A Book of Abstract Algebra (2nd Edition)

≔	Chapter 27, Problem 6EI	Bookmark	Show all steps: ON	K 7
Problem				
<	Let $a(x) = a_0 + a_1x + \cdots + a_nx^n \in F[x]$. The <i>derivative</i> of $a(x)$ is the following polynomial $a'(x) \in F[x]$:			
	$a'(x) = a_1 + 2a_2x + \dots + na_nx^{n-1}$			
	(This is the same as the derivative of a polynomial in calculus.) We now prove the analogs of the formal rules of differentiation, familiar from calculus.			
	Let $a(x)$, $b(x) \in F[x]$, and let $k \in F$.			
	Prove part:			
	If <i>F</i> has characteristic $p \neq 0$, and $a'(x) = 0$, prove that the only nonzero terms of $a(x)$ are of the form $a_{mp}x^{mp}$ for some <i>m</i> . [That is, $a(x)$ is a polynomial in powers of x^p .]			
Step-by-step solution				
	Consider the arbitrary field F and let $a(x) = a_0 + a_1 x + \dots + a_n x^n \in F(x)$. The derivative of $a(x)$ will be given by $a'(x) = a_1 + 2a_2 x + \dots + na_n x^{n-1} \in F(x)$. Suppose that F has characteristic $p \neq 0$ and $a'(x) = 0$. Objective is to prove that the only nonzero terms of $a(x)$ will be of the form $a_{np} x^{np}$ for some m . Since characteristic of F is $p \neq 0$, so $p \cdot a = 0$ for any $a \in F$. Comment Step 2 of 3 A Also $a_1 + 2a_2 x + \dots + na_n x^{n-1} = 0$. This implies that, either coefficients are zero, or coefficients are multiples of p . If all the coefficients are zero then in $a(x)$ only the constant term will be arbitrary rest all will be zero. That is, $a(x)$ will be constant polynomial. And thus, nonzero term of $a(x)$ will be of the form $a_0 x^{np} = a_0$. And if coefficients are multiples of p in $a'(x)$, then corresponding to that coefficient the power of x will be multiple of p in polynomial $a(x)$. That is, $a(x)$ is a polynomial in powers of x^p .			
Step 3 of 3 ^				
	Hence, the only nonzero terms of $a(x)$ will be of the form $a_{mp}x^{mp}$ for some m .			
Comment				

2 4 B