Lineare Algebra für *-Informatik - Übung 02

Felix Tischler, Martrikelnummer: 191498

November 19, 2020

Hausaufgaben

Hausaufgabe 2.1

Mengen

Sei C eine Menge, $A \subseteq C$ und $B \subseteq C$. Des weiteren geht aus der Definition der Teilmenge hervor: Eine Menge N heißt eine Teilmenge einer Menge $M : \Leftrightarrow$ jedes Element von N ist auch ein Element aus M. Bezeichnung: $N \subseteq M$. Mann kann also $N \subseteq M \Leftrightarrow \forall x \in N \Rightarrow x \in M$ schreiben. Es ist zu beweisen, dass gilt:

$$\{K \in \mathscr{P}(C) \mid B \subseteq K\} \cap \{K \in \mathscr{P}(C) \mid A \subseteq K\} = \{K \in \mathscr{P}(C) \mid A \cup B \subseteq K\}$$

$$\{K \in \mathscr{P}(C) \mid B \subseteq K\} = \{K \in \mathscr{P}(C) \mid \forall x \in B \Rightarrow x \in K\}$$

$$\{K \in \mathscr{P}(C) \mid A \subseteq K\} = \{K \in \mathscr{P}(C) \mid \forall x \in A \Rightarrow x \in K\}$$

$$\{K \in \mathscr{P}(C) \mid B \subseteq K\} \cap \{K \in \mathscr{P}(C) \mid A \subseteq K\} = \{K \in \mathscr{P}(C) \mid \forall x \in B \Rightarrow x \in K\} \cap \{K \in \mathscr{P}(C) \mid \forall x \in A \Rightarrow x \in K\}$$

$$= \{K \in \mathscr{P}(C) \mid \forall x \in (a \cup b) \Rightarrow x \in K\}$$

$$\{K \in \mathscr{P}(C) \mid A \cup B \subseteq K\} = \{K \in \mathscr{P}(C) \mid \forall x \in (a \cup b) \Rightarrow x \in K\} \square$$

Das man so schlussfolgern kann zeige ich anhand folgender Wahrheitstabelle:

Es gilt $a \in A, b \in B$

a	b	$a \cup b$	K	$a \Rightarrow K$	$b \Rightarrow K$	$(a \Rightarrow K) \cap (b \Rightarrow K)$	$(a \cup b) \Rightarrow K$
W	W	W	W	W	W	W	W
W	W	W	F	F	F	F	F
W	F	W	W	W	W	W	W
W	F	W	F	F	W	F	F
F	W	W	W	W	W	W	W
F	W	W	F	W	F	F	F
F	F	F	W	W	W	W	W
F	F	F	F	W	W	W	W

Hausaufgabe 2.2

Definitionen

Sei $f: D \to M$ eine Abbildung.

- f heißt **injektiv**, wenn $\forall x_1, x_2 \in D \mid x_1 = x_2 \Rightarrow f(x_1) = f(x_2)$
- f heißt **surjektiv**, wenn wenn jedes Element von M das Bild eines Elements aus D ist, kurz: f(D) = M, Schreibweise: $f: X \to Y$
- \bullet f heißt **bijektiv** oder **eins-zu-eins Abbildung**, wenn f sowohl injektiv als auch surjektiv ist. 2
- der **Graph** von f ist die Menge: $G_f := \{(x, f(x)) \in D \times M \mid x \in D\}$, somit ist der Graph eine spezielle Teilmenge des Kartesischen Produkts.³

¹Definition aus der Vorlesung

²Teschl und Teschl, 2013, Mathematik für Informatiker, 4. Auflage, Springer-Verlag Berlin, Seite 156

 $^{^3}$ Wikipedia: Definition Funkltionsgraph

Die Menge der Abbildungen

Der Funktionsgraph einer Abbildung sei definiert als $f: X \to Y$ ist $\Gamma_f := \{(x, f(x) \mid x \in X)\} \subset X \times Y$. und es sei G $\subset X \times Y$. Nun ist festzulegen wann $G = \Gamma_f$ gilt. Vereinfacht kann man sich ein beliebiges Tupel veranschaulichen:

$$G = \Gamma_f$$

$$(x_G, y_G) = (x_\Gamma, f(x_\Gamma))$$

$$x_G = x_\Gamma \Rightarrow y_G = f(x_\Gamma)$$
 (a)

Aus $y_0 = f(x_0)$ folgt $G_{f1}: X \twoheadrightarrow Y$ (surjektiv). Nun betrachten wir G_{f1} als mögliche Abbildung $f_1: X \to Y$ von G:

$$G_{f1} = \Gamma_f$$

$$(x_G, f_1(x_G)) = (x_\Gamma, f(x_\Gamma))$$

$$x_G = x_\Gamma \Rightarrow f_1(x_G) = f(x_\Gamma)$$
 (b)

Aus $f_1(x_G) = f(x_\Gamma) \Rightarrow x_G = x_\Gamma$ folgt, dass G_{f1} auch **injektiv** ist. Somit ist G_{f1} **bijektiv** unter der Bedingung, dass (a) und (b) gelten. Somit gilt $G = \Gamma_f$ für eine Abbildung $f: X \to Y$, wenn f bijektiv ist.

Ein Paar der Funktion f ist als f=(X,Y) definiert. Da nun aber $x_G=x_\Gamma$ gelten soll, kann dieses Paar als f=(G,Y) beschrieben werden, wobei hier die Definitionsmenge durch den ersten Teil von G und zwar x_G festgelegt ist. Nehmen wir nun eine Menge $M:=\{f:X\to Y\}$ welche die Gesamtheit aller bijektiven Abbildungen darstellt. Nehmen wir hierzu mal das Gegenteil an, wenn M keine Menge ist, dann gilt auch nicht $K:=\{x\in M|x\not\in X\}$ nach dem Aussonderungsaxiom. Allerdings gilt $K\not\in K$, denn für K gilt f=(G,Y) und da $K\not\in G\Rightarrow K\not\in K$ da also das Aussonderungsaxiom gilt ist M eine Menge.

Hausaufgabe 2.3

Ein erstes lineares Gleichungssystem

Es sind alle $(x, y, z) \in \mathbb{R}^3$ zu berechnen welche die Gleichungen 1), 2) und 3) erfüllen:

1)

4x - 5y - 3z = 0

d.h. $(x,y,z) \in \mathbb{R}^3 \mid x = 2z, y = z, z = z$