Transmission and Mile Per Gallon (MPG)

Cynthia Tang

June 9, 2019

Summary

The report explored the relationship between transmission types and miles per gallon (MPG). Figure 1 in appendix showed that an manual transmission trend to be better for MPG, considering other factors. Then, we performed t-test to verify the hypothesis. To quantify the MPG difference between automatic and manual transmissins, we fitted the MPG (outcome) and a set of variables (regressors) in to multiple linar models. We selected tansmission (am), number of cylinders (cyl), gross horsepower (hp), and weight (wt) as repressors.

Results

The mean of automatic transmission: 17.1473684 miles per gallon. The mean of manual transmission: 24.3923077 miles per gallon.

Model Selection

We used nested model search. The detailed process of model selection is shown in **Appendix**.

We set mpg as the outcome and transmission (am), number of cylinders (cyl), gross horsepower (hp), and weight (wt) as repressors and fitted the linear model: $MPG_i = \beta_0 + \beta_1 am(manual) + \beta_2 cyl(6) + \beta_3 cyl(8) + \beta_4 hp_i + \beta_5 wt_i + \epsilon_i$. Assume $\epsilon_i \sim N(\mu, \sigma^2)$. The coefficients of the linear model are showed below:

##	(Intercept) fa	ctor(am)manual	factor(cyl)6	factor(cyl)8	
##	33.70832390	1.80921138	-3.03134449	-2.16367532	
##	hp	wt			
##	-0.03210943	-2.49682942			

Interpretion

The intercept β_0 : the expected mpg of automatic transmission when there is 4 cylinders, 0 gross horsepower, and none weight.

The β_1 : the expected change in mpg comparing those in manual to those in automatic transmission.

The β_2 : the expected change in mpg comparing those with 6 cylinders to those with 4 cylinders.

The β_3 : the expected change in mpg comparing those with 8 cylinders to those with 4 cylinders.

The β_4 : the expected change in mpg for every 1 gross horsepower increase.

The β_5 : the expected change in mpg fot every 1000 lbs increase in the weight of cars.

T-test

Assumption: Unequal variance. Detailed test results is shown in **Appendix**.

 H_0 : $\mu_{auto} = \mu_{manual}$.

 H_a : $\mu_{auto} < \mu_{manual}$.

The p-value: 6.868191710^{-4} . The type I error $\alpha = 0.05$, then we rejected H_0 and concluded that a manual transmission is better for MPG.

Quantify the MPG Difference

 $\mu_{manual}-\mu_{auto}=7.2449393.$

Adjustment: $MPG_{manual} - MPG_{auto} = abs(\beta_1) = 1.8092114$.

Diagnostics

The mean of residuals is 2.688821410^{-17}, approximating to zero. "Residual vs Fitted": residuals are independent "scale-location": the h

"Residual vs Fitted": residuals are independent. "scale-location": the homoscedasticity of residuals. "Normal Q-Q"": all residuals were approximately stardard normal distributed." Residual vs Leverge": within 0.5, no outliers.

The uncertainty

We assumed other variables not included in the linear model were completely randomized. The error ϵ in the linear model followed normal distribution. However, we are uncertain whether there is a better linear model with other combination of different regressors.

Appendix

Figure

Figure 1. The relationship between MPG and a set of variables

Model Selection

```
## Analysis of Variance Table
##
## Model 1: mpg ~ factor(am)
## Model 2: mpg ~ factor(am) + factor(cyl)
##
    Res.Df RSS Df Sum of Sq
                                  F Pr(>F)
        30 720.9
## 1
         28 264.5 2
                        456.4 24.158 8.01e-07 ***
## 2
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Analysis of Variance Table
##
## Model 1: mpg ~ factor(am)
## Model 2: mpg ~ factor(am) + factor(cyl)
## Model 3: mpg ~ factor(am) + factor(cyl) + disp
    Res.Df
              RSS Df Sum of Sq
## 1
         30 720.90
## 2
         28 264.50 2
                        456.40 26.7353 3.956e-07 ***
## 3
         27 230.46 1
                         34.04 3.9875 0.05601 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Analysis of Variance Table
##
## Model 1: mpg ~ factor(am)
```

```
## Model 2: mpg ~ factor(am) + factor(cyl)
## Model 3: mpg ~ factor(am) + factor(cyl) + hp
    Res.Df RSS Df Sum of Sq
                                  F Pr(>F)
## 1
        30 720.9
        28 264.5 2
                        456.4 31.2446 9.43e-08 ***
## 3
        27 197.2 1
                        67.3 9.2141 0.005266 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Analysis of Variance Table
## Model 1: mpg ~ factor(am)
## Model 2: mpg ~ factor(am) + factor(cyl)
## Model 3: mpg ~ factor(am) + factor(cyl) + hp
## Model 4: mpg ~ factor(am) + factor(cyl) + hp + drat
## Res.Df
              RSS Df Sum of Sq
## 1
        30 720.90
        28 264.50 2
                        456.40 30.4123 1.557e-07 ***
        27 197.20 1
                         67.30 8.9686 0.005961 **
## 4
                         2.11 0.2807 0.600747
        26 195.09 1
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Analysis of Variance Table
## Model 1: mpg ~ factor(am)
## Model 2: mpg ~ factor(am) + factor(cyl)
## Model 3: mpg ~ factor(am) + factor(cyl) + hp
## Model 4: mpg ~ factor(am) + factor(cyl) + hp + wt
## Res.Df
              RSS Df Sum of Sq
                                  F
                                        Pr(>F)
## 1
        30 720.90
                        456.40 39.286 1.388e-08 ***
## 2
        28 264.50 2
## 3
                        67.30 11.585 0.002164 **
        27 197.20 1
## 4
                         46.17 7.949 0.009081 **
        26 151.03 1
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Analysis of Variance Table
##
## Model 1: mpg ~ factor(am)
## Model 2: mpg ~ factor(am) + factor(cyl)
## Model 3: mpg ~ factor(am) + factor(cyl) + hp
## Model 4: mpg ~ factor(am) + factor(cyl) + hp + wt
## Model 5: mpg ~ factor(am) + factor(cyl) + hp + wt + qsec
## Res.Df RSS Df Sum of Sq
                                         Pr(>F)
## 1
        30 720.90
## 2
                        456.40 39.6232 1.772e-08 ***
        28 264.50 2
## 3
                       67.30 11.6849 0.002166 **
        27 197.20 1
        26 151.03 1
## 4
                        46.17 8.0172 0.009017 **
## 5
        25 143.98 1
                         7.04 1.2230 0.279293
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Analysis of Variance Table
## Model 1: mpg ~ factor(am)
## Model 2: mpg ~ factor(am) + factor(cyl)
## Model 3: mpg ~ factor(am) + factor(cyl) + hp
## Model 4: mpg ~ factor(am) + factor(cyl) + hp + wt
## Model 5: mpg ~ factor(am) + factor(cyl) + hp + wt + factor(vs)
## Res.Df RSS Df Sum of Sq F Pr(>F)
```

```
## 1
        30 720.90
        28 264.50 2
                       456.40 39.7065 1.737e-08 ***
        27 197.20 1
## 3
                       67.30 11.7095 0.002146 **
        26 151.03 1
                        46.17 8.0341 0.008954 **
        25 143.68 1
                        7.35 1.2782 0.268968
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Analysis of Variance Table
##
## Model 1: mpg ~ factor(am)
## Model 2: mpg ~ factor(am) + factor(cyl)
## Model 3: mpg ~ factor(am) + factor(cyl) + hp
## Model 4: mpg ~ factor(am) + factor(cyl) + hp + wt
## Model 5: mpg ~ factor(am) + factor(cyl) + hp + wt + factor(gear)
## Res.Df
                                       Pr(>F)
              RSS Df Sum of Sq
## 1
        30 720.90
## 2
        28 264.50 2
                       456.40 36.5938 5.143e-08 ***
## 3
        27 197.20 1
                       67.30 10.7916 0.003124 **
        26 151.03 1
                       46.17 7.4043 0.011916 *
## 5
        24 149.67 2
                        1.36 0.1091 0.897096
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Analysis of Variance Table
##
## Model 1: mpg ~ factor(am)
## Model 2: mpg ~ factor(am) + factor(cyl)
## Model 3: mpg ~ factor(am) + factor(cyl) + hp
## Model 4: mpg ~ factor(am) + factor(cyl) + hp + wt
## Model 5: mpg ~ factor(am) + factor(cyl) + hp + wt + factor(carb)
## Res.Df
              RSS Df Sum of Sq
                                  F Pr(>F)
## 1
        30 720.90
## 2
                      456.40 32.9605 3.33e-07 ***
        28 264.50 2
## 3
        27 197.20 1
                       67.30 9.7201 0.005206 **
## 4
        26 151.03 1
                       46.17 6.6691 0.017370 *
## 5
        21 145.39 5
                        5.63 0.1627 0.973489
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

T-test Results