工程电磁场与波

Part1 数理基础

1.1 数学基础

(只有直角坐标系下的公式要记,其他坐标系会给)

梯度

$$\nabla f = \frac{\partial f}{\partial x} \dot{e}_{x} + \frac{\partial f}{\partial y} \dot{e}_{y} + \frac{\partial f}{\partial z} \dot{e}_{z}$$

$$= \frac{\partial f}{\partial \rho} \dot{e}_{\rho} + \frac{1}{\rho} \frac{\partial f}{\partial \phi} \dot{e}_{\varphi} + \frac{\partial f}{\partial z} \dot{e}_{z}$$

$$= \frac{\partial f}{\partial \rho} \dot{e}_{\rho} + \frac{1}{\rho} \frac{\partial f}{\partial \theta} \dot{e}_{\theta} + \frac{1}{\rho sin\theta} \frac{\partial f}{\partial \varphi} \dot{e}_{\phi}$$
(1.1)

• 散度 (代表了一个区间里是否有源)

$$\nabla \cdot \vec{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}$$

$$= \frac{1}{\rho} \frac{\partial}{\partial \rho} (\rho A_\rho) + \frac{\partial A_\phi}{\rho \partial \phi} + \frac{\partial A_z}{\partial z}$$

$$= \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 A_r) + \frac{1}{r^2 sin\theta} \frac{\partial}{\partial \theta} (A_\theta sin\theta) + \frac{1}{r sin\theta} \frac{\partial A_\phi}{\partial \phi}$$
(1.2)

旋度

$$\nabla \times \vec{F} = \begin{vmatrix} \dot{e}_x & \dot{e}_y & \dot{e}_z \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_x & F_y & F_z \end{vmatrix}$$
(1.3)

• 散度定理(高斯定理)

$$\oint_{S} \vec{F} \cdot d\vec{S} = \int_{V} (\nabla \cdot \vec{F}) dV \tag{1.4}$$

• 旋度定理 (斯托克斯定理)

$$\oint_{l} \vec{F} \cdot d\vec{l} = \int_{S} (\nabla \times \vec{F}) dS \tag{1.5}$$

剩下一些感觉用得不多? 主要集中在推导层面而非应用。举几个简单的例子:

- 1. 标量场的梯度的旋度为0
- 2. 矢量场的旋度的散度为0
- 3. 亥姆霍兹定理:任何一个场由其旋度和散度决定,能分解为标量函数的梯度(无旋场)+矢量函数的旋度(无散场)

1.2 物理基础

• Maxwell方程组积分形式

$$\begin{cases} \oint_{l} H \cdot dl = \int_{S} J_{c} \cdot dS + \int_{S} \frac{\partial D}{\partial t} \cdot dS & \text{全电流定律} \\ \oint_{l} E \cdot dl = -\int_{S} \frac{\partial B}{\partial t} \cdot dS & \text{电磁感应定律} \\ \oint_{S} B \cdot dS = 0 & \text{磁通连续性原理} \\ \oint_{S} D \cdot dS = \int_{V} \rho dV = q & \text{静电场高斯定理} \end{cases}$$
(1.6)

微分形式

$$\begin{cases} \nabla \times H = \begin{cases} J_c \\ J_v \end{cases} + \frac{\partial D}{\partial t} & \text{全电流定律} \\ \nabla \times E = -\frac{\partial B}{\partial t} & \text{电磁感应定律} \\ \nabla \cdot B = 0 & \text{磁通连续性原理} \\ \nabla \cdot D = \rho & \text{静电场高斯定理} \end{cases} \tag{1.7}$$

[注]:上面的量都是矢量!都有箭头!考试的时候必须写上矢量标志! 只是我懒得打了。

• 其他

静电场
$$ightarrow \left\{egin{array}{ll} rac{\mathrm{fize}}{\mathrm{tb}} & \to \mathrm{dish} \\ \mathbf{q} & \to I & \to \dot{I} \\ \\ \mathrm{描述方式:} \ E,D & \to \left\{egin{array}{ll} J,E \\ H,B & \to B,H,D,E \end{array}
ight. \\ \\ \mathrm{描述方式:} \ \varepsilon & \to \left\{egin{array}{ll} \gamma \\ \mu & \to \varepsilon,\gamma,\mu \end{array}
ight.
ight.$$

Part2 对应关系

2.1 物理量与公式

描述	静电场	恒定电场	恒定磁场
场	Е	Е	В
	D	J	Н
描述	arepsilon	γ	$\frac{1}{\mu}$
	q	I	I
	$\nabla \cdot D = 0$	$ abla \cdot J_c = 0$	1
	D=arepsilon E	$J=\gamma E$	$H = \frac{1}{\mu}B$
	С	G	
能量	$W_e = \int rac{1}{2} ec{D} \cdot ec{E} \mathrm{d}V$	$p = rac{\mathrm{d}P}{\mathrm{d}V} = EJ = \gamma E^2 = rac{J^2}{\gamma}$	$W_e = \int rac{1}{2} ec{B} \cdot ec{H} \mathrm{d}V$
カ	$F=rac{\partial W_e}{\partial g} _{arphi=const}=-rac{\partial W_e}{\partial g} _{q=const}$		$F = \frac{\partial W_m}{\partial g} _{I=const} = -\frac{\partial W_m}{\partial g} _{\varphi=const}$
法拉第观点	纵张力/侧压力 $rac{F}{S}=rac{1}{2}DE$		纵张力/侧压力 $rac{F}{S}=rac{1}{2}BH$

2.2 位函数描述

	静电场	恒定电场	恒定磁场 (标)	恒定磁场(矢)
	电位 $arphi$	电位 $arphi$	标量磁位 φ_m	矢量磁位A
位与场关系	E=- ablaarphi	E=0	$B=-\mu ablaarphi_m$	$B = abla imes ec{A}$
范 定 方 程	$ abla^2arphi=-rac{ ho}{arepsilon}$	$ abla^2arphi=-rac{ ho}{arepsilon}$	$ abla^2 arphi_m = 0$ (无源区)	$ abla^2ec{A} = -\mu J_c$
边 界 条 件	$\begin{cases} E_{1t} = E_{2t} \\ D_{2n} - D_{1n} = \sigma \end{cases}$	$\begin{cases} E_{1t} = E_{2t} \\ J_{1n} = J_{2n} \end{cases}$	$\begin{cases} B_{1n} = B_{2n} \\ H_{1t} - H_{2t} = K \end{cases}$	$\begin{cases} B_{1n} = B_{2n} \\ H_{1t} - H_{2t} = K \end{cases}$
位函数描述	$egin{cases} arphi_1 = arphi_2 \ arepsilon_2 rac{\partial arphi_2}{\partial n} - arepsilon_1 rac{\partial arphi_1}{\partial n} = -\sigma \end{cases}$	$egin{cases} arphi_1 = arphi_2 \ \gamma_1 rac{\partial arphi_1}{\partial n} = \gamma_2 rac{\partial arphi_2}{\partial n} \end{cases}$	$egin{cases} arphi_{m1} = arphi_{m2} \ \mu_1 rac{\partial arphi_{m1}}{\partial n} = \mu_2 rac{\partial arphi_{m2}}{\partial n} \end{cases}$	$egin{cases} ec{A}_1 = ec{A}_2 \ rac{1}{\mu_1} rac{\partial A_1}{\partial n} - rac{1}{\mu_2} rac{\partial A_2}{\partial n} = K \end{cases}$
导出条件	abla imes E = 0	$egin{cases} abla imes E = 0 \ abla \cdot J = 0 \end{cases}$	abla imes H = 0(无源区)	$\begin{cases} \nabla \cdot B = 0 \\ \nabla \times B = \mu J \\ \nabla \cdot A = 0 \text{ (洛伦兹规范)} \end{cases}$
折射定律	$rac{tanlpha_1}{tanlpha_2} = rac{arepsilon_1}{arepsilon_2}$	$rac{tanlpha_1}{tanlpha_2} = rac{\gamma_1}{\gamma_2}$	$rac{tanlpha_1}{tanlpha_2} = rac{\mu_1}{\mu_2}$	$rac{tanlpha_1}{tanlpha_2} = rac{\mu_1}{\mu_2}$

- 学的时候老折磨了,...我尽量用表格的形式,为了能直观的看到电磁场的区别和相似。毕竟电磁场的对称性我感觉还是挺强的,我想试着从这方面着手来观察他们的变化。
- 注意一下这里B和E, H和D不是完完全全对称的, 这里t (切向) 和n (法向) 也要换

Part3 需要记的电磁场公式

3.1 静电场

• 电容与部分电容:

平行板	圆柱形	球形
$C = rac{arepsilon S}{d}$	$C=rac{2\piarepsilon l}{lnrac{b}{a}}$	$C=rac{4\piarepsilon R_1R_2}{R_2-R_1}$

记 (部分电容):

1.
$$\{q\}=[lpha]^{-1}\{arphi\}=[eta]\{arphi\}$$

2. $C_{i0}=\sum_{j}eta_{ij}\;;\;C_{ij}=-eta_{ij}(i
eq j)$

• 电场:

描述	电场强度	电势
点电荷	$E=rac{1}{4\piarepsilon}rac{q}{r^2}$	$U = -rac{1}{4\piarepsilon}rac{q}{r}$
无限大带电平面	$E=rac{\sigma}{2arepsilon}$	
电偶极子	$E=rac{p}{4\piarepsilon r^3}(2cos heta\dot{e}_r+sin heta\dot{e}_ heta)$	$U=rac{1}{4\piarepsilon}rac{pl}{r^2}$
均匀带电导线	$E=rac{ au}{4\piarepsilon r}(sin heta_1+sin heta_2)=rac{ au}{2\piarepsilon r}$	$U = \frac{ au}{2\piarepsilon} \mathrm{ln} ho$

• 镜像法

系统	镜像描述
点电荷—无限大接地平面	等大反向同距 $-q$
电轴一无限大接地平面	等大反向同距 $- au$,电位 $arphi=rac{ au}{2\piarepsilon_0} ext{ln}rac{ ho_2}{ ho_1}$,等电位线同心圆
电轴法	$h^2=a^2+b^2$,导线间距2h,电轴间距2b,圆半径a
点电荷—无限大介质平面	$\begin{cases} 上半空间q' = \frac{\varepsilon_1 - \varepsilon_2}{\varepsilon_1 + \varepsilon_2} q \\ \mathbb{下} + 空间q'' = \frac{2\varepsilon_2}{\varepsilon_1 + \varepsilon_2} q \end{cases}$
	q'在下方同距处, q"在上方同距处
点电荷—接地导体球	$q'=-rac{r}{d}q;d'=rac{r^2}{d}$ (不接地圆心多一个q"=q')

3.2 恒定电流场

- 接地电阻与跨步电压
- 1. 深埋电阻 $G=4\pi\gamma a$,半埋电阻 $G=2\pi\gamma a$ 2. 任意一点电势 $\varphi=rac{I}{2\pi\gamma r}$,或者从电场角度理解 $E=rac{I}{2\pi\gamma r^2}$, $(E=rac{J}{\gamma}=rac{I/2}{\gamma\cdot\pi r^2})$ 3. 跨步电压 $U=rac{I}{2\pi\gamma}(rac{1}{r-b}-rac{1}{r})pproxrac{Ib}{2\pi\gamma r^2}$
- 磁场

描述	磁场强度
电流元	$B=rac{\mu}{4\pi}rac{I{ m d}ec{l} imesec{e_R}}{r^2}$
长直导线	$B=rac{\mu I}{4\pi ho}(sin heta_1+sin heta_2)=rac{\mu I}{2\pi ho}$
无限大导电片	$B=-rac{\mu K}{2}ec{e_x}$ (跟电场挺像的)
无限大导板	$B = egin{cases} -rac{\mu Jd}{2}ec{e_x}, & y > rac{d}{2} \ -\mu Jyec{e_x}, & y < rac{d}{2} \end{cases}$
磁偶极子 (小电流环)	$B=rac{\mu m}{4\pi r^3}(2cos heta\dot{e_r}+sin heta\dot{e_ heta})$
镜像:线电流—无限大媒质	$egin{cases} I' = rac{\mu_2 - \mu_1}{\mu_1 + \mu_2} I \ I'' = rac{2\mu_1}{\mu_1 + \mu_2} I \end{cases}$
	注意他跟电荷镜像是反的! (或者可以用 $\frac{1}{\mu}-\varepsilon$ 推导)

描述	电感大小
计算公式	$L=rac{\Psi}{I}=rac{2W}{I^2}$
同轴电缆外自感	$L_o=\int rac{\mu}{2\pi ho} l \mathrm{d} ho =rac{\mu l}{2\pi} \mathrm{ln}rac{b}{a}$
同轴电缆内自感	$L_i=rac{ ho^2}{a^2}\intrac{\mu}{2\pi ho}l\mathrm{d} ho=rac{\mu l}{8\pi}$
两传输线	上面公式翻个倍
通电螺线管	$L=rac{NBS}{I}=rac{N\mu_0 nIS}{I}=rac{\mu_0 N^2 S}{l}$

Part4 动态电磁场

4.1 基本模型

- 时谐电磁场:
 - 求导——> jω
- 有损媒质 (我觉得不考因为我记不住):

$$\circ$$
 $\tilde{\varepsilon} = \varepsilon' - j\varepsilon'' = \varepsilon' - j\frac{\gamma}{\omega}$

• 坡印廷定理

$$\circ \frac{S = E \times H}{S}$$

$$\circ \begin{cases}
\nabla (E \times H) = -\frac{\partial}{\partial t} (\omega_e + \omega_m) - EJ \\
- \oint (E \times H) = \frac{d}{dt} (W_e + W_m) + P
\end{cases}$$

- 电磁位

。 洛伦兹规范
$$abla \cdot A = -\mu \varepsilon \frac{\partial \varphi}{\partial t}$$
。 $abla = -\nabla \varphi - \frac{\partial A}{\partial t}$ (多了后面一项)
。 方程(感觉不会要你解吧?):
$$\begin{cases}
\nabla^2 A - \mu \varepsilon \frac{\partial^2 A}{\partial t^2} = -\mu J \\
\nabla^2 \varphi - \mu \varepsilon \frac{\partial^2 \varphi}{\partial t^2} = -\frac{\rho}{\varepsilon}
\end{cases}$$

• 关于电磁波

$$v=rac{1}{\sqrt{\muarepsilon}}; k=rac{\omega}{v}=rac{2\pi}{\lambda}; \eta=\sqrt{rac{\mu}{arepsilon}}$$

4.2 准静态

描述	电准静态场	磁准静态场
忽略项	$\frac{\partial B}{\partial t}$	$\frac{\partial D}{\partial t}$
方程组	$egin{cases} abla imes E = 0 \ abla \cdot D = ho \end{cases}$	$egin{cases} abla imes H = J \ abla \cdot B = 0 \end{cases}$

- 电荷弛豫与磁屏蔽
 - 反正就是以 $Ae^{-\frac{t}{r}}$ 的形式衰减

。 扩散方程(复数形式就是求导变j
$$\omega$$
):
$$\begin{cases} \nabla^2 E = \mu \gamma \frac{\partial E}{\partial t} \\ \nabla^2 H = \mu \gamma \frac{\partial H}{\partial t} \end{cases}$$

- 。 透射深度: $d=\sqrt{rac{2}{\omega\mu\gamma}}$
- 。 衰减系数: $p=rac{\mathbf{1}_{+j}}{d}$,反正就是以 Ae^{-px} 形式衰减,<mark>两边大中间小</mark>
- 。 交流电阻随频率增大而增大,交流电感反之(公式不写了)

4.3 电磁辐射

• 均匀平面电磁波:

场	近场	远场
Е	$rac{\dot{q}\Delta lcos heta}{2\piarepsilon r^3}\dot{e}_r+rac{\dot{q}\Delta lsin heta}{4\piarepsilon r^3}\dot{e}_ heta$	$jrac{I\Delta lk^2}{4\pi\omegaarepsilon}sin heta e^{-jkr}\dot{e}_{ heta}$
Н	$rac{I\Delta lsin heta}{4\pi r^2}\dot{e}_{\phi}$	$jrac{I\Delta lk}{4\pi r}sin heta e^{-jkr}\dot{e}_{\phi}$
S		$S_{av} = \eta (rac{I\Delta l}{2\lambda r})^2 sin^2 heta \dot{e}_r$
R		$R=rac{2\pi}{3}(rac{\Delta l}{\lambda})^2\eta$

• 正入射:

理论依据	方程	解
$E_{1t}=E_{2t}$	$E_{10}^+ + E_{10}^- = E_{20}$	$E_{10}^-=rac{\eta_2-\eta_1}{\eta_1+\eta_2}E_{10}^+$
$H_{1t} - H_{2t} = K = 0$	$rac{E_{10}^+}{\eta_1} - rac{E_{10}^-}{\eta_1} = rac{E_{20}}{\eta_2}$	$E_{20}=rac{2\eta_{2}}{\eta_{1}+\eta_{2}}E_{10}^{+}$

• 注:理想导体 (γ为正无穷) 中,没有电场也没有磁场,所以E、H直接全都是0

池子

- 理想导体中γ趋近于无穷大,内部没有磁场,没有电场。但是外面会有电荷分布 (σ和K)
- 一般题目 (各向同性介质) 的外面没有面电荷/体电荷等分布

•