利用IMU改善純影像技術在人體動作重建中的表現

Using IMU to Improve the Performance of Imaging Technology in Human Motion Reconstruction

學生: 陳珮甄

指導教授:詹魁元博士

2024/7/30

二 研究動機與目的

主文獻回顧

四

大綱

探討減少相機使用數量 對於人體姿態估計精準度的影響

五)感測器融合方法及流程

六) 實驗結果

七 結論及未來工作

背景介紹

- 光標記動作捕捉的特點、優缺點、精度
- 無光標記動作捕捉的特點、優缺點、精度
- 慣性感測器動作捕捉的特點、優缺點、精度
- 感測器融合動作捕捉的特點、優缺點、精度

研究動機與目的

- 減少量測時所使用的相機數量
- 建立資料前處理流程
- 建立三維人體模型,解除對 vicon 資訊的依賴
- 證實加上 imu 可以有效提升重建成功率

文獻回顧

- 前人們使用無光標記動作捕捉量測的文獻
- 前人們使用慣性感測器量測的文獻
- 前人們使用感測器融合量測的文獻

探討減少相機使用數量 對於人體姿態估計精準度的影響

- 實驗方法

探討減少相機使用數量 對於人體姿態估計精準度的影響

- 實驗結果
- 小結,引出使用兩台相機進行量測這件事

感測器融合方法及流程

- 影像辨識
- 感測器融合
 - 事前準備
 - 時間同步
 - 空間校正
 - 影像系統
 - IMU 感測器系統
 - 建立三維人體模型
 - 方法
 - 結果
 - 感測器融合方法

時間同步方法

空間校正概念

- 定義每個座標系
- 座標系間的關係

空間校正 – 影像系統

- 相機校正設定,校正板黏 IMU 等等
- 相機校正外部參數、內部參數
- 相機校正方法及校正結果

空間校正 - IMU 感測器系統

- Rib
- Ri
- Rig

建立三維人體模型-方法

- 用影像辨識和三角測量方法取代 vicon 的三維人體模型

y

建立三維人體模型-結果

- 用 total capture dataset 驗證

表 4.6: 個人化三維人體模型建立結果與比較 (mm)

	s1_acting1	s1_acting2	s1_acting3	s1_freestyle1	s1_freestyle2	s1_freestyle3	s1_rom1	s1_rom2	s1_rom3	average
右大腿	15.5895	16.8009	5.8655	27.9576	24.0688	18.2016	9.7907	12.2067	1.5568	14.6709
右小腿	20.4312	0.7514	8.9552	11.4757	12.7413	2.5780	19.0733	20.5609	8.6443	11.6902
左大腿	20.1423	23.3496	14.8347	34.8388	25.4773	29.7342	18.8850	15.3576	24.7152	23.0372
左小腿	3.4795	7.8705	16.6157	15.0529	12.4442	15.5452	12.3024	3.2584	3.2571	9.9807
右上臂	37.1875	39.5958	43.2833	76.6637	59.6534	34.1348	59.4540	29.4289	32.0788	45.7200
右前臂	4.0619	20.9168	14.4801	59.1019	37.3311	10.6598	36.6949	4.3855	13.8587	22.3878
左上臂	47.6423	50.8824	51.3296	41.4413	48.9365	51.4196	36.5617	50.4505	53.2362	47.9889
左前臂	30.7583	24.3253	36.5486	19.8007	29.5842	34.7937	22.6062	35.9636	40.4441	30.5361
average	22.4116	23.0616	23.9891	35.7916	31.2796	24.6334	26.9210	21.4515	22.2239	25.7515

感測器融合方法

姿態估計結果評估方法

- 人工評估像不像
- 計算誤差

實驗場地及實驗設備

- 場地資訊
- 場地尺寸
- 相機規格、拍攝規格及幀率
- IMU 黏貼位置及採樣率

實驗結果 – T pose

實驗結果 - 蹲站

實驗結果 – 開合跳

實驗結果 – 折返跑

實驗結果 - 熱身運動

實驗結果

結論

- 探討減少相機使用數量對於人體姿態估計精準度的影響
- 應用影像辨識及三角測量計算建立三維人體模型
- 建立用於輸入感測器融合程式的資料前處理流程
- 驗證影像辨識融合IMU資訊可以有效提高人體姿態重建的成功率

未來工作

- 解除對背景、衣著的限制
- 探討相機擺放角度對人體姿態重建的影響
- 量化重建姿態與原始姿態的相似程度

利用IMU改善純影像技術在人體動作重建中的表現

Using IMU to Improve the Performance of Imaging Technology in Human Motion Reconstruction

學生: 陳珮甄

指導教授:詹魁元博士

2024/7/30

