DEFINIZIONE DELLE FUNZIONI TRIGONOMETRICHE IN UN TRIANGOLO RETTANGOLO

Il triangolo ABC ha un angolo retto in C e lati di lunghezza a, b, c (vedi fig. (1)). Le funzioni trigonometriche dell'angolo α sono definite nel modo seguente:

- $seno \operatorname{di} \alpha = \sin \alpha = \frac{a}{c}$
- $coseno di \alpha = cos \alpha = \frac{b}{c}$
- $tangente di \alpha = tg \alpha = \frac{a}{b}$
- cotangente di $\alpha = \cot \alpha = \frac{b}{a}$
- $secante di \alpha = sec \alpha = \frac{c}{b}$
- cosecante di $\alpha = \csc \alpha = \frac{c}{a}$

Figura 1: Il triangolo ABC

Si consideri, ora, un sistema di coordinate Oxy (vedi figg. (2)). Sia P un punto del piano Oxy di coordinate x, y: P = P(x, y). La distanza di P dall'origine O è positiva e si indica con $r = \sqrt{x^2 + y^2}$. L'angolo α descritto in senso **antiorario**, a partire da OX, si considera **positivo**. Se esso è descritto in senso **orario**, a partire da OX, è considerato **negativo**. Chiamiamo X'OX e Y'OY gli assi delle x e delle y, rispettivamente. Indichiamo con I, II, III, IV i vari quadranti (primo, secondo, terzo, quarto quadrante, rispettivamente). In figura $(2)_1$, ad esempio, l'angolo α è nel secondo quadrante, mentre in figura $(2)_2$ è nel terzo quadrante.

Per un angolo α in un qualsiasi quadrante le funzioni trigonometriche sono definite così:

- $\sin \alpha = y/r$
- $\cos \alpha = x/r$
- $\operatorname{tg} \alpha = y/x$
- $\cot \alpha = x/y$
- $\sec \alpha = r/x$
- $\csc \alpha = r/y$

Figura 2: Quadranti del cerchio trigonometrico.

RELAZIONE TRA GRADI E RADIANTI

Un radiante è quell'angolo (θ) al centro di una circonferenza di centro O e raggio r, sotteso da un arco \widehat{MN} di lunghezza uguale a quella del raggio r (vedi fig. (3)). Tenendo conto che 2π radianti equivalgono a 360° si ha:

- 1 radiante = $180^{\circ}/\pi = 57.29577...^{\circ}$
- $1^{\circ} = \frac{\pi}{180}$ radianti = 0.01745... radianti

Per passare dalla misura in gradi (θ°) alla misura in radianti (θ_{rad}) si usa la proporzione

$$\theta^{\circ}: 180 = \theta_{rad}: \pi.$$

Figura 3: Radiante.

PRINCIPALI RELAZIONI TRA LE FUNZIONI TRIGONOMETRICHE

•
$$\sin \alpha = \frac{1}{\csc \alpha}$$

•
$$\cos \alpha = \frac{1}{\sec \alpha}$$

•
$$\operatorname{tg} \alpha = \frac{1}{\cot \alpha} = \frac{\sin \alpha}{\cos \alpha}$$

$$\bullet \cot \alpha = \frac{1}{\operatorname{tg} \alpha} = \frac{\cos \alpha}{\sin \alpha}$$

•
$$\sin \alpha = \pm \sqrt{1 - \cos^2 \alpha}$$
 (il segno davanti alla radice dipende dal quadrante in cui cade α)

•
$$\cos \alpha = \pm \sqrt{1 - \sin^2 \alpha}$$

•
$$\operatorname{tg} \alpha = \pm \sqrt{\sec^2 \alpha - 1}$$

•
$$\sec \alpha = \pm \sqrt{\operatorname{tg}^2 \alpha + 1}$$

•
$$\cot \alpha = \pm \sqrt{\csc^2 \alpha - 1}$$

•
$$\csc \alpha = \pm \sqrt{\cot^2 \alpha + 1}$$

•
$$\sin^2 \alpha + \cos^2 \alpha = 1$$

SEGNI E VARIAZIONE DELLE FUNZIONI TRIGONOMETRICHE

Quadrante	$\sin \alpha$	$\cos \alpha$	$\operatorname{tg} \alpha$	$\cot \alpha$	$\sec \alpha$	$\csc \alpha$
I	+	+	+	+	+	+
	$0 \rightarrow 1$	$1 \rightarrow 0$	$0 \to \infty$	$\infty \to 0$	$1 \to \infty$	$\infty \to 1$
II	+	_	_	_	_	+
	$1 \to 0$	$0 \rightarrow -1$	$-\infty \to 0$	$0 \to -\infty$	$-\infty \to -1$	$1 \to \infty$
III	_	_	+	+	_	_
	$0 \rightarrow -1$	$-1 \rightarrow 0$	$0 \to \infty$	$\infty \to 0$	$-1 \to -\infty$	$-\infty \to -1$
IV	_	+	_	_	+	_
	$-1 \rightarrow 0$	$0 \rightarrow 1$	$-\infty \to 0$	$0 \to -\infty$	$\infty \to 1$	$-1 \to -\infty$

VALORI DELLE FUNZIONI TRIGONOMETRICHE DI ANGOLI SPECIALI

Angolo α	$\sin \alpha$	$\cos \alpha$	tg α	$\cot \alpha$	$\sec \alpha$	$\csc \alpha$
$0^{\circ} = 0 (rad.)$	0	1	$\frac{\operatorname{tg} \ \alpha}{0}$	∞	1	∞
$15^{\circ} = \frac{\pi}{12}$	$\frac{\sqrt{2}}{4}\left(\sqrt{3}-1\right)$	$\frac{\sqrt{2}}{4}\left(\sqrt{3}+1\right)$	$2-\sqrt{3}$	$2+\sqrt{3}$	$\sqrt{2}\left(\sqrt{3}-1\right)$	$\sqrt{2}\left(\sqrt{3}+1\right)$
$30^{\circ} = \frac{\pi}{6}$	1/2	$\sqrt{3}/2$	$\sqrt{3}/3$	$\sqrt{3}$	$2\sqrt{3}/3$	2
$45^{\circ} = \frac{\pi}{4}$	$\sqrt{2}/2$	$\sqrt{2}/2$	1	1	$\sqrt{2}$	$\sqrt{2}$
$60^{\circ} = \frac{\pi}{3}$	$\sqrt{3}/2$	1/2	$\sqrt{3}$	$\sqrt{3}/3$	2	$2\sqrt{3}/3$
$75^{\circ} = \frac{5\pi}{12}$	$\frac{\sqrt{2}}{4}\left(\sqrt{3}+1\right)$	$\frac{\sqrt{2}}{4}\left(\sqrt{3}-1\right)$	$2+\sqrt{3}$	$2-\sqrt{3}$	$\sqrt{2}\left(\sqrt{3}+1\right)$	$\sqrt{2}\left(\sqrt{3}-1\right)$
$90^{\circ} = \frac{\pi}{2}$	1	0	$\pm \infty$	0	$\pm\infty$	1
$105^{\circ} = \frac{7\pi}{12}$	$\frac{\sqrt{2}}{4}\left(\sqrt{3}+1\right)$	$-\frac{\sqrt{2}}{4}\left(\sqrt{3}-1\right)$	$-\left(2+\sqrt{3}\right)$	$-\left(2-\sqrt{3}\right)$	$-2\left(\sqrt{3}+1\right)$	$\sqrt{2}\left(\sqrt{3}-1\right)$
$120^{\circ} = \frac{2\pi}{3}$	$\sqrt{3}/2$	-1/2	$-\sqrt{3}$	$-\sqrt{3}/3$	-2	$2\sqrt{3}/3$
$135^{\circ} = \frac{3\pi}{4}$	$\sqrt{2}/2$	$-\sqrt{2}/2$	-1	-1	$-\sqrt{2}$	$\sqrt{2}$
$150^{\circ} = \frac{5\pi}{6}$	1/2	$-\sqrt{3}/2$	$-\sqrt{3}/3$	$-\sqrt{3}$	$-2\sqrt{3}/3$	2
$165^{\circ} = \frac{11\pi}{12}$	$\frac{\sqrt{2}}{4}\left(\sqrt{3}-1\right)$	$-\frac{\sqrt{2}}{4}\left(\sqrt{3}+1\right)$	$-\left(2-\sqrt{3}\right)$	$-\left(2+\sqrt{3}\right)$	$-\sqrt{2}\left(\sqrt{3}-1\right)$	$\sqrt{2}\left(\sqrt{3}+1\right)$
$180^{\circ} = \pi$	0	-1	0	$\mp\infty$	-1	$\pm\infty$
$210^{\circ} = \frac{7\pi}{6}$	-1/2	$-\frac{1}{2}\sqrt{3}$	$\frac{1}{3}\sqrt{3}$	$\sqrt{3}$	$-\frac{2}{3}\sqrt{3}$	-2
$225^{\circ} = \frac{5\pi}{4}$	$-\frac{1}{2}\sqrt{2}$	$-\frac{1}{2}\sqrt{2}$	1	1	$-\sqrt{2}$	$-\sqrt{2}$
$240^{\circ} = \frac{4\pi}{3}$	$-\frac{1}{2}\sqrt{3}$	$-\frac{1}{2}$	$\sqrt{3}$	$\frac{1}{3}\sqrt{3}$	-2	$-\frac{2}{3}\sqrt{3}$
$270^{\circ} = \frac{3\pi}{2}$	-1	0	$\pm\infty$	0	$\mp\infty$	-1
$300^{\circ} = \frac{5\pi}{3}$	$-\frac{1}{2}\sqrt{3}$	$rac{1}{2}$	$-\sqrt{3}$	$-\frac{1}{3}\sqrt{3}$	2	$-\frac{2}{3}\sqrt{3}$
$330^\circ = \frac{11\pi}{6}$	$-\frac{1}{2}$	$\frac{1}{2}\sqrt{3}$	$-\frac{1}{3}\sqrt{3}$	$-\sqrt{3}$	$\frac{2}{3}\sqrt{3}$	-2
$360^{\circ} = 2\pi$	0	1	0	$\mp\infty$	1	$\mp\infty$

FUNZIONI DI ANGOLI NEGATIVI

•
$$\sin(-\alpha) = -\sin \alpha$$

•
$$\cos(-\alpha) = \cos \alpha$$

•
$$\operatorname{tg}(-\alpha) = -\operatorname{tg}\alpha$$

•
$$\csc(-\alpha) = -\csc\alpha$$

•
$$\sec(-\alpha) = \sec \alpha$$

•
$$\cot(-\alpha) = -\cot \alpha$$

FORMULE DI ADDIZIONE

•
$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$

•
$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$$

•
$$\operatorname{tg}(\alpha \pm \beta) = \frac{\operatorname{tg}\alpha \pm \operatorname{tg}\beta}{1 \mp \operatorname{tg}\alpha \operatorname{tg}\beta}$$

•
$$\cot(\alpha \pm \beta) = \frac{\cot \alpha \cot \beta \mp 1}{\cot \beta \pm \cot \alpha}$$

•
$$\sin(\alpha + \beta)\sin(\alpha - \beta) = \sin^2 \alpha - \sin^2 \beta = \cos^2 \beta - \cos^2 \alpha$$

•
$$\cos(\alpha + \beta)\cos(\alpha - \beta) = \cos^2 \alpha - \sin^2 \beta = \cos^2 \beta - \sin^2 \alpha$$

FORMULE DI DUPLICAZIONE

•
$$\sin 2\alpha = 2\sin \alpha \cos \alpha = \frac{2 \operatorname{tg} \alpha}{1 + \operatorname{tg}^2 \alpha}$$

•
$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 1 - 2\sin^2 \alpha = 2\cos^2 \alpha - 1 = \frac{1 - \lg^2 \alpha}{1 + \lg^2 \alpha}$$

•
$$tg2\alpha = \frac{2tg \alpha}{1 - tg^2 \alpha}$$

•
$$\cot 2\alpha = \frac{\cot^2 \alpha - 1}{2 \cot \alpha}$$

FORMULE DI BISEZIONE

•
$$\sin \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos \alpha}{2}}$$

•
$$\cos \frac{\alpha}{2} = \pm \sqrt{\frac{1 + \cos \alpha}{2}}$$

•
$$\operatorname{tg} \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} = \frac{\sin \alpha}{1 + \cos \alpha} = \frac{1 - \cos \alpha}{\sin \alpha}$$

•
$$\cot \frac{\alpha}{2} = \pm \sqrt{\frac{1 + \cos \alpha}{1 - \cos \alpha}} = \frac{1 + \cos \alpha}{\sin \alpha} = \frac{\sin \alpha}{1 - \cos \alpha}$$

POTENZE DI FUNZIONI TRIGONOMETRICHE

•
$$\sin^2 \alpha = \frac{1}{2}(1 - \cos 2\alpha)$$

•
$$\cos^2 \alpha = \frac{1}{2}(1 + \cos 2\alpha)$$

•
$$tg^2 \alpha = \frac{1 - \cos 2\alpha}{1 + \cos 2\alpha}$$

•
$$\cot^2 \alpha = \frac{1 + \cos 2\alpha}{1 - \cos 2\alpha}$$

•
$$\sin^3 \alpha = \frac{1}{4} (3\sin \alpha - \sin 3\alpha)$$

•
$$\cos^3 \alpha = \frac{1}{4} (3\cos \alpha + \cos 3\alpha)$$

$$\bullet \sin^4 \alpha = \frac{1}{8}(3 - 4\cos 2\alpha + \cos 4\alpha)$$

•
$$\cos^4 \alpha = \frac{1}{8}(3 + 4\cos 2\alpha + \cos 4\alpha)$$

SOMMA, DIFFERENZA E PRODOTTO DI FUNZIONI TRIGONOMETRICHE

•
$$\sin \alpha + \sin \beta = 2 \sin \frac{1}{2} (\alpha + \beta) \cos \frac{1}{2} (\alpha - \beta)$$

•
$$\sin \alpha - \sin \beta = 2 \cos \frac{1}{2} (\alpha + \beta) \sin \frac{1}{2} (\alpha - \beta)$$

•
$$\cos \alpha + \cos \beta = 2 \cos \frac{1}{2} (\alpha + \beta) \cos \frac{1}{2} (\alpha - \beta)$$

•
$$\cos \alpha - \cos \beta = 2 \sin \frac{1}{2} (\alpha + \beta) \sin \frac{1}{2} (\beta - \alpha)$$

•
$$\sin \alpha \sin \beta = \frac{1}{2} \{\cos(\alpha - \beta) - \cos(\alpha + \beta)\}$$

•
$$\cos \alpha \cos \beta = \frac{1}{2} \{\cos(\alpha - \beta) + \cos(\alpha + \beta)\}$$

•
$$\sin \alpha \cos \beta = \frac{1}{2} \{ \sin(\alpha - \beta) + \sin(\alpha + \beta) \}$$

•
$$\cos \alpha \sin \beta = \frac{1}{2} \{ \sin(\alpha + \beta) - \sin(\alpha - \beta) \}$$

•
$$tg \alpha + tg \beta = \frac{\sin(\alpha + \beta)}{\cos \alpha \cos \beta}$$

•
$$tg \alpha - tg \beta = \frac{\sin(\alpha - \beta)}{\cos \alpha \cos \beta}$$

•
$$\cot \alpha + \cot \beta = \frac{\sin(\alpha + \beta)}{\sin \alpha \sin \beta}$$

•
$$\cot \alpha - \cot \beta = \frac{\sin(\beta - \alpha)}{\sin \alpha \sin \beta}$$

RIDUZIONE AL PRIMO QUADRANTE

	$-\alpha$	$90^{\circ} \pm \alpha$	$180^{\circ} \pm \alpha$	$270^{\circ} \pm \alpha$	$k(360^{\circ}) \pm \alpha$
		$\frac{\pi}{2} \pm \alpha$	$\pi \pm \alpha$	$\frac{3\pi}{2} \pm \alpha$	$2k\pi \pm \alpha$
		_		_	(k intero)
sin	$-\sin\alpha$	$\cos \alpha$	$\mp \sin \alpha$	$-\cos \alpha$	$\pm \sin \alpha$
cos	$\cos \alpha$	$\mp \sin \alpha$	$-\cos \alpha$	$\pm \sin \alpha$	$\cos \alpha$
tg	$-\operatorname{tg}\alpha$	$\mp \cot \alpha$	$\pm \operatorname{tg} \alpha$	$\mp \cot \alpha$	$\pm t g \alpha$
$\parallel \cot$	$-\cot \alpha$	$\mp \operatorname{tg} \alpha$	$\pm \cot \alpha$	$\mp \operatorname{tg} \alpha$	$\pm \cot \alpha$
sec	$\sec \alpha$	$\mp \csc \alpha$	$-\sec \alpha$	$\pm \csc \alpha$	$\sec \alpha$
csc	$-\csc\alpha$	$\sec \alpha$	$\mp \csc \alpha$	$-\sec \alpha$	$\pm \csc \alpha$

ULTERIORI FORMULE DI RIDUZIONE

- $\sin \alpha = \cos(\alpha 90^\circ) = -\sin(\alpha 180^\circ) = -\cos(\alpha 270^\circ)$
- $\cos \alpha = -\sin(\alpha 90^\circ) = -\cos(\alpha 180^\circ) = \sin(\alpha 270^\circ)$
- $tg \alpha = -\cot(\alpha 90^{\circ}) = tg(\alpha 180^{\circ}) = -\cot(\alpha 270^{\circ})$
- $\cot \alpha = -\operatorname{tg}(\alpha 90^{\circ}) = \cot(\alpha 180^{\circ}) = -\operatorname{tg}(\alpha 270^{\circ})$
- $\sec \alpha = -\csc(\alpha 90^\circ) = -\sec(\alpha 180^\circ) = \csc(\alpha 270^\circ)$
- $\csc \alpha = \sec(\alpha 90^{\circ}) = -\csc(\alpha 180^{\circ}) = -\sec(\alpha 270^{\circ})$

RELAZIONE FRA FUNZIONI DI ANGOLI

Funzione	$\sin \alpha = u$	$\cos \alpha = u$	$tg \alpha = u$	$\cot \alpha = u$	$\sec \alpha = u$	$\csc \alpha = u$
$\sin \alpha$	u	$\pm\sqrt{1-u^2}$	$\frac{u}{\pm\sqrt{1+u^2}}$	$\frac{1}{\pm\sqrt{1+u^2}}$	$\frac{\pm\sqrt{u^2-1}}{u}$	$\frac{1}{u}$
$\cos \alpha$	$\pm \sqrt{1-u^2}$	u	$\frac{1}{\pm\sqrt{1+u^2}}$	$\frac{u}{\pm\sqrt{1+u^2}}$	$\frac{1}{u}$	$\frac{\pm\sqrt{u^2-1}}{u}$
$\operatorname{tg} lpha$	$\frac{u}{\pm\sqrt{1-u^2}}$	$\frac{\pm\sqrt{1-u^2}}{u}$	u	$\frac{1}{u}$	$\pm \sqrt{u^2 - 1}$	$\frac{1}{\pm\sqrt{u^2-1}}$
$\cot \alpha$	$\frac{\pm\sqrt{1-u^2}}{u}$	$\frac{u}{\pm\sqrt{1-u^2}}$	$\frac{1}{u}$	u	$\frac{1}{\pm\sqrt{u^2-1}}$	$\pm \sqrt{u^2 - 1}$
$\sec \alpha$	$\frac{1}{\pm\sqrt{1-u^2}}$	$\frac{1}{u}$	$\pm\sqrt{1+u^2}$	$\frac{\pm\sqrt{1+u^2}}{u}$	u	$\frac{u}{\pm\sqrt{u^2-1}}$
$\csc \alpha$	$\frac{1}{u}$	$\frac{1}{\pm\sqrt{1-u^2}}$	$\frac{\pm\sqrt{1+u^2}}{u}$		$\frac{u}{\pm\sqrt{u^2-1}}$	u

RELAZIONE FRA LATI ED ANGOLI DI UN TRIANGOLO PIANO

Per ogni triangolo piano ABC di lati a, b, c ed angoli α, β, γ (vedi figura seguente) valgono i seguenti risultati:

.

Teorema dei seni:
$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}$$

Teorema del coseno:
$$a^2 = b^2 + c^2 - 2bc\cos\alpha$$
; $\cos\alpha = \frac{b^2 + c^2 - a^2}{2bc}$
$$b^2 = c^2 + a^2 - 2ac\cos\beta$$
; $\cos\beta = \frac{c^2 + a^2 - b^2}{2ac}$
$$c^2 = a^2 + b^2 - 2ab\cos\gamma$$
; $\cos\gamma = \frac{a^2 + b^2 - c^2}{2ab}$

Teorema delle tangenti: $\frac{a-b}{a+b} = \frac{\operatorname{tg} \frac{1}{2}(\alpha-\beta)}{\operatorname{tg} \frac{1}{2}(\alpha+\beta)}$ $b-c \qquad \operatorname{tg} \frac{1}{2}(\beta-\gamma)$

$$\frac{b-c}{b+c} = \frac{\operatorname{tg}\frac{1}{2}(\beta-\gamma)}{\operatorname{tg}\frac{1}{2}(\beta+\gamma)}$$
$$\frac{c-a}{c+a} = \frac{\operatorname{tg}\frac{1}{2}(\gamma-\alpha)}{\operatorname{tg}\frac{1}{2}(\gamma+\alpha)}$$

RELAZIONI ESPONENZIALI (α in radianti), EQUAZIONE DI EULERO

•
$$e^{i\alpha} = \cos \alpha + i \sin \alpha$$
, $(i = \sqrt{-1})$

•
$$\sin \alpha = \frac{e^{i\alpha} - e^{-i\alpha}}{2i}$$

•
$$\cos \alpha = \frac{e^{i\alpha} + e^{-i\alpha}}{2}$$

•
$$\operatorname{tg} \alpha = -i \left(\frac{e^{i\alpha} - e^{-i\alpha}}{e^{i\alpha} + e^{-i\alpha}} \right)$$

Se

$$x = \sin y \tag{1}$$

allora

$$y = \sin^{-1} x \tag{2}$$

è l'angolo il cui seno è x. La (2) è la funzione inversa della (1) e si chiama arcoseno di x (si indica con arcsin x o $\sin^{-1} x$) Si tratta di una funzione polidroma di x ed è un insieme di funzioni univoche dette rami. La stessa cosa vale per le altre funzioni trigonometriche inverse

$$\arccos x (\cos^{-1} x)$$
, $\operatorname{arctg} x (\operatorname{tg}^{-1} x)$, $\operatorname{arccot} x (\cot^{-1} x)$, $\operatorname{arcsec} x (\operatorname{sec}^{-1} x)$, $\operatorname{arccsc} x (\operatorname{csc}^{-1} x)$.

Usualmente, per evitare le difficoltà connesse alla polidromia della funzione, se ne utilizza un ramo particolare detto ramo principale e i valori relativi a tale ramo sono detti valori principali.

VALORI PRINCIPALI DELLE FUNZIONI TRIGONOMETRICHE INVERSE

$$-\frac{\pi}{2} \leq (\sin^{-1}x) \leq \frac{\pi}{2} \qquad -1 \leq x \leq 1$$

$$0 \leq (\cos^{-1}x) \leq \pi \qquad -1 \leq x \leq 1$$

$$-\frac{\pi}{2} < (\operatorname{tg}^{-1}x) < \frac{\pi}{2} \qquad -\infty < x < \infty$$

$$0 < (\cot^{-1}x) < \pi \qquad -\infty < x < \infty$$

$$0 \leq (\sec^{-1}x) < \frac{\pi}{2} \qquad x \geq 1$$

$$-\pi \leq (\sec^{-1}x) < -\frac{\pi}{2} \qquad x \leq -1$$

$$0 < (\csc^{-1}x) \leq \frac{\pi}{2} \qquad x \geq 1$$

$$-\pi < (\csc^{-1}x) \leq \frac{\pi}{2} \qquad x \leq -1$$
 N.B. Non vi accordo generale sulle definizioni di $\cot^{-1}x$, $\sec^{-1}x \in \csc^{-1}x$ per valori negativi di x .

ALCUNE RELAZIONI TRA LE FUNZIONI TRIGONOMETRICHE INVERSE (per i valori principali)

- $\arcsin x + \arccos x = \frac{\pi}{2}$
- $\operatorname{arctg} x + \operatorname{arccot} x = \frac{\pi}{2}$
- $\arcsin(-x) = -\arcsin x$
- $\operatorname{arccos}(-x) = \pi \operatorname{arccos} x$
- arctg(-x) = -arctg x
- $\operatorname{arccot}(-x) = \pi \operatorname{arccot} x$

Mentre le precedenti relazioni valgono sia per x < 0 che per x > 0, le seguenti valgono solo per $x \ge 0$:

- $\arcsin x = \arccos \frac{1}{x}$
- $\arccos x = \operatorname{arcsec} \frac{1}{x}$
- $\arctan x = \frac{\pi}{2} \arctan \frac{1}{x}$
- $\operatorname{arccot} x = \frac{\pi}{2} \operatorname{arccot} \frac{1}{x}$
- $\operatorname{arcsec} x = \pi + \operatorname{arcsec} (-x)$
- $\operatorname{arccsc} x = \pi + \operatorname{arccsc} (-x)$

Le seguenti relazioni sono, invece, valide solo per x < 0:

- $\arcsin x = -\pi \arccos \frac{1}{x}$
- $\arccos x = -\operatorname{arcsec} \frac{1}{x}$
- $\arctan x = \operatorname{arccot} \frac{1}{x} \pi = -\frac{\pi}{2} \operatorname{arctg} \frac{1}{x}$
- $\operatorname{arccot} x = \pi + \operatorname{arctg} \frac{1}{x} = \frac{3\pi}{2} \operatorname{arccot} \frac{1}{x}$
- $\operatorname{arcsec} x = -\arccos\frac{1}{x} = -\frac{3\pi}{2} \operatorname{arccsc} x = \operatorname{arcsec}(-x) \pi = -\frac{\pi}{2} \operatorname{arccsc}(-x)$
- $\operatorname{arccsc} x = -\frac{3\pi}{2} \operatorname{arcsec} x = -\pi \arcsin\frac{1}{x} = \operatorname{arccsc}(-x) \pi = -\frac{\pi}{2} \operatorname{arcsec}(-x)$

Se $\alpha = \arcsin x$, allora:

•
$$\sin \alpha = x$$
, $\cos \alpha = \sqrt{1 - x^2}$, $\operatorname{tg} \alpha = \frac{x}{\sqrt{1 - x^2}}$,

•
$$\csc \alpha = \frac{1}{x}$$
, $\sec \alpha = \frac{1}{\sqrt{1-x^2}}$, $\cot \alpha = \frac{\sqrt{1-x^2}}{x}$.

Se $\alpha = \arccos x$, allora:

•
$$\sin \alpha = \sqrt{1 - x^2}$$
, $\cos \alpha = x$, $\operatorname{tg} \alpha = \frac{\sqrt{1 - x^2}}{x}$,

•
$$\csc \alpha = \frac{1}{\sqrt{1-x^2}}$$
, $\sec \alpha = \frac{1}{x}$, $\cot \alpha = \frac{x}{\sqrt{1-x^2}}$.

Se $\alpha = \operatorname{arctg} x$, allora:

•
$$\sin \alpha = \frac{x}{\sqrt{1+x^2}}$$
, $\cos \alpha = \frac{1}{\sqrt{1+x^2}}$, $\tan \alpha = x$,

•
$$\csc \alpha = \frac{\sqrt{1+x^2}}{x}$$
, $\sec \alpha = \sqrt{1+x^2}$, $\cot \alpha = \frac{1}{x}$.