Optimizing Optimizers

summarized by Michael Scherbela

Deep Learning Seminar March 22, 2023

Let's take our usual optimizers...

Gradient-based, first-order optimizers:

General optimizer:

```
def get_update(g, state, hyperp):
    return update, state
```

e.g. SGD:

```
def sgd_momentum(g, m, lr, beta):
    m = m * beta + g * (1-beta)
    return -m*lr, m
```

... and "optimize" them

detailed next

- A Learning to learn by gradient descent by gradient descent Google, NeurlPS 2016
 - Replace get_update by a Neural Network and learn it
- Symbolic Discovery of Optimization Algorithms
 Google, Feb 2023 (arxiv)
 - Let get_update be a "normal", simple function
 - Find optimal function using evolutionary algorithms
- Gradient Descent: The Ultimate Optimizer MIT, NeurIPS 2022
 - Keep standard optimizers (Adam, SGD, ...)
 - Optimize hyper-parameters during training using a hyper-optimizer

Neural Network as Optimizer

 $f(\theta)$... loss function

 θ ... model parameters

 ϕ ... optimizer parameter

Goal: Minimize loss of final model parameters

$$\mathcal{L}(\phi) = \mathbb{E}_f \left[f(\theta^*(f, \phi)) \right]$$

In practice: weighted loss along trajectory

$$\mathcal{L}(\phi) = \mathbb{E}_f \left[\sum_{t=1}^T w_t f(\theta_t) \right]$$

Computational graph

- Optimizer m implemented as LSTM
- Elementwise updates of model parameters

Works well for toy systems, but appears not to generalize

Test system:

- MNIST handwritten digits
- MLP with 1 hidden layer (20 neurons)

Other tested model architectures:

- Quadratic problems
- CNN for CIFAR-10
- Style Transfer

Let's take our usual optimizers...

Gradient-based, first-order optimizers:

SGD:

```
def sgd_momentum(g, m, lr, beta):
    m = m * beta + g * (1-beta)
    return -m*lr, m
```

General optimizer:

```
def get_update(g, state, hyperp):
    return update, state
```

... and "optimize" them

- A Learning to learn by gradient descent by gradient descent Google, NeurIPS 2016
 - Replace get_update by a Neural Network and optimize it

detailed next

- Symbolic Discovery of Optimization Algorithms
 Google, Feb 2023 (arxiv)
 - Let get_update be a normal, simple function
 - Search for an optimal function using evolutionary algorithms
- Gradient Descent: The Ultimate Optimizer MIT, NeurIPS 2022
 - Keep standard optimizers (Adam, SGD, ...)
 - Optimizer hyper-parameters during training using a hyperoptimizer

Evolutionary search for optimizer function

Initial algorithm (AdamW)

```
def train(w, g, m, v, lr):
    g2 = square(g)
    m = interp(g, m, 0.9)
    v = interp(g2, v, 0.999)
    sqrt_v = sqrt(v)
    update = m / sqrt_v
    wd = w * 0.01
    update = update + wd
    lr = lr * 0.001
    update = update * lr
    return update, m, v
```

Allowed statements

- Unary functions: sqrt, abs, cos, ...
- Binary functions: +, -, *, /, **, ...
- Basic linalg: norm, dot, cosine_sim
- Linear interpolation: $interp(a, b, \gamma) = (1 - \gamma)a + \gamma b$

Not used

- Loops
- If-conditions

Random mutations

- Insert new random statement
- Delete random statement
- Change arguments of statement
 - Existing variable
 - New random constant
- Change constants

Evolution using Tournament Selection

Best Optimizer: Lion

EvoLved Sign Momentum

Search output

```
def train(w, g, m, v, lr):
 g = clip(g, lr)
 m = clip(m, lr)
 v845 = sqrt(0.6270633339881897)
 v968 = sign(v)
  v968 = v - v
  g = arcsin(g)
 m = interp(g, v, 0.8999999761581421)
  v1 = m * m
 v = interp(g, m, 1.109133005142212)
  v845 = tanh(v845)
  1r = 1r * 0.0002171761734643951
 update = m * lr
 v1 = sqrt(v1)
 update = update / v1
  wd = 1r * 0.4601978361606598
 v1 = square(v1)
  wd = wd * w
 m = cosh(update)
  1r = tan(1.4572199583053589)
 update = update + wd
 lr = cos(v845)
 return update, m, v
```

After redundant code removal

```
def train(w, g, m, v, lr):
    g = clip(g, lr)
    g = arcsin(g)
    m = interp(g, v, 0.899)
    m2 = m * m
    v = interp(g, m, 1.109)
    abs_m = sqrt(m2)
    update = m / abs_m
    wd = w * 0.4602
    update = update + wd
    lr = lr * 0.0002
    m = cosh(update)
    update = update * lr
    return update, m, v
```

After simplification: Lion

```
def train(weight, gradient, momentum, lr): update = interp(gradient, momentum, \beta_1) update = sign(update) momentum = interp(gradient, momentum, \beta_2) weight_decay = weight * \lambda update = update + weight_decay update = update * lr return update, momentum \beta_1 = 0.9 \quad \beta_2 = 0.99
```


Use full gradient

Keep only sign

Lion Code

```
def train(weight, gradient, momentum, lr): update = interp(gradient, momentum, \beta_1) update = sign(update) momentum = interp(gradient, momentum, \beta_2) weight_decay = weight * \lambda update = update + weight_decay update = update * lr return update, momentum \beta_1 = 0.9 \qquad \beta_2 = 0.99
```

Properties

Sign update

- Adds quantization noise: Regularization?
- Uniform magnitude

Momentum

- Long momentum history (0.99 vs 0.9 for Adam)
- More weight on current gradient (0.1)
- Single interpolation (either 0.9 or 0.99) much worse

Compute

- Only 1 momentum: Less memory
- 2-15% faster than Adam

New SOTA on ImageNet

Model	#Params	Optimizer	RandAug + Mixup	ImageNet	ReaL	V2
Train from scratch on ImageNet						
ResNet-50	25.56M	SGD AdamW Lion	Х	76.22 76.34 76.45	82.39 82.72 82.72	63.93 64.24 64.02
Mixer-S/16	18.53M	AdamW Lion	×	69.26 69.92	75.71 76.19	55.01 55.75
Mixer-B/16	59.88M	AdamW Lion	×	68.12 70.11	73.92 76.60	53.37 55.94
ViT-S/16	22.05M	AdamW Lion	×	76.12 76.70	81.94 82.64	63.09 64.14
		AdamW Lion	✓	78.89 79.46	84.61 85.25	66.73 67.68
ViT-B/16	86.57M	AdamW Lion	×	75.48 77.44	80.64 82.57	61.87 64.81
		AdamW Lion	✓	80.12 80.77	85.46 86.15	68.14 69.19
CoAtNet-1	42.23M	AdamW Lion	✓	83.36 (83.3) 84.07	- -	- -
CoAtNet-3	166.97M	AdamW Lion	✓	84.45 (84.5) 84.87	- -	- -
Pre-train on ImageNet-21K then fine-tune on ImageNet						
ViT-B/16 ₃₈₄	86.86M	AdamW Lion	×	84.12 (83.97) 84.45	88.61 (88.35) 88.84	73.81 74.06
ViT-L/16 ₃₈₄	304.72M	AdamW Lion	×	85.07 (85.15) 85.59	88.78 (88.40) 89.35	75.10 75.84

Faster training

Larger batch-size

Works across models

- Image classification (ResNet and ViT)
- Text-to-Image Diffusion
- LLMs

Let's take our usual optimizers...

Gradient-based, first-order optimizers:

SGD:

```
def sgd_momentum(g, m, lr, beta):
    m = m * beta + g * (1-beta)
    return -m*lr, m
```

General optimizer:

```
def get_update(g, state, hyperp):
    return update, state
```

... and "optimize" them

- A Learning to learn by gradient descent by gradient descent Google, NeurlPS 2016
 - Replace get_update by a Neural Network and optimize it
- Symbolic Discovery of Optimization Algorithms
 Google, Feb 2023 (arxiv)
 - Let get_update be a normal, simple function
 - Search for an optimal function using evolutionary algorithms

detailed next

- Gradient Descent: The Ultimate Optimizer MIT, NeurIPS 2022
 - Keep standard optimizers (Adam, SGD, ...)
 - Optimizer hyper-parameters during training using a hyperoptimizer

Idea: Stack optimizers to optmizer hyperparameters

Hyperoptimizer yields decent results, even with bad initial hyperparams

 α ... learning rate μ ... momentum

ResNet on CIFAR-10

Hyper-optimizer effectively learns LR schedule

Stacking more optimizers reduces sensitivity on initial hyper-parameters

ResNet on CIFAR-10

References

- Learning to learn by gradient descent by gradient descent
 Andrychowicz et al., 2016
 https://proceedings.neurips.cc/paper/2016/hash/fb87582825f9d28a8d42c5e5e5e8b23d-Abstract.html
- Symbolic Discovery of Optimization Algorithms
 Chen et al., 2023
 http://arxiv.org/abs/2302.06675
- Gradient Descent: The Ultimate Optimizer
 Chandra et al., 2022
 https://openreview.net/forum?id=-Qp-3L-5Zdl