ACH2053 - Introdução à Estatística

Aula 13: Intervalo de Confiança

Valdinei Freire

valdinei.freire@usp.br

http://www.each.usp.br/valdinei

Escola de Artes, Ciências e Humanidades - USP

2025

Intervalo de Confiança

Seja $\mathbf{X}=(X_1,\dots,X_n)$ uma amostra aleatória de uma distribuição que depende do parâmetro θ e $g(\theta)$ uma função real de θ . Se $A\leq B$ são duas estatísticas que apresentam a seguinte propriedade para todos valores de θ :

$$\Pr(A < g(\theta) < B) \ge \gamma,$$

então o intervalo aleatório (A,B) é chamado de intervalo de confiança para $g(\theta)$ com coeficiente γ . Comumente especifica-se $\gamma=1-\alpha$, onde α é chamado de nível de significância.

Intervalo de Confiança - Resumo

Se X_1, \ldots, X_n seguem distribuição normal, temos:

 $ightharpoonup \sigma$ conhecido, mas μ desconhecido

$$\mu = \bar{x}_n \pm Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

 $ightharpoonup \sigma$ e μ desconhecido

$$\mu = \bar{x}_n \pm t_{n-1,\alpha/2} \frac{\hat{\sigma}}{\sqrt{n}}$$

 $ightharpoonup \sigma$ e μ desconhecido

$$\sigma^2 \in \left[\frac{(n-1)\hat{\sigma}^2}{\chi^2_{n-1,1-\alpha/2}}, \frac{(n-1)\hat{\sigma}^2}{\chi^2_{n-1,\alpha/2}}\right]$$

Intervalo de Confiança

Depois que os valores das variáveis aleatórias $a\sim A$ e $b\sim B$ são calculados, o intervalo (a,b) é o intervalo observado do intervalo de confiança.

Note que: $\Pr(A < g(\theta) < B) \in [0,1]$, enquanto

$$\Pr(a < g(\theta) < b) \in \{0, 1\}.$$

Considere n amostras de uma distribuição de Bernoulli com chance p. Considere também as estatísticas $A=\bar{X}-\frac{1}{\sqrt{n}}$ e $B=\bar{X}+\frac{1}{\sqrt{n}}.$ Calcule:

- 1. Calcule Pr(A , quando <math>p = 1.0 e n = 25.
- 2. Calcule Pr(A , quando <math>p = 0.1 e n = 25.
- 3. Calcule Pr(A , quando <math>p = 0.5 e n = 25.

Note que $\bar{X}=\frac{X}{n}$, onde X é uma variável aleatória binomial com parâmetros n e p, então:

$$\Pr(A
$$= \Pr(np - \sqrt{n} < X < np + \sqrt{n})$$
$$= \sum_{np - \sqrt{n} < x < np + \sqrt{n}} {n \choose x} p^x (1 - p)^{n - x}$$$$

Para p = 1.0 temos que Pr(A .

Para p = 0.1 temos que Pr(A .

Para p = 0.5 temos que Pr(A .

Pivotal

Seja $\mathbf{X}=(X_1,\ldots,X_n)$ uma amostra aleatória de uma distribuição que depende do parâmetro θ .

Seja $V(\mathbf{X},\theta)$ uma variável aleatória cuja distribuição é a mesma para todo θ . Então V é chamado de pivotal.

Exemplo: Seja X_1, \ldots, X_n amostras i.i.d. de uma distribuição normal com esperança μ e desvio padrão σ . Então:

$$V(\mathbf{x}, \mu, \sigma) = \frac{\sum_{i=1}^{n} x_i - n\mu}{\sqrt{n}\sigma}$$

tem distribuição normal padrão.

Pivotal

Seja $\mathbf{X}=(X_1,\dots,X_n)$ uma amostra aleatória de uma distribuição que depende do parâmetro θ e $g(\theta)$ uma função real de θ . Suponha que exista um pivotal V e uma função $r(v,\mathbf{x})$ estritamente crescente em v tal que:

$$r(V(\mathbf{x}, \theta), \mathbf{x}) = g(\theta)$$

Seja G a c.d.f. de V (assuma que G é contínua) e $0<\gamma<1$. Escolha $\gamma_2>\gamma_1$ tal que $\gamma_2-\gamma_1=\gamma$, então as seguintes estatísticas formam um intervalo de confiança para $g(\theta)$ com coeficiente γ :

$$\begin{split} A &= r(G^{-1}(\gamma_1), \mathbf{X}), \\ B &= r(G^{-1}(\gamma_2), \mathbf{X}). \end{split}$$

Intervalo de Confiança - Resumo

Se X_1, \ldots, X_n seguem distribuição normal, temos:

 $ightharpoonup \sigma$ conhecido, mas μ desconhecido

$$\mu = \bar{x}_n \pm Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

 $ightharpoonup \sigma$ e μ desconhecido

$$\mu = \bar{x}_n \pm t_{n-1,\alpha/2} \frac{\hat{\sigma}}{\sqrt{n}}$$

 $ightharpoonup \sigma$ e μ desconhecido

$$\sigma^2 \in \left[\frac{(n-1)\hat{\sigma}^2}{\chi^2_{n-1,1-\alpha/2}}, \frac{(n-1)\hat{\sigma}^2}{\chi^2_{n-1,\alpha/2}}\right]$$

Se $\sigma=1.5$ é conhecido e X segue a distribuição normal, crie um intervalo de confiança para a média μ com coeficiente $\gamma=0.95$ para a amostra: $\mathbf{x}=(2.4,1.6,3.0,1.8,3.2)$.

1. Defina quem é $g(\theta)$.

$$g(\mu, \sigma) = \mu$$

2. Defina um pivotal V.

$$V(\mathbf{X}, \mu, \sigma) = \frac{\mu - X_n}{\sigma / \sqrt{n}}$$

Nesse caso, temos que $V(\cdot)$ é uma distribuição normal padrão.

3. Encontre a função inversa $r(v, \mathbf{X})$.

$$r(v, \mathbf{x}) = \bar{x}_n + \frac{\sigma}{\sqrt{n}}v$$

4. Defina γ_1 e γ_2 .

Vamos escolher γ_1 e γ_2 tal que $1-\gamma_2=\gamma_1$, então temos:

$$\gamma_2 - \gamma_1 = \gamma \Rightarrow 1 + \gamma = 2\gamma_2 \Rightarrow \gamma_2 = \frac{1+\gamma}{2} = 1 - \frac{\alpha}{2}$$

e
$$\gamma_1=\frac{1-\gamma}{2}=\frac{\alpha}{2}$$
. Logo, $\gamma_1=0.025$ e $\gamma_2=0.975$

5. Encontre $G^{-1}(\gamma_1)$ e $G^{-1}(\gamma_2)$. Buscando na tabela da distribuição normal padrão, temos:

$$G^{-1}(\gamma_1) = -1.96 \text{ e } G^{-1}(\gamma_2) = 1.96$$

6. Se a função $r(v,\mathbf{x})$ é crescente em v, calcule $a=r(G^{-1}(\gamma_1),\mathbf{x})$ e $b=r(G^{-1}(\gamma_2),\mathbf{x})$. Então:

$$a = r(-1.96, \mathbf{x}) = \bar{x}_n + \frac{\sigma}{\sqrt{n}}(-1.96) = 2.4 - 1.3148 = 1.0852$$

$$b = r(1.96, \mathbf{x}) = \bar{x}_n + \frac{\sigma}{\sqrt{n}}(+1.96) = 2.4 + 1.3148 = 3.7148$$

Intervalo de Confiança - Resumo

Se X_1, \ldots, X_n seguem distribuição normal, temos:

 $ightharpoonup \sigma$ conhecido, mas μ desconhecido

$$\mu = \bar{x}_n \pm Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

 $ightharpoonup \sigma$ e μ desconhecido

$$\mu = \bar{x}_n \pm t_{n-1,\alpha/2} \frac{\hat{\sigma}}{\sqrt{n}}$$

 $ightharpoonup \sigma$ e μ desconhecido

$$\sigma^2 \in \left[\frac{(n-1)\hat{\sigma}^2}{\chi^2_{n-1,1-\alpha/2}}, \frac{(n-1)\hat{\sigma}^2}{\chi^2_{n-1,\alpha/2}}\right]$$

Função Gamma

Para cada número positivo α , a função gamma é definida pela integral:

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx.$$

Algumas propriedades da função gamma:

- Se $\alpha > 1$, então $\Gamma(\alpha) = (\alpha 1)\Gamma(\alpha 1)$.
- ▶ Se n é inteiro, então $\Gamma(n) = (n-1)!$.
- Fórmula de Stirling:

$$\lim_{x \to \infty} \frac{\sqrt{(2\pi)}x^{x-0,5}e^{-x}}{\Gamma(x)} = 1.$$

Distribuição Gamma

A função de probabilidade

$$f(x;\alpha,\beta) = \begin{cases} \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x} & \text{se } x > 0 \\ 0 & \text{caso contrário} \end{cases}$$

é chamada de distribuição Gamma com parâmetros $\alpha > 0$ e $\beta > 0$.

$$\mathsf{E}(X) = \frac{\alpha}{\beta}$$

$$\mathsf{Var}(X) = \frac{\alpha}{\beta^2}$$

Distribuição Gamma

A distribuição exponencial com parâmetro λ é igual a distribuição gamma com parâmetros $\alpha=1$ e $\beta=\lambda.$

Suponha que chegadas ocorram de acordo com um processo de Poisson com taxa λ . Seja Z_k o tempo até a k-ésima chegada para $k=1,2,\ldots$ A distribuição de Z_k é a distribuição gamma com parâmetros $\alpha=k$ e $\beta=\lambda$.

Distribuição χ^2

Para cada número positivo m, a distribuição gamma com parâmetros $\alpha=m/2$ e $\beta=1/2$ é chamada de distribuição χ^2 (chi quadrado) com m graus de liberdade e possui p.d.f.:

$$f(x) = \frac{1}{2^{m/2}\Gamma(m/2)}x^{(m/2)-1}e^{-x/2}$$

$$\mathsf{E}(X) = m$$

$$\mathsf{Var}(X) = 2m$$

Seja X uma variável aleatória com distribuição normal padrão. Então a variável aleatória $Y=X^2$ tem distribuição χ^2 com um (m=1) grau de liberdade.

Distribuição χ^2

Se as variáveis aleatórias X_1,\ldots,X_k são independentes e se X_i tem distribuição χ^2 com m_i graus de liberdade, então a soma $X_1+\cdots+X_k$ tem distribuição χ^2 com $m_1+\cdots+m_k$ graus de liberdade.

Suponha que X_1,\ldots,X_n formam uma amostra aleatória da distribuição normal com média μ e variância σ^2 . Então a média da amostra \overline{X}_n e a variância da amostra $(1/n)\sum_{i=1}^n(X_i-\overline{X}_n)^2$ são variáveis aleatórias independentes tal que:

- 1. \overline{X}_n tem distribuição normal com média μ e variância σ^2/n , e
- 2. $\frac{\sum_{i=1}^{n}(X_{i}-\overline{X}_{n})^{2}}{\sigma^{2}}$ tem distribuição χ^{2} com n-1 graus de

Se X segue a distribuição normal, crie um intervalo de confiança para a variância σ^2 com coeficiente $\gamma=0.95$ para a amostra: $\mathbf{x}=(2.4,1.6,3.0,1.8,3.2)$.

1. Defina quem é $g(\theta)$.

$$g(\mu, \sigma) = \sigma^2$$

2. Defina um pivotal V.

$$V(\mathbf{X}, \mu, \sigma) = \frac{\sum_{i=1}^{n} (X_i - \overline{X}_n)^2}{\sigma^2}$$

Nesse caso, temos que $V(\cdot)$ é uma distribuição χ^2 com n-1 graus de liberdade.

3. Encontre a função inversa $r(v, \mathbf{X})$.

$$r(v, \mathbf{x}) = \frac{\sum_{i=1}^{n} (x_i - \overline{x}_n)^2}{v}$$

- 4. Defina γ_1 e γ_2 . Vamos escolher $\gamma_1=0.025$ e $\gamma_2=0.975$.
- 5. Encontre $G^{-1}(\gamma_1)$ e $G^{-1}(\gamma_2)$. Buscando na tabela da distribuição χ^2 , temos:

$$G^{-1}(\gamma_1) = 0.484 \text{ e } G^{-1}(\gamma_2) = 11.143$$

6. Se a função $r(v, \mathbf{x})$ é crescente em v, calcule $a = r(G^{-1}(\gamma_1), \mathbf{x})$ e $b = r(G^{-1}(\gamma_2), \mathbf{x})$. Como $r(\cdot)$ não é crescente em v, temos que:

$$a = r(11.143, \mathbf{x}) = \frac{\sum_{i=1}^{n} (x_i - \overline{x}_n)^2}{11.143} = \frac{2}{11.143} = 0.179$$

$$b = r(0.484, \mathbf{x}) = \frac{\sum_{i=1}^{n} (x_i - \overline{x}_n)^2}{0.484} = \frac{2}{0.484} = 4.132$$

Intervalo de Confiança - Resumo

Se X_1, \ldots, X_n seguem distribuição normal, temos:

 $ightharpoonup \sigma$ conhecido, mas μ desconhecido

$$\mu = \bar{x}_n \pm Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

 $ightharpoonup \sigma$ e μ desconhecido

$$\mu = \bar{x}_n \pm t_{n-1,\alpha/2} \frac{\hat{\sigma}}{\sqrt{n}}$$

 $ightharpoonup \sigma$ e μ desconhecido

$$\sigma^2 \in \left[\frac{(n-1)\hat{\sigma}^2}{\chi^2_{n-1,1-\alpha/2}}, \frac{(n-1)\hat{\sigma}^2}{\chi^2_{n-1,\alpha/2}} \right]$$

Distribuição t de Student

Considere duas variáveis independentes Y e Z, tal que Y tem distribuição χ^2 com m graus de liberdade e Z tem a distribuição normal padrão. Suponha que a variável aleatória X é definida pela equação:

$$X = \frac{Z}{\left(\frac{Y}{m}\right)^{1/2}},$$

então a distribuição de X é chamada de distribuição t de Student com m graus de liberdade.

Distribuição t de Student

Considere que X segue a distribuição t de Student com m graus de liberdade, então X possui p.d.f.:

$$\begin{split} f(x) &= \frac{\Gamma\left(\frac{m+1}{2}\right)}{(m\pi)^{1/2}\Gamma\left(\frac{m}{2}\right)} \left(1 + \frac{x^2}{m}\right)^{-(m+1)/2}.\\ & \mathrm{E}(X) = 0\\ & \mathrm{Var}(X) = \frac{m}{m-2}, \ \mathrm{para} \ m > 2 \end{split}$$

Distribuição t de Student

Suponha que X_1,\ldots,X_n são amostras aleatórias da distribuição normal com média μ e variância σ^2 . Seja \overline{X}_n a média da amostra e defina:

$$\sigma' = \left[\frac{\sum_{i=1}^{n} (X_i - \overline{X}_n)^2}{n-1}\right]^{\frac{1}{2}}.$$

Então $\sqrt{n} \frac{(\overline{X}_n - \mu)}{\sigma'}$ tem a distribuição t de Student com n-1 graus de liberdade.

Se X segue a distribuição normal, crie um intervalo de confiança para a média μ com coeficiente $\gamma=0.95$ para a amostra: $\mathbf{x}=(2.4,1.6,3.0,1.8,3.2)$.

1. Defina quem é $g(\theta)$.

$$g(\mu, \sigma) = \mu$$

2. Defina um pivotal V.

$$V(\mathbf{X}, \mu, \sigma) = \sqrt{n} \frac{(\overline{X}_n - \mu)}{\sigma'}$$

Nesse caso, temos que $V(\cdot)$ é uma distribuição t de Student com n-1 graus de liberdade.

3. Encontre a função inversa $r(v, \mathbf{X})$.

$$r(v, \mathbf{x}) = \bar{x}_n - \frac{\sigma'}{\sqrt{n}}v$$

- 4. Defina γ_1 e γ_2 . Vamos escolher $\gamma_1=0.025$ e $\gamma_2=0.975$.
- 5. Encontre $G^{-1}(\gamma_1)$ e $G^{-1}(\gamma_2)$. Buscando na tabela da distribuição t de Student, temos:

$$G^{-1}(\gamma_1) = -2.776$$
 e $G^{-1}(\gamma_2) = 2.776$

27 / 34

6. Se a função $r(v, \mathbf{x})$ é crescente em v, calcule $a = r(G^{-1}(\gamma_1), \mathbf{x})$ e $b = r(G^{-1}(\gamma_2), \mathbf{x})$. Como $r(\cdot)$ não é crescente em v, temos que:

$$a = r(2.776, \mathbf{x}) = \bar{x}_n - \frac{\sigma'}{\sqrt{n}}(2.776) = 2.4 - 2.776 \frac{\sqrt{0.5}}{\sqrt{5}} = 1.522$$

$$b = r(-2.776, \mathbf{x}) = \bar{x}_n - \frac{\sigma'}{\sqrt{n}}(-2.776) = 2.4 + 2.776 \frac{\sqrt{0.5}}{\sqrt{5}} = 3.278$$

Pivotais para Outras Distribuições

Intervalos em Distribuições Exponencial

Suponha que X_1,\ldots,X_n são amostras aleatórias da distribuição exponencial com taxa λ . Defina a estatística $T=\sum_{i=1}^n X_i$. Então λT tem a distribuição gamma com $\alpha=n$ e $\beta=1$.

Pivotais para Outras Distribuições

Pivotais Assintóticos

Lembre-se do Teorema Central do Limite:

Teorema (Teorema do Limite Central)

Se as variáveis aleatórias X_1,\ldots,X_n formam uma amostra aleatória de tamanho n de uma distribuição com média μ e desvio padrão σ $(0<\sigma<\infty)$, então para cada x

$$\lim_{n \to \infty} \Pr\left(\frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} \le x\right) = \Phi(x),$$

onde $\Phi(x)$ denota a c.d.f. da distribuição normal padrão.

No limite, pode-se sempre obter um pivotal aproximado para a média $\mu.$

2025

30 / 34

V. Freire (EACH-USP) ACH2053

Se X segue a distribuição de Bernoulli, crie um intervalo de confiança para a taxa de sucesso p com coeficiente $\gamma=0.95$ para uma amostra com n=100 tentativas e 40 sucessos.

Temos que:

$$\bar{x} = \frac{40}{100} = 0.4 \text{ e } \sigma' = \sqrt{\frac{40 \times 0.36 + 60 \times 0.16}{100 - 1}} = 0.492$$

Então:

$$a = \bar{x}_n - \frac{\sigma'}{\sqrt{n}}(2.0) = 0.4 - 2.0 \frac{0.492}{10} = 0.3016$$

$$b = \bar{x}_n - \frac{\sigma'}{\sqrt{n}}(-2.0) = 0.4 + 2.0\frac{0.492}{10} = 0.4984$$

Teste de Hipótese e Intervalo de Confiança

Intervalos de Confiança a partir de Testes com Nível de significância Seja $\mathbf{X}=(X_1,\dots,X_n)$ uma amostra aleatória de uma distribuição que depende do parâmetro θ e $g(\theta)$ uma função real de θ . Suponha que para cada valor possível g_0 de $g(\theta)$, existe um teste δ_{g_0} com nível de significância α_0 para as hipóteses:

$$H_{0,g_0}:g(\theta)=g_0 \ \mathrm{e} \ H_{1,g_0}:g(\theta)\neq g_0.$$

Para cada valor x de X, defina:

$$w(\mathbf{x}) = \{g_0 : \delta_{g_0} \text{ não rejeita } H_{0,g_0} \text{ se } \mathbf{X} = \mathbf{x} \text{ \'e observado}\}.$$

Seja $\gamma=1-lpha_0$. Então, o conjunto aleatório $w(\mathbf{X})$ satisfaz

$$\Pr[g(\theta_0) \in w(\mathbf{X}) | \theta = \theta_0] \ge \gamma,$$

para todo $\theta_0 \in \Omega$.

Teste de Hipótese e Intervalo de Confiança

Testes com Nível de significância a partir de Intervalos de Confiança Seja $\mathbf{X}=(X_1,\dots,X_n)$ uma amostra aleatória de uma distribuição que depende do parâmetro θ e $g(\theta)$ uma função real de θ . Suponha que para cada valor possível \mathbf{x} de \mathbf{X} , exista um conjunto de confiança (intervalo de confiança) $w(\mathbf{X})$ com confiança γ . Para cada possível valor g_0 de $g(\theta)$ construa o teste δ_{g_0} para as hipóteses:

$$H_{0,g_0}: g(\theta) = g_0 \in H_{1,g_0}: g(\theta) \neq g_0,$$

no qual H_{0,g_0} não é rejeitada se e somente se $g_0\in w(\mathbf{X})$. Então δ_{g_0} é um teste com nível de confiança $\alpha_0=1-\gamma$.

Resumo do Curso

- 1. Experimento, resultado e espaço amostral
- 2. Probabilidade
- 3. Probabilidade Condicional
- 4. Variáveis Aleatórias
- 5. Esperança e Variância
- 6. Distribuições Típicas
- 7. Distribuições Multivariadas
- 8. Estimadores: viés, variância e erro quadrático médio
- 9. Estimadores Pontuais
- 10. Teorema do Limite Central
- 11. Informação de Fisher
- 12. Teste de Hipótese
- 13. Intervalo de Confiança