專題報告

Design Substrate Integrated Waveguide (SIW) iris Filter at 11.5GHz

專題題目說明與貢獻自評:

我的專題目標是找出一個可行的 SIW filter 的設計方式,創建一種與微帶線濾波器相似設計方法,可以通過模擬方式找到合適的電路架構,讓往後研究 SIW filter 人能有一種系統性的設計方式可以參考。

專題隊員:

學號	姓名	Email	負責項目說明	專題內的貢獻度
				(%)
A 1005126	计净比	a1085126	CIW filter design	1000/
A1085126	林建圻	@mail.nuk.edu.tw	SIW filter design	100%

指導教授: 吳松茂 教授

國立高雄大學 電機系

中華民國 一一一年九月二十八日

目錄

一、摘要	3
二、研究動機及目的	3
三、設計原理、研究方法與步驟	4
Step 1【計算理論數據】	5
Step 2 【HFSS 模擬找 K/Zo 值】	6
Step 3 【運用 step 2 的數據計算共振距離 Lr】	6
Step 4 【數據模擬,並觀察電場場型進行微調】]9
Step 5 【轉換成 SIW 架構:via wall 取代金屬	牆】11
四、HFSS 模擬結果	13
五、下板	14
六、量測結果與模擬比較	18
七、問題與討論	23
八、結論	24
九、參考文獻	25

一、摘要

隨著人們對效能的追求,往高頻領域發展是大勢所趨,然而以往使用的微帶線在高頻時,由於及膚效應的影響,將導致傳輸效能大幅下降。因此,為解決高頻傳輸的問題,基板合成波導(SIW)由此而生,在高頻時擁有更好的傳輸效能以及品質因素,然而相對地電路也較難設計。

在這篇專題報告中,我將簡述一種基板合成波導濾波器(SIW Filter)的設計方式,其包括兩個部分:通過模擬計算等效數據 K/Zo 與觀察電場進行微調修正。本文將結合傳統波導濾波器的設計方法與 HFSS 模擬軟體,系統性地設計出一種 SIW Filter 電路。

本實驗設計五階 bionomial bandpass filter 操作在 11.5GHz, 其結果有 8%頻 寬,中心頻在 11.58GHz, S11 約-4.5 dB, S21 約-27dB, 高頻止帶處約-21 dB。 **關鍵詞** —及膚效應(隨頻率增加,電流逐漸匯聚在金屬表面的現象)、基板合成波導(Substrate-integrated waveguide, SIW)、基板合成波導滤波器(Substrate-integrated waveguide Filter, SIW Filter)、HFSS(Ansys 公司的電磁模擬軟體)

二、研究動機及目的

高頻傳輸是未來世界所關注的領域,而 SIW 更是未來開發高頻傳輸重要的 技術,相比微帶線在高頻擁有更好的傳輸效能。

眾多電路中,濾波器一直都是使用頻繁的被動電路,要想掌握 SIW 的技術, 必定要從這些頻繁使用的電路著手,一步步通過實作的過程,了解 SIW 的優缺點。因此我選擇通過設計濾波器來更進一步學習 SIW 的知識與技術。

在研讀 SIW 相關文獻時發現,雖然有很多設計濾波器的文獻,但是在理論 與電路轉換的步驟上有道關鍵的空白處,鮮少有文獻提及該如何將理論數據轉換 成實際電路架構所需數據,因此本專題一大目標是研究出能像微帶線電路設計方 法一樣,透過軟體模擬找出電路所需數據。

三、設計原理、研究方法與步驟

設計電路的基本參數(表 1)			
中心頻	11.5 GHz	帶通濾波器類型	0.01dB Chebyshev
階數	4階	Bandwidth	500MHz
腔體寬α	10mm	12.5GHz 反射量	<-25bB
電路板厚度	1.6mm		
基板介質	FR4 (Dk , Df : 4.4 , 0.02)		

[註]

- 1.「α」由個人決定,我以截止頻率 7.15GHz 的波導寬度(α)當作主體
- 2.「a」為 SIW 寬,由波導寬轉 SIW 寬公式(1)可知

$$a = \alpha + \frac{D}{0.95p} \tag{1}$$

參數有以下限制

$$D$$

$$\frac{\mathrm{D}}{a} < \frac{a}{5} \tag{2.b}$$

$$\frac{p}{D} < 2a \tag{2.c}$$

若 D=0.6mm、p=1.2mm,則a = 10 + 0.6/(0.95 * 1.2) = 10.53 mm ≒ α + D 故金屬柱替換金屬牆時,SIW 寬(a)為 α+D

【基本參數介紹】

D · d is diameter of via

a: SIW width

 α : width of dielectric filled waveguide

p: period distance of via wall

w: center distance between two vias

Lr: distance between two via pair

如下圖所示:

dielectric filled waveguide

SIW

圖 1:模型示意圖

在實作上,我將設計一個中心頻在 11.5GHz 的矩形的帶通濾波器,分為五個步驟:

Step 1【計算理論數據】

根據自身需求選擇適當的濾波器階數與低通濾波器原型數據。

將低通濾波器原型數據通過公式轉換成帶通濾波器的正規化的 K 值(K/Zo)。

設計數據表(表 2)			
n	g	K/Zo	
1	0.7537	0.3668	
2	1.2254	0.1055	
3	1.3717 0.782		
4	0.6734	0.1055	
5	1.1194	0.3668	

Step 2 【HFSS 模擬找 K/Zo 值】

- 1. 建立一個 fr4 介質的矩形腔,電路長度選擇在 1.2 個λc (即 11.5 GHz 下的波長), 並在腔體的兩個開口打上 Waveport。(如 step2 圖)
- 在矩形腔體中心打上貫孔進行模擬,並將取得的 S 參數根據公式轉換取得的 K/Zo 值,目標是取得相近表(2)K/Zo 的數值以及對應的相位角 Φ。
 [註]可以調整貫孔半徑、貫孔與腔體壁的距離以及貫孔數量來改變模擬取得的

[正] 了以驹宝貝化十位,貝扎典腔題至的距離以及貝扎數里不以变換級取行的 K/Zo 值。

圖 2:模擬用的模型

Step 3 【運用 step 2 的數據計算共振距離 Lr】

根據 step2 的模擬數據與標準設計參數進行比對取得所需數據,如直徑、

寬、K 值與相角 Φ, 並帶入公式計算出相對應的共振距離。

計算等效電感值、K值與共振腔長度的公式

series inductance :
$$jX_s = \frac{1-S_{12}+S_{11}}{1-S_{11}+S_{12}}$$

shunt inductance :
$$jX_p = \frac{2S_{12}}{(1-S_{11})^2-(S_{12})^2}$$

 $Using \ EM \ simulator \ (like \ HFSS \cdot CST)$

$$\varphi = -arctan \left(\frac{2X_p}{Zo} + \frac{X_S}{Zo} \right) - arctan \left(\frac{X_s}{Zo} \right) \quad \Rightarrow \quad \frac{K}{Zo} = \left| \ tan \left[\frac{\varphi}{2} + arctan \left(\frac{X_s}{Zo} \right) \right] \right|$$

$$Length~of~the~resonators: L_r = \frac{\lambda_{g0}}{2\pi} \Bigg[\pi + \frac{1}{2} \left(\varphi_r + \varphi_{r+1} \right) \Bigg] ~~,~ r = 1, 2, 3, ..., N$$

$$\lambda_{g0} = \frac{c}{f_0 \sqrt{\epsilon r}} \ \{ \ wavelength \ in \ substrate + c = 3*10^8 + f_0 : center \ frequency \ \}$$

refer to [1] \ [5]

[註]:表3中紅字為參考文獻公式改動部分

圖 4a: K/Zo 模擬結果

圖 4b: 相角 Φ 的模擬結果

根據上方的模擬結果選取符合需求的數據

電路模擬數據(表 4)				
n	k	k(模擬)	d(via 直徑:mm)	W(mm)
1	0.3668	0.33	0.5	9
2	0.1055	0.10	0.5	3
3	0.0782	0.08	1	1
4	0.1055	0.10	0.5	3
5	0.3668	0.33	0.5	9

	模擬取得 phi 與計算值 Lr(表 5)				
n	k	k(模擬)	phi(degree)	Lr(共振長度:mm)	
0				5	
1	0.3668	0.33	-36.65	5.1	
2	0.1055	0.10	-26.9	5.5	

3	0.0782	0.08	-28.31	5.5
4	0.1055	0.10	-26.9	5.1
5	0.3668	0.33	-36.65	5

[註]令
$$\lambda g > Lr0 = Lr5 > \frac{\lambda g}{4}$$
, fc = 11.5GHz, $\epsilon r = 4.4$
$$\lambda g = \frac{\lambda c}{\sqrt{\epsilon r}} = \frac{3^8}{1.5*10^{10}*\sqrt{4.4}} = 12.4 \text{ mm}$$
 取 $Lr0 = Lr5 = 5 \text{ mm}$

Step 4 【數據模擬,並觀察電場場型進行微調】

根據 step3 取得的數據模擬,並進行調整

【初始電路模擬】

透過觀察中心頻的電場場形,可以發現在第二排 via 處,波形受到壓制影響了通量,所以加寬 w2 和 w4,以促進耦合。

【觀察電場場型進行調整後】

n	原始 W(mm)	W(mm)有調整
1	9	
2	3	5
3	1	
4	3	5
5	9	

[註]斜線表示無調整數據

設計時可能會遇到以下幾個問題:

(1)欲設計的通帶處耦合不全

可以通過觀察電場場型來選擇要調整哪些排的 via 寬度,以增加耦合量。

(2)中心頻偏移

通過調整貫孔大小可以調整模擬波型偏移。

固定兩貫孔的中心間距與貫孔中心的位置,增加貫孔半徑大小將增加共振波長, 使模擬波形向左偏移(往低頻偏移);同樣的縮小貫孔半徑將使模擬偏移右移(往高 頻偏移)。

Step 5 【轉換成 SIW 架構:via wall 取代金屬牆】

我的 via wall 的 via 大小選擇直徑 0.6mm

via wall 的中心間距與孔徑大小限制關係為:

$$p \le 2D \tag{3}$$

因此我選擇使用兩倍孔徑大小(p=1.2 mm)當作週期間距的長度。

[註]

- (1)可以自行加減調整,根據模擬的結果選取所需的大小。
- (2)金屬牆與 via wall 所夾的腔體寬度相同(eg. 腔體寬度「α」,如下圖標示)

via wall 設計數據		
via wall 的 via 孔徑:D	0.6 mm	
via wall 的 via 彼此中心間距: p	1.2 mm	

【via wall 取代金屬牆比較】

(取代前)

(via wall 取代後)

四、HFSS 模擬結果

	電路設計參數(表 6)		
n	W(mm) d(mm) Lr(mm)		Lr(mm)
0			5
1	9	0.5	5.1
2	5	0.5	5.5
3	1 1		5.5
4	5	0.5	5.1
5	9 0.5 5		5
p(mm)	1.2		
D(mm)	0.6		
a(mm)	10.6		
BW	920 MHz		
center frequency	11.58 Ghz		

[註] $n=0\sim5$ 的 Lr 分別代表由左到右(port 1 到 port2)過程中的間距,Lr0 、Lr5 的長度以中心頻波長 $\lambda c > Lr > \lambda c/4$ 設計。

(圖 10)最終設計的成果 電路模型與S參數模擬圖 -10 ∑ -15 · -S11 -S21 -30 Freq [GHz] 11.58

五、下板

一開始設計時不清楚一些下板限制,下板前通過與板廠多次溝通後瞭解許多限制,因此需要進行調整,如貫孔不能直接沿著銅層邊緣打、兩貫孔間的極限距離、切割 V 線與銅層邊緣需要有一定的距離(約 1mm),否則會有裸銅問題。因以上問題,所以下板時,對原先的設計模型進行了一些調整,例如:移動柱牆位置、增加鋪銅面積,使其符合貫孔與銅層邊緣的最小間距 0.35mm。增加中心距不足的貫孔的距離。鋪銅與切割 V 線需要有一定的距離,取約 1mm,否則會有裸銅問題。

我採用探針量測,並在電路兩側接上錐形傳輸線[3]作為饋入方式。為解決探

針量測的單面下針的限制,所以我選擇在錐形傳輸線後方鋪一塊銅當作參考地, 並打上貫孔連接底層銅,試圖創造與模擬相似的環境。

[註]由於實驗室使用的 sma 的頻率限制,所以並未採用 sma 進行量測。

【taper microstrip line 設計】

wt is width of microstrip line

wg is taper width

L is length of taper

可根據以下公式計算 Wg

$$Ag = a - D = \alpha \tag{4.a}$$

$$\frac{\text{Wg}}{\text{Ag}} \approx 0.4 \text{Ag}$$
 (4. b)

可根據以下公式計算 Wt

for wt/h < 2

$$\frac{\text{wt}}{\text{b}} = \frac{8\text{e}^{\text{A}}}{\text{e}^{2\text{A}} - 2} \tag{5}$$

for wt/h > 2

$$\frac{\text{wt}}{h} = \frac{2}{\pi} \left\{ B - 1 - \ln(2B - 1) + \frac{\epsilon r - 1}{2\epsilon r} \left[\ln(B - 1) + 0.39 - \frac{0.61}{\epsilon r} \right] \right\}$$
 (6)

Wg、Wt 由 A、B 決定, 而 A、B 由以下公式決定:

$$A = \frac{Z0}{60} \sqrt{\frac{(\epsilon r + 1)}{2}} + \frac{\epsilon r - 1}{\epsilon r + 1} \left(0.23 + \frac{0.11}{\epsilon r} \right)$$
 (5. a)

$$B = \frac{377\pi}{2Z0\sqrt{\epsilon r}} \tag{6.a}$$

h is substrate high and Zo is impedance of microsrip line

L由以下條件決定:

$$\frac{\lambda g}{2} < L < \lambda g \tag{7.a}$$

$$\lambda g = \frac{\lambda c}{\sqrt{\epsilon r}} \tag{7.b}$$

λc is wavelength at center frequency

λg is wavelength in substrate

【計算 Wg、Wt、L】

(5.a)、(6.a)代入 h=1.6mm、∈r=4.4、Zo=50 ohm,可得 A=1.53、B=5.65,再代回

(5)、(6)得

$$\frac{w}{h} \cong \begin{cases} 1.912 & for (4) \\ 1.915 & for (5) \end{cases}$$
 (8)

因(5)符合條件,故Wt ≅ 3.2 mm

(4.b)代入 α=10mm, 則

$$Wg = 0.4 * 10 = 4mm \tag{9}$$

(7.b)代入 $\epsilon r = 4.4$,則

$$\lambda g = \frac{3 * 10^8}{1.5 * 10^{10} \sqrt{4.4}} = 12.4 mm \tag{10}$$

故依(6.a)條件取 L=9mm,下表為計算結果。

Wt 3.2mm	Wg 4mm	L 9mm	
----------	--------	-------	--

圖 12. taper microstrip line

圖 13. 下板 layout 示意圖

【依製程限制調整】

因製程限制, via 需要離銅層邊緣至少 0.35mm, 以及雨 via 間最小中心間距至少 0.3mm 以上, 所以進行了以下調整:

- 1.重新調整 via wall 的位置
- 2.調整兩 via 間距至少為 d+0.4mm (此調整會影響電路響應)
- 3.因經費限制與集體下板的規格統一,調整 via 孔徑大小的種類

圖 14. 改變 via 間距的電路模型比較圖(箭頭處改動 via 間距) 改動前 改動後

表 7

原始數據	下板改動數據
W3 = 1 mm	W3 = 1.4 mm
d1 = d2 = 0.5 mm	d1 = d2 = 0.6 mm

圖 15. 下探針方式示意圖

六、量測結果與模擬比較

1.

圖 17a. 電路模型

說明:

- 1. 量測響應 S 參數比模擬低很多
- 2. 量測響應往高頻飄約 0.3GHz
- 3. 量測與模擬的響應趨勢相似
- 4. 實心和空心 via 響應的差異不大

※結論:

- 1. 實體電路能量有大量損耗或洩漏
- 2. 趨勢相近證明此設計是可行的
- 3. via 有無灌錫影響不大

模擬與量測的整體響應

模擬和量測的 S21 對 via 間距的趨勢是一致的。

當 via 間距愈大,頻飄越少,且會影響中心頻 S11 數值。

2.

圖 18.a. 電路模型

說明:

- 1. 量測響應 S 參數比模擬低很多
- 2. 量測響應往高頻飄約 0.3GHz
- 3. 量測與模擬的響應趨勢相似
- 4. 實心和空心 via 響應的差異不大

※結論:

小 via 取代後電路的響應與原先差異不大,故小 via 取代法是可行的

【實體電路】

圖(19.a)正

圖(19.b)反

鍍錫

圖(20.a)正

圖(20.b)反

七、問題與討論

1.量測響應 dB 值低

量測結果在 dB 值上比模擬結果下降約 4dB,但整體波形走勢十分相似,所以是波損耗和洩漏的可能性極大。從 10 GHz 處可以發現,量測的 S11 數值明顯比模擬數據低 2-3 dB,最初進入電路的能量就比較少,所以響應通量下降相當合理。由饋入能量減少的方向著手,可以發現在量測時使用的饋入方式,沒有辦法限制波前進的方向,所以能量不只進入電路,還會從四面八方洩漏,與 HFSS 模擬使用 pec 限制波前進方向的情況並不相同,因此實際可能比模擬饋入的能量少。

2.空、實心 via 對電路的影響

我模擬的電路貫孔採用的是實心 Cu 柱,然而實際電路的貫孔是空心的,因此我參考[2]的作法,在貫孔中灌入錫,並與無灌錫的電路進行比較,從量測結果可以知道有無灌錫的響應走勢幾乎一樣,所以採用實心或是空心貫孔對於電路響應的影響並不大。

3.頻飄的原因

量測的電路比模擬電路約有 0.3dB 的頻飄,推測是製成在鑽孔產生的誤差, 是主要頻飄產生的原因。此外,因為我下板的電路沒有鋪綠漆,不排除銅氧化對電路響應也有一定的影響。

4.不同間距的影響

不同的 via wall 的中心距離有不同響應的表現,主要發生在 S11,在 1.2mm、 1.5mm、1.8mm 三種不同間距的響應中,屬 1.5mm 在中心頻有較小的 dB 值,推测在 1.5mm 間距的情況中,恰好是行進波對柱牆反射較少的間距,如同設計濾波器的原理,特定的間距可以讓特定頻率的波通過,但在其他頻率卻會發生大量反射。

5.小 via 取代的效果

使用小 via 取代大 via 的作法,只要兩者排列的長度差不多,就可以獲得差

不多的響應波形,但是採用小 via 會因為貫孔的孔徑變小,導致頻飄的問題出現, 雖我試過陣列貫孔的做法,但對響應影響極大,原先的通帶直接消失。

6.突出的 S11 零點

以下四個電路在 14.7 GHz 時,S11 皆出現傳輸零點,但 S21 並沒有因此提高,根據能量不滅定律,所以我推測在這個頻率下,此電路的波洩漏較嚴重。

從實驗結果可以看到 K 值萃取的方法仍有待加強。因為萃取出的等效數值仍須經過調整才能做出濾波器響應。此外,設計時可能會設計出製成無法製作的電路,像是 via 孔徑過小、多個 via 中心距極小等,會需要進行下板前的調整。但為了要迎合 K-inverter 的設計參數,必定需要持續調整孔徑與間距,儘管製成做不出來,只能透過事後調整進行妥協。

此外,K值萃取必須要使用矩形波導進行才能獲得夠大和夠小的 K/Zo值,使用 SIW 架構進行模擬很難取得適當的 K/Zo值,這是目前的一大難處,導致設計需要進行 via wall 取代金屬牆的過程,如果能找到方法直接在 SIW 架構進行等效萃取 K值,就可以減少一些步驟。

八、結論

雖然此電路在模擬響應上部分並沒有突出的表現,但是此電路**充分驗證傳統** 矩形波導設計方式可以應用在 SIW 上,並且成功建立一套通過模擬取得電路架 構的方法。

未來可以朝各種電路架構進行設計,做出更泛用的設計方式。而相當重要的 萃取等效電路數據的方法也有了輪廓,未來將更努力精進做出更優秀的電路。這 次的專題對我來說是一份實貴的經驗,在不斷試錯與找資料的過程中學習到很多 做研究的方法與準則。累積了眾多經驗的同時,也拓展了自己各方面的技能與視 野。

九、參考文獻

- [1]G. Matthaei, E.M.T. Jones,& L. Young. "Microwave flters, impedance-matching networks, and coupling structures". Publied by McGraw-Hill(1964), Standard Book Number 049006-099-1,PP 450-459
- [2] Augustine O. Nwajana, Amadu Dainkeh, & Kenneth S. K. Yeo. "Substrate Integrated Waveguide (SIW) Bandpass Filter with Novel Microstrip-CPW-SIW Input Couplin". Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 16, No. 2, June 2017
- [3] Imane Badaoui, Naima Amar Touhami, Mahmoud Moubadir, & Mohamed Taha El Khorassani. "Substrate Integrated Waveguide Symmetrical Window Bandpass Filter for Satellite Applications". Procedia Manufacturing 32 (2019) 717–722.
- [4] Kjetil Folgerø. "Step-by-step procedure for design of waveguide filters with HFSS". From ResearchGate, January 2001
- [5]Richard J. Cameron, Chandra M. Kudsia,& Raafat R. Mansour. "Microwave Filters for Communication Systems: Fundamentals, Design, and Applications 2nd Edition(2018)". ISBN: 978-1118274347. PP 475-484
- [6] Hemendra Kumar, Ruchira Jadhav,& Sulabha Ranade. "A Review on Substrate Integrated Waveguide and its Microstrip Interconnect". IOSR Journal of Electronics and Communication Engineering (IOSR-JECE).ISBN: 2278-8735. Volume 3, Issue 5 (Sep. Oct.. 2012), PP 36-40