Q 输入搜索文本...

如何安装 MegEngine

用户迁移指南

常见问题汇总

模型开发 (基础篇)

深入理解 Tensor 数据结构

Rank, Axes 与 Shape 属性

Tensor 元素索引

Tensor 数据类型

Tensor 所在设备

Tensor 具象化举例

Tensor 内存布局

使用 Functional 操作与计算

使用 Data 构建输入 Pipeline

使用 Module 定义模型结构

Autodiff 基本原理与使用

使用 Optimizer 优化参数

保存与加载模型 (S&L)

使用 Hub 发布和加载预训练模型

模型开发 (进阶篇)

<u> 通过重计算节省显存 (Recomputation)</u>

分布式训练(Distributed Training)

量化 (Quantization)

自动混合精度 (AMP)

<u>模型性能数据生成与分析(Profiler)</u>

使用 TracedModule 发版

即时编译 (JIT)

推理部署篇

模型部署总览与流程建议

使用 MegEngine Lite 部署模型

MegEngine Lite 使用接口

使用 MegEngine Lite 部署模型讲阶

使用 Load and run 测试与验证模型

工具与插件篇

参数和计算量统计与可视化

MegEngine 模型可视化

RuntimeOpr 使用说明

自定义算子 (Custom Op)

深入理解 Tensor 数据结构

MegEngine 中提供了一种名为"张量"(<u>Tensor</u>)的数据结构, 区别于数学中的定义,其概念与 <u>NumPy</u> 中的 <u>ndarray</u> 更加相似, 即张量是一类同构多维数组,其中每个元素占用相同大小的内存块,并且所有块都以完全相同的方式解释。 如何解释 Tensor 中的元素由其 <u>数据类型</u> 决定,而每种数据类型都代表一类 Tensor.

- 我们可以基于 Tensor 数据结构,进行各式各样的科学计算;
- Tensor 也是神经网络编程时所用的主要数据结构,网络的输入、输出和转换都使用 Tensor 表示。

① 注解

与 NumPy 的区别之处在于,MegEngine 还支持利用 GPU 设备进行更加高效的计算。 当 GPU 和 CPU 设备都可用时,MegEngine 将优先使用 GPU 作为默认计算设备,无需用户进行手动设定。

- 如果有查看/改变默认计算设备的需求,请参考 Tensor 所在设备 中的说明。
- 通过 Tensor.to 和 functional.copy 可将 Tensor 拷贝到指定设备。

🕕 参见

如果你还不清楚如何获得一个 Tensor, 请参考 如何创建一个 Tensor。

概念(术语)使用上的区分

我们所提到的 Tensor 的概念往往是其它更具体概念的概括(或者说推广),下面有一些例子:

数学	计算机科学	抽象概念	具象化例子
标量 (scalar)	数字 (number)	点	得分、概率
向量 (vector)	数组 (array)	线	列表
矩阵 (matrix)	2 维数组(2d-array)	面	Excel 表格

不同的研究领域对同一个概念使用不同的术语进行描述,这很常见,对这些概念不清晰的话很容易产生疑惑。

Python 中提供了 <u>array</u> 的官方实现, 但其使用方法和我们提到的 NumPy 数组有所不同,因此我们可以用 Python (嵌套)列表 <u>list</u> 来 类比举例。 在后续的页面,我们会慢慢地过渡到 Tensor 的实际使用和操作中。

注意:为了方便理解,我们这里假设此处 Python 列表中的数据类型是一致的,比如都是 Number 类型。

① 注解

在深度学习领域,我们通常将上述这些概念统称为张量 (Tensor) 。

访问 Tensor 中某个元素

对于数字(或者说标量) Tensor, 显然我们可以直接得到其值,因为它只有一个元素。

```
>>> a = 20200325
>>> a
20200325
```

其它情况下,想要在 Tensor 中获得某个元素,需要提供对应位置的整数索引(Index),并使用下标运算符 []:

- 注意: Tensor 的索引是基于零 (Zero-based) 开始计数的,和 Python 列表 / NumPy 多维数组一致;
- 比如我们想要获取向量/数组 a = [0, 1, 2, 3, 4] 中的第 3 个元素, 我们需要使用 a[2];
- 又比如我们想要获取下面这个 2d-数组 b 中值为 6 的元素,则需要使用 b[1][2];

```
>>> b = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
>>> b[1]
[4, 5, 6]
>>> b[1][2]
6
```

我们可以理解成先访问 b[1], 再将 b[1] 看成单独的一部分, 去访问 b[1] 中索引为 2 的元素。

二维情况可以类比成我们在矩阵 M 中按照先行后列的顺序去获取元素——

$$M = egin{bmatrix} 1 & 2 & 3 \ 4 & 5 & 6 \ 7 & 8 & 9 \end{bmatrix} \quad M_{(1,2)} = 6$$

在更高维度的情况下,再用专门的"标量","向量","矩阵"…术语去定义结构是很不现实的。

- 因此在数学中提供了n维张量的概念,对应地,NumPy中提供了n维数组;
- n 维张量和 n 维数组中的 n 则表明从中获取元素需要提供 n 个索引值。

数学	计算机科学	获取值所需标量索引数量
标量 (scalar)	数字 (number)	0
向量 (vector)	数组 (array)	1
矩阵 (matrix)	2 维数组(2d-array)	2
n 维张量(nd-tensor)	n 维数组(nd-array)	n

现在我们已经可以忘掉上面这些术语,统一用 n 来确定 Tensor 维度的数量。

因此我们可以这样理解:

- 一个标量是一个 0 维 Tensor;
- 一个向量是一个 1 维 Tensor;
- 一个矩阵是一个 2 维 Tensor;
- 一个 n 维数组是一个 n 维 Tensor.

而在访问 n 维 Tensor (假定为 T)的特定某个元素时,可以使用如下语法:

 $T_{[i1][i2]\dots[in]}$

即我们要提供 i_1, i_2, \ldots, i_n n 个索引值,每次索引降低一个维度,最终得到 0 维数字(标量)。

比如我们得知要找的某个人住在某小区的 23 号楼 3 单元 902 室,因此我们需要访问 court [23] [3] [9] [2];

6 参见

实际上,对于 Tensor 和多维数组,有着更加高效的索引方法,可参考 在多个维度进行索引 的用法。

1 注解

深度学习领域的 Tensor 其实就是一个多维数组 (N 维数组)。

使用切片获取部分元素

前面我们展示了如何访问单个的元素,另一种比较常见的情况是需要对部分元素进行访问。

与 Python 一致,我们可以使用切片(Slicing)操作符来访问和修改 Tensor 对象中的部分元素:

```
>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> a[2:8:2]
[2, 4, 6]
```

观察上面的例子,我们通过:符号进行了切片操作,语法为 start:stop:step, 对应起始索引、终止索引和步长。 这种写法实际上在背后为我们生成了一个切片对象 slice(start:stop:step), 二者是等价的:

```
>>> myslice = slice(2, 8, 2)
>>> a[myslice]
[2, 4, 6]
```

① 注解

- start, stop, step 也可以是负数,意味着索引变化顺序与默认情况相反。
- start 和 stop 索引区间是左闭右开的 [start, stop) 形式,即 a[stop] 本身不在切片范围之内。
- 这个设计其实与基于零的索引方式对应,该设计的好处有很多: 当只有最后一个位置信息时,我们也可以快速计算出切片和区间内有几个元素; 同理使用 stop 减去 start 可以快速计算出切片和区间的长度,不容易混淆; 与此同时,我们可以用 a[:i] 和 a[i:] 获得原始数据分割后不重叠的两部分。

€ 参见

计算机科学家,Edsger W. Dijkstra 教授在《<u>Why numbering should start at zero</u> 》 中的内容为基于 0 的下标以及左闭右开的 区间习惯进行了很好的解释。

另外, 切片语法中的部分元素可以被省略:

- 如果下标运算符中没有任何冒号运算符如 a[i],则返回与该索引位置对应的单个元素;
- 如果下标运算符中只有一个冒号运算符,则需要根据不同的写法进行判断:
 - 。 如果为 a[start:], 则表明从 start 位置往后的所有项都被提取;
 - 。 如果为 a[:stop], 则表明从 stop 位置往前的所有项都被提取;

- 。 如果为 a[start:stop], 则表明从 start 到 stop 的所有项将被提取;
- 如果没有指定 step, 则默认提取切片范围内的所有项目。

多维数组也支持使用切片语法:

```
>>> b = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
>>> b[0:2]
[[1, 2, 3], [4, 5, 6]]
```

此时可以将其当作是一个一维数组去理解,里面的每个元素又是一维数组:

```
>>> a1 = [1, 2, 3]
>>> a2 = [4, 5, 6]
>>> a3 = [7, 8, 9]
>>> b = [a1, a2, a3]
>>> b[0:2]
[[1, 2, 3], [4, 5, 6]]
>>> [a1, a2]
[[1, 2, 3], [4, 5, 6]]
```

我们这里仅仅对最外面这一层进行了索引,在 Tensor 元素索引 中会讲解更复杂的情况。

6 参见

使用切片索引可以从 Tensor 中访问部分元素,但有些时候我们希望获得的部分元素是不连续的, 而是几个特定位置元素的组 合,此时可以使用数组索引。

接下来: Tensor 基础属性

通过本小节的内容,用户能够掌握最基本的 Tensor 概念。

为了方便初学者学习和过渡,在上面的代码示例中,我们一直在使用 Python 的 list 来举例, 以表明 MegEngine Tensor 数据结构与 Python 嵌套列表设计的一致性,但实际上二者还是存在着一定的区别。

我们再举一些例子,请你尝试猜测一下输出:

```
Python nested list
 >>> c = [[1, 2, 3],
 >>> [4, 5, 6],
>>> [7, 8, 9]]
 >>> c[1, 1]
```

```
MegEngine 2-d Tensor
 >>> c = Tensor([[1, 2, 3],
>>> [4, 5, 6],
>>> [7, 8, 911
                 [7, 8, 9]])
 >>> c[1, 1]
```

Python 嵌套列表并不支持这种语法,你能猜测出在[]运算符中使用,的作用吗?

假设我们现在需要从下面这个 2 维 Tensor 中取出蓝色部分的元素,又需要如何做呢? (<u>解释</u>)

$$M = egin{bmatrix} 1 & 2 & 3 \ 4 & 5 & 6 \ 7 & 8 & 9 \end{bmatrix} \quad M_{(?,?)} = (4 \ 5)$$

想要解答这些问题,你必须先理解 Tensor 的 Rank, Axes 与 Shape 属性 等有关概念, 更好地理解 Tensor 所具备的一些特点,接着从 Tensor 元素索引 的内容中找到答案。

🕕 参见

Tensor 数据类型

我们提到了 Tensor 中的每个元素的数据类型一致,如果你想要知道具体有哪些数据类型的 Tensor, 请参考 Tensor 数据类 型。

Tensor 所在设备

能够利用 GPU 设备进行高效运算是 MegEngine 相较于 NumPy 的优势,想要了解不同设备之间的区别, 请参考 Tensor 所在设备。

Tensor 具象化举例

如果你目前对于 Tensor 的概念不够直观,可以参考 Tensor 具象化举例。

Tensor 内存布局

一些有经验的开发者喜欢研究底层的细节,可以参考 Tensor 内存布局。

① Python 数据 API 标准联盟协会

MegEngine 中的许多 Tensor 标准 API 设计遵循了 Python 数据 API 标准联盟协会的倡导, 一些常见的实现尽可能地向 NumPy 靠近,更多细节可以参考 Consortium for Python Data API Standards.

上一页 模型复现常见问题