Paths of analysis*

Synthia

October 10, 2022

1 Analysis parameters

Analysis type: Automatic Retrosynthesis

Rules: none selected

Filters: Exclude Diastereoselecitve reactions, Tunnels, FGI, FGI with protec-

tions

Max. paths returned: 50

Max. iterations: 2000

Commercial:

1. Max. molecular weight - 1000 g/mol

2. Max. price - 1500 \$/g

Published:

- 1. Max. molecular weight 1000 g/mol
- 2. Popularity 5

My Stockroom:

1. Max. molecular weight - 1000 g/mol

Reaction scoring formula: TUNNEL_COEF*FGI_COEF*STEP*20+1000 000*(CONFLICT+NON SELECTIVITY+FILTERS+PROTECT)

Chemical scoring formula: SMALLER^ 3,SMALLER^ 1.5

Min. search width: 400

Max. reactions per product: 60

^{*}The results stated herein were generated using the proprietary platform owned and maintained by Grzybowski Scientific Inventions, Inc., a subsidiary of Merck KGaA, Darmstadt Germany. The results are provided on an as is basis, and shall be used solely in connection with the rights afforded in the license agreement and for no other purpose.

 ${f Strategies:}$ none selected

FGI Coeff: 0

Tunnels Coeff: 0

JSON Parameters: {}

2 Paths

3 paths found. Paths are sorted by score. Reactions are sorted in appearance order for each path.

2.1 Path 1

Score: 250.23

Figure 1: Outline of path 1

2.1.1 Decarboxylative Bromination of Aromatic Carboxylic Acids

Substrates:

1. 1-(but-3-en-1-yl)-1H-1,2,3-triazole-4-carboxylic acid - $\$ available at Sigma-Aldrich

Products:

1. C=CCCn1cc(Br)nn1

Typical conditions: N-hydroxy-2-thiopyridone. AIBN. Trichlorobromomethane. toluene. light. heat

Protections: none

Reference: 10.1055/s-0037-1610188 and 10.1016/S0040-4039(00)98266-2 and

10.1016/S0040-4020(01)90307-2

Retrosynthesis ID: 31021104

2.1.2 Ozonolysis

Substrates:

1. C=CCCn1cc(Br)nn1

Products:

1. O=CCCn1cc(Br)nn1

 $\textbf{Typical conditions:} \ \ O3. MeOH. CH2Cl2. PPh3 \ or \ Me2S. low \ temperature$

Protections: none

Reference: 10.1016/j.tet.2017.03.039

2.1.3 In(III) OH-catalyzed halogenation of aldehydes

Substrates:

1. O=CCCn1cc(Br)nn1

Products:

1. ClCCCn1cc(Br)nn1

 $\textbf{Typical conditions:} \ In O 3. chloroform. Si Me 2 Cl$

 ${\bf Protections:}\ {\bf none}$

Reference: DOI: 10.1021/ja0283246

Retrosynthesis ID: 10477

2.1.4 Synthesis of arylsilanes

 $1. \ ClCCCn1cc(Br)nn1$

2. TMSCl - available at Sigma-Aldrich

Products:

1. C[Si](C)(C)c1cn(CCCCl)nn1

Typical conditions: 1.nBuLi.2.ClSnR3

Protections: none

Reference: 10.1071/CH9851147.

Retrosynthesis ID: 5370

2.1.5 Blanc bromomethylation

Substrates:

1. C[Si](C)(C)c1cn(CCCCl)nn1

2. Formalin - available at Sigma-Aldrich

Products:

1. C[Si](C)(C)c1nnn(CCCCl)c1CBr

 ${\bf Typical\ conditions:\ HBr.heat}$

Protections: none

Reference: 10.1021/ja011493q and 10.1021/ma012195g and 10.1016/S0040-

4039(02)01769-0 and 10.1021/ja002069c

2.1.6 Synthesis of alkyl Grignard reagents

Substrates:

- $1. \ C[Si](C)(C)c1nnn(CCCCl)c1CBr \\$
- 2. Magnesium available at Sigma-Aldrich

Products:

 $1. \ C[Si](C)(C)c1nnn(CCCCl)c1C[Mg]Br \\$

 $\textbf{Typical conditions:} \ \mathrm{Mg.THF} \ \mathrm{or} \ \mathrm{iPrMgBr}$

Protections: none

Reference: DOI: 10.1021/jo00002a039 and 10.1021/jo047877r and

10.1021/ol006618v

2.1.7 Grignard-Type Reaction

Substrates:

1. C[Si](C)(C)c1nnn(CCCCl)c1C[Mg]Br

2. 2-Cyclohexen-1-one - available at Sigma-Aldrich

Products:

1. C[Si](C)(C)c1nnn(CCCCl)c1CC1(O)C=CCCC1

Typical conditions: Mg or Li.ether

Protections: none

Reference: 10.1021/jo010494y or 10.1016/j.steroids.2015.09.009 or 10.1021/jo061349t or 10.1021/ja056165v (SI page 19)

Retrosynthesis ID: 25134

2.1.8 Alkylation of tertiary alcohols

Substrates:

1. C[Si](C)(C)c1nnn(CCCCl)c1CC1(O)C=CCCC1

Products:

 $1. \ C[Si](C)(C)c1nnn2c1CC1(C=CCCC1)OCCC2$

 ${\bf Typical\ conditions:}\ {\rm K2CO3.acetone.heat}$

Protections: none

Reference: 10.1016/S0040-4020(01)90106-1 and 10.1021/acs.analchem.5b04461

and 10.3390/molecules24091643

Retrosynthesis ID: 31010930

2.2 Path 2

Score: 310.82

Figure 2: Outline of path 2

2.2.1 Metal-free multicomponent synthesis of triazoles

- 1. Tosyl azide solution available at Sigma-Aldrich
- $2. \ 1-phenyl-but-2-in-1-on \\ available \ at \ Sigma-Aldrich$

3. Piperidic acid - available at Sigma-Aldrich

Products:

1. Cc1cnnn1CCCC(=O)O

Typical conditions: 1. toluene.80C 2. LiOtBu.RT

Protections: none

Reference: DOI: 10.1002/anie.201307499

Retrosynthesis ID: 6001

2.2.2 Bromination of aromatic compounds

Substrates:

1. Cc1cnnn1CCCC(=O)O

Products:

1. Cc1c(Br)nnn1CCCC(=O)O

Typical conditions: Br2.Fe

Protections: none

Reference: 10.1021/acs.accounts.6b00120

Retrosynthesis ID: 7777000

2.2.3 Synthesis of silanes, stannanes and germanes from Grignard reagents

1. TMSCl - available at Sigma-Aldrich

2. Cc1c(Br)nnn1CCCC(=O)O

Products:

1. Cc1c([Si](C)(C)C)nnn1CCCC(=O)O

Typical conditions: 1.nBuLi.or.Mg.THF.-78C.2.Si-Cl.to.rt

Protections: none

Reference: 10.1021/jo802433t AND 10.1021/ja01108a009

Retrosynthesis ID: 5402

2.2.4 Synthesis of alkyl chlorides from carboxylic acids

Substrates:

1. Cc1c([Si](C)(C)C)nnn1CCCC(=O)O

Products:

1. Cc1c([Si](C)(C)C)nnn1CCCCl

Typical conditions: Ag(Phen)2OTf.OtBu.Cl.acetonitrile.RT

Protections: none

Reference: DOI: 10.1021/ja210361z

2.2.5 Wohl-Ziegler Bromination

Substrates:

1. N-Bromosuccinimide - available at Sigma-Aldrich

2. Cc1c([Si](C)(C)C)nnn1CCCC1

Products:

1. C[Si](C)(C)c1nnn(CCCCl)c1CBr

Typical conditions: NBS.AIBN or (BzO)2 or heat

Protections: none

Reference: 10.1021/acs.organomet.2c00053 (Scheme S1 p. S4) and 10.1021/acs.jafc.0c07237 (Scheme 1) and 10.1002/cbic.201402000

Retrosynthesis ID: 245552

2.2.6 Shapiro reaction followed by alkyl bromide addition

1. Cyclohexanone - available at Sigma-Aldrich

2. C[Si](C)(C)c1nnn(CCCCl)c1CBr

Products:

1. C[Si](C)(C)c1nnn(CCCCl)c1CC1=CCCCC1

 $\textbf{Typical conditions:} \quad 1. \\ \\ \text{TsNH2NH2}. \\ 2. \\ \\ \text{Mes2Mg.LiCl.THF.} \\ \\ \text{heating then alkyl} \\$

bromide.cooling

Protections: none

Reference: 10.1016/S0040-4039(00)75263-4 and 10.1021/ol300652k and

10.1021/ja00299a037

Retrosynthesis ID: 9990463

2.2.7 Oxohydroxylation of unsymmetric alkenes

Substrates:

1. C[Si](C)(C)c1nnn(CCCCl)c1CC1=CCCCC1

Products:

1. C[Si](C)(C)c1nnn(CCCCl)c1CC1(O)CCCCC1=O

Typical conditions: KMnO4.Acetone/H2O.-10 deg C

Protections: none

Reference: 10.1016/j.tetlet.2015.12.042 and 10.1021/jacs.5b05792

2.2.8 Alkylation of tertiary alcohols

Substrates:

1. C[Si](C)(C)c1nnn(CCCCl)c1CC1(O)CCCCC1=O

Products:

 $1. \ C[Si](C)(C)c1nnn2c1CC1(CCCCC1=O)OCCC2 \\$

 ${\bf Typical\ conditions:}\ {\rm K2CO3.acetone.heat}$

 ${\bf Protections:}\ {\rm none}$

 $\textbf{Reference:} \ \ 10.1016/S0040\text{-}4020(01)90106\text{-}1 \ \ \text{and} \ \ 10.1021/acs.analchem.5b04461$

and 10.3390/molecules 24091643

Retrosynthesis ID: 31010930

2.2.9 Shapiro reaction

${\bf Substrates:}$

 $1. \ C[Si](C)(C)c1nnn2c1CC1(CCCCC1=O)OCCC2 \\$

Products:

1. C[Si](C)(C)c1nnn2c1CC1(C=CCCC1)OCCC2

 $\textbf{Typical conditions:}\ 1.TsNH2NH2.2.N-BuLi$

Protections: none

Reference: 10.1021/jm4008517 and 10.1016/j.bmc.2009.08.038 and

10.1021/jo00350a003

Retrosynthesis ID: 9990398

2.3 Path 3

Score: 323.01

Figure 3: Outline of path 3

2.3.1 An azide and acetylene free synthesis of 1-substituted 1,2,3-triazoles

- 1. Glyoxal dimethyl acetal available at Sigma-Aldrich

3. 3-Chloropropylamine hydrochloride - available at Sigma-Aldrich

Products:

1. C5H8ClN3

 $\textbf{Typical conditions:}\ 1. TsNHNH2. MeOH. rt\ 2. Amine. AcOH. heat$

Protections: none

Reference: 10.1016/j.tetlet.2020.152483

Retrosynthesis ID: 31020968

2.3.2 Bromination of aromatic compounds

Substrates:

1. C5H8ClN3

Products:

 $1. \ \, ClCCCn1cc(Br)nn1$

Typical conditions: Br2.Fe

Protections: none

Reference: 10.1021/acs.accounts.6b00120

2.3.3 Blanc bromomethylation

Substrates:

- $1. \ ClCCCn1cc(Br)nn1$
- 2. Formalin available at Sigma-Aldrich

Products:

 $1. \ ClCCCn1nnc(Br)c1CBr \\$

Typical conditions: HBr.heat

Protections: none

Reference: 10.1021/ja011493q and 10.1021/ma012195g and 10.1016/S0040-4039(02)01769-0 and 10.1021/ja002069c

Retrosynthesis ID: 31010730

2.3.4 Shapiro reaction followed by alkyl bromide addition

Substrates:

 $1. \ \ Cyclohexanone \ - \ \ \ \ {\it available at Sigma-Aldrich}$

2. ClCCCn1nnc(Br)c1CBr

Products:

1. ClCCCn1nnc(Br)c1CC1=CCCCC1

 $\textbf{Typical conditions:} \quad 1. TsNH2NH2.2. Mes 2 Mg. LiCl. THF. heating \ then \ alkylor{1}{l} alkylor{1}{l} alkylor{2}{l} alkylo$

bromide.cooling

Protections: none

Reference: 10.1016/S0040-4039(00)75263-4 and 10.1021/ol300652k and

10.1021/ja00299a037

Retrosynthesis ID: 9990463

2.3.5 Oxohydroxylation of unsymmetric alkenes

Substrates:

 $1. \ ClCCCn1nnc(Br)c1CC1 = CCCCC1$

Products:

 $1. \ O{=}C1CCCCC1(O)Cc1c(Br)nnn1CCCC1$

Typical conditions: KMnO4.Acetone/H2O.-10 deg C

Protections: none

Reference: 10.1016/j.tetlet.2015.12.042 and 10.1021/jacs.5b05792

2.3.6 Alkylation of tertiary alcohols

Substrates:

 $1. \ O{=}C1CCCCC1(O)Cc1c(Br)nnn1CCCC1$

Products:

1. O=C1CCCCC12Cc1c(Br)nnn1CCCO2

 ${\bf Typical\ conditions:}\ {\rm K2CO3.acetone.heat}$

Protections: none

 $\textbf{Reference:} \ \ 10.1016/S0040\text{-}4020(01)90106\text{-}1 \ \ \text{and} \ \ 10.1021/acs.analchem.5b04461$

and 10.3390/molecules24091643

Retrosynthesis ID: 31010930

2.3.7 Shapiro reaction

Substrates:

 $1. \ O{=}C1CCCCC12Cc1c(Br)nnn1CCCO2$

Products:

 $1. \ \, Brc1nnn2c1CC1(C=CCCC1)OCCC2$

 $\textbf{Typical conditions:} \ 1. TsNH2NH2.2. N-BuLi$

Protections: none

Reference: 10.1021/jm4008517 and 10.1016/j.bmc.2009.08.038 and

10.1021/jo00350a003

Retrosynthesis ID: 9990398

2.3.8 Synthesis of arylsilanes

Substrates:

1. Brc1nnn2c1CC1(C=CCCC1)OCCC2

2. TMSCl - available at Sigma-Aldrich

Products:

1. C[Si](C)(C)c1nnn2c1CC1(C=CCCC1)OCCC2

Typical conditions: 1.nBuLi.2.ClSnR3

Protections: none

Reference: 10.1071/CH9851147.