

Analog IC Design

Lecture 20 Common-Mode Feedback (CMFB)

Dr. Hesham A. Omran

Integrated Circuits Laboratory (ICL)
Electronics and Communications Eng. Dept.
Faculty of Engineering
Ain Shams University

Outline

- ☐ Well-defined and Ill-defined output level
- ☐ Common-mode feedback (CMFB) loop
- Discrete-time CMFB
- CMFB loop practical aspects and examples
- ☐ Fully-differential OTA simulation example

Outline

- Well-defined and Ill-defined output level
- ☐ Common-mode feedback (CMFB) loop
- Discrete-time CMFB
- CMFB loop practical aspects and examples
- ☐ Fully-differential OTA simulation example

Well-Defined Output Level

III-Defined Output Level

Is This Output Well-Defined?

Is This Output Well-Defined?

Well-Defined CM Level

III-Defined CM Level

- \square Mismatches ALWAYS create a finite error between $I_{D3,4}$ and $I_{SS}/2$
- $\Box I_{D3,4} > I_{SS}/2$
 - $V_{out1,2}$ rise $\rightarrow I_{D3,4}$ fall to $I_{SS}/2 \rightarrow$ M3 and M4 enter triode
- $\Box I_{D3,4} < I_{SS}/2$
 - $V_{out1,2}$ fall $\rightarrow I_{SS}/2$ fall to $I_{D3,4} \rightarrow$ M1, M2, and M5 enter triode

Why Fully Differential Circuits

- ☐ Fully differential vs diff input SE output
 - Larger output swing
 - No mirror poles (higher speed)
 - Better CMRR and PSRR
 - Better SNR
 - Better linearity (lower distortion)
 - Easy to analyze!
- ☐ But common-mode feedback (CMFB) circuit is required...

Outline

- ☐ Well-defined and Ill-defined output level
- ☐ Common-mode feedback (CMFB) loop
- Discrete-time CMFB
- CMFB loop practical aspects and examples
- ☐ Fully-differential OTA simulation example

Common-Mode Feedback (CMFB)

- ☐ Negative FB system
 - 1. Sense CM level
 - 2. Compare it to a reference
 - 3. Return the error to the bias circuit

CM Sensing: Resistive Sensing

- ☐ Small R will degrade the gain
- ☐ Large R occupies large area and has large parasitic capacitors
 - May degrade the CMFB loop stability!

CMFB Loop Example

- Resistive sensing
- The feedback network forces the CM level of Vout1 and Vout2 to approach VREF

CMFB Loop Example

- ☐ Resistive sensing
- ☐ The feedback network forces the CM level of Vout1 and Vout2 to approach VREF

CM Sensing: Source Followers

- ☐ The CD stage introduces DC shift
 - Should be considered in the comparison step

CM Sensing: Source Followers

- ☐ If Vout2 > Vout1
 - I_1 must sink both $I_X \approx (Vout2 Vout1)/(R1 + R2)$ and I_{D7} .
 - If (R1 + R2) or I_1 are not sufficiently large: I_{D7} drops to zero
- \square Large $R_{1,2}$: more area and more capacitance
- \square Large $I_{1,2}$: more power consumption

CM Sensing: Source Followers

Output swing is reduced

• Without CMFB: $V_{out,min} = V_{ov3} + V_{ov5}$

• With CMFB: $V_{out,min} = V_{TH} + V_{ov7} + V_{I1}$

Continuous Time CMFB Summary

- ☐ Resistive sensing → Low voltage gain
- ☐ Source followers → Limited linear range and high power
- Other techniques exist
 - But also suffer from limited linear range
- ☐ Designing continuous-time (CT) CMFB circuits that are both linear and operate with low power-supply voltages is not an easy task
 - It is an area of continuing research!

Outline

- ☐ Well-defined and Ill-defined output level
- ☐ Common-mode feedback (CMFB) loop
- Discrete-time CMFB
- CMFB loop practical aspects and examples
- ☐ Fully-differential OTA simulation example

Discrete Time CMFB

- Another popular CMFB technique is discrete-time switched-capacitor CMFB
 - Uses switches and capacitors
 - The circuit must be refreshed periodically
 - Suitable for discrete-time switched-capacitor circuits

Switched-Capacitor CMFB

- ☐ Reset phase: S1, S4, and S5 close
 - Capacitor charged: $V_C = V_{CM} V_{GS6}$
- ☐ Amplification phase: S2 and S3 close
 - $V_{outCM} = V_C + V_{GS5} = V_{CM} V_{GS6} + V_{GS5} \approx V_{CM}$

Outline

- ☐ Well-defined and Ill-defined output level
- ☐ Common-mode feedback (CMFB) loop
- Discrete-time CMFB
- CMFB loop practical aspects and examples
- ☐ Fully-differential OTA simulation example

CMFB Loop Practical Aspects

- ☐ CMFB loop must be carefully analyzed
 - Draw small-signal model (use half-circuit principle)
 - Find LG, GX, PM, etc.
- We don't need high DC LG for CMFB loop (why?)
- Ideally CMFB loop BW should be close to differential loop BW
 - Recover quickly from CM disturbance (e.g., supply and coupling noise)
 - But this means high power consumption
- Practically set CMFB bandwidth to 30% of differential loop BW
 - For $10\tau_{diff}$ of differential settling, CM loop will have $3\tau_{CM}$
 - $\sim 95\%$ of CM disturbance is removed

CMFB Loop Capacitive Loading

- lacksquare Single-stage OTAs are compensated by large C_L
- \Box The same C_L can be used to compensate the CMFB loop
- ☐ CAUTION: The differential and CM capacitive loading are not necessarily the same!

CMFB Loop Example

☐ Typically the CMFB loop tunes 20% of the tail current (Mx)

$$LG_{o,CM} \approx \frac{1}{2} \times g_{mx} \times r_{op1} \times \frac{g_{mp2}}{g_{mx}} \times \frac{1}{2}$$

$$\omega_{u,CM} \approx LG_{o,CM} \times \frac{1}{r_{op1}C_L}$$

CMFB Loop Example

- Error amplifier replaced by a wire
- $oldsymbol{\square}$ V_{CM} pinned to $V_{DD}-V_{GS2}$
- lacktriangle Max pk-to-pk diff swing $\sim 4V_T$

$$LG_{o,CM} \approx g_{m2}r_{o2}$$

$$LG_{o,diff} \approx g_{m1}(r_{o1}||r_{o2}||R)$$

$$\omega_{u,CM} \approx LG_{o,CM} \times \frac{1}{r_{o2}C_L} = \frac{g_{m2}}{C_L}$$

$$\omega_{u,diff} \approx LG_{o,diff} \times \frac{1}{(r_{o1}||r_{o2}||R)C_L} = \frac{g_{m1}}{C_L}$$

$$\omega_{p2,cm} \approx \frac{1}{RC_{gg2}}$$

Outline

- ☐ Well-defined and Ill-defined output level
- ☐ Common-mode feedback (CMFB) loop
- Discrete-time CMFB
- CMFB loop practical aspects and examples
- ☐ Fully-differential OTA simulation example

Fully-Differential OTA

- \square Typically M9 carries 80% of $I_{SS} \rightarrow$ CMFB tunes 20% in MT
- Capture large signal effects on differential and CMFB loop stability
 - Place the OTA in a closed-loop feedback system
 - Apply differential pulses (transient analysis)

Stability Analysis: Step Response

- ☐ The CMFB loop is unstable!
 - Requires compensation

CMFB Loop Gain

- ☐ Hand analysis: Break the loop to analyze the CMFB loop gain
- ☐ Simulation: Better to use STB analysis (loading and bilateral effects considered)

Stability Analysis: LG

□ PM = -10°

CMFB Loop Compensation

- ☐ Add 3pF to the error amplifier output
 - Not the best design decision...

20: CMFB [Razavi, 2017]

34

CMFB Loop Compensation

□ PM = 50°

20: CMFB [Razavi, 2017]

35

Stability Analysis: Step Response

- ☐ CMFB loop is stable
 - But the CMFB loop is not fast enough
- ☐ But there is differential ringing
 - The differential loop PM is not sufficient

20: CMFB [Razavi, 2017]

36

Differential Loop Compensation

- ☐ The feedback resistance and the OTA input cap add a pole
- Fixed by adding small cap parallel with the large feedback resistance
 - Usually required when using large feedback resistance

Stability Analysis: Step Response

- Differential ringing disappeared
 - But the CMFB loop is not fast enough

Thank you!

References

- ☐ B. Razavi, "Design of Analog CMOS Integrated Circuits," McGraw-Hill, 2nd ed., 2017.
- T. C. Carusone, D. Johns, and K. W. Martin, "Analog Integrated Circuit Design," 2nd ed., Wiley, 2012.
- ☐ B. Murmann, EE214 Course Reader, Stanford University.
- N. Krishnapura, EE539 Course Reader, IITM.