MT09-A2017 – Examen médian – Questions de cours

Durée : 30mn. Sans documents ni outils électroniques - Rédiger sur l'énoncé

NOM PRÉNOM : Place n°:

ATTENTION, il y a 3 exercices indépendants pour cette partie questions de cours!

Exercice 1 (barème approximatif: 2 points)

Soient C une matrice carrée de $\mathcal{M}_{nn}(\mathbb{R})$ (n>0) et d un vecteur de \mathbb{R}^n . On étudie l'itération linéaire :

$$\left\{ \begin{array}{lcl} x^{(k+1)} & = & Cx^{(k)} + d & \forall k = 0, 1, \dots \\ x^{(0)} & & \mathrm{donn\'e.} \end{array} \right.$$

- 1. Donner une condition nécessaire sur C pour que la suite $(x^{(k)})_{k\in\mathbb{N}}$ converge.
- 2. On veut résoudre le système Ax = b. Donner la matrice C et le vecteur d dans le cas où on applique la méthode de Gauss-Seidel. On définira les matrices D, E et F du cours.
- 3. Application : dire si pour la matrice $A = \begin{bmatrix} 1 & \frac{3}{4} \\ -1 & 1 \end{bmatrix}$, la méthode de Gauss-Seidel converge ou non.

Exercice 2 (barème approximatif: 1.5 points)

Soit une matrice $A \in \mathcal{M}_{nn}(\mathbb{R})$ pour n > 0 une matrice symétrique définie positive.

- 1. Montrer que toute les sous-matrices principales de A, notées $[A]_k$ pour $k=1,\ldots,n$, sont symétriques définies positives.
- 2. Déterminer le noyau d'une matrice symétrique définie positive.
- 3. Conclure sur la faisabilité de la factorisation A = LU.

Exercice 3 (barème approximatif: 2 points)

- 1. Définir l'ensemble des flottants \mathcal{F}_{10} . On expliquera ce que signifie les constantes t, L et U (notations du cours).
- 2. Dans le reste de cet exercice, on prend t = 3, L = -1, U = 3.
 - (a) Donner l'écart absolu entre deux flottants successifs. Que vaut $\varepsilon_{\rm mach}$?
- 3. (a) Calculer en addition flottante : $x = 100 \oplus 0.6$. Que vaut l'erreur relative?
 - (b) Calculer en addition flottante : $y = (100 \oplus 0.6) \oplus 100$. Que vaut l'erreur relative? Commenter.

MT09-A2017- Examen médian

Durée: 1h30.

Polycopiés de cours et scilab autorisés - pas d'outils numériques

Questions de cours déjà traitées : environ 5.5 points.

RÉDIGER LES EXERCICES 2 ET 3 SUR LA MÊME COPIE! EXERCICE 1 SUR COPIE SÉPARÉE.

Exercice 1: (barème approximatif: 6 points) CHANGEZ DE COPIE

Il est possible de traiter une question en admettant les résultats précédents.

Toutes les matrices de cet exercice sont carrées à n lignes et n colonnes (n > 0). Soit la matrice $A \in \mathcal{M}_{n,n}$ définie par

$$A = \frac{1}{h} \begin{bmatrix} 4 & 1 & 0 & \cdots & \cdots & 0 \\ 1 & 4 & 1 & 0 & \cdots & 0 \\ 0 & 1 & 4 & 1 & 0 & \cdots \\ & & \ddots & \ddots & \ddots & \\ 0 & \cdots & 0 & 1 & 4 & 1 \\ 0 & \cdots & \cdots & 0 & 1 & 4 \end{bmatrix}, \quad \text{où } h = \frac{1}{n}.$$

- 1. Calculer $||A||_{\infty}$.
- 2. On pose $A = \frac{4}{h}(I+N)$, où I est la matrice identité. Déterminer N et calculer $|||N|||_{\infty}$.
- 3. Soit $|||\cdot|||$ une norme matricielle subordonnée.
 - (a) Montrer que ||I|| = 1.
 - (b) Soit E une matrice carrée. Montrer que si ||E||| < 1, alors la matrice I + E est inversible.
 - (c) Vérifier alors que $(I+E)^{-1} = I (I+E)^{-1}E$ et en déduire

$$|||(I+E)^{-1}||| \le \frac{1}{1-|||E|||}.$$

- 4. Utiliser le résultat précédent pour obtenir une majoration de $||A^{-1}||_{\infty}$.
- 5. En déduire une majoration du conditionnement de A pour la norme $\|\cdot\|_{\infty}$.
- 6. Que peut-on dire de ce comportement quand $h \to 0$?

Exercice 2: (barème approximatif: 9 points) CHANGEZ DE COPIE

 $Les\ questions\ 4,\ 5\ et\ 6\ sont\ partiellement\ indépendantes\ des\ précédentes.$

Soit un entier $n \ge 1$. On rappelle que la factorisation de Cholesky $A = CC^T$ d'une matrice de taille n nécessite de l'ordre de $\frac{n^3}{6}$ multiplications. Le coût de la résolution d'un système triangulaire est de l'ordre de $\frac{n^2}{2}$.

Soient n > 0 et p > 0 deux entiers. Soient A_1, A_2, \ldots, A_n, n matrices symétriques et inversibles de $\mathcal{M}_{p,p}$. Soient également $B_1, B_2, \ldots, B_{n-1}, n-1$ matrices de $\mathcal{M}_{p,p}$. On définit la matrice $K \in \mathcal{M}_{np,np}$ par

$$K = \begin{bmatrix} A_1 & B_1^T & 0 & \cdots & \cdots & 0 \\ B_1 & A_2 & B_2^T & 0 & \cdots & 0 \\ 0 & B_2 & A_3 & B_3^T & 0 & \cdots \\ & & \ddots & \ddots & \ddots & \\ 0 & \cdots & 0 & B_{n-2} & A_{n-1} & B_{n-1}^T \\ 0 & \cdots & \cdots & 0 & B_{n-1} & A_n \end{bmatrix},$$

où $0 \in \mathcal{M}_{p,p}$ est la matrice nulle. On veut résoudre $K\mathbf{x} = \mathbf{f}$, où $\mathbf{f} \in \mathbb{R}^{np}$ est donné. Pour ce faire, on décompose les vecteurs \mathbf{x} et \mathbf{f} en blocs :

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_n \end{bmatrix}, \quad \mathbf{f} = \begin{bmatrix} \mathbf{f}_1 \\ \mathbf{f}_2 \\ \vdots \\ \mathbf{f}_n \end{bmatrix}, \quad \text{où } \mathbf{x}_i \in \mathbb{R}^p, \text{ et } \mathbf{f}_i \in \mathbb{R}^p, \quad \forall i = 1, \dots, n.$$

- 1. On suppose que A_1 est symétrique définie positive.
 - (a) Montrer que les p premières lignes de $K\mathbf{x} = \mathbf{f}$ sont équivalentes à

$$C_1^T \mathbf{x}_1 + D_1 \mathbf{x}_2 = \mathbf{g}_1, \tag{1}$$

où C_1 est triangulaire inférieure avec des termes diagonaux strictement positifs. On donnera l'expression de la matrice D_1 et du vecteur \mathbf{g}_1 en fonction de C_1 , de B_1 et de \mathbf{f}_1 .

- (b) Exprimer B_1 en fonction de C_1 et de D_1 .
- 2. (a) En utilisant (1), montrer que le deuxième bloc d'équations dans $K\mathbf{x} = \mathbf{f}$ (lignes i = p+1 à 2p) est équivalent à

$$\widetilde{A}_2 \mathbf{x}_2 + B_2^T \mathbf{x}_3 = \widetilde{\mathbf{f}}_2, \tag{2}$$

où \widetilde{A}_2 et $\widetilde{\mathbf{f}}_2$ sont à exprimer en fonction de A_2 , D_1 , de \mathbf{f}_2 et de \mathbf{g}_1 .

- (b) Montrer que \widetilde{A}_2 est symétrique.
- (c) On suppose que \widetilde{A}_2 est définie positive. Montrer que (2) est équivalent à

$$C_2^T \mathbf{x}_2 + D_2 \mathbf{x}_3 = \mathbf{g}_2, \tag{3}$$

où C_2 est triangulaire inférieure avec des termes diagonaux strictement positifs. On donnera l'expression de la matrice D_2 et du vecteur \mathbf{g}_2 en fonction de C_2 , de B_2 , de D_1 , de \mathbf{f}_2 et de \mathbf{g}_1 .

3. On suppose par la suite que toute les matrices \widetilde{A}_i sont symétriques définies positives.

Montrer que le système $K\mathbf{x} = \mathbf{f}$ est équivalent à

$$\begin{cases}
C_i^T \mathbf{x}_i + D_i \mathbf{x}_{i+1} &= \mathbf{g}_i, & i = 1, \dots, n-1 \\
C_n^T \mathbf{x}_n &= \mathbf{g}_n
\end{cases}$$
(4)

où $C_i \in \mathcal{M}_{p,p}$ est triangulaire inférieure avec des termes diagonaux strictement positifs. On donnera l'équation vérifiée par C_i en fonction de A_i et de D_{i-1} et on donnera l'expression de la matrice D_i et du vecteur \mathbf{g}_i en fonction de C_i , de B_i , de D_{i-1} , de \mathbf{f}_i et de \mathbf{g}_{i-1} .

- 4. On suppose qu'on dispose des fonctions scilab: [x]=solsup(U,b), [x]=solinf(L,b), [C]=cholesky(A), [L,U]=LU(A), [B]=inverse(A) (on ne demande pas de les réécrire ici).
 - (a) Écrire une fonction scilab : [M] = solinfMat(L, N), qui étant données une matrice triangulaire inférieure inversible L et une matrice N, calcule $M = L^{-1}N$
 - (b) Donner le coût en nombre de multiplications d'une telle fonction.
- 5. On suppose qu'on dispose en plus de fonctions scilab :

[Ai]=getBlockMat(A, i), [A]=setBlockMat(A, i, Bi),

[xi]=getBlockVec(x, i), [x]=setBlockVec(x, i, yi).

Étant donné $A = [A_1, A_2, \dots, A_n] \in \mathcal{M}_{p,np}$, la fonction getBlockMat extrait de A le bloc $A_i \in \mathcal{M}_{p,p}$ pour $i = 1, \dots, n$. Inversement, la fonction setBlockMat insère dans le bloc i de A la matrice $B_i \in \mathcal{M}_{p,p}$ $(A_i \leftarrow B_i$ et tous les autres blocs restent inchangés). La fonction getBlockVec extrait du vecteur bloc $\mathbf{x} = [\mathbf{x}_1, \dots, \mathbf{x}_n]^T \in \mathcal{M}_{pn,1}$ le vecteur $\mathbf{x}_i \in \mathcal{M}_{p,1}$. Inversement la fonction setBlockVec insère dans le bloc i de \mathbf{x} le vecteur $\mathbf{y}_i \in \mathcal{M}_{p,1}$ ($\mathbf{x}_i \leftarrow \mathbf{y}_i$ et tous les autres blocs restent inchangés).

En utilisant certaines fonctions scilab disponibles, écrire une fonction scilab : [x]=resout(A, B, f, n) qui étant donnés $A = [A_1, A_2, \ldots, A_n] \in \mathcal{M}_{p,np}, B = [B_1, B_2, \ldots, B_{n-1}] \in \mathcal{M}_{p,(n-1)p}$ et $\mathbf{f} \in \mathcal{M}_{np,1}$ résout $K\mathbf{x} = \mathbf{f}$ par la méthode décrite ci-dessus.

Si vous n'avez pas trouvé l'algorithme : à défaut, vous pouvez programmer la fonction : [x]=resout(C, D, g, n) qui résout (4), en supposant connus $C = [C_1, C_2, \dots, C_n] \in \mathcal{M}_{p,np}, D = [D_1, D_2, \dots, D_{n-1}] \in \mathcal{M}_{p,(n-1)p}$ et $\mathbf{g} \in \mathcal{M}_{np,1}$.

6. Calculer le nombre de multiplications de la fonction que vous avez programmée.

Exercice 3: (barème approximatif: 2 points)

RÉDIGER SUR LA MÊME COPIE QUE L'EXERCICE 2

Soit un réel $\varepsilon > 0$. On étudie le système

$$\left[\begin{array}{cc} \varepsilon & 1 \\ 1 & 7 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{c} 1 - \varepsilon \\ 6 \end{array}\right].$$

- 1. Effectuer l'élimination de Gauss en arithmétique exacte.
- 2. On suppose que l'on travaille en flottant en base 10 avec 3 chiffres significatifs et on prend $\varepsilon = 10^{-4}$. Refaire les calculs en arithmétique flottante.