Nom : Prénom : Classe :

SVT: DM

Exercice 1:

Temps (en heures)	0	1	2	3	4	5	6	7	8	9	10	10,1	11
Quantité d'ADN (en picogrammes)	6,8	6,8	6,8	6,8	8,4	10,2	12	13,7	13,7	13,7	13,7	6,8	6,8

Doc. 1 Évolution de la quantité d'ADN dans une cellule en fonction du temps. La quantité d'ADN présent dans une cellule a été mesurée pendant quatorze heures. Les résultats obtenus sont présentés dans le tableau.

- 1) Réalisez le graphique de l'évolution de la quantité d'ADN en fonction du temps.
- 2) Placez sur le graphique les zones suivantes (marquez les avec de la couleur ou des flèches si necessaire) :

Mitose - Division cellulaire - Duplication de l'ADN - Interphase

Exercice 2:

Les groupes sanguins sont déterminés par la présence à la surface des hématies (ou globules rouges) de molécules marqueurs. Ces molécules sont fabriquées grâce à l'information génétique portée par un gène du chromosome 9. Ce gène existe en trois versions : allèle A, allèle B et allèle O. Chaque individu possède dans son génome deux chromosomes 9, donc deux versions du gène « groupe sanguin ». Lorsque les allèles A ou B sont présents simultanément, ils s'expriment tous les deux : ils sont dits dominants.

Doc. 2 Chromosomes, gènes et allèles impliqués dans le phénotype des groupes sanguins.

Nom : Prénom : Classe :

Phénotype	Groupe A	Groupe B	Groupe AB	Groupe O
Hématie	A	B	AB	0
Proportion dans la population française	44 %	10 %	4 %	42 %

Doc. 3 Marqueurs des groupes sanguins présents à la surface des hématies.

Allèle: version d'un gène présente sur chacun des chromosomes d'une même paire.

- 1) Pour chaque phénotype de groupe sanguin, présisez le génotype.
- 2) Expliqez comment, à partir d'une seul gène (possédant 4 allèles), il est possible d'obtenir 4 phénotypes différents.