МИНИСТЕРСТВО НАУКИ ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

Мегафакультет трансляционных информационных технологий

Факультет информационный технологий и программирования

Лабораторная работа №02

По дисциплине «Введение в цифровую культуру и программирование» Эффективное кодирование

Вариант №1

Выполнил студент группы №М3109 Бабурин Тимур Сергеевич

Проверил Хлопотов Максим Валерьевич

ИСХОДНОЕ ИЗОБРАЖЕНИЕ И ФОТОГРАФИЯ В ЗАДАННОМ ФОРМАТЕ.

Исходное изображение.

Фотография в заданном формате.

Изображение было обработано с помощью программы: "paint.net".

- 1.0брезание происходило с помощью инструмента: "Выбор прямоугольной области".
- 2.Изменение цвета происходило с помощью функций: "Коррекция"» "Сделать чёрно-белым".
- 3.Глубина цвета была изменена при сохранений изображения(8 бит):

ПОЛУЧЕННАЯ ЦИФРОВАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ.

Программа.

```
#include <cmath>
#include "bitmap_image.hpp" //Библиотека растровых изображений С++
int main()
     bitmap_image image("image_ch_b.bmp"); //Объект, где хранится изображение.
     int picture[128][128]; //Maccub для данных изображения.
for (int i = 0; i < image.width(); i++)</pre>
               for (int j = 0; j < image.height(); j++)</pre>
                     rgb t colour;
                    image.get_pixel(i, j, colour); //Получаем данные.
picture[i][j] = colour.red; //Значения RGB в нашем формате(ч/б) равны, поэтому записать
               picture[i][64] = round(double(picture[i][64]) / 20) * 20; //Квантование.
               freq[picture[i][64]]++;
               cout << picture[i][64] << ' '; //Выводим на консоль среднюю строку.
          if (freq[i] != 0)
               cout << i << ' ' << freq[i] << endl; //Выводим на консоль частоту встречаемости. entropy -= (double(freq[i]) / 128) * log2(double(freq[i]) / 128); //Считаем энтропию
     cout << "Entropy = " << entropy; //Выводим на консоль энтропию.</pre>
     return 0:
```

Последовательность.

ВЕРОЯТНОСТЬ ПОЯВЛЕНИЯ.КОЛИЧЕСТВО СИМВОЛОВ АЛФАВИТА.ЭНТРОПИЯ.РАСЧЁТНАЯ ДЛИНА ДВОИЧНОГО КОДА.

Символ	Вероятность
160	$\frac{5}{128} = 0.039$
260	$\frac{6}{128} = 0.046$
40	$\frac{8}{128} = 0.062$
80	$\frac{9}{128} = 0.070$
180	$\frac{10}{128} = 0.078$
120	$\frac{11}{128} = 0.085$
60	$\frac{12}{128} = 0.093$
140	$\frac{12}{128} = 0.093$
240	$\frac{12}{128} = 0.093$
100	$\frac{13}{128} = 0.101$
220	$\frac{14}{128} = 0.109$
200	$\frac{16}{128} = 0.125$

Количество символов: 12.

Энтропия по формуле: 3.5204.

Расчётная длина двоичного кода: 4.

Символ	160	260	40	80	180	120	60	140	240	100	220	200
Код	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011

коды шеннона-фано.

Символ	Вероятность	1	2	3	4
200	$\frac{16}{128} = 0.125$	0	0	0	
220	$\frac{14}{128} = 0.109$			1	
100	$\frac{13}{128} = 0.101$		1	0	
140	$\frac{12}{128} = 0.093$			1	0
240	$\frac{12}{128} = 0.093$				1
60	$\frac{12}{128} = 0.093$	1	0	0	
120	$\frac{11}{128} = 0.085$			1	0
180	$\frac{10}{128} = 0.078$				1
80	$\frac{9}{128} = 0.070$		1	0	0
40	$\frac{8}{128} = 0.062$				1
260	$\frac{6}{128} = 0.046$			1	0
160	$\frac{5}{128} = 0.039$				1

Символ	200	220	100	140	240	60	120	180	80	40	260	160
Код	000	001	010	0110	0111	100	1010	1011	1100	1101	1110	1111

КОДОВОЕ ДЕРЕВО ХАФФМАНА.

КОДЫ ХАФФМАНА ДЛЯ СИМВОЛОВ.

Символ	Код	
200	100	
220	011	
100	010	
60	1111	
240	001	
140	000	
120	1110	
180	1100	
80	1011	
40	1010	
260	11011	
160	11010	

ЗАКОДИРОВАННОЕ РАВНОМЕРНЫМ КОДОМ СООБЩЕНИЕ, ДЛИНА КОДОВОГО СЛОВА, КОЛИЧЕСТВО ПЕРЕДАННОЙ ИНФОРМАЦИИ ПРИ ПЕРЕДАЧЕ СООБЩЕНИЯ.

Последовательность, которая была закодирована:

Закодированное сообщение:

Длина кодового слова: 4.

Количество информаций при передаче сообщений: 512 бит.

ЗАКОДИРОВАННАЯ ПОЛУЧЕННЫМ КОДОМ ШЕННОНА-ФАНО ПОСЛЕДОВАТЕЛЬНОСТЬ, ДЛИНА КОДОВОГО СЛОВА, КОЛИЧЕСТВО ПЕРЕДАННОЙ ИНФОРМАЦИИ ПРИ ПЕРЕДАЧЕ СООБЩЕНИЯ.

Последовательность, которая была закодирована:

Закодированное сообщение:

Количество информаций при передаче сообщений: 457 бит.

ЗАКОДИРОВАННАЯ ПОЛУЧЕННЫМ КОДОМ ХАФФМАНА ПОСЛЕДОВАТЕЛЬНОСТЬ, ДЛИНА КОДОВОГО СЛОВА, КОЛИЧЕСТВО ПЕРЕДАННОЙ ИНФОРМАЦИИ ПРИ ПЕРЕДАЧЕ СООБЩЕНИЯ.

Последовательность, которая была закодирована:

Закодированное сообщение:

Количество информаций при передаче сообщений: 456 бит.

РАСЧЕТЫ ПО П. 8 - 10 ЗАДАНИЯ НА ЛАБОРАТОРНУЮ РАБОТУ.

$$I_{\mathrm{cp}} = \sum_{i=1}^m f_i \, k_i$$
 $Q = 1 - \frac{entropy}{I_{\mathrm{cp}}}$ $R = \frac{i_{\mathrm{исходное}}}{i_{\mathrm{закодированного}}}$

Средняя длина кодовой комбинаций:

Шеннон-Фано:

$$I_{cp} = 3 \times \frac{16}{128} + 3 \times \frac{14}{128} + 3 \times \frac{13}{128} + 3 \times \frac{12}{128} + 4 \times \frac{12}{128} + 4 \times \frac{12}{128} + 4 \times \frac{11}{128} + \frac{11}{128} +$$

Хаффман:

$$I_{cp} = 3 \times \frac{12}{128} + 3 \times \frac{12}{128} + 4 \times \frac{12}{128} + 5 \times \frac{5}{128} + 5 \times \frac{6}{128} + 4 \times \frac{8}{128} + 4 \times \frac{9}{128} + 4 \times \frac{10}{128} + 4 \times \frac{11}{128} + 3 \times \frac{13}{128} + 3 \times \frac{14}{128} + 3 \times \frac{16}{128} = 3.5625$$

11

Степень сжатия сообщений:

Шеннон-Фано:

$$R = \frac{512}{457} = 1.12035$$

Хаффман:

$$R = \frac{512}{456} = 1.12280701$$

Избыточность для сформированных кодов:

Шеннон-Фано:

$$Q = 1 - \frac{3.5204}{3.570} = 0.0138$$

Хаффман:

$$Q = 1 - \frac{3.5204}{3.5625} = 0.0118$$

вывод.

Методика Шеннона-Фано не всегда приводит к однозначному построению кода. Так как при разбиений на подгруппы можно сделать большей по вероятности как верхнюю, так и нижнюю подгруппу. В результате среднее число символов на букву окажется другим. При этом метод Хаффмана гарантирует однозначное построение кода с наименьшим для данного распределения вероятностей средним числом символов на букву. Метод Хаффмана производит такое сжатие, что сжимает данные до их энтропий, если вероятности символов точно равны отрицательным степеням двойки.По моему мнению метод Хаффмана вссегда будет лучше результатов по методу Шеннона-Фано.