GCfit

Globular Cluster Observation Data

Data File Catalog

1 Introduction

in a hdf file..... etc

All supplementary error datasets can be either the symmetric dataset or two separate down and up error datasets.

Everything should be within the given "key" group under the main file group. But if multiple "versions" of the datasets are to be used, then you can put everything under other groups under the key, which should be sorted out correctly under data.

But, this MUST be done for everything in that group, all parent groups of subgroups will not be read in data, so there can be no shared space for groups and datasets. All datasets must go under the lowest level of subgroup.

2 Attributes

Overall cluster attributes.

Variable	Attribute Name	Notes	Default Value	Units
Galactic Longitude	1	Required for pulsar fitting	N/A	degrees
Galactic Latitude	b	Required for pulsar fitting	N/A	degrees
Right Ascension	RA	Required for mass function fitting	N/A	degrees
Declination	DEC	Required for mass function fitting	N/A	degrees
Metallicity	FeHe	Defines mass function evolution	-1.00	dex
Age	age	Defines mass function evolution	12	Gyr
Total Proper Motion	μ	Required for pulsar fitting	N/A	mas/yr
Total escape rate \dot{N}	Ndot	Defines mass function evolution	-20	

key: /initials

All the parameters which are fit on these values are the initial guesses defaults are used if this isnt in the file, or any field is missing

Variable	Attribute Name	Description	Default Value
W_0	WO	Central potential	6.0
M	M	Total cluster mass $[10^6 M_{\odot}]$	0.69
r_h	rh	Half-mass radius [pc]	2.88
$\log(r_a)$	ra	Anisotropy radius $[\log(pc)]$	1.23
g	g	Truncation parameter	0.75
δ	delta		0.45
s^2	s2	Velocity scale nuisance parameter	0.1
F	F	Mass function nuisance parameter	0.45
a_1	a1	1st mass function power law exponent	0.5
a_2	a2	2nd mass function power law exponent	1.3
a_3	a3	3rd mass function power law exponent	2.5
BH_{ret}	BHret	Black hole initial retention fraction	0.5
d	d	Cluster distance [kpc]	6.405

3 Data Products

3.1 Pulsar Accelerations

key: /pulsar

3.1.1 Datasets

Variable	Dataset Name	Supplementary Datasets	attributes
Radial distance	r*		unit
Spin period	P*	Δ P	unit
Spin period derivative	Pdot_meas*	$\Delta \mathtt{Pdot_meas}^*$	unit
Orbital period	Pb*	Δ Pb	unit
Orbital period derivative	Pbdot_meas*	$\Delta { t Pbdot_meas}^*$	unit
Pulsar identifier	id		

Pulsars can be fit on the timing solutions of both the isolated pulsar spin (P, Pdot_meas) and the binary systems orbit (Pb, Pbdot). The period, derivative and corresponding errors are required for either.

^{*} denotes required fields

3.1.2 Attributes

Attribute	Description
source	Literature source(s) of data
m	Mean stellar mass of tracer stars $[M_{\odot}]$

3.2 Number Density

 \mathbf{key} : /number_density

3.2.1 Datasets

Variable	Dataset Name	Supplementary Datasets	attributes
Radial distance	r*		unit
Number Density	Σ^*	$\Delta\Sigma^*$	unit

3.2.2 Attributes

Attribute	Description
source	Literature source(s) of data
m	Mean stellar mass of tracer stars $[M_{\odot}]$

3.3 Proper Motions

 \mathbf{key} : /proper_motion

3.3.1 Datasets

Variable	Dataset Name	Supplementary Datasets	attributes
Radial distance	r*	Δ r	unit
Total proper motion	PM_tot*	Δ PM_tot *	unit
Proper motion ratio	PM_ratio*	Δ PM_ratio *	method
Radial proper motion	PM_R*	Δ PM_R*	unit
Tangential proper motion	PM_T*	Δ PM_T*	unit

The proper motions can be fit on any of these components. The corresponding errors are required for any.

3.3.2 Attributes

Attribute	Description
source	Literature source(s) of data
m	Mean stellar mass of tracer stars $[M_{\odot}]$

3.4 Velocity Dispersions

 $\mathbf{key} \colon \texttt{/velocity_dispersion}$

3.4.1 Datasets

Variable	Dataset Name	Supplementary Datasets	attributes
Radial distance	r*		unit
LOS velocity dispersion	σ^*	$\Delta \sigma^*$	unit

3.4.2 Attributes

Attribute	Description
source	Literature source(s) of data
m	Mean stellar mass of tracer stars $[M_{\odot}]$

3.5 Mass Functions

 $\mathbf{key} \colon \texttt{/mass_function}$

3.5.1 Datasets

Variable	Dataset Name	Supplementary Datasets	attributes
Number of stars	N*	$\Delta \mathtt{N}^*$	
Radial bin inner bound	r1*		unit
Radial bin outer bound	r2*		unit
Mass bin inner bound	m1*		unit
Mass bin outer bound	m2*		unit
Observation fields	fields*		${ t field_unit}$
			See caption

The fields dataset is an array of string names of different observational program's PIs. Each name has a corresponding attribute entry within the dataset, which consists of a 2d-array of (RA, DEC) coordinates which define the polygonal boundaries of this observation. If a single program has multiple polygons, they are denoted by the addition of an underscore followed by a single alphanumeric character (_a, _b, etc.). All coordinates are given in the units defined by field_unit.

3.5.2 Attributes

Attribute	Description
source	Literature source(s) of data