

Álgebra y Geometría Analítica I

Práctica de Funciones -Ejercicios seleccionados del 10 al 20

Recomiendo fuertemente que realicen primero los ejercicios solos, y utilicen esta guía solo para corregirse o si no les sale despues de haberlo intentado varias veces.

- 12. Si $f:A\to B$ y $g:C\to D$ son funciones, definimos $h:A\times C\to B\times D$ por h(a,c)=(f(a),g(c)). Demostrar que h es biyectiva si y sólo si f y g son biyectivas.
 - \Rightarrow) Sabemos que h es biyectiva, es decir:

$$h$$
 inyectiva: $\forall (a_1, c_1), (a_2, c_2) \in A \times C / h(a_1, c_1) = h(a_2, c_2) \Rightarrow (a_1, c_1) = (a_2, c_2)$ (1)

$$h$$
 sobrevectiva: $\forall (b,d) \in B \times D, \ \exists (a,c) \in A \times C \ / \ h(a,c) = (b,d)$ (2)

Lo probaremos para f, para g resulta análogo.

• f invectiva: Sean $a_1, a_2 \in A / f(a_1) = f(a_2) \Rightarrow \lambda a_1 = a_2$?

Sabemos que $f(a_1) = f(a_2)$, pero las hipótesis las tenemos sobre h, es decir sobre pares ordenados que también involucran a g. Entonces podemos seleccionar un $c \in C$ fijo y trabajar con los pares $(f(a_1), g(c))$ y $(f(a_2), g(c))$.

Consideremos entonces (a_1,c) y $(a_2,c)\in A\times C$ para algún $c\in C$ fijo. Luego,

$$f(a_1) = f(a_2) \wedge g(c) = g(c)$$

Por igualdad de pares ordenados obtenemos

$$(f(a_1), g(c)) = (f(a_2), g(c))$$

Por definición de h,

$$h(a_1, c) = h(a_2, c) \Longrightarrow_{(1)} (a_1, c) = (a_2, c)$$

Nuevamente por igualdad de pares ordenados tenemos $a_1 = a_2$. Por lo tanto f es inyectiva.

• f sobrevectiva: Sea $b \in B$ $\exists a \in A / f(a) = b$?

Sabemos que $b \in B$, pero las hipótesis de sobreyectividad están dadas en h, es decir que necesitamos un elemento de $B \times D$ para poder usarlas. Para ello podemos considerar un elemento fijo $c \in C$ y entonces $d = g(c) \in D$, obteniendo $(b,d) \in B \times D$.

Consideremos entonces $c \in C$ fijo, y el elemento $(b,g(c)) \in B \times D$. De (2),

$$\exists (a,c) \in A \times C \ / \ h(a,c) = (b,g(c))$$

Por definición de h,

$$(f(a), g(c)) = (b, g(c)) \Rightarrow \exists a \in A / f(a) = b$$

Por lo tanto f es sobreyectiva.

Como f es inyectiva y sobreyectiva, resulta f biyectiva como queríamos probar.

- \Leftarrow) Sabemos que f y g son inyectivas y sobreyectivas, ξh es biyectiva?
 - h inyectiva: Sean $(a_1, c_1), (a_2, c_2) \in A \times C / h(a_1, c_1) = h(a_2, c_2) \Rightarrow \lambda(a_1, c_1) = (a_2, c_2)$?

$$h(a_1, c_1) = h(a_2, c_2)$$

Por definición de h,

$$(f(a_1), g(c_1)) = (f(a_2), g(c_2))$$

Por igualdad de pares ordenados,

$$f(a_1) = f(a_2) \wedge g(c_1) = g(c_2)$$

Como f y g son inyectivas, resulta

$$a_1 = a_2 \wedge c_1 = c_2$$

Nuevamente por igualdad de pares ordenados

$$(a_1, c_1) = (a_2, c_2)$$

Por lo tanto h es inyectiva.

■ h sobreyectiva: Sea $(b,d) \in B \times D$, ¿ $\exists (a,c) \in A \times C \ / \ h(a,c) = (b,d)$? $(b,d) \in B \times D \Rightarrow b \in B \land d \in D \Rightarrow$

$$f$$
 y g sobreyectivas $\Rightarrow \exists a \in A \ / \ f(a) = b$ $\exists c \in C \ / \ g(c) = d$

Luego por igualdad de pares ordenados resulta,

$$\exists (a,c) \in A \times C / (f(a), g(c)) = (b,d)$$

Por definición de h

$$\exists (a,c) \in A \times C / h(a,c) = (b,d)$$

Por lo tanto h es sobreyectiva.

Como h es inyectiva y sobreyectiva, resulta h biyectiva como queríamos ver.

13. Sean $f, g, h : \mathbb{Z} \to \mathbb{Z}$ definidas por f(x) = x - 1, g(x) = 3x y

$$h(x) = \begin{cases} 0 & \text{si } x \text{ es par} \\ 1 & \text{si } x \text{ es impar} \end{cases}$$

Determinar distintas composiciones entre ellas.

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Álgebra y Geometría Analítica I

Recuerdo:

Dadas $f: A \rightarrow B$ y $g: B \rightarrow C$

$$g \circ f : A \to C$$

 $x \to (g \circ f)(x) = g(f(x))$

Observemos que primero se aplica la función que esta más cerca a x.

Remarcamos que en este ejercicio se pueden realizar todas las composiciones planteadas puesto que todas las funciones tienen mismo dominio y codominio. Es importante ver si es posible realizar una composión antes de realizarla!!!

(a) $f \circ g$

$$f \circ g : \mathbb{Z} \to \mathbb{Z}$$

 $x \to (f \circ g)(x) = f(3x) = 3x - 1$

(b) $g \circ f$

$$g \circ f : \mathbb{Z} \to \mathbb{Z}$$
$$x \to (g \circ f)(x) = g(x-1) = 3(x-1) = 3x - 3$$

(c) $g \circ h$

$$g\circ h:\mathbb{Z}\to\mathbb{Z}$$

$$x\to (g\circ h)(x)=\begin{cases} g(0) & \text{si }x\text{ es par }\\ g(1) & \text{si }x\text{ es impar }\end{cases}=\begin{cases} 0 & \text{si }x\text{ es par }\\ 3 & \text{si }x\text{ es impar }\end{cases}$$

(d) $f \circ (g \circ h)$

$$f\circ (g\circ h):\mathbb{Z}\to\mathbb{Z}$$

$$x\to (f\circ (g\circ h))(x)=\begin{cases} f(0) & \text{si }x\text{ es par }\\ f(3) & \text{si }x\text{ es impar }\end{cases}=\begin{cases} -1 & \text{si }x\text{ es par }\\ 2 & \text{si }x\text{ es impar }\end{cases}$$

(e) $(f \circ g) \circ h$

$$(f\circ g)\circ h:\mathbb{Z}\to\mathbb{Z}$$

$$x\to ((f\circ g)\circ h)(x)=\begin{cases} (f\circ g)(0) & \text{si }x\text{ es par }\underset{=}{\underbrace{(a)}} \begin{cases} -1 & \text{si }x\text{ es par }\\ 2 & \text{si }x\text{ es impar }\end{cases}$$

Este resultado es el mismo que d, y tiene sentido que nos haya dado así puesto que sabemos que la composición de funciones es asociativa.

16. Para cada una de las siguientes funciones $f: \mathbb{R} \to \mathbb{R}$, determinar si f es invertible y, si lo es, determinar f^{-1} .

Recuerdo:

 $f:A \to B$ admite inversa \Leftrightarrow existe $g:B \to A$ tal que $g \circ f = 1_A$ y $f \circ g = 1_B$, donde 1_A y 1_B son las funciones identidades de A y de B respectivamente.

Equivalentemente

 $f: A \to B$ admite inversa $\Leftrightarrow f$ es biyectiva.

(a) $f = \{(x, y) : 2x + 3y = 7\}.$

Si despejamos y podemos expresar a f de la siguiente manera:

$$f: \ \mathbb{R} \to \ \mathbb{R}$$
$$x \to \ f(x) = \frac{7}{3} - \frac{2}{3}x$$

 ξ Es f invertible?

Esto es equivalente a preguntarnos, ξ Es f biyectiva?

• ¿ Es f inyectiva? Sean $x_1, x_2 \in \mathbb{R}$: $f(x_1) = f(x_2)$, ¿ $x_1 = x_2$?

$$f(x_1) = f(x_2) \Leftrightarrow \frac{7}{3} - \frac{2}{3}x_1 = \frac{7}{3} - \frac{2}{3}x_2 \Leftrightarrow -\frac{2}{3}x_1 = -\frac{2}{3}x_2 \Leftrightarrow x_1 = x_2$$

Como x_1 y x_2 eran arbitrarios, probamos

$$\forall x_1, x_2 \in \mathbb{R} : f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$

Por lo tanto f es inyectiva. (1)

• ¿ Es f sobreyectiva? Sea $y \in \mathbb{R}$ ¿Existe $x \in \mathbb{R} : f(x) = y$? Queremos hallar $x \in \mathbb{R} : f(x) = y$. Esto pasaría si y sólo si

$$\frac{7}{3} - \frac{2}{3}x = y \Leftrightarrow -\frac{2}{3}x = y - \frac{7}{3} \Leftrightarrow x = -\frac{3}{2}y + \frac{7}{2} \in \mathbb{R}$$

Es decir, existe $x = -\frac{3}{2}y + \frac{7}{2} \in \mathbb{R}$: f(x) = y.

Como esto es válido para cualquier $y \in \mathbb{R}$, hemos probado que

$$\forall y \in \mathbb{R} \, \exists x \in \mathbb{R} : f(x) = y$$

Por lo tanto f es sobreyectiva (2).

De (1) y (2) se puede concluir que f es biyectiva, y por lo tanto invertible. Ahora debemos hallar una expresión para su inversa. Debemos hallar,

$$f^{-1}: \quad \mathbb{R} \to \quad \mathbb{R}$$
$$x \to \quad f^{-1}(x)$$

Sabiendo que $f \circ f^{-1} = 1_{\mathbb{R}}(^{\star})$ y $f^{-1} \circ f = 1_{\mathbb{R}}$.

Para que sea más fácil la notación llamemos $f^{-1}(x) = z$.

Como queremos hallar una expresión de $f^{-1}(x)$ que dependa de x entonces queremos hallar una expresión de z que dependa de x. Usando (*),

$$(f \circ f^{-1})(x) = x \Leftrightarrow f(f^{-1})(x) = x \Leftrightarrow f(z) = x$$

Usando la ley de f obtenemos,

$$f(z) = x \Leftrightarrow \frac{7}{3} - \frac{2}{3}z = x$$

Como queremos una expresión de z, despejamos z de esta última ecuación, resulta

$$z = -\frac{3}{2}x + \frac{7}{2},$$

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Álgebra y Geometría Analítica I

es decir

$$f^{-1}(x) = -\frac{3}{2}x + \frac{7}{2}$$

Notar que esta última expresión es similar a la obtenida cuando demostramos que f es sobre. Podemos concluir entonces

$$f^{-1}: \mathbb{R} \to \mathbb{R}$$
$$x \to f^{-1}(x) = -\frac{3}{2}x + \frac{7}{2}$$

(c) $f = \{(x,y): y = x^4 + x\}.$

Podemos expresar a f como:

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \to f(x) = x^4 + x$$

 \vdots Es f invertible?

Esto es equivalente a preguntarnos, ¿ Es f biyectiva?

■ ¿ Es f inyectiva? $\forall x_1, x_2 \in \mathbb{R}: f(x_1) = f(x_2)$, ¿ $x_1 = x_2$? NO, por ejemplo para $x_1 = 0$ y $x_2 = -1$ se tiene que $f(x_1) = f(x_2)$ y sin embargo $x_1 \neq x_2$.

Por lo tanto f NO es inyectiva.

Luego f no es biyectiva y no admite inversa.

- 17. **ERROR DE ENUNCIADO:** Demostrar que $g \circ f = 1_{\mathbb{R}^+_0}$.
- 20. Sean $f:A\to B$ y $g:B\to C$. Demostrar
 - (a) $g \circ f : A \to C$ sobreyectiva $\Rightarrow g$ sobreyectiva. Sabemos que $g \circ f$ es sobreyectiva, es decir

$$\forall c \in C \,\exists a \in A : (g \circ f)(a) = c(*)$$

Debemos probar que g es sobreyectiva, para ello sea $c \in C$ arbitrario, ¿ $\exists b \in B : g(b) = c$? Sí, por (*) existe $f(a) = b \in B : (g \circ f)(a) = g(f(a)) = c$.

Es decir, existe $f(a) = b \in B$: g(b) = c.

Esto demuestra que g es sobre.