

10/771,696

-2-

PC9985B

Amendments to the Claims:

Claims 1-12 (Canceled)

Claims 13-25 (Canceled)

26. (Canceled)

27. (Canceled)

28. (Currently AmendedNew) A method for the treatment of a disorder or condition mediated by an EP4 receptor in a mammalian subject including a human, wherein the disorder or condition is selected from pain, inflammation, an inflammation associated disorder, osteoarthritis, and rheumatoid arthritis, said method comprising administering to a mammal in need of such treatment an effective amount of a compound of the following formula:

(I)

or the pharmaceutically acceptable salts thereof, wherein
one of Y¹, Y², Y³ and Y⁴ is N and the others are independently selected from CH and
C(L);

R¹ is H, C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₃₋₇ cycloalkyl, C₁₋₈ alkoxy, halo-substituted C₁₋₈ alkoxy, C₁₋₈ alkyl-S(O)m-, Q¹-, pyrrolidinyl, piperidyl, oxopyrrolidinyl, oxopiperidyl, amino, mono- or di-(C₁₋₈ alkyl)amino, C₁₋₄alkyl-C(=O)-N(R³)- or C₁₋₄alkyl-S(O)m-N(R³)-, wherein said C₁₋₈ alkyl, C₂₋₈ alkenyl

10/771,696

-3-

PC9985B

and C₂₋₈ alkynyl are optionally substituted with halo, C₁₋₃ alkyl, hydroxy, oxo, C₁₋₄ alkoxy-, C₁₋₄ alkyl-S(O)m-, C₃₋₇ cycloalkyl-, cyano, indanyl, 1,2,3,4-tetrahydronaphthyl, 1,2-dihydronaphthyl, pyrrolidinyl, piperidyl, oxopyrrolidinyl, oxopiperidyl, Q¹-, Q¹-C(=O)-, Q¹-O-, Q¹-S(O)m-, Q¹-C₁₋₄alkyl-O-, Q¹-C₁₋₄alkyl-S(O)m-, Q¹-C₁₋₄alkyl-C(O)-N(R³)-, Q¹-C₁₋₄alkyl-N(R³)- or C₁₋₄alkyl-C(O)-N(R³)-;

Q¹ is a 5-12 membered monocyclic or bicyclic aromatic ring optionally containing up to 4 heteroatoms selected from O, N and S, and is optionally substituted with halo, C₁₋₄ alkyl, halo-substituted C₁₋₄ alkyl, hydroxy, C₁₋₄ alkoxy, halo-substituted C₁₋₄ alkoxy, C₁₋₄ alkylthio, nitro, amino, mono- or di-(C₁₋₄alkyl)amino, cyano, HO-C₁₋₄ alkyl, C₁₋₄ alkoxy-C₁₋₄alkyl, C₁₋₄ alkylsulfonyl, aminosulfonyl, C₁₋₄alkylC(=O)-, HO(O=)C-, C₁₋₄alkyl-O(O=)C-, R³N(R⁴)C(=O)-, C₁₋₄ alkylsulfonylamino, C₃₋₇ cycloalkyl, R³C(=O)N(R⁴)- or NH₂(HN=)C-;

A is a 5-6 membered monocyclic aromatic ring optionally containing up to 3 heteroatoms selected from O, N and S, wherein said 5-6 membered monocyclic aromatic ring is optionally substituted with up to 3 substituents selected from halo, C₁₋₄ alkyl, halo-substituted C₁₋₄ alkyl, hydroxy, C₁₋₄ alkoxy, halo-substituted C₁₋₄ alkoxy, C₁₋₄ alkylthio, nitro, amino, mono- or di-(C₁₋₄ alkyl)amino, cyano, HO-C₁₋₄ alkyl, C₁₋₄ alkoxy-C₁₋₄alkyl, C₁₋₄ alkylsulfonyl, aminosulfonyl, acetyl, R³N(R⁴)C(=O)-, HO(O=)C-, C₁₋₄alkyl-O(O=)C-, C₁₋₄ alkylsulfonylamino, C₃₋₇ cycloalkyl, R³C(=O)N(R⁴)- and NH₂(HN=)C-;

B is halo-substituted C₁₋₆ alkylene, C₃₋₇ cycloalkylene, C₂₋₆ alkenylene, C₂₋₆ alkynylene, -O-C₁₋₅ alkylene, C₁₋₂ alkylene-O-C₁₋₂ alkylene or C₁₋₆ alkylene optionally substituted with an oxo group or C₁₋₃ alkyl;

W is NH, N-C₁₋₄ alkyl, O, S, N-OR⁵ or a covalent bond;

R² is H, C₁₋₄ alkyl, OH or C₁₋₄ alkoxy;

10/771,696

-4-

PC9985B

Z is a 5-12 membered monocyclic or bicyclic aromatic ring optionally containing up to 3 heteroatoms selected from O, N and S, wherein said 5-12 membered monocyclic or bicyclic aromatic ring is optionally substituted with halo, C₁₋₄ alkyl, halo-substituted C₁₋₄ alkyl, C₄C₂₋₄ alkenyl, C₄C₂₋₄ alkynyl, hydroxy, C₁₋₄ alkoxy, halo-substituted C₁₋₄ alkoxy, C₁₋₄ alkylthio, nitro, amino, mono- or di-(C₁₋₄ alkyl)amino, cyano, HO-C₁₋₄ alkyl, C₁₋₄ alkoxy-C₁₋₄alkyl, C₁₋₄ alkylsulfonyl, aminosulfonyl, C₁₋₄alkylC(=O)-, R³C(=O)N(R⁴)-, HO(O=)C-, C₁₋₄alkyl-O(O=)C-, C₁₋₄alkylsulfonylamino, C₃₋₇ cycloalkyl, NH₂(HN=)C-, Q²-S(O)m-, Q²-O-, Q²-N(R³)- or Q²-;

L is halo, C₁₋₄ alkyl, halo-substituted C₁₋₄ alkyl, hydroxy, C₁₋₄ alkoxy, halo-substituted C₁₋₄ alkoxy, C₁₋₄ alkylthio, nitro, amino, mono- or di-(C₁₋₄ alkyl)amino, cyano, HO-C₁₋₄ alkyl, C₁₋₄ alkoxy-C₁₋₄alkyl, C₁₋₄ alkylsulfonyl, aminosulfonyl, C₁₋₄alkylC(=O)-, HO(O=)C-, C₁₋₄alkyl-O(O=)C-, C₁₋₄alkylsulfonylamino, C₃₋₇ cycloalkyl, R³C(=O)N(R⁴)-, NH₂(HN=)C-, R³N(R⁴)C(=O)-, R³N(R⁴)S(O)m-, Q²-, Q²-C(=O)-, Q²-O-, Q²-C₁₋₄alkyl-O-, or two adjacent L groups are optionally joined together to form an alkylene chain having 3 or 4 members in which one or two (non-adjacent) carbon atoms are optionally replaced by oxygen atoms;

m is 0, 1 or 2;

R³ and R⁴ are independently selected from H and C₁₋₄ alkyl ;

R⁵ is H, C₁₋₄ alkyl, C₁₋₄ alkyl-(O=)C- or C₁₋₄ alkyl-O-(O=)C- ; and

Q² is a 5-12 membered monocyclic or bicyclic aromatic ring, or a 5-12 membered tricyclic ring optionally containing up to 3 heteroatoms selected from O, N and S, wherein said 5-12 membered monocyclic or bicyclic aromatic ring is optionally substituted with halo, C₁₋₄ alkyl, halo-substituted C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkynyl, hydroxy, C₁₋₄ alkoxy, halo-substituted C₁₋₄ alkoxy, C₁₋₄ alkylthio, nitro, amino, mono- or di-(C₁₋₄ alkyl)amino, cyano, HO-C₁₋₄ alkyl, C₁₋₄ alkoxy-C₁₋₄

10/771,696

-5-

PC9985B

4alkyl, C₁-4 alkylsulfonyl, aminosulfonyl, C₁-4alkyl- (O=)C-, R³(R⁴)C(=O)N-, HO(O=)C-, C₁-4 alkyl-O(O=)C-, C₁-4 alkylsulfonylamino, C₃-7 cycloalkyl, C₁-4 alkyl-C(=O)NH- or NH₂(HN=)C-.

29. (Currently Amended) A method according to Claim 28, wherein

one of Y¹, Y², Y³, and Y⁴ is N and the others are independently selected from CH and C(L);

R¹ is H, C₁-8 alkyl, C₂-8 alkenyl, C₂-8 alkynyl, C₃-7 cycloalkyl, C₁-8 alkoxy, halo-substituted C₁-8 alkoxy, C₁-8 alkyl-S(O)m-, Q¹-, pyrrolidinyl, piperidyl, oxopyrrolidinyl, oxopiperidyl, amino, mono- or di-(C₁-8 alkyl)amino, C₁-4alkyl-C(=O)-N(R³)- or C₁-4alkyl-S(O)m-N(R³)-, wherein said C₁-8 alkyl, C₂-8 alkenyl and C₂-8 alkynyl are optionally substituted with halo, C₁-3 alkyl, hydroxy, oxo, C₁-4 alkoxy-, C₁-4 alkyl-S(O)m-, C₃-7 cycloalkyl-, cyano, indanyl, 1,2,3,4-tetrahydronaphthyl, 1,2-dihydronaphthyl, pyrrolidinyl, piperidyl, oxopyrrolidinyl, oxopiperidyl, Q¹-, Q¹-C(=O)-, Q¹-O-, Q¹-S(O)m-, Q¹-C₁-4 alkyl-O-, Q¹-C₁-4 alkyl-S(O)m-, Q¹-C₁-4alkyl-C(=O)-N(R³)-, or C₁-4alkyl-C(=O)-N(R³)-;

Q¹ is a 5-12 membered monocyclic or bicyclic aromatic ring optionally containing up to 4 heteroatoms selected from O, N and S, and is optionally substituted with halo, C₁-4 alkyl, halo-substituted C₁-4 alkyl , hydroxy, C₁-4 alkoxy, halo-substituted C₁-4 alkoxy, C₁-4 alkylthio, nitro, amino, mono- or di-(C₁-4 alkyl)amino, cyano, HO-C₁-4 alkyl, C₁-4 alkoxy-C₁-4alkyl, C₁-4 alkylsulfonyl, aminosulfonyl, C₁-4 alkylC(=O)-, HO(O=)C-, C₁-4 alkyl-O(O)C-, R³N(R⁴)C(=O)-, C₁-4 alkylsulfonylamino, C₃-7 cycloalkyl, R³C(=O)N(R⁴)- or NH₂(HN=)C-;

A is a 5-6 membered monocyclic aromatic ring optionally containing up to 2 heteroatoms selected from O, N, and S, wherein said 5-6 membered monocyclic aromatic ring is optionally substituted with up to 2 substituents selected from halo,

10/771,696

-6-

PC9985B

C₁₋₄ alkyl, halo-substituted C₁₋₄ alkyl, hydroxy, C₁₋₄ alkoxy and halo-substituted C₁₋₄ alkoxy;

B is C₃₋₇ cycloalkylene or C₁₋₆ alkylene optionally substituted with an oxo group or C₁₋₃ alkyl;

W is NH, N-C₁₋₄ alkyl, O or N-OH;

R² is H or C₁₋₄ alkyl;

Z is a 5-12 membered monocyclic or bicyclic aromatic ring optionally containing up to 3 heteroatoms selected from, N and S, wherein said 5-12 membered monocyclic or bicyclic aromatic ring is optionally substituted with halo, C₁₋₄ alkyl, halo-substituted C₁₋₄ alkyl, C₄C₂₋₄ alkenyl, C₂₋₄ alkynyl, hydroxy, C₁₋₄ alkoxy, nitro, amino, cyano, HO-C₁₋₄ alkyl, C₁₋₄ alkylsulfonyl, aminosulfonyl, C₁₋₄ alkylC(=O)-, R³C(=O)N(R⁴)-, HO(O=)C-, C₁₋₄ alkyl-O(O=)C-, C₁₋₄ alkylsulfonylamino, C₁₋₄ alkyl-C(=O)NH-, Q²-S(O)m-, Q²-O-, Q²-N(R³)- or Q²-;

L is halo, C₁₋₄ alkyl, halo-substituted C₁₋₄ alkyl, hydroxy, C₁₋₄ alkoxy, mono- or di-(C₁₋₄ alkyl)amino, halo-substituted C₁₋₄ alkoxy, cyano, HO-C₁₋₄ alkyl, C₁₋₄ alkoxy-C₁₋₄ alkyl, C₁₋₄ alkylsulfonyl, aminosulfonyl, C₁₋₄ alkylC(=O)-, HO(O=)C-, C₁₋₄ alkyl-O(O=)C-, C₁₋₄ alkylsulfonylamino, C₃₋₇ cycloalkyl, R³C(=O)N(R⁴)-, R³N(R⁴)C(=O)-, R³N(R⁴)S(O)m-, Q²-, Q²-C(=O)-, Q²-O-, Q²-C₁₋₄ alkyl-O-, or two adjacent L groups are optionally joined together to form an alkylene chain having 3 or 4 members in which one or two (non-adjacent) carbon atoms are optionally replaced by oxygen atoms;

m is 0 or 2;

R³ and R⁴ are independently selected from H and C₁₋₄ alkyl; and

Q² is a 5-12 membered monocyclic or bicyclic aromatic ring, or a 8-12 membered tricyclic ring optionally containing up to 3 heteroatoms selected from O, N and S, wherein said 5-12 membered monocyclic or bicyclic aromatic ring is optionally substituted with halo, C₁₋₄ alkyl, halo-substituted C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄

10/771,696

-7-

PC9985B

alkynyl, hydroxy, C₁₋₄ alkoxy, halo-substituted C₁₋₄ alkoxy, C₁₋₄ alkylthio, mono- or di-(C₁₋₄ alkyl)amino, cyano, HO-C₁₋₄ alkyl, C₁₋₄ alkoxy-C₁₋₄ alkyl, C₁₋₄ alkylsulfonyl, aminosulfonyl, C₁₋₄ alkyl-(O=)C-, R³(R⁴)C(=O)N-, HO(O=)C-, C₁₋₄ alkyl-O(O=)C-, C₁₋₄ alkylsulfonylamino, C₃₋₇ cycloalkyl or C₁₋₄ alkyl-C(=O)NH-.

30. (Previously Presented) A method according to Claim 29, wherein one of Y¹, Y², Y³, and Y⁴ is N and the others are independently selected from CH and C(L);
- R¹ is H, C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₃₋₇ cycloalkyl, Q¹-, pyrrolidinyl, piperidyl, oxopyrrolidinyl, oxopiperidyl, amino, mono- or di-(C₁₋₈ alkyl)amino, wherein said C₁₋₈ alkyl is optionally substituted with halo, C₁₋₃ alkyl, hydroxy, oxo, C₁₋₄ alkoxy-, C₁₋₄ alkyl-S(O)m-, C₃₋₇ cycloalkyl-, cyano, indanyl, pyrrolidinyl, piperidyl, oxopyrrolidinyl, oxopiperidyl, Q¹-, Q¹-C(O)-, Q¹-O-, Q¹-S-, Q¹-C₁₋₄ alkyl-O-, or C₁₋₄ alkyl-C(O)-N(R³)-;
- Q¹ is a 5-12 membered monocyclic aromatic ring optionally containing up to 4 heteroatoms selected from N and S, and is optionally substituted with halo, C₁₋₄ alkyl, C₁₋₄ alkylsulfonyl and C₁₋₄ alkylC(=O)-;
- A is 5-6 membered monocyclic aromatic ring optionally substituted with halo, C₁₋₄ alkyl or C₁₋₄ alkoxy;
- B is C₃₋₇ cycloalkylene or C₁₋₆ alkylene optionally substituted with an oxo group or C₁₋₃ alkyl;
- W is NH, N-C₁₋₄ alkyl, O or N-OH;
- R² is H or C₁₋₄ alkyl;
- Z is 5-12 membered monocyclic or bicyclic aromatic ring optionally containing up to 3 heteroatoms selected from, N and S, wherein said 5-12 membered monocyclic or bicyclic aromatic ring is optionally substituted with halo, C₁₋₄ alkyl, halo-

10/771,696

-8-

PC9985B

substituted C₁₋₄ alkyl, C₂₋₄ alkenyl, C₁₋₄ alkoxy, nitro, amino, cyano, R³C(=O)N(R⁴)-, C₁₋₄ alkyl-O(O=)C-, Q²⁻S(O)m-, Q²⁻O-, Q²⁻N(R³)- or Q²⁻; L is halo, C₁₋₄ alkyl, halo-substituted C₁₋₄ alkyl, hydroxy, C₁₋₄ alkoxy, halo-substituted C₁₋₄ alkoxy, mono- or di-(C₁₋₄ alkyl)amino, cyano, HO-C₁₋₄ alkyl, C₁₋₄ alkylsulfonyl, aminosulfonyl, C₁₋₄ alkylC(=O)-, HO(O=)C-, C₁₋₄ alkyl-O(O=)C-, C₁₋₄ alkylsulfonylamino, C₃₋₇ cycloalkyl, R³C(=O)N(R⁴)-, R³N(R⁴)C(=O)-, R³N(R⁴)S(O)m-, Q²⁻, Q²⁻C(=O)-, Q²⁻O-, Q²⁻C₁₋₄alkyl-O-, or two adjacent L groups are optionally joined together to form an alkylene chain having 3 or 4 members in which one or two (non-adjacent) carbon atoms are optionally replaced by oxygen atoms;

m is 0 or 2;

R³ and R⁴ are independently selected from H and C₁₋₄ alkyl; and

Q² is a 5 or 6 membered monocyclic aromatic ring, or a 8-12 membered tricyclic ring containing up to 3 heteroatoms selected from N and S, wherein said 5 or 6 membered monocyclic aromatic ring is optionally substituted with halo.

31. (Previously Presented) A method according to Claim 30, wherein

one of Y¹, Y², Y³ and Y⁴ is N and the others are independently selected from CH and C(L);

R¹ is H, C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl or C₃₋₇ cycloalkyl, wherein said C₁₋₈ alkyl is optionally substituted with halo, C₁₋₃ alkyl, hydroxy, oxo, C₁₋₄ alkoxy-, C₁₋₄ alkyl-S(O)m-, C₃₋₇ cycloalkyl-, cyano, indanyl, pyrrolidinyl, piperidyl, oxopyrrolidinyl, oxopiperidyl, Q¹⁻, Q¹⁻C(=O)-, Q¹⁻O-, Q¹⁻S-, Q¹⁻C₁₋₄ alkyl-O-, or C₁₋₄alkyl-C(O)-N(R³)-;

Q¹ is a 5 or 6 membered monocyclic aromatic ring optionally containing up to 4 heteroatoms selected from N and S;

10/771,696

-9-

PC9985B

A is 5-6 membered monocyclic aromatic ring system optionally substituted with halo or C₁₋₄ alkyl;

B is C₃₋₇ cycloalkylene or C₁₋₆ alkylene optionally substituted with an oxo group or C₁₋₃ alkyl;

W is NH, N-C₁₋₄ alkyl, O or N-OH;

R² is H or C₁₋₄ alkyl;

Z is 5-12 membered monocyclic or bicyclic aromatic ring optionally containing up to 3 heteroatoms selected from N and S, wherein said 5-12 membered monocyclic or bicyclic aromatic ring is optionally substituted with halo, C₁₋₄ alkyl, halo-substituted C₁₋₄ alkyl, C₂₋₄ alkenyl, C₁₋₄ alkoxy, nitro, amino, cyano,

R³C(=O)N(R⁴)-, C₁₋₄ alkyl-O(O=)C-, Q²-S(O)m-, Q²-O-, Q²-N(R³)- or Q²-;

L is halo, C₁₋₄ alkyl, halo-substituted C₁₋₄ alkyl, hydroxy, C₁₋₄ alkoxy, halo-substituted C₁₋₄ alkoxy, cyano, HO-C₁₋₄ alkyl, C₁₋₄ alkylsulfonyl, aminosulfonyl, C₁₋₄ alkylC(=O), HO(O=)C-, C₁₋₄ alkyl-O(O=)C-, C₁₋₄ alkylsulfonylamino, C₃₋₇ cycloalkyl, R³C(=O)NR⁴-, R³N(R⁴)C(=O)-, R³N(R⁴)S(O)m-, Q²-, Q²-C(=O)-, Q²-O-, Q²-C₁₋₄alkyl-O-, or two adjacent L groups are optionally joined together to form an alkylene chain having 3 or 4 members in which one or two (non-adjacent) carbon atoms are optionally replaced by oxygen atoms;

m is 0 or 2;

R³ and R⁴ are independently selected from H and C₁₋₄ alkyl; and

Q² is 5 or 6 membered monocyclic aromatic ring or a 8-12 membered tricyclic ring optionally containing 1 sulfur atom wherein said 5 or 6 membered monocyclic aromatic ring is optionally substituted with halo.

32. (Previously Presented) A method according to Claim 31, wherein

one of Y¹, Y², Y³ and Y⁴ is N and the others are independently selected from CH and C(L);

10/771,696

-10-

PC9985B

R¹ is C₁₋₅ alkyl or C₃₋₇ cycloalkyl, wherein said C₁₋₅ alkyl is optionally substituted with C₁₋₃ alkyl, hydroxy, oxo, pyrrolidinyl, piperidyl, oxopyrrolidinyl, oxopiperidyl, Q¹⁻, or C₁₋₄alkyl-C(O)-N(H)-;

Q¹ is 5-12 membered monocyclic aromatic ring system optionally containing up to 2 heteroatoms selected from N and S,

A is 5-6 membered monocyclic aromatic ring system;

B is C₁₋₃ alkylene optionally substituted with C₁₋₃ alkyl;

W is NH, N-C₁₋₂ alkyl or O;

R² is H;

Z is 5-12 membered monocyclic or bicyclic aromatic ring optionally containing up to 3 heteroatoms selected from N and S, wherein said 5-12 membered monocyclic aromatic ring is optionally substituted with halo, C₁₋₄ alkyl, nitro, R³C(=O)N(R⁴)- or Q²⁻;

L is halo, C₁₋₄ alkyl, halo-substituted C₁₋₄ alkyl, hydroxy, C₁₋₄ alkoxy, halo-substituted C₁₋₄ alkoxy, cyano, HO-C₁₋₄ alkyl, acetyl, R³N(R⁴)C(=O)-, R³N(R⁴)S(O)m-, Q²⁻, Q²⁻C(=O)-, or two adjacent L groups are joined together to form a methylenedioxy group;

R³ and R⁴ are independently selected from H and C₁₋₄ alkyl; and

Q² is 5 or 6 membered monocyclic aromatic ring system.

33. (Currently Amended) A method according to Claim 32, wherein

one of Y¹, Y², Y³ and Y⁴ is N and the others are independently selected from CH and C(L);

R¹ is C₁₋₅ alkyl optionally substituted with C₁₋₃ alkyl, hydroxy, oxo, 5 or 6 membered monocyclic aromatic ring, wherein said 5 or 6 membered monocyclic aromatic ring is containing 1 or 2 heteroatoms selected from N and S, or C₁₋₄alkyl-C(O)-N(R³)-;

A is phenyl;

10/771,696

-11-

PC9985B

B is C₁₋₂ alkylene optionally substituted with methyl;

W is NH, N-CH₃ or O;

R² is H;

Z is 5-10 membered monocyclic or bicyclic aromatic ring optionally containing up to 3 heteroatoms selected from N and S, wherein said 5-10 membered monocyclic aromatic ring is optionally substituted with chloro, bromo, methyl, nitro, CH₃C(=O)NH-, tBuC(=O)NH- or phenyl; and

L is chloro, methyl, trifluoromethyl, hydroxy, methoxy, cyano, acetyl, -C(=O)NH₂, trifluoromethoxy, methanesulfonyl, or 1-hydroxy-1-methyl-ethyl, or two adjacent L groups are joined together to form a methylenedioxy group.

34. (Currently Amended) A method according to Claim 33, wherein

one of Y¹, Y², Y³ and Y⁴ is N and the others are independently selected from CH and C(L);

R¹ is methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, neopentyl, thiazolylethyl methylamino, dimethylamino, pyrrolidinyl, pyridyl, or 1-acetylamino-1-methylethyl;

A is phenyl;

B is ethylene or propylene;

W is NH, N-CH₃ or O;

R² is H;

Z is phenyl, pyrazolyl, thiazolyl, thiadiazolyl, thienyl, naphthyl or benzothienyl, said phenyl, pyrazolyl, thiazolyl, thiadiazolyl and thienyl being optionally substituted with one to three substituents independently selected from chloro, bromo, methyl, acetylamino, pivaloylamino, nitro and phenyl; and

L is chloro, methyl, trifluoromethyl, hydroxy, methoxy, cyano, acetyl, -C(=O)NH₂, trifluoromethoxy, methanesulfonyl, or 1-hydroxy-1-methyl-ethyl, or two adjacent L groups are joined together to form a methylenedioxy group.

10/771,696

-12-

PC9985B

35. (Currently Amended) A method according to Claim 34, wherein

Y^1 , Y^2 , Y^3 and Y^4 are selected from the group consisting of

- a) Y^1 and Y^3 are C(L), Y^2 is CH and Y^4 is N;
- b) Y^1 is CH, Y^2 and Y^3 are C(L) and Y^4 is N;
- c) Y^1 , Y^2 and Y^3 are C(L) and Y^4 is N;
- d) Y^1 and Y^3 are C(L), Y^2 is N and Y^4 is CH;
- e) Y^1 and Y^2 are CH, Y^3 is C(L) and Y^4 is N;
- f) Y^1 and Y^3 are CH, Y^2 is C(L) and Y^4 is N;
- g) Y^1 and Y^2 are C(L), Y^3 is CH and Y^4 is N;
- h) Y^1 and Y^2 are C(L), Y^3 is N and Y^4 is CH;
- i) Y^1 is C(L), Y^2 and Y^3 are CH, and Y^4 is N; and
- j) Y^2 is C(L), Y^1 and Y^3 are CH, and Y^4 is N;

R^1 is methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, neopentyl, thiazolylethyl
methylamino, dimethylamino, pyrrolidinyl, pyridyl, or 1-acetylamino-1-methylethyl;

A is phenyl;

B is ethylene or propylene;

W is NH, N-CH₃ or O;

R^2 is H;

Z is phenyl, pyrazolyl, thiazolyl, thiadiazolyl, thiaryl, naphthyl or benzothienyl, said
phenyl, pyrazolyl, thiazolyl, thiadiazolyl and thiaryl being optionally substituted
with one to three substituents independently selected from chloro, bromo, methyl,
acetylamino, pivaloylamino, nitro and phenyl; and

L is chloro, methyl, trifluoromethyl, hydroxy, methoxy, cyano, acetyl, -C(=O)NH₂,
trifluoromethoxy, methanesulfonyl, or 1-hydroxy-1-methyl-ethyl, or two adjacent
L groups are joined together to form a methylenedioxy group.

36. (Currently Amended) A method according to Claim 35, wherein

Y^1 , Y^2 , Y^3 and Y^4 are selected from the group consisting of

10/771,696

-13-

PC9985B

a) Y¹ and Y³ are C(L), Y² is CH and Y⁴ is N;

b) Y¹ is CH, Y² and Y³ are C(L) and Y⁴ is N;

c) Y¹, Y² and Y³ are C(L) and Y⁴ is N; and

d) Y¹ and Y³ are C(L), Y² is N and Y⁴ is CH;

R¹ is methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, neopentyl, thiazolylethyl
methylamino, dimethylamino, pyrrolidinyl, pyridyl, or 1-acetylmino-1-methylethyl;

A is phenyl;

B is ethylene or propylene;

W is NH, N-CH₃ or O;

R² is H;

Z is phenyl, pyrazolyl, thiazolyl, thiadiazolyl, thienyl, naphthyl or benzothienyl, said
phenyl, pyrazolyl, thiazolyl, thiadiazolyl and thienyl being optionally substituted
with one to three substituents independently selected from chloro, bromo, methyl,
acetyl, pivaloyl, nitro and phenyl; and

L is chloro, methyl, trifluoromethyl, hydroxy, methoxy, cyano, acetyl, -C(=O)NH₂,
trifluoromethoxy, methanesulfonyl, or 1-hydroxy-1-methyl-ethyl, or two adjacent
L groups are joined together to form a methylenedioxy group.

37. (Previously presented) A method according to Claim 28 wherein the compound is selected
from

3-(4-{2-[{[(5-chloro-1,3-dimethyl-1H-pyrazol-4-
yl)sulfonyl]amino}carbonyl]amino}ethyl} phenyl)-2-ethyl-5,7-dimethyl-3H-
imidazo[4,5-b]pyridine;

3-(4-{2-[{[(2,4-dimethyl-1,3-thiazol-5-
yl)sulfonyl]amino}carbonyl]amino}ethyl}phenyl)-2-ethyl-5,7-dimethyl-3H-
imidazo[4,5-b]pyridine;

N-[5-{{[[2-[4-(2-ethyl-5,7-dimethyl-3H-imidazo[4,5-b]pyridin-3-
yl)phenyl]ethyl}amino]carbonyl]amino}sulfonyl]-1,3,4-thiadiazol-2-yl]acetamide;
2-ethyl-5,7-dimethyl-3-(4-{2-[methyl({[(4-methylphenyl)sulfonyl]amino}
carbonyl]amino}ethyl}phenyl)-3H-imidazo[4,5-b]pyridine;

10/771,696

-14-

PC9985B

2-ethyl-5,7-dimethyl-3-(4-{2-[{[(4-methylphenyl)sulfonyl]amino}carbonyl]amino}propyl}phenyl)-3*H*-imidazo[4,5-*b*]pyridine;

2-[4-(2-ethyl-5,7-dimethyl-3*H*-imidazo[4,5-*b*]pyridin-3-yl)phenyl]-1-methylethyl (4-methylphenyl)sulfonylcarbamate;

5,7-dimethyl-3-(4-{2-[{[(4-methylphenyl)sulfonyl]amino}carbonyl]amino}ethyl}phenyl)-2-propyl-3*H*-imidazo[4,5-*b*]pyridine;

2-isopropyl-5,7-dimethyl-3-(4-{2-[{[(4-methylphenyl)sulfonyl]amino}carbonyl]amino}ethyl}phenyl)-3*H*-imidazo[4,5-*b*]pyridine;

2-butyl-5,7-dimethyl-3-(4-{2-[{[(4-methylphenyl)sulfonyl]amino}carbonyl]amino}ethyl}phenyl)-3*H*-imidazo[4,5-*b*]pyridine;

2-isobutyl-5,7-dimethyl-3-(4-{2-[{[(4-methylphenyl)sulfonyl]amino}carbonyl]amino}ethyl}phenyl)-3*H*-imidazo[4,5-*b*]pyridine;

5,7-dimethyl-3-(4-{2-[{[(4-methylphenyl)sulfonyl]amino}carbonyl]amino}ethyl}phenyl)-2-neopentyl-3*H*-imidazo[4,5-*b*]pyridine;

5,7-dimethyl-3-(4-{2-[{[(4-methylphenyl)sulfonyl]amino}carbonyl]amino}ethyl}phenyl)-2-[2-(1,3-thiazol-2-yl)ethyl]-3*H*-imidazo[4,5-*b*]pyridine;

3-{4-[2-({[(4-biphenylsulfonyl)amino}carbonyl]amino}ethyl]phenyl}-2-ethyl-5,7-dimethyl-3*H*-imidazo[4,5-*b*]pyridine;

2-ethyl-5,7-dimethyl-3-{4-[2-({[(1-naphthylsulfonyl)amino}carbonyl]amino}ethyl]phenyl}-3*H*-imidazo[4,5-*b*]pyridine;

2-ethyl-5,7-dimethyl-3-{4-[2-({[(2-naphthylsulfonyl)amino}carbonyl]amino}ethyl]phenyl}-3*H*-imidazo[4,5-*b*]pyridine;

2-ethyl-5,7-dimethyl-3-(4-{2-[{[(2-thienyl)sulfonyl]amino}carbonyl]amino}ethyl}phenyl)-3*H*-imidazo[4,5-*b*]pyridine;

10/771,696

-15-

PC9985B

3-(4-{2-[{[(5-chloro-2-thienyl)sulfonyl]amino}carbonyl]amino}ethyl}phenyl)-2-ethyl-5,7-dimethyl-3*H*-imidazo[4,5-*b*]pyridine;

3-(4-{2-[{[(4,5-dichloro-2-thienyl)sulfonyl]amino}carbonyl]amino}ethyl}phenyl)-2-ethyl-5,7-dimethyl-3*H*-imidazo[4,5-*b*]pyridine;

3-{4-[2-({[(1-benzothien-2-ylsulfonyl)amino]carbonyl}amino)ethyl]phenyl}-2-ethyl-5,7-dimethyl-3*H*-imidazo[4,5-*b*]pyridine;

3-(4-{2-[{[(2-chlorophenyl)sulfonyl]amino}carbonyl]amino}ethyl}phenyl)-2-ethyl-5,7-dimethyl-3*H*-imidazo[4,5-*b*]pyridine;

2-ethyl-5,6-dimethyl-3-(4-{2-[{[(4-methylphenyl)sulfonyl]amino}carbonyl]amino}ethyl}phenyl)-3*H*-imidazo[4,5-*b*]pyridine;

5,6-dichloro-2-ethyl-3-(4-{2-[{[(4-methylphenyl)sulfonyl]amino}carbonyl]amino}ethyl}phenyl)-3*H*-imidazo[4,5-*b*]pyridine;

5-chloro-2-ethyl-7-methyl-3-(4-{2-[{[(4-methylphenyl)sulfonyl]amino}carbonyl]amino}ethyl}phenyl)-3*H*-imidazo[4,5-*b*]pyridine;

6-cyano-2-ethyl-5,7-dimethyl-3-(4-{2-[{[(4-methylphenyl)sulfonyl]amino}carbonyl]amino}ethyl}phenyl)-3*H*-imidazo[4,5-*b*]pyridine;

2-ethyl-4,6-dimethyl-1-(4-{2-[{[(4-methylphenyl)sulfonyl]amino}carbonyl]amino}ethyl}phenyl)-1*H*-imidazo[4,5-*c*]pyridine;

2-ethyl-3-{4-[2-({[(3-[hydroxy(oxido)amino]phenyl}sulfonyl)amino]carbonyl}amino)ethyl]phenyl}-5,7-dimethyl-3*H*-imidazo[4,5-*b*]pyridine;

3-(4-{2-[{[(4-chlorophenyl)sulfonyl]amino}carbonyl]amino}ethyl}phenyl)-2-ethyl-5,7-dimethyl-3*H*-imidazo[4,5-*b*]pyridine;

n-[4-({[(2-[4-(2-ethyl-5,7-dimethyl-3*H*-imidazo[4,5-*b*]pyridin-3-yl)phenyl]ethyl}amino)carbonyl]amino}sulfonyl)phenyl]-2,2-dimethylpropanamide;

10/771,696

-16-

PC9985B

3-(4-{2-[{[(2-chlorophenyl)sulfonyl]amino}carbonyl]amino}ethyl}phenyl)-2-ethyl-5,7-dimethyl-3*H*-imidazo[4,5-*b*]pyridine;

3-(4-{2-[{[(3-chlorophenyl)sulfonyl]amino}carbonyl]amino}ethyl}phenyl)-2-ethyl-5,7-dimethyl-3*H*-imidazo[4,5-*b*]pyridine;

3-(4-{2-[{[(5-chloro-2-thienyl)sulfonyl]amino}carbonyl]amino}ethyl}phenyl)-2-ethyl-5,7-dimethyl-3*H*-imidazo[4,5-*b*]pyridine;

3-(4-{2-[{[(5-bromo-2-thienyl)sulfonyl]amino}carbonyl]amino}ethyl}phenyl)-2-ethyl-5,7-dimethyl-3*H*-imidazo[4,5-*b*]pyridine;

3-(4-{2-[{[(2-bromophenyl)sulfonyl]amino}carbonyl]amino}ethyl}phenyl)-2-ethyl-5,7-dimethyl-3*H*-imidazo[4,5-*b*]pyridine;

3-{4-[2-({[(4-chloro-3-nitrophenyl)sulfonyl]amino}carbonyl)amino}ethyl]phenyl}-2-ethyl-5,7-dimethyl-3*H*-imidazo[4,5-*b*]pyridine;

2-[4-(2-ethyl-4,6-dimethyl-1*H*-imidazo[4,5-*c*]pyridin-1-yl)phenyl]ethyl (4-methylphenyl)sulfonylcarbamate;

2-{4-[5,7-dimethyl-2-(methylamino)-3*H*-imidazo[4,5-*b*]pyridin-3-yl]phenyl}ethyl (4-methylphenyl)sulfonylcarbamate;

N-{[(2-{4-[5,7-dimethyl-2-(methylamino)-3*H*-imidazo[4,5-*b*]pyridin-3-yl]phenyl}ethyl)amino]carbonyl}-4-methylbenzenesulfonamide;

N-{[(2-[4-(2-ethyl-5,7-dimethyl-3*H*-imidazo[4,5-*b*]pyridin-3-yl)phenyl]ethyl)amino]carbonyl}-2-thiophenesulfonamide;

2-[4-(4,6-dimethyl-2-phenyl-1*H*-imidazo[4,5-*c*]pyridin-1-yl)phenyl]ethyl (4-methylphenyl)sulfonylcarbamate;

2-[4-(2-butyl-4,6-dimethyl-1*H*-imidazo[4,5-*c*]pyridin-1-yl)phenyl]ethyl (4-methylphenyl)sulfonylcarbamate;

2-{4-[4,6-dimethyl-2-(3-phenylpropyl)-1*H*-imidazo[4,5-*c*]pyridin-1-yl]phenyl}ethyl (4-methylphenyl)sulfonylcarbamate;

N-{[(2-{4-[5,7-dimethyl-2-(1*H*-pyrazol-3-yl)-3*H*-imidazo[4,5-*b*]pyridin-3-yl]phenyl}ethyl)amino]carbonyl}-4-methylbenzenesulfonamide;

2-{4-[2-(1,1-dimethylethyl)-4,6-dimethyl-1*H*-imidazo[4,5-*c*]pyridin-1-yl]phenyl}ethyl (4-methylphenyl)sulfonylcarbamate; and salts thereof.

10/771,696

-17-

PC9985B

38. (Previously presented) A method according to Claim 28 wherein the compound is selected from

2-[4-(2-ethyl-5,7-dimethyl-3H-imidazo[4,5-*b*]pyridin-3-yl)phenyl]-1-methylethyl (4-methylphenyl)sulfonylcarbamate;

5,7-dimethyl-3-(4-{2-[{({(4-methylphenyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-2-[2-(1,3-thiazol-2-yl)ethyl]-3H-imidazo[4,5-*b*]pyridine;

2-ethyl-5,7-dimethyl-3-(4-{2-[{({(2-thienyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-3H-imidazo[4,5-*b*]pyridine;

3-(4-{2-[{[(2-chlorophenyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-2-ethyl-5,7-dimethyl-3H-imidazo[4,5-*b*]pyridine;

2-ethyl-5,6-dimethyl-3-(4-{2-[{({(4-methylphenyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-3H-imidazo[4,5-*b*]pyridine;

5,6-dichloro-2-ethyl-3-(4-{2-[{({(4-methylphenyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-3H-imidazo[4,5-*b*]pyridine;

2-ethyl-4,6-dimethyl-1-(4-{2-[{({(4-methylphenyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-1H-imidazo[4,5-*c*]pyridine;

2-[4-(2-ethyl-4,6-dimethyl-1H-imidazo[4,5-*c*]pyridin-1-yl)phenyl]ethyl (4-methylphenyl)sulfonylcarbamate;

2-{4-[5,7-dimethyl-2-(methylamino)-3H-imidazo[4,5-*b*]pyridin-3-yl]phenyl}ethyl (4-methylphenyl)sulfonylcarbamate;

N-{{(2-{4-[5,7-dimethyl-2-(methylamino)-3H-imidazo[4,5-*b*]pyridin-3-yl]phenyl}ethyl)amino}carbonyl}-4-methylbenzenesulfonamide;

N-[(2-[4-(2-ethyl-5,7-dimethyl-3H-imidazo[4,5-*b*]pyridin-3-yl)phenyl]ethyl)amino]carbonyl]-2-thiophenesulfonamide;

2-[4-(4,6-dimethyl-2-phenyl-1H-imidazo[4,5-*c*]pyridin-1-yl)phenyl]ethyl (4-methylphenyl)sulfonylcarbamate;

10/771,696

-18-

PC9985B

2-[4-(2-butyl)-4,6-dimethyl-1*H*-imidazo[4,5-*c*]pyridin-1-yl]phenyl]ethyl (4-methylphenyl)sulfonylcarbamate;
2-{4-[4,6-dimethyl-2-(3-phenylpropyl)-1*H*-imidazo[4,5-*c*]pyridin-1-yl]phenyl}ethyl (4-methylphenyl)sulfonylcarbamate;
N-{[(2-{4-[5,7-dimethyl-2-(1*H*-pyrazol-3-yl)-3*H*-imidazo[4,5-*b*]pyridin-3-yl]phenyl}ethyl)amino]carbonyl}-4-methylbenzenesulfonamide;
2-{4-[2-(1,1-dimethylethyl)-4,6-dimethyl-1*H*-imidazo[4,5-*c*]pyridin-1-yl]phenyl}ethyl (4-methylphenyl)sulfonylcarbamate; and
salts thereof.

39. (Currently Amended) A method according to claim 28 wherein the compound is

2-ethyl-4,6-dimethyl-1-(4-{2-[(4-methoxyphenyl)sulfonyl]amino}carboxylic acid)phenyl)-1*H*-imidazo[4,5-*Cc*]pyridine or a pharmaceutically acceptable salt thereof.