

Module: Machine Learning (ML – SDSI)

- Course 2 -

Chapter 2: Supervised Learning for Classification

Habib-Ellah GUERGOUR

Faculty of NTIC / TLSI Department

Contact: habib.guergour@univ-constantine2.dz

Université Constantine 2 2024/2025 Semester 2

Module: Machine Learning (ML – SDSI)

- Course 2 -

Chapter 2: Supervised Learning for Classification

Habib-Ellah GUERGOUR

Faculty of NTIC / TLSI Department

Contact: habib.guergour@univ-constantine2.dz

Etudiants concernés

Faculté/Institut	Département	Niveau	Spécialité
NTIC	TLSI	M1	SDSI

Université Constantine 2 2024/2025 Semester 2

Goals of the Chapter

- Understand the fundamentals of supervised learning for classification.
- Learn key concepts: labels, features, decision boundaries, and probabilistic vs. non-probabilistic classifiers.
- Explore common classification algorithms (logistic regression, decision trees, SVM, NB, etc.).
- Evaluate models using metrics like accuracy,
 precision, recall, ROC-AUC...

Main Titles

Introduction
Logistic Regression
K-NN : K – Nearest Neighbors
NB: Naïve Bayes
DT : Decision Trees
SVM : Support Vector Machines
Evaluating Model Performance: Metrics

Introduction to Supervised Learning for Classification

- Classification is a type of supervised learning where the goal is to predict discrete labels (categories) based on input features.
- Examples:
 - **Spam Detection**: Email is spam or not spam.
 - Medical Diagnosis: A tumor is benign or malignant.
 - Sentiment Analysis: A review is positive, neutral, or negative.

Introduction to Supervised Learning for Classification

Types of Classification

- Binary Classification: Two possible labels (e.g., spam or not spam).
- Multiclass Classification: More than two categories (e.g., dog, cat, bird).
- Multilabel Classification: An instance can belong to multiple categories (e.g., a movie can be both action and comedy)..

Introduction to Supervised Learning for Classification

Common Classification Algorithms

- Logistic Regression (for binary classification).
- k-Nearest Neighbors (k-NN) (instance-based learning)
- Support Vector Machines (SVM) (effective for highdimensional data).
- Decision Trees (interpretable, but prone to overfitting).
- Random Forest (ensemble of decision trees).
- Neural Networks (powerful for complex patterns)

Motivation for Logistic Regression

Why linear regression is not well-suitable? Example 1: Tumor Detection

- Given a tumor's size, we want to classify it as Benign (0) or Malignant (1).
- The output is binary (0 or 1), not continuous.

Motivation for Logistic Regression

Example 1: Tumor Detection

Motivation for Logistic Regression

Example 1: Tumor Detection

Can linear regression be used for classification tasks

Motivation for Logistic Regression

Can linear regression be used for classification tasks

Motivation for Logistic Regression

Can linear regression be used for classification tasks

A natural idea is to fit a linear model:

$$h_{ heta}(x) = heta_0 + heta_1 x$$

Motivation for Logistic Regression

Can linear regression be used for classification tasks

A natural idea is to fit a linear model:

$$h_{ heta}(x) = heta_0 + heta_1 x$$

Motivation for Logistic Regression

Can linear regression be used for classification tasks

Why Linear Regression Fails?

Motivation for Logistic Regression

Can linear regression be used for classification tasks

Why Linear Regression Fails?

Predictions can be outside 0 and 1

Motivation for Logistic Regression

Why Linear Regression Fails?

- Predictions can be outside 0 and 1
- ullet Poor classification boundary : If we set a threshold like $\displaystyle rac{h_{ heta}(x) \geq 0.5}{}$
- \rightarrow the separation might not be clear (The decision boundary is sensitive to outliers)

Motivation for Logistic Regression

Why Linear Regression Fails?

- Predictions can be outside 0 and 1
- ullet Poor classification boundary : If we set a threshold like $\displaystyle rac{h_{ heta}(x) \geq 0.5}{}$
- \rightarrow the separation might not be clear (The decision boundary is sensitive to outliers)

Motivation for Logistic Regression

Why Linear Regression Fails?

- Predictions can be outside 0 and 1
- ullet Poor classification boundary : If we set a threshold like $\displaystyle rac{h_{ heta}(x) \geq 0.5}{}$
- \rightarrow the separation might not be clear (The decision boundary is sensitive to outliers)

Motivation for Logistic Regression

Need for a New Approach

- We need a function that outputs only valid class labels (0 or 1).
- We need a model that provides clearer decision boundaries between binary classes.

Motivation for Logistic Regression

→ Need for a New Approach But, how?

Example 2: Poisonous Plant Classification

Motivation for Logistic Regression

- Example 2: Poisonous Plant Classification
- Given features such as leaf shape, we classify a plant as Safe (0) or Poisonous (1).
- The output is binary (0 or 1), not continuous.

Motivation for Logistic Regression

Example 2: Poisonous Plant Classification

Motivation for Logistic Regression

Example 2: Poisonous Plant Classification

 x_1 : largeur de la feuille x_2 : longueur de la feuille

у	x_1	x_2
1	0.5	2.0
1	1.1	2.1
1	0.7	2.6
0	2.0	1.0
0	2.5	0.7
0	2.2	0.3

Motivation for Logistic Regression

Example 2: Poisonous Plant Classification

 x_1 : largeur de la feuille x_2 : longueur de la feuille

У	x_1	x_2
1	0.5	2.0
1	1.1	2.1
1	0.7	2.6
0	2.0	1.0
0	2.5	0.7
0	2.2	0.3

Motivation for Logistic Regression

Example 2: Poisonous Plant Classification

 x_1 : largeur de la feuille x_2 : longueur de la feuille

У	x_1	x_2
1	0.5	2.0
1	1.1	2.1
1	0.7	2.6
0	2.0	1.0
0	2.5	0.7
0	2.2	0.3

Motivation for Logistic Regression

Example 2: Poisonous Plant Classification

$$z(x_1, x_2) = w_1 x_1 + w_2 x_2 + b$$

Motivation for Logistic Regression

Example 2: Poisonous Plant Classification

$$z(x_1, x_2) = w_1 x_1 + w_2 x_2 + b$$

$$\begin{cases} y_{pred} = 0 & si & z < 0 \\ y_{pred} = 1 & si & z \geqslant 0 \end{cases}$$

Motivation for Logistic Regression

Example 2: Poisonous Plant Classification

$$z(x_1, x_2) = w_1 x_1 + w_2 x_2 + b$$

What is the confidence level that these plants are poisonous

Motivation for Logistic Regression

Need for a New Approach

- Outputs values only between 0 and 1($0 \le h_{\theta}(x) \le 1$)
- Provides a clear <u>Boundary Decision</u> between poisonous and safe plants.

Motivation for Logistic Regression

Logistic Regression Model

Want
$$0 \le h_{\theta}(x) \le 1$$

$$h_{\theta}(x) = g(\theta^T x)$$

$$\Rightarrow g(\mathfrak{F}) = \frac{1}{1 + e^{-\frac{\pi}{2}}}$$

Sigmoid function

Logistic function

If $h_{ heta}(x) \geq 0.5$, predict y=1 (malignant).

If $h_{ heta}(x) < 0.5$, predict y = 0 (benign).

Motivation for Logistic Regression

Example 1:

Hypothesis Function

Logistic Regression Hypothesis Function

Instead of a linear function, we use the Sigmoid function:

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

- This function always outputs values between 0 and 1, representing a probability.
- $m{ heta}^T m{x}$ is the linear combination of features and parameters in logistic regression.

Hypothesis Function

- Logistic Regression Hypothesis Function
- The probability of a given class is:

$$P(y=1|x; heta)=h_{ heta}(x)=rac{1}{1+e^{- heta^Tx}}$$
 $P(y=0|x; heta)=1-h_{ heta}(x)$

• This represents the probability that the output y is 1, given an input x and parameters θ .

Hypothesis Function

Logistic Regression Hypothesis Function

$$heta^T x = \sum_{i=0}^n heta_i x_i$$

- x: The feature vector (input data)
- θ : The parameter vector (weights)
- $heta^T x$: A single real-valued number that represents a weighted sum of the input.

Example:

$$\boldsymbol{\theta}^T \boldsymbol{x} = z(x_1, x_2) = w_1 x_1 + w_2 x_2 + b$$

Decision Boundary

ullet The decision boundary is the surface where $h_{ heta}(x)=0.5$, i.e.,

$$heta^T x = 0$$

- **Linear <u>Decision Boundary</u>**: If *x* has two features, the boundary is a straight line.
- Non-Linear <u>Decision Boundary</u>: If using polynomial features, the boundary can be curved.
- Example in 2D Poisonous Plant Classification.

$$\theta_0 + \theta_1 x_1 + \theta_2 x_2 = 0$$

Decision Boundary

Decision Boundary

Cost Function: Log Loss

Why Not Use Mean Squared Error (MSE)?

• In linear regression, we minimize MSE:

$$J(heta) = rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)})^2$$

- However, in logistic regression, using MSE leads to:
 - Non-convex loss function → Gradient descent may not converge.
 - Inefficient optimization \rightarrow Poor updates for weights.

Cost Function: Log Loss

Why Not Use Mean Squared Error (MSE)?

$$J(heta) = rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)})^2 rac{1}{1 + e^{- heta^T x}}$$

Cost Function: Log Loss

Definition of Log Loss (Binary Classification)

Log Loss is also called Binary Cross-Entropy Loss:

$$J(heta) = -rac{1}{m} \sum_{i=1}^m \left[y^{(i)} \log h_ heta(x^{(i)}) + (1-y^{(i)}) \log (1-h_ heta(x^{(i)}))
ight]$$

where:

- $h_{\theta}(x^{(i)})$ is the **hypothesis function** (sigmoid output).
- $y^{(i)}$ is the true class label (0 or 1).

This function is <u>convex</u>, making it <u>easy to minimize</u> using gradient descent.

Cost Function: Log Loss

Understanding the Formula:

$$J(heta) = -rac{1}{m} \sum_{i=1}^m \left[y^{(i)} \log h_ heta(x^{(i)}) + (1-y^{(i)}) \log (1-h_ heta(x^{(i)}))
ight]$$

$$J(\theta) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Cost Function: Log Loss

Understanding the Formula:

$$J(\theta) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Andrew Na

Cost Function: Log Loss

Understanding the Formula:

$$J(\theta) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

If true label y = 1:

• Loss **decreases** as $h_{ heta}(x) o 1$.

If true label y = 0:

• Loss increases sharply as $h_{ heta}(x) o 1$.

Andrew Na

45

Optimization (Gradient Descent Algorithm)

To find the best θ , we minimize $J(\theta)$ using Gradient Descent:

- This iteratively updates θ to reduce the loss.
- Similar to Linear Regression but adapted for classification.

$$heta_j := heta_j - lpha rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

Matrix formula:

$$heta := heta - lpha
abla_{ heta} J(heta)$$

where:

$$abla_{ heta}J(heta) = rac{1}{m}X^ op(h_{ heta}(X)-y).$$

46

Multiclass Classification

How about Multiclass Classification?

- Multiclass classification deals with problems where there are more than two possible classes.
- Unlike binary classification (where we predict either 0 or 1), in multiclass classification, we have K possible classes (e.g., predicting if an image contains a cat, dog, or bird).
- Two common approaches:
 - One-vs-All (OvA) / One-vs-Rest (OvR)
 - Softmax Regression (Multinomial Logistic Regression)

Multiclass Classification (One-vs-All)

How One-vs-All Works?

 Instead of training one classifier, we train K separate binary classifiers, each one distinguishing a particular class from all others.

Multiclass Classification (One-vs-All)

How One-vs-All Works?

Multiclass Classification (Softmax Regression)

How Softmax Works?

- Instead of *K* separate models, train one model with the Softmax function to predict probabilities for each class.
- Ensures all probabilities sum to 1.

$$P(y = k \mid x; heta) = rac{e^{ heta_k^T x}}{\sum_{j=1}^K e^{ heta_j^T x}}$$

Final prediction:

$$\hat{y} = rg \max_{k} P(y = k \mid x; heta)$$

Multiclass Classification (Softmax Regression)

Cost Function for Softmax

Loss Function: Categorical Cross-Entropy

$$J(heta) = -rac{1}{m} \sum_{i=1}^m \sum_{k=1}^K 1(y^{(i)} = k) \log P(y^{(i)} = k \mid x^{(i)}; heta)$$

- Unlike logistic regression (binary cross-entropy), Softmax uses categorical cross-entropy.
- Trained using gradient descent.

Multiclass Classification

Example – Poisonous Plant Classification

- Classes: Poisonous, Non-Toxic, Unknown
- OvA:
 - Train 3 classifiers (Poisonous vs. Rest, Non-Toxic vs. Rest, Unknown vs. Rest).
 - Predict based on highest probability.

Softmax:

- Train one model with Softmax.
- Predict single probability distribution over 3 classes.

Multiclass Classification

When to Use?

- If K is small, Softmax is often better
- If K is large, OvA might be preferable (less computation).
- If using Neural Networks, Softmax is the standard choice.

Intuition Behind k-NN

Simple Analogy:

"Tell me who your neighbors are, and I'll tell you who you are."

 k-NN classifies a data point based on the majority class of its k closest neighbors.

 Example: If most of your 5 closest neighbors are "cat lovers," you're likely a " cat lover."

Intuition Behind k-NN

Simple Analogy:

"Tell me who your neighbors are, and I'll tell you who you are."

Intuition Behind k-NN

Simple Analogy:

"Tell me who your neighbors are, and I'll tell you who you are."

How k-NN Works

Key Steps:

1. **Choose k**: Number of neighbors to consider (e.g., k=3, k=5).

- 2. **Calculate Distance**: Measure distance between the query point and all training points.
- 3. **Find Neighbors**: Select the *k* closest points.
- 4. **Vote for Class**: Assign the majority class among the *k* neighbors.

How k-NN Works

Example: Classifying a Plant as Poisonous or Safe

- Features: Leaf color, shape, size.
- KNN Algorithm:
 - 1. Choose K=3.
 - 2. Compute the distances between the new plant and all known plants.
 - 3. Find the 3 nearest plants.
 - 4. If 2 out of 3 neighbors are poisonous, classify the plant as poisonous.

Distance Metrics

Key Steps:

• Euclidean Distance:

$$d(\mathbf{x},\mathbf{y}) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$$

Manhattan Distance:

$$d(\mathbf{x},\mathbf{y}) = \sum_{i=1}^n |x_i - y_i|$$

Cosine Similarity:

$$\cos(heta) = rac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}$$

Other Metrics: Minkowski, Hamming Distance (for categorical data).

Choosing k

Choosing k

- Small k:
 - High model complexity, sensitive to noise (<u>overfitting</u>).
- Large k:
 - Smooth decision boundaries, may <u>underfit</u>.
- Best Practice: Use cross-validation to select an optimal
 K.

Advantages & Disadvantages

• Advantages:

- Simple and intuitive.
- No training phase (lazy learning).
- Works well with small datasets.

Disadvantages:

- Computationally expensive for large datasets.
- Sensitive to irrelevant features.
- Affected by class imbalance.

Introduction

What is Naïve Bayes?

- Naïve Bayes is a probabilistic classifier based on Bayes' Theorem with an assumption of conditional independence between features.
- Used for classification tasks like spam detection, sentiment analysis, and medical diagnosis.
- Example Use Cases:
 - Spam Detection: Classifying emails as spam or not spam.
 - Medical Diagnosis: Predicting whether a patient has a disease based on symptoms.
 - Text Classification: Sentiment analysis, topic categorization.

Bayes' Theorem

Bayes' Theorem: The Foundation of Naïve Bayes

Bayes' Theorem states:

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

where:

 $P(A \mid B) \rightarrow$ Posterior Probability (probability of A given B).

 $P(B \mid A) \rightarrow \text{Likelihood}$ (probability of B given A).

 $P(A) \rightarrow$ Prior Probability (initial probability of A).

 $P(B) \rightarrow$ Evidence (probability of B occurring).

Bayes' Theorem

Bayes' Theorem: The Foundation of Naïve Bayes

• For classification, let: $X=(x_1,x_2,...,x_n)$ be the feature vector.

Y be the class label.

• The classifier predicts Y using:

$$P(Y \mid X) = \frac{P(X \mid Y)P(Y)}{P(X)}$$

Since P(X) is the same for all classes, we only compare the numerator:

$$P(Y \mid X) \propto P(X \mid Y)P(Y)$$

The "Naïve" Assumption: Feature Independence

Why "Naïve"?

• The model assumes that all features x1,x2,...,xn are conditionally independent given the class label Y.

$$P(X \mid Y) = P(x_1, x_2, ..., x_n \mid Y) = P(x_1 \mid Y)P(x_2 \mid Y)...P(x_n \mid Y)$$

Thus, the final classification rule becomes:

$$P(Y \mid X) \propto P(Y) \prod_{i=1}^n P(x_i \mid Y)$$

Example Dataset

Example

- Let's use a simple dataset to predict whether a fruit is a Banana or
 - Orange based on two features:
 - Color: Yellow or Orange.
 - Size: Small or Large.

Color	Size	Fruit
Yellow	Small	Banana
Yellow	Large	Banana
Orange	Small	Orange
Orange	Large	Orange
Yellow	Large	Banana
Orange	Small	Orange

Example Dataset

Example

Let's use a simple dataset to predict whether a fruit is a Banana or

Orange based on two features:

- Color: Yellow or Orange.
- Size: Small or Large.

We want to predict the class of a new fruit with:

- •Color = Yellow
- •Size = Small

Example Dataset

Example

Compute Prior Probabilities

$$P(\mathrm{Banana}) = \frac{3}{6} = 0.5$$

$$P(\text{Orange}) = \frac{3}{6} = 0.5$$

- Compute Likelihoods
 - For Banana: $P(\text{Yellow}|\text{Banana}) = \frac{3}{3} = 1$

$$P(\text{Small}|\text{Banana}) = \frac{1}{3} \approx 0.33$$

$$P(\text{Yellow}|\text{Orange}) = \frac{0}{3} = 0$$

• For Orange: $P({
m Small}|{
m Orange})=rac{2}{3}pprox 0.67$

Color	Size	Fruit
Yellow	Small	Banana
Yellow	Large	Banana
Orange	Small	Orange
Orange	Large	Orange
Yellow	Large	Banana
Orange	Small	Orange

70

Example Dataset

Example

Compute Posterior Probabilities

For Banana:

$$P(\text{Banana}|\text{Yellow},\text{Small}) \propto P(\text{Yellow}|\text{Banana}) \cdot P(\text{Small}|\text{Banana}) \cdot P(\text{Banana})$$

$$P(\text{Banana}|\text{Yellow},\text{Small}) \propto 1 \cdot 0.33 \cdot 0.5 = 0.165$$

For Orange:

$$P(ext{Orange}| ext{Yellow}, ext{Small}) \propto P(ext{Yellow}| ext{Orange}) \cdot P(ext{Small}| ext{Orange}) \cdot P(ext{Orange})$$

$$P(ext{Orange}| ext{Yellow}, ext{Small}) \propto 0 \cdot 0.67 \cdot 0.5 = 0$$

Since P(Orange|Yellow, Small) = 0, the fruit is classified as **Banana**.

Example Dataset

Example

Handling Zero Probabilities

To avoid this, we use Laplace Smoothing (add 1 to each count):

For Orange:

$$P(\text{Yellow}|\text{Orange}) = \frac{0+1}{3+2} = \frac{1}{5} = 0.2$$

$$P(ext{Small}| ext{Orange}) = rac{2+1}{3+2} = rac{3}{5} = 0.6$$

$$P(\text{Orange}|\text{Yellow},\text{Small}) \propto 0.2 \cdot 0.6 \cdot 0.5 = 0.06$$

The fruit is still classified as **Banana** (since 0.165 > 0.06).

Types of Naïve Bayes Classifiers

Types of Naïve Bayes Classifiers

- Gaussian Naïve Bayes
- Multinomial Naïve Bayes
- Bernoulli Naïve Bayes

Types of Naïve Bayes Classifiers

Gaussian Naïve Bayes (For Continuous Data)

- Assumes features follow a normal (Gaussian) distribution.
- The Probability Density Function (PDF) is:

$$P(x_i \mid Y) = rac{1}{\sqrt{2\pi\sigma_Y^2}} \exp\left(-rac{(x_i - \mu_Y)^2}{2\sigma_Y^2}
ight)$$

Mean: μ_Y is the average of feature x for class Y.

Variance: σ_Y^2 is the variance for class Y.

74

Types of Naïve Bayes Classifiers

Gaussian Naïve Bayes (For Continuous Data)

- Assumes features follow a normal (Gaussian) distribution.
- The Probability Density Function (PDF) is:

$$P(x_i \mid Y) = rac{1}{\sqrt{2\pi\sigma_V^2}} \exp\left(-rac{(x_i - \mu_Y)^2}{2\sigma_V^2}
ight)$$

Mean: $\mu_{
m Y}$

Variance:

Fruit	Weight (g)	Sugar (%)	Acidity (pH)	Label (1 = Banana, 0 = Orange)
Banana	120	15.5	4.8	1
Banana	130	16.0	4.9	1
Banana	125	14.8	4.7	1
Orange	150	9.0	3.2	0
Orange	160	8.5	3.0	0
Orange	140	9.2	3.1	0

75

Types of Naïve Bayes Classifiers

Multinomial Naïve Bayes (For Text Classification)

- Used when features are discrete counts (e.g., word frequencies in text).
- Assumes each class follows a multinomial distribution:

$$P(x_i \mid Y) = rac{ ext{count of } x_i ext{ in class } Y}{ ext{total count of words in class } Y}$$

Types of Naïve Bayes Classifiers

Multinomial Naïve Bayes (For Text Classification)

- Used when features are discrete counts (e.g., word frequencies in text).
- Assumes each class follows a multinomial distribution:

$P(x_i \mid Y) = $ count of x_i in class Y
--

Email Text	Label (Spam=1, Not Spam=0)
"Win a free lottery now"	1 (Spam)
"Limited-time offer, claim prize"	1 (Spam)
"Meeting at 10 AM tomorrow"	0 (Not Spam)
"Project deadline extended"	0 (Not Spam)

Types of Naïve Bayes Classifiers

Bernoulli Naïve Bayes (For Binary Features)

- Used when features are binary (0 or 1).
 - Example: Whether a word appears in an email (Spam detection).

$$P(x_i \mid Y) = p_i^{x_i} (1-p_i)^{(1-x_i)}$$

where p_i is the probability of feature x_i occurring in class Y.

Types of Naïve Bayes Classifiers

Bernoulli Naïve Bayes (For Binary Features)

- Used when features are binary (0 or 1).
 - Example: Whether a word appears in an email (Spam detection).

$D(x + V) = x_i (1 - x_i)$						
E-mail	"Offre"	"Gratuit"	"Cliquez"	"Urgent"	Classe (Spam=1, Non Spam=0)	
1	1	1	1	0	1 (Spam)	
2	0	1	1	1	1 (Spam)	
3	1	0	0	0	0 (Non Spam)	
4	0	1	0	0	0 (Non Spam)	

Training the Naïve Bayes Model

How to Train the Naïve Bayes Model?

Calculate Class Priors:
$$P(Y) = rac{ ext{Number of samples in class Y}}{ ext{Total number of samples}}$$

80

- Estimate Likelihoods $P(x_i \mid Y)$: 2.
 - For Gaussian Naïve Bayes, estimate mean μ_Y and variance σ_Y^2 for each feature.
 - For **Multinomial Naïve Bayes**, count occurrences of words in each class.
 - For **Bernoulli Naïve Bayes**, compute feature probabilities.
- Classify a New Sample: 3.
 - Compute $P(Y \mid X)$ for each class Y.
 - Choose the class with the highest probability.

Example: Naïve Bayes for Spam Classification

Dataset Example:

Email	Contains "money"? (x1)	Contains "offer"? (x2)	Contains "free"? (x3)	Spam (Y)
1	1	1	1	Yes
2	1	1	0	Yes
3	0	0	1	No
4	1	0	0	No

Training the Model

- Compute prior probabilities P(Y).
- Compute likelihoods $P(x_i \mid Y)$.
- Apply Bayes' Theorem to classify new emails.

Advantages and Disadvantages

Advantages:

- Fast and efficient, even for large datasets.
- Handles missing data well.
- Works well with text data (e.g., spam filtering).

Disadvantages:

- Feature independence assumption is often unrealistic.
- Performs poorly with highly correlated features.
- For continuous data, Gaussian Naïve Bayes assumes a normal distribution, which may not always hold.

Introduction

What is a Decision Tree?

- A Decision Tree is a supervised learning algorithm used for classification and regression.
- It works by <u>splitting data</u> based on feature values, creating a tree-like structure where each internal node represents a <u>decision rule</u> and each leaf node represents a <u>class label</u> or <u>regression value</u>.

Example Use Cases:

- Medical Diagnosis: Classifying patients based on symptoms.
- Loan Approval: Determining whether a customer is eligible for a loan.
- Spam Detection: Filtering emails as spam or not spam.

Introduction

Why Use Decision Trees?

- Simple to understand & interpret (mimics human decision-making).
- Handles numerical & categorical data.
- No need for feature scaling.
- Works well with missing values.

85

How a Decision Tree Works

Intuition

- A Decision Tree <u>repeatedly splits</u> the dataset into <u>smaller subsets</u> based on the feature that provides the most information gain.
- This process continues until a stopping criterion is met

• e.g., max depth reached, no more splits possible.

How a Decision Tree Works

Example: play tennis?

How to Split a Node?

To decide the best feature to split on, we measure impurity using one of the following:

Gini Impurity (Used in CART Algorithm)

 The Gini Impurity measures how impure a node is. It is defined as:

$$Gini = 1 - \sum_{i=1}^C p_i^2$$

where p_i is the probability of class i in the node.

How to Split a Node?

Gini Impurity (Used in CART Algorithm)

- Best split is the one that reduces Gini Impurity the most.
- Lower Gini = Better purity.

 Example: If a node contains 90% edible mushrooms and 10% poisonous mushrooms, then:

$$Gini = 1 - (0.9^2 + 0.1^2) = 1 - (0.81 + 0.01) = 0.18$$

How to Split a Node?

Entropy & Information Gain (Used in ID3 Algorithm)

• Entropy measures the randomness in a dataset:

$$Entropy = -\sum_{i=1}^{C} p_i \log_2 p_i$$

where p_i is the probability of class i.

- High entropy = High disorder (bad split).
- Low entropy = Low disorder (good split).
- The best feature to split on is the one that maximizes Information
 Gain:

$$IG = Entropy(parent) - \sum (ext{weight of child}) imes Entropy(child})$$

Stopping Criteria

A Decision Tree stops growing when:

- All samples belong to the same class.
- Max tree depth is reached.
- Gini Impurity or Entropy is below a threshold.
- Number of samples in a node is too small.

Advantages & Disadvantages

Advantages:

- Interpretable & easy to visualize.
- No need for feature scaling.
- Handles both numerical & categorical data.
- Can handle missing values well.

Disadvantages:

- Prone to overfitting (requires pruning).
- Not stable (small changes in data can lead to a different tree).
- Biased towards features with more levels.

Support Vector Machine (SVM)

What is SVM?

- Support Vector Machine (SVM) is a powerful supervised learning algorithm used for <u>classification</u> and <u>regression</u> tasks. It finds the optimal hyperplane that best separates the data into different classes.
- Best suited for complex classification problems with clear margin of separation.
- Effective in high-dimensional spaces and works well for both linear and non-linear data.

Understanding the Core Idea of SVM

Finding the Optimal Hyperplane

In a classification problem, SVM tries to find the best possible decision boundary that maximizes the margin between two classes.

- The hyperplane is the decision boundary that separates different classes.
- The margin is the distance between the hyperplane and the closest data points (support vectors).
- Support vectors are the points that are closest to the hyperplane and define its position.

Goal: Maximize the margin between support vectors while ensuring correct classification.

Understanding the Core Idea of SVM

Example 1

Understanding the Core Idea of SVM

Example 1

Understanding the Core Idea of SVM

Example 2

Understanding the Core Idea of SVM

Mathematical Formulation of SVM

1- Defining the Hyperplane

SVM aims to maximize the margin between classes while ensuring correct classification. For a dataset with features X and labels y:

 A hyperplane is represented as: where:

$$w^Tx + b = 0$$

- ullet w is the weight vector (normal to the hyperplane),
- x is the feature vector,
- b is the bias term.

Mathematical Formulation of SVM

2- Decision Rule

To classify a new point x, we use:

$$\int f(x) = w^T x + b$$

Mathematical Formulation of SVM

2- Decision Rule

How to calculate distance?

Mathematical Formulation of SVM

3- Maximizing the Margin

• The margin is the distance between the hyperplane and the support vectors. The objective is to maximize this margin, which is defined as: $\boxed{\text{Margin} = \frac{2}{||w||}}$

This leads to the optimization problem:

$$\min \frac{1}{2}||w||^2$$

Subject to:

$$y_i(w^Tx_i+b) \geq 1, \quad orall i$$

Mathematical Formulation of SVM

3- Maximizing the Margin (Hinge Loss)

The **Hinge Loss** function in SVM is:

$$ext{Loss} = \sum_{i=1}^n \max(0, 1 - y_i(w \cdot x_i + b))$$

- If $y(w \cdot x + b) \ge 1$ \rightarrow No penalty (correct classification & outside margin).
- If $y(w \cdot x + b) < 1$ \rightarrow Penalty applied (inside the margin or misclassified).

Soft Margin SVM (Handling Overlapping Classes)

For real-world data, strict separation may not always be possible due to noise or outliers.

Soft Margin SVM (Handling Overlapping Classes)

For real-world data, strict separation may not always be possible due to noise or outliers.

• Solution: Introduce a slack variable ξ to allow some misclassifications:

$$y_i(w^Tx_i+b) \geq 1-\xi_i$$

where ξ_i is a penalty for misclassified points.

Soft Margin SVM (Handling Overlapping Classes)

New Objective Function (Hinge Loss):

$$\min\frac{1}{2}||w||^2+C\sum_{i=1}^n\xi_i$$

where:

- ξ_i is a penalty for misclassified points.
- C is a regularization parameter controlling trade-off between maximizing margin and minimizing misclassification.

Non-Linear SVM: Kernel Trick

- If data is not linearly separable, we map it to a higherdimensional space where a linear hyperplane can separate the classes.
- Solution: Use a kernel function K(xi,xj) to compute similarity without explicitly transforming the data.

Non-Linear SVM: Kernel Trick

• Example 1:

Non-Linear SVM: Kernel Trick

• Example 1:

Non-Linear SVM: Kernel Trick

• Example 2:

Non-Linear SVM: Kernel Trick

Non-Linear SVM: Kernel Trick

• Example 3:

Watch Video

Non-Linear SVM: Kernel Trick

Common Kernels:

1- Linear Kernel:

$$K(x_i,x_j)=x_i^Tx_j$$

Used when data is linearly separable.

• 2- Polynomial Kernel:

$$K(x_i,x_j)=(x_i^Tx_j+c)^d$$

Used for non-linear data with polynomial relationships.

 3- Radial Basis Function (RBF) Kernel (Gaussian Kernel):

$$K(x_i,x_j)=\exp\left(-\gamma||x_i-x_j||^2
ight)$$

Most commonly used for non-linear problems.

Hyperparameter γ controls influence of points.

SVM for Multi-Class Classification

Since SVM is a binary classifier, we need strategies to handle multiple classes:

One-vs-All (OvA):

- Train N classifiers (one for each class vs. all others).
- Choose the class with the highest confidence score.

One-vs-One (OvO):

- Train classifiers for every pair of classes (N \times (N-1)/2 models).
- The final class is chosen by majority vote.

SVM for Multi-Class Classification

Example: How to use an SVM model for a problem with three classes?

SVM for Multi-Class Classification

One-vs-One (OvO):

SVM for Multi-Class Classification

One-vs-All (OvA):

Confusion Matrix

- Before diving into classification metrics, it's crucial to understand the confusion matrix, which serves as the foundation for most evaluation measures.
- A confusion matrix is a table that describes the <u>performance of a classification</u> model by comparing predicted labels with actual labels.

Confusion Matrix

		Predicted Positive	Predicted Negative
Actual Negative False Positive (FD) True Negative (TN)	Actual Positive	True Positive (TP)	False Negative (FN)
Actual Negative Taise Positive (FF) True Negative (TN)	Actual Negative	False Positive (FP)	True Negative (TN)

- True Positives (TP): The model correctly predicts positive cases.
- False Positives (FP): The model incorrectly predicts positive when it's actually negative.
- False Negatives (FN): The model incorrectly predicts negative when it's actually positive.
- True Negatives (TN): The model correctly predicts negative cases.

Classification Metrics Based on the Confusion Matrix

- Using the confusion matrix, we define different performance metrics:
- Accuracy (Overall Correct Predictions)
- Precision (Positive Predictive Value)
- Recall (Sensitivity, True Positive Rate)
- F1-Score (Balance of Precision & Recall)
- ROC Curve & AUC (Area Under Curve)

...

Accuracy (Overall Correct Predictions)

Accuracy:

$$ext{Accuracy} = rac{TP + TN}{TP + TN + FP + FN}$$

- Measures how many predictions were correct. Problem:
- Can be misleading for imbalanced datasets (e.g., 99% non-poisonous, 1% poisonous → accuracy = 99% even if model never detects poisonous plants).

Precision (Positive Predictive Value)

• Precision:

$$ext{Precision} = rac{TP}{TP + FP}$$

- High precision \rightarrow fewer false positives.
- Useful when FP is costly (The model predicts "poisonous," but the plant is actually safe → Not dangerous, just an unnecessary warning.)

Recall (Sensitivity, True Positive Rate)

Recall:

$$ext{Recall} = rac{TP}{TP + FN}$$

- High recall \rightarrow fewer false negatives.
- Useful when FN is costly (e.g., missing poisonous plants could be dangerous).

Recall (Sensitivity, True Positive Rate)

- F1-Score
- F1-score is the harmonic mean of Precision and Recall:

$$F1 = 2 imes rac{ ext{Precision} imes ext{Recall}}{ ext{Precision} + ext{Recall}}$$

- It balances precision and recall.
- Useful when classes are imbalanced (e.g., detecting rare diseases).
- If false positives and false negatives have different costs, F1-score helps optimize both.

ROC Curve & AUC (Area Under Curve)

 ROC Curve plots True Positive Rate (Recall) vs. False Positive Rate (FPR):

$$\mathit{FPR} = rac{\mathit{FP}}{\mathit{FP} + \mathit{TN}}$$

- AUC (Area Under Curve) measures the model's ability to separate classes:
 - AUC = $1 \rightarrow Perfect classifier$
 - AUC = 0.5 → Random guessing
 - AUC $< 0.5 \rightarrow$ Worse than random

ROC Curve & AUC (Area Under Curve)

Choosing the Right Metric

Scenario	Best Metric
Balanced dataset	Accuracy, F1-Score
Imbalanced dataset	Precision, Recall, F1-Score, AUC
False Positives costly (e.g., spam filter)	Precision
False Negatives costly (e.g., cancer detection)	Recall
Probabilistic outputs needed	Log Loss

Thank you for your attention...

Université Constantine 2 129