Espaces vectoriels normés

dejou@math.univ-lyon1.fr

- NormesDéfinitions
 - Names a variable and
 - Normes usuelles sur \mathbb{K}^n
 - Distance associée
 - Boules
 - Caractère borné
- Espaces vectoriels normés usuels
 - Norme sur un espace vectoriel de dimension finie
 - Norme de la convergence uniforme
 - Produit d'espaces vectoriels normés
- Équivalence de normes
 - Comparaison de normes
 - Encadrement des boules
 - Notion invariante par passage à une norme équivalente
- 4 Suites d'éléments d'un espace vectoriel normé
 - Convergence
 - Opérations
 - Effet d'un changement de norme
 - Convergence en dimension finie
 - Convergence dans un esnace produit

Dans tout le chapitre, $\mathbb K$ désigne le corps $\mathbb R$ ou $\mathbb C$ et E un $\mathbb K$ -espace vectoriel.

1. Normes

1.1. Définitions

Définition 1.1

On appelle **norme** sur E toute application $N: E \longrightarrow \mathbb{R}^+$ vérifiant :

- **a** axiome de séparation : $\forall x \in E$, $N(x) = 0 \iff x = 0_E$
- **a** homogénéité : $\forall x \in E$, $\forall \lambda \in \mathbb{K}$, $N(\lambda x) = |\lambda| N(x)$
- $exttt{ ilde{Q}}$ inégalité triangulaire : $orall x, y \in E, \quad exttt{ ilde{N}}(x+y) \leq exttt{ ilde{N}}(x) + exttt{ ilde{N}}(y).$

On dit alors que le couple (E, N) est un espace vectoriel normé.

Remarque : Les normes sont souvent notées N(.), ||.||, ou |.|. S'il n'y a pas d'ambiguïté sur la norme considérée, on note parfois simplement E l'espace vectoriel normé.

Proposition 1.2 (Inégalité triangulaire inversée)

Soit $(E, \|.\|)$ un espace normé. Alors pour tous $x, y \in E$, on a

$$|||x|| - ||y||| \le ||x - y||.$$

Définition 1.3

Un vecteur x d'un espace normé E est dit unitaire si ||x|| = 1.

1.1. Normes usuelles sur \mathbb{K}^n

Soit $n \in \mathbb{N}^*$.

$ z = z-y+y $ $\leq z-y+y $	
bnc 2 - y ≤ 2 -y	
par symétrie, y 1 - x y - x = x - y	

Démonstration de la prop 1.2 (s)

donc | 11x11-11y11 | < 11x-y11

Seit zEE,

Proposition 1.4 (Inégalité de Cauchy-Schwarz)

Pour tous
$$x=(x_1,\ldots,x_n),y=(y_1,\ldots,y_n)\in\mathbb{R}^n$$
, on a

$$\left| \sum_{k=1}^n x_k y_k \right| \le \sqrt{\sum_{k=1}^n x_k^2} \sqrt{\sum_{k=1}^n y_k^2}$$

avec égalité si et seulement si la famille (x, y) est liée.

Proposition 1.5

Pour $x = (x_1, \dots, x_n) \in \mathbb{K}^n$, on pose

$$||x||_1 = \sum_{k=1}^n |x_k|, \quad ||x||_2 = \sqrt{\sum_{k=1}^n |x_k|^2} \quad et \quad ||x||_\infty = \max_{k \in [1;n]} |x_k|.$$

Les applications $\|\cdot\|_1$, $\|\cdot\|_2$ (norme euclidienne) et $\|\cdot\|_\infty$ sont des normes sur \mathbb{K}^n .

Dino 1.5 \oplus · bit $x \in \mathbb{K}^n$, alors $\sum_{k=1}^n |x_k|^2 > 0$ done $\sum_{k=1}^n |x_k|^2 = x_k + x_k +$

· Soient x = (x1,..., xn) Elkn, LEIK, lx = (lx1, -, lxn)

$$= \lambda \sqrt{\sum_{k=1}^{N} |x_{k}|^{2}}$$

$$= \lambda (|x||_{2})$$

· bink x = (x1, ..., xn), y = (y1,-, yn) Elkr

112+7 1/2 < 1/2/2 + 1/4/12.

On a:
$$\|x+y\|_{2}^{2} = \sum_{k=1}^{\infty} \|x_{k}+y_{k}\|^{2}$$

$$\leq \sum_{k=1}^{\infty} (|x_{k}|+|y_{k}|)^{2} \text{ for an isomice}$$

$$\leq \sum_{k=1}^{\infty} |x_{k}|^{2} + 2|x_{k}||y_{k}| + |y_{k}|^{2}$$

$$\leq \sum_{k=1}^{\infty} |x_{k}|^{2} + 2\sum_{k=1}^{\infty} |x_{k}||y_{k}| + \sum_{k=1}^{\infty} |x_{k}|^{2}$$

dc ||x+y||2 < E |xx|2 + 2 E |xx||yx| + E | gx|2

1(2+y112 = 112 | 12 + 2 | 12 | 19112 + 11 y 112 = (1/2/12+1/4/1),)2

d'où l'inigable demandre par croisonce de 6 m & mu 12x.

Remarque : Plus généralement, pour $p \in [1; +\infty[$, on peut montrer que l'application $\|\cdot\|_p : \mathbb{K}^n \longrightarrow \mathbb{R}^+$ définie par

$$||x||_p = \left(\sum_{k=1}^n |x_k|^p\right)^{1/p} \quad \forall x = (x_1, \dots, x_n) \in \mathbb{K}^n$$

définit une norme sur \mathbb{K}^n . De plus, on a

$$\forall x = (x_1, \dots, x_n) \in \mathbb{K}^n, \quad ||x||_{\infty} = \lim_{n \to +\infty} ||x||_{p}.$$

1.3. Distance associée

Soit $\| \cdot \|$ une norme sur E.

Définition 1.6

Soit $(E, \|.\|)$ un espace normé. On appelle **distance associée** à la norme $\|.\|$ sur E l'application

$$d: E \times E \longrightarrow \mathbb{R}^+$$
$$(x,y) \longmapsto \|x-y\|.$$

Proposition 1.7

La distance d associée à une norme || . || sur E vérifie :

- $\forall x, y \in E, \quad d(x, y) = d(y, x)$ [symétrie]
- $\forall x, y \in E, \quad d(x, y) = 0 \iff x = y \text{ [séparation]}$
- $\forall x, y, z \in E, \quad d(x, y) \leq d(x, z) + d(z, y)$ [inégalité triangulaire].

Définition 1.8

Soient $(E, \| \|)$ un espace vectoriel normé. On appelle distance de x à une partie non vide A de E la borne inférieure

$$d(x, A) = \inf\{d(x, a) \mid a \in A\} = \inf\{\|x - a\| \mid a \in A\}.$$

Remarque: Si $x \in A$, alors d(x, A) = 0 mais la réciproque est fausse.

1.4. Boules

Définition 1.9

Soient $(E, \|.\|)$ un espace normé, $a \in E$ et r > 0. On définit :

- la boule ouverte de centre a et de rayon r par $B(a,r) = \{x \in E \mid ||x-a|| < r\},$
- *la* **boule fermée** *de centre a et de rayon r par* $\overline{B}(a,r) = \{x \in E \mid ||x a|| \le r\},$
- la sphère de centre a et de rayon r par $S(a,r) = \{x \in E \mid ||x-a|| = r\}.$

Remarque: On a $\overline{B}(a,r) = B(a,r) \cup S(a,r)$ (union disjointe).

Exemples

$$\begin{array}{ll}
\hline{\text{Dano}}(R, 1:1), \text{ fort } \alpha \in \mathbb{R}, n>0 \\
\hline{\text{B}(a;n)} = \left\{x \in \mathbb{R} \mid |x-a| < n\right\} \\
&= |x-n| = n \\
\hline{\text{B}(a;n)} = \left\{x \in \mathbb{R} \mid |x-a| \leq n\right\} \\
&= |x-n| = n \\
\hline{\text{S}(a;n)} = \left\{x \in \mathbb{R} \mid |x-a| = n\right\} \\
&= \left\{a-n\right\} = n \\
&= \left\{a-n\right\} = n
\end{array}$$

```
B(a;n) = \{e \in t \mid e-a|cn\} = D(a;n)
```

Définition 1.10

Les boules de centre 0_E et de rayon 1 sont appelées boules unités.

Figure – Boules unité de \mathbb{R}^2 pour les normes $\|.\|_{\infty}$, $\|.\|_2$ et $\|.\|_1$.

Remarque: On peut voir que $B(a, r) = a + rB(0_E, 1)$ et $\overline{B}(a, r) = a + r\overline{B}(0_E, 1)$.

Proposition 1.11

Une boule B (ouverte ou fermée) est une partie convexe, c'est-à-dire que

$$\forall x, y \in B, \quad \forall \theta \in [0; 1], \quad (1 - \theta)x + \theta y \in B.$$

Une sphère (de rayon r > 0) n'est pas convexe.

```
 \rightarrow \text{Nolono} \quad \overline{\mathcal{B}_{\|\cdot\|_2}\big((0,0),1\big)} = \big\{\big(\varkappa_{,\frac{d}{2}}\big) \in \mathbb{R}^2 \ \big| \ \sqrt{\varkappa^2 + q^2} \le 1 \, \big\} 
   Seit (2,y) ER? / 1/(2,y) - (20)1/2 = 1
                           L=) Vx Light & 1
                           (=) x2+y1 < 1
    Aimi B<sub>||.||s</sub> ((0,0), 1) = {(2,7)ER2 | x2+y2=1}
 \rightarrow \text{ Nolono } \overline{\mathbb{B}}_{\|\cdot\|_{l_{\infty}}}((0,0),1) = \{(x,y) \in \mathbb{R}^1 \mid \|(x,y) \cdot (0,0)\| \leq 1\}
    Sol (24 y ) ER? , || (214)-(0,0)||, 61
                       (=) max { |x|; |g| } = 1
                       <=> / | x| < 1
| lu| < 1
     Anc B (1.1) (6,0),1) = [-1,1] x [-1,1]
→ Notono B<sub>||·||a</sub> ((0,0),1) = {(x,y)R²
     Sol (x/y) ∈ R? | ((x/y) - (0,0)|| 1 ≤ 1 c => |x|+|y| ≤ 1
      4 Si x>0, y =0 |x|+|4| $1 c=> x+y &1
                                                                              4 Si x <0, y >0 |x|+|4| <1 c=>-x+y <1
     4 51 x >0, y 60 1x1+121 51 c=> x-y 81
                                                                             4 51 x 50, y 60, |x|+|4| 61 c=>-x-y 61
                                                                                                                            (=) yy-1-2
```

Tracé des boules &

1.5. Caractère borné

Définition 1.12

Une partie A d'un espace vectoriel normé E est dite **bornée** s'il existe $M \in \mathbb{R}^+$ tel que

$$\forall x \in A, \quad ||x|| \leq M.$$

Remarque : Une partie est bornée si et seulement elle est contenue dans une boule fermée de centre 0_E , cela équivaut au fait d'être contenue dans une boule fermée $\overline{B}(a,r)$ pour un certain $a \in E$.

Définition 1.13

Si A est une partie bornée non vide de E, on définit son diamètre par :

$$diam(A) := sup\{||x - y|| \mid x, y \in A\}.$$

Soit X un ensemble non vide et E un espace vectoriel normé.

Définition 1.14

On dit qu'une fonction vectorielle $f: X \longrightarrow E$ est **bornée** lorsque son image l'est, i.e.

$$\exists M \in \mathbb{R}^+, \quad \forall x \in X, \quad ||f(x)|| \leq M.$$

Proposition 1.15

Soient $f, g: X \longrightarrow E$ et $\lambda, \mu \in \mathbb{K}$. Si f et g sont bornées, alors $\lambda f + \mu g$ l'est aussi.

Corollaire 1.16

L'ensemble $\mathcal{B}(X,E)$ des fonctions bornées de X dans E est un sous-espace vectoriel de l'espace $\mathcal{F}(X,E)$ des fonctions de X dans E.

2. Espaces vectoriels normés usuels

2.1. Norme sur un espace vectoriel de dimension finie

Proposition 2.1

Tout K-espace vectoriel de dimension finie peut être muni d'une norme.

Remarque : On peut ainsi construire des normes sur un espace vectoriel E de dimension $n \in \mathbb{N}^*$ associées aux normes $\|\cdot\|_p$ que l'on a vues sur \mathbb{K}^n .

Soit
$$\mathcal{B}=(e_1,\ldots,e_n)$$
 une base de E . Pour tout $x=\sum_{i=1}^n x_ie_i\in E$ où $(x_1,\ldots,x_n)\in\mathbb{K}^n$, on pose

$$N_p(x) = \|(x_1, \ldots, x_n)\|_p.$$

Join 2.1.

Soit Eun He-ev de d'in fine nEM

→ si n=0, E= {0e} of N: {0e} → R est une norme sun E

0e → 0

— Si neM*, contienons une base B = (e1,..., en) de E

Vx EE, 3!(x1,...,xn) EHK top x = ∑ ex zu

prevons une norme de HK qui en notes II·II

of money N(x) = ||(x1,...,x)||

prevous une norme de H^n qu'en notera $\|\cdot\|$ of prevo $N(x) = \|(x_1,...,x_n)\|$ $N: E \to \mathbb{R}_+$

. Soit $x = \sum_{k=1}^{n} x_k e_k \in E$ on a W(x) = 0 $C \Rightarrow \| (x_1, ..., x_n) \| = 0$ $C \Rightarrow (x_1, ..., x_n) = 0_{Kn}$ par separation of K^n

· Dient ≈ = € = κ=κ , λ ∈ εκ λ≈ = Ê(λεμ)κι σως Νίλω) = ||λ(κ₁...,κ_n)|| = |λ| Ν(κ)

Solute $x = \int_{0}^{\infty} x_n e_x y = \int_{0}^{\infty} y e_x \in E \setminus (x_{3},...,x_{n}) \cdot (y_{3},...,y_{n}) \in \mathbb{R}^{n}$ $x \cdot y = \int_{0}^{\infty} (x_{3},y_{3}) e_x$

starc N(x+y) = 11 (x + y + 1, ..., x + y =))||

\$ || (x + ... + x =)|| + || y + -y = || = N(x) + N(y)

BOAK N de finit was norm awn E

2.2. Norme de la convergence uniforme

Soient X un ensemble non vide et $(E, \|.\|)$ un espace vectoriel normé. On rappelle que l'on note $\mathcal{B}(X, E)$ l'ensemble des fonctions bornées de X dans E.

Proposition 2.2

Pour toute fonction $f: X \longrightarrow E$ bornée, on définit

$$||f||_{\infty} = \sup_{x \in X} ||f(x)||.$$

L'application $\|.\|_{\infty}$ définit une norme sur $\mathcal{B}(X, E)$.

Autres exemples de dimension infinie à connaître :

Soit E le \mathbb{K} -espace vectoriel des séries numériques absolument convergentes. Les applications suivantes sont des normes sur E. Pour $u=\sum u_n$, on pose

$$||u||_1 = \sum_{n=0}^{+\infty} |u_n|$$
 et $||u||_{\infty} = \sup\{|u_n| \mid n \in \mathbb{N}\}.$

Soient a < b deux réels et $E = \mathcal{C}([a;b],\mathbb{K})$ l'espace des fonctions continues de [a;b] dans \mathbb{K} . Cet espace est inclus dans l'ensemble des fonctions bornées de [a;b] dans \mathbb{K} . Les applications suivantes sont des normes sur E:

$$\| \cdot \|_{\infty} : f \longmapsto \sup_{t \in [a;b]} |f(t)|, \quad \| \cdot \|_{1} : f \longmapsto \int_{a}^{b} |f(t)| \, \mathrm{d}t$$

$$et \quad \| \cdot \|_{2} : f \longmapsto \sqrt{\int_{a}^{b} |f(t)|^{2} \, \mathrm{d}t}.$$

2.3. Produit d'espaces vectoriels normés

Proposition 2.3

Soient $(E_1, N_1), \ldots, (E_p, N_p)$ des espaces normés et $E = E_1 \times \cdots \times E_p$. Les applications suivantes définies pour tout $x = (x_1, \ldots, x_p) \in E$ par

$$||x||_{1} = \sum_{k=1}^{p} N_{k}(x_{k}), \quad ||x||_{2} = \sqrt{\sum_{k=1}^{p} N_{k}(x_{k})^{2}}$$

$$et \quad ||x||_{\infty} = \max\{N_{k}(x_{k}) \mid k \in [1; p]\}$$

définissent des normes sur l'espace produit E.

Remarque : Si rien n'est précisé, on munit E de la norme $\|\cdot\|_{\infty}$.

Définition 2.4

L'espace vectoriel normé $(E, \|.\|_{\infty})$ est appelé **espace normé produit** des espaces normés $(E_1, N_1), \ldots, (E_p, N_p)$.

3. Équivalence de normes

3.1. Comparaison de normes

Définition 3.1

Deux normes N_1 et N_2 sur un même espace E sont dites **équivalentes** si

$$\exists C_1, C_2 > 0, \quad \forall x \in E, \quad C_1 N_1(x) \leq N_2(x) \leq C_2 N_1(x).$$

Remarque: Puisque C_1 et C_2 sont **strictement positifs**, on a aussi,

$$\forall x \in E, \quad \frac{1}{C_2} N_2(x) \leq N_1(x) \leq \frac{1}{C_1} N_2(x)$$

donc les places de N_1 et N_2 peuvent être échangées dans la définition de deux normes équivalentes.

Théorème 3.2 (Équivalence des normes en dimension finie (admis))

Sur un \mathbb{K} -espace vectoriel de dimension finie, les normes sont deux à deux équivalentes.

Remarque : Attention, ce résultat est faux en dimension infinie!

3.2. Encadrement des boules

Proposition 3.3

Si N_1 et N_2 sont deux normes équivalentes sur E alors toute boule de centre a pour l'une des normes est incluse et contient des boules de même centre a (mais de rayons différents) pour l'autre norme.

Dans
$$\mathbb{R}^2: \|.\|_{\infty} \le \|.\|_2 \le \sqrt{2} \|.\|_{\infty}, \ \frac{1}{\sqrt{2}} \|.\|_1 \le \|.\|_2 \le \|.\|_1$$
, et $\|.\|_{\infty} \le \|.\|_1 \le 2 \|.\|_{\infty}$

3.3. Notion invariante par passage à une norme équivalente

Définition 3.4

On dit qu'une notion est invariante par passage à une norme équivalente si, lorsqu'elle est vérifiée dans un espace normé (E, N_1) , elle l'est encore dans l'espace normé (E, N_2) quand N_2 est équivalente à N_1 .

Remarque: Lorsque deux normes ne sont pas équivalentes, certaines propriétés peuvent être vraies pour une norme sans l'être pour l'autre.

3. Suites d'éléments d'un espace vectoriel normé

3.3. Convergence

Dans toute cette partie, $(E, \|.\|)$ désigne un espace vectoriel normé.

Définition 4.1

On dit qu'une suite $(u_n)_{n\in\mathbb{N}}\in E^\mathbb{N}$ d'éléments de E est **bornée** s'il existe $M\in\mathbb{R}^+$ tel que $||u_n||\leq M$ pour tout $n\in\mathbb{N}$.

Définition 4.2

On dit qu'une suite $(u_n)_{n\in\mathbb{N}}\in E^\mathbb{N}$ d'éléments de E est **convergente** s'il existe $\ell\in E$ tel que $\|u_n-\ell\|\longrightarrow 0$ lorsque $n\to +\infty$, i.e.

$$\forall \varepsilon > 0, \quad \exists N \in \mathbb{N}, \quad \forall n \geq N, \quad \|u_n - \ell\| \leq \varepsilon.$$

Cet élément ℓ est alors unique, on l'appelle limite de la suite $(u_n)_n$ et on note $\ell = \lim_{n \to +\infty} u_n$ ou $u_n \underset{n \to +\infty}{\longrightarrow} \ell$.

On dit que la suite est divergente dans le cas contraire.

22/30

Remarque: La convergence d'une suite dans l'espace vectoriel normé E est par définition relative à la norme $\|\cdot\|$ sur E. Elle n'est pas en général satisfaite pour une autre norme. En cas d'ambiguïté sur la norme choisie sur E, on parlera de convergence de la suite pour $\|\cdot\|$ et on notera $u_n \xrightarrow[n \to +\infty]{} \ell$.

Remarque : On dispose des équivalences :

$$u_n \xrightarrow[n \to +\infty]{} \ell \iff u_n - \ell \xrightarrow[n \to +\infty]{} 0_E$$
 $\iff ||u_n - \ell|| \xrightarrow[n \to +\infty]{} 0.$

4.2. Opérations

Proposition 4.3

Si $u_n \xrightarrow[n \to +\infty]{} \ell$ alors $||u_n|| \xrightarrow[n \to +\infty]{} ||\ell||$. Par conséquent, toute suite convergente est bornée.

Preuve : D'après l'inégalité triangulaire inversée, on obtient

$$0 \le |||u_n|| - ||\ell||| \le ||u_n - \ell|| \longrightarrow 0$$
 lorsque $n \to +\infty$

d'où le résultat par théorème des gendarmes. On utilise ensuite le fait qu'une suite réelle convergente est bornée.

Proposition 4.4

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites d'éléments de E convergeant respectivement vers ℓ et ℓ' . Pour tous $\lambda, \mu \in \mathbb{K}$, on a

$$\lambda u_n + \mu v_n \longrightarrow \lambda \ell + \mu \ell'$$
 quand $n \to +\infty$.

En d'autres termes, l'ensemble des suites convergentes de E est un espace vectoriel, et l'application $(u_n)_n \longmapsto \lim_{n \to +\infty} u_n$ est linéaire.

Preuve : On suppose que $u_n \underset{n \to +\infty}{\longrightarrow} \ell$ et $v_n \underset{n \to +\infty}{\longrightarrow} \ell'$. Soient $\lambda, \mu \in \mathbb{K}$, alors

$$0 \leq \|(\lambda u_n + \mu v_n) - (\lambda \ell + \mu \ell')\| = \|\lambda(u_n - \ell) + \mu(v_n - \ell')\|$$

$$\leq \|\lambda\| \|u_n - \ell\| + |\mu| \|v_n - \ell'\|$$

$$\underset{n \to +\infty}{\longrightarrow} 0.$$

Proposition 4.5

Soient $(\lambda_n)_{n\in\mathbb{N}}\in\mathbb{K}^\mathbb{N}$ une suite numérique convergeant vers λ et $(u_n)_{n\in\mathbb{N}}\in E^\mathbb{N}$ une suite d'éléments de E convergeant vers $\ell\in E$, alors

$$\lambda_n \cdot u_n \xrightarrow[n \to +\infty]{} \lambda \cdot \ell.$$

Preuve : Sous les mêmes notations, pour tout $n \in \mathbb{N}$, on a

$$0 \leq \|\lambda_n \cdot u_n - \lambda \cdot \ell\| = \|\lambda_n \cdot u_n - \lambda_n \cdot \ell + \lambda_n \cdot \ell - \lambda \cdot \ell\|$$

$$\leq |\lambda_n| \|u_n - \ell\| + |\lambda_n - \lambda| \|\ell\|$$

$$\longrightarrow 0$$

puisque la suite $(\lambda_n)_n$ est convergente donc bornée.

4.3. Effet d'un changement de norme

Proposition 4.6

Deux normes équivalentes définissent les mêmes suites convergentes, et celles-ci ont les mêmes limites pour les deux normes. En d'autres termes, si N et N' sont équivalentes, pour toute suite $(u_n)_n$ d'éléments de E, on a l'équivalence :

$$u_n \xrightarrow[n \to +\infty]{N} \ell \iff u_n \xrightarrow[n \to +\infty]{N'} \ell.$$

Remarque : Attention, si N_1 et N_2 sont deux normes sur E non équivalentes, il se peut qu'une suite converge pour une norme et diverge pour l'autre, voire qu'elle converge pour ces deux normes mais vers des limites différentes!

4.4. Convergence en dimension finie

Soit E un \mathbb{K} -espace vectoriel de dimension finie $p \in \mathbb{N}^*$ et $e = (e_1, \dots, e_p)$ une base de E. Soit $u = (u(n))_{n \in \mathbb{N}}$ une suite d'éléments de E. Pour tout $n \in \mathbb{N}$, on peut écrire

$$u(n) = u_1(n)e_1 + \cdots + u_p(n)e_p.$$

Définition 4.7

Les suites scalaires $u_k = (u_k(n))_{n \in \mathbb{N}}$ sont appelées suites coordonnées (ou composantes) de la suite vectorielle u dans la base e.

Proposition 4.8

On a équivalence entre :

- la suite u converge,
- les suites coordonnées u₁,..., u_p convergent.

De plus, si tel est le cas, on a

$$\lim_{n\to+\infty} u(n) = (\lim_{n\to+\infty} u_1(n))e_1 + \cdots + (\lim_{n\to+\infty} u_p(n))e_p.$$

4.5. Convergence dans un espace produit

Soient $(E_1, N_1), \ldots, (E_p, N_p)$ des espaces vectoriels normés, et $E = E_1 \times \cdots \times E_p$. On a vu que l'on peut munir E des trois normes suivantes : pour $x = (x_1, \ldots, x_p) \in E$,

$$||x||_1 = \sum_{k=1}^p N_k(x_k), \quad ||x||_2 = \sqrt{\sum_{k=1}^n N_k(x_k)^2}$$

$$et \quad ||x||_{\infty} = \max\{N_k(x_k) \mid k \in [1; p]\}.$$

Ces trois normes sont deux à deux équivalentes.

Soit $u=(u(n))_{n\in\mathbb{N}}$ une suite d'éléments de E. Pour tout $n\in\mathbb{N}$, on a $u(n)=(u_1(n),\ldots,u_p(n))$. Les suites vectorielles $u_k=(u_k(n))_{n\in\mathbb{N}}$ sont appelées suites coordonnées de la suite u.

Proposition 4.9

On a équivalence entre :

- lacksquare la suite $u=(u(n))_{n\in\mathbb{N}}$ converge (pour la norme produit),
- les suites coordonnées (ou composantes) $u_k = (u_k(n))_{n \in \mathbb{N}}$ convergent (respectivement pour N_k).

Si tel est le cas, on a alors

$$\lim_{n\to+\infty}u(n)=(\lim_{n\to+\infty}u_1(n),\ldots,\lim_{n\to+\infty}u_p(n)).$$