Otimização de Sistemas

Prof. Sandro Jerônimo de Almeida, PhD.

Dualidade

Conceito de Dualidade

 Dualidade é um conceito amplo que engloba a possibilidade do tratamento de duas naturezas distintas de uma mesma entidade.

• Inúmeros fenômenos físicos e químicos podem ser representados por modelos cujas estruturas e comportamentos são iguais; contudo, podem ser interpretados de modo completamente diferente.

Exemplo – Circuitos Duais

Circuito 1

$$L\frac{di}{dt} + Ri + \frac{1}{C} \int i \, dt = e(t)$$

Tensão/corrente em função do tempo

Circuito 2

$$C\frac{de}{dt} + Ge + \frac{1}{L}\int e \, dt = i(t)$$

Corrente/tensão em função do tempo

$$\longrightarrow a \frac{dx}{dt} + bi + c \int u \, dt = y(t) \quad \longleftarrow$$

Equações possuem a mesma forma geral. Portanto, são circuitos duais.

Programação Matemática

Modelo primal x dual - Condições

Possuem funções objetivo simétricas, ou seja, se o primal for de minimização o dual será de maximização e vice-versa. Tipicamente:

Maximizar => Primal

Minimizar => Dual

 Possuem simetria na descrição das restrições, ou seja, se na forma canônica o primal possui restrições ≤ então o dual possuirá restrições ≥

Programação Matemática

Modelo primal x dual - Condições

- Os termos independentes no primal surgem como os coeficientes da função objetivo no dual e vice-versa
- O número de restrições do primal é igual ao número de variáveis do dual e vice-versa
- A matriz de restrição do primal é a transposta da matriz de restrição do dual e vice-versa
- As variáveis de ambos os problemas são não-negativas

Primal

K

Dual

• Maximizar $Z = c_1x_1 + c_2x_2 + c_3x_3$ Sujeito a:

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 \le b_1$$

 $a_{21}x_1 + a_{22}x_2 + a_{23}x_3 \le b_2$
 $a_{31}x_1 + a_{32}x_2 + a_{33}x_3 \le b_3$
 $com x_i \ge 0$ para $i = 1, 2 e 3$.

• Minimizar $z = b_1y_1 + b_2y_2 + b_3y_3$ Sujeito a:

$$a_{11}y_1 + a_{21}y_2 + a_{31}y_3 \ge c_1$$

 $a_{12}y_1 + a_{22}y_2 + a_{32}y_3 \ge c_2$
 $a_{13}y_1 + a_{23}y_2 + a_{33}y_3 \ge c_3$
 $com y_i \ge 0$ para $i = 1, 2 e 3$.

$$\text{Maximizar} \quad Z = \sum_{j=1}^{n} c_j \cdot x_j$$

Sujeito a:
$$\sum_{i=1}^{n} a_{ij} \cdot x_{j} \leq b_{i}$$

para i = 1, ..., m, com $x_i \ge 0$ para j = 1, ..., n.

$$Minimizar \quad z = \sum_{i=1}^{m} b_i \cdot y_i$$

Sujeito a:
$$\sum_{i=1}^{m} a_{ij} \cdot y_{i} \ge c_{j}$$

para
$$j = 1, ..., n$$
, com $y_i \ge 0$ para $i = 1, ..., m$.

Primal

Maximizar $Z = 1 \cdot x_1 + 2 \cdot x_2$ Sujeito a:

$$1 \cdot x_1 + 5 \cdot x_2 \le 18$$

$$2 \cdot x_1 + 1 \cdot x_2 \le 15$$

$$5 \cdot x_1 - 2 \cdot x_2 \le 20$$

$$1 \cdot x_2 \le 8$$

$$x_1 e x_2 \ge 0$$

Dual

$$1 \cdot y_1 + 2 \cdot y_2 + 5 \cdot y_3 \ge 1
5 \cdot y_1 + 1 \cdot y_2 - 2 \cdot y_3 + 1 \cdot y_4 \ge 2
y_1, y_2, y_3 e y_4 \ge 0.$$

Primal

(P) Maximizar $z = 6x_1 + 2x_2 + x_3$ sujeito a:

$$x_1 - x_2 + 7x_3 \le 4$$

 $2x_1 + 3x_2 + x_3 \le 5$
 $x_1 \ge 0, \ x_2 \ge 0, x_3 \ge 0$

Dual

Primal

(P) Maximizar $z = 6x_1 + 2x_2 + x_3$ sujeito a:

$$\begin{aligned} x_1 - x_2 + 7x_3 &\leq 4 \\ 2x_1 + 3x_2 + x_3 &\leq 5 \\ x_1 &\geq 0, \ x_2 \geq 0, x_3 \geq 0 \end{aligned}$$

Dual

(D) Minimizar $w = 4u_1 + 5u_2$ sujeito a:

$$u_1 + 2u_2 \ge 6$$

 $-u_1 + 3u_2 \ge 2$
 $7u_1 + u_2 \ge 1$
 $u_1 \ge 0, u_2 \ge 0$

Primal

(P) Maximizar $z = 3x_1 + 4x_2$ sujeito a:

$$x_1 - x_2 \le -1$$

 $-x_1 + x_2 \le 0$
 $x_1 \ge 0, x_2 \ge 0$

Dual

Primal

(P) Maximizar $z = 3x_1 + 4x_2$ sujeito a:

$$x_1 - x_2 \le -1$$

 $-x_1 + x_2 \le 0$
 $x_1 \ge 0, x_2 \ge 0$

Dual

(D) Minimizar $w = -u_1 + 0u_2$ sujeito a:

$$u_1 \ge 0, u_2 \ge 0$$

Interpretação Econômica

Proposições

Sejam os modelos (P) e (D)

(P)Min
$$z = cx$$
 (D) Max $w = ub$ sujeito a: sujeito a: $ax \ge b$ $ax \ge 0$ $ax \ge 0$

- Se x e u são soluções viáveis dos problemas (P) e (D) respectivamente, então: $cx \ge ub$.
- Se x e u são soluções viáveis dos problemas (P) e (D), respectivamente, satisfazendo a cx = ub, então ambos são soluções ótimas dos correspondentes problemas.

Método Simplex-Dual

Primeiro define-se quem sai e depois quem entra

 Variável que <u>sai</u>: é a variável básica com o valor mais negativo. (coluna b | termos independentes)

 Se todas as variáveis básicas tiverem valores positivos, a solução é ótima.

Método Simplex-Dual

Variável que <u>entra</u>: é escolhida entre as variáveis fora da base, da seguinte maneira:

- dividir os coeficientes da equação Z transformada pelos correspondentes coeficientes negativos da equação da variável que sai;
- a variável que entra é a que tem o menor valor entre os quocientes encontrados (problemas de minimização) ou o menor valor absoluto (problemas de maximização).
- Quando, em ambos os casos, não houver coeficientes negativos na linha da variável que sai da base, o problema não tem solução viável.

Seja o seguinte problema Dual

$$Minimizar Z = 8x_1 + 12x_2$$

Sujeito a:
$$1x_1 + 2x_2 \ge 5$$

$$1x_1 + 1x_2 \ge 3$$

$$x_1 \ge 0; x_2 \ge 0;$$

Resolva pelo método simplex-dual

Minimizar Z = $8x_1 + 12x_2$ Sujeito a: $1x_1 + 2x_2 \ge 5$ $1x_1 + 1x_2 \ge 3$

 $x_1 \ge 0; x_2 \ge 0;$

Base	X1	X2	Х3	X4	b	
Х3	-1	-2	1	0	-5	
X4	-1	-1	0	1	-3	
Z	-8	-12	0	0	0	

Minimizar $Z = 8x_1 + 12x_2$

Sujeito a: $1x_1 + 2x_2 \ge 5$

 $1x_1 + 1x_2 \geq 3$

 $x_1 \ge 0; x_2 \ge 0;$

Base	X1	X2	Х3	X4	b	
Х3	-1	-2	1	0	-5	Sai: X3
X4	-1	-1	0	1	-3	Entra: X2
Z	-8	-12	0	0	0	

Minimizar Z = $8x_1 + 12x_2$

Sujeito a: $1x_1 + 2x_2 \ge 5$

 $1x_1 + 1x_2 \geq 3$

 $x_1 \ge 0; x_2 \ge 0;$

Base	X1	X2	Х3	X4	b	
Х3	-1	-2	1	0	-5	Sai: X3
X4	-1	-1	0	1	-3	Entra: X2
Z	-8	-12	0	0	0	

Base	X1	X2	Х3	X4	b	
X2	0,5	1	-0,5	0	2,5	
X4	-0,5	0	-0,5	1	-0,5	
Z	-2	0	-6	0	30	

Minimizar Z = $8x_1 + 12x_2$

Sujeito a: $1x_1 + 2x_2 \geq 5$

 $1x_1 + 1x_2 \ge 3$ $x_1 \ge 0; x_2 \ge 0;$

Base	X1	X2	Х3	X4	b	
Х3	-1	-2	1	0	-5	Sai: X3
X4	-1	-1	0	1	-3	Entra: X2
Z	-8	-12	0	0	0	

Base	X1	X2	Х3	X4	b	
X2	0,5	1	-0,5	0	2,5	
X4	-0,5	0	-0,5	1	-0,5	Sai: X4
Z	-2	0	-6	0	30	Entra: X1

Minimizar $Z = 8x_1 + 12x_2$

Sujeito a: $1x_1 + 2x_2 \geq 5$

 $1x_1 + 1x_2 \ge 3$ $x_1 \ge 0; x_2 \ge 0;$

Base	X1	X2	Х3	X4	b	
Х3	-1	-2	1	0	-5	Sai: X3
X4	-1	-1	0	1	-3	Entra: X2
Z	-8	-12	0	0	0	

Base	X1	X2	Х3	X4	b	
X2	0,5	1	-0,5	0	2,5	
X4	-0,5	0	-0,5	1	-0,5	Sai: X4
Z	-2	0	-6	0	30	Entra: X1

Base	X1	X2	Х3	X4	b	Candiasa da
X2	0	1	0,5	0	2	Condição de
X4	1	0	1	-2	1	parada atingida X2 e X4 > 0
Z	0	0	-4	-4	32	Λ2 Ε Λ4 > 0

Minimizar $Z = 8x_1 + 12x_2$

Sujeito a: $1x_1 + 2x_2 \geq 5$

 $1x_1 + 1x_2 \ge 3$ $x_1 \ge 0; x_2 \ge 0;$

Base	X1	X2	Х3	X4	b	
Х3	-1	-2	1	0	-5	Sai: X3
X4	-1	-1	0	1	-3	Entra: X2
Z	-8	-12	0	0	0	

Base	X1	X2	Х3	X4	b	
X2	0,5	1	-0,5	0	2,5	
X4	-0,5	0	-0,5	1	-0,5	Sai: X4
Z	-2	0	-6	0	30	Entra: X1

Base	X1	X2	Х3	X4	b	Solução
X2	0	1	0,5	0	2	X2=2
X4	1	0	1	-2	1	X4=1
Z	0	0	-4	-4	32	Z=32

Seja o seguinte problema Primal

Maximizar
$$Z = 3x_1 + 6x_2$$

Sujeito a:
$$2x_1 + 2x_2 \le 6$$

$$4x_1 + 5x_2 \le 8$$

$$x_1 \ge 0; x_2 \ge 0;$$

- Obtenha o modelo dual
- Resolva pelo método simplex-dual

