Sistem Analizi ve Tasarımı

8.Ders

Göksel Biricik

Bu Derste

- Kodlama
- Yazılım Kalitesi
- Test Teknikleri
- Yeni Sisteme Geçiş
- Bakım

Kodlama

- Tasarım tamamlanıp diyagram, algoritma ve sözde kodlar oluşturulduktan sonra yapılır.
- Kodlama spesifikasyonlara uymalı, kolay okunabilmeli, düzenlenebilmeli,test edilebilmeli, değiştirilebilmelidir.
- Belirlenen kodlama standartlarına uyulmalıdır.
 - Açıklama satırları kullanılmalıdır.
 - Kod yazım deseni kullanılmalıdır.
- Anlamlı isimlendirmeler yapılmalıdır.

Programlama Dili ve Ortamı

- Gereksinimlere uygun olacak dil(ler) fizibilitede seçilip analiz aşamasında kesinleştirilmişti.
- Dil Seçiminde dikkat edilmesi gereken faktörler
 - Genel uygulama alanı
 - Algoritma ve veri yapılarının karmaşıklığı
 - Yazılımın kullanılacağı ortam
 - Uygulama koşulları
 - Personelin bilgi düzeyi
 - Yapılacak yatırım miktarı
 - Müşteri koşulları

Yazılım Kalitesi

- Kalite: işlevsel gereksinimlere, geliştirme standartlarına ve beklenen tüm özelliklere tamamen uygun yazılım
- Kalite Faktörleri:
 - Doğruluk
 - Güvenilirlik
 - Verimlilik
 - Güvenlik
 - Kullanışlılık

- Hata bulma kolaylığı
- Esneklik
- Sınama kolaylığı
- Taşınabilirlik
- Tekrar kullanılabilirlik
- Bağlanabilirlik

Yazılımda Kalitenin Sağlanması

- Planlama aşamasında kalite kontrolü yöntem ve araçları belirlenmeli
- Geliştirme sürecinde durak noktalarında yapılanlar gözden geçirilmeli
- Kaynak program sınanmalı
- Gerçekleştirilmiş projenin gereksinimleri karşılaması gözden geçirilmeli
- Bunlar plan dahilinde yapılmalı:
 - Yazılım inceleme planı
 - Kaynak programı sınama planı
 - Kabul muayene planı

Yazılımın Test Edilmesi

- Hataları bulmak için yapılır.
- Fonksiyonel Test: Girdi-işlem-sonuç üçlüsünün doğruluğu test edilir. Uç değer analizi de yapılır.
- Performans Testi: Yanıt süreleri, iç-dış bellek kullanımları, iletişim hızları vs. ölçülür. Darboğazlar belirlenir.
- Dayanıklılık Testi: Aşırı yüklenme, iletişim darboğazı, kullanıcı yüklenmesi gibi durumlarda sistemin tepkisi ölçülür.
- Yapısal Test: Sistemin iç işletimi sınanır. Alt programların mantıksal çalışma yolları denetlenir.

Test Adımları

- Ünite Testi: Her modüle ayrı uygulanarak kodun doğruluğu test edilir.
- Bütünleme Testi: Modülleri bağlayarak sistemin oluşturulması sırasında yapılır. Bütün olarak ya da arttırmalı yapılabilir.
- Onaylama Testi: Gereksinimleri karşılama derecesi test edilir.
- **Sistem Testi:** Sistemin bütün öğeleri hep birlikte test edilir. Hatalar için düzeltme, güvenlik, dayanıklılık, performans testleri yapılır.

Yeni Sisteme Geçiş

- Geçiş Adımları:
 - Ön tasarımda belirlenen donanımın kurulumu
 - Ağ yapısının oluşturulması
 - Kayıtların yeni sisteme aktarılması
 - Eğitim
 - Sistemle ilgilenecekler
 - Uç kullanıcılar
 - Üst yönetim
 - Devreye alma

Geçiş Yöntemleri

Doğrudan geçiş

Eski Sistem	Yeni Sistem
-------------	-------------

• Prototip geçiş

	Eski Sistem	Y en i Sistem
ľ	Prototin	

Paralel geçiş

• Dağıtılmış geçiş

• Dereceli geçiş

	0 - 3 3
Eski Sistem	Yeni Sistem

Bakım

- Yazılım yaşayan bir süreçtir, evrimleşir.
- Kullanıma geçişten sonra yazılımdaki değişikliklere bakım denir.
- Zaman içinde ihtiyaçlar değişir. → İyileştirici bakım
- Altyapı değişimi olabilir. -> Uyarlayıcı bakım
- Testlerde fark edilmeyen hatalar olabilir.
 →Düzeltici bakım

Gelecek Dersler

• Proje Sunumları