The all-seeing eye of resonant Auger electron spectroscopy: a study on aqueous KCl

Tsveta Miteva,*,† Nikolai V. Kryzhevoi,‡ Nicolas Sisourat,† Christophe Nicolas,¶ Wandared Pokapanich,§ Thanit Saisopa, Prayoon Songsiriritthigul, Yuttakarn Rattanachai, Andreas Dreuw,# Jan Wenzel,# Jérôme Palaudoux,† Gunnar Öhrwall,® Ralph Püttner, Lorenz S. Cederbaum,‡ Jean-Pascal Rueff,†,¶ and Denis Céolin*,¶

†Sorbonne Université, CNRS, Laboratoire de Chimie Physique Matière et Rayonnement, UMR 7614, F-75005 Paris, France

‡Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany

 $\P Synchrotron\ SOLEIL,\ l'Orme\ des\ Merisiers,\ Saint-Aubin,\ F-91192\ Gif-sur-Yvette\ Cedex,$ France

§Faculty of Science, Nakhon Phanom University, Nakhon Phanom 48000, Thailand ||School of Physics, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand

⊥Department of Applied Physics, Faculty of Sciences and Liberal Arts, Rajamangala

University of Technology Isan, Nakhon Ratchasima 30000, Thailand

#Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im

Neuenheimer Feld 205A, D-69120 Heidelberg, Germany

@MAX IV Laboratory, Lund University, P.O. Box 118, SE-22100 Lund, Sweden

△Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, D-14195, Berlin, Germany

E-mail: tsveta.miteva@upmc.fr; denis.ceolin@synchrotron-soleil.fr

Figure 1: Radial density distributions of the singly-occupied natural orbital occupied by the excited electron corresponding to the $1s^{-1}4p$, $1s^{-1}3d$ and $1s^{-1}5p$ core excitations in K^+ (lower panel) and Cl^- (upper panel). The insets show the region of distances relevant for the overlap with the 1s core orbital whose radial density is shown as a grey shaded area.

In what follows we give a simple explanation of the difference in the radial density distributions of the $1s^{-1}4p$ and $1s^{-1}5p$ states in K^+ and Cl^- . In the case of K^+ , the excited electron mainly sees a 2/r potential. In addition, it sees a short range potential originating from the point-like nucleus and the screening electrons. The influence of the latter can be described by a quantum defect $\delta \neq 0$, which is almost constant for the entire infinite Rydberg series. However, in case of Cl^- the outer electron does not experience a Coulomb potential and the short range potential becomes dominant. As a result of the absence of the Coulomb potential we see a different behavior in the properties of the states, like e.g. only a finite number of bound states (here obviously 4p)¹. In contrast to this, the 3d and 5p are not bound.

Figure 2: Partial cross sections and charge transfer time extracted from Fig. 3. The blue and red curves are obtained by integrating the area of the $2p^{-2}$ and $2p^{-2}4p$ final states (¹D state region only) at each photon energy step. From these curves we determine the charge transfer time $\tau_{\rm CT}$ according to the formula $\tau_{\rm CT} = \tau_c l/d$, with τ_c being the Cl 1s core-hole lifetime and l/d being the intensity ratio of the localized $(2p^{-2}4p)$ and delocalized $(2p^{-2})$ states at a given excitation energy. The green line defines the ${\rm Cl}_{\rm aq}^-(1s)$ ionization potential.

References

- (1) Buckman, S. J.; Clark, C. W. Rev. Mod. Phys. 1994, 66, 539-655.
- (2) Föhlisch, A.; Feulner, P.; Hennies, F.; Fink, A.; Menzel, D.; Sanchez-Portal, D.; Echenique, P. M.; Wurth, W. Nature 2005, 436, 373.