Overview of Machine Learning

AI, Machine Learning & Deep Learning

Artificial intelligence

Computer technologies to simulate human intelligence.

Machine Learning

[broader]

Subset of AI techniques used to make predictions by **learning from data** and **improving from experience**.

Learning process -> Finding functions.

[narrower]

Classical statistical learning algorithms

(regression, clustering, SVM, random forests ...)

Deep Learning

Subset of ML.

Neural network based learning algorithms

Artificial Intelligence

Machine Learning

Deep Learning

Types of Machine Learning

Supervised Learning

- Learning a function that maps an input to an output based on labeled data
- Goal : make predictions with high accuracy
- Applications : regression, classification
- Example algorithms: Linear / Logistic regression Image classification networks
- Challenges : labeled data is expensive

Unsupervised Learning

- Learning patterns / structures from unlabeled data
- Goal : identify interesting patterns in the data
- Applications : clustering, association
- Example algorithms : PCA AutoEncoder
- Challenges: evaluating whether the algorithm is learning something useful

Types of Machine Learning

Reinforcement Learning

- Learning by trail and error
- Goal : maximizing the reward
- Example algorithms: AlphaZero (trained entirely from self-play)

Self-Supervised Learning

Machine learns to predict part of the input from any other part.

- Learning patterns by better utilizing unlabeled data.
- Goal: Learn intermediate representations with good structural meanings and can be beneficial to a variety of practical downstream tasks.
- "Most of what we learn as humans is in a self-supervised mode, not a reinforcement mode.
 It's basically observing the world and interacting with it a little bit, mostly by observation in a test-independent way." Yann LeCun

Classical Machine Learning Methods

Linear Regression

Logistic Regression

logistic function

$$\hat{y} = p(y=1 \mid x) \approx \frac{1}{1 + e^{-(w_0 + w_1 x)}}$$

$$log(\frac{\text{prob. of classfying to 1}}{\text{prob. of classifying to 0}}) = \log(\frac{p(y=1|x)}{p(y=0|x)})$$

$$= \log(\frac{\hat{y}}{1-\hat{y}}) = w_0 + w_1 x$$

Classical Machine Learning Methods

Linear Regression

Logistic Regression

High Dimensional feature space

$$\hat{y} \approx w_0 + \Sigma_i w_i x_i$$

$$\hat{y} \approx \frac{1}{1 + e^{-(w_0 + \Sigma_i w_i x_i)}}$$

Fundamental Plane of galaxies

Active galaxy? y = 1: active galaxy y = 0: quiescent galaxy

stellar mass emission line intensity black hole mass color

• •

Neural Network — Single Neuron

activation functions

sigmoid : $\sigma(z) = \frac{1}{1 + e^{-z}}$

ReLU: $\sigma(z) = \max(0, z)$

• Activation functions add non-linearity to neural network models.

Neural Network — Fully connected Multilayer Perceptrons (MLP)

Universal Function Approximation Theorem

By growing the network size, MLPs can approximate any continuous functions up to the desired accuracy level.

Width v.s Depth

- Deep networks can learn features in a hierarchical way Earlier layers: simple structures like edges
 Deeper layers: more complex representations
- Wide, shallow networks are more likely to have overfitting issue.

Neural Network — Fully connected Multilayer Perceptrons (MLP)

Limitations of MLP

- Too many parameters due to fully connection.
- Low data efficiency: need lots of data to learn well.

Fully connected structure

No prior assumption on how features interact from data.

Neural Network — Convolutional Neural Network (CNN)

Image Convolution

CNN Properties

- Translational Symmetry
 Weight sharing across the entire image
- Local Connectivity
 Drop connections between far away neurons

Convolutional Network structures

LeNet-5 ~ 60k parameters

A pioneering CNN network by LeCun et al. 1998

Average Pooling Layer

Evolution of CNNs

if the target label is one of the top 5 predictions

→ correct prediction

1000 categories

12

Training Process

0. Training Data

$$\big(\; x^{(1)},\; y^{(1)}\, \big),\; \big(\; x^{(2)},\; y^{(2)}\, \big),\; \ldots\; \big(\; x^{(i)},\; y^{(i)}\, \big)\; \ldots\; ,\; \big(\; x^{(m)},\; y^{(m)}\, \big)$$

input data predictions ML model labels y(i)

1. Define Model

- From simple → more complex network structures.
- For similar data types → Find existing network model and apply directly.

2. Define Loss

- Mean Squared Loss : $\frac{1}{2}(\hat{y} y)^2$
- Cross Entropy Loss: $-(y \log \hat{y} + (1 y) \log (1 \hat{y}))$ $J = \frac{-1}{m} \sum_{i=1}^{m} (y^{(i)} \log \hat{y}^{(i)} + (1 y^{(i)}) \log (1 \hat{y}^{(i)}))$

average across all training samples

$$J = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)})^2$$

$$J = \frac{-1}{m} \sum_{i=1}^{m} (y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)}))$$

3. Optimization

a: learning rate

- $\theta_j = \theta_j \alpha \frac{\partial}{\partial \theta_i} J(\boldsymbol{\theta})$ Gradient Descent
- Advanced optimization techniques / algorithms : Momentum, RMSProp, Adam, Learning rate decay

Overfitting & Regularization Techniques

Bias & Variance

high variance

• Regularization : techniques that discouraging learning a more complex model to prevent overfitting.

Data augmentation

natural image: random shift, color change

galaxy image: random rotation, foreground contamination

Early stopping

Select the model that performs the best on the validation set.

L2 regularization

minimize (Loss(Data|Model) + Complexity(Model))

$$J(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y) + \frac{\lambda}{2m} \|\boldsymbol{\theta}\|^{2}$$

λ : regularization parameter

Dropout

Randomly eliminate a fraction of nodes for each training example.

Summary

Classical Machine Learning

- Works better for structured data (catalog, tabular data).
- Limited performance on learning complex functions.
- Data Efficient. Easier to Train.
- Require some data manipulation/exploration before feeding to the algorithm (dimensionality reduction, feature extraction...).
- Easier to interpret.
- Usually with evaluable prediction uncertainty.
- Not covered in this course. But is really useful in physical science.
 - Statistics, Data Mining, and Machine Learning in Astronomy — Ivezic et al.
 - ► ASTR 502 2020 class notebook

Deep Learning

- Works especially well for unstructured data (e.g. image, audio signal).
- Superior performance on wide variety of tasks.
- Data efficiency is poor.
 Need lots of data to train.
- Directly pass the data into the network.
- Difficult to understand.
- Challenge to evaluate uncertainty.
- Focus of this course.
 - ML papers in cosmology

