

DATASET
INFORMATION
AND
PREPROCESSING

DATASET INFORMATION - EXPLORATION

```
In [2]: df.shape
Out[2]: (42656, 6)
In [3]: df.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 42656 entries, 0 to 42655
       Data columns (total 6 columns):
            Column
                             Non-Null Count Dtype
        0 Review_ID
                             42656 non-null int64
        1 Rating
                             42656 non-null int64
        2 Year Month
                             42656 non-null object
        3 Reviewer_Location 42656 non-null object
        4 Review Text
                             42656 non-null object
        5 Branch
                             42656 non-null object
       dtypes: int64(2), object(4)
       memory usage: 2.0+ MB
```

DATASET INFORMATION - EXPLORATION

In [2]:	df.head()								
Out[2]:		Review_ID	Rating	Year_Month	Reviewer_Location	Review_Text	Branch		
	0	670772142	4	2019-4	Australia	If you've ever been to Disneyland anywhere you	Disneyland_HongKong		
	1	670682799	4	2019-5	Philippines	Its been a while since d last time we visit HK	Disneyland_HongKong		
	2	670623270	4	2019-4	United Arab Emirates	Thanks God it wasn t too hot or too humid wh	Disneyland_HongKong		
	3	670607911	4	2019-4	Australia	HK Disneyland is a great compact park. Unfortu	Disneyland_HongKong		
	4	670607296	4	2019-4	United Kingdom	the location is not in the city, took around 1	Disneyland_HongKong		

- 42656 rows, 6 columns
- columns of interest are rating, and review_text

DATASET INFORMATION - PREPROCESSING

ut[5]:		Review_ID	Rating	Year_Month	Reviewer_Location	Review_Text	Branct
	0	670772142	4	2019-4	Australia	If you've ever been to Disneyland anywhere you	Disneyland_HongKong
	1	670682799	4	2019-5	Philippines	Its been a while since d last time we visit HK	Disneyland_HongKong
	2	670623270	4	2019-4	United Arab Emirates	Thanks God it wasn t too hot or too humid wh	Disneyland_HongKong
	3	670607911	4	2019-4	Australia	HK Disneyland is a great compact park. Unfortu	Disneyland_HongKon
	4	670607296	4	2019-4	United Kingdom	the location is not in the city, took around 1	Disneyland_HongKong
	42651	1765031	5	missing	United Kingdom	i went to disneyland paris in july 03 and thou	Disneyland_Pari
	42652	1659553	5	missing	Canada	2 adults and 1 child of 11 visited Disneyland	Disneyland_Pari
	42653	1645894	5	missing	South Africa	My eleven year old daughter and myself went to	Disneyland_Pari
	42654	1618637	4	missing	United States	This hotel, part of the Disneyland Paris compl	Disneyland_Pari
	42655	1536786	4	missing	United Kingdom	I went to the Disneyparis resort, in 1996, wit	Disneyland_Pari

• 42644 rows after removing duplicates

DATASET INFORMATION - PREPROCESSING

- Predictor variable is "Review_Text".
 - Lowercasing and stop word removal applied
- Response variable is "Sentiment"
 - Sentiment is based on rating.
 - Positive sentiment = 4-5
 - Negative sentiment = 1-3

LABEL
DISTRIBUTIONS
FOR DATASET

LABEL DISTRIBUTION

- Training set is first 80% of data
- Test set is last 20% of data

MODEL INFORMATION

PSEUDOCODE

- 1. Clean Data drop duplicates, remove stopwords, apply lowercasing to reviews
- 2. Split test and training sets training set is first 80% of data, test set is last 20% of data
- 3. Get vocabulary from the entire dataframe
- 4. Using binary bag-of-words technique, set presence of a token in a review to 1 for each review in the training set
- 5. Using binary bag-of-words technique, set presence of token in a review to 1 for each review in the test set
- 6. Calculate probability of having a positive sentiment and a negative sentiment in the training set.
 - E.g. P(positive) = count of positive sentiment in training set/number of rows in training set
- 7. Calculate probability of each token given each sentiment. Use +1 smoothing
 - Formula is ((Count x= X, y = Y) + 1)/(count(number of words when y = Y) + number of words in Vocabulary)
 - x is the token, y is the sentiment
- 8. Predict sentiments for the test set's reviews
- 9. Compare predicted sentiments with actual sentiments to calculate metrics

PSEUDOCODE - PREDICTION

```
predictions = []
log_probability_negative = log(probability review is negative) #step 6
log_probability_positive = log(probability review is positive) #step 6
log_probabilities_token_negative = log(probabilities of each token given negative sentiment) #step 7
log probabilities token positive = log(probabilities of each token given positive sentiment) #step 7
For each review to predict
         log_probability_this_review_negative = log_probability_negative
         log_probability_this_review_positive = log_probability_positive
         For each word in review
                  log_probability_this_review_negative = log_probabilities_token_negative[this_token]
                  log_probability_this_review_positive = log_probabilities_token_positive[this_token]
         prediction = 1 if log_probability_this_review_positive > log_probability_this_review_negative else 0
         push prediction into predictions
```

PSEUDOCODE- ALTERNATIVE MODEL

- 1. Clean Data drop duplicates, remove stopwords, apply lowercasing to reviews
- 2. Split test and training sets training set is first 80% of data, test set is last 20% of data
- 3. Undersample training set so that training and test sets are the same size
- 4. Get vocabulary from the entire dataframe
- 5. Using binary bag-of-words technique, set presence of a token in a review to 1 for each review in the training set
- 6. Using binary bag-of-words technique, set presence of token in a review to 1 for each review in the test set
- 7. Calculate probability of having a positive sentiment and a negative sentiment in the training set.
 - P(positive) = count of positive sentiment in training set/number of rows in training set
- 7. Calculate probability of each token given each sentiment. Use +1 smoothing
 - Formula is ((Count x= X, y = Y) + 1)/(count(number of words when y = Y) + number of words in Vocabulary)
 - x is the token, y is the sentiment
- 8. Predict sentiments for the test set's reviews
- 9. Compare predicted sentiments with actual sentiments to calculate metrics

PACKAGES

- Numpy for array operations
- Pandas to store dataframe
- Matplotlib for plotting data
- Nltk tokenize reviews and remove stopwords
- Scipy for sparse matrix to store binary bag of words as the data set is large
- Sklearn for confusion matrix calculation, ROC curve calculation and resampling training set in the alternative model
- Seaborn for confusion matrix visualization
- Calculating binary bag of words and probabilities, and predicting sentiment are done manually without any packages for the calculations

MODEL EVALUATION

MODEL METRICS

METRIC	MODEL	ALTERNATE MODEL
Number of True Positives	2245	1788
Number of True Negatives	4840	5421
Number of False Positives	334	791
Number of False Negatives	1110	529
Sensitivity (recall)	0.6692	0.7717
Specificity	0.9355	0.8727
Precision	0.8705	0.6933
Negative Predictive Value	0.8134	0.9111
Accuracy	0.8307	0.8452
F-score	0.7567	0.7304

Model

Alternate Model

Model

Alternate Model

OBSERVATIONS AND SUMMARY

SUMMARY

- Alternate model performed better. This is expected as the imbalance data was dealt with
- Surprisingly, the word "sucks" is positive in the model. However, it is negative in the alternate model

Model Testing

```
was classified as POSITIVE.
P(POSITIVE | S) = 4.968894897491188e-08
P(NEGATIVE | S) = 2.2667890287655082e-08
Do you want to enter another sentence? [Y/N] y
Please enter your sentence: sucks
Sentence S:

sucks

was classified as POSITIVE.
P(POSITIVE | S) = 9.411756646693865e-06
P(NEGATIVE | S) = 6.312675167725326e-06
```

Alternate Model Testing

```
disney sucked

was classified as NEGATIVE.
   P(POSITIVE | S) = 4.980958520801664e-08
   P(NEGATIVE | S) = 6.642274074938692e-08

Do you want to enter another sentence? [Y/N] y
Please enter your sentence: sucks
Sentence S:

sucks

was classified as NEGATIVE.
   P(POSITIVE | S) = 7.349899306379499e-06
   P(NEGATIVE | S) = 1.799058274768534e-05
```

SUMMARY

- To improve performance
 - Data can be shuffled when splitting into training and test sets
 - Dictionary of positive and negative words can be provided
 - Use cross validation techniques
 - Use a different technique (not Naïve Bayes)