

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7: C12Q 1/68		A2	(11) International Publication Number: WO 00/52203 (43) International Publication Date: 8 September 2000 (08.09.00)
(21) International Application Number: PCT/GB00/00740 (22) International Filing Date: 1 March 2000 (01.03.00) (30) Priority Data: 9904804.3 2 March 1999 (02.03.99) GB		(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).	
(71) Applicants (for all designated States except US): KING'S COLLEGE LONDON [GB/GB]; Strand, London WC2R 2LS (GB). GUY'S & ST. THOMAS'S NATIONAL HEALTH TRUST [GB/GB]; Guy's Hospital, St. Thomas' Street, London SE1 9RT (GB). (72) Inventors; and (75) Inventors/Applicants (for US only): FRENCH, Gary, Lawrence [GB/GB]; Flat 5, 19 Morden Road, London SE3 0AD (GB). ANTHONY, Richard, Michael [GB/GB]; Flat 1, 19 Lime Hill Road, Tunbridge Wells, Kent TN1 1LJ (GB). BROWN, Timothy, James [GB/GB]; 47 Ravensbury Road, London SW18 4SA (GB). (74) Agents: TOLLETT, Ian et al.; Williams, Powell & Associates, 4 St. Paul's Churchyard, London EC4M 8AY (GB).		Published Without international search report and to be republished upon receipt of that report.	

(54) Title: IDENTIFICATION OF BACTERIA

(57) Abstract

A method for identifying bacteria in a sample is described which comprises amplifying a portion of the 23S rDNA present in the sample using, as one primer, a degenerate primer set comprising one or more DNA molecules consisting essentially of DNA having the sequence(s) 5'GCGATTTCYGAAYGGGRAACCC, the other primer consisting of DNA having the sequence 5'TTCGCCTTCCCTCACGGTACT and testing the resulting amplicon by hybridisation to one or more oligonucleotide probes designed to identify one or more bacteria likely to be present in the sample. The method allows for the identification of at least 8 and considerably more bacterial species in a single test, including Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Enterococcus spp., Klebsiella spp., Enterobacter spp., Proteus spp., Pneumococci, and coagulase negative Staphylococci. One or more novel oligonucleotides for use in this test are immobilised on a solid carrier and incorporated in a diagnostic test kit for use in hospitals and other environments.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Maritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

IDENTIFICATION OF BACTERIA

This invention relates to the identification of bacteria and more particularly, although not exclusively, to the identification of clinically important bacteria in biological samples

- 5 e.g. blood. The invention is of special application to the identification of clinically important bacteria isolated in a hospital laboratory and obtained directly from clinical specimens, including positive blood culture bottles and fresh blood specimens. For convenience, the invention will be described primarily in the context of clinical needs but it will be appreciated that it has wide application outside this field.

10

Eight bacterial species account for 65% of all blood culture isolates, although this varies with patient population. Typically these are *Escherichia coli* (~20%), *Staphylococcus aureus* (~20%), *Pseudomonas aeruginosa* (7%), *Enterococcus* spp. (5%), *Klebsiella* spp. (~5%), *Enterobacter* spp. (~4%), *Proteus* spp., and *Pneumococci* (~3%). In addition

- 15 coagulase negative *Staphylococci* are frequently isolated from patients with intra-vascular devices but many of these isolates are clinically insignificant. The remaining 35% of blood culture isolates comprise upwards of 50 different species. Rapid detection of these numerous species with a single test would be very useful.

- 20 In recent years much effort has been invested in the production of species specific primers which can be used to identify an organism in a simple PCR reaction. If a PCR product of the expected size is produced with a set of these primers the presence of the target bacterium can be predicted with almost total certainty. Unfortunately this approach is not ideal for analyzing samples which may contain one of many pathogens.

- 25 Analysis of such specimens using this approach requires a multiplex PCR containing a complex mixture of primers, a series of individual PCR reactions run in parallel to detect each species which may be present, or a series of PCR reactions run sequentially. Because of the potentially large number of different bacterial species that may be isolated from blood, these methods are unsatisfactory for the routine screening of general
30 microbiological specimens.

A better approach is to use a single pair of primers to amplify DNA from a variety of organisms and then to analyze the sequence of the resulting product to determine from which species it originated. Primers directed at conserved stretches of DNA will produce an amplicon e.g. a PCR product from almost all species of bacteria. The region 5 usually chosen is the 16S rDNA or the 16S 23S rDNA spacer region. The 16S 23S rDNA spacer region is highly variable within many species, frequently containing tRNA genes, and the length and sequence of amplified products can be used to type strains within a single species. In contrast the 16s rDNA is highly conserved and, as a large amount of sequence data is available on public computer databases, sequence data can 10 give a definitive identification of the species of a bacterium in many cases. Unfortunately some species of clinical significance have identical or very similar 16s rDNA sequences which would be impossible or difficult to discriminate using this region alone.

We have now found that by targeting the large ribosomal sub-unit (23s rDNA) with 15 novel specially designed oligonucleotide primers, specified hereinafter, and amplifying a portion of this DNA we can identify a large number of bacteria by means of a single test or at most a very small number of tests. For convenience, amplification by means of the polymerase chain reaction (PCR) will be referred to throughout the following description. It will be appreciated, however, that any other amplification technique can 20 alternatively be used e.g. transcription mediated amplification (TMA), reverse transcriptase polymerase chain reaction (RTPCR), Q-beta replicase amplification, and single strand displacement amplification. Some modification of the primers used for PCR may be necessary when using these alternative methods. In the case of the TMA method, such modification will usually require the addition of promoter and recognition 25 sequences to the primers of the present invention.

In accordance with the present invention the bacterial species are detected by amplifying bacterial 23S rDNA, and identified by using the amplified product (amplicon) to probe one or more oligonucleotides in a reverse hybridization system. After amplification by 30 universal primers, the sequence of the amplicon has to be determined. Direct sequencing is complex and expensive. Sequence variation can be identified by restriction digests, but

- this is not a practical way to detect a wide range of variants. According to this invention the labelled amplicon is preferably hybridized to a panel or an array of oligonucleotides immobilized on a solid phase such as, for example, nylon membranes or synthesized in situ on silicon wafers. Since both the target and the probe are present at
- 5 much higher concentrations than is typical for a Southern blot these hybridization reactions can be carried out in very short periods of time (less than 1 hour). This method is referred to as reverse hybridization. Reverse hybridization allows a very large series of sequence variations to be positively identified and lends itself to automation.
- 10 10 The present invention comprises primers that amplify a portion of the 23S rDNA. The DNA sequences of these primers are set out below.
- Sequence 5' to 3'
- 15 15 Forward primer ST23SP6
SEQ ID No 1 GCGATTTCYGAA YGGGGRAACCC
- Reverse Primer ST23SP10
SEQ ID No 2 TTTCGCCTTCCCTCACGGTACT
- 20 20 The sequences of the primers and oligonucleotides are given herein and expressed in standard IUB/IUPAC nucleic acid code. The primers, especially the reverse primer, are appropriately labelled e.g with Digoxigenin (as in the Example given below), biotin, or fluorescein. Any other labelling system can be used. Hybridization can also be detected
- 25 25 by using the oligonucleotides to construct molecular beacons.

The Forward primer sequence given above contains the symbols Y and R. In accordance with standard terminology for use with degenerate sequences, Y represents nucleotides C or T and R represents nucleotides A or G. The symbols Y and R are used to indicate variability of base permutations at "wobble" regions in the sequence. The Forward primer reagent is therefore prepared as a degenerate primer set using a mixture of the appropriate nucleotides for incorporation at the wobble points.

The PCR products produced by these primers, from a range of medically important Gram positive and Gram negative bacterial cultures, are characterized by hybridization to an array of oligonucleotides designed to identify taxonomic groups. Using this procedure, which takes typically less than four hours, we have been able to identify a wide range of genera and species. This approach allows bacteria and mixtures of bacteria to be identified by molecular methods without the need for a priori knowledge of the causative agent or agents.

The oligonucleotide probes, the sequences of which are set out below, can be used singly for the identification of certain individual species or in a panel or array for the identification of many different species. There is theoretically no limit to the number of oligonucleotide targets employed and the number of species that can be identified.

Ideally the oligonucleotides used should hybridize only to one bacterial species and to all members of that species. Thus with an ideal array, a unique profile consisting of species specific spots would be seen, giving identification to the species level. In practice, two or more oligonucleotide spots may be required for many species and in some cases several such spots may allow identification of variation within a species. In addition, some identifications can be made by comparing the relative intensities of hybridization of individual species to individual oligonucleotides. The assessment of hybridization can be quantified by visual or automated methods.

For example, 27 oligonucleotides have been used for the unambiguous identification of *Pseudomonas aeruginosa*, *Proteus mirabilis*, *Enterococcus faecium* and *Enterococcus faecalis*, as well as *Staphylococcus aureus*, coagulase negative *Staphylococcus*, *Listeria* species, *Stenotrophomonas maltophilia*, *Burkholderia cepacia*, and *Escherichia coli*. Usually, therefore, it will be desirable to provide oligonucleotides to probe not only for the 8, 10, or more of the micro-organisms commonly occurring in hospital samples or the samples being tested in other situations, but also for other organisms likely to be encountered. Preferably, probes for at least 30 different species of micro-organism will be present on the support substrate used in the test.

The detection of short sequences in amplified DNA is a straightforward procedure that can be carried out on a massively parallel scale. This may be achieved by hybridizing a labelled PCR product to an array of oligonucleotides immobilized on a solid support e.g. a membrane, glass slides, or microtitre trays, or synthesized in situ on silicon wafers.

5

This assay can be easily extended to identify a wider range of bacterial species with the addition of oligonucleotides without increasing the complexity of performing the assay.

10 The oligonucleotides are:

10 Oligo Primary Target organism Sequence 5' to 3'
1a Proteus mirabilis

15 SEQ ID No 3 AATAGCAGTGTCAAGGAGAACGGTCT

15 1b Proteus mirabilis

20 SEQ ID No 4 ATAGCCCCGTATCTGAAGATGCT

20 1c Escherichia coli

25 SEQ ID No 5 CCAGAGCCTGAATCAGTGTGT

25 2a Klebsiella oxytoca

25 SEQ ID No 6 TCCCGTACACTAAAACGCACAGG

30 2b Klebsiella pneumoniae

30 SEQ ID No 7 TCCCGTACACCAAAATGCACAGG

35 2c Escherichia coli

35 SEQ ID No 8 CAGAGCCTGAATCAGTATGTG

35 3a Enterobacter cloacae

40 SEQ ID No 9 TCCCGTACACGAAAATGCACAGG

40 3b Esh.coli, Citrobacter spp.

SEQ ID No 10 CCCGTACACAAAAATGCACA

3c *Salmonella enterica*
SEQ ID No 11 AGAGCCTGAATCAGCATGTGT
5 4a *Streptococcus* spp. A
SEQ ID No 12 AGAAGAATGATTGGGAAGATC
4b *Pseudomonas aeruginosa*
10 SEQ ID No 13 GCTTCATTGATTTAGCGGAAC
4c *Haemophilus influenzae*
15 SEQ ID No 14 GTGAGGAGAATGTGTTGGGAAG
5a *Streptococcus* spp. B
SEQ ID No 15 AGAAGAAGACCTTGGGAAAGG
20 5b *Enterococcus faecalis*
SEQ ID No 16 GGTAGTCTGTTAGTATAGTTGAAG
25 5c *Aeromonas hydrophilia*
SEQ ID No 17 TGGAACGGTCCTGGAAAGGC
30 6a *Streptococcus* spp. B
SEQ ID No 18 AGAAGAACTACCTGGAAGGT
35 6b *Enterococcus faecium*
SEQ ID N 19 GGTAGTTCTTCAGATAGTCGG
40 6c *Staphylococcus warneri*
SEQ ID No 20 ACGGAGTTACAAAAGTATATATTAGTTTT
45 7a *Staphylococcus aureus*
SEQ ID No 21 ACGGAGTTACAAAGGACGACATTA

7b *Staphylococcus* spp. (+ *Listeria* spp.)
SEQ ID No 22 GGTTGTAGGACACTCTATAACGGAGTT
5 7c *Staphylococcus saprophticus*
SEQ ID No 23 ACGGAGTTACAAAAGAACAGACTAGTTTT
8a *Staphylococcus epidermidis*
10 SEQ ID No 24 ACGGAGTTACAAAAGAACATGTTAG
8b *Staphylococcus carnosus*
15 SEQ ID No 25 ATGGAGTTACAAAAGAACATCGATTAG
8c *Staphylococcus haemolyticus*
SEQ ID No 26 ACGGAGTTACAAAGGAATATATTAGTTTT
20 9a *Burkholderia cepacia*
SEQ ID No 27 CGTATTGTTAGCCGAACGCTCT
25 9b *Stenotrophomonas maltophilia*
SEQ ID No 28 AGCCCTGTATCTGAAAGGGCCA
9c *Listeria* spp.
30 SEQ ID No 29 ACGGAGTTACAAAAGAAAGTTATAATT
10a *Streptococcus oralis*
35 SEQ ID No 30 AGAAGAACATTTGGGAAGATC
10b *Streptococcus anginosus*
40 SEQ ID No 31 AGAAGAACCTTGGGAAAGG
10c *Streptococcus thermophilus*
SEQ ID No 32 AGAAGAACTACCTGGGAAGGT

Oligonucleotides for use in an extended array.

Oligo	Primary Target organism	Sequence 5' to 3'
5 31	Streptococcus spp.	
	SEQ ID No 33	ACGGCAGAAGGGCAAACCGAATTTTT
10 32	Streptococcus spp.	
	SEQ ID No 34	GGCAGGAGGGCAAACCGAAGAGATTTTT
15 33	Streptococcus spp.	
	SEQ ID No 35	GGCAAGAGGGCAAACCGAAGAGATTTTT
20 34	Acinetobacter spp.	
	SEQ ID No 36	CGCTCTGGGAAGTGCACGTTTT
25 35	Escherichia coli	
	SEQ ID No 37	GAAAGGCGCGATAACAGGGTTTT
30 36	Enterobacter cloacae	
	SEQ ID No 38	GAAAGTCCGACGGTACAGGGTTTT
35 37	CNS A	
	SEQ ID No 39	ACGGAGTTACAAAAGAACATGTTAGTTTT
38	CNS B	
35	SEQ ID No 40	ACGGAGTTACAAAAGAACATGTTAGTTTT
39	Plesiomonas shigelloides	
40	SEQ ID No 41	GTTAGTGGAACGGATTGGAA
40	Neisseria gonorrhoeae	
	SEQ ID No 42	TGACCATAGCGGGTGACAGTCTTT
45 41	Neisseria meningitidis	

SEQ ID No 43 TGACCATAGTGGGTGACAGTCTTT
42 *Campylobacter spp.*
5 SEQ ID No 44 GTGAGTTAGCAGAACATTCTG
43 *Campylobacter lari*
SEQ ID No 45 TAAGTAAGGTTAGTAGAACACTCT
10 44 *Helicobacter pylori*
SEQ ID No 46 CATCCAAGAGAACGCTTTAGCA
15 45 *Ralstonia spp.*
SEQ ID No 47 AATGGGATCAGCCTTGTACTCT
46 *Esh. coli 3*
20 SEQ ID No 48 TCTGGAAAGGCAGCGCGATAACA
47 *Enterobacter 1*
25 SEQ ID No 49 GTCTGGAAAGTCCGACGGTAC
48 *Chlamydia pneumoniae*
SEQ ID No 50 ACCATATTTTAATATGGGGTTTT
30 49 *Chlamydia psittaci*
SEQ ID No 51 CCACATTTTAATGTGGGG
35 50 *Chlamydia trachomatis*
SEQ ID No 52 CCGAGCTGAAGAAGCGAGGGTT
40 51 *Coxiella burnetti*
SEQ ID No 53 CCTTTCGAGGTTATGTATACTGAA
45 52 *Rhodococcus erythropolis*
45 SEQ ID No 54 GGTGTTGCATTCGTGGGGTTG

53 Rhodococcus fascians
SEQ ID No 55 GGGTTGCGTATGGAGGGTTG

5 54 Mycobacterium tuberculosis
SEQ ID No 56 GCGCTACCCGGCTGAGAGG

55 Mycobacterium avium
10 SEQ ID No 57 CTACCTGGCTGAGGGGTAGTC

56 Mycobacterium kansasii
15 SEQ ID No 58 GGACGATACTCTCAGCTCTA

57 +ve Positive control
SEQ I No 59 TGACTGACCGATAGYGAACCAGTA
20

(40) Neisseria gonorrhoeae
SEQ ID No 60 TGACCATAGCGGGTGACAGTC
25 (41) Neisseria meningitidis
SEQ ID No 61 TGACCATAGTGGGTGACAGTC

30 (48) Chlamydia pneumoniae
SEQ ID No 62 ACCATATTTAATATGGGG

(50) Chlamydia trachomatis
35 SEQ ID No 63 CCGAGCTGAAGAAGCGAGGG

The sequences of the primers and oligonucleotide probes are also given hereinafter as Sequence Listings in written form and supplied in computer readable form. The 40 information recorded in computer readable form is identical to the written sequence listing.

METHODOLOGY

The methods we have used are described as follows:

- 5 Bacterial strains. The stored strains used are listed in Table 1. Organisms were stored in glycerol broth at -70° C.

- 10 Blood cultures. Blood cultures may be performed by using an enrichment technique e.g. the Vital® automated system (Bio Merieux, France). In this method up to 10 mL blood is placed in both anaerobic and aerobic Vital blood culture bottles. The bottles are then incubated in the Vital machine and continuously monitored for evidence of bacterial growth. When possible growth is identified, the bottle is removed from the incubator and a sample taken for Gram staining and subculture to agar plates. Over a period of 25 days an additional sample of 100 microlitres for DNA extraction was taken from 116 unselected positive blood culture bottles, as described below. The DNA assay was
- 15 performed without knowledge of the patient details or the initial Gram stain result.

- 20 Extraction of bacterial DNA from pure bacterial cultures. Stored organisms were subcultured onto Columbia Blood Agar plates (Oxoid, UK). A single colony of overnight growth at 37°C was suspended in 100 microlitres of distilled water containing 1 microlitre of a 1 mg/ml solution of lysostaphin (Sigma Chemical Co. UK) and incubated at 37°C for 10 minutes. The tubes were then transferred to a thermo-cycler (Perkin-Elmer 2400 Gene amp PCR system) and heated to 95°C for 10 minutes. Finally they were spun at 13,000 rpm for 2 minutes in a micro-centrifuge and 1 ml of the supernatant used in the 23S PCR described below.

- 25 Extraction of bacterial DNA directly from Vital blood culture bottles. DNA was extracted from all positive blood culture bottles in a Class II safety cabinet using the following protocol. Two to four drops of the broth were transferred into 0.5 ml of sterile distilled water at the time of aspiration for Gram stain and subculture. The tubes were spun at 13,000 rpm in a micro-centrifuge for 2 minutes and the supernatant discarded. The pellet was re-suspended in 100 microlitres of distilled water containing 1 microlitre of a 1 mg/ml solution of lysostaphin (Sigma, UK) and incubated at 37°C for

20 minutes in a dry block (Scotlab, UK). The temperature was then raised to 95°C and the tubes incubated for a further 15 minutes. Finally the tubes were spun at 13,000 rpm for 2 minutes in a micro-centrifuge and 1 microlitre of the supernatant used in the 23S PCR described below.

5 Design of primers to amplify 23S bacterial rDNA.

Forward primer ST23SP6

5' GCGATTTCYGAAYGGGGRAACCC

Reverse primer ST23SP10

5'digoxigenin-TTCGCCTTCCCTCACGGTACT

10 Primers were commercially synthesized (Amersham Pharmacia, Amersham, UK). A PCR master mix containing 1 x DnaZyme buffer (Flowgen, UK), 1 microMole Primer ST23SP6, 2 microMoles Primer SP23SP10, and 150 microMoles of each dNTP was made up in 5 ml quantities. Forty microlitre aliquots of the master mix were dispensed into 100 microlitre PCR tubes. When the DNA extracts were available 1 microlitre of
15 the appropriate extract and 1 unit of DnaZyme DNA polymerase (Flowgen, UK) added to each tube. The PCR mixes were then subjected to 5 cycles of 95°C for 15 seconds, 55°C for 15 seconds plus 72°C for 15 seconds, followed by 25 cycles of 95°C for 15 seconds plus 65°C for 30 seconds. The presence of a PCR product was confirmed by agarose electrophoresis of 5 microlitres and visualized with ethidium bromide.

20 Sequence determination of primary pathogens and identification of potential reverse hybridization targets.

Where species information was not available, we sequenced PCR products from selected isolates in our organism collection. This was supplemented by sequence data from products that failed to hybridize with the early oligonucleotide arrays or gave erroneous
25 identifications. All the oligonucleotides chosen were targeted at sequences within a variable region of the PCR product. Using this sequence information, a panel of oligonucleotides with similar calculated melting temperatures was designed.

These sequences were tested in arrays using amplicons generated from reference organisms. Oligonucleotides not ideal as probes in the array due to low hybridization intensity were modified by the addition of low numbers of thymine bases (<20) to the 3' end of an oligonucleotide during synthesis. These modifications increase hybridization intensity. Thus by adjusting the number of thymine bases this technique was used to equalise the hybridisation intensity of the array.

Using this technique oligonucleotides with hybridization properties suitable for incorporation into the array were produced. This allows oligonucleotides that would have been unsuitable for inclusion in the array due to low intensity of hybridisation to be included in the same easily interpretable array.

Production of the hybridization membranes.

One form of layout of target oligonucleotides is shown in Figure 1. Oligonucleotides were synthesised and 50 pg of each in 0.3 microlitres of water were spotted onto a specific position on a nylon membrane (MAGNA Micron Separations inc. MA, USA). A 3 mm grid was printed on the membrane with a bubble jet printer to allow the spots to be more accurately positioned. Strips were made in batches of 20. Once all the oligonucleotides had been applied the strips were dried and exposed to short wave UV in an Amplirad light box (Genetic Research Instruments, Essex, UK). The length of exposure was found to have a marked effect on the intensity of the resulting spots: with our UV illuminator 30 seconds was found to give the optimal spot intensity. After the oligonucleotides had been cross-linked to the membrane, any unbound oligonucleotides were removed by washing twice in 0.5 x SSC plus 0.1 % SDS for 2 minutes at 37 °C. The strips were dried and stored at room temperature ready for use.

Hybridization protocol.

The digoxigenin labeled 23S rDNA amplicons were hybridized to the oligonucleotide arrays using the following protocol. Each membrane was numbered and placed in a separate 2.5 ml screw-topped micro-centrifuge tube containing 0.5 ml of 5 x SSC plus, 0.1 % N-laurylsarcosine, 0.02 % SDS, and 1% blocking reagent (Boehringer Mannheim,

Germany). The digoxigenin PCR products were heated to 95°C in a thermal cycler and the appropriate PCR product added directly to each tube. The hybridization was continued for 45 minutes at 50°C with gentle agitation. The strips were then removed from the tubes washed four times in 25 ml 0.25 x SSC plus 0.1% SDS, for each 20
5 strips, at 37°C for 2 minutes. Any hybridization was detected using an anti-digoxigenin antibody conjugated to alkaline phosphatase and detected colorimetrically (Boehringer Mannheim system). Color development was clearly visible between 15 minutes and 1 hour.

Assessment of the primers. The effectiveness of the primers was first assessed with
10 DNA extracts from 79 stored bacterial isolates representing 28 species (Table 1). All the isolates tested produced products. A band of approximately 420 bp was produced with Gram positive bacteria and one of 390 bp for the Gram negative bacilli. Two isolates of *Candida albicans* were also processed using the same protocol but no PCR products were seen. No bands were seen in the DNA negative amplification controls.

15 Hybridizations from enrichment broths.

Over the course of the study samples from 408 culture positive Vitac bottles were subjected to PCR on the day they became positive.
The results obtained by the hybridization assay were compared to those subsequently obtained by conventional bacteriology (culture followed by phenotypic identification).
20 Three hundred and fifty bottles (83.7%) produced correct identifications. These included nine (2.2%) in which mixed cultures were correctly identified. Mixtures identified included *Pseudomonas aeruginosa* plus *Enterococcus faecalis*, *Pseudomonas aeruginosa* plus *Stenotrophomonas maltophilia*, *Staphylococcus aureus* plus *Enterococcus faecalis*, CNS plus *Pseudomonas aeruginosa* and CNS plus *Enterococcus faecium*. Streptococcal
25 DNA was identified in six bottles but no organisms subsequently grown, possibly indicating contamination of the enrichment bottles with streptococcal DNA. The remaining 43 (10.5%) bottles either contained no bacteria to which oligonucleotides were targeted or a PCR product was not obtained.

ASSAY PROTOCOLSOLUTIONS NEEDED

- 5 (1) Polymerase Chain Reaction mixture:

Forward primer ST23SP6

Reverse primer ST23SP10

- The PCR master mix was made up in 2.5 ml quantities containing all the ingredients for
10 PCR except DNA polymerase. 12.5 microlitre each primer 1 microgram/microlitre
(Pharmacia), 5 microlitre each dNTP 100 mM (Pharmacia), 250 microlitres 10 x
DnaZyme buffer (Flowgen, Staffordshire, UK), 2.2 ml water. This mixture should then
be dispensed in 45 microlitre aliquots into 200 microlitre reaction tubes and 1 unit (0.5
microlitre) of Taq polymerase (DnaZyme) added to the tubes just before they are
15 required.

- (2) Maleic acid buffer pH (7.5): 4.13 g sodium chloride and 5.53g maleic acid in 500 ml
of water, pH with 5 M NaOH
- 20 (3) Detection buffer pH (9.5): 6.05g tris-base and 2.97g NaCl in 500 ml of water, pH
with 10 N HCl
- (4) Blocking solution: 0.1 g Boehringer Mannheim blocking solution in 5 ml of
detection buffer: make 2 hours before required.
- 25 (5) SSC: (20x) 3 M NaCl plus 0.3 M sodium citrate. Dilute to 0.25 x SSC and keep at
37°C ready for use.
- (6) BCIP: 50 mg/ml 5-bromo-4-cloro-3-indolyl phosphate toluidinium salt in 100%
30 dimethylformamide

(7) NBT: 75 mg/ml nitroblue tetrazolium salt in 70% dimethylformamide

METHOD

- 5 This procedure will identify bacteria from positive Vitec blood culture bottles (Bio-Merieux, France). When aspirating the broth for Gram staining and sub-culture add 2 to 4 drops of the positive Vitec broth to one of the 2 ml screw-capped tubes containing 0.5 ml of sterile water and label the tube with the lab number.
- 10 DNA extraction (To be carried out in the containment level 3 laboratory)
 - (1) Spin the screw-capped tubes at high speed (10,000g) for 4 minutes in a sealed rotor centrifuge.
 - (2) In a class 1 hood open the rotor and tubes and discard the Supernatant.
- 15 (3) Add 100 microlitres of a 1 microgram/ml solution of lysostaphin (Sigma UK) made up in water.
 - (4) Place the tubes in a covered dry block and incubate at 37° C for 20 minutes.
 - (5) Turn the dry block up to 95° C and leave for 15 minutes.
- 20 The PCR and hybridization may now be carried out on the open bench in a laboratory.

Preparation of the hybridization strips

- 25 Strips were made either using the VP-scientific (San Diego, CA, USA) multi print system which allows 96 spots to be simultaneously printed from a 384 well microtitre plate according to the manufactures instructions (replacing steps 1,2, and 3 below) or manually using the following procedure:

Manual production of hybridization strips

- (1) Using a bubble jet printer print a grid of 20 strips onto a 18cm by 3cm section of nylon membrane (Magna nylon, MSI, Westboro MA or Nytran Supercharge, Schleicher and Schuell, Dassel GmbH, Germany).
- 5 (2) The vertical divisions between each strip should then be cut with a scalpel to avoid bleeding of the spots between strips.
- (3) Approximately 0.3 microlitres of each oligonucleotide (1 mg/ml solution in water) should then be spotted onto the appropriate position on each strip (see Figure 1).
- (4) Once dry, the membrane should be cross-linked by exposing to short wave UV in the Amplirad (GRI instruments UK) for 30 seconds.
- 10 (5) The membrane should then be washed 2 times in 50 ml of 0.5 x SSC for 2 minutes and air dried.
- (6) The membrane can now be stored dry at room temperature ready for use.

PCR amplification

- 15 Add 1 microlitre of the DNA extract to 45 microlitres of the PCR mixture containing 0.5 microlitres of DnyaZyme (Flowgen) in a 200 microlitre PCR tube. A PCR negative control containing no bacterial DNA must be run alongside each set of PCR reactions.
- 20 In the PE thermal 2400 cycler (Perkin-Elmer Ltd.) carry out 5 cycles of 95° for 30 sec, 55°C for 15 sec, 72° C for 30 sec, followed by 25 cycles of 95°C for 15 sec, 65°C for 30 sec.

Hybridization

- 25
- (1) Heat the PCR reactions to 95° C in the thermal cycler for 5 minutes.
 - (2) Label some hybridization strips and cut out with a scalpel and place in a screw-capped tube containing 0.5 ml of hybridization solution (5 x SSC, 0.01% SDS, 0.01 % N-laurylsarcosine, 1 % blocking reagent (Boehringer Mannheim Germany)).
 - 30 (3) Pipette the PCR reactions into the appropriate tubes.
 - (4) Hold the hybridization reactions at 50° C for 45 minutes with gentle agitation.

Detection of hybridization

- (1) Wash the strips 4 times in 25 ml of 0.25 x SSC + 0.1 % SDS at 37°C for 2 minutes.
- 5 (2) Flood the strips with 5 ml of blocking solution and leave for 15 minutes.
- (3) Pour off the blocking solution and replace with 5 ml of maleic acid buffer containing 1 microlitre of the Anti-digoxigenin antibody conjugate (Boehringer Mannheim, Germany). Leave for 10 minutes.
- (4) Wash the strips 4 times in 25 ml of maleic acid buffer for 1 minute.
- 10 (5) Flood the strips with detection buffer.
- (6) Prepare 5 ml of the detection solution by adding 45 microlitres of BCIP and 35 microlitres of NBT to 5 ml of detection buffer.
- (7) Pour off the detection buffer from the strips and replace with the detection solution prepared above.
- 15 (8) Leave the strips in the dark for 15 minutes then examine them for detectable hybridization. Record the results, after 45 minutes and terminate the development by washing the strips in distilled water.

The method of the present invention can be used to identify bacteria in settings other than those described above, both clinical and non-clinical, also in non-medical, agricultural and environmental applications e.g. testing water supplies, and in pure cultures after isolation. The method overcomes the problems of other similar molecular diagnostic techniques described above. It allows rapid diagnosis of such organisms in blood or blood cultures or in other clinical specimens such as cerebrospinal fluid, urine, joint fluid, swab specimens, and abscesses. It provides a set of universal primers and experimental conditions that can be used to amplify potentially characteristic sequences of bacterial 23S rDNA. In particular, it provides a series of specific oligonucleotide targets that can be used simultaneously in a hybridization assay for the identification of clinically important bacteria.

TABLE 1. Strains used in this study and results of PCR amplifications and hybridizations from culture.

	Origin	Species	laboratory Code	Hybridization	
				Strong	Weak
5	Blood culture STH	Staphylococcus epidermidis	36839	27, 7b, 8a	
	Blood culture STH	Staphylococcus epidermidis	36938	27, 7b, 8a	
	Blood culture STH	Staphylococcus epidermidis	44.3	27, 7b, 8a	
	Blood culture STH	Staphylococcus epidermidis	37061	27, 7b, 8a	
10	Blood culture STH	Staphylococcus epidermidis	NCTC11047	27, 7b	
	Blood culture STH	Staphylococcus warneri	B5	27, 7b	
	Blood culture STH	Staphylococcus saprophyticus	B6	27, 7b	8a
	Blood culture STH	Staphylococcus xylosus	B7	27, 7b	
	Blood culture STH	Staphylococcus cohnii	B8	27, 7b	
15	Blood culture STH	Staphylococcus simulans	B9	27, 7b	
	Blood culture STH	Staphylococcus hominis	B10	27, 7b	
	Blood culture STH	Staphylococcus haemolyticus	B11	27, 7b	
	Blood culture STH	Staphylococcus haemolyticus	31871	27, 7b	
	NCTC	Staphylococcus aureus	NCTC6571	27, 7b	7a
20	GH	Staphylococcus aureus (MR)	GH25	27, 7b	7a
	GH	Staphylococcus aureus (MR)	GH7	27, 7b	7a
	Blood culture STH	Staphylococcus aureus (MR)	816.98	27, 7b	7a
	Blood culture STH	Staphylococcus aureus (MS)	36989	27, 7b	7a
	Blood culture STH	Streptococcus milleri	676.98	27	
25	Blood culture STH	Streptococcus milleri	662.98	27	
	Blood culture STH	Streptococcus pneumoniae	697.98	27, 5a	5b 7b 6a
	Blood culture STH	Streptococcus pneumoniae	76a.98	27, 5a	7b
	Blood culture STH	Streptococcus pneumoniae	736.98	27, 5a	7b
	Blood culture STH	Streptococcus spp. (viridans)	738.98	27, 5a	7b
30	Blood culture STH	Streptococcus Group G	776.98	27, 5a	
	feces (VRE)	Enterococcus faecium	147	27, 6b	
	feces (VRE)	Enterococcus faecium	152	27, 6b	
	feces STH	Enterococcus faecium	7	27, 6b	
	feces STH	Enterococcus faecium	24	27, 6b	
35	feces STH	Enterococcus faecium	39	27, 6b	
	feces STH	Enterococcus faecium	40	27, 6b	
	Blood culture STH	Enterococcus faecium	848.98	27, 6b	
	Blood culture STH	Enterococcus faecium	665.98	27, 6b	
	feces STH	Enterococcus faecalis	20	27, 5b	
40	feces STH	Enterococcus faecalis	23	27, 5b	
	feces STH	Enterococcus faecalis	24	27, 5b	
	feces STH	Enterococcus faecalis	25	27, 5b	
	feces STH	Enterococcus faecalis	27	27, 5b	
	feces STH	Enterococcus faecalis	82	27, 5b	
45	Blood culture STH	Enterococcus faecalis	707.98	27, 5b	
	Blood culture STH	Enterococcus faecalis	706.98	27, 5b	
	Blood culture STH	Enterococcus faecalis	708.98	27, 5b	
	Blood culture STH	Enterococcus faecalis	835.98	27, 5b	
50	NCTC	Escherichia coli	NCTC8879	27, 3b	3a, 2b
	Blood culture STH	Escherichia coli	817.98	27, 3b	3a, 2b
	Blood culture STH	Escherichia coli	794.98	27, 3b	3a, 2b
	Blood culture STH	Escherichia coli	829.98	27, 3b	3a, 2b
	Blood culture STH	Escherichia coli	780.98	27, 3b	3a, 2b
55	Blood culture STH	Klebsiella oxytoca	800.98	27, 2a	3a, 2b
	Blood culture STH	Klebsiella oxytoca	243a.95	27, 2a	3a, 2b
	Blood culture STH	Klebsiella oxytoca	97.92	27, 2a	3a, 2b
	Blood culture STH	Klebsiella pneumoniae	767.98	27, 2b	3a, 2b
	Blood culture STH	Klebsiella pneumoniae	851.98	27, 2b	3a, 3b
	Blood culture STH	Klebsiella pneumoniae	842.98	27, 2b	3a, 3b
60	Blood culture STH	Enterobacter cloacae	770.98	27, 3a	2b, 3b

	Blood culture STH	Enterobacter cloacae	814.98	27, 3a	2b, 3b
	Blood culture STH Enterobacter cloacae		810.98	27, 3a	2b, 3b
	Blood culture STH Enterobacter aerogenes		743.98	27, 2b	3a, 3b
5	382010	Citrobacter freundii	382010	27, 2b, 3b	3a
	Blood culture STH Proteus mirabilis		827.98	27, 1a, 1b	
	Blood culture STH Proteus mirabilis		838.98	27, 1a, 1b	
	Blood culture STH Proteus mirabilis		703.98	27, 1a, 1b	
	Blood culture STH Serratia marcescens		1087.98	27, 2a, 2b, 3a, 3b	
	Blood culture STH Pseudomonas aeruginosa		37036	27, 4b	
10	Blood culture STH Pseudomonas aeruginosa		812.98	27, 4b	
	Blood culture STH Pseudomonas aeruginosa		728.98	27, 4b	
	Blood culture STH Pseudomonas aeruginosa		714.98	27, 4b	
	Blood culture STH Pseudomonas aeruginosa		760.98	27, 4b	
15	Blood culture STH Pseudomonas aeruginosa		702.98	27, 4b	
	Blood culture STH Pseudomonas aeruginosa		845.98	27, 4b	
	Blood culture STH Pseudomonas aeruginosa		37036	27, 4b	
	Blood culture STH Stenotrophomonas maltophilia		822.98	27, 4b	
	Blood culture STH Stenotrophomonas maltophilia		824.98	27, 4b	
20	CF patient LH	Burkholderia cepacia	H7	27, 4b	
	CF patient LH	Burkholderia cepacia	F3	27, 4b	
	CF patient LH	Burkholderia cepacia	TR1	27, 4b	
	CF patient LH	Burkholderia cepacia	H9	27, 4b	
	Blood culture STH Coryneform		C01	No Hybridization	
	Blood culture STH Coryneform		C02	No Hybridization	
25	Blood culture STH Candida albicans		C1	No amplicon or Hybridization	
	Blood culture STH Candida albicans		C2	No amplicon or Hybridization	

TABLE 1. Footnote

STH = St. Thomas' Hospital, GH = Guy's Hospital, LH = Lewisham Hospital, CF = Cystic fibrosis. NCTC = National Collection of Type Cultures, VRE = vancomycin resistant enterococci. MR = methicillin resistant, MS = methicillin sensitive

FIGURE 1 shows one very convenient pattern of oligonucleotide probes
35 fixed to a supporting strip.

Sequence Listings for the primers and oligonucleotides used for the purposes of the present invention are given below.

CLAIMS

1. A method for identifying bacteria in a sample which comprises amplifying a portion of the 23S rDNA present in the sample using, as one primer, a degenerate primer set comprising one or more DNA molecules consisting essentially of DNA having the sequence(s)
5'GCGATTTCYGAAYGGGGRAACCC
the other primer consisting essentially of DNA having the sequence
5'TTCGCCCTTCCCTCACGGTACT
- 10 and testing the resulting amplicon by hybridisation to one or more oligonucleotide probes designed to identify one or more bacteria likely to be present in the sample.
2. Method according to claim 1, in which at least 8 bacterial species are tested for.
- 15 3. Method according to claim 2, in which the organisms tested for comprise at least one of Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Enterococcus spp., Klebsiella spp., Enterobacter spp., Proteus spp., Pneumococci, and coagulase negative Staphylococci.
- 20 4. Method according to claim 1, in which at least 10 bacterial species are tested for.
5. Method according to claim 4, in which the organisms tested for comprise at least one of Pseudomonas aeruginosa, Proteus mirabilis, Enterococcus faecium, Enterococcus faecalis, Staphylococcus aureus, coagulase negative Staphylococcus, Listeria species, Stenotrophomonas maltophilia, Burkholderia cepacia, and Escherichia coli.
- 25 6. A method according to claim 1, in which the oligonucleotide probe or probes has/have a sequence(s) selected from the group consisting of SEQ ID Nos 3-7, 9-13, 15-19, 21-28, 30-32, 39-41, 44-49, 51, and 53-58.

7. A method according to claim 1, in which the oligonucleotide probe or probes has/have a sequence(s) selected from the group consisting of SEQ ID Nos 8, 14, 20, 29, 33-38, 42, 43, 50, 52, and 59.
- 5 8. A method according to claim 1, in which the oligonucleotide probe or probes has/have a sequence(s) selected from the group consisting of SEQ ID Nos 3-59.
9. A method according to claim 1, in which the oligonucleotide probe or probes 10 has/have a sequence(s) selected from the group consisting of SEQ ID Nos 60 -63.
10. A method according to any of claims 1 to 9, in which amplification is carried out by the polymerase chain reaction (PCR)
- 15 11. A method according to any of claims 1 to 9, in which amplification is carried out by transcription mediated amplification.
12. A method according to any of the preceding claims, in which a plurality of 20 oligonucleotide probes are used attached to a support material.
13. A degenerate primer set essentially comprising DNA having the sequences 5'GCGATTCYGAAYGGGGRAACCC
- 25 14. A primer consisting essentially of DNA having the sequence 5'TTCGCCTTCCCTCACGGTACT
15. A DNA sequence according to claim 13 or 14, being a labelled sequence.
- 30 16. A Digoxigenin-labelled DNA sequence according to claim 15,

17. One or more Oligonucleotides consisting essentially of one or more DNA molecules having sequences specified in claim 6.
18. One or more Oligonucleotides consisting essentially of one or more DNA molecules
5 having sequences specified in claim 7.
19. One or more Oligonucleotides consisting essentially of one or more DNA molecules having sequences specified in claim 8.
- 10 20. One or more Oligonucleotides consisting essentially of one or more DNA molecules having sequences specified in claim 9.
21. One or more oligonucleotides according to any of claims 17 to 20, immobilised on
a solid carrier.
15
22. A solid support material carrying one or more oligonucleotide probes as specified in
claim 6, 7, 8, or 9.
23. A support material according to claim 22, in which some or all of the probes are
20 attached to the substrate by means of chemically modified or additional bases.
24. A support material according to claim 23, in which additional thymine bases have
been attached to the 3 prime end of the probe to increase hybridization intensity.
- 25 25. A diagnostic kit for the identification of bacteria comprising one or more
amplification primers specified in claim 1.
26. A diagnostic kit for the identification of bacteria comprising one or more
oligonucleotide probes as specified in claim 6, 7 , 8, or 9.
27. A diagnostic kit for the identification of bacteria comprising a solid support material
30 carrying one or more oligonucleotide probes as specified in claim 6, 7 , 8, or 9.

FIG. 1

SEQUENCE LISTING

<110> KING'S COLLEGE LONDON
GUY'S AND ST. THOMAS' NATIONAL HEALTH SERVICE TRUST
ANTHONY, RICHARD M
BROWN, TIMOTHY J
FRENCH, GARY L

<120> IDENTIFICATION OF BACTERIA

<130> N9557COPY

<140>
<141>

<150> GB9904804.3
<151> 1999-03-02

<160> 63

<170> PatentIn Ver. 2.1

<210> 1
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:OLIGO

<400> 1
gcgatttcyg aayggggrraa ccc

23

<210> 2
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:OLIGO

<400> 2
ttcgccttcc cctcacggta ct

22

<210> 3
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:OLIGO

<400> 3
aatagcagtgc tcaggagaac ggtct

25

<210> 4

<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:OLIGO

<400> 4
atagccccgt atctgaagat gct

23

<210> 5
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:OLIGO

<400> 5
ccagaggctg aatcagtgtg t

21

<210> 6
<211> 23
<212> DNA
<213> Artificial Sequence

<400> 6
tcccgtagac taaaacgcac agg

23

<210> 7
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:OLIGO

<400> 7
tcccgtagac caaaatgcac agg

23

<210> 8
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:OLIGO

<400> 8
cagaggctg atcagtatgt g

21

<210> 9
<211> 23
<212> DNA

<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:OLIGO
<400> 9
tcccgtagac gaaaatgcac agg

23

<210> 10
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:OLIGO
<400> 10
cccgtagaca aaaatgcaca

20

<210> 11
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:OLIGO
<400> 11
agaggctgaa tcagcatgtg t

21

<210> 12
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:OLIGO
<400> 12
agaagaatga tttggaaaga tc

22

<210> 13
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:OLIGO
<400> 13
gcttcattga ttttagcgga ac

22

<210> 14
<211> 22

<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:OLIGO

<400> 14
gtgaggagaa tgtgttggga ag

22

<210> 15
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:OLIGO

<400> 15
agaagaagac cttgggaaag g

21

<210> 16
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:OLIGO

<400> 16
ggtagtctgt tagtatagtt gaag

24

<210> 17
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:OLIGO

<400> 17
tggaacggtc ctggaaaggc

20

<210> 18
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:OLIGO

<400> 18
agaagaacta cctggaaaggc

20

<210> 19

<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:OLIGO

<400> 19
ggtagttctt tcagatagtc gg

22

<210> 20
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:OLIGO

<400> 20
acggagttac aaaagtatat attagttttt

30

<210> 21
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:OLIGO

<400> 21
acggagttac aaaggacgac atta

24

<210> 22
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:OLIGO

<400> 22
ggttgttagga cactctatac ggagtt

26

<210> 23
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:OLIGO

<400> 23
acggagttac aaaagaacag actagttttt

30

<210> 24
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:OLIGO

<400> 24
acggagttac aaaagaacat gttag

25

<210> 25
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:OLIGO

<400> 25
atggagttac aaaagaatcg attag

25

<210> 26
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:OLIGO

<400> 26
acggagttac aaaggaatat attagtttt

30

<210> 27
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:OLIGO

<400> 27
cgtattgtta gccgaacgct ct

22

<210> 28
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:OLIGO

<400> 28
agccctgtat ctgaaaggc ca

22

<210> 29
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:OLIGO

<400> 29
acggagttac aaaagaaaagt tataattttt

30

<210> 30
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:OLIGO

<400> 30
agaagaatga tttgggaaaga tc

22

<210> 31
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:OLIGO

<400> 31
agaagaagac cttgggaaag g

21

<210> 32
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:OLIGO

<400> 32
agaagaacta cctgggaaagg t

21

<210> 33
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:OLIGO

<400> 33
acggcagaag ggcaaaccga atttttt

27

<210> 34
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:OLIGO

<400> 34
ggcaggaggg caaacccgaag atttttt

27

<210> 35
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:OLIGO

<400> 35
ggcaagaggg caaacccgaag atttttt

27

<210> 36
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:OLIGO

<400> 36
cgctctggga agtgccaaacg tttt

24

<210> 37
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:OLIGO

<400> 37
gaaaaggccgcg cgatacacaggg tttt

24

<210> 38
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:OLIGO

<400> 38
gaaagtccga cggtagccggg tttt

24

<210> 39
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:OLIGO

<400> 39
acggagttac aaaagaacat gtttagtttt 30

<210> 40
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:OLIGO

<400> 40
acggagttac aaaagaattt gtttagtttt 30

<210> 41
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:OLIGO

<400> 41
gttagtgaa cggttggaa 20

<210> 42
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:OLIGO

<400> 42
tgaccatagc gggtgacagt cttt 24

<210> 43
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:OLIGO

<400> 43
tgaccatagt gggtgacagt cttt 24

<210> 44
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:OLIGO

<400> 44
gtgagtttag cagaacatcc tg

22

<210> 45
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:OLIGO

<400> 45
taagtaaggt tagtagaaaca ctct

24

<210> 46
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:OLIGO

<400> 46
catccaagag aacgcatttag ca

22

<210> 47
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:OLIGO

<400> 47
aatgggatca gccttgtact ct

22

<210> 48
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:OLIGO

<400> 48
tctggaaagg cgcgcgatac a

21

<210> 49
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:OLIGO

<400> 49
gtctggaaag tccgacggta c

21

<210> 50
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:OLIGO

<400> 50
accatatttt taatatgggg ttttt

25

<210> 51
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:OLIGO

<400> 51
ccacataaaa aatgtgggg

19

<210> 52
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:OLIGO

<400> 52
ccgagctgaa gaagcgagg ttt

23

<210> 53
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:OLIGO

<400> 53
ccttcgagg ttatgtatac tgaa

24

<210> 54
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:OLIGO

<400> 54
ggtgttgcattcgtggggtt g

21

<210> 55
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:OLIGO

<400> 55
gggttgcgtatggagggttg

20

<210> 56
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:OLIGO

<400> 56
gcgctaccccg gctgagagg

19

<210> 57
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:OLIGO

<400> 57
ctaccctggct gaggggtagt c

21

<210> 58
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:OLIGO

<400> 58
ggacgatacg tctcagctct a

21

<210> 59
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:OLIGO

<400> 59
tgactgaccg atagygaacc agta

24

<210> 60
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:OLIGO

<400> 60
tgaccatagc gggtgacagt c

21

<210> 61
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:OLIGO

<400> 61
tgaccatagt gggtgacagt c

21

<210> 62
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:OLIGO

<400> 62
accatatttt taatatgggg

20

<210> 63
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:OLIGO

<400> 63
ccgagctgaa gaagcgaggg

20