Adversarial Search

LESSON 6

Reading

Chapter 6

Outline

- Last time: Heuristic, Informed search
 - h(x): utility function

- Optimal decisions
- **α**-β pruning
- Imperfect, real-time decisions

Games vs. Search problems

"Unpredictable" opponent -> specifying a move for every possible opponent reply

•Time limits -> unlikely to find goal, must Approximate

•Hmm: Is Ataxx a game or a search problem by this definition?

Two player games

Max always moves first.

Min is the opponent.

We have

- An initial state.
- A set of operators.
- A terminal test (which tells us when the game is over).
- A utility function (evaluation function).

Max Vs Min

The utility function is like the heuristic function we have seen in the past, except it evaluates a node in terms of how good it is for each player. Positive values indicate states advantageous for Max, negative values indicate states advantageous for Min.

Game tree (2-player, deterministic, turns)

A simple abstract game.

Max makes a move, then Min replies.

An action by one player is called a *ply*, two ply (a action and a counter action) is called a *move*.

The Minimax Algorithm

- Generate the game tree down to the terminal nodes.
- Apply the utility function to the terminal nodes.
- For a **S** set of sibling nodes, pass up to the parent...
 - the lowest value in **S** if the siblings are \triangle
 - the largest value in S if the siblings are
- Recursively do the above, until the backed-up values reach the initial state.
- The value of the initial state is the minimum score for Max.

In this game Max's best move is A1, because he is guaranteed a score of at least 3.

Example: Dodgen game

Example: Dodgen game

Example: Dodgen game

Evaluation Function

```
function MaxVal(u);

begin

if u là đỉnh kết thúc then MaxVal(u) \leftarrow f(u)

else MaxVal(u) \leftarrow max\{MinVal(v) \mid v \ là đỉnh \ con \ của \ u\}
end;

function MinVal(u);
```

Evaluation Function

Eval(u)

Eval(u) > 0 : prefer Max

Eval(v) < 0 : prefer Min</p>

\bigcirc	\bigcirc

30	35	40
15	20	25
0	5	10

Giá trị quân Trắng.

	-10	-25	-40		
	-5	-20	-35		
	0	-15	-30		
3	Giá trị quân Đe				

en.

Trắng cản trực tiếp Đen được thêm 40 điểm.

Trắng cản gián tiếp Đen được thêm 30 điểm.

Evaluation Function

Minimax Algorithm

```
function Minimax-Decision(state) returns an action
   v \leftarrow \text{MAX-VALUE}(state)
   return the action in Successors(state) with value v
function Max-Value(state) returns a utility value
   if Terminal-Test(state) then return Utility(state)
   v \leftarrow -\infty
   for a, s in Successors(state) do
      v \leftarrow \text{Max}(v, \text{Min-Value}(s))
   return v
function Min-Value(state) returns a utility value
   if Terminal-Test(state) then return Utility(state)
   v \leftarrow \infty
   for a, s in Successors(state) do
      v \leftarrow \text{Min}(v, \text{Max-Value}(s))
   return v
```

Properties of Minimax

- Complete? Yes (if tree is finite)
- Optimal? Yes (against an optimal opponent)
- Time complexity? $O(b^m)$, where b is the effective branching factor and m is the depth of the terminal states.
- •Space complexity? $O(b^m)$ (depth-first exploration)

For chess, $b \approx 35$, $m \approx 100$ for "reasonable" games

-> exact solution completely infeasible

What can we do?

PRUNING!

α - β Pruning

Prunning *sub-tree* a if Eval(u) > Eval(v)

Why is it called α - β

 α is the value of the best (i.e., highest-value) choice found so far at any choice point along the path for max

MAX

MIN

• If v is worse than α , max will avoid it

..

..

→ prune that branch

MAX

• Define β similarly for *min*

MIN

The α - β Algorithm

```
function Alpha-Beta-Search(state) returns an action
   inputs: state, current state in game
   v \leftarrow \text{MAX-VALUE}(state, -\infty, +\infty)
   return the action in Successors(state) with value v
function Max-Value(state, \alpha, \beta) returns a utility value
   inputs: state, current state in game
             \alpha, the value of the best alternative for MAX along the path to state
             \beta, the value of the best alternative for MIN along the path to state
   if TERMINAL-TEST(state) then return UTILITY(state)
   v \leftarrow -\infty
   for a, s in Successors(state) do
       v \leftarrow \text{Max}(v, \text{Min-Value}(s, \alpha, \beta))
       if v \geq \beta then return v
      \alpha \leftarrow \text{Max}(\alpha, v)
   return v
```

25

The α - β Algorithm

```
function Min-Value(state, \alpha, \beta) returns a utility value
   inputs: state, current state in game
              \alpha, the value of the best alternative for MAX along the path to state
              \beta, the value of the best alternative for MIN along the path to state
   if TERMINAL-TEST(state) then return UTILITY(state)
   v \leftarrow +\infty
   for a, s in Successors(state) do
       v \leftarrow \text{Min}(v, \text{Max-Value}(s, \alpha, \beta))
       if v \leq \alpha then return v
       \beta \leftarrow \text{Min}(\beta, v)
   return v
```

The α - β Algorithm: example

Resource Limits

- •The big problem is that the search space in typical games is very large.
- Suppose we have 100 secs, explore 104 nodes/sec -> 106 nodes per move

Standard approach:

cutoff test:

e.g., depth limit

- evaluation function
 - = estimated desirability of position

Evaluation functions

For chess, typically linear weighted sum of features $Eval(s) = w_1 f_1(s) + w_2 f_2(s) + ... + w_n f_n(s)$

- e.g., $w_1 = 9$ with $f_1(s) = (\# \text{ of white queens}) (\# \text{ of black queens})$, etc.
- Caveat: assumes independence of the features
 - Bishops in Western chess better at endgame
 - Unmoved king and rook needed for castling
- Should model the expected utility value states with the same feature values lead to.

Other problems

- Applying utility functions on end game scenarios may not solve the game
- •Use a policy or lookup table (taken from previous game history)
- Stochastic games
- Calculate the expected value of a position

What do you need to do

- Implement Minimax
- Implement Pruning (optional)
- Implement an evaluation function
 - ✓ Input: board, selected grid location
 - ✓ Output: continuous value

(really optional) use state

Summary

- ☐Games are fun to work on!
- ☐ They illustrate several important points about Al
- Perfection is unattainable -> must
 - approximate
- Good idea to think about what to think about