1 Theory

1.1 Notations

1.2 Centralized Multi-Period OPF with Batteries

(Integer Constraint Relaxed) Naive Brute Force Full Optimization Model - Full Horizon

$$\min_{\substack{P_{ij}^t, Q_{ij}^t, v_j^t, l_{ij}^t, \\ q_{D_j}^t, B_j^t, P_{c_j}^t, P_{d_j}^t, q_{B_j}^t}} \quad \sum_{t=1}^T \sum_{(i,j) \in \mathcal{L}} (r_{ij} l_{ij}^t) \tag{1}$$

$$+ \alpha \sum_{t=1}^{T} \sum_{j \in \mathcal{B}} \left\{ (1 - \eta_c) P_{c_j}^t + \left(\frac{1}{\eta_d} - 1 \right) P_{d_j}^t \right\}$$
 (2)

$$+ \gamma \sum_{j \in \mathcal{B}} \left\{ \left(B_j^T - B_{ref_j} \right] \right)^2 \right\} \tag{3}$$

s.t

$$p_j^t = \sum_{(j,k)\in\mathcal{L}} P_{jk}^t - \sum_{(i,j)\in\mathcal{L}} \left\{ P_{ij}^t - r_{ij} l_{ij}^t \right\} - P_{d_j}^t + P_{c_j}^t$$
 (4)

$$q_j^t = \sum_{(j,k)\in\mathcal{L}} Q_{jk}^t - \sum_{(i,j)\in\mathcal{L}} \left\{ Q_{ij}^t - x_{ij} l_{ij}^t \right\} - q_{D_j}^t - q_{B_j}^t \tag{5}$$

$$v_j^t = v_i^t + \left\{ r_{ij}^2 + x_{ij}^2 \right\} l_{ij}^t - 2(r_{ij}P_{ij}^t + x_{ij}Q_{ij}^t)$$
 (6)

$$l_{ij}^{t} = \frac{(P_{ij}^{t})^{2} + (Q_{ij}^{t})^{2}}{v_{i}^{t}}$$

$$(7)$$

$$B_{j}^{t} = B_{j}^{t-1} + \Delta t \eta_{c} P_{c_{j}}^{t} - \Delta t \frac{1}{\eta_{d}} P_{d_{j}}^{t}$$
(8)

$$B_j^0 = 0.5(soc_{max} + soc_{min})E_{Rated} = 0.625E_{Rated}$$
 (9)

where,
$$(10)$$

$$(i,j)$$
: Branch connecting nodes i and j (11)

$$p_j^t = p_{Dj}^t - p_{Lj}^t \tag{12}$$

$$q_j^t = -q_{Lj}^t \tag{13}$$

$$t = \{1, 2, \dots T\} \tag{14}$$

1.3 ENApp based Distributed Multi-Period OPF with Batteries