	Date
Desiration of Normal equi	ation
let us assume that examples in own data	we have n training set.
And let $Y = \begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix}$	and X = [84.72 Xm]
and weights are	2 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Enor =	
Let ei denote the i^{th} entry of the Enor metrix. and we want to minimize $e_i^2 + e_2^2 e_n^2$.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\frac{90}{9\Gamma} = 0 - \lambda_1 x - x$	(, A - (X, XA + (B, X, X),) = 0
$= \lambda X X O - \lambda X T Y = O$	
$x^{T}X \theta = x^{T}Y$ $\theta = (x^{T}X)^{-1}(x^{T}Y)$	
This is the expression of the normal equation for linear regression	