城市地下管线 PHM 系统使用文档

目 录

1. 软件多	2装运行	亍说明	. 3
1.1.	初次:	运行配置	3
	1.1.1.	配置系统环境变量	3
	1.1.2.	安装 MATLAB 库	3
	1.1.3.	配置 oracle 数据库驱动	3
	1.1.4.	测试数据库连接	3
1.2.	软件	目录结构	4
1.3.	软件:	运行说明	5
	1.3.1.	安装并运行服务	5
	1.3.2.	停止服务	5
	1.3.3.	卸载服务	6
	1.3.4.	功能模块运行日志	6
	1.3.5.	服务运行日志	6
2. 软件扩	一展说明	月	. 6
2.1.	对象数	炎目扩展	7
	2.1.1.	管线数目扩展	7
	2.1.2.	传感器数目扩展	7
2.2.	CPD 表	走的配置	8
	2.2.1.	故障与故障的 CPD	9
	2.2.2.	故障与传感器的 CPD	9
2.3	健康度	评估模块的参数配置	10

11	4 故障预警模块的参数配	2.4
	٤	3. 其他.
12	1	3.1.

1.软件安装运行说明

1.1. 初次运行配置

1.1.1. 配置系统环境变量

解压缩安装包,以管理员方式运行根目录下的 AddPhmPath.bat,写入完成后可能需要注销或重启以使得环境变量生效。

可在命令提示符中输入 echo %PHM_HOME% 查看新的环境变量是否生效;注意设置完环境变量后,如果移动了软件文件夹所在位置,需要再次运行AddPhmPath.bat 重新设置环境变量。

1.1.2. 安装 MATLAB 库

运行 \MCR files 中的 MCRInstaller.exe, 按步骤安装到某个位置 (例如 D:\xxx\)。

1.1.3. 配置 oracle 数据库驱动

将 \MCR 配置 中的 add_classpath.bat 和 ojdbc6.jar 放到之前安装的 MATLAB 库的根目录下 (例如 D:\xxx\v716\)

运行 add_classpath.bat 将 oracle 驱动的地址写入 MATLAB 环境,运行成功后会有提示。

1.1.4. 测试数据库连接

以上3步成功后,打开 \DBinfo.ini, 修改其中的

service_name_oracle: 服务名/SID

username_oracle: 用户名

password_oracle: 密码

database_url_oracle: 将最后的 localhost:1521 改为目标 IP 和端口号

修改完成后,运行 \Precompiled EXE\linkDB test.bat 。初次运行等待时间较长,成功连接上数据库会有提示;如未成功连接也会有相应错误提示。

连接成功后,运行 \序列触发器 sql 脚本\create_trigger.sql 给故障预警表YJ_WARNING_FORECAST 添加触发器。

1.2. 软件目录结构

本软件目录结构及相关说明如下:

根目录.

——Csharp 代码	
├─-PHM 运行失败日志	- 存放软件运行异常日志
WindowsServicePHM	- 存放 PHM 服务 C#源码及 exe 文件
Precompiled EXE	- 存放 Matlab 编译出来的 exe 文件
PHMdiag	· 故障诊断 exe 文件
PHMpredict	- 故障预测 exe 文件
MCR files	存放 MCR 配置文件
Health_Evaluation	健康度评估模块
├─Gas (燃气管线, 暂无)	
──Heat (热力管线, 暂无)	
──Rain (雨水管线, 暂无)	
——Sewage(污水管线,暂无)	
Water	- 存放给水管线的代码及数据
data	- 存放数据文件
sql	存放相关的 SQL 文件
udf	UserDefineFile 存放用户配置文件
RUL_Prediction	剩余寿命预测模块

1.3. 软件运行说明

本软件以windows 服务的方式运行,可设置为开机自启,运行过程无需人工干预。运行完成后将数据直接写入数据库的相关表格,需要在数据库中查看运行结果。

1.3.1. 安装并运行服务

以管理员方式运行 \Csharp 代码\InstallService.bat, 执行服务的安装, 安装完毕后服务自动开始执行, 可在 \Csharp 代码\ServicePHM.log 中查看服务实时运行状态。

1.3.2. 停止服务

在命令提示符 CMD 中输入 net stop PHM 可停止本服务的运行;输入 net

start PHM 开启服务;也可在系统的服务管理界面中对本服务进行操作。

1.3.3. 卸载服务

以管理员方式运行 \Csharp 代码\UninstallService.bat, 卸载本服务。若服务正在运行,则会先关闭服务,再进行卸载。

1.3.4. 功能模块运行日志

\Csharp 代码\PHM.log 是软件各个模块的运行日志,每执行一次诊断、评估、或预警,都会在 PHM.log 中写入实时运行状态日志。

若该功能模块运行成功,日志会保留一段时间,直到被下一次的日志覆盖; 若运行失败,日志会被转入到 \Csharp 代码\PHM 运行失败日志\ 中保存,日志 名称为运行的时间。便于在以后进行集中查看处理。

1.3.5. 服务运行日志

\Csharp 代码\ServicePHM.log 是 PHM 服务的运行日志,用于监控 PHM 服务的运行状态,主要包括服务的开启时刻,关闭时刻,每次执行诊断、评估、预警等功能模块的时间,执行是否成功,服务总运行时间,总运行次数等信息。

若服务启动失败或运行状态异常,能迅速在 ServicePHM.log 反映出来,便 于查找异常原因,进行相应的软件维护措施。

2.软件扩展说明

本软件部分内容(核心算法除外)支持用户的自行定义和配置,主要包括对象数目的扩展、条件概率表 CPD 的配置、健康度评估模块中不同影响因素的权值配置、故障预警模块的相关配置等。

2.1. 对象数目扩展

对于同一类型的管线,本软件支持模型结构的横向扩展,即传感器数目和管线数目的扩展。但不支持纵向扩展(如增加故障种类、改变故障的因果关系等)。

以给水管线为例,数目扩展主要是通过修改传感器与管线的 D 矩阵文件—— \Fault_Diagnosis\Water\data\udf\Dmatrix_Water.txt 实现。打开该文件,可看到传感器名称以及它能监测到的管线编号,如下图所示:

Dmatrix_Wate	r.txt - 记事本	_	· CONTRACTOR CONTRACTOR
文件(F) 编辑(E)	格式(O) 查看(V) 帮助(H)		
212015090057	:GX_JSL_3000_JYJ_254	:GX_JSL_3000_JYJ_257	:GX_JSL_3000_JYJ_255,GX_JSL_3000_JYJ_256
212015090004	:GX_JSL_3000_JYJ_258	:GX_JSL_3000_JYJ_261	:GX_JSL_3000_JYJ_259,GX_JSL_3000_JYJ_260
212015090002	:GX_JSL_3000_JYJ_261	:GX_JSL_3000_JYJ_266	:GX_JSL_3000_JYJ_265,GX_JSL_3000_JYJ_264,GX_
212015090044	:GX_JSL_3000_JYJ_267	:GX_JSL_3000_JYJ_270	:GX_JSL_3000_JYJ_268,GX_JSL_3000_JYJ_269
212015090059	:GX_JSL_3000_JYJ_231	:GX_JSL_3000_JYJ_234	:GX_JSL_3000_JYJ_232,GX_JSL_3000_JYJ_233
212015090032	:GX_JSL_3000_JYJ_243	:GX_JSL_3000_JYJ_244	

第一行中,212015090057代表传感器编号,英文字符冒号":"作为分隔符, 其可以检测到的管线组为后面3组:

- 1、GX_JSL_3000_JYJ_254
- 2、GX_JSL_3000_JYJ_257
- 3、GX_JSL_3000_JYJ_255,GX_JSL_3000_JYJ_256(这组无法进一步细分)

2.1.1. 管线数目扩展

若某一条对应关系为BG1:358:371;此时若新增的管线编号900也可以被BG1监测到,只需在371后面添加字符":900"即可,变为"BG1:358:371:900"(注意冒号必须为英文字符)。

如果新增的管线无法被当前任意一个传感器监测到,则该管线属于不可探测管线,无需添加对应关系。

2.1.2. 传感器数目扩展

如果现在新增了传感器 T800,则需要根据传感器的安装位置找出该传感器能够监测到的管线编号,如100,200,300和400。然后在txt文件的末尾添加一行"T800:100:200:300:400"即可。

通过以上 2 步,就可以实现对管线数目和传感器数目的扩展,但还需要在CPD 表中添加对应的CPD 值才能够使软件正常运行(见 2.2. CPD 表的修改)。注意所有修改完成后,需要运行\Fault_Diagnosis\删除原配置-给水.bat,以删除之前的缓存数据,确保修改生效。

下一次执行时,软件就会读入 Dmatrix Water.txt 中的新型结构,并自动搭建新型贝叶斯推理网络,完成后续的各个功能步骤,无需修改源码重新编译。

2.2. CPD 表的配置

条件概率表 (CPD) 的初始值需要由人工设定,它来自于先验知识,可看作是从以往大量的历史数据中统计出来的结果,体现了:

- 1. 各故障之间的因果关系大小。
- 2. 管线运行状态与传感器数值之间的关系。

以给水管线为例, 打开 \故障诊断\Water\data\udf\CPD_Water.txt, 如下图:

2.2.1. 故障与故障的 CPD

给水管线的故障结构为:腐蚀->破损->渗漏。每个节点都是离散节点,只有2种状态,发生/不发生,因此可用0/1表示。若某离散节点有n个父节点,则其CPD值有2ⁿ⁺¹个。因此此处3个节点的CPD值分别为2、4、4个。

这里分别用 C、B、L 代表 3 种故障,则第一行腐蚀故障的 0.7, 0.3 代表 P(C=0)=0.7, P(C=1)=0.3, P(C=1)=0.3,

第二行破损故障的 0.9, 0.2, 0.1, 0.8 代表 P(B=0|C=0)=0.9, P(B=0|C=1)=0.2, P(B=1|C=0)=0.1, P(B=1|C=1)=0.8。

第三行渗漏故障的 0.95,0.2,0.05,0.8 代表 P(L=0|B=0)=0.95,P(L=0|B=1)=0.2, P(L=1|B=0)=0.05, P(L=1|B=1)=0.8。

注意设置数值时必须满足 P(X=0|Y=0) + P(X=1|Y=0) = 1, 即在其他条件相同时, 故障发生与不发生的概率之和必须为 1。

2.2.2. 故障与传感器的 CPD

见上图的后半部分,传感器的输出是一个连续值,在同一状态下的输出应服从高斯分布 N(mean,cov),因此需要给出管线位于不同状态时传感器输出的均值 mean 和方差 cov,这也可以从历史数据中学习得到。

注意, <u>CPD_Water.txt</u> 中传感器的数目、名称及排序必须与 <u>Dmatrix_Water.txt</u> 中的完全相同, 否则会导致某些传感器找不到对应的 CPD 值, 引起错误。因此设置 <u>CPD_Water.txt</u> 时必须对照着 <u>Dmatrix_Water.txt</u> 进行。

例如:对于 Dmatrix 的第一条记录"BG1 : 358: 371", 其对应的 CPD 记录为"BG1 : 1,2,3,4: 0.1,0.2,0.3,0.4"。这里用 A 代表管线 358 的渗漏故障, B 代表管线 371 的故障,则 CPD 含义如下表:

A (发生为 1)	B (不发生为 0)	高斯分布均值 mean	高斯分布方差 cov
0	0	1	0.1
1	0	2	0.2
0	1	3	0.3

1 1 4 0.4

即: 当A, B均不发生时, 传感器数值在1左右, 方差为0.1;

当 A 发生而 B 不发生时, 传感器数值在 2 左右, 方差为 0.2;

当A不发生而B发生时,传感器数值在3左右,方差为0.3;

当 A 发生而 B 也发生时, 传感器数值在 4 左右, 方差为 0.4;

以此类推,若某传感器可以监测 3 个管线的渗漏状态,则其 CPD 值应为 8 个。即对于传感器高斯节点来说,n 个管线对应 2" 个 CPD 值,配置时一定要保证数目的匹配,否则会报错。

因此,如果在 <u>Dmatrix_Water.txt</u> 中增加或修改了传感器数目和管线数目,必须要在 <u>CPD_Water.txt</u> 进行相应的修改或增加,并保证相关的匹配;否则会导致传感器找不到对应的 CPD,程序便无法运行。

2.3 健康度评估模块的参数配置

在健康度评估模块中, 我们设置了影响健康度的 3 个要素: 相对维修费用, 相对破坏程度和专家建议, 并依次分配影响权值为 0.4, 0.4 和 0.2。以给水管线为例, 打开 \Health_Evaluation\Water\data\udf\健康度权值表.txt, 如下图:

三个要素: 分别占据一定的权重

相对维修费用

repair_cost_weight = 0.4 repair_cost_corrosion = 1 repair_cost_broken = 50 repair_cost_leak = 100

相对破坏程度

damage_weight = 0.4 damage_corrosion = 1 damage_broken = 20 damage_leak = 100

专家建议

expert_weight = 0.2 expert_corrosion = 1 expert_broken = 10 expert leak = 100

分级标准 满分100分 数字表示多少分以上才能得到该评价

very_healthy = 80
healthy = 60
semi_healthy = 40
ill = 20
badly_ill = 0

用户可根据实际情况修改上面三个因素的权值,一般确定后就不需要改动了。而本软件通过健康股评估算法对当前诊断结果进行处理后,会得到一个健康度分数,位于0-100之间。

最后一项分级标准,如 very_healthy = 80 表示分数在 80 以上才认为是"非常健康";同理,ill = 20 表示分数在 20~40 之间的为"疾病"状态,而低于 20 为"严重疾病"状态。

用户可通过修改分级标准、来改变属于不同级别的阈值。

2.4 故障预警模块的参数配置

故障预警模块的用户可定义参数位于 \Fault_Prediction\predict_config.ini 中,包括 n_train、n_predict 和 diag_trigger_time : n_train 代表预测所用到的诊断 记录数目, n_predict 代表要预测的数目, diag_trigger_time 表示诊断触发的时间 (分钟)。

故障预警即是利用最近的 n train 条诊断记录来预测未来的 n predict 次诊断

结果。设置 n_{train} 是为了舍弃较早之前的数据,避免很久以前的数据对近期预测的影响,用户可根据实际情况调整 n_{train} 的值。

而 n_predict 则是根据故障诊断的执行频率和故障预警的执行频率相除得到。即若一天执行 24 次诊断 (每小时一次),并执行 1 次预警,则 n_predict 应该设置为 24,这样可以保证每次预警可以预测出未来一天内所有的诊断结果。因此有 n_predict*diag_trigger_time = predict_trigger_time。

3.其他

3.1