_

Mikio Kano and Jan Kynčl

EPFL

Problem:

Given n red and n blue points in the plane in general position, draw n noncrossing red-blue segments.

Solution: take the shortest red-blue perfect matching.

Theorem: (Akiyama and Alon, 1989)

Given point sets $X_1, X_2, \ldots, X_d \subset \mathbb{R}^d$ in general position, with $|X_1| = |X_2| = \cdots = |X_d| = n$, then there are n disjoint rainbow (d-1)-dimensional simplices.

Theorem: (Akiyama and Alon, 1989)

Given point sets $X_1, X_2, \ldots, X_d \subset \mathbb{R}^d$ in general position, with $|X_1| = |X_2| = \cdots = |X_d| = n$, then there are n disjoint rainbow (d-1)-dimensional simplices.

Proof: recursive cutting by hyperplanes, using the discrete ham-sandwich theorem.

Theorem: (Akiyama and Alon, 1989)

Given point sets $X_1, X_2, \dots, X_d \subset \mathbb{R}^d$ in general position, with $|X_1| = |X_2| = \dots = |X_d| = n$, then there are n disjoint rainbow (d-1)-dimensional simplices.

Proof: recursive cutting by hyperplanes, using the discrete ham-sandwich theorem.

The discrete ham-sandwich theorem: (Stone and Tukey, 1942) If $X_1, X_2, \ldots, X_d \subset \mathbb{R}^d$ are disjoint finite sets in general position, then there is a hyperplane that bisects each X_i exactly in half.

Theorem: (Kano, Suzuki and Uno, 2014)

Let $R, G, B \subset \mathbb{R}^2$ be sets of red, green and blue points in general position such that |R| + |G| + |B| = 2n and $|R|, |G|, |B| \le n$. Then there are n disjoint rainbow segments.

Proof: using a special result for partitioning colored sets on a line **Alternative solution:** shortest rainbow perfect matching

Theorem: (Kano, Suzuki and Uno, 2014)

Let $R, G, B \subset \mathbb{R}^2$ be sets of red, green and blue points in general position such that |R| + |G| + |B| = 2n and $|R|, |G|, |B| \le n$. Then there are n disjoint rainbow segments.

Corollary: Given point sets $X_1, X_2, ..., X_r \subset \mathbb{R}^2$ in general position such that $|X_1| + |X_2| + \cdots + |X_r| = 2n$ and $|X_i| \leq n$ for every $i \in [d+1]$, then there are n disjoint rainbow segments.

Proof: merging the smallest sets:

$$(4,4,3,2,1) \rightarrow (4,4,3,3) \rightarrow (4,4,6)$$

(also shortest rainbow perfect matching)

Conjecture: (Kano and Suzuki) Let r > d > 3 and n > 1. Given point sets $X_1, X_2, \dots, X_r \subset \mathbb{R}^d$ in general position such that

 $|X_1| + |X_2| + \cdots + |X_r| = dn$ and $|X_i| < n$ for every $i \in [r]$, then there are n disjoint rainbow (d-1)-dimensional simplices.

Conjecture: (Kano and Suzuki) Let $r \ge d \ge 3$ and $n \ge 1$. Given point sets $X_1, X_2, \ldots, X_r \subset \mathbb{R}^d$ in general position such that $|X_1| + |X_2| + \cdots + |X_r| = dn$ and $|X_i| \le n$ for every $i \in [r]$, then there are n disjoint rainbow (d-1)-dimensional simplices.

Theorem: The conjecture is true for $d \ge 2$ and r = d + 1.

Conjecture: (Kano and Suzuki) Let $r \ge d \ge 3$ and $n \ge 1$. Given point sets $X_1, X_2, \ldots, X_r \subset \mathbb{R}^d$ in general position such that $|X_1| + |X_2| + \cdots + |X_r| = dn$ and $|X_i| \le n$ for every $i \in [r]$, then there are n disjoint rainbow (d-1)-dimensional simplices.

Theorem: The conjecture is true for d > 2 and r = d + 1.

Plan of proof: recursive cutting by a hyperplane, into a pair of **balanced** subsets; that is, for each of the two halfspaces *H*, we want

$$|H\cap X_i|\leq \frac{1}{d}\sum_{i=1}^r|H\cap X_i|.$$

Moreover, the total number of points in H must be positive and divisible by d.

Conjecture: (Kano and Suzuki) Let $r \geq d \geq 3$ and $n \geq 1$. Given point sets $X_1, X_2, \ldots, X_r \subset \mathbb{R}^d$ in general position such that $|X_1| + |X_2| + \cdots + |X_r| = dn$ and $|X_i| \leq n$ for every $i \in [r]$, then there are n disjoint rainbow (d-1)-dimensional simplices.

Theorem: The conjecture is true for $d \ge 2$ and r = d + 1.

Plan of proof: recursive cutting by a hyperplane, into a pair of **balanced** subsets; that is, for each of the two halfspaces *H*, we want

$$|H\cap X_i|\leq \frac{1}{d}\sum_{j=1}^r|H\cap X_j|.$$

Moreover, the total number of points in H must be positive and divisible by d.

 \to we need a generalization of the discrete ham-sandwich theorem to d+1 sets in \mathbb{R}^d .

First we show a continuous version, then discretize it.

Definition:

Let $r \geq d$ and let $\mu_1, \mu_2, \dots, \mu_r$ be finite Borel measures on \mathbb{R}^d . We say that $\mu_1, \mu_2, \dots, \mu_r$ are **balanced** in a subset $X \subseteq \mathbb{R}^d$ if for every $i \in [r]$, we have

$$\mu_i(X) \leq \frac{1}{d} \cdot \sum_{i=1}^r \mu_i(X).$$

Let $d \ge 2$, let $\mu_1, \mu_2, \dots, \mu_{d+1}$ be absolutely continuous finite Borel measures on \mathbb{R}^d .

Let $d \ge 2$, let $\mu_1, \mu_2, \dots, \mu_{d+1}$ be absolutely continuous finite Borel measures on \mathbb{R}^d . Let

- $\omega_i := \mu_i(\mathbb{R}^d)$ for $i \in [d+1]$,
- $\omega := \min\{\omega_i; i \in [d+1]\},$

Let $d \ge 2$, let $\mu_1, \mu_2, \dots, \mu_{d+1}$ be absolutely continuous finite Borel measures on \mathbb{R}^d . Let

- $\omega_i := \mu_i(\mathbb{R}^d)$ for $i \in [d+1]$,
- $\omega := \min\{\omega_i; i \in [d+1]\},$

and assume that

•
$$\sum_{j=1}^{d+1} \omega_j = 1$$
,

• $\mu_1, \mu_2, \dots, \mu_{d+1}$ are balanced in \mathbb{R}^d .

Let $d \ge 2$, let $\mu_1, \mu_2, \dots, \mu_{d+1}$ be absolutely continuous finite Borel measures on \mathbb{R}^d . Let

- $\omega_i := \mu_i(\mathbb{R}^d)$ for $i \in [d+1]$,
- $\omega := \min\{\omega_i; i \in [d+1]\},$

and assume that

•
$$\sum_{j=1}^{d+1} \omega_j = 1$$
,

• $\mu_1, \mu_2, \dots, \mu_{d+1}$ are balanced in \mathbb{R}^d .

Then there exists a hyperplane h such that for each open halfspace H defined by h, the measures $\mu_1, \mu_2, \ldots, \mu_{d+1}$ are balanced in H and

$$\sum_{i=1}^{d+1} \mu_j(H) \geq \min\left(\frac{1}{2}, 1 - d\omega\right) \geq \frac{1}{d+1}.$$

Let $d \geq 2$, let $\mu_1, \mu_2, \dots, \mu_{d+1}$ be absolutely continuous finite Borel measures on \mathbb{R}^d . Let

- $\omega_i := \mu_i(\mathbb{R}^d)$ for $i \in [d+1]$,
- $\omega := \min\{\omega_i; i \in [d+1]\},$

and assume that

•
$$\sum_{j=1}^{d+1} \omega_j = 1$$
,

• $\mu_1, \mu_2, \dots, \mu_{d+1}$ are balanced in \mathbb{R}^d .

Then there exists a hyperplane h such that for each open halfspace H defined by h, the measures $\mu_1, \mu_2, \dots, \mu_{d+1}$ are balanced in H and

$$\sum_{i=1}^{d+1} \mu_j(H) \ge \min\left(\frac{1}{2}, 1 - d\omega\right) \ge \frac{1}{d+1}.$$

For $\omega = 0$ we get exactly the ham-sandwich theorem.

• The lower bound 1/(d+1) is tight:

· discretization is nontrivial:

Proof of the hamburger theorem

analogous to the proof of the ham-sandwich theorem:

parametrize half-spaces in R^d by the points of

• parametrize half-spaces in
$$\mathbb{R}^d$$
 by the points of $S^d = \{ \mathbf{u} = (u_0, u_1, \dots, u_d) \in \mathbb{R}^{d+1}; u_0^2 + u_1^2 + \dots + u_d^2 = 1 \}$:

if $|u_0|$ < 1, then

$$H^{-}(\mathbf{u}) := \{(x_1, x_2, \dots, x_d) \in \mathbb{R}^d; u_1x_1 + u_2x_2 + \dots + u_dx_d < u_0\},$$

$$H^{+}(\mathbf{u}) := \{(x_{1}, x_{2}, \dots, x_{d}) \in \mathbb{R}^{d}; u_{1}x_{1} + u_{2}x_{2} + \dots + u_{d}x_{d} < u_{0}\},\$$

$$H^{+}(\mathbf{u}) := \{(x_{1}, x_{2}, \dots, x_{d}) \in \mathbb{R}^{d}; u_{1}x_{1} + u_{2}x_{2} + \dots + u_{d}x_{d} > u_{0}\},\$$

Proof of the hamburger theorem

analogous to the proof of the ham-sandwich theorem:

• parametrize half-spaces in \mathbb{R}^d by the points of

$$S^d = \{ \mathbf{u} = (u_0, u_1, \dots, u_d) \in \mathbb{R}^{d+1}; u_0^2 + u_1^2 + \dots + u_d^2 = 1 \}$$
: if $|u_0| < 1$, then

If $|u_0|<1$, then $H^-(\mathbf{u}):=\{(x_1,x_2,\ldots,x_d)\in\mathbb{R}^d;u_1x_1+u_2x_2+\cdots+u_dx_d< u_0\},$

$$H^{-}(\mathbf{u}) := \{ (\mathbf{x}_{1}, \mathbf{x}_{2}, \dots, \mathbf{x}_{d}) \in \mathbb{R}^{d}; u_{1}\mathbf{x}_{1} + u_{2}\mathbf{x}_{2} + \dots + u_{d}\mathbf{x}_{d} < u_{0} \}, \\ H^{+}(\mathbf{u}) := \{ (\mathbf{x}_{1}, \mathbf{x}_{2}, \dots, \mathbf{x}_{d}) \in \mathbb{R}^{d}; u_{1}\mathbf{x}_{1} + u_{2}\mathbf{x}_{2} + \dots + u_{d}\mathbf{x}_{d} > u_{0} \},$$

and

$$H^-(1,0,0,\ldots,0):=\mathbb{R}^d, \qquad H^+(1,0,0,\ldots,0):=\emptyset, \ H^-(-1,0,0,\ldots,0):=\emptyset, \qquad H^+(-1,0,0,\ldots,0):=\mathbb{R}^d.$$

Proof of the hamburger theorem

analogous to the proof of the ham-sandwich theorem:

• parametrize half-spaces in \mathbb{R}^d by the points of $S^d = \{\mathbf{u} = (u_0, u_1, \dots, u_d) \in \mathbb{R}^{d+1}; u_0^2 + u_1^2 + \dots + u_d^2 = 1\}$: if $|u_0| < 1$, then

$$H^{-}(\mathbf{u}) := \{ (x_1, x_2, \dots, x_d) \in \mathbb{R}^d; u_1 x_1 + u_2 x_2 + \dots + u_d x_d < u_0 \},$$

$$H^{+}(\mathbf{u}) := \{ (x_1, x_2, \dots, x_d) \in \mathbb{R}^d; u_1 x_1 + u_2 x_2 + \dots + u_d x_d > u_0 \},$$

and

$$H^{-}(1,0,0,\ldots,0) := \mathbb{R}^{d}, \qquad H^{+}(1,0,0,\ldots,0) := \emptyset, H^{-}(-1,0,0,\ldots,0) := \emptyset, \qquad H^{+}(-1,0,0,\ldots,0) := \mathbb{R}^{d}.$$

We have $H^-(\mathbf{u}) = H^+(-\mathbf{u})$ for every $\mathbf{u} \in S^d$.

• define $f=(f_1,\ldots,f_{d+1}): S^d o \mathbb{R}^{d+1}$ by $f_i(\mathbf{u}) := \mu_i(H^-(\mathbf{u})).$

• define $f = (f_1, \dots, f_{d+1}) : \mathbb{S}^d \to \mathbb{R}^{d+1}$ by $f_i(\mathbf{u}) := \mu_i(H^-(\mathbf{u})).$

$$f$$
 is continuous since $u(h) = 0$ for every hyperplane h

• f is continuous since $\mu_i(h) = 0$ for every hyperplane h

• define $f = (f_1, \dots, f_{d+1}) : \mathbb{S}^d \to \mathbb{R}^{d+1}$ by $f_i(\mathbf{u}) := \mu_i(H^-(\mathbf{u})).$

$$f$$
 is continuous since $u(h) = 0$ for every hyperplane h

• f is continuous since $\mu_i(h) = 0$ for every hyperplane h

•
$$f[S^d] \subseteq B := \prod_{i=1}^{d+1} [0, \omega_i]$$

• define $f = (f_1, \dots, f_{d+1}) : \mathbb{S}^d \to \mathbb{R}^{d+1}$ by $f_i(\mathbf{u}) := \mu_i(H^-(\mathbf{u})).$

$$f$$
 is continuous since $u(h) = 0$ for every hyperplane h

- f is continuous since $\mu_i(h) = 0$ for every hyperplane h
- $f[S^d] \subseteq B := \prod_{i=1}^{d+1} [0, \omega_i]$

f(u) and f(−u) symmetric about the center b of B

• define $f = (f_1, \dots, f_{d+1}) : \mathbb{S}^d \to \mathbb{R}^{d+1}$ by

$$f_i(\mathbf{u}) := \mu_i(H^-(\mathbf{u})).$$

- f is continuous since $\mu_i(h) = 0$ for every hyperplane h
- $f[S^d] \subseteq B := \prod_{i=1}^{d+1} [0, \omega_i]$
- $f(\mathbf{u})$ and $f(-\mathbf{u})$ symmetric about the center **b** of B
- our goal is to show that the image of f intersects the target polytope, determined by the conditions "balanced" and "nontrivial"

- assume $\omega = \omega_{d+1}$
- $t := \min\left(\frac{1}{2d}, \frac{1}{d} \omega\right)$

- assume $\omega = \omega_{d+1}$
- $t := \min\left(\frac{1}{2d}, \frac{1}{d} \omega\right)$
- $\mathbf{a} := (t, t, \dots, t, 0), \, \mathbf{b} := (\omega_1/2, \omega_2/2, \dots, \omega_{d+1}/2),$
- $\mathbf{c} := (\omega_1 t, \omega_2 t, \dots, \omega_d t, \omega_{d+1})$

- assume $\omega = \omega_{d+1}$
- $t := \min\left(\frac{1}{2d}, \frac{1}{d} \omega\right)$
- **a** := (t, t, ..., t, 0), **b** := $(\omega_1/2, \omega_2/2, ..., \omega_{d+1}/2)$,
- **c** := $(\omega_1 t, \omega_2 t, \dots, \omega_d t, \omega_{d+1})$
- ℓ := line ac
- $\pi_{\ell} :=$ projection to a hyperplane orthogonal to ℓ
- $g(u) := \pi_{\ell}(f(u) b)$

g is antipodal map from S^d to \mathbb{R}^d . By the Borsuk–Ulam theorem, there exists $\mathbf{u} \in S^d$ such that $g(\mathbf{u}) = \mathbf{0}$, which means that $f(\mathbf{u}) \in \ell$.