План занятия (10.11.17)

- Построение выпуклой оболочки в трехмерном пространстве
- Триангуляция

- Воспользуемся идеей "заворачивания подарка", использованной в алгоритме Джарвиса
- Пусть $P = \{ p_1, p_2, p_3, \dots, p_n \}$ точки в трехмерном пространстве. Считаем, что
 - \circ n >= 3 и точки не лежат на одной прямой
 - точки не компланарны (не лежат в одной плоскости):
 в случае их компланарности задача сводится к
 двумерному случаю

- Выпуклая оболочка пересечение всех выпуклых подмножеств R³, содержащих P.
- Выпуклая оболочка может быть получена как пересечение конечного числа полупространств, каждое из которых "опирается" на одну из граней

• *H* - полупространство

$$H = \{(x, y, z) | ax + by + cz + d \ge 0\}$$

• *dH* - граница полупространства

$$\partial H = \{(x, y, z) | ax + by + cz + d = 0\}$$

 Н "опирается" на грань, если Р содержится в Н и dН содержит как минимум 3 неколлинеарные точки из Н

- Считаем, что каждая грань выпуклой оболочки треугольник.
- В противном случае:
 - можно немного "отклонить" точки
 - в силу ограниченной точности вычислений такая ситуация маловероятна

Ориентация граней. Смотрим снаружи

• Грань face(p_i, p_j, p_k) = face(p_i, p_k, p_i) = face(p_k, p_i, p_j)

• Грань face(p_i , p_k , p_j) = face(p_k , p_j , p_i) = face(p_i , p_i , p_k)

Итерация алгоритма

- Обрабатываем грань f_1 = face(p_i, p_i, p_k):
- Ищем новую грань f_2 , которая разделяет (в смысле "share") ребро $p_i p_i$ с гранью f_1
 - \circ Ребро уже есть $(p_i p_i)$. Осталось найти одну точку
 - Ищем точку, максимизирующую угол между (см. рисунок)

Итерация алгоритма

Алгоритм

- 1. Заводим очередь граней **Q** для обработки
- 2. Поддерживаем контур Е построенной оболочки
- 3. Достаем грань *f* из очереди.
 - а. Для каждого ребра **е**, принадлежащего текущей грани **f** и контуру **E**:
 - i. находим новую грань f_new (пред. слайд),
 добавляем ее в очередь Q
 - іі. перестраиваем контур *E* в соответствии и *f_new*
 - b. Добавляем *f* в ответ.

Перестройка контура

Итог

- Время работы O(n * k), где k число граней
- http://www.sciencedirect.com/science/article/pii/S00220000 0580056X

Алгоритм Чана (2D)

Fig. 1. Wrapping a set of $\lceil n/m \rceil$ convex polygons of size m.

Итог

- Время работы O(n * log(k)), где k число вершин в.о.
- https://link.springer.com/content/pdf/10.1007/BF02712873.p
 df
- https://www.youtube.com/watch?v=--PJ1dxuo-U

Алгоритм (F. P. Preparata and S. J. Hong)

Итог

- Время работы O(n * log(n))
- https://link.springer.com/content/pdf/10.1007/BF02712873.p
 df

Триангуляция

Триангуляция

Какая триангуляция является "хорошей"?

Триангуляция Делоне

Триангуляция Делоне

 $(x, y) \rightarrow (x, y, x^2 + y^2)$

B.O.

Проекция нижней части оболочки на (x,y)