Design

Jinfeng Xu 19206223

- 1. Project operation process:
 - 1) Start Server:

The server waits for the peer to connect

2) The first peer is successfully connected:

The Server

- <1>. Generate UHRT and UHPT and store them as .txt files.
- <2>. MsgBox Displays basic information about connected peers.
- <3>. Sends the UHRT object at this point to the peer.

The Peer0

- <1>. Receive the UHRT as DHRT and store it as .txt file.
- <2>. Initialize the own resource file.
- 3) A new peer is connected:

The Server

- <1>. Update UHRT and UHPT and save them as .txt files.
- <2>. MsgBox Displays basic information about connected peers.
- <3>. Sends the current UHRT object to the new peer.
- <4>. Sends notifications of new resources to old peers.

The old Peer

- <1>. Received a notification from the server about a new resource The new Peer
 - <1>. Receive the UHRT as DHRT and store it as .txt file.
 - <2>. Initialize the own resource file.
- 4) The peer requests resource to server:

The Server

- <1>. MsgBox Displays Peer request information.
- <2>. Verify the Peer request.
- <3>. Return different message notifications based on verification results.

The Peer

- <1>. Send a resource retrieval request to the server.
- <2>. Receives message feedback from the server.
- 5) The peer get resource from another peer:

The Server

- <1>. Receive the message that Peer0 has successfully obtained the resource and display it in the MsgBox.
 - <2>. Send resource change notifications to other peers.
 - <3>. Update UHRT and UHPT.

The Peer0

- <1>. Send a request to the peer holding the target resource.
- <2>. Accept the resource sent by the peer and save it to itself.
- <3>. Update own DHRT.
- <4>. Notify the server that the resource has been successfully obtained.

The Peer1

- <1>. Receive peer resource request information.
- <2>. Send the specified resource to the peer.
- <3>. Receive server notifications and display them in MsgBox.

Tips: Corresponding message prompts are provided for all wrong operations.

Include:

Wrong resource name

The requesting peer already owns the resources

Wrong connection address

The connection address points to itself

2. Performance statistics:

1) Peer connects to Server

Peer	Test1	Test2	Test3	Test4	Test5	Test6	Test7	Test8	Test9	Test10	Avg
Peer1	216ms	213ms	219ms	211ms	216ms	212ms	212ms	221ms	214ms	217ms	215.1ms
Peer2	214ms	211ms	223ms	214ms	212ms	218ms	211ms	212ms	216ms	222ms	215.3ms
Peer3	216ms	220ms	209ms	220ms	212ms	221ms	213ms	216ms	211ms	211ms	214.9ms
Peer4	211ms	217ms	211ms	210ms	217ms	219ms	220ms	216ms	214ms	218ms	215.3ms
Peer5	219ms	214ms	220ms	215ms	218ms	211ms	212ms	214ms	221ms	210ms	215.4ms
Peer6	213ms	213ms	215ms	214ms	211ms	217ms	211ms	212ms	213ms	213ms	213.2ms
Peer7	217ms	217ms	217ms	216ms	218ms	216ms	217ms	217ms	219ms	215ms	216.9ms
Peer8	217ms	216ms	212ms	215ms	219ms	213ms	214ms	216ms	216ms	215ms	215.3ms
Peer9	215ms	216ms	217ms	220ms	214ms	214ms	216ms	212ms	216ms	217ms	215.7ms
Peer10	211ms	216ms	215ms	212ms	217ms	217ms	213ms	219ms	215ms	211ms	214.6ms
Avg	214.9ms	215.3ms	215.6ms	214.7ms	215.4ms	215.8ms	213.9ms	215.5ms	215.5ms	214.8ms	215.2ms

The time it takes for the peer to connect to the server is stable at around 215ms

2) Peer connects to Peer

Peer	Test1	Test2	Test3	Test4	Test5	Test6	Test7	Test8	Test9	Test10	Avg
Peer	217ms	215ms	213ms	211ms	216ms	214ms	212ms	218ms	214ms	216ms	214.6ms

The time it takes for the peer to connect to the peer is stable at around 215ms

3) Transfer resource

Size	Test1	Test2	Test3	Test4	Test5	Test6	Test7	Test8	Test9	Test10	Avg
10Byte	1014ms	1002ms	1017ms	1004ms	1003ms	1012ms	1003ms	1007ms	1019ms	1012ms	1009.3ms
100Byte	1013ms	1011ms	1019ms	1021ms	1008ms	1013ms	1005ms	1021ms	1006ms	1022ms	1013.9ms
1KB	1004ms	1021ms	1002ms	1013ms	1015ms	1002ms	1009ms	1009ms	1018ms	1013ms	1010.6ms
10KB	1012ms	1014ms	1009ms	1023ms	1002ms	1014ms	1010ms	1011ms	1005ms	1008ms	1010.8ms
100KB	1008ms	1009ms	1013ms	1013ms	1021ms	1022ms	1008ms	1015ms	1014ms	1004ms	1012.7ms
1MB	1019ms	1031ms	1033ms	1017ms	1021ms	1027ms	1023ms	1010ms	1029ms	1020ms	1023.0ms
10MB	1108ms	1098ms	1121ms	1105ms	1077ms	1115ms	1121ms	1117ms	1088ms	1101ms	1105.6ms

For files smaller than 1MB, the transfer time is stable at about 1010ms For every 1MB increase, the transmission time will increase by about 10ms

3. Pros and Cons:

Advantage:

Achieve all target functions.

Server maintains stable performance even when connected to multiple peers.

The connection between peers is fast and stable

File transfer is fast and stable

With a beautiful and convenient interface

The server has a complete resource notification function to the peer

There are perfect prompts for wrong operations

Highly user-friendly

Disadvantage:

Only support files in .txt format as resources

4. Rationale of design

About UHRT, UHPT, DHRT

These three kinds of DHT are stored by a simple ChordDHT that I implemented. In order to facilitate the query, I use GUID as the key to get the node. GUID has a very low collision probability, and it is encrypted and generated by the SHA-1 algorithm. For UHRT and DHRT, the GUID of the node encrypts the resource name. For UHPT, the GUID of the node is encrypted by the port number of the connected peer. Each node maintains a fingertable. At the same time, the node stores the basic attributes required by the project. Because HRT and HPT share the same node class. The node class generates HRT and HPT resources through constructors with different parameters. In addition to the GUID used to maintain uniqueness, each node also maintains an identifier. Through this identifier and fingertable, a search that is far more efficient than linear can be achieved.

About Server

The main thread of the server maintains the connection of the receiving peer. For each connected peer, a separate thread is opened for communication. UHRT and UHPT are updated when new resources or resource holders change.

About Peer

When the peer connects to the main server, it receives the initialization DHRT and generates its own resources. The main thread of the peer maintains communication with the server. At the same time, after initializing DHRT and its own resources, a new thread is opened to continuously accept resource acquisition requests from other peers. When a resource acquisition request is received, a separate thread is opened for resource transmission, and the thread is closed after completion. DHRT only updates after it acquires new resources.

5. Project structure

