

Código:	MADO-52
Versión:	01
Página	15/36
Sección ISO	8.3
Fecha de emisión	19 de enero de 2018
0111101011	

Facultad de Ingeniería Área/Departamento:
Laboratorio de Geomática

La impresión de este documento es una copia no controlada

Práctica 3 Levantamiento de un polígono con brújula y longímetro

Código:	MADO-52
Versión:	01
Página	16/36
Sección ISO	8.3
Fecha de emisión	19 de enero de 2018

Facultad de Ingeniería

Área/Departamento:

Laboratorio de Geomática

La impresión de este documento es una copia no controlada

1. Seguridad en la ejecución

	Peligro o fuente de energía	Riesgo asociado
1	Manipulación de instrumentos.	Daños internos y externos al equipo manipulado.
2	Terreno accidentado.	Lesiones principalmente en piernas y brazos.
3	Falta de vigilancia a los instrumentos.	Robo o extravío de los instrumentos.

2. Objetivos de aprendizaje

- Objetivos generales: El alumno aplicará los fundamentos de la Geomática requeridos en la práctica de la Ingeniería Civil
- II. Objetivos específicos: El alumno aplicará técnicas de medición con equipos electrónicos en forma directa y simultánea para ser empleadas en el levantamiento de información de campo para el desarrollo de proyectos.

3. Introducción

Antes de la invención del teodolito, la brújula representaba para los ingenieros, agrimensores y topógrafos el único medio práctico para medir direcciones y ángulos horizontales.

A pesar de los instrumentos sofisticados que existen actualmente, todavía se utiliza la brújula en levantamientos aproximados y continuos siendo un aparato valioso para los geólogos, y los ingenieros catastrales.

La brújula se emplea para levantamientos secundarios, reconocimientos preliminares, para tomar radiaciones en trabajos de configuraciones, para polígonosapoyados en otros levantamientos más precisos y levantamientos de Polígonos con Brújula y Cinta.

Código:	MADO-52
Versión:	01
Página	17/36
Sección ISO	8.3
Fecha de emisión	19 de enero de 2018
CHISIOH	

Plomada

Facultad de Ingeniería Área/Departamento:

Laboratorio de Geomática

La impresión de este documento es una copia no controlada

4. Material y Equipo

5. Desarrollo

I. Actividad 1

Integrar brigadas y proceder al reconocimiento del terreno. Una vez ubicada la zona de trabajo seleccionar y marcar los vértices de la poligonal a medir con estacas o clavos.

II. Actividad 2

Dibujen un croquis del terreno y de la ubicación de los vértices.

Código:	MADO-52				
Versión:	01				
Página	18/36				
Sección ISO	8.3				
Fecha de	19 de enero de 2018				
emisión	19 de enero de 2016				

Facultad de Ingeniería	Área/Departamento:					
i acuitad de irigerileria	Laboratorio de Geomática					

La impresión de este documento es una copia no controlada

III. Actividad 3.

- a) Colocarse en la primera estación.
- b) Con la brújula y la plomada calcular el ángulo formado entre el vértice siguiente y anterior a la estación. Esto debe hacerse con mucho cuidado, la plomada debe estar punteando la estaca o clavo y la brújula debe estar direccionada a la estación a medir.
- c) Tomar la cinta y medir las distancias correspondientes.
- d) Repetir este procedimiento recorriendo cada uno de los puntos de la poligonal.

Simultáneamente llenar el registro de campo.

			REGIST	TRO DE C	АМРО									
LEVANTAMIEN	NTO:	LEVANTÓ:												
LUGAR:					FECHA:									
					APARATO:									
ESTACION	P.O	RUMBO DIRECTO	RUMBO INVERSO	DIST.	ANGULO INTERNO			С	ROC	QUIS	ΥN	ОТА	.S	
		,												
		!												
		1												
									\Box					

Código:	MADO-52					
Versión:	01					
Página	19/36					
Sección ISO	8.3					
Fecha de	19 de enero de 2018					
emisión	19 de enero de 2018					

Facultad de Ingeniería Área/Departamento:

Laboratorio de Geomática

La impresión de este documento es una copia no controlada

6. Bibliografía

- BANNISTER A., Raymond. S. Técnicas modernas en topografía 1. México. Alfaomega, 2004.
- KEATES, J. S. Global Positioning System 4. Washington. The Institute of Navigation, 1986.
- KEATES, J. S. Cartographic Design & Production 3. New York. Longman, 1989
- LEVALLOIS, J. J. Géodésie Générale 2. París. Eyrolles, 1971. Tomos I y II
- LILLESAND, Thomas M., KIEFFER, Ralph. Remote Sensing and Image Interpretation 6. 6th edition. New York. John Willey & Son, 2008
- STARR, Jeffrey, ESTES, John. Geographic Information Systems an Introduction 6. New Jersey. Prentice Hall, 1990