Seminário de Bioinformática

Alunos

Guilherme Gervaes
RA: 151041946

Marco Vinicius Guebarra
RA: 151045054

Paulo Victor de Queiroz Zanele
RA: 151044244

Introdução

 Apesar de todos os avanços recentes no desenvolvimento de algoritmos de alinhamento múltiplo de sequências, o custo computacional na aplicação destes métodos, em diversas abordagens, ainda é relativamente grande. Deste modo, buscar uma solução eficiente e simples computacionalmente ainda é um grande desafio na área de Bioinformática.

• Desta maneira, em 2010, foi proposto o **MSAProbs**, um algoritmo de alinhamento múltiplo totalmente voltado à análise de **sequências proteicas**.

Introdução

Basicamente, o MSAProbs combina um par-HMM (Modelo Oculto de Markov)
com uma função de partição para calcular as probabilidades subsequentes.

Modelo Oculto de Markov

 Para entender o que é um HMM, primeiramente definiremos uma Cadeia de Markov.

• Cadeia de Markov: Seja um conjunto de Estados $N = S_1, S_2, ..., S_N$. Então, em um determinado tempo t, o sistema sofre uma alteração de estado, de acordo com a probabilidade de transição do estado atual para um novo estado.

Sejam os estados correspondentes:

$$S = \{1 = Mercado em Alta, \}$$

2 = Mercado em Baixa,

3 = Mercado Estagnado},

Então temos a seguinte matriz de transição de estados:

$$P = \begin{bmatrix} 0.9 & 0.075 & 0.025 \\ 0.15 & 0.8 & 0.05 \\ 0.25 & 0.25 & 0.5 \end{bmatrix}.$$

Modelo Oculto de Markov

Um **HMM** é definido por:

- 1. Um conjunto S de N estados;
- 2. Um alfabeto discreto de M símbolos;
 - a. No caso de sequências de proteínas, os símbolos são formados pelos 20 aminoácidos possíveis.
- 3. Uma matriz P de probabilidades de transição de estados;
- 4. Uma matriz B de probabilidades de símbolos emitidos em cada estado;
- 5. Um conjunto I de estados iniciais.

O funcionamento do **MSAProbs** se dá da seguinte maneira:

- 1. A partir de um par-HMM, usando o algoritmo Forward-Backward e uma função de partição, calculam-se todas as matrizes de probabilidade posterior possíveis;
- 2. Cálculo de uma matriz de distância par-a-par, utilizando as matrizes de probabilidade posterior;
- 3. Construção de uma árvore guia, utilizando as distâncias entre pares e calculando o peso de cada sequência;
- 4. Realiza-se uma transformação de consistência probabilística ponderada, a fim de melhorar a acurácia das probabilidades posteriores de cada par de sequência;
- 5. Utilizando o resultado dos itens 3 e 4, realiza-se um alinhamento progressivo.

 Cálculo par-a-par das matrizes de probabilidade posterior utilizando tanto o modelo oculto de Markov quanto uma função partição

 Cálculo par-a-par da matriz de distância utilizando as matrizes de probabilidade posterior

 Construção da árvore guia usando a matriz de distância par-a-par e calculando os pesos da sequência

- Realização de uma transformação de consistência probabilística ponderada de todas as matrizes par-a-par posteriores de probabilidade
- Passo esse realizado paralelamente ao cálculo da matriz de distâncias

 Cálculo de um alinhamento progressivo ao longo da árvore guia usando as matrizes posteriores de probabilidade transformadas

- Após a etapa do alinhamento é feito um refinamento iterativo adicional como uma etapa de pós processamento
- Com o objetivo de aumentar a precisão do alinhamento

Resultados

- Comparações com outros cinco algoritmos de alinhamento múltiplo de sequências
- Exemplo de teste realizando o benchmark BAliBASE 3.0

Aligner	RV11	RV12	RV20	RV30	RV40	RV50
MSAProbs	74.63	94.86	94.35	88.20	92.32	90.90
MUSCLE	65.75	92.32	91.50	84.23	86.31	85.28
MAFFT	69.18	93.68	93.62	87.81	92.53	90.14
Probalign	71.27	94.65	93.54	86.45	92.21	89.12
ProbCons	74.00	94.59	93.70	87.54	90.03	90.15
ClustalW	58.16	88.36	88.79	77.14	78.94	76.91

Referências

Modelo Oculto de Markov:

https://repositorio.ufpe.br/bitstream/123456789/2561/1/arquivo4987 1.pdf

https://pt.wikipedia.org/wiki/Cadeias de Markov

MSAProbs:

https://academic.oup.com/bioinformatics/article/26/16/1958/218540