CO370, Winter 2022, Test #1 Solutions

Q1. Variables: X1 = # Units of Process 1 x2 = # Units of Process 2

> Net revenue: Process 1: 4 × 130 + 3 × 110 - 90 = \$760 Process 2: 3 × 130 + 4 × 110 - 80 = \$750

LP model: Max 760 x1 + 750 X2 St 3x1 + 5x2 & 16,000,000 (supply of Oil A) 5x1 + 3x2 & 10,000,000 (supply of Oil B) x120, x220

Common error: Attempting to model the problem in terms
of the input oil to each process, rather than the
of units of the process. This makes it difficult
to avoid infeasible solutions, such as using the
same oil for both processes or to running a
process with too much oil A and not enough
oil B.

Q2 Let t= 1/(2x,+x2) Note that SINCE X, 21 we know 2x1+x2 ≥ 1, Using +, the objective becomes 3x1+6x2++4x3t. We cannot Multiply variables, so we make the Substitution W= X1+, W= X2+, W3=X2+ => X121 => W121 => W12t => W1-t20 => 4x1+2x2-x3=8 => 4w1+2w2-w3-8+=0 To enforce the substitution t=1/(2x1+x2) we need 2x1+ x2t=1 = 2W1+W2=1 LP model; Max 3W1+6W2+4W3 S.T. W1-+ 20 4W, +2W2 - W3-8t=0 $2w_1 + w_2 = 1$ W120, W220 Common error. Not including 2 Wy+ Wz=1 as a constraint. This is needed to enfance the relationship between t and X1, X2.

Os. In an SVM, we want to Fond a separating line

G, \(\bar{x}_1 + a_2 \overline = b\), where the "Accept" point

have $a_1 \overline{x}_1 \omega_2 \overline{x}_2 \overline{b}$ and the "Reject' point

Nave $a_1 \overline{x}_1 \omega_2 \overline{x}_2 \overline{b}$.

LP Model: Max δ St. $\delta \leq \xi_1$ j=1,...,6 $\xi_1 = a_1 \cdot 1 + a_2 \cdot 2 - b$ $\xi_4 = a_1 \cdot 2 + a_2 \cdot 4 - b$ $\xi_6 = a_1 \cdot 4 + a_2 \cdot 4 - b$ $\xi_7 = -(a_1 \cdot 4 + a_2 \cdot 2 - b)$ $\xi_7 = -(a_1 \cdot 4 + a_2 \cdot 2 - b)$ $\xi_7 = -(a_1 \cdot 3 + a_2 \cdot 2 - b)$ $\xi_7 = -(a_1 \cdot 1 + a_2 \cdot 1 - b)$

-1 = a₁ = 1 } scale a₁, a₂
-1 = a₂ = 1 }

The varcables are a, and b

Componerrors; Setting be equal to 0 or 1 rather

than a variable, Optomizing the sum of 2; rather

than maximizing the min value. Having different
an +an variable for each data point. Modeling

L1-regression rather than an SVM. Writing general

form and not creating the model for the example.

C4. A)
$$\bar{X}_{B} = B^{-1}b = \begin{bmatrix} 0 & 1 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 7 \\ 11 \end{bmatrix} = \begin{bmatrix} 11 \\ 26 \end{bmatrix} \ge 0$$

$$CN^{-1} - C_{B}^{-1}B^{-1}A_{D} = [-1 - 2] - [-7 2] \begin{bmatrix} 0 & 1 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 4 & -1 \\ 0 & 5 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 \end{bmatrix} \ge 6$$

B) $U_{B}^{-1} = C_{B}^{-1}B^{-1} = [-7 2] \begin{bmatrix} 0 & 1 \\ -1 & 3 \end{bmatrix} = [-2 - 1]$

C) X_{3} is a non-basic variable, so C_{2} does not change Need to compute the reduced cost C_{3} of X_{2} .

(This was dreads done in part A.)

$$\bar{C}_{3} = C_{3} - C_{B}^{-1}B^{-1}A_{3} = \mathcal{M}_{2} 1,$$

$$\bar{C}_{3} = C_{3} - C_{B}^{-1}B^{-1}A_{3} = \mathcal{M}_{2} 1,$$

$$\bar{C}_{3} = B^{-1}b = \begin{bmatrix} 0 & 1 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 7 + A \\ 11 \end{bmatrix} = \begin{bmatrix} 11 \\ 26 - A \end{bmatrix} \ge 8$$

d) Need to keep prend feasibility.
$$\bar{x}_B = IB^{-1}b = \begin{bmatrix} 0.17 \begin{bmatrix} 7+\Delta \end{bmatrix} = \begin{bmatrix} 11 \\ 26-\Delta \end{bmatrix} \ge 0$$

Common errors: Wroton the objective value in (B), rather than the dead solution. Changing Cig in part (c). Noe checking primal feasibility to part (A)