Research Design, Fall 2021

08: factorial experiments; analysis of variance; issues with multiple testing

factorial experiments, investigating multiple explanatory factors or sets of treatments

factor (a, b, \ldots)

level (0,1,...)

complete factorial experiment

fractional factorial experiment

main effects

interaction effects

main effect
$$a = \frac{(a_1b_0 - a_0b_0) + (a_1b_1 - a_0b_1)}{2}$$

interaction effect
$$ab = \frac{(a_1b_1 - a_1b_0) - (a_0b_1 - a_0b_0)}{2}$$

ANOVA, generally — analyzing variation among three or more means

ANOVA | This analysis compares variance ratios to determine whether or not significant differences exist among the means of several groups of observations, where each group follows a normal distribution.

An analysis-of-variance extends the t-test, which is used to determine whether or not two means differ, to the case where there are *three or more means*.

main effect
$$a = \frac{(a_1b_0 - a_0b_0) + (a_1b_1 - a_0b_1)}{2}$$

interaction effect
$$ab = \frac{(a_1b_1 - a_1b_0) - (a_0b_1 - a_0b_0)}{2}$$

ANOVA, assumptions — i.i.d. + equal variance + residuals normally distributed

ANOVA | This analysis compares *variance ratios* to determine whether or not significant *differences exist* among the means of several groups of observations, where each group follows a normal distribution.

An analysis-of-variance extends the t-test, which is used to determine whether or not two means differ, to the case where there are *three or more means*.

ASSUMPTIONS | inferences assume,

units are *independent*, *identically distributed* variance is equal (*homoscedastic*) within each group errors are *normally distributed*

ANOVA, the test — do differences exist in the means of groups not likely explained by sampling and variation?

$$H_0: \theta_1 = \theta_2 = \dots = \theta_k$$
 , $H_a: \theta_i \neq \theta_j$ for some i, j

NOTE | we don't always — *or usually* — believe there is zero effect, nor would we find that to be interesting.

ANOVA, one-way analysis of variance

Source of variation	Degrees of freedom	Sum of squares	Mean square	F statistic
Between treatment groups	<i>k</i> – 1	$SS_{B} = \sum n_{i}(\bar{y}_{i} - \bar{y})^{2}$	$MS_{B} = \frac{SS_{B}}{k-1}$	$F = \frac{MS_B}{MS_W}$
Within treatment groups	N-k	$SS_{W} = \sum \sum (y_{ij} - \bar{y}_{i.})^2$	$MS_{W} = \frac{SS_{W}}{N - k}$	
Total	<i>N</i> – 1	$SS_{T} = \sum \sum (y_{ij} - \bar{y})^2$		

Let,

N be the number of observations

k be the number of groups

i be a particular group

j be a particular observation in a group

ANOVA, test — where does the F-statistic fall in the F-distribution?

$$H_0: \theta_1 = \theta_2 = \dots = \theta_k$$
 , $H_a: \theta_i \neq \theta_j$ for some i, j

```
library(ggplot2)
library(ggthemes)
df1 <- 15
df2 <- 12
alpha <- 0.05
xmax \leftarrow qf(0.001, df1, df2, lower.tail = FALSE)
ggplot() +
  theme_tufte(base_family = "sans") +
  stat_function(fun = df,
                args = list(df1 = df1, df2 = df2),
                geom = "density",
                fill = "white",
                xlim = c(0, xmax)) +
  stat_function(fun = df,
                args = list(df1 = df1, df2 = df2),
                geom = "density",
                fill = "lightblue",
                xlim = c(qf(alpha, df1, df2, lower.tail = FALSE), xmax) ) +
 labs(y = "F-distribution Density")
```


ANOVA, example from pre-lecture notes (refactored for another approach)

```
# example in pre-lecture notes
library(dplyr)
dat <- read.csv("quiz video and text data.csv", header = TRUE)</pre>
# F-statistic
k <- nlevels( factor(dat$video) )</pre>
N <- nrow( dat )
SS_B <- dat %>%
  mutate(bar_quiz = mean(quiz)) %>%
  group_by(video) %>%
  summarise(sb = n() * (mean(quiz) - first(bar_quiz)) ^ 2) %>%
  ungroup() %>%
  summarise(SS_B = sum(sb)) %>% .$SS_B
SS_W <- dat %>%
  group_by(video) %>%
  mutate(sw = (quiz - mean(quiz)) ^ 2 ) %>%
  ungroup() %>%
  summarise(SS_W = sum(sw) ) %>%
  .$SS_W
Fstat <- (SS_B / (k - 1)) / (SS_W / (N - k))
# probability of this or greater variation in means from F-distribution
p \leftarrow pf(Fstat, df1 = k - 1, df2 = N - k, lower.tail = F)
```

Compare with R function, which relies on a linear regression model:	
<pre>summary(aov(quiz ~ video, dat))</pre>	

Source of variation	Degrees of freedom	Sum of squares	Mean square	<i>F</i> statistic
Between treatment groups	<i>k</i> – 1	$SS_{B} = \sum n_{i}(\bar{y}_{i} - \bar{y})^{2}$	$MS_{B} = \frac{SS_{B}}{k - 1}$	$F = \frac{MS_B}{MS_W}$
Within treatment groups	N-k	$SS_{\mathbf{W}} = \sum \sum (y_{ij} - \bar{y}_{i.})^2$	$MS_{W} = \frac{SS_{W}}{N - k}$	MS _W
Total	N-1	$SS_{\mathrm{T}} = \sum \sum (y_{ij} - \bar{y})^2$		

ANOVA, example from pre-lecture notes (refactored for another approach)

```
# example in pre-lecture notes
library(dplyr)
dat <- read.csv("quiz video and text data.csv", header = TRUE)</pre>
# F-statistic
k <- nlevels( factor(dat$video) )</pre>
N <- nrow( dat )
SS_B <- dat %>%
 mutate(bar_quiz = mean(quiz)) %>%
  group_by(video) %>%
  summarise(sb = n() * (mean(quiz) - first(bar_quiz)) ^ 2) %>%
  ungroup() %>%
  summarise(SS_B = sum(sb)) %>% .$SS_B
SS_W <- dat %>%
  group_by(video) %>%
 mutate(sw = (quiz - mean(quiz)) ^ 2 ) %>%
  ungroup() %>%
  summarise(SS_W = sum(sw) ) %>%
  .$SS_W
Fstat <- (SS_B / (k - 1)) / (SS_W / (N - k))
# probability of this or greater variation in means from F-distribution
p \leftarrow pf(Fstat, df1 = k - 1, df2 = N - k, lower.tail = F)
```

Compare with R function, which relies on a linear regression model:

summary(aov(quiz ~ video, dat))

ANOVA, continuing example using two-way ANOVA with interaction

```
Summary( aov(quiz ~ video + text + video:text, dat) )

Df Sum Sq Mean Sq F value Pr(>F)

video 2 2093 1046.5 39.61 < 2e-16 ***

text 1 1530 1529.8 57.90 1.80e-13 ***

video:text 2 1923 961.7 36.40 2.57e-15 ***

Residuals 424 11202 26.4

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '* 0.05 '.' 0.1 ' ' 1
```

While ANOVA tests the probability of variation across all combinations of means if from a F-distribution ...

... it provides no information on what is usually *more important*: **effect sizes!** Use regression for those.

multiple tests, issues

In any test, because we're using a significance level, α , we end up with *false positives* about that often.

As the tests multiply, so does the chance of getting false positives — **dramatically**.

multiple tests, adjusting for compounded false positives — Bonferroni and other methods

For *m* number of tests, can adjust α significance level:

$$\alpha_{\rm adj} = \frac{\alpha}{n}$$

but with many tests, Bonferroni's $\alpha_{\rm adj}$ can also lead to inflated false negatives. Other methods are available, including Tukey's Honest Significant Difference test:

TukeyHSD(aov(quiz ~ video + text + video:text, data = dat), conf.level = 0.95)

References

Abelson, Robert P. Statistics as Principled Argument. Psychology Press, 1995.

Casella, George, and Roger L. Berger. "Analysis of Variance and Regression, Chp. 11." In *Statistical Inference*. 2nd ed. Australia; Pacific Grove, CA: Thomson Learning, 2002.

Cox, D. R., and N. Reid. "Factorial designs: basic ideas, Chp. 5." In *The Theory of the Design of Experiments*. Monographs on Statistics and Applied Probability 86. Boca Raton: Chapman & Hall/CRC, 2000.

Gelman, Andrew, Tue Tjur, Peter McCullagh, Joop Hox, Herbert Hoijtink, and Alan M. Zaslavsky. "*Analysis of Variance? Why It Is More Important than Ever. With Discussion and Rejoinder.*" The Annals of Statistics 33, no. 1 (February 2005): 1–53.

Gelman, Andrew, and Eric Loken. "*The Statistical Crisis in Science*." American Scientist 102 (November 2014): 1–6.

