Exercício 1. Calcule o determinante e a inversa da matriz

$$B = \left[\begin{array}{cc} a\mathbf{I} & b\mathbf{I} \\ c\mathbf{I} & d\mathbf{I} \end{array} \right],$$

onde a, b, c e d são escalares e **I** é a matriz identidade de ordem m.

Exercício 2. Mostre que o produto de duas matrizes ortogonais é uma matriz ortogonal.

Exercício 3. Mostre que o determinante de uma matriz ortogonal $\acute{e}+1$ ou -1.

Exercício 4. Particionando a matriz $\begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & 2 \\ 3 & 4 & 2 & 5 \end{bmatrix}$ de forma conveniente, determine sua inversa.

Exercício 5. Prove que as raízes características de uma matriz triangular são os elementos da diagonal principal.

Exercício 6. Seja A uma matriz $p \times n$ qualquer.

- (a) Prove que $\mathbf{A}^{\top}\mathbf{A}$ é uma matriz simétrica de dimensão $n \times n$.
- (b) Mostre que $\mathbf{A}^{\top}\mathbf{A}$ é não negativa definida.

Exercício 7. Considere o modelo de medidas repetidas

$$X_{i1} = \mu + \epsilon_{i1}$$

$$X_{i2} = \mu + \alpha + \epsilon_{i2}, i = 1, \dots, n$$

onde X_{i1} e X_{i2} são medidas no i-ésimo indivíduo, antes e depois da aplicação de um tratamento, respectivamente. Admitindo que $\boldsymbol{\epsilon}_i = (\epsilon_{i1}, \epsilon_{i2})^{\top}$, $i = 1, \ldots, n$ são vetores aleatórios independentes com $\mathrm{E}(\epsilon_{ij}) = 0$ e $\mathrm{Var}(\epsilon_{ij}) = \sigma_j^2$ e $\mathrm{Cov}(\epsilon_{i1}, \epsilon_{i2}) = \rho \sigma_1 \sigma_2$, construa a matriz de variâncias e covariâncias de $(\boldsymbol{\epsilon}_1, \ldots, \boldsymbol{\epsilon}_n)^{\top}$ e escreva-a utilizando a notação do produto de Kronecker.

Exercício 8. Seja **A** uma matriz simétrica $n \times n$. Prove que existe **D**, matriz diagonal, tal que $\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} = \mathbf{y}^{\mathsf{T}} \mathbf{D} \mathbf{y}$.

Exercício 9. Se $\mathbf{x}^{\top} \mathbf{A} \mathbf{x}$ é positiva definida, prove que existe uma transformação $\mathbf{y} = \mathbf{B} \mathbf{x}$ tal que $\mathbf{x}^{\top} \mathbf{A} \mathbf{x} = \mathbf{y}^{\top} \mathbf{y}$.

Exercício 10. Se $\mathbf{Y} \sim N_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ com $r(\boldsymbol{\Sigma}) = n$, determine a distribuição de $\mathbf{Y}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{Y}$.

Exercício 11. Seja $\mathbf{Y} \sim N_p(\boldsymbol{\mu}, \sigma^2 \mathbf{I})$. Se \mathbf{A} é uma matriz simétrica de posto completo, calcule $\mathrm{E}(\mathbf{Y}^{\top} \mathbf{A} \mathbf{Y})$ e $\mathrm{Var}(\mathbf{Y}^{\top} \mathbf{A} \mathbf{Y})$.

Exercício 12. Sejam $\mathbf{X} \sim N_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, \mathbf{B} uma matriz de constantes $q \times p$ e \mathbf{b} um vetor de constantes $q \times 1$. Usando funções geradoras de momentos, prove que $\mathbf{Y} = \mathbf{B}\mathbf{X} + \mathbf{b}$ tem distribuição $N_q(\mathbf{B}\boldsymbol{\mu} + \mathbf{b}, \mathbf{B}\boldsymbol{\Sigma}\mathbf{B}^{\top}).$

Exercício 13. Se X_1, X_2, \ldots, X_n são variáveis aleatórias independentes e identicamente distribuídas com média μ e variância σ^2 , determine a esperança de

$$Q = (X_1 - X_2)^2 + (X_2 - X_3)^2 + \ldots + (X_{n-1} - X_n)^2.$$

Exercício 14. Se Y_1, Y_2, \ldots, Y_n é uma amostra aleatória da distribuição $N(\mu, \sigma^2)$, mostre que \overline{Y} e $S^2 = \frac{\sum_{i=1}^n (Y_i - \overline{Y})^2}{n-1}$ são variáveis aleatórias independentes.

Exercício 15. Se $\mathbf{Y} \sim N_n(\mathbf{0}, \mathbf{I}_n)$ com $\mathbf{Y} = (Y_1, Y_2, \dots, Y_n)^{\top}$, determine a variância de

$$(Y_1 - Y_2)^2 + (Y_2 - Y_3)^2 + \ldots + (Y_{n-1} - Y_n)^2.$$

Exercício 16. Seja $\mathbf{Y} \sim N_n(\mathbf{0}, \mathbf{I}_n)$. Prove que se $\mathbf{Y}^{\top} \mathbf{Y} = Q_1 + Q_2$ onde $Q_1 = \mathbf{Y}^{\top} \mathbf{A} \mathbf{Y}$ e $Q_1 \sim \chi_a^2$ então $Q_2 \sim \chi_{n-a}^2$.

Exercício 17. Se $\mathbf{Y} \sim N_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ com $\mathbf{Y} = (Y_2, Y_2, Y_3)^{\top}, \boldsymbol{\mu} = (\mu, \mu, \mu)^{\top}$ e $\boldsymbol{\Sigma} = \begin{bmatrix} 1 & a & 0 \\ a & 1 & a \\ 0 & a & 1 \end{bmatrix}$,

determine o valor de a para que $Y_1+Y_2+Y_3$ e $Y_1-Y_2-Y_3$ sejam independentes