

Análisis Numérico para Ingeniería

Clase Nro. 9

Aproximación de Funciones

Temas a tratar:

- Funciones Aproximantes.
- Criterios de Aproximación.
- Aproximación por Interpolación.
- Error en la Interpolación.
- Polinomios de Lagrange.
- Polinomios de Newton.

Problema a resolver

Dada una función discreta (puntos dato), se desea obtener una función contínua que aproxime a la primera, de acuerdo a un cierto criterio de aproximación.

Interrogantes

CON QUÉ APROXIMO ?

Elección de la función aproximante.

CÓMO APROXIMO ?

Elección del criterio de aproximación.

DÓNDE APROXIMO ?

Elección del intervalo de aproximación.

Funciones Aproximantes

- Funciones Polinómicas
- Funciones trigonométricas (Series de Fourier)
- Funciones exponenciales
- Funciones Racionales
- Funciones definidas por partes

Funciones Polinómicas

$$p(x) = \sum_{i=0}^{n} a_i \cdot x^i = a_0 + a_1 \cdot x + a_2 \cdot x^2 + \dots + a_{n-1} \cdot x^{n-1} + a_n \cdot x^n$$

Funciones Trigonométricas

$$p(x) = \sum_{i=0}^{n} a_i \cdot \cos(i \cdot x) + b_i \cdot \sin(i \cdot x)$$

Funciones Exponenciales

$$p(x) = \sum_{i=0}^{n} a_i \cdot e^{(b_i \cdot x)}$$

Funciones Racionales

$$p(x) = \frac{\sum_{i=0}^{n} a_i \cdot x^i}{\sum_{i=0}^{n} b_j \cdot x^j}$$

Funciones definidas por partes

$$p(x) = \begin{cases} f_1(x) = -1 - x & \forall x < 0 \\ f_2(x) = 3x - 1 & \forall 0 \le x < 1 \\ f_3(x) = -1 - x & \forall x \ge 1 \end{cases}$$

Criterios de Aproximación

La base del problema de aproximación es el criterio utilizado para determinar las constantes de la función aproximante.

Algunos de los criterios de aproximación son:

- Aproximación por Interpolación.
- Aproximación por Splines Cúbicos.
- Aproximación por Mínimos Cuadrados.
- Aproximación por Error Mínimo (MiniMax).

Aproximación por Taylor

Esta aproximación encuentra un polinomio de grado n que "aproxima bien" a f(x) alrededor del punto x_0 .

"Aproximar bien" significa que $p_n(x)$ coincide con f(x) en el punto x_n y esto también se cumple para sus k derivadas.

$$p(x_0) = f(x_0)$$

$$p_n^{(k)}(x_0) = f^{(k)}(x_0)$$
 para $k = 1, 2, 3, ...$

Aproximación por Taylor

Expresando el desarrollo de Taylor de f(x) alrededor del punto x_0 , tenemos :

$$p(x) = f(x_0) + f'(x_0) \cdot (x - x_0) + \frac{f''(x_0) \cdot (x - x_0)^2}{2!} + \dots + \frac{f^{(n)}(x_0) \cdot (x - x_0)^n}{n!}$$

Cuyo término de error es :

$$p(x)-f(x)=R_n(x)=\frac{f^{(n+1)}(\xi(x))\cdot(x-x_0)^{n+1}}{(n+1)!}$$

Problema a resolver

Se tiene un conjunto de 4 puntos pertenecientes a una función f(x) desconocida.

i	X	f(x)	p(x)
0	-4,00	-7,38	-7,38
1	-2,00	0,52	0,52
2	0,00	2,00	2,00
3	2,00	14,52	14,52

Se desea obtener un **polinomio p(x)** que pase por **todos los puntos dato**.

Polinomio Interpolante

Interpolación Polinómica

Problema a resolver

Se tiene un conjunto de **5 puntos** pertenecientes a una función **f(x)** desconocida.

i	X	f(x)	p(x)
0	-5,00	25,92	25,92
1	-3,00	-5,36	-5,36
2	-1,00	2,58	2,58
3	1,00	3,59	3,59
4	2,00	14,52	14,52

Se desea obtener un polinomio **p(x)** que pase por todos los puntos dato.

Interpolación Polinómica

Polinomios Aproximantes

Para calcular los **polinomios interpolantes** vistos anteriormente, se ha utilizado el siguiente criterio:

$$f(x_i) = p_n(x_i)$$
 para $i = 0, 1, 2, 3, ..., n$

Es decir, dados n+1 puntos, debemos hacer coincidir los valores del polinomio aproximante $\mathbf{p}_{n}(\mathbf{x})$ con la función aproximada $\mathbf{f}(\mathbf{x})$, en cada punto \mathbf{x}_{i} .

Determinación de los coeficientes

Se tiene un conjunto de 4 **puntos** pertenecientes a una función **f(x)** desconocida.

i	X	f(x)	p(x)
0	-4,00	-7.38	-7.38
1	-2,00	0.52	0.52
2	0,00	2,00	2,00
3	2,00	14,52	14,52

Se desea calcular los coeficientes del polinomio p(x) que pase por todos los puntos dato.

Polinomios Aproximantes

Para calcular los coeficientes del polinomio aproximante :

$$p_n(x) = a_0 + a_1 \cdot x + a_2 \cdot x^2 + \dots + a_n \cdot x^n$$

Podemos plantear las siguientes ecuaciones:

$$\begin{bmatrix} 1.00 & -4.00 & 16.00 & -64.00 \\ 1.00 & -2.00 & 4.00 & -8.00 \\ 1.00 & 0.00 & 0.00 & 0.00 \\ 1.00 & 2.00 & 4.00 & 8.00 \end{bmatrix} \cdot \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} -7.38 \\ 0.52 \\ 2.00 \\ 14.52 \end{bmatrix}$$

Polinomios Aproximantes

Resolviendo el sistema obtenemos los valores de los coeficientes :

$$a_0=2$$
; $a_1=2.045$; $a_2=1.38$; $a_3=0.36375$

Por lo que el **polinomio aproximante** queda de la forma :

$$p_3(x) = 0.36375 \cdot x^3 + 1.38 \cdot x^2 + 2.045 \cdot x + 2$$

Interpolación Polinómica

Unicidad del Polinomio Interpolante

Dados **n+1** puntos de la función **f(x)**, el polinomio interpolante que pasa por todos ellos **es único**:

Demostración por el absurdo:

- 1) Supongamos que existan **dos** polinomios interpolantes $\mathbf{p}_{n}(\mathbf{x})$ y $\mathbf{q}_{n}(\mathbf{x})$ que pasan por los $\mathbf{n+1}$ puntos de $\mathbf{f}(\mathbf{x})$.
- 2) Entonces creamos un polinomio $d_n(x) = p_n(x) q_n(x)$
- 3) Dado que $d_n(x)$ proviene de la diferencia de dos polinomios de **grado** n, el grado del mismo será menor o igual a n.

Unicidad del Polinomio Interpolante

Dados **n+1** puntos de la función **f(x)**, el polinomio interpolante que pasa por todos ellos **es único**:

Continuación de la Demostración por el absurdo:

4) Las raíces de $d_n(x)$ coinciden con las abscisas de los puntos dato, en cuyo caso, $d_n(x)$ debería tener n+1 raíces.

Por lo tanto, es imposible que siendo $d_n(x)$ un polinomio de grado n, el mismo posea n+1 raíces.

A menos que se trate del polinomio nulo, en cuyo caso se cumplirá que $\mathbf{p}_n(\mathbf{x}) = \mathbf{q}_n(\mathbf{x})$.

Polinomio de Lagrange

Sea el polinomio :

$$A(x) = (x-x_0)\cdot(x-x_1)\cdots(x-x_n) = \prod_{i=0}^{n} (x-x_i)$$

Por lo tanto todos los \mathbf{x}_i serán ceros de dicho polinomio. Además podemos definir otro polinomio \mathbf{A}_k , en el cuál todos los \mathbf{x}_i serán ceros de dicho polinomio, menos \mathbf{x}_k :

$$A_{k}(x) = (x-x_{0}) \cdot (x-x_{1}) \cdot \cdots (x-x_{k-1}) \cdot (x-x_{k+1}) \cdot \cdots (x-x_{n}) = \prod_{\substack{i=0 \ i \neq k}}^{n} (x-x_{i})$$

Método de Lagrange

Por lo tanto, definimos a los coeficientes $L_k(x)$ del polinomio de LAGRANGE como:

$$L_{k}(x) = \frac{A_{k}(x)}{A_{k}(x_{k})} = \frac{(x-x_{0})\cdot(x-x_{1})\cdots(x-x_{k-1})\cdot(x-x_{k+1})\cdots(x-x_{n})}{(x_{k}-x_{0})\cdot(x_{k}-x_{1})\cdots(x_{k}-x_{k-1})\cdot(x_{k}-x_{k+1})\cdots(x_{k}-x_{n})}$$

Donde los coeficientes $L_k(x)$ del polinomio de LAGRANGE sólo dependen de los **nodos** y toman los siguientes valores :

$$L_k(x_i) = \begin{cases} 0 & i \neq k \\ 1 & i = k \end{cases}$$

Método de Lagrange

Por lo tanto el polinomio de **LAGRANGE** nos queda como :

$$p_n(x) = \sum_{k=0}^n L_k(x) \cdot f(x_k) = \sum_{k=0}^n \left[\prod_{\substack{i=0 \ i \neq k}}^n \frac{(x - x_i)}{(x_k - x_i)} \right] \cdot y_k$$

Donde se cumple la condición :

$$f(x_i) = p_n(x_i) = y_i$$

Ejemplo de Aplicación

Dado este conjunto de puntos, se desea calcular el polinomio de interpolación de LAGRANGE

i	x	f(x)	p(x)
0	-4,00	-7,38	-7,38
1	-2,00	0,52	0,52
2	0,00	2,00	2,00
3	2,00	14,52	14,52

$$p_n(x) = \frac{(x+2)(x-0)(x-2)}{(-4+2)(-4-0)(-4-2)} \cdot (-7.38) + \frac{(x+4)(x-0)(x-2)}{(-2+4)(-2-0)(-2-2)} \cdot (0.52) + \frac{(x+4)(x+2)(x-2)}{(0+4)(0+2)(0-2)} \cdot (2.00) + \frac{(x+4)(x+2)(x-0)}{(2+4)(2+2)(2-0)} \cdot (14.52) = 0.36375 \, x^3 + 1.38 \, x^2 + 2.045 \, x + 2$$

Método de Lagrange

Para nodos equiespaciados, la expresión anterior puede simplificarse, reemplazando $\mathbf{x} = \mathbf{x}_0 + \mathbf{sh}$:

$$p_n(s) = \sum_{k=0}^n L_k(x_0 + s \cdot h) \cdot f(x_k) = \sum_{k=0}^n \frac{(-1)^{n+k}}{n!} \binom{n}{k} \cdot \prod_{\substack{i=0 \ i \neq k}}^n (s-i) \cdot y_k = \sum_{i=0}^n \frac{(-1)^{n+k}}{n!} \binom{n}{k} \cdot \prod_{\substack{i=0 \ i \neq k}}^n (s-i) \cdot y_k = \sum_{i=0}^n \frac{(-1)^{n+k}}{n!} \binom{n}{k} \cdot \prod_{\substack{i=0 \ i \neq k}}^n (s-i) \cdot y_k = \sum_{\substack{i=0 \ i \neq k}}^n \frac{(-1)^{n+k}}{n!} \binom{n}{k} \cdot \prod_{\substack{i=0 \ i \neq k}}^n (s-i) \cdot y_k = \sum_{\substack{i=0 \ i \neq k}}^n \frac{(-1)^{n+k}}{n!} \binom{n}{k} \cdot \prod_{\substack{i=0 \ i \neq k}}^n (s-i) \cdot y_k = \sum_{\substack{i=0 \ i \neq k}}^n \frac{(-1)^{n+k}}{n!} \binom{n}{k} \cdot \prod_{\substack{i=0 \ i \neq k}}^n (s-i) \cdot y_k = \sum_{\substack{i=0 \ i \neq k}}^n \frac{(-1)^{n+k}}{n!} \binom{n}{k} \cdot \prod_{\substack{i=0 \ i \neq k}}^n (s-i) \cdot y_k = \sum_{\substack{i=0 \ i \neq k}}^n \frac{(-1)^{n+k}}{n!} \binom{n}{k} \cdot \prod_{\substack{i=0 \ i \neq k}}^n \binom{n}{k}$$

$$= \frac{(-1)^n}{n!} \cdot s \cdot (s-1) \cdots (s-n) \sum_{k=0}^n \frac{(-1)^k \cdot \binom{n}{k}}{(s-k)} \cdot y_k$$

A continuación, vamos a demostrar que la expresión del error de interpolación en cualquier valor x es :

$$E(x) = (x-x_0)\cdot(x-x_1)\cdots(x-x_n)\cdot\frac{f^{(n+1)}(\xi)}{(n+1)!}$$

Pues, como se sabe, el error **es nulo** en cada uno de los nodos, pues $p_n(x_i)$ coincide con $f(x_i)$.

TEOREMA

Si \mathbf{x}_0 , \mathbf{x}_1 , ..., \mathbf{x}_n , son distintos en el intervalo [\mathbf{a} , \mathbf{b}] y si $\mathbf{f} \in \mathbf{C}^{n+1}$ [\mathbf{a} , \mathbf{b}], entonces, para cada \mathbf{x} en [\mathbf{a} , \mathbf{b}] existe un número $\boldsymbol{\xi}(\mathbf{x})$ en (\mathbf{a} , \mathbf{b}) tal que verifica :

$$f(x) = P(x) + \frac{f^{(n+1)}(\xi)}{(n+1)!} \cdot (x - x_0) \cdot (x - x_1) \cdots (x - x_n)$$

Error de Interpolación

DEMOSTRACIÓN

Vemos que si $\mathbf{x} = \mathbf{x}_k$, para $\mathbf{k} = \mathbf{0}, \mathbf{1}, ..., \mathbf{n}$ entonces $\mathbf{f}(\mathbf{x}_k) = \mathbf{P}(\mathbf{x}_k)$ y eligiendo $\boldsymbol{\xi}(\mathbf{x}_k)$ arbitrariamente en (\mathbf{a}, \mathbf{b}) , se satisface la ecuación anterior.

Ahora bien, si $x \neq x_k$ para cualquier k = 0, 1, ..., n definiremos la función g(t) en [a, b] de la siguiente forma :

$$g(t) = f(t) - P(t) - [f(x) - P(x)] \cdot \frac{(t - x_0) \cdot (t - x_1) \cdots (t - x_n)}{(x - x_0) \cdot (x - x_1) \cdots (x - x_n)}$$

$$g(t) = f(t) - P(t) - [f(x) - P(x)] \cdot \prod_{i=0}^{n} \frac{(t - x_i)}{(x - x_i)}$$

Como $f \in C^{n+1}[a, b]$, $P \in C^{\infty}[a, b]$, $y \neq x \neq x_k$, para cualquier k se establece que $g \in C^{n+1}$. Por lo tanto, para $t=x_k$ se verifica que :

$$g(x_k) = f(x_k) - P(x_k) - [f(x) - P(x)] \cdot \prod_{i=0}^{n} \frac{(x_k - x_i)}{(x - x_i)} = 0$$

= $0 - [f(x) - P(x)] \cdot 0 = 0$

Y también se verifica que :

$$g(x) = f(x) - P(x) - [f(x) - P(x)] \cdot \prod_{i=0}^{n} \frac{(x - x_i)}{(x - x_i)} =$$

$$= f(x)-P(x)-[f(x)-P(x)] = 0$$

Teorema de ROLLE

Establece que si se cumple que :

- f es una función contínua en un intervalo [a, b]
- f es derivable en un intervalo (a, b)
- \cdot f(a) = f(b)

Entonces:

 Existe al menos un valor c perteneciente al intervalo (a, b) tal que f'(c) = 0.

Por lo tanto $\mathbf{g} \in \mathbf{C}^{n+1}[\mathbf{a}, \mathbf{b}]$, $\mathbf{y} \in \mathbf{g}$ se anula en los $\mathbf{n+2}$ números distintos $\mathbf{x}, \mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_n$. Por el teorema de ROLLE generalizado existe $\boldsymbol{\xi} \equiv \boldsymbol{\xi}(\mathbf{x})$ en (\mathbf{a}, \mathbf{b}) tal que $\mathbf{g}^{(n+1)}(\boldsymbol{\xi}) = \mathbf{0}$. Evaluando $\mathbf{g}^{(n+1)}(\boldsymbol{\xi})$ da :

$$0 = g^{(n+1)}(\xi) =$$

$$= f^{(n+1)}(\xi) - P^{(n+1)}(\xi) - [f(x) - P(x)] \cdot \frac{d^{n+1}}{dt^{n+1}} \cdot \left(\prod_{i=0}^{n} \frac{(t - x_i)}{(x - x_i)} \right)_{t=\xi}$$

Como **P** es un polinomio de **grado n** o menor , la derivada (n+1), es decir, **P**⁽ⁿ⁺¹⁾ será igual a **cero**.

Además :

$$\prod_{i=0}^{n} \frac{(t-x_i)}{(x-x_i)}$$

Esta productoria es un polinomio de grado (n+1), entonces :

$$\prod_{i=0}^{n} \frac{(t-x_i)}{(x-x_i)} = \frac{t^{n+1}}{\prod_{i=0}^{n} (x-x_i)} + \text{(términos de menor grado en t)}$$

Por lo que la derivada de los términos de **grado n** o menor, son iguales a cero.

$$\frac{d^{n+1}}{dt^{n+1}} \cdot \prod_{i=0}^{n} \frac{(t-x_i)}{(x-x_i)} = \frac{(n+1)!}{\prod_{i=0}^{n} (x-x_i)}$$

$$0 = g^{(n+1)}(\xi) =$$

$$= f^{(n+1)}(\xi) - P^{(n+1)}(\xi) - [f(x) - P(x)] \cdot \frac{d^{n+1}}{dt^{n+1}} \cdot \left(\prod_{i=0}^{n} \frac{(t - x_i)}{(x - x_i)} \right)_{t=\xi}$$

La ecuación anterior se transforma en:

$$0 = [f^{(n+1)}(\xi) - 0] - [f(x) - P(x)] \cdot \frac{(n+1)!}{\prod_{i=0}^{n} (x - x_i)}$$

Y reordenando y despejando **f(x)**, obtenemos finalmente la siguiente expresión, que representa la aproximación **P(x)** y el error de interpolación :

$$f(x) = P(x) + \underbrace{\frac{f^{(n+1)}(\xi)}{(n+1)!} \cdot \prod_{i=0}^{n} (x - x_i)}_{Error de Interpolación}$$

La fórmula anterior es un **resultado teórico** muy importante, ya que los polinomios de **LAGRANGE** son extensamente utilizados para desarrollar métodos numéricos de derivación e integración.

Comparación con el polinomio de TAYLOR

Nótese que la forma del **error** para el polinomio de **LAGRANGE** es muy similar a la del polinomio de **TAYLOR**. El polinomio de **TAYLOR** de **grado** \mathbf{n} alrededor de \mathbf{x}_{o} concentra toda la información conocida en \mathbf{x}_{o} y tiene un término de **error** de la forma:

$$\frac{f^{(n+1)}(\xi(x))}{(n+1)!} \cdot (x-x_0)^{n+1}$$

Error de Interpolación del polinomio de TAYLOR

El polinomio de **LAGRANGE** de grado n utiliza la información de los diferentes valores $x_0, x_1, ..., x_n$ en vez de $(x - x_0)^n$ su fórmula de error contiene un producto de n+1 términos :

Error =
$$\frac{f^{(n+1)}(\xi(x))}{(n+1)!} \cdot (x-x_0) \cdot (x-x_1) \cdot \dots (x-x_n)$$

Error de Interpolación del polinomio de LAGRANGE

A pesar de que la fórmula del error en los polinomios de LAGRANGE constituye un resultado teórico importante, su uso práctico está restringido a aquellas funciones cuyas derivadas tengan cotas conocidas, como las funciones trigonométricas ó logarítmicas.

Por último, para el caso de puntos equiespaciados, nos queda:

$$Error = \frac{s \cdot (s-1) \cdot (s-2) \cdots (s-n)}{(n+1)!} \cdot h^{n+1} f^{(n+1)}(\xi)$$

Interpolación y Extrapolación

Interpolación con Diferencias Finitas

Para puntos **equiespaciados** únicamente y utilizando **diferencias ascendentes**, tenemos :

$$\Delta f(x) = f(x+h) - f(x)$$

$$\Delta^{2} f(x) = \Delta(\Delta f(x)) = \Delta(f(x+h) - f(x)) =$$

$$= \Delta f(x+h) - \Delta f(x) = f(x+2h) - f(x+h) - f(x+h) + f(x) =$$

$$= f(x+2h) - 2 \cdot f(x+h) + f(x)$$

$$\Delta^{n} = \Delta \left(\Delta^{(n-1)} f(x) \right)$$

Tabla de Diferencias

i ASC	i DESC	X _i	f(x _i)	Δ	Δ ²	Δ^3	Δ^4	Δ^5
0	-5	5,1	0,37798					
				0,09054				
1	-4	5,2	0,46852		-0,00469			
				0,08585		-0,00084		
2	-3	5,3	0,55437		-0,00553		0,00003	
				0,08032		-0,00081		0,00004
3	-2	5,4	0,63469		-0,00634		0,00007	
				0,07398		-0,00074		
4	-1	5,5	0,70867		-0,00708			
				0,0669				
5	0	5,6	0,77557					

Newton con Diferencias Ascendentes

Esta expresión nos permite obtener el polinomio interpolante de **Newton**, con **diferencias ascendentes**. La misma puede utilizarse únicamente si los puntos dato **son equiespaciados**.

Siendo:
$$s = \frac{x - x_0}{h}$$

$$p_n(s) = y_0 + s \cdot \Delta y_0 + \frac{s \cdot (s-1)}{2!} \cdot \Delta^2 y_0 + \dots + \frac{s \cdot (s-1) \cdot \dots \cdot (s-n+1)}{n!} \cdot \Delta^n y_0$$

Diferencias Ascendentes

i ASC	i DESC	X _i	f(x _i)	Δ	Δ ²	Δ^3	Δ^4	Δ^5
0	-5	5,1	0,37798					
				0,09054				
1	-4	5,2	0,46852		-0,00469			
				0,08585		-0,00084		
2	-3	5,3	0,55437		-0,00553		0,00003	
				0,08032		-0,00081		0,00004
3	-2	5,4	0,63469		-0,00634		0,00007	
				0,07398		-0,00074		
4	-1	5,5	0,70867		-0,00708			
				0,0669				
5	0	5,6	0,77557					

Newton con Diferencias Descendentes

Esta expresión nos permite obtener el polinomio interpolante de **Newton**, con **diferencias descendentes**. La misma puede utilizarse únicamente si los puntos dato **son equiespaciados**.

Siendo:
$$s = \frac{x - x_0}{h}$$

$$p_{n}(s) = y_{0} + s \cdot \Delta y_{-1} + \frac{s \cdot (s+1)}{2!} \cdot \Delta^{2} y_{-2} + \dots + \frac{s \cdot (s+1) \cdot \dots \cdot (s+n+1)}{n!} \cdot \Delta^{n} y_{-n}$$

Diferencias Descendentes

i ASC	i DESC	X _i	f(x _i)	Δ	Δ ²	$\mathbf{\nabla}_3$	Δ^4	Δ^5
0	-5	5,1	0,37798					
				0,09054				
1	-4	5,2	0,46852		-0,00469			
				0,08585		-0,00084		
2		5,3	0,55437		-0,00553		0,00003	
				0,08032		-0,00081		0,00004
3	-2	5,4	0,63469		-0,00634		0,00007	
				0,07398		-0,00074		
4	-1	5,5	0,70867		-0,00708			
				0,0669				
5	0	5,6	0,77557					

Interpolación con Diferencias Divididas

Para puntos no equiespaciados se puede utilizar diferencias divididas.

$$Df(x_{i}) = \frac{f(x_{i+1}) - f(x_{i})}{x_{i+1} - x_{i}}$$

$$D^{n} f(x_{i}) = \frac{D^{n-1} f(x_{i+1}) - D^{n-1} f(x_{i})}{x_{i+n} - x_{i}}$$

Newton con Diferencias Finitas

Esta expresión nos permite obtener el polinomio interpolante de **Newton**, con **diferencias divididas**. La misma puede utilizarse con puntos dato **equi-espaciados** o **no**.

$$p_{n}(x) = y_{0} + (x - x_{0}) \cdot D y_{0} + (x - x_{0}) \cdot (x - x_{1}) \cdot D^{2} y_{0} + \dots + (x - x_{0}) \cdot (x - x_{1}) \cdot (x - x_{1}) \cdot \dots (x - x_{n-1}) \cdot D^{n} y_{0}$$

Tabla de Diferencias Divididas

X _i	f(x _i)	D	D^2	D_3	D^4	D^5
5,1	0,37798					
		0,9054				
5,2	0,46852		-0,2345			
		0,8585		-0,14		
5,3	0,55437		-0,2765		0,0125	
		0,8032		-0,135		0,03333
5,4	0,63469		-0,317		0,029167	
		0,7398		-0,12333		
5,5	0,70867		-0,354			
		0,669				
5,6	0,77557					

PREGUNTAS ...

