第三章作业

3.2 已知

x_i	1.9600	1.9881	2.0164	2.0252
$y = \sqrt{x_i}$	1.4000	1.4100	1.4200	1.4231

应用Lagrange<mark>抛物</mark>插值公式,计算 $\sqrt{2}$ 的近似值,并估计误差。

3.3 (计算实习题) (5分) 已给观测数据如下:

 x_i : 19 25 31 38 44

 y_i : 19 32.3 49 73.3 97.8

用最小二乘法求形如 $y = a + bx^2$ 的拟合多项式,并用 MATLAB 将计算所得多项式连同给定的数据点画在同一个图里; 之后利用MATLAB多项式拟合函数 polyfit() 求出上述数据的

一次和二次最小二乘拟合多项式,再结合命令polyval(),分别作出这两种拟合多项式(一次和二次)的曲线(分两个图),每个图中也要画出所给观测数据点。比较这三幅图。

第四章练习及作业

练习(**无须提交**):

通过 help 命令了解 MATLAB 符号数值积分命令int(), 以及数值积分函数 quad()的用法等;分别用这两个命令实际计算几个积分。

作业:

4.1 试分别用(1)五点(n=4)Gauss-Legendre公式; (2)Romberg方法(误差不超过 10^{-4}); (3)将积分区间四等分后,用复化两点Gauss-Legendre公式,计算积分 $\int_1^3 \frac{1}{y} dy$

4.2 用复化Simpson方法(n=4)计算积分 $\int_1^9 \sqrt{x} dx$,并用余项公式估计误差。

本次作业请于4月19日之前提交。