

Sensor networks: 6LoWPAN & LPWAN

Philippe DRUGMAND

Department Manager

KIKK Festival & TEKK Tour Digital Wallonia, Mons, 26-10-2017

Centre d'Excellence en **Technologies** de l'**Information** et de la **Communication** www.cetic.be

Agenda

- IoT context
- Wireless sensor networks
- 6LoWPAN
- LPWAN
- Conclusion

Anytime, anywhere connectivity is a priority for IoT

6LoWPAN – general characteristics

- New standard protocol dedicated for Internet of Things
 - IPv6: each node can be directly addressed, end2end IP communication (sensor2server)
 - IPv6 header compression for efficiency, managed by a border router
 - Rely on IEEE 802.15.4 as a transmission layer (same as Zigbee, WirelessHART,..)
 - Open source implementation
- Supports mesh networks (sensors can relay communication)
 - Standard routing protocols (RPL, LoadNG) customizable for energy optimisation vs. mobility support, e.g. taking into account energy levels of sensors in case of energy harvesting
- Supported by IoT Operating Systems (Contiki, TinyOS, FreeRTOS)
 - Contiki modern OS for smart nodes, RAM: 2~35KB, Flash: 5~40KB, multithreading: protothread

Powerful simulation tools (Cooja)

6LoWPAN as an extension of Internet protocols

LPWAN – General characteristics

- Low Power
 - 6LoWPAN < Bluetooth LE << LPWAN << GPRS/3G/4G
 - Simplified protocol (% 4G) -> less overhead, less CPU
- Wide Area
 - Range from few kms to a couple of dozen kms
 - Suitable to deploy at low cost a regional or national network
 - Better Indoor transmission performance than 3G/4G (to be discussed)
- Simple protocol
 - Low bandwidth (100 bps -> few dozen of kbps)
 - Use of ISM bands in Europe (868 MHz)
 - Short messages (-> 242 octets), not suitable for high volume
 - Basic addressing (p2p), no routing, session,...
 - Basic security (usually AES128)

LPWAN: the contenders

- Sigfox
 - Very limited, dedicated to data capture :
 - Uplink: 100bps, 12 bytes/msg, max 140 msg/day
 - Downlink: 8 bytes/msg, max 4 msg/day
 - Focused on low cost & scalabity
 - Proprietary, 1 license per country
- LoRa(WAN)
 - 3 classes of devices (asynchronous, synchronous, continuous)
 - (a little bit) more versatile than Sigfox
 - Standardized by LoRa Alliance, local networks and multiple licences allowed
- Narrowband IoT
 - New standard proposed by 3GPP, standardisation body of GSM, 3G, 4G
 - Only usable by existing owners of licenced bands!
 - Main advantage: 3G/4G base stations are HW compliant (only SW upgrade)
 - More complex and more expensive (energy) at node side

Conclusion

- LPWAN networks allow direct connectivity between sensors and Cloud through public networks
 - Without gateways and usage of other private/public networks
- But with limitations regarding throughput and messaging (use case)
- 6LoWPAN provide end2end IP connectivity between sensors and Cloud in a very efficient way (energy, routing, mobility)
- But requires a gateway through Internet (IPv4 or IPv6)
- CETIC investigates new solutions for Wireless sensor networks and participates in the
 - definition of 6LoWPAN (Border router, tests)
- Related CETIC projects: MIDFLEX

Aéropole de Charleroi-Gosselies Avenue Jean Mermoz 28 6041 Charleroi - Belgique

twitter.com/@CETIC twitter.com/@CETIC_be

linkedin.com/company/cetic

info@cetic.be

+32 71 159 362

Questions?

Philippe DRUGMAND

Department Manager

+32 486 148 997

philippe.drugmand@cetic.be