

Thesis Defense On

Breaking the Misinformation Barrier: A Comparative Study of Machine Learning and Deep Learning Approaches to Fake News Detection

Presented By:

Student Name	Student ID
Md. Tarif Mahmud	1902007
Mst. Hanium Maria	1902012

Supervised By:

Rubel Sheikh

Lecturer, Educational Technology and Engineering

BDU

TABLE OF CONTENT

- **Introduction**
- **Objectives**
- Literary Review
- Contribution

- Proposed
- Methodology Experimental Result
- Conclusion & Future Work
- References

INTRODUCTION

- The spread of Fake news is a big problem. It affects people's views and trust. Traditional ways of detecting fake news aren't working anymore, so we need to use modern technology.
- The study evaluates various Machine Learning Models (Random Forest, Logistic Regression, Naive Bayes, Passive Aggressive Classifier) to identify the most accurate approach.
- > LSTM with Word2Vec and fine-tuned BERT were used for better context understanding.
- Explainable AI techniques like LIME are used to interpret and increase the transparency of model predictions.

Objectives

To explore the challenges of detecting fake news

To assess the performance of ML and DL models in fake news detection on public dataset

To explore the integration of multiple approaches for fake news detection

To improve transparency in fake news detection models using Explainable AI (XAI)

Literature Review

Author	Dataset Source & Size	Applied Model	Highest Accuracy	Limitations
G. Singh et al.[2023]	ISOT, Kaggle & 25,512	SVM, Naive Bayes, RF,LR	97% (SVM)	No XAI use, Does not include models BERT or LSTM
R. Kozik et al.[2024]	Covid19 & 11,000	BERT-based model	92.6% (BERT)	focus on SHAP only, lacks model robustness analysis
M. Lupei et al.[2024]	LIAR & 10,270	SVC, SVR, LR	79.3%(LR)	Small datasets, no advanced models (e.g., BERT, LSTM)
K. Johith Kumar et al.[2024]	Kaggle & 20,800	LR, SVM, Naïve Bayes, DT, CNN, LSTM	95%(CNN & LR)	no transformers like BERT & XAI Use
N. Tabassoum et al. [2024]	NM & 6,940	SBERT, RF, LR, KNN	91.48%(RF)	Small dataset size,No XAI Use

Contribution

Integrated Approach

We combine ML, DL, and XAI techniques to improve fake news detection.

Data Preprocessing

We cleaned the data by removing unnecessary elements like HTML tags and stop words, making it ready for analysis

Model Application

We applied various models like Random Forest, Logistic Regression, LSTM, and BERT to detect fake news

Improved Transparency

Using LIME, we made the model's predictions more understandable by showing which words influenced the results.

Dataset Description

- Our dataset is taken from a **Kaggle** dataset of **44,916** news articles.
- These articles are divided into two categories: 23,497 labeled as fake news and 21,419 labeled as real news.
- The dataset contains five main features for each article, namely title, text, subject, level and date.

Dataset Description Contd.

Label

Dataset Description Contd.


```
Word Cloud Representation For Real News

Two Department of PARISTWILLIAM France of Natural Parket of Parish of Paris
```

Methodology

Confusion Matrix

Figure: Confusion Matrix of Passive Aggressive Classifier

Figure: Confusion Matrix of Random Forest

Figure: Confusion Matrix of Logistic Regression

Confusion Matrix Contd.

Figure: Confusion Matrix of Naive Bayes

Figure: Confusion Matrix of LSTM

Figure: Confusion Matrix of BERT

ROC Curve

Figure: ROC Curve for PAC

Figure: ROC Curve for RF

Figure: ROC Curve for LR

ROC Curve Contd.

Figure: ROC Curve for NB

Figure: ROC Curve for LSTM

Figure: ROC Curve for BERT

RESULT

Figure: Overall Comparison of Four ML Models Evaluation Metrics

Model Name	Accuracy	Precision	Recall	F1 Score
PassiveAggressive Classifier	100%	100%	100%	100%
Random Forest	100%	100%	100%	100%
Logistic Regression	99%	99%	99%	99%
Naïve Bayes	94%	94%	95%	94%
LSTM	100%	100%	100%	100%
BERT	100%	100%	100%	100%

Table: Comparative Analysis of ML & DL Models

Layer (type)	Output Shape	Param #
embedding_1 (Embedding)	(None, 700, 100)	10,660,000
lstm (LSTM)	(None, 128)	117,248
dense (Dense)	(None, 1)	129

Total params: 11,012,133 (42.01 MB)
Trainable params: 117,377 (458.50 KB)

Non-trainable params: 10,660,000 (40.66 MB)

Optimizer params: 234,756 (917.02 KB)

Figure: Model Summary of LSTM

RESULT LIME

Explainable AI (XAI) enhances transparency and trust by making machine learning model decisions understandable to human. In fake news detection, LIME explains why a model labels news as fake or real by highlighting key features or words, ensuring transparency and trust.

Figure: : LIME explanations for prediction probabilities for both classes(Real & Fake)

Figure: Top Influential Words for Classifying News as Real Using LIME Explanation

CONCLUSION

Our research successfully demonstrates the detection of fake news using ML, DL, and XAI techniques, achieving an impressive 100% accuracy. Models such as Random Forest, Passive Aggressive Classifier, LSTM, and BERT delivered outstanding performance in classification tasks. The incorporation of XAI methods like LIME ensured transparency, interpretability, and trust in the model's decisions

Future Work

- □ Exploration of Multimodal Detection Approaches.
- Development of **Cross-Lingual** and Cross-Cultural Detection.
- Advancements in **Real-Time** Detection.
- □Integration of Fake News Detection with Social Media Platforms.
- Utilization of User Behavior Analysis for Fake News Detection.

References

- https://researchguides.uoregon.edu/fakenews/issues/defining
- https://libguides.uvic.ca/fakenews/consequences
- R. Kozik, M. Ficco, A. Pawlicka, M. Pawlicki, F. Palmieri, and M. Choraś, "When explainability turns into a threat-using xai to fool a fake news detection method," Computers & Security, vol. 137, p. 103599, 2024
- Kumar, K. J., Shreya, K., Divakarla, L. P., Nair, P. C., & Sampath, N. (2024, June). Interpretable AI Insights in Fake News Detection: A Comparative Analysis of CNN and LSTM. In 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT) (pp. 1-6). IEEE.
- N. Tabassoum and M. A. Akber, "Interpretability of machine learning algorithms fornews category classification using xai," in 2024 6th International Conference on Electrica lEngineering and Information & Communication Technology (ICEEICT). IEEE, 2024,pp. 770–775.

THANK YOU SO MUCH!

