REGULARIZACION

Regularization

Underfitting

A good fit

Overfitting

Regularization helps prevent overfitting

Fórmula del Error Cuadrático Medio (MSE)

La fórmula general para el error cuadrático medio (MSE) es:

$$E(\epsilon) = E((\hat{Y} - Y)^2)$$

Donde:

- \hat{Y} es la predicción del modelo.
- Y es el valor real.

Varianza:

Representa la cantidad en la que la predicción del modelo cambiaría si se usaran diferentes datos de entrenamiento (RUIDO).

Descomposición del MSE

El MSE se puede descomponer en tres componentes: el sesgo al cuadrado, la varianza y el error irreducible (σ^2).

$$E(\epsilon) = E((\hat{Y} - Y)^2) = (E(\hat{Y}) - Y)^2 + E((\hat{Y} - E(\hat{Y}))^2) + \sigma^2$$

$$Sesgo^2$$

Representa el error debido a suposiciones erróneas en el modelo. Un modelo con alto sesgo tiende a ser demasiado simple y no captura adecuadamente la relación entre las características y la variable objetivo

Error Irreducible

Es el ruido inherente en cualquier problema de modelado de datos, debido a factores no considerados en el modelo (no se reduce)

Reducir la varianza para aumentar un poco el sesgo

representa el dilema de sesgo-varianza en el aprendizaje automático, mostrando cómo el error total del modelo se descompone en sesgo, varianza y error irreducible, y cómo estos componentes varían con la complejidad del modelo.

Source: http://scott.fortmann-roe.com/docs/BiasVariance.html

Regularización L2 (Ridge)

- **Penalización**: Suma de los cuadrados de los coeficientes ($\sum \theta_i^2$).
- **Efecto**: No elimina completamente los coeficientes, sino que los reduce, lo que puede ser útil para tratar multicolinealidad.
- **Uso**: Se utiliza cuando se espera que todas las características tengan algún grado de relevancia y no se quiere que ningún coeficiente sea exactamente cero.
- Función de Costo:

on de Costo:
$$J(heta) = rac{1}{m} \sum_{i=1}^m \left(h_ heta(x^{(i)}) - y^{(i)}
ight)^2 + \lambda \sum_{j=1}^n heta_j^2$$
 Sesgo

Regularización L1 (Lasso)

- **Penalización**: Suma de los valores absolutos de los coeficientes ($\sum | heta_j|$).
- Efecto: Puede llevar a que algunos coeficientes sean exactamente cero, lo que resulta en la selección de características y en modelos más simples.
- Uso: Es útil cuando se espera que solo algunas características sean relevantes para el modelo, ya que puede eliminar completamente las características irrelevantes.
- Función de Costo:

$$J(heta) = rac{1}{m} \sum_{i=1}^m \left(h_ heta(x^{(i)}) - y^{(i)}
ight)^2 + \lambda \sum_{j=1}^n | heta_j| \quad ext{Sesgo}$$

Elastic Net

- ullet Penalización: Combina las penalizaciones L1 y L2 ($\lambda_1 \sum | heta_j| + \lambda_2 \sum heta_j^2$).
- Efecto: Puede tanto eliminar características irrelevantes como reducir los coeficientes de las características relevantes.
- Uso: Es útil cuando se sospecha que hay correlación entre las características y se busca un equilibrio entre la selección de características y la reducción de coeficientes.

Función de Costo.

 $J(heta) = rac{1}{m} \sum_{i=1}^m \left(h_ heta(x^{(i)}) - y^{(i)}
ight)^2 + \lambda_1 \sum_{j=1}^n | heta_j| + \lambda_2 \sum_{j=1}^n heta_j^2$ Sesgo

Resumen de Diferencias:

- Lasso (L1): Ideal para modelos donde solo algunas características son importantes. Puede reducir los coeficientes de características irrelevantes a cero, eliminándolas efectivamente del modelo.
- Ridge (L2): Adecuado para situaciones donde todas las características pueden tener algún grado de relevancia. Reduce la magnitud de todos los coeficientes pero no los lleva a cero.
- Elastic Net: Combina las ventajas de Lasso y Ridge, útil en situaciones donde hay muchas características y algunas pueden estar correlacionadas.

```
import numpy as np
from sklearn.linear_model import Ridge, Lasso, ElasticNet
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean squared error
# Generar datos de ejemplo
np.random.seed(42)
X = 2 * np.random.rand(100, 1)
y = 4 + 3 * X + np.random.randn(100, 1)
# Dividir en conjuntos de entrenamiento y prueba
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2
```

Archivo Editar Ver Insertar Entorno de ejecución Herramientas Ayuda Se han guardado todos los cambios

+ Código + Texto

aplicación udua. En este iaporatorio, continuaras con este proceso y exploraras algunos consejos para mejorar en renulmiento de tus modelos.

Resulta que los errores de entrenamiento y validación cruzada pueden indicarte qué hacer a continuación para mejorar tus modelos.

Específicamente, mostrada a contir

La figura de la izqu

Como resultado, t alta varianza, don rendimiento será donde el modelo : algunos consejos

Resumen:

- Alto sesgo: Representado por un modelo simple que no ajusta bien los datos (subajuste, underfitting).
- Alta varianza: Representado por un modelo complejo que ajusta demasiado los datos (sobreajuste, overfitting).

conferencia

trenamiento. oblema de amiento, su a en el medio. cias dieron

Para corregir un problema de alto sesgo, puedes:

- Intentar agregar características polinomiales
- Intentar obtener características adicionales
- Intentar disminuir el parámetro de regularización
- Para corregir un problema de alta varianza, puedes:
- Intentar aumentar el parámetro de regularización
- Intentar conjuntos de características más pequeños
- Obtener más ejemplos de entrenamiento
- Probarás todos estos consejos en este laboratorio. ¡Empesemos!

avianca - Avianca ofrecerá más de 34.000 vuelos y espera transportar alrededor de 4.7 millones de clientes durante la temporada alta de mitad de año.

Regularización: parámetros que escalan las características multiplican por un valor 1 o cero Tratar de tener modelos mas simples (disminuir la amplitud para dejar que el modelo se ajuste mas a los datos)

Modelo de alta varianza no generaliza, muy complejo aumentarle la regularización con los coeficientes

Eliminar el ruido

Puedo tener los dos problemas en un sobreajuste puede ser que tenga sobre ajuste porque tengo una ecuación muy compleja en la regresión, o sea un polinomio muy grande o puede ser que es que no es que el polinomio sea tan grande, sino que me faltan datos de entrenamiento.

```
model = LinearRegression()

# Train and plot polynomial regression models
train_plot_poly(model, x_train, y_train, x_cv, y_cv, max_degree=10, baseline=406
```

Ŧ

SHAPE 60 OBSEVACIONES CON UNA CARACTERISTICA

```
the shape of the training set (input) is: (60, 1) the shape of the training set (target) is: (60,)

the shape of the cross validation set (input) is: (20, 1) the shape of the cross validation set (target) is: (20,)
```

Validación cruzada, sí tengo 1000 datos, entonces yo primero uso los primeros 100 para validar y dejo a los otros 900 para entrenar y luego cojo los siguientes 100 de 100 a 200 .)-MINIMIZA EL SESGO

*Cada que itera

degree of polynomial vs. train and CV MSEs

MORE FEATURES TO TREAT HIGH BIAS:


```
#Define the model
model = LinearRegression()

#Define properties of the 2 datasets
file1 = {'filename':f"{path}{filename3}", 'label': '3 features', 'linestyle': 'd
file2 = {'filename':f"{path}{filename2}", 'label': '2 features', 'linestyle': 's
files = [file1, file2]

#Train and plot for each dataset
train_plot_diff_datasets(model, files, max_degree=4, baseline=250)
```

degree of polynomial vs. train and CV MSEs

