Quadratic Forms and Matrix Norms

Practical Linear Algebra | Lecture 13

ullet A quadratic form is a function $f\colon \mathbb{R}^n o \mathbb{R}$ of the form

$$f(x) = x^T A x = \sum_{i,j=1}^{\infty} A_{ij} x_i x_j$$

for some particular $A \in \mathbb{R}^{n \times n}$

- \bullet The choice of $A \in \mathbb{R}^{n \times n}$ is not unique
 - Makes sense we're going from several variables and coefficients to just one scalar
- Since $x^T A x$ is a scalar:

$$x^{T}Ax = (x^{T}Ax)^{T}$$
$$= x^{T}A^{T}(x^{T})^{T}$$
$$= x^{T}A^{T}x$$

$$x^{T}Ax = x^{T}A^{T}x$$

$$x^{T}Ax + x^{T}Ax = x^{T}A^{T}x + x^{T}Ax$$

$$2x^{T}Ax = x^{T}(A^{T} + A)x$$

$$x^{T}Ax = x^{T}\left(\frac{A^{T} + A}{2}\right)x$$

 $\frac{A^T + A}{2}$ is a symmetric matrix (called the symmetric part of A)

- An infinite number of matrices have the same symmetric part
- ullet When working with quadratic forms, we can assume A is symmetric without loss of generality
 - Why do we care? Real symmetric matrix means we can use the spectral theorem...
- Given some $a \in \mathbb{R}$:
 - $\circ \{x \mid x^T A x \leq a\}$ is a quadratic region
 - $\circ \{x \mid x^T A x = a\}$ is a quadratic surface
 - Ellipsoid is a special case of a quadratic region!

• If $A = A^T \in \mathbb{R}^{n \times n}$, then via spectral theorem:

$$x^{T} A x = x^{T} Q \Lambda Q^{T} x$$

$$= (Q^{T} x)^{T} \Lambda (Q^{T} x)$$

$$= \sum_{i=1}^{n} \lambda_{i} (q_{i}^{T} x)^{2}$$

$$\leq \sum_{i=1}^{n} \lambda_{1} (q_{i}^{T} x)^{2}$$

$$x^{T} A x \leq \sum_{i=1}^{T} \lambda_{1} (q_{i}^{T} x)^{2}$$

$$= (Q^{T} x)^{T} \lambda_{1} I (Q^{T} x)$$

$$= \lambda_{1} (Q^{T} x)^{T} (Q^{T} x)$$

$$= \lambda_{1} x^{T} Q Q^{T} x$$

$$= \lambda_{1} x^{T} x$$

$$= \lambda_{1} ||x||^{2}$$

$$x^T A x \leq \lambda_1 \|x\|^2$$

Similar logic gives: $\|x^TAx \ge \lambda_n \|x\|^{2}$

Together:
$$\lambda_1 \|x\|^2 \ge x^T A x \ge \lambda_n \|x\|^2$$

- If the eigenvalues are sorted such that $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$, then we can denote λ_1 by λ_{\max} and λ_n by λ_{\min}
- ullet We can always rearrange the diagonal entries of $\, \Lambda \,$ and the columns of $\, Q \,$ to sort the eigenvalues

Definite Quadratic Forms

• A matrix $A = A^T \in \mathbb{R}^{n \times n}$ is called positive semidefinite (PSD) if

$$x^T A x \ge 0$$

for all $x \in \mathbb{R}^n$

- We use the notation $A \geq 0$ or $A \succeq 0$
 - \circ \succeq is read "succeeds or is equal to"
- This means $\lambda_{\min} > 0$ for PSD matrices

Definite Quadratic Forms

• A matrix $A = A^T \in \mathbb{R}^{n \times n}$ is called positive definite if

$$x^T A x > 0$$

for all $x \in \mathbb{R}^n$

- Denoted A>0 or $A\succ 0$
- A is negative semidefinite if $-A \ge 0$
- A is negative definite if -A > 0
- A is definite if it's any of the above
- \bullet Otherwise A is indefinite

Matrix Inequalities

- We can use definite quadratic forms in matrix inequalities
 - $\circ A > B$ means A B > 0 (the matrix A B is PSD)
 - Many scalar inequalities also hold for matrices
 - \blacksquare A > B, $C > D \Rightarrow A + C > B + D$
 - $B \le 0 \Rightarrow A + B \le A$
- Matrix inequality is a partial order
 - \circ It's possible for $A \ngeq B$ and $A \nleq B$ to both be true

Ellipsoids

• If $A = A^T > 0$, then the set

$$\{x \mid x^T A x \le 1\}$$

is an ellipsoid in \mathbb{R}^n centered at 0

Ellipsoids

ullet Semiaxes are given by $\dfrac{q_i}{\sqrt{\lambda_i}}$

Matrix Norms

- Many different matrix norms have been defined
- We'll discuss two:
 - Operator norm
 - o Frobenius norm

• The operator norm or spectral norm is defined as

$$||A|| = \max_{x \neq 0} \frac{||Ax||}{||x||} \quad \text{ for } A \in \mathbb{R}^{m \times n}$$

ullet This is the maximum scaling or "gain" that $\,A\,$ applies to any input vector

$$\max_{x \neq 0} \frac{\|Ax\|^2}{\|x\|^2} = \max_{x \neq 0} \frac{(Ax)^T (Ax)}{x^T x}$$

$$= \max_{x \neq 0} \frac{x^T A^T A x}{x^T x}$$

$$= \frac{\lambda_1 (A^T A) q_1^T q_1}{q_1^T q_1}$$

$$= \lambda_1 (A^T A) = \lambda_{\max} (A^T A)$$

$$||A|| = \max_{x \neq 0} \frac{||Ax||}{||x||} = \sqrt{\lambda_{\max}(A^T A)}$$

We can use similar logic to show that the minimum gain is

$$\min_{x \neq 0} \frac{\|Ax\|}{\|x\|} = \sqrt{\lambda_{\min}(A^T A)}$$

- Minimum gain is always real and nonnegative for any matrix
 - $\circ A^T A$ is symmetric since $A^T A = (A^T A)^T$
 - $\circ A^T A$ is PSD since $x^T A^T A x = \|Ax\|^2 \ge 0$
 - \circ This means $\lambda_{\min} \geq 0$

- Operator norm shares many properties with the ordinary vector norm
 - $\|c c\| \|c c\| \|c\| \|c\|$ for $c \in \mathbb{R}$
 - \circ Triangle inequality: $||A + B|| \le ||A|| + ||B||$
 - $| \circ | | A | = | A^T | |$
 - $| \circ | | A | | = 0 \iff A = 0$
 - o Operator and vector norms are identical if the "matrix" is a vector

Frobenius Norm

• The Frobenius norm is defined as

$$||A||_F = \left(\sum_{i=1}^m \sum_{j=1}^n A_{ij}^2\right)^{\frac{1}{2}}$$

• Fact: $||A|| \le ||A||_F$

Frobenius Norm

 The trace of a square matrix is the sum of the elements along its main diagonal

$$\mathbf{trace}(B) = \sum_{i=1}^{n} B_{ii} \quad \text{for } B \in \mathbb{R}^{n \times n}$$

• We can rewrite the Frobenius norm using the trace

$$||A||_F = \left(\mathbf{trace}(A^T A)\right)^{\frac{1}{2}}$$

Next Time

Singular Value Decomposition