2.9

1) Montrons que
$$u_{n+1} - u_n \ge 0$$
 pour tout $n \in \mathbb{N}$.

$$u_{n+1} - u_n = \frac{2(n+1)-7}{3(n+1)+2} - \frac{2n-7}{3n+2} = \frac{2n-5}{3n+5} - \frac{2n-7}{3n+2}$$

$$= \frac{(2n-5)(3n+2) - (2n-7)(3n+5)}{(3n+5)(3n+2)}$$

$$= \frac{(6n^2 - 11n - 10) - (6n^2 - 11n - 35)}{(3n+5)(3n+2)}$$

$$= \frac{25}{(3n+5)(3n+2)} \ge 0$$

En effet, si $n \ge 1$, alors on a $3n \ge 3$, d'où suivent :

- (a) $3n + 5 \ge 8 > 0$
- (b) $3n + 2 \ge 5 > 0$

La suite $(u_n)_{n\in\mathbb{N}}$ est donc bien croissante.

2) Pour prouver que 1 est un majorant de la suite $(u_n)_{n\in\mathbb{N}}$, il faut montrer que, pour tout $n \in \mathbb{N}$, on a $u_n \leq 1$, c'est-à-dire $1 - u_n \geq 0$.

$$1 - u_n = 1 - \frac{2n - 7}{3n + 2} = \frac{(3n + 2) - (2n - 7)}{3n + 2} = \frac{n + 9}{3n + 2} \ge 0$$

En effet, $n \ge 1$ implique

- (a) $n+9 \ge 10 \ge 0$
- (b) $3n \ge 3$ et $3n + 2 \ge 5 > 0$