Tema V: Representación tabular.

Principios, errores comunes y herramientas en R para análisis reproducibles

Dr. Maicel Monzón, MSc. | ENSAP & CECMED

Pre-procesamiento de datos: El 80% del tiempo en análisis

- Aprendimos un conjunto de bibliotecas del "universo ordenado" pueden ser útiles para el pre-procesamiento de datos.
 - readr (importar)
 - tidyr (ordenar)
 - dplyr (transformar)

La Crisis de Reproducibilidad

- · La reproducibilidad es crucial en la investigación.
- · gtsummary facilita la generación de informes reproducibles.

En esta conferencia los estud cuadro o tabla estadística.	liantes aprenderán a seleccion a	ar, confeccionar en R y analizar un

Introdución (Qué aprenderemos en esta clase ?)

Sumario

- · Concepto de tabla estadística y sus partes.
- · Clasificación de las tabla
- Elección del tipos de tablas en función del número y tipo de variables.
- · Errores más comunes en la confección de una tabla estadística.
- Biblioteca **gtsummary** y sus principales **funciones**.
- · Casos de uso de visualización de datos de fortificación de alimentos a gran escala.

Una tabla estadística es un recurso que emplea la **Estadística** con el fin de **presentar información resumida**, organizada por **filas y columnas**.

Partes de una tabla estadística

- · Presentación (Identificación y Título)
- · Cuerpo
- Fuente
- Notas explicativas

Presentación (Identificación y Título)

- · Identificación (Número consecutivo según orden en el trabajo 1..n)
- Título: completo y conciso
 - · Qué?
 - · Cómo?
 - · Dónde?
 - · Cuándo?

Ejemplo de Título

Cuerpo de la tabla

Fuente y Notas aclaratorias o explicativas.

· Las **notas** se colocan al pie de la tabla si es necesario

Ej. Inclusión, omisión, tipo de información (definitiva o provisional)

· Fuente: de dónde se obtuvo la información

Ejemplo fuentes

INCIDENCIA DE CÁNCER SEGÚN SEXO. PRINCIPALES LOCALIZACIONES CUBA 2013

	SEX	O MASC	ULINO	SEXO FEMENINO			
LOCALIZACIÓN	No.	Tasa* Bruta	Tasa** Ajustada		No.	Tasa* Bruta	Tasa** Ajustada
PULMON	3042	54.1	41.3	MAMA FEMENINA	2573	45.8	33.9
PIEL	2994	53.2	39.4	PIEL	2443	43.5	30.5
PROSTATA	2422	43.1	28.3	CUELLO DE UTERO	1512	26.9	19.2
LARINGE	765	13.6	10.8	PULMON	1403	25.0	18.1
COLON		13.5	9.7	COLON		18.4	11.8
VEJIGA	586	10.4	7.5	CUERPO DE UTERO	489	8.7	6.5
BOCA	581	10.3	8.0	SISTEMA HEMATOPOY	478	8.5	7.0
ESTOMAGO	540	9.6	7.3	OVARIO		6.8	5.4
SISTEMA HEMATOPOY.	493	8.8	7.5	PANCREAS		5.9	3.9
GANGLIOS LINFATICOS		7.7	6.5	HIGADO	308	5.5	3.7
TOTAL***		276.2	206.7	TOTAL**	14301	254.4	183.7

^{*} Tasa por 100 000 habitantes

^{**} A la población mundial

^{***} Todas las localizaciones
Fuente: Registro Nacional del Cáncer. INOR

Las tablas se clasifican según el número de variables que representan

- · Unidimensionales
- Bidimensionales
- Multidimensionales

Tabla Unidimensional

Tabla Unidimensional

Pacientes de dengue según temperatura corporal. Sala A. Hospital X. Enero – Junio 2012

Temp	Enfermos	Porcentaje
37	3	7,30
38	18	43,90
39	16	39,02
40	4	9,80
Total	41	100,00

Tabla Bidimensional

Tabla Bidimensional

Tabla 1. Distribución de niños según raza y sexo. Escuela X. Municipio Z. 2012.

	Sexo					
Raza	Maso	culino	Feme	enino		
	No.	%	No.	%		
Blanca	79	42.9	60	51.7		
Negra	63	34.2	34	29.3		
Mestiza	42	22.8	22	19.0		
Total	184	100.0	116	100.0		

Fuente: Libro de matrícula de la escuela X.

Nota: Se excluyen 6 niños en los que no se clasificó la raza.

Tabla Tridimensional

Tabla Tridimensional incidencia de cáncer de 15 a 44 años. principales localizaciones segun grupos de edad y sexo. 2013

	15-	19	20	- 24	25	- 29	30	- 34	35	- 39	40-	44
LOCALIZACIÓN	F	М	F	M	F	M	F	M	F	M	F	M
PULMON												
PIEL												
PROSTATA												
LARINGE												
COLON												
VEJIGA												
BOCA												
ESTOMAGO												
SISTEMA HEMATOPOY.												
GANGLIOS LINFATICOS												
TOTAL*												

^{*} Se excluyen 108 casos con edad desconocida Fuente: Registro Nacional del Cáncer, INOR

Tres errores que invalidan tus tablas (y cómo evitarlos)

- 1. Errores en la **presentación**.
- 2. Errores en el **cuerpo** de la tabla.
- 3. Errores en la **fuente**.

Errores en la presentación.

- · Cuadros sin identificación.
- Título o encabezamiento incorrecto o inadecuado: (ej: Telegráfico, no claro, ampuloso, demasiado extenso)

Errores en el cuerpo de la tabla

- · Errores de cálculo.
- · Disposición incorrecta de los datos.
- · Se muestran solamente medidas relativas ó de resumen.
- · Cuadros sobrecargados.
- \cdot No se especifican **unidades de medida**.

Errores en la fuente y las notas explicativas

- Citar la fuente incorrectamente. (No debe citarse la encuesta o ficha de vaciamiento del autor)
- · No citar la fuente
- Consignar como fuente aquello que no es un documento. (oficinas, departamentos, centros, otros)
- · No utilizar notas cuando son necesarias.

Consejos para la lectura y análisis de una tabla:

- · Leer cuidadosamente el título.
- · Leer las notas aclaratorias.
- · Informarse sobre las unidades de medidas utilizadas.
- · Prestar atención a los totales
- · Relacionar los totales con los valores de las categorías de las variables en cada celda.
- · Relacionar entre sí los valores de las variables estudiadas.

Biblioteca gtsummary

Es una biblioteca que está diseñada para generar tablas con medidas resúmenes a partir de dataframe, realizar asociaciones entre variables y otros análisis estadísticos (como regresiones) y formatearlos listo para la publicación.

Funciones básicas de la biblioteca gtsummary

- Resumir estadísticas descriptivas con (tbl_summary)
- · Tablas de contingencia con (tbl_cross)
- · Resumir modelos de regresión con (tbl_regression)

• ..

tbl_summary (argumento include para seleccionar variables)

library(gtsummary)

trial %>%

Unknown

Tumor Response Unknown

1Madian (01 02), n (0/)

Age

Grade

Ш

Characteristic
<pre>tbl_summary(include = c("age", "grade", "response"))</pre>
CITAL 70×70

 $N = 200^{1}$

47 (38, 57)

11

68 (34%) 68 (34%) 64 (32%)

61 (32%)

24

library(gtsummary)

tbl_summary (argumento by para estratificar)

trial %>%

Ш

Ш

Tumor Response
Unknown

1Madian (01 02), n (0/)

tbl_summary(by = "trt", include = c("age", "grade", "response"))

 Characteristic
 Drug A N = 98¹
 Drug B N = 102¹

 Age
 46 (37, 60)
 48 (39, 56)

 Unknown
 7
 4

31 (32%)

28 (29%)

3

Unknown Grade I

35 (36%) 32 (33%) 33 (32%) 36 (35%) 33 (32%)

33 (34%)

4

25

$tbl_summary$ (funcion $add_p()$ para comparaciones con valores de p)

1Madian (01 02), n (0/)

```
trial %>%
tbl_summary(by = "trt", include = c("age", "grade", "response")) %>%
add_p()
```

Characteristic	Drug A N = 98 ¹	Drug B N = 102 ¹	p-value ²
Age	46 (37, 60)	48 (39, 56)	0.7
Unknown	7	4	
Grade			0.9
1	35 (36%)	33 (32%)	
II	32 (33%)	36 (35%)	
III	31 (32%)	33 (32%)	
Tumor Response	28 (29%)	33 (34%)	0.5
Unknown	3	4	

$tbl_summary$ (funcion add_ci () para estimación por intervalos de confianza

 1 Modian (O1 O2), n (0/)

```
trial %>%
tbl_summary(by = "trt", include = c("age", "grade", "response")) %>%
add_ci()
```

Characteristic	Drug A N = 98^1	95% CI	Drug B N = 102^{1}	95% CI
Age	46 (37, 60)	44, 50	48 (39, 56)	45, 50
Unknown	7		4	
Grade				
1	35 (36%)	26%, 46%	33 (32%)	24%, 42%
II	32 (33%)	24%, 43%	36 (35%)	26%, 45%
III	31 (32%)	23%, 42%	33 (32%)	24%, 42%
Tumor Response	28 (29%)	21%, 40%	33 (34%)	25%, 44%
Unknown	3		4	

tbl_summary (funcion add_overall() para añadir totales por columna

trial %>%

<pre>tbl_summary(by = add_overall()</pre>	= "trt", include = c	("age", "grade", "	response")) %>%
 Characteristic	Overall N = 200 ¹	Drug A N = 98 ¹	Drug B N = 102 ¹
Age	47 (38, 57)	46 (37, 60)	48 (39, 56)
Unknown	11	7	4

add_overall()			
Characteristic	Overall N = 200 ¹	Drug A N = 98 ¹	Drug B N = 102 ¹
Age	47 (38, 57)	46 (37, 60)	48 (39, 56)
Unknown	11	7	4
Grade			

35 (36%)

32 (33%)

31 (32%)

28 (29%)

3

33 (32%)

36 (35%)

33 (32%)

33 (34%)

4

28

68 (34%)

68 (34%)

64 (32%)

61 (32%)

П

|||

Tumor Response Unknown

1 Madian (01 02), n (0/)

Etiquetas personalizadas con argumento label

Characteristic	Overall $N = 200^{1}$	Drug A N = 98^{1}	Drug B N = 102^{1}
edad, años	47 (38, 57)	46 (37, 60)	48 (39, 56)
Unknown	11	7	4
Grade			

35 (36%)

32 (33%)

68 (34%)

68 (34%)

33 (32%)

36 (35%)

Tablas de contingencia

Estas tablas permiten:

- · Analizar la asociación o independencia entre variables
- · Calcular probabilidades conjuntas, marginales o condicionales
- · Evaluar si una variable explica o influye en otra (análisis bivariado)

Tablas de contingencia (tbl_cross)

```
trial %>%
  tbl_cross(
    row = stage, # variable en filas
    col = trt, # variable en columnas
    percent = "cell" # cálculo del porcentaje
) %>%
  add_p()
```

	Chemotherapy Treatment			
	Drug A	Drug B	Total	p-value ¹
T Stage				0.9
T1	28 (14%)	25 (13%)	53 (27%)	
T2	25 (13%)	29 (15%)	54 (27%)	
T 0	00 (440)	01 (1101)	(0.(000))	

Resumir modelos de regresión

Resumir modelos de regresión (tbl_regression)

Ш

Age

Presenta los resultados de la regresión m1 %>% tbl_regression(exponentiate = TRUE)

Characteristic	OR	95% CI	p-value
Chemotherapy Treatment			

Characteristic	OR	95% CI	p-value
Chemotherapy Treatment			
Drug A	_	_	
Drug B	1.13	0.60, 2.13	0.7
C I			

Characteristic	O.K	7570 CI	p value
Chemotherapy Treatment			
Drug A	_	_	
Drug B	1.13	0.60, 2.13	0.7
Grade			

0.85

1.01

1.02

Abbreviations: CI = Confidence Interval OR = Odds Ratio

0.39, 1.85

0.47, 2.15

1.00. 1.04

0.7

>0.9

0.10

33

Conclusiones

En la conferencia estudiamos:

- · Principios de tablas estadísticas: estructura, clasificación y errores comunes.
- · Herramientas en R (gtsummary, dplyr, tidyr) para análisis reproducibles.

FIN

"Sin datos, solo eres otra persona con una opinión"

– W. Edwards Deming