Math mode - v.1.87

Herbert Voß*

14th November 2004

Abstract

More than once people say that TEX was designed for mathematical or technical purpose. This maybe true when we remember the reasons why Donald Knuth created TEX. But nowadays there are a lot of examples where TEX was used for publications without any mathematical or technical background. Nevertheless, we have to consider, that writing publications with a lot of mathematical material is one of the important advantages of TEX and it seems that is impossible to know all existing macros and options of (IA)TEX and the several additional packages, especially AMSmath. This is the reason why I tried to collect all important facts in this paper.

Please report typos or any other comments to this documentation to voss@perce.de. This document was written with the LATEX editor Kile 1.7b2 (Qt 3.2 KDE 3.2) http://sourceforge.net/projects/kile/and the PDF output was built with the Linux version of VTEX/Free, Version 8.46 (http://www.micropress-inc.com/linux/)

^{*}Thanks for the feedback to: Alexander Boronka; Christian Faulhammer; José Luis Gómez Dans; Azzam Hassam; Martin Hensel; Morten Høgholm; Dan Lasley; Angus Leeming; Tim Love; Hendrik Maryns; Heinz Mezera; David Neuway; Joachim Punter; Carl Riehm; Will Robertson; Christoph Rumsmüller; José Carlos Santos; Uwe Siart; Uwe Stöhr; David Weenink; Michael Zedler; and last but not least a special thanks to Monika Hattenbach for her excellent job of proofreading.

CONTENTS CONTENTS

Contents

						F	age
Ι	Standard LATEX math mode					10	
1	Introduction						10
2	The Inlinemode						10
	2.1 Limits						11
	2.2 \fraction command						11
	2.3 Math in Chapter/Section Titles						11
	2.4 Equation numbering						12
	2.5 Framed math						12
	2.6 Linebreak						12
	2.7 Whitespace						13
	2.8 $\mathcal{A}_{\mathcal{M}}\mathcal{S}_{\mathcal{M}}$ math for the inline mode		•				13
3	Displaymath mode						13
	3.1 equation environment						13
	3.2 eqnarray environment						14
	3.2.1 Short commands						15
	3.3 Equation numbering						16
	3.3.1 Changing the style						16
	3.3.2 Resetting a counter style						17
	3.3.3 Equation numbers on the left side						17
	3.3.4 Changing the equation number style						17
	3.3.5 More than one equation counter						17
	3.4 Labels						18
	3.5 Frames						19
4	array environment						20
	4.1 Cases structure						21
	4.2 arraycolsep						22
5	Matrix						23
6	Super/Subscript and limits						24
	6.1 Multiple limits						25
	6.2 Problems					•	25
7	Roots						26

CONTENTS CONTENTS

8	Brackets, braces	26
	8.1 Examples	. 28
	8.1.1 Braces over several lines	. 28
	8.1.2 Middle bar	. 29
	8.2 New delimiters	. 29
	8.3 Problems with parentheses	. 30
9	Text in math mode	31
10	Font commands	31
	10.1 Old-style font commands	31
	10.2 New-style font commands	
11	Space	32
	11.1 Math typesetting	. 32
	11.2 Additional horizontal spacing	
	11.3 Problems	. 34
	11.4 Dot versus comma	
	11.5 Vertical whitespace	
	11.5.1 Before/behind math expressions	. 36
	11.5.2 Inside math expressions	
12	Styles	37
13	Dots	39
14	Accents	39
	14.1 Over- and underbrackets	. 39
	14.1.1 Use of	
	14.1.2 Overbracket	
	14.2 Vectors	
15	Exponents and indices	42
16	Operators	42
17	Greek letters	43
18	Pagebreaks	44
19	\stackrel	45
20	\choose	45
21	Color in math expressions	46

CONTENTS	CONTENTS

22	Boldmath 22.1 Bold math titles and items	46 47
23	Multiplying numbers	48
24	Other macros	48
II	$\mathcal{A}_{\mathcal{M}}\mathcal{S}$ math package	49
25	align environments	50
	25.1 The default align environment	51
	25.2 alignat environment	52
	25.3 flalign environment	53
	25.4 xalignat environment	54
	25.5 xxalignat environment	55
	25.6 aligned environment	55
	25.7 Problems	56
26	Other environments	56
	26.1 gather environment	56
	26.2 multline environment	57
	26.3 split environment	58
	26.4 Specials	60
	26.5 cases environment	61
	26.6 Matrix environments	62
27	Vertical whitespace	62
2 8	Dots	63
29	fraction commands	63
	29.1 Standard	63
	29.2 Binoms	65
	20.2 Dinoms	00
30	Roots	65
	30.1 Roots with \smash command	65
31	Accents	66
32	\mod command	66
33	Equation numbering	66
-	33.1 Subequations	67
34	Labels and tags	68

 ${\tt Mathmode.tex}$

4

CONTENTS CONTENTS

35	Limits	69
	35.1 Multiple limits	69
	35.2 Problems	7 0
	$35.3 \setminus \text{sideset}$	70
36	Operator names	71
37	Text in math mode	72
	37.1 \text command	72
	37.2 \intertext command	73
38	Extensible arrows	74
39	Frames	7 5
40	Greek letters	76
41	Miscellaneous commands	76
ΙIJ	I T _E X and math	77
	<u> </u>	
42	Length registers	77
	42.1 \abovedisplayshortskip	77
	42.2 \abovedisplayskip	77
	42.3 \belowdisplayshortskip	77 77
	42.4 \belowdisplayskip	77
	42.5 \delimiterfactor	78
	42.7 \displayindent	79
	42.8 \displaywidth	79
	42.9 \mathsurround	80
	42.10\medmuskip	80
	42.11\mkern	80
	42.12\mskip	80
	42.13\muskip	80
	42.14\muskipdef	80
	42.15\nonscript	80
	42.16\nulldelimiterspace	80
	42.17\predisplaysize	80
	42.18\scriptspace	80
	42.19\thickmuskip	81
	42.20\thinmuskip	81
	42.21\thinmuskip	81

CONTENTS CONTENTS

43	Math font macros	81
	43.1 \delcode	81
	43.2 \delimiter	81
	43.3 \displaystyle	82
	43.4 \fam	82
	43.5 \mathaccent	83
	43.6 \mathbin	83
	43.7 \mathchar	83
	43.8 \mathchardef	84
	43.9 \mathchoice	84
	43.10\mathclose	84
	43.11\mathcode	84
	43.12\mathop	85
	43.13\mathopen	85
	43.14\mathord	85
	43.15\mathpunct	85
	43.16\mathrel	85
	43.17\scriptfont	85
	43.18\scriptscriptfont	86
	$43.19\scriptscriptstyle \dots \dots \dots \dots \dots$	86
	$43.20\scriptstyle$	86
	43.21\skew	86
	43.22\skewchar	86
	43.23\textfont	86
	43.24 \textstyle	86
	T. C. (1)	0,7
44		87
		8787
	•	
	· 1	87
		87
	1 - 3	88
	· 1	88
		88
	· · · · · · · · · · · · · · · · · · ·	88 89
	• • • • • • • • • • • • • • • • • • • •	
	1	89
		89
		89
		89
	·	89
	·	89
	·	90
	44.17\radical	90

a a remaine	CONTRACTO
CONTENTS	CONTENTS

44.18\right	90
44.19\underline	90 91
44.20\vcenter	91
45 Math penalties	91
45.1 \binoppenalty	91
$45.2\$ \displaywidowpenalty	91
$45.3 \postdisplaypenalty \dots \dots \dots \dots \dots \dots$	91
$45.4 \predisplaypenalty$	91
45.5 \relpenalty	91
IV Other packages	92
46 List of available math packages	92
47 accents	92
49	0.0
48 amscd – commutative diagrams	93
49 amsopn	93
$50\; { t bigdel}$	94
51 bm	95
52 braket	95
53 cancel	96
54 delarray	97
55 empheq	98
$oldsymbol{56}$ esint	99
57 eucal and euscript.sty	100
58 exscale	100
59 xypic	101
	100
V Special symbols	102
60 Integral symbols	102

CONTENTS	CONTENTS
61 Harpoons	103
62 Bijective mapping arrow	104
63 Stacked equal sign	104
64 Other symbols	105
VI Examples	106
65 Identity matrix	106
66 Cases structure 66.1 Cases with numbered lines	106 107
67 Arrays 67.1 Quadratic equation	109 110
68 Over- and underbraces 68.1 Braces and roots	112 113
69 Integrals	115
70 Vertical alignment 70.1 Example 1	
71 Node connections	120
72 Special Placement 72.1 Formulas side by side	
List of Figures	125
List of Tables	126
Bibliography	127

CONTENTS	\mathcal{C}	О	Ν	V	TI	$\mathbf{E}I$	V	T	۲)
----------	---------------	---	---	---	----	---------------	---	---	---	---

Index 129

Part I

Standard LATEX math mode

1 Introduction

The following sections describe all the math commands which are available without any additional package. Most of them also work with special packages and some of them are redefined. At first some important facts for typesetting math expressions.

2 The Inlinemode

As the name says this are always math expressions which are in a standard textline, like this one: $f(x) = \int_a^b \frac{\sin x}{x} dx$. There are no limitations for the height of the math expressions, so that the layout may be very lousy if you

insert a big matrix in an inline mode like this: $\underline{A} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$. In this

case it is better to use the \smallmatrix environment $\underline{A} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$ from the $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ math package (see section 26.6 on page 62) or the displaymath mode (section 3 on page 13).

This inline mode is possible with three different commands:

1. \(... \), the problem is that \(is not a robust macro (see sec-\(...\) tion 2.3 on the next page).

3. \begin{math} ... \end{math}, also not robust \begin{math}

In general \$...\$ is the best choice, but this does not work in environments like verbatim or alltt. In this case \((...\)) works.

2.1 Limits

In the inline mode the limits are by default only in super or subscript mode and the fractions are always in the scriptstyle font size. For example: $\int_1^\infty \frac{1}{x^2} dx = 1$, which is not too big for the textline. You can change this with the command \limits, which must follows a mathoperator like an integral (\int), a sum (\sum), a product (\prod) or a limes (\lim). But this $\int_1^\infty \frac{1}{x^2} dx = 1$ looks not very nice in a text line when it appears between two lines, especially when there are multiline limits.

\limits \int \lim \prod \sum

2.2 \fraction command

For inlined formulas the fractions are by default in the scriptstyle (see tabular 8 on page 38), which is good for the typesetting $y = \frac{a}{b+1}$, because the linespacing is nearly the same, but not optimal, when the formula shows some important facts. There are two solutions to get a better reading:

\fraction

- 1. choose the display mode instead of the inline mode, which is the better one;
- 2. set the fontstyle to displaystyle, which makes the fraction $y = \frac{a}{b+1}$ more readable but the linespacing increases which is always a bad solution and should only be used when the first solution makes no sense.⁴

$$y = \frac{a}{b+1} = \frac{a}{b+1} \qquad \text{$$ $y=\frac{a}{b+1}={\displaystyle \frac{a}{b+1}=\frac{a}{b}}$}$$

2.3 Math in \part, \chapter, \section, ... titles like $f(x) = \prod_{i=1}^n \left(i - \frac{1}{2i}\right)$

All commands which appear in positions like contents, index, header, ... must be robust⁵ which is the case for \$...\$ but not for \(\\...\). If you do not have any contents, index, a.s.o. you can write the mathstuff in \chapter, \section, a.s.o without any restriction. Otherwise use \protect\(() and \protect\() or the \$...\$ version.

¹See section 12 on page 37.

 $^{^2\}mathrm{To}$ define a new operator see section 71

³For more information about limits see section 6.1 on page 25 or section 35 on page 69.

 $^{^4}$ For an abbreviation see section 29 on page 63, there is a special $\backslash dfrac$ macro.

⁵robust means that the macro is not expanded before it is moved into for example the tableofcontents file (*.toc). No robustness is often a problem, when a macro is part of another macro.

The whole math expression appears in the default font shape and not in bold like the other text. Section 22.1 on page 47 describes how the math expressions can be printed also in bold.

\texorpdfstring

There are problems with hyperref when there is a non text part in a title. It is possible to tell hyperref to use different commands, one for the title and another one for the bookmarks:

\texorpdfstring{<TeX part>}{<hyperref part>}

E.g.

```
\text{texorpdfstring}(\frac{\pi f(x)}{dx}){Integral function}+.
```

2.4 Equation numbering

It is obvious that the numbering of inline mathstuff makes no sense!

2.5 Framed math

With the \fbox macro everything of inline math can be framed, like the following one:

$$f(x) = \prod_{i=1}^{n} \left(i - \frac{1}{2i}\right)$$
¹ \fbox{\f(x) = \prod_{i=1}^{n} \left(i - \frac_{1}\{2i\} \right)\\$}

Parameters are the width of \fboxsep and \fboxrule, the predefined values from latex.ltx are:

```
1 \fboxsep = 3pt
2 \fboxrule = .4pt
```

The same is possible with the \colorbox $f(x) = \prod_{i=1}^{n} \left(i - \frac{1}{2i}\right)$ from the color package.

```
\label{low} $$ \operatorname{\colorbox\{yellow}_{sf(x)=\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}\operatorname{\colorbox}_{i=1}^{n}
```

2.6 Linebreak

LATEX can break an inline formula only when a relation symbol (=,<,>,...) or a binary operation symbol (+,-,...) exists and at least one of these symbols appears at the outer level of a formula. Thus a+b+c can be broken across lines, but a+b+c not.

- The default: $f(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \ldots + a_i x^i + a_2 x^2 + a_1 x^1 + a_0$
- The same inside a group $\{...\}$: $f(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + ... + a_i x^i + a_2 x^2 + a_1 x^1 + a_2 x^2 + a_1 x^2 + a_2 x^2 + a_1 x^2 + a_2 x^2 +$

• Without any symbol:

$$f(x) = a_n (a_{n-1} (a_{n-2} (...)...)...)$$

If it is not possible to have any mathsymbol, then split the inline formula in two or more pieces (\$...\$ \$...\$).

2.7 Whitespace

LATEX defines the length \mathsurround with the default value of Opt. This length is added before and after an inlined math expression (see table 1).

foo
$$f(x) = \int_{1}^{\infty} \frac{1}{x^{2}} dx = 1$$
 bar

1 foo \fbox{\\$ f(x) = \int_1^{\infty} \} \frac{1}{x^{2}} dx = 1

1 foo \rule{20pt}{\ht\strutbox}\ fbox{\\$ f(x) = \int_1^{\infty}\} \frac{1}{x^{2}} dx = 1

1 foo \rule{20pt}{\ht\strutbox}\ ht\strutbox}\ fbox{\\$ f(x) = \int_1^{\infty}\} \frac{1}{x^{2}} dx = 1

1 foo \rule{20pt}{\ht\strutbox}\ fixc{\\$ f(x) = \int_1^{\infty}\} \frac{1}{x^{2}} dx = 1

1 \setlength{\ht\strutbox}\ ht\strutbox}\ bar

1 \setlength{\ht\strutbox}\ foo \fbox{\\$ f(x) = \int_1^{\infty}\} \frac{1}{x^{2}} dx = 1

1 \setlength{\ht\strutbox}\ foo \fbox{\\$ f(x) = \int_1^{\infty}\} \frac{1}{x^{2}} dx = 1

1 \setlength{\ht\strutbox}\ foo \fbox{\\$ f(x) = \int_1^{\infty}\} \frac{1}{x^{2}} dx = 1

1 \setlength{\ht\strutbox}\ foo \fbox{\\$ fox \\$ f(x) = \int_1^{\infty}\} \frac{1}{x^{2}} dx = 1

1 \setlength{\ht\strutbox}\ foo \fbox{\\$ fox \\$ f(x) = \int_1^{\infty}\} \frac{1}{x^{2}} dx = 1

1 \setlength{\ht\strutbox}\ foo \frac{1}{x^{2

Table 1: Meaning of \mathsurround

2.8 $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ math for the inline mode

None of the $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ math-functions are available in inline mode.

3 Displaymath mode

This means, that every formula gets its own paragraph (line). There are some differences in the layout to the one from the title of 2.3.

3.1 equation environment

For example:

```
f(x) = \prod_{i=1}^{n} \left(i - \frac{1}{2i}\right) \qquad \text{(1)} \quad \text{(1)} \quad \text{(1)} \quad \text{(1)} \quad \text{(1)} \quad \text{(1)} \quad \text{(2)} \quad
```

The delimiters \begin{equation} ... \end{equation} are the only difference to the inline version. There are some equivalent commands for the display-math mode:

\begin{displaymath}
...

1. $\ \$ as $\ \$... \end{displaymath}, same as $\ \$... \]

... \end{displaymath}

2. $\[... \]$. (see above) the short form of a displayed formula, no number $\$

$$f(x) = \prod_{i=1}^{n} \left(i - \frac{1}{2i} \right)$$

displayed, no number. Same as 1.

3. \begin{equation}...\end{equation}

\begin{equation}

... \end{equation}

$$f(x) = \prod_{i=1}^{n} \left(i - \frac{1}{2i} \right) \tag{2}$$

displayed, a sequential equation number, which may be reset when starting a new chapter or section.

(a) There is only **one** equation number for the whole environment.

\nonumber

(b) There exists no star-version of the equation environment because \[...\] is the equivalent. With the tag \nonumber it is possible to suppress the equation number:

3.2 equarray environment

This is by default an array with three columns and as many rows as you like. It is nearly the same as an array with a rcl column definition.

\begin{eqnarray}

... \end{eqnarray}

It is not possible to change the internal behaviour of the eqnarray environment without rewriting the environment. It is always an implicit array with **three** columns and the horizontal alignment right-center-left (rcl) and small symbol sizes for the middle column. All this can not be changed by the user without rewriting the whole environment in latex.ltx.

left middle right
$$\frac{1}{\sqrt{n}} = \frac{\sqrt{n}}{n} = \frac{n}{n\sqrt{n}}$$

The equarray environment should not be used as an array. As seen in the above example the typesetting is wrong for the middle column. The numbering of equarray environments is always for every row, means, that four lines get four different equation numbers (for the labels see section 3.4):

```
y = d 
y = cx + d 
y = bx^{2} + cx + d 
y = ax^{3} + bx^{2} + cx + d 
(3)
(3)
(4)
(4)
(4)
(5)
(5)
(5)
(5)
(6)
(6)
(6)
(7)
(8)
(8)
(9)
(1)
(1)
(1)
(1)
(2)
(3)
(4)
(4)
(4)
(5)
(5)
(5)
(5)
(6)
(6)
(6)
(7)
(7)
(8)
(8)
(9)
(1)
(1)
(1)
(1)
(2)
(2)
(2)
(3)
(4)
(4)
(5)
(5)
(5)
(6)
(6)
(6)
(6)
(7)
(7)
(8)
(8)
(9)
(1)
(1)
(1)
(1)
(1)
(2)
(2)
(3)
(4)
(4)
(5)
(5)
(5)
(7)
(7)
(8)
(8)
(9)
(9)
(9)
(1)
(1)
(1)
(1)
(1)
(2)
(3)
(4)
(5)
(5)
(5)
(6)
(6)
(7)
(7)
(8)
(8)
(9)
(9)
(9)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(2)
(3)
(4)
(5)
(5)
(7)
(7)
(8)
(8)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
```

Toggling numbering off/on for **all** rows is possible with the starred version of equarray.

```
y = d
y = cx + d
y = bx² + cx + d
y = ax³ + bx² + cx + d

begin{eqnarray*}
y & = & d\label{eq:3}\\
y & = & cx+d\\
y & = & bx^2+cx+d\\
y & = & ax^{3}+bx^{2}+cx+d\\
label{eq:4}
\end{eqnarray*}

| begin{eqnarray*}
| y & = & d\label{eq:3}\\
y & = & bx^{2}+cx+d\\
| y & = & ax^{3}+bx^{2}+cx+d\\
| label{eq:4}\\
end{eqnarray*}
```

Toggling off/on for **single** rows is possible with the above mentioned \nonumber tag at the end of a row (before the newline command). For example:

3.2.1 Short commands

It is possible to define short commands for the equarray environment

```
1 \makeatletter
2 \newcommand{\be}{%
3  \begingroup
4 % \setlength{\arraycolsep}{2pt}
5  \eqnarray%
6 \@ifstar{\nonumber}{}%
7 }
```

```
\newcommand{\ee}{\endeqnarray\endgroup}
\makeatother
```

Now you can write the whole equation as

$$f(x) = \int \frac{\sin x}{x} dx \qquad (8)$$

$$\begin{bmatrix} 1 \\ 2 \\ f(x) & = & \left(\frac{\sin x}{\sin x} \right) \\ x dx \\ ee \end{bmatrix}$$

or, if you do not want to have a numbered equation as

$$f(x) = \int \frac{\sin x}{x} dx$$

$$\int_{2}^{1} \frac{\sin x}{x} dx$$

$$\int_{3}^{1} \frac{be*}{f(x) \&=\& \int x} x dx$$

$$\int_{3}^{1} \frac{be*}{dx}$$

3.3 Equation numbering

For all equations which can have one or more equation numbers (for every \nonumber line/row) the numbering for the whole equation can be disabled with switching from the unstarred to the star version. This is still for the whole formula and doesn't work for single rows. In this case use the \nonumber tag.

- This doc is written with the article-class, which counts the equations continuously over all parts/sections. You can change this behaviour in different ways (see the following subsections).
- In standard LATEX it is a problem with too long equations and the equation number, which may be printed with the equation one upon the other. In this case use the $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ math package, where the number is set above or below of a too long equation (see equation 30 on page 28).
- For counting subequations see section 33.1 on page 67.

Changing the style

\theequation

With the beginning of Section 25.2 on page 52 the counting changes from "49" into the new style "II-56". The command sequence is

```
\renewcommand\{\theequation\}{%
2
    \thepart-\arabic{equation}%
  }
3
```

See section 33 on page 66 for the $A_{\mathcal{M}}S$ math command.

3.3.2 Resetting a counter style

Removing a given reset is possible with the package remreset.⁶ Write into the preamble

\@removefromreset

```
1 \makeatletter
2 \@removefromreset{equation}{section}
3 \makeatother
```

or anywhere in the text.

Now the equation counter is no longer reset when a new section starts. You can see this after section 26.3 on page 58.

3.3.3 Equation numbers on the left side

Choose package leqno⁷ or have a look at your document class, if such an option exists.

3.3.4 Changing the equation number style

The number style can be changed with a redefinition of

\def\@eqnnum{{\normalfont \normalcolor (\theequation)}}

For example: if you want the numbers not in parentheses write

```
1 \makeatletter
2 \def\@eqnnum{{\normalfont \normalcolor \theequation}}
3 \makeatother
```

For $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ math there is another macro, see section 33 on page 66.

3.3.5 More than one equation counter

You can have more than the default equation counter. With the following code you can easily toggle between roman and arabic equation counting.

```
%code by Heiko Oberdiek
makeatletter
%Roman counter
newcounter{roem}
renewcommand{\theroem}{\roman{roem}}

% save the original counter
newcommand{\c@org@eq}{}
let\c@org@eq\c@equation
newcommand{\org@theeq}{}
```

 $^{^{6} {\}rm CTAN://macros/latex/contrib/supported/carlisle/remreset.sty}$

 $^{^{\}bf 7}{\rm CTAN://macros/latex/unpacked/leqno.sty}$

```
\let\org@theeq\theequation
11
12
  %\setroem sets roman counting
13
   \newcommand{\setroem}{
14
    \let\c@equation\c@roem
15
    \let\theequation\theroem}
16
17
  %\setarab the arabic counting
18
   \newcommand{\setarab}{
19
    \let\c@equation\c@org@eq
20
    \let\theequation\org@theeq}
21
  \makeatother
```

The following examples show how it works:

```
\begin{align}
                                           f(x) &= \int\sin x dx\label{eq:arab
f(x) = \int \sin x dx \qquad (9) \quad {}_{4} \qquad {}_{\text{end{align}}}
g(x) = \int \frac{1}{x} dx \qquad (10) \quad {}_{6} \qquad {}_{\text{y}} \qquad {}_{\text{setroem}}
                                        g(x) &= \int \int g(x) dx
                                           \begin{align}
                                       _9 F(x) &=-\cos x\\
                              (i) \frac{1}{10} \frac{1}{G(x)} &=\ln x\label{eq:rom1}
  F(x) = -\cos x
  G(x) = \ln x
                               (ii) 11 \end{align}
                                      12 %
                                           \setarab
                                      13
   f'(x) = \sin x \tag{11}
                                      15 \begin{align}
   g'(x) = \frac{1}{x} 
(12) \begin{array}{c} \text{15} \\ \text{16} \\ \text{ff{prime}} \\ \text{(x) &= } \\ \text{x} \end{array}
                                           g^{\rm he}(x) &= \frac{1}{x}\
                                              {eq:arab2}
                                          \end{align}
                                       18
```

There can be references to these equations in the usual way, like eq.9, 12 and for the roman one eq.ii.

3.4 Labels

Every numbered equation can have a label to which a reference is possible.

- There is one restriction for the label names, they cannot include one of LaTeX's command characters.⁸
- The label names are replaced by the equation number.

\tag

If you do not want a reference to the equation number but to an self defined name then use the $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ math command tag..., which is described in section 34 on page 68.

3.5 Frames

Similiar to the inline mode, displayed equations can also be framed with the \fbox command, like equation 13. The only difference is the fact, that the equation must be packed into a parbox or minipage. It is nearly the same for a colored box, where the \fbox{...} has to be replaced with \colorbox{yellow}{...}. The package color.sty must be loaded and - important- the calc.sty package to get a correct boxwidth.

$$f(x) = \int_{1}^{\inf} \frac{1}{x^2} dx = 1 \tag{13}$$

```
\noindent\fbox{\parbox{\linewidth-2\fboxsep-2\fboxrule}{%

begin{equation}\label{eq:frame0}

f(x)=\int_1^{\inf}\dfrac{1}{x^2}dx=1

end{equation}%

}}
```

If the equation number should not be part of the frame, then it is a bit complicated. There is one tricky solution, which puts an unnumbered equation just beside an empty numbered equation. The \hfill is only useful for placing the equation number right aligned, which is not the default. The following four equations 14-17 are the same, only the second one written with the \myMathBox macro which has the border and background color as optional arguments with the defaults white for background and black for the frame. If there is only one optional argument, then it is still the one for the frame color (15).

```
\makeatletter
  \def\myMathBox{\@ifnextchar[{\my@MBoxi}{\my@MBoxi[black]}}
  \def\my@MBoxi[#1]{\@ifnextchar[{\my@MBoxii[#1]}{\my@MBoxii[#1] [white
    ]}}
   \def\my@MBoxii[#1][#2]#3#4{%
4
    \par\noindent%
    \fcolorbox{#1}{#2}{%
6
       \parbox{\linewidth-\labelwidth-2\fboxrule-2\fboxsep}{#3}%
7
8
     \parbox{\labelwidth}{%
10
      \begin{eqnarray}\label{#4}\end{eqnarray}\%
11
12
    \par%
```

4 ARRAY ENVIRONMENT

```
13 }
14 \makeatother
```

$$f(x) = x^2 + x \tag{14}$$

$$f(x) = x^2 + x \tag{15}$$

$$f(x) = x^2 + x \tag{16}$$

$$f(x) = x^2 + x \tag{17}$$

```
begin{equation}\label{eq:frame2}
f(x)=x^2 +x

end{equation}
myMathBox[red]{\[f(x)=x^2 +x\]}{eq:frame3}
myMathBox[red][yellow]{\[f(x)=x^2 +x\]}{eq:frame4}
myMathBox{\[f(x)=x^2 +x\]}{eq:frame5}
```

If you are using the $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ math package, then try the solutions from section 39 on page 75.

4 array environment

This is simply the same as the equarray environment only with the possibility of variable rows and columns and the fact, that the whole formula has only one equation number and that the array environment can only be part of another math environment, like equation or displaymath.

\begin{array}
...
\end{array}

```
a) y = c (constant)

b) y = cx + d (linear)

c) y = bx^2 + cx + d (square)

d) y = ax^3 + bx^2 + cx + d (cubic) Polynomes (18)
```

11 \end{equation}

The horizontal alignment of the columns is the same than the one from the tabular environment.

For arrays with delimiters see section 54 on page 97.

4.1 Cases structure

If you do not want to use the $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ math package then write your own cases structure with the array environment:

```
x = \begin{cases} 0 & \text{if A=...} \\ 1 & \text{if B=...} \\ x & \text{this runs with as much text as you like, but without an raggeright text.} \end{cases}
(19)
```

It is obvious, that we need a \parbox if the text is longer than the possible linewidth.

$$x = \begin{cases} 0 & \text{if A=...} \\ 1 & \text{if B=...} \\ \text{this runs with as much text as you} \\ \text{like, because an automatic linebreak} \\ \text{is given with an ragged right text.} \\ x & \text{Without this command, you'll get a} \\ \text{formatted text, like the following one} \\ \text{... but with a parbox ... it works} \end{cases}$$
 (20)

```
\begin{equation}
  x = \left\{ \frac{1}{\%} \right\}
     \begin{array}{1>{\raggedright}p{.5\textwidth}}%
3
        0 & if A=...\tabularnewline
4
        1 & if B=...\tabularnewline
        x & \parbox{0.5\columnwidth}{this runs with as much text as you
6
           like, %
            because an automatic linebreak is given with %
            an raggedright text. Without this %
            \raggedright command, you'll get a formatted %
            text, like the following one \dots but with a parbox \dots it
10
              works}
11
      \end{array}%
     \right. %
12
   \end{equation}
```

4.2 arraycolsep

\arraycolsep

All the foregoing math environments use the array to typeset the math expression. The predefined separation between two columns is the length \arraycolsep, which is set by nearly all document classes to 5pt, which seems to be too big. The following equation is typeset with the default value and the second one with \arraycolsep=1.4pt

If this modification should be valid for all arrays/equations, then write it into the preamble, otherwise put it into a group or define your own environment as done in section 3.2.1 on page 15.

```
bgroup

arraycolsep=1.4pt

begin{eqnarray}

f(x) & = & \int\frac{\sin x}{x}dx

end{eqnarray}

egroup

makeatletter

newcommand{\be}{%

begingroup

setlength{\arraycolsep}{1.4pt}
```

5 Matrix

TEX knows two macros and LATEX one more for typesetting a matrix:

\matrix \bordermatrix

The first two macros are listed here for some historical reason, because the array or especially the AMS math package offer the same or better macros/environments. Nevertheless it is possible to redefine the bordermatrix macro to get other parentheses and a star version which takes the left top part as matrix:

$$\begin{pmatrix} x1 & x2 \\ x3 & x4 \\ x5 & x6 \end{pmatrix} \begin{matrix} 1 \\ 2 \\ 3 \end{matrix} \qquad \begin{bmatrix} x1 & x2 \\ x3 & x4 \\ x5 & x6 \end{bmatrix} \begin{matrix} 1 \\ 2 \\ 3 \end{matrix} \qquad \begin{cases} x1 & x2 \\ x3 & x4 \\ x5 & x6 \end{matrix} \begin{matrix} 2 \\ 3 \end{matrix} \qquad \begin{cases} x1 & x2 \\ x3 & x4 \\ x5 & x6 \end{matrix} \begin{matrix} 2 \\ 3 \end{matrix}$$

```
1 \bordermatrix[{[]}]{%
  \bordermatrix{%
                                              1 \bordermatrix[\{\}]{%
   & 1 & 2 \cr
                      & 1 & 2 \cr
                                                & 1 & 2 \cr
 1 & x1 & x2 \cr
                   3 1 & x1 & x2 \cr
                                              3 1 & x1 & x2 \cr
 2 & x3 & x4 \cr
                   4 2 & x3 & x4 \cr
                                              4 2 & x3 & x4 \cr
                   5 3 & x5 & x6
                                              5 3 & x5 & x6
 3 & x5 & x6
 }
                     }
                                              6 }
6
  \bordermatrix*{%
                      \bordermatrix*[{[]}]{%
                                                \bordermatrix*[\{\}]{%
  x1 & x2 & 1 \cr
                      x1 & x2 & 1 \cr
                                                x1 & x2 & 1 \cr
                   2
  x3 & x4 & 2 \cr
                      x3 & x4 & 2 \cr
                                                 x3 & x4 & 2 \cr
3
                   3
                                              3
  x5 & x6 & 3 \cr
                      x5 & x6 & 3 \cr
                                                 x5 & x6 & 3 \cr
4
                   4
   1 & 2
                       1 & 2
                                                 1 & 2
                     }
```

There is now an optional argument for the parenthesis with () as the default one. To get such a behaviour, write into the preamble:

```
\makeatletter
   \newif\if@borderstar
   \def\bordermatrix{\@ifnextchar*{%
3
   \@borderstartrue\@bordermatrix@i}{\@borderstarfalse\@bordermatrix@i*}%
4
  \def\@bordermatrix@i*{\@ifnextchar[{\@bordermatrix@ii}{\@bordermatrix@ii[()
    1}}
   \def\@bordermatrix@ii[#1]#2{%
   \begingroup
    \m@th\@tempdima8.75\p@\setbox\z@\vbox{%
      \def\cr{\crcr\noalign{\kern 2\p@\global\let\cr\endline }}%
10
11
      \ialign {\$##\hfil\kern 2\p@\kern\@tempdima & \thinspace \%
      \hfil $##$\hfil && \quad\hfil $##$\hfil\crcr\omit\strut %
12
      \hfil\crcr\noalign{\kern -\baselineskip}#2\crcr\omit %
13
      \strut\cr}}%
14
    \setbox\tw@\vbox{\unvcopy\z@\global\setbox\@ne\lastbox}%
15
16
     \setbox\tw@\hbox{\unhbox\@ne\unskip\global\setbox\@ne\lastbox}%
    \setbox\tw@\hbox{%
17
      $\kern\wd\@ne\kern -\@tempdima\left\@firstoftwo#1%
18
        \if@borderstar\kern2pt\else\kern -\wd\@ne\fi%
19
      \global\setbox\@ne\vbox{\box\@ne\if@borderstar\else\kern 2\p@\fi}%
20
      \vcenter{\if@borderstar\else\kern -\ht\@ne\fi%
21
        \unvbox\z@\kern-\if@borderstar2\fi\baselineskip}%
22
        \if@borderstar\kern-2\@tempdima\kern2\p@\else\,\fi\right\@secondoftwo
23
    }\null \;\vbox{\kern\ht\@ne\box\tw@}%
24
   \endgroup
25
26
  \makeatother
```

The matrix macro cannot be used together with the $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ math package, it redefines this macro (see section 26.6 on page 62).

6 Super/Subscript and limits

Writing a_{min} and a_{max} gives the same depth for the subscript, but writing them in upright mode with \mbox gives a different depth: a_{\min} and a_{\max} . The problem is the different height, which can be modified in several ways

- a_{\min} and a_{\max} ;
- a_{\min} and a_{\max} ;
- a_{\min} and a_{\max} . Both are predefined operators (see section 16 on page 42).

6.1 Multiple limits

\atop

For general information about limits read section 2.1 on page 11. With the **\atop** command multiple limits for a sum or prod are possible. The syntax is:

```
above below 1 \[ {above \atop below} \]
```

which is nearly the same as a fraction without a rule. This can be enhanced to a atop b atop c and so on. For equation 23 do the following steps:

```
\sum_{\substack{1 \leq j \leq p \\ 1 \leq j \leq q \\ 1 \leq k \leq r}} a_{ij}b_{jk}c_{ki} \qquad (23) \begin{equation} \aligned & \a
```

There are other solutions to get multiple limits, e.g. an array, which is not the best solution because the space between the lines is too big. The $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ math package provides several commands for limits (section 35) and the \underset and \underset commands (see section 41).

6.2 Problems

$$\sum_{\substack{1 \le j \le p \\ 1 \le j \le q \\ 1 \le k \le r}} a_{ij} b_{jk} c_{ki} \tag{24}$$

The equation 24 shows that the horizontal alignment is not optimal, because the math expression on the right follows at the end of the limits which are a unit together with the sum symbol. There is an elegant solution with $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ math, described in subsection 35.2 on page 70. If you do not want to use $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ math, then use \makebox. But there is a problem when the general fontsize is increased, \makebox knows nothing about the actual math font size. Equation 25a shows the effect and equation 25b the view without the boxes.

$$\sum_{\substack{1 \le j \le p \\ 1 \le j \le q \\ 1 \le k \le r}} a_{ij} b_{jk} c_{ki} \qquad (25a) \qquad \sum_{\substack{1 \le j \le p \\ 1 \le j \le q \\ 1 \le k \le r}} a_{ij} b_{jk} c_{ki} \qquad (25b)$$

```
begin{equation}

sum_{\makebox[0pt]{$%

{\scriptscriptstyle 1\le j\le p\atop {%

1\le j\le q\atop 1\le k\le r}}}%

$\}a_{ij}b_{jk}c_{ki}

end{equation}
```

7 Roots

The square root \sqrt is is the default for \LaTeX and the n-th root can be inserted with the optional parameter $\sqrt[n]$

\sqrt

\sqrt{x}
$$\sqrt{x}$$
 \sqrt[3]{x} $\sqrt[3]{x}$

There is a different typesetting in roots. Equation 26 has different heights for the roots, whereas equation 27 has the same one. This is possible with the \vphantom command, which reserves the vertical space (without a horizontal one) of the parameter height.

\vphantom

```
\sqrt{a}\sqrt{T}\sqrt{2\alpha k_{B_1}T^i} \qquad (26) \begin{equation} & \sqrt{a}\,\% & \sqrt{T}\,\% & \sqrt{2\alphalpha k_{B_1}T^i}\ \begin{equation} & \sqrt{2\alphalpha k_{B_1}T^i}\ \beg
```

The typesetting looks much more better, especially when the formula has different roots in a row, like equation 26. Using $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ math with the \smash command⁹ gives some more possibilities for typesetting of roots (see section 30 on page 65).

8 Brackets, braces and parentheses

\leftX
\rightX

⁹The \smash command exists also in L^AT_EX but without an optional argument, which makes the use for roots possible.

 $^{^{10}\}mathrm{See}$ section 8.1.1 on page 28 for example.

possible with the \big-series. Instead of writing \leftX or \rightX one of the following commands can be chosen:

Only a few commands can be written in a short form like \big(. The "X" has to be replaced with one of the following characters or commands from table 3, which shows the parentheses character, its code for the use with one of the "big" commands and an example with the code for that.

There exist for all commands a left/right version \big1, \bigr, \Big1 and so on, which only makes sense when writing things like:

$$) \times \frac{a}{b} \times \left(\\ (28) \\ ^{1} \\ \text{begin{align}} \\ \text{biggl)} \text{times } \text{frac{a}{b}} \\ \text{times} \text{biggr(} \\ \text{end{align}} \\ \text{begin{align}} \\ \text{begin{align}} \\ \text{bigg)} \text{times } \text{frac{a}{b}} \\ \text{times} \text{bigg(} \\ \text{end{align}} \\ \text{times} \\ \text{ti$$

LATEX takes the \biggl) as a mathopen symbol, which has by default another horizontal spacing.

In addition to the above additional commands there exists some more: \bigm, \Bigm, \biggm and \Biggm, which work as the standard ones (without the additional "m") but add some more horizontal space between the delimiter and the formula before and after (see table 2).

\bigmX \bigmX

\bigX

\BigX \biggX \BiggX

\biglX

\bigrX

Table 2: Difference between the default \bigg and the \biggm command

Char	Code	Example	Code
()	()	$3\left(a^2+b^{c^2}\right)$	$3\beta(a^2+b^{c^2}\beta)$

Char	Code	Example	Code
[]	[]	$3\left[a^2 + b^{c^2}\right]$	3\Big[a^2+b^{c^2}\Big]
/\	/\backslash	$3/a^2 + b^{c^2} \setminus$	$3\Big/a^2+b^{c^2}\Big\backslash$
{ }	\{\}	$3\left\{a^2 + b^{c^2}\right\}$	$3\left(a^2+b^{c^2}\right)$
	\Vert	$3\left a^2+b^{c^2}\right $	$3\left(a^2+b^{c^2}\right)$
	\lfloor \rfloor	$3\left\lfloor a^2 + b^{c^2} \right\rfloor$	<pre>3\Big\lfloor a^2+b^{c^2} \Big\rfloor</pre>
	\lceil\rceil	$3\left\lceil a^2 + b^{c^2} \right\rceil$	<pre>3\Big\lceil a^2+b^{c^2} \Big\rceil</pre>
⟨ ⟩	\langle\rangl	$\mathbf{e}3\Big\langle a^2+b^{c^2}\Big\rangle$	<pre>3\Big\langle a^2+b^{c^2}\Big\rangle</pre>
$\uparrow \uparrow$	\uparrow \Uparrow	$3 \uparrow a^2 + b^{c^2} \uparrow \uparrow$	<pre>3\Big\uparrow a^2+b^{c^2}\Big\Uparrow</pre>
$\downarrow \downarrow \downarrow$	\downarrow \Downarrow	$3 \Big\rfloor a^2 + b^{c^2} \Big\ $	<pre>3\Big\downarrow a^2+b^{c^2} \Big\Downarrow</pre>
$\uparrow \updownarrow$	\updownarrow \Updownarrow	$3 \int a^2 + b^{c^2} \iint$	<pre>3\Big\updownarrow a^2+b^{c^2} \Big\Updownarrow</pre>

Table 3: Use of the different parentheses for the "big" commands

8.1 Examples

8.1.1 Braces over several lines

The following equation in the single line mode looks like

$$\frac{1}{2}\Delta(f_{ij}f^{ij}) = 2\left(\sum_{i< j}\chi_{ij}(\sigma_i - \sigma_j)^2 + f^{ij}\nabla_j\nabla_i(\Delta f) + \nabla_k f_{ij}\nabla^k f^{ij} + f^{ij}f^k[2\nabla_i R_{jk} - \nabla_k R_{ij}]\right)$$
(30)

and is too long for the text width and the equation number has to be placed under the equation. 11 With the array environment the formula can be split

¹¹In standard \LaTeX the equation and the number are printed one over the other for too long formulas. Only $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ math puts it one line over (left numbers) or under (right numbers) the formula.

in two smaller pieces:

$$\frac{1}{2}\Delta(f_{ij}f^{ij}) = 2\left(\sum_{i < j} \chi_{ij}(\sigma_i - \sigma_j)^2 + f^{ij}\nabla_j\nabla_i(\Delta f) + \nabla_k f_{ij}\nabla^k f^{ij} + f^{ij}f^k[2\nabla_i R_{jk} - \nabla_k R_{ij}]\right)$$
(31)

It is obvious that there is a problem with the right closing parentheses. because of the two pairs "\left(... \right." and "\left. ... \right)" they have a different size because every pair does it in its own way. Using the \Bigg command changes this into a better typesetting:

$$\frac{1}{2}\Delta(f_{ij}f^{ij}) = 2\left(\sum_{i< j}\chi_{ij}(\sigma_i - \sigma_j)^2 + f^{ij}\nabla_j\nabla_i(\Delta f) + \nabla_k f_{ij}\nabla^k f^{ij} + f^{ij}f^k[2\nabla_i R_{jk} - \nabla_k R_{ij}]\right)$$
(32)

```
{\arraycolsep=2pt
begin{equation}
begin{array}{rcl}

\frac{1}{2}\Delta(f_{ij}f^{ij}) & = & 2\Bigg({\displaystyle}

\sum_{i<j}}\chi_{ij}(\sigma_{i}-\sigma_{j})^{2}+f^{ij},\

\nabla_{j}\nabla_{i}(\Delta f)+\\

& & +\nabla_{k}f_{ij}\nabla^{k}f^{ij}+f^{ij}f^{k}[2]

\nabla_{i}R_{jk}-\nabla_{k}R_{ij}\Bigg)

\end{array}

\end{equation}

} \end{equation}

}</pre>
```

Section 26.4 on page 60 shows another solution for getting the right size for parentheses when breaking the equation in smaller pieces.

8.1.2 Middle bar

See section 52 on page 95 for examples and the use of package braket.sty.

8.2 New delimiters

The default delimiters are defined in the file fontmath.ltx which is stored in general in [TEXMF]/tex/latex/base/fontmath.ltx. If we need for example a thicker vertical symbol than the existing \verb symbol we can define in the preamble:

The character number $3E_{16}$ (decimal 62) from the cmex10 font is the small thick vertical rule. Now the new delimiter \Norm can be used in the usual way:

```
\begin{vmatrix} *BLA* \\ *BLA* \\ \hline *BLUB* \end{vmatrix}
```

```
$\left\Norm *BLA* \right\Norm$

$\left\Norm \dfrac{*BLA*}{*BLUB*} \right\Norm$
```

8.3 Problems with parentheses

It is obvious that the following equation has not the right size of the parenthesis in the second integral, the innerone should be a bit smaller than the outer one.

$$\int_{\gamma} F'(z)dz = \int_{\alpha}^{\beta} F'\left(\gamma(t)\right) \cdot \gamma'(t)dt$$

```
1 \[
2 \int_\gamma F'(z) dz = \int_\alpha^\beta
3 F' \left(\gamma (t) \right) \cdot \gamma '(t) dt
4 \]
```

The problem is that TEX controlls the height of the parenthesis with \delimitershortfall and \delimiterfactor, with the default values

```
\delimitershortfall=5pt
\delimiterfactor=901
```

\delimiterfactor/1000 is the relative size of the parenthesis for a given formula environment. They could be of \delimitershortfall too short. These values are valid at the end of the formula, the best way is to set them straight before the math environment or global for all in the preamble.

$$\int_{\gamma} F'(z)dz = \int_{\alpha}^{\beta} F'(\gamma(t)) \cdot \gamma'(t)dt$$

```
1 {\delimitershortfall=-1pt
2 \[
3 \int_\gamma F'(z) dz = \int_\alpha^\beta
4 F' \left(\gamma (t) \right) \cdot \gamma '(t) dt
5 \]}
```

\delimitershortfall \delimiterfactor

9 Text in math mode

Standard text in math mode should be written in upright shape and not in the italic one which is reserved for the variable names: I am text inside math. or one of table 7 on page 34. There are different ways to write text inside math.

\textstyle
\mbox
\mathrm

- \mathrm. It is like math mode (no spaces), but in upright mode
- \textrm. Upright mode with printed spaces (real textmode)
- \mbox. The font size is still the one from \textstyle (see section 12 on page 37), so that you have to place additional commands when you use \mbox in a super- or subscript for limits.

Inserting long text is possible with a parbox, which can be aligned as usual to the top, bottom or center, e.g.

```
a+b+c+d+ef=g+h+i+j+k this is a very long (33) description of a formula
```

```
begin{eqnarray}
a+b+c+d+ef & = & g+h+i+j+k %

qquad\textrm{\parbox[t]{.25\linewidth}{%
this is a very long description of a formula}%
}
end{eqnarray}
```

Additional commands for text inside math are provided by $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ math (see section 37 on page 72).

10 Font commands

10.1 Old-style font commands

Should never be used, but are still present and supported by LATEX. The default syntax for the old commands is

```
{\XX test}
```

Table 4 on the following page shows what for the XX has to be replaced. The major difference to the new style is that these \XX are toggling the actual math mode into the "XX" one, whereas the new commands starts a group which switches at its end back to the mode before.

\bf test $| \ TEST | \ test | \ test | \ test |$

Table 4: Old font style commands

10.2 New-style font commands

The default syntax is

\mathXX{test}

Table 5 shows what for the XX have to be replaced. See section 57 on page 100 for additional packages.

\mathrm
\mathfrak
\mathcal
\mathsf
\mathbb
\mathtt
\mathit

\mathbf

Command	Test
default	ABCDEFGHIJKLMNOPQRSTUVWXYZ
	abcdefghijklmnopqrstuvwxyz
$\mbox{\mbox{\tt mathfrak}}$	ABCDEFGHIJALMNOPQKGTUVWXY3
	abcdefghijklmnopqrstuvwxnz
$\setminus \mathtt{mathcal}^a$	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathsf	ABCDEFGHIJKLMNOPQRSTUVWXYZ
	abcdefghijklmnopqrstuvwxyz
$\verb \mathbb ^a$	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathtt	ABCDEFGHIJKLMNOPQRSTUVWXYZ
	abcdefghijklmnopqrstuvwxyz
\mathit	ABCDEFGHIJKLMNOPQRSTUVWXYZ
	abcdefghijklmnopqrstuvwxyz
\mathrm	ABCDEFGHIJKLMNOPQRSTUVWXYZ
	abcdefghijklmnopqrstuvwxyz
\mathbf	ABCDEFGHIJKLMNOPQRSTUVWXYZ
	${\bf abcdefghijklmnopqrstuvwxyz}$

 $[^]a\mathrm{Not}$ available for lower letters. For mathcal exists a non free font for lower letters (http://www.yandy.com)

Table 5: Fonts in math mode

11 Space

11.1 Math typesetting

LATEX defines the three math lengths¹² with the following values¹³:

\thinmuskip
\medmuskip
\thickmuskip

[\]thinmuskip=3mu

^{2 \}medmuskip=4mu plus 2mu minus 4mu

¹²For more information see: http://www.tug.org/utilities/plain/cseq.html

 $^{^{13}\}mathrm{see}$ fontmath.ltx

thickmuskip=5mu plus 5mu

where mu is the abbreviation for math unit.

$$1mu = \frac{1}{18}em$$

default
$$f(x) = x^2 + 3x_0 \cdot \sin x$$

$$f(x) = x^2 + 3x_0 \cdot \sin x$$
 all set to zero
$$f(x) = x^2 + 3x_0 \cdot \sin x$$

Table 6: The meaning of the math spaces

These lengths can have all glue and are used for the horizontal spacing in math expressions where TEX puts spaces between symbols and operators. The meaning of these different horizontal skips is shown in the table 6. For a better typesetting LATEX inserts different spaces between the symbols.

\thinmuskip space between ordinary and operator atoms

\medmuskip space between ordinary and binary atoms in display and text styles

\thickmuskip space between ordinary and relation atoms in display and text styles

11.2 Additional horizontal spacing

LaTeX defines the following short commands:

\def\>{\mskip\medmuskip}
\def\;{\mskip\thickmuskip}
\def\!{\mskip-\thinmuskip}

\thinspace \medspace \thickspace \negthinspace \negmedspace \negthickspace

In math mode there is often a need for additional tiny spaces between variables, e.g. $L\frac{di}{dt}$ written with a tiny space between L and $\frac{di}{dt}$ looks nicer: $L\frac{di}{dt}$. Table 7 shows a list of all commands for horizontal space which can be used in math mode. The "space" is seen "between" the boxed a and b. For all examples a is \boxed{a} and b is \boxed{b}. The short forms for some spaces may cause problems with other packages. In this case use the long form of the commands.

\hspace \hphantom \kern

11 SPACE 11.3 Problems

Positive Space	Negative Space		
\$ab\$	ab		
\$a b\$	ab		
\$a\ b\$	a b		
<pre>\$a\mbox{\textvisiblespace}b\$</pre>	$a \cup b$		
$ab\$ (\alpha\thinspace b\)	ab	\$a\! b\$	ab
$a\: b$ (a\medspace b$)$	a b	<pre>\$a\negmedspace b\$</pre>	ab
<pre>\$a\; b\$ (\$a\thickspace b\$</pre>	a b	<pre>\$a\negthickspace b\$</pre>	ab
<pre>\$a b\$</pre>	a b		
<pre>\$a\qquad b\$</pre>	a b		
$a\hspace{0.5cm}b$	a b	<pre>\$a\hspace{-0.5cm}b\$</pre>	la
<pre>\$a\kern0.5cm b\$</pre>	a b	<pre>\$a\kern-0.5cm b\$</pre>	loa
<pre>\$a\hphantom{xx}b\$</pre>	a b		
\$axxb\$	axxb		

Table 7: Spaces in math mode

11.3 Problems

Using \hphantom in mathmode depends to the object. \hphantom reserves only the space of the exact width without any additional space. In the following example the second line is wrong: & \hphantom{\rightarrow} b\\. It does not reserve any additional space.

```
a \rightarrow b
b
b
```

This only works when the math symbol is a mathrel one, otherwise you have to change the horizontal space to \medmuskip or \thinmuskip. For more informations about the math objects look into fontmath.ltx or amssymb.sty or use the \show macro, which prints out the type of the mathsymbol, e.g.: \show\rightarrow with the output:

```
1 > \rightarrow=\mathchar"3221.
2 1.20 \show\rightarrow
```

The first digit represents the type:

0: ordinary

1 : large operator

2: binary operation

3: relation

4: opening

5 : closing

6: punctuation

7: variable family

Grouping a math symbol can change the behaviour in horizontal spacing. Compare 50×10^{12} and 50×10^{12} , the first one is typeset with \$50\times10^{12}\$ and the second one with \$50\times\10^{12}\$. Another possibilty is to use the numprint package.

11.4 Dot versus comma

\mathpunct \mathord

In difference to a decimal point and a comma as a marker of thousends a lot of countries prefer it vice versa. To get the same behaviour the meaning of dot and comma has to be changed:

```
1,234,567.89 \text{ default} (34)
```

$$1.234.567,89$$
 vice versa, wrong spacing (35)

$$1.234.567,89 \text{ correct spacing}$$
 (36)

```
1 1,234,567.89 & \textrm{ default}\\
2 1.234.567,89 & \textrm{ vice versa, wrong spacing}\\
3 1\mathpunct{.}234\mathpunct{.}567{,}89 & \textrm{ correct spacing}
```

The original definitions from fontmath.ltx¹⁵ are

```
\DeclareMathSymbol{,}{\mathpunct}{letters}{"3B} \DeclareMathSymbol{.}{\mathord}{letters}{"3A}
```

and can be changed for a documentwide other behaviour. In the above equation 36 the comma is only set in a pair of braces {,}, which is the same as writing \mathord{,} because LaTeX handles everything inside of parenthises as a formula, which gets the same spacing.

It is also possible to use the package ${\tt icomma.sty}^{16}$ for a documentwide correct spacing.

 $^{^{14}\}mathrm{CTAN://macros/latex/contrib/numprint/}$

¹⁵ Located in texmf/tex/latex/base/

 $^{^{16}{\}rm CTAN://\ macros/latex/contrib/was/}$

11.5 Vertical whitespace

11.5.1 Before/behind math expressions

There are four predefined lengths, which control the vertical whitespace of displayed formulas:

```
\abovedisplayskip=12pt plus 3pt minus 9pt \abovedisplayshortskip=0pt plus 3pt \belowdisplayskip=12pt plus 3pt minus 9pt \belowdisplayshortskip=7pt plus 3pt minus 4pt
```

The short skips are used if the formula starts behind the end of the foregoing last line. Only for demonstration in the following examples the shortskips are set to 0pt and the normal skips to 20pt without any glue:

The line ends before.

$$f(x) = \int \frac{\sin x}{x} dx \tag{37}$$

The line doesn't end before the formula.

$$f(x) = \int \frac{\sin x}{x} dx \tag{38}$$

And the next line starts as usual with some text ...

```
1 \abovedisplayshortskip=Opt
2 \belowdisplayshortskip=Opt
3 \abovedisplayskip=2Opt
4 \belowdisplayskip=2Opt
5 \noindent The line ends before.
6 \begin{equation}
7 f(x) = \int\frac{\sin x}{x}dx
8 \end{equation}
9 \noindent The line doesn't end before the formula.
10 \begin{equation}
11 f(x) = \int\frac{\sin x}{x}dx
12 \end{equation}
13 \noindent And the next line starts as usual with some text ...
```

11.5.2 Inside math expressions

\\[<length>] This works inside the math mode in the same way as in the text mode.

\jot

\jot The vertical space between the lines for all math expressions which allow multiple lines can be changed with the length \jot, which is predefined as

\newdimen\jot \jot=3pt

The following three formulas show this for the default value, \jot=0pt and \jot=10pt.

$$y = d y = d y = d y = c\frac{1}{x} + d y = c\frac{1}{x} + d y = c\frac{1}{x} + d y = b\frac{1}{x^2} + cx + d y = b\frac{1}{x^2} + cx + d y = b\frac{1}{x^2} + cx + d$$

Defining a new environment with a parameter makes things easier, because changes to the length are locally.

```
\newenvironment{mathspace}[1]{%
\setlength{\jot}{#1}%
\ignorespaces%

4 }{%
\ignorespacesafterend%

5 }
```

\arraystretch

\arraystretch The vertical space between the lines for all math expressions which contain an array environment can be changed with the command \arraystretch, which is predefined as

\def\arraystretch{1}

Renewing this definition is global to all following math expressions, so it should be used in the same way than \jot.

12 Styles

This depends on the environment in which they are used. An inline formula has a default math fontsize called \textstyle, which is smaller than the one for a display formula (see section 3), which is called \displaystyle. Below this predefinition there are two other special fontstyles for math, \scriptstyle and \scriptscriptstyle. They are called "style" in difference to "size", because they have a dynamic character, their real fontsize belongs to the environment in which they are used. A fraction for example is by default in scriptstyle when it is in an inline formula like this $\frac{a}{b}$, which can be changed to $\frac{a}{b}$. This maybe in some cases useful but it looks in general ugly because the line spacing is too big. These four styles are predefined and together in a logical relationship. It is no problem to use the other styles like

\textstyle
\displaystyle
\scriptstyle
\scripscriptstyle

Mode	Inline	Displayed
default	$f(t) = \frac{T}{2\pi} \int \frac{1}{\sin\frac{\omega}{t}} dt$	$f(t) = \frac{T}{2\pi} \int \frac{1}{\sin\frac{\omega}{t}} dt$
\displaystyle	$f(t) = \frac{T}{2\pi} \int \frac{1}{\sin\frac{\omega}{t}} dt$	$f(t) = \frac{T}{2\pi} \int \frac{1}{\sin\frac{\omega}{t}} dt$
\scriptstyle	$f(t) = \frac{T}{2\pi} \int \frac{1}{\sin\frac{\omega}{t}} dt$	$f(t) = \frac{T}{2\pi} \int \frac{1}{\sin \frac{\omega}{t}} dt$
\scriptscriptstyle	$f(t) = \frac{T}{2\pi} \int \frac{1}{\sin \frac{\omega}{t}} dt$	$f(t) {=} \frac{T}{2\pi} \int \frac{1}{\sin \frac{\omega}{t}} dt$
\textstyle	$f(t) = \frac{T}{2\pi} \int \frac{1}{\sin\frac{\omega}{t}} dt$	$f(t) = \frac{T}{2\pi} \int \frac{1}{\sin\frac{\omega}{t}} dt$

Table 8: Math styles

\large, \Large, ... outside the math environment. For example a fraction written with \Huge: $\frac{\mathcal{Q}}{b} \text{ (\Huge\$\frac\{a\}\{b\}\$)}. \text{ This may cause some problems when you want to write a displayed formula in another fontsize, because it also affects the interline spacing of the preceding part of the paragraph. If you end the paragraph, you get problems with spacing and page breaking above the equations. So it is better to declare the font size and then restore the baselines:$

$$\int_{1}^{2} \frac{1}{x^{2}} dx = 0.5 \tag{39}$$

```
\makeatletter
   \newenvironment{smallequation}[1]{%
2
    \skip@=\baselineskip
3
4
    \baselineskip=\skip@
5
    \equation
  }{\endequation \ignorespacesafterend}
7
   \makeatother
  \begin{smallequation}{\tiny}
10
  \int_1^2\, \frac{1}{x^2}\, dx=0.5
  \end{smallequation}
```

If you use this the other way round for huge fontsizes, don't forget to load package exscale (see section 58 on page 100).

13 Dots

In addition to the above decorations there are some more different dots which are single commands and not by default over/under a letter. It is not easy to see the differences between some of them. Dots from lower left to upper right are possible with \reflectbox{\$\ddots\$}...

```
\cdots
\dots
\dotsc
\dotsi
\dotsm
\dotso
\ldots
\ldots
\vdots
```

```
        \cdots ... \dotsb ... \dotsc ... \dotsi ...

        \dotsm ... \dotsc ... \dotsc ... \vdots :
```

Table 9: Dots in math mode

14 Accents

The letter "a" is only for demonstration. The table 10 shows all in standard LATEX available accents and the ones which are placed under a character, too. With package amssymb it is easy to define new accents. For more information see section 31 on page 66 or other possibilities at section 47 on page 92.

\ac	ute $lpha$	i	\bar	\bar{a}	\breve	$reve{a}$
\	bar \bar{a}	į	\breve	$reve{a}$		
\cl	eck ă	i	\dddot	\ddot{a}	\ddot	\ddot{a}
\	dot \dot{a}	ı	\grave	\grave{a}	\hat	\hat{a}
\mathi	ring å	ı	\overbrace	\widehat{a}	\overleftarrow	\overleftarrow{a}
\overleftrightam	row <i>a</i>	\overrightarrow{l}	\overline	\overline{a}	\overrightarrow	\overrightarrow{a}
\ti	.lde $ ilde{a}$	i	\underbar	$\underline{\mathbf{a}}$	\underbrace	$\stackrel{a}{\smile}$
\underleftai	row <u>a</u>	<u>. </u>	\underleftrightarrow	$\stackrel{a}{\longleftrightarrow}$	\underline	$\underline{\underline{a}}$
\underrightan			\vec	\vec{a}	\widehat	\widehat{a}
\wideti	frow \underline{a} and \widehat{a}	í				

Table 10: Accents in math mode

The letters i and j can be substituted with the macros \imath and \jmath when an accents is placed over these letters and the dot should disappear: \vec{i} \ddot{j} (\hat{j}) \\ddot{\jmath}\\.

Accents can be used in different ways, e.g. strike a single chracter with a horizontal line like \$\mathaccent'-A\$: A or \$\mathaccent\mathcode'-A\$: A. In section 53 on page 96 is a better solution for more than one character.

14.1 Over- and underbrackets

There are no \underbracket and \overbracket commands in the list of accents. They can be defined in the preamble with the following code.

```
\makeatletter
  \def\underbracket{%
   \@ifnextchar[{\@underbracket}{\@underbracket [\@bracketheight]}%
   \def\@underbracket[#1]{%
5
   \@ifnextchar[{\@under@bracket[#1]}{\@under@bracket[#1][0.4em]}%
6
7
  \def\@under@bracket[#1][#2]#3{%\message {Underbracket: #1,#2,#3}
   \mathop{\vtop{\m@th \ialign {##\crcr $\hfil \displaystyle {#3}\hfil $%
9
   \crcr \noalign {\kern 3\p0 \nointerlineskip }\upbracketfill {#1}{#2}
10
       \crcr \noalign {\kern 3\p@ }}}\limits}
11
   \def\upbracketfill#1#2{$\m@th \setbox \z@ \hbox {$\braceld$}
12
                   \edef\@bracketheight{\the\ht\z@}\bracketend{#1}{#2}
13
                   \leaders \vrule \@height #1 \@depth \z@ \hfill
14
                   \leaders \vrule \Oheight #1 \Odepth \zO \hfill \bracketend
                     {#1}{#2}$}
  \def\bracketend#1#2{\vrule height #2 width #1\relax}
16
  \makeatother
```

1. \underbrace{...} is an often used command:

$$\underbrace{x^2 + 2x + 1}_{(x+1)^2} = f(x) \tag{40}$$

2. Sometimes an underbracket is needed, which can be used in more ways than \underbrace{...} an example for \underbracket{...}:

Hate Science
$$1 \to 2 \to 3 \to 4 \to 5 \to 6 \to 7 \to 8 \to 9 \to 10 \quad \text{Love Science}$$
 low medium high

14.1.1 Use of \underbracket{...}

The \underbracket{...} command has two optional parameters:

- the line thickness in any valid latex unit, e.g. 1pt
- the height of the edge brackets, e.g. 1em

using without any parameters gives the same values for thickness and height as predefined for the \underbrace command.

1.	<pre>\$\underbracket {foo\ bar}\$</pre>	foo bar
2.	<pre>\$\underbracket[2pt] {foo\ bar}\$</pre>	foo bar
3.	<pre>\$\underbracket[2pt] [1em] {foo\ bar}\$</pre>	foo bar

14 ACCENTS 14.2 Vectors

14.1.2 Overbracket

In addition to the underbracket an overbracket is also useful, which can be used in more ways than **\overbrace{...}**. For example:

Hate Science
$$1 \to 2 \to 3 \to 4 \to 5 \to 6 \to 7 \to 8 \to 9 \to 10 \text{ Love Science low}$$
 high

The \overbracket{...} command has two optional parameters:

- the line thickness in any valid latex unit, e.g. 1pt
- the height of the edge brackets, e.g. 1em

using without any parameters gives the same values for thickness and height as predefined for the \overbrace command.

1.	<pre>\$\overbracket {foo\ bar}\$</pre>	foo bar
2.	<pre>\$\overbracket[2pt] {foo\ bar}\$</pre>	foo bar
3.	<pre>\$\overbracket[2pt] [1em] {foo\ bar}\$</pre>	foo bar

14.2 Vectors

Especially for vectors there is the esvect.sty¹⁷ package, which looks better than the \overrightarrow, f.ex:

$\backslash vv\{\}$	$\operatorname{voverrightarrow}\{\}$
\overrightarrow{a}	\overrightarrow{a}
\overrightarrow{abc}	\overrightarrow{abc}
7	$\overrightarrow{\imath}$
\overrightarrow{A}_x	\overrightarrow{A}_x

Table 11: Vectors with package esvect.sty (in the right column the default one from \LaTeX)

Look into the documentation for more details about esvect.sty.

¹⁷CTAN://macros/latex/contrib/esvect/

15 Exponents and indices

The two active characters $_$ and $^$ can only be used in math mode. The **following** character will be printed as an index ($y=a_1x+a_0$) or as an exponent ($x^2+y^2=r^2$: $x^2+y^2=r^2$). For more than the next character put it inside of {}, like $a_{i-1}+a_{i-1}$: $a_{i-1}+a_{i+1} < a_{i-1}$.

Especially for multiple exponents there are several possibilities. For example:

$$((x^2)^3)^4 = ((x^2)^3)^4 = ((x^2)^3)^4$$
(41)

```
1 ((x^2)^3)^4 =
2 {({(x^2)}^3)}^4 =
3 {\left({\left(x^2\right)}^3\right)}^4
```

For variables with both exponent and indices index the order is not important, a_1^2 is exactly the same than a_1^2 : $a_1^2 = a_1^2$

16 Operators

They are written in upright font shape and are placed with some additional space before and behind for a better typesetting. With the $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ math package it is possible to define one's own operators (see section 36 on page 71). Table 12 and 13 on the following page show a list of the predefined ones for standard \LaTeX .

\coprod	\coprod	\bigvee	V	\bigwedge	\wedge
\biguplus	+	\bigcap	\cap	\bigcup	\bigcup
$\$ intop	ſ	\int	ſ	\prod	\prod
\sum	\sum	\bigotimes	\otimes	\bigoplus	\oplus
\bogodot	\odot	\olimits	∮	$\operatorname{\setminus}$ oint	∮
\bigsqcup		\smallint	ſ		

Table 12: The predefined operators of fontmath.ltx

The difference between \intop and \int is that the first one has by default over/under limits and the second subscript/superscript limits. Both can be changed with the \limits or \nolimits command. The same behaviour happens to the \ointop and \oint Symbols.

For more predefined operator names see table 20 on page 94. It is easy to define a new operator with

```
1 \makeatletter
2 \newcommand\foo{\mathop{\operator@font foo}\nolimits}
3 \makeatother
```

\log	\log	\lg	lg	\ln	\ln
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	\lim	\limsup	\limsup	\liminf	$\lim\inf$
\sin	\sin	\arcsin	arcsin	\sinh	\sinh
\cos	\cos	\arccos	arccos	\cosh	\cosh
\tan	tan	\arctan	arctan	$\operatorname{}$	tanh
\cot	\cot	\c	\coth	\sec	sec
\csc	\csc	\max	max	\min	\min
\sup	\sup	\inf	\inf	\arg	arg
\ker	ker	\dim	\dim	\hom	hom
\det	det	\exp	\exp	\Pr	\Pr
\gcd	gcd	\deg	\deg	\bmod	mod
\prod{a}	\pmod{a}				

Table 13: The predefined operators of latex.ltx

Now you can use \foo in the usual way:

$$foo_1^2 = x^2$$

In this example \foo is defined with \nolimits, means that limits are placed in superscript/subscript mode and not over under. This is still possible with \limits in the definition or the equation:

$$\int_{1}^{2} \cos x = x^2$$

$$[\foo\limits_1^2 = x^2]$$

 $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ math has an own macro for a definition, have a look at section 36 on page 71.

17 Greek letters

The $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ math package simulates a bold font for the greek letters, it writes a greek character twice with a small kerning. The \mathbf{<character>} doesn't work with lower greek character. See section 40 on page 76 for the \mathbf{pmb} macro, which makes it possible to print bold lower greek letters. Not all upper case letters have own macro names. If there is no difference to the roman font, then the default letter is used, e.g.: A for the upper case of α . Table 14 shows only those upper case letters which have own macro names. Some of the lower case letters have an additional var option for an alternative.

lower	default	upper	${\it default}$	$\mbox{\mbox{\tt mathbf}}$	\mathit
\beta	β				
\gamma	γ	\Gamma	Γ	$oldsymbol{\Gamma}$	Γ
\delta	δ	Δ	Δ	$oldsymbol{\Delta}$	Δ
\epsilon	ϵ				
\varepsilon	ε				
\zeta	ζ				
\eta	η				
\theta	θ	Θ	Θ	Θ	Θ
\vartheta	ϑ				
\iota	ι				
\kappa	κ				
\delta	λ	Λ	Λ	$oldsymbol{\Lambda}$	Λ
\mu	μ				
\nu	ν				
\xi	ξ	\Xi	Ξ	Ξ	Ξ
\pi	π	\Pi	Π	П	П
\varpi	$\overline{\omega}$				
\rho	ho				
\varrho	ϱ				
\sigma	σ	\Sigma	\sum	$oldsymbol{\Sigma}$	${\it \Sigma}$
\varsigma	ς				
\tau	au				
\upsilon	v	\Upsilon	Υ	Υ	Υ
\phi	ϕ	\Phi	Φ	Φ	Φ
\varphi	arphi				
\chi	χ				
\psi	$\overset{\sim}{\psi}$	\Psi	Ψ	Ψ	Ψ
\omega	$\dot{\omega}$	\Omega	Ω	Ω	Ω

Table 14: The greek letters

Bold greek letters are possible with the package bm (see section 51 on page 95) and if they should also be upright with the package upgreek:

\bm{\upalpha}, \$bm{\upbeta} ...

18 Pagebreaks

\allowdisplaybreaks

By default a displayed formula cannot have a pagebreak. This makes some sense, but sometimes it gives a better typesetting when a pagebreak is possible.

\allowdisplaybreaks

This macro enables T_EX to insert pagebreaks into displayed formulas whenever a newline command appears. With the command \displaybreak it is also possible to insert a pagebreak at any place.

19 \stackrel

\stackrel puts a character on top of another one which may be important if a used symbol is not predefined. For example " $\stackrel{\triangle}{=}$ " (\stackrel{\wedge}{=}). The syntax is

```
\stackrel{top}{base}
```

Such symbols may be often needed so that a macro definition in the preamble makes some sense:

```
1 \newcommand{\eqdef}{%
2 \ensuremath{%
3 \stackrel{\mathrm{def}}{=}%
4 }%
5 }
```

With the \ensuremath command we can use the new \eqdef command in text and in math mode, IATEX switches automatically in math mode, which saves some keystrokes like the following command, which is written without the delimiters (\$...\$) for the math mode $\stackrel{\text{def}}{=}$, only \eqdef with a space at the end. In math mode together with another material it may look like $\vec{x} \stackrel{\text{def}}{=} (x_1, \ldots, x_n)$ and as command sequence

```
$\vec{x}\eqdef\left(x_{1},\ldots,x_{n}\right)$
```

The fontsize of the top is one size smaller than the one from the base, but it is no problem to get both in the same size, just increase the top or decrease the base.

20 \choose

\choose is like \atop with delimiters or like \frac without the fraction line and also with delimiters. It is often used for binoms and has the following syntax:

```
{above \choose below}
```

The two braces are not really important but it is safe to use them.

$$\binom{m+1}{n} = \binom{m}{n} + \binom{m}{k-1} \tag{42}$$

See section 29.2 on page 65 for the $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ math equivalents and enhancements.

21 Color in math expressions

There is no difference in using coloured text and colored math expressions. With

\usepackage{color}

in the preamble the macro \textcolor{<color>}{<text or math>} exists.

$$f(x) = \int_{1}^{\infty} \frac{1}{x^2} dx = 1 \tag{43}$$

```
begin{equation}
textcolor{blue}{f(x)} = \int\limits_1^{\infty}\textcolor{red}{\frac{1}{x^2}}\,dx=1}
end{equation}
```

If all math expressions should be printed in the same color, then it is better to use the everydisplay macro (section 24 on page 48).

22 Boldmath

Writing a whole formula in bold is possible with the command sequence \boldmath ... \unboldmath, which itself must be written in textmode (outside the formula) or with the command {\mathversion{bold} ... }.

\mathversion \boldmath \unboldmath

```
\sum_{\substack{1 \leq j \leq p \\ 1 \leq j \leq q \\ 1 \leq k < r}} a_{ij}b_{jk}c_{ki} \qquad \sum_{\substack{1 \leq j \leq p \\ 1 \leq j \leq q \\ 1 \leq k < r}} a_{ij}b_{jk}c_{ki}
```

The \mathversion macro defines a math style which is valid for all following math expressions. If you want to have all math in bold then use this macro instead of \boldmath. But it is no problem to put \mathversion inside a group to hold the changes locally.

$$y(x) = ax^3 + bx^2 + cx + d (44)$$

```
{\mathversion{bold}%

begin{equation}

y(x) = ax^3+bx^2+cx+d

end{equation}}
```

Single characters inside a formula can be written in bold with mathbf, but only in upright mode, which is in general not useful as shown in equation 45. It is better to use package bm.sty (see section 51 on page 95).

$$\sum_{\substack{1 \le j \le p \\ 1 \le j \le q \\ 1 \le k \le r}} a_{ij} \mathbf{b}_{\mathbf{jk}} c_{ki} \tag{45}$$

22.1 Bold math expressions as part of titles and items

By default the titles in sections, subsections, a.s.o. are printed in bold. Same for the **description** environment. The problem is that a math expression in one of these environments is printed in default font shape, like the following example for a **section** and **description** environment:

```
22 Function f(x) = x^2

This is y = f(x) Only a demonstration.

And z = f(x, y) Another demonstration.
```

With a redefinition of the **section** and **item** macros it is possible to get everything in bold font.

```
22 Function f(x) = x^2
This is y = f(x) Only a demonstration.
And z = f(x, y) Another demonstration.
```

```
1 \let\itemOld\item
2 \makeatletter
3 \renewcommand\item[1][]{%
4 \def\@tempa{#1}
5 \ifx\@tempa\@empty\itemOld\else\boldmath\itemOld[#1]\unboldmath\
fi%
```

```
6  }
7  \makeatother
8  \let\sectionOld\section
9  \renewcommand\section[2][\empty]{%
10  \boldmath\sectionOld[#1]{#2}\unboldmath%
11  }
```

23 Multiplying numbers

When the dot is used as the decimal marker as in the United States, the preferred sign for the multiplication of numbers or values of quantities is a cross ($\texttt{\times} \times$), not a half-high and centered dot ($\texttt{\coloredge}$).

When the comma is used as the decimal marker as in Europe, the preferred sign for the multiplication of numbers is the half-high dot. The multiplication of quantity symbols (or numbers in parentheses or values of quantities in parentheses) may be indicated in one of the following ways: ab, $a \cdot b$, $a \times b$.

For more information see "Nist Guide to SI Units -More on Printing and Using Symbols and Numbers in Scientific and Technical Documents" or the German DIN 1304, Teil 1.

24 Other macros

There are some other macros which are not mentioned in the foregoing text. Here comes a not really complete list of these macros.

\everymath \everydisplay \underline

\everymath puts the argument before any inlined math expression, e.g. \everymath{\small}.

\everydisplay puts the argument before any displayed math expression, e.g. \everydisplay{\color{blue}}.

\underline underlines a math expression and has to be used inside the math mode.

$$F(x) = \int f(x) \, dx$$

¹⁸http://physics.nist.gov/Pubs/SP811/sec10.html

Part II

A_MS math package

In general the $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ packages are at least a collection of three different ones:

- 1. amsmath.sty
- 2. amssymb.sty
- 3. amsfonts.sty

In the following only the first one is described in detail.

The $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ math has the following options:

centertags	(default) For a split equation, place equation numbers vertically centered on the total height of the equation.
tbtags	'Top-or-bottom tags' For a split equation, place equation
	numbers level with the last (resp. first) line, if numbers are
	on the right (resp. left).
sumlimits	(default) Place the subscripts and superscripts of summa-
	tion symbols above and below, in displayed equations. This
	option also affects other symbols of the same type $-\prod$, \coprod ,
	\bigotimes , \bigoplus , and so forth – but excluding integrals (see below).
nosumlimits	Always place the subscripts and superscripts of summation-
	type symbols to the side, even in displayed equations.
intlimits	Like sumlimits, but for integral symbols.
nointlimits	(default) Opposite of intlimits.
namelimits	(default) Like sumlimits, but for certain 'operator names'
	such as det, inf, lim, max, min, that traditionally have sub-
	scripts placed underneath when they occur in a displayed
	equation.
nonamelimits	Opposite of namelimits.

To use one of these package options, put the option name in the optional argument, e.g., \usepackage[intlimits]{\amsmath}. The \(\mathcal{A}_M\S\) math also recognises the following options which are normally selected (implicitly or explicitly) through the documentclass command, and thus need not be repeated in the option list of the \usepackage{\amsmath} statement.

leqno	Place equation numbers on the left.		
reqno	(default) Place equation numbers on the right.		
fleqn	Position equations at a fixed indent from the left margin rather		
	than centered in the text column. $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ math defines the length		
	\mathindent and uses it when the equations have only one tabbing		
	character (&).		

All math environments are displayed ones, so there is no special inline math.

25 align environments

There are four different align environments, described in the following subsections. Their behaviour is shown in table 15. The code for all align environments was:

Table 15: Comparison between the different align environments with the same code, where the first three can have an equation number

In difference to the equatray environment from standard LATEX (section 3.2), the "three" parts of one equation expr.-symbol-expr. are devided

by only one ampers and in two parts. In general the ampersand should be before the symbol to get the right spacing, e.g. y &= x. Compare the following three equations, the second has a wrong spacing.

$$y = x$$
 (46)
 $y = x$ (47)
 $y = x$ (48)
 $y = x$ $y = x$

25.1 The default align environment

The equations no. 3 to 6 with the align environment gives:

$$y = d \tag{49}$$

$$y = cx + d \tag{50}$$

$$y_{12} = bx^2 + cx + d (51)$$

$$y(x) = ax^3 + bx^2 + cx + d (52)$$

The code looks like:

```
begin{align}
y & =d\label{eq:IntoSection}\\
y & =cx+d\\
y_{12} & =bx^{2}+cx+d\\
y(x) & =ax^{3}+bx^{2}+cx+d
end{align}
```

• The align environment has an implicit {rlrl...} horizontal alignment with a vertical column-alignment, e.g.:

- A nonumber-version \begin{align*}...\end{align*} exists.
- Not numbered single rows are possible with \nonumber.
- The align environment takes the whole horizontal space if you have

more than two columns:

$$y = d z = 1 (53)$$

$$y = cx + d \qquad z = x + 1 \tag{54}$$

$$y_{12} = bx^2 + cx + d$$
 $z = x^2 + x + 1$

$$y_{12} = bx^2 + cx + d$$
 $z = x^2 + x + 1$
 $y(x) = ax^3 + bx^2 + cx + d$ $z = x^3 + x^2 + x + 1$ (55)

The code for this example looks like

```
1 \begin{align}
  y & =d & z & =1\\
y & =cx+d & z & =x+1\\
4 y_{12} & =bx^{2}+cx+d & z & =x^{2}+x+1\\nonumber \\
 y(x) & =ax^{3}+bx^{2}+cx+d & z & =x^{3}+x^{2}+x+1
 \end{align}
```

25.2 alignat environment

\begin{align}

\end{align}

From now the counting of the equation changes. It is introduced with a foregoing command, which doesn't really make sense, it is only for demonstration:

\renewcommand{\theequation}{\thepart-\arabic{equation}}.

This means "align at several places" and is something like more than two align environment side by side. Parameter is the number of the align environments, which is not important for the user. The above last align example looks like:

$$y = d z = 1 (II-56)$$

$$y = cx + d z = x + 1 (II-57)$$

$$y = d$$

$$y = cx + d$$

$$z = 1$$

$$z = x + 1$$

$$y_{12} = bx^{2} + cx + d$$

$$z = x^{2} + x + 1$$

$$y(x) = ax^3 + bx^2 + cx + d$$
 $z = x^3 + x^2 + x + 1$ (II-58)

The parameter was 2 and is for the following example 3:

$$i_{11} = 0.25$$
 $i_{12} = i_{21}$ $i_{13} = i_{23}$ $i_{21} = \frac{1}{3}i_{11}$ $i_{22} = 0.5i_{12}$ $i_{23} = i_{31}$ (II-59)

$$i_{31} = 0.33i_{22}$$
 $i_{32} = 0.15i_{32}$ $i_{33} = i_{11}$ (II-60)

For this example the code is:

```
begin{alignat}{3}

i_{11} & =0.25 & i_{12} & =i_{21} & i_{13} & =i_{23} \\
i_{21} & =\sqrt{11}{3}i_{11} & i_{22} & =0.5i_{12}& i_{23} & =i_{31} \\
i_{31} & =0.33i_{22} \\
end{alignat}
```

With the alignat environment one can easily align equations vertically at more than one marker:

- The alignat environment has an implicit {rlrl...rlrl} horizontal alignment with a vertical column alignment.
- A nonumber-version \begin{alignat*}...\end{alignat*} exists.
- Not numbered single rows are possible with \nonumber.

25.3 flalign environment

This is the new replacement for the xalignat and xxalignat environments.

It is nearly the same as the xalignat environment, only more "out spaced" \end{flalign} and "left aligned".

```
i_{11} = 0.25
i_{21} = \frac{1}{3}i_{11}
i_{31} = 0.33i_{22}
i_{11} = 0.25 
i_{11} & = 0.25 \text{nonumber } \text{$\backslash$} \text{$i_{11} \& = 0.25 \text{nonumber } \text{$\backslash$} \text{$i_{21} \& = \frac{1}{3}i_{11} \& = 0.33i_{22} $} \text{$i_{31} \& = 0.33i_{22} $} \text{$\backslash$} \text{$end{flalign}}
```

As seen, the equations are not really left aligned, when they have only one ampersand. In this case flalign has the same behaviour as the align environment.

When there are more than one tabbing characters (&), then the equations are really left aligned. This is also an easy way to get an equation with only one ampersand left aligned, see equation II-68 below.

$$i_{11} = 0.25$$
 $i_{12} = i_{21}$ $i_{13} = i_{23}$ $i_{21} = \frac{1}{3}i_{11}$ $i_{22} = 0.5i_{12}$ $i_{23} = i_{31}$ (II-65) $i_{31} = 0.33i_{22}$ $i_{32} = 0.15i_{32}$ $i_{33} = i_{11}$ (II-66)

The code looks like:

```
begin{flalign}
i_{11} & =0.25 & i_{12} & =i_{21} & i_{13} & =i_{23} \rangle
i_{21} & = \frac{1}{3}i_{11} & i_{22} & =0.5i_{12} & i_{23} & =i_{31} \rangle
i_{31} & =0.33i_{22} \rangle & =0.15i_{32} \rangle & =i_{33} & =i_{11} \rangle
end{flalign}
```

This environment can be used to mix centered and left aligned equations without using the document wide valid option fleqn.

$$f(x) = \int \frac{1}{x^2} dx \tag{II-67}$$

$$f(x) = \int \frac{1}{x^2} dx \tag{II-68}$$

Equation II-68 is left aligned in fact of the second tabbing character &.

```
begin{align}\label{eq:centered}
f(x) & = \int\frac{1}{x^2}\,dx

end{align}

begin{flalign}\label{eq:leftaligned}
f(x) & = \int\frac{1}{x^2}\,dx &
end{flalign}
```

Another case is placing text left aligned, whereas the formulas should be right aligned.

$$12(x-1) + 20(y-3) + 14(z-2) = 0$$
$$6x + 10y + 7z = 0$$

same as

25.4 xalignat environment

This is an obsolete macro but still supported by the $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ math package. Same as alignat environment, only a little more "out spaced".

\begin{xalignat}
...
\end{xalignat}

$$i_{11} = 0.25$$
 $i_{12} = i_{21}$ $i_{13} = i_{23}$ $i_{21} = \frac{1}{3}i_{11}$ $i_{22} = 0.5i_{12}$ $i_{23} = i_{31}$ (II-69) $i_{31} = 0.33i_{22}$ $i_{32} = 0.15i_{32}$ $i_{33} = i_{11}$ (II-70)

The same code looks like:

```
\begin{xalignat}{3}
  i_{11} & =0.25 & i_{12} & =i_{21} & i_{13} & =i_{23} \cdot nonumber
  i_{21} \& =\frac{1}{3}i_{11} \& i_{22} \& =0.5i_{12} \& i_{23} \& =i_{31} \
  i_{31} \& =0.33i_{22}\qquad \& i_{32} \& =0.15i_{32}\qquad \& i_{33} \& =i_{11}
\end{xalignat}
```

25.5xxalignat environment

Like xalignat an obsolete macro but still supported by the $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ math package. Same as align environment, only extremely "out spaced", therefore no equation number!

\begin{xxalignat} \end{xxalignat}

$$i_{11} = 0.25$$
 $i_{12} = i_{21}$ $i_{13} = i_{23}$ $i_{21} = \frac{1}{3}i_{11}$ $i_{22} = 0.5i_{12}$ $i_{23} = i_{31}$ $i_{31} = 0.33i_{22}$ $i_{32} = 0.15i_{32}$ $i_{33} = i_{11}$

The same code looks like:

```
\begin{xxalignat}{3}
    i_{11} \& =0.25 \& i_{12} \& =i_{21} \& i_{13} \& =i_{23} \nonumber \
    i_{21} & =\frac{1}{3}i_{11} & i_{22} & =0.5i_{12} & i_{23} & =i_{31}
3
    i_{31} & =0.33i_{22} & i_{32} & =0.15i_{32} & i_{33} & =i_{11}
  \end{xxalignat}
```

25.6 aligned environment

In difference to the split environment (section 26.3 on page 58), the aligned environment allows more than one horizontal alignment but has also only one \end{aligned} equation number:

\begin{aligned}

```
2x + 3 = 7 \quad 2x + 3 - 3 = 7 - 3
    2x = 4 \qquad \qquad \frac{2x}{2} = \frac{4}{2}
                                                                 (II-71)
      x = 2
```

```
\begin{equation}
  \begin{aligned}
     2x+3 \&= 7 \&
                     2x+3-3 &= 7-3 \\
3
      2x &= 4 & \frac{2x}2 &= \frac42\\
4
          &= 2
  \end{aligned}
  \end{equation}
```

The aligned environment is similar to the array environment, there exists no starred version and it has only one equation number and has to be part of another math environment, which should be equation environment. The advantage of aligned is the much more better horizontal and vertical spacing.

25.7 Problems

When using one of the align environments, there should be no \\ at the end of the last line, otherwise you'll get another equation number for this "empty" line:

26 Other environments

26.1 gather environment

This is like a multi line environment with no special horizontal alignment. All rows are centered and can have an own equation number:

\begin{gather}
...
\end{gather}

$$i_{11} = 0.25$$
 (II-75)
 $i_{21} = \frac{1}{3}i_{11}$
 $i_{31} = 0.33i_{22}$ (II-76)

For this example the code looks like:

```
begin{gather}

i_{11} = 0.25\\
i_{21} = \frac{1}{3}i_{11}\\nonumber\\
i_{31} = 0.33i_{22}\
end{gather}
```

- The gather environment has an implicit {c} horizontal alignment with no vertical column alignment. It is just like an one column array/table.
- A nonumber-version \begin{gather*}...\end{gather*} exists. Look at section 26.3 on page 58 for an example.

26.2 multline environment

This is also like a multi line environment with a special vertical alignment.

The first row is left aligned, the second and all following ones except the last one are centered and the last line is right aligned. It is often used to write extremely long formulas:

```
begin{multline}
A = \lim _{n\rightarrow \infty }\Delta x\left( a^{2}+\left( a^{2}+2a\Delta x +\left( \Delta x\right) ^{2}\right)\right.\\
+\left( a^{2}+2\cdot 2a\Delta x+2^{2}\left( \Delta x\right) ^{2}\right)\\
+\left( a^{2}+2\cdot 3a\Delta x+3^{2}\left( \Delta x\right) ^{2}\right)\\
+\ldots\\
\left.+\left( a^{2}+2\cdot (n-1)a\Delta x +(n-1)^{2}\left( \Delta x\right) ^{2}\\
\right) \right)\\
\end{multline}
\end{multline}
\]
```

$$A = \lim_{n \to \infty} \Delta x \left(a^2 + \left(a^2 + 2a\Delta x + (\Delta x)^2 \right) + \left(a^2 + 2 \cdot 2a\Delta x + 2^2 (\Delta x)^2 \right) + \left(a^2 + 2 \cdot 3a\Delta x + 3^2 (\Delta x)^2 \right) + \dots + \left(a^2 + 2 \cdot (n-1)a\Delta x + (n-1)^2 (\Delta x)^2 \right) \right)$$

$$= \frac{1}{3} \left(b^3 - a^3 \right) \quad \text{(II-77)}$$

Figure 1: multline Alignment demo (the fourth row is shifted to the right with \shoveright)

• A nonumber-version \begin{multline*}...\end{multline*} exists.

¹⁹It is no typo, the name of the environment is multline, no missing i here!

Figure 2: Demonstration of \multlinegap (default is 0pt)

- By default only the last line (for right equation numbers) or the first line (for left equation numbers) gets a number, the others can't.
- The alignment of a single line can be changed with the command \shoveright (figure 1 on the preceding page)
- The first line and the last line have a small gap to the text border.²⁰ See figure 2, where the length of \multlinegap is set to 0pt for the right one.

26.3 split environment

\begin{split}
...
\end{split}

From now the counting of the equation changes. It is introduced with a foregoing command, which doesn't really make sense, it is only for demonstration:

```
\makeatletter
| \@removefromreset{equation}{section}
| \makeatother
```

The split environment is like the multline or array environment for equations longer than the column width. Just like the array environment and in contrast to multline, split can only be used as part of another environment. split itself has no own numbering, this is given by the other environment. Without an ampersand all lines in the split environment are right-aligned and can be aligned at a special point by using an ampersand. In difference to the aligned environment (section 25.6 on page 55), the split environment permits more than one horizontal alignment.

Important is that the split environment has another behaviour when used inside one of the "old" LATEX environments \[...\] or \begin{equation} ... \end{equation}, in this case more than one horizontal alignment tabs are possible.

²⁰When the first (numbers left) or last line (numbers right) has an equation number then \multlinegap is not used for these ones, only for the line without a number.

The following example shows the **split** environment as part of the **equation** environment:

$$A_{1} = \left| \int_{0}^{1} (f(x) - g(x)) dx \right| + \left| \int_{1}^{2} (g(x) - h(x)) dx \right|$$

$$= \left| \int_{0}^{1} (x^{2} - 3x) dx \right| + \left| \int_{1}^{2} (x^{2} - 5x + 6) dx \right|$$

$$= \left| \frac{x^{3}}{3} - \frac{3}{2} x^{2} \right|_{0}^{1} + \left| \frac{x^{3}}{3} - \frac{5}{2} x^{2} + 6x \right|_{1}^{2}$$

$$= \left| \frac{1}{3} - \frac{3}{2} \right| + \left| \frac{8}{3} - \frac{20}{2} + 12 - \left(\frac{1}{3} - \frac{5}{2} + 6 \right) \right|$$

$$= \left| -\frac{7}{6} \right| + \left| \frac{14}{3} - \frac{23}{6} \right| = \frac{7}{6} + \frac{5}{6} = 2 \text{ FE}$$
(II-81)

```
\begin{equation}
   1
                         \begin{split}
  2
                                  A_{1} &= \left| \int_{0}^{1} (f(x)-g(x)) dx\right| +\left| \int_{0}^{1} (f(x)-g(x)) dx\right| +\left| \int_{0}^{1} (f(x)-g(x)) dx\right| + \left| \int_{0}^{1} (f(x)-g(
  3
                              \int \int_{1}^{2}(g(x)-h(x))dx\right| \
                                                                & = \left| \int_{0}^{1}(x^{2}-3x)dx\right| +\left| +\right|
  5
                              \int_{1}^{2}(x^{2}-5x+6)dx\right| \
  6
                                                                 & = \left| \frac{x^{3}}{3} - \frac{3}{2}x^{2}\right| _{0}^{1}+
                             \left| \frac{x^{3}}{3} \right|
  8
                                                                                               \frac{5}{2}x^{2}+6x\right| _{1}^{2}\\
  9
                                                                 & = \left| \frac{1}{3}-\frac{3}{2}\right| +\left|
10
                              \frac{8}{3}-\frac{20}{2}+12-
11
                                                                                               \left( \frac{1}{3}-\frac{5}{2}+6\right) \right| \\
12
                                                                  \& = \left| -\frac{7}{6}\right| + \left| -\frac{14}{3} - \frac{23}{6} 
13
                              \right| =\frac{7}{6}+\frac{5}{6}=2\, \textrm{FE}
14
                         \end{split}
               \end{equation}
```

The same using the array environment with {rl}-alignment instead of split gives same horizontal alignment but another vertical spacing²¹ and the symbols only in scriptsize and not textsize:²²

$$A_{1} = \left| \int_{0}^{1} (f(x) - g(x)) dx \right| + \left| \int_{1}^{2} (g(x) - h(x)) dx \right|$$

$$= \left| \int_{0}^{1} (x^{2} - 3x) dx \right| + \left| \int_{1}^{2} (x^{2} - 5x + 6) dx \right|$$

$$= \left| \frac{x^{3}}{3} - \frac{3}{2} x^{2} \right|_{0}^{1} + \left| \frac{x^{3}}{3} - \frac{5}{2} x^{2} + 6x \right|_{1}^{2}$$

$$= \left| \frac{1}{3} - \frac{3}{2} \right| + \left| \frac{8}{3} - \frac{20}{2} + 12 - \left(\frac{1}{3} - \frac{5}{2} + 6 \right) \right|$$

$$= \left| -\frac{7}{6} \right| + \left| \frac{14}{3} - \frac{23}{6} \right| = \frac{7}{6} + \frac{5}{6} = 2 \text{ FE}$$
(II-82)

• There exists no star version (\begin{split*}) of the split environment.

26.4 Specials for multline and split environments

With the multline environment the equation 30 on page 28 looks like:

$$\frac{1}{2}\Delta(f_{ij}f^{ij}) = 2\left(\sum_{i< j}\chi_{ij}(\sigma_i - \sigma_j)^2 + f^{ij}\nabla_j\nabla_i(\Delta f) + \nabla_k f_{ij}\nabla^k f^{ij} + f^{ij}f^k \left[2\nabla_i R_{jk} - \nabla_k R_{ij}\right]\right) \quad \text{(II-83)}$$

which is again a bad typesetting because of the two unequal parentheses. Each one has a size which is correct for the line but not for the whole formula. LATEX accepts only pairs of parentheses for one line and has an "empty" parentheses, the dot "left." or "right." to get only one of the "pair". There are different solutions to get the right size of the parentheses. One of them is to use the right of the parentheses. One of them is to use the right of the vertical space without any horizontal one, like a vertical rule without any thickness. The sum symbol from the first line is the biggest one and responsible for the height, so this one is the argument of replaced anywhere.

$$\frac{1}{2}\Delta(f_{ij}f^{ij}) = 2\left(\sum_{i< j}\chi_{ij}(\sigma_i - \sigma_j)^2 + f^{ij}\nabla_j\nabla_i(\Delta f) + \nabla_k f_{ij}\nabla^k f^{ij} + f^{ij}f^k \left[2\nabla_i R_{jk} - \nabla_k R_{ij}\right]\right) \quad \text{(II-84)}$$

²¹Can be changed with \renewcommand\arraystretch{1.5}

 $^{^{22}}$ See section 12 on page 37

Instead of using the \vphantom command it is also possible to use fixed-width parentheses, which is described in section 8 on page 26.

26.5 cases environment

This gives support for an often used mathematical construct. You can also choose the more than once described way to convert some text into math, like

```
$x=\begin{cases}
0 & \text{if A=...}\\
1 & \text{if B=...}\\
x & \textm{this runs with as much text as you like,
        but without an automatic linebreak, it runs out
        of page....}
\end{cases}$
```

which gives equation II-85. It is obvious what the problem is.

$$x = \begin{cases} 0 & \text{if A=...} \\ 1 & \text{if B=...} \\ x & \text{this runs with as much text as you like, but without a linebreak, it runs out of page....} \end{cases}$$

In this case it is better to use a parbox for the text part with a flushleft command for a better view.

```
x = \begin{cases} 0 & \text{if A=...} \\ 1 & \text{if B=...} \end{cases}
this runs with as much text
x & \text{as you like, but without an} \\ & \text{automatic linebreak, it runs} \\ & \text{out of page....} \end{cases}
(II-86)
```

```
begin{equation}

x = begin{cases}

0 & \text{if A=...}\\

1 & \text{if B=...}\\

x & \parbox{5cm}{%
```

matrix

```
6  \flushleft%
7  this runs with as much text as you like,
8  but without an automatic linebreak,
9  it runs out of page....}%
10 \end{cases}
11 \end{equation}
```

From now the counting of the equation changes. It is introduced with a foregoing command, which doesn't really make sense, it is only for demonstration:

```
\renewcommand\theequation{\arabic{equation}}
```

26.6 Matrix environments

Table 16: Matrix environments

All matrix environments can be nested and an element may also contain any other math environment, so that very complex structures are possible. By default all cells have a centered alignment, which is often not the best when having different decimal numbers or plus/minus values. Changing the alignment to right is possible with

```
vmatrix
vmakeatletter

def\env@matrix{\hskip -\arraycolsep
   \let\@ifnextchar\new@ifnextchar
   \array{*\c@MaxMatrixCols r}}

makeatother

vmatrix
Vmatrix
bmatrix
Bmatrix
pmatrix
smallmatrix
```

The special matrix environment smallmatrix, which decreases horizontal and vertical space is typeset in scriptstyle. The smallmatrix environment makes some sense in the inline mode to decrease the line height. For dots over several columns look for \hdotsfor in the following section.

27 Vertical whitespace

See section 11.5 on page 36 for the lengths which control the vertical whitespace. There is no difference to $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ math.

28 Dots

In addition to section 13 on page 39 $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ math has two more commands for dots: $\dots: \dots: \dots: \dots:$

```
\dot{y}\: \ddot{y} $\dddot{y}$: \ddot{y}
```

Another interesting dot command is \hdotsfor with the syntax:

```
\hdotsfor[<spacing factor>]{<number of columns>}
```

With the spacing factor the width of the dots can be stretched or shrinked. The number of columns allows a continuing dotted line over more columns. Equation 87 shows the definition of a tridiagonal matrix.

$$\underline{A} = \begin{bmatrix}
a_{11} & a_{12} & 0 & \dots & \dots & 0 \\
a_{21} & a_{22} & a_{23} & 0 & \dots & \dots & 0 \\
0 & a_{32} & a_{33} & a_{34} & 0 & \dots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \dots & 0 & a_{n-2,n-3} & a_{n-2,n-2} & a_{n-2,n-1} & 0 \\
0 & \dots & \dots & 0 & q_{n-1,n-2} & a_{n-1,n-1} & a_{n-1,n} \\
0 & \dots & \dots & 0 & a_{n,n-1} & a_{nn}
\end{bmatrix}$$
(87)

29 fraction commands

29.1 Standard

Additional to the font size problem described in subsection 2.2 on page 11 $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ math supports some more commands for fractions. The \frac command described in [6], does no more exists in $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ math.

²³already mentioned in section 14

• The global fraction definition has five parameters

| \genfrac{<left delim>}{<right delim>}{<thickness>}{<mathstyle>}{< | nominator>}{<denominator>}

where thickness can have any length with a valid unit like genfrac{}{}{1pt}{}{x^2+x+1}{3x-2} \to \frac{x^2+x+1}{3x-2}

• \cfrac (continued fraction) which is by default set in the display mathstyle and useful for fractions like

$$\frac{1}{\sqrt{2} + \frac{1}{\sqrt{3} + \frac{1}{\sqrt{4} + \frac{1}{\dots}}}}$$
(88)

which looks with the default \frac command like

$$\frac{1}{\sqrt{2} + \frac{1}{\sqrt{3} + \frac{1}{\sqrt{4} + \frac{1}{\lambda}}}} \tag{89}$$

where the mathstyle decreases for every new level in the fraction. The \cfrac command can be called with an optional parameter which defines the placing of the nominator, which can be [1]eft, [r]ight or [c]enter (the default - see equation 88):

$$\frac{1}{\sqrt{2} + \frac{1}{\sqrt{3} + \frac{1}{\sqrt{4} + \frac{1}{\dots}}}} \qquad \frac{1}{\sqrt{2} + \frac{1}{\sqrt{3} + \frac{1}{\sqrt{4} + \frac{1}{\dots}}}}$$

- \dfrac which takes by default the displaystyle, so that fractions in inline mode $\frac{1}{2}$ have the same size than in display mode.
- \tfrac (vice versa to \dfrac) which takes by default the scriptstyle, so that fractions in display mode have the same size than in inline mode.

$$\frac{2}{3} \quad \text{tfrac}\{2\}\{3\}$$

$$\frac{2}{3} \quad \text{frac}\{2\}\{3\}$$

30 ROOTS 29.2 Binoms

29.2 Binoms

They are like fractions without a rule and its syntax is different to the $\colon Colon C$

\binom \dbinom \tbinom

Command	Inlinemath	Displaymath
$\binom{m}{n}$	$\binom{m}{n}$	$\binom{m}{n}$
$\d \min\{m\}\{n\}$	$\binom{m}{n}$	$\binom{m}{n}$
$\verb \tbinom{m}{n} $	$\binom{m}{n}$	$\binom{m}{n}$

Table 17: binom commands

30 Roots

The typesetting for roots is sometimes not the best. Some solutions for better typesetting are described in section 7 on page 26 for standard \LaTeX X. $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ math has some more commands for the n-th root:

\leftroot \uproot

```
\sqrt[\leftroot{<number>}\uproot{<number>}<root>]{< ... >}
```

<number> indicates a value for the points²⁴ of which the root can be adjusted to the left and/or to the top, e.g.: $\sqrt[kn]{a}$ ($\$ a) has a too deep exponent, whereas $\sqrt[kn]{a}$ sqrt[\uproot{2}k_n]{a}\$ looks nicer.

30.1 Roots with \smash command

\smash

The default for a root with λ_{k_i} as root argument looks like $\sqrt{\lambda_{k_i}}$, which maybe not the best typesetting. It is possible to reduce the lowest point of the root to the baseline with the \smash command: $\sqrt{\lambda_{k_i}} \xrightarrow{\text{with } \setminus \text{smash}} \sqrt{\lambda_{k_i}}$

The syntax of the with the $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ math package renewed \smash command²⁵ is

```
\smash[<position>]{<argument>}
```

The optional argument for the position can be:

- ${f t}$ keeps the bottom and annihilates the top
- **b** keeps the top and annihilates the bottom
- tb annihilates top and bottom (the default)

²⁴In PostScript units (bp – Big Points).

²⁵In latex.ltx \smash is defined without an optional argument.

31 Accents

With the macro \mathaccent it is easy to define new accent types, for example

```
\def\dotcup{$\mathaccent\cdot\cup$}
```

 \cup

Overwriting of two symbols is also possible:

```
\bigcirc
```

In this case the second symbol has to be shifted to left for a length of 5mu (mu: math unit).

```
1 \def\curvearrowleftright{%
2 \ensuremath{%
3 \mathaccent\curvearrowright{\mkern-5mu\curvearrowleft}%
4 }%
5 }
```

For other possibilities to define new accent see section 47 on page 92.

32 \mod command

The modulo command is in standard \LaTeX not an operator, though it is often used in formulas. $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ math provides two (three) different commands for modulo, which are listed in tabular 18.

• They all insert some useful space before and behind the mod-operator.

```
\begin{array}{cccc} \mathbf{a} \backslash \mathbf{mod} \{\mathbf{n}^2\} = \mathbf{b} & \to & a \mod n^2 = b \\ \mathbf{a} \backslash \mathbf{pmod} \{\mathbf{n}^2\} = \mathbf{b} & \to & a \pmod n^2 \} = b \\ \mathbf{a} \backslash \mathbf{pod} \{\mathbf{n}^2\} = \mathbf{b} & \to & a \pmod n^2 \} = b \end{array}
```

Table 18: The modulo commands and their meaning

33 Equation numbering

See section 3.3 on page 16 for equation numbering. It is mostly the same, only one command is new to $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ math. If you want a numbering like "49" then write in the preamble or like this example anywhere in your doc:

\numberwithin

```
\numberwithin{equation}{section}
```

From now the numbering looks like equation 49 on page 51. For the book-class you can get the same for chapters.

If you want to get rid of the parentheses then write in preamble:

```
1 \makeatletter
2 \def\tagform@#1{\maketag@@@{\ignorespaces#1\unskip\@@italiccorr}}
3 \makeatother
```

Now the following four subequation numbers have no parentheses.

33.1 Subequations

Amsmath supports this with the environment subequation. For example:

$$y = d$$
 33.90a
 $y = cx + d$ 33.90b
 $y = bx^{2} + cx + d$ 33.90c
 $y = ax^{3} + bx^{2} + cx + d$ 33.90d

```
begin{subequations}

begin{align}

y & = d\\
y & = cx+d\\
y & = bx^{2}+cx+d\\
y & = ax^{3}+bx^{2}+cx+d

'end{align}

end{subequations}
```

Inside of subequations only complete other environments (\begin{...} ... \end{...}) are possible.

```
1 \renewcommand{\theequation}{%
2 \theparentequation{}-\arabic{equation}%
3 }
```

```
y = d \tag{33.91-1}
```

$$y = cx + d \tag{33.91-2}$$

$$y = bx^2 + cx + d (33.91-3)$$

$$y = ax^3 + bx^2 + cx + d (33.91-4)$$

A ref to a subequation is possible like the one to equation 33.91-2. The environment chooses the same counter "equation" but saves the old value into "parentequation".

It is also possible to place two equations side by side with counting as subfigures:

$$y = f(x)$$
 (33.92a) $y = f(z)$ (33.92b)

In this case, the $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ math internal subfigure counter cannot be used and an own counter has to be defined:

```
\newcounter{mySubCounter}
   \newcommand{\twocoleqn}[2]{
       \setcounter{mySubCounter}{0}%
3
       \let\OldTheEquation\theequation%
4
       \renewcommand{\theequation}{\OldTheEquation\alph{mySubCounter}}%
5
       \noindent%
       \begin{minipage}{.49\textwidth}
7
             \begin{equation}\refstepcounter{mySubCounter}
           \end{equation}
10
       \end{minipage}\hfill%
11
       \addtocounter{equation}{-1}%
12
       \begin{minipage}{.49\textwidth}
13
           \begin{equation}\refstepcounter{mySubCounter}
15
           \end{equation}
16
       \end{minipage}%
17
       \let\theequation\OldTheEquation
18
  }
19
   [ ... ]
20
  \textstyle \text{twocoleqn}\{y=f(x)\}\{y=f(z)\}
```

34 Labels and tags

For the \label command see section 3.4 on page 18, it is just the same \tag behaviour. $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ math allows to define own single "equation numbers" with the \tag command.

$$f(x) = a$$
 (linear)
 $g(x) = dx^2 + cx + b$ (quadratic)
 $h(x) = \sin x$ trigonometric

```
begin{align}
f(x) & =a\tag{linear}\label{eq:linear}\\
g(x) & =dx^{2}+cx+b\tag{quadratic}\label{eq:quadratic}\\
h(x) & =\sin x\tag*{trigonometric}
\end{align}
```

• The \tag command is also possible for unnumbered equations, LATEX changes the behaviour when a tag is detected.

- There exists a star version \tag{*}{...}, which supresses any annotations like parentheses for equation numbers.
- There exists two package options for tags, ctagsplit and righttag (look at the beginning of this part on page 49).

35 Limits

By default the sum/prod has the limits above/below and the integral at the side. To get the same behaviour for all symbols which can have limits load the packags $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ math in the preamble as

```
\usepackage[sumlimits,intlimits]{amsmath}
```

There exists also options for the vice versa (see page 49). See also section 41 for the additional commands \underset and \overset.

35.1 Multiple limits

\substack{...\\...}

For general information about limits read section 2.1 on page 11. Standard IATEX provides the \atop command for multiple limits (section 6.1 on page 25). $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ math has an additional command for that, which can have several lines with the following syntax:

```
\substack
\begin{Sb}
...
\end{Sb}
```

\begin{Sp}

 \end{Sp}

```
The environments described in [6]
```

The environments described in [6]

```
begin{Sb} ... \end{Sb}
begin{Sp} ... \end{Sp}
```

are obsolete and no more part of $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ math.

The example equation 23 on page 25 with the \substack command looks like:

$$\sum_{\substack{1 \le i \le p \\ 1 \le j \le q \\ 1 \le k \le r}} a_{ij} b_{jk} c_{ki} \tag{35.1}$$

Insert these limits in the following way:

```
begin{equation}

sum_{%}

substack{1\le i\le p\\

1\le j\le q\\

1\le k\le r}

},

a_{ij}b_{jk}c_{ki}

end{equation}
```

35. LIMITS 35.2 Problems

35.2 Problems

There are still some problems with limits and the following math expression. For example:

$$X = \sum_{1 \le i \le j \le n} X_{ij}$$

```
1 \[
2 X = \sum_{1\le i\le j\le n}X_{ij}
3 \]
```

does not look nice because of the long limit. Using a \makebox also does not really solve the problem, because \makebox is in TeX horizontal mode and knows nothing about the appropriate math font size, because limits have a smaller font size. It is better to define a \mathclap macro, similiar to the two macros \lap and \rangle lap and uses the also new defined \mathclap macro:

```
\def\mathllap{\mathpalette\mathllapinternal}
  \def\mathllapinternal#1#2{%
   \lap{\mathsurround=0pt#1{#2}\$}%
  }
4
  \def\clap#1{\hbox to Opt{\hss#1\hss}}
5
   \def\mathclap{\mathpalette\mathclapinternal}
6
   \def\mathclapinternal#1#2{%
7
   \clap{$\mathsurround=0pt#1{#2}$}%
8
9
   \def\mathrlap{\mathpalette\mathrlapinternal}
10
  \def\mathrlapinternal#1#2{%
11
   \rlap{$\mathsurround=0pt#1{#2}$}%
^{12}
  }
13
```

Now we can write limits which have a boxwidth of 0pt and the right font size and the following math expression appears just behind the symbol:

$$X = \sum_{1 \le i \le j \le n} X_{ij}$$

```
1  \[
2  X = \sum_{\mathbb{1}e i\le j\le n}X_{ij}
3  \]
```

35.3 \sideset

This is a command for a very special purpose, to combine over/under limits with superscript/subscripts for the sum-symbol. For example: it is not \sideset

possible to place the prime for the equation 35.2 near to the sum symbol, because it becomes an upper limit when writing without an preceding {}.

$$\sum_{\substack{n < k \\ n \text{ odd}}} {}' n E_n \tag{35.2}$$

The command \sideset has the syntax

\sideset{<before>}{<behind>}

It can place characters on all four corners of the sum-symbol:

$$UpperLeft \sum_{B}^{T} UpperRight$$

$$LowerLeft \sum_{B}^{T} LowerRight$$

Now it is possible to write the equation 35.2 in a proper way with the command \sideset{}{'} before the sum symbol:

$$\sum_{\substack{n < k \\ n \text{ odd}}} {'nE_n} \tag{35.3}$$

36 Operator names

By default variables are written in italic and operator names in upright mode, like $y = \sin(x)$.²⁶ This happens only for the known operator names, but creating a new one is very easy with:

```
\newcommand{\mysin}{\operatorname{mysin}}
```

Now \mysin is also written in upright mode y = mysin(x) and with some additional space before and behind.

It is obvious, that only those names can be defined as new operator names which are not commands in another way. Instead of using the new definition as an operator, it is also possible to use the text mode. But it is better to have all operators of the same type, so that changing the style will have an effect for all operators.

The new defined operator names cannot have limits, only super-script/subscript is possible. amsopn.sty has an additional command \operatornamewithlimits, which supports over/under limits like the one from \int or \sum.

\operatorname

\operatornamewithlimi

\mathop

²⁶See section 16 on page 42, where all for standard L^ATEX known operator names are listed. Package $\mathcal{A}_{M}\mathcal{S}$ math has some more (see documentation).

It is also possible to use the macro \mathop to declare anything as operator, like

 $_{1}\mathrm{B}$

```
\[\sideset{_1}{}\(\mathop{\mathrm{B}}}\)
```

With this definition it is possible to use \sideset for a forgoing index, which is only possible for an operator.

For a real LATEX definition have a look at section 16 on page 42.

37 Text in math mode

If you need complex structures between formulas, look also at section 70.

37.1 \text command

This is the equivalent command to \mathrm or \mbox from the standard LATeX (section 9 on page 31) with the exception, that \mathrm always uses the roman font and \text the actual one and that the font size is different when used in super- and subscript.

\text
\mbox
\textnormal
\mathrm

```
For example: f(x) = x this was math
```

```
A_{\mathsf{text}}^{\mathsf{text}} A_{\mathsf{text}}^{\mathsf{text}} A_{\mathsf{text}}^{\mathsf{text}} A_{\mathsf{text}}^{\mathsf{text}}
```

```
$\boxed{f(x)=x\quad\text{this was math}}$

{\sffamily\huge

$A^{\mbox{text}}_{\mbox{text}}$\quad

$A^{\text{text}}_{\text{text}}$\quad

$A^{\textnormal{text}}_{\textnormal{text}}$\quad

$A^{\mathrm{text}}_{\mathrm{text}}$\

$A^{\mathrm{text}}_{\mathrm{text}}$\

$A^{\mathrm{text}}_{\mathrm{text}}$\

$A^{\mathrm{text}}_{\mathrm{text}}$\

$A^{\mathrm{text}}_{\mathrm{text}}$\

$A^{\mathrm{text}}_{\mathrm{text}}$\\

$A^{\mathrm{text}}_{\mathrm{text}}}$\\

$A^{\mathrm{text}}_{\mathrm{text}}$\\

$A^{\mathrm{text}}_{\mathrm{text}}$\\

$A^{\mathrm{text}}_{\mathrm{text}}}$\\

$A^{\mathrm{text}}_{\mathrm{text}}}$\\
```

The \text macro can be used at any place and can be in some cases a better solution as \intertext (see section 37.2).

$$12(x-1) + 20(y-3) + 14(z-2) = 0$$
$$6x + 10y + 7z = 0$$

and

and

$$12(x-1) + 20(y-3) + 14(z-2) = 0$$

$$6x + 10y + 7z = 0$$
(37.1)

37.2 \intertext command

This is useful when you want to place some text between two parts of math stuff without leaving the math mode, like the name "intertext" says. For example we write the equation II-81 on page 59 with an additional command after the second line.

$$A_{1} = \left| \int_{0}^{1} (f(x) - g(x)) dx \right| + \left| \int_{1}^{2} (g(x) - h(x)) dx \right|$$
$$= \left| \int_{0}^{1} (x^{2} - 3x) dx \right| + \left| \int_{1}^{2} (x^{2} - 5x + 6) dx \right|$$

Now the limits of the integrals are used

$$= \left| \frac{x^3}{3} - \frac{3}{2}x^2 \right|_0^1 + \left| \frac{x^3}{3} - \frac{5}{2}x^2 + 6x \right|_1^2$$

$$= \left| \frac{1}{3} - \frac{3}{2} \right| + \left| \frac{8}{3} - \frac{20}{2} + 12 - \left(\frac{1}{3} - \frac{5}{2} + 6 \right) \right|$$

$$= \left| -\frac{7}{6} \right| + \left| \frac{14}{3} - \frac{23}{6} \right| = \frac{7}{6} + \frac{5}{6} = 2 \text{ FE}$$

The code looks like:

```
begin{equation}

begin{split}

A_{1} & = \left| \int _{0}^{1}(f(x)-g(x))dx\right| +\left| \int _{1}^{2}(g(x)-h(x))dx\right| \\

& = \left| \int _{0}^{1}(x^{2}-3x)dx\right| +\left| \int _{1}^{2}(x^{2}-5x+6)dx\right| \\

intertext{Now the limits of the integrals are used}

& = \left| \frac{x^{3}}{3}-\frac{3}{2}x^{2}\right| _{0}^{1}+\left| \frac{x^{3}}{3}-\frac{5}{2}x^{2}+6x\right| _{1}^{2}\\
```

Writing very long text is possible with using a parbox, see section 9 on page 31 for an example with \textrm, which behaves in the same way as \text.

38 Extensible arrows

To write something like $\xrightarrow{\text{above the arrow}}$ you can use the following macro

\xrightarrow \xleftarrow \xmapsto

\$\xrightarrow[\text{below}]{\text{above the arrow}}\$

and the same with \xleftarrow. You can define your own extensible arrow macros if you need other than these two predefined ones. To get a doublelined extensible arrow like \$\Longleftrightarrow\$ (\Longleftrightarrow\$) but with the same behaviour than an extensible one, write in preamble

```
1 \newcommand{\xLongLeftRightArrow}[2][]{%
2 \ext@arrow 0055{\LongLeftRightArrowfill@}{#1}{#2}%
3 }
4 \def\LongLeftRightArrowfill@{%
5 \arrowfill@\Leftarrow\Relbar\Rightarrow%
6 }
```

The three parts \Leftarrow\Relbar\Rightarrow define left|middle|right of the arrow, where the middle part would be stretched in a way that the arrow is at least as long as the text above and/or below it. This macro has one optional and one standard parameter. The optional one is written below and the standard above this arrow. Now we can write

\$\xLongLeftRightArrow[\text{below}]{\text{above the arrow}}\$

to get $\stackrel{\text{above the arrow}}{\longleftarrow}$. The "number" 0055 after \ext@arrow defines the position relative to the extended error and is not a number but four parameters for additional space in the math unit mu.

```
1 \def\mapstofill@{%
2 \arrowfill@{\mapstochar\relbar}\relbar\rightarrow}
3 \newcommand*\xmapsto[2][]{%
4 \ext@arrow <four digits>\mapstofill@{#1}{#2}}
```


- $\bullet \;$ 1st digit: space left
- 2nd digit: space right
- 3rd digit: space left and right
- 4th digit: space relativ to the tip of the "arrow"

The two macros \xrightarrow and \xleftarrow are defined as:

39 Frames

\boxed

 $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ math knows the macro \boxed which can be used for inline a b + c and displayed math expressions:

$$f(x) = \int_{1}^{\infty} \frac{1}{x^2} dt = 1$$
 (39.1)

```
\lambda begin{align} \lambda boxed{f(x)=\int_1^{\infty}\frac{1}{x^2}\,dt=1} \lambda end{align}
```

For coloured boxes use package empheq. For an example see section 55 on page 98.

40 Greek letters

\pmb

The AMS math package simulates a bold font for the greek letters, it writes a greek character twice with a small kerning. This is done with the macro \pmb{<letter>}. The \mathbf{<character>} doesn't work with lower greek character.

 α β β γ δ ϵ ϵ

41 Miscellaneous commands

There are several commands which can be used in math mode: Some examples are shown in table 19. \overset \underset \boxed

Table 19: Different mathcommands

\underset is a useful macro for having limits under non operators (see section 93).

Part III

T_FX and math

There is in general no need to use the TeX macros, because the ones defined with LATEX or with AMS math are much more usefull. Nevertheless there maybe situations, where someone has to use one of the TeX macros or special TeX math length. One can not expect, that all macros work in the usual way, a lot of it are redefined by LATEX or AMS math. On the other hand some of these basic macros or length definitions are used in the TeX way, so it might be interesting to have all declared in a short way for some information.

42 Length registers

42.1 \abovedisplayshortskip

A length with glue, see section 11.5.1 for an example.

42.2 \abovedisplayskip

A length with glue, see section 11.5.1 for an example.

42.3 \belowdisplayshortskip

A length with glue, see section 11.5.1 for an example.

42.4 \belowdisplayskip

A length with glue, see section 11.5.1 for an example.

42.5 \delimiterfactor

The height of a delimiter is often not optimal calculated by TeX. In some cases it is too short. With \delimiterfactor one can correct this height. The delimiterheight is < calculated height > \cdot < #1 > /1000 where #1 is the parameter of \delimiterfactor. The default value is 901.

```
y = \begin{cases} x^2 + 2x & \text{if } x < 0, \\ x^3 & \text{if } 0 \le x < 1, \\ x^2 + x & \text{if } 1 \le x < 2, \\ x^3 - x^2 & \text{if } 2 \le x. \end{cases} \begin{cases} x < 0, \\ x < 0, \\
```

```
y = \begin{cases} x^2 + 2x & \text{if } x < 0, \\ x^3 & \text{if } 0 \le x < 1, \\ x^2 + x & \text{if } 1 \le x < 2, \\ x^3 - x^2 & \text{if } 2 \le x. \end{cases} \begin{cases} x < 0, \\ x < 0, \\
```

42.6 \delimitershortfall

Additionally to the forgoing \delimiterfactor one can modify the height of the delimiter with another value. TeX makes the delimiter larger than the values of < calculated height $> \cdot <$ delimiterfactor > /1000 and < calculated height > - < delimitershortfall >. This makes it possible to get always different heights of a sequence of delimiters.

```
x \cdot ((x^2 - y^2) - 3)
```

42.7 \displayindent

This is the left shift amount of a line holding displayed equation. By default it is 0pt but gets the value of an indented paragraph when there is an environment like the quotation one.

The following formula is typeset in the usual way without modifying anything.

$$f(x) = \int \frac{\sin x}{x} dx$$

Now we start an quotation environment which sets \labelwidth to new values for a greater left margin.

• The following formula is typeset in the usual way without modifying anything.

$$f(x) = \int \frac{\sin x}{x} dx$$

• Now we write the same equation, but now with modifying \displayindent, it is set to the negative \labelwidth:

$$f(x) = \int \frac{\sin x}{x} dx$$

```
1
2 \displayindent=-\leftskip
3 f(x) = \int \frac{\\sin x}{x}dx
4 \]
```

42.8 \displaywidth

The he width of the line holding a displayed equation, which is by default \linewidth. In the second example the formula is centered for a display width of 0.5\linewidth.

$$f(x) = \int \frac{\sin x}{x} dx$$

$$f(x) = \int \frac{\sin x}{x} dx$$

```
1 \[ f(x) = \int \frac{\\sin x}{x}dx \]
2 \[
3 \\displaywidth=0.5\\linewidth
4 f(x) = \int \\frac{\\\sin x}{x}dx
5 \]
```

42.9 \mathsurround

Extra space added when switching in and out of the inline math mode (see section 11.5).

42.10 \medmuskip

See section 11.1 for an example.

42.11 \mkern

Similiar to \kern, but adds a math kern item to the current math list. Length must be a math unit.

42.12 \mskip

Similiar to \skip, but adds math glue to the current math list. Length must be a math unit.

42.13 \muskip

Assigns a length with a math unit to one of the 256 \muskip register.

42.14 \muskipdef

Defines a symbolic name for a \muskip register.

42.15 \nonscript

Ignores immediately following glue or kern in script and scriptscript styles, which makes a redefinition of \mathchoice superfluous.

42.16 \nulldelimiterspace

This is the width of a null or missing delimiter, e.g. \right. or for the left one.

42.17 \predisplaysize

Is the effective width of the line preceding a displayed equation, whether \abedisplayskip or abedisplayshortskip is used for the vertical skip.

42.18 \scriptspace

The space inserts after an exponent or index, predefined as \scriptspace=0.5pt

42.19\thickmuskip

See section 11.1.

42.20 \thinmuskip

The short version for positive skip is defined as \def\,{\mskip\thinmuskip} and the one for a negative skip as \def\!{\mskip-\thinmuskip} (see also section 11.1).

```
\sqrt{2}x - \sqrt{2}x
[0,1) - [0,1)
x^2/2 - x^2/2
                   $[0,1)$ -- $[\,0,1)$\\
                   $x^2/2$ -- $x^2\!/2$\\
```

```
\int \int_{D} dx dy \quad \int \int_{D} dx dy
            \iint_{D} dx \, dy
```

```
1 | $$\int\int_D dxdy \quad
```

42.21\thinmuskip

See section 11.1.

43 Math font macros

43.1 \delcode

Each character has not only a \catcode and \mathcode but also a \delcode which defines for a single chracter how it should look when used as a math delimiter.

43.2 \delimiter

Every character can be declared as a delimiter, but T_FX must know which characters should be used for the default and the big size. For LATEX the macro \DeclareMathDelimiter should be used (see section 8.2).

In the following example \t dela is the character 0x22 (\uparrow) from font number 2 (csmy) and character 0x78 from font number 3 (cmex) for the big version. \t delb is the same vice versa (\downarrow).

```
\uparrow x - y \downarrow (x + y) = x^2 - y^2
\uparrow \sum_{n=0}^{\infty} \frac{1}{2^n} \downarrow^2 = 4
```

43.3 \displaystyle

See section 12 for an example.

$43.4 \setminus fam$

When TEX switches into the math mode, it typesets everything using one of the 16 possible families of fonts. \fam in an internal register where other macros can check which font is the actual one. At the beginning TEX starts with \fam=-1.

```
$\mathrm{123abcABC\alpha\beta\gamma (\the\fam
                               )}$\\[5pt]
123abcABC\alpha\beta\gamma(0)
                             \boldsymbol{123abcABC\alpha\beta\gamma\ (\the\fam\ )}
123abcABC\alpha\beta\gamma(6)
                               )}$\\[5pt]
                             $\mathit{123abcABC\alpha\beta\gamma (\the\fam
123abcABC\alpha\beta\gamma(11)
                               )}$\\[5pt]
123abcABC\alpha\beta\gamma(12)
                             $\mathtt{123abcABC\alpha\beta\gamma (\the\fam
                               )}$\\[5pt]
123abcABC\alpha\beta\gamma(14)
                             $\mathsf{123abcABC\alpha\beta\gamma (\the\fam
123abcABC\alpha\beta\gamma(1)
                               )}$\\[5pt]
                             $\mathnormal{123abcABC\alpha\beta\gamma (\the
                               fam)$
```

43.5 \mathaccent

Requires three parameter as one number, the class, the font family and the character.

```
Ä\def\dA{\mathaccent"7015\relax}2{\Large $\dA{A}$}
```

43.6 \mathbin

Declares a following character as a binary symbol with another spacing before and behind such a symbol.

```
a|b \quad a|b 

[\lambda \lambda | b \ \frac{1}{2} \ \frac{1}{2} \ \quad \alpha \mathbin | b\}
```

43.7 \mathchar

Declares a math character by three parameter as one integer number, giving its class, font family, and font position. In the following example \mathchar defines a character of class 1 (big operators), font family 3 (math extension font) and number 58 (big sum character).

```
a\sum_{i=1}^{\infty}b\quad a\sum_{i=1}^{\infty}b\qquad \begin{tabular}{ll} $\frac{\lambda \sum_{i=1}^{\infty}b & \frac{1}{2} \\ \frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} \\ \frac{2}{3} & \frac{1}
```

43.8 \mathchardef

This is in principle the same as \mathchar, it allows only to make such definitions permanent.

```
a\sum_{i=1}^{\infty}\sqrt{i+1} bgroup \mathchardef\sum="1358 \$a\sum\limits_{i=1}^{\infty}\sqrt{i+1}$\\[5pt] \egroup \$a \sum\limits_{i=1}^{\infty}\sqrt{i+1}$\\[5pt] \egroup \$a\sum\limits_{i=1}^{\infty}\sqrt{i+1}$
```

43.9 \mathchoice

Specifies specific subformula sizes for the 4 main styles: displaystyle - textstyle - scriptstyle - scriptstyle.

43.10 \mathclose

Assigns class 5 (closing character) to the following parameter, which can hold a single character or a subformula.

```
A: \frac{B}{C}: D
A: \frac{B}{C}: D
1
A: \frac{B}{C}: D
3
4 \setminus \text{frac}\{B\}\{C\}: D \setminus \text{frac}\{B\}\{C\} \setminus \text{mathclose}: D \}
```

43.11 \mathcode

A math font is far different from a text font. A lot of the characters has to be defined with \mathcode, which defines the character with its class, font family and character number, e.g. \mathcode'\<="313C. It defines the character "<" as a realtion symbol (class 3) from the font family 1 and the character number 0x3C, which is 60 decimal.

43.12 \mathop

Assigns class 1 (large operator) to the parameter, which can be a single character or a subformula.

43.13 \mathopen

mathopenVice versa to \mathclose (see section 43.10).

43.14 \mathord

Assigns class 0 (ordinary character) to the following parameter, which can be a single character or a subformula.

```
y = f(x)
y = f(x)
y = f(x) 
y = f(x) 
y = f(x) 
y = f(x) 
y = f(x) 
y = f(x) 
y = f(x) 
y = f(x) 
y = f(x)
```

43.15 \mathpunct

Assigns class 6 (punctuation) to the following parameter, which can be a single character or a subformula (see section 11.4 for an example).

43.16 \mathrel

Assigns class 3 (relation) to the following parameter, which can be a single character or a subformula.

```
x_1 \rightarrow x_2 \rightarrow x_3
x_2 \rightarrow x_3
x_2 \rightarrow x_3 \rightarrow x_2 \rightarrow x_3 \rightarrow x_2 \rightarrow x_3
x_2 \rightarrow x_3 \rightarrow x_3 \rightarrow x_2 \rightarrow x_3 \rightarrow x_3
```

43.17 \scriptfont

Specifies the scriptstyle font (used dor super/subscript) for a family.

43.18 \scriptscriptfont

Specifies the scriptscriptstyle font for a family.

43.19 \scriptscriptstyle

Selects scriptscript style for the following characters.

43.20 \scriptstyle

Selects script style for the following characters.

43.21 \skew

Especially for italic characters double accents are often misplaced. \skew has three arguments

horizontal shift: A value in math units for the additional shift of the accent.

the accent: The symbol which is placed above the character.

the character: This is in general a single character, but can also include itself an accent.

AMS math redefines the setting of double accents. This is the reason why there are only a few cases where someone has to use \skew when amsmath.sty is loaded, like in this document.

43.22 \skewchar

Is -1 or the character (reference symbol) used to fine-tune the positioning of math accents.

43.23 \textfont

Specifies the text font for a family.

43.24 \textstyle

Selects the text style for the following characters.

44 Math macros

44.1 \above

44.2 \abovewithdelims

44.3 \atop

44.4 \atopwithdelims

44.5 \displaylimits

Resets the conventions for using limits with operators to the standard for the used environment.

44.6 \eqno

Puts an equation number at the right margin, the parameter can hold anything. \eqno places only the parameter, but doesn't increase any equation counter.

44.7 \everydisplay

Inserts the parameter at the start of every switch to display math mode.

$$f(x) = \int \frac{\sin x}{x} dx$$

$$g(x) = \int \frac{\sin^2 x}{x^2} dx$$

$$\begin{cases} \sin^2 x + \sin^2 x \\ \sin^2 x + \cos^2 x \\ \sin^2 x + \cos^2 x \\ \sin^2 x + \cos^2 x \\ \cos^2 x$$

44.8 \everymath

Same as \everydisplay, but now for the inline mode. In the following example the displaystyle is used (beside using color red) for every inline math expression.

```
f(x) = \int \frac{\sin x}{x} dx
Instead of \frac{\sin x}{x} now with \frac{\cos x}{x}:
g(x) = \int \frac{\cos x}{x} dx
g(x) = \int \frac{\cos x}{x} dx
\frac{1}{2} \frac{|\text{everymath}{\cosh^2(x)} - \text{int } \frac{x}{x}}{x} dx
\frac{1}{2} \frac{|\text{displaystyle}|}{|\text{f(x)}|} = \frac{|\text{int } \frac{\sin x}{x}}{x} dx
\frac{1}{2} \frac{|\text{f(x)}|}{|\text{f(x)}|} = \frac{|\text{int } \frac{x}{x}}{x} dx
\frac{1}{2} \frac{|\text{f(x)}|}{|\text{f(x)}|} = \frac{|\text{int } \frac{x}{x}}{x} dx
\frac{1}{2} \frac{|\text{displaystyle}|}{|\text{f(x)}|} = \frac{|\text{int } \frac{x}{x}}{x} dx
```

44.9 \left

TEXcalculates the size of the following delimiter needed at the left side of a formula. Requires an additional right.

44.10 \leqno

Vice versa to \eqno (see section 44.6).

44.11 \limits

Typesets limits above and/or below operators (see section 6).

44.12 \mathinner

Defines the following parameter as subformula.

44.13 \nolimits

The opposit of \limits, instead of above/below limits are placed to the right of large operators (class 1).

44.14 \over

Is equivalent to the fraction macro of LATEX and equivalent to the \overwithdelims, see section 44.16.

```
\frac{a}{b} \qquad \frac{\frac{m}{n}}{\frac{n}{a+b}}
\frac{\frac{m}{n}}{\frac{n}{a+b}}
\frac{1}{2} \qquad \frac{\{a \mid b\} \mid \{a \mid over \mid b\} \mid \{m \mid over \mid a+b\} \}}{\{a \mid over \mid a+b\} \mid a+b}
```

44.15 \overline

Puts a line over the following character or subformula and has the same problems with different heights as underlines (see section 44.19).

44.16 \overwithdelims

is a generalized fraction command with preset fraction bar thickness.

```
 \begin{pmatrix} \frac{a}{b} \end{pmatrix} \qquad \begin{bmatrix} \frac{m}{n} \\ \frac{n}{a+b} \end{bmatrix} 
 \begin{cases} \frac{m}{n} \\ a+b \end{cases} 
 \begin{cases} \frac{m}{n} \\ \\ \end{cases} 
 2 \end{cases} 
 \begin{cases} \frac{m}{n} \\ \\ \end{cases} 
 (a \land overwith delims() b} \land qquad \{\{m \land over m\} \land overwith delims()\} \} 
 (a \land overwith delims() b} \land qquad \{\{m \land over m\} \land overwith delims()\} \}
```

44.17 \radical

Makes a radical atom from the delimiter (27-bit number) and the math field.

```
\sqrt{\frac{1}{7}} \\ 1 \\ \sqrt{\frac{1}{7}} \\ 2 \\ \text{mySqrt}{\text{radical"0270371}relax} \\ 2 \\ \text{mySqrt}{\text{frac}\{1\}}{7}\} \\ \text{def}\\ \text{mySqrt}{\text{radical"0270372}relax} \\ 5 \\ \text{mySqrt}{\text{frac}\{1\}}{7}\} \\ \text{s}\\ \text{mySqrt}{\text{radical"0270373}relax} \\ 8 \\ \text{mySqrt}{\text{frac}\{1\}}{7}\} \\ \text{s}\\ \text{mySqrt}{\text{frac}\{1\}}{7}\} \\ \text{s}\\ \text{def}\\ \text{mySqrt}{\text{radical"0270374}relax} \\ 11 \\ \text{s}\\ \text{mySqrt}{\text{frac}\{1\}}{7}\} \\ \text{s}\\ \text{[5pt]} \\ \text{frac}\\ \text
```

44.18 \right

Opposite to \left, makes TEX calculate the size of the delimiter needed at the right of a formula.

44.19 \underline

When there is a combination of variables with and without an index, the underline are typset with a different depth. Using \vphantom in this case is a good choice.

44.20 \vcenter

Centers vertical material with respect to the axis.

45 Math penalties

45.1 \binoppenalty

A penalty for breaking math expressions between lines in a paragraph. TeX breaks lines only when the binary symbol is not the last one and when the penalty is below 10,000.

45.2 \displaywidowpenalty

The penalty which is added after the penultimate line immediately preceding a display math formula.

45.3 \postdisplaypenalty

Is dded immediately after a math display ends.

45.4 \predisplaypenalty

Is added immediately before a math display starts.

45.5 \relpenalty

The penalty for a line break after a relation symbol (if a break is possible).

Part IV

Other packages

The following sections are not a replacement for the package documentation!

46 List of available math packages

accents	alphalph	amsart	$\operatorname{amsbook}$
amsbsy	amscd	amscls	amsfonts
amslatex	amsltx11	amsmath	${ m amsppt}$
amsppt1	amsproc	amssym (plain TeX)	amssymb (LaTeX)
amstex (Plain TeX)	amstext	amsthm	bez123
bitfield	brclc	breqn	cancel
cases	comma	datenumber	diagxy
doublestroke	easyeqn	easybmat	easymat
eqnarray	esvect	fixmath	ftlpoint
icomma	leftidx	mathdots	mathematica
mil3	mtbe	Nath	numprint
random	romannum	TeXaide	

The following examples depend to the listed versions of the packages:

```
1999/12/14 v2.01 operator names
  amsopn.sty
               1999/07/05 v1.0g Bold Symbol Support (DPC/FMi)
      bm.sty
               2004/08/03 v2.11 Emphasizing equations (MH)
  empheq.sty
   amscd.sty
               1999/11/29 v2.0
 accents.sty
               2000/08/06 v1.2 Math Accent Tools
               2002/12/29 v 0.5: framed or shaded text with page breaks
 framed.sty
               2001/06/20 v1.1 PSTricks color colompatibility (DPC)
 pstcol.sty
               2004/05/06 v0.2k LaTeX wrapper for 'PSTricks' (RN,HV)
pstricks.sty
               2003/03/07 v97 patch 15 'PSTricks' (tvz)
pstricks.tex
             1997/03/25 package wrapper for PSTricks pst-node.tex
pst-node.sty
delarray.sty
             1994/03/14 v1.01 array delimiter package (DPC)
   xypic.sty
               1999/02/16 Xy-pic version 3.7
 exscale.eps
               Graphic file (type veps)
```

47 accents

If you want to write for example an underlined M, then you can do it as

As seen, there is no difference in \underline and \underbar. For some reasons it may be better to use the package accents.sty with the \underaccents macro.

48 amscd - commutative diagrams

amscd.sty is part of the $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ math bundle or available at CTAN²⁷ and has no options for the \usepackage command. amscd.sty does not support diagonal arrows but is much more easier to handle than the complex pstricks or the xypic package. On the other hand simple diagrams can be written with the array environment or look at [21].

$$\begin{array}{ccc} R \times S \times T & \xrightarrow{\text{restriction}} & S \times T \\ \\ proj & & & \downarrow proj \\ \\ R \times S & \xleftarrow{\text{inclusion}} & S \end{array}$$

49 amsopn

With this package it is very easy to declare new math operators, which are written in upright mode:

```
\underset{s=p}{Res} versus \underset{s=p}{\operatorname{Res}}
```

```
1  \documentclass[10pt]{article}
2  \usepackage{amsmath}
3  \usepackage{amsopn}
4  \DeclareMathOperator{\Res}{Res}
5  \begin{document}
6  $\underset{s=p}{Res}\quad\underset{s=p}{\Res}$
7  \end{document}
```

Table 20 shows the predefined operatornames of amsopn.

²⁷CTAN://macros/latex/required/amslatex/math/amscd.dtx

\arccos	arccos	\arcsin	arcsin	\arctan	arctan
\arg	arg	\cos	cos	\cosh	\cosh
\cot	\cot	\c	\coth	\csc	\csc
\deg	\deg	\det	det	\dim	\dim
\exp	\exp	\gcd	gcd	\hom	hom
\inf	\inf	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	inj lim	\ker	ker
\lg	lg	\lim	\lim	\label{liminf}	$\lim\inf$
\lg \limsup	$\lg \limsup$	\lim \ln	$\lim_{ m ln}$	\liminf \log	$\lim \inf \log$
•	0				
\limsup	$\lim\sup$	\ln	ln	\log	log
\limsup \max	lim sup max	\ln \min	ln min	\log \Pr	log Pr

Table 20: The predefined operators of amsopn.sty

50 bigdel

This is a very useful package together with the multirow.sty package. In the following example we need additional parentheses for a different number of rows. This is also possible with the array environment, but not as easy as with bigdelim.sty. The trick is that you need one separate column for a big delimiter, but with empty cells in all rows, which the delimiter spans.

```
\[
    \begin{pmatrix}
       & x_{11} & x_{12} & dots & x_{1p} & rdelim{4}{3cm}[some text]\\
3
       \label{lim:condition} $$ \prod_{5}{1cm}[text] & x_{21} & x_{22} & \dots & x_{2p} \\ \\
4
       & \vdots\\
5
       & x_{n_1 \ 1} & x_{n_1 \ 2} & dots & x_{n_1 \ p}
6
       & x_{n_1+1,1}&x_{n_1+1,2} & dots & x_{n_1+1,p} &
          & \vdots\\
       & x_{n_1+n_2, 1} & x_{n_1+n_2, 2} & \det x_{n_1+n_2, p}
10
       & \vdots \\
11
    \end{pmatrix}
```

13 \]

As seen in the above listing the left big delimiter is placed in the first column, all other rows start with second column. It is possible to use all columns above and below the delimiter. For the array environment there must be two more columns defined, in case of a big delimiter left and right. The syntax of \ldelim and \rdelim is:

\ldelim<delimiter>{<n rows>}{<added horizontal space>}[<text>]
\rdelim<delimiter>{<n rows>}{<added horizontal space>}[<text>]

Any delimiter which is possible for the \left or \right command are allowed, e.g.: "()[]{}|". The text is an optional argument and always typeset in text mode.

51 bm

By default the math macro mathbf writes everything in bold and in upright mode y = f(x) ($\mathbf{y}=f(x)$), but it should be in italic mode especially for variables y = f(x) ($\mathbf{y}=f(x)$). For writing a whole formula in bold have a look at section 22 on page 46.

52 braket

It is available at CTAN://macros/latex/contrib/other/misc/braket.sty and provides several styles for writing math expressions inside brakets. For example:

$$\left\{ x \in \mathbf{R} | 0 < |x| < \frac{5}{3} \right\}$$

```
\[ \left| \left| x\right| = 0<{\left| x\right| }<\left| 5\right| {3}\right| \]
```

looks not quit right and it is not really easy to get the first vertical line in the same size as the outer braces. Some solution maybe using \vphantom:

$$\left\{ x \in \mathbf{R} \middle| 0 < |x| < \frac{5}{3} \right\}$$

```
1 \[
2 \left\{\vphantom{\frac{5}{3}}x\in\mathbf{R} \right|\left. 0<{|x|}<\\
    frac{5}{3}\right\}
3 \]</pre>
```

braket.sty has the macros

```
Bra{<math expression>}

Ket{<math expression>}

Braket{<math expression>}

Set{<math expression>}
```

and the same with a leading lower letter, which are not really interesting.

$$\left\langle x \in \mathbf{R} \middle| 0 < |x| < \frac{5}{3} \middle|$$
$$\left| x \in \mathbf{R} \middle| 0 < |x| < \frac{5}{3} \middle\rangle$$
$$\left\langle x \in \mathbf{R} \middle| 0 < |x| < \frac{5}{3} \middle\rangle$$
$$\left\{ x \in \mathbf{R} \middle| 0 < |x| < \frac{5}{3} \middle\}$$

```
1 \[ \Bra{x\in\mathbf{R} | 0<{|x|}<\frac{5}{3}} \]
2 \[ \Ket{x\in\mathbf{R} | 0<{|x|}<\frac{5}{3}} \]
3 \[ \Braket{x\in\mathbf{R} | 0<{|x|}<\frac{5}{3}} \]
4 \[ \Set{x\in\mathbf{R} | 0<{|x|}<\frac{5}{3}} \]</pre>
```

The difference between the \Set and the \Braket macro is the handling of the vertical lines. In \Set only the first one gets the same size as the braces and in \Braket all.

$$\left\langle \phi \left| \frac{\partial^2}{\partial t^2} \right| \psi \right\rangle$$

```
| \[ \Braket{ \phi | \frac{\partial^2}{\partial t^2} | \psi }\]
```

\Bra and \Ket do nothing with the inner vertical lines.

53 cancel

This is a nice package for canceling anything in mathmode with a slash, backslash or a X. To get a horizontal line we can define an additional macro called hcancel with an optional argument for the line color (requires package color):

```
1 \newcommand\hcancel[2][black]{\setbox0=\hbox{#2}%
2 \rlap{\raisebox{.45\ht0}{\textcolor{#1}{\rule{\wd0}{1pt}}}}#2}
```

It is no problem to redefine the cancel macros to get also colored lines. A horizontal line for single characters is also described in section 14 on page 39.

$$\label{eq:factor} $\operatorname{\cccl}: f(x) = \frac{\left(x^2+1\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}$$$

54 DELARRAY

\hcancel: $\frac{3}{2}$

```
\bcancel: \( \) \tag{1234567} \tag{xcancel: \( \) \tag{1234567}
```

1234567

54 delarray

Package delarray.sty²⁸ supports different delimiters which are defined together with the beginning of an array:

```
begin{array}<delLeft>{cc}<delRight>
...
```

defines an array with two centered columns and the delimiters "<delLeft><delRight>", e.g. "()".

delarray.sty expects a pair of delimiters. If you need only one (like the cases structure) then use the dot for an "empty" delimiter, e.g.

which is a useful command for a cases structure without the $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ math package, which is described in the $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ math part.

²⁸CTAN://macros/latex/required/tools/delarray.dtx

55 empheq

This package supports different frames for math environments of the AMS math package. It doesn't support all the environments from standard LATEX which are not modified by AMS math, e.g. equarray.

With the optional argument of the environment empheq the preferred box type can be specified. A simple one is \fbox

$$f(x) = \int_{1}^{\infty} \frac{1}{x^2} dt = 1$$
 (55.1)

```
\begin{empheq}[box=\fbox]{align}
f(x)=\int_1^{\int_1^{\int_1^{x^2}}\dt=1}
\end{empheq}
```

The same is possible with the macro \colorbox:

$$f(x) = \int_{1}^{\infty} \frac{1}{x^2} dt = 1$$
 (55.2)

```
1 \begin{empheq}[box={\fboxsep=10pt\colorbox{yellow}}]{align}
  f(x)=\int_1^{\int_1^{\int_1^{x^2}}\left(1}{x^2}\right),dt=1
  \end{empheq}
```

The key box can hold any possible LATEX command sequence. Boxing subequations is also no problem, the empheq environment works in the same way:

$$f(x) = \int_{1}^{\infty} \frac{1}{x^{1}} dt = 1$$
 (55.3a)
$$f(x) = \int_{2}^{\infty} \frac{1}{x^{2}} dt = 0.25$$
 (55.3b)

$$f(x) = \int_{2}^{\infty} \frac{1}{x^2} dt = 0.25$$
 (55.3b)

```
1 \begin{subequations}
2 \begin{empheq}[box={\fboxsep=10pt\colorbox{cyan}}]{align}
  f(x) & = \int_1^{\int_1^{\int_1^{x^2} \cdot dt} dt} f(x) & = \int_1^{\int_1^{x^2} \cdot dt} dt}
  f(x) & = \int_2^{\int_1^2 f(x)} \frac{1}{x^2} dt = 0.25
  \end{empheq}
  \end{subequations}
```

For more information on empheq have a look at the documentation of the package which is available at any CTAN server.

56 esint

This is a very useful package when you want nice double or triple integral or curve integral symbols. The ones from wasysym²⁹ are not the best. esint³⁰ supports the following symbols:

$$int: \int (56.1)$$

\dotsintop:
$$\int \cdots \int$$
 (56.5)

$$\setminus$$
ointop: ϕ (56.6)

\ointctrclockwise:
$$\oint$$
 (56.10)

\ointclockwise:
$$\oint$$
 (56.11)

$$\verb|\varointclockwise: \oint (56.12)$$

\fint:
$$\int$$
 (56.14)

\landupint:
$$\oint$$
 (56.16)

\landdownint:
$$\sqrt{}$$
 (56.17)

 $^{^{29}{\}rm CTAN://macros/latex/contrib/wasysym/}$

 $^{^{30}{\}rm CTAN://macros/latex/contrib/esint/\ CTAN://fonts/ps-type1/esint/}$

57 eucal and euscript.sty

These packages should be part of your local T_EX installation, because they come with the $\mathcal{A}_{\mathcal{M}}S$ math packages. Otherwise get them from CTAN³¹. They support a scriptwriting of only upper letters

Read the documentation of the docs for the interdependence to the \mathcal command. For the above example the package eucal.sty was loaded with the option mathscr.

58 exscale

The following formula is written with the default fontsize where everything looks more or less well:

$$\int_{-1}^{+1} \frac{f(x)}{\sqrt{1-x^2}} dx \approx \frac{\pi}{n} \sum_{i=1}^{n} f\left(\cos\left(\frac{2i-1}{2n}\right)\right)$$

Writing the same with the fontsize \huge gives a surprising result, which belongs to the historical development of LATEX, the int and sum symbols are not stretched. This extreme fontsize is often needed for slides and not only written "just for fun".

$$\sum_{i=1}^{z} \frac{f(x)}{\sqrt{1-x^2}} dx \approx \frac{\pi}{n} \lim_{i=1}^{z} f \cos \frac{\partial}{\partial x} \frac{2i-1}{2n} \cos \frac{\partial}{\partial x} \frac{2i-1}{2n} \cos \frac{\partial}{\partial x} \frac{\partial x} \frac{\partial}{\partial x} \frac{\partial}{\partial x} \frac{\partial}{\partial x} \frac{\partial}{\partial x} \frac{\partial}{\partial x} \frac{\partial}{\partial x}$$

Using the exscale.sty³² package, which should be part of any local TeX installation, all symbols get the right size.

$$\int_{-1}^{+1} \frac{f(x)}{\sqrt{1-x^2}} dx \approx \frac{\pi}{n} \sum_{i=1}^{n} f\left(\cos\left(\frac{2i-1}{2n}\right)\right)$$

³¹CTAN://fonts/amsfonts/latex/euscript.sty

 $^{^{32}}$ CTAN://macros/latex/base/

59 xypic

The xymatrix macro is part of the xypic package³³ which can be loaded with several options which are not so important.³⁴.

This matrix was created with

```
1 \[
2 \xymatrix{ A\POS [];[d]**\dir {~},[];[dr]**\dir {-} & B & C\\
3 D & E\POS [];[1]**\dir {.},[];[r]**\dir {~} & F\POS [];[d1]**\dir {~}\\
4 G & H & I}
5 \]
```

 $^{^{\}bf 33}{\rm CTAN://macros/generic/diagrams/xypic/xy-3.7/}$

³⁴For more information look at the style file xy.sty, which is often saved in /usr/share/texmf/tex/generic

Part V

Special symbols

In this section there are only those symbols defined, which are not part of the list of all available symbols: CTAN://info/symbols/comprehensive/symbols-a4.pdf. LATEX itself defines with fontmath.ltx the following special symbols for using inside math:

Name	Meaning
\mathparagraph	¶
\mathsection	§
\mathdollar	\$
\mathsterling	£
\mathunderscore	
$\mbox{\tt mathellipsis}$	

Table 21: Predefined math symbols from fontmath.ltx

60 Integral symbols

Name	Symbol
\dashint	f
\d ddashint	£
\clockint	∮
\counterint	∱

For all new integral symbols limits can be used in the usual way:

$$\oint_{0} 1 = \oint_{1} 0 < \oint_{-\infty}^{\infty} = \oint_{A} \oint_{A}$$
(60.1)

```
\ddashint_01=\dashint_10<\oint\limits_{-\infty}^\infty = \clockint\
counterint_A</pre>
```

Put the following definitions into the preamble to use one or all of these new integral symbols.

```
1 \def\Xint#1{\mathchoice
2     {\XXint\displaystyle\textstyle{#1}}%
3     {\XXint\textstyle\scriptstyle{#1}}%
4     {\XXint\scriptstyle\scriptscriptstyle{#1}}%
5     {\XXint\scriptscriptstyle\scriptscriptstyle{#1}}%
6     \!\int}
7 \def\XXint#1#2#3{{\setbox0=\hbox{$#1{#2#3}{\int}$}}
```

61 Harpoons

LATEX knows no stretchable harpoon symbols, like \xrightarrow. The following code defines several harpoon symbols.

```
\def\rightharpoondownfill@{%
   \arrowfill@\relbar\relbar\rightharpoondown}
2
  \def\rightharpoonupfill@{%
  \arrowfill@\relbar\relbar\rightharpoonup}
  \def\leftharpoondownfill@{%
   \arrowfill@\leftharpoondown\relbar\relbar}
  \def\leftharpoonupfill@{%
   \arrowfill@\leftharpoonup\relbar\relbar}
  \newcommand{\xrightharpoondown}[2][]{%
   \ext@arrow 0359\rightharpoondownfill@{#1}{#2}}
10
  \newcommand{\xrightharpoonup}[2][]{%
   \ext@arrow 0359\rightharpoonupfill@{#1}{#2}}
12
  \newcommand{\xleftharpoondown}[2][]{%
13
   \ext@arrow 3095\leftharpoondownfill@{#1}{#2}}
14
  \newcommand{\xleftharpoonup}[2][]{%
15
   \ext@arrow 3095\leftharpoonupfill@{#1}{#2}}
16
  \newcommand{\xleftrightharpoons}[2][]{\mathrel{%}
17
   \raise.22ex\hbox{%
18
    $\ext@arrow 3095\leftharpoonupfill@{\phantom{#1}}{#2}$}%
   \setbox0=\hbox{%
20
    $\ext@arrow 0359\rightharpoondownfill@{#1}{\phantom{#2}}$}%
21
   \kern-\wd0 \lower.22ex\box0}%
22
23
  \newcommand{\xrightleftharpoons}[2][]{\mathrel{%}
24
   \raise.22ex\hbox{%
25
    $\ext@arrow 3095\rightharpoonupfill@{\phantom{#1}}{#2}$}%
26
   \setbox0=\hbox{%
    $\ext@arrow 0359\leftharpoondownfill@{#1}{\phantom{#2}}$}%
   \kern-\wd0 \lower.22ex\box0}%
29
  }
30
```

\xrightharpoondown \xrightharpoonup \xleftharpoonup \xleftrightharpoons \xrightleftharpoons

63 STACKED EQUAL SIGN

```
over
\xrightharpoondown[under]{over}
                                     under
\xrightharpoonup[under]{over}
                                     under
                                      over
\xleftharpoondown[under]{over}
                                     under
                                     over
\xleftharpoonup[under]{over}
                                     under
                                      over
\xleftrightharpoons[under]{over}
                                     under
\xrightleftharpoons[under]{over}
                                     under
```

62 Bijective mapping arrow

To get something like \rightarrow we can define:

```
1 \def\bijmap{%
2 \ensuremath{%
3 \mathrlap{\rightarrow%
4 }%
5 }
```

This uses the $\mbox{\mbox{mathrlap}}$ definition from section 35.2 on page 70. With this definition a huge symbol is also possible: {\\mbox{Huge}\\bijmap} \longrightarrow .

63 Stacked equal sign

There are several symbols stacked with an equal sign, e.g. \land doteq, \land equiv or \land cong ($\dot{=}$, \equiv , \cong). But there are still some missing, which are shown in table 22 and the following definitions.

```
\eqdef \stackrel{\text{de}}{=} \equiv \
```

Table 22: New symbols in combination with the equal sign

```
1 \newcommand{\eqdef}{\ensuremath{\stackrel{\mathrm{def}}{!}}}
2 \newcommand{\eqexcl}{\ensuremath{\stackrel{\mathrm{def}}{!}}}
3 \newcommand{\eqhat}{\ensuremath{\widehat{=}}}
```

64 Other symbols

```
1 \newcommand*{\threesim}{%
2 \mathrel{\vcenter{\offinterlineskip}}
3 \hbox{$\sim$}\vskip-.35ex\hbox{$\sim$}\vskip-.35ex\
    hbox{$\sim$}}}
4 $\threesim ABC$
```

Part VI

Examples

65 Identity matrix

There are several possibilities to write this matrix. Here is a solution with the default array environment.

66 Cases structure

Sometimes it is better to use the array environment instead of amsmaths cases environment. To get optimal horizontal spacing for the conditions, there are two matrixes in series, one 3×1 followed by 3×3 matrix. To minimize the horizontal space around the variable z a

```
\addtolength{\arraycolsep}{-3pt}
```

is a useful command.

$$I(z) = \delta_0 \begin{cases} D+z & -D \le z \le -p \\ D-\frac{1}{2} \left(p-\frac{z^2}{p}\right) & -p \le z \le p \\ D-z & p \le z \le D \end{cases}$$

$$(66.1)$$

```
1 \addtolength{\arraycolsep}{-3pt}
2 I(z)=\delta_{0}\left\{%
3 \begin{array}{lcrcl}
4 D+z & \quad & -D & \le z\le & -p\\
5 D-\frac{1}{2}\left(p-\frac{z^{2}}{p}\right)%
6 & \quad & -p & \le z\le & \phantom{-}p\\
7 D-z & \quad & p & \le z\le & \phantom{-}D
8 \end{array}\right.
9 \end{equation}
```

The \phantom command replaces exactly that place with whitespace which the argument needs.

66.1 Cases with numbered lines

This is not possible in an easy way, because cases uses the array environment for typesetting which has by default no numbering. However, there are some tricky ways to get numbered lines. The following three examples use the tabular, the tabularx and the array environment.

some text hier
$$\begin{cases} x = 2 & \text{if } y > 2 \\ x = 3 & \text{if } y \le 2 \end{cases}$$
 (66.2)

```
begin{tabular}{rc}

ldelim\{{2}{2.75cm}[some text hier] &
    \parbox{{\linewidth-3cm-4\tabcolsep}}{

vspace*{lex}

begin{flalign}
    x & = 2\quad\text{if }y >2 &\\
    x & = 3\quad\text{if }y \le 2&

end{flalign}

end{tabular}
```

some text hier
$$\begin{cases} x=2 & \text{if } y>2\\ x=3 & \text{if } y\leq 2 \end{cases} \tag{66.4}$$

```
begin{tabularx}{\linewidth}{rXc}

ldelim\{{2}{2.75cm}[some text hier]

% $ x = 2\quad\text{if }y > 2 $ & \refstepcounter{equation}(\
theequation)\\

% $ x = 3\quad\text{if }y \le 2$ &\refstepcounter{equation}(\
theequation)

bend{tabularx}
```

some text hier
$$\begin{cases} x=2 & \text{if } y > 2 \\ x=3 & \text{if } y \leq 2 \end{cases}$$
 (66.6)

67 Arrays

There is a general rule that a lot of mathematical stuff should be divided in smaller pieces. But sometimes it is difficult to get a nice horizontal alignment when splitting a formula. The following ones uses the **array** environment to get a proper alignment.

67.1 Quadratic equation

$$y = x^{2} + bx + c$$

$$= x^{2} + 2 \cdot \frac{b}{2}x + c$$

$$= x^{2} + 2 \cdot \frac{b}{2}x + \left(\frac{b}{2}\right)^{2} - \left(\frac{b}{2}\right)^{2} + c$$

$$= \left(x + \frac{b}{2}\right)^{2} - \left(\frac{b}{2}\right)^{2} + c$$

$$= \left(x + \frac{b}{2}\right)^{2} - \left(\frac{b}{2}\right)^{2} + c$$

$$y + \left(\frac{b}{2}\right)^{2} - c = \left(x + \frac{b}{2}\right)^{2} \qquad |(Scheitelpunktform)|$$

$$y - ys = (x - xs)^{2}$$

$$S(xs; ys) \quad \text{bzw.} \quad S\left(-\frac{b}{2}; \left(\frac{b}{2}\right)^{2} - c\right)$$

$$(67.1)$$

```
1 \begin{equation}
  \begin{array}{rcll}
  y \& = \& x^{2}+bx+c
     & = & x^{2}+2\cdot {\displaystyle displaystyle frac{b}{2}x+c}
     & = & \underbrace{x^{2}+2\cdot frac{b}{2}x+\left(\frac{b}{2}\right)right}
       )^{2}}-{\displaystyle%
   \left(\frac{b}{2}\right)^{2}+c
6
   & & \qquad\left(x+{\displaystyle \frac{b}{2}}\right)^{2}\\
   & = & \left(x+{\displaystyle \frac{b}{2}}\right)^{2}-\left({\
      displaystyle%
  \frac{b}{2}}\right)^{2}+c & \left|+\left({\displaystyle%
   \frac{b}{2}}\right)^{2}-c\right.
  y+\left({\displaystyle \frac{b}{2}\right)^{2}-c \& = \& \left(x+{\displaystyle \frac{x+{\cdot}}{c}}\right)^{2}-c \& = \& \left(x+{\cdot}\right)^{2}
     displaystyle%
  \frac{b}{2}\right)^{2} & \left|(\textrm{Scheitelpunktform})\right
     .\\
y-y_{S} & = & (x-x_{S})^{2} 
14 S(x_{S};y_{S}) & \,\textrm{bzw.}\, & S\left(-{\displaystyle%
  \frac{b}{2};\,\left(\frac{\displaystyle \frac{b}{2}}\right)^{2}-c}\right)
15
  \end{array}
16
  \end{equation}
```

67.2 Vectors and matrices

$$\underline{RS} = \begin{pmatrix}
01 & a4 & 55 & 87 & 5a & 58 & db & 9e \\
a4 & 56 & 82 & f3 & 1e & c6 & 68 & e5 \\
02 & a1 & fc & c1 & 47 & ae & 3d & 19 \\
a4 & 55 & 87 & 5a & 58 & db & 9e & 03
\end{pmatrix}$$

$$\begin{pmatrix}
s_{i,0} \\
s_{i,1} \\
s_{i,2} \\
s_{i,3}
\end{pmatrix} = \underline{RS} \cdot \begin{pmatrix}
m_{8i+0} \\
m_{8i+1} \\
\cdots \\
m_{8i+6} \\
m_{8i+7}
\end{pmatrix}$$

$$S_{i} = \sum_{j=0}^{3} s_{i,j} \cdot 2^{8j} \qquad i = 0, 1, ..., k-1$$

$$S = (S_{k-1}, S_{k-2}, ..., S_{1}, S_{0})$$

$$(67.2)$$

```
1 \begin{equation}
2 \begin{array}{rcl}
3 \underline{RS} & = & \left(\begin{array}{ccccccc}
4 01 & a4 & 55 & 87 & 5a & 58 & db & 9e\\
5 a4 & 56 & 82 & f3 & 1e & c6 & 68 & e5\\
  02 & a1 & fc & c1 & 47 & ae & 3d & 19\\
  a4 & 55 & 87 & 5a & 58 & db & 9e & 03\end{array}\right)\\
7
  //
8
9 \left(\begin{array}{c}
10 s_{i,0}\\
11 s_{i,1}\\
12 s_{i,2}\\
13 s_{i,3}
  \end{array}\right) & = & \underline{RS}\cdot%
15 \left(\begin{array}{c}
16 m_{8i+0}\\
17 m_{8i+1}\\
18 \cdots\\
m_{8i+6}\\
  m_{8i+7}
20
  \end{array}\right)\\
21
  S_{i} & = & \sum_{j=0}^{3}s_{i,j}\cdot 2^{8j}\cdot i=0,1,...,k-1
23
24
  S \& = \& \left( S_{k-1}, S_{k-2}, \dots, S_{1}, S_{0} \right)
26 \end{array}
  \end{equation}
```

67.3 Cases with (eqn)array environment

This solution is important when $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ math couldn't be used.

```
\lim_{n \to \infty} q^n = \begin{cases} \text{divergent} & q \le -1\\ 0 & |q| < 1\\ 1 & q = 1\\ \infty & q > 1 \end{cases}
```

```
$\lim\limits_{n->\infty}q^{n}=\left\{%
begin{array}{lc@{\kern2pt}c@{\kern2pt}r}

textrm{divergent}\ & q & \le & -1\\
0 & |q| & < & 1\\
1 & q & = & 1\\
infty & q & > & 1
\end{array}\right.$
```

67.4 Arrays inside arrays

The array environment is a powerful one because it can be nested in several ways:

$$\begin{pmatrix}
\begin{bmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{bmatrix} & 0 & 0 \\
0 & b_{11} & b_{12} & b_{13} \\
0 & b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{bmatrix} & 0 \\
0 & 0 & \begin{bmatrix}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{bmatrix}$$

```
\[
2
  \left(
  \begin{array}{c0{}c0{}c}
  \begin{array}{|cc|}\hline
   a_{11} & a_{12} \\
   a_{21} & a_{22} \\hline
6
   \end{array} & \mathbf{0} & \mathbf{0} \\
7
   \mathbf{0} &
8
   \begin{array}{|ccc|}\hline
    b_{11} & b_{12} & b_{13}\\
10
    b_{21} & b_{22} & b_{23} \
11
    b_{31} & b_{32} & b_{33}\\hline
12
   \end{array} & \mathbf{0} \\
   \mathbf{0} & \mathbf{0} &
14
   \begin{array}{|cc|}\hline
15
    c_{11} & c_{12} \
16
    c_{21} & c_{22} \in hline
17
   \end{array} \\
18
  \end{array}
19
  \right)
20
  \]
```

67 ARRAYS 67.5 Colored cells

$$Y^{1} = \frac{\begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}}{2 + 1 + 3 + 1}$$

```
\[
1
  Y^1=
2
  \begin{array}{c}
   \null\\[1ex]% only vor vertical alignment
4
   \left[\begin{array}{rrrr}
5
   0 & 0 & 1 & 0\\
6
   1 & 0 & 1 & 0\\
7
   1 & 1 & 1 & 1
   \end{array}\right]\\[3ex]\hline
  \begin{array}{rrrr}
10
  11
   2 & 1 & 3 & 1
   \end{array}
13
  \end{array}
14
  \]
15
```

67.5 Colored cells

In general there is no difference in coloring tabular or array cells. The following example shows how one can put colors in rows, columns and cells.

```
3
h_{k,1,0}(n)
               h_{k,1,1}(n)
                               h_{k,1,2}(n)
h_{k,2,0}(n)
              h_{k,2,1}(n)
                               h_{k,2,2}(n)
               h_{k,3,1}(n)
h_{k,3,0}(n)
                               h_{k,3,2}(n)
                                                     0
                                                                      0
h_{k,4,0}(n)
              h_{k,4,1}(n)
                               h_{k,4,2}(n)
    0
            h_{k,1,0}(n-1) h_{k,1,1}(n-1) h_{k,1,2}(n-1)
    0
            h_{k,2,0}(n-1) h_{k,2,1}(n-1) h_{k,2,2}(n-1)
            h_{k,3,0}(n-1) h_{k,3,1}(n-1) h_{k,3,2}(n-1)
                                                                      0
           h_{k,4,0}(n-1) \mid h_{k,4,1}(n-1) \mid h_{k,4,2}(n-1)
    0
                  0
                             h_{k,1,0}(n-2) h_{k,1,1}(n-2) h_{k,1,2}(n-2)
    0
                   0
                             h_{k,2,0}(n-2) h_{k,2,1}(n-2) h_{k,2,2}(n-2)
    0
                   0
                             h_{k,3,0}(n-2) h_{k,3,1}(n-2) h_{k,3,2}(n-2)
    0
                   0
                             h_{k,4,0}(n-2) h_{k,4,1}(n-2) h_{k,4,2}(n-2)
```

```
1 ...
2 \usepackage{array}
3 \usepackage{colortbl}
```

```
\displaystyle \operatorname{definecolor}\{\operatorname{umbra}\{\operatorname{rgb}\}\{0.8,0.8,0.5\}
        \def\zero{\multicolumn{1}{>{\columncolor{white}}c}{0}}
       \begin{document}
        \[\left[\,
        \begin{array}{*{5}}{>{\columncolor[gray]{0.95}}c}}
 9
             h_{k,1,0}(n) \& h_{k,1,1}(n) \& h_{k,1,2}(n) \& \zero \& \zero \
10
             h_{k,2,0}(n) \& h_{k,2,1}(n) \& h_{k,2,2}(n) \& \zero \& \zero \
11
             h_{k,3,0}(n) \& h_{k,3,1}(n) \& h_{k,3,2}(n) \& \zero \& \zero \
12
             h_{k,4,0}(n) \ \& \colCell\{umbra\}\{h_{k,4,1}(n)\} \ \& \ h_{k,4,2}(n) \ \& \colCell\{umbra\}\{h_{k,4,1}(n)\} \ \& \ h_{k,4,2}(n) \ \& \ 
13
                   zero\\
             \zero & h_{k,1,0}(n-1) & h_{k,1,1}(n-1) & h_{k,1,2}(n-1) & \zero\\
14
             \zero & h_{k,2,0}(n-1) & h_{k,2,1}(n-1) & h_{k,2,2}(n-1) & \zero\\
15
             \zero & h_{k,3,0}(n-1) & h_{k,3,1}(n-1) & h_{k,3,2}(n-1) & \zero\\
16
             \zero & \colCell{umbra}{h_{k,4,0}(n-1)} & h_{k,4,1}(n-1) & h_{k,4,2}(n-1)
                   -1) & \zero\\
             \zero & \zero & h_{k,1,0}(n-2) & h_{k,1,1}(n-2) & h_{k,1,2}(n-2)\
18
             \zero & \zero & h_{k,2,0}(n-2) & h_{k,2,1}(n-2) & h_{k,2,2}(n-2)
19
             \zero & \zero & h_{k,3,0}(n-2) & h_{k,3,1}(n-2) & h_{k,3,2}(n-2)\\
20
             \zero & \zero & h_{k,4,0}(n-2) & h_{k,4,1}(n-2) & h_{k,4,2}(n-2)
21
        \end{array} \,\right]_{12\times 5}\]
22
```

68 Over- and underbraces

68.1 Braces and roots

To put an underbrace in a root without enlarging the root symbol is possible with the \makebox macro:

$$z = \sqrt{\underbrace{x^2 + y^2}_{=z^2}}$$

```
1  \[
2  z =\;\;\underbrace{%
3  \makebox[\widthof{~$x^2+y^2$}][r]{%
4   $\sqrt{x^2+y^2}$}_{=z^2}
5  \]
```

68.2 Overlapping braces

tricky code, because we cannot have parts of the argument inside overbrace

and also underbrace. The following equation 68.1 is an example for such a construction:

$$y = 2x^{2} - 3x + 5$$

$$= 2\left(x^{2} - \frac{3}{2}x + \left(\frac{3}{4}\right)^{2} - \left(\frac{3}{4}\right)^{2} + \frac{5}{2}\right)$$

$$= 2\left(\left(x - \frac{3}{4}\right)^{2} + \frac{31}{16}\right)$$

$$y - \frac{31}{8} = 2\left(x - \frac{3}{4}\right)^{2}$$
(68.1)

```
y &= 2x^2 -3x +5 \cdot nonumber \cdot 
1
     & \displaystyle \frac{x^2-\frac{3}{2}\,x\right.}{}
2
           \textcolor{blue}{%
3
                \overbrace{\hphantom{+\left(\frac{3}{4}\right)^2- %
4
                     \left(\frac{3}{4}\right)^2}^{=0}\  -11pt
5
     &= 2\left(\textcolor{red}{%
6
7
        \underbrace{%
            x^2-\frac{3}{2}\,x + \left(\frac{3}{4}\right)^2}
8
       }%
9
        \underbrace{%
10
           - \left(\frac{3}{4}\right)^2 + \frac{5}{2}}%
11
        \right)\\
12
     \&= 2\left( \left( \left( -\left( x-\left( 3\right) \left( 4\right) \right)^{2} \right) \right)
13
        \qquad + \ \frac{31}{16}\qquad\right)\nonumber\\
14
   y\textcolor{blue}{-\frac{31}{8}}
15
    &= 2\left(x\textcolor{cyan}{-\frac{3}{4}}\right)^2\nonumber
16
   \end{align}
17
```

68.3 Vertical alignment of different braces

When having several braces in one formula line, then it looks better when all braces are also on the same line, e.g.:

$$\begin{pmatrix} x_R \\ y_R \end{pmatrix} = \underbrace{r} \cdot \underbrace{\begin{pmatrix} \sin \gamma & -\cos \gamma \\ \cos \gamma & \sin \gamma \end{pmatrix}}_{\text{Scaling}} \begin{pmatrix} x_K \\ y_K \end{pmatrix} + \underbrace{\begin{pmatrix} t_x \\ t_y \end{pmatrix}}_{\text{Translation}}$$
(68.2)

```
begin{equation}
binom{x_R}{y_R} = \underbrace{r\vphantom{\binom{A}{B}}}_{\text{Skalierung}}\cdot%
```

```
\underbrace{%
3
    \begin{pmatrix}
4
        \sin \gamma & -\cos \gamma \\
5
        \cos \gamma & \sin \gamma \\
6
7
    \end{pmatrix}%
      }_{\text{Rotation}}
8
    \sum_{x_K}{y_K} +
9
      \underbrace{\binom{t_x}{t_y}}_{\text{Translation}}
10
   \end{equation}
```

It is again the \vphantom macro which reserves the needed vertical space. Nevertheless the horizontal space around the r of the first underbrace and the last + should be decreased to get a better typesetting. This is possible with \hspace or simply \kern:

$$\begin{pmatrix} x_R \\ y_R \end{pmatrix} = r \cdot \begin{pmatrix} \sin \gamma & -\cos \gamma \\ \cos \gamma & \sin \gamma \end{pmatrix} \begin{pmatrix} x_K \\ y_K \end{pmatrix} + \begin{pmatrix} t_x \\ t_y \end{pmatrix}$$
 (68.3)
Skalierung Rotation

```
begin{equation}
binom{x_R}{y_R} = %

kern-10pt\underbrace{r\vphantom{\binom{A}{B}}}_{\text{Skalierung}}
kern-10pt%

cdot\underbrace{%

...
```

68.4 Vertical and horizontal alignment

The forgoing example simply uses \hspace to decrease the horizontal width between two underbraces. This maybe okay for a single solution, but in general it is better to have some code which works in any case.

The following example looks simple but it need some tricky code to get vertical and horizontal alignment.

$$\frac{300}{5069} \longrightarrow \frac{29}{490} \longrightarrow \frac{19}{321} \longrightarrow \frac{9}{152} \longrightarrow \frac{8}{135} \longrightarrow \dots \longrightarrow \frac{1}{16} \longrightarrow \dots \longrightarrow \frac{1}{16}$$

$$\Delta a = 271 \quad \Delta a = 10 = \langle 271 \rangle_{29} \qquad \Delta a = 1 = \langle 10 \rangle_{9} \qquad \Delta a = 0 = \langle 1 \rangle_{1}$$

$$\Delta b = 4579 \quad \Delta b = 169 = \langle 4579 \rangle_{490} \qquad \Delta b = 17 = \langle 169 \rangle_{152} \qquad \Delta b = 1 = \langle 17 \rangle_{16}$$
1 iteration 2 iterations 8 iterations 8 iterations

It uses the in section 35.2 on page 70 defined macro \mathclap, which gives a better result. It is also possible to use \makebox[Opt]{...} but it works only in text mode and this needs some more \$...\$.

```
1 \def\num#1{\hphantom{#1}}
2 \def\vsp{\vphantom{\rangle_1}}
3
```

```
\begin{equation*}
      \frac{300}{5069}%
5
      \underbrace{\longmapsto\vphantom{\frac{1}{1}}}_{%}
6
      \mathclap{\substack{%
7
       \Delta = 271 \sum \sqrt{2pt}
       \Delta b=4579 \
9
       \text{$1$ iteration}%
10
      }}} \frac{29}{490}%
11
   \underbrace{\longmapsto \frac{19}{321}\longmapsto}_{\%
12
       \mathclap{\substack{%
13
       \Delta b=169=\langle4579\rangle_\{490\}\\[2pt]
15
          \text{$2$ iterations}
16
       }}} \frac{9}{152}
17
      \underbrace{\longmapsto \frac{8}{135}\longmapsto\dots\longmapsto
       }_{%
       \substack{%
19
      \label{langle10} $$ \Delta =1 \sum_{7}=\lambda_{119} \left(2pt\right) $$
20
      \Delta b=17=\langle169\rangle_\{152\}\\[2pt]
21
      \text{$8$ iterations}
22
       }} \frac{1}{16}
23
      \underbrace{\longmapsto\dots\longmapsto\vphantom{\frac
24
        {8}{135}}}_{%
       \substack{%
25
       26
       \Delta b=1=\langle17\rangle_{16} \\[2pt]
27
          \text{$8$ iterations}
28
       }} \frac{1}{1}
29
  \end{equation*}
```

69 Integrals

The first theorem of Green is:

$$\iiint\limits_{\mathcal{G}} \left[u \nabla^2 v + (\nabla u, \nabla v) \right] d^3 V = \iint\limits_{\mathcal{S}} u \frac{\partial v}{\partial n} d^2 A$$

The second theorem of Green is:

$$\iiint\limits_{C} \left[u \nabla^{2} v - v \nabla^{2} u \right] d^{3} V = \iint\limits_{S} \left(u \frac{\partial v}{\partial n} - v \frac{\partial u}{\partial n} \right) d^{2} A$$

They are both written with the esint.sty package³⁵, which gives nice integral symbols. The LATEX code for the first equation is:

³⁵See section 69.

with the following definition in the preamble for the partial derivation:

```
1 \def\Q#1#2{\frac{\partial#1}{\partial #2}}
```

which makes things easier to write.

70 Vertical alignment

70.1 Example 1

Sometimes it maybe useful to have a vertical alignment over the whole page with a mix of formulas and text. Section 37 shows the use of \intertext. There is another trick to get all formulas vertical aligned. Let's have the following formulas distributed over the whole page:

$$f(x) = a$$

$$g(x) = x2 - 4x$$

$$f(x) - g(x) = x2 + x3 + x$$

$$q = x2 + x3 + x4 + x5 + b$$

They all have a different length of the left and right side. Now we want to write some text and other objects between them, but let the alignment untouched. We choose the longest left and the longest right side and take them for scaling with the \hphantom command:

This is the first (empty) line in every equation where now all other lines are aligned to this one. For example:

$$f(x) = a \tag{70.1}$$

$$g(x) = x^2 - 4x (70.2)$$

$$f(x) - g(x) = x^2 + x^3 + x (70.3)$$

$$g(x) = x^2 + x^3 + x^4 + x^5 + b (70.4)$$

The phantom line is empty but leaves the vertical space for a line. This could be corrected with decreasing the **\abovedisplayshortskip** length and restoring them after the whole sequence of commands. The code of the above looks like:

```
2 \addtolength{\abovedisplayshortskip}{-1cm} % decrease the skip
3 \addtolength{\abovedisplayskip}{-1cm}
4 | x x x x x
  \begin{align}
  $}}\nonumber\\
  f(x) &= a\\
7
  g(x) &= x^2-4x
  \end{align}
10
  /x/x/x/x
11
  \begin{align}
12
  \label{linear_mbox} $$ \int_{\mathbb{S}^2} &  \int_{\mathbb{S}^2} x^2 + x^3 + x^5 + b 
   $}}\nonumber\\
f(x)-g(x) &= x^2+x^3+x
  \end{align}
  /x/x/x/x
16
17
  \begin{align}
18
  $}\\nonumber\\
  g(x) &= x^2+x^3+x^4+x^5+b
20
21 \end{align}
22 | x x x x x x
23 % restore old values
24 \addtolength{\abovedisplayshortskip}{1cm}
25 \addtolength{\abovedisplayskip}{1cm}
```

Another case of aligning equations inside an itemize environment is the following one. With the \makebox macro one can have the same size on the left side of the equal sign to get a vertical alignment.

- first function $P_1 = \sum_a \in A$
- but another one $\sin(P_1) = blabla$
- or perhaps $P_3 + P_2 P_1 = blablub$

```
\newsavebox\lW
\sbox\lW{\$P_{3}+P_{2}-P_{1}\$}

\begin{itemize}

item first function \\

\$\displaystyle\makebox[\wd\lW][r]{\$P_1\$}=\sum_a \in A\$

item but another one \\

\$\makebox[\wd\lW][r]{\$\sin\left(P_1\right)\$}=blabla\$

item or perhaps \\

\$P_{3}+P_{2}-P_{1}=blablub\$

\end{itemize}

\rangle
\rangl
```

70.2 Example 2

This one comes from Hartmut Henkel and offers a special form of placing additional text between the equation and the equationnumber. This makes only sense when you load the documentclass with the option fleqn. The example places the additional text at 0.5\textwidth, changing this value is no problem.

$$\varepsilon = \frac{E \cdot 4 \cdot \pi \cdot \varepsilon_0 \cdot a_0 \cdot \left(Z_i^{\frac{2}{3}} + Z_{Si}^{\frac{2}{3}}\right)^{-\frac{1}{2}}}{Z_i \cdot Z_{Si} \cdot e^2 \cdot \left(1 + \frac{m_i}{m_{Si}}\right)}; \quad \begin{array}{ll} a_0 & \text{Bohrsche Radiuns } (=0,53\,\text{Å}) \\ e & \text{Elementarladung} \\ N_{si} & \text{Anzahl der Siliziumatome} \\ pro Einheitsvolumen \\ m & \text{Atomgewicht} \\ Z & \text{Kernladungszahl} \end{array}$$
(70.5)

$$a2 + b2 = c2 abc (70.6)$$

```
z = 9 \tag{70.7}
```

This solution works only with $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ math, without you have to redefine the LATEX macro, which creates the equation number.

```
\newsavebox{\myendhook} % hier gehen die Tabellen rein
        \def\tagform@#1{{(\maketag@@@{\ignorespaces#1\unskip\@@italiccorr)}
              \makebox[Opt][r]{% hinter der Zeilennummer aufgehaengt
 3
                    \makebox[0.4\textwidth][1]{\usebox{\myendhook}}%
  4
  5
               \global\sbox{\myendhook}{}% Box wird geleert
  6
        }}
  7
  8
         [ ... ]
10
        \sbox{\myendhook}{%
11
        \begin{footnotesize}%
        \begin{tabular}{0{}11}
13
        a_0 & Bohrsche Radiuns (\mathrm{mathrm} = 0{,}53{,\underline{AA}})\\
        $e$ & Elementarladung\\
        $N_{si}$ & Anzahl der Siliziumatome\\
17
        & pro Einheitsvolumen\\
        $m$ & Atomgewicht\\
18
        $Z$ & Kernladungszahl
19
        \end{tabular}
        \end{footnotesize}}
21
22
        \begin{equation}
23
        \varepsilon = \frac{E \cdot 4 \cdot \pi \cdot \varepsilon_{0}}
        \cdot a_0 \cdot \left( Z_i^{\frac{2}{3}} + Z_{Si}^{\frac{2}{3}} + Z_{Si}^{\frac{2}{3}})
25
        \label{lem:condition} $$  \Big(1_{2}} \ \{Z_i \ Z_{Si} \ e2 \ \left1 \ 1 \right)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ (1)^{-1} \ 
26
        + \frac{m_i}{m_{Si}} \right)}\,;
27
         \end{equation}
28
29
        \sbox{\myendhook}{abc}
30
31
        \begin{equation}
32
        a2+b2=c2
33
        \end{equation}
34
        \begin{equation}
36
        z = 9
37
       \end{equation}
```

71 Node connections

This is a typical application for PSTricks and it needs the package pst-node and doesn't work with pdflatex. Use VTeX, ps4pdf or ps2pdf.

Die Bindungsenergie im Tröpfchenmodell setzt sich aus folgenden Teilen zusammen:

• dem Oberflächenanteil
• Dem Volumenanteil, $E = \frac{a_v A}{a_v} + \frac{a_f A^{2/3}}{a_v} + \frac{a_c \frac{Z(Z-1)}{A^{1/3}}}{a_v} + \frac{a_s \frac{(A-2Z)^2}{A}}{a_v} + \frac{E_p}{a_v}$ • dem Coulomb-Anteil
• der Symmetrieenergie
• sowie einem Paarbildungsbeitrag.

```
\psset{nodesep=3pt}
  \newrgbcolor{lila}{0.6 0.2 0.5}
  \newrgbcolor{darkyellow}{1 0.9 0}
  Die Bindungsenergie im Tröpfchenmodell setzt sich aus
  folgenden Teilen zusammen:
  \begin{itemize}
  \item dem \rnode{b}{Oberflächenanteil}
  \item Dem \rnode{a}{Volumenanteil}, \\[1cm]
  \def\xstrut{\vphantom{\frac{(A)^1}{(B)^1}}}
  \begin{equation}
10
11
  \rnode[t]{ae}{\psframebox*[fillcolor=darkyellow,
12
    linestyle=none]{\xstrut a_vA}} +
13
  \rnode[t]{be}{\psframebox*[fillcolor=lightgray,
14
    linestyle=none]{\xstrut -a_fA^{2/3}} +
15
  \rnode[t]{ce}{\psframebox*[fillcolor=green,
16
    linestyle=none]\{\xstrut -a_c\frac\{Z(Z-1)\}\{A^{1/3}\}\}\} +
17
  \rnode[t]{de}{\psframebox*[fillcolor=cyan,
18
    linestyle=none]{\xstrut -a_s\frac{(A-2Z)^2}{A}}} +
19
  \rnode[t]{ee}{\psframebox*[fillcolor=yellow,
    linestyle=none]{\xstrut E_p}}
22 \end{equation}\\[0.25cm]
23 \item dem \rnode{c}{Coulomb-Anteil}
24 \item der \rnode{d}{Symmetrieenergie}
```

```
\item sowie einem \rnode{e}{Paarbildungsbeitrag}.
  \end{itemize}
26
  \nccurve[angleA=-90,angleB=90]{->}{a}{ae}
27
  \nccurve[angleB=45]{->}{b}{be}
  \nccurve[angleB=-90]{->}{c}{ce}
29
  \nccurve[angleB=-90]{->}{d}{de}
30
  \nccurve[angleB=-90]{->}{e}{ee}
```

72 Special placement of displayed equations

72.1Formulas side by side

Sometimes it may be useful to have numbered formulas side by side like the following ones:

$$\oint E ds = 0 \qquad (72.1.a) \qquad \nabla \cdot B = 0 \qquad (72.1.b)$$

$$a = \frac{c}{d}$$
 (72.2.a) $b = 1$ (72.2.b)

$$\oint E ds = 0 (72.1.a) \nabla \cdot B = 0 (72.1.b)$$

$$a = \frac{c}{d} (72.2.a) b = 1 (72.2.b)$$

$$c = 1 (72.3.a) \int 2x dx = x^2 + C (72.3.b)$$

And again a default display equation:

$$F(x) = \int_0^\infty \frac{1}{x} dx \tag{72.4}$$

```
\begin{mtabular}{*{2}{m{0.35\linewidth}m{0.15\linewidth}}}
\begin{align*} \oint E ds=0 \end{align*} & \eqnCnt %
& \begin{align*} \nabla\cdot B=0 \end{align*} & \eqnCnt[\label{blah}
  }]\\
\begin{align*} a =\frac{c}{d} \end{align*} & \eqnCnt %
& \begin{align*} b = 1 \end{align*} & \eqnCnt\\
\begin{align*} c =1 \end{align*} & \eqnCnt[\label{blub}]
& \begin{align*} \int 2x dx = x^2+C \end{align*} & \eqnCnt
\end{mtabular}
```

The new environment mtabular has two arguments, one optional and one which is the same than the one from the tabular environment. With the option long it is possible to have all the formulas in a longtable environment, which allows a pagebreak. The new macro \eqnCnt controls the counting of these equations as subequations for one tabular line. This macro can have an optional argument for a label. At least it counts the equations. If the equation number is not centered to the foregoing equation, then it needs some more horizontal space in the tabular column.

\eqnCnt[<optional label>]

The vertical space is controlled by the length mtabskip, which is by default -1.25cm and can be modified in the usual way.

To define all these macros write into the preamble:

```
\usepackage{amsmath}
   \newcounter{subequation}
3
  \newlength\mtabskip\mtabskip=-1.25cm
4
5
  \newcommand\eqnCnt[1][]{%
   \refstepcounter{subequation}%
7
   \begin{align}#1\end{align}%
8
   \addtocounter{equation}{-1}%
10
   \def\mtabLong{long}
11
  \makeatletter
12
  \newenvironment{mtabular}[2][\empty]{%
   \def\@xarraycr{%
14
    \stepcounter{equation}%
15
    \setcounter{subequation}{0}%
16
    \@ifnextchar[\@argarraycr{\@argarraycr[\mtabskip]}%
17
18
   \let\theoldequation\theequation%
19
   \renewcommand\theequation{\theoldequation.\alph{subequation}}
20
   \edef\mtabOption{#1}
21
   \setcounter{subequation}{0}%
22
   \tabcolsep=0pt
23
   \ifx\mtabOption\mtabLong\longtable{#2}\else\tabular{#2}\fi%
^{24}
25
   \ifx\mtabOption\mtabLong\endlongtable\else\endtabular\fi%
26
   \let\theequation\theoldequation%
27
   \stepcounter{equation}
28
29
  \makeatother
30
```

As seen in equation 72.3.a and equation 72.1.b, everything is nonsense ... And the following tabular is defined as a longtable to enable pagebreaks.

$$\oint E ds = 0 (72.5.a) \nabla \cdot B = 0 (72.5.b)$$

$$a = \frac{c}{d} (72.6.a) b = 1 (72.6.b)$$

$$c = 1 (72.7.a) \int 2x dx = x^2 + C (72.7.b)$$

$$a = \frac{c}{d}$$
 (72.6.a) $b = 1$ (72.6.b)

$$c = 1$$
 $(72.7.a)$ $\int 2x dx = x^2 + C$ $(72.7.b)$

$$\oint E ds = 0$$
 (72.8.a) $\nabla \cdot B = 0$ (72.8.b) $a = \frac{c}{d}$ (72.9.a) $b = 1$ (72.9.b)

$$a = \frac{c}{d}$$
 (72.9.a) $b = 1$ (72.9.b)

$$c = 1$$
 (72.10.a) $\int 2x dx = x^2 + C$ (72.10.b)

$$\oint E ds = 0$$
 (72.11.a) $\nabla \cdot B = 0$ (72.11.b) $a = \frac{c}{d}$ (72.12.a) $b = 1$ (72.12.b)

$$a = \frac{c}{d}$$
 (72.12.a) $b = 1$ (72.12.b)

$$c = 1$$
 (72.13.a) $\int 2x dx = x^2 + C$ (72.13.b)

$$\oint E ds = 0$$
 (72.14.a) $\nabla \cdot B = 0$ (72.14.b) $a = \frac{c}{d}$ (72.15.a) $b = 1$ (72.15.b)

$$a = \frac{c}{d}$$
 (72.15.a) $b = 1$ (72.15.b)

$$c = 1$$
 (72.16.a) $\int 2x dx = x^2 + C$ (72.16.b)

As seen in equation 72.13.a and equation 72.11.b, everything is nonsense

And again a default display equation:

$$F(x) = \int_0^\infty \frac{1}{x} dx \tag{72.17}$$

```
1 \begin{mtabular}[long]{*{2}{m{0.375\linewidth}m{0.125\linewidth}}}
2 \begin{align*} \oint E ds=0 \end{align*} & \eqnCnt %
% \begin{align*} \nabla\cdot B=0 \end{align*} & \eqnCnt\\
4 \begin{align*} a =\frac{c}{d} \end{align*} & \eqnCnt %
  & \begin{align*} b = 1 \end{align*} & \eqnCnt\\
6 \begin{align*} c =1 \end{align*} & \eqnCnt
  & \begin{align*} \int 2x dx = x^2+C \end{align*} & \eqnCnt\\
8
  [ ... ]
```

72.2 Formulas inside an itemize enviroment

Without any modification it is not possible to get a numbered equation at the same height as the symbol of the itemize environment. This depends to the \abovedisplayskip. The formula has to be raised up for exactly this length.

```
1 \def\itemMath#1{%
2   \raisebox{-\abovedisplayshortskip}{%
3   \parbox{0.75\linewidth}{%
4   \begin{equation}#1\end{equation}}}
5 %
6 \begin{itemize}
7 \item \itemMath{ f = 1 }
8 \item \itemMath{ g(x) = \int f(x) dx }
9 \end{itemize}
```

$$f = l \tag{72.18}$$

$$g(x) = \int f(x)dx \tag{72.19}$$

List of Figures

Figure	Pa	ıge
1	multline Alignment demo (the fourth row is shifted to the	
	right with \shoveright)	5'
2	Demonstration of \multlinegap (default is 0pt)	58

List of Tables

Table	·	$_{ m Page}$
1	Meaning of \mathsurround	. 13
2	Difference between the default \bigg and the \biggm comman	d 27
3	Use of the different parentheses for the "big" commands	. 28
4	Old font style commands	. 32
5	Fonts in math mode	. 32
6	The meaning of the math spaces	. 33
7	Spaces in math mode	. 34
8	Math styles	. 38
9	Dots in math mode	. 39
10	Accents in math mode	. 39
11	Vectors with package esvect.sty (in the right column the	
	default one from LATEX) $\dots \dots \dots \dots$. 41
12	The predefined operators of fontmath.ltx	. 42
13	The predefined operators of latex.ltx	43
14	The greek letters	. 44
15	Comparison between the different align environments with the	
	same code, where the first three can have an equation number	r 50
16	Matrix environments	. 62
17	binom commands	. 65
18	The modulo commands and their meaning	. 66
19	Different mathcommands	. 76
20	The predefined operators of amsopn.sty	. 94
21	Predefined math symbols from fontmath.ltx	. 102
22	New symbols in combination with the equal sign	. 104

References

- [1] Paul W. Abrahams, Karl Berry, and Kathryn Hargreaves. TeX for the Impatient. http://tug.org/ftp/tex/impatient/book.pdf, 2003.
- [2] Thierry Bouche. Diversity in math fonts. *TUGboat Journal*, 19(2):121–135, 1998.
- [3] David Cobac. Atelier documents mathématiques. http://crdp.ac-lille.fr/crdp2003/archives/latex/Ateliers/Atelier2/Presentation4.pdf, 2004.
- [4] David Cobac. Ecrire des mathématiques avec LATEX. http://crdp.ac-lille.fr/crdp2003/archives/latex/Ateliers/ Atelier2/prepDocMaths.pdf, 2004.
- [5] Michael Downes. Technical Notes on the amsmath package. American Mathematical Society, ftp://ftp.ams.org/pub/tex/doc/amsmath/technote.pdf, 1999.
- [6] Michael Downes. Short Math Guide for LATEX. American Mathematical Society, http://www.ams.org/tex/short-math-guide.html, 2002.
- [7] Victor Eijkhout. TEX by Topic. http://www.eijkhout.net/tbt/, 1992.
- [8] J. Anthony Fitzgerald. Web Math Formulas Using TeX. http://www.unb.ca/web/Sample/math/, 1997.
- [9] Michel Goosens, Frank Mittelbach, and Alexander Samarin. *The LATEX Companion*. Addison Wesley, 13 edition, 1994.
- [10] George Grätzer. Math into LATEX. Birkhäuser Boston, third edition, 2000.
- [11] Donald E. Knuth. *The TeXbook*. Addison Wesley Professional, 21 edition, 1986.
- [12] Donald E. Knuth, Tracy Larrabee, and Paul M. Roberts.

 Mathematical Writing. Stanford University, Computer Science
 Department, http:
 //sunburn.stanford.edu/~knuth/papers/mathwriting.tex.gz,
 1987.
- [13] R. Kuhn, R. Scott, and L. Andreev. An Introduction to using \(\textit{LTEX} \) in the Harvard Mathematics Department. Harvard University, Department of Mathematics, http:

 //abel.math.harvard.edu/computing/latex/manual/texman.html.

- [14] Johannes Küster. Designing Math Fonts. http://www.typoma.com/publ/20040430-bachotex.pdf, apr 2004. Vortrag auf der polnischen TeX-Konferenz »BachoTeX«.
- [15] Johannes Küster. Fonts for Mathematics. http://www.typoma.com/publ/20041002-atypi.pdf, oct 2004. Vortrag auf der ATypI-Konferenz in Prag.
- [16] Richard Lawrence. Maths = typographhy? *TUGboat Journal*, 24(3):156–180, 2003.
- [17] NIST. Typefaces for Symbols in Scientific Manuscripts. http://physics.nist.gov/Document/typefaces.pdf, 2004.
- [18] Luca Padovani. Mathml formatting with tex rules and tex fonts. TUGboat Journal, 24(1):53–61, 2003.
- [19] Sebastian Rahtz and Leonor Barroca. A style option for rotated objects in LATEX. *TUGboat Journal*, 13(2):156–180, July 1992.
- [20] Steve Seiden. Math cheat sheet. TUG, http://www.tug.org/texshowcase/#math, 2000.
- [21] Paul Taylor. Commutative Diagrams in T_EX. Department of Computer Science, Queen Mary and Westfield College, http://www.dcs.qmw.ac.uk/~pt/diagrams/, 2000.
- [22] Herbert Voß. Farbige Mathematik. Die TEXnische Komödie, 2/04:81–87, March 2004.

\mathbf{Index}

Symbols	\Bmatrix, 62	
, 34	\bmatrix, 62	
\:, 34	Bold greek letters, 76	
\;, 34	\boldmath, 46	
	\bordermatrix, 23	
A	\boxed, 75	
\above, 87	boxed inline math, 12	
\abovedisplayshortskip, 36	Braces, 96	
\abovedisplayshortskip, 77	\breve, 39	
\abovedisplayskip, 36	,	
\abovedisplayskip, 77	\mathbf{C}	
\abovewithdelims, 87	\cal, 32	
Accent, 92	Cases	
\acute, 39	– numbered lines, 106	
\allowdisplaybreaks, 45	\cases, 21	
amscd.sty, 93	\cdots, 39	
array, 56	centertags, 49	
\arraystretch, 37	\cfrac, 64	
\atop, 25, 45, 69	\chapter, 11	
\atop, 87	\check, 39	
$\atopwithdelims, 87$	\choose, 45	
D	\clap, 70	
B	cmex10, 30	
\bar, 39	Color, 46	
\belowdisplayshortskip, 36	color, 111	
\belowdisplayshortskip, 77	\columncolor, 111	
\belowdisplayskip, 36	comma, 35	
\belowdisplayskip, 77	ctagsplit, 69	
\bf, 32	-	
\Big, 27	D	
\big, 27	\ddddot, 63	
\Bigg, 27	\dddot, 39, 63	
\bigg, 27	\dot{ddot} , 39	
\Biggm, 27	\ddots, 39	
\biggm, 27	decimal point, 35	
\Bigl, 27	\delcode, 81	
\bigl, 27	Delimiter, 14, 29	
\Bigm, 27	\delimiter, 81	
\bigm, 27	\delimiterfactor, 30	
\bigr, 27	$\delimiterfactor, 77$	
Binom, 45	$\delimiters hortfall, 30$	
\binoppenalty, 91	\delimitershortfall, 78	

\dfrac, 64	\genfrac, 64
Display math mode, 10	\grave, 39
\displaybreak, 45	Greek, 43
\displayindent, 79	greek, 44
\displaylimits, 88	- bold, 44
\displaystyle, 11, 37, 64	- upright, 44
\displaystyle, 82	
\displaywidowpenalty, 91	Н
\displaywidth, 79	Harpoon, 103
dot, 35	$\hat{39}$
\dot, 39	\hdotsfor, 63
\dotsb, 39	\hphantom, 34, 114
\dotsc, 39	\hspace, 34
\dotsi, 39	\Huge, 38
\dotsm, 39	hyperref.sty, 12
\dotso, 39	-
,	I
${f E}$	\imath, 39
\ensuremath, 45	Indices, 42
\eqno, 88	\int, 11, 100
Equation	Integral symbols, 102
- number, 69	\intertext, 73
- numbering, 66	intlimits, 49
Equation number, 68	\it, 32
esvect.sty, 41	Italic, 31, 71
\EuScript, 100	itemize, 123
\everydisplay, 48	т
\everydisplay, 88	J
\everymath, 48	\jmath, 39
\everymath, 88	$\setminus jot, 36$
Exponent, 42	K
T.	\kern, 34
F	(,
\fam, 82	\mathbf{L}
\fbox, 19	Label, 18
fleqn, 49	$\label, 68$
Font size, 38	\Large, 38
fontmath.ltx, 29	$\label{large} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
\frac, 45	\ldots, 39
Fraction, 11, 63	\left, 26
\frac, 64	\left, 89
Framed inline math, 12	Left aligned, 54
\mathbf{G}	leqno, 49
gather, 56	\leqno, 89
~	

\lim, 11	multline, 58
Limits, 25, 43, 69, 71	\multlinegap, 58
\limits, 11	\muskip, 80
\limits, 89	\muskipdef, 80
M	N
\mapstofill, 74	namelimits, 49
Math operator, 11	\negmedspace, 34
Math unit, 66	\negthickspace, 34
\mathaccent, 83	\negthinspace, 34
\mathbb, 32	nointlimits, 49
\mathbf, 32	\nolimits, 89
\mathbin, 83	nonamelimits, 49
\mathcal, 32	\nonscript, 80
\mathchar, 83	\nonumber, 14, 15
\mathchardef, 84	nosumlimits, 49
\mathchoice, 84	\n
\mathclap, 70, 114	
\mathclose, 84	0
\mathcode, 84	Operator, 42
\mathfrak, 32	- names, 71
\mathindent, 49	\operatornamewithlimits, 71
\mathinner, 89	\over, 89
\mathit, 32	\overbrace, 39, 112
\mathop, 85	\overbracket, 39
\mathord, 35	\overleftarrow, 39
\mathord, 85	\overleftrightarrow, 39
\mathpunct, 35	\overline, 39
\mathpunct, 85	\overline, 89
\mathrel, 85	\overrightarrow, 39, 41
\mathring, 39	\overset, 76
\mathrm, 32, 72	\overwithdelims, 90
\mathsf, 32	D
\mathsurround, 13	P
\mathsurround, 80	Pagebreak, 45
\mathtt, 32	\parbox, 61
\mathversion, 46	\phantom, 34, 106
\matrix, 62	\pmatrix, 62
\mbox, 72	\pmb, 76
\medmuskip, 80	\postdisplaypenalty, 91
\medspace, 34	\predisplaypenalty, 91
\mkern, 80	\predisplaystyle, 80
\mskip, 80	\prod, 11, 25
Multiple exponents, 42	pstricks.sty, 93

Q	tbtags, 49
\qquad, 34	\texorpdfstring, 12
, 34	Text, 31
R	- \parbox, 31
	\textfont, 86
\radical, 90	\textstyle, 37
Reference, 18 \reflectbox, 39	\textstyle, 86
,	\tfrac, 64
\relpenalty, 91	\thickmuskip, 81
reqno, 49	\thickspace, 34
\right, 26	$ ag{thinmuskip}, 81$
\right, 90	\thinspace, 34
righttag, 69	\tilde, 39
\rm, 32	\tt, 32
Root, 26, 65	
\rowcolor, 111	${f U}$
S	\unboldmath, 46
	\underbar, 39
\scriptfont, 85	\underbrace, 39, 113, 114
\scriptscriptfont, 86	$\underbracket, 39$
\scriptscriptstyle, 37	$\underleftarrow, 39$
\scriptscriptstyle, 86	$\underleftrightarrow, 39$
\scriptspace, 80	$\underline, 39, 48$
scriptstyle, 11	\underline, 90
\scriptstyle, 11, 37, 64	$\underrightarrow, 39$
\scriptstyle, 86	\underset, 76
\section, 11	\uproot, 65
\shoveright, 58	• ,
\sideset, 71	\mathbf{V}
\skew, 86	$\vert vert er, 91$
\skewchar, 86	$\vee dots, 39$
\smallmatrix, 62	\vec, 39
Split equation, 55	Vector, 41, 109
\sqrt, 26	\Vmatrix, 62
\stackrel, 45	\vmatrix, 62
Style, 37	\vphantom, 26, 114
Subequations, 67	
Subscript, 11	${f W}$
\substack, 69	\widehat, 39
\sum, 11, 25, 71, 100	\widetilde, 39
sumlimits, 49	37
Superscript, 11	X
	\xleftharpoondown, 103
\mathbf{T}	\xleftharpoonup, 103
\tag, 19	\xleftrightharpoons, 103

\xrightharpoondown, 103 \xrightharpoonup, 103 \xrightleftharpoons, 103 \xymatrix, 101 xypic.sty, 93