que $f \in \mathcal{C}^1(\mathbb{R}^2, \mathbb{R})$.
 - (b) Montrer que $f(x,y) \xrightarrow{\|(x,y)\| \to +\infty} +\infty$.
 - (c) Montrer que f est minorée et atteint son inf.
 - (d) Calculer la valeur de $\inf_{\mathbb{R}^2} f$ et étudier l'existence d'extrema locaux autres que cet \inf
- 2. Soit $f:(x,y)\in\Omega=\mathbb{R}^2\backslash\{(0,0)\}\mapsto \frac{x+3y}{x^2+y^2}$. Calcular $\inf_{\Omega}f$ et $\sup_{\Omega}f$.
- 3. Déterminer $\sup_{(x,y)\in[0,1]^2} x^2 xy^2 + xy$.
- 4. Soit T=(abc) un triangle de \mathbb{R}^2 (bord et intérieur). Soit $f:x\in\mathbb{R}^2\mapsto d(x,(ab))d(x,(bc))d(x,(ac))$. Exprimer d(x,(ac)) en fonction de $u=d(x,(ab)),\,w=d(x,(bc))$ et de constantes. Quel est le domaine décrit par (u,w) quand x décrit T? Déterminer $\inf_T(f)$ et $\sup_T(f)$.
- 5. Extrema relatifs.
 - (a) $E = \{(x,y) \in \mathbb{R}^2 \mid x^2 + xy + 2y^2 + x = 1\}$ et f(x,y) = x + 2y. Déterminer $\sup_E (f)$ et $\inf_E (f)$.
 - (b) idem avec $E = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + 2y^2 + z^2 = 1\}$ et f(x, y) = x + 2y + 3z

Exercice 2:

Soit $f \in \mathcal{C}^n(\mathbb{R}^2, \mathbb{R}), n \geq 1$, telle que f(0,0) = 0.

- 1. Montrer que, si $(x,y) \in \mathbb{R}^2$, $f(x,y) = \int_0^1 x \frac{\partial f}{\partial x}(xt,yt) + y \frac{\partial f}{\partial y}(xt,yt)dt$.
- 2. Montrer qu'il existe $g,h\in\mathcal{C}^{n-1}(\mathbb{R}^2,\mathbb{R})$ telles que $\forall x,y,\,f(x,y)=xg(x,y)+yh(x,y)$

Exercice 3:

Soit $f \in \mathcal{C}^2(\mathbb{R}^2, \mathbb{R})$ telle que $\Delta f = 0$.

si
$$r \in \mathbb{R}^+$$
, on pose $I(r) = \int_0^{2\pi} f(r\cos(t), r\sin(t))dt$.

- 1. Montrer que I(r) ne dépend pas de r. (mq I est \mathcal{C}^2 , et trouver une ED sur I)
- 2. Soit $R \in \mathbb{R}^+$. Justifier l'existence de $\max_{\overline{B(0,R)}} f$. Que dire si ce max est atteint en (0,0)?

Exercice 4 : Valeurs propres d'un endomorphismes symétriques

Soit $u \in S(\mathbb{R}^n)$ un endomorphisme symétrique de \mathbb{R}^n .

1. On pose $f: x \in \mathbb{R}^n \mapsto \langle u(x), x \rangle$. Montrer que f est différentiable et calculer $\operatorname{grad} f(x)$. (pas de dérivées partielles. DLs)

- 2. On pose $g: x \mapsto ||x||^2$. Différentiabilité et gradient de g?
- 3. Soit $\Phi: x \in E \setminus \{0\} \mapsto \frac{\langle u(x), x \rangle}{\|x\|^2}$. Différentiabilité et gradient de Φ ?
- 4. Montrer que Φ est bornée et atteint ses bornes. Montrer sans utiliser le théorème spectral que u admet une valeur propre réelle.
- 5. En utilisant le théorème spectral, dire ce que valent les extrema de Φ .

Exercice 5 : Caractérisation de $u^{-1}(b)$ si $u \in S^{++}(\mathbb{R}^n)$

Soient u un endomorphisme symétrique de \mathbb{R}^n défini positif, $b \in \mathbb{R}^n$, et $f: x \in \mathbb{R}^n \mapsto \langle u(x), x \rangle - 2 \langle b, x \rangle$.

- 1. Montrer qu'il existe $\beta > 0$ tel que $\forall x \in \mathbb{R}^n$, $f(x) \ge \beta ||x||^2 2||b||||x||$. En déduire que f est minorée et atteint son inf.
- 2. Montrer que f est \mathcal{C}^1 et exprimer $\operatorname{grad} f(x)$ en fonction de u(x) et b. (DL)
- 3. Montrer que f atteint son inf. en un unique point à préciser.

Exercice 6 : Points fixes attractifs et répulsifs

- 1. Soit $f:(x,y) \in \mathbb{R}^2 \mapsto \frac{1}{12}(6x + xy \sin(x+y), 3e^{xy} + 5y x 3)$.
 - (a) Justifier que f est C^1 . Calculer la matrice jacobienne M de f en (0,0) et la diagonaliser.
 - (b) En utilisant la diagonalisation, montrer qu'il existe une norme $\| \| \|$ sur \mathbb{R}^2 telle que $\forall a \in \mathbb{R}^2, \| Ma \| \leq \frac{1}{2} \| a \|$.
 - (c) Montrer qu'il existe r>0 tel que $||a|| \le r \Longrightarrow f^n(a) \xrightarrow[n \to +\infty]{} (0,0)$, où f^n désigne l'itérée n-ième de f.
- 2. Soit $f:(x,y) \in \mathbb{R}^2 \mapsto (6x + xy \sin(x+y), 3e^{xy} + 5y x 3)$.
 - (a) Justifier que f est C^1 . Calculer la matrice jacobienne M de f en (0,0) et la diagonaliser.
 - (b) En utilisant une base de diagonalisation, montrer qu'il existe une norme $\| \| \|$ sur \mathbb{R}^2 telle que $\forall a \in \mathbb{R}^2, \| Ma \| \geq 2 \| a \|$.
 - (c) Montrer qu'il existe r>0 tel que si $||a||\leq r$ et $a\neq (0,0)$, alors ||f(a)||>||a||.
 - (d) Soit $a \in \mathbb{R}^2$ tel que $f^n(a) \xrightarrow[n \to +\infty]{} (0,0)$, où f^n désigne l'itérée n-ième de f. Que dire de la suite $(f^n(a))$?

Exercice 7:

- 1. Soit $f \in \mathcal{C}^1(\mathbb{R}^n, \mathbb{R})$ telle que $\forall x \in \mathbb{R}^n, < \operatorname{grad}(f)(x), x >= 0$. Que dire? (et le montrer)
- 2. Soit $f \in \mathcal{C}^1(\mathbb{R}^n, \mathbb{R})$ telle que $\forall x \in \mathbb{R}^n, < \operatorname{grad}(f)(x), x > \geq 0$. Que dire de f(0)? (et le montrer)
- 3. Soit $f \in \mathcal{C}^1(\mathbb{R}^n, \mathbb{R})$ telle que $\forall x \in \mathbb{R}^n$, $(\operatorname{grad}(f)(x), x)$ est liée. Que dire? (et le montrer)

Exercice 8: Fonctions homogènes

 $f \in \mathcal{C}^1(\mathbb{R}^n)$, et $k \in \mathbb{N}$.

Montrer que sont équivalents:

- (1) $\forall x \in \mathbb{R}^n, \forall \lambda \in \mathbb{R}^+, f(\lambda x) = \lambda^k f(x).$
- (2) $\forall x = (x_1, ..., x_n) \in \mathbb{R}^n$, $\sum_{i=1}^n x_i \frac{\partial f}{\partial x_i}(x) = kf(x)$.

Exercice 9: $f \in C^2(U, \mathbb{R})$ où U est un ouvert connexe par arcs de \mathbb{R}^n , est telle que $\Delta(f) = \Delta(f^2) = 0$. Montrer que f est constante.

Exercice 10: Extremum relatif sur O(n)

 $\mathcal{M}_n(\mathbb{R})$ est muni du produit scalaire canonique.

 AS_n désigne l'espace des matrices antisymétriques de $\mathcal{M}_n(\mathbb{R})$.

- 1. Soit $A \in AS_n$. En utilisant $t \mapsto e^{tA}$, montrer que A est un vecteur tangent à O(n) en I_n .
- 2. Réciproquement, si A est un vecteur tangent à O(n) en I_n , montrer que $A \in AS_n$.
- 3. Si $O \in O(n)$, quel est l'ensemble des vecteurs tangents à O(n) en O?
- 4. Si $O \in O(n)$, montrer que $\{AO \mid A \in AS_n\} = \{OA \mid A \in AS_n\}$ de manière élémentaire, et en utilisant ce qui précède.
- 5. Soit $f \in \mathcal{C}^1(\mathcal{M}_n(\mathbb{R}), \mathbb{R})$.

 Justifier l'existence de $\max_{O(n)} f$.

 Soit $O \in O(n)$ tel que $f(O) = \max_{O(n)} f$. Montrer qu'il existe S symétrique telle que $\operatorname{grad} f(O) = OS$.

Exercice 11: Fonctions convexes

 $f: \mathbb{R}^n \to \mathbb{R}$.

- 1. Montrer que f est convexe si et seulement si $\forall a, b \in \mathbb{R}^n, t \in \mathbb{R} \mapsto f(a+tb)$ est convexe.
- 2. Si f est C^1 , montrer que f est convexe si et seulement si $\forall a, b \in \mathbb{R}^n$, $< \operatorname{grad}(f)(b) \operatorname{grad}(f)(a), b a > \geq 0$.

Exercice 12: Un critère de difféomorphisme

Soit $f \in \mathcal{C}^1(\mathbb{R}^n, \mathbb{R}^n)$.

On suppose qu'il existe C > 0 telle que $\forall x, y \in \mathbb{R}^n$, $||f(y) - f(x)|| \ge C||x - y||$.

- 1. Soit $a \in \mathbb{R}^n$. On note $g_a : x \in \mathbb{R}^n \mapsto ||f(x) a||^2$. Montrer que $g_a(x) \xrightarrow{||x|| \to +\infty} +\infty$, et que g_a est minorée et atteint son inf.
- 2. Soit $x \in \mathbb{R}^n$. Montrer que $\forall h \in \mathbb{R}^n$, $||df_x(h)|| \geq C||h||$ (utiliser y = x + th, $t \to 0$), et que $df_x \in GL(\mathbb{R}^n)$.
- 3. Soit $a, b, h \in \mathbb{R}^n$. Calculer la dérivée en 0 de $t \in \mathbb{R} \mapsto g_a(b+th)$. (fait intervenir $d_b f$)
- 4. Montrer que f est surjective, et finalement un \mathcal{C}^1 -difféomorphisme.

Exercice 13:

On considère une fonction $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ de classe \mathcal{C}^1 sur \mathbb{R}^n , et telle que $\lim_{\|x\| \to +\infty} \frac{f(x)}{\|x\|} = +\infty$

1. Montrer que f admet un minimum sur \mathbb{R}^n et en déduire qu'il existe $u \in \mathbb{R}^n$ tel que gradf(u) soit nul.

3

- 2. Soit $u_0 \in \mathbb{R}^n$ fixé et $g : x \in \mathbb{R}^n \longmapsto f(x) \langle u_0 | x \rangle$. En utilisant g, montrer que l'application $\operatorname{grad} f : \begin{cases} \mathbb{R}^n \to \mathbb{R}^n \\ u \mapsto \operatorname{grad} f(u) \end{cases}$ est surjective.
- 3. On suppose à partir de maintenant que f est, de plus, strictement convexe, c'est-à-dire :

$$\forall (x,y) \in \left(\mathbb{R}^n\right)^2, \forall \lambda \in]0,1[,x \neq y \Rightarrow f(\lambda x + (1-\lambda)y) < \lambda f(x) + (1-\lambda)f(y)$$

Montrer que l'application grad f est bijective. (utiliser $t \mapsto f(a + t(b - a)), a, b \in \mathbb{R}^n$.

- 4. Montrer que $\lim_{\|x\|\to+\infty} \|\operatorname{grad} f(x)\| = +\infty$
- 5. Montrer que grad f est un homéomorphisme de \mathbb{R}^n sur \mathbb{R}^n (application bijective continue dont la réciproque est continue).

Exercice 14:

$$C \in [0,1[.\ f,g \in \mathcal{C}^1(\mathbb{R},\mathbb{R}) \text{ vérifient } \forall t \in \mathbb{R}, |f'(t)| \leq C \text{ et } |g'(t)| \leq C.$$

Montrer que $h:(x,y) \mapsto (x+g(y),y+f(x))$ est un \mathcal{C}^1 -difféomorphisme de \mathbb{R}^2 .

Exercice 15: Principe du maximum pour les fonctions harmoniques

U est un ouvert non vide borné de \mathbb{R}^n . $\partial U = \overline{U} \setminus U$ est la frontière de U. $f: \overline{U} \to \mathbb{R}$ est continue sur \overline{U} , C^2 sur U.

- 1. Justifier l'existence de $\max_{\overline{U}} f$.
- 2. On suppose $\Delta(f) > 0$. Soit $a \in \overline{U}$ tel que $f(a) = \max_{\overline{U}} f$.

Si $a \in U$, en considérant i tel que $\frac{\partial^2 f}{\partial x_i^2}(a) > 0$, et $g : t \in [-\delta, \delta] \mapsto f(a_1, ..., a_i + t, ..., a_n)$ (δ à préciser), trouver une contradiction.

- 3. On suppose $\Delta(f)=0$. Soit $\varepsilon>0$. Calculer le laplacien de $x\mapsto f(x)+\varepsilon||x||^2$. Montrer qu'il existe $a\in\partial U$ tel que $f(a)=\max_{\overline{t}}f$.
- 4. On suppose $\Delta(f) = 0$. Que dire si f est constante sur ∂U ?

Exercice 16 : Noyau de Poisson

Si
$$f: P \subset \mathbb{C} \to \mathbb{C}$$
, on note $\tilde{f}: (x,y) \in ... \subset \mathbb{R}^2 \mapsto f(x+iy)$.

 $C = \{z \in \mathbb{C} \mid |z| = 1\}, D = D(0,1)$ (disque ouvert dans \mathbb{C}), assimilés aux cercle et disque unité de \mathbb{R}^2 pour la norme euclidienne usuelle.

Si
$$r \in [0, 1[$$
 et $\theta \in \mathbb{R}$, on pose $P_r(\theta) = \sum_{n=-\infty}^{+\infty} r^{|n|} e^{in\theta}$.

Si
$$r \in [0, 1[$$
 et $\theta \in \mathbb{R}$, on pose $g(re^{i\theta}) = P_r(\theta)$.

- 1. Vérifier que $P_r(\theta)$ est bien défini, et que $P_r(\theta) = Re\left(\frac{1 + re^{i\theta}}{1 re^{i\theta}}\right) = \frac{1 r^2}{1 2r\cos(\theta) + r^2} \ge 0$.
- 2. Calculer $\int_0^{2\pi} P_r(\theta) d\theta$.
- 3. Justifier la définition de g. Justifier que $(r,\theta) \mapsto g(re^{i\theta})$ et \tilde{g} sont \mathcal{C}^2 sur D. En utilisant la formule du laplacien en polaire, et justifiant des dérivations terme à terme, montrer que $\Delta \tilde{g} = 0$.

Soit $f \in \mathcal{C}(C,\mathbb{C})$. On souhaite montrer qu'il existe $w \in \mathcal{C}(\overline{D})$, coïncidant avec \tilde{f} sur C, de classe \mathcal{C}^2 sur D, et telle que $\Delta w = 0$ sur D (problème de Dirichlet).

Si
$$r \in [0,1[$$
 et $\theta \in \mathbb{R}$, on pose $h(re^{i\theta}) = \frac{1}{2\pi} \int_0^{2\pi} P_r(\theta - t) f(e^{it}) dt$.

- 4. Justifier la définition de h, et montrer que, sur D, \tilde{h} est \mathcal{C}^2 et $\Delta \tilde{h} = 0$.
- 5. Montrer que h se prolonge continûment sur \overline{D} en posant $h_{|C}=f$. Ainsi $w=\tilde{h}$ convient.

Exercice 17: Théorème de Liapounov

Soit $f \in \mathcal{C}^1(\mathbb{R}^n, \mathbb{R}^n)$. $g \in \mathcal{C}^1(\mathbb{R}, \mathbb{R}^n)$ vérifie l'équation différentielle $\forall t \in \mathbb{R}, g'(t) = f(g(t))$.

On suppose que f(0) = 0, et que toutes les valeurs propres dans \mathbb{C} de df_0 sont de parties réelles < 0. On veut montrer que, si g(0) est assez proche de 0, alors $g(t) \xrightarrow[t \to +\infty]{} 0$.

On note A la matrice de df_0 dans la base canonique, et $\alpha = \max\{Re(\lambda) \mid \lambda \in Sp_{\mathbb{C}}(\phi)\}$. On a donc $\alpha < 0$. Si $M \in \mathcal{M}_n(\mathbb{R})$, $|||M||| = \sup_{||x||=1} ||Mx||$ est la norme subordonnée à $||\cdot||$ la norme euclidienne standard de \mathbb{R}^n .

On rappelle que M est |||M|||-lipschitzienne.

- 1. A l'aide d'une trigonalisation par bloc, montrer que $e^{tA} \underset{t \to +\infty}{=\!=\!=} O(t^n e^{\alpha t})$ (utilisation d'une norme quelconque, étant donné l'équivalence des normes).
- 2. Justifier l'existence de $C = \int_0^{+\infty} |||e^{tA}|||^2 dt$.
- 3. Si $x,y\in\mathbb{R}^n$, on pose $\Psi(x,y)=\int_0^{+\infty}< e^{tA}x, e^{tA}y>dt$. Montrer que Ψ est bien défini, et est un produit scalaire sur \mathbb{R}^n . On note $q(x)=\Psi(x,x)$ le carré de la norme associée.
- 4. Si $x \in \mathbb{R}^n$, vérifier que $\Psi(Ax, x) = \frac{1}{2} \left[||e^{tA}x||^2 \right]_{t=0}^{+\infty} = -\frac{1}{2} ||x||^2$.
- 5. Si $x, y \in \mathbb{R}^n$, montrer que $|\Psi(x, y)| \le C||x|| \ ||y||$.
- 6. Montrer qu'il existe $\delta > 0$ tel que $q(g(t)) \leq \delta \Longrightarrow (q \circ g)'(t) \leq -\frac{1}{2}q(g(t))$. On se fixe un tel δ . On suppose $||q(g(0))|| \leq \delta$.
- 7. Montrer que $\forall t \geq 0, \ q(g(t)) \leq \delta$, puis que $\forall t \geq 0, \ q(g(t)) \leq q(0)e^{-t/2}$. Conclure.

Exercice 18: Soient D_1, D_2, D_3 trois droites affines de \mathbb{R}^3 deux à deux non parallèles, et $g: (m_1, m_2, m_3) \in D_1 \times D_2 \times D_3 \mapsto ||m_1 - m_2||^2 + ||m_1 - m_3||^2 + ||m_2 - m_3||^2$. On se donne pour tout $i, a_i \in D_i$ et u_i un vecteur directeur de D_i .

- 1. Soit $f: (x_1, x_2, x_3) \in \mathbb{R}^3 \mapsto ||m_1 m_2||^2 + ||m_1 m_3||^2 + ||m_2 m_3||^2$ avec $m_i = a_i + x_i u_i$. Calculer grad(f), et montrer que f admet un unique point critique.
- 2. Montrer que g est minorée et atteint son inf en un unique point.
- 3. Si D_1, D_2, D_3 sont coplanaires et délimitent un triangle équilatéral, déterminer ce point.

Exercice 19 : Changements de variables dans des EDP

- 1. Trouver les applications $f: (\mathbb{R}_+^*)^2 \to \mathbb{R}$ de classe C^2 vérifiant : $x^2 \frac{\partial^2 f}{\partial x^2} + 2xy \frac{\partial^2 f}{\partial x \partial y} + y^2 \frac{\partial^2 f}{\partial y^2} = 0$. On utilisera le changement de variables : u = xy, v = x/y.
- 2. Trouver les applications $f:(\mathbb{R}_+^*)^2\to\mathbb{R}$ de classe \mathcal{C}^1 vérifiant : $x\frac{\partial f}{\partial x}+y\frac{\partial f}{\partial y}=2$. On utilisera le changement de variable : $u=xy,\ v=y/x$.
- 3. Résoudre sur $\mathbb{R}^2 \setminus (\mathbb{R}^- \times \{0\})$: $x \frac{\partial f}{\partial x} = -y \frac{\partial f}{\partial y}$, en posant $\begin{cases} x = \rho \cos \theta \\ y = \rho \sin \theta \end{cases}$.