TP 5 - Systèmes de fichiers, partitions et disques

Inode

un inode (index node) est une structure de données qui contient les métadonnées associées à un fichier / dossier (permissions, propriétaire, groupe, date de dernier accès...), ainsi que des pointeurs sur les données :

On peut visualiser le nombre de noms d'un fichier avec la commande ls -l

Les liens physiques partagent le même contenu. La création d'un lien physique incrémente un compteur de noms contenu dans les métadonnées dans l'inode

Un dossier (= répertoire) est un fichier contenant une table de correspondance noms ↔ n° d'inodes

Un lien symbolique pointe sur un nom de fichier (il possède son propre inode, dont les données contiennent le nom du fichier pointé)

Système de fichiers

Un système de fichiers (SF) décrit la manière dont les données sont organisées à l'intérieur d'une partition. Il fait l'interface entre l'utilisateur (applications) et le pilote d'E/S du matériel.

df-T

/proc

proc : système de fichiers virtuel / pseudo système de fichiers, monté généralement sur /proc

fournit une interface avec les structures de données du noyau. La plupart des fichiers sont en lecture seule (ex. : cpuinfo), mais quelques uns permettent la modification à chaud du noyau.

On y trouve également un répertoire par processus actif, portant le numéro de ce processus,

Exercice 1. Disques et partitions

1.

Créer un second disque dur

2.

Pour vérifier que le disuqe est bien détécté par le système

```
Vérifiez que ce nouveau disque dur est bien détecté par le système
Plusieurs solutions possibles : on constate la présence d'un fichier sdb dans /dev ; ou encore
lsblk et fdisk -l mentionnent un disque de 5 Go nommé sdb
```

3.

Partionner le disque avec fdisk 2Go Linux et 3Go NTFS

```
fdisk /dev/sdb puis choisir n, p, +2G pour la première partition ; répéter pour la 2ème, puis changer son type avec t et choisir le type 7. Prévisualiser le résultat avec p puis écrire les modifications avec w. Vérifier ensuite avec fdisk -1 que les partitions ont bien été créées
```

4.

A l'aide de mkfs on formate les deux partitions

```
on utilise donc mkfs.ext4 /dev/sdb1 pour la première partition, et mkfs.ntfs /dev/sdb2 pour la seconde
```

5.

Pour que la commandedf -T fonctionne il faut monté le disque

6.

Pour que les deux partitions créées soient montées automatiquement au démarrage, respectivement dans les points de montage /data et /win

```
Créer les deux dossiers à la racine, puis éditer /etc/fstab :
/dev/sdb1 /data ext4 defaults 0 0
/dev/sdb2 /win ntfs defaults 0 0
Ensuite, valider par mount -a puis mount
```

7

mont valide la configuration

Exercice 2. Partitionnement LVM

2.

Créer partition IVM

```
Lancer fdisk, créer une nouvelle partition puis changer le type (commande t) et donner le type 8e (LVM)
```

3.

pvcreate, crée un volume physique LVM. On vérifie qu'il est bien créé avec la commande pvdisplay

```
sudo pvcreate /dev/sdb1
```

4.

vgcreate, crée un groupe de volumes. vgdisplay pour vérifier

```
sudo vgcreate vg00 /dev/sdb1
```

5.

Créez un volume logique appelé lvData occupant l'intégralité de l'espace disque disponible

```
sudo lvcreate -n lvData -l 100%FREE vg00
```

6.

créez une partition formater en ext4, et monter au demarrage dans /data.

```
fdisk /dev/mapper/vg00-lvData
mkfs.ext4 /dev/mapper/vg00-lvData
Ubuntu mappe les périphériques physiques en périphériques virtuels de plus haut niveau
```

7.

Création d'un second disque

```
fdisk /dev/sdc
pvcreate /dev/sdc1
```

8.

Pour ajouter un nouveau disque au groupe de volumes

```
sudo vgextend vg00 /dev/sdc1
```

lvresize (ou lvextend) pour agrandir le volume logique et redimensionner le système de fichier (resize2fs)

```
sudo lvresize -l 2046 /dev/mapper/vg00-lvData (2046 correspond à 8Gio) sudo e2fsck -f /dev/mapper/vg00-lvData sudo resize2fs /dev/mapper/vg00-lvData
```