3.3 Greatest Common Divisors
Recall that, for $a,b \in \mathbb{Z}$, both nonzero
gcd(a,b) = largest integer that divides both a and b
We also define gcd (0,0)=0.
* Note that gcd(a,b) = gcd(1a1, 1b1). Therefore, we can pay attention to the gcd of positive integers.
Theorem 3.6: Let d = gcd(a,b)>0. Then,
$g(d(\frac{a}{d},\frac{b}{d})=1.$
Proof: Let $e = gcd(9/d, 1/d)$. We show that $e = 1$.
We've, $e \mid \frac{9}{3}$ and $e \mid \frac{b}{4}$
$\Rightarrow \frac{a}{a} = ke$ and $\frac{b}{a} = le$
$\Rightarrow a = k(ed) \text{ and } b = l(ed)$ $\Rightarrow ed a \text{ and } ed b$
=> $ed \leq d$ (: any divisor of a and b should be \leq largest divisor) => $e \leq 1$ (: $d > 0$)
=> K= 1 (- d>0)

```
But e>1 (always), 50 e=1
             and the theorem follows.
Corollary 3.6.1: Let a, b E Z with a, b = 0.
                   Then, \frac{a}{b} = \frac{p}{q} for some p, q \in \mathbb{Z} with g(d(p,q) = 1).
Proof: Let d = g(d(a,b)).

Set p = q(d) and q = b/d.
          Then, P/g = a/b and by Theorem 3.6,
           g(d(p,q) = 1.
Theorem 3.7: Let a,b,c \in \mathbb{Z}. Then
g(d(a+cb,b)=g(d(a,b)).
Proof: Let d, = g(d (a,b) and d, = g(d (a+cb,b).
          We show that d, & d, and d, & d,.
           First
          d_1 = q(d(a,b) \Rightarrow d_1 | a \text{ and } d_1 | b
                  => d, 1(a+cb) + d, 1b (Theorem 1.9)
                  => d, < do (: any divisor of a+cb
                                 and b is less than or
                                 equal to their gcd)
          Next,
               d, = 9(d (4+cb, b) => d, | a+cb and d, |b
```

=> d, | (a+cb-cb) and d, |b (Theorem 1.9) => d, (a and d, 1b => d2 \le d, (: any divisor of a and b is less than or equal to their gcd.) Hence d = d2 and the theorem follows Theorem 3.8: Let a be I where not both a and b are zero. Then, gcd (a,b) = min & ma+nb: m, n = Z, ma+nb>0} Ex: $gcd(9,21) = 3 = -\frac{9}{9}(9) + \frac{9}{1}(21)$ Proof! Let $S = \{ma + nb : m, n \in \mathbb{Z}, ma + nb > 0\}$ Then, S is nonempty. To see this, assume a=0. Then, either 1a+06 or (-1)a+0b should be positive. By the well-ordering property S' has a least element. Let it be d. Let it be d. Then, $d = m_0 a + n_0 b$ for some $m_0, n_0 \in \mathbb{Z}$. We show that d = g(d (a,b)

first, we show that dla. By the division algorithm, a = dq + r with $0 \le r < d$. Then, $a = (m_0 a + n_0 b) q + r$ $r = (1 - m_0 q) a + (-n_0 q) b$ - r is of the form ma+nb. Since red and d is the minimum positive integer of the form ma+nb, it follows that roo is not possible. Hence r=0. is a = dq and thus dla. Similarly, we can show that d(b. It remains to show that d is the largest common divisor. Let c be another common divisor of a and b. We show that c < d. If cla and clb, then clmba+nob. :. c \le d and the theorem follows.

*	of th	at at	the a	to He and		gce b	ini 1 t	is ha	er. ti	5. he 91	$\mathcal{I}t$	nea	far er	Hh Co	er mt	s. Inc	ays	•
Corc															ch	H	at	
Prooj	۷,	TH	175	JC0	d (a, E	5):	= a	mc re	1+ 5+	nt	י מעני	en	£	Of	- 1	he	
£x:		abi Cas	DV. Sl	e a	11	h/28 b =	-0	em) I	5	ex u	(de p	de de	A.	at	t	hL		
Core	ere	ary ez	, 3 LiS	+	2 ; m,	re n E	The late	e s	nte (y' s.+	ge P	rs rim ma	a e th	îf b =	eno ai = 1.	l E	on	are ly i-	F

Proof: If a and b are relatively prime, then, 9cd (a, b) = 1 and hence] mnez s.t. ma+nb=1 (by Corollary 3.8.1). Conversely, if mathb= 1 for some mn = Z, and d=gcd (a,b), then d1 (ma+nb), so d((ma+nb), i.e., d)1. Hence, d=1. in a and b are relatively prime. (Note that d to since not both a and b are zero when ma+nb=1 is given.) Theorem 3.9: Let a, b \in I. Then, the set of all linear combinations of a and b is the set of all multiples of gcd (a,b). Proof: Let d = gcd (9,6). Then, since all and all, for any mnez, by Theorem 1.9, d (ma+nb). any linear combination is a multiple of d. Conversely, we show that every multiple of dis a linear combination of a and b. By Corollary 3.8.1, 7 m, n ∈ Z s.t. d = ma + nb.

Co	nsider	any m	oultiple	id	of d,	where jeZ.
The	n, jd	'= (jn	n) a +	Cjn)b		
		= a	linea	r · com		ion of
.,	any m	ultiple	and of	gcd (a,	6) is	a linear
con	nbinatio	on of	a ar	d b.		a linear
Her	nce the	theor	em.			
Ex: a=12,	b=10.	Thei	n, d=	gcd ((12,10)	= 2.
						multiples
				of	2.	7
Thomas sa	an	vival	lon +	(1)01(1	10	do-fina
There is the gcd	of A	o ir	Heger	3. It	is 91	ren in the
following	theor	Run.				
Theorem 3	3.10:	Let	$a,b \in$	$-\mathbb{Z}_{j}$ no	ot bor	th zero.
a and b	if air	hen	$d \in \mathbb{Z}^{-}$	t 15 i t	a the	gcd of
	dla					
(ii)	cla	and	clb	=> c	ld ((ceZ)

Proof: 2	xercise	
Definition	n: Let a, a2,, an EZ, not all zero The gcd of these integers is the	
largest	integer that is a divisor of all the	SC
	ged (a, a,, an)	
gcd of	lemma gives a way to find the more than 2 integers.	2
Lemma 3	2:	
gcd (a.	a_2, \dots, a_{n-1}, a_n = $g(d(a_1, a_2, \dots, a_{n-2}, g(d(a_{n-1}, a_n))))$	n))
	12 15 21) =	
gcd (8,65,16) =	
Definition:	If $g(d(a, a,, a_n) = 1)$, then $a, a_2,, a_n$ relatively prin	an Oe
	If $g(d(a_i, a_j) = 1)$ for all $i \neq j$, then a	
	are said to be pairwise relatively prime.	
Ex:		