18-2 光电效应 光的波粒二象性

一 光电效应实验的规律

(1) 实验装置

光照射至金属表面, 电子从金 属表面逸出, 称其为光电子.

- (2) 实验规律
- ◆ 截止频率(红限) V₀

仅当 $V > V_0$ 才发生光电效应, 截止频率与 <mark>材料有关</mark>与光强无关

几种纯
金属的截
几种纯 金属的截 止频率

金		铯	钠	锌	铱	铂
載止 $ u_0/1 $	频率 0 ¹⁴ Hz	4.545	4.39	8.065	11.53	19.29

◆ 遏止电压 U₀ $eU_0 = E_{k \max}$

遏止电势差与入射光频率 具有线性关系.

◆ 瞬时性

当光照射到金属表面上时, 几乎立即就有光电子逸出

lacktriangle 电流饱和值 $i_{
m m}$ $i_{m} \propto I$ (光强)

遏止电压 $U_{\scriptscriptstyle 0}$ 与光强无关

(3) 经典理论遇到的困难

◆ 红限问题

按经典理论, 无论何种频率的入射光, 只要其强度 足够大,就能使电子具有足够的能量逸出金属 . 与实 验结果不符.

◆ 瞬时性问题

按经典理论, 电子逸出金属所需的能量, 需要有 一定的时间来积累,一直积累到足以使电子逸出金属 表面为止,与实验结果不符,

二 光子 爱因斯坦方程

- (1) "光量子"假设 光子的能量为 $\varepsilon = hv$
- (2) 解释实验

爱因斯坦方程 $hv = \frac{1}{2}mv^2 + W$

逸出功与

◈ 对同一种金属,W一定, $E_{\nu} \propto \nu$,与光强无关 几种金属的逸出功

金属	钠	铝	锌	铜	银	铂
W/eV	1.90 ~2.46	2.50 ~3. 60	3.32 ~3.57	4.10 ~4.50	4.56 ~4.73	6.30

爱因斯坦方程 $hv = \frac{1}{2}mv^2 + W$

- ◆ 逸出功 $W = h \nu_0$ 产生光电效应条件条件 $\nu > \nu_0 = W/h$ (截止頻率)
- ◈ 光强越大,光子数目越多,即单位时间内产生光电 子数目越多,光电流越大. $(V > V_0$ 时)
- ◆ 光子射至金属表面,一个光子携带的能量 hv 将一 次性被一个电子吸收,若 $V > V_0$,电子立即逸出, 无需时间积累(瞬时性).

四 光的波粒二象性

- (1) 波动性: 光的干涉和衍射(传播时)
- (2) 粒子性: $E = h_V$ (和物质相互作用时)
- ◆ 相对论能量和动量关系 $E^2 = p^2 c^2 + E_0^2$
- $E_0 = 0$, E = pc◆ 光子 $p = \frac{E}{c} = \frac{h \, v}{c} = \frac{h}{\lambda}$

描述光的

粒子性

描述光的

波动性