

R and Stata packages for one-sample Mendelian randomization analyses: OneSampleMR and ivonesamplemr

Tom Palmer tom.palmer@bristol.ac.uk 20th January 2022

Outline

Overview

OneSampleMR R package

ivonesamplemr Stata package

Common pitfalls

Discussion

Overview

- Motivation
 - · Code from appendix of Clarke et al. (2015) was in R scripts and Stata do-files
 - Over the summer some interesting in using it
- One-sample (a.k.a. individual level) Mendelian randomization (MR) data
 - i.e., not genotype summary level (a.k.a. two-sample) data!
- Aim Collection of useful functions and instrumental variable (IV) estimators (that aren't available elsewhere)

What's available elsewhere?

- Stata
 - · Official Stata IV commands begin ivsomething e.g., ivregress, ivprobit, ivpoisson, gmm
 - User-written: ivreg2, ivpois, and many more ...
- R
- sem
- AER/ivreg
- ivtools excellent but only allows a single instrument (Sjolander et al. 2020)
- nlmr (Staley et al. 2017)
- · and many more ...
- IEU software website https://mrcieu.github.io/
- Chris Moreno-Stokoe webpage https://www.morenostok.io/mrsoftwarelist.html

What's missing?

- Some binary outcome IV estimators
 - Structural Mean Models (SMMs); Additive SMM, Multiplicative SMM, Logistic SMM
 - Two-stage predictor substitution (TSPS)
 - Two-stage residual inclusion (TSRI)
 - Some nonlinear estimators, e.g., Burgess, Davies, et al. (2014)

Summary of observational and IV estimators

Outcome	Link fn	Observational estimator	IV estimator
Continuous Binary	Identity Identity	Linear regression Binomial regression with identity link	Linear IV: TSLS, Additive SMM
Binary/Cat. Binary/Cat.	Log (add.) Log (mult.)	Log-binomial/Poisson regresssion Gamma regression with log link	TSPS, TSRI Multiplicative SMM, TSPS, TSRI
Binary	Logit	Logistic regression	Logistic SMM, TSPS, TSRI

SMMs

• View potential outcomes on a/the IV Directed Acyclic Graph (DAG)

• using a Single World Intervention Graph (SWIG) (Swanson et al. 2018)

7

Features common to both OneSampleMR and ivonesamplemr packages

- Multiplicative SMM (Hernán et al. 2006)
- TSPS and TSRI estimators with a choice of second stage link functions (Terza et al. 2008)
- The functions use the generalised method of moments (GMM) estimation approach described in Clarke et al. (2015)

- Website https://remlapmot.github.io/OneSampleMR/
- Install from CRAN

install.packages("OneSampleMR")

For IV estimators syntax follows syntax of AER::ivreg()/ivreg::ivreg()

```
{\sf msmm}({\sf outcome} \ {\sf \sim} \ {\sf exposure} \ {\sf +} \ {\sf confndrs} \ | \ {\sf instruments} \ {\sf +} \ {\sf confndrs}, \ \dots)
```

- Sanderson et al. (2016) conditional F-statistic (already in Stata's user-written ivreg2 and lfe R package); fsw()
- Package helpfile

```
help(package = "OneSampleMR")
```


ivonesamplemr Stata package

- Repository https://github.com/remlapmot/ivonesamplemr
- Install with

```
net install github, from("https://haghish.github.io/github/")
github install remlapmot/ivonesamplemr
```

Command syntax follows ivregress syntax

```
ivmsmm outcome confounders (exposure = instruments), options
```

- All commands are named ivsomething
- Logistic SMM; ivlsmm

ivonesamplemr Stata package

- Moving (sliding/rolling) window of rank ordered first stage residuals (Burgess, Davies, et al. 2014); ivmw: prefix command
- Quantiles of first stage residuals (Burgess, Davies, et al. 2014); ivxtile: prefix command
- Package helpfile

help ivonesamplemr

ivonesamplemr Stata package

Common pitfalls

 Local minima – even though GMM reports model has converged (Burgess, Granell, et al. 2014)

Common pitfalls

- Extreme estimates, e.g., estimated causal odds ratio of 10
- Very large sample sizes hanging/non-convergence (write a Julia package??)

Discussion

- R and Stata packages for one-sample (a.k.a. individual level data) MR analyses
- Binary outcome IV estimators (SMMs/TSPS/TSRI)
- Some nonlinear estimators
- Example of use: Madley-Dowd et al. preprint
- Alternative: split sample and use two-sample methods (Burgess et al. 2016)
- OneSampleMR was included in the R Views November 2021 "Top 40" New CRAN Packages
- TODO what would be useful to add?
 - nlmr in Stata
 - Option in TSPS/TSRI fns to automate estimation in case-control studies (i.e., first stage fitted only in controls)

References

Burgess, S., N. M. Davies, and S. G. Thompson. 2014. "Instrumental variable analysis with a nonlinear exposure-outcome relationship." *Epidemiology* 25 (6): 877–885. https://doi.org/10.1097/EDE.000000000000161.

—. 2016. "Bias due to participant overlap in two-sample Mendelian randomization." *Genetic Epidemiology* 40 (7): 597–608. https://doi.org/10.1002/gepi.21998.

Burgess, S., R. Granell, T. M. Palmer, J. A. C. Sterne, and V. Didelez. 2014. "Lack of Identification in Semiparametric Instrumental Variable Models With Binary Outcomes." *American Journal of Epidemiology* 180 (1): 111–119. https://doi.org/10.1093/aje/kwu107.

Clarke, P. S., T. M. Palmer, and F. Windmeijer. 2015. "Estimating Structural Mean Models with Multiple Instrumental Variables Using the Generalised Method of Moments." Statistical Science 30 (1): 96–117. https://doi.org/10.1214/14-STS503.

Hernán, M. A., and J. M. Robins. 2006. "Instruments for causal inference: an Epidemiologist's dream?" Epidemiology 17 (4): 360–372. https://doi.org/10.1097/01.ede.0000222409.00878.37.

References

Sanderson, E., and F. Windmeijer. 2016. "A weak instrument F-test in linear IV models with multiple endogenous variables." *Journal of Econometrics* 190 (2): 212–221. https://doi.org/10.1016/j.jeconom.2015.06.004.

Sjolander, A., E. Dahlqwist, and T. Martinussen. 2020. ivtools: Instrumental Variables. R package version 2.3.0.

Staley, J., and S. Burgess. 2017. "Semiparametric methods for estimation of a non-linear exposure-outcome relationship using instrumental variables with application to Mendelian randomization." Genetic Epidemiology 41 (4): 341–352. https://doi.org/10.1002/gepi.22041.

Swanson, S. A., M. A. Hernán, M. Miller, J. M. Robins, and T. S. Richardson. 2018. "Partial Identification of the Average Treatment Effect Using Instrumental Variables: Review of Methods for Binary Instruments, Treatments, and Outcomes." PMID: 31537952, *Journal of the American Statistical Association* 113 (522): 933–947. https://doi.org/10.1080/01621459.2018.1434530.

Terza, J. V., A. Basu, and P. J. Rathouz. 2008. "Two-stage residual inclusion estimation: Addressing endogeneity in health econometric modeling." *Journal of Health Economics* 27 (3): 531–543. https://doi.org/10.1016/j.jhealeco.2007.09.009.