The Evolution of Batting Statistics in Baseball

Scott Powers

MMC Chicago Dinner Meeting March 3, 2023

The Origin of Batting Average

- 1867: *The Ball Players' Chronicle* publishes "The True Test of Batting" by Henry Chadwick
 - Argues for hits per game as the "true test"
 - Prefers hits to total bases

- 1871: Hervie Alden Dobson writes letter to the New York Clipper
 - Argues for hits per at bat over hits per game
 - Later this came to be known as batting average

AVG = H/AB

Source: John Thorn (2013)

https://ourgame.mlblogs.com/chadwicks-choice-the-origin-of-the-batting-average-e8e9e9402d53

Slugging Percentage

- 1923: National League adopts SLG as official stat
- 1946: American League adopts SLG as official stat

$$\mathsf{SLG} \ = \ \frac{1\mathsf{B} + 2\cdot 2\mathsf{B} + 3\cdot 3\mathsf{B} + 4\cdot \mathsf{HR}}{\mathsf{AB}}$$

"The Equation"

 1954: Branch Rickey and Allan Roth publish "The Equation" in Life magazine

$$OBP = \frac{H + BB + HBP}{AB + BB + HBP + SF}$$

The Hidden Game of Baseball

- 1984: John Thorn and Pete Palmer publish The Hidden Game of Baseball
 - (Also in 1984: MLB adopts OBP)
- Introduces "The Linear Weights System"
- Popularizes "On-base Plus Slugging"

$$\mathsf{OPS} \ = \ \frac{\mathsf{H} + \mathsf{BB} + \mathsf{HBP}}{\mathsf{AB} + \mathsf{BB} + \mathsf{HBP} + \mathsf{SF}} \ + \ \frac{\mathsf{1B} + 2 \cdot \mathsf{2B} + 3 \cdot \mathsf{3B} + 4 \cdot \mathsf{HR}}{\mathsf{AB}}$$

A Markov model for an inning of baseball

- Inning state: Which bases are occupied, and how many outs are there? e.g. 0-0-1-2 = runner on third base with 2 outs
 - 25 possibilities $(2 \times 2 \times 2 \times 3 + \text{end of inning})$
- Transition probabilities from 0-0-1-2:

$$\begin{array}{lll} 64\% \to & \text{end of inning} \\ 14\% \to & 1\text{-}0\text{-}0\text{-}2 \ (+1 \ \text{run}) \\ 13\% \to & 1\text{-}0\text{-}1\text{-}2 \\ 5\% \to & 0\text{-}1\text{-}0\text{-}2 \ (+1 \ \text{run}) \\ 3\% \to & 0\text{-}0\text{-}0\text{-}2 \ (+2 \ \text{runs}) \\ 1\% \to & \text{end of inning} \ (+1 \ \text{run}) \\ < 1\% \to & 0\text{-}0\text{-}1\text{-}2 \ (+1 \ \text{run}) \end{array}$$

Transition probability matrix

- $A \in [0,1]^{25 \times 25}$ encodes transition probabilities between states
- A_{ij} is the probability of transitioning to state j from state i
- Multiply A by itself to get multi-step transition probability
 - A² is transition probability matrix after 2 steps
 - A³ is transition probability matrix after 3 steps
 - ..
 - A[∞] gives terminal state probability
 All initial states converge to end of inning

Exercise: How can we use this model to calculate the expected number of runs scored from each initial state?

(My) Solution

- Track runs scored in the inning state! e.g. 0-0-1-2-X = runner on third base with 2 outs, X runs have scored
- Infinite possibilities!
- But can safely ignore X > 9 (very small probability)
 - 250 possibilities (25 from earlier \times 10 values of X)
 - $A \in [0,1]^{250 \times 250}$ encodes transition probabilities
 - A^{20} is close enough to A^{∞}

Run Expectancy by Base-Out State

State	RE	Example #1: Leadoff double
1-1-1-0	2.41	RE(0-1-0-0) - RE(0-0-0-0) = 1.15 - 0.51
0-1-0-0	1.15	= +0.64 runs!
 1-0-0-0	 0.91	Example #2: Bases empty, two-out double
		RE(0-1-0-2) - RE(0-0-0-2) = 0.33 - 0.11
0-0-0-0	0.51	= +0.22 runs!
 0-0-0-1 0-0-0-2 0-0-0-3	0.27 0.11 0.00	Example #3: Bases loaded, no-out double $3 + RE(0\text{-}1\text{-}0\text{-}0) - RE(1\text{-}1\text{-}1\text{-}0) = 3 + 1.15 - 2.41$ $= +1.74 \text{ runs!}$

Average Change in Run Expectancy by Event

Event	Change in RE	<i>vs</i> Out	OPS Weight
Home Run	+1.38	1.65	5
Triple	+1.06	1.33	4
Double	+0.76	1.03	3
Single	+0.46	0.73	2
Hit By Pitch	+0.35	0.62	1
Walk	+0.33	0.60	1
Flyout	-0.27	_	0
Strikeout	-0.27	_	0
${\sf Groundout}$	-0.29	_	0

Takeaway #1

Sport analytics is less *crafting* metrics and more *deriving* them.

Two Perspectives

Player	Start State	Event	End State	RE24	LW
	0-0-0-2	Groundout	End of Inning	-0.11	-0.29
	1-0-0-0	Strikeout	1-0-0-1	-0.38	-0.27
Α	0-1-1-1	Flyout	0-1-0-2 (+1)	-0.07	-0.27
	0-1-1-2	Single	1-0-0-2 (+2)	+1.63	+0.46
			Total	+1.07	-0.37
	0-0-0-2	Single	1-0-0-2	+0.12	+0.46
	1-0-0-0	Groundout	0-0-0-2	-0.81	-0.29
В	0-1-1-1	Strikeout	0-1-1-2	-0.80	-0.27
	0-1-1-2 Flyout		End of Inning	-0.60	-0.27
			Total	-2.09	-0.37

LW vs. RE24

Moneyball, and OBP vs. AVG

Sports Illustrated

- 2003: Michael Lewis publishes Moneyball
- Why was batting average favored over on-base percentage for so long?
- Two criteria: Does it correlate to team success? Is it reliable?
 - Correlation with team success: see previous slides
 - Reliability: Less obvious

OBP vs. AVG

Ball Tracking

- 2006: Sportvision introduces PITCHf/x across MLB
- 2009: Sportvision introduces HITf/x across MLB
 - Based on computer vision
- 2017: TrackMan replaces Sportvision pitch and hit tracking
 - Based on Doppler radar

A Third Perspective

Player	Start State	Event	EV	LA	RE24	LW	\times LW
	0-0-0-2	Groundout	80	-20	-0.11	-0.29	-0.22
	1-0-0-0	Strikeout			-0.38	-0.27	-0.27
Α	0-1-1-1	Flyout	93	32	-0.07	-0.27	-0.10
	0-1-1-2	Single	87	-2	+1.63	+0.46	-0.07
				Total	+1.07	-0.37	-0.66
	0-0-0-2	Single	91	16	+0.12	+0.46	+0.37
	1-0-0-0	Groundout	96	-12	-0.81	-0.29	-0.08
В	0-1-1-1	Strikeout			-0.80	-0.27	-0.27
	0-1-1-2	Flyout	90	24	-0.60	-0.27	-0.08
				Total	-2.09	-0.37	-0.06

xLW vs. LW

Takeaway #2

Reliability is key in sport analytics, and the tradeoff between metrics depends on sample size. (Hint: You can blend them!)

Hawk-Eye Camera System

- 2020: Installed across MLB
- 12 cameras @ 50-100 fps
- Tracking & pose estimation via computer vision
- Same tech used in tennis
- 2023 \rightarrow 300 fps!!

Source: Ben Jedlovec (2020)

Hawk-Eye Bat Tracking

THE SWEETSPOT IS BETWEEN 5 AND 8 INCHES FROM THE HEAD OF THE BAT

2022'S AVERAGE SWING SPEEDS*						
ASTROS	MPH	DODGERS	MPH			
Yordan Alvarez	89.6	Trayce Thompson	91.1			
Jason Castro	84.3	Edwin Rios	85.4			
Kyle Tucker	84.3	Jake Lamb	84.8			
Korey Lee	83.3	Max Muncy	83.8			
Alex Bregman	82.0	Eddy Alvarez	83.4			
Chas McCormick	81.5	Mookie Betts	82.3			
José Siri	81.4	Chris Taylor	80.9			
Martín Maldonado	80.6	Gavin Lux	79.6			
Yuli Gurriel	80.5	Trea Turner	79.5			
Jeremy Peña	80.3	Will Smith	79.0			
José Altuve	78.1	Freddie Freeman	78.7			
Mauricio Dubón	77.6	Kevin Pillar	78.7			
Jake Meyers	76.7	Cody Bellinger	78.4			
Michael Brantley	76.4	Austin Barnes	77.9			
Aledmys Díaz	76.2	Hanser Alberto	77.2			
J.J. Matijevic	74.6	Justin Turner	74.8			
*TRACKING ONLY AVAILABLE IN HOU, LAD. MINIMUM 3 BATTED BALL CONTACTS.						

Ted Williams
The Science of Hitting (1970)
c/o @JWonCATCHING

Source: Mike Petriello (2022)

Takeaways

- 1. Sport analytics is less *crafting* metrics and more *deriving* them.
- 2. Reliability is key in sport analytics, and the tradeoff between metrics depends on sample size. (Hint: You can blend them!)

Recommended Reading

The New York Times

Thank You!