See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/12253300

A New Three-Carbon Synthon for Efficient Synthesis of Benzannelated and 1-(2-Arylethenyl) Heterocycles

ARTICLE in THE JOURNAL OF ORGANIC CHEMISTRY · DECEMBER 2000

Impact Factor: 4.72 · DOI: 10.1021/jo000946r · Source: PubMed

CITATIONS

READS

7 AUTHORS, INCLUDING:

47

Dmytro Tymoshenko

Saudi Basic Industries Corporation (SABIC)

44 PUBLICATIONS 325 CITATIONS

SEE PROFILE

22

Christopher B. Cooper

Global Alliance for TB Drug Development

33 PUBLICATIONS 567 CITATIONS

SEE PROFILE

A New Three-Carbon Synthon for Efficient Synthesis of Benzannelated and 1-(2-Arylethenyl) Heterocycles

Alan R. Katritzky,* S Dmytro O. Tymoshenko, Daphne Monteux, Vladimir Vvedensky, George Nikonov,§ Christopher B. Cooper,‡ and Milind Deshpande

Center for Heterocyclic Compounds, University of Florida, Department of Chemistry, Gainesville, Florida 32611–7200, Bristol Myers Squibb Co., Pharmaceutical Research Institute, Route 206 & Provinceline Road, Princeton, New Jersey 08563, and Bristol Myers Squibb Co., Pharmaceutical Research Institute, 5 Research Pkwy, Wallingford, Connecticut 06492

katritzky@chem.ufl.edu

Received June 22, 2000

The novel three-carbon synthon 1-(1*H*-1,2,3-benzotriazol-1-yl)-3-chloroacetone for the synthesis of benzothiazoles, pyrido[1,2-a]indoles, and styryl-substituted indolizines and imidazo[1,2-a]pyridines is reported. The proposed routes are a general and efficient approach for heterocyclizations followed by benzannelations or attachment of arylethenyl pharmacophores.

Introduction

Benzannelation and the introduction of an arylethenyl substituent are efficient methods for the diversification of heterocycles of biological value. Benzo-fused 2-aminothiazoles (methabenzthiazuron, riluzole, sabeluzole, tioxidazole¹), pyrido[1,2-a]benzimidazoles (rifaximin,¹ potential anxiolytics, 2a-2c antineoplastics, 3 and anticancer agents⁴), and pyrido[1,2-a|indoles^{5a-5c} demonstrate activities comparable to those of the corresponding nonfused systems. The introduction of arylethenyl substituents has been used widely for the modification of drugs derived from quinoline, ⁶ pyridinium, ⁷ thiazole, ⁸ and thiazolium⁹ ring systems. These types of diversification each create systems with additional conjugation and divergent syntheses from single precursors could allow a combinatorial approach.

Most approaches to styryl heterocycles involve reactions of heterocyclic activated methylene substrates with aldehydes or their derivatives. 10,11 This process is facilitated by an activating group in the methylene component.12,13

- § University of Florida.
- [‡] Bristol Myers Squibb Co., New Jersey.

 Bristol Myers Squibb Co., Connecticut.
- (1) The Merck Index, 12th ed.; Chapman and Hall: London, 1996;
- (2) (a) Maryanoff, B. E.; McComsey, D. F.; Ho, W.; Shank, R. P.; Dubinsky, B. *Bioorg. Med. Chem. Lett.* **1996**, *6*, 333. (b) Cohen, J. H.; Maryanoff, C. A.; Stefanick, S. M.; Sorgi, K. L.; Villani, F. J. *Org.* Process Res. Dev. 1999, 3(4), 260. (c) Griebel, G.; Perrault, G.; Tan, S.;
- Schoemaker, H.; Sanger, D. J. *Behav. Pharmacol.* **1999**, *10*(5), 483. (3) Badawey, E.; Kappe, T. *Eur. J. Med. Chem.* **1995**, *30*, 327. (4) El-Hawash, S. A. M.; Badawey, E.; Kappe, T. *Pharmazie* **1999**, 54, 341.
- (5) (a) Taylor, D. L. et al. Antiviral Chem. Chemother. 1999, 10, 79. (b) Srivastava, S. K. et al. *J. Med. Chem.* **1999**, *42*, 1667. (c) Katsura, Y.; Inoue, Y.; Nishino, S.; Tomoi, M.; Itoh, H.; Takasugi, H. *Chem.*
- 1.; Indue, Y.; Nishino, S.; Tomol, M.; Iton, H.; Takasugi, H. Chem. Pharm. Bull. 1992, 40(6), 1424.
 (6) Rubtsov, M. V.; Pershin, G. N.; Yanbuktin, L. A.; Pelenitsina, L. A.; Gurevich, T. J.; Novitskaya, N. A.; Milovanova, S. N.; Vichkanova, S. A. J. Med. Pharm. Chem. 1960, 2, 113.
- (7) Philips, A. P.; Burrows, R. B. U.S. Patent 3085935, 1963; Chem. Abstr. 1963, 59, 2598g.
- (8) Adelroth, E.; Inman, M. D.; Summers, E.; Pace, D.; Modi, M.; O'Byrne P. M. *J. Allergy Clin. Immunol.* **1997**, *2*, 210.

 (9) In *Martindale. The extra Pharmacopoeia*, 28th ed.; Reynolds, J.
- E. F., Ed.; Pharmaceutical Press: London, 1982; p 1747.

Scheme 1

Classically important methods for the preparation of benzo-fused heterocycles normally involve construction of a heterocycle onto a preformed benzene ring. 6,5,6-Tricyclic type systems (2) are usually synthesized using one of two general approaches (i and ii of Scheme 1). Route (i) effects the closure of a five-membered ring in substrates 1, containing an aryl group attached to a sixmembered heteroaromatic ring via carbon $(X = CR)^{14,15}$ or nitrogen (X = N). This approach involves thermal-¹⁷ or photodehydrocyclization¹⁶ and often affords systems 2 in low yields. Intermediates 1 are usually synthesized starting from *o*-chloronitrobenzenes, ^{18–20} which narrows the scope for diversification in the fused target systems.

- (10) Jayabalan, L.; Shanmugam, P. Synthesis 1991, 217.
- (11) Thumel, R. P.; Lefoulon, F.; Cantu, D.; Mahadevan, R. J. Org. Chem. 1984, 49(12), 2208.
- (12) Konakahara, T.; Takagi, Y. Tetrahedron Lett. 1980, 21(21),
- (13) Konakahara, T.; Takagi, Y. Heterocycles 1984, 22(12), 2765.
 (14) Soldatenkov, A. T.; Bagdadi, M. V.; Fomichev, A. A.; Prostakov, N. S. Zh. Org. Khim. 1982, 18, 902.
 - (15) Ohsawa, A.; Kawaguchi, T.; Igeta, H. Chem. Lett. 1981, 1737.
- (16) Baklanov, M. V.; Frolov, A. N. *Zh. Org. Khim.* **1991**, *27*, 638. (17) Prostakov, N. S.; Varlamov, A. V.; Shendrik, I. V.; Anisimiv,
- B. N.; Krapivko, A. P.; Lavani-Edogiaverie, S.; Fomichev, A. A. Khim. Geterotsikl. Soedin. 1983, 1384.

The second route (ii) represents heteroring annelation of intermediates 3 bearing a leaving group L, with three carbon dielectrophiles (e.g., 1,3-diketones^{21,22} or propargyl bromide²³). This provides systems **2** in 10–40% yields, but gives regioisomer mixtures at the intermediate step.²³

Type 5,6-fused bicycles 6 have previously been prepared by pathway (iv) from 5 via photodehydrocyclization²⁴ or thermal²⁵ dehydrocyclization, which gives moderate to good yields of 5,6 systems 6, but frequently only as the major component of complex mixtures.

To the best of our knowledge, the approaches shown in synthetic routes (iii) and (v) were not previously applied to systems of types 2 and 6. Pathways (iii) and (v) require intermediates 4 and 7, respectively. Compounds 4 and 7 could also be used for the introduction of styryl substituents and are, thus, of interest as multipurpose precursors.

Our recent studies of the application of benzotriazoloalkyl(hetero)aromatics as benzoannelation precursors in alternative approaches to benzo-fused fivemembered heterocycles have provided versatile new synthesis of benzo[b]furans, 26 benzo[b]thiophenes, 27 and 5,6-dihydro-4*H*-pyrrolo[3,2,1-*ij*]quinolines.²⁸ In these transformations, carbanions of the starting benzotriazolylmethyl-heterocycles (easily prepared from the corresponding five-membered heteroaromatics) undergo Michaeltype addition to α,β -unsaturated ketones and subsequent ring closure. Benzotriazolylmethyl heterocycles are also convenient precursors of styryl heteroaromatics.²⁷

We now present an efficient two-step method for the preparation of 5,6- and 6,5,6-fused, and styryl-substituted, heteroaromatic systems based on common precursors which should allow combinatorial approaches to their synthesis. The new three-carbon synthon 1-(1*H*-1,2,3benzotriazol-1-yl)-3-chloroacetone (11) acts as a 1,2dielectrophile in the first step of [2 + 3]-type heterocyclizations to give 13, 14, and 15 (Scheme 2). In these intermediates, the benzotriazoloalkyl(hetero)aromatic structure intermediate reacts either as a 1,3-dinucleophilic moiety for the benzannelation step (to give 16, 17) or as a benzotriazole activated methylene intermediate to give heteroaromatic styryl systems 18 and 19.

Intermediate 11 was prepared in 84% yield by heating neat chloroacetyl chloride with trimethylsilylmethylbenzotriazole 10 (cf. ref 29). Further reaction of 11 with thioureas 12a, 2-alkylpyridines 12b, and 2-aminopyridines 12c as dinucleophiles led to novel benzotriazolylmethyl compounds 13a-h, 14a-e, and 15a-f. 4-(Benzotriazolylmethyl)-2-aminothiazoles 13 were obtained in good to excellent yields (Table 1). When thiourea was reacted with 11 in DMF instead of ethanol only N-[4-(1H-1,2,3-benzotriazol-1-ylmethyl)-1,3-thiazol-2-yl]form-

Scheme 2

Table 1. 4-Benzotriazolylmethyl 2-Aminothiazoles 13

entry	\mathbb{R}^1	\mathbb{R}^2	yield, %
a	Н	Н	59
b	Ph	Н	82
c	4 -Cl-C $_6$ H $_4$	Н	77
d	Ph	Ph	86
e	$4-NO_2-C_6H_4$	Н	69
f	2 -Cl-C $_6$ H $_4$	H	77
g	$4-CH_3O-C_6H_4$	H	65
ĥ	1-naphthyl	Н	81

Table 2. 2-Benzotriazolylmethyl Indolizines 14

entry	R	\mathbb{R}^1	\mathbb{R}^2	yield, %
а	Н	Н	Н	62
b	Н	Н	Me	66
c	Н	Me	Н	64
d	Me	Н	Н	54
e		$(CH_2)_3$	Н	32

amide was isolated in 54% yield. In the case of 2-(benzotriazolylmethyl)-indolizines 14 (Table 2), this transformation demanded harsher conditions (refluxing DMF instead of ethanol for 13 and 15), and the reactivity of substituted 2-alkylpyridines depended on the position of the substituent in the starting pyridine. Thus, almost quantitative conversion of the starting material was achieved in 4, 0.5 and 0.75 h during the preparation of compounds 14b-d, correspondingly. Benzotriazolylsubstituted indolizines 14a-d were prepared in 54-66% yields, while the yield of 14e was 32%. No reaction was observed in the case of 2,6-dimethylpyridine. The yields of 1-(imidazo[1,2-a]pyridin-2-ylmethyl)-1H-1,2,3-benzotriazoles 15a-f were 49-76% (Table 3).

⁽¹⁸⁾ Anderson, D. J.; Taylor, A. J. J. Heterocycl. Chem. 1986, 23, 1091.

⁽¹⁹⁾ Morgan, G. T.; Stewart, J. Chem. Ind. 1937, 670.

⁽²⁰⁾ Stephenson, L.; Warburton, W. K. J. Chem. Soc. C 1970, 1355.

⁽²¹⁾ Popov, I. I. Khim. Geterotsikl. Soedin. 1989, 1695

⁽²²⁾ Kuz'menko, V. V.; Komissarov, V. N.; Simonov, A. M. Khim. Geterotsikl. Soedin. 1981, 1497.

⁽²³⁾ Bergerat, I.; Galons, H.; Rabaron, A.; Combet-Farnoux, C.; Miocque, M. J. Heterocycl. Chem. 1985, 22, 369.

⁽²⁴⁾ Muthusamy, S.; Paramasivam, R.; Ramakrishnan, V. T. J. Heterocycl. Chem. 1991, 28, 759.

⁽²⁵⁾ Tweit, R. C. J. Heterocycl. Chem. 1970, 687.
(26) Katritzky, A. R.; Fali, C. N.; Li, J. J. Org. Chem. 1997, 62, 8205. (27) Katritzky, A. R.; Serdyuk, L.; Xie, L.; Ghiviriga, I. J. Org. Chem.

⁽²⁸⁾ Katritzky, A. R.; Fali, C. N.; Li, J. J. Org. Chem. 1997, 62, 4148. (29) Katritzky, A. R.; Lam, J. N. Heteroatom Chem. 1990, 1, 21.

Table 3. 1-(Imidazo[1,2-a]pyridin-2-ylmethyl)-1*H*-1,2,3benzotriazoles 15

entry	substituents	yield, %
a	Н	55
b	7-Me	49
c	8-CH ₃	50
d	$5,7-(CH_3)_2$	43
e	$8-OCH_2C_6H_5$	76
f	6-Cl	50

Table 4. 5,7-Disubstituted 2-Aminobenzothiazoles 16

entry	\mathbb{R}^1	\mathbb{R}^2	yield, %
а	Ph	Ph	74
b	$4-CH_3-C_6H_4$	$4-CH_3O-C_6H_4$	63
c	Ph	$4-NO_2-C_6H_4$	59
d	Ph	$4-Cl-C_6H_4$	72
e	H	Ph	25

The structure of compounds **13–15** was confirmed by ¹H and ¹³C NMR spectra.

Reaction of **13** with chalcones in ethanol in the presence of sodium ethoxide led to benzothiazoles **16a-d** in good yields (Table 4, Scheme 2). Reaction with cinnamic aldehyde ($R^1 = H$, $R^2 = Ph$), which is prone to side reactions in strong basic media, gave the desired N,5diphenyl-1,3-benzothiazole-2-amine (16e) in 25% yield. We further extended this result to the synthesis of pyrido-[1,2-a]indoles 17a,b in 54% and 57% yields. Intermediates 14 demanded generation of carbanion by treatment with BuLi and sequential cyclization of a Michael-type product generated in situ and indicated by TLC under acidic conditions. Intermediate 14c was further reacted with (chloromethyl)arenes to afford 2-styryl indolizines 18a and 18b in 70 and 75% yields, correspondingly. This sequence was further extended to the preparation of 2-(2arylethenyl)imidazo[1,2-a]pyridines 19a,b which were prepared in 71-75% yields.

Conclusion

A general and efficient approach to unified precursors for the preparation of benzo-fused and styryl-substituted heteroaromatic systems was developed. Such an approach is based on the novel three-carbon synthon 1-(1*H*-1,2,3-benzotriazol-1-yl)-3-chloroacetone which resulted in high yields of benzothiazoles **16**, pyrido[1,2-a]indoles **17** and styryl-substituted indolizines **18** and imidazo[1,2-a]-pyridines **19**. The proposed routes open special opportunities for heterocyclizations followed by benzannelations or attachment of arylethenyl pharmacophores.

Experimental Section

(Trimethylsilylmethyl)benzotriazole ${\bf 10}$ was synthesized according to the already reported procedure. 29

Preparation of 1-(1*H***1,2,3-Benzotriazol-1-yl)-3-chloropropan-2-one (11).** 1-[(Trimethylsilyl)methyl]-1*H*-1,2,3-benzotriazole (**10**) (2.05 g, 0.01 mol) was dissolved in chloroacetyl chloride (0.8 mL, 0.01 mol) at room temperature. After 10-20 s, the evolution of chlorotrimethylsilane was observed and the mixture began to solidify. The solid obtained was triturated with ether, filtered off, and washed with ether to afford an analytically pure sample as pale yellow needles: mp $159.0 \,^{\circ}$ C (84%); 1 H NMR δ 4.72 (s, 2H), 5.86 (s, 2H), 7.30 (t, J= 7.5 Hz, 1 H), 7.44 (t, J= 7.5 Hz, 1 H), 7.65 (d, J= 8.1 Hz, 1 H), 7.95 (d, J= 8.1 Hz, 1 H); 13 C NMR δ 47.1, 54.3, 110.7, 119.1, 124.0, 127.4, 133.6, 145.0, 195.6. Anal. Calcd for C₉H₈-ClN₃O: C, 51.56; H, 3.85; N, 20.05. Found: C, 51.68; H, 3.65; N, 20.01.

General Procedure for the Preparation of 2-Amino-(4-benzotriazolylmethyl)thiazoles 13. 1-(1H-1,2,3-Benzotriazol-1-yl)-3-chloropropan-2-one (11) (10 mmol) and the corresponding thiourea (10 mmol) were stirred in EtOH (20 mL) under reflux for 12 h. After completion of the reaction (TLC, hexanes/EtOAc = 1:2), the reaction mixture was deluted with water (20 mL), and the precipitate was filtered off and recrystallized from methanol.

4-(1*H***-1,2,3-Benzotriazol-1-ylmethyl)-1,3-thiazol-2-ylamine (13a):** white microprisms; yield 59%; mp 189.0–192.0 °C; ¹H NMR δ 5.96 (s, 2H), 6.52 (s, 1H), 6.86 (s, 2H), 7.35 (t, J = 7.5 Hz, 1H), 7.47 (t, J = 7.5 Hz, 1H), 7.73 (d, J = 8.4 Hz, 1H), 7.96 (d, J = 8.4 Hz, 1H); ¹³C NMR δ 46.4, 102.9, 109.1, 117.3, 121.9, 125.2, 131.1, 143.7, 143.8, 167.6. Anal. Calcd for $C_{10}H_9N_5S$: C, 51.93; H, 3.93. Found: C, 51.64; H, 4.07.

N-[4-(1*H*-1,2,3-Benzotriazol-1-ylmethyl)-1,3-thiazol-2-yl]-*N*-phenylamine (13b): white microprisms; yield 82%; mp 168.0 °C; ¹H NMR δ 5.78 (s, 2H), 6.78 (t, J= 7.5 Hz, 1H), 6.82 (s, 1H), 7.09 (t, J= 7.2 Hz, 2H), 7.27–7.35 (m, 3H), 7.47 (t, J= 7.5 Hz, 1H), 7.86 (d, J= 8.4 Hz, 1H), 7.93 (d, J= 8.1 Hz, 1H), 10.10 (s, 1H); ¹³C NMR δ 47.7, 106.2, 111.4, 116.8, 119.1, 121.3, 123.9, 127.1, 128.8, 133.1, 140.9, 145.3, 146.0, 163.9. Anal. Calcd for C₁₆H₁₃N₅S: C, 62.52; H, 4.27; N, 22.79. Found: C, 62.21; H, 4.24; N, 22.69.

General Procedure for the Preparation of 1-(2-Indolizinylmethyl)-1H-1,2,3-benzotriazoles 14. 1-(1H-1,2,3-benzotriazol-1-yl)-3-chloropropan-2-one (11) (2 mmol) and the corresponding 2-alkylpyridines (4 mmol) were stirred in DMF (15 mL) under reflux for 40 min. The completion of the reaction was monitored by TLC (hexanes/EtOAc = 1:1). The reaction mixture was diluted with ether (40 mL) and washed with water (6 \times 10 mL). Combined water layers were extracted with ether (20 mL). Organic extracts were dried (MgSO₄), concentrated in vacuo, and purified column chromatography (silica gel, ethyl acetate/hexane = 1:1) to give pure products.

1-(2-indolizinylmethyl)-1*H***-1,2,3-benzotriazole (14a):** white plates; yield 62%; mp 150.0 °C; ¹H NMR δ 5.94 (s, 2H), 6.35 (s, 1H), 6.43 (t, J = 6.4 Hz, 1H), 6.62 (dd, J = 6.5 Hz, 9.0 Hz, 1H), 7.25 (d, J = 8.7 Hz, 2H), 7.29–7.49 (m, 3H), 7.78 (d, J = 6.8 Hz, 1H), 8.05 (d, J = 8.1 Hz, 1H); ¹³C NMR δ 46.0, 98.4, 109.9, 110.7, 111.0, 117.7, 119.0, 119.9, 122.7, 123.7, 125.0, 127.1, 132.7, 133.1, 146.2. Anal. Calcd for C₁₅H₁₂N₄: C, 72.56; H, 4.88; N, 22.57. Found: C, 72.27; H, 4.94; N, 22.43.

1-[(7-Methyl-2-indolizinyl)methyl]-1*H***-1,2,3-benzotriazole (14b):** white plates; yield 66%; mp 162.0 °C; ¹H NMR δ 2.21 (s, 3H), 5.91 (s, 2H), 6.20 (s, 1H), 6.37 (d, J=7.0 Hz, 1H), 7.00 (s, 1H), 7.15 (s, 1H), 7.26-7.47 (m, 3H), 7.68 (d, J=7.2 Hz, 1H), 8.05 (d, J=8.0, 1H); ¹³C NMR δ 21.0, 46.1, 96.9, 110.0, 110.3, 113.5, 117.0, 120.0, 122.7, 123.7, 124.6, 127.0, 127.9, 132.7, 133.5, 146.3. Anal. Calcd for C₁₆H₁₄N₄: C, 73.25; H, 5.39; N, 21.36. Found: C, 73.20; H, 5.48; N, 21.36.

General Procedure for the Preparation of 1-(Imidazo-[1,2-a]pyridin-2-ylmethyl)-1H-1,2,3-benzotriazoles 15. 1-(1H-1,2,3-Benzotriazol-1-yl)-3-chloropropan-2-one (11) (10 mmol) and the corresponding 2-aminopyridines (10 mmol) were stirred in EtOH (10 mL) under reflux for 12 h. After completion of the reaction (TLC, hexanes/EtOAc = 1:2), the reaction mixture was evaporated under reduced pressure. The crude mixture was then washed with water (10 mL) and extracted with CH_2Cl_2 (2 \times 10 mL). The organic layer was dried (MgSO₄) and concentrated under reduced pressure to give the crude product, which was further purified by neutral alumina column chromatography (hexanes/EtOAc = 1:2) to give pure products.

1-(Imidazo[1,2-a]pyridin-2-ylmethyl)-1*H***-1,2,3-benzotriazole (15a):** white microprisms; yield 55%; mp 173.0–174.0 °C; ¹H NMR δ 6.04 (s, 2H), 6.77 (dd, J = 6.7 Hz, 6.8 Hz, 1H), 7.18 (dd, J = 7.3 Hz, 8.5 Hz, 1H), 7.33–7.37 (m, 2H), 7.45 (dd, J = 7.1 Hz, 7.9 Hz, 1H), 7.58 (d, J = 9.2 Hz, 1H), 7.68 (d, J = 8.2 Hz, 1H), 7.99 (d, J = 6.7 Hz, 1H), 8.06 (d, J = 8.4 Hz, 1H); ¹³C NMR δ 46.8, 110.1, 110.5, 112.5, 117.4, 119.6, 123.8, 125.0, 125.7, 127.2, 132.8, 140.9, 145.0, 146.0. Anal. Calcd for C₁₄H₁₁N₅: C, 67.45; H, 4.46. Found: C, 67.26; H, 4.73.

1-[(7-Methylimidazo[1,2-a]pyridin-2-yl)methyl]-1*H*-1,2,3-benzotriazole (15b): white microprisms; yield 49%; mp

156.0–157.0 °C; ¹H NMR δ 2.36 (s, 3H), 6.00 (s, 2H), 6.59 (d, J = 6.9 Hz, 1H), 7.28 (s, 1H), 7.31–7.37 (m, 2H), 7.43 (dd, J = 7.3 Hz, 7.7 Hz, 1H), 7.67 (d, J = 8.2 Hz, 1H), 7.85 (d, J = 6.8 Hz, 1H), 8.05 (d, J = 8.3 Hz, 1H); ¹³C NMR δ 21.3, 47.0, 109.9, 110.2, 115.3, 115.8, 119.7, 123.8, 124.9, 127.3, 132.9, 136.1, 140.7, 145.6, 146.1. Anal. Calcd for $C_{15}H_{13}N_5$: C, 68.42; H, 4.99. Found: C, 68.42; H, 5.39.

General Procedure for the Preparation of Benzothiazole-2-amines 16. 4-Benzotriazolylmethyl 2-aminothiazole 13 (10 mmol) and the corresponding chalcone (10 mmol) were stirred in the solution of sodium (0.23 g, 10 mmol) in EtOH (30 mL) under reflux for 12 h. After completion of the reaction (TLC, hexanes/EtOAc = 1:4), the reaction mixture was evaporated under reduced pressure. The mixture was then diluted with water (10 mL), and the product filtered off and recrystallized from acetone/methanol mixture to give pure products.

N,5,7-Triphenyl-1,3-benzothiazol-2-amine (16a): white microprisms; yield 74%; mp 215.0 °C; 1 H NMR $^{\circ}$ 7.02 (t, $^{\circ}$ 7.5 Hz, 1H), 7.31–7.37 (m, 3H), 7.41–7.53 (m, 5H), 7.69–7.72 (m, 4H), 7.76–7.84 (m, 4H), 10.16 (br s, 1H); 13 C NMR $^{\circ}$ 115.6, 117.1, 119.9, 121.1, 125.8, 126.1, 126.3, 126.8, 127.4, 127.6, 127.7, 134.1, 138.3, 139.4, 139.5, 139.6, 152.6, 161.5. Anal. Calcd for C₂₅H₁₈N₂S: N, 7.40. Found: N, 7.24.

5-(4-Methoxyphenyl)-7-(4-methylphenyl)-*N***-phenyl-1,3-benzothiazol-2-amine (16b):** white microprisms; yield 63%; mp 205.0 °C; ¹H NMR δ 2.42 (s, 3H), 3.83 (s, 3H), 7.01 (t, J= 7.6 Hz, 1H), 7.31–7.37 (m, 3H), 7.41–7.53 (m, 5H), 7.69 (d, J= 6.5 Hz, 2H), 7.76–7.84 (m, 4H), 10.17 (bs, 1H); ¹³C NMR δ 22.6, 41.7, 113.1, 114.3, 117.8, 118.6, 121.9, 123.6, 123.8, 124.7, 127.8, 131.8, 135.9, 137.6, 137.7, 142.2, 145.3, 150.5, 154.2, 158.8, 162.1. Anal. Calcd for C₂₇H₂₂N₂OS: N, 6.63. Found: N, 6.68.

General Procedure for the Preparation of 4,2-Disubstituted Pyrido[1,2-a]indoles 17. 1-(2-Indolizinylmethyl)-1H-1,2,3-benzotriazole 14 (1 mmol) was dissolved in 25 mL of dry THF under Ar and cooled to -78 °C, and n-BuLi (1 mmol, 0.66 mL, 1.5 N solution in hexanes) was added dropwise. A deep-blue solution formed was kept at -78 °C for 2 h, and then the solution of chalcone (1 mmol) in 3 mL of dry THF was added. The reaction mixture was allowed to warm to room temperature over 12 h and monitored by TLC (hexanes/EtO-Ac = 25:1). After removal of the solvent the residue was dissolved in 20 mL of 17% HCl and refluxed 4 h. The mixture was neutralized with ammonia and extracted with ether (3 × 20 mL). Crude material obtained after removal of ether was purified on column (silica gel, hexanes/EtOAc = 25:1) to give pure product.

9-Methyl-4-(4-methylphenyl)-2-phenylpyrido[1,2-a]indole (17a): white microprisms; yield 54%; mp 147.0 °C; $^1\mathrm{H}$ NMR δ 2.45 (s, 3H), 2.48 (s, 3H), 6.09 (t, J=6.8 Hz, 1H), 6.61 (d, J=6.2, 1H), 6.74 (br s, 1H), 7.30–7.35 (m, 4H), 7.39–7.47 (m, 4H), 7.62 (d, J=7.2 Hz, 1H), 7.72 (d, J=7.2, 2H), 8.00 (d, J=1.6 Hz, 1H); $^{13}\mathrm{C}$ NMR δ 18.6, 21.3, 91.1, 107.3, 117.6, 120.3, 122.3, 124.8, 126.7, 126.8, 127.5, 127.7, 128.6, 128.8, 129.3, 129.4, 130.4, 135.3, 136.9, 137.5, 138.9, 141.9. Anal. Calcd. for $\mathrm{C}_{26}\mathrm{H}_{21}\mathrm{N}$: N, 4.03. Found: N, 3.87.

9-Methyl-2-(4-methylphenyl)-4-(2-thienyl)pyrido[1,2-a]-indole (17b): white plates; yield 57%; mp 112.0 °C; ¹H NMR δ 2.43 (s, 3H), 2.48 (s, 3H), 6.08 (t, J=6.8 Hz, 1H), 6.59 (d, J=6.5 Hz, 1H), 6.70 (s, 1H), 7.07 (dd, J=3.7, 5.1 Hz, 1H),

7.24 (dd, J= 5.1, 1.0 Hz, 1H), 7.30–7.42 (m, 6H), 7.56 (d, J= 7.3 Hz, 1H), 8.02 (d, J= 1.7 Hz, 1H); 13 C NMR δ 18.58, 21.35, 91.1, 107.4, 116.4, 120.4, 121.2, 122.6, 124.2, 124.6, 126.8, 127.7, 127.9, 128.6, 129.0, 129.3, 129.4, 130.3, 136.6, 137.6, 139.0, 145.5. Anal. Calcd for $C_{24}H_{19}NS$: N, 3.96. Found: N, 3.65.

General Procedure for the Preparation of 2-[(*E*)-2-Arylethenyl]indolizines 18 and 2-(2-Phenylethenyl)imidazo[1,2-a]pyridines 19. n-BuLi (1 mmol, 0.66 mL of 1.5 N solution in hexanes) was added dropwise to the solution of indolizine 14c (0.262 g, 1 mmol) or imidazo[1,2-a]pyridine 15a in dry THF (25 mL) under Ar at -78 °C. A deep-blue solution formed and was kept at -78 °C for 2 h, and then benzyl chloride (0.127 g, 1 mmol) was added. The reaction mixture was allowed to warm to room temperature during 12 h and monitored by TLC (hexanes/EtOAc = 4:1). Then, t-BuOH (10 mL) and t-BuOK (1 g) were added, and the mixture was refluxed for 72 h. The residue that formed after removal of solvents was treated with water (15 mL) and extracted with ether (3 \times 10 mL). Crude material obtained after removal of ether was recrystallized from ethanol to give pure product.

8-Methyl-2-[(*E***)-2-phenylethenyl]indolizine (18a):** white microprisms; yield 75%; mp 138.0 °C; ¹H NMR δ 2.40 (s, 3H), 6.36 (t, J=6.7 Hz, 1 H), 6.44 (d, J=6.5, 1H), 6.58 (s, 1H), 7.03 (d, J=16.2 Hz, 1H), 7.16 (d, J=16.2 Hz, 1H), 7.20–7.25 (m, 1H), 7.30–7.39 (m, 3H), 7.47–7.52 (m, 2H), 7.71 (d, J=6.7, 1H); ¹³C NMR δ 18.1, 94.5, 110.4, 112.0, 116.7, 122.1, 122.9, 126.0, 126.6, 126.9, 127.5, 127.8, 128.5, 134.6, 137.8. Anal. Calcd for $C_{17}H_{15}N$: N, 6.00. Found: N, 6.14.

8-Methyl-2-[(*E***)-2-(1-naphthyl)ethenyl]indolizine (18b):** white microprisms; yield 70%; mp 109.0 °C; 1 H NMR δ 2.42 (s, 3H), 6.37 (t, J = 6.7 Hz, 1H), 6.46 (d, J = 6.6 Hz, 1H), 6.68 (s, 1H), 7.22 (s, 1H), 7.41–7.56 (m, 4H), 7.70–7.88 (m, 5H), 8.28 (d, J = 7.8 Hz, 1H); 13 C NMR δ 18.2, 94.6, 110.5, 112.1, 112.2, 116.8, 122.9, 123.0, 123.9, 124.4, 125.0, 125.7, 125.8, 127.0, 127.7, 127.9, 128.5, 131.2, 133.7, 134.7,135.4. Anal. Calcd for C_{21} H₁₇N: N, 4.94. Found: N, 4.99.

2-[(*E***)2-Phenylethenyl]imidazo[1,2-***a***]pyridine (19a):** white microprisms; yield 71%; mp 160.0 °C; 1 H NMR δ 6.75 (t, J=6.8 Hz, 1H), 7.11–7.20 (m, 2H), 7.24–7.28 (m, 2H), 7.34–7.39 (m, 2H), 7.52–7.62 (m, 4H), 8.06 (d, J=7.2 Hz, 1H); 13 C NMR δ 110.9, 112.5, 117.5, 120.2, 125.3, 125.7, 126.9, 127.0, 128.0, 128.9, 130.8, 137.5, 144.5, 146.0. Anal. Calcd for C₁₅H₁₂N₂: N, 12.72. Found: N, 12.68.

2-[(*E***)-2-(4-Chlorophenyl)ethenyl]imidazo[1,2-***a***]pyridine (19b): white microprisms; yield 74%; mp 225.0 °C; ¹H NMR \delta 6.75 (dt, J= 1.0, 6.3 Hz, 1H), 7.08–7.20 (m, 2H), 7.30–7.34 (m, 2H), 7.44–7.48 (m, 3H), 7.53–7.58 (m, 2H), 8.05 (dt, J= 1.0, 6.6 Hz, 1H); ¹³C NMR \delta 111.3,112.5, 112.7, 117.7, 120.9, 125.6, 125.9, 128.2, 129.3, 129.6, 136.2, 144.2, 146.2. Anal. Calcd for C₁₅H₁₁ClN₂: C, 70.72; H, 4.36; N, 11.00. Found: C, 70.79; H, 4.36; N, 11.05.**

Supporting Information Available: ¹H, ¹³C, and CHN analysis data for compounds **13c-h**, **14c-e**, **15c-f**, and **16c-e**. This material is available free of charge via the Internet at http://pubs.acs.org.