CS147 - Lab 03

Data Flow Modeling I

Kaushik Patra (kaushik.patra@sjsu.edu)

1

Operators

- Three types of operators
 - Unary : a = ~b; // a is not b
 - Binary : a = b && c; // logical and
 - Ternary : a = b ? c : d // if (b) a =c; else a=d;

Number Specification

Sized Number

- <size>'<base format><number>
 - · 'h': Hexadecimal
 - 'b': Binary
 - 'o': Octal
 - 'd': Decimal
- 6'h10 (10₁₆), 6'o10(10₈), 6'b10(10₂), 6'd10(10₁₀)

· Unsized numbers are all 32 bit

- 23456 // 32-bit decimal
- 'hc3 // 32-bit hex
- 'o21 // 32-bit octal

3

Value Types

- Four type of values
 - 0 : Logic zero, false condition
 - 1 : Logic one, true condition
 - X: Unknown value
 - Z: High impedance, floating state

Data Types

Nets

- Represents connection between hardware element just like in real circuit.
- Declaration
 - wire a, d_out, b; // 1-bit

Registers

- Represents unsigned data storage elements in simulator
- Not same as hardware registers.
- Declaration
 - reg a, b, c; // 1-bit

5

Data Types

Vectors

- Nets or registers can be declared as vectors or multi-bit sized net / register.
- Declaration
 - wire [7:0] bus; // 8-bit bus
 - reg [31:0] dataA, dataB; // 2 32-bit buses.

Integer and real

- Used for manipulating signed quantities.
- e.g. integer counter;
- e.g. real delta = 4e10;

Data Types

- Arrays (single dimension only)
 - Allowed for reg, integer and vector registers.
 - e.g.
 - integer counter [0:7] // array of 8 count var
 - reg [7:0] mem [0:2048]; // array of 2K 8-bit reg
 - To access
 - counter[5]; // 6th value in the array
 - reg[511]; // 512th 8-bit register

7

Port Connection Rule

CS147 - Lab 03

Data Flow Modeling I

Kaushik Patra (kaushik.patra@sjsu.edu)