Cheating Detection On Online Tests

1조 B611137 이강복 | B611169 임정민 | B611210 하인혜

Contents

- 1. Problem
- 2. Current Program
- 3. Related Work
 - **3.1** DeepFace
 - **3.2** FAZE
- 4. Limitation

Problems

Types of cheating on online test

Substitute examination

Cheating with blind spot of camera

Web surfing

Limitation of current program

How to prevent substitute examination

OnTest

- Take a picture of one's ID card
- Check the student's ID card with the information

Supervisor must check the identity card against the person.

Monito

신분증에서 이름/생년월일/사진 확인할 수 있도록 나머지 정보는 가려주세요.

- 정보를 가리지 않고 제출하면 감독관이 제촬영을 요구할 수 있습니다.
- (개인정보보호법에 따라 생별코드용 포함한 주민번호 뒷자리를 수집/표시할 없습니다.)

- 어두운 배경에서 신분증을 촬영하세요
- 약간 기울여서 촬영하시면 및 반사를 최소화할 수 있어요.

- Take a picture of one's ID card
- Check the birth date and name of the students

Supervisor must check the identity card against the person

Limitation of current program

How to prevent cheating using blind spot of camera

OnTest

In the square box.

Not in the square box.

- Using a webcam
- A method of warning: when the user's face is out of the bounding box

Cheating is possible in the bounding box

Monito

- Use both webcam and cell phone camera to reduce blind spots

A blind spot that can't be captured by two cameras

Solutions

Self-certification

Eye-Tracking

Face Recognition PipeLine

: Detectation \rightarrow Alignment \rightarrow Representation \rightarrow Classification

1. Alignment

- 3D Modeling
 - : Landmark extraction using pre-learned 3D face model
- Frontalization
 - : using piecewise affine transformations on each part of the image.

2. Representation

- Front-end adaptive pre-processing part (C1, M2, C3)
 - : Use Convolutional layer, a max-pooling layer, and a convolutional layer.
- Three Locally connected layers (L4, L5)
 - : Locally connected layer use differently learned weights for all pixels.
- Two Fully connected layers (F7, F8)

2. Representation

- Front-end adaptive pre-processing part (C1, M2, C3)
 - : Use Convolutional layer, a max-pooling layer, and a convolutional layer.
- Three Locally connected layers (L4, L5)
 - : Locally connected layer use differently learned weights for all pixels.
- Two Fully connected layers (F7, F8)

2. Representation

- Front-end adaptive pre-processing part (C1, M2, C3)
 - : Use Convolutional layer, a max-pooling layer, and a convolutional layer.
- Three Locally connected layers (L4, L5)
 - : Locally connected layer use differently learned weights for all pixels.
- Two Fully connected layers (F7, F8)

3. Verification: Siamese Network

- Calculate the distance between two images as an output vector of two images.

$$d(f1, f2) = \sum_{i} \alpha_i |f_1[i] - f_2[i]|$$

- A different person if the distance is far and the same person if it is close

Result of Experiments

1. LFW (the Labeled Faces in the Wild) Dataset

Method	Accuracy ± SE	Protocol restricted restricted restricted restricted	
Joint Bayesian [6]	0.9242 ±0.0108		
Tom-vs-Pete [4]	0.9330 ±0.0128		
High-dim LBP [7]	0.9517 ±0.0113		
TL Joint Bayesian [5]	0.9633 ±0.0108		
DeepFace-ensemble	0.9715 ±0.0027	restricted	
DeepFace-ensemble	0.9735 ±0.0025	unrestricted	
Human, cropped	0.9753		

- DeepFace achieve 97.35% (close to human levels)
- Better performance than Accuracy of the most successful recent study (96.33%)

Result of Experiments

2. WTF (the YouTube Faces : video fame) Dataset

Method	Accuracy (%)	AUC	EER
MBGS+SVM- [31]	78.9 ± 1.9	86.9	21.2
APEM+FUSION [22]	79.1 ± 1.5	86.6	21.4
STERD+PMML [91	${-79.5}\pm2.5$	88.6	19.9
VSOF+OSS [23]	79.7 ± 1.8	89.4	20.0
DeepFace-single	91.4 ±1.1	96.3	8.6

- DeepFace achieve **91.4**%
- Much better performance than Accuracy of the most successful recent study (79.7%)
- Relatively weak performance in video frames compared to web images

- Representation Learning Part
- Input is a pair of images from the same person
- Image is embedded into 3 latent spaces : Appearance, Gaze and Head pose

- Representation Learning Part
- Gaze and Head pose codes are rotat
 ed based on known differences.
- Appearance code passes through.
- Decoder ouput is guided with an L1 I oss with the additional loss terms.

- Meta Learning Part
- Learn to learn
- Gaze Embedding can be used.

 θ_n : initial weights of the network

Update : $\theta'_n = f(\theta_n) = \theta_n - \alpha \nabla L^t_{P_{train}}(\theta_n)$

Few-Shot D_{train}

Randomly Selected Ptrain

 D_{valid}

Update : $\theta_{n+1} = \theta_n - \beta \nabla L_{P_{train}}^{v}(f(\theta_n))$

- Personalization
- Similar to Meta-Learning
- Using unseen person's data to yield final person specific model.

 θ^* : optimal weights of the network

 D_{valid}

Result of Experiments

Result of Experiments

Limitation: DeepFace

1. 120 million too many parameters due to Locallly - connected layer

2. Relatively low recognition accuracy for video frames

3. Applicability to low-end camera environment of a laptop computer

Limitation: FAZE

1. Application to Real-Time Video

2. Using a few Sample

3. Person-specific model

Thank you!