1 依概率收敛

• 对于数列 $\{x_n\}$ 对 $\forall \varepsilon > 0, \exists N > 0, n > N$ 时,

恒有 $|x_n - a| < \varepsilon$,记为 $x_n \xrightarrow{n \to +\infty} a$

• 对于随机变量序列 $\{X_n\}$ 对 $\forall \varepsilon > 0, \exists N > 0, n > N$ 时,

恒有
$$\begin{cases} P\{\mid X_n-a\mid \overline{,记为 $X_n \overset{P}{\longrightarrow} a$$$

2 大数定理

(1)切比雪夫不等式

EX 存在,DX 存在

如果一个随机变量的方差非常小的话,那么这个随机变量取到远离均值 μ 的概率也是非常小的

$$P\{||X - \mu|| \ge \varepsilon\} \le \frac{\sigma^2}{\varepsilon^2} \implies P\{||X - \mu|| < \varepsilon\} \ge 1 - \frac{\sigma^2}{\varepsilon^2}$$

(2)切比雪夫大数定律

 $\{X_i\}$ 是0两两不相关的随机变量序列,所有 $2X_i$ 都有方差

且3方差有上限(存在常数C,使得 $D(X_i) \le C$,(i = 1, 2, ...))

$$\boxed{1} \frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{P} \frac{1}{n \to +\infty} \frac{1}{n} \sum_{i=1}^{n} EX_i$$

(3)辛钦大数定律

 $\{X_i\}$ 是1独立 2同分布 随机变量序列, 3期望相同 $EX_i = \mu$

$$\operatorname{II} \frac{1}{n} \sum_{i=1}^{n} X_{i} \xrightarrow{P \atop n \to +\infty} \mu$$

大数定理	分布	期望 EX	方差 DX	用途
伯努利	二项分布	相同	相同	估算概率
辛钦	独立同分布	相同	相同	估算期望
切比雪夫	不相关	存在	存在,有限	估算期望

3 中心极限定理

(1)棣莫弗-拉普拉斯中心极限定理

服从<mark>二次分布</mark>的 $X_n \sim B(n,p)$ (n=1,2,...) ,对任意实数 x

其中 $EX_n = np$; $DX_n = np(1-p)$

即 $X_n \sim N(np, np(1-p))$

(2)列维-林德伯格中心极限定理

有
$$\lim_{n \to +\infty} P \left\{ \frac{\sum_{i=1}^{n} X_i - n\mu}{\sqrt{n}\sigma} \le x \right\} = \Phi(x)$$

即
$$\sum_{i=1}^{n} X_i \sim N(n\mu, n\sigma^2)$$

1 数理统计基本

(1)总体

数量指标X的全体称为总体。X的概率分布称为总体分布。

(2)简单随机样本

与总体 X 同分布且相互独立的 $X_1, X_2, ... X_n$ 。

对应的值 $x_1, x_2, ..., x_n$ 称为样本值,也即总体 X 的 n 个独立 观测值

 $X_1, X_2, ... X_n$ 的概率密度为

$$f_n(x_1, x_2, ..., x_n) = \prod_{i=1}^n f(x_i)$$

 $X_1, X_2, ... X_n$ 的分布函数为

$$F_n(x_1, x_2, ..., x_n) = \prod_{i=1}^n F(x_i)$$

 $X_1, X_2, ... X_n$ 的概率分布为

$$P\{X_1 = x_1, X_2 = x_2, ..., X_n = x_n\} = \prod_{i=1}^n P\{X_i = x_i\}$$

(3)统计量

样本均值:
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

样本方差: $S^2 = \boxed{\frac{1}{n-1}} \sum_{i=1}^{n} (X_i - \overline{X})^2$

样本标准差:
$$S^2 = \sqrt{\frac{1}{n-1}} \sum_{i=1}^n (X_i - \overline{X})^2$$

样本
$$k$$
 阶原点矩: $A_k = \frac{1}{n} \sum_{i=1}^{n} X_i^k, k = 1, 2, ...$

样本 k 阶中心矩:
$$B_k = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2, k = 1, 2, ...$$

(4)性质

①如果 *EX* 存在,

则
$$EX = E\overline{X} = \mu$$

②如果DX存在,

则
$$D\overline{X} = \frac{\sigma^2}{n}$$
则 $ES^2 = DX = \sigma^2$ (见推导)

常常可以推得:

$$\int_{-\infty}^{+\infty} x^n e^{-x} dx = n \int_{-\infty}^{+\infty} x^{n-1} e^{-x} dx = n!$$