Lecture 10: Hypothesis testing part II Statistical Methods for Data Science

Yinan Yu

Department of Computer Science and Engineering

December 8 and December 12, 2022

Today

- 1 Test statistics and hypothesis tests
 - z-test
 - One-sample t-test
 - Two-sample t-test (Welch's t-test unequal variances)
 - Paired t-test
 - Binomial test
 - McNemar's test
 - Summary
- 2 Compare two classifiers
- Summary

Learning outcome

- Be able to explain the following hypothesis tests
 - One-sample and two-sample z-test
 - One-sample and two-sample t-test
 - Paired t-test
 - Binomial test (exact, approximate)
 - McNemar's test (exact, approximate)

For each of these tests, be able to describe the typical set up for the experiment, the general purpose of the test, data produced by the experiment, random variables, parameter of interest, null hypothesis, alternative hypothesis, test statistic, null distribution, the computation of p-value

- Be able to generalize the learning routine to new hypothesis tests
- Be able to compare two classifiers using the paired t-test and McNemar's test for different scenarios

Today

- Test statistics and hypothesis tests
 - z-test
 - One-sample t-test
 - Two-sample t-test (Welch's t-test unequal variances)
 - Paired t-test
 - Binomial test
 - McNemar's test
 - Summary
- Compare two classifiers
- Summary

Remark

Regarding α and one-tailed/two-tailed test

Remark (cont.)

Recall that in this course, we only consider H₀ with an equal sign in them,
 i.e. the null distribution is fully specified; the description of H₀ is based on this assumption

Remark (cont.)

- Recall that in this course, we only consider H_0 with an equal sign in them, i.e. the null distribution is fully specified; the description of H_0 is based on this assumption
- For symmetric null distributions, e.g. standard Gaussian distribution, student's t distribution, binomial distribution with $\rho=0.5$, etc, without loss of generality, we only illustrate examples with the two-tailed alternative hypothesis H_A in this lecture; the one-tailed version can be easily derived

Remark (cont.)

- Recall that in this course, we only consider H_0 with an equal sign in them, i.e. the null distribution is fully specified; the description of H_0 is based on this assumption
- For symmetric null distributions, e.g. standard Gaussian distribution, student's t distribution, binomial distribution with p = 0.5, etc, without loss of generality, we only illustrate examples with the two-tailed alternative hypothesis H_A in this lecture; the one-tailed version can be easily derived
- For the exact binomial test with $p \neq 0.5$, the null distribution is not symmetric; in this case, the computation of the two-tailed p-value is not uniquely defined; in this lecture, we will not go into details for these cases; we will only look at the one-tailed tests for asymmetric binomial null distributions

Remark (cont.)

- Recall that in this course, we only consider H_0 with an equal sign in them, i.e. the null distribution is fully specified; the description of H_0 is based on this assumption
- For symmetric null distributions, e.g. standard Gaussian distribution, student's t distribution, binomial distribution with p=0.5, etc, without loss of generality, we only illustrate examples with the two-tailed alternative hypothesis H_A in this lecture; the one-tailed version can be easily derived
- For the exact binomial test with $p \neq 0.5$, the null distribution is not symmetric; in this case, the computation of the two-tailed p-value is not uniquely defined; in this lecture, we will not go into details for these cases; we will only look at the one-tailed tests for asymmetric binomial null distributions
- For each hypothesis test, the purpose of the Python code snippet is to provide a
 better understanding of the calculation; in practice, there are alternative
 libraries and built-in functions for these tests that might result in a more
 compact implementation

z-test
One-sample t-test
Two-sample t-test (Welch's t-test - unequal variances)
Paired t-test
Binomial test
McNemar's test
Summans

Remark (cont.)

Remark (cont.)

- Typical set up for the experiment
 - Test subjects, e.g. number of samples, number of groups, etc
 - Description of the experiment and the result
 - Description of the data type produced in the result

Remark (cont.)

- Typical set up for the experiment
 - Test subjects, e.g. number of samples, number of groups, etc
 - Description of the experiment and the result
 - Description of the data type produced in the result
- Purpose: the general purpose of the test

Remark (cont.)

- Typical set up for the experiment
 - Test subjects, e.g. number of samples, number of groups, etc
 - Description of the experiment and the result
 - Description of the data type produced in the result
- Purpose: the general purpose of the test
- Data: description of data produced by the experiment
- Random variables and assumptions

Remark (cont.)

- Typical set up for the experiment
 - Test subjects, e.g. number of samples, number of groups, etc
 - Description of the experiment and the result
 - Description of the data type produced in the result
- Purpose: the general purpose of the test
- Data: description of data produced by the experiment
- Random variables and assumptions
- Parameter of interest and the estimates

Remark (cont.)

- Typical set up for the experiment
 - Test subjects, e.g. number of samples, number of groups, etc
 - Description of the experiment and the result
 - Description of the data type produced in the result
- Purpose: the general purpose of the test
- Data: description of data produced by the experiment
- Random variables and assumptions
- Parameter of interest and the estimates
- Hypotheses H_0 and H_A

Remark (cont.)

- Typical set up for the experiment
 - Test subjects, e.g. number of samples, number of groups, etc
 - Description of the experiment and the result
 - Description of the data type produced in the result
- Purpose: the general purpose of the test
- Data: description of data produced by the experiment
- Random variables and assumptions
- Parameter of interest and the estimates
- Hypotheses H_0 and H_A
- Test statistic

Remark (cont.)

- Typical set up for the experiment
 - Test subjects, e.g. number of samples, number of groups, etc
 - Description of the experiment and the result
 - Description of the data type produced in the result
- Purpose: the general purpose of the test
- Data: description of data produced by the experiment
- Random variables and assumptions
- Parameter of interest and the estimates
- Hypotheses H_0 and H_A
- Test statistic
- Null distribution
 - PDF/PMF: description of the PDF/PMF
 - Python: code snippet of the PDF/PMF

Remark (cont.)

- Typical set up for the experiment
 - Test subjects, e.g. number of samples, number of groups, etc
 - Description of the experiment and the result
 - Description of the data type produced in the result
- Purpose: the general purpose of the test
- Data: description of data produced by the experiment
- Random variables and assumptions
- Parameter of interest and the estimates
- Hypotheses H_0 and H_A
- Test statistic
- Null distribution
 - PDF/PMF: description of the PDF/PMF
 - Python: code snippet of the PDF/PMF
- p-value
 - Definition: an expression of p-value in terms of a probability
 - Python: code snippet to illustrate the computation of the *p*-value (see page 6)

z-test
One-sample t-test
Two-sample t-test (Welch's t-test - unequal variances)
Paired t-test
Binomial test
McNemar's test
Summary

z-test

z-test
One-sample t-test
Two-sample t-test (Welch's t-test - unequal variances)
Paired t-test
Binomial test
McNemar's test

One-sample z-test

• Typical set up for the experiment:

z-test
One-sample t-test
Two-sample t-test (Welch's t-test - unequal variances)
Paired t-test
Binomial test
McNemar's test

- Typical set up for the experiment:
 - One sample of independent test subjects, e.g. a sample of patients, a sample of customers, etc

z-test
One-sample t-test
Two-sample t-test (Welch's t-test - unequal variances)
Paired t-test
Binomial test
McNemar's test

- Typical set up for the experiment:
 - One sample of independent test subjects, e.g. a sample of patients, a sample of customers, etc
 - Run the same experiment on each subject and collect the outcomes, e.g. give a new drug to a sample
 of patients and measure the effect on each individual patient; test a new web design on a sample of
 customers and record the time they spend on the web page, etc

One-sample t-test (Welch's t-test - unequal variances) Paired t-test Binomial test McNemar's test

One-sample z-test

- Typical set up for the experiment:
 - One sample of independent test subjects, e.g. a sample of patients, a sample of customers, etc
 - Run the same experiment on each subject and collect the outcomes, e.g. give a new drug to a sample
 of patients and measure the effect on each individual patient; test a new web design on a sample of
 customers and record the time they spend on the web page, etc

z-test

• The outcomes contain one i.i.d. sample with continuous numerical values

- Typical set up for the experiment:
 - One sample of independent test subjects, e.g. a sample of patients, a sample of customers, etc
 - Run the same experiment on each subject and collect the outcomes, e.g. give a new drug to a sample
 of patients and measure the effect on each individual patient; test a new web design on a sample of
 customers and record the time they spend on the web page, etc
 - The outcomes contain one i.i.d. sample with continuous numerical values
- Purpose: to test if the mean of the outcomes differs from a predefined constant

- Typical set up for the experiment:
 - One sample of independent test subjects, e.g. a sample of patients, a sample of customers, etc
 - Run the same experiment on each subject and collect the outcomes, e.g. give a new drug to a sample
 of patients and measure the effect on each individual patient; test a new web design on a sample of
 customers and record the time they spend on the web page, etc
 - The outcomes contain one i.i.d. sample with continuous numerical values
- Purpose: to test if the mean of the outcomes differs from a predefined constant
- Data: x_1, \dots, x_N , e.g. blood pressure after taking a new drug

- Typical set up for the experiment:
 - One sample of independent test subjects, e.g. a sample of patients, a sample of customers, etc
 - Run the same experiment on each subject and collect the outcomes, e.g. give a new drug to a sample
 of patients and measure the effect on each individual patient; test a new web design on a sample of
 customers and record the time they spend on the web page, etc
 - The outcomes contain one i.i.d. sample with continuous numerical values
- Purpose: to test if the mean of the outcomes differs from a predefined constant
- Data: x_1, \dots, x_N , e.g. blood pressure after taking a new drug
- Random variable and assumption: X_1, \dots, X_N
 - X_i i.i.d.
 - X_i Gaussian or large N (CLT)
 - X_i standard deviation σ known

- Typical set up for the experiment:
 - One sample of independent test subjects, e.g. a sample of patients, a sample of customers, etc
 - Run the same experiment on each subject and collect the outcomes, e.g. give a new drug to a sample
 of patients and measure the effect on each individual patient; test a new web design on a sample of
 customers and record the time they spend on the web page, etc
 - The outcomes contain one i.i.d. sample with continuous numerical values
- Purpose: to test if the mean of the outcomes differs from a predefined constant
- Data: x_1, \dots, x_N , e.g. blood pressure after taking a new drug
- Random variable and assumption: X₁, · · · , X_N
 - X_i i.i.d.
 - Xi Gaussian or large N (CLT)
 - X_i standard deviation σ known
- Parameter of interest: μ

- Typical set up for the experiment:
 - One sample of independent test subjects, e.g. a sample of patients, a sample of customers, etc
 - Run the same experiment on each subject and collect the outcomes, e.g. give a new drug to a sample
 of patients and measure the effect on each individual patient; test a new web design on a sample of
 customers and record the time they spend on the web page, etc
 - The outcomes contain one i.i.d. sample with continuous numerical values
- Purpose: to test if the mean of the outcomes differs from a predefined constant
- Data: x_1, \dots, x_N , e.g. blood pressure after taking a new drug
- Random variable and assumption: X₁, · · · , X_N
 - X_i i.i.d.
 - Xi Gaussian or large N (CLT)
 - X_i standard deviation σ known
- Parameter of interest: μ
- Parameter estimate: \bar{x} , $\bar{X} \sim \mathcal{N}(\mu, \sigma^2/N)$

- Typical set up for the experiment:
 - One sample of independent test subjects, e.g. a sample of patients, a sample of customers, etc
 - Run the same experiment on each subject and collect the outcomes, e.g. give a new drug to a sample
 of patients and measure the effect on each individual patient; test a new web design on a sample of
 customers and record the time they spend on the web page, etc
 - The outcomes contain one i.i.d. sample with continuous numerical values
- Purpose: to test if the mean of the outcomes differs from a predefined constant
- Data: x_1, \dots, x_N , e.g. blood pressure after taking a new drug
- Random variable and assumption: X₁, · · · , X_N
 - X_i i.i.d.
 - X_i Gaussian or large N (CLT)
 - X_i standard deviation σ known
- ullet Parameter of interest: μ
- Parameter estimate: \bar{x} , $\bar{X} \sim \mathcal{N}(\mu, \sigma^2/N)$
- Hypotheses H_0 and H_A : given c a constant

$$H_0: \quad \mu = c$$

 $H_A: \quad \mu \neq c$

- Typical set up for the experiment:
 - One sample of independent test subjects, e.g. a sample of patients, a sample of customers, etc
 - Run the same experiment on each subject and collect the outcomes, e.g. give a new drug to a sample
 of patients and measure the effect on each individual patient; test a new web design on a sample of
 customers and record the time they spend on the web page, etc
 - The outcomes contain one i.i.d. sample with continuous numerical values
- Purpose: to test if the mean of the outcomes differs from a predefined constant
- Data: x_1, \dots, x_N , e.g. blood pressure after taking a new drug
- Random variable and assumption: X₁, · · · , X_N
 - X_i i.i.d.
 - X_i Gaussian or large N (CLT)
 - X_i standard deviation σ known
- ullet Parameter of interest: μ
- Parameter estimate: \bar{x} , $\bar{X} \sim \mathcal{N}(\mu, \sigma^2/N)$
- Hypotheses H_0 and H_A : given c a constant

$$H_0: \quad \mu = c$$

 $H_A: \quad \mu \neq c$

One-sample z-test (cont.)

Test statistic:

$$z_0 = \frac{\bar{x} - c}{\sigma / \sqrt{N}}$$

One-sample z-test (cont.)

Test statistic:

$$z_0 = \frac{\bar{x} - c}{\sigma / \sqrt{N}}$$

• Null distribution: standard normal distribution

• PDF:
$$f(z \mid H_0) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}$$

• Python: stats.norm.pdf(z, 0, 1)

One-sample z-test (cont.)

Test statistic:

$$z_0 = \frac{\bar{x} - c}{\sigma / \sqrt{N}}$$

- Null distribution: standard normal distribution
 - PDF: $f(z \mid H_0) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}$
 - Python: stats.norm.pdf(z, 0, 1)
- p-value
 - Definition: $p = 2 \min (P(Z \le z_0 \mid H_0), P(Z \ge z_0 \mid H_0))$
 - Python: $2 * min(stats.norm.cdf(z_0, 0, 1), 1-stats.norm.cdf(z_0, 0, 1))$

z-test
One-sample t-test
Two-sample t-test (Welch's t-test - unequal variances)
Paired t-test
Binomial test
McNemar's test

Two-sample z-test

• Typical set up for the experiment:

z-test
One-sample t-test
Two-sample t-test (Welch's t-test - unequal variances)
Paired t-test
Binomial test
McNemar's test

Two-sample z-test

- Typical set up for the experiment:
 - Two samples of independent test subjects, where the two samples \(\mathcal{X} \) and \(\mathcal{Y} \) letters with a calligraphic font are typically used to denote sets are independent from one another, e.g. two samples of independent patients, two samples of independent customers, etc

Two-sample z-test

- Typical set up for the experiment:
 - Two samples of independent test subjects, where the two samples \(\mathcal{X} \) and \(\mathcal{Y} \) testers with a calligraphic font are typically used to denote sets are independent from one another, e.g. two samples of independent patients, two samples of independent customers, etc
 - Run two sets of experiments A and B on the test subjects from the two samples $\mathcal X$ and $\mathcal Y$, respectively, and collect the outcomes, e.g. give drug D to patient sample $\mathcal X$ and drug E to patient sample $\mathcal Y$ and measure the effect on each individual patient; test two web designs on two samples of customers and record the time they spend on the web page, etc

Two-sample z-test

- Typical set up for the experiment:
 - Two samples of independent test subjects, where the two samples \(\mathcal{X} \) and \(\mathcal{Y} \) testers with a calligraphic font are typically used to denote sets are independent from one another, e.g. two samples of independent patients, two samples of independent customers, etc
 - Run two sets of experiments A and B on the test subjects from the two samples $\mathcal X$ and $\mathcal Y$, respectively, and collect the outcomes, e.g. give drug D to patient sample $\mathcal X$ and drug E to patient sample $\mathcal Y$ and measure the effect on each individual patient; test two web designs on two samples of customers and record the time they spend on the web page, etc
 - The outcomes contain two i.i.d. samples with continuous numerical values

Two-sample z-test

- Typical set up for the experiment:
 - Two samples of independent test subjects, where the two samples \(\mathcal{X} \) and \(\mathcal{Y} \) testers with a calligraphic font are typically used to denote sets are independent from one another, e.g. two samples of independent patients, two samples of independent customers, etc
 - Run two sets of experiments A and B on the test subjects from the two samples $\mathcal X$ and $\mathcal Y$, respectively, and collect the outcomes, e.g. give drug D to patient sample $\mathcal X$ and drug E to patient sample $\mathcal Y$ and measure the effect on each individual patient; test two web designs on two samples of customers and record the time they spend on the web page, etc
 - The outcomes contain two i.i.d. samples with continuous numerical values
- Purpose: to test if two alternative options have different effects by testing if the means differ by a constant

Two-sample z-test

- Typical set up for the experiment:
 - Two samples of independent test subjects, where the two samples \(\mathcal{X} \) and \(\mathcal{Y} \) testers with a calligraphic font are typically used to denote sets are independent from one another, e.g. two samples of independent patients, two samples of independent customers, etc

z-test

- Run two sets of experiments A and B on the test subjects from the two samples $\mathcal X$ and $\mathcal Y$, respectively, and collect the outcomes, e.g. give drug D to patient sample $\mathcal X$ and drug E to patient sample $\mathcal Y$ and measure the effect on each individual patient; test two web designs on two samples of customers and record the time they spend on the web page, etc
- The outcomes contain two i.i.d. samples with continuous numerical values
- Purpose: to test if two alternative options have different effects by testing if the means differ by a constant
- Data: x_1, \dots, x_{N_X} and y_1, \dots, y_{N_Y} , e.g. blood pressure measured after taking two different drugs

Two-sample z-test

- Typical set up for the experiment:
 - Two samples of independent test subjects, where the two samples \(\mathcal{X} \) and \(\mathcal{Y} \) tetters with a calligraphic font are typically used to denote sets are independent from one another, e.g. two samples of independent patients, two samples of independent customers, etc

z-test

- Run two sets of experiments A and B on the test subjects from the two samples $\mathcal X$ and $\mathcal Y$, respectively, and collect the outcomes, e.g. give drug D to patient sample $\mathcal X$ and drug E to patient sample $\mathcal Y$ and measure the effect on each individual patient; test two web designs on two samples of customers and record the time they spend on the web page, etc
- The outcomes contain two i.i.d. samples with continuous numerical values
- · Purpose: to test if two alternative options have different effects by testing if the means differ by a constant
- Data: x_1, \dots, x_{N_V} and y_1, \dots, y_{N_V} , e.g. blood pressure measured after taking two different drugs
- Random variable and assumption: $X_1, \dots, X_{N_X}, Y_1, \dots, Y_{N_Y}$
 - X_i and Y_i independent
 - X_i i.i.d.; Y_i i.i.d.
 - X_i Gaussian or large N_X; Y_i Gaussian or large N_Y
 - X_i and Y_j have known standard deviation σ_X and σ_Y , respectively

Two-sample z-test

- Typical set up for the experiment:
 - Two samples of independent test subjects, where the two samples \(\mathcal{X} \) and \(\mathcal{Y} \) tetters with a calligraphic font are typically used to denote sets are independent from one another, e.g. two samples of independent patients, two samples of independent customers, etc
 - Run two sets of experiments A and B on the test subjects from the two samples $\mathcal X$ and $\mathcal Y$, respectively, and collect the outcomes, e.g. give drug D to patient sample $\mathcal X$ and drug E to patient sample $\mathcal Y$ and measure the effect on each individual patient; test two web designs on two samples of customers and record the time they spend on the web page, etc
 - The outcomes contain two i.i.d. samples with continuous numerical values
- Purpose: to test if two alternative options have different effects by testing if the means differ by a constant
- Data: x_1, \dots, x_{N_V} and y_1, \dots, y_{N_V} , e.g. blood pressure measured after taking two different drugs
- Random variable and assumption: $X_1, \dots, X_{N_X}, Y_1, \dots, Y_{N_Y}$
 - X_i and Y_i independent
 - X_i i.i.d.; Y_i i.i.d.
 - X_i Gaussian or large N_X; Y_i Gaussian or large N_Y
 - X_i and Y_j have known standard deviation σ_X and σ_Y , respectively
- Parameter of interest: μ_X , μ_Y

Two-sample z-test

- Typical set up for the experiment:
 - Two samples of independent test subjects, where the two samples \(\mathcal{X} \) and \(\mathcal{Y} \) tetters with a calligraphic font are typically used to denote sets are independent from one another, e.g. two samples of independent patients, two samples of independent customers, etc

z-test

- Run two sets of experiments A and B on the test subjects from the two samples $\mathcal X$ and $\mathcal Y$, respectively, and collect the outcomes, e.g. give drug D to patient sample $\mathcal X$ and drug E to patient sample $\mathcal Y$ and measure the effect on each individual patient; test two web designs on two samples of customers and record the time they spend on the web page, etc
- The outcomes contain two i.i.d. samples with continuous numerical values
- · Purpose: to test if two alternative options have different effects by testing if the means differ by a constant
- Data: x_1, \dots, x_{N_V} and y_1, \dots, y_{N_V} , e.g. blood pressure measured after taking two different drugs
- Random variable and assumption: $X_1, \dots, X_{N_X}, Y_1, \dots, Y_{N_Y}$
 - X_i and Y_i independent
 - X_i i.i.d.; Y_i i.i.d.
 - X_i Gaussian or large N_X; Y_i Gaussian or large N_Y
 - X_i and Y_j have known standard deviation σ_X and σ_Y , respectively
- Parameter of interest: μ_X , μ_Y
- Parameter estimate: \bar{x} , \bar{y}

Binomial test

Two-sample z-test

- Typical set up for the experiment:
 - Two samples of independent test subjects, where the two samples \mathcal{X} and \mathcal{Y} letters with a calligraphic font are typically used to denote sets are independent from one another, e.g. two samples of independent patients, two samples of independent customers, etc

z-test

- Run two sets of experiments A and B on the test subjects from the two samples \mathcal{X} and \mathcal{Y} , respectively, and collect the outcomes, e.g. give drug D to patient sample $\mathcal X$ and drug E to patient sample $\mathcal Y$ and measure the effect on each individual patient; test two web designs on two samples of customers and record the time they spend on the web page, etc
- The outcomes contain two i.i.d. samples with continuous numerical values
- Purpose: to test if two alternative options have different effects by testing if the means differ by a constant
- Data: x_1, \dots, x_{N_V} and y_1, \dots, y_{N_V} , e.g. blood pressure measured after taking two different drugs
- Random variable and assumption: $X_1, \dots, X_{N_v}, Y_1, \dots, Y_{N_v}$
 - X_i and Y_i independent
 - X_i i.i.d.; Y_i i.i.d.
 - X_i Gaussian or large N_X; Y_i Gaussian or large N_Y
 - X_i and Y_i have known standard deviation σ_X and σ_Y , respectively
- Parameter of interest: μ_X , μ_Y
- Parameter estimate: x̄, ȳ
- Hypotheses H_0 and H_A : given c a constant

 $H_0: \mu_X - \mu_Y = c$

 $H_A: \mu_X - \mu_Y \neq c$

Two-sample z-test (cont.)

Test statistic:

$$z_0 = \frac{\bar{x} - \bar{y} - c}{\sqrt{\frac{\sigma_X^2}{N_X} + \frac{\sigma_Y^2}{N_Y}}}$$

Hint:
$$\bar{X} - \bar{Y} \sim \mathcal{N}\left(\mu_X - \mu_Y, \sigma_X^2/N_X + \sigma_Y^2/N_Y\right)$$

Two-sample z-test (cont.)

Test statistic:

$$z_0 = \frac{\bar{x} - \bar{y} - c}{\sqrt{\frac{\sigma_X^2}{N_X} + \frac{\sigma_Y^2}{N_Y}}}$$

Hint: $\bar{X} - \bar{Y} \sim \mathcal{N} \left(\mu_X - \mu_Y, \sigma_X^2 / N_X + \sigma_Y^2 / N_Y \right)$ • Null distribution: standard normal distribution

- PDF: $f(z \mid H_0) = \frac{1}{\sqrt{2\pi}}e^{-\frac{z^2}{2}}$
- Python: stats.norm.pdf(z, 0, 1)

Two-sample z-test (cont.)

Test statistic:

$$z_0 = \frac{\bar{x} - \bar{y} - c}{\sqrt{\frac{\sigma_X^2}{N_X} + \frac{\sigma_Y^2}{N_Y}}}$$

Hint: $\bar{X} - \bar{Y} \sim \mathcal{N} \left(\mu_X - \mu_Y, \sigma_X^2 / N_X + \sigma_Y^2 / N_Y \right)$ Null distribution: standard normal distribution

- PDF: $f(z \mid H_0) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}$
- Python: stats.norm.pdf(z, 0, 1)
- p-value
 - Definition: $p = 2 \min (P(Z \le z_0 \mid H_0), P(Z \ge z_0 \mid H_0))$
 - Python: $2 * min(stats.norm.cdf(z_0, 0, 1), 1-stats.norm.cdf(z_0, 0, 1))$

One-sample t-test
Two-sample t-test (Welch's t-test - unequal variances)
Paired t-test
Binomial test
McNemar's test

One-sample t-test

One-sample t-test

- Typical set up for the experiment (same as one-sample z-test):
 - One sample of independent test subjects, e.g. a sample of patients, a sample of customers, etc
 - Run the same experiment on each subject and collect the outcomes, e.g. give a new drug to a sample of patients and measure the effect on each individual patient; test a new web design on a sample of customers and record the time they spend on the web page, etc
 - The outcomes contain one i.i.d. sample with continuous numerical values
- Purpose: to test if the mean of the outcomes differs from a predefined constant
- Data: x_1, \dots, x_N , e.g. blood pressure after taking a new drug
- Random variable and assumption: X_1, \dots, X_N
 - Xi i.i.d.
 - X_i Gaussian or large N
 - X_i standard deviation σ unknown
- Parameter of interest: μ
- Parameter estimate: x̄
- Hypotheses H_0 and H_A : given c a constant

 $H_0: \mu = c$

 $H_A: \mu \neq c$

One-sample t-test (cont.)

Test statistic:

$$t_0 = \frac{\bar{x} - c}{s / \sqrt{N}}$$

where $s = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2}$ is the sample standard deviation

One-sample t-test (cont.)

Test statistic:

$$t_0 = \frac{\bar{x} - c}{s / \sqrt{N}}$$

where $s = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2}$ is the sample standard deviation

- Null distribution:
 - ullet Student's-t distribution with degrees of freedom df=N-1
 - Python: stats.t.pdf(t, df = N 1)

One-sample t-test (cont.)

Test statistic:

$$t_0 = \frac{\bar{x} - c}{s / \sqrt{N}}$$

where $s = \sqrt{\frac{1}{N-1}\sum_{i=1}^{N}(x_i - \bar{x})^2}$ is the sample standard deviation

- Null distribution:
 - ullet Student's-t distribution with degrees of freedom df=N-1
 - Python: stats.t.pdf(t, df = N 1)
- p-value:
 - Definition: $p = 2 \min (P(T \le t_0 \mid H_0), P(T \ge t_0 \mid H_0))$
 - Python: $2 * \min (\text{stats.t.cdf}(t_0, df = N 1), 1 \text{stats.t.cdf}(t_0, df = N 1))$

Z-test One-sample t-test (Welch's t-test - unequal variances) Paired t-test Binomial test McNemar's test

Two-sample t-test (Welch's t-test - unequal variances)

Two-sample t-test

- Typical set up for the experiment (same as the two-sample z-test):
 - Two samples of independent test subjects, where the two samples \(\mathcal{X} \) and \(\mathcal{Y} \) are independent from one another,
 e.g. two samples of independent patients, two samples of independent customers, etc
 - Run two sets of experiments A and B on the test subjects from the two samples $\mathcal X$ and $\mathcal Y$, respectively, and collect the outcomes, e.g. give drug D to patient sample $\mathcal X$ and drug E to patient sample $\mathcal Y$ and measure the effect on each individual patient; test two web designs on two samples of customers and record the time they spend on the web page, etc
 - . The outcomes contain two i.i.d. samples with continuous numerical values
- · Purpose: to test if two alternative options have different effects by testing if the means differ by a constant
- Data: x_1, \dots, x_{N_X} and y_1, \dots, y_{N_Y} , e.g. blood pressure measured after taking two different drugs

Summary

- Random variable and assumption: $X_1, \dots, X_{N_X}, Y_1, \dots, Y_{N_Y}$
 - Xi and Yi independent
 - X_i i.i.d.; Y_i i.i.d.
 - X_i Gaussian or large N_X; Y_i Gaussian or large N_Y
 - X_i and Y_i have unknown standard deviation σ_X and σ_Y , respectively
- Parameter of interest: μ_X , μ_Y
- Parameter estimate: \bar{x} , \bar{y}
- Hypotheses H_0 and H_A : given c a constant

 $H_0: \quad \mu_X - \mu_Y = c$ $H_A: \quad \mu_X - \mu_Y \neq c$

Two-sample t-test (cont.)

Test statistic:

$$t_0 = \frac{\bar{x} - \bar{y} - c}{\sqrt{\frac{s_X^2}{N_X} + \frac{s_Y^2}{N_Y}}}$$

with degrees of freedom $\frac{df}{df} = \frac{(s_X^2/N_X + s_Y^2/N_Y)^2}{(\frac{s_X^2}{N_Y})^2/(N_X - 1) + (\frac{s_Y^2}{N_Y})^2/(N_Y - 1)}$

Two-sample t-test (cont.)

Test statistic:

$$t_0 = \frac{\bar{x} - \bar{y} - c}{\sqrt{\frac{s_X^2}{N_X} + \frac{s_Y^2}{N_Y}}}$$

with degrees of freedom $\frac{df}{(s_X^2/N_X + s_Y^2/N_Y)^2} = \frac{(s_X^2/N_X + s_Y^2/N_Y)^2}{(\frac{s_X^2}{N_X})^2/(N_X - 1) + (\frac{s_Y^2}{N_Y})^2/(N_Y - 1)}$

- Null distribution:
 - Student's-t distribution with degrees of freedom df
 - Python: stats.t.pdf(t, df = df)

Two-sample t-test (cont.)

Test statistic:

$$t_0 = \frac{\bar{x} - \bar{y} - c}{\sqrt{\frac{s_X^2}{N_X} + \frac{s_Y^2}{N_Y}}}$$

with degrees of freedom $\frac{df}{\left(\frac{s_X^2}{N_{X,Y}} + s_Y^2/N_Y\right)^2} = \frac{(s_X^2/N_X + s_Y^2/N_Y)^2}{\left(\frac{s_X^2}{N_{X,Y}}\right)^2/(N_X - 1) + \left(\frac{s_Y^2}{N_Y}\right)^2/(N_Y - 1)}$

- Null distribution:
 - Student's-t distribution with degrees of freedom df
 - Python: stats.t.pdf(t, df = df)
- p-value:
 - Definition: $p = 2 \min (P(T < t_0 \mid H_0), P(T > t_0 \mid H_0))$
 - Python: $2 * min(stats.t.cdf(t_0, df=df), 1-stats.t.cdf(t_0, df=df))$

One-sample t-test
Two-sample t-test (Welch's t-test - unequal variances)
Paired t-test
Binomial test
McNemar's test
Summary

One-sample t-test
Two-sample t-test (Welch's t-test - unequal variances)
Paired t-test
Binomial test
McNemar's test
Summary

Paired t-test

• Typical set up for the experiment:

z-test One-sample t-test Two-sample t-test (Welch's t-test - unequal variances) Paired t-test Binomial test McNemar's test

- Typical set up for the experiment:
 - Typically one sample of independent test subjects, e.g. one sample of independent patients; or two paired samples

- Typical set up for the experiment:
 - Typically one sample of independent test subjects, e.g. one sample of independent patients; or two paired samples
 - Run two sets of experiments A and B on all subjects from the sample and collect the
 outcomes, e.g. measure the blood pressure of a sample of patients before giving them a new
 drug (experiment A); measure the blood pressure of these patients after giving them the new
 drug (experiment B)

- Typical set up for the experiment:
 - Typically one sample of independent test subjects, e.g. one sample of independent patients; or two paired samples
 - Run two sets of experiments A and B on all subjects from the sample and collect the
 outcomes, e.g. measure the blood pressure of a sample of patients before giving them a new
 drug (experiment A); measure the blood pressure of these patients after giving them the new
 drug (experiment B)
 - The outcomes contain two samples with continuous numerical values

- Typical set up for the experiment:
 - Typically one sample of independent test subjects, e.g. one sample of independent patients; or two paired samples
 - Run two sets of experiments A and B on all subjects from the sample and collect the
 outcomes, e.g. measure the blood pressure of a sample of patients before giving them a new
 drug (experiment A); measure the blood pressure of these patients after giving them the new
 drug (experiment B)
 - The outcomes contain two samples with continuous numerical values
- Purpose: to test if two alternative options have different effects by testing if the mean of their differences differs from a predefined constant

- Typical set up for the experiment:
 - Typically one sample of independent test subjects, e.g. one sample of independent patients; or two paired samples
 - Run two sets of experiments A and B on all subjects from the sample and collect the
 outcomes, e.g. measure the blood pressure of a sample of patients before giving them a new
 drug (experiment A); measure the blood pressure of these patients after giving them the new
 drug (experiment B)
 - The outcomes contain two samples with continuous numerical values
- Purpose: to test if two alternative options have different effects by testing if the mean of their differences differs from a predefined constant
- Data: $x_1, \dots, x_N, y_1, \dots, y_N$

- Typical set up for the experiment:
 - Typically one sample of independent test subjects, e.g. one sample of independent patients; or two paired samples
 - Run two sets of experiments A and B on all subjects from the sample and collect the
 outcomes, e.g. measure the blood pressure of a sample of patients before giving them a new
 drug (experiment A); measure the blood pressure of these patients after giving them the new
 drug (experiment B)
 - The outcomes contain two samples with continuous numerical values
- Purpose: to test if two alternative options have different effects by testing if the mean of their differences differs from a predefined constant
- Data: x₁,···, x_N, y₁,···, y_N
 Random variable and assumption: X₁,···, X_N, Y₁,···, Y_N
 - $X_i Y_i$ i.i.d.
 - $X_i Y_i \sim \mathcal{N}\left(\mu_{X-Y}, \sigma_{X-Y}^2\right)$ or large N (CLT)
 - standard deviation unknown

- Typical set up for the experiment:
 - Typically one sample of independent test subjects, e.g. one sample of independent patients; or two paired samples
 - Run two sets of experiments A and B on all subjects from the sample and collect the
 outcomes, e.g. measure the blood pressure of a sample of patients before giving them a new
 drug (experiment A); measure the blood pressure of these patients after giving them the new
 drug (experiment B)
 - The outcomes contain two samples with continuous numerical values
- Purpose: to test if two alternative options have different effects by testing if the mean of their differences differs from a predefined constant
- Data: $x_1, \dots, x_N, y_1, \dots, y_N$ • Random variable and assumption: $X_1, \dots, X_N, Y_1, \dots, Y_N$
 - X₁ − Y₁ i.i.d.
 - $X_i Y_i \sim \mathcal{N}\left(\mu_{X-Y}, \sigma_{X-Y}^2\right)$ or large N (CLT)
 - standard deviation unknown
- Parameter of interest: μ_{X-Y}

- Typical set up for the experiment:
 - Typically one sample of independent test subjects, e.g. one sample of independent patients; or two paired samples
 - Run two sets of experiments A and B on all subjects from the sample and collect the
 outcomes, e.g. measure the blood pressure of a sample of patients before giving them a new
 drug (experiment A); measure the blood pressure of these patients after giving them the new
 drug (experiment B)
 - The outcomes contain two samples with continuous numerical values
- Purpose: to test if two alternative options have different effects by testing if the mean of their differences differs from a predefined constant
- Data: $x_1, \dots, x_N, y_1, \dots, y_N$ • Random variable and assumption: $X_1, \dots, X_N, Y_1, \dots, Y_N$
 - X₁ − Y₁ i.i.d.
 - $X_i Y_i \sim \mathcal{N}\left(\mu_{X-Y}, \sigma_{X-Y}^2\right)$ or large N (CLT)
 - standard deviation unknown
- Parameter of interest: μ_{X-Y}
- Parameter estimate: $m_{X-Y} = \frac{1}{N} \sum_{i=1}^{N} (x_i y_i)$

Paired t-test Binomial test McNemar's test

Paired t-test

- Typical set up for the experiment:
 - Typically one sample of independent test subjects, e.g. one sample of independent patients; or two paired samples
 - Run two sets of experiments A and B on all subjects from the sample and collect the outcomes, e.g. measure the blood pressure of a sample of patients before giving them a new drug (experiment A); measure the blood pressure of these patients after giving them the new drug (experiment B)
 - The outcomes contain two samples with continuous numerical values
- Purpose: to test if two alternative options have different effects by testing if the mean of their differences differs from a predefined constant
- Data: $x_1, \dots, x_N, y_1, \dots, y_N$ • Random variable and assumption: $X_1, \dots, X_N, Y_1, \dots, Y_N$
 - X₁ − Y₁ i.i.d.
 - $X_i Y_i \sim \mathcal{N}\left(\mu_{X-Y}, \sigma_{X-Y}^2\right)$ or large N (CLT)
 - standard deviation unknown
- Parameter of interest: μ_{X-Y}
- Parameter estimate: $m_{X-Y} = \frac{1}{N} \sum_{i=1}^{N} (x_i y_i)$
- Hypotheses H_0 and H_A : given c a constant

 $H_0: \mu_{X-Y} = c$

 $H_A: u_{X-Y} \neq c$

Paired t-test

• Test statistic:

$$t_0 = \frac{m_{X-Y} - c}{s_{X-Y}/\sqrt{N}}$$

where $s_{X-Y} = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - y_i - m_{X-Y})^2}$

- Null distribution:
 - ullet Student's-t distribution with degrees of freedom N-1
 - Python: stats.t.pdf(t, df = N 1)
- p-value:
 - Definition: $p = 2 \min (P(T \le t_0 \mid H_0), P(T \ge t_0 \mid H_0))$
 - Python: $2 * min (stats.t.cdf(t_0, df = N 1), 1-stats.t.cdf(t_0, df = N 1))$

Exercise 1

 A company claims that a new drug E they have developed can increase the average sleeping hours of people with insomnia. Design three different hypothesis tests to test this statement.

Exercise 1

 A company claims that a new drug E they have developed can increase the average sleeping hours of people with insomnia. Design three different hypothesis tests to test this statement.

Let's design experiments for running the one-sample t-test, two-sample t-test and paired t-test

Test 1: one-sample t-test

• Statement: drug E does not increase the average sleeping hours of people with insomnia; for the one-sample t-test, the average sleeping hours of people with insomnia is a known constant

Test 1: one-sample t-test

• Statement: drug E does not increase the average sleeping hours of people with insomnia; for the one-sample t-test, the average sleeping hours of people with insomnia is a known constant - say, it is 4.5 hours

- Statement: drug E does not increase the average sleeping hours of people with insomnia; for the one-sample t-test, the average sleeping hours of people with insomnia is a known constant say, it is 4.5 hours
- Experiment: let N=40 people with insomnia take drug E and observe the amount of their sleep

- Statement: drug E does not increase the average sleeping hours of people with insomnia; for the one-sample t-test, the average sleeping hours of people with insomnia is a known constant say, it is 4.5 hours
- Experiment: let N = 40 people with insomnia take drug E and observe the amount of their sleep
- Data: x_1, \dots, x_N the sleeping hours of people who have taken drug E; random variable X_1, \dots, X_N i.i.d.

- Statement: drug E does not increase the average sleeping hours of people with insomnia; for the one-sample t-test, the average sleeping hours of people with insomnia is a known constant say, it is 4.5 hours
- Experiment: let N = 40 people with insomnia take drug E and observe the amount of their sleep
- Data: x_1, \dots, x_N the sleeping hours of people who have taken drug E; random variable X_1, \dots, X_N i.i.d.
- Parameter of interest: the mean value μ ; estimate: sample mean

$$\hat{\mu} = \bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Test 1: one-sample t-test

- Statement: drug E does not increase the average sleeping hours of people with insomnia; for the one-sample t-test, the average sleeping hours of people with insomnia is a known constant say, it is 4.5 hours
- Experiment: let N = 40 people with insomnia take drug E and observe the amount of their sleep
- Data: x_1, \dots, x_N the sleeping hours of people who have taken drug E; random variable X_1, \dots, X_N i.i.d.
- Parameter of interest: the mean value μ ; estimate: sample mean

$$\hat{\mu} = \bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

• Null hypothesis H_0 : H_0 : μ = 4.5

- Statement: drug E does not increase the average sleeping hours of people with insomnia; for the one-sample t-test, the average sleeping hours of people with insomnia is a known constant say, it is 4.5 hours
- Experiment: let N = 40 people with insomnia take drug E and observe the amount of their sleep
- Data: x_1, \dots, x_N the sleeping hours of people who have taken drug E; random variable X_1, \dots, X_N i.i.d.
- Parameter of interest: the mean value μ ; estimate: sample mean

$$\hat{\mu} = \bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

- Null hypothesis H_0 : H_0 : $\mu = 4.5$
- Significance level α : set to 0.05

Test 1: one-sample t-test (cont.)

Test statistic:

$$t_0 = \frac{\bar{x} - 4.5}{s / \sqrt{N}}$$

where
$$s = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2}$$

- Null distribution:
 - Student's-t distribution with degrees of freedom df = N 1
 - Python: stats.t.pdf(t, df = N 1)
- Alternative hypothesis H_A : H_A : $\mu \neq 4.5$ two tailed test

Paired t-test

Test 1: one-sample t-test (cont.)

• Run the experiment and collect data

```
# Data in this example is generated using the following command
N = 40
x = stats.norm.rvs(loc=5.2, scale=1.2, size=N, random_state=1)
>> x = [7.14921444 4.4658923 4.5661939 3.91243765]
        6.23848916 2.43815356 7.29377412 4.28655172
        5.58284692 4.90075555 6.95452952 2.72783115
        4.81309936 4.73913477 6.56052333 3.88013048
        4.99308615 4.1465699 5.2506565 5.89937826
        3.87925699 6.57366845 6.28190886 5.80299321
        6.28102714 4.37952657 5.05253173 4.07707668
        4.8785343 5.83642656 4.3700071 4.72389577
        4.37539276 4.18575323 4.39450464 5.18480248
        3.85922758 5.48129884 7.19176261 6.090452991
\Rightarrow \bar{x} = 5.092
```


Test 1: one-sample t-test (cont.)

- Compute the test statistic t_0 from data:
 - First, estimate the nuisance parameter the parameter that is not the parameter of interest: standard deviation

$$s = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2} = 1.172$$

Then compute the test statistic

$$t_0 = \frac{\bar{x} - 4.5}{s/\sqrt{N}} = \frac{5.09 - 4.5}{1.172/\sqrt{40}} = 3.197$$

Test 1: one-sample t-test (cont.)

• Compute the *p*-value:

$$p = 2 \min(P(T \le t_0 \mid H_0), P(T \ge t_0 \mid H_0)) = 0.003$$

• $p < \alpha$: reject H_0

Test 1: one-sample t-test (cont.)

• Compute the *p*-value:

$$p = 2 \min(P(T \le t_0 \mid H_0), P(T \ge t_0 \mid H_0)) = 0.003$$

• $p < \alpha$: reject H_0

Example implementation in Python: $stats.ttest_1samp(x, 4.5)$

x is specified on page 25

Test 2: two-sample t-test

- Statement: drug E does not increase the average sleeping hours of people with insomnia
- Experiment: let $N_X = 40$ people with insomnia take drug E and observe their amount of sleep; observe the sleeping hours of $N_Y = 50$ people with insomnia without taking drug E
- Data:
 - x_1, \dots, x_{N_X} sleeping hours of people with insomnia who have taken drug E; random variable X_1, \dots, X_{N_X} i.i.d.
 - y₁, · · · , y_{N_V} sleeping hours of people with insomnia who have not taken drug E; random variable Y₁, · · · , Y_{N_V} i.i.d.
 - X_i and Y_j independent, for $i=1,\cdots,N_X$, $j=1,\cdots,N_Y$

Test 2: two-sample t-test (cont.)

- Parameter of interest:
 - The mean value of the sleeping hours of people with insomnia after taking drug E μ_E ; estimate: sample mean $\hat{\mu}_E = \bar{x} = \frac{1}{N_V} \sum_{i=1}^{N_V} x_i$
 - The mean value of the sleeping hours of people with insomnia without taking drug E μ_0 ; estimate: sample mean $\hat{\mu}_0 = \bar{y} = \frac{1}{N_V} \sum_{i=1}^{N_Y} y_i$
- Null hypothesis H_0 : H_0 : $\mu_E \mu_0 = 0$
- Test statistic:

$$t_0 = \frac{\bar{x} - \bar{y}}{\sqrt{\frac{s_X^2}{N_X} + \frac{s_Y^2}{N_Y}}}$$

with degrees of freedom $\frac{df}{(\frac{s_X^2/N_X+s_Y^2/N_Y)^2}{(\frac{s_X^2}{N_Y})^2/(N_X-1)+(\frac{s_Y^2}{N_Y})^2/(N_Y-1)}}$, where

$$s_x = \sqrt{\frac{1}{N_X - 1} \sum_{i=1}^{N_X} (x_i - \bar{x})^2}$$
 and $s_Y = \sqrt{\frac{1}{N_Y - 1} \sum_{i=1}^{N_Y} (y_i - \bar{y})^2}$

Test 2: two-sample t-test (cont.)

- Null distribution:
 - Student's-t distribution with degrees of freedom df (cf. page 29)
 - Python: stats.t.pdf(t, df = df)
- Alternative hypothesis H_A : H_A : $H_E \mu_0 \neq 0$ two tailed test
- Significance level α : set to 0.05

Test 2: two-sample t-test (cont.)

```
• Run the experiment and collect data: x is the same data as page 25
 # Data y in this example is generated using the following command
 y = stats.norm.rvs(loc=4.5, scale=0.9, size=50, random_state=2)
 >> y = [4.12491794 4.44935986 2.57742351 5.97624373 2.88590797
         3.74242737 4.95259328 3.37924072 3.547843 3.68189315
         4.99630864 6.56298721 4.53738545 3.4938671 4.98515249
         3.96345627 4.48278255 5.5575011 3.82691615 4.50812273
         3.7097029 4.35920925 4.73091341 3.61009886 4.19506023
         4.28743437 3.92611049 3.43114894 3.2209045 4.36185432
         4.25784874 6.50823011 2.30870918 4.60145385 4.83340008
         5.72367048 4.95167149 3.74020767 4.50000879 4.98811731
```

4.21784262 5.19391056 2.81871841 6.0580662 5.82091021 4.1978904 5.0502067 4.54317353 3.75377824 4.5789392]

Parameter estimate:

- Parameter of interest: $\bar{x} = 5.092$. $\bar{v} = 4.374$
- Nuisance parameter:

$$s_X = \sqrt{\frac{1}{N_X - 1} \sum_{i=1}^{N_X} (x_i - \bar{x})^2} = 1.172, \ s_Y = \sqrt{\frac{1}{N_Y - 1} \sum_{i=1}^{N_Y} (y_i - \bar{y})^2} = 0.946$$

Test 2: two-sample t-test (cont.)

- Compute the test statistic t_0 from data:
 - Then compute the test statistic

$$t_0 = \frac{\bar{x} - \bar{y}}{\sqrt{\frac{s_X^2}{N_X} + \frac{s_Y^2}{N_Y}}} = 3.142$$

• Compute the *p*-value:

$$p = 2 \min(P(T \le t_0 \mid H_0), P(T \ge t_0 \mid H_0)) = 0.002$$

• $p < \alpha$: reject H_0

Test 2: two-sample t-test (cont.)

- In this two-sample t-test, we do not assume equal variance for X_i and Y_j ; this type of two-sample t-test is also called Welch's t-test
- Example implementation in Python:

```
stats.ttest_ind(x, y, equal_var=False)
```

where equal variance for x and y

Test 3: paired t-test

- Statement: drug E does not increase the average sleeping hours of people with insomnia
- Experiment: let N=40 people with insomnia take drug E and observe their amount of sleep before and after taking drug E
- Data: let z_1, \dots, z_N and x_1, \dots, x_N be the sleeping hours of people before and after taking drug E, respectively; random variable $X_1 Z_1, \dots, X_N Z_N$ i.i.d.
- Parameter of interest: the mean value of the difference μ_{X-Z} ; estimate: sample mean $\hat{\mu}_{X-Z} = \frac{1}{N} \sum_{i=1}^{N} x_i z_i$
- Null hypothesis H_0 : H_0 : $\mu_{X-Z} = 0$

Test 3: paired t-test (cont.)

Test statistic:

$$t_0 = \frac{\hat{\mu}_{X-Z}}{s_{X-Z}/\sqrt{N}}$$

where
$$s_{X-Z} = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - z_i - \hat{\mu}_{X-Z})^2}$$

- Null distribution:
 - Student's-t distribution with degrees of freedom df = N 1
 - Python: stats.t.pdf(t, df = N 1)
- Alternative hypothesis H_A : H_A : $\mu_{X-Z} \neq 0$ two tailed test
- Significance level α : set to 0.05

Paired t-test

Test 3: paired t-test (cont.)

```
• Run the experiment and collect data: x is the same data as page 25
  # Data z in this example is generated using the following command
 N = 40
```

```
z = stats.norm.rvs(loc=4.5, scale=0.9, size=N, random_state=0)
```

Parameter estimate:

- Parameter of interest: $\Rightarrow \hat{\mu}_{X-Z} = 0.311$
- Nuisance parameter: $s_{X-Z} = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i z_i \hat{\mu}_{X-Z})^2} = 1.313$

Test 3: paired t-test (cont.)

• Compute the test statistic t_0 from data:

$$t_0 = \frac{\hat{\mu}_{X-Z}}{s_{X-Z}/\sqrt{N}} = 1.499$$

• Compute the p-value:

$$p = 2 \min(P(T \le t_0 \mid H_0), P(T \ge t_0 \mid H_0)) = 0.142$$

• $p > \alpha$: fail to reject H_0

Test 3: paired t-test (cont.)

• Compute the test statistic t_0 from data:

$$t_0 = \frac{\hat{\mu}_{X-Z}}{s_{X-Z}/\sqrt{N}} = 1.499$$

• Compute the *p*-value:

$$p = 2 \min(P(T \le t_0 \mid H_0), P(T \ge t_0 \mid H_0)) = 0.142$$

• $p > \alpha$: fail to reject H_0

Example implementation in Python: $stats.ttest_rel(x, z)$

Exercise 2

• One of the tests you have designed is a two-sample test. After the experiments, you realized the test subjects being selected in the second group are twins of the first group (and they both have insomnia. Duh!). Would that be a problem? Can you still use the result somehow?

Exercise 2

- One of the tests you have designed is a two-sample test. After the experiments, you realized the test subjects being selected in the second group are twins of the first group (and they both have insomnia. Duh!). Would that be a problem? Can you still use the result somehow?
- Solution:
 - The two-sample test is the two-sample t-test (cf. page 28); cannot use the result as is since the two samples are not independent
 - As a potential solution, we can match related subjects in the first group and the second group to create a paired data set $(x_1, y_1), \dots, (x_N, y_N)$, i.e. x_i and y_i in each pair are related to each other
 - Apply the paired t-test on the new data set $(x_1, y_1), \dots, (x_N, y_N)$

Test statistics and hypothesis tests Compare two classifiers Summary One-sample t-test
Two-sample t-test (Welch's t-test - unequal variances)
Paired t-test
Binomial test
McNemar's test
Summary

Test statistics and hypothesis tests Compare two classifiers Summary z-test
One-sample t-test
Two-sample t-test (Welch's t-test - unequal variances)
Paired t-test
Binomial test
McNemar's test
Summary

Binomial distribution

Discrete distribution

Binomial distribution

- Discrete distribution
- Applies to discrete numerical data the number of successes from n independent Bernoulli trials with probability of success p

Binomial distribution

- Discrete distribution
- Applies to discrete numerical data the number of successes from n independent Bernoulli trials with probability of success p
- Example: You try to catch 10 ducks one by one (they need their cuddles!); the success rate of catching a duck is p = 20%; what is the probably of catching k ducks successfully, where $k = 0, 1, \dots, 10$?

Binomial distribution

- Discrete distribution
- Applies to discrete numerical data the number of successes from n independent Bernoulli trials with probability of success p
- Example: You try to catch 10 ducks one by one (they need their cuddles!); the success rate of catching a duck is p = 20%; what is the probably of catching k ducks successfully, where $k = 0, 1, \dots, 10$?
- PMF:

Binomial distribution

- Discrete distribution
- Applies to discrete numerical data the number of successes from n independent Bernoulli trials with probability of success p
- Example: You try to catch 10 ducks one by one (they need their cuddles!); the success rate of catching a duck is p = 20%; what is the probably of catching k ducks successfully, where $k = 0, 1, \dots, 10$?
- PMF:
 - Equation

$$f_X(k \mid n, p) = P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}, \ k = 0, \dots, n, \ p \in [0, 1]$$

where $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ is the binomial coefficient (choose k from n)

Binomial distribution

- Discrete distribution
- Applies to discrete numerical data the number of successes from n independent Bernoulli trials with probability of success p
- Example: You try to catch 10 ducks one by one (they need their cuddles!); the success rate of catching a duck is p = 20%; what is the probably of catching k ducks successfully, where $k = 0, 1, \dots, 10$?
- PMF·
 - Equation

$$f_X(k \mid n, p) = P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}, \ k = 0, \dots, n, \ p \in [0, 1]$$

where $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ is the binomial coefficient (choose k from n)

- Shape
 - ullet When p=0.5, the PMF is symmetric
 - When $p \neq 0.5$, the PMF is asymmetric

Binomial distribution

- Discrete distribution
- Applies to discrete numerical data the number of successes from n independent Bernoulli trials with probability of success p
- Example: You try to catch 10 ducks one by one (they need their cuddles!); the success rate of catching a duck is p = 20%; what is the probably of catching k ducks successfully, where $k = 0, 1, \dots, 10$?
- PMF:
 - Equation

$$f_X(k \mid n, p) = P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}, \ k = 0, \dots, n, \ p \in [0, 1]$$

where $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ is the binomial coefficient (choose k from n)

- Shape
 - ullet When p=0.5, the PMF is symmetric
 - When $p \neq 0.5$, the PMF is asymmetric

Parameters: p and n; n is typically known

Test statistics and hypothesis tests Compare two classifiers Summary z-test
One-sample t-test
Two-sample t-test (Welch's t-test - unequal variances)
Paired t-test
Binomial test
McNemar's test

Binomial test

Typical set up for the experiment:

- Typical set up for the experiment:
 - One sample of independent test subjects, e.g. one sample of independent patients

- Typical set up for the experiment:
 - One sample of independent test subjects, e.g. one sample of independent patients
 - Run the same experiment on all subjects from the sample and collect the outcomes,
 e.g. give a new drug to a sample of patients and measure how many patients are cured

- Typical set up for the experiment:
 - One sample of independent test subjects, e.g. one sample of independent patients
 - Run the same experiment on all subjects from the sample and collect the outcomes,
 e.g. give a new drug to a sample of patients and measure how many patients are cured
 - The outcomes contain one sample with nominal categorical values with two
 categories, which are then summarized into one discrete numerical value the
 number of "success" cases

- Typical set up for the experiment:
 - One sample of independent test subjects, e.g. one sample of independent patients
 - Run the same experiment on all subjects from the sample and collect the outcomes,
 e.g. give a new drug to a sample of patients and measure how many patients are cured
 - The outcomes contain one sample with nominal categorical values with two categories, which are then summarized into one discrete numerical value - the number of "success" cases
- Purpose: to test if the proportion of "success" differs from a predefined constant

- Typical set up for the experiment:
 - One sample of independent test subjects, e.g. one sample of independent patients
 - Run the same experiment on all subjects from the sample and collect the outcomes,
 e.g. give a new drug to a sample of patients and measure how many patients are cured
 - The outcomes contain one sample with nominal categorical values with two categories, which are then summarized into one discrete numerical value - the number of "success" cases
- Purpose: to test if the proportion of "success" differs from a predefined constant
- Data: N independent Bernoulli trials x_i with k_0 "success" outcomes, e.g. the number of cured patients within the sample of size N

- Typical set up for the experiment:
 - One sample of independent test subjects, e.g. one sample of independent patients
 - Run the same experiment on all subjects from the sample and collect the outcomes,
 e.g. give a new drug to a sample of patients and measure how many patients are cured
 - The outcomes contain one sample with nominal categorical values with two categories, which are then summarized into one discrete numerical value - the number of "success" cases
- Purpose: to test if the proportion of "success" differs from a predefined constant
- Data: N independent Bernoulli trials x_i with k_0 "success" outcomes, e.g. the number of cured patients within the sample of size N
- Random variable and assumption: $X_i \sim Bernoulli(p)$, $K \sim Binomial(N, p)$ with known N and unknown success rate p

- Typical set up for the experiment:
 - One sample of independent test subjects, e.g. one sample of independent patients
 - Run the same experiment on all subjects from the sample and collect the outcomes,
 e.g. give a new drug to a sample of patients and measure how many patients are cured
 - The outcomes contain one sample with nominal categorical values with two categories, which are then summarized into one discrete numerical value - the number of "success" cases
- Purpose: to test if the proportion of "success" differs from a predefined constant
- Data: N independent Bernoulli trials x_i with k_0 "success" outcomes, e.g. the number of cured patients within the sample of size N
- Random variable and assumption: $X_i \sim Bernoulli(p)$, $K \sim Binomial(N, p)$ with known N and unknown success rate p
- Parameter of interest: p

- Typical set up for the experiment:
 - One sample of independent test subjects, e.g. one sample of independent patients
 - Run the same experiment on all subjects from the sample and collect the outcomes,
 e.g. give a new drug to a sample of patients and measure how many patients are cured
 - The outcomes contain one sample with nominal categorical values with two categories, which are then summarized into one discrete numerical value - the number of "success" cases
- Purpose: to test if the proportion of "success" differs from a predefined constant
- Data: N independent Bernoulli trials x_i with k_0 "success" outcomes, e.g. the number of cured patients within the sample of size N
- Random variable and assumption: $X_i \sim Bernoulli(p)$, $K \sim Binomial(N, p)$ with known N and unknown success rate p
- Parameter of interest: p
- Parameter estimate: $\hat{p} = \frac{k_0}{N}$

- Typical set up for the experiment:
 - One sample of independent test subjects, e.g. one sample of independent patients
 - Run the same experiment on all subjects from the sample and collect the outcomes,
 e.g. give a new drug to a sample of patients and measure how many patients are cured
 - The outcomes contain one sample with nominal categorical values with two categories, which are then summarized into one discrete numerical value - the number of "success" cases
- Purpose: to test if the proportion of "success" differs from a predefined constant
- Data: N independent Bernoulli trials x_i with k_0 "success" outcomes, e.g. the number of cured patients within the sample of size N
- Random variable and assumption: $X_i \sim Bernoulli(p)$, $K \sim Binomial(N, p)$ with known N and unknown success rate p
- Parameter of interest: p
- Parameter estimate: $\hat{p} = \frac{k_0}{N}$
- Null hypothesis: given π a constant,

z-test
One-sample t-test
Two-sample t-test (Welch's t-test - unequal variances)
Paired t-test
Binomial test
McNemar's test
Summary

(exact) Binomial test (cont.)

• Test statistic: k_0

(exact) Binomial test (cont.)

- Test statistic: k₀
- Null distribution:

$$P(X=k) = \binom{N}{k} \pi^{k} (1-\pi)^{N-k}$$

ullet Binomial distribution with parameters ${\it N}$ and π

- Test statistic: k₀
- Null distribution:

$$P(X=k) = \binom{N}{k} \pi^{k} (1-\pi)^{N-k}$$

- ullet Binomial distribution with parameters ${\it N}$ and π
- Python: stats.binom.pmf(k, N, π)

- Test statistic: k₀
- Null distribution:

$$P(X=k) = \binom{N}{k} \pi^{k} (1-\pi)^{N-k}$$

- ullet Binomial distribution with parameters N and π
- Python: stats.binom.pmf(k, N, π)
- As discussed in the remarks (cf. page 6), we only introduce the following scenarios:

- Test statistic: k₀
- Null distribution:

$$P(X = k) = \binom{N}{k} \pi^{k} (1 - \pi)^{N-k}$$

- ullet Binomial distribution with parameters N and π
- Python: stats.binom.pmf(k, N, π)
- As discussed in the remarks (cf. page 6), we only introduce the following scenarios:
 - ullet One-tailed (left) binomial test with any $\pi \in (0,1)$

- Test statistic: k₀
- Null distribution:

$$P(X = k) = \binom{N}{k} \pi^{k} (1 - \pi)^{N-k}$$

- ullet Binomial distribution with parameters N and π
- Python: stats.binom.pmf(k, N, π)
- As discussed in the remarks (cf. page 6), we only introduce the following scenarios:
 - ullet One-tailed (left) binomial test with any $\pi \in (0,1)$
 - ullet One-tailed (right) binomial test with any $\pi \in (0,1)$

- Test statistic: k₀
- Null distribution:

$$P(X=k) = \binom{N}{k} \pi^{k} (1-\pi)^{N-k}$$

- ullet Binomial distribution with parameters N and π
- Python: stats.binom.pmf(k, N, π)
- As discussed in the remarks (cf. page 6), we only introduce the following scenarios:
 - ullet One-tailed (left) binomial test with any $\pi \in (0,1)$
 - One-tailed (right) binomial test with any $\pi \in (0,1)$
 - Two-tailed binomial test with $\pi=$ 0.5, where the null distribution is symmetric

(exact) One-tailed (left) binomial test

• Hypotheses H_0 and H_A :

$$H_0: p = \pi$$

 $H_A: p < \pi$

- p-value:
 - Definition: $P(K \le k_0 \mid H_0)$
 - Python: stats.binom.cdf(k_0 , n=N, p= π)

(exact) One-tailed (right) binomial test

• Hypotheses H_0 and H_A :

$$H_0: p = \pi$$

 $H_A: p > \pi$

- p-value:
 - Definition: $P(K \ge k_0 \mid H_0)$
 - Python: 1- stats.binom.cdf $(k_0,n=N,p=\pi)+$ stats.binom.pmf $(k_0,n=N,p=\pi)$

(exact) Two-tailed binomial test

• Hypotheses H_0 and H_{Δ} :

$$H_0: p = 0.5$$

 $H_A: p \neq 0.5$

- p-value:
 - Definition: $2 \min (P(K \le k_0 \mid H_0), P(K \ge k_0 \mid H_0))$
 - Python:
 - $c = \text{stats.binom.cdf}(k_0, n = N, p = 0.5)$
 - $2 * min(c, 1 c + stats.binom.pmf(k_0, n = N, p = 0.5))$

(exact) two-tailed Binomial test with p = 0.5

(large N) Binomial test

Same set up as page 41, but for large N, the Binomial distribution can be approximated using a Gaussian distribution $K \sim \mathcal{N}(N\pi, \sqrt{N\pi(1-\pi)})$

Test statistic:

$$z_0 = \frac{k_0 - N\pi}{\sqrt{N\pi(1-\pi)}}$$

- Null distribution: standard Gaussian distribution
 - PDF: $f(z \mid H_0) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}$
 - Python: stats.norm.pdf(z, 0, 1)
- p-value:
 - Definition: $p = 2 \min (P(Z \le z_0 \mid H_0), P(Z \ge z_0 \mid H_0))$
 - Python: $2 * \min (\text{stats.norm.cdf}(z_0, 0, 1), 1-\text{stats.norm.cdf}(z_0, 0, 1))$

z-test
One-sample t-test
Two-sample t-test (Welch's t-test - unequal variances)
Paired t-test
Binomial test
McNemar's test
Summary

McNemar's test

z-test
One-sample t-test
Two-sample t-test (Welch's t-test - unequal variances)
Paired t-test
Binomial test
McNemar's test
Summary

McNemar's test

• Typical set up for the experiment:

Z-test One-sample t-test Two-sample t-test (Welch's t-test - unequal variances) Paired t-test Binomial test McNemar's test

McNemar's test

- Typical set up for the experiment:
 - One sample of independent test subjects, e.g. one sample of independent patients

McNemar's test

- Typical set up for the experiment:
 - One sample of independent test subjects, e.g. one sample of independent patients
 - Within the sample, there are two groups; each subject belongs to one and only one group, e.g. within
 the sample of patients, we have one group with high blood pressure and another group with normal
 blood pressure

McNemar's test

• Typical set up for the experiment:

- One sample of independent test subjects, e.g. one sample of independent patients
- Within the sample, there are two groups; each subject belongs to one and only one group, e.g. within
 the sample of patients, we have one group with high blood pressure and another group with normal
 blood pressure
- Run two sets of experiments A and B on all test subjects from the sample and collect the outcomes, e.g. measure the blood pressure (high or normal) of the patients before giving them a new drug (experiment A); measure the blood pressure (high or normal) of the patients after giving them the new drug (experiment B)

McNemar's test

Typical set up for the experiment:

- One sample of independent test subjects, e.g. one sample of independent patients
- Within the sample, there are two groups; each subject belongs to one and only one group, e.g. within
 the sample of patients, we have one group with high blood pressure and another group with normal
 blood pressure
- Run two sets of experiments A and B on all test subjects from the sample and collect the outcomes, e.g. measure the blood pressure (high or normal) of the patients before giving them a new drug (experiment A); measure the blood pressure (high or normal) of the patients after giving them the new drug (experiment B)
- The result contains two paired samples with nomimal categorical values with two categories
 measured from each test subject, e.g. high blood pressure and normal blood pressure, which are
 summarized in a contingency table

z-test One-sample t-test Two-sample t-test (Welch's t-test - unequal variances) Paired t-test Binomial test McNemar's test

McNemar's test (cont.)

• Purpose: to test if an action have different effects on two different groups

McNemar's test (cont.)

- Purpose: to test if an action have different effects on two different groups
- Data: *N* independent Bernoulli trials with outcomes x_1, \dots, x_N and y_1, \dots, y_N for the two experiments, respectively; $x_i, y_i \in \{0, 1\}$

	$x_i = 0$	$x_i = 1$	
$y_j = 0$	n ₀₀	n ₁₀	$n_{00} + n_{10}$
$y_j = 1$	n ₀₁	n ₁₁	$n_{01} + n_{11}$
	$n_{00} + n_{01}$	$n_{10} + n_{11}$	N

where n_{mn} is the count of $x_i = m$ and $y_j = n$

McNemar's test (cont.)

- Purpose: to test if an action have different effects on two different groups
- Data: N independent Bernoulli trials with outcomes x_1, \dots, x_N and y_1, \dots, y_N for the two experiments, respectively; $x_i, y_i \in \{0, 1\}$

	$x_i = 0$	$x_i = 1$	
$y_j = 0$	n ₀₀	n ₁₀	$n_{00} + n_{10}$
$y_j = 1$	n ₀₁	n ₁₁	$n_{01} + n_{11}$
	$n_{00} + n_{01}$	$n_{10} + n_{11}$	N

where n_{mn} is the count of $x_i = m$ and $y_i = n$

• Random variable and assumption: i.i.d. $X_i \sim Bernoulli(p_X)$ and i.i.d. $Y_i \sim Bernoulli(p_Y)$

McNemar's test (cont.)

Example

- A company is trying to determine the effectiveness of a drug on lowering blood pressure
- The company tested the drug on a sample of 229 independent patients
- There are two groups within this sample: a high blood pressure group (112 patients) and a normal blood pressure group (117 patients); each patient belongs to one and only one of these two groups
- The blood pressure of each patient is measured before (to determine the group) and after (to determine the effect) taking the drug
- The data is summarized as follows:

	Before (high blood pressure)	Before (normal blood pressure)	
After (high blood pressure)	90	15	105
After (normal blood pressure)	22	102	124
	112	117	229

(small discordance $n_{01} + n_{10}$) McNemar's test (cont.)

	$x_i = 0$	$x_i = 1$	
$y_j = 0$	n ₀₀	n ₁₀	$n_{00} + n_{10}$
$y_j = 1$	n ₀₁	n ₁₁	$n_{01} + n_{11}$
	$n_{00} + n_{01}$	$n_{10} + n_{11}$	N

Parameter of interest: discordance

$$p = \min (P(X_i = 0, Y_i = 1 \mid X_i \neq Y_i), P(X_i = 1, Y_i = 0 \mid X_i \neq Y_i))$$

- Parameter estimate: $\hat{p} = \frac{\min(n_{01}, n_{10})}{n_{01} + n_{10}}$
- Hypotheses H_0 and H_A :

$$H_0: p = 0.5$$

 $H_{\Delta}: p \neq 0.5$

- H_0 : the drug does not have any effect on blood pressure control
- H₁: the drug has effect on blood pressure control

(small discordance $n_{01} + n_{10}$) McNemar's test (cont.)

- Test statistic: $s_0 = \min(n_{01}, n_{10})$
- Null distribution:
 - Binomial distribution with parameters $(n_{01} + n_{10}, 0.5)$
 - Python: stats.binom.pmf(s, $n_{01} + n_{10}$, 0.5)
- p-value:
 - Definition: $p = 2P(S \le s_0 \mid H_0)$
 - Python: $2 * stats.binom.cdf(s_0, n_{01} + n_{10}, 0.5)$

(large discordance $n_{01} + n_{10}$) McNemar's test

	$x_i = 0$	$x_i = 1$	
$y_j = 0$	n ₀₀	n ₁₀	$n_{00} + n_{10}$
$y_j = 1$	n ₀₁	n ₁₁	$n_{01} + n_{11}$
	$n_{00} + n_{01}$	$n_{10} + n_{11}$	N

Same set up as page 49, but with large $n_{01} + n_{10}$, e.g. $n_{01} + n_{10} > 25$

- Parameter of interest: discordance (note: it is different from the previous definition (cf. page 51)) $p_{01} = P(X = 0, Y = 1)$ and $p_{10} = P(X = 1, Y = 0)$
- Parameter estimate: $\hat{p}_{01} = \frac{n_{01}}{N}$ and $\hat{p}_{10} = \frac{n_{10}}{N}$
- Hypotheses H_0 and H_A :

$$H_0: p_{01} = p_{10}$$

$$H_A: p_{01} \neq p_{10}$$

Test statistic:

$$s_0 = \frac{\left(|n_{01} - n_{10}| - 1\right)^2}{n_{01} + n_{10}}$$

Note: "-1" is called the continuity correction (https://en.wikipedia.org/wiki/Continuity_correction)

(large discordance $n_{01} + n_{10}$) McNemar's test (cont.)

- Null distribution:
 - Chi-squared distribution with df = 1
 - Python: stats.chi2.pdf(s, df = 1)
- p-value:
 - Definition: $P(S \ge s_0 \mid H_0)$
 - Python: 1-stats.chi2.cdf(s_0 , df = 1)

z-test
One-sample t-test
Two-sample t-test (Welch's t-test - unequal variances)
Paired t-test
Binomial test
McNemar's test

Exercise 3

• Run both the exact McNemar's test and the approximate McNemar's test on the data set provided on page 50

Test 1: exact McNemar's test

	Before (high blood pressure)	Before (normal blood pressure)	
After (high blood pressure)	n ₀₀ (90)	n ₁₀ (15)	105
After (normal blood pressure)	n ₀₁ (22)	n ₁₁ (102)	124
	112	117	229

- Data: contingency table
 - n_{01} : high blood pressure $\stackrel{\mathsf{take\ drug}}{\rightarrow}$ normal blood pressure
 - n_{10} : normal blood pressure $\overset{\mathsf{take\ drug}}{\to}$ high blood pressure
 - We want to test if there is a significant difference between $\frac{n_{01}}{n_{01}+n_{10}}$ and $\frac{n_{10}}{n_{01}+n_{10}}$
- Parameter estimate: $\hat{p} = \frac{\min(n_{01}, n_{10})}{n_{01} + n_{10}}$
- Hypotheses H_0 and H_A :

$$H_0: p = 0.5$$

 $H_4: p \neq 0.5$

- Significance level α : 0.05
- Collected data: $n_{01} = 22$, $n_{10} = 15$
- Test statistic: $s_0 = \min(n_{01}, n_{10}) = \min(22, 15) = 15$

Test 1: exact McNemar's test (cont.)

- Null distribution:
 - Binomial distribution with parameters $(n_{01} + n_{10}, 0.5)$
 - Python: stats.binom.pmf(s, $n_{01} + n_{10}$, 0.5)
- *p*-value: $2P(S \le 15 \mid H_0) = 0.3239$
- p-value > α : fail to reject H_0

Test 1: exact McNemar's test (cont.)

- Null distribution:
 - Binomial distribution with parameters $(n_{01} + n_{10}, 0.5)$
 - Python: stats.binom.pmf(s, $n_{01} + n_{10}$, 0.5)
- *p*-value: $2P(S \le 15 \mid H_0) = 0.3239$
- *p*-value > α : fail to reject H_0

Example implementation in Python:

Args:

- table: the contingency table
- exact=True: exact test

Binomial test McNemar's test

Test 2: approximate McNemar's test

- Data: contingency table
 - n_{01} : high blood pressure $\xrightarrow{\text{take drug}}$ normal blood pressure
 - n_{10} : normal blood pressure $\overset{\text{take drug}}{\rightarrow}$ high blood pressure
 - We want to test if there is a significant difference between $\frac{n_{01}}{N}$ and $\frac{n_{10}}{N}$
- Parameter estimate: $\hat{p}_{01} = \frac{n_{01}}{N}$ and $\hat{p}_{10} = \frac{n_{10}}{N}$
- Hypotheses H_0 and H_{Δ} :

$$H_0: p_{01} = p_{10}$$

 $H_A: p_{01} \neq p_{10}$

- Significance level: $\alpha = 0.05$
- Collected data: $n_{01} = 22$, $n_{10} = 15$, $n_{00} = 90$, $n_{11} = 102$
- Test statistic:

$$s_0 = \frac{(|n_{01} - n_{10}| - 1)^2}{n_{01} + n_{10}} = \frac{(|22 - 15| - 1)^2}{22 + 15} = 0.973$$

Test 2: approximate McNemar's test (cont.)

- Null distribution:
 - Chi-squared distribution with df = 1
 - Python: stats.chi2.pdf(s, df = 1)
- p-value: $P(S \ge s_0 \mid H_0) = P(S \ge 0.973 \mid H_0) = 0.324$
- p-value > α : fail to reject H_0

z-test
One-sample t-test
Two-sample t-test (Welch's t-test - unequal variances
Paired t-test
Binomial test
McNemar's test
Summary

Test 2: approximate McNemar's test (cont.)

- Null distribution:
 - Chi-squared distribution with df = 1
 - Python: stats.chi2.pdf(s, df = 1)
- p-value: $P(S \ge s_0 \mid H_0) = P(S \ge 0.973 \mid H_0) = 0.324$
- *p*-value > α : fail to reject H_0

Example implementation in Python:

Args:

- table: the contingency table
- exact=False: approximate test
- correction=True: continuity correction (cf. page 53)

Test statistics and hypothesis tests Compare two classifiers Summary z-test
Two-sample t-test
Two-sample t-test (Welch's t-test - unequal variances)
Paired t-test
Binomial test
McNemar's test
Summary

Summary

z-test
One-sample t-test
Two-sample t-test (Welch's t-test - unequal variances
Paired t-test
Binomial test
McNemar's t est
Summary

Statistical tests

	Data discrete/continuous	No. of samples col-	Remark	Test statistic	Null distribution
	Data discrete/continuous	lected for the test	Kemark	Test statistic	Null distribution
One-sample z-test	Continuous	1	σ known	$\frac{\bar{x}-c}{\sigma/\sqrt{N}}$	Standard Gaussian
One-sample t-test	Continuous	1	σ unknown	$\frac{\bar{x}-c}{s/\sqrt{N}}$	Student's-t distribution
Two-sample z-test	Continuous	2	σ_X , σ_Y known	$\frac{\bar{x} - \bar{y} - c}{\sqrt{\frac{\sigma_X^2}{N_X} + \frac{\sigma_Y^2}{N_Y}}}$	Standard Gaussian
Two-sample t-test	Continuous	2	σ_X , σ_Y unknown	$\frac{\bar{x}-\bar{y}-c}{\sqrt{\frac{s_X^2}{N_Y} + \frac{s_Y^2}{N_Y}}}$	Student's-t distribution
Paired t-test	Continuous	1 or 2 (paired)	σ_X , σ_Y unknown	$\frac{m_{X-Y}-c}{s_{X-Y}/\sqrt{N}}$	Student's-t distribution
Binomial test (exact)	Discrete	1	Small N	k ₀	Binomial distribution
Binomial test (approximate)	Discrete	1	Large N	$\frac{k_0-N\pi}{\sqrt{N\pi(1-\pi)}}$	Standard Gaussian
McNemar's test (exact)	Discrete	1 (2 groups)	Small $n_{01} + n_{10}$	$min(n_{01}, n_{10})$	Binomial distribution
McNemar's test (approximate)	Discrete	1 (2 groups)	Large $n_{01} + n_{10}$	$\frac{(n_{01}-n_{10} -1)^2}{n_{01}+n_{10}}$	Chi-squared distribution

Today

- 1 Test statistics and hypothesis tests
- 2 Compare two classifiers
- Summary

K-fold cross validation

- Classifiers: A and B
- Data: evaluation metric; continuous numerical data, e.g. accuracies p_1^A, \cdots, p_K^A and p_1^B, \cdots, p_K^B on the K validation sets

	fold 1	fold 2	 fold K
classifier A	ρ_1^A	p_2^A	 p_K^A
classifier B	p_1^B	p_2^B	 p_K^B
$p_i^A - p_i^B$	$p_1^A - p_1^B$	$p_{2}^{A}-p_{2}^{B}$	 $p_K^A - p_K^B$

- Random variable and assumption: $P_1^A, \dots, P_K^A, P_1^B, \dots, P_K^B$
 - $P_i^A P_i^B$ i.i.d.
 - $P_i^A P_i^B \sim \mathcal{N}\left(\mu_{A-B}, \sigma_{A-B}^2\right)$ with unknown standard deviation
- Parameter of interest: μ_{A-B}
- Parameter estimate: $m_{A-B} = \frac{1}{K} \sum_{i=1}^{K} (p_i^A p_i^B)$
- Hypotheses H_0 and H_A :

$$H_0: \mu_{A-B} = 0$$

$$H_A: \mu_{A-B} \neq 0$$

- Test statistic: $t = \frac{m_{A-B}}{s_{A-B}/\sqrt{K}}$, where $s_{A-B} = \sqrt{\frac{1}{K-1}\sum_{i=1}^{K} \left(p_i^A p_i^B m_{A-B}\right)^2}$
- Hypothesis test: paired t-test

Training-validation split and leave-one-out cross validation

- Classifiers: A and B
- Data: classifiers A and B tested on the validation data; the outcome x_i^A and x_i^B can be either correct (0) or incorrect (1); nominal categorical data with two categories correct or incorrect

	classifier A correct	classifier A incorrect		
classifier B correct	n_{00} =count(A correct, B correct)	n_{10} =count(A incorrect, B correct)		
classifier B incorrect	n_{01} =count(A correct, B incorrect)	n_{11} =count(A incorrect, B incorrect)		

- Random variable and assumption: $X_i^A \sim Bernoulli(p_A), X_i^B \sim Bernoulli(p_B)$
- Test statistic:
 - Small discordance (e.g. $n_{01} + n_{10} < 25$): $s_0 = \min(n_{01}, n_{10})$
 - Large discordance: $s_0 = \frac{(|n_{01} n_{10}| 1)^2}{n_{01} + n_{10}}$
- Hypothesis test: McNemar's test

- You have a labeled data set $\mathcal{D} = \{(x_1, y_1), \cdots, (x_N, y_N)\}$
- You developed two classifiers using the 10-fold validation
- Construct a table of the resulting F1 scores for these two classifiers
- Design a hypothesis test to compare these two classifiers

- You have a labeled data set $\mathcal{D} = \{(x_1, y_1), \cdots, (x_N, y_N)\}$
- You developed two classifiers using the training-validation split
- Construct a table of the results for these two classifiers
- Design a hypothesis test to compare these two classifiers

• To test equality of variances given two samples from Gaussian distributions, we can use the F-test

- To test equality of variances given two samples from Gaussian distributions, we can use the F-test
 - Null hypothesis: $H_0: \sigma_X^2 = \sigma_Y^2$

- To test equality of variances given two samples from Gaussian distributions, we can use the F-test
 - Null hypothesis: $H_0: \sigma_X^2 = \sigma_Y^2$
 - Alternative hypothesis: $H_A:\sigma_X^2 \neq \sigma_Y^2$ (only showing two-tailed test)

- To test equality of variances given two samples from Gaussian distributions, we can use the F-test
 - Null hypothesis: $H_0: \sigma_X^2 = \sigma_Y^2$
 - Alternative hypothesis: $H_A: \sigma_X^2 \neq \sigma_Y^2$ (only showing two-tailed test)
 - Test statistics: $F = \frac{S_X^2}{S_Y^2}$, where S_X and S_Y are sample standard deviations of X and Y, respectively

- To test equality of variances given two samples from Gaussian distributions, we can use the F-test
 - Null hypothesis: $H_0: \sigma_X^2 = \sigma_Y^2$
 - Alternative hypothesis: $H_A: \sigma_X^2 \neq \sigma_Y^2$ (only showing two-tailed test)
 - Test statistics: $F = \frac{S_X^2}{S_Y^2}$, where S_X and S_Y are sample standard deviations of X and Y, respectively
 - Null distribution: F-distribution (scipy.stats.f) with parameters $d_1=N_X-1$ and $d_2=N_Y-1$

- To test equality of variances given two samples from Gaussian distributions, we can use the F-test
 - Null hypothesis: $H_0: \sigma_X^2 = \sigma_Y^2$
 - Alternative hypothesis: $H_A: \sigma_X^2 \neq \sigma_Y^2$ (only showing two-tailed test)
 - Test statistics: $F = \frac{S_X^2}{S_Y^2}$, where S_X and S_Y are sample standard deviations of X and Y, respectively
 - Null distribution: F-distribution (scipy.stats.f) with parameters $d_1 = N_X 1$ and $d_2 = N_Y 1$
 - p-value: $2*(1-\text{stats.f.cdf}(s_X**2/s_Y**2, N_X, N_Y))$ assuming $s_X \ge s_Y$

Exercise 7: Hopkins statistic for testing clustering tendency

- Data: $\mathcal{X} = \{x_1, \dots, x_N\}$ from unknown distribution
- Purpose: Determine if there is clustering tendency
- Default statement: there is no clustering tendency in the data set
- Compute the Hopkins statistic
- 1: Choose an integer $M \ll N$ (sparse sampling)
- 2: Generate a sample of uniformly distributed data with sample size $M: \{y_1, \dots, y_M\}$
- 3: Randomly choose M data points (without replacement) from \mathcal{X} : $\{x_{m_1}, \cdots, x_{m_M}\}$
- 4: **for** i = 1 to M **do**
- 5: Let z = the nearest neighbor of y_i in \mathcal{X}
- 6: Compute the distance between \mathbf{y}_i and \mathbf{z} : $u_i = dist(\mathbf{y}_i, \mathbf{z})$
- 7: Let $\mathbf{x} = \text{the nearest neighbor of } \mathbf{x}_{m_i} \text{ in } \mathcal{X}$
- 8: Compute the distance between \mathbf{x}_{m_i} and \mathbf{x} : $\mathbf{w}_i = dist(\mathbf{x}_{m_i}, \mathbf{x})$

10:
$$h_0 = \frac{\sum_{i=1}^{M} u_i^d}{\sum_{i=1}^{M} u_i^d + \sum_{i=1}^{M} w_i^d}$$

Hypothesis testing using Hopkins statistic

• Test statistic:
$$h_0 = \frac{\sum_{i=1}^M u_i^d}{\sum_{i=1}^M u_i^d + \sum_{i=1}^M w_i^d}$$

• Null distribution:

• PDF: Beta distribution with parameters a = M and b = M

Python: stats.beta.pdf(x, M, M)

• Note: there are variations of the Hopkins statistic; in this version, when the Hopkins statistic deviates from 0.5 significantly, it indicates clustering tendency

Hypothesis testing using Hopkins statistic

• Test statistic:
$$h_0 = \frac{\sum_{i=1}^M u_i^d}{\sum_{i=1}^M u_i^d + \sum_{i=1}^M w_i^d}$$

• Null distribution:

• PDF: Beta distribution with parameters a = M and b = M

Python: stats.beta.pdf(x, M, M)

• Note: there are variations of the Hopkins statistic; in this version, when the Hopkins statistic deviates from 0.5 significantly, it indicates clustering tendency

Today

- Test statistics and hypothesis tests
- 2 Compare two classifiers
- Summary

Summary

So far:

- Data types and data containers
- Descriptive data analysis: descriptive statistics, visualization
- Probability distributions, events, random variables, PMF, PDF, parameters
- CDF, Q-Q plot, how to compare two distributions (data vs theoretical, data vs data)
- Modeling
- Parameter estimation: maximum likelihood estimation (MLE) and maximum a posteriori estimation (MAP)
- Classification, multinomial naive Bayes classifier, Gaussian naive Bayes classifier
- Central limit theorem, interval estimation
- Clustering, cluster tendency
- Centroid clustering, k-means, parameter estimation, SSE, Silhouette score
- Gaussian Mixture Models, AIC/BIC
- The EM algorithm
- Hypothesis tests, comparison of two classifiers

I will miss you all...

But there's still one more lecture

Don't ruin the vibe!

