PATENT ABSTRACTS OF JAPAN

(11) Publication number:

2000-081739

(43) Date of publication of application: 21.03.2000

(51) Int. CI.

G03G 15/00 B41J 2/44 G03G 15/043 G03G 15/04 G03G 21/00

(21) Application number: 10-252140 (71) Applicant: FUJI XEROX CO LTD

(22) Date of filing: 07.09.1998 (72) Inventor:

MOROFUJI KOJI TAMURA TORU TSUKADA SHIGERU OMORI KIMITO

(54) IMAGE FORMING DEVICE

(57) Abstract:

PROBLEM TO BE SOLVED: To precisely correct the detected value of the density of a toner patch over the entire area in areal gradation rate.

SOLUTION: This image forming device is provided with an optical sensor 1 which emits light from a light emission means to the surface of an image carrier and a toner patch formed on the image carrier and detects light reflected from there, and a computation means which consists of a light-quantity correction computation means 2a for computing, based on a change in the detected value by the optical sensor 1 with the lapse of time, a first detected-value- change-function by the influence of a quantity of the light emitted from a light emission means and a second detected-value-change-function by

the influence of the surface of the image carrier and a sensor-output correction computation means 2b. This device is further provided with a light-quantity correction means 3 which, based on the first detectedvalue-change-function computed by the computation means, corrects the quantity of the light emitted from the light emission means, and a sensoroutput correction means 4 which, based on the second detected-valuechange-function computed by the computation means, corrects the detected

value by the optical sensor 1.

LEGAL STATUS

[Date of request for examination] [Date of sending the examiner's decision of rejection] [Kind of final disposal of application other than the examiner's decision of rejection or application converted registration] [Date of final disposal for application] [Patent number] [Date of registration] [Number of appeal against examiner's decision of rejection] [Date of requesting appeal against examiner's decision of rejection] [Date of extinction of right]

Copyright (C); 1998, 2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許山東公開番号 特開2000-81739

(P2000-81739A)

(43)公開日 平成12年3月21日(2000.3.21)

	_					
(51) Int.CL'		織別配号	FI			デーマゴート*(参考)
G03G 1	15/00	303	GO3G L	5/00	303	2C362
B41J	2/44		2	1/00	510	2H027
G03G	15/043		B41J	3/00	r	2H076
1	15/04		G03G 1	5/04	120	
2	21/00	510		•		
			審查請求	未韶 浆	菌求項の数4	OL (全11页)
(21)出顧器号		特顯平10−252140	(71)出顧人	(71) 出庭人 000005496		
				食士ゼロ	コックス株式会社	
(22)出題日		平成10年9月7日(1998.9.7)	東京都港区赤坂二丁目17春22号			
			(72) 発明者	養藤	機治	
						274番地 宮土ゼロ
				ックスを	大式会社资老名事	業所内
			(72) 発明者	田村祭	×	
				神奈川県	原海港名市本第22	74番地 富士ゼロ
					农式会社海老名事	
			(74)代理人			
				弁理士	船標 國則	
						(動物 円)を針 /
						最終頁に続く

(54)【発明の名称】 画像形成装置

(57)【要約】

【課題】 面積階調率の全域にわたりトナーバッチの濃度負出値を正確に消正すること。

【解決手段】 本発明の画像形成装置は、像担持体の表面および像担持体上に形成されたトナーバッチへ発光手段から光を照射し、その反射光を検出する光学センサ1と、光学センサ1で検出した値の経時変化に基づき、発光手段から照射される光量の影響による第2の検出値変化関数と、像担持体の表面の影響による第2の検出値変化関数とを各々海算する光量縮正置海算手段2aおよびセンサ出力循正量海算手段2bから成る海算手段と、海算手段によって海算した第1の検出値変化関数に基づき発光手段から照射される光量を縮正する光量循正手段3と、海算手段によって海算した第2の検出値変化関数に基づき光学センサ1による検出値の補正を行うセンサ出力補正手段4とを備えている。

(2)

特闘2000-81739

【特許請求の範囲】

【請求項1】 像担待体の表面および像担待体上に形成 されたトナーバッチへ発光手段から光を照射し、その反 射光を検出する濃度検出手段と、

1

前記波度検出手段で検出した値の経時変化に基づき、前 記発光手段から照射される光量の影響による第1の検出 値変化関数と、前記像担持体の表面の影響による第2の 検出値変化関数とを各々演算する演算手段と、

前記海算手段によって演算した第1の検出値変化関数に 補正手段と、

前記演算手段によって演算した第2の検出値変化関数に 基づき前記滅度検出手段による検出値の結正を行う検出 値補正手段とを備えていることを特徴とする画像形成装 置。

【請求項2】 前記光置補正手段によって績正した光置 の補正置が所定の閾値を越えている場合、前記発光手段 の清掃を行うよう警告を出力する警告手段を備えている ことを特徴とする請求項1記載の画像形成装置。

に前記光畳縞正手段が前記発光手段から出力される光畳 を補正した後、その光量が前記所定の関値以上にならな い場合、前記発光手段の交換を行うよう警告を出力する ことを特徴とする請求項2記載の画像形成装置。

【請求項4】 像担待体の表面および像担待体上に形成 されたトナーバッチへ発光手段から光を照射し、その反 射光を検出する機度検出手段と、

前記濃度検出手段で検出した値の経時変化に基づき、前 記発光手段から照射される光畳の影響による第1の検出 値変化関数と、前記像担持体の表面の影響による第2の 30 【0007】また、図示しないが、反対に面積階調率C 検出値変化関数とを各々演算する演算手段と、

前記演算手段によって演算した第1. 第2の検出値変化 開教に基づき前記滅度検出手段による検出値の補正を行 う補正手段とを備えていることを特徴とする画像形成装 置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、像担持体上に形成 したトナーバッチの濃度を検出して画像形成条件の制御 を行う画像形成装置に関する。

[0002]

【従来の技術】カラー復写機などの画像形成装置では、 感光体等の像组持体上にトナーバッチを形成し、そのト ナーバッチからの反射光に基づき各色のトナー補給置を 調整しており、経時的に変化する諸条件に対応して常に 一定の濃度が得られるよう制御を行っている。

【0003】トナーバッチからの反射光を検出するセン サーとしては、鏡面反射型のセンサーや鏡面反射型およ び拡散反射型を組み合わせたセンサーが用いられている が、センサーの出力は経時的に変化(低下)する。この 50 変化の主要因としては、OLED等の発光手段の劣化ま たはLED順方向電流の変化もしくは発光面に付着した 汚れなど、入射光量の変化(低下) ②検出対象である 像担持体(感光体や転写ベルト)の表面状態の変化(反 射率の経時的変化、傷、歪みなどによる豪面粗さの変 化)が原因となる反射光量の変化(低下)、の2つが夢 げられる。

【0004】図では、カラートナーを検出したときのセ ンサ出力曲線を示す図であり、図中◆が初期状態。図中 基づき前記発光手段から照射される光量を縞正する光量 19 ●が経時変化後の状態を示している。このように経時変 化を起こすと初期状態に比べてセンサー出力が低下す る。低下量としては、トナーバッチの面積階調率C mが 小さい程大きく、Comが大きくなる程小さくなってい る。これは、面積階調率Cinの小さいトナーバッチほど 下地面積の割合が多くなることから、その下地の状態変 化を受けやすくなるためである。

[0005]

【発明が解決しようとする課題】しかしながら、従来の 画像形成装置においては、このセンサー出力低下を結正 【請求項3】 前記警告手段は、前記警告を出力した後 29 するにあたり 上記のおよびのの主要因を分けることな く一律に絹正を行っていることから、面積階調率Canの 全域にわたり十分な箱正を行うことができないという間 題が生じている。

> 【①①06】図8はセンサー出力の補正前後を説明する 図である。従来の画像形成装置では、図中◆に示す循正 前のセンゲー出力において、面積階調率Cinの小さい側 を葦草にして一律な舗正を行っていることから、図中● に示す結正後のセンサー出力における面積階調率 C nnの 大きい側が過補正になってしまっている。

nの大きい側を基準にして一律な矯正を行うと、面積階 調率C1nの小さい側が絹正不十分になってしまう。

[0008]

【課題を解決するための手段】本発明は、このような課 題を解決するために成された画像形成装置である。すな わち、本発明の画像形成装置は、像組持体の表面および 像担持体上に形成されたトナーバッチへ発光手段から光 を照射し、その反射光を検出する濃度検出手段と、濃度 検出手段で検出した値の経時変化に基づき、発光手段か 49 ら照射される光量の影響による第1の検出値変化関数 と、像担持体の表面の影響による第2の検出値変化関数 とを各々演算する演算手段と、演算手段によって演算し た第1の検出値変化関数に基づき発光手段から照射され る光量を領正する光量領正手段と、演算手段によって領 算した第2の鈴出館変化関数に基づき遺度検出手段によ る鈴出値の稿正を行う検出値稿正手段とを備えている。 【0009】とのような本発明では、演算手段によって 演算した第1の検出値変化関数に基づき光量補正手段で 発光手段から照射される光量を縞正することにより、発 光手段の経時変化分を結正でき、第2の検出値変化関数

に基づき検出値補正手段で濃度検出手段による検出値の 箱正することにより、像担持体の影響による検出値の経 時変化分を絹正できるようになる。

【0010】また、本発明は、像担持体の表面および像 担持体上に形成されたトナーバッチへ発光手段から光を 照射し、その反射光を検出する濃度検出手段と、 濃度検 出手段で検出した値の経時変化に基づき、発光手段から 照射される光量の影響による第1の検出値変化関数と、 像担持体の表面の影響による第2の検出値変化関数とを 1. 第2の検出値変化関数に基づき渡度検出手段による 検出値の補正を行う補正手段とを備えている画像形成装 置でもある。

【①①11】このような本発明では、演算手段によって 演算した第1. 第2の検出値変化関数に基づき渡度検出 手段による検出値を結正手段で結正していることから、 発光手段の経時変化分と像担持体の表面の影響による濃 度検出手段の検出値の経時変化分との両方を考慮して、 濃度検出手段の検出値を補正できるようになる。

[0012]

【発明の実施の形態】以下、本発明の画像形成装置にお ける実施の形態を図に基づいて説明する。図1は、第1 実施形態における画像形成装置を説明する制御ブロック 図である。なお、この図において二重枠はハードウェア 模成を示している。

【0013】すなわち、第1実施形態における画像形成 装置は、そのハードウェア構成として、光学センサ1、 光量補正置演算手段2 a. センサ出力補正置演算手段2 り、光質調整手段3、センサ出力循正手段4、画像形成 手段5および整告手段6を備えている。

【①①14】光学センサ1は、感光体や転写ベルト等か ら成る像担待体の表面に光を照射する発光手段(図示せ ず)と、像担持体からの反射光を受光する受光手段(図 示せず)とから構成され、主として像担待体上に形成さ れたトナーバッチの反射光量を検出する濃度検出手段と なっている。

【① 0 1 5 】光量箱正置演算手段2 a およびセンサ出力 箱正量演算手段2 b は演算手段であり、このうち光登稿 正量演算手段2 a は、光学センサ1による像担持体の下 地面出力検知の値に基づいて発光手段の光質の影響によ 40 る第1の検出値変化関数を演算し、センサ出力補正登演 算手段2 b は、光学センサーによるバッチ面出力検知の 値に基づいて像担待体の表面の影響による第2の検出値 変化関数を演算している。

【10016】光室縞正手段3は、光室補正置縮算手段2 a で演算した第1の検出値変化関数に基づき光学センサ 1の発光手段から照射される光質を補正する。また、セ ンサ出力領正手段4は、センサ出力補正置演算手段2 b で演算した第2の検出値変化関数に基づき光学センサ1 の出力値を消正する。

【①①17】画像形成手段5は、光学センサ1で得たト ナーバッチ濃度負出の結果に基づきトナー結給量を調整 して各種条件変化に対応した画像形成を行う。

【10018】整告手段6は、光量縞正手段3による光量 の補正置あるいは絹正誤の光量が所定の閾値以下になっ た場合、発光手段の清掃や交換等の整告を出力する部分 である。

【0019】このような構成から成る本実施影響では、 光学センザーの経時的な出力低下を、発光手段による影 各々演算する演算手段と、演算手段によって演算した第 10 響と、像担持体表面の影響とに切り分けて、発光手段で の出力低下分を光置箱正手段3で箱正し、像担持体表面 での出力低下分をセンサ出力領正手段4で領正してい る。これにより、面積階調率の全域にわたって正確な濃 度検出を行えるようになっている。

> 【0020】図2は面積階調率Cinに対する光学センサ の出力変化を示す図である。すなわち、光学センサの出 力は経時的に変化(低下)するが、その主要因として は、図中斜線部分で示す入射光の変化(低下)によるも のと、像担待体(下地)からの反射光の変化(低下)に 20 よるものとに分けられる。

【0021】入射光の変化(低下)としては、光学セン サの発光部(LED等)の汚れや順方向電流の低下、発 光素子自体の劣化が考えられる。一方、像担待体からの 反射光の変化(低下)としては、像组持体表面の傷、歪 みなどの表面組さの変化が考えられる。

【0022】このため、面積階調率Cinの小さい部分で は下地の影響を受けやすく光学センサの出力低下も大き いが、面荷階調率Cnnが大きくなるほど下地の影響が小 さくなり、発光手段の影響分だけが残るようになる。

30 【0023】次に、本実施形態の画像形成装置における 箱正動作について図3~図4のフローチャートに沿って 説明する。なお、以下の説明において図3、図4に示さ れない符号は図1を参照するものとする。

【0024】先ず、図3のステップS101に示すよう に、光学センサーによって面積階調率Cm=100%の トナーバッチ(飽和トナーバッチ)の強度を検出する処 理を行う。すなわち、トナーバッチの反射率が経時的に 変化していないことを前提とすると、この面積階調率C n=100%トナーバッチの濃度における変動分は入射 光の光質に変動があったものと考えられる。

【0025】次に、ステップS102に示すよろに、先 に検出した面積階調率Cinl 0.0%のトナーバッチ濃度 と初期値との比較を行う。ここで、鈴出した値と初期値 とが等しければステップS103へ進み、絹正係数を1 にする。つまり、箱正しないようにする。

【りり26】一方、検出した値と初期値とが異なってい る場合、ステップS104へ進み、補正登演算処理を行 う。補正置演算処理は、光量循正演算手段2 aによって 行われ、LED等の発光手段から照射される光量が、面 (4)

センサーで検出した際に初期値となるような補正量を溜 算する。

【0027】次いで、ステップS105では、その演算 した補正置が規定範囲内が否かを判断する。補正量が規 定範囲内にない場合はステップS106へ進み、整告手 段6によってFa:!信号を発信する。

【①028】補正置が規定節圍内にある場合はステップ S107へ進み、LED光量補正処理として、補正係数 の算出を行う。補正係数の算出は、初期値に対する測定 値の割合によって求める。

【0029】次に、ステップS108へ進み、この結正 係数を含む補正関数 f (x) に基づく補正処理を行う。 稿正関数 f (x)は、光量の影響による第1の検出値変 化関数である。この浦正関数 f (x)を用いて、 LED やレーザ等の発光手段による入射光量が初期値と等しく なるよう順方向電流や駆動電圧を調整する。これによ り、発光手段の影響による光学センサ1の出力低下分 (図2の斜線部)を縞正できることになる。

【0030】次いで、図4のステップ\$201に示すよ うに、像担待体の表面(下地部)のデータ読み取り処理 29 キャンセルしたときのクリーン面のセンサ出力となり、 を行う。すなわち、像担持体表面のグリーンな面からの 反射光を光学センサーで読み取る。

【0031】その後、ステップ\$202に示すよろに、 読み取った下地部データと初期値とに基づき、経時的な データの傾きを求め、ステップS203ではその傾きが 0以上であるか否かを判断する。傾きが0未満の場合は ステップS201へ戻り、0以上のときはステップS2 ()4へ造む。

【0032】ステップS204では、光学センサ1の出 ップS201で読み取った像担待体の下地部データとし ては、所定の範囲で数点取り込まれており、その中で最 も小さい出力値を求めるようにする。

【0033】次に、ステップS205では、ステップS 204で求めた光学センサ1の値と初期値との比較を行 い、等しければステップS206へ進んで結正係数を1 にする。一方、等しくない場合にはステップS207へ 進み、補正置海算処理を行う。

【①①34】補正置演算処理は、センサ出力論正量演算 の下地部データが初期値となるような補正費を算出す る。次に、ステップS208では、との緒正置が規定範 固内が否かを判断し、規定範囲内にない場合はステップ S209へ進んで警告手段6がクリーニング開始信号を 発信する。

【①035】一方、規定範囲内にある場合はステップS 210个進み、センサ出力の領正係数の算出を行う。 箱 正係數の算出は、初期値に対する測定値の割合によって 求める。

【①036】次に、ステップS211へ進み、この箱正 50 発光手段の交換または光学センサの故障である旨の容告

係敷を含む縞正関数g(x)に基づく補正処理を行う。 續正関数g (x)は、像担持体の表面(下地)の影響に よる第2の検出値変化関数である。この領正関数 g

(x)を用いて、光学センサ1の出力値を補正する。こ れにより、像担持体の表面の影響による光学センサーの。 出力低下分を補正できることになる。

【10037】とのような処理により、光学センサの経時 的な出力低下に対して、発光手段による影響と、像担待 体表面の影響とを切り分けて各々補正でき、面積階調率 10 の全域にわたり正確な濃度条件制御を行うことが可能と なる。

【0038】ととで、第1実施形態における画像形成態 置の処理における具体例を説明する。先ず、面積階調率 Cin=100%のトナーバッチの濃度を光学センサ1で 検出し、初期値に対する低下置を計算してαとする。こ のとき結正置は1/αとなる。

【りり39】次に、像担持体のクリーンな面の反射光を 光学センサーで検出し、これをVilean とする。そし て、Vclean ×αを算出する。これが入射光の変動分を これをV゚゚とする。

【①040】次いで、Vc'とVclean とから低下量8を 算出する。このBが像担持体表面の影響による光学セン サ1の出力低下分となる。

【りり41】そして、光量補正手段3により、1/αに 基づき発光手段の入射置が初期値と等しくなるよう調整 を行う。例えば、LEDの順方向電流を増加したり、レ ーザの駆動電圧を増加させる。

【0042】次に、その状態のままトナーバッチの測定 力における最小値を求める処理を行う。すなわち、ステ 30 を行い、光学センザ1の出力値の論正を行う。出力値の **循正はトナーバッチのエリアカバレッジに応じた異なる** 稿正量となる。 補正値Vp は以下の(1)式によって求 める。

[0043]

 $Vp = Vout \times (1/\beta) \times X'' \quad \cdots (1)$ なお、n=(100-検出したトナーバッチのCin [%] } / 100である。

【①①4.4】ここで、Vout は経時変化したときのトナ ーパッチ面での光センサ出力値である(以下同様)。ま 手段20によって行われ、光学センサ1による像担待体 40 た、Xはトナーバッチの色等の諸条件に応じて設定され る定数である。

【0045】との(1)式によって、像担待体表面の影 響による光学センサ1の出力値を、面積階調率Cinが小 さいほど(表面の影響を受けやすい部分ほど)大きく縞 正できるようになる。

【0046】また、1/αによって発光手段の光量箱正 を行った際、その補正置が規定範囲を越えている場合に は発光面のクリーニングを行う警告を整告手段6から発 信する。また、この絹正でも絹正しきれない場合には、

を響告手段6から発信するようにする。これによって、 光学センサーの不良を即座に把握することができるよう になる。

【10047】次に、本発明の第2実施形態における画像 形成装置の説明を行う。 図5は第2実能形態における画 像形成装置を説明する制御プロック図である。なお、こ の図において二重枠はハードウェア構成を示している。 【0048】すなわち、第2実施形態における画像形成 装置は、そのハードウェア構成として、光学センサ1、 光量補正置演算手段2 a. センサ出力補正置演算手段2 19 にする。つまり、結正しないようにする。 b. センサ出力補正関数導出手段7. センサ出力補正手

【①①49】光学センサ1は、感光体や転写ベルト等か ら成る像担待体の表面に光を照射する発光手段(図示せ ず)と、像担持体からの反射光を受光する受光手段(図 示せず)とから構成され、主として像组特体上に形成さ れたトナーバッチの反射光量を検出する濃度検出手段と なっている。

段4および画像形成手段5を備えている。

【0050】光量箱正置演算手段2aおよびセンサ出力 衛正堂演算手段20は演算手段であり、このうち光登論 20 正量海算手段2aは、光学センサ1による像担持体の下 地面出力検知の値に基づいて発光手段の光質の影響によ る第1の検出値変化関数を演算し、センサ出力補正置演 算手段2 bは、光学センサ1によるバッチ面出力検知の 値に基づいて像担待体の表面の影響による第2の検出値 変化関数を演算している。

【0051】センサ出力補正関数導出手段では、上記光 登補正置演算手段2 a で得た第1の検出値変化関数とセ ンサ出力補正量演算手段2 b で得た第2の検出値変化関 数とを用いて光学センサーの出力値を補正するセンサ出 力補正関数を導出する。

【0052】センサ出力補正手段4は、センサ出力縮正 関数導出手段?で導出したセンサ出力補正関数に基づき 光学センザーの出力値を補正する。

【0053】画像形成手段5は、光学センサ1で得たト ナーバッチ濃度貧出の結果に基づきトナー結論室を調整 して各種条件変化に対応した画像形成を行う。

【①054】このような構成から成る本実施形態では、 光学センサーの経時的な出力低下を、発光手段による影 響と、像担待体表面の影響とに切り分けて、各々の影響 40 分を光学センサーの出力値に対する補正関数として求 め、この領正関数によって光学センサ1の出力値を結正 することにより、面荷階調率の全域にわたって正確な濃 度検出を行えるようになっている。

【①055】次に、本実施形態の画像形成装置における 箱正動作について図6のフローチャートに沿って説明す る。なお、以下の説明において図6に示されない符号は 図5を参照するものとする。

【0056】先ず、図6のステップ\$301に示すよう に、光学センサ1によって面荷階調率Cn=100%の 50

トナーバッチ(飽和トナーバッチ)の濃度を検出する処 理を行う。すなわち、トナーバッチの反射率が経時的に 変化していないことを前提とすると、この面積階調率C m=100%トナーバッチの濃度における変動分は入射 光の光置に変動があったものと考えられる。

【0057】次に、ステップ\$302に示すよろに、先 に検出した面積階調率Cinl 00%のトナーバッチ濃度 と初期値との比較を行う。ここで、検出した値と初期値 とが等しければステップS303へ進み、縞正係数を1

【0058】一方、検出した値と初期値とが異なってい る場合、ステップS304へ進み、補正置演算処理を行 う。補正置演算処理は、光量循正演算手段2aによって 行われ、LED等の発光手段から照射される光量が、面 満階調率Cn=100%をのトナーバッチの濃度を光学 センサーで検出した際に初期値となるような浦正量を演 算する。

【0059】次いで、ステップS305では、その演算 した補正置が規定範囲内か否かを判断する。消正量が規 定節囲内にない場合はステップS306へ進み、整告手 段6によってFa!!信号を発信する。

【①060】補正置が規定範圍内にある場合はステップ S307へ進み、LED光量補正処理として、補正係数 の算出を行う。補正係数の算出は、初期値に対する測定 値の割合によって求める。

【0061】次に、ステップS308へ進み、との領正 係数を含む結正関数 f (x)の演算処理を行う。補正関 数f (x)は、光量の影響による第1の検出値変化関数 である。

【9962】次いで、ステップS399に示すよろに、 像担持体の表面(下地部)のデータ読み取り処理を行 う。すなわち、像担持体表面のクリーンな面からの反射 光を光学センサーで読み取る。

【0063】その後、ステップS310に示すよろに、 読み取った下地部データと初期値とに基づき、経時的な データの領きを求め、ステップS311ではその傾きが ①以上であるか否かを判断する。顔きが①未満の場合は ステップ\$309へ戻り、0以上のときはステップ\$3 12へ進む。

【0064】ステップS312では、光学センサ1の出 力における最小値を求める処理を行う。すなわち、ステ ップS309で読み取った像担待体の下地部データとし ては、所定の範囲で数点取り込まれており、その中で最 も小さい出力値を求めるようにする。

【0065】次に、ステップS313では、ステップS 312で求めた光学センサ1の値と初期値との比較を行 い。等しければステップS314个進んで絹正係数を1 にする。一方、等しくない場合にはステップS315へ 進み、絹正置演算処理を行う。

【0066】補正置演算処理は、センサ出力絹正量演算

(5)

手段25によって行われ、光学センサーによる像担待体 の下地部データが初期値となるような補正置を算出す る。次に、ステップS316では、この領正置が規定範 圏内が否かを判断し、規定範囲内にない場合はステップ S317へ進んで發告手段6がクリーニング開始信号を 発信する。

【①①67】一方、規定範囲内にある場合はステップS 318へ進み、センサ出力の領正係数の算出を行う。領 正係数の算出は、初期値に対する測定値の割合によって 求める。

【0068】次に、ステップS319へ進み、この補正 係数を含む補正関数g(x)の演算処理を行う。補正関 数8(x)は、像担持体の表面(下地)の影響による第 2の検出値変化関数である。

【0069】そして、ステップ\$320では、ステップ S308で演算した結正関数!(x)と、ステップS3 19で演算した補正関数g(x)とを合成して補正関数 h(x)を求める処理を行う。この関数合成はセンサ出 力補正関数導出手段?によって行われる。

【0070】この箱正関数h(x)を用いて光学センサ 20 【0075】 1の出力値を補正することにより、発光手段の経時変化*

* 分(補正関数 f (x))と、俊担待体の表面の影響によ る検出館の経時変化分(補正関数g(x)との両方を考 虚して、光学センサーの出力値から各面積階調率Cinに 応じた浦正置を導き出すととができるようになる。

10

【①①71】とこで、第2実施形態における画像形成装 置の処理における具体例を説明する。先ず、面積階調率 Cin=100%のトナーバッチの濃度を光学センサ1で 検出し、初期値に対する低下置を計算してαとする。こ のとき領正置は1/αとなる。

10 【0072】次に、像担持体のクリーンな面の反射光を 光学センサーで検出し、これをVilean とする。そし て、Vclean ×αを算出する。これが入射光の変動分を キャンセルしたときのクリーン面のセンサ出力となり、 これをV゚゚とする。

【0073】次いで、Vc'とVclean とから低下量8を 算出する。この8が像担持体表面の影響による光学セン サ1の出力低下分となる。

【0074】そして、1/a、1/Bから光学センサ1 の出力に以下(2)式で補正を行う。

$$Vp = Vcut \times \{(1/\beta) \times (100 - 検出したトナーバッチのCin [%] \} / 100 \} + 1/\alpha \} --- (2)$$

【0076】 この(2) 式によって、面積階調率Cinに 応じた緯正(発光手段による影響と像担待体表面による 影響との両方を考慮した補正)を行うことができるよう になる。

【0077】なお、上記説明したいずれの実施形態で ※

※ も、光学センサーとして反射型を用いた場合であり、拡 散型の光学センサを用いる場合には、上記(1).

(2) 式を各々(l') (2') にすることで対応で きるようになる。

[0078]

 $Vp = Vcut + \{V \times \{1/\beta\} \times \{100- 検出したトナーバッチのCm [$

%))/100} ···(1')

[0079]

$$Vp = Vout \times 1/\alpha + \{V \times \{1/\beta\} \times \{100 - 検出したトナーバッチ のC in [%] \} / 100 \} --- \{2^*\}$$

【①080】とれらの式でVは初期(経時変化前)のセート(その1)である。 ンサ出力値を示している。

[0081]

【発明の効果】以上説明したように、本発明の画像形成。 装置によれば次のような効果がある。すなわち、造度検 出手段による検出値の経時変化に対して、主要因を分け た簡正を行うことができ、全ての濃度範囲で適切な結正 40 トである。 を行うことがことが可能となる。これにより、広い濃度 範囲で最適な画像形成条件を設定することが可能とな る。

【図面の簡単な説明】

【図1】 第1実施形態における画像形成装置を説明す る副御ブロック図である。

【図2】 面積階調率Cinに対する光学センザの出力変 化を示す図である。

【図3】 第1実施形態の動作を説明するフローチャー

【図4】 第1実施形態の動作を説明するフローチャー ト(その2)である。

【図5】 第2実施形態における画像形成装置を説明す る副御ブロック図である。

【図6】 第2実施形態の動作を説明するフローチャー

【図?】 カラートナーを検出したときのセンサ出力曲 **淑を示す図である。**

【図8】 センサー出力の補正前後を説明する図であ る。

【符号の説明】

1…光学センサ、2a…光量絹正置演算手段、2b…セ ンサ出力領正至汽算手段。3…光置補正手段、4…セン が出力循正手段。5…画像形成手段。6…警告手段

http://www4.ipdl.jpo.go.jp/tjcontentdben.ipdl?N0000=21&N0400=image/gif&N0401=/NS... 3/12/2004

補正関数f(x)に基づく 御正処理 (8)

(10)

特開2000-81739

[図6]

(11)

特闘2000-81739

フロントページの続き

(72)発明者 塚田 茂

神奈川県海老名市本郷2274香地 富士ゼロックス株式会社海老名事業所内

(72)発明者 大森 公人

神奈川県海老名市本郷2274香地 富士ゼロックス株式会社海老名事業所内

Fターム(参考) 2C362 CB73

2H027 DA10 DE02 DE07 EC03 EC09 HA02 HA13 HB01 HB09 HB20

2H076 DA07