Determinacy and Large-Scale Models in the Sequence Space

Matthew Rognlie

NBER Heterogeneous-Agent Macro Workshop, 2025

Roadmap for determinacy and existence

- * Want a sequence-space criterion for determinacy and existence
- * To get there: obtain a structure theorem for sequence-space Jacobians
- * When het-agent model is stationary, Jacobians are quasi-Toeplitz:

$$\mathbf{J} = T(\mathbf{j}) + \mathbf{E}$$

i.e. sum of Toeplitz operator $T(\mathbf{j})$ and compact operator \mathbf{E} on ℓ^2

- * Will exploit this structure in many ways, but start with:
 - * "Winding number" criterion on j for determinacy & existence

Toeplitz and quasi-Toeplitz operators

What is a Toeplitz operator?

- * We'll work with **semi-infinite** Toeplitz matrices $T(\mathbf{j})$ with constant diagonals $\{j_s\}_{s=-\infty}^{\infty}$
- * Assuming $\sum_{s} |j_{s}| < \infty$, these induce bounded operators on ℓ^{2}
- * Can define series $j(z) \equiv \sum_{s=-\infty}^{\infty} j_s z^s$, sometimes called "symbol" of $T(\mathbf{j})$

$$T(\mathbf{j}) = \begin{pmatrix} j_0 & j_{-1} & j_{-2} \\ j_1 & j_0 & j_{-1} \\ j_2 & j_1 & j_0 \\ \vdots & \vdots & \ddots \end{pmatrix}$$

Examples: lag and lead operators

$$egin{pmatrix} 0 & 1 & 0 & \cdots \\ 0 & 0 & 1 & \ddots \\ 0 & 0 & 0 & \ddots \\ \vdots & \ddots & \ddots & \ddots \end{pmatrix}$$

Lag operator **L** :
$$(x_0, x_1, x_2, ...) \mapsto (0, x_0, x_1, ...)$$

[Injective but not surjective (range missing 1 dimension)]

Lead operator $\mathbf{F}: (x_0, x_1, x_2, ...) \mapsto (x_1, x_2, x_3, ...)$

[Surjective but not injective (null-space missing 1 dimension)]

[= taking one-period-ahead expectations given MIT shock]

More complex example: reset prices given marginal cost

* Log-linearizing standard Calvo model, get:

$$p_t^* = (1 - \beta\theta) \cdot \sum_{s=0}^{\infty} (\beta\theta)^s \cdot \mathbb{E}_t MC_{t+s}$$

* For MIT shock, mapping from $\{MC_t\}_{t=0}^{\infty}$ to $\{p_t^*\}_{t=0}^{\infty}$ is Toeplitz, equal to $(1 - \beta\theta)$ times matrix on right

[forward-looking → upper triangular]

$$\begin{pmatrix}
1 & \beta\theta & (\beta\theta)^2 \\
0 & 1 & \beta\theta & \ddots \\
0 & 0 & 1 & \ddots \\
\ddots & \ddots & \ddots
\end{pmatrix}$$

Columns of Toeplitz matrix: costs to reset prices

$$(1 - \beta\theta) \times$$

$$\begin{pmatrix} 1 & \beta\theta & (\beta\theta)^2 \\ 0 & 1 & \beta\theta & \ddots \\ 0 & 0 & 1 & \ddots \\ \ddots & \ddots & \ddots \end{pmatrix}$$

$$(\beta = 0.98, \ \theta = 0.75)$$

Aggregate prices given reset prices

* Again log-linearizing standard Calvo model, we get:

$$p_t = (1 - \theta) \cdot \sum_{s=0}^{\infty} \theta^s \cdot p_{t-s}^*$$

* Like before, mapping from $\{p_t^*\}_{t=0}^{\infty}$ to $\{p_t\}_{t=0}^{\infty}$ is Toeplitz, equal to $(1-\theta)$ times matrix on right [backward-looking \rightarrow lower triangular]

$$\begin{pmatrix} 1 & 0 & 0 \\ \theta & 1 & 0 & \ddots \\ \theta^2 & \theta & 1 & \ddots \\ \ddots & \ddots & \ddots \end{pmatrix}$$

Columns of Toeplitz matrix: reset prices to agg prices

What if we want to compose Toeplitz operators?

- * Would be nice to deal only with Toeplitz operators
- * Problem: class of Toeplitz operators not closed under composition / multiplication
- * Simple example: FL = I (lead of lag is identity), but $LF \neq I$, and instead:

$$\mathbf{LF} = \begin{pmatrix} 0 & 0 & 0 & \cdots \\ 0 & 1 & 0 & \ddots \\ 0 & 0 & 1 & \ddots \\ \vdots & \ddots & \ddots & \ddots \end{pmatrix}$$

- * So (**LF**) · $(x_0, x_1, x_2, ...) = (0, x_1, x_2, ...)$
- * Interpretation for MIT shocks? "Missing anticipation."
 - * $\mathbb{E}_{t-1}x_t = x_t \text{ for } t > 0$, but $\mathbb{E}_{-1}x_0 = 0 \neq x_0$

But we do stay in larger quasi-Toeplitz class

* Define quasi-Toeplitz operators as Toeplitz operator plus compact operator **E** [compact in ℓ^2 = can be uniformly well-approximated by finite rank]

$$\mathbf{J} = T(\mathbf{j}) + \mathbf{E}$$

* **Result:** product of any two Toeplitz operators $T(\mathbf{j}_1)$ and $T(\mathbf{j}_2)$ is quasi-Toeplitz like above, with $\mathbf{j} = \mathbf{j}_1 \cdot \mathbf{j}_2$ given by convolution $[\operatorname{so} j(z) = j_1(z)j_2(z)]$

- * Intuitively, why do we need E? "Missing anticipation": taking lags of leads!
- Quasi-Toeplitz operators closed under multiplication!
 [multiplying Toeplitz parts → quasi-Toeplitz, multiplying any bounded by compact → compact]

Compose to get map J from costs to aggregate prices

$$\begin{pmatrix}
1 & 0 & 0 \\
\theta & 1 & 0 & \ddots \\
\theta^2 & \theta & 1 & \ddots \\
\ddots & \ddots & \ddots
\end{pmatrix} \times \begin{pmatrix}
1 & \beta\theta & (\beta\theta)^2 \\
0 & 1 & \beta\theta & \ddots \\
0 & 0 & 1 & \ddots \\
\ddots & \ddots & \ddots
\end{pmatrix}$$

(Lag of lead: we should expect a compact "correction" E!)

Visualizing columns of this J

Structure theorem for heterogeneous-agent models

Structure theorem for heterogeneous-agent models

- * Such models have some steady-state transition matrix Λ_{ss} , some backward mapping $\mathbf{v}_{t+1} \to \mathbf{v}_t$ on value function, with steady-state derivative $\mathbf{v}_{\mathbf{v}}$
- * Suppose we have "stationarity":
 - * Λ_{ss} has all eigenvalues but one strictly inside unit circle
 - * v_v has eigenvalues strictly inside unit circle
- * Structure theorem: if model is stationary, all sequence-space Jacobians are quasi-Toeplitz with

$$|E_{ts}| \leq K\Delta^{t+s}$$

for bound Δ on eigenvalues and some constant K

- * Intuition: if effect of far future on value function eventually dies off...
 - * ... and effect of distribution on future eventually dies off, "missing anticipation" dies off too

Example: intertemporal MPCs in a SIM model

Same, but Jacobian of assets vs. income

Taking stock

- * We've shown that quasi-Toeplitz Jacobians naturally emerge:
 - * as closure under multiplication of Toeplitz Jacobians (which themselves emerge from simple aggregate equations)
 - * as Jacobians of stationary heterogeneous-agent problems
- * Now will discuss applications:
 - * now: for testing determinacy and existence of solutions
 - * later: directly getting sequence-space solutions in "truncation-free" way, and solving huge sequence-space systems

Determinacy, existence, and inversion

Winding number of a Toeplitz operator

- * Winding number wind(j) is # of times symbol j(z) rotates counterclockwise around 0 as z goes counterclockwise around the unit circle [see Onatski 2006]
- * **Result:** can invert Toeplitz $T(\mathbf{j})$, resulting in quasi-Toeplitz, iff winding number 0
- * For quasi-Toeplitz $T(\mathbf{j}) + \mathbf{E}$, this result is "generic" on open & dense set of \mathbf{E} :
 - * If wind(j) = 0, **J** is generically invertible
 - * If wind(j) < 0, **J** is **not injective** (**indeterminacy**), but generically surjective
 - * If wind(j) > 0, **J** is **not surjective** (**nonexistence**), but generically injective
- * [Example: lag operator has j(z) = z, winding number of 1, so not surjective.]

Application: uniqueness in Intertemporal Keynesian Cross model

* In Intertemporal Keynesian Cross model (Auclert Rognlie Straub 2024), equilibrium output $d\mathbf{Y}$ given taxes $d\mathbf{T}$ and bonds $d\mathbf{B}$ given by

$$\mathbf{A}(d\mathbf{Y} - d\mathbf{T}) = d\mathbf{B}$$

where A is Jacobian of household assets to post-tax income

* A is quasi-Toeplitz, will generically be invertible with solution

$$d\mathbf{Y} = \mathbf{A}^{-1}d\mathbf{B} + d\mathbf{T}$$

if winding number of a(z) is zero

- * Multiple equilibria dY if winding number is negative
 - * (Self-fulfilling booms or busts in output!)

Winding number plot for A with a standard calibration

Case with countercyclical risk: self-fulfilling boom

Get shape of indeterminacy from approx SVD null vector

Self-fulfilling boom
that is very longlasting: boom
increases income and
decreases future risk,
leading to selffulfilling boom in
consumption

How does winding number vary with cyclicality ζ of income risk?

Under the hood: winding number code

```
def sample_values(j, N=8192):
    """Evaluate Laurent polynomial j(z) (with equally many positive
    and negative powers) counterclockwise at N evenly spaced roots of
    unity z, wrapping back around to z=1, using FFT"""
    assert N % 2 == 0 and len(j) % 2 == 1
    Tau = len(j) // 2 + 1 # Tau-1 is the maximum pos or neg power in j(z)
    # center j(z) at N/2
    jj = np.zeros(N)
    jj[N//2-Tau+1:N//2+Tau] = j
    # take FFT to evaluate j(z) * z^{(N/2)} at roots of unity (could exploit
    conjugate symmetry to halve work)
    e = np.fft.fft(jj)
    # divide by z^{(N/2)} at same roots, which is alternating 1 and -1, to
    get j(z)
    alt = np.tile([1, -1], N//2)
    e = e * alt
    # return wrapped back to z=1, reversed to make counterclockwise
    return np.concatenate((e, [e[0]]))[::-1]
```

Once you have j(z), it's easy to evaluate at sample points around unit circle very efficiently with the FFT—see left.

(Much better than a naive implementation.)

Then we just need to count the number of times the path wraps around the origin—tedious function to write, header below, full function in winding_number.py.

```
@njit
def winding_number_of_path(x, y):
    """Compute winding number around origin of (x,y) coordinates that make closed path by counting number of counterclockwise crossings of ray from (0,0) ->
    (infty,0) on x axis"""
```

Block quasi-Toeplitz case

- * Say we have N^2 quasi-Toeplitz matrices from N unknowns to one of N targets
- * Can think of this as being one **block quasi-Toeplitz operator**, like a quasi-Toeplitz but where entries are each $N \times N$ blocks
- * Then $\{j_k\}_{k=-\infty}^{\infty}$ is two-sided sequence of $N \times N$ matrices, so matrix-valued j(z):

$$j(z) \equiv \sum_{k=-\infty}^{\infty} j_k z^k$$

- * Winding number test still holds generically, now for wind(det j)
- * Important case in practice

Beyond determinacy: quasi-Toeplitz as a computational tool

Solving het-agent models to first order

- * Two key considerations:
 - * Size of idiosyncratic state space S
 - * Number of endogenous aggregate variables N
- * State-space approach: costly when S large. Has determinacy criterion.

[Reiter, Ahn-Kaplan-Moll-Winberry-Wolf, Bayer-Luetticke, ...]

* Sequence-space approach: fast when S large, costly when N large.

[Boppart-Krusell-Mitman, Auclert-Bardoczy-Rognlie-Straub, ...]

* How do we solve models when both S and N are large?

Further exploiting quasi-Toeplitz structure

- * Three ways of exploiting quasi-Toeplitz structure:
 - * Winding number criterion on j for determinacy & existence [did this!]
 - * "Truncation-free" solution working directly with j and E [next!]
 - * Using $T(\mathbf{j}^{-1})$ as guess for \mathbf{J}^{-1} gives rapid iterative solution, even when N large [next!]

Operations with quasi-Toeplitz operators: No more truncation!

Directly use quasi-Toeplitz form

- * We have quasi-Toeplitz representation $\mathbf{J} = T(\mathbf{j}) + \mathbf{E}$ of Jacobians
- * So far, we've used the winding number of j to assess determinacy
- * Going beyond this: directly do computations with this representation!
 - * Benefit: ${\bf E}$ decays quickly to zero, and often close to low-rank ${\bf E} \approx {\bf U}{\bf V}'$
 - * Cheap to get $T(\mathbf{j}_1\mathbf{j}_2)$, multiply $T(\mathbf{j}_1)\mathbf{U}_2'$, etc., to construct $\mathbf{J}_1\mathbf{J}_2$ (using FFT)
 - * Similar, though a bit more complex, for inversion
- * Working directly with quasi-Toeplitz (infinite!), not truncated matrices, avoids errors from truncation [Bini, Massei, Robol 2019]

How well can we approximate A?

Big easier to visualize with a log scale...

Alternative: use structure for iterative solutions (and solve giant models in the process!)

First point: easy to get Toeplitz part of inverse

- * Suppose we want to solve AdZ = dB
- * A^{-1} is quasi-Toeplitz of form $T(a^{-1}) + E$, with E low-rank like we saw
- * Key point: \mathbf{a}^{-1} is **really** easy to calculate!
 - * Get a(z) at many z using FFT, then go from $a(z)^{-1}$ to \mathbf{a}^{-1} with inverse FFT
 - * Cost is only $O(T \log T)$, way cheaper than $O(T^3)$ matrix inversion
 - * What can we do with just $T(\mathbf{a}^{-1})$?
 - * [conceptually, \mathbf{a}^{-1} is inverse for infinitely-well-anticipated shocks]

What can we do with a⁻¹?

* Start with $(T(\mathbf{a}) + \mathbf{E})d\mathbf{Z} = d\mathbf{B}$, multiply both sides by $T(\mathbf{a}^{-1})$:

$$T(\mathbf{a}^{-1})(T(\mathbf{a}) + \mathbf{E})d\mathbf{Z} = T(\mathbf{a}^{-1})d\mathbf{B}$$

* Both $T(\mathbf{a}^{-1})T(\mathbf{a}) - \mathbf{I}$ and $T(\mathbf{a}^{-1})\mathbf{E}$ compact, well-approximated by low rank, so can be written in form

$$(\mathbf{I} + \mathbf{C})d\mathbf{Z} = d\mathbf{y}$$

- * Iterative method (GMRES) very good at solving ($\mathbf{I} + \mathbf{C}$)⁻¹ dy if \mathbf{C} low-rank [Multiplying by $T(\mathbf{a}^{-1})$ is called "preconditioning".]
- * Cheap, doesn't require explicitly forming new matrices like C

We expand this to HUGE model

- * *N*-country extension of IKC model, constant *r* in each country *n*
- * Fiscal policy in n chooses $\{B_t^n, T_t^n\}$ consistent with budget constraint
- * n spends share $\Pi_{n,n'}$ on output from others n', take from data for 177 countries
- * Assume same HA model in each n, for simplicity assume all share A, M
- * Solve for GDP $\{Y_{nt}\}$ in all N countries, in response to US deficit-financed tax cut, need long horizon T=1000
- * Usual sequence-space approach: Jacobian size (177,000)²: can't even store!
- * With iterative approach, solves in a few seconds on laptop!

Peek at solution: selected countries over time

Peek at solution: on impact across countries

Peek at solution: after 20 quarters across countries

How fast is this?

How fast is this? Compare to state space

Conclusion

- * Quasi-Toeplitz structure of Jacobians delivers:
 - * winding number test for determinacy
 - * truncation-free computations exploiting the structure
 - * extremely fast iterative computations, even in huge models
 - * solves 177-country HANK in 3 seconds!!