FIG.1:

- (1) sound source 1
- (2) signal processing circuit 2
- (3) noise generator 3
- (4) D/A converter 4_{FL} , 4_{FR} , 4_{C} , 4_{RL} , 4_{RR} , 4_{WF} , 10
- (5) amplifier 5_{FL} , 5_{FR} , 5_{C} , 5_{RL} , 5_{RR} , 5_{WF} , 9
- (6) A/D converter 10

FIG.2:

- (1) noise generator 3
 - (2) attenuator ATF_{11} , ATF_{12} to ATF_{1j} , ATF_{k1} , ATF_{k2} , ATF_{ki} , ATG_1 , ATG_2 , ATG_3 , ATG_4 , ATG_5 , ATG_k
- (3) delay circuit DLY₁, DLY₂, DLY₃, DLY₄, DLY₅, DLY_k

FIG.3:

- (1) frequency characteristic correcting portion 11
 - (2) channel-to-channel level correcting portion 12
 - (3) phase characteristic correcting portion 13
 - (4) flatness correcting portion 14
 - (5) system controller MPU

FIG.4:

- (1) middle/high frequency bandprocessing portion (except subwoofer) 15a
- (2) low frequency band processing portion (except subwoofer) 15b
- (3) subwoofer low frequency band processing portion (only subwoofer) 15c

64

(4) calculating portion 15d

FIG.5:

- (1) logarithmic frequency (kHz)
- (2) gain (dB)
- (3) low frequency band
- (4) middle/high frequency band

FIG.6:

- (1) logarithmic frequency (kHz)
- (2) power (dB)
- (3) low frequency band
- (4) total power of loudspeakers 6_{FL} to 6_{WF}
- (5) power of loudspeakers 6_{FL} to 6_{RR}
- (6) power of a loudspeaker 6_{WF}

FIG.7:

- (1) front left-side loudspeaker 6_{FL}
 - (2) center loudspeaker 6c
 - (3) front right-side loudspeaker 6_{FR}
 - (4) rear left-side loudspeaker 6_{RL}
 - (5) subwoofer 6_{WF}
 - (6) rear right-side loudspeaker 6_{RR}

FIG.8:

- (1) start
- (2) frequency characteristic correcting process (S10)
- (3) channel-to-channel level correcting process (S20)
- (4) phase characteristic correcting process (S30)

- (5) flatness correcting process (S40)
- (6) end

FIG. 9:

- (1) start
- (2) initialize the attenuators (S100)
- (3) measure the sound field characteristic (S104)
- (4) set a target curve (S106)
- (5) calculate adjusted values Fn(x, J) (S110)
- (6) normalizing process (S120)
- (7) calculate the attenuation factors SFxj,
 adjust the attenuation factors of the inter-band
 attenuators (S126)
 - (8) end

FIG. 10

- (1) start
- (2) initialize the attenuators (S200)
- (3) measure the sound field characteristic (S204)
- (4) Have processes of the channels 1 to 5 been completed x=5 ? (S208)
- (5) set target data (S210)
- (6) calculate adjusted values of the channel-to- channel attenuators (S212)
- (7) adjust the channel-to-channel attenuators (S214)
- (8) return

FIG.11:

- (1) start
- (2) initialization (S300)
- (3) measure the sound field characteristic (S304)
- (4) Have processes of all channels been completed x=k ? (S308)
- (5) calculate delay times (S310)
- (6) calculate the average delay time (S316)
- (7) adjust the delay circuits (S318)
- (8) return

FIG.12:

- (1) start
- (2) set parameters (S400)
- (3) set target data (S402)
- (4) initialize the attenuator on the subwoofer channel (S404)
- (5) measure the sound field characteristic (middle/high frequency band of 5 channels) (S406)
- (6) measure the sound field characteristic (low frequency band) (S408)
- (7) measure the sound field characteristic (only subwoofer) (S410)
- (8) calculate the attenuator adjusted value on the subwoofer channel (S412)
- (9) adjust the attenuator on the subwoofer channel (S414)
- (10) return

