计算机视觉

✓ CV领域发展:

❤ 检测任务:

❤ 分类与检索:

❤ 超分辨率重构:

❤ 医学任务等:

卷視神經网络。

❤ 无人驾驶:

NVIDIA Tegra X1

✓ 人脸识别:

❤ 卷积网络与传统网络的区别:

❤ 整体架构:

❷ 输入层

❷ 卷积层

❷ 池化层

❷ 全连接层

❤ 卷积做了一件什么事?

30	3,	22	1	0
0_2	02	10	3	1
30	1,	22	2	3
2	0	0	2	2
2	0	0	0	1

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

❤ 图像颜色通道

❤ 卷积做了一件什么事?

✓ 卷积做了一件什么事?

❤ 特征图个数

❤ 特征图个数

✅ 只做一次卷积就可以了吗?

❤ 堆叠的卷积层

❤ 卷积层涉及参数:

- ❷ 滑动窗口步长
- ❷ 卷积核尺寸
- ❷ 边缘填充
- **参** 卷积核个数

❤ 步长:

♂ 步长为1的卷积:

5 x 5 Output Volume

♂ 步长为2的卷积:

3 x 3 Output Volume

❤ 边界填充:

◆ 卷积结果计算公式:

Ø 长度:
$$H_2 = \frac{H_1 - F_H + 2P}{S} + 1$$

Ø 宽度:
$$W_2 = \frac{W_1 - F_W + 2P}{S} + 1$$

❷ 其中W1、H1表示输入的宽度、长度; W2、H2表示输出特征图的宽度、长度; F表示卷积核长和宽的大小; S表示滑动窗口的步长;P表示边界填充(加几圈0)。

❤ 卷积结果计算公式:

② 宽度:
$$W_2 = \frac{W_1 - F_W + 2P}{S} + 1$$

- ∅ 如果输入数据是32*32*3的图像,用10个5*5*3的filter来进行卷积操作, 指定步长为1,边界填充为2,最终输入的规模为?
- ∅ (32-5+2*2)/1 + 1 = 32, 所以输出规模为32*32*10, 经过卷积操作后也可以保持特征图长度、宽度不变。

✓ 卷积参数共享:

- Ø 5*5*3 = 75,表示每一个卷积核只需要75个参数,此时有10个不同的卷积核,就需要10*75 = 750个卷积核参数,不要忘记还有b参数,每个卷积核都有一个对应的偏置参数,最终只需要750+10=760个权重参数。

❤ 池化层:

1	3	2	9
7	4	1	5
8	5	2	3
4	2	1	4

7	9
8	

❤ 最大池化:

MAX POOLING

Single depth slice

X	1	1	2	4
	5	6	7	8
	3	2	1	0
	1	2	3	4
				>

max pool with 2x2 filters and stride 2

6	8
3	4

1	3	2	9
7	4	1	5
8	5	2	3
4	2	1	4

7	9
8	

❤ 特征图变化:

[227x227x3] INPUT [55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0 [27x27x96] MAX POOL1: 3x3 filters at stride 2 [27x27x96] NORM1: Normalization layer [27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2 [13x13x256] MAX POOL2: 3x3 filters at stride 2 [13x13x256] NORM2: Normalization layer [13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1 [13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1 [13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1 [6x6x256] MAX POOL3: 3x3 filters at stride 2 [4096] FC6: 4096 neurons [4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

AlexNet

FC 1000

FC 4096 / ReLU

FC 4096 / ReLU

Max Pool 3x3s2

Conv 3x3s1, 256 / ReLU

Conv 3x3s1, 384 / ReLU

Conv 3x3s1, 384 / ReLU

Max Pool 3x3s2

Local Response Norm

Conv 5x5s1, 256 / ReLU

Max Pool 3x3s2

Local Response Norm

Conv 11x11s4, 96 / ReLU

✓ 经典网络-Vgg:

		ConvNet C	onfiguration		
A	A-LRN	В	C	D	Е
11 weight layers	11 weight layers	13 weight layers	16 weight layers	16 weight layers	19 weight layers
	i	nput (224 × 2	24 RGB imag	:)	
conv3-64	conv3-64 LRN	conv3-64 conv3-64	conv3-64 conv3-64	conv3-64 conv3-64	conv3-64 conv3-64
	(///)	max	pool		
conv3-128	conv3-128	conv3-128 conv3-128	conv3-128 conv3-128	conv3-128 conv3-128	conv3-128 conv3-128
		max	pool		
conv3-256 conv3-256	conv3-256 conv3-256	conv3-256 conv3-256	conv3-256 conv3-256 conv1-256	conv3-256 conv3-256 conv3-256	conv3-256 conv3-256 conv3-256 conv3-256
		max	pool		
conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512 conv1-512	conv3-512 conv3-512 conv3-512	conv3-512 conv3-512 conv3-512 conv3-512
		max	pool		
conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512 conv1-512	conv3-512 conv3-512 conv3-512	conv3-512 conv3-512 conv3-512 conv3-512
		max	pool		
		FC-	4096		
			4096		
	<u> </u>	77.75.0	1000		
		soft	-max		

∅ 如果堆叠3个3*3的卷积层,并且保持滑动窗口步长为1,其感受野就是7*7的了, 这跟一个使用7*7卷积核的结果是一样的,那为什么非要堆叠3个小卷积呢?

✅ 感受野

❷ 假设输入大小都是h*w*c,并且都使用c个卷积核(得到c个特征图),可以来计算一下其各自所需参数:

一个7*7卷积核所需参数:

3个3*3卷积核所需参数:

 $= C \times (7 \times 7 \times C) = 49 C^{2}$

 $= 3 \times C \times (3 \times 3 \times C) = 27 C^{2}$

❷ 很明显,堆叠小的卷积核所需的参数更少一些,并且卷积过程越多,特征提取也会越细致,加入的非线性变换也随着增多,还不会增大权重参数个数,这就是VGG网络的基本出发点,用小的卷积核来完成体特征提取操作。

❷ 深层网络遇到的问题:

❷解决方案:

x

PASCAL VOC 2007 Object Detection mAP (%)

ResNet's object detection result on COCO