

Лекция 3. Линейная регрессия нескольких переменных

Материал прошлых лекций

 $\mathbb{R}^{m \times n}$

Элемент матрицы

$$A = \begin{bmatrix} 1402 & 191 \\ 1371 & 821 \\ 147 & 1437 \end{bmatrix}$$

$$A_{11} = 1402$$
 $A_{12} = 191$
 $A_{21} = 1371$
 $A_{32} = 1437$
 $A_{23} = undefined$

Вектор – матрица размерами $n \times 1$

$$y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix}$$

$$\mathbb{R}^n$$

Индексация на базе

нуля единицы

$$y = \begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \end{bmatrix} \qquad y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix}$$

Материал прошлых лекций

Сложение матриц

$$\begin{bmatrix} 1 & 0 \\ 2 & 5 \\ 3 & 1 \end{bmatrix} + \begin{bmatrix} 4 & 0.5 \\ 2 & 5 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1+4 & 0+0.5 \\ 2+2 & 5+5 \\ 3+0 & 1+1 \end{bmatrix} = \begin{bmatrix} 5 & 0.5 \\ 4 & 10 \\ 3 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ 2 & 5 \\ 3 & 1 \end{bmatrix} + \begin{bmatrix} 5 & 9 \\ 1 & 0.7 \end{bmatrix} = error$$

Операция сложения матриц является коммутативной:

$$A + B = B + A$$

Умножения матрицы на число

$$3 \times \begin{bmatrix} 1 & 0 \\ 2 & 5 \\ 3 & 9 \end{bmatrix} = \begin{bmatrix} 3 \times 1 & 3 \times 0 \\ 3 \times 2 & 3 \times 5 \\ 3 \times 3 & 3 \times 9 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 6 & 15 \\ 9 & 27 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & 5 \\ 3 & 9 \end{bmatrix} \times 3$$

$$\begin{bmatrix} 4 & 0 \\ 6 & 3 \end{bmatrix} / 4 = \frac{1}{4} \times \begin{bmatrix} 4 & 0 \\ 6 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1.5 & 3/4 \end{bmatrix}$$

Комбинирование операций (приоритеты как в арифметике)

$$3 \times \begin{bmatrix} 1 \\ 4 \\ 2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 5 \end{bmatrix} - \begin{bmatrix} 2 \\ 4 \\ 8 \end{bmatrix} / 2 = \begin{bmatrix} 3 \\ 12 \\ 6 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 5 \end{bmatrix} - \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix} = \begin{bmatrix} 2 \\ 11 \\ 7 \end{bmatrix}$$

Материал прошлых лекций

Умножение матрицы на вектор

$$\begin{bmatrix}
1 & 3 \\
4 & 0 \\
2 & 1
\end{bmatrix} \times \begin{bmatrix}
1 \\
5
\end{bmatrix} = \begin{bmatrix}
16 \\
4 \\
7
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 3 \\
4 & 0 \\
2 & 1
\end{bmatrix} \times \begin{bmatrix}
1 \\
5
\end{bmatrix} = \begin{bmatrix}
16 \\
4 \\
7
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 3 \\
4 & 0
\end{bmatrix} \times \begin{bmatrix}
1 \\
5
\end{bmatrix} = \begin{bmatrix}
16 \\
4 \\
7
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 3 \\
4 & 0
\end{bmatrix} \times \begin{bmatrix}
1 \\
5
\end{bmatrix} = \begin{bmatrix}
16 \\
4 \\
7
\end{bmatrix}$$

$$A^{m \times n} \times x^n = y^m$$

$$y_i = \sum_{j=1}^n A_{ij} \cdot x_j, \qquad i = 1, ..., m$$

$$\begin{bmatrix} 1 & 3 \\ 4 & 0 \\ 2 & 1 \end{bmatrix} \times \begin{bmatrix} 1 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 \cdot 1 + 3 \cdot 5 \\ 4 \cdot 1 + 0 \cdot 5 \\ 2 \cdot 1 + 1 \cdot 5 \end{bmatrix} = \begin{bmatrix} 16 \\ 4 \\ 7 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 1 & 5 \\ 0 & 3 & 0 & 4 \\ -3 & -2 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 1 \\ 3 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \cdot 1 + 2 \cdot 3 + 1 \cdot 2 + 5 \cdot 1 \\ 0 \cdot 1 + 3 \cdot 3 + 0 \cdot 2 + 4 \cdot 1 \\ -1 \cdot 1 + (-2) \cdot 3 + 0 \cdot 2 + 0 \cdot 1 \end{bmatrix} = \begin{bmatrix} 14 \\ 13 \\ -7 \end{bmatrix}$$

Материал прошлых лекций

Умножение матрицы на матрицу

$$A^{m \times n} \times B^{n \times o} = C^{m \times o}$$

$$C_{ij} = \sum_{k=1}^{n} A_{ik} \cdot B_{kj}, \qquad i = 1, ..., m, \qquad j = 1, ..., o.$$

$$\begin{bmatrix} 1 & 3 & 2 \\ 4 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 3 \\ 0 & 1 \\ 5 & 2 \end{bmatrix} = \begin{bmatrix} 1 \cdot 1 + 3 \cdot 0 + 2 \cdot 5 & 1 \cdot 3 + 3 \cdot 1 + 2 \cdot 2 \\ 4 \cdot 1 + 0 \cdot 0 + 1 \cdot 5 & 4 \cdot 3 + 0 \cdot 1 + 1 \cdot 2 \end{bmatrix} = \begin{bmatrix} 11 & 10 \\ 9 & 14 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 2 \\ 4 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 \\ 0 \\ 5 \end{bmatrix} = \begin{bmatrix} 11 \\ 9 \\ 14 \end{bmatrix} \quad \begin{bmatrix} 10 \\ 4 & 0 \\ 1 \end{bmatrix} \times \begin{bmatrix} 1 \\ 0 \\ 5 \end{bmatrix} \times \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 11 \\ 9 \\ 14 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 2 \\ 4 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 \\ 0 \\ 5 \end{bmatrix} = \begin{bmatrix} 11 & 10 \\ 9 & 14 \end{bmatrix} \qquad \begin{bmatrix} 1 & 3 & 2 \\ 4 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 3 \\ 0 \\ 5 \end{bmatrix} = \begin{bmatrix} 11 & 10 \\ 9 & 14 \end{bmatrix}$$

Материал прошлых лекций

Умножение матрицы на матрицу не является коммутативным!

$$A \times B \neq B \times A$$

$$\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 \\ 2 & 0 \end{bmatrix} \times \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 2 \\ 4 & 0 & 1 \\ 2 & 1 & 0 \\ 3 & 5 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 3 \\ 0 & 1 \\ 5 & 2 \end{bmatrix} = \begin{bmatrix} 11 & 10 \\ 9 & 14 \\ 2 & 7 \\ 8 & 16 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 \\ 0 & 1 \\ 5 & 2 \end{bmatrix} \times \begin{bmatrix} 1 & 3 & 2 \\ 4 & 0 & 1 \\ 2 & 1 & 0 \\ 3 & 5 & 1 \end{bmatrix} = error$$

Материал прошлых лекций

Умножение матрицы на матрицу является ассоциативным

$$A \times (B \times C) = (A \times B) \times C.$$

$$\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 \\ 2 & 0 \end{bmatrix} \times \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} = ?$$

Вариант 1:
$$\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$$
; $\begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 2 \\ 0 & 0 \end{bmatrix}$

Вариант 2:
$$\begin{bmatrix} 0 & 0 \\ 2 & 0 \end{bmatrix} \times \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 4 & 2 \end{bmatrix}; \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 \\ 4 & 2 \end{bmatrix} = \begin{bmatrix} 4 & 2 \\ 0 & 0 \end{bmatrix}$$

Материал прошлых лекций

Единичная матрица является такой матрицей, умножение которой на любую другую матрицу дает в результате вторую матрицу без изменений:

$$I \times A = A \times I = A$$

Аналог среди действительных чисел

$$1 \cdot z = z \cdot 1 = z$$

$$I^{2\times2} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$I^{m\times m} \qquad I^{3\times3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$I^{1\times1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{bmatrix}^{4 \times 4}$$

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \times \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 \cdot 1 + 2 \cdot 0 & 1 \cdot 0 + 2 \cdot 1 \\ 3 \cdot 1 + 4 \cdot 0 & 3 \cdot 0 + 4 \cdot 1 \\ 5 \cdot 1 + 6 \cdot 0 & 5 \cdot 0 + 6 \cdot 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$$

Материал прошлых лекций

Операция транспонирования матрицы A^T

$$A = \begin{bmatrix} 1 & 2 & 0 \\ 3 & 5 & 9 \end{bmatrix} \qquad A^T = \begin{bmatrix} 1 & 2 & 0 \\ 3 & 5 & 9 \end{bmatrix}^T = \begin{bmatrix} 1 & 3 \\ 2 & 5 \\ 0 & 9 \end{bmatrix}$$

Обратная матрица — это такая матрица, при умножении на которую в результате получается единичная матрица:

$$A \times A^{-1} = A^{-1} \times A = I$$

$$A = \begin{bmatrix} 3 & 4 \\ 2 & 16 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 0.4 & -0.1 \\ -0.05 & 0.075 \end{bmatrix}$$

$$AA^{-1} = \begin{bmatrix} 3 & 4 \\ 2 & 16 \end{bmatrix} \begin{bmatrix} 0.4 & -0.1 \\ -0.05 & 0.075 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Вырожденные матрицы не имеют обратной! Пример:

$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Применение линейной алгебры в машинном обучении

Задача предсказания цен на недвижимость

Рассчитываем значения $h_{\theta}(x)$ для всей обучающей выборки за одну операцию умножения матрицы на вектор

Применение линейной алгебры в машинном обучении

Задача предсказания цен на недвижимость

Площадь, м²	Цена, тыс. м.к.
2104	460
1416	232
1534	315
852	178

$$X = \begin{bmatrix} 1 & 2104 \\ 1 & 1416 \\ 1 & 1534 \\ 1 & 852 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2104 \\ 1 & 1416 \\ 1 & 1534 \\ 1 & 852 \end{bmatrix} \times \begin{bmatrix} -40 & 200 & -150 \\ 0.25 & 0.1 & 0.4 \end{bmatrix} = \begin{bmatrix} 486 & 410 & 692 \\ 314 & 342 & 416 \\ 344 & 353 & 464 \\ 173 & 285 & 191 \end{bmatrix} \xrightarrow{x_1} x_2$$

$$h_1(x) \qquad h_2(x) \qquad h_3(x)$$

Задача предсказания цен на недвижимость

	Размер,	Комнат	Этажей	Возраст	Цена	
	M ²			дома		
	2104	5	1	45	460]
	1416	3	(2)	40	232	
	1534	3	2	30	315	- <i>m</i> =47
	852	2	1	36	178	
		•••	•••			
	†	†	†		†	
	x_1	\mathcal{X}_2	x_3	\mathcal{X}_4	у	
			1			
n=4					$x_3^{(2)} = 2$	
$x^{(2)} = egin{bmatrix} 1416 \ 3 \ 2 \ 40 \end{bmatrix}$ $x^{(i)} = egin{bmatrix} x_1 \ x_2 \ x_3 \ x_4 \end{bmatrix}$ $x^{(i)} - j$ -й признак вектора признаков i -го элемента обучающей выборки						

Размер, м ²	Комнат	Этажей	Возраст дома	Цена
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178
* * *				

Гипотеза:
$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \dots + \theta_n x_n$$

$$h_{\theta}(x) = 80 + 0.1x_1 + 15x_2 - 0.5x_3 - 2x_4$$

Каждый дом имеет базовую стоимость 80, которая увеличивается в зависимости от площади (с коэффициентом 0.1), увеличивается от числа комнат (с коэффициентом 15), уменьшается с количеством этажей (по 0.5 за этаж) и уменьшается с возрастом дома (с коэффициентом 2)

Запись в матричной форме

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \in \mathbb{R}^{n+1}$$

$$h_{\theta}(x) = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

$$\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \theta_3 \\ \theta_1 \end{bmatrix} \in \mathbb{R}^{n+1}$$

Гипотеза в матричной форме:

$$h_{\theta}(x) = \theta^T x$$

$$h_{\theta}(x) = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \theta_3 \\ \theta_4 \end{bmatrix}^T \times \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} \theta_0 & \theta_1 & \theta_2 & \theta_3 & \theta_4 \end{bmatrix} \times \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^2 - \phi$$
ункция стоимости

 $J(\theta)$ является функцией от n+1 переменных

Для ее минимизации можно применить метод градиентного спуска

$$\frac{\partial}{\partial \theta_j} J(\theta_0, \dots, \theta_n), \quad j = 0, \dots, n$$

Частные производные по всем параметрам $\theta_0, \dots, \theta_n$

$$\frac{\partial}{\partial \theta_0} J(\theta) = \frac{1}{m} \sum_{i=0}^{m} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)$$

$$\frac{\partial}{\partial \theta_1} J(\theta) = \frac{1}{m} \sum_{i=0}^m \left(h_\theta \left(x^{(i)} \right) - y^{(i)} \right) x_1^{(i)}$$

...

$$\frac{\partial}{\partial \theta_n} J(\theta) = \frac{1}{m} \sum_{i=0}^m \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right) x_n^{(i)}$$

$$\frac{\partial}{\partial \theta_j} J(\theta) = \frac{1}{m} \sum_{i=0}^m \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right) x_j^{(i)}, \qquad j = 0, \dots, n$$

Алгоритм градиентного спуска.

Вход: $J(\theta_0,...,\theta_n)$ — функция, $\theta_0^0,...,\theta_n^0$ — начальные значения переменных, α — темп обучения, ε — критерий остановки.

Выход: $\theta_0^*, ..., \theta_n^*$ – найденные значения для локального минимума.

Действия:

```
для j = 0, ..., n:
      \theta_i := \theta_i^0
повторять {
       для j = 0, ..., n:
             d\theta_{j} := \frac{1}{m} \sum_{i=1}^{m} \left( h_{\theta} (x^{(i)}) - y^{(i)} \right) x^{(i)}
       для j = 0, ..., n:
              \theta_i := \theta_i - \alpha \ d\theta_i
} пока d\theta_i > \varepsilon, j = 0, ..., n
для j = 0, ..., n:
      \theta_i^* := \theta_i
```

Конец алгоритма.

Задана функция стоимости для множественной линейной регрессии в виде: m

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left(h(x^{(i)}) - y^{(i)} \right)^2$$

Какие из выражений ниже являются эквивалентными ей?

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (\theta^{T} x^{(i)} - y^{(i)})^{2}$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left(\left(\sum_{j=0}^{n} \theta_j x_j^{(i)} \right) - y^{(i)} \right)^2$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left(\left(\sum_{j=1}^{n} \theta_j x_j^{(i)} \right) - y^{(i)} \right)^2$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left(\left(\sum_{j=0}^{n} \theta_j x_j^{(i)} \right) - \left(\sum_{j=0}^{n} y_j^{(i)} \right) \right)^2$$

Задача предсказания цен на недвижимость

Размер, м ²	Комнат	 Цена
2104	5	 460
1416	3	 232
1534	3	 315
852	2	 178

$$x_1 \in [0, 3000]$$
 $x_2 \in [1, 5]$

Алгоритм градиентного спуска может не остановиться, поскольку ε для x_1 может быть мало, а для x_2 слишком велико

Масштабирование исходных данных

$$x_1 = \frac{\text{площадь}}{3000}$$

$$x_2 = \frac{KOJ - BO\ KOMHAT}{5}$$

$$0 \le x_i \le 1$$

Нормализация среднего значения

$$\acute{x}_i = \frac{x_i - \mu_i}{s_i}$$

$$-0.5 \le x_i \le 0.5$$

$$x_2 = \frac{\kappa o \pi - Bo \ \kappa o M + a \tau - 2}{5}$$

$$-1 \le x_i \le 1$$
$$0 \le x_i \le 3$$
$$-2 \le x_i \le 0.9$$

$$s_i = \max(x_i) - \min(x_i)$$

 μ_i — среднее значение переменной

$$x_1 = \frac{\text{площадь} - 1500}{3000}$$

$$-10 \le x_i \le 200$$

$$-0.001 \le x_i \le 0.00001$$

Используется алгоритм обучения для задачи предсказания стоимости дома. Одна из переменных в обучающей выборке означает возраст дома и принимает значения от 30 до 50 со средним значением 38. Какое из следующих выражений следует использовать для нормализации этой переменной?

$$x_i = возраст дома$$

$$x_i = \frac{\text{возраст дома}}{50}$$

$$x_{i} = \frac{\text{возраст дома} - 38}{50}$$

$$x_i = \frac{\text{возраст дома} - 38}{20}$$

Выбор темпа обучения

Слишком малый α приводит к долгому времени сходимости алгоритма Слишком большое значение α может привести к тому, что алгоритм не закончит работу

Проверка правильности выбора значения α

Выбор темпа обучения

Предположим, что алгоритм градиентного спуска был запущен три раза со значениями:

$$\alpha$$
=0.01

$$\alpha=0.1$$

$$\alpha=1$$

Определите, какому из графиков ниже (A, Б и B) соответствует какое из значений α .

- **№** А для α =0.01, Б для α =0.1, В для α =1
- Δ А для α =0.1, Δ для α =0.01, Δ для α =1
- А для α =1, Б для α =0.1, В для α =0.01

Задача предсказания стоимости дачного участка

Переменные:

- 1. длина участка вдоль улицы (frontage)
- 2. глубина от улицы (depth)

Первый вариант решения – построить линейную регрессионную модель:

$$h_{\theta}(x) = \theta_0 + \theta_1 \cdot frontage + \theta_2 \cdot depth$$

Второй вариант решения сконструировать новую переменную

$$x = frontage \cdot depth$$

Проще!

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Задача предсказания стоимости дома (конструируем переменные для усложнения модели)

$$x$$
 – размер дома (M^2)

$$y$$
 — цена (руб)

Простейшее решение:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Регрессия по двум переменным:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

Решается градиентным спуском!

Можно избавиться от недостатка квадратичной функции использую кубическую

$$x_1 = (размер)$$

$$x_2 = (\text{размер})^2$$

$$x_3 = (pasmep)^3$$

Регрессия по трем переменным:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_2 x_3$$

Можно использовать практически любые функции для конструирования новых переменных

$$x_1 = (размер)$$

$$x_2 = \sqrt{\text{(размер)}}$$

Регрессия по двум переменным:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 = \theta_0 + \theta_1(\text{размер}) + \theta_2 \sqrt{(\text{размер})}$$

Получаем модель без недостатков квадратичной, но уже с двумя переменными

Градиентный спуск

Последовательное приближение к минимуму за множество итераций

Нормальные уравнения

Аналитическое вычисление оптимальных значений параметров θ за один шаг

Функция стоимости линейной регрессии

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x_i) - y_i)^2$$

(квадратичная функция)

Условие минимума функции $J(\theta)$

$$\frac{\partial}{\partial \theta}J(\theta) = 0$$

Решение уравнения дает значение θ^* , в котором достигается минимум $J(\theta)$ в случае одного параметра θ

Гипотеза

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \dots + \theta_n x_n$$

Функция стоимости

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x_i) - y_i)^2$$

Условие минимума функции $J(\theta)$

$$\frac{\partial}{\partial \theta}J(\theta) = 0$$

$$\theta \in \mathbb{R}^{n+1}$$

$$\begin{cases} \frac{\partial}{\partial \theta_0} J(\theta_0, \dots, \theta_n) = 0 \\ \frac{\partial}{\partial \theta_1} J(\theta_0, \dots, \theta_n) = 0 \end{cases}$$

 $\left| \frac{\partial}{\partial \theta} J(\theta_0, \dots, \theta_n) \right| = 0$

$$\theta = (X^T X)^{-1} X^T y$$

$$X \in \mathbb{R}^{m \times n + 1}$$

$$\theta \in \mathbb{R}^{n+1}$$

$$y \in \mathbb{R}^m$$

Задача предсказания цен на недвижимость

	Размер, м ²	Комнат	Этажей	Возраст дома	Цена	
	2104	5	1	45	460	7
	1416	3	2	40	232	
	1534	3	2	30	315	– <i>m</i>
	852	2	1	36	178	
1 Вычислен $(\mathbb{R}^{n+1\times n+1})$ очень долго)-1	1 2104 1 1416 1 1534 1 852 	3 2 4 3 2 3 2 1 3	م ا	$y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \\ \dots \end{bmatrix}$	Просто!
больших $(n\gg 100)$ $O(n^3)$		$\theta = 0$	$(X^TX)^{-1}$	X^Ty		$\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \dots \\ \theta_n \end{bmatrix}$

Градиентный спуск

- ightharpoonup Нужно выбирать приемлемое значение α
- Требуется множество итераций
- Требуется нормализация параметров
- Работает устойчиво даже при больших *n*

Нормальные уравнения

- ightharpoonup Нет необходимости выбирать значение α
- > Нет множества итераций
- > Не требуется нормализация
- Требуется вычисление обратной матрицы $(\mathbb{R}^{n+1\times n+1})^{-1}$ а) очень медленно при больших n б) некоторые матрицы бывают необратимыми (не вычисляется обратная)

Причины необратимости X^TX

1) Избыточные переменные

$$x_1 =$$
(размер в метрах)

 $x_2 =$ (размер в сантиметрах)

$$x_1 = 100 \cdot x_2$$
 — линейная зависимость

2) Слишком мало данных

m < n Эквивалентно решению системы из m уравнений с n неизвестными

- ✓ Избавиться от избыточных переменных (устранить, линейную зависимость между переменными)
- ✓ Убрать малозначимые переменные, добиться, чтобы $m \ge n$
- ✓ Использовать регуляризацию (будем изучать позже)

Имеем обучающую выборку из m=23 промеров с n=5 переменными. Решаем задачу регрессии с использованием нормального уравнения $\theta = (X^T X)^{-1} X^T y$.

Какие будут размерности матриц и векторов θ , X, y?

$$X \in \mathbb{R}^{23 \times 5} \qquad y \in \mathbb{R}^{23 \times 1} \qquad \theta \in \mathbb{R}^{5 \times 1}$$

$$X \in \mathbb{R}^{23 \times 6} \qquad y \in \mathbb{R}^{23 \times 1} \qquad \theta \in \mathbb{R}^{6 \times 1}$$

$$X \in \mathbb{R}^{23 \times 5} \qquad y \in \mathbb{R}^{23 \times 1} \qquad \theta \in \mathbb{R}^{5 \times 5}$$

$$X \in \mathbb{R}^{23 \times 6} \qquad y \in \mathbb{R}^{23 \times 6} \qquad \theta \in \mathbb{R}^{6 \times 6}$$

Имеем обучающую выборку из m=50 промеров с n=15 переменными. Необходимо решить задачу линейной регрессии от нескольких переменных.

Что лучше выбрать: алгоритм градиентного спуска или нормальные уравнения и почему?

- **Г**радиентный спуск, поскольку он всегда сходится к оптимальному значению θ
- И Нормальные уравнения, поскольку градиентный спуск может не найти оптимальное решение
- **Б** Градиентный спуск, потому что $(X^TX)^{-1}$ будет вычисляться очень долго