MATH 220 — Assignment 5

Stephanie Knill 54882113 Due: February 9, 2016

Question 1

Proposition: 5x - 11 is even if and only if x is odd.

Proof

 \Rightarrow We will express the forward direction in terms of its contrapositive "If x is even, then 5x-11 is odd" and prove this logically equivalent statement. Let there exist an integer k such that x=2k. Then

$$x = 2k$$

$$5x = 10k$$

$$5x - 11 = 10k - 11$$

$$= 10k - 12 + 1$$

$$= 2(5k - 6) + 1$$

Since 5k-6 is an integer, then 5x-11 is odd and we have proved the forward direction.

 \Leftarrow Assume that x is odd. Then there exists an integer q such that x=2q+1 and we have that

$$x = 2q + 1$$

$$5x = 10q + 5$$

$$5x - 11 = 10q - 6$$

$$= 2(5q - 3)$$

Since 5q - 3 is an integer, then 5x - 11 is even.

Question 2

Proposition: the product of two integers ab is odd if and only if both a and b are odd.

Proof. \Rightarrow We will express the forward direction in terms of its contrapositive "If a and b are both even, then ab is even" and prove this logically equivalent statement. Let there exist integers k_1 and k_2 such that $a = 2k_1$ and $b = 2k_2$. Then the product of these two is given by

$$ab = (2k_1)(2k_2)$$

= $4k_1k_2$
= $2(2k_1k_2)$

Since $2k_1k_2$ is an integer, then ab is even and we have proved the forward direction.

 \Leftarrow Assume that a and b are both odd. Then there exists integers q_1 and q_2 such that $a=2q_1+1$ and $b=2q_2+1$. The product of these two integers can be computed as

$$ab = (2q_1 + 1)(2q_2 + 1)$$
$$= 4q_1q_2 + 2q_1 + 2q_2 + 1$$
$$= 2(2q_1q_2 + q_1 + q_2) + 1$$

Since $2q_1q_2 + q_1 + q_2$ is an integer, then ab is odd.

Question 3

Proposition: If n is even, then n^3 is even.

Proof. Let there exist a $k \in \mathbb{Z}$ such that n = 2k. Then

$$n^3 = (2k)^3$$
$$= 8k^3$$
$$= 2(4k^3)$$

Since $4k^3 \in \mathbb{Z}$, then n^3 is even.

Question 4

Proposition: For any sets A and B, $A\Delta B = \emptyset$ iff A = B.

Proof. \Rightarrow We will express the forward direction in terms of its contrapositive "If $A \neq B$, then $A\Delta B \neq \emptyset$ " and prove this logically equivalent statement. By definition of the symmetric set difference, we have that

$$A\Delta B = (A - B) \cup (B - A)$$

Since $A \neq B$, then both (A - B) and (B - A) do not equal the empty set. By definition, the union of two nonempty sets is not the empty set. Therefore it follows that $A\Delta B = (A - B) \cup (B - A) \neq \emptyset$

 \Leftarrow Assume that A = B. Then

$$A\Delta B = A\Delta A$$

$$= (A - A) \cup (A - A)$$

$$= (A - A)$$

$$= A \cap \overline{A}$$

$$= \emptyset$$

Question 5

Conjecture: For any sets A and B, $(A \cup B) - B = A$

Counterexample Let $A = \{1, 2, 3\}$ and $B = \{2, 3, 4\}$. Then $(A \cup B) = \{1, 2, 3, 4\}$ and we have that $(A \cup B) - B = \{1\}$. However, this does not equal the set A. Thus the above conjecture is False.

Question 6

Proposition: For any sets A, B, and C, $(A - B) \cup (A - C) = A - (B \cap C)$.

Proof. Using our fundamental properties of set operations, we have

$$(A - B) \cup (A - C) = (A \cap B^c) \cup (A \cap C^c)$$
 (definition of set difference)
= $A \cap (B^c \cup C^c)$ (distributive laws)
= $A \cap (B \cap C)^c$ (De Morgan's laws)
= $A - (B \cap C)$ (definition of set difference)

Question 7

Proposition: For sets A, B, C, and $D, (A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$.

Proof. We will first show that $(A \times B) \cap (C \times D) \subseteq (A \cap C) \times (B \cap D)$. Let $(x,y) \in (A \times B) \cap (C \times D)$. Then $x \in A$ and $x \in C$ and $y \in B$ and $y \in D$. Therefore $x \in (A \cap C)$ and $y \in (B \cap D)$. Combining these, we have that

$$(x,y) \in (A \cap C) \times (B \cap D)$$

implying that $(A \times B) \cap (C \times D) \subseteq (A \cap C) \times (B \cap D)$.

Let us now show that $(A \times B) \cap (C \times D) \supseteq (A \cap C) \times (B \cap D)$. Let $(u, v) \in (A \cap C) \times (B \cap D)$. Then $u \in A$ and $u \in C$ and $v \in B$ and $v \in D$. Rearranging, we have that $(u, v) \in (A \times B)$ and $(u, v) \in (C \times D)$. Combining these gives us

$$(u, v) \in (A \times B) \cap (C \times D)$$

which completes our proof of $(A \times B) \cap (C \times D) \supseteq (A \cap C) \times (B \cap D)$, thereby proving set equality.

Question 8

Proposition: Let $a, b \in \mathbb{Z}$, $a, b \neq 0$. If $a \mid b$ and $b \mid a$, then a = b or a = -b.

Proof. Assume that $a \mid b$ and $b \mid a$. Then there exists integers k_1 and k_2 such that $a = bk_1$ and $b = ak_2$. Substituting in we have that

$$a = bk_1$$

$$= (ak_2)k_1$$

$$k_1k_2 = 1$$

Since $k_1, k_2 \in \mathbb{Z}$, then k_1 and k_2 must both equal either 1 or -1. In the first case where $k_1 = k_2 = 1$, we have that a = b and b = a. In the second case where $k_1 = k_2 = -1$, a = -b and b = -a. Therefore if $a \mid b$ and $b \mid a$, we have that either a = b or a = -b.

Question 9

Proposition: Let $x, y \in \mathbb{Z}$. If $3 \nmid x$ and $3 \nmid y$, then $3 \mid (x^2 - y^2)$.

Proof. Assume that $3 \nmid x$ and $3 \nmid y$. Then there exists remainders $r_1, r_2 \in \{1, 2\}$ such that $x \equiv r_1 \mod 3$ and $y \equiv r_2 \mod 3$. By the Properties of Congruence Theorem, we have

$$x^{2} - y^{2} \equiv (r_{1} \cdot r_{1}) - (r_{2} \cdot r_{2}) \mod 3$$

 $\equiv r_{1}^{2} - r_{2}^{2} \mod 3$

Since $r_1, r_2 \in \{1, 2\}$, we can break this into 4 cases:

Case 1: $r_1 = r_2 = 1$. Here we have that

$$x^2 - y^2 \equiv (1 - 1) \mod 3$$
$$\equiv 0 \mod 3$$

Case 2: $r_1 = r_2 = 2$

$$x^2 - y^2 \equiv (4 - 4) \mod 3$$
$$\equiv 0 \mod 3$$

Case 3: $r_1 = 1$ and $r_2 = 2$

$$x^{2} - y^{2} \equiv (1 - 4) \mod 3$$
$$\equiv -3 \mod 3$$
$$\equiv 0 \mod 3$$

Case 4^1 : $r_1 = 2$ and $r_2 = 1$

$$x^{2} - y^{2} \equiv (4 - 1) \mod 3$$
$$\equiv 3 \mod 3$$
$$\equiv 0 \mod 3$$

Since in each case of values for r_1 and r_2 , we have that $x^2 - y^2 \equiv 0 \mod 3$, we can conclude that $3 \mid (x^2 - y^2)$.

¹Although this case is equivalent to Case 3 and therefore can be omitted, we have included it for completeness.