Modeling with partial differential equations

Part 2

Outline: Part 2

The Reaction-Diffusion equation

Why does it occur so frequently?

Some PDE examples from the literature

Simulations of intracellular calcium

Predicted effect of cell shape on signaling

Predictions and experimental validation of kinase activity

1-D cable equation vs. epithelial reaction-diffusion equation

diffusion

Cable equation:

reaction that increases or decreases voltage

reaction that consumes [HCO3]

Diffusion of [HCO₃] across epithelium:

$$\frac{\partial [HCO_3]_i}{\partial t} = D_{HCO_3} \frac{\partial^2 [HCO_3]}{\partial x} - k[HCO_3]$$
diffusion

Other examples of reaction-diffusion equations

Changes in intracellular [Ca²⁺] during release

Ca²⁺ in heart cells is released from discrete clusters of channels

Released Ca²⁺ <u>diffuses</u> within cytoplasm

Reaction: Release of Ca²⁺ and buffering reactions in cytoplasm

Other examples of reaction-diffusion equations

Other intracellular second messengers, e.g. cAMP

Harvey, (2011) Am J Physiol 301:C775-C776.

These processes are common → so are reaction-diffusion equations

Example 1: Ca²⁺ in cytosol and sarcoplasmic reticulum (SR) during release

Message: Ca²⁺ diffusion within SR matters as much as diffusion in cytosol

Ramay, Jafri, Lederer, Sobie (2010) *Biophys J* 98:2515-2523.

Example 2: How does cell shape influence signaling?

Unpolarized

Polarized

Meyers, Craig, Odde (2006) Curr Biol 16:1685-1693.

Message: Geometry matters. The degree of phosphorylation will be different in thin and thick regions of a cell.

Example 3: Prediction/measurement of signaling spatial gradients

Neves et al. (2008) *Cell* 133:666-680

Message: Spatial signals depend on geometry, but they depend equally on processes that turn signals off.

Example 3: Prediction/measurement of signaling spatial gradients

Neves et al. (2008) *Cell* 133:666-680

Predictions made in the models were confirmed experimentally

Summary

Reaction-diffusion equations occur repeatedly in biology, whenever the processes producing and degrading a species are spatially separated.

Modeling studies based on PDEs can provide insight into the relative importance of biological versus geometrical factors.