Lecture 11 – Context-Free Grammars (CFGs) and Languages (CFLs)

COSE215: Theory of Computation

Jihyeok Park

2025 Spring

Recall

- Regular Languages
 - Finite Automata DFA, NFA, ε-NFA
 - Regular Expressions

 The minimized DFA is unique up to isomorphism by the Myhill-Nerode Theorem.¹

¹https://en.wikipedia.org/wiki/Myhill-Nerode_theorem

Recall

	Automata	Grammars	Languages
(Part 3) Turing Machines	(Lecture 23) (Lecture 21/22) TM	(Lecture 24) LC	(Lecture 21)
(Part 2) Pushdown Automata	(Lecture 14/15) (Lecture 16) $PDA_{FS} \stackrel{\longleftarrow}{\longleftarrow} PDA_{ES}$ \cup $DPDA_{FS} \supset DPDA_{ES}$ \cup (Lecture 17) \swarrow	(Lecture 11/12) CFG Chomsky Normal Form (Lecture 18)	CFL Parse Trees & Ambiguity Closure Properties (Lecture 19) Clecture 19) Clecture 20)
(Part 1) Finite Automata	(Lecture 4) (Lecture 3) (Lecture 5) (Lecture 7) NFA \longrightarrow DFA \longleftrightarrow ϵ -NFA \longleftrightarrow Minimization (Lecture 10)	(Lecture 6)	(Lecture 3) RL Closure Pumping Properties Lemma (Lecture 8) (Lecture 9)
(Part 0) Basic Concepts	(Lecture 1) Mathematical Preliminaries	(Lecture	,

Context-Free Grammars (CFGs)

• Consider the following language:

$$L = \{w \in \{(,)\}^* \mid w \text{ is balanced}\}$$

For example, the following words are in (or not in) L:

$$L \ni \epsilon, (), (()), ()(), (()()), (()()), ((())), ...$$

 $L \not\ni (,),)(, ((), ()), (())), (()(), ...$

- Is this language regular? **No**, we can prove that this language is **not regular** using the **Pumping Lemma** (Do it yourself!).
- Is there a way to describe this language?
- Yes, let's learn Context-Free Grammars (CFGs)!

Contents

1. Context-Free Grammars (CFGs)

Definition

Derivation Relations

Leftmost and Rightmost Derivations

Sentential Forms

Context-Free Languages (CFLs)

Examples

Basic Idea

$$L = \{w \in \{(,)\}^* \mid w \text{ is balanced}\}$$

How to **inductively generate** (or produce) words in the language *L*?

- Base Case: $\epsilon \in L$
- Inductive Case: There are two inductive rules:
 - If $w \in L$, then $(w) \in L$
 - If $w_1, w_2 \in L$, then $w_1 w_2 \in L$

 ϵ (()()) (())()

Context-Free Grammars (CFGs) provide a way to describe languages with such **inductive rules** to generate words in the language.

Context-Free Grammars (CFGs)

Definition (Context-Free Grammar (CFG))

A **context-free grammar** is a 4-tuple:

$$G = (V, \Sigma, S, R)$$

where

- V: a finite set of variables (nonterminals)
- Σ: a finite set of symbols (terminals)
- $S \in V$: the start variable
- $R \subseteq V \times (V \cup \Sigma)^*$: a set of **production rules**.

$$G = (\{S, A, B\}, \{(,)\}, S, R)$$

where R is defined as:

$$S \to \epsilon$$
 $S \to A$ $S \to B$
 $A \to (S)$ $B \to SS$

Context-Free Grammars (CFGs)

$$G = (\{S, A, B\}, \{(,)\}, S, R)$$

where R is defined as:

$$\begin{array}{cccc} S \rightarrow \epsilon & & S \rightarrow A & & S \rightarrow B \\ A \rightarrow (S) & & B \rightarrow SS & & \end{array}$$

We often call the sequence of variables and symbols in the production rule a **right-hand side** (RHS) of the production rule.

$$S \rightarrow \epsilon \mid A \mid B$$
 $A \rightarrow (S)$ $B \rightarrow SS$

We can simplify the notation using the bar (|) notation by **combining** multiple production rules for the **same variable**.


```
// The definition of variables (nonterminals)
type Nt = String
// The type definitions of symbols (terminals)
type Symbol = Char
// The definition of right-hand side of a production rule
case class Rhs(seq: List[Nt | Symbol])
// The definition of context-free grammars
case class CFG(
 nts: Set[Nt].
 symbols: Set[Symbol],
 start: Nt,
 rules: Map[Nt, List[Rhs]],
// An example of CFG
val cfg: CFG = CFG(
```

```
val cfg: CFG = CFG(
  nts = Set("S", "A", "B"), symbols = Set('(', ')'), start = "S",
  rules = Map(
    "S" -> List(Rhs(List()), Rhs(List("A")), Rhs(List("B"))),
    "A" -> List(Rhs(List('(', "S", ')'))),
    "B" -> List(Rhs(List("S", "S")))
  ),
)
```

Derivation Relations

Definition (Derivation Relation (\Rightarrow))

Consider a CFG $G = (V, \Sigma, S, R)$. If a production rule $A \to \gamma \in R$ exists, the **derivation relation** $\Rightarrow \subseteq (V \cup \Sigma)^* \times (V \cup \Sigma)^*$ is defined as:

$$\alpha A\beta \Rightarrow \alpha \gamma \beta$$

for all $\alpha, \beta \in (V \cup \Sigma)^*$. We say that $\alpha A \beta$ derives $\alpha \gamma \beta$.

Definition (Closure of Derivation Relation (\Rightarrow^*))

The closure of derivation relation \Rightarrow^* is defined as:

- (Basis Case) $\forall \alpha \in (V \cup \Sigma)^*$. $\alpha \Rightarrow^* \alpha$
- (Induction Case) $\forall \alpha, \beta, \gamma \in (V \cup \Sigma)^*$. $(\alpha \Rightarrow^* \gamma)$ if

$$(\alpha \Rightarrow \beta) \land (\beta \Rightarrow^* \gamma)$$

Derivation Relations

$$G = (\{S, A, B\}, \{(,)\}, S, R)$$

$$S \to \epsilon \mid A \mid B \qquad A \to (S) \qquad B \to SS$$

A derivation for (())():

$$S \Rightarrow B \Rightarrow SS \Rightarrow AS \Rightarrow (S)S$$

 $\Rightarrow (A)S \Rightarrow ((S))S \Rightarrow (())S \Rightarrow (())A$
 $\Rightarrow (())(S) \Rightarrow (())()$

Thus, we can **derive** (or generate/produce) the word (())() from S:

$$S \Rightarrow^* (())()$$

Leftmost and Rightmost Derivations

- **Leftmost Derivation** (\Rightarrow_L): always derive the *leftmost* variable.
- **Rightmost Derivation** (\Rightarrow_R): always derive the *rightmost* variable.

$$G = (\{S, A, B\}, \{(,)\}, S, R)$$

$$S \to \epsilon \mid A \mid B \qquad A \to (S) \qquad B \to SS$$

For example, the **leftmost derivation** for (())():

$$S \Rightarrow_{L} B \Rightarrow_{L} SS \Rightarrow_{L} AS$$

$$\Rightarrow_{L} (S)S \Rightarrow_{L} (A)S \Rightarrow_{L} ((S))S$$

$$\Rightarrow_{L} (())S \Rightarrow_{L} (())A \Rightarrow_{L} (())(S) \Rightarrow_{L} (())(S)$$

and, the rightmost derivation for (())():

$$S \Rightarrow_{R} B \Rightarrow_{R} SS \Rightarrow_{R} SA$$

$$\Rightarrow_{R} S(S) \Rightarrow_{R} S() \Rightarrow_{R} A()$$

$$\Rightarrow_{R} (S)() \Rightarrow_{R} (A)() \Rightarrow_{R} ((S))() \Rightarrow_{R} (())()$$

Sentential Forms

Definition (Sentential Form)

For a given CFG $G = (V, \Sigma, S, R)$, a sequence of variables or symbols $\alpha \in (V \cup \Sigma)^*$ is a **sentential form** if and only if $S \Rightarrow^* \alpha$.

- α is a **left-sentential form** if $S \Rightarrow_L^* \alpha$.
- α is a **right-sentential form** if $S \Rightarrow_R^* \alpha$.

For example, (A)S is a **left-sentential form**:

$$S \Rightarrow_L B \Rightarrow_L SS \Rightarrow_L AS \Rightarrow_L (S)S \Rightarrow_L (A)S$$

and, S(S) is a **right-sentential form**:

$$S \Rightarrow_R B \Rightarrow_R SS \Rightarrow_R SA \Rightarrow_R S(S)$$

Context-Free Languages (CFLs)

Definition (Language of CFG)

For a given CFG $G = (V, \Sigma, S, R)$, the **language** of G is defined as:

$$L(G) = \{ w \in \Sigma^* \mid S \Rightarrow^* w \}$$

Definition (Context-Free Language)

A language L is **context-free language (CFL)** if and only if there exists a CFG G such that L(G) = L.

$$G = (\{S, A, B\}, \{(,)\}, S, R)$$

$$S \to \epsilon \mid A \mid B \qquad A \to (S) \qquad B \to SS$$

Then, (())() $\in L(G)$ because $S \Rightarrow^*$ (())().

Example 1

What is the language of the following CFG?

$$G = (\{S, A, B\}, \{(,)\}, S, R)$$

$$S \rightarrow \epsilon \mid A \mid B$$
 $A \rightarrow (S)$ $B \rightarrow SS$

The language of G is:

$$L(G) = \{w \in \{(,)\}^* \mid w \text{ is balanced}\}$$

In addition, it is equivalent to the following CFG:

$$S \rightarrow \epsilon \mid (S)S$$

Example 2

Define a CFG whose language is:

$$L = \{a^n b^n \mid n \ge 0\}$$

The answer is:

$$\mathcal{S}
ightarrow \epsilon \mid \mathtt{a} \mathcal{S} \mathtt{b}$$

Example 3

Define a CFG whose language is:

$$L = \{ww^R \mid w \in \{\mathtt{a},\mathtt{b}\}^*\}\}$$

The answer is:

$$\mathcal{S}
ightarrow \epsilon \mid \mathtt{a} \mathcal{S} \mathtt{a} \mid \mathtt{b} \mathcal{S} \mathtt{b}$$

Summary

1. Context-Free Grammars (CFGs)

Definition

Derivation Relations

Leftmost and Rightmost Derivations

Sentential Forms

Context-Free Languages (CFLs)

Examples

Next Lecture

• Examples of Context-Free Grammars

Jihyeok Park
 jihyeok_park@korea.ac.kr
https://plrg.korea.ac.kr