Mastering the game of Go with deep neural networks and tree search

Selina Cheng

Authors

David Silver^{1*}, Aja Huang^{1*}, Chris J. Maddison¹, Arthur Guez¹, Laurent Sifre¹, George van den Driessche¹, Julian Schrittwieser¹, Ioannis Antonoglou¹, Veda Panneershelvam¹, Marc Lanctot¹, Sander Dieleman¹, Dominik Grewe¹, John Nham², Nal Kalchbrenner¹, Ilya Sutskever², Timothy Lillicrap¹, Madeleine Leach¹, Koray Kavukcuoglu¹, Thore Graepel¹ & Demis Hassabis¹

¹Google DeepMind, 5 New Street Square, London EC4A 3TW, UK.

²Google, 1600 Amphitheatre Parkway, Mountain View, California 94043, USA.

*These authors contributed equally to this work.

Overview

Problem: Go is a complex board game with 250¹⁵⁰ possible sequences of moves, brute-force is intractable

Solution: Combine deep neural networks (DNNs) with Monte Carlo Tree Search (MCTS)

Impact: First AI to defeat a world champion (Fan Hui) in Go

Methods

Two Neural Networks

- Policy Network, prediction and selection
- Value Network, evaluation
- Monte Carlo Tree Search (MCTS)
 - Uses aforementioned networks to search
 - Exploration and exploitation
 - Simulates game trajectories to select optimal moves
- Together, they reduce the depth and breadth of search tree

Experimental Design

- Training
 - Policy Network Training
 - Supervised Learning, 30 million expert moves
 - Reinforcement Learning, self-play
 - Value Network Training, uses self-play positions
- Evaluation

Results

- AlphaGo vs. Competitors
 - 99.8% win rate
 - >77% handicap win rate
 - 2015 European Go: 5-0
- Outperforms pure search or human imitation

Key Takeaways

AlphaGo demonstrated the power behind hybrid Al that combines learning and search for complex decision-making in previously thought to be intractable problems.