8/13/22, 8:24 AM biryani

Decission Tree Classifier

Submitted by: Musharaf ahsan

Step-1: Import Libraries

```
In []: import pandas as pd
    df = pd.read_csv('mldata.csv')
    df.head()

Out[]: age height weight gender likeness
```

Out[]:		age	height	weight	gender	likeness
	0	27	170.688	76.0	Male	Biryani
	1	41	165.000	70.0	Male	Biryani
	2	29	171.000	80.0	Male	Biryani
	3	27	173.000	102.0	Male	Biryani
	4	29	164.000	67.0	Male	Birvani

Converting Gender into Dummy Values

```
In [ ]: df['gender'] = df['gender'].replace('Male',1)
    df['gender'] = df['gender'].replace('Female',0)
    df.head()
```

```
Out[]:
                  height weight gender likeness
             27 170.688
                             76.0
                                            Biryani
             41 165.000
                             70.0
                                            Biryani
            29 171.000
         2
                             80.0
                                            Biryani
         3
            27 173.000
                            102.0
                                            Biryani
            29 164.000
                             67.0
                                            Biryani
```

Selection of Input and Output Variables

```
In [ ]: x = df[['weight', 'gender']]
y = df['likeness']
In [ ]: x.head()
```

8/13/22, 8:24 AM biryani

Out[]:		weight	gender
		0	76.0	1
		1	70.0	1
		2	80.0	1
		3	102.0	1
		4	67.0	1

```
In []: y.head()
Out[]: 0     Biryani
1     Biryani
2     Biryani
3     Biryani
4     Biryani
Name: likeness, dtype: object
```

Machine Learning Algorithem

```
In [ ]: from sklearn.tree import DecisionTreeClassifier
```

Create and Fit Model

```
In [ ]: model = DecisionTreeClassifier().fit(x,y)
```

Prediction

How to measure Accuracy of Model?

- Split Data into test and train (80/20) rule
- 80% training Data and 20% testing

```
In [ ]: from sklearn.model_selection import train_test_split
    from sklearn.metrics import accuracy_score
    x_trin, x_test, y_train, y_test = train_test_split(x,y,test_size=0.2)
```

Create a Model

8/13/22, 8:24 AM biryani

```
In [ ]: model = DecisionTreeClassifier()
```

Fiting a Model

```
In [ ]: model = model.fit(x_trin,y_train)

predicted_values = model.predict(x_test)
predicted_values

Out[ ]: array(['Biryani', 'Biryani', 'Pakora', 'Biryani', 'Biryani', 'Biryani', 'Biryani', 'Samosa', 'Biryani', 'Biryani', 'Biryani', 'Biryani', 'Biryani', 'Pakora', 'Pakora', 'Biryani', 'Biryani', 'Biryani', 'Biryani', 'Pakora', 'Biryani', 'Biryani', 'Biryani', 'Pakora', 'Biryani', 'Biry
```

Checking Score

```
In [ ]: score = accuracy_score(y_test,predicted_values)
    score
Out[ ]: 0.5714285714285714
```

How to train and save your Model

```
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
import joblib

model = DecisionTreeClassifier().fit(x, y)
joblib.dump(model, 'foodie.joblib')
Out[]: ['foodie.joblib']
```

Graph

```
In [ ]: from sklearn import tree
model = DecisionTreeClassifier().fit(x, y)
```

Graphic Evaluation/ look into what happend

label = 'all',
rounded=True,
filled=True)