Быстродействие и аппаратурные затраты ВУ

- 1 Расчет быстродействия.
 - 1.1 Время выполнения операций и номинальное быстродействие.
 - 1.2 Время выполнения микрокоманды и тактовая частота.
 - 1.3 Время выполнения микрооперации и задержка сигнала на логическом элементе.
- 2 Оценка аппаратурных затрат.

- Знать: методы расчета быстродействия и оценки аппаратурных затрат ВУ.
- Уметь: рассчитать номинальное быстродействие ВУ; максимальное, минимальное и средневзвешенное время выполнения микропрограмм; время выполнения микрокоманды и микрооперации, время задержки сигнала в заданной схеме, тактовую частоту работы ВУ. Сравнить два варианта ВУ по аппаратурным затратам.
- Помнить: о влиянии на результат оценки аппаратурных затрат выбранного критерия оценки.
- Литература: [1,14].

1 Расчет быстродействия

- 1.1 Время выполнения операций и номинальное быстродействие
- Время выполнения операций зависит от типа операции (короткая типа суммирования или длинная типа умножения); от формата данных (с фиксированной или плавающей запятой).
- Средневзвешенное время (T_C) и номинальное быстродействие (V_H) зависят от вероятностей появления различных операций и определяются следующим образом:

$$T_{C} = \sum_{i=1}^{I} T_{i} \times P_{i}, \qquad V_{H} = \frac{1}{T_{C}},$$

где T_C – время, а P_i – вероятность выполнения операции і-го типа; I – число типов операций.

Зависимость номинального быстродействия от класса решаемых задач

Операция	Время	Вероятность появления	
	выполнения	Задача 1	Задача 2
О1 (к)	1*10-6	0,1	0,9
О2 (д)	10*10-6	0,9	0,1
Время (ТС), мкс		9,1	1,9
Быстродействие (V _H)		$110*10^3$	526*10 ³

• Возможно ли построение ВУ, номинальное быстродействие которого не зависело бы от класса решаемых задач?

Расчет времени выполнения операций по граф-схемам микропрограмм

- Время выполнения операции можно определить по формуле: $T = M \times t$,
- где \mathbf{M} число выполняемых микрокоманд, а \mathbf{t} время выполнения одной микрокоманды.
- В общем случае говорят о минимальном, максимальном и среднем времени выполнения операции.
- Среднее число выполняемых микрокоманд определяется с учётом вероятностей ветвлений в микропрограмме.
- При расчёте среднего числа выполняемых микрокоманд в микропрограмме могут встретиться линейные, разветвлённые и циклические участки.

Линейный участок микропрограммы

Для линейного участка микропрограммы среднее число выполняемых микрокоманд m_1 определяется простым подсчётом микрокоманд: m_1 =L.

Разветвлённый участок микропрограммы

В общем случае

$$m_2 = \sum_{k=1}^K L_k \cdot Q_k,$$

где K — число выделенных участков A_k ;

 L_k — среднее число выполняемых микрокоманд, характеризующих участок A_k ;

 Q_k — вероятность выполнения участка.

$$m_{2} = q_{1} \cdot L_{2} + (1 - q_{1}) \cdot (L_{1} + q_{2} \cdot L_{4} + (1 - q_{2}) \cdot L_{3}),$$

$$m_{2} = L_{1} \cdot (1 - q_{1}) + L_{2} \cdot q_{1} + L_{3} \cdot (1 - q_{1}) \cdot (1 - q_{2}) + L_{4} \cdot (1 - q_{1}) \cdot q_{2}.$$

Циклический участок микропрограммы

Для циклического участка микропрограммы среднее число выполняемых микрокоманд вычисляется следующим образом:

$$m_3 = \frac{L_1 + L_2 \cdot q}{1 - q},$$

где q — вероятность повторения цикла.

Если рассматривается цикл с известным числом \boldsymbol{R} выполнения основной части, то

$$m_3 = R \cdot L_1 + (R-1) \cdot L_2.$$

Пример расчета времени выполнения операции

Рассчитать минимальное, максимальное и средневзвешенное время выполнения микропрограммы.

Время выполнения микрокоманды t=0,1 мкс.

 $T_{min} = 0.4 \text{ MKC},$ $T_{max} = 2.4 \text{ MKC},$ $T = t^*(1 +$ +0,6*(1+2*10+ +0,7*1+0,3*1)+ +0,4*(2+0,2*2+ +0.8*1))==1,5 MKC.

1.2 Время выполнения микрокоманды и тактовая частота

- Как правило, время выполнения всех микрокоманд одинаково и занимает один тактовый период работы ВУ.
- Длительность тактового периода t складывается из времени задержки сигналов в ОУ t_{OY} и времени задержки сигналов в УУ t_{YY} : $t = t_{OY} + t_{YY}$.
- Тактовая частота работы ВУ: F=1/t.
- Время задержки сигнала в ОУ можно представить следующим образом: $t_{OV} = \max\{t_1, t_2, ..., t_s, ..., t_S\}$, где t_s время выполнения s-й микрооперации (МО), S число МО. Время задержки сигнала в УУ определяется аналогично.

1.3 Время выполнения микрооперации и задержка сигнала на логическом элементе

Если время задержки сигнала на всех логических элементах устройства одинаково, то время выполнения МО можно оценить по формуле:

$$t_{MO} = \tau * (l_{KC} + l_T),$$

где τ — время задержки сигнала на логическом элементе;

 l_{KC} — число логических элементов, через которые проходит сигнал в комбинационной части устройства при выполнении микрооперации;

 l_T — число логических элементов, через которые проходит сигнал при фиксации результата выполнения микрооперации в триггерах (обычно $l_T = 2, ..., 4$).

Определение задержки сигнала в комбинационной схеме

$$t = max\{t_1, t_2, t_3\}$$

Определение задержки сигнала в комбинационной схеме (логические уровни)

Определение задержки сигнала на логическом элементе

$$\begin{array}{c|c} X & \overline{X} \\ \overline{U_{Bx}} & \overline{U_{Bhix}} \end{array} \qquad \tau = \frac{\tau^- + \tau^+}{2}$$

2 Оценка аппаратурных затрат

На различных этапах проектирования используют разные критерии для оценки аппаратурных затрат.

1) Структурный этап проектирования.

Разрядность и число регистров.

Длина микропрограммы.

Объем памяти микропрограмм.

2) Логических этап.

Число состояний автомата.

Число логических элементов в схеме.

Суммарное число входов у логических элементов в схеме.

Число символов в логической формуле, описывающей работу схемы.

Иногда на *погическом этапе* проектирования применяется метод единичного элемента.

В этом методе аппаратурные затраты простейшего элемента (инвертора) принимаются за единицу, а затраты на остальные элементы выражаются через затраты на единичный элемент.

3) Технический и конструкторскотехнологический этапы

Площадь кристалла.

Число интегральных микросхем.

Число посадочных мест на печатной плате и др.