PyTorch 单机多卡操作总结:分布式DataParallel,混合精度, Horovod)

↑ 点击蓝字 关注极市平台

作者 | 科技猛兽@知乎

来源 | https://zhuanlan.zhihu.com/p/158375055

编辑丨极市平台

极市导读

本文介绍了数种实现单机多卡操作的方法,含有大量代码,并给出了实践中作者踩过的坑及其解 决方案。>>加入极市CV技术交流群,走在计算机视觉的最前沿

在上一篇文章中(https://zhuanlan.zhihu.com/p/158375254)我们看到了多GPU训练,也 就是最简单的单机多卡操作nn.DataParallel。但是很遗憾这种操作还不够优秀,于是就有了今 天这篇文章~

写这篇文章的时候看了很多的tutorials,附在文末了,在此先向文末的每位作者致敬,感谢大 佬们!

其实单机多卡的办法**还有很多**(如下),而且上篇的方法是相对**较慢**的。

- 1、nn.DataParallel 简单方便的 nn.DataParallel
- 2、torch.distributed 使用 torch.distributed 加速并行训练
- 3、apex 使用 apex 再加速。

这里,记录了使用 4 块 Tesla V100-PICE 在 ImageNet 进行了运行时间的测试,测试结果发现 Apex 的加速效果最好,但与 Horovod/Distributed 差别不大,平时可以直接使用内置的 Distributed。Dataparallel 较慢,不推荐使用。那好像上一篇白写了~

图 1:在 ImageNet 2012 上训练和测试一个 epoch 所需的时间 (V100-PICE)

看到这里你可能已经懵逼了,莫慌,下面会分别进行介绍(这里先附上一篇教程,看不懂的话直接当做没看见即可):

https://yangkky.github.io/2019/07/08/distributed-pytorch-tutorial.html

1. 先问两个问题

问1: 为啥非要单机多卡?

答1:加速神经网络训练最简单的办法就是上GPU,如果一块GPU还是不够,就多上几块。

事实上,比如BERT和GPT-2这样的大型语言模型甚至是在上百块GPU上训练的。

为了实现多GPU训练,我们必须想一个办法在多个GPU上分发数据和模型,并且协调训练过程。

问2:上一篇讲得单机多卡操作nn.DataParallel,哪里不好?

答2:要回答这个问题我们得先简单回顾一下nn.DataParallel,要使用这玩意,我们将模型和数据加载到多个 GPU 中,控制数据在 GPU 之间的流动,协同不同 GPU 上的模型进行并行训练。具体怎么操作?

我们只需要用 DataParallel 包装模型,再设置一些参数即可。需要定义的参数包括:

- 参与训练的 GPU 有哪些, device_ids=gpus。
- 用于汇总梯度的 GPU 是哪个, output_device=gpus[0]。

DataParallel 会自动帮我们将数据切分 load 到相应 GPU,将模型复制到相应 GPU,进行正向 传播计算梯度并汇总:

```
model = nn.DataParallel(model.cuda(), device_ids=gpus, output_device=gpus[0])
```

值得注意的是,模型和数据都需要先 load 进 GPU 中,DataParallel 的 module 才能对其进行 处理, 否则会报错:

```
# main.py
import torch
import torch.distributed as dist
gpus = [0, 1, 2, 3]
torch.cuda.set_device('cuda:{}'.format(gpus[0]))
train_dataset = ...
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=...)
model = \dots
model = nn.DataParallel(model.to(device), device_ids=gpus, output_device=gpus[0])
optimizer = optim.SGD(model.parameters())
for epoch in range(100):
   for batch_idx, (data, target) in enumerate(train_loader):
      images = images.cuda(non_blocking=True)
      target = target.cuda(non_blocking=True)
      . . .
      output = model(images)
      loss = criterion(output, target)
      optimizer.zero_grad()
      loss.backward()
      optimizer.step()
```

稍微解释几句: model.to(device)将模型迁移到GPU里面, images.cuda, target.cuda 把数据迁移到GPU里面。

nn.DataParallel(model.to(device), device_ids=gpus, output_device=gpus[0]) 包装 模型。

缺点:

- 在每个训练批次(batch)中,因为模型的权重都是在一个进程上先算出来,然后再把他们 分发到每个GPU上,所以网络通信就成为了一个瓶颈,而GPU使用率也通常很低。
- 除此之外, nn.DataParallel 需要所有的GPU都在一个节点(一台机器)上, 且并不支持 A pex 的 混合精度训练。

一句话,一个进程算权重使通信成为瓶颈,nn.DataParallel慢而且不支持混合精度训练。

2. 使用 torch.distributed 加速并行训练:

DataParallel: 单进程控制多 GPU。

DistributedDataParallel: 多进程控制多 GPU, 一起训练模型。

2.1 介绍

在 1.0 之后, 官方终于对分布式的常用方法进行了封装, 支持 all-reduce, broadcast, send 和 receive 等等。通过 MPI 实现 CPU 通信,通过 NCCL 实现 GPU 通信。官方也曾经提到用 DistributedDataParallel 解决 DataParallel 速度慢, GPU 负载不均衡的问题, 目前已 经很成熟了。

与 DataParallel 的单进程控制多 GPU 不同,在 distributed 的帮助下,我们只需要编写一份 代码, torch 就会自动将其分配给n个进程,分别在n个 GPU 上运行。

和单进程训练不同的是, 多进程训练需要注意以下事项:

• 在喂数据的时候,一个batch被分到了好几个进程,每个进程在取数据的时候要确保拿到的 是不同的数据 (DistributedSampler);

- 要告诉每个进程自己是谁,使用哪块GPU (args.local_rank);
- 在做BatchNormalization的时候要注意同步数据。

2.2 使用方式

2.2.1 启动方式的改变

在多进程的启动方面,我们不用自己手写 multiprocess 进行一系列复杂的CPU、GPU分配任 务, PyTorch为我们提供了一个很方便的启动器 torch.distributed.launch 用于启动文 件, 所以我们运行训练代码的方式就变成了这样:

```
CUDA_VISIBLE_DEVICES=0,1,2,3 python \-m torch.distributed.launch \--npr
oc_per_node=4 main.py
```

其中的 --nproc_per_node 参数用于指定为当前主机创建的进程数,由于我们是单机多卡, 所以这里node数量为1、所以我们这里设置为所使用的GPU数量即可。

2.2.2 初始化

在启动器为我们启动python脚本后,在执行过程中,启动器会将当前进程的(其实就是 GPU 的) index 通过参数传递给 python, 我们可以这样获得当前进程的 index: 即通过参数 loca 1_rank 来告诉我们**当前进程使用的是哪个GPU**,用于我们在每个进程中指定不同的device:

```
def parse():
   parser = argparse.ArgumentParser()
   parser.add_argument('--local_rank', type=int, default=0, help='node rank for dis
   args = parser.parse_args()
    return args
def main():
   args = parse()
    torch.cuda.set_device(args.local_rank)
    torch.distributed.init_process_group(
        'nccl',
        init_method='env://'
    device = torch.device(f'cuda:{args.local_rank}')
```

其中 torch.distributed.init_process_group 用于初始化GPU通信方式(NCCL)和参数的 获取方式 (env代表通过环境变量)。使用 init_process_group 设置GPU之间通信使用的后端 和端口,通过 NCCL 实现 GPU 通信。

2.2.3 DataLoader

在读取数据的时候,我们要保证一个batch里的数据被均摊到每个进程上,每个进程都能获取到 不同的数据,但如果我们手动去告诉每个进程拿哪些数据的话太麻烦了,PyTorch也为我们封装 好了这一方法。之后,使用 DistributedSampler 对数据集进行划分。如此前我们介绍的那 样,它能帮助我们将每个 batch 划分成几个 partition, 在当前进程中只需要获取和 rank 对应 的那个 partition 进行训练。

所以我们在初始化 data loader 的时候需要使用到 torch.utils.data.distributed. DistributedSampler 这个特性:

```
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=..., sampler=tr
```

这样就能给每个进程一个不同的 sampler,告诉每个进程自己分别取哪些数据。

2.2.4 模型的初始化

和 nn.DataParallel 的方式一样,我们对于模型的初始化也是简单的一句话就行了

model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[ar gs.local_rank])

使用 DistributedDataParallel 包装模型,它能帮助我们为不同 GPU 上求得的梯度进行 all red uce (即汇总不同 GPU 计算所得的梯度,并同步计算结果)。all reduce 后不同 GPU 中模型 的梯度均为 all reduce 之前各 GPU 梯度的均值。

2.2.5 同步BN

为什么要同步BN?

现有的标准 Batch Normalization 因为使用数据并行(Data Parallel),是单卡的实现模式, 只对单个卡上对样本进行归一化,相当于减小了批量大小(batch-size)(详见BN工作原理部 分)。对于比较消耗显存的训练任务时,往往单卡上的相对批量过小,影响模型的收敛效果。 之前在我们在图像语义分割的实验中,Jerry和我就发现使用大模型的效果反而变差,实际上就 是BN在作怪。跨卡同步 Batch Normalization 可以使用全局的样本进行归一化,这样相当 于'增大'了批量大小,这样训练效果不再受到使用 GPU 数量的影响。最近在图像分割、物体检 测的论文中,使用跨卡BN也会显著地提高实验效果,所以跨卡 BN 已然成为竞赛刷分、发论文 的必备神器。

可惜 PyTorch 并没有为我们实现这一功能,在接下来的介绍中我们会在 apex 中看到这一功 能。

2.3 汇总

至此,我们就可以使用 torch.distributed 给我们带来的多进程训练的性能提升了,汇总代码结 果如下:

```
# main.py
import torch
import argparse
import torch.distributed as dist
parser = argparse.ArgumentParser()
parser.add_argument('--local_rank', default=-1, type=int,
                    help='node rank for distributed training')
args = parser.parse_args()
dist.init_process_group(backend='nccl')
torch.cuda.set_device(args.local_rank)
train_dataset = ...
#每个进程一个sampler
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=..., sampler=tr
model = \dots
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank]
optimizer = optim.SGD(model.parameters())
for epoch in range(100):
   for batch_idx, (data, target) in enumerate(train_loader):
      images = images.cuda(non_blocking=True)
      target = target.cuda(non_blocking=True)
      output = model(images)
      loss = criterion(output, target)
      optimizer.zero_grad()
      loss.backward()
      optimizer.step()
```

在使用时,调用 torch.distributed.launch 启动器启动:

CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 r

在 ImageNet 上的完整训练代码,请点击:

https://github.com/tczhangzhi/pytorch-distributed/blob/master/distributed.py

3. 使用 apex 再加速(混合精度训练、并行训练、同步BN):

3.1 介绍

注:需要使用到 Volta结构 的GPU,目前只有Tesla V100和TITAN V系列支持。

Apex 是 NVIDIA 开源的用于混合精度训练和分布式训练库。Apex 对混合精度训练的过程进行了封装,改两三行配置就可以进行混合精度的训练,从而大幅度降低显存占用,节约运算时间。此外,Apex 也提供了对分布式训练的封装,针对 NVIDIA 的 NCCL 通信库进行了优化。

混合精度训练是在尽可能减少精度损失的情况下利用**半精度浮点数**加速训练。它使用FP16即半精度浮点数**存储权重和梯度**。在减少占用内存的同时起到了**加速训练**的效果。

总结下来就是两个原因: 内存占用更少, 计算更快。

- 内存占用更少:这个是显然可见的,通用的模型 fp16 占用的内存只需原来的一半。memory-bandwidth 减半所带来的好处:
 - 模型占用的内存更小,训练的时候可以用更大的batchsize。
 - 模型训练时,**通信量(特别是多卡,或者多机多卡)大幅减少**,大幅减少等待时间,加快数据的流通。

• 计算更快:

■ 目前的不少GPU都有针对 fp16 的计算进行优化。论文指出:在近期的GPU中,半精度的计算吞吐量可以是单精度的 2-8 倍;从下图我们可以看到混合精度训练几乎没有性能损失。

Model	Baseline	Mixed Precision
AlexNet	56.77%	56.93%
VGG-D	65.40%	65.43%
GoogLeNet (Inception v1)	68.33%	68.43%
Inception v2	70.03%	70.02%
Inception v3	73.85%	74.13%
Resnet50	75.92%	76.04%@Todo

3.2 使用方式

3.2.1 混合精度

在混合精度训练上, Apex 的封装十分优雅。直接使用 amp.initialize 包装模型和优化 器, apex 就会自动帮助我们管理模型参数和优化器的精度了, 根据精度需求不同可以传入其他 配置参数。

```
from apex import amp
model, optimizer = amp.initialize(model, optimizer, opt_level='01')
```

其中 opt_level 为精度的优化设置, OO(第一个字母是大写字母O):

- O0: 纯FP32训练,可以作为accuracy的baseline;
- O1: 混合精度训练(推荐使用),根据黑白名单自动决定使用FP16(GEMM,卷积)还是F P32(Softmax)进行计算。
- O2: "几乎FP16"混合精度训练,不存在黑白名单,除了Batch norm,几乎都是用FP16计 算。
- O3: 纯FP16训练、很不稳定、但是可以作为speed的baseline;

3.2.2 并行训练

Apex也实现了并行训练模型的转换方式,改动并不大,主要是优化了NCCL的通信,因此代码 和 torch.distributed 保持一致,换一下调用的API即可:

```
from apex import amp
from apex.parallel import DistributedDataParallel
model, optimizer = amp.initialize(model, optimizer, opt_level='01')
model = DistributedDataParallel(model, delay_allreduce=True)
# 反向传播时需要调用 amp.scale_loss, 用于根据loss值自动对精度进行缩放
with amp.scale_loss(loss, optimizer) as scaled_loss:
    scaled_loss.backward()
```

3.2.3 同步BN

Apex为我们实现了同步BN、用于解决单GPU的minibatch太小导致BN在训练时不收敛的问 题。

```
from apex.parallel import convert_syncbn_model
from apex.parallel import DistributedDataParallel
# 注意顺序: 三个顺序不能错
model = convert_syncbn_model(UNet3d(n_channels=1, n_classes=1)).to(device)
model, optimizer = amp.initialize(model, optimizer, opt_level='01')
model = DistributedDataParallel(model, delay_allreduce=True)
```

调用该函数后,Apex会自动遍历model的所有层,将BatchNorm层替换掉。

3.3 汇总

Apex的并行训练部分主要与如下代码段有关:

```
# main.py
import torch
import argparse
import torch.distributed as dist
from apex.parallel import convert_syncbn_model
from apex.parallel import DistributedDataParallel
parser = argparse.ArgumentParser()
parser.add_argument('--local_rank', default=-1, type=int,
                    help='node rank for distributed training')
args = parser.parse_args()
dist.init_process_group(backend='nccl')
torch.cuda.set_device(args.local_rank)
train_dataset = ...
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=..., sampler=tr
model = \dots
#同步BN
model = convert_syncbn_model(model)
#混合精度
model, optimizer = amp.initialize(model, optimizer)
#分布数据并行
model = DistributedDataParallel(model, device_ids=[args.local_rank])
optimizer = optim.SGD(model.parameters())
for epoch in range(100):
   for batch_idx, (data, target) in enumerate(train_loader):
      images = images.cuda(non_blocking=True)
      target = target.cuda(non_blocking=True)
```

```
output = model(images)
loss = criterion(output, target)
optimizer.zero_grad()
with amp.scale_loss(loss, optimizer) as scaled_loss:
   scaled_loss.backward()
optimizer.step()
```

使用 launch 启动:

```
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 r
```

4 多卡训练时的数据记录(TensorBoard、torch.save)

4.1 记录Loss曲线

在我们使用多进程时,每个进程有自己计算得到的Loss,我们在进行数据记录时,希望对不同 进程上的Loss取平均(也就是 map-reduce 的做法),对于其他需要记录的数据也都是一样的 做法:

```
def reduce_tensor(tensor: torch.Tensor) -> torch.Tensor:
   rt = tensor.clone()
   distributed.all_reduce(rt, op=distributed.reduce_op.SUM)
   rt /= distributed.get_world_size()#总进程数
   return rt
# calculate loss
loss = criterion(predict, labels)
reduced_loss = reduce_tensor(loss.data)
train_epoch_loss += reduced_loss.item()
注意在写入TensorBoard的时候只让一个进程写入就够了:
# TensorBoard
if args.local_rank == 0:
   writer.add_scalars('Loss/training', {
        'train_loss': train_epoch_loss,
        'val_loss': val_epoch_loss
   \}, epoch + 1)
```

4.2 torch.save

在保存模型的时候,由于是Apex混合精度模型,我们需要使用Apex提供的保存、载入方法(见 Apex README) :

```
# Save checkpoint
checkpoint = {
    'model': model.state_dict(),
    'optimizer': optimizer.state_dict(),
    'amp': amp.state_dict()
}
torch.save(checkpoint, 'amp_checkpoint.pt')
# Restore
model = \dots
optimizer = ...
checkpoint = torch.load('amp_checkpoint.pt')
model, optimizer = amp.initialize(model, optimizer, opt_level=opt_level)
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
amp.load_state_dict(checkpoint['amp'])
# Continue training
```

5 多卡后的 batch_size 和 learning_rate 的调整

见: https://www.zhihu.com/question/64134994/answer/217813386

从理论上来说, Ir = batch_size * base Ir, 因为 batch_size 的增大会导致你 update 次数的 减少,所以为了达到相同的效果,应该是同比例增大的。

但是更大的 Ir 可能会导致收敛的不够好,尤其是在刚开始的时候,如果你使用很大的 Ir, 可能 会直接爆炸,所以可能会需要一些 warmup 来逐步的把 Ir 提高到你想设定的 Ir。

实际应用中发现不一定要同比例增长,有时候可能增大到 batch_size/2 倍的效果已经很不错 了。

在我的实验中,使用8卡训练,则增大batch_size 8倍,learning_rate 4倍是差不多的。

6 完整代码示例(Apex混合精度的Distributed DataParallel,用来训练3D U-Net 的)

```
import os
import datetime
import argparse
from tqdm import tqdm
import torch
from torch import distributed, optim
from torch.utils.data import DataLoader
```

```
#每个进程不同sampler
from torch.utils.data.distributed import DistributedSampler
from torch.utils.tensorboard import SummaryWriter
#混合精度
from apex import amp
#同步BN
from apex.parallel import convert_syncbn_model
#Distributed DataParallel
from apex.parallel import DistributedDataParallel
from models import UNet3d
from datasets import IronGrain3dDataset
from losses import BCEDiceLoss
from eval import eval_net
train_images_folder = '.../../datasets/IronGrain/74x320x320/train_patches/images/'
train_labels_folder = '.../../datasets/IronGrain/74x320x320/train_patches/labels/'
val_images_folder = '.../../datasets/IronGrain/74x320x320/val_patches/images/'
val_labels_folder = '.../../datasets/IronGrain/74x320x320/val_patches/labels/'
def parse():
   parser = argparse.ArgumentParser()
   parser.add_argument('--local_rank', type=int, default=0)
   args = parser.parse_args()
    return args
def main():
    args = parse()
#设置当前进程的device, GPU通信方式为NCCL
    torch.cuda.set_device(args.local_rank)
    distributed.init_process_group(
        'nccl',
       init_method='env://'
    )
#制作Dataset和sampler
   train_dataset = IronGrain3dDataset(train_images_folder, train_labels_folder)
   val_dataset = IronGrain3dDataset(val_images_folder, val_labels_folder)
    train_sampler = DistributedSampler(train_dataset)
    val_sampler = DistributedSampler(val_dataset)
    epochs = 100
   batch_size = 8
   lr = 2e-4
   weight_decay = 1e-4
    device = torch.device(f'cuda:{args.local_rank}')
#制作DataLoader
    train_loader = DataLoader(train_dataset, batch_size=batch_size, num_workers=4,
                              pin_memory=True, sampler=train_sampler)
    val_loader = DataLoader(val_dataset, batch_size=batch_size, num_workers=4,
```

```
#3步曲: 同步BN, 初始化amp, DistributedDataParallel封装
    net = convert_syncbn_model(UNet3d(n_channels=1, n_classes=1)).to(device)
   optimizer = optim.Adam(net.parameters(), lr=lr, weight_decay=weight_decay)
    net, optimizer = amp.initialize(net, optimizer, opt_level='01')
    net = DistributedDataParallel(net, delay_allreduce=True)
    scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[25, 50, 75], @
    criterion = BCEDiceLoss().to(device)
    if args.local_rank == 0:
       print(f'''Starting training:
                            {epochs}
            Epochs:
            Batch size:
                           {batch_size}
            Learning rate: {lr}
            Training size: {len(train_dataset)}
           Validation size: {len(val_dataset)}
           Device:
                            {device.type}
        ''')
       writer = SummaryWriter(
           log_dir=f'runs/irongrain/unet3d_32x160x160_BS_{batch_size}_{datetime.dat
    for epoch in range(epochs):
       train_epoch_loss = 0
       with tqdm(total=len(train_dataset), desc=f'Epoch {epoch + 1}/{epochs}', unit
            images = None
            labels = None
            predict = None
            # train
            net.train()
            for batch_idx, batch in enumerate(train_loader):
                images = batch['image']
                labels = batch['label']
                images = images.to(device, dtype=torch.float32)
                labels = labels.to(device, dtype=torch.float32)
                predict = net(images)
                # calculate loss
                # reduce不同进程的loss
                loss = criterion(predict, labels)
                reduced_loss = reduce_tensor(loss.data)
                train_epoch_loss += reduced_loss.item()
                # optimize
                optimizer.zero_grad()
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
                optimizer.step()
                scheduler.step()
                # set progress bar
```

7 单机多卡正确打开方式Horovod

if __name__ == '__main__':

return rt

main()

Horovod是Uber开源的跨平台的分布式训练工具,名字来自于俄国传统民间舞蹈,舞者手牵手 围成一个圈跳舞,与Horovod设备之间的通信模式很像,有以下几个特点:

- 1. 兼容TensorFlow、Keras和PyTorch机器学习框架。
- 2. 使用Ring-AllReduce算法,对比Parameter Server算法,有着无需等待,负载均衡的优 点。
- 3. 实现简单, 五分钟包教包会。(划重点)

Uber官方在git上给了很详细的例子: https://github.com/horovod/horovod/tree/master/exa

mples, 所以这里只简单讲一下大概的使用方法:

TensorFlow

以TF的Custom Training Loop API为例:

```
import tensorflow as tf
import horovod.tensorflow as hvd
# 1. 初始化horovod
hvd.init()
# 2. 给当前进程分配对应的gpu, local_rank()返回的是当前是第几个进程
config = tf.ConfigProto()
config.gpu_options.visible_device_list = str(hvd.local_rank())
# 3. Scale学习率, 封装优化器
opt = tf.train.AdagradOptimizer(0.01 * hvd.size())
opt = hvd.DistributedOptimizer(opt)
# 4. 定义初始化的时候广播参数的hook,这个是为了在一开始的时候同步各个gpu之间的参数
hooks = [hvd.BroadcastGlobalVariablesHook(0)]
# 搭建model, 定义loss
loss = ...
train_op = opt.minimize(loss)
# 5. 只保存一份ckpt就行
checkpoint_dir = '/tmp/train_logs' if hvd.rank() == 0 else None
# 7. 用MonitoredTrainingSession实现初始化,读写ckpt
with tf.train.MonitoredTrainingSession(checkpoint_dir=checkpoint_dir,
                                     config=config,
                                     hooks=hooks) as mon_sess:
 while not mon_sess.should_stop():
   # Perform synchronous training.
   mon_sess.run(train_op)
```

具体的代码看 tensorflow_mnist.py: https://github.com/horovod/horovod/blob/maste r/examples/tensorflow_mnist.py

单机双卡训练输入以下命令:

```
CUDA_VISIBLE_DEVICES=6,7 horovodrun -np 2 -H localhost:2 python tensorflow_mnist.py
```

这里 -np 指的是进程的数量。

执行之后可以看到如下的结果、因为多线程、每个step都打印了两遍。

```
[1,0] < stderr>:INFO:tensorflow:loss = 0.13126025, step = 300 (0.191 sec)
[1,1] < stderr>: INFO: tensorflow: loss = 0.01396352, step = 310 (0.177 sec)
[1,0] < stderr>:INFO:tensorflow:loss = 0.063738815, step = 310 (0.182 sec)
[1,1]<stderr>:INFO:tensorflow:loss = 0.044452004, step = 320 (0.215 sec)
```

```
[1,0] < stderr>: INFO: tensorflow: loss = 0.028987963, step = 320 (0.212 sec)
[1,0] < stderr>:INFO:tensorflow:loss = 0.09094897, step = 330 (0.206 sec)
[1,1] < stderr>:INFO:tensorflow:loss = 0.11366991, step = 330 (0.210 sec)
[1,0] < stderr>: INFO: tensorflow: loss = 0.08559138, step = 340 (0.200 sec)
[1,1]<stderr>:INFO:tensorflow:loss = 0.037002128, step = 340 (0.201 sec)
[1,0] < stderr>:INFO:tensorflow:loss = 0.15422738, step = 350 (0.181 sec)
[1,1] < stderr>:INFO:tensorflow:loss = 0.06424393, step = 350 (0.179 sec)
```

PyTorch

Torch下也是类似的套路,但是由于PyTorch本身单机多卡训练已经够简单了,API也稳定,所 以笔者一般做的时候就是直接用Torch自己的 DP 和 DDP 了。

```
import torch
import horovod.torch as hvd
# 1. 初始化horovod
hvd.init()
# 2. 给当前进程分配对应的gpu, local_rank()返回的是当前是第几个进程
torch.cuda.set_device(hvd.local_rank())
# Define dataset...
train_dataset = ...
# 3. 用DistributedSampler给各个worker分数据
train_sampler = torch.utils.data.distributed.DistributedSampler(
    train_dataset, num_replicas=hvd.size(), rank=hvd.rank())
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=..., sampler=tr
# Build model...
model = \dots
model.cuda()
# 4. 封装优化器
optimizer = optim.SGD(model.parameters())
optimizer = hvd.DistributedOptimizer(optimizer, named_parameters=model.named_paramet
# 5. 初始化的时候广播参数,这个是为了在一开始的时候同步各个gpu之间的参数
hvd.broadcast_parameters(model.state_dict(), root_rank=0)
# 训练
for epoch in range(100):
   for batch_idx, (data, target) in enumerate(train_loader):
      optimizer.zero_grad()
      output = model(data)
      loss = F.nll_loss(output, target)
      loss.backward()
      optimizer.step()
      if batch_idx % args.log_interval == 0:
          print('Train Epoch: {} [{}/{}]\tLoss: {}'.format(
              epoch, batch_idx * len(data), len(train_sampler), loss.item()))
```

总体而言,用了All-Reduce算法的API,速度应该都差不多(一开始的图。

8 把踩过的一些坑和解决办法列举在这,以避免大家以后重复踩坑

tf.contrib.distributed.MirroredStrategy 需要optimizer支持merge_call (bert实现的optimizer 是直接修改apply_gradient的,所以会报错),这个时候就需要正确地修改optimizer里的 _apply_dense、_apply_sparse(参考Issue 23986 和 JayYip)。或者用horovod,就可以避免 这个问题。

Effective batch size,不同的多卡工具对输入的batch size的操作不一样,要确定最后进模型的 effective batch size才有意义。一般来说,多进程的batch size指的是每张卡的batch size。

Learning rate scale, 学习率要根据effective batch size调整。

All-Reduce由于是多进程的,数据流各自独立,为了防止同一个step多gpu的batch重叠,最好 的的办法是在每个进程里根据local_rank设置shard的数据,保证各个gpu采样的数据不重叠。

为了使用horovod,新建docker container时,要加--privileged,否则会疯狂报warning,虽然 没影响, 但是看着难受。

Pytorch的DP多卡要注意最后一个batch的batch size不能小于gpu的数量,否则会报错,最保险 的做法是drop last, 扔掉最后的batch。

并不是所有情况下All-Reduce都比PS好,比如当卡间通信用的是NVLink的时候,在gpu数量不 多的情况下,数据传输的时间不是瓶颈,All-Reduce的提升就几乎没有了。

DP和DDP有一个区别在于BatchNorm。

DDP封装model后不能再改动model。

参考资料

Nicolas: 分布式训练单机多卡的正确打开方式(四)

纵横: 当代研究生应当掌握的并行训练方法(单机多卡)zhuanlan.zhihu.com

薰风初入弦: Pytorch中的Distributed Data Parallel与混合精度训练(Apex)

Todd: PyTorch Parallel Training(单机多卡并行、混合精度、同步BN训练指南文档)

李沐: 跨卡同步 Batch Normalization

公众号后台回复"pytorch",获取Pytorch 官方书籍英文版电子版

极市平台

为计算机视觉开发者提供全流程算法开发训练平台,以及大咖技术分享、社区交流、竞... 848篇原创内容

公众号

极市平货

技术干货:数据可视化必须注意的30个小技巧总结 | 如何高效实现矩阵乘?万文长字带你从 CUDA初学者的角度入门

实操教程: Nvidia Jetson TX2使用TensorRT部署yolov5s模型 | 基于YOLOV5的数据集标注& 训练, Windows/Linux/Jetson Nano多平台部署全流程

极市平台深耕CV开发者领域近5年,拥有一大批优质CV开发者受众,覆盖微信、知乎、B站、微博等多个渠道。 通过极市平台,您的文章的观点和看法能分享至更多CV开发者,既能体现文章的价值,又能让文章在视觉圈内得 到更大程度上的推广,并且极市还将给予优质的作者可观的稿酬!

我们欢迎领域内的各位来进行投稿或者是宣传自己/团队的工作,让知识成为最为流通的干货!

对于优质内容开发者,极市可推荐至国内优秀出版社合作出书,同时为开发者引荐行业大牛,组织个人分享交流 会,推荐名企就业机会等。

投稿须知:

- 1.作者保证投稿作品为自己的原创作品。
- 2.极市平台尊重原作者署名权,并支付相应稿费。文章发布后,版权仍属于原作者。
- 3.原作者可以将文章发在其他平台的个人账号,但需要在文章顶部标明首发于极市平台

投稿方式:

添加小编微信Fengcall (微信号: fengcall19), 备注: 姓名-投稿

△长按添加极市平台小编

点击阅读原文进入CV社区

获取更多技术干货

阅读原文

喜欢此内容的人还喜欢

YOLOv5帮助母猪产仔?南京农业大学研发母猪产仔检测模型并部署到 Jetson Nano开发板

极市平台

ICCV23 | 将隐式神经表征用于低光增强, 北大张健团队提出NeRCo 极市平台

9个数据科学中常见距离度量总结以及优缺点概述

极市平台

