

Department of Computer and Information Science

การโปรแกรมเชิงพลวัตร (1)

Dynamic Programming

อ. ลือพล พิพานเมฆาภรณ์

Content

- แนวคิดของการโปรแกรมเชิงพลวัตร (Dynamic Programming)
 - หลักการ top-down DP
 - หลักการ bottom-up DP
- ตัวอย่างโจทย์ปัญหาการ Search คำตอบโดยใช้ Dynamic Programming
 - —Fibonacci number
 - Binomial Coefficient
 - Subset Sum

Concept of dynamic programming (DP)

• การโปรแกรมเชิงพลวัตร (Dynamic Programming) เป็นเทคนิคการ แก้ปัญหาโดยมีแนวคิดในการแบ่งปัญหาออกเป็นปัญหาย่อย (subproblems) คล้ายกับการแบ่งแยกและเอาชนะ แต่ใช้วิธีจำคำตอบ (memorization) เพื่อลดเวลาคำนวณปัญหาย่อยที่ซ้ำซ้อนกัน

- ดังนั้นประสิทธิภาพของ Dynamic Programming จึงมาจากเวลาที่ลดลงเนื่องจากไม่ต้อง คำนวณคำตอบของปัญหาซ้ำซ้อนกัน
- ในการใช้งาน Dynamic Programming ต้องนิยามความสัมพันธ์ระหว่างคำตอบของ ปัญหาและคำตอบย[่]อยของมัน เรียกว่า recurrence relation
 - > Dynamic Programming = recurrence relation + memorization

ตัวอย่าง Computing Fibonacci numbers

• ลำดับเลขอนุกรมไฟโบนักชี (Fibonacci numbers)

เราสามารถคำนวณหาค[่]าของพจน์ที่ n

$$fib(n) = \begin{cases} 1, & n = 0, 1\\ fib(n-1) + fib(n-2), & n > 1 \end{cases}$$

Recursive-based Fibonacci

Recursive-based Fibonanci

- เริ่มจาก recurrent relation fib(n) = f(n-1) + f(n-2)
- เตรียมหน่วยความจำ (memory) เพื่อบันทึกคำตอบย่อย
- ก่อนคำนวณคำตอบย่อย ให้ตรวจสอบว่ามีคำตอบอยู่ในหน่วยความจำหรือไม่

```
int memo[6]= {-1,-1,-1,-1,-1};
int f_t(int n)
{ if (n < 2)
    return n;
    if(memo[n] != -1)
        return memo[n];

memo[n] = f_t(n-1) + f_t(n-2);
    return memo[n];</pre>
```

ค่าเริ่มต้นของหน่วยความจำ

Recursive-based Fibonanci

- เริ่มจากการนิยาม recurrent relation fib(n) = f(n-1) + f(n-2)
- เตรียมหน่วยความจำ (memory) เพื่อบันทึกคำตอบย่อย
- ก่อนคำนวณคำตอบย่อย ให้ตรวจสอบว่ามีคำตอบอยู่ในหน่วยความจำหรือไม่

```
int memo[6]= {-1,-1,-1,-1,-1};
int f t(int n)
\{ if (n < 2) \}
    return n;
 if(memo[n] != -1)
    return memo[n];
 memo[n] = f_t(n-1) + f_t(n-2);
 return memo[n];
```

-1 -1 1 2 3 5

Bottom-up Fibonanci

• เริ่มจากปัญหาย่อยที่เล็กที่สุด จากนั้นใช้ recurrence relation ที่นิยามเพื่อหาคำตอบ ของปัญหาที่ใหญ่ขึ้น

```
int f(int n) {
    memo[0]=0;
    memo[1]=1;
    for (int i = 2; i <= n; i++)
        memo[i] = memo[i-1] + memo[i-2];
    return memo[n];
}</pre>
```

0 1 1 2 3 5

ปัญหาที่เหมาะกับ Dynamic Programming

• ปัญหานั้นต้องสามารถนิยาม recurrence relation ได้ เช่น f(n) = f(n-1) + f(n-2)

• คำตอบย่อยมีการทับซ้อนกัน (overlap sub-problems)

เช่น เมื่อเราคำนวณ F(4) = F(3) + F(2) และ F(3) = F(2) + F(1) จะเห็นว่า F(2) ถูก คำนวณซ้ำซ้อน

แบบฝึกหัด

จงตรวจสอบว่า สมการ recurrence relation ข้อใดเหมาะสำหรับการใช้ dynamic programming เพื่อหาคำตอบ

2.
$$F(n)=F(n-1)+n$$

3.
$$F(n)=F(n-1)+F(n-2)+F(n-3)$$

4.
$$F(n)=F(n-1) + F(n/2)$$

5.
$$F(n)=F(n-1) + 2*F(n-1)$$

การเตรียมคำตอบของปัญหาย่อย (Memorization)

- เทคนิค dynamic programming มักจะใช้อาร์เรย์ (array) 1 มิติ หรือเมตริกซ์ (matrix) ที่ถูกออกแบบซึ่งสัมพันธ์กับสมการ recurrence relation ของปัญหา
- ดังนั้นเวลาที่ใช้ในการหาคำตอบของปัญหาก็คือการปรับปรุงค่า (update) ในตารางเมื่อ ได้คำตอบในแต่ละช่องภายในอาร์เรย์ดังกล่าว

- กระบวนการหาคำตอบมี 2 แบบ ดังนี้
 - แบบ top-down (Simple)
 - แบบ bottom-up (Efficiency improvement)

สัมประสิทธิ์ทวินาม (Binomial Coefficient)

• binomial coefficient **C(n, k)** หรือ $\binom{n}{k}$ คือจำนวนของเซตย[่]อยของข้อมูลขนาด k จำนวน จากเซตข้อมูลทั้งหมด n จำนวน (0 < k < n)

$$C(n, k) = \frac{n!}{(n-k)!*k!}$$

การแปลงเป็นสมการ recurrence relation

```
C(n, k) = n! / (k! * (n-k)!)

= (n-1)! * n / (k! * (n-k)!)

= (n-1)! * n / ((k-1)! * k * (n-k-2)! * (n-k-1) * (n-k))

= (n-1)! / ((k-1)! * (n-k-1)!) * (n / k * (n-k))

= [(n-1)! / ((k-1)! * (n-k-1)!)] * (1/(n-k) + 1/k)

= (n-1)! / ((k-1)! * (n-k)!) + (n-1)! / (k! * (n-k-1)!)

= C(n-1, k-1) + C(n-1, k)
```

แบบฝึกหัด

จงเขียนฟังก์ชั่นแบบ recursive เพื่อคำนวณ binomial coefficient C(n, k) จาก recurrence relation ต่อไปนี้

$$C(n, k) = C(n - 1, k - 1) + C(n - 1, k)$$
 เมื่อ $0 < k < n$ $C(n, 0) = 1$ $C(n, n) = 1$

Dynamic Programming approach

- เตรียม table เพื่อเก็บคำตอบของ C(n, k) ในทุกค่าของ n และ k ที่เป็นไปได้
- เตรียมคำตอบของปัญหาที่เล็กที่สุดก่อน
- เลือกวิธีเติมคำตอบลงใน table (bottom-up หรือ top-down)

			6	אוו גושו א	1 I I	
	0	1	2	•••	k-1	k
0	1					
1	1	1				
2	1	2	1			
:						
k	1					1
:						
n-1	1					
n	1					C(n, k)
	n 1 2 k : n-1	0 1 n 1 1 2 1 k 1 : n-1 1	0 1 n 1 1 1 2 1 2 k 1 : n-1 1	0 1 2 0 1 1 1 1 2 1 2 1 k 1 : n-1 1	0 1 2 1 1 1 1 2 1 2 1 k 1 : n-1 1	0 1 n 1 1 1 2 1 2 1 k 1 : n-1 1

การคำนวณ C(6, 4)

	0	1	2	3	4	C(6, 4
0	1					
1	1	1				เริ่มจาก
2	1		1			C(6, 4
3	1			1		C(5, 3 C(5, 3
4	1			C(4,3)	1	
5	1			C(5,3)	C(5,4)	C(4, 2 C(4, 2
6	1				C(6,4)	, ,

$$C(6, 4) = C(5, 3) + C(5, 4)$$

$$C(6, 4) = C(5, 3) + C(5, 4)$$

$$C(5, 3) = C(4, 2) + C(4, 3)$$

$$C(4, 2) = table[4, 2]$$
 หรือหาคำตอบจาก

$$C(4, 2) = C(3, 1) + C(3, 2)$$

Top-down DP for binomial coefficient

```
int dp[n][k];
                                       // memory table
int C(int n, int k)
   if (k==0 | | k==n)
                                       // base case
        return 1;
   if (dp[n][k] != -1)
                                       // existing compute
        return dp[n][k];
   dp[n][k] = C(n-1, k-1) + C(n-1, k);
   return dp[n][k];
```

Subset Sum

- ให^{*} A = {3, 4, 5, 2} ต^{*}องการหาวามีเซตย^{*}อยที่มีผลรวมเท^{*}ากับ 6 หรือไม^{*}
- จากตัวอย่างพบว่า {4, 2} จะมีผลรวมเท่ากับ 6
- โดยทั่วไปสามารถหาคำตอบด้วยวิธี backtracking อย่างไรก็ตามอาจใช้เวลามากหาก A มีขนาดใหญ่ เนื่องจากต้อง generate สถานะของคำตอบที่เป็นไปได้ทั้งหมด

• โดยหลักการของ Dynamic programming เราอาจนิยาม recurrence relation เพื่อหาคำตอบ Sum(n, k) โดยที่ n คือจำนวนสมาชิกใน A และ k คือค่าเป้าหมาย

Subset Sum

ปัญหา Sum(n, k) อาจนิยามคำตอบ โดยพิจารณาจากสมาชิกตัวสุดท่าย A[n-1] ซึ่งแบ่งออกเป็น 2 กรณี
 กรณีที่ 1 หากคำตอบมี A[n-1] เป็นส่วนหนึ่งของคำตอบ ดังนั้น

Sum(n, k) = Sum(n-1, k - A[n-1])

• A = {3, 4, 5, 2} และ k = 6

Sum(4, 6) = Sum(3, 6-2) = Sum(3, 4)

หากสมาชิก 3 ตัวหน้ามีผลรวมเท่ากับ 4 ก็แสดงว[่]ามีคำตอบ Sum(4, 6)

Subset of sum

• กรณีที่ 2 หากคำตอบไม่มี A[n-1] เป็นส่วนหนึ่งของคำตอบ ดังนั้น คำตอบก็อาจขึ้นอยู่ผลลัพธ์ของสมาชิกก่อนหน้า ซึ่งได้แก่

$$sum(n, k) = sum(n-1, k)$$

เซน $A = \{3, 4, 5, 2\}$ k = 9

Sum(4, 9) = Sum(3, 9) หมายถึง ถ้าคำตอบ Sum(3,9) เป็นจริง ดังนั้น Sum(4,9) ก็เป็นจริงด้วย

Sum (n, k) = Sum(n-1, k) or Sum(n-1, k - A[n-1])

การเตรียมคำตอบ Subset sum

k

A[n-1]/k	0	1	2	3	4	5	6
{}	Т	F	F	F	F	F	F
{3 }	Т						
{3, <mark>4</mark> }	Т						
{3, 4, 5 }	Т				Sum(3, 4)		Sum(3, 6)
{3,4, 5, 2 }	Т						Sum(4, 6)

Sum(4, 6) = Sum(3, 6) or Sum(3, 6-2)

```
Sum (n, 0) = true

Sum (0, k) = false

Sum (n, k) = Sum(n-1, k) or Sum(n-1, k - A[n-1])
```

Sum(3, 6)

k

A[n-1]/k	0	1	2	3	4	5	6
{}	Т	F	F	F	F	F	F
{3 }	Т						
{3 , 4 }	Т	Sum(2,1) _					Sum(2,6)
{3, 4, 5}	Т				Sum(3, 4)		Sum(3, 6)
{3,4, 5, <mark>2</mark> }	Т						Sum(4, 6)

Sum(3, 6) = Sum(2, 6) or Sum(2, 6-5)

```
Sum (n, 0) = true
Sum (0, k) = false
Sum (n, k) = Sum(n-1, k) or Sum(n-1, k - A[n-1])
```

Sum(2, 6)

k

A[n-1]/k	0	1	2	3	4	5	6
{}	Т	F	F	F	Щ	F	F
{3 }	Т		Sum(1,2)				Sum(1,6)
{3, 4 }	Т	Sum(2,1)					Sum(2,6)
{3, 4, <mark>5</mark> }	Т				Sum(3, 4)		Sum(3, 6)
{3,4, 5, <mark>2</mark> }	Т						Sum(4, 6)

Sum(2, 6) = Sum(1, 6) or Sum(1, 6-4)

```
Sum (n, 0) = true
Sum (0, k) = false
Sum (n, k) = Sum(n-1, k) or Sum(n-1, k - A[n-1])
```

Sum(1, 6)

k

	A[n-1]/k	0	1	2	3	4	5	6
	{}	Т	F	F	F	F	F	F_
	{3 }	Т		Sum(1,2)				► Sum(1,6)
1	{3, 4 }	Т	Sum(2,1)					Sum(2,6)
	{3, 4, <mark>5</mark> }	Т				Sum(3, 4)		Sum(3, 6)
	{3,4, 5, <mark>2</mark> }	Т						Sum(4, 6)

$$Sum(1, 6) = Sum(0, 6) \text{ or } Sum(0, 6-3)$$

= F or F = F

Sum (n, 0) = true

Sum (0, k) = false

Sum (n, k) = Sum(n-1, k) or Sum(n-1, k - A[n-1]).

Bottom-up Subset Sum

A[n-1]/k	0	1	2	3	4	5	6
{}	Т	F	F	F	F	F	F
{3 }	Т	F	F	Т			
{3, 4 }	Т						
{3, 4, 5 }	Т						
{3,4,5, <mark>2</mark> }	Т						

```
Sum(1, 1) = Sum(0, 1) or Sum(0, 1 - 3) = F
Sum(1, 2) = Sum(0, 2) or Sum(0, 2 - 3) = F
Sum(1, 3) = Sum(0, 3) or Sum(0, 3 - 3) = T
```

Subset of sum

A[n-1]/k	0	1	2	3	4	5	6
{}	Т	F	F	F	F	F	F
{3 }	Т	F	F	Т	F	F	F
{3, 4 }	Т	F	F	Т	Т	F	F
{3, 4, 5 }	Т						
{3,4,5, <mark>2</mark> }	Т						

Sum(2, 3) = Sum(1, 3) or Sum(1, 3-4) = T Sum(2, 4) = Sum(1, 4) or Sum(1, 4-4) = T Sum(2, 5) = Sum(1, 5) or Sum(1, 5-4) = F Sum(2, 6) = Sum(1, 6) or Sum(1, 6-4) = F

Subset of sum

A[n-1]/k	0	1	2	3	4	5	6
{}	Т	F	F	F	F	F	F
{3 }	Т	F	F	Т	F	F	F
{3, 4 }	Т	F	F	Т	Т	F	F
{3, 4, 5 }	Т	F	F	Т	Т	Т	F
{3,4,5, <mark>2</mark> }	Т	F	Т	Т	Т	Т	Т

Sum(4, 6) = Sum(3, 6) or Sum(3, 6-2) = T

Dynamic Programming

```
int Sum(int n , int k)
{ bool S[n+1][W+1];
    for (int i=0; i \le n; i++) // initial Sum(n,0)
            S[i][0] = true;
    for (int j=1; j \le K; j++) // initial Sum(0, k)
            S[0][j] = false;
     for (int j=1; j <=K; j++) {
        for (int i=1; i<=n; i++) {
            if (j < A[i])
                                           // out-of-table
                S[i][j] = S[i-1][j];
            else
                S[i][j] = S[i-1][j-1] || S[i-1][j-A[i]];
  return S[n][k];
```