Satz 3.6.4 Es seien B = (6, 62, ..., 6,) und C = (c1, c2,..., cm) Basen von V. 6zw. W. Dann wird durch (C* ((B)) (3.13) eine lineare Bijektion des Vektorraumes L(V,W) auf den Vektorraum K mxn erklärt. Es gilt dim L (V, W) = dim V dim W. (3.14) Beweis. Nach 3.4.6 liegt mit (3.13) eine Bijektion von L(V,W) auf Kmxn vor. Nux 5*+60 (8*5" Nmx1 Die Abbildung C* · f · (B*) wird nur durch die Matrix ((C* of o (B*)) (e1), (C* of o (B*) (en)) = (C*, f(B)) beschrieben. Die Abbidung C* . (B*)-1: Knx1 -> Kmx1. (B*, x) (C*, f(x)) Koordinatisiert f. Sind fifz e L (V.W) und c e K beliebig gegeben, so folgt (f, + cfz)(6;) = f, (6;) + c f2(6;) für alle ; E {1, Z, ..., n}. ... laut Definition dex Addition/Multiplikation von Funktionen. Das spiegelt sich in den Spalten der betrettenden Matrix wider, also (C*, (f, + cfz)(B)) = (C*, f, (B)) + c (C*, fz(B)). Sei & f (C*, f(B)), dann weisen wir nach, dass

q (f, + cf2) = (c*, (f, + cf2)(B)) = (c*, f, (B) + cf2(B)) = (C*, f, (B)) + c (C*, fz(B)) = q(fx) + c q(fz). Gemäß Satz 3.22 ist die Abbildung (3.13) daher linear. ... Aus dim V dim W = mn = dim K mxn ergist sich schließlich (3.14). (C*, ((B)) & K, also gilt, weil L(V,W) und Kmin wegen oben linear isomorph sind, last Satz 3.4.5, dass dim Kmxn = dim L (V, W).