Верещагин Антон Сергеевич канд. физ.-мат. наук, старший преподаватель

Кафедра аэрофизики и газовой динамики ФФ НГУ

8 апреля 2019 г.

Аннотация

Элементы термодинамики. Внутренние и внешние параметры. Закон сохранения энергии. Второе начало термодинамики. Совершенный, нормальный и газ Ван-дер-Ваальса. Изоэнтропический и изотермический процессы.

Определение

Внешними параметрами называются параметры, определяющие состояние газа только внешними относительно газа телами. (Пример, объем газа, напряжённости полей).

Определение

Внешними параметрами называются параметры, определяющие состояние газа только внешними относительно газа телами. (Пример, объем газа, напряжённости полей).

Определение

Внутренними параметрами называются параметры, определяющие состояние самого газа. (Например, энергия, давление, температура).

Определение

Внешними параметрами называются параметры, определяющие состояние газа только внешними относительно газа телами. (Пример, объем газа, напряжённости полей).

Определение

Внутренними параметрами называются параметры, определяющие состояние самого газа. (Например, энергия, давление, температура).

Определение

Состояние газа называется равновесным, если оно не изменяется во времени, а также отсутствует обмен энергии с внешними телами. Равновесное состояние – состояние, из которого газ не может выйти самопроизвольно. Если газ, находящийся в произвольном состоянии, предоставить самому себе, то через некоторое время (время релаксации) он перейдёт в равновесное состояние.

Работа газа Работа, совершаемая газом, происходит за счёт изменения внешних параметров a_i

$$\delta W = \sum_{i} A_{i} da_{i},$$

где A_i – обобщённые силы.

Работа газа

Работа, совершаемая газом, происходит за счёт изменения внешних параметров a_i

$$\delta W = \sum_{i} A_{i} da_{i},$$

где A_i — обобщённые силы.

Закон сохранения энергии

Изменение внутренней энергии газа E (кинетическая энергия движения молекул и потенциальная энергия их взаимодействия) имеет вид

$$dE = \delta Q - \delta W = \delta Q - \sum_{i} A_{i} da_{i},$$

где δQ – количество сообщённого газу тепла.

Уравнения состояния

По основной теореме термодинамики в равновесном состоянии газа все внутренние параметры (в качестве которых используются обобщённые силы) являются однозначными функциями внешних параметров и энергии (или температуры T) газа

$$A_i = A_i(T, a_1, \dots, a_n), \quad E = E(T, a_1, \dots, a_n).$$

Уравнения состояния

По основной теореме термодинамики в равновесном состоянии газа все внутренние параметры (в качестве которых используются обобщённые силы) являются однозначными функциями внешних параметров и энергии (или температуры T) газа

$$A_i = A_i(T, a_1, \ldots, a_n), \quad E = E(T, a_1, \ldots, a_n).$$

Представленные соотношения являются термическими и калорическим уравнениями состояния.

Основные предположения

- 1) Газ химически и физически однороден.
- 2) Отсутствуют внешние поля (гравитационное, магнитное и др.).
- 3) Единственные внешним параметром газа является объем V, а обобщенной силой давление p.

Из предположений следует, что многообразие термодинамических состояний двумерно.

Основные предположения

- 1) Газ химически и физически однороден.
- 2) Отсутствуют внешние поля (гравитационное, магнитное и др.).
- 3) Единственные внешним параметром газа является объем V, а обобщенной силой давление p.

Из предположений следует, что многообразие термодинамических состояний двумерно.

Закон сохранения энергии

$$d\varepsilon = \delta Q - pdV,$$

где $V=1/\rho$ — удельный объем, ρ — плотность газа, ε — удельная внутренняя энергия газа.

Второе начало термодинамики

$$dS = \frac{\delta Q}{T} = \frac{1}{T}(d\varepsilon + pdV),$$

где dS – полный дифференциал от энтропии S = S(V, T).

Второе начало термодинамики

$$dS = \frac{\delta Q}{T} = \frac{1}{T}(d\varepsilon + pdV),$$

где dS – полный дифференциал от энтропии S = S(V, T).

Таким образом,

$$TdS = d\varepsilon + pdV$$
,

для уравнений состояния

$$p = p(V, T), \quad \varepsilon = \varepsilon(V, T), \quad S = S(V, T).$$

Второе начало термодинамики

$$dS = \frac{\delta Q}{T} = \frac{1}{T}(d\varepsilon + pdV),$$

где dS – полный дифференциал от энтропии S = S(V, T).

Таким образом,

$$TdS = d\varepsilon + pdV$$
,

для уравнений состояния

$$p = p(V, T), \quad \varepsilon = \varepsilon(V, T), \quad S = S(V, T).$$

Второе начало термодинамики налагает на уравнения состояния дополнительное условие, поэтому независимых из них всего два.

Формулы для внутренней энергии Из второго начала термодинамики следует, что

$$\frac{\partial}{\partial V} \left(\frac{1}{T} \frac{\partial \varepsilon}{\partial T} \right) = \frac{\partial}{\partial T} \left(\frac{1}{T} \frac{\partial \varepsilon}{\partial V} + \frac{p}{T} \right) \quad \text{или} \quad \frac{\partial \varepsilon}{\partial V} = T^2 \frac{\partial}{\partial T} \left(\frac{p}{T} \right).$$

При заданных уравнениях состояния p = p(V, T) и S = S(V, T) внутренняя энергия находится с точностью до константы.

Формулы для энтропии Из второго начала термодинамики следует, что

$$\frac{\partial S}{\partial T} = \frac{1}{T}\frac{\partial \varepsilon}{\partial T} = \frac{c_V}{T}, \quad \frac{\partial S}{\partial V} = \frac{1}{T}\left(\frac{\partial \varepsilon}{\partial V} + p\right).$$

При заданных уравнениях состояния $\varepsilon=\varepsilon(V,T)$ и p=p(V,T) энтропия находится с точностью до константы, которая исключается с помощью соотношений Нёрста

$$S \to 0$$
 при $T \to 0$.

Термодинамические подтециалы: внутренняя энергия, энтальпия, свободная энергия, энергия Гибса

Седов Л.И. Том. 1. Гл. V, § 6.

c_p , c_v и связь между ними

Седов Л.И. Том. 1. Гл. V, § 6.

Связь между термодинамическими потенциалами и c_p , c_v

Седов Л.И. Том. 1. Гл. V, § 6.

Гипотеза о локальном термодинамическом равновесии В дальнейшем при изучении течений газа будем считать, что в каждый момент времени в бесконечно малой окрестности каждой точки пространства газ находится в термодинамически равновесном состоянии и можно ввести понятия

$$p = p(t, \vec{x}), \quad T = T(t, \vec{x}), \quad S = S(t, \vec{x}),$$

удовлетворяющие термическому, калорическому уравнениям состояния и второму закону термодинамики.

Равновесный процесс

$$\frac{dS}{dt} = \frac{1}{T} \left(\frac{d\varepsilon}{dt} + p \frac{dV}{dt} \right) = \frac{1}{T} \frac{dQ}{dt},$$

где $\frac{dQ}{dt}$ – скорость притока тепла к рассматриваемой порции газа.

Равновесный процесс

$$\frac{dS}{dt} = \frac{1}{T} \left(\frac{d\varepsilon}{dt} + p \frac{dV}{dt} \right) = \frac{1}{T} \frac{dQ}{dt},$$

где $\frac{dQ}{dt}$ – скорость притока тепла к рассматриваемой порции газа.

Если порция газа теплоизолирована dQ=0, тогда равновесный процесс называется адиабатическим, для которого

$$\frac{dS}{dt} = 0.$$

Неравновесный процесс Для теплоизолированной системы

$$\frac{dS}{dt} \ge 0.$$

Неравновесный процесс Для теплоизолированной системы

$$\frac{dS}{dt} \ge 0.$$

Пусть масса тела участвует в неравновесном процессе, обмениваясь теплом с внешними телами, в этом случе второе начало термодинамики требует выполнения условия

$$\frac{dS}{dt} + \frac{dS_e}{dt} > 0,$$

где S_e — энтропия внешних тел. Величина $\frac{dS_e}{dt}$ может рассматриваться как поток энтропии от внешних тел к массе тела.

Определение

Совершенным (идеальным) газом называется газ, для которого справедлив закон Менделеева-Клайперона

$$pV = RT$$
,

где R — газовая постоянная.

Внутренняя энергия совершенного газа Из полученных соотношений для внутренней энергии

$$\frac{\partial \varepsilon}{\partial V} = 0 \quad \Rightarrow \quad \varepsilon = \varepsilon(T),$$

при этом удельная теплоёмкость $c_V = \frac{\partial \varepsilon}{\partial T} = c_V(T)$.

Внутренняя энергия совершенного газа Из полученных соотношений для внутренней энергии

$$\frac{\partial \varepsilon}{\partial V} = 0 \quad \Rightarrow \quad \varepsilon = \varepsilon(T),$$

при этом удельная теплоёмкость $c_V = \frac{\partial \varepsilon}{\partial T} = c_V(T)$.

Определение

Газ называется политропным, если c_V не зависит от T. В этом случае

$$\varepsilon = c_V T$$
.

Выводы кинетической теории Выражения для удельных теплоёмкостей имеют вид

$$c_V = \frac{f}{2}k\frac{N_A}{M}, \quad R = c_p - c_V,$$

где f — число степеней свободы молекулы газа (f=3 для одноатомного, f=5 для двухатомного), k — постоянная Больцмана, N_A — постоянная Авогадро, M — молекулярный вес.

Выводы кинетической теории Выражения для удельных теплоёмкостей имеют вид

$$c_V = \frac{f}{2}k\frac{N_A}{M}, \quad R = c_p - c_V,$$

где f — число степеней свободы молекулы газа (f=3 для одноатомного, f=5 для двухатомного), k — постоянная Больцмана, N_A — постоянная Авогадро, M — молекулярный вес.

Энтропия

Из соотношении для энтропии при заданных уравнениях состояния следует, что

$$S = c_V \ln T + R \ln V + const = c_V \ln T + c_p \ln V - c_V \ln V + const =$$
$$= c_V \ln p + c_p \ln V + const.$$

Газ Ван-дер-Ваальса

Уравнение состояния

Поправка к уравнению состояния идеального газа, связанная с учётом объёма молекул и сил молекулярного взаимодействия, приводит к уравнению состояния Ван-дер-Ваальса

$$p = \frac{RT}{V - b} - \frac{a}{V^2},$$

где a — величина пропорциональная силе сцепления молекул, b — величина пропорциональная собственному объёму молекул газа.

Газ Ван-дер-Ваальса

Уравнение состояния

Поправка к уравнению состояния идеального газа, связанная с учётом объёма молекул и сил молекулярного взаимодействия, приводит к уравнению состояния Ван-дер-Ваальса

$$p = \frac{RT}{V - b} - \frac{a}{V^2},$$

где a — величина пропорциональная силе сцепления молекул, b — величина пропорциональная собственному объёму молекул газа.

Внутренняя энергия и энтропия

$$\varepsilon = \int c_V(T)dT - \frac{a}{V}, \quad S = \int \frac{c_V(T)}{T}dT + R\ln(V - b) + const.$$

Изоэнтропический процесс

Определение

Если некоторый элемент газа подвергается медленному расширению или сжатию, так что при этом не происходит теплообмена с окружающей средой, то элемент совершает адиабатический переход из одного термодинамического состояния в другое. При этом медленный процесс остаётся обратимым и энтропия элемента остаётся неизменной. Такой переход называется изоэнтропическим. Кривая S = const называется адиабатой Пуассона.

Изоэнтропический процесс

Определение

Если некоторый элемент газа подвергается медленному расширению или сжатию, так что при этом не происходит теплообмена с окружающей средой, то элемент совершает адиабатический переход из одного термодинамического состояния в другое. При этом медленный процесс остаётся обратимым и энтропия элемента остаётся неизменной. Такой переход называется изоэнтропическим. Кривая S=const называется адиабатой Пуассона.

Уравнение состояния идеального изоэнтропического политропного газа

$$p = \frac{A}{\gamma} V^{-\gamma},$$

где

$$\gamma = \frac{c_p}{c_V} = 1 + \frac{R}{c_V} > 1, \quad A^2 = A^2(S) = a^2 e^{S/c_V} = const.$$

Изотермический процесс

Определение

Если некоторый элемент газа подвергается медленному расширению или сжатию, так что при этом не происходит изменеия температуры газа, то такой процесс называется изотермическим. Кривая T=const называется изотермой.

Уравнение состояния идеального изотермического политропного газа

$$p = c^2 \frac{1}{V} = c^2 \rho, c^2 = (c_p - c_V)T = RT = const.$$

В некоторых случаях идеальный изотермический газа можно рассматривать как политропный с показателем $\gamma=1.$

Нормальный газ

Определение

Газ называется нормальным, если выполнены следующие свойства:

I.
$$\frac{\partial p(V,S)}{\partial V} < 0$$
.

II.
$$\frac{\partial^2 p(V,S)}{\partial V^2} > 0$$
.

III.
$$p(V,S) \to \infty$$
 при $V \to 0$.

IV.
$$\frac{\partial p(V,S)}{\partial S} > 0$$
.

$$V. c_V = \frac{\partial \varepsilon(V, T)}{\partial T} > 0.$$

VI. Область переменных (V, T), в которых выполнены свойства I-V – выпуклая.

Литература

- *Рождественский Б.Л., Яненко Н.Н.* Системы квазилинейных уравнений и их приложения к газовой динамике. Изд. 2-е, Главная редакция физ.-мат. лит. Изд. «Наука», М., 1978.
- *Базаров И.П.* Термодинамика. Учеб. для вузов. 4-е изд., перераб. и доп. М.: Высш. шк., 1991.