CHE323/CHE384 Chemical Processes for Micro- and Nanofabrication

Formulas Lectures 1-19

Chris A. Mack Adjunct Associate Professor

http://www.lithoguru.com/scientist/CHE323/

© Chris Mack, 2013

Doping, Conductivity, Resistance

- Doping charge balance: $N_D^+ + p = N_A^- + n$
- Mass action equation: $np = n_i^2$

 $N_A = acceptor\ concentration$ $N_D^+=ionized\ donor\ concentration$ $N_D = donor\ concentration$ $n=mobile\ electron\ concentration$ $N_A^- = ionized$ acceptor conc. $p = mobile \ hole \ concentration$

• Resistivity and conductivity:

$$\frac{1}{\rho} = \sigma = q \left(n \mu_n + p \mu_p \right)$$
Resistance $R = \rho \frac{L}{A}, A = wt$
Sheet Resistance $R_s = \rho/t$

 μ_n = electron mobility = 1500 cm²/Vs for Si at 300K μ_p = hole mobility = 450 cm²/Vs for Si at 300K

 $n_i = 1.5 \text{ X } 10^{10} \text{ cm}^3 \text{ for Si at } 300 \text{K}$ © Chris Mack, 2013

P-N Junction

• Built-in voltage (V₀) and the depletion width (W)

$$V_0 = \frac{kT}{q} \ln \left(\frac{N_A N_D}{n_i^2} \right) \quad W = \sqrt{\frac{2\varepsilon_{Sl} \left(V_0 - V \right)}{q} \left(\frac{1}{N_A} + \frac{1}{N_D} \right)} \quad \overset{+}{\longrightarrow} \quad \overset{\text{V}}{\longrightarrow} \quad \overset{-}{\longrightarrow} \quad \overset{-$$

$$\varepsilon_{Si} = 11.7 \varepsilon_0 \,, \quad \varepsilon_0 = 8.8542 \times 10^{-12} \,\, C/V \,m \qquad {\rm At} \,\, T = 300 \,\, {\rm K}, \quad \frac{kT}{q} = 25 \,mV \,$$

- Diode Equation: current $I_{\it diode} = I_{\it 0} \Big(e^{q_{\it V/kT}} 1 \Big)$
- Capacitance: $C_{p-njunction} = \frac{\varepsilon A}{W} = A \sqrt{\frac{q \varepsilon_{Si}}{2(V_0 V)}} \left(\frac{N_D N_A}{N_D + N_A} \right)$

Deal-Grove Oxidation Model

$$t_{ox}^2 + At_{ox} = B(t+\tau) \qquad \tau = \frac{t_o^2 + At_o}{B}$$

TABLE 4.1 / Temperature (°C)	OXIDATION COEFFICIENTS FOR SILICON Dry			(III) Waters Wet (640 torr)	
	800	0.370	0.0011	9	_
920	0.235	0.0049	1.4	0.50	0.203
1000	0.165	0.0117	0.37	0.226	0.287
1100	0.090	0.027	0.076	0.11	0.510
1200	0.040	0.045	0.027	0.05	0.720

to compensate for the rapid growth regime for thin oxides (after Deal and Grove).

For (100) wafers, multiply A by 1.68.

© Chris Mack, 2013

Deal-Grove Temperature Dependence Wet 0₂ (640 t 95°C H₂O E₄ = 1.96 eV

Diffusion Review

• Fick's 2nd law of Diffusion (in 1-D):

$$\frac{\partial C(x,t)}{\partial t} = \frac{\partial}{\partial x} \left(D \frac{\partial C(x,t)}{\partial x} \right)$$

- In 3-D: $\frac{\partial C}{\partial t} = \nabla (D\nabla C)$, $\nabla = \frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}$
- Analytical solutions are for D = constant and certain special boundary conditions
- Electric field enhancement: $\eta \approx$ $\sqrt{C^2(z) + 4n_i^2}$

 $D_{enhanced} = D(1 + \eta)$

Diffusion Case 1: Constant Source

- Initial and boundary conditions
 - $-C(0,t) = C_s$ (concentration at top is constant)
 - -C(z,0) = 0 for z > 0 (initial condition)
 - $-C(\infty,t)=0$
- Solution: $C(z,t) = C_s erfc\left(\frac{z}{2\sqrt{Dt}}\right)$,

 \sqrt{Dt} = diffusion length (average distance a dopant moves)

$$Q_T(t) = \int_0^\infty C(z, t) dz = \frac{2}{\sqrt{\pi}} C_S \sqrt{Dt}$$

© Chris Mack, 2013

Diffusion Case 2: Limited Source (drive-in diffusion)

- Initial and boundary conditions
 - -C(z,0) = 0, z > 0
 - -dC(0,t)/dt = 0 (no flux at top)
 - $-C(\infty,t)=0$
 - Constant dose: $\int_0^\infty C(z,t)dz = Q_T = constant$
- Solution:

$$C(z,t) = \frac{Q_T}{\sqrt{\pi Dt}} e^{-z^2/4Dt}, \qquad t > 0$$

Case 3: Buried Gaussian Source

- · Initial and boundary conditions
 - Gaussian: $C(z,0) = \frac{Q_T}{\sqrt{2\pi\sigma_o^2}} e^{-(z-\mu)^2/2\sigma_o^2}, \quad z \ge 0, \mu \gg \sigma_o$
 - -dC(0,t)/dt = 0 (no flux at top)
 - $-C(\infty,t)=0$
- Solution: $\sigma^2 = \sigma_o^2 + 2Dt$ $(\sqrt{2Dt} = \text{diffusion length})$

$$C(z,t) = \frac{Q_T}{\sqrt{2\pi\sigma^2}} e^{-(z-\mu)^2/2\sigma^2}, \quad z \ge 0, t \ge 0$$

© Chris Mack, 2013

Gaussian Ion Implantation Model

- · Gaussian model for the distribution of dopants
 - Mean = R_n = projected range
 - Standard deviation = ΔR_p = straggle
 - Dose = ϕ (# dopants/cm²)

$$N(x) = \frac{\phi}{\sqrt{2\pi}\Delta R_p} e^{-(x-R_p)^2/2\Delta R_p^2}$$

- Lateral scattering
 - For As, Sb: $\Delta R_{\perp} \approx \Delta R_{D}$
 - For P: $\Delta R_{\perp} \approx 1.2 \Delta R_{n}$
 - For B: $\Delta R_{\perp} \approx 2\Delta R_{p}$

Ion Implantation Model Parameters

Projected range (solid lines and left axis) and standard deviation (dashed li and (C) other species into a silicon substrate; (D) n-type and (E) p-type dop lants into (F) SiO₂ and (G) AZ111 photoresist (data from Gibbons et al.).

$$\Delta R_p \approx \frac{2}{3} R_p \left(\frac{\sqrt{M_i M_t}}{M_i + M_t} \right)$$
 $i = ion, \ t = M = atomic$

i = ion, t = targetM = atomic mass

Thermal Transfer Mechanisms

• Radiative: Stefan-Boltzmann equation

Heat
$$Flow = \dot{q} = \varepsilon \sigma T^4$$

 ε = emissivity of emitting body (ε = 1 for black body) σ = Stefan-Boltzmann Constant = 5.6697 x 10⁻⁸ W/m²-K⁴

- Conduction: $\dot{q} = k\nabla T$
- Convection: $\dot{q} = h(T T_{\infty})$

$$\varepsilon(\lambda) = 1 - R(\lambda) - T(\lambda)$$

 $\varepsilon_{Si} \approx 0.7$, $T_{Si} \approx 0$

© Chris Mack, 2013

2