Quiz 8 Candidate z5496297

CANDIDATE

z5496297

TEST

Quiz 8

Subject code	
Evaluation type	
Test opening time	10.04.2024 08:00
End time	17.04.2024 08:00
Grade deadline	
PDF created	13.08.2024 06:36

Quiz 8 Candidate z5496297

Question	Status	Marks	Question type
1.1	Correct	1/1	Numeric Entry
1.2	Correct	1/1	Multiple Choice
1.3	Correct	1/1	Multiple Choice
1.4	Correct	1/1	Multiple Choice
2.1	Correct	1/1	Numeric Entry
2.2	Correct	1/1	Multiple Choice
2.3	Correct	1/1	Numeric Entry
2.4	Correct	1/1	Multiple Choice

1.1 In a class of 200:

- 80 are funny
- 130 are clever
- 42 are neither funny nor clever

How many are both funny and clever?

Quiz 8

- **1.2** How many integers are there between 1 and 1000 which are divisible by 6 or 15 but not both? **Select one alternative:**
 - **199**
 - **211**
 - **166**
 - 210

1.3 Let S be a set of size n, and fix a constant k>1 (i.e k does not depend on n). Which of the following gives the **best** asymptotic upper bound for the number of subsets of S of size k?

	0	(nk)

- \bigcirc O(kⁿ)
- O(2ⁿ)
- O(nk)

1.4 Suppose I place 2 red balls, 3 green balls, and 4 blue balls into a hat, and draw two balls without replacement.

What is the probability they are both blue?

Select one alternative:

- 4/9
- 5/9
- 0 1/2

- None of the other alternatives
- 0 1/3

- 2.1 How many ways are there of choosing an **ordered** sequence of three letters (**with no replacements**) from SYDNEY?: 72 .
- 2.2 How many sequences of 2n coin flips have exactly n heads and n tails?
 - 2^{2n-1}
 - 2^n

$$\bigcirc \binom{2n}{n} \binom{2n}{n}$$

Quiz 8 Candidate z5496297

2.3	How many ways are there of placing	ıg 6 in	ndistinguishable balls into 3 distinguishable boxes so tha
	each box contains at least 1 ball?:	10	

2.4 Suppose I place 2 red balls, 3 green balls, and 4 blue balls into a hat, and draw two balls without replacement.

What is the probability that the second ball is blue, **given** that the first ball is blue? **Select one alternative:**

3/8	⊘
O 4/9	
None of the other options	
O 1/6	
O 2/7	