8.1 Quantization and Huffman coding

8.1.1 Use a 5-level uniform scalar quantizer as shown to quantize the sample sequence $\{0.25, -1.10, -0.15, 2.35, -1.40, 0.10, 0.90, -0.05\}$. Provide the output sequence.

[I]
$$\{-\infty, -1.5\} = -2.0$$

[II] $\{-1.5, -0.5\} = -1.0$
[III] $\{-0.5, 0.5\} = 0.0$
[IV] $\{0.5, 1.5\} = 1.0$
[V] $\{1.5, \infty\} = 2.0$

For {0.25, -1.10, -0.15, 2.35, -1.40, 0.10, 0.90, -0.05}

Output:

 $\{0.0, -1.0, 0.0, 2.0, -1.0, 0.0, 1.0, 0.0\}$

8.1.2 Design the best fixed-length code for the outputs of this quantizer, i.e. for an alphabet $A=\{2.0, 1.0, 0.0, -1.0, -2.0\}$. Then encode the quantization output sequence from 8.1.1 using this code.

For Alphabet A (Assign Values):

 $2.0 \to 001$ $1.0 \to 010$ $0.0 \to 011$ $-1.0 \to 100$ $-2.0 \to 101$

Output:

 $\{011,\,100,\,011,\,001,\,100,\,011,\,010,\,011\}$

8.1.3 Design a Huffman code for the same alphabet $A = \{2.0, 1.0, 0.0, -1.0, -2.0\}$ assuming the probabilities P(2.0)=0.15, P(1.0)=0.20, P(0.0)=0.40, P(-1.0)=0.15, P(-2.0)=0.10. Then encode the quantization output sequence from 8.1.1 using this code.

2.0	001
1.0	000
0.0	1
-1.0	010
-2.0	011

Output:

{1, 010, 1, 001, 010, 1, 000, 1}

8.2 Differential Coding (assuming there is no quantization or coding error, i.e. $\hat{x}[n] = x[n]$)

8.2.1 Use differential coding with the predictor $\tilde{x}[n] = \hat{x}[n-1]$ to encode the sequence 10 11 12 11 12 13 12 11

$$x[0] = 10$$

 $x[1] = 11 - 10 = 1$ $x[2] = 12 - 11 = 1$ $x[3] = 11 - 12 = -1$
 $x[4] = 12 - 11 = 1$ $x[5] = 13 - 12 = 1$ $x[6] = 12 - 13 = -1$
 $x[7] = 11 - 12 = -1$

Output:

{10, 1, 1, -1, 1, 1, -1, -1}

8.2.2 Use the same predictor to encode another sequence 10 -10 8 -7 8 -8 7 -7

$$x[0] = 10$$

 $x[1] = -10 - 10 = -20$ $x[2] = 8 - (-10) = 18$ $x[3] = -7 - 8 = -15$
 $x[4] = 8 - (-7) = 15$ $x[5] = -8 - 8 = -16$ $x[6] = 7 - (-8) = 15$
 $x[7] = -7 - 7 = -14$

Output:

{10, -20, 18, -15, 15, -16, 15, -14}

8.2.3 Find a better linear predictor for this second sequence in 8.2.2.and perform the differential coding again. (Hint: your objective is to make sure the coded sequence has generally low amplitudes.)

$$\hat{x}[n] = a_1(x[n-1]) = \frac{x[n-1]}{10}$$

$$x[0] = 10/10 = 1$$

$$x[1] = -10 - 10 = -20/10 = -2$$

$$x[3] = -7 - 8 = round(-15/10) = 2$$

$$x[5] = -8 - 8 = round(-16/10) = -2$$

$$x[6] = 7 - (-8) = round(15/10) = 2$$

$$x[7] = -7 - 7 = round(-14/10) = -1$$

Output:

{1, -2, 2, -2, 2, -2, 2, -1}

- **8.3** In a JPEG image coder, after the DCT, quantization and zig-zag scanning, all the AC coefficients are coded through a run-length coding. This run-length coding is defined as pairs of (zero-run, amplitude), where the amplitude is a non-zero coefficient and the zero-run is the number of zeros prior to this non-zero coefficient. At a certain point when there is no more non-zero coefficient in the block, a symbol EOB (end-of-block) is coded.
 - 1. Now open image "lenna.256" in Matlab and process the first 8×8 block and name it x1:

```
fid=fopen('lenna.256','r');
x=fread(fid,[256,256],'uchar');
fclose(fid);
x1=x(1:8,1:8);
```

- 2. apply 2D DCT on this block use "dct2" function (in Matlab);
- 3. apply the quantization table Q on page 8 of Lecture 10 (in Matlab);
- 4. perform zig-zag scan and generate the run-length pairs (by hand);
- 5. Repeat 3 and 4 with a scaled quantization table **0.1***Q*.

Code:

```
fid=fopen("lenna.256","r");
x=fread(fid,[256,256],"uchar");
fclose(fid);
x1=x(1:8,1:8);
            [16 11 10 16 24 40 51 61;
q_mtx =
            12 12 14 19 26 58 60 55;
            14 13 16 24 40 57 69 56;
            14 17 22 29 51 87 80 62;
            18 22 37 56 68 109 103 77;
            24 35 55 64 81 104 113 92;
            49 64 78 87 103 121 120 101;
            72 92 95 98 112 100 103 99];
x2=dct2(x1);
x2a=round(x2/q_mtx);
x2b=round(x2a/(0.1*q_mtx));
diary off
```

X1:

	1	2	3	4	5	6	7	8
1	137	137	138	133	129	131	131	131
2	136	136	133	133	133	133	130	132
3	133	133	134	133	130	130	130	130
4	136	136	134	130	130	122	130	130
5	138	138	136	134	133	132	132	131
6	134	134	132	133	131	131	131	131
7	134	134	130	128	132	130	128	130
8	132	132	130	125	128	130	130	128

X2:

	1	2	3	4	5	6	7	8
1	1.0557e	14.8539	5.6554	-1.0214	-1.2500	-1.5480	-0.7189	1.1394
2	7.1983	3.1651	-1.0094	-3.7645	0.3573	1.9691	0.8567	-0.9480
3	-3.1311	-2.3714	0.5732	2.6375	-2.6692	-1.1503	2.8839	-1.1851
4	7.2608	1.2428	-0.7337	0.0421	0.0515	0.3755	0.6720	-1.8109
5	0.2500	3.6567	2.9630	-1.9652	-2.2500	1.3049	-0.6861	2.5863
6	-4.2844	2.0431	1.6565	-2.6852	1.0094	-0.1028	-1.0352	2.1821
7	-1.6796	-1.6362	-1.1161	-1.7208	-1.8710	3.1041	0.9268	-0.9581
8	3.0593	-0.0087	-1.8256	1.0916	-1.2653	0.0033	1.8997	-1.1044

X2a:

	1	2	3	4	5	6	7	8
1	106	-124	142	-77	-166	-281	669	-321
2	0	0	1	0	-1	-1	3	-1
3	0	0	0	-1	0	0	0	0
4	0	-1	1	-1	-1	-2	4	-2
5	0	1	0	0	0	0	-1	0
6	0	0	-1	1	0	1	-3	1
7	0	0	0	0	0	0	0	0
8	0	0	1	0	0	-1	1	0

X2b:

	1	2	3	4	5	6	7	8
1	-343	185	1414	-905	-1041	-1008	3038	-1510
2	-3	3	5	-4	-3	-2	7	-4
3	0	0	0	1	-2	0	2	-1
4	-2	1	8	-5	-7	-5	18	-9
5	-1	1	-2	1	2	2	-8	4
6	2	-1	-5	2	5	2	-9	5
7	0	0	0	0	0	0	0	0
8	0	0	2	-1	-2	-1	5	-3

8.4 Based on the motion compensated estimation used in MPEG, find the motion vectors, the prediction frame and the difference frame for the current frame as shown. Assume each box represents a pixel, each macro-block is of 2×2 pixels, the white boxes have value of zero (0), the gray boxes have value of one (1), and the black boxes have value of two (2).

Reference Frame

Current Frame

<u>Motion Vectors</u>									
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
0,1	-8,-1	0,0	0,0	-1,1	-1,-1	0,0	0,0		
0,-1	0,0	0,0	0,0	-1,1	-1,1	0,0	0,0		
0,0	0,0	0,0	-1,0	0,0	0,0	0,0	0,0		
0,0	0,0	0,1	0,0	0,0	0,0	0,0	0,0		
0,0	0,0	0,0	0,0	-2,0	-1,0	0,0	0,0		
0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
0,0	0,0	0,2	0,2	0,2	1,0	1,0	1,0		

Difference Frame

