R o Liver a now wise & column wise sorted matrixe. Fird out whether element K is present or not.

Bruteforce - check all cells. TC = O(N*M) SC = O(1)

Il top right $N \rightarrow \# row = M \rightarrow \# col$ r = 0 c = M-1while (r < N & & c > = 0) (

if (A fr I fc I = = K) return true

else if (Alr](c] < K) r++

else
$$c--$$

$$TC = O(N+M) \qquad SC = O(1)$$

$$TC = O(N+M)$$
 $SC = O(1)$

Q → Giver a birsey Souted matrix of size N*M. Fird the now with mon # 1's.

$$Ans = 2$$

Bruteforce
$$\rightarrow \forall rows$$
, court the #12.

 $TC = O(N \times M)$ $SC = O(1)$

$$TC = O(N+m)$$
 $SC = O(1)$

11 top right

while (r < N && c >= 0) {

 $Q \rightarrow liven a square matrise (N * N).$

Print bourdary elements in clockwise direction.

. .

2= N-1

for
$$c \rightarrow (N-1)$$
 to 1 \(\)

print $(A \text{ fr} \text{ J}(e))$
 $c = 0$

for $s \rightarrow (N-1)$ to 1 \(\)

print $(A \text{ fr} \text{ J}(e))$
 $c = 0$
 $c = 0$

 $0 \rightarrow \text{ hiver ar integer N}$, fill the N*N matrixe with elements I to N² is spiral order (clock wise), starting from (0,0).

$$N=5$$

ſ	1	2	3	4	5
	16	17	18	19	6
	15	124	25	20	7
	14	23	22	<u>21</u> 🗸	8
	13	12	11	10	9

$$TC = O(N^2) \qquad SC = O(1)$$

Submatrise

(3,1)

top left & bottom right OR top right & bottom left

Q → Giver a matrise, fird sum of all possible submatrix sum.

$$(0,0)$$

$$4 \rightarrow (0+1) * (0+1) * (2-0) * (3-0)$$

$$= |*| * 2 * 3 = 6$$

Lontribution Technique → Ans = EE contribution of A[i][j]

$$(i N-1) \rightarrow N-x-i+x = N-i$$

Submatrisc = (i+1) *(j+1) * (N-i) * (M-j)

Ans =
$$\{ \{ \{ \{i,j\} \} \} \} \}$$
 (i+1)*(j+1) * (N-i) * (M-j)

ans = 0

for
$$i \rightarrow 0$$
 to $(N-1)$ f

for $j \rightarrow 0$ to $(M-1)$ f

ars $+ = A[i][j] \times (i+1) \times (j+1) \times (N-i) \times (M-j)$

} return ars

 $TC = O(N \times M)$ $SC = O(1)$