Question 1:

1. (n+1)(n+8)

- a. $(n+1)(n+8) = n^2+9n+8$ $n^2+9n+8 \le n^2+9n^2+8n^2$ $n^2+9n^2+8n^2 = 15n^2$ Since $15n^2 \le C \cdot n^2$ for all n > 1, (n+1)(n+8) is $O(n^2)$
- b. $(n+1)(n+8) = n^2+9n+8$ We need to prove that $n^2+9n+8 > C \cdot n^2$ for all n with some constant CPicking C = 5 we find that for all n > 3 the equation $n^2+9n+8 > C \cdot n^2$ holds Therefore (n+1)(n+8) is in $\Omega(n^2)$
- c. Since (n+1)(n+8) is in both $O(n^2)$ and $\Omega(n^2)$ is it therefore in $\Theta(n^3)$

2. $n^2 + \log n$

- a. Since $log n \le n^2$ for all n we can rewrite $n^2 + log n$ as $n^2 + n^2 OR 2n^2$ Since $2n^2 \le 2 \cdot n^2$ for all n > 1 $n^2 + log n$ is $O(n^2)$
- b. Assume $n^2 + log n$ is $\Omega(n^2)$ Therefore there must exist a C where $n^2 + log n > C \cdot n^2$ if true for all n Dividing both sides by n^2 gives us $1 + log n/n^2 > C$ Since the limit as n approaches infinity of $log n/n^2$ is 0Since we can pick any C > 1 that disproves this inequality Therefore $n^2 + log n$ is not in $\Omega(n^2)$
- c. Since n^2 +log n is not in $\Omega(n^2)$, it is therefore not in $\Theta(n^2)$

3. (n+8) log n

a. $(n+8) \log n = n \log n + 8 \log n$ Since $n \log n > 8 \log n$ for all n > 8, $2n \log n > n \log n + 8 \log n$ for all n > 8By definition of big oh ,the equation $2n \log n < C \cdot n^2$ for all n must hold Dividing both sides by 2n we get $log n < C \cdot n/2$ This holds true for all n > 4 while C = 1Therefore (n+8) log n is in $O(n^2)$

4. 10n³

a. Assume $10n^3$ is in $O(n^2)$

Therefore there must exist a C and n where $10n^3 \le C \cdot n^2$ for all n Therefore $n \le C/10$ should hold for all n However this doesnt hold for n = C/10 + 1

Therefore 10n³ is not in O(n²)

- b. Since $10n^3 > C \cdot n^2$ where C = 1 for all n > 1, $10n^3$ is $\Omega(n^2)$
- c. Since $10n^3$ is not in $O(n^2)$ and it is in $\Omega(n^2)$, it is therefore not in $\Theta(n^2)$

5.

6. 4n+5

a. Since $5n^2 > 5$ for all N and $4n^2 > 4n$ for all n, we can rewrite 4n+5 as $4n^2+5n^2$ $4n^2+5n^2=9n^2$ $9n^2 \le C \cdot n^2$ for all n > 1 where C = 9 Therefore 4n+5 is in $O(n^2)$

b. Proof by contradiction:

Assume 4n+5 is in $\Omega(n^2)$

Therefore we assume $4n+5 > C \cdot n^2$

Let $C_2 = C - 5$,

Since for $4n > C_2 \cdot n^2$ there is no C_2 where 4n is greater for all $n > n_0$

We have found a contradiction.

Therefore 4n+5 is in not in $\Omega(n^2)$

c. Since 4n+5 is not in $\Omega(n^2)$ we can state that 4n+5 is not in $\Theta(n^2)$

Question 2:

- A. Worst case, the algorithm performs (n * (n 1))/2 comparisons
- B. The Big-Oh of this algorithm would be $O(n^2)$. $n \cdot (n-1) = n^2 - n$, since $n < n^2$ for all n we can rewrite the equation as $2n^2$

Therefore since $2n^2 > 2 \cdot n^2$ for all n > 0 we can say $n \cdot (n - 1)$ is in $O(n^2)$

C.

```
    x=0; y=1;
    int minDifference = abs(Age[0]-Age[1]);
    for (i=0; i≤n-1; i++) {
    int difference = abs(Age[i]-Age[i+1]);
    if (difference < minDifference) {</li>
    minDifference=difference;
    x=i;
    y=j;
    }
    }
    return x, y;
```

D. Due to the fact that the for loop will always perform n iterations, we can say that the algorithm is in O(n)

Question 3:

```
A)
Given array A of N integers

for(int i = 0; i ≤ N; i++){
    int cSum = 0;
    for(int j = 0; j ≤ N; j++){
        if(A[j] < A[i])
        cSum++;
    }
    If(cSum == (N-1)/2)
        return A[i];
}

B)

Best Case = O(n)
```

This is the case where the first number is the median, total values visited is N + 1 which is O(n) complexity

Worst Case = $O(n^2)$

This is the case where the last number is the median, total values checked is N * N which is $O(n^2)$ complexity