

课程内容

- Attention结构讲解
- ▼ Seq2Seq+Attention项目

Seq2Seq问题

▲问题描述: "风"对应的特征对于下联的影响是最弱的。

- 1. 字句对等;
- 2. 词性对品;
- 3. 结构对应;
- 4. 节律对拍;
- 5. 平厌对立;
- 6. 形对意联;

Attention

Seq2Seq Attention

图3. Attention模型

Seq2Seq Attention Y3 Encoder → 语义编码c Decoder X4 X1 X3 X2 **Y3** Y1 **Y2 Decoder Encoder** C2 **X1** X2 **X3** X4

Attention对齐机制(词对齐)

Seq2Seq Attention

Problems with this architecture?

- Encoder hidden states/output values: h; 总Encoder时刻n个。
- 时刻t, Decoder hidden states: s_t;
- 基于每个时刻Encoder输出以及上一个时刻Decoder的状态来构建Attention Scores:

$$e_{t,i} = F(h_i, s_{t-1}) e_t = (e_{t,1}, e_{t,2}, \dots, e_{t,n})$$

- $\alpha_t = soft \max(e_t)$ 基于概率分布以及所有Encoder的状态计算出Attention值; 对e进行softmax转换,得到概率分布:
- ▲ 将Decoder当前时刻的输入和Attention值结合形成新的输入数据,《然后进行 的RNN Decoder操作。

$$y'_{t} = [y_{t}; a_{t}]$$

- ▲ Attention Scores的计算函数F在不同论文中有很多形式,主要方式如下:
 - ▼ 乘法Attention:

$$e_{t,i} = s_{t-1}^T h_i$$

$$e_{t,i} = s_{t-1}^T h_i / \sqrt{d}$$

▼ 加法Attention:

$$e_{t,i} = s_{t-1}^T W h_i$$

$$\begin{aligned} e_{t,i} &= u^T \tanh(W_1 h_i + W_2 s_{t-1}) \\ e_{t,i} &= W_1 h_i + W_2 s_{t-1} \\ e_{t,i} &= W h_i \end{aligned}$$
 Ten

TensorFlow默认

Bi-RNN Encoder

Encoder的流程如上图所示,最终的输出结果是每个时刻的hidden_state h_1,h_2,h_3,\ldots,h_T 。

Seq2Seq Attention计算过程(另一种理解方式)

▼ 此时给定Target中的某个元素Query,通过计算Query和各个Key的相似性或者相关性,得到每个Key对应Value的权重系数,然后对Value进行加权求和,即得到了最终的Attention数值。所以本质上Attention机制是对Source中元素的Value值进行加权求和,而Query和Key用来计算对应Value的权重系数。

Attention(Query, Source) = $\sum_{i=1}^{L_x} Similarity(Query, Key_i) * Value_i$

Seq2Seq Attention计算过程(另一种理解方式)

Seq2Seq Attention计算过程(另一种理解方式)

点积: Similarity(Query, Key_i) = Query · Key_i

Cosine 相似性: Similarity(Query, Key_i) = $\frac{Query \cdot Key_i}{||Query|| \cdot ||Key_i||}$

MLP 网络: Similarity(Query, Key_i) = MLP(Query, Key_i)

Seq2Seq Attention计算过程(另另一种理解方式)

Seq2Seq Attention计算过程(另另一种理解方式)

Seq2Seq Attention计算过程(另另一种理解方式)

Seq2Seq Attention效果

Seq2Seq Attention效果

Seq2Seq Attention效果

A little girl sitting on a bed with a teddy bear.

Seq2Seq Attention常规形状一

Seq2Seq Attention常规形状二

Seq2Seq Attention常规形状三

TensorFlow内部实现结构

Seq2Seq Attention Soft Attention

▼ 15年被提出于《Show, Attend and Tell: Neural Image Caption
Generation with Visual Attention, Kelvin Xu》

Seq2Seq Attention Hard Attention

- 🗾 和Soft Attention在15年同时在同一篇论文中被提出;
- ▼ Soft Attention中是对于每个Encoder的Hidden State会match一个概率值,而在Hard Attention会直接找一个特定的单词概率为1,而其它对应概率为0.

Seq2Seq Attention Global Attention

▲ 在15年被提出于《Effective

Approaches to Attention-based

Neural Machine Translation, Minh-

Thang Lucna ** 和 Attention 类似。

$$\boldsymbol{h}_j = f(\boldsymbol{h}_{j-1}, \boldsymbol{s})$$

$$\tilde{\boldsymbol{h}}_t = anh(\boldsymbol{W_c}[\boldsymbol{c}_t; \boldsymbol{h}_t])$$

$$p(y_t|y_{< t}, x) = \operatorname{softmax}(\boldsymbol{W_s}\tilde{\boldsymbol{h}}_t)$$

$$\mathbf{a}_{t}(s) = \operatorname{align}(\mathbf{h}_{t}, \bar{\mathbf{h}}_{s})$$

$$= \frac{\exp\left(\operatorname{score}(\mathbf{h}_{t}, \bar{\mathbf{h}}_{s})\right)}{\sum_{s'} \exp\left(\operatorname{score}(\mathbf{h}_{t}, \bar{\mathbf{h}}_{s'})\right)}$$

Attention Layer

Context vector

Global align weights

$$m{c}_t;m{h}_t])$$
 ment weight vector $m{a}_t$ based on the custate $m{h}_t$ and all source states $ar{m{h}}_s$. A global vector $m{c}_t$ is then computed as the weight vector $m{c}_t$ is the vector $m{c}_t$ is th

Seq2Seq Attention Local Attention

- ▲ 和Global Attention在同一篇论文中被提出;相当于Soft Attention和 Hard Attention中间状态(半硬半软Attention)
- ☑ 对于时刻t的词汇,模型首先产生一个对齐位置pt(aligned position), context vector(c)由编码器中的隐状态计算得到,编码器的隐状态不是所有的隐状态,而是在区间[pt-D, pt+D]中,D的大小由经验给定。

Seq2Seq Attention Local Attention

Seq2Seq Attention Self Attention

- ▲ 在17年被提出于《Attention Is All You Need, Ashish Vaswani》,也称为Transformer结构; 内部包含Multi-Head Attention以及Rest残差 结构。
- Transformer是Bert网络结构的基础。

Figure 1: The Transformer - model architecture.

$$Y_1 = f(C)$$

$$Y_2 = f(C, Y_1)$$

$$Y_3 = f(C, Y_1, Y_2)$$

$$Y_1 = f(C_1)$$

 $Y_2 = f(C_2, Y_1)$
 $Y_3 = f(C_3, Y_1, Y_2)$

最简单的解码模式 - Decoder 1

总结_Seq2Seq_Attention 解码文本 Y1 Y3 Y6. Y4 编码向量

X2

X1

输入文本

Х4

X5

X6

· 带输出回馈的解码模式 – Decoder 2

ХЗ

解码文本

· 带编码向量的解码模式- Decoder 3

解码文本

带注意力的解码模式- Decoder 4

Seq2Seq+Attention项目_聊天机器人

Seq2Seq Attention实现

解码器相关内容

编码器相关内容

THANKS!