Foundations of Linear Models, Assignment 2

Ezgi Tanriver Ayder (1541821), Oana Petrof (1541809), Olusoji Oluwafemi Daniel (1541893), Van Baelen Wessel (1234318), Owokotomo Olajumoke Evangelina (1539654)

October 6, 2016

PROBLEM 1

Refer to patient satisfaction Problem 6.15. Test whether both X_2 and X_3 can be dropped from the regression model given that X_1 is retained. Use $\alpha = 0.025$. State the alternatives, decision rule and conclusion. What is the P-value of the test?

In this question, we are interested in finding whether the variables Severity of Illness and Anxiety Level could be dropped from the regression model. Therefore;

$$H_0: \beta_2 = \beta_3 = 0$$

 H_1 : at least one of the parameters is not zero

Full model:

PatientSatisfaction= $\beta_0 + \beta_1$ PatientAge+ β_2 SeverityofIllness+ β_3 Anxietylevel+ ϵ

Reduced model:

PatientSatisfaction= $\beta_0 + \beta_1$ PatientAge+ ϵ

The general linear test statistic:

$$F^* = (\frac{SSE(R) - SSE(F)}{df_R - df_F}) \div (\frac{SSE(F)}{df_F})$$

Table 1: The results obtained from regression procedure.

Source	DF	MeanSquare	FValue	Pr > F
Numerator	2	422.53741	4.18	0.0222
Denominator	42	101.16287		

Decision rule:

If p - value < 0.025, reject H_0 . If p - value > 0.025, fail to reject H_0 .

Conclusion:

For $\alpha=0.025$, the p-value is obtained to be 0.0222. Therefore, the strict interpretation would be that this p-value is significant since 0.0222<0.025. Thus, according to our decision rule, we could reject the null hypothesis and say that X_2 and X_3 can not be dropped from the model while X_1 is already in the model. However, our objective conclusion is that this obtained p-value is very close to the given significance level and that there is a borderline situation. Hence, we cannot make an exact conclusion given the closeness of p-value= 0.0222 to $\alpha=0.025$.

PROBLEM 2

Refer to Patient satisfaction Problem 6.15. Test whether $\beta_1 = -1$ and $\beta_2 = 0$; use $\alpha = 0.025$. State the alternatives, full and reduced models, decision rule, and conclusion.

Here, we would like to check if the response variable Patient Satisfaction has a negative relationship with the variable Patient Age. We also would like to check if the variable Severity of Illness could be dropped from the full model.

$$H_0: \ \beta_1 = -1 \text{ and } \beta_2 = 0$$

 $H_1: \ \beta_1 \neq -1 \text{ or } \beta_2 \neq 0$

Full model:

 $PatientSatisfaction = \beta_0 + \beta_1 PatientAge + \beta_2 Severity of Illness + \beta_3 Anxiety level + \epsilon_3 PatientAge + \beta_4 PatientAge + \beta_5 PatientAge + \beta_5 PatientAge + \beta_6 PatientAge$

Reduced model:

PatientSatisfaction + PatientAge = $\beta_0 + \beta_3$ Anxietylevel+ ϵ

The general linear test statistic:

$$F^* = (\frac{SSE(R) - SSE(F)}{df_R - df_F}) \div (\frac{SSE(F)}{df_F})$$

Table 2: The results obtained from regression procedure.

Source	DF	MeanSquare	FValue	Pr > F
Numerator	2	89.40713	0.88	0.4208
Denominator	42	101.16287		

Decision rule:

```
If p - value < 0.025, reject H_0.
If p - value > 0.025, fail to reject H_0.
```

Conclusion:

For $\alpha=0.025$, the p-value is 0.4208, which is found not to be significant. We fail to reject the null hypothesis according to the decision rule. For this reason, X_2 can be dropped from the model, i.e $\beta_2=0$, while X_1 can be added to Y, i.e. = -1 and X_3 is retained in the model.

PROBLEM 3

Fit first order linear regression model for relating patient's satisfaction (Y) to patient's age (X_1) and severity of illness (X_2) . State the fitted regression function.

The estimated regression function is;

$$\hat{Y} = 156.67186 - 1.26765X_1 - 0.92079X_2$$

The data revealed that given the Severity of illness, for a one year increase in Age (in years), it is expected that the patient satisfaction will reduce by 1.26765. Also given the patient's age, it is expected that the patient's satisfaction will reduce by 0.92079. An inverse relationship between patient's satisfaction with the respective explanatory variables involved (patient's age and severity of illness) is observed.

Compare the estimated regression coefficients for patients' age and severity of illness obtained in the previous question with the corresponding coefficients obtained by fitting a full model.

Model	X_1	X_2
Full	-1.14161(0.21480)	-0.44200(0.43489)
Reduced	-1.26765(0.21035)	-0.92079(0.49197)

Table 3: Coefficients(standard error) of Age and Severity of Illness

From the table above, it can be observed that the standard errors of X_1 (Age) remains approximately the same in both models, while the coefficient estimate on the other hand exhibited a slight change (a difference of 0.13 and a ratio of 0.9), hence the inclusion or withdrawal of X_3 (anxiety level) has a very mild effect on the coefficient of X_1 which implies that possibly X_1 and X_3 are uncorrelated. On the other hand, a difference of about 0.49 (a ratio of about 2.1) is observed between the coefficient estimate of X_2 (severity of illness) in the full model and in the reduced model. A change is also noticed in its standard

error but not as huge as that observed in its coefficient estimate, hence the inclusion or removal of X_3 has an effect on the coefficient estimate of X_2 which implies a possible correlation between X_2 and X_3 .

Does $SSR(X_1) = SSR(X_1|X_3)$ here? Does $SSR(X_2) = SSR(X_2|X_3)$?

SS	Value
$\overline{SSR(X_1)}$	8275.38885
$SSR(X_2)$	4860.26000
$SSR(X_1, X_3)$	9038.80461
$SSR(X_2, X_3)$	6262.91029

Table 4: Sum of Squares

$$SSR(X_1|X_3) = SSR(X_1, X_3) - SSR(X_3) = 3483.89147 \neq SSR(X_1)$$

 $SSR(X_2|X_3) = SSR(X_2, X_3) - SSR(X_3) = 707.99714 \neq SSR(X_2)$

Since $SSR(X_1|X_3) \neq SSR(X_1)$ and $SSR(X_2|X_3) \neq SSR(X_2)$, it implies that adding X_1 and X_2 improves the regression function and it does contain information that is not contained in X_3 . Also, the information gained by adding X_1 to a model already containing X_3 is much more when compared to adding X_2 to a model containing X_3 and X_2 explains more alone than when included in the model already containing X_3 . This suggests that there exist a possible correlation between X_2 and X_3 and also a possible correlation between X_1 and X_3 .

Refer to the correlation matrix of the variables in the full model, what bearing does it have on your findings from the two previous questions?

	Y	X_1	X_2	X_3
\overline{Y}	1.00000	-0.78676	-0.60294	-0.64459
		(< .0001)	(<.0001)	(< .0001)
$\overline{X_1}$	-0.78676	1.00000	0.56795	0.56968
	(<.0001)		(<.0001)	(< .0001)
$\overline{X_2}$	-0.60294	0.56795	1.00000	0.67053
	(<.0001)	(< .0001)		(< .0001)
$\overline{X_3}$	-0.64459	0.56968	0.67053	1.00000
	(0.0001)	(<.0001)	(<.0001)	

Although the correlation between X_1 and X_3 is significant and moderate (0.570), X_3 still explains some part of the response (Y) that was not explained by the variable X_1 as indicated by the extra sum of squares computation in the previous question $(SSR(X_1|X_3) \neq SSR(X_1))$. In other words, although the inclusion or exclusion of X_3 has a very mild effect on the coefficient estimate and standard error of X_1 , it is significantly correlated with X_1 as suggested by the extra sum of squares but not entirely clear from the coefficient estimates.

Also the correlation (≈ 0.7) between X_2 and X_3 is significant, and the inclusion or exclusion of X_3 does have an effect on both the coefficient estimate and

standard error of X_2 , both variables do not have the same information about the response Y, since $SSR(X_2|X_3) \neq SSR(X_2)$.

In summary, conclusions from the first two problems answered, i.e comparing parameter estimates and computing extra sum of squares gained by adding X_2 and X_1 to models containing X_3 led to the assertion that X_1 and X_3 are potentially not correlated (since the inclusion of X_3 had little effect ont the estimates of X_1), an assertion proved wrong by the results obtained from the correlation matrix but findings from the extra sum of squares is consistent with findings from the correlation matrix since $SSR(X_1|X_3) \neq SSR(X_1)$. On the other hand, the change observed in the coefficient estimates of X_2 when X_3 was inserted into the model might lead one to think X_2 is possibly highly correlated with X_3 and possibly not much would be gained by adding X_2 to a model already containing X_3 . This was somewhat true as X_3 and X_2 has a significant correlation of ≈ 0.7 and only a gain of 707.99714 is observed when X_2 is added to a model containing X_3 .

PROBLEM 4

Obtain the scatterplot matrix. Also obtain the correlation matrix of the X-variables. Is there evidence of strong pairwise association among the predictor variables here?

Looking at the scatterplot matrix and correlation matrix we can observe that there are very strong pairwise associations between number of beds, average daily census and number of nurses. The correlation between number of beds and average daily census is most significant (R=0.99). Correlation between number of nurses and the other two variables is also very high (R= ± 0.9) Furthermore, there are reasonably strong pairwise associations between these three predictors and available facilities and services. These predictors should not be used in the same model because this would produce severe multicollinearity issues.

Obtain the three best subset according to the C_p criterion. Which of these subset models appears to have the smallest bias?

#	C(p)	R-Square	Variables in Model
3	3.8112	0.5192	Age XrayRatio Census
4	3.8638	0.5369	Age XrayRatio Census Nurses
4	4.2696	0.5332	Age XrayRatio Beds Census
5	4.2839	0.5513	Age CulturingRatio XrayRatio Census Nurses
5	4.4500	0.5498	Age InfectionRisk XrayRatio Census Nurses
4	4.6568	0.5297	Age CulturingRatio XrayRatio Census
5	4.9074	0.5456	Age XrayRatio Beds Census Nurses
4	5.1840	0.5249	Age InfectionRisk XrayRatio Census
4	5.2472	0.5243	Age XrayRatio Census Facilities
5	5.5739	0.5395	Age XrayRatio Census Nurses Facilities

Table 5: Mallow's Cp Model Selection

It is observed from the table above that the best three subsets, based upon the lowest values for the C_p -criterion all have age, routine X-ray ratio and average daily census in the model. So these parameters are most important for explaining the variability in the data. The second best model adds the number of nurses as an important variable and the third model adds the number of beds.

Bias of these subset models is determined by how close the C_p criterion is to the number of parameters in the model. The first model (C_p value = 3.8112) with 3 predictors needs to be compared to the value 4. A difference of 0.1888 is obtained for the first model, which is the lowest when compared to the second model (1.1362) and the third model (0.7304). Thus, it is concluded that the bias is smallest for the first model.

Appendix (SAS Codes and Graphs)

SAS Codes

```
*Problem 1
data hw2;
infile 'E:\BIOSTATISTICS\ME\ANUL 2\FIRST SEM\Fondations of linear
models\hw2\Patsat.txt' firstobs=2;
input y x1 x2 x3;
run;
proc print data=hw2;
run;
proc reg data=hw2 tableout alpha=0.025;
model y = x1 x2 x3;
Test1 : test x2, x3;
run; quit;
*Problem 2
proc reg data=hw2 alpha= 0.025;
   model y = x1 x2 x3;
   test x1=-1, x2=0;
run;
quit;
data assignment;
infile 'C:\Users\00D00E\Downloads\Video\Second Year\First Semester\Foundation
\foundation_assignment2\Data\CHO6PR15.txt' firstobs=2;
input Y X1 X2 X3;
label Y='Patients Satisfaction'
  X1='Patients Age'
  X2='severity of illness'
  X3='anxiety level';
run;
*Problem 3, Question 1;
```

```
proc reg data=assignment;
model Y = X1 X2;
run;
*Problem 3, Question 2;
proc reg data=assignment;
model Y = X1 X2 X3 / ss1 ss2;
model Y = X1;
model Y = X2;
model Y = X3;
model Y = X1 X3 /ss1;
model Y = X2 X3 /ss1;
model Y = X3 X2 /ss1;
model Y = X3 X1 /ss1;
run;
*Question 3;
proc corr data=assignment plots=matrix(histogram);
var Y X1 X2 X3;
run;
*Problem 4;
data senic;
   infile "~\Senic Data.txt";
   input ID X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11;
   label X1= 'Length of Stay'
         X2= 'Age'
 X3= 'Infection Risk'
 X4= 'Routine Culturing Ratio'
 X5= 'Routine Chest X-ray Ratio'
 X6= 'Number of Beds'
 X7= 'Medical School Affiliation'
 X8= 'Region'
 X9= 'Average Daily Census'
 X10= 'Number of Nurses'
 X11= 'Available Facilities & Services';
run;
data senic;
   set senic(drop= X7 X8);
   if (_N_ > 56);
   Y = log(Y);
run;
proc corr data=senic;
proc sgscatter data=senic;
matriX X1 X2 X3 X4 X5 X6 X9 X10 X11;
run;
proc reg data=senic;
```

model X1= X2 X3 X4 X5 X6 X9 X10 X11/selection=cp best=10; run; quit;

Graphs

Figure 1: Scatterplot matrix.

Pearson Correlation Coefficients, N = 57 Prob > r under H0: Rho=0								
	x2	x3	x4	x5	x6	x9	×10	x11
x2 Age	1.00000	0.02518 0.8525	-0.10113 0.4542	0.16099 0.2316	-0.19787 0.1401	-0.17221 0.2002	-0.23643 0.0766	-0.16352 0.2242
x3 Infection Risk	0.02518 0.8525	1.00000	0.44783 0.0005	0.33396 0.0111	0.49007 0.0001	0.50085 <.0001	0.53009 <.0001	0.45334
x4 Routine Culturing Ratio	-0.10113 0.4542	0.44783 0.0005	1.00000	0.19482 0.1484	0.16780 0.2121	0.20382 0.1287	0.23884 0.0738	0.23954
x5 Routine Chest X-ray Ratio	0.16099 0.2316	0.33396 0.0111	0.19482 0.1464	1.00000	0.06882 0.6214	0.08554 0.5269	0.08020 0.6564	0.12833 0.3414
x6 Number of Beds	-0.19787 0.1401	0.49007 0.0001	0.16780 0.2121	0.08882 0.8214	1.00000	0.99000 <.0001	0.90893 <.0001	0.78448 <.0001
x9 Average Daily Census	-0.17221 0.2002	0.50085 <.0001	0.20362 0.1287	0.08554 0.5269	0.99000 <.0001	1.00000	0.90389 <.0001	0.72942 <.0001
x10 Number of Nurs es	-0.23843 0.0768	0.53009 <.0001	0.23884 0.0738	0.08020 0.6584	0.90893	0.90389	1.00000	0.70706 <.0001
x11 Available Facilities & Services	-0.16352 0.2242	0.45334	0.23954	0.12833	0.76448	0.72942	0.70708 <.0001	1.00000

Figure 2: Correlation matrix of the X variables.