

Aula 1- Introdução

Prof. Danilo Reis

Objetivos:

- Noções do processo de fabricação de circuitos integrados;
- Entender os princípios de Funcionamento de dispositivos de lógica reconfigurável e suas arquiteturas;
- Aprender a Decompor um sistema digital complexo em uma hierarquia de vários sub-módulos;
- Aprender a fundamentos básicos das principais linguagens de descrição de Hardware;
- Aprender especificação, implementação, simulação e verificação de circuitos lógicos complexos;
- Dar fundamentos teóricos para criação do primeiro chip "Flat Head";

Avaliação:

- 40% Prova;
- 30% Notas laboratórios(equipes 2-3);
- 30% Projeto Final (equipes 2-3).

O que é um circuito VLSI?

Técnica de fabricação de um circuito eletrônico, onde muitos componentes e ligação entre eles são manufaturados simultaneamente.

"Very Large Scale Integrated" circuit

Como Tudo Começou?

- 1940- Russel desenvolve junção PN (produz 0.5 V exposta a luz);
- 1944 Laboratórios Bell cria o laboratório de desenvolvimento de componentes de estado sólido (William Schockley, John Bardeen, Walter Brattain);
- 1951 Invenção do Transistor de junção(Schockley).

Primórdios do Transistor

1954 - Primeiro Transistor para rádio (US\$ 2.5);

1958 - Bardeen, Shockley, Brattain recebem prêmio Nobel;

1959 - Jack Kilby, começou a pensar em circuitos sólidos para reduzir custos de fabricação na TI.

Primórdios dos Circuitos Integrados:

- 1957 Robert Noyce deixou o laboratórios Bells para fundar com Jean Hoerni. Gordon Moore a Fairchild Semiconductor;
- 1961 TI e Fairchild introduzem os primeiros circuitos lógicos(0.06");
- 1963 Aumenta a densidade de integração (0.038");
- 1966 Robert Dennard inventa a primeira 1-T DRAM
- no IBM TJ Watson Research Center;
- 1967 Fairchild faz primeiros circuitos integrados usando dois layers de interconexões permitindo uma fácil reconfiguração do circuitos para criar circuitos diferentes (150 portas lógicas)(0.015");
- 1968-Moore e Noyce deixam Fairchild e fundam a
- "INTegrated ELectronics" = Intel;
- 1970- Intel lança 1K bit PMOS RAM;
- 1971 Intel lança primeiro microprocessador projetado por Ted Hoff, 4004, 4 bits, clock 108 KHz, 2300 Transistor (Tecnologia de 10 um).

Microprocessador 4004

Crescimento Exponencial

- 1972 Processador 8008 (3.500 Transistores PMOS)
- 1974 Processador 8080 (6000 Transistores PMOS) 2
 MHz
- 1975 Paul Allen criou o basic impulsionando a industria do computador pessoal;

Video Fairchild 1967 (30 min)

Lei de Moore

"The number of transistors incorporated in a chip will approximately double every 24 months."

—Gordon Moore, Intel Co-Founder

Lei de Moore

Microprocessor	Year of Introduction	Transistors
4004	1971	2,300
8008	1972	2,500
8080	1974	4,500
8086	1978	29,000
Intel286	1982	134,000
Intel386 processor	1985	275,000
Intel486" processor	1989	1,200,000
Intel® Pentium® processor	1993	3,100,000
Intel® Pentium® II processor	1997	7,500,000
Intel® Pentium® III processor	1999	9,500,000
Intel® Pentium® 4 processor	2000	42,000,000
Intel® Itanium® processor	2001	25,000,000
Intel® Itanium® 2 processor	2003	220,000,000
Intel® Itanium® 2 processor (9MB cache)	2004	592,000,000

Intel® Microprocessor Transistor Count Chart

Pentium Xeon E7

- 10/20 cores
- 30 MBytes de cache;
- 2.9 Bilhões de transistores;
- 130 W potência;
- 102 GBytes memory bandwidth.
- Clock 2.4 GHertz;

Referências

- http://www.icknowledge.com/history/1960s.html
- http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-884-complex-digital-systems-spring-2005/index.htm;
- http://www.inf.ufsc.br/~guntzel/ine5348/ine5348.html
- http://www.intel.com/about/companyinfo/museum/exhibits/4004/docs.htm
- http://www.youtube.com/watch?v=z47Gv2cdFtA&feature=related
- http://www.youtube.com/watch?v=LWfCqpJzJYM
- http://www.youtube.com/watch?v=35jWSQXku74&feature=related
- http://www.allaboutcircuits.com