

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

PROGRAMA SINTÉTICO

UNIDAD ACADÉMICA: ESCUELA SUPERIOR DE CÓMPUTO

PROGRAMA <u>Ingeniería en Sistemas Computacionales</u>

ACADÉMICO:

UNIDAD DE APRENDIZAJE: Análisis Fundamental de Circuitos NIVEL: <u>I</u>

OBJETIVO GENERAL:

Analizar circuitos eléctricos a partir de los teoremas y técnicas fundamentales para la resolución de circuitos eléctricos, mediante la realización de exámenes exploratorios, prácticas de laboratorio, exposición oral, trabajos escritos, tareas, participaciones individuales y grupales.

DESCRIPCIÓN GENERAL DE CONTENIDOS:

UNIDAD I Leyes de Kirchhoff en Corriente Directa y Alterna

UNIDAD II Técnicas en el Análisis de Circuitos en Corriente Directa y Alterna

UNIDAD III Teoremas de Circuitos

ORIENTACIÓN DIDÁCTICA:

Desarrollará las habilidades de análisis de circuitos eléctricos, a través de la aplicación de los diferentes teoremas y técnicas de resolución, además de la práctica llevada a cabo en el laboratorio por medio del trabajo en equipo, también se realizarán exposiciones, trabajos de investigación, dirigido a su área de formación profesional, que integre los conceptos generales y al trabajo práctico y colaborativo.

Para ello el docente dentro de la planeación establecerá las actividades de aprendizaje a desarrollar y los tiempos para entrega por parte del alumno; así mismo marcara los tiempos de revisión para hacer las observaciones y anotaciones para que el alumno pueda mejorar su aprendizaje.

EVALUACIÓN Y ACREDITACIÓN:

- Asistencia en clases teóricas y prácticas
- Registro de los trabajos de investigación
- Actividades de laboratorio
- Exámenes exploratorios

Está unidad de aprendizaje puede acreditarse también mediante:

• La "competencia demostrada" por medio del examen exploratorio.

BIBLIOGRAFÍA:

Boylestad, Robert L. <u>Análisis Introductorio de Circuitos</u>. Prentice Hall. México 1998, 1168 pags. ISBN 970-17-0184-4

Dorf, Richard C. <u>Circuitos Eléctricos</u>. Alfaomega. México 2003, 864 pags. ISBN 970-15-0855-6

Hayt, William H. Jr. <u>Análisis de Circuitos en Ingeniería</u>. Mc Graw Hill. México 2007, 856 pags. ISBN 970-10-6107-1

Irwin, J David. <u>Análisis Básico de Circuitos en Ingeniería</u>. Limusa Wiley. México 1997, 696 pags. ISBN 968-880-816-4

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD ACADÉMICA: ESCUELA SUPERIOR DE

CÓMPUTO

PROGRAMA ACADÉMICO: Ingeniería en Sistemas

Computacionales

PROFESIONAL ASOCIADO: Analista Programador

de Sistemas de Información

ÁREA FORMATIVA: Científica Básica

MODALIDAD: Presencial

UNIDAD DE APRENDIZAJE: Análisis Fundamental de

Circuito

TIPO DE UNIDAD DE APRENDIZAJE: Teórico – Práctica

Obligatoria

VIGENCIA: NIVEL: I

CRÉDITOS: 7.5 (TEPIC), 4.33 (SATCA)

PROPÓSITO GENERAL

Brindar los conceptos de resolución de circuitos eléctricos para el desarrollo de sistemas computacionales. Los conocimientos adquiridos son necesarios para el análisis, y diseño de sistemas computacionales usando tecnologías de vanguardia y aplicando metodologías, normas y estándares nacionales e internacionales de calidad para crear, circuitos eléctricos. Por lo que serán capaces de desempeñarse en los sectores privado, público y de investigación. Actualizándose permanentemente para responder a las necesidades de la sociedad y al desarrollo sustentable de la nación.

Competencias que conforman la Unidad de Aprendizaje:

- Conocer los dispositivos eléctricos básicos
- Conocer las diferentes técnicas y metodologías de análisis y resolución de los circuitos eléctricos
- Desarrollar la capacidad de resolución de circuitos eléctricos tanto en corriente directa, como en Alterna
- Desarrollar la habilidad de armar circuitos eléctricos, y manejar instrumentos de medición
- Capacidad de trabajo en equipo
- Capacidad para resolver problemas

Relaciones con otras unidades de aprendizaje:

- Vertical
 - Electrónica Analógica
 - o Instrumentación Digital

OBJETIVO GENERAL

Analizar circuitos eléctricos a partir de los teoremas y técnicas fundamentales para la resolución de circuitos eléctricos, mediante la realización de exámenes exploratorios, prácticas de laboratorio, exposición oral, trabajos escritos, tareas, participaciones individuales y grupales.

TIEMPOS ASIGNADOS

HORAS TEORÍA/SEMANA: 3

HORAS PRÁCTICA/SEMANA: 1.5

HORAS TEORÍA/NIVEL: 54

HORAS PRÁCTICA/NIVEL: 27

HORAS TOTALES/NIVEL: 81

UNIDAD DE APRENDIZAJE DISEÑADA

POR: Academia de Sistemas Analógicos

REVISADA POR: M. en C. Flavio Arturo

Sánchez Garfias

APROBADA POR:

2009

Ing. Apolinar F. Cruz Lázaro Presidente del CTCE.

AUTORIZADO POR: Comisión de Programas Académicos del Consejo General Consultivo del IPN.

2009

Dr. David Jaramillo Vigueras Secretario Técnico de la Comisión de Programas Académicos

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE: Análisis Fundamental de Circuitos.

HOJA: 3

DE

8

N° UNIDAD TEMÁTICA: I

NOMBRE: Leyes de Kirchhoff en Corriente Directa y Alterna

OBJETIVO PARTICULAR

Comprender las leyes de Kirchhoff para resolver un circuito eléctrico, mediante la realización de prácticas de laboratorio, examen exploratorio, exposición oral, trabajos escritos, tareas, participaciones individuales y grupales

No.	CONTENIDOS	HORAS AD Actividades de docencia		HORAS TAA Actividades de Aprendizaje Autónomo (b)		CLAVE BIBLIOGRÁFICA
		Т	Р	Т	Р	
1.1	Operación del Amperímetro, Voltímetro, Ohmetro y Osciloscopio	0.5	0.5		2.5	1B, 3B, 4B
1.2 1.2.1 1.2.2	Fasores Números complejos Coordenadas polares	1.5		1.5		
1.3 1.4 1.5	Ley de Ohm Ley de Kirchhoff de voltaje Ley de Kirchhoff de corriente	1.0 2.5 2.5		0.5 4.0 4.0	3.0 3.0	
	Subtotales por Unidad temática:	8.0	0.5	10.0	8.5	

ESTRATEGIAS DE APRENDIZAJE

- Indagación previa de los temas a tratar en cada clase
- Resolución de problemas de circuitos eléctricos tanto en corriente directa como en corriente alterna
- Entrega de tareas empleando software para la simulación de circuitos eléctricos
- Exposición oral de los conceptos de circuitos eléctricos de acuerdo al tema tratado
- Realización de prácticas y la elaboración del correspondiente reporte en una lengua adicional al Español (Ingles).
- Entrega de trabajos escritos en una lengua adicional al Español (Ingles).

EVALUACIÓN DE LOS APRENDIZAJES

- o 10% Trabajos de investigación (exposición oral, trabajos escritos, tareas, participaciones individuales y grupales)
- o 45% Trabajo en laboratorio
- o 45% Resolución de examen exploratorio

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

Análisis Fundamental de Circuitos. UNIDAD DE APRENDIZAJE: HOJA: 4 DE 8

N° UNIDAD TEMÁTICA: II NOMBRE: Técnicas en el Análisis de Circuitos en Corriente Directa y Alterna

OBJETIVO PARTICULAR

Resolver circuitos eléctricos utilizando técnicas de síntesis, para solucionar circuitos de corriente directa y alterna, mediante la realización de prácticas de laboratorio, examen exploratorio, exposición oral, trabajos escritos, tareas, participaciones individuales y grupales

No.	CONTENIDOS		HORAS AD Actividades de docencia (a)		S TAA ades de dizaje nomo o)	CLAVE BIBLIOGRÁFICA
		Т	Р	Т	Р	
2.1 2.2 2.3 2.4	Análisis de Mallas Análisis de Nodos Divisor de Voltaje Divisor de Corriente	2.5 2.5 1.0 1.0		4.5 4.5 1.0 1.0	3.0 3.0 3.0	1B, 2C, 4B
	Subtotales por Unidad temática:	7.0	0.0	11.0	9.0	

ESTRATEGIAS DE APRENDIZAJE

- Indagación previa de los temas a tratar en cada clase
- Resolución de problemas de circuitos eléctricos tanto en corriente directa como en corriente alterna
- Entrega de tareas empleando software para la simulación de circuitos eléctricos
- Exposición oral de los conceptos de circuitos eléctricos de acuerdo al tema tratado
- Realización de prácticas y la elaboración del correspondiente reporte en una lengua adicional al Español (Ingles).
- Entrega de trabajos escritos en una lengua adicional al Español (Ingles).

EVALUACIÓN DE LOS APRENDIZAJES

- o 10% Trabajos de investigación (exposición oral, trabajos escritos, tareas, participaciones individuales y grupales)
- ○45% Trabajo en laboratorio
- o 45% Resolución de examen exploratorio

N° UNIDAD TEMÁTICA: III

INSTITUTO POLITÉCNICO NACIONAL

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE: Análisis Fundamental de Circuitos.

HOJA: 5

NOMBRE: Teoremas de Circuitos

DE

8

OBJETIVO PARTICULAR

Aprender los teoremas existentes para resolver un circuito eléctrico, mediante la realización de prácticas de laboratorio, examen exploratorio, exposición oral, trabajos escritos, tareas, participaciones individuales y grupales

No.	CONTENIDOS		HORAS AD Actividades de docencia (a)		S TAA ades de dizaje nomo))	CLAVE BIBLIOGRÁFICA
		Т	Р	Т	Р	
3.1 3.2 3.3 3.4 3.5	Teorema de Superposición Teorema del Intecambio de Fuentes Teorema de Thevenin Teorema de Norton Teorema de Máxima Transferencia de Potencia	1.5 1.5 1.5 1.5 1.0		2.0 2.0 2.5 2.5 2.0	3.0 3.0 3.0	1B, 3B, 4B
	Subtotales por Unidad temática:	7.0	0.0	11.0	9.0	

ESTRATEGIAS DE APRENDIZAJE

- Indagación previa de los temas a tratar en cada clase
- Resolución de problemas de circuitos eléctricos tanto en corriente directa como en corriente alterna
- Entrega de tareas empleando software para la simulación de circuitos eléctricos
- Exposición oral de los conceptos de circuitos eléctricos de acuerdo al tema tratado
- Realización de prácticas y la elaboración del correspondiente reporte en una lengua adicional al Español (Ingles).
- Entrega de trabajos escritos en una lengua adicional al Español (Ingles).

EVALUACIÓN DE LOS APRENDIZAJES

- o 10% Trabajos de investigación (exposición oral, trabajos escritos, tareas, participaciones individuales y grupales)
- o 45% Trabajo en laboratorio
- o 45% Resolución de examen exploratorio

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE:

Análisis Fundamental de Circuitos.

HOJA: 6

DE

8

RELACIÓN DE PRÁCTICAS

PRÁCTICA No.	NOMBRE DE LA PRÁCTICA	UNIDADES TEMÁTICAS	DURACIÓN	LUGAR DE REALIZACIÓN
1	Instrumentos de medición Objetivo: Aprender a utilizar los instrumentos de medición que se utilizan en el laboratorio.	I	3.0	
2	Ley de Kirchhoff de voltaje Objetivo: Aplicar la ley de Kirchhoff de voltaje en el análisis y resolución de un circuito.	I	3.0	
3	Ley de Kirchhoff de corriente Objetivo: Aplicar la ley de Kirchhoff de voltaje en el análisis y resolución de un circuito.	I	3.0	
4	Análisis de Mallas Objetivo: Aplicar el método de análisis por mallas para la resolución de un circuito.	II	3.0	
5	Análisis de Nodos Objetivo: Aplicar el método de análisis por nodos para la resolución de un circuito.	II	3.0	Laboratorios E1 y E2 de Electrónica
6	Divisor de Voltaje Objetivo: Analizar y resolver circuitos que se encuentran configurados en serie.	II	3.0	Liodiomod
7	Teorema de Superposición Objetivo: Aplicar el teorema de superposición para analizar y/o resolver de un circuito.	111	3.0	
8	Teorema de Thevenin Objetivo: Aplicar el teorema de Thevenin para analizar y/o resolver de un circuito.	Ш	3.0	
9	Teorema de Norton Objetivo: Aplicar el teorema de Norton para analizar y/o resolver de un circuito.	III	3.0	
		TOTAL DE HORAS	27.0	

EVALUACIÓN Y ACREDITACIÓN:

○45% Trabajo en laboratorio

El trabajo de laboratorio se evaluara a partir de la elaboración del correspondiente reporte escrito. Será indispensable contar con todas las prácticas realizadas para tener el derecho de poder acreditar la unidad de aprendizaje.

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE: Análisis Fundamental de Circuitos. HOJA: 7 DE 8

PROCEDIMIENTO DE EVALUACIÓN

Valor de las unidades temáticas dentro de la unidad de aprendizaje:

- Unidad temática I. 33%
- Unidad temática II. 33%
- Unidad temática III. 34%

Está unidad de aprendizaje puede acreditarse también mediante:

- "Competencia demostrada" por medio de examen exploratorio.
- Acreditación en otra Unidad Académica del IPN
- · Acreditación en una institución educativa externa al IPN nacional o internacional
- Desempeño laboral inherente a la unidad de aprendizaje

CLAVE	В	С	BIBLIOGRAFÍA
1	X		Boylestad, Robert L. <u>Análisis Introductorio de Circuitos</u> . Prentice Hall. México 1998, 1168 pags. ISBN 970-17-0184-4
2		X	Dorf, Richard C. <u>Circuitos Eléctricos</u> . Alfaomega. México 2003, 864 pags. ISBN 970-15-0855-6
3	X		Hayt, William H. Jr. <u>Análisis de Circuitos en Ingeniería</u> . Mc Graw Hill. México 2007, 856 pags. ISBN 970-10-6107-1
4	x		Irwin, J David. <u>Análisis Básico de Circuitos en Ingeniería</u> . Limusa Wiley. México 1997, 696 pags. ISBN 968-880-816-4

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

PERFIL DOCENTE POR UNIDAD DE APRENDIZAJE

1. DATOS GENERALES

UNIDAD ACADÉN	MICA: E	SCUELA SUPERIOR [DE CÓM	1PUTO			
PROGRAMA ACADÉMICO: _	Ingeniería	en Sistemas Computa	cionales	NIVEL	1		
ÁREA DE FORMA	ACIÓN:	Institucional		entífica Básica	Profesiona	al	Terminal y de Integración
ACADEMIA: Academia de Sistemas Analógicos UNIDAD DE APRENDIZAJE: Análisis Fundamental de Circuitos							
ESPECIALIDAD Y NIVEL ACADÉMICO REQUERIDO: Nivel académico: Maestría y/o Doctorado Especialidad: Electrónica ó Sistemas Computacionales							
OBJETIVO DE LA UNIDAD DE APRENDIZAJE: Analizar circuitos eléctricos a partir de los teoremas v							

OBJETIVO DE LA UNIDAD DE APRENDIZAJE: Analizar circuitos eléctricos a partir de los teoremas y
técnicas fundamentales para la resolución de circuitos eléctricos, mediante la realización de exámenes
exploratorios, prácticas de laboratorio, exposición oral, trabajos escritos, tareas, participaciones
individuales y grupales.

3. PERFIL DOCENTE:

CONOCIMIENTOS	EXPERIENCIA PROFESIONAL	HABILIDADES	ACTITUDES
 Ley de Ohm Leyes de Kirchhoff Técnicas de análisis de circuitos eléctricos Teoremas para resolución de circuitos eléctricos Conocimiento del Nuevo Modelo Educativo Institucional 	y resolución de circuitos eléctricos, mediante la aplicación de leyes y teoremas • Experiencia en el manejo de grupos y trabajo colaborativo	 Capacidad para el manejo de grupos Fluidez verbal de ideas Capacidad de traspasar conocimientos Elaboración de análisis de circuitos eléctricos Elaboración de diagramas eléctricos Aplicar el proceso educativo NMEI 	 Respeto por sus ideas y las ideas de otros Organización para exposición de temas y guía para elaboración de practicas Tolerancia en el trato con las personas

ELABORO	REVISO	AUTORIZO
Ing. Alberto Jesús Alcántara Méndez	M. en C. Flavio Arturo Sánchez Garfias	Ing. Apolinar Francisco Cruz