Theory Assignment 2 CS5280

Darpan Gaur CO21BTECH11004

Problem 1

$$s = r_1(x)r_3(x)w_3(y)w_2(x)r_4(y)c_2w_4(x)c_4r_5(x)c_3w_5(z)c_5w_1(z)c_1$$

FSR

For a history $s \in FSR$, there exists a serial history s' such that LRF(s) = LRF(s'). Consider $s' = t_5t_3t_1t_2t_4$. Hence, $s' = r_5(x)w_5(z)r_3(x)w_3(y)r_1(x)w_1(x)w_2(x)r_4(y)w_4(x)c_5c_3c_1c_2c_4$.

$$LRF(s) = \{(t_0, x, t_1), (t_0, x, t_3), (t_3, y, t_4), (t_4, x, t_\infty), (t_3, y, t_\infty), (t_1, z, t_\infty)\}$$

$$LRF(s') = \{(t_0, x, t_3), (t_0, x, t_1), (t_3, y, t_4), (t_4, x, t_\infty), (t_3, y, t_\infty), (t_1, z, t_\infty)\}$$

As LRF(s) = LRF(s'), hence $s \in FSR$.

VSR

For a history $s \in VSR$, there exists a serial history s' such that RF(s) = RF(s').

$$RF(s) = \{(t_0, x, t_1), (t_0, x, t_3), (t_3, y, t_4), (t_4, x, t_5), (t_4, x, t_\infty), (t_3, y, t_\infty), (t_1, z, t_\infty)\}\$$

Proof by contradiction.

Let us assume that $s \in VSR$. So there exists a serial history s' such that RF(s) = RF(s'). In RF(s):

- (t_4, x, t_5) , so t_4 preceds t_5 in s', i.e., $t_4 < t_5$.
- (t_3, y, t_4) , so t_3 preceds t_4 in s', i.e., $t_3 < t_4$.
- (t_1, z, t_∞) , and both t_1 and t_5 have w(z) operations, so $t_5 preceeds t_1$ in s', i.e., $t_5 < t_1$.
- (t_0, x, t_3) , $and(t_0, x, t_1)$, so t_1 and t_3 preceds $w_2(x)$ hence t_2 in s', i.e., $t_1 < t_2$ and $t_3 < t_2$.

From above restrictinos we get the following order for s': $t_3 < t_4 < t_5 < t_1 < t_2$. But this is not possible as t_2 at end in s' will change (t_4, x, t_∞) to (t_2, x, t_∞) , which is not in RF(s). Hence contradiction, and $s \notin VSR$.

CSR

For a history $s \in \text{CSR}$, we need to show that the conflict graph of s is acyclic. Conflict graph is shown in Figure 1.

As there exist a cycle $t_1 \to t_2 \to t_4 \to t_5 \to t_1$, therefore conflict graph is cyclic and $s \notin \text{CSR}$.

Figure 1: Conflict Graph

Problem 2

$$s = r_1(z)r_3(x)r_2(z)w_1(z)w_1(y)c_1w_2(y)w_2(u)c_2w_3(y)c_3$$

VSR

We know that history s is view serializable if there exists a serial history s' such that RF(s) = RF(s'). Consider $s' = t_2t_1t_3$. Hence, $s' = r_2(z)w_2(y)w_2(u)r_1(z)w_1(z)w_1(y)r_3(x)w_3(y)c_1c_2c_3$.

$$RF(s) = \{(t_0, z, t_1), (t_0, x, t_3), (t_0, z, t_2), (t_0, x, t_\infty), (t_3, y, t_\infty), (t_2, u, t_\infty), (t_0, z, t_\infty)\}$$

$$RF(s') = \{(t_0, z, t_2), (t_0, z, t_1), (t_0, x, t_3), (t_0, x, t_\infty), (t_3, y, t_\infty), (t_2, u, t_\infty), (t_0, z, t_\infty)\}$$

As op(s) = op(s') and RF(s) = RF(s'), hence s is view serializable.

CSR

Conflict graph is shown in Figure 2.

As the conflict graph of s is cyclic, $s \notin CSR$.

Figure 2: Conflict Graph

As the history $s \in VSR$ and $s \notin CSR$, hence $s \in VSR - CSR$.

Problem 3

$$s = r_1(x)w_1(z)r_2(z)w_1(y)c_1r_3(y)w_2(z)c_2w_3(x)w_3(y)c_3$$

Conflict graph is shown in Figure 3.

As the conflict graph of s is acyclic, $s \in CSR$.

Figure 3: Conflict Graph

The equivalent serial history is $t_1t_2t_3$, and the equivalent serial schedule is $s' = r_1(x)w_1(z)r_2(z)w_1(y)r_3(y)w_2(z)w_3(x)w_3(y)$.

As the serialization order in s' is same as the actual order in s, hence $s \in OCSR$ also holds.