Math2221 Higher Theory and Applications of Differential Equations

School of Maths and Stats, UNSW Session 2, 2016

July 23, 2018

UNSW Math2221 July 23, 2018 1 / 103

Contents

1 Linear ODEs	1
1. Linear ODEs	page 2
Linear differential operators	page 4
Differential operators with constant coefficients	page 19
Wronskians and linear independence	page 32
Methods for inhomogeneous equations	page 43
Solution via power series	page 65
Singular ODEs	page 75
Bessel and Legendre equations	page 91

UNSW Math2221 July 23, 2018 1 / 103

Part I

Linear ODEs

UNSW Math2221 July 23, 2018 2 / 103

Introduction

In first year, you studied second-order linear ODEs with constant coefficients. We will see that the techniques you learned can be extended to handle higher-order linear ODEs with variable coefficients. A key idea, used repeatedly throughout the remainder of the course, is linear superposition.

UNSW Math2221 July 23, 2018 3 / 103

Linear differential operators

In linear algebra, you have seen the compact notation $A {m x} = {m b}$ for a system of linear equations. A similarly notation when dealing with a linear ordinary differential equation

$$Lu = f$$
.

Here, L is an operator (or transformation) that acts on a function u to create a new function Lu.

< ロト < 個 ト < 重 ト < 重 ト 三 重 ・ の Q ()

UNSW Math2221 July 23, 2018 4 / 103

Notation

Given coefficients $a_0(x)$, $a_1(x)$, ..., $a_m(x)$ we define the linear differential operator L of order m,

$$Lu(x) = \sum_{j=0}^{m} a_j(x) D^j u(x)$$

$$= a_m D^m u + a_{m-1} D^{m-1} u + \dots + a_0 u,$$
(1)

where $D^j u = d^j u/dx^j$ (with $D^0 u = u$).

We refer to a_m as the leading coefficient of L. For simplicity, we assume that each $a_j(x)$ is a smooth function of x.

The ODE Lu=f is said to be singular with respect to an interval [a,b] if the leading coefficient $a_m(x)$ vanishes for any $x\in [a,b]$. (Also say L is singular on [a,b].)

UNSW Math2221 July 23, 2018 5 / 103

Linearity

An operator of the form (1) is indeed linear: for any constants c_1 and c_2 and any (m-times differentiable) functions u_1 and u_2 ,

$$L(c_1u_1 + c_2u_2) = c_1Lu_1 + c_2Lu_2.$$

Example

 $Lu = (x-3)u''' - (1+\cos x)u' + 6u$ is a linear differential operator of order 3, with leading coefficient x-3. Thus, L is singular on [1,4], but not singular on [0,2].

Example

 $N(u) = u'' + u^2u' - u$ is a *non*linear differential operator of order 2.

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

UNSW Math2221 July 23, 2018 6 / 103

Homogeneous or forced?

Ordinary differential equations of the form

$$Lu = 0$$

are known as homogeneous. Those of the form

$$Lu = f$$

are known as inhomogeneous or non-homogeneous. In physical systems the inhomogeneity is often described as a forcing term.

Example

Equation for an oscillating mass (m) subject to an external force (f):

$$m x'' + r x' + k x = f(t),$$

where x is position, r friction and k is restoring.

→□▶→□▶→□▶→□ ● のQで

Homogeneous solutions form a vector space

Let u_1 , u_2 ,... u_k be the solutions to the linear homogeneous differential equation (Lu=0). Because L is linear, the linear combination

$$u = c_1 u_1 + c_2 u_2 + \dots + c_k u_k$$

is also a solution.

Hence, the set of solutions forms a vector space with the trivial solution (u=0) its zero vector.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

UNSW Math2221 July 23, 2018 8 / 103

Initial-value and boundary-value problems

When the solution to a differential equation (linear or non-linear, homogeneous or not) is prescribed at a particular point $x=x_0$, that is

$$u(x_0) = \nu_0, \quad u'(x_0) = \nu_1, \quad \dots, \quad u^{(m-1)}(x_0) = \nu_{m-1},$$

we call it an initial value problem.

Where a differential equation is order 2 or greater, solutions at 2 or more locations can be prescribed. Such problems are called boundary value problems.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

UNSW Math2221 July 23, 2018 9 / 103

Unique solution to the linear initial problem

Consider a general mth-order linear differential operator

$$Lu = \sum_{j=0}^{m} a_j(x) D^j u.$$

Given f(x) and m initial values ν_0 , ν_1 , ..., ν_{m-1} we seek u=u(x) satisfying

$$Lu = f \quad \text{on } [a, b], \tag{2}$$

with

$$u(a) = \nu_0, \quad u'(a) = \nu_1, \quad \dots, \quad u^{(m-1)}(a) = \nu_{m-1}.$$
 (3)

Theorem

For an ODE Lu=f which is not singular with respect to [a,b], with f continuous on [a,b], the IVP (2) and (3) has a unique solution.

See discussion of uniqueness in Technical Proofs.

UNSW Math2221 July 23, 2018 10 / 103

Unique solution: special case

Consider the linear inhomogeneous initial value problem

$$a_2u'' + a_1u' + a_0u = f(x)$$

 $u(0) = \nu_0 \; ; \; u'(0) = \nu_1$

with a_2 , a_1 and a_0 constants and f continuous for all x.

Assume two solutions u_a and u_b . Let $U = u_a - u_b$. Hence

$$U(0) = u_a(0) - u_b(0) = \nu_0 - \nu_0 = 0,$$

$$U'(0) = u'_a(0) - u'_b(0) = \nu_1 - \nu_1 = 0$$

and

$$a_2U'' + a_1U' + a_0U = f(x) - f(x) = 0.$$

| 4 日 ト 4 回 ト 4 直 ト 4 直 ・ 夕 Q C・

UNSW Math2221 July 23, 2018 11 / 103

Unique solution: special case

Multiplying the homogeneous equation by U' and integrating over $0 \le x \le t$,

$$a_2 \int_0^t U''U'dx + a_1 \int_0^t (U')^2 dx + a_0 \int_0^t UU'dx = 0,$$

$$\frac{a_2}{2} [U'(t)^2 - U'(0)^2] + a_1 \int_0^t (U')^2 dx + a_0 [U'(t)^2 - U'(0)^2] = 0.$$

Above, U'(0)=0=U(0) and since each of the remaining terms is ≥ 0 we find that U=0 is the only permitted solution. Therefore the two solutions to the inhomogeneous problem, u_a and u_b , are identical.

◆ロト ◆個ト ◆差ト ◆差ト 差 める()

UNSW Math2221 July 23, 2018 12 / 103

Solution to mth order problem has dimension m

Theorem

Assume that the linear, mth-order differential operator L is not singular on [a,b]. Then the set of all solutions to the homogeneous equation Lu=0 on [a,b] is a vector space of dimension m.

Proof.

Let $V=\{\,u:Lu=0\mbox{ on }[a,b]\,\}$ and define the linear transformation $\Theta:V\to\mathbb{R}^m$ by

$$\Theta u = [u(a), u'(a), \dots, u^{(m-1)}(a)]^T.$$

Uniqueness of solutions means that Θ is one-to-one, and existence means that Θ is onto. Hence, Θ is an isomorphism, and therefore the vector space V has dimension m.

General solution

If $\{u_1,u_2,\ldots,u_m\}$ is any basis for the solution space of Lu=0, then every solution can be written in a unique way as

$$u(x) = c_1 u_1(x) + c_2 u_2(x) + \dots + c_m u_m(x)$$
 for $a \le x \le b$. (4)

We refer to (4) as the general solution of the homogeneous equation Lu=0 on [a,b].

Linear superposition refers to this technique of constructing a new solution out of a linear combination of old ones. Of course, this trick works only because L is linear.

Example

The general solution to u'' - u' - 2u = 0 is

$$u(x) = c_1 e^{-x} + c_2 e^{2x}.$$

14 / 103

Inhomogeneous problem

Consider the *in*homogeneous equation Lu=f on [a,b], and fix a particular solution u_P .

For any solution u, the difference $u-u_{\rm P}$ is a solution of the homogeneous equation because

$$L(u - u_P) = Lu - Lu_P = f - f = 0$$
 on $[a, b]$.

Hence, $u(x)-u_{\rm P}(x)=c_1u_1(x)+\cdots+c_mu_m(x)$ for some constants c_1 , ..., c_m , and so

$$u(x) = u_{\mathcal{P}}(x) + \underbrace{c_1 u_1(x) + \dots + c_m u_m(x)}_{u_{\mathcal{H}}(x)}, \qquad a \le x \le b,$$

is the general solution of the inhomogeneous equation Lu = f.

- 4 ロ ト 4 周 ト 4 ヨ ト 4 ヨ - め Q ()

UNSW Math2221 July 23, 2018 15 / 103

Inhomogeneous problem

Example

The inhomogeneous ODE

$$u'' - u' + 2u = 2e^x$$

has the particular solution

$$u_{\rm P}(x) = e^x$$
.

The general solution for its homogeneous counterpart is

$$u_{\rm H}(x) = c_1 e^{-x} + c_2 e^{2x}.$$

So the general solution of the inhomogeneous ODE is

$$u(x) = u_{\rm P}(x) + u_{\rm H}(x) = e^x + c_1 e^{-x} + c_2 e^{2x}$$
.

↓□▶ ↓□▶ ↓ □▶ ↓ □▶ ↓ □ ♥ ♀ ○

UNSW Math2221 July 23, 2018 16 / 103

Reduction of order

Theorem

For $u = u_1(x) \neq 0$, a solution to the ODE

$$u'' + p(x)u' + q(x)u = 0,$$

on some interval I, then a second solution is

$$u = u_1(x) \int \frac{1}{u_1^2 \exp(\int p \, dx)} \, dx$$

Substitute $u = u_1(x)v(x)$ into the ODE and rearrange to obtain

$$(\underbrace{u_1'' + pu_1' + qu_1}_{=0})v + u_1v'' + (2u_1' + pu_1)v' = 0.$$

This is just a *first*-order, linear ODE for the derivative of the unknown factor v(x): put $w=v^\prime$ then

$$u_1 w' + (2u_1' + pu_1) w = 0.$$

JNSW Math2221 July 23, 2018 17 / 103

Reduction of order (continued)

Writing the ODE for w in the standard form

$$w' + (2u_1'u_1^{-1} + p)w = 0,$$

we seek an integrating factor

$$A(x) = \exp(\int (2u_1'u_1^{-1} + p) dx) = u_1^2 \exp(\int p dx)$$
, so that

$$\frac{d}{dx}(Aw) = Aw' + A'w = A(w' + (2u_1'u_1^{-1} + p)w) = 0.$$

Then Aw = C for some constant C, and so

$$v = \int \frac{C}{A(x)} \, dx.$$

Example

For the ODE u'' - 6u' + 9u = 0, take $u_1 = e^{3x}$ and find v.

UNSW Math2221 July 23, 2018 18 / 103

Differential operators with constant coefficients

If L has constant coefficients, then the problem of solving Lu=0 reduces to that of factorizing the polynomial having the same coefficients. Some complications occur if the polynomial has any repeated roots.

UNSW Math2221 July 23, 2018 19 / 103

Characteristic polynomial

Suppose that a_j is constant for $0 \le j \le m$, with $a_m \ne 0$. We define the associated polynomial of degree m,

$$p(z) = \sum_{j=0}^{m} a_j z^j = a_m z^m + a_{m-1} z^{m-1} + \dots + a_1 z + a_0,$$

so that, formally, L = p(D).

Since $D^j e^{\lambda x} = \lambda^j e^{\lambda x}$ we have

$$p(D)e^{\lambda x} = (a_m \lambda^m + a_{m-1} \lambda^{m-1} + \dots + a_1 \lambda + a_0)e^{\lambda x} = p(\lambda)e^{\lambda x},$$

and so

$$p(D)e^{\lambda x} = 0 \iff p(\lambda) = 0.$$

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - 夕 Q (C)

UNSW Math2221 July 23, 2018 20 / 103

Factorization

By the fundamental theorem of algebra,

$$p(z) = a_m(z - \lambda_1)^{k_1}(z - \lambda_2)^{k_2} \cdots (z - \lambda_r)^{k_r}$$

where λ_1 , λ_2 , ..., λ_r are the distinct roots of p, with corresponding multiplicities k_1 , k_2 , ..., k_r satisfying

$$k_1 + k_2 + \dots + k_r = m.$$

Lemma

$$(D-\lambda)x^je^{\lambda x}=jx^{j-1}e^{\lambda x} \text{ for } j\geq 0.$$

Lemma

$$(D-\lambda)^k x^j e^{\lambda x} = 0$$
 for $j = 0, 1, ..., k-1$.

UNSW Math2221 July 23, 2018 21 / 103

Proof

An elementary calculation gives

$$(D-\lambda)x^{j}e^{\lambda x} = jx^{j-1}e^{\lambda x} + x^{j}\lambda e^{\lambda x} - \lambda x^{j}e^{\lambda x} = jx^{j-1}e^{\lambda x},$$

as claimed, and then

$$(D-\lambda)^2 x^j e^{\lambda x} = (D-\lambda)j x^{j-1} e^{\lambda x} = j(j-1)x^{j-2} e^{\lambda x},$$

$$\vdots$$

$$(D-\lambda)^j x^j e^{\lambda x} = j! e^{\lambda x},$$

$$(D-\lambda)^{j+1} x^j e^{\lambda x} = j! (D-\lambda) e^{\lambda x} = 0,$$

so $(D-\lambda)^k x^j e^{\lambda x} = 0$ for all $k \ge j+1$, that is, for $j \le k-1$.

- < □ > < ∰ > < ≣ > < ≣ > ⊃ Q €

UNSW Math2221 July 23, 2018 22 / 103

Basic solutions

Lemma

If $(z-\lambda)^k$ is a factor of p(z) then the function $u(x)=x^je^{\lambda x}$ is a solution of Lu=0 for $0\leq j\leq k-1$.

Proof.

Write $p(z) = (z - \lambda)^k q(z)$, so that q(z) is a polynomial of degree m - k. It follows that

$$p(D) = (D - \lambda)^k q(D) = q(D)(D - \lambda)^k$$

and so for $0 \le j \le k-1$,

$$p(D)x^{j}e^{\lambda x} = q(D)(D-\lambda)^{k}x^{j}e^{\lambda x} = q(D)0 = 0.$$

UNSW Math2221 July 23, 2018 23 / 103

General solution

Theorem

For the constant-coefficient case, the general solution of the homogeneous equation Lu=0 is

$$u(x) = \sum_{q=1}^{r} \sum_{l=0}^{k_q-1} c_{ql} x^l e^{\lambda_q x},$$

where the c_{ql} are arbitrary constants.

Since $(z - \lambda_q)^{k_q}$ is a factor of p(z),

$$Lu = \sum_{q=1}^{r} \sum_{l=0}^{k_q - 1} c_{ql} Lx^l e^{\lambda_q x} = \sum_{q=1}^{r} \sum_{l=0}^{k_l - 1} c_{ql} \times 0 = 0.$$

Linear independence is shown in the Technical Proofs.

UNSW Math2221 July 23, 2018 24 / 103

Distinct real roots

Example

From the factorization

$$D^4 - 2D^3 - 11D^2 + 12D = (D + 3)D(D - 1)(D - 4)$$

we see that the general solution of

$$u'''' - 2u''' - 11u'' + 12u' = 0$$

is

$$u = c_1 e^{-3x} + c_2 + c_3 e^x + c_4 e^{4x}.$$

◆ロト ◆個ト ◆差ト ◆差ト を めなべ

MSW Math2221 July 23, 2018 25 / 103

Repeated real root

Example

From the factorization

$$D^4 + 6D^3 + 9D^2 - 4D - 12 = (D - 1)(D + 2)^2(D + 3)$$

we see that the general solution of

$$u'''' + 6u''' + 9u'' - 4u' - 12u = 0$$

is

$$u = c_1 e^x + c_2 e^{-2x} + c_3 x e^{-2x} + c_4 e^{-3x}.$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

UNSW Math2221 July 23, 2018 26 / 103

Complex root

Example

From the factorization

$$D^{3} - 7D^{2} + 17D - 15 = (D^{2} - 4D + 5)(D - 3)$$
$$= (D - 2 - i)(D - 2 + i)(D - 3)$$

we see that the general solution of

$$u''' - 7u'' + 17u' - 15u = 0$$

is

$$u(x) = c_1 e^{(2+i)x} + c_2 e^{(2-i)x} + c_3 e^{3x}$$
$$= c_4 e^{2x} \cos x + c_5 e^{2x} \sin x + c_3 e^{3x}.$$

- 4 ロ ト 4 個 ト 4 恵 ト 4 恵 ト 9 年 9 9 (で

UNSW Math2221 July 23, 2018 27 / 103

Simple oscillator

Second-order ODEs arise naturally in classical mechanics.

Consider a particle of mass m that moves along the x-axis with velocity $v = \dot{x} = dx/dt$ under the influence of

an external applied force
$$=f(t),$$
 a frictional resistance force $=-r(v)v,$ a restoring force $=-k(x)x.$

Newton's second law,

$$m \ddot{x} = m \frac{d^2x}{dt^2} = f(t) - r(v)v - k(x)x,$$

leads to a second-order differential equation

$$m \ddot{x} + r(\dot{x}) \dot{x} + k(x)x = f(t).$$

UNSW Math2221 July 23, 2018 28 / 103

Simplest case is when $r(v)=r_0>0$ and $k(x)=k_0>0$ are constant, giving a linear ODE with constant coefficients:

$$m \ddot{x} + r_0 \dot{x} + k_0 x = f(t).$$

Typically interested in the case when the applied force is periodic with frequency ω ; for example,

$$f(t) = F\sin\omega t.$$

The general solution $x(t) = x_H(t) + x_P(t)$.

We now show that $x_{\rm H}(t) \to 0$ as $t \to \infty$ and that $x_{\rm P}(t)$ exists. Since $x_{\rm P}(t+T) = x_{\rm P}(t)$ for $T = 2\pi/\omega$, it follows that the solution x(t) always tends to a periodic function with frequency ω , regardless of the initial values x(0) and $\dot{x}(0)$.

◆ロト ◆個 ト ◆ 重 ト ◆ 重 ・ 夕 Q O

UNSW Math2221 July 23, 2018 29 / 103

The characteristic equation is

$$m\lambda^2 + r_0\lambda + x_0 = m(\lambda - \lambda_+)(\lambda - \lambda_-),$$

and the roots are

$$\lambda_{\pm} = rac{-r_0 \pm \sqrt{\Delta}}{2m}$$
 where $\Delta = r_0^2 - 4mk_0$.

If $\Delta>0$, then $\lambda_-<\lambda_+<0$ so, for any constants A and B,

$$x_{\rm H}(t) = Ae^{\lambda_+ t} + Be^{\lambda_- t} \to 0 \quad \text{as } t \to \infty.$$

If $\Delta=0$ then $\lambda_-=\lambda_+<0$ so again $x_{\rm H}(t)\to 0$.

If
$$\Delta < 0$$
 then $\sqrt{\Delta} = i\sqrt{|\Delta|}$ so $\operatorname{Re} \lambda_+ = \operatorname{Re} \lambda_- < 0$, and again $x_{\mathrm{H}}(t) \to 0$.

Since $\operatorname{Re} \lambda_{\pm} \neq 0$ the particular solution has the form

$$x_{\rm P}(t) = C\cos\omega t + E\sin\omega t,$$

and we find that

$$m\ddot{x_{\rm P}} + r_0\dot{x_{\rm P}} + k_0x_{\rm P} = \left(-m\omega^2C + r_0\omega E + k_0C\right)\cos\omega t + \left(-m\omega^2E - r_0\omega C + k_0E\right)\sin\omega t,$$

which equals $F \sin \omega t$ iff

$$(k_0 - m\omega^2)C + r_0\omega E = 0,$$

$$-r_0\omega C + (k_0 - m\omega^2)E = F.$$

This 2×2 system has a unique solution since its determinant is

$$(k_0 - m\omega^2)^2 + (r_0\omega)^2 > 0.$$

◆ロト ◆個ト ◆差ト ◆差ト を めなべ

UNSW Math2221 July 23, 2018 31 / 103

Wronskians and linear independence

We introduce a function, called the Wronskian, that provides us with a way of testing whether a family of solutions to Lu=0 is linearly independent. The Wronskian also turns out to have several other uses.

UNSW Math2221 July 23, 2018 32 / 103

Linear independence

Let $u_1(x), u_2(x), \ldots, u_m(x)$ be functions defined on an interval $I \subset \mathbb{R}$. The functions u_1, \ldots, u_m are called linearly dependent if there exist constants a_1, a_2, \ldots, a_m not all zero such that

$$a_1u_1(x) + a_2u_2(x) + \dots + a_mu_m(x) = 0 \quad \forall x \in I.$$

If the above equation only holds for

$$a_i = 0, \qquad i = 1, 2, \dots, m$$

then the functions are linearly independent.

Example

 $u_1 = \sin 2x$ and $u_2 = \sin x \cos x$ are linearly dependent.

 $u_1 = \sin x$ and $u_2 = \cos x$ are linearly independent.

UNSW Math2221 July 23, 2018 33 / 103

Wronskian

The Wronskian of the functions u_1 , u_2 , ..., u_m is the m imes m determinant

$$W(x) = W(x; u_1, u_2, \dots, u_m) = \det[D^{i-1}u_j].$$

For instance, if m=2 then

$$W(x) = \begin{vmatrix} u_1 & u_2 \\ u'_1 & u'_2 \end{vmatrix} = u_1 u'_2 - u_2 u'_1,$$

and when m=3,

$$W(x) = \begin{vmatrix} u_1 & u_2 & u_3 \\ u'_1 & u'_2 & u'_3 \\ u''_1 & u''_2 & u''_3 \end{vmatrix}.$$

Of course, W(x) is defined only when the functions are differentiable m-1 times.

- 4 ロト 4 個 ト 4 恵 ト 4 恵 ト - 恵 - 釣 9 0 0

UNSW Math2221 July 23, 2018 34 / 103

Wronskian

Example

The Wronskian of the functions $u_1 = e^{2x}$, $u_2 = xe^{2x}$ and $u_3 = e^{-x}$ is

$$W = \begin{vmatrix} e^{2x} & xe^{2x} & e^{-x} \\ 2e^{2x} & e^{2x} + 2xe^{2x} & -e^{-x} \\ 4e^{2x} & 4e^{2x} + 4xe^{2x} & e^{-x} \end{vmatrix} = 9e^{3x}.$$

Example

The Wronskian of the functions $u_1 = e^x \cos 3x$ and $u_2 = e^x \sin 3x$ is

$$W = \begin{vmatrix} e^x \cos 3x & e^x \sin 3x \\ e^x \cos 3x - 3e^x \sin 3x & e^x \sin 3x + 3e^x \cos 3x \end{vmatrix} = 3e^{2x}.$$

Linearly dependent functions

Lemma

If u_1 , ..., u_m are linearly dependent over an interval [a,b] then $W(x;u_1,\ldots,u_m)=0$ for $a\leq x\leq b$.

Example

The functions $u_1 = \cosh x$, $u_2 = \sinh x$ and $u_3 = e^x$ are linearly dependent because

$$\cosh x + \sinh x = \frac{e^x + e^{-x}}{2} + \frac{e^x - e^{-x}}{2} = e^x.$$

Their Wronskian is

$$W = \begin{vmatrix} \cosh x & \sinh x & e^x \\ \sinh x & \cosh x & e^x \\ \cosh x & \sinh x & e^x \end{vmatrix} = 0.$$

UNSW Math2221 July 23, 2018 36 / 103

Proof (for m=3)

Assume that u_1 , u_2 , u_3 are linearly dependent on the interval [a,b], that is, there exist constants c_1 , c_2 , c_3 , not all zero, such that

$$c_1u_1(x) + c_2u_2(x) + c_3u_3(x) = 0$$
 for $a \le x \le b$.

Differentiating, it follows that

$$c_1 u_1'(x) + c_2 u_2'(x) + c_3 u_3'(x) = 0,$$

$$c_1 u_1''(x) + c_2 u_2''(x) + c_3 u_3''(x) = 0,$$

so

$$\begin{bmatrix} u_1(x) & u_2(x) & u_3(x) \\ u'_1(x) & u'_2(x) & u'_3(x) \\ u''_1(x) & u''_2(x) & u''_3(x) \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \quad \text{for } a \le x \le b.$$

This 3×3 matrix must be singular and thus W(x) = 0.

4 D M 4 d M M 4 E

37 / 103

Wronskian satisfies a first-order ODE

Lemma

If u_1 , u_2 , ..., u_m are solutions of Lu=0 on the interval [a,b] then their Wronskian satisfies

$$a_m(x)W'(x) + a_{m-1}(x)W(x) = 0, a \le x \le b.$$

Example

The second-order ODE

$$u'' + 3u' - 4u = 0$$

has solutions $u_1 = e^x$ and $u_2 = e^{-4x}$. Their Wronskian is

$$\begin{vmatrix} e^x & e^{-4x} \\ e^x & -4e^{-4x} \end{vmatrix} = -5e^{-3x},$$

and satisfies W' + 3W = 0.

4 D > 4 B > 4 B > 4 B > 9 Q O

UNSW Math2221 July 23, 2018 38 / 103

Proof (for m=2)

Differentiating $W = u_1u_2' - u_1'u_2$ we have

$$W' = (u_1'u_2' + u_1u_2'') - (u_1''u_2 + u_1'u_2') = u_1u_2'' - u_1''u_2,$$

SO

$$a_{2}W' + a_{1}W = a_{2}(\underbrace{u_{1}u_{2}'' - u_{1}''u_{2}}) + a_{1}(\underbrace{u_{1}u_{2}' - u_{1}'u_{2}}) + a_{0}(\underbrace{u_{1}u_{2} - u_{1}u_{2}}) = 0$$

$$= \underbrace{u_{1}(a_{2}u_{2}'' + a_{1}u_{2}' + a_{0}u_{2})} - (a_{2}u_{1}'' + a_{1}u_{1}' + a_{0}u_{1})u_{2}$$

$$= u_{1}(Lu_{2}) - (Lu_{1})u_{2} = 0.$$

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 釣 ९ ○

UNSW Math2221 July 23, 2018 39 / 103

Linear independence of solutions

Theorem

Let u_1 , u_2 , ..., u_m be solutions of a non-singular, linear, homogeneous, mth-order ODE Lu=0 on the interval [a,b].

Either

W(x) = 0 for $a \le x \le b$ and the m solutions are linearly dependent,

or else

 $W(x) \neq 0$ for $a \leq x \leq b$ and the m solutions are linearly independent.

JNSW Math2221 July 23, 2018 40 / 103

Proof

The Wronskian satisfies

$$W' + pW = 0$$
 for $a \le x \le b$, where $p = \frac{a_{m-1}}{a_m}$.

Define an integrating factor

$$I(x) = \exp\left(\int p(x) dx\right) \neq 0,$$

so that I' = Ip and hence

$$(IW)' = IW' + IpW = I(W' + pW) = 0.$$

Thus, I(x)W(x) = C for some constant C.

Either C=0 in which case W(x)=0 for all $x\in [a,b]$, or else $C\neq 0$ in which case W(x) is never zero for $x\in [a,b]$.

UNSW Math2221 July 23, 2018 41 / 103

(Assume now that m=3.) We already know that

$$u_1$$
, u_2 , u_3 linearly dependent $\implies W \equiv 0$.

Hence, to complete the proof it suffices to show

$$W(a) = 0 \implies u_1, u_2, u_3$$
 linearly dependent.

If W(a) = 0, then there exist c_1 , c_2 , c_3 , not all zero, such that

$$\begin{bmatrix} u_1(x) & u_2(x) & u_3(x) \\ u_1'(x) & u_2'(x) & u_3'(x) \\ u_1''(x) & u_2''(x) & u_3''(x) \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \quad \text{at } x = a,$$

so the function $u(x) = c_1u_1(x) + c_2u_2(x) + c_3u_3(x)$ satisfies

$$Lu = 0$$
 for $a \le x \le b$, with $u(a) = u'(a) = u''(a) = 0$.

The solution of this initial-value problem is unique, so $u(x) \equiv 0$ and thus u_1 , u_2 , u_3 are linearly dependent.

UNSW Math2221 July 23, 2018 42 / 103

Methods for inhomogeneous equations

In first year, you learned the method of undetermined coefficients for constructing a particular solution $u_{\rm P}$ to an inhomogeneous second-order linear ODE Lu=f in some simple cases. We will study this method systematically for higher-order linear ODEs with constant coefficients.

We also discuss variation of parameters, a technique that applies for general L and f, but which requires the evaluation of possibly very difficult integrals.

UNSW Math2221 July 23, 2018 43 / 103

Superposition of solutions

We now consider methods for finding a particular solution $u_{\rm P}$ satisfying $Lu_{\rm P}=f$.

First note that if

$$f(x) = c_1 f_1(x) + c_2 f_2(x)$$

and if we know $u_{\rm P1}$ and $u_{\rm P2}$ satisfying

$$Lu_{P1} = f_1$$
 and $Lu_{P2} = f_2$,

then we can put

$$u_{\rm P}(x) = c_1 u_{\rm P1}(x) + c_2 u_{\rm P2}(x),$$

because by the linearity of L,

$$Lu_{P} = c_1 Lu_{P1} + c_2 Lu_{P2} = c_1 f_1 + c_2 f_2 = f.$$

- 4 ロ b 4 個 b 4 差 b 4 差 b - 差 - 夕久で

UNSW Math2221 July 23, 2018 44 / 103

Polynomial solutions

Let L=p(D) be a linear differential operator of order m with constant coefficients.

Theorem

Assume that $a_0 = p(0) \neq 0$. For any integer $r \geq 0$, there exists a unique polynomial u_P of degree r such that $Lu_P = x^r$.

For simplicity, we prove the result only for the case m=2. Thus,

$$Lu = a_2 u'' + a_1 u' + a_0 u,$$

where a_0 , a_1 , a_2 are constants with $a_2 \neq 0$ and $a_0 \neq 0$.

Look for $u_{\rm P}$ in the form

$$u_{\mathbf{P}}(x) = \sum_{j=0}^{r} c_j \, \frac{x^j}{j!}.$$

◄□▶◀圖▶◀불▶◀불▶ 불 ∽Q҈

UNSW Math2221 July 23, 2018 45 / 103

We find that

$$Lu_{P} = a_{2} \sum_{j=2}^{r} c_{j} \frac{x^{j-2}}{(j-2)!} + a_{1} \sum_{j=1}^{r} c_{j} \frac{x^{j-1}}{(j-1)!} + a_{0} \sum_{j=0}^{r} c_{j} \frac{x^{j}}{j!}$$

$$= a_{0} c_{r} \frac{x^{r}}{r!} + \left(a_{0} c_{r-1} + a_{1} c_{r}\right) \frac{x^{r-1}}{(r-1)!}$$

$$+ \sum_{j=0}^{r-2} \left(a_{2} c_{j+2} + a_{1} c_{j+1} + a_{0} c_{j}\right) \frac{x^{j}}{j!},$$

which equals x^r if and only if

$$a_0c_j + a_1c_{j+1} + a_2c_{j+2} = 0, \quad 0 \le j \le r - 2,$$

 $a_0c_{r-1} + a_1c_r = 0,$
 $a_0c_r = r!.$

This upper triangular system is uniquely solvable because $a_0 \neq 0$.

UNSW Math2221 July 23, 2018 46 / 103

An example

Let Lu=3u''-u'+2u and suppose we want a particular solution to $Lu=8x^3$. The theorem ensures that

$$u_{\mathcal{P}}(x) = C + Ex + Fx^2 + Gx^3$$

works for some C, E, F, G. In fact,

$$Lu_{P} = (2C - E + 6F) + (2E - 2F + 18G)x + (2F - 3G)x^{2} + 2Gx^{3}$$

SO

$$2C - E + 6F = 0,$$

 $2E - 2F + 18G = 0,$
 $2F - 3G = 0,$
 $2G = 8$

and back substitution gives $u_P = -33 - 30x + 6x^2 + 4x^3$.

UNSW Math2221 July 23, 2018 47 / 103

Exponential solutions

Theorem

Let L=p(D) and $\mu\in\mathbb{C}$. If $p(\mu)\neq 0$, then the function

$$u_{\rm P}(x) = \frac{e^{\mu x}}{p(\mu)}$$

satisfies $Lu_{\rm P}=e^{\mu x}$.

Proof.

Follows at once because $p(D)e^{\mu x} = p(\mu)e^{\mu x}$.

Example

A particular solution of $u'' + 4u' - 3u = 3e^{2x}$ is $u_P = e^{2x}/3$.

4 D > 4 P > 4 B > 4 B > B 900

Product of polynomial and exponential

Theorem

Let L=p(D) and assume that $p(\mu)\neq 0$. For any integer $r\geq 0$, there exists a unique polynomial v of degree r such that $u_{\rm P}=v(x)e^{\mu x}$ satisfies $Lu_{\rm P}=x^re^{\mu x}$.

Proof.

Again, for simplicity, we prove the result only for m=2.

Put $v=e^{-\mu x}u$ so that $u=ve^{\mu x}$, and observe that

$$Lu = \left[a_2(v'' + 2\mu v' + \mu^2 v) + a_1(v' + \mu v) + a_0 v \right] e^{\mu x}$$

= $\left[a_2 v'' + (a_1 + 2a_2\mu)v' + (a_2\mu^2 + a_1\mu + a_0)v \right] e^{\mu x}$.

Thus, $Lu = e^{\mu x}q(D)v$ where $q(z) = a_2z^2 + (a_1 + 2a_2\mu)z + p(\mu)$, and our earlier result yields the desired v satisfying $q(D)v = x^r$ because $q(D)1 = q(0) = p(\mu) \neq 0$.

UNSW Math2221 July 23, 2018 49 / 103

4日 (日本) (日本) (日本) (日本)

An example

Consider

$$2u'' + u' - 3u = 9xe^{-2x}.$$

Here,

$$p(z) = 2z^2 + z - 3$$

so $p(-2)=3\neq 0$ and a particular solution $u_{\rm P}=(Cx+E)e^{-2x}$ exists. In fact, we find that

$$p(D)u_{\rm P} = (3Cx - 7C + 3E)e^{-2x}$$

SO

$$3C = 9 \quad \text{and} \quad -7C + 3E = 0.$$

Thus, C=3 and E=7, giving

$$u_{\rm P} = (3x+7)e^{-2x}$$
.

◄□▶◀圖▶◀불▶◀불▶ 불 ∽Q҈

W Math2221 July 23, 2018 50 / 103

Annihilator method

In the previous cases we proposed a solution $u=u_P$ and showed that it satisfied Lu=f. The following is a method to derive a particular solution given Lu=f. If f(x) is differentiable at least n times and

$$[a_n D^n + a_{n-1} D^{n-1} + \dots + a_1 D^1 + a_0]f(x) = 0$$

then $[a_nD^n+a_{n-1}D^{n-1}+\cdots+a_1D^1+a_0]$ annihilates f.

Example

 D^n annihilates x^{m-1} for $m \le n$.

Example

 $(D-\alpha)^n$ annihilates $x^{n-1}e^{\alpha x}$ for $m \leq n$.

4 D > 4 B > 4 E > E 990

UNSW Math2221 July 23, 2018 51 / 103

Annihilator method: Three simple examples (1)

Given Lu=f we can apply the appropriate annihilator to both sides and solve the resulting homogeneous DE.

Let $Lu=u^{\prime}-u$ and suppose we want a solution such that $Lu=x^2.$ Annihilating both sides we have

$$D^3(u'-u) = u'''' - u''' = 0.$$

Setting $w=u^{\prime\prime\prime}$, clearly $w=Ce^x$ is the general solution. Integrating three times yields

$$u = Ce^x + Ex^2 + Fx + G.$$

Clearly $u_h=Ae^x$ and the form of the particular solution is $u_p=Ex^2+Fx+G$ (a polynomial of degree 2, as expected). Substituting find E=-1, F=2 and G=1.

→□▶ →□▶ → □▶ → □▶ → □
→□▶ → □▶ → □▶ → □
→□ → □▶ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□</p

UNSW Math2221 July 23, 2018 52 / 103

Annihilator method: Three simple examples (2)

Let Lu=u''-u' and suppose we want a solution such that $Lu=x^2$ (note that $p(0)\neq 0$ for L=p(D) so we are not yet able to solve this). Annihilating both sides we have

$$D^{3}(u'' - u') = u^{(5)} - u^{(4)} = 0.$$

Setting $w=u^{(4)}$, $w=Ce^x$ is the general solution. Integrating four times yields

$$u = Ce^x + Ex^3 + Fx^2 + Gx + H.$$

Here $u_h=Ae^x+H$ is the homogeneous solution and the particular solution is $u_p=x(Ex^2+Fx+G)$. Substituting find E=-1/3, F=-1, G=-2.

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

UNSW Math2221 July 23, 2018 53 / 103

Annihilator method: Three simple examples (3)

Let Lu=u'-u and suppose we want a solution such that $Lu=e^x$ (note that $\mu=1$ and $p(\mu)\neq 0$ for L=p(D) so we are not yet able to solve this). Annihilating both sides we have

$$(D-1)(u'-u) = u'' - 2u' + u = 0.$$

The characteristic polynomial has a repeated root $u_h = Ae^x + Bxe^x$ the general solution. Here $u_h = Ae^x$ is the homogeneous solution and so the particular solution is $u_p = Bxe^x$. Substituting find B=1.

UNSW Math2221 July 23, 2018 54 / 103

Polynomial solutions: the remaining case

Theorem

Let L=p(D) and assume $p(0)=p'(0)=\cdots=p^{(k-1)}(0)=0$ but $p^{(k)}(0)\neq 0$ where $1\leq k\leq m-1$. For any integer $r\geq 0$, there exists a unique polynomial v of degree r such that $u_p(x)=x^kv(x)$ satisfies $Lu_P=x^r$.

< ロト < 個 ト < 重 ト < 重 ト 三 重 ・ の Q ()

UNSW Math2221 July 23, 2018 55 / 103

Example

Let Lu=u'''+2u'' and seek a particular solution to $Lu=12x^2$. The theorem ensures that

$$u_{\rm P} = x^2(C + Ex + Fx^2) = Cx^2 + Ex^3 + Fx^4$$

works for some C, E, F. In fact,

$$Lu_{\rm P} = (4C + 6E) + (12E + 24F)x + 24Fx^2$$

SO

$$4C + 6 E = 0,$$

 $12E + 24F = 0,$
 $24F = 12$

and back substitution gives

$$u_{\rm P} = \frac{x^2}{2}(3 - 2x + x^2).$$

< ロト < 個 ト < 重 ト < 重 ト 三 重 ・ の Q @

Exponential times polynomial: remaining case

Lemma

If
$$u(x) = w(x)e^{\mu x}$$
 then

$$p(D)u=e^{\mu x}q(D)w$$
 where $q(z)=\sum_{j=0}^m p^{(j)}(\mu)\,rac{z^j}{j!}.$

Theorem

Let L=p(D) and assume $p(\mu)=p'(\mu)=\cdots=p^{(k-1)}(\mu)=0$ but $p^{(k)}(\mu)\neq 0$, where $1\leq k\leq m-1$. For any integer $r\geq 0$, there exists a unique polynomial v of degree r such that $u_{\rm P}(x)=x^kv(x)e^{\mu x}$ satisfies $Lu_{\rm P}=x^re^{\mu x}$.

◆ロト ◆御 ト ◆恵 ト ◆恵 ト ・恵 ・ 夕久 ②

UNSW Math2221 July 23, 2018 57 / 103

Exponential times polynomial: remaining case

Proof.

Since $q^{(j)}(0)=p^{(j)}(\mu)$ for all j, there is a unique polynomial v of degree r such that $w(x)=x^kv(x)$ satisfies $q(D)w=x^r$ and hence

$$p(D)u_{\mathcal{P}} = e^{\mu x}q(D)w = e^{\mu x}x^{r}.$$

UNSW Math2221 July 23, 2018 58 / 103

Proof of Lemma

$$\begin{split} p(D)we^{\mu x} &= \sum_{k=0}^{m} a_k D^k \big(we^{\mu x} \big) = \sum_{k=0}^{m} a_k \sum_{j=0}^{k} \binom{k}{j} D^j w \, D^{k-j} e^{\mu x} \\ &= \sum_{k=0}^{m} a_k \sum_{j=0}^{k} \frac{k!}{j!(k-j)!} D^j w \, D^{k-j} e^{\mu x} \\ &= \sum_{j=0}^{m} \frac{D^j w}{j!} \sum_{k=j}^{m} a_k k(k-1)(k-2) \cdots (k-j+1) \mu^{k-j} e^{\mu x} \\ &= \sum_{j=0}^{m} \frac{D^j w}{j!} \sum_{k=j}^{m} a_k k(k-1)(k-2) \cdots (k-j+1) \mu^{k-j} e^{\mu x} \\ &= \sum_{j=0}^{m} \frac{D^j w}{j!} p^{(j)}(\mu) e^{\mu x} = e^{\mu x} \sum_{j=0}^{m} p^{(j)}(\mu) \frac{D^j w}{j!} \\ &= e^{\mu x} q(D) w. \end{split}$$

UNSW Math2221 July 23, 2018 59 / 103

An example

Consider the ODE

$$Lu = 12e^{2x}$$
 where $Lu = u''' - 4u'' + 4u'$.

Here, L=p(D) for $p(z)=z^3-4z^2+4z=z(z-2)^2$, so p(2)=p'(2)=0 but $p''(2)\neq 0$. Thus, we try

$$u_{\rm P} = Cx^2 e^{2x}$$

and find

$$u'_{P} = C(2x + 2x^{2})e^{2x}, u''_{P} = C(2 + 8x + 4x^{2})e^{2x},$$

 $u'''_{P} = C(12 + 24x + 8x^{2})e^{2x},$

so $Lu_{\rm P}=4Ce^{2x}$ and we require 4C=12. Therefore, a particular solution is

$$u_{\rm P} = 3x^2 e^{2x}.$$

4 □ > 4 ⓓ > 4 ಠ >

60 / 103

Complex conjugate roots

Consider

$$Lu \equiv p(D) \equiv u''' + u' + 10u = 13e^x \sin 2x.$$

Here,
$$p(z)=z^3+z+10=[(z-1)^2+4](z+2)$$
 so $p(1\pm 2i)=0$, and

$$e^x \sin 2x = e^x \frac{e^{2ix} - e^{-2ix}}{2i}$$

is a linear combination of $e^{(1+2i)x}$ and $e^{(1-2i)x}$. Therefore put

$$u_{P}(x) = Cxe^{(1+2i)x} + Exe^{(1-2i)x} = xe^{x}(F\cos 2x + G\sin 2x).$$

We find that if F=-3/4 and G=-1/2 then

$$Lu_{P} = (-8F + 12G)e^{x}\cos 2x + (-12F - 8G)e^{x}\sin 2x = 13e^{x}\sin 2x,$$

so

$$u_{\rm P} = -\frac{xe^x}{4} \left(3\cos 2x + 2\sin 2x \right).$$

UNSW Math2221 July 23, 2018 61 / 103

Variation of parameters

What if f is not a polynomial times an exponential, or if L does not have constant coefficients?

Consider a linear, second-order, inhomogeneous ODE with leading coefficient 1:

$$Lu = u''(x) + p(x)u'(x) + q(x)u(x) = f(x).$$
 (5)

Let $u_1(x)$ and $u_2(x)$ be linearly independent solutions to the homogeneous equation and let $W(x)=W(x;u_1,u_2)$ denote their Wronskian. Thus,

$$Lu_1 = 0, \quad Lu_2 = 0, \quad W \neq 0.$$

We seek v_1 and v_2 such that

$$u(x) = v_1(x)u_1(x) + v_2(x)u_2(x)$$

is a (particular) solution to Lu = f.

◆ロト ◆昼 ト ◆ 重 ト ◆ 重 ・ 夕 Q ○

UNSW Math2221 July 23, 2018 62 / 103

Variation of parameters (continued)

To simplify the expression

$$u' = v_1'u_1 + v_1u_1' + v_2'u_2 + v_2u_2'$$

we impose the condition $v_1'u_1 + v_2'u_2 = 0$, then (as if v_1 and v_2 were constant parameters)

$$u' = v_1 u_1' + v_2 u_2'.$$

A short calculation now shows

$$Lu = v_1 L u_1 + v_2 L u_2 + v_1' u_1' + v_2' u_2' = v_1' u_1' + v_2' u_2',$$

since by assumption $Lu_1 = 0 = Lu_2$.

Conclusion: $u = v_1u_1 + v_2u_2$ satisfies Lu = f if

$$v_1'u_1 + v_2'u_2 = 0,$$

$$v_1'u_1' + v_2'u_2' = f.$$

63 / 103

Thus, we have a pair of equations for the unknown v_1^\prime and v_2^\prime . In matrix form

$$\begin{bmatrix} u_1(x) & u_2(x) \\ u'_1(x) & u'_2(x) \end{bmatrix} \begin{bmatrix} v'_1(x) \\ v'_2(x) \end{bmatrix} = \begin{bmatrix} 0 \\ f(x) \end{bmatrix},$$

SO

$$\begin{bmatrix} v_1'(x) \\ v_2'(x) \end{bmatrix} = \frac{1}{W(x)} \begin{bmatrix} u_2'(x) & -u_2(x) \\ -u_1'(x) & u_1(x) \end{bmatrix} \begin{bmatrix} 0 \\ f(x) \end{bmatrix},$$

or in other words,

$$v_1'(x) = rac{-u_2(x)f(x)}{W(x)}$$
 and $v_2'(x) = rac{u_1(x)f(x)}{W(x)}$.

Example

Find the general solution to

$$u'' - 4u' + 4u = (x+1)e2x.$$

UNSW Math2221 July 23, 2018 64 / 103

Solution via power series

If L has variable coefficients, then we cannot expect in general that the solution of Lu=0 is expressible in terms of elementary functions like polynomials, trigonometric functions, exponentials etc. Power series provide a flexible way to represent u in this case.

UNSW Math2221 July 23, 2018 65 / 103

Constructing a series solution

Consider the initial-value problem

$$Lu = (1 - x^2)u'' - 5xu' - 4u = 0, \quad u(0) = 1, \quad u'(0) = 2.$$

Look for a solution in the form of a power series

$$u(x) = \sum_{k=0}^{\infty} A_k x^k = A_0 + A_1 x + A_2 x^2 + \cdots$$

Formal calculations show that

$$Lu = \sum_{k=0}^{\infty} (k+2)[(k+1)A_{k+2} - (k+2)A_k]x^k,$$

and the initial conditions imply $A_0=1$ and $A_1=2$.

UNSW Math2221 July 23, 2018 66 / 103

Convergence?

Since Lu is identically zero iff the coefficient of x^k vanishes for every k, we obtain the recurrence relation

$$A_{k+2} = \frac{k+2}{k+1} \, A_k \quad \text{for } k = 0 \text{, 1, 2,}$$

Thus,

$$A_0 = 1$$
, $A_1 = 2$, $A_2 = 2$, $A_3 = 3$, ...,

giving

$$u(x) = 1 + 2x + 2x^2 + 3x^3 + \cdots$$

Since

$$\lim_{k \to \infty} \frac{A_{k+2} x^{k+2}}{A_k x^k} = \lim_{k \to \infty} \frac{k+2}{k+1} x^2 = x^2,$$

the ratio test shows that $\sum_{j=0}^{\infty} A_{2j} x^{2j}$ and $\sum_{j=0}^{\infty} A_{2j+1} x^{2j+1}$ converge for $x^2 < 1$ but diverge for $x^2 > 1$.

UNSW Math2221 July 23, 2018 67 / 103

General case

Consider a general second-order, linear, homogeneous ODE

$$Lu = a_2(x)u'' + a_1(x)u' + a_0(x)u = 0.$$

Equivalently,

$$u'' + p(x)u' + q(x)u = 0,$$

where

$$p(x) = \frac{a_1(x)}{a_2(x)}$$
 and $q(x) = \frac{a_0(x)}{a_2(x)}$.

Assume that a_j is analytic at 0 for $0 \le j \le 2$, and that $a_2(0) \ne 0$. Then p and q are analytic at 0, that is, they admit power series expansions

$$p(z) = \sum_{k=0}^{\infty} p_k z^k \quad \text{and} \quad q(z) = \sum_{k=0}^{\infty} q_k z^k \quad \text{for } |z| < \rho,$$

for some $\rho > 0$.

UNSW Math2221 July 23, 2018 68 / 103

Formal expansions

lf

$$u(z) = \sum_{k=0}^{\infty} A_k z^k$$

then we find that

$$Lu(z) = (2A_2 + p_0A_1 + q_0A_0) + (6A_3 + 2p_0A_2 + p_1A_1 + q_0A_1 + q_1A_0)z + \cdots,$$

where, on the RHS, the coefficient of z^{n-1} for a general $n \ge 1$ is

$$(n+1)nA_{n+1} + \sum_{j=0}^{n-1} [(n-j)p_j A_{n-j} + q_j A_{n-1-j}].$$

◆ロ ト ◆ 部 ト ◆ 差 ト ◆ 差 ・ 夕 へ ⊙

SW Math2221 July 23, 2018 69 / 103

Convergence theorem

Given u(0) and u'(0), we put

$$A_0 = u(0)$$
 and $A_1 = u'(0)$,

and compute recursively

$$A_{n+1} = \frac{-1}{n(n+1)} \sum_{j=0}^{n-1} [(n-j)p_j A_{n-j} + q_j A_{n-1-j}], \quad n \ge 1.$$

Theorem

If the coefficients p(z) and q(z) are analytic for $|z|<\rho$, then the formal power series for the solution u(z), constructed above, is also analytic for $|z|<\rho$.

4□ > 4□ > 4□ > 4□ > 4□ > 900

UNSW Math2221 July 23, 2018 70 / 103

Previous example

Earlier we considered

$$Lu = (1 - x^2)u'' - 5xu' - 4u = 0, \quad u(0) = 1, \quad u'(0) = 2.$$

In this case,

$$p(z) = \frac{-5z}{1 - z^2} = -5\sum_{k=0}^{\infty} z^{2k+1}$$

and

$$q(z) = \frac{-4}{1 - z^2} = -4\sum_{k=0}^{\infty} z^{2k}$$

are analytic for |z| < 1, so the theorem guarantees that u(z), given by the formal power series, is also analytic for |z| < 1.

- 4 ロト 4 個 ト 4 恵 ト 4 恵 ト - 恵 - 釣 9 0 0

UNSW Math2221 July 23, 2018 71 / 103

Expansion about a point other than 0

Suppose we want a power series expansion about a point $c \neq 0$, for instance because the initial conditions are given at x = c.

A simple change of the independent variable allows us to write

$$u = \sum_{k=0}^{\infty} A_k (z - c)^k = \sum_{k=0}^{\infty} A_k Z^k \quad \text{where } Z = z - c.$$

Since du/dz=du/dZ and $d^2u/dz^2=d^2u/dZ^2$, we obtain the translated equation

$$\frac{d^2u}{dZ^2} + p(Z+c)\frac{du}{dZ} + q(Z+c)u = 0.$$

Now compute the A_k using the series expansions of p(Z+c) and q(Z+c) in powers of Z.

4 D > 4 D + 4 E > 4 E > 9 Q (*

Example

We construct a power series solution about z=1 to Airy's equation:

$$u'' - zu = 0.$$

Put Z=z-1 and find that $u^{\prime\prime}-zu=u^{\prime\prime}-(Z+1)u$ equals

$$\begin{split} \sum_{k=0}^{\infty} k(k-1)A_k Z^{k-2} &- \sum_{k=0}^{\infty} A_k Z^{k+1} - \sum_{k=0}^{\infty} A_k Z^k \\ &= \sum_{k=0}^{\infty} (k+2)(k+1)A_{k+2} Z^k - \sum_{k=1}^{\infty} A_{k-1} Z^k - \sum_{k=0}^{\infty} A_k Z^k \\ &= (2A_2 - A_0) + \sum_{k=0}^{\infty} \left[(k+2)(k+1)A_{k+2} - A_{k-1} - A_k \right] Z^k. \end{split}$$

◆□▶◆□▶◆□▶◆□▶ □ りQC

JNSW July 23, 2018 73 / 103

Thus, the coefficients must satisfy $2A_2 - A_0 = 0$ and

$$(k+2)(k+1)A_{k+2} - A_{k-1} - A_k = 0$$
 for all $k \ge 1$,

SO

$$A_2 = \frac{A_0}{2} \quad \text{and} \quad A_{k+2} = \frac{A_{k-1} + A_k}{(k+2)(k+1)} \quad \text{for } k \ge 1.$$

We find that

$$u(z) = A_0 \left(1 + \frac{(z-1)^2}{2} + \frac{(z-1)^3}{6} + \frac{(z-1)^4}{24} + \cdots \right) + A_1 \left((z-1) + \frac{(z-1)^3}{6} + \frac{(z-1)^4}{12} + \cdots \right).$$

◄□▶◀圖▶◀불▶◀불▶ 불 ∽Q

UNSW Math2221 July 23, 2018 74 / 103

Singular ODEs

Recall that our basic existence and uniqueness theorem for Lu=f assumes that L is not singular, that is, the leading coeffecient of L does not vanish on the interval of interest. However, some important applications lead to singular ODEs so we must now address this case.

UNSW Math2221 July 23, 2018 75 / 103

Singular ODEs of second order

Consider

$$a_2(x)u'' + a_1(x)u' + a_0(x)u = 0$$
 for $a \le x \le b$,

and suppose that $a_2(x_0) = 0$ for some x_0 with $a < x_0 < b$, but $a_2(x) \neq 0$ if $x \neq x_0$. Put

$$b_j(y) = a_j(x)$$
 and $v(y) = u(x)$ where $y = x - x_0$,

so that, with $c = a - x_0 < 0 < d = b - x_0$,

$$b_2(y)v'' + b_1(y)v' + b_0(y)v = 0$$
 for $c \le y \le d$.

Since y = 0 when $x = x_0$, we have $b_2(0) = 0$.

In this way, it suffices to consider the case when the leading coefficient vanishes at the origin.

4 L P 4 EP 4 E P 4

Cauchy-Euler ODE

A second-order Cauchy-Euler ODE has the form

$$Lu = ax^2u'' + bxu' + cu = f(x),$$

where a, b and c are constants, with $a \neq 0$. This ODE is singular at x = 0.

Noticing that

$$Lx^r = \left[ar(r-1) + br + c \right] x^r,$$

we see that $u=x^r$ is a solution of the homogeneous equation (f=0) iff

$$ar(r-1) + br + c = 0.$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

UNSW Math2221 July 23, 2018 77 / 103

Factorization

Suppose $ar(r-1)+br+c=a(r-r_1)(r-r_2).$ If $r_1\neq r_2$ then the general solution of the homogeneous equation Lu=0 is

$$u(x) = C_1 x^{r_1} + C_2 x^{r_2}, x > 0.$$

Lemma

If $r_1=r_2$ then the general solution of the homogeneous Cauchy–Euler equation Lu=0 is

$$u(x) = C_1 x^{r_1} + C_2 x^{r_1} \log x, \qquad x > 0.$$

Example

Solve $x^2u'' - xu' + u = 0$.

Example

Solve $2(x-2)^2u'' - 3(x-2)u' - 3u = 0$.

UNSW Math2221 July 23, 2018 78 / 103

Proof of the lemma

Since $r_1 = r_2$ the function $F(x,r) = x^r$ satisfies

$$ax^2F'' + bxF' + cF = a(r - r_1)^2x^r,$$

where the dash means $\partial/\partial x$. Put

$$v(x) = \frac{\partial F}{\partial r}\Big|_{r=r_1} = \frac{\partial}{\partial r} e^{r \log x}\Big|_{r=r_1} = e^{r_1 \log x} \log x = x^{r_1} \log x$$

and observe that

$$ax^{2}v'' + bxv' + cv = \left(ax^{2} \frac{\partial^{2}}{\partial x^{2}} \frac{\partial F}{\partial r} + bx \frac{\partial}{\partial x} \frac{\partial F}{\partial r} + c \frac{\partial F}{\partial r}\right)\Big|_{r=r_{1}}$$

$$= \frac{\partial}{\partial r} \left(ax^{2} \frac{\partial^{2} F}{\partial x^{2}} + bx \frac{\partial F}{\partial x} + cF\right)\Big|_{r=r_{1}}$$

$$= \frac{\partial}{\partial r} \left(a(r-r_{1})^{2}x^{r}\right)\Big|_{r=r_{1}}$$

$$= \left(2a(r-r_{1})x^{r} + (r-r_{1})^{2}x^{r} \log x\right)\Big|_{r=r_{1}} = 0.$$

UNSW Math2221 July 23, 2018 79 / 103

More general singular ODEs

A number of important applications lead to ODEs that can be written in the Frobenious normal form

$$z^{2}u'' + zP(z)u' + Q(z)u = 0,$$

where P(z) and Q(z) are analytic at z=0:

$$P(z) = \sum_{k=0}^{\infty} P_k z^k$$
 and $Q(z) = \sum_{k=0}^{\infty} Q_k z^k$, $|z| < \rho$. (6)

Notice that u''+p(z)u'+q(z)u=0 but $p(z)=z^{-1}P(z)$ and $q(z)=z^{-2}Q(z)$ are not analytic at z=0 unless P(0)=0 and Q(0)=Q'(0)=0.

So in general we cannot expect a solution u(z) to be analytic at z=0.

UNSW Math2221 July 23, 2018 80 / 103

A clue

We can think of an ODE in Frobenius normal form as a Cauchy–Euler ODE with variable coefficients.

For z near 0 we have $P(z)\approx P_0$ and $Q(z)\approx Q_0$ so we might expect u(z) to behave like a solution of

$$z^2u'' + P_0zu' + Q_0u = 0.$$

We therefore consider the indicial polynomial

$$I(r) = r(r-1) + P_0 r + Q_0 = (r - r_1)(r - r_2).$$

If $r_1 \neq r_2$ then the approximating Cauchy–Euler ODE has the general solution $c_1z^{r_1}+c_2z^{r_2}$, so it is natural to seek a solution in the form

$$u(z) = z^r \sum_{k=0}^{\infty} A_k z^k = \sum_{k=0}^{\infty} A_k z^{k+r}, \quad |z| < \rho, \quad \text{with } A_0 \neq 0.$$

UNSW Math2221 July 23, 2018 81 / 103

An example

Consider

$$Lu = 2z^2u'' + 7zu' - (z^2 + 3)u = 0.$$

Here, P(z) = 7/2 and $Q(z) = -(z^2 + 3)/2$ are trivially analytic at z = 0 (since they are polynomials).

The approximations $P(z)\approx P_0=7/2$ and $Q(z)\approx Q_0=-3/2$ lead to the Cauchy–Euler equation $z^2u''+(7/2)zu'-(3/2)u=0$ or

$$2z^2u'' + 7zu' - 3u = 0.$$

Thus, the indicial polynomial is

$$2r(r-1) + 7r - 3 = 2r^2 + 5r - 3 = (2r-1)(r+3)$$

so $r_1 = 1/2$ and $r_2 = -3$.

UNSW Math2221 July 23, 2018 82 / 103

Using

$$u = \sum_{k=0}^{\infty} A_k z^{k+r}, \qquad u' = \sum_{k=0}^{\infty} (k+r) A_k z^{k+r-1},$$
$$u'' = \sum_{k=0}^{\infty} (k+r)(k+r-1) A_k z^{k+r-2},$$

we find that

$$Lu = (2z^{2}u'' + 7zu' - 3u) - z^{2}u$$

$$= \sum_{k=0}^{\infty} [2(k+r)(k+r-1) + 7(k+r) - 3]A_{k}z^{k+r}$$

$$- \sum_{k=0}^{\infty} A_{k}z^{k+r+2}.$$

◄□▶◀圖▶◀불▶◀불▶ 불 ∽

UNSW July 23, 2018 83 / 103

Since

$$2(k+r)(k+r-1) + 7(k+r) - 3 = 2(k+r)^2 + 5(k+r) - 3$$
$$= [2(k+r) - 1][(k+r) + 3]$$

and

$$\sum_{k=0}^{\infty} A_k z^{k+r+2} = \sum_{k=2}^{\infty} A_{k-2} z^{k+r}$$

it follows that

$$Lu = (2r-1)(r+3)A_0z^r + (2r+1)(r+4)A_1z^{r+1}$$

$$+ \sum_{k=2}^{\infty} [(2k+2r-1)(k+r+3)A_k - A_{k-2}]z^{k+r}.$$

◄□▶◀圖▶◀불▶◀불▶ 불 ∽Q

UNSW July 23, 2018 84 / 103

Conclusion: u is a solution if $r \in \{1/2, -3\}$ with

$$A_1 = 0,$$
 $A_k = \frac{A_{k-2}}{(2k+2r-1)(k+r+3)}$ for all $k \ge 2$.

First solution: r = 1/2 with

$$A_1 = 0,$$
 $A_k = \frac{A_{k-2}}{k(2k+7)}$ for all $k \ge 2$,

SO

$$A_2 = \frac{A_0}{22}, \quad A_3 = \frac{A_1}{39} = 0, \quad A_4 = \frac{A_2}{60} = \frac{A_0}{1320}, \quad \dots$$

and

$$u(z) = A_0 z^{1/2} \left(1 + \frac{z^2}{22} + \frac{z^4}{1320} + \cdots \right).$$

UNSW Math2221 July 23, 2018 85 / 103

Second solution: r = -3 with

$$A_1 = 0,$$
 $A_k = \frac{A_{k-2}}{k(2k-7)}$ for all $k \ge 2$,

so

$$A_2 = -\frac{A_0}{6}$$
, $A_3 = -\frac{A_1}{3} = 0$, $A_4 = -\frac{A_2}{4} = \frac{A_0}{24}$, ...

and

$$u(z) = A_0 z^{-3} \left(1 - \frac{z^2}{6} + \frac{z^4}{24} + \cdots \right).$$

General solution of Lu=0:

$$u(z) = Az^{1/2} \left(1 + \frac{z^2}{22} + \frac{z^4}{1320} + \cdots \right) + Bz^{-3} \left(1 - \frac{z^2}{6} + \frac{z^4}{24} + \cdots \right).$$

◆ロト ◆母 ト ◆ 恵 ト ◆ 恵 ・ りへぐ

UNSW Math2221 July 23, 2018 86 / 103

General case

Now consider

$$z^2u'' + zP(z)u' + Q(z)u = 0$$

for P(z) and Q(z) satisfying (6). Formal manipulations show that Lu(z) equals

$$I(r)A_0z^r + \sum_{k=1}^{\infty} \left(I(k+r)A_k + \sum_{j=0}^{k-1} [(j+r)P_{k-j} + Q_{k-j}]A_j\right)z^{k+r},$$

so we define $A_0(r) = 1$ and

$$A_k(r) = \frac{-1}{I(k+r)} \sum_{j=0}^{k-1} [(j+r)P_{k-j} + Q_{k-j}] A_j(r), \quad k \ge 1,$$

provided $I(k+r) \neq 0$ for all $k \geq 1$.

- 4 ロ ト 4 個 ト 4 恵 ト 4 恵 ト - 恵 - り Q @

UNSW Math2221 July 23, 2018 87 / 103

Choice of exponent

The preceding calculations show that the series

$$F(z;r) = \sum_{k=0}^{\infty} A_k(r) z^{k+r}$$

satisfies

$$z^2F'' + zP(z)F' + Q(z)F = I(r)z^r,$$

with

$$I(r) = r(r-1) + P_0r + Q_0 = (r-r_1)(r-r_2).$$

Assume, with no loss of generality, that $\operatorname{Re} r_1 \geq \operatorname{Re} r_2$. It follows that $I(k+r_1) \neq 0$ for all integers $k \geq 1$, and therefore $u_1(z) = F(z;r_1)$ is (formally) a solution.

If $r_1 - r_2$ is not a whole number, then a second, linearly independent solution is $u_2(z) = F(z; r_2)$.

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - 夕 Q C

UNSW Math2221 July 23, 2018 88 / 103

Roots differing by an integer

Suppose that $r_1=r_2$. In this case, $I(r)=(r-r_1)^2$ and so

$$z^{2}F'' + zP(z)F' + Q(z)F = (r - r_{1})^{2}z^{r}.$$

The function $v = \partial F/\partial r$ satisfies

$$z^{2}v'' + zP(z)v' + Q(z)v = 2(r - r_{1})z^{r} + (r - r_{1})^{2}z^{r}\log z,$$

and the RHS is zero if $r=r_1$, so a second, linearly independent solution is

$$u_2(z) = \frac{\partial F}{\partial r}(z; r_1) = \sum_{k=0}^{\infty} A'_k(r_1) z^{k+r_1} + \underbrace{\sum_{k=0}^{\infty} A_k(r_1) z^{k+r_1} \log z}_{u_1(z) \log z}.$$

Even worse complications if $r_1 = r_2 + n$ for an integer $n \ge 1$.

4 □ ▶ 4 ₫ ▶ 4 ₹ ▶ 4 ₹ ₩ \$ Y \(\frac{1}{2}\)

Bessel and Legendre equations

We wrap up this part of the course with two particularly important examples of second-order, linear ODEs with variable coefficients. Both occur several times later in the course.

UNSW Math2221 July 23, 2018 90 / 103

Bessel equation

The Bessel equation with parameter ν is

$$z^2u'' + zu' + (z^2 - \nu^2)u = 0.$$

This ODE is in Frobenius normal form, with indicial polynomial

$$I(r) = (r + \nu)(r - \nu),$$

and we seek a series solution

$$u(z) = \sum_{k=0}^{\infty} A_k z^{k+r}.$$

We assume $\operatorname{Re} \nu \geq 0$, so $r_1 = \nu$ and $r_2 = -\nu$.

- < □ > < ∰ > < ≣ > < ≣ > ⊃ Q €

UNSW Math2221 July 23, 2018 91 / 103

Recurrence relation

We find that if

$$(r+1+\nu)(r+1-\nu)A_1 = 0,$$

$$(k+r+\nu)(k+r-\nu)A_k + A_{k-2} = 0, \quad k \ge 2.$$

then

$$z^{2}u'' + zu' + (z^{2} - \nu^{2})u = (r + \nu)(r - \nu)A_{0}z^{r}.$$

Taking $r = \nu$ gives

$$A_k = \frac{-A_{k-2}}{k(k+2\nu)} \quad \text{for } k \ge 2,$$

so with A_0 arbitrary and $A_1 = 0$ we obtain

$$u(z) = A_0 z^{\nu} \left[1 - \frac{(z/2)^2}{1+\nu} + \frac{(z/2)^4}{2(2+\nu)(1+\nu)} - \frac{(z/2)^6}{3!(3+\nu)(2+\nu)(1+\nu)} + \cdots \right].$$

Bessel function

With the normalisation

$$A_0 = \frac{1}{2^{\nu} \Gamma(1+\nu)}$$

the series solution is called the Bessel function of order ν and is denoted

$$J_{\nu}(z) = \frac{(z/2)^{\nu}}{\Gamma(1+\nu)} \left[1 - \frac{(z/2)^2}{1+\nu} + \frac{(z/2)^4}{2!(1+\nu)(2+\nu)} - \cdots \right].$$

From the functional equation $\Gamma(1+z)=z\Gamma(z)$ we see that

$$J_{\nu}(z) = \frac{(z/2)^{\nu}}{\Gamma(1+\nu)} - \frac{(z/2)^{\nu+2}}{\Gamma(2+\nu)} + \frac{(z/2)^{\nu+4}}{2!\Gamma(3+\nu)} - \frac{(z/2)^{\nu+6}}{3!\Gamma(4+\nu)} + \cdots$$

and so

$$J_{\nu}(z) = \sum_{k=0}^{\infty} \frac{(-1)^k (z/2)^{2k+\nu}}{k! \Gamma(k+1+\nu)}.$$

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

UNSW Math2221 July 23, 2018 93 / 103

Bessel function of negative order

If ν is not an integer, then a second, linearly independent, solution is

$$J_{-\nu}(z) = \sum_{k=0}^{\infty} \frac{(-1)^k (z/2)^{2k-\nu}}{k!\Gamma(k+1-\nu)}.$$

For an integer $\nu = n \in \mathbb{Z}$, since $\Gamma(n+1) = n!$ we have

$$J_n(z) = \sum_{k=0}^{\infty} \frac{(-1)^k (z/2)^{2k+n}}{k!(k+n)!}.$$

Also, since $1/\Gamma(z)=0$ for z=0, -1, -2, ..., we find that J_n and J_{-n} are linearly dependent; in fact,

$$J_{-n}(z) = (-1)^n J_n(z).$$

(4日) (個) (目) (目) (目) (900

UNSW Math2221 July 23, 2018 94 / 103

Bessel functions of integer order

UNSW Math2221 July 23, 2018 95 / 103

Neumann function

The Neumann function (or Bessel function of the second kind) is

$$Y_{\nu}(z) = \frac{J_{\nu}(z)\cos\nu\pi - J_{-\nu}(z)}{\sin\nu\pi}, \quad \text{if } \nu \notin \mathbb{Z}.$$

For $n\in\mathbb{Z}$, L'Hospital's rule shows that if $\nu\to n$ then $Y_{\nu}(z)$ tends to a finite limit

$$Y_n(z) = \lim_{\nu \to n} Y_{\nu}(z).$$

The functions J_{ν} and Y_{ν} are linearly independent solutions of Bessel's equation for all complex ν .

As $z \to 0$ with ν fixed,

$$J_{\nu}(z) \sim \frac{(z/2)^{\nu}}{\Gamma(\nu+1)}, \quad \nu \notin \{-1, -2, -3, \ldots\},$$
$$Y_{0}(z) \sim \frac{2}{\pi} \log z, \qquad Y_{\nu}(z) \sim \frac{-\Gamma(\nu)}{\pi(z/2)^{\nu}}, \quad \text{Re } \nu > 0.$$

UNSW Math2221 July 23, 2018 96 / 103

Neumann functions of integer order

UNSW Math2221 July 23, 2018 97 / 103

Legendre equation

The Legendre equation with parameter ν is

$$(1 - z2)u'' - 2zu' + \nu(\nu + 1)u = 0.$$

This ODE is not singular at z=0 so the solution has an ordinary Taylor series expansion $\underline{\quad \quad }$

 $u = \sum_{k=0}^{\infty} A_k z^k.$

The A_k must satisfy

$$(k+1)(k+2)A_{k+2} - [k(k+1) - \nu(\nu+1)]A_k = 0$$

for $k \geq 0$, and since

$$k(k+1) - \nu(\nu+1) = (k-\nu)(k+\nu+1),$$

the recurrence relation is

$$A_{k+2} = \frac{(k-\nu)(k+\nu+1)}{(k+1)(k+2)} A_k \quad \text{for } k \ge 0.$$

UNSW Math2221 July 23, 2018 98 / 103

General solution

We have

$$u(z) = A_0 u_0(z) + A_1 u_1(z)$$

where

$$u_0(z) = 1 - \frac{\nu(\nu+1)}{2!} z^2 + \frac{(\nu-2)\nu(\nu+1)(\nu+3)}{4!} z^4 - \cdots$$

and

$$u_1(z) = z - \frac{(\nu - 1)(\nu + 2)}{3!} z^3 + \frac{(\nu - 3)(\nu - 1)(\nu + 2)(\nu + 4)}{5!} z^5 - \cdots$$

Suppose now that $\nu=n$ is a non-negative integer. If n is even then the series for $u_0(z)$ terminates, whereas if n is odd then the series for $u_1(z)$ terminates.

UNSW Math2221 July 23, 2018 99 / 103

Legendre polynomial

The terminating solution is called the Legendre polynomial of degree n and is denoted by $P_n(z)$ with the normalization

$$P_n(1) = 1.$$

The first few Legendre polynomials are

$$P_0(z) = 1, P_3(z) = \frac{1}{2}(5z^3 - 3z),$$

$$P_1(z) = z, P_4(z) = \frac{1}{8}(35z^4 - 30z^2 + 3),$$

$$P_2(z) = \frac{1}{2}(3z^2 - 1), P_5(z) = \frac{1}{8}(63z^5 - 70z^3 + 15z).$$

Notice that P_n is an even or odd function according to whether n is even or odd.

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

UNSW Math2221 July 23, 2018 100 / 103

Behaviour of Legendre polynomials

