

集合、函數及序列 Sets, Functions & Sequences

第二章

+ Outline

- 集合 (Sets)
- 函數 (Functions)
- 序列 (Sequences)
- 序列求和 (Sums)

+ 集合(Sets) (2.1)

- 一個集合(Set)就是沒有順序的"一堆東西",而集合裡的事物稱作元素(Element)。
- 一般來說, 當元素 a 屬於集合 P 時,記作 $a \in P$. 例: $P = \{2, 4, 6, 8\}; 2 \in P, 3 \notin P$

+常見的重要集合

自然數集(Natural number):

$$N = \{0, 1, 2, 3....\}$$

整數集 (Integers):

$$\mathbf{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$$

正整數集 (Positive Integers):

$$\mathbf{Z}^{+} = \{1,2,3,\ldots\}$$

有理數集(Rational numbers)

$$\mathbf{Q} = \{ a / b \mid a, b \in \mathbf{Z} \}$$

實數集 (Real numbers)

R

複數集(Complex numbers)

C

+集合的範例

- ■本年度BCS003的學生
- 課室TC-T111裡的椅子
- $S = \{2, 4, 6, 8\}$
- $T = \{\{1, 2\}, 3, \emptyset, \mathbf{Q}\}\$
- $V = \{1, 3, 5, \dots, 99\}$
- $W = \{\dots, -3, -2, -1\}$

+ 定義 (2.1, 2.2)

- 子集 (Subset):
 - 集合 A 所有元素都屬於集合 B, 稱 A 為 B 的子集, 即 $\forall x(x \in A \rightarrow x \in B)$
 - 配作: A⊆ B.

注: 對於任意集合 S, $\varnothing \subseteq S$; $S \subseteq S$.

- 集合相等 (Set Equality):
 - $\blacksquare A \subseteq B \coprod B \subseteq A$, $\square \forall x (x \in A \leftrightarrow x \in B)$
 - 記作: *A* = *B*

例:
$$S = \{2, 4, 6, 8\} = \{2, 6, 4, 8\} = \{2, 2, 4, 6, 8\}$$

- 基數 (Cardinal number; Cardinality):
 - 集合 A 內不同元素的個數, 其數量記作: |A|
- 有限集合 (Finite set): A 內若恰有 $n (n \in \mathbb{N})$ 個不同元素
- 無限集合 (Infinite set): 非有限集合

+ 定義 (2.1, 2.2)

- 幂集 (Power Set): S 的幂集為其所有子集的集合, 記作: $\mathcal{P}(S)$
- 有序 n 元組 (Ordered n-tuple): 有序的 n 個元素的聚集, 記作: $(a_1, a_2, ..., a_n)$
 - ■例: 有序二元組/序偶(Ordered pair): (x, y) 有序三元組(Ordered triple): (x, y, z)
- 笛卡兒積 (Cartesian Product): 集合的笛卡兒積為所有集合的有序 n 元組的集合: $A_1 \times A_2 \times \cdots A_n = \{(a_1, a_2, ..., a_n) | a_i \in A_i\}$

- - A. |A| 基数为3
 - B. Ø 基数为0
 - C. |{Ø}|基数为1
 - D. $\mathcal{P}(A)$ 幂集为8 {1, 3, 5, (13), (15), (35), (135), \bigcirc }
 - E. | P(A) | 基数为8

 - H. $|B^n| = 2^n$

+ 定義 (2.2)

- 並集 (Union):
 - $A \cup B = \{x \mid x \in A \lor x \in B\}$
- 交集 (Intersection):
 - $A \cap B = \{x \mid x \in A \land x \in B\}$
- 互斥/不交集 (Mutually Exclusive / Disjoint):
 - $A \cap B = \emptyset$
- 差集 (Difference):
 - A 和 B 的差集: $A B = A \cap \overline{B} = \{x \mid x \in A \land x \notin B\}$
- 補集 (Complement):
 - $\bar{A} = \{x \in U | x \notin A\}$

Venn Diagram (文氏圖)

Inclusion-Exclusion: $|A \cup B| = |A| + |B| - |A \cap B|$

U - 全集(Universal set) ∅,{}-空集(Empty set)

- 給定集合 A, B, C, 證明:
 - A. 若 $A \subseteq B$ 且 $B \subseteq C$, 則 $A \subseteq C$.
 - B. $A \subseteq B$ 當且僅當 $\bar{B} \subseteq \bar{A}$

* Set Identities

若 $A \cdot B$ 和 C 為 U 的三個子集, 則下列規則成立:

交換律(commutative law)

$$A \cup B = B \cup A$$
,
 $A \cap B = B \cap A$

■ 結合律 (associative law)

$$A \cup (B \cup C) = (A \cup B) \cup C,$$
$$A \cap (B \cap C) = (A \cap B) \cap C$$

■ 分配律 (distributive law)

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C),$$
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

■ 德摩根律 (DeMorgan's Law)

$$\frac{\overline{A} \cap \overline{B}}{A \cup B} = \overline{A} \cup \overline{B}$$

- \square 知 $U = \{1, 2, 3, 4, 5, 6\}, A = \{1, 2, 3\}, B = \{3, 4\}, C = \{4, 5\}, 求$:
 - $A. A \cup B$
- {1,2,3,4}
- $A \cap B$
- {3}
- C. A B {1, 2}
- D. B A
- $E. A \cap C$
- F. \overline{A}

{4,5,6}

+ 函數 Function (2.3)

■ 函數 $f: A \rightarrow B$

"f把A映射(map)到B"

■ A: 論域 (Domain)

■ B: 陪域 (Codomain)

■ $\{f(x)|x \in A\}$: 值域 (Range)

b 是 a 的像 (Image)a 是 b 的原像 (Preimage)

+ 函數 Function (2.3)

■ 實數值函數 (Real-valued function):

$$f:A\to\mathbf{R}$$

■ 整數值函數 (Integer-valued function):

$$g:A\to \mathbf{Z}$$

 $\blacksquare A$ 的子集 S 在函數 f 下的像:

若
$$f: A \rightarrow B, S \subseteq A$$
, 則 $f(S) = \{t | t = f(s), s \in S\}$

+一對一及映上 One-to-one & Onto

- 給定 $f: A \to B$, 若 f 滿足:
- ▶ $\forall a \forall b (f(a) = f(b) \rightarrow a = b)$ 則稱 f是一對一(One-to-one)或單射(injective).
- ▶ $\forall y \exists x (f(x) = y)$ 則稱 f 是映上(Onto)或滿射(surjective).

若f是一對一旦映上,則稱f為一一對應(one-to-one correspondence)或雙射的(bijective)。

- B. 判斷下列函數是否雙射函數: i) $f(x) = 2x^2$; ii) $g(x) = \sqrt[3]{x-2}$
- (1) 不是双射
- (2) 是单射且映上,所以为双射

+ 函數的反函數 Inverse of a function

■ 若 f 為一雙射函數(bijection), 則 f 有反函數(inverse function), 稱 f 為可逆的(invertible):

$$f^{-1}(y) = x \text{ iff } f(x) = y$$

■ 若存在, 求下列函數的反函數(Inverse functions):

i)
$$f(x) = 2x^2$$
;

$$ii) g(x) = \sqrt[3]{x-2}$$

+ 函數的合成 Composition of functions

 $f \circ g$ 定義為從集合A 到集合 C 的函數且

$$\forall x \in A, (f \circ g)(x) = f(g(x))$$

+ 函數的合成 Composition of functions

- - A. $(f \circ g)(x)$
 - B. $(g \circ f)(x)$
 - $(f \circ f)(x)$
 - D. $(g \circ g)(x)$
- - A. $(f \circ g)(a)$
 - B. $(f \circ g)(c)$
 - $(g \circ g)(b)$

+下取整函數及上取整函數(2.3)

- 下取整函數 (Floor Function)
 - |x| = 小於或等於 x 的最大整數
- 上取整函數 (Celling Function)
 - [x] =大於或等於 x 的最小整數

1. 求值:

- A. |1.5| 1
- B. [1.5] ²
- C. |-1.5|
- D. [-1.5] 1
- 2. $\Diamond S = \{-1,0,2,4,7\}$, 對應下列各函數求 f(S):
 - A. f(x) = 2x + 1 -1,1,5,9,15
 - B. f(x) = 1
 - C. f(x) = [x/5] 0,1,2
 - D. $f(x) = [(x^2 + 1)/3]$ 0,1,5,16

+ 序列 Sequence (2.4)

- 序列 (Sequence) 定義域為整數集或其子集、值域為實數集的函數。
 - $a_1, a_2, a_3, a_4 \dots$
 - $\{a_n\}_{n=1}^5$
 - $\bullet \{a_n\}_{n=1}^{\infty}$
 - \blacksquare $\{a_n\}$
- 如: 1, 4, 7, 10, 13...
 - 顯式公式 (Explicit formula) 表示:

$$a_n = 3n - 2, n \ge 1$$

■ 遞推公式 (Recursion formula) 表示:

$$a_n = a_{n-1} + 3$$
 where $a_1 = 1, n \ge 2$

+ 等差序列及等比序列 Arithmetic & Geometric progression

■ 等差序列 (Arithmetic Progression):

$$a, a + d, a + 2d, \dots a + nd, \dots$$

- a: 初始項
- d: 公差
- 等比序列 (Geometric Progression):

$$a, ar, ar^2, \dots ar^n, \dots$$

- a: 初始項
- r: 公比

+ 斐波那契數列 (Fibonacci Sequence)

■ 對於
$$f_1 = 0, f_2 = 1, n = 2, 3, 4 \dots$$
, 有:
$$f_n = f_{n-1} + f_{n-2}$$

0, 1, 1, 2, 3, 5, 8, 13, 21, · · ·

+一些有用的序列

TABLE 1 Some Useful Sequences.

nth Term	First 10 Terms
n^2	1, 4, 9, 16, 25, 36, 49, 64, 81, 100,
n^3	1, 8, 27, 64, 125, 216, 343, 512, 729, 1000,
n^4	$1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000, \dots$
2 ⁿ	2, 4, 8, 16, 32, 64, 128, 256, 512, 1024,
3^{n}	$3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049, \dots$
n!	$1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, \dots$
f_n	1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,

+ 序列求和 Summation of Sequence (2.4)

■ 將序列 $\{a_n\}$ 的每一項相加:

$$\sum_{j=1}^{n} a_j$$

TABLE 2 Some Useful Summation Formulae.		
Sum	Closed Form	
$\sum_{k=0}^{n} ar^k \ (r \neq 0)$	$\frac{ar^{n+1}-a}{r-1}, r \neq 1$	
$\sum_{k=1}^{n} k$	$\frac{n(n+1)}{2}$	
$\sum_{k=1}^{n} k^2$	$\frac{n(n+1)(2n+1)}{6}$	
$\sum_{k=1}^{n} k^3$	$\frac{n^2(n+1)^2}{4}$	
$\sum_{k=0}^{\infty} x^k, x < 1$	$\frac{1}{1-x}$	
$\sum_{k=1}^{\infty} kx^{k-1}, x < 1$	$\frac{1}{(1-x)^2}$	

1. 求和:

$$\sum_{i=1}^{4} \sum_{j=1}^{3} 2ij$$

 $oxed{ t step 1}$ Calculate the inner sum for a fixed value of i, summing over j from 1 to 3

step 2 The inner sum for a fixed i is $\sum_{j=1}^3 2ij = 2i(1+2+3) = 2i \cdot 6 = 12i$

Step 3 Now calculate the outer sum, summing the results of the inner sum over i from 1 to 4

step 4 The outer sum is $\sum_{i=1}^4 12i = 12(1+2+3+4) = 12\cdot 10 = 120$

2. 已知某人存入一筆\$10,000款項至每年5%複利的戶口, $$?_n$ 表存款 n 年後該戶口金額,求 $?_n$ 的遞推關係 (recurrence relation)。

step 2 $\,$ The initial amount is $P_0=\$10,000$ and the interest rate is 5% per year

 ${\sf step\,3}$ Express the compound interest formula for the balance after n years

 $oxed{ text{step 4}}$ The recurrence relation is $P_n = P_{n-1} imes (1+0.05)$

⁺ Cardinality (基數) (2.5)

集合A與集合B有相同的基數(Cardinality), 記作 /A/ = /B/,

若且唯若

A和B存在一個一一對應。

+ Countable & Uncountable

- 可數(Countable):
 - 一個集合或者是有限集(finite set)或者與正整數集(\mathbf{Z}^+) 具有相同基數。
- 不可數(Uncountable): 不是可數的集合。

- ■判斷以下集合是否: i) Finite (有限); ii) Countably infinite (可數無限); iii) Uncountable (不可數):
 - A. $G = \{ x \mid 15 \le x \le 20, x \in \mathbb{N} \}$
 - B. $\mathbf{E} = \{ x \mid x = 2k, k \in \mathbf{Z}^+ \}$ Description
 - **C**. **Z** 可数无限
 - D. **Q** _{可数无限}
 - E. R 不可数

Terms not circled are not listed because they repeat previously listed terms

+ 教材對應閱讀章節及練習

- 2.1(~Example 21), 2.2-2.3
- ■對應習題:(可視個人情況定量)
 - **2.1: 1-37**
 - **2.2**: 1-36
 - **2.**3: 1-15, 22-23, 30-33, 36-37, 42-43
 - **2.4**: 1-15,18-26,29-34

