4. Übung zur Thermodynamik und Statistik WS2011/12

Ausgabe: 31. Oktober 2011 Priv.-Doz. Dr. U. Löw

Abgabe: 10. November 2011 bis $13\underline{^{00}}$ Uhr

Hausaufgabe 4.1: Stirling Kreisprozess

4 Punkte

Das unten gezeigte Diagramm beschreibt den sog. Stirling'schen Kreisprozess. Der Prozess besteht aus zwei isothermen und zwei isochoren Teilprozessen. Als Arbeitsmaterial benutzen wir ein ideales Gas.

- (a) Erklären Sie die Teilprozess in Worten: Welche Arbeit wird in welchem Teilprozess aufgenommen bzw. abgegeben.
- (b) Bestimmen Sie die in einem Zyklus geleistete Arbeit W (unter zu Hilfenahme des 1.HS).
- (c) Bestimmen Sie den Wirkungsgrad.
- (d) Zeigen Sie, dass sich für eine kleine Temperaturdifferenz und eine große Volumendifferenz der Carnot'sche Wirkungsgrad ergibt.

Hausaufgabe 4.2: Entropie: Die Zustandsgröße

4 Punkte

Gehen Sie von dem ersten Hauptsatz der Thermodynamik aus

$$\delta Q = dU + pdV \tag{1}$$

und betrachten Sie ein ideales Gas.

- (a) Zeigen Sie, dass δQ kein vollständiges Differential ist.
- (b) Bestimmen Sie einen integrierenden Faktor f(T), sodass $f(T)\delta Q$ ein vollständiges Differential ist.

Hausaufgabe 4.3: Van der Waals Gas: Wärmekapazität

3 Punkte

Berechnen Sie für das Van der Waals Gas c_p und c_v und überprüfen Sie die Relation

$$c_p - c_v = -T \left(\frac{\partial V}{\partial T} \Big|_p \right)^2 \frac{\partial P}{\partial V} \Big|_T = \frac{TV\alpha^2}{\kappa_T}$$
 (2)

Hausaufgabe 4.4: Kritischer Punkt des Van der Waals Gases

4 Punkte

Es wurde gezeigt, dass für den kritischen Punkt eines Van der Waals Gases folgende Relation gilt

$$RT = \left(P + \frac{a}{v^2}\right)(v - b) \text{ mit dem molaren Volumen } v$$
 (3)

$$P_c = \frac{a}{27b^2} \tag{4}$$

$$v_c = 3b \tag{5}$$

$$Z_c = \frac{P_c v_c}{RT_c} = \frac{3}{8}. (6)$$

- (a) Berechnen Sie aus den in der Tabelle auf dieser Seite wiedergegebenen Messgrößen für T_c , P_c und v_c die zugehörigen Werte Z_c , a und b.
- (b) Für welche Substanz ist die Abweichung vom Van der Waals Modell am größten? Was sind die Gründe für die Abweichung?

Flüssigkeit		$T_c \text{ in } K$	P_c in atm	$v_c \text{ in } \frac{cm^3}{\text{Mol}}$
Wasser	H_2O	647,4	218,3	55,3
Acethylen	C_2H_2	309,5	61,6	113
Argon	Ar	150,7	48	75,3
Sauerstoff	O_2	154,8	50,1	78
Kohlenmonoxid	CO	133	34,5	93,1

Tus Blatt 4 17.11.11 $\boxed{A2} & 80 = du + pdV = C_V dT + RT \frac{dV}{V} \quad \text{(ideales Gas: } pV = h_BTN = RT, \text{)}$ $\boxed{a} & 2 \\ C_V = 0 = \frac{1}{27} \left(\frac{RT}{V} \right) = \frac{R}{V} \quad \text{(ideales Gas: } pV = h_BTN = RT, \text{)}$ $\boxed{a} & 2 \\ C_V = 0 = \frac{1}{27} \left(\frac{RT}{V} \right) = \frac{R}{V} \quad \text{(ideales Gas: } pV = h_BTN = RT, \text{)}$ b) f (T) de = ds = f (T) du + f(T) pdv = f(T) CvdT + f(T) RT dv $\frac{\partial}{\partial V} \left(\left\{ (T) \left(C_V \right) = 0 \right\} \right) \left(\frac{\partial}{\partial T} \left\{ (CT) \right) \right) \frac{RT}{V} + \left\{ (T) \frac{\partial}{\partial T} \left(\frac{RT}{V} \right) = 0 \right\}$ $\frac{\partial}{\partial T} \left(\xi(\tau) \right) \stackrel{?}{=} 0 \qquad \left(\frac{\partial}{\partial T} \xi(\tau) \right) T = -\xi(\tau)$ \Rightarrow $\{(\tau) = \frac{\tau}{\tau}$ AB Van-der-Waals (p+ =) (Vb) = RT Cp - Cy = T 3 / 2 / 5 / 1 Implizite Funktionen: $\frac{\partial e}{\partial t} = \frac{\partial f}{\partial p} = \frac{\partial f}{\partial p} = \frac{\partial f}{\partial v} = \frac{\partial e}{\partial v} = \frac{\partial v}{\partial v}$ = TV ×2