1. Incremental PID controller

The discrete PID controller is defined as follows:

$$u(n) = k_p e(n) + k_i \sum_{k=0}^{n} e(k) + k_d [e(n) - e(n-1)]$$
(1)

In order to switch to the incremental PID controller expression,

$$\Delta u(n) = u(n) - u(n-1) \tag{2}$$

is defined. Plugging in the controller results in,

$$\Delta u(n) = u(n) - u(n-1)$$

$$= k_p e(n) + k_i \sum_{k=0}^{n} e(k) + k_d [e(n) - e(n-1)] - k_p e(n-1)$$

$$- k_i \sum_{k=0}^{n-1} e(k) - k_d [e(n-1) - e(n-2)]$$

$$= k_p e(n) + k_i \sum_{k=0}^{n-1} e(k) + k_i e(n) + k_d e(n) - k_d e(n-1)$$

$$- k_p e(n-1) - k_i \sum_{k=0}^{n-1} e(k-1) - k_d e(n-1) + k_d e(n-2)$$

$$= k_p e(n) - k_p e(n-1) + k_i e(n) + k_d e(n) - 2k_d e(n-1) + k_d e(n-2)$$

$$= k_n [e(n) - e(n-1)] + k_i e(n) + k_d [e(n) - 2e(n-1) + e(n-2)]$$
(3)

2. Fuzzy PI controller

Let the inputs be e(n) and $\Delta e(n)$ and the output be $\Delta u(n)$ defined as error, change in error and change in control signal, respectively.

The membership functions Positive(P) and Negative(N) are defined as

$$\mu_{P}(e) \begin{cases} 0, & e < -L \\ \frac{e+L}{2L}, & -L \le e \le L \\ 1, & e > L \end{cases} \quad \mu_{N}(e) \begin{cases} 1, & e < -L \\ \frac{-e+L}{2L}, & -L \le e \le L \\ 0, & e > L \end{cases}$$
 (4)

Figure 1: Input fuzzy sets: Negative and Positive

and

$$\mu_{P}(\Delta e) \begin{cases} 0, & \Delta e < -L \\ \frac{\Delta e + L}{2L}, & -L \le \Delta e \le L \\ 1, & \Delta e > L \end{cases} \quad \mu_{N}(\Delta e) \begin{cases} 1, & \Delta e < -L \\ \frac{-\Delta e + L}{2L}, & -L \le \Delta e \le L \\ 0, & \Delta e > L \end{cases}$$
 (5)

and depicted in Figure 1. The membership functions are chosen such that,

$$\mu_N(e) + \mu_P(e) = 1 \quad \mu_N(\Delta e) + \mu_P(\Delta e) = 1$$
 (6)

For the output variable the membership function is chosen as

$$\mu_N(\Delta u) \begin{cases} 1, & \Delta u = -H \\ 0, & \Delta u \neq -H \end{cases} \quad \mu_P(\Delta u) \begin{cases} 1, & \Delta u = H \\ 0, & \Delta u \neq H \end{cases} \quad \mu_Z(\Delta u) \begin{cases} 1, & \Delta u = 0 \\ 0, & \Delta u \neq 0 \end{cases}$$
 (7)

and is depicted in Figure 2.

Figure 2: Output fuzzy sets as singleton values at $-H,\ 0,$ and H

The following rule set is constructed.

Table 1: Fuzzy Rule Table: Control Output $\Delta u(n)$ based on Error e(n) and Change of Error $\Delta e(n)$

$e(n) \setminus \Delta e(n)$	N	\mathbf{Z}	P
${f N}$	N	N	Z
${f Z}$	N	Z	Р
P	Z		Р

The rule set is defined as follows:

IF e(n) is N AND $\Delta e(n)$ is N THEN output is Negative

IF e(n) is N AND $\Delta e(n)$ is P THEN output is Zero

IF e(n) is P AND $\Delta e(n)$ is N THEN output is Zero

IF e(n) is P AND $\Delta e(n)$ is P THEN output is Positive

The inference step results in:

$$\mu_N(e)\mu_N(\Delta e)$$
 for output $-H$

$$\mu_N(e)\mu_P(\Delta e)$$
 for output 0

$$\mu_P(e)\mu_N(\Delta e)$$
 for output 0

$$\mu_P(e)\mu_P(\Delta e)$$
 for output H

and hence in,

$$\mu_N(e)\mu_N(\Delta e)$$
 for output $-H$

$$\mu_P(e)\mu_P(\Delta e)$$
 for output H

The defuzzification step gives,

$$\Delta u(n) = \frac{\mu_P(e)\mu_P(\Delta e)H - \mu_N(e)\mu_N(\Delta e)H}{\mu_N(e)\mu_N(\Delta e) + \mu_N(e)\mu_P(\Delta e) + \mu_P(e)\mu_N(\Delta e) + \mu_P(e)\mu_P(\Delta e)}$$
(8)

The denominator is simplified as follows:

$$\mu_{N}(e)\mu_{N}(\Delta e) + \mu_{N}(e)\mu_{P}(\Delta e) + \mu_{P}(e)\mu_{N}(\Delta e) + \mu_{P}(e)\mu_{P}(\Delta e)$$

$$= (1 - \mu_{P}(e))\mu_{N}(\Delta e) + (1 - \mu_{P}(e))\mu_{P}(\Delta e) + \mu_{P}(e)\mu_{N}(\Delta e) + \mu_{P}(e)\mu_{P}(\Delta e)$$

$$= \mu_{N}(\Delta e) - \mu_{P}(e)\mu_{N}(\Delta e) + \mu_{P}(\Delta e) - \mu_{P}(e)\mu_{P}(\Delta e) + \mu_{P}(e)\mu_{N}(\Delta e) + \mu_{P}(e)\mu_{P}(\Delta e)$$

$$= \mu_{N}(\Delta e) + \mu_{P}(\Delta e)$$

$$= \mu_{N}(\Delta e) + \mu_{P}(\Delta e)$$

$$= 1$$

4

(9)

therefore,

$$\Delta u(n) = \mu_{P}(e)\mu_{P}(\Delta e)H - \mu_{N}(e)\mu_{N}(\Delta e)H$$

$$= H \begin{cases} -1, & e < -L \\ \frac{\Delta e + L}{2L} \frac{e + L}{2L} - \frac{-e + L}{2L} \frac{-\Delta e + L}{2L}, & -L \le e \le L \\ 1, & e > L \end{cases}$$

$$= \frac{\Delta e + L}{2L} \frac{e + L}{2L} - \frac{-e + L}{2L} \frac{-\Delta e + L}{2L}$$

$$= \frac{(\Delta e + L)(e + L) - (-e + L)(-\Delta e + L)}{4L^{2}}$$

$$= \frac{\Delta e(e + L) + L(e + L) - (-e)(-\Delta e + L) - L(-\Delta e + L)}{4L^{2}}$$

$$= \frac{e\Delta e + L\Delta e + Le + L^{2} - e\Delta e + Le + L\Delta e - L^{2}}{4L^{2}}$$

$$= \frac{L\Delta e + Le + Le + L\Delta e}{4L^{2}}$$

$$= \frac{L\Delta e + Le + Le + L\Delta e}{4L^{2}}$$

$$= \frac{2L\Delta e + 2Le}{4L^{2}}$$

$$= \frac{\Delta e + e}{2L}$$

$$= \frac{1}{2L}\Delta e + \frac{1}{2L}e$$

$$= \frac{1}{2L}\Delta e + \frac{1}{2L}e$$

$$\Delta u(n) = \begin{cases} -H, & e < -L \\ \frac{H}{2L}\Delta e + \frac{H}{2L}e, & -L \le e \le L \\ H, & e > L \end{cases}$$

$$(10)$$

Since the control signal is a linear combination of Δe and e it is an incremental PI controller.

3. Tables

3.1. Aggressive Tracking

Advantage: Fast response and quick convergence to reference.

Disadvantage: May cause overshoot or oscillation in sensitive systems.

Table 2: Rule Table A: Aggressive Tracking

$e \backslash \Delta e$	N	Z	Р
N	N	N	N
Z	N	Р	Р
P	Р	Р	Р

3.2. Conservative Tracking

Table 3: Rule Table B: Conservative Tracking

$e \backslash \Delta e$	N	Z	Р
N	N	Z	Z
Z	Z	Z	Z
Р	Z	Z	Р

Advantage: Very stable with low overshoot.

Disadvantage: Slow response; possible steady-state error if not tuned well.

3.3. PD-like(Symmetric)

Table 4: Rule Table C: PD-like

$e \backslash \Delta e$	N	Z	Р
N	N	Z	Р
Z	N	Z	Р
Р	N	Z	Р

Advantage: Symmetric, general-purpose behavior; good if derivative effect dominates.

Disadvantage: No integral action \rightarrow steady-state error possible.

4. Piecewise Linear PI/PD controller with Fuzzy PID

Table 5: IC Region Definitions in $(e(n), \Delta e(n))$ Space

Region	e(n)	$\mu_P(e)$	$\mu_N(e)$	$\Delta e(n)$	$\mu_P(\Delta e)$	$\mu_N(\Delta e)$
IC1		$\frac{e+L}{2L}$	$\frac{-e+L}{2L}$	$-L \le \Delta e(n) \le L$	$\frac{\Delta e + L}{2L}$	$\frac{-\Delta e + L}{2L}$
IC2	$-L \le e(n) \le L$	$\frac{e+L}{2L}$	$\frac{-e+L}{2L}$	$0 < \Delta e(n) < L$	$rac{\Delta e + L}{2L}$	$\frac{-\Delta e + L}{2L}$
IC3	-L < e(n) < 0	$\frac{e+L}{2L}$	$\frac{-e+L}{2L}$	$-L \le \Delta e(n) \le L$	$\frac{\Delta e + L}{2L}$	$\frac{-\Delta e + L}{2L}$
IC4	$-L \le e(n) \le L$	$\frac{e+L}{2L}$	$\frac{-e+L}{2L}$	$-L < \Delta e(n) < 0$	$rac{\Delta e + L}{2L}$	$\frac{-\Delta e + L}{2L}$
IC5	e(n) > L	1	0	$-L < \Delta e(n) < 0$	$\frac{\Delta e + L}{2L}$	$\frac{-\Delta e + L}{2L}$
IC6	e(n) > L	1	0	$\Delta e(n) > L$	1	0
IC7	$-L \le e(n) \le L$	$\frac{e+L}{2L}$	$\frac{-e+L}{2L}$	$\Delta e(n) > L$	1	0
IC8	e < -L	0	1	$\Delta e(n) > L$	1	0
IC9	e < -L	0	1	$-L < \Delta e(n) < 0$	$\frac{\Delta e + L}{2L}$	$\frac{-\Delta e + L}{2L}$
IC10	e < -L	0	1	$\Delta e(n) < -L$	0	1
IC11	$-L \le e(n) \le L$	$\frac{e+L}{2L}$	$\frac{-e+L}{2L}$	$\Delta e(n) < -L$	0	1
IC12	e(n) > L	1	0	$\Delta e(n) < -L$	0	1

$$r1 = \min\left(\frac{e+L}{2L} \atop_{0 < e(n) < L}, \frac{\Delta e+L}{2L} \atop_{-L \le \Delta e(n) \le L}\right)$$

$$r1 = \frac{\Delta e+L}{2L} \atop_{-L \le \Delta e(n) \le L}$$

$$r4 = \min\left(\frac{-e+L}{2L} \atop_{0 < e(n) < L}, \frac{-\Delta e+L}{2L} \atop_{-L \le \Delta e(n) \le L}\right)$$

$$r4 = \frac{-e+L}{2L} \atop_{0 < e(n) < L}$$

$$u = Hr_1 - Hr_4$$

$$u = H\frac{\Delta e+L}{2L} - H\frac{-e+L}{2L}$$

$$u = \frac{H\Delta e+HL+He-HL}{2L}$$

$$u = \frac{H\Delta e+HL+He-HL}{2L}$$

$$u = \frac{H}{2L}\Delta e + \frac{H}{2L}e$$

IC2

$$r1 = \min\left(\frac{e+L}{2L}, \frac{\Delta e+L}{2L}, \frac{\Delta e+L}{2L}, \frac{\Delta e+L}{2L}, \frac{\Delta e+L}{2L}, \frac{\Delta e+L}{2L}, \frac{\Delta e+L}{2L}, \frac{-\Delta e+L}{2L}, \frac{-\Delta$$

$$r1 = \min\left(\frac{e+L}{2L}, \frac{\Delta e + L}{2L}\right)$$

$$r1 = \frac{e+L}{2L}$$

$$r4 = \min\left(\frac{-e+L}{2L}, \frac{-\Delta e(n) < 0}{-L \le e(n) < 0}, \frac{-\Delta e + L}{2L}, \frac{-\Delta e + L}{-L \le e(n) \le L}\right)$$

$$r4 = \frac{-\Delta e + L}{2L}$$

$$r1 = \min\left(\frac{e+L}{2L}, \frac{\Delta e+L}{2L}\right)$$

$$r1 = \frac{\Delta e+L}{2L}$$

$$r4 = \min\left(\frac{-e+L}{2L}, \frac{-\Delta e+L}{2L}, \frac{-\Delta e+L}{2L}\right)$$

$$r4 = \frac{-e+L}{2L}$$

IC5

$$r1 = \min\left(1_{e(n)>L}, \frac{\Delta e + L}{2L}\right)$$

$$r1 = \frac{\Delta e + L}{2L}$$

$$r4 = \min\left(0_{e(n)>L}, \frac{-\Delta e + L}{2L}\right)$$

$$r4 = 0$$

$$u = Hr_1 - Hr_4$$

$$u = H\frac{\Delta e + L}{2L}$$

$$u = H\frac{\Delta e + L}{2L}$$

$$u = H\frac{\Delta e}{2L} + H\frac{L}{2L}$$

$$u = \frac{H}{2L}\Delta e + \frac{H}{2}$$

$$(15)$$

$$r1 = \min \left(1_{e(n)>L}, 1_{e(n)>L} \right)$$

$$r1 = 1$$

$$r4 = \min \left(0_{e(n)>L}, 0_{e(n)>L} \right)$$

$$r4 = 0$$

$$u = H$$

$$(16)$$

$$r1 = \min\left(\frac{e+L}{2L}, 1_{e(n)>L}\right)$$

$$r1 = \frac{e+L}{2L}$$

$$r4 = \min\left(\frac{-e+L}{2L}, 0_{e(n)>L}\right)$$

$$r4 = 0$$

$$u = H\frac{e+L}{2L}$$

$$u = \frac{H}{2L}e + \frac{H}{2}$$

$$(17)$$

IC8

$$r1 = \min \left(0_{e < -L}, 1_{e(n) > L}\right)$$

$$r1 = 0$$

$$r4 = \min \left(1_{e < -L}, 0_{e(n) > L}\right)$$

$$r4 = 0$$

$$u = 0$$

$$(18)$$

$$r1 = \min\left(0_{e < -L}, \frac{\Delta e + L}{2L}\right)$$

$$r1 = 0$$

$$r4 = \min\left(1_{e < -L}, \frac{-\Delta e + L}{2L}\right)$$

$$r4 = \frac{-\Delta e + L}{2L}$$

$$r4 = \frac{-L}{2L}$$

$$r4 = \frac{-L}{2$$

$$r1 = \min \left(0_{e < -L}, 0_{\Delta e(n) < -L}\right)$$

$$r1 = 0$$

$$r4 = \min \left(1_{e < -L}, 1_{\Delta e(n) < -L}\right)$$

$$r4 = 1$$

$$u = Hr_1 - Hr_4$$

$$u = -H$$

$$(20)$$

IC11

$$r1 = \min\left(\frac{e+L}{2L}, 0_{\Delta e(n) < -L}\right)$$

$$r1 = 0$$

$$r4 = \min\left(\frac{-e+L}{2L}, 1_{\Delta e(n) < -L}\right)$$

$$r4 = \frac{-e+L}{2L}$$

$$u = \frac{H}{2L}e - \frac{H}{2}$$

$$(21)$$

$$r1 = \min \left(1_{e(n)>L}, 0_{\Delta e(n)<-L} \right)$$

$$r1 = 0$$

$$r4 = \min \left(0_{e(n)>L}, 1_{\Delta e(n)<-L} \right)$$

$$r4 = 0$$

$$u = 0$$

$$(22)$$

5. Gain

If centroid defuzzification is used for IC1

$$r1 = \min\left(\frac{e+L}{2L}, \frac{\Delta e + L}{2L}, \frac{\Delta e +$$

6. Notes

$$\mu_{P}(e) \begin{cases} 0, & e < -L \\ \frac{e+L}{2L}, & -L \le e \le L \\ 1, & e > L \end{cases} \quad \mu_{N}(e) \begin{cases} 1, & e < -L \\ \frac{-e+L}{2L}, & -L \le e \le L \\ 0, & e > L \end{cases}$$
 (24)

and

$$\mu_{P}(\Delta e) \begin{cases} 0, & \Delta e < -L \\ \frac{\Delta e + L}{2L}, & -L \le \Delta e \le L \\ 1, & \Delta e > L \end{cases} \quad \mu_{N}(\Delta e) \begin{cases} 1, & \Delta e < -L \\ \frac{-\Delta e + L}{2L}, & -L \le \Delta e \le L \\ 0, & \Delta e > L \end{cases}$$
 (25)

and depicted in Figure 1. The membership functions are chosen such that,

$$\mu_N(e) + \mu_P(e) = 1 \quad \mu_N(\Delta e) + \mu_P(\Delta e) = 1$$
 (26)

The control input membership is

$$\mu_P(\Delta u) \begin{cases} 1, & \Delta u = H \\ 0, & \Delta u \neq 0 \end{cases} \quad \mu_Z(\Delta u) \begin{cases} 1, & \Delta u = 0 \\ 0, & \Delta u \neq 0 \end{cases} \quad \mu_N(\Delta u) \begin{cases} 1, & \Delta u = -H \\ 0, & \Delta u \neq 0 \end{cases} \quad (27)$$

The rule set is defined as follows:

IF e(n) is N AND $\Delta e(n)$ is N THEN output is Negative

IF e(n) is N AND $\Delta e(n)$ is P THEN output is Zero

IF e(n) is P AND $\Delta e(n)$ is N THEN output is Zero

IF e(n) is P AND $\Delta e(n)$ is P THEN output is Positive

Minimum inference is used.

6.1. IF e(n) is N AND $\Delta e(n)$ is N THEN output is Negative

$$\mu_{NN}(e, \Delta e) \begin{cases} \min(1, 1), & e < -L, \Delta e < -L \\ \min(1, \frac{-\Delta e + L}{2L}), & e < -L, -L \le \Delta e \le L \\ \min(1, 0), & e < -L, \Delta e > L \\ \min(\frac{-e + L}{2L}, 1), & -L \le e \le L, \Delta e < -L \\ \min(\frac{-e + L}{2L}, \frac{-\Delta e + L}{2L}), & -L \le e \le L, -L \le \Delta e \le L \\ \min(\frac{-e + L}{2L}, 0), & -L \le e \le L, \\ \min(0, 1), & e > L, \Delta e < -L \\ \min(0, \frac{-\Delta e + L}{2L}), & e > L, -L \le \Delta e \le L \\ \min(0, 0), & e > L, \Delta e > L \end{cases}$$
(28)

hence,

$$\mu_{NN}(e, \Delta e) \begin{cases} 1, & e < -L, \Delta e < -L \\ \frac{-\Delta e + L}{2L}, & e < -L, -L \le \Delta e \le L \\ 0, & e < -L, \Delta e > L \\ \frac{-e + L}{2L}, & -L \le e \le L, \Delta e < -L \\ \min\left(\frac{-e + L}{2L}, \frac{-\Delta e + L}{2L}\right), & -L \le e \le L, -L \le \Delta e \le L \\ 0, & -L \le e \le L, \Delta e < -L \\ 0, & e > L, \Delta e < -L \\ 0, & e > L, \Delta e > L \end{cases}$$

$$\begin{pmatrix} 0, & e < -L, \Delta e < -L \\ 0, & e > L, \Delta e > L \\ 0, & e > L, \Delta e > L \end{pmatrix}$$

$$\begin{pmatrix} 0, & e < -L, \Delta e < -L \\ \frac{\Delta e + L}{2L}, & e < -L, -L \le \Delta e \le L \\ 1, & e < -L, \Delta e > L \\ 0, & -L \le e \le L, \Delta e < -L \\ \frac{-e + L}{2L}, & -L \le e \le L, -L \le \Delta e \le L \\ 0, & e > L, \Delta e > L \\ 0, & e > L, \Delta e > L \\ 0, & e > L, \Delta e < -L \\ 0, & e > L, \Delta e < L \\ 0, & e < L, \Delta e < L \\ 0, & e < L, \Delta e < L \\ 0, & e < L, \Delta e < L \\ 0, & e < L, \Delta e < L \\ 0, & e < L, \Delta e < L \\ 0, & e < L, \Delta e < L \\ 0, & e < -L, \Delta e < L \\ 0, & e < -L, \Delta e < L \\ 0, & e < -L, \Delta e < L \\ 0, & e < -L, \Delta e < L \\ 0, & e < -L, \Delta e < L \\ 0, & e < -L, \Delta e < L \\ 0, & e < -L, \Delta e < L \\ 0, & e < -L, \Delta e < L \\ 0, & e < -L, \Delta e < L \\ 0, & e < -L, \Delta e < L \\ 0, & e < -L, \Delta e < L \\ 0, & e < -L, \Delta e < L \\ 0, & e < -L, \Delta e < L \\ 0, & e < -L, \Delta e < L \\ 0, & e < -L, \Delta e < L \\ 0, & e < -L, \Delta e < L \\ 0, & e < -L, \Delta e < L \\ 0, & e < -L, \Delta e < L \\ 0, & e < -L, \Delta e < L \\ 0, & e < L, \Delta e < L \\ 0, & e < -L, \Delta e < L \\ 0, & e < L, \Delta e < L \\ 0, & e < L, \Delta e < L \\ 0, & e < L, \Delta e < L \\ 0, & e < L, \Delta e < L \\ 0, & e < L, \Delta e < L \\ 0, & e < L, \Delta e < L \\ 0, & e < L, \Delta e < L \\ 0, & e < L, \Delta e < L \\ 0, & e < L, \Delta e < L \\ 0, & e < L, \Delta e < L \\ 0, & e < L, \Delta e < L \\ 0, & e < L, \Delta e < L \\ 0, & e < L, \Delta e < L \\ 0, & e < L, \Delta e < L \\ 0, & e < L, \Delta e < L \\ 0, & e < L, \Delta e < L \\ 0, & e < L, \Delta e < L \\ 0, & e < L, \Delta e < L \\ 0, & e < L, \Delta e < L \\ 0, & e < L, \Delta e < L \\ 0, & e < L, \Delta e < L \\ 0, & e < L, \Delta e < L \\ 0, & e < L, \Delta e < L \\ 0, & e < L, \Delta e < L \\ 0, & e < L, \Delta e < L \\ 0, & e < L, \Delta e < L \\ 0, & e < L, \Delta e < L \\ 0, & e < L, \Delta e < L \\ 0, & e < L, \Delta e < L \\ 0, & e < L, \Delta e < L \\ 0, & e < L, \Delta e < L \\ 0, & e < L, \Delta e < L \\ 0, & e < L, \Delta e < L \\ 0, & e < L, \Delta e < L \\ 0, & e < L, \Delta e < L \\ 0, & e < L, \Delta e < L \\ 0, & e < L, \Delta e < L \\ 0, &$$

$$\mu_{PP}(e) \begin{cases} 0, & e < -L, \, \Delta e < -L \\ 0, & e < -L, \, -L \le \Delta e \le L \\ 0, & e < -L, \, \Delta e > L \\ 0, & -L \le e \le L, \, \Delta e < -L \\ \min\left(\frac{e+L}{2L}, \frac{\Delta e+L}{2L}\right), & -L \le e \le L, \, -L \le \Delta e \le L \\ \frac{e+L}{2L}, & -L \le e \le L, \, \Delta e > L \\ 0, & e > L, \, \Delta e < -L \\ \frac{\Delta e+L}{2L}, & e > L, \, -L \le \Delta e \le L \\ 1, & e > L, \, \Delta e > L \end{cases}$$

$$(32)$$

The aggregated output is given as

$$\Delta u = \frac{\mu_{PP}H - \mu_{NN}H}{\mu_{NN} + \mu_{NP} + \mu_{PN} + \mu_{PP}}$$
 (33)

Hence,

$$\Delta u \begin{cases}
-H, & e < -L, \Delta e < -L \\
\frac{H}{2L}\Delta e - \frac{H}{2}, & e < -L, -L \le \Delta e \le L \\
0, & e < -L, \Delta e > L \\
\frac{H}{2L}e - \frac{H}{2}, & -L \le e \le L, \Delta e < -L \\
, & -L \le e \le L, -L \le \Delta e \le L \\
\frac{H}{2L}e + \frac{H}{2}, & -L \le e \le L, \Delta e > L \\
0, & e > L, \Delta e < -L \\
\frac{H}{2L}\Delta e + \frac{H}{2}, & e > L, -L \le \Delta e \le L \\
H, & e > L, \Delta e > L
\end{cases} \tag{34}$$

The case $-L \le e \le L$, $-L \le \Delta e \le L$ is divided into,

$$-L \le e \le L, -L \le \Delta e \le 0$$

$$-L \le e \le L, 0 \le \Delta e \le L$$

$$-L \le e \le 0, -L \le \Delta e \le L$$

$$0 \le e \le L, -L \le \Delta e \le L$$

$$(35)$$

and hence,

$$\mu_{NP}(e, \Delta e) \begin{cases} \frac{\Delta e + L}{2L} & -L \le e \le L, -L \le \Delta e \le 0\\ \frac{-e + L}{2L} & -L \le e \le L, 0 \le \Delta e \le L\\ \frac{\Delta e + L}{2L} & -L \le e \le 0, -L \le \Delta e \le L\\ \frac{-e + L}{2L} & 0 \le e \le L, -L \le \Delta e \le L \end{cases}$$

$$(36)$$

$$\mu_{PN}(e, \Delta e) \begin{cases} \frac{e+L}{2L} & -L \le e \le L, -L \le \Delta e \le 0\\ \frac{-\Delta e+L}{2L} & -L \le e \le L, 0 \le \Delta e \le L\\ \frac{e+L}{2L} & -L \le e \le 0, -L \le \Delta e \le L\\ \frac{-\Delta e+L}{2L} & 0 \le e \le L, -L \le \Delta e \le L \end{cases}$$
(37)

$$\mu_{PP}(e, \Delta e) \begin{cases} \frac{\Delta e + L}{2L} & -L \le e \le L, -L \le \Delta e \le 0\\ \frac{e + L}{2L} & -L \le e \le L, 0 \le \Delta e \le L\\ \frac{e + L}{2L} & -L \le e \le 0, -L \le \Delta e \le L\\ \frac{\Delta e + L}{2L} & 0 \le e \le L, -L \le \Delta e \le L \end{cases}$$

$$(38)$$

$$\mu_{NN}(e, \Delta e) \begin{cases} \frac{-e+L}{2L} & -L \le e \le L, -L \le \Delta e \le 0\\ \frac{-\Delta e+L}{2L} & -L \le e \le L, 0 \le \Delta e \le L\\ \frac{-\Delta e+L}{2L} & -L \le e \le 0, -L \le \Delta e \le L\\ \frac{-e+L}{2L} & 0 \le e \le L, -L \le \Delta e \le L \end{cases}$$
(39)

$$\Delta u = H \begin{cases} \frac{\Delta e + e}{2\Delta e + 4L} & -L \le e \le L, -L \le \Delta e \le 0\\ \frac{e + \Delta e}{-2\Delta e + 4L} & -L \le e \le L, 0 \le \Delta e \le L\\ \frac{e + \Delta e}{2e + 4L} & -L \le e \le 0, -L \le \Delta e \le L\\ \frac{\Delta e + e}{-2e + 4L} & 0 \le e \le L, -L \le \Delta e \le L \end{cases}$$

$$(40)$$

and finally,

$$\Delta u \begin{cases} -H, & e < -L, \Delta e < -L \\ \frac{H}{2L}\Delta e - \frac{H}{2}, & e < -L, -L \le \Delta e \le L \\ 0, & e < -L, \Delta e > L \\ \frac{H}{2L}e - \frac{H}{2}, & -L \le e \le L, \Delta e < -L \\ H \frac{\Delta e + e}{2\Delta e + 4L} & -L \le e \le L, -L \le \Delta e \le 0 \\ H \frac{e + \Delta e}{-2\Delta e + 4L} & -L \le e \le L, 0 \le \Delta e \le L \\ H \frac{e + \Delta e}{2e + 4L} & -L \le e \le 0, -L \le \Delta e \le L \\ H \frac{\Delta e + e}{2e + 4L} & 0 \le e \le L, -L \le \Delta e \le L \\ \frac{H}{2L}e + \frac{H}{2}, & -L \le e \le L, \Delta e > L \\ 0, & e > L, \Delta e < -L \\ \frac{H}{2L}\Delta e + \frac{H}{2}, & e > L, -L \le \Delta e \le L \\ H, & e > L, \Delta e > L \end{cases}$$

$$(41)$$

Therefore,

$$\Delta u \begin{cases} \frac{H}{2\Delta e + 4L} \Delta e + \frac{H}{2\Delta e + 4L} e & -L \le e \le L, -L \le \Delta e \le 0\\ \frac{H}{-2\Delta e + 4L} \Delta e + \frac{H}{-2\Delta e + 4L} e & -L \le e \le L, 0 \le \Delta e \le L\\ \frac{H}{2e + 4L} \Delta e + \frac{H}{2e + 4L} e & -L \le e \le 0, -L \le \Delta e \le L\\ \frac{H}{-2e + 4L} \Delta e + \frac{H}{-2e + 4L} e & 0 \le e \le L, -L \le \Delta e \le L \end{cases}$$

$$(42)$$