Comprehensive Summary: CVaR-Adjusted Portfolio Optimization with Advanced Testing and Interpretability

PreFrontal Corporate

July 4, 2025

Abstract

This document summarizes the theoretical foundations, empirical validations, and advanced modules implemented in the CVaR Risk Estimation App. We detail the mathematical rigor of Conditional Value-at-Risk (CVaR), dynamic update algorithms, constraint handling, parametric options, explainability integration (SHAP), and scenario-based stress testing.

1 CVaR Definition and Motivation

Conditional Value-at-Risk (CVaR) addresses the limitation of Value-at-Risk (VaR) by explicitly modeling the average loss in the tail beyond a chosen quantile α . For a loss function $L(w) = -R^{\top}w$, CVaR is defined as:

$$\operatorname{CVaR}_{\alpha}(w) = E[L(w) \mid L(w) \ge \operatorname{VaR}_{\alpha}(w)].$$

This measure is coherent: it satisfies subadditivity, monotonicity, positive homogeneity, and translation invariance.

2 Optimization Formulation

We minimize tail risk via:

$$\min_{w} \quad \tau + \frac{1}{\alpha} \mathbb{E}[(L(w) - \tau)_{+}].$$

Convexity proofs guarantee global optima, and strong duality holds by Rockafellar & Uryasev.

3 Dynamic Update Algorithm

We designed a continuous-time inspired update:

$$\frac{dw}{dt} = -\nabla \text{CVaR}(w).$$

The Lyapunov function $V(w) = \text{CVaR}(w) - \text{CVaR}(w^*)$ satisfies:

$$\frac{dV}{dt} = -\|\nabla \text{CVaR}(w)\|^2 \le 0,$$

ensuring convergence to w^* .

4 Constraint Handling

We introduced sector constraints (e.g., $\leq 30\%$ in tech), enforced via convex projection steps. No short-selling is ensured through the simplex projection. This reflects realistic institutional policy requirements.

5 Parametric and Non-Parametric CVaR

We support both empirical CVaR (non-parametric) and parametric CVaR assuming Gaussian returns:

$$CVaR_{\alpha}^{param} = -\mu + \frac{\sigma\phi(\Phi^{-1}(\alpha))}{\alpha},$$

where μ and σ are mean and standard deviation of portfolio returns.

6 Explainability Layer (SHAP)

A per-asset risk attribution module is integrated using SHAP values:

$$\phi_j = \sum_{S \subseteq F \setminus \{j\}} \frac{|S|!(|F| - |S| - 1)!}{|F|!} \left(f_{S \cup \{j\}}(x) - f_S(x) \right).$$

This allows transparent interpretation of each asset's contribution to tail risk.

7 Scenario Stress Testing

We implemented a scenario analysis module that simulates shocks (e.g., pandemic, interest rate spikes), evaluating pre- and post-shock CVaR to guide defensive reallocations.

8 Empirical Results and Insights

- CVaR trajectories confirm monotonic tail risk reduction across iterations.
- Final weights comply with constraints and reflect empirical risk profiles.
- SHAP plots validate asset-level contributions and aid regulatory reporting.
- Scenario tests demonstrate sensitivity to targeted shocks, supporting preemptive adjustments.

9 Conclusion

The CVaR Risk Estimation App integrates rigorous mathematical proofs, robust empirical testing, advanced explainability, and realistic institutional features (constraints and scenarios). This foundation enables a high-confidence, production-grade risk optimization service.

References

- Rockafellar, R. T., and Uryasev, S. (2000). Optimization of Conditional Value-at-Risk. Journal of Risk.
- Lundberg, S., and Lee, S.-I. (2017). A Unified Approach to Interpreting Model Predictions. NeurIPS.
- Ben-Tal, A., El Ghaoui, L., and Nemirovski, A. (2009). Robust Optimization.
- Embrechts, P., Klüppelberg, C., and Mikosch, T. (1997). Modelling Extremal Events.