1 Arithmétique

1.1 Division euclidienne et pgcd

Soient $a,b\in\mathbb{Z}$. On dit que b *divise* a et on note b|a s'il existe $q\in\mathbb{Z}$ tel que a=bq.

Théorème (Division euclidienne). Soit $a \in \mathbb{Z}$ et $b \in \mathbb{N} \setminus \{0\}$. Il **existe** des entiers $q, r \in \mathbb{Z}$ tels que

$$a = bq + r$$
 et $0 \le r < b$

De plus q et r sont uniques.

Terminologie : q est le quotient et r est le reste.

Nous avons donc l'équivalence : r = 0 si et seulement si b divise a.

Pgcd de deux entiers

Soient $a, b \in \mathbb{Z}$ deux entiers, non tous les deux nuls. Le plus grand entier qui divise à la fois a et b s'appelle le *plus grand diviseur commun* de a, b et se note $\operatorname{pgcd}(a,b)$.

Algorithme d'Euclide

Lemme. Soient $a, b \in \mathbb{N}^*$. Écrivons la division euclidienne a = bq + r. Alors

$$pgcd(a,b) = pgcd(b,r)$$

Algorithme d'Euclide.

On souhaite calculer le pgcd de $a,b\in\mathbb{N}^*$. On peut supposer $a\geqslant b$. On calcule des divisions euclidiennes successives. Le pgcd sera le dernier reste non nul :

- division de a par b, $a = bq_1 + r_1$. Par le lemme, $pgcd(a, b) = pgcd(b, r_1)$ et si $r_1 = 0$ alors pgcd(a, b) = b sinon on continue :
- $b = r_1q_2 + r_2$, $pgcd(a, b) = pgcd(b, r_1) = pgcd(r_1, r_2)$,
- $-r_1 = r_2q_3 + r_3$, $pgcd(a, b) = pgcd(r_2, r_3)$,
- _ .1

Nombres premiers entre eux

Deux entiers a, b sont premiers entre eux si pgcd(a, b) = 1.

Si deux entiers $a, b \in \mathbb{Z}$ ne sont pas premiers entre eux, on peut s'y ramener en divisant par $d = \operatorname{pgcd}(a, b)$.

$$\begin{cases} a = a'd \\ b = b'd \end{cases} \text{ avec } a', b' \in \mathbb{Z} \text{ et } \operatorname{pgcd}(a', b') = 1$$

1.2 Théorème de Bézout

Théorème (Théorème de Bézout). Soient a,b des entiers. Il existe des entiers $u,v\in\mathbb{Z}$ tels que

$$au + bv = pgcd(a, b)$$

Les entiers u, v sont des coefficients de Bézout. Ils s'obtiennent en « remontant » l'algorithme d'Euclide.

Corollaire. Si d|a et d|b alors d|pgcd(a, b).

Corollaire. Soient a, b deux entiers. a et b sont premiers entre eux si et seulement si il existe u, $v \in \mathbb{Z}$ tels que

$$au + bv = 1$$

Remarque. Si on trouve deux entiers u', v' tels que au' + bv' = d, cela n'implique **pas** que $d = \operatorname{pgcd}(a, b)$. On sait seulement alors que $\operatorname{pgcd}(a, b)|d$.

Corollaire (Lemme de Gauss). *Soient* $a, b, c \in \mathbb{Z}$.

Si
$$a|bc$$
 et $pgcd(a,b) = 1$ alors $a|c$

Équations ax + by = c

Proposition. Considérons l'équation

$$ax + by = c (E)$$

 $où a, b, c \in \mathbb{Z}$.

 L'équation (E) possède des solutions (x, y) ∈ Z² si et seulement si pgcd(a, b)|c. 2. Si pgcd(a, b)|c alors il existe même une infinité de solutions entières et elles sont exactement les $(x, y) = (x_0 + \alpha k, y_0 + \beta k)$ avec $x_0, y_0, \alpha, \beta \in \mathbb{Z}$ fixés et k parcourant \mathbb{Z} .

ppcm

Le ppcm(a, b) (plus petit multiple commun) est le plus petit entier ≥ 0 divisible par a et par b.

Proposition. Si a, b sont des entiers (non tous les deux nuls) alors

$$pgcd(a, b) \times ppcm(a, b) = |ab|$$

Proposition. Si a|c et b|c alors ppcm(a, b)|c.

1.3 Nombres premiers

Un *nombre premier* p est un entier ≥ 2 dont les seuls diviseurs positifs sont 1 et p.

Proposition. Il existe une infinité de nombres premiers.

Remarque. Si un nombre n n'est pas premier alors un de ses facteurs est $\leq \sqrt{n}$.

Proposition (Lemme d'Euclide). Soit p un nombre premier. Si p|ab alors p|a ou p|b.

Théorème (Décomposition en facteurs premiers). Soit $n \ge 2$ un entier. Il existe des nombres premiers $p_1 < p_2 < \cdots < p_r$ et des exposants entiers $\alpha_1, \alpha_2, \ldots, \alpha_r \ge 1$ tels que :

$$n = p_1^{\alpha_1} \times p_2^{\alpha_2} \times \cdots \times p_r^{\alpha_r}.$$

De plus les p_i et les α_i (i = 1, ..., r) sont uniques.

1.4 Congruences

Soit $n \ge 2$ un entier. On dit que a est congru à b modulo n, si n divise b-a. On note alors

$$a \equiv b \pmod{n}$$
.

On note aussi parfois $a=b \pmod n$ ou $a\equiv b \lceil n \rceil$. Une autre formulation est

$$a \equiv b \pmod{n} \iff \exists k \in \mathbb{Z} \quad a = b + kn.$$

Remarquez que n divise a si et seulement si $a \equiv 0 \pmod{n}$.

Proposition.

- 1. La relation « congru modulo n » est une relation d'équivalence :
 - (Réflexivité) $a \equiv a \pmod{n}$,
 - (Symétrie) si $a \equiv b \pmod{n}$ alors $b \equiv a \pmod{n}$,
 - (Transitivité) si $a \equiv b \pmod{n}$ et $b \equiv c \pmod{n}$ alors $a \equiv c \pmod{n}$.
- 2. Si $a \equiv b \pmod{n}$ et $c \equiv d \pmod{n}$ alors $a + c \equiv b + d \pmod{n}$.
- 3. Si $a \equiv b \pmod{n}$ et $c \equiv d \pmod{n}$ alors $a \times c \equiv b \times d \pmod{n}$.
- 4. Si $a \equiv b \pmod{n}$ alors pour tout $k \ge 0$, $a^k \equiv b^k \pmod{n}$.

Équation de congruence $ax \equiv b \pmod{n}$

Proposition. Soit $a \in \mathbb{Z}^*$, $b \in \mathbb{Z}$ fixés et $n \ge 2$. Considérons l'équation $ax \equiv b \pmod{n}$ d'inconnue $x \in \mathbb{Z}$:

- 1. Il existe des solutions si et seulement si pgcd(a, n)|b.
- 2. Les solutions sont de la forme $x = x_0 + \ell \frac{n}{pgcd(a,n)}$, $\ell \in \mathbb{Z}$ où x_0 est une solution particulière. Il existe donc pgcd(a, n) classes de solutions.

Théorème (Petit théorème de Fermat). $Si\ p\ est\ un\ nombre\ premier\ et\ a\in\mathbb{Z}$ alors

$$a^p \equiv a \pmod{p}$$

Corollaire. Si p ne divise pas a alors

$$a^{p-1} \equiv 1 \pmod{p}$$