Exercise 1: (Elves and Vampires)

Leading Thoughts: We know, that any given person A either a vampire, always lying, or an elf, always telling the truth, is. As convention, we will give persons truth-values, just like atomic formulae, where elfs will be true ("1") and vampires will be false ("0").

Any statement F given by person A is either true and A is an elf, or it is false and A is an vampire. Thus, we can establish a new "meta"-statement G, which must always be true: $G = (A \wedge F) \oplus (\neg A \wedge \neg F)$.

For parts D and E we will use $G = G_1 \wedge G_2$, where $G_{1,2} = (A \wedge F_{1,2}) \oplus (\neg A \wedge \neg F_{1,2})$, and $F_{1,2}$ are the statements of A and B respectively.

1.A

We model F as follows:

 $F = \neg A \lor \neg B$

So the truth table looks like this:

AΒ	F	$A \wedge F$	$\neg A \land \neg F$	G
0.0	1	0	0	0
0 1	1	0	0	0
1 0	1	1	0	1
1 1	0	0	0	0

Thus our meta-statement G holds only true for A=1 (elf), B=0 (vampire).

1.B

We model F as follows:

 $F = \neg A \oplus B$

So the truth table looks like this:

AΒ	$\mid F \mid$	$A \wedge F$	$\neg A \wedge \neg F$	G
0 0	1	0	0	0
0 1	0	0	1	1
1 0	0	0	0	0
1 1	1	1	0	1

Thus our meta-statement G holds true for B=1 (elf). A is ambig, meaning it could either be an elf or a vampire.

1.C

This is a special case of 1.B, where we could just assume B = 0. Our meta-statement G is not satisfiable in this case, meaning the statement cannot be made by elfs or vampires.

1.D

We model our F's as follows:

 $F_1 = \neg A \wedge \neg B \wedge \neg C$ (A's statement)

 $F_2 = (\neg A \wedge \neg B \wedge C) \vee (\neg A \wedge B \wedge \neg C) \vee (A \wedge \neg B \wedge \neg C) \text{ (B's statement)}$

So the truth table looks like this:

АВС	F_1	$A \wedge F_1$	$\neg A \land \neg F_1$	G_1	F_2	$B \wedge F_2$	$\neg B \land \neg F_2$	G_2	G
0 0 0	1	0	0	0	0	0	1	1	0
$0\ 1\ 0$	0	0	1	1	1	1	0	1	1
$1 \ 0 \ 0$	0	0	0	0	1	0	0	0	0
1 1 0	0	0	0	0	0	0	0	0	0
$0\ 0\ 1$	0	0	1	1	1	0	0	0	0
0 1 1	0	0	1	1	0	0	0	0	0
101	0	0	0	0	0	0	1	1	0
1 1 1	0	0	0	0	0	0	0	0	0

Thus our meta-statement G holds true for A=C=0 (vampire), B=1 (elf).

1.E

We model our F's as follows:

 $F_1 = \neg A \wedge \neg B \wedge \neg C$ (A's statement)

 $F_2 = (\neg A \land \neg B \land C) \lor (\neg A \land B \land \neg C) \lor (A \land \neg B \land \neg C) \text{ (B's statement)}$

So the truth table looks like this: (note, that G_1 is equivalent to part D)

АВС	F_1	$A \wedge F_1$	$\neg A \land \neg F_1$	G_1	$ F_2 $	$B \wedge F_2$	$\neg B \land \neg F_2$	G_2	G
0 0 0	1	0	0	0					
0 1 0	0	0	1	1					
$1 \ 0 \ 0$	0	0	0	0					
1 1 0	0	0	0	0					
$0\ 0\ 1$	0	0	1	1					
0 1 1	0	0	1	1					
101	0	0	0	0					
1 1 1	0	0	0	0					

Thus our meta-statement G holds true for A=0 (vampire), B=C=1 (elf).

1.F

We model F as follows:

 $F = \neg A \wedge B$

So the truth table looks like this:

AΒ	$\mid F \mid$	$A \wedge F$	$\neg A \wedge \neg F$	G
0.0	0	0	1	1
0 1	1	0	0	0
10	0	0	0	0
1 1	0	0	0	0

Thus our meta-statement G holds true for A = B = 0 (vampire).

Exercise 2: (Borromean formulas)

Choose

$$A_1 = A \wedge B$$

$$A_2 = B \wedge C$$

$$A_3 = \neg C \vee \neg A$$

-
$$A_1 \wedge A_2 = A \wedge B \wedge B \wedge C = A \wedge B \wedge C$$
 satisfiable for $A = B = C = 1$
- $A_1 \wedge A_3 = (A \wedge B) \wedge (\neg C \vee \neg A) = B \wedge ((A \wedge \neg C) \vee (A \wedge \neg A)) = B \wedge A \wedge \neg C$

satisfiable for
$$A = B = 1$$
, $C = 0$

-
$$A_2 \wedge A_3 = \text{similar to } A_1 \wedge A_2$$
, now choose B = C = 1, A = 0 to satisfy formula

$$-A_1 \wedge A_2 \wedge A_3 = A \wedge B \wedge B \wedge C \wedge (\neg C \vee \neg A) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = \underset{unsatisfiable}{(\neg C \wedge C)} \vee (\neg A \wedge \neg C) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge ((\neg C \wedge C) \vee (\neg C \wedge C)) = A \wedge ((\neg C \wedge C) \vee (\neg C \wedge C)) = A \wedge ((\neg C \wedge C) \vee (\neg C \wedge$$

 $\underset{unsatisfiable}{A \wedge \neg A} \wedge B \wedge C = 0$, for all possible inputs

Exercise 3: (XOR)

	$A \oplus B = 1 \text{ iff } A \neq B$	$(A \lor B) \land \neg (A \lor B)$
0 0	0	0
0 0 0 1 1 0 1 1	1	1
1 0	1	1
1 1	0	0

The truth table shows that both formulas evaluate to the same value for all possible inputs, hence they are equivalent.

Exercise 4: (Truth value tables)

$$F_{1} = \neg(A \implies B) = \neg(\neg A \lor B) = A \land \neg B$$

$$F_{2} = \neg(\neg A \lor \neg(\neg B \lor \neg A)) = A \land (\neg B \lor \neg A) = (A \land \neg B) \lor (A \land \neg A) = A \land \neg B$$

$$= unsatisfiable$$

$$F_{3} = (A \land B) \land (\neg B \lor C) = (A \land B \land \neg B) \lor (A \land B \land C) = A \land B \land C$$

$$= unsatisfiable$$

$$F_{4} = A \Leftrightarrow (B \Leftrightarrow C)$$

Evaluated in a truth table:

C A B	F_1	F_2	F_3	F_4
0 0 0	0	0	0	1
$0\ 0\ 1$	0	0	0	0
$0\ 1\ 0$	1	1	0	0
0 1 1	0	0	0	0
$1 \ 0 \ 0$	_	-	0	0
101	_	-	0	0
1 1 0	_	-	0	0
1 1 1	_	-	1	1

From the lecture we know that two Formulas are equivalent if their truth tables are equivalent, hence F_1 and F_2 are equivalent, F_3 and F_4 are not, F_1 and F_3 aren't either.