S-R Latch with NORs

S-R latch made from cross-coupled NORs

If Q = 1, set state

If Q = 0, reset state

Usually S=0 and R=0

S=1 and R=1 generates unpredictable results

S-R Latch with NANDs

S	R	Ç	Q'		
0	0		1	1	Disallowed
0	1		1		Set
1	1		0	1	Reset
			0 1	1	Store

Latch made from cross-coupled NANDs Sometimes called S'-R' latch Usually S=1 and R=1 S=0 and R=0 generates unpredictable results

Case I: R

Inputs		Output	
S	R	Q	State
0	0	X	Invalid
0	1	0	Reset
1	0	1	Set
1	1	Q	No Change

Case II: S = 0, R = 1

Input	S	Output	
S	R	Q	State
0	0	X	Invalid
0	1	0	Reset
1	0	1	Set
1	1	Q	No Change

Case III: S = 1, R = 0

Inpu	ts	Output	
S	R	Q	State
0	0	X	Invalid
0	1	0	Reset
1	0	1	Set
1	1	Q	No Change

Case III: S = 1, R = 0

puts		Output	
	R	Q	State
	0	X	Invalid
	1	0	Reset
	0	1	Set
- 19	1	Q	No Change

S-R Latches

S	R	Q	Q'		
1	1		0	0	Undefined
1	0 1		1		Set
0	0		0	1	Reset
			0	1	Stable

Summary

- Latches are based on combinational gates (e.g. NAND, NOR)
- Latches store data even after data input has been removed
- S-R latches operate like cross-coupled inverters with control inputs (S = set, R = reset)
- With additional gates, an S-R latch can be converted to a D latch (D stands for data)
- D latch is simple to understand conceptually
 - When C = 1, data input D stored in latch and output as Q
 - When C = 0, data input D ignored and previous latch value output at Q
- Next time: more storage elements!

Gated latches(Clocked Flip Flop)

S-R Latch with control input

C = 0 disables all latch state changes Control signal enables data change when C = 1

С	S	R	Next state of Q
0	X	X	No change
1	0	0	No change
1	0	1	Q = 0; Reset state
1	1	0	Q = 1; set state
1	1	1	Indeterminate

(b) Function table