Data Mining

UNIT- V Cluster Analysis

Density Based Clustering

 Clusters are regions of high density that are separated from one another by regions on low density.

DBSCAN

- DBSCAN is a density-based algorithm.
 - Density = number of points within a specified radius (Eps)
 - A point is a core point if it has at least a specified number of points (MinPts) within Eps
 - These are points that are at the interior of a cluster
 - Counts the point itself
 - A border point is not a core point, but is in the neighborhood of a core point
 - A noise point is any point that is not a core point or a border point

DBSCAN: Core, Border, and Noise Points

DBSCAN: Core, Border and Noise Points

Original Points

Point types: core, border and noise

Eps = 10, MinPts = 4

DBSCAN Algorithm

- Form clusters using core points, and assign border points to one of its neighboring clusters
- 1: Label all points as core, border, or noise points.
- 2: Eliminate noise points.
- 3: Put an edge between all core points within a distance *Eps* of each other.
- 4: Make each group of connected core points into a separate cluster.
- 5: Assign each border point to one of the clusters of its associated core points

When DBSCAN Works Well

Original Points

Clusters (dark blue points indicate noise)

- Can handle clusters of different shapes and sizes
- Resistant to noise

When DBSCAN Does NOT Work Well

Original Points

When DBSCAN Does NOT Work Well

Original Points

- Varying densities
- High-dimensional data

(MinPts=4, Eps=9.92).

(MinPts=4, Eps=9.75)

DBSCAN: Determining EPS and MinPts

- Idea is that for points in a cluster, their kth nearest neighbors are at close distance
- Noise points have the kth nearest neighbor at farther distance
- So, plot sorted distance of every point to its kth nearest neighbor

Cluster Validity

- For supervised classification we have a variety of measures to evaluate how good our model is
 - Accuracy, precision, recall
- For cluster analysis, the analogous question is how to evaluate the "goodness" of the resulting clusters?
- But "clusters are in the eye of the beholder"!
 - In practice the clusters we find are defined by the clustering algorithm
- Then why do we want to evaluate them?
 - To avoid finding patterns in noise
 - To compare clustering algorithms
 - To compare two sets of clusters
 - To compare two clusters

Clusters found in Random Data

Measures of Cluster Validity

- Numerical measures that are applied to judge various aspects of cluster validity, are classified into the following two types.
 - Supervised: Used to measure the extent to which cluster labels match externally supplied class labels.
 - Entropy
 - Often called external indices because they use information external to the data
 - Unsupervised: Used to measure the goodness of a clustering structure without respect to external information.
 - Sum of Squared Error (SSE)
 - Often called internal indices because they only use information in the data
- You can use supervised or unsupervised measures to compare clusters or clusterings

Measures of Cluster Validity

Separation

Measures of Cluster Validity

Cohesion

Unsupervised Measures: Cohesion and Separation

- Cluster Cohesion: Measures how closely related are objects in a cluster
 - Example: SSE
- Cluster Separation: Measure how distinct or wellseparated a cluster is from other clusters
- Example: Squared Error
 - Cohesion is measured by the within cluster sum of squares (SSE) $SSE = \sum_{i} \sum_{n=0}^{\infty} (x m_i)^2$
 - Separation is measured by the between cluster sum of squares $SSB = \sum |C_i|(m-m_i)^2$

Where $|C_i^i|$ is the size of cluster i

Cluster	F1	F2	Centroid
C1	1	0	(1 0 5)
C1	1	1	(1, 0.5)
C2	1	2	
C2	2	3	(4.5.0.275)
C2	2	2	(1.5, 2.375)
C2	1	2.5	
C3	3	1	
C3	4	1	(3.67, 1.34)
C3	4	2	
	<i>(</i> 2 11	1 62)	

$$SSE = (1-1)^2 + (1-0.5)^2 + (1-1)^2 + (1-0.5)^2 + (1-1.5)^2 + (2-2.375)^2 + (2-1.5)^2 + (3-2.375)^2 + \dots$$

$$SSB = 2 \times (2.11 - 1)^{2} \times (1.62 - 0.5)^{2} + 4 \times (2.11 - 1.5)^{2} \times (1.62 - 2.375)^{2} + 3 \times (2.11 - 3.67)^{2} \times (1.62 - 1.34)^{2}$$

Unsupervised Measures: Cohesion and Separation

- Example: SSE
 - SSB + SSE = constant

$$SSE = (1-3)^2 + (2-3)^2 + (4-3)^2 + (5-3)^2 = 10$$

$$SSB = 4 \times (3-3)^2 = 0$$

$$Total = 10 + 0 = 10$$

$$SSE = (1 - 1.5)^{2} + (2 - 1.5)^{2} + (4 - 4.5)^{2} + (5 - 4.5)^{2} = 1$$

$$SSB = 2 \times (3 - 1.5)^{2} + 2 \times (4.5 - 3)^{2} = 9$$

$$Total = 1 + 9 = 10$$

Unsupervised Measures: Cohesion and Separation

- A proximity graph-based approach can also be used for cohesion and separation.
 - Cluster cohesion is the sum of the weight of all links within a cluster.
 - Cluster separation is the sum of the weights between nodes in the cluster and nodes outside the cluster.

Unsupervised Measures: Silhouette Coefficient

- Silhouette coefficient combines ideas of both cohesion and separation, but for individual points, as well as clusters and clusterings
- For an individual point, i
 - Calculate \mathbf{a} = average distance of \mathbf{i} to the points in its cluster
 - Calculate b = min (average distance of i to points in another cluster)
 - The silhouette coefficient for a point is then given by

$$s = (b - a) / \max(a,b)$$

- Value can vary between -1 and 1
- Typically ranges between 0 and 1.
- The closer to 1 the better.

External measures of Cluster validity

Entropy and Purity

The purity of cluster j is given by

$$P_j = Max_{p_{ij}}$$

And the over all purity of a clustering is given by

$$P = \sum_{i=1}^{K} \frac{m_i}{m} P_j$$

Cluster	Tennis	Baseball	Valleyball	Badminton	
1	3	5	75	4	
2	89	20	5	7	
3	1	2	2	80	0.94
4	150	35	15	10	0.71

Questions

Graph-based Clustering

What is Graph Clustering?

- Types
 - Between-graph
 - Clustering a set of graphs
 - Within-graph
 - Clustering the nodes/edges of a single graph

Graph-Based Clustering

Between-graph Clustering

- Between-graph clustering methods divide a set of graphs into different clusters
- E.g., A set of graphs representing chemical compounds can be grouped into clusters based on their structural similarity.

Within-graph Clustering

- Within-graph clustering methods divides the nodes of a graph into clusters
- E.g., In a social networking graph, these clusters could represent people with same/similar hobbies

Graph-Based Clustering

- Graph-Based clustering uses the proximity graph
 - Start with the proximity matrix
 - Consider each point as a node in a graph
 - Each edge between two nodes has a weight which is the proximity between the two points
 - Initially the proximity graph is fully connected
- In the simplest case, clusters are connected components in the graph

Sparsification in the Clustering Process

- K-nearest Neighbour
- Eps- neighbourhood

Algorithms for Within Graph Clustering

- k-Spanning Tree
- Shared Nearest Neighbor

• . . .

Graph-Based Clustering

Minimum Spanning Tree based Clustering

STEPS:

- Obtains the Minimum Spanning Tree (MST) of input graph G
- Removes k-1 heaviest edges from the MST
- Results in k clusters

What is a Spanning Tree?

 A connected subgraph with no cycles that includes all vertices in the graph

Note: Weight can represent either distance or similarity between two vertices or similarity of the two vertices

What is a Minimum Spanning Tree (MST)?

 The spanning tree of a graph with the minimum possible sum of edge weights, if the edge weights represent distance.

k-Spanning Tree

Shared Nearest Neighbour Clustering

Shared Nearest Neighbor Graph (SNN)

STEPS:

- Obtains the Shared Nearest Neighbor Graph (SNN) of input graph G
- Removes edges from the SNN with weight less than τ

What is Shared Nearest Neighbour?

Shared Nearest Neighbor is a proximity measure and denotes the number of neighbor nodes common between any given pair of nodes

Shared Nearest Neighbor (SNN) Graph

Given input graph G, weight each edge (u,v) with the number of shared nearest neighbors between u and v

Node 0 and Node 1 have 2 neighbors in common: Node 2 and Node 3

 Shared Nearest Neighbor Clustering Jarvis-Patrick Algorithm

3/24/20

Categorical data

person	hair color	eye color	skin color
P1	blonde	amber	fair
P2	brunette	gray	brown
Р3	red	green	brown
P4	black	hazel	brown
P5	brunette	amber	fair
P6	black	gray	brown
P7	red	green	fair
P8	black	hazel	fair
	<u> </u>		<u> </u>

Categorical data

 The dissimilarity between two objects i and j can be computed based on the ratio of mismatches:

$$d(i,j) = \frac{p-m}{p},$$

- m is the number of matches
- p is the total number of variables

object	test-l (categorical)	
identifier		
1	code-A	
2	code-B	
3	code-C	
4	code-A	

$$d(i,j) = \frac{p-m}{p},$$

$$\begin{bmatrix} 0 \\ d(2,1) & 0 \\ d(3,1) & d(3,2) & 0 \\ d(4,1) & d(4,2) & d(4,3) & 0 \end{bmatrix}$$

person	hair color	eye color	skin color
P1	blonde	amber	fair
P2	brunette	gray	brown
Р3	red	green	brown
P4	black	hazel	brown
P5	brunette	amber	fair
P6	black	gray	brown
P7	red	green	fair
P8	black	hazel	fair

Leaders					
P1	blonde	amber	fair		
P7	red	green	fair		
P8	black	hazel	fair		
person	hair color	eye color	skin color		
P1	blonde	amber	fair		
P2	brunette	gray	brown		
Р3	red	green	brown		
P4	black	hazel	brown		
P5	brunette	amber	fair		
Р6	black	gray	brown		
P7	red	green	fair		
P8	black	hazel	fair		

	Cluster 1 (P1)	Cluster 2 (P7)	Cluster 3 (P8)	Cluster
P1	0 🇸	2	2	Cluster 1
P2	3 🎸	3	3	Cluster 1
Р3	3	1 🗸	3	Cluster 2
P4	3	3	1	Cluster 3
P5	1 🗸	2	2	Cluster 1
P6	3	3	2 🗸	Cluster 3
P7	2	0 🇸	2	Cluster 2
P8	2	2	0 🍑	Cluster 3

person	hair color	eye color	skin color
P1	blonde	amber	fair
P2	brunette	gray	brown
Р3	red	green	brown
P4	black	hazel	brown
P5	brunette	amber	fair
Р6	black	gray	brown
P7	red	green	fair
P8	black	hazel	fair

New Leaders				
	hair color	eye color	skin color	
Cluster 1	brunette	amber	fair	
Cluster 2	red	green	fair	
Cluster 3	black	hazel	brown	

Questions