

Università degli studi Milano Bicocca - Dipartimento di Fisica Esperimentazioni di Fisica Computazionale

S. Franceschina

May 20, 2025

Abstract

Contents

1	Analisi dell'errore	2
	1.1 Teoria	2
	1.2 Esercizio 1.0.1	2
2	Sistemi lineari	2
	2.1 Teoria	2
3	Radici di equazioni non lineari	2
	3.1 Teoria	2
4	Interpolazioni	2
	4.1 Teoria	2
5	Integrazione numerica	2
	5.1 Teoria	2
6	Equazioni differenziali ordinarie	2
	6.1 Teoria	2

1 Analisi dell'errore

1.1 Teoria

Nella presente sezione analizziamo le due principali fonti di errore in contesti computazionali:

- 1. Errori di arrotondamento: dovuti alla rappresentazione di numeri reali con numero finito di digits.
- 2. Errori di approssimazione: dovuti alla modalità stessa con cui affrontiamo il problema, per questo motivo sono presenti anche nel caso ideale.

1.2 Esercizio 1.0.1

L'esercizio richiede di studiare $f(x) = e^x$ nell'intervallo $x \in [0, 1]$, calcolando numericamente il suo sviluppo in serie: $g_N(x) = \sum_{n=0}^N \frac{x^n}{n}$

In particolare bisogna mostrare che

$$\Delta = |f(x) - g_N(x)| \approx \frac{x^{N+1}}{(N+1)!}$$
 (1)

Al fine dell'esercizio si sono rappresentati nel grafico 1 le funzioni Δ e $\frac{x^{N+1}}{(N+1)!}$, con N=1,2,3,4, al variare di x nell'intervallo [0,1].

2 Sistemi lineari

- 2.1 Teoria
- 3 Radici di equazioni non lineari
- 3.1 Teoria
- 4 Interpolazioni
- 4.1 Teoria
- 5 Integrazione numerica
- 5.1 Teoria
- 6 Equazioni differenziali ordinarie
- 6.1 Teoria

Figure 1: Confronto tra Δ e $\frac{x^{N+1}}{(N+1)!}$ per N=1,2,3,4.

Figure 2: Confronto tra Δ e $\frac{x^{N+1}}{(N+1)!}$ per N=1,2,3,4.