University of the People

Math 1302-01 Discrete Mathematics Abraham Chileshe

Bhumika Modi (Instructor) 25 April 2025

Functions, Domains, and Sequences Assignment

Question 1: Function Analysis

For the function $f: \mathbb{Z} \to \mathbb{Z}$ defined as $f(n) = \begin{cases} n+3 & \text{if } n \text{ is odd} \\ n-5 & \text{if } n \text{ is even} \end{cases}$

Injectivity: A function is injective if each output maps to at most one input.

- For odd inputs: f(odd) = odd + 3
- For even inputs: f(even) = even 5

Let's check if different inputs can produce the same output:

- If $f(n_1) = f(n_2)$, we need to check if $n_1 = n_2$ must always be true
- If both n_1 and n_2 are odd: $n_1 + 3 = n_2 + 3 \Rightarrow n_1 = n_2 \checkmark$
- If both n_1 and n_2 are even: $n_1 5 = n_2 5 \Rightarrow n_1 = n_2 \checkmark$
- If n_1 is odd and n_2 is even: $n_1 + 3 = n_2 5 \Rightarrow n_1 = n_2 8$

Since n_1 is odd and n_2 is even, $n_1 = n_2 - 8$ would make n_1 even (since $n_2 - 8$ is even), which contradicts our assumption. So this case is impossible.

Therefore, the function is injective.

Surjectivity: A function is surjective if every element in the range has at least one preimage in the domain.

Let's check if every integer in \mathbb{Z} can be obtained as an output:

- If m is even:
 - If we set n = m + 5, then f(n) = m + 5 5 = m (when n is even)
- If m is odd:
 - If we set n = m 3, then f(n) = m 3 + 3 = m (when n is odd)

Therefore, every integer has a preimage, making the function surjective. **Inverse Function**: Since f is bijective (both injective and surjective), it has an inverse $f^{-1}: \mathbb{Z} \to \mathbb{Z}$

$$f^{-1}(m) = \begin{cases} m+5 & \text{if } m \text{ is even} \\ m-3 & \text{if } m \text{ is odd} \end{cases}$$
 (1)

Question 2: Function Composition with 3-Element Sets

Let's define sets A, B, and C, each with three elements:

- $A = \{a_1, a_2, a_3\}$
- $B = \{b_1, b_2, b_3\}$
- $C = \{c_1, c_2, c_3\}$

Let's define functions $f:A\to B$ and $g:B\to C$ as:

- $f(a_1) = b_2$, $f(a_2) = b_1$, $f(a_3) = b_3$
- $g(b_1) = c_3$, $g(b_2) = c_1$, $g(b_3) = c_2$

Composition $g \circ f$ (gof): $(g \circ f)(a) = g(f(a))$

- $(g \circ f)(a_1) = g(f(a_1)) = g(b_2) = c_1$
- $(g \circ f)(a_2) = g(f(a_2)) = g(b_1) = c_3$
- $(g \circ f)(a_3) = g(f(a_3)) = g(b_3) = c_2$

So $g \circ f : A \to C$ is defined as $\{(a_1, c_1), (a_2, c_3), (a_3, c_2)\}$

Composition $f \circ g$ (fog): This would require $g: C \to B$ and $f: B \to A$, but we defined $f: A \to B$ and $g: B \to C$, so $f \circ g$ isn't defined for our functions.

Both $f \circ g$ and $g \circ f$ cannot be defined with the sets as given because the domains and codomains don't align properly for $f \circ g$. The composition $g \circ f$ is defined and maps from A to C.

Are they equal? Since $f\circ g$ cannot be defined with our setup, they cannot be equal.

Question 3: Student Grades Composition

We have 5 students with their scores and grades:

- Ani: $75 \rightarrow B$
- Leon: $60 \rightarrow C$
- Linh: $85 \rightarrow B+$
- Liam: $95 \rightarrow A$
- Abdul: $60 \rightarrow C$

Let's define:

- Set $S = \{Ani, Leon, Linh, Liam, Abdul\}$ (students)
- Set $M = \{60, 75, 85, 95\}$ (marks)
- Set $G = \{A, B, B+, C\}$ (grades)

Function $f: S \to M$ (student to marks)

- f(Ani) = 75
- f(Leon) = 60
- f(Linh) = 85
- f(Liam) = 95
- f(Abdul) = 60

Function $g: M \to G$ (marks to grades)

- g(60) = C
- g(75) = B
- g(85) = B +
- g(95) = A

Domains and Ranges:

- Domain of $f: S = \{\text{Ani, Leon, Linh, Liam, Abdul}\}$
- Range of $f: \{60, 75, 85, 95\} \subseteq M$
- Domain of $g: M = \{60, 75, 85, 95\}$
- Range of $g: \{A, B, B+, C\} = G$

Composite function $h = g \circ f$: This maps students directly to grades

- h(Ani) = g(f(Ani)) = g(75) = B
- h(Leon) = g(f(Leon)) = g(60) = C
- h(Linh) = g(f(Linh)) = g(85) = B +
- h(Liam) = g(f(Liam)) = g(95) = A
- h(Abdul) = g(f(Abdul)) = g(60) = C

Is the composition commutative? For $f \circ g$ to exist, we would need $g: X \to S$ and $f: S \to Y$, but our functions don't fit this pattern. Therefore, $f \circ g$ is not defined, and composition is not commutative in this case.

Question 4: Sequences Concepts

Sequence: An ordered list of numbers following a specific pattern.

Example: The sequence $3, 9, 27, 81, \ldots$ where each term is found by multiplying the previous term by 3.

Recursive Function: Defines each term of a sequence based on previous terms.

Example: The Fibonacci-like sequence defined as: $a_1 = 4$, $a_2 = 7$, $a_n = 4$ $a_{n-1} + 2a_{n-2}$ for $n \ge 3$ This gives: $4, 7, 15, 29, 59, \dots$

Closed Formula: An explicit formula to find the nth term without calculating previous terms.

Example: Consider the sequence 5, 8, 11, 14, ... The closed formula is $a_n =$ 5 + 3(n-1) = 3n + 2

Arithmetic Sequence: A sequence where the difference between consecutive terms is constant.

Example: 7, 13, 19, 25, ... has a common difference of 6 The formula is $a_n = a_1 + (n-1)d = 7 + (n-1)6 = 7 + 6n - 6 = 6n + 1$

Geometric Sequence: A sequence where the ratio between consecutive terms is constant.

Example: 5, 10, 20, 40,... has a common ratio of 2 The formula is $a_n =$ $a_1 r^{n-1} = 5 \times 2^{n-1}$

Question 5: Sequence Analysis

Part i: Finding the formula for 5, 6, 7, 8, 8, 9, 10, 10, 11, 12, 12...

Looking at the pattern, we have: 5, 6, 7, 8, 8, 9, 10, 10, 11, 12, 12...

The pattern seems to be that each number appears once until 8, then each number appears twice. Let's define a_n as the nth term:

For
$$n \le 3$$
: $a_n = n + 4$ For $n > 3$: $a_n = \lfloor \frac{n+5}{2} \rfloor + 4$

This gives us: $a_1 = 5$, $a_2 = 6$, $a_3 = 7$, $a_4 = 8$, $a_5 = 8$, $a_6 = 9$, $a_7 = 10$, $a_8 = 10, a_9 = 11, a_{10} = 12, a_{11} = 12$

The next four terms would be: 13, 13, 14, 14

Part ii: Series 6 + 36 + 216 + ...

This is a geometric series with first term a=6 and common ratio r=6. The formula for the nth term is $a_n = 6 \times 6^{n-1} = 6^n$

Next three terms: $6^4 = 1,296, 6^5 = 7,776, 6^6 = 46,656$

Closed formula: $a_n = 6^n$ Sum of first n terms: $S_n = \frac{a(1-r^n)}{1-r} = \frac{6(1-6^n)}{1-6} = \frac{6(1-6^n)}{-5} = \frac{(6^n-1)\times 6}{5}$

Part iii: Series 21 + 24 + 27 + ...

This is an arithmetic sequence with first term a=21 and common difference d=3. The formula for the nth term is $a_n=a+(n-1)d=21+(n-1)3=$ 21 + 3n - 3 = 3n + 18

Next three terms: 30, 33, 36 Closed formula: $a_n = 3n + 18$ Sum of first n terms: $S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(21 + (3n + 18))}{2} = \frac{n(3n + 39)}{2} = \frac{3n^2 + 39n}{2}$

References

- [1] Doerr, A., & Levasseur, K. (2022). Applied discrete structures (3rd ed.). Licensed under CC BY-NC-SA.
- [2] Levin, O. (2021). Discrete mathematics: An open introduction (3rd ed.). Licensed under CC 4.0.