Homework 8

Jon Allen

November 7, 2014

5.1 G. Suppost the $f: \mathbb{R}^n \to \mathbb{R}$ is continuous. If there are $\boldsymbol{x} \in \mathbb{R}^n$ and $C \in \mathbb{R}$ such that $f(\boldsymbol{x}) < C$, then prove that there is r > 0 such that for all $\boldsymbol{y} \in \boldsymbol{B}_r(\boldsymbol{x}), f(\boldsymbol{y}) < C$

We know that for every $\varepsilon > 0$ there exists an r > 0 such that for all x, y with ||x - y|| < r we have $|f(x) - f(y)| < \varepsilon$. Now if we say $f(x) + \varepsilon = C$. That is $f(x) = C - \varepsilon$. Then $|C - \varepsilon - f(y)| < \varepsilon$ or $C - \varepsilon - \varepsilon < f(y) < C - \varepsilon + \varepsilon$. And so for this ε we have f(y) < C. Because the function is continuous we can find our r as required.

H. Suppose that functions f, g, h mapping $S \subset \mathbb{R}^n$ into \mathbb{R} satisfy $f(\mathbf{x}) \leq g(\mathbf{x}) \leq h(\mathbf{x})$ for $\mathbf{x} \in S$. Suppose that c is a limit point of S and $\lim_{\mathbf{x} \to \mathbf{c}} f(\mathbf{x}) = \lim_{\mathbf{x} \to \mathbf{c}} h(\mathbf{x}) = L$. Show that $\lim_{\mathbf{x} \to \mathbf{c}} g(\mathbf{x}) = L$.

For any ε we can find r_1, r_2 such that

$$|h(\boldsymbol{x}) - L| < \varepsilon$$
 whenever $0 < ||\boldsymbol{x} - \boldsymbol{c}|| < r_1$
 $|f(\boldsymbol{x}) - L| < \varepsilon$ whenever $0 < ||\boldsymbol{x} - \boldsymbol{c}|| < r_2$

$$\begin{aligned} -\varepsilon &< h(\boldsymbol{x}) - L < \varepsilon \\ -\varepsilon &< f(\boldsymbol{x}) - L < \varepsilon \\ f(\boldsymbol{x}) &\le g(\boldsymbol{x}) \le h(\boldsymbol{x}) \\ f(\boldsymbol{x}) - L &\le g(\boldsymbol{x}) - L \le h(\boldsymbol{x}) - L \end{aligned}$$

and so when

$$0 < ||\boldsymbol{x} - \boldsymbol{c}|| < \min\{r_1, r_2\}$$

then

$$-\varepsilon < f(\boldsymbol{x} - L \le g(\boldsymbol{x}) - L \le h(\boldsymbol{x}) - L < \varepsilon$$
$$-\varepsilon < g(\boldsymbol{x}) - L < \varepsilon$$

(a) Compute the Lipschits constant obtained in corollary 5.1.7.

$$C = \left(\sum_{i=1}^{4} \sum_{j=1}^{4} |a_{ij}|^{2}\right)^{1/2}$$
$$= \left(\sum_{i=1}^{4} \sum_{j=1}^{4} \frac{1}{4}\right)^{1/2}$$
$$= \left(\sum_{i=1}^{4} 1\right)^{1/2}$$
$$C = 2$$

(b) Show that ||Ax|| = ||x|| for all $x \in \mathbb{R}^4$. Deduce that the optimal Lipschitz constant is 1. Hint: The columns of A form and orthonormal basis for \mathbb{R}^4

$$(x_1 + x_2 + x_3 + x_4)^2 = x_1^2 + x_1x_2 + x_1x_3 + x_1x_4 + x_2x_1 + x_2^2 + x_2x_3 + x_2x_4 + x_3x_1 + x_3x_2 + x_3^2 + x_3x_4 + x_4x_1 + x_4x_2 + x_4x_3 + x_4^2$$

$$= x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_1x_2^2 + x_1x_3^2 + x_1x_4^2 + x_2x_3^2 + x_2x_4^2 + x_3x_4^2$$

$$(x_1 - x_2 + x_3 - x_4)^2 = x_1^2 + x_2^2 + x_3^2 + x_4^2 - x_1x_2^2 + x_1x_3^2 - x_1x_4^2 - x_2x_3^2 + x_2x_4^2 - x_3x_4^2$$

$$(x_1 + x_2 - x_3 - x_4)^2 = x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_1x_2^2 - x_1x_3^2 - x_1x_4^2 - x_2x_3^2 - x_2x_4^2 + x_3x_4^2$$

$$(x_1 - x_2 - x_3 + x_4)^2 = x_1^2 + x_2^2 + x_3^2 + x_4^2 - x_1x_2^2 - x_1x_3^2 + x_1x_4^2 + x_2x_3^2 - x_2x_4^2 - x_3x_4^2$$

$$(x_1 + x_2 + x_3 + x_4)^2 + (x_1 - x_2 + x_3 - x_4)^2 + (x_1 - x_2 - x_3 + x_4)^2 + (x_1 - x_2 - x_3 - x_4)^2 + (x_1 - x_2 - x_3 + x_4)^2 + (x_1 - x_2 - x_3 - x_4)^2 + (x_1 - x_1 - x_$$

Of course then $||Ax - Ay|| = ||A(x - y)|| = ||x - y|| \le 1 \cdot ||x - y||$ and so the optimal Lipschitz constant is 1.

5.2 G. (A monotone convergence test for functions.) Suppose that f is an increasing function on (a,b) that is bounded above. Prove that the one-sided limit $\lim_{x\to b-} f(x)$ exists.

Lets say the least upper bound of f(x) on (a,b) is L. We seek to show that $\lim_{x\to b^-} x = L$. This means that for every $\varepsilon > 0$ there exists an r > 0 such that $|f(x) - L| < \varepsilon$ for every b - r < x < b. Why don't we assume instead that for any $r \in (a,b)$ such that $x \le b - r$ or $x \ge b$ we can find some $\varepsilon > 0$ such that $|f(x) - L| \ge \varepsilon$. Naturally we can throw out $x \ge b$ condition. Now observe that for any $c \in (a,b)$ if $x \le c$ then $f(x) \le f(c)$ because f(x) is increasing. This means that $f(x) \le f(b-r)$ and so $|f(x) - L| = L - f(x) \ge L - f(b-r) = \varepsilon$. And so we have found our ε as required.

H. Define f on \mathbb{R} by $f(x) = x\chi_{\mathbb{Q}}(x)$. Show that f is continuous at 0 and that this is the *only* point where f is continuous.

First note that f(0) = 0. And so we seek to show that for every $\varepsilon > 0$ there is a r > 0 such that for all $x \in \mathbb{R}$ with |x| < r we have $|f(x)| < \varepsilon$. Lets just make $r = \varepsilon$. Now if $x \in \mathbb{Q}$ then f(x) = x

and if $|x| < \varepsilon$ then $|f(x)| < \varepsilon$. But if $x \in \mathbb{R} \setminus \mathbb{Q}$ then f(x) = 0 and $0 \le |x| < \varepsilon$ and so we are still good.

Now lets assume $a \neq 0$. Let's fix $\varepsilon = |\frac{a}{2}|$ and assume we can find some r such that for all $x \in \mathbb{R}$ with |x - a| < r we will have $|f(x) - f(a)| < \varepsilon$.

Lets assume that $a > \varepsilon$ is rational. Then for any r we can find some $x = a + \frac{r}{\sqrt{2}}$ where $a + \frac{r}{\sqrt{2}} - a = \frac{r}{\sqrt{2}} < r$ but f(x) = 0 and f(a) = a and so $|f(x) - f(a)| = f(a) = a > \varepsilon$. Similarly if $a < -\varepsilon$ is rational then $x = a - \frac{r}{\sqrt{2}}$ will give us $|f(x) - f(a)| > \varepsilon$.

Now we assume that $a > \varepsilon$ is irrational. Now we can find a rational number between any two real numbers. Lets say a < x < a + r where $x \in \mathbb{Q}$. Then |x - a| < r but

$$|f(x) - f(a)| = f(x) = x > a > \frac{a}{2} = \varepsilon$$

Similarly if a < -1 and irrational then for a - r < x < a and $x \in \mathbb{Q}$ we have |x - a| < r and $|f(x) - f(a)| > \frac{a}{2}$. And so for all $a \neq 0$ we know that f is not continuous