Temporarily Jump when to § 6-7.

 $\frac{P_{\text{roph}} 7.2}{\text{having just finitery many zeroes.}} \text{ Then } I(V) = I(W). \text{ i.e. } \sum_{p:V(p)=0}^{l} I_p(V) = \sum_{p:V(p)=0}^{l} I_p(W)$

Proof: Break M vointo "triangles" V; so each triangle is contained in a simply connected words ate patch; each triangle most most one zero of Vans one zero of W is interior, and each zero of V or of W is in the interior of some triangle.

for each i, let Ui be a continuous field of unit vectors on Min the patch containing X_i . Then $I(v) = \frac{1}{2\pi} \sum_i \delta \langle (u_i, v_i, v_i), \omega \rangle$ $I(w) = \frac{1}{2\pi} \sum_i \delta \langle (u_i, w_i, v_i) \rangle$ Home:

$$\begin{split} \underline{\Gamma}(V) - \underline{\Gamma}(W) &= \frac{1}{2\pi} \sum_{i} \left[\delta \langle (u_{i}, v_{i} \gamma_{i}) - \delta \langle (u_{i}, w_{i}, \gamma_{i}) \right] \\ &= \frac{1}{2\pi} \sum_{i} \left[\delta \langle (w_{i}, v_{i}, \gamma_{i}) - \delta \langle (u_{i}, w_{i}, \gamma_{i}) \right] \\ &= \frac{1}{2\pi} \sum_{i} \left[\delta \langle (w_{i}, v_{i}, \gamma_{i}) - \delta \langle (u_{i}, w_{i}, \gamma_{i}$$

Thm 7.3 (Poincaré - Browner):

Let M be a compact orientable surface. Let V be a vector field on M having just fixitely many zeroes. Then $\mathbb{I}(V) = \chi(M)$.

A by the proposition, it suffices to exhibit a c4s vector field W on M wy just finitely rung zeroes s.t. $I(w) = \chi(u)$.

Triangulate M into filetely many positively oriented triangles &i.

V-E+F

П

Corollary Let M be a compact orientable surface w X(M) +0. lie. Mis not homeomorphic to a torus).

Let V be a Vector field on M having just finitely many zeroes. Then V has at least one zero.

Eg Let M be a torus, so $\chi(M)=0$. Then there is a cts v. f. ifd V on M sit. V lus no zeroes.

Back to Section 6-4, The Gauss-Bonnet Formula (or the local Gauss-Bonnet Theorem).

The Generalized rotation index theorem

Let $x: \mathcal{U} \subseteq \mathbb{R}^2 \xrightarrow{\text{orb}} \mathbb{R} \subseteq \mathcal{M}$ be a positively oriented C' patch and let X' be a C'-regular Simple loop in \mathbb{R} . Let $\tilde{\mathcal{S}}(t) = \mathcal{S}(e^{it})$ for $t \in [0, 2^{n}]$. Let $\tilde{\mathcal{T}}$ be the unit tangent field for $\tilde{\mathcal{S}}$. Hen $\{X(X_i, \tilde{T}, \tilde{Y}) = \pm 2\pi$

 $Pf \{ \langle (x_1, T, \tilde{x}) = 2\pi n \text{ where } n \text{ is the winding } \# \text{ of the loop} \}$ do= < x,, T, i> wrt the origin in IR2. Let $\chi_{\cdot} = \sqrt{\chi_{\cdot} + \sqrt{\chi_{\cdot}^2}} \times 2$ ($\sqrt{1 - 1}, \sqrt{2 - 0}$). Let $\overline{1} = W \times_{\cdot} + W^2 \times_2$. then $\alpha_0 = \left(\frac{\sum_{i,j} g_{i,j} V^i W^j}{(V^i W^2 - V^2 W^i) J_g}\right)$. Let $\alpha_i = T = (w^i, w^2)$. The winding # of x, is ±1 ms the rotation index theorem.

For
$$0 \le \lambda \le 1$$
, let $g_{ij}^{\lambda} = (1-\lambda)g_{ij}^{\lambda} + \lambda g_{ij}^{\lambda}$.

Let $\chi_{\lambda} = \left(\sum_{(i,j)} g_{i,j}^{\lambda} V^{i} W^{j}, (V^{\dagger} W^{2} - V^{2} W^{\dagger}) \sqrt{g^{\lambda}} \right).$

(gi) is strictly positive definite (Convex combination of spots).

So Ky is a loop in 1R2 - 40,013.

 $\lambda \mapsto \alpha_{\lambda}$ is a cto deformation of do to d. in $\mathbb{R}^2(\frac{1}{90,013},$ so they have the same wiveing # vert the origin.

in the place $\dot{\theta} = K$.

Leadesie Crvatire

as the rate of change of an overter angle

Let (M, V) be an oriented C^2 surface in \mathbb{R}^3 . Let Y be a C^2 unit-speed curve in M with tangent field T. Let V be a C' field of unit vectors that is parallel along Y on M. Set $\theta \in \mathcal{L}(V,T;Y)$. Then $\frac{d\theta}{d\theta} = K_g$.

Pf let $W(s) = V(X(\Delta)) \times V(S)$. Then W is also parallel along X on M (let $S \in \text{dom}(X)$ and let \widetilde{W} be parallel along X on M and satisfy $\widetilde{W}(S \circ) = W(\Delta)$. Then $|\widetilde{W}| = 1$, $|\widetilde{W}| = 0$, |W| = 1, and $|\widetilde{W}| = 0$.

Hence $\tilde{W}=\pm W$ it each pt, and the \pm count change (by continity) and at so it is \pm , so $\tilde{W}=W$, so W is possible along χ on M).

Now $K_gS =$ temperative part of T' = temperative part of $\frac{d}{ds}(V\cos\theta + W\sin\theta)$ = $\left(-V\sin\theta + W\cos\theta\right) \stackrel{d\theta}{ds}$ (since V, W are parallel so $\frac{dV}{ds} \stackrel{dW}{ds}$ have 0 temperative part).

But $S = V \times T = V \times (V\cos 6 + W\sin \theta) = W\cos 6 - V\sin \theta$, $S = S \frac{d\theta}{dA} = S \cdot K_3 = \frac{d\theta}{dA}$.

Mm 6-4 (The Local Gauss-Bornet Horsem)

 \Box

Jet (M,V) be an oriented C^3 surface in \mathbb{R}^3 . Let \mathbb{R} be a curvilinear N-genal region on M with piecewise C^2 boundary $D\mathbb{R}$.

Let β , ,..., β , ϵ (0,2 π) be the interior angles at the Vertices of R.

Ossume $R \subseteq V$ where $x: U \in \mathbb{R}^2 \xrightarrow{\text{on to}} V \subseteq M$ is a C^3 patch in M. Then

r r ~

Observe $R \subseteq V$ where $x: U \subseteq R^2 \xrightarrow{\text{onto}} V \subseteq M$ is a C^3 patch M. Then $\iint_R K dA + \oint_R K_3 do + \sum_{i=1}^n (\pi - \beta_i) = 2\pi .$

Corollary (The Gauss-Bornet Thm)

Jet M be a compact orientable surface. Thun $\iint K dA = 2\pi \chi(M).$ M