Teorie grafů

13. a 14. přednáška z LGR

Obsah

- Neorientované grafy
 - Stupně vrcholů, skóre grafu
 - Podgrafy a isomorfismus grafů
 - Sledy, tahy a cesty, souvislý graf

Definice č. 1

Graf (= neorientovaný graf) G je dvojice (V, E), kde

- V je neprázdná konečná množina, prvky nazýváme vrcholy,
- $E \subseteq \binom{V}{2}$ je množina (některých) dvouprvkových podmnožin množiny V, její prvky nazýváme $\frac{hrany}{V}$ (neorientované).

Pokud je hrana $e = \{u, v\}$, kde u, v jsou vrcholy, pak říkáme, že u, v jsou koncové vrcholy hrany e, nebo že hrana e je incidentní s vrcholy (či spojuje vrcholy) u, v.

Definice č. 1

Graf (= neorientovaný graf) G je dvojice (V, E), kde

- V je neprázdná konečná množina, prvky nazýváme vrcholy,
- $E \subseteq \binom{V}{2}$ je množina (některých) dvouprvkových podmnožin množiny V, její prvky nazýváme $\frac{hrany}{V}$ (neorientované).

Pokud je hrana $e=\{u,v\}$, kde u,v jsou vrcholy, pak říkáme, že u,v jsou koncové vrcholy hrany e, nebo že hrana e je incidentní s vrcholy (či spojuje vrcholy) u,v.

Hranu $e = \{u, v\}$ někdy značíme jen e = uv.

Speciální příklady grafů

- Graf o n vrcholech, ve kterém $E = \binom{V}{2}$ je množina všech dvouprvkových podmnožin množiny V, tj. každé dva vrcholy jsou spojeny hranou, se nazývá úplný graf, značí se K_n .
- Graf, který nemá žádné hrany se nazývá diskrétní graf.
- Bipartitní graf je graf, jehož množina vrcholů se dá rozdělit na dvě disjunktní podmnožiny V_1 , V_2 tak, že každá hrana grafu má jeden koncový vrchol ve V_1 a druhý ve V_2 .
- Bipartitní graf, který obsahuje všechny možné hrany, se nazývá *úplný bipartitní graf*. Značí se $K_{m,n}$, kde $|V_1| = m$, $|V_2| = n$ jsou velikosti partit.

Tvrzení

- Úplný graf K_n na n vrcholech má $\binom{n}{2} = \frac{n(n-1)}{2}$ hran.
- Úplný bipartitní graf $K_{m,n}$, má $m \cdot n$ hran.

Poznámka

Diskrétní graf je bipartitní, dokonce i jednovrcholový graf se považuje za bipartitní s jednou prázdnou paritou.

Definice č. 2

Neorientovaný graf G je trojice (V, E, ε) , kde

- V je neprázdná konečná množina vrcholů,
- E je konečná množina neorientovaných hran,
- ε je přiřazení, které každé hraně $e \in E$ přiřazuje množinu $\{u, v\}$, kde $u, v \in V$, a nazývá se vztah incidence.

Tato definice dovoluje i paralelní hrany (rozlišuje je jmény hran) a smyčky (tj. hrany, pro něž $\varepsilon(e) = \{u\}$).

Definice č. 2

Neorientovaný graf G je trojice (V, E, ε) , kde

- V je neprázdná konečná množina vrcholů,
- E je konečná množina neorientovaných hran,
- ε je přiřazení, které každé hraně $e \in E$ přiřazuje množinu $\{u, v\}$, kde $u, v \in V$, a nazývá se *vztah incidence*.

Tato definice dovoluje i paralelní hrany (rozlišuje je jmény hran) a smyčky (tj. hrany, pro něž $\varepsilon(e) = \{u\}$).

Úmluva

Z pohledu definice č. 2 se grafy bez paralelních hran nazývají prosté grafy. Hrany v prostém grafu pak můžeme jednoznačně označit pomocí jejich koncových vrcholů.

Grafy splňující definici č. 1 jsou pak prosté grafy bez smyček, budeme jim říkat též *obyčejné grafy*.

Nebude-li řečeno jinak, budeme používat definici č. 1 a graf pro nás bude obyčejný neorientovaný graf, tedy dvojice G = (V, E).

Definice

Stupeň vrcholu v je počet hran, které jsou incidentní s vrcholem v, značí se d(v), anebo deg(v).

Pozn.: V obecném grafu $G=(V,E,\varepsilon)$ se případná smyčka $\varepsilon(e)=\{v\}$ počítá do stupně d(v) dvakrát.

Tvrzení (Hands Shaking Lemma)

Pro každý graf G platí $\sum_{v \in V} d(v) = 2|E|$.

Důsledek

Každý graf má sudý počet vrcholů lichého stupně.

Definice

Stupeň vrcholu v je počet hran, které jsou incidentní s vrcholem v, značí se d(v), anebo deg(v).

Pozn.: V obecném grafu $G=(V,E,\varepsilon)$ se případná smyčka $\varepsilon(e)=\{v\}$ počítá do stupně d(v) dvakrát.

Tvrzení (Hands Shaking Lemma)

Pro každý graf G platí $\sum_{v \in V} d(v) = 2 |E|$.

Důsledek

Každý graf má sudý počet vrcholů lichého stupně.

Speciální příklady grafů

Graf G nazveme regulární (nebo přesněji r-regulární), pokud mají všechny jeho vrcholy stejný stupeň (přesněji stupeň r).

Pozorování

- Úplný graf K_n je (n-1)-regulární.
- Úplný bipartitní graf $K_{m,n}$ je regulární, právě když m=n.
- Pro *n* i *r* lichá čísla neexistuje *r*-regulární graf na *n* vrcholech.

Speciální příklady grafů

Graf G nazveme regulárni (nebo přesněji r-regulárni), pokud mají všechny jeho vrcholy stejný stupeň (přesněji stupeň r).

Pozorování

- Úplný graf K_n je (n-1)-regulární.
- Úplný bipartitní graf $K_{m,n}$ je regulární, právě když m=n.
- Pro *n* i *r* lichá čísla neexistuje *r*-regulární graf na *n* vrcholech.

Definice

Nechť G je graf o n vrcholech. Skóre grafu je n—tice obsahující stupně jednotlivých vrcholů setříděná sestupně.

Tvrzení (Věta o skóre)

Nerostoucí posloupnost přirozených čísel (d_1,\ldots,d_n) je skóre obyčejného grafu o n vrcholech, právě když je posloupnost $(d_2-1,\ldots,d_k-1,d_{k+1},\ldots,d_n)$, kde $k=d_1+1$ (odečteme 1 od prvních d_1 čísel), po sestupném setřídění skóre obyčejného grafu o n-1 vrcholech.

Příklad

Existuje obyčejný graf se skóre (4,4,3,2,2,1)? Opakovaným použitím věty o skóre získáme posloupnosti: (3,2,1,1,1); (1,0,0,1), po setřídění (1,1,0,0); nakonec (0,0,0). Graf s posledním skóre snadno najdeme - je to diskrétní graf na třech vrcholech.

Poznámka

Pro obecné grafy $G = (V, E, \varepsilon)$ (s možností smyček a paralelních hran) je situace mnohem jednodušší:

Tvrzení: Nerostoucí posloupnost přirozených čísel (d_1, \ldots, d_n) je skóre grafu $G = (V, E, \varepsilon)$, právě když $\sum_{i=1}^n d_i$ je sudý.

Příklad

Existuje obyčejný graf se skóre (4,4,3,2,2,1)? Opakovaným použitím věty o skóre získáme posloupnosti: (3,2,1,1,1); (1,0,0,1), po setřídění (1,1,0,0); nakonec (0,0,0). Graf s posledním skóre snadno najdeme - je to diskrétní graf na třech vrcholech.

Poznámka

Pro obecné grafy $G = (V, E, \varepsilon)$ (s možností smyček a paralelních hran) je situace mnohem jednodušší:

Tvrzení: Nerostoucí posloupnost přirozených čísel (d_1, \ldots, d_n) je skóre grafu $G = (V, E, \varepsilon)$, právě když $\sum_{i=1}^n d_i$ je sudý.

Definice

Je dán obyčejný neorientovaný graf G = (V, E).

- Podgraf grafu G je graf G' = (V', E'), kde $V' \subseteq V$, $E' \subseteq E$ (tj. pro každou hranu $e = \{u, v\} \in E'$ jsou její koncové vrcholy $u, v \in V'$, aby G' byl graf).
- Podgraf G' = (V', E') je faktor grafu G, jestliže obsahuje všechny vrcholy tohoto grafu, tj. V' = V.
- Podgraf G' = (V', E') je podgraf indukovaný množinou V', jestliže množina E' obsahuje všechny hrany grafu G, které mají oba krajní vrcholy v množině V'.

Příklad

Nechť graf $G = K_5$ je úplný graf na vrcholech $V = \{1, 2, 3, 4, 5\}$.

- Podgraf indukovaný množinou $V' = \{1, 2, 3, 4\}$ je K_4 (vyhodili jsme vrchol v = 5 a hrany s ním spojené).
- Diskrétní graf na pěti vrcholech a kružnice délky pět, tj. graf $C_5 = (V, E' = \{\{1, 2\}, \{2, 3\}, \{3, 4\}, \{4, 5\}, \{5, 1\}\})$, jsou faktory grafu G (vyhodili jsme jen některé hrany).
- Kružnice délky čtyři, tj. graf $C_4 = (V' = \{1, 2, 3, 4\}, E' = \{\{1, 2\}, \{2, 3\}, \{3, 4\}, \{4, 1\}\})$, je podgraf grafu G (vyhodili jsme vrchol v = 5 a hrany s ním spojené a ještě některé další hrany).

Definice

Dva obyčejné neorientované grafy $G_1=(V_1,E_1)$ a $G_2=(V_2,E_2)$ jsou *isomorfní grafy*, jestliže existuje bijekce $f:V_1\to V_2$ tak, že

$$\{u,v\}\in E_1$$
 právě tehdy, když $\{f(u),f(v)\}\in E_2$.

Pozorováni

Isomorfní grafy mají stejné skóre, naopak to ale neplatí! Snadno najdeme dva neisomorfní obyčejné grafy se skóre (3, 2, 2, 2, 1).

Definice

Dva obyčejné neorientované grafy $G_1=(V_1,E_1)$ a $G_2=(V_2,E_2)$ jsou *isomorfní grafy*, jestliže existuje bijekce $f:V_1\to V_2$ tak, že

$$\{u,v\} \in E_1$$
 právě tehdy, když $\{f(u),f(v)\} \in E_2$.

Pozorování

Isomorfní grafy mají stejné skóre, naopak to ale neplatí! Snadno najdeme dva neisomorfní obyčejné grafy se skóre (3,2,2,2,1).

Speciální příklady grafů

- Nechť $n \geq 0$. Cesta (délky n) je graf isomorfní grafu s množinou vrcholů $V = \{0, 1, \ldots, n\}$ a s množinou hran $E = \{\{0, 1\}, \{1, 2\}, \ldots \{n-1, n\}\}$. Značíme ji P_n .
- Nechť $n \geq 3$. Kružnice (délky n) je graf isomorfní grafu s množinou vrcholů $V = \{1, \ldots, n\}$ a s množinou hran $E = \{\{1, 2\}, \{2, 3\}, \ldots \{n-1, n\}, \{n, 1\}, \}$. Značíme ji C_n .

Délka cesty P_n je počet hran v této cestě, značíme $len(P_n) = n$.

Speciální příklady grafů

- Nechť $n \geq 0$. Cesta (délky n) je graf isomorfní grafu s množinou vrcholů $V = \{0, 1, \ldots, n\}$ a s množinou hran $E = \{\{0, 1\}, \{1, 2\}, \ldots \{n-1, n\}\}$. Značíme ji P_n .
- Nechť $n \geq 3$. Kružnice (délky n) je graf isomorfní grafu s množinou vrcholů $V = \{1, \ldots, n\}$ a s množinou hran $E = \{\{1, 2\}, \{2, 3\}, \ldots \{n-1, n\}, \{n, 1\}, \}$. Značíme ji C_n .

Délka cesty P_n je počet hran v této cestě, značíme $len(P_n) = n$.

Poznámky

- Jednovrcholový graf bez hran je *triviální cesta* délky nula.
- Kružnice coby obyčejný graf má délku n ≥ 3.
 Jednovrcholový graf bez hran se nepovažuje za kružnici!
- Pro obecný graf lze, s mírnou úpravou definice, uvažovat o kružnici délky n=1 (hrana je smyčka), nebo délky n=2 (hrany jsou paralelní).

Definice

- Sled (délky k) v grafu G je posloupnost vrcholů a hran $v_0, e_1, v_1, e_2, \ldots, v_{k-1}, e_k, v_k$ taková, že hrana e_i je incidentní s vrcholy v_{i-1} a v_i pro každé $i=1,2,\ldots,k$.
- Sled je *uzavřený sled*, jestliže $v_0 = v_k$.
- Triviální sled je sled, který obsahuje jediný vrchol a žádnou hranu.

V obyčejném grafu je sled jednoznačně určen posloupností vrcholů v_0, v_1, \ldots, v_k (můžeme zapsat jako $v_0 - v_1 - \cdots - v_k$ se "znázorněním hran").

Definice

- Tah v grafu G je sled, ve kterém se neopakují hrany.
- *Uzavřený tah* je uzavřený sled, ve kterém se neopakují hrany.
- Cesta v grafu G je tah, ve kterém se neopakují vrcholy (s tou výjimkou, že může platit $v_0 = v_k$).
- Kružnice v grafu G je uzavřená cesta, která má aspoň jednu hranu (v obyčejném grafu má pak automaticky aspoň tři hrany).

Poznámka

Triviální sled je (uzavřený) tah i cesta, není to však kružnice.

Definice

- Tah v grafu G je sled, ve kterém se neopakují hrany.
- *Uzavřený tah* je uzavřený sled, ve kterém se neopakují hrany.
- Cesta v grafu G je tah, ve kterém se neopakují vrcholy (s tou výjimkou, že může platit $v_0 = v_k$).
- Kružnice v grafu G je uzavřená cesta, která má aspoň jednu hranu (v obyčejném grafu má pak automaticky aspoň tři hrany).

Poznámka

Triviální sled je (uzavřený) tah i cesta, není to však kružnice.

Poznámka

Alternativně jsme mohli definovat cestu v grafu G jako podgraf grafu G, který je cestou (tedy grafem P_t pro nějaké $t \geq 0$) a kružnici v grafu jako podgraf, který je kružnicí (tedy grafem C_t pro nějaké $t \geq 1$).

Budeme obě definice používat dle potřeby - cesta či kružnice v grafu pro nás bude jak posloupností vrcholů a hran, tak podgrafem skládajícím se z těchto vrcholů a hran.

Lemma (o zkrácení na cestu)

Pokud v grafu G existuje sled z vrcholu u do vrcholu v, pak v něm existuje i cesta z u do v, která není delší než daný sled.

Definice

Graf G je souvislý, pokud mezi každými dvěma jeho vrcholy existuje cesta.

Tyrzení

Graf G je souvislý, právě když mezi každými dvěma vrcholy existuje sled.

Definice

Doplněk obyčejného grafu G=(V,E) je obyčejný graf $G^{\mathrm{dop}}=(V,\binom{V}{2}-E)$, tj. v doplňku jsou právě ty hrany, které nejsou v původním grafu.

Tvrzení

Nechť G=(V,E) je obyčejný graf a G^{dop} jeho doplněk. Aspoň jeden z grafů G a G^{dop} je souvislý.

Definice

Nechť G je souvislý graf. Délka nejkratší cesty z vrcholu u do vrcholu v se nazývá vzdálenost vrcholů u a v, značíme $\operatorname{dist}(u,v)$.

Tvrzení

Vzdálenost vrcholů je metrikou na množině vrcholů souvislého grafu G = (V, E). Tj. pro libovolné vrcholy $u, v, w \in V$ platí:

- $\operatorname{dist}(u, v) \geq 0$, přitom rovnost nastane, právě když u = v;
- $\operatorname{dist}(u, v) = \operatorname{dist}(v, u)$;
- $\operatorname{dist}(u, v) \leq \operatorname{dist}(u, w) + \operatorname{dist}(w, v)$.

Definice

Nechť G je souvislý graf. Délka nejkratší cesty z vrcholu u do vrcholu v se nazývá vzdálenost vrcholů u a v, značíme $\operatorname{dist}(u,v)$.

Tvrzení

Vzdálenost vrcholů je metrikou na množině vrcholů souvislého grafu G = (V, E). Tj. pro libovolné vrcholy $u, v, w \in V$ platí:

- $\operatorname{dist}(u, v) \geq 0$, přitom rovnost nastane, právě když u = v;
- $\operatorname{dist}(u, v) = \operatorname{dist}(v, u)$;
- $\operatorname{dist}(u, v) \leq \operatorname{dist}(u, w) + \operatorname{dist}(w, v)$.

Definice

Každý maximální podgraf grafu G, který je souvislý, se nazývá komponenta souvislosti grafu G.

Poznámka: Maximální souvislý podgraf je zde myšleno ve smyslu inkluze, tj. přidáním libovolného vrcholu či hrany bychom porušili souvislost nebo by to přestal být podgraf.

Poznámka

Komponenta souvislosti je jednoznačně určena množinou svých vrcholů, jedná se o podgraf indukovaný touto množinou vrcholů. Budeme komponenty souvislosti zapisovat pomocí množin jejích vrcholů (někdy i volně ztotožňovat s těmito množinami).

Definice

Relace dostupnosti na vrcholech grafu G je definována takto: $u \sim v$, právě když v G existuje cesta z vrcholu u do vrcholu v. Říkáme, že vrchol v je dostupný z vrcholu u.

Tyrzeni

Relace dostupnosti je relací ekvivalence na množině všech vrcholů grafu G, třídy této ekvivalence jsou právě množiny vrcholů komponent souvislosti grafu G.

Definice

Relace dostupnosti na vrcholech grafu G je definována takto: $u \sim v$, právě když v G existuje cesta z vrcholu u do vrcholu v. Říkáme, že vrchol v je dostupný z vrcholu u.

Tvrzení

Relace dostupnosti je relací ekvivalence na množině všech vrcholů grafu G, třídy této ekvivalence jsou právě množiny vrcholů komponent souvislosti grafu G.

Literatura

- J. Demel: Grafy a jejich aplikace, Academia, 2015.
- J. Matoušek, J. Nešetřil: Kapitoly z diskrétní matematiky, Nakladatelství Karolinum, 2000.
- M. Dostál: Cvičení k přednášce LGR (najdete v nich důkazy některých tvrzení z přednášky a mnoho dalších příkladů).