CS 105: Department Introductory Course on Discrete Structures

Instructor: S. Akshay

Aug 21, 2023 Lecture 06 – Basic Mathematical Structures Sets and functions

A Quick Recap

Five lectures completed

A Quick Recap

Five lectures completed

- ► Week 1
 - 1. Propositions, Predicates, Theorems.
 - 2. Types of proofs; contradiction and contrapositive; axioms.
 - 3. Induction and the Well-Ordering Principle.
- ▶ Week 2
 - 4. Strong Induction and its applications.
 - 5. Basic mathematical structures: numbers and sets

A Quick Recap

Five lectures completed

- ► Week 1
 - 1. Propositions, Predicates, Theorems.
 - 2. Types of proofs; contradiction and contrapositive; axioms.
 - 3. Induction and the Well-Ordering Principle.
- ▶ Week 2
 - 4. Strong Induction and its applications.
 - 5. Basic mathematical structures: numbers and sets

Two problem-sheets released

- 1. 9 questions on Basic proofs, induction, WOP
- 2. 4 questions on More basic proofs and Strong Induction.

Is the fun done? How do we compare sets?

► For two finite sets, this is easy, just count the number of elements and compare them!

Is the fun done? How do we compare sets?

- ► For two finite sets, this is easy, just count the number of elements and compare them!
- ▶ But what about two infinite sets?
- ightharpoonup Example: {set of all even natural numbers} vs \mathbb{N} vs \mathbb{Q} vs \mathbb{R}

Is the fun done? How do we compare sets?

- ► For two finite sets, this is easy, just count the number of elements and compare them!
- ▶ But what about two infinite sets?
- ightharpoonup Example: {set of all even natural numbers} vs \mathbb{N} vs \mathbb{Q} vs \mathbb{R}
- ► Turns out we need functions... but first...

- ▶ Suppose there is a hotel with infinitely many rooms.
- ▶ And suppose they are all full (like in IIT guest house).

- ▶ Suppose there is a hotel with infinitely many rooms.
- ▶ And suppose they are all full (like in IIT guest house).
- 1. Can you accommodate 1 or finitely many more guests, by shifting around the existing guests?

- ▶ Suppose there is a hotel with infinitely many rooms.
- ▶ And suppose they are all full (like in IIT guest house).
- 1. Can you accommodate 1 or finitely many more guests, by shifting around the existing guests?
- 2. What if infinitely many more guests arrive?

- ▶ Suppose there is a hotel with infinitely many rooms.
- ▶ And suppose they are all full (like in IIT guest house).
- 1. Can you accommodate 1 or finitely many more guests, by shifting around the existing guests?
- 2. What if infinitely many more guests arrive?
- 3. What if infinitely many more trains with infinitely many more guests arrive? (H.W)

What you did above was to define functions...

Definition

Let A, B be two sets. A function f from A to B is an assignment of exactly one element of B to each element of A.

What you did above was to define functions...

Definition

Let A, B be two sets. A function f from A to B is an assignment of exactly one element of B to each element of A.

Formally, $f:A\to B$ is a subset R of pairs $A\times B$ such that

- (i) $\forall a \in A, \exists b \in B \text{ such that } (a, b) \in R, \text{ and }$
- (ii) if $(a, b) \in R$ and $(a, c) \in R$, then b = c.

What you did above was to define functions...

Definition

Let A, B be two sets. A function f from A to B is an assignment of exactly one element of B to each element of A.

Formally, $f:A\to B$ is a subset R of pairs $A\times B$ such that

- (i) $\forall a \in A, \exists b \in B \text{ such that } (a, b) \in R, \text{ and }$
- (ii) if $(a, b) \in R$ and $(a, c) \in R$, then b = c.
 - We write f(a) = b and call b the image of a.
 - ► $Range(f) = \{b \in B \mid \exists a \in A \text{ s.t. } f(a) = b\}, Domain(f) = A$

What you did above was to define functions...

Definition

Let A, B be two sets. A function f from A to B is an assignment of exactly one element of B to each element of A.

Formally, $f:A\to B$ is a subset R of pairs $A\times B$ such that

- (i) $\forall a \in A, \exists b \in B \text{ such that } (a, b) \in R, \text{ and }$
- (ii) if $(a, b) \in R$ and $(a, c) \in R$, then b = c.

Composition of functions

- ▶ If $g: A \to B$ and $f: B \to C$, then $f \circ g: A \to C$ is defined by $f \circ g(x) = f(g(x))$.
- ▶ Defined only if $Range(g) \subseteq Domain(f)$.
- Qn: if $f(x) = x^2$, $g(x) = x x^3$ with $f, g : \mathbb{R} \to \mathbb{R}$, what is $f \circ g(x), g \circ f(x)$?

What you did above was to define functions...

Definition

Let A, B be two sets. A function f from A to B is an assignment of exactly one element of B to each element of A.

Formally, $f:A\to B$ is a subset R of pairs $A\times B$ such that

- (i) $\forall a \in A, \exists b \in B \text{ such that } (a, b) \in R, \text{ and }$
- (ii) if $(a, b) \in R$ and $(a, c) \in R$, then b = c.

Composition of functions is associative

▶ If $h: A \to B$ and $g: B \to C$ and $f: C \to D$, then $f \circ (g \circ h) = (f \circ g) \circ h$, doubt hai

Check it! (H.W.)

What you did above was to define functions...

Definition

Let A, B be two sets. A function f from A to B is an assignment of exactly one element of B to each element of A.

Formally, $f:A\to B$ is a subset R of pairs $A\times B$ such that

- (i) $\forall a \in A, \exists b \in B \text{ such that } (a, b) \in R, \text{ and }$
- (ii) if $(a, b) \in R$ and $(a, c) \in R$, then b = c.

Inverse of a function

▶ If $f: A \to B$ is a function, then its inverse is the function $f^{-1}: B \to A$ defined by $f^{-1}(b) = a$ if f(a) = b.

What you did above was to define functions...

Definition

Let A, B be two sets. A function f from A to B is an assignment of exactly one element of B to each element of A.

Formally, $f:A\to B$ is a subset R of pairs $A\times B$ such that

- (i) $\forall a \in A, \exists b \in B \text{ such that } (a, b) \in R, \text{ and }$
- (ii) if $(a, b) \in R$ and $(a, c) \in R$, then b = c.

Inverse of a function

▶ If $f: A \to B$ is a function, then its inverse is the function $f^{-1}: B \to A$ defined by $f^{-1}(b) = a$ if f(a) = b. Does the inverse always exist?

Surjective or onto: $f: A \to B$ is surjective if $\forall y \in B$, $\exists x \in A$ such that f(x) = y.

- Surjective or onto: $f: A \to B$ is surjective if $\forall y \in B$, $\exists x \in A$ such that f(x) = y.
- ▶ Injective or 1-1: $f: A \to B$ is injective if $\forall x, y \in A$, if f(x) = f(y), then x = y.

- Surjective or onto: $f: A \to B$ is surjective if $\forall y \in B$, $\exists x \in A$ such that f(x) = y.
- ▶ Injective or 1-1: $f: A \to B$ is injective if $\forall x, y \in A$, if f(x) = f(y), then x = y.
- ▶ Bijective or 1-1 correspondence: A function is bijective if it is surjective and injective.

- Surjective or onto: $f: A \to B$ is surjective if $\forall y \in B$, $\exists x \in A$ such that f(x) = y.
- ▶ Injective or 1-1: $f: A \to B$ is injective if $\forall x, y \in A$, if f(x) = f(y), then x = y.
- ▶ Bijective or 1-1 correspondence: A function is bijective if it is surjective and injective.

If f is a bijection, then its inverse function exists and $f \circ f^{-1} = f^{-1} \circ f = \mathrm{id}$

- Surjective or onto: $f: A \to B$ is surjective if $\forall y \in B$, $\exists x \in A$ such that f(x) = y.
- ▶ Injective or 1-1: $f: A \to B$ is injective if $\forall x, y \in A$, if f(x) = f(y), then x = y.
- ▶ Bijective or 1-1 correspondence: A function is bijective if it is surjective and injective.

Qns

- 1. $f: \mathbb{Z} \to \mathbb{Z}$ such that $f(x) = x^2$.
- 2. $f: \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$ such that $f(x) = x^2$.

- Surjective or onto: $f: A \to B$ is surjective if $\forall y \in B$, $\exists x \in A$ such that f(x) = y. If A, B finite, $|A| \ge |B|$
- ▶ Injective or 1-1: $f: A \to B$ is injective if $\forall x, y \in A$, if f(x) = f(y), then x = y. If A, B finite, $|A| \le |B|$
- ▶ Bijective or 1-1 correspondence: A function is bijective if it is surjective and injective.

 If A, B finite, |A| = |B|

Qns

- 1. $f: \mathbb{Z} \to \mathbb{Z}$ such that $f(x) = x^2$.
- 2. $f: \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$ such that $f(x) = x^2$.

Relative notion of "size" using bijections

Thus, two finite/infinite sets have the same "size" iff there is a bijection between them.

- ▶ For finite sets, this is a property that can be shown.
- ► For infinite sets, it is a definition!

Relative notion of "size" using bijections

Thus, two finite/infinite sets have the same "size" iff there is a bijection between them.

Similarities between finite and infinite sets

- ightharpoonup \exists bij from A to B and B to C, implies \exists bij from A to C.
- $ightharpoonup \exists$ **bij** from A to B, then \exists **bij** from B to A.
- ▶ \exists **surj** from A to B and \exists **surj** B to A, implies \exists **bij** from A to B.

Relative notion of "size" using bijections

Thus, two finite/infinite sets have the same "size" iff there is a bijection between them.

Similarities between finite and infinite sets

- ightharpoonup \exists bij from A to B and B to C, implies \exists bij from A to C.
- $ightharpoonup \exists$ **bij** from A to B, then \exists **bij** from B to A.
- ▶ (Schröder-Bernstein Theorem:) \exists surj from A to B and \exists surj B to A, implies \exists bij from A to B. (H.W: Read this!)

Relative notion of "size" using bijections

Thus, two finite/infinite sets have the same "size" iff there is a bijection between them.

Similarities between finite and infinite sets

- ▶ \exists bij from A to B and B to C, implies \exists bij from A to C.
- $ightharpoonup \exists$ **bij** from A to B, then \exists **bij** from B to A.
- ▶ (Schröder-Bernstein Theorem:) \exists surj from A to B and \exists surj B to A, implies \exists bij from A to B. (H.W: Read this!)

Differences between finite and infinite sets

▶ For finite sets, if A is a set and $b \notin A$, then $|A| \neq |A \cup \{b\}|$.

Relative notion of "size" using bijections

Thus, two finite/infinite sets have the same "size" iff there is a bijection between them.

Similarities between finite and infinite sets

- ▶ \exists bij from A to B and B to C, implies \exists bij from A to C.
- ▶ \exists **bij** from A to B, then \exists **bij** from B to A.
- ▶ (Schröder-Bernstein Theorem:) \exists surj from A to B and \exists surj B to A, implies \exists bij from A to B. (H.W: Read this!)

Differences between finite and infinite sets

- ▶ For finite sets, if A is a set and $b \notin A$, then $|A| \neq |A \cup \{b\}|$.
- ▶ What about infinite sets?

Difference between finite and infinite sets

Theorem

Let A be a set and $b \notin A$. Then A is infinite iff there is a bijection from A to $A \cup \{b\}$.

Difference between finite and infinite sets

Theorem

Let A be a set and $b \notin A$. Then A is infinite iff there is a bijection from A to $A \cup \{b\}$.

Proof: essentially Hilbert's hotel but be careful...