CC1-S1

2017-2018

CORRECTION - ANALYSE -

Exercice 1

- 1. Soit (u_n) une suite décroissante, de limite nulle. Pour $n \in \mathbb{N}$, on note $S_n = \sum_{k=0}^{\infty} (-1)^k u_k$.
 - Montrer que les suites (S_{2n}) et (S_{2n+1}) sont adjacentes.

Soit $n \in \mathbb{N}$. On a:

 $S_{2n+2} - S_{2n} = u_{2n+2} - u_{2n+1} \le 0$, et $S_{2n+3} - S_{2n+1} = -u_{2n+3} + u_{2n+2} \ge 0$, car la suite (u_n) est décroissante.

De plus, $S_{2n+1} - S_{2n} = -u_{2n+1} \xrightarrow[n \to +\infty]{} 0.$

On en déduit que (S_{2n}) et (S_{2n+1}) sont adjacentes.

- **b.** En déduire la nature de la série $\sum (-1)^k u_k$. Les suites partielles (S_{2n}) et (S_{2n+1}) étant adjacentes, elles convergent et ont la même limite. On en déduit que la suite (S_n) converge, donc que la série $\sum (-1)^k u_k$ converge.
- **2.** Pour $n \in \mathbb{N}$, on note $I_n = \int_0^1 \frac{x^n}{1+x} dx$.

a. Montrer que pour tout $n \in \mathbb{N}$, $0 \le I_n \le \frac{1}{n+1}$. Soit $n \in \mathbb{N}$. Pour tout $x \in [0,1], 0 \le \frac{x^n}{1+x} \le x^n$; donc, par positivité de l'intégrale :

$$0 \le I_n \le \int_0^1 x^n dx$$
, d'où : $0 \le I_n \le \frac{1}{n+1}$.

b. Pour
$$n \in \mathbb{N}$$
, calculer $I_n + I_{n+1}$.
Soit $n \in \mathbb{N}$. $I_n + I_{n+1} = \int_0^1 \frac{x^n(1+x)}{1+x} dx = \int_0^1 x^n dx = \frac{1}{n+1}$.

c. Déduire de ce qui précède la convergence et la somme de la série $\sum_{k \ge 1} \frac{(-1)^k}{k}$.

La suite $\left(\frac{1}{k}\right)_{k>1}$ est strictement décroissante, de limite nulle.

D'après la question 1c, la série $\sum_{k=1}^{\infty} \frac{(-1)^k}{k}$ converge.

Soit
$$n \in \mathbb{N}^*$$
. D'après la question précédente, on a, par télescopage :
$$\sum_{k=1}^{n} \frac{(-1)^k}{k} = \sum_{k=0}^{n-1} \frac{(-1)^{k+1}}{k+1} = \sum_{k=0}^{n-1} (-1)^{k+1} (I_{k+1} + I_k = \sum_{k=0}^{n-1} (-1)^{k+1} I_{k+1} - (-1)^k I_k = (-1)^n I_n - I_0.$$

D'après la question 2.b, pour tout $n \in \mathbb{N}, \ 0 \le I_n \le \frac{1}{n+1}$

Le théorème d'encadrement donne donc : $\lim_{n \to \infty} I_n = 0$

On en déduit que $\sum_{k=1}^{+\infty}\frac{(-1)^k}{k}=-I_0=-\int_0^1\frac{1}{1+t}\mathrm{d}t=-\ln\ 2.$

Exercice 2

Soit $x \in \mathbb{R}_+^*$. On considère l'intégrale suivante :

$$I(x) = \int_1^x \frac{\ln t}{(1+t)^2} \mathrm{d}t$$

Spé PT Page 1 sur 2 **1.** Calculer I(x).

Pour
$$t \in [1, x]$$
, on pose $u(t) = \ln t$ et $v(t) = -\frac{1}{1+t}$.

u et v sont de classe C^1 sur [1,x]. Le théorème d'intégration par parties donne :

$$I(x) = \left[-\frac{\ln t}{1+t} \right]_{1}^{x} + \int_{1}^{x} \frac{dt}{t(1+t)} = -\frac{\ln x}{1+x} + \int_{1}^{x} \left(\frac{1}{t} - \frac{1}{1+t} \right) dt = -\frac{\ln x}{1+x} + \left[\ln \left(\frac{t}{1+t} \right) \right]_{1}^{x}$$
$$= -\frac{\ln x}{1+x} + \ln \left(\frac{x}{1+x} \right) + \ln 2.$$

2. Déterminer les limites de I(x) en 0 et en $+\infty$.

On écrit :
$$I(x) = -\frac{x \ln x}{1+x} - \ln(1+x) + \ln 2$$
; on a, par croissances comparées : $\lim_{x\to 0} I(x) = \ln 2$.

Par croissances comparées,
$$\lim_{x \to +\infty} \frac{\ln x}{1+x} = 0$$
, et $\lim_{x \to +\infty} \frac{x}{1+x} = 1$; on en déduit que $\lim_{x \to +\infty} I(x) = \ln 2$.

3. A l'aide du changement de variable $u = \frac{1}{t}$, montrer que $I(x) - I\left(\frac{1}{x}\right) = 0$.

Avec le changement
$$u = \frac{1}{t}$$
, on a : $\mathrm{d}t = -\frac{\mathrm{d}u}{u^2}$; on obtient :

$$I(x) = \int_{1}^{\frac{1}{x}} \frac{-\ln u}{\left(1 + \frac{1}{u}\right)^{2}} \times \frac{-\mathrm{d}u}{u^{2}} = \int_{1}^{\frac{1}{x}} \frac{\ln u}{(1 + u)^{2}} \mathrm{d}u = I\left(\frac{1}{x}\right), \text{ d'où le résultat.}$$

Exercice 3

On considère la suite de terme général $u_n = \frac{(2n)!}{(2^n n!)^2}$, pour $n \in \mathbb{N}^*$.

Pour
$$n \in \mathbb{N}^*$$
, on a : $\frac{u_{n+1}}{u_n} = \frac{(2n+2)(2n+1)}{2^2(n+1)^2} = \frac{2n+1}{2(n+1)}$. On a donc :

1. Donner un équivalent simple de
$$v_n = \ln(u_{n+1}) - \ln(u_n)$$
 et de $w_n = \ln((n+1)u_{n+1}) - \ln(nu_n)$.
Pour $n \in \mathbb{N}^*$, on a : $\frac{u_{n+1}}{u_n} = \frac{(2n+2)(2n+1)}{2^2(n+1)^2} = \frac{2n+1}{2(n+1)}$. On a donc :
$$\ln\left(\frac{u_{n+1}}{u_n}\right) = \ln\left(2n\left(1+\frac{1}{2n}\right)\right) - \ln\left(2n\left(1+\frac{1}{n}\right)\right) \underset{n \to +\infty}{\sim} -\frac{1}{2n}.$$
De plus, $\frac{(n+1)u_{n+1}}{nu_n} = \frac{2(n+1)^2(2n+1)}{2^2n(n+1)^2} = 1 + \frac{1}{2n}$. On a donc :
$$\ln\left(\frac{(n+1)u_{n+1}}{nu_n}\right) = \ln\left(1+\frac{1}{2n}\right) \underset{n \to +\infty}{\sim} \frac{1}{2n}.$$

De plus,
$$\frac{(n+1)u_{n+1}}{nu_n} = \frac{2(n+1)^2(2n+1)}{2^2n(n+1)^2} = 1 + \frac{1}{2n}$$
. On a donc

$$\ln\left(\frac{(n+1)u_{n+1}}{nu_n}\right) = \ln\left(1 + \frac{1}{2n}\right) \underset{n \to +\infty}{\sim} \frac{1}{2n}.$$

2. En déduire que $\lim_{n\to+\infty}u_n=0$, et que $\lim_{n\to+\infty}nu_n=+\infty$.

Soit
$$n \in \mathbb{N}^*$$
. Par télescopage, on a : $\sum_{k=1}^n \ln\left(\frac{u_{n+1}}{u_n}\right) = \ln(u_{n+1}) - \ln(u_1)$.

D'après la question précédente,
$$\sum_{k\geq 1} \ln\left(\frac{u_{n+1}}{u_n}\right)$$
 et $\sum_{k\geq 1} \frac{-1}{2n}$ sont de même nature.

Comme
$$\lim_{n\to+\infty}\sum_{k=1}^n\frac{-1}{2n}=-\infty$$
, on en déduit que $\lim_{n\to+\infty}\ln(u_{n+1})=-\infty$, et par suite que $\lim_{n\to+\infty}u_n=0$.

Le même raisonnement donne :
$$\lim_{n \to +\infty} (n+1) \ln(u_{n+1}) = +\infty$$
, puis $\lim_{n \to +\infty} nu_n = +\infty$.

3. Déterminer la nature de la série $\sum_{n\geq 1} u_n$.

D'après la question précédente, pour
$$n$$
 assez grand, $\frac{1}{n} \le u_n$.

La série
$$\sum_{n\geq 1} \frac{1}{n}$$
 étant divergente, par comparaison de séries positives, on en déduit que $\sum_{n\geq 1} u_n$ est divergente.

Spé PT Page 2 sur 2