CM 1606 Computational Mathematics

Vectors

Week 9 | Ganesha Thondilege

Learning Outcomes

- Covers LO1 for CM 1606
- On completion of this lecture, students are expected to be able to:
 - Define and represent a vector.
 - Identify component of a vector and addition
 - Set up coordinate system for representing vectors.
 - Calculate the scalar product
 - Calculate the vector product and triple vector product
 - Direction cosines

CONTENT

- Physical quantities
- Vector representation
- Properties
- Types of vectors
- Vector addition
- Components of a vector
- 3D Vectors
- Product of vectors
- Direction cosines

Physical quantities

Physical quantity

Scalar quantity

refers only about the size or magnitude

e.g. speed, length, time

Vector quantity

refers not only about the magnitude but also the direction in which it operates

e.g. Velocity, Force, Acceleration

e.g. Wind blows at a speed of 10km/h. (about a scalar quantity)
Wind has a velocity of 10km/h towards north. (about a vector quantity)

Vector representation

- Represented by a line segment with an arrowhead
- Length of the line segment denotes the magnitude
- Arrowhead denotes the direction
- Vector quantity denoted as \overline{AB} or \underline{a}
- Magnitude denoted as $|\overline{\bf AB}|$ or $|\underline{a}|$

Properties

Same magnitude but opposite direction

Same direction but different magnitudes (multiplication by a scalar)

Properties ctd.

Equal vectors – Same direction and same magnitude

- Null vector (no magnitude, but any direction)
 - nothing to represent!
 - Null vector is denoted by 0 (zero with vector sign)
- Unit vector (magnitude is one(unit))

Types of vectors

• **Position vectors**: Vectors are drawn with one fixed reference point.

OA denotes the position of A with respect to a fixed-point O.

• Free vectors: No restriction on position or line as in the previous cases.

Vector addition(Triangular Law)

- Addition of two vectors \underline{a} and \underline{b} , $\underline{a} + \underline{b}$
- Draw them as a chain starting the second where the first ends
- Resultant vector from the starting point to the end point of the chain.

Addition of vectors ctd.

 \underline{a} — force of 40N horizontally

 $\frac{b}{}$ — force of 30N vertically

Resultant force : $\underline{a} + \underline{b}$ (or \overline{AC})

Magnitude =
$$|\overline{AC}| = AC$$

= $\sqrt{AB^2 + BC^2}$
= $\sqrt{40^2 + 30^2}$
= $50 N$

Direction = Direction from A to C

= θ upwards from horizontal direction where tan $\theta = \frac{3}{4}$.

Addition of vectors ctd.

• About subtraction.... a-b

• Subtraction as an addition.... a-b=a+(-b)

$$\underline{a}-\underline{b}$$

Addition of vectors (Parallelogram Law)

Both a + b and a - b in the same diagram...

Components of a vector

$$\underline{a} = a\underline{i}$$

$$\underline{b} = b \underline{j}$$

Then
$$\overline{OP} = a\underline{i} + b\underline{j}$$
 and $|\overline{OP}| = \sqrt{a^2 + b^2}$

$$Eg: \underline{a} = 2\underline{i} + 3\underline{j}$$

Example

Suppose
$$\underline{a} = -2\underline{i} + 3\underline{j}$$
, $\underline{b} = \underline{i} - 4\underline{j}$, $\underline{c} = 2\underline{j}$

- a) Do the required simplification and display the resulting vector for the following cases.
- b) Find the magnitude of each resulting vector.

$$i. \ \underline{a} + \underline{b}$$

iii.
$$\underline{a} + \underline{b} + \underline{c}$$

iv.
$$a-b$$

$$v. \ \underline{a} + \underline{b} - \underline{c}$$

$$vi. -2a + 3b$$

3D Vectors

a, b, c -lengths along OX, OY, OZ respectively.

Then,
$$\overline{OP} = a\underline{i} + b\underline{j} + c\underline{k}$$

Hence,
$$|\overline{OP}| = \sqrt{a^2 + b^2 + c^2}$$

Example

Suppose $\underline{a} = \underline{i} + \underline{j} + \underline{k}$, $\underline{b} = 2\underline{i} - 2\underline{j} - \underline{k}$, $\underline{c} = 2\underline{i} + \underline{k}$ Ex:

- a) Do the required simplification and display the resulting vector for the following cases.
- b) Find the magnitude of each resulting vector.

i.
$$\underline{a} - \underline{b} + \underline{c}$$

ii.
$$2\underline{a} + 3\underline{c}$$

iii.
$$\underline{a} - 2\underline{b} - 3\underline{c}$$

Properties

For vectors a, b, c and scalars k, k'

$$i. \ (\underline{a} + \underline{b}) + \underline{c} = \underline{a} + (\underline{b} + \underline{c})$$

$$ii. \ \underline{a} + \underline{0} = \underline{a}$$

iii.
$$a + (-a) = 0$$

$$iv. a+b=b+a$$

$$v. k(\underline{a} + \underline{b}) = k\underline{a} + k\underline{b}$$

$$vi. (k + k')a = ka + k'a$$

$$vii. (kk')a = k(k'a)$$

$$viii. 1a = a$$

Scalar Product (Dot Product)

Scalar product of two vectors \underline{a} and \underline{b} is defined by $|\underline{a}| |\underline{b}| \cos \theta$ where θ is the angle between \underline{a} and \underline{b} . It is denoted by $\underline{a} \cdot \underline{b}$.

ie.
$$\underline{a} \cdot \underline{b} = |\underline{a}| |\underline{b}| \cos \theta$$

So, scalar product produces a scalar (number) as its result.

If
$$|\overline{OA}| = 4$$
, $|\overline{OB}| = 3$, and $\angle AOB = 60^{\circ}$

then
$$\overline{OA} \cdot \overline{OB} = |\overline{OA}| |\overline{OB}| \cos 60^{\circ}$$

$$= 4 \times 3 \times \frac{1}{2}$$

Key illustrations

1. Scalar product of two perpendicular vectors.

2. Scalar product of two vectors in the same direction.

$$\underline{\underline{a}} \cdot \underline{\underline{b}} = |\underline{\underline{a}}| |\underline{\underline{b}}| \cos 0^{0}$$

$$= |\underline{\underline{a}}| |\underline{\underline{b}}|$$

3. Scalar product of two vectors in the opposite direction.

Key illustrations ctd.

4. Scalar product of two equal vectors.

5. Scalar product of unit vectors.

$$\underline{i} \cdot \underline{i} = |\underline{i}| |\underline{i}| \cos 0^{\circ} = 1 \times 1 \times 1 = 1$$

Similarly, $\underline{j} \cdot \underline{j} = 1$ and $\underline{k} \cdot \underline{k} = 1$
 $\underline{i} \cdot \underline{j} = |\underline{i}| |\underline{j}| \cos 90^{\circ} = 1 \times 1 \times 0 = 0$
Similarly, $\underline{i} \cdot \underline{k} = 0$ and $\underline{j} \cdot \underline{k} = 0$

6. Scalar product with null vectors.

$$\underline{a} \cdot \underline{0} = |\underline{a}| |\underline{0}| \cos \theta$$

$$= |\underline{a}|.0.\cos\theta = 0$$

Basic properties of scalar product

1.
$$\underline{a} \cdot \underline{b} = \underline{b} \cdot \underline{a}$$

2.
$$\underline{a} \cdot (\underline{b} + \underline{c}) = \underline{a} \cdot \underline{b} + \underline{a} \cdot \underline{c}$$

$$3.(k\underline{a})\cdot\underline{b} = \underline{a}\cdot(k\underline{b}) = k(\underline{a}\cdot\underline{b})$$
 k – scalar

Example with unit vector representation.

If
$$\underline{a} = a_1 \underline{i} + a_2 \underline{j} + a_3 \underline{k}$$

 $\underline{b} = b_1 \underline{i} + b_2 \underline{j} + b_3 \underline{k}$

Then,
$$\underline{a} \cdot \underline{b} = (a_1 \underline{i} + a_2 \underline{j} + a_3 \underline{k}) \cdot (b_1 \underline{i} + b_2 \underline{j} + b_3 \underline{k})$$

$$= \begin{pmatrix} a_1 b_1 & \underline{i} \cdot \underline{i} & + a_1 b_2 & \underline{i} \cdot \underline{j} & + a_1 b_3 & \underline{i} \cdot \underline{k} & + \\ a_2 b_1 & \underline{j} \cdot \underline{i} & + a_2 b_2 & \underline{j} \cdot \underline{j} & + a_2 b_3 & \underline{j} \cdot \underline{k} & + \\ a_3 b_1 & \underline{k} \cdot \underline{i} & + a_3 b_2 & \underline{k} \cdot \underline{j} & + a_3 b_3 & \underline{k} \cdot \underline{k} \end{pmatrix} = a_1 b_1 + a_2 b_2 + a_3 b_3$$
11/29/2020

Examples

1) If
$$\underline{a} = \underline{i} - 2\underline{j} + 3\underline{k}$$
 and $\underline{b} = 4\underline{i} + 6\underline{j} + \underline{k}$
Then, $\underline{a} \cdot \underline{b} = 4 \underline{i} \cdot \underline{i} + (-12) \underline{j} \cdot \underline{j} + 3 \underline{k} \cdot \underline{k}$
 $= 4 - 12 + 3$
 $= -5$

2) Find the angle between $\underline{a} = \underline{i} + \underline{j} + \underline{k}$ and $\underline{b} = 3\underline{i} - 2\underline{j} + 6\underline{k}$ using dot product. (Another way to find angle between vectors...!)

$$\underline{a} \cdot \underline{b} = |\underline{a}| |\underline{b}| \cos \theta$$

$$7 = \sqrt{3} \, 7 \cos \theta$$

$$\theta = \cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$$

Examples

3) Let
$$\underline{a} = \underline{i} + 2\underline{j} - \underline{k}$$
, $\underline{b} = -2\underline{i} + \underline{j} - 3\underline{k}$, $\underline{c} = \underline{i} - \underline{j}$

Evaluate the following dot products.

i.
$$\underline{a} \cdot \underline{b}$$

iv.
$$2\underline{a} \cdot 3\underline{b}$$

ii.
$$\underline{a} \cdot \underline{c}$$

v.
$$-\underline{a} \cdot \underline{c}$$

iii.
$$\underline{a} \cdot (\underline{b} + \underline{c})$$

iii.
$$\underline{a} \cdot (\underline{b} + \underline{c})$$
 vi. $(\underline{a} + \underline{b}) \cdot (-\underline{b} + 2\underline{c})$

Vector product(Cross product)

Vector product of two vectors a and b is defined by a vector with the magnitude $|\underline{a}| |\underline{b}| \sin \theta$, where θ ($0 \le \theta \le 180^{\circ}$) is the angle between \underline{a} and \underline{b} and with the direction perpendicular to both a and b.

$$\underline{a} \times \underline{b} = |\underline{a}| \quad |\underline{b}| \sin \theta \quad \underline{n}$$

The vector n is the unit vector directs towards the direction of a screw once it rotates from the direction of a to direction of b.

Vector product a to b is denoted by $a \times b$ or $a \wedge b$.

Key illustrations on vector product

1. Vector product of two perpendicular vectors.

$$\underline{a} \times \underline{b} = |\underline{a}| |\underline{b}| \sin 90^{\circ} \underline{n}$$

$$= |\underline{a}| |\underline{b}| \underline{n}$$
Then, $|\underline{a} \times \underline{b}| = |\underline{a}| |\underline{b}|$
(n has its original meaning....!)

2. Vector product of two vectors in the same direction.

$$\underline{a} \times \underline{b} = |\underline{a}| |\underline{b}| \sin 0^{0} \underline{n}$$
$$= \underline{0} \text{ (null vector)}$$

Key illustrations ctd.

3. Vector product of two vectors in the opposite direction.

$$\underline{a} \times \underline{b} = |\underline{a}| |\underline{b}| \sin 180^{\circ} \underline{n}$$
$$= |\underline{a}| |\underline{b}| .0 .\underline{n}$$
$$= 0$$

4. Vector product of two equal vectors.

$$\underline{a} \times \underline{a} = |\underline{a}| |\underline{a}| \sin 0^{0} \underline{n}$$
$$= \underline{0}$$

Properties

1.
$$\underline{b} \times \underline{a} = -(\underline{a} \times \underline{b})$$

2.
$$\underline{a} \times (\underline{b} + \underline{c}) = (\underline{a} \times \underline{b}) + (\underline{a} \times \underline{c})$$

3.
$$(k\underline{a}) \times \underline{b} = \underline{a} \times (k\underline{b}) = k(\underline{a} \times \underline{b})$$
 k – scalar

Vector product using determinant

Consider the determinant

$$\underline{a} \times \underline{b} = \begin{vmatrix} \underline{i} & \underline{j} & \underline{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

- First row consists of unit vectors
- Second row consists of corresponding coefficients of \underline{a}
- Third row consists of corresponding coefficients of \underline{b}

Example

If
$$\underline{a} = \underline{i} + 2\underline{j} - \underline{k}$$
 and $\underline{b} = 3\underline{i} + 4\underline{j} + \underline{k}$

i) Find $\underline{a} \times \underline{b}$.

$$\underline{a} \times \underline{b} = \begin{vmatrix} \underline{i} & \underline{j} & \underline{k} \\ 1 & 2 & -1 \\ 3 & 4 & 1 \end{vmatrix} = \underline{i} \begin{vmatrix} 2 & -1 \\ 4 & 1 \end{vmatrix} - \underline{j} \begin{vmatrix} 1 & -1 \\ 3 & 1 \end{vmatrix} + \underline{k} \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = 6 \underline{i} - 4 \underline{j} - 2 \underline{k}$$

ii) Find the unit vector in the direction of $a \times b$.

$$\frac{\underline{a} \times \underline{b}}{|\underline{a} \times \underline{b}|} = \frac{6 \, \underline{i} - 4 \, \underline{j} - 2 \underline{k}}{\sqrt{6^2 + (-4)^2 + (-2)^2}} = \frac{6}{\sqrt{56}} \, \underline{i} - \frac{4}{\sqrt{56}} \, \underline{j} - \frac{2}{\sqrt{56}} \, \underline{k}$$

iii) Find the angle between \underline{a} and \underline{b} .

(Another way to find angle between vectors...!)

$$|\underline{a} \times \underline{b}| = |\underline{a}| |\underline{b}| \sin \theta$$

$$\sin \theta = \frac{\left| 6\underline{i} - 4\underline{j} - 2\underline{k} \right|}{\left| \underline{i} + 2\underline{j} - \underline{k} \right| \left| 3\underline{i} + 4\underline{j} + \underline{k} \right|} = \frac{\sqrt{56}}{\sqrt{6}\sqrt{26}} = \sqrt{\frac{14}{39}}$$

$$\theta = \sin^{-1} \left(\sqrt{\frac{14}{39}} \right)$$

Example ctd.

iii) Find the angle between \underline{a} and \underline{b} .

(Another way to find angle between vectors...!)

$$|\underline{a} \times \underline{b}| = |\underline{a}||\underline{b}|\sin\theta$$

$$\sin\theta = \frac{|6\underline{i} - 4\underline{j} - 2\underline{k}|}{|\underline{i} + 2\underline{j} - \underline{k}||3\underline{i} + 4\underline{j} + \underline{k}|} = \frac{\sqrt{56}}{\sqrt{6}\sqrt{26}} = \sqrt{\frac{14}{39}}$$

$$\theta = \sin^{-1}\left(\sqrt{\frac{14}{39}}\right)$$

Example

Let
$$\underline{a} = \underline{i} + 2\underline{j} - \underline{k}$$
, $\underline{b} = -2\underline{i} + \underline{j} - 2\underline{k}$, $\underline{c} = \underline{i} - \underline{j}$

Evaluate the followings.

i.
$$\underline{a} \times \underline{b}$$

iv.
$$-2\underline{b} \times \underline{a}$$

ii.
$$\underline{b} \times \underline{c}$$

v.
$$(\underline{a} - \underline{b}) \times (-2\underline{a} + 3\underline{c})$$

iii.
$$(\underline{b} \times \underline{a}) + (\underline{b} \times \underline{c})$$

Triple product of vectors

For three vectors a, b and c, two types of triple products are defined.

1. Scalar triple product

$$\underline{a} \cdot (\underline{b} \times \underline{c})$$
 resulting a scalar

2. Vector triple product

$$\underline{a} \times (\underline{b} \times \underline{c})$$
 resulting a vector

Ex. Find the above two triple products for

$$\underline{a} = 2\underline{i} + \underline{j} - 2\underline{k}, \ \underline{b} = -\underline{i} - 2\underline{j} + \underline{k} \text{ and } \underline{c} = 3\underline{i} + \underline{j} - 2\underline{k}.$$

Direction cosines

The direction of a vector can be determined by the angles which the vector marks with the three axes of reference.

Direction cosines ctd...

Once we denote $\cos \alpha$ as l, $\cos \beta$ as m and $\cos \gamma$ as n, [l,m,n] written in square brackets are called direction cosines of vector r.

Hence, we have an interesting relationship as follows.

Since
$$a^2 + b^2 + c^2 = r^2$$
, we have $r^2 \cos^2 \alpha + r^2 \cos^2 \beta + r^2 \cos^2 \gamma = r^2$ $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$
ie. $l^2 + m^2 + n^2 = 1$

Direction cosines ctd...

eg. Find the direction cosines of the vector $\underline{i} - 2\underline{j} + 3\underline{k}$.

Let, $\underline{r} = \underline{i} - 2\underline{j} + 3\underline{k}$. With usual notation, we have

$$a = 1, b = -2, c = 3$$
 and $r = \sqrt{1^2 + (-2)^2 + 3^2} = \sqrt{14}$

Then, direction cosines:
$$l = \frac{a}{r} = \frac{1}{\sqrt{14}}$$
, $m = \frac{b}{r} = \frac{-2}{\sqrt{14}}$, $n = \frac{c}{r} = \frac{3}{\sqrt{14}}$

In bracket notation:
$$\left[\frac{1}{\sqrt{14}}, \frac{-2}{\sqrt{14}}, \frac{3}{\sqrt{14}}\right]$$

Example

Find the direction cosines of the following vectors in 3D space.

i.
$$\underline{i} + \underline{j} + \underline{k}$$

ii.
$$3\underline{i} - 2\underline{j} + 6\underline{k}$$

iii.
$$-2\underline{i} + \underline{j} - \underline{k}$$

iv.
$$3i + 4j$$