Mid 1 Review

 $\mathsf{Wu}\ \mathsf{Zheng}$

wuzheng0214@sjtu.edu.cn

October 29, 2018

Overview

1 Extreme Value Theorem

- Mean Value Theorem
- 3 L'Hospital's Rule

Extremum: Definition

Definition < Monotonicity>

Suppose f is defined on an interval $\mathbb I$, and x_1 and x_2 denote points in $\mathbb I$, x_1 $< x_2$, then

- **1** f is increasing if $f(x_1) \leqslant f(x_2)$.
- ② f is increasing if $f(x_1) \geqslant f(x_2)$.

Definition < Concavity>

- **1** Concave up \Leftrightarrow f'(x) \uparrow
- 2 Concave down \Leftrightarrow f'(x) \downarrow

To see the definition of the global/local extremum, please refer to the slides.

Extremum: Theorem

Theorem < Monotonicity> (Sufficient and Necessary)

- \bullet f' $\geqslant 0 \Leftrightarrow$ f is increasing. (can possibly be strictly increasing)
- 2 $f' \leq 0 \Leftrightarrow f$ is decreasing. (can possibly be strictly decreasing)

Theorem <Concavity> (Sufficient)

- **1** $f'' > 0 \Rightarrow f$ concaves up.
- 2 $f'' < 0 \Rightarrow f$ concaves down.

1^{st} and 2^{nd} Derivative Test: Choice

- 1st derivative Test: When f" doesn't exist or f" is too complex.
- 2ndderivative Test: When f" is easy to acquire.

Critical and Inflection Point

Critical Point

- <Case I> f'(c)=0 \Rightarrow Stationary Point.
- <Case II> f'(c) doesn't exist.

Inflection Point

The point where concavity changes.

<Necessary Condition> f"=0

Extremum: Property

Fermat Theorem

If the f is differentiable at the extemum \Rightarrow f'=0 <Stationary Point>. Yet the stationary point is not necessarily the extremum.

Extreme Value Theorem

Existence Theorem

The Extreme-Value Theorem

If f is continuous on a closed and bounded interval I, then f attains an absolute maximum value f(c) and an absolute minimum value f(d) where $c,d \in \mathbb{I}$.

Procedure to find Absolute Extremum

- Find the critical point
- 2 Evaluate critical points/end points
- Compare

Mean Value Theorem

lf:

- f is continuous on [a, b].
- of is differentiable on (a, b).

Then

there
$$\exists c \in (a,b)$$
, s.t. $f'(c) = \frac{f(b) - f(a)}{b-a}$

Rolle's expression

f(a)=f(b), f'(c)=0: always related to the proof for the existence of a point at which the derivative is zero.

Example 1

Example

If
$$e < a < b < e^2$$
, show that $ln^2b - ln^2a > \frac{4}{e^2}(b-a)$

Solution

We need to prove that

$$\frac{\ln^2 b - \ln^2 a}{b - a} > \frac{4}{e^2}$$

Let
$$f(x) = In^2x$$
, so $f'(x) = \frac{2Inx}{x}$

Let $\exists e < a < c < b < e^2$

By applying MVT, we can get

$$\frac{f(b)-f(a)}{b-a}=f'(c)=\frac{2\ln x}{x}>\frac{4}{e^2}$$

Example

If f(x) is a function continuous on [a, b] and differentiable on (a, b), show that $\exists c \in [a, b]$ so that

$$cf'(c) + f(c) = \frac{bf(b) - af(a)}{b - a}$$

Hint

By using your Mathematical Intuition, you can guess

$$g(x) = xf(x)$$

Since g'(x) = xf'(x) + f(x)

Example

If f(x), g(x) is sufficiently differentiable on [a, b], and f(a) = f(b) = g(a) = g(b) = 0. Show that $\exists \varepsilon \in [a, b]$ so that

$$f(\varepsilon)g''(\varepsilon) - f''(\varepsilon)g(\varepsilon) = 0$$

Solution

You can guess the function

$$F(x) = f(x) \cdot g'(x) - f'(x) \cdot g(x)$$

Summary: Three Existence Theorem

Here follows the main strategy to apply those theorem.

IVT

Guarantee the existence of the intermediate value.

EVT

Guarantee the existence of maximum and minimum \Rightarrow Replace f(x), $f_1(x) + f_2(x)$, ... by a simple maximum M or minimum m. e.g.

$$m \le f(x) \le M$$

MVT

Relate the value of the function with the value of its derivatives.

$$f(x_0) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

See Assignment 5, Question 9 to get familiar with the applicable strategy.

Example

If f(x) is continuous on [0,3] and differentiable on (0,3). If f(0)+f(1)+f(2)=3 and f(3)=1. Show that $\exists c\in(0,3)$ so that f'(c)=0.

Solution

Please show the sol to the Assignment 5.

L'Hospital's Rule: Conditions

Applied to the indeterminate form.

Condition I

 $\frac{f(x)}{g(x)}$ is in the form of $\frac{0}{0}$ or $\frac{\infty}{\infty}$ (or after conversion).

Condition II

 $\lim_{x \to a/x \to \infty} \frac{f}{g'}$ exists or diverges to infty.

Condition III

In some neighborhood of c, possibly except at c: f', g' exist and f' & g' is not zero simultaneously.

Notice that all the three conditions need to be satisfied.

Wu Zheng (UMJI) VV156 October 29, 2018 16 / 19

Example

Find

$$\lim_{x\to 0}\frac{\sqrt{1+\sin x}-\sqrt{1+x}}{x^3}$$

2

$$\lim_{x \to 0} \frac{e^{-\frac{1}{x^2}}}{x^{100}}$$

Hint

Hint

Rationalize.

$$\frac{\sqrt{1+\sin x} - \sqrt{1+x}}{x^3} = \frac{\sin x - x}{x^3(\sqrt{1+\sin x} + \sqrt{1+x})}$$
$$= \frac{\sin x - x}{x^3} \cdot \frac{1}{\sqrt{1+\sin x} + \sqrt{1+x}}$$

Substitution.

$$\lim_{x \to 0} \frac{e^{-\frac{1}{x^2}}}{x^{100}} = \lim_{\frac{1}{x^2} \to \infty} \frac{\left(\frac{1}{x^2}\right)^{50}}{e^{\frac{1}{x^2}}} \stackrel{t = \frac{1}{x^2}}{=} \lim_{t \to \infty} \frac{t^{50}}{e^t} = 0$$

Notice we here repeatedly apply the L'Hospital's Law to acquire the final answer.

Thanks!