Normal, Cohen-Macaulay and regular schemes

此果是勇者辛姜尔,他一定会这么做的!

Normal, Cohen-Macaulay and regular schemes

1 Height, Depth and Dimension Yang: To be completed

Krull dimension and height of prime ideals Algebraically, we have the following definitions.

Definition 1. Let A be a noetherian ring. The *height of a prime ideal* \mathfrak{p} in A is defined as the maximum length of chains of prime ideals contained in \mathfrak{p} , that is,

$$\operatorname{ht}(\mathfrak{p}) := \sup\{n \mid \exists \text{ a chain of prime ideals } \mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \cdots \subsetneq \mathfrak{p}_n = \mathfrak{p}\}.$$

The $Krull\ dimension$ of A is defined as

$$\dim A := \max_{\mathfrak{p} \in \operatorname{Spec} A} \operatorname{ht}(\mathfrak{p}).$$

Geometrically, we have the corresponding definition.

Definition 2. Let X be a noetherian scheme. The *codimension of an irreducible subscheme* Y in X is defined as the length of the longest chain of irreducible closed subsets containing Y, that is,

$$\operatorname{codim}_X(Y) := \sup\{n \mid \exists \text{ a chain of irreducible closed subsets } Y = Y_0 \subsetneq Y_1 \subsetneq \cdots \subsetneq Y_n\}.$$

The dimension of X is defined as

$$\dim X := \max_{\xi \in X} \operatorname{codim}_X Z_{\xi}.$$

For an affine scheme $X = \operatorname{Spec} A$, above two definitions coincide by the correspondence of prime ideals and irreducible closed subsets.

Proposition 3. Let A be a noetherian ring and $\mathfrak{p} \in \operatorname{Spec} A$. Then

$$\operatorname{ht}(\mathfrak{p}) = \operatorname{codim}_{\operatorname{Spec} A} V(\mathfrak{p}) = \dim A_{\mathfrak{p}}.$$

Lemma 4. Let $A \subset B$ be noetherian rings such that B is finite over A. Then the induced morphism Spec $B \to \operatorname{Spec} A$ is surjective.

Proof. For $\mathfrak{p} \in \operatorname{Spec} A$, let $S := A - \mathfrak{p}$ and denote $S^{-1}B$ by $B_{\mathfrak{p}}$. Then we have $A_{\mathfrak{p}} \hookrightarrow B_{\mathfrak{p}}$ and $B_{\mathfrak{p}}$ is finite over $A_{\mathfrak{p}}$. Let $\mathfrak{P}B_{\mathfrak{p}}$ be a maximal ideal of $B_{\mathfrak{p}}$. We claim that $\mathfrak{P}B_{\mathfrak{p}} \cap A_{\mathfrak{p}}$ is maximal. Indeed, consider $A_{\mathfrak{p}}/(\mathfrak{P} \cap A_{\mathfrak{p}}) \hookrightarrow B_{\mathfrak{p}}/\mathfrak{P}B_{\mathfrak{p}}$, the latter is finite over the former. This enforces $A_{\mathfrak{p}}/(\mathfrak{P}B_{\mathfrak{p}} \cap A_{\mathfrak{p}})$ be a field. Hence $\mathfrak{P}B_{\mathfrak{p}} \cap A_{\mathfrak{p}} = \mathfrak{p}A_{\mathfrak{p}}$, and then $\mathfrak{P} \cap A = \mathfrak{p}$.

Proposition 5. Let $A \subset B$ be noetherian rings such that B is finite over A. Then dim $A = \dim B$.

Proof. If we have a sequence $\mathfrak{P}_1 \subseteq \mathfrak{P}_2$ of prime ideals in B, then there exists $f \in \mathfrak{P}_2 \setminus \mathfrak{P}_1$. Since B is finite over A, there exist $a_1, \dots, a_n \in A$ such that

$$f^n + a_1 f^{n-1} + \dots + a_n = 0.$$

Then $a_n \in \mathfrak{P}_2 \cap A$. If $a_n \in \mathfrak{P}_1$, $f^{n-1} + \cdots + a_{n_1} \in \mathfrak{P}_1$ since $f \notin \mathfrak{P}_1$. Then $a_{n-1} \in \mathfrak{P}_2$. Repeat the process, it will terminate, whence $\mathfrak{P}_1 \cap A \subsetneq \mathfrak{P}_2 \cap A$. Otherwise, we have $f^n \in a_1B + \cdots + a_nB \subset \mathfrak{P}_1$.

Conversely, suppose we have $\mathfrak{p}_1, \mathfrak{p}_2 \in \operatorname{Spec} A$ with $\mathfrak{p}_1 \subsetneq \mathfrak{p}_2$. Choose $\mathfrak{P}_1 \in \operatorname{Spec} B$ such that $\mathfrak{P}_1 \cap A = \mathfrak{p}_1$, then we have $A/\mathfrak{p}_1 \subset B/\mathfrak{P}_1$. Let \mathfrak{P}_2 be the preimage of the prime ideal in B/\mathfrak{P}_1 which is over image of \mathfrak{p}_2 in A/\mathfrak{p}_1 . Proposition 4 guarantees that such \mathfrak{P}_2 exists. Then we get $\mathfrak{P}_1 \subsetneq \mathfrak{P}_2$. Repeat this progress, we get $\dim B \geq \dim A$.

Theorem 6 (Krull's Principal Ideal Theorem). Let A be a noetherian ring. Suppose $f \in A$ is not a unit. Let \mathfrak{p} be a minimal prime ideal among those containing f. Then $\operatorname{ht}(\mathfrak{p}) \leq 1$.

Proof. By replacing A by $A_{\mathfrak{p}}$, we may assume A is local with maximal ideal \mathfrak{p} . Note that A/(f) is artinian since it has only one prime ideal $\mathfrak{p}/(f)$.

Let $\mathfrak{q} \subseteq \mathfrak{p}$. Consider the sequence $\mathfrak{q}^{(1)} \supset \mathfrak{q}^{(2)} \supset \cdots$, its image in A/(f) is stationary. Then there exists $n \in \mathbb{Z}_{\geq 0}$ such that $\mathfrak{q}^{(n)} + (f) = \mathfrak{q}^{(n+1)} + (f)$. For $x \in \mathfrak{q}^{(n)}$, we may write x = y + af for $y \in \mathfrak{q}^{(n+1)}$. Then $af \in \mathfrak{q}^{(n)}$. Since $\mathfrak{q}^{(n)}$ is

 \mathfrak{q} -primary and $f \notin \mathfrak{q}$, $a \in \mathfrak{q}^{(n)}$. Then we get $\mathfrak{q}^{(n)} = \mathfrak{q}^{(n+1)} + f\mathfrak{q}^{(n)}$. That is, $\mathfrak{q}^{(n)}/\mathfrak{q}^{(n+1)} = f\mathfrak{q}^{(n)}/\mathfrak{q}^{(n+1)}$. Note that $f \in \mathfrak{p}$, by Nakayama's Lemma, $\mathfrak{q}^{(n)} = \mathfrak{q}^{(n+1)}$. That is, $\mathfrak{q}^n A_{\mathfrak{q}} = \mathfrak{q}^{n+1} A_{\mathfrak{q}}$. By Nakayama's Lemma again, $\mathfrak{q}^n A_{\mathfrak{q}} = 0$. It follows that $\mathfrak{q} A_{\mathfrak{q}}$ is minimal, whence $A_{\mathfrak{q}}$ is artinian. Therefore, \mathfrak{q} is minimal in A.

Corollary 7. Let A be a noetherian local ring. Suppose $f \in A$ is not a unit. Then $\dim A/(f) \ge \dim A - 1$. If f is not contained in a minimal prime ideal, the equality holds.

Proof. Let $\mathfrak{p}_0 \subsetneq \cdots \subsetneq \mathfrak{p}_n$ be a sequence of prime ideals. By assumption, $f \in \mathfrak{p}_n$. If $f \in \mathfrak{p}_0$, we get a sequence of prime ideals in A/(f) of length n. Now we suppose $f \notin \mathfrak{p}_0$. Then there exists $k \geq 0$ such that $f \in \mathfrak{p}_{k+1} \setminus \mathfrak{p}_k$.

Choose \mathfrak{q} be a minimal prime ideal among those containing (\mathfrak{p}_{k-1}, f) and contained in \mathfrak{p}_{k+1} . Then by Krull's Principal Ideal Theorem 6, $\mathfrak{q}_k \subsetneq \mathfrak{p}_{k+1}$. Replace \mathfrak{p}_k by \mathfrak{q}_k , we have $f \in \mathfrak{q}_k \setminus \mathfrak{p}_{k-1}$

Repeat this process, we get a sequence $\mathfrak{p}'_0 \subsetneq \cdots \subsetneq \mathfrak{p}'_n$ such that $f \in \mathfrak{p}'_1$. This gives a sequence $\mathfrak{p}'_1 \subsetneq \cdots \subsetneq \mathfrak{p}'_n$ in A/(f). Hence we get $\dim A/(f) \geq \dim A - 1$.

Since f is not contained in minimal prime ideal, preimage of a minimal prime ideal in A/(f) has height 1. Hence a sequence of prime ideals in A/fA can be extended by a minimal prime ideal in A. It follows that $\dim A/(f) + 1 \le \dim A$.

For varieties, the Krull dimension behaves well by follows.

Lemma 8. Let X be an algebraic variety over k. Then for every closed point $x \in X(\mathbf{k})$, we have

$$\dim X = \dim \mathcal{O}_{X,x} = \operatorname{trdeg}(\mathscr{K}(X)/\mathsf{k}).$$

Proof. Since X is irreducible, we may assume that $X = \operatorname{Spec} A$ is affine. Let $d = \operatorname{trdeg}(\mathcal{K}(X)/\mathsf{k})$.

By Noether's Normalization Lemma \ref{Model} , there is an injective and finite homomorphism $A_0 = \mathsf{k}[T_1, \cdots, T_d] \hookrightarrow A$. Let \mathfrak{M} be the corresponding maximal ideal of x in A and $\mathfrak{m} = \mathfrak{M} \cap \mathsf{k}[T_1, \cdots, T_d]$. Denote the image of T_i in $I := A_0/\mathfrak{m}$ by t_i . The extension I/k is finite by Nullstellensatz \ref{Model} ?? Let $f_i \in \mathsf{k}[T]$ be the minimal polynomial of t_i and $g_i := f_i(T_i) \in A_0$. Then $g_i \in \mathfrak{m}$ and $\mathfrak{m} = g_1A_0 + \cdots, g_dA_0$. In particular, $g_1, \cdots, g_d \in \mathfrak{M}$.

We have $A/g_1A + \cdots + g_dA$ is finite over A_0/\mathfrak{m} , whence it is artinian. This implies that $A_{\mathfrak{M}}/g_1A_{\mathfrak{M}} + \cdots + g_dA_{\mathfrak{M}}$ is also artinian. Since g_{k+1} is not a zero divisor in $A_0/g_1A_0 + \cdots + g_kA_0$, g_{k+1} is not contained in any minimal prime ideal of $A_0/g_1A_0 + \cdots + g_kA_0$. Then g_{k+1} is also not contained in any minimal prime ideal of $A/g_1A_0 + \cdots + g_kA_0$. By Corollary 7, dim $A_{\mathfrak{M}} = \dim(A_{\mathfrak{M}}/g_1A_{\mathfrak{M}} + \cdots + g_dA_{\mathfrak{M}}) + d = d$.

Theorem 9. Let S be spectrum of a field k or an algebraic integer ring \mathcal{O}_K and X an integral S-variety. Then we have the follows:

- (i) For every point $\xi \in X$, dim $X = \dim \mathcal{O}_{X,\xi} + \operatorname{codim} Z_{\xi}$.
- (ii) For every non-empty open subset $U \subset X$, dim $U = \dim X$.
- (iii) $\dim X = \operatorname{trdeg}(\mathcal{K}(X)/\mathcal{K}(S)) + \dim S$.

Proof. Yang: To be continued.

Example 10. For general noetherian schemes, Theorem 9 may not hold. Let $A = \mathsf{k}[t]$, $\mathfrak{m} = (t)$, $B = A_{\mathfrak{m}}[x]$ and $X = \operatorname{Spec} B$. Then we have $\dim X = 2$ since Yang: To be added.

Depth For a noetherian local ring (A, \mathfrak{m}) , we can define the depth of an A-module M. Somehow the Krull dimension is "homological" and the depth is "cohomological".

Definition 11. Let A be a noetherian ring, $I \subset A$ an ideal and M a finitely generated A-module. A sequence $t_1, \dots, t_n \in \mathfrak{m}$ is called an M-regular sequence in I if t_i is not a zero divisor on $M/(t_1, \dots, t_{i-1})M$ for all i.

Example 12. Let $A = k[x, y]/(x^2, xy)$ and I = (x, y). Then depth_I A = 0.

Definition 13. The I-depth of M is defined as the maximum length of M-regular sequences in I, denoted by depth M. When A is a local ring with maximal ideal \mathfrak{m} , we write depth M for depth M.

Regular and Serre's conditions Up to now, there are three numbers measuring the "size" of a local ring (A, \mathfrak{m}) :

• $\dim A$: the Krull dimension of A.

- depth A: the depth of A.
- $\dim_{\kappa(\mathfrak{m})} T_{A,\mathfrak{m}}$: the dimension of Zariski tangent space $T_{A,\mathfrak{m}} := (\mathfrak{m}/\mathfrak{m}^2)^{\vee}$ as a $\kappa(\mathfrak{m})$ -vector space.

These three numbers are related by the following inequalities.

Proposition 14. Let (A, \mathfrak{m}) be a local noetherian ring with residue field k. Then the following inequalities hold:

$$\operatorname{depth} A \leq \dim_{\mathsf{k}} T_{A,\mathfrak{m}}.$$

Proof. The first inequality is a direct corollary of Corollary 7.

Let t_1, \dots, t_n be a $\kappa(\mathfrak{m})$ -basis of $\mathfrak{m}/\mathfrak{m}^2$. Then we have $\mathfrak{m}/(t_1, \dots, t_n) + \mathfrak{m}^2 = 0$, whence $\mathfrak{m}/(t_1, \dots, t_n) = \mathfrak{m}(\mathfrak{m}/(t_1, \dots, t_n))$. It follows that $\mathfrak{m} = (t_1, \dots, t_n)$ by Nakayama's Lemma. By Corollary 7,

$$n + \dim A/(t_1, \dots, t_n) \ge n - 1 + \dim A/(t_1, \dots, t_{n-1}) \ge \dots \ge 1 + \dim A/(t_1) \ge \dim A.$$

We conclude the result.

Definition 15. Let X be a locally noetherian scheme and $k \in \mathbb{Z}_{\geq 0}$. We say that X verifies property (R_k) or is regular in codimension k if $\forall \xi \in X$ with codim $Z_{\xi} \leq k$,

$$\dim_{\kappa(\xi)} T_{X,\xi} = \dim \mathcal{O}_{X,\xi}.$$

We say that X verifies property (S_k) if $\forall \xi \in X$ with depth $\mathcal{O}_{X,\xi} < k$,

$$\operatorname{depth} \mathcal{O}_{X,\xi} = \dim \mathcal{O}_{X,\xi}.$$

Lemma 16. Let A be a ring and $\mathfrak{a} \subset \bigcup_i \mathfrak{p}_i$. Then $\mathfrak{a} \subset \mathfrak{p}_i$ for some i.

Proof. Yang: To be completed.

Example 17. Let A be a noetherian ring. Then A verifies (S_1) iff A has no embedded point.

Suppose A verifies (S_1) . If $\mathfrak{p} \in AssA$, every element in \mathfrak{p} is a zero divisor. Then depth $A_{\mathfrak{p}} = 0$. It follows that $\dim A_{\mathfrak{p}} = 0$ and then \mathfrak{p} is minimal.

Suppose A has no embedded point. Let $\mathfrak{p} \in \operatorname{Spec} A$ with depth $A_{\mathfrak{p}} = 0$. This means every element in $\mathfrak{p}A_{\mathfrak{p}}$ is a zero divisor. Then

$$\mathfrak{p} \subset \{\text{zero divisors in } A\} = \bigcup_{\text{minimal prime ideals}} \mathfrak{q}.$$

By Lemma 16, $\mathfrak{p} = \mathfrak{q}$ for some minimal \mathfrak{q} , whence dim $A_{\mathfrak{p}} = 0$.

Example 18. Let A be a noetherian ring verifies (S_1) . Then A verifies (S_2) iff for any nonzero divisor $f \in A$, $\operatorname{Ass}_A A/fA$ has no embedded point.

Suppose A verifies (S_2) . Let $f \in A$ be a nonzero divisor and $\mathfrak{p} \in \mathrm{Ass}_A A/fA$. There exist $g \in A \setminus fA$ such that $\mathfrak{p} = (f : g)$. For any $t_1, t_2 \in \mathfrak{p}$, there exist s_1, s_2 with $s_i \notin (t_i)$ and $t_i g = f s_i$. Then $t_1 t_2 g = f s_1 t_2 = f s_2 t_1$. Since f is not a zero divisor, $s_1 t_2 = s_2 t_1$. Then t_2 is a zero divisor in $A_{\mathfrak{p}}/t_1 A_{\mathfrak{p}}$ since $s_1 \notin (t_1)$. Since $f \in \mathfrak{p}$, depth $A_{\mathfrak{p}} = 1$ and then ht $\mathfrak{p} = 1$. This show that \mathfrak{p} is not embedded in $\mathrm{Ass}_A A/fA$.

Conversely, suppose $\operatorname{Ass}_A A/fA$ has no embedded point. Let $\mathfrak{p} \in \operatorname{Spec} A$ with depth $A_{\mathfrak{p}} = 1$. Then there exists $f \in A_{\mathfrak{p}}$ which is not a zero divisor. We have depth $A_{\mathfrak{p}}/fA_{\mathfrak{p}} = 0$ and $\operatorname{Ass}_A A/fA$ has no embedded point, whence \mathfrak{p} is minimal in A/fA. Then ht $\mathfrak{p} = 1$ by Krull's Principal Ideal Theorem 6 and the fact f is not a zero divisor.

Example 19. Let X be a locally noetherian scheme. Then X is reduced iff it verifies (R_0) and (S_1) .

The properties are local, whence we can assume $X = \operatorname{Spec} A$. Suppose A is reduced. Let $\mathfrak{p}_1, \dots, \mathfrak{p}_n$ be all minimal prime ideals of A. We have $\bigcap \mathfrak{p}_i = \mathfrak{N} = (0)$, where \mathfrak{N} is the nilradical of A. Hence A has no embedded point. Since $A_{\mathfrak{p}}$ is artinian, local and reduced, $A_{\mathfrak{p}}$ is a field and hence regular.

Conversely, let Ass A be equal to $\{\mathfrak{p}_1, \dots, \mathfrak{p}_n\}$. Then every \mathfrak{p}_i is minimal by (S_1) . Let f be in \mathfrak{N} . Then the image of f in $A_{\mathfrak{p}_i}$ is 0 since by (R_0) , $A_{\mathfrak{p}_i}$ is a field. It follows that $f \in \mathfrak{q}_i$, where \mathfrak{q}_i is the \mathfrak{p}_i component of (0) in A. Hence $f \in \bigcap \mathfrak{q}_i = (0)$. That is, A is reduced.

2 Normal schemes Yang: To be completed

Definition 20. An integral domain A is called *normal* if it is integrally closed in its field of fractions Frac(A).

Lemma 21. Let $A \subset C$ be rings and B the integral closure of A in C, S a multiplicatively closed subset of A. Then the integral closure of $S^{-1}A$ in $S^{-1}C$ is $S^{-1}B$.

4

Proof. For every $b \in B$ and $\forall s \in S$, there exists $a_i \in A$ s.t.

$$b^n + a_1 b^{n-1} + \dots + a_n = 0.$$

Then

$$\left(\frac{b}{s}\right)^n + \frac{a_1}{s^1} \left(\frac{b}{s}\right)^{n-1} + \dots + \frac{a_n}{s^n} = 0.$$

Hence b/s is integral over $S^{-1}A$, $S^{-1}B$ is integral over $S^{-1}A$. If $c/s \in S^{-1}C$ is integral over $S^{-1}A$, then $\exists a_i \in S^{-1}A$ s.t.

$$\left(\frac{c}{s}\right)^n + a_1 \left(\frac{c}{s}\right)^{n-1} + \dots + a_n = 0.$$

Then

$$c^{n} + a_{1}sc^{n-1} + \dots + a_{n}s^{n} = 0 \in S^{-1}C$$

Then $\exists t \in S \text{ s.t.}$

$$t(c^n + a_1sc^{n-1} + \dots + a_ns^n) = 0 \in C.$$

Then

$$(ct)^n + a_1 st(ct)^{n-1} + \dots + a_n s^n t^n = t^n (c^n + a_1 sc^{n-1} + \dots + a_n s^n) = 0.$$

Hence ct is integral over A, then $ct \in B$. Then $c/s = (ct)/(st) \in S^{-1}B$. This completes the proof.

Proposition 22. Normality is a local property. That is, for an integral domain A, TFAE:

- (i) A is normal.
- (ii) For any prime ideal $\mathfrak{p} \in \operatorname{Spec} A$, the localization $A_{\mathfrak{p}}$ is normal.
- (iii) For any maximal ideal $\mathfrak{m} \in \mathrm{mSpec}\,A$, the localization $A_{\mathfrak{m}}$ is normal.

Proof. When A is normal, $A_{\mathfrak{p}}$ is normal by Lemma 21.

Assume that $A_{\mathfrak{m}}$ is normal for every $\mathfrak{m} \in \mathrm{mSpec}\,A$. If A is not normal, let \tilde{A} be the integral closure of A in Frac A, \tilde{A}/A is a nonzero A-module. Suppose $\mathfrak{p} \in \mathrm{Supp}\,\tilde{A}/A$ and $\mathfrak{p} \subset \mathfrak{m}$. We have $\tilde{A}_{\mathfrak{m}}/A_{\mathfrak{m}} = 0$ and $\tilde{A}_{\mathfrak{p}}/A_{\mathfrak{p}} = (\tilde{A}_{\mathfrak{m}}/A_{\mathfrak{m}})_{\mathfrak{p}} \neq 0$. This is a contradiction.

Definition 23. A scheme X is called *normal* if the local ring $\mathcal{O}_{X,\xi}$ is normal for any point $\xi \in X$. A ring A is called *normal* if Spec A is normal.

Remark 24. For a general ring A, let $S := A \setminus (\bigcup_{\mathfrak{p} \in \operatorname{Ass} A} \mathfrak{p}) = \bigcap_{\mathfrak{p} \in \operatorname{Ass} A} A \setminus \mathfrak{p}$. Then S is a multiplicative set. The localization $S^{-1}A$ is called the total ring of fractions of A.

Suppose A is reduced and Ass $A = \{\mathfrak{p}_1, \cdots, \mathfrak{p}_n\}$. Denote its total ring of fractions by Q. Note that elements in Q are either unit or zero divisor. Hence any maximal ideal \mathfrak{m} is contained in $\bigcup \mathfrak{p}_i Q$, whence contained in some $\mathfrak{p}_i Q$. Thus $\mathfrak{p}_i Q$ are maximal ideals. And we have $\bigcap \mathfrak{p}_i Q = 0$. By the Chinese Remainder Theorem, we have $Q = \prod Q/\mathfrak{p}_i Q = \prod A_{\mathfrak{p}_i}$. Let A be a reduced ring with total ring of fractions Q. Then A is normal iff A is integral closed in Q. If A is normal, then for every $\mathfrak{p} \in \operatorname{Spec} A$, $A_{\mathfrak{p}}$ is integral. Then there is unique minimal prime ideal $\mathfrak{p}_i \subset \mathfrak{p}$. In particular, any two minimal prime ideal are relatively prime. By the Chinese Remainder Theorem, $A = \prod A/\mathfrak{p}_i$. Just need to check A/\mathfrak{p}_i is integral closed in $A_{\mathfrak{p}_i}$. This is clear by check pointwise.

Conversely, suppose A is integral closed in Q. Let e_i be the unit element of $A_{\mathfrak{p}_i}$. It belongs to A since $e_i^2 - e_i = 0$. Since $1 = e_1 + \cdots + e_n$ and $e_i e_j = \delta_{ij}$, we have $A = \prod A e_i$. Since $A e_i$ is integral closed in $A_{\mathfrak{p}_i}$, it is normal. Hence A is normal

Definition 25. Let X be a scheme. The *normalization* of X is an X-scheme X^{ν} with the following universal property: for any normal X-scheme Y with dominant structure morphism, its structure morphism $Y \to X$ factors through X^{ν} .

Proposition 26. Let X be an integral scheme. Then the normalization X^{ν} of X exists. Moreover, $X^{\nu} \to X$ is birational.

Proof. Suppose there is a dominant morphism $Y \to X$ with Y normal. Since Y is normal, it is reduced. Then it factors through X_{red} . Hence we can assume that X is reduced by replacing X by X_{red} .

Suppose $X = \operatorname{Spec} A$ is affine. Let A^{ν} be the integral closure of A in it total ring of fractions and $X^{\nu} := \operatorname{Spec} A^{\nu}$. It gives a homomorphism $A \to \mathcal{O}_Y(Y)$. We claim that it is injective. Otherwise, it factors through $A \to A/I$ and then $Y \to \operatorname{Spec} A$ factors through $\operatorname{Spec} A/I \to \operatorname{Spec} A$. It contradicts that $Y \to X$ is dominant. Since Y is normal, $\mathcal{O}_Y(Y)$ is integral closed in its total ring of fraction. Then $\mathcal{O}_Y(Y)$ contains A^{ν} . This shows that X^{ν} is the normalization of X.

In general case, take an affine cover $\{U_i\}$ of X and clue these U_i^{ν} by universal property.

Lemma 27. Let A be a normal ring. Then A verifies (R_1) and (S_2) .

Proof. Since all properties are local, we can assume A is integral and local.

For (S_2) , by Example 18, we only need to show that $\operatorname{Ass}_A A/f$ has no embedded point. Let $\mathfrak{p}=(f:g)=\in \operatorname{Ass}_A A/fA$ and $t:=f/g\in\operatorname{Frac} A$. After Replacing A by $A_{\mathfrak{p}}$, we can assume that \mathfrak{p} is maximal. By definition, $t^{-1}\mathfrak{p}\subset A$. If $t^{-1}\mathfrak{p}\subset\mathfrak{p}$, suppose \mathfrak{p} is generated by (x_1,\cdots,x_n) and $t^{-1}(x_1,\cdots,x_n)^T=\Phi(x_1,\cdots,x_n)^T$ for $\Phi\in M_n(A)$. There is a monic polynomial $\chi(T)\in A[T]$ vanishing Φ . Then $\chi(t^{-1})=0$ and $t^{-1}\in A$. This is impossible by definition of t. Then $t^{-1}\mathfrak{p}=A$, and $\mathfrak{p}=(t)$ is principal. By Krull's Principal Ideal Theorem 6, $\operatorname{ht}(\mathfrak{p})=1$.

Now we show that A verifies (R_1) . Suppose (A, \mathfrak{m}) is local of dimension 1. Choosing $a \in \mathfrak{m}$, A/a is of dimension 0. Then by ??, $\mathfrak{m}^n \subset aA$ for some $n \geq 1$. Suppose $\mathfrak{m}^{n-1} \not\subset aA$. Choose $b \in \mathfrak{m}^{n-1} \setminus aA$ and let t = a/b. By construction, $t^{-1} \not\in A$ and $t^{-1}\mathfrak{m} \subset A$. After similar argument, we see that $\mathfrak{m} = tA$, whence A is regular.

Lemma 28. Let (A, \mathfrak{m}) be a noetherian local ring of dimension 1. Then A is normal iff A is regular.

Proof. By lemma 27, we just need to show that regularity implies normality.

Let $t \in \mathfrak{m} \setminus \mathfrak{m}^2$. Since A is regular, $\mathfrak{m} = (t)$. First we show that A is an integral domain.

Let $I \subset A$ be a nonzero ideal of A. Then $\mathfrak{m}^n \subset I$ for some $n \geq 1$. Yang: To be completed.

Proposition 29. Let A be a noetherian integral domain of dimension ≥ 1 verifying (S_2) . Then

$$A = \bigcap_{\mathfrak{p} \in \operatorname{Spec} A, \operatorname{ht}(\mathfrak{p}) = 1} A_{\mathfrak{p}}.$$

Proof. Clearly $A \subset \bigcap A_{\mathfrak{p}}$. Let $t = f/g \in \bigcap A_{\mathfrak{p}}$. Since $f \in gA_{\mathfrak{p}}$ and we have $gA = \bigcap (gA_{\mathfrak{p}} \cap A)$, $f \in gA$. It follows that $t \in A$.

Theorem 30 (Serre's criterion for normality). Let X be a locally noetherian scheme. Then X is normal if and only if it verifies (R_1) and (S_2) .

Proof. One direction has been proved in Lemma 27. Suppose X verifies (R_1) and (S_2) . Again we can assume $X = \operatorname{Spec} A$ is affine and A is local. By Remark 24, we just need to show that A is integral closed in its total ring of fractions Q. Suppose we have

$$\left(\frac{a}{b}\right)^n + c_1 \left(\frac{a}{b}\right)^{n-1} + \dots + c_n = 0 \in Q.$$

Since A verifies (S_2) , $bA = \bigcap \nu_{\mathfrak{p}}^{-1}(b_{\mathfrak{p}}A_{\mathfrak{p}})$. So it is sufficient to show that $a_{\mathfrak{p}} \in b_{\mathfrak{p}}A_{\mathfrak{p}}$ with $\operatorname{ht}(\mathfrak{p}) = 1$. Note that $A_{\mathfrak{p}}$ is regular and hence normal by Lemma 28. Then above equation gives us desired result.

Theorem 31. Let X be a normal and locally noetherian scheme. Let $F \subset X$ be a closed subset of codimension ≥ 2 . Then the restriction $H^0(X, \mathcal{O}_X) \to H^0(X \setminus F, \mathcal{O}_X)$ is an isomorphism.

Proof. By the exact sequences

$$0 \to \mathcal{F}(X) \to \prod_{i} \mathcal{F}(U_i) \to \prod_{i,j} \mathcal{F}(U_i \cap U_j),$$

where $\{U_i\}$ is an affine open cover of X, we can reduce to the case that X is affine. Then $X = \operatorname{Spec} A$ for some normal noetherian ring A. For any prime ideal $\mathfrak{p} \in \operatorname{Spec} A$ with $\operatorname{ht}(\mathfrak{p}) = 1$, we have $\mathfrak{p} \in X \setminus F$. By Proposition 29, the conclusion follows.

Theorem 32 (Valuation criterion for properness). Let $f: X \to Y$ be a morphism of finite type between noetherian schemes. Then f is proper iff for any valuation ring A, $K = \operatorname{Frac} A$ and commutative diagram

$$\operatorname{Spec} \mathsf{K} \longrightarrow X \\
\downarrow f \\
\operatorname{Spec} A \longrightarrow Y$$

the morphism Spec $A \to Y$ factors through f.

Proposition 33. Yang: To be completed. Let X,Y be noetherian S-schemes with S noetherian. Suppose X is normal and of finite type over S, and Y is proper over S. Let $\xi \in X$ be a generic point and $\eta \in Y$ a point such that there exists a morphism Spec $\mathscr{K}(\xi) \to Y$. Then there exists an open subset $U \subset X$ containing ξ such that the morphism extends to a morphism $U \to Y$.

Theorem 34. Let X, Y be noetherian S-schemes with S noetherian. Suppose X is normal and of finite type over S, and Y is proper over S. Let $f: X \dashrightarrow Y$ be a rational map. Then f is well-defined on an open subset $U \subset X$ whose complement has codimension ≥ 2 .

Proof. Yang: To be completed.

Remark 35. Theorem 31 and Theorem 34 are very similar. However, they are base on different properties. Theorem 31 is based on (S_2) , while Theorem 34 is based on (R_1) . Philosophically, the (S_k) conditions are used to control the "bad part of codimension larger than k". The (R_k) conditions are used to control the "bad part of codimension smaller than or equal to k". We will see more examples in the next section. Yang: To be completed.

3 Cohen-Macaulay schemes

Definition 36 (Cohen-Macaulay). A noetherian local ring (A, \mathfrak{m}) is called *Cohen-Macaulay* if dim $A = \operatorname{depth} A$. A locally noetherian scheme X is called *Cohen-Macaulay* if $\mathcal{O}_{X,\xi}$ is Cohen-Macaulay for any point $\xi \in X$.

By definition, it is easy to see that X is Cohen-Macaulay if and only if it verifies (S_k) for all $k \geq 0$.

Example 37 (Non Cohen-Macaulay rings).

Definition 38. An ideal I of a noetherian ring A is called *unmixed* if

$$ht(I) = ht(\mathfrak{p}), \quad \forall \mathfrak{p} \in Ass(A/I).$$

We say that the unmixedness theorem holds for a noetherian ring A if any ideal $I \subset A$ generated by ht(I) elements is unmixed. We say that the unmixedness theorem holds for a locally noetherian scheme X if $\mathcal{O}_{X,\xi}$ is unmixed for any point $\xi \in X$.

Proposition 39. Yang: To be completed.

Theorem 40. Let X be a locally noetherian scheme. Then the unmixedness theorem holds for X if and only if X is Cohen-Macaulay.

Theorem 41. Let X be a locally noetherian scheme. Suppose that X is Cohen-Macaulay. Let $F \subset X$ be a closed subset of codimension $\geq k$. Then the restriction $H^i(X, \mathcal{O}_X) \to H^i(X \setminus F, \mathcal{O}_X)$ induced by the is an isomorphism.

4 Regular schemes

Proposition 42. Let (A, \mathfrak{m}) be a regular local ring. Then A is integral.

Proposition 43. If X verifies (R_k) , then $\operatorname{codim}_X X_{\operatorname{sing}} \geq k+1$.

Proposition 44. A regular scheme is Cohen-Macaulay.

 ${\bf Corollary\ 45.}\ {\bf A\ regular\ scheme\ is\ normal.}$