## CS M51A, Winter 2021, Assignment 10 (Total Mark: 90 points, 9%)

Due: Wed Mar 17rd, 10:00 AM Pacific Time Student Name: Charles Zhang Student ID: 305413659

Note: You must complete the assignments entirely on your own,

without discussing with others.

1. (a) (10 Points) Using only full adders, design an system that adds two 3-bit 2's complement numbers,  $x = (x_2, x_1, x_0)$  and  $y = (y_2, y_1, y_0)$ , and outputs the sum  $z = (z_2, z_1, z_0)$ . Assume that the addition will not overflow and label the inputs and outputs of the system.



(b) (15 Points) Given 2's complement numbers  $x = (x_2, x_1, x_0)$ ,  $y = (y_2, y_1, y_0)$ , and the sum  $z = (z_2, z_1, z_0)$  from part (a), design a system that has two outputs, s and o. The output s = 1 when the sign of z is negative, and the output o = 1 if the addition from part (a) has overflown. You may use AND/OR/NOT gates in your design.



(c) (15 Points) Given a two's complement number  $z = (z_2, z_1, z_0)$  from part (a), design a system that outputs  $m = (m_2, m_1, m_0)$ , where m is the magnitude of z. You may use AND/OR/NOT gates in your design.

| Zz | 21 | Zo   | , Nz | m, | ~0        |  |
|----|----|------|------|----|-----------|--|
| 6  | 0  | 0    | 0    | 0  | 0         |  |
| 0  | 0  | 1    | 0    | •  |           |  |
| 0  | ١  | 0    | 0    | -1 | 0         |  |
| 0  | ì  | l    | 0    | 1  | 1         |  |
| 1  | 0  | 0    | 1    | 0  | 0         |  |
| l  | 0  | ı    | 0    | t  | 1         |  |
| t  | 1  | 0    | 0    | 1  | D         |  |
| l  | l  | -1 / | 0    | 0  | <b>21</b> |  |
|    |    |      |      |    |           |  |



2. (10 Points) Design a 16-bit comparator using 4-bit comparators only.



3. (10 Points) Design a pattern recognizer that outputs 1 if pattern 0111 is detected. You may use serial-in/parallel-out shift register and AND/OR/NOT gates in your design. The shifting direction should be to the right.



4. (10 Points) Design a pattern recognizer that outputs 1 if pattern 001011 is detected. You may use serial-in/parallel-out shift register and AND/OR/NOT gates in your design. The shifting direction should be to the left.



5. (10 Points) Using a modulo-16 counter and AND/OR/NOT gates, design a counter that counts from 3 to 14.  $\rightarrow$  110



6. (10 Points) Using a modulo-16 counter and AND/OR/NOT gates, design a counter that outputs the following count: 14, 15, 0, 1, 2, 3, 14, 15, 0, 1, 2, 3, 14, 15, 0 ...

