Statistical Analysis of Networks

Introduction to Exponential Random Graph Models

Learning Goals

- * Understand the logic of the exponential random graph model.
- Understand the historical development of exponential random graph models.
- * Describe the properties of various types of exponential random graph models.
- * Understand the notion of "network configurations" as operationalizations of theoretical concepts.

Introduction

* So far:

- * We have been doing "descriptive statistics" with network data.
 - * Example: how are the degrees distributed in this network?

* Now:

- * We want to shift toward "inferential statistics" with network data.
 - * Example: is the distribution of degrees different from a network where ties form at random?

Introduction

New questions:

- * How do networks form?
- * What are the micro patterns that generate global structure?
- * How likely is it that we would observe these configurations if ties formed at random?

* Exponential Random Graph Models or ERGMs, provide a model (an account of what governs the formation of a network) for examining such questions.

Modeling Networks

- * Why should we care? Why not be satisfied with descriptive statistics?
 - Complexity and randomness
 - Statistical inference and hypothesis testing
 - * Global structure from local structure (micro-macro problem)

* We have an **observed network**, and want to know about the **stochastic** process by which it came about.

* Conceptual Analog:

- * Sampling from a normal distribution.
- * We don't get the **exact** same data (i.e. sample *statistics* differ from population *parameters*).
 - * But, there is some **process** generating our sample statistics (i.e. central tendency and dispersion).

 Simulate some data from a standard normal distribution and calculate the mean.

* Simulate some data from a standard normal distribution and calculate the mean.

100 random
draws from a
distribution with
a mean = 0

Sample mean = 0.108

* Simulate some data from a standard normal distribution and calculate the mean.

100 random draws from a distribution with a mean = 0

Sample mean = 0.031

* Simulate some data from a standard normal distribution and calculate the mean.

100 random draws from a distribution with a mean = 0

Sample mean = -0.053

There are data generated from the same distribution, but have different means.

- * In a similar way, we want to examine the *parameters* which generate the network we have observed.
 - * Did it come about because people:
 - * Reciprocate relationships?
 - * Nominate popular others?
 - Close triads?

What <u>pattern</u> do you see in these data?

What <u>pattern</u> do you see in these data?

Emergent Structure

* Different processes can lead to similar outcomes.

Different processes can lead to similar outcomes:

Sociality-highly active persons create clusters.

Homophily-assortative mixing by attribute creates clusters.

Transitivity-triangles create clusters.

Different processes can lead to similar outcomes:

Sociality-highly active persons create clusters.

Homophily-assortative mixing by attribute creates clusters.

Transitivity-triangles create clusters.

Different processes can lead to similar outcomes:

Sociality-highly active persons create clusters.

Homophily-assortative mixing by attribute creates clusters.

Transitivity-triangles create clusters.

What <u>pattern</u> do you see in these data?

Here, it is probably matching based on attributes.

But, we can test that hypothesis!

* Think about a triad of individuals with the same attribute...

* Think about a triad of individuals with the same attribute...

- * Think about a triad of individuals with the same attribute...
 - * Did this configuration occur because:
 - * People tend to choose friends who are like them? ("birds of a feather")
 - * People who have friends in common tend to become friends? ("friend of a friend")

Emergent Structure

- * Different processes can lead to similar outcomes.
 - * We want to be able to fit these terms simultaneously and identify the independent effects of each process on the overall outcome.

- * We can then evaluate how probable a particular network is among all possible networks that could exist on a set of actors.
 - * The observed network is only one realization from a set of possible networks with similar characteristics (think back to the sampling example).
- * Robins et al. (2007: 176)
 - * "The range of possible networks, and their probability of occurrence under the model, is represented by a *probability distribution* on the set of all possible graphs"

- * Once we have estimated the parameters of the probability distribution, we can sample graphs at random and compare their characteristics with those of the observed network.
 - * If the model is good, then sampled graphs will resemble the observed network (visually and descriptively)
 - * If this is the case, we can conjecture that the modeled structural effects could explain the emergence of the network.

- * Express the probability of observing a tie between nodes *i* and *j* given some terms (i.e. <u>network configurations</u>).
 - * A general framework for expressing different types of models.
 - * Think of each model as "theory of network dependence".
 - * We will look at four model types.

Dependence Assumptions

- * Edge independence (Bernoulii/Simple Random graphs)
 - * How likely is a tie between i and j?
 - * Erdos and Renyi (1959)
 - * The probability of a tie is the number of edges.

$$P(Y=y) = \left(\frac{1}{c}\right) exp\{\theta L(y)\}$$

Probability of a tie being observed

$$P(Y = y) = \left(\frac{1}{c}\right) exp\{\theta L(y)\}$$

Probability of a tie being observed

constant

$$P(Y = y) = \left(\frac{1}{c}\right) exp\{\theta L(y)\}$$
Normalizing

$$P(Y=y) = \begin{pmatrix} \frac{1}{c} \end{pmatrix} exp\{\theta L(y)\}$$

Note the absence of any dependence with other edges

Dependence Assumptions

- Edge independence (Bernoulii/Simple Random graphs)
 - * Assumes all ties are independent of one another.
 - * Assumes nodes do not vary in their tie propensity.
 - * Does a poor job capturing: clustering, the degree distribution(s).
 - * But, a **baseline** model: a good reference for comparing more complex models.

Dependence Assumptions

- * Dyadic independence (p1 models)
 - * How likely is a tie between i and j?
 - Holland and Leinhardt (1981)
 - * Depends on the <u>attractiveness</u> of the node, as nodes differ in their indegree.
 - * Depends on whether the tie is <u>reciprocal</u>, Did *j* send a tie to *i*?

$$P(Y = y) \propto exp\left(\mu L(y) + \sum_{i=1}^{N} \alpha_{i} y_{i+1} + \sum_{j=1}^{N} \beta_{j} y_{+j} + \rho M(y)\right)$$

Number of outgoing ties

$$P(Y=y) \propto exp \left(\mu L(y) + \sum_{i}^{N} \alpha_{i}^{\downarrow} y_{i+} + \sum_{j}^{N} \beta_{j} y_{+j} + \rho M(y)\right)$$
 Number of incoming ties

 $P(Y=y) \propto exp \left(\mu L(y) + \sum_{i}^{N} \alpha_{i}^{i} y_{i+} + \sum_{j}^{N} \beta_{j} y_{+j} + \rho M(y)\right)$ Number of Number of Number of Number of

incoming ties

$$P(Y = y) \propto exp\left(\mu L(y) + \sum_{i}^{N} \alpha_{i} y_{i+} + \sum_{j}^{N} \beta_{j} y_{+j} + \rho M(y)\right)$$

Note the absence of terms for **other** dyads.

Dependence Assumptions

- * Dyadic independence (p1 models)
 - * Assumes that two dyads are conditionally independent.
 - * A tie between *i* and *j* does not depend on a tie with *k*.
 - Does a poor job capturing transitivity in networks.

Dependence Assumptions

- * Dyadic dependence (p* models/Markov graphs)
 - * How likely is a tie between i and j?
 - Frank and Strauss (1986)
 - * Tie probability between *i* and *j* depends on ties that *i* and *j* have with others.
 - * Example: Tie between Chris and Lisa is dependent on Lisa's relationship with Ewan.
 - * Edges that do not have a node in common are conditionally independent (Markov assumption).

$$P(Y = y) = \left(\frac{1}{c}\right) exp\{\theta L(y) + \sigma_k S_k(y) + \dots + \tau T(y)\}$$

Number of *k*-star configurations in the network

$$P(Y = y) = \left(\frac{1}{c}\right) exp\{\theta L(y) + \sigma_k S_k(y) + \dots + \tau T(y)\}$$

Number of *k*-star configurations in the network

$$P(Y = y) = \left(\frac{1}{c}\right) exp\{\theta L(y) + \sigma_k S_k(y) + \dots + \tau T(y)\}$$

Number of edges in the network

Number of of triangles in the network

Configurations

2-star

3-star

Configurations

2-star 3-star Triangle

$$P(Y = y) = \left(\frac{1}{c}\right) exp\{\theta L(y) + \sigma_k S_k(y) + \dots + \tau T(y)\}$$

Counting these up, allows us to represent the dependence between the dyads.

Dependence Assumptions

- * Dyadic dependence (p* models/Markov graphs)
 - * The original formulation could not handle actor covariates.
 - * Example: Do males send more ties?
 - * The model was later extended to include actor covariates.

All dyads except i and j. $logit\left(P\bigg(Y_{ij}=1\mid n\ actors,Y_{ij}^C\bigg)\right)=\sum_{k=1}^\kappa\theta_k\delta_{z_k(y)}$

All dyads except i and j. $logit\left(P\left(Y_{ij}=1\mid n\ actors,Y_{ij}^C\right)\right)=\sum_{k=1}^{\kappa}\theta_k\delta_{z_k(y)}$

Coefficients for network statistics

Coefficients for network statistics

Looks like a **logistic** regression, right?!?

Coefficients for network statistics

Dependence Assumptions

- Dyadic dependence (p* models/Markov graphs)
 - * It is like a logistic regression, except:
 - * Change statistic is not just the value of the independent variable.
 - * Conditional statement of left-hand side of equation (logistic regression assumes independence across units).

Dependence Assumptions

* Higher-Order Dependence Models

- * p* models struggle with *degeneracy*, meaning that the networks simulated from the model do not match well with the observed network.
 - * Recent work has addressed this problem by defining more complex dependencies among dyads.
 - * Examples:
 - * Social circuit models.
 - * Geometrically weighted terms.

ERGM Theory

- * So what do we do with this?
 - * Robins and Lusher (2013: 11)
 - * "It is a theoretical and empirical task to delineate the various forms of dependence that are exhibited in actual social structures. We regard this as social network theory at a fundamental level..."
 - * "The process of theory translation requires the alignment of theoretical concepts with network configurations."

Network Configurations and Processes

- Conceptualization and Operationalization!
 - * What is happening? (Conceptualization)
 - * What would that "look like"? (Operationalization)

Configuration

Process

Friendship is reciprocated

Configuration

Mutuality

Process

Friendship is reciprocated

Configuration

Mutuality

Process

Friendship is reciprocated

Some people are very social

Configuration

Mutuality

Outdegree

Process

Friendship is reciprocated

Some people are very social

Configuration

Mutuality

Outdegree

Process

Friendship is reciprocated

Some people are very social

Some people are very popular

Configuration

Mutuality

Process

Friendship is reciprocated

Outdegree

Some people are very social

Indegree

Some people are very popular

Configuration

Process

Friends of friends become friends

Configuration

Transitivity

Process

Friends of friends become friends

Configuration

<u>Process</u>

Transitivity

Friends of friends become friends

Brokerage structures are preferred

Configuration

Process

Transitivity

Friends of friends become friends

2-path

Brokerage structures are preferred

Configuration

Process

Transitivity

Friends of friends become friends

2-path

Brokerage structures are preferred

Opposites attract

Configuration

Process

Transitivity

Friends of friends become friends

2-path

Brokerage structures are preferred

Heterophily

Opposites attract

From Lusher, Koskinen, and Robins "Exponential Random Graph Models of Social Networks: Theory, Methods, and Applications

Figure 3.3. Conceptual framework for processes of social tie formation discussed in this book.

Network Configurations and Processes

* As we work through developing a model, we want to identify the **network configurations** that capture the theoretical process we are interested in testing.

Learning Goals

- * Understand the logic of the exponential random graph model.
- Understand the historical development of exponential random graph models.
- * Describe the properties of various types of exponential random graph models.
- * Understand the notion of "network configurations" as operationalizations of theoretical concepts.

Questions?