E53-TTL-100 用户手册 v4.7

样品网址: cdebyte.taobao.com 更多产品资讯请登录: www.cdebyte.com

(((•)))[®] 成都亿佰特电子科技有限公司 EBYTE Chengdu Ebyte Electronic Technology Co.,Ltd.

E53-TTL-100 用户手册 v4.7

. - .	模块介绍	2
	1.1 特点简介	2
	1.2 电气参数	3
	1.3 系列产品	3
	1.4 常见问题	3
<u>.</u> .	功能简述	4
	2.1 引脚定义	4
	2.2 连接单片机	5
	2.3 模块复位	5
	2.4 AUX 详解	5
.三 .	工作模式	6
	3.1 模式切换	7
	3.2 一般模式(模式 0)	7
	3.3 唤醒模式 (模式 1)	7
	3.4 省电模式 (模式 2)	8
	3.5 休眠模式(模式 3)	8
	3.6 快速通信测试	8
.四.	指令格式	9
	4.1 出厂默认参数	9
	4.2 工作参数读取	9
	4.3 版本号读取	9
	4.4 复位指令	9
	4.5 参数设置指令	g
.五.	参数配置	11
六.	包装与焊接	12
	定制合作	
.八.	关于我们	13

成都亿佰特电子科技有限公司

样品网址: cdebyte.taobao.com 更多产品资讯请登录: www.cdebyte.com

一 . 模块介绍 E53-TTL-100

1.1 特点简介 E53-TTL-100

E53-TTL-100 用户手册 v4.7

E53-TTL-100 是一款 868M 直插型无线串口模块(UART), 半双工,收发一体,透明传输方式,发射功率 100mW,工作在 855~880.5MHz 物联网频段(默认 868MHz),TTL 电平输出,兼 容 3.3V 与 5V 的 IO 口电压,具有空中唤醒功能(超低功耗)。

模块具有软件 FEC 前向纠错算法,其编码效率较高,纠错能力强,在突发干扰的情况下,能主动纠正被干扰的数据包,大大提高可靠性和传输距离。在没有 FEC 的情况下,这种数据包只能被丢弃。

模块具有数据加密和压缩功能。模块在空中传输的数据,具有随机性,通过严密的加解密算法,使得数据截获失去意义。而数据压缩功能有概率减小传输时间,减小受干扰的概率,提高可靠性和传输效率。

序号	产品特点	特点描述
1	超低功耗	即空中唤醒功能,特别适用于电池供电的应用方式: 当模块处于省电模式下即模式 2 时,配置模块的接收响应延时时间可调节模块的整机功耗,模块可配置的最大接收响应延时为 2000ms,在此配置下模块的平均电流约 30uA。
2	定点发射	支持地址功能,主机可发射数据到任意地址、任意信道的模块,达到组网、中继等应用方式:例如:模块 A 需要向模块 B (地址为 0x00 01,信道为 0x80)发射数据 AA BB CC, 其通信格式为:00 01 80 AA BB CC, 其中 00 01 为模块 B 地址,80 为模块 B 信道, 则模块 B 可以收到 AA BB CC (其它模块不接收数据)。
3	广播监听	将模块地址设置为 0xFFFF: 可以监听相同信道上的所以模块的数据传输; 发送的数据,可以被相同信道上任意地址的模块收到,从而起到广播和监听的作用。
4	前向纠错	模块具有软件 FEC 前向纠错算法: 其编码效率较高,纠错能力强,在突发干扰的情况下,能主动纠正被干扰的数据包,大大提高可 靠性和传输距离;在没有 FEC 的情况下,这种数据包只能被丢弃。
5	休眠功能	当模块处于休眠模式下即模式 3 时,无线接收关闭单片机处于休眠状态; 此时整机功耗约几 uA,在此模式下模块仍然可接收 MCU 发过来的配置数据(更改模块参数)。
6	适用环境	868M 属于物联网频段,干扰较少,穿透绕射能力强于 2.4G,适用于一般环境。
		更多功能介绍请查看相关应用文档

样品网址: cdebyte.taobao.com 更多产品资讯请登录: www.cdebyte.com

1.2 电气参数 E53-TTL-100

序号	参数名称	参数值	描述
1	模块尺寸	21 * 36mm	不含 SMA
2	平均重量	6.7g	含 SMA
3	工作频段	855~880.5MHz	默认 868MHz , 信道数 256
4	生产工艺	无铅工艺,机贴	无线类产品必须机贴方能保证批量一致性和可靠性
5	接口方式	1 * 7 * 2.54mm	直插
6	供电电压	2.1~ 5.5V DC	注意:高于5.5V电压,将导致模块永久损毁
7	通信电平	3.3V	推荐使用 3.3V , 可以兼容至最高 5.2V
8	实测距离	2000m	晴朗空旷,最大功率,天线增益 5dBi,高度大于 2m,1k 空中速率
9	发射功率	20dBm	约 100mW ,4 级可调(20、17、14、10dBm),
10	空中速率	1kbps	8 级可调(1、2、5、8、10、15、20、25kbps)
11	休眠电流	2.0uA	模式 3(M0=1, M1=1)
12	发射电流	89mA@20dBm	电源必须提供 200mA 以上电流输出能力
13	接收电流	16mA	模式 0、模式 1
14	通信接口	UART 串口	8N1、8E1、8O1,从 1200~ 115200 共 8 种波特率
15	驱动方式	UART 串口	可设置成推挽/上拉、漏极开路
16	发射长度	缓存 512 字节	内部自动分包 58 字节发送
17	接收长度	缓存 512 字节	内部自动分包 58 字节发送
18	模块地址	可配置 65536 个地址	便于组网,支持定点传输、广播传输
19	空中唤醒	支持	最低平均功耗约 30uA (适用于电池供电的应用方式)
20	RSSI 支持	内置智能化处理	无需关心
21	天线接口	SMA-K	外螺纹内孔,50Ω特性阻抗
22	工作温度	-40 ∼ +85°C	工业级
23	工作湿度	10% ~ 90%	相对湿度,无冷凝
24	储存温度	-40 ~ +125℃	工业级
25	接收灵敏度	-121dbm@1kbps	接收灵敏度和串口波特率、延迟时间无关

1.3 系列产品 E53-TTL-100

产品型号	接口	频率	功率	距离	空中速率	产品尺寸	封装形式
广丽空亏	汝山	(Hz)	(dBm)	(km)	(bps)	(mm)	到表形工
E53-TTL-100	UART	868M	20	2.5	1k~25k	21*36	直插
E53-T100S2	UART	868M	20	2.5	1k~25k	17*30	贴片
E53 系列的各个型号可以互通 , 大小功率可以搭配使用							

1.4 常见问题 E53-TTL-100

序号	问题	描述		
1	空中速率	建议尽可能使用低速,空中速率越高,通信距离越近,丢包率也会越高。		
2	天线选择	天线和模块必须频率匹配,增益越高越好,驻波比越小越好,建议优先选择吸盘天线。		
3	出现乱码	一种原因是串口波特率不匹配,另一种原因是电源供电能力不足。		
4	延迟过高	关闭收发两端的 FEC 纠错功能、提高空中速率都可以减小延迟。		
5	接收响应时间	只在模式 1、模式 2 下有效,时间设定越长功耗越低,接收延迟也会越高。		

E53-TTL-100 用户手册 v4.7 样品网址: cdebyte.taobao.com 更多产品资讯请登录: www.cdebyte.com

功能简述

E53-TTL-100

2.1 引脚定义 E53-TTL-100

		Units: mm
	MIN	MAX
A	21.0	21.1
В	36.0	36.1
C	2.86	2.90
D	2.54	2.54
E	1.48	1.52
F	3.00	3.10
G	3.40	3.50
H	2.54	2.54
J	12.4	12.5
K	6.20	6.20
L	15.5	15.6
\mathbf{M}	11.0	11.1
N	12.8	12.9
P	4.20	4.30
Q	11.2	11.3

*我司提供 Altium designer 封装库请前往 WWW.CDEBYTE.COM 下载或联系 support@cdebyte.com 索取

引脚序号	引脚名称	引脚方向	引脚用途
1	М0	输入	和 M1 配合,决定模块的 4 种工作模式。
ı	IVIU	(极弱上拉)	(不可悬空,如不使用可接地)
2	M1	输入	和 M0 配合,决定模块的 4 种工作模式。
	IVII	(极弱上拉)	(不可悬空,如不使用可接地)
3	RXD	输入	TTL 串口输入,连接到外部 TXD 输出引脚;
3	KAD	刊八	可配置为漏极开路或上拉输入,详见参数设置。
4	TXD	输出	TTL 串口输出,连接到外部 RXD 输入引脚;
4	IXD	刑山	可配置为漏极开路或推挽输出,详见参数设置。
	AUX		用于指示模块工作状态;
5		输出	用户唤醒外部 MCU,上电自检初始化期间输出低电平;
5		制造	可配置为漏极开路输出,或推挽输出,详见参数设置。
			(可以悬空)
6	VCC		模块电源正参考,
b		VCC	
7	GND		模块地线
8	固定孔		固定孔
9	固定孔		固定孔
10	固定孔		固定孔

样品网址: cdebyte.taobao.com 更多产品资讯请登录: www.cdebyte.com

2.2 连接单片机 E53-TTL-100

序号	模块与单片机简要连接说明(上图以 STM8L 单片机为例)
1	无线串口模块为 TTL 电平,请与 TTL 电平的 MCU 连接。
2	某些 5V 单片机,可能需要在模块的 TXD 和 AUX 脚加 4~10K 上拉电阻。

2.3 模块复位 E53-TTL-100

序号	模块复位描述
	模块上电后, AUX 将立即输出低电平,并进行硬件自检,以及按照用户参数进行工作方式设置。在此过程中,
1	AUX 保持低电平,完毕后 AUX 输出高电平,并按照 M1、M0 组合而成的工作模式开始正常工作。所以,用户
	需要等待 AUX 上升沿,作为模块正常工作的起点。

2.4 AUX 详解 E53-TTL-100

AUX 用于无线收发缓冲指示和自检指示。

它指示模块是否有数据尚未通过无线发射出去,或已经收到无线数据是否尚未通过串口全部发出,或模块正在初始化自检过程中。

E53-TTL-100 用户手册 v4.7

样品网址: cdebyte.taobao.com 更多产品资讯请登录: www.cdebyte.com

序号	AUX 注意事项
1	上述功能 1 和功能 2,输出低电平优先,即:满足任何一个输出低电平条件,AUX 就输出低电平;
'	当所有低电平条件均不满足时,AUX输出高电平。
2	当 AUX 输出低电平时,表示模块繁忙,此时不会进行工作模式检测;
2	当模块 AUX 输出高电平后 1ms 内,将完成模式切换工作。
2	用户切换到新的工作模式后,至少需要在 AUX 上升沿 2ms 后,模块才会真正进入该模式;
3	如果 AUX 一直处于高电平,那么模式切换将立即生效。
4	用户从模式 3 (休眠模式) 进入到其他模式或在复位过程中,模块会重新设置用户参数,期间 AUX 输出
4	低电平。

三 . 工作模式 E53-TTL-100

模块有四种工作模式,由引脚 M0、M1 设置;详细情况如下表所示:

模式 (0-3)	М0	M1	模式介绍	备注
0 一般模式	0	0	串口打开,无线打开,透明传输	接收方必须是模式 0、1
			串口打开,无线打开;	接收方可以是模式 0
1 唤醒模式	1	1 0	和模式0唯一区别:数据包发射前,自动增加唤醒码,	接收方可以是模式 1
			这样才能唤醒工作在模式 2 的接收方	接收方可以是模式 2
2 省电模式	0 1	串口接收关闭,无线处于空中唤醒模式,收到无线数	发射方必须模式 1	
2 自电候式	U	I	据后,打开串口发出数据。	该模式下不能发射
3 休眠模式	1	1	模块进入休眠,可以接收参数设置命令	详见工作参数详解

样品网址: cdebyte.taobao.com 更多产品资讯请登录: www.cdebyte.com

3.1 模式切换 E53-TTL-100

序号	备注
	用户可以将 M1、M0 进行高低电平组合,确定模块工作模式。可使用 MCU 的 2 个 GPIO 来控制模式切换;
	当改变 M1、M0 后:若模块空闲,1ms后,即可按照新的模式开始工作;
1	若模块有串口数据尚未通过无线发射完毕,则发射完毕后,才能进入新的工作模式;
	若模块收到无线数据后并通过串口向外发出数据,则需要发完后才能进入新的工作模式;
	所以模式切换只能在 AUX 输出 1 的时候有效,否则会延迟切换。
	例如:在模式 0 或模式 1 下,用户连续输入大量数据,并同时进行模式切换,此时的切换模式操作是无效的;
2	模块会将所有用户数据处理完毕后,才进行新的模式检测;
	所以一般建议为:检测 AUX 引脚输出状态,等待 AUX 输出高电平后 2ms 再进行切换。
	当模块从其他模式被切换到休眠模式时,如果有数据尚未处理完毕;
	模块会将这些数据(包括收和发)处理完毕后,才能进入休眠模式。这个特征可以用于快速休眠,从而节省功耗;
3	例如:发射模块工作在模式 0,用户发起串口数据"12345",然后不必等待 AUX 引脚空闲(高电平),可以
3	直接切换到休眠模式,并将用户主 MCU 立即休眠,模块会自动将用户数据全部通过无线发出后,1ms 内自动
	进入休眠;
	从而节省 MCU 的工作时间,降低功耗。
	同理,任何模式切换,都可以利用这个特征,模块处理完当前模式事件后,在 1ms 内,会自动进入新的模式;
4	从而省去了用户查询 AUX 的工作,且能达到快速切换的目的;
4	例如从发射模式切换到接收模式;
	用户 MCU 也可以在模式切换前提前进入休眠,使用外部中断功能来获取 AUX 变化,从而进行模式切换。
5	此操作方式是非常灵活而高效的,完全按照用户 MCU 的操作方便性而设计,并可以尽可能降低整个系统的工作
	负荷,提高系统效率,降低功耗。

3.2 一般模式 (模式 0)

E53-TTL-100

类型	当 M0 = 0 , M1 = 0 时 , 模块工作在模式 0
	模块接收来自串口的用户数据,模块发射无线数据包长度为 58 字节,当用户输入数据量达到 58 字节时,模块
	将启动无线发射,此时用户可以继续输入需要发射的数据;
	当用户需要传输的字节小于 58 字节时,模块等待 3 字节时间,若无用户数据继续输入,则认为数据终止,此时
发射	模块将所有数据包经过无线发出;
反别	当模块收到第一个用户数据后,将 AUX 输出低电平,当模块把所有数据都放入到 RF 芯片并启动发射后,AUX
	输出高电平;
	此时,表明最后一包无线数据已经启动发射,用户可以继续输入长达 512 字节的数据;
	通过模式0发出的数据包,只能被处于模式0、模式1的接收模块收到。
	模块一直打开无线接收功能,可以接收来自模式0、模式1发出的数据包;
接收	收到数据包后,模块 AUX 输出低电平,并延迟 5ms 后,开始将无线数据通过串口 TXD 引脚发出,所有无线数
	据都通过串口输出后,模块将 AUX 输出高电平。

3.3 唤醒模式 (模式 1)

E53-TTL-100

类型	当 M0 = 1, M1 = 0 时,模块工作在模式 1
	模块启动数据包发射的条件与 AUX 功能都等同于模式 0 ;
4≥	唯一不同的是:模块会在每个数据包前自动添加唤醒码,唤醒码的长度取决于用户参数中设置的唤醒时间;
发射	唤醒码的目的是用于唤醒工作在模式 2 的接收模块 ;
	所以,模式1发射的数据可以被模式0、1、2收到。
接收	等同于模式 0。

E53-TTL-100 用户手册 v4.7 样品网址: cdebyte.taobao.com 更多产品资讯请登录: www.cdebyte.com

3.4 省电模式 (模式 2)

E53-TTL-100

类型	当 M0 = 0 , M1 = 1 时 , 模块工作在模式 2
发射	模块处于休眠状态,串口被关闭,无法接收来自外部 MCU 的串口数据,所以该模式不具有无线发射功能。
	在模式2下,要求发射方必须工作在模式1;
	定时监听唤醒码,一旦收到有效的唤醒码后,模块将持续处于接收状态,并等待整个有效数据包接收完毕;
接收	然后 AUX 输出低电平,延迟 5ms 后,打开串口将收到的无线数据通过 TXD 发出,完毕后将 AUX 输出高电平;
按収	无线模块继续进入"休眠 - 监听"的工作状态(polling);
	通过设置不同的唤醒时间,模块具有不同的接收响应延迟(最长 2s)和平均功耗(最小 30uA);
	用户需要在通讯延迟时间和平均功耗之间取得一个平衡点。

3.5 休眠模式 (模式 3)

E53-TTL-100

类型	当 M0 = 1 , M1 = 1 时 , 模块工作在模式 3
发射	无法发射无线数据。
接收	无法接收无线数据。
配置	休眠模式可以用于模块参数设置,使用串口 9600、8N1,通过特定指令格式设置模块工作参数。
注意	当从休眠模式进入到其他模式,模块会重新配置参数,配置过程中,AUX 保持低电平;
注思	完毕后输出高电平,所以建议用户检测 AUX 上升沿。

3.6 快速通信测试 E53-TTL-100

步骤	具体操作
1	将 USB 测试板 (E15-USB-T2) 插上电脑,确保驱动已经安装正确;
'	插上 USB 测试板上的模式选择跳线(即 M1=0,M0=0)。
2	选择 3.3V 或 5V 供电均可 (模块支持 2.1~5.5V) 。
3	运行"串口调试助手"软件,并选择正确的串口号,观察发送窗口和对应的接收窗口。

因为专业,所以选择! 第8页,共13页

无线透传、WiFi、蓝牙、Zigbee、PKE、数传电台等无线应用专家 该版权及产品最终解释权归成都亿佰特电子科技有限公司所有

样品网址: <u>cdebyte.taobao.com</u> 更多产品资讯请登录: <u>www.cdebyte.com</u>

四. 指令格式 E53-TTL-100

休眠模式 (模式 3: M0=1, M1=1) 下,支持的指令列表如下(设置时,只支持9600,8N1格式):

序号	指令格式	详细说明
1	C0+工作参数	16 进制格式发送 C0+5 字节工作参数,共 6 字节,必须连续发送(掉电保存)
2	C1+C1+C1	16 进制格式发送三个 C1,模块返回已保存的参数,必须连续发送。
3	C2+工作参数	16 进制格式发送 C2+5 字节工作参数,共 6 字节,必须连续发送(掉电不保存)
4	C3+C3+C3	16 进制格式发送三个 C3,模块返回版本信息,必须连续发送。
5	C4+C4+C4	16 进制格式发送三个 C4,模块将产生一次复位,必须连续发送。

4.1 出厂默认参数 E53-TTL-100

型号	出厂默认参数值:C0 00 00 18 82 44								
模块型号	频率	地址	信道	空中速率	波特率	串口格式	发射功率		
E53-TTL-100	868MHz	0x0000	0x82	1kbps	9600	8N1	100mW		

4.2 工作参数读取 E53-TTL-100

指令格式	详细说明
C1+C1+C1	在休眠模式下(M0=1,M1=1),向模块串口发出命令(HEX 格式):C1 C1 C1,
CI+CI+CI	模块会返回当前的配置参数,比如: C0 00 00 18 82 44。

4.3 版本号读取 E53-TTL-100

指令格式	·格式 详细说明					
	在休眠模式下(M0=1,M1=1),向模块串口发出命令(HEX 格式):C3 C3 C3,					
C3+C3+C3	模块会返回当前的配置参数,比如:C3 53 xx yy;					
	此处的 53 代表模块型号(E53 系列),xx 就是版本号,yy 代指模块其他特性。					

4.4 复位指令 E53-TTL-100

指令格式	详细说明					
	在休眠模式下(M0=1,M1=1),向模块串口发出命令(HEX 格式):C4 C4 C4,					
C4+C4+C4	模块将产生一次复位;					
C4+C4+C4	复位过程中,模块进行自检,AUX输出低电平,复位完毕后,AUX输出高电平,模块开始					
	正常工作。此时,可以进行模式切换或发起下一条指令。					

4.5 参数设置指令 E53-TTL-100

序号	名称	描述	备注			
0	HEAD	固定 0xC0 或 0xC2,表示此帧数据为控制命令	● 必须为 0xC0 或 C2			
			CO: 所设置的参数会掉电保存。			
			C2: 所设置的参数不会掉电保存。			

因为专业,所以选择! 第9页,共13页

成都亿佰特电子科技有限公司

更多产品资讯请登录: www.cdebyte.com

E53-TTL-100 用户手册 v4.7

样品网址: cdebyte.taobao.com

ADDH 模块地址高字节(默认 00H) 00H-FFH 2 ADDL 模块地址低字节(默认 00H) 00H-FFH 3 SPED 速率参数,包括串口速率和空中速率 7,6: 串口校验位 诵信双方串口模式可以不同 00:8N1(默认) 01:801 10:8E1 11:8N1(等同00) 5,4,3 TTL 串口速率 (bps) 通信双方波特率可以不同 000: 串口波特率为 1200 串口波特率和无线传输参数无关,不 影响无线收发特性。 001: 串口波特率为 2400 010: 串口波特率为 4800 011: 串口波特率为 9600 (默认) 100: 串口波特率为 19200 101: 串口波特率为 38400 110: 串口波特率为 57600 111: 串口波特率为 115200 2,1,0 无线空中速率(bps) 空中速率越低,距离越远,抗干扰性 000: 空中速率为 1k(默认) 能越强,发送时间越长。 001:空中速率为 2k 通信双方空中无线传输速率必须相 010:空中速率为 5k 同。 011: 空中速率为 8k 100:空中速率为 10k 101:空中速率为 15k 110:空中速率为 20k 111: 空中速率为 25k 4 CHAN 通信频率 (855M + CHAN * 0.1M) 00H-FFH,对应855~880.5MHz (默认 82H:868M) **OPTION** 为1时,每个用户数据帧的前3个 5 7, 定点发送使能位(类 MODBUS) 0: 透明传输模式(默认) 字节作为高、低地址、信道。发射时, 模块改变自身地址和信道, 完毕后, 1: 定点传输模式 恢复原有设置。 IO 驱动方式(默认1) 该位用于使能模块内部上拉电阻。漏 1: TXD、AUX 推挽输出, RXD 上拉输入 极开路方式电平适应能力更强,但是 0:TXD、AUX 开路输出,RXD 开路输入 某些情况下,可能需要外部上拉电阻 _____ 5,4,3 无线唤醒时间(对接收方来说,是监听间 收发模块都工作在模式 0 下 该延迟 隔时间;对发射方来说,是持续发射唤醒码的时间) 时间无效,可以任意值。 发射方工作在模式 1,将持续发射相 000:250ms (默认) 应时间的唤醒码。 001:500ms 接收方工作在模式 2,此时间是指接 010:750ms 收方的监听间隔时间(无线唤醒), 011:1000ms 只能收到工作在模式 1 下发射方的 100:1250ms 数据。 101:1500ms 发射方设置的唤醒时间不能小于接 110:1750ms 收方的监听间隔时间,否则可能丢失 111: 2000ms 数据, 当双向通信时, 双方可把唤醒 时间设置一致。 唤醒时间越大,平均接收电流越低。

样品网址: cdebyte.taobao.com 更多产品资讯请登录: www.cdebyte.com

	2	2 , FEC 开关 0 : 关闭 FEC 1 : 打开 FEC (默认)								
		0 0	射功率(大约 0: 20dBm 1: 17dBm 0: 14dBm 1: 10dBm	(默认)				原纹波小于		
举例说	明 (序号 3 "SF	PED"字节的	含义):							
该字节	的二进制位	7	6	5	4	3	}	2	1	0
具体值	具体值 (用户配置)		0 0 0 1		1	1 0 0 0		0		
1	代表意义		串口校验位 8N1 串口波特率为 9600			600	0 空中速率为 1k			
对应的十六进制		1				8				

五. 参数配置 E53-TTL-100

步骤	操作	详细说明
1	安装驱动	请先安装资料包中 USB 转接板驱动程序 (CP2102)。
2	拔下跳线	拔掉 USB 转接板上 M0、M1 处的跳线帽,如下图所示;电源跳线帽选 3.3V 或 5V 皆可。
3	连接模块	将模块插入转接板的 7PIN 座,天线端向外;然后将转接板插入电脑 USB 口。
4	打开串口	打开我司的参数配置软件,选择相应的串口号然后点击"打开串口";
5	进入界面	点击"读取模块参数",界面如下图所示; 如果读取失败,请检查模块是否处于模式 3 , 或是否已安装转接板驱动程序。
6	写入参数	根据需要更改相应配置,请调整需要修改的参数;点击"写入"按钮,把新参数写入到模块。
7	完成操作	如果需要重新配置请按"第五步"操作;如果配置完成请先点击"关闭串口"然后取下模块。
8	命令配置	单片机可使用命令配置模块参数,具体配置详见上文《指令格式-参数设置指令》。

如果使用USB测试板,请拔下跳线帽(进入模式3:休眠模式)

请务必确认模块处于休眠模式(模式3)

该上位机配置软件可在成都亿佰特官网下载: www.cdebyte.com

样品网址: cdebyte.taobao.com 更多产品资讯请登录: www.cdebyte.com

六 . 包装与焊接 E53-TTL-100

E53-TTL-100 采用静电袋和托盘两种包装方式。通常,样品或者小批量发货为静电袋包装,

批量或者特殊需求发货为托盘。

【 托盘包装示例 】

*焊接及安装指导请参见 亿佰特系列产品应用手册

七.定制合作 E53-TTL-100

- ★公司客户如需进行产品定制,请联系我司。
- ★亿佰特已与多家知名企业达成深度合作。

样品网址: cdebyte.taobao.com 更多产品资讯请登录: www.cdebyte.com

亿佰特(EBYTE)是一家专业提供无线数传方案及产品的公司

- ◆自主研发数百个型号的产品及软件;
- ◆无线透传、WiFi、蓝牙、Zigbee、PKE、数传电台……等多系列无线产品;
- ◆拥有近百名员工,数万家客户,累计销售产品数百万件;
- ◆业务覆盖全球 30 多个国家与地区;
- ◆通过了 ISO 9001 质量管理体系、ISO 14001 环境体系认证;
- ◆拥有多项专利与软件著作权,通过国际 FCC/CE/ROHS 等权威认证。