Computer Science & IT

ALGORITHMS

Algorithm

Lecture No. 03

Recap of Previous Lecture

Topics to be Covered

Join

Inspiring Stories: Girish Badragond

Background: A farmer from rural Karnataka. Wanted to help visually impaired people work the land.

Education: B. Tech. from a local college.

Achievements: Created the Blind Farming Technology, a tool with sensors that tells you soil moisture, nutrition, and temperature via audio.

Impact: Lets blind farmers grow crops confidently, bringing dignity and independence back to their fields.

Inspiring Stories: Ashok Gorre

Background: From a poor farming family in Telangana, saw how hard planting and weeding was.

Achievements: Built simple, low-cost tools for sowing, reaping, and weeding. Co-founded Rural Rise Agrinery to scale his tools.

Impact: Helped small farmers save labor and time, making farming easier and cheaper.

Inspiring Stories: Pradeep Kumar

Background: A farmer in Haryana worried about his solar panels being stolen.

Education: Local farmer, hands-on inventor.

Achievements: Invented a mobile solar panel trolley, so panels can be moved and stored safely. Offers free servicing for a year through his startup TG Solar Pumps.

Impact: Makes solar energy safer and easier for poor farmers, lowering their risk and maintenance burden.

Recurion:

Process

$$A(n) = T(n)$$
 $2i \text{ pf}(n>0)$
 $2i \text{ pf}(n-1)$
 $3 \text{ pf}(n-1) = I(n)$
 $4 \times A(n-1) = I(n)$
 $5i \text{ A(1)}$
 $1, 2, 3, 4$
 $5i \text{ A(2)}$
 $1, 2, 3, 4$
 $5i \text{ main}$
 $5i \text{ main}$

$$T(n) = T(n-1) + C,$$
= 1, $n < = 0$

SE=4XStack flame

210

a) Repeat b) (RC

a) one mole example b) enough

In Adu to find time complexity of Recurre function, we use recurrence relations

A(n) =>1(n) $\begin{cases} 4(n20)_{1(n-1)} & 1(n2) \\ 4(n-1) + A(n-2) \end{cases}$

T(n) = T(n-1) + T(n-2)

methods to solve recumance relations:

- 1) Substitution method
- 2) Recurrine true
- 3) masters thedem

masters the demonstrate
$$T(n) = a T(n/b) + O(n)$$
 \rightarrow masters $T(n) = a T(n/b) + T(n-2)$ \rightarrow Recurrent true $T(n) = T(n-1) + T(n-2) \rightarrow$ Substitution $T(n) = 2T(n-1) + k$

Solottetian method:

$$T(n) = S1$$
 if $n = 1$
 $T(n) = S1$ if $n = 1$
 $T(n) = T(n-1) + n$ if $n > 1$
 $T(n) = T(n-1) + n$ if $n > 1$
 $T(n-1) = T(n-2) + n - 1 \rightarrow 2$

Substitute 2 in 1
 $T(n) = T(n-2) + (n-1) + n$

Substitute 3 in 3
 $T(n) = T(n-2) + (n-1) + (n-1) + n$
 $T(n) = T(n-2) + (n-2) + (n-1) +$

2
$$\frac{2n(1)}{T(n)} = \frac{T(n-2) \times (n-1) \times (n)}{X(n-1) \times (n)}$$
 $\frac{2n(1)}{T(n)} = \frac{T(n-2) \times (n-1) \times (n)}{X(n-1) \times (n)}$

$$\frac{2n(1)}{T(n)} = \frac{T(n-2) \times (n-1) \times (n)}{X(n-1) \times (n)}$$

$$\frac{2n(1)}{T(n)} = \frac{2n(1)}{T(n-2) \times (n-1) \times (n)}$$

$$\frac{2n(1)}{T(n-2) \times (n-1) \times (n)}{X(n-1) \times (n)}$$

$$\frac{2n(n-2) \times (n-2) \times (n-1) \times (n)}{X(n-1) \times (n)}$$

$$\frac{2n(n-2) \times (n-2) \times (n-2)}{X(n-1) \times (n)}$$

$$\frac{2n(n-2) \times (n-2) \times (n-2)}{X(n-1) \times (n)}$$

$$\frac{2n(n-2) \times (n-2) \times (n-2)}{X(n-1) \times (n)}$$

$$T(n) = \begin{cases} 0 & 4 & n = 0 \\ T(n-2) + n^2 & 4 & n \neq 0 \end{cases}$$

$$T(n) = T(n-2) + n^2 +$$

Gate: 2016: = log 2*1+log 2*2+log 2*3 + -- +log 2*7/2

= log 2+log 1+log 2+log 2+log 2+log 3+ -- +log 2+log 7/2

=
$$\frac{n}{2}$$
log 2 + (log 1+log 2+log 3+ -- + log $\frac{n}{2}$)

 $\frac{n}{2}$ + log 1. 2. 3. $\frac{n}{2}$ - $\frac{n}{2}$ - $\frac{n}{2}$ + log $\frac{n}{2}$ - $\frac{n}{2}$ - $\frac{n}{2}$ + log $\frac{n}{2}$ - $\frac{$

$$\begin{cases} kt^{n}ey \\ T(n) = T(\frac{n}{2k}) + kC \\ assume \frac{n}{2k} = 1 = 7 k = (\log n) sC \end{cases}$$

$$T(n) = 1 + \log n \times C$$

$$T(n) = O(\log_{2} n)$$

$$= O(\log_{2} n)$$

$$= O(\log_{2} n)$$

THANK - YOU