Reinforcement Learning

MACHINE LEARNING

Pakarat Musikawan

Introduction to Reinforcement Learning

Reinforcement Learning (RL) is a type of machine learning where an agent learns by interacting with an environment to maximize cumulative rewards.

Key Concepts:

- Agent: Learner/decision maker.
- Environment: What the agent interacts with.
- State: The current situation returned by the environment.
- Action: What the agent can do.
- Reward: Feedback from the environment.
- Policy: Strategy used by the agent.

Introduction to Reinforcement Learning

$$S_0 \xrightarrow{A_0} S_1 \xrightarrow{A_1} S_2 \xrightarrow{A_2} \dots$$

$$G = R_0 + \gamma R_1 + \gamma^2 R_2 + \dots \gamma^T R_T$$
$$= \sum_{i=0}^{T} \gamma^i R_i$$

$$0 \le \gamma \le 1$$

Action

Up Down Left Right

Action				
Up	Down	Left	Right	
		(\rightarrow	

Action
Up Down Left Right

Action
Up Down Left Right

Action
Up Down Left Right

Action

Up Down Left Right

$$\gamma = 0.9$$

=
$$(-0.1 \times 0.9^0) + (-0.1 \times 0.9^1) + (-0.1 \times 0.9^2) + (-0.1 \times 0.9^3) + (10 \times 0.9^4)$$

 ≈ 6.217

Action

Up Down Left Right

↑ ← →

Q-Table	Action			
State	Up	Down	Right	Left
А	0.1	0.7	0.1	0.1
В	0.1	0.1	0.7	0.1
С	0.1	0.1	0.7	0.1
D	0.1	0.7	0.1	0.1
E				

Action

Up Down Left Right

Q-Learning

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_t + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t) \right]$$

 $Q(S_t,A_t)$ The current Q-value for the agent being in state ${f S}_{f t}$ and and taking action ${f A}_{f t}$

lpha Learning rate

 γ Discount factor

 R_t Immediate reward

 $\max_a Q(S_{t+1},a)$ The maximum Q-value over all possible actions ${\it a}$ a the agent can take in the next state ${\it S}_{\it t+1}$

Q-Learning

Q-Table	Action			
State	Up	Down	Left	Right
Α	-0.1	0.7	-0.1	0.9
В	-0.1	-0.1	0.1	0.9
С	-0.1	0.9	0.1	-0.1
D	0.1	0.8	-0.1	-0.1
E	0.1	0.9	-0.1	-0.1
F	0.1	-0.1	-0.1	0.9
G	-0.1	-0.1	0.1	0.9
Н	1.0	1.0	1.0	1.0

Q-Table	Action		
State	1	2	3
Α	0.5	-0.2	0.1
В	0.0	1.0	-0.3
С	0.7	-0.4	0.5
D	-0.6	0.8	0.0
Е	0.2	-0.1	0.4

- The agent starts in State C and chooses Action 2
- The agent receives a reward equal to 2
- The agent transitions to State D

Q-Table	Action			
State	1 2 3			
Α	0.5	-0.2	0.1	
В	0.0	1.0	-0.3	
С	0.7	-0.4	0.5	
D	-0.6	0.8	0.0	
E	0.2	-0.1	0.4	

- The agent starts in State C and chooses Action 2
- The agent receives a reward equal to 2
- The agent transitions to State D

$$\begin{aligned} &Q(C,2) = -0.4 \\ &R = 2 \\ &\gamma = 0.9 \\ &\max Q(D,a) = \max(-0.6,0.8,0.0) = 0.8 \\ &\alpha = 0.1 \end{aligned}$$

Q-Table	Action		
State	1	2	3
Α	0.5	-0.2	0.1
В	0.0	1.0	-0.3
С	0.7	-0.088	0.5
D	-0.6	0.8	0.0
E	0.2	-0.1	0.4

- The agent starts in State C and chooses Action 2
- The agent receives a reward equal to 2
- The agent transitions to State D

$$Q(C,2) = -0.4$$

$$R = 2$$

$$\gamma = 0.9$$

$$\max Q(D,a) = \max(-0.6, 0.8, 0.0) = 0.8$$

$$\alpha = 0.1$$

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_t + \gamma \max Q(S_{t+1}, a) - Q(S_t, A_t)\right]$$

$$Q(C,2) \leftarrow Q(C,2) + 0.1 \left[2 + 0.9 \max(-0.6, 0.8, 0.0) - Q(C,2)\right]$$

$$\leftarrow (-0.4) + 0.1 \left[2 + 0.9 \times 0.8 - (-0.4)\right]$$

$$\leftarrow (-0.4) + 0.1 \times 3.12$$

$$\leftarrow (-0.4) + 0.312 = -0.088$$

Q-Table	Action			
State	1	2	3	
Α	0.5	-0.2	0.1	
В	0.0	1.0	-0.3	
С	0.7	-0.088	0.5	
D	-0.6	0.8	0.0	
Е	0.2	-0.1	0.4	

- The agent starts in State D and chooses Action 1
- The agent receives a reward equal to -1
- The agent transitions to State E

Q-Table	Action			
State	1 2 3			
Α	0.5	-0.2	0.1	
В	0.0	1.0	-0.3	
С	0.7	-0.088	0.5	
D	-0.6	0.8	0.0	
Е	0.2	-0.1	0.4	

- The agent starts in State D and chooses Action 1
- The agent receives a reward equal to -1
- The agent transitions to State E

$$\begin{aligned} &Q(D,1) = -0.6 \\ &R = -1 \\ &\gamma = 0.9 \\ &\max Q(E,a) = \max(0.2, -0.1, 0.4) = 0.4 \\ &\alpha = 0.1 \end{aligned}$$

Q-Table	Action			
State	1 2 3			
Α	0.5	-0.2	0.1	
В	0.0	1.0	-0.3	
С	0.7	-0.088	0.5	
D	-0.604	0.8	0.0	
Е	0.2	-0.1	0.4	

- The agent starts in State D and chooses Action 1
- The agent receives a reward equal to -1
- The agent transitions to State E

$$Q(D,1) = -0.6$$

$$R = -1$$

$$\gamma = 0.9$$

$$\max Q(E, a) = \max(0.2, -0.1, 0.4) = 0.4$$

$$\alpha = 0.1$$

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_t + \gamma \max Q(S_{t+1}, a) - Q(S_t, A_t) \right]$$

$$Q(D,1) \leftarrow Q(D,1) + 0.1 \left[(-1) + 0.9 \max(0.2, -0.1, 0.4) - Q(D,1) \right]$$

$$\leftarrow (-0.6) + 0.1 \left[(-1) + 0.9 \times 0.4 - (-0.6) \right]$$

$$\leftarrow (-0.6) + (-0.004)$$

$$\leftarrow (-0.6) + (-0.004) = -0.604$$

$$\alpha = 0.1$$

$$\gamma = 0.9$$

$$R = \begin{cases} \text{Positive} & 1 \\ \text{Negative} & -1 \end{cases}$$

ο̈́ A	В	С
D		Е
F	G	Н

$Q(A,1) \rightarrow Q(A,4) \rightarrow Q(B,2) \rightarrow Q(B,4)$

Q-Table		Act	ion	
State	Up	Down	Left	Right
Α	-0.1	0.7	-0.1	0.9
В	-0.1	-0.1	0.1	0.9
С	-0.1	0.9	0.1	-0.1
D	0.1	0.8	-0.1	-0.1
E	0.1	0.9	-0.1	-0.1
F	0.1	-0.1	-0.1	0.9
G	-0.1	-0.1	0.1	0.9
Н	1.0	1.0	1.0	1.0

$$\alpha = 0.1$$

$$\gamma = 0.9$$

$$R = \begin{cases} \text{Positive} & 1 \\ \text{Negative} & -1 \end{cases}$$

Ϋ́ A	В	С
D		E
F	G	H

$Q(A,4) \rightarrow Q(B,4) \rightarrow Q(C,4) \rightarrow Q(C,2) \rightarrow Q(E,2)$

Q-Table	Action			
State	Up	Down	Left	Right
Α	-0.1	0.7	-0.1	0.9
В	-0.1	-0.1	0.1	0.9
С	-0.1	0.9	0.1	-0.1
D	0.1	0.8	-0.1	-0.1
E	0.1	0.9	-0.1	-0.1
F	0.1	-0.1	-0.1	0.9
G	-0.1	-0.1	0.1	0.9
Н	1.0	1.0	1.0	1.0