str. 1/3Seria: 5

Zadanie 1

Przypuśćmy nie wprost, że funkcja f nie spełnia tezy zadania. Niech

$$n = \min\{m \in \mathbb{Z}_+ : \forall_{x \in \mathbb{R}} f^{(m)}(x) \neq 0\}$$

Ponieważ $f \in C^{\infty}$, to funkcja $f^{(n)}$ jest ciągła, a ponieważ nigdy nie jest zerowa, to jest stałego znaku. Bez straty ogólności przyjmijmy, że jest stale dodatnia (przypadek funkcji stale ujemnej można rozważyć rozpatrując funkcję -f, która także spełnia warunki zadania).

Zatem wiemy, że funkcja $f^{(n-1)}$ jest stale rosnąca. Jeśli n=1, to uzyskujemy, że funkcja f jest stale rosnąca, co jest sprzecznością, bo $f(0) < f(1) \leqslant \lim_{x \to \infty} f(x) = f(0)$, co jest sprzecznością.

Zatem n>1 i w związku z tym wiemy, że $\exists_{x_0\in\mathbb{R}}\,f^{(n-1)}(x_0)=0$ na mocy minimalności n. Stąd jednak mamy, że dla $y > x_0 + 1$ mamy $f^{(n-1)}(y) > f^{(n-1)}(x_0 + 1) > f^{(n-1)}(x_0) = 0$, zatem funkcja $f^{(n-2)}$ jest rosnąca na zbiorze $[x_0 + 1, \infty)$.

Co więcej, rośnie ona przynajmniej tak szybko jak funkcja $x \mapsto f^{(n-1)}(x_0+1) \cdot (x-x_0-1) + f^{(n-2)}(x_0+1)$, gdyż mają one równe wartości na punkcie x_0+1 oraz pochodna ich różnicy jest dodatnia.

To jednak oznacza, że $\lim_{x\to +\infty} f^{(n-2)}(x)=+\infty$, na mocy porównania z powyżsżą funkcją liniową. To zaś oznacza, że dla dostatecznie dużych x zachodzi $f^{(n-2)}(x) > 1$, zatem rozumując podobnie jak poprzednio uzyskujemy, że $f^{(n-3)}(x)$ dla dostatecznie dużych x rośnie przynajmniej liniowo.

Kontynuując to rozumowanie dochodzimy (po skończenie wielu krokach) do tego, że $f = f^{(0)}$ jest dla dostatecznie dużych x rosnąca przynajmniej liniowo.

Ale to jest sprzeczność, gdyż uzyskujemy $\lim_{x \to \infty} f(x) = +\infty$, a z założenia ta granica jest równa f(0).

Zadanie 2

Najpierw zbadajmy jednostajną zbieżność na $[0,+\infty)$. Twierdzę, że tam ciąg f_n jest jednostajnie zbieżny do funkcji stale równej zeru.

Istotnie, zauważmy, że $f_n'(x) = \frac{\pi}{2} - \arctan(nx) - x \cdot n \cdot \frac{1}{1 + n^2 x^2}$. Ponadto $f_n''(x) = -\frac{n}{1 + n^2 x^2} - \frac{n(1 + n^2 x^2) - nx(2n^2 x)}{(1 + n^2 x^2)^2} = \frac{n(1 + n^2 x^2) - nx(2n^2 x)}{(1 + n^2 x^2)^2} = \frac{n(1 + n^2 x^2) - nx(2n^2 x)}{(1 + n^2 x^2)^2} = \frac{n(1 + n^2 x^2) - nx(2n^2 x)}{(1 + n^2 x^2)^2} = \frac{n(1 + n^2 x^2) - nx(2n^2 x)}{(1 + n^2 x^2)^2} = \frac{n(1 + n^2 x^2) - nx(2n^2 x)}{(1 + n^2 x^2)^2} = \frac{n(1 + n^2 x^2) - nx(2n^2 x)}{(1 + n^2 x^2)^2} = \frac{n(1 + n^2 x^2) - nx(2n^2 x)}{(1 + n^2 x^2)^2} = \frac{n(1 + n^2 x^2) - nx(2n^2 x)}{(1 + n^2 x^2)^2} = \frac{n(1 + n^2 x^2) - nx(2n^2 x)}{(1 + n^2 x^2)^2} = \frac{n(1 + n^2 x^2) - nx(2n^2 x)}{(1 + n^2 x^2)^2} = \frac{n(1 + n^2 x^2) - nx(2n^2 x)}{(1 + n^2 x^2)^2} = \frac{n(1 + n^2 x^2) - nx(2n^2 x)}{(1 + n^2 x^2)^2} = \frac{n(1 + n^2 x^2) - nx(2n^2 x)}{(1 + n^2 x^2)^2} = \frac{n(1 + n^2 x^2) - nx(2n^2 x)}{(1 + n^2 x^2)^2} = \frac{n(1 + n^2 x)}{(1 + n^2 x)^2} = \frac{n(1 + n^2 x)}{(1$ $\frac{2n^3x^2-2n(1+n^2x^2)}{(1+n^2x^2)^2} = \frac{-2n}{(1+n^2x^2)^2}, \text{ co jest ujemne dla każdego } x, \text{ zatem } f_n' \text{ jest malejąca. Jednak łatwo widać, że} \\ \lim_{x\to +\infty} f_n'(x) = \lim_{x\to +\infty} \left(\frac{\pi}{2} - \arctan(nx)\right) - \lim_{x\to +\infty} \frac{nx}{1+n^2x^2} = 0 - 0 = 0, \text{ zatem } f_n' \text{ jest stale nieujemna, zatem } f_n$ jest rosnąca.

Ponadto $f_n(0) = 0$, zatem supremum modułu będzie osiągnięte jako granica w $+\infty$, mamy jednak

$$\begin{split} \lim_{x \to +\infty} f_n(x) &= \lim_{x \to 0^+} f_n\left(\frac{1}{x}\right) \\ &= \lim_{x \to 0^+} \frac{\frac{\pi}{2} - \arctan\frac{n}{x}}{x} \\ &\stackrel{H}{=} \lim_{x \to 0^+} \left((-1)\frac{-n}{x^2}\frac{1}{1 + \frac{n^2}{x^2}}\right) \\ &= \lim_{x \to 0^+} \frac{n}{n^2 + x^2} = \frac{1}{n} \end{split}$$

gdzie aby użyć reguły de l'Hôpitala powinniśmy zauważyć, że $\arctan \frac{n}{x} \to \frac{\pi}{2}$ przy $x \to 0^+$.

Zbadajmy teraz jednostajną zbieżność na $(-\infty,0]$. Twierdzę, że f_n jest tam zbieżny jednostajnie do funkcji $\chi \mapsto \pi \chi.$

 $\text{Mamy bowiem } \left(f_n(x) - \pi x\right)'' = f_n''(x) < 0, \\ \text{zatem } \left(f_n(x) - \pi x\right)' \\ \text{jest malejąca. Mamy ponadto } \left(f_n(x) - \pi x\right)' = f_n''(x) < 0, \\ \text{Zatem } \left(f_n(x) - \pi x\right)' \\ \text{jest malejąca. Mamy ponadto } \left(f_n(x) - \pi x\right)' = f_n''(x) < 0, \\ \text{Zatem } \left(f_n(x) - \pi x\right)' \\ \text{jest malejąca. Mamy ponadto } \left(f_n(x) - \pi x\right)' = f_n''(x) < 0, \\ \text{Zatem } \left(f_n(x) - \pi x\right)' \\ \text{jest malejąca. Mamy ponadto } \left(f_n(x) - \pi x\right)' = f_n''(x) < 0, \\ \text{Zatem } \left(f_n(x) - \pi x\right)' \\ \text{jest malejąca. Mamy ponadto } \left(f_n(x) - \pi x\right)' = f_n''(x) < 0, \\ \text{Zatem } \left(f_n(x) - \pi x\right)' \\ \text{Jatem } \left(f_n(x) - \pi x\right)' \\ \text$

 $-\frac{\pi}{2}-\arctan(nx)-x\cdot n\cdot \frac{1}{1+n^2x^2}.$ Analogicznie jak poprzednio, $\lim_{x\to -\infty}\left(f_n(x)-\pi x\right)'=\lim_{x\to -\infty}\left(-\frac{\pi}{2}-\arctan(nx)\right)-\lim_{x\to -\infty}\frac{nx}{1+n^2x^2}=0-0=0,$ $\text{zatem } \left(f_{n}(x) - \pi x\right)'(x) \text{ jest stale niedodatnia na } x \leqslant 0, \text{ zatem ponieważ } f_{n}(0) - \pi \cdot 0 = 0, \text{ to } f_{n}(x) - \pi x \text{ jest ponieważ } f_{n}(0) = 0, \text{ to } f_{n}(x) - \pi x \text{ jest ponieważ } f_{n}(0) = 0, \text{ to } f_{n}(x) - \pi x \text{ jest ponieważ } f_{n}(0) = 0, \text{ to } f_{n}(x) - \pi x \text{ jest ponieważ } f_{n}(0) = 0, \text{ to } f_{n}(x) - \pi x \text{ jest ponieważ } f_{n}(0) = 0, \text{ to } f_{n}(x) - \pi x \text{ jest ponieważ } f_{n}(0) = 0, \text{ to } f_{n}(x) - \pi x \text{ jest } f_{n}(0) = 0, \text{ to } f_{n}(x) - \pi x \text{ jest } f_{n}(0) = 0, \text{ to } f_{n}(x) - \pi x \text{ jest } f_{n}(0) = 0, \text{ to } f_{n}(x) - \pi x \text{ jest } f_{n}(0) = 0, \text{ to } f_{n}(x) - \pi x \text{ jest } f_{n}(0) = 0, \text{ to } f_{n}(x) - \pi x \text{ jest } f_{n}(0) = 0, \text{ to } f_{n}(x) - \pi x \text{ jest } f_{n}(0) = 0, \text{ to } f_{n}(x) - \pi x \text{ jest } f_{n}(0) = 0, \text{ to } f_{n}(x) - \pi x \text{ jest } f_{n}(0) = 0, \text{ to } f_{n}(x) - \pi x \text{ jest } f_{n}(0) = 0, \text{ to } f_{n}(x) - \pi x \text{ jest } f_{n}(0) = 0, \text{ to } f_{n}(x) - \pi x \text{ jest } f_{n}(x) =$

Analiza matematyczna Termin: 2014-03-28 nr albumu: 347208 str. 2/3 Seria: 5

malejąca i osiąga supremum modułu jako granicę w minus nieskończoności.

$$\begin{split} \lim_{x \to -\infty} \left(f_n(x) - \pi x \right) &= \lim_{x \to 0^-} \left(f_n\left(\frac{1}{x}\right) - \frac{\pi}{x} \right) \\ &= \lim_{x \to 0^-} \frac{-\frac{\pi}{2} - \arctan\frac{n}{x}}{x} \\ &\stackrel{H}{=} \lim_{x \to 0^-} \left((-1) \frac{-n}{x^2} \frac{1}{1 + \frac{n^2}{x^2}} \right) \\ &= \lim_{x \to 0^-} \frac{n}{n^2 + x^2} = \frac{1}{n} \end{split}$$

gdzie aby użyć reguły de l'Hôpitala powinniśmy zauważyć, że $\arctan\frac{n}{x}\to -\frac{\pi}{2}$ przy $x\to 0^-$.

Teraz jednak mamy, że oznaczając funkcję $f(x) = \begin{cases} 0 & x \geqslant 0 \\ \pi x & x < 0 \end{cases}$ widzimy, że $||f(x) - f_n(x)|| = \frac{1}{n}$, zatem istotnie $f_n \Rightarrow f$.

Zadanie 3

Udowodnię warunek Cauchy'ego dla tego szeregu. Ustalmy dowolne $\epsilon>0$. Niech N będzie takie, że $\frac{1}{N}(2+\frac{\pi^2}{3})<\epsilon$. Dla $N< n\leqslant m$ mamy, że

$$\begin{split} \left| \sum_{k=n}^m \frac{1}{k(1+(x-k)^2)} \right| &\leqslant \left| \sum_{k=n}^m \frac{1}{N(1+(x-k)^2)} \right| \\ &\leqslant \sum_{k=n}^m \left| \frac{1}{N(1+(x-k)^2)} \right| \\ &\leqslant \frac{1}{N} \cdot 2 \sum_{l=0}^m \frac{1}{1+l^2} \\ &\leqslant \frac{1}{N} \cdot 2 \left(1 + \sum_{l=1}^m \frac{1}{l^2} \right) \\ &\leqslant \frac{1}{N} \cdot 2 \left(1 + \sum_{l=1}^\infty \frac{1}{l^2} \right) \\ &\leqslant \frac{1}{N} \cdot 2 \cdot \left(1 + \frac{\pi^2}{6} \right) < \epsilon \end{split}$$

gdzie przejście z drugiej do trzeciej linii polega na szacowaniu każdego ułamka z osobna: są conajwyżej dwa ułamki w rozważanej sumie, dla których $l \leq |x-k| < l+1$, można je szacować z góry przez $\frac{1}{1+l^2}$. Stąd ten szereg jest zbieżny jednostajnie.

Zadanie 4

Oznaczmy $f_n(x) = \frac{1}{1+n^2x}$. Udowodnię indukcyjnie, że $f_n^{(m)}(x) = (-1)^m \frac{m!n^{2m}}{(1+n^2x)^{m+1}}$. Istotnie, jest to prawda dla $f_n^{(0)}(x) = f_n(x)$. Teraz mamy $\left(f_n^{(m)}(x)\right)' = \left((-1)^m \frac{m!n^{2m}}{(1+n^2x)^{m+1}}\right)' = (-1)^m \frac{m!n^{2m}(-1)(m+1)n^2}{(1+n^2x)^{m+2}}$ $(-1)^{m+1} \frac{(m+1)!n^{2m+2}}{(1+n^2x)^{m+2}}$, stąd istotnie powyższy wzór na pochodną jest poprawny dla każdego m.

Udowodnię, że $\sum_{n=1}^{\infty} f_n^{(m)}$ jest zbieżny jednostajnie na dowolnym przedziale $[R, +\infty)$. Mamy, że $f_n^{(m)}$ jest monotoniczna, oraz przy $x \to \infty$ dąży do zera, zatem maksimum modułu jest osiągane w punkcie x = R.

Mamy jednak, że szereg liczbowy $\sum_{n=1}^{\infty} f_n^{(m)}(R)$ jest zbieżny bezwzględnie, przez asymptotyczne kryterium porównawcze z szeregiem $\sum \frac{1}{n^2}$. Zatem kryterium Weierstraßa daje, że szereg $\sum_{n=1}^{\infty} f_n^{(m)}$ jest zbieżny jednostajnie na $[R,\infty)$.

nr albumu: 347208 str. 3/3 Seria: 5

Ustalmy dowolne $x_0 \in (0,+\infty)$. Na przedziale $[\frac{x_0}{2},\infty)$ szereg pochodnych dowolnego (w tym zerowego) rzędu funkcji z zadania jest zbieżny jednostajnie, a więc także punktowo, zatem uzyskujemy, że dowolny z tych szeregów zadaje funkcję różniczkowalną. Stąd $f \in C^{\infty}\left([\frac{x_0}{2},+\infty)\right)$, zatem jest gładka w otoczeniu punktu x_0 . Zatem $f \in C^{\infty}\left((0,+\infty)\right)$.

Zadanie 5

Zbieżność szeregu $\sum\limits_{n=1}^{\infty}a_nx^n$ na |x|<1 jest oczywista. Istotnie, dla |x|<1 szereg $\sum\limits_{n=1}^{\infty}|b_nx^n|$ jest zbieżny, a ma wyrazy nieujemne, zatem używając asymptotycznego kryterium porównawczego uzyskujemy łatwo zbieżność szeregu $\sum\limits_{n=1}^{\infty}|a_nx^n|$, skąd uzyskujemy, że i szereg określający funkcję f(x) jest zbieżny dla |x|<1.

Niech $g = \liminf_{x \to 1^-} \frac{f(x)}{g(x)}$. Przypuśćmy, że $g < \liminf_{n \to \infty} \frac{\alpha_n}{b_n}$. To oznacza, że dla $\lim_{n \to \infty} \inf_{m \geqslant n} \frac{\alpha_m}{b_m} > g$. Niech $M \in (g, \lim_{n \to \infty} \inf_{m \geqslant n} \frac{\alpha_m}{b_m})$. Wiemy, że dla dostatecznie dużych n (tj. $n > n_0$) zachodzi nierówność $\inf_{m \geqslant n} \frac{\alpha_m}{b_m} > M$, zatem dla $m \geqslant n_0$ zachodzi $\alpha_m > Mb_M$ (na mocy dodatniości b_m).

Mamy jednak

$$\begin{split} g &= \underset{x \to 1^{-}}{\lim\inf} \frac{f(x)}{g(x)} = \underset{x \to 1^{-}}{\lim\inf} \frac{\sum\limits_{n=1}^{\infty} a_{n} x^{n}}{\sum\limits_{n=1}^{\infty} b_{n} x^{n}} = \underset{x \to 1^{-}}{\lim\inf} \left(\frac{\sum\limits_{n=1}^{n_{0}} a_{n} x^{n}}{\sum\limits_{n=1}^{\infty} b_{n} x^{n}} + \frac{\sum\limits_{n=n_{0}+1}^{\infty} a_{n} x^{n}}{\sum\limits_{n=1}^{\infty} b_{n} x^{n}} \right) \\ &= \underset{x \to 1^{-}}{\lim} \left(\frac{\sum\limits_{n=1}^{n_{0}} a_{n} x^{n}}{\sum\limits_{n=1}^{\infty} b_{n} x^{n}} \right) + \underset{x \to 1^{-}}{\lim\inf} \left(\frac{\sum\limits_{n=n_{0}+1}^{\infty} a_{n} x^{n}}{\sum\limits_{n=1}^{\infty} b_{n} x^{n}} \right) \geqslant 0 + \underset{x \to 1^{-}}{\lim\inf} \left(\frac{\sum\limits_{n=n_{0}+1}^{\infty} M b_{n} x^{n}}{\sum\limits_{n=1}^{\infty} b_{n} x^{n}} \right) \\ &= M \end{split}$$

Gdyż $\lim_{x\to 1^-} \frac{\sum_{n=1}^{n_0} a_n x^n}{\sum_{n=1}^{\infty} b_n x^n} = 0$, gdyż licznik jest ograniczony, zaś mianownik dąży do nieskończoności (z założenia

$$\sum b_n = \infty), \text{ zaś } \lim_{x \to 1^-} \left(\frac{\sum\limits_{n=n_0+1}^{\infty} M b_n x^n}{\sum\limits_{n=1}^{\infty} b_n x^n} \right) = M, \text{ gdyż licznik jest M-krotnością mianownika (który dąży do$$

nieskończoności) pomniejszonego o stałą (tj. o $\sum_{n=1}^{n_0} b_n x^n$). Otrzymaliśmy $g \geqslant M$, zatem uzyskujemy sprzeczność, bo q < M z założenia.

bo g < M z założenia. Nierówność $\liminf_{x\to 1^-} \frac{f(x)}{g(x)} \leqslant \limsup_{x\to 1^-} \frac{f(x)}{g(x)}$ jest oczywista.

Nierówność $\limsup_{x\to 1^-}\frac{f(x)}{g(x)}\leqslant \limsup_{n\to\infty}\frac{\alpha_n}{b_n}$ dowodzi się analogicznie jak $\liminf_{x\to 1^-}\frac{f(x)}{g(x)}\geqslant \liminf_{n\to\infty}\frac{\alpha_n}{b_n}$, tj. niewprost zakładamy, że $g:=\limsup_{x\to 1^-}\frac{f(x)}{g(x)}>\limsup_{n\to\infty}\frac{\alpha_n}{b_n}$, skąd biorąc $M\in(\limsup_{n\to\infty}\frac{\alpha_n}{b_n},g)$ uzyskujemy łatwo, że dla $m>m_0$ zachodzi $\alpha_m< Mb_m$, i powtarzając rachunek uzyskujemy $g\leqslant M$, co jest sprzecznością.