CSc 8530 Parallel Algorithms

Spring 2019

January 15th, 2019

Dramatis personae

- Instructor: Rolando Estrada
 - Email: restrada1@gsu.edu
 - Office: 1 Park Place, Suite 634
 - Office hours: Tues. 11:30am 12:30pm or by appointment
- Grader: Saeid Motevalialamoti
 - Email: smotevalialamoti1@student.gsu.edu
 - Office: 1 Park Place, Suite 633
 - Office hours: TR 11:00am 12:00pm or by appointment

Course prerequisites

- CSc 4520/6520 Design & Analysis of Algorithms
- CSc 4310/6310 Parallel & Distributed Computing
- Equivalent senior-level course

Conceptual prerequisites

- Standard algorithm analysis
 - Big-O notation, complexity classes, asymptotic bounds, etc.
 - Design techniques, e.g., divide and conquer, greedy algorithms, etc.
- Basic graph theory
 - Graph algorithms: BFS, DFS, Dijkstra, Kruskal, etc.
 - Graph properties: sparse vs. dense, subtypes (regular, small-world, etc.), explicit vs.implicit representations, etc.
- Some programming experience
 - Preferably C/C++
 - Hardware-level a plus

Required textbooks

- An Introduction to Parallel Algorithms, 1st edition by Joseph JáJá, Addison-Wesley, 1992
- Programming Massively Parallel Processors: A Hands-on Approach, 3rd edition by David B. Kirk and Wen-mei W. Hwu, Morgan Kaufmann, 2016
- Both books are available on Amazon and similar retailers

Course content (general overview)

- Asymptotic analysis of parallel algorithms
- Parallel data handling and message passing
- Parallel algorithm design techniques (e.g., divide and conquer)
- Parallel graph algorithms
- CUDA/GPU programming

Course Grade

Rubric

- Homework 20%
- Midterm 20%
- Paper presentation 15%
- Final project 45%
- The lowest homework grade will be dropped.
- Grades on group projects will be assigned individually
- Letter grades will be assigned relative to class performance.

Policies

- Late/missing assignments will not be graded
- Complete academic honesty is expected
 - No cheating
 - No plagiarism
- Cell phones must be off/silent during class
 - No texting, social media, etc.

O-notation

- $O(g(n)) = \{f(n) : \text{ there exist positive }$ constants c and n_0 such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0\}$
- g(n) is an asymptotic upper bound for f(n)
- If $f(n) \in O(g(n))$, we write f(n) = O(g(n))
 - Abuse of notation for convenience
 - Similarly for the other notations

Ω -notation

- $\Omega(g(n))=\{f(n):$ there exist positive constants c and n_0 such that $0\leq cg(n)\leq f(n)$ for all $n\leq n_0\}$
- ullet g(n) is an asymptotic lower bound for f(n)

Θ -notation

- $\Theta(g(n))=\{f(n):$ there exist positive constants $c_1,\,c_2,$ and n_0 such that $0\leq c_1g(n)\leq f(n)\leq c_2g(n)$ for all $n\leq n_0\}$
- g(n) is an asymptotically tight bound for f(n)
- Theorem: $f(n) = \Theta(g(n))$ if and only if f = O(g(n)) and $f = \Omega(g(n))$

- On right-hand side: O(g(n)) stands for some anonymous function in the set O(g(n))
- E.g.: $2n^2 + 3n + 1 = 2n^2 + \Theta(n)$

- On right-hand side: O(g(n)) stands for some anonymous function in the set O(g(n))
- E.g.: $2n^2 + 3n + 1 = 2n^2 + \Theta(n)$
 - Means $2n^2 + f(n)$, with $f(n) \in \Theta(n)$

- On right-hand side: O(g(n)) stands for some anonymous function in the set O(g(n))
- E.g.: $2n^2 + 3n + 1 = 2n^2 + \Theta(n)$
 - Means $2n^2 + f(n)$, with $f(n) \in \Theta(n)$
 - Here, f(n) = 3n + 1

- On right-hand side: O(g(n)) stands for some anonymous function in the set O(g(n))
- E.g.: $2n^2 + 3n + 1 = 2n^2 + \Theta(n)$
 - Means $2n^2 + f(n)$, with $f(n) \in \Theta(n)$
 - Here, f(n) = 3n + 1
 - But, f(n) = 4n + 5 or f(n) = 10000n + 1000, etc. are all equivalent from an asymptotic perspective

- On right-hand side: O(g(n)) stands for some anonymous function in the set O(g(n))
- E.g.: $2n^2 + 3n + 1 = 2n^2 + \Theta(n)$
 - Means $2n^2 + f(n)$, with $f(n) \in \Theta(n)$
 - Here, f(n) = 3n + 1
 - But, f(n) = 4n + 5 or f(n) = 10000n + 1000, etc. are all equivalent from an asymptotic perspective
- On left-hand side: there is a way to choose the corresponding anonymous functions on the right-hand side to make the equation valid
- Interpret $2n^2 + \Theta(n) = \Theta(n^2)$

- On right-hand side: O(g(n)) stands for some anonymous function in the set O(g(n))
- E.g.: $2n^2 + 3n + 1 = 2n^2 + \Theta(n)$
 - Means $2n^2 + f(n)$, with $f(n) \in \Theta(n)$
 - Here, f(n) = 3n + 1
 - But, f(n)=4n+5 or f(n)=10000n+1000, etc. are all equivalent from an asymptotic perspective
- On left-hand side: there is a way to choose the corresponding anonymous functions on the right-hand side to make the equation valid
- Interpret $2n^2 + \Theta(n) = \Theta(n^2)$
 - For all functions $f(n)\in\Theta(n)$, there exists a function $g(n)\in\Theta(n^2)$, such that $2n^2+f(n)=g(n)$

Important classes of algorithms

- Most algorithms you'll encounter in practice are either:
 - Constant time: $\Theta(1)$
 - Running time is independent of input size
 - Logarithmic time: $\Theta(\log(n))$
 - Running time is proportional to the number of bits needed to encode the input
 - Linear time: $\Theta(n)$
 - Running time is proportional to the input size
 - Log-linear time: $\Theta(n \log(n))$
 - \bullet How many times we execute an $\Theta(n)$ operation depends on the input size's number of bits
 - Polynomial time: $\Theta(n^p)$
 - Common cases: $\Theta(n)$, $\Theta(n^2)$ (quadratic), $\Theta(n^3)$ (cubic)
 - Running time is proportional to a number of subsets (e.g., pairs for quadratic, triples for cubic, etc.)
 - Exponential time: $\Theta(2^{n^p})$
 - Common case: $\Theta(2^n)$
 - Running time doubles every time the input size grows by one
 - Practical only for small inputs

Graph definition

- A graph G = (V, E) is defined by two sets:
 - A set of n vertices V (also called nodes)
 - ullet A set of m edges E (also called links)
- All the elements in both V and E are unique (i.e., no repeated values)
- Every edge $e=(u,v)\in E$ is a tuple (i.e., two *ordered* values), such that $u,v\in V$
 - In other words, each edge is defined by its starting and ending vertices
- In general, $m = O(n^2)$ (why?)

Graph terminology

A graph is undirected, if and only if

$$e = (u, v) \in E \Rightarrow (v, u) \in E$$

- In other words, in an undirected graph, if it is possible to go from u to v, then it is also possible to go from v to u.
- A graph is directed if the above condition does not hold
- The vertex v is a **neighbor** of the vertex u if and only if $(u,v) \in E$.
 - ullet For an undirected graph: if v is a neighbor of u, then u is also a neighbor of v.
- A **self-loop** is an edge where the starting and ending vertices are the same, i.e., e=(v,v)
- A **path** is a sequence of vertices $(v_1, v_2, ..., v_k)$, such that v_{i+1} is a neighbor of v_i .

Graph representations

- ullet There are two standard ways of representing graphs in a computer. For both, we assume that the vertices are indexed 1,...,n in an arbitrary manner
 - Adjacency list: Each vertex $v \in V$ has an associated array Adj_v that lists all of its neighbors (randomly or ordered by index)
 - Adjacency matrix: We define an adjacency matrix A, such that

$$a_{i,j} = \begin{cases} 1 & \text{if}(i,j) \in E \\ 0 & \text{otherwise}. \end{cases}$$

Graph representations

- Adjacency lists are usually better for **sparse** graphs (graphs where the number of edges is similar to the number of vertices, $m = \Theta(n)$)
- Adjacency matrices are sometimes more convenient for **dense** graphs, where $m = \Theta(n^2)$.
- More generally, though, some operations are easier on one representation than another. For example:
 - Determining if v is a neighbor of u takes $\Theta(1)$ for adjacency matrices, but $\Theta(n)$ for adjacency lists
 - Conversely, finding the number of neighbors of u takes $\Theta(1)$ for adjacency lists, but $\Theta(n)$ for adjacency matrices
- The best representation will depend on your problem

Undirected graph

Directed graph

	1	2	3	4	5	6
l	0	1	0	1	0	0
2	0	0	0	0	1	0
3	0	0	0	0	1	1
1	0	1	0	0	0	0
5	0	0	0	1	0	0
6	0	0	0	0	0	1
(c)						
(0)						