where M(x) is the column vector associated with the vector x and M(g(x)) is the column vector associated with g(x), as explained in Definition 4.1.

Thus, $M: \operatorname{Hom}(E,F) \to \operatorname{M}_{n,p}$ is an isomorphism of vector spaces, and when p=n and the basis (v_1,\ldots,v_n) is identical to the basis (u_1,\ldots,u_p) , $M: \operatorname{Hom}(E,E) \to \operatorname{M}_n$ is an isomorphism of rings.

Proof. That M(g(x)) = M(g)M(x) was shown by Definition 4.2 or equivalently by Formula (1). The identities M(g+h) = M(g) + M(h) and $M(\lambda g) = \lambda M(g)$ are straightforward, and $M(f \circ g) = M(f)M(g)$ follows from Identity (4) and the definition of matrix multiplication. The mapping $M: \text{Hom}(E, F) \to M_{n,p}$ is clearly injective, and since every matrix defines a linear map (see Proposition 4.1), it is also surjective, and thus bijective. In view of the above identities, it is an isomorphism (and similarly for $M: \text{Hom}(E, E) \to M_n$, where Proposition 4.1 is used to show that M_n is a ring).

In view of Proposition 4.2, it seems preferable to represent vectors from a vector space of finite dimension as column vectors rather than row vectors. Thus, from now on, we will denote vectors of \mathbb{R}^n (or more generally, of K^n) as column vectors.

We explained in Section 3.9 that if the space E is finite-dimensional and has a finite basis (u_1, \ldots, u_n) , then a linear form $f^* \colon E \to K$ is represented by the row vector of coefficients

$$(f^*(u_1) \cdots f^*(u_n)), \qquad (1)$$

over the bases (u_1, \ldots, u_n) and 1 (in K), and that over the dual basis (u_1^*, \ldots, u_n^*) of E^* , the linear form f^* is represented by the same coefficients, but as the *column vector*

$$\begin{pmatrix} f^*(u_1) \\ \vdots \\ f^*(u_n) \end{pmatrix}, \tag{2}$$

which is the transpose of the row vector in (1).

This is a special case of a more general phenomenon. A linear map $f : E \to F$ induces a map $f^{\top} : F^* \to E^*$ called the *transpose* of f (note that f^{\top} maps F^* to E^* , not E^* to F^*), and if $(u_1 \ldots, u_n)$ is a basis of E, $(v_1 \ldots, v_m)$ is a basis of F, and if f is represented by the $m \times n$ matrix A over these bases, then over the dual bases (v_1^*, \ldots, v_m^*) and (u_1^*, \ldots, u_n^*) , the linear map f^{\top} is represented by A^{\top} , the transpose of the matrix A.

This is because over the basis (v_1, \ldots, v_m) , a linear form $\varphi \in F^*$ is represented by the row vector

$$\lambda = (\varphi(v_1) \quad \cdots \quad \varphi(v_m)),$$

and we define $f^{\top}(\varphi)$ as the linear form represented by the row vector