The Art of Informational Retrieval

Rhys Chouinard, MSc Physics
Tyler Dauphinee, MSc Math Physics

LINK TO THIS TALK:

https://bit.ly/2M8G67g

Introduction

- Rhys Chouinard
 - Experimental Physics
- Tyler Dauphinee
 - Mathematical Physics

Structure

 We designed this session to be a crash-course in practical methods of data gathering.

 This should be as informal as possible and more of a workshop then a lecture.

We encourage everyone to get their hands dirty and give each use-case a try.

Environment

Docker container based on ubuntu 18.04 with a jupyterlab interface.

 Tested only on GCP in the cloud shell, so no guarantee of it working elsewhere.

If it fails locally sign up for a free account and run it in the shell.

Getting Setup (~20 minutes)

- Download the repository here:
 - https://drive.google.com/open?id=1I_0Nu9QLmKFEXnSvDtghN2rCcHO1Aod-
- Unzip (If not a git repo)
- Build the docker image
 - Locate the scripts folder and run the build script `bash build.sh`
- Start the container
 - In the same scripts folder run `bash run.sh`

Getting Setup (Connecting)

- Connect
 - o In the top right of the cloud shell hit the "eye" icon and select preview on port 8080.
- Authenticate
 - The default token is 'data-science'

API Overview

- What is an API?
- Common usage in data science?
- Hands-on intro
- Case Study: March Madness of Cartoons(?)

What is an API

- API stands for application programming interface
- It's a "common language" that many systems can decipher and use.
- Typically communicated via JSON objects (JavaScript Object Notation)
 - https://en.wikipedia.org/wiki/JSON

```
"firstName": "John",
"lastName": "Smith",
"isAlive": true.
"age": 27,
"address": {
  "streetAddress": "21 2nd Street",
  "city": "New York",
  "state": "NY",
  "postalCode": "10021-3100"
"phoneNumbers": [
    "type": "home",
    "number": "212 555-1234"
    "type": "office",
    "number": "646 555-4567"
 },
    "type": "mobile",
    "number": "123 456-7890"
"children": [],
"spouse": null
```

APIs in data science

- Used for serving models
- Used for data gathering
- Used for data "cleaning" (ex. OCR)

Hands-on Intro

- Python requests library and demo of a few open APIs.
 - https://2.python-requests.org/en/master/

Case study: Cartoon March Madness

- Local radio station put on a "march madness" for cartoons, where listeners voted on their favorite cartoons.
- Suppose you wanted to try and predict this bracket?
 - What data would you use?
 - How would you get that data?
 - How would you model this data?
 - How would you validate this model?

Data

- We sought to model using open data from IMDb
- Primary drivers could be time on tv (number of seasons), number of votes, overall rating and age.

How to get this data?

- We can grab it with an unofficial client library (imdbpy) in conjunction with the manually curated list of cartoons.
 - https://imdbpy.sourceforge.io/

What about the model

 With only one example we chose good ol' fashioned human intuition for this task (harder to ML in this case, however you could take a bayesian approach).

We chose a piecewise linear model to score each cartoon.

We then use this score to "simulate" the bracket (higher score wins a faceoff).

Hands on demo

• Let's run through the notebook and see what went down!

Scraping

- What is scraping
- Common usage in data science?
- Disclaimer

What is Scraping?

- Refers to the act of capturing raw HTML and programmatically extracting information from the resource.
- Google and other search engines regularly scrape websites to curate their search engine results.
- Many companies provide this service for a fee, intelligently crawling the requested website and gathering the data.

Disclaimer

- Web scraping is legal gray area in many jurisdictions.
- There have been cases of legal action taken against companies for actively scraping web pages.
- Most websites will state in their terms of service and on their robots.txt file whether or not they allow scraping and at what capacity.
- Always check the website in question before engaging in any scraping activity.

Common Usage in Data Science

- Data gathering from "unstructured" sources.
- Real-time aggregation of sources.

Hands-on Intro

 Python requests library and beautifulsoup to scrape a sandbox website: http://books.toscrape.com/

Case Study: NHL Playoffs

- Caught wind of hockey pool starting soon.
- Had two days until the deadline
- Wanted to see what we could do but we needed data...

Data

- Player data was available via an open source client library.
- Team data was available for download but only year by year and through a dialog, how do we automate this?
- The answer is some web scraping!

Model

- We defined a simple metric for choosing players: the expected number of points throughout the playoffs!
- If we assume that points per game and games played are independent (not great but not terrible) then...

E[points] = E[(points per game)(games played)] = E[PPG]E[GP]

Model Continued

- Given this framework we sought to model each the PPG and GP seperately:
 - PPG would be the average points over a season
 - GP would be the result of a monte carlo simulation of the bracket
- This monte carlo would take historical pair-wise performance and treat games as bernoulli trials.
- We can then estimate the probability that team i would beat team j.

Hands On Case Study

Let's run through the notebook and see what went down!

OCR

What is OCR?

What is the common usage?

Hands on intro.

What is OCR?

- OCR (Optical Character Recognition) is a class of algorithms tasked with extracting text data from images.
- Used widely in financial services, government organizations (think canada post) and other organizations with a "paper-heavy" workflow.

Common Uses

- Information Retrieval
 - o parsing and extracting data from medical records, packing slips, standard forms etc.
- Data Entry Minimization
 - Ex. take a picture of your ID instead of typing it in.

Hands-on Intro

- Tesseract OCR and OpenCV for a demo on real-world data.
- We'll see the challenges of real world data:
 - Image Quality
 - Orientation
 - Skew
 - Structure

Case Study: Document Classification

- A pared down case study on a document classification pipeline using OCR
 - Synthetic clean data set.
 - Training set "pre-extracted"
- Problem:
 - Given images of book excerpts can you predict the author?

Hands On Case Study

Let's run through the notebook and see what went down!