Содержание

1	Введение									
	1.1 Постановка задачи	2								
2	Базовый метод SSA	3								
	2.1 Алгоритм метода SSA	3								
	2.2 Свойства SSA									
3	Метод Circulant singular spectrum analysis (CiSSA)	6								
	3.1 Алгоритм метода CiSSA	6								
	3.2 Свойства									
4	Сравнение алгоритмов	9								
	4.1 Собственные пространства	S								
	4.2 Точная разделимость									
	4.3 Асимптотическая разделимость									
	4.4 Отделение сигнала от шума									
	4.5 Автоматическая группировка и проверка на реальных данных									
5	Заключение	15								

1 Введение

Временные ряды представляют собой последовательность данных, собранных или измеренных в хронологическом порядке. Они играют ключевую роль в анализе и прогнозировании в различных областях, таких как экономика, финансы, климатология, медицина. Понимание эволюции явлений во времени является критическим для выявления тенденций, циклов и аномалий.

Сингулярный спектральный анализ (SSA) — метод, целью которого является разложение оригинального ряда на сумму небольшого числа интерпретируемых компонентов, таких как медленно изменяющаяся тенденция (тренд), колебательные компоненты (сезонность) и "структурный" шум. Основной концепцией при изучении свойств методов SSA является "разделимость", которая характеризует, насколько хорошо разные компоненты могут быть отделены друг от друга. В данном исследовании рассматривается математическая составляющая вариации алгоритма SSA — circulant singular spectrum analysis (CiSSA), предложенная в статье [1], а также сравнение базового метода и циркулярного, применение их на языке R.

1.1 Постановка задачи

Перед началом исследования были поставлены следующие цели:

- 1. Ознакомиться с алгоритмом СіSSA;
- 2. Реализовать алгоритм **CiSSA** на языке R;
- 3. Сравнить алгоритмы **SSA** и **CiSSA**.

2 Базовый метод SSA

Рассмотрим первоначальный метод сингулярного спектрального анализа [3].

2.1 Алгоритм метода SSA

Пусть N > 2, вещественнозначный временной ряд $X = (x_1, \dots, x_N)$ длины N. Базовый алгоритм состоит **SSA** из четырех шагов.

2.1.1 Вложение

L — некоторое целое число (длина окна), 1 < L < N. Строится L-траекторная матрица \mathbf{X} , состоящая из K = N - L + 1 векторов вложения:

$$\mathbf{X} = \begin{pmatrix} x_1 & x_2 & x_3 & \dots & x_K \\ x_2 & x_3 & x_4 & \dots & x_{K+1} \\ x_3 & x_4 & x_5 & \dots & x_{K+2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_L & x_{L+1} & x_{L+2} & \dots & x_N \end{pmatrix} . \tag{1}$$

Полезным свойством является то, что матрица \mathbf{X} имеет одинаковые элементы на диагоналях. Таким образом, L-траекторная матрица является ганкелевой.

2.1.2 Сингулярное разложение (SVD)

Результатом этого шага является сингулярное разложение (Singular Value Decomposition, **SVD**) траекторной матрицы ряда.

Пусть $\mathbf{S} = \mathbf{X}\mathbf{X}^{\mathrm{T}}$, $\lambda_1, \ldots, \lambda_L$ — собственные числа матрицы \mathbf{S} , взятые в неубывающем порядке и U_1, \ldots, U_L — ортонормированная система собственных векторов соответствующих собственным числам матрицы \mathbf{S} .

Определим $d = \max\{i : \lambda_i > 0\}$ и $V_i = \mathbf{X}^T U_i / \sqrt{\lambda_i}$. Тогда сингулярным разложением называется представление матрицы в виде:

$$\mathbf{X} = \mathbf{X}_1 + \dots + \mathbf{X}_d = \sum_{i=1}^d \sqrt{\lambda_i} U_i V_i^{\mathrm{T}}.$$
 (2)

Набор $(\sqrt{\lambda_i}, U_i, V_i^{\mathrm{T}})$ называется i-й собственной тройкой разложения (2).

2.1.3 Группировка

На основе разложения (2) производится процедура группировки, которая делит все множество индексов $\{1,\ldots,d\}$ на m непересекающихся подмножеств I_1,\ldots,I_d .

Пусть $I = \{i_1, \dots, i_p\}$, тогда $\mathbf{X}_I = \mathbf{X}_{i_1} + \dots + \mathbf{X}_{i_p}$. Такие матрицы вычисляются для каждого $I = I_1, \dots, I_m$. В результате получаются матрицы $\mathbf{X}_{\mathbf{I_1}}, \dots, \mathbf{X}_{\mathbf{I_m}}$. Тем самым разложение (2) может быть записано в сгруппированном виде:

$$\mathbf{X} = \mathbf{X}_{I_1} + \cdots + \mathbf{X}_{I_m}.$$

2.1.4 Диагональное усреднение

Пусть \mathbf{Y} — матрица размерности $L \times K$. $L^* = \min(L, K)$, $K^* = \max(L, K)$ Диагональное усреднение переводит матрицу \mathbf{Y} в временной ряд g_0, \dots, g_{N-1} :

$$g_k = \begin{cases} \frac{1}{k+1} \sum\limits_{m=1}^{k+1} y_{m,k-m+2}^* & \text{для } 0 \leq k < L^* - 1, \\ \frac{1}{L^*} \sum\limits_{m=1}^{L^*} y_{m,k-m+2}^* & \text{для } L^* - 1 \leq k < K^*, \\ \frac{1}{N-k} \sum\limits_{m=k-K^*+2}^{N-K^*+1} y_{m,k-m+2}^* & \text{для } K^* \leq k < N. \end{cases}$$

Применяя данную операцию к матрицам $\mathbf{X_{I_1}}, \dots, \mathbf{X_{I_m}}$, получаются m новых рядов: $\mathsf{X}_1, \dots, \mathsf{X}_m$. При этом, $\mathsf{X}_1 + \dots + \mathsf{X}_m = \mathsf{X}$.

2.2 Свойства SSA

2.2.1 Точная разделимость

Пусть временной ряд $X = X^{(1)} + X^{(2)}$ и задачей является нахождение этих слагаемых. В результате базового алгоритма SSA также получаем 2 ряда. Возникает вопрос: в каких случаях мы можем так выбрать параметр алгоритма L и так сгруппировать собственные тройки, чтобы получить исходные 2 ряда без смешиваний? При выборе длины окна L, каждый из рядов $X^{(1)}$, $X^{(2)}$, X порождает траекторную матрицу $X^{(1)}$, $X^{(2)}$, X.

Определение 1. Будем говорить, что ряды $X^{(1)}$ и $X^{(2)}$ слабо L-разделимы, если пространства, порождаемые строками $\mathbf{X}^{(1)}$ и $\mathbf{X}^{(2)}$ соответственно, ортогональны. То же самое должно выполняться для столбцов [3].

Если выполняется условие слабой L-разделимости, тогда существует такое сингулярное разложение траекторной матрицы \mathbf{X} ряда X , что его можно разбить на две части, являющиеся сингулярными разложениями траекторных матриц рядов $\mathsf{X}^{(1)},\mathsf{X}^{(2)}$ [3].

Определение 2. Будем говорить, что ряды $X^{(1)}, X^{(2)}$ сильно L-разделимы, если они слабо L-разделимы и после процедуры **SVD** собственные числа рядов различны [3].

Если выполняется условие сильной L-разделимости, тогда любое сингулярное разложение траекторной матрицы \mathbf{X} ряда X можно разбить на две части, являющиеся сингулярными разложениями траекторных матриц рядов $\mathsf{X}^{(1)},\mathsf{X}^{(2)}$ [3].

Рассмотрим таблицу, в которой знаком + отмечены пары рядов, для которых существуют параметры функций и параметры метода L и K=N-L+1, при которых они разделимы (точно разделимы). Данная таблица 1 и условия разделимости с доказательствами взяты из книги [3].

Таб	лица	1:	Точн	ая раз	зделимост	.'Ъ
	cons	et -	COS	evn	evn cos	ak

	const	cos	exp	exp cos	ak+b
const	-	+	-	-	-
\cos	+	+	-	-	-
\exp	-	-	-	+	-
$\exp \cos$	-	-	+	+	-
ak+b	-	-	-	-	-

Стоит отметить, что точная разделимость для соз достигается, если $Lw \in \mathbb{N}$, $Kw \in \mathbb{N}$, где w — частота [3].

Однако, по таблице 1 видно, что условия точной разделимости достаточно жесткие и вряд ли выполнимы в реальных задачах. Тогда появляется такое понятие, как асимптотическая разделимость.

2.2.2 Асимптотическая разделимость

Для любого ряда X длины N определим $\mathsf{X}_{i,j}=(x_{i-1},\cdots,x_{j-1}),\ 1\leq i\leq j< N.$ Пусть $\mathsf{X}^{(1)}=(x_0^{(1)},\ldots,x_{N-1}^{(1)}),\mathsf{X}^{(2)}=(x_0^{(2)},\ldots,x_{N-1}^{(2)}).$ Тогда определим коэффициент корреляции следующим образом:

$$\rho_{i,j}^{(M)} = \frac{\left(\mathsf{X}_{i,i+M-1}^{(1)}, \mathsf{X}_{j,j+M-1}^{(2)}\right)}{\left|\left|\mathsf{X}_{i,i+M-1}^{(1)}\right|\right| \left|\left|\mathsf{X}_{j,j+M-1}^{(2)}\right|\right|}.$$

Определение 3. Ряды $F^{(1)}, F^{(2)}$ называются ε -разделимыми при длине окна L, если

$$\rho^{(L,K)} \stackrel{\text{def}}{=} \max \left(\max_{1 \le i,j \le K} |\rho_{i,j}^{(L)}|, \max_{1 \le i,j \le L} |\rho_{i,j}^{(K)}| \right) < \varepsilon \text{ [3]}.$$

Определение 4. Если $\rho^{(X(N),K(N))} \to 0$ при некоторой последовательности $L = L(N), N \to \infty$, то ряды $X^{(1)}, X^{(2)}$ называются асимтпотически L(N)-разделимыми [3].

Как можно заметить по таблице 2, для гораздо большего класса функций асимптотическая разделимость имеет место [3].

Таблица 2: Асимптотическая разделимость

	const	cos	exp	exp cos	ak+b
const	-	+	+	+	-
\cos	+	+	+	+	+
\exp	+	+	+	+	+
$\exp \cos$	+	+	+	+	+
ak+b	+	+	+	+	-

3 Метод Circulant singular spectrum analysis (CiSSA)

В этом разделе предложена автоматизированная версия **SSA** на основе циркулярной матрицы [1]. Причем автоматизированная в том смысле, что компоненты ряда группируются по частотам самим алгоритмом. Сначала будет рассмотрен метод только для стационарного случая, затем доказана его применимость при использовании нестационарного ряда.

Стационарность подразумевает неизменность статистических свойств ряда во времени. Однако определим это понятие формально [3].

Определение 5. Пусть $X = (x_0, x_1, \dots, x_n, \dots)$ — временной ряд. Ряд X называется стационарным, если существует функция $R_X(k)$ ($-\infty < k < +\infty$) такая, что для любых $k, l \ge 0$

$$R_{\mathsf{X}}^{(N)}(k,l) \stackrel{\text{def}}{=} \frac{1}{N} \sum_{m=0}^{N-1} x_{k+m} x_{l+m} \xrightarrow{N \to \infty} R_{\mathsf{X}}(k-l). \tag{3}$$

Eсли (3) выполняется, тогда R_{X} называется ковариационной функцией стационарного ряда X .

Теорема 1. Пусть R_X — ковариационная функция стационарного ряда X. Тогда существует конечная мера m_X , определенная на борелевских подмножествах (-1/2, 1/2], такая, что

$$R_{\mathsf{X}}(k) = \int_{(-\frac{1}{2}, \frac{1}{2}]} e^{i2\pi k\omega} m_{\mathsf{X}}(d\omega).$$

 $Mера\ m_{\mathsf{X}}\ называется\ спектральной\ мерой\ ряда\ \mathsf{X}.$

Доказательство. Доказательство в источнике [3].

3.1 Алгоритм метода CiSSA

Данный алгоритм состоит также из четырех основных шагов.

Зафиксируем стационарный временной ряд X состоящий из N элементов и выберем длину окна L.

3.1.1 Вложение

Такой же, как и в SSA. Считаем матрицу X, заданную в (1).

3.1.2 Разложение

Будем рассматривать временной ряд как выборку после эксперимента, а не как случайную величину. Соответственно, все формулы будут выборочными.

Определим автоковарицации:

$$\hat{\gamma}_m = \frac{1}{N-m} \sum_{t=1}^{N-m} x_t x_{t+m}, \ m = 0 : L-1.$$

На основе $\hat{\gamma}_m$ определим матрицу:

$$\hat{\gamma}_L = \begin{pmatrix} \hat{\gamma}_1 & \hat{\gamma}_2 & \dots & \hat{\gamma}_L \\ \hat{\gamma}_2 & \hat{\gamma}_1 & \dots & \hat{\gamma}_{L-1} \\ \vdots & \vdots & \vdots & \vdots \\ \hat{\gamma}_L & \hat{\gamma}_{L-1} & \dots & \hat{\gamma}_1 \end{pmatrix}. \tag{4}$$

Данная матрица $L \times L$ называется Теплицевой и используется в методе Toeplitz SSA (подробнее про данный метод можно прочитать в книге [3]). На ее основе составим циркулярную матрицу для алгоритма Circulant SSA [1]:

$$\hat{C}_{L} = \begin{pmatrix} \hat{c}_{1} & \hat{c}_{2} & \dots & \hat{c}_{L} \\ \hat{c}_{2} & \hat{c}_{1} & \dots & \hat{c}_{L-1} \\ \vdots & \vdots & \vdots & \vdots \\ \hat{c}_{L} & \hat{c}_{L-1} & \dots & \hat{c}_{1} \end{pmatrix},$$
 (5)

где $\hat{c}_m = \frac{L-m}{L} \hat{\gamma}_m + \frac{m}{L} \hat{\gamma}_{L-m}, \ m=0:L-1$. Собственные числа матрицы $\hat{\mathbf{C}}_L$, определенной в (5) задаются по формуле:

$$\lambda_{L,k} = \sum_{m=0}^{L-1} \hat{c}_m \exp\left(i2\pi m \frac{k-1}{L}\right), \ k=1:L, \ \text{причем } \lambda_{L,k} = \lambda_{L,L+2-k},$$

а собственные вектора, связанные с $\lambda_{L,k}$ вычисляются следующим образом:

$$U_k = L^{-1/2}(u_{k,1}, \dots, u_{k,L}),$$
 где $u_{k,j} = \exp\left(-\mathrm{i}2\pi(j-1)\frac{k-1}{L}\right),$ причем $U_k = U_{L+2-k}^*,$

где U^* — комплексное сопряжение вектора U.

3.1.3 Элементарное разложение

Для каждой частоты $w_k = \frac{k-1}{L}, \ k=2:\lfloor \frac{L+1}{2} \rfloor$, есть два собственных вектора: U_k и U_{L+2-k} . За частоту w_0 отвечает один собственный вектор — U_0 . Если же L — четное, то частоте $w_{\frac{L}{2}+1}$ будет соответствовать один вектор $U_{\frac{L}{2}+1}$.

Следовательно, индексы группируются следующим образом:

$$B_1=\{1\};\, B_k=\{k,L+2-k\},\,$$
для $k=2:\lfloor rac{L+1}{2}
floor;\, B_{rac{L}{2}+1}=\left\{rac{L}{2}+1
ight\},\,$ если $L\mod 2=0.$

А также разложение $\mathbf{X}_{B_k} = \mathbf{X}_k + \mathbf{X}_{L+2-k} = U_k U_k^H \mathbf{X} + U_{L+2-k} U_{L+2-k}^H \mathbf{X}$, где U^H — это комплексное сопряжение и транспонирование вектора U.

Для ясности, $U_k U_k^H + U_{L+2-k} U_{L+2-k}^H$ является оператором проектирования на подпространство, которое порождено синусами и косинусами с частотой $w_k = \frac{k-1}{L}$. Это пространство соответствует компонентам синусоидальной структуры временного ряда, связанных с конкретной частотой, выделяемой методом.

3.1.4 Диагональное усреднение

Такой же шаг, как и в базовом **SSA**.

Нестационарный случай

Для применения данного алгоритма на нестационарных временных рядах, нужно применить процедуру расширения ряда. Как утверждается в статье [1], после расширения, **CiSSA** можно применить к нестационарному ряду.

3.2 Свойства

3.2.1 Асимптотическая эквивалентность методов

В статье [1] говорится, что асимптотически методы **SSA** и **CiSSA** эквивалентны и в доказательство приводится теорема.

Определение 6. Будем говорить, что методы M_1 и M_2 асимптотически эквивалентны, если их матрицы вложения S_1 , S_2 асимптотически эквиваленты в смысле $\lim_{L\to\infty} \frac{\|S_1-S_2\|_F}{\sqrt{L}} = 0$, где $\|\cdot\|_F$ — норма Фробениуса. Тогда $M_1 \sim M_2$, $S_1 \sim S_2$.

Теорема 2. Дана $L \times K$ траекторная матрица **X**, определенная в (1). Пусть $S_B = \mathbf{X}\mathbf{X}^T/K$, S_T — матрица, определенная в (4), S_C — матрица, определенная в (5). Тогда $S_B \sim S_T \sim S_C$. Доказательство. Доказательство в источнике [1].

Теорема 2 дает понимание похожих практических результатов при применении разных методов.

3.2.2 Точная разделимость

Поскольку данный метод является аналогом разложения Фурье, то в смысле сильной разделимости можно точно разделить ряд, в котором одной из компонент является $\cos(2\pi w)$ или $\sin(2\pi w)$ с частотой w такой, что $Lw=k\in\mathbb{N}$, или константа. Поэтому до применения алгоритма необходимо выделить интересующие частоты и, исходя из них, выбирать значение L.

3.2.3 Асимптотическая разделимость

Асимптотическая разделимость в данном случае будет означать, что при увеличении L разбиение сетки будет увеличиваться, а значит, и частоты в сетке начнут сближаться к истинным частотам периодических компонент (либо становиться равными им), что будет снижать ошибку вычислений.

4 Сравнение алгоритмов

Все вычисления, а также код CiSSA можно найти в github репозитории [4].

4.1 Собственные пространства

Каждый алгоритм после группировки порождает построенными матрицами собственные подпространства. В случае базового \mathbf{SSA} алгоритма базис подпространств является адаптивным, то есть зависящим от \mathbf{X}, L, N . Таким образом, \mathbf{SSA} может отличить, например, произведение полиномов, экспонент и косинусов друг от друга.

В случае **CiSSA** базис зависит только от L, N. Если зафиксировать данные параметры, и менять X, базис никак не поменяется.

4.2 Точная разделимость

Как удалось выяснить, классов точной разделимости больше в базовом алгоритме **SSA**, однако в случае разделения **cos**, условия менее жесткие при использовании **CiSSA**.

Проверим на примерах.

Возьмем временной ряд $X = X_C + X_{cos} = 1 + \cos(\frac{2\pi}{12}x)$, $L = 96 \mid 12$, $N = 96 \cdot 2 - 1$, $K = 96 \mid 12$. Будем считать MSE между настоящими компонентами ряда и вычисленными. В случае **SSA** получилась ошибка при вычислении C = 1: 2.1e-30, а при вычислении $\cos(\frac{2\pi}{12}x)$: 4.9e-30. Если применить алгоритм **CiSSA**, получатся ошибки при C = 1: 3.6e-31, при $\cos(\frac{2\pi}{12}x)$: 5.2e-30. Эти ошибки можно посчитать за погрешность вычислений на компьютере.

Теперь возьмем временной ряд $X = X_C + X_{\cos} = 1 + \cos(\frac{2\pi}{12}x)$, $L = 96 \mid 12$, $N = 96 \cdot 2 + 5$, $K = 102 \nmid 12$. Будем считать MSE между настоящими компонентами ряда и вычисленными. В случае **SSA** получилась ошибка при вычислении C = 1: 9.5e-5, а при вычислении $\cos(\frac{2\pi}{12}x)$: 9.6e-5. Если применить алгоритм **CiSSA**, получатся ошибки при C = 1: 3.2e-31, при $\cos(\frac{2\pi}{12}x)$: 5.1e-30.

Таким образом, с разделением косинуса от константы лучше справился алгоритм **CiSSA**, поскольку в нем требуется меньше условий на параметры алгоритма.

4.3 Асимптотическая разделимость

Как было сказано, асимптотически разделимы в методе SSA полиномы, гармонические функции (косинус, косинус помноженный на экспоненту, экспонента) [3]. В алгоритме CiSSA при увеличении длины окна L меняется сетка разбиения частот. Из-за этого, даже если не удастся выбрать подходящее L, при котором будет точно отделим cos, но постоянно его увеличивать, в конечном счете получится снизить ошибку выделения нужной компоненты cos, если брать соседние частоты с частотой cos. Однако в этом случае нужно выбирать диапазон частот, которые стоит объединить.

Непериодические же компоненты смешаются и их уже никак не получится отделить методом CiSSA. Например, если взять $X = X_c + X_e + X_{\cos} + X_{\sin} = 1 + e^{\frac{x}{100}} + \cos(\frac{2\pi}{12}x) + \sin(\frac{2\pi}{24}x)$, $N = 96 \cdot 2 - 1$, L = 96, можно получить следующие результаты:

Разложение временного ряда

Рис. 1: Правильное разложение

SSA разложение временного ряда

Рис. 2: Разложение методом SSA

Метод **SSA** разделил правильно все компоненты друг от друга.

CiSSA разложение временного ряда

Рис. 3: Разложение методом **CiSSA**

В случае CiSSA получилось так, что экспонента и константа смешались в одну компоненту.

Метод/Компонента	exp	const	$\exp + const$	\sin	cos
SSA	2.2e-25	2.2e-25	4.2e-28	3.8e-29	1.6e-29
CiSSA	none	none	3.5e-02	1.4e-04	1.9e-03

Таблица 3: MSE разложений ряда методов SSA и CiSSA

Таблица 3 и рисунки 2, 3 показывают, что метод **SSA** справился лучше в сравнении с **CiSSA**, причем как по разделимости, так и по ошибке. В алгоритме **CiSSA** трендовая составляющая также смешалась с сезонной, поэтому увеличилась ошибка при косинусе.

4.4 Отделение сигнала от шума

Рассматривая ряд из предыдущего пункта, добавим к нему гауссовский шум с стандартным отклонением 0.1: $\mathsf{X} = \mathsf{X}_c + \mathsf{X}_e + \mathsf{X}_{\cos} + \mathsf{X}_N = 1 + e^{\frac{x}{100}} + \cos(\frac{2\pi}{12}) + N(0,0.1), \, N = 96 \cdot 2 - 1, \, L = 96.$ Сделав такой тест 10000 раз, получим следующий результат по ошибке MSE между рядом без шума и с шумом:

Метод	min	median	mean	max	sd
SSA	5.8e-04	2.0e-03	2.1e-03	4.9e-03	6.2e-04
CiSSA	2.5e-02	$3.4\mathrm{e}\text{-}02$	$3.4\mathrm{e}\text{-}02$	$4.9\mathrm{e}\text{-}02$	3.7e-03

Таблица 4: Данные по распределению шума разложений методов SSA и CiSSA

По таблице 4 можно увидеть что метод **SSA** отработал лучше **CiSSA**.

4.5 Автоматическая группировка и проверка на реальных данных

Авторы статьи [1] выделяют главным преимуществом то, что **CiSSA** автоматически разделяет компоненты ряда по частотам. Однако есть метод, позволяющий сделать автоматическое объединение частот по периодограмме в методе **SSA** [2]. При этом, прежде чем применять его, стоит выполнить процедуру улучшения разделимости. В данной работе будут использоваться методы EOSSA и FOSSA [2].

Сравним работы этих алгоритмов сначала на модельных примерах, затем на реальных данных.

Используем те же данные, что и в прошлом примере: $X = X_c + X_e + X_{cos} = 1 + e^{\frac{x}{100}} + cos(\frac{2\pi}{12})$, $N = 96 \cdot 2 - 1$, L = 96. Применяем алгоритм EOSSA [2] для лучшей разделимости и выбираем в качестве интересующих частот диапазоны $(\frac{1}{25}, \frac{1}{23})$, $(\frac{1}{13}, \frac{1}{11})$, порог = 0.01. Результаты остаются теми же, как и в таблице 3 и рисунках 2, 3, однако теперь группировка ряда произошла по интересующим частотам.

Теперь рассмотрим реальные данные — месячные ряды промышленного производства (Industrial Production, IP), index 2010 = 100, в США. Промышленное производство широко распространено, так как оно указывается в определении рецессии Национальным бюро экономических исследований (NBER), как один из четырех ежемесячных рядов индикаторов, которые необходимо проверять при анализе делового цикла. Выборка охватывает период с января 1970 года по сентябрь 2014 года, поэтому размер выборки составляет N = 537. Источником данных является база данных IMF. Эти показатели демонстрируют различные тенденции, сезонность и цикличность (периодические компоненты, которые соответствуют циклам бизнеса). Данные IP также рассматривались в статье [1]. Применим как **CiSSA**, так и **SSA** с автоматическим определением частот и улучшением разделимости.

Рис. 4: Трендовая составляющая данных IP USA

При применении FOSSA улучшения разделимости алгоритм **SSA** выделяет тренд довольно похоже с **CiSSA**. Весь график **SSA** тренд EOSSA выглядит более изогнутым при визуальном сравнении с остальными.

IP USA цикличность

Рис. 5: Циклическая составляющая данных IP USA

Аналогичная тренду ситуация происходит с цикличностью. В случае EOSSA правый хвост (значения ряда после 2010-ого года) смешался между цикличностью и трендом.

Рис. 6: Сезонная составляющая данных IP USA

Поскольку в базовом **SSA** адаптивный базис, сезонность является менее систематичной, разброс значений выше по сравнению с **CiSSA**.

Шум же является нормальным во всех случаях.

Рис. 7: Матрицы корреляций IP USA

По матрицам корреляции заметно, что при использовании ${\bf SSA}$ с улучшением разделимости EOSSA, сильно смешиваются первые по значимости компоненты ряда (они и являются трендовыми и циклическими).

Таким образом, получились довольно похожие результаты в выделении тренда и цикличности при использовании **SSA** с FOSSA и **CiSSA**. Несколько иные результаты при **SSA** с EOSSA. Сезонная составляющая в силу неадаптивного базиса более строго выглядит для метода **CiSSA**.

5 Заключение

В данной работе исследован алгоритм CiSSA, сравнены методы CiSSA и SSA, и полученные знания были проверены на реальных и смоделированных примерах с помощью языка R. Оба алгоритма справляются с поставленными задачами, существенным различием является то, что алгоритм SSA является более гибким: в нем адаптивный базис, есть дополнительные алгоритмы, которые довольно похоже приближают этот алгоритм к CiSSA, а также методы для автоматического выбора компонент по частотам. Метод CiSSA является простым в использовании.

Дальнейшими действиями является рассмотрение других модификаций метода **SSA**.

Список литературы

- [1] Juan Bogalo, Pilar Poncela, and Eva Senra. Circulant singular spectrum analysis: A new automated procedure for signal extraction. *Signal Processing*, 177, September 2020. Received 24 March 2020; Revised 19 September 2020; Accepted 22 September 2020; Available online 24 September 2020.
- [2] Nina Golyandina, Pavel Dudnik, and Alex Shlemov. Intelligent identification of trend components in singular spectrum analysis. *Algorithms*, 16(7):353, 2023. Submission received: 31 May 2023; Revised: 4 July 2023; Accepted: 14 July 2023; Published: 24 July 2023. This article belongs to the Special Issue Machine Learning for Time Series Analysis. Author to whom correspondence should be addressed: Nina Golyandina.
- [3] Nina Golyandina, Vladimir Nekrutkin, and Anatoly Zhigljavsky. Analysis of Time Series Structure: SSA and Related Techniques. Chapman and Hall/CRC, 2001.
- [4] Nikolay Pogrebnikov (xSICHx). Spbu cissa coursework: Time series analysis. https://github.com/xSICHx/spbu_cissa_coursework, 2024. Accessed: 2024-10-23.