

IIC1253 — Matemáticas Discretas — 1' 2018

PAUTA TAREA 1

Pregunta 1

Pregunta 1.1

La afirmación es verdadera. Para cualquier β que se haya usado se debía demostrar que:

- \blacksquare β es no trivial.
- $\{\alpha_1, ..., \alpha_n, \beta\} \models \alpha$

Por ejemplo, podemos tomar $\beta = \neg \alpha_1$. Tenemos que β es no trivial porque al ser la negación de una fórmula no trivial, existen valuaciones que hacen que tome el valor verdadero o falso, respectivamente. Vemos que $\{\alpha_1,...,\alpha_n,\beta\} = \{\alpha_1,...,\alpha_n,\neg\alpha_1\}$ se vuelve insatisfacible ya que no existe ninguna valuación que haga α_1 y $\neg \alpha_1$ verdadero simultáneamente. Luego, como las premisas nunca son verdaderas simultáneamente, se cumple la consecuencia lógica siempre.

Dado lo anterior, el puntaje asignado es el siguiente:

- (4 puntos) Demostración correcta y clara.
- (3 puntos) Demostración con pequeños errores u omisiones.
- (0 puntos) Otros casos.

Pregunta 1.2

La afirmación es falsa. Como contraejemplo podemos tomar el conjunto de premisas $\{\alpha_1,...,\alpha_n\} = \{p\}$ y $\alpha = \neg p$. Ahora debemos demostrar que para cualquier fórmula β no-trivial con $\neg p \lor \beta$ no-trivial se tiene $\{\alpha_1,...,\alpha_n\} \not\models \neg p \lor \beta$. Supongamos que β tiene la forma $\beta(p,q_1,...,q_m)$ y p toma el valor verdadero, que es cuando $\neg p \lor \beta$ debería cumplirse por la consecuencia lógica. Entonces podemos distinguir dos casos:

- Si existe una valuación $v_1, ..., v_m$ que hace $\beta(1, v_1, ..., v_m) = 0$, entonces de forma directa $\{p\} \not\models \neg p \lor \beta$, ya que para $p = 1, q_1 = v_1, ..., q_m = v_m$ las premisas se cumplen y la conclusión no.
- Si no existe tal valuación, entonces se tiene que para toda valuación $v_1, ..., v_m$ se cumple $\beta(1, v_1, ..., v_m) = 1$ y por lo tanto para toda valuación $v, v_1, ..., v_m$ se tiene $(\neg p \lor \beta)(v, v_1, ..., v_m) = 1$. Es fácil ver que en este caso $\neg p \lor \beta$ resulta ser una tautología, lo cual implica que $(\neg p \lor \beta)$ es trivial y, por lo tanto, β no cumple las propiedades solicitadas.

Por lo tanto, no es posible encontrar un β no-trivial con $(\neg p \lor \beta)$ no-trivial para este caso.

Dado lo anterior, el puntaje asignado es el siguiente:

- (4 puntos) Contraejemplo correcto y demostración/explicación correcta y clara.
- (3 puntos) Contraejemplo correcto y explicación con pequeños errores o deficiente.
- (0 puntos) Otros casos.

Pregunta 2

Pregunta 2.1

La solución consistía en evaluar exhaustivamente por casos las distintas valuaciones para α_1 y α_2 y comprobar que se cumple la condición de monotonía en la disyunción y conjunción de estas. Es decir, tomar cada par de valuaciones v_1 y v_2 que cumplan $v_1 \leq v_2$ y luego evaluar si $(\alpha_1 \vee \alpha_2)(v_1) \leq (\alpha_1 \vee \alpha_2)(v_2)$ para cada caso.

Dado lo anterior, el puntaje asignado es el siguiente:

- (4 puntos) Por demostrar la condición de monotonía para cada caso.
- (3 puntos) Por demostrar la condición de monotonía para varios casos, pero no todos.
- (0 puntos) En otro caso

Pregunta 2.2

La solución consistía en construir una $\{\lor, \land\}$ -fórmula α' equivalente a una fórmula monótona α . La construcción es similar a la de una fórmula en CNF, específicamente, a partir de α monótona se define:

$$\alpha' := \bigvee_{\bar{v}: \alpha(\bar{v}) = 1} \bigwedge_{p: \bar{v}(p) = 1} p$$

Por otra parte, también debía considerarse el caso borde en que α era una contradicción, para lo cual se define $\alpha' := 0$. Finalmente, debía demostrarse que $\alpha \equiv \alpha'$ usando el hecho que α era monótona.

Dado lo anterior, el puntaje asignado es el siguiente:

- (4 puntos) Por haber construido α' correctamente y haber demostrado la equivalencia lógica.
- (3 puntos) Por haber construido α' correctamente y haber explicado dicha construcción, sin demostrar formalmente la equivalencia con α .
- (0 puntos) Por solo escribir α' sin explicar la construcción ni demostrar la equivalencia con α u otros casos.