ÁLGEBRA 1

GRADO MATEMÁTICAS - CURSO 19-20 RELACIÓN DE EJERCICIOS $oldsymbol{1}$

1.1. Decidir si A = B, $A \subset B$ ó $A \in B$ en los siguientes casos:

i)
$$A = \{\emptyset\}$$
, $B = \{\{\emptyset\}\}$

ii)
$$A = \{\emptyset, \{\emptyset\}\}$$
 , $B = \{\emptyset, \{\emptyset, \{\emptyset\}\}\}$

iii)
$$A = \{ \{\emptyset\}, \{\emptyset, \emptyset\} \}$$
, $B = \{ \{\emptyset\} \}$

1.2. Dar por extensión los siguientes conjuntos:

a)
$$\mathcal{P}(\emptyset)$$
; b) $\mathcal{P}(\{\emptyset\})$; c) $\mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset)))$

1.3. Demostrar las siguientes afirmaciones:

i)
$$\{a\} = \{b, c\}$$
 sí, y sólo sí $a = b = c$

ii) Si
$$a \neq b$$
 y $c \neq d$ entonces $\{\{a\}, \{a, b\}\} = \{\{c\}, \{c, d\}\}$ sí, y sólo sí $a = c$ y $b = d$

1.4. Si *A* y *B* son subconjuntos de un conjunto *E* demostrar:

i)
$$A \cap B = \emptyset \iff A \subseteq \overline{B} \iff B \subseteq \overline{A}$$

ii)
$$A \cup B = E \iff \overline{B} \subseteq A \iff \overline{A} \subseteq B$$

1.5. Sea X un conjunto y A, B, C subconjuntos de X. Demostrar que si $A \cup B \subseteq A \cup C$ y $A \cap B \subseteq A \cap C$ entonces $B \subseteq C$. Como consecuencia demostrar que si $A \cup B = A \cup C$ y $A \cap B = A \cap C$ entonces B = C.

1.6. (Leyes de De Morgan) Si A y B son subconjuntos de un conjunto X, demostrar:

$$i) \ \overline{A \cap B} = \overline{A} \cup \overline{B} \ ; \ ii) \ \overline{A \cup B} = \overline{A} \cap \overline{B}$$

1.7. Verificar las siguientes fórmulas donde A, B y C son subconjuntos de un conjunto X y $A \setminus C = \{x \in X | x \in A \land x \notin C\}$:

1

i)
$$(A \setminus C) \setminus (B \setminus C) = (A \setminus B) \setminus C$$

ii)
$$(A \setminus C) \cup (B \setminus C) = (A \cup B) \setminus C$$

iii)
$$(A \setminus C) \cap (B \setminus C) = (A \cap B) \setminus C$$

iv)
$$(A \setminus B) \setminus (A \setminus C) = A \cap (C \setminus B)$$

v)
$$(A \setminus B) \cup (A \setminus C) = A \setminus (B \cap C)$$

vi)
$$(A \setminus B) \cap (A \setminus C) = A \setminus (B \cup C)$$

1.8. Se define la diferencia simétrica de dos subconjuntos *A* y *B* de un conjunto *X* por

$$A\triangle B = (A \setminus B) \cup (B \setminus A)$$

Demostrar que $A \triangle B = (A \cup B) \setminus (A \cap B)$ y que $A \triangle B = \emptyset$ sí, y sólo sí A = B.

- **1.9.** Sean $A, B \subseteq X$. Demostrar:
- i) $A = (A \cap B) \cup (A \setminus B)$ es una representación de A como una unión disjunta.
- ii) $A \cup B = A \cup (B \setminus A)$ es una representación de $A \cup B$ como una unión disjunta.
- **1.10.** Sean $A, B \subseteq X$. Si A tiene n elementos y B tiene m elementos ¿Cuántos elementos tiene $A \cup B$?.
- **1.11.** Sean $A, B \subseteq X$. Demostrar que si $A \subseteq B$ entonces $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.
- **1.12.** Se consideran los subconjuntos de \mathbb{R} , A = [-1, 1] y B = [-3, 4]. Describir los siguientes subconjuntos de $\mathbb{R} \times \mathbb{R}$: $A \times B$, $B \times A$, $(A \times B) \cap (B \times A)$, $(A \times B) \setminus (B \times A)$, $(A \times B) \cup (B \times A)$.