1. Let $T:V\to W$ be a linear transformation from a finite-dimensional vector space V to a finite-dimensional vector space W. Let β and β' be ordered bases for V, and let γ' and γ be ordered bases for W. We must show that $[T]_{\beta'}^{\gamma'} = P^{-1}[T]_{\beta}^{\gamma}Q$ where Q is the β' to β change of coordinates matrix and P is the γ' to γ change of coordinates matrix. By definition $Q = [\mathbb{I}_V]_{\beta'}^{\beta'}$, $P = [\mathbb{I}_W]_{\gamma'}^{\gamma}$. Note that the statement we're trying to prove is equivalent to $P[T]_{\beta'}^{\gamma'} = [T]_{\beta}^{\gamma}Q$. Therefore,

$$P[T]_{\beta'}^{\gamma'} = [\mathbb{I}_W]_{\gamma'}^{\gamma}[T]_{\beta'}^{\gamma'} = [\mathbb{I}_W T]_{\beta'}^{\gamma} = [T]_{\beta'}^{\gamma} = [T]_{\beta'}^{\gamma} = [T]_{\beta}^{\gamma}[\mathbb{I}_V]_{\beta'}^{\beta} = [T]_{\beta}^{\gamma}Q.$$

Therefore $[T]_{\beta'}^{\gamma'} = P^{-1}[T]_{\beta}^{\gamma}Q$.

2. Suppose $A, B \in M_{m \times n}(F), P \in GL_m(F), Q \in GL_n(F), B = P^{-1}AQ$. We must show that there exists an n dimensional vector space V and an m dimensional vector space W over F, ordered bases β and β' for V and γ and γ' for W, and a linear transformation $T: V \to W$ such that

$$A = [T]^{\gamma}_{\beta}$$
 and $B = [T]^{\gamma'}_{\beta'}$.

Let $V = F^n, W = F^m, T = L_A$, and β and γ be the standard ordered bases for F^n and F^m respectively.

Alex Valentino Homework 6 350H

3. Let V be a finite-dimensional vector space with the ordered basis β . Prove that $\psi(\beta) = \beta^{**}$. Let $\beta = \{x_1, \dots, x_n\}$. Therefore $\beta^{**} = \{\hat{x}_1, \dots, \hat{x}_n\}$. We must show that $\psi(\beta) = \beta^{**}$. Since