Fonctions spéciales et fonctions holomorphes

Pierron Théo

ENS Ker Lann

Table des matières

1	Rap	Rappels et compléments										
	1.1	Exponentielle et logarithme	1									
		1.1.1 Définition	1									
		1.1.2 Exponentielle imaginaire	1									
		1.1.3 Logarithme	2									
	1.2											
	1.3											
	1.4											
	1.5	• · · · · · · · · · · · · · · · · · · ·	1									
		*	1									
			12									
		1.5.3 Développement eulérien du sinus	13									
2	Fon	Conction Gamma 15										
_	2.1	Définition	15									
	2.2		15									
	2.3		16									
	2.4		18									
3	For	Formule d'Euler-MacLaurin 21										
	3.1	Nombres et polynômes de Bernoulli	21									
	3.2	- v	23									
	3.3		24									
4	La	La fonction ζ 27										
	4.1	3	27									
	•		- · 27									
			28									
		*	29									
	4 2		29									

5	Les	fonctions Θ	35						
	5.1	Formule sommatoire de Poisson	35						
		5.1.1 Transformée de Fourier	35						
		5.1.2 Transformée de Fourier d'une gaussienne	36						
	5.2	Fonction Θ	36						
	.	5.2.1 Définition	36						
		5.2.2 Relations avec le reste de l'alphabet grec	38						
6	Équations différentielles complexes								
	6.1	Généralités	39						
	6.2	Équations linéaires du second ordre	41						
		6.2.1 Équations indicielles et caractéristiques	41						
		6.2.2 Théorème de Fuchs	42						
		6.2.3 Équation de Bessel	43						
7	Méthode de la phase stationnaire								
	7.1	Phase non stationnaire	45						
	7.2	Phase stationnaire	46						
	7.3	Application aux fonctions de Bessel	47						
	7.4	Dimension supérieure	48						
8	Fon	action d'Airy et méthode du col	49						
	8.1	Résolution	49						
		8.1.1 Par changement de variables	49						
		8.1.2 Par transformée de Fourier	50						
		8.1.3 Résolution par transformée de Laplace	51						
	8.2	Méthode du col	51						
		8.2.1 Principe	51						

Chapitre 1

Rappels, compléments et fonctions usuelles

1.1 Exponentielle et logarithme

1.1.1 Définition

<u>Définition 1.1</u> On définit l'exponentielle par

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

dont le rayon r de convergence (donné par la formule d'Hadamard) est

$$\frac{1}{r} = \limsup \sqrt[n]{\frac{1}{n!}} = 0$$

Proposition 1.1

- $e^0 = 1$
- $\bullet \ e^{x+y} = e^x e^y$
- $e^x \neq 0$ et $e^{-x} = \frac{1}{e^x}$
- $\exp' = \exp$
- Si $x \in \mathbb{R}$, $e^x = (e^{\frac{x}{2}})^2 \ge 0$.
- exp : $\mathbb{R} \to \mathbb{R}_+^*$ est C^{∞} bijective. Sa réciproque est notée ln.
- $\ln(xy) = \ln(x) + \ln(y)$ et $\ln' = \frac{1}{x}$

1.1.2 Exponentielle imaginaire

Proposition 1.2

• $\overline{e^z} = e^{\overline{z}}$.

• $|e^{ix}| = 1$ et l'application $\varphi : x \mapsto e^{ix}$ est un morphisme de groupes de $(\mathbb{R}, +)$ dans (\mathbb{U}, \times) .

THÉORÈME 1.1 Il existe $x \in \mathbb{R}$ tel que $\operatorname{Ker} \varphi = x\mathbb{Z}$. On note alors $\pi = \frac{x}{2}$. De plus, φ est surjective.

<u>Définition 1.2</u> On définit $\cos(y) = \Re(e^{iy})$ et $\sin(y) = \Im(e^{iy})$. En dérivant $y \mapsto e^{iy}$, on retrouve que $\cos' = -\sin$ et $\sin' = \cos$.

Démonstration. Comme $\cos(0) = 1$, il existe $y_0 > 0$ tel que $\cos(x) > 0$ sur $[0, y_0]$, sin est croissante sur $[0, y_0]$ et $a = \sin(y_0) > 0$.

On pose $y_1 = \sup\{y \ge y_0, \cos(y) > 0 \forall z \in [0, y]\}$. Soit $y \in [y_0, y_1]$.

$$\cos(y) - \cos(y_0) = -\int_{y_0}^{y} \sin(t) dt \leqslant -a(y - y_0)$$

Ainsi, $y_1 < \infty$ et $y_1 \leqslant y_0 + \frac{\cos(y_0)}{a}$. Ainsi, cos s'annule en y_1 .

<u>Définition 1.3</u> Si $z \in \mathbb{U}$, on note $\arg(z)$ un élément de $\varphi^{-1}(z)$. Si $z \in \mathbb{C}^*$, $\arg(z) = \arg(\frac{z}{|z|})$. On a alors la décomposition polaire

$$z = |z| e^{i \arg(z)}$$

1.1.3 Logarithme

Résoudre $e^z = w$ avec $w \in \mathbb{C}^*$ revient à résodre $e^{\Re(z)} = |w|$ avec $\operatorname{Im}(z) = \operatorname{arg}(w) \mod 2\pi$.

Notons $\Omega_{\theta} = \mathbb{C} \setminus \{\mathbb{R}e^{i\theta}\}$. Il existe une unique détermination de l'argument notée $\arg_{\theta} \operatorname{dans}]\theta - \pi, \theta + \pi[$.

Proposition 1.3 $\log_{\theta} = w \mapsto \ln |w| + i \arg_{\theta}(w)$ est un homéomorphisme sur son image, de réciproque de exp. Elle est aussi holomorphe.

Remarque 1.1 Pour $\theta = 0$ et z = x + iy, $\arg(z) = \arctan(\frac{y}{x})$.

Lemme 1.1.1

Si $f:\Omega\to\Omega'$ est un homéomorphisme et f est holomorphe alors f^{-1} est holomorphe.

Démonstration. En posant $z = f^{-1}(w)$ et $z_0 = f^{-1}(w_0)$, on a

$$\frac{f^{-1}(w) - f^{-1}(w_0)}{w - w_0} = \left(\frac{f(z) - f(z_0)}{z - z_0}\right)^{-1} \to \frac{1}{f'(z_0)}$$

avec $f'(z_0) \neq 0$ car f est un homéomrphisme en vertu du théorème suivant.

THÉORÈME 1.2 Soit m > 0 la multiplicité d'annulation en z_0 de $g(z) = f(z) - f(z_0)$. Il existe $r_0 > 0$ tel que $g(z) = \varphi(z)^m$ avec φ holomorphe sur $B(z_0, r_0)$.

Remarque 1.2 Attention à $x \to x^3$ sur \mathbb{R} qui est un homéomorphisme mais qui a uen dérivée nulle en 0.

Exemple 1.1 $f(z) = \ln(1+z)$ est holomorphe sur D(0,1[.

$$f'(z) = \frac{1}{1+z} = \sum_{n \in \mathbb{N}} (-z)^n$$

On a alors $\ln(1+z) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{z^n}{n}$. En fait elle se prolonge sur $\mathbb{C}\setminus]-\infty,-1]$.

1.2 Rappels sur l'holomorphie

Soit Ω un ouvert de \mathbb{C} .

Théorème 1.3 On a équivalence entre

- (i) $f \in \mathcal{H}(\Omega)$.
- (ii) $f \in C^1(\Omega)$ et $\frac{\partial f}{\partial \overline{z}} = 0$.
- (iii) f vérifie la formule des résidus

$$f(z) = \frac{1}{2i\pi} \int_{\partial K} \frac{f(\omega)}{\omega - z} d\omega$$

où z appartient à l'intérieur de K compact de Ω de bord ∂K régulier.

(iv) f est DSE au voisinage de chaque point de Ω .

Démonstration.

(i) \Rightarrow (ii) $f \in C^1(\Omega)$ est admis. En posant z = x + iy, on a

$$\mathrm{d}f = \frac{\partial f}{\partial x} \, \mathrm{d}x + \frac{\partial f}{\partial y} \, \mathrm{d}y$$

Une autre base de $\mathscr{L}_{\mathbb{R}}(\mathbb{C},\mathbb{C})$ est $(\mathrm{d}z,\mathrm{d}\overline{z})$. On a alors

$$dx = \frac{dz + d\overline{z}}{2}$$
 et $dy = \frac{dz - d\overline{z}}{2i}$

On a alors

$$df = \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right) dz + \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right) d\overline{z}$$

D'où

$$\frac{f(z+h) - f(z)}{h} = \frac{\partial f}{\partial z} + \frac{\partial f}{\partial \overline{z}} \frac{\overline{h}}{h} + o(1)$$

En faisant $h \to 0$ sur plusieurs chemins, on trouve que $\frac{\partial f}{\partial \overline{z}} \neq 0$ est

(ii) \Rightarrow (iii) Soit K un compact de Ω et $\frac{\partial f}{\partial \overline{z}}(z) = 0$ pour tout $z \in K$. Alors, par Green-Riemann.

$$\int_{\partial K} f(z) dz = \iint_{K} i \frac{\partial f}{\partial x} - \frac{\partial f}{\partial y} dx dy = 2i \iint_{K} \frac{\partial f}{\partial \overline{z}}(z) dx dy = 0$$

Comme $\omega \mapsto \frac{f(\omega) - f(z)}{\omega - z} \in \mathcal{H}(\Omega)$,

$$0 = \frac{1}{2i\pi} \int_{\partial K} \frac{f(\omega) - f(z)}{\omega - z} d\omega$$

Comme $\int_{\partial K} \frac{\mathrm{d}\omega}{\omega - z} = 2i\pi$, on a la formule du (iii). Une autre façon de le démontrer est de découper le chemin ∂K en $\partial K_{\varepsilon}^{+}$ et $\partial K_{\varepsilon}^-$ où K_{ε}^{\pm} forment une partition de $K \setminus D(z, \varepsilon[$ parcourus dans le même sens, on a

$$0 = \int_{\partial K_{\varepsilon}^{+}} \frac{f(\omega) - f(z)}{\omega - z} d\omega + \int_{\partial K_{\varepsilon}^{-}} \frac{f(\omega) - f(z)}{\omega - z} d\omega$$
$$= \int_{\partial K} \frac{f(\omega) - f(z)}{\omega - z} d\omega - \int_{\partial D(z, \varepsilon)} \frac{f(\omega) - f(z)}{\omega - z} d\omega$$

Or

$$\left| \int_{\partial D(z,\varepsilon[} \frac{f(\omega) - f(z)}{\omega - z} d\omega \right| = \left| \int_0^{2\pi} \frac{f(\varepsilon e^{iy} + z) - f(z)}{\varepsilon e^{iy}} \varepsilon i e^{iy} dy \right|$$

$$\leq 2\pi \sup_{y} |f(z + \varepsilon e^{iy}) - f(z)| \to 0$$

(iii) \Rightarrow (iv) Il existe r > 0 tel que $K := D(z_0, r] \subset \Omega$. On a pour tout $z \in D(z_0, r[$

$$f(z) = \frac{1}{2i\pi} \int_{\partial K} \frac{f(\omega)}{\omega - z} d\omega$$
$$= \frac{1}{2i\pi} \int_{\partial K} \frac{f(\omega)}{\omega - z_0} \frac{1}{1 - \frac{z - z_0}{\omega - z_0}} d\omega$$

Or
$$|z - z_0| < |\omega - \omega_0|$$
 donc $\frac{1}{1 - \frac{z - z_0}{\omega - z_0}} = \sum_{n \in \mathbb{N}} \left(\frac{z - z_0}{\omega - z_0}\right)^n$. Ainsi,

$$f(z) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\theta}) \sum_{n \in \mathbb{N}} \left(\frac{z - z_0}{re^{i\theta}}\right)^n d\theta$$

Comme la série cvn, on permute et on a

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n \text{ avec } a_n = \frac{1}{2\pi r^n} \int_0^{2\pi} f(z_0 + re^{i\theta}) e^{-in\theta} d\theta$$

$$(iv) \Rightarrow (i)$$
 Clair.

1.3 Suites et séries de fonctions holomorphes

Théorème 1.4 Soit (E, μ) un espace mesuré σ -fini et μ une mesure positive.

Soit $f: \Omega \times E \to \mathbb{C}$ mesurable. On considère

$$F(z) = \int_{E} f(z, t) \,\mathrm{d}\mu(t)$$

Si:

- (i) $f(\cdot,t)$ est holomorphe pour presque tout t.
- (ii) Pour tout K compact de Ω , il existe $\varphi \in L^1(E,\mu)$ telle que pour tout $t \in E$,

$$\sup_{z \in K} |f(z, t)| \leqslant \varphi(t)$$

alors f est holomorphe sur Ω et

$$F^{(n)}(z) = \int \frac{\partial^n f}{\partial z^n}(z, t) \, \mathrm{d}\mu(t)$$

Démonstration. Par la formule de l'indice, on a

$$F(z) = \int_{E} \frac{1}{2i\pi} \int_{\partial K} \frac{f(\omega, t)}{\omega - z} d\omega d\mu(t)$$

où K est un compact à bord régulier contenant z. Par Fubini, on a

$$F(z) = \frac{1}{2i\pi} \int_{\partial K} \frac{1}{\omega - z} \int_{E} f(\omega, t) d\mu(t) d\omega$$

F vérifie donc la formule de Cauchy donc F est holomorphe.

La formule des dérivées s'obtient de même.

THÉORÈME 1.5 Soit $(f_n)_n$ une suite de fonctions holomorphes. Si f_n cvu sur tout compact vers f, alors f est holomorphe et pour tout k, $f_n^{(k)}$ cvu sur tout compact vers $f^{(k)}$.

Démonstration. On écrit

$$f_n(z) = \frac{1}{2i\pi} \int_{\partial K} \frac{f_n(\omega)}{\omega - z} d\omega$$

pour K compact à bord régulier contenant z. Or f_n evu sur K donc on a bien

$$f(z) = \frac{1}{2i\pi} \int_{\partial K} \frac{f(\omega)}{\omega - z} d\omega$$

Alors f est holomorphe et le même calcul sur $f^{(k)}$ conclut :

$$f_n^{(k)}(z) = \frac{k!}{2i\pi} \int_{\partial K} (-1)^k \frac{f_n(\omega)}{(\omega - z)^{k+1}} d\omega$$

$$\to \frac{k!}{2i\pi} \int_{\partial K} (-1)^k \frac{f(\omega)}{(\omega - z)^{k+1}} d\omega = f^{(k)}(z)$$

COROLLAIRE 1.1 Soit une série $\sum_{k=0}^{\infty} f_k$ de fonctions holomorphes qui cvul.

Alors $S = \sum_{k=0}^{\infty} f_k$ est holomorphe sur Ω et

$$S^{(n)}(z) = \sum_{k=0}^{\infty} f_k^{(n)}(z)$$

Proposition 1.4 Soit $(f_n)_n$ une suite de fonctions holomorphes dont aucun terme n'est identiquement nul.

Pour que $P_n(z) = \prod_{k=0}^n f_k(z)$ converge vers P(z) holomorphe, il suffit qu'un des deux points suivants soient vérifiés :

(i) en notant
$$u_n = f_n - 1$$
, $\sum_{k=0}^{\infty} |u_k|$ cvul

(ii)
$$\sum_{k=0}^{\infty} u_k$$
 et $\sum_{k=0}^{\infty} |u_k|^2$ evul

De plus, (i) implique (ii).

Démonstration. On suppose (ii). On a déjà $u_k \to 0$ donc $f_k \to 1$. Il existe donc n_0 tel que $|u_k(z)| < \frac{1}{2}$ et $|f_k(z)| > \frac{1}{2}$ pour $k \ge n_0$.

On écrit alors

$$P_n(z) = \prod_{k=0}^{n_0} f_k(z) \prod_{k=n_0+1}^{n} f_k(z)$$

Au voisinage de z, on peut écrire

$$f_k(z) = e^{\ln(1 + u_k(z))}$$

Or pour $|z| < \frac{1}{2}$, $|\ln(1+z) - z| \leqslant c|z|^2$. Donc

$$\left| \sum_{k=n_0+1}^{n} (\ln(1+u_k(z)) - u_k(z)) \right| \leqslant C \sum_{k=n_0+1}^{n} |u_k(z)|^2$$

Ainsi $\sum_{k=n_0+1}^n \ln(1+u_k(z))$ cvul vers g holomorphe. Ainsi,

$$P_n(z) \to P_{n_0}(z) e^{g(z)}$$

qui est donc holomorphe.

Remarque 1.3 P admet pour zéros $\bigcup_k f_k^{-1}(\{0\})$ avec multiplicité la somem des multiplicités des facteurs.

Remarque 1.4 Sur $\Omega \setminus P^{-1}(\{0\})$,

$$\frac{P'}{P}(z) = \sum_{k=0}^{\infty} \frac{f_k'(z)}{f_k(z)}$$

avec cvul.

Exemple 1.2 $P(z) = z \prod_{n=1}^{\infty} (1 - \frac{z^2}{n^2})$ sur \mathbb{C} .

On a $u_n(z) = -\frac{z^2}{n^2}$. Sur un compact K de \mathbb{C} inclus dans B(0,R], on a

$$\sum_{n=0}^{\infty} |u_n(z)| \leqslant \sum_{n=0}^{\infty} \frac{R^2}{n^2} < \infty$$

donc P est holomorphe sur $\mathbb C$ et on a $P^{-1}(\{0\})=\mathbb Z$. On a de plus

$$\frac{P'}{P}(z) = \frac{1}{z} + \sum_{k=1}^{\infty} \frac{\frac{-2z}{k^2}}{1 - \frac{z^2}{k^2}} = \frac{1}{z} - 2\sum_{k=1}^{\infty} \frac{z}{k^2 - z^2}$$

THÉORÈME 1.6 MONTEL $\mathcal{H}(\Omega)$ est compact dans $C^0(\Omega)$ muni de la topologie des semi-normes. Autrement dit, si $(f_n)_n$ sont holomorphes et $\sup_{z \in K} |f_n(z)|$ borné pour tout compact K de Ω , alors il existe une sous-suite $(n_k)_k$ telle que $f_{n_k} \to f$ avec f holomorphe sur Ω .

Démonstration. Soit K un compact de Ω . On pose $K_{\varepsilon} = \{z, d(z, K) \leq \varepsilon\}$. On prend $\varepsilon > 0$ tel que $K_{2\varepsilon} \subset \Omega$. On a pour tout n,

$$\sup_{z \in K_{\varepsilon}} |f'_n(z)| \leqslant \frac{1}{\varepsilon} \sup_{z \in \partial K_{2\varepsilon}} |f_n(z)| \leqslant \frac{M}{\varepsilon} \quad (\text{cf. TD})$$

On a ainsi

$$|f_n(b) - f_n(a)| \le |b - a| \sup_{z \in [a,b]} |f'_n(z)| \le \frac{M|b - a|}{\varepsilon}$$

Ainsi, $(f_n)_n$ est équicontinue et $(f_n(z))_n$ est bornée pour tout $z \in \Omega$. Par Ascoli, $(f_n)_n$ est relativement compact dans $C^0(K)$.

Ainsi, pour tout K compact, il existe n_k tel que $f_{n_k} \to f$ holomorphe. En écrivant Ω comme une union croissante de compacts, une extraction diagonale conclut.

1.4 Fonctions méromorphes

Proposition 1.5 Soit f holomorphe sur un voisinage d'un point z_0 . f admet un développement en série de Laurent au voisinage de z_0 :

$$f(z) = \sum_{n \in \mathbb{Z}} a_n (z - z_0)^n$$

Démonstration. Par translation, on prend $z_0 = 0$. Il existe R > r > 0 tel que f soit holomorphe su $D(0, R[\setminus 0.$

 $\omega \mapsto \frac{f(\omega)}{\omega - z}$ est holomorphe sur D_1 et

$$\frac{1}{2i\pi} \int_{\partial D_1} \frac{f(\omega)}{\omega - z} \, \mathrm{d}\omega = 0$$

La formule de Cauchy assure

$$f(z) = \frac{1}{2i\pi} \int_{\partial D_2} \frac{f(\omega)}{\omega - z} \, \mathrm{d}z$$

En sommant, on trouve

$$f(z) = \frac{1}{2i\pi} \int_{\partial D_1} \frac{f(\omega)}{\omega - z} d\omega + \frac{1}{2i\pi} \int_{\partial D_2} \frac{f(\omega)}{\omega - z} dz$$

D'où

$$2i\pi f(z) = \int_{D(0,R)} \frac{f(\omega)}{\omega - z} d\omega - \int_{D(0,r)} \frac{f(\omega)}{\omega - z} d\omega$$
$$= \int_{D(0,R)} \frac{f(\omega)}{\omega (1 - \frac{z}{\omega})} d\omega - \int_{D(0,r)} \frac{-f(\omega)}{z (1 - \frac{\omega}{z})} d\omega$$
$$= \int_{D(0,R)} \frac{f(\omega)}{\omega} \sum_{k=0}^{\infty} \frac{z^k}{\omega^k} d\omega + \int_{D(0,r)} \frac{f(\omega)}{z} \sum_{k=0}^{\infty} \frac{\omega^k}{z^k} d\omega$$

Ainsi,

$$f(z) = \sum_{k=0}^{\infty} a_k z^k + \sum_{k=0}^{-\infty} b_k z^{k-1}$$

avec

$$a_k = \frac{1}{2i\pi} \int_{D(0,R)} \frac{f(\omega)}{\omega^{k+1}} d\omega \text{ et } b_k = \frac{1}{2i\pi} \int_{D(0,r)} \omega^k f(\omega) d\omega$$

<u>Définition 1.4</u> On dit alors que le point z_0 est régulier si $b_k = 0$ pour tout k. Sinon on dit que z_0 est singulier.

- si $b_k=0$ pour k<-N, on dit que z_0 est un pôle. Si $b_{-N}\neq 0,$ le pôle est d'ordre -N.
- sinon, pour tout N, il existe k < -N tel que $a_k \neq 0$, on dit que z_0 est une singularité essentielle.
- a_{-1} est le résidu de f en z_0 .

Exemple 1.3

- $z \mapsto \frac{\sin z}{z}$: 0 est régulier $z \mapsto \frac{1}{z}$ et $z \mapsto \frac{\cos z}{z}$ ont un pôle en 0 avec un résidu égal à 1. $z \mapsto e^{\frac{1}{z}} = \sum_{k=0}^{-\infty} \frac{z^k}{(-k)!}$ qui a donc une singularité essentielle.

<u>Définition 1.5</u> On dit que f est méromorphe sur Ω ssi il existe u, v holomorphes sur Ω telles que $f = \frac{u}{v}$ avec v non nulle. On note $\mathcal{M}(\Omega)$ leur

L'ensemble des pôles de f coïncide avec l'ensemble (localement fini) des pôles de v. f est donc définie sur $\Omega \setminus v^{-1}(\{0\})$.

Théorème 1.7 Caractérisation des points singuliers Soit f holomorphe sur $\Omega \setminus \{z_0\}$ avec $z_0 \in \Omega$.

- (i) z_0 est régulier ssi f est bornée au voisinage de z_0 .
- (ii) z_0 est un pôle ssi $\lim_{z \to z_0} |f(z)| = \infty$.
- (iii) z_0 est une singularité essentielle ssi pour tout V voisinage de z_0 , $f(V \setminus \{z_0\})$ est dense dans \mathbb{C} ie, $\overline{f(V \setminus \{z_0\})} = \mathbb{C}$.

Démonstration.

- (i) Utiliser l'expression de b_k pour $r = \varepsilon \to 0$ donne $b_k = 0$.
- (ii) Si z_0 est un pôle,

$$|f(z)| = \frac{|a_k|}{|z - z_0|^k} (1 + g(z))$$

avec g holomorphe sur Ω . Pour $z \to z_0$, on a $|f(z)| \to +\infty$.

Pour la réciproque, si la limite vaut l'infini, il existe $\omega \notin \overline{f(V \setminus \{f_0\})}$. La fonction $g: z \to \frac{1}{f(z)-\omega}$ est holomorphe sur $V \setminus \{z_0\}$ et bornée par hypothèse donc g est holomorphe sur V par (i). Or $f(z) = \omega + \frac{1}{g(z)}$ est donc holomorphe sur V.

(iii) Le même argument que dans (ii) assure que si $\overline{f(V \setminus \{f_0\})} \neq \mathbb{C}$, alors f est holomorphe sur V. Donc z_0 n'est pas singulier. Contradiction.

<u>Définition 1.6</u> Soit $(f_n)_n$ une suite de fonctions méromorphes. On dit que $\sum_{n=1}^{\infty} f_n$ evul (resp. evnl) ssi

- (i) Pour tout K compact de Ω , pour tout $n \ge n_1$, f_n n'a pas de pôle dans K.
- (ii) Pour tout K compact de Ω , $\sum_{n=n_1}^{\infty} f_n$ cvu (resp. cvn) en tant que série de fonctions holomorphes.

THÉORÈME 1.8 Soit $(f_n)_n$ une suite de fonctions méromorphes telles que $\sum_{n=1}^{\infty} f_n \ cvul \ (resp. \ cvnl). \ Alors \ f = \sum_{n=1}^{\infty} f_n \ est \ méromorphe \ sur \ \Omega.$

De plus, les pôles $\mathcal{P}(f)$ de f sont inclus dans l'union des pôles $\mathcal{P}(f_n)$ des f_n , avec égalité si les $\mathcal{P}(f_n)$ sont disjoints. On a aussi $f^{(k)} = \sum_{n=1}^{\infty} f_n^{(k)}$.

 $D\acute{e}monstration$. Soit K compact de Ω . On a

$$f(z) = \underbrace{\sum_{n=1}^{n_1 - 1} f_n(z)}_{\text{méromorphe}} + \underbrace{\sum_{n=n_1}^{\infty} f_n(z)}_{\text{holomorphe}}$$

Donc tout marche.

1.5 Exemples

1.5.1 Premier exemple

On pose
$$f(z) = \sum_{n \in \mathbb{Z}} \underbrace{\frac{1}{(z-n)^2}}_{f_n(z)}$$
.

 f_n est méromorphe et a un pôle d'ordre 2 en z=n.

Tout compact K de Ω est inclus dans une bande verticale $S := \{z, A \leq \Re(z) \leq B\}$. Pour $n_1 = \lfloor \max\{|A|, |B|\} \rfloor + 1$, et $|n| \geq n_1$, f_n n'a pas de pôle dans K.

On a de plus, pour $|n| \ge n_1$,

$$\sup_{S} |f_n(z)| \leqslant \begin{cases} \frac{1}{(n-B)^2} & \text{si } n \geqslant 0\\ \frac{1}{(n-A)^2} & \text{sinon} \end{cases}$$

et
$$\sum_{n=n_1}^{\infty} \frac{1}{(n-B)^2}$$
, $\sum_{n=n_1}^{\infty} \frac{1}{(n-B)^2}$ sont convergente.

Donc la série cvn sur K et f est méromorphe. On a de plus $\mathcal{P}(f) = \mathbb{Z}$ (union disjointe).

De plus, au voisinage de $n \in \mathbb{Z}$, on a

$$f(z) = \frac{1}{(z - n_0)^2} + g$$

avec g holomorphe. On remarque de plus que f(z+1) = f(z).

Proposition 1.6

$$f(z) = \left(\frac{\pi}{\sin(\pi z)}\right)^2 =: \psi(z)$$

Démonstration. On pose $g(z) = f(z) - \psi(z)$ qui est holomorphe sur $\mathbb{C} \setminus \mathbb{Z}$. On se place au voisinage de $n_0 \in \mathbb{Z}$.

$$f(z) = \frac{1}{(z - n_0)^2} + \tilde{f}(z)$$

avec \tilde{f} holomorphe. De plus,

$$\psi(z) = \psi(n_0 + h) = \psi(h) = \frac{\pi^2}{\sin^2(\pi h)} = \frac{1}{h^2} + O(1) = \frac{1}{(z - n_0)^2} + O(1)$$

Donc g(z) = O(1) sur un voisinage de n_0 qui est donc un point régulier de g. g est donc prolongeable en une fonction holomorphe sur \mathbb{C} . On va montrer que g est bornée.

En fait, il suffit de considérer g sur la bande $\Re(z) \in [0,1]$ car g est 1-périodique. On a

$$\sup_{x \in [0,1]} |f_n(x+iy)| \leqslant \frac{1}{(n-1)^2 + y^2} \leqslant \frac{1}{(n-1)^2}$$

Donc la convergence de la série est uniforme en y. Alors

$$\lim_{|y|\to\infty} \sum_{n\in\mathbb{Z}} \frac{1}{(z-n)^2} = \sum_{n\in\mathbb{Z}} \lim_{|y|\to\infty} \frac{1}{(x-n)^2 + y^2} = 0$$

Alors f est bornée. En écrivant $|\sin(\pi z)|^2 = \sin^2(\pi x) + \sin^2(\pi y)$, on a que ψ est bornée donc g est bornée. Par Liouville, g est constante donc nulle puisqu'elle tend vers 0 en l'infini.

1.5.2 Deuxième exemple

On pose
$$g(z) = \frac{1}{z} + \sum_{n \neq 0} \left(\frac{1}{z - n} + \frac{1}{n} \right)$$
.

Proposition 1.7

(i) g est méromorphe sur \mathbb{C} avec $\mathcal{P}(g) = \mathbb{Z}$

(ii)
$$g(z) = \frac{1}{z} + \sum_{n=0}^{\infty} \frac{2z}{z^2 - n^2} = \pi \cot(\pi z)$$

Démonstration. Comme précédemment, il est clair que pour tout compact K de \mathbb{C} , $\{n, g_n \text{ a un pôle dans } K\}$ est fini.

On a de plus $K \subset D(0,R]$ et

$$\sup_{z \in K} |g_n(z)| = \left| \frac{n+z-n}{(z-n)n} \right| \leqslant \frac{R}{n(n-R)}$$

Donc il y a convergence normale de la série, ce qui assure (i).

On peut alors réarranger les termes, ce qui donne

$$g(z) = \frac{1}{z} + \sum_{n=1}^{\infty} \frac{2z}{z^2 - n^2}$$

On dérive :

$$g'(z) = -\frac{1}{z^2} + \sum_{n=1}^{\infty} \frac{2(z^2 - n^2) - 4z^2}{(z^2 - n^2)^2} = -\frac{1}{z^2} - \sum_{n=1}^{\infty} \frac{1}{(z - n)^2}$$

Donc $g'(z) = -(\frac{\pi}{\sin(\pi z)})^2$. Or $(\pi \cot(\pi z))' = -\frac{\pi^2}{\sin^2(\pi z)}$. Ainsi

$$g(z) = \pi \cot(\pi z) + c$$

et c = 0 car $z \mapsto g(z) - \pi \cot(\pi z)$ est impaire.

1.5.3 Développement eulérien du sinus

Proposition 1.8 Pour tout $z \in \mathbb{C}$, on a

$$\sin(\pi z) = \pi z \prod_{n>1} \left(1 - \frac{z^2}{n^2}\right) =: P(z)$$

Démonstration. P est holomorphe sur \mathbb{C} et $\mathcal{P}(P) = \mathbb{Z}$.

$$\frac{P'(z)}{P(z)} = \frac{1}{z} + \sum_{n \ge 1} \frac{-2z}{n^2 - z^2} = \pi \cot(\pi z)$$

Or $\pi \cot(\pi z) = \frac{(\sin(\pi z))'}{\sin(\pi z)}$. Ainsi, $(\frac{P(z)}{\sin(\pi z)})' = 0$ donc $P(z) = k \sin(\pi z)$. Pour $|z| \to 0$, on obtient que k = 1.

PIERRON Thé	0	Page 14		Tous droits i	éservés
СН	APITRE 1.	RAPPELS ET	COMPLÉN	MENTS	

Chapitre 2

Fonction Gamma

2.1 Définition

<u>Définition 2.1</u> Pour $\Re(s) > 0$, on pose $\Gamma(s) = \int_0^\infty e^{-t} t^{s-1} dt$.

Remarque 2.1 On n'a pas de problème en $+\infty$ car l'exponentielle l'emporte. En 0,

$$|e^{-t}t^{s-1}| = |e^{((u-1)+iv)\ln(t)-t}| \sim e^{(u-1)\ln(t)} = \frac{1}{t^{1-u}}$$

Donc tout va bien puisque u > 0.

Proposition 2.1 Γ est holomorphe sur $\Omega = \{z, \Re(z) > 0\}.$

Démonstration. Par dérivation sous l'intégrale,

- pour tout t > 0, $s \mapsto e^{-t}t^{s-1}$ est holomorphe
- pour tout K compact de Ω , il existe δ, m tel que $K \subset \{z, \delta < \Re(z) < m\}$. Alors

$$|e^{-t}t^{s-1}| = |e^{-t}e^{((u-1)+iv)\ln(t)}| = e^{-t}t^{u-1}$$

 $\leq e^{-t}(1+t^{m-1})1_{t\geq 1} + e^{-t}(1+t^{\delta-1})1_{0< t< 1} \in L^1$

Donc Γ est holomorphe.

2.2 Prolongement analytique de Γ

Proposition 2.2 Pour tout s tel que $\Re(s) > 0$, $\Gamma(s+1) = s\Gamma(s)$. En particulier, $\Gamma(n+1) = n!$.

Démonstration. Une IPP assure que

$$\int_{\varepsilon}^{\frac{1}{\varepsilon}} \mathrm{e}^{-t} t^s \, \mathrm{d}t = [\mathrm{e}^{-t} t^s]_{\frac{1}{\varepsilon}}^{\varepsilon} + s \int_{\varepsilon}^{\frac{1}{\varepsilon}} \mathrm{e}^{-t} t^{s-1} \, \mathrm{d}t$$

Pour $\varepsilon \to 0$, on a

$$\Gamma(s+1) = s\Gamma(s)$$

On étend la fonction Γ en une fonction méromorphe sur \mathbb{C} par récurrence : on pose $F_1(s) = \frac{\Gamma(s+1)}{s}$ qui est méromorphe sur $\{z, \Re(z) > -1\}$ avec un pôle d'ordre 1 en 0. De plus, F_1 coïncide avec Γ sur Ω .

d'ordre 1 en 0. De plus, F_1 coïncide avec Γ sur Ω . Pour $\Re(s) > -m$, on pose $F_m(s) = \frac{\Gamma(s+m)}{(s+m-1)...s}$, méromorphe sur $\Re(s) > -m$ qui coïncide avec Γ sur Ω .

2.3 La fonction Γ selon Weierstraß

On considère le produit infini $g(z) = \prod_{n=1}^{\infty} (1 + \frac{z}{n}) e^{-\frac{z}{n}}$. On pose $f_n(z) = (1 + \frac{z}{n}) e^{-\frac{z}{n}}$.

On a $f_n(z) = 1 + O(\frac{|z|^2}{n^2})$ donc on a cvn sur tout compact. Ainsi, g est holomorphe sur \mathbb{C} et ses zéros sont simples et situés sur \mathbb{Z}_+^* .

Les zéros de g(z-1) sont donc les éléments de \mathbb{Z}_- . La fonction $z\mapsto \frac{g(z-1)}{zg(z)}$ est par conséquent une fonction entière sans zéros. On l'écrit donc $e^{h(z)}$ avec h holomorphe sur \mathbb{C} .

On passe à la dérivée logarithmique :

$$h'(z) = \frac{g'(z-1)}{g(z-1)} - \frac{g'(z)}{g(z)} - \frac{1}{z}$$

Or on a

$$\frac{g'(z)}{g(z)} = \sum_{n=1}^{\infty} \left(\frac{1}{n+z} - \frac{1}{n} \right)$$

On se retrouve avec une somme téléscopique dans l'expression de h(z):

$$h'(z) = \sum_{n=0}^{\infty} \left(\frac{1}{n+z} - \frac{1}{n+1} \right) - \sum_{n=1}^{\infty} \left(\frac{1}{n+z} - \frac{1}{n} \right) - \frac{1}{z} = 0$$

Alors h est constante.

Proposition 2.3 h vaut la constante γ d'Euler.

Démonstration.

$$\frac{g(z-1)}{z} = \frac{1}{z} \prod_{i=1}^{\infty} \left(1 + \frac{z-1}{n} \right) e^{-\frac{z-1}{n}} = e^{1-z} \prod_{i=2}^{\infty} \left(1 + \frac{z-1}{n} \right) e^{-\frac{z-1}{n}}$$

Ainsi, pour $z \to 1$,

$$\frac{g(z-1)}{z} \to 1$$

On a donc $e^h = \frac{1}{g(1)}$ ie $h = -\ln(g(1))$. Or

$$\ln(g(1)) = \sum_{n=1}^{\infty} \ln\left(1 + \frac{1}{n}\right) - \frac{1}{n} = \lim_{N \to +\infty} \ln(N+1) - \sum_{n=1}^{N} \frac{1}{n} = -\gamma$$

On introduit $F(z) = \frac{1}{zg(z)e^{\gamma z}}$.

Proposition 2.4 F est méromorphe, de pôles \mathbb{Z}_{-} et vérifie F(z+1)=zF(z).

Démonstration. Les deux premiers points sont clairs.

$$F(z+1) = \frac{1}{(z+1)g(z+1)e^{\gamma z+\gamma}} = \frac{(z+1)g(z+1)}{(z+1)g(z+1)e^{\gamma z}g(z)} = zF(z)$$

THÉORÈME 2.1 $\Gamma = F \ sur \ \mathbb{C} \setminus \mathbb{Z}_{-}$.

Démonstration. On pose $\pi(n,z) = \int_0^n \left(1 - \frac{t}{n}\right)^n t^{z-1} dt$ pour z tel que $\Re(z) > 0$. On montre successivement que :

- (i) À z fixé, $\lim_{n \to +\infty} \pi(n, z) = \Gamma(z)$
- (ii) À z fixé, $\lim_{n \to +\infty} \pi(n, z) = F(z)$.

Par convergence dominée : $\left(1-\frac{t}{n}\right)^n t^{z-1} 1_{[0,n]}(t)$ converge simplement vers $\mathrm{e}^{-t} t^{z-1}$ et on a la majoration

$$\left| \left(1 - \frac{t}{n} \right)^n t^{z-1} 1_{[0,n]}(t) \right| \le e^{-t} t^{z-1}$$

qui est intégrable sur \mathbb{R} . On a donc bien (i).

Pour (ii), on pose $\tau = \frac{t}{n}$ et on a par IPP

$$\pi(n,z) = \int_0^1 (1-\tau)^n (n\tau)^{z-1} n \, d\tau = n^z \underbrace{\int_0^1 (1-\tau)^n \tau^{z-1} \, d\tau}_{K(n,z)}$$
$$= n^z \left[\frac{\tau^z}{z} (1-\tau)^n \right]_0^1 + \frac{n^{z+1}}{z} \int_0^1 (1-\tau)^{n-1} \tau^z \, d\tau = \frac{n^{z+1}}{z} K(n-1,z+1)$$

Par récurrence,

$$K(n,z) = \frac{n!}{z(z+1)\dots(z+n-1)} \int_0^1 \tau^{z+n-1} d\tau = \frac{n!}{z(z+1)\dots(z+n)}$$

Ainsi,
$$\pi(n, z) = \frac{n^z n!}{z(z+1)...(z+n)}$$
. Or

$$\frac{1}{F(z)} = zg(z)e^{\gamma z} = ze^{\gamma z} \prod_{k=1}^{\infty} \left(1 + \frac{z}{k}\right) e^{-\frac{z}{k}}$$

$$= \lim_{n \to +\infty} z \exp\left(\sum_{k=1}^{n} \frac{z}{k} - z \ln(n)\right) \prod_{k=1}^{n} \left(1 + \frac{z}{k}\right) e^{-\frac{z}{k}}$$

$$= \lim_{n \to +\infty} \frac{z}{n^{z}} \prod_{k=1}^{n} \left(1 + \frac{z}{k}\right) = \lim_{n \to +\infty} \frac{1}{n! n^{z}} \prod_{k=0}^{n} (z + k)$$

$$= \lim_{n \to +\infty} \frac{1}{\pi(n, z)}$$

Proposition 2.5 Formule des compléments $\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin(\pi z)}$ pour $z \notin \mathbb{Z}$.

Démonstration. On a

$$\frac{1}{\Gamma(z)} = z e^{\gamma z} \prod_{n=1}^{\infty} \left(1 + \frac{z}{n} \right) e^{-\frac{z}{n}}$$

Donc

$$\frac{1}{\Gamma(z)\Gamma(-z)} = -z^2 \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{n^2}\right) = -z^2 \frac{\sin(\pi z)}{\pi z}$$

Or $\Gamma(1-z) = -z\Gamma(-z)$ donc

$$\Gamma(z)\Gamma(1-z) = -z\Gamma(z)\Gamma(-z) = \frac{\pi}{\sin(\pi z)}$$

2.4 Comportement asymptotique de Γ

Pour $f \in C^0(I,\mathbb{C})$, $\varphi \in C^\infty(I,\mathbb{Z})$ et I =]a,b[borné, on pose

$$F(t) = \int_{a}^{b} e^{t\varphi(x)} f(x) dx$$

Théorème 2.2 On suppose que

- (i) L'intégrale converge absolument pour tout $t \gg 1$.
- (ii) Il existe un unique $x_0 \in I$ tel que $\varphi'(x_0) = 0$
- (iii) $\varphi''(x_0) < 0$
- (iv) $f(x_0) \neq 0$

Alors pour $t \to \infty$,

$$F(t) \sim \frac{\sqrt{2\pi}}{\sqrt{|\varphi''(x_0)|}} \frac{e^{t\varphi(x_0)}}{\sqrt{t}} f(x_0)$$

Démonstration. Sur voisinage $]x_0 - \delta, x_0 + \delta[$ de $x_0,$

$$\varphi(x) = \varphi(x_0) - (x - x_0)^2 \psi(x) \underbrace{\frac{\varphi''(x_0)}{2}}_{=\sigma}$$

où ψ est C^{∞} et $\psi(x_0) > 0$ au voisinage de x_0 . On pose

$$y(x) = (x - x_0)\sqrt{\psi(x)}$$

qui est régulière et $y'(x_0) = 1$ c'est donc un difféomorphisme local.

Soit θ une fonction de troncature à support dans $]x_0 - \delta, x_0 + \delta[$ et valant 1 sur $]x_0 - \frac{\delta}{2}, x_0 + \frac{\delta}{2}[$.

$$F(t) = \underbrace{\int_a^b e^{t\varphi(x)} \theta(x) f(x) dx}_{F_1(t)} + \underbrace{\int_a^b e^{t\varphi(x)} (1 - \theta(x)) f(x) dx}_{F_2(t)}$$

On peut changer de variables (h sort du TIL et $z = y\sqrt{\sigma t}$)

$$F_{1}(t) = \int_{x_{0}-\delta}^{x_{0}+\delta} e^{t\varphi(x_{0})} e^{-\sigma t y(t)^{2}} \theta(x) f(x) dx$$

$$= e^{t\varphi(x_{0})} \int_{\mathbb{R}} e^{-\sigma t y^{2}} h(y) dy = \frac{e^{t\varphi(x_{0})}}{\sqrt{\sigma t}} \int_{\mathbb{R}} e^{-z^{2}} h\left(\frac{z}{\sqrt{\sigma t}}\right) dz$$

$$\sim e^{t\varphi(x_{0})} h(0) \int_{\mathbb{R}} e^{-z^{2}} dz \frac{1}{\sqrt{\sigma t}} = \sqrt{\frac{2\pi}{\sigma t}} e^{t\varphi(x_{0})} f(x_{0})$$

De plus,

$$F_2(t) = e^{(t-1)\varphi(x_0)} \int_{\mathbb{D}} e^{\varphi(x)} e^{(t-1)(\varphi(x)-\varphi(x_0))} (1 - \theta(x)) f(x) dx$$

Or pour tout x tel que $|x-x_0| \ge \delta$, $\varphi(x_0) - \varphi(x) \ge \mu > 0$. Donc

$$|F_2(t)| \leqslant e^{(t-1)\varphi(x_0)} \int_{\mathbb{R}} e^{\varphi(x)} e^{-\mu(t-1)} (1 - \theta(x)) |f(x)| dx$$

$$\leqslant e^{-\varphi(x_0)} e^{t\varphi(x_0)} e^{-\mu(t-1)} \underbrace{\int_{\mathbb{R}} e^{\varphi(x)} |f(x)| dx}_{<\infty}$$

Donc $e^{-t\varphi(x_0)}|F_2(t)| \leq Ce^{-\mu(t-1)} = O(\frac{1}{\sqrt{t}})$, ce qui conclut.

COROLLAIRE 2.1 $\Gamma(t+1) \sim \sqrt{2\pi} t^{t+\frac{1}{2}} e^{-t}$. On en déduit Stirling.

Chapitre 3

Formule d'Euler-MacLaurin

3.1 Nombres et polynômes de Bernoulli

Posons $f(t,x) = \frac{te^{tx}}{e^t - 1}$ avec $x \in \mathbb{C}$ et $t \in \mathbb{R}$. Pour tout $x, t \mapsto f(t,x)$ est holomorphe au voisinage de 0 (singularité éliminable). Elle est donc DSE au voisinage de 0 :

$$f(t,x) = \sum_{n=0}^{\infty} B_n(x) \frac{t^n}{n!}$$

 B_n est le $n^{\rm e}$ polynôme de Bernoulli.

<u>Définition 3.1</u> $b_n := B_n(0)$ est le n^e nombre de Bernoulli.

Proposition 3.1

- (i) B_n est un polynôme unitaire de degré n
- (ii) $B_n(x+1) B_n(x) = nx^{n-1}$ pour n > 0
- (iii) $B_n(1-x) = (-1)^n B_n(x)$ pour tout n
- (iv) $B_n(1) = B_n(0) \text{ si } n \neq 1$
- (v) $b_n = 0$ si n > 1 est impair
- (vi) $B'_{n} = nB_{n-1}$

Démonstration.

(i) On a
$$\frac{t}{e^t-1} = \sum_{n=0}^{\infty} a_n t^n$$
 et $e^{tx} = \sum_{n=0}^{\infty} \frac{t^n x^n}{n!}$ donc

$$f(t,x) = \sum_{n=0}^{\infty} \sum_{k=0}^{n} a_k \frac{x^{n-k}}{(n-k)!} t^n$$

Donc B_n est un polynôme unitaire de degré n car $a_0 = 1$.

(ii)
$$f(t, x + 1) = e^t f(t, x)$$
 donc

$$f(t, x + 1) - f(t, x) = te^{tx} = \sum_{n=1}^{\infty} \frac{t^n x^{n-1}}{(n-1)!}$$

Or
$$f(t, x + 1) - f(t, x) = \sum_{n=0}^{\infty} \frac{B_{n+1}(x) - B_n(x)}{n!} t^n$$
, d'où le résultat.

- (iii) $f(t, 1-x) = \frac{-t}{e^{-t}-1}e^{-tx} = f(-t, x)$ donc c'est bon.
- (iv) Clair par (ii)
- (v) OK par (iii) et (iv)
- (vi) On dérive:

$$\sum_{n=0}^{\infty} \frac{B'_n(x)}{n!} t^n = \frac{\partial f}{\partial x}(t, x) = \frac{t^2}{e^t - 1} e^{tx} = t f(t, x) = \sum_{n=1}^{\infty} B_{n-1} \frac{t^n}{(n-1)!}$$

Et on identifie les coefficients.

 $B_0 = 1$ car il est unitaire de degré 0. On a de plus

$$\int_0^1 B_1(x) \, \mathrm{d}x = \frac{1}{2} \int_0^1 B_2' = \frac{B_2(1) - B_2(0)}{2} = 0$$

Donc $B_1(x) = x - \frac{1}{2}$. Enfin, $B_2' = 2B_1 = 2x - 1$ donc $B_2 = x^2 - x + c$ et

$$\int_0^1 B_2(x) \, \mathrm{d}x = \frac{B_3(1) - B_3(0)}{3} = 0$$

Donc $c = \frac{1}{6}$. Par récurrence, on obtient les valeurs des $B_n(x)$.

Proposition 3.2 Soit $f \in C^{\infty}([0,1])$. On a

$$\frac{f(1) + f(0)}{2} = \int_0^1 f(t) dt + \sum_{l=1}^p \frac{b_{2l}}{(2l)!} (f^{(2l-1)}(1) - f^{(2l-1)}(0))$$
$$- \int_0^1 \frac{B_{2p}(t)}{(2p)!} f^{(2l)}(t) dt$$

Démonstration. On a par IPP

$$\int_0^1 f(t) dt = \int_0^1 B_0(t) f(t) dt = \int_0^1 B_1'(t) f(t) dt$$

$$= [B_1(t) f(t)]_0^1 - \int_0^1 B_1(t) f'(t) dt$$

$$= \frac{f(1) + f(0)}{2} - \frac{1}{2} \int_0^1 B_2'(t) f'(t) dt$$

$$= \frac{f(1) + f(0)}{2} - \frac{b_2}{2} (f'(1) - f'(0)) + \frac{1}{2} \int_0^1 B_2(t) f''(t) dt$$

COROLLAIRE 3.1 Pour tout $x \in [0, 1]$,

$$|B_{2k}(x)| \le |b_{2k}| \le 4 \frac{(2k)!}{(2\pi)^{2k}}$$

$$|B_{2k+1}(x)| \le 4 \frac{(2k+1)!}{(2\pi)^{2k+1}}$$

Démonstration. On pose $\widetilde{B}_k(x) = B_k(\{x\})$ où $\{x\}$ désigne la partie fractionnaire de x. Elle est 1-périodique et continue car $B_k(1) = B_k(0)$.

Comme $B'_k = kB_{k-1}$ donc on peut réitérer pour les dérivées donc $\widetilde{B}_k \in C^{k-2}$. On développe donc en série de Fourier

$$\widetilde{B}_k = \sum_{n=0}^{\infty} c_n e^{2i\pi nx}$$

On applique la proposition à $t \mapsto e^{-2i\pi nt}$:

$$1 = \sum_{l=1}^{p} \frac{b_{2l}}{(2l)!} (-2i\pi n)^{2l-1} \underbrace{\left(e^{-2i\pi n} - e^{-2i\pi n0}\right)}_{=0} - \int_{0}^{1} \frac{B_{2p}(t)}{(2p)!} (-2i\pi n)^{2p} e^{-2i\pi nt} dt$$

Alors

$$\int_0^1 B_{2p}(t) e^{-2i\pi nt} dt = -\frac{(2p)!}{(2i\pi n)^{2p}}$$

Ainsi, $c_n(B_l) = -\frac{l!}{(2i\pi n)^l}$. On a donc

$$\widetilde{B}_{2k}(x) = 2\sum_{n=1}^{\infty} (-1)^{k+1} \frac{(2k)!}{(2\pi n)^{2k}} \cos(2\pi nx) = \frac{2(-1)^{k+1}(2k)!}{(2\pi)^k} \sum_{n=1}^{\infty} \frac{\cos(2\pi nx)}{n^{2k}}$$

D'où, en 0,

$$b_{2k} = \frac{2(-1)^{k+1}(2k)!}{(2\pi)^{2k}} \sum_{n=1}^{\infty} \frac{1}{n^{2k}}$$

On en déduit

$$|\widetilde{B}_{2k}(x)| \le |b_{2k}| \le 2\frac{(2k)!}{(2\pi)^{2k}}\zeta(2) \le \frac{4(2k)!}{(2\pi)^{2k}}$$

3.2 Formule sommatoire d'Euler-MacLaurin

Théorème 3.1 Formule d'Euler-MacLaurin Soit $f \in C^{\infty}(\mathbb{R})$ et p, n entiers.

$$\sum_{k=0}^{n} f(k) - \frac{f(n) - f(0)}{2}$$

$$= \int_{0}^{n} f(t) dt + \sum_{l=1}^{p} \frac{b_{2l}}{(2l)!} (f^{(2l-1)}(n) - f^{(2l-1)}(0)) - \int_{0}^{n} \frac{B_{2p}(\{t\})}{(2p)!} f^{(2p)}(t) dt$$

Démonstration. On applique la proposition à g(x) = f(x+k) sur [0,1].

$$\frac{f(k) + f(k+1)}{2} = \int_{k}^{k+1} f(t) dt + \sum_{l=1}^{p} \frac{b_{2l}}{(2l)!} (f^{(2l-1)}(k+1) - f^{(2l-1)}(k))$$
$$- \int_{0}^{1} \frac{B_{2p}(t)}{(2p)!} f^{(2p)}(t+k) dt$$

Or

$$\int_0^1 \frac{B_{2p}(t)}{(2p)!} f^{(2p)}(t+k) dt = \int_k^{k+1} \frac{B_{2p}(s-k)}{(2p)!} f^{(2p)}(s) ds$$

Donc en sommant, on obtient le résultat en remarquant que si $s \in [k, k+1]$, $s-k=\{s\}$.

3.3 Obtentions de développements asymptotiques

THÉORÈME 3.2 Soit $f \in C^{\infty}(\mathbb{R}^+)$ telle qu'il existe m_0 tel que pour tout $m \geqslant m_0$, $f^{(m)}$ est de signe constant et $\lim_{x \to +\infty} f^{(m)}(x) = 0$.

Alors, il existe c tel que pour tout p vérifiant $2p > m_0$ et pour tout n,

$$\sum_{k=0}^{n} f(k) = \int_{0}^{n} f(t) dt + c + \frac{f(n)}{2} + \sum_{l=1}^{p-1} \frac{b_{2l}}{(2l)!} f^{(2l-1)}(n) + R_{n,p}$$

où

$$R_{n,p} = \theta \frac{b_{2p}}{(2p)!} f^{(2p-1)}(n)$$

avec $\theta \in [0,1]$.

Exemple 3.1 Formule de Stirling On applique à $f(x) = \ln(1+x)$. $f^{(n)}(x) = \frac{(-1)^{n-1}(n-1)!}{(1+x)^n}$ a un signe constant et tend vers 0 quand $x \to \infty$:

$$\sum_{k=0}^{n-1} \ln(1+k) = \int_0^{n-1} \ln(1+t) \, dt + c + \frac{\ln(n)}{2} + \sum_{l=1}^{p-1} \frac{b_{2l}}{(2l)!} \frac{(2l-2)!}{n^{2l-1}} + R_{n-1,p}$$

avec

$$R_{n-1,p} = \theta \frac{b_{2p}}{2p(2p-1)n^{2p-1}}$$

Donc

$$\ln(n!) = n\ln(n) - n + 1 + c + \frac{\ln n}{2} + \sum_{l=1}^{p-1} \frac{b_{2l}}{2l(2l-1)n^{2l-1}} + R_{n-1,p}$$

Ce qui donne un développement asymptotique de n! à tout ordre.

3.3. OBTENTIONS DE DÉVELOPPEMENTS ASYMPTOTIQUES

Exemple 3.2 Série harmonique On prend $f(x) = \frac{1}{1+x}$,

$$f^{(m)}(x) = (-1)^m m! (1+x)^{-m-1}$$

est positive et tend vers 0 quand $x \to +\infty$. La formule donne

$$\sum_{k=1}^{n} \frac{1}{k} = \ln(n) + c + \frac{1}{2n} - \sum_{l=1}^{p} \frac{b_{2l}}{2ln^{2l}} + \frac{\theta b_{2p}}{2pn^{2p}}$$

Chapitre 4

La fonction ζ

4.1 Introduction

4.1.1 Définition

<u>Définition 4.1</u> On pose $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$ qui est holomorphe sur $\{s, \Re(s) > 1\}$ car la série cvnl.

Théorème 4.1 ζ admet un prolongement méromorphe à $\mathbb C$ avec pôle simple en 1.

 $D\acute{e}monstration.$ On applique Euler-MacLaurin à $f(x)=\frac{1}{(1+x)^s}.$

$$\sum_{n=1}^{N} \frac{1}{n^{s}} - \frac{1}{2} \left(1 + \frac{1}{N^{s}} \right) - \int_{1}^{N} \frac{\mathrm{d}x}{x^{s}}$$

$$= \sum_{l=1}^{p} \frac{b_{2l}}{(2l)!} \left(f^{(2l-1)}(N-1) - f^{(2l-1)}(0) \right) - \int_{0}^{N-1} \frac{B_{2p}(\{t\})}{(2p)!} f^{(2p)}(t) \, \mathrm{d}t$$

et $f^{(m)}(x) = \frac{(-1)^m s(s+1)...(s+m-1)}{(1+x)^{m+s}}$. On a donc

$$\zeta(s) = \frac{1}{2} + \frac{1}{s-1} + \sum_{l=1}^{p} \frac{b_{2l}}{(2l)!} s(s+1) \dots (s+2l-2) - \int_{0}^{N-1} \frac{B_{2p}(\{t\})}{(2p)!} f^{(2p)}(t) dt$$

L'intégrale est majorée par

$$\frac{|b_{2p}|}{(2p)!} \int_0^\infty \frac{\mathrm{d}t}{(1+t)^{\Re(s)+2p}} s(s+1) \dots (s+2p-1)$$

4.1.2 Lien avec les nombres premiers

Proposition 4.1

$$\zeta(s) = \prod_{p \in \mathcal{P}} \frac{1}{1 - \frac{1}{p^s}}$$

Démonstration. On a

$$\prod_{p \in \mathcal{P}} \frac{1}{1 - \frac{1}{p^s}} = \prod_{p \in \mathcal{P}} \sum_{k=0}^{\infty} \frac{1}{p^{ks}}$$

Soit $n \leq N < M$ et s > 1 réel. n s'écrit comme produit de nombres premiers inférieurs à n répétés moins de M fois.

$$\sum_{n=1}^{N} \frac{1}{n^s} \leqslant \prod_{p \leqslant N \in \mathcal{P}} \left(1 + \frac{1}{p^s} + \ldots + \frac{1}{p^{Ms}} \right)$$

On peut donc majorer

$$\sum_{n=1}^{N} \frac{1}{n^s} \leqslant \prod_{p \in \mathcal{P}} \frac{1}{1 - \frac{1}{p^s}}$$

On fait tendre N vers l'infini pour obtenir

$$\zeta(s) \leqslant \prod_{p \in \mathcal{P}} \frac{1}{1 - \frac{1}{p^s}}$$

De plus,

$$\prod_{p \leqslant N \in \mathcal{P}} \left(1 + \frac{1}{p^s} + \ldots + \frac{1}{p^{Ms}} \right) \leqslant \sum_{n=1}^{\infty} \frac{1}{n^s}$$

On a donc aussi

$$\zeta(s) \geqslant \prod_{p \in \mathcal{P}} \frac{1}{1 - \frac{1}{p^s}}$$

Par les zéros isolés, on a l'égalité sur $\Re(s) > 1$.

Proposition 4.2 $\sum_{p \in \mathcal{P}} \frac{1}{p}$ diverge.

Démonstration. Si la somme converge alors $\ln(\zeta(s)) = \sum_{p \in \mathcal{P}}^{-} \ln(1 - \frac{1}{p^s}) < \infty$ quand $s \to 1^+$ par valeurs réelles.

Contradiction car ζ a un pôle en 1.

4.1.3 Fonction de Möbius

<u>Définition 4.2</u> On pose $\mu(1) = 1$, $\mu(n) = 0$ si n a un facteur carré et $\mu(n) = (-1)^k$ si $n = p_1 \dots p_k$. C'est une fonction pseudo-multiplicative.

Proposition 4.3

$$\frac{1}{\zeta(s)} = \sum_{n=1}^{\infty} \frac{\mu(n)}{n^s}$$

pour $\Re(s) > 1$.

Démonstration. On a

$$\frac{1}{\zeta(s)} = \prod_{p \in \mathcal{P}} \left(1 - \frac{1}{p^s} \right) = \prod_{p \in \mathcal{P}} \left(1 + \sum_{k=1}^{\infty} \frac{\mu(p^k)}{p^{ks}} \right)$$
$$= \sum_{n = p_1^{k_1} \dots p_l^{k_l}} \frac{\mu(p_1^{k_1 s} \dots p_l^{k_l s})}{p_1^{k_1 s} \dots p_l^{k_l s}} = \sum_{n=1}^{\infty} \frac{\mu(n)}{n^s}$$

4.2 Le théorème des nombres premiers

On note $\pi(x) = \text{Card}\{p \in \mathcal{P}, p \leqslant x\}.$

Théorème 4.2 $\pi(x) \sim \frac{x}{\ln(x)} pour x \to \infty$.

<u>Définition 4.3</u> On pose $\phi(s) = \sum_{p \in \mathcal{P}} \frac{\ln(p)}{p^s}$ et $\theta(x) = \sum_{p \in \mathcal{P} \leqslant x} \ln(p)$.

Proposition 4.4 $\theta(x) = O(x)$ pour $x \to \infty$.

Démonstration. On a

$$e^{\theta(2n)-\theta(n)} = \prod_{n \le p \le 2n} p \le {2n \choose n}$$

car $2n(2n-1)...(n+1) = \binom{2n}{n}n!$ donc

$$\prod_{n \leqslant p \leqslant 2n} p \left| \binom{2n}{n} n! \right|$$

et les termes du produit ne divisent pas n! donc ils divisent $\binom{2n}{n}$. On a donc bien la majoration précédente.

Or
$$\binom{2n}{n} \leqslant \sum_{k=0}^{2n} \binom{2n}{k} = 4^n$$
. Ainsi, $\theta(2n) \leqslant \theta(n) + 2n \ln(2)$ et

$$\theta(2^k) \le \theta(1) + 2\ln(2)(2^{k-1} + \ldots + 1) \le \theta(1) + \ln(2)2^{k+1}$$

Si $x \in [2^{k-1}, 2^k]$, on a

$$\theta(x) \leqslant 2^{k+1} \ln(2) \leqslant 4 \ln(2)x$$

Proposition 4.5 Si $\Re(s) \ge 1$, $\zeta(s) \ne 0$ et $\phi(s) - \frac{1}{s-1}$ est holomorphe au voisinage de $\{s, \Re(s) \geqslant 1\}$.

Démonstration. Par définition, $\zeta(s) = 0$ ssi $\frac{1}{1 - \frac{1}{n^s}} = 0$ ce qui n'arrive jamais. On prend la dérivée logarithmique:

$$\begin{split} \frac{\zeta'}{\zeta}(s) &= -\sum_{p \in \mathcal{P}} \frac{\ln(p) p^{-s}}{1 - \frac{1}{p^s}} = -\sum_{p \in \mathcal{P}} \frac{\ln(p)}{p^s - 1} \\ &= -\phi(s) + \sum_{p \in \mathcal{P}} \ln(p) \left(\frac{1}{p^s} - \frac{1}{p^s - 1} \right) = -\phi(s) - \sum_{p \in \mathcal{P}} \frac{\ln(p)}{p^s (p^s - 1)} \end{split}$$

Comme ζ est méromorphe, ϕ l'est aussi sur $\Re(s) > \frac{1}{2}$. De plus les pôles de ϕ sont les pôles de ζ' et les zéros de ζ sur $\Re(s) \leqslant 1$. On sait que $\zeta(s) = \frac{f(s)}{s-1}$ avec f holomorphe telle que $f(1) \neq 0$ donc

$$\frac{\zeta'}{\zeta}(s) = \frac{f'(s)(s-1) - f(s)}{(s-1)f(s)}$$

Pour $s = 1 + \varepsilon$, on a

$$\varepsilon \frac{\zeta'}{\zeta}(1+\varepsilon) = \varepsilon \frac{f'(1+\varepsilon)}{f(1+\varepsilon)} - 1 \to -1$$

En faisant $s=1+\varepsilon$ dans la formule précédente, on obtient

$$\varepsilon \frac{\zeta'}{\zeta(1+\varepsilon)} = -\varepsilon \phi(1+\varepsilon) - \varepsilon \sum_{p \in \mathcal{P}} \frac{\ln(p)}{p^{1+\varepsilon}(p^{1+\varepsilon}-1)}$$

Donc $\lim_{\varepsilon \to 0} \varepsilon \phi(1+\varepsilon) = 1$. ϕ admet donc un pôle d'ordre 1 en s=1 et on a au passage que $\phi(s) - \frac{1}{s-1}$ est holomorphe au voisinage de 1. Supposons que ζ s'annule en $1+i\alpha$ avec $\alpha \neq 0$ et notons $\mu > 0$ la

multiplicité de ce zéro. Notons $\nu \geqslant 0$ la multiplicité de $1 + 2i\alpha$.

$$\frac{\zeta'}{\zeta}(s) = \frac{f'(s)}{f(s)} + \frac{\mu}{s - 1 - i\alpha}$$

Donc

$$\varepsilon \frac{\zeta'}{\zeta} (1 + \varepsilon \pm i\alpha) = \varepsilon \frac{f'}{f} (1 + \varepsilon \pm i\alpha) + \mu \to \mu$$

donc $\varepsilon \psi(1+\varepsilon\pm i\alpha)=-\mu$ et par le même argument, $\varepsilon \phi(1+\varepsilon\pm 2i\alpha)\to -\nu$. Considérons

$$\begin{split} &\sum_{r=-2}^{2} \binom{4}{2+r} \phi(1+\varepsilon+ir\alpha) = \sum_{r=-2}^{2} \binom{4}{r+2} \sum_{p \in \mathcal{P}} \frac{\ln(p)}{p^{1+\varepsilon+ir\alpha}} \\ &= \sum_{p \in \mathcal{P}} \frac{\ln(p)}{p^{1+\varepsilon}} \sum_{r=-2}^{2} \binom{4}{2+r} \left(\frac{1}{p^{i\alpha}}\right)^r = \sum_{p \in \mathcal{P}} \frac{\ln(p)}{p^{1+\varepsilon}} \sum_{r=0}^{4} \binom{4}{r} \left(\frac{1}{p^{i\alpha}}\right)^{r-2} \\ &= \sum_{p \in \mathcal{P}} \frac{\ln(p)}{p^{1+\varepsilon-2i\alpha}} \left(1+\frac{1}{p^{i\alpha}}\right)^4 = \sum_{p \in \mathcal{P}} \frac{\ln(p)(1+p^{i\alpha})^4}{p^{1+\varepsilon+2i\alpha}} = \sum_{p \in \mathcal{P}} \frac{\ln(p)}{p^{1+\varepsilon}} \underbrace{(p^{i\frac{\alpha}{2}}-p^{-i\frac{\alpha}{2}})^4}_{\in \mathbb{R}^+} \end{split}$$

Pour $\varepsilon \to 0$, on trouve

$$\sum_{r=-2}^{2} {4 \choose r+2} \varepsilon \phi (1+\varepsilon+ir\alpha) \to -2\nu - 8\mu + 6$$

Donc $\mu = 0$, contradiction. ϕ n'a donc pas de pôles de la forme $1 + i\alpha$ et $\phi(s) - \frac{1}{s-1}$ se prolonge donc en une fonction holomorphe.

Lemme 4.2.1

Si

- (i) f est bornée et L^1_{loc} sur \mathbb{R}^+
- (ii) $g(z) = \int_0^\infty f(t) \mathrm{e}^{-zt} \, \mathrm{d}t$ définie sur $\Re(z) > 0$ se prolonge holomorphiquement sur un voisinage de $\Re(z) = 0$

Alors $\int_0^\infty f(t) dt$ converge et vaut g(0).

Démonstration. On pose $g_T(z) = \int_0^T f(t) e^{-zt} dt$. On veut montrer que

$$\lim_{T \to +\infty} g_T(0) = g(0)$$

g est holomorphe au voisinage de $\Re(z)=0$ donc pour tout $\alpha\in[-1,1]$, il existe δ_{α} tel que g se prolonge sur un carré de centre $i\alpha$ et de côté $2\delta_{\alpha}$. Ces carrés recouvrent [-i,i] qui est compact donc on peut en extraire un recouvrement fini.

On prend alors $\delta = \min \delta_{\alpha_i}$ et on a donc prolongé g sur $K_R = \{\Re(z) \ge -\delta\} \cap D(0,R]$. Posons

$$\varphi(z) = (g(z) - g_T(z))e^{zT}(1 + \frac{z^2}{R^2})$$

On a

$$\varphi(0) = g(0) - g_T(0) = \frac{1}{2i\pi} \int_{\partial K_R} \frac{g(z) - g_T(z)}{z} e^{zT} \left(1 + \frac{z^2}{R^2}\right) dz$$

En découpant $\partial K_R = \Gamma_R^+ \cup \Gamma_R^-$ avec Γ_R^+ le demi-cercle et Γ_R^- le segment vertical. Sur Γ_R^+ , on a

$$|g(T) - g_T(z)| \leqslant \int_T^\infty M e^{-t\Re(z)} dt \leqslant \frac{M}{\Re(z)} e^{-T\Re(z)}$$

De plus, $|\frac{1}{z}+\frac{z}{R^2}|=\frac{1}{R}|w+\frac{1}{w}|=2\frac{\Re(z)}{R^2}$ avec $w=\frac{z}{R}$ et |w|=1. Ainsi, l'intégrande $h_T(z)$ dans $\varphi(0)$ est majorée par

$$\frac{M}{\Re(z)} e^{T\Re(z)} e^{-T\Re(z)} \frac{2\Re(z)}{R^2} \leqslant \frac{2M}{R}$$

Ainsi,

$$\left| \int_{\Gamma_R^+} h_T(z) \, \mathrm{d}z \right| \leqslant \int_0^\pi |h_T(Re^{i\theta})| Rie^{i\theta} \, \mathrm{d}\theta \leqslant \frac{2M\pi}{R}$$

 g_T est holomorphe donc on peut déformer Γ_R^- en C_R^- sans changer l'intégrale

$$\int \frac{g_T(z)}{z} e^{zT} \left(1 + \frac{z^2}{R^2} \right) dz$$

On sait que $|g_T(z)| \leq \frac{M}{|\Re(z)|} e^{-T\Re(z)}$ Comme avant, on majore

$$\left| e^{zT} \left(1 + \frac{z^2}{R^2} \right) \frac{1}{z} \right| \le 2 \frac{e^{\Re(z)T} |\Re(z)|}{R^2}$$

Donc

$$\left| \int_{C_R^-} \frac{g_T(z)}{z} e^{zT} \left(1 + \frac{z^2}{R^2} \right) dz \right| \leqslant \frac{2M}{R} \to 0$$

Par convergence dominée

$$\int \frac{g(z)}{z} e^{zT} \left(1 + \frac{z^2}{R^2} \right) dz \to 0$$

D'où le résultat.

Proposition 4.6 $\int_1^\infty \frac{\theta(x)-x}{x^2}$ est convergente.

Démonstration. On a

$$\int_{1}^{\infty} \frac{\theta(x)}{x^{s+1}} dx = \int_{1}^{\infty} \sum_{p \leqslant x} \frac{\ln(p)}{x^{s+1}} dx = \sum_{p \in \mathcal{P}} \int_{p}^{\infty} \frac{\ln(p)}{x^{s+1}} dx$$
$$= \sum_{p \in \mathcal{P}} \ln(p) \left[\frac{-x^{-s}}{s} \right]_{p}^{\infty} = \frac{\phi(s)}{s}$$

Donc

$$\phi(s) = s \int_1^\infty \frac{\theta(x)}{x^{s+1}} dx = s \int_0^\infty \theta(e^t) e^{-st} dt$$

Posons $g(z) = \frac{\phi(z+1)}{z+1} - \frac{1}{z} = \frac{1}{z+1} (\phi(z+1) - \frac{1}{z} - 1)$ qui est holomorphe sur un voisinage de $\Re(z) \geqslant 0$ par ce qu'on a dit avant.

$$g(z) = \int_0^\infty \theta(e^{-t})e^{-(z+1)t} dt - \frac{1}{z} = \int_0^\infty (\theta(e^t)e^{-t} - 1)e^{-zt} dt$$

Donc $g(0) = \int_1^\infty \frac{\theta(x) - x}{x^2} dx$ qui converge par le lemme.

Proposition 4.7 $\theta(x) \sim x \text{ en } +\infty.$

 $D\'{e}monstration$. Par l'absurde, supposons que lim sup $\frac{\theta(x)}{x} > 1$. Il existe $\lambda > 1$ tel que pour tout A > 0, il existe x > A tel que $\theta(x) \geqslant \lambda$.

$$\int_{x}^{\lambda x} \frac{\theta(t) - t}{t^2} dt \geqslant \int_{x}^{\lambda x} \frac{\theta(x) - t}{t^2} dt \geqslant \int_{x}^{\lambda x} \frac{\lambda x - t}{t^2} dt \geqslant \int_{1}^{\lambda} \frac{\lambda - u}{u^2} du > 0$$

Pour $x \to 0$, $\int_x^{\lambda x} \frac{\theta(t) - t}{t^2} \, \mathrm{d}x \to 0$ donc contradiction. Supposons que $\liminf \frac{\theta(x)}{x} < 1$. Il existe $\lambda < 1$ tel que pour tout A > 0, il existe x > A tel que $\theta(x) \leqslant \lambda$.

$$\int_{\lambda x}^{x} \frac{\theta(t) - t}{t^{2}} dt \leqslant \int_{\lambda}^{1} \frac{\lambda - u}{u^{2}} du < 0$$

et deuxième contradiction.

Recollement des morceaux. On a déjà $\theta(x) \leqslant \sum_{n \leqslant x} \ln(p) = \pi(x) \ln(x)$. Soit $1 > \varepsilon > 0$. On a

$$\theta(x) \geqslant \sum_{x^{1-\varepsilon} \geqslant p \leqslant x} \ln(p) \geqslant (1-\varepsilon) \ln(x) \sum_{x^{1-\varepsilon} \geqslant p \leqslant x} 1 \geqslant (1-\varepsilon) \ln(x) \{\pi(x) + O(x^{1-\varepsilon})\}$$

Comme $\theta(x) \sim x$ et vu l'encadrement

$$\frac{\theta(x)}{\ln(x)} \leqslant \pi(x) \leqslant \frac{\theta(x)}{(1-\varepsilon)\ln(x)} + O(x^{1-\varepsilon})$$

on a le résultat $\pi(x) \sim \frac{x}{\ln(x)}$

Les fonctions Θ

5.1 Formule sommatoire de Poisson

5.1.1 Transformée de Fourier

<u>Définition 5.1</u> $\mathscr{F}(f)(\xi) = \widehat{f}(\xi) = \int_{\mathbb{R}} e^{-2i\pi x \xi} f(x) dx$ bien défini si $f \in L^1(\mathbb{R})$.

On peut la prolonger en une isométrie sur $L^2(\mathbb{R})$.

Théorème 5.1 Soit $f \in C^1$ et $f = O(x^{-2})$ en $\pm \infty$. Alors

$$\sum_{-\infty}^{\infty} f(n) = \sum_{-\infty}^{\infty} \widehat{f}(n)$$

Démonstration. On pose $F(x) = \sum_{-\infty}^{\infty} f(x+n) \in C^1$ (cvnl). On a pour tout x, F(x+1) = F(x). Le théorème de Dirichlet assure que

$$F(x) = \sum_{n \in \mathbb{Z}} c_n(F) e^{2i\pi nx}$$

avec

$$c_n(F) = \int_0^1 F(x) e^{-2i\pi nx} dx = \sum_{k=-\infty}^\infty \int_0^1 f(x+k) e^{-2i\pi nx} dx$$
$$= \int_{-\infty}^\infty f(y) e^{-2i\pi ny} dy = \widehat{f}(n)$$

En
$$x = 0$$
, on trouve donc $\sum_{n \in \mathbb{Z}} f(n) = F(0) = \sum_{n \in \mathbb{Z}} \widehat{f}(n)$.

5.1.2 Transformée de Fourier d'une gaussienne

Proposition 5.1 Soit $G_{\alpha}(x) = e^{\frac{-\alpha x^2}{2}}$ avec $\alpha > 0$. Alors

$$\widehat{G}_{\alpha}(\xi) = \sqrt{\frac{2\pi}{\alpha}} e^{-2\pi^2 \frac{\xi^2}{\alpha}}$$

Démonstration.

$$\widehat{G_{\alpha}}(\xi) = \int_{-\infty}^{\infty} \exp\left(-\frac{\alpha x^2}{2} - 2i\pi x \xi\right) dx$$

L'exposant vaut $-\frac{\alpha}{2}(x+\frac{2i\pi\xi}{\alpha})^2-\frac{\alpha}{2}\frac{4\pi^2\xi^2}{\alpha^2}$ donc

$$\widehat{G_{\alpha}}(\xi) = \int_{-\infty}^{\infty} \exp\left(-\frac{\alpha}{2} \left(x + \frac{2i\pi\xi}{\alpha}\right)^{2}\right) dx e^{-\frac{2\pi^{2}\xi^{2}}{\alpha}}$$

Comme $z\mapsto \mathrm{e}^{-\frac{\alpha z^2}{2}}$ est holomorphe sur \mathbb{C} , son intégrale sur le rectangle $R,R+\frac{2i\pi\xi}{\alpha},-R,-R+\frac{2i\pi\xi}{\alpha}$ est nulle donc

$$\int_{-\infty}^{\infty} \exp\left(-\frac{\alpha}{2}\left(x + \frac{2i\pi\xi}{\alpha}\right)^2\right) dx = \int_{-\infty}^{\infty} e^{-\frac{\alpha x^2}{2}} dx$$

Donc
$$\widehat{G}_{\alpha}(\xi) = e^{-2\frac{\pi^2 \xi^2}{\alpha}} \sqrt{2\alpha} \underbrace{\int_{\mathbb{R}} e^{-y^2} dy}_{=\sqrt{\pi}}.$$

Corollaire 5.1
$$\sum_{-\infty}^{\infty} e^{-\alpha \frac{n^2}{2}} = \sum_{-\infty}^{\infty} \sqrt{\frac{2\pi}{\alpha}} e^{-2\frac{\pi^2 n^2}{\alpha}}.$$

5.2 Fonction Θ

5.2.1 Définition

<u>Définition 5.2</u> Pour $\tau \in \mathbb{C}$ avec $\Im(\tau) > 0$ et $z \in \mathbb{C}$, on pose

$$\Theta(z,\tau) = \sum_{n \in \mathbb{Z}} e^{i\pi n^2 \tau} e^{2i\pi nz}$$

Proposition 5.2 $\Theta(\cdot, \tau)$ est une fonction holomorphe vérifiant

$$\Theta(z+1,\tau) = \Theta(z,\tau)$$
 et $\Theta(z+\tau,\tau) = e^{-i\pi\tau}e^{-2i\pi z}\Theta(z,\tau)$

Remarque 5.1 La série converge normalement.

Démonstration.

$$\Theta(z+\tau,\tau) = \sum_{n\in\mathbb{Z}} e^{i\pi n^2 \tau + 2i\pi n\tau} e^{2i\pi nz} = e^{-i\pi\tau} \sum_{n\in\mathbb{Z}} e^{i\pi(n+1)^2 \tau} e^{2i\pi nz}$$

En réindiçant, on a bien le résultat.

Théorème 5.2

$$\sqrt{\frac{\tau}{i}}\Theta(z,\tau) = e^{-\frac{i\pi z^2}{\tau}}\theta\left(\frac{z}{\tau}, -\frac{1}{\tau}\right)$$

Démonstration. $\Theta(z,\tau) = \sum_{n \in \mathbb{Z}} f(n)$ avec

$$f(s) = e^{i\pi(s^2\tau + 2sz)} = e^{-i\pi\frac{z^2}{\tau}}e^{i\pi\tau(s + \frac{z}{\tau})^2} = e^{-\frac{i\pi z^2}{\tau}}G_{\alpha}\left(s + \frac{z}{\tau}\right)$$

avec $\alpha = -2i\pi\tau$. Comme $\Re(\alpha) > 0$,

$$\widehat{f}(\xi) = e^{\frac{-i\pi z^2}{\tau}} e^{\frac{2i\pi z\xi}{\tau}} \widehat{G}_{\alpha}(\xi) = e^{\frac{-i\pi z^2}{\tau}} e^{\frac{2i\pi z\xi}{\tau}} \sqrt{\frac{2\pi}{\alpha}} e^{-\frac{2\pi^2 \xi^2}{\alpha}}$$

Ainsi,

$$\widehat{f}(n) = \sum_{n \in \mathbb{Z}} e^{-\frac{i\pi z^2}{\tau}} e^{\frac{2i\pi nz}{\tau}} \sqrt{\frac{i}{\tau}} e^{-\frac{i\pi n^2}{\tau}}$$

La formule de Poisson donne

$$\Theta(z,\tau) = \sum_{n \in \mathbb{Z}} \widehat{f}(n) = \sqrt{\frac{i}{\tau}} e^{-\frac{i\pi z^2}{\tau}} \Theta\left(\frac{z}{\tau}, -\frac{1}{\tau}\right)$$

Corollaire 5.2 On pose $\Theta(t) = \sum_{n \in \mathbb{Z}} e^{-\pi n^2 t}$ avec $t \in \mathbb{R}_+^*$. Alors

$$\Theta(t) = \frac{1}{\sqrt{t}}\Theta\left(\frac{1}{t}\right)$$

Démonstration. On prend $\tau = it$ avec t > 0 et z = 0 dans le théorème.

$$\sqrt{t}\Theta(0,it) = \Theta\left(0, -\frac{1}{it}\right)$$

Ce qui donne bien le résultat.

Remarque 5.2 On peut trouver une autre preuve en appliquant la formule de Poisson à la gaussienne $e^{\frac{-\pi tx^2}{2}}$.

5.2.2 Relations avec le reste de l'alphabet grec

Théorème 5.3 Pour tout $s \in \mathbb{C} \setminus (\mathbb{Z}_- \cup \{\frac{1}{2}\})$, on a

$$\pi^{s}\Gamma(s)\zeta(s) = I(s) - \frac{1}{2s} + \frac{1}{2s-1}$$

avec

$$I(s) = \int_{1}^{\infty} (t^{s-1} + t^{-s-\frac{1}{2}}) \frac{\theta(t) - 1}{2} dt$$

qui est holomorphe sur \mathbb{C} .

Démonstration. Il suffit de faire le calcul pour $\Re(2s) > 1$.

$$\Gamma(s) = \int_0^\infty e^{-t} t^{s-1} dt = \int_0^\infty e^{-\pi n^2 y} (\pi n^2 y)^{s-1} \pi n^2 dy$$
$$= \pi^s n^{2s} \int_0^\infty e^{-\pi n^2 y} y^{s-1} dy$$

On divise par $\pi^s n^{2s}$ et on somme

$$\frac{\Gamma(s)\zeta(2s)}{\pi^s} = \sum_{n \ge 1} \int_0^\infty e^{-\pi n^2 y} y^{s-1} \, dy = \int_0^\infty \frac{\theta(y) - 1}{2} y^{s-1} \, dy$$

On coupe l'intégrale au point 1 et on change de variables $y = \frac{1}{u}$:

$$\int_0^1 \frac{\theta(y) - 1}{2} y^{s-1} \, dy = \int_1^\infty \frac{\theta(u) - 1}{2} u^{-s - \frac{1}{2}} \, du + \frac{1}{2} \int_0^1 \left(\frac{1}{\sqrt{y}} - 1 \right) y^{s-1} \, dy$$
$$= \int_1^\infty \frac{\theta(u) - 1}{2} u^{-s - \frac{1}{2}} \, du + \frac{1}{2s - 1} - \frac{1}{2s}$$

Équations différentielles complexes

6.1 Généralités

On considère y' = f(z, y) avec $y(0) = y_0$ et F analytique au voisinage de $(0, y_0)$.

<u>Définition 6.1</u> On dit que $F(X,Y) = \sum_{p,q} \Gamma_{p,q} X^p Y^q$ est une série majorante

de
$$f(x,y) = \sum_{p,q} c_{p,q} x^p y^q$$
 ssi $\Gamma_{p,q} \ge 0$ et $|c_{p,q}| \le \Gamma_{p,q}$.

Théorème 6.1 Il existe une unique solution analytique définie sur $[0, T^*[$ avec $T^* > 0$.

Démonstration. On peut supposer $y_0 = 0$. On écrit $f(x,y) = \sum_{p,q \ge 0} c_{p,q} x^p y^q$.

Soit $y(x) = \sum_{n \ge 1} a_n x^n$. On injecte y dans y' = f(x, y):

$$\sum_{n\geqslant 1} n a_n x^{n-1} = \sum_{p,q} c_{p,q} x^p \left(\sum_{n\geqslant 1} a_n x^n \right)^q$$

On a

$$\left(\sum_{n\geqslant 1} a_n x^n\right)^q = \sum_{k=0}^{\infty} \sum_{\substack{n_1+\dots+n_q=k\\ =b_{k,q}}} a_{n_1} \dots a_{n_q} x^k$$

On a $b_{0,0}=1,\,b_{0,q}=0$ si $q\geqslant 1,\,b_{k,0}=0$ si $k\geqslant 1$ et $b_{k,q}=0$ si q>k. Alors

$$\sum_{n\geqslant 1} n a_n x^{n-1} = \sum_k \sum_{\substack{q \ p_1 + p_2 = k}} c_{p_1,q} b_{p_2,q} x^k$$

Ainsi, $a_1 = d_0 = \sum_q c_{0,q} b_{0,q} = c_{0,0}$ et on a une relation de récurrence

$$(k+1)a_{k+1} = d_k = \sum_{p_1 + p_2 = kq \leqslant p_2} c_{p_1,q} b_{p_2,q}$$

qui détermine de manière unique y (puisque $b_{p_2,q}$ ne dépend que des a_j , j < k). On note $a_k = P_k(a_1, \ldots, a_{k-1}, c_{p,q})$ (polynôme à coefficients rationnels positifs).

On s'intéresse au rayon de convergence.

Lemme 6.1.1

Si F est une série majorante de f, et si $\phi = \sum_{n} A_n X^n$ vérifie $\phi' = F(X, \phi)$ alors ϕ est une série majorante de g solution de g' = f(x, y).

Démonstration. $A_{n+1} = P_{n+1}(A_1, \ldots, A_n, \Gamma_{p,q})$, comme les coefficients dont positifs et $|c_{p,q}| \leq \Gamma_{p,q}$, on a par récurrence $|a_n| \leq A_n$.

Il suffit donc d'exhiber une série majorante F de f pour laquelle la ϕ obtenue a un rayon de convergence non nul.

Il existe r>0 tel que f cvu sur $\{(x,y),|x|< r,|y|< r\}$. On pose $M=\sup_{|x|< r,|y|< r}|f(x,y)|<\infty.$ On a $|c_{p,q}|\leqslant \frac{M}{r^{p+q}}$. La série

$$F(x,y) = \sum_{p,q} \frac{M}{r^{p+q}} x^p y^q = \frac{M}{(1 - \frac{x}{r})(1 - \frac{y}{r})}$$

est donc une série majorante de f.

On résoud $\phi'(1-\frac{\phi}{r}) = \frac{M}{1-\frac{x}{r}}$ en intégrant de chaque côté :

$$\left(1 - \frac{\phi}{r}\right)^2 - 1 = 2M \ln\left(1 - \frac{x}{r}\right)$$

Ce qui donne

$$\phi = r \left(1 - \sqrt{1 + 2M \ln \left(1 - \frac{x}{r} \right)} \right)$$

qui est analytique au voisinage de 0 donc on a gagné.

6.2 Équations linéaires du second ordre

 $a_2y'' + a_1y' + a_0y = 0$ avec a_i holomorphes et $y(0) = y_0, y'(0) = y_1$.

On normalise en y'' = py' + qy avec p, q méromorphes. Quand p et q sont holomorphes, on écrit le système matriciel z' = Az avec A holomorphe à valeurs dans $\mathfrak{M}_2(\mathbb{C})$. Par Cauchy-Lipschitz, on a une solution locale analytique.

<u>Définition 6.2</u> z_0 est singulier régulier ssi p a un pôle en z_0 d'ordre au plus 1 et q a une pôle en z_0 d'ordre au plus 2.

Exemple 6.1 Équation de Bessel $x^2y'' + xy' + (x^2 - \nu^2)y = 0$. Le point 0 est singulier régulier.

6.2.1 Équations indicielles et caractéristiques

On se place dans l'hypothèse où $z_0=0$ est singulier régulier. On écrit l'équation sous la forme

$$x^2y'' - x^2py' - x^2qy = 0$$

et x^2p et x^2q sont holomorphes. On peut donc toujours se ramener à une équation de la forme

$$a_2(x)y'' + a_1(x)y' + a_0(x)y = 0$$

avec
$$a_j(x) = \sum_{k=0}^{\infty} a_j^k x^{k+j}$$
.

<u>Définition 6.3</u> On appelle équation indicielle attachée à l'équation précédente l'équation

$$x^2 a_2^0 y'' + x a_1^0 y' + a_0^0 = 0$$

avec $a_2^0 \neq 0$.

On appelle équation caractéristique l'équation polynômiale en ν :

$$F(\nu) = a_2^0 \nu (\nu - 1) + a_1^0 \nu + a_0^0 = 0$$

Proposition 6.1 Soient ν_1 et ν_2 les racines de l'équations caractéristique avec multiplicité μ . Alors une base de solutions de l'équation indicielle sur \mathbb{R}_+^* est

- x^{ν_1} et x^{ν_2} si $\mu = 1$
- x^{ν} et $x^{\nu} \ln(x)$ si $\mu = 2$.

Démonstration. On vérifie que ça marche, sachant que les solutions forment un ev de dimension 2.

6.2.2 Théorème de Fuchs

Dans le cas général, on se ramène à $z_0 = 0$ par translation.

THÉORÈME 6.2 FUCHS Si $F(\nu) = 0$ et si $F(\nu + l) \neq 0$ pour tout $l \in \mathbb{N}^*$, alors l'EDO possède uen solution sous la forme $x^{\nu}z(x)$ avec z analytique en 0.

Si on a deux racines ν_1 et ν_2 telles que $\nu_1 - \nu_2 \notin \mathbb{Z}$ alors on a deux solutions linéairement indépendantes $z^{\nu_1}h_1(z)$ et $z^{\nu_2}h_2(z)$.

Démonstration. On cherche y sous la forme $\sum_{k=0}^{\infty} y_k x^{\nu+k}$ et on reporte avec

$$a_j(x) = \sum_{p=0}^{\infty} a_j^p x^p$$
. On trouve

$$\sum_{n=0}^{\infty} \underbrace{\left(\sum_{l=0}^{n} a_2^{n-l} y_l(\nu+l)(\nu+l-1) + a_1^{n-l} y_l(\nu+l) + a_0^{n-l} y_l\right)}_{c_n} x^{\nu+n} = 0$$

 $c_0 = y_0 F(\nu)$ donc on peut prendre $y_0 \neq 0$ sous réserve que $F(\nu) = 0$. $c_1 = F(\nu + 1)y_1 + \beta y_0 = 0$ qui est résolvable ssi $F(\nu + 1) \neq 0$. Si n > 1, la condition $c_n = 0$ donne

$$F(\nu + l)y_l = \sum_{i=0}^{l-1} \beta_0 y_0$$

qui est solvable ssi $F(\nu + l) \neq 0$ pour tout l.

On doit maintenant s'occuper du rayon de convergence. Il existe r > 0 tel ue $|a_j^k| \leq \frac{M}{r^k}$ pour tout $j \in \{0, 1, 2\}$. On suppose que $|y_l| \leq (\frac{A}{r})^l$ pour tout $l \leq k - 1$.

$$|y_k| \leqslant CM \sum_{l=0}^{k-1} \frac{|y_l|}{r^{k-l}} \leqslant \frac{CMA^k}{(A-1)r^k}$$

On a donc réussi notre récurrence ssi $\frac{CM}{A-1} \le 1$ ie $A \ge CM+1$. On prend A qui vérifie cette condition et ça marche.

Si $\nu_1 - \nu_2 \notin \mathbb{Z}$, on a donc deux solutions linéairement indépendantes.

COROLLAIRE 6.1 Si 0 est un point singulier régulier on peut toujours trouver une solution de la forme $y(x) = x^{\nu}h(x)$ avec h holomorphe.

Équation de Bessel 6.2.3

$$x^2y'' + xy' + (x^2 - \nu^2)y = 0$$

L'équation caractéristique est $\lambda^2 = \nu^2$ donc par Fuchs, il existe une solution $x^{\nu}h(x)$ ou $x^{\nu}h(x)$ selon le signe de $\Re(\nu)$. On doit par contre éviter le cas ν demi entier pour avoir une base de solutions.

On peut faire mieux : on recherche y sous la forme de son DSE en 0, on injecte, on simplifie:

$$y_k(k+\nu)(k+\nu-1) + y_k(k+\nu) - \nu^2 y_k + y_{k-2} = 0$$

Pour k = 1, on trouve $F(\nu + 1)y_1 = 0$ donc on choisit $y_1 = 0$. Par la suite on a donc $y_{2p+1} = 0$ et $y_{2p} = \frac{(-1)^p y_0}{F(\nu + 2p) \dots F(\nu + 2)}$. Or $F(\nu + l) = (\nu + l)^2 - \nu^2 = l(l + 2\nu)$ donc $y_{2p} = \frac{(-1)^p y_0 \Gamma(\nu + 1)}{4^p p! \Gamma(\nu + p + 1)}$.

On prend donc $y_0 = \frac{1}{2^\nu \Gamma(1 + \nu)}$ ce qui donne $y_{2p} = \frac{(-1)^p}{2^{2p + \nu} p! \Gamma(\nu + p + 1)}$ ce qui donne un rayon de convergence infini

Or
$$F(\nu+l) = (\nu+l)^2 - \nu^2 = l(l+2\nu)$$
 donc $y_{2p} = \frac{(-1)^p y_0 \Gamma(\nu+1)}{4^p \nu! \Gamma(\nu+\nu+1)}$

donne un rayon de convergence infini.

Proposition 6.2 Pour $\nu \in \mathbb{C} \setminus \mathbb{Z}_{-}^*$ et $z \in \mathbb{C} \setminus \mathbb{R}^-$, on pose

$$J_{\nu}(z) = \sum_{p=0}^{\infty} (-1)^p \left(\frac{z}{2}\right)^{\nu+2p} \frac{1}{p!\Gamma(\nu+p+1)}$$

Alors J_{ν} est solution de l'équation de Bessel et pour $\nu \in \mathbb{C} \setminus \mathbb{Z}_{+}^{*}$, J_{ν} et $J_{-\nu}$ forment une base de son ensemble de solutions.

Méthode de la phase stationnaire

<u>Définition 7.1</u> On s'intéresse aux intégrales oscillantes

$$I(t) = \int e^{it\varphi(x)} a(x) \, \mathrm{d}x$$

avec $\varphi \in C^{\infty}$ et $a \in C_c^{\infty}$.

Remarque 7.1

- $Si \varphi$ est constante, on trouve $e^{it\varphi} \int a$
- $Si \varphi$ est linéaire, on tombe sur la transformée de Fourier donc ça tend vers θ .

Définition 7.2 Les points stationnaires sont les points d'annulation de φ' .

L'idée générale est de localiser aux points stationnaires par IPP puis d'approcher $\mathrm{e}^{it\varphi}$ par une Gaussienne.

7.1 Phase non stationnaire

Lemme 7.0.1

Si $\varphi'(x) \neq 0$ sur tout le support de a alors $I(t) = O(\frac{1}{t^N})$ pour tout N.

 $D\'{e}monstration. \ \varphi' \ \text{ne s'annule pas sur supp}(a) \ \text{compact donc} \ |\varphi'(x)| > c > 0.$

$$\int e^{it\varphi(x)} a(x) dx = \int \varphi'(x) e^{it\varphi(x)} \frac{a(x)}{\varphi'(x)} dx$$
$$= -\frac{1}{it} \int e^{it\varphi(x)} \partial_x \left(\frac{a(x)}{\varphi'(x)}\right) dx = O\left(\frac{1}{t}\right)$$

par majoration simple. En réitérant pour $a = \partial_x(\frac{a(x)}{\varphi'(x)})$, on trouve le $O(\frac{1}{t^N})$.

7.2 Phase stationnaire

THÉORÈME 7.1 On suppose qu'il existe un unique $x_0 \in \text{supp}(a)$ tel que $\varphi'(x_0) = 0$ et $\varphi''(x_0) \neq 0$. Alors

$$I(t) \sim e^{it\varphi(x_0)} \sqrt{\frac{2\pi}{t|\varphi''(x_0)|}} e^{\frac{i\pi\sigma}{4}} a(x_0)$$

avec $\sigma = \operatorname{Sgn}(\varphi''(x_0)).$

Lemme 7.1.1 Morse

Il existe $\psi \in C^{\infty}$ telle que ψ soit un difféomorphisme de $V \to W$ (au voisinage de x_0) tel que $\psi(x_0) = 0$ et $\psi'(x_0) = 1$ et tel que $\psi(x) = \frac{\sigma}{2} |\varphi''(x_0)| (\psi(x))^2$.

Autrement dit, $y = \psi(x)$ est un changement de variable au voisinage de x_0 et $\varphi = q \circ \psi$ avec q une forme quadratique.

Démonstration. On peut supposer $\varphi(x_0) = 0$. Par Taylor à l'ordre 2,

$$\varphi(x) = \frac{1}{2}\varphi''(x_0)(x - x_0)^2 + (x - x_0)^2 \varepsilon(x)$$

Donc

$$\varphi(x) = \frac{\varphi''(x_0)}{2} \underbrace{(x - x_0)^2 (1 + r(x))}_{\psi^2(x)}$$

On a $\varepsilon(x_0) = 0$ donc $r(x_0) = 0$ donc il existe un voisinage V de x_0 sur lequel |r(x)| < 1 donc ψ est $C^{\infty}(V)$.

De plus
$$\psi(x_0) = 0$$
 et $\psi'(x_0) = \sqrt{1 + r(x_0)} = 1$

Démonstration du théorème. Soit $\chi \in C_c^{\infty}(\mathbb{R})$, $\chi = 1$ au voisinage de x_0 à support dans V. On écrit

$$I(t) = \underbrace{\int e^{it\varphi} \chi a}_{I_1} + \underbrace{\int e^{it\varphi} (1 - \chi) a}_{I_2}$$

 φ' ne s'annule pas sur le support de $(1-\chi)a$ donc par la phase non stationnaire, $I_2(t)=O(\frac{1}{t^N})$ pour tout N.

Dans I_1 on peut faire le changement de variables $y = \psi(x)$:

$$I_1 = \int_{\mathbb{R}} e^{\lambda \frac{y^2}{2}} b(y) \, \mathrm{d}y$$

avec $\lambda \in i\mathbb{R}$ et $b(y) = \frac{1}{\psi'(x)}\chi(x)a(x)$. Par convergence dominée, on a

$$I_1(t) = \lim_{\varepsilon \to 0} \int_{\mathbb{R}} e^{\frac{(\lambda - \varepsilon)y^2}{2}} b(y) dy$$

(domination par |b(y)|.)

$$I_{\varepsilon}(\lambda) = \int G_{\varepsilon-\lambda}(y)b(y) \, \mathrm{d}y = \int \widehat{G_{\varepsilon-\lambda}}(\xi)\overline{\hat{b}}(\xi) \, \mathrm{d}\xi$$
$$= \sqrt{\frac{2\pi}{\varepsilon - it\sigma|\varphi''(x_0)|}} \int \mathrm{e}^{-\frac{2\pi^2 \xi^2}{\varepsilon - \lambda}} \overline{\hat{b}}(\xi) \, \mathrm{d}\xi$$
$$\to \sqrt{\frac{2\pi}{t\varphi''(x_0)}} \mathrm{e}^{i\sigma\frac{\pi}{4}} \int \mathrm{e}^{\frac{2\pi \xi^2}{it\varphi''(x_0)}} \overline{\hat{b}}(\xi) \, \mathrm{d}\xi$$

On fait un DL de l'exponentielle en 1 + O(z) et;

$$I_{1}(t) = \sqrt{\frac{2\pi}{t\varphi''(x_{0})}} e^{i\sigma\frac{\pi}{4}} F^{-1}(\widehat{b})(0) + O\left(\frac{1}{t}\right) = \sqrt{\frac{2\pi}{t\varphi''(x_{0})}} e^{i\sigma\frac{\pi}{4}} a(x_{0}) + O\left(\frac{1}{t}\right)$$

Donc
$$I(t) = a(x_0) + O\left(\frac{1}{t}\right)$$
.

Application aux fonctions de Bessel

Définition 7.3
$$J_n(x) = \sum_{p=0}^{\infty} \frac{(-1)^p}{p!(n+p)!} \left(\frac{x}{2}\right)^{n+2p}$$
.

Lemme 7.1.2

$$\sum_{n\in\mathbb{Z}} J_n(z)t^n = e^{\frac{z}{2}(t-\frac{1}{t})}$$

Corollaire 7.1

$$J_n(x) = \frac{1}{2\pi} \int_0^{2\pi} e^{ix \sin \theta} e^{-in\theta} d\theta$$

Proposition 7.1 En $x \to \infty$,

$$J_n(x) \sim \sqrt{\frac{2}{\pi x}} \cos\left(x - \frac{\pi}{4} - n\frac{\pi}{2}\right)$$

Démonstration. Par la phase stationnaire pour les fonctions C^{∞} périodiques. Les deux points stationnaires sont ± 1 et on trouve

$$J_n(x) \sim \frac{e^{ix}}{2\pi} \sqrt{\frac{2\pi}{x}} e^{\frac{i\pi}{4}} (-i)^n + \frac{e^{-ix}}{2\pi} \sqrt{\frac{2\pi}{x}} e^{\frac{i\pi}{4}} i^n$$

Dimension supérieure 7.4

Théorème 7.2 $I(t) = \int_{\mathbb{R}^n} \mathrm{e}^{it\varphi(x)} a(x) \,\mathrm{d}x$ avec $a \in C_0^\infty$ et $\varphi \in C^\infty$. S'il existe un unique $x_0 \in \mathrm{supp}(a)$ tel que $D\varphi(x_0) = 0$ et $D^2\varphi(x_0)$ est non dégénérée alors quand $t \to \infty$,

$$I(t) \sim \left(\frac{2\pi}{t}\right)^{\frac{n}{2}} \frac{e^{\frac{i\sigma\pi}{4}}}{\sqrt{|\det D^2\varphi(x_0)|}} e^{it\varphi(x_0)} a(x_0)$$

avec σ la signature de $D^2\varphi(x_0)$.

Fonction d'Airy et méthode du col

L'équation d'Airy est y'' = xy. Par Cauchy-Lispschitz, on a une solution locale. Si x > 0, $y = ae^{\omega x} + be^{-\omega x}$ et si x < 0, $y = a\cos(\omega x) + b\sin(\omega x)$.

8.1 Résolution

8.1.1 Par changement de variables

Proposition 8.1 Les solutions de l'équation d'Airy sont de la forme

$$y(x) = \sqrt{x} \left(aJ_{\frac{1}{3}} \left(\frac{2x^{\frac{3}{2}}}{3} \right) + bJ_{-\frac{1}{3}} \left(\frac{2ix^{\frac{3}{2}}}{3} \right) \right)$$

Elles sont holomorphes.

Démonstration. On change de variables : $y = \sqrt{x}u(\frac{2ix^{\frac{3}{2}}}{3})$.

$$0 = xy - y'' = x^{\frac{3}{2}}(u'' + u) - \frac{3i}{2}u' + \frac{u}{4x^{\frac{3}{2}}}$$
$$= \frac{3}{2i}zu'' - \frac{3i}{2}u' + \frac{2i}{12z}u + \frac{3z}{2i}u$$
$$= \frac{3}{2iz}\left(z^{2}u'' + zu' + \left(z^{2} - \frac{1}{9}\right)u\right)$$

donc u est solution de B_{ν} (et pouf). On a de plus l'holomorphie de la solution par Cauchy-Lipschitz analytique.

8.1.2Par transformée de Fourier

On passe au chapeau, ça donne:

$$4\pi^2 \xi^2 \widehat{y}(\xi) = \frac{1}{2i\pi} \frac{\partial \widehat{y}}{\partial \xi}$$

Donc $\frac{\widehat{y}}{\widehat{y}} = 8i\pi^3 \xi^2$ et $\widehat{y}(\xi) = ce^{\frac{8i\pi^3 \xi^3}{3}}$. On a donc

$$y(x) = c \int_{\mathbb{R}} \exp\left(2i\pi x\xi + \frac{8i\pi^3 \xi^3}{3}\right) d\xi = c \int_{\mathbb{R}} e^{i(xt + \frac{t^3}{3})} dt$$

On l'appelle A_i .

Proposition 8.2 A_i est une fonction C^2 et est solution de l'équation d'Airy.

Démonstration. On pose $\varphi(t)=xt+\frac{t^3}{3}$. On fixe $x\in\mathbb{R}$. On prend R tel que $|x + \frac{R^2}{2}| > |x| + 1$ et on prend A, B tel que A < -R < R < B.

$$\int_{A}^{B} e^{i\varphi(y)} dy = \int_{A}^{-R} e^{i\varphi(y)} dy + \int_{-R}^{R} e^{i\varphi(y)} dy + \int_{R}^{B} e^{i\varphi(y)} dy$$

On montre que $\lim_{A\to -\infty}I_1(A)$ et $\lim_{B\to +\infty}I_2(B)$ existent. On applique la méthode de la phase stationnaire:

$$I_2(B) = \frac{1}{i} \left[\frac{e^{i\varphi(y)}}{\varphi'(y)} \right]_R^B + \frac{1}{i} \int_R^B e^{i\varphi(y)} \frac{\varphi''(y)}{\varphi'(y)^2} dy$$

 $\varphi'(B) = x + B^2 \to \infty$ et

$$\left| e^{i\varphi(y)} \frac{\varphi''(y)}{\varphi'(y)^2} \right| \leqslant \frac{2y}{(x+y^2)^2}$$

Donc l'intégrale est absolument convergente donc I_2 converge et de même I_1 converge.

Il reste à montrer la C^2 -itude : soit $I =]-l^2, l^2[$ pour $l \geqslant 1, x \in I$ et $|y| \geqslant 2l$, on a

$$|\varphi'(y)| \ge |x+y^2| \ge l^2 + \frac{y^2}{2} \ge \frac{y^2+1}{2}$$

On prend $\theta \in C_c^{\infty}$ avec $0 \leqslant \theta \leqslant 1$, $\theta = 0$ si $|y| \leqslant 2l$ et $\theta = 1$ si $|y| \geqslant 3l$.

$$A_i(x) = \underbrace{\int e^{\beta \varphi} \theta}_{F_1} + \underbrace{\int e^{i\varphi} (1 - \theta)}_{F_2}$$

Par IPP,

$$F_1(x) = -\frac{1}{i} \int e^{i\varphi} \frac{\theta'}{\varphi'} dy + \frac{1}{i} \int e^{i\varphi} \theta \frac{\varphi''}{(\varphi')^2} dy$$

Le premier bout est C^{∞} car θ' est à support compact et on a $\frac{\varphi''}{(\varphi')^2} \sim \frac{1}{1+|y|^3}$. Donc on trouve que le deuxième bout est C^1 .

 F_2 est C^{∞} par dérivation sous l'intégrale.

8.1.3 Résolution par transformée de Laplace

La transformée de Laplace usuelle $Lf(\lambda) = \int_0^\infty e^{-\lambda t} dt$ pour f de type exponentielle : $|f(t)| \leq ce^{Mt}$. Lf est bien définie pour $\Re \lambda \geq M$.

Si $\lambda = \gamma + i\tau$ et $\gamma > M$, $Lf(\lambda) = F(e^{-\gamma t}f(t)1_{t\geq 0}](\tau)$. On a une formule d'inversion :

$$e^{-\gamma t} f(t) 1_{t \geqslant 0} = \frac{1}{2i\pi} \int_{\gamma + i\mathbb{R}} e^{\lambda t} Lf(\lambda) d\lambda$$

On cherche la solution sous la forme

$$f(t) = \frac{1}{2i\pi} \int_{\Gamma} e^{\lambda t} w(\lambda) \, d\lambda$$

où Γ est un chemin de $\mathbb C$ d'extrêmités Γ^+ et Γ^- . L'équation devient

$$\frac{1}{2i\pi} \int_{\Gamma} e^{\lambda t} (-\lambda^2 x - w') d\lambda + [e^{\lambda t} w(\lambda) \gamma']_{\Gamma^{-}}^{\Gamma^{+}}$$

On prend Γ^{\pm} pour que le crochet soit nul. Il reste $w' = -\lambda^2 w$ donc $w(\lambda) = ce^{-\frac{\lambda^3}{3}}$.

Ainsi, on cherche f sous la forme

$$f(x) = \frac{c}{2i\pi} \int_{\Gamma} e^{\lambda x - \frac{\lambda^3}{3}} d\lambda$$

On pose $\lambda = \rho e^{i\theta}$. Si $\cos(3\theta) > 0$ alors l'intégrande tend vers 0 quand $\rho \to \infty$.

8.2 Méthode du col

8.2.1 Principe

On considère $I(x)=\int_{\Gamma}\mathrm{e}^{x\varphi(\lambda)}a(\lambda)\,\mathrm{d}\lambda$ quand $x\to\pm\infty$ avec φ,a holomorphes.

Si φ est à valeurs réelles, on utilise la méthode de Laplace, si φ est à valeurs imaginaires, on utilise la phase stationnaire.

On va déformer le contour d'intégration pour se ramener à la méthode de Laplace.

CHAPITRE 8. FONCTION D'AIRY ET MÉTHODE DU COL

- \bullet on cherche les points critiques de φ
- on cherche les lignes de plus grande pente
- on déforme le contour
- on utilise la méthode de Laplace