ĐỀ THI THỬ CUỐI KỲ MÔN GIẢI TÍCH 2 - Học kì 20212 Nhóm ngành 1 Thời gian làm bài: 90 phút

Chú ý: Thí sinh không được sử dụng tài liệu và giám thị phải kí xác nhận số đề vào bài thi.

Câu 1. (1 điểm) Tìm tiếp tuyến và pháp diện của đường cong $s(t)=(\cos t,\sin t,t)$ với $t\in\mathbb{R}$ tại $P=s(\frac{\pi}{4})$.

Câu 2. (1 điểm) Tìm hướng sao cho sự biến thiên của hàm số $u = x \cdot \sin z - y \cdot \cos z$ tại O theo hướng đó là lớn nhất.

Câu 3. (1 điểm) Tính
$$I = \iint\limits_D 4xy dx dy$$
 với $D = \left\{ \begin{array}{l} -x \leq y \leq 1-x \\ x-2 \leq y \leq x-1 \end{array} \right.$

Câu 4. (1 điểm) Tính $I=\iiint\limits_V \frac{x^2}{\sqrt{x^2+y^2+z^2}}dxdydz$, trong đó V là miền giới hạn bởi

mặt cầu
$$x^2+y^2+z^2=4$$
 và mặt nón $z=\sqrt{\frac{x^2+y^2}{3}}.$

Câu 5. (1 diểm) Tính
$$\int_{0}^{+\infty} \frac{\sqrt{x}}{\left(1+x^2\right)^2} dx$$

Câu 6. (1 điểm) Tính khối lượng đường cong vật chất <mark>có phương trình $y=e^{\frac{x}{2}}+e^{-\frac{x}{2}}, (0\leq x\leq 2)$ và có hàm mật độ khối lượng $\rho(x,y)=\frac{1}{y}$ </mark>

Câu 7. (1 điểm) Tính $\iint\limits_S (x-z)dS$ với S là mặt phẳng bao xung quanh miền được giới

hạn bởi:
$$x^2 + y^2 = 4$$
, $z = x - 3$ và $z = x + 2$

Câu 8. (1 điểm) Tính tích phân đường:

$$\int_{L} [y(x-1)^{2} + 2y + e^{x}]dx - [x(y-1)^{2} + 2x + e^{y}]dy$$

với $L: x=1+\sqrt{1-(y-1)^2}$ đi từ A(1,0) đến B(1,2) theo hướng ngược chiều kim đồng hồ.

Câu 9. (1 điểm) Tính thông lượng trường vector $\vec{F} = xz^2\vec{i} + x^2y\vec{j} + y^2(z+2)\vec{k}$ qua nửa mặt cầu $S: x^2 + y^2 + z^2 = 1, z \le 0$, hướng xuống dưới.

Câu 10. (1 điểm) Tính tích phân:

$$\int_C (x^2 + y^2 + z^2 + yz)dx + (x^2 + y^2 + z^2 + xz)dy + (x^2 + y^2 + z^2 + xy)dz$$

trong đó C là giao của mặt cầu $x^2+y^2+z^2=4$ và mặt $z=x^2+(y-1)^2$ với hướng cùng chiều kim đồng hồ khi nhìn từ gốc O.

Chúc các bạn hoàn thành tốt bài thi

Giải câu 1. Ta có: đường cong $s(t) = (\cos t, \sin t, t)$

$$D \breve{a}t \begin{cases} x(t) = \cos t \\ y(t) = \sin t \\ z(t) = t \end{cases} \Leftrightarrow \begin{cases} x'(t) = -\sin t \\ y'(t) = \cos t \\ z'(t) = 1 \end{cases}$$

$$\Rightarrow \begin{cases} x\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \\ y\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \end{cases} \quad v\grave{a} \begin{cases} x'\left(\frac{\pi}{4}\right) = -\frac{\sqrt{2}}{2} \\ y'\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \\ z\left(\frac{\pi}{4}\right) = \frac{\pi}{4} \end{cases} \quad z'\left(\frac{\pi}{4}\right) = 1$$

Phương trình tiếp tuyến:
$$\frac{x - \frac{\sqrt{2}}{2}}{-\frac{\sqrt{2}}{2}} = \frac{y - \frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}} = \frac{z - \frac{\pi}{4}}{1}$$

Phương trình mặt pháp tuyến:
$$-\frac{\sqrt{2}}{2}\left(x-\frac{\sqrt{2}}{2}\right)+\frac{\sqrt{2}}{2}\left(y-\frac{\sqrt{2}}{2}\right)+\left(z-\frac{\pi}{4}\right)=0$$

Giải câu 2. Ta có: $\frac{\partial u}{\partial \vec{l}}(M_0)$ thể hiện tốc độ biến thiên của trường vô hướng u tại M theo hướng \vec{l}

$$Do \frac{\partial u}{\partial \vec{l}}(0) = \overrightarrow{grad} \ u \cdot \vec{l} = |\overrightarrow{grad} \ u|.|\vec{l}|.\cos(\overrightarrow{grad} \ u, \vec{l})$$

ta có: $\left| \frac{\partial u}{\partial \vec{l}}(0) \right|$ đạt giá trị lớn nhất $\Leftrightarrow |\cos(\overrightarrow{grad}\ u, \vec{l})|$ đạt giá trị lớn nhất $\Leftrightarrow \overrightarrow{grad}\ u$ cùng phương với \vec{l} .

+)
$$\overrightarrow{grad} u = (\sin z, -\cos z, x \cos z + y \sin z)$$

$$\Rightarrow \overrightarrow{grad} u(0) = (0, -1, 0)$$

$$\Rightarrow$$
 Chọn $\vec{l} = k(0, -1, 0) \quad (k \in \mathbb{R}, k \neq 0)$

Vậy sự biến thiên của hàm số $u=x\sin z-y\cos z$ tại gốc O là lớn nhất theo hướng $\vec{l}=k(0,-1,0)\quad (k\in\mathbb{R},k\neq 0)$

Giải câu 3.

$$I = \iint_D 4xy dx dy = \iint_D (x^2 + 2xy + y^2) - (x^2 - 2xy + y^2) dx dy$$
$$= \iint_D (x + y)^2 - (x - y)^2 dx dy$$

• Đặt
$$\left\{ \begin{array}{ll} u=x+y \\ v=x-y \end{array} \right. \Rightarrow J^{-1} = \left| \begin{matrix} 1 & 1 \\ 1 & -1 \end{matrix} \right| = 2$$

• Miền D tương đương với $D' \left\{ \begin{array}{l} 0 \leq u \leq 1 \\ 1 \leq v \leq 2 \end{array} \right.$

$$I = \iint_D (u^2 - v^2)/2 du dv$$

$$= \frac{1}{2} \int_0^1 du \int_1^2 (u^2 - v^2) dv$$

$$= \frac{1}{2} \int_0^1 u^2 v - \frac{v^3}{3} \Big|_{v=1}^{v=2} du$$

$$= \frac{1}{2} \int_0^1 (u^2 - \frac{7}{3}) du = -1$$

Giải câu 4.

• Giao tuyến của hai mặt : $\begin{cases} x^2 + y^2 + z^2 = 4 \\ z = \sqrt{\frac{x^2 + y^2}{3}} \end{cases} \Rightarrow \begin{cases} x^2 + y^2 = 3 \\ z = 1 \end{cases}$

•
$$Vi$$

$$\begin{cases}
 x^2 + y^2 \leq 3 \\
 \sqrt{\frac{x^2 + y^2}{3}} \leq z \\
 x^2 + y^2 + z^2 \leq 4
\end{cases}$$

$$\bullet \ \ \text{\it Dặt} \left\{ \begin{array}{l} x = r\cos\phi\sin\theta \\ y = r\sin\phi\sin\theta \\ z = r\cos\theta \end{array} \right. \Rightarrow |J| = r^2\sin\theta \Rightarrow V' = \left\{ \begin{array}{l} 0 \leq \phi \leq 2\pi \\ 0 \leq \theta \leq \frac{\pi}{3} \\ 0 \leq r \leq 2 \end{array} \right.$$

$$I = \int_0^{2\pi} d\phi \int_0^{\frac{\pi}{3}} d\theta \int_0^2 \frac{(r\sin\theta\cos\phi)^2}{r} r^2 \sin\theta dr$$

$$= \int_0^{2\pi} \cos^2\phi \int_0^{\frac{\pi}{3}} \sin^3\theta d\theta \int_0^2 r^3 dr$$

$$= \int_0^{2\pi} \frac{1 + \cos 2\phi}{2} d\phi \int_0^{\frac{\pi}{3}} (1 - \cos^2\theta) d(-\cos\theta) \int_0^2 r^3 dr$$

$$= \frac{5\pi}{6}$$

Giải câu 5.

$$D\check{a}t x^2 = t \Rightarrow 2xdx = dt$$

$$I = \int_0^{+\infty} \frac{t^{\frac{1}{4}} \frac{dt}{2\sqrt{t}}}{(t+1)^2} = \frac{1}{2} \int_0^{+\infty} \frac{t^{-\frac{1}{4}} dt}{(1+t)^2} = \frac{1}{2} \mathbf{B}(p,q) \, v \acute{o}i \left\{ \begin{array}{l} p-1 = -\frac{1}{4} \\ p+q = 2 \end{array} \right. \Rightarrow \left\{ \begin{array}{l} p = \frac{3}{4} \\ q = \frac{5}{4} \end{array} \right.$$

$$V_{\hat{a}y} I = \frac{1}{2} \mathbf{B} \left(\frac{3}{4}, \frac{5}{4} \right) = \frac{1}{2} \cdot \frac{\frac{5}{4} - 1}{3} 4, \frac{1}{4} \right) = \frac{1}{8} \cdot \mathbf{B} \left(\frac{3}{4}, \frac{1}{4} \right) = \frac{1}{8} \cdot \frac{\pi}{\sin \frac{\pi}{4}} = \frac{\pi}{4\sqrt{2}}$$

Giải câu 6.

$$\begin{aligned} & \textit{Kh\'oi luọng m} = \int_{L} \rho(x,y) ds = \int_{L} \frac{1}{y} ds \; \textit{v\'oi } L : y = e^{\frac{x}{2}} + e^{-\frac{x}{2}}, (0 \leq x \leq 2) \\ & \textit{Ta c\'o: } y_x' = \frac{1}{2} e^{\frac{x}{2}} - \frac{1}{2} e^{\frac{-x}{2}} \Rightarrow m = \int_{0}^{2} \frac{1}{y} \sqrt{1 + y_x^2} dx = \int_{0}^{2} \frac{1}{y} \sqrt{1 + \left(\frac{1}{2} e^{\frac{x}{2}} - \frac{1}{2} e^{\frac{-x}{2}}\right)^2} dx \\ & = \int_{0}^{2} \frac{1}{e^{\frac{x}{2}} + e^{-\frac{x}{2}}} \cdot \frac{1}{2} \left(e^{\frac{x}{2}} + e^{-\frac{x}{2}}\right) dx = 1 \end{aligned}$$

Giải câu 7.

Chia S thành S_1, S_2, S_3 , với:

$$\begin{cases} S_1: x^2 + y^2 = 4; x - 3 \le z \le x + 2 \\ S_2: z = x + 2; x^2 + y^2 \le 4 \\ S_3: z = x - 3; x^2 + y^2 \le 4 \end{cases}$$

$$\Rightarrow I = \iint_S = \iint_{S_1} + \iint_{S_2} + \iint_{S_3} = I_1 + I_2 + I_3 \text{ Ta c\'o}:$$

$$+)I_1 = \iint_{S_1} (x - z)dS. \text{ D\'a\'t} \begin{cases} x = 2\cos\varphi \\ y = 2\sin\varphi \end{cases} \Rightarrow \begin{cases} 0 \le \varphi \le 2\pi \\ 2\cos\varphi - 3 \le z \le 2\cos\varphi + 2 \end{cases}$$

$$\Rightarrow \vec{r}(z, \varphi) = \left(2\cos\varphi, 2\sin\varphi, z\right) \Rightarrow \begin{cases} \vec{r}_z = (0, 0, 1) \\ \vec{r}_\varphi = (-2\sin\varphi, 2\cos\varphi, 0) \end{cases}$$

$$\Rightarrow \vec{r}_z \times \vec{r}_\varphi = \left(-2\cos\varphi, -2\cos\varphi, 0\right) \Leftrightarrow |\vec{r}_z \times \vec{r}_\varphi| = \sqrt{4(\cos^2\varphi + \sin^2\varphi)} = 2.$$

$$\Rightarrow I_1 = \iint_{D_{z_\varphi}} (2\cos\varphi - z) \cdot 2dz d\varphi = 2 \int_0^{2\pi} d\varphi \int_{2\cos\varphi - 3}^{2\cos\varphi + 2} (2\cos\varphi - z) dz$$

$$= 2 \int_0^{2\pi} d\varphi \left[2\cos\varphi \cdot z - \frac{z^2}{2}\right]_{2\cos\varphi - 3}^{z = 2\cos\varphi + 2}$$

$$= 2 \int_0^{2\pi} \left(10\cos\varphi + \frac{(2\cos\varphi - 3)^2 - (2\cos\varphi + 2)^2}{2}\right) d\varphi$$

$$= 2 \int_0^{2\pi} \frac{5}{2} d\varphi = 10\pi$$

$$+)I_2 = \iint_{S_2} (x-z)ds$$

$$\begin{split} & \textit{Ta c\'o} : z = x + 2 \Rightarrow = \begin{cases} z_x' = 1 \\ z_y' = 0 \end{cases} \Rightarrow \sqrt{1 + (z_x')^2 + (z_y')^2} = \sqrt{2} \\ & \Rightarrow I_2 = \iint_{D_{xy}} = -2\sqrt{2} dx dy = -2\sqrt{2}. \mathbf{A}(D) \qquad \textit{v\'oi } D_{xy} : x^2 + y^2 \leq 4 \\ & \Rightarrow I_2 = -2\sqrt{2}. \pi. 4 = -8\sqrt{2}\pi \\ & +)I_3 = \iint_{S_2} (x - z) ds \end{split}$$

$$Ta\ c\acute{o}: z = x - 3 \Rightarrow \sqrt{1 + (z'_x)^2 + (z'_y)^2} = \sqrt{2}$$

 $\Rightarrow I_3 = \iint_{D_{xy}} = 3\sqrt{2} dx dy = 3\sqrt{2}.\mathbf{A}(D)$ $v\acute{o}i\ D_{xy}: x^2 + y^2 \le 4$
 $\Rightarrow I_3 = 3\sqrt{2}.\pi.4 = 12\sqrt{2}\pi$
 $\Rightarrow I = I_1 + I_2 + I_3 = (10 + 4\sqrt{2})\pi$

Giải câu 8.

Từ đề bài, ta có
$$L$$
:
$$\begin{cases} (x-1)^2 + (y-1)^2 = 1 \\ x \ge 1 \end{cases}$$

Bổ sung thêm đường thẳng từ B đến A vào L để tạo thành cung kín: $L \cup \hat{L}$

Áp dụng công thức Green cho đường cong kín ta được:

$$I_1 = \iint_D (Q'_x - P'_y) \, dx dy$$
$$= \iint_D \left(-(y-1)^2 - 2 - (x-1)^2 - 2 \right) \, dx dy$$

$$V \delta i D : \begin{cases} (x-1)^2 + (y-1)^2 \le 1 \\ x \ge 1 \end{cases}$$

$$\Rightarrow I_1 = -4 \iint_D dx dy - \iint_D (x-1)^2 + (y-1)^2 dx dy$$

$$D \check{a}t \begin{cases} x - 1 = r \cos \varphi \\ y - 1 = r \sin \varphi \end{cases} \Rightarrow |J| = r, D' : \begin{cases} -\frac{\pi}{2} \le \varphi \le \frac{\pi}{2} \\ 0 \le r \le 1 \end{cases}$$

$$I_1 = A S = \int_0^{\pi} dx dx - A \int_0^{\pi} dx = A \int$$

$$I_1 = -4S - \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\varphi \int_{0}^{1} r^3 dr = -4 \cdot \frac{\pi}{2} - \frac{\pi}{4} = -\frac{9\pi}{4}$$

+)
$$I_2 = \int_{\bar{L}} P dx + Q dy \text{ v\'oi } \bar{L} : \begin{cases} x = 1 \\ y : 2 \to 0 \end{cases} \Rightarrow dx = 0$$

$$\Rightarrow I_2 = \int_{0}^{0} \left(-(y-1)^2 - 2 - e^y \right) dy = e^2 + \frac{11}{3} \Rightarrow I = I_1 - I_2 = -\frac{9\pi}{4} - e^2 - \frac{11}{3}$$

Giải câu 9.

$$D\check{a}t \begin{cases} P = xz^2 \\ Q = z^2yR = y^2(z+2) \end{cases} \Rightarrow \phi = \iint_S P \, dydz + Q \, dzdx + R \, dxdy$$

Bổ sung vào mặt S một mặt $\bar{S}:$ $\begin{cases} z=0\\ x^2+y^2\leq 1 \end{cases}$, hướng lên trên để tạo thành một mặt

+)
$$I_1 = \iint P \, dy dz + Q \, dz dx + R \, dx dy$$

Từ công thức Ostrogradsky với mặt kín và hướng ra ngoài, ta có:

$$I_{1} = \iiint_{V} (P'_{x} + Q'_{y} + R'_{z}) dxdydz = \iiint_{V} (z^{2} + x^{2} + y^{2}) dxdydz$$

Khi đó
$$V \to V'$$
:
$$\begin{cases} 0 \le \varphi \le 2\pi \\ \frac{\pi}{2} \le \theta \le \pi \\ 0 \le r \le 1 \end{cases}$$

$$\Rightarrow I_1 = \int_0^{2\pi} d\varphi \int_{\frac{\pi}{2}}^{\pi} d\theta \int_0^1 r^4 \sin\theta \, dr = 2\pi \int_{\frac{\pi}{2}}^{\pi} \sin\theta \, d\theta \int_0^1 r^4 \, dr = \frac{2\pi}{5}$$

+)
$$I_2=\iint\limits_{ar{S}}P\,dydz+Q\,dzdx+R\,dxdy$$
 với $ar{S}:$ $\left\{ egin{align*} z=0 \\ x^2+y^2 \leq 1 \end{array}
ight.$, hướng lên trên

$$\Rightarrow I_2 = \iint\limits_{\bar{S}} y^2 (z+2) \, dx dy = 2 \iint\limits_{\bar{S}} y^2 \, dx dy$$

$$\text{Dặt} \left\{ \begin{array}{l} x = r\cos\varphi \\ y = r\sin\varphi \end{array} \right. \Rightarrow |J| = r \text{ và } \bar{S} \to D : \left\{ \begin{array}{l} 0 \leq \varphi \leq 2\pi \\ 0 \leq r \leq 1 \end{array} \right.$$

$$\Rightarrow I_2 = \int_0^{2\pi} d\varphi \int_0^1 2r^3 \sin^2 \varphi \, dr = \frac{\pi}{2}$$

$$\Rightarrow I = I_1 - I_2 = \frac{2\pi}{5} - \frac{\pi}{2} = -\frac{\pi}{10}$$

Giải câu 10.

$$D\tilde{a}t \begin{cases} P = x^2 + y^2 + z^2 + yz \\ Q = x^2 + y^2 + z^2 + xz \\ R = x^2 + y^2 + z^2 + xy \end{cases}$$

Áp dụng công thức Stoke với S là phần mặt cầu $x^2 + y^2 + z^2 = 4$ có biên là C. Khi đó

S là mặt cong trơn P,Q,R là các hàm liên tục và có đạo hàm liên tục trên mặt S.

$$I = \iint_{S} (R'_{y} - Q'_{z}) \, dydz + (P'_{z} - R'_{x}) \, dzdx + (Q'_{y} - P'_{x}) \, dxdy$$
$$= \iint_{S} 2(y - z) \, dydz + 2(z - x) \, awww + 2(x - y) \, dxdy$$

trong đó S hướng lên trên khi nhìn từ gốc 0 theo hướng tia Oz

$$\begin{aligned} & \text{Ta có } z = \sqrt{4 - x^2 - y^2} \\ & \text{Do } (\vec{n}, \vec{Oz}) < \frac{\pi}{2} \Rightarrow \vec{n} = (-z_x'; '-z_y'; 1) = \left(\frac{x}{\sqrt{4 - x^2 - y^2}}; \frac{y}{\sqrt{4 - x^2 - y^2}}; 1 \right) \\ & \Rightarrow |\vec{n}| = \frac{2}{\sqrt{4 - x^2 - y^2}} \Leftrightarrow \begin{cases} \cos \alpha = \frac{x}{2} \\ \cos \beta = \frac{y}{2} \\ \cos \gamma = \frac{z}{2} \end{cases}, \text{ với } \alpha, \beta, \gamma \text{ là góc hợp bởi \vec{n} và các trực} \end{aligned}$$

Ox, Oy, Oz

Áp dụng mối liên hệ giữa tích phân mặt loại I và loại II ta có:

$$I = \iint_{S} [(y-z)x + (z-x)y + (x-y)z] dS$$
$$= \iint_{S} 0 dS = 0$$