CS6105 DIGITAL FUNDAMENTALS AND COMPUTER

ORGANIZATION

Prerequisites for the course: None

OBJECTIVES:

- To learn Boolean algebra and simplification of Boolean functions
- To learn to design and analyze different combinational circuits
- To study the basics of synchronous sequential logic and analyze and design sequential circuits
- To understand the important components of a computer system and the basic organization
- To learn to write code in hardware definition languages for designing larger digital systems

	L	T	P EL		CREDITS			
CS6105	DIGITAL FUNDAMENTALS AND COMPUTER ORGANIZATION	3	1	4	3	7		
MODULE	il:			L	T	Р	EL	
				3	1	4	3	

Number Systems – Binary, Octal, Hexadecimal – Representation of negative numbers - 1's and 2's Complements - Arithmetic Operations – Binary Codes.

SUGGESTED ACTIVITIES:

- In Class activity for place value systems
- Practical Abacus Counting Activity

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes

MODULE II:	L	Т	Р	EL
	3	1	4	3

Boolean Algebra – Theorems and Postulates - Functions – Truth Table - Logic Gates – Universal gates

SUGGESTED ACTIVITIES:

- Flipped classroom and activity
- Proofs and Simplification in class
- EL Practical Problems Introduction to propositional problems using conjunction, disjunction and negation
- Practical Implementation of simple functions using gates

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes

MODULE III:	L	T	Р	EL
	3	1	4	3

Canonical and Standard Forms – Minterms and Maxterms - Sum of Products and Product of Sums - Simplification of Boolean Functions - Karnaugh Map – 2,3,4 variables - NAND / NOR Implementations.

SUGGESTED ACTIVITIES:

- EL Exclusive OR function
- Practical Simplification and implementation of Boolean functions

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes

MODULE IV:	L	Т	Р	EL
	6	1	8	3

Combinational Circuits – Arithmetic Circuits - Half and Full Adders - Subtractors - Binary Parallel adder – Carry Look-ahead Adder - BCD Adder - Magnitude Comparator - Binary multiplier - Code Converters. Introduction to HDL.

SUGGESTED ACTIVITIES:

- Flipped Class room
- Introduction to HDL in class and EL based on that
- Practical Implementation of the arithmetic circuits and getting started with HDL

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes

MODULE V:	L	Т	Р	EL	
	3	1	8	3	

Decoder, Encoder, Priority Encoder, Mux/Demux - Applications. HDL for these circuits.

SUGGESTED ACTIVITIES:

- Applications in class
- EL HDL for these combinational circuits
- Practical Implementation of these circuits and HDL implementations

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes

MODULE VI:	L	T	Р	EL
	5	1	4	3

R –S Latch - D Latch - Flip flops – SR, JK, T, D, Master /Slave FF, HDL for latches and flip flops - Analysis of clocked sequential circuits – Moore /Mealy models - Flip flop excitation tables - Design of clocked sequential circuits.

SUGGESTED ACTIVITIES:

- Introduction in class
- Analysis in Class
- Flipped Classroom for further study
- Practical Implementation of Flip flops

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes

MODULE VII:		Т	Р	EL	
	3	1	4	3	

Registers – Shift Registers, Universal Shift Register Counters – Ripple Counters, Synchronous Counters, Ring Counter, Johnson Counter - HDL for counters and shift registers

SUGGESTED ACTIVITIES:

- Combinations of in Class & Flipped class rooms
- Practical Implementations of counters and shift registers
- EL HDL descriptions
- EL Mini project for designing and implementing a digital system using both hardware and software (HDL)

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes

MODULE VIII:	L	Т	Р	EL
	3	1	4	3

Practical Problems in Sequential design – Timing diagrams - Problems combining Combinational & Sequential Components – State reduction – State Assignment

SUGGESTED ACTIVITIES:

- Timing diagrams in class
- Flipped classroom
- Practical HDL descriptions to be continued

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes

MODULE IX:	L	Т	Р	EL
	3	1	4	3

Memory Systems – RAM, ROM, PLD, PLA and PAL - Design of digital systems

SUGGESTED ACTIVITIES:

- Combination of in class & Flipped
- Practical Project demonstration and presentation

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes

MODULE X:	L	Т	Р	EL
	3	1	4	3

Basic Components of a digital computer - Functions - Organization - Instruction Execution - Data path and control path

SUGGESTED ACTIVITIES:

- Mostly in Class
- Practical Project demonstration and presentation

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes

TEXT BOOKS:

- M. Morris Mano and Michael D. Ciletti, "Digital Design", V Edition, Pearson Education, 2013
- 2. Charles H. Roth Jr, "Fundamentals of Logic Design", Fifth Edition, Jaico Publishing House, Mumbai, 2003.

REFERENCES:

- 1. John F. Wakerly, "Digital Design Principles and Practices", Fourth Edition, Pearson Education, 2007.
- 2. Donald D. Givone, "Digital Principles and Design", Tata McGraw Hill, 2003.
- 3. G. K. Kharate, "Digital Electronics", Oxford University Press, 2010.

OUTCOMES:

Upon completion of the course, the students will be able to:

- Simplify complex Boolean functions
- Design and analyze digital circuits with combinational and sequential components
- Implement digital circuits using MSI chips and PLDs
- Use HDL to build digital systems
- Point out the basic functionalities of the components of a digital computer and their organization

EVALUATION PATTERN:

Category of Course	Continuous Assessment	Mid – Semester Assessment	End Semester
Theory Integrated with Practical	15(T) + 25 (P)	20	40

CO - PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	✓	✓		✓	✓				✓			
CO2	✓	✓	✓	✓	✓				✓			
CO3	✓	✓	✓	✓	✓				✓			
CO4	✓	✓	✓	✓	✓				✓			
CO5	✓	✓		✓			✓					