Aprendizado de Máquina: RNAs Profundas Avançadas

Prof. Arnaldo Candido Junior UTFPR – Medianeira

Embeddings

- Redes Neurais tem a capacidade de representar seu conhecimento de modo distribuído
- Representação clássica é uma caixa preta: cachorro, gato, cadeira
- Representação distribuída: permite comparações (ser vivo, late, 4 pernas) (ser vivo, mia, 4 pernas) (inanimado, silencioso, 4 pernas)
 - Quem é mais parecido com quem?

Embeddings (2)

- Essa representação distribuída é chamada de embeddings ou encodings ou características
- Exemplo: análise em redes convolucionais supervisionados para análise de imagens
 - A seguir

Embeddings (3)

- Suponha que a rede gerou representação com informações como:
 - Tamanho do animal
 - Comprimento do focinho
 - Distância entre os olhos
 - Tipo de pelagem

Embeddings (4)

- Resultado desejado:
 - Embeddings de gatos são muito semelhantes entre si (ou camada de saída não conseguiria classificar gatos)
 - Embeddings de gatos são muito distintos de embeddings de cães (ou a camada de saída confundiria gatos com cães)
 - Mesmo raciocínio para outros mamíferos

Embeddings (5)

- Embeddings são capazes de representar animais não vistos em treinamento
 - Lince: representação boa pois pode usar as características aprendidas para gato para representá-lo
 - Jacaré/Gaivota: representação intermediária.
 Informações como focinho e pelagem
 - Peixe/minhoca: representação começa a ficar pobre

Autoencoders

- São redes que tentam reconstruir a entrada na saída
- Exemplo: autoencoder raso

Autoencoders (2)

- Normalmente, a camada escondida é menor que a entrada
- Rede é incentivada a extrair informações úteis da entrada de modo compactado
- Funciona como um algoritmo de compactação com perdas

Autoencoders (3)

- São especializados em um tipo de entrada (ex.: números Mnist)
- Possuem variantes profundos, recorrentes e convolucionais disponíveis
- Bastante úteis para extrair embeddings

Autoencoders (3)

Boas reconstruções:

Reconstrução menos eficiente:

Autoencoders (4)

- São a base de muitas redes avançadas nas quais a saída é uma versão modificada da entrada
- Exemplo: colorização de fotos

Word Embeddings

- Base para tradução e processamento de língua natural
- Palavras são tradicionalmente representadas por vetores 1-hot
 - Muito esparsos → maldição da dimensionalidade
- Embeddings são representações densas de baixa dimensionalidade (50 até 300)

Word Embeddings (2)

- Base para tradução e processamento de língua natural
- Palavras são tradicionalmente representadas por vetores 1-hot
 - Muito esparsos → maldição da dimensionalidade
- Embeddings são representações densas de baixa dimensionalidade (50 até 300)

Word Embeddings (3)

- Exemplo intuitivo:
 - Cão: (-1, 0.5, 3)
 - Cachorro: (-0.9, 0.4, 3.1)
 - Gato: (-2, 0.5, 2.9)
 - Cadeia: (5, -3, 0)
- Quem é mais similar a quem?

Word Embeddings (4)

- Word embeddings são treinados com frases como "o gato pulou no colchão" em que uma das palavras é removida
- Rede deve adivinhar palavra removida
 - Entrada: 1hot(o) + 1hot(gato) + 1hot(no) + 1hot(colchão)
 - Camada oculta: cria o embedding
 - Saída: 1hot(pulou)

Word Embeddings (5)

- Cão e cachorro tem praticamente as mesmas palavras vizinhas (latir, ração, etc)
 - Recebem praticamente os mesmos ajustes de pesos
 - Ficam muito parecidas
- v = emb(rei) emb(homem) + emb(mulher)
 - Existiria algum embedding no dataset semelhante ao resultado em v?

Word-embedding (6)

- emb(rei) emb(homem) ≈ emb(rainha) emb(mulher)
- Lê-se: rei está para homem assim como rainha está como está para mulher

Word-embedding (7)

- Entendendo o comportamento visto
 - Contexto "monarquia": puxa rei e rainha em uma direção do espaço
 - Contextos "humano", "feminino" e "masculino" surtem efeito parecido nos embeddings do exemplo
 - Esse "cabo de guerra" entre os contextos fazem os embeddings assumirem as posições do exemplo

Máquinas de Boltzmann

- São um tipo de rede generativa.
- Classificação está associados a probabilidades a posteriori
 - P(doença | sintomas); P(gato | foto)
- Redes generativas estão associadas a probabilidade a priori
 - P(gato)
 - Gera uma nova foto de um gato

Máquinas de Boltzmann (2)

- Máquina Restrita de Boltzmann
 - Tem uma camada que é simultaneamente entrada e saída
 - Valor aleatório é inserido na camada de E/S
 - Valor é propagado várias vezes entre a camada E/S e a camada oculta

Máquinas de Boltzmann (3)

- Saída converge para uma nova instância para o problema que foi treinado
- Exemplo: gerar novos dígitos no estilo Mnist

Máquinas de Boltzman (4)

Deep Believ Network:

- Pode ser pensada como uma variante profunda da Máquina Restrita de Boltzmann
- Diferente da rede convolucional, não constrói uma hierarquia de conceitos

Redes Generativas Adversariais

- São outro tipo de rede generativa:
 - Duas sub-redes que competem dentro de uma rede maior
 - A primeira tenta criar instâncias "falsas" similares ao dataset para enganar a segunda
 - A segunda tenta distinguir entre instâncias verdadeiras e falsas
 - A medida que competem, as falsificações vão ficando melhor e melhor

Redes Generativas Adversariais (2)

- Rede 1: minimiza a taxa de acerto da saída (entrada é vetor aleatório)
- Rede 2: maximiza a taxa

Redes Generativas Adversariais (3)

- Estão revolucionando a área de geração de imagens e vídeos
- Exemplo: celebridades falsas

Redes com atenção

- Conseguem se focar em determinadas partes da entrada para tomar uma decisão
 - Importante para tradução neural e em diversos tipos de redes convolucionais
 - Veremos um exemplo para geração de legendas de imagens
 - Pode ser pensado como um tradutor cuja língua fonte é uma imagem e a língua alvo é o inglês

Redes com atenção (2)

Redes com atenção (3)

- No exemplo, para gerar uma palavra a rede olha:
 - A anterior produzida
 - A representação de embedding da entrada
 - Com base nisso, ela decide se focar em uma parte da entrada relevante para a próxima palavra

Redes com atenção (4)

 Existem vários tipos de atenção, a seguir, um exemplo de soft atention

Figure 3. Examples of attending to the correct object (white indicates the attended regions, underlines indicated the corresponding word)

A woman is throwing a frisbee in a park.

A dog is standing on a hardwood floor.

A stop sign is on a road with a mountain in the background.

A little girl sitting on a bed with a teddy bear.

A group of people sitting on a boat in the water.

A giraffe standing in a forest with trees in the background.

Aprendizado por Reforço

 Resumo: o aprendizado por reforço usa uma tabela de estados

- Na tabela:
 verde = pote de ouro;
 vermelho = boma;
 branco vazio = bloqueio
- Demais ladrilhos: estados possíveis em que o personagem pode estar

Aprendizado por Reforço (2)

- Utilidades dos estados próximos ao final são aprendidas rapidamente
- Utilizados dos estados iniciais são aprendidas devagar
 - Existem muitos mais estados próximos iniciais do que estados próximos ao fim de jogo
- Estados aproximados / número de partidas aproximadas: Xadrez: 10¹²³; Go: 10³⁶⁰; jogos eletrônicos: difícil de estimar

Aprendizado por Reforço (3)

- Solução: modificar o algoritmo de aprendizado por reforço para usar uma RNA
 - RNA olha estado e diz utilidade
 - Não precisa memorizar todos os estados
 - Estados parecidos tem utilidade parecidas
- Tendência: agentes curiosidade
 - Especificação matemática que força o agente a explorar mais os estados em que ele tem dúvida do resultado

Aprendizado por Reforço (4)

- Redes neurais estão revolucionando a área de aprendizado por reforço
- Jogos antes impensáveis de serem aprendidos estão são jogados pelas redes
 - Diversos de Atari
 - Dota
 - StarCraft 2