

SEQUENCE LISTING

<110>		ersity of M N, James E.	Maryland, Ba	altimore			
<120>	USE C	OF CLYA HEM	OLYSIN FOR	EXCRETION (OF PROTEINS		
<130>	A8461	-					
<140> <141>		93,292 -11-23					
<150> <151>)/252,516 -11-22					
<160>	28						
<170>	Pater	ntIn versio	on 3.3				
<210> <211> <212> <213>	1 6271 DNA Artif	ficial Sequ	ience				
<220> <223>	pSEC8	34 Expressi	on Plasmid				
<400> gaattct	1 tgtg g	gtagcacaga	ataatgaaaa	gtgtgtaaag	aagggtaaaa	aaaaccgaat	60
gcgaggo	catc c	ggttgaaat	aggggtaaac	agacattcag	aaatgaatga	cggtaataaa	120
taaagtt	taat g	gatgatagcg	ggagttattc	tagttgcgag	tgaaggtttt	gttttgacat	180
tcagtgo	ctgt c	caaatactta	agaataagtt	attgatttta	accttgaatt	attattgctt	240
gatgtta	aggt g	cttatttcg	ccattccgca	ataatcttaa	aaagttccct	tgcatttaca	300
ttttgaa	aaca t	ctatagcga	taaatgaaac	atcttaaaag	ttttagtatc	atattcgtgt	360
tggatta	attc t	gcatttttg	gggagaatgg	acttgccgac	tgattaatga	gggttaatca	420
gtatgca	agtg g	gcataaaaaa	gcaaataaag	gcatataaca	gatcgatctt	aaacatccac	480
aggagga	atgg g	gatccaaaat	aaggaggaaa	aaaaaatgac	tagtatttt	gcagaacaaa	540
ctgtaga	aggt a	ıgttaaaagc	gcgatcgaaa	ccgcagatgg	ggcattagat	ctttataaca	600
aatacct	cga c	caggtcatc	ccctggaaga	cctttgatga	aaccataaaa	gagttaagcc	660
gttttaa	aaca g	gagtactcg	caggaagctt	ctgttttagt	tggtgatatt	aaagttttgc	720
ttatgga	acag c	caggacaag	tattttgaag	cgacacaaac	tgtttatgaa	tggtgtggtg	780
tcataac	egca a	ittactotoa	gcgtatattt	tactatttga	tgaatataat	gagaaaaag	840

900 catcagccca gaaagacatt ctcattagga tattagatga tggtgtcaag aaactgaatg aagcgcaaaa atctctcctg acaagttcac aaagtttcaa caacgcttcc ggaaaactgc 960 tggcattaga tagccagtta actaatgatt tttcggaaaa aagtagttat ttccagtcac 1020 aggtggatag aattcgtaag gaagcttatg ccggtgctgc agccggcata gtcgccggtc 1080 1140 cgtttggatt aattatttcc tattctattg ctgcgggcgt gattgaaggg aaattgattc 1200 cagaattgaa taacaggcta aaaacagtgc aaaatttctt tactagctta tcagctacag 1260 tgaaacaagc gaataaagat atcgatgcgg caaaattgaa attagccact gaaatagcag 1320 caattgggga gataaaaacg gaaaccgaaa caaccagatt ctacgttgat tatgatgatt taatgctttc tttattaaaa ggagctgcaa agaaaatgat taacacctgt aatgaatacc 1380 aacaacgtca tggtaagaag acgetttteg aggtteetga egtegetage tgataaceta 1440 1500 gggccagcaa aaggccagga accgtaaaaa ggccgcgttg ctggcgtttt tccataggct 1560 ccgccccct gacgagcatc acaaaaatcg acgctcaagt cagaggtggc gaaacccgac 1620 aggactataa agataccagg cgtttccccc tggaagctcc ctcgtgcgct ctcctgttcc 1680 gaccetgeeg ettaceggat acctgteege ettteteeet tegggaageg tggegettte 1740 tcatagetea egetgtaggt ateteagtte ggtgtaggte gttegeteea agetgggetg 1800 tgtgcacgaa ccccccgttc agcccgaccg ctgcgcctta tccggtaact atcgtcttga gtccaacccg gtaagacacg acttatcgcc actggcagca gccactggta acaggattag 1860 cagagegagg tatgtaggeg gtgetacaga gttettgaag tggtggeeta actaeggeta 1920 1980 cactagaagg acagtatttg gtatctgcgc tctgctgaag ccagttacct tcggaaaaag 2040 agttggtagc tcttgatccg gcaaacaaac caccgctggt agcggtggtt tttttgtttg 2100 caagcagcag attacgcgca gaaaaaaagg atctcaagaa gatcctttga tcttttctac ggggtctgac gctcagtaga tctaaaacac taggcccaag agtttgtaga aacgcaaaaa 2160 2220 ggccatccgt caggatggcc ttctgcttaa tttgatgcct ggcagtttat ggcgggcgtc 2280 ctgcccgcca ccctccgggc cgttgcttcg caacgttcaa atccgctccc ggcggatttg 2340 tectaeteag gagagegtte acegacaaae aacagataaa aegaaaggee cagtettteg 2400 actgageett tegttttatt tgatgeetgg eagtteeeta etetegeatg gggagaeeee 2460 acactaccat cggcgctacg gcgtttcact tctgagttcg gcatggggtc aggtgggacc 2520 accgcgctac tgccgccagg caaattctgt tttatcagac cgcttctgcg ttctgattta

2580 atctgtatca ggctgaaaat cttctctcat ccgccaaaac agccaagctg gatctggcaa 2640 ategetgaat atteettttg teteegacea teaggeacet gagtegetgt etttttegtg acattcagtt cgctgcgctc acggctctgg cagtgaatgg gggtaaatgg cactacaggc 2700 gccttttatg gattcatgca aggaaactac ccataataca agaaaagccc gtcacgggct 2760 2820 teteagggeg ttttatggeg ggtetgetat gtggtgetat etgaettttt getgtteage 2880 agttcctgcc ctctgatttt ccagtctgac cacttcggat tatcccgtga caggtcattc 2940 agactggcta atgcacccag taaggcagcg gtatcatcaa caggcttacc cgtcttactg 3000 tcaaccggat ctaaaacact agcccaacct ttcatagaag gcggcggtgg aatcgaaatc 3060 tegtgatgge aggttgggeg tegettggte ggteattteg aaccecagag teeegeteag aagaactcgt caagaaggcg atagaaggcg atgcgctgcg aatcgggagc ggcgataccg 3120 3180 taaagcacga ggaagcggtc agcccattcg ccgccaagct cttcagcaat atcacgggta 3240 gccaacgcta tgtcctgata gcggtccgcc acacccagcc ggccacagtc gatgaatcca 3300 gaaaagcggc cattttccac catgatattc ggcaagcagg catcgccatg ggtcacgacg 3360 agatectege egtegggeat gegegeettg ageetggega acagttegge tggegegage 3420 ccctgatgct cttcgtccag atcatcctga tcgacaagac cggcttccat ccgagtacgt 3480 gctcgctcga tgcgatgttt cgcttggtgg tcgaatgggc aggtagccgg atcaagcgta 3540 tgcagccgcc gcattgcatc agccatgatg gatactttct cggcaggagc aaggtgagat 3600 gacaggagat cctgccccgg cacttcgccc aatagcagcc agtcccttcc cgcttcagtg acaacgtcga gcacagctgc gcaaggaacg cccgtcgtgg ccagccacga tagccgcgct 3660 3720 gcctcgtcct gcagttcatt cagggcaccg gacaggtcgg tcttgacaaa aagaaccggg 3780 cgcccctgcg ctgacagccg gaacacggcg gcatcagagc agccgattgt ctgttgtgcc cagtcatage egaatageet etecaceeaa geggeeggag aacetgegtg caateeatet 3840 tgttcaatca tgcgaaacga tcctcatcct gtctcttgat cagatcttga tcccctgcgc 3900 3960 catcagatee ttggeggeaa gaaageeate eagtttaett tgeagggett eecaacetta 4020 ccagagggcg ccccagctgg caattccggt tcgctgctag acaacatcag caaggagaaa 4080 ggggctaccg gcgaaccagc agccccttta taaaggcgct tcagtagtca gaccagcatc 4140 agtectgaaa aggegggeet gegeeegeet eeaggttget aettaeegga ttegtaagee

4200

atgaaagccg ccacctccct gtgtccgtct ctgtaacgaa tctcgcacag cgattttcgt

4260 gtcagataag tgaatatcaa cagtgtgaga cacacgatca acacacacca gacaagggaa 4320 cttcgtggta gtttcatggc cttcttctcc ttgcgcaaag cgcggtaaga ggctatcctg 4380 atgtggacta gacataggga tgcctcgtgg tggttaatga aaattaactt actacggggc tatcttcttt ctgccacaca acacggcaac aaaccacctt cacgtcatga ggcagaaagc 4440 4500 ctcaagcgcc gggcacatca tagcccatat acctgcacgc tgaccacact cactttccct gaaaataatc cgctcattca gaccgttcac gggaaatccg tgtgattgtt gccgcatcac 4560 4620 gctgcctccc ggagtttgtc tcgagcactt ttgttacccg ccaaacaaaa cccaaaaaca 4680 acccataccc aacccaataa aacaccaaaa caagacaaat aatcattgat tgatggttga 4740 4800 aaaaaaacac cataaggagt tttataaatg ttggtattca ttgatgacgg ttcaacaaac 4860 atcaaactac agtggcagga aagcgacgga acaattaaac agcacattag cccgaacagc 4920 ttcaaacgcg agtgggcagt ctcttttggt gataaaaagg tctttaacta cacactgaac 4980 ggcgaacagt attcatttga tccaatcagc ccggatgctg tagtcacaac caatatcgca 5040 tggcaataca gcgacgttaa tgtcgttgca gtgcatcacg ccttactgac cagtggtctg 5100 ccqqtaaqcq aagtqqatat tqtttqcaca cttcctctqa cagaqtatta cgacaqaaat 5160 aaccaaccca atacggaaaa tattgagcgt aagaaagcaa acttccggaa aaaaattaca 5220 ttaaatggcg gggatacatt cacaataaaa gatgtaaaaag tcatgcctga atctataccg gcaggttatg aagttctaca agaactggat gagttagatt ctttattaat tatagatctc 5280 5340 gggggcacca cattagatat ttctcaggta atggggaaat tatcggggat cagtaaaata 5400 tacggagact catctcttgg tgtctctctg gttacatctg cagtaaaaga tgccctttct 5460 cttgcgagaa caaaaggaag tagctatctt gctgacgata taatcattca cagaaaagat 5520 aataactatc tgaaqcaacq aattaatgat gagaacaaaa tatcaatagt caccgaagca 5580 atgaatgaag cacttogtaa acttgagcaa ogtgtattaa atacgotcaa tgaattttot 5640 ggttatactc atgttatggt tataggcggt ggcgcagaat taatatgcga tgcagtaaaa 5700 aaacacaca agattegtga tgaaegtttt tteaaaaeca ataaetetea atatgattta 5760 gttaacggta tgtatctcat aggtaattaa tgatggacaa gcgcagaacc attgccttca 5820 aactaaatcc agatgtaaat caaacagata aaattgtttg tgatacactg gacagtatcc cgcaagggga acgaagccgc cttaaccggg ccgcactgac ggcaggtctg gccttataca 5880

gacaagatcc	ccggacccct	ttccttttat	gtgagctgct	gacgaaagaa	accacatttt	5940
cagatatcgt	gaatatattg	agatcgctat	ttccaaaaga	gatggccgat	tttaattctt	6000
caatagtcac	tcaatcctct	tcacaacaag	agcaaaaaag	tgatgaagag	accaaaaaaa	6060
atgcgatgaa	gctaataaat	taattcaatt	attattgagt	tccctttatc	cactatcagg	6120
ctggataaag	ggaactcaat	caagttattt	tcttaccagt	cattacataa	tcgttattat	6180
gaaataatcg	tttgcactgt	ctctgttatt	caggcaattt	caataaaggc	acttgctcac	6240
gctctgtcat	tttctgaaac	tcttcatgct	g			6271

<210> 2

<211> 305

<212> PRT

<213> Salmonella typhi

<400> 2

Met Thr Ser Ile Phe Ala Glu Gln Thr Val Glu Val Val Lys Ser Ala 1 5 10 15

Ile Glu Thr Ala Asp Gly Ala Leu Asp Leu Tyr Asn Lys Tyr Leu Asp 20 25 30

Gln Val Ile Pro Trp Lys Thr Phe Asp Glu Thr Ile Lys Glu Leu Ser 35 40 45

Arg Phe Lys Gln Glu Tyr Ser Gln Glu Ala Ser Val Leu Val Gly Asp 50 55 60

Ile Lys Val Leu Leu Met Asp Ser Gln Asp Lys Tyr Phe Glu Ala Thr 65 70 75 80

Gln Thr Val Tyr Glu Trp Cys Gly Val Val Thr Gln Leu Leu Ser Ala 85 90 95

Tyr Ile Leu Leu Phe Asp Glu Tyr Asn Glu Lys Lys Ala Ser Ala Gln
100 105 110

Lys Asp Ile Leu Ile Arg Ile Leu Asp Asp Gly Val Lys Lys Leu Asn 115 120 125

Glu Ala Gln Lys Ser Leu Leu Thr Ser Ser Gln Ser Phe Asn Asn Ala 130 135 140

Ser Gly Lys Leu Leu Ala Leu Asp Ser Gln Leu Thr Asn Asp Phe Ser 145 150 155 Glu Lys Ser Ser Tyr Phe Gln Ser Gln Val Asp Arg Ile Arg Lys Glu 170 165 Ala Tyr Ala Gly Ala Ala Gly Ile Val Ala Gly Pro Phe Gly Leu 180 185 190 Ile Ile Ser Tyr Ser Ile Ala Ala Gly Val Ile Glu Gly Lys Leu Ile 195 Pro Glu Leu Asn Asn Arg Leu Lys Thr Val Gln Asn Phe Phe Thr Ser 215 Leu Ser Ala Thr Val Lys Gln Ala Asn Lys Asp Ile Asp Ala Ala Lys 230 Leu Lys Leu Ala Thr Glu Ile Ala Ala Ile Gly Glu Ile Lys Thr Glu 245 250 Thr Glu Thr Thr Arg Phe Tyr Val Asp Tyr Asp Asp Leu Met Leu Ser 260 265 270 Leu Leu Lys Gly Ala Ala Lys Lys Met Ile Asn Thr Cys Asn Glu Tyr 275 280 Gln Gln Arg His Gly Lys Lys Thr Leu Phe Glu Val Pro Asp Val Ala 290 295 Ser 305 <210> 3 <211> 102 <212> DNA <213> Artificial Sequence <220> <223> Cloning Primer <400> 3 ggatccaaaa taaggaggaa aaaaaaatga ctagtatttt tgcagaacaa actgtagagg

tagtta	aaag cgcgatcgaa a	accgcagatg	gggcattaga	tc		102
<210> <211> <212> <213>	4 101 DNA Artificial Seque	ence				
<220> <223>	Cloning Primer					
<400> cctagg	4 ttat cagctagcga (cgtcaggaac	ctcgaaaagc	gtcttcttac	catgacgttg	60
ttggta	ttca ttacaggtgt 1	taatcatttt	ctttgcagct	С		101
<210><211><211><212><212><213>	5 97 DNA Artificial Seque	ence				
<220> <223>	Cloning Primer					
<400> cacggt	5 aaga agacgctttt (cgaggttcct	gacgtcgcta	gctgataacc	taggtcatgt	60
tagaca	gctt atcatcgata a	agctttaatg	cggtagt			97
<210><211><211><212><213>	6 69 DNA Artificial Seque	ence				
<220> <223>	Cloning Primer					
<400> agatcta	6 acta gtgtcgacgc t	tagctatcag	gtcgaggtgg	cccggctcca	tgcaccgcga	60
cgcaac	gcg					69
<210><211><211><212><213>	7 60 DNA Artificial Seque	ence				
<220> <223>	Cloning Primer					
<400> actagto	7 cacc cagaaacgct o	ggtgaaagta	aaagatgctg 7/32	aagatcagtt	gggtgcacga	60

<211> 3 <212> 1	8 101 DNA Artificial Sequence	
<220> <223>	Cloning Primer	
	8 ggt tatcgatgat aagctgtcaa acatgagcta gcctaggtca ttaccaatgc	60
ttaatcag	gtg aggcacctat ctcagcgatc tgtctatttc g 1	.01
<211> 3 <212> 1	9 101 DNA Artificial Sequence	
<220> <223>	Cloning Primer	
	9 gac agatcgctga gataggtgcc tcactgatta agcattggta atgacctagg	60
ctagctca	atg tttgacagct tatcatcgat aacctttaat g 1	01
<211> 7 <212> 1	10 71 DNA Artificial Sequence	
<220> <223>	Cloning Primer	
	10 agt aaagaaacga accaaaagcc atataaggaa acatacggca tttcccatat	60
tacacgco	cat g	71
<211> 1 <212> 1	11 103 DNA Artificial Sequence	
<220> <223>	Cloning Primer	
	11 ccg cattaaagct tatcgatgat aagctgtcaa acatgacccg ggtcactatt	60
tgttaact	tgt taattgtcct tgttcaagga tgctgtcttt gac 1	.03

```
<210>
      12
<211>
      46
<212>
      DNA
<213> Artificial Sequence
<220>
<223> Cloning Primer
<400> 12
                                                                     46
tcatgtttga cagcttatca tcgataagct ttaatgcggt agttta
<210>
      13
<211>
      80
<212> DNA
<213> Artificial Sequence
<220>
<223> Cloning Primer
<400> 13
                                                                      60
gcgcagatct taatcatcca caggaggcgc tagcatgagt aaaggagaag aacttttcac
                                                                     80
tggagttgtc ccaattcttg
<210> 14
<211> 110
<212> DNA
<213> Artificial Sequence
<220>
<223> Cloning Primer
<400> 14
gtgataaact accgcattaa agcttatcga tgataagctg tcaaacatga gcgctctaga
                                                                     60
                                                                     110
actagttcat tatttgtaga gctcatccat gccatgtgta atcccagcag
<210>
      15
<211>
      94
<212> DNA
<213> Artificial Sequence
<220>
<223> Cloning Primer
<400> 15
gcgcactagt aaaaaccttg attgttgggt cgacaacgaa gaagacatcg atgttatcct
                                                                      60
                                                                      94
gaaaaagtct accattctga acttggacat caac
```

<210> <211> <212>	16 97 DNA						
<213>	Arti	ificial Sequ	ience				
<220> <223>	Clor	ning Primer					
<400>	16						60
aactac	cgca	ttaaagctta	tcgatgataa	gctgtcaaac	atgagetage	ctaggtcatt	60
agtcgt	tggt	ccaaccttca	tcggtcggaa	cgaagta			97
<210> <211> <212> <213>	17 30 DNA Arti	ificial Sequ	lence				
<220> <223>	Clor	ning Primer					
<400> cgatgc	17 ggca	aaattgaaat	tagccactga				30
<210> <211> <212> <213>		3 ificial Sequ	ience				
<220> <223>	pSEC	C84sacB vect	tor				
<400> gaattc	18 tgtg	gtagcacaga	ataatgaaaa	gtgtgtaaag	aagggtaaaa	aaaaccgaat	. 60
gcgagg	catc	cggttgaaat	aggggtaaac	agacattcag	aaatgaatga	cggtaataaa	120
taaagti	taat	gatgatagcg	ggagttattc	tagttgcgag	tgaaggtttt	gttttgacat	180
tcagtg	ctgt	caaatactta	agaataagtt	attgatttta	accttgaatt	attattgctt	240
gatgtta	aggt	gcttatttcg	ccattccgca	ataatcttaa	aaagttccct	tgcatttaca	300
ttttgaa	aaca	tctatagcga	taaatgaaac	atcttaaaag	ttttagtatc	atattcgtgt	360
tggatta	attc	tgcatttttg	gggagaatgg	acttgccgac	tgattaatga	gggttaatca	420
gtatgc	agtg	gcataaaaaa	gcaaataaag	gcatataaca	gatcgatctt	aaacatccac	480
aggagga	atgg	gatccaaaat	aaggaggaaa	aaaaaatgac	tagtatttt	gcagaacaaa	540
ctgtaga	aggt	agttaaaagc	gcgatcgaaa	ccgcagatgg	ggcattagat	ctttataaca	600
aatacc	tcga	ccaggtcatc	ccctggaaga	cctttgatga 10/32	aaccataaaa	gagttaagcc	660

gttttaaaca	ggagtactcg	caggaagctt	ctgttttagt	tggtgatatt	aaagttttgc	720
ttatggacag	ccaggacaag	tattttgaag	cgacacaaac	tgtttatgaa	tggtgtggtg	780
tcgtgacgca	attactctca	gcgtatattt	tactatttga	tgaatataat	gagaaaaaag	840
catcagccca	gaaagacatt	ctcattagga	tattagatga	tggtgtcaag	aaactgaatg	900
aagcgcaaaa	atctctcctg	acaagttcac	aaagtttcaa	caacgcttcc	ggaaaactgc	960
tggcattaga	tagccagtta	actaatgatt	tttcggaaaa	aagtagttat	ttccagtcac	1020
aggtggatag	aattcgtaag	gaagcttatg	ccggtgctgc	agccggcata	gtcgccggtc	1080
cgtttggatt	aattatttcc	tattctattg	ctgcgggcgt	gattgaaggg	aaattgattc	1140
cagaattgaa	taacaggcta	aaaacagtgc	aaaatttctt	tactagctta	tcagctacag	1200
tgaaacaagc	gaataaagat	atcgatgcgg	caaaattgaa	attagccact	gaaatagcag	1260
caattgggga	gataaaaacg	gaaaccgaaa	caaccagatt	ctacgttgat	tatgatgatt	1320
taatgctttc	tttattaaaa	ggagctgcaa	agaaaatgat	taacacctgt	aatgaatacc	1380
aacaacgtca	tggtaagaag	acgcttttcg	aggttcctga	cgtcgctagt	aaagaaacga	1440
accaaaagcc	atataaggaa	acatacggca	tttcccatat	tacacgccat	gatatgctgc	1500
aaatccctga	acagcaaaaa	aatgaaaaat	atcaagttcc	tgaattcgat	tcgtccacaa	1560
ttaaaaatat	ctcttctgca	aaaggcctgg	acgtttggga	cagetggeea	ttacaaaacg	1620
ctgacggcac	tgtcgcaaac	tatcacggct	accacatcgt	ctttgcatta	gccggagatc	1680
ctaaaaatgc	ggatgacaca	tcgatttaca	tgttctatca	aaaagtcggc	gaaacttcta	1740
ttgacagctg	gaaaaacgct	ggccgcgtct	ttaaagacag	cgacaaattc	gatgcaaatg	1800
attctatcct	aaaagaccaa	acacaagaat	ggtcaggttc	agccacattt	acatctgacg	1860
gaaaaatccg	tttattctac	actgatttct	ccggtaaaca	ttacggcaaa	caaacactga	1920
caactgcaca	agttaacgta	tcagcatcag	acagctcttt	gaacatcaac	ggtgtagagg	1980
attataaatc	aatctttgac	ggtgacggaa	aaacgtatca	aaatgtacag	cagttcatcg	2040
atgaaggcaa	ctacagctca	ggcgacaacc	atacgctgag	agatecteae	tacgtagaag	2100
ataaaggcca	caaatactta	gtatttgaag	caaacactgg	aactgaagat	ggctaccaag	2160
gcgaagaatc	tttatttaac	aaagcatact	atggcaaaag	cacatcattc	ttccgtcaag	2220
aaagtcaaaa	acttctgcaa	agcgataaaa	aacgcacggc	tgagttagca	aacggcgctc	2280
tcggtatgat	tgagctaaac	gatgattaca	cactgaaaaa	agtgatgaaa	ccgctgattg	2340

	2012200	~~~~++~~	~~~~~~ <u>+</u>	a++++-	aacccccct	2400
		gaaattgaac				2400
ggtacctgtt	cactgactcc	cgcggatcaa	aaatgacgat	tgacggcatt	acgtctaacg	2460
atatttacat	gcttggttat	gtttctaatt	ctttaactgg	cccatacaag	ccgctgaaca	2520
aaactggcct	tgtgttaaaa	atggatcttg	atcctaacga	tgtaaccttt	acttactcac	2580
acttcgctgt	acctcaagcg	aaaggaaaca	atgtcgtgat	tacaagctat	atgacaaaca	2640
gaggattcta	cgcagacaaa	caatcaacgt	ttgcgccaag	cttcctgctg	aacatcaaag	2700
gcaagaaaac	atctgttgtc	aaagacagca	tccttgaaca	aggacaatta	acagttaaca	2760
aatagtgacc	cgggtcatgt	ttgacagctt	atcatcgata	agctttaatg	cggtagttta	2820
tcacagttaa	attgctaacg	cagtcaggca	ccgtgtatga	aatctaacaa	tgcgctcatc	2880
gtcatcctcg	gcaccgtcac	cctggatgct	gtaggcatag	gcttggttat	gccggtactg	2940
ccgggcctct	tgcgggatat	cgtccattcc	gacagcatcg	ccagtcacta	tggcgtgctg	3000
ctagcgctat	atgcgttgat	gcaatttcta	tgcgcacccg	ttctcggagc	actgtccgac	3060
cgctttggcc	gccgcccagt	cctgctcgct	tcgctacttg	gagccactat	cgactacgcg	3120
atcatggcga	ccacacccgt	cctgtggatc	ctctacgccg	gacgcatcgt	ggccggcatc	3180
accggcgcca	caggtgcggt	tgctggcgcc	tatatcgccg	acatcaccga	tggggaagat	3240
cgggctcgcc	acttcgggct	catgagcgct	tgtttcggcg	tgggtatggt	ggcaggcccc	3300
gtggccgggg	gactgttggg	cgccatctcc	ttgcatgcac	cattccttgc	ggcggcggtg	3360
ctcaacggcc	tcaacctact	actgggctgc	ttcctaatgc	aggagtcgca	taagggagag	3420
cgtcgaccga	tgcccttgag	agccttcaac	ccagtcagct	ccttccggtg	ggcgcggggc	3480
atgactatcg	tcgccgcact	tatgactgtc	ttctttatca	tgcaactcgt	aggacaggtg	3540
ccggcagcgc	tctgggtcat	tttcggcgag	gaccgctttc	gctggagcgc	gacgatgatc	3600
ggcctgtcgc	ttgcggtatt	cggaatcttg	cacgccctcg	ctcaagcctt	cgtcactggt	3660
cccgccacca	aacgtttcgg	cgagaagcag	gccattatcg	ccggcatggc	ggccgacgcg	3720
ctgggctacg	tcttgctggc	gttcgcgacg	cgaggctgga	tggccttccc	cattatgatt	3780
cttctcgctt	ccggcggcat	cgggatgccc	gcgttgcagg	ccatgctgtc	caggcaggta	3840
gatgacgacc	atcagggaca	gcttcaagga	tcgctcgcgg	ctcttaccag	cctaacttcg	3900
atcactggac	cgctgatcgt	cacggcgatt	tatgccgcct	cggcgagcac	atggaacggg	3960
ttggcatgga	ttgtaggcgc	cgccctatac	cttgtctgcc	tccccgcgtt	gcgtcgcggt	4020

gcatggagcc	gggccacctc	gacctgatag	ctagcgtcga	cactagctga	taacctaggg	4080
ccagcaaaag	gccaggaacc	gtaaaaaggc	cgcgttgctg	gcgtttttcc	ataggctccg	4140
ccccctgac	gagcatcaca	aaaatcgacg	ctcaagtcag	aggtggcgaa	acccgacagg	4200
actataaaga	taccaggcgt	ttccccctgg	aagctccctc	gtgcgctctc	ctgttccgac	4260
cctgccgctt	accggatacc	tgtccgcctt	tctcccttcg	ggaagcgtgg	cgctttctca	4320
tagctcacgc	tgtaggtatc	tcagttcggt	gtaggtcgtt	cgctccaagc	tgggctgtgt	4380
gcacgaaccc	cccgttcagc	ccgaccgctg	cgccttatcc	ggtaactatc	gtcttgagtc	4440
caacccggta	agacacgact	tatcgccact	ggcagcagcc	actggtaaca	ggattagcag	4500
agcgaggtat	gtaggcggtg	ctacagagtt	cttgaagtgg	tggcctaact	acggctacac	4560
tagaaggaca	gtatttggta	tctgcgctct	gctgaagcca	gttaccttcg	gaaaaagagt	4620
tggtagctct	tgatccggca	aacaaaccac	cgctggtagc	ggtggttttt	ttgtttgcaa	4680
gcagcagatt	acgcgcagaa	aaaaaggatc	tcaagaagat	cctttgatct	tttctacggg	4740
gtctgacgct	cagtagatct	aaaacactag	gcccaagagt	ttgtagaaac	gcaaaaaggc	4800
catccgtcag	gatggccttc	tgcttaattt	gatgcctggc	agtttatggc	gggcgtcctg	4860
cccgccaccc	tccgggccgt	tgcttcgcaa	cgttcaaatc	cgctcccggc	ggatttgtcc	4920
tactcaggag	agcgttcacc	gacaaacaac	agataaaacg	aaaggcccag	tctttcgact	4980
gagcctttcg	ttttatttga	tgcctggcag	ttccctactc	tcgcatgggg	agaccccaca	5040
ctaccatcgg	cgctacggcg	tttcacttct	gagttcggca	tggggtcagg	tgggaccacc	5100
gcgctactgc	cgccaggcaa	attctgtttt	atcagaccgc	ttctgcgttc	tgatttaatc	5160
tgtatcaggc	tgaaaatctt	ctctcatccg	ccaaaacagc	caagctggat	ctggcaaatc	5220
gctgaatatt	ccttttgtct	ccgaccatca	ggcacctgag	tcgctgtctt	tttcgtgaca	5280
ttcagttcgc	tgcgctcacg	gctctggcag	tgaatggggg	taaatggcac	tacaggcgcc	5340
ttttatggat	tcatgcaagg	aaactaccca	taatacaaga	aaagcccgtc	acgggcttct	5400
cagggcgttt	tatggcgggt	ctgctatgtg	gtgctatctg	actttttgct	gttcagcagt	5460
tcctgccctc	tgattttcca	gtctgaccac	ttcggattat	cccgtgacag	gtcattcaga	5520
ctggctaatg	cacccagtaa	ggcagcggta	tcatcaacag	gcttacccgt	cttactgtca	5580
accggatcta	aaacactagc	ccaacctttc	atagaaggcg	gcggtggaat	cgaaatctcg	5640
tgatggcagg	ttgggcgtcg	cttggtcggt	catttcgaac 13/32	cccagagtcc	cgctcagaag	5700

aactcgtcaa	gaaggcgata	gaaggcgatg	cgctgcgaat	cgggagcggc	gataccgtaa	5760
agcacgagga	agcggtcagc	ccattcgccg	ccaagctctt	cagcaatatc	acgggtagcc	5820
aacgctatgt	cctgatagcg	gtccgccaca	cccagccggc	cacagtcgat	gaatccagaa	5880
aagcggccat	tttccaccat	gatattcggc	aagcaggcat	cgccatgggt	cacgacgaga	5940
tcctcgccgt	cgggcatgcg	cgccttgagc	ctggcgaaca	gttcggctgg	cgcgagcccc	6000
tgatgctctt	cgtccagatc	atcctgatcg	acaagaccgg	cttccatccg	agtacgtgct	6060
cgctcgatgc	gatgtttcgc	ttggtggtcg	aatgggcagg	tagccggatc	aagcgtatgc	6120
agccgccgca	ttgcatcagc	catgatggat	actttctcgg	caggagcaag	gtgagatgac	6180
aggagatcct	gccccggcac	ttcgcccaat	agcagccagt	cccttcccgc	ttcagtgaca	6240
acgtcgagca	cagctgcgca	aggaacgccc	gtcgtggcca	gccacgatag	ccgcgctgcc	6300
tcgtcctgca	gttcattcag	ggcaccggac	aggtcggtct	tgacaaaaag	aaccgggcgc	6360
ccctgcgctg	acagccggaa	cacggcggca	tcagagcagc	cgattgtctg	ttgtgcccag	6420
tcatagccga	atagcctctc	cacccaagcg	gccggagaac	ctgcgtgcaa	tccatcttgt	6480
tcaatcatgc	gaaacgatcc	tcatcctgtc	tcttgatcag	atcttgatcc	cctgcgccat	6540
cagatccttg	gcggcaagaa	agccatccag	tttactttgc	agggcttccc	aaccttacca	6600
gagggcgccc	cagctggcaa	ttccggttcg	ctgctagaca	acatcagcaa	ggagaaaggg	6660
gctaccggcg	aaccagcagc	ccctttataa	aggcgcttca	gtagtcagac	cagcatcagt	6720
cctgaaaagg	egggeetgeg	cccgcctcca	ggttgctact	taccggattc	gtaagccatg	6780
aaagccgcca	cctccctgtg	teegtetetg	taacgaatct	cgcacagcga	ttttcgtgtc	6840
agataagtga	atatcaacag	tgtgagacac	acgatcaaca	cacaccagac	aagggaactt	6900
cgtggtagtt	tcatggcctt	cttctccttg	cgcaaagcgc	ggtaagaggc	tatcctgatg	6960
tggactagac	atagggatgc	ctcgtggtgg	ttaatgaaaa	ttaacttact	acggggctat	7020
cttctttctg	ccacacaaca	cggcaacaaa	ccaccttcac	gtcatgaggc	agaaagcctc	7080
aagcgccggg	cacatcatag	cccatatacc	tgcacgctga	ccacactcac	tttccctgaa	7140
aataatccgc	tcattcagac	cgttcacggg	aaatccgtgt	gattgttgcc	gcatcacgct	7200
gcctcccgga	gtttgtctcg	agcacttttg	ttacccgcca	aacaaaaccc	aaaaacaacc	7260
catacccaac	ccaataaaac	accaaaacaa	gacaaataat	cattgattga	tggttgaaat	7320
ggggtaaact	tgacaaacaa	acccacttaa	aacccaaaac	atacccaaac	acacaccaaa	7380

aaaacaccat	aaggagtttt	ataaatgttg	gtattcattg	atgacggttc	aacaaacatc	7440
aaactacagt	ggcaggaaag	cgacggaaca	attaaacagc	acattagccc	gaacagcttc	7500
aaacgcgagt	gggcagtctc	ttttggtgat	aaaaaggtct	ttaactacac	actgaacggc	7560
gaacagtatt	catttgatcc	aatcagcccg	gatgctgtag	tcacaaccaa	tatcgcatgg	7620
caatacagcg a	acgttaatgt	cgttgcagtg	catcacgcct	tactgaccag	tggtctgccg	7680
gtaagcgaag	tggatattgt	ttgcacactt	cctctgacag	agtattacga	cagaaataac	7740
caacccaata (cggaaaatat	tgagcgtaag	aaagcaaact	tccggaaaaa	aattacatta	7800
aatggcgggg a	atacattcac	aataaaagat	gtaaaagtca	tgcctgaatc	tataccggca	7860
ggttatgaag	ttctacaaga	actggatgag	ttagattctt	tattaattat	agatctcggg	7920
ggcaccacat	tagatatttc	tcaggtaatg	gggaaattat	cggggatcag	taaaatatac	7980
ggagactcat	ctcttggtgt	ctctctggtt	acatctgcag	taaaagatgc	cctttctctt	8040
gcgagaacaa a	aaggaagtag	ctatcttgct	gacgatataa	tcattcacag	aaaagataat	8100
aactatctga a	agcaacgaat	taatgatgag	aacaaaatat	caatagtcac	cgaagcaatg	8160
aatgaagcac t	ttcgtaaact	tgagcaacgt	gtattaaata	cgctcaatga	attttctggt	8220
tatactcatg '	ttatggttat	aggcggtggc	gcagaattaa	tatgcgatgc	agtaaaaaaa	8280
cacacacaga t	ttcgtgatga	acgtttttc	aaaaccaata	actctcaata	tgatttagtt	8340
aacggtatgt a	atctcatagg	taattaatga	tggacaagcg	cagaaccatt	gccttcaaac	8400
taaatccaga (tgtaaatcaa	acagataaaa	ttgtttgtga	tacactggac	agtatcccgc	8460
aaggggaacg a	aagccgcctt	aaccgggccg	cactgacggc	aggtctggcc	ttatacagac	8520
aagatccccg (gacccctttc	cttttatgtg	agctgctgac	gaaagaaacc	acattttcag	8580
atatcgtgaa t	tatattgaga	tcgctatttc	caaaagagat	ggccgatttt	aattcttcaa	8640
tagtcactca a	atcctcttca	caacaagagc	aaaaagtga	tgaagagacc	aaaaaaaatg	8700
cgatgaagct a	aataaattaa	ttcaattatt	attgagttcc	ctttatccac	tatcaggctg	8760
gataaaggga a	actcaatcaa	gttattttct	taccagtcat	tacataatcg	ttattatgaa	8820
ataatcgttt o	gcactgtctc	tgttattcag	gcaatttcaa	taaaggcact	tgctcacgct	8880
ctgtcatttt d	ctgaaactct	tcatgctg				8908

<210> 19 <211> 2253

	<212> DNA <213> Artificial Sequence														
<220> <223>		::Sa	cB fi	ısion	n ger	ne									
<220> <221> CDS <222> (1)(2253)															
<400>															4.0
	ict agt hr Ser														48
	gaa acc Slu Thr														96
	tc atc al Ile 35													•	144
Arg P	tt aaa he Lys 50														192
	aa gtt ys Val														240
	ict gtt Thr Val														288
	itt tta Ile Leu		Phe	Asp		Tyr	Asn	Glu	Lys		Ala				336
	gac att Asp Ile 115	Leu													384
Glu A	gcg caa Ala Gln .30														432
	ga aaa Sly Lys														480
	aa agt ys Ser														528

					gca Ala								576
					att Ile								624
					agg Arg								672
		-			aaa Lys 230				-		-		720
					gaa Glu								768
	_			_	ttc Phe		-	_	_	-			816
					gca Ala								864
					aag Lys								912
					caa Gln 310								960
			_		gat Asp	_	_			-	_		1008
					cct Pro								1056
					ctg Leu								1104
-	-			_	gca Ala								1152
					aaa Lys 390								1200

		_		_	act Thr			-	_				-		1248
_	-		-	_	gac Asp			_	-		-				1296
					tgg Trp										1344
					tac Tyr 455										1392
		_			gca Ala		-								1440
	_				gta Val		-						-		1488
					aat Asn										1536
					cat His										1584
-					tta Leu 535	-		_	-						1632
					gaa Glu										1680
	_				cgt Arg		-								1728
		-	_		gag Glu										1776
		_	_		aca Thr	-				_		_	_		1824
					gat Asp 615										1872

		Leu Phe Thr	gac tcc cgc Asp Ser Arg 635		
			att tac atg Ile Tyr Met 650		
			ccg ctg aac Pro Leu Asn		
		-	gat gta acc Asp Val Thr		
_	-		aac aat gtc Asn Asn Val 700	Val Ile Thr	
		Phe Tyr Ala	gac aaa caa Asp Lys Gln 715		
-			aag aaa aca Lys Lys Thr 730		
	-		aca gtt aac Thr Val Asn		2253
<210> 20 <211> 749 <212> PRT <213> Arti	ficial Seque	nce			
<220> <223> Syntl	hetic Constr	uct			
<400> 20					
Met Thr Ser 1	Ile Phe Ala 5	Glu Gln Thr	Val Glu Val 10	Val Lys Ser 15	Ala
Ile Glu Thr	Ala Asp Gly 20	Ala Leu Asp 25	Leu Tyr Asn	Lys Tyr Leu 30	Asp
Cl = 17-1 T1	D	mb - Db - T	Cl. Mb. Tl.	T Cl. T	C

Arg Phe Lys Gln Glu Tyr Ser Gln Glu Ala Ser Val Leu Val Gly Asp 19/32

Gln Val Ile Pro Trp Lys Thr Phe Asp Glu Thr Ile Lys Glu Leu Ser

45

40

Ile Lys Val Leu Leu Met Asp Ser Gln Asp Lys Tyr Phe Glu Ala Thr 65 70 75 80

55

Gln Thr Val Tyr Glu Trp Cys Gly Val Val Thr Gln Leu Leu Ser Ala 85 90 95

Tyr Ile Leu Leu Phe Asp Glu Tyr Asn Glu Lys Lys Ala Ser Ala Gln
100 105 110

Lys Asp Ile Leu Ile Arg Ile Leu Asp Asp Gly Val Lys Lys Leu Asn 115 120 125

Glu Ala Gln Lys Ser Leu Leu Thr Ser Ser Gln Ser Phe Asn Asn Ala 130 135 140

Ser Gly Lys Leu Leu Ala Leu Asp Ser Gln Leu Thr Asn Asp Phe Ser 145 150 155 160

Glu Lys Ser Ser Tyr Phe Gln Ser Gln Val Asp Arg Ile Arg Lys Glu 165 170 175

Ala Tyr Ala Gly Ala Ala Ala Gly Ile Val Ala Gly Pro Phe Gly Leu 180 185 190

Ile Ile Ser Tyr Ser Ile Ala Ala Gly Val Ile Glu Gly Lys Leu Ile 195 200 205

Pro Glu Leu Asn Asn Arg Leu Lys Thr Val Gln Asn Phe Phe Thr Ser 210 215 220

Leu Ser Ala Thr Val Lys Gln Ala Asn Lys Asp Ile Asp Ala Ala Lys 225 230 235 240

Leu Lys Leu Ala Thr Glu Ile Ala Ala Ile Gly Glu Ile Lys Thr Glu 245 250 255

Thr Glu Thr Thr Arg Phe Tyr Val Asp Tyr Asp Asp Leu Met Leu Ser 260 265 270

Leu Leu Lys Gly Ala Ala Lys Lys Met Ile Asn Thr Cys Asn Glu Tyr 20/32

75	280	285

Gln	Gln 290	Arg	His	Gly	Lys	Lys 295	Thr	Leu	Phe	Glu	Val 300	Pro	Asp	Val	Ala
Ser 305	Lys	Glu	Thr	Asn	Gln 310	Lys	Pro	Tyr	Lys	Glu 315	Thr	Tyr	Gly	Ile	Ser 320
His	Ile	Thr	Arg	His 325	Asp	Met	Leu	Gln	Ile 330	Pro	Glu	Gln	Gln	Lys 335	Asn
Glu	Lys	Tyr	Gln 340	Val	Pro	Glu	Phe	Asp 345	Ser	Ser	Thr	Ile	Lys 350	Asn	Ile
Ser	Ser	Ala 355	Lys	Gly	Leu	Asp	Val 360	Trp	Asp	Ser	Trp	Pro 365	Leu	Gln	Asn
Ala	Asp 370	Gly	Thr	Val	Ala	Asn 375	Tyr	His	Gly	Tyr	His 380	Ile	Val	Phe	Ala
Leu 385	Ala	Gly	Asp	Pro	Lys 390	Asn	Ala	Asp	Asp	Thr 395	Ser	Ile	Tyr	Met	Phe 400
Tyr	Gln	Lys	Val	Gly 405	Glu	Thr	Ser	Ile	Asp 410	Ser	Trp	Lys	Asn	Ala 415	Gly
Arg	Val	Phe	Lys 420	Asp	Ser	Asp	Lys	Phe 425	Asp	Ala	Asn	Asp	Ser 430	Ile	Leu
Lys	Asp	Gln 435	Thr	Gln	Glu	Trp	Ser 440	Gly	Ser	Ala	Thr	Phe 445	Thr	Ser	Asp
Gly	Lys 450	Ile	Arg	Leu	Phe	Tyr 455	Thr	Asp	Phe	Ser	Gly 460	Lys	His	Tyr	Gly
Lys 465	Gln	Thr	Leu	Thr	Thr 470	Ala	Gln	Val	Asn	Val 475	Ser	Ala	Ser	Asp	Ser 480
Ser	Leu	Asn	Ile	Asn 485	Gly	Val	Glu	Asp	Tyr 490	Lys	Ser	Ile	Phe	Asp 495	Gly

Asp Gly Lys Thr Tyr Gln Asn Val Gln Gln Phe Ile Asp Glu Gly Asn

500	505	510

Tyr Ser Ser Gly Asp Asn His Thr Leu Arg Asp Pro His Tyr Val Glu Asp Lys Gly His Lys Tyr Leu Val Phe Glu Ala Asn Thr Gly Thr Glu Asp Gly Tyr Gln Gly Glu Glu Ser Leu Phe Asn Lys Ala Tyr Tyr Gly Lys Ser Thr Ser Phe Phe Arg Gln Glu Ser Gln Lys Leu Leu Gln Ser Asp Lys Lys Arg Thr Ala Glu Leu Ala Asn Gly Ala Leu Gly Met Ile Glu Leu Asn Asp Asp Tyr Thr Leu Lys Lys Val Met Lys Pro Leu Ile Ala Ser Asn Thr Val Thr Asp Glu Ile Glu Arg Ala Asn Val Phe Lys Met Asn Gly Lys Trp Tyr Leu Phe Thr Asp Ser Arg Gly Ser Lys Met Thr Ile Asp Gly Ile Thr Ser Asn Asp Ile Tyr Met Leu Gly Tyr Val Ser Asn Ser Leu Thr Gly Pro Tyr Lys Pro Leu Asn Lys Thr Gly Leu Val Leu Lys Met Asp Leu Asp Pro Asn Asp Val Thr Phe Thr Tyr Ser His Phe Ala Val Pro Gln Ala Lys Gly Asn Asn Val Val Ile Thr Ser Tyr Met Thr Asn Arg Gly Phe Tyr Ala Asp Lys Gln Ser Thr Phe Ala Pro Ser Phe Leu Leu Asn Ile Lys Gly Lys Lys Thr Ser Val Val Lys

725 730 735

Asp Ser Ile Leu Glu Gln Gly Gln Leu Thr Val Asn Lys
740 745

<210> 21 <211> 921 DNA <212> <213> Salmonella typhi <400> 60 atgactagta tttttgcaga acaaactgta gaggtagtta aaagcgcgat cgaaaccgca 120 gatggggcat tagatcttta taacaaatac ctcgaccagg tcatcccctg gaagaccttt 180 qatqaaacca taaaagagtt aagccgtttt aaacaggagt actcgcagga agcttctgtt ttagttggtg atattaaagt tttgcttatg gacagccagg acaagtattt tgaagcgaca 240 300 caaactgttt atgaatggtg tggtgtcgtg acgcaattac tctcagcgta tattttacta 360 tttgatgaat ataatgagaa aaaagcatca gcccagaaag acattctcat taggatatta 420 gatgatggtg tcaagaaact gaatgaagcg caaaaatctc tcctgacaag ttcacaaagt 480 ttcaacaacg cttccggaaa actgctggca ttagatagcc agttaactaa tgatttttcg 540 gaaaaaagta gttatttcca gtcacaggtg gatagaattc gtaaggaagc ttatgccggt 600 getgeageeg geatagtege eggteegttt ggattaatta ttteetatte tattgetgeg ggcgtgattg aagggaaatt gattccagaa ttgaataaca ggctaaaaac agtgcaaaat 660 720 ttctttacta gcttatcagc tacagtgaaa caagcgaata aagatatcga tgcggcaaaa 780 ttgaaattag ccactgaaat agcagcaatt ggggagataa aaacggaaac cgaaacaacc agattctacg ttgattatga tgatttaatg ctttctttat taaaaggagc tgcaaagaaa 840 900 atgattaaca cctgtaatga ataccaacaa cgtcatggta agaagacgct tttcgaggtt 921 cctgacgtcg ctagctgata a <210> 22 <211> 1102 <212> DNA <213> Salmonella typhi <400> 22

ggaggtaata ggtaagaata ctttataaaa caggtactta attgcaattt atatatttaa

agaggcaaat gattatgacc ggaatatttg cagaacaaac tgtagaggta gttaaaagcg

60

cgatcgaaac	cgcagatggg	gcattagatc	tttataacaa	atacctcgac	caggtcatcc	180
cctggaagac	ctttgatgaa	accataaaag	agttaagccg	ttttaaacag	gagtactcgc	240
aggaagcttc	tgttttagtt	ggtgatatta	aagttttgct	tatggacagc	caggacaagt	300
attttgaagc	gacacaaact	gtttatgaat	ggtgtggtgt	cgtgacgcaa	ttactctcag	360
cgtatatttt	actatttgat	gaatataatg	agaaaaaagc	atcagcccag	aaagacattc	420
tcattaggat	attagatgat	ggtgtcaaga	aactgaatga	agcgcaaaaa	tctctcctga	480
caagttcaca	aagtttcaac	aacgcttccg	gaaaactgct	ggcattagat	agccagttaa	540
ctaatgattt	ttcggaaaaa	agtagttatt	tccagtcaca	ggtggataga	attcgtaagg	600
aagcttatgc	cggtgctgca	gccggcatag	tegeeggtee	gtttggatta	attatttcct	660
attctattgc	tgcgggcgtg	attgaaggga	aattgattcc	agaattgaat	aacaggctaa	720
aaacagtgca	aaatttcttt	actagcttat	cagctacagt	gaaacaagcg	aataaagata	780
tcgatgcggc	aaaattgaaa	ttagccactg	aaatagcagc	aattggggag	ataaaaacgg	840
aaaccgaaac	aaccagattc	tacgttgatt	atgatgattt	aatgctttct	ttattaaaag	900
gagctgcaaa	gaaaatgatt	aacacctgta	atgaatacca	acaaagacac	ggtaagaaga	960
cgcttttcga	ggttcctgac	gtctgataca	ttttcattcg	atctgtgtac	ttttaacgcc	1020
cgatagcgta	aagaaaatga	gagacggaga	aaaagcgata	ttcaacagcc	cgataaacaa	1080
gagtcgttac	cgggctgacg	ag				1102

<210> 23

<211> 1102

<212> DNA

<213> Salmonella paratyphi

<220>

<221> CDS

<222> (75)..(986)

<400> 23

ggaggcaata ggtaggaata agttataaaa caatagctta attgcaattt atatatttaa 60

agaggcaaat gatt atg act gga ata ttt gca gaa caa act gta gag gta Met Thr Gly Ile Phe Ala Glu Gln Thr Val Glu Val 1 5 10

gtt aaa agc gcg atc gaa acc gca gat ggg gca tta gat ttt tat aac
Val Lys Ser Ala Ile Glu Thr Ala Asp Gly Ala Leu Asp Phe Tyr Asn
15 20 25

			gac Asp											206
			agc Ser											254
			gat Asp											302
	-		aca Thr 80			-		-		_	 _	-	_	350
			gcg Ala											398
			cag Gln											446
			aat Asn											494
			gct Ala											542
	-		tcg Ser 160	_		_	-			_	_		_	590
			gaa Glu	-		_		-	_	_		_	_	 638
-			tta Leu											686
		_	att Ile		_	_		-			_			734
			agc Ser											782
			aaa Lys 240											830

ata aaa acg gaa Ile Lys Thr Glu 255	acc gaa aca acc Thr Glu Thr Thr 260	Arg Phe Tyr V	gtt gat tat gat gat Val Asp Tyr Asp Asp 265	878									
tta atg ctt tct Leu Met Leu Ser 270	tta cta aaa gga Leu Leu Lys Gly 275	Ala Ala Lys l	aaa atg att aac acc Lys Met Ile Asn Thr 280	926									
			acg ctt ctc gag gtt Thr Leu Leu Glu Val 300	974									
cct gac atc tga tacattttca ttcgctctgt ttacttttaa cgcccgatag Pro Asp Ile													
cgtgaagaaa atga	gagacg gagaaaaa	gc gatattcaac a	agcccgataa acaagagtcg	1086									
ttaccgggct ggcga	ag			1102									
	la paratyphi												
<400> 24													
Met Thr Gly Ile 1	Phe Ala Glu Gli 5	Thr Val Glu	Val Val Lys Ser Ala 15										
Ile Glu Thr Ala 20	Asp Gly Ala Le	Asp Phe Tyr 2 25	Asn Lys Tyr Leu Asp 30										
Gln Val Ile Pro 35	Trp Lys Thr Pho	e Asp Glu Thr	Ile Lys Glu Leu Ser 45										
Arg Phe Lys Gln 50	Glu Tyr Ser Glo 55		Val Leu Val Gly Asp 60										
Ile Lys Val Leu 65	Leu Met Asp Se 70	Gln Asp Lys 75	Tyr Phe Glu Ala Thr 80	•									
Gln Thr Val Tyr	Glu Trp Cys Gl	y Val Val Thr 90	Gln Leu Leu Ser Ala 95										

Lys Asp Ile Leu Ile Arg Ile Leu Asp Asp Gly Val Asn Lys Leu Asn 115 Glu Ala Gln Lys Ser Leu Leu Gly Ser Ser Gln Ser Phe Asn Asn Ala 135 Ser Gly Lys Leu Leu Ala Leu Asp Ser Gln Leu Thr Asn Asp Phe Ser 155 150 Glu Lys Ser Ser Tyr Phe Gln Ser Gln Val Asp Arg Ile Arg Lys Glu 165 170 Ala Tyr Ala Gly Ala Ala Gly Ile Val Ala Gly Pro Phe Gly Leu 185 180 Ile Ile Ser Tyr Ser Ile Ala Ala Gly Val Ile Glu Gly Lys Leu Ile 200 195 Pro Glu Leu Asn Asp Arg Leu Lys Ala Val Gln Asn Phe Phe Thr Ser 215 Leu Ser Val Thr Val Lys Gln Ala Asn Lys Asp Ile Asp Ala Ala Lys 230 235 Leu Lys Leu Ala Thr Glu Ile Ala Ala Ile Gly Glu Ile Lys Thr Glu 245 250 Thr Glu Thr Thr Arg Phe Tyr Val Asp Tyr Asp Asp Leu Met Leu Ser 260 Leu Leu Lys Gly Ala Ala Lys Lys Met Ile Asn Thr Cys Asn Glu Tyr 275 280 Gln Gln Arg His Gly Lys Lys Thr Leu Leu Glu Val Pro Asp Ile 290 295 <210> 25 <211> 904 <212> DNA <213> Shigella flexneri

<220> <221> CDS

<222> (1)..(342)

<pre><400> 25 atg act gaa atc gtt gca gat aaa acg gta gaa gta gtt aaa aac gca Met Thr Glu Ile Val Ala Asp Lys Thr Val Glu Val Val Lys Asn Ala 1 5 10 15</pre>	48
atc gaa acc gca gat gga gca tta gat ctt tat aat aaa tat ctc gat Ile Glu Thr Ala Asp Gly Ala Leu Asp Leu Tyr Asn Lys Tyr Leu Asp 20 25 30	96
cag gtc atc ccc tgg cag acc ttt gat gaa acc ata aaa gag tta agt Gln Val Ile Pro Trp Gln Thr Phe Asp Glu Thr Ile Lys Glu Leu Ser 35 40 45	144
cgc ttt aaa cag gag tat tca cag gca gcc tcc gtt tta gtc ggc gat Arg Phe Lys Gln Glu Tyr Ser Gln Ala Ala Ser Val Leu Val Gly Asp 50 55 60	192
att aaa acc tta ctt atg gat agc cag gat aag tat ttt gaa gca acc Ile Lys Thr Leu Leu Met Asp Ser Gln Asp Lys Tyr Phe Glu Ala Thr 65 70 75 80	240
caa aca gtg tat gaa tgg tgt ggt gtt gcg acg caa ttg ctc gca gcg Gln Thr Val Tyr Glu Trp Cys Gly Val Ala Thr Gln Leu Leu Ala Ala 85 90 95	288
tat att ttg cta ttt gat gag tac aat gag aag aaa gca tcc gcc cct Tyr Ile Leu Leu Phe Asp Glu Tyr Asn Glu Lys Lys Ala Ser Ala Pro 100 105 110	336
cat taa ggtactggat gacggcatca cgaagctgaa tgaagcgcaa aattccctgc His	392
tggtaagctc acaaagtttc aacaacgctt ccgggaaact gctggcgtta gatagccagt	452
taaccaatga tttttcagaa aaaagcagct atttccagtc acaggtagat aaaatcagga	512
aggaagcgta tgccggtgcc gcagccggtg tcgtcgccgg tccatttggt ttaatcattt	572
cctattctat tgctgcgggc gtagttgaag ggaaactgat tccagaattg aagaacaagt	632
taaaatctgt gcagagtttc tttaccaccc tgtctaacac ggttaaacaa gcgaataaag	692
atatcgatgc cgccaaattg aaattaacca ccgaaatagc cgccatcggg gagataaaaa	752
cggaaactga aaccaccaga ttctatgttg attatgatga tttaatgctt tctttgctaa	812
aagcagcggc caaaaaaatg attaacacct gtaatgagta tcagaaaaga cacggtaaaa	872
agacactctt tgaggtacct gaagtctgat aa	9.04

<210> 26 <211> 113

```
<212> PRT
<213> Shigella flexneri
<400> 26
Met Thr Glu Ile Val Ala Asp Lys Thr Val Glu Val Val Lys Asn Ala
                                    10
Ile Glu Thr Ala Asp Gly Ala Leu Asp Leu Tyr Asn Lys Tyr Leu Asp
Gln Val Ile Pro Trp Gln Thr Phe Asp Glu Thr Ile Lys Glu Leu Ser
                            40
                                                 45
Arg Phe Lys Gln Glu Tyr Ser Gln Ala Ala Ser Val Leu Val Gly Asp
                        55
Ile Lys Thr Leu Leu Met Asp Ser Gln Asp Lys Tyr Phe Glu Ala Thr
                    70
                                        75
Gln Thr Val Tyr Glu Trp Cys Gly Val Ala Thr Gln Leu Leu Ala Ala
                85
                                    90
Tyr Ile Leu Leu Phe Asp Glu Tyr Asn Glu Lys Lys Ala Ser Ala Pro
                                105
His
<210> 27
<211> 1080
<212> DNA
<213> Escherichia coli
<220>
<221>
       CDS
<222>
       (121)..(1032)
<400> 27
agaaataaag acattgacgc atcccgcccg gctaactatg aattagatga agtaaaattt
                                                                       60
attaatagtt gtaaaacagg agtttcatta caatttatat atttaaagag gcgaatgatt
                                                                      120
atg act gaa atc gtt gca gat aaa acg gta gaa gta gtt aaa aac gca
                                                                      168
Met Thr Glu Ile Val Ala Asp Lys Thr Val Glu Val Val Lys Asn Ala
```

1

	gaa Glu											216
	gtc Val											264
	ttt Phe 50											312
	aaa Lys											360
	aca Thr											408
	att Ile											456
	gac Asp											504
	gcg Ala 130											552
	ggg Gly											600
_	aaa Lys	_	-		_	-	-	_				648
	tat Tyr											696
	att Ile											744
	gaa Glu 210											792
_	tct Ser									_		840

ttg aaa tta acc acc gaa ata gcc gcc atc ggt gag ata aaa acg gaa Leu Lys Leu Thr Thr Glu Ile Ala Ala Ile Gly Glu Ile Lys Thr Glu 245 250 255	888
act gaa aca acc aga ttc tac gtt gat tat gat gat tta atg ctt tct Thr Glu Thr Thr Arg Phe Tyr Val Asp Tyr Asp Asp Leu Met Leu Ser 260 265 270	936
ttg cta aaa gaa gcg gcc aaa aaa atg att aac acc tgt aat gag tat Leu Leu Lys Glu Ala Ala Lys Lys Met Ile Asn Thr Cys Asn Glu Tyr 275 280 285	984
cag aaa aga cac ggt aaa aag aca ctc ttt gag gta cct gaa gtc tga Gln Lys Arg His Gly Lys Lys Thr Leu Phe Glu Val Pro Glu Val 290 295 300	1032
taagcgatta ttctctccat gtactcaagg tataaggttt atcacatt	1080
<210> 28 <211> 303 <212> PRT <213> Escherichia coli	
<400> 28	
Met Thr Glu Ile Val Ala Asp Lys Thr Val Glu Val Val Lys Asn Ala 1 5 10 15	
Ile Glu Thr Ala Asp Gly Ala Leu Asp Leu Tyr Asn Lys Tyr Leu Asp 20 25 30	
Gln Val Ile Pro Trp Gln Thr Phe Asp Glu Thr Ile Lys Glu Leu Ser 35 40 45	
Arg Phe Lys Gln Glu Tyr Ser Gln Ala Ala Ser Val Leu Val Gly Asp 50 55 60	
Ile Lys Thr Leu Leu Met Asp Ser Gln Asp Lys Tyr Phe Glu Ala Thr65707580	
Gln Thr Val Tyr Glu Trp Cys Gly Val Ala Thr Gln Leu Leu Ala Ala 85 90 95	
Tyr Ile Leu Leu Phe Asp Glu Tyr Asn Glu Lys Lys Ala Ser Ala Gln 100 105 110	
Lys Asp Ile Leu Ile Lys Val Leu Asp Asp Gly Ile Thr Lys Leu Asn 115 120 125	

Glu	Ala 130	Gln	Lys	Ser	Leu	Leu 135	Val	Ser	Ser	Gln	Ser 140	Phe	Asn	Asn	Ala
Ser 145	Gly	Lys	Leu	Leu	Ala 150	Leu	Asp	Ser	Gln	Leu 155	Thr	Asn	Asp	Phe	Ser 160
Glu	Lys	Ser	Ser	Tyr 165	Phe	Gln	Ser	Gln	Val 170	Asp	Lys	Ile	Arg	Lys 175	Glu
Ala	Tyr	Ala	Gly 180	Ala	Ala	Ala	Gly	Val 185	Val	Ala	Gly	Pro	Phe 190	Gly	Leu
Ile		Ser 195	Tyr	Ser	Ile	Ala	Ala 200	Gly	Val	Val	Glu	Gly 205	Lys	Leu	Ile
Pro	Glu 210	Leu	Lys	Asn	Lys	Leu 215	Lys	Ser	Val	Gln	Asn 220	Phe	Phe	Thr	Thr
Leu 225	Ser	Asn	Thr	Val	Lys 230	Gln	Ala	Asn	Lys	Asp 235	Ile	Asp	Ala	Ala	Lys 240
Leu	Lys	Leu	Thr	Thr 245	Glu	Ile	Ala	Ala	Ile 250	Gly	Glu	Ile	Lys	Thr 255	Glu
Thr	Glu	Thr	Thr 260	Arg	Phe	Tyr	Val	Asp 265	Tyr	Asp	Asp	Leu	Met 270	Leu	Ser
Leu	Leu	Lys 275	Glu	Ala	Ala	Lys	Lys 280	Met	Ile	Asn	Thr	Cys 285	Asn	Glu	Tyr
Gln	Lys 290	Arg	His	Gly	Lys	Lys 295	Thr	Leu	Phe	Glu	Val 300	Pro	Glu	Val	