

"... Um profissional de qualquer campo da computação não deve considerar o computador como uma caixa preta que executa programas por mágica" (IEEE/ACM Computer Science Curriculum, 2008).

Mapas de karnaugh

Paulo Ricardo Lisboa de Almeida

Mapas de Karnaugh

Método gráfico para:

Simplificar equações booleanas;

Converter tabelas verdade em suas respectivas equações.

Mostra a mesma informação que a tabela verdade.

Mapas de Karnaugh

Método gráfico para:

Simplificar equações booleanas;

Converter tabelas verdade em suas respectivas equações.

Mostra a mesma informação que a tabela verdade.

Na teoria serve para problemas envolvendo qualquer número de variáveis.

Na prática, problemas com mais de 6 variáveis se tornam difíceis de serem resolvidos por humanos.

Mesmo uma quantidade relativamente pequena de variáveis (e.g., 32) pode ser impraticável para uma máquina.

Tabela verdade

Α	В	С	X
0	0	0	1 → ABC
0	0	1	$1 \rightarrow \overline{ABC}$
0	1	0	1 → ĀBĒ
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1 → ABC
1	1	1	0

Tabela verdade

Α	В	С	X
0	0	0	1 → ABC
0	0	1	$1 \rightarrow \overline{ABC}$
0	1	0	$1 \rightarrow \overline{A}B\overline{C}$
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1 → ABC
1	1	1	0

Mapa de Karnaugh

	Ē	С
ĀĒ	1	1
ĀB	1	0
AB	1	0
ΑĒ	0	0

Tabela verdade

Α	В	С	D	X
0	0	0	0	0
0	0	0	1	$1 \rightarrow \overline{A}\overline{B}\overline{C}D$
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	$1 \rightarrow \overline{A}B\overline{C}D$
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	$1 \rightarrow AB\overline{C}D$
1	1	1	0	0
1	1	1	1	1 → ABCD

Tabela verdade

Α	В	С	D	X
0	0	0	0	0
0	0	0	1	$1 \rightarrow \overline{A}\overline{B}\overline{C}D$
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	$1 \rightarrow \overline{A}B\overline{C}D$
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	$1 \rightarrow AB\overline{C}D$
1	1	1	0	0
_1	1	1	1	1 → ABCD

Mapa de Karnaugh

	ĒĒ	СD	CD	CD
ĀĒ	0	1	0	0
ĀВ	0	1	0	0
АВ	0	1	1	0
ΑĒ	0	0	0	0

Construção do Mapa

Exemplo com 4 variáveis.

Cada nova coluna deve diferir por apenas uma variável da coluna anterior.

Comece pelos valores negados.

Cada nova linha deve diferir por apenas uma variável da linha anterior.

Qual o mapa de Karnaugh para F considerando a tabela verdade ao lado?

Α	В	C	D	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

Qual o mapa de Karnaugh para F considerando a tabela verdade ao lado?

	ĈŪ	СD	CD	CD
ĀĒ	0	0	0	1
ĀB	0	1	1	0
AB	0	1	1	0
ΑĒ	0	0	1	0

A	В	U	D	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

Adjacências

Blocos que **diferem por apenas uma variável** são considerados **adjacentes**.

Considera-se que os blocos estão "enrolados" (wrapped).

Blocos do topo são vizinhos dos blocos inferiores, e vice-versa.

Blocos da esquerda são vizinhos dos da direita, e vice-versa.

Alguns exemplos de adjacências.

Alguns exemplos de adjacências.

Alguns exemplos de adjacências.

Agrupamentos

A ideia é agrupar os 1's que aparecem no mapa de maneira adjacente.

Também é possível agrupar 0's, mas vamos ver apenas com 1's.

Variáveis que aparecem em ambas as formas (normal e negada) podem ser descartadas da expressão final.

No agrupamento temos $A \in \overline{A}$.

Logo, A pode ser ignorado na expressão final.

A expressão simplificada contém apenas B e \overline{C} , que não mudam no agrupamento.

Quais as expressões simplificadas a seguir?

Quais as expressões simplificadas a seguir?

a) \overline{A} .B

b) <u>B</u>.<u>C</u>

Quartetos

Se possível, faça quartetos de 1's.

O princípio é o mesmo.

Elimina-se as variáveis que aparecem em suas formas não-negadas e negadas no quarteto.

Exemplo:

F = (

Quais as expressões simplificadas a seguir?

Quais as expressões simplificadas a seguir?

a)
$$F = A.B$$
 b) $F = B.D$ c) $F = \overline{B}.\overline{D}$ d) $F = A.\overline{D}$

Octetos

Para quatro variáveis, existe ainda a possibilidade de octetos de 1's existirem.

Nesse caso 3 variáveis são eliminadas.

Exemplo:

$$F = B$$

8	ΖĐ	ĒD	CD	CD
ĀĒ	0	0	0	0
ĀВ	1	1	1	1
AB	1	1	1	1
ΑĒ	0	0	0	0

Quais as expressões simplificadas a seguir?

	ΖD	СD	CD	CD	
ĀB	1	1	0	0	
ĀB	1	1	0	0	
АВ	1	1	0	0	
ΑB	1	1	0	0	
(a)					

Quais as expressões simplificadas a seguir?

a)
$$F = \overline{C}$$
 b) $F = \overline{B}$ c) $F = \overline{D}$

	ΖD	СD	CD	CD	
ĀB	1	1	0	0	
ĀB	1	1	0	0	
АВ	1	1	0	0	
ΑB	1	1	0	0	
(a)					

1	ΖD	СD	CD	CD			
ĀĒ	1	1	1	1/			
ĀВ	0	0	0	0			
АВ	0	0	0	0			
ΑĒ	1	1	1	1			
1	(b)						

	ĒĒ	СD	CD	CD		
ĀB	1	0	0	1		
ĀB	1	0	0	1		
АВ	1	0	0	1		
ΑB	1	0	0	1		
(c)						

Processo de Simplificação

Faça o Mapa de Karnaugh.

Marque os agrupamentos.

..., Octetos, quartetos, duetos, variáveis sozinhas.

Sempre comece pelos maiores agrupamentos possíveis.

Faça a soma (OR) de cada um dos agrupamentos encontrados.

Elimine as variáveis que aparecem da forma negada e não negada em cada agrupamento.

Qual a expressão simplificada do primeiro exercício apresentado nos slides? O Mapa de Karnaugh do exercício é apresentado a seguir:

	ĊŪ	СD	CD	CD
ĀĒ	0	0	0	1
ĀB	0	1	1	0
AB	0	1	1	0
ΑĒ	0	0	1	0

Qual a expressão simplificada do primeiro exercício apresentado nos slides? O Mapa de Karnaugh do exercício é apresentado a seguir:

$$F = \overline{A}.\overline{B}.C.\overline{D} + B.D + A.C.D$$

	ĊŪ	СD	CD	CD
ĀĒ	0	0	0	1
ĀB	0	1	1	0
AB	0	1	1	0
ΑĒ	0	0	1	0

Don't Care

Algumas vezes determinada combinação de variáveis gera um resultado irrelevante.

Não nos importamos (don't care) se a saída da função F é O ou 1 para determinada condição.

Nesses casos basta inserir um X nas tabelas verdade ou mapas de Karnaugh.

Ao simplificar o circuito, você pode escolher se é 0 ou 1.

Escolha o que trouxer a melhor simplificação.

A escolha nem sempre é simples.

Don't Care

					C	C
Α	В	С	Z	ĀB	0	0
0	0	0	0	AD	U	0
0	0	1	0	8 <u>—</u> 8		
0	1	0	0	ĀB	0	X
0	1	1	x ∖ "don't	8		
1	0	0	x \ "don't x \ care"	AB	1	1
1	0	1	1	137.3 -		- 5
1	1	0	1	.=		
1	1	1	1	AB	х	1
(a)			,	(1	b)	

Don't Care

					C	C			C	C	
Α	В	С	Z	ĀB	0	0		ĀB	0	0	
0	0	0	0	AD	U			AD	U	U	
0	0	1	0					422			
0	1	0	0	ĀB	0	Х	N	$\overline{A}B$	0	0	
0	1	1	x } "don' x } care'	t	8		>				
1	0	0	x ∫ care'	, AB	1	1	\neg	AB	1	1	→ z = A
1	0	1	1	100.00	- 2			0.00770		1.50	
1	1	0	1	.=			5.	.=			
1	1	1	1	AB	Х	1		ΑB	1	1)	
69			3,0								
	(a	a)			(1	b)			(0	c)	

Limitações

Para mais do que 6 variáveis, os Mapas de Karnaugh se tornam complicados para humanos resolverem.

Podemos criar programas que resolvem os mapas, mas isso também tem suas limitações.

Uma implementação ingênua que armazena o mapa inteiro na memória:

Considerando que cada posição do mapa ocupa 1 bit na memória.

Para 30 variáveis o mapa ocupará 128 MiB.

Limitações

Para mais do que 6 variáveis, os Mapas de Karnaugh se tornam complicados para humanos resolverem.

Podemos criar programas que resolvem os mapas, mas isso também tem suas limitações.

Uma implementação ingênua que armazena o mapa inteiro na memória:

Considerando que cada posição do mapa ocupa 1 bit na memória.

Para 30 variáveis o mapa ocupará 128 MiB.

Para 40 variáveis o mapa ocupará 128 GiB.

Encontrar os agrupamentos em espaços de busca tão grandes se torna complicado e lento!

Exercícios

- 1. Faça o Mapa de Karnaugh para o primeiro exercício da aula passada e gere a expressão simplificada. Noque que algumas coisas não são diretamente visíveis em Mapas de Karnaugh, como a última distributiva que pode ser aplicada.
- 2. Dados os Mapas de Karnaugh a seguir, dê as expressões simplificadas.

	Ē	С
Ā.B	0	0
A.B	0	0
A.B	1	Х
A.B	1	1

	C.D	C.D	C.D	C.D
Ā.B	0	0	1	0
Ā.B	1	1	Х	Х
A.B	1	1	0	0
A.B	0	0	0	0

	C.D	C.D	C.D	C.D
Ā.B	0	1	0	0
A.B	0	1	1	1
A.B	1	1	1	0
A.B	0	0	1	0

	<u> </u>	<u> </u>	0.0	_ <u>_</u>
	Ū.Ū	C.D	C.D	C.D
Ā.B	0	1	0	0
Ā.B	0	1	1	1
A.B	0	0	0	1
A.B	1	1	0	1

	C.D	C.D	C.D	C.D
Ā.B	1	1	0	1
A.B	1	1	0	1
A.B	1	1	0	1
A.B	1	1	1	1

Exercícios

3. Dadas as tabelas verdade a seguir, faça os Mapas de Karnaugh e dê as expressões simplificadas para as funções F.

В	C	F
0	0	0
0	1	0
1	0	l
1	1	1
0	0	0
0	1	1
1	0	1
1	1	0
	0 0 1 1 0	0 0 0 1 1 1 0 1 0 0 0 0 0 1

А	В	С	D	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
l	0	0	0	1
1	0	0	1	1
l	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

Exercícios

4. Faça os Mapas de Karnaugh para algumas funções da lista de exercícios da aula passada, e simplifique utilizando os mapas. Compare com suas respostas usando Álgebra de Boole.

Referências

Ronald J. Tocci, Gregory L. Moss, Neal S. Widmer. Sistemas digitais. 10a ed. 2017.

Thomas Floyd. Widmer. Sistemas Digitais: Fundamentos e Aplicações. 2009.

Licença

Esta obra está licenciada com uma Licença <u>Creative Commons Atribuição 4.0 Internacional.</u>

