Math 240B: Real Analysis, Winter 2020

Homework Assignment 1

Due Monday, January 13, 2020

- 1. Let (X, \mathcal{M}) be a measurable space. Let M(X) be the space of complex measures on (X, \mathcal{M}) . Prove that $\|\mu\| = |\mu|(X)$ is a norm on M(X) that makes M(X) into a Banach space.
- 2. Let $k \in \mathbb{N}$ and denote by $C^k([0,1])$ the space of functions on [0,1] possessing continuous derivatives up to order k on [0,1], including one-sided derivatives at the endpoints. For any $f \in C^k([0,1])$, define $||f||_{C^k} = \max_{0 \le j \le k} \max_{x \in [0,1]} |f^{(j)}(x)|$. Prove that this is a norm on $C^k([0,1])$ that makes $C^k([0,1])$ into a Banach space.
- 3. Let $\alpha \in (0,1)$ and denote by $\Lambda_{\alpha}([0,1])$ the space of Hölder continuous functions of exponent α on [0,1], defined by the following: $f \in \Lambda_{\alpha}$ if and only if $||f||_{\alpha} < \infty$, where

$$||f||_{\alpha} = |f(0)| + \sup_{x,y \in [0,1], x \neq y} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}}.$$

Prove that $\|\cdot\|_{\alpha}$ is a norm that makes $\Lambda_{\alpha}([0,1])$ into a Banach space.

- 4. Let \mathcal{X} be a finitely dimensional vector space. Prove the following:
 - (1) Any two norms on \mathcal{X} are equivalent;
 - (2) The space \mathcal{X} is a Banach space.
- 5. Let $\|\cdot\|$ be a seminorm on a vector space \mathcal{X} and $\mathcal{M} = \{x \in \mathcal{X} : \|x\| = 0\}$. Prove that \mathcal{M} is a vector subspace of \mathcal{X} and that the map $x + \mathcal{M} \to \|x\|$ is a norm on the quotient space \mathcal{X}/\mathcal{M} .
- 6. Let \mathcal{X} be a normed vector space and \mathcal{M} a proper closed subspace of \mathcal{X} . Prove the following:
 - (1) $||x + \mathcal{M}|| = \inf\{||x + y|| : y \in \mathcal{M}\}\$ is a norm on \mathcal{X}/\mathcal{M} ;
 - (2) For any $\varepsilon \in (0,1)$ there exists $x \in \mathcal{X}$ such that ||x|| = 1 and $||x + \mathcal{M}|| > 1 \varepsilon$;
 - (3) The projection map $\pi(x) = x + \mathcal{M}$ from \mathcal{X} to \mathcal{X}/\mathcal{M} has norm 1;
 - (4) If \mathcal{X} is complete, so is \mathcal{X}/\mathcal{M} .
- 7. Prove that a linear functional f on a normed vector space \mathcal{X} is continuous if and only if $f^{-1}(\{0\})$ is a closed subspace of \mathcal{X} .
- 8. Let \mathcal{X} be a Banach space and $T \in L(\mathcal{X}, \mathcal{X})$.
 - (1) Suppose ||I T|| < 1, where I is the identity operator. Prove that T is invertible; in fact, the series $\sum_{n=0}^{\infty} (I T)^n$ converges in $L(\mathcal{X}, \mathcal{X})$ to T^{-1} .
 - (2) Suppose $T \in L(\mathcal{X}, \mathcal{X})$ is invertible, $S \in L(\mathcal{X}, \mathcal{X})$, and $||S T|| < ||T^{-1}||^{-1}$, then S is also invertible. (Thus the set of invertible operators in open in $L(\mathcal{X}, \mathcal{X})$.)