Predykcja cen nieruchomości za pomocą porównania trzech regresorów

Badanie wpływu lokalizacji na cenę nieruchomości

Plan prezentacji

- 1. Zbiór danych.
- 2. Analiza eksploracyjna i preprocessing danych.
- 3. Dane wykorzystywane do szkolenia.
- 4. Wybrane regresory.
- Porównanie modeli.
- 6. Hipoteza czy lokalizacja nieruchomości wpływa na cenę.

Zbiór danych

https://www.kaggle.com/datasets/ahmedshahriarsakib/usa-real-estate-dataset

≜ brokered_by = Broker / Agency encoded	▲ status Property sale statu	=	# price House price	=	# bed Number of bedroom	=	# bath =	Tota	acre_lot = al land size / lot size acres	△ street Street address encoded	⊕ city City	=	P state =	⊕ zip_code == Zip code	# house_size == House size / living space in square feet	prev_sold_date Previously sold date
2226382 total values	for_sale sold	62% 36%								2226382 total values	Houston Chicago	1% 1%		2226382 total values		
	Other (25067)	1%	0	2.15b	1	473	1 830	0	100k		Other (2184282) 98%			4 1.04b	1901-01-01 3019-04-02	
103378.0	for_sale		105000.0		3		2	0.12	12	1962661.0	Adjuntas		Puerto Rico	00601	920.0	
52707.0	for_sale		80000.0		4		2	0.08	18	1902874.0	Adjuntas		Puerto Rico	00601	1527.0	
103379.0	for_sale		67000.0		2		1	0.15	15	1404990.0	Juana Diaz		Puerto Rico	00795	748.0	

Zbiór danych

▲ city = The name of the city/town.	△ city_ascii = city as an ASCII string.	≜ state_id ☐ The state or territory's USPS postal abbreviation.	△ state_name = The name of the state or territory that contains the city/town.	# population = An estimate of the city's urban population. (2019).
19090 unique values	19085 unique values	TX 6% PA 6% Other (25010) 88%	Texas 6% Pennsylvania 6% Other (25010) 88%	1 18.7m
New York	New York	NY	New York	18713220
Los Angeles	Los Angeles	CA	California	12750807
Chicago	Chicago	IL	Illinois	8604203

https://www.kaggle.com/datasets/sergejnuss/united-states-cities-database

Lokalizacja to nie tylko współrzędne geograficzne, ale też wiele innych zmiennych – np. populacja, która może podnieść popyt. Połączono nazwę miasta i stanu z populacją.

Analiza eksploracyjna i preprocessing danych

Nieużyte atrybuty:

- brokered_by nie ma to żadnego związku z lokalizacją, jest to tylko identyfikator pośrednika
- status redundantna kolumna (razem z prev_sold_date)
- street zbyt specyficzne
- prev_sold_date przekształcone w sold_before (bool) i years_since_sold (integer)

Apartamentowce

Większość mieszkań ma mniej niż tuzin łóżek, łazienek itd.

Łazienki i sypialnie...

Outliery

- Usunięto rekordy z top 0,3% house_size.
- Usunięto rekordy, w których jest 100 lub więcej sypialni
- Usunięto rekordy, w których jest przynajmniej dwa razy więcej łazienek, niż sypialni
- Usunięto rekordy, w których data poprzedniej sprzedaży jest sprzed 1900 roku.

Puste wartości

Usunięto rekordy z pustymi wartościami atrybutów:

price, city, state, zip_code

Wstawiono medianę do rekordów z pustymi wartościami atrybutów:

- acre_lot, house_size

Wstawiono dominantę (modę) do rekordów z pustymi wartościami atrybutów:

- bed, bath

Wstawiono średnią wartość do rekordów z pustymi wartościami atrybutów:

population

Min-max scaling (1,2), boxcox normalization (3)

Po przeskalowaniu:

Dodatkowo zastosowano min-max scaling dla danych o populacji miasta.

Dane wykorzystywane do szkolenia

Oznaczono atrybuty city i state jako kategorialne.

Wybrano 200 najpopularniejszych miast, resztę oznaczono jako '__other__'.

Dokonano one-hot encoding tych danych.

Do atrybutu zip_code zastosowano trzy podejścia: domyślne, pierwsze dwie cyfry jako liczba, pierwsze dwie cyfry jako kategoria. W przypadku traktowania ich jako kategorii, zastosowano Ordinal Encoding.

Oprócz tego, do danych lokalizacyjnych (miasto i stan) zastosowano dwa podejścia: uwzględnienie oraz nieuwzględnienie. Na podstawie tych dwóch podejść zaproponowano hipotezy

Najważniejsze atrybuty

C	Δ	ı	Δ	_	+	K	В	Δ	C	t	
J	$\overline{}$	ι	\subset	L	u	1/	$_{L}$	\subset	J	u	۰

Feature importance (Random Forest):

\	
bed	0.236969
zip_code	0.187631
house_size	0.167859
bath	0.137261
acre_lot	0.079442
city_population	0.077886
city	0.037794
state	0.036868
years_since_sold	0.034561
sold before	0.003728

. . .

Wybrane regresory

Problemy: ograniczenia sprzętowe, czasowe i zasobowe. Po zakodowaniu cech kategorialnych - około 300 kolumn.

- XBGoost (eXtreme Gradient Boosting) wybrany ze względu na skalowalność i duże dane
- Sieć neuronowa wybrana ze względu na uniwersalność i możliwość dostosowywania architektury
- Drzewo decyzyjne wybrane ze względu na prostotę i szybkość działania

Parametry regresorów

XGBoost

enable_categorical	TRUE
subsample	0,8
n_estimators	1000
min_child_weight	3
max_depth	7
learning_rate	0,01
gamma	0
cosample_bytree	0,5

Decision Tree

max_depth	None
min_samples_split	2

Sieć neuronowa

	neurons
activation	relu
	model compilation
optimizer	adam
loss	mae
metrics	mae
	early stopping
monitor	val_mae
patience	10
	model learning
epochs	50
batch_size	32
validation_split	0,2

Porównanie modeli

MAE Comparison Across Models and Features

Hipoteza

Hipoteza zerowa: Nieuwzględnienie cech lokalizacyjnych nieruchomości nie zmniejsza jakości predykcji jej ceny.

Hipoteza alternatywna: Nieuwzględnienie cech lokalizacyjnych nieruchomości zmniejsza jakość predykcji jej ceny.

Przyjęto α =0.05

Hipoteza

- Przyjęto H0 dla 3 z 9 modeli
- Odrzucono H0 i przyjęto H1 dla 6 z 9 modeli

Dla sieci neuronowych spadek jakości predykcji jest najbardziej widoczny

Porównanie par modeli	Wartość statystyki T	p-value
XGB - pełny kod p.	-6.1803	0.0000
XGB - 2-cyfrowy kod p kat.	0.7432	0.4573
XGB - 2-cyfrowy kod p num.	0.7432	0.4573
NN - pełny kod p.	-67.3706	0.0000
NN - 2-cyfrowy kod p kat.	-82.1985	0.0000
NN - 2-cyfrowy kod p num.	-75.2806	0.0000
DT - pełny kod p.	-0.2296	0.8184
DT - 2-cyfrowy kod p kat.	-6.2826	0.0000
DT- 2-cyfrowy kod p num.	-6.2611	0.0000

Zuzanna Ławniczak 151835 & Jakub Brambor 151871

Dziękujemy za uwagę