INTRODUCTION TO DEEP LEARNING

Day 2 Lecture 4

Methodology

Universitat Politecnica de Catalunya Technical University of Catalonia

#DLUPC

Outline

Data

- training, validation, test partitions
- Augmentation

Capacity of the network

- Underfitting
- Overfitting

Prevent overfitting

- Dropout, regularization
- Strategy

Outline

It's all about the data...

well, not only data...

Computing power: GPUs

Source: NVIDIA 2017

well, not only data...

- Computing power: GPUs
- New learning architectures
 - CNN, RNN, LSTM, DBN, GNN, GAN, Transformers, etc.

Network capacity

- Space of representable functions that a network can potentially learn:
 - Number of layers / parameters

Generalization

The network needs to **generalize** beyond the training data to work on new data that it has not seen yet

Underfitting vs Overfitting

- Overfitting: network fits training data too well
 - Excessively complicated model
- Underfitting: network does not fit training data well enough
 - Excessively simple model

Both underfitting and overfitting lead to poor predictions on new data and they do not generalize well

Underfitting vs Overfitting

Data partition

How do we measure the generalization instead of how well the network does with the memorized data?

Split your data into two sets: training and test

TRAINING 80%	TEST 20%
-----------------	----------

Underfitting vs Overfitting

Data partition revisited

- Test set should not be used to tune your network
 - Network architecture
 - Number of layers
 - Hyper-parameters

- Failing to do so will overfit the network to your test set!
 - https://www.kaggle.com/c/higgs-boson/leaderboard

Data partition revisited (2)

Add a validation set!

 Lock away your test set and use it only as a last validation step

The bigger the better?

- Larger networks
 - More capacity / More data
 - Prone to overfit

- Smaller networks
 - Lower capacity / Less data
 - Prone to underfit

The bigger the better?

- In large networks, most local minima are equivalent and yield similar performance.
- The probability of finding a "bad" (high value) local minimum is non-zero for small networks and decreases quickly with network size.
- Struggling to find the global minimum on the training set (as opposed to one of the many good local ones) is not useful in practice and may lead to overfitting.

Better large capacity networks and prevent overfitting

Prevent overfitting

- Early stopping
- Loss regularization
- Data augmentation
- Dropout

Early stopping

Loss regularization (1)

- Control the capacity of the network to prevent overfitting
- Large weights tend to cause sharp transitions in node functions → large changes in output for small changes in inputs
 - Penalize the weights of the nodes in the network
 - Discourages learning a more complex or flexible model

Loss regularization (2)

L2-regularization (weight decay):

$$\mathcal{L}_{new} = \mathcal{L} + \frac{\lambda}{2} W^2$$

L1-regularization:

$$\mathcal{L}_{new} = \mathcal{L} + \frac{\lambda}{2}|W|$$

Loss regularization (3)

- Limit the values of parameters in the network
 - L2 vs L1 regularization

Loss regularization (4)

 L2 regularization heavily penalizes peaky weights and prefers diffuse / low value weights

 L1 regularization leads weights to become sparse (i.e. very close to exactly zero)

Data augmentation (1)

- Modify input samples artificially to increase the data size
- On-the-fly while training
 - Inject Noise
 - Transformations
- Not used in testing/validation

Data augmentation (2): Image

- Noise injection
- Dropout
- Blurs
- Color changes
- Contrast
- Transformations
 - GT transformed!
- Crops, shifts
- Application specific
 - Clouds, snow, etc.

p = 0.0

qamma=0.50

p = 0.0

p = 0.0

Data augmentation (3): Audio

- Noise injection
- Shifting time
- Changing pitch
- Changing speed
- Crops
- Laudness
- Masks

https://github.com/makcedward/nlpaug

Data augmentation (4)

Synthetic data: Generate new input samples

Dropout (1)

 At each training iteration, randomly remove some nodes in the network along with all of their incoming and outgoing connections (N. Srivastava, 2014)

Dropout (2)

- Why dropout works?
 - Nodes become more insensitive to the weights of the other nodes → more robust.
 - Averaging multiple models
 → ensemble.
 - Training a collection of 2ⁿ thinned networks with parameters sharing

Ensemble of subnetworks

Dropout (3)

- Every forward pass, network slightly different.
- Reduce co-adaptation between neurons
- More robust features
- Dropout is removed in validation/testing

More iterations for convergence

(a) Standard Neural Net

(b) After applying dropout.

Strategy for machine learning (1)

Human-level performance can serve as a very reliable proxy which can be leveraged to determine your next move when training your model.

Bayes Error Rate

My model

Human-level accuracy

30

Strategy for machine learning (2)

TRAINING 60%	VALIDATION 20%	TEST 20%
Human level error	1%	
Human level error Training error .	19%	Underfitting
Validation error	20%	
Test error	21%	

Strategy for machine learning (3)

TRAINING 60%	VALIDATION 20%	TEST 20%
-----------------	----------------	----------

Strategy for machine learning (4)

TRAINING	VALIDATION	TEST
0070	20 /6	20 /6

Strategy for machine learning (5)

TRAINING	VALIDATION	TEST
60%	20%	20%

Human level error . . 1%

Training error . . . 1.1%

Validation error . . 1.2%

Test error 1.2%

Strategy for machine learning (5)

References

Nuts and Bolts of Applying Deep Learning by Andrew Ng https://www.youtube.com/watch?v=F1ka6a13S9I

Thanks! Questions?

