

Advanced Topics in Software Verification

WeChat: cstutorcs

Assignment Project Exam Help
Email: tutores@163.com

QQ: 749389476

Gerwin Klein, June Andronick, Miki Tanaka, Johannes Åman Pohjola https://tutorcs.com
T3/2022

Content

程序代写代做 CS编程辅导

→ Foundations & Principles	
 Intro, Lambe natural deduction 	[1,2]
• Higher Orde 🔭 🔭 🔭 (part 1)	$[2,3^a]$
Term rewritile Term rewritil	[3,4]
→ Proof & Specification Techniques	
 Proof & Specification Techniques Inductively defined sets, rule induction 	[4,5]
 Datatype industipen primitipe of seursionam Help 	[5,7]
 General recursive functions, termination proofs 	$[7^b]$
 Proof automationilisant(part @)163.com 	[8]
 Hoare logic, proofs about programs, invariants 	[8,9]
• C verificatio QQ: 749389476	[9,10]
 Practice, questions, exam prep https://tutorcs.com 	[10 ^c]

^aa1 due; ^ba2 due; ^ca3 due

More on Automation

程序代写代做 CS编程辅导

Last time: safe and unsafe, heuristics: use safe before unsafe

be automated

Automated methodies ast, clarify etc) are not hardwired. lim rules can be declared.

Syntax: WeChat: cstutores

[<kind>!] for safe rules (<kind> one of intro, elim, dest) for unsaisenment Project Exam Help

EApplication (/ pughly):

do safe rules first, search/backtrack on unsafe rules only

OO: 749389476

Example:

declare attribute glottaply://tdeplare.comjl [intro!] allE [elim]

remove attribute globally **declare** allE [rule del]

apply (blast intro: somel) use locally

annly (blast del: conil) delete locally

程序代写代做 CS编程辅导

Demo: Automation Assignment Project Exam Help

Email: tutores@163.com

QQ: 749389476

Exercises

程序代写代做 CS编程辅导

- ightharpoonup derive the classical factor rule ($\neg P \Longrightarrow False$) $\Longrightarrow P$ in Isabelle
- → define **nor** and **na**
- → show nor x x :
- → derive safe intro and elim rules for them
- \rightarrow use these in an automated prospection $x \times x = x$

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

程序代写代做 CS编程辅导

Defining Higher Order Logic Assignment Project Exam Help

Assignment Froject Exam Help

Email: tutorcs@163.com

QQ: 749389476

What is Higher Order Logic?

程序代写代做 CS编程辅导

- → Propositional Long *** → Propositional Long *** → Inc. ** → Inc
 - no quantified
 - all variables
- → First Order Logi
 - quantification over values, but not over functions and predicates,
 - terms and formulas syntactically distinct Assignment Project Exam Help
- → Higher Order Logic:
 - quantificatio Example vertex thing in the fluction of the properties of
 - consistency by types
 - formula = $tek R \circ 749389476$

Defining Higher Order Logic

程序代写代做 CS编程辅导

Default types:

bool

- → bool sometimes called part: cstutorcs
- → ⇒ sometimes called *fun*

Assignment Project Exam Help

Default Constants:

Email: tutorcs@163.com
$$\rightarrow$$
 :: $bool \Rightarrow bool \Rightarrow bool$

= QQ: 749389476 $bool$
 ϵ :: $(\alpha \Rightarrow bool) \Rightarrow \alpha$

https://tutorcs.com

Higher Order Abstract Syntax

程序代写代做 CS编程辅导

Problem: Define syr**ing and are like** \forall , \exists , ε

One approach: $\forall :: m \Rightarrow bool$

Drawback: need to ut substitution, α conversion again.

But: Already have binder help stitutions α conversion in meta logic

Assignment Project Exam Help

Email: tutorcs@163.com

So: Use λ to encode all other binders. OD: 749389476

Higher Order Abstract Syntax

程序代写代做 CS编程辅导

Example:

HOAS usual syntax WeChat: cstutorcs

 $\begin{array}{c} \mathsf{ALL} \ (\lambda \overset{\times}{\mathsf{Assignment}} \overset{\times}{\mathsf{Project}} \overset{\times}{\mathsf{Exam}} \overset{=}{\mathsf{Help}} \\ \mathsf{ALL} \ \overset{\wedge}{\mathsf{P}} \overset{\times}{\mathsf{Nept}} \overset{=}{\mathsf{Nept}} \overset{=}{\mathsf{N$

Email: tutorcs@163.com

Isabelle can translate usual binder syntax into HOAS.

Side Track: Syntax Declarations

程序代写代做 CS编程辅导

- → infixl/infixr: short form for left/right associative binary operators

 Example: or :: bookarl:bookbresbook68infixm" ∨ " 30)
- ⇒ binders: declaration must be of the form $c :: (\tau_1 \Rightarrow \tau_2) \Rightarrow \tau_3$ (binder $B^{n-1} 1$)

 B x. P x translated this $T_1 < T_2 < T_3 < T_4 < T_4 < T_5 < T_5 < T_6 < T_7 < T_$

More in Isabelle/Isar Reference Manual (8.2)

Back to HOL

程序代写代做 CS编程辅导

Base: bool,
$$=$$
, \rightarrow , ε

And the rest is define $=$, \rightarrow , ε

True $=$ (λx) $=$ (λ

The Axioms of HOL

程序代写代做 CS编程辅导

That's it.

程序代写代做 CS编程辅导

- → 3 basic constants
- → 3 basic types
- → 9 axioms

With this you can define and derive all the rest.

WeChat: cstutorcs

Isabelle knows 2 more sxigms ent Project Exam Help

$$\frac{x=y}{x\equiv y}$$
 eq_reflection tutorcs@163.com (THE $x. x=a$) = a the_eq_trivial

QQ: 749389476

程序代写代做 CS编程辅导

Demo: WeChat: cstutores

The Definitions in Isabelle

Email: tutorcs@163.com

QQ: 749389476

Deriving Proof Rules

程序代写代做 CS编程辅导

In the following, we

- → look at the definit re detail
- → derive the traditique is the sules from the axioms in Isabelle

Convenient for deriving rules: named assumptions in lemmas

```
WeChat: cstutorcs
lemma [name:]
assumes [maoma Projecp@pam Help
assumes [name2:] "< prop >2"
Email: tutorcs@163.com
::
shows://tutorcs.com
```

proves: $\llbracket < prop >_1; < prop >_2; \dots \rrbracket \implies < prop >$

True

程序代写代做 CS编程辅导

consts True :: bool

True $\equiv (\lambda x :: bool.)$

Intuition:

right hand side is always true

WeChat: cstutorcs

Proof Rules:

Assignificate Project Exam Help

Email: tutorcs@163.com Proof:

 $(\lambda x :: bqq h x)$

unfold True_def

程序代写代做 CS编程辅导

Demo

WeChat: cstutores

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

Universal Quantifier

程序代写代做 CS编程辅导

consts ALL :: $(\alpha \Rightarrow b \cap A) \Rightarrow b \circ o \circ A$ ALL $P \equiv P = (\lambda \otimes A) \Rightarrow b \circ o \circ A$

Intuition:

- \rightarrow ALL *P* is Higher Order Abstract Syntax for $\forall x. P x.$
- → P is a function the the state of the property of the proper
- → ALL P should be true iff P yields true for all x, i.e. if it is equivalent to the function XX! True.

Proof Rules: Email: tutorcs@163.com

$$\frac{\bigwedge x. P \times QQ}{\forall x. P \times}$$
 QQ: 749389476 $\frac{P?x \Longrightarrow R}{R}$ allE https://tutorcs.com

Proof: Isabelle Demo

False

程序代写代做 CS编程辅导

consts False :: bool

False $\equiv \forall P.P$

Intuition:

Everything can be derived from False.

WeChat: cstutorcs

Proof Rules:

Email: tutorcs@163.com

Proof: Isabelle DemoQ: 749389476

Negation

程序代写代做 CS编程辅导

consts Not :: bool = 1 P = P False

Intuition:

Try P = True and P = False and the traditional truth table for \longrightarrow . WeChat: cstutorcs

Proof Rules: Assignment Project Exam Help

 $\frac{A = \text{Erfialse tutorcs@} \frac{163.c4m}{P} \text{ notE}}{\sqrt{QQ}: 749389476}$

Proof: Isabelle Demattps://tutorcs.com

Existential Quantifier

程序代写代做 CS编程辅导

consts EX ::
$$(\alpha \Rightarrow b_{\square}) \rightarrow b_{\square} ol$$

EX $P \equiv \forall Q. \ (\forall x \in Q) \rightarrow Q$

Intuition:

- \rightarrow EX P is HOAS for $\exists x. P x.$ (like \forall)
- → Right hand side is Wharacterigation posses with \forall and \longrightarrow
- → Note that inner ∀ binds wide: (∀x. P x → Q)

 Assignment Project Exam Help

 Remember lemma from last time:
- $(\forall x. P x \longrightarrow Q)$ Enterly: Putores@963.com

Proof Rules:

Conjunction

程序代写代做 CS编程辅导

consts And ::
$$bool = bool (_ \land _)$$
 $P \land Q \equiv \forall R. (P \longrightarrow B) \longrightarrow R$
Intuition:

- → Mirrors proof rules for ∧
- → Try truth table for Chathe stutores

Proof Rules:

Assignment Project Exam Help

$$\frac{A \quad B}{A \land B} \stackrel{\text{Email:}}{\text{conjl}} \frac{\text{Autogcs}}{\text{QQ:}} \frac{\text{QA:}}{749389476} \frac{\text{Comp}}{\text{C}} C \text{conjE}$$

https://tutorcs.com

Proof: Isabelle Demo

Disjunction

程序代写代做 CS编程辅导

Intuition:

- → Mirrors proof rules for ∨ (case distinction)
- Try truth table for truth table for the chain stutores

Proof Rules:

Assignment Project Exam Help

$$\frac{A}{A \vee B} \frac{B}{A \vee B} \stackrel{\text{Email: tuxpyce} @ 163 com}{\text{disjl}1/2} \frac{B \Longrightarrow C}{C} \text{ disjE}$$

$$\frac{A}{A \vee B} \frac{B}{A \vee B} \stackrel{\text{Email: tuxpyce} @ 163 com}{C} \frac{B}{C} \stackrel{\text{disjE}}{}$$

Proof: Isabelle Demohttps://tutorcs.com

If-Then-Else

程序代写代做 CS编程辅导

consts If ::
$$bool \Rightarrow \alpha \qquad \alpha \qquad \text{(if_then_else_)}$$
If $P \times y \equiv \text{SOME} \qquad \text{(if_then_else_)}$
 $z = y \qquad \text{(if_then_else_)}$

Intuition:

- \rightarrow for P = True, right leads at the stallarses to SOME z. z = x
- ightharpoonup for P = False, right hand side collapses to SOME z, z = yAssignment Project Exam Help

Proof Rules: Email: tutorcs@163.com

if True then s else $t \ominus G$: if False then s else t = t

https://tutorcs.com

Proof: Isabelle Demo

程序代写代做 CS编程辅导

That was HUL

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

We have learned today ...

程序代写代做 CS编程辅导

- → More automation
- → Defining HOL
- → Higher Order Abs
- → Deriving proof rules

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476