

Problem R-12J ($C_{25}H_{28}O_7S$). In this problem you are given the gross structure of a sugar. Your task is to determine the stereochemistry of the four substituents (three OAc, SPh, CH_2OCH_2Ph) around the ring by analysis of the 1H NMR spectrum.

(a) Analyze the multiplets **C-H**. Report your results in the standard format: δ 9.3, dt, J = 14, 6 Hz, 3H. Indicate what structural information each signal provides, and a possible assignment (use the numbering on the structure). You may use first order analysis for this part.

c _____

D

E

F

G _____

н _____

30 20 10 0 Hz 3.7 3.6 3.5 3.4

(b) Do a qualitative analysis of the signal I reproduced above to show you understand the pattern. Draw a coupling tree, and report the data below.

(c) Indicate the proton connectivity which your analysis provides, using a scheme such as the one below. Describe how you identified the starting point for your assignment (proton **R** in the example below).

(d) Draw the complete structure of R-12J by adding appropriate substituents to the structure below. Comment on how you identified the stereochemistry at C-1 and C-4.

Problem R-12J ($C_{25}H_{28}O_8S$). In this problem you are given the gross structure of a sugar. Your task is to determine the stereochemistry of the four substituents (three OAc, SPh, CH_2OCH_2Ph) around the ring by analysis of the 1H NMR spectrum.

- (a) Analyze the multiplets **C-H**. Report your results in the standard format: δ 9.3, dt, J = 14, 6 Hz, 3H. Indicate what structural information each signal provides, and a possible assignment (use the numbering on the structure). You may use first order analysis for this part.
- 1 C H^4 δ 5.50, dd, J = 3.2, 1 Hz, 1H small coupling is to E. Since E is ax, C must be eq

 δ 5.25, t, J = 10 Hz, 1H

- 1 D H² Axial proton, with both axial neighbors. Must be H² one coupling to F, other to E
- δ 5.05, dd, J = 10, 3.2 Hz, 1H
 E H³ From 10 Hz coupling to D, we know E is axial, small 3 Hz coupling is to C, so C is equatorial
- F H¹ δ 4.73, d, J = 10 Hz, 1H This is only doublet seen, so must be H¹, and it is axial (SPh eq). Coupled to D, since this is the only possible coupling partner
- 3 **G** H^7 ABq, δ 4.54, 4.42. JAB= 11.5 Hz, 2H This is the CH_2 of the benzyl group
- 1 H H⁵ δ 3.90, td, J = 6, 1 Hz, 1H This is H⁵ - triplet coupling is to H⁶, H^{6'}, doublet to H⁴

(b) Do a qualitative analysis of the signal I reproduced above to show you understand the pattern. Draw a coupling tree, and report the data below.

AB of an ABXYZ.. system (H⁶): $\delta_A = 3.6$, $J_{AB} = 9.5$, $J_{AX} = 6$ Hz

 $\delta_{B} = 3.5$, $J_{BX} = 6 \text{ Hz}$

These are the diastereotopic protons at C⁶

(c) Indicate the proton connectivity which your analysis provides, using a scheme such as the one below. Describe how you identified the starting point for your assignment (proton **R** in the example below).

3 F 10 D 10 E 3 C 1 H 9.5 (J_{gem}) 11 V_{Qem} 11 V_{Qem} 13.7 R Is equivalent to:

(d) Draw the complete structure of R-12J by adding appropriate substituents to the structure below. Comment on how you identified the stereochemistry at C-1 and C-4.

F is the only one coupled to only other proton so must br F. It must be axial to get large 10 Hz coupling to D, which must be C^2

⁹ C⁴ proton (C) must be equatorial since C³-H (E) and C⁵-H (H) are axial, and there is a small coupling to each

C H AcO H F E

5

