

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-298397

(43)Date of publication of application: 10.11.1998

(51)Int.CI.

C08L 51/04 C08K 5/00 C08K 5/13 C08K 5/34 /(C08L 51/04 C08L 57:02 C08L 53:02

(21)Application number: 09-144444

. 00 17777

(71)Applicant: KYODO YAKUHIN KK

(22)Date of filing:

25.04.1997

: YAGO SHINICHI

(72)Inventor:

SAKOTA SEIKI

(54) STYRENE -BASED RESIN COMPOSITION

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain the subject composition capable of exhibiting excellent weather resistance, extrusion appearance in high temperature molding and printing characteristics by combining and compounding a styrene-based resin mixture having specific compositions with two kinds of stabilizers.

SOLUTION: This composition is obtained by including (D) 2-t-butyl-6-(3-t- butyl-2-hydroxy-5-methylbenzyl)-4-methylphenyl acrylate and/or 2-[1-(2- hydroxy-3,5-di-t-pentylphenyl)ethyl]-4,6-di-t-pentylphenyl acrylate and (E) an ultraviolet light absorbent and/or a hindered amine-based light stabilizer into a styrene-based resin mixture comprising (A) 97-70 wt.% rubber-modified styrene- based resin containing 3-15 wt.% rubber-like elastomer as dispersed particles having 0.2-0.9 μ m disperse particle diameter, (B) 2-15 wt.% petroleum resin and (C) 1-15 wt.% vinyl aromatic hydrocarbon-conjugated diene block copolymer.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japanese Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-298397

(43)公開日 平成10年(1998)11月10日

(51) Int.Cl. ⁶	識別記号	•	FΙ						
C08L 51/	'04		C08L	51/04					
C08K 5/	00		C08K	5/00					
5/	13			5/13					
	34			5/34					
	/04			0,01					
		審査請求	未請求 請求	項の数1	書面	(全 7	頁)	最終頁	こ続く
(21)出願番号	特願平9-144444		(71) 出願人	人 000162 共同薬		会社			
(22)出願日	平成9年(1997)4月25日					 区経堂 5	-38	- 5	
	1,720 (100), 1,110		(72)発明者					_	
			(15)			区経費 5	一日3	8番5号	出間
				薬品株	-		, 1 110	ощ о . ј	∠ 13
			(72)発明者			73			
			(14) 光明省	· ·				015 F E	.t.l. ===
							1 1 1 3	8番5号	共问
				薬品株	式会社	Ŋ			

(54) 【発明の名称】 スチレン系樹脂組成物

(57) 【要約】

【課題】 種々の安定性に優れたスチレン系樹脂組成物、特に包装材の用途に適したスチレン系樹脂フィルムを提供するとともに、耐候性、高温成形時の押出外観、印刷特性に優れたスチレン系樹脂組成物を提供する。

【解決手段】 ゴム状弾性体を分散粒子として含有するゴム変成スチレン系樹脂(1)と石油樹脂(2)とビニル芳香族炭化水素-共役ジエンブロック共重合体(3)からなるスチレン系樹脂混合物に、(I)(i)2-t-ブチル-6-(3-t-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート及び/又は(ii)2-[1-(2-ヒドロキシ-3,5-ジーt-ペンチルフェニル)エチル]-4,6-ジーt-ペンチルフェニルアクリレート、ならびに(II)紫外線吸収剤及び/又はヒンダードアミン系光安定剤を含有してなることを特徴とするスチレン系樹脂組成物。

【特許請求の範囲】

【請求項1】 ゴム状弾性体を分散粒子として含有するゴム変成スチレン系樹脂に於いて(ア)連続相が(A) 芳香族ビニル単量体、(B) アクリル酸(メタクリル酸) エステル単量体からなり、(A)、(B) の割合が

- (A):30~65重量%
- (B):35~70重量%

(但し、(A) + (B) = 100重量%) であり、

(イ)分散相の分散粒子径が $0.2\sim0.9\mu$ mであり、ゴム状弾性体の含有量が $3\sim15$ 重量%であるゴム変成スチレン系樹脂(1)と芳香族成分が40%以上である石油樹脂(2)と少なくとも1個のビニル芳香族炭化水素重合体ブロックと少なくとも1個の共役ジエンを主体とする重合体ブロックを有し、ビニル芳香族炭化水素と共役ジエンとの重量比が $35:65\sim50:50$ であるブロック共重合体(3)からなるスチレン系樹脂組成物であって、ゴム変成スチレン系樹脂組成物(1)、石油樹脂(2)、ブロック共重合体(3)の割合が

- (1) 97~70重量%
- (2) 2~15重量%
- (3) 1~15重量%

からなるスチレン系樹脂混合物に、(I)(i) 2-t ープチルー6-(3-t-プチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート 及び/又は(i i) <math>2-[1-(2-ヒドロキシ-3,5-ジ-t-ペンチルフェニル)エチル]-4,6-ジ-t-ペンチルフェニルアクリレート、ならびに(II)紫外線吸収剤及び/又はヒンダードアミン系光安定剤を含有してなることを特徴とするスチレン系樹脂組成

【発明の詳細な説明】

[0001]

物。

【発明の属する技術分野】本発明は種々の安定性に優れたスチレン系樹脂組成物、特に包装材の用途に適したスチレン系樹脂フィルムに関する。さらに詳しく説明すると、耐候性、高温成形時の押出外観、印刷特性に優れたスチレン系樹脂組成物に関する。

[0002]

【従来の技術】包装用材料としては、硬質PVCが多用されている。しかし、PVC中に含有されている可塑剤に起因する衛生上、品質上(水中で白化してしまう)の問題点に加えて、塩素を多量に含んでいるため、廃棄、焼却時の公害上の問題があり、代替え材料が求められている。代替え材料として、ポリスチレンとスチレンーブタジエンブロック共重合体混合物が用いられているが、強度、透明性、価格等に問題があり、包装用材料としては非常に限られた用途にしか用いられていないのが現状である。さらに、ゴム変成スチレン系樹脂と、石油樹脂、ビニル芳香族炭化水素ー共役ジエンブロック共重合体との混合物を用いた包装用材料が提案されているが

(特開平8-109304)、耐候性の点が不十分で、 又、高温成形時における耐熱性不足からゲル状物質が発生し、成形品の外観、印刷性に悪影響を与えるという問題があり、市場要求を完全に満足するには至っていない。

[0003]

【発明が解決しようとする課題】本発明は、スチレン系 樹脂組成物の耐候性、高温成形時の押出外観、印刷特性 を改善することを目的とする。

[0004]

【課題を解決するための手段】本発明者は上記課題について種々検討した結果、ゴム状弾性体を分散粒子として含有するゴム変成スチレン系樹脂(1)と石油樹脂

(2) とビニル芳香族炭化水素 - 共役ジエンブロック共 重合体(3) とを特定割合で混合してなるスチレン系樹 脂混合物に、(I)と(II)を組み合わせることによ り、耐候性、高温成形時の押出外観、印刷特性に優れた スチレン系樹脂組成物が得られることを見出し、本発明 を完成するに至った。

【0005】すなわち本発明は、ゴム状弾性体を分散粒子として含有するゴム変成スチレン系樹脂に於いて

(ア)連続相が(A) 芳香族ビニル単量体、(B) アクリル酸(メタクリル酸) エステル単量体からなり、

- (A)、(B)の割合が
- (A):30~65重量%
- (B):35~70重量%

(但し、(A) + (B) = 100重量%) であり、

(イ)分散相の分散粒子径が $0.2\sim0.9\mu$ mであり、ゴム状弾性体の含有量が $3\sim15$ 重量%であるゴム変成スチレン系樹脂(1)と芳香族成分が40%以上である石油樹脂(2)と少なくとも1個のビニル芳香族炭化水素重合体ブロックと少なくとも1個の共役ジエンを主体とずる重合体ブロックを有し、ビニル芳香族炭化水素と共役ジエンとの重量比が $35:65\sim50:50$ であるブロック共重合体(3)からなるスチレン系樹脂組成物であって、ゴム変成スチレン系樹脂組成物(1)、石油樹脂(2)、ブロック共重合体(3)の割合が

- (1) 97~70重量%
- (2) 2~15重量%
- (3) 1~15重量%

からなるスチレン系樹脂混合物に、(I)(i) 2-t ープチルー6-(3-t-)チルー2-t ドロキシー 5-メチルベンジル) -4-メチルフェニルアクリレート及び/または(i i) 2-[1-(2-t) ドロキシー 3, 5-ジーt-ペンチルフェニル)エチル] -4, 6-ジーt-ペンチルフェニルアクリレート、ならびに(II)紫外線吸収剤及び/又はセンダードアミン系光安定剤を含有せしめたスチレン系樹脂組成物によって達成されることがわかった。

【0006】かかる本発明によれば、前記(I)と(I

I)の安定剤の組合わせにより、スチレン系樹脂組成物、及びこのスチレン系樹脂組成物を用いて成形したフィルム、収縮性フィルムにおいて、耐候性、高温成形時の押出外観が良好で、印刷特性に優れているという利点を有している。

[0007]

明する。本発明で用いるスチレン系樹脂混合物は、次の方法によって製造される。連続相を形成する構成単位(B)の量は35~70重量%の範囲である。70重量%を超える場合は、流動性が低下し、フィルム等の成形

【発明の実施の形態】以下本発明について更に詳細に説

%を超える場合は、流動性が低下し、フィルム等の成形品に過大な配向がかかるため製品強度を低下させる。また流動性が低いことによる生産性の著しい低下を招き実用的ではない。35重量%未満の場合は透明性を維持するために、共役ジエンの少ないゴム状弾性体を用いる必要があるが、その結果、強度の低下を招き好ましくない。

【0008】連続相の屈折率は特に制約されるものではないが、分散相を形成するゴム状弾性体の屈折率との差が0.01以内に制御することが透明性の観点から好ましい。本発明のゴム変性スチレン系樹脂の連続相の重合度は特に限定されるものではないが、25℃における10重量%トルエン溶液の粘度で20センチポイズ~70センチポイズの領域で設定することが出来る。

【0009】構成単位(A)としては、スチレン、αーメチルスチレン等が挙げられるが、中でもスチレンが好適に用いることができる。構成単位(B)としては、アクリル酸(メタクリル酸)メチル、アクリル酸(メタクリル酸)ブチル、アクリル酸(メタクリル酸)イソブチル等が挙げられるが、中でもメタクリル酸メチル、アクリル酸ローブチルが好適に用いられる。特に混合使用が好ましい。アクリル酸ローブチルの量を制御してスチレン系樹脂組成物の耐熱性を制御することができる。

【0010】分散相としては、常温でゴム的性質を示すものであればよく、例えば、ポリプタジエン類、スチレンープタジエン共重合体類、スチレンーブタジエンプロック共重合体類、イソプレン重合体類が用いられる。より好ましいものとしては、スチレンーブタジエン共重合体類、スチレンーブタジエンブロック共重合体類である。特に、スチレン含有量が10~50重量%のものが好ましい。又、ゴム状弾性体の分子量や分岐等は限定されるものではない。

【0011】分散相の粒子径は $0.2\sim0.9\mu$ mの範囲であることが必要である。分散粒子径が 0.2μ m未満のときは強度補強効果が発現しない。あるいは、強度補強効果が非常に小さい。一方、分散粒子径が 0.9μ mを越える場合は、強度補強効果は大きいが透明性が悪くなる。特に、シート、フィルムを二次加工した時、透明性が低下し曇りを発生するので好ましくない。本発明

で言う粒子径は特に断らない限り数平均粒子径を意味す る。

【0012】本発明で用いられるゴム変性スチレン系樹脂中のゴム状弾性体の量は3~15重量%である。ゴム状弾性体の量が3重量%未満の時は強度補強効果が発現しない。又、15重量%を越える場合は、透明性が低下、特に二次加工後の曇りが大きくなり好ましくない。【0013】本発明で用いる石油樹脂は、石油類のスチームクラッキングにより副生する分解留分のうちC5留分、C9留分を原料にして、フリーデルクラフト型触媒によりカチオン重合して得られる樹脂である。石油樹脂中のC9留分の割合が40重量%未満の場合はスチレン系樹脂組成物の透明性が低下し、かつ、ゴム変性スチレン系樹脂、ブロック共重合体との相溶性が低下し、その結果として強度低下、シート、フィルムの相剥離現象を招くことになり好ましくない。

【0014】石油樹脂の重合度は特に制約はないが、重 合度1000以下好ましくは500以下、更に好ましく は200以下である。重合度が高くなるとゴム変性スチ レン系樹脂、ブロック共重合体との相溶性が低下し、可 塑効果も低下し、又、シート、フィルムの透明性が悪化 する。石油樹脂としては、トーネックス株式会社の「エ スコレッツECR231C」等を用いることができる。 【0015】石油樹脂の含有量は2~15重量%であ る。石油樹脂の含有量が2重量%未満の時は、ブロック 共重合体の分散状態が悪くなり、その結果として透明性 が低下する。石油樹脂の含有量が15重量%を越える と、樹脂の剛性が低下するので好ましくない。又、透明 性向上効果、強度補強効果も飽和し、コストアップを招 くので好ましくない。石油樹脂の添加量はゴム変性スチ レン系樹脂組成物中のブロック共重合体の量の30重量 %~100重量%が好ましい範囲である。

【0016】本発明で用いられるゴム変性スチレン系樹脂を得るには、ゴム補強ポリスチレン(HIPS樹脂)の製造で多用されている方法を用いることができる。即ち、ゴム状弾性体を芳香族ビニル単量体及び/又はアクリル酸エステル(メタクリル酸エステル)単量体そして/又は重合溶媒及び/又は重合溶媒及び/又は重合開始剤及び/又は重合度調整剤からなる原料溶液に溶解し、このゴム状弾性体が溶解した原料溶液を撹拌機付反応機に供給し重合を行う。分散粒子の粒子径の制御は一般的に行われている方法、撹拌羽根の撹拌数を変化させることにより制御される。又、透明性を維持する方法として、一般的な方法、例えば、重合途中に必要に応じて単量体を添加するか、あるいは、連続的に追添加する等の方法が用いられる。

【0017】ゴム状弾性体の含有量は、目標とする含有量になるように原材料、重合率を調整することにより達成することができる。また、高濃度のゴム状弾性体を含

むゴム変性スチレン系樹脂を上記方法で製造し、別に製造したゴム状弾性体を含まない、あるいは、ゴム状弾性体含有量の少ないスチレン系重合体と混合することによっても達成できる。

【0018】この時、重合溶媒、例えばエチルベンゼン、トルエン、キシレン等を用いることも可能である。 又、ポリスチレンの重合に常用されている有機過酸化物を用いても、又、途中添加してもよい。重合方法はポリスチレンの製法で常用されている塊状重合法や溶液重合法が用いられる。又、回分式重合法、連続式重合法いずれの方法も用いることができる。

【0019】反応機を出た重合溶液は回収系に導かれ、 未反応単量体、重合溶媒等を除去し、ペレット化され る。

【0020】本発明で用いられる石油樹脂はゴム状弾性体を溶解した原料溶液に溶解するか、又は重合途中に加熱溶融状態で、もしくは溶媒に溶解して添加するか、又は回収系を出た後、加熱溶融状態で添加するか、又はゴム変性スチレン系樹脂と石油樹脂をブレンドし、押出機で溶融混練する方法で添加することができる。

【0021】本発明で用いられるプロック共重合体

(3) としては、少なくとも1個のビニル芳香族炭化水素重合体プロックと少なくとも1個の共役ジエンを主体とする重合体プロックとを有するプロック共重合体である。ここで、共役ジエンを主体とする重合体プロックとは、共役ジエンの含有量が90重量%以上の重合体プロックである。共役ジエンを主体とする重合体プロック中に共重合されているビニル芳香族炭化水素は重合体中に均一に分布していても、又テーパー状に分布していてもよい。

【0022】ブロック共重合体中のビニル芳香族炭化水素と共役ジエンとの重量比は35:65~50:50である。ビニル芳香族炭化水素の含有量が35重量%未満の場合はゴム変性スチレン系樹脂組成物と混合した時、透明性が著しく低下する。又、50重量%を越える場合はゴム変性スチレン系樹脂組成物と混合したシートの強度、特に耐折強度が低く、透明性も低下するので好ましくない。

【0023】本発明で使用するブロック共重合体は下記 一般構造式で示される線状ブロック共重合体

- \bigcirc (A-B) n
- \bigcirc A (B-A) n
- $(3)B (A-B)_n$

(Aはビニル芳香族炭化水素重合体ブロックであり、B は共役ジエンを主体とする重合体ブロックである。AブロックとBブロックの境界は必ずしも明瞭に区別される必要はない。)

【0024】あるいは、下記一般式で示されるラジアルプロック共重合体である。

 $\{ (B-A)_n \}_{m+2} X$

- **6** $\{ (A-B)_n \}_{m+2} X$
- **6** { $(B-A)_{n}B$ } $_{m+2}X$

(A、Bは前記と同じであり、Xは例えば四塩化ケイ素、四塩化スズ等のカップリング剤の残基又は多く官能有機リチウム化合物等の開始剤残基を示す。) 一般式~におけるnは1ないし4であり、mは1ないし3である。

【0025】本発明で使用するブロック共重合体に於いて、ビニル芳香族炭化水素重合体ブロックの数平均分子量は10000~70000、好ましくは15000~6000である。共役ジエンを主体とする重合体ブロックの数平均分子量は特に制限はないが500~200000)好ましくは1000~100000である。

【0026】本発明で使用するブロック共重合体は基本的には従来公知の方法で製造でき、例えば、特公昭36-19286号公報、特公昭43-14979号公報、特公昭48-2423号公報、特公昭48-4106号公報、特公昭49-36957号公報等に記載された方法が挙げられる。

【0027】ビニル芳香族炭化水素としては、スチレン、 α -メチルスチレン等が使用できる。これら単独又は2種類以上混合して使用してもよい。特に一般的なものとしては、1対の共役二重結合を有するジオレフィンであり、例えば、1, 3-ブタジエン; 2-メチル-1, 3-ブタジエン (イソプレン); 2, 3-ジメチル-1, 3-ブタジエン; 1, 3-ヘキサジエン等が使用できる。これら単独又は2種類以上混合して使用してもよい。特に一般的なものとしては、1, 3-ブタジエン、イソプレンが挙げられる。

【0028】本発明で用いられるゴム変性スチレン系樹脂混合物はゴム変性スチレン系樹脂(1)と石油樹脂

(2) とブロック共重合体 (3) を混合することにより得られる。ゴム変性スチレン系樹脂組成物中のブロック共重合体の量は $1\sim15$ 重量%である。ブロック共重合体の量が1重量%未満の場合は強度補強効果、特に収縮後の強度が出ず好ましくない。15重量%を越えると剛性が低下する。

【0029】本発明に於いて、(I)のフェノール系化合物は、上記スチレン系樹脂混合物 100 重量部に対し $0.1\sim1$ 重量部の範囲で用いるのが好ましく、その配合量が0.1 重量部未満ではゲル状物質の発生防止効果が充分でなく、また 1 重量部を超えるとブリードの原因になる。

【0030】本発明に於いて、(II)の化合物のうち 紫外線吸収剤としては、具体的には次のような化合物が 例示される。2,4-ジヒドロキシベンゾフェノン、2 ーヒドロキシー4-メトキシベンゾフェノン、2ーヒド ロキシー4-メトキシベンゾフェノン-5-スルフォニ ックアシッドトリハイドライト、2-ヒドロキシー4オクチルオキシベンゾフェノン、2-ヒドロキシー4-ドデシルオキシベンゾフェノン、2-ヒドロキシー4-ベンジルオキシベンゾフェノン、2,2',4,4'-テトラヒドロキシベンゾフェノン、2,2'ージヒドロ キシー4, 4'ージメトキシベンゾフェノン、ビス(5 ーベンゾイルー4ーヒドロキシー2ーメトキシフェニ ル) メタン、2-(2-ヒドロキシ-5-メチルフェニ ル) ベンゾトリアゾール、2-(3-t-ブチル-5-メチルー2-ヒドロキシフェニル) ベンゾトリアゾー ル、2-(3, 5-ジ-t-プチル-2-ヒドロキシフェニル) -5-クロロベンゾトリアゾール、2-(2 ーヒドロキシー3-t-ブチル-5-メチルフェニル) -5-クロロベンゾトリアゾール、2-(3,5-ジー t-アミル-2-ヒドロキシフェニル) ベンゾトリアゾ ール、2-(2-ヒドロキシ-5-t-オクチルフェニ ル) ベンゾトリアゾール、2-(3-t-ブチル-2-ヒドロキシフェニル) ベンゾトリアゾール、2-(2-ヒドロキシー3-ラウリル-5-メチル) ベンゾトリア ゾール、 $2 - [2 - ヒドロキシ - 3, 5 - ビス (\alpha,$ α' -ジメチルベンジル) フェニル] -2H-ベンゾト リアゾール、メチル-3-[3-t-ブチル-5-(2H-ベンゾトリアゾール-2-イル)-4-ヒドロキシ フェニル] プロピオネートーポリエチレングリコール縮 合物、2-[2-ヒドロキシ-3-(3, 4, 5, 6-テトラーヒドロフタルイミドメチル) -5-メチルフェ ニル] ベンゾトリアゾール、2-[4-[(2-ヒドロ キシー3ージデシルオキシプロピル)ーオキシ]ー2ー ヒドロキシフェニル] -4, 6-ビス(2, 4-ジメチ μ フェニル) -1, 3, 5 - トリアジン、2 - [4 -〔(2-ヒドロキシ-3-トリデシルオキシプロピル) ーオキシ〕 - 2 - ヒドロキシフェニル〕 - 4, 6 - ビス (2, 4-ジメチルフェニル) -1, 3, 5-トリアジ ン、フェニルサリシレート、4-t-ブチルフェニルサ リシレート、2', 4'-ジーt-ブチルフェニル3, 5-ジーt-ブチルー4-ヒドロキシベンゾエート、エ チル2-シアノ-3,3-ジフェニルアクリレート、 2'-エチルヘキシル2-シアノ-3, 3-ジフェニル アクリレート、エタンジアミド-N-(2-エトキシフ ェニル) - N' - (2-エチルフェニル) - (オキザリ ックアニリド)、エタンジアミド-N-(2-エトキシ フェニル) - N' - (4-イソドデシルフェニル) -(オキザリックアニリド)、2-[4,6-ビス(2, 4-ジメチルフェニル)-1,3,5-トリアジン-2 -イル] -5- (オクチルオキシ) フェノール。これら 紫外線吸収剤の中でも、特に2-(2-ヒドロキシー3 - t - ブチル - 5 - メチルフェニル) - 5 - クロロベン ゾトリアゾールが好ましい。

【0031】またヒンダードアミン系光安定剤としては、具体的には次のような化合物が例示される。ビス(2,2,6,6-テトラメチル-4-ピペリジル)セ

バケート、ビス(1, 2, 2, 6, 6-ペンタメチルー 4-ピペリジニル)ヤバケート、2-(3,5-ジ-t ープチルー4ーヒドロキシベンジル) -2-n-プチル マロン酸ビス(1,2,2,6,6-ペンタメチル-4 -ピペリジル)、ポリ[[6-(1, 1, 3, 3-テト ラメチルブチル) アミノー1, 3, 5-トリアジンー 2, 4-ジイル) [(2, 2, 6, 6-テトラメチルー 4-ピペリジル) イミノ) ヘキサメチレン〔(2, 2, 6、6ーテトラメチルー4ーピペリジル)イミノ〕〕、 ポリ [〔6ーモルフォリノーsートリアジンー2, 4ー ジイル〕 [(2, 2, 6, 6-テトラメチル-4-ピペ リジル) イミノ] ヘキサメチレン [(2, 2, 6, 6-テトラメチルー4ーピペリジル) イミノ]]、コハク酸 ジメチル・1-(2-ヒドロキシエチル)-4-ヒドロ キシー2, 2, 6, 6ーテトラメチルピペリジン重縮合 物、N、N'ービス(3-アミノプロピル)エチレンジ アミン・2, 4ービス[NープチルーNー(1, 2, 2, 6, 6-ペンタメチル-4-ピペリジル) アミノ] -6-クロロ-1, 3, 5-トリアジン縮合物、テトラ キス(1, 2, 2, 6, 6-ペンタメチルー4ーピペリ ジル)-1,2,3,4-ブタンテトラカルボキシレー ト、テトラキス(2,2,6,6-テトラメチルー4-ピペリジル) -1, 2, 3, 4-ブタンテトラカルボキ シレート、1,2,3,4-プタンテトラカルボン酸と 1. 2. 2. 6. 6 - ペンタメチル-4-ピペリジノー ル及び1-トリデカノールとの混合エステル化物、1, 2, 3, 4-ブタンテトラカルボン酸と2, 2, 6, 6 ーテトラメチルー4ーピペリジノール及び1ートリデカ ノールとの混合エステル化物、1,2,3,4-プタン テトラカルボン酸と1,2,2,6,6-ペンタメチル -4-ピペリジノール及び3,9-ビス(2-ビドロキ シー1、1-ジメチルエチル)-2,4,8,10-テ トラオキサスピロ[5, 5]ウンデカンとの混合エステ ル化物、1,2,3,4-プタンテトラカルボン酸と 2. 2. 6. 6 - テトラメチル-4-ピペリジノール及 び3,9-ビス(2-ヒドロキシ-1,1-ジメチルエ チル) -2, 4, 8, 10 - テトラオキサスピロ [5, 5] ウンデカンとの混合エステル化物、β-アラニン, N-(2, 2, 6, 6-r) + 7(1, 1) (2, 1) (3, 1) (3, 1) (3, 1) (3, 1)2、6、6-テトラメチル-4-ピペリジニル) ピロリ ジン-2.5-ジオン、N-メチル-3-ドデシル-1 - (2, 2, 6, 6-テトラメチル-4-ピペリジニ ル) ピロリジン-2, 5-ジオン、N-アセチル-3-ドデシル-1-(2, 2, 6, 6-テトラメチル-4-ピペリジニル) ピロリジン-2, 5-ジオン、1-[2 - [3-(3,5-ジ-t-ブチル-4-ヒドロキシフ ェニル)プロピオニルオキシ)エチル]-4-〔3-(3, 5-ジーtープチルー4-ヒドロキシフェニル)

プロピオニルオキシ〕-2,2,6,6-テトラメチル

ピペリジン、4-ベンゾイルオキシ-2, 2, 6, 6-テトラメチルピペリジン、8-アセチル-3-ドデシル-7, 7, 9, 9-テトラメチル-1, 3, 8-トリアザスピロ[4, 5] デカン-2, <math>4-ジオン、ビスー(1-オクチルオキシ-2, 2, 6, 6-テトラメチル-4-ピペリジニル) セバケート。

【0032】これら紫外線吸収剤及び/又はヒンダードアミン系光安定剤の添加量は、上記スチレン系樹脂混合物100重量部に対し、それぞれ0.05~1重量部の範囲で用いるのが好ましい。配合量が0.05重量部未満では、耐候性改良の効果が充分でなく、また1重量部を超えるとブリードなどの現象が生じる。

【0033】本発明では、必要に応じてさらに他の酸化防止剤、滑剤、帯電防止剤、核剤、難燃剤、顔料又は染料、炭酸カルシウム、硫酸カルシウム、硫酸バリウム、水酸化マグネシウム、マイカ、タルク、クレー等を配合してもよい。これら添加剤の具体例を挙げると次のようなものがある。

【0034】酸化防止剤としては例えば、2,6-ジー tープチルー4ーメチルフェノール、2,4ーピスー (n-x)ン、3,5-ジーt-ブチルー4-ヒドロキシーベンジ ルフォスフォネートージエチルエステル、n-オクタデ シルー3-(3,5-ジーt-ブチルー4-ヒドロキシ フェニル)プロピオネート、2,4-ビスー[(オクチ ルチオ) メチル] - 0 - クレゾール、イソオクチル-3 -(3, 5-9-t-7)ル) プロピオネート、3, 9-ビス[2-[3-(3t ープチルー4ーヒドロキシー5ーメチルフェニル) ー プロピオニルオキシ〕-1,1-ジメチルエチル]-2, 4, 8, 10-テトラオキサスピロ〔5, 5〕ウン デカン、2、2'-メチレンビス(4-メチル-6-t ープチルフェノール)、4,4'ープチリデンビス(3 オビス (3-メチル-6-t-ブチルフェノール)、ト リエチレングリコールービス [3-(3-t-ブチルー 5-メチル-4-ヒドロキシフェニル) プロピオネー ト]、1 6-ヘキサンジオールービス[3-(3,5 ージーtーブチルー4ーヒドロキシフェニル) プロピオ [3-(3, 2-5)]5-ジーt-ブチルー4-ヒドロキシフェニル) プロピ オネート]、N, N'-ヘキサメチレンピス(3, 5-ジー t ープチルー4ーヒドロキシーヒドロシンナマミ ド)、ビス(3, 5 - ジー t - ブチル - 4 - ヒドロキシ ベンジルホスホン酸エチル) カルシウム、N, N'-ビ ス[3-(3,5-ジ-t-プチル-4-ヒドロキシフ]ェニル) プロピオニル] ヒドラジン、1,3,5-トリ メチルー2, 4, 6-トリス(3, 5-ジーtーブチル -4-ヒドロキシベンジル)ベンゼン、トリスー(3.

5-ジーt-ブチル-4-ヒドロキシベンジル) -イソ シアヌレイト、1, 1, 3-トリス(2-メチルー4-ヒドロキシ-5-t-プチルフェニル) プタン、1, 3, 5-トリス(4-t-プチル-3-ヒドロキシー 2, 6 - ジメチルベンジル) - 1, 3, 5 - トリアジン-2, 4, 6-(1H, 3H, 5H)-トリオン、テト ラキス〔メチレン-3-(3,5-ジ-t-ブチル-4 ーヒドロキシフェニル) プロピオネート] メタン、トリ ス(2, 4-ジーtープチルフェニル)フォスファイ ト、テトラキス(2, 4-ジ-t-ブチルフェニル) 4. 4'ージフェニレンージーフォスフォナイト、ジ (2, 4-ジーt-ブチルフェニル)-ペンタエリスリ トールージーフォスファイト、ジ(2,6-ジーt-プ チルー4-メチルフェニル) -ペンタエリスリトールー ジーフォスファイト、2, 2'ーメチレンビス(4, 6 ージーtーブチルフェニル)ーイソオクチルフォスファ イト、ビス[ビス(2, 4-ジ-t-ブチルー5-メチ ルフェノキシ)ホスフィノ] ビフェニル、2, 2', 2' ' ーニトリロトリエチルートリス[3, 3', 5, 5'ーテトラーtーブチルー1, 1'ーピフェニルー 2. 2'ージイルl フォスファイト、5. 7ージーtー プチルー3-(3, 4-ジメチルフェニル)-3H-ベ ンゾフラン-2-オンなどが挙げられる。

【0035】滑剤としては例えば、高級脂肪酸、オキシ脂肪酸、高級脂肪酸アミド、アルキレンビス脂肪酸アミド、高級脂肪酸エステルなどが挙げられる。

【0036】本発明のスチレン系樹脂組成物は、スチレン系樹脂混合物に、(I)と(II)の化合物を組合わせて添加されるが、これら(I)と(II)は、一緒に添加されてもよく、また別々に添加されてもよい。添加時期は、スチレン系樹脂混合物の製造、及び成形のいかなる時期であってもよい。

【0037】本発明にかかわるフィルム、収縮性フィルムを作製するには、前述のスチレン系樹脂組成物を溶融押出して、Tダイ、サーキュラーダイ等で連続的に押出す方法を用いればよい。

[0038]

【実施例】以下実施例を掲げて本発明を詳述するが本発明はこれらに限定されるものではない。なお実施例中、部とあるのは、特にことわらない限り重量部を示す。

【0039】ゴム変成スチレン系樹脂

撹拌機を備えた反応機2基を直列連結し、その後に二段ベント付き押出機を配置した重合配置を用いてゴム変性スチレン系樹脂を製造する。スチレン47.5部、プチルアクリレート10.0部、メチルメタクリレート33.2部、ゴム状弾性体としてB-Sタイプ(B:プタジエンブロック、S:スチレンブロック)でスチレン含有量が38重量%であるゴム状弾性体6.5部、エチルベンゼン2.8部、1,1ビス(t-ブチルパーオキシ)シクロヘキサン0.01部からなる原料溶液を反応

機に供給し、重合を行い、ゴム変性スチレン系樹脂を得た。

【0040】スチレン系樹脂混合物は、上記重合法により得られたゴム変成スチレン系樹脂、石油樹脂としてトーネックス株式会社のエスコレッツECR231C、ブロック共重合体として旭化成工業株式会社のタフプレンAを、それぞれ90:5:5の割合でペレットブレンドしたものを用いた。

【0041】実施例1~6

このスチレン系樹脂混合物 100 部に、表 1 に示した割合で化合物を配合し、この配合混合物を、30 mm押出機により 240 での押出温度でシート状に押出し、テンターで延伸温度 100 でにおいて横方向に 5 倍延伸し、厚さ 50 μ のフィルムを得た。

[0042]

【表1】

			実施例						比較例					
		No.	1	2	3	4	5	6	1 ·	2	3	4	5	
供試化合物(部)	フェノール系化合物	AO-1	0.5	0.5	!			0.3	0. 5					
		A0-2			0.5	0.5	0.5	0.2		0. 5				
	紫外線吸収剤	UV-1	0. 2		0. 2		0. 2	0. 2			0.2			
	光安定剂	HALS-1		0. 1		0. 1	0. 1					0. 1		
試験結果	押出外観		良好	良好	良好	良好	良好	良 好	良好	良好	不良	不良	不良	
	耐候性(時間)		85	80	.90	85	110	90	18	20	60	60	15	

【0043】ここでは、フェノール系化合物、紫外線吸収剤およびヒンダードアミン系光安定剤として、次のものを用いた。

【0044】AO-1:2-t-ブチル-6-(3-t-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート

 $AO-2:2-[1-(2-t)^2-3, 5-i^2-t-2]$ t-2-2-1 t-2-2-1t-2-2-1

UV-1:2-(2-LFロキシ-3-t-プチル-5-メチルフェニル) -5-クロロベンゾトリアゾール HALS-1: ピス(2, 2, 6, 6-テトラメチル-4-ピペリジル) セバケート

【0045】得られたフィルムにつき、下記の物性を観察または測定した。その結果を表1に示した。

押出外観:押出後のフィルムについて目視でゲル状物の無い物を良好とし、ゲル状物が認められるものを不良と

した。このゲル状物のあるものは、延伸フィルムとした 後印刷する時、ゲル状物部分にインキがつかない。

耐候性:スガ試験機(株)製のサンシャインスーパーロングライフウエザーメーター(WEL-SUN-HCH. B型)を使用し、これにフィルムを収縮しないように両端を固定して、横方向(固定していない方向)の引張り伸びが0%になるまでの時間を測定した。

【0046】比較例1~5

実施例のスチレン系樹脂混合物に、表1に示した割合で 化合物を配合し、実施例と同様に実験を行った。その結 果を表1に示した。

[0047]

【発明の効果】以上説明したように、本発明によれば前記スチレン系樹脂混合物に、(I)と(II)を含有させることにより、耐候性、高温成形時の押出外観、印刷特性に優れたスチレン系樹脂組成物が得られる。

フロントページの続き

(51) Int. Cl. 6

識別記号

FΙ

C 0 8 L 57:02 53:02)