Beweren en Bewijzen Leertaak 2

11 februari 2017

Opgave 1

a) Mijn rationaliteitsvierkant van vorige week:

Structure	Properties		
De kast is rechthoekig en in de kast zit- ten een aantal planken en lades. Aan de voorkant heeft de kast twee deuren die open en dicht kunnen en toegang geven tot de kast.	Als de kastdeuren openstaan dan kun- nen er kleren op de planken worden ge- pakt of opgeborgen of als een la open- staat kunnen er kleren uit de la worden gepakt of opgeborgen.		
	Het opbergen van kleren in een efficiënte manier.	Physical reality	

b) De drie aspecten van focus zijn:

Doel: Verificatiemodel

Fragment van de realiteit: De kast (zoals weergegeven in de afbeelding in het rationaliteitsvierkant) en kleren

Perspectief: Het opbergen en/of pakken van kleren in/uit de kast

c) De gewenste eigenschap in natuurlijke taal is

"Voor alle momenten waarop de kast open is, geldt dat ik kleren uit de kast kan pakken of kleren in de kast kan opbergen of dat een la openstaat en ik kleren uit de la kan pakken of kleren in de la kan opbergen."

Opgave 2

a) Constructieboom van $Aa \vee (B \leftrightarrow C)$:

A	a	V	(В	\leftrightarrow	С)
$egin{array}{c} A & & & & \\ & \langle letter angle & & & \\ & \langle eersteteken angle & & & \\ & \langle naa & & \\ & & & \langle nego \end{array}$	•	V		$egin{array}{c} & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & $			
					\leftrightarrow	$ \begin{array}{c c} C \\ \hline \langle letter \rangle \\ \hline \langle eersteteken \rangle \\ \hline \langle naam \rangle \\ \hline \langle waarde \rangle \\ \hline \langle term \rangle \\ \hline \langle macht \rangle \\ \hline \langle negatief \rangle \\ \hline \langle som \rangle \\ \hline \langle vergelijking \rangle \\ \hline \langle conjunctie \rangle \\ \hline \langle disjunctie \rangle \\ \hline \end{array} $	
			($\langle equivalentie \rangle$	$\langle dubbelepijlteken \rangle$ $\langle equivalentie \rangle$ $\langle formlue \rangle$ $\langle waarde \rangle$ $\langle term \rangle$ $\langle macht \rangle$	$\langle implicatie \rangle$)
$\langle \mathit{conju} i$	nctie\	$\langle of teken angle$			$\langle negatief \rangle$ $\langle product \rangle$ $\langle som \rangle$ $\langle vergelijking \rangle$ $\langle negatie \rangle$ $\langle conjunctie \rangle$ $\langle disjunctie \rangle$		
\ confu	nciie)	(ојіекеп)	(:	$disjunctie angle \ implicatie angle$	(aisjunciie)		
			$\langle e \rangle$	$quivalentie angle \ \langle formule angle$			

Opgave 3

a) Ik heb Wiskundige Structuren gedaan. Bij dat vak waren bijvoorbeeld de volgende dingen in de predikaatlogica anders dan bij Beweren en Bewijzen:

- De syntax van de 'voor alle' of 'voor een' was anders, namelijk eerst de quantor en dan de variabele waana het predikaat kwam met tussen haakjes dezelfde variabele ([quantor]x [Predikaat](x)).
- Predikaten hadden bij Wiskundige structuren een letter, en bij beweren en bewijzen kan dat een woord(groep) zijn.

De grammatica dwingt dit niet af. Het kan worden afgedwongen door twee aparte grammatica's te maken en aan het begin te laten kiezen welke grammatica er wordt genomen met een extra regel $A := B \vee C$.

Opgave 4

- b) Wiskundig gezien zijn de haakjes niet nodig want de 'voor alle' quantor gaat voor alle andere logische operaties, deze wordt dus met de 'voor een' quantor als eerste uitgerekend.
- b) Als we de grammatica aanpassen, kunnen we die haakjes optioneel maken. De haakjes worden veroorzaakt door de grammaticaregel: $\langle waarde \rangle :== \langle naam \rangle \mid (\langle formule \rangle) \mid \langle constante \rangle$. Om dit op te lossen kunnen we deze grammaticaregel uitbreiden tot de volgende grammaticaregel: $\langle waarde \rangle :== \langle naam \rangle \mid (\langle formule \rangle) \mid \langle constante \rangle \mid \langle kwantorformule \rangle$. Hierdoor zijn de haakjes bij een kwantorformule niet meer nodig. De regels voor $\langle formule \rangle$ en $\langle equivalentie \rangle$ hoeven nu niet aangepast te worden.

Opgave 5

- a) Mijn eerste poging leverde een oranje vlaggetje, maar de tweede poging gaf wel een groen vinkje.
- b) De definitie zoals ingevoerd in Coq:

```
Definition eigenschap :=
forall x: T, kastOpen(x) -> klerenPakkenOpbergen(x) \/ (laOpen(x) -> klerenLaPakkenOpbergen(x)).
```