Redes de Computadores

Introdução ao Modelo ISO/OSI Prof. Renê Pomilio de Oliveira

Slides baseados nas aulas da Profa. Dra. Kalinka Castelo Branco (ICMC/USP) Prof. Dr. Anderson Chaves Carniel (UTFPR)

Entidades da Camada

Serviços

- A comunicação entre camadas é feita através da requisição de (e da resposta a) serviços. Cada camada é responsável por um conjunto de serviços (serviço = o que).
- Serviços são solicitados (e respondidos) através de pontos específicos localizados nas interfaces entre as camadas, denominados de Pontos de Acesso a Serviços (SAP's - Service Access Points).
- A prestação de serviços é o que justifica a existência de uma camada.
- Uma camada (N) fornece serviços a uma camada (N+1) através da invocação de *primitivas* de serviço (ex: connect, abort, data).

Comunicação entre Camadas Parceiras

Protocolos

- A comunicação entre camadas de mesmo número em nós distintos é feita através de protocolos.
- Protocolos são um conjunto de regras que governa a interação em sistemas distribuídos.
- Os protocolos existem como forma de viabilizar a prestação de serviços pelas camadas (protocolo = como).
- Serviços têm caráter "vertical", enquanto os protocolos têm caráter "horizontal".

Camadas P2P – Protocolos x Serviços

Transporte

Serviço

Rede

Protocolo

Rede

Serviço

MINISTÉRIO DA EDUCAÇÃO
CÂMPUS DOIS VIZINHOS

Enlace

Câmpus Dois Vizinhos

Encapsulamento dos Dados

Os serviços de uma camada recebem o respectivo protocolo e são passados, através do SAP, à camada inferior

Exemplo "protocolo" IP

- Version Versão do IP Utilizado 4 bits
- Length Tamanho do cabeçalho IP
 4 bits
- Type of Service Tipo do serviço –
 8 bits
- Total Lenght Tamanho total do pacote IP – 16 bits
- Identification Numero que identifica o Datagrama – 16 bits
- Flags e Flagment Offset Indicador de fragmentação ou não da mensagem 3 ou 13 bits

Exemplo "protocolo" IP

- Time do Live Estipula o tempo máximo que um pacote tem para encontrar o seu destino na rede – 8 bits
- Protocol Especifica o protocolo do nível superior como o TCP ou UDP – 8 bits
- Header Checksum Faz o controle de erros apenas do header (Cabeçalho) do pacote IP – 16 bits
- Source e Destination Adress –
 Endereços de Origem e Destino do pacote IP 32 bits cada

 Data – Dados efetivamente transportados – 1500 bytes para redes Ethernet

Primitivas de Serviço

- As primitivas podem conter duas situações possíveis:
 - Primitivas de Requisição:
 - No instante em que é enviada para a rede: "request".
 - No instante que <u>a requisição chega no parceiro</u>: "indication".
 - Primitivas de Resposta:
 - No instante em que <u>é enviada</u>: "response".
 - No instante que chega no requisitante: "confirmation".

Primitivas de Serviço

PDU e SDU

- Quando uma camada (N+1) requisita um serviço à camada (N), neste instante ela está enviando um conjunto de bytes que pode ser dividido em:
 - Cabeçalho: a parte do protocolo da camada (N+1); (dentro de cada camada existe vários protocolos)
 - Conteúdo: a parte de dados da camada (N+1).
- PDU (Protocol Data Unit) = cabeçalho + conteúdo.
- A PDU da camada (N+1) se encaixa na parte de dados da camada (N).
- Assim que a PDU ultrapassa a fronteira entre as camadas (N+1) e (N) ela recebe um novo nome na camada (N): SDU (Service Data Unit).

PDU e SDU

Transformação da primitiva:

Hierarquias de Protocolos

Princípios Básicos

- Envelopamento/Encapsulamento
 - Cabeçalhos
 - mensagem

CAMADA N+1		CAB. N+1	DADOS	T. N+1		
CAMADA N	CAB. N		DADOS		T. N	
CAB. N-1			DADOS			T. N-1

Resumo de cada camada do modelo ISO/OSI

Agora vai!

Camada Física - 1

- É a camada onde existe a Transmissão e Recepção do Sinal através dos diversos meios Físicos;
- Nesta camada é estabelecida a conexão física entre 02 máquinas ligadas em rede
- Existem diversos padrões de camada física componentes e protocolos associados, ex.:
 - Placas de Rede;
 - Modens;
 - Protocolos RS 232 C, Ethernet, Token Ring, FDDI, entre outros

Camada de Enlace - 2

- Responsável pelo controle de transmissão de dados de ou para a Rede;
 - <u>Avisa o micro origem para retardar ou aumentar o numero de pacotes,</u> adequando o tráfego da rede.
- Endereça fisicamente os pacotes para as estações;
- Decompõem o pacote em pacotes menores, variando de acordo com o tipo de rede ou protocolo adotado, ex, rede Ethernet obedece o 802.3
- Especifica os tipos de protocolo que está transportando: Ex. IP
- Envia e recebe os pacotes para a Camada Física 1

Camada Rede - 3

- Responsável pelo Endereçamento Lógico e estabelecimento de rotas;
 - TCP / IP
 - Empacota os dados;
 - Controle do Fluxo e Erros;
 - Controle de Retransmissões; (perda de conexão)

Camada Transporte - 4

- Responsável pelo controle dos pacotes conferindo se todos os pacotes chegaram e remontando-os na mensagem original;
 - Identifica o tipo do pacote e onde deve ser enviado, chamado de Multiplexação
 - FTP FTP
 - CHAT CHAT
 - HTTP HTTP
- Abertura e fechamento das Sessões entre usuários;
- Controla a retransmissão de mensagens são confirmadas nesta camada

Camada de Sessão - 5

- Camada responsável pelo controle/estabelecimento da comunicação entre 02 máquinas
 - Controle de Autenticação do Usuário (Logon)
 - Controle e Inicialização e Finalização de transações entre aplicativos
 - SQL
- Defini com as 02 máquinas irão se comunicar
 - Full Duplex Half Duplex Simplex
- Na ocorrência de uma queda da rede, a Sessão seja reiniciada a partir do ponto onde houve a queda
- Autenticação do Usuário

Camada Apresentação - 6

- Responsável pela **formatação dos dados**, adequando-os aos vários <u>tipos de</u> máquinas e plataformas existentes.
 - Compressão e Descompressão de dados;
 - Conversão de Códigos
 - ASCII
- Criptografia dos dados;

Camada de Aplicação - 7

- Responsável pela interface dos usuários:
 - Programas e Aplicativos;
 - Sistema Operacional
 - Transações que rodam no terminal do usuário
 - Banco de Dados
 - Aplicativos de redes:
 - Planilhas
 - Processadores de Texto
 - E-mail

Exercícios

- 1. Quais os sub-grupos que compõem a arquitetura IEEE 802?
- 2. Crie uma comparação entre o modelo OSI e o IEEE 802
- 3. O que é o IEEE 802.2 LLC?
- 4. Faça uma comparação entre o modelo OSI e o TCP/IP

