Exercice 1. Soit (u_n) la suite définie pour tout $n \in \mathbb{N}$ par $u_n = (3n+1)^2$.

- 1. Calculer les termes u_0 , u_1 et u_{10} .
- 2. Exprimer u_{n+1} en fonction de n.
- 3. Démontrer que pour tout entier $n \in \mathbb{N}, u_{n+1} u_n = 18n + 15.$

Exerice 2. Soit (w_n) la suite définie sur \mathbb{N} par $w_n = 5n^2 - 2n + 3$.

- 1. Calculer les trois premiers termes de cette suite.
- 2. Démontrer que pour tout entier $n \in \mathbb{N}$, $w_{n+1} w_n = 10n + 3$.

Exercice 3. Soit (t_n) la suite définie sur \mathbb{N} par $t_n = \frac{n^2 - 3}{n + 2}$.

- 1. Calculer les trois premiers termes de la suite (t_n) .
- 2. Calculer t_{15} .
- 3. Exprimer t_{n+1} en fonction de n.
- 4. Exprimer t_{2n} en fonction de n.

Exercice 4.

1. Pour chacune des suites suivantes, définies par récurrence, calculer les trois prochains termes.

a)
$$u_0 = 3$$
 et $u_{n+1} = 5u_n - 2$

b)
$$u_0 = -2$$
 et $u_{n+1} = (u_n)^2 - 4u_n + 1$

c)
$$u_0 = 1$$
 et $u_{n+1} = -3u_n - 4n$

c)
$$u_0 = 1$$
 et $u_{n+1} = -3u_n - 4n$ **d)** $u_0 = 2$ et $u_{n+1} = \frac{1}{u_n} - \frac{1}{2n+1}$

2. Pour chacune des suites précédentes, exprimer u_n en fonction de u_{n-1} .

Exercise 5. Soit (u_n) la suite définie par $u_0 = 1$, $u_1 = 1$ et la relation

$$u_{n+2} = u_{n+1} + 2u_n + n.$$

- 1. Calculer u_2 , u_3 , u_4 , et u_5 .
- 2. Exprimer u_n en fonction de u_{n-1} et u_{n-2} .
- 3. Exprimer u_{n+3} en fonction de u_{n+2} et u_{n+1} .

Exercice 6. Soit (u_n) la suite définie par $u_0 = 4$ et, pour tout entier n, $u_{n+1} = \frac{1}{5}u_n^2$.

- 1. Calculer u_1 et u_2 .
- 2. Compléter la fonction python ci-dessous. Cette fonction est nommée suite_u et prend en argument un entier naturel p. Elle renvoie la valeur du terme de rang p de la suite u.

```
1 def suite_u(p):
     u = \dots \# A remplir
      for i in range(1, ...): # A remplir
          u = \dots \# A remplir
      return(u)
```

Exercice 7. On considère la suite u définie sur \mathbb{N} par $u_{n+1} = 1 - 3(u_n)^2$.

```
1 def suite_u(n):
     u = 1
     for i in range ..... # A remplir
3
            ..... # A remplir
4
     return(u)
```

- 1. Compléter la fonction ci-dessous de façon à ce qu'elle renvoie le terme u_n .
- 2. Quelle valeur renvoie l'instruction suite_u(4)?

Exercice 8.

Soit (u_n) la suite définie pour tout $n \in \mathbb{N}$ par $u_n = f(n)$. On donne ci-contre la courbe représentative de la fonction f. Déterminer la valeur des cinq premiers termes de la suite (u_n) .

Exercice 9.

On a représenté graphiquement une fonction f et la droite d'équation y = x. Soit (v_n) la suite définie par $v_0 = -2$ et, pour tout $n \in \mathbb{N}$ par $v_{n+1} = f(v_n)$. Déterminer la valeur des cinq premiers termes de la suite (v_n) .

Exercice 10.

Soit (v_n) la suite définie par $v_0 = 1$ et, pour tout $n \in \mathbb{N}$ par $v_{n+1} = f(v_n)$. On donne ci-contre la courbe représentative de la fonction f. Déterminer la valeur des cinq premiers termes de la suite (v_n) .

Exercice 11. Soit (u_n) la suite définie par $u_0 = 9$ et $u_{n+1} = \sqrt{u_n}$.

- 1. Tracer la courbe représentative de la fonction racine carrée.
- 2. Sur le même graphique, représenter graphiquement les quatre premiers termes de la suite (u_n) .

Exercice 12. En étudiant le signe de $u_{n+1} - u_n$, étudier les variations des suites (u_n) , définies pour tout $n \in \mathbb{N}$.

a)
$$u_n = n^2 + 2n$$

b)
$$u_n = \frac{4}{n+1}$$

c)
$$u_n = -5^n$$

Exercice 13. Soit (w_n) la suite définie pour tout entier $n \ge 1$ par $u_n = \frac{2^n}{n}$.

- 1. Calculer $\frac{u_{n+1}}{u_n}$.
- 2. Résoudre l'inéquation $\frac{2n}{n+1} > 1$.
- 3. En déduire les variations de la suite u.

Exercice 14. Dans chaque cas, déterminer le sens de variation de la suite u définie par

- 1. $u_n = \frac{3^n}{n}$ pour tout $n \ge 1$
- 2. $u_n = -8n + 13$ pour tout $n \ge 0$
- 3. $u_n = \frac{1}{n} \frac{1}{n+1}$ pour tout $n \ge 1$

Exercice 15. Pour chacune des suites suivantes, à l'aide de la calculatrice :

- 1. indiquer si la suite (u_n) est convergente ou divergente.
- 2. Conjecturer la limite éventuelle de (u_n) .

a)
$$\forall n \in \mathbb{N}, u_n = \left(\frac{7}{8}\right)^n$$
 b) $\forall n \in \mathbb{N}, u_n = (1,3)^n$ c) $\forall n \in \mathbb{N}, u_n = n^3$ d) $\forall n \in \mathbb{N}^*, u_n = 5 - \frac{1}{n^2}$ e) $\forall n \in \mathbb{N}^*, u_{n+1} = 2u_n - 7$ f) $\forall n \in \mathbb{N}, u_{n+1} = \frac{3}{4}u_n - 5$

b)
$$\forall n \in \mathbb{N}, u_n = (1,3)^n$$

c)
$$\forall n \in \mathbb{N}, u_n = n^3$$

d)
$$\forall n \in \mathbb{N}^*, u_n = 5 - \frac{1}{n^2}$$

$$\mathbf{e}) \ \forall n \in \mathbb{N}^*, u_{n+1} = 2u_n - 7$$

$$\mathbf{f)} \ \forall n \in \mathbb{N}, u_{n+1} = \frac{3}{4}u_n - 5$$

Rappel de notation : le symbole \forall signifie « pour tout », donc écrire « $\forall n \in \mathbb{N}$ » revient à écrire « pour tout entier naturel n ».

Exercice 16. Soit u la suite définie pour tout $n \in \mathbb{N}$ par $u_n = n$.

- 1. Construire un repère et y représenter le nuage de point $(n, u(n))_{n \in \mathbb{N}}$.
- 2. Conjecturer la limite de la suite u.
- 3. Mêmes questions avec la suite w définie pour tout entier naturel $n \ge 1$ par $w_n = \frac{1}{n}$.

Exercice 17. Une entreprise d'impression de photos propose un abonnement annuel à ses clients qui coute 45 euros. Avec cet abonnement, le client paye 5 centimes par photo qu'il veut imprimer. On note u_n le prix payé par le client pour l'abonnement et pour l'impression de n photos.

- 1. Exprimer u_n en fonction de n.
- 2. Combien le client paye-t-il pour imprimer 15 photos?
- 3. S'il a payé 98 euros, combien de photos a-t-il imprimées?

Exercice 18. Soit (u_n) la suite définie pour tout $n \in \mathbb{N}$ par $u_n = \frac{1,01^n}{n}$.

- 1. À l'aide de la calculatrice, conjecturer, si elle existe, la limite de la suite u.
- 2. Donner une valeur approchée de u_{1000} , u_{2000} et u_{5000} .
- 3. Les résultats sont-ils cohérents avec la question 1? Conclure.
- 4. En étudiant le signe de $\frac{u_{n+1}}{u_n} 1$, déterminer le sens de variation de la suite (u_n) .

Exercice 19. Soit (u_n) la suite définie par $u_0 = 1000$ et, pour tout entier $n \in \mathbb{N}$, $u_{n+1} = 0.9u_n + 90$.

- 1. Calculer u_1 et u_2 .
- 2. On admet que, pour tout entier naturel n, $u_n = 100 \times (0.9)^n + 900$.
- 3. Conjecturer à l'aide de la calculatrice la limite de la suite (u_n) .
- 4. Déterminer le sens de variation de la suite (u_n) .
- 5. À l'aide de la calculatrice, déterminer à partir de quel nombre n on a $u_n \leq 901$.

Exercice 20. (**) Pour tout entier $n \geq 1$, on note u_n la somme des n premiers carrés, c'est-à-dire $u_n = 1^2 + 2^2 + 3^3 + \dots + n^2$.

- 1. Calculer les trois premiers termes de la suite u.
- 2. Déterminer une relation de récurrence entre u_{n+1} et u_n .
- 3. On pose w la suite définie pour tout $n \in \mathbb{N}$ par

$$w_n = \frac{n(n+1)(n+2)}{6}.$$

- (a) Montrer que $u_1 = w_1$.
- (b) Vérifier que la suite w vérifie la même relation de récurrence que u. Conclure.