Resolución del TP3, problema P13

Enunciado:

TP3 P13 - DANTE FERNANDEZ 23/9/2022

El valor de $\,\Theta\,$ (base de los logaritmos neperianos o naturales) se calcula con la formula $\,(1+1/n)^n\,$ (cuando n tiende a infinito se obtendra el valor exacto). Se desea determinar el valor de $\,\Theta\,$. Para ello defina un valor EPS=0.0001 (error) y encuentre el valor absoluto de la diferencia entre el valor actual de $\,\Theta\,$ y el anterior. Cuando esa diferencia sea menor o igual a EPS muestre el valor de e.

Nota: modificando el valor de "EPS" en la línea 15, modificamos la precisión del resultado calculado **Estrategia:**

Ir generando el número de Θ con la formula. Pero en cada paso, comparar con el valor anterior El proceso termina cuando la diferencia de la comparación es menor que EPS.

Diagrama de Flujo

Prueba de Escritorio:

n	EPS	b=1+1/n	eb=b^n	error	ea	n=n+1	error>EPS?	SALIDA
1	0,000001			0,000	0			
1		2,000	2,000	2,000	2,000	2	V	
2		1,500	2,250	0,250	2,250	3	V	
3		1,333	2,370	0,120	2,370	4	V	
4		1,250	2,441	0,071	2,441	5	V	
5		1,200	2,488	0,047	2,488	6	V	
6		1,167	2,522	0,033	2,522	7	V	
7		1,143	2,546	0,025	2,546	8	V	
8		1,125	2,566	0,019	2,566	9	V	
9		1,111	2,581	0,015	2,581	10	V	
1167		1,001	2,717	0,00000096	2,717	1168	F	eb=2,717117
								e=2,718281828

Código:

```
/*Apellido y Nombre: Fernandez Dante
Fecha: 23/09/2022
TP3 P13. El valor de e (base de los logaritmos neperianos o naturales) se calcula con la
formula (1+1/n)^n (cuando n tiende a infinito se obtendra el valor exacto). Se
desea determinar el valor de "e". Para ello defina un valor EPS=0.0001 (error) y
encuentre el valor absoluto de la diferencia entre el valor actual de "e" y el anterior.
Cuando esa diferencia sea menor o igual a EPS muestre el valor de e.
Nota: modificando el valor de "EPS" en la linea 15, modificamos la precision del resultado calculado */
#include<stdio.h> /*libreria de comandos de entrada y salida de datos */
#include<math.h> /*Libreria de operaciones matematicas */
int main() /* Comienzo del programa principal */
        double b,ea,eb,EPS=0.000000001,error; /*declaramos variables reales grandes: double float. */
        long int n=1; /* Lo declaramos como entero largo por si sobrepasa el numero 33.000 */
                do
                        b=1+(1.0/n);
                        printf(" b= %f \n",b); /* base del exponencial */
                        eb=pow(b,n); /* eb es el valor de "e" calculado por este programa */
                        printf("eb=\%f \n",eb);
                        error=fabs(eb-ea); /* error es el valor absoluto real (float) de la diferencia */
                        ea=eb; /* ea es el "e" calculado en el ciclo anterior */
                        printf("n= %d \n",n);
                        n++; /* incremena la variable "n" */
                        printf("error= %f \n",error);
                       /*getchar();
                        getchar(); */ /* Para la ejecuci?n del programa para poder revisar
                        los valores de las variables */
                        }
                        while (error>EPS);
                                printf("\n\n\n"); /* 3 renglones para abajo */
                                printf(" n= %d cantidad de repeticiones realizadas \n\n",n); /* muestra
los valores finales */
                                printf(" e= %f
                                                 valor calculado \n",eb);
                                printf(" e= 2.718281828 valor verdadero n");
        getchar(); /* Para la ejecucion del programa para poder ver los resultados finales */
        getchar();
        return(0); /* Final del programa principal */
}
```