Numeric Experiment

Han Tong

December 2023

1 Compare Alg 2 with the modified Alg 2

1. Compare the modified Algorithm 2 using (1) with Explore-then-exploit algorithm.

Figure 1: Comparison of Modified Alg2 with Exp-Exp

Parameters: m = 3, H = 5, a = 20, b = -5, Optimal Allocation.

2. Try different values of lower bounds di and see how the average profit changes for the modified algorithm 2.

Figure 2: Modified (1)

 $\underline{d}_i < -\underline{d}_i - shift \times sigma, \text{ shift} = 0, 0.2, ..., 1.0. \text{ Parameters: } m = 3, H = 5, a = 20, b = -5, Optimal Allocation.$

3. Compare the two modified algorithm 2 with original Algorithm 2

Figure 3: Alg2 and Mod Alg2

Parameters: m = 3, H = 5, a = 30, b = -20, Optimal Allocation.

2 Nonstationary demand functions over epochs

Figure 4: Nonstationary demand functions over epochs

Parameters: m = 3, H = 5, a = 20, b = -5, $T = 2^{12}$, amplitude=1, Optimal Allocation.

Figure 5: Nonstationary demand functions over epochs

Parameters: m = 10, H = 20, a = 10, b = -5, $T = 2^{12}$, amplitude=4, Optimal Allocation, Modified Alg 2(2).

Figure 6: Nonstationary demand functions over epochs

Parameters: m = 10, H = 20, a = 10, b = -5, $T = 2^{12}$, amplitude=4, Optimal Allocation.

Figure 7: Nonstationary demand functions over epochs

Parameters: m = 10, H = 20, a = 10, b = -5, $T = 2^{12}$, amplitude=4, Optimal Allocation.

3 Compare with Explore-then-exploit Heuristic

Parameters: m = 3, H = 5, a = 20, b = -5.

Figure 8: Average profits of two allocation policies

Figure 9: Average learning regret of two allocation policies

Т	Algorithm 2	Exp-Exp with $T_0 = T^{\frac{1}{2}}$	Exp-Exp with $T_0 = T^{\frac{2}{3}}$
1024	6.2%	12.4%	18.6%
2048	3.2%	11.2%	13.9%

Table 1: Relative profit loss (Optimal Allocation)

Т	Algorithm 2	Exp-Exp with $T_0 = T^{\frac{1}{2}}$	Exp-Exp with $T_0 = T^{\frac{2}{3}}$
1024	6.1%	12.4%	18.6%
2048	3.1%	11.2%	13.9%

Table 2: Relative profit loss (Uniform Allocation)

Parameters: m = 5, H = 20, a = 20, b = -5.

Figure 10: Average profits of two allocation policies

Figure 11: Average learning regret of two allocation policies

T	Algorithm 2	Exp-Exp with $T_0 = T^{\frac{1}{2}}$	Exp-Exp with $T_0 = T^{\frac{2}{3}}$
1024	3.3%	6.9%	18.8%
2048	1.7%	5.6%	14.2%

Table 3: Relative profit loss (Optimal Allocation)

Т	Algorithm 2	Exp-Exp with $T_0 = T^{\frac{1}{2}}$	Exp-Exp with $T_0 = T^{\frac{2}{3}}$
1024	2.1%	11.9%	18.4%
2048	1.1%	10.8%	13.9%

Table 4: Relative profit loss (Uniform Allocation)

Figure 12: Average profits of two allocation policies

Figure 13: Average profits of two allocation policies

4 More figures

Figure 14: Comparison of Regret

Parameters: m = 3, H = 5, a = 20, b = -5, Optimal Allocation.

Figure 15: Comparison of Regret

Parameters: m = 5, H = 20, a = 20, b = -5, Optimal Allocation.

5 Phase Transition

Figure 16: Phase Transition

Parameters: m = 3, H = 5, $a_1 = 20$, $b_1 = -5$, $a_2 = 30$, $b_2 = -20$.

Figure 17: Phase Transition

Parameters: m = 5, H = 10, $a_1 = 20$, $b_1 = -5$, $a_2 = 30$, $b_2 = -20$.

6 Compare uniform allocation and optimal allocation

Figure 18: Two allocations

Parameters: T = 128, H = 15, a = 20, b = -5.

Figure 19: Two allocations

Parameters: $T=2^{12}$, H=15, a=20, b=-5, Alg2 Modified 2.

7 Compare average regret for m = H - 3, H - 2, H - 1

Parameters: H=5, $a_1 = 10, b_1 = -5, a_2 = 5, b_2 = -5.$

Plot a figure for optimal allocation and uniform allocation each. The figure has x-aixs the $\log(T) \ll 12$, y-axis is the average total regret (i.e., total regret / T). There are three curves in one figure, each for m = H - 3, H - 2, H - 1

Expected outcome: the curves for m = H - 3, H - 2 are flat, the curve for m = H - 1 is convex decreasing.

Figure 20: Regret