Alternative Derivative Action (Continuous-time)

Imagine a step change in reference signal r(t). This results in a theoretically infinite, practically very large response of the derivative term.

 \Rightarrow Add a low-pass filter to the derivative term:

$$\frac{U_d(s)}{E(s)} = \frac{K_d s}{1 + s\tau}$$

With $s=j\omega$, breakpoint at $\omega=1/\tau$. This prevents amplification of high frequencies.

Alternative Derivative Action (Continuous-time)

$$\frac{U_d(s)}{E(s)} = \frac{K_d s}{1 + s\tau}$$

Further e(t) is replaced by $c \cdot r(t) - y(t)$ with c the setpoint weighting, which is often set to zero to further reduce immediate influence of a sudden set-point jump.

In the time-domain:

$$u_d(t) = -\tau \frac{du_d}{dt} + K_d \frac{d}{dt} (c \cdot r(t) - y(t))$$

Outline

- 1 Introduction
- 2 Analog and Digital formulations
- Implementations
 - Analog Implementation
 - Digital Implementation
- 4 PID Tuning
 - Manual Tuning
 - Heuristic Methods
 - Numerical Optimization Methods

Outline

- Introduction
- 2 Analog and Digital formulations
- Implementations
 - Analog Implementation
 - Digital Implementation
- PID Tuning
 - Manual Tuning
 - Heuristic Methods
 - Numerical Optimization Methods

Analog Implementation

The key building block is the operational amplifier (op-amp).

Analog Implementation

Analog PID controller: FOXBORO 62H-4E-OH M/62H