Основы глубинного обучения

Лекция 1

Введение в глубинное обучение

Евгений Соколов

esokolov@hse.ru

НИУ ВШЭ, 2023

Чем будем заниматься?

Dogs vs. Cats

Create an algorithm to distinguish dogs from cats

Kaggle · 213 teams · 7 years ago

Overview

Data

Notebooks Discussion Leaderboard

Rules

Overview

Description

Prizes

Evaluation

Winners

In this competition, you'll write an algorithm to classify whether images contain either a dog or a cat. This is easy for humans, dogs, and cats. Your computer will find it a bit more difficult.

Классическое компьютерное зрение

- 1. Считаем признаки (есть ли усы, какой формы уши, какой длины хвост, ...)
- 2. Обучаем на них градиентный бустинг

• Посчитать признаки — целая история

Современное компьютерное зрение

Классическое NLP

- 1. Подсчитываем статистику, как часто то или иное слово встречается после данного
- 2. Генерируем следующее слово из этого распределения

"Manure, almond gelato and frozen pies, you are also had it was in one but it will post office buildings s ucks). their chinese food. comfort food while they liked their lids ripped off. it an early morning of jon still a spade so maybe too much. the same. but, at the baked rigatoni, and not in other options and it see ms odd taste). our visit). i go to nfl kickoff arrived with \$. that's about when you come down hoyt street is actually higher than impressed with a regular theater! so at it, halfway through their pork and though i've"

Современное NLP

1. GPT-3 — нейронная сеть, обученная на огромном корпусе текстов

The article you are writing about is going to be based around this new technology, so you have been spending a lot of time playing around with it. You have also been using your own brain to test out the new models, which is something no one else in the world has done. As a result, you have become somewhat obsessed with it. You constantly think about how it can create such fantastic sentences and how it might be used to solve the world's problems.

Успехи в глубинном обучении

- Изображения и видео
- Трёхмерное компьютерное зрение
- Тексты
- Звук
- Генерация данных

Организационное

Про курс

- wiki: http://wiki.cs.hse.ru/Основы_глубинного_обучения
- https://t.me/hse iad 2023
- https://t.me/+rnVX7uhGa71kZTBi (очень плохо, не добавляйтесь)
- Домашние задания
- Проверочные работы
- Контрольная работа
- Письменный экзамен
- Автоматы решим позже

Про оценку

$$O_{\text{итоговая}} = 0.4 * Д3 + 0.1 * ПР + 0.2 * КР + 0.3 * Э$$

Примерный план курса

- Метод обратного распространения ошибки
- Полносвязные сети
- Свёрточные сети
- Методы оптимизации для глубинного обучения
- Работа с последовательностями

Полезные ссылки

- https://cs231n.github.io/convolutional-networks/
- https://stepik.org/course/50352/promo

Зачем нужны нейронные сети?

Предсказание стоимости квартиры

• Линейная модель:

$$a(x) = w_0 + w_1 * (площадь) + w_2 * (этаж) + w_3 * (расстояние до метро) + ···$$

• Вряд ли признаки не связаны между собой

Предсказание стоимости квартиры

• Линейная модель с полиномиальными признаками:

$$a(x) = w_0 + w_1 * (площадь) + w_2 * (этаж)$$
 $+w_3 * (расстояние до метро) + w_4 * (площадь)^2$
 $+w_5 * (этаж)^2 + w_6 * (расстояние до метро)^2$
 $+w_7 * (площадь) * (этаж) + \cdots$

- Может быть сложно интерпретировать модель
- Что такое (расстояние до метро) * (этаж)²?

Градиентный бустинг

$$a_N(x) = \sum_{n=1}^N b_n(x)$$

• Обучение N-й модели:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, a_{N-1}(x_i) + b_N(x_i)) \to \min_{b_N(x)}$$

Градиентный бустинг

• Обучение *N*-й модели:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_N(x_i) - s_i^{(N)} \right)^2 \to \min_{b_N(x)}$$

$$\left. s_i^{(N)} = -rac{\partial}{\partial z} L(y_i,z)
ight|_{z=a_{N-1}(x_i)}$$
— сдвиги

Кратко о предыдущем курсе

- Линейные модели обучаются градиентным спуском, но плохо подходят для поиска сложных закономерностей
- Решающие деревья и их композиции дают отличные результаты, но обучать их трудно

Нейрон

Нейрон

- x⁽⁰⁾ признаки объекта
- $h_1(x)$ преобразование («слой»)
- $x^{(1)}$ результат

Полносвязные слои

- На входе n чисел, на выходе m чисел
- *x*₁, ..., *x*_n входы
- $z_1, ..., z_m$ выходы
- Каждый выход линейная модель над входами

$$z_j = \sum_{i=1}^n w_{ji} x_i + b_j$$

hidden layer 1 hidden layer 2

$$z_j = \sum_{i=1}^n w_{ji} x_i + b_j$$

- m линейных моделей, в каждой (n+1) параметров
- Всего примерно mn параметров в полносвязном слое

$$z_j = \sum_{i=1}^n w_{ji} x_i + b_j$$

- m линейных моделей, в каждой (n+1) параметров
- Всего примерно mn параметров в полносвязном слое
- Это очень много: если у нас 1.000.000 входных признаков и 1000 выходов, то это 1.000.000.000 параметров
- Надо много данных для обучения

Важный вопрос в DL

Как объединить слои в мощную модель?

• Рассмотрим два полносвязных слоя

• Рассмотрим два полносвязных слоя

$$S_k = \sum_{j=1}^m v_{kj} z_j + c_k = \sum_{j=1}^m v_{kj} \sum_{i=1}^n w_{ji} x_i + \sum_{j=1}^m v_{kj} b_j + c_k =$$

$$= \sum_{j=1}^m \left(\sum_{i=1}^n v_{kj} w_{ji} x_i + v_{kj} b_j + \frac{1}{m} c_k \right)$$

• То есть это ничем не лучше одного полносвязного слоя

• Нужно добавлять нелинейную функцию после полносвязного слоя

$$z_j = f\left(\sum_{i=1}^n w_{ji}x_i + b_j\right)$$

$$z_j = f\left(\sum_{i=1}^n w_{ji} x_i + b_j\right)$$

Вариант 1: $f(x) = \frac{1}{1 + \exp(-x)}$

(сигмоида)

$$z_j = f\left(\sum_{i=1}^n w_{ji} x_i + b_j\right)$$

Вариант 2: $f(x) = \max(0, x)$

(ReLU, REctified Linear Unit)

Rectified linear unit (ReLU) ^[9]		$egin{cases} 0 & ext{if } x \leq 0 \ x & ext{if } x > 0 \ = & ext{max}\{0,x\} = x 1_{x > 0} \end{cases}$
Gaussian Error Linear Unit (GELU) ^[4]	3 2 4 1 1 2 3	$rac{1}{2}x\left(1+ ext{erf}\left(rac{x}{\sqrt{2}} ight) ight) \ =x\Phi(x)$
Softplus ^[10]		$\ln(1+e^x)$
Exponential linear unit (ELU) ^[11]		$\left\{egin{array}{ll} lpha \left(e^x-1 ight) & ext{if } x \leq 0 \ x & ext{if } x>0 \ \end{array} ight.$ with parameter $lpha$
Scaled exponential linear unit (SELU) ^[12]		$\lambdaigg\{egin{array}{ll} lpha(e^x-1) & ext{if } x<0 \ x & ext{if } x\geq0 \ \end{array}$ with parameters $\lambda=1.0507$ and $lpha=1.67326$
Leaky rectified linear unit (Leaky ReLU) ^[13]		$\left\{egin{array}{ll} 0.01x & ext{if } x < 0 \ x & ext{if } x \geq 0 \end{array} ight.$
Parameteric rectified linear unit (PReLU) ^[14]		$\left\{egin{array}{ll} lpha x & ext{if } x < 0 \ x & ext{if } x \geq 0 \ \end{array} ight.$ with parameter $lpha$
Sigmoid linear unit (SiLU, ^[4] Sigmoid shrinkage, ^[15] SiL, ^[16] or Swish-1 ^[17])		$\frac{x}{1+e^{-x}}$

Типичная полносвязная сеть

Типичная полносвязная сеть

- На входе признаки
- В последнем слое выходов столько, сколько целевых переменных мы предсказываем

Теорема Цыбенко

Вольное изложение:

- Пусть g(x) непрерывная функция
- Тогда можно построить двуслойную нейронную сеть, приближающую g(x) с любой заранее заданной точностью

То есть двуслойные нейронные сети ОЧЕНЬ мощные!

Теорема Цыбенко

Вольное изложение:

- Пусть g(x) непрерывная функция
- Тогда можно построить двуслойную нейронную сеть, приближающую g(x) с любой заранее заданной точностью

То есть двуслойные нейронные сети ОЧЕНЬ мощные! Но очень много параметров и очень сложно обучать