Grundlagen

Definition 2.1 (Die Syntax der Aussagenlogik)

- a) Eine **atomare Formel** ist von der Form A_i mit $i \in \mathbb{N}$, d.h. atomare Formeln sind nur die einfachen Aussagen.
- b) Eine beliebige Formel entsteht induktiv aus atomaren Formeln, wobei die folgenden Schritte erlaubt sind:
 - b1) Jede atomare Formel ist eine Formel.
 - b2) Sind F, G zwei Formeln, so sind auch $(F \wedge G)$ sowie $(F \vee G)$ Formeln.
 - b3) Für jede Formel F ist auch $\neg F$ eine Formel.

Hierbei heißt $F \wedge G$ die **Konjunktion** von F und G, $F \vee G$ die **Disjunktion** von F und G, und $\neg F$ die **Negation** von F.

Notationen 2.3

a) Für Aussagen verwenden wir statt A_0, A_1, A_2, \ldots auch A, B, C etc.

Seien nun Formeln F_1, F_2, F_3, \dots gegeben.

- b) Für $(\neg F_1 \lor F_2)$ schreiben wir auch $(F_1 \Rightarrow F_2)$. Wir nennen $F_1 \Rightarrow F_2$ eine **Folgerung**.
- c) Für $(F_1 \wedge F_2) \vee (\neg F_1 \wedge \neg F_2)$ schreiben wir auch $(F_1 \Leftrightarrow F_2)$. Wir nennen $F_1 \Leftrightarrow F_2$ eine **Äquivalenz**.
- d) Für $(\cdots((F_1 \vee F_2) \vee F_3) \vee \cdots \vee F_n)$ schreiben wir auch $\bigvee_{i=1}^n F_i$.
- e) Für $(\cdots((F_1 \wedge F_2) \wedge F_3) \wedge \cdots \wedge F_n)$ schreiben wir auch $\bigwedge_{i=1}^n F_i$.

Definition 2.4 (Die Semantik der Aussagenlogik)

- a) Die Elemente der Menge {wahr, falsch} heißen die **Wahrheitswerte**. Wir schreiben auch 1 statt wahr und 0 statt falsch.
- b) Sei M eine Menge von atomaren Formeln. Eine **Belegung** von M ist eine Abbildung

$$\alpha: M \to \{0,1\}$$

c) Sei \widehat{M} die Menge aller Formeln, die mit Hilfe der atomaren Formeln in M gebildet werden können, und sei $\alpha: M \to \{0,1\}$ eine Belegung. Dann erweitern wir α zu einer Abbildung

$$\widehat{\alpha}:\widehat{M}\to\{0,1\}$$

gemäß den folgenden Vorschriften.

- c1) Für atomare Formeln $A \in M$ gilt $\widehat{\alpha}(A) = \alpha(A)$.
- c2) Für Formeln $F, G \in \widehat{M}$ gilt

$$\widehat{\alpha}\left(\left(F \wedge G\right)\right) = \left\{ \begin{array}{l} 1 & \text{falls } \widehat{\alpha}\left(F\right) = 1 \text{ und } \widehat{\alpha}\left(G\right) = 1, \\ 0 & \text{sonst.} \end{array} \right.$$

c3) Für Formel
n $F,G\in \widehat{M}$ gilt

$$\widehat{\alpha}\left(\left(F\vee G\right)\right)=\left\{\begin{array}{ll} 1 & \text{falls } \widehat{\alpha}\left(F\right)=1 \text{ oder } \widehat{\alpha}\left(G\right)=1 \text{ (oder beides)},\\ 0 & \text{sonst.} \end{array}\right.$$

c4) Für
$$F \in \widehat{M}$$
 gilt $\widehat{\alpha}(\neg F) = \begin{cases} 1 & \text{falls } \widehat{\alpha}(F) = 0, \\ 0 & \text{sonst.} \end{cases}$

Im Folgenden schreiben wir der Einfachheit halber α statt $\widehat{\alpha}$. Ist eine Belegung der in einer Formel vorkommenden Aussagensymbole gegeben, so ist der Wahrheitswert der Formel gemäß dieser Definition leicht zu ermitteln.

Definition 2.8

Sei F eine aussagenlogische Formel und sei $\alpha: M \to \{0,1\}$ eine Belegung.

- a) Sind alle in F vorkommenden atomaren Formeln in M enthalten, so heißt α zu F passend.
- b) Ist α zu F passend und gilt $\alpha(F) = 1$, so schreiben wir $\alpha \models F$. Wir sagen, dass F unter der Belegung α gilt und nennen α ein **Modell** für F.
- c) Ist \mathcal{F} eine Menge aussagenlogischer Formeln, so heißt α ein **Modell** für \mathcal{F} , wenn für alle $F \in \mathcal{F}$ gilt: $\alpha \models F$. In diesem Fall schreiben wir $\alpha \models \mathcal{F}$.
- d) Eine Menge \mathcal{F} von Formeln heißt **erfüllbar**, falls \mathcal{F} mindestens ein Modell besitzt. Ansonsten heißt \mathcal{F} unerfüllbar.
- e) Eine Formel F heißt **allgemein gültig** oder eine **Tautologie**, wenn jede zu F passende Belegung ein Modell für F ist.

Satz 2.15 (Die fundamentalen Äquivalenzen der Aussagenlogik)

 $F\ddot{u}r$ aussagenlogische Formeln F,G,H gelten die folgenden \ddot{A} quivalenzen:

a)
$$(F \wedge F) \equiv F$$
 sowie $(F \vee F) \equiv F$ (Idempotenz)
b) $(F \wedge G) \equiv (G \wedge F)$ sowie $(F \vee G) \equiv (G \vee F)$ (Kommutativität)
c) $((F \wedge G) \wedge H) \equiv (F \wedge (G \wedge H))$ sowie $((F \vee G) \vee H) \equiv (F \vee (G \vee H))$ (Assoziativität)
d) $(F \wedge (F \vee G)) \equiv F$ sowie $(F \vee (F \wedge G)) \equiv F$ (Absorption)
e) $(F \wedge (G \vee H)) \equiv ((F \wedge G) \vee (F \wedge H))$ sowie $(F \vee (G \wedge H)) \equiv ((F \vee G) \wedge (F \vee H))$
f) $\neg \neg F \equiv F$ (Doppelnegation)
g) $\neg (F \wedge G) \equiv (\neg F \vee \neg G)$ sowie $\neg (F \vee G) \equiv (\neg F \wedge \neg G)$ (de Morgansche Regeln)
h) Ist F eine Tautologie, so gilt $(F \vee G) \equiv F$ sowie $(F \wedge G) \equiv G$. (Tautologieregeln)
i) Ist F unerfüllbar, so gilt $(F \vee G) \equiv G$ sowie $(F \wedge G) \equiv F$. (Unerfüllbarkeitsregeln)

Definition 2.17

- a) Ein **Literal** ist eine atomare Formel oder die Negation einer atomaren Formel. Im ersten Fall sprechen wir von einem **positiven Literal**, im zweiten Fall von einem **negativen Literal**.
- b) Eine Formel F ist in **konjunktiver Normalform** (**KNF**), falls sie eine Konjunktion von Disjunktionen von Literalen ist. Mit anderen Worten, es muss Literale L_{ij} geben, so dass F von folgender Form ist:

$$F = (L_{1\,1} \vee \cdots \vee L_{1\,m_1}) \wedge \cdots \wedge (L_{n\,1} \vee \cdots \vee L_{n\,m_n})$$

c) Eine Formel F ist in **disjunktiver Normalform** (**DNF**), falls sie eine Disjunktion von Konjunktionen von Literalen ist, d.h. falls F von folgender Form ist:

$$F = (L_{1\,1} \wedge \cdots \wedge L_{1\,m_1}) \vee \cdots \vee (L_{n\,1} \wedge \cdots \wedge L_{n\,m_n})$$

Algorithmus 2.19 (Algorithmus zur Erzeugung einer KNF)

Gegeben sei eine Formel F. Führe die folgenden Schritte durch:

- 0) Eliminiere \Rightarrow und \Leftrightarrow mittels ihrer Definition.
- 1) Ersetze in F jede Teilformel der Form $\neg\neg G$ durch G.
- 2) Ersetze in F jede Teilformel der Form $\neg (G \land H)$ durch $(\neg G \lor \neg H)$. Entsteht hierdurch eine Teilformel der Form $\neg \neg K$, so wende Schritt 1) an.
- 3) Ersetze in F jede Teilformel $\neg (G \lor H)$ durch $(\neg G \land \neg H)$. Entsteht hierdurch eine Teilformel der Form $\neg \neg K$, so wende Schritt 1) an.
- 4) Wiederhole die Schritte 2) und 3) so oft wie möglich.
- 5) Ersetze in F jede Teilformel der Form $(G \vee (H \wedge I))$ durch $((G \vee H) \wedge (G \vee I))$.
- 6) Ersetze in F jede Teilformel der Form $((G \land H) \lor I)$ durch $((G \lor I) \land (H \lor I))$.
- 7) Wiederhole die Schritte 5) und 6) so oft wie möglich.

Die resultierende Formel ist dann in KNF.

Das Resolutionskalkül der Aussagenlogik

Definition 2.26

- a) Seien K_1, K_2 und K_3 Klauseln. Die Klausel K_3 heißt eine **Resolvente** von K_1 und K_2 , wenn es ein Literal L gibt, so dass die folgenden beiden Bedingungen erfüllt sind:
 - 1) Es gilt $L \in K_1$ und $\neg L \in K_2$. Ist hierbei $L = \neg A$ ein negatives Literal, so sei $\neg L = A$.
 - $2) K_3 = (K_1 \setminus \{L\}) \cup (K_2 \setminus \{\neg L\})$
- b) Ist K_3 eine Resolvente von K_1 und K_2 , so verwenden wir nebenstehende grafische Darstellung:

c) Dabei ist die leere Klausel $K_3 = \emptyset$ zulässig. Sie ergibt sich z.B. als Resolvente von $K_1 = \{L\}$ und $K_2 = \{\neg L\}$. Eine Klauselmenge, die \emptyset enthält, wird als **unerfüllbar** bezeichnet.

Das Resolutionskalkül der Aussagenlogik

Definition 2.30

a) Für jede Klauselmenge \mathcal{K} setzen wir

 $\operatorname{Res}^{1}(\mathcal{K}) = \mathcal{K} \cup \{R \mid R \text{ Resolvente zweier Klauseln in } \mathcal{K}\}.$

b) Für $n \ge 2$ sei

$$\operatorname{Res}^{n}\left(\mathcal{K}\right) = \operatorname{Res}\left(\operatorname{Res}^{n-1}\left(\mathcal{K}\right)\right).$$

Für n = 0 sei $\operatorname{Res}^0(\mathcal{K}) = \mathcal{K}$. Wir nennen $\operatorname{Res}^n(\mathcal{K})$ die Menge der Resolventen n-ter Stufe von \mathcal{K} .

c) Schließlich setzen wir

$$\operatorname{Res}^{\infty}(\mathcal{K}) = \bigcup_{n>0} \operatorname{Res}^{n}(\mathcal{K}).$$

Theorem 2.31 (Der Resolutionssatz der Aussagenlogik)

Eine Formel F ist genau dann unerfüllbar, wenn $\emptyset \in \text{Res}^{\infty}(\mathcal{K}(F))$ gilt.

Das Resolutionskalkül der Aussagenlogik

Algorithmus 2.33 (Erfüllbarkeitstest für aussagenlogische Formeln)

Gegeben sei eine aussagenlogische Formel F in KNF.

- 1) Bilde die Klauselmenge $\mathcal{K}(F)$.
- 2) Für n = 1, 2, 3, ... berechne $\mathrm{Res}^n\left(\mathcal{K}\left(F\right)\right)$ solange, bis

$$\emptyset \in \operatorname{Res}^{n}(\mathcal{K}(F))$$
 oder $\operatorname{Res}^{n}(\mathcal{K}(F)) = \operatorname{Res}^{n-1}(\mathcal{K}(F))$

gilt.

3) Im ersten Fall gib "F ist unerfüllbar" aus, im zweiten Fall gib "F ist erfüllbar" aus und stoppe.