Задача А. Произведение матриц

Имя входного файла: mmul.in
Имя выходного файла: mmul.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Произведением матриц A и B размера $p \times q$ и $q \times r$, соответственно, называется матрица C размера $p \times r$, элементы которой вычисляются по формуле:

$$C_{i,j} = \sum_{k=1}^q A_{i,k} \cdot B_{k,j}$$

По данным матрицам A и B найдите их произведение.

Формат входных данных

В первой строке входного файла заданы через пробел три целых числа p, q и r ($1 \le p, q, r \le 100$). В следующих p строках записана матрица A; каждая из этих строк содержит q целых чисел, разделённых пробелами. Наконец, в последних q строках записана матрица B; каждая из этих строк содержит r целых чисел, разделённых пробелами. Элементы матриц не превосходят 100 по абсолютной величине.

Формат выходных данных

В выходной файл выведите матрицу C: p строк, в каждой из которых r чисел через пробел.

mmul.in	mmul.out
2 2 2	1 0
1 0	0 1
0 1	
1 0	
0 1	
1 3 1	-14
1 2 3	
-1	
-2 -3	
-3	
3 2 4	1 1 2 1
0 1	2 1 0 0
1 0	1 1 2 1
0 1	
2 1 0 0	
1 1 2 1	

Задача В. Степень матрицы

Имя входного файла: mpow.in
Имя выходного файла: mpow.out
Ограничение по времени: 5 секунд
Ограничение по памяти: 256 мегабайт

Задана квадратная матрица $n \times n$. Нужно возвести ее в степень m

Формат входных данных

В первой строке задано три целых числа n, m и p ($1 \le n \le 100$, $0 \le m \le 10^{18}$, $2 \le p \le 10^9$). Далее задана матрица: n строк по n целых чисел. Все числа в матрице неотрицательны и меньше p.

Формат выходных данных

Выведите матрицу: n строк по n чисел, каждое число — остаток от деления элемента на p

mpow.in	mpow.out
3 5 239	120 92 56
1 0 1	102 84 46
1 2 0	21 204 120
3 2 1	
5 10 27	2 5 7 10 12
1 2 3 4 5	16 19 26 2 9
5 4 3 2 1	5 9 26 3 20
11 12 13 14 15	19 23 18 22 17
15 14 13 12 11	12 22 9 19 6
1 11 1 11 1	

Задача С. Симпатичные узоры

Имя входного файла: tilings.in Имя выходного файла: tilings.out Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

Компания <u>BrokenTiles</u> планирует заняться выкладыванием во дворах у состоятельных клиентов узор из черных и белых плиток, каждая из которых имеет размер 1×1 метр. Известно, что дворы всех состоятельных людей имеют наиболее модную на сегодня форму прямоугольника $M \times N$ метров.

Однако при составлении финансового плана у директора этой организации появилось целых две серьезных проблемы: во первых, каждый новый клиент очевидно захочет, чтобы узор, выложенный у него во дворе, отличался от узоров всех остальных клиентов этой фирмы, а во вторых, этот узор должен быть симпатичным.

Как показало исследование, узор является симпатичным, если в нем нигде не встречается квадрата 2×2 метра, полностью покрытого плитками одного цвета.

Для составления финансового плана директору необходимо узнать, сколько клиентов он сможет обслужить, прежде чем симпатичные узоры данного размера закончатся. Помогите ему!

Формат входных данных

На первой строке входного файла находятся два положительных целых числа, разделенные пробелом — M и N ($1 \le M \times N \le 30$).

Формат выходных данных

Выведите в выходной файл единственное число — количество различных симпатичных узоров, которые можно выложить во дворе размера $M \times N$. Узоры, получающиеся друг из друга сдвигом, поворотом или отражением считаются различными.

tilings.in	tilings.out
1 1	2
1 2	4
4 1	16
2 3	50

Задача D. Симпатичные узоры наносят ответный удар

Имя входного файла: nice3.in
Имя выходного файла: nice3.out
Ограничение по времени: 3 секунды
Ограничение по памяти: 256 мегабайт

Компания <u>BrokenTiles</u> планирует заняться выкладыванием во дворах у состоятельных клиентов узор из черных и белых плиток, каждая из которых имеет размер 1×1 метр. Известно, что дворы всех состоятельных людей имеют наиболее модную на сегодня форму прямоугольника $n \times m$ метров.

Однако при составлении финансового плана у директора этой организации появилось целых две серьезных проблемы: во первых, каждый новый клиент очевидно захочет, чтобы узор, выложенный у него во дворе, отличался от узоров всех остальных клиентов этой фирмы, а во вторых, этот узор должен быть симпатичным.

Как показало исследование, узор является симпатичным, если в нем нигде не встречается квадрата 2×2 метра, полностью покрытого плитками одного цвета.

Для составления финансового плана директору необходимо узнать, сколько клиентов он сможет обслужить, прежде чем симпатичные узоры данного размера закончатся. Помогите ему!

Формат входных данных

На первой строке входного файла находятся два натуральных числа n и m. $1 \leqslant n \leqslant 10^{100}$, $1 \leqslant m \leqslant 5, 1 \leqslant p \leqslant 10000$.

Формат выходных данных

Выведите в выходной файл единственное число — количество различных симпатичных узоров, которые можно выложить во дворе размера $n \times m$ по модулю p. Узоры, получающиеся друг из друга сдвигом, поворотом или отражением считаются различными.

nice3.in	nice3.out
2 2 20	14
3 3 7	0

Задача Е. Обобщенные числа фибоначчи

Имя входного файла: fibonacci.in Имя выходного файла: fibonacci.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Мы чуть-чуть обобщили для вас последовательность Фибоначчи, теперь:

$$f_1 = f_2 = 1$$

$$f_i = a \cdot f_{i-1} + b \cdot f_{i-2} + c \cdot 2^i + d \cdot i + e$$
, для $i > 2$

Дано n, найдите значение f_n , взятое по модулю $10^9 + 7$.

Формат входных данных

Неотрицательные целые числа: a, b, c, d, e, n. $(0 \le a, b, c, d, e \le 10^9; 1 \le n \le 10^{18})$

Формат выходных данных

Выведите f_n , взятое по модулю $10^9 + 7$.

fibonacci.in	fibonacci.out
1 1 0 0 0 8	21
1 2 3 4 5 6	775

Задача F. Ковролин для Минотавра

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Под дворцом царя Миноса размером $N \times M$ построен одноэтажный лабиринт размером $N \times M \times 1$. Некоторые из кубов $1 \times 1 \times 1$ в этом лабиринте пустые, а некоторые — гранитные (сквозь них ходить нельзя). Количество пустых кубов в лабиринте S. Минотавр, гуляя в этом лабиринте только по пустым кубам, может дойти от любого пустого куба до любого другого пустого.

K сожалению, минотавр очень громко топает, поэтому выбранная им жертва успевает испугаться и убежать. Для того, чтобы этого избежать, фирма «Минос, минотавр and Co» закупила ковролин, которым собирается застелить пол пустых кубов, чтобы минотавр мог подбираться к жертве бесшумно. Рулон ковролина имеет размеры $1 \times S$.

Рабочие хотят застелить пол лабиринта, сделав как можно меньше разрезов ковролина (разрезы разрешается делать только параллельно стороне рулона, имеющей длину 1).

Напишите программу, вычисляющую это минимальное число разрезов.

Формат входных данных

Во входном файле записано сначала число N, затем число M, задающие размеры лабиринта $(1 \le N \le 10, 1 \le M \le 10)$. Далее идет N строк, по M чисел в каждой, задающих лабиринт. Каждое из этих чисел 0 или 1-0 означает пустой куб, а 1— гранитный.

Формат выходных данных

В выходной файл выведите одно число — минимальное возможное количество разрезов, которое нужно сделать в рулоне, чтобы застелить все пустые клетки лабиринта.

стандартный ввод	стандартный вывод
1 10	0
1 1 1 1 1 0 0 0 0 0	
2 2	1
1 0	
0 0	

Задача G. ПСП для бедных

Имя входного файла: rbs.in
Имя выходного файла: rbs.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

В новом году Миша решил создать новую традицию: каждый день он будет украшать свой дом изготовленной на заказ правильной скобочной последовательностью, состоящей из n пар круглых скобок. Разумеется, ни в какой из дней Миша не будет покупать последовательность, которую он уже покупал ранее.

Система ценообразования в компании, изготавливающей правильные скобочные последовательности, довольно необычная: цена скобочной последовательности в евро равна максимальной глубине вложенности скобок в ней. Иными словами, стоимость последовательности в евро равна максимальной разности количества открывающих и закрывающих скобок на каком-либо ее префиксе.

Миша решил, что готов тратить не более k евро на каждую из последовательностей. Помогите ему определить, сколько дней сможет длиться новая традиция. Иными словами, посчитайте количество правильных скобочных последовательностей из n пар скобок, глубина вложенности которых не превосходит k. Так как это число может быть очень большим, выведите его остаток от деления на $10^9 + 7$.

Формат входных данных

Единственная строка входных данных содержит два целых числа k и n — максимальная допустимая глубина вложенности и количество пар скобок в последовательности ($1 \le k \le 50$, $1 \le n \le 10^{18}$, $k \le n$).

Формат выходных данных

Выведите одно число — количество правильных скобочных последовательностей из n пар скобок, глубина вложенности которых не превосходит k, по модулю $10^9 + 7$.

Примеры

rbs.in	rbs.out
2 3	4

Замечание

В тесте из условия Мише подойдут все правильные скобочные последовательности из 3 пар скобок, кроме «((()))», стоимость которой составляет 3 евро.

Задача H. Bugs

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 3 секунды Ограничение по памяти: 256 мегабайт

Компания Bugs начинает выпуск планки оперативной памяти Q-RAM размером 6 террабайт. Каждая планка состоит из 6 квадратных микросхем в форме прямоугольника 3×2 . В результате технологического процесса, используемого в компании Bugs, получается прямоугольная область, разделенная на $N \times M$ квадратных микросхем. После этого микросхемы тщательно проверяются и битые микросхемы помечаются черным маркером.

После этого, область разрезается на отдельные планки размером 3×2 (или 2×3). Естественно, ни одна планка не должна содержать битых микросхем. Может возникнуть такая ситуация, что не все хорошие микросхемы войдут в какую-либо планку. Однако для снижения себестоимости компания хочет изготовить из произведенной области как можно больше планок.

На вход вашей программе будет даваться размер области и список битых микросхем на ней. Для этой области вам необходимо определить максимальное количество планок, которое можно вырезать из нее.

Формат входных данных

Первая строка содержит три целых числа N, M и K ($1 \le N \le 150, 1 \le M \le 10, 0 \le K \le M \times N$), где N — длина области, M — ее ширина, а K — количество битых микросхем. Следующие K строк содержат описание битых микросхем. Каждая из них содержит координаты битой микросхемы в виде двух целых чисел x и y ($1 \le x \le N, 1 \le y \le M$).

Формат выходных данных

Для каждой области выведите максимальное количество планок, которое может быть вырезано из нее на отдельной строке.

·	
стандартный ввод	стандартный вывод
6 6 5	3
1 4	
4 6	
2 2	
3 6	
6 4	
6 5 4	4
3 3	
6 1	
6 2	
6 4	