Univerza v Ljubljani Fakulteta za računalništvo in informatiko

Romana Grilj

Primerjava uspešnosti odprtokodnih in komercialnih orodij za luščenje podatkov

MAGISTRSKO DELO

MAGISTRSKI ŠTUDIJSKI PROGRAM DRUGE STOPNJE RAČUNALNIŠTVO IN INFORMATIKA

MENTOR: doc. dr. Slavko Žitnik

Ljubljana, 2023

To delo je ponujeno pod licenco Creative Commons Priznanje avtorstva-Deljenje pod enakimi pogoji 2.5 Slovenija (ali novejšo različico). To pomeni, da se tako besedilo, slike, grafi in druge sestavine dela kot tudi rezultati diplomskega dela lahko prosto distribuirajo, reproducirajo, uporabljajo, priobčujejo javnosti in predelujejo, pod pogojem, da se jasno in vidno navede avtorja in naslov tega dela in da se v primeru spremembe, preoblikovanja ali uporabe tega dela v svojem delu, lahko distribuira predelava le pod licenco, ki je enaka tej. Podrobnosti licence so dostopne na spletni strani creativecommons.si ali na Inštitutu za intelektualno lastnino, Streliška 1, 1000 Ljubljana.

Izvorna koda diplomskega dela, njeni rezultati in v ta namen razvita programska oprema je ponujena pod licenco GNU General Public License, različica 3 (ali novejša). To pomeni, da se lahko prosto distribuira in/ali predeluje pod njenimi pogoji. Podrobnosti licence so dostopne na spletni strani http://www.gnu.org/licenses/.

©2023 ROMANA GRILJ

Zahvala

 $Na\ tem\ mestu\ zapišite,\ komu\ se\ zahvaljujete\ za\ izdelavo\ magistrske\ naloge.\ V\ zahvali\ se\ poleg\ mentorja\ spodobi\ omeniti\ vse,\ ki\ so\ s\ svojo\ pomočjo\ prispevali\ k\ nastanku\ vašega\ izdelka.$

Romana Grilj, 2023

Vsem rožicam tega sveta.

"The only reason for time is so that everything doesn't happen at once."

— Albert Einstein

Kazalo

Povzetek	
I OVZCUCK	-

Abstract

1	Uvo	od .	1
2	Opi	s ponudnikov in storitev	Ę
	2.1	Hugging Face	Ę
	2.2	Google Cloud	7
	2.3	Amazon Web Services	Ć
	2.4	Microsoft Azure	10
3	Izbi	rana področja uporabe	15
	3.1	Najpogosteje uporabljeni algoritmi po področjih uporabe	15
	3.2	Prepoznavanje imenskih entitet	16
	3.3	Analiza sentimenta	17
	3.4	Povzemanje besedila	18
	3.5	Prepoznavanje besedih zvez	19
	3.6	Uvrščanje besedil	20
	3.7	Zaznava objektov	21
4	Kor	rpusi	2 3
	4.1	Uporabljeni korpusi	24

KAZALO

5	Me	trike	31
	5.1	Spremenljivke za izračun metrik	31
	5.2	Natančnost	33
	5.3	Priklic	33
	5.4	Ocena F1	34
	5.5	Točnost	34
	5.6	ROUGE	35
6	Pri	merjava orodij	37
	6.1	Prepoznavanje imenskih entitet (named entity recognition)	39
	6.2	Analiza sentimenta	41
	6.3	Povzemanje besedila	44
	6.4	Prepoznavanje besednih zvez (key pharses)	46
	6.5	Uvrščanje besedil (Text classification)	49
	6.6	Zaznava objektov (object detection)	51
	6.7	Diskusija	53
	6.8	Odločitvena tabela	54
7	Zak	diuček	57

Seznam uporabljenih kratic

kratica	angleško	slovensko	
NLP	Natural language processing	Obdelava nar	
\mathbf{AI}	Artificial intelligence	Umetna intel	
\mathbf{AWS}	Amazon Web Services		
IMDB	Internet Movie Database		
COCO	Common Objects in Context		
CNN	Cable News Network		
Rouge	Recall- Oriented Understudy for Gisting Evaluation		
SVM	Support Vector Machine Algorithm		
CRF	Conditional Random Field		
R-CNN	ICable News Network		
R-FCN	ICable News Network		
FPN	ICable News Network		
Casecade R-CNN	ICable News Network		

Povzetek

Naslov: Primerjava uspešnosti odprtokodnih in komercialnih orodij za luščenje podatkov

Magistrsko delo obravnava področja obdelave naravnega jezika ter zaznavo objektov. Primerjali smo različne oblačne storiteve kot so: Vertex AI, AWS SageMaker, Azure Cognitive Services ter odprtokodno rešitev Hugging Face Transformers. Cilj naloge je raziskati in analizirati ter primerjati njihove zmogljivosti, značilnosti ter ustreznost na različnih področjih uporabe obdelave naravnega jezika, kot so prepoznava imenskih entit, analiza sentimenta, prepoznava objektov, povzetek besedila, uvrščanje besedila ter izvleček besedne zveze.

V delu bodo podrobno predstavljene storitve treh največjih oblačnih ponudnikov: Vertex AI je Googlova platforma, Amazonova storitev SageMaker ter Microsoftova storitev Azure Cognitive Services so trenutno največje platforme za strojno učenje, obdelavo podatkov ter razvoj modelov, ki omogočajo integracijo funkcionalnosti obdelave naravnega jezika ter zaznavo objektov ter primerjava z odprtokodno platformo Hugging Face Transformers.

V raziskavi so bila preučena naslednje naloge obdelave naravnega jezika, kot je prepoznavanje imenskih entitet, kot so imena oseb, krajev, datumov in organizacij v besedilu. Analiza sentimenta je naloga za določanje čustvenega naboja besed ali besednih zvez, ki je lahko pozitiven, negativen ali nevtralen. Povzemanje zajema ustvarjanje krajšega povzetka daljšega besedila. Izvleček besedne zveze obravnava metodologije za ekstrakcijo ključnih besed ali besednih zvez v besedilu. Klasifikacija besedila za avtomatsko razvrščanje be-

sedila v različne kategorije. Zaznava objektov preučuje algoritme in tehnike za prepoznavanje objektov ali entitet na slikah.

Za primerjavo uspešnosti modelov so bile uporabljene različne metrike kot so priklic, natančnost, Ocena F1, ROUGE ter točnost. Uporabljeni so bili naslednji korpusi za evaluiranje modelov: CoNLL2003 za prepoznavo imenskih entit, IMdb Reviews za analizo sentimenta, COCO za prepoznavo objektov v slikah, CNN/Daily Mail za povzemanje besedila ter semeval-2017 za uvrščanje besedil ter prepoznavanje besedne zveze.

Skupaj s predstavitvijo ponudnikov oblačnih storitev, njihovih zmogljivosti in rezultatov evalvacije na različnih področjih uporabe, je magistrsko delo prispevalo k boljšemu razumevanju primernosti ter učinkovitosti omenjenih orodij za različne naloge obdelave naravnega jezika.

Ključne besede

analiza podatkov, ekstrakcija podatkov, strukturni podatki, spletno rudarjenje

Abstract

Title: Performance comparison of open source and commercial information extraction tools

This sample document presents an approach to typesetting your BSc thesis using LaTeX. A proper abstract should contain around 100 words which makes this one way too short. A good abstract contains: (1) a short description of the tackled problem, (2) a short description of your approach to solving the problem, and (3) (the most successful) result or contribution in your thesis.

Keywords

Data analysis, Information Retrieval, structural data, Web Mining

Poglavje 1

Uvod

Sodobni digitalni svet je priča izjemnemu napredku na področju obdelave naravnega jezika, ki seže preko širokega spektra aplikacij in storitev ter ima pomembno vlogo v sodobnem digitalnem okolju. Sposobnost učinkovitega obvladovanja in analize besedila postajata nepogrešljiva veščina, ki se širi iz informacijskih tehnologij in trženja v številne druge sektorje, vključno z zdravstvom in novinarstvom. Kljub temu se tako večja kot manjša podjetja vsakodnevno soočajo z izzivi, ki jih prinaša obdelava in razumevanje besedilnih in vizualnih podatkov. Eden izmed ključnih izzivov, ki jim lahko olajšave, je povezan s tako imenovanimi tehnikami naravnega jezika in zaznavo objektov.

Kot najbolj zanimiva poročja v obdelavni naravnega jezika se bomo osredotočili na šest zelo uporabnih ter zanimivih poročij. Prvo področje opisuje prepoznavanje imenskih entitet, katero uporabnikom lahko močno olajša vsakodnevno delo z strankami, saj lahko prepozna imena strnk ter datume v elektronskih sporočilih za lažje sledenje naročilom. Naslenje področje pokriva analizo sentimenta s pomočjo katere uporabniki na družbenih omrežjih lahko ugotovijo, kako se stranke odzivajo na njihove produkte ter s tem prilagajajo svoje produkte glede na rezultate. Naslednje zelo pomembno področje je povzemanje, ki hitro ustvarja krajše povzetke dolgih poročil in analiz, kar zaposlenim omogoča bolj učinkovito pregledovanje ključnih informacij. Zelo

1. UVOD

pomembno je tudi prepoznavanje besednih zvez za indetifikacijo ključnih pojmov v strateških dokumentih, kar. Pomaga pri načrtovanju marketinških kompanij in analiz konkurenčnega okolja. Uvrščanje besedil pomaga uporabnikom pri analizi strankinih mnenj in ocen, kar jim pomaga razumeti, kako se izdelki ali storitve pozicionirajo na trgu v primerjavi z konkurenco. Zadnje področje, ki ga bomo raziskali se na naša na zaznavo objektov, ki jo lahko uporabljamo za nadzor in identifikacijo neželenih oseb ali predmetov na območju objekta, kar prispeva k izboljšani varnosti in nadzoru.

Cilj te magisterske naloge je podrobneje raziskati ter analizirati različne ponudnike storitev za obdelavo naravnega jezika ter zaznavo objektov, uporabo različnih korpusov glede na različna področja uporabe, predstavljene bodo najpogosteje uporabljene metrike za evalvacijo modelov. Potrebno je povdariti, da je na trgu prisotnih veliko storitev, tako za velika podjetja kot tudi za končne uporabnike. Opazimo lahko tudi veliko število odprtokodnih rešitev, ki so lahko nekoliko specifična glede na področje uporabe.

V nadaljevanju se bomo osredotočili na pomembnost kakovostnih korpusov za uspešno učenje modelov. Pregledali bomo obstoječe in priljubljene korpuse, ki se uporabljajo za različne naloge. Kot ključen element bomo preučili metrike za ocenjevanje učinkovitosti modelov, kot so priklic, Ocena F1, ROUGE in druge. Razložili bomo, kako se uporabljajo za različne naloge in kako lahko z njimi ocenimo zmogljivost modelov.

Nato se bomo posvetili raznolikim področjem uporabe tehnologij obdelave naravnega jezika. Raziskali bomo, kako se tehnologije uporabljajo v analizi čustev, povzemanje, iskanju informacij in še več. Preučili bomo tudi izzive in omejitve, s katerimi se srečujejo modeli pri uporabi na različnih področjih.

V poglavju najpogosteje uporabljenih algoritmov (poglavje 3.1) bomo podrobneje spoznali izbrane funkcionalnosti, ki jih omogočajo modeli, ki temeljijo na umetni inteligenci in strojnem učenju ter so zasnovane za obdelavo, razumevanje in generiranje naravnega jezika. Različni modeli se uporabljajo za reševanje različnih nalog, povezanih z obdelavo jezika, kot so avtomatsko prevajanje, analiza čustev, razumevanje besedil, odgovarjanje na vprašanja,

izluščevanje informacij iz besedil, uvrščanje besedil in še več.

V poglavju o korpusih (glej poglavje 4) bomo podrobneje spoznali uporabljene korpuse, ki so ključnega pomena za uspešen razvoj, učenje in evalvacijo modelov. Korpusi so zbirke podatkov, ki so ročno označeni ali označeni s pomočjo algoritmov za različne naloge.

V poglavju o metrikah temeljito raziskali različne metrike (glej poglavje 5), ki omogočajo oceno učinkovitosti modelov glede na njihove specifične naloge. Raznolikost nalog na področju obdelave naravnega jezika zahteva prilagodljivost pri izbiri metrik. Predstavljene bodo ključne metrike, ki jih bodo uporabljene pri evalvaciji modelov.

Pridobili bomo pregled nad uporabo modelov ter njihovo uporabo za različna področja. Cilj raziskave je prispevati k boljšemu razumevanju tehnologij obdelave naravnega jezika ter zaznave objektov in predstaviti rezultate med različnimi ponudkniki storitev.

1.0.1 Motivacija in ciji

Sodobni digitalni svet je priča izjemnemu napredku na področju obdelave naravnega jezika, ki seže preko širokega spektra aplikacij in storitev ter ima pomembno vlogo v sodobnem digitalnem okolju. Sposobnost učinkovitega obvladovanja in analize besedila postajata nepogrešljiva veščina, ki se širi iz informacijskih tehnologij in trženja v številne druge sektorje, vključno z zdravstvom in novinarstvom. Kljub temu se tako večja kot manjša podjetja vsakodnevno soočajo z izzivi, ki jih prinaša obdelava in razumevanje besedilnih in vizualnih podatkov. Eden izmed ključnih izzivov, ki jim lahko oljša, je povezan s tako imenovanimi tehnikami naravnega jezika in zaznavo objektov.

Kot najbolj zanimiva poročja v obdelavni naravnega jezika se bomo osredotočili na šest zelo uporabnih ter zanimivih poročij. Prvo področje opisuje prepoznavanje imenskih entitet, katero uporabnikom lahko močno olajša vsakodnevno delo z strankami, saj lahko prepozna imena strnk ter datume v elektronskih sporočilih za lažje sledenje naročilom. Naslenje področje pokriva analizo sentimenta s pomočjo katere uporabniki na družbenih omrežjih lahko

1. UVOD

ugotovijo, kako se stranke odzivajo na njihove produkte ter s tem prilagajajo svoje produkte glede na rezultate. Naslednje zelo pomembno področje
je povzemanje, ki hitro ustvarja krajše povzetke dolgih poročil in analiz, kar
zaposlenim omogoča bolj učinkovito pregledovanje ključnih informacij. Zelo
pomembno je tudi prepoznavanje besednih zvez za indetifikacijo ključnih pojmov v strateških dokumentih, kar. Pomaga pri načrtovanju marketinških
kompanij in analiz konkurenčnega okolja. Uvrščanje besedil pomaga uporabnikom pri analizi strankinih mnenj in ocen, kar jim pomaga razumeti,
kako se izdelki ali storitve pozicionirajo na trgu v primerjavi z konkurenco.
Zadnje področje, ki ga bomo raziskali se na naša na zaznavo objektov, ki jo
lahko uporabljamo za nadzor in identifikacijo neželenih oseb ali predmetov
na območju objekta, kar prispeva k izboljšani varnosti in nadzoru.

V nadaljevanju bomo prevrili kateri so najboljši odprtokodni ponudniki na trgu in izbrali enega izmed najboljših ter naredili primerjavo z najbolj prepoznavnimi oblačnimi ponudniki. Trenutno so na trgu najbolj prepoznavni Google Cloud, Microsoft Azure ter Amazon Web Services .

Za merjenje uspešnosti posameznega področja, bomo uporabili dobro uveljavljene in standardne metrike. Te metrike predstavljajo ključno orodje za oceno učinkovitosti različnih rešitev na izbranem področju.

Cilj magistrske naloge je raziskati, kateri ponudnik je najboljši na določenem področju, ter na podlagi analize cenovne ugodnosti, enostavnosti uporabe in uspešnosti določiti, katerega ponudnika se najbolj izplača izbrati.

1.0.2 Prispevki

Magistrska naloga bo temeljila na obsežni analizi specifičnih področij naravnega jezika in obdelave slik. Naša raziskava bo usmerjena v prepoznavanje najboljših ponudnikov za vsako od teh izbranih področij. Osredotočili se bomo na razumevanje, kateri ponudniki na teh področjih izstopajo in kako se primerjajo glede na pomembne dejavnike, kot so cenovna konkurenčnost, uspešnost ter enostavnost uporabe njihovih rešitev.

Glavni cilj magistrske naloge bo organizacijam in posameznikom poma-

gati pri odločitvi, kateri ponudnik obdelave naravnegajezika in slik rešitev je najbolj primeren za njihove specifične potrebe. S tem bomo izvedli poglobljeno analizo in preverili, kako se posamezni ponudniki odrežejo na različnih področjih uporabe naravnega jezika in obdelave slik.

Naš prispevek bo poudaril, kateri ponudnik ponuja najboljšo kombinacijo cenovne ugodnosti, visoke uspešnosti in enostavne uporabe na področjih. S tem bomo zagotovili bolj informirane odločitve in pripomogli k uspešni implementaciji teh tehnologij na raznolikih področjih.

6 1. UVOD

Poglavje 2

Opis ponudnikov in storitev

Izbrani ponudniki so bili Google Cloud, Amazon Web Services in Microsoft Azure, saj so bili po člankih prepoznani kot najbolj razširjeni in zanesljivi oblačni ponudniki na trgu.

Za analizo je bila uporabljena odprtokodna platforma Hugging Face Transformers, ki je po objavljenih člankih dosegla najboljše rezultate. Platforma je bila je prepoznana kot izjemno učinkovita in zmogljiva, ki se je odlično izkazala pri obdelavi različnih nalog.

2.1 Hugging Face

Hugging Face je platforma na področju obdelave naravnega jezika in strojnega učenja. Njihova rešitev je postala zelo uporabna na področju raziskav, razvoja in uporabe strojnega učenja.

Njihova glavna odprtokodna knjižnica Hugging Face Transformers je postala temelj raziskav obdelave naravnega jezika, saj ponuja več kot 315.000 modelov, kot so GPT, BERT, RoBERTa in drugih, ki so ključni za različne naloge, vključno z razumevanjem jezika, strojnim prevajanjem, analizo čustev in generiranjem besedila.

Hugging Face Hub [1] je platforma, ki spodbuja sodelovanje in izmenjavo med raziskovalci, razvijalci in navdušenci nad strojnim učenjem. Ta plat-

forma omogoča enostavno odkrivanje modelov, kar olajša razvoj novih aplikacij in omogoča dostop do vnaprej treniranih modelov. Področje obdelave naravnega jezika je prvič bilo na voljo leta 2017. Podpora različnih jezikov je pogojena v prvi vrsti z izbiro modela.

Slika 2.1: Hugging Face

2.1.1 Hugging Face Transformers

Hugging Face Transformers [2] je odprtokodna knjižnica, ki je postala ena najpomembnejših orodij za obdelavo naravnega jezika in strojnega učenja. Njen cilj je ponuditi razvijalcem enostaven dostop do najnovejših arhitektur in modelov. Zgrajena je na osnovi Pythona in je postala ključno orodje za reševanje izzivov na področju obdelave naravnega jezika in razvoja aplikacij ter storitev.

Ena od ključnih prednosti Hugging Face Transformers je enostavnost uporabe. Razvijalci lahko z nekaj vrsticami kode dostopajo do pred-treniranih modelov za takojsno uporabo. Med drugim knjižnica omogoča tudi prilagajanje modelov in ponuja odprtokodno skupnost, ki nenehno prispeva z novimi modeli, izboljšavami in rešitvami.

Knjižnica ponuja tudi funkcionalnosti za preprosto prenosljivost modelov med različnimi platformami in orodji za povečanje učinkovitosti upo-

rabe modelov na različnih sistemih. Med drugim Hugging Face Transformers omogoča tudi preprosto združevanje z drugimi knjižnicami za strojno učenje in obdelavo podatkov.

Podpora različnih jezikov je pogojena v prvi vrsti z izbiro modela. Transformerji ponujajo širok nabor storitev za obdelavo naravnega jezika in sicer: uvrščanje besedil, prevajanje, povzemanje, znakovno uvrščanje, tabela vprašanj odgovorov, odgovori na vprašanja, razvrščanje brez vzorcev, klepet, generiranje besedila, dodajanje mankajočih besed, podobnost besed, in druge.

2.2 Google Cloud

Google Cloud [3] je celovita platforma za računalništvo v oblaku. Ponuja različne storitve ko so: shranjevanje, baze podatkov, strojno učenje, kar omogoča podjetjem, da gradijo in razvijajo aplikacije ter storitve v globalnem obsegu. Google Cloud zagotavlja prilagodljivo in razširljivo infrastrukturo, ki organizacijam omogoča inovacije ter optimizacijo operacij prek rešitev v oblaku. S svojimi podatkovnimi centri po vsem svetu zagotavlja zanesljivo zmogljivost, varnost in dostopnost.

Področje obdelave naravnega jezika je bilo dodano v Google Cloud leta 2015. Ponuja več kot 100 različnih modelov, najbolj prepoznavni modeli so OWL-ViT, BERT ter PaLM, kateri se uporablja za obdelavo naravnega jezika.

Slika 2.2: Google Cloud storitve

2.2.1 Vertex AI

Vertex AI [4] je napredna platforma za umetno inteligenco v oblaku, ki jo ponuja Google Cloud. S podporo za številne priljubljenena ogrodja za strojno učenje, kot so TensorFlow ter PyTorch je Vertex AI odlična izbira za razvijalce z različnimi potrebami in izkušnjami. Platforma Vertex AI ponuja tudi številne napredne storitve in orodja za razvoj in optimizacijo modelov. Vključuje integrirano orodje, ki omogoča hitro in enostavno oceno uspešnosti modelov na različnih primerih rabe. Prav tako ponuja samodejno prilagajanje hiperparametrov, kar omogoča avtomatsko iskanje najboljših hiperparametrov za izboljšanje zmogljivosti modelov. Prvotno je bila izdana leta 2020 in ima že več kot 100.000 uporabnikov po vsem svetu. Uporabljajo jo raznolika podjetja, od majhnih startupov do velikih korporacij, kot so Walmart, Pfizer in Coca-Cola. Podpirajo kar 11 različnih jezikov in sicer: Angleščina, Francoščina, Nemščina, Španščina, Kitajščina (poenostavljena), Kitajščina (tradicionalna), Japonščina, Korejščina, Portugalščina ter Ruščina.

Vertex AI ponujaja širok nabor storitev za obdelavo naravnega jezika in sicer: analiza sentimenta, analiza entitete, povzemanje, izvleček besedne zveze analiza sintakse, vsebinsko uvrščanje in ostale. Vertex AI lahko uporabljamo z več programskimi jeziki kot so: Go, Java, Node.js, Python.

Ena od ključnih funkcij Vertex AI je tudi funkcija Vertex Data Labeling, ki omogoča enostavno označevanje podatkov za učenje modelov.

2.3 Amazon Web Services

Amazon Web Services [5] je ponudnik storitev v oblaku, ki jih ponuja Amazon. Uporabnikom omogoča najem računalniških virov, kot so strežniki in shramba. To omogoča organizacijam, da prilagodljivo in učinkovito gradijo, upravljajo ter skalirajo svoje aplikacije in storitve brez potrebe po fizični strojni opremi. Je mednarodno priznan za svojo zanesljivost in širok nabor storitev za obdelavo podatkov, analitiko, umetno inteligenco ter druge poslovne potrebe.

Področje obdelave naravnega jezika je bilo dodano leta 2017. V Evropi pa je bil dostopen šele leto kasneje. Ponuja več kot 500 vnaprej treniranih modelov, med njimi lahko najdemo Mobilenet, YOLO, Faster R-CNN, BERT, lightGBM ter druge.

Podpora različnih jezikov je pogojena v prvi vrsti z izbiro modela.

Slika 2.3: Amazon Web Services storitve

2.3.1 Amazon SageMaker

Amazon SageMaker [6] je storitev za strojno učenje, ki jo ponuja Amazon Web Services. Omogoča hitro in enostavno izgradnjo, usposabljanje in razporejanje zmogljivih modelov, kar omogoča razvoj naprednih rešitev in izboljšanje procesov. Ponuja intuitiven uporabniški vmesnik in API-je, ki omogočajo hitro postavitev in upravljanje. SageMaker ponuja tudi integri-

rano okolje Jupyter, ki omogoča uporabo interaktivnih beležnic za raziskovanje in analizo podatkov.

Amazon SageMaker ponujaja širok nabor storitev za obdelavo naravnega jezika in sicer: uvrščanje besedil, analiza sentimenta, prepoznavanje imenskih entitet, prevanjanje, povzemanje ter druge.

Uporabljamo ga lahko z pomočjo dveh različnih programskih jezikov R ter Python.

Področje obdelave naravnega jezika je bilo dodano leta 2017.

2.4 Microsoft Azure

Microsoft Azure [7] je oblačna platforma, ki jo ponuja Microsoft, namenjena za razvoj, upravljanje in gostovanje njihovih aplikacij in storitev prek interneta v oblaku. Ponuja širok nabor storitev, vključno s spletnim gostovanjem, shranjevanjem podatkov, analitiko, umetno inteligenco in spletnimi storitvami. Uporabniki lahko ustvarjajo virtualne strežnike in omrežja ter jih prilagajajo glede na svoje potrebe. Zagotavlja visoko stopnjo varnosti in skladnosti, kar je ključno za zaščito podatkov in zagotavljanje zasebnosti strank.

Področje obdelave naravnega jezika je bilo dodano leta 2018. Ponuja 26 osnovnih modelov, ki so pripravljeni za takojšno uporabo. Kot zanimivost lahko omenimodva svetovo poznana modela text-davinci-003 ter GPT-35-turbo, ki je svetovo znan kot ChatGPT.

Ponuja široko podporo različnim jezikom, skupno več kot 96. Nekateri izmed njih so: Angleščina, Finščina, Francoščina, Danščina ter druge. Pomembo bi bilo izpozstaviti da pordpira tudi Slovenski jezik.

2.4.1 Azure Cognitive Services

Azure Cognitive Services [8] je celovita in napredna platforma za umetno inteligenco, ki jo ponuja Microsoftova platforma Azure. Te storitve omogočajo

Slika 2.4: Microsoft Azure storitve

analizo in razumevanje naravnega jezika, kar omogoča razvoj aplikacij za avtomatsko razvrščanje besedil, odgovarjanje na vprašanja, prevajanje besedil in analizo sentimenta. Ponuja širok nabor naprednih storitev in API-jev, ki omogočajo prepoznavanje, razumevanje in generiranje naravnega jezika, prepoznavanje obrazov, prepoznavanje govora, analizo besedil, prevajanje med jeziki in še veliko več. Te storitve omogočajo razvoj pametnih aplikacij, ki temeljijo na umetni inteligenci, in reševanje različnih izzivov na področju razumevanja in analize podatkov.

Azure Cognitive Services ponujaja širok nabor storitev za obdelavo naravnega jezika in sicer: prepoznavanje imenskih entitet, sentimentalna analiza, odgovarjanje na vprašanja, prevajanje ter druge.

Uporabljamo ga lahko z pomočjo več različnih programskih jezikov, kot so: C#, Java, JavaScript ter Python.

Storitev	Cena			Funkcionalnosti
Transformers	Compute: Nvidia A10G <u>Storage:</u> 150GB X2 => Total: 1,12€/		/h	 NLP Computer Vision Audio Tabular Reinforcement Learnii Multimodal
Azure Cognitive Services	Language Standard	Sentiment analysis (and opinion mining) Key phrase extraction Named entity recognition	OM-0.5M text records - €0.9235 per 1,000 text records 0.5M-2.5M text records - €0.6926 per 1,000 text records 2.5M-10.0M text records - €0.2771 per 1,000 text	 Speech NLP Computer Vision Decision making
	Computer Vision S1	Text Classification Detect, Objects	records €9.235 per million chars (Pay as You Go) 10-100M transactions - €0.555 per 1,000 transactions	
AWS SageMaker	Compute: ml.m5.xlarge m6gd.xlarge Storage: 100GB X2 =: Total: 1,65€	- 0.59 €/h > 0.14€/h	 NLP Computer Vision Analytics / Tabular Foundation (Text generation) 	
Google Vertex Al	Compute: n1-standard	d-16 - 0.874€/ -16 - 0.591€/h > 0.18€/h	 NLP Computer Vision Speech Analytics / Tabular 	

Slika 2.5: Primerjava ponudnikov glede na ceno in funkcionalnosti

V tabeli so predstavljeni stroški uporabe posameznih storitev. Pri nekaterih je potrebno plačati le virtualna okolja, za Azure Cognitive Services pa

plačamo glede na zahtevke. Pomembno je omeniti, da je v tabeli uporabljena cena za Hugging Face Transformers, katere lahko uporabljamo tudi lokalno.

Poglavje 3

Izbrana področja uporabe

3.1 Najpogosteje uporabljeni algoritmi po področjih uporabe

Različni algoritmi strojnega učenja se uporabljajo za različne naloge, najboljši algoritem za uporabo pa je odvisen od specifičnega problema. Na primer, linearna regresija je dobra izbira za naloge, pri katerih je potrebno napovedati stalno vrednost, kot je cena hiše. Logistična regresija je dobra izbira za naloge, pri katerih morate predvideti kategorično vrednost, na primer, ali je e-poštno sporočilo nezaželjeno ali ne. Odločitvena drevesa so dobra izbira za naloge, pri katerih se je potrebno odločiti na podlagi niza funkcij, na primer, ali odobriti posojilo ali ne. SVM-ji so dobra izbira za naloge, pri katerih morate ločiti podatkovne točke v različne razrede, kot je razvrščanje slik kot mačk ali psov. K najbližjih sosedov je dobra izbira za naloge, kjer morate poiskati podobne podatkovne točke, kot je priporočanje izdelkov strankam.

Za prepoznavanje imenskih entitet v naravnem jeziku je najbolj poznan algoritem CRF[23], ki se uporablja zaradi svoje visoke natančnosti in učinkovitosti. Uporablja se v številnih aplikacijah, ki zahtevajo identifikacijo imenskih entitet, kot so prepoznavanje imen oseb, krajev, organizacij ter druge.

Pri analizi sentimenta so med najbolj znanimi algoritmi Naive Bayes,

Support Vector Machine, Logistic Regression, Decision Tree, Maximum Entropy ter K-nearest Neighbors[24]. Ti algoritmi se uporabljajo za določanje čustvenega tona v besedilu, kot je pozitivn, negativen ali nevtralen. Pri izbiri ustreznega algoritma za analizo sentimenta je ključno upoštevati specifične potrebe naloge in raznolikost podatkov.

Za povzemanje besedila sta najpogosteje uporabljena algoritema Page-Rank in TextRank[29]. Za luščenje ključnih besed je napogosteje uporabljen algoritem TextRank[30]. Pri uvrščanju besedila je najpogosteje uporabljen algoritem SVM[29]. Pri zazavi objektov so najogosteje uporabljeni R-CNN, R-FCN, FPN, in Casecade R-CNN algoritmi[28].

3.2 Prepoznavanje imenskih entitet

Prepoznavanje imenskih entitet[9] je tehnika na področju obdelave naravnega jezika, ki se uporablja za prepoznavanje in uvrščanje besed v besedilu. Te posebne vrste so imenovane entitete, kot so imena oseb, organizacij, lokacij, datumov, številk, denarnih zneskov in drugih specifičnih poimenovanj.

Cilj je prepoznati in določiti začetek in konec posameznih entitet v besedilu ter jim pripisati ustrezno kategorijo.

Številne praktične uporabe:

- 1. Avtomatsko označevanje imenskih entitet v novicah, člankih in drugih besedilnih vsebinah.
- 2. Razumevanje strukture in vsebine dokumentov za informacijsko iskanje in kategorizacijo.
- 3. Pomoč pri analizi sentimenta, kjer želimo razumeti, kako se osebe, organizacije ali druge entitete omenjene v besedilu nanašajo na določeno temo ali izdelek.

The tower is 324 metres tall, about the same height as an 81-storey building, and the tallest structure in Paris (Loc). Its base is square, measuring 125 metres on each side. During its construction, the Eiffel Tower (Loc) surpassed the Washington Monument (Loc) to become the tallest man-made structure in the world. Due to the addition of a broadcasting aerial at the top of the tower in 1957, it is now taller than the Chrysler (ORG). The Eiffel Tower (LOC) is connected with an organization known as the Société d'Exploitation de la Tour Eiffel (ORG) or the Eiffel Tower Operating Company (ORG) in English (MISC). It was designed by the French (MISC) engineer Gustave Eiffel (PER).

Slika 3.1: Primer prepoznavanja imenskih entitet

3.3 Analiza sentimenta

Analiza sentimenta [10] je proces določanja čustvenega odziva, nagnjenosti ali stališča zapisanega besedila. Cilj analize sentimenta je ugotoviti, ali je določeno besedilo pozitivno, negativno ali nevtralno. To je lahko koristno pri analizi mnenj strank, razumevanju čustvenega odziva na izdelke, blagovne znamke, dogodke in druge.

Obstaja več pristopov k analizi sentimenta:

- 1. Pravilni pristopi: Uporabljajo se predvsem pravila in vzorci za identifikacijo pozitivnih in negativnih izrazov v besedilu. Na primer, besede, kot so 'dobro', 'fantastično', 'radostno' itd., bi bile označene kot pozitivne, medtem ko bi bile besede, kot so 'slabo', 'žalostno', 'neznosno' in tako dalje označene kot negativne.
- 2. Strojno učenje na podlagi besedila: Ta pristop vključuje uporabo algoritmov strojnega učenja, ki so naučeni prepoznati čustveni naboj besed v besedilu na podlagi velikega števila označenih podatkov (besedil s čustvenimi oznakami).
- 3. Analiza sentimenta s čustvenimi slovarji: Ta pristop vključuje uporabo slovarjev z besedami in izrazoslovjem, ki so povezani z določenimi čustvi. Besedilo se nato preveri in oceni glede na prisotnost pozitivnih ali negativnih besed iz čustvenih slovarjev.

The tower is 324 metres tall, about the same height as an 81-storey building, and the tallest structure in Paris. Its base is square, measuring 125 metres on each side. During its construction, the Eiffel Tower surpassed the Washington Monument to become the tallest man-made structure in the world. Due to the addition of a broadcasting aerial at the top of the tower in 1957, it is now taller than the Chrysler. The Eiffel Tower is connected with an organization known as the Société d'Exploitation de la Tour Eiffel or the Eiffel Tower Operating Company in English . It was designed by the French engineer Gustave Eiffel.

positive	0.557
neutral	0.437
negative	0.006

Slika 3.2: Primer analize sentimenta

3.4 Povzemanje besedila

Pri povzermanju besedila [11] gre za postopek ustvarjanja krajšega in jedrnatega povzetka iz daljšega besedila, kot je članek ali dokument. Namen povzemanja je izluščiti ključne informacije in ideje iz izvornega besedila ter jih predstaviti na bolj pregleden in krajši način. To je zelo koristno pri velikih količinah podatkov, ko želimo hitro pridobiti bistvo informacij, ne da bi brali celotno besedilo.

Tehnike za povzemanje uporabljajo različne algoritme in metode, ki vključujejo strojno učenje in obdelavo naravnega jezika, da bi učinkovito izluščile ključne besede, stavke ali odstavke, ki predstavljajo osrednje ideje v izvornem besedilu. Rezultat je običajno kratek povzetek, ki ohranja pomembne informacije iz izvirnega besedila. Ta tehnologija ima širok spekter uporabe, kot so samodejno povzemanje novic, generiranje opisov izdelkov, izdelava povzetkov raziskovalnih člankov in še veliko več.

The tower is 324 metres tall, about the same height as an 81-storey building, and the tallest structure in Paris. Its base is square, measuring 125 metres on each side. During its construction, the Eiffel Tower surpassed the Washington Monument to become the tallest man-made structure in the world. Due to the addition of a broadcasting aerial at the top of the tower in 1957, it is now taller than the Chrysler. The Eiffel Tower is connected with an organization known as the Société d'Exploitation de la Tour Eiffel or the Eiffel Tower Operating Company in English . It was designed by the French engineer Gustave Eiffel.

The tower is 324 metres tall, about the same height as an 81-storey building. Its base is square, measuring 125 metres on each side. During its construction, it surpassed the Washington Monument to become the tallest man-made structure in the world. Due to the addition of a broadcasting aerial at the top of the tower, it is now taller than the Chrysler.

Slika 3.3: Primer povzemanja besedila

3.5 Prepoznavanje besedih zvez

Prepoznavanje besedih zvez [12] se nanaša na besede ali izraze, ki so najpomembnejši ali najbolj značilni za določeno besedilo ali dokument. Te besede so običajno tiste, ki nosijo ključne informacije ali so bistvene za razumevanje vsebine.

Je pomembna naloga, saj nam omogoča, da hitro ugotovimo, o čem govori določeno besedilo. Te besede so lahko uporabne tudi za avtomatsko indeksiranje dokumentov, iskanje relevantnih informacij in razumevanje teme besedila brez potrebe po branju celotnega besedila.

The tower is 324 metres tall, about the same height as an 81-storey building. Its base is square, measuring 125 metres on each side. During its construction, it surpassed the Washington Monument (KEY) to become the tallest man-made structure in the world. Due to the addition of a broadcasting (KEY) aerial at the top of the tower, it is now taller than the Chrysler(KEY).

Slika 3.4: Primer prepoznavanja besedih zvez

3.6 Uvrščanje besedil

Uvrščanje besedil [13] je tehnika, pri kateri avtomatizirano določimo kategorijo ali razred določenega besedila na podlagi vsebine besedila. To je lahko zelo uporabno, saj nam omogoča razvrščanje besedil v različne skupine glede na njihovo vsebino.

Postopek uvrščanja besedila se običajno začne s pripravo in čiščenjem besedila. To vključuje odstranjevanje nepotrebnih znakov, šumnikov, posebnih znakov, pretvorbo vseh črk v male črke, lahko pa tudi odstranjevanje pogostih besed, ki nimajo velikega pomena za uvrščanje besedila (npr. 'in', 'ali', 'je', 'na' ter ostali).

Nato se besedila predstavijo v obliki, ki jo lahko uporabimo za učenje modela. Pogosto se uporablja metoda imenovana vreča besed, kjer se besedilo pretvori v nabor besed, ki se pojavljajo v njem, in število pojavitev teh besed. Ta postopek lahko ponazorimo s pomočjo vektorja.

The tower is 324 metres tall, about the same height as an 81-storey building, and the tallest structure in Paris. Its base is square, measuring 125 metres on each side. During its construction, the Eiffel Tower surpassed the Washington Monument to become the tallest man-made structure in the world. Due to the addition of a broadcasting aerial at the top of the tower in 1957, it is now taller than the Chrysler. The Eiffel Tower is connected with an organization known as the Société d'Exploitation de la Tour Eiffel or the Eiffel Tower Operating Company in English. It was designed by the French engineer Gustave Eiffel.

ness/Corporate	
1	-
ography	
3	
and Government	

Slika 3.5: Primer uvrščanja besedil

3.7 Zaznava objektov

Zaznava objektov [14] je tehnika, ki se uporablja za avtomatsko zaznavanje in identifikacijo objektov na digitalnih slikah ali video posnetkih. Namen te tehnike je, da prepozna in označi različne objekte, ter jih loči od ozadja ali drugih objektov.

Postopek objektnega zaznavanja običajno vključuje naslednje korake:

- 1. Zaznavanje: Model preučuje sliko ali video posnetek in identificira regije, kjer bi se lahko nahajali objekti.
- 2. Zaznava lokacije: Po tem, ko so bile regije prepoznane, algoritem določi omejitvene okvirje, ki natančno označujejo položaje in mejne točke objektov na sliki.
- 3. Uvrščanje: Ko so objekti omejeni z omejitvenimi okviri, analizira vsebino znotraj teh okvirov in jih razvrsti v različne kategorije (npr. avto, pes, zgradba, itd.).
- 4. Sledenje: V video posnetkih je lahko zaželeno, da algoritem sledi objektom skozi različne kadre in tako beleži njihovo gibanje.

Zaznava objektov se uporablja v številnih aplikacijah, kot tudi v samovozečih vozilih za zaznavanje drugih vozil in pešcev, identifikacijo prometnih znakov, nadzorne kamere, prepoznavanje obrazov, analiza medicinskih slik in še veliko drugega. Gre za enega ključnih elementov umetne inteligence.

Slika 3.6: Primer zaznave objektov

Poglavje 4

Korpusi

Je zbirka podatkov, ki so organizirani in shranjeni v strukturirani ali nestrukturirani obliki ter označeni za namen analize, raziskave, učenja modelov ali drugih postopkov obdelave podatkov. Korpusi vsebujejo različne vrste podatkov od številk, besedil, slik, zvokov, videoposnetkov do drugih tipov informacij. V kontekstu računalniškega znanstvenega modeliranja in strojnega učenja so korpusi ključnega pomena, saj služijo kot osnova za razvoj, treniranje in evalvacijo modelov. Modeli se učijo na teh podatkih, tako da prepoznajo vzorce in povezave med vhodnimi podatki in ciljnimi izhodi. Na primer, v naravnojezikovni obdelavi korpusov vsebuje besedilne podatke, ki so lahko članki, knjige, novičarski članki ali socialni mediji.

Nekatere ključne točke o uporabi korpusov:

Učenje modelov: Korpusi se uporabljajo za učenje modelov, pri čemer modeli na osnovi teh podatkov pridobivajo razumevanje jezika in njegove strukture. Čeprav obstajajo tudi nespremljani pristopi, večina uspešnih modelov zahteva velike, kakovostne in označene korpuse za doseganje najboljših rezultatov.

Razvoj in optimizacija: Razvijalci modelov uporabljajo različne korpuse za optimizacijo modelov in prilagajanje hiperparametrov. Z vzorci podatkov iz korpusov se preizkušajo različne arhitekture modelov in strategije učenja.

26 4. KORPUSI

Evaluacija: Korpusi se uporabljajo za evalvacijo modelov. Preizkušajo se na ločenem testnem korpusu, ki modelom omogoča, da se oceni, kako dobro delujejo na novih, nevidenih podatkih.

Nadzor kakovosti: Kvaliteta korpusov je ključnega pomena za uspešno delovanje modelov. Zato je pomembno, da so korpusi natančno označeni in urejeni. Nadzor kakovosti pomaga prepoznati morebitne napake ali pristranskosti v korpusih.

Prilagajanje specifičnim aplikacijam: Včasih so potrebni specializirani modeli za določene aplikacije ali domene. V takih primerih je morda potrebno ustvariti ali prilagoditi korpuse, ki se bolje prilegajo ciljni uporabi.

Razvoj modelov za redke jezike: Razvoj modelov obdelave naravnega jezika za redke jezike zahteva ustrezne korpuse v ciljnem jeziku, kar je lahko izziv, saj so ti korpusi pogosto omejeni ali pa jih sploh ni na voljo.

Pomembno je, da so korpusi pravilno pripravljeni, imajo ustrezne metapodatke in so primerni za ciljno nalogo, da bi omogočili kakovostno analizo in doseganje uporabnih rezultatov.

4.1 Uporabljeni korpusi

4.1.1 CoNLL 2003

Je zbirka podatkov, ki se uporablja za razvoj in evalvacijo sistema obdelavo naravnega jezika, prevsem za nalogo imenskih entitet. Imenuje se po konferenci CoNLL leta 2003, kjer je bil ta nabor podatkov predstavljen v okviru tekmovanja za prepoznavanje imenovanih entitet. Korpus CoNLL 2003 je priljubljen referenčni korpus za prepoznavanje poimenovanih entitet naravnega jezika v obdelavi naravnega jezika. Uporabljen je bil v skupni nalogi na konferenci o računalniškem učenju naravnega jezika (CoNLL) leta 2003.

Poimenovane entitete so razdeljene v štiri glavne kategorije:

- 1. Oseba (PER): Posamezna imena ljudi.
- 2. Organizacija (ORG): Imena podjetij, ustanov ali organizacij.

- 3. Lokacija (LOC): Imena geografskih lokacij, kot so mesta, države ali regije.
- 4. Razno (MISC): Druge poimenovane entitete, ki ne spadajo v zgoraj navedene kategorije, na primer datumi, odstotki ali denar.

Podatki v korpusu so predstavljeni v obliki ene besede na vrstico, kjer vsaka vrstica predstavlja besedo in pripadajočo oznako v stavku. Besede in oznake so ločene z presledkom. Korpus CoNLL 2003[16]se pogosto uporablja za evalvacijo zmogljivosti modelov za prepoznavanje poimenovanih entitet in je že več let standardno merilo za raziskovalce in strokovnjake v skupnosti obdelave naravnega jezika. Ostaja dragocen vir za razvoj in preizkušanje novih algoritmov in sistemov za prepoznavo imenskih intitet.

Tabela 4.1: Primer CoNLL 2003 korpusa

He PRP B-NP O
will MD B-VP O
probably RB I-VP O
be VB I-VP O
replaced VBN I-VP O
by IN B-PP O
Shearer NNP B-NP B-PER
's POS B-NP O
Newcastle NNP I-NP B-ORG

CoNLL2003 podatkovna zbirka je razdeljena na tri sklope:

- 1. učni z 14.000 vrsticami primerov
- 2. validacijski z 3.250 vrsticami primerov
- 3. preizkusni z 3.450 vrsticami primerov

28 4. KORPUSI

4.1.2 IMDb Reviews

IMDB podatkovna zbirka, znana tudi kot IMDB Movie Reviews Dataset [17]. Sestavljen iz pregledov filmov, ki so jih prispevali uporabniki na spletni strani IMDb[31].

Podatki vsebujejo ocene in besedilne komentarje, ki jih je ustvarila skupnost uporabnikov IMDb. Vsak pregled vsebuje besedilni komentar in oceno filma, ki se giblje med 1 (najslabša) in 10 (najboljša). Cilj te podatkovne zbirke je razviti modele, ki lahko avtomatsko analizirajo besedilne komentarje in napovedo, ali je pregled pozitiven ali negativen glede na oceno in besedilo.

Tabela 4.2: Primer IMDB korpusa

pregled	sentiment
If you like original gut wrenching laughter you will like movie.	positive
A rating of '1', depressing and relentlessly bad this movie is.	negative

IMDB podatkovna zbirka je razdeljena na dva sklopa:

- 1. učni z 25.000 vrsticami primerov
- 2. preizkusni z 25.000 vrsticami primerov

Vsak sklop vsebuje tisoče pregledov filmov. To je idealna podatkovna zbirka za naloge analize čustvenega tona besedil, kjer se ocenjuje ali je mnenje v besedilu pozitivno, negativno ali nevtralno.

4.1.3 COCO

COCO[18] je nabor podatkov v področju računalniškega vida in zaznave objektov. Namenjen je zagotavljanju celovite in raznolike zbirke slik za različne naloge, vključno z zaznavo objektov, segmentacijo in podnaslavljanjem. Nabor podatkov naj bi odražal scenarije iz resničnega sveta in vsebuje slike, ki so kompleksne ter vključujejo več objektov v različnih kontekstih.

Nabor podatkov je obsežen in vsebuje deset tisoče slik z milijoni označenih posameznih objektov. Slike prihajajo iz različnih virov, zajemajo raznolike prizore, ozadja, svetlobne pogoje in velikosti objektov.

Ključne značilnosti:

- Kategorije slik: Nabor podatkov vsebuje slike, ki zajemajo 80 različnih kategorij objektov, od splošnih objektov, kot so 'oseba', 'avto' in 'pes' do bolj specifičnih objektov, kot so 'mobilni telefon', 'zobna ščetka' in 'zmaj'.
- 2. Anotacije: Vsaka slika v korpusu je opremljena z oznakami na ravni objekta in koordinatami okvirja. To pomeni, da je vsak posamezen objekt določene kategorije znotraj slike označen, okoli njega pa je narisano območje z okvirjem, ki označuje njegovo lokacijo. Informacije o anotacijah so ključnega pomena za usposabljanje modelov za detekcijo objektov in segmentacijo.
- 3. Segmentacija objektov: zagotavlja maske segmentacije na ravni slikovnih pik za vsak posamezen objekt. To pomeni, da so objekti ne le lokalizirani z okviri, ampak so natančno določene tudi meje objektov na ravni slikovnih pik.

Korpus je razdeljen na dva sklopa:

- 1. učni z 117.000 primeri
- 2. preizkusni z 4.950 primeri

30 4. KORPUSI

Slika 4.1: 000000502136.jpg

```
]]
     'file_name': '000000502136.jpg',
     'coco_url': 'http://images.cocodataset.org/val2017/000000502136.jpg',
    'height': 423,
     'width': 500,
     'date_captured': '2013-11-15 17:08:30',
     'flickr_url': 'http://farm3.staticflickr.com/2253/1755223462_fabbeb8dc3_z.jpg',
     'id': 502136
     'segmentation': [
            54.74,
            350.34,
            53.75,
            353.33,
                 349.35
        ]
     'area': 4651.359250000001,
     'iscrowd': 0,
     'image_id': 502136,
     'bbox': [
        3.98,
        289.63,
        120.43,
         103.51
     ],
     'category_id': 64,
     'id': 21011
```

Slika 4.2: COCO .json primer

4.1.4 CNN/Daily Mail

CNN/Daily Mail je zbirka novičarskih člankov skupaj s povzetki, ki se uporablja za usposabljanje in preizkušanje modelov za povzemanje besedil. Ta nabor podatkov vsebuje različne novičarske članke in njihove povzetke, zaradi česar je primeren za naloge abstraktivnega povzemanja, kjer se ustvarijo povzetki v lastnih besedah, ne le izbirajo stavke iz izvornega besedila. Nabor podatkov vsebuje na tisoče člankov s pripadajočimi povzetki, kar omogoča raziskovalcem obsežno treniranje in evaluiranje modelov.[19]

Ključne značilnosti korpusa:

- 1. Novičarski članki in povzetki: Nabor podatkov vsebuje novičarske članke iz medijskih virov, kot sta CNN in Daily Mail, skupaj s pripadajočimi povzetki. Ti članki pokrivajo različne teme in dogodke ter so različnih dolžin.
- 2. Abstraktno Povzemanje: Vključuje ustvarjanje povzetka v povsem novih besedah.

Tabela 4.3: Primer cnn_dailymail korpusa

label	text	highlights
002509a	Fears are growing that Britain's jails are becoming	Athens pushes through
7526a1	It was a farce that would lead to	AZ Alkmaar were playing

Korpus jerazdeljen na tri sklope:

- 1. učni (train) z 287.000 vrsticami primerov
- 2. validacijski (validation) z 13.400 vrsticami primerov
- 3. preizkusni (test) z 11.500 vrsticami primerov

4.1.5 SemEval 2017

SemEval- 2017 [20] je zbirka besedilnih podatkov, ki je anotirana za različne naloge na področju obdelave naravnega jezika.

32 4. KORPUSI

Ključne značilnosti korpusa SemEval:

 Anotacije: Podatki so anotirani, kar pomeni, da so označeni z dodatnimi informacijami. Na primer, v korpus zbirki za naloge razreševanja sentimenta bi bili vzorci besedil označeni s pozitivnimi, negativnimi ali nevtralnimi sentimenti.

2. Raznolikost: Zajemajo širok spekter nalog, jezikov in domen. To omogoča raziskovalcem primerjavo modelov in pristopov na različnih področjih.

Raziskovalna skupnost: So postale pomemben del naravnega jezika raziskovalne skupnosti, saj omogočajo primerjavo najnovejših pristopov in tehnologij na enotnem naboru podatkov.

Tabela 4.4: Primer Semeval-2017 korpusa

label	text
-1	I missed the Barcelona game yesterday.
0	I'm bout to just listen to nicki minaj all night
1	One Night like In Vegas I make dat Nigga Famous

Korpus razdeljen na tri sklope:

- 1. učni z 49.547 vrsticami primerov
- 2. validacijski z 12.285 vrsticami primerov
- $3.\ \mathrm{preizkusni}$ z $12.285\ \mathrm{vrsticami}$ primerov

Poglavje 5

Metrike

V tem poglavju bomo obravnavali ključne metrike, ki so izbrane zaradi njihove univerzalnosti in razširjenosti v znanstvenih člankih za poročanje rezultatov. Te metrike predstavljajo standardni način izražanja in ocenjevanja raziskovalnih ugotovitev ter omogočajo primerjavo z drugimi študijami. Uporaba teh splošno priznanih metrik bo zagotovila natančno in ustrezno vrednotenje rezultatov naše raziskave.

5.1 Spremenljivke za izračun metrik

Pravilno pozitivni

Pravilno pozitivni [15] je izraz, ki se uporablja v statistiki in strojnem učenju za opis primerov, kjer je model pravilno napovedal pozitiven rezultat za določeno skupino. To pomeni, da je model prepoznal pozitiven pojav, ko je bil dejansko prisoten.

Primer:

Predpostavimo, da razvijamo model za prepoznavanje nezaželenih sporočil v elektronski pošti. Model pravilno prepozna 25 sporočil kot nezaželena, ki dejansko vsebujejo nezaželeno vsebino. To pomeni, da imamo 25 primerov 'pravilno pozitivnih'. Te primere model pravilno prepozna kot nezaželjene, ker resnično vsebujejo neželeno vsebino.

34 5. METRIKE

Napačno pozitivni

Napačno pozitivni [15] označujejo situacijo, ko model napačno napove, da je nekaj pozitivno, medtem ko je v resnici negativno. Gre za vrsto napake, kjer model napačno identificira primer kot pripadajoč pozitivnemu razredu, čeprav dejansko pripada negativnemu razredu.

Primer:

Predpostavimo, da imamo model za prepoznavanje nezaželjenih sporočil v elektronski pošti. Če model označi sporočilo kot nezaželjeno, čeprav dejansko ni imamo situacijo lažno pozitivnega primera. Drugače povedano, model je napačno napovedal pozitiven primer (nezaželjeno), ko je dejansko negativen primer torej ni nezaželjeno.

Napačno negativni

Napačno negativni [15] označujejo napako, ki se pojavi v kontekstu uvrščanja besedila ali analize besedila, ko model napačno napove, da je nekaj negativno, čeprav je v resnici pozitivno. To je vrsta napake, kjer model spregleda ali ne prepozna pozitivnih primerov. V primeru analize besedila v naravni jezikovni obdelavi, false negative se zgodi, ko model ne uspe zaznati pozitivnega elementa v besedilu, ki bi ga moral prepoznati. Na primer, če imamo model za prepoznavanje pozitivnih izjav v komentarjih in model spregleda pozitivno izjavo, to bi bil primer napačno negativni.

Primer:

Predpostavimo, da imamo napreden sistem za filtriranje nezaželjenih sporočil, ki ga uporabljamo za preverjanje prihajajočih e-poštnih sporočil. Sistem je zasnovan tako, da prepoznava in premika neželena sporočila v mapo za neželeno pošto.

Vendar pa se pojavi napačno negativen rezultat, ko sistem napačno presodi e-poštno sporočilo kot varno (ne nezaželjeno), čeprav vsebuje vse znake neželene vsebine. Na primer, če e-poštno sporočilo vsebuje povezave do nerealnih ponudb ali oglasev za sumljive izdelke, bi bila takšna sporočila številčno gledano ena od 'Napačno negativni'.

V tem primeru je sistem spregledal prepoznavo neželene vsebine, kar je

povzročilo, da je sporočilo pristalo v glavnem predalu prejete pošte namesto v mapi za neželeno pošto. To lahko predstavlja težavo, saj se takšni neželeni vsebini lahko izognemo le, če sistem zanesljivo prepozna vse takšne primere.

5.2 Natančnost

Natančnost [22] je pomembna metrika za ocenjevanje uspešnosti modelov v različnih nalogah. Povdarja natančnost pozitivnih napovedi, torej tistih primerov, ki jih model prepozna kot pozitivne. Visoka preciznost pomeni, da so pozitivne napovedi modela zanesljive in imajo malo lažno pozitivnih napak.

V kontekstu naravne jezikovne obdelave, natančnost igra ključno vlogo pri razumevanju besedila. Na primer, pri analizi sentimenta želimo natančno ugotoviti, ali je izraz pozitiven ali negativen. Visoka preciznost v tem primeru pomeni, da so napovedi modela o sentimentu točne in se malo zmotijo.

Formula za izračun:

Natančnost =
$$\frac{PravilnoPozitivni}{PravilnoPozitivni+NapacnoPozitivni}$$

5.3 Priklic

Priklic se [22] nanaša na eno od metrik uspešnosti pri vrednotenju modelov za obdelavo naravnega jezika. Meri kot razmerje med številom pravilno prepoznanih relevantnih primerov in celotnim številom dejansko obstoječih relevantnih primerov. Višji priklic pomeni, da je model bolje usposobljen za iskanje in pridobivanje vseh relevantnih informacij, vendar to lahko vodi tudi v več lažno pozitivnih rezultatov. Zato je pomembno doseči uravnoteženost med priklicom in natančnostjo pri oceni uspešnosti modelov. Primer uporabe priklica je v iskalnih sistemih, kjer želimo zagotoviti, da se relevantni dokumenti ali informacije ne izpustijo pri iskanju. S pravilno optimizacijo modelov lahko dosežemo visoko kakovostno izluščevanje informacij iz bese-

36 5. METRIKE

dil, kar je ključno za številne aplikacije, kot so avtomatizirano odzivanje na povratne informacije strank, analiza sentimenta in razumevanje besedil v različnih jezikih.

Formula za izračun:

$$Priklic = \frac{PravilnoPozitivni}{PravilnoPozitivni+NapacnoNegativni}$$

5.4 Ocena F1

F1 ocena je pomembna metrika za ocenjevanje uspešnosti modelov v obdelavi besedil. Združuje natančnost in priklic v eno metriko, ki odraža ravnotežje med tema dvema metrikama. Pri nalogah, kot so uvrščanje besedil, luščenje informacij ali identifikacija entitet, sta tako natančnost kot priklic ključni. Visoka natančnost pomeni pravilno identifikacijo relevantnih elementov, medtem ko visoki priklic zagotavlja prepoznavanje vseh resnično pozitivnih primerov. Izračuna se kot povprečje med natančnost in priklicom, dajeta pa ji enako težo. To omogoča, da ocenimo, kako dobro model obvladuje oba cilja hkrati. Visoka vrednost F1 ocene kaže, da je model uspešno uskladil identifikacijo pravih pozitivnih primerov z izogibanjem napačno pozitivnim rezultatom. Uporaba metrike je zlasti smiselna, ko sta metriki natančnost in priklic pomembni za končni rezultat in ko želimo doseči optimalno uravnoteženost med tema dvema vidikoma.

Formula za izračun:

Ocena F1= 2 x
$$\frac{Natancnost \times Priklic}{Natancnost + Priklic}$$

5.5 Točnost

Točnost [21] je metrika, ki se pogosto uporablja za ocenjevanje uspešnosti modelov v strojnem učenju, vključno z modeli uporabljenimi v obdelavi naravnega jezika. Ta metrika meri, kako pravilno model napove razrede ali kategorije za vhodne podatke v primerjavi z dejanskimi vrednostmi.

5.6. ROUGE 37

V kontekstu obdelave naravnega jezika se natančnost uporablja, na primer, pri nalogah uvrščanja besedila. Predpostavimo, da imamo model, ki se uči razvrščati besedila v določene kategorije, kot so 'pozitivno', 'negativno' ali 'neutralno'. Za vsako besedilo ima model svojo napoved, kateri kategoriji pripada.

Formula za izračun:

Točnost =

 $\frac{PravilnoPozitivni + PravilnoNegativni}{PravilnoPozitivni + PravilnoNegativni + NapacnoPozitivni + NapacnoNegativni}$

5.6 ROUGE

Je metrika, ki se uporablja za ocenjevanje kakovosti generiranih besedil v primerjavi z referenčnimi besedili. Gre za kratico, ki označuje 'Recall-Oriented Understudy for Gisting Evaluation'. Metrika je pogosto uporabljena v področju obdelave naravnega jezika, še posebej v nalogah avtomatskega povzemanja besedil.

Primerja generirano besedilo z referenčnim besedilom (običajno človeško ustvarjenim besedilom) in oceni, kako dobro so se ujemale. Metrika upošteva različne vidike, kot so prekrivanje besed, besedni nizi in skupna dolžina besedil. Glavni cilj metrike je merjenje stopnje, do katere je generirano besedilo sposobno pravilno povzeti pomembne informacije iz referenčnega besedila.

Obstajajo različne različice metrike ROUGE, kot so ROUGE-1, ROUGE-2, ROUGE-L itd. Vsaka različica meri različne vidike podobnosti med generiranim besedilom in referenčnim besedilom. Na primer, ROUGE-1 meri prekrivanje eno-besednih nizov med generiranim in referenčnim besedilom, medtem ko ROUGE-2 meri prekrivanje dvo-besednih nizov.

Metrika ima širok nabor uporabe v raziskavah in nalogah, ki vključujejo avtomatsko povzemanje besedil, strojno prevajanje in druge naloge, kjer je pomembno oceniti kakovost generiranih besedil v primerjavi z referenčnimi besedili. Metrika lahko pomaga raziskovalcem in razvijalcem oceniti učinkovitost svojih modelov in tehnik ter izboljšati rezultate pri generiranju besedil.

38 5. METRIKE

Poglavje 6

Primerjava orodij

Pimerjava ponudnikov ter storitev je bila izvedena v času od Februarja do Maja 2023.

Izbrani so bili trije največji ponudniki storitev v oblaku: Google Cloud, Amazon Web Services ter Microsoft Azure. Pri izbiri odprtokodne rešitve je bilo težko izbrati najboljšega, saj so v tem času tri najboljše odprtokodne rešitve zelo tesno skupaj kakor tudi povezane. Na podlagi pregledanih funkcionalnosti ter uporabe je bil izbran Hugging Face Transformers.

Analiza napak

Pri raziskovanju modelov in korpusov, hitro spoznamo da so lahko modeli celo preveč prilagojeni določenemu področju, kar pomeni da preveč podrobno pozna eno področje, na katerem je bil model treniran in ne more dobro razumeti novih podatkov/primerov, kakor tudi da so premalo podrobni ali premalo raznoliki.

Zato so najbolj poznani in razširjeni modeli, učeni na širokem naboru različnih podatkov, da je možnost napake manjša.

Prepoznane pogoste napake modelov:

Nezadostni podatki: Za gradnjo natančnega modela je potrebna velika količina podatkov. Če ni dovolj podatkov, bo model morda težko naučil vzorce v podatkih.

Nezadostna raznolikost podatkov: Pomembno je, da imajo podatki za

usposabljanje dobro razpršenost. Če so podatki preveč homogeni, bo model morda težko naučil vzorce, ki veljajo za splošne primere.

Nekvalitetni podatki: Pomembno je, da so podatki za usposabljanje kakovostni. Če so podatki napačni ali pristranski, bo model morda težko naučil natančen model.

Napačen algoritem: Obstaja veliko različnih algoritmov za stojno učenje, zato je pomembno, da se izbere algoritem, ki je primeren za specifično nalogo. Če je izbran algoritem napačen, bo morda težko zgraditi natančen model.

Napačna nastavitev parametrov: Večina algoritmov stojnega učenja ima parametre, ki jih je mogoče prilagoditi za izboljšanje natančnosti modela. Če niso pravilno nastavljeni parametri, bo morda težko zgraditi natančen model.

V nadaljevanju so predstavljeni podrobnejši rezultati treh iteracij z povprečnimi vrednostmi pripadajočih metrik ter standardni odklon kateri je merilo razpršenosti podatkov. Pomaga nam razumeti, koliko se podatki razlikujejo od povprečne vrednosti. Rezultati v vseh tabelah so zaokroženi na tri decimalna mesta.

Izbrani testni podatki

Za analizo obdelave naravnega jezika so bile izbrane tri množice testne testnih podatkov, vsaka od njih je vsebovala 50 primerov. Razdeljene so bile v tri različne kategorije: novice, finance ter šport. Pri zaznavi objektov pa so bile izbrane nslednje kategorije: osebe, živali ter vozila.

V nadaljevanju so predstavljeni podrobnejši rezultati treh iteracij z povprečnimi vrednostmi pripadajočih metrik ter standardni odklon kateri je merilo vrednosti od povprečja. Pomaga nam razumeti, koliko se podatki razlikujejo od povprečne vrednosti. Rezultati v vseh tabelah so zaokroženi na tri decimalna mesta.

6.1 Prepoznavanje imenskih entitet (named entity recognition)

Google Vertex AI klic:

```
predict_text_entity_extraction_sample(
    project: str,
    endpoint_id: str,
    content: str,
    location: str = "us-central1",
    api_endpoint: str = "us-central1-aiplatform.googleapis.com",
)
```

AWS SageMaker klic:

```
comprehend.detect_entities(Text=sample_tweet, LanguageCode='en')
```

Azure Cognitive Services klic:

```
client.recognize_entities(documents = documents)[0]
```

Tabela 6.1: Prepoznavanje imenskih entitet (named entity recognition)

		Množica 1	Množica 2	Množica 3	Povprečje
Hugging Face Transformers	Priklic	0.929	0.912	0.917	$0.919 (\pm 0.009)$
	Natančnost	0.924	0.945	0.901	$0.923\ (\pm\ 0.022)$
	F1 ocena	0.927	0.928	0.909	$0.921\ (\pm\ 0.011)$
Google Vertex AI	Priklic	0.946	0.914	0.896	$0.919 \ (\pm \ 0.025 \)$
	Natančnost	0.895	0.923	0.942	$0.920\ (\pm\ 0.024\)$
	F1 ocena	0.920	0.918	0.918	$0.919~(\pm~0.001~)$
AWS SageMaker	Priklic	0.981	0.962	0.941	$0.961 \; (\pm \; 0.020)$
	Natančnost	0.962	0.980	0.921	$0.954\ (\pm\ 0.030\)$
	F1 ocena	0.971	0.971	0.931	$0.958\ (\pm0.023\)$
Azure Cognitive Services	Priklic	0.821	0.831	0.821	$0.824 (\pm 0.006)$
	Natančnost	0.831	0.841	0.903	$0.858\ (\pm0.039\)$
	F1 ocena	0.826	0.836	0.860	$0.841~(\pm~0.017~)$
Najboljši rezultat z članka	Priklic				0.918
	Natančnost				0.913
	F1 ocena				$0.916~(\pm~0.33)$

Pri analizi imenskih entitet je bil uporabljen CONLL-2003 korpus (glej poglavje 4.1.1).

Za prepoznavanje oseb (PER) in organizacij (ORG) se je najbolje izkazala storitev Vertex AI. Na splošno pa je bil v vseh področjih najboljši AWS

Slika 6.1: Prepoznavanje imenskih entitet Ocena F1

SageMaker, saj je bil najboljši kar na obeh področjih, tako pri priklicu kot pri natančnosti.

6.1.1 Analiza napak pri prepoznavanje imenskih entitet

m 1 1 α α	D	1 .	•	. 1.1	1.1
Tabela 6.2:	Primeri	napak pri	prepoznavanie	imenskih	entitet

Besedilo	Imenske	AWS	Hugging Face
	entitete	$\mathbf{SageMaker}$	Transformers
John Doe je živel	John Doe, San	John Doe, San	John Doe, San
v San Franciscu.	Francisco	Francisco	Fran
Apple je bila	Apple, 1976	Apple, 1976	Apple,
ustanovljena leta			ustanovljena
1976.			
To je velikanski	robot		robot
robot.			

Kot je razvidno iz tabele so pri prvem primeru Hugging Face Transformers naredil napako pri zvezi 'San Franciscu', kjer je izpustil del besede.

V drugem primeru je AWS SageMaker izpustil pomembno entiteto 'ustanovljena'. V zadnjem primeru pa lahko vidimo da AWS SageMaker ni zaznal nobene imenske entitete.

Najpogosteje opažene napake pri prepoznavi imenskih entitet:

- Napake imen: to so napake v imenu imenske entitete, na primer napačna črka ali napačen zlog, zapletene besede ali tuje besede. To lahko oteži identifikacijo imena in njegovo kategorizacijo.
- 2. Napake v tipu: napaka v tipu imenske entitete, na primer napačno označitev osebe kot kraja ali obratno. Ime je zapleteno ali dvoumno zato, ker imajo zapletena imena lahko več kot eno pomensko področje.
- 3. Izpuščanje/nekategorizacija: napaka, pri katerih se imenska entiteta izpusti iz besedila.
- 4. Ponavljanje: napaka, pri katerih se imenska entiteta ponovi v besedilu.

6.2 Analiza sentimenta

Google Vertex AI klic:

```
predict_text_sentiment_analysis_sample(
    project: str,
    endpoint_id: str,
    content: str,
    location: str = "us-central1",
    api_endpoint: str = "us-central1-aiplatform.googleapis.com")
```

AWS SageMaker klic:

```
comprehend.detect_sentiment(Text=d, LanguageCode='en'))
```

Azure Cognitive Services klic:

```
client.recognize_sentiment(documents, show_opinion_mining=True)
```

Pri analizi sentimenta je bil uporabljen IMDb Reviews korpus (glej poglavje 4.1.2). Za analizo sentimenta je bila najboljša Vertex AI storitev.

		Množica 1	Množica 2	Množica 3	Povprečje
Hugging Face Transformers	Priklic	0.937	0.912	0.930	$0.926 \ (\pm 0.013)$
	Natančnost	0.938	0.987	0.860	$0.928\ (\pm0.064)$
	F1 ocena	0.937	0.952	0.893	$0.929\ (\pm0.031)$
Google Vertex AI	Priklic	0.921	0.948	0.938	$0.936 (\pm 0.014)$
	Natančnost	0.942	0.888	0.943	$0.924~(\pm 0.031)$
	F1 ocena	0.931	0.917	0.940	$0.930\ (\pm0.012)$
AWS SageMaker	Priklic	0.901	0.882	0.891	$0.891\ (\pm0.010)$
	Natančnost	0.821	0.853	0.912	$0.862\ (\pm0.046\)$
	F1 ocena	0.859	0.867	0.901	$0.876\ (\pm0.022)$
Azure Cognitive Services	Priklic	0.881	0.905	0.887	0.981 (±0.012)
	Natančnost	0.852	0.884	0.851	$0.862\ (\pm0.019)$
	F1 ocena	0.866	0.894	0.869	$0.876~(\pm 0.015)$
Najboljši rezultat z članka	Priklic	·		·	0.980
	Natančnost				0.650
	F1 ocena				0.782

Tabela 6.3: Analiza sentimenta(sentiment analaysis)

Slika 6.2: Analiza sentimenta Ocena F1

6.2.1 Analiza napak pri analizi sentimenta

Opazimo da sta obe storitvi naredili isto napako pri istem primeru, saj sta zaznali dolgočasno kot nevtralno in ne negativno.

Najpogosteje opažene napake pri analizi sentimenta:

1. Nepravilna identifikacija sentimenta: je ena izmed najpogosteje opaženih

Besedilo Imenske Google Vertex **Hugging Face** AI**Transformers** entitete Pozitivno Pozitivno Ta knjiga je zelo Negativno zanimiva. To je zelo Negativno Nevtralno Nevtralno dolgočasno. Nevtralno Pozitivno Ta igra je bila Pozitivno zelo napeta. Ta politični govor Negativno Negativno Pozitivno je bil zelo kontroverzen.

Tabela 6.4: Primeri napak pri analizi sentimenta

napak, ki se je pojavila pri analizi sentimenta, kar je lahko ko je beseda ali besedna zveza dvoumna in lahko pomeni tako pozitiven kot negativen sentiment. Lahko je tudi napaka v zapisu same besede ali besedne zveze, kot tudi da je model premalo naučen za določeno področje.

- 2. Nepravilna kategorizacija sentimenta: se pojavi, ko analiza sentimenta pravilno identificira sentiment, vendar ga napačno kategorizira. To lahko povzroči, da analiza sentimenta ne bo uporabna za namen, za katerega je bila namenjena.
- 3. Napaka v kontekstu: se zgodi ko analiza sentimenta pravilno identificira sentiment in ga pravilno kategorizira, vendar ga napačno razvrsti v kontekstu. To lahko povzroči, da analiza sentimenta ne bo uporabna za namen, za katerega je bila namenjena.
- 4. Napaka v viru: zaznamo jo, ko analiza sentimenta pravilno identificira sentiment, ga pravilno kategorizira in ga pravilno razvrsti v kontekstu, vendar ga napačno dobi iz vira. To lahko povzroči, da analiza sentimenta ne bo uporabna za namen, za katerega je bila namenjena.

6.3 Povzemanje besedila

Google Vertex AI klic:

```
text_summarization(
temperature: float,
project_id: str,
location: str,
)
```

AWS SageMaker klic:

Azure Cognitive Services klic:

```
sample_extractive_summarization(client):
    from azure.core.credentials import AzureKeyCredential
    from azure.ai.textanalytics import (
        TextAnalyticsClient,
        ExtractiveSummaryAction
)
```

Tabela 6.5: Povzemanje besedila (summarization)

		Množica 1	Množica 2	Množica 3	Povprečje
Hugging Face Transformers	ROUGE-L	0.178	0.187	0.212	$0.192 (\pm 0.018)$
Vertex AI	ROUGE-L	0.312	0.291	0.315	$0.306\ (\pm0.013)$
AWS SageMaker.	ROUGE-L	0.203	0.184	0.216	$0.201\ (\pm0.016)$
Azure Cognitive Services	ROUGE-L	0.387	0.318	0.284	0.330 (±0.052)
Rezultati članka	ROUGE-L				0.392

Pri povzemanju je bil uporabljen korpus CNN/Daily Mail (glej poglavje 4.1.4). Kot najboljša izbira za ustvarjanje povzetkov se je izkazala storitev Azure Cognitive Services.

Slika 6.3: Povzemanje Ocena F1

6.3.1 Analiza napak pri povzemanju besedila

Kot je razvidno iz tabele je Hugging Face Transformers vse stavke zelo slabo oblikoval in so zelo nepovezani.

Najpogosteje opažene napake pri povzemanju besedila:

- 1. Izpuščanje pomembnih informacij: kar pomeni, da je povzetek netočen ali nepopoln. To se lahko zgodi iz več razlogov, na primer zaradi tega, da model ne prepozna pomembnih informacij ali pa ne more pravilno razumeti pomena besedila.
- 2. Dodajanje napačnih informacij: povzroča, da je povzetek netočen ali zavajajoč. To se lahko zgodi iz več razlogov, na primer zaradi tega, da model napačno intrepterira besedilo ali pa uporablja napačne podatke pri treniranju modela.
- 3. Slab slog in gramatika: ustvarjeni povzetki, ki so slabo napisani ali vsebujejo napake v slogu in gramatiki, kar je lahko posledica napačnega algoritma.

Besedilo	Imenske	Azure	Hugging
	entitete	Cognitive	Face Trans-
		Services	formers
John Doe je	John Doe,	John Doe je	John Doe,
živel v San	uspešen	živel v San	poslovnež,
Franciscu. Bil	poslovnež iz	Franciscu in	živel v San
je uspešen	San Francisca.	bil poslovnež.	Franciscu.
poslovnež.			
Apple je bila	Apple,	Apple,	Apple,
ustanovljena	ustanovljeno	ustanovljeno	tehnološko
leta 1976. Je	leta 1976, je	leta 1976, je	podjetje,
ena največjih	eno največjih	največje	ustanovljeno
tehnoloških	tehnoloških	tehnološko	leta 1976.
podjetij na	podjetij na	podjetje na	
svetu.	svetu.	svetu.	
To je	Robot je	To je	Velikanski,
velikanski	velikanski.	velikanski	robot.
robot.		robot, ki je	
		zelo močan.	

Tabela 6.6: Primeri napak pri povzemanju besedila

6.4 Prepoznavanje besednih zvez (key pharses)

Google Vertex AI klic:

AWS SageMaker klic:

```
client.detect_key_phrases(
    Text='text',
    LanguageCode='en'|'es'|'fr'|'de'|'it'|'pt'|'ar'|'hi'|'ja'|'ko'|'zh'|'zh-TW'
)
```

Azure Cognitive Services klic:

client.extract_key_phrases(documents = documents)[0]

Tabela 6.7: Prepoznavanje besednih zvez (Key pharses)

		Množica 1	Množica 2	Množica 3	Povprečje
Hugging Face Transformers	Priklic	0.523	0.640	0.556	$0.573 (\pm 0.060)$
	Natančnost	0.398	0.499	0.528	$0.475\ (\pm0.068\)$
	F1 ocena	0.452	0.561	0.542	$0.519\ (\pm0.058)$
Google Vertex AI	Priklic	0.499	0.541	0.589	$0.543 \ (\pm 0.045)$
	Natančnost	0.688	0.635	0.589	$0.637\ (\pm0.050\)$
	F1 ocena	0.578	0.584	0.589	$0.586\ (\pm0.005)$
AWS SageMaker	Priklic	0.675	0.605	0.587	$0.622\ (\pm0.046)$
	Natančnost	0.520	0.492	0.526	$0.513\ (\pm0.018)$
	F1 ocena	0.587	0.543	0.555	$0.562\ (\pm0.023)$
Azure Cognitive Services	Priklic	0.532	0.559	0.500	$0.530\ (\pm0.030\)$
	Natančnost	0.674	0.648	0.689	$0.670~(\pm 0.021)$
	F1 ocena	0.595	0.600	0.579	0.592 (± 0.011)
Rezultati članka	Priklic				0.543
	Natančnost				0.637
	F1 ocena				0.519

Slika 6.4: Prepoznavanje besednih zvez Ocena F1

Pri izvajanju naloge zvlečka besedne zveze je bil uporabljen korpus Sem
Eval 2017(glej poglavje 4.1.5).

Kot najboljša rešitev za izvleček besedne zveze pa se je izkazala storitev Azure Cognitive Services.

6.4.1 Analiza napak pri izvlečeku besedne zveze

Tabela 6.8: Primeri napak pri izvlečeku besedne zveze

Besedilo	Imenske	Azure	Hugging
	entitete	Cognitive	Face Trans-
		Services	formers
John Doe je	John Doe,	John Doe, San	John Doe,
živel v San	uspešen	Francisco	Francisco
Franciscu. Bil	poslovnež,		
je uspešen	San Francisco		
poslovnež.			
Apple je bila	Apple,	Apple,	Apple,
ustanovljena	podjetje,	tehnološko	podjetje,
leta 1976. Je	tehnološko,	podjetje,	ustanovljeno
ena največjih	ustanovljeno	ustanovljeno	leta 1976,
tehnoloških	leta 1976	1976	tehnološko
podjetij na			
svetu.			
To je	velikanski	velikanski,	velikanski,
velikanski	robot	robot	robot, ki je
robot.			zelo močan

Iz tabele lahko razberemo, da je do napak prišlo pri uporabi obeh storitev, kot pri Hugging Face Transformers kakor tudi pri Azure Cognitive Services. Opazimo lahko makajoči del ključne besede kateri je zelo pomemben, napačno povezovanje besed ter dodajanje neresničnih podatkov.

Najpogosteje opažene napake pri izvlečeku besedne zveze:

1. Napačne oznake: napake v oznaki besednih zvez, na primer napačno označitev besedne zveze kot pomembne, čeprav ni pomembna ali obratno.

- 2. Izpuščanje: napake, pri katerih se besedna zveza izpusti iz izvlečka, na primer zaradi napake pri prepoznavanju besednih zvez ali zaradi napake pri razdelitvi besedila na stavke.
- 3. Ponavljanje: To so napake, pri katerih se besedna zveza ponovi v izvlečku, na primer zaradi napake pri razdelitvi besedila na stavke ali zaradi napake pri ohranitvi besedne zveze.

6.5 Uvrščanje besedil (Text classification)

Google Vertex AI klic:

```
text_classification_label_sample(
    project, location, endpoint, content
)
```

AWS SageMaker klic:

Azure Cognitive Services klic:

Slika 6.5: Uvrščanje besedil Ocena F1

0.735

Množica 1 Množica 2 Množica 3 Povprečje **Hugging Face Transformers** 0.933 0.948 $0.926 (\pm 0.027)$ Priklic 0.896 $0.930 \ (\pm 0.030)$ Natančnost 0.8980.9350.9580.915 $\mathbf{0.928}\ (\pm0.013)$ F1 ocena 0.9410.926Google Vertex AI Priklic 0.8420.901 0.844 $\mathbf{0.962} \ (\pm 0.034)$ Natančnost 0.9890.9240.959 $\mathbf{0.957} \ (\pm 0.033)$ F1 ocena 0.9100.9120.989 $0.907 (\pm 0.008)$ AWS SageMaker Priklic 0.7890.8020.697 $0.763 \ (\pm 0.057)$ Natančnost 0.8790.799 0.895 $0.858 (\pm 0.051)$ 0.832 $0.808 (\pm 0.024)$ F1 ocena 0.8000.784**Azure Cognitive Services** Priklic 0.9350.9250.900 $0.920 \ (\pm 0.018)$ 0.827 $0.880 (\pm 0.049)$ Natančnost 0.888 0.925F1 ocena 0.878 0.906 0.912 $0.900(\pm 0.018)$ Rezultati članka Priklic 0.757 0.707 Natančnost

Tabela 6.9: Uvrščanje besedil

Pri izvajanju naloge uvrščanja besedila je bil uporabljen korpus IMDb Reviews (glej poglavje 4.1.2).

Kot najboljša rešitev za naloge uvrščanje besedila pa se je izkazala storitev Hugging Face Transformers.

6.5.1 Analiza napak pri uvrščanje besedila

F1 ocena

Iz tabele lahko razberemo da so bile narejene napake pri obeh ponudnikih, vendar je Hugging Face Transformers imel manj napak.

Najpogosteje opažene napake pri uvrščanju besedila:

- Napačno uvrščanje razredov: zaradi pomanjkanja jasnih ločnic med razredi ali zaradi podobnosti med besedili različnih razredov.
- 2. Nezaznavanje: kadar se izpustijo pomembne informacije iz besedila, kar la povzroči, da je uvrščanje netočno ali nepopolno.

Besedilo	Imenske	Google Vertex	Hugging Face
	entitete	AI	Transformers
John Doe je živel	Novice	Novice	Novice
v San Franciscu.			
Apple je bila	Novice	Tehnologija	Novice
ustanovljena leta			
1976.			
Ta koncert je bil	Umetnost	Glasba	Glasba
zelo ganljiv.			

Tabela 6.10: Primeri napak pri uvrščanje besedila

6.6 Zaznava objektov (object detection)

Google Vertex AI klic:

```
predict_image_object_detection_sample(
    project: str,
    endpoint_id: str,
    filename: str,
    location: str = "us-centrall",
    api_endpoint: str = "us-centrall-aiplatform.googleapis.com",
)
```

AWS SageMaker klic:

Azure Cognitive Services klic:

```
client.analyze_image(url, visual_features=[VisualFeatureTypes.tags])
```

Tabela 6.11: Zaznava objektov

		Množica 1	Množica 2	Množica 3	Povprečje
Hugging Face Transformers	Točnost	0.900	0.970	0.940	0.940 (±0.018)
Google Vertex AI	Točnost	0.963	0.991	0.977	$0.977 (\pm 0.014)$
AWS SageMaker	Točnost	0.995	0.963	0.982	0.980 (±0.016)
Azure Cognitive Services	Točnost	0.960	0.950	0.985	$0.965~(\pm 0.017)$
Rezultati članka	Točnost				0.780

Slika 6.6: Zaznava objektov Ocena F1

Pri zaznavi objektov je bil uporabljen COCO korpus (glej poglavje 4.1.3). Kot najboljša izbira za zaznavanje objektov pa se je izkazala storitev AWS SageMaker.

6.6.1 Analiza napak pri zaznavi objektov

Tabela 6.12: Primeri napak pri zaznavi objektov

Slika	Pravilni	AWS	Hugging Face
	objekti	${f Sage Maker}$	Transformers
Psa	Pes	Pes	Mačka
Avtomobila	Avtomobil	Avtomobil,	Avtomobil
		cesta	
Slika mize z	Miza, roža	Miza	Miza, roža
rožami			
Avtomobil, ki	Avtomobil,	Avtomobil,	Avtomobil,
vozi po cesti	cesta	cesta	oseba, cesta
Oseba, ki hodi	Oseba,	Oseba,	Oseba, ulica
po ulici	ulica,cesta	ulica,cesta	

0.824 0.858

Tudi pri tej tabeli lahko vidimo da sta obe storitvi naredili napake. Opazimo da je Hugging Face Transformers večkrat napačno kategoriziral.

Do napak pri zazvanju objektov prihaja zaradi različnih razlogov, na primer zaradi napak v algoritmu za zaznavanje objektov, zaradi slabe kakovosti slik ali zaradi prisotnosti motenj v okolju.

Najpogosteje opažene napake pri zaznavi objektov:

- 1. Nenamerna zaznava: zaznava objektov, ki v dejanskem okolju niso prisotni.
- 2. Nezaznavanje: izpuščanje objektov, ki so dejansko pristotni v okolju.
- 3. Napačna zaznava: AI modeli lahko nepravilno zaznajo objekte.

Diskusija 6.7

Prepoznavanje imenskih entitet

Hugging Face Transformers Google Vertex AI AWS SageMaker Azure Cognitive Services Priklio 0.919 0.919 0.961 Natančnost 0.923 0.920 0.954 0.921 0.919 0.958

F1 ocena 0.841 Analiza sentimenta Priklic 0.926 0.936 0.891 0.9810.928 0.924 Natančnost 0.862 0.862 F1 ocena 0.929 0.930 0.876 0.876 Povzemanje ROUGE-L 0.192 0.306 0.201 0.330 Prepoznavanje besednih zvez Priklio 0.543 0.530 Natančnost 0.475 0.637 0.513 0.670 0.519 0.586 0.562 0.592 F1 ocena Uvrščanje besedil Priklic 0.926 0.962 0.763 0.920 Natančnost 0.930 0.957 0.858 0.880 F1 ocena 0.928 0.907 0.808 0.900Zaznava objektov 0.980 Točnost 0.940 0.977 0.965

Tabela 6.13: Tabela analize

Pomembno je omeniti, da so vse oblačne storitve po rezultatih tesno skupaj v nekaterih primerih, kot je razvidno iz tabele analize je za uvrščanje besedila odprtokodna rešitev Hugging Face Transformers je imela najboljši rezultat. Pri testitranju imenovanje imenskih entitet je najvišjo uspešnost dosegla storitev AWS Sage Maker. Na drugem mestu je bila odprtokodna storitev Hugging Face Transformers, medtem ko je tretje mesto zasedla storitev Vertex AI ponudnika Google Cloud.

Pri testiranju sentimentalne analize je najboljše rezultate dosegla storitev AWS SageMaker. Na drugo mesto se je uvrstila odprtokodna rešitev Hugging Face Transformers, medtem ko je tretje mesto zasedla storitev Vertex AI podjetja Google.

Najboljši rezultati pri povzemanju besedila so bili doseženi z uporabo storitve Azure Cognitive Services. Na drugem mestu se je uvrstil Vertex AI, medtem ko je tretje mesto pripadlo AWS SageMaker.

Pri ocenjevanju izvlečka besednih zvez je prvo mesto osvojila storitev Azure Cognitive Services. Na drugem mestu je Vertex AI, medtem ko je tretjem mestu AWS SageMaker.

Pri uvrščanju besedila se je najboljša učinkovitost pokazala pri odprtokodni platformi Hugging Face Transformers. Na drugem mestu je bila storitev Vertex AI, medtem ko je tretje mesto pripadlo storitvi Azure Cognitive Services.

V zaznavanju objektov je prvo mesto zasedla storitev Azure Cognitive Services, takoj za njo je sledil Vertex AI, medtem ko je tretje mesto pripadlo odprtokodni rešitvi Hugging Face Transformers.

6.8 Odločitvena tabela

Tabela 6.14: Odločitvena tabela

	Cena	Enostavnost	Uspešnost
Hugging Face Transformers	2	4	4
Google Vertex AI	3	3	1
AWS SageMaker	4	2	2
Azure Cognitive Services	1	1	2

Ocena cene v tabeli je bila določena glede na stroške ene iteracije glede na storitev. Pomembno je omeniti da smo za odprtokodno rešitev koristili virtualni stroj. Ocena enostavnosti uporabe temelji na naših izkušnjah iz uporabe storitev. Pri uporabi Azure Cognitive Services smo ugotovili, da je ta storitev izjemno enostavna za uporabo. Ponuja dobro dokumentacijo in uporabniku prijazen vmesnik, ki omogoča preprost razvoj storitev. Pri AWS SageMakerju smo opazili, da je potrebnih nekoliko več izkušenj z vmesniki. Ta platforma zahteva več truda pri učenju in je bolj tehnično zahtevna v primerjavi z Azure Cognitive Services. Google Vertex AI je bil ob v času raziskave še v razvoju in opaziti je bilo številne mankajoče informacije. To pomeni, da ta storitev morda ni tako zrela in dobro dokumentirana kot ostale storitve v analizi raziskave. Pri uporabi Transformerjev je bilo potrebno tehnično znanje za postavitev ustreznega delovnega okolja.

Slika 6.7: Slikovni prikaz odločitvene tabele

Iz grafa je razvidno, da je najprimernejša storitev Azure Cognitive Services saj je najcenejša ter najenostavnejša rešitev za uporabo.

Poglavje 7

Zaključek

Magistrska naloga je obravnavala širok spekter področij obdelave naravnega jezika z uporabo oblačnih ter odprtokodne rešitev Hugging Face Transformers. Cilj raziskave je bil razumeti, kako se različni ponudniki odzivajo na različne izzive in naloge ter določiti njihovo uspešnost na posameznih področjih. Analiza je zajemala prepoznavanje imenskih entitet, analizo sentimenta, povzemanje besedil, luščenje ključnih besed, uvrščanje besedila ter zaznavo objektov.

Na podlagi raziskave smo ugotovili, da se je vsak ponudnik specializiral in izkazal za najboljšega na določenem področju. Pri prepoznavanju imenskih entitet je izstopal AWS SageMaker s svojo natančnostjo. Google Cloud Vertex AI je blestel pri analizi sentimenta, kar je ključno za razumevanje čustev in mnenj v besedilu. Pri povzemanju besedila se je Azure Cognitive Services izkazal kot najboljši, kar poudarja njegovo sposobnost za ustvarjanje povzetkov besedilnih vsebin. Pri luščenju ključnih besed je bila rešitev Azure Cognitive Services v ospredju, saj je omogočala najboljši izvleček bistvenih informacij iz besedil. Hugging Face Transformers je prevzel vodilno vlogo pri analizi sentimenta z natančnostjo določanja čustvenega tona besedil. AWS SageMaker pa se je izkazal kot močan v zaznavanju objektov.

Vendar pa je pomembno poudariti, da ima vsak ponudnik v oblaku svoje prednosti in omejitve ter da izbira med njimi temelji na specifičnih potrebah

62 7. ZAKLJUČEK

in zahtevah uporabnika. Pri izbiri pravega ponudnika je potrebno upoštevati različne faktorje, kot so natančnost, hitrost, stroške, prilagodljivost in integracija z obstoječimi sistemi.

Pomembno je izpostaviti, da so rezultati analize odvisni od specifičnih nalog, modelov in korpusov, ki so bili uporabljeni v tej raziskavi. Prav tako se tehnologije in zmogljivosti ponudnikov v oblaku nenehno razvijajo, zato je pomembno, da podjetja in raziskovalci ostanejo pozorni na nove in izboljšane modele za obdelavo naravnega jezika in zaznavo objektov.

V sklepni fazi je jasno, da noben ponudnik v oblaku ne izstopa kot absolutno najboljši na vseh področjih. Različni ponudniki imajo svoje prednosti in posebne zmogljivosti glede na določene naloge obdelave naravnega jezika. Izbiro ustrezne platforme je torej smiselno prilagoditi specifičnim potrebam in zahtevam. Obetavno pa je opazovati, kako odprtokodne rešitve, kot je Hugging Face Transformers pridobivajo na veljavi in omogočajo raziskovalcem in razvijalcem, da izkoristijo najboljše iz več različnih tehnologij.

Zaključimo, da je obdelava naravnega jezika ter zaznave objektov v oblaku zelo dinamično in obetavno področje, ki bo še naprej oblikovalo način, kako napredujemo s tehnologijo in kako razumemo ter uporabljamo jezikovne vsebine v digitalnem svetu.

Literatura

- [1] Hugging Face. Dostopno na: https://huggingface.co/learn/nlp-course/chapter1/4 [Dostopano 10. 06. 2023].
- [2] Transformers. Dostopno na: https://huggingface.co/learn/nlp-course/chapter2/1?fw=pt [Dostopano 10. 06. 2023].
- [3] Google Cloud. Dostopno na: https://cloud.google.com/natural-language#section-1 [Dostopano 10. 06. 2023].
- [4] Vertex AI. Dostopno na: https://cloud.google.com/vertex-ai [Dostopano 10. 06. 2023].
- [5] Amazon Web Services (AWS). Dostopno na: https://aws.amazon.com/[Dostopano 10. 06. 2023].
- [6] Amazon SageMaker. Dostopno na: https://aws.amazon.com/sagemaker/[Dostopano 10. 06. 2023].
- [7] Azure. Dostopno na: https://azure.microsoft.com/en-us [Dostopano 10. 06. 2023].
- [8] Azure Cognitive Services. Dostopno na: https://azure.microsoft.com/en-gb/products/cognitive-services [Dostopano 10. 06. 2023].
- [9] Named Entity Recognition. Dostopno na: https://www.shaip.com/blog/named-entity-recognition-and-its-types/[Dostopano 10.06. 2023].

64 LITERATURA

[10] Sentiment Analysis. Dostopno na: https://aws.amazon.com/what-is/sentiment-analysis/[Dostopano 10.06.2023].

- [11] Summarization. Dostopno na: https://huggingface.co/tasks/summarization [Dostopano 10. 06. 2023].
- [12] Keyphrase Extraction. Dostopno na: https://www.geeksforgeeks.org/keyphrase-extraction-in-nlp/ [Dostopano 10. 06. 2023].
- [13] Text Classification. Dostopno na: https://huggingface.co/tasks/text-classification [Dostopano 10. 06. 2023].
- [14] Object Detection. Dostopno na: https://huggingface.co/tasks/object-detection [Dostopano 10. 06. 2023].
- [15] True vs. False and Positive vs. Negative. Dostopno na: https://developers.google.com/machine-learning/crash-course/classification/true-false-positive-negative [Dostopano10. 06. 2023].
- [16] Erik F. Tjong Kim Sang and Fien De Meulder "Introduction to the CoNLL-2003". Dostopno na: https://aclanthology.org/W03-0419. pdf [Dostopano 10. 06. 2023].
- [17] IMDB Dataset Reviews. Dostopno na: https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews [Dostopano 10. 06. 2023].
- [18] COCO 2017 Dataset. Dostopno na: https://www.kaggle.com/datasets/awsaf49/coco-2017-dataset [Dostopano 10. 06. 2023].
- [19] CNN dailymail Dataset. Dostopno na: https://huggingface.co/ datasets/cnn_dailymail [Dostopano 10. 06. 2023].
- [20] SemEval-datasetst. Dostopno na: https://www.kaggle.com/datasets/azzouza2018/semevaldatadets?resource=download [Dostopano 10. 06. 2023].

LITERATURA 65

[21] Accuracy. Dostopno na: https://developers.google.com/machine-learning/crash-course/classification/accuracy [Dostopano 10. 06. 2023].

- [22] Precision and Recall. Dostopno na: https://developers.google.com/machine-learning/crash-course/classification/precision-and-recall [Dostopano 10.06.2023].
- [23] Arya Roy: Recent Trends in Named Entity Recognition (NER).Dostopno na: https://arxiv.org/pdf/2101.11420.pdf [Dostopano 10. 06. 2023].
- [24] Mayur Wankhade, Annavarapu Chandra Sekhara Rao, Chaitanya Kulkarni: A survey on sentiment analysis methods, applications, and challenges. Dostopno na: https://link.springer.com/article/10.1007/ s10462-022-10144-1 [Dostopano 10. 06. 2023].
- [25] Divakar Yadav, Jalpa Desai, Arun Kumar Yadav: Automatic Text Summarization Methods: A Comprehensive Review. Dostopno na: https://arxiv.org/pdf/2204.01849.pdf [Dostopano 10. 06. 2023].
- [26] Xiaoyu Luo: Efficient English text classification using selected Machine Learning Techniques. Dostopno na: https://www.sciencedirect.com/science/article/pii/S1110016821000806 [Dostopano 10. 06. 2023].
- [27] Debanjan Mahata, John Kuriakose, Rajiv Ratn Shah, Roger Zimmermann: Automatic Ranked Keyphrase Extraction from Scientific Articles using Phrase Embeddings. Dostopno na: https://osf.io/j76y3/download [Dostopano 10. 06. 2023].
- [28] Lixuan Du, Rongyu Zhang, Xiaotian Wang: Overview of two-stage object detection algorithms. Dostopno na: https://iopscience.iop. org/article/10.1088/1742-6596/1544/1/012033/pdf [Dostopano 10. 06. 2023].

66 LITERATURA

[29] NLP Text Summarization - Popular Machine Learning And Deep Learning Algorithms . Dostopno na: https://spotintelligence.com/2022/12/01/nlp-text-summarization/ [Dostopano 10. 06. 2023].

- [30] Algorithms to Detect Phrases and Keywords from Text . Dostopno na: https://saturncloud.io/blog/algorithms-to-detect-phrases-and-keywords-from-text/ [Dostopano 10. 06. 2023].
- [31] IMDB . Dostopno na: https://www.imdb.com/ [Dostopano 10. 06. 2023].