Sesi Tutor Dengan Baldi

Author: Tata & Dhika

Baldi merupakan guru yang baik hati, ia ingin mengevaluasi kemampuanmu dalam mengimplementasi teknik rekursif pada suatu permasalahan matematika ke dalam kodingan. Berikut adalah permasalahan matematika yang ingin diimplementasikan:

$$F(X,N) = f(x + g(x + f(x + g(x + f(x + ...)))))$$

Fungsi terdalam adalah f(x), sebagai contoh apabila jumlah fungsinya (N) ditentukan:

Jika N = 3,
$$f(x + g(x + f(x)))$$

Jika N = 4, $g(x + f(x + g(x + f(x))))$

Dengan trik tambahan yakni untuk setiap fungsi memiliki rumusnya masing-masing:

$$f(x) = \begin{cases} \frac{1}{2}x, & \text{if } x \text{ is even} \\ 2x, & \text{if } x \text{ is odd} \end{cases} g(x) = \begin{cases} x+2, & \text{if } x \text{ is even} \\ x-2, & \text{if } x \text{ is odd} \end{cases}$$

Selesaikan permasalahan menggunakan **REKURSIF**, jika tidak maka baldi akan marah!

Input

Terdapat dua buah integer X dan N yang secara berurutan menentukan nilai dari x dan jumlah fungsi yang terdapat pada permasalahan.

Output

Sebuah integer hasil dari F(X,N)

Constraint

$$-2^{31} < X < 2^{31}$$
$$1 \le N \le 1000$$

Sample

Input

1 5

Output

10

Explanation

Initial	Proses	Result
f(x+g(x+f(x+g(x+f(x)))))	substitusi $x \rightarrow 1$	f(1+g(1+f(1+g(1+f(1)))))
f(1+g(1+f(1+g(1+f(1)))))	f(1) = 2 (1 ganjil maka return $2*x$)	f(1+g(1+f(1+g(1+2))))
f(1+g(1+f(1+g(3))))	g(3) = 1 (3 ganjil maka return x-2)	f(1+g(1+f(1+1)))
f(1+g(1+f(2)))	f(2) = 1 (2 genap maka return ½ x)	f(1+g(1+1))
f(1+g(2))	g(2) = 4 (2 genap maka return x+2)	f(1+4)
f(5)	f(5) = 10 (5 ganjil maka return 2*x)	10

Tutor Session With Baldi

Author: Tata & Dhika

Baldi is a kind-hearted teacher, and he wants to evaluate your ability to implement recursive techniques on a mathematical problem into code. Below is the mathematical problem he wants you to implement:

$$F(X,N) = f(x + g(x + f(x + g(x + f(x +)))))$$

The innermost function is f(x). For example, when the total number of functions (N) is given:

If N = 3,
$$f(x + g(x + f(x)))$$

If N = 4, $g(x + f(x + g(x + f(x))))$

With an additional trick, where each function has its own formula:

$$f(x) = \begin{cases} \frac{1}{2}x, & \text{if } x \text{ is even} \\ 2x, & \text{if } x \text{ is odd} \end{cases} g(x) = \begin{cases} x+2, & \text{if } x \text{ is even} \\ x-2, & \text{if } x \text{ is odd} \end{cases}$$

Solve the problem using **RECURSION**, otherwise Baldi will be angry!

Input

There are two integers X and N, which sequentially determine the value of x and the number of functions in the problem.

Output

An integer from the result of F(X,N)

Constraint

$$-2^{31} < X < 2^{31}$$
$$1 \le N \le 1000$$

Sample

Input

1 5

Output

10

Explanation

Initial	Proses	Result
f(x+g(x+f(x+g(x+f(x)))))	Substitute $x \rightarrow 1$	f(1+g(1+f(1+g(1+f(1))))
f(1+g(1+f(1+g(1+f(1))))	f(1) = 2 (1 is odd, so return 2*x)	f(1+g(1+f(1+g(1+2)))
f(1+g(1+f(1+g(3)))	g(3) = 1 (3 is odd, so return x-2)	f(1+g(1+f(1+1))
f(1+g(1+f(2))	$f(2) = 1$ (2 is even, so return $\frac{1}{2}x$)	f(1+g(1+1))
f(1+g(2))	g(2) = 4 (2 is even, so return x+2)	f(1+4)
f(5)	f(5) = 10 (5 is odd, so return 2*x)	10