LEWIS MCCONKEY

Multimodal Imaging for Cancer Detection & Al Segmentation

3 main focuses

- PET-CT Image Reconstruction
- MRI Image Denoising
- CT Image Segmentation & Classification

CT Reconstruction

- Reconstruct with Filtered backprojection
- Direct reconstruction method
- Uses a filter and backprojects

$$f_{fbp}(x,y) = \int q_{\theta}(x\cos(\theta) + y\sin(\theta))d\theta$$
where $q_{\theta}(t) = \int P_{\theta}(\omega)|\omega|e^{2\pi i\omega t}d\omega$

CT Reconstruction

Reconstruct with OS-SART

$$x^{K+1} = x^k + \gamma A_i^T (A_i x^k - b)$$

- Iterative algorithm
- Tuning parameters
- Observations

Algorithm	Iterations	time (s)
OS-SART	10	8-14
SIRT	50	132
FBP	N/A	0.25-0.5

Attenuation correction

- Photon Attenuation
- Observations
- AC vs NAC

$$I(l) = I_0 e^{-\int \mu(l)dl}$$

PET Reconstruction

Reconstruct with fbp, OSEM and MLEM

$$x^{k+1} = x^k A_i^T \left(\frac{b}{A_i x^k} \right)$$

Extra

- Overlay of PET-CT scans
- TOF-PET scanner

$$\Delta x = \frac{c \cdot \Delta t}{2}$$

- OSEM is the most used algorithm in PET
- PET-MR scanners exist

MRI Image Denoising

- 3D knee image with 6 coil recievers
- Contains artifacts
- Magnitude & phase image of 1st coil

Combined Image

- Combine all coils into one image
- Observations
- SENSE

Combined Image

Denoising Methods

• 3 denoising methods: Gaussian, Bilateral and Wavelet

Gaussian Denoised

Bilateral Denoised

Wavelet Denoised

Low-Pass Butterworth Filter

```
    def butterworth_lowpass_filter(shape, D0=30, n=2): P, Q = shape[0], shape[1]
    u = np.arange(P) - P // 2
    v = np.arange(Q) - Q // 2
```

• U, V = np.meshgrid(u, v, indexing='ij') D = np.sqrt(U**2 + V**2) H = 1/(1 + (D/D0) ** (2 * n)) return H

Filtered Phase

Recreate Combined Image

- Using wavelet to recreate a new combined image
- Methods to improve this:
- Increase K-space sampling
- SENSE, GRAPPA...
- Other denoising methods

Wavelet Denoised Combined Image

CT Image Segmentation & Classification

- CT scans for a selection of 40 patients of lung cancer
- Create 1 Numpy array per patient scan and 1 per segmentation mask
- Find range of voxels in which the segmentation exists for each patient
- Create a numpy array with a subvolume of the images

Processing-Based Segmentation Function

- Function segmentations vs ground truth ones
- How can we improve it?

Image Feature Extraction & Classification

- 3 Histogram-based radiomic features
- MAD is a useful feature to classify between benign and malignant lesions

$$E = \sum_{i=1}^{N} (V_i)^2 \quad MAD = \frac{1}{N} \sum_{i=1}^{N} |V_i - \bar{V}|$$

$U = \sum_{i=1} p_i^2$

where p is the normalised histogram, i.e.

$$p_i = P(i)/N$$

being P(i) the number of entries in the *i*th bin of the histogram.

Patient	MAD	Intensity	Uniformity
0	189.50	27673732	0.0001
1	106.04	57513796	0.0001
10	274.03	6673689	0

Thank You for Listening:)

ARE THERE ANY QUESTIONS?