- 1. Граф 1 Европы $\mathcal{E} = \langle V, E \rangle$ определяется следующим образом: каждая вершина $v \in V$ страна Европы; две вершины смежны ($\{u, v\} \in E$), если соответствующие страны граничат. Обозначим за \mathcal{E}^* наибольшую компоненту связности графа \mathcal{E} .
 - (a) Нарисуйте граф Европы $\mathcal E$ и докажите его планарность, показав, что он плоский.
 - (b) Найдите: |V|, |E|, $\delta(\mathcal{E}^*)$, $\Delta(\mathcal{E}^*)$, $\mathrm{rad}(\mathcal{E}^*)$, $\mathrm{diam}(\mathcal{E}^*)$, $\mathrm{center}(\mathcal{E}^*)$.
 - (c) Найдите наименьшую вершинную раскраску 2 Z графа \mathcal{E} .
 - (d) Найдите наибольшее независимое множество X графа $\mathcal E$ и докажите, что оно максимально.
 - (e) Найдите наибольшее паросочетание M графа $\mathcal E$ и докажите, что оно максимально.
 - (f) Найдите наименьшее вершинное покрытие R графа $\mathcal E$ и докажите, что оно минимально.
 - (g) Найдите наименьшее рёберное покрытие F графа \mathcal{E}^* и докажите, что оно минимально.
 - (h) Найдите кратчайший замкнутый путь, содержащий все рёбра 3 графа \mathcal{E}^* .
 - (i) Добавьте весовую функцию $w: E \to \mathbb{R}$, обозначающую расстояние между столицами. Найдите минимальное остовное дерево T для наибольшей компоненты связности взвешенного графа $\mathcal{E}_w = \langle V, E, w \rangle$.
- 2. Докажите, что в каждом r-регулярном (r > 0) (n, m)-двудольном графе n = m.
- 3. Докажите, что связный граф $G = \langle V, E \rangle$ дерево тогда и только тогда, когда |E| = |V| 1.
- 4. Докажите «неравенство треугольника» для связного графа $G = \langle V, E \rangle$:

$$\forall x, y, z \in V \operatorname{dist}(x, y) + \operatorname{dist}(y, z) \ge \operatorname{dist}(x, z)$$

Шпаргалочка

- * Граф G это пара $\langle V, E \rangle$ из множества вершин V и множества рёбер E.
- $*S^k = S \times \cdots \times S = \{\langle s_1, \ldots, s_k \rangle \mid s_1, \ldots, s_k \in S\}$ множество k-кортежей (Декартова k-степень S).
- * $S^{(k)} = \{ \{s_1, \dots, s_k\} \mid s_1 \neq \dots \neq s_k \in S \}$ множество всех подмножеств S размера k.
- * В простом направленном графе $E \subseteq V^2$. В простом ненаправленном графе $E \subseteq V^{(2)}$.
- * $\delta(G) = \min_{v \in V} \deg(v) -$ минимальная степень, $\Delta(G) = \max_{v \in V} \deg(v) -$ максимальная степень.
- * Граф называется r-регулярным, если все его вершины имеют одинаковую степень r.
- * Расстояние $\operatorname{dist}(v,w)$ между двумя вершинами длина кратчайшего пути $v \rightsquigarrow w$.
- * **Независимое множество** $X \subseteq V$ множество попарно несмежных вершин.
- * **Паросочетание** $M \subseteq E$ множество попарно несмежных рёбер.
- * Вершинное покрытие $R \subseteq V$ множество вершин, которые покрывают все рёбра графа: $\{u,v\} \in E \to u \in R \lor v \in R$.
- * **Рёберное покрытие** $F \subseteq E$ множество рёбер, которые покрывают все вершины графа.
- * Различайте наибольшие и максимальные штуки!
 - Некоторая штука A^* называется **наибольшей** («глобальный максимум»), если не существует другой штуки A, такой, что $|A| > |A^*|$.
 - Некоторая штука A' называется **максимальной** («локальный максимум»), если не существует другой штуки A, такой, что $A \supset A'$ (в некоторых случаях пишут A > A').
 - Аналогично определяются **наименьшие** и **минимальные** штуки.

¹Здесь и далее под «графом» подразумевается «простой ненаправленный и невзвешенный граф», если не указано иное.

 $^{^2}$ Так как граф $\mathcal E$ планарный, то точно существует 4-раскраска, однако, она может быть не наименьшей!

³Задача китайского почтальона.

 $^{^4}$ Чтобы доказать $A \leftrightarrow B$ («*тогда и только тогда*»), необходимо доказать как $A \to B$, так и $B \to A$.