Miara i calka

speedrun przed terminem 0

by a MEEEE

21.03.2137

Funkcja Σ -mierzalna $f:X\to\mathbb{R}$ to funkcja, która dla każdego $f^{-1}[B]\in\Sigma$ spełnia $B\in Bor(\mathbb{R})$, równoważnie jeżeli $\mathscr{G}\subseteq Bor(\mathbb{R})$ takie, że $\sigma(\mathscr{G})=Bor(\mathbb{R})$, to wystarczy dla każdego $G\in\mathscr{G}$ $f^{-1}[G]\in\Sigma$.

Każdy z poniższych pociąga mierzalność:

 $\begin{cases} x \ : \ f(x) < t \} \in \Sigma \\ \{x \ : \ f(x) \le t \} \in \Sigma \\ \{x \ : \ f(x) > t \} \in \Sigma \\ \{x \ : \ f(x) \ge t \} \in \Sigma \end{cases}$

Jeżeli funkcja $f:X\to\mathbb{R}$ jest Σ -mierzalna, a $g:\mathbb{R}\to\mathbb{R}$ jest ciągła, to $g\circ f:X\to\mathbb{R}$ jest Σ -mierzalna.

Granica punktowa zbieżnego ciągu funkcji mierzalnych jest mierzalna.

Każdą Σ -mierzalna funkcję $f: X \to \mathbb{R}$ można zapisać w postaci $f^+ - f^-$, różnicy funkcji mierzalnych i nieujemnych.

.....

Funkcja prosta to funkcja o skończonym zbiorze wartości, czyli kombinacja liniowa skończenie wielu funkcji charakterystycznych

Ciąg funkcji mierzalnych jest zbieżny prawie wszędzie, jeżeli $\lim_n f_n(x) = f(x)$ poza zbiorem miary zero.

Dla każdej λ -mierzalnej funkcji f istnieje borelowska funkcja g taka, że f = g λ -prawie wszędzie.

Jeżeli $f_n \to f$ prawie wszędzie, to dla każdego $\varepsilon > 0$ istnieje $A \in \Sigma$ o $\mu(A) < \varepsilon$ i f_n jest jednostajnie zbieżny do j na zbiorze A^c .

Ciąg funkcji mierzalnych jest niemal jednostajnie zbieżny, jeżeli dla każdego ε > 0 ciąg f_n zbiega jednostajnie na dopełnieniu pewnego zbioru miary < ε .

Mówimy, że ciąg jest zbieżny według miary, jeżeli dla każdego ε lim $_n \mu(\{x: |f_n(x) - f(x)| \ge \varepsilon\}) = 0.$

Twierdzenie Riesza: jeżeli