

⁺²Notas de Álgebra Linear II

September 19, 2025

"No princípio Deus criou os céus, a terra e	Nestor Heli Aponte Avila ¹
a Álgebra Linear" - Gênesis 1:1	n267452@dac.unicamp.br

** Conteúdo basado na disciplina MM719 (Álgebra Linear) ministrada pelo profesor Adriano Moura e [1], de sua autoría também, no período 2025-II. **

Notação	♦ Definição	(−) [♦] Aberto	(−) ⁺ Fechado
□ Lema	☐ Proposição	Teorema	

§ Preliminares

É preciso lembrar algumos resultados do curso de Álgebra Linear I, podem ser aprofundados se queser nos capítulos 5 e 6 de [1]. Também, algumas propiedades e detalhes do anel de polinômios.

Espaços Vetoriais

 \bigcirc Sejam $\mathbb F$ um corpo, e $V \neq \emptyset$. Um $\mathbb F$ -espaço vetorial é uma tripla $(V,+,\cdot)$ onde, $+: V \times V \to V$ e $\cdot: \mathbb F \times V \to V$ são operações tais que, $\forall \lambda, \mu \in \mathbb F$, $\forall v, w \in V$, temos,

- (V1) (V, +) é grupo abeliano.
- (V2) (V, \cdot) asocia, $\lambda \cdot (\mu \cdot v) = (\lambda \cdot \mu) \cdot v$.
- (V3) Distributividade I, $(\lambda + \mu) \cdot v = \lambda \cdot v + \mu \cdot v$.
- (V4) Distributividade II, $\lambda \cdot (v + w) = \lambda \cdot v + \lambda \cdot w$.
- (V5) Neutro da multiplicação (por escalar), $1 \cdot v = v$.

- \bigcirc Um subconjunto $W\subseteq V$ não vacío é dito de *subespaço*, denotamos $W\leq V$, se $\forall w_1,w_2\in W,\,\forall\lambda\in\mathbb{F}$, temos $w_1+\lambda w_2\in W$.
- \bigcirc Sejam $\alpha = (v_i)$ uma familia de vetores em V e $m \in \mathbb{N}$. Uma combinação linear de α , é um vetor em V da forma $v = \sum_{j < m} x_{i_j} v_{i_j}$, onde $x_{i_j} \in \mathbb{F}$.

Nota. Denotamos por $[\alpha]$, ao conjunto de todas as combinações lineares de α , repare que $[\alpha] \leq V$. Também, se $\alpha = \{v\}$ então $[\alpha] = [v] = \mathbb{F}v$.

- \bigcirc Uma familia $\alpha = (v_i)$ é l.i. sse $\forall j \in I, v_j \notin [\alpha \setminus \{v_j\}]$. Alem disso, se $[\alpha] = V$ então α é chamada de *base* de V.
- 5.5.1. Todo espaço vetorial tém base e quaisquer duas bases tém mesma cardinalidade. \rightarrow [1, Pág. 185]
- \diamondsuit Seja α uma base de V. Então, $\dim V := \#\alpha$ é a dimensão de V.
- \bigcirc Seja (V_i) familia de subespaços em V, definimos a soma deles somo sendo $\sum V_i := [\bigcup V_i]$. A soma é direta se $\forall j \in I, V_j \cap \sum_{i \neq j} V_i = \{0\}$.

Nota. Se a soma é direta escrevemos $\bigoplus V_i$.

- \square 5.3.7. A soma $\sum V_i$ é direta $\leftrightharpoons \forall v \in \sum V_i$, $\exists m \in \mathbb{N}$ e $\exists ! v_{i_j} \in V_{i_j}$ tais que $v = \sum_{j \le m} v_{i_j}$. $\to [1, Pág. 174]$
- \square 5.4.6. Sejam $\alpha = (v_i)$ e $V_i = \mathbb{F}v_i$ então α é l.i. $\leftrightharpoons \sum \mathbb{F}v_i$ é direta.

 $\boxtimes \alpha$ é base $\leftrightharpoons \forall i \in I, \ v_i \neq 0$ e $V = \bigoplus \mathbb{F}v_i$. Logo, da \square 5.3.7. temos que $\forall v \in V, \exists m \in \mathbb{N} \text{ e } \exists! x_{i_j} \in \mathbb{F} \text{ tais que } v = \sum_{j \leq m} x_{i_j} v_{i_j} \cdot \rightarrow [1, \text{Pág. } 178]$

Nota. Os x_{i_j} são as coordenadas de v na base α , identificamos comumente,

$$(x_{i_i}) =: [v]_{\alpha} \sim [x_{i_1}, \cdots, x_{i_m}]^T \in M_{m \times 1}(\mathbb{F}).$$

Transformações Lineares

 \bigcirc Sejam V e W \mathbb{F} -espaços vetoriais. Uma função $T:V\to W$ é dita linear se $\forall v_1,v_2\in V$ e $\forall \lambda\in\mathbb{F}$ tém-se que $T(v_1+\lambda v_2)=T(v_1)+\lambda T(v_2)$.

Sejam $T: V \to W$ linear, $\alpha = (v_j)$ e $\beta = (w_i)$ bases de V e W respetivamente. Então, se $[T(v_j)]_{\beta} = (a_{ij})$, a matriz asociada $[T]_{\beta}^{\alpha} := (a_{ij})$ determina T no sentido que, $\forall v \in V$, $[T(v)]_{\beta} = [T]_{\beta}^{\alpha}[v]_{\alpha}$.

Nota. Se W=V e $T=\mathbb{1}_V$, então $[\mathbb{1}_V]^{\alpha}_{\beta}$ é a matriz cambio de base.

■ 6.1.6. Sejam $\alpha = (v_i)$ base de V e $\beta = (w_i)$ familia de vetores em W, então $\exists ! T : V \to W$ linear tal que $\forall i \in I, \ T(v_i) = w_i$.

Nota. O espaço vetorial das funções $f:V\to W$, com a soma e o produto usuais é denotado no texto como $\mathcal{F}(V,W)$.

 \bigcirc $\operatorname{Hom}_{\mathbb{F}}(V,W):=\{T\in\mathcal{F}(V,W): T \text{ \'e linear}\}.$ Se V=W então denotamos $\operatorname{End}_{\mathbb{F}}(V)=\operatorname{Hom}_{\mathbb{F}}(V,V).^1$

- \square **0.1.** Algumas propiedades coletadas de [1, Seç. 6.1].
 - (a) $\operatorname{Hom}_{\mathbb{F}}(V, W) \leq \mathcal{F}(V, W)$.
 - (b) Sejam $\alpha = (v_j)$ e $\beta = (w_i)$ bases de V e W fixas. A função ζ : $\operatorname{Hom}_{\mathbb{F}}(V,W) \ni T \mapsto [T]^{\alpha}_{\beta} \in M_{\#I \times \#J}(\mathbb{F})$ é linear e injetora.
 - (c) Sejam γ , α e β bases de U, V e W, $S \in \operatorname{Hom}_{\mathbb{F}}(U,V)$ e $T \in \operatorname{Hom}_{\mathbb{F}}(V,W)$ então $T \circ S \in \operatorname{Hom}_{\mathbb{F}}(U,W)$ e $[T \circ S]^{\gamma}_{\beta} = [T]^{\alpha}_{\beta}[S]^{\gamma}_{\alpha}$.
 - (d) Se α e β são bases de V e W, e $T \in \operatorname{Hom}_{\mathbb{F}}(V, W)$ é invertivél então $T^{-1} \in \operatorname{Hom}_{\mathbb{F}}(W, V)$ e $[T^{-1}]^{\beta}_{\alpha} = ([T]^{\alpha}_{\beta})^{-1}$.

 $\bigcirc T \in \operatorname{Hom}_{\mathbb{F}}(V,W)$ é um *isomorfismo* se fora sobrejetivo. Dois espaços são *isomorfos*, $V \cong W$, se $\exists T \in \operatorname{Hom}_{\mathbb{F}}(V,W)$ isomorfismo.

Nota. A transformação ζ do ítem (b) é sobrejetiva se $\#J < \infty$.

6.1.9. $V \cong W \leftrightharpoons \dim V = \dim W. \rightarrow [1, \text{ Pág. 191}]$

 \square Seja $T\in \operatorname{Hom}_{\mathbb{F}}(V,W).$ Se $U\leq V$ e $U'\leq W$ então também $T(U)\leq W$ e $T^{-1}(U')\leq V.\to [1,$ Pág. 199]

$$\diamondsuit V_T := T^{-1}(\{0\}) = \mathcal{N}(T) \ \ \mathbf{e} \ \ \mathrm{Im}(T) := T(V).$$

¹"Hom" vém de homomorfismo e "End" de endomorfismo.

Nota. Chamamos estos espaços especiais de núcleo e imagem de T e suas dimensões de nulidade e posto.

6.3.6. dim
$$V = \dim V_T + \dim V(T)$$
. $\to [1, Pág. 201]$

$$\square$$
 6.3.9. T é injetora $\leftrightharpoons V_T = \{0\}. \rightarrow [1, Pág. 202]$

 \bigcirc Sejam $\lambda \in \mathbb{F}$ e $V_{\lambda} = \{v \in V : T(v) = \lambda v\}$. Se $\exists v \in V_{\lambda} \setminus \{0\}$ então V_{λ} é autoespaço e v um autovetor, ambos associados ao autovalor λ .

 \bigcirc T é diagonalizavél se $\exists \beta$ base de V formada por autovetores.

Nota. No caso diagonalizavél e tudo perfeito de mais, pois se λ_j são os autovalores dos $v_j \in \beta$ então, $[T]^{\beta}_{\beta} = \operatorname{diag}(\lambda_j)$. Em versão matricial temos,

$$[T]_\beta^\beta = [\mathbb{1}_V]_\beta^\alpha [T]_\alpha^\alpha [\mathbb{1}_V]_\alpha^\beta \quad \sim \quad B = P^{-1}AP.$$

É sabido que não todos os operadores são diagonalizavéis. O objetivo do [1, Cap. 8] é ver que, ainda assim, sempre e possivél levar T a uma matriz quasi-diagonal B (Formas Canônicas).

O Anel de Polinômios $\mathcal{P}(\mathbb{F})$

Não vou aprofundar nos detalhes relaçoados com anels, fica muito longe. Por tanto, recomendo rever os conceitos de anel, ideal, domínio de integridade, ideal principal, PID e UFD-Algoritmo de Euclides.

Sejam $I = \{t^k : k \in \mathbb{Z}_{\geq 0}\}$ conjunto respeitando as leis usuais de potências e $(\mathbb{F}, +, \cdot)$ um corpo. Defina, $\forall i \in I$, o espaço vetorial $V_i = \{a_i t^i : a_i \in \mathbb{F}, t^i \in I\}$, com as operações,

•
$$+: V_i \times V_i \ni (a_i t^i, b_i t^i) \mapsto (a_i + b_i) t^i \in V_i$$
.

•
$$\cdot : \mathbb{F} \times V_i \ni (\lambda, a_i t^i) \mapsto (\lambda \cdot a_i) t^i \in V_i$$
.

Assim, o anel de polinômios com coeficientes em \mathbb{F} é $\mathcal{P}(\mathbb{F}) := \sum V_i$.

²Quer dizer que $t^0 = 1$ e $t^m \cdot t^n = t^{m+n}$.

Nota. $\mathcal{P}(\mathbb{F})$ é uma estructura maravilhosa pois, só por mençõar algumas de suas carateristícas que seram de nosso interesse aquí,

- É espaço vetorial de dimensão infinita e $\alpha = \{1, t, t^2, \ldots\}$ é uma base, seguindo a \square 5.3.7., $\mathcal{P}(\mathbb{F}) \ni p(t) = \sum_{k=0}^{m} a_{i_k} t^{i_k}$.
- Temos um produto bém definido e comutativo que distribui a soma, o que faz dele um anel e mais geralmente uma álgebra comutativa.
- É PID, ou seja que todo ideal é gerado.
- PID \Rightarrow UFD, ou seja que temos fatorização única em primos, propiedades de divisibilidade e algoritmo da divisão.

 \diamondsuit Seja $g(t) = \sum^m a_k t^k \in \mathcal{P}(\mathbb{F})$ tal que $a_m \neq 0$. Então o grau, gr(g) := me no caso de $a_m = 1$ dizemos que g é $m\hat{o}nico$.

 \diamondsuit $\mathcal{P}(\mathbb{F}) \ni g$ divide $f \in \mathcal{P}(\mathbb{F}), g \mid f$, sse $\exists q \in \mathcal{P}(\mathbb{F})$ tal que f = gq. Também, o conjunto dos divisores é $\mathrm{Div}(f) := \{g \in \mathcal{P}(\mathbb{F}) : g \mid f\}.$

- \bigcirc Diz-se que $p \in \mathcal{P}(\mathbb{F}) \setminus \mathbb{F}^{\times}$ é primo sse $\mathrm{Div}(p) = \{1, p\}$.
- (Fatoração em primos) Seja $f \in \mathcal{P}(\mathbb{F}) \setminus \{1\}$ mônico. Então, $\{p_j \in$ $\mathrm{Div}(f): p_j \text{ e primo}\}$ é finito e $\exists ! k_j \in \mathbb{N}$ tais que $f = p_1^{k_1} p_2^{k_2} \cdots p_n^{k_n}$.
- \square **0.2.** Algumas propiedades da divisibilidade,

(a)
$$g \mid f \in f \mid h \Rightarrow g \mid h$$
.

(b)
$$g \mid f \iff \operatorname{gr}(g) \le \operatorname{gr}(f)$$
.

(c)
$$g \mid f \in g \mid h \Rightarrow g \mid (f+h)$$
.

(c)
$$g \mid f \in g \mid h \Rightarrow g \mid (f+h)$$
. (d) Se $g \mid f \Rightarrow \forall r \in \mathcal{P}(\mathbb{F}), g \mid fr$.

(e)
$$g \mid f \in f \mid g \iff \exists \lambda \in \mathbb{F}^{\times} : f = \lambda g$$
.

- \blacksquare (Algoritmo da Divisão) Sejam $f, g \in \mathcal{P}(\mathbb{F})$ com $g \neq 0$. Então, $\exists ! q, r \in \mathbb{F}$ $\mathcal{P}(\mathbb{F})$ tais que f = gq + r e gr(r) < gr(g).
- Sejam $n \in \mathbb{Z}_{\geq 2}$ e f_1, f_2, \ldots, f_n não todos nulos, então $\exists ! d \in \mathcal{P}(\mathbb{F})$ mônico ao que chamamos de $mdc(f_i)$ que verifica,

i.
$$d \in \bigcap^n \text{Div}(f_j)$$

i.
$$d \in \bigcap^n \text{Div}(f_j)$$
 ii. Se $e \in \bigcap^n \text{Div}(f_j) \Rightarrow e \mid d$.

 \blacksquare (Bézout) Se $d = \text{mdc}(f_j)$ então $\exists a_j \in \mathcal{P}(\mathbb{F})$ tais que $\sum^n a_j f_j = d$.

Nota. Caso particular $mdc(f_1, f_2) = 1$, tá dizendo que $\exists a, b \in \mathcal{P}(\mathbb{F})$ tais que $a(t)f_1(t) + b(t)f_2(t) = 1$, isso sería importante mais pra frente.³

§ 1 Teoria Geral de Operadores Lineares

Se $T \in \operatorname{End}_{\mathbb{F}}(V)$ então $T^m := \overbrace{T \circ T \circ \cdots \circ T}^{m \operatorname{veces}} \in \operatorname{End}_{\mathbb{F}}(V)$, por convenção $T^0 = \mathbb{1}_V$. Seguindo o ítem (a) da \square 0.1. , $\forall p \in \mathcal{P}(\mathbb{F})$ temos,

$$p(t) = \sum_{k=0}^{m} a_k t^k \quad \leadsto \quad P(T) = \sum_{k=0}^{m} a_k T^k \in \operatorname{End}_{\mathbb{F}}(V).$$

Também, seguindo a notação dos preliminares $V_p = V_{p(T)} = \{v \in V : p(T)(v) = 0\}$. De aquí pra frente seja $T \in \operatorname{End}_{\mathbb{F}}(V)$ fixo.

Nota. Sendo $p=t-\lambda$, temos uma definição equivalente de autoespaço como sendo $V_p \neq \{0\}$.

1.1 Polinômio Mínimo e Descomposição Primária

 \diamondsuit Sejam $\lambda \in \mathbb{F}$, $m \in \mathbb{N}$ e $p(t) = (t - \lambda)^m$. Se $\exists v \in V_p \setminus \{0\}$ é chamado de autovetor geralizado associado ao autovalor λ .

 $\bigodot W \leq V$ é T-invariante se $T(W) \subseteq W$, e a restrição de $T|_W$ e chamada de o operador inducido em W.

□ **8.1.1.** Se $S,T\in \operatorname{End}_{\mathbb{F}}(V)$ são tais que $S\circ T=T\circ S$, então V_S é T-inv. \to Se $w\in V_S\Rightarrow S(T(w))=T(S(w))=0\Rightarrow T(w)\in V_S$

Nota. Dado que $p(T) \circ T = T \circ p(T)$ os subespaçõs V_p são T-inv, e também, $\forall p, f \in \mathcal{P}(\mathbb{F}), V_p \subseteq V_{fp}$. Em particular, $\forall k \in \mathbb{Z}_{\geq 0}, \ V_{p^k} \subseteq V_{p^{k+1}}$.

 \diamondsuit Sejam $\lambda \in F$ e $V_p^{\infty} := \bigcup_{k \geq 0} V_{p^k}$. No caso, $p = (t - \lambda)$ então V_p^{∞} é chamado de *autoespaço geralizado* associado ao λ .

 $^{^3}$ Não falei, mais quando isso acontece diz-se que f_1 e f_2 são coprimos

Nota. V_p^{∞} é T-inv e se $\dim V = n < \infty$ então $V_p^{\infty} = V_{p^n}$. \diamondsuit $\mathscr{A}_T := \{ p \in \mathcal{P}(\mathbb{F}) : p(T) = 0 \}$ \mathbb{I} **8.1.3.** Se dim $V=n<\infty$ então $\mathscr{A}_T\neq\{0\}$. Lembre-se que $\dim(\operatorname{End}_{\mathbb{F}}(V))=n^2$, logo, $\exists m\leq n^2$ tal que $\{T^j\}_{i=0}^m$ é 1.d. Tome m mínimo e faça $f(T) := T^m - \sum^{m-1} a_k T^k \in \mathscr{A}_T$. \square **8.1.4.** Se $\mathscr{A}_T \neq \{0\}$ então $\exists ! m_T \in \mathcal{P}(\mathbb{F})$ mônico tal que $\forall f \in \mathscr{A}_T, \ m_T \mid f$. \mathscr{A}_T é ideal então $\exists ! m_T$ tal que $\mathscr{A}_T = \langle m_T \rangle$. Se prefer pegue m_T de menor grau possivél, suponha $f=m_Tq+r$ e conclua que r=0. Para unicidade suponha outro e usei \square 0.2. (e). No caso que $\mathscr{A}_T = \{0\}$ fazemos $m_T := 0$ é assim que $V = V_{m_T}$. Se $S=T|_{V_p}$ então $p\in\mathscr{A}_S$. Também, pode-se verificar que o polinômio construido na \square 8.1.3. é de fato m_T . \square **8.1.6.** Se $f,g\in\mathcal{P}(\mathbb{F})$ co-primos então, a restrição de $f|_{V_q}$ é injetora. \to Faz usando o \blacksquare (*Bézout*), lembre-se que $1 \rightsquigarrow \mathbb{1}_V$ \square 8.1.7. Seja $\mathscr{A}_T \neq \{0\}$ e $p \in \mathcal{P}(\mathbb{F})$ primo. Então, $V_p \neq \{0\} \leftrightharpoons p \mid m_T$. (\Rightarrow) Suponha $p \nmid m_T$ então são co-primos, aplique \square 8.1.6. e conclua $V_p = \{0\}. \ (\Leftarrow)$ Suponha $p \mid m_T$ e $V_p = \{0\}$ e contradiga. \boxtimes **8.1.8.** Seja $\mathscr{A}_T \neq \{0\}$ e $p \in \mathcal{P}(\mathbb{F})$. Então, $V_p \neq \{0\} \leftrightharpoons \exists f \in \mathrm{Div}(m_T)$ e $\exists g \in \mathcal{P}(\mathbb{F})$ tais que p = gf. Se $\nexists q \in \text{Div}(m_T)$ tal que $q \mid g$ então $V_p = V_f$. É coisa de fatorar em primos, ter presentes as propiedades \square 0.2. (a),

 \bigcirc Sejam $v \in V$ e $\forall k \in \mathbb{Z}_{\geq 0}, \ v_k = T^k(v)$. A familia $\mathscr{C}_T^{\infty}(v) := (v_k)$ é chamada de T-ciclo gerado por v, enquanto $C_T(v) := [\mathscr{C}_T^{\infty}(v)]$ é o subespaço T-cíclico gerado por v.

 $V_p \subseteq V_{fp}$ e conseguir as hipótese da \square 8.1.7..

Nota. É fácil ver que $C_T(v)$ é T-inv. Alternativamente, pode-se definir $C_T(v) = \mathscr{C}_T^m(v)$, onde $m = \dim C_T(v) \in \mathbb{Z}_{\geq 0} \cup \{\infty\}$.

 \diamondsuit Para $\alpha = (v_i)$ familia em V definimos $C_T(\alpha) := \sum C_T(v_i)$.

Nota. Se $\dim V = n < \infty$ então num análise analogo da \square 8.1.3. pode-se construir $m_{T,v} = m_v$ pensando no mínimo m tal que $\mathscr{C}_T^m(v)$ é l.d.. Também, $C_T(v) \subseteq V_{m_v} \leftarrow T$ -inv, sendo $S = T|_{V_{m_v}}$ temos $m_v = m_S$.

 \boxtimes **8.1.9.** $\forall v \in V$ temos $m_v \mid m_T$. \rightarrow Segue da observação acima e \square 8.1.7.

 \square **8.1.11.** Sejam $m \in \mathbb{N}$ e $p_1, p_2, \ldots, p_m \in \mathcal{P}(\mathbb{F})$ co-primos dois a dois. Então a soma $\sum_{p_i}^m V_{p_i}^{\infty}$ é direta.

Seguendo \square 5.4.6., pega $v_j \in V_{p_j}^{\infty} \setminus \{0\}$ e mostra que $\alpha = (v_j)$ é l.i.. Faz por indução, no paso indutivo suponha $\sum^m a_j v_j = 0$ e $g = \prod_{j < m} p_j$. Usa o \square 8.1.6. com cada $g_j = p_j$ e $f = p_m$ pra concluir $a_m = 0$.

- \square 8.1.12. Sejam $m \in \mathbb{N}$ e $f_1, f_2, \ldots, f_m \in \mathcal{P}(\mathbb{F})$ co-primos dois a dois e $f = \prod^m f_j$. Então, $V_f = \bigoplus V_{f_j}$. \to Não suporta resumo, olha [1, Pág. 261]
- 8.1.13. (Descomposição Primária) Sejam $\mathscr{A}_T \neq \{0\}$ e $\prod^m p_j^{k_j}$ a fatoração em primos de m_T . Então, $V = \bigoplus_{p_j} V_{p_j}$.

Faça $p_j^{k_j} = f_j$ na \square 8.1.12., o resultado segue do fato de $V = V_{m_T}$.

Nota. Os termos da soma são chamados de *subespaços T-primarios*.

 \square 8.1.16. Sejam $p \in \mathcal{P}(\mathbb{F})$ primo e $u, v \in V$ tais que $m_u = m_v = p$. Então, ocurre exatamente uma das duas opções a seguir,

i.
$$C_T(u) = C_T(v)$$
. ii. $C_T(u) \cap C_T(v) = \{0\}$.

 $*C_T(v) = \{q(T)(v) : q \in \mathcal{P}(\mathbb{F})\} * \rightarrow \text{Prova meramente conjuntista}$

O resultado segue de mostrar $\forall w \in C_T(v), C_T(v) = C_T(w)$. Prova as duas contenções usando a igualdade acima e o \blacksquare (*Bézout*).

 \square 8.1.17. Seja $p \in \mathcal{P}(\mathbb{F})$ primo tal que $\dim V_p < \infty$. Então, $\exists l \in \mathbb{Z}_{\geq 0}$ e $v_1, v_2, \ldots, v_l \in V_p$ tais que $V_p = \bigoplus^l C_T(v_k)$.

Basta ver que $\forall v \in V_p \backslash \bigoplus^{l-1} C_T(v_k)$ temos $C_T(v) \cap \bigoplus^{l-1} C_T(v_k) = \{0\}$. Suponha $w \neq 0$ naquela interseção e usa os varios fatos em \square 8.1.16. pra contradizer, conseguindo ver que $v \in \bigoplus^{l-1} C_T(v_k)$.

 \square 8.1.18. Seja $p_j \in \mathcal{P}(\mathbb{F})$ primo tal que dim $V_{p_j}^{\infty} < \infty$. Então,

$$\operatorname{gr}(p_j) \mid \dim V^\infty_{p_j} \ \mathbf{e} \ n_j := \frac{\dim V^\infty_{p_j}}{\operatorname{gr}(p_j)} \geq \min\{k : V^\infty_{p_j} = V_{p_j^k}\}.$$

→ A demostração não suporta resumo, olha se queser [1, Pág. 263].

Nota. Pode e debe-se verificar que $\min\{k: V_p^{\infty} = V_{p^k}\} = k_j$ do \blacksquare 8.1.13., é assim que conseguimos definir o polinômio carateristico como sendo $c_T := \prod^m p_j^{n_j} \in \mathscr{A}_T$, exatamente o mesmo do \blacksquare (Caley-Hamilton).

Encontrando a Descomposição Primária

Paso 1. Escolha uma base α pra seu espaço V e determine $[T]^{\alpha}_{\alpha}=A$.

Paso 2. Encontre $c_T = \det(t\mathbb{1}_V - A)$ e sua fatoração em primos $c_T = \prod^m p_j^{n_j}$. \to Precisa habilidade na hora das contas do det

Paso 3. Estude subespaços e encontre o min k: dim $V_{p_j^k} = \operatorname{gr}(p_j)n_j$.

Nota. Na hora das contas são úteis as propiedades,

i.
$$\det(a_{ij}) = \sum (-1)^{i+j} a_{ij} M_{ij}$$
. \rightarrow Formula de Laplace

ii.
$$\det \begin{bmatrix} A & 0 \\ C & B \end{bmatrix} = \det \begin{bmatrix} A & C \\ 0 & B \end{bmatrix} = \det A \det B$$
. $\to A \in B$ quadradas

iii.
$$\det \begin{bmatrix} | & | & | \\ \mu a_{i1} & \cdots & \mu a_{in} \\ | & | \end{bmatrix} = \mu \det \begin{bmatrix} | & | & | \\ a_{i1} & \cdots & a_{in} \\ | & | \end{bmatrix}$$
. \rightarrow Saca múltiplos das filas

1.2 Complementos Invariantes e Bases Cíclicas

1.3 Formas Canônicas

§ 2 Multilinearidade

Em diante entendemos $\Pi V_j = V_1 \times V_2 \times \cdots \times V_k$ como o espaço vetorial dado pelo produto cartesiano dos \mathbb{F} -espaços vetorias V_j com $j \leq k \in \mathbb{N}$.

 \bigcirc Sejam ΠV_j e W \mathbb{F} -espaços vetorias. Denotamos por $\mathcal{F}(\Pi V_j, W)$ o conjunto de todas as funções $\phi: \Pi V_j \to W$.

 \bigcirc Uma função $\phi \in \mathcal{F}(\Pi^k V_j, W)$ é k-linear se é linear em cada entrada. Ou seja, $\forall j \leq k, \forall (v_{i_0}) \in \Pi V_j$ fixo : $v_{j_0} = 0, \forall (v_i), (v_i') \in \Pi V_j$ e $\forall \lambda \in \mathbb{F}$,

$$\phi_{j}((v_{i_{0}}) + (v_{i} + \lambda v_{i}')_{\delta_{j}}) = \phi((v_{i_{0}}) + (v_{i})_{\delta_{j}}) + \lambda \phi((v_{i_{0}}) + (v_{i}')_{\delta_{j}})^{4}$$

$$\Leftrightarrow H_{i_{0}} = k(\Pi V_{i_{0}} \Pi V_{i_{0}}) + (\lambda V_{i_{0}} V_{i_{0}} \Pi V_{i_{0}} \Pi V_{i_{0}}) + (\lambda V_{i_{0}} V_{i_{0}} \Pi V_{i_{0}} \Pi V_{i_{0}} \Pi V_{i_{0}} \Pi V_{i_{0}}) + (\lambda V_{i_{0}} V_{i_{0}} \Pi V_{i_{0}} \Pi V_{i_{0}} \Pi V_{i_{0}} \Pi V_{i_{0}}) + (\lambda V_{i_{0}} V_{i_{0}} \Pi V_{i_{0$$

$$\bigcirc$$
 $\operatorname{Hom}_{\mathbb{F}}^k(\Pi V_j, W) := \{ \phi \in \mathcal{F}(\Pi V_j, W) : \phi \notin k\text{-linear} \}$

Nota. Se $\forall j \leq k, V_j = V$ então $\operatorname{Hom}_{\mathbb{F}}^k(\Pi V_j, W) = \operatorname{Hom}_{\mathbb{F}}^k(V, W)$. Também, se $W = \mathbb{F}$, chamamos seus elementos de *formas k-lineares* em V.

$$U \le \Pi V_j \Rightarrow \phi(U) \le W$$

Exemplo Sejam $V = \mathbb{F}^2$, $W = \mathbb{F}^4$ e $\phi : \mathbb{F}^2 \times \mathbb{F}^2 \ni ((x_1, y_1), (x_2, y_2)) \mapsto \overline{(x_1x_2, x_1y_2, y_1x_2, y_1y_2)} \in \mathbb{F}^4$. \to Veja que é bilinear, logo que $\operatorname{Im}(\phi) = \{(a_j) : a_1a_4 = a_2a_3\}$, pegue dois caras $u, v \in \operatorname{Im}(\phi) : u + v \notin \operatorname{Im}(\phi)$

- 9.1.3. Pra cada $j \leq k$ sejam $\alpha_j = (v_{i,j})_{i \in I_j}$ uma base de V_j , $I = \Pi^k I_j$ e $(w_i)_{i \in I}$, familia de vetores em W. Então, $\exists! \phi \in \operatorname{Hom}_{\mathbb{F}}^k(\Pi V_j, W)$ tal que $\forall \mathbf{i} \in I$ temos $\phi((v_{\mathbf{i},j})) = w_{\mathbf{i}}$.
- \to A demostração é completamente análoga da feita pra \blacksquare 6.1.6., mudando, claro, o não despreciavél negôcio da gestão dos índices
- \square 9.1.4. Sejam V_j , α_j como no \blacksquare 9.1.3., $\beta=(w_s)_{s\in S}$ uma base de W, $\mathbf{v_i}:=(v_{\mathbf{i},j})_{\mathbf{i}\in I}$ e $\forall (\mathbf{i},s)\in I\times S$ seja $\phi_{\mathbf{i},s}\in \mathrm{Hom}_{\mathbb{F}}^k(\Pi V_j,W)$ o único tal que

⁴Entendase $(v_i)_{\delta_j} := (v_i \cdot \delta_j)$.

 $\forall \mathbf{i'} \in I, \phi_{\mathbf{i},s}(v_{\mathbf{i'}}) = \delta_{\mathbf{i},\mathbf{i'}}w_s. \text{ Então } (\phi_{\mathbf{i},s}) \text{ \'e l.i., mas ainda, se } \forall j \leq k, \dim V_j < \infty \text{ então } (\phi_{\mathbf{i},s}) \text{ \'e base do } \mathrm{Hom}_{\mathbb{F}}^k(\Pi V_j, W).$

dsakfj

References

[1] Moura, Adriano (2025). Álgebra Linear com Geometría Analítica. UNI-CAMP, Campinas, SP.