Aula 2 - Arquitetura de Computadores

Paulino

20-02-2020

Classificação dos Computadores (segundo Luiz Sérgio)

- Caracterização da Operação
- ▶ Tamanho
- ► Caracterização da construção

Caracterização da Operação

- Analógico: os sinais são contínuos (na intensidade e no tempo) Computador analógico???
- ▶ Digital: os sinais são discretos. Nos valores (0 ou 1) e no tempo (mudam seguindo uma cadência ditada por um relógio)

Sinais analógicos

Figure 1: Sinais: A - Constante; B - Senoidal; C - Quadrada; D - Decaimento exponencial; E - Degrau; F - Triangular

Sinal Digital

 Muda em instantes bem definidos e só tem uma quantidade finita de valores de intensidade

Figure 2: Sinal digital

Sinais Digitais (comunicação)

Figure 3: Sinais Digitais

Fonte: https://learn.sparkfun.com

Computador Digital

- lacktriangle Os dados recebem uma *representação digital* o *código*
- Os dados podem se mover entre os diferentes componentes do computador, através do sistema de comunicação (barramentos)
- Dados numéricos podem sofrer operações/transformações
- Dados podem ser convertidos de uma representação para uma outra

Tamanho do computador

- ► Mainframes (Computadores de Grande Porte)
- Supercomputadores
- Minicomputadores
- Microcomputadores
- ► Tablets
- Celulares

Construção

- Relé-Válvula
- ▶ Transistor
- CI SSI, MSI, LSI
- ► VLSI, ULSI
- Outros: biocomputadores, computadores quânticos, computadores óticos, . . .

Circuitos Lógicos

- Componente básico em circuitos digitais: comutador
- Tecnologias para comutadores: ...
- ► Chave Eletrônica: 2 estados: ON/OFF
- ► Estado das linhas: 0/1 correspondência:
 - O: tensão baixa (0V), corrente alta (1mA), tensão alta (5V), frequência alta, defasagem de 45°, . . .
 - 1: tensão alta (5V), corrente baixa (20μA), tensão baixa (1V), frequência baixa, defasagem de 90°, ...
- Circuitos lógicos não consideram a tecnologia dos comutadores, nem os valores dos sinais físicos. O importante são os valores lógicos: 0/1, ou F/V.

Componentes Lógicos (Blocos funcionais)

- Álgebra Booleana
- Portas lógicas executam funções lógicas
- Os dispositivos digitais são construídos com estas portas lógicas
- ▶ Portas básicas: Inversora (NOT), E (AND) e OU (OR)

Porta Inversora

Figure 4: Porta Inversora

Tabela Verdade da Porta Inversora

$$O = I'$$

Porta E (AND)

Figure 5: Porta AND

Tabela Verdade da Porta E

<u> </u>	12	0
0	0	0
0	1	0
1	0	0
1	1	1

$$O = I_1 \cdot I_2$$

Porta OU (OR)

Figure 6: Porta OR

Tabela Verdade da Porta OU

l1	12	0
0	0	0
0	1	1
1	0	1
1	1	1

$$O=I_1+I_2$$

Exemplo de uso de portas lógicas

▶ Deseja-se um circuito lógico que tenha saída (O) 1 se e apenas se (sse, ou see), as duas entradas (I1 e I2) forem iguais.

Solução

$$O = I_1' \cdot I_2' + I_1 \cdot I_2$$

Figure 7: Circuito da igualdade

Exercícios

- 1. Qual a expressão lógica para um circuito de desigualdade?
- 2. Forneça o diagrama de portas lógicas para o circuito de desigualdade.

Somador (half adder)

Tabela Verdade para Somar 2 Bits

l1	12	S
0	0	0
0	1	1
1	0	1
1	1	?

Meio Somador

Tabela Verdade para Somar 2 Bits

l1	12	S	Co
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$S = I'_1 \cdot I_2 + I_1 \cdot I'_2 = I_1 \oplus I_2$$

 $C_O = I_1 \cdot I_2$

Somador completo (full adder)

$$S = C'_{I} \cdot I'_{1} \cdot I_{2} + C'_{I} \cdot I_{1} \cdot I'_{2} + C_{I} \cdot I'_{1} \cdot I'_{2} + C_{I} \cdot I_{1} \cdot I_{2} = C_{I} \oplus I_{1} \oplus I_{2}$$

$$C_{O} = C'_{I} \cdot I_{1} \cdot I_{2} + C_{I} \cdot I_{1} \cdot I'_{2} + C_{I} \cdot I'_{1} \cdot I_{2} + C_{I} \cdot I_{1} \cdot I_{2}$$

Tabela Verdade do FA

_				
C_I	l1	12	S	۲,
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Tabela Verdade do FA

C_I	l1	12	S	C_O
)	0	0	0	0
)	0	1	1	0
)	1	0	1	0
)	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Circuito do somador completo

Somador de 4 Bits

Figure 10: Somador de 4 bits usando FAs

Outras portas lógicas básicas

- NOR: $S = (I_1 + I_2)' = I'_1 \cdot I'_2$
- ► NAND: $S = (I_1 \cdot I_2)' = I'_1 + I'_2$
- ▶ XOR (OU-EXclusivo): $S = I'_1 \cdot I_2 + I_1 \cdot I_2 = I_1 \oplus I'_2$
- Not-XOR: $S = I'_1 \cdot I'_2 + I_1 \cdot I_2 = (I_1 \oplus I_2)'$
- Portas AND, OR, NAND e NOR com mais entradas

Figure 11: Portas NAND, NOR e XOR