

**RECEIVED
CENTRAL FAX CENTER**

Appl. No. 10/799,316
Amdt. dated August 11, 2008
Reply to Office Action of June 18, 2008

AUG 11 2008

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (currently amended) A method for Galois field ($GF(2^m)$) multiplication by a logic circuit, where m is a positive integer, and the $GF(2^m)$ multiplication operation calculates the multiplication of two polynomials producing a product which is divided by a generator polynomial, and wherein the multiplication of the two polynomials is combined with the division operation whereby the $GF(2^m)$ multiplication is computed as a single function $GF(2^m)$ multiplication operation, the method comprising:

generating x^{m-i} polynomial coefficient terms from multiplication and division mathematical operations, where i is a variable;

combining x^{m-i} polynomial coefficient terms having the same exponents from the multiplication and division mathematical operations to generate a recurrence relation that represents the combination of the multiplication and division operations;

computing the recurrence relation using the combined x^{m-i} polynomial coefficient terms in the single function $GF(2^m)$ multiplication operation to produce a $GF(2^m)$ result; and
storing the $GF(2^m)$ result in memory in a computer readable form.

2. (previously presented) The method of claim 1 wherein the recurrence relation for the single $GF(2^m)$ multiplication function is $Y(i) = Y(i-1) + (q_{m-i} * p + Y(i-1)_{2^{m-1}} * g) * x^{m-i}$, $i=1$,

Appl. No. 10/799,316
Amndt. dated August 11, 2008
Reply to Office Action of June 18, 2008

2, ..., m and where $Y(0) = 0$, $Y(i=m)$ is the GF(2^m) result, p and q are coefficients of input polynomials $p[x]$ and $q[x]$, respectively, and g is the coefficients of a generator polynomial $g[x]$.

3. (previously presented) The method of claim 1 further comprising:

computing the recurrence relation for a single GF(2^m) multiplication function as $Y(i) = Y(i-1) + (q_{m-i}*p + Y(i-1)_{2m-1}*g Y(i-1)_{m-1}*g)*x^{m-i}$, $i=1, 2, \dots, m$ and where $Y(0) = 0$, $Y(i=m)$ is the GF(2^m) result, p and q are coefficients of input polynomials $p[x]$ and $q[x]$, respectively, and g is the coefficients of a generator polynomial $g[x]$ in an m by m single function computation array utilizing m bits per internal calculation stage

4. (currently amended) A method for Galois field (GF(2^m)) multiplication by a logic circuit, where m is a positive integer, and the GF(2^m) multiplication operation calculates the multiplication of two polynomials producing a product which is divided by a generator polynomial, and wherein the multiplication of the two polynomials is combined with the division operation whereby the GF(2^m) multiplication is computed as a single function GF(2^m) multiplication operation, the method comprising:

generating x^{m-i} polynomial coefficient terms from multiplication and division mathematical operations, where i is a variable;

combining x^{m-i} polynomial coefficient terms having the same exponents from the multiplication and division mathematical operations to generate a recurrence relation that represents the combination of the multiplication and division operations;

Appl. No. 10/799,316
Amtd. dated August 11, 2008
Reply to Office Action of June 18, 2008

computing the recurrence relation using the combined x^{m-i} polynomial coefficient terms in the single function GF(2^m) multiplication operation thereby calculating m by m bits for the GF(2^m) multiplication function to produce an m bit GF(2^m) result; and

storing the m bit GF(2^m) result in memory in a computer readable form.

5. (previously presented) The method claim 4 wherein the recurrence relation for the single GF(2^m) multiplication function is $Y(i) = Y(i-1) + (q_{m-i}*p + Y(i-1)_{m-1}*g)*x^{m-i}$, $i=1, 2, \dots, m$ and where $Y(0) = 0$, $Y(i=m)$ is the m bit GF(2^m) result, p and q are coefficients of input polynomials $p[x]$ and $q[x]$, respectively, and g is the coefficients of a generator polynomial $g[x]$.

6. (previously presented) The method of claim 4 wherein the step of computing the recurrence relation is accomplished in an m by m single function computation logic array utilizing m bits per internal logic stage.

7. (previously presented) A GF multiplication circuit cell producing result $Y(i)$, for $i \in \{1, 2, \dots, m\}$, $j \in \{0, 1, \dots, m-1\}$, where m is a positive integer, and a selected i and j value comprising:

a bit q_{m-i} selected from the set $\{q_{m-1}, q_{m-2}, \dots, q_{m-i}, \dots, q_0\}$ of first product inputs based on the selected i value;

a bit p_j selected from the set $\{p_{m-1}, p_{m-2}, \dots, p_j, \dots, p_0\}$ of second product inputs based on the selected j value;

a bit g_j selected from the set $\{g_{m-1}, g_{m-2}, \dots, g_j, \dots, g_0\}$ of generator polynomial coefficients based on the selected j value;

Appl. No. 10/799,316
Amtd. dated August 11, 2008
Reply to Office Action of June 18, 2008

a most significant bit $Y(i-1)_{m-1}$ of a previous stage of GF multiplication circuit cells results;

a value of the rightmost neighbor bit $Y(i-1)_{j-1}$ of a previous stage of GF multiplication circuit cell results, wherein the rightmost neighbor bit $Y(i-1)_{j-1}$ is in relation to the present GF multiplication circuit cell producing result $Y(i)_j$ for the selected i and j values;

a logic device producing q_{m-i} AND p_j as output A;

a logic device producing $Y(i-1)_{m-1}$ AND g_j as output B; and

a logic device producing A XOR B XOR $Y(i-1)_{j-1}$ as result $Y(i)_j$ to be utilized in one or more GF multiplication circuit cells or stored in a processor accessible storage unit.

8. (previously presented) The GF multiplication circuit cell of claim 7 disposed within an m-by-m array of interconnected GF multiplication circuit cells for producing a Galois Field (2^m) multiplication result Y, where m is a positive integer, further comprising:

input operand q = $(q_{m-1} \ q_{m-2} \ \dots \ q_0)$;

input operand p = $(p_{m-1} \ p_{m-2} \ \dots \ p_0)$;

input operand g = $(g_{m-1} \ g_{m-2} \ \dots \ g_0)$;

the $Y(i-1)_{m-1}$ and the $Y(i-1)_{j-1}$ array border GF multiplication circuit cell input values set to 0; and

output Y result which is stored in a computer readable form.

9. (original) The GF multiplication circuit cell of claim 8 wherein the m-by-m array of interconnected GF multiplication circuit cells further comprises:

the interconnections of the GF multiplication circuit cells governed by the equation

Appl. No. 10/799,316
Amdt. dated August 11, 2008
Reply to Office Action of June 18, 2008

$$Y(i) = Y(i-1) + (q_{m-i} * p + Y(i-1)_{m-1} * g) * x^{m-i}, i=1, 2, \dots, m \text{ and where } Y(0) = 0.$$

10. (original) The GF multiplication circuit cell of claim 8 wherein the m-by-m array of GF multiplication circuit cells is further disposed within a grouping of multiple m-by-m arrays in a processor execution unit and further comprises:

a GF (2^m) multiplication instruction with a data type field specifying at least one GF (2^m) multiplication operation; and

means for connecting the multiple m-by-m arrays inputs and outputs for performing at least one GF (2^m) multiplication in the execution of the GF (2^m) multiplication instruction.

11. (original) The GF multiplication circuit cell of claim 8 wherein the input operands $q = (q_{m-1} q_{m-2} \dots q_0)$, $p = (p_{m-1} p_{m-2} \dots p_0)$, and $g = (g_{m-1} g_{m-2} \dots g_0)$ are connected to read outputs of at least one storage unit in a processor system.

12. (original) The GF multiplication circuit cell of claim 8 wherein the output Y results are connected to at least one storage unit write inputs in a processor system.

13. (original) The GF multiplication circuit cell of claim 11 wherein the at least one storage unit is a processor accessible register file.

14. (original) The GF multiplication circuit cell of claim 12 wherein the at least one storage unit is a processor accessible register file.

15-19. (canceled)