

TEST DEL CHI QUADRO

CdS Fisica Laboratorio Meccanica e Termodinamica

Test del χ^2

Il test del chi quadrato (χ^2) fornisce un criterio per verificare, su basi probabilistiche, la consistenza di una ipotesi teorica con un insieme di dati sperimentali.

In particolare:

- 1) Confronto tra un campione di valori di una variabile casuale, ed una distribuzione di probabilità (ad es. uniforme o gaussiana)
- 2) Confronto tra un insieme di coppie di valori misurati (x_i,y_i) ed una relazione funzionale y = g(x) (ad es. una retta o una esponenziale)

Dati - Distribuzione di Probabilità

Consideriamo il caso di un confronto fra i valori di una variabile casuale e una distribuzione di probabilità (tempo di caduta del pendolo di Maxwell).

t (s)	O _i	E _i
6,9	4	3,51
7	6	5,49
7,1	10	10,57
7,2	17	16,86
7,3	22	22,25
7,4	27	24,30
7,5	18	21,96
7,6	19	16,42
7,7	11	10,16
7,8	4	5,20
7,9	4	2,20

Ad occhio si vede che è compatibile con una gaussiana ma serve un test quantitativo che lo dimostri.

Dati - Distribuzione di Probabilità (II)

Il numero di eventi osservati O_i nel *bin* i-esimo dell'istogramma deve essere confrontato con il numero di eventi attesi (*expected*) E_i nello stesso bin, in base alla densità di probabilità $\Phi(x)$ ipotizzata.

nello stesso
$$bin$$
, in base alla densità di probabilità $\Phi(x)$ ipotizzata.
$$E_i = N \int_{x_i - \frac{\Delta x}{2}}^{x_i + \frac{\Delta x}{2}} \Phi(x) dx \Longrightarrow E_i = N p_i \quad \text{N = il numero totale di misure del campione } \Delta x = 1'ampiezza dei bin .$$

Nel caso di esperimenti di conteggio, le p_i sono ottenute direttamente (cioè senza integrazione) dalla opportuna distribuzione di probabilità: poissoniana, binomiale...

E_i rappresenta la media di O_i nel caso di un numero di esperimenti (cioè campionamenti) che $\to \infty$, se l'ipotesi sulla $\Phi(x)$ è corretta.

Dati - Distribuzione di Probabilità (III)

Se, per ogni i, il numero di eventi osservati O_i nel bin i-esimo dell'istogramma è distribuito con media E_i e varianza σ_i^2 , allora la variabile casuale

$$\chi^2 = \sum_{i=1}^{N_{bins}} \left(\frac{O_i - E_i(\alpha_j)}{\sigma_i} \right)^2$$

è distribuita secondo una densità di probabilità nota $\Phi(\chi^2)$. Le α_j rappresentano i parametri della distribuzione teorica (ad esempio, N, μ , σ nel caso di una gaussiana, oppure N e μ nel caso di una poissoniana).

NB: la funzione χ^2 è definita positiva!

Pati - Distribuzione di Probabilità (IV)

Possono esserci casi in cui le differenze fra E_i e O_i sono molto grandi ma si annullano nella sommatoria \Longrightarrow elevamento al quadrato nella definizione per ovviare al problema.

Da notare inoltre che $N = \sum_{i=1}^{N_{bins}} O_i$ rappresenta un vincolo che fa diminuire il numero di elementi indipendenti.

Per una gaussiana:
$$\mu = \frac{\sum_{i} n_{i} O_{i}}{N}$$

Confronto 1: Dati - Distribuzione di Probabilità (V)

Come stabilire i bin (in numero e ampiezza)?

- l'ampiezza non deve essere inferiore alla risoluzione della variabile
- il numero di misure in ogni *bin* non deve essere inferiore a 4-5 (meglio 5 che 4)
- il numero di *bin* deve essere sufficiente affinché sia $\nu > 0$

Dati - Distribuzione di Probabilità (VI)

Il numero O_i di occorrenze nel *bin* i-esimo è l'esito di un esperimento di conteggio.

La σ_i^2 è di tipo binomiale (la misura o sta nel bin o non ci sta), cioè $\sigma_i^2 = Np_i(1-p_i)$

Nel caso limite in cui il campione sia distribuito in molti *bin*, le **probabilità sono "piccole"** ($p_i << 1$) e quindi la distribuzione delle misure all'interno dei *bin* si può considerare poissoniana. In questo caso, risulta che $\sigma_i^2 = Np_i = E_i$ e il χ^2 diventa

$$\chi^2 = \sum_{i=1}^{N_{bins}} \left(\frac{O_i - E_i(\alpha_j)}{\sqrt{E_i}} \right)^2$$

Dati - Distribuzione di Probabilità (VII)

$$\chi^{2} = \sum_{i=1}^{N_{bins}} \left(\frac{O_{i} - E_{i}(\alpha_{j})}{\sigma_{i}} \right)^{2}$$
Deviazione standard $\sigma_{i} = \sqrt{\frac{\sum_{i=1}^{N} (x_{i} - \mu)^{2}}{N - 1}}$

Dato il significato di σ , ci aspettiamo che χ^2 sia dell'ordine di N_{bins} (numero di intervalli dell'istogramma), se l'ipotesi è corretta, e sia invece >> N_{bins} se l'ipotesi non è corretta.

In realtà, non tutti i termini della somma sono indipendenti, visto che i parametri α_j della distribuzione teorica, dalla quale si ottengono le E_i , *possono* essere stimati per mezzo degli O_i

Dati - Distribuzione di Probabilità (VIII)

Se N_{vincoli} è il numero di parametri α_j che si calcolano utilizzando i dati del campione, allora si definisce il numero di **gradi di libertà** ν

$$\nu = N_{bins} - N_{vincoli}$$

Solamente ν degli N_{bins} termini $(O_i - E_i)$ sono indipendenti, ed è quindi ragionevole aspettarsi che

$$\chi^2 \approx \nu$$
.

Definendo il chi quadrato ridotto, come $\tilde{\chi}^2 \approx \frac{\chi^2}{\nu}$ ci aspettiamo, di conseguenza, che $\tilde{\chi}^2 \approx 1$ se l'ipotesi è corretta

Dati - Distribuzione di Probabilità (IX)

Esempi di distribuzioni di χ^2 per diversi valori di ν . Il valor medio è ν . La varianza è 2v.

$$\Phi_{\nu}(\chi^{2}) = \frac{1}{2^{\frac{\nu}{2}}\Gamma(\nu/2)} (\chi^{2})^{\frac{\nu}{2}-1} e^{-\frac{\chi^{2}}{2}} \quad \text{con} \quad \Gamma(\nu/2) = \int_{0}^{\infty} x^{\frac{\nu}{2}-1} e^{-x} dx$$

$$\Gamma(\nu/2) = \int_{0}^{\infty} x^{\frac{\nu}{2} - 1} e^{-x} dx$$

Confronto 2: Valori – Relazione Funzionale

Esempio: retta di calibrazione di una termocoppia.

Qui non ci sono bins, ma coppie di valori (x_i, y_i). La miglior retta è stata ottenuta grazie alla regressione lineare che introduce dei vincoli.

NB: il confronto di un singolo valore y_i con un dato teorico non introduce di per sé nessun vincolo, cosa invece che succede quando calcolo i parametri A e B della regressione lineare.

STUDIORUM

Confronto 2:

Valori – Relazione Funzionale (II)

Se i valori y_i delle ordinate sono distribuiti con media $g(x_i)$ e varianza σ_i^2 , allora la variabile casuale:

$$\chi^{2} = \sum_{i=1}^{N_{bins}} \left(\frac{y_{i} - g(x_{i}, \alpha_{j})}{\sigma_{i}} \right)^{2}$$

è distribuita secondo la $\Phi(\chi^2)$, che dipende anche dal numero di coppie (x_i, y_i) meno il numero di vincoli, cioè da ν .

Le α_j rappresentano i parametri della curva teorica (ad esempio, A, B nel caso di una retta).

Valori – Relazione Funzionale (III)

- ci aspettiamo che $\widetilde{\chi}^2 \approx 1$ se i valori seguono la relazione funzionale ipotizzata
- valori molto inferiori possono essere dovuti ad una sovrastima delle incertezze (fig. (b))
- valori molto superiori possono essere dovuti al fatto che la distribuzione ipotizzata non è quella corretta (fig. (c)).

Test del χ^2

Per rendere quantitativo il test, si considera la probabilità che il χ^2 sia più alto del valore χ_0^2 ottenuto nell'esperimento, se le misure hanno seguito la distribuzione assunta.

$$P_{\nu}(\chi^2 > \chi_0^2) = \int_{\chi_0^2}^{\infty} \Phi_{\nu}(\chi^2) d\chi^2$$

Se P_{ν} è grande, la distribuzione osservata e quella attesa sono in accordo. Se P_{ν} è piccola, la distribuzione osservata e quella attesa sono in disaccordo.

Quanto in disaccordo? Confrontiamo questa probabilità con il limite fissato a priori:

 $P_{\nu} < 0.05 \ (5\%) \rightarrow$ discrepanza significativa $P_{\nu} < 0.01 \ (1\%) \rightarrow$ discrepanza altamente significativa

Test del χ^2 : Tabella del $\tilde{\chi}_0^2$

								į	₹°°							
ď	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	8.0	10.0	
1	100	48	32	22	16	11	8.3	6.1	4.6	3.4	2.5	1.9	1.4	0.5	0.2	
2	100	61	37	22	14	8.2	5.0	3.0	1.8	1.1	0.7	0.4	0.2			
3	100	68	39	21	11	5.8	2.9	1.5	0.7	0.4	0.2	0.1				
4	100	74	41	20	9.2	4.0	1.7	0.7	0.3	0.1	0.1					
5	100	78	42	19	7.5	2.9	1.0	0.4	0.1						_	
	0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0	2.2	2.4	2.6	2.8	3.0
1	100	65	53		37	32	27	24	21	18	16	14	12	11	9.4	8.3
2	100	82	67	55	45	37	30	25	20	17	14	11	9.1	7.4	6.1	5.0
3	100	90	75	61	49	39	31	24	19	14	11	8.6	6.6	5.0	3.8	2.9
4	100	94	81	66	52	41	31	23	17	13	9.2	6.6	4.8	3.4	2.4	1.7
5	100	96	85	70	55	42	31	22	16	11	7.5	5.1	3.5	2.3	1.6	1.0
6	100	98	-88	73	57	42	30	21	14	9.5	6.2	4.0	2.5	1.6	1.0	0.6
7	100	99	90	76	59	43	30	20	13	8.2	5.1	3.1	1.9	1.1	ა.7	0.4
8	100	99	92	78	60	43	29	19	12	7.2	4.2	2.4	1.4	0.8	0.4	0.2
9	100	99	94	80	62	44	29	18	11	6.3	3.5	1.9	1.0	0.5	0.3	0.1
10	100	100	95	82	63	44	29	17	10	5.5	2.9	1.5	0.8	0.4	0.2	0.1
11	100	100	96	83	64	44	28	16	9.1	4.8	2.4	1.2	0.6	0.3	0.1	0.1
12	100	100	96	84	65	45	28	16	8.4	4.2	2.0	0.9	0.4	0.2	0.1	
13	100	100	97	86	66	45	27	15	7.7	3.7	1.7	0.7	0.3	0.1	0.1	
14	100	100	98	87	67	45	27	14	7.1	3.3	1.4	0.6	0.2	0.1		
15	100	100	98	88	68	45	26	14	6.5	2.9	1.2	0.5	0.2	0.1		
16	100	100	98	89	69	45	26	13	6.0	2.5	1.0	0.4	0.1			
17	100	100	99	90	70	45	25	12	5.5	2.2	0.8	0.3	0.1			
18	100	100	99	90	70	46	25	12	5.1	2.0	0.7	0.2	0.1			
19	100	100	99	91	71	46	25	11	4.7	1.7	0.6	0.2	0.1			
20	100	100	99	92	72	46	24	11	4.3	1.5	0.5	0.1				
22	100	100	99	93	73	46	23	10	3.7	1.2	0.4	0.1				
24	100	100	100	94	74	46	23	9.2	3.2	0.9	0.3	0.1				
26	100	100	100	95	75	46	22	8.5	2.7	0.7	0.2					
28	100		100	95	76	46	21	7.8	2.3	0.6	0.1					
30	100	100	100	96	77	47	21	7.2	2.0	0.5	0.1					

La probabilità che il $\tilde{\chi}^2$ sia più alto del valore $\tilde{\chi}_0^2$ ottenuto nell'esperimento in funzione del numero di gradi di libertà (gli spazi bianchi indicano probabilità inferiori allo 0.05%).

Esempio: In un esperimento

 $\tilde{\chi}_0^2 = 2.6 \text{ con } 6 \text{ gradi di libertà.}$

$$P_{\nu}(\tilde{\chi}^2 > \tilde{\chi}_0^2) = 1.6\%$$

La probabilità di ottenere $\tilde{\chi}_0^2 > 2.6$ è dell' 1.6% se i dati seguissero la distribuzione ipotizzata.

La discrepanza è significativa (< 5%) → ipotesi da rigettare.

In un esperimento si misura più volte l'angolo di emissione di una particella da un decadimento radioattivo. La particella può essere emessa, nel piano, con un angolo compreso tra 0 e 180°. La tabella riassume le misure effettuate sul campione.

Angolo	0 - 36	36 - 72	72 - 108	108 - 144	144 - 180
# di emissioni	30	32	38	32	25

I dati sono consistenti con una emissione isotropa (cioè una densità di probabilità uniforme)?

								į	γ̃°							
ď	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	8.0	10.0	
1	100	48	32	22	16	11	8.3	6.1	4.6	3.4	2.5	1.9	1.4	0.5	0.2	
2	100	61	37	22	14	8.2	5.0	3.0	1.8	1.1	0.7	0.4	0.2			
3	100	68	39	21	11	5.8	2.9	1.5	0.7	0.4	0.2	0.1				
4	100	74	41	20	9.2	4.0	1.7	0.7	0.3	0.1	0.1					
5	100	78	42	19	7.5	2.9	1.0	0.4	0.1							
	0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0	2.2	2.4	2.6	2.8	3.0
1	100	65	53	44	37	32	27	24	21	18	16	14	12	11	9.4	8.3
2	100	82	67	55	45	37	30	25	20	17	14	11	9.1	7.4	6.1	5.0
3	100	90	75	61	40	30	31	24	19	14	11	8.6	6.6	5.0	3.8	2.9
4	100	94	81		52	41	31	23	17	13	9.2	6.6	4.8	3.4	2.4	1.7
5	100	96	85	70	55	42	31	22	16	11	7.5	5.1	3.5	2.3	1.6	1.0
6	100	98	88	73	57	42	30	21	14	9.5	6.2	4.0	2.5	1.6	1.0	0.6
7	100	99	90	76	59	43	30	20	13	8.2	5.1	3.1	1.9	1.1	0.7	0.4
8	100	99	92	78	60	43	29	19	12	7.2	4.2	2.4	1.4	0.8	0.4	0.2
9	100	99	94	80	62	44	29	18	11	6.3	3.5	1.9	1.0	0.5	0.3	0.1
10	100	100	95	82	63	44	29	17	10	5.5	2.9	1.5	0.8	0.4	0.2	0.1
11	100	100	96	83	64	44	28	16	9.1	4.8	2.4	1.2	0.6	0.3	0.1	0.1
12	100	100	96	84	65	45	28	16	8.4	4.2	2.0	0.9	0.4	0.2	0.1	
13	100	100	97	86	66	45	27	15	7.7	3.7	1.7	0.7	0.3	0.1	0.1	
14	100	100	98	87	67	45	27	14	7.1	3.3	1.4	0.6	0.2	0.1		
15	100	100	98	88	68	45	26	14	6.5	2.9	1.2	0.5	0.2	0.1		
16	100	100	98	89	69	45	26	13	6.0	2.5	1.0	0.4	0.1			
17	100	100	99	90	70	45	25	12	5.5	2.2	0.8	0.3	0.1			
18	100	100	99	90	70	46	25	12	5.1	2.0	0.7	0.2	0.1			
19	100	100	99	91	71	46	25	11	4.7	1.7	0.6	0.2	0.1			
20	100	100	99	92	72	46	24	11	4.3	1.5	0.5	0.1				
22	100	100	99	93	73	46	23	10	3.7	1.2	0.4	0.1				
24	100	100	100	94	74	46	23	9.2	3.2	0.9	0.3	0.1				
26	100	100	100	95	75	46	22	8.5	2.7	0.7	0.2					
28	100	100	100	95	76	46	21	7.8		0.6	0.1					
30	100	100	100	96	77	47	21	7.2	2.0	0.5	0.1					

Si lanciano tre dadi per 100 volte e si contano, per ogni lancio, quanti dadi hanno avuto uscita ≥ 5 . Il risultato degli eventi osservati è riassunto nella tabella. Stabilire, con un test χ^2 , se i dadi possono essere truccati.

Numero di dadi con uscita ≥ 5	0	1	2	3
Numero di eventi osservati	23	41	29	7

								į	ζ°							
ď	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	8.0	10.0	_
1	100	48	32	22	16	11	8.3	6.1	4.6	3.4	2.5	1.9	1.4	0.5	0.2	
2	100	61	37	22	14	8.2	5.0	3.0	1.8	1.1	0.7	0.4	0.2			
3	100	68	39	21	11	5.8	2.9	1.5	0.7	0.4	0.2	0.1				
4	100	74	41	20	9.2	4.0	1.7	0.7	0.3	0.1	0.1					
5	100	78	42	19	7.5	2.9	1.0	0.4	0.1							
	0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0	2.2	2.4	2.6	2.8	3.0
1	100	65	53	44	37	32	27	24	21	18	16	14	12	11	9.4	8.3
2	100	82	67	55	45	37	30	25	20	17	14	11	9.1	7.4		
3	00	90		61		39	31	24	19	14	11	8.6		5.0	3.8	2.9
4	100	94	81	66	52	41	31	23	17	13	9.2	6.6	4.8	3.4	2.4	1.7
5	100	96	85	70	55	42	31	22	16	11	7.5	5.1	3.5	2.3	1.6	1.0
6	100	98	88	73	57	42	30	21	14	9.5	6.2	4.0	2.5	1.6	1.0	0.6
7	100	99	90	76	59	43	30	20	13	8.2	5.1	3.1	1.9	1.1	0.7	0.4
8	100	99	92	78	60	43	29	19	12	7.2	4.2	2.4	1.4	0.8	0.4	0.2
9	100	99	94	80	62	44	29	18	11	6.3	3.5	1.9	1.0	0.5	0.3	0.1
10	100	100	95	82	63	44	29	17	10	5.5	2.9	1.5	8.0	0.4	0.2	0.1
11	100	100	96	83	64	44	28	16	9.1	4.8	2.4	1.2	0.6	0.3	0.1	0.1
12	100	100	96	84	65	45	28	16	8.4	4.2	2.0	0.9	0.4	0.2	0.1	
13	100	100	97	86	66	45	27	15	7.7	3.7	1.7	0.7	0.3	0.1	0.1	
14	100	100	98	87	67	45	27	14	7.1	3.3	1.4	0.6	0.2	0.1		
15	100	100	98	88	68	45	26	14	6.5	2.9	1.2	0.5	0.2	0.1		
16	100	100	98	89	69	45	26	13	6.0	2.5	1.0	0.4	0.1			
17	100	100	99	90	70	45	25	12	5.5	2.2	0.8	0.3	0.1			
18	100	100	99	90	70	46	25	12	5.1	2.0	0.7	0.2	0.1			
19	100	100	99	91	71	46	25	11	4.7	1.7	0.6	0.2	0.1			
20	100	100	99	92	72	46	24	11	4.3	1.5	0.5	0.1				
22	100	100	99	93	73	46	23	10	3.7	1.2		0.1				
24	100	100	100	94	74	46	23	9.2	3.2	0.9		0.1				
26		100		95	75	46	22	8.5	2.7	0.7	0.2					
28	100	100	100	95	76	46	21	7.8	2.3	0.6	0.1					
30	100	100	100	96	77	47	21	7.2	2.0	0.5	0.1					

Uno studente realizza l'esperimento descritto in figura: lascia libera un pallina a diverse altezze h da un trampolino e misura lo spazio orizzontale d percorso. Le misure sono riassunte in tabella, dove le unità di misura sono millimetri. L'incertezza su h è trascurabile, mentre ogni misura di d ha una incertezza $\sigma_d = 15$ mm. Con un test del χ^2 verificare l'ipotesi che la relazione tra h e d è $d = \alpha \sqrt{h}$ sapendo che, dai dati, si può ottenere la migliore stima del parametro α come $\alpha = 47.09$ mm $^{1/2}$.

Giustificare, in base alla massima verosimiglianza, il valore di $\alpha = 47.09 \text{ mm}^{1/2}$.

h	d
1000	1500
828	1340
800	1328
600	1172
300	800

								į	(°°							
ď	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	8.0	10.0	_
1	100	48	32	22	16	11	8.3	6.1	4.6	3.4	2.5	1.9	1.4	0.5	0.2	
2	100	61	37	22	14	8.2	5.0	3.0	1.8	1.1	0.7	0.4	0.2			
3	100	68	39	21	11	5.8	2.9	1.5	0.7	0.4	0.2	0.1				
4	100	74	41	20	9.2	4.0	1.7	0.7	0.3	0.1	0.1					
5	100	78	42	19	7.5	2.9	1.0	0.4	0.1							
	0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0	2.2	2.4	2.6	2.8	3.0
1	100	65	53	44	37	32	27	24	21	18	16	14	12	11	9.4	8.3
2	100	82	67	55	45	37	30	25	20	17	14	11	9.1	7.4	6.1	5.0
3	100	90	75	61	49	39	31	24	19	14	11	8.6	6.6	5.0	3.8	2.9
4	100	94	81	66	52	41	31	23	17	13	9.2	6.6	4.8	3.4	2.4	1.7
5	100	96	85	70	55	42	31	22	16	11	7.5	5.1	3.5	2.3	1.6	1.0
6	100	98	88	73	57	42	30	21	14	9.5	6.2	4.0	2.5	1.6	1.0	0.6
7	100	99	90	76	59	43	30	20	13	8.2	5.1	3.1	1.9	1.1	0.7	0.4
8	100	99	92	78	60	43	29	19	12	7.2	4.2	2.4	1.4	0.8	0.4	0.2
9	100	99	94	80	62	44	29	18	11	6.3	3.5	1.9	1.0	0.5	0.3	0.1
10	100	100	95	82	63	44	29	17	10	5.5	2.9	1.5	0.8	0.4	0.2	0.1
11	100	100	96	83	64	44	28	16	9.1	4.8	2.4	1.2	0.6	0.3	0.1	0.1
12	100	100	96	84	65	45	28	16	8.4	4.2	2.0	0.9	0.4	0.2	0.1	
13	100	100	97	86	66	45	27	15	7.7	3.7	1.7	0.7	0.3	0.1	0.1	
14	100	100	98	87	67	45	27	14	7.1	3.3	1.4	0.6	0.2	0.1		
15	100	100	98	88	68	45	26	14	6.5	2.9	1.2	0.5	0.2	0.1		
16	100	100	98	89	69	45	26	13	6.0	2.5	1.0	0.4	0.1			
17	100	100	99	90	70	45	25	12	5.5	2.2	0.8	0.3	0.1			
18	100	100	99	90	70	46	25	12	5.1	2.0	0.7	0.2	0.1			
19	100	100	99	91	71	46	25	11	4.7	1.7	0.6	0.2	0.1			
20	100	100	99	92	72	46	24	11	4.3	1.5	0.5	0.1				
22	100	100	99	93	73	46	23	10	3.7	1.2		0.1				
24	100	100	100	94	74	46	23	9.2	3.2	0.9		0.1				
26	100	100	100	95	75	46	22	8.5	2.7	0.7	0.2					
28	100		100	95	76	46	21	7.8	2.3	0.6						
30	100	100	100	96	77	47	21	7.2	2.0	0.5	0.1					

Problema: 48,06 ≠ 47,09

Fit utilizzato per la regressione lineare: y = A + Bx

Ma relazione funzionale: $d = \alpha \sqrt{h}$ del tipo y = Bx

Fit lineare a un solo parametro fornisce il risultato corretto

Criterio del minimo χ^2

- Per stimare parametri incogniti, in alternativa al criterio della massima verosimiglianza, si possono variare i parametri α_j in modo tale da minimizzare il χ^2 .
- Si ottengono in questo modo "contemporaneamente" il χ^2_{min} , cioè il χ^2_0 , da utilizzare nel test, ed i parametri ottimali della distribuzione per il calcolo delle E_i (oppure delle $g(x_i)$).
- E' il criterio del minimo χ^2 (vedi pagg. 182-183 del Fornasini)
- Se il parametro incognito è uno solo, lo si può stimare calcolando il χ^2 per alcuni valori nell'intorno del minimo e trovando poi il minimo in base alla parabola passante per i tre (o più) punti più bassi.

altezza	d	yi (alfa=47,09)	yi (alfa=46,5)	yi (alfa=47,5)
1000	1500	1489,11655	1470,459112	1502,081889
828	1340	1355,014239	1338,036995	1366,811984
800	1328	1331,906333	1315,218613	1343,502884
600	1172	1153,46472	1139,01273	1163,507628
300	800	815,6227253	805,4036255	822,7241336

chi_quadro
9,59
4,21
6,9

Il minimo della parabola si trova per: $\frac{\partial y}{\partial x} = 0 \Longrightarrow \frac{\partial (15,68x^2 - 1476,6x + 34767)}{\partial x} = 0$

$$2 * 15,68x - 1476,6 = 0 \Rightarrow x = \frac{1476,6}{2 * 15,68} = 47,09$$
 (cvd)

Si effettuano misure della variabile k = numero di auto che escono da un certo casello autostradale in un intervallo di 5 min. Verificare l'ipotesi che la variabile è poissoniana, con un test del χ^2

k	O_k	
0	18	
1	31	
2	16	
3	15	
4	7	
5	4	

								ā	Ȱ							
ď	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	8.0	10.0	
1	100	48	32	22	16	11	8.3	6.1	4.6	3.4	2.5	1.9	1.4	0.5	0.2	
2	100	61	37	22	14	8.2	5.0	3.0	1.8	1.1	0.7	0.4	0.2			
3	100	68	39	21	11	5.8	2.9	1.5	0.7	0.4	0.2	0.1				
4	100	74	41	20	9.2	4.0	1.7	0.7	0.3	0.1	0.1					
5	100	78	42	19	7.5	2.9	1.0	0.4	0.1							
	0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0	2.2	2.4	2.6	2.8	3.0
1	100	65	53	44	37	32	27	24	21	18	16	14	12	11	9.4	8.3
2	100	82	67	55	45	37	30	25	20	17	14	11	9.1	7.4	6.1	5.0
3	100	90	75	61	49	39	31	24	19	14	11	8.6	6.6	5.0	3.8	2.9
4	100	94	81	66	52	41	31	23	17	13	9.2	6.6	4.8	3.4	2.4	1.7
5	100	96	85	70	55	42	31	22	16	11	7.5	5.1	3.5	2.3	1.6	1.0
6	100	98	88	73	57	42	30	21	14	9.5	6.2	4.0	2.5	1.6	1.0	0.6
7	100	99	90	76	59	43	30	20	13	8.2	5.1	3.1	1.9	1.1	0.7	0.4
8	100	99	92	78	60	43	29	19	12	7.2	4.2	2.4	1.4	0.8	0.4	0.2
9	100	99	94	80	62	44	29	18	11	6.3	3.5	1.9	1.0	0.5	0.3	0.1
10	100	100	95	82	63	44	29	17	10	5.5	2.9	1.5	0.8	0.4	0.2	0.1
11	100	100	96	83	64	44	28	16	9.1	4.8	2.4	1.2	0.6	0.3	0.1	0.1
12	100	100	96	84	65	45	28	16	8.4	4.2	2.0	0.9	0.4	0.2	0.1	
13	100	100	97	86	66	45	27	15	7.7	3.7	1.7	0.7	0.3	0.1	0.1	
14	100	100	98	87	67	45	27	14	7.1	3.3	1.4	0.6	0.2	0.1		
15	100	100	98	88	68	45	26	14	6.5	2.9	1.2	0.5	0.2	0.1		
16	100	100	98	89	69	45	26	13	6.0	2.5	1.0	0.4	0.1			
17	100	100	99	90	70	45	25	12	5.5	2.2	0.8	0.3	0.1			
18	100	100	99	90	70	46	25	12	5.1	2.0	0.7	0.2	0.1			
19	100	100	99	91	71	46	25	11	4.7	1.7	0.6	0.2	0.1			
20	100	100	99	92	72	46	24	11	4.3	1.5	0.5	0.1				
22	100	100	99	93	73	46	23	10	3.7	1.2	0.4	0.1				
24	100	100	100	94	74	46	23	9.2	3.2	0.9		0.1				
26	100	100	100	95	75	46	22	8.5	2.7	0.7	0.2					
28	100	100	100	95	76	46	21	7.8	2.3	0.6	0.1					
30	100	100	100	96	77	47	21	7.2	2.0	0.5	0.1					

Un botanico incrocia piante a fiori rosa di una determinata specie ottenendo dei discendenti, di cui 55 a fiori bianchi, 115 rosa e 66 rossi. Il rapporto atteso di piante a fiori bianchi, rosa e rossi è, in base alle leggi della genetica, di 1:2:1.

Verificare se i dati sono consistenti con le previsioni, tramite un test del χ^2

								į	γ̃°							
ď	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	8.0	10.0	_
1	100	48	32	22	16	11	8.3	6.1	4.6	3.4	2.5	1.9	1.4	0.5	0.2	
2	100	61	37	22	14	8.2	5.0	3.0	1.8	1.1	0.7	0.4	0.2			
3	100	68	39	21	11	5.8	2.9	1.5	0.7	0.4	0.2	0.1				
4	100	74	41	20	9.2	4.0	1.7	0.7	0.3	0.1	0.1					
5	100	78	42	19	7.5	2.9	1.0	0.4	0.1							
	0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0	2.2	2.4	2.6	2.8	3.0
1	100	65	53	44	37	32	27	24	21	18	16	14	12	11	9.4	8.3
2	100	82	67		45	37	30	25	20	17	14	11	9.1	7.4	6.1	5.0
3	100	90	75	61	49	39	31	24	19	14	11	8.6	6.6	5.0	3.8	2.9
4	100	94	81	66	52	41	31	23	17	13	9.2	6.6	4.8	3.4	2.4	1.7
5	100	96	85	70	55	42	31	22	16	11	7.5	5.1	3.5	2.3	1.6	1.0
6	100	98	88	73	57	42	30	21	14	9.5	6.2	4.0	2.5	1.6	1.0	0.6
7	100	99	90	76	59	43	30	20	13	8.2	5.1	3.1	1.9	1.1	0.7	0.4
8	100	99	92	78	60	43	29	19	12	7.2	4.2	2.4	1.4	0.8	0.4	0.2
9	100	99	94	80	62	44	29	18	11	6.3	3.5	1.9	1.0	0.5	0.3	0.1
10	100	100	95	82	63	44	29	17	10	5.5	2.9	1.5	0.8	0.4	0.2	0.1
11	100	100	96	83	64	44	28	16	9.1	4.8	2.4	1.2	0.6	0.3	0.1	0.1
12	100	100	96	84	65	45	28	16	8.4	4.2	2.0	0.9	0.4	0.2	0.1	
13	100	100	97	86	66	45	27	15	7.7	3.7	1.7	0.7	0.3	0.1	0.1	
14	100	100	98	87	67	45	27	14	7.1	3.3	1.4	0.6	0.2	0.1		
15	100	100	98	88	68	45	26	14	6.5	2.9	1.2	0.5	0.2	0.1		
16	100	100	98	89	69	45	26	13	6.0	2.5	1.0	0.4	0.1			
17	100	100	99	90	70	45	25	12	5.5	2.2	0.8	0.3	0.1			
18	100	100	99	90	70	46	25	12	5.1	2.0	0.7	0.2	0.1			
19	100	100	99	91	71	46	25	11	4.7	1.7	0.6	0.2	0.1			
20	100	100	99	92	72	46	24	11	4.3	1.5	0.5	0.1				
22	100	100	99	93	73	46	23	10	3.7	1.2	0.4	0.1				
24		100	100	94	74	46	23	9.2	3.2	0.9	0.3	0.1				
26		100		95	75	46	22	8.5	2.7	0.7	0.2					
28		100		95	76	46	21	7.8	2.3	0.6	0.1					
30	100	100	100	96	77	47	21	7.2	2.0	0.5	0.1					

Si misura il coefficiente di attenuazione μ di vari metalli ai raggi gamma. Le misure sono riassunte in tabella, dove Z indica il numero atomico del metallo. Tramite un test del χ^2 verificare l'ipotesi che la dipendenza di μ da Z è del tipo:

$$\mu = 0.49 ln(Z) - 1.07$$

dove i due coefficienti numerici sono stati ottenuti tramite un opportuno *fit* ai dati mostrati in tabella.

metallo	Z	μ (cm ⁻¹)
Al	13	0.178 ± 0.006
Fe	26	0.516 ± 0.012
Cu	29	0.553 ± 0.014
Pb	82	1.07 ± 0.02

								į	ζ°							
ď	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	8.0	10.0	_
1	100	48	32	22	16	11	8.3	6.1	4.6	3.4	2.5	1.9	1.4	0.5	0.2	
2	80	61	37	22	14	8.2	5.0	3.0	1.8	1.1	0.7	0.4	0.2			
3	100	68	39	21	11	5.8	2.9	1.5	0.7	0.4	0.2	0.1				
4	100	74	41	20	9.2	4.0	1.7	0.7	0.3	0.1	0.1					
5	100	78	42	19	7.5	2.9	1.0	0.4	0.1							
	0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0	2.2	2.4	2.6	2.8	3.0
1	100	65	53	44	37	32	27	24	21	18	16	14	12	11	9.4	8.3
2	100	82	67	55	45	37	30	25	20	17	14	11	9.1	7.4	6.1	5.0
3	100	90	75	61	49	39	31	24	19	14	11	8.6	6.6	5.0	3.8	2.9
4	100	94	81	66	52	41	31	23	17	13	9.2	6.6	4.8	3.4	2.4	1.7
5	100	96	85	70	55	42	31	22	16	11	7.5	5.1	3.5	2.3	1.6	1.0
6	100	98	88	73	57	42	30	21	14	9.5	6.2	4.0	2.5	1.6	1.0	0.6
7	100	99	90	76	59	43	30	20	13	8.2	5.1	3.1	1.9	1.1	0.7	0.4
8	100	99	92	78	60	43	29	19	12	7.2	4.2	2.4	1.4	0.8	0.4	0.2
9	100	99	94	80	62	44	29	18	11	6.3	3.5	1.9	1.0	0.5	0.3	0.1
10	100	100	95	82	63	44	29	17	10	5.5	2.9	1.5	0.8	0.4	0.2	0.1
11	100	100	96	83	64	44	28	16	9.1	4.8	2.4	1.2	0.6	0.3	0.1	0.1
12	100	100	96	84	65	45	28	16	8.4	4.2	2.0	0.9	0.4	0.2	0.1	
13	100	100	97	86	66	45	27	15	7.7	3.7	1.7	0.7	0.3	0.1	0.1	
14	100	100	98	87	67	45	27	14	7.1	3.3	1.4	0.6	0.2	0.1		
15	100	100	98	88	68	45	26	14	6.5	2.9	1.2	0.5	0.2	0.1		
16	100	100	98	89	69	45	26	13	6.0	2.5	1.0	0.4	0.1			
17	100	100	99	90	70	45	25	12	5.5	2.2	0.8	0.3	0.1			
18	100	100	99	90	70	46	25	12	5.1	2.0	0.7	0.2	0.1			
19	100	100	99	91	71	46	25	11	4.7	1.7	0.6	0.2	0.1			
20	100	100	99	92	72	46	24	11	4.3	1.5	0.5	0.1				
22	100	100	99	93	73	46	23	10	3.7	1.2	0.4	0.1				
24	100	100	100	94	74	46	23	9.2	3.2	0.9		0.1				
26	100	100	100	95	75	46	22	8.5	2.7	0.7						
28		100		95	76	46	21	7.8	2.3							
30	100	100	100	96	77	47	21	7.2	2.0	0.5	0.1					

In un esperimento, si lascia cadere una sfera di acciaio da una altezza di 150 m con velocità iniziale nulla e se ne misura, a intervalli di 1.00 s, la quota y. La tabella riassume le misure, per le quali l'incertezza su y è di 5 cm. Assumendo per g il valore di 9.81 m/s², si verifichi, con un test del χ^2 , la validità della ipotesi che la sfera si muove solo sotto l'azione del proprio peso (cioè che altre forze, come l'attrito con l'aria, sono

trascurabili).

t (s)	y (m)
1	145.15
2	130.30
3	105.90
4	71.45
5	27.30

								,	χ̃°2							
ď	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	8.0	10.0	_
1	100	48	32	22	16	11	8.3	6.1	4.6	3.4	2.5	1.9	1.4	0.5	0.2	
2	100	61	37	22	14	8.2	5.0	3.0	1.8	1.1	0.7	0.4	0.2			
3	100	68	39	21	11	5.8	2.9	1.5	0.7	0.4	0.2	0.1				
4	100	74	41	20	9.2	4.0	1.7	0.7	0.3	0.1	0.1					
5	100	78	42	19	7.5	2.9	1.0	0.4	0.1							
	0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0	2.2	2.4	2.6	2.8	3.0
1	100	65	53	44	37	32	27	24	21	18	16	14	12	11	9.4	8.3
2	100	82	67	55	45	37	30	25	20	17	14	11	9.1	7.4	6.1	5.0
3	100	90	75	61	49	39	31	24	19	14	11	8.6	6.6	5.0	3.8	2.9
4	100	94	81	66	52	41	31	23	17	13	9.2	6.6	4.8	3.4	2.4	1.7
5	100	96	85	70	55	42	31	22	16	11	7.5	5.1	3.5	2.3	1.6	1.0
6	100	98	88	73	57	42	30	21	14	9.5	6.2	4.0	2.5	1.6	1.0	0.6
7	100	99	90	76	59	43	30	20	13	8.2	5.1	3.1	1.9	1.1	0.7	0.4
8	100	99	92	78	60	43	29	19	12	7.2	4.2	2.4	1.4	0.8	0.4	0.2
9	100	99	94	80	62	44	29	18	11	6.3	3.5	1.9	1.0	0.5	0.3	0.1
10	100	100	95	82	63	44	29	17	10	5.5	2.9	1.5	0.8	0.4	0.2	0.1
11	100	100	96	83	64	44	28	16	9.1	4.8	2.4	1.2	0.6	0.3	0.1	0.1
12	100	100	96	84	65	45	28	16	8.4	4.2	2.0	0.9	0.4	0.2	0.1	
13	100	100	97	86	66	45	27	15	7.7	3.7	1.7	0.7	0.3	0.1	0.1	
14	100	100	98	87	67	45	27	14	7.1	3.3	1.4	0.6	0.2	0.1		
15	100	100	98	88	68	45	26	14	6.5	2.9	1.2	0.5	0.2	0.1		
16	100	100	98	89	69	45	26	13	6.0	2.5	1.0	0.4	0.1			
17	100	100	99	90	70	45	25	12	5.5	2.2	0.8	0.3	0.1			
18	100	100	99	90	70	46	25	12	5.1	2.0	0.7	0.2	0.1			
19	100	100	99	91	71	46	25	11	4.7	1.7	0.6	0.2	0.1			
20	100	100	99	92	72	46	24	11	4.3	1.5	0.5	0.1				
22	100	100	99	93	73	46	23	10	3.7	1.2	0.4	0.1				
24	100	100	100	94	74	46	23	9.2	3.2	0.9	0.3	0.1				
26	100	100	100	95	75	46	22	8.5	2.7	0.7	0.2					
28	100	100	100	95	76	46	21	7.8	2.3	0.6	0.1					
30	100	100	100	96	77	47	21	7.2	2.0	0.5	0.1					

Si ipotizza che la variabile casuale x segua la densità di probabilità $\Phi(x)$:

$$\Phi(x) = bG(x; \mu = 5, \sigma = 1) + (1-b)\frac{1}{10}$$

nell'intervallo $0 \le x \le 10$. Nella espressione di $\Phi(x)$, G rappresenta la densità di probabilità gaussiana e b $(0 \le b \le 1)$ è un parametro da stimare, in base alle misure riportate in tabella, con un test del χ^2 .

valori di s		2 ≤ x < 4	4 ≤ x < 6	6 ≤ x < 8	8 ≤ x ≤ 10
num. di misure	157	203	286	187	167

Sapendo che $\chi^2 = 3.0828$ se b = 0.15 e che $\chi^2 = 9.2988$ se b = 0.25:

- i) calcolare il χ^2 per b = 0.2;
- ii) determinare la migliore stima del parametro b, minimizzando il χ^2 ;
- iii) calcolare il χ^2 ridotto, in corrispondenza della migliore stima di b.

Tabella A.4 Aree della distribuzione normale standard

Questa tabella contiene i valori dell'area sotto la curva della distribuzione normale standard relativa all'intervallo di estremi 0 e z (l'area ombreggiata in figura), dove z rappresenta il valore specifico della variabile normale standard Z.

2	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0754
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
0.6	0.2258	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2518	0.2549
0.7	0.2580	0.2612	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
0.8	0.2881	0.2910	0.2939	0.2967	0.2996	0.3023	0.3051	0.3078	0.3106	0.3133
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
2.2	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890
2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936
2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952
2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0,4960	0.4961	0.4962	0.4963	0.4964
2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974
2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.4981
2.9	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986
3.0	0.4987	0.4987	0.4987	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.4990
3.1	0.4990	0.4991	0.4991	0.4991	0.4992	0.4992	0.4992	0.4992	0.4993	0.4993
3.2	0.4993	0.4993	0.4994	0.4994	0.4994	0.4994	0.4994	0.4995	0.4995	0.4995
3.3	0.4995	0.4995	0.4995	0.4996	0.4996	0.4996	0.4996	0.4996	0.4996	0.4997
3.4	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4998
3.5	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998
3.6	0.4998	0.4998	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999
3.7	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999
3.8	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0,4999	0.4999	0.4999
3.9	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000

Tavola della probabilità della curva normale standardizzata

Tavola delle probabilità cumulate per valori NEGATIVI di z

						_			2	
z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	80.0	0.09
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
-3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	8000.0	0.0007	0.0007
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	8800.0	0.0066	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1.7 -1.6	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
-1.5					0.0618			0.0475	0.0465	0.0455
-1.5	0.0668	0.0655	0.0643	0.0630	0.0016	0.0606	0.0594	0.0582	0.0571	0.0008
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
-1.3	0.0968	0.0753	0.0934	0.0918	0.0901	0.0735	0.0869	0.0853	0.0838	0.0823
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0025
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
-1.0	0.1001	0.1502	0.1000	0.1010	0.1402	0.1400	0.1440	0.1420	0.1401	0.1075
-0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
-0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
-0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
-0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
-0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
-0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
-0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
-0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
-0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641

Fonte: Murray R. Spiegel, Schaum's Outline of Theory and Problems of Statistics (seconda edizione), McGraw-Hill, New York 1848. Reprodotto con il permesso della McGraw-Hill Companies.

								,	χ̃°2							
d	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	8.0	10.0	_
1	100	48	32	22	16	11	8.3	6.1	4.6	3.4	2.5	1.9	1.4	0.5	0.2	
2	100	61	37	22	14	8.2	5.0	3.0	1.8	1.1	0.7	0.4	0.2			
3	100	68	39	21	11	5.8	2.9	1.5	0.7	0.4	0.2	0.1				
4	100	74	41	20	9.2	4.0	1.7	0.7	0.3	0.1	0.1					
5	100	78	42	19	7.5	2.9	1.0	0.4	0.1							
	0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0	2.2	2.4	2.6	2.8	3.0
1	100	65	53	44	37	32	27	24	21	18	16	14	12	11	9.4	8.3
2	100	82	67	55	45	37	30	25	20	17	14	11	9.1	7.4	6.1	5.0
3	100	90	75	61	49	39	31	24	19	14	11	8.6	6.6	5.0	3.8	2.9
4	100	94	81	66	52	41	31	23	17	13	9.2	6.6	4.8	3.4	2.4	1.7
5	100	96	85	70	55	42	31	22	16	11	7.5	5.1	3.5	2.3	1.6	1.0
6	100	98	88	73	57	42	30	21	14	9.5	6.2	4.0	2.5	1.6	1.0	0.6
7	100	99	90	76	59	43	30	20	13	8.2	5.1	3.1	1.9	1.1	0.7	0.4
8	100	99	92	78	60	43	29	19	12	7.2	4.2	2.4	1.4	0.8	0.4	0.2
9	100	99	94	80	62	44	29	18	11	6.3	3.5	1.9	1.0	0.5	0.3	0.1
10	100	100	95	82	63	44	29	17	10	5.5	2.9	1.5	0.8	0.4	0.2	0.1
11	100	100	96	83	64	44	28	16	9.1	4.8	2.4	1.2	0.6	0.3	0.1	0.1
12	100	100	96	84	65	45	28	16	8.4	4.2	2.0	0.9	0.4	0.2	0.1	
13	100	100	97	86	66	45	27	15	7.7	3.7	1.7	0.7	0.3	0.1	0.1	
14	100	100	98	87	67	45	27	14	7.1	3.3	1.4	0.6	0.2	0.1		
15	100	100	98	88	68	45	26	14	6.5	2.9	1.2	0.5	0.2	0.1		
16	100	100	98	89	69	45	26	13	6.0	2.5	1.0	0.4	0.1			
17	100	100	99	90	70	45	25	12	5.5	2.2	0.8	0.3	0.1			
18	100	100	99	90	70	46	25	12	5.1	2.0	0.7	0.2	0.1			
19	100	100	99	91	71	46	25	11	4.7	1.7	0.6	0.2	0.1			
20	100	100	99	92	72	46	24	11	4.3	1.5	0.5	0.1				
22	100	100	99	93	73	46	23	10	3.7	1.2	0.4	0.1				
24	100	100	100	94	74	46	23	9.2	3.2	0.9	0.3	0.1				
26	100	100	100	95	75	46	22	8.5	2.7	0.7	0.2					
28	100	100	100	95	76	46	21	7.8	2.3	0.6	0.1					
30	100	100	100	96	77	47	21	7.2	2.0	0.5	0.1					