PROBLEMS - SET 4

Problem 1. Let $X \sim Bin(n, p)$. Compute

$$P[X \text{ is odd}]$$

Solution 1. X can be written as the sum of n independent Bin(1, p) r.v.'s. Then $Z_i = 2X_i - 1$ for i = 1, ..., n form a sequence of i.i.d. r.v.'s with $P[Z_1 = 1] = p = 1 - P[Z_1 = -1]$. In the previous SET 3 we have proved that if $Z := Z_1 \cdot Z_2 \cdot ... \cdot Z_n$, we have

$$P(Z = \pm 1) = \frac{1 \pm (2p - 1)^n}{2}.$$

Now, it is easy to see that if n is odd, than [X is odd] = [Z = 1], while if n is even, than [X is odd] = [Z = 1]. Then if n is odd

$$P[X \text{ is odd}] = \frac{1 + (2p - 1)^n}{2}$$

while if n is even

$$P[X \text{ is odd}] = \frac{1 - (2p - 1)^n}{2}.$$

This is equal in both the cases to

$$P[X \text{ is odd}] = \frac{1 - (1 - 2p)^n}{2}$$

Problem 2. A box contains k balls numbered from 1 to k. We extract n balls from the box and let X denote the maximum number that we obtain. In both the cases with or without replacement, compute the distribution F_X .

Solution 2. Let us start by the case with replacement. In this case $X \in \{1, 2, ..., k\}$ and we get

$$P[X \le x] = \begin{cases} 0 & x < 1 \\ P[\{(1, 1, \dots, 1)\}] = \left(\frac{1}{k}\right)^n & 1 \le x < 2 \\ P[\{(\omega_1, \omega_2, \dots, \omega_n) : \omega_i \in \{1, 2\}\}] = \left(\frac{2}{k}\right)^n & 2 \le x < 3 \\ \dots & P[\{(\omega_1, \omega_2, \dots, \omega_n) : \omega_i \in \{1, 2, \dots, l\}\}\}] = \left(\frac{l}{k}\right)^n l \le x < l + 1 \\ \dots & 1 & x \ge k \end{cases}$$

In the case without replacement, where $n \le k, X \in \{n, n+1, \dots, k\}$ and

$$P[X \le x] = \begin{cases} 0 & x < n \\ \frac{\binom{n}{n}}{\binom{k}{n}} = \frac{1}{\binom{k}{n}} & n \le x < n+1 \\ \frac{\binom{n+1}{n}}{\binom{k}{n}} & n+1 \le x < n+2 \\ \dots & \\ \frac{\binom{n+l}{n}}{\binom{k}{n}} & n+l \le x < n+l+1 \\ \dots & \\ \frac{\binom{k}{n}}{\binom{k}{n}} = 1 & x \ge k \end{cases}$$

Problem 3. Compute the characteristic function and the moment generating function of the absolutely continuous random variables with densities

i.
$$f(x)=\begin{cases}\frac{1}{2}\left(1-\frac{1}{2}|x|\right) \text{ if }|x|\leq 2\\0 \text{ otherwise}\end{cases}$$
 ii.
$$f(x)=\frac{1}{b-a}1_{[a,b]}(x)$$
 iii.
$$f(x)=\frac{1}{2}\exp[-|x-a|].$$

Solution 3. Only the characteristic function is computed, the moment generating function is obtained replacing u by -iu (that is $m_X(t) = \varphi(-it)$).

i.

$$\varphi(u) = \frac{1}{2} \int_{-2}^{2} e^{iux} \left(1 - \frac{1}{2} |x| \right) dx = \int_{0}^{2} \cos(ux) \left(1 - \frac{1}{2} x \right) dx$$

$$= \frac{1}{u} \sin(ux) \Big|_{0}^{2} - \frac{1}{2} \int_{0}^{2} x \cos(ux) dx$$

$$= \frac{\sin(2u)}{u} - \frac{1}{2u} x \sin(ux) \Big|_{0}^{2} + \frac{1}{2u} \int_{0}^{2} \sin(ux) dx = \frac{\cos(1 - 2u)}{2u^{2}}.$$

ii.
$$\varphi(u) = \frac{1}{b-a} \int_a^b e^{iux} dx = \frac{1}{iu} \frac{e^{iub} - e^{iua}}{b-a}.$$

iii.

$$\begin{split} \varphi(u) &= \frac{1}{2} \int e^{iux} e^{-|x-a|} dx = e^{iua} \frac{1}{2} \int e^{iuy} e^{-|y|} dy \\ &= \frac{1}{2} e^{iua} \left[\int_{-\infty}^{0} e^{iuy} e^{y} dy + \int_{0}^{+\infty} e^{iuy} e^{-y} dy \right] = \frac{e^{iua}}{1+u^{2}}. \end{split}$$

Problem 4. We know that for a real, discrete random X variable with density p, the characteristic function is given by

$$\varphi_X(u) = \sum_{n \in \mathbb{Z}} e^{iun} p(n).$$

Determine the densities of the discrete random variables having the following characteristic functions:

i. $\varphi(u) = \frac{1}{4} \left(1 + e^{iu} \right)^2$

ii. $\varphi(u) = \frac{1}{2 - e^{iu}}$

iii. $\varphi(u) = \cos(u)$

iv. $\varphi(u) = \cos^2(u)$

v. $\varphi(u) = \sum_{k=0}^{+\infty} a_k cos(kt)$

where $a_k > 0$ and $\sum_k a_k = 1$.

Solution 4. i.

$$\varphi(u) = \frac{1}{4} + \frac{1}{2}e^{iu} + \frac{1}{4}e^{2iu} \ \Rightarrow \ p(0) = \frac{1}{4} = p(2), \ p(1) = \frac{1}{2}.$$

ii. $\varphi(u) = \frac{1}{2} \frac{1}{1 - \frac{e^{iu}}{2}} = \frac{1}{2} \sum_{n=0}^{+\infty} \frac{e^{inu}}{2^n} \ \Rightarrow \ p(n) = \frac{1}{2^{n+1}}.$

iii.
$$\varphi(u) = \frac{e^{iu} + e^{-iu}}{2} \ \Rightarrow \ p(1) = p(-1) = \frac{1}{2}.$$

iv.

$$\varphi(u) = \left(\frac{e^{iu} + e^{-iu}}{2}\right)^2 = \frac{1}{4}e^{2iu} + \frac{1}{4}e^{-2iu} + \frac{1}{2} \\ \Rightarrow p(0) = \frac{1}{2}, p(2) = p(-2) = \frac{1}{4}.$$

v.

$$\varphi(u) = \sum_{k} a_k \left(\frac{e^{iuk} + e^{-iuk}}{2} \right) = \sum_{k=0}^{\infty} \frac{a_k}{2} e^{iuk} + \sum_{k=0}^{+\infty} \frac{a_k}{2} e^{-iuk} \implies p(0) = a_0, p(k) = p(-k) = \frac{a_k}{2}.$$

Problem 5. Let $X \sim N(1,4)$ and $Y \sim N(2,1)$ be independent random variables.

- (a) Set U := X + Y and V := X 2Y. Find μ and Σ such that $(U, V) \sim N(\mu, \Sigma)$.
- (b) Find a 2×2 matrix A such that defining

$$\begin{pmatrix} Z \\ W \end{pmatrix} = A \begin{pmatrix} X \\ Y \end{pmatrix},$$

Z and W are independent and have both variance 1.

Solution 5.

(a) Note that
$$(X,Y) \sim N\left((1,2), \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix}\right)$$
 and $\begin{pmatrix} U \\ V \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix}$. Let us denote $B = \begin{pmatrix} 1 & 1 \\ 1 & -2 \end{pmatrix}$ Therefore $(U,V) \sim N\left(B\begin{pmatrix} 1 \\ 2 \end{pmatrix}, B\begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix}B^t\right)$. So, $(U,V) \sim N\left(\begin{pmatrix} 3 \\ -3 \end{pmatrix}, \begin{pmatrix} 5 & 2 \\ 2 & 8 \end{pmatrix}\right)$.

(b) We have that $\begin{pmatrix} Z \\ W \end{pmatrix} = A \begin{pmatrix} X \\ Y \end{pmatrix} \sim N \left(A \begin{pmatrix} 1 \\ 2 \end{pmatrix}, A \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix}, A^t \right)$. So we need to find a matrix A such that

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = A \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix} A^t = \begin{pmatrix} 4a_{11}^2 + a_{12}^2 & 4a_{11}a_{21} + a_{22}a_{12} \\ 4a_{11}a_{21} + a_{22}a_{12} & 4a_{21}^2 + a_{22}^2 \end{pmatrix}.$$

A solution is given by $a_{11} = \frac{1}{2}$, $a_{12} = a_{21} = 0$, $a_{22} = 1$, and so $A = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & 1 \end{pmatrix}$.

Problem 6. Set $V := \{1, 2, ..., N\}$. To each *unordered* pair $\{i, j\}$ with $i, j \in V$ and $i \neq j$ we assign a random variable $X_{ij} \sim N(0, 1)$ and we assume that they are all independent. You can interpret it as follows: if the elements of V are geographical locations, $e^{-X_{ij}}$ is the time needed to travel from i to j of viceversa. We say that i and j are far if $X_{ij} < 0$. For $i \in V$, set

$$X_i := \sum_{j:j \neq i} X_{ij};$$

 $N_i := \text{ number of locations far from } i = |\{j : X_{ij} < 0\}|.$

- (a) Find the distribution of N_i .
- (b) What is the joint distribution of X_1 and X_2 ? Are they independent?
- (c) We say that i is *isolated* if it is far from all other elements of V. Let p_N be the probability that there exists at least one isolated point. Show that

$$\lim_{N\to+\infty}p_N=0.$$

Solution 6. (a) Note that $P(X_{ij} < 0) = \pi^{-1/2} \int_{-\infty}^{0} e^{-x^2/2} dx = \frac{1}{2}$. So $N_i \sim \text{Bin}(N-1, 1/2)$. (b) Note that the vector (X_1, X_2) is a linear transform of $(X_{ij} : \{i, j\})$ unordered pair),

so there exists a matrix
$$A \in M\left(2 \times {N \choose 2}\right)$$
 such that ${X_1 \choose X_2} = A {X_{11} \choose X_{12} \choose ... \choose X_{N-1,N}}$.
This implies that $(X_1, X_2) \sim N(0, AA^t)$.

This implies that $(X_1, X_2) \sim N(0, AA^t)$.

To obtain its joint distribution it is therefore enough to compute the covariance matrix:

$$Var(X_1) = \sum_{k:k \neq 1} Var(X_{1k}) = N - 1 = Var(X_2).$$

$$Cov(X_1, X_2) = \sum_{k: k \neq 1} \sum_{h: h \neq 2} Cov(X_{1k}, X_{2h}) = Var(X_{12}) = 1.$$

In particular, X_1 and X_2 are not independent.

(c) For a given i

$$P(i \text{ is isolated}) = P(N_i = N - 1) = \frac{1}{2^{N-1}}.$$

So

$$p_N = P(\cup_i \{N_i = N - 1\}) \le \sum_i P(N_i = N - 1) = \frac{N}{2^{N-1}} \to 0$$

as $N \to +\infty$.