苏州大学 数学模型与数学软件 试卷 (2013.5) 共 6 题

 院系 _______
 年级 _______
 专业 ______

 学号 ______
 姓名 ______
 成绩 ______

1. (15 分)配件厂为装配线生产若干种产品,轮换产品时因更换设备要付生产准备费,产量大于需求时要付贮存费。该厂生产能力非常大,所需产品可在很短时间内产出。 已知某产品日需求量 100 件,生产准备费 5000 元,贮存费每日每件 1元,允许缺货,每天每件产品缺货损失费为 1/3元,但缺货数量需在下次生产时补足。试安排该产品的生产计划,即多少天生产一次(生产周期) ,每次产量多少,使总费用最小(给出详细分析过程)。

产品每天的需求量为常数 r; 每次生产准备费为 C1,每天每件产品 贮存费为 C2;每天每件产品缺货损失费为 C3元;T天生产一次(周期),每次生产 Q件,一启动生产,则 Q件产品立即到来(生产时间不计);为方便起见,时间和产量都作为连续量处理。

(首先生产 Q 件 ,T1 天后缺货 , Q=r*T1, 以后每 T 天后生产 Q '=rT 件)

$$C' = C_{1} + \frac{1}{2}C_{2} \cdot Q \cdot T_{1} + \frac{1}{2}C_{3} \cdot r (T - T_{1})^{2}$$

$$C(T,Q) = \frac{C_{1}}{T} + \frac{C_{2}Q^{2}}{2rT} + \frac{C_{3}(rT - Q)^{2}}{2rT}$$

$$T = \sqrt{\frac{2C_{1}}{rC_{2}} \cdot \frac{C_{2} + C_{3}}{C_{3}}}, \dots Q = \sqrt{\frac{2C_{1}r}{C_{2}} \cdot \frac{C_{3}}{C_{2} + C_{3}}}$$

$$T = \sqrt{\frac{2 \times 5000}{100} \cdot \frac{1 + 1/3}{1/3}} = 20, Q = \sqrt{\frac{2 \times 5000 \times 100}{1} \cdot \frac{1/3}{1 + 1/3}} = 500$$

$$Q' = rT = 2000$$

1

2. (20 分) 截断正态分布是一种常见的分布。与普通正态分布不同的是,服从截断正态分布的随机变量的取值范围不是 $(-\infty, +\infty)$. 假定某实际问题需要从取值区间为 $(c, +\infty)$, 均值为 0, 方差为 1 的截断正态分布总体中进行随机抽样(对于总体分布为 $(c, +\infty)$ 上均值为 0, 方差为 1 的截断 正 态 分 布 的 随 机 变 量 X , 其 概 率 密 度 函 数 可 表 示 成 f(x)=k $\frac{1}{\sqrt{2\pi}}e^{\frac{1}{2}x^2}I(x>c)$, 其中 $I(x>c)=\begin{cases} 1, & x>c \\ 0, & x\leq c \end{cases}$ 是指示函数,而 k是一

个比例常数). 考虑采用如下的拒绝法进行随机抽样:

- (a). 当 c < 0 时,直接从均值为 0,方差为 1 的标准正态分布总体中进行抽样,得到的每个样本与 c 进行比较,若大于 c 则被接受,否则就被剔除掉,不作为最后的抽样样本。
- (b). 当 c ≥ 0 时,为了达到更高的效率,往往需要借助于指数分布来进行抽样。令 $\lambda = c + \sqrt{c^2 + 4}$ / 2,然后从参数为 λ 的指数分布总体中进行抽样,得到的样本记作 z,计算 $u = \frac{\sqrt{2\pi} \ \phi(z+c) e^{i\lambda}}{e^{i(x^2-i\lambda)i}}$,其中 $\phi(x)$ 为标准正态分布的概率密度函数在 x 点处的取值。 若 u ≤ 1 则 z + c 被接受作为样本,否则就被剔除掉,不作为最后的抽样样本。

利用 Matlab 命令实现上述拒绝法抽样思想。 下面为 Matlab 命令提示。 normrnd(mu,sigma,N,1)--从均值为 mu,标准差为 sigma的正态分布中 随机抽 N 个样本

exprnd(lambda,N,1)--从参数为 lambda的指数分布中随机抽 N 个样本 normpdf(x)--标准正态分布的概率密度函数在 x 点处的取值

function z=trunNormal(mu,sigma,c,N)

if(c<0)

R = normrnd(mu,sigma,N,1);

$$z=R(R>c);$$

else

lambda=(c+sqrt(c*c+4))/2;

R=exprnd(lambda,N,1);

temp=normpdf(R+c);

temp=sqrt(2*pi).*temp.*exp(lambda.*(temp))/exp((lambda^2-4*lambda*c)/2);

z=R(temp<1)+c;

end

hist(z,100);

3. (15分) 试证明:辛普森公式的代数精度为 3.

$$S_{1} = \frac{b^{-} a}{6} (f_{0} + 4f_{1} + f_{2})$$

$$k = 1, f(x) = x, I = \frac{b^{2} - a^{2}}{2}, S_{1} = \frac{b^{-} a}{6} (a^{2} + 4\frac{a^{+} b}{2} + b) = I$$

$$k = 2, f(x) = x^{2}, I = \frac{b^{3} - a^{3}}{3}, S_{1} = \frac{b^{-} a}{6} (a^{2} + 4\left(\frac{a^{+} b}{2}\right)^{2} + b^{2}) = I$$

$$k = 3, f(x) = x^{3}, I = \frac{b^{4} - a^{4}}{4}, S_{1} = \frac{b^{-} a}{6} (a^{3} + 4\left(\frac{a^{+} b}{2}\right)^{3} + b^{3}) = I$$

$$k = 4, f(x) = x^{4}, I = \frac{b^{5} - a^{5}}{5} = \frac{b^{5}}{5} (a = 0), S_{1} = \frac{b}{6} \left(4\left(\frac{b}{2}\right)^{4} + b^{4}\right) \neq I$$

4. (15 分) 下表是中国 1950~2010的人口统计数据,用误差为 $O(h^2)$ 的数值微分方法计算中国人口的年增长率(列出计算公式,并计算出各数值填入下表或用 Matlab 编写程序计算这些数值)

年份	总人口	年增长率
	(单位:万人)	r (%)
1950	55196	2.5482
1955	61465	1.7914
1960	66207	1.6725
1965	72538	2.3140
1970	82992	2.3957
1975	92420	1.7002
1980	98705	1.3607
1985	105851	1.4764
1990	114333	1.3356
1995	121121	1.0246
2000	126743	0.7602
2005	130756	0.5620
2010	134091	0.4469

$$r_{i} = \frac{x_{i+1} - x_{i-1}}{10x_{i}}, i = 2, 3, \dots, 9$$

$$r_{1} = \frac{-3x_{1} + 4x_{2} - x_{3}}{10x_{1}}, r_{10} = \frac{x_{8} - 4x_{9} + 3x_{10}}{10x_{10}}$$

h=5;

x=[55196 61465 66207 72538 82992 92420 98705 105851 114333 121121 126743 130756 134091];

x_len=length(x);

r=zeros(x_len,1);

r(1)=(-3*x(1)+4*x(2)-x(3))/(2*h*x(1));

for(i=2:x_len-1)

r(i)=(x(i+1)-x(i-1))/(2*h*x(i));

end

 $r(x_{en})=(x(x_{en}-2)-4*x(x_{en}-1)+3*x(x_{en}))/(2*h*x(x_{en}));$ 100*r 5. (20分) 分别已知方程组 **Ax** = **b**, 其中 **A** ∈ ℝ^{20×20}, 定义为

$$A = \begin{bmatrix} 3 & -1/2 & -1/4 \\ -1/2 & 3 & -1/2 & -1/4 \\ -1/4 & -1/2 & 3 & -1/2 & \ddots \\ & \ddots & \ddots & \ddots & \ddots & -1/4 \\ & & -1/4 & -1/2 & 3 & -1/2 \\ & & & -1/4 & -1/2 & 3 \end{bmatrix}$$

- (1) 用雅可比迭代法和高斯 -塞德尔迭代法求解此方程组时 , 是否收敛?为什么?收敛。因为 A 是严格对角占优矩阵。
- (2) 下面的 Matlab 程序,对取定的右端向量 **b** 和初值向量 $\mathbf{x}^{(0)}$,用雅可比迭代法 求解此方程组,要求迭代误差满足 $||\mathbf{x}^{(k+1)} \mathbf{x}^{(k)}||_{\infty} < 10^{-5}$ 。试补充完整。

```
n = 20; eps = 1e-5;
A1 = sparse(1:n,1:n,3,n,n);
A2 = sparse(1:n-1,2:n,-1/2,n,n);
                     A3=sparse(1:n-2,3:n,-1/4,n,n);
A = A1 + A2 + A3 + A2' + A3';
D = diag(diag(A));
L = -tril(A,-1);
                    U= -triu(A,1);
x0 = zeros(n,1);
b = ones(n,1);
                    B=D\(L+U);
f = D b;
xk = x0;
xk1 = B*xk +f;
                   norm(xk1-xk,inf) >= 1.0e-5
while ____
  xk = xk1;
  xk1 = B*xk + f
```

end

 $6.(15\, f)$ 已知方程 $\sqrt{x}e^{x} - 2 = 0$ 在区间 [0.5, 1] 内仅有一个根。现以 0.5 为初值,分别采用 $x_{k+1} = 2\sqrt{x_k}e^{-x_k}$ 和 $x_{k+1} = x_k - \frac{2x_k - 4\sqrt{x_k}e^{-x_k}}{1 + 2x_k}$ 两种迭代方法进行数值求解,试分析这两种方法的效果。

设 x^* 为方程 $\sqrt{x}e^x - 2 = 0$ 在区间 [0.5, 1]内的根。

$$\frac{\varphi_1(x)}{2\sqrt{x}e^{-x}}$$
, 可知 $\frac{\varphi_1'(x)}{\sqrt{x}}e^{-x} - 2\sqrt{x}e^{-x} = \frac{1-2x}{\sqrt{x}e^{x}}$, $\frac{\varphi_1'(x^*)}{\sqrt{x}e^{x}}$, 由 $\frac{\varphi_1(x)}{\sqrt{x}e^{x}}$

的迭代公式 $x_{k+} = e^{-x_k}$ 所形成的 $\{x_k\}$ 为 1 阶收敛

而由牛顿切线法构造的迭代公式 $x_{k+} = x_k - \frac{2x_k - 4\sqrt{x_k}e^{-x_k}}{1 + 2x_k}$ 所形成的 $\{x_k\}$ 为 2 阶收敛。

因此,由迭代公式 $x_k = x_k - \frac{2x_k - 4\sqrt{x_k}e^{-x_k}}{1 + 2x_k}$ 所形成的 $\{x_k\}$ 效果较好。