VERMES MIKLÓS Fizikaverseny

I. forduló 2015. március 9.

XI. osztály

JAVÍTÓKULCS

I. feladat

a.) Mivel a kezdeti pillanatban az oszcillátor nincs a nyugalmi helyzetben a keresett mozgásegyenlet $y = A\sin(\omega \cdot t + \varphi_0)$ alakú 1 p

Amikor a sebesség zérus az oszcillátor kitérése az amplitúdóval egyenlő: A = 4cm 1 p

Az oszcillátor teljes energiája változatlan $\implies E = \frac{kA^2}{2}$ és $E = \frac{ky_0^2}{2} + \frac{mv_0^2}{2}$

 $\Rightarrow \omega^2 \left(A^2 - y_0^2 \right) = v_0^2, \text{ ahol } \omega = \sqrt{\frac{k}{m}} \Rightarrow \omega = \frac{v_0}{\sqrt{A^2 - y_0^2}} = 5 \, rad/s$ 1 p

 $y_0 = A\sin(\omega \cdot t_0 + \varphi_0) = A\sin\varphi_0$ összefüggésből \Rightarrow $\sin\varphi_0 = \frac{y_0}{A} = \frac{1}{2}$ \Rightarrow $\varphi_0 = \frac{\pi}{6}$ \Rightarrow

a mozgásegyenlet $y = 4\sin(5t + \pi/6) cm$ 1 p

b.) $y(t_1) = A\sin(\omega \cdot t_1 + \varphi_0), \quad y_1 = A \implies \sin(5t_1 + \pi/6) = 1 \implies t_1 = \frac{\pi}{15}(6k+1),$ $k = 0,1,2,... \text{ és } t_1 = \frac{\pi}{15}s$

c.) $F = -ky_1 \implies k = -\frac{F}{y_1} = 100 N/m$

$$\omega^2 = \frac{k}{m} \implies m = \frac{k}{\omega^2} = 4kg$$

$$E_m = \frac{mv_2^2}{2} = \frac{0.08}{3}J$$
, $E_h = \frac{kA^2}{2} - E_m = \frac{0.16}{3}J$

II. feladat

a.)
$$Q = 0$$
 \Rightarrow $\Delta U + L = 0$ \Rightarrow $\Delta U = -L$

$$L = \frac{kx^2}{2}, \qquad \Delta U = \nu C_V \left(T_2 - T_1 \right)$$
 1 p

$$vC_V T_2 = \frac{3}{2} vRT_2 = \frac{3}{2} p_2 V_2$$

$$p_2 = \frac{kx}{S}, \quad V_2 = S(l+x)$$

$$\Rightarrow \frac{3}{2}kx(l+x) - \frac{3}{2}vRT_1 = -\frac{kx^2}{2} \Rightarrow$$

$$4kx^2 + 3klx - 3vRT_1 = 0$$
 \Rightarrow $x^2 + 0.75x - 1.125 = 0$ \Rightarrow $x_1 = 0.75m$, $x_2 < 0$ 1 p

b.) Legyen α_M a szögamplitúdó, $\alpha(t)$ a pillanatnyi szögkitérés. Az anyagi pont gyorsulása $\vec{a} = \frac{G+T}{m}$ és $a = \sqrt{a_t^2 + a_r^2}$, ahol a_t a gyorsulás tangenciális, a_r radiális komponense 1 p $a_t = \frac{G \cdot \sin \alpha}{m} = g \cdot \sin \alpha$, $a_r = \frac{v^2}{l}$, ahol l az inga hossza, v az anyagi pont sebessége $\alpha(t)$ szögkitérésnél

Az energia megmaradásának törvényéből $\Rightarrow \frac{mv^2}{2} = mg(h_M - h) \Rightarrow$

$$v^2 = 2gl(\cos\alpha_M - \cos\alpha)$$

Legyen
$$x = \cos \alpha$$
, akkor $a_t^2 = g^2(1-x^2)$ és $a_r^2 = 4g^2(\cos \alpha_M - x)^2$ \Rightarrow
$$a(x) = g\sqrt{3x^2 - 8\cos \alpha_M \cdot x + 1 + 4\cos^2 \alpha_M}$$
 1 p

Mivel x^2 együtthatója pozitív, az a(x) függvénynek minimuma van az $x = -\frac{b}{2a}$ értéknél,

tehát
$$x = \cos \alpha = \frac{8\cos \alpha_M}{6} = \frac{4}{3}\cos \alpha_M$$
.

Mivel
$$\cos \alpha < 1 \implies \cos \alpha_M < \frac{3}{4}$$
 1 p

III. feladat

a.)
$$T_0 = 2\pi \sqrt{\frac{l}{g}}$$
 \Rightarrow $l = \frac{gT_0^2}{4\pi^2} = 0.25m$

b.) A fülkék gyorsuló mozgást végeznek, ezért változik a periódus 1 p

A gyorsulásokat az
$$ma_1 = G - T$$
, és 1 p

$$ma_2 = 2T - G 1 p$$

dinamikai egyenletekből, valamint az $l_1=2l_2$ 1 p \Rightarrow $a_1=2a_2$ 1 p összefüggésekből határozhatjuk meg.

Az egyenletrendszert megoldva
$$\Rightarrow$$
 $a_2 = \frac{g}{5}$, $a_1 = \frac{2g}{5}$

$$T_1 = 2\pi \sqrt{\frac{l}{g - a_1}} = \sqrt{\frac{5}{3}} T_0$$

$$T_2 = 2\pi \sqrt{\frac{l}{g + a_2}} = \sqrt{\frac{5}{6}} T_0$$

c.)
$$T_1 = T_2 = T_0$$
 \implies $l_1 = \frac{3}{5}l = 0.15m$ és $l_2 = \frac{6}{5}l = 0.3m$