ЛАБОРАТОРНАЯ РАБОТА №8

ИССЛЕДОВАНИЕ КОЛЕБАНИЙ НАТЯНУТОЙ СТРУНЫ

Поляков Даниил, Б07-Ф3

Цель работы: исследовать колебания закрепленной струны, определить зависимость частоты колебаний от длины струны и от силы её натяжения.

Схема установки и оборудование:

- 1) Монохорд;
- 2) Динамометр;
- 3) Sensor-CASSY 2;
- 4) Оптический барьерный датчик;
- 5) Многожильный кабель, длиной 1.5 м;
- 6) V-образный штатив;
- 7) Переносная подставка для изменения длины исследуемой части струны.

Расчётные формулы:

• Частота колебаний струны:

$$f=rac{c}{2s}$$
 $\qquad \qquad \qquad c$ — скорость волны; s — длина струны.

• Частота колебаний струны (через силу натяжения):

$$f = \frac{1}{2s} \sqrt{\frac{F}{A\rho}} \hspace{1.5cm} \begin{array}{c} s -$$
 длина струны;
$$F -$$
 сила натяжения;
$$A -$$
 площадь сечения струны;
$$\rho -$$
 погонная плотность струны.

Метод измерения

- 1. Исследуем зависимость частоты колебаний струны f от её длины s при постоянной силе натяжения F. Натянем струну до определённой силы F. Установим оптический датчик около середины струны так, чтобы его светодиод погас. Запустим измерения в программе CASSY Lab, отклоним струну и запишем период колебаний, установившийся ненадолго после отклонения. Через некоторое время период колебаний, снимаемый датчиком, резко становится в два раза большим, что связано с уменьшением амплитуды колебаний струны (струна не пересекает датчик полностью до смены направления). Нас интересует период, зафиксированный до данного скачка.
 - Теперь воспользуемся подставкой для уменьшения рабочей части струны и измерим период колебаний при различных s.
- 2. Исследуем зависимость частоты колебаний струны f от её силы натяжения F при её полной длине, равной 1.2 м. Таким же образом будем измерять период колебаний струны, изменяя силу натяжения F.

Таблицы и обработка данных

Коэффициенты наклона графиков (и их погрешности) каждой прямой зависимости найдём по методу наименьших квадратов.

Зависимость частоты колебаний струны от её длины исследовалась при постоянной силе натяжения $F = 60\pm1~H$ (цена деления динамометра равна 2~H, погрешность взята как половина цены деления).

Зависимость частоты колебаний струны от силы натяжения исследовалась при её полной длине s = 1.2 м.

1. Исследование зависимости частоты колебаний струны от её длины

S, M	S^{-1}, M^{-1}	Т, с	<i>f</i> , Гц
1.20	0.83	0.013	77
1.07	0.93	0.011	91
0.96	1.04	0.010	100
0.90	1.11	0.009	111
0.80	1.25	0.008	125
0.72	1.39	0.008	125
0.64	1.56	0.007	143
0.60	1.67	0.006	167
0.40	2.50	0.004	250

Так как зависимость f(s) выражается формулой $f = \frac{c}{2s}$, рассмотрим линеаризованную зависимость $f(s^{-1})$:

Зависимость получилась линейной. 6-я и 7-я точки выпадают из прямой, что связано с недостаточной точностью измерения периода в данных точках (только до одного знака).

По тангенсу угла наклона графика определим скорость волны с:

$$\alpha = 101 \pm 4 \frac{\Gamma_{\text{H}}}{\text{M}^{-1}}$$

$$f = \alpha \cdot s^{-1} = \frac{c}{2s} \Rightarrow \alpha = \frac{c}{2} \Rightarrow c = 2\alpha$$

$$c = 202 \pm 8 \frac{\text{M}}{c}$$

2. Исследование зависимости частоты колебаний струны от силы натяжения

<i>F</i> , H	Т, с	<i>f</i> , Гц	<i>f</i> ² , Гц ²
90	0.011	91	8260
80	0.013	77	5920
70	0.013	77	5920
60	0.015	67	4440
50	0.016	63	3910
40	0.019	53	2770

Зависимость получилась линейной. Неровность точек обусловлена низкой точностью измерения периода колебаний.

Выводы

Частота колебаний струны обратно зависит от её длины и пропорциональна корню из силы натяжения.