PATENT ABSTRACTS OF JAPAN

(11)Publication number:

04-105328

(43)Date of publication of application: 07.04.1992

(51)Int.CI.

H01L 21/336

H01L 21/76

H01L 29/784

(21)Application number : **02-223407**

(71)Applicant: MITSUBISHI ELECTRIC CORP

(22)Date of filing:

24.08.1990

(72)Inventor: ONODA HIROSHI

(54) MANUFACTURE OF SEMICONDUCTOR DEVICE

(57)Abstract:

PURPOSE: To avoid a problem concerning the overlapping precision in a transfer process in the case of forming a field shield isolation, and realize a simple field shield isolation, by making the type of impurities for channel doping opposite to the type of impurities for a channel stopper.

CONSTITUTION: In the manufacture of an MOSFET, the following are included; a process wherein a well 10 is formed on a semiconductor substrate, a process wherein impurities of the same type as the well 10 are ion-implanted in the whole part of the well region, and a process wherein impurities of the opposite type to the above impurities are ion-implanted in the whole part of the well region, and the threshold voltage of an MOSFET

is controlled. For example, boron is ion-implanted in the whole surface of a P well region; a gate oxide film 22, N+ polysilicon film 23 and a silicon oxide film 24 are formed and etched; a side wall 25 is formed, and a field shield isolation is formed. Next, phosphorus for channel doping is Jon-implanted in an active region, and the threshold voltage of the transistor is controlled.

LEGAL STATUS

EV549571673

19 日本国特許庁(JP)

① 特許出願公開

N

⑩ 公 開 特 許 公 報 (A) 平4-105328

®Int. Cl. ⁵

識別記号

庁内整理番号

❸公開 平成4年(1992)4月7日

H 01 L 21/336 21/76 29/784

S 9169-4M

8422-4M 8422-4M H 01 L 29/78

3 0 1 Z 3 0 1 R

審査請求 未請求 請求項の数 1 (全5頁)

60発明の名称

半導体装置の製造方法

②特 顧 平2-223407

②出 願 平2(1990)8月24日

の発明者 小

宏 兵庫県伊

兵庫県伊丹市瑞原 4 丁目 1 番地 三菱電機株式会社エル・

エス・アイ研究所内

⑪出 願 人 三菱

三菱電機株式会社

東京都千代田区丸の内2丁目2番3号

19代 理 人 弁理士 早瀬 憲一

朔 細 書

1. 発明の名称

半導体装置の製造方法

2. 特許請求の範囲

(1) MOSFETのしきい値電圧を制御する半 導体装置の製造方法において、

半導体基板上にウエルを形成する工程、

該ウエル領域にチャネルストッパを全面イオン 注入する工程、

フィールドシールド分離を形成する工程、

該ウエル領域にチャネルストッパとは逆のタイプの不純物を全面イオン注入する工程を備えることを特徴とする半導体装置の製造方法。

3. 発明の詳細な説明

〔産業上の利用分野〕

この発明は半導体装置の製造方法に関し、特にフィールドシールド分離を用いた場合のMOSFETのしきい値電圧を制御できる半導体装置の製造方法に関するものである。

〔従来の技術〕

第2図は従来の半導体装置の製造方法を示すものであり、フィールドシールド分離を用いた場合のNチャネルMOSFETの製造フローを示している

図において、1 はレジストマスク、 2 はゲート 絶縁膜、 3 は導電膜、 4 は絶縁膜、 5 はサイドウ ォール、 6 はチャネルストッパ用不純物注入領域、 7 はチャネルドープ用不純物注入領域、 8 は M O S F E T ゲート、 9 はソース、ドレインである。

先ず、半導体基板(図示せず)上にPウエル1 0形成を行った後、トランジスタ活性領域となる べき領域にマスクを形成し、チャネルス注入を行う の第2図(3)。次に、ゲート絶縁膜2. 導電膜3. 絶縁膜4を積層した後、フィールドシールド分離 パターンの転写工程を経てエッチング加工を行い、 さらに絶縁膜のサイドウェール5を形成してフィールドシールド分離を完成する(第2図(b))。分離形成後、その分離をマスクとしてチャネルドープ用のポロンを1011~1012 cm-1程度トランジ

特開平4-105328 (2)

スタ活性領域に注入し、トランジスタのしきい値 電圧を制御する(第2図(c))。 その後、トランジ スタのゲート8の形成、ソース、ドレイン9の形 成を行い、NチャネルMOSFETを完成する。 (発明が解決しようとする課題)

レイン電流に対してバラつきを与えるという問題があった。。

ス、上記のようなメレが生じた場合、逆に分かとうなズレがもチャンのようなズレがもチャンでもチャンではチャネルストッのではチャンのはでは、近においてはチャンのではでは、カーのでは、

本発明に係る半導体装置の製造方法は、半導体 基板上にウエルを形成する工程、該ウエル領域に チャネルストッパを全面イオン注入する工程、フ

ィールドシールド分離を形成する工程、該ウエル 領域にチャネルストッパとは逆のタイプの不純物 (チャネルストッパがB・であればP・又はAs 、チャネルストッパがP・又はAs・であれば B・)を全面イオン注入する工程を備え、MOS FETのしきい値電圧を制御するようにしたもの である。

(作用)

本発明においては、従来のフローのチャネルストッパ用不純物イオン注入の際、マスクを形成タイプででは入る行い、チャネルストッパと逆のストップの不純物を活性領域に注入し、チャネルなりまで、である。MOSFEである。 本発明においては、大きのでは、サインでは、サインでは、大きのでは、大きのでは、大きのでは、大きのでは、MOSFEでのは、MOSFEでのは、大きのでは、1000年のには、100年のでは100年ので100年ので100年ので100年ので100年ので100年ので100年ので100年ので100年ので100年ので100年ので100年ので100年ので100年ので100年ので100年ので100年ので100年ので100年ので100年ので10年

〔実施例〕

以下、本発明の一実施例を第1図を用いて説明

する.

第1図は本発明の一実施例によるNチャネルMOSFETの製造フローを示し、図において、22はゲート酸化膜、23はn・ポリシリコン膜、24はシリコン酸化膜、25はサイドウォール、11はチャネルストッパ用不純物注入領域、12はチャネルドープ用不純物注入領域、13はゲート、14はソース、ドレインである。

半導体基板(図示せず)上にPウエル10を形成した後、Pウエル領域にボロン(B・)を1×10¹³ cm⁻¹³、全面イオン注入する。(第1図(a))。次に、ゲート酸化膜22、n⁻¹ボリシリコン膜23、シリコン酸化膜24を連続的にCVDなどの方法で形成し、フィールドシールド分離パターンを転写した後に連続して各層22、23、24をエッチング加工する。続いてシリコン酸化膜CVD、酸化膜全面エッチを行い、サイドウォール25を形成し、フィールドシールド分離を形成する(第1図(b))。

次に、チャネルドープ用にリンを 9. 5×10

「*cm *活性領域に注入し、トランジスタのしきい値電圧を制御し(第1図(c))、トランジスタのゲート13、ソース、ドレイン14を形成しNチャネルMOSFETを完成する(第1図(d))。

上記製造方法によるNチャネルMOSFETはその特性において、従来の製造フローのMOSFETと殆ど変わらず、しかも特性のバラつき、即ちしきい値電圧、ソースドレイン電流に対するバラつきが殆ど見られず、かつ、トランジスタ分離特性も極めて良好であった。

なお、上記実施例では、フィールドシールドのゲート絶縁膜に酸化膜を用いたが、シリコン酸化膜、変化膜、あるいはそれらの複合膜をCVDにより用いても可能である。また、フィールドシールド電極としてn・ポリシリコンを用いたが、これに限らず、P・ポリシリコンでも、ノンドープポリシリコンでも各種シリサイドでも、またポリサイドでも良い。

また、上記実施例ではNチャネルMOSFET を取りあげたが、PチャネルMOSFETでも不

トッパがB・であればP・又はAs・、チャネルストッパがP・又はAs・であればB・の不純物を活性領域に注入し、チャネルストッパの不純物が注入されたことにより濃くなりすぎた活性領域の不純物濃度を打ち消し、MOSFETのしきい値電圧制御を行うようにしたので、チャネルストッパの全面注入を可能とし、2回の転写工程の重ね合わせ精度による問題点を回避し、簡便な方法でフィールドシールド分離を実現することができる。

4. 図面の簡単な説明

第1図はこの発明の一実施例による半導体装置の製造方法を示すフロー図、第2図は従来のフィールドシールド分離を用いたNチャネルMOSFETの製造フローを示す図である。

10はPウエル、2はゲート絶縁膜、3は導電膜、4は絶縁膜、5はサイドウォール、12はポロン、13はゲート、14はソース、ドレイン、22はゲート酸化膜、23はローポリシリコン膜、24はシリコン酸化膜、25はサイドウォールで

純物のタイプを逆にする、即ち、チャネルストッパにリンを、チャネルドープにボロンを用いることにより、同様の製造方法で構成できる。

また、上記実施例では、しきい値電圧制御が、 トランジスタのモードが表面チャネル型か、埋込 チャネル型かで本質的に差異がないことはいうま でもないが、ただし、ドーズについては少し異な ってくる。

(発明の効果)

以上のように、この発明によれば、半導体基板上にウエルを形成し、該ウエル領域にチャネルストッパを全面イオン注入し、フィールドシールド分離を形成し、該ウエル領域にチャネルストでは逆のタイプの不純物を全面イオン注入の際、エスクを形成せず全面では、といい、従来のようなチャネルストッパと逆のタイプ、即ちチャネルストッパと逆のタイプ、即ちチャネルストッパと逆のタイプ、即ちチャネルストッパと逆のタイプ、即ちチャネルストッパと逆のタイプ、アルストッパと逆のタイプ、アルストッパと逆のタイプ、アルストッパと逆のタイプ、アルストッパと逆のタイプ、アルストッパと逆のタイプ、アルストッパと逆のタイプ、アルストッパと逆のタイプ、アルストッパと逆のタイプ、アルストッパと使のタイプ、アルストッパと使のタイプ、アルストッパと使の発見によりには、アルストッパと使の発見によりには、アルストッパを表しました。

ある.

なお、図中、同一符号は同一又は相当部分を示す。

代理人 早瀬 憲一

- 10:pウェル
- 11:*チャオルストッ川用* 不从物注人领域
- 12:チャオルバープ用 不料的注入領域
- 13: MOSFETケート
- 14 MOSFET ソース・メンイン
- 22:ゲート西蒙化用草
- 23:n*オツシリフン*膜*
- 24: シソコン酸化膜
- 25 サイバウォール

手統補正書(自発)

第 2 図

平成 3年 5月20日

- 1: ムジスメマスク

- 4: 71-11/2-11/ KêHA KÛ
- 5: フィールドシールド read re (#11:0x-x)
- 6:チャオルストッパ用 不料的主人的技
- 7:チャアルバーフ:用 不胜物进入领域
- 8: MOSFETゲル
- 9: MOSFET ソース・ドレイン

- - 事件の表示
- 特願平2-223407号
- 発明の名称・
- 半導体装置の製造方法
- 3. 補正をする者
 - 事件との関係 特許出願人
 - 東京都千代田区丸の内二丁目2番3号
 - (601) 三菱電機株式会社
 - 代表者 志 岐 守 哉
- 4. 代理人 郵便番号 564
 - 住 大阪府吹田市江坂町1丁目23番43号

ファサード江坂ビル1階

3. 5.23

電話 06-380-5822

式查

5. 補正の対象

明細書の特許請求の範囲の欄、及び発明の詳細な説明の欄

- 6. 補正の内容
- (1) 明細書の特許請求の範囲を別紙の通り訂正する。
- (2) 同第1頁第18行~第19行の「制御できる半導体装置の製造」を「制御する」に訂正する。
- (3) 同第2頁第2行の「フィールドシールド」を「特にフィールドシールド」に訂正する。
- (4) 同第2頁第5行の「2は」を「2はフィールドシールド分離の」に訂正する。
- (5) 同第2頁第7行の「チャネルストッパ用不 純物」を「チャネルストッパ (分離下不純物)」 に訂正する。
- (6) 同第2頁第8行の「チャネルドープ用不純物」を「チャネルドープ(しきい値制御用不純物)」 に訂正する。
- (7) 同第2頁第10行の「P」を「P型」に訂正する。

- (8) 同第2頁第12行~第13行の「マスクを …ストッパである」を「レジストマスクを形成し、 チャネルストッパとしてP型不純物である」に訂 正する。
- (9) 同第2頁第16行の「経て」を「経てレジストマスクを形成し、絶縁膜4. 導電膜3. ゲート絶縁膜2の」に訂正する。
- (0) 同第3頁第1行~第2行の「往入し、…(第2図(c))。」を「往入する。」に訂正する。
- (I) 同第4頁第2行の「あった。.」を「あった。」に訂正する。
- (22) 同第4頁第7行の「分離特性」を「特性」に訂正する。
- (3) 岡第6頁第4行の「2は」を「2はフィールドシールド分離の」に訂正する。
- QQ 同第6頁第6行の「チャネルストッパ用」を「チャネルストッパ」に訂正する。
- (S) 同第6頁第7行の「チャネルドープ用」を「チャネルドープ」に訂正する。
- 06 同第6頁第12行の「酸化膜22.」を「

酸化膜22を形成した後、」に訂正する。

- 05 同第7頁第12行の「絶縁膜に酸化膜を用いたが、」を「絶縁膜を酸化により形成したが、」に訂正する。
- 09 同第7頁第14行の「用いても」を「形成しても」に訂正する。
- 201 同第7頁第16行~第17行の「ノンドー ブポリシリコンでも」及び第8頁第4行~第8行 の「また、…異なってくる。」を削除する。

特許請求の範囲

(I) MOSFETの製造方法において、 半導体基板上にウェルを形成する工程、

抜ウエル領域に<u>抜ウエルと同タイプの不能物</u>を 全面イオン注入する工程、

フィールドシールド分離を形成する工程、

該ウェル領域に<u>前記不純物</u>とは逆のタイプの不 純物を全面イオン注入<u>してMOSFETのしきい</u> <u>値質圧を制御する</u>工程を備えることを特徴とする 半導体装置の製造方法。

以 上