

NPTEL ONLINE CERTIFICATION COURSES

Blockchain and its applications **Prof. Sandip Chakraborty**

Department of Computer Science & Engineering Indian Institute of Technology Kharagpur

Lecture 42: Algorand

CONCEPTS COVERED

Algorand

KEYWORDS

- Cryptographic Sortition
- BA*

The Blockchain Performance Triangle

Is it ever possible to achieve all three simultaneously?

Algorand: Scaling Byzantine Agreements for Cryptocurrencies

Gilad, Y., Hemo, R., Micali, S., Vlachos, G., & Zeldovich, N. (2017, October). *Algorand: Scaling byzantine agreements for cryptocurrencies.* In *Proceedings of the 26th Symposium on Operating Systems Principles* (pp. 51-68). ACM.

Algorand: Overview

- Key Idea:
 - Consensus through Byzantine Agreement Protocol
- Communication:
 - Gossip protocol
- Key Assumption:
 - Honest majority of money

Algorand: Technical Advancement

- Trivial computation
 - simple operation like add, count
- True decentralization
 - no concentration of mining pool power, all equal miners and users
- Finality of payment
 - fork with very low probability, block appears, and the payment is fixed forever

Algorand: Technical Advancement

- Scalability
 - millions of users, only network latency (~1minute)
- Security
 - against bad adversary

Architecture of Algorand

- Select a random user
 - prepare a block
 - propagate block through gossiping
- Select random committee with small number of users (~10k)
 - run Byzantine Agreement on the block
 - digitally sign the result
 - propagate digital signatures
- Who select the committee?

Cryptographic Sortition in Algorand

Cryptographic Sortition

- Each committee member selects himself according to peruser weights
 - Implemented using <u>Verifiable Random Functions</u> (VRFs)
- <hash,proof $> \leftarrow VRF_{sk}(x)$
 - x: input string
 - (pki,ski): public/private key pair
 - hash: hashlenbit-long value that is uniquely determined by sk and x
 - proof: enables to check that the hash indeed corresponds to x

Committee Member Selection

<hash,proof,j> <--Sortition(sk,seed,threshold,role,w,W)</pre>

- seed: publicly known random value
 - seed published at Algorand's round r using
 VRFs with the seed of the previous round r 1
- **threshold:** determines the expected number of users selected for that role
- role: user for proposing a block/ committee member
- w: weight of a user
- W: weight of all users
- j: user gets to participate as j different "sub-users."

Byzantine Agreement in Algorand: BA*

- Two phase:
 - Two phase agreement -
 - Final Consensus
 - Tentative Consensus

Byzantine Agreement in Algorand: BA*

- Strong Synchrony: Most honest users (say, 95%) can send message that will be received by most other honest users within a known time bound
 - Adversary can not control the network for long
 - Ensures liveness of the protocol

Byzantine Agreement in Algorand: BA*

- Weak Synchrony: The network can be asynchronous for long (entirely controlled by adversary) but bounded period of time
 - There must be a strong synchrony period after a weak synchrony period
 - Algorand is safe under weak synchrony

Final Consensus

- One user reaches final consensus
 - Any other user that reaches final or tentative consensus in the same round must agree on the same block value (ensures safety)
 - Confirm a transaction when the block reaches to the final consensus

Tentative Consensus

- One user reaches tentative consensus
 - Other users may have reached consensus on a <u>different</u> (<u>but correct</u>) block
 - Can be in two cases
 - The network is strongly synchronous adversary may be able to cause BA* to reach tentative consensus on a block - BA* is unable to confirm that the network was strongly synchronous
 - The network was weakly synchronous BA* can form multiple forks and reach tentative consensus on two different blocks - users are split into groups

Coming out of Tentative Consensus

- Run BA* periodically to come out of tentative consensus - run the next round
 - Network cannot be under weak synchrony all the times
 - Cryptographic sortition ensures different committee members at different rounds of the BA*

Conclusion

- Algorand has multiple advantages
 - Bitcoin like scalability
 - BFT like throughput
 - No fork

<u>Caution</u>: Needs a really large network

