1 Matching

1.1 Matching-Lemma

G Graph, $w: E \to \mathbb{R}$, $v \in V$, M' maximales Matching für G' = G - v; dann kann mit einer Berechnung eines erhöhenden Weges Matching M maximalen Gewichts von G berechnet werden.

1.2 Matching-Algorithmus für planaren Graphen G

- 1. Zerlege G in G_1, G_2 dank Separator S entsprechend Planar-Separator-Theorem und berechne rekursiv in G_1 und G_2 Matching M_1, M_2 maximalen Gewichts; definiere $M := M_1 \cup M_2$, $G' = G_1 \cup G_2$
- 2. Solange $S \neq \emptyset$:
 - wähle $v \in S, S := S v$, und berechne mit Lemma aus M' Matching maximalen Gewichts in G' + v

Laufzeit t Laufzeit von Matching, t' von Lemma, $c_1, c_2 \leq \frac{2}{3}, c_3 \in \mathbb{N}, c_1 + c_2 \leq 1$

$$t(n) = t(c_1 \cdot n) + t(c_2 \cdot n) + c_3 \sqrt{n} t'(n)$$

Mit Mastertheorem kann t(n) abgeschätzt werden durch

$$t(n) \in \mathcal{O}\left(n^{\frac{3}{2}}\right)$$
, falls $t'(n) \in \mathcal{O}\left(n\right)$, falls ungewichtet

$$t(n) \in \mathcal{O}\left(n^{\frac{3}{2}}\log n\right)$$
, falls $t'(n) \in \mathcal{O}\left(n\log n\right)$, falls gewichtet

2 Mixed-Max-Cut in planaren Graphen

2.1 Definition: Schnitt

G=(V,E) Graph, $S\subset E$ heißt **Schnitt** von G, falls der durch E-S induzierter Subgraph unzusammenhängend ist und für alle $(u,v)\in S$, u und v in verschiedenen Zusammenhangkomponenten liegen.

2.2 Definition: Mixed-Max Cut

Kantengewichte $w: E \to \mathbb{R}$

Mixed-Max Cut: Finde Schnitt S mit $w(S) = \sum_{s \in S} w(S)$ maximal.

ist in bel. Graphen NP-Schwer.

Beobachtung: MIXED-MAX CUT und MIXED-MIN CUT sind äquivalent. (Vorzeichen der Gewichte umdrehen.)

Spezialfall: MIN CUT Problem mit $w: E \to \mathbb{R}_{\geq 0}$ ist auch für beliebige Graphen in P.

2.3 Definition:

Matching M in G mit |V| gerade heißt perfekt, falls 2|M| = |V|

2.4 Polynomialer Algorithmus für Mixed-Max Cut in planaren Graphen

Verwende

- Dualität von Schnitten und Kreisen
- maximales Matching bzw. Planar Separator Theorem

Laufzeit in $\mathcal{O}\left(n^{3/2}\log n\right)$

Es gilt: G enthält Euler-Kreis g.d.w. E kandendisjunkte Vereinigung einfacher Kreise g.d.w. $\forall v \in V$ ist $d(v) \in 2\mathbb{Z}$

Dualität von Schnitt in G und Menge von einfachen Kreisen in Dualgraph G^* (bzgl. bel. pl. Einbettung) Menge von einfachen Kreisen = Kantenmenge, in der für alle Knoten der Knotengrad gerade ist =: gerade Menge

(maximaler Schnitt in G induziert maximalen Kreis in G^* und umgekehrt)

- 1. Trianguliere G in $\mathcal{O}(n)$; zusätzliche Kanten erhalten Gewicht 0
- 2. berechne in $\mathcal{O}(n)$ Dualgraph G^* bzgl. bel. pl. Einbettung; G^* ist dann 3-regulär, d.h. $\forall v \in V^*: d(v) = 3$
- 3. Konstruiere zu G^* Graph G', so dass perfektes Matching min. Gewichts in G' eine gerade Menge (bzw. Menge von Kreisen) max. Gewichts in G^* induziert
- 4. berechne in $\mathcal{O}(n^{3/2}\log n)$ solch ein Matching bzw. gerade Menge
- 5. falls diese gerade Menge nichtleer, berechne daraus den entsprechenden Schnitt, ansonsten Sonderfall

2.4.1 Schritt 3

beachte, dass G^* 3-regulär; ersetze jeden Punkt in G^* durch ein Dreieck, erhalte G'; Matching ergibt zwei Fälle: (1)

Sei m die Anzahl der Kanten in G^* und n die Anzahl der Knoten

$$\Rightarrow 3n = 2m \Rightarrow n \text{ gerade}$$

ergo hat G' eine gerade Anzahl an Knoten. Wir sehen, dass mindestens ein perfektes Matching für G' existiert.

2.4.2 Schritt 4

Konstruiere perfektes Matching minimalen Gewichts in G'

Beobachtung M perfektes Matching minimalen Gewichts in G = (V, E) mit $w : E \to \mathbb{R}$, g.d.w. M perfektes Matching max. Gewichts in G bzgl. y(e) = W - w(e), für W geeignet erzwinge, dass Matching max. Gewichts perfekt ist:

- zu M perfekt, betrachte $y(M) = \sum_{e \in M} y(e) = nW/2 \sum_{e \in M} w(e) \ge n/2(W w_{max})$
- Zu N nicht perfekt, gilt $v(N) \leq (n/2 1)(W w_{min})$
- \bullet Wähle W so, dass

$$v(N) \le (n/2 - 1)(W - w_{min}) < n/2(W - w_{max}) \le y(M)$$

in $\mathcal{O}\left(n^{\frac{3}{2}}\log n\right)$

2.4.3 Schritt 5

Komplementmenge von perfektem Matching min. Gewichts in G' induziert gerade Menge max. Gewichts in G^* und damit max. Schnitt in G.

Es kann sein, dass resultierende Menge leer ist. Passiert, wenn max. Schnitt negatives Gewicht hat.

→ Sonderfall: Wollen nichttrivialen Schnitt erzwingen;

betrachte wieder Schritt 3, erzwinge, dass in perfektem Matching minimalen Gewichts für mindestens einen Knoten $v \in G^*$, Fall 2 eintritt.

Vorgehensweise betrachte alle Knoten $v \in G^*$ und $G^* - v$ sowie durch perfektes Matching in G' induziertes Matching in $G^* - v$ und berechne mit Matching-Lemma ein Matching in G^* . Wähle M mit $w(M) = \min_{v \in V^*} w(M_v)$

Frage Wie kann man dabei Fall 2 bei v erzwingen? (2)

Folien: Maximale s-t-Flüsse in Planaren Graphen

2.5 Lemma

Für jeden Kozykel C gilt: $\pi(C) \in \{-1, 0, 1\}$. Ferner: $\pi(C) = 1 \iff C$ ist (s, t)-Schnitt

Beweis

Fall 1: s, t liegen auf derselben Seite von C^*

$$\iff$$
 P kreuzt C^* gleich oft in jeder Richtung \iff C enthält dieselbe Zahl von Kanten in P und \overline{P} \iff $\pi(C)=0$

Fall 2: s liegt innen und t außen von C^*

$$\iff$$
 P kreuzt C^* einmal mehr in die Richtung von $s \to t$ \iff C enthält eine Kante mehr in P als in \overline{P} \iff $\pi(C)=1$

Fall 2: s liegt innen und t außen von C^* analog wie Fall 2

2.6 Lemma

G besitzt einen gültigen s-t-Fluss mit Wert λ genau dann, wenn G_{λ}^* keinen negativen Kreis enthält.

Beweis Zeige '\imps': Annahme:
$$G_{\lambda}^*$$
 enthält negativen Kreis C^* , d.h. $0 > c(\lambda, C^*) = \sum_{e \in C} c(\lambda, e) = \sum_{e \in C} c(e) - \lambda \sum_{e \in C} \pi(e) = c(C) - \lambda \pi(C) \Longrightarrow \pi(C) > c(C)/\lambda \le 0 \Longrightarrow \pi(C) = 1$

$$\Longrightarrow C \text{ ist } s - t - \text{Schnitt}$$

Außerdem $c(C) < \lambda$, d.h. es existiert ein Schnitt mit Kapazität $< \lambda$, das ist ein Widerspruch Zeige ' \Longrightarrow ': G_{λ}^* enthält keinen negativen Kreis.

 \implies kürzeste Wege wohldefiniert; sei x in G_{λ}^* beliebiger Ursprung, $dist(p,\lambda) :=$ Distanz von x zu p

Definition

$$\phi(\lambda, e) := dist(\lambda, head(e^*)) - dist(\lambda, tail(e^*)) + \lambda \pi(e)$$

Zeige ϕ ist gütliger st-Fluss

- 1. Für $v \in V$ gilt: $\sum_{w} \phi(v \to w) = \sum_{w} \lambda \pi(v \to w)$ es folgt: $\phi(\lambda, \cdot)$ ist Fluss mit Wert λ
- 2. $slack(\lambda, e^*) := dist(\lambda, tail(e^*)) + c(\lambda, e) dist(\lambda, head(e^*))$ es gilt: $slack(\lambda, e) = c(e) \phi(\lambda, e)$ $\phi(\lambda, e) \le c(e) \iff slack(\lambda, e) \ge 0$ Wäre $slack(\lambda, e) < 0$, dann folgt: $dist(\lambda, head(e^*)) > dist(\lambda, tail(e^*)) + c(\lambda, e^*)$, das wäre ein Widerspruch

2.7 Satz

Ein maximaler st-Fluss in einem st-planaren Graph kann in $\mathcal{O}(n \log n)$ Zeit berechnet werden. Max λ , s.d. kein neg. Kreis in G_{λ}^* ist Länge des kürzesten ts-Weges in G_{λ}^*

3 Das Menger-Problem

3.1 Zur Erinnerung

 $S \subset V$ heißt Separator in G, falls G - S unzusammenhängend.

 $S \subset E$ heißt Schnitt in G, falls G - S unzusammenhängend.

3.2 Definitionen

Zu $u, v \in V$ definiere den Knotenzusammenhang

$$\kappa_G(u,v) := \left\{ \begin{aligned} |V|-1, \text{ falls } \{u,v\} \in E \\ \min_{S \subset V} |S|, \text{ für } S \text{ Separator, der u und v trennt} \end{aligned} \right.$$

und $\kappa_G := \min_{u,v \in V} \kappa_G(u,v)$

$$\lambda_G(u, v) := \min_{S \subset E, \text{ S Schnitt und trennt u und v}} |S|$$

und

$$\lambda(G) := \min_{u,v \in V} \lambda_G(u,v)$$

Zwei Wege heißen kantendisjunkt, wenn sie keine gemeinsame Kante enthalten, und (intern) knotendisjunkt, wenn sie außer Anfangs- und Endknoten keinen gemeinsamen Knoten enthalten.

3.3 Satz von Menger

Seien s und t Knoten in G = (V, E) ($\{s, t\} \notin E$ bei knotendisjunkter Version)

- $\kappa_G(s,t) \geq k \Longleftrightarrow \exists_{\geq k}$ paarweise knotendisjunkte st-Wege
- $\lambda_G(s,t) \geq k \Longleftrightarrow \exists_{\geq k}$ paarweise kantendisjunkte st-Wege

3.4 Menger-Problem

Finde zu G, s, t maximale Anzahl knotendisjunkter bzw. kantendisjunkter st-Wege.

3.5 Menger-Problem in planaren Graphen: kantendisjunkte Variante

Linearzeitalgorithmus basierend auf RIGHT-FIRST-DFS.

Spezialfall s und t liegen auf derselben Facette:

RIGHT-FIRST = im Gegenuhrzeigersinn nächste freie Kante in Adjazenzliste (relativ zur aktuellen eingehenden Kante).

Algorithmus G planar eingebetteter Graph, OE t auf äußerer Facette

- 1. Ersetze G durch den gerichteten Graphen \overrightarrow{G} , indem $\{u,v\} \in E$ durch (u,v) und (v,u) ersetzt wird. (in $\mathcal{O}(n)$)
- 2. Berechne in $\mathcal{O}(n)$ Menge gerichteter einfacher kantendisjunkter Kreise $\overrightarrow{C_1}, \dots, \overrightarrow{C_l}$ und konstruiere aus \overrightarrow{G} den Graphen \overrightarrow{G}_C , indem die Richtung aller Kanten auf den $\overrightarrow{C_i}$ umgedreht wird.
- 3. Berechne in \overrightarrow{G}_C in $\mathcal{O}(n)$ mittels RIGHT-FIRST-DFS eine maximale Anzahl kantendisjunkter gerichteter st-Wege.
- 4. Berechne aus den in Schritt 3 gefundenen st-Wegen in \overrightarrow{G}_C gleiche Anzahl kantendisjunkter st-Wege in G in $\mathcal{O}(n)$.

Schritt 1

3.6 Lemma

Seien P_1, \ldots, P_r kantendisjunkte, gerichtete st-Wege in \overrightarrow{G} . Dann enthält

 $P = \{\{u,v\} \in E \mid \text{Genau eine der Kanten (u,v) und (v,u) liegt auf einem der } P_i\}$

gerade r kantendisjunkte st-Wege in G.

Beweis Zwei Fälle: Wir konstruieren in beiden Fällen aus gegebenen st-Wegen unproblematische st-Wege

- 1. $(u,v) \in P_i \land (v,u) \in P_i$: Entferne (u,v,\ldots,v,u) bzw. (v,u,\ldots,u,v) aus P_i
- 2. $(u,v) \in P_i \land (v,u) \in P_j$: $P_i = (A,u,v,B), P_j = (C,v,u,D)$; konstruiere $\widetilde{P}_i = (A,D)$ und $\widetilde{P}_j = (C,B)$

Schritt 2 C_1, \ldots, C_l in \overrightarrow{G} , sodass

- 1. \overrightarrow{G}_C enthält keine Rechtskreise, d.h. keine Kreise, deren Inneres rechts liegt (aus Sicht einer Kante).
- 2. Sei $\overrightarrow{P}_C \subset \overrightarrow{E}_C$ Menge der Kanten auf kantendisj. s-t Wegen in \overrightarrow{G}_C und $\overrightarrow{P} \subset \overrightarrow{E}$, wobei $\overrightarrow{P} := (\overrightarrow{P}_C \cap \overrightarrow{E}) \cup \{(u,v) \in \overrightarrow{E} : (u,v) \text{ auf einem der } \overrightarrow{C}_i \text{ und } (v,u)' \notin \overrightarrow{P}_C\}$

Dann induziert \overrightarrow{P} k kantendisjunkte gerichtete st-Wege in \overrightarrow{G} g.d.w \overrightarrow{P}_C induziert k kantendisjunkte gerichtete st-Wege in \overrightarrow{G}_C .

Konstruktion der Kreise C_1, \ldots, C_l Sei f Facette in G bzw. \overrightarrow{G} ; definiere Abstand von f zur äußerer Facette f_0 als

dist(f) := Länge eines kürzesten Weges des Dualknotens f^* zum Dualknoten der äußeren Facette f_0^* in G^*

Definiere C_i als Vereinigung der einfachen Kreise in G für die alle Facetten f im Inneren die Bedingung $dist(f) \geq i$ erfüllen. \overrightarrow{C}_i sei entsprechender Rechtskreis in \overrightarrow{G} . Drehe alle diese C_i um, erhalte \overrightarrow{G}_C .

 \overrightarrow{G}_C enthält keine Rechtskreise, da für jeden Rechtskreis in \overrightarrow{G} beim Übergang zu \overrightarrow{G}_C mindestens eine Kante des Kreises umgedreht wird.

Sei $\overrightarrow{P}_C \subset \overrightarrow{E}_C$ Kantenmenge zu k st-Wegen in \overrightarrow{G}_C . Konstruiere dazu Kantenmenge \overrightarrow{P} in \overrightarrow{G} .

$$\overrightarrow{P} := (\overrightarrow{P}_C \cap \overrightarrow{E}) \cup \{(u,v) \in \overrightarrow{E} : (u,v) \text{ auf einem } \overrightarrow{C}_j \text{ und } (v,u)' \notin \overrightarrow{P}_C\}$$

Schritt 3 Berechnung einer maximalen Anzahl kantendisjunkter st-Wege in \overrightarrow{G}_C (in $\mathcal{O}(n)$) Schleife über ausgehende Kanten aus s

RIGHTFIRSTDEPTHSEARCH:

Suchschritt: rechteste nicht markierte auslaufende Kante in Bezug auf Referenzkante

Zwei Variationen, wie die Referenzkante zu wählen ist

- 1. Weihe: aktuell einlaufende Kante
- 2. Coupry: erste einlaufende Kante

Korrektheitsbeweis zu Schritt 3 Beh.: \overrightarrow{P}_C enthält maximale Anzahl kantendisjunkter st-Wegen.

Benutze dazu gewichtete Variante des Satz v. Menger, d.h. konstruiere st-Schnitt der entsprechenden Kapazität.

Schnitt A wird induziert durch geeigneten Kreis $\overrightarrow{K} \subset \overbrace{G}_{C}$ mit:

- 1. $s \in Innen(\overrightarrow{K})$ oder auf \overrightarrow{K}
- 2. $t \in Aussen(\overrightarrow{K})$
- $3. \ A:=\left\{(u,v)\in \overrightarrow{E}_C \mid u \text{ liegt auf } \overrightarrow{K},v\in Aussen(\overrightarrow{K})\right\}, \ |A|=\# \ st\text{-Wegen in } \overrightarrow{P}_C$

 \overrightarrow{K} wird mittels Left First-Rückwärtssuche von s aus in
 \overrightarrow{P}_C konstruiert. Wie sieht \overrightarrow{K} aus:

Variante 1 \overrightarrow{K} geht von s nach s

Variante 2 \overrightarrow{K} geht von $s \neq v_0$ nach v_0 und sIn diesem Fall den Kreis, der von v_0 nach v_0 beschrieben wird.

3.7 Lemma

Betrachte $\overrightarrow{G}_C = (V, \overrightarrow{E}_C)$ und \overrightarrow{K} , dann ist jede Kante $(u, v) \in \overrightarrow{E}_C$ mit u auf \overrightarrow{K} und $v \in Aussen(\overrightarrow{K})$ durch einen st-Weg aus \overrightarrow{P}_C besetzt.

Beweis

- 1. Wenn P_1, \ldots, P_l st-Wege sind und \overrightarrow{K} ein Linkskreis von s nach s, dann gehört keine der Kanten $(x,y), x \in Aussen(\overrightarrow{K}), y \in \overrightarrow{K}$ zu einem der p_i .

 Wegen Leftfirst in Graph indziert durch p_1, \ldots, p_l $(x,y) \in p_i$, für alle $1 \le i \le l$.

 Deswegen: Kante (u,v) mit u auf $\overrightarrow{K}, v \in Aussen(\overrightarrow{K})$ kann nicht auf einem Linkskreis aus p_1, \ldots, P_l liegen.
- 2. betrachte (u,v) mit u auf $\overrightarrow{K}, v \in Aussen(\overrightarrow{K})$ und (u,w) mit w auf \overrightarrow{K} . Annahme: (u,v) gehört zu keinem der P_1,\ldots,P_l . Betrachte Referenzkante zu (u,w) in RIGHTFIRST-Suche (Schritt 3) Referenzkante geht von Innerem zum Kreis oder liegt auf den Kreis, aber dann hätte RIGHTFIRST nicht (u,w) sondern (u,v) gewählt. Das wäre ein Widerspruch.

4 Das Okamura & Seymour Problem

Sei G ein planarer Graph, $D = \{\{s_i, t_i\}, s_i, t_i \in V, 1 \le i \le k\}, s_i, t_i$ liegen alle auf Rand der äußeren Facette.

Finde k paarweise kantendisjunkte Wege, die jeweils s_i mit t_i verbinden.

4.1 Kapazitätsbedingung

Für jeden Schnitt $X \subset V$ ist die **freie Kapazität** $fcap(X) \geq 0$,

$$fcap(X) := cap(X) - dens(X)$$

$$cap(X) = |\{\{x, y\} \in E \mid x \in X, y \in V \setminus X\}|$$

$$dens(X) = |\{\{s, t\} \in D \mid \#(\{s, t\} \cap X) = 1\}|$$

(Kapazität und Dichte von X)

Die Kapazitätsbedingung ist offensichtlich notwendig für Lösbarkeit des Problems. Allerdings ist sie i.A. nicht hinreichend.

Anti-Beispiel Ein Quadrat, mit den Ecken a,b,c,d mit Farben 1,2,1,2. Erfüllt Kapazitätsbedingung, löst aber Problem nicht. fcap(X) = 1, wobei $X = \{a \mid \}$.

4.2 Geradheitsbedingung

Für alle Schnitte $X \subset V$ gilt fcap(X) ist gerade.

4.3 Satz von Okamura & Seymour

Falls die Geradheitsbedingung erfüllt ist, ist die Kapazitätsbedingung äquivalent zur Lösbarkeit des Problems.

4.4 Lemma

Es gilt:

$$fcap(X)$$
 gerade $\forall X \subset V \iff fcap(v)$ gerade $\forall v \in V$

wobei

$$fcap(v) = d(v) - dens(v)$$

 $dens(v) = \#\{i \mid s_i = v\} + \#\{i \mid t_i = v\}$

Beweis \implies trivial.

 \Leftarrow : Sei fcap(v) gerade für alle $v, X \subset V$:

$$cap(X) = \sum_{v \in X} cap(v) - 2 |\{\{u, v\} \in E \mid u, v \in X\}|$$

$$dens(X) = \sum_{v \in X} dens(v) - 2 |\{\{s, t\} \in D \mid s, t \in X\}|$$

$$fcap(X) = \sum_{v \in X} cap(v) - \sum_{v \in X} dens(v) - 2 \left| \{ \{u,v\} \in E \mid u,v \in X \} \right| + 2 \left| \{ \{s,t\} \in D \mid s,t \in X \} \right| = \sum_{v \in V} fcap(v) - 2N \in 2\mathbb{Z}$$

 $N \in \mathbb{N}\square$

4.5 Linearzeitalgorithmus für planaren Graphen G

Terminalpaare D auf äußerer Facette und Geradheitsbedingung erfüllt.

- Phase 1 Konstruiere aus G, D einfachere Instanz mit Klammerstruktur und berechne mittels RIGHT-FIRST-Tiefensuche kantendisjunkte Lösungswege q_1, \ldots, q_k . Diese induzieren gerichteten Hilfsgraph.
- Phase 2 Berechne mittels gerichteter RIGHTFIRST-Tiefensuche in Hilfsgraph Lösungswege p_1, \ldots, p_k , die jeweils s_i mit t_i verbinden.

4.6 Phase 1: Instanz mit Klammerstruktur

$$G, D = \{\{s_i, t_i\} \mid \}$$

- 1. Wähle beliebiges Terminal als Startterminal.
- 2. Gehe im Gegenuhrzeigersinn: Dem ersten Terminal eines Paares, das einem begegnet, ordnet man ein aufgehende Klammer zu. Begegnet man dem zweiten, erhält dieses eine zugehende Klammer.
 - Entsprechende Klammerpaare ergeben neue Terminalpaare in D' (innere Klammerpaare haben kleineren Index).

3. Konstruiere mittels RIGHTFIRST-Suche Lösung q_1, \ldots, q_k zu G, D'; Reihenfolge, in der Wege berechnet werden nach Reihenfolge der t'_i , d.h. von innen nach außen in Klammerstruktur.

4.7 Korrektheit von Phase 1

Beobachtung

- 1. keine zwei Wege q_i, q_j kreuzen sich, wg. RIGHTFIRST-Auswahlregel
- 2. kein q_i kreuzt sich selbst
- 3. Sei G' der gerichtete Graph, der durch die q_i induziert wird. G' enthält keinen Rechtskreis. Angenommen G' hätte einen Rechtskreis, dann wären an diesem mind. zwei q_i, q_j beteiligt. Daraus folgt auf der Facette folgende Terminale: s_i, t_j, s_j, t_i , was der Klammerung ()() entspricht, was ein Widerspruch zur Paarung ist.
- 4. 1, 2 & 3 \Longrightarrow induktiv über q_i kann gezeigt werden, dass q_i die richtigen Terminale verbindet.
- 5. 1.Phase in $\mathcal{O}(n)$ klar.

4.8 Phase 2

Ohne Einschränkung sei von Startterminal im Gegenuhrzeigersinn jeweils s_i vor t_i und Indizierung entsprechend Auftreten der t_i .

Für $i = 1, \ldots, k$

- 1. $p_i := \text{f\"uhre RFS in } G' \text{ von } s_i \text{ aus bis zu einem } j$
- 2. Falls $i \neq j$, Stop.

gebe p_1, \ldots, p_k aus.

Laufzeit $\mathcal{O}(n)$ amortisiert mit Union-Find wie beim kantendisjunkten Menger-Problem.

Korrektheit Der Algorithmus endet entweder

- 1. mit Wegen p_1, \ldots, p_k , die jeweils s_i mit t_i verbinden.
- 2. p_1, \ldots, p_{i-1} korrekt und p_i verbindet s_i mit t_j $\Longrightarrow i < j$, da $i \neq j$

Prozedur, die Weg p berechnet, so dass p einen Schnitt X induziert, der im Fall 1 saturiert ist, d.h. fcap(X) = und der im Fall 2 **übersaturiert** ist, d.h. fcap(X) < 0.

Prozedur für Schnitt X:

Rückwärts-LFS startet von Terminal t_i bzw. t_j wo Weg p_i endet in Graph, der durch p_1, \ldots, p_i induziert wird.

4.9 Lemma

Sei A Menge der Kanten $\{u, v\}$ aus G mit u auf p und v rechts von p. Jede Kante $\{u, v\} \in A$ gehört zu G' und genau dann in Orientierung (u, v), wenn sie durch eine der p_1, \ldots, p_i besetzt ist.

Beweis Wenn $\{u,v\}$ durch ein p_i besetzt, dann wegen Konstruktion von p in Orientierung (u,v).

Fall 1 Es existiere (u, v) mit (u, v) nicht durch p_1, \ldots, p_i besetzt. Mein Bild zeigt einen Widerspruch zu RFS Ur argument is invalid.

Fall 2 Es existiert $\{u,v\} \in A, (u,v), (v,u) \notin G'$. Bild. ICh bin müde as fuck... \square

4.10 Lemma

Sei X Schnitt induziert durch p (Knoten rechts von p). Falls p_i $s_i - t_i$ -Weg, so ist fcap(X) = 0, sonst fcap(X) < 0.

Beweis Kanten $\{u, v\}$ auf p, v rechts von p entweder zu Weg p_j gehört mit $1 \leq j < i, s_j \in V \setminus X$ und $t_j \in X$ oder zu Weg q_j aus erster Phase mit $s'_j \in X$ und $t'_j \in V \setminus X$. Wenn p_i korrekter $s_i - t_i$ -Weg, so gilt

$$cap(X) = \# \{ \{s_j, t_j\} \mid s_j \notin X, t_j \in X, 1 \le j \le l \} + \# \{ \{s'_j, t'_j\} \mid s'_j \in X, t'_j \notin X, \{s'_i, t'_j\} \notin D \}$$
$$= dens(X)$$

Wenn p_i nicht korrekt, d.h. s_i mit t_j , i < j, verbindet, so ist cap(X) < dens(X), da $s_i \notin X$, $t_i \in X$.