Class 19 Pertussis

Sharlene Yang

Pertussis

Pertussis or whooping cough, is a highly contagious lung infection caused by a bacteria B. pertussis.

The CDC tracks reported cases in the US since the 1920s.

```
cdc <- data.frame(</pre>
                                      Year = c(1922L, 1923L, 1924L, 1925L,
                                               1926L, 1927L, 1928L, 1929L, 1930L, 1931L,
                                               1932L, 1933L, 1934L, 1935L, 1936L,
                                               1937L,1938L,1939L,1940L,1941L,1942L,
                                               1943L, 1944L, 1945L, 1946L, 1947L,
                                               1948L,1949L,1950L,1951L,1952L,
                                               1953L, 1954L, 1955L, 1956L, 1957L, 1958L,
                                               1959L, 1960L, 1961L, 1962L, 1963L,
                                               1964L, 1965L, 1966L, 1967L, 1968L, 1969L,
                                               1970L, 1971L, 1972L, 1973L, 1974L,
                                               1975L,1976L,1977L,1978L,1979L,1980L,
                                               1981L, 1982L, 1983L, 1984L, 1985L,
                                               1986L,1987L,1988L,1989L,1990L,
                                               1991L, 1992L, 1993L, 1994L, 1995L, 1996L,
                                               1997L,1998L,1999L,2000L,2001L,
                                               2002L, 2003L, 2004L, 2005L, 2006L, 2007L,
                                               2008L, 2009L, 2010L, 2011L, 2012L,
                                               2013L,2014L,2015L,2016L,2017L,2018L,
                                               2019L),
          Cases = c(107473, 164191, 165418, 152003,
                                               202210, 181411, 161799, 197371,
                                               166914, 172559, 215343, 179135, 265269,
                                               180518, 147237, 214652, 227319, 103188,
                                               183866,222202,191383,191890,109873,
```

133792,109860,156517,74715,69479,
120718,68687,45030,37129,60886,
62786,31732,28295,32148,40005,
14809,11468,17749,17135,13005,6799,
7717,9718,4810,3285,4249,3036,
3287,1759,2402,1738,1010,2177,2063,
1623,1730,1248,1895,2463,2276,
3589,4195,2823,3450,4157,4570,
2719,4083,6586,4617,5137,7796,6564,
7405,7298,7867,7580,9771,11647,
25827,25616,15632,10454,13278,
16858,27550,18719,48277,28639,32971,
20762,17972,18975,15609,18617)

library(ggplot2)
ggplot(cdc) +
 aes(Year, Cases) +
 geom_point() +
 geom_line()

)

The first big "whole-cell" pertussis vaccine program started in 1942.

```
ggplot(cdc) +
  aes(Year, Cases) +
  geom_point() +
  geom_line() +
  geom_vline(xintercept = 1942, color = "blue") +
  geom_vline(xintercept = 1980, color = "gray", linetype = 2) +
  geom_vline(xintercept = 1995, color = "red")
```


Something big is happening with pertussis cases and big outbreaks are once again a major public health concern!

One of the main hypothesis for the increasing case number is waning vaccine efficiency with the newer aP vaccine.

Enter the CMI-PB project, which is studying this problem on large scale. Let's see what data they have.

Their data is available in JSN format ("key :value" pair style). We will use the "jasonlite" package to read their data.

```
# Allows us to read, write and process JSON data
  library(jsonlite)
  subject <- read_json("https://www.cmi-pb.org/api/subject", simplifyVector = TRUE)</pre>
  head(subject, 3)
 subject_id infancy_vac biological_sex
                                                        ethnicity race
1
           1
                       wP
                                   Female Not Hispanic or Latino White
2
           2
                       wP
                                   Female Not Hispanic or Latino White
           3
                       wP
                                   Female
                                                          Unknown White
3
 year_of_birth date_of_boost
                                     dataset
     1986-01-01
                    2016-09-12 2020_dataset
2
     1968-01-01
                    2019-01-28 2020_dataset
3
     1983-01-01
                    2016-10-10 2020_dataset
     Q4. How may aP and wP infancy vaccinated subjects are in the dataset?
  table(subject$infancy_vac)
aP wP
47 49
     Q5. How many Male and Female subjects/patients are in the dataset?
  table(subject$biological_sex)
         Male
Female
    66
           30
     Q6. What is the breakdown of race and biological sex (e.g. number of Asian
     females, White males etc...)?
  table(subject$race)
            American Indian/Alaska Native
```

```
Asian
27
Black or African American
2
More Than One Race
10
Native Hawaiian or Other Pacific Islander
2
Unknown or Not Reported
14
White
40
```

table(subject\$race, subject\$biological_sex)

	${\tt Female}$	Male
American Indian/Alaska Native	0	1
Asian	18	9
Black or African American	2	0
More Than One Race	8	2
Native Hawaiian or Other Pacific Islander	1	1
Unknown or Not Reported	10	4
White	27	13

Now let's read some more database tables from CMI- PB:

```
specimen <- read_json("http://cmi-pb.org/api/specimen", simplifyVector = TRUE)
head(specimen)</pre>
```

```
specimen_id subject_id actual_day_relative_to_boost
            1
                                                     -3
1
                                                    736
2
3
            3
                       1
                                                      1
4
            4
                       1
                                                      3
                                                      7
                                                     11
 planned_day_relative_to_boost specimen_type visit
                                         Blood
```

2	736	Blood	10
3	1	Blood	2
4	3	Blood	3
5	7	Blood	4
6	14	Blood	5

I want to "join" (aka merge/link/etc.) The subject and specimen tables together. I will use

```
the dplyr package for this.
  library(dplyr)
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
    filter, lag
The following objects are masked from 'package:base':
    intersect, setdiff, setequal, union
  meta <- inner_join(subject, specimen)</pre>
Joining with `by = join_by(subject_id)`
  head(meta)
  subject_id infancy_vac biological_sex
                                                       ethnicity race
           1
                       wP
                                  Female Not Hispanic or Latino White
1
2
                       wP
                                  Female Not Hispanic or Latino White
                                  Female Not Hispanic or Latino White
3
                       wP
4
           1
                       wP
                                  Female Not Hispanic or Latino White
5
           1
                       wP
                                  Female Not Hispanic or Latino White
                                  Female Not Hispanic or Latino White
           1
                       wP
                                    dataset specimen_id
  year_of_birth date_of_boost
     1986-01-01
                    2016-09-12 2020_dataset
1
                                                       1
                    2016-09-12 2020_dataset
2
     1986-01-01
                                                       2
```

```
3
     1986-01-01
                    2016-09-12 2020_dataset
                                                        3
4
     1986-01-01
                    2016-09-12 2020_dataset
                                                        4
5
                    2016-09-12 2020_dataset
                                                        5
     1986-01-01
6
     1986-01-01
                    2016-09-12 2020_dataset
                                                        6
  actual_day_relative_to_boost planned_day_relative_to_boost specimen_type
                              -3
1
                                                                         Blood
2
                             736
                                                             736
                                                                         Blood
3
                                                                         Blood
                               1
                                                               1
4
                               3
                                                               3
                                                                         Blood
5
                              7
                                                               7
                                                                         Blood
6
                              11
                                                              14
                                                                         Blood
  visit
1
      1
2
     10
3
      2
4
      3
5
      4
6
      5
  dim(meta)
[1] 729 13
  ab <- read_json("http://cmi-pb.org/api/ab_titer", simplifyVector = TRUE)</pre>
  head(ab)
  specimen_id isotype is_antigen_specific antigen
                                                             MFI MFI_normalised
1
            1
                   IgE
                                      FALSE
                                               Total 1110.21154
                                                                       2.493425
                                                                       2.493425
2
            1
                   IgE
                                      FALSE
                                               Total 2708.91616
3
            1
                   IgG
                                       TRUE
                                                  PT
                                                       68.56614
                                                                       3.736992
4
            1
                   IgG
                                       TRUE
                                                 PRN 332.12718
                                                                       2.602350
5
            1
                   IgG
                                       TRUE
                                                 FHA 1887.12263
                                                                      34.050956
                                       TRUE
                                                 ACT
                                                        0.10000
                                                                       1.000000
                   IgE
   unit lower_limit_of_detection
1 UG/ML
                         2.096133
2 IU/ML
                        29.170000
3 IU/ML
                         0.530000
4 IU/ML
                         6.205949
5 IU/ML
                         4.679535
6 IU/ML
                         2.816431
```

Now I can join the 'meta' that we made above and contains all info about the subjects and specimens with this 'ab' data.

```
abdata <- inner_join(meta, ab)</pre>
Joining with `by = join_by(specimen_id)`
  dim(abdata)
[1] 32675
              20
     Q11. How many specimens (i.e. entries in abdata) do we have for each isotype?
  table(abdata$isotype)
 IgE IgG IgG1 IgG2 IgG3 IgG4
6698 1413 6141 6141 6141 6141
     Q12. What do you notice about the number of visit 8 specimens compared to other
     visits?
  table(abdata$visit)
              3
                         5
                                          8
5795 4640 4640 4640 4640 4320 3920
                                        80
```

There are way less visits 8 specimens because the project is still ongoing and we have got that data for all individuals yet.

Examine IgG1 Ab titer levels

We will use the filter() function from dplyr to focus on just IgG1 isotype and visits 1 to 7 (ie exclude visits 8 as there are not many specimens there yet).

```
ethnicity race
1
                                  Female Not Hispanic or Latino White
2
           1
                       wP
                                  Female Not Hispanic or Latino White
3
           1
                       wP
                                  Female Not Hispanic or Latino White
4
           1
                       wP
                                  Female Not Hispanic or Latino White
5
           1
                       wP
                                  Female Not Hispanic or Latino White
           1
                       wΡ
                                  Female Not Hispanic or Latino White
                                    dataset specimen_id
  year_of_birth date_of_boost
     1986-01-01
                    2016-09-12 2020_dataset
1
2
     1986-01-01
                    2016-09-12 2020_dataset
                                                       1
3
     1986-01-01
                    2016-09-12 2020_dataset
                                                       1
4
                                                       1
     1986-01-01
                    2016-09-12 2020_dataset
5
     1986-01-01
                    2016-09-12 2020_dataset
                                                        1
     1986-01-01
                    2016-09-12 2020_dataset
                                                        1
  actual_day_relative_to_boost planned_day_relative_to_boost specimen_type
1
                             -3
                                                                        Blood
                                                                        Blood
2
                             -3
                                                              0
3
                             -3
                                                              0
                                                                        Blood
4
                             -3
                                                              0
                                                                        Blood
5
                             -3
                                                              0
                                                                        Blood
                             -3
6
                                                              0
                                                                        Blood
                                                     MFI MFI_normalised unit
  visit isotype is_antigen_specific antigen
1
      1
           IgG1
                                TRUE
                                          ACT 274.355068
                                                               0.6928058 IU/ML
2
      1
           IgG1
                                TRUE
                                          LOS 10.974026
                                                               2.1645083 IU/ML
3
      1
           IgG1
                                TRUE
                                        FELD1
                                                1.448796
                                                               0.8080941 IU/ML
4
      1
           IgG1
                                TRUE
                                        BETV1
                                                0.100000
                                                               1.0000000 IU/ML
5
      1
                                TRUE
                                        LOLP1
                                                               1.0000000 IU/ML
           IgG1
                                                0.100000
      1
           IgG1
                                TRUE Measles
                                               36.277417
                                                               1.6638332 IU/ML
  lower_limit_of_detection
1
                  3.848750
2
                  4.357917
3
                  2.699944
4
                   1.734784
5
                  2.550606
6
                  4.438966
```

Boxplot of antigen levels over time.

```
ggplot(ig1) +
  aes(MFI, antigen) +
  geom_boxplot()
```


and facet by visits

```
ggplot(ig1) +
  aes(MFI, antigen) +
  geom_boxplot() +
  facet_wrap(vars(visit), nrow = 2)
```


Clearly FIM2/3 changes. This is "Fimbrial protein" that makes the bacteria pilus and is involved in cell adhesion.

PT Pertussis toxin

FHA is Filamentous hemagglutinin surface associated adherence protein of bacteria pertussis, which is a components of some new acellular pertussis vaccines.

```
ggplot(ig1) +
  aes(MFI, antigen, col=infancy_vac ) +
  geom_boxplot(show.legend = FALSE) +
  facet_wrap(vars(visit), nrow=2) +
  theme_bw()
```


Other version with infancy_vac to the faceting

```
ggplot(ig1) +
  aes(MFI, antigen, col=infancy_vac) +
  geom_boxplot(show.legend = FALSE) +
  facet_wrap(vars(infancy_vac, visit), nrow=2)
```



```
filter(ig1, antigen=="Measles") %>%
   ggplot() +
   aes(MFI, col=infancy_vac) +
   geom_boxplot(show.legend = FALSE) +
   facet_wrap(vars(visit)) +
   theme_bw()
```

