Séries de fonctions - Chapitre 4

Des produits scalaires aux coefficients de Fourier

Les fonctions périodiques

1 Les fonctions complexes périodiques

Les fonctions réelles suivantes sont-elles périodiques et si oui, quelle est leur période?

 $1. \cos(x)$

2. $\sin(2\pi x)$

 $3. \cos(x/2)$

4. $\sin(2x) + \cos(3x)$

5. $\sin(nx)$, n est un entier naturel non nul

 $6. \cos\left(\frac{3x}{2} - \frac{\pi}{4}\right)$

7. x - |x|

Les fonctions complexes suivantes sont-elles périodiques et si oui, quelle est leur période?

1. e^{ix}

 $2. e^{2ix}$

3. $e^{ix/2\pi}$

4. $e^{2i\pi x/T}$, T est un réel strictement positif

5. $e^{inx} + e^{ipx}$

Produit scalaire réel

2 Définition

On appelle produit scalaire sur un espace vectoriel E une application

$$\langle \cdot, \cdot \rangle : E \times E \to \mathbb{R}$$

telle que :

* symétrie : $\langle u, v \rangle = \langle v, u \rangle$

- * positivité : $\langle u, u \rangle \ge 0$
- * linéarité à gauche : $\langle \lambda u, v \rangle = \langle v, u \rangle$
- * définie positivité : $\langle u, u \rangle = 0 \iff u = 0$

(2) 11

3 Dans \mathbb{R}^3

On se place dans \mathbb{R}^3 , qu'on munit de la base

$$e_1 = (1, 2, 1),$$
 $e_2 = (2, 1, -4),$ $e_3 = (-3, 2, -1)$

- 1. La famille est-elle orthogonale?
- 2. Est-elle orthonormée ? Si non, définissez une base (f_1, f_2, f_3) orthonormée à partir de la famille (e_1, e_2, e_3) .

1

Soit u un vecteur de \mathbb{R}^3 , on note u_i ses coordonnées dans la base orthonormée (f_1, f_2, f_3) . Cela signifie

$$u = u_1 f_1 + u_2 f_2 + u_3 f_3$$

Déterminer les coordonnées de u = (1, 0, 1) dans la base (f_1, f_2, f_3) .

4 Dans $\mathbb{R}[X]$

— Quelle est la dimension de $\mathbb{R}[X]$?

La famille $(1, X, X^2, X^3, \cdots)$ est appelée base hilbertienne de $\mathbb{R}[X]$: tout élément de $\mathbb{R}[X]$ peut s'écrire comme une combinaison linéaire finie de vecteurs de cette famille.

On munit cet espace du produit scalaire :

$$\langle P, Q \rangle = \int_0^1 P(x)Q(x)dx$$

- Montrer que c'est bien un produit scalaire en vérifiant les propriétés ci-dessus.
- La famille $(1, X, X^2, X^3, \cdots)$ est-elle orthogonale? Est-elle orthonormée?
- Comment trouver a, b, c tels que la famille $(1, X a, X^2 bX c)$ soit orthogonale?
- Quelles sont les coordonnées de $P = 1 + 2X + 3X^2$ dans la base $(1, X, X^2, \cdots)$?
- Peut-on retrouver ces coordonnées avec le produit scalaire comme dans l'exercice précédent?

Produit scalaire complexe

Définition 5

On appelle produit scalaire sur un espace vectoriel E une application

$$\langle \cdot, \cdot \rangle : E \times E \to \mathbb{R}$$

telle que:

- * symétrie conjuguée : $\langle u, v \rangle = \overline{\langle v, u \rangle}$
 - * positivité : $\langle u, u \rangle \ge 0$
- * linéarité à gauche : $\langle \lambda u + v, w \rangle = \lambda \langle u, w \rangle +$ $\langle v, w \rangle$
- * positivité : $\langle u, u \rangle \leq 0$ * définie positivité : $\langle u, u \rangle = 0 \iff u = 0$

Dans l'espace des fonctions complexes 2π -périodiques

On définit le produit scalaire :

$$\langle f, g \rangle = \int_0^{2\pi} f(x) \overline{g(x)} dx$$

Montrer que c'est un produit scalaire.

Montrer que la famille $(e^{inx})_{n\in\mathbb{Z}}$ est orthonormée.

Les coefficients de Fourier d'une fonction f sont les coordonnées de f dans la base $(e^{inx})_{n\in\mathbb{Z}}$.

Déterminer les coefficients de Fourier des fonctions suivantes :

1. $\cos(x)$

4. $\sin(2x) + \cos(3x)$

2. $\sin(2\pi x)$

5. \exp^{-x} sur l'intervalle $[0, 2\pi]$

3. $\cos(x/2)$

Séries de fonctions - Chapitre 5 Produit scalaire - exercices intermédiaires

Produit scalaire

On appelle produit scalaire sur un espace vectoriel E une application

$$\langle \cdot, \cdot \rangle : E \times E \to \mathbb{R}$$

vérifiant :

- symétrie : $\langle u, v \rangle = \langle v, u \rangle$
- linéarité à gauche : $\langle \lambda u + v, w \rangle = \lambda \langle u, w \rangle + \langle v, w \rangle$
- positivité : $\langle u, u \rangle \ge 0$
- définie positivité : $\langle u, u \rangle = 0 \iff u = 0$

1 Dans \mathbb{R}^n

1. Montrer que le produit scalaire dans \mathbb{R}^n défini par, si $u=(u_1,u_2,\cdots,u_n)$ et $v=(v_1,v_2,\cdots,v_n)$,

$$\langle u, v \rangle = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$

- 2. Donner une base orthonormée pour ce produit scalaire.
- 3. Que penser de l'application avec des coefficients devant les produits? Est-ce encore un produit scalaire?

$$\langle u, v \rangle = 2u_1v_1 + 6u_2v_2 + \dots + 3u_nv_n$$

- 4. Donner une base orthonormée pour ce produit scalaire?
- 5. Peut-on choisir des coefficients réels comme on veut devant les produits?
- 6. Donner une base orthonormée pour ce produit scalaire.

2 Dans $m_{2,2}(\mathbb{R})$

Dans l'espace des matrices 2×2 , on définit l'application

$$\langle A, B \rangle = Tr(A^t B)$$

- 1. Montrer que c'est un produit scalaire.
- 2. La base canonique est-elle orthonormée pour ce produit scalaire?

3 Dans l'espace des polynômes

Reprendre l'exercice 6

4 Dans l'espace des fonctions réelles 2π -périodiques

On définit l'application

$$\langle f, g \rangle = \int_0^{2\pi} f(x)g(x)dx$$

- 1. Montrer que c'est un produit scalaire
- 2. Montrer que la famille $(1, \cos x, \sin x, \cos 2x, \sin 2x, \cos 3x, \sin 3x, \cdots)$ est orthonormée.
- 3. Déterminer les coordonnées de f(x) = |x| définie sur $[0, 2\pi]$ sur cette base.

Auteur : M. Berger p. 4