

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7: C12N 15/12, C07K 14/72, G01N 33/50,

(11) International Publication Number:

WO 00/22129

33/566

(43) International Publication Date:

20 April 2000 (20.04.00)

(21) International Application Number:

PCT/US99/23938

A1

(22) International Filing Date:

12 October 1999 (12.10.99)

(30) Priority Data:

09/170,496

US 13 October 1998 (13.10.98)

(74) Agents: MILLER, Suzanne, E. et al.; Woodcock Washburn Kurtz Mackiewicz & Norris LLP, 46th floor, One Liberty Place, Philadelphia, PA 19103 (US).

(63) Related by Continuation (CON) or Continuation-in-Part (CIP) to Earlier Application

HS

09/170,496 (CIP)

Filed on

13 October 1998 (13.10.98)

(71) Applicant (for all designated States except US): ARENA PHARMACEUTICALS, INC. [US/US]; 6166 Nancy Ridge Drive, San Diego, CA 92121 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BEHAN, Dominic, P. [GB/US]; 11472 Roxboro Court, San Diego, CA 92131 (US). CHALMERS, Derek, T. [GB/US]; 347 Longden Lane, Solana Beach, CA 92075 (US). LIAW, Chen, W. [US/US]; 7668 Salix Place, San Diego, CA 92129 (US).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, 🖳 MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, III GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending th claims and to be republished in the event of the receipt of amendments.

(54) Title: NON-ENDOGENOUS, CONSTITUTIVELY ACTIVATED HUMAN G PROTEIN-COUPLED RECEPTORS

(57) Abstract

Disclosed herein are constitutively activated, non-endogenous versions of endogenous human G protein-coupled receptors comprising (a) the following amino acid sequence region (C-terminus to N-terminus orientation) and/or (b) the following nucleic acid sequence region (3' to 5' orientation) transversing the transmembrane-6 (TM6) and intracellular loop-3 (IC3) regions of the GPCR: (a) P¹ AA₁₅ X and/or (b) P^{codon} (AA-codon)₁₅ X_{codon}, respectively. In a most preferred embodiment, P¹ and P^{codon} are endogenous proline and an endogenous nucleic acid encoding region encoding proline, respectively, located within TM6 of the non-endogenous GPCR; AA15 and (AA-codon)₁₅ are 15 endogenous amino acid residues and 15 codons encoding endogenous amino acid residues, respectively; and X and X_{codon} are non-endogenous lysine and a non-endogenous nucleic acid encoding region encoding lysine, respectively, located within IC3 of the non-endogenous GPCR. Because it is most preferred that the non-endogenous human GPCRs which incorporate these mutations are incorporated into mammalian cells and utilized for the screening of the candidate compounds, the non-er dogenous human GPCR incorporating the mutation need not be purified and isolated per se (i.e., these are incorporated within the cellular membrane of a mammalian cell), although such purified and isolated non-endogenous human GPCRs are well within the purview of this disclosure.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Αl	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
A٨	A Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
LΑ	^ Austria	FR	France	LU	Luxembourg	SN	Senegal
Αl	J Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
A2	Z Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	ТJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BC	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil .	IL	Israel	MR	Mauritania	UG	Uganda
BY	' Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Vict Nam
CC	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CF	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand	,	
CN	1 Cameroon		Republic of Korea	PL	Poland		
. CN	l China	KR	Republic of Korea	PT	Portugal		
CU	J Cuba	KZ	Kazakstan	RO	Romania		
C2	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE		LI	Liechtenstein	SD	Sudan		
DE	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

NON-ENDOGENOUS, CONSTITUTIVELY ACTIVATED HUMAN G PROTEIN-COUPLED RECEPTORS

The benefits of commonly owned U.S. Serial Number 09/170,496, filed October 13, 1998, U.S. Serial Number 08/839, 449 filed April 14, 1997 (now abandoned), U.S. Serial Number 09/060,188, filed April 14, 1998; U.S. Provisional Number 60/090,783, filed June 26, 1998; and U.S. Provisional Number 60/095,677, filed on August 7, 1998, are hereby claimed. Each of the foregoing applications are incorporated by reference herein in their entirety.

FIELD OF THE INVENTION

The invention disclosed in this patent document relates to transmembrane receptors, and more particularly to human G protein-coupled receptors (GPCRs) which have been altered such that altered GPCRs are constitutively activated. Most preferably, the altered human GPCRs are used for the screening of therapeutic compounds.

WO 00/22129

5

10

15

20

BACKGROUND OF THE INVENTION

Although a number of receptor classes exist in humans, by far the most abundant and therapeutically relevant is represented by the G protein-coupled receptor (GPCR or GPCRs) class. It is estimated that there are some 100,000 genes within the human genome, and of these, approximately 2% or 2,000 genes, are estimated to code for GPCRs. Of these, there are approximately 100 GPCRs for which the endogenous ligand that binds to the GPCR has been identified. Because of the significant time-lag that exists between the discovery of an endogenous GPCR and its endogenous ligand, it can be presumed that the remaining 1,900 GPCRs will be identified and characterized long before the endogenous ligands for these receptors are identified. Indeed, the rapidity by which the Human Genome Project is sequencing the 100,000 human genes indicates that the remaining human GPCRs will be fully sequenced within the next few years. Nevertheless, and despite the efforts to sequence the human genome, it is still very unclear as to how scientists will be able to rapidly, effectively and efficiently exploit this information to improve and enhance the human condition. The present invention is geared towards this important objective.

Receptors, including GPCRs, for which the endogenous ligand has been identified are referred to as "known" receptors, while receptors for which the endogenous ligand has not been identified are referred to as "orphan" receptors. This distinction is not merely semantic, particularly in the case of GPCRs. GPCRs represent an important area for the development of pharmaceutical products: from approximately 20 of the 100 known GPCRs, 60% of all prescription pharmaceuticals have been developed. Thus, the orphan GPCRs are to the pharmaceutical industry what gold was to California in the late 19th century – an opportunity to drive growth, expansion, enhancement and development. A serious drawback exists, however,

5

10

15

20

with orphan receptors relative to the discovery of novel therapeutics. This is because the traditional approach to the discovery and development of pharmaceuticals has required access to both the receptor *and* its endogenous ligand. Thus, heretofore, orphan GPCRs have presented the art with a tantalizing and undeveloped resource for the discovery of pharmaceuticals.

Under the traditional approach to the discovery of potential therapeutics, it is generally the case that the receptor is first identified. Before drug discovery efforts can be initiated, elaborate, time consuming and expensive procedures are typically put into place in order to identify, isolate and generate the receptor's endogenous ligand - this process can require from between 3 and ten years per receptor, at a cost of about \$5million (U.S.) per receptor. These time and financial resources must be expended before the traditional approach to drug discovery can commence. This is because traditional drug discovery techniques rely upon so-called "competitive binding assays" whereby putative therapeutic agents are "screened" against the receptor in an effort to discover compounds that either block the endogenous ligand from binding to the receptor ("antagonists"), or enhance or mimic the effects of the ligand binding to the receptor ("agonists"). The overall objective is to identify compounds that prevent cellular activation when the ligand binds to the receptor (the antagonists), or that enhance or increase cellular activity that would otherwise occur if the ligand was properly binding with the receptor (the agonists). Because the endogenous ligands for orphan GPCRs are by definition not identified, the ability to discover novel and unique therapeutics to these receptors using traditional drug discovery techniques is not possible. The present invention, as will be set forth in greater detail below, overcomes these and other severe limitations created by such traditional drug discovery techniques.

GPCRs share a common structural motif. All these receptors have seven sequences of between 22 to 24 hydrophobic amino acids that form seven alpha helices, each of which spans the

- 4 -

membrane (each span is identified by number, *i.e.*, transmembrane-1 (TM-1), transmebrane-2 (TM-2), etc.). The transmembrane helices are joined by strands of amino acids between transmembrane-2 and transmembrane-3, transmembrane-4 and transmembrane-5, and transmembrane-6 and transmembrane-7 on the exterior, or "extracellular" side, of the cell membrane (these are referred to as "extracellular" regions 1, 2 and 3 (EC-1, EC-2 and EC-3), respectively). The transmembrane helices are also joined by strands of amino acids between transmembrane-1 and transmembrane-2, transmembrane-3 and transmembrane-4, and transmembrane-5 and transmembrane-6 on the interior, or "intracellular" side, of the cell membrane (these are referred to as "intracellular" regions 1, 2 and 3 (IC-1, IC-2 and IC-3), respectively). The "carboxy" ("C") terminus of the receptor lies in the intracellular space within the cell, and the "amino" ("N") terminus of the receptor lies in the extracellular space outside of the cell. The general structure of G protein-coupled receptors is depicted in Figure 1.

Generally, when an endogenous ligand binds with the receptor (often referred to as "activation" of the receptor), there is a change in the conformation of the intracellular region that allows for coupling between the intracellular region and an intracellular "G-protein." Although other G proteins exist, currently, Gq, Gs, Gi, and Go are G proteins that have been identified. Endogenous ligand-activated GPCR coupling with the G-protein begins a signaling cascade process (referred to as "signal transduction"). Under normal conditions, signal transduction ultimately results in cellular activation or cellular inhibition. It is thought that the IC-3 loop as well as the carboxy terminus of the receptor interact with the G protein. A principal focus of this invention is directed to the transmembrane-6 (TM6) region and the intracellular-3 (IC3) region of the GPCR.

Under physiological conditions, GPCRs exist in the cell membrane in equilibrium between

10

15

- 5 -

two different conformations: an "inactive" state and an "active" state. As shown schematically in Figure 2, a receptor in an inactive state is unable to link to the intracellular signaling transduction pathway to produce a biological response. Changing the receptor conformation to the active state allows linkage to the transduction pathway (via the G-protein) and produces a biological response.

A receptor may be stabilized in an active state by an endogenous ligand or a compound such as a drug. Recent discoveries, including but not exclusively limited to modifications to the amino acid sequence of the receptor, provide means other than endogenous ligands or drugs to promote and stabilize the receptor in the active state conformation. These means effectively stabilize the receptor in an active state by simulating the effect of an endogenous ligand binding to the receptor. Stabilization by such ligand-independent means is termed "constitutive receptor activation."

As noted above, the use of an orphan receptor for screening purposes has not been possible. This is because the traditional "dogma" regarding screening of compounds mandates that the ligand for the receptor be known. By definition, then, this approach has no applicability with respect to orphan receptors. Thus, by adhering to this dogmatic approach to the discovery of therapeutics, the art, in essence, has taught and has been taught to forsake the use of orphan receptors unless and until the endogenous ligand for the receptor is discovered. Given that there are an estimated 2,000 G protein coupled receptors, the majority of which are orphan receptors, such dogma castigates a creative, unique and distinct approach to the discovery of therapeutics.

Information regarding the nucleic acid and/or amino acid sequences of a variety of GPCRs is summarized below in Table A. Because an important focus of the invention disclosed herein is directed towards orphan GPCRs, many of the below-cited references are related to orphan GPCRs. However, this list is not intended to imply, nor is this list to be construed, legally or

5

10

15

5

otherwise, that the invention disclosed herein is only applicable to orphan GPCRs or the specific GPCRs listed below. Additionally, certain receptors that have been isolated are not the subject of publications per se; for example, reference is made to a G Protein-Coupled Receptor database on the "world-wide web" (neither the named inventors nor the assignee have any affiliation with this site) that lists GPCRs. Other GPCRs are the subject of patent applications owned by the present assignee and these are not listed below (including GPR3, GPR6 and GPR12; see U.S. Provisional Number 60/094879):

Table A

	Receptor Name	Publication Reference
10	GPR1	23 Genomics 609 (1994)
	GPR4	14 DNA and Cell Biology 25 (1995)
	GPR5	14 DNA and Cell Biology 25 (1995)
	GPR7	28 Genomics 84 (1995)
	GPR8	28 Genomics 84 (1995)
15	GPR9	184 J. Exp. Med. 963 (1996)
	GPR10	29 Genomics 335 (1995)
	GPR15	32 Genomics 462 (1996)
	GPR17	70 J Neurochem. 1357 (1998)
	GPR18	42 Genomics 462 (1997)
20	GPR20	187 Gene 75 (1997)
	GPR21	187 Gene 75 (1997)
	GPR22	187 Gene 75 (1997)
	GPR24	398 FEBS Lett. 253 (1996)
	GPR30	45 Genomics 607 (1997)
25	GPR31	42 Genomics 519 (1997)
	GPR32	50 Genomics 281 (1997)
	GPR40	239 Biochem. Biophys.
		Res. Commun. 543 (1997)
	GPR41	239 Biochem. Biophys.
		Res. Commun. 543 (1997)
	GPR43	239 Biochem. Biophys.
•		Res. Commun. 543 (1997)
30	APJ	136 Gene 355 (1993)
	BLR1	22 Eur. J. Immunol. 2759 (1992)
	CEPR	231 Biochem. Biophys.
		Res. Commun. 651 (1997)
	EBI1	23 Genomics 643 (1994)
	EBI2	67 J. Virol. 2209 (1993)
35	ETBR-LP2	424 FEBS Lett. 193 (1998)
	GPCR-CNS	54 Brain Res. Mol. Brain Res. 152 (1998);
		45 Genomics 68 (1997)
	GPR-NGA	394 FEBS Lett. 325 (1996)
	Н9	386 FEBS Lett 219 (1996)

PCT/US99/23938

- 7 -

HBA954	1261 Biochim. Biophys. Acta 121 (1995)

HG38	247 Biochem. Biophys.	
	Res. Commun. 266 (1998)	
HM74	5 Int. Immunol. 1239 (1993)	
OGR1	35 Genomics 397 (1996)	
V28	163 Gene 295 (1995)	

5

10

WO 00/22129

As will be set forth and disclosed in greater detail below, utilization of a mutational cassette to modify the endogenous sequence of a human GPCR leads to a constitutively activated version of the human GPCR. These non-endogenous, constitutively activated versions of human GPCRs can be utilized, *inter alia*, for the screening of candidate compounds to directly identify compounds of, *e.g.*, therapeutic relevance.

SUMMARY OF THE INVENTION

Disclosed herein is a non-endogenous, human G protein-coupled receptor comprising

(a) as a most preferred amino acid sequence region (C-terminus to N-terminus orientation)

and/or (b) as a most preferred nucleic acid sequence region (3' to 5' orientation) transversing

the transmembrane-6 (TM6) and intracellular loop-3 (IC3) regions of the GPCR:

(a)
$$P^1 AA_{15} X$$

wherein:

(1) P¹ is an amino acid residue located within the TM6 region of the GPCR, where P¹ is selected from the group consisting of (i) the endogenous GPCR's proline residue, and (ii) a non-endogenous amino acid residue other than proline;

20

15

(2) AA₁₅ are 15 amino acids selected from the group consisting of

-8-

(a) the endogenous GPCR's amino acids (b) non-endogenous amino acid residues, and (c) a combination of the endogenous GPCR's amino acids and non-endogenous amino acids, excepting that none of the 15 endogenous amino acid residues that are positioned within the TM6 region of the GPCR is proline; and

(3) X is a non-endogenous amino acid residue located within the IC3 region of said GPCR, preferably selected from the group consisting of lysine, hisitidine and arginine, and most preferably lysine, excepting that when the endogenous amino acid at position X is lysine, then X is an amino acid other than lysine, preferably alanine;

and/or

5

10

(b) P^{codon} (AA-codon)₁₅ X_{codon}

15 wherein:

(1) P^{codon} is a nucleic acid sequence within the TM6 region of the GPCR, where P^{codon} encodes an amino acid selected from the group consisting of (i) the endogenous GPCR's proline residue, and (ii) a non-endogenous amino acid residue other than proline;

20

(2) (AA-codon)₁₅ are 15 codons encoding 15 amino acids selected from the group consisting of (a) the endogenous GPCR's amino acids (b) non-endogenous amino acid residues and (c) a combination of the endogenous GPCR's amino acids and non-

PCT/US99/23938

(3)

endogenous amino acids, excepting that none of the 15 endogenous codons within the TM6 region of the GPCR encodes a proline amino acid residue; and

5

 X_{codon} is a nucleic acid encoding region residue located within the IC3 region of said GPCR, where X_{codon} encodes a non-endogenous amino acid, preferably selected from the group consisting of lysine, hisitidine and arginine, and most preferably lysine, excepting that when the endogenous encoding region at position X_{codon} encodes the amino acid lysine, then X_{codon} encodes an amino acid other than lysine, preferably alanine.

10

15

20

The terms endogenous and non-endogenous in reference to these sequence cassettes are relative to the endogenous GPCR. For example, once the endogenous proline residue is located within the TM6 region of a particular GPCR, and the 16th amino acid therefrom is identified for mutation to constitutively activate the receptor, it is also possible to mutate the endogenous proline residue (*i.e.*, once the marker is located and the 16th amino acid to be mutated is identified, one may mutate the marker itself), although it is most preferred that the proline residue not be mutated. Similarly, and while it is most preferred that AA₁₅ be maintained in their endogenous forms, these amino acids may also be mutated. The only amino acid that must be mutated in the non-endogenous version of the human GPCR is X *i.e.*, the endogenous amino acid that is 16 residues from P¹ cannot be maintained in its endogenous form and must be mutated, as further disclosed herein. Stated again, while it is preferred that in the non-endogenous version of the human GPCR, P¹ and AA₁₅ remain in their endogenous forms (*i.e.*, identical to their wild-type forms), once X is identified and mutated, any and/or all of P¹ and AA₁₅ can be mutated. This applies to the nucleic

- 10 -

acid sequences as well. In those cases where the endogenous amino acid at position X is lysine, then in the non-endogenous version of such GPCR, X is an amino acid other than lysine, preferably alanine.

Accordingly, and as a hypothetical example, if the endogenous GPCR has the following endogenous amino acid sequence at the above-noted positions:

P-AACCTTGGRRRDDDE -O

then any of the following exemplary and hypothetical cassettes would fall within the scope of the disclosure (non-endogenous amino acids are set forth in bold):

P-AACCTTGGRRRDDDE -K

P-AACCTTHIGRRDDDE -K

P-ADEETTGGRRRDDDE -A

P-LLKFMSTWZLVAAPQ -K

A-LLKFMSTWZLVAAPQ -K

It is also possible to add amino acid residues within AA₁₅, but such an approach is not particularly advanced. Indeed, in the most preferred embodiments, the only amino acid that differs in the non-endogenous version of the human GPCR as compared with the endogenous version of that GPCR is the amino acid in position X; mutation of this amino acid itself leads to constitutive activation of the receptor.

Thus, in particularly preferred embodiments, P¹ and P^{codon} are endogenous proline and an endogenous nucleic acid encoding region encoding proline, respectively; and X and X_{codon} are non-endogenous lysine or alanine and a non-endogenous nucleic acid encoding region encoding lysine or alanine, respectively, with lysine being most preferred. Because it is most preferred that the non-endogenous versions of the human GPCRs which incorporate these mutations are

5

10

incorporated into mammalian cells and utilized for the screening of candidate compounds, the non-endogenous human GPCR incorporating the mutation need not be purified and isolated *per se* (*i.e.*, these are incorporated within the cellular membrane of a mammalian cell), although such purified and isolated non-endogenous human GPCRs are well within the purview of this disclosure. Genetargeted and transgenic non-human mammals (preferably rats and mice) incorporating the non-endogenous human GPCRs are also within the purview of this invention; in particular, genetargeted mammals are most preferred in that these animals will incorporate the non-endogenous versions of the human GPCRs in place of the non-human mammal's endogenous GPCR-encoding region (techniques for generating such non-human mammals to replace the non-human mammal's protein encoding region with a human encoding region are well known; see, for example, U.S. Patent No. 5,777,194.)

It has been discovered that these changes to an endogenous human GPCR render the GPCR constitutively active such that, as will be further disclosed herein, the non-endogenous, constitutively activated version of the human GPCR can be utilized for, *inter alia*, the direct screening of candidate compounds without the need for the endogenous ligand. Thus, methods for using these materials, and products identified by these methods are also within the purview of the following disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows a generalized structure of a G protein-coupled receptor with the numbers assigned to the transmembrane helixes, the intracellular loops, and the extracellular loops.

Figure 2 schematically shows the two states, active and inactive, for a typical G protein coupled receptor and the linkage of the active state to the second messenger transduction pathway.

10

15

PCT/US99/23938

5

10

Figure 3 is a sequence diagram of the preferred vector pCMV, including restriction enzymen site locations.

Figure 4 is a diagrammatic representation of the signal measured comparing pCMV, non-endogenous, constitutively active GPR30 inhibition of GPR6-mediated activation of CRE-Luc reporter with endogenous GPR30 inhibition of GPR6-mediated activation of CRE-Luc reporter.

Figure 5 is a diagrammatic representation of the signal measured comparing pCMV, non-endogenous, constitutively activated GPR17 inhibition of GPR3-mediated activation of CRE-Luc reporter with endogenous GPR17 inhibition of GPR3-mediated activation of CRE-Luc reporter.

Figure 6 provides diagrammatic results of the signal measured comparing control pCMV, endogenous APJ and non-endogenous APJ.

Figure 7 provides an illustration of IP₃ production from non-endogenous human 5-HT_{2 Λ} receptor as compared to the endogenous version of this receptor.

15 Figure 8 are dot-blot format results for GPR1 (8A), GPR30 (8B) and APJ (8C).

DETAILED DESCRIPTION

The scientific literature that has evolved around receptors has adopted a number of terms to refer to ligands having various effects on receptors. For clarity and consistency, the following definitions will be used throughout this patent document. To the extent that these definitions conflict with other definitions for these terms, the following definitions shall control:

AGONISTS shall mean compounds that activate the intracellular response when they bind to the receptor, or enhance GTP binding to membranes.

. 20

- 13
AMINO ACID ABBREVIATIONS used herein are set below:

	ALANINE	ALA	Α
	ARGININE	ARG	R
	ASPARAGINE	ASN	N
5	ASPARTIC ACID	ASP	D
	CYSTEINE	CYS	С
	GLUTAMIC ACID	GLU	Е
	GLUTAMINE	GLN	Q
	GLYCINE	GLY	G
10	HISTIDINE	HIS	Н
	ISOLEUCINE	ILE	I
	LEUCINE	LEU	L
	LYSINE	LYS	К
	METHIONINE	MET	М
15	PHENYLALANINE	PHE	F
	PROLINE	PRO	P
	SERINE	SER	S
	THREONINE	THR	Т
	TRYPTOPHAN	TRP	w
20	TYROSINE	TYR	Y
	VALINE	VAL	V

1

PARTIAL AGONISTS shall mean compounds which activate the intracellular response when they bind to the receptor to a lesser degree/extent than do agonists, or enhance GTP binding to membranes to a lesser degree/extent than do agonists

ANTAGONIST shall mean compounds that competitively bind to the receptor at the same site as the agonists but which do not activate the intracellular response initiated by the active form of the receptor, and can thereby inhibit the intracellular responses by agonists or partial agonists. ANTAGONISTS do not diminish the baseline intracellular response in the absence of an agonist or partial agonist.

CANDIDATE COMPOUND shall mean a molecule (for example, and not limitation, a chemical compound) which is amenable to a screening technique. Preferably, the phrase

- 14 -

"candidate compound" does not include compounds which were publicly known to be compounds selected from the group consisting of inverse agonist, agonist or antagonist to a receptor, as previously determined by an indirect identification process ("indirectly identified compound"); more preferably, not including an indirectly identified compound which has previously been determined to have therapeutic efficacy in at least one mammal; and, most preferably, not including an indirectly identified compound which has previously been determined to have therapeutic utility in humans.

CODON shall mean a grouping of three nucleotides (or equivalents to nucleotides) which generally comprise a nucleoside (adenosine (A), guanosine (G), cytidine (C), uridine (U) and thymidine (T)) coupled to a phosphate group and which, when translated, encodes an amino acid.

COMPOUND EFFICACY shall mean a measurement of the ability of a compound to inhibit or stimulate receptor functionality, as opposed to receptor binding affinity. A preferred means of detecting compound efficacy is via measurement of, *e.g.*, [35S]GTPγS binding, as further disclosed in the Example section of this patent document.

CONSTITUTIVELY ACTIVATED RECEPTOR shall mean a receptor subject to constitutive receptor activation. In accordance with the invention disclosed herein, a non-endogenous, human constitutively activated G protein-coupled receptor is one that has been mutated to include the amino acid cassette P¹AA₁₅X, as set forth in greater detail below.

in the active state by means other than binding of the receptor with its endogenous ligand or a chemical equivalent thereof. Preferably, a G protein-coupled receptor subjected to constitutive receptor activation in accordance with the invention disclosed herein evidences at least a 10% difference in response (increase or decrease, as the case may be) to the signal measured for

5

10

- 15 -

constitutive activation as compared with the endogenous form of that GPCR, more preferably, about a 25% difference in such comparative response, and most preferably about a 50% difference in such comparative response. When used for the purposes of directly identifying candidate compounds, it is most preferred that the signal difference be at least about 50% such that there is a sufficient difference between the endogenous signal and the non-endogenous signal to differentiate between selected candidate compounds. In most instances, the "difference" will be an increase in signal; however, with respect to Gs-coupled GPCRS, the "difference" measured is preferably a decrease, as will be set forth in greater detail below.

CONTACT or CONTACTING shall mean bringing at least two moieties together, whether in an in vitro system or an in vivo system.

DIRECTLY IDENTIFYING or DIRECTLY IDENTIFIED, in relationship to the phrase "candidate compound", shall mean the screening of a candidate compound against a constitutively activated G protein-coupled receptor, and assessing the compound efficacy of such compound. This phrase is, under no circumstances, to be interpreted or understood to be encompassed by or to encompass the phrase "indirectly identifying" or "indirectly identified."

ENDOGENOUS shall mean a material that is naturally produced by the genome of the species. ENDOGENOUS in reference to, for example and not limitation, GPCR, shall mean that which is naturally produced by a human, an insect, a plant, a bacterium, or a virus. By contrast, the term NON-ENDOGENOUS in this context shall mean that which is not naturally produced by the genome of a species. For example, and not limitation, a receptor which is not constitutively active in its endogenous form, but when mutated by using the cassettes disclosed herein and thereafter becomes constitutively active, is most preferably referred to herein as a "non-endogenous, constitutively activated receptor." Both terms can be utilized to describe both "in

5

10

15

vivo" and "in vitro" systems. For example, and not limitation, in a screening approach, the endogenous or non-endogenous receptor may be in reference to an in vitro screening system whereby the receptor is expressed on the cell-surface of a mammalian cell. As a further example and not limitation, where the genome of a mammal has been manipulated to include a non-endogenous constitutively activated receptor, screening of a candidate compound by means of an in vivo system is viable.

therein. In the case of a prokaryotic Host Cell, a Plasmid is typically replicated as an autonomous molecule as the Host Cell replicates (generally, the Plasmid is thereafter isolated for introduction into a eukaryotic Host Cell); in the case of a eukaryotic Host Cell, a Plasmid is integrated into the cellular DNA of the Host Cell such that when the eukaryotic Host Cell replicates, the Plasmid replicates. Preferably, for the purposes of the invention disclosed herein, the Host Cell is eukaryotic, more preferably, mammalian, and most preferably selected from the group consisting of 293, 293T and COS-7 cells.

approach to the drug discovery process involving identification of an endogenous ligand specific for an endogenous receptor, screening of candidate compounds against the receptor for determination of those which interfere and/or compete with the ligand-receptor interaction, and assessing the efficacy of the compound for affecting at least one second messenger pathway associated with the activated receptor.

INHIBIT or **INHIBITING**, in relationship to the term "response" shall mean that a response is decreased or prevented in the presence of a compound as opposed to in the absence of the compound.

5

10

15

- 17 -

INVERSE AGONISTS shall mean compounds which bind to either the endogenous form of the receptor or to the constitutively activated form of the receptor, and which inhibit the baseline intracellular response initiated by the active form of the receptor below the normal base level of activity which is observed in the absence of agonists or partial agonists, or decrease GTP binding to membranes. Preferably, the baseline intracellular response is inhibited in the presence of the inverse agonist by at least 30%, more preferably by at least 50%, and most preferably by at least 75%, as compared with the baseline response in the absence of the inverse agonist.

KNOWN RECEPTOR shall mean an endogenous receptor for which the endogenous ligand specific for that receptor has been identified.

LIGAND shall mean an endogenous, naturally occurring molecule specific for an endogenous, naturally occurring receptor.

MUTANT or MUTATION in reference to an endogenous receptor's nucleic acid and/or amino acid sequence shall mean a specified change or changes to such endogenous sequences such that a mutated form of an endogenous, non-constitutively activated receptor evidences constitutive activation of the receptor. In terms of equivalents to specific sequences, a subsequent mutated form of a human receptor is considered to be equivalent to a first mutation of the human receptor if (a) the level of constitutive activation of the subsequent mutated form of the receptor is substantially the same as that evidenced by the first mutation of the receptor; and (b) the percent sequence (amino acid and/or nucleic acid) homology between the subsequent mutated form of the receptor and the first mutation of the receptor is at least about 80%, more preferably at least about 90% and most preferably at least 95%. Ideally, and owing to the fact that the most preferred cassettes disclosed herein for achieving constitutive activation includes a single amino acid and/or codon change between the endogenous and the non-endogenous forms of the GPCR (i.e. X or

5

10

15

- 18 -

 X_{codon}), the percent sequence homology should be at least 98%.

ORPHAN RECEPTOR shall mean an endogenous receptor for which the endogenous ligand specific for that receptor has not been identified or is not known.

PHARMACEUTICAL COMPOSITION shall mean a composition comprising at least one active ingredient, whereby the composition is amenable to investigation for a specified, efficacious outcome in a mammal (for example, and not limitation, a human). Those of ordinary skill in the art will understand and appreciate the techniques appropriate for determining whether an active ingredient has a desired efficacious outcome based upon the needs of the artisan.

PLASMID shall mean the combination of a Vector and cDNA. Generally, a Plasmid is

introduced into a Host Cell for the purpose of replication and/or expression of the cDNA as a
protein.

STIMULATE or STIMULATING, in relationship to the term "response" shall mean that a response is increased in the presence of a compound as opposed to in the absence of the compound.

TRANSVERSE or TRANSVERSING, in reference to either a defined nucleic acid sequence or a defined amino acid sequence, shall mean that the sequence is located within at least two different and defined regions. For example, in an amino acid sequence that is 10 amino acid moieties in length, where 3 of the 10 moieties are in the TM6 region of a GPCR and the remaining 7 moieties are in the IC3 region of the GPCR, the 10 amino acid moiety can be described as transversing the TM6 and IC3 regions of the GPCR.

VECTOR in reference to cDNA shall mean a circular DNA capable of incorporating at least one cDNA and capable of incorporation into a Host Cell.

The order of the following sections is set forth for presentational efficiency and is not

5

15

- 19 -

intended, nor should be construed, as a limitation on the disclosure or the claims to follow.

A. Introduction

5

10

15

20

The traditional study of receptors has always proceeded from the a priori assumption (historically based) that the endogenous ligand must first be identified before discovery could proceed to find antagonists and other molecules that could affect the receptor. Even in cases where an antagonist might have been known first, the search immediately extended to looking for the endogenous ligand. This mode of thinking has persisted in receptor research even after the discovery of constitutively activated receptors. What has not been heretofore recognized is that it is the active state of the receptor that is most useful for discovering agonists, partial agonists, and inverse agonists of the receptor. For those diseases which result from an overly active receptor or an under-active receptor, what is desired in a therapeutic drug is a compound which acts to diminish the active state of a receptor or enhance the activity of the receptor, respectively, not necessarily a drug which is an antagonist to the endogenous ligand. This is because a compound that reduces or enhances the activity of the active receptor state need not bind at the same site as the endogenous ligand. Thus, as taught by a method of this invention, any search for therapeutic compounds should start by screening compounds against the ligand-independent active state.

Screening candidate compounds against non-endogenous, constitutively activated GPCRs allows for the direct identification of candidate compounds which act at these cell surface receptors, without requiring any prior knowledge or use of the receptor's endogenous ligand. By determining areas within the body where the endogenous version of such GPCRs are expressed and/or over-expressed, it is possible to determine related disease/disorder states which are associated with the expression and/or over-expression of these receptors; such an approach is disclosed in this patent document.

- 20 -

B. Disease/Disorder Identification and/or Selection

Most preferably, inverse agonists to the non-endogenous, constitutively activated GPCRs can be identified using the materials of this invention. Such inverse agonists are ideal candidates as lead compounds in drug discovery programs for treating diseases related to these receptors. Because of the ability to directly identify inverse agonists, partial agonists or agonists to these receptors, thereby allowing for the development of pharmaceutical compositions, a search, for diseases and disorders associated with these receptors is possible. For example, scanning both diseased and normal tissue samples for the presence of these receptor now becomes more than an academic exercise or one which might be pursued along the path of identifying, in the case of an orphan receptor, an endogenous ligand. Tissue scans can be conducted across a broad range of healthy and diseased tissues. Such tissue scans provide a preferred first step in associating a specific receptor with a disease and/or disorder.

Preferably, the DNA sequence of the endogenous GPCR is used to make a probe for either radiolabeled cDNA or RT-PCR identification of the expression of the GPCR in tissue samples.

The presence of a receptor in a diseased tissue, or the presence of the receptor at elevated or decreased concentrations in diseased tissue compared to a normal tissue, can be preferably utilized to identify a correlation with that disease. Receptors can equally well be localized to regions of organs by this technique. Based on the known functions of the specific tissues to which the receptor is localized, the putative functional role of the receptor can be deduced.

20 C. A "Human GPCR Proline Marker" Algorithm and the Creation of Non-Endogenous, Constitutively-Active Human GPCRs

Among the many challenges facing the biotechnology arts is the unpredictability in gleaning genetic information from one species and correlating that information to another species

5

- 21 -

- nowhere in this art does this problem evidence more annoying exacerbation than in the genetic sequences that encode nucleic acids and proteins. Thus, for consistency and because of the highly unpredictable nature of this art, the following invention is limited, in terms of mammals, to human GPCRs – applicability of this invention to other mammalian species, while a potential possibility, is considered beyond mere rote application.

In general, when attempting to apply common "rules" from one related protein sequence to another or from one species to another, the art has typically resorted to sequence alignment, i.e., sequences are linearized and attempts are then made to find regions of commonality between two or more sequences. While useful, this approach does not always prove to result in meaningful information. In the case of GPCRs, while the general structural motif is identical for all GPCRs, the variations in lengths of the TMs, ECs and ICs make such alignment approaches from one GPCR to another difficult at best. Thus, while it may be desirable to apply a consistent approach to, e.g., constitutive activation from one GPCR to another, because of the great diversity in sequence length, fidelity, etc from one GPCR to the next, a generally applicable, and readily successful mutational alignment approach is in essence not possible. In an analogy, such an approach is akin to having a traveler start a journey at point A by giving the traveler dozens of different maps to point B, without any scale or distance markers on any of the maps, and then asking the traveler to find the shortest and most efficient route to destination B only by using the maps. In such a situation, the task can be readily simplified by having (a) a common "placemarker" on each map, and (b) the ability to measure the distance from the place-marker to destination B - this, then, will allow the traveler to select the most efficient from starting-point A to destination B.

In essence, a feature of the invention is to provide such coordinates within human GPCRs

5

10

15

- 22 -

that readily allows for creation of a constitutively active form of the human GPCRs.

As those in the art appreciate, the transmembrane region of a cell is highly hydrophobic; thus, using standard hydrophobicity plotting techniques, those in the art are readily able to determine the TM regions of a GPCR, and specifically TM6 (this same approach is also applicable to determining the EC and IC regions of the GPCR). It has been discovered that within the TM6 region of human GPCRs, a common proline residue (generally near the middle of TM6), acts as a constitutive activation "marker." By counting 15 amino acids from the proline marker, the 16th amino acid (which is located in the IC3 loop), when mutated from its endogenous form to a non-endogenous form, leads to constitutive activation of the receptor. For convenience, we refer to this as the "Human GPCR Proline Marker" Algorithm. Although the non-endogenous amino acid at this position can be any of the amino acids, most preferably, the non-endogenous amino acid is lysine. While not wishing to be bound by any theory, we believe that this position itself is unique and that the mutation at this location impacts the receptor to allow for constitutive activation.

We note that, for example, when the endogenous amino acid at the 16th position is already lysine (as is the case with GPR4 and GPR32), then in order for X to be a non-endogenous amino acid, it must be other than lysine; thus, in those situations where the endogenous GPCR has an endogenous lysine residue at the 16th position, the non-endogenous version of that GPCR preferably incorporates an amino acid other than lysine, preferably alanine, histidine and arginine, at this position. Of further note, it has been determined that GPR4 appears to be linked to Gs and active in its endogenous form (data not shown).

Because there are only 20 naturally occurring amino acids (although the use of non-naturally occurring amino acids is also viable), selection of a particular non-endogenous amino

5

10

15

- 23 -

acid for substitution at this 16th position is viable and allows for efficient selection of a non-endogenous amino acid that fits the needs of the investigator. However, as noted, the more preferred non-endogenous amino acids at the 16th position are lysine, histidine, arginine and alanine, with lysine being most preferred. Those of ordinary skill in the art are credited with the ability to readily determine proficient methods for changing the sequence of a codon to achieve a desired mutation.

It has also been discovered that occasionally, but not always, the proline residue marker will be preceded in TM6 by W2 (*i.e.*, W2P¹AA₁₅X) where W is tryptophan and 2 is any amino acid residue.

Our discovery, amongst other things, negates the need for unpredictable and complicated sequence alignment approaches commonly used by the art. Indeed, the strength of our discovery, while an algorithm in nature, is that it can be applied in a facile manner to human GPCRs, with dexterous simplicity by those in the art, to achieve a unique and highly useful end-product, *i.e.*, a constitutively activated version of a human GPCR. Because many years and significant amounts of money will be required to determine the endogenous ligands for the human GPCRs that the Human Genome project is uncovering, the disclosed invention not only reduces the time necessary to positively exploit this sequence information, but at significant cost-savings. This approach truly validates the importance of the Human Genome Project because it allows for the utilization of genetic information to not only understand the role of the GPCRs in, *e.g.*, diseases, but also provides the opportunity to improve the human condition.

D. Screening of Candidate Compounds

1. Generic GPCR screening assay techniques

When a G protein receptor becomes constitutively active, it couples to a G protein (e.g.,

5

10

15

- 24 -

Gq, Gs, Gi, Go) and stimulates release and subsequent binding of GTP to the G protein. The G protein then acts as a GTPase and slowly hydrolyzes the GTP to GDP, whereby the receptor, under normal conditions, becomes deactivated. However, constitutively activated receptors, including the non-endogenous, human constitutively active GPCRs of the present invention, continue to exchange GDP for GTP. A non-hydrolyzable analog of GTP, [35S]GTPγS, can be used to monitor enhanced binding to G proteins present on membranes which express constitutively activated receptors. It is reported that [35S]GTPγS can be used to monitor G protein coupling to membranes in the absence and presence of ligand. An example of this monitoring, among other examples well-known and available to those in the art, was reported by Traynor and Nahorski in 1995. The preferred use of this assay system is for initial screening of candidate compounds because the system is generically applicable to all G protein-coupled receptors regardless of the particular G protein that interacts with the intracellular domain of the receptor.

B 2. Specific GPCR screening assay techniques

C Once candidate compounds are identified using the "generic" G protein-coupled receptor assay (i.e., an assay to select compounds that are agonists, partial agonists, or inverse agonists), further screening to confirm that the compounds have interacted at the receptor site is preferred. For example, a compound identified by the "generic" assay may not bind to the receptor, but may instead merely "uncouple" the G protein from the intracellular domain.

20 a. Gs and Gi.

Gs stimulates the enzyme adenylyl cyclase. Gi (and Go), on the other hand, inhibit this enzyme. Adenylyl cyclase catalyzes the conversion of ATP to cAMP; thus,

5

10

- 25 -

constitutively activated GPCRs that couple the Gs protein are associated with increased cellular levels of cAMP. On the other hand, constitutively activated GPCRs that couple the Gi (or Go) protein are associated with decreased cellular levels of cAMP. See, generally, "Indirect Mechanisms of Synaptic Transmission," Chpt. 8, From Neuron To Brain (3rd Ed.) Nichols, J.G. et al eds. Sinauer Associates, Inc. (1992). Thus, assays that detect cAMP can be utilized to determine if a candidate compound is, e.g., an inverse agonist to the receptor (i.e., such a compound would decrease the levels of cAMP). A variety of approaches known in the art for measuring cAMP can be utilized; a most preferred approach relies upon the use of anti-cAMP antibodies in an ELISA-based format. Another type of assay that can be utilized is a whole cell second messenger reporter system assay. Promoters on genes drive the expression of the proteins that a particular gene encodes. Cyclic AMP drives gene expression by promoting the binding of a cAMP-responsive DNA binding protein or transcription factor (CREB) which then binds to the promoter at specific sites called cAMP response elements and drives the expression of the gene. Reporter systems can be constructed which have a promoter containing multiple cAMP response elements before the reporter gene, e.g., β-galactosidase or luciferase. Thus, a constitutively activated Gs-linked receptor causes the accumulation of cAMP that then activates the gene and expression of the reporter protein. The reporter protein such as βgalactosidase or luciferase can then be detected using standard biochemical assays (Chen et al. 1995). With respect to GPCRs that link to Gi (or Go), and thus decrease levels of cAMP, an approach to the screening of, e.g., inverse agonists, based upon utilization of receptors that link to Gs (and thus increase levels of cAMP) is disclosed in the Example section with respect to GPR17 and GPR30.

20

- 26 -

b. Go and Gq.

Gq and Go are associated with activation of the enzyme phospholipase C, which in turn hydrolyzes the phospholipid PIP₂, releasing two intracellular messengers: diacycloglycerol (DAG) and inistol 1,4,5-triphoisphate (IP₃). Increased accumulation of IP₃ is associated with activation of Gq- and Go-associated receptors. *See, generally*, "Indirect Mechanisms of Synaptic Transmission," Chpt. 8, From Neuron To Brain (3rd Ed.) Nichols, J.G. et al eds. Sinauer Associates, Inc. (1992). Assays that detect IP₃ accumulation can be utilized to determine if a candidate compound is, *e.g.*, an inverse agonist to a Gq- or Go-associated receptor (*i.e.*, such a compound would decrease the levels of IP₃). Gq-associated receptors can also been examined using an AP1 reporter assay in that Gq-dependent phospholipase C causes activation of genes containing AP1 elements; thus, activated Gq-associated receptors will evidence an increase in the expression of such genes, whereby inverse agonists thereto will evidence a decrease in such expression, and agonists will evidence an increase in such expression, and agonists will evidence an increase in such expression. Commercially available assays for such detection are available.

E. Medicinal Chemistry

Generally, but not always, direct identification of candidate compounds is preferably conducted in conjunction with compounds generated via combinatorial chemistry techniques, whereby thousands of compounds are randomly prepared for such analysis. Generally, the results of such screening will be compounds having unique core structures; thereafter, these compounds are preferably subjected to additional chemical modification around a preferred core structure(s) to further enhance the medicinal properties thereof. Such techniques are

20

5

10

- 27 -

known to those in the art and will not be addressed in detail in this patent document.

F. Pharmaceutical Compositions

Candidate compounds selected for further development can be formulated into pharmaceutical compositions using techniques well known to those in the art. Suitable pharmaceutically-acceptable carriers are available to those in the art; for example, *see* Remington's Pharmaceutical Sciences, 16th Edition, 1980, Mack Publishing Co., (Oslo et al., eds.)

G. Other Utility

10

15

20

Although a preferred use of the non-endogenous versions of the disclosed human GPCRs is for the direct identification of candidate compounds as inverse agonists, agonists or partial agonists (preferably for use as pharmaceutical agents), these receptors can also be utilized in research settings. For example, in vitro and in vivo systems incorporating these receptors can be utilized to further elucidate and understand the roles of the receptors in the human condition, both normal and diseased, as well understanding the role of constitutive activation as it applies to understanding the signaling cascade. A value in these non-endogenous receptors is that their utility as a research tool is enhanced in that, because of their unique features, the disclosed receptors can be used to understand the role of a particular receptor in the human body before the endogenous ligand therefor is identified. Other uses of the disclosed receptors will become apparent to those in the art based upon, *inter alia*, a review of this patent document.

EXAMPLES

The following examples are presented for purposes of elucidation, and not limitation, of the present invention. Following the teaching of this patent document that a mutational cassette may be utilized in the IC3 loop of human GPCRs based upon a position relative to a proline residue in TM6 to constitutively activate the receptor, and while specific nucleic acid

PCT/US99/23938

and amino acid sequences are disclosed herein, those of ordinary skill in the art are credited with the ability to make minor modifications to these sequences while achieving the same or substantially similar results reported below. Particular approaches to sequence mutations are within the purview of the artisan based upon the particular needs of the artisan.

5 Example 1 Preparation of Endogenous Human GPCRs

A variety of GPCRs were utilized in the Examples to follow. Some endogenous human GPCRs were graciously provided in expression vectors (as acknowledged below) and other endogenous human GPCRs were synthesized *de novo* using publicly-available sequence information.

1. GPR1 (GenBank Accession Number: U13666)

The human cDNA sequence for GPR1 was provided in pRcCMV by Brian O'Dowd (University of Toronto). GPR1 cDNA (1.4kB fragment) was excised from the pRcCMV vector as a NdeI-XbaI fragment and was subcloned into the NdeI-XbaI site of pCMV vector (see Figure 3). Nucleic acid (SEQ.ID.NO.: 1) and amino acid (SEQ.ID.NO.: 2) sequences for human GPR1 were thereafter determined and verified.

2. GPR4 (GenBank Accession Numbers: L36148, U35399, U21051)

The human cDNA sequence for GPR4 was provided in pRcCMV by Brian O'Dowd (University of Toronto). GPR1 cDNA (1.4kB fragment) was excised from the pRcCMV vector as an ApaI(blunted)-XbaI fragment and was subcloned (with most of the 5' untranslated region removed) into HindIII(blunted)-XbaI site of pCMV vector. Nucleic acid (SEQ.ID.NO.: 3) and amino acid (SEQ.ID.NO.: 4) sequences for human GPR4 were thereafter determined and verified.

3. GPR5 (GenBank Accession Number: L36149)

10

15

- 29 -

The cDNA for human GPR5 was generated and cloned into pCMV expression vector as follows: PCR was performed using genomic DNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 μM of each primer, and 0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 64°C for 1 min; and 72°C for 1.5 min. The 5' PCR primer contained an EcoRI site with the sequence: 5'-TATGAATTCAGATGCTCTAAACGTCCCTGC-3' (SEQ.ID.NO.: 5) and the 3' primer contained BamHI site with the sequence: 5'-TCCGGATCCACCTGCACCTGCGCCTGCACC-3' (SEQ.ID.NO.: 6).

The 1.1 kb PCR fragment was digested with EcoRI and BamHI and cloned into EcoRI-BamHI

site of PCMV expression vector. Nucleic acid (SEQ.ID.NO.: 7) and amino acid (SEQ.ID.NO.:

8) sequences for human GPR5 were thereafter determined and verified.

4. GPR7 (GenBank Accession Number: U22491)

The cDNA for human GPR7 was generated and cloned into pCMV expression vector as follows: PCR condition- PCR was performed using genomic DNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 µM of each primer, and 0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 62°C for 1 min; and 72°C for 1 min and 20 sec. The 5' PCR primer contained a HindIII site with the sequence:

- 5'-GCAAGCTTGGGGGACGCCAGGTCGCCGGCT-3' (SEQ.ID.NO.: 9)
- and the 3' primer contained a BamHI site with the sequence:
 - 5'-GCGGATCCGGACGCTGGGGGAGTCAGGCTGC-3' (SEQ.ID.NO.: 10).
 - The 1.1 kb PCR fragment was digested with HindIII and BamHI and cloned into HindIII-BamHI site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 11) and amino acid (SEQ.ID.NO.:

12) sequences for human GPR7 were thereafter determined and verified.

5. GPR8 (GenBank Accession Number: U22492)

The cDNA for human GPR8 was generated and cloned into pCMV expression vector as follows: PCR was performed using genomic DNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 µM of each primer, and 0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 62°C for 1 min; and 72 °C for 1 min and 20 sec. The 5' PCR primer contained an EcoRI site with the sequence:

- 5'-CGGAATTCGTCAACGGTCCCAGCTACAATG-3' (SEQ.ID.NO.: 13).
- and the 3' primer contained a BamHI site with the sequence:
 - 5'-ATGGATCCCAGGCCCTTCAGCACCGCAATAT-3'(SEQ.ID.NO.: 14).

The 1.1 kb PCR fragment was digested with EcoRI and BamHI and cloned into EcoRI-BamHI site of PCMV expression vector. All 4 cDNA clones sequenced contained a possible polymorphism involving a change of amino acid 206 from Arg to Gln. Aside from this difference, nucleic acid (SEQ.ID.NO.: 15) and amino acid (SEQ.ID.NO.: 16) sequences for human GPR8 were thereafter determined and verified.

6. GPR9 (GenBank Accession Number: X95876)

The cDNA for human GPR9 was generated and cloned into pCMV expression vector as follows: PCR was performed using a clone (provided by Brian O'Dowd) as template and pfu polymerase (Stratagene) with the buffer system provided by the manufacturer supplemented with 10% DMSO, 0.25 μM of each primer, and 0.5 mM of each of the 4 nucleotides. The cycle condition was 25 cycles of: 94°C for 1 min; 56°C for 1 min; and 72 °C for 2.5 min. The 5' PCR primer contained an EcoRI site with the sequence:

- 31 -

5'-ACGAATTCAGCCATGGTCCTTGAGGTGAGCCACCAAGTGCTAAAT-3' (SEQ.ID.NO.: 17)

and the 3' primer contained a BamHI site with the sequence:

5'-GAGGATCCTGGAATGCGGGGAAGTCAG-3' (SEQ.ID.NO.: 18).

The 1.2 kb PCR fragment was digested with EcoRI and cloned into EcoRI-SmaI site of PCMV expression vector. Nucleic acid (SEQ.ID.NO.: 19) and amino acid (SEQ.ID.NO.: 20) sequences for human GPR9 were thereafter determined and verified.

7. GPR9-6 (GenBank Accession Number: U45982)

The cDNA for human GPR9-6 was generated and cloned into pCMV expression vector as follows: PCR was performed using genomic DNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 μM of each primer, and 0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 62°C for 1 min; and 72°C for 1 min and 20 sec. The 5' PCR primer was kinased with the sequence: 5'-TTAAGCTTGACCTAATGCCATCTTGTGTCC-3' (SEQ.ID.NO.: 21)

and the 3' primer contained a BamHI site with the sequence:

5'-TTGGATCCAAAAGAACCATGCACCTCAGAG-3' (SEQ.ID.NO.: 22).

The 1.2 kb PCR fragment was digested with BamHI and cloned into EcoRV-BamHI site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 23) and amino acid (SEQ.ID.NO.: 24) sequences for human GPR9-6 were thereafter determined and verified.

8. GPR10 (GenBank Accession Number: U32672)

The human cDNA sequence for GPR10 was provided in pRcCMV by Brian O'Dowd (University of Toronto). GPR10 cDNA (1.3kB fragment) was excised from the pRcCMV vector as an EcoRI-XbaI fragment and was subcloned into EcoRI-XbaI site of pCMV

- 32 -

vector. Nucleic acid (SEQ.ID.NO.: 25) and amino acid (SEQ.ID.NO.: 26) sequences for human GPR10 were thereafter determined and verified.

9. GPR15 (GenBank Accession Number: U34806)

The human cDNA sequence for GPR15 was provided in pCDNA3 by Brian O'Dowd (University of Toronto). GPR15 cDNA (1.5kB fragment) was excised from the pCDNA3 vector as a HindIII-Bam fragment and was subcloned into HindIII-Bam site of pCMV vector. Nucleic acid (SEQ.ID.NO.: 27) and amino acid (SEQ.ID.NO.: 28) sequences for human GPR15 were thereafter determined and verified.

10. GPR17 (GenBank Accession Number: Z94154)

The cDNA for human GPR17 was generated and cloned into pCMV expression vector as follows: PCR was performed using genomic DNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 μM of each primer, and 0.2 mM of each 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 56°C for 1 min and 72 °C for 1 min and 20 sec. The 5' PCR primer contained an EcoRI site with the sequence:

- 5'-CTAGAATTCTGACTCCAGCCAAAGCATGAAT-3' (SEQ.ID.NO.: 29) and the 3' primer contained a BamHI site with the sequence:
- 5'-GCTGGATCCTAAACAGTCTGCGCTCGGCCT-3' (SEO.ID.NO.: 30).
- The 1.1 kb PCR fragment was digested with EcoRI and BamHI and cloned into EcoRI-BamHI

 20 site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 31) and amino acid (SEQ.ID.NO.:

 32) sequences for human GPR17 were thereafter determined and verified.

11. GPR18 (GenBank Accession Number: L42324)

The cDNA for human GPR18 was generated and cloned into pCMV expression

- 33 -

vector as follows: PCR was performed using genomic DNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 μM of each primer, and 0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 54°C for 1 min; and 72 °C for 1 min and 20 sec. The 5' PCR primer was kinased with the sequence:

5 5'-ATAAGATGATCACCCTGAACAATCAAGAT -3' (SEQ.ID.NO.: 33)

and the 3' primer contained an EcoRI site with the sequence:

5'-TCCGAATTCATAACATTTCACTGTTTATATTGC-3' (SEQ.ID.NO.: 34).

The 1.0 kb PCR fragment was digested with EcoRI and cloned into blunt-EcoRI site of pCMV expression vector. All 8 cDNA clones sequenced contained 4 possible polymorphisms involving changes of amino acid 12 from Thr to Pro, amino acid 86 from Ala to Glu, amino acid 97 from Ile to Leu and amino acid 310 from Leu to Met. Aside from these changes, nucleic acid (SEQ.ID.NO.: 35) and amino acid (SEQ.ID.NO.: 36) sequences for human GPR18 were thereafter determined and verified.

12. GPR20 (GenBank Accession Number: U66579)

The cDNA for human GPR20 was generated and cloned into pCMV expression vector as follows: PCR was performed using genomic DNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 μM of each primer, and 0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 62°C for 1 min; and 72°C for 1 min and 20 sec. The 5' PCR primer was kinased with the sequence:

20 5'-CCAAGCTTCCAGGCCTGGGGTGTGCTGG-3' (SEQ.ID.NO.: 37)

and the 3' primer contained a BamHI site with the sequence:

5'-ATGGATCCTGACCTTCGGCCCCTGGCAGA-3' (SEQ.ID.NO.: 38).

The 1.2 kb PCR fragment was digested with BamHI and cloned into EcoRV-BamHI site of

- 34 -

PCMV expression vector. Nucleic acid (SEQ.ID.NO.: 39) and amino acid (SEQ.ID.NO.: 40) sequences for human GPR20 were thereafter determined and verified.

13. GPR21 (GenBank Accession Number: U66580)

The cDNA for human GPR21 was generated and cloned into pCMV expression vector as follows: PCR was performed using genomic DNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 µM of each primer, and 0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 62°C for 1 min; and 72 °C for 1 min and 20 sec. The 5' PCR primer was kinased with the sequence: 5'-GAGAATTCACTCCTGAGCTCAAGATGAACT-3' (SEQ.ID.NO.: 41)

and the 3' primer contained a BamHI site with the sequence:

5'-CGGGATCCCCGTAACTGAGCCACTTCAGAT-3' (SEQ.ID.NO.: 42).

The 1.1 kb PCR fragment was digested with BamHI and cloned into EcoRV-BamHI site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 43) and amino acid (SEQ.ID.NO.: 44) sequences for human GPR21 were thereafter determined and verified.

14. GPR22 (GenBank Accession Number: U66581)

The cDNA for human GPR22 was generated and cloned into pCMV expression vector as follows: PCR was performed using genomic DNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 μM of each primer, and 0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 50°C for 1 min; and 72 °C for 1.5 min. The 5' PCR primer was kinased with the sequence: 5'-TCCCCCGGGAAAAAAACCAACTGCTCCAAA-3' (SEQ.ID.NO.: 45)

and the 3' primer contained a BamHI site with the sequence:

5'-TAGGATCCATTTGAATGTGGATTTGGTGAAA-3' (SEQ.ID.NO.: 46).

10

15

5

10

15

The 1.38 kb PCR fragment was digested with BamHI and cloned into EcoRV-BamHI site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 47) and amino acid (SEQ.ID.NO.: 48) sequences for human GPR22 were thereafter determined and verified.

15. GPR24 (GenBank Accession Number: U71092)

The cDNA for human GPR24 was generated and cloned into pCMV expression vector as follows: PCR was performed using genomic DNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 μM of each primer, and 0.2 mM of each 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 56°C for 1 min; and 72 °C for 1 min and 20 sec. The 5' PCR primer contains a HindIII site with the sequence:

5'-GTGAAGCTTGCCTCTGGTGCCTGCAGGAGG-3' (SEQ.ID.NO.: 49) and the 3' primer contains an EcoRI site with the sequence:
5'-GCAGAATTCCCGGTGGCGTGTTGTGGTGCCC-3' (SEQ.ID.NO.: 50).

The 1.3 kb PCR fragment was digested with HindIII and EcoRI and cloned into HindIII-EcoRI site of pCMV expression vector. The nucleic acid (SEQ.ID.NO.: 51) and amino acid sequence (SEQ.ID.NO.: 52) for human GPR24 were thereafter determined and verified.

16. GPR30 (GenBank Accession Number: U63917)

The cDNA for human GPR30 was generated and cloned as follows: the coding sequence of GPR30 (1128bp in length) was amplified from genomic DNA using the primers:

5'-GGCGGATCCCTACACGGCACTGCTGAA-3' (SEQ.ID.NO.: 53) and 5'-GGCGGATCCCTACACGGCACTGCTGAA-3' (SEQ.ID.NO.: 54).

The amplified product was then cloned into a commercially available vector, pCR2.1 (Invitrogen),

PCT/US99/23938

using a "TOPO-TA Cloning Kit" (Invitrogen, #K4500-01), following manufacturer instructions. The full-length GPR30 insert was liberated by digestion with BamH1, separated from the vector by agarose gel electrophoresis, and purified using a Sephaglas Bandprep™ Kit (Pharmacia, #27-9285-01) following manufacturer instructions. The nucleic acid (SEQ.ID.NO.: 55) and amino acid sequence (SEQ.ID.NO.: 56) for human GPR30 were thereafter determined and verified.

17. GPR31 (GenBank Accession Number: U65402)

The cDNA for human GPR31 was generated and cloned into pCMV expression vector as follows: PCR was performed using genomic DNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 μM of each primer, and 0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 58°C for 1 min; and 72 °C for 2 min. The 5' PCR primer contained an EcoRI site with the sequence: 5'-AAGGAATTCACGGCCGGGTGATGCCATTCCC-3' (SEQ.ID.NO.: 57) and the 3' primer contained a BamHI site with the sequence: 5'-GGTGGATCCATAAACACGGGCGTTGAGGAC -3' (SEQ.ID.NO.: 58).

The 1.0 kb PCR fragment was digested with EcoRI and BamHI and cloned into EcoRI-BamHI site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 59) and amino acid (SEQ.ID.NO.: 60) sequences for human GPR31 were thereafter determined and verified.

18. GPR32 (GenBank Accession Number: AF045764)

The cDNA for human GPR32 was generated and cloned into pCMV expression vector as follows: PCR was performed using genomic DNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 μM of each primer, and 0.2 mM of each 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 56°C for 1 min; and 72 °C for 1 min and 20 sec. The 5' PCR primer contained an EcoRI site with the

- 37 -

sequence:

- 5'-TAAGAATTCCATAAAAATTATGGAATGG-3' (SEQ.ID.NO.:243)
- and the 3' primer contained a BamHI site with the sequence:
- 5'-CCAGGATCCAGCTGAAGTCTTCCATCATTC-3' (SEQ.ID.NO.: 244).
- The 1.1 kb PCR fragment was digested with EcoRI and BamHI and cloned into EcoRI-BamHI site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 245) and amino acid (SEQ.ID.NO.: 246) sequences for human GPR32 were thereafter determined and verified.

19. GPR40 (GenBank Accession Number: AF024687)

The cDNA for human GPR40 was generated and cloned into pCMV expression vector as follows: PCR was performed using genomic DNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 µM of each primer, and 0.2 mM of each 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min, 65°C for 1 min and 72 °C for 1 min and 10 sec. The 5' PCR primer contained an EcoRI site with the sequence

- 5'-GCAGAATTCGGCGGCCCCATGGACCTGCCCCC-3' (SEQ.ID.NO.: 247)
 and the 3' primer contained a BamHI site with the sequence
 - 5'-GCTGGATCCCCCGAGCAGTGGCGTTACTTC-3' (SEQ.ID.NO.: 248).

The 1 kb PCR fragment was digested with EcoRI and BamHI and cloned into EcoRI-BamHI site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 249) and amino acid (SEQ.ID.NO.: 250) sequences for human GPR40 were thereafter determined and verified.

20. GPR41 (GenBank Accession Number AF024688)

The cDNA for human GPR41 was generated and cloned into pCMV expression vector as follows: PCR was performed using genomic DNA as template and rTth polymerase

(Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 µM of each primer, and 0.2 mM of each 4 nucleotides. The cycle condition was 30 cycles of 94°C for 1 min, 65°C for 1min and 72 °C for 1 min and 10 sec. The 5' PCR primer contained an HindIII site with the sequence:

- 5'-CTCAAGCTTACTCTCTCACCAGTGGCCAC-3' (SEO.ID.NO.: 251) and the 3' primer was kinased with the sequence
 - 5'-CCCTCCTCCCCGGAGGACCTAGC-3' (SEQ.ID.NO.: 252).

The 1 kb PCR fragment was digested with HindIII and cloned into HindIII-blunt site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 253) and amino acid (SEQ.ID.NO.: 254) sequences for human GPR41 were thereafter determined and verified.

21. GPR43 (GenBank Accession Number AF024690)

The cDNA for human GPR43 was generated and cloned into pCMV expression vector as follows: PCR was performed using genomic DNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 µM of each primer, and 0.2 mM of each 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 65°C for 1min; and 72 °C for 1 min and 10 sec. The 5' PCR primer contains an HindIII site with the sequence:

- 5'-TTTAAGCTTCCCCTCCAGGATGCTGCCGGAC-3' (SEQ.ID.NO.: 255) and the 3' primer contained an EcoRI site with the sequence:
- 5'-GGCGAATTCTGAAGGTCCAGGGAAACTGCTA-3' (SEQ.ID.NO. 256). The 1 kb PCR fragment was digested with HindIII and EcoRI and cloned into HindIII-EcoRI site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 257) and amino acid (SEQ.ID.NO.: 258) sequences for human GPR43 were thereafter determined and verified.

10

15

- 39 -

22. APJ (GenBank Accession Number: U03642)

Human APJ cDNA (in pRcCMV vector) was provided by Brian O'Dowd (University of Toronto). The human APJ cDNA was excised from the pRcCMV vector as an EcoRI-XbaI (blunted) fragment and was subcloned into EcoRI-SmaI site of pCMV vector.

Nucleic acid (SEQ.ID.NO.: 61) and amino acid (SEQ.ID.NO.: 62) sequences for human APJ were thereafter determined and verified.

23. BLR1 (GenBank Accession Number: X68149)

The cDNA for human BLR1 was generated and cloned into pCMV expression vector as follows: PCR was performed using thymus cDNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 µM of each primer, and 0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 62°C for 1 min; and 72 °C for 1 min and 20 sec. The 5' PCR primer contained an EcoRI site with the sequence:

5'-TGAGAATTCTGGTGACTCACAGCCGGCACAG-3' (SEQ.ID.NO.: 63):

and the 3' primer contained a BamHI site with the sequence:

5'-GCCGGATCCAAGGAAAAGCAGCAATAAAAGG-3' (SEQ.ID.NO.: 64). The 1.2 kb PCR fragment was digested with EcoRI and BamHI and cloned into EcoRI-BamHI site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 65) and amino acid (SEQ.ID.NO.: 66) sequences for human BLR1 were thereafter determined and verified.

24. CEPR (GenBank Accession Number: U77827)

The cDNA for human CEPR was generated and cloned into pCMV expression vector as follows: PCR was performed using genomic DNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 µM of each primer, and

- 40 -

0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 65°C for 1 min; and 72°C for 1 min and 20 sec. The 5' PCR primer was kinased with the sequence: 5'-CAAAGCTTGAAAGCTGCACGGTGCAGAGAC-3' (SEQ.ID.NO.:67) and the 3' primer contained a BamHI site with the sequence:

5'-GCGGATCCCGAGTCACACCCTGGCTGGGCC-3' (SEQ.ID.NO.: 68).

The 1.2 kb PCR fragment was digested with BamHI and cloned into EcoRV-BamHI site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 69) and amino acid (SEQ.ID.NO.: 70) sequences for human CEPR were thereafter determined and verified.

25. EBI1 (GenBank Accession Number: L31581)

The cDNA for human EBI1 was generated and cloned into pCMV expression vector as follows: PCR was performed using thymus cDNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 μM of each primer, and 0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 62°C for 1 min; and 72 °C for 1 min and 20 sec. The 5' PCR primer contained an EcoRI site with the sequence:

5'-ACAGAATTCCTGTGTGGTTTTACCGCCCAG-3' (SEQ.ID.NO.: 71) and the 3' primer contained a BamHI site with the sequence:

5'-CTCGGATCCAGGCAGAAGAGTCGCCTATGG-3' (SEQ.ID.NO.: 72).

The 1.2 kb PCR fragment was digested with EcoRI and BamHI and cloned into EcoRI-BamHI

20 site of PCMV expression vector. Nucleic acid (SEQ.ID.NO.: 73) and amino acid (SEQ.ID.NO.:

74) sequences for human EBI1 were thereafter determined and verified.

26. EBI2 (GenBank Accession Number: L08177)

The cDNA for human EBI2 was generated and cloned into pCMV expression

vector as follows: PCR was performed using cDNA clone (graciously provided by Kevin Lynch, University of Virginia Health Sciences Center; the vector utilized was not identified by the source) as template and pfu polymerase (Stratagene) with the buffer system provided by the manufacturer supplemented with 10% DMSO, 0.25 μM of each primer, and 0.5 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 60°C for 1 min; and 72°C for 1 min and 20 sec. The 5' PCR primer contained an EcoRI site with the sequence: 5'-CTGGAATTCACCTGGACCACCACCAATGGATA-3' (SEQ.ID.NO.: 75) and the 3' primer contained a BamHI site with the sequence

The 1.2 kb PCR fragment was digested with EcoRI and BamHI and cloned into EcoRI-BamHI site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 77) and amino acid (SEQ.ID.NO.: 78) sequences for human EBI2 were thereafter determined and verified.

27. ETBR-LP2 (GenBank Accession Number: D38449)

The cDNA for human ETBR-LP2 was generated and cloned into pCMV expression vector as follows: PCR was performed using brain cDNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 µM of each primer, and 0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 65°C for 1 min; and 72 °C for 1.5 min. The 5' PCR contained an EcoRI site with the sequence:

5'-CTGGAATTCTCCTGCTCATCCAGCCATGCGG -3' (SEQ.ID.NO.: 79)
and the 3' primer contained a BamHI site with the sequence:
5'-CCTGGATCCCCACCCCTACTGGGGCCTCAG -3' (SEQ.ID.NO.: 80).
The 1.5 kb PCR fragment was digested with EcoRI and BamHI and cloned into EcoRI-BamHI

- 42 -

site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 81) and amino acid (SEQ.ID.NO.: 82) sequences for human ETBR-LP2 were thereafter determined and verified.

28. GHSR (GenBank Accession Number: U60179)

The cDNA for human GHSR was generated and cloned into pCMV expression vector as follows: PCR was performed using hippocampus cDNA as template and TaqPlus Precision polymerase (Stratagene) with the buffer system provided by the manufacturer, 0.25 µM of each primer, and 0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 68°C for 1 min; and 72 °C for 1 min and 10 sec. For first round PCR, the 5' PCR primer sequence was:

10 5'-ATGTGGAACGCGACGCCCAGCG-3' (SEQ.ID.NO.: 83)

and the 3' primer sequence was:

5'-TCATGTATTAATACTAGATTCT-3' (SEQ.ID.NO.: 84).

Two microliters of the first round PCR was used as template for the second round PCR where the 5' primer was kinased with sequence:

- 15 5'-TACCATGTGGAACGCGACGCCCAGCGAAGAGCCGGGGT-3'(SEQ.ID.NO.:85)
 and the 3' primer contained an EcoRI site with the sequence:
 - 5'-CGGAATTCATGTATTAATACTAGATTCTGTCCAGGCCCG-3'(SEQ.ID.NO.:86).

The 1.1 kb PCR fragment was digested with EcoRI and cloned into blunt-EcoRI site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 87) and amino acid (SEQ.ID.NO.: 88) sequences

20 for human GHSR were thereafter determined and verified.

29. GPCR-CNS (GenBank Accession Number: AFO17262)

The cDNA for human GPCR-CNS was generated and cloned into pCMV expression vector as follows: PCR was performed using brain cDNA as template and rTth

polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, $0.25 \,\mu\text{M}$ of each primer, and $0.2 \,\text{mM}$ of each of the 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 65°C for 1 min; and 72°C for 2 min. The 5' PCR primer contained a HindIII site with the sequence:

5 5'-GCAAGCTTGTGCCCTCACCAAGCCATGCGAGCC-3' (SEQ.ID.NO.: 89) and the 3' primer contained an EcoRI site with the sequence:

5'-CGGAATTCAGCAATGAGTTCCGACAGAAGC-3' (SEQ.ID.NO.: 90).

The 1.9 kb PCR fragment was digested with HindIII and EcoRI and cloned into HindIII-EcoRI site of pCMV expression vector. All nine clones sequenced contained a potential polymorphism involving a S284C change. Aside from this difference, nucleic acid (SEQ.ID.NO.: 91) and amino acid (SEQ.ID.NO.: 92) sequences for human GPCR-CNS were thereafter determined and verified.

30. GPR-NGA (GenBank Accession Number: U55312)

The cDNA for human GPR-NGA was generated and cloned into pCMV expression vector as follows: PCR was performed using genomic DNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 µM of each primer, and 0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of 94°C for 1 min, 56°C for 1min and 72 °C for 1.5 min. The 5' PCR primer contained an EcoRI site with the sequence:

- 5'-CAGAATTCAGAGAAAAAAAGTGAATATGGTTTTT-3' (SEQ.ID.NO.: 93)
- and the 3' primer contained a BamHI site with the sequence:
 - 5'-TTGGATCCCTGGTGCATAACAATTGAAAGAAT-3' (SEQ.ID.NO.: 94).

The 1.3 kb PCR fragment was digested with EcoRI and BamHI and cloned into EcoRI-BamHI site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 95) and amino acid (SEQ.ID.NO.:

- 44 -

96) sequences for human GPR-NGA were thereafter determined and verified.

31. H9 (GenBank Accession Number: U52219)

The cDNA for human HB954 was generated and cloned into pCMV expression vector as follows: PCR was performed using pituitary cDNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 µM of each primer, and 0.2 mM of each 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min, 62°C for 1 min and 72°C for 2 min. The 5' PCR primer contains a HindIII site with the sequence: 5'-GGAAAGCTTAACGATCCCCAGGAGCAACAT-3' (SEQ.ID.NO.: 97) and the 3' primer contains a BamHI site with the sequence:

10 5'-CTGGGATCCTACGAGAGCATTTTTCACACAG-3' (SEQ.ID.NO.: 98).

The 1.9 kb PCR fragment was digested with HindIII and BamHI and cloned into HindIII-BamHI site of pCMV expression vector. When compared to the published sequences, a different isoform with 12 bp in frame insertion in the cytoplasmic tail was also identified and designated "H9b." Both isoforms contain two potential polymorphisms involving changes of amino acid P320S and amino acid G448A. Isoform H9a contained another potential polymorphism of amino acid S493N, while isoform H9b contained two additional potential polymorphisms involving changes of amino acid I502T and amino acid A532T (corresponding to amino acid 528 of isoform H9a). Nucleic acid (SEQ.ID.NO.: 99) and amino acid (SEQ.ID.NO.: 100) sequences for human H9 were thereafter determined and verified (in the section below, both isoforms were mutated in accordance with the Human GPCR Proline Marker Algorithm).

32. HB954 (GenBank Accession Number: D38449)

The cDNA for human HB954 was generated and cloned into pCMV expression

15

vector as follows: PCR was performed using brain cDNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 µM of each primer, and 0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of 94°C for 1 min, 58°C for 1 min and 72°C for 2 min. The 5' PCR contained a HindIII site with the sequence:

- 5'-TCCAAGCTTCGCCATGGGACATAACGGGAGCT -3' (SEQ.ID.NO.: 101)
 and the 3' primer contained an EcoRI site with the sequence:
 5'-CGTGAATTCCAAGAATTTACAATCCTTGCT -3' (SEQ.ID.NO.: 102).
- The 1.6 kb PCR fragment was digested with HindIII and EcoRI and cloned into HindIII-EcoRI site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 103) and amino acid (SEQ.ID.NO.: 104) sequences for human HB954 were thereafter determined and verified.

33. HG38 (GenBank Accession Number: AF062006)

The cDNA for human HG38 was generated and cloned into pCMV expression vector as follows: PCR was performed using brain cDNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 μM of each primer, and 0.2 mM of each 4 nucleotides. The cycle condition was 30 cycles of 94°C for 1 min, 56°C for 1 min and 72°C for 1 min and 30 sec. Two PCR reactions were performed to separately obtain the 5' and 3' fragment. For the 5' fragment, the 5' PCR primer contained an HindIII site with the sequence: 5'-CCCAAGCTTCGGGCACCATGGACACCTCCC-3' (SEQ.ID.NO.: 259) and the 3' primer contained a BamHIsite with the sequence:

This 5' 1.5 kb PCR fragment was digested with HindIII and BamHI and cloned into an HindIII-BamHI site of pCMV. For the 3' fragment, the 5' PCR primer was kinased with the sequence:

5'-ACAGGATCCAAATGCACAGCACTGGTAAGC-3' (SEQ.ID.NO.: 260).

5'-CTATAACTGGGTTACATGGTTTAAC-3' (SEQ.ID.NO. 261)

15

and the 3' primer contained an EcoRI site with the sequence:

5'-TTTGAATTCACATATTAATTAGAGACATGG-3' (SEQ.ID.NO.: 262).

The 1.4 kb 3' PCR fragment was digested with EcoRI and subcloned into a blunt-EcoRI site of pCMV vector. The 5' and 3' fragments were then ligated together through a common EcoRV site to generate the full length cDNA clone. Nucleic acid (SEQ.ID.NO.: 263) and amino acid (SEQ.ID.NO.: 264) sequences for human HG38 were thereafter determined and verified.

34. HM74 (GenBank Accession Number: D10923)

The cDNA for human HM74 was generated and cloned into pCMV expression vector as follows: PCR was performed using either genomic DNA or thymus cDNA (pooled) as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 µM of each primer, and 0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 65°C for 1 min; and 72 °C for 1 min and 20 sec. The 5' PCR primer contained an EcoRI site with the sequence:

- 5'-GGAGAATTCACTAGGCGAGGCGCTCCATC-3' (SEQ.ID.NO.: 105)
- 15 and the 3' primer was kinased with the sequence:
 - 5'-GGAGGATCCAGGAAACCTTAGGCCGAGTCC-3' (SEQ.ID.NO.:106).

The 1.3 kb PCR fragment was digested with EcoRI and cloned into EcoRI-SmaI site of pCMV expression vector. Clones sequenced revealed a potential polymorphism involving a N94K change. Aside from this difference, nucleic acid (SEQ.ID.NO.: 107) and amino acid (SEQ.ID.NO.: 108) sequences for human HM74 were thereafter determined and verified.

35. MIG (GenBank Accession Numbers: AFO44600 and AFO44601)

The cDNA for human MIG was generated and cloned into pCMV expression vector as follows: PCR was performed using genomic DNA as template and TaqPlus Precision

20

polymerase (Stratagene) for first round PCR or pfu polymerase (Stratagene) for second round PCR with the buffer system provided by the manufacturer, 0.25 μM of each primer, and 0.2 mM (TaqPlus Precision) or 0.5 mM (pfu) of each of the 4 nucleotides. When pfu was used, 10% DMSO was included in the buffer. The cycle condition was 30 cycles of: 94°C for 1 min; 65°C for 1 min; and 72 °C for: (a) 1 min for first round PCR; and (b) 2 min for second round PCR. Because there is an intron in the coding region, two sets of primers were separately used to generate overlapping 5' and 3' fragments. The 5' fragment PCR primers were: 5'-ACCATGGCTTGCAATGGCAGTGCGGCCAGGGGGCACT-3' (external sense) (SEQ.ID.NO.: 109)

10 and

5'-CGACCAGGACAAACAGCATCTTGGTCACTTGTCTCCGGC-3'(internal antisense) (SEQ.ID.NO.: 110).

The 3' fragment PCR primers were:

5'-GACCAAGATGCTGTTTGTCCTGGTCGTGGTGTTTTGGCAT-3' (internal sense)

15 (SEQ.ID.NO.: 111) and

5'-CGGAATTCAGGATGGATCGGTCTCTTGCTGCGCCT-3' (external antisense with an EcoRI site) (SEQ.ID.NO.: 112).

The 5' and 3' fragments were ligated together by using the first round PCR as template and the kinased external sense primer and external antisense primer to perform second round PCR. The 1.2 kb PCR fragment was digested with EcoRI and cloned into the blunt-EcoRI site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 113) and amino acid (SEQ.ID.NO.: 114) sequences for human MIG were thereafter determined and verified.

36. OGR1 (GenBank Accession Number: U48405)

- 48 -

The cDNA for human OGR1 was generated and cloned into pCMV expression vector as follows: PCR was performed using genomic DNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 μM of each primer, and 0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 65°C for 1 min; and 72°C for 1 min and 20 sec. The 5' PCR primer was kinased with the sequence: 5'-GGAAGCTTCAGGCCCAAAGATGGGGAACAT-3' (SEQ.ID.NO.: 115): and the 3' primer contained a BamHI site with the sequence: 5'-GTGGATCCACCCGCGGAGGACCCCAGGCTAG -3' (SEQ.ID.NO.: 116).

The 1.1 kb PCR fragment was digested with BamHI and cloned into the EcoRV-BamHI site

of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 117) and amino acid (SEQ.ID.NO.:

118) sequences for human OGR1 were thereafter determined and verified.

37. Serotonin 5HT_{2A}

The cDNA encoding endogenous human 5HT_{2A} receptor was obtained by RT-PCR using human brain poly-A⁺ RNA; a 5' primer from the 5' untranslated region with an Xho I restriction site:

5'-GACCTCGAGTCCTTCTACACCTCATC-3' (SEQ.ID.NO: 119) and a 3' primer from the 3' untranslated region containing an Xba I site:
5'-TGCTCTAGATTCCAGATAGGTGAAAACTTG-3' (SEQ.ID.NO: 120)

PCR was performed using either TaqPlusTM precision polymerase (Stratagene) or rTthTM
20 polymerase (Perkin Elmer) with the buffer system provided by the manufacturers, 0.25 μM of each
primer, and 0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of: 94°C for
1 min; 57°C for 1min; and 72°C for 2 min. The 1.5 kb PCR fragment was digested with Xba 1
and subcloned into Eco RV-Xba I site of pBluescript. The resulting cDNA clones were fully

5

sequenced and found to encode two amino acid changes from the published sequences. The first one was a T25N mutation in the N-terminal extracellular domain; the second is an H452Y mutation. Because cDNA clones derived from two independent PCR reactions using Taq polymerase from two different commercial sources (TaqPlusTM from Stratagene and rTthTM Perkin Elmer) contained the same two mutations, these mutations are likely to represent sequence polymorphisms rather than PCR errors. With these exceptions, the nucleic acid (SEQ.ID.NO.: 121) and amino acid (SEQ.ID.NO.: 122) sequences for human 5HT_{2A} were thereafter determined and verified.

38. Serotonin 5HT_{2C}

- The cDNA encoding endogenous human 5HT_{2C} receptor was obtained from human brain poly-A⁺ RNA by RT-PCR. The 5' and 3' primers were derived from the 5' and 3' untranslated regions and contained the following sequences:
 - 5'-GACCTCGAGGTTGCTTAAGACTGAAGC-3' (SEQ.ID.NO.: 123)
 - 5'-ATTTCTAGACATATGTAGCTTGTACCG-3' (SEQ.ID.NO.: 124)
- Nucleic acid (SEQ.ID.NO.: 125) and amino acid (SEQ.ID.NO.: 126) sequences for human 5HT_{2C} were thereafter determined and verified.

39. V28 (GenBank Accession Number: U20350)

The cDNA for human V28 was generated and cloned into pCMV expression vector as follows: PCR was performed using brain cDNA as template and rTth polymerase (Perkin 20 Elmer) with the buffer system provided by the manufacturer, 0.25 µM of each primer, and 0.2 mM of each of the 4 nucleotides. The cycle condition was 30 cycles of: 94°C for 1 min; 65°C for 1 min; and 72 °C for 1 min and 20 sec. The 5' PCR primer contained a HindIII site with the sequence: 5'-GGTAAGCTTGGCAGTCCACGCCAGGCCTTC-3' (SEQ.ID.NO.: 127)

- 50 -

and the 3' primer contained an EcoRI site with the sequence:

5'-TCCGAATTCTCTGTAGACACAAGGCTTTGG-3' (SEQ.ID.NO.: 128)

The 1.1 kb PCR fragment was digested with HindIII and EcoRI and cloned into HindIII-EcoRI site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 129) and amino acid (SEQ.ID.NO.:

5 130) sequences for human V28 were thereafter determined and verified.

Example 2
PREPARATION OF NON-ENDOGENOUS HUMAN GPCRS

1. Site-Directed Mutagenesis

Mutagenesis based upon the Human GPCR Proline Marker approach disclosed herein was performed on the foregoing endogenous human GPCRs using Transformer Site-Directed Mutagenesis Kit (Clontech) according to the manufacturer instructions. For this mutagenesis approach, a Mutation Probe and a Selection Marker Probe (unless otherwise indicated, the probe of SEQ.ID.NO.: 132 was the same throughout) were utilized, and the sequences of these for the specified sequences are listed below in Table B (the parenthetical number is the SEQ. ID.NO.).

For convenience, the codon mutation incorporated into the human GPCR is also noted, in standard form:

Table B

	Receptor Identifier (Codon Mutation)	Mutation Probe Sequence (5'-3')	Selection Marker Probe Sequence (5'-3')
		(SEQ.ID.NO.)	(SEQ.ID.NO.)
20	GPR1	GATCTCCAGTAGGCAT <u>AAG</u> T	CTCCTTCGGTCCTCCTATCGT
ı	(F245K)	GGACAATTCTGG	TGTCAGAAG
		(131)	(132)
	GPR4	AGAAGGCCAAGATC <u>GCG</u> CGG	CTCCTTCGGTCCTCCTATCGT
ı	(K223A)	CTGGCCCTCA	TGTCAGAAGT
Į		(133)	
- 1	GPR5	CGGCGCCACCGCACGAAAAA	CTCCTTCGGTCCTCCTATCGT
2\$	(V224K)	GCTCATCTTC	TGTCAGAAGT

	(134)	
GPR7	GCCAAGAAGCGGGTGAAGTT	CTCCTTCGGTCCTCCTATCGT
(T250K)	CCTGGTGGTGCA	TGTCAGAAGT
(1250K)	(135)	
GPR8	CAGGCGGAAGGTGAAAGTCC	CTCCTTCGGTCCTCCTATCGT
	TGGTCCTCGT	TGTCAGAAGT
(T259K)	(136)	IGICAGAAGI
30 GPR9	CGGCGCCTGCGGGCCAAGCG	CTCCTTCGGTCCTCCTATCGT
(M254K)	GCTGGTGGTG	TGTCAGAAGT
(IVIZ34K)	(137)	
GPR9-6	CCAAGCACAAGCCAAGAAA	CTCCTTCGGTCCTCCTATCGT
(L241K)	GTGACCATCAC	TGTCAGAAGT
(LZ41K)	(138)	
GPR10	GCGCCGGCGCACC <u>AAA</u> TGCT	CTCCTTCGGTCCTCCTATCGT
35 (F276K)	TGCTGGTGGT	TGTCAGAAGT
L`	(139)	
CDD16	CAAAAACCTCAACAAATCT	CTCCTTCCCTCCTCCTCCTCCTCCTCCTCCTCCTCCTCC
GPR15	CAAAAAGCTGAAGAAATCT <u>A</u>	CTCCTTCGGTCCTCCTATCGT
(1240K)	AGAAGATCATCTTTATTGTCG	TGTCAGAAGT
GPR17	CAAGACCAAGGCAAAACGCA	CTCCTTCGGTCCTCCTATCGT
1	TGATCGCCAT	TGTCAGAAGT
(V234K)	(141)	TOTCAGAAGT
40 GPR18	GTCAAGGAGAAGTCCAAAAG	CTCCTTCGGTCCTCCTATCGT
(I231K)	GATCATCATC	TGTCAGAAGT
(1251K)	(142)	
GPR20	CGCCGCGTGCGGGCCAAGCA	CTCCTTCGGTCCTCCTATCGT
(M240K)	GCTCCTGCTC	TGTCAGAAGT
(1.12.1014)	(143)	
GPR21	CCTGATAAGCGCTAT <u>AAA</u> AT	CTCCTTCGGTCCTCCTATCGT
4\$ (A251K)	GGTCCTGTTTCGA	TGTCAGAAGT
L`	(144)	
GPR22	GAAAGACAAAAGAGAGTC <u>A</u>	CTCCTTCGGTCCTCCTATCGT
1	AGAGGATGTCTTTATTG	TGTCAGAAGT
(F312K)	(145)	IGICAGAAGI
GPR24	CGGAGAAAGAGGGTGAAAC	CICCITCGGTCCTCCTATCGT
(T304K)	GCACAGCCATCGCC	TGTCAGAAGT
(15041)	(146)	i
50 GPR30	alternate approach; see below	alternate approach; see below
(L258K)		,
GPR31	AAGCTTCAGCGGGCC <u>AAG</u> GC	CTCCTTCGGTCCTCCTATCGT
(Q221K)	ACTGGTCACC	TGTCAGAAGT
((2217)	(147)	
GPR32	CATGCCAACCGGCCCGCGAG	ACCAGCAGCAGCCTCGCGGG
5\$ (K255A)	GCTGCTGCT	CCGGTTGGCATG
<u> </u>	(279)	(280)
GPR40	CGGAAGCTGCGGGCC <u>AAA</u> TG	CTCCTTCGGTCCTCCTATCGT
(A223K)	GGTGGCCGGC	TGTCAGAAGT
	(265)	
GPR41	CAGAGGAGGGTG <u>AAG</u> GGGCT	CTCCTTCGGTCCTCCTATCGT
	GTTGGCG	TGTCAGAAGT

(A223K) (266) GPR43 (V221K) GGCGGCGCGAGCCAAGGGG CTCCTTCGGTCCTTGGCTGGT (267) APJ alternate approach; see below alternate approach; (L247K) BLR1 (V258K) GGGTGGCCATC (148) CEPR (L258K) GATCCTCGGC (149) 10 EBI1 (I262K) GAGCGCAACAAGGCCAAAA AGGTGATCATC (I50) EBI2 (L243K) AACACAATTATTCTTATT (L243K) ETBR-LP2 GAGAGCCAGCAAGAAAA CTCCTTCGGTCCT TGTCAGAAGT CTCCTTCGGTCCT CTCTTCGGTCCT CTCCTTCGGTCCT CTCTTCGGTCCT CTCCTTCGGTCCT CTCCTTCGGTCCT CTCCTTCGGTCCT CTCCTTCGG	h; see below CCTATCGT CCTATCGT
CTGGCTGTGG (267) APJ alternate approach; see below alternate approach (L247K) BLR1 (V258K) CAGCGGCAGAAGGCAAAAA GCTCCTTCGGTCCT (GARCCTCGCG (148) CEPR (L258K) CGGCAGAAGGCGAAGCGCAT (L258K) CGGCAGAAGGCGAAGCGCAT (L258K) GAGCCCACACACACACAC (149) CTCCTTCGGTCCT TGTCAGAAGT CTCCTTCGGTCCT CTCTTCGGTCCT CTCCTTCGGTCCT CTCC	h; see below CCTATCGT CCTATCGT
APJ S (L247K) BLR1 (V258K) CAGCGGCAGAAGGCAAAAA GGGTGGCCATC (I48) CEPR (L258K) CGGCAGAAGGCGAAGCGCAT (L258K) CGGCAGAAGGCGAAGCGCAT (I49) CGGCAGAAGGCCAAAA CTCCTTCGGTCCT TGTCAGAAGT CTCCTTCGGTCCT TGTCAGAAGT CTCCTTCGGTCCT TGTCAGAAGT CTCCTTCGGTCCT TGTCAGAAGT CTCCTTCGGTCCT TGTCAGAAGT CTCCTTCGGTCCT TGTCAGAAGT CTCTTCGGTCCT TGTCAGAAGT CTCCTTCGGTCCT CGTGGTG CTCTCAGAAGT CTCCTTCGGTCCT CGTGGTG CTCTCAGAAGT CTCCTTCGGTCCT CGTGGTG CTCTTCGGTCCT CGTGGTG CTCCTTCGGTCCT CGTGGTG CTCCTTCGGTCCT CGTGGTG CTCCTTCGGTCCT CGTGGTG CTCCTTCGGTCCT CGTGGTG CTCCTTCGGTCCT CGTGGTG CTCTTCGGTCCT CGTGGTC CTCTTCGGTCCT CGTGGTC CTCTTCGGTCCT CGTGTC CTCTTCGGTCCT CGTGTC CTCTTCGGTCCT CGTGTC CTCTTCGGTCCT CGTGTC CTCTTCGGTCCT CGTGTC CTCTTCGGTCCT CGTGTC CTTCGGTCCT CTCTTCGGTCCT CGTGTC CTCTTCGGTCCT CTCTTCGTCT CTCTTC	CCTATCGT CCTATCGT
APJ 5 (L247K) BLR1 (V258K) CAGCGGCAGAAGGCAAAA CTCCTTCGGTCCT TGTCAGAAGT (I48) CEPR (L258K) CGGCAGAAGGCGAAGCGCAT (L258K) CGGCAGAAGGCGAAGCGCAT (I49) CTCCTTCGGTCCT TGTCAGAAGT CTCTTCGGTCCT TGTCAGAAGT CTCCTTCGGTCCT CTCTTCGGTCCT CTCCTTCGGTCCT C	CCTATCGT CCTATCGT
BLR1 CAGCGGCAGAAGGCAAAA CTCCTTCGGTCCT TGTCAGAAGT (148) CEPR CGGCAGAAGGCGAAGCGCAT CTCCTTCGGTCCT TGTCAGAAGT (149) 10 EBI1 GAGCGCAACAAGGCCAAAA CTCCTTCGGTCCT TGTCAGAAGT (150) EBI2 GGTGTAAACAAAAAGGCTAA CTCCTTCGGTCCT TGTCAGAAGT (151) ETBR-LP2 GAGAGCCAGCTCAAGAGCCC CTCCTTCGGTCCT TGTCAGAAGT (151) ETBR-LP2 GAGAGCCAGCTCAAGAGCAC CTCCTTCGGTCCT TGTCAGAAGT (151) ETBR-LP2 GAGAGCCAGCTCAAGAGACC CTCCTTCGGTCCT TGTCAGAAGT (152) GHSR CCACAAGCAAACCAAGAAAA CTCCTTCGGTCCT	CCTATCGT CCTATCGT
S (L247K) BLR1 (V258K) CEPR (L258K) CEPR (L258K) CGGCAGAAGGCGAAGCGCAT (L258K) CGGCAGAAGGCGAAGCGCAT (L258K) CGGCAGAAGGCGAAGCGCAT (L258K) CTCCTTCGGTCCT TGTCAGAAGT CTCCTTCGGTCCT CTCTTCGGTCCT CTCCTTCGGTCCT CTCTTCGGTCCT CTCCTTCGGTCCT	CCTATCGT CCTATCGT
BLR1 (V258K) CAGCGGCAGAAGGCAAAAA GGGTGGCCATC (148) CEPR (CGGCAGAAGGCGAAGCGCAT (L258K) GATCCTCGCG (149) CTCCTTCGGTCCT TGTCAGAAGT CTCCTTCGGTCCT CTCCTTCGGTCCT CTCCTTCGGTCCT CTCCTTCGGTCCT CTCTTCGGTCCT CTCCTTCGGTCCT CTCTTCGGTCCT CTCCTTCGGTCCT CTCTTCGGTCCT CTCCTTCGGTCCT CTCCTTCGGTCCT CTCCTTCGGTCCT CTCCTTCGGTCCT CTCCTTCGGTCCT CTCCTTCGGTCCT CTCCTTCGGTCCT CTCCTTCGGTC	CCTATCGT
(V258K) GGGTGGCCATC (148) CEPR (L258K) GATCCTCGCG (149) CTCCTTCGGTCCT TGTCAGAAGT TGTCAGAAGT CTCCTTCGGTCCT TGTCAGAAGT CTCCTTCGGTCCT TGTCAGAAGT TGTCAGAAGT TGTCAGAAGT TGTCAGAAGT TGTCAGAAGT TGTCAGAAGT CTCCTTCGGTCCT TGTCAGAAGT	CCTATCGT
CEPR (L258K) CGGCAGAAGGCGAAGCGCAT (L258K) GATCCTCGCG (149) CTCCTTCGGTCCT TGTCAGAAGT CTCCTTCGGTCCT CTCTTCGGTCCT CTCCTTCGGTCCT CTCTTCGGTCCT CTCCTTCGGTCCT CTCCTTCGTCT CTCCTTCGTCT CTCCTTCG	CCTATCGT
CEPR (L258K) CGGCAGAAGGCGAAGCGCAT GATCCTCGCG (149) CTCCTTCGGTCCT TGTCAGAAGT CTCCTTCGGTCCT CTCTTCGGTCCT CTCCTTCGGTCCT CTCTTCGGTCCT CTCCTTCGGTCCT CTCCTTCGGTCCT CTCCTTCGGTCCT CTCCTTCGTCCT CTCCTTCGGTCCT CTCCTTCGGTCCT CTCCTTCGTCT CTCCTTCGTCT CTC	CCTATCGT
(L258K) GATCCTCGCG (149) TGTCAGAAGT GAGCGCAACAAGGCCAAAA CTCCTTCGGTCCT TGTCAGAAGT (I262K) AGGTGATCATC (I50) EBI2 (L243K) GAGCGCAACAAGGCCAAAA CTCCTTCGGTCCT TGTCAGAAGT CTCCTTCGGTCCT CTCTTCGGTCCT CTCCTTCGGTCCT CTCCTTCGTCT CTCT	CCTATCGT
(L258K) GATCCTCGCG (149) TGTCAGAAGT (I49) GAGCGCAACAAGGCCAAAA CTCCTTCGGTCCT TGTCAGAAGT (I262K) AGGTGATCATC (I50) EBI2 (L243K) GAGCGCAACAAGGCCAAAA CTCCTTCGGTCCT TGTCAGAAGT TGTCAGAAGT CTCCTTCGGTCCT TGTCAGAAGT CTCCTTCGGTCCT TGTCAGAAGT CTCTTCGGTCCT TGTCAGAAGT CTCCTTCGGTCCT TGTCAGAAGT TGTCAG	CCTATCGT
(149) 10 EBI1 (1262K) GAGCGCAACAAGGCCAAAA (TCCTTCGGTCCT TGTCAGAAGT (150) EBI2 (L243K) GAGTGATCATC (150) GAGTGATCATC (150) ETBR-LP2 GAGAGCCAGCTCAAGAAAAAGGCTAA (151) ETBR-LP2 GAGAGCCAGCTCAAGAGACAC CTCCTTCGGTCCT TGTCAGAAGT TGTCAGAAGT 15 (N358K) CGTGGTG (152) GHSR CCACAAGCAAAACCAAGAAAA CTCCTTCGGTCCTC	
10 EBI1 (I262K) GAGCGCAACAAGGCCAAAA (I262K) AGGTGATCATC (I50) EBI2 (L243K) GAGCGCAACAAGGCCAAAA AGGTGATCATC (I50) GGTGTAAACAAAAAGGCTAA (CTCCTTCGGTCCT TGTCAGAAGT TGTCAGAAGT CTCCTTCGGTCCT TGTCAGAAGT CTCCTTCGGTCCT TGTCAGAAGT CTCCTTCGGTCCT TGTCAGAAGT CTCCTTCGGTCCT TGTCAGAAGT CTCCTTCGGTCCT TGTCAGAAGT CTCCTTCGGTCCT TGTCAGAAGT CTCCTTCGGTCCT TGTCAGAAGT CTCCTTCGGTCCT TGTCAGAAGT CTCCTTCGGTCCT TGTCAGAAGT CTCCTTCGGTCCT CTCCTTCGGTCCT CTCCTTCGGTCCT CTCCTTCGGTCCT CTCCTTCGGTCCT CTCCTTCGGTCCT CTCCTTCGGTCCT CTCCTTCGGTCCT CTCTTCGGTCCT CTCCTTCGGTCCT CTCTTCGGTCCT CTCCTTCGGTCCT CTCCTTCGGTCCT CTCCTTCGGTCCT CTCCTTCGTCCT CTCCTTCGGTCCT CTCCTTCGGTCCT CTCCTTCGTCT CTCCTTCGTCT CTC	
(I262K) AGGTGATCATC (I50) EBI2 (L243K) GGTGTAAACAAAAAGGCTAA (L243K) AAACACAATTATTCTTATT (I51) ETBR-LP2 GAGAGCCAGCTCAAGAGCAC CTCCTTCGGTCCT TGTCAGAAGT 15 (N358K) GHSR CCACAAGCAAAACCAAGAAAA CTCCTTCGGTCCTC	
(I262K) AGGTGATCATC (I50) EBI2 (L243K) GGTGTAAACAAAAAGGCTAA (L243K) AAACACAATTATTCTTATT (I51) ETBR-LP2 GAGAGCCAGCTCAAGAGCAC CTCCTTCGGTCCT TGTCAGAAGT 15 (N358K) GHSR CCACAAGCAAAACCAAGAAAA CTCCTTCGGTCCTC	
(150) EBI2 GGTGTAAACAAAAAGGCTAA CTCCTTCGGTCCT (L243K) AAACACAATTATTCTTATT TGTCAGAAGT ETBR-LP2 GAGAGCCAGCTCAAGAGCAC CTCCTTCGGTCCT (N358K) CGTGGTG TGTCAGAAGT GHSR CCACAAGCAAAACCAAGAAAA CTCCTTCGGTCCTC	CCTATCGT
EBI2 (L243K) GGTGTAAACAAAAAGGCT <u>AA</u> (L243K) AAACACAATTATTCTTATT (I51) ETBR-LP2 GAGAGCCAGCTC <u>AAG</u> AGCAC CTCCTTCGGTCCT TGTCAGAAGT CTCTTCGGTCCT TGTCAGAAGT CTCCTTCGGTCCT CTCTTCGGTCCT CTCCTTCGGTCCT CTCTTCGGTCCT CTCCTTCGGTCCT CTCCTT	CCTATCGT
(L243K) AAACACAATTATTCTTATT TGTCAGAAGT (151) ETBR-LP2 GAGAGCCAGCTCAAGAGCAC CTCCTTCGGTCCT TGTCAGAAGT (152) GHSR CCACAAGCAAAACCAAGAAAA CTCCTTCGGTCCTC	CCTATCGT
(L243K) AAACACAATTATTCTTATT (151) ETBR-LP2 GAGAGCCAGCTCAAGAGCAC CTCCTTCGGTCCTT GTCAGAAGT TGTCAGAAGT TGTCAGAAGT CGTGGTG TGTCAGAAGT TGTCAGAAGT CTCCTTCGGTCCTT TGTCAGAAGT CTCCTTCGGTCCTT TGTCAGAAGT CTCCTTCGGTCCTT TGTCAGAAGT TGTCAGAAG	cernical
(151) ETBR-LP2 GAGAGCCAGCTCAAGAGCAC CTCCTTCGGTCCTT 15 (N358K) CGTGGTG TGTCAGAAGT (152) GHSR CCACAAGCAAACCAAGAAAA CTCCTTCGGTCCTT	
ETBR-LP2 GAGAGCCAGCTCAAGAGCAC CTCCTTCGGTCCTTCTCTCTCTCTCTCTCTCTCTCTCT	
15 (N358K) CGTGGTG TGTCAGAAGT (152) CCACAAGCAAACCAAGAAAA CTCCTTCGGTCCTC	
GHSR CCACAAGCAAACCAAGAAAA CTCCTTCGGTCCTC	CCTATCGT
GHSR CCACAAGCAAACCAAGAAAA CTCCTTCGGTCCTC	
	CCTATCGT
(V262K) TGCTGGCTGT TGTCAGAAGT	cemicai
(153)	
	·
GPCR-CNS CTAGAGAGTCAGATGAAGTG CTCCTTCGGTCCTC	CCTATCGT
(N491K) TACAGTAGTGGCAC TGTCAGAAGT	
(155)	
20 GPR-NGA CGGACAAAAGTGAAAACTAA CTCCTTCGGTCCTC	CCTATCGT
(I275K) <u>A</u> AAGATGTTCCTCATT TGTCAGAAGT	50601
$\frac{1}{(156)}$	
	CTATEGT
(F236K) AACCATGTTTGTG TGTCAGAAGT	
(157)	
HB954 GGGAGGCCGAGCTGAAAGCC CTCCTTCGGTCCTC	CCTATCGT
25 (H265K) ACCCTGCTC TGTCAGAAGT	
(158)	
	A TOTO CO
	AIGIGCC
(V765K) CACATTGCCCTG AAGTACGCCC	
(268) (154)	
HM74 CAAGATCAAGAGAGCCAAAA CTCCTTCGGTCCTC	CTATCGT
(I230K) CCTTCATCATG TGTCAGAAGT	
(1230K) (159)	j
	CIATCGT
(T273K) ATGCTGTTTGTC TGTCAGAAGT	j
(160)	
OGR1 GCAAGGACCAGATCAAGCGG CTCCTTCGGTCCTC	CTATCGT
(Q227K) CTGGTGCTCA TGTCAGAAGT	
(Q227K) (161)	
Serotonin 5HT _{2A} alternate approach; see below alternate approach;	see below
35 (C322K)	1
	goo bols
, , , , , , , , , , , , , , , , , , ,	see below
(S310K)	1

V28	CAAGAAAGCCAAAGCC <u>AAG</u>	CTCCTTCGGTCCTCCTATCGT
(I230K)	AAACTGATCCTTCTG	TGTCAGAAGT
(1230K)	(162)	

The non-endogenous human GPCRs were then sequenced and the derived and verified nucleic acid and amino acid sequences are listed in the accompanying "Sequence Listing" appendix

5 to this patent document, as summarized in Table C below:

Table C

ſ	Mutated GPCR	Nucleic Acid Sequence	Amino Acid Sequence
		Listing	Listing
Ī	GPR1	SEQ.ID.NO.: 163	SEQ.ID.NO.: 164
	(F245K)		
10	GPR4	SEQ.ID.NO.: 165	SEQ.ID.NO.: 166
1	(K223A)		
	GPR5	SEQ.ID.NO.: 167	SEQ.ID.NO.: 168
١	(V224K)		
	GPR7	SEQ.ID.NO.: 169	SEQ.ID.NO.: 170
15	(T250K)		
Ī	GPR8	SEQ.ID.NO.: 171	SEQ.ID.NO.: 172
	(T259K)		
Ī	GPR9	SEQ.ID.NO.: 173	SEQ.ID.NO.: 174
	(M254K)		
20	GPR9-6	SEQ.ID.NO.: 175	SEQ.ID.NO.: 176
1	(L241K)		
	GPR10	SEQ.ID.NO.: 177	SEQ.ID.NO.: 178
	(F276K)		
	GPR15	SEQ.ID.NO.: 179	SEQ.ID.NO.: 180
25	(I240K)		
	GPR17	SEQ.ID.NO.: 181	SEQ.ID.NO.: 182
l	(V234K)		
	GPR18	SEQ.ID.NO.: 183	SEQ.ID.NO.: 184
	(I231K)		
30	GPR20	SEQ.ID.NO.: 185	SEQ.ID.NO.: 186
	(M240K)		
	GPR21	SEQ.ID.NO.: 187	SEQ.ID.NO.: 188
ĺ	(A251K)		
	GPR22	SEQ.ID.NO.: 189	SEQ.ID.NO.: 190
3\$	(F312K)		
	GPR24	SEQ.ID.NO.: 191	SEQ.ID.NO.: 192
	(T304K))		
l	GPR30	SEQ.ID.NO.: 193	SEQ.ID.NO.: 194

	(L258K)		
	GPR31	SEQ.ID.NO.: 195	SEQ.ID.NO.: 196
		3EQ.ID.110 193	3EQ.ID.NO 190
	(Q221K)	GEO TO MO OVO	
	GPR32	SEQ.ID.NO.: 269	SEQ.ID.NO.: 270
2	(K255A)		
	GPR40	SEQ.ID.NO.: 271	SEQ.ID.NO.: 272
	(A223K)	CEC PO MO 050	and make
	GPR41	SEQ.ID.NO.: 273	SEQ.ID.NO.: 274
10	(A223K)) GPR43	CEO ID NO. 275	SEQ.ID.NO.: 276
1	(V221K)	SEQ.ID.NO.: 275	SEQ.ID.NO.: 276
	APJ	SEQ.ID.NO.: 197	SEQ.ID.NO.: 198
	(L247K)	SEQ.ID.NO 197	3EQ.ID.NO 198
	BLR1	SEQ.ID.NO.: 199	SEQ.ID.NO.: 200
15	(V258K)	BEQ.ID.IVO.: 199	020.20.10200
	CEPR	SEQ.ID.NO.: 201	SEQ.ID.NO.: 202
	(L258K)	524.25.1 (6.1.261	
	EBI1	SEQ.ID.NO.: 203	SEQ.ID.NO.: 204
	(I262K)		
20	EBI2	SEQ.ID.NO.: 205	SEQ.ID.NO.: 206
	(L243K)		
	ETBR-LP2	SEQ.ID.NO.: 207	SEQ.ID.NO.: 208
	(N358K)		
إ	GHSR	SEQ.ID.NO.: 209	SEQ.ID.NO.: 210
23	(V262K)		
	GPCR-CNS	SEQ.ID.NO.: 211	SEQ.ID.NO.: 212
-	(N491K) GPR-NGA	CEO ID NO - 212	SEQ.ID.NO.: 214
	(I275K)	SEQ.ID.NO.: 213	SEQ.ID.NO.: 214
30	H9a	SEQ.ID.NO.: 215	SEQ.ID.NO.: 216
	(F236K)	3EQ.ID.140 213	52Q.15.14O 210
Ì	H9b	SEQ.ID.NO.: 217	SEQ.ID.NO.: 218
	(F236K)	022.22.10.121.	52 Q.12 II (5 II 21 6
Ī	HB954	SEQ.ID.NO.: 219	SEQ.ID.NO.: 220
3\$	(H265K)		
- 1	HG38	SEQ.ID.NO.: 277	SEQ.ID.NO.: 278
	(V765K)		
	HM74	SEQ.ID.NO.: 221	SEQ.ID.NO.: 222
	(I230K)		
40	MIG	SEQ.ID.NO.: 223	SEQ.ID.NO.: 224
	(T273K)		
	OGR1	SEQ.ID.NO.: 225	SEQ.ID.NO.: 226
- }	(Q227K)	GEO ID NO - 227	CEO ID NO. 220
	Serotonin 5HT _{2A}	SEQ.ID.NO.: 227	SEQ.ID.NO.: 228
45	(C322K)		
	Serotonin 5HT _{2C}	SEQ.ID.NO.: 229	SEQ.ID.NO.: 230
	(S310K)		
	V28	SEQ.ID.NO.: 231	SEQ.ID.NO.: 232
	(I230K)		Ĭ
_		· · · · · · · · · · · · · · · · · · ·	

5

2. Alternate Mutation Approaches for Employment of the Proline Marker Algorithm: APJ; Serotonin 5HT_{2A}; Serotonin 5HT_{2C}; and GPR30

Although the above site-directed mutagenesis approach is particularly preferred, other approaches can be utilized to create such mutations; those skilled in the art are readily credited with selecting approaches to mutating a GPCR that fits within the particular needs of the artisan.

a. APJ

Preparation of the non-endogenous, human APJ receptor was accomplished by mutating L247K. Two oligonucleotides containing this mutation were synthesized:

5'- GGCTTAAGAGCATCATCGTGGTGCTGGTG-3' (SEQ.ID.NO.: 233)

10 5'-GTCACCACCACCACCACGATGATGCTCTTAAGCC-3' (SEQ.ID.NO.: 234)

The two oligonucleotides were annealed and used to replace the NaeI-BstEII fragment of human, endogenous APJ to generate the non-endogenous, version of human APJ.

b. Serotonin 5HT_{2A}

cDNA containing the point mutation C322K was constructed by utilizing the restriction

15 enzyme site Sph I which encompasses amino acid 322. A primer containing the C322K mutation:

5'-CAAAGAAAGTACTGGGCATCGTCTTCTTCCT-3' (SEQ.ID.NO: 235)

was used along with the primer from the 3' untranslated region of the receptor:

5'-TGCTCTAGATTCCAGATAGGTGAAAA CTTG-3' (SEQ.ID.NO.: 236)

to perform PCR (under the conditions described above). The resulting PCR fragment was then

used to replace the 3' end of endogenous 5HT_{2A} cDNA through the T4 polymerase blunted Sph I site.

c. Serotonin 5HT_{2C}

The cDNA containing a S310K mutation was constructed by replacing the Sty I restriction fragment containing amino acid 310 with synthetic double stranded oligonucleotides that encode

- 56 -

the desired mutation. The sense strand sequence utilized had the following sequence:

5'-CTAGGGGCACCATGCAGGCTATCAACAATGAAAGAAAGCTAAGAAAGTC-3' (SEO. ID.NO.: 237)

and the antisense strand sequence utilized had the following sequence:

5 5'-CAAGGACTTTCTTAGCTTTTCATTGTTGATAGCCTGCATGGTGCCC-3' (SEQ. ID. NO.: 238)

d. GPR30

Prior to generating non-endogenous GPR30, several independent pCR2.1/GPR30 isolates were sequenced in their entirety in order to identify clones with no PCR-generated mutations. A clone having no mutations was digested with EcoR1 and the endogenous GPR30 cDNA fragment was transferred into the CMV-driven expression plasmid pCI-neo (Promega), by digesting pCI-Neo with EcoR1 and subcloning the EcoRI-liberated GPR30 fragment from pCR2.1/GPR30, to generate pCI/GPR30. Thereafter, the leucine at codon 258 was mutated to a lysine using a Quick-Change™ Site-Directed Mutagenesis Kit (Stratagene, #200518), according to manufacturer's instructions, and the following primers:

5'-CGGCGGCAGAAGGCGAAACGCATGATCCTCGCGGT-3' (SEQ.ID.NO.: 239) and 5'-ACCGCGAGGATCATGCGTTTCGCCTTCTGC CGCCG-3' (SEQ.ID.NO.: 240)

Receptor (Endogenous and Mutated) Expression

20

Example 3

15

10

Although a variety of cells are available to the art for the expression of proteins, it is most preferred that mammalian cells be utilized. The primary reason for this is predicated upon practicalities, *i.e.*, utilization of, *e.g.*, yeast cells for the expression of a GPCR, while possible,

introduces into the protocol a non-mammalian cell which may not (indeed, in the case of yeast, does not) include the receptor-coupling, genetic-mechanism and secretary pathways that have evolved for mammalian systems – thus, results obtained in non-mammalian cells, while of potential use, are not as preferred as that obtained from mammalian cells. Of the mammalian cells, COS-7, 293 and 293T cells are particularly preferred, although the specific mammalian cell utilized can be predicated upon the particular needs of the artisan.

Unless otherwise noted herein, the following protocol was utilized for the expression of the endogenous and non-endogenous human GPCRs. Table D lists the mammalian cell and number utilized (per 150mm plate) for GPCR expression.

10

Table D

Receptor Name	Mammalian Cell
(Endogenous or Non-	(Number Utilized)
Endogenous)	
GPR17	293 (2 x 10 ⁴)
GPR30	293 (4 x 10 ⁴)
APJ	COS-7 (5X10 ⁶)
ETBR-LP2	293 (1 x 10 ⁷)
	293T (1 x 10 ⁷)
GHSR	293 (1 x 10 ⁷)
•	293T (1 x 10 ⁷)
MIG	293 (1 x 10 ⁷)
Serotonin 5HT _{2A}	293T (1 x 10 ⁷)
Serotonin 5HT _{2c}	293T (1 x 10 ⁷)

15

20

On day one, mammalian cells were plated out. On day two, two reaction tubes were prepared (the proportions to follow for each tube are per plate): tube A was prepared by mixing 20µg DNA (e.g., pCMV vector; pCMV vector with endogenous receptor cDNA, and pCMV vector with non-endogenous receptor cDNA.) in 1.2ml serum free DMEM (Irvine Scientific,

- 58 -

Irvine, CA); tube B was prepared by mixing 120µl lipofectamine (Gibco BRL) in 1.2ml serum free DMEM. Tubes A and B were then admixed by inversions (several times), followed by incubation at room temperature for 30-45min. The admixture is referred to as the "transfection mixture". Plated cells were washed with 1XPBS, followed by addition of 10ml serum free DMEM. 2.4ml of the transfection mixture was then added to the cells, followed by incubation for 4hrs at 37°C/5% CO₂. The transfection mixture was then removed by aspiration, followed by the addition of 25ml of DMEM/10% Fetal Bovine Serum. Cells were then incubated at 37°C/5% CO₂. After 72hr incubation, cells were then harvested and utilized for analysis.

1. Gi-Coupled Receptors: Co-Transfection with Gs-Coupled Receptors

In the case of GPR30, it has been determined that this receptor couples the G protein Gi. Gi is known to inhibit the enzyme adenylyl cyclase, which is necessary for catalyzing the conversion of ATP to cAMP. Thus, a non-endogenous, constitutively activated form of GPR30 would be expected to be associated with decreased levels of cAMP. Assay confirmation of a non-endogenous, constitutively activated form of GPR30 directly via measurement of decreasing levels of cAMP, while viable, can be preferably measured by cooperative use of a Gs-coupled receptor. For example, a receptor that is Gs-coupled will stimulate adenylyl cyclase, and thus will be associated with an increase in cAMP. The assignee of the present application has discovered that the orphan receptor GPR6 is an endogenous, constitutively activated GPCR. GPR6 couples to the Gs protein. Thus when co-transfected, one can readily verify that a putative GPR30-mutation leads to constitutive activation thereof: *i.e.*, an endogenous, constitutively activated GPR6/endogenous, non-constitutively activated GPR30 cell will evidence an elevated level of cAMP when compared with an endogenous, constitutively active GPR6/non-endogenous, constitutively activated GPR30 (the latter evidencing a comparatively lower level of cAMP).

10

15

- 59 -

Assays that detect cAMP can be utilized to determine if a candidate compound is e.g., an inverse agonist to a Gs-associated receptor (i.e., such a compound would decrease the levels of cAMP) or a Gi-associated receptor (or a Go-associated receptor) (i.e., such a candidate compound would increase the levels of cAMP). A variety of approaches known in the art for measuring cAMP can be utilized; a preferred approach relies upon the use of anti-cAMP antibodies. Another approach, and most preferred, utilizes a whole cell second messenger reporter system assay. Promoters on genes drive the expression of the proteins that a particular gene encodes. Cyclic AMP drives gene expression by promoting the binding of a cAMP-responsive DNA binding protein or transcription factor (CREB) which then binds to the promoter at specific sites called cAMP response elements and drives the expression of the gene. Reporter systems can be constructed which have a promoter 10 containing multiple cAMP response elements before the reporter gene, e.g., \u03b3-galactosidase or luciferase. Thus, an activated receptor such as GPR6 causes the accumulation of cAMP which then activates the gene and expression of the reporter protein. Most preferably, 293 cells are cotransfected with GPR6 (or another Gs-linked receptor) and GPR30 (or another Gi-linked receptor) plasmids, preferably in a 1:1 ratio, most preferably in a 1:4 ratio. Because GPR6 is an endogenous, constitutively active receptor that stimulates the production of cAMP, GPR6 strongly activates the reporter gene and its expression. The reporter protein such as β-galactosidase or luciferase can then be detected using standard biochemical assays (Chen et al. 1995). Cotransfection of endogenous, constitutively active GPR6 with endogenous, non-constitutively active GPR30 evidences an increase in the luciferase reporter protein. Conversely, co-transfection of endogenous, constitutively active GPR6 with non-endogenous, constitutively active GPR30 evidences a drastic decrease in expression of luciferase. Several reporter plasmids are known and available in the art for measuring a second messenger assay. It is considered well within the

15

- 60 -

skilled artisan to determine an appropriate reporter plasmid for a particular gene expression based primarily upon the particular need of the artisan. Although a variety of cells are available for expression, mammalian cells are most preferred, and of these types, 293 cells are most preferred. 293 cells were transfected with the reporter plasmid pCRE-Luc/GPR6 and non-endogenous, constitutively activated GPR30 using a Mammalian TransfectionTM Kit (Stratagene, #200285) CaPO₄ precipitation protocol according to the manufacturer's instructions (*see*, 28 Genomics 347 (1995) for the published endogenous GPR6 sequence). The precipitate contained 400ng reporter, 80ng CMV-expression plasmid (having a 1:4 GPR6 to endogenous GPR30 or non-endogenous GPR30 ratio) and 20ng CMV-SEAP (a transfection control plasmid encoding secreted alkaline phosphatase). 50% of the precipitate was split into 3 wells of a 96-well tissue culture dish (containing 4X10⁴ cells/well); the remaining 50% was discarded. The following morning, the media was changed. 48 hr after the start of the transfection, cells were lysed and examined for luciferase activity using a LucilteTM Kit (Packard, Cat. # 6016911) and Trilux 1450 MicrobetaTM liquid scintillation and luminescence counter (Wallac) as per the vendor's instructions. The data were analyzed using GraphPad Prism 2.0a (GraphPad Software Inc.).

With respect to GPR17, which has also been determined to be Gi-linked, a modification of the foregoing approach was utilized, based upon, *inter alia*, use of another Gs-linked endogenous receptor, GPR3 (*see* 23 Genomics 609 (1994) and 24 Genomics 391 (1994)). Most preferably, 293 cells are utilized. These cells were plated-out on 96 well plates at a density of 2 x 10⁴ cells per well and were transfected using Lipofectamine Reagent (BRL) the following day according to manufacturer instructions. A DNA/lipid mixture was prepared for each 6-well transfection as follows: 260ng of plasmid DNA in 100µl of DMEM were gently mixed with 2µl of lipid in 100µl of DMEM (the 260ng of plasmid DNA consisted of 200ng of a 8xCRE-Luc

10

15

reporter plasmid (see below), 50ng of pCMV comprising endogenous receptor or non-endogenous receptor or pCMV alone, and 10ng of a GPRS expression plasmid (GPRS in pcDNA3 (Invitrogen)). The 8XCRE-Luc reporter plasmid was prepared as follows: vector SRIF-β-gal was obtained by cloning the rat somatostatin promoter (-71/+51) at BgIV-HindΠ site in the pβgal-Basic Vector (Clontech). Eight (8) copies of cAMP response element were obtained by PCR from an adenovirus template AdpCF126CCRE8 (see 7 Human Gene Therapy 1883 (1996)) and cloned into the SRIF-β-gal vector at the Kpn-BgIV site, resulting in the 8xCRE-β-gal reporter vector. The 8xCRE-Luc reporter plasmid was generated by replacing the beta-galactosidase gene in the 8xCRE-β-gal reporter vector with the luciferase gene obtained from the pGL3-basic vector (Promega) at the HindIII-BamHI site. Following 30min. incubation at room temperature, the DNA/lipid mixture was diluted with 400 µl of DMEM and 100µl of the diluted mixture was added to each well. 100 µl of DMEM with 10% FCS were added to each well after a 4hr incubation in a cell culture incubator. The next morning the transfected cells were changed with 200 µl/well of DMEM with 10% FCS. Eight (8) hours later, the wells were changed to 100 µl /well of DMEM without phenol red, after one wash with PBS. Luciferase activity were measured the next day using the LucLite™ reporter gene assay kit (Packard) following manufacturer instructions and read on a 1450 MicroBeta™ scintillation and luminescence counter (Wallac).

Figure 4 evidences that constitutively active GPR30 inhibits GPR6-mediated activation of CRE-Luc reporter in 293 cells. Luciferase was measured at about 4.1 relative light units in the expression vector pCMV. Endogenous GPR30 expressed luciferase at about 8.5 relative light units, whereas the non-endogenous, constitutively active GPR30 (L258K), expressed luciferase at about 3.8 and 3.1 relative light units, respectively. Co-transfection of endogenous GPR6 with endogenous GPR30, at a 1:4 ratio, drastically increased luciferase

10

15

- 62 -

expression to about 104.1 relative light units. Co-transfection of endogenous GPR6 with non-endogenous GPR30 (L258K), at the same ratio, drastically decreased the expression, which is evident at about 18.2 and 29.5 relative light units, respectively. Similar results were observed with respect to GPR17 with respect to co-transfection with GPR3, as set forth in Figure 5.

Example 3 ASSAYS FOR DETERMINATION OF CONSTITUTIVE ACTIVITY OF NON-ENDOGENOUS GPCRS

A. Membrane Binding Assays

1. [³⁵S]GTPγS Assay

5

15

20

When a G protein-coupled receptor is in its active state, either as a result of ligand binding or constitutive activation, the receptor couples to a G protein and stimulates the release of GDP and subsequent binding of GTP to the G protein. The alpha subunit of the G protein-receptor complex acts as a GTPase and slowly hydrolyzes the GTP to GDP, at which point the receptor normally is deactivated. Constitutively activated receptors continue to exchange GDP for GTP. The non-hydrolyzable GTP analog, [35S]GTPγS, can be utilized to demonstrate enhanced binding of [35S]GTPγS to membranes expressing constitutively activated receptors. The advantage of using [35S]GTPγS binding to measure constitutive activation is that: (a) it is generically applicable to all G protein-coupled receptors; (b) it is proximal at the membrane surface making it less likely to pick-up molecules which affect the intracellular cascade.

The assay utilizes the ability of G protein coupled receptors to stimulate [35 S]GTP γ S binding to membranes expressing the relevant receptors. The assay can, therefore, be used in the direct identification method to screen candidate compounds to known, orphan and constitutively activated G protein-coupled receptors. The assay is generic and has application

to drug discovery at all G protein-coupled receptors.

The [35S]GTPγS assay was incubated in 20 mM HEPES and between 1 and about 20mM MgCl₂ (this amount can be adjusted for optimization of results, although 20mM is preferred) pH 7.4, binding buffer with between about 0.3 and about 1.2 nM [35S]GTPγS (this amount can be adjusted for optimization of results, although 1.2 is preferred) and 12.5 to 75 μg membrane protein (*e.g.* COS-7 cells expressing the receptor; this amount can be adjusted for optimization, although 75μg is preferred) and 1 μM GDP (this amount can be changed for optimization) for 1 hour. Wheatgerm agglutinin beads (25 μl; Amersham) were then added and the mixture was incubated for another 30 minutes at room temperature. The tubes were then centrifuged at 1500 x g for 5 minutes at room temperature and then counted in a scintillation counter.

A less costly but equally applicable alternative has been identified which also meets the needs of large scale screening. Flash platesTM and WallacTM scintistrips may be utilized to format a high throughput [35S]GTPγS binding assay. Furthermore, using this technique, the assay can be utilized for known GPCRs to simultaneously monitor tritiated ligand binding to the receptor at the same time as monitoring the efficacy via [35S]GTPγS binding. This is possible because the Wallac beta counter can switch energy windows to look at both tritium and 35S-labeled probes. This assay may also be used to detect other types of membrane activation events resulting in receptor activation. For example, the assay may be used to monitor 32P phosphorylation of a variety of receptors (both G protein coupled and tyrosine kinase receptors). When the membranes are centrifuged to the bottom of the well, the bound [35S]GTPγS or the 32P-phosphorylated receptor will activate the scintillant which is coated of the wells. Scinti® strips (Wallac) have been used to demonstrate this principle. In addition, the assay also has utility for measuring ligand binding to receptors using radioactively labeled ligands. In a similar manner, when the radiolabeled bound

10

15

5

10

15

20

ligand is centrifuged to the bottom of the well, the scintistrip label comes into proximity with the radiolabeled ligand resulting in activation and detection.

Representative results of graph comparing Control (pCMV), Endogenous APJ and Non-Endogenous APJ, based upon the foregoing protocol, are set forth in Figure 6.

2. Adenylyl Cyclase

A Flash PlateTM Adenylyl Cyclase kit (New England Nuclear; Cat. No. SMP004A) designed for cell-based assays was modified for use with crude plasma membranes. The Flash Plate wells contain a scintillant coating which also contains a specific antibody recognizing cAMP. The cAMP generated in the wells was quantitated by a direct competition for binding of radioactive cAMP tracer to the cAMP antibody. The following serves as a brief protocol for the measurement of changes in cAMP levels in membranes that express the receptors.

Transfected cells were harvested approximately three days after transfection. Membranes were prepared by homogenization of suspended cells in buffer containing 20mM HEPES, pH 7.4 and 10mM MgCl₂. Homogenization was performed on ice using a Brinkman PolytronTM for approximately 10 seconds. The resulting homogenate was centrifuged at 49,000 X g for 15 minutes at 4°C. The resulting pellet was then resuspended in buffer containing 20mM HEPES, pH 7.4 and 0.1 mM EDTA, homogenized for 10 seconds, followed by centrifugation at 49,000 X g for 15 minutes at 4°C. The resulting pellet can be stored at -80°C until utilized. On the day of measurement, the membrane pellet was slowly thawed at room temperature, resuspended in buffer containing 20mM HEPES, pH 7.4 and 10mM MgCL₂ (these amounts can be optimized, although the values listed herein are prefereed), to yield a final protein concentration of 0.60mg/ml (the resuspended membranes were placed on ice until use).

cAMP standards and Detection Buffer (comprising 2 µCi of tracer [125] cAMP (100 µl] to

11 ml Detection Buffer) were prepared and maintained in accordance with the manufacturer's instructions. Assay Buffer was prepared fresh for screening and contained 20mM HEPES, pH 7.4, 10mM MgCl₂, 20mM (Sigma), 0.1 units/ml creatine phosphokinase (Sigma), 50 µM GTP (Sigma), and 0.2 mM ATP (Sigma); Assay Buffer can be stored on ice until utilized. The assay was initiated by addition of 50ul of assay buffer followed by addition of 50ul of membrane suspension to the NEN Flash Plate. The resultant assay mixture is incubated for 60 minutes at room temperature followed by addition of 100ul of detection buffer. Plates are then incubated an additional 2-4 hours followed by counting in a Wallac MicroBeta scintillation counter. Values of cAMP/well are extrapolated from a standard cAMP curve which is contained within each assay plate. The foregoing assay was utilized with respect to analysis of MIG.

B. Reporter-Based Assays

1. CREB Reporter Assay (Gs-associated receptors)

A method to detect Gs stimulation depends on the known property of the transcription factor CREB, which is activated in a cAMP-dependent manner. A PathDetect CREB trans-Reporting System (Stratagene, Catalogue # 219010) was utilized to assay for Gs coupled activity in 293 or 293T cells. Cells were transfected with the plasmids components of this above system and the indicated expression plasmid encoding endogenous or mutant receptor using a Mammalian Transfection Kit (Stratagene, Catalogue #200285) according to the manufacurer's instructions. Briefly, 400 ng pFR-Luc (luciferase reporter plasmid containing Gal4 recognition sequences), 40 ng pFA2-CREB (Gal4-CREB fusion protein containing the Gal4 DNA-binding domain), 80 ng CMV-receptor expression plasmid (comprising the receptor) and 20 ng CMV-SEAP (secreted alkaline phosphatase expression plasmid; alkaline phosphatase activity is measured in the media of transfected cells to control for variations in

10

15

- 66 -

transfection efficiency between samples) were combined in a calcium phosphate precipitate as per the Kit's instructions. Half of the precipitate was equally distributed over 3 wells in a 96-well plate, kept on the cells overnight, and replaced with fresh medium the following morning. Forty-eight (48) hr after the start of the transfection, cells were treated and assayed for luciferase activity as set forth with resepct to the GPR30 system, above. This assay was used with respect to GHSR.

2. AP1 reporter assay (Gq-associated receptors)

Ae method to detect Gq stimulation depends on the known property of Gq-dependent phospholipase C to cause the activation of genes containing AP1 elements in their promoter. A Pathdetect AP-1 cis-Reporting System (Stratagene, Catalogue # 219073) was utilized following the protocl set forth above with respect to the CREB reporter assay, except that the components of the calcium phosphate precipitate were 410 ng pAP1-Luc, 80 ng receptor expression plasmid, and 20 ng CMV-SEAP. This assay was used with respect to ETBR-LP2

C. Intracellular IP3 Accumulation Assay

On day 1, cells comprising the serotonin receptors (endogenous and mutated) were plated onto 24 well plates, usually 1×10^5 cells/well. On day 2 cells were transfected by firstly mixing 0.25 ug DNA in 50 ul serumfree DMEM/well and 2 ul lipofectamine in 50 µl serumfree DMEM/well. The solutions were gently mixed and incubated for 15-30 min at room temperature. Cells were washed with 0.5 ml PBS and 400 µl of serum free media was mixed with the transfection media and added to the cells. The cells were then incubated for 3-4 hrs at 37° C/5%CO₂ and then the transfection media was removed and replaced with 1ml/well of regular growth media. On day 3 the cells were labeled with 3 H-myo-inositol. Briefly, the media was removed the cells were washed with 0.5 ml PBS. Then 0.5 ml inositol-free/serumfree media (GIBCO BRL) was added/well with 0.25 µCi of 3 H-myo-inositol/well

5

10

15

- 67 -

and the cells were incubated for 16-18 hrs o/n at 37°C/5%CO2. On Day 4 the cells were washed with 0.5 ml PBS and 0.45 ml of assay medium was added containing inositolfree/serum free media $10 \mu M$ pargyline 10 mM lithium chloride or 0.4 ml of assay medium and 50 ul of 10x ketanserin (ket) to final concentration of 10µM. The cells were then incubated for 30 min at 37°C. The cells were then washed with 0.5 ml PBSand 200 ul of fresh/icecold stop solution (1M KOH; 18 mM Na-borate; 3.8 mM EDTA) was added/well. The solution was kept on ice for 5-10 min or until cells were lysed and then neutralized by 200 µl of fresh/ice cold neutralization sol. (7.5 % HCL). The lysate was then transferred into 1.5 ml eppendorf tubes and 1 ml of chloroform/methanol (1:2) was added/tube. The solution was vortexed for 15 sec and the upper phase was applied to a Biorad AG1-X8 anion exchange resin (100-200 mesh). Firstly, the resin was washed with water at 1:1.25 W/V and 0.9 ml of upper phase was loaded onto the column. The column was washed with 10 mls of 5 mM myo-inositol and 10 ml of 5 mM Na-borate/60mM Na-formate. The inositol tris phosphates were eluted into scintillation vials containing 10 ml of scintillation cocktail with 2 ml of 0.1 M formic acid/ 1 M ammonium formate. The columns were regenerated by washing with 10 ml of 0.1 M formic acid/3M ammonium formate and rinsed twice with dd H₂O and stored at 4°C in water.

Figure 7 provides an illustration of IP3 production from the human 5-HT_{2A} receptor that incorporates the C322K mutation. While these results evidence that the Proline Mutation Algorithm approach constitutively activates this receptor, for purposes of using such a receptor for screening for identification of potential therapeutics, a more robust difference would be preferred. However, because the activated receptor can be utilized for understanding and elucidating the role of constitutive activation and for the identification of compounds that

10

15

can be further examined, we believe that this difference is itself useful in differentiating between the endogenous and non-endogenous versions of the human $5\mathrm{HT}_{2A}$ receptor.

D. **Result Summary**

The results for the GPCRs tested are set forth in Table E where the Per-Cent Increase indicates the percentage difference in results observed for the non-endogenous GPCR as compared 5 to the endogenous GPCR; these values are followed by parenthetical indications as to the type of assay utilized. Additionally, the assay sytem utilized is parenthetically listed (and, in cases where different Host Cells were used, both are listed). As these results indicate, a variety of assays can be utilized to determine constitutive activity of the non-endogenous versions of the human GPCRs. 10 Those skilled in the art, based upon the foregoing and with reference to information available to the art, are creditied with theability to selelect and/ot maximize a particular assay approach that suites the particualr needs of theinvestigator.

Table E

Per-Cent Difference

61.1(AP1-Luc - 293T)

Receptor Identifier

1	5

(Codon Mutation)	
GPR17	74.5
(V234K)	(CRE-Luc)
GPR30	71.6
(L258K)	(CREB)
APJ	49.0
(L247K)	(GTP _Y S)
ETBR-LP2	48.4(AP1-Luc - 293)
(N358K)	61.1(AP1-Luc – 293T)

20

GHSR	58.9(CREB - 293)	
(V262K)	35.6(CREB - 293T)	

MIG	39 (cAMP)
(I230K)	
Serotonin 5HT _{2A}	33.2 (IP ₃)
(C322K)	
Serotonin 5HT _{2C}	39.1(IP ₃)
(S310K)	

5

10

15

Example 6

Tissue Distribution of Endogenous Orphan GPCRs

Using a commercially available human-tissue dot-blot format, endogenous orphan GPCRs were probed for a determination of the areas where such receptors are localized. Except as indicate below, the entire receptor cDNA (radiolabelled) was used as the probe: radiolabeled probe was generated using the complete receptor cDNA (excised from the vector) using a Prime-It II™ Random Primer Labeling Kit (Stratagene, #300385), according to manufacturer's instructions. A human RNA Master Blot™ (Clontech, #7770-1) was hybridized with the GPCR radiolabeled probe and washed under stringent conditions according manufacturer's instructions. The blot was exposed to Kodak BioMax Autoradiography film overnight at -80°C.

Representative dot-blot format results are presented in Figure 8 for GPR1 (8A), GPR30 (8B), and APJ (8C), with results being summarized for all receptors in Table F

Table F

GPCR	Tissue Distribution
	(highest levels, relative to other tissues in
	the dot-blot)
GPR1	Placenta, Ovary, Adrenal

GPR4

MIG

ORG1

V28

Broad; highest in Heart, Lung, Adrenal,

Thyroid, Spinal Cord

Glands, Lung, Trachea

Pituitary, Stomach, Placenta

Brain, Spleen, Peripheral Leukocytes

Low levels in Kidney, Liver, Pancreas, Lung,

GPR5 Placenta, Thymus, Fetal Thymus Lesser levels in spleen, fetal spleen GPR7 Liver, Spleen, Spinal Cord, Placenta **GPR8** No expression detected 5 GPR9-6 Thymus, Fetal Thymus Lesser levels in Small Intestine GPR18 Spleen, Lymph Node, Fetal Spleen, Testis GPR20 Broad GPR21 Broad; very low abundance GPR22 Heart, Fetal Heart Lesser levels in Brain 10 GPR30 Stomach GPR31 Broad BLR1 Spleen **CEPR** Stomach, Liver, Thyroid, Putamen EBI1 Pancreas Lesser levels in Lymphoid Tissues 15 EBI2 Lymphoid Tissues, Aorta, Lung, Spinal Cord ETBR-LP2 Broad; Brain Tissue **GPCR-CNS** Brain Lesser levels in Testis, Placenta **GPR-NGA Pituitary** Lesser levels in Brain H9 **Pituitary** 20 HB954 Aorta, Cerebellum Lesser levels in most other tissues HM74 Spleen, Leukocytes, Bone marrow, Mammary

Based upon the foregoing information, it is noted that human GPCRs can also be assessed for distribution in diseased tissue; comparative assessments between "normal" and diseased tissue can then be utilized to determine the potential for over-expression or under-expression of a particular receptor in a diseased state. In those circumstances where it is desirable to utilize the non-endogenous versions of the human GPCRs for the purpose of screening to directly identify

Spleen

10

candidate compounds of potential therapeutic relevance, it is noted that inverse agonists are useful in the treatment of diseases and disorders where a particular human GPCR is over-expressed, whereas agonists or partial agonists are useful in the treatment of diseases and disorders where a particular human GPCR is under-expressed.

As desired, more detailed, cellular localization of the recepotrs, using techniques wellknown to those in the art (e.g., in-situ hybridization) can be utilized to identify particualr cells within these tissues where the receptor of interest is expressed.

It is intended that each of the patents, applications, and printed publications mentioned in this patent document be hereby incorporated by reference in their entirety.

As those skilled in the art will appreciate, numerous changes and modifications may be made to the preferred embodiments of the invention without departing from the spirit of the invention. It is intended that all such variations fall within the scope of the invention.

Although a variety of expression vectors are available to those in the art, for purposes of utilization for both the endogenous and non-endogenous human GPCRs, it is most preferred that 15 the vector utilized be pCMV. This vector has been deposited with the American Type Culture Collection (ATCC) on October 13, 1998 (10801 University Blvd., Manassas, VA 20110-2209 USA) under the provsions of the Budapest Treaty for the International Recognition of the Deposit of Microorganisms for the Purpose of patent Procedure. The vector was tested by the ATCC on _____, 1998 and determined to be viable on ______, 1998. The ATCC has assigned the following deposit number to pCMV: _____.

WO 00/22129 PCT/US99/23938

- 72 -

CLAIMS

What is claimed is:

1. A constitutively active, non-endogenous version of an endogenous human orphan G protein-coupled receptor (GPCR) comprising the following amino acid residues (carboxy-terminus to amino-terminus orientation) transversing the transmembrane-6 (TM6) and intracellular loop-3 (IC3) regions of the non-endogenous GPCR:

PI AA₁₅ X

wherein:

5

10

15

- (1) P¹ is an amino acid residue located within the TM6 region of the nonendogenous GPCR, where P¹ is selected from the group consisting of (i) the endogenous orphan GPCR proline residue, and (ii) a nonendogenous amino acid residue other than proline;
- of (a) the 15 endogenous amino acid residues of the endogenous orphan GPCR, (b) 15 non-endogenous amino acid residues, and (c) a combination of 15 amino acid residues, the combination comprising at least one endogenous amino acid residue of the endogenous orphan GPCR and at least one non-endogenous amino acid residue, excepting that none of the 15 endogenous amino acid residues that are positioned within the TM6 region of the GPCR is proline; and
- (2) X is a non-endogenous amino acid residue located within the IC3 region of said non-endogenous GPCR.
- 2. The non-endogenous human GPCR of claim 1 wherein P¹ is the endogenous proline

residue.

5

- 3. The non-endogenous human GPCR of claim1 wherein P¹ is a non-endogenous amino acid residue other than a proline residue.
- 4. The non-endogenous human GPCR of claim 1 wherein AA₁₅ are the 15 endogenous amino acid residues of the endogenous GPCR.
- 5. The non-endogenous human GPCR of claim 1 wherein X is selected from the group consisting of lysine, hisitidine, arganine and alanine residues, excepting that when the endogenous amino acid in position X of said endogenous human GPCR is lysine, X is selected from the group consisting of histidine, arginine and alanine.
- The non-endogenous human GPCR of claim 1 wherein X is a lysine residue, excepting that when the endogenous amino acid in position X of said endogenous human GPCR is lysine, X is an amino acid other than lysine.
 - 7. The non-endogenous human GPCR of claim 4 wherein X is a lysine residue, excepting that when the endogenous amino acid in position X of said endogenous human GPCR is lysine, X is an amino acid other than lysine.
 - 8. The non-endogenous, human GPCR of claim 1 wherein P¹ is a proline residue and X is a lysine residue, excepting that when the endogenous amino acid in position X of said endogenous human GPCR is lysine, X is an amino acid other than lysine.
 - 9. A host cell comprising the non-endogenous human GPCR of claim 1.
- 20 10. The material of claim 9 wherein said host cell is of mammalian origin.
 - 11. The non-endogenous human GPCR of claim 1 in a purified and isolated form.
 - 12. A nucleic acid sequence encoding a constitutively active, non-endogenous version of an endogenous human orphan G protein-coupled receptor (GPCR) comprising the following

WO 00/22129

- 74 -

nucleic acid sequence region transversing the transmembrane-6 (TM6) and intracellular loop-3 (IC3) regions of the orphan GPCR:

PCT/US99/23938

wherein:

5

10

- (1) P^{codon} is a nucleic acid encoding region within the TM6 region of the non-endogenous GPCR, where P^{codon} encodes an amino acid selected from the group consisting of (i) the endogenous GPCR proline residue, and (ii) a non-endogenous amino acid residue other than proline;
- (2) (AA-codon)₁₅ are 15 codons encoding 15 amino acid residues selected from the group consisting of (a) the 15 endogenous amino acid residues of the endogenous orphan GPCR, (b) 15 non-endogenous amino acid residues, and (c) a combination of 15 amino acid residues, the combination comprising at least one endogenous amino acid residue of the endogenous orphan GPCR and at least one non-endogenous amino acid residue, excepting that none of the 15 endogenous amino acid residues that are positioned within the TM6
 - (3) X_{codon} is a nucleic acid encoding region residue located within the IC3 region of said non-endogenous human GPCR, where X_{codon} encodes a non-endogenous amino acid.

20

15

13. The nucleic acid sequence of claim 12 wherein P^{codon} encodes an endogenous proline residue.

region of the orphan GPCR is proline; and

14. The nucleic acid sequence of claim 12 wherein P^{codon} encodes a non-endogenous

WO 00/22129 PCT/US99/23938

amino acid residue other than a proline residue.

- 15. The nucleic acid sequence of claim 12 wherein X_{codon} encodes a non-endogenous amino acid selected from the group consisting of lysine, histidine, arginine and alanine, excepting that when the endogenous amino acid in position X of said endogenous human GPCR is lysine, X_{codon} encodes an amino acid selected from the group consisiting of histidine, arginine and alanine.
- 16. The nucleic acid sequence of claim 13 wherein X_{codon} encodes a non-endogenous lysine amino acid excepting that when the endogenous amino acid in position X of said endogenous human GPCR is lysine, X_{codon} encodes an amino acid selected from the group consisiting of histidine, arginine and alanine.
- 17. The nucleic acid sequence of claim 12 wherein X_{codon} is selected from the group consisting of AAA, AAG, GCA, GCG, GCC and GCU.
- 18. The nucleic acid sequence of claim 12 wherein X_{codon} is selected from the group consisting of AAA and AAG.
- 15 19. The nucleic acid sequence of claim 12 wherein P^{codon} is selected from the group consisting of CCA, CCC, CCG and CCU, and X_{codon} is selected from the group consisting of AAA and AAG.
 - 20. A vector comprising the nucleic acid sequence of claim 12.
 - 21. A plasmid comprising the nucleic acid sequence of claim 12.
- 20 22. A host cell comprising the nucleic acid sequence of claim 21.
 - 23. The nucleic acid sequence of claim 12 in a purified and isolated form.
 - 24. A method for selecting for alteration an endogenous amino acid residue within the third intracellular loop of a human G protein-coupled receptor ("GPCR"), said receptor

5

WO 00/22129 PCT/US99/23938

comprising a transmembrane 6 region and an intracellular loop 3 region, which endogenous amino acid, when altered to a non-endogenous amino acid, constitutively activates said human GPCR, comprising the following steps:

- (a) identifying an endogenous proline residue within the transmembrane 6 region of a human GPCR;
- (b) identifying, by moving in a direction of the carboxy-terminus region of said GPCR towards the amino-terminus region of said GPCR, the endogenous, 16th amino acid residue from said proline residue;
- (c) altering the endogenous residue of step (b) to a non-endogenous amino acid residue to create a non-endogenous version of an endogenous human GPCR; and
 - (d) determining whether the non-endogenous human GPCR of step (c) is constitutively active.
- The method of claim 24 wherein the amino acid residue that is two residues from said
 proline residue in the transmembrane 6 region, in a carboxy-terminus to aminoterminus direction, is tryptophan.
 - 26. A constitutively active, non-endogenous human GPCR produced by the process of claim 24.
- 27. A constitutively active, non-endogenous human GPCR produced by the process of claim 25.
 - 28. An algorithmic approach for creating a non-endogenous, constitutively active version of an endogenous human G protein coupled receptor (GPCR), said endogenous GPCR comprising a transmembrane 6 region and an intracellular loop 3 region, the

5

algorithmic approach comprising the steps of:

- (a) selecting an endogenous human GPCR comprising a proline residue in the transmembrane-6 region;
- (b) identifying, by counting 16 amino acid residues from the proline residue of step (a), in a carboxy-terminus to amino-terminus direction, an endogenous amino acid residue;
- (c) altering the identified amino acid residue of step (b) to a non-endogenous amino acid residue to create a non-endogenous version of the endogenous human GPCR; and
- 10 (d) determining if the non-endogenous version of the endogenous human GPCR of step (c) is constitutively active.
 - 29. The algorithmic approach of claim 28 wherein the amino acid residue that is two residues from said proline residue in the transmembrane 6 region, in a carboxy-terminus to amino-terminus direction, is tryptophan.
- 15 30. A constitutively active, non-endogenous human GPCR produced by the algorithmic approach of claim 28.
 - 31. A constitutively active, non-endogenous human GPCR produced by the algorithmic approach of claim 29.
- 32. A method for directly identifying a compound selected from the group consisting of inverse agonists, agonists and partial agonists to a non-endogenous, constitutively activated human G protein coupled receptor, said receptor comprising a transmembrane-6 region and an intracellular loop-3 region, comprising the steps of:
 - (a) selecting an endogenous human GPCR:

- (b) identifying a proline residue within the transmembrane-6 region of the GPCR of step (a);
- (c) identifying, in a carboxy-terminus to amino-terminus direction, the endogenous, 16th amino acid residue from the proline residue of step (b);
- 5 (d) altering the endogenous amino acid of step (c) to a non-endogenous amino acid;
 - confirming that the non-endogenous GPCR of step (d) is constitutively active;
 - (f) contacting a candidate compound with the non-endogenous, constitutivelyactivated GPCR of step (e); and
- (g) determining, by measurement of the compound efficacy at said contacted receptor, whether said compound is an inverse agonist, agonist or partial agonist of said receptor.
 - 33. The method of claim 32 wherein the non-endogenous amino acid of step (d) is lysine.
 - 34. A compound directly identified by the method of claim 32.
- 15 35. The method of claim 32 wherein the directly identified compound is an inverse agonist.
 - 36. The method of claim 32 wherein the directly identified compound is an agonist.--
 - 37. The method of claim 32 wherein the directly identified compound is a partial agonist.
 - 38. A composition comprising the inverse agonist of claim 35.
- 20 39. A composition comprising the agonist of claim 36.
 - 40. A composition comprising the partial agonist of claim 37.
 - 41. A method for directly identifying an inverse agonist to a non-endogenous,

constitutively activated human G protein coupled receptor ("GPCR"), said GPCR comprising a transmembrane-6 region and an intracellular loop-3 region, comprising the steps of:

- (a) selecting an endogenous human GPCR;
- (b) identifying a proline residue within the transmembrane-6 region of the GPCR of step (a);
 - (c) identifying, in a carboxy-terminus to amino-terminus direction, the endogenous, 16th amino acid residue from the proline residue of step (b);
 - (d) altering the endogenous amino acid of step (c) to a non-endogenous lysine residue;
 - (e) confirming that the non-endogenous GPCR of step (d) is constitutively active;
- (f) contacting a candidate compound with the non-endogenous, constitutivelyactivated GPCR of step (e); and
 - (g) determining, by measurement of the compound efficacy at said contacted receptor, whether said compound is an inverse agonist of said receptor.
 - 42. An inverse agonist directly identified by the method of claim 37.
- 15 43. A composition comprising an inverse agonist of claim 38.

EXTRACELLULAR

FIGURE 2

pCMV Sequence and Restriction Site

FIGURE 3A

TTTGCTCAGAAGAAATGCCATCTAGTGATGATGAGGCTACTGCTGACTCTCAACATTCTACTCCTCCAAAAAAAGAAGAAGA AAACGAGTCTTCTTTACGGTAGATCACTACTCCGATGACGACTGAGAGTTGTAAGATGAGGAGGTTTTTTCTCTCT LLRRNAI...GYC.LSTFYSSKKEE FCSEEMPSSDDEATADSOHSTPPKKKR FAOKKCHL V M M R L L L T L N I L L L O K R R E K S L L F A M . H H H P . Q Q S E V N . E E L F S S F Q E S S I G D L S S S A V A S E . C E V G G F F F L K A . F F H W R T I I L S S S V R L M R S R W F L L S Sty I AAGGTAGAAGACCCCAAGGACTTTCCTTCAGAATTGCTAAGTTTTTTGAGTCATGCTGTTTTAGTAATAGAACTCTTGC TTCCATCTTCTGGGGTTCCTGAAAGGAAGTCTTAACGATTCAAAAAACTCAGTACGACACAAATCATTATCTTGAGAACG K G R R P Q G L S F R I A K F F E S C C V . . . N S C K V E D P K D F P S E L L S F L S H A V F S N R T L A VF. VMLCLVIELL KTPRTFLONC. PLLGWPSEKLIALNKSDHQT.YYFEQ FTSSGLSKGESNSLKKL.ATNLLLVRA LYFVGLVKR.FQ.TKQTMSHKTISSKS TTGCTTTGCTATTTACACCACAAAGGAAAAAGCTGCACTGCTATACAAGAAAATTATGGAAAAAAATATTCTGTAACCTTTA AACGAAACGATAAATGTGGTGTTTCCTTTTTCGACGTGACGATATGTTCTTTTAATACCTTTTTATAAGACATTGGAAAT L L C Y L H H K G K S C T A I Q E N Y G K I F C N L Y C F A I Y T K E K A A L L Y K K I M E K Y S V T F L A L L F T P Q R K K L H C Y T R K L W K N I L . P L SQ. KCWLPFLQVAICSF. PFINQLR. DKAI. VVFSFAASSYLFIISFYETVKI AKSNVGCLFFSCQ. VLFNHFF'IRYGK Asel TAAGTAGGCATAACAGTTATAATCATAACATACTGTTTTTTCTTACTCCACACAGGCATAGAGTGTCTGCTATTAATAAC ATTCATCCGTATTGTCAATATTAGTATTGTATGACAAAAAAAGAATGAGGTGTCCGTATCTCACAGACGATAATTATTG K.A.QL.S.HTVFSYSTQAISRHNSYNHNILFFLTPHRI . V G I T V I I I T Y C F F L L H T G I E C L LYAYCNYDYCVTKE.EVC LLCLL.L.LMSNKRVGCL EVCA Y T P H V T I I M V Y Q K K K S W V P M S H R S N I V Rsa I TATGCTCAAAAATTGTGTACCTTTAGCTTTTTAATTTGTAAAGGGGTTAATAAGGAATATTTGATGTATAGTGCCTTGAC ATACGAGTTTTTAACACATGGAAATCGAAAAATTAAACATTTCCCCAATTATTCCTTATAAACTACATATCACGGAACTG LCSKIVYL. LFNL. RG.. GIFD \ YAQKLCTFSFLICKGVNKEYLM HLKNCVPLAF. FVKGLIRNI. CI HEFITYR. SKLKYLP. YPINSTYHRS A. FNHVKLKKIOLPTLLSYKIYLAKV ISLFQTGKAK. NTFPN1LF10H1TG0S

FIGURE 3B

FIGURE 3C

FIGURE 3D

FIGURE 3F

Hae III TGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAAC 2160 ACCGTCGTCGGTGACCATTGTCCTAATCGTCTCGCTCCATACATCCGCCACGATGTCTCAAGAACTTCACCACCGGATTG T G N R I S R A R Y V G G A T E F L K W W P N OPLVTGLAERGM. GSSHW. QD. QSEVCRRCYRVLEVV Q C C G S T V P N A S R P I Y A T S C L E Q L P P R V PLLWOYCS. CLSTHLRH. LTRSTTA. S TACGGCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTC --+ 2240 ATGCCGATGTGATCTTCCTGTCATAAACCATAGACGCGAGACGACTTCGGTCAATGGAAGCCTTTTTCTCAACCATCGAG YGYTRRTVFGICALLKPVTF K P V T F G K R V G S S S G L P S E K E L V A TATLEGQYLVSALC. LRLH, KDSIWYLRSAEASYLRKKSW. Ł VTNPI T V A V S S P C Y K T D A S Q Q L W N G E S F S N T A R FSLIQYRREASAL. RRFFLQYS S G K Q T T A G S G G F F V C K Q Q I T R R K K V A V V F L F A S S R L R A E K RWFFCLQAADYAQ Q D P L C V V A P L P P K K T Q L C C I V R L F F P S G A F L G G S T A T T K K N A L L L N R A S F F S KIRCVFWRQYRHNKQKCAAS. ACF BspH I CTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATG + 2400 GAGTTCTTCTAGGAAACTAGAAAAGATGCCCCAGACTGCGAGTCACCTTGCTTTTGAGTGCAATTCCCTAAAACCAGTAC S Q E D P L I F S T G S D A Q W N.E N S R IFSTGSDAQWĄENSR.GIL SFLRGLTLSGTKTHYKGF GILVM Y G V . R S V E R K L T L R D F G H PDSA. HFSFER. R L F I R Q D K R P R V S L P V F V . T L P N Q D H PTQRETSRFS V N L S K P . S ELLDKSRK. Dra I Dra I + 2480 RLSKRIFT.ILLN. DYOKGSSPRSF.1 N . K . S F K S I . S I K N E V L N Q S K V EIIKKOLHLOPFKLKMKF. INLKYI. NDFLIKY. IRKF. FHLKLDI. LIYSY S. FPDEGLDK. ILFSTKF. DLTYILL IILFSR. RSGKLNFIFN. ILRFYIHT FIGURE 36

AACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTG + 2560 TTGAACCAGACTGTCAATGGTTACGAATTAGTCACTCCGTGGATAGAGCTAGACAGATAAAGCAAGTAGGTATCAAC W S D S Y Q C L I S E A P I S A I C L F R S S I V SVRHLSQRS V H P NLV.OLPMLNO.GTYLSDLSISFIH S C W H K I L S A G I E A I Q R N R E D M T A . DTLCRD.RDT.KT.GYN L.HPV.RLSRDIENMWLO KTQCNG I S Hae III CCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGAC + 2640 GGACTGAGGGGCAGCACATCTATTGATGCTATGCCCTCCCGAATGGTAGACCGGGGTCACGACGTTACTATGGCGCTCTG IREGLPSGPSAA A. LPVV. ITTIREGLPSGP PDSPSCR. LRYGRAYHLA LTPRRVDNYDTGGLTIWP L O . E T QCCNDTAR V V I R S P K G D P G L A A GSEGDHLYSRYPLA WRAGTSCHYRSV LYSRYPLA. WRAGTSCHYRSV SL. SVPPSVMQGWHQLSVALG RVGRRT Bgl I Hae III Ava II + 2720 P R S P A P D L S A I N Q P A G R A E R R S G HAHRLOIYQQ. TSQPEGPSAEVVLQL TLTGSRFISNKPASRKGRAQKWSCNF R E G A G S K D A I F W G A P L A S R L L P A . R S W I . . C Y V L W G S P G L A S T T SVPELNILLGALRFPRACFHDQLK Asel Nci I Fsp I SIQSINCCREARVSSSPVNSLRN VVRQLIVCA LLIVAGKLE. VY. LLPGS. SK. FAS. FAQRC DAEMWDILGORSALTLLEGTL G G D L R N I T A P F S S Y T T R W N I T Q A V N IRRWGT.. NNGPL.LLYNAL.YNACRO + 2880 'A I A T G I V V S R S S F G M A S F S S G S Q R S L P L L Q A S W C H A R R L V W L H S A P V P N D Q C H C Y R H R G V T L V V W Y G F 1 Q L R F P T I K A M A V P M T T D R E D N P I A E N L E P E W R D L D H H . A R K K R P T V S T T Q ARRKTHS. EAGTGLS. P Q W Q . L C R P RNGVIL

. ApaL I ACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTT + 3280 TGGCGACAACTCTAGGTCAAGCTACATTGGGTGAGCACGTGGGTTGACTAGAAGTCGTAGAAAATGAAAGTGGTCGCAAA R S S S M . P T R A P N . S S A S F T F T S V D P V R C N P L V H P T D L Q H L L L S P A I LLRSSSM. TAVEIQFD V TH S C T Q L I F S I F Y F G S N L D L E I Y G V R A G L Q D E A D K V K V ROOSGTRHLGSTCGVSR.CRKSEGAN VATSIWNSTVWEHVWSIKLMK.K.WRK CTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTC + 3360 GACCCACTCGTTTTTGTCCTTCCGTTTTACGGCGTTTTTTCCCTTATTCCCGCTGTGCCTTTACAACTTATGAGTATGAG G . A K T G R Q N A A K K G I R A T R K C . I L I L L G E Q K Q E G K M P Q K R E . G R H G N V E Y S Y S W V S K N R K A K C R K K G N K G D T E M L N T H T AAFFPILAVRF PHAFVPLCF R P S C F C S P L 1 G C F L S Y P R C P F T S Y E Y E TLLFLFAFHRLFPFLPSVS1NF Spe I Hinc II Asel TTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGCGCGTTGACATTGATTATTGACTAGTTATTAA + 3440 AAGGAAAAAGTTATAATAACTTCGTAAATAGTCCCAATAACAGAGTACGCGCAACTGTAACTAATAACTGATCAATAATT FLFQYY. SIYQGYCLMRVDIDY. SFFNIIEAFIRVIVSCALTLIII LVIN D. LPFSILLKHLSGLLSHAR. H.LLT OLM. P. ORMRTSMS. EKKLIISANILTITEHANVNIIS. G K E I N N F C K D P N N D . A R Q C Q N N V L Hae III Bgl I TAGTAATCAATTACGGGGTCATTAGTTCATAGCCCATATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCC + 3520 ATCATTAGTTAATGCCCCAGTAATCAAGTATCGGGTATATACCTCAAGGCGCAATGTATTGAATGCCATTTACCGGGCGG SNQLRGH. FIAHIWSSALHNLR I V I N Y G V I S S . P I Y G V P R Y I T Y G . . . S I T G S L V H S P Y M E F R V T . L T V Y M E F R V T . L T V N G N M A W I H L E A N C L K R Y I A R R TIL. PTMLEYGMYPTGR. MV... YDIVPDNT. LGYISNRTVYSV

T

FIGURE 3K

Aat II + 3920 THGDFQVSTPLTSMG_V_CFGTKINGTFQ ROWEFVLAPKST LTGISKSPPH. D S R G F P S L H P I D V N G S L F W H Q N Q R D F P V. PSKWTEVGNVDIPTQKPVLILPVKW SVPIELDGGWQR. HSNTKAGFDVPSEL ERPNGLRWGMSTLPLKNOCWF. RSK Rsa I Sac I AAATGTCGTAACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTCT + 4000 TTTACAGCATTGTTGAGGCGGGGTAACTGCGTTTACCCGCCATCCGCACATGCCACCCTCCAGATATATTCGTCTCGAGA N V V T T P P H . RKWAVGVYGGRS V Y G G R S I . A E C T V G G L Y K Q K M S . Q L R P I D A N G R . A C T V G G L Y K Q S S K C R N N S A P L T Q M G G R R V R W E V Y I S R A L WORLHATPTYPPLDI MSAFPRYAHVTPPRYLCLE CSRG CIPPLRTRHST. ILLAR FHRLLEAGNY Asel CTGGCTAACTAGAGAACCCACTGCTTAACTGGCTTATCGAAATTAATACGACTCACTATAGGGAGACCC **4069** GACCGATTGATCTCTTGGGTGACGAATTGACCGAATAGCTTTAATTATGCTGAGTGATATCCCTCTGGG S G . L E N P L L N W L I E I N T T H Y R E T L A N . R T H C L T G L S K L I R L T I G R P AN. RTHCLTGLSKLIRLTIGRP WLTREPTA. LAYRN. Y DSL. GDP P. S S F G S S L Q S I S I L V V . R A L . L V W Q K V P K D F N I R S RAL. LVWQKVPKDFNIRSVIPLG QSVLSGVA. SA. RF. YSESYPSG

FIGURE 3L

Expression plamid

FIGURE 4

FIGURE 6

BNSDOCID: <WO __0022129A1_I_>

FIGURE 8A

FIGURE 8B

FIGURE 8C

PCT/US99/23938

60

1

SEQUENCE LISTING

(1) GENERAL INFORMATION: (i) APPLICANT: Behan, Dominic P. Chalmers, Derek T. 5 Liaw, Chen W. Non-Endogenous, Constitutively (ii) TITLE OF INVENTION: Activated Human G Protein-Coupled Orphan Receptors (iii) NUMBER OF SEQUENCES: 280 10 (iv) CORRESPONDENCE ADDRESS: Arena Pharmaceuticals, Inc. (A) ADDRESSEE: 6166 Nancy Ridge Drive (B) STREET: (C) CITY: San Diego 15 (D) STATE: (E) COUNTRY: USA 92122 (F) ZIP: (v) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk IBM PC compatible 20 (B) COMPUTER: (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (vi) CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: US 25 (B) FILING DATE: (C) CLASSIFICATION: (viii) ATTORNEY/AGENT INFORMATION: (A) NAME: Burgoon, Richard P. (B) REGISTRATION NUMBER: 34,787 (ix) TELECOMMUNICATION INFORMATION: 30 (A) TELEPHONE: (619) 453-7200 (B) TELEFAX: (619) 453-7210 (2) INFORMATION FOR SEQ ID NO:1: (i) SEQUENCE CHARACTERISTICS: 35 (A) LENGTH: 1068 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) 40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

ATGGAAGATT TGGAGGAAAC ATTATTTGAA GAATTTGAAA ACTATTCCTA TGACCTAGAC

	TATTACTCTC TGGAGTCTGA TTTGGAGGAG AAAGTCCAGC TGGGAGTTGT TCACTGGGTC	120
	TCCCTGGTGT TATATTGTTT GGCTTTTGTT CTGGGAATTC CAGGAAATGC CATCGTCATT	180
	TGGTTCACGG GGCTCAAGTG GAAGAAGACA GTCACCACTC TGTGGTTCCT CAATCTAGCC	240
	ATTGCGGATT TCATTTTCT TCTCTTTCTG CCCCTGTACA TCTCCTATGT GGCCATGAAT	300
5	TTCCACTGGC CCTTTGGCAT CTGGCTGTGC AAAGCCAATT CCTTCACTGC CCAGTTGAAC	360
	ATGTTTGCCA GTGTTTTTT CCTGACAGTG ATCAGCCTGG ACCACTATAT CCACTTGATC	420
	CATCCTGTCT TATCTCATCG GCATCGAACC CTCAAGAACT CTCTGATTGT CATTATATTC	480
	ATCTGGCTTT TGGCTTCTCT AATTGGCGGT CCTGCCCTGT ACTTCCGGGA CACTGTGGAG	540
	TTCAATAATC ATACTCTTTG CTATAACAAT TTTCAGAAGC ATGATCCTGA CCTCACTTTG	600
10	ATCAGGCACC ATGTTCTGAC TTGGGTGAAA TTTATCATTG GCTATCTCTT CCCTTTGCTA	660
	ACAATGAGTA TTTGCTACTT GTGTCTCATC TTCAAGGTGA AGAAGCGAAC AGTCCTGATC	720
	TCCAGTAGGC ATTTCTGGAC AATTCTGGTT GTGGTTGTGG CCTTTGTGGT TTGCTGGACT	780
	CCTTATCACC TGTTTAGCAT TTGGGAGCTC ACCATTCACC ACAATAGCTA TTCCCACCAT	840
	GTGATGCAGG CTGGAATCCC CCTCTCCACT GGTTTGGCAT TCCTCAATAG TTGCTTGAAC	900
15	CCCATCCTTT ATGTCCTAAT TAGTAAGAAG TTCCAAGCTC GCTTCCGGTC CTCAGTTGCT	960
	GAGATACTCA AGTACACACT GTGGGAAGTC AGCTGTTCTG GCACAGTGAG TGAACAGCTC	1020
	AGGAACTCAG AAACCAAGAA TCTGTGTCTC CTGGAAACAG CTCAATAA	1068
	(3) INFORMATION FOR SEQ ID NO:2:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 355 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: not relevant 	
	(ii) MOLECULE TYPE: protein	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:	
	Met Glu Asp Leu Glu Glu Thr Leu Phe Glu Glu Phe Glu Asn Tyr Se	er

35 40 45

Tyr Asp Leu Asp Tyr Tyr Ser Leu Glu Ser Asp Leu Glu Glu Lys Val

Gln Leu Gly Val Val His Trp Val Ser Leu Val Leu Tyr Cys Leu Ala

WO 00/22129

		Phe	Val 50	Leu	Gly	Ile	Pro	Gly 55	Asn	Ala	Ile	Val	Ile 60	Trp	Phe	Thr	Gly
		Leu 65	Lys	Trp	Lys	Lys	Thr 70	Val	Thr	Thr	Leu	Trp 75	Phe	Leu	Asn	Leu	Ala 80
	5	Ile	Ala	Asp	Phe	Ile 85	Phe	Leu	Leu	Phe	Leu 90	Pro	Leu	Tyr	Ile	Ser 95	Tyr
		Val	Ala	Met	Asn 100	Phe	His	Trp	Pro	Phe 105	Gly	Ile	Trp	Leu	Cys 110	Lys	Ala
	10	Asn	Ser	Phe 115	Thr	Ala	Gln		Asn 120	Met	Phe	Ala	Ser	Val 125	Phe	Phe	Leu
		Thr	Val 130	Ile	Ser	Leu	Asp	His 135	Tyr	Ile	His	Leu	Ile 140	His	Pro	Val	Leu
		Ser 145	His	Arg	His	Arg	Thr 150	Leu	Lys	Asn	Ser	Leu 155	Ile	Val	Ile	Ile	Phe 160
	15	Ile	Trp	Leu	Leu	Ala 165	Ser	Leu	Ile	Gly	Gly 170	Pro	Ala	Leu	Tyr	Phe 175	Arg
		Asp	Thr	Val	Glu 180	Phe	Asn	Asn	His	Thr 185	Leu	Cys	Tyr	Asn	Asn 190	Phe	Gln
	20	Lys	His	Asp 195	Pro	Asp	Leu	Thr	Leu 200	Ile	Arg	His	His	Val 205	Leu	Thr	Trp
		Val	Lys 210	Phe	Ile	Ile	Gly	Tyr 215	Leu	Phe	Pro	Leu	Leu 220	Thr	Met	Ser	Ile
		Cys 225	Tyr	Leu	Cys	Leu	Ile 230	Phe	Lys	Val	Lys	Lys 235	Arg	Thr	Val	Leu	Ile 240
	25	Ser	Ser	Arg	His	Phe 245	Trp	Thr	Ile	Leu	Val 250	Val	Val	Val	Ala	Phe 255	Val
		Val	Cys	Trp	Thr 260	Pro	Tyr	His	Leu	Phe 265	Ser	Ile	Trp	Glu	Leu 270	Thr	Ile
	30	His	His	Asn 275	Ser	Tyr	Ser	His	His 280	Val	Met	Gln	Ala	Gly 285	Ile	Pro	Leu
		Ser	Thr 290	Gly	Leu	Ala	Phe	Leu 295	Asn	Ser	Cys	Leu	Asn 300	Pro	Ile	Leu	Tyr
		Val 305	Leu	Ile	Ser	Lys	Lys 310	Phe	Gln	Ala	Arg	Phe 315	Arg	Ser	Ser	Val	Ala 320
٠	35	Glu	Ile	Leu	Lys	Tyr 325	Thr	Leu	Trp	Glu	Val 330	Ser	Cys	Ser	Gly	Thr 335	Val
		Ser	Glu	Gln	Leu	Ara	Asn	Ser	Glu	Thr	Lvs	Asn	Leu	Cvs	Len	Leu	Glu

WO 00/22129 PCT/US99/23938

4

340 345 350

Thr Ala Gln 355

(4) INFORMATION FOR SEQ ID NO:3:

5 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1089 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

10 (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

ATGGGCAACC ACACGTGGGA GGGCTGCCAC GTGGACTCGC GCGTGGACCA CCTCTTTCCG 60 CCATCCCTCT ACATCTTGT CATCGGCGTG GGGCTGCCCA CCAACTGCCT GGCTCTGTGG GCGGCCTACC GCCAGGTGCA ACAGCGCAAC GAGCTGGGCG TCTACCTGAT GAACCTCAGC 180 15 ATCGCCGACC TGCTGTACAT CTGCACGCTG CCGCTGTGGG TGGACTACTT CCTGCACCAC 240 GACAACTGGA TCCACGGCCC CGGGTCCTGC AAGCTCTTTG GGTTCATCTT CTACACCAAT 300 ATCTACATCA GCATCGCCTT CCTGTGCTGC ATCTCGGTGG ACCGCTACCT GGCTGTGGCC CACCCACTCC GCTTCGCCCG CCTGCGCCGC GTCAAGACCG CCGTGGCCGT GAGCTCCGTG 420 GTCTGGGCCA CGGAGCTGGG CGCCAACTCG GCGCCCCTGT TCCATGACGA GCTCTTCCGA 480 20 GACCGCTACA ACCACACCTT CTGCTTTGAG AAGTTCCCCA TGGAAGGCTG GGTGGCCTGG 540 ATGAACCTCT ATCGGGTGTT CGTGGGCTTC CTCTTCCCGT GGGCGCTCAT GCTGCTGTCG 600 TACCGGGGCA TCCTGCGGGC CGTGCGGGGC AGCGTGTCCA CCGAGCGCCA GGAGAAGGCC 660 AAGATCAAGC GGCTGGCCCT CAGCCTCATC GCCATCGTGC TGGTCTGCTT TGCGCCCTAT 720 CACGTGCTCT TGCTGTCCCG CAGCGCCATC TACCTGGGCC GCCCCTGGGA CTGCGGCTTC 780 25 GAGGAGCGCG TCTTTTCTGC ATACCACAGC TCACTGGCTT TCACCAGCCT CAACTGTGTG 840 GCGGACCCCA TCCTCTACTG CCTGGTCAAC GAGGGCGCCC GCAGCGATGT GGCCAAGGCC 900 CTGCACAACC TGCTCCGCTT TCTGGCCAGC GACAAGCCCC AGGAGATGGC CAATGCCTCG 960 CTCACCCTGG AGACCCCACT CACCTCCAAG AGGAACAGCA CAGCCAAAGC CATGACTGGC 1020 AGCTGGGCGG CCACTCCGCC TTCCCAGGGG GACCAGGTGC AGCTGAAGAT GCTGCCGCCA 1080 30 GCACAATGA

5

(5) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 362 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein

	(x:	i) SI	EQUE	NCE I	DESC	RIPT	ION:	SEQ	ID 1	NO : 4	:					
10	Met 1	Gly	Asn	His	Thr 5	Trp	Glu	Gly	Cys	His 10	Val	Asp	Ser	Arg	Val 15	Asp
	His	Leu	Phe	Pro 20	Pro	Ser	Leu	туr	Ile 25	Phe	Val	Ile	Gly	Val 30	Gly	Leu
	Pro	Thr	Asn 35	Cys	Leu	Ala	Leu	Trp 40	Ala	Ala	Tyr	Arg	Gln 45	Val	Gln	Gln
15	Arg	Asn 50	Glu	Leu	Gly	Val	Туг 55	Leu	Met	Asn	Leu	Ser 60	Ile	Ala	Asp	Leu
	Leu 65	Tyr	Ile	Cys	Thr	Leu 70	Pro	Leu	Trp	Val	Asp 75	Tyr	Phe	Leu	His	His 80
20	Asp	Asn	Trp	Ile	His 85	Gly	Pro	Gly	Ser	Cys 90	Lys	Leu	Phe	Gly	Phe 95	Ile
	Phe	Tyr	Thr	Asn 100	Ile	Tyr	Ile	Ser	Ile 105	Ala	Phe	Leu	Cys	Cys 110	Ile	Ser
	Val	Asp	Arg 115	туr	Leu	Ala	Val	Ala 120	His	Pro	Leu	Arg	Phe 125	Ala	Arg	Leu

115 120 125

Arg Arg Val Lys Thr Ala Val Ala Val Ser Ser Val Val Trp Ala Thr
130 135 140

Glu Leu Gly Ala Asn Ser Ala Pro Leu Phe His Asp Glu Leu Phe Arg 145 150 155 160

Asp Arg Tyr Asn His Thr Phe Cys Phe Glu Lys Phe Pro Met Glu Gly 165 170 175

Trp Val Ala Trp Met Asn Leu Tyr Arg Val Phe Val Gly Phe Leu Phe 180 185 190

Pro Trp Ala Leu Met Leu Leu Ser Tyr Arg Gly Ile Leu Arg Ala Val 195 200 205

Arg Gly Ser Val Ser Thr Glu Arg Gln Glu Lys Ala Lys Ile Lys Arg 210 215 220

Leu Ala Leu Ser Leu Ile Ala Ile Val Leu Val Cys Phe Ala Pro Tyr

WO 00/22129 PCT/US99/23938

	225					230	230					235					
	His	Val	Leu	Leu	Leu 245	Ser	Arg	Ser	Ala	Ile 250	Tyr	Leu	Gly	Arg	Pro 255	Trp	
5	Asp	Cys	Gly	Phe 260	Glu	Glu	Arg	Val	Phe 265	Ser	Ala	Tyr	His	Ser 270	Ser	Leu	
	Ala	Phe	Thr 275	Ser	Leu	Asn	Cys	Val 280	Ala	Asp	Pro	Ile	Leu 285	туr	Cys	Leu	
	Val	Asn 290	Glu	Gly	Ala	Arg	Ser 295	Asp	Val	Ala	Lys	Ala 300	Leu	His	Asn	Leu	
10	Leu 305	Arg	Phe	Leu	Ala	Ser 310	Asp	Lys	Pro	Gln	Glu 315	Met	Ala	Asn	Ala	Ser 320	
	Leu	Thr	Leu	Glu	Thr 325	Pro	Leu	Thr	Ser	Lys 330	Arg	Asn	Ser	Thr	Ala 335	Lys	
15	Ala	Met	Thr	Gly 340	Ser	Trp	Ala	Ala	Thr 345	Pro	Pro	Ser	Gln	Gly 350	Asp	Gln	
	Val	Gln	Leu 355	Lys	Met	Leu	Pro	Pro 360	Ala	Gln							
	(6) INFOR	TAMS	ION I	OR S	SEQ I	D NO):5:										
20	(i) SEQUENCE CHARACTERISTICS:																
	(ii	L) MC	OLECU	JLE T	TYPE :	DN2	ı (ge	enomi	.c)								
25	(xi	i) si	EQUEN	ICE I	DESCF	RIPTI	ON:	SEQ	ID N	10 : 5 :							
	TATGAATTO	CA GA	ATGCI	CTA	A ACC	TCCC	CTGC										3 (
	(7) INFOR	TAMS	ON F	FOR S	SEQ I	D NC	0:6:										
30	(i)	(A) (B) (C)	QUENC LEN TYP STR	IGTH: PE: r RANDE	30 nucle	base ic a SS: s	e pai cid singl	.rs									
	(ii	L) MC	OLECU	LE 1	TYPE:	DNA	ı (ge	enomi	.c)								
	(xi	i) SE	EQUEN	ICE I	DESCF	RIPTI	ON:	SEQ	ID N	10 : 6 :							
35	TCCGGATC	CA CC	CTGCF	ACCTO	G CGC	CTGC	CACC										3 (
	(8) INFOR	TAMS	ON F	FOR S	SEQ I	D NC): 7:										

7

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1002 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

	ATGGAGTCCT	CAGGCAACCC	AGAGAGCACC	ACCTTTTTTT	ACTATGACCT	TCAGAGCCAG	60
	CCGTGTGAGA	ACCAGGCCTG	GGTCTTTGCT	ACCCTCGCCA	CCACTGTCCT	GTACTGCCTG	120
10	GTGTTTCTCC	TCAGCCTAGT	GGGCAACAGC	CTGGTCCTGT	GGGTCCTGGT	GAAGTATGAG	180
	AGCCTGGAGT	CCCTCACCAA	CATCTTCATC	CTCAACCTGT	GCCTCTCAGA	CCTGGTGTTC	240
	GCCTGCTTGT	TGCCTGTGTG	GATCTCCCCA	TACCACTGGG	GCTGGGTGCT	GGGAGACTTC	300
	CTCTGCAAAC	TCCTCAATAT	GATCTTCTCC	ATCAGCCTCT	ACAGCAGCAT	CTTCTTCCTG	360
	ACCATCATGA	CCATCCACCG	CTACCTGTCG	GTAGTGAGCC	CCCTCTCCAC	CCTGCGCGTC	420
15	CCCACCCTCC	GCTGCCGGGT	GCTGGTGACC	ATGGCTGTGT	GGGTAGCCAG	CATCCTGTCC	480
	TCCATCCTCG	ACACCATCTT	CCACAAGGTG	CTTTCTTCGG	GCTGTGATTA	TTCCGAACTC	540
	ACGTGGTACC	TCACCTCCGT	CTACCAGCAC	AACCTCTTCT	TCCTGCTGTC	CCTGGGGATT	600
	ATCCTGTTCT	GCTACGTGGA	GATCCTCAGG	ACCCTGTTCC	GCTCACGCTC	CAAGCGGCGC	660
	CACCGCACGG	TCAAGCTCAT	CTTCGCCATC	GTGGTGGCCT	ACTTCCTCAG	CTGGGGTCCC	720
20	TACAACTTCA	CCCTGTTTCT	GCAGACGCTG	TTTCGGACCC	AGATCATCCG	GAGCTGCGAG	780
	GCCAAACAGC	AGCTAGAATA	CGCCCTGCTC	ATCTGCCGCA	ACCTCGCCTT	CTCCCACTGC	840
	TGCTTTAACC	CGGTGCTCTA	TGTCTTCGTG	GGGGTCAAGT	TCCGCACACA	CCTGAAACAT	900
	GTTCTCCGGC	AGTTCTGGTT	CTGCCGGCTG	CAGGCACCCA	GCCCAGCCTC	GATCCCCCAC	960
	TCCCCTGGTG	CCTTCGCCTA	TGAGGGCGCC	TCCTTCTACT	GA		1002

- 25 (9) INFORMATION FOR SEQ ID NO:8:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 333 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: not relevant
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

WO 00/22129

	Met 1	Glu	ı Ser	Ser	Gly 5	Asn	Pro	Glu	. Ser	Thr 10	Thr	Phe	Phe	. Tyr	Туг 15	. Asp
	Leu	Gln	Ser	Gln 20	Pro	Cys	Glu	Asn	Gln 25	Ala	Trp	Val	Phe	Ala 30	Thr	Leu
5	Ala	Thr	Thr 35	Val	Leu	Tyr	Cys	Leu 40	Val	Phe	Leu	Leu	Ser 45	Leu	Val	Gly
	Asn	Ser 50	Leu	Val	Leu	Trp	Val 55	Leu	Val	Lys	Tyr	Glu 60	Ser	Leu	Glu	Ser
10	Leu 65	Thr	Asn	Ile	Phe	Ile 70	Leu	Asn	Leu	Cys	Leu 75	Ser	Asp	Leu	Val	Phe 80
	Ala	Cys	Leu	Leu	Pro 85	Val	Trp	Ile	Ser	Pro 90	Tyr	His	Trp	Gly	Trp 95	Val
	Leu	Gly	Asp	Phe 100	Leu	Cys	Lys	Leu	Leu 105	Asn	Met	Ile	Phe	Ser 110	Ile	Ser
15	Leu	Tyr	Ser 115	Ser	Ile	Phe	Phe	Leu 120	Thr	Ile	Met	Thr	Ile 125	His	Arg	Tyr
	Leu	Ser 130	Val	Val	Ser	Pro	Leu 135	Ser	Thr	Leu	Arg	Val 140	Pro	Thr	Leu	Arg
20	Cys 145	Arg	Val	Leu	Val	Thr 150	Met	Ala	Val	Trp	Val 155	Ala	Ser	Ile	Leu	Ser 160
	Ser	Ile	Leu	Asp	Thr 165	Ile	Phe	His	Lys	Val 170	Leu	Ser	Ser	Gly	Cys 175	Asp
	Tyr	Ser	Glu	Leu 180	Thr	Trp	Tyr	Leu	Thr 185	Ser	Val	Tyr	Gln	His 190	Asn	Leu
25	Phe	Phe	Leu 195	Leu	Ser	Leu	Gly	Ile 200	Ile	Leu	Phe	Cys	Tyr 205	Val	Glu	Ile
	Leu	Arg 210	Thr	Leu	Phe	Arg	Ser 215	Arg	Ser	Lys	Arg	Arg 220	His	Arg	Thr	Val
30	Lys 225	Leu	Ile	Phe	Ala	Ile 230	Val	Val	Ala	Tyr	Phe 235	Leu	Ser	Trp	Gly	Pro 240
	Tyr	Asn	Phe	Thr	Leu 245	Phe	Leu	Gln	Thr	Leu 250	Phe	Arg	Thr	Gln	Ile 255	Ile
	Arg	Ser	Cys	Glu 260	Ala	Lys	Gln	Gln	Leu 265	Glu	Tyr	Ala	Leu	Leu 270	Ile	Cys
55	Arg	Asn	Leu 275	Ala	Phe	Ser	His	Cys 280	Cys	Phe	Asn	Pro	Val 285	Leu	Tyr	Val

PCT/US99/23938

	Phe Val Gly Val Lys Phe Arg Thr His Leu Lys His Val Leu Arg Gln 290 295 300	
	Phe Trp Phe Cys Arg Leu Gln Ala Pro Ser Pro Ala Ser Ile Pro His 305 310 315 320	
5	Ser Pro Gly Ala Phe Ala Tyr Glu Gly Ala Ser Phe Tyr 325 330	
	(10) INFORMATION FOR SEQ ID NO:9:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:	
15	GCAAGCTTGG GGGACGCCAG GTCGCCGGCT	30
	(11) INFORMATION FOR SEQ ID NO:10:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:	
	GCGGATCCGG ACGCTGGGGG AGTCAGGCTG C	31
25	(12) INFORMATION FOR SEQ ID NO:11:	
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 987 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:	
	ATGGACAACG CCTCGTTCTC GGAGCCCTGG CCCGCCAACG CATCGGGCCC GGACCCGGCG	60
	CTGAGCTGCT CCAACGCGTC GACTCTGGCG CCGCTGCCGG CGCCGCTGGC GGTGGCTGTA	120
35	CCAGTTGTCT ACGCGGTGAT CTGCGCCGTG GGTCTGGCGG GCAACTCCGC CGTGCTGTAC	180

	GTGTTGCTGC GGGCGCCCCG CATGAAGACC GTCACCAACC TGTTCATCCT CAACCTGGCC	240
	ATCGCCGACG AGCTCTTCAC GCTGGTGCTG CCCATCAACA TCGCCGACTT CCTGCTGCGG	300
	CAGTGGCCCT TCGGGGAGCT CATGTGCAAG CTCATCGTGG CTATCGACCA GTACAACACC	360
	TTCTCCAGCC TCTACTTCCT CACCGTCATG AGCGCCGACC GCTACCTGGT GGTGTTGGCC	420
5	ACTGCGGAGT CGCGCCGGGT GGCCGGCCGC ACCTACAGCG CCGCGCGCGC GGTGAGCCTG	480
	GCCGTGTGGG GGATCGTCAC ACTCGTCGTG CTGCCCTTCG CAGTCTTCGC CCGGCTAGAC	540
	GACGAGCAGG GCCGGCGCCA GTGCGTGCTA GTCTTTCCGC AGCCCGAGGC CTTCTGGTGG	600
	CGCGCGAGCC GCCTCTACAC GCTCGTGCTG GGCTTCGCCA TCCCCGTGTC CACCATCTGT	660
	GTCCTCTATA CCACCCTGCT GTGCCGGCTG CATGCCATGC	720
10	GCCCTGGAGC GCGCCAAGAA GCGGGTGACC TTCCTGGTGG TGGCAATCCT GGCGGTGTGC	780
	CTCCTCTGCT GGACGCCCTA CCACCTGAGC ACCGTGGTGG CGCTCACCAC CGACCTCCCG	840
	CAGACGCCGC TGGTCATCGC TATCTCCTAC TTCATCACCA GCCTGACGTA CGCCAACAGC	900
	TGCCTCAACC CCTTCCTCTA CGCCTTCCTG GACGCCAGCT TCCGCAGGAA CCTCCGCCAG	960
	CTGATAACTT GCCGCGCGC AGCCTGA	987
15	(13) INFORMATION FOR SEQ ID NO:12:	
20	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 328 amino acids(B) TYPE: amino acid(C) STRANDEDNESS:(D) TOPOLOGY: not relevant	
	(ii) MOLECULE TYPE: protein	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:	
	Met Asp Asn Ala Ser Phe Ser Glu Pro Trp Pro Ala Asn Ala Ser Gly 1 5 10 15	
25	Pro Asp Pro Ala Leu Ser Cys Ser Asn Ala Ser Thr Leu Ala Pro Leu 20 25 30	
	Pro Ala Pro Leu Ala Val Ala Val Pro Val Val Tyr Ala Val Ile Cys	

Ala Val Gly Leu Ala Gly Asn Ser Ala Val Leu Tyr Val Leu Leu Arg

Ala Pro Arg Met Lys Thr Val Thr Asn Leu Phe Ile Leu Asn Leu Ala

75

45

30

PCT/US99/23938 WO 00/22129

		Ile	Ala	Asp	Glu	Leu 85	Phe	Thr	Leu	Val	Leu 90	Pro	Ile	Asn	Ile	Ala 95	Asp
		Phe	Leu	Leu	Arg 100	Gln	Trp	Pro	Phe	Gly 105	Glu	Leu	Met	Cys	Lys 110	Leu	Ile
5		Val	Ala	Ile 115	Asp	Gln	Tyr	Asn	Thr 120	Phe	Ser	Ser	Leu	Tyr 125	Phe	Leu	Thr
		Val	Met 130	Ser	Ala	Asp	Arg	Tyr 135	Leu	Val	Val	Leu	Ala 140	Thr	Ala	Glu	Ser
10		Arg 145	Arg	Val	Ala	Gly	Arg 150	Thr	Tyr	Ser	Ala	Ala 155	Arg	Ala	Val	Ser	Leu 160
		Ala	Val	Trp	Gly	11e 165	Val	Thr	Leu	Val	Val 170	Leu	Pro	Phe	Ala	Val 175	Ph∈
		Ala	Arg	Leu	Asp 180	Asp	Glu	Gln	Gly	Arg 185	Arg	Gln	Cys	Val	Leu 190	Val	Phe
15		Pro	Gln	Pro 195	Glu	Ala	Phe	Trp	Trp 200	Arg	Ala	Ser	Arg	Leu 205	Tyr	Thr	Leu
		Val	Leu 210	Gly	Phe	Ala	Ile	Pro 215	Val	Ser	Thr	Ile	Cys 220	Val	Leu	Tyr	Thr
20		Thr 225	Leu	Leu	Cys	Arg	Leu 230	His	Ala	Met	Arg	Leu 235	Asp	Ser	His	Ala	Lys 240
		Ala	Leu	Glu	Arg	Ala 245	Lys	Lys	Arg	Val	Thr 250	Phe	Leu	Val	Val	Ala 255	Ile
		Leu	Ala	Val	Cys 260	Leu	Leu	Cys	Trp	Thr 265	Pro	Tyr	His	Leu	Ser 270	Thr	Val
25		Val	Ala	Leu 275	Thr	Thr	Asp	Leu	Pro 280	Gln	Thr	Pro	Leu	Val 285	Ile	Ala	Ιlε
		Ser	Туг 290	Phe	Ile	Thr	Ser	Leu 295	Thr	Tyr	Ala	Asn	Ser 300	Cys	Leu	Asn	Pro
30		Phe 305	Leu	Tyr	Ala	Phe	Leu 310	Asp	Ala	Ser	Phe	Arg 315	Arg	Asn	Leu	Arg	Glr 320
		Leu	Ile	Thr	Cys	Arg 325	Ala	Ala	Ala								
	(14)	INF	ORMA'	TION	FOR	SEQ	ID I	NO:1	3 :								
26		(i		QUEN													
35			A)) LE	NGTH	: 30	bas	e pa:	ırs								

- (A) LENGTH: 30 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:	
	CGGAATTCGT CAACGGTCCC AGCTACAATG	30
	(15) INFORMATION FOR SEQ ID NO:14:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10	(ii) MOLECULE TYPE: DNA (genomic) (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:	
	ATGGATCCCA GGCCCTTCAG CACCGCAATA T	31
	(16) INFORMATION FOR SEQ ID NO:15:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1002 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:	
	ATGCAGGCCG CTGGGCACCC AGAGCCCCTT GACAGCAGGG GCTCCTTCTC CCTCCCCACG	60
	ATGGGTGCCA ACGTCTCTCA GGACAATGGC ACTGGCCACA ATGCCACCTT CTCCGAGCCA	120
	CTGCCGTTCC TCTATGTGCT CCTGCCCGCC GTGTACTCCG GGATCTGTGC TGTGGGGCTG	180
	ACTGGCAACA CGGCCGTCAT CCTTGTAATC CTAAGGGCGC CCAAGATGAA GACGGTGACC	240
25	AACGTGTTCA TCCTGAACCT GGCCGTCGCC GACGGGCTCT TCACGCTGGT ACTGCCCGTC	300
	AACATCGCGG AGCACCTGCT GCAGTACTGG CCCTTCGGGG AGCTGCTCTG CAAGCTGGTG	360
	CTGGCCGTCG ACCACTACAA CATCTTCTCC AGCATCTACT TCCTAGCCGT GATGAGCGTG	420
	GACCGATACC TGGTGGTGCT GGCCACCGTG AGGTCCCGCC ACATGCCCTG GCGCACCTAC	480
	CGGGGGGCGA AGGTCGCCAG CCTGTGTGTC TGGCTGGGCG TCACGGTCCT GGTTCTGCCC	540
30	TTCTTCTCTT TCGCTGGCGT CTACAGCAAC GAGCTGCAGG TCCCAAGCTG TGGGCTGAGC	600
	TTCCCGTGGC CCGAGCGGGT CTGGTTCAAG GCCAGCCGTG TCTACACTTT GGTCCTGGGC	660
	TTCGTGCTGC CCGTGTGCAC CATCTGTGTG CTCTACACAG ACCTCCTGCG CAGGCTGCGG	720

PCT/US99/23938 WO 00/22129

	GCCGTGCGGC TCCGCTCTGG AGCCAAGGCT CTAGGCAAGG CCAGGCGGAA GGTGACCGTC 78	30
	CTGGTCCTCG TCGTGCTGGC CGTGTGCCTC CTCTGCTGGA CGCCCTTCCA CCTGGCCTCT 84	10
	GTCGTGGCCC TGACCACGGA CCTGCCCCAG ACCCCACTGG TCATCAGTAT GTCCTACGTC 90	00
	ATCACCAGCC TCACGTACGC CAACTCGTGC CTGAACCCCT TCCTCTACGC CTTTCTAGAT 96	50
5	GACAACTTCC GGAAGAACTT CCGCAGCATA TTGCGGTGCT GA)2
	(17) INFORMATION FOR SEQ ID NO:16:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 333 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: not relevant (ii) MOLECULE TYPE: protein 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:	
15	Met Gln Ala Ala Gly His Pro Glu Pro Leu Asp Ser Arg Gly Ser Phe 1 5 10 15	
	Ser Leu Pro Thr Met Gly Ala Asn Val Ser Gln Asp Asn Gly Thr Gly 20 25 30	
	His Asn Ala Thr Phe Ser Glu Pro Leu Pro Phe Leu Tyr Val Leu Leu 35 40 45	
20	Pro Ala Val Tyr Ser Gly Ile Cys Ala Val Gly Leu Thr Gly Asn Thr 50 55 60	
	Ala Val Ile Leu Val Ile Leu Arg Ala Pro Lys Met Lys Thr Val Thr 65 70 75 80	
25	Asn Val Phe Ile Leu Asn Leu Ala Val Ala Asp Gly Leu Phe Thr Leu 85 90 95	
	Val Leu Pro Val Asn Ile Ala Glu His Leu Leu Gln Tyr Trp Pro Phe 100 105 110	
	Gly Glu Leu Leu Cys Lys Leu Val Leu Ala Val Asp His Tyr Asn Ile 115 120 125	
30	Phe Ser Ser Ile Tyr Phe Leu Ala Val Met Ser Val Asp Arg Tyr Leu 130 135 140	
	Val Val Leu Ala Thr Val Arg Ser Arg His Met Pro Trp Arg Thr Tyr 145 150 155 160	

Arg Gly Ala Lys Val Ala Ser Leu Cys Val Trp Leu Gly Val Thr Val.

		Leu	Val	Leu	Pro 180	Phe	Phe	Ser	Phe	Ala 185	Gly	Val	Tyr	Ser	Asn 190	Glu	Leu	
		Gln	Val	Pro 195	Ser	Cys	Gly	Leu	Ser 200	Phe	Pro	Trp	Pro	Glu 205	Arg	Val	Trp	
5		Phe	Lys 210	Ala	Ser	Arg	Val	Tyr 215	Thr	Leu	Val	Leu	Gly 220	Phe	Val	Leu	Pro	
		Val 225	Cys	Thr	Ile	Cys	Val 230	Leu	Tyr	Thr	Asp	Leu 235	Leu	Arg	Arg	Leu	Arg 240	
10		Ala	Val	Arg	Leu	Arg 245	Ser	Gly	Ala	Lys	Ala 250	Leu	Gly	Lys	Ala	Arg 255	Arg	
		Lys	Val	Thr	Val 260	Leu	Val	Leu	Val	Val 265	Leu	Ala	Val	Cys	Leu 270	Leu	Cys	
		Trp	Thr	Pro 275	Phe	His	Leu	Ala	Ser 280	Val	Val	Ala	Leu	Thr 285	Thr	Asp	Leu	
15		Pro	Gln 290	Thr	Pro	Leu	Val	Ile 295	Ser	Met	Ser	Tyr	Val 300	Ile	Thr	Ser	Leu	
		Thr 305	Tyr	Ala	Asn	Ser	Cys 310	Leu	Asn	Pro	Phe	Leu 315	Tyr	Ala	Phe	Leu	Asp 320	
20		Asp	Asn	Phe	Arg	Lys 325	Asn	Phe	Arg	Ser	Ile 330	Leu	Arg	Cys				
	(18)	INFO	RMAT	CION	FOR	SEQ	ID N	IO:17	' :									
25		(i)	(A) (B) (C)	LEN TYP STR	IGTH: PE: n LANDE	ARAC 48 ucle DNES	base ic a S: s	pai cid ingl	.rs									
		(ii	.) MC	LECU	LE I	YPE :	DNA	. (ge	nomi	c)								
		(xi) SE	QUEN	CE D	ESCR	IPTI	ON:	SEQ	ID N	0:17	:						
	ACGAZ	ATTCA	re co	ATGG	TCCT	TGA	GGTG	AGT	GACC	ACCA	AG T	GCTA	TAA					48
80	(19)	INFO	RMAT	NOI	FOR	SEQ	ID N	0:18	:									
35		(i)	(A) (B) (C)	LEN TYP STR	GTH: E: n ANDE	ARAC 27 ucle DNES Y: 1	base ic a S: s	pai cid ingl	rs									
		(ii) MC	LECU	LE T	YPE:	DNA	(ge	nomi	c)								
		(xi) SE	QUEN	CE D	ESCR	IPTI	ON:	SEQ	ID N	0:18	:						

27 GAGGATCCTG GAATGCGGGG AAGTCAG (20) INFORMATION FOR SEQ ID NO:19: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1107 base pairs 5 (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19: ATGGTCCTTG AGGTGAGTGA CCACCAAGTG CTAAATGACG CCGAGGTTGC CGCCCTCCTG 60 10 GAGAACTTCA GCTCTTCCTA TGACTATGGA GAAAACGAGA GTGACTCGTG CTGTACCTCC 120 CCGCCCTGCC CACAGGACTT CAGCCTGAAC TTCGACCGGG CCTTCCTGCC AGCCCTCTAC 180 AGCCTCCTCT TTCTGCTGGG GCTGCTGGGC AACGGCGCGG TGGCAGCCGT GCTGCTGAGC 240 CGGCGGACAG CCCTGAGCAG CACCGACACC TTCCTGCTCC ACCTAGCTGT AGCAGACACG 300 CTGCTGGTGC TGACACTGCC GCTCTGGGCA GTGGACGCTG CCGTCCAGTG GGTCTTTGGC 360 15 TCTGGCCTCT GCAAAGTGGC AGGTGCCCTC TTCAACATCA ACTTCTACGC AGGAGCCCTC 420 CTGCTGGCCT GCATCAGCTT TGACCGCTAC CTGAACATAG TTCATGCCAC CCAGCTCTAC 480 CGCCGGGGC CCCCGGCCCG CGTGACCCTC ACCTGCCTGG CTGTCTGGGG GCTCTGCCTG 540 CTTTTCGCCC TCCCAGACTT CATCTTCCTG TCGGCCCACC ACGACGAGCG CCTCAACGCC 600 ACCCACTGCC AATACAACTT CCCACAGGTG GGCCGCACGG CTCTGCGGGT GCTGCAGCTG 660 20 GTGGCTGGCT TTCTGCTGCC CCTGCTGGTC ATGGCCTACT GCTATGCCCA CATCCTGGCC 720 GTGCTGCTGG TTTCCAGGGG CCAGCGGCGC CTGCGGGCCA TGCGGCTGGT GGTGGTGGTC 780 GTGGTGGCCT TTGCCCTCTG CTGGACCCCC TATCACCTGG TGGTGCTGGT GGACATCCTC 840 ATGGACCTGG GCGCTTTGGC CCGCAACTGT GGCCGAGAAA GCAGGGTAGA CGTGGCCAAG 900 TCGGTCACCT CAGGCCTGGG CTACATGCAC TGCTGCCTCA ACCCGCTGCT CTATGCCTTT 960 - 25 GTAGGGGTCA AGTTCCGGGA GCGGATGTGG ATGCTGCTCT TGCGCCTGGG CTGCCCCAAC 1020 CAGAGAGGC TCCAGAGGCA GCCATCGTCT TCCCGCCGGG ATTCATCCTG GTCTGAGACC 1080

TCAGAGGCCT CCTACTCGGG CTTGTGA

WO 00/22129

16

PCT/US99/23938

5	(i	(A (B (C) LE) TY) ST	CE CI NGTH PE: 6 RANDI POLO	: 36 amin EDNE	8 am o ac SS:	ino id	acid	s							
	(i:	i) M	OLEC	ULE '	T YPE	: pr	otei	n								
	(x:	i) S	EQUE	NCE 1	DESC	RIPT	ION:	SEQ	ID 1	NO:2	0 :					
	Met 1	Val	Leu	Glu	Val 5	Ser	Asp	His	Gln	Val 10	Leu	Asn	Asp	Ala	Glu 15	Val
10	Ala	Ala	Leu	Leu 20	Glu	Asn	Phe	Ser	Ser 25	Ser	Tyr	Asp	Tyr	Gly 30	Glu	Asn
	Glu	Ser	Asp 35	Ser	Cys	Cys	Thr	Ser 40	Pro	Pro	Cys	Pro	Gln 45	Asp	Phe	Ser
15	Leu	Asn 50	Phe	Asp	Arg	Ala	Phe 55	Leu	Pro	Ala	Leu	Tyr 60	Ser	Leu	Leu	Phe
	Leu 65	Leu	Gly	Leu	Leu	Gly 70	Asn	Gly	Ala	Val	Ala 75	Ala	Val	Leu	Leu	Ser 80
	Arg	Arg	Thr	Ala	Leu 85	Ser	Ser	Thr	Asp	Thr 90	Phe	Leu	Leu	His	Leu 95	Ala
20	Val	Ala	Asp	Thr 100	Leu	Leu	Val	Leu	Thr 105	Leu	Pro	Leu	Trp	Ala 110	Val	Asp
	Ala	Ala	Val 115	Gln	Trp	Val	Phe	Gly 120	Ser	Gly	Leu	Cys	Lys 125	Val	Ala	Gly
25	Ala	Leu 130	Phe	Asn	Ile	Asn	Phe 135	Tyr	Ala	Gly	Ala	Leu 140	Leu	Leu	Ala	Cys
	Ile 145	Ser	Phe	Asp	Arg	Tyr 150	Leu	Asn	Ile	Val	His 155	Ala	Thr	Gln	Leu	Tyr 160
	Arg	Arg	Gly	Pro	Pro 165	Ala	Arg	Val	Thr	Leu 170	Thr	Cys	Leu	Ala	Val 175	Trp
30	Gly	Leu	Cys	Leu 180	Leu	Phe	Ala	Leu	Pro 185	Asp	Phe	Ile	Phe	Leu 190	Ser	Ala
	His	His	Asp 195	Glu	Arg	Leu	Asn	Ala 200	Thr	His	Cys	Gln	Tyr 205	Asn	Phe	Pro
35	Gln	Val 210	Gly	Arg	Thr	Ala	Leu 215	Arg	Val	Leu	Gln	Leu 220	Val	Ala	Gly	Phe
	Leu 225	Leu	Pro	Leu	Leu	Val 230	Met	Ala	Tyr	Cys	Tyr 235	Ala	His	Ile	Leu	Ala 240

PCT/US99/23938

	Val Leu Leu Val Ser Arg Gly Gln Arg Arg Leu Arg Ala Met A 245 250 2	rg Leu 55
	Val Val Val Val Val Ala Phe Ala Leu Cys Trp Thr Pro T 260 265 270	yr His
5	Leu Val Val Leu Val Asp Ile Leu Met Asp Leu Gly Ala Leu A 275 280 285	la Arg
	Asn Cys Gly Arg Glu Ser Arg Val Asp Val Ala Lys Ser Val T 290 295 300	hr Ser
10	Gly Leu Gly Tyr Met His Cys Cys Leu Asn Pro Leu Leu Tyr A 305 310 315	la Phe 320
	Val Gly Val Lys Phe Arg Glu Arg Met Trp Met Leu Leu Leu A 325 330 3	rg Leu 35
	Gly Cys Pro Asn Gln Arg Gly Leu Gln Arg Gln Pro Ser Ser S 340 345 350	er Arg
15	Arg Asp Ser Ser Trp Ser Glu Thr Ser Glu Ala Ser Tyr Ser G 355 360 365	ly Leu
•	(22) INFORMATION FOR SEQ ID NO:21:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs	
20	(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:	
25	TTAAGCTTGA CCTAATGCCA TCTTGTGTCC	30
	(23) INFORMATION FOR SEQ ID NO:22:	
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:	
	TTGGATCCAA AAGAACCATG CACCTCAGAG	30
35	(24) INFORMATION FOR SEQ ID NO:23:	·
	(i) SEQUENCE CHARACTERISTICS:	

18

- (A) LENGTH: 1074 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- 5 (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

ATGGCTGATG ACTATGGCTC TGAATCCACA TCTTCCATGG AAGACTACGT TAACTTCAAC 60 TTCACTGACT TCTACTGTGA GAAAAACAAT GTCAGGCAGT TTGCGAGCCA TTTCCTCCCA 120 CCCTTGTACT GGCTCGTGTT CATCGTGGGT GCCTTGGGCA ACAGTCTTGT TATCCTTGTC 180 TACTGGTACT GCACAGAGT GAAGACCATG ACCGACATGT TCCTTTTGAA TTTGGCAATT 240 GCTGACCTCC TCTTTCTTGT CACTCTTCCC TTCTGGGCCA TTGCTGCTGC TGACCAGTGG 300 AAGTTCCAGA CCTTCATGTG CAAGGTGGTC AACAGCATGT ACAAGATGAA CTTCTACAGC 360 TGTGTGTTGC TGATCATGTG CATCAGCGTG GACAGGTACA TTGCCATTGC CCAGGCCATG 420 AGAGCACATA CTTGGAGGGA GAAAAGGCTT TTGTACAGCA AAATGGTTTG CTTTACCATC 480 15 TGGGTATTGG CAGCTGCTCT CTGCATCCCA GAAATCTTAT ACAGCCAAAT CAAGGAGGAA 540 TCCGGCATTG CTATCTGCAC CATGGTTTAC CCTAGCGATG AGAGCACCAA ACTGAAGTCA 600 GCTGTCTTGA CCCTGAAGGT CATTCTGGGG TTCTTCCTTC CCTTCGTGGT CATGGCTTGC 660 TGCTATACCA TCATCATTCA CACCCTGATA CAAGCCAAGA AGTCTTCCAA GCACAAAGCC 720 CTAAAAGTGA CCATCACTGT CCTGACCGTC TTTGTCTTGT CTCAGTTTCC CTACAACTGC 780 20 ATTTTGTTGG TGCAGACCAT TGACGCCTAT GCCATGTTCA TCTCCAACTG TGCCGTTTCC 840 ACCAACATTG ACATCTGCTT CCAGGTCACC CAGACCATCG CCTTCTTCCA CAGTTGCCTG 900 AACCCTGTTC TCTATGTTTT TGTGGGTGAG AGATTCCGCC GGGATCTCGT GAAAACCCTG 960 AAGAACTTGG GTTGCATCAG CCAGGCCCAG TGGGTTTCAT TTACAAGGAG AGAGGGAAGC 1020 TTGAAGCTGT CGTCTATGTT GCTGGAGACA ACCTCAGGAG CACTCTCCCT CTGA 1074

- 25 (25) INFORMATION FOR SEQ ID NO:24:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 357 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
- 30 (D) TOPOLOGY: not relevant
 - (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

	Met 1	Ala	Asp	Asp	Tyr 5	Gly	Ser	Glu	Ser	Thr 10	Ser	Ser	Met	Glu	Asp 15	Tyr
5	Val	Asn	Phe	Asn 20	Phe	Thr	Asp	Phe	Tyr 25	Cys	Glu	Lys	Asn	Asn 30	Val	Arg
	Gln	Phe	Ala 35	Ser	His	Phe	Leu	Pro 40	Pro	Leu	Tyr	Trp	Leu 45	Val	Phe	Ile
	Val	Gly 50	Ala	Leu	Gly	Asn	Ser 55	Leu	Val	Ile	Leu	Val 60	Tyr	Trp	Tyr	Cys
10	Thr 65	Arg	Val	Lys	Thr	Met 70	Thr	Asp	Met	Phe	Leu 75	Leu	Asn	Leu	Ala	Ile 80
	Ala	Asp	Ļeu	Leu	Phe 85	Leu	Val	Thr	Leu	Pro 90	Phe	Trp	Ala	Ile	Ala 95	Ala
15	Ala	Asp	Gln	Trp 100	Lys	Phe	Gln	Thr	Phe 105	Met	Cys	Lys	Val	Val 110	Asn	Ser
	Met	-	Lys 115	Met	Asn	Phe	Tyr	Ser 120	Cys	Val	Leu	Leu	Ile 125	Met	Cys	Ile
	Ser	Val 130	Asp	Arg	Tyr	Ile	Ala 135	Ile	Ala	Gln	Ala	Met 140	Arg	Ala	His	Thr
20	Trp 145	Arg	Glu	Lys	Arg	Leu 150	Leu	Tyr	Ser	Lys	Met 155	Val	Cys	Phe	Thr	Ile 160
	Trp	Val	Leu	Ala	Ala 165	Ala	Leu	Cys	Ile	Pro 170	Glu	Ile	Leu	Tyr	Ser 175	Gln
25	Ile	Lys	Glu	Glu 180	Ser	Gly	Ile	Ala	Ile 185	Cys	Thr	Met	Val	Tyr 190	Pro	Ser
	Asp	Glu	Ser 195	Thr	Lys	Leu	Lys	Ser 200	Ala	Val	Leu	Thr	Leu 205	Lys	Val	Ile
	Leu	Gly 210	Phe	Phe	Leu	Pro	Phe 215	Val	Val	Met	Ala	Cys 220	Cys	Tyr	Thr	Ile
30	Ile 225	Ile	His	Thr	Leu	11e 230	Gln	Ala	Lys	Lys	Ser 235	Ser	Lys	His	Lys	Ala 240
	Leu	Lys	Val	Thr	Ile 245	Thr	Val	Leu	Thr	Val 250	Phe	Val	Leu	Ser	Gln 255	Phe
35	Pro	Tyr	Asn	Cys 260	Ile	Leu	Leu	Val	Gln 265	Thr	Ile	Asp	Ala	Tyr 270	Ala	Met
	Phe	Ile	Ser 275	Asn	Cys	Ala	Val	Ser 280	Thr	Asn	Ile	Asp	Ile 285	Cys	Phe	Gln

20

		Thr Gln 290	Thr	Ile	Ala	Phe 295	Phe	His	Ser	Cys	Leu 300	Asn	Pro	Val	Leu
	Tyr 3	Val Phe	Val	Gly	Glu 310	Arg	Phe	Arg	Arg	Asp 315	Leu	Val	Lys	Thr	Leu 320
5	Lys i	Asn Leu		Cys 325	Ile	Ser	Gln	Ala	Gln 330	Trp	Val	Ser	Phe	Thr 335	Arg
	Arg (Glu Gly	Ser 340	Leu	Lys	Leu	Ser	Ser 345	Met	Leu	Leu	Glu	Thr 350	Thr	Ser
10	Gly A	Ala Leu 355	Ser	Leu											
	(26) INFO	RMATION	FOR	SEQ	ID N	10:25	5:								
15	(i)	SEQUENC (A) LEI (B) TYI (C) STI (D) TOI	NGTH: PE: n RANDE	111 ucle DNES	0 ba ic a S: s	se p cid ingl	airs	;							
	(ii)	MOLECU	JLE T	YPE:	DNA	(ge	nomi	c)							
	(xi)	SEQUE	NCE D	ESCR	IPTI	ON:	SEQ	ID N	O:25	:					
	ATGGCCTCAT	CGACCA	ACTCG	GGG	cccc	AGG	GTTT	CTGA	CT I	TTTA'	TCTG	G GC	TGCC	GCCG	60
20	GCGGTCACAA	CTCCC	GCCAA	CCA	GAGC	GCA	GAGG	CCTC	GG C	GGGC	AACG	G GT	CGGT	GGCT	120
	GGCGCGGACG	CTCCAG	GCCGT	CAC	GCCC	TTC	CAGA	GCCT	GC A	.GCTG	GTGC	A TC	AGCT	GAAG	180
	GGGCTGATCG	TGCTGC	CTCTA	CAG	CGTC	GTG	GTGG	TCGT	GG G	GCTG	GTGG	G CA	ACTG	CCTG	240
	CTGGTGCTGG	TGATCO	GCGCG	GGT	GCCG	CGG	CTGC	ACAA	CG T	GACG	AACT	т сс	TCAT	CGGC	300
	AACCTGGCCT	TGTCCG	SACGT	GCT	CATG	TGC	ACCG	CCTG	CG T	GCCG	CTCA	C GC	TGGC	CTAT	360
25	GCCTTCGAGC	CACGCG	GCTG	GGT	GTTC	GGC	GGCG	GCCT	GT G	CCAC	CTGG'	T CT	TCTT	CCTG	420
	CAGCCGGTCA	CCGTCT	ATGT	GTC	GGTG	TTC	ACGC	TCAC	CA C	CATC	GCAG'	T GG	ACCG	CTAC	480
	GTCGTGCTGG	TGCACC	CGCT	GAG	GCGC	GCA	TCTC	GCTG	CG C	CTCA	GCCT	A CG	CTGT	GCTG	540
	GCCATCTGGG	CGCTGT	CCGC	GGT	GCTG	GCG	CTGC	CGCC	CG C	CGTG	CACA	C CT.	ATCA	CGTG	600
	GAGCTCAAGC	CGCACG	ACGT	GCG	CCTC	TGC	GAGG.	AGTT	CT G	GGGC'	rccc	A GG.	AGCG	CCAG	660
30	CGCCAGCTCT	ACGCCT	'GGGG	GCT	GCTG	CTG	GTCA	CCTA	CC T	GCTC	CCTC	r gc	TGGT	CATC	720
	CTCCTGTCTT	ACGTCC	GGGT	GTC	AGTG.	AAG	CTCC	GCAA	CC G	CGTG	GTGC	C GG	GCTG	CGTG	780

ACCCAGAGCC AGGCCGACTG GGACCGCGCT CGGCGCCGGC GCACCTTCTG CTTGCTGGTG 840

	GTGGTCGTGG	TGGTGT	TCGC CG	rctgct	rgg (CTGC	CGCT	GC A	CGTC	TTCA	A CC	TGCT	GCGG	900
	GACCTCGACC	CCCACG	CCAT CG	ACCCTI	rac (GCCT"	TTGG	GC T	GGTG	CAGC	T GC	TCTG	CCAC	960
	TGGCTCGCCA	TGAGTT	CGGC CT	GCTACA	AAC (CCCT	TCAT	CT A	CGCC	TGGC	T GC	ACGA	CAGC	1020
	TTCCGCGAGG	AGCTGC	GCAA AC	rgttge	GTC (GCTT	GGCC	CC G	CAAG	ATAG	c cc	CCCA	TGGC	1080
5	CAGAATATGA	CCGTCA	GCGT GG	rcatc1	rga									1110
	(27) INFOR	MATION	FOR SEQ	ID NO	0:26	:								
10	(i)	(A) LEN (B) TYP (C) STR	CE CHARA IGTH: 36 PE: amin RANDEDNE POLOGY:	9 amir o acid SS:	no ac	cids								
	(ii)	MOLECU	JLE TYPE	: prot	tein									
	(xi)	SEQUEN	ICE DESC	RIPTIC	ON: S	SEQ	ID N	0:26	:					
15	Met A	Ala Ser	Ser Thr	Thr A	Arg (Gly	Pro	Arg 10	Val	Ser	Asp	Leu	Phe 15	Ser
	Gly I	Leu Pro	Pro Ala 20	Val 1	Thr '		Pro 25	Ala	Asn	Gln	Ser	Ala 30	Glu	Ala
	Ser A	Ala Gly 35	Asn Gly	Ser V		Ala 40	Gly	Ala	Asp	Ala	Pro 45	Ala	Val	Thr
20		Phe Gln	Ser Leu		Leu ' 55	Val	His	Gln	Leu	Lys 60	Gly	Leu	Ile	Val
	Leu I 65	Leu Tyr	Ser Val	Val V 70	Val '	Val	Val	Gly	Leu 75	Val	Gly	Asn	Cys	Leu 80
25	Leu V	Val Leu	Val Ile 85	Ala A	Arg '	Val	Pro	Arg 90	Leu	His	Asn	Val	Thr 95	Asn
	Phe I	Leu Ile	Gly Asn	Leu i	Ala :	Leu	Ser 105	Asp	Val	Leu		Cys 110	Thr	Ala
	Cys \	Val Pro 115	Leu Thr	Leu i		Tyr 120	Ala	Phe	Glu	Pro	Arg 125	Gly	Trp	Val
30		Gly Gly 130	Gly Leu		His 135	Leu	Val	Phe	Phe	Leu 140	Gln	Pro	Val	Thr
	Val 7	Tyr Val	Ser Val	Phe 1	Thr	Leu	Thr	Thr	Île 155	Ala	Val	Asp	Arg	Tyr 160
	Val '	Val Leu	Val His	Pro	Leu	Arg	Arg	Ala	Ser	Arg	Cys	Ala	Ser	Ala

170

		Tyr	Ala	Val	Leu 180	Ala	Ile	Trp	Ala	Leu 185	Ser	Ala	Val	Leu	Ala 190	Leu	Pro
		Pro	Ala	Val 195	His	Thr	Tyr	His	Val 200	Glu	Leu	Lys	Pro	His 205	Asp	Val	Arg
5		Leu	Cys 210	Glu	Glu	Phe	Trp	Gly 215	Ser	Gln	Glu	Arg	Gln 220	Arg	Gln	Leu	Tyr
		Ala 225	Trp	Gly	Leu	Leu	Leu 230	Val	Thr	Tyr	Leu	Leu 235	Pro	Leu	Leu	Val	Ile 240
10		Leu	Leu	Ser	Tyr	Val 245	Arg	Val	Ser	Val	Lys 250	Leu	Arg	Asn	Arg	Val 255	Val
		Pro	Gly	Cys	Val 260	Thr	Gln	Ser	Gln	Ala 265	Asp	Trp	Asp	Arg	Ala 270	Arg	Arg
		Arg	Arg	Thr 275	Phe	Cys	Leu	Leu	Val 280	Val	Val	Val	Val	Val 285	Phe	Ala	Val
15		Cys	Trp 290	Leu	Pro	Leu	His	Val 295	Phe	Asn	Leu	Leu	Arg 300	Asp	Leu	Asp	Pro
		His 305	Ala	Ile	Asp	Pro	Tyr 310	Ala	Phe	Gly	Leu	Val 315	Gln	Leu	Leu	Cys	His 320
20		Trp	Leu	Ala	Met	Ser 325	Ser	Ala	Cys	Tyr	Asn 330	Pro	Phe	Ile	Tyr	Ala 335	Trp
		Leu	His	Asp	Ser 340	Phe	Arg	Glu	Glu	Leu 345	Arg	Lys	Leu	Leu	Val 350	Ala	Trp
		Pro	Arg	Lys 355	Ile	Ala	Pro	His	Gly 360	Gln	Asn	Met	Thr	Val 365	Ser	Val	Val
25		Ile															
	(28)			CION													
30		(i)	(A) (B) (C)	UENC LEN TYP STR TOP	IGTH: PE: n LANDE	108 ucle DNES	3 ba ic a S: s	se p cid ingl	airs								
		(ii	.) MC	LECU	LE T	YPE:	DNA	(ge	nomi	c)							
25				QUEN													
35	ATGGA GACAT																
								~~ -		\sim \sim \sim	I U	-11		L. ALI	LIV. IT	IIAU	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

	ACAGCTGTGT	TCCTGACTGG	AGTGCTGGGG	AACCTTGTTC	TCATGGGAGC	GTTGCATTTC	180
	AAACCCGGCA	GCCGAAGACT	GATCGACATC	TTTATCATCA	ATCTGGCTGC	CTCTGACTTC	240
	ATTTTTCTTG	TCACATTGCC	TCTCTGGGTG	GATAAAGAAG	CATCTCTAGG	ACTGTGGAGG	300
	ACGGGCTCCT	TCCTGTGCAA	AGGGAGCTCC	TACATGATCT	CCGTCAATAT	GCACTGCAGT	360
5	GTCCTCCTGC	TCACTTGCAT	GAGTGTTGAC	CGCTACCTGG	CCATTGTGTG	GCCAGTCGTA	420
	TCCAGGAAAT	TCAGAAGGAC	AGACTGTGCA	TATGTAGTCT	GTGCCAGCAT	CTGGTTTATC	480
	TCCTGCCTGC	TGGGGTTGCC	TACTCTTCTG	TCCAGGGAGC	TCACGCTGAT	TGATGATAAG	540
	CCATACTGTG	CAGAGAAAAA	GGCAACTCCA	ATTAAACTCA	TATGGTCCCT	GGTGGCCTTA	600
	ATTTTCACCT	TTTTTGTCCC	TTTGTTGAGC	ATTGTGACCT	GCTACTGTTG	CATTGCAAGG	660
10	AAGCTGTGTG	CCCATTACCA	GCAATCAGGA	AAGCACAACA	AAAAGCTGAA	GAAATCTATA	720
	AAGATCATCT	TTATTGTCGT	GGCAGCCTTT	CTTGTCTCCT	GGCTGCCCTT	CAATACTTTC	780
	AAGTTCCTGG	CCATTGTCTC	TGGGTTGCGG	CAAGAACACT	ATTTACCCTC	AGCTATTCTT	840
	CAGCTTGGTA	TGGAGGTGAG	TGGACCCTTG	GCATTTGCCA	ACAGCTGTGT	CAACCCTTTC	900
	ATTTACTATA	TCTTCGACAG	CTACATCCGC	CGGGCCATTG	TCCACTGCTT	GTGCCCTTGC	960
15	CTGAAAAACT	ATGACTTTGG	GAGTAGCACT	GAGACATCAG	ATAGTCACCT	CACTAAGGCT	1020
	CTCTCCACCT	TCATTCATGC	AGAAGATTTT	GCCAGGAGGA	GGAAGAGGTC	TGTGTCACTC	1080
	TAA						1083

(29) INFORMATION FOR SEQ ID NO:28:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 360 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: not relevant
 - (ii) MOLECULE TYPE: protein
- 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

Met Asp Pro Glu Glu Thr Ser Val Tyr Leu Asp Tyr Tyr Tyr Ala Thr 1 5 10 15

Ser Pro Asn Ser Asp Ile Arg Glu Thr His Ser His Val Pro Tyr Thr

30 Ser Val Phe Leu Pro Val Phe Tyr Thr Ala Val Phe Leu Thr Gly Val

	Leu	Gly 50	/ Asr	Let	val	. Leu	Met 55	: Gly	Ala	Leu	His	Phe 60	Lys	Pro	Gly	' Sei
	Arg 65	Arg	Leu	ılle	Asp	70	Phe	lle	lle	Asn	Leu 75	Ala	Ala	Ser	Asp	Phe 80
5	Ile	Phe	Leu	val	Thr 85	Leu	Pro	Leu	Trp	Val 90	Asp	Lys	Glu	Ala	Ser 95	Leı
	Gly	Leu	Trp	Arg 100		Gly	Ser	Phe	Leu 105		Lys	Gly	Ser	Ser 110	_	Met
10	Ile	Ser	Val 115		Met	His	Cys	Ser 120		Leu	Leu	Leu	Thr 125	Cys	Met	Ser
	Val	Asp 130		Tyr	Leu	Ala	Ile 135	Val	Trp	Pro	Val	Val 140	Ser	Arg	Lys	Phe
	Arg 145	Arg	Thr	Asp	Cys	Ala 150	Tyr	Val	Val	Cys	Ala 155	Ser	Ile	Trp	Phe	Ile 160
15	Ser	Cys	Leu	Leu	Gly 165	Leu	Pro	Thr	Leu	Leu 170	Ser	Arg	Glu	Leu	Thr 175	Leu
	Ile	Asp	Asp	Lys 180	Pro	Tyr	Cys	Ala	Glu 185	Lys	Lys	Ala	Thr	Pro 190	Ile	Lys
20		Ile	195					200					205			
		Ser 210					215					220			_	
	225	Tyr				230					235					240
25	Lys	Ile	Ile	Phe	Ile 245	Val	Val	Ala	Ala	Phe 250	Leu	Val	Ser	Trp	Leu 255	Pro
	Phe	Asn	Thr	Phe 260	Lys	Phe	Leu	Ala	Ile 265	Val	Ser	Gly	Leu	Arg 270	Gln	Glu
30		Tyr	275					280					285			
	Pro	Leu 290	Ala	Phe	Ala	Asn	Ser 295	Cys	Val	Asn	Pro	Phe 300	Ile	Tyr	Tyr	Ile
2.5	305	Asp				310					315					320
35	Leu	Lys	Asn	Tyr	Asp 325	Phe	Gly	Ser	Ser	Thr 330	Glu	Thr	Ser	Asp	Ser 335	His
	Leu	Thr	Lvs	Ala	Leu	Ser	Thr	Phe	Tle	His	Δla	Glu	Acr	Dhe	ת ז ת	7 ~~

PCT/US99/23938

	340	345		350	
	Arg Arg Lys Arg Ser Val Ser 355	Leu 360			
	(30) INFORMATION FOR SEQ ID NO:29	:			
5	 (i) SEQUENCE CHARACTERISTIC (A) LENGTH: 31 base pai (B) TYPE: nucleic acid (C) STRANDEDNESS: singl (D) TOPOLOGY: linear 	rs			
10	(ii) MOLECULE TYPE: DNA (ge	nomic)			
	(xi) SEQUENCE DESCRIPTION:	SEQ ID NO:2	9:		
	CTAGAATTCT GACTCCAGCC AAAGCATGAA	Т			31
	(31) INFORMATION FOR SEQ ID NO:30	:			
15	 (i) SEQUENCE CHARACTERISTIC (A) LENGTH: 30 base pai (B) TYPE: nucleic acid (C) STRANDEDNESS: singl (D) TOPOLOGY: linear 	rs			
	(ii) MOLECULE TYPE: DNA (ge	enomic)			
20	(xi) SEQUENCE DESCRIPTION:	SEQ ID NO:3	0:		
	GCTGGATCCT AAACAGTCTG CGCTCGGCCT				30
	(32) INFORMATION FOR SEQ ID NO:31	L:			
25	(i) SEQUENCE CHARACTERISTIC (A) LENGTH: 1020 base p (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	oairs			
	(ii) MOLECULE TYPE: DNA (ge	enomic)			
	(xi) SEQUENCE DESCRIPTION:	SEQ ID NO:3	31:		
30	ATGAATGGCC TTGAAGTGGC TCCCCCAGGT	CTGATCACCA	ACTTCTCCCT	GGCCACGGCA	60
	GAGCAATGTG GCCAGGAGAC GCCACTGGAG	AACATGCTGT	TCGCCTCCTT	CTACCTTCTG	120
	GATTTTATCC TGGCTTTAGT TGGCAATACC	CTGGCTCTGT	GGCTTTTCAT	CCGAGACCAC	180
	AAGTCCGGGA CCCCGGCCAA CGTGTTCCTG	ATGCATCTGG	CCGTGGCCGA	CTTGTCGTGC	240
	GTGCTGGTCC TGCCCACCCG CCTGGTCTAC	CACTTCTCTG	GGAACCACTG	GCCATTTGGG	300

	GAAATCGCAT	GCCGTCTCAC	CGGCTTCCTC	TTCTACCTCA	ACATGTACGC	CAGCATCTAC	360
	TTCCTCACCT	GCATCAGCGC	CGACCGTTTC	CTGGCCATTG	TGCACCCGGT	CAAGTCCCTC	420
	AAGCTCCGCA	GGCCCCTCTA	CGCACACCTG	GCCTGTGCCT	TCCTGTGGGT	GGTGGTGGCT	480
	GTGGCCATGG	CCCCGCTGCT	GGTGAGCCCA	CAGACCGTGC	AGACCAACCA	CACGGTGGTC	540
5	TGCCTGCAGC	TGTACCGGGA	GAAGGCCTCC	CACCATGCCC	TGGTGTCCCT	GGCAGTGGCC	600
	TTCACCTTCC	CGTTCATCAC	CACGGTCACC	TGCTACCTGC	TGATCATCCG	CAGCCTGCGG	660
	CAGGGCCTGC	GTGTGGAGAA	GCGCCTCAAG	ACCAAGGCAG	TGCGCATGAT	CGCCATAGTG	720
	CTGGCCATCT	TCCTGGTCTG	CTTCGTGCCC	TACCACGTCA	ACCGCTCCGT	CTACGTGCTG	780
	CACTACCGCA	GCCATGGGGC	CTCCTGCGCC	ACCCAGCGCA	TCCTGGCCCT	GGCAAACCGC	840
10	ATCACCTCCT	GCCTCACCAG	CCTCAACGGG	GCACTCGACC	CCATCATGTA	TTTCTTCGTG	900
	GCTGAGAAGT	TCCGCCACGC	CCTGTGCAAC	TTGCTCTGTG	GCAAAAGGCT	CAAGGGCCCG	960
	CCCCCAGCT	TCGAAGGGAA	AACCAACGAG	AGCTCGCTGA	GTGCCAAGTC	AGAGCTGTGA	1020
	(33) INFORM	MATION FOR S	SEQ ID NO:32	!:			

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 339 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: not relevant
 - (ii) MOLECULE TYPE: protein
- 20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

Met Asn Gly Leu Glu Val Ala Pro Pro Gly Leu Ile Thr Asn Phe Ser

1 10 15

Leu Ala Thr Ala Glu Gln Cys Gly Gln Glu Thr Pro Leu Glu Asn Met 20 25 30

Leu Phe Ala Ser Phe Tyr Leu Leu Asp Phe Ile Leu Ala Leu Val Gly 35 40 45

Asn Thr Leu Ala Leu Trp Leu Phe Ile Arg Asp His Lys Ser Gly Thr 50 55 60

Val Leu Val Leu Pro Thr Arg Leu Val Tyr His Phe Ser Gly Asn His 85 90 95

Trp Pro Phe Gly Glu Ile Ala Cys Arg Leu Thr Gly Phe Leu Phe Tyr

27

				100					105					110		
	Leu	Asn	Met 115	Tyr	Ala	Ser	Ile	Tyr 120	Phe	Leu	Thr	Cys	Ile 125	Ser	Ala	Asp
	Arg	Phe 130	Leu	Ala	Ile	Val	His 135	Pro	Val	Lys	Ser	Leu 140	Lys	Leu	Arg	Arg
	Pro 145	Leu	Tyr	Ala	His	Leu 150	Ala	Cys	Ala	Phe	Leu 155	Trp	Val	Val	Val	Ala 160
	Val	Ala	Met	Ala	Pro 165	Leu	Leu	Val	Ser	Pro 170	Gln	Thr	Val	Gln	Thr 175	Asr
	His	Thr	Val	Val 180	Cys	Leu	Gln	Leu	Tyr 185	Arg	Glu	Lys	Ala	Ser 190	His	His
	Ala	Leu	Val 195	Ser	Leu	Ala	Val	Ala 200	Phe	Thr	Phe	Pro	Phe 205	Ile	Thr	Thr
	Val	Thr 210	Cys	Tyr	Leu	Leu	Ile 215	Ile	Arg	Ser	Leu	Arg 220	Gln	Gly	Leu	Arg
	Val 225	Glu	Lys	Arg	Leu	Lys 230	Thr	Lys	Ala	Val	Arg 235	Met	Ile	Ala	Ile	Va]
	Leu	Ala	Ile	Phe	Leu 245	Val	Cys	Phe	Val	Pro 250	Tyr	His	Val	Asn	Arg 255	Ser
	Val	Tyr	Val	Leu 260	His	Tyr	Arg	Ser	His 265	Gly	Ala	Ser	Cys	Ala 270	Thr	Glr
	Arg	Ile	Leu 275	Ala	Leu	Ala	Asn	Arg 280	Ile	Thr	Ser	Cys	Leu 285	Thr	Ser	Let
	Asn	Gly 290	Ala	Leu	Asp	Pro	Ile 295	Met	Tyr	Phe	Phe	Val 300	Ala	Glu	Lys	Phe
	Arg 305	His	Ala	Leu	-		Leu	Leu	Cys				Leu	Lys	Gly	Pro 320
	Pro	Pro	Ser	Phe	Glu 325	Gly	Lys	Thr	Asn	Glu 330	Ser	Ser	Leu	Ser	Ala 335	Lys
	Ser	Glu	Leu													
(34)	INF	ORMA'	rion	FOR	SEQ	ID I	NO : 3	3:								
	(i)	(A (B (C) LEI) TYI) S T I	NGTH PE: : RAND	: 29 nucl EDNE	bas eic SS:	e pa acid sing	irs								
	(34)	Arg Pro 145 Val His Ala Val 225 Leu Val Arg Asn Arg 305 Pro Ser (34) INFO	Arg Phe 130 Pro Leu 145 Val Ala His Thr Ala Leu Val Thr 210 Val Glu 225 Leu Ala Val Tyr Arg Ile Asn Gly 290 Arg His 305 Pro Pro Ser Glu (34) INFORMA' (i) SE	Arg Phe Leu 130 Pro Leu Tyr 145 Val Ala Met His Thr Val Ala Leu Val 195 Val Thr Cys 210 Val Glu Lys 225 Leu Ala Ile Val Tyr Val Arg Ile Leu 275 Asn Gly Ala 290 Arg His Ala 305 Pro Pro Ser Ser Glu Leu (34) INFORMATION (i) SEQUENC (A) LEI (B) TY (C) ST	Leu Asn Met Tyr 115 Arg Phe Leu Ala 130 Pro Leu Tyr Ala 145 Val Ala Met Ala His Thr Val Val 180 Ala Leu Val 210 Val Thr Cys Tyr 210 Val Glu Lys Arg 225 Leu Ala Ile Phe Val Tyr Val Leu 260 Arg Ile Leu Ala 275 Asn Gly Ala Leu 290 Arg His Ala Leu 305 Pro Pro Ser Phe Ser Glu Leu (34) INFORMATION FOR (i) SEQUENCE Ci (A) LENGTH (B) Type:: (C) STRAND	Leu Asn Met Tyr Ala 115 Arg Phe Leu Ala Ile 130 Pro Leu Tyr Ala His 145 Val Ala Met Ala Pro 165 His Thr Val Val Cys 180 Ala Leu Val Ser Leu 195 Val Thr Cys Tyr Leu 210 Val Glu Lys Arg Leu 225 Leu Ala Ile Phe Leu 245 Val Tyr Val Leu His 260 Arg Ile Leu Ala Leu 275 Asn Gly Ala Leu Asp 290 Arg His Ala Leu Cys 305 Pro Pro Ser Phe Glu 325 Ser Glu Leu (34) INFORMATION FOR SEQ (B) TYPE: nucl (C) STRANDEDNE	Leu Asn Met Tyr Ala Ser 115 Arg Phe Leu Ala Ile Val 130 Pro Leu Tyr Ala His Leu 145 Val Ala Met Ala Pro Leu 165 His Thr Val Val Cys Leu 180 Ala Leu Val Ser Leu Ala 195 Val Thr Cys Tyr Leu Leu 210 Val Glu Lys Arg Leu Lys 225 Leu Ala Ile Phe Leu Val 245 Val Tyr Val Leu His Tyr 260 Arg Ile Leu Ala Leu Asp Pro 290 Arg His Ala Leu Asp Pro 290 Arg His Ala Leu Cys Asn 305 Ser Glu Leu (34) INFORMATION FOR SEQ ID I	Leu Asn Met Tyr Ala Ser Ile Arg Phe Leu Ala Ile Val His 130 Pro Leu Tyr Ala His Leu Ala 145 Val Ala Met Ala Pro Leu Leu 165 His Thr Val Val Cys Leu Gln 180 Ala Leu Val Ser Leu Ala Val 195 Val Thr Cys Tyr Leu Leu Ile 210 Val Glu Lys Arg Leu Lys Thr 225 Val Glu Lys Arg Leu Val Cys 245 Val Tyr Val Leu His Tyr Arg 260 Arg Ile Leu Ala Leu Ala Asn 275 Asn Gly Ala Leu Asp Pro Ile 290 Arg His Ala Leu Asp Pro Ile 290 Arg His Ala Leu Cys Asn Leu 305 Ser Glu Leu (34) INFORMATION FOR SEQ ID NO:3: (i) SEQUENCE CHARACTERISTIC (A) LENGTH: 29 base pa (B) TYPE: nucleic acid	Leu Asn Met Tyr Ala Ser Ile Tyr 120 Arg Phe Leu Ala Ile Val His Pro 135 Pro Leu Tyr Ala His Leu Ala Cys 150 Val Ala Met Ala Pro Leu Leu Val 165 His Thr Val Val Cys Leu Gln Leu 180 Ala Leu Val Ser Leu Ala Val Ala 200 Val Thr Cys Tyr Leu Leu Ile Ile 215 Val Glu Lys Arg Leu Lys Thr Lys 230 Leu Ala Ile Phe Leu Val Cys Phe 245 Val Tyr Val Leu His Tyr Arg Ser 260 Arg Ile Leu Ala Leu Ala Asn Arg 280 Asn Gly Ala Leu Asp Pro Ile Met 295 Arg His Ala Leu Cys Asn Leu Leu 305 Pro Pro Ser Phe Glu Gly Lys Thr 325 Ser Glu Leu (34) INFORMATION FOR SEQ ID NO:33: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	Leu Asn Met 115	Leu Asn Met 115	Leu Asn Met Tyr Ala Ser Ile Tyr Phe Leu Thr 115	Leu Asn Met Tyr Ala Ser Ile Tyr Phe Leu Thr Cys Arg Phe Leu Ala Ile Val His Pro Val Lys Ser Leu 130 Pro Leu Tyr Ala His Leu Ala Cys Ala Phe Leu Trp 145 Val Ala Met Ala Pro Leu Leu Val Ser Pro Gln Thr 165 His Thr Val Val Cys Leu Gln Leu Tyr Arg Glu Lys 180 Val Thr Cys Tyr Leu Leu Ile Ile Arg Ser Leu Arg 210 Val Glu Lys Arg Leu Lys Thr Lys Ala Val Arg Met 225 Leu Ala Ile Phe Leu Val Cys Phe Val Pro Tyr His 245 Val Tyr Val Leu His Tyr Arg Ser His Gly Ala Ser 260 Arg Ile Leu Ala Leu Asp Pro Ile Met Tyr Phe Phe Val 290 Arg His Ala Leu Cys Asn Leu Leu Leu Cys Gly Lys 305 Arg His Ala Leu Cys Asn Leu Leu Cys Thr Asn Glu Ser 305 Ser Glu Leu (34) INFORMATION FOR SEQ ID NO:33: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEENESS: single	Leu Asn Met 115 Tyr Ala Ser Ile Tyr Phe Leu Thr Cys 11e 125 Arg Phe Leu Ala Ile Val His Pro Val Lys Ser Leu Lys 130 Pro Leu Tyr Ala His Leu Ala Cys Ala Phe Leu Trp Val 145 Val Ala Met Ala Pro Leu Leu Val Ser Pro Gln Thr Val 165 Wal Thr Val Val 180 Ala Leu Val Ser Leu Ala Val Ala Phe Thr Phe Pro Phe 195 Val Thr Cys Tyr Leu Leu Ile Ile Arg Ser Leu Arg Gln 225 Val Tyr Val Leu His Tyr Arg Ser His Gly Ala Ser Cys 226 Arg Ile Leu Ala Leu Val Ser Ser Leu Ala Asn Arg Ile Thr Ser Cys Leu 290 Arg His Ala Leu Ala Leu Asp Pro Ile Met Tyr Phe Phe Val 300 Arg His Ala Leu Cys Asn Leu Leu Cys Gly Lys Arg Leu 300 Arg His Ala Leu Cys Asn Leu Leu Cys Gly Lys Arg Leu 300 Ser Glu Leu (34) INFORMATION FOR SEQ ID NO:33: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (II) STRANDEDNESS: single	Leu Asn Met 17	Leu Asn Met Tyr Ala Ser Ile Tyr Phe Leu Thr Cys Ile Ser Ala 115

(ii) MOLECULE TYPE: DNA (genomic)

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:	
	ATAAGATGAT CACCCTGAAC AATCAAGAT	29
	(35) INFORMATION FOR SEQ ID NO:34:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:	
	TCCGAATTCA TAACATTTCA CTGTTTATAT TGC	33
	(36) INFORMATION FOR SEQ ID NO:35:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 996 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:	
20	ATGATCACCC TGAACAATCA AGATCAACCT GTCACTTTTA ACAGCTCACA TCCAGATGAA	60
	TACAAAATTG CAGCCCTTGT CTTCTATAGC TGTATCTTCA TAATTGGATT ATTTGTTAAC	120
	ATCACTGCAT TATGGGTTTT CAGTTGTACC ACCAAGAAGA GAACCACGGT AACCATCTAT	180
	ATGATGAATG TGGCATTAGT GGACTTGATA TTTATAATGA CTTTACCCTT TCGAATGTTT	240
	TATTATGCAA AAGATGCATG GCCATTTGGA GAGTACTTCT GCCAGATTAT TGGAGCTCTC	300
25	ACAGTGTTTT ACCCAAGCAT TGCTTTATGG CTTCTTGCCT TTATTAGTGC TGACAGATAC	360
	ATGGCCATTG TACAGCCGAA GTACGCCAAA GAACTTAAAA ACACGTGCAA AGCCGTGCTG	420
	GCGTGTGTGG GAGTCTGGAT AATGACCCTG ACCACGACCA CCCCTCTGCT ACTGCTCTAT	480
	AAAGACCCAG ATAAAGACTC CACTCCCGCC ACCTGCCTCA AGATTTCTGA CATCATCTAT	540
	CTAAAAGCTG TGAACGTGCT GAACCTCACT CGACTGACAT TTTTTTTCTT GATTCCTTTG	600
30	TTCATCATGA TTGGGTGCTA CTTGGTCATT ATTCATAATC TCCTTCACGG CAGGACGTCT	660
	AAGCTGAAAC CCAAAGTCAA GGAGAAGTCC ATAAGGATCA TCATCACGCT GCTGGTGCAG	720

	GTGCTCGT	CT G	CTTT	ATGC	C CT	TCCA	CATC	TGT	TTCG	CTT	TCCT	GATG	CT G	GGAA	CGGG	G	780
	GAGAACAG'	A TT	CAAT	CCCT	G GG	GAGC	CTTT	ACC.	ACCT'	rcc	CAT	GAAC	CT C	AGCA	CGTG	r	840
	CTGGATGT	GA T'	TCTC'	TACT	A CA	rcgt'	TTCA	AAA	CAAT'	rrc .	AGGC'	TCGA	GT C	ATTA	GTGT	c :	900
	ATGCTATA	cc g	TAAT	TACC	r TC	GAAG(CCTG	CGC.	AGAA	AAA	GTTT	CCGA'	rc r	GGTA	GTCT	Α :	960
5	AGGTCACT	AA G	CAAT	AAATA	A CA	GTGA	AATG	TTA	TGA							:	996
	(37) INFO	ORMA'	rion	FOR	SEQ	ID I	NO : 36	5:									
10	(i)	(A) (B) (C)	LEI TYI	NGTH PE: a RANDI	: 33: amino EDNES	1 am: 5 ac: SS:	ISTIC ino a id relev	acid	5								
	(i:	i) Mo	OLEC	JLE 1	TYPE	: pro	oteir	n									
	(x:	i) SI	EQUEI	NCE I	DESCI	RIPT	ION:	SEQ	ID 1	10:3	5:						
15	Met 1	Ile	Thr	Leu	Asn 5	Asn	Gln	Asp	Gln	Pro 10	Val	Thr	Phe	Asn	Ser 15	Ser	
	His	Pro	Asp	Glu 20	Tyr	Lys	Ile	Ala	Ala 25	Leu	Val	Phe	Tyr	Ser 30	Cys	Ile	
	Phe	Ile	Ile 35	Gly	Leu	Phe	Val	Asn 40	Ile	Thr	Ala	Leu	Trp 45	Val	Phe	Ser	
20	Cys	Thr 50	Thr	Lys	Lys	Arg	Thr 55	Thr	Val	Thr	Ile	Tyr 60	Met	Met	Asn	Val	
	Ala 65	Leu	Val	Asp	Leu	Ile 70	Phe	Ile	Met	Thr	Leu 75	Pro	Phe	Arg	Met	Phe 80	
25	Tyr	Tyr	Ala	Lys	Asp 85	Ala	Trp	Pro	Phe	Gly 90	Glu	Tyr	Phe	Cys	Gln 95	Ile	
	Ile	Gly	Ala	Leu 100	Thr	Val	Phe	Tyr	Pro 105	Ser	Ile	Ala	Leu	Trp 110	Leu	Leu	
	Ala	Phe	Ile 115	Ser	Ala	Asp	Arg	Tyr 120	Met	Ala	Ile	Val	Gln 125	Pro	Lys	Tyr	
30	Ala	Lys 130	Glu	Leu	Lys	Asn	Thr 135	Cys	Lys	Ala	Val	Leu 140	Ala	Cys	Val	Gly	
	Val 145	Trp	Ile	Met	Thr	Leu 150	Thr	Thr	Thr	Thr	Pro 155	Leu	Leu	Leu	Leu	Tyr 160	
35	Lys	Asp	Pro	Asp	Lys 165	Asp	Ser	Thr	Pro	Ala 170	Thr	Cys	Leu	Lys	Ile 175	Ser	

	Asp	Ile	Ile	Tyr 180	Leu	Lys	Ala	Val	Asn 185	Val	Leu	Asn	Leu	Thr 190	Arg	Leu
	Thr	Phe	Phe 195	Phe	Leu	Ile	Pro	Leu 200	Phe	Ile	Met	Ile	Gly 205	Cys	Tyr	Leu
	Val	Ile 210	Ile	His	Asn	Leu	Leu 215	His	Gly	Arg	Thr	Ser 220	Lys	Leu	Lys	Pro
	Lys 225	Val	Lys	Glu	Lys	Ser 230	Ile	Arg	Ile	Ile	Ile 235	Thr	Leu	Leu	Val	Gln 240
	Val	Leu	Val	Cys	Phe 245	Met	Pro	Phe	His	Ile 250	Cys	Phe	Ala	Phe	Leu 255	Met
	Leu	Gly	Thr	Gly 260	Glu	Asn	Ser	Tyr	Asn 265	Pro	Trp	Gly	Ala	Phe 270	Thr	Thr
	Phe	Leu	Met 275	Asn	Leu	Ser	Thr	Cys 280	Leu	Asp	Val	Ile	Leu 285	Tyr	Tyr	Ile
	Val	Ser 290	Lys	Gln	Phe	Gln	Ala 295	Arg	Val	Ile	Ser	Val 300	Met	Leu	Tyr	Arg
	Asn 305	Tyr	Leu	Arg	Ser	Leu 310	Arg	Arg	Lys	Ser	Phe 315	Arg	Ser	Gly	Ser	Leu 320
	Arg	Ser	Leu	Ser	Asn 325	Ile	Asn	Ser	Glu	Met 330	Leu					
(38)	INFO	RMAI	NOI	FOR	SEQ	ID N	IO:37	':								
•	(i)															
		(B) (C)	TYP STR	E: n	ucle DNES	ic a S: s	cid ingl									
	(ii) MO	LECU	LE T	YPE:	DNA	. (ge	nomi	c)							
	(xi) SE	QUEN	CE D	ESCR	IPTI	ON:	SEQ	ID N	0:37	:					
CCAAC	CTTC	C AG	GCCT	GGGG	TGT	GCTG	G									28
(39)	INFO	RMAT	ION	FOR	SEQ	ID N	0:38	:								
	(i)	(A)	LEN	GTH:	29	base	pai									
								е								
	(ii) MO	LECU	LE T	YPE:	DNA	(ge	nomi	c)							
	(xi) SE	QUEN	CE D	ESCR	IPTI	ON:	SEQ	ID N	0:38	:					
	CCAAC	Thr Val Lys 225 Val Leu Phe Val Asn 305 Arg (38) INFO (ii) (xi CCAAGCTTC (39) INFO (ii)	Thr Phe Val Ile 210 Lys Val 225 Val Leu Leu Gly Phe Leu Val Ser 290 Asn Tyr 305 Arg Ser (38) INFORMAT (i) SEQ (A) (B) (C) (D) (ii) MC (xi) SE CCAAGCTTCC AG (39) INFORMAT (i) SEQ (A) (B) (C) (D) (ii) MO (XI) SEQ (A) (B) (C) (D) (II) MO (XI) SEQ (II) SEQ (II) MO (III) MO	Thr Phe Phe 195 Val Ile Ile 210 Lys Val Lys 225 Val Leu Val Leu Gly Thr Phe Leu Met 275 Val Ser Lys 290 Asn Tyr Leu 305 Arg Ser Leu (38) INFORMATION (i) SEQUENC (A) LEN (B) TYP (C) STR (D) TOP (ii) MOLECU (Xi) SEQUENC (A) LEN (B) TYP (C) STR (D) TOP (ii) SEQUENC (A) LEN (B) TYP (C) STR (D) TOP (ii) SEQUENC (A) LEN (B) TYP (C) STR (D) TOP (iii) MOLECU (XI) SEQUENC (A) LEN (B) TYP (C) STR (D) TOP	Thr Phe Phe Phe 195 Val Ile Ile His 210 Lys Val Lys Glu 225 Val Leu Val Cys Leu Gly Thr Gly 260 Phe Leu Met Asn 275 Val Ser Lys Gln 290 Asn Tyr Leu Arg 305 Arg Ser Leu Ser (38) INFORMATION FOR (i) SEQUENCE CH (A) LENGTH: (B) TYPE: n (C) STRANDE (D) TOPOLOG (ii) MOLECULE TO (A) LENGTH: (B) TYPE: n (C) STRANDE (D) TOPOLOG (ii) SEQUENCE CH (A) LENGTH: (B) TYPE: n (C) STRANDE (D) TOPOLOG (ii) MOLECULE TO (C) STRANDE (D) TOPOLOG (ii) MOLECULE TO (C) STRANDE (D) TOPOLOG (iii) MOLECULE TO (C) STRANDE (D) TOPOLOG	Thr Phe Phe Phe Leu 195 Val Ile Ile His Asn 210 Lys Val Lys Glu Lys 225 Val Leu Val Cys Phe 245 Leu Gly Thr Gly Glu 260 Phe Leu Met Asn Leu 275 Val Ser Lys Gln Phe 290 Asn Tyr Leu Arg Ser 305 Arg Ser Leu Ser Asn 325 (38) INFORMATION FOR SEQ (i) SEQUENCE CHARAC (A) LENGTH: 28 (B) TYPE: nucle (C) STRANDEDNES (D) TOPOLOGY: 1 (ii) MOLECULE TYPE: (xi) SEQUENCE CHARAC (A) LENGTH: 29 (B) TYPE: nucle (C) STRANDEDNES (D) TOPOLOGY: 1 (ii) SEQUENCE CHARAC (A) LENGTH: 29 (B) TYPE: nucle (C) STRANDEDNES (D) TOPOLOGY: 1 (ii) SEQUENCE CHARAC (A) LENGTH: 29 (B) TYPE: nucle (C) STRANDEDNES (D) TOPOLOGY: 1	Thr Phe Phe Phe Leu Ile 195 Val Ile Ile His Asn Leu 210 Lys Val Lys Glu Lys Ser 225 230 Val Leu Val Cys Phe Met 245 Leu Gly Thr Gly Glu Asn 260 Phe Leu Met Asn Leu Ser 275 Val Ser Lys Gln Phe Gln 290 Asn Tyr Leu Arg Ser Leu 305 310 Arg Ser Leu Ser Asn Ile 325 (38) INFORMATION FOR SEQ ID N (i) SEQUENCE CHARACTERI (A) LENGTH: 28 base (B) TYPE: nucleic a (C) STRANDEDNESS: s (D) TOPOLOGY: linea (ii) MOLECULE TYPE: DNA (xi) SEQUENCE CHARACTERI (A) LENGTH: 29 base (B) TYPE: nucleic a (C) STRANDEDNESS: s (D) TOPOLOGY: linea (ii) MOLECULE TYPE: DNA (xi) SEQUENCE CHARACTERI (A) LENGTH: 29 base (B) TYPE: nucleic a (C) STRANDEDNESS: s (D) TOPOLOGY: linea (ii) MOLECULE TYPE: DNA	Thr Phe Phe Phe Leu Ile Pro 195 Val Ile Ile His Asn Leu Leu 210 Lys Val Lys Glu Lys Ser Ile 225 Lys Val Lys Glu Lys Ser Ile 225 Val Leu Val Cys Phe Met Pro 245 Leu Gly Thr Gly Glu Asn Ser 260 Phe Leu Met Asn Leu Ser Thr 275 Val Ser Lys Gln Phe Gln Ala 290 Asn Tyr Leu Arg Ser Leu Arg 305 Arg Ser Leu Ser Asn Ile Asn 325 (i) SEQUENCE CHARACTERISTIC (A) LENGTH: 28 base pai (B) TYPE: nucleic acid (C) STRANDEDNESS: singl (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (ge (xi) SEQUENCE CHARACTERISTIC (A) LENGTH: 29 base pai (B) TYPE: nucleic acid (C) STRANDEDNESS: singl (I) SEQUENCE CHARACTERISTIC (II) MOLECULE TYPE: DNA (ge (XI) SEQUENCE DESCRIPTION:	Thr Phe Phe Phe Leu Ile Pro Leu 195 200 Val Ile Ile His Asn Leu Leu His 210 Lys Val Lys Glu Lys Ser Ile Arg 225 Lys Val Cys Phe Met Pro Phe 245 Leu Gly Thr Gly Glu Asn Ser Tyr 260 Phe Leu Met Asn Leu Ser Thr Cys 275 280 Val Ser Lys Gln Phe Gln Ala Arg 290 295 Asn Tyr Leu Arg Ser Leu Arg Arg 305 310 Arg Ser Leu Ser Asn Ile Asn Ser 325 (38) INFORMATION FOR SEQ ID NO:37: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 base pairs (B) Type: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomi (xi) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) Type: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (senomi (xi) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) Type: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (senomi (xi) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) Type: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	Thr Phe Phe Phe Leu Ile Pro Leu Phe 195 200 Val Ile Ile His Asn Leu Leu His Gly 210 215 Lys Val Lys Glu Lys Ser Ile Arg Ile 225 230 Val Leu Val Cys Phe Met Pro Phe His 245 Leu Gly Thr Gly Glu Asn Ser Tyr Asn 260 265 Phe Leu Met Asn Leu Ser Thr Cys Leu 275 280 Val Ser Lys Gln Phe Gln Ala Arg Val 290 295 Asn Tyr Leu Arg Ser Leu Arg Arg Lys 305 310 Arg Ser Leu Ser Asn Ile Asn Ser Glu 325 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 base pairs (B) TypE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) CCAAGCTTCC AGGCCTGGGG TGTGCTGG (39) INFORMATION FOR SEQ ID NO:38: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	Thr Phe Phe Phe Leu Ile Pro Leu Phe Ile 195 Thr Phe Phe Phe Leu Ile Pro Leu Phe Ile 195 Val Ile Ile His Asn Leu Leu His Gly Arg 210 Lys Val Lys Glu Lys Ser Ile Arg Ile Ile 225 Lys Val Lys Glu Lys Ser Ile Arg Ile Ile 225 Val Leu Val Cys Phe Met Pro Phe His Ile 245 Leu Gly Thr Gly Glu Asn Ser Tyr Asn Pro 260 Phe Leu Met Asn Leu Ser Thr Cys Leu Asp 275 Asn Tyr Leu Arg Ser Leu Arg Arg Lys Ser 305 Arg Ser Leu Ser Asn Ile Asn Ser Glu Met 325 Asn Tyr Leu Arg Ser Leu Arg Arg Lys Ser 305 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 base pairs (B) Type: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (xi) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) Type: nucleic acid (C) STRANDEDNESS: single (J) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) Type: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic)	Thr Phe Phe Phe Leu IIe Pro Leu Phe IIe Met 195 Val IIe IIe His Asn Leu Leu His Gly Arg Thr 210 Lys Val Lys Glu Lys Ser Ile Arg Ile Ile Ile 225 Val Leu Val Cys Phe Met Pro Phe His Ile Cys 245 Leu Gly Thr Gly Glu Asn Ser Tyr Asn Pro Trp 260 Phe Leu Met Asn Leu Ser Thr Cys Leu Asp Val 275 Val Ser Lys Gln Phe Gln Ala Arg Val Ile Ser 290 Asn Tyr Leu Arg Ser Leu Arg Arg Lys Ser Phe 305 Arg Ser Leu Ser Asn Ile Asn Ser Glu Met Leu 325 Arg Ser Leu Ser Asn Ile Asn Ser Glu Met Leu 325 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 base pairs (B) Type: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) Type: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	Thr Phe Phe Phe Leu Ile Pro Leu Phe Ile Met Ile 195 Thr Phe Phe Phe Leu Ile Pro Leu Phe Ile Met Ile 195 Val Ile Ile His Asn Leu Leu His Gly Arg Thr Ser 210 Lys Val Lys Glu Lys Ser Ile Arg Ile Ile Ile Thr 225 Val Leu Val Cys Phe Met Pro Phe His Ile Cys Phe 245 Leu Gly Thr Gly Glu Asn Ser Tyr Asn Pro Trp Gly 266 Phe Leu Met Asn Leu Ser Thr Cys Leu Asp Val Ile 275 Val Ser Lys Gln Phe Gln Ala Arg Val Ile Ser Val 290 Asn Tyr Leu Arg Ser Leu Arg Arg Lys Ser Phe Arg 305 Arg Ser Leu Ser Asn Ile Asn Ser Glu Met Leu 325 Arg Ser Leu Ser Asn Ile Asn Ser Glu Met Leu 325 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (xi) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic)	Thr Phe Phe Phe Leu Ile Pro Leu Phe Ile Met Ile Gly 205 Val Ile Ile His Asn Leu Leu His Gly Arg Thr Ser Lys 210 Lys Val Lys Glu Lys Ser Ile Arg Ile Ile Ile Thr Leu 225 Val Leu Val Cys Phe Met Pro Phe His Ile Cys Phe Ala 245 Leu Gly Thr Gly Glu Asn Ser Tyr Asn Pro Trp Gly Ala 265 Phe Leu Met Asn Leu Ser Thr Cys Leu Asp Val Ile Leu 275 Val Ser Lys Gln Phe Gln Ala Arg Val Ile Ser Val Met 290 Asn Tyr Leu Arg Ser Leu Arg Arg Lys Ser Phe Arg Ser 305 Arg Ser Leu Ser Asn Ile Asn Ser Glu Met Leu 325 Arg Ser Leu Ser Asn Ile Asn Ser Glu Met Leu 325 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (Xi) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNO (genomic) (Xi) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNO (genomic) (XI) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (iii) MOLECULE TYPE: DNA (genomic)	Thr Phe Phe Phe Leu Ile Pro Leu Phe Ile Met Ile Gly Cys 200 Val Ile Ile His Asn Leu Leu His Gly Arg Thr Ser Lys Leu 210 Lys Val Lys Glu Lys Ser Ile Arg Ile Ile Ile Thr Leu Leu 225 Val Leu Val Cys Phe Met Pro Phe His Ile Cys Phe Ala Phe 245 Leu Gly Thr Gly Glu Asn Ser Tyr Asn Pro Trp Gly Ala Phe 260 Phe Leu Met Asn Leu Ser Thr Cys Leu Asp Val Ile Leu Tyr 275 Val Ser Lys Gln Phe Gln Ala Arg Val Ile Ser Val Met Leu 290 Asn Tyr Leu Arg Ser Leu Arg Arg Lys Ser Phe Arg Ser Gly 305 Arg Ser Leu Ser Asn Ile Asn Ser Glu Met Leu 325 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 base pairs (B) Type: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (XI) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) Type: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (XI) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) Type: nucleic acid (C) STRANDESNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic)	Thr Phe Phe Phe Leu Ile Pro Leu Phe Ile Met Ile Gly Cys Tyr 200 Val Ile Ile His Asn Leu Leu His Gly Arg Thr Ser Lys Leu Lys 210 Lys Val Lys Glu Lys Ser Ile Arg Ile Ile Ile Thr Leu Leu Val 225 Lys Val Leu Val Cys Phe Met Pro Phe His Ile Cys Phe Ala Phe Leu 245 Val Leu Val Cys Phe Met Pro Phe His Ile Cys Phe Ala Phe Leu 260 Phe Leu Met Asn Leu Ser Thr Cys Leu Asp Val Ile Leu Tyr Tyr 275 Val Ser Lys Gln Phe Gln Ala Arg Val Ile Ser Val Met Leu Tyr 290 Asn Tyr Leu Arg Ser Leu Arg Arg Lys Ser Phe Arg Ser Gly Ser 305 Arg Ser Leu Ser Asn Ile Asn Ser Glu Met Leu 325 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 base pairs (B) Type: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (Xi) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) Type: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (XI) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) Type: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (II) MOLECULE TYPE: DNA (genomic)

31

ATGGATCCTG ACCTTCGGCC CCTGGCAGA

5

29

(40) INFORMATION FOR SEQ ID NO:39:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1077 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:
- 10 ATGCCCTCTG TGTCTCCAGC GGGGCCCTCG GCCGGGGCAG TCCCCAATGC CACCGCAGTG 60 ACAACAGTGC GGACCAATGC CAGCGGGCTG GAGGTGCCCC TGTTCCACCT GTTTGCCCGG 120 CTGGACGAGG AGCTGCATGG CACCTTCCCA GGCCTGTGCG TGGCGCTGAT GGCGGTGCAC 180 GGAGCCATCT TCCTGGCAGG GCTGGTGCTC AACGGGCTGG CGCTGTACGT CTTCTGCTGC 240 CGCACCGGG CCAAGACACC CTCAGTCATC TACACCATCA ACCTGGTGGT GACCGATCTA 300 15 CTGGTAGGGC TGTCCCTGCC CACGCGCTTC GCTGTGTACT ACGGCGCCAG GGGCTGCCTG 360 CGCTGTGCCT TCCCGCACGT CCTCGGTTAC TTCCTCAACA TGCACTGCTC CATCCTCTTC 420 CTCACCTGCA TCTGCGTGGA CCGCTACCTG GCCATCGTGC GGCCCGAAGG CTCCCGCCGC 480 TGCCGCCAGC CTGCCTGTGC CAGGGCCGTG TGCGCCTTCG TGTGGCTGGC CGCCGGTGCC 540 GTCACCCTGT CGGTGCTGGG CGTGACAGGC AGCCGGCCCT GCTGCCGTGT CTTTGCGCTG 600 20 ACTGTCCTGG AGTTCCTGCT GCCCCTGCTG GTCATCAGCG TGTTTACCGG CCGCATCATG TGTGCACTGT CGCGGCCGGG TCTGCTCCAC CAGGGTCGCC AGCGCCGCGT GCGGGCCATG 720 CAGCTCCTGC TCACGGTGCT CATCATCTTT CTCGTCTGCT TCACGCCCTT CCACGCCCGC 840 GTGGCCGTGA CCCTCAGCAG CCTCAACAGC TGCATGGACC CCATCGTCTA CTGCTTCGTC 900 25 ACCAGTGGCT TCCAGGCCAC CGTCCGAGGC CTCTTCGGCC AGCACGGAGA GCGTGAGCCC 960 AGCAGCGGTG ACGTGGTCAG CATGCACAGG AGCTCCAAGG GCTCAGGCCG TCATCACATC 1020 CTCAGTGCCG GCCCTCACGC CCTCACCCAG GCCCTGGCTA ATGGGCCCGA GGCTTAG 1077

(41) INFORMATION FOR SEQ ID NO:40:

(i) SEQUENCE CHARACTERISTICS:

30 (A) LENGTH: 358 amino acids

- (B) TYPE: amino acid(C) STRANDEDNESS:(D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein

	()	. 1. J	MOLEC	OLE	TYPE	s: pr	otei	Ln								
5	(ж	si) S	EQUE	ENCE	DESC	RIPI	'ION:	SEÇ) ID	NO:4	0:					
	Met 1	Pro	Ser	· Val	Ser 5	Pro	Ala	Gly	Pro	Ser 10	Ala	Gly	/ Ala	va]	Pro) Asn
	Ala	Thr	Ala	Val 20	Thr	Thr	Val	Arg	Thr 25	Asn	Ala	Ser	Gly	Leu 30	Glu	val
10	Pro	Leu	Phe 35	His	Leu	Phe	Ala	Arg 40	Leu	Asp	Glu	Glu	Leu 45	His	Gly	Thr
	Phe	Pro 50	Gly	Leu	Cys	Val	Ala 55	Leu	Met	Ala	Val	His 60	Gly	Ala	Ile	Phe
15	Leu 65	Ala	Gly	Leu	Val	Leu 70	Asn	Gly	Leu	Ala	Leu 75	Tyr	Val	Phe	Cys	Cys 80
	Arg	Thr	Arg	Ala	Lys 85	Thr	Pro	Ser	Val	Ile 90	Tyr	Thr	Ile	Asn	Leu 95	Val
	Val	Thr	Asp	Leu 100	Leu	Val	Gly	Leu	Ser 105	Leu	Pro	Thr	Arg	Phe 110	Ala	Val
20	Tyr	Tyr	Gly 115	Ala	Arg	Gly	Cys	Leu 120	Arg	Cys	Ala	Phe	Pro 125	His	Val	Leu
	Gly	Tyr 130	Phe	Leu	Asn	Met	His 135	Cys	Ser	Ile	Leu	Phe 140	Leu	Thr	Cys	Ile
25	Cys 145	Val	Asp	Arg	Tyr	Leu 150	Ala	Ile	Val	Arg	Pro 155	Glu	Ala	Pro	Ala	Ala 160
	Cys	Arg	Gln	Pro	Ala 165	Cys	Ala	Arg	Ala	Val 170	Cys	Ala	Phe	Val	Trp 175	Leu
	Ala	Ala	Gly	Ala 180	Val	Thr	Leu	Ser	Val 185	Leu	Gly	Val	Thr	Gly 190	Ser	Arg
30	Pro	Cys	Cys 195	Arg	Val	Phe	Ala	Leu 200	Thr	Val	Leu	Glu	Phe 205	Leu	Leu	Pro
	Leu	Leu 210	Val	Ile	Ser		Phe 215	Thr	Gly	Arg	Ile	Met 220	Cys	Ala	Leu	Ser
35	Arg 225	Pro	Gly	Leu		His 230	Gln	Gly	Arg		Arg 235	Arg	Val	Arg	Ala	Met 240
	Gln	Leu	Leu	Leu	Thr 245	Val	Leu	Ile		Phe 250	Leu	Val	Cys	Phe	Thr 255	Pro

		Phe	His	Ala	Arg 260	Gln	Val	Ala	Val	Ala 265	Leu	Trp	Pro	Asp	Met 270	Pro	His	
		His	Thr	Ser 275	Leu	Val	Val	Tyr	His 280	Val	Ala	Val	Thr	Leu 285	Ser	Ser	Leu	
5		Asn	Ser 290	Cys	Met	Asp	Pro	Ile 295	Val	Tyr	Cys	Phe	Val 300	Thr	Ser	Gly	Phe	
		Gln 305	Ala	Thr	Val	Arg	Gly 310	Leu	Phe	Gly	Gln	His 315	Gly	Glu	Arg	Glu	Pro 320	
10		Ser	Ser	Gly	Asp	Val 325	Val	Ser	Met	His	Arg 330	Ser	Ser	Lys	Gly	Ser 335	Gly	
		Arg	His	His	Ile 340	Leu	Ser	Ala	Gly	Pro 345	His	Ala	Leu	Thr	Gln 350	Ala	Leu	
		Ala	Asn	Gly 355	Pro	Glu	Ala											
15	(42)	INFO	RMAI	CION	FOR	SEQ	ID 1	NO:41	L:									
20		(i)	(A) (B) (C)	LEN	IGTH: PE: r RANDE	30 ucle DNES	base eic a SS: s	singl	ırs									
								A (ge ION:			IO : 41	•						
	GAGAA								~			-						3 (
	(43)								!:								•	3(
25		(i)	(A) (B) (C)	LEN TYP	IGTH: PE: n LANDE	30 ucle DNES	base ic a SS: s	singl	.rs									
80		(ii) MO	LECU	ILE T	YPE:	DNA	4 (ge	nomi	.c)								
		(xi) SE	QUEN	ICE D	ESCR	IPTI	ON:	SEQ	ID N	O:42	:						
	CGGGA	TCCC	C GT	'AAC'I	'GAGC	CAC	TTCA	AGAT									:	3 (
	(44)	INFO	RMAT	NOI	FOR	SEQ	ID N	IO : 43	:									
35		(i)	(A) (B)	LEN TYP	GTH: E: n	105 ucle	0 ba	STIC ase p acid singl	airs									

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:

ATGAACTCCA CCTTGGATGG TAATCAGAGC AGCCACCCTT TTTGCCTCTT GGCATTTGGC 60 TATTTGGAAA CTGTCAATTT TTGCCTTTTG GAAGTATTGA TTATTGTCTT TCTAACTGTA 120 TTGATTATTT CTGGCAACAT CATTGTGATT TTTGTATTTC ACTGTGCACC TTTGTTGAAC 180 CATCACACTA CAAGTTATTT TATCCAGACT ATGGCATATG CTGACCTTTT TGTTGGGGTG 240 AGCTGCGTGG TCCCTTCTTT ATCACTCCTC CATCACCCCC TTCCAGTAGA GGAGTCCTTG 300 ACTTGCCAGA TATTTGGTTT TGTAGTATCA GTTCTGAAGA GCGTCTCCAT GGCTTCTCTG 360 GCCTGTATCA GCATTGATAG ATACATTGCC ATTACTAAAC CTTTAACCTA TAATACTCTG 10 420 GTTACACCCT GGAGACTACG CCTGTGTATT TTCCTGATTT GGCTATACTC GACCCTGGTC 480 TTCCTGCCTT CCTTTTCCA CTGGGGCAAA CCTGGATATC ATGGAGATGT GTTTCAGTGG 540 TGTGCGGAGT CCTGGCACAC CGACTCCTAC TTCACCCTGT TCATCGTGAT GATGTTATAT 600 GCCCCAGCAG CCCTTATTGT CTGCTTCACC TATTTCAACA TCTTCCGCAT CTGCCAACAG 660 15 CACACAAAGG ATATCAGCGA AAGGCAAGCC CGCTTCAGCA GCCAGAGTGG GGAGACTGGG 720 GAAGTGCAGG CCTGTCCTGA TAAGCGCTAT GCCATGGTCC TGTTTCGAAT CACTAGTGTA 780 TTTTACATCC TCTGGTTGCC ATATATCATC TACTTCTTGT TGGAAAGCTC CACTGGCCAC 840 AGCAACCGCT TCGCATCCTT CTTGACCACC TGGCTTGCTA TTAGTAACAG TTTCTGCAAC 900 TGTGTAATTT ATAGTCTCTC CAACAGTGTA TTCCAAAGAG GACTAAAGCG CCTCTCAGGG 960 20 GCTATGTGTA CTTCTTGTGC AAGTCAGACT ACAGCCAACG ACCCTTACAC AGTTAGAAGC 1020 AAAGGCCCTC TTAATGGATG TCATATCTGA 1050

- (45) INFORMATION FOR SEQ ID NO:44:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 349 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: not relevant
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:
- 30 Met Asn Ser Thr Leu Asp Gly Asn Gln Ser Ser His Pro Phe Cys Leu

	1.				5					10					15	
	Leu	Ala	Phe	Gly 20	Tyr	Leu	Glu	Thr	Val 25	Asn	Phe	Cys	Leu	Leu 30	Glu	Val
5	Leu	Ile	Ile 35	Val	Phe	Leu	Thr	Val 40	Leu	Ile	Ile	Ser	Gly 45	Asn	Ile	Ile
	Val	Ile 50	Phe	Val	Phe	His	Cys 55	Ala	Pro	Leu	Leu	Asn 60	His	His	Thr	Thr
	Ser 65	Tyr	Phe	Ile	Gln	Thr 70	Met	Ala	Tyr	Ala	Asp 75	Leu	Phe	Val	Gly	Val 80
10	Ser	Cys	Val	Val	Pro 85	Ser	Leu	Ser	Leu	Leu 90	His	His	Pro	Leu	Pro 95	Val
	Glu	Glu	Ser	Leu 100	Thr	Cys	Gln	Ile	Phe 105	Gly	Phe	Val	Val	Ser 110	Val	Leu
15	Lys	Ser	Val 115	Ser	Met	Ala	Ser	Leu 120	Ala	Cys	Ile	Ser	Ile 125	Asp	Arg	Tyr
	Ile	Ala 130	Ile	Thr	Lys	Pro	Leu 135	Thr	Tyr	Asn	Thr	Leu 140	Val	Thr	Pro	Trp
	Arg 145	Leu	Arg	Leu	Cys	11e 150	Phe	Leu	Ile	Trp	Leu 155	Tyr	Ser	Thr	Leu	Val 160
20	Phe	Leu	Pro	Ser	Phe 165	Phe	His	Trp	Gly	Lys 170	Pro	Gly	Tyr	His	Gly 175	Asp
	Val	Phe	Gln	Trp 180	Cys	Ala	Glu	Ser	Trp 185	His	Thr	Asp	Ser	Туr 190	Phe	Thr
25	Leu	Phe	Ile 195	Val	Met	Met	Leu	Tyr 200	Ala	Pro	Ala	Ala	Leu 205	Ile	Val	Cys
	Phe	Thr 210	Tyr	Phe	Asn	Ile	Phe 215	Arg	Ile	Cys	Gln	Gln 220	His	Thr	Lys	Asp
	Ile 225	Ser	Glu	Arg	Gln	Ala 230	Arg	Phe	Ser	Ser	Gln 235	Ser	Gly	Glu	Thr	Gly 240
30	Glu	Val	Gln	Ala	Cys 245	Pro	Asp	Lys	Arg	Tyr 250	Ala	Met	Val	Leu	Phe 255	Arg
	Ile	Thr	Ser	Val 260	Phe	Tyr	Ile	Leu	Trp 265	Leu	Pro	Tyr	Ile	Ile 270	Tyr	Ph∈
35	Leu	Leu	Glu 275	Ser	Ser	Thr	Gly	His 280	Ser	Asn	Arg	Phe	Ala 285	Ser	Phe	Leu
	Thr	Thr 290	Trp	Leu	Ala	Ile	Ser 295	Asn	Ser	Phe	Cys	Asn 300	Cys	Val	Ile	Туг

	Ser Leu Ser Asn Ser Val Phe Gln Arg Gly Leu Lys Arg Leu Ser G 305 310 315 3:	Ly 20
	Ala Met Cys Thr Ser Cys Ala Ser Gln Thr Thr Ala Asn Asp Pro T	⁄r
5	Thr Val Arg Ser Lys Gly Pro Leu Asn Gly Cys His Ile 340 345	
	(46) INFORMATION FOR SEQ ID NO:45:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:	
15	TCCCCCGGGA AAAAAACCAA CTGCTCCAAA	30
	(47) INFORMATION FOR SEQ ID NO:46:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:	
	TAGGATCCAT TTGAATGTGG ATTTGGTGAA A	31
25	(48) INFORMATION FOR SEQ ID NO:47:	
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1302 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:	
	ATGTGTTTTT CTCCCATTCT GGAAATCAAC ATGCAGTCTG AATCTAACAT TACAGTGCGA	60
	GATGACATTG ATGACATCAA CACCAATATG TACCAACCAC TATCATATCC GTTAAGCTTT	120
35	CAAGTGTCTC TCACCGGATT TCTTATGTTA GAAATTGTGT TGGGACTTGG CAGCAACCTC	180

	ACTGTATTGG	TACTTTACTG	CATGAAATCC	AACTTAATCA	ACTCTGTCAG	TAACATTATT	240
	ACAATGAATC	TTCATGTACT	TGATGTAATA	ATTTGTGTGG	GATGTATTCC	TCTAACTATA	300
	GTTATCCTTC	TGCTTTCACT	GGAGAGTAAC	ACTGCTCTCA	TTTGCTGTTT	CCATGAGGCT	360
	TGTGTATCTT	TTGCAAGTGT	CTCAACAGCA	ATCAACGTTT	TTGCTATCAC	TTTGGACAGA	420
5	TATGACATCT	CTGTAAAACC	TGCAAACCGA	ATTCTGACAA	TGGGCAGAGC	TGTAATGTTA	480
	ATGATATCCA	TTTGGATTTT	TTCTTTTTC	TCTTTCCTGA	TTCCTTTTAT	TGAGGTAAAT	540
	TTTTTCAGTC	TTCAAAGTGG	AAATACCTGG	GAAAACAAGA	CACTTTTATG	TGTCAGTACA	600
	AATGAATACT	ACACTGAACT	GGGAATGTAT	TATCACCTGT	TAGTACAGAT	CCCAATATTC	660
	TTTTTCACTG	TTGTAGTAAT	GTTAATCACA	TACACCAAAA	TACTTCAGGC	TCTTAATATT	720
10	CGAATAGGCA	CAAGATTTTC	AACAGGGCAG	AAGAAGAAAG	CAAGAAAGAA	AAAGACAATT	780
	TCTCTAACCA	CACAACATGA	GGCTACAGAC	ATGTCACAAA	GCAGTGGTGG	GAGAAATGTA	840
	GTCTTTGGTG	TAAGAACTTC	AGTTTCTGTA	ATAATTGCCC	TCCGGCGAGC	TGTGAAACGA	900
	CACCGTGAAC	GACGAGAAAG	ACAAAAGAGA	GTCTTCAGGA	TGTCTTTATT	GATTATTTCT	960
	ACATTTCTTC	TCTGCTGGAC	ACCAATTTCT	GTTTTAAATA	CCACCATTTT	ATGTTTAGGC	1020
15	CCAAGTGACC	TTTTAGTAAA	ATTAAGATTG	TGTTTTTAG	TCATGGCTTA	TGGAACAACT	1080
	ATATTTCACC	CTCTATTATA	TGCATTCACT	AGACAAAAAT	TTCAAAAGGT	CTTGAAAAGT	1140
	AAAATGAAAA	AGCGAGTTGT	TTCTATAGTA	GAAGCTGATC	CCCTGCCTAA	TAATGCTGTA	1200
	ATACACAACT	CTTGGATAGA	TCCCAAAAGA	ААСАААААА	TTACCTTTGA	AGATAGTGAA	1260
	ATAAGAGAAA	AACGTTTAGT	GCCTCAGGTT	GTCACAGACT	AG		1302

- 20 (49) INFORMATION FOR SEQ ID NO:48:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 433 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
- 25 (D) TOPOLOGY: not relevant
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:

Met Cys Phe Ser Pro Ile Leu Glu Ile Asn Met Gln Ser Glu Ser Asn 10

30 Ile Thr Val Arg Asp Asp Ile Asp Asp Ile Asn Thr Asn Met Tyr Gln 20 25 30

	Pro	Leu	Ser 35	Tyr	Pro	Leu	Ser	Phe 40	Gln	Val	Ser	Leu	Thr 45	Gly	Phe	Leu
	Met	Leu 50	Glu	Ile	Val	Leu	Gly 55	Leu	Gly	Ser	Asn	Leu 60	Thr	Val	Leu	Val
5	Leu 65	Tyr	Cys	Met	Lys	Ser 70	Asn	Leu	Ile	Asn	Ser 75	Val	Ser	Asn	Ile	Ile 80
	Thr	Met	Asn	Leu	His 85	Val	Leu	Asp	Val	Ile 90	Ile	Cys	Val	Gly	Cys 95	Ile
10	Pro	Leu	Thr	Ile 100	Val	Ile	Leu	Leu	Leu 105	Ser	Leu	Glu	Ser	Asn 110	Thr	Ala
	Leu	Ile	Cys 115	Cys	Phe	His	Glu	Ala 120	Cys	Val	Ser	Phe	Ala 125	Ser	Val	Ser
	Thr	Ala 130	Ile	Asn	Val	Phe	Ala 135	Ile	Thr	Leu	Asp	Arg 140	Tyr	Asp	Ile	Ser
15	Val 145	Lys	Pro	Ala	Asn	Arg 150	Ile	Leu	Thr	Met	Gly 155	Arg	Ala	Val	Met	Leu 160
	Met	Ile	Ser	Ile	Trp 165	Ile	Phe	Ser	Phe	Phe 170	Ser	Phe	Leu	Ile	Pro 175	Phe
20	Ile	Glu	Val	Asn 180	Phe	Phe	Ser	Leu	Gln 185	Ser	Gly	Asn	Thr	Trp 190	Glu	Asn
	Lys	Thr	Leu 195	Leu	Cys	Val	Ser	Thr 200	Asn	Glu	Tyr	Tyr	Thr 205	Glu	Leu	Gly
	Met	Tyr 210	Tyr	His	Leu	Leu	Val 215	Gln	Ile	Pro	Ile	Phe 220	Phe	Phe	Thr	Val
25	Val 225	Val	Met	Leu	Ile	Thr 230	Tyr	Thr	Lys	Ile	Leu 235	Gln	Ala	Leu	Asn	Ile 240
	Arg	Ile	Gly	Thr	Arg 245	Phe	Ser	Thr	Gly	Gln 250	Lys	Lys	Lys	Ala	Arg 255	Lys
30	Lys	Lys	Thr	Ile 260	Ser	Leu	Thr	Thr	Gln 265	His	Glu	Ala	Thr	Asp 270	Met	Ser
	Gln	Ser	Ser 275	Gly	Gly	Arg	Asn	Val 280	Val	Phe	Gly	Val	Arg 285	Thr	Ser	Val
	Ser	Val 290	Ile	Ile	Ala	Leu	Arg 295		Ala	Val	Lys	Arg 300	His	Arg	Glu	Arg
35	Arg 305		Arg	Gln	Lys	Arg 310	Val	Phe	Arg	Met	Ser 315	Leu	Leu	Ile	Ile	Ser 320
	Thr	Phe	Leu	Leu	Cys	Trp	Thr	Pro	Ile	Ser	Val	Leu	Asn	Thr	Thr	Ile

						325					330					335		
		Leu	Cys	Leu	Gly 340	Pro	Ser	Asp	Leu	Leu 345	Val	Lys	Leu	Arg	Leu 350	Cys	Phe	
5		Leu	Val	Met 355	Ala	Tyr	Gly	Thr	Thr 360	Ile	Phe	His	Pro	Leu 365	Leu	Tyr	Ala	
		Phe	Thr 370	Arg	Gln	Lys	Phe	Gln 375	Lys	Val	Leu	Lys	Ser 380	Lys	Met	Lys	Lys	
		Arg 385	Val	Val	Ser	Ile	Val 390	Glu	Ala	Asp	Pro	Leu 395	Pro	Asn	Asn	Ala	Val 400	
10		Ile	His	Asn	Ser	Trp 405	Ile	Asp	Pro	Lys	Arg 410	Asn	Lys	Lys	Ile	Thr 415	Phe	
		Glu	Asp	Ser	Glu 420	Ile	Arg	Glu	Lys	Arg 425	Leu	Val	Pro	Gln	Val 430	Val	Thr	
15		Asp																
	(50)	INFO	RMAT	MOIT	FOR	SEQ	ID 1	10:49):			.5-						
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) 																	
					ICE D						·							
	GTGA								SEQ	ID N	0:49	:						
25	(51)																	30
30	(31)		SEQ (A) (B) (C)	UENC LEN TYP STR	E CH IGTH: PE: THE POLOG	ARAC 31 ucle	TERI base ic a S: s	STIC pai cid	S: rs			. *						
		(ii) MO	LECU	LE T	YPE:	DNA	. (ge	nomi	c)								
		(xi) SE	QUEN	CE D	ESCR	IPTI	ON:	SEQ	ID N	0:50	:						
	GCAGA	ATTC	c cg	GTGG	CGTG	TTG	TGGT	GCC	С		•							31
	(52)	INFO	RMAT	юі	FOR	SEQ	ID N	0:51	:									
35		(i)			E CH													

- (B) TYPE: nucleic acid(C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:

ATGTTGTGTC CTTCCAAGAC AGATGGCTCA GGGCACTCTG GTAGGATTCA CCAGGAAACT 60 CATGGAGAAG GGAAAAGGGA CAAGATTAGC AACAGTGAAG GGAGGGAGAA TGGTGGGAGA 120 GGATTCCAGA TGAACGGTGG GTCGCTGGAG GCTGAGCATG CCAGCAGGAT GTCAGTTCTC 180 AGAGCAAAGC CCATGTCAAA CAGCCAACGC TTGCTCCTTC TGTCCCCAGG ATCACCTCCT 240 CGCACGGGGA GCATCTCCTA CATCAACATC ATCATGCCTT CGGTGTTCGG CACCATCTGC 10 300 CTCCTGGGCA TCATCGGGAA CTCCACGGTC ATCTTCGCGG TCGTGAAGAA GTCCAAGCTG 360 CACTGGTGCA ACAACGTCCC CGACATCTTC ATCATCAACC TCTCGGTAGT AGATCTCCTC 420 TTTCTCCTGG GCATGCCCTT CATGATCCAC CAGCTCATGG GCAATGGGGT GTGGCACTTT 480 GGGGAGACCA TGTGCACCCT CATCACGGCC ATGGATGCCA ATAGTCAGTT CACCAGCACC 540 15 TACATCCTGA CCGCCATGGC CATTGACCGC TACCTGGCCA CTGTCCACCC CATCTCTTCC 600 ACGAAGTTCC GGAAGCCCTC TGTGGCCACC CTGGTGATCT GCCTCCTGTG GGCCCTCTCC 660 TTCATCAGCA TCACCCCTGT GTGGCTGTAT GCCAGACTCA TCCCCTTCCC AGGAGGTGCA 720 GTGGGCTGCG GCATACGCCT GCCCAACCCA GACACTGACC TCTACTGGTT CACCCTGTAC 780 CAGTTTTTCC TGGCCTTTGC CCTGCCTTTT GTGGTCATCA CAGCCGCATA CGTGAGGATC 840 20 CTGCAGCGCA TGACGTCCTC AGTGGCCCCC GCCTCCCAGC GCAGCATCCG GCTGCGGACA 900 AAGAGGGTGA CCCGCACAGC CATCGCCATC TGTCTGGTCT TCTTTGTGTG CTGGGCACCC 960 TACTATGTGC TACAGCTGAC CCAGTTGTCC ATCAGCCGCC CGACCCTCAC CTTTGTCTAC 1020 TTATACAATG CGGCCATCAG CTTGGGCTAT GCCAACAGCT GCCTCAACCC CTTTGTGTAC 1080 ATCGTGCTCT GTGAGACGTT CCGCAAACGC TTGGTCCTGT CGGTGAAGCC TGCAGCCCAG 1140 25 GGGCAGCTTC GCGCTGTCAG CAACGCTCAG ACGGCTGACG AGGAGAGGAC AGAAAGCAAA 1200 GGCACCTGA 1209

- (53) INFORMATION FOR SEQ ID NO:52:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 402 amino acids
- 30 (B) TYPE: amino acid

- (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:

5	Met 1	Leu	Cys	Pro	Ser 5	Lys	Thr	Asp	Gly	Ser 10	Gly	His	Ser	Gly	Arg 15	Ile
	His	Gln	Glu	Thr 20	His	Gly	Glu	Gly	Lys 25	Arg	Asp	Lys	Ile	Ser 30	Asn	Ser
10	Glu	Gly	Arg 35	Glu	Asn	Gly	Gly	Arg 40	Gly	Phe	Gln	Met	Asn 45	Gly	Gly	Ser
	Leu	Glu 50		Glu	His	Ala	Ser 55	Arg	Met	Ser	Val	Leu 60	Arg	Ala	Lys	Pro
	Met 65	Ser	Asn	Ser	Gln	Arg 70	Leu	Leu	Leu	Leu	Ser 75	Pro	Gly	Ser	Pro	Pro 80
15	Arg	Thr	Gly	Ser	Ile 85	Ser	Tyr	Ile	Asn	Ile 90	Ile	Met	Pro	Ser	Val 95	Phe
	Gly	Thr	Ile	Cys 100	Leu	Leu	Gly	Ile	Ile 105	Gly	Asn	Ser	Thr	Val 110	Ile	Phe
20	Ala	Val	Val 115	Lys	Lys	Ser	Lys	Leu 120	His	Trp	Cys	Asn	Asn 125	Val	Pro	Asp
	Ile	Phe 130	Ile	Ile	Asn	Leu	Ser 135	Val	Val	Asp	Leu	Leu 140	Phe	Leu	Leu	Gly
	Met 145	Pro	Phe	Met	Ile	His 150	Gln	Leu	Met	Gly	Asn 155	Gly	Val	Trp	His	Phe 160
25	Gly	Glu	Thr	Met	Cys 165	Thr	Leu	Ile	Thr	Ala 170	Met	Asp	Ala	Asn	Ser 175	Gln
	Phe	Thr	Ser	Thr 180	Tyr	Ile	Leu	Thr	Ala 185	Met	Ala	Ile	Asp	Arg 190	Tyr	Leu
30	Ala	Thr	Val 195	His	Pro	Ile	Ser	Ser 200	Thr	Lys	Phe	Arg	Lys 205	Pro	Ser	Val
	Ala	Thr 210	Leu	Val	Ile	Cys	Leu 215	Leu	Trp	Ala	Leu	Ser 220	Phe	Ile	Ser	Ile
	Thr 225	Pro	Val	Trp	Leu	Tyr 230	Ala	Arg	Leu	Ile	Pro 235	Phe	Pro	Gly	Gly	Ala 240
35	Val	Gly	Cys	Gly	Ile	Arg	Leu	Pro	Asn	Pro	Asp	Thr	Asp	Leu	Tyr	Trp

245

250

PCT/US99/23938

42

WO 00/22129

		Phe	Thr	Leu	Tyr 260	Gln	Phe	Phe	Leu	Ala 265	Phe	Ala	Leu	Pro	Phe 270	Val	Val	
		Ile	Thr	Ala 275	Ala	Tyr	Val	Arg	Ile 280	Leu	Gln	Arg	Met	Thr 235	Ser	Ser	Val	
5		Ala	Pro 290	Ala	Ser	Gln	Arg	Ser 295	Ile	Arg	Leu	Arg	Thr 300	Lys	Arg	Val	Thr	
		Arg 305	Thr	Ala	Ile	Ala	Ile 310	Cys	Leu	Val	Phe	Phe 315	Val	Cys	Trp	Ala	Pro 320	
10		Tyr	Tyr	Val	Leu	Gln 325	Leu	Thr	Gln	Leu	Ser 330	Ile	Ser	Arg	Pro	Thr 335	Leu	
		Thr	Phe	Val	Tyr 340	Leu	Tyr	Asn	Ala	Ala 345	Ile	Ser	Leu	Gly	Туг 350	Ala	Asn	
		Ser	Cys	Leu 355	Asn	Pro	Phe	Val	Tyr 360	Ile	Val	Leu	Cys	Glu 365	Thr	Phe	Arg	
15		Lys	Arg 370	Leu	Val	Leu	Ser	Val 375	Lys	Pro	Ala	Ala	Gln 380	Gly	Gln	Leu	Arg	
		Ala 385	Val	Ser	Asn	Ala	Gln 390	Thr	Ala	Asp	Glu	Glu 395	Arg	Thr	Glu	Ser	Lys 400	
20		Gly	Thr															
	(54)	INFO	ORMAT	NOIT	FOR	SEQ	ID 1	10:53	3:									
25		(i)	(A) (B) (C)	LEN TYI	CE CH NGTH: PE: 1 RANDE	27 nucle	base eic a SS: s	e pai acid singl	irs									
		(ii	L) MC	DLECU	JLE 1	YPE:	DNA	4 (ge	enomi	.c)								
		ix)	L) SE	EQUE	CE I	ESCF	RIPTI	ON:	SEQ	ID N	10:53	3:						
	GGCGG	SATCO	CA TO	GATO	ETGAC	TTC	CCA	4										27
30	(55)	INFO	RMAT	иог	FOR	SEQ	ID N	10 : 54	l :									
35		(i)	(A) (B) (C)	LEN TYI	CE CH NGTH: PE: r RANDE	27 nucle	base eic a SS: s	e pai acid sing]	irs									
		(ii	L) MC	OLECT	ле 1	YPE:	DNA	4 (ge	enomi	.c)								
		(xi	i) si	EQUE	ICE I	ESCF	RIPTI	ON:	SEQ	ID N	10:54	ł:						

15

20

43 27 GGCGGATCCC TACACGGCAC TGCTGAA (56) INFORMATION FOR SEQ ID NO:55: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1128 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (xi) SEQUENCE DESCRIPTION: SEQ ID NO:55: ATGGATGTGA CTTCCCAAGC CCGGGGCGTG GGCCTGGAGA TGTACCCAGG CACCGCGCAC 60 GCTGCGGCCC CCAACACCAC CTCCCCCGAG CTCAACCTGT CCCACCCGCT CCTGGGCACC 120 GCCCTGGCCA ATGGGACAGG TGAGCTCTCG GAGCACCAGC AGTACGTGAT CGGCCTGTTC 180 CTCTCGTGCC TCTACACCAT CTTCCTCTTC CCCATCGGCT TTGTGGGCAA CATCCTGATC 240 CTGGTGGTGA ACATCAGCTT CCGCGAGAAG ATGACCATCC CCGACCTGTA CTTCATCAAC 300 CTGGCGGTGG CGGACCTCAT CCTGGTGGCC GACTCCCTCA TTGAGGTGTT CAACCTGCAC 360 GAGCGGTACT ACGACATCGC CGTCCTGTGC ACCTTCATGT CGCTCTTCCT GCAGGTCAAC 420 ATGTACAGCA GCGTCTTCTT CCTCACCTGG ATGAGCTTCG ACCGCTACAT CGCCCTGGCC 480 AGGGCCATGC GCTGCAGCCT GTTCCGCACC AAGCACCACG CCCGGCTGAG CTGTGGCCTC 540 ATCTGGATGG CATCCGTGTC AGCCACGCTG GTGCCCTTCA CCGCCGTGCA CCTGCAGCAC 600 ACCGACGAGG CCTGCTTCTG TTTCGCGGAT GTCCGGGAGG TGCAGTGGCT CGAGGTCACG 660 CTGGGCTTCA TCGTGCCCTT CGCCATCATC GGCCTGTGCT ACTCCCTCAT TGTCCGGGTG 720 CTGGTCAGGG CGCACCGGCA CCGTGGGCTG CGGCCCCGGC GGCAGAAGGC GCTCCGCATG 780 840 GTGCACCTCC TGCAGCGGAC GCAGCCTGGG GCCGCTCCCT GCAAGCAGTC TTTCCGCCAT 900 GCCCACCCC TCACGGGCCA CATTGTCAAC CTCGCCGCCT TCTCCAACAG CTGCCTAAAC 960 CCCCTCATCT ACAGCTTTCT CGGGGAGACC TTCAGGGACA AGCTGAGGCT GTACATTGAG 1020 CAGAAAACAA ATTTGCCGGC CCTGAACCGC TTCTGTCACG CTGCCCTGAA GGCCGTCATT 1080 CCAGACAGCA CCGAGCAGTC GGATGTGAGG TTCAGCAGTG CCGTGTGA 1128

(57) INFORMATION FOR SEQ ID NO:56:

(i) SEQUENCE CHARACTERISTICS: 30

(A) LENGTH: 375 amino acids

	(A) LENGTH: 375 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: not relevant														
5	(ii)	MOLECU	JLE T	TYPE	: pr	otei	n								
	(xi)	SEQUEN	CE I	DESCI	RIPT	ION:	SEQ	ID	NO : 5	6:					
	Met As	p Val	Thr	Ser 5	Gln	Ala	Arg	Gly	Val 10	Gly	Leu	Glu	Met	Туr 15	Pro
10	Gly Th	r Ala	His 20	Ala	Ala	Ala	Pro	Asn 25	Thr	Thr	Ser	Pro	Glu 30	Leu	Asn
	Leu Se	His	Pro	Leu	Leu	Gly	Thr 40	Ala	Leu	Ala	Asn	Gly 45	Thr	Gly	Glu
	Leu Sei 50	Glu	His	Gln	Gln	Tyr 55	Val	Ile	Gly	Leu	Phe 60	Leu	Ser	Cys	Leu
15	Tyr Thi	î Ile	Phe	Leu	Phe 70	Pro	Ile	Gly	Phe	Val 75	Gly	Asn	Ile	Leu	Ile 80
	Leu Val	Val.	Asn	Ile 85	Ser	Phe	Arg	Glu	Lys 90	Met	Thr	Ile	Pro	Asp 95	Leu
20	Tyr Phe		Asn 100	Leu	Ala	Val	Ala	Asp 105	Leu	Ile	Leu	Val	Ala 110	Asp	Ser
	Leu Ile	e Glu '	Val	Phe	Asn	Leu	His 120	Glu	Arg	Tyr	Tyr	Asp 125	Ile	Ala	Val
	Leu Cys		Phe	Met	Ser	Leu 135	Phe	Leu	Gln	Val	Asn 140	Met	Tyr	Ser	Ser
25	Val Phe	Phe 1	Leu	Thr	Trp 150	Met	Ser	Phe	Asp	Arg 155	Tyr	Ile	Ala	Leu	Ala 160
	Arg Ala	Met 1		Cys 165	Ser	Leu	Phe	Arg	Thr 170	Lys	His	His	Ala	Arg 175	Leu
30	Ser Cys		Leu 180	Ile	Trp	Met	Ala	Ser 185	Val	Ser	Ala	Thr	Leu 190	Val	Pro
	Phe Thr	Ala V 195	Val 1	His	Leu	Gln	His 200	Thr	Asp	Glu	Ala	Cys 205	Phe	Cys	Phe
	Ala Asp 210		Arg (Glu	Val	Gln 215	Trp	Leu	Glu	Val	Thr 220	Leu	Gly	Phe	Ile
35	Val Pro 225	Phe A	Ala :		Ile 230	Gly	Leu	Cys	Tyr	Ser 235	Leu	Ile	Val	Arg	Val 240
	Leu Val	Arg A	Ala 1	His .	Arg	His	Arg	Gly	Leu	Arg	Pro	Arg	Arg	Gln	Lys

						245					250					255		
		Ala	Leu	Arg	Met 260	Ile	Leu	Ala	Val	Val 265	Leu	Val	Phe	Phe	Val 270	Cys	Trp	
5		Leu	Pro	Glu 275	Asn	Val	Phe	Ile	Ser 280	Val	His	Leu	Leu	Gln 285	Arg	Thr	Gln	
		Pro	Gly 290	Ala	Ala	Pro	Cys	Lys 295	Gln	Ser	Phe	Arg	His 300	Ala	His	Pro	Leu	
		Thr 305	Gly	His	Ile	Val	Asn 310	Leu	Ala	Ala	Phe	Ser 315	Asn	Ser	Cys	Leu	Asn 320	
10		Pro	Leu	Ile	Tyr	Ser 325	Phe	Leu	Gly	Glu	Thr 330	Phe	Arg	Asp	Lys	Leu 335	Arg	
		Leu	Tyr	Ile	Glu 340	Gln	Lys	Thr	Asn	Leu 345	Pro	Ala	Leu	Asn	Arg 350	Phe	Cys	
15		His	Ala	Ala 355	Leu	Lys	Ala	Val	Ile 360	Pro	Asp	Ser	Thr	Glu 365	Gln	Ser	Asp	
		Val	Arg 370	Phe	Ser	Ser	Ala	Val 375										
	(58)	INFO	DRMA!	rion	FOR	SEQ	ID 1	10:5	7:									
20		(i)	(B)	LEI TYI	CE CI NGTH: PE: I RANDI POLO	: 31 nucle EDNES	base eic a	e pa: acid sing:	irs									
		(i:	i) M	OLEC	JLE :	TYPE	: DN	A (ge	enom	ic)								
25		(x:	i) SI	EQUE	NCE I	DESCI	RIPT	ION:	SEQ	ID 1	10:5°	7:						
	AAGG	TTAA	CA CO	GCC	GGT	ATC	GCCA'	TTCC	С									31
	(59)	INF	ORMA'	LION	FOR	SEQ	ID I	NO:5	8 :									
30		(i)	(B (C	LEI TY:	CE CE NGTH PE: 1 RANDI POLOG	: 30 nucle EDNE:	base eic a	e pa: acid sing:	irs									
		(i:	i) M	OLEC	ULE '	TYPE	: DN	A (g	enom	ic)								
		(x:	i) s	EQUE	NCE I	DESC	RIPT	ION:	SEQ	ID I	NO : 51	В:						
35	GGTG	GATC	CA T	AAAC.	ACGG	G CG'	TTGA	GGAC										30
	(60)	INF	ORMA'	TION	FOR	SEQ	ID :	NO : 5	9:									

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 960 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
- 5 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEOUENCE DESCRIPTION: SEO ID NO:59:

ATGCCATTCC CAAACTGCTC AGCCCCCAGC ACTGTGGTGG CCACAGCTGT GGGTGTCTTG 60 CTGGGGCTGG AGTGTGGGCT GGGTCTGCTG GGCAACGCGG TGGCGCTGTG GACCTTCCTG 120 10 TTCCGGGTCA GGGTGTGGAA GCCGTACGCT GTCTACCTGC TCAACCTGGC CCTGGCTGAC CTGCTGTTGG CTGCGTGCCT GCCTTTCCTG GCCGCCTTCT ACCTGAGCCT CCAGGCTTGG 240 CATCTGGGCC GTGTGGGCTG CTGGGCCCTG CGCTTCCTGC TGGACCTCAG CCGCAGCGTG 300 GGGATGGCCT TCCTGGCCGC CGTGGCTTTG GACCGGTACC TCCGTGTGGT CCACCCTCGG 360 CTTAAGGTCA ACCTGCTGTC TCCTCAGGCG GCCCTGGGGG TCTCGGGCCT CGTCTGGCTC 420 15 CTGATGGTCG CCCTCACCTG CCCGGGCTTG CTCATCTCTG AGGCCGCCCA GAACTCCACC 480 AGGTGCCACA GTTTCTACTC CAGGGCAGAC GGCTCCTTCA GCATCATCTG GCAGGAAGCA 540 CTCTCCTGCC TTCAGTTTGT CCTCCCCTTT GGCCTCATCG TGTTCTGCAA TGCAGGCATC 600 ATCAGGGCTC TCCAGAAAAG ACTCCGGGAG CCTGAGAAAC AGCCCAAGCT TCAGCGGGCC 660 CAGGCACTGG TCACCTTGGT GGTGGTGCTG TTTGCTCTGT GCTTTCTGCC CTGCTTCCTG 720 20 GCCAGAGTCC TGATGCACAT CTTCCAGAAT CTGGGGAGCT GCAGGGCCCT TTGTGCAGTG 780 GCTCATACCT CGGATGTCAC GGGCAGCCTC ACCTACCTGC ACAGTGTCGT CAACCCCGTG 840 GTATACTGCT TCTCCAGCCC CACCTTCAGG AGCTCCTATC GGAGGGTCTT CCACACCCTC 900 CGAGGCAAAG GGCAGGCAGC AGAGCCCCCA GATTTCAACC CCAGAGACTC CTATTCCTGA 960

- (61) INFORMATION FOR SEQ ID NO:60:
- 25 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 319 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
- 30 (ii) MOLECULE TYPE: protein
 - (xi) SEOUENCE DESCRIPTION: SEO ID NO:60:

Met Pro Phe Pro Asn Cys Ser Ala Pro Ser Thr Val Val Ala Thr Ala

	1				5					10					15	
	Val	Gly	Val	Leu 20	Leu	Gly	Leu	Glu	Cys 25	Gly	Leu	Gly	Leu	Leu 30	Gly	Asn
5	Ala	Val	Ala 35	Leu	Trp	Thr	Phe	Leu 40	Phe	Arg	Val	Arg	Val 45	Trp	Lys	Pro
	Tyr	Ala 50	Val	Tyr	Leu	Leu	Asn 55	Leu	Ala	Leu	Ala	Asp 60	Leu	Leu	Leu	Ala
	Ala 65	Cys	Leu	Pro	Phe	Leu 70	Ala	Ala	Phe	Tyr	Leu 75	Ser	Leu	Gln	Ala	Trp 80
10	His	Leu	Gly	Arg	Val 85	Gly	Cys	Trp	Ala	Leu 90	Arg	Phe	Leu	Leu	Asp 95	Leu
	Ser	Arg	Ser	Val 100	Gly	Met	Ala	Phe	Leu 105	Ala	Ala	Val	Ala	Leu 110	Asp	Arg
15	Tyr	Leu	Arg 115	Val	Val	His	Pro	Arg 120	Leu	Lys	Val	Asn	Leu 125	Leu	Ser	Pro
	Gln	Ala 130	Ala	Leu	Gly	Val	Ser 135	Gly	Leu	Val	Trp	Leu 140	Leu	Met	Val	Ala
	Leu 145	Thr	Cys	Pro	Gly	Leu 150	Leu	Ile	Ser	Glu	Ala 155	Ala	Gln	Asn	Ser	Thr 160
20	Arg	Cys	His	Ser	Phe 165	Tyr	Ser	Arg	Ala	Asp 170	Gly	Ser	Phe	Ser	Ile 175	Ile
	Trp	Gln	Glu	Ala 180	Leu	Ser	Cys	Leu	Gln 185	Phe	Val	Leu	Pro	Phe 190	Gly	Leu
25	Ile	Val	Phe 195	Cys	Asn	Ala	Gly	Ile 200	Ile	Arg	Ala	Leu	Gln 205	Lys	Arg	Leu
	Arg	Glu 210	Pro	Glu	Lys	Gln	Pro 215	Lys	Leu	Gln	Arg	Ala 220	Gln	Ala	Leu	Val
	Thr 225	Leu	Val	Val	Val	Leu 230	Phe	Ala	Leu	Cys	Phe 235	Leu	Pro	Cys	Phe	Leu 240
30	Ala	Arg	Val	Leu	Met 245	His	Ile	Phe	Gln	Asn 250	Leu	Gly	Ser	Cys	Arg 255	Ala
	Leu	Cys	Ala	Val 260	Ala	His	Thr	Ser	Asp 265	Val	Thr	Gly	Ser	Leu 270	Thr	Tyr
35	Leu	His	Ser 275	Val	Val	Asn	Pro	Val 280	Val	Tyr	Cys	Phe	Ser 285	Ser	Pro	Thr
	Phe	Arg 290	Ser	Ser	Tyr	Arg	Arg 295	Val	Phe	His	Thr	Leu 300	Arg	Gly	Lys	Gly

PCT/US99/23938

1143

WO 00/22129

48

Gln Ala Ala Glu Pro Pro Asp Phe Asn Pro Arg Asp Ser Tyr Ser 310 315 305

(62) INFORMATION FOR SEQ ID NO:61:

5

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1143 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
- 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:61:

	ATGGAGGAAG	GTGGTGATTT	TGACAACTAC	TATGGGGCAG	ACAACCAGTC	TGAGTGTGAG	60
	TACACAGACT	GGAAATCCTC	GGGGGCCCTC	ATCCCTGCCA	TCTACATGTT	GGTCTTCCTC	120
	CTGGGCACCA	CGGGAAACGG	TCTGGTGCTC	TGGACCGTGT	TTCGGAGCAG	CCGGGAGAAG	180
	AGGCGCTCAG	CTGATATCTT	CATTGCTAGC	CTGGCGGTGG	CTGACCTGAC	CTTCGTGGTG	240
15	ACGCTGCCCC	TGTGGGCTAC	CTACACGTAC	CGGGACTATG	ACTGGCCCTT	TGGGACCTTC	300
	TTCTGCAAGC	TCAGCAGCTA	CCTCATCTTC	GTCAACATGT	ACGCCAGCGT	CTTCTGCCTC	360
	ACCGGCCTCA	GCTTCGACCG	CTACCTGGCC	ATCGTGAGGC	CAGTGGCCAA	TGCTCGGCTG	420
	AGGCTGCGGG	TCAGCGGGGC	CGTGGCCACG	GCAGTTCTTT	GGGTGCTGGC	CGCCCTCCTG	480
	GCCATGCCTG	TCATGGTGTT	ACGCACCACC	GGGGACTTGG	AGAACACCAC	TAAGGTGCAG	540
20	TGCTACATGG	ACTACTCCAT	GGTGGCCACT	GTGAGCTCAG	AGTGGGCCTG	GGAGGTGGGC	600
	CTTGGGGTCT	CGTCCACCAC	CGTGGGCTTT	GTGGTGCCCT	TCACCATCAT	GCTGACCTGT	660
	TACTTCTTCA	TCGCCCAAAC	CATCGCTGGC	CACTTCCGCA	AGGAACGCAT	CGAGGGCCTG	720
	CGGAAGCGGC	GCCGGCTGCT	CAGCATCATC	GTGGTGCTGG	TGGTGACCTT	TGCCCTGTGC	780
	TGGATGCCCT	ACCACCTGGT	GAAGACGCTG	TACATGCTGG	GCAGCCTGCT	GCACTGGCCC	840
25	TGTGACTTTG	ACCTCTTCCT	CATGAACATC	TTCCCCTACT	GCACCTGCAT	CAGCTACGTC	900
	AACAGCTGCC	TCAACCCCTT	CCTCTATGCC	TTTTTCGACC	CCCGCTTCCG	CCAGGCCTGC	960
	ACCTCCATGC	TCTGCTGTGG	CCAGAGCAGG	TGCGCAGGCA	CCTCCCACAG	CAGCAGTGGG	1020
	GAGAAGTCAG	CCAGCTACTC	TTCGGGGCAC	AGCCAGGGGC	CCGGCCCCAA	CATGGGCAAG	1080
	GGTGGAGAAC	AGATGCACGA	GAAATCCATC	CCCTACAGCC	AGGAGACCCT	TGTGGTTGAC	1140

30

TAG

(63) INFORMATION FOR SEQ ID NO:62:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 380 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein

	(xi) S	EQUENCE	DESC	RIPT	ION:	SEQ	ID :	NO : 6	2:					
10	Met Glu 1	Glu Gl	y Gly 5	Asp	Phe	Asp	Asn	Tyr 10	Tyr	Gly	Ala	Asp	Asn 15	Gln
	Ser Glu	Cys Gl 20	ı Tyr	Thr	Asp	Trp	Lys 25	Ser	Ser	Gly	Ala	Leu 30	Ile	Pro
	Ala Ile	Tyr Me 35	Leu	Val	Phe	Leu 40	Leu	Gly	Thr	Thr	Gly 45	Asn	Gly	Leu
15	Val Leu 50	Trp Th	r Val	Phe	Arg 55	Ser	Ser	Arg	Glu	Lys 60	Arg	Arg	Ser	Ala
	Asp Ile 65	Phe Il	e Ala	Ser 70	Leu	Ala	Val	Ala	Asp 75	Leu	Thr	Phe	Val	Val 80
20	Thr Leu	Pro Le	Trp 85	Ala	Thr	Tyr	Thr	Tyr 90	Arg	Asp	Tyr	Asp	Trp 95	Pro
	Phe Gly	Thr Pho		Cys	Lys	Leu	Ser 105	Ser	Tyr	Leu	Ile	Phe 110	Val	Asn
	Met Tyr	Ala Se	Val	Phe	Cys	Leu 120	Thr	Gly	Leu	Ser	Phe 125	Asp	Arg	Tyr
25	Leu Ala 130	Ile Va	. Arg	Pro	Val 135	Ala	Asn	Ala	Arg	Leu 140	Arg	Leu	Arg	Val
	Ser Gly 145	Ala Va	Ala	Thr 150	Ala	Val	Leu	Trp	Val 155	Leu	Ala	Ala	Leu	Leu 160
30	Ala Met	Pro Va	. Met 165	Val	Leu	Arg	Thr	Thr 170	Gly	Asp	Leu	Glu	Asn 175	Thr
	Thr Lys	Val Gli 180		Tyr	Met	Asp	Туг 185	Ser	Met	Val	Ala	Thr 190	Val	Ser

Gly Phe Val Val Pro Phe Thr Ile Met Leu Thr Cys Tyr Phe Phe Ile 210 215 220

Ala Gln Thr Ile Ala Gly His Phe Arg Lys Glu Arg Ile Glu Gly Leu

Ser Glu Trp Ala Trp Glu Val Gly Leu Gly Val Ser Ser Thr Thr Val

WO 00/22129 PCT/US99/23938

	225					230					235					240	
	Arg	Lys	Arg	Arg	Arg 245	Leu	Leu	Ser	Ile	Ile 250	Val	Val	Leu	Val	Val 255	Thr	
5	Phe	Ala	Leu	Cys 260	Trp	Met	Pro	Tyr	His 265	Leu	Val	Lys	Thr	Leu 270	Tyr	Met	
	Leu	Gly	Ser 275	Leu	Leu	His	Trp	Pro 280	Cys	Asp	Phe	Asp	Leu 285	Phe	Leu	Met	
	Asn	Ile 290	Phe	Pro	Tyr	Cys	Thr 295	Cys	Ile	Ser	Tyr	Val 300	Asn	Ser	Cys	Leu	
10	Asn 305	Pro	Phe	Leu	Tyr	Ala 310	Phe	Phe	Asp	Pro	Arg 315	Phe	Arg	Gln	Ala	Cys 320	
	Thr	Ser	Met	Leu	Cys 325	Cys	Gly	Gln	Ser	Arg 330	Cys	Ala	Gly	Thr	Ser 335	His	
15	Ser	Ser	Ser	Gly 340	Glu	Lys	Ser	Ala	Ser 345	Tyr	Ser	Ser	Gly	His 350	Ser	Gln	
	Gly	Pro	Gly 355	Pro	Asn	Met	Gly	Lys 360	Gly	Gly	Glu	Gln	Met 365	His	Glu	Lys	
	Ser	Ile 370	Pro	Tyr	Ser	Gln	Glu 375	Thr	Leu	Val	Val	Asp 380					
20	(64) INF	ORMA!	rion	FOR	SEQ	ID N	10:63	3:									
25	(i	(B)	LEN TYI	CE CH NGTH: PE: r RANDE	: 31 nucle EDNES	base eic a SS: s	e pai acid singl	irs									
	(i	i) MO	OLECU	JLE I	YPE:	: DNA	A (qe	enomi	.c)								
	(x	i) SI	EQUEN	ICE I	DESCE	RIPTI	ON:	SEQ	ID N	10:63	3 :						
	TGAGAATT	CT GO	STGAC	CTCAC	. AGC	CCGGC	CACA	G									31
	(65) INF	ORMA:	rion	FOR	SEQ	ID N	NO:64	l:									
30	(į	(B)	LEN TYP STF	CE CH NGTH: PE: r RANDE	31 nucle	base ic a SS: s	e pai acid singl	irs									
35	(i	i) MO	LECU	JLE I	YPE:	DNA	A (ge	enomi	.c)								
	(x.	i) SI	EQUE	ICE I	ESCF	RIPTI	ON:	SEQ	ID N	10 : 64	:						

PCT/US99/23938 WO 00/22129

51

GCCGGATCCA AGGAAAAGCA GCAATAAAAG G 31 (66) INFORMATION FOR SEQ ID NO:65: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1119 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (xi) SEOUENCE DESCRIPTION: SEO ID NO:65: ATGAACTACC CGCTAACGCT GGAAATGGAC CTCGAGAACC TGGAGGACCT GTTCTGGGAA 60 120 ACAGAGGGTC CCCTCATGGC CTCCTTCAAG GCCGTGTTCG TGCCCGTGGC CTACAGCCTC 180 ATCTTCCTCC TGGGCGTGAT CGGCAACGTC CTGGTGCTGG TGATCCTGGA GCGGCACCGG 240 CAGACACGCA GTTCCACGGA GACCTTCCTG TTCCACCTGG CCGTGGCCGA CCTCCTGCTG 300 GTCTTCATCT TGCCCTTTGC CGTGGCCGAG GGCTCTGTGG GCTGGGTCCT GGGGACCTTC 360 CTCTGCAAAA CTGTGATTGC CCTGCACAAA GTCAACTTCT ACTGCAGCAG CCTGCTCCTG 420 GCCTGCATCG CCGTGGACCG CTACCTGGCC ATTGTCCACG CCGTCCATGC CTACCGCCAC 480 CGCCGCCTCC TCTCCATCCA CATCACCTGT GGGACCATCT GGCTGGTGGG CTTCCTCCTT 540 GCCTTGCCAG AGATTCTCTT CGCCAAAGTC AGCCAAGGCC ATCACAACAA CTCCCTGCCA 600 20 CGTTGCACCT TCTCCCAAGA GAACCAAGCA GAAACGCATG CCTGGTTCAC CTCCCGATTC 660 CTCTACCATG TGGCGGGATT CCTGCTGCCC ATGCTGGTGA TGGGCTGGTG CTACGTGGGG 720 GTAGTGCACA GGTTGCGCCA GGCCCAGCGG CGCCCTCAGC GGCAGAAGGC AGTCAGGGTG 780 GCCATCTGG TGACAAGCAT CTTCTTCCTC TGCTGGTCAC CCTACCACAT CGTCATCTTC 840 CTGGACACCC TGGCGAGGCT GAAGGCCGTG GACAATACCT GCAAGCTGAA TGGCTCTCTC 900 25 CCCGTGGCCA TCACCATGTG TGAGTTCCTG GGCCTGGCCC ACTGCTGCCT CAACCCCATG 960 CTCTACACTT TCGCCGGCGT GAAGTTCCGC AGTGACCTGT CGCGGCTCCT GACCAAGCTG 1020 GGCTGTACCG GCCCTGCCTC CCTGTGCCAG CTCTTCCCTA GCTGGCGCAG GAGCAGTCTC 1080 TCTGAGTCAG AGAATGCCAC CTCTCTCACC ACGTTCTAG 1119

(67) INFORMATION FOR SEQ ID NO:66:

30 (i) SEQUENCE CHARACTERISTICS:

5

10

WO 00/22129 PCT/US99/23938

52

- (A) LENGTH: 372 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant
- 5 (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:66:

Met Asn Tyr Pro Leu Thr Leu Glu Met Asp Leu Glu Asn Leu Glu Asp 1 5 10 15

Leu Phe Trp Glu Leu Asp Arg Leu Asp Asn Tyr Asn Asp Thr Ser Leu 20 25 30

Val Glu Asn His Leu Cys Pro Ala Thr Glu Gly Pro Leu Met Ala Ser 35 40 45

Phe Lys Ala Val Phe Val Pro Val Ala Tyr Ser Leu Ile Phe Leu Leu 50 55 60

Gly Val Ile Gly Asn Val Leu Val Leu Val Ile Leu Glu Arg His Arg
65 70 75 80

Gln Thr Arg Ser Ser Thr Glu Thr Phe Leu Phe His Leu Ala Val Ala 85 90 95

Asp Leu Leu Val Phe Ile Leu Pro Phe Ala Val Ala Glu Gly Ser 100 105 110

Val Gly Trp Val Leu Gly Thr Phe Leu Cys Lys Thr Val Ile Ala Leu 115 120 125

His Lys Val Asn Phe Tyr Cys Ser Ser Leu Leu Leu Ala Cys Ile Ala 130 135 140

Val Asp Arg Tyr Leu Ala Ile Val His Ala Val His Ala Tyr Arg His
145 150 155 160

Arg Arg Leu Leu Ser Ile His Ile Thr Cys Gly Thr Ile Trp Leu Val 165 170 175

Gly Phe Leu Leu Ala Leu Pro Glu Ile Leu Phe Ala Lys Val Ser Gln 180 185 190

Gly His His Asn Asn Ser Leu Pro Arg Cys Thr Phe Ser Gln Glu Asn 195 200 205

Gln Ala Glu Thr His Ala Trp Phe Thr Ser Arg Phe Leu Tyr His Val 210 215 220

Ala Gly Phe Leu Leu Pro Met Leu Val Met Gly Trp Cys Tyr Val Gly 225 230 235 240

Val Val His Arg Leu Arg Gln Ala Gln Arg Arg Pro Gln Arg Gln Lys

PCT/US99/23938

						245					250					255		
		Ala	Val	Arg	Val 260	Ala	Ile	Leu	Val	Thr 265	Ser	Ile	Phe	Phe	Leu 270	Cys	Trp	
5		Ser	Pro	Tyr 275	His	Ile	Val	Ile	Phe 280	Leu	Asp	Thr	Leu	Ala 285	Arg	Leu	Lys	
		Ala	Val 290	Asp	Asn	Thr	Cys	Lys 295	Leu	Asn	Gly	Ser	Leu 300	Pro	Val	Ala	Ile	
		Thr 305	Met	Cys	Glu	Phe	Leu 310	Gly	Leu	Ala	His	Cys 315	Cys	Leu	Asn	Pro	Met 320	
10		Leu	Tyr	Thr	Phe	Ala 325	Gly	Val	Lys	Phe	Arg 330	Ser	Asp	Leu	Ser	Arg 335	Leu	
		Leu	Thr	Ļys	Leu 340	Gly	Cys	Thr	Gly	Pro 345	Ala	Ser	Leu	Cys	Gln 350	Leu	Phe	
15		Pro	Ser	Trp 355	Arg	Arg	Ser	Ser	Leu 360	Ser	Glu	Ser	Glu	Asn 365	Ala	Thr	Ser	
		Leu	Thr 370	Thr	Phe													
	(68)	INFO	ORMA!	rion	FOR	SEQ	ID 1	MO:6'	7:									
20		(i)	(A) (B) (C)	LEI TYI	CE CH NGTH PE: 1 RANDI POLO	: 30 nucle EDNE:	base eic a	e pa: acid sing:	irs									
		(i:	i) M	OLEC	ULE :	TYPE	: DNZ	A (g	enom	ic)	•							
25		(x:	i) Si	EQUEI	NCE I	DESCI	RIPT	ION:	SEQ	ID 1	10:6	7 :						
	CAAA	GCTT(GA A	AGCT	GCAC	G GT	GCAG	AGAC										30
	(69)	INFO	ORMA'	rion	FOR	SEQ	ID I	NO : 6	B:									
30		(i)	(A (B (C) LEI) TY:) ST:	E CHI NGTH PE: 1 RANDI POLO	: 30 nucle EDNE	base eic a	e pa: acid sing:	irs			·						
		(i:	i) M	OLEC	OLE '	TYPE	: DN	A (g	mons	ic)								
		(x:	i) S	EQUE	NCE 1	DESC:	RIPT	ION:	SEQ	ID 1	NO : 6	B:						
35	GCGG	ATCC	CG A	GTCA	CACC	C TG	GCTG	GGCC										30
	(70)	INF	ORMA	TION	FOR	SEQ	ID	NO : 6	9:									

(i)	SECTIENCE	CHARACTERISTICS
111	SECUENCE	CHARACIERISTICS

- (A) LENGTH: 1128 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:69:

	ATGGATGTGA	CTTCCCAAGC	CCGGGGCGTG	GGCCTGGAGA	TGTACCCAGG	CACCGCGCAG	60
	CCTGCGGCCC	CCAACACCAC	CTCCCCGAG	CTCAACCTGT	CCCACCCGCT	CCTGGGCACC	120
10	GCCCTGGCCA	ATGGGACAGG	TGAGCTCTCG	GAGCACCAGC	AGTACGTGAT	CGGCCTGTTC	180
	CTCTCGTGCC	TCTACACCAT	CTTCCTCTTC	CCCATCGGCT	TTGTGGGCAA	CATCCTGATC	240
	CTGGTGGTGA	ACÁTCAGCTT	CCGCGAGAAG	ATGACCATCC	CCGACCTGTA	CTTCATCAAC	300
	CTGGCGGTGG	CGGACCTCAT	CCTGGTGGCC	GACTCCCTCA	TTGAGGTGTT	CAACCTGCAC	360
	GAGCGGTACT	ACGACATCGC	CGTCCTGTGC	ACCTTCATGT	CGCTCTTCCT	GCAGGTCAAC	420
15	ATGTACAGCA	GCGTCTTCTT	CCTCACCTGG	ATGAGCTTCG	ACCGCTACAT	CGCCCTGGCC	480
	AGGGCCATGC	GCTGCAGCCT	GTTCCGCACC	AAGCACCACG	CCCGGCTGAG	CTGTGGCCTC	540
	ATCTGGATGG	CATCCGTGTC	AGCCACGCTG	GTGCCCTTCA	CCGCCGTGCA	CCTGCAGCAC	600
	ACCGACGAGG	CCTGCTTCTG	TTTCGCGGAT	GTCCGGGAGG	TGCAGTGGCT	CGAGGTCACG	660
	CTGGGCTTCA	TCGTGCCCTT	CGCCATCATC	GGCCTGTGCT	ACTCCCTCAT	TGTCCGGGTG	720
20	CTGGTCAGGG	CGCACCGGCA	CCGTGGGCTG	CGGCCCCGGC	GGCAGAAGGC	GCTCCGCATG	780
	ATCCTCGCGG	TGGTGCTGGT	CTTCTTCGTC	TGCTGGCTGC	CGGAGAACGT	CTTCATCAGC	840
	GTGCACCTCC	TGCAGCGGAC	GCAGCCTGGG	GCCGCTCCCT	GCAAGCAGTC	TTTCCGCCAT	900
	GCCCACCCC	TCACGGGCCA	CATTGTCAAC	CTCACCGCCT	TCTCCAACAG	CTGCCTAAAC	960
	CCCCTCATCT	ACAGCTTTCT	CGGGGAGACC	TTCAGGGACA	AGCTGAGGCT	GTACATTGAG	1020
25	CAGAAAACAA	ATTTGCCGGC	CCTGAACCGC	TTCTGTCACG	CTGCCCTGAA	GGCCGTCATT	1080
	CCAGACAGCA	CCGAGCAGTC	GGATGTGAGG	TTCAGCAGTG	CCGTGTAG		1128

- (71) INFORMATION FOR SEQ ID NO:70:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 375 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: not relevant

(xi)	SEQUENCE	DESCRIPTION:	SEQ	ID	NO:70:	
(XI)	SEQUENCE	DESCRIPTION:	SEQ	ענ	NO: / 0:	

	Met 1	Asp	Val	Thr	Ser 5	Gln	Ala	Arg	Gly	Val 10	Gly	Leu	Glu	Met	Туг 15	Pro
5	Gly	Thr	Ala	Gln 20	Pro	Ala	Ala	Pro	Asn 25	Thr	Thr	Ser	Pro	Glu 30	Leu	Asn
	Leu	Ser	His 35	Pro	Leu	Leu	Gly	Thr 40	Ala	Leu	Ala	Asn	Gly 45	Thr	Gly	Glu
10	Leu	Ser 50	Glu	His	Gln	Gln	Tyr 55	Val	Ile	Gly	Leu	Phe 60	Leu	Ser	Cys	Leu
	Tyr 65	Thr	Ile	Phe	Leu	Phe 70	Pro	Ile	Gly	Phe	Val 75	Gly	Asn	Ile	Leu	Ile 80
	Leu	Val	Val	Asn	Ile 85	Ser	Phe	Arg	Glu	Lys 90	Met	Thr	Ile	Pro	Asp 95	Leu
15	Tyr	Phe	Ile	Asn 100	Leu	Ala	Val	Ala	Asp 105	Leu	Ile	Leu	Val	Ala 110	Asp	Ser
	Leu	Ile	Glu 115	Val	Phe	Asn	Leu	His 120	Glu	Arg	Tyr	Tyr	Asp 125	Ile	Ala	Val
20	Leu	Cys 130	Thr	Phe	Met	Ser	Leu 135	Phe	Leu	Gln	Val	Asn 140	Met	Tyr	Ser	Ser
	Val 145	Phe	Phe	Leu	Thr	Trp 150	Met	Ser	Phē	Asp	Arg 155	Tyr	Ile	Ala	Leu	Ala 160
	Arg	Ala	Met	Arg	Cys 165	Ser	Leu	Phe	Arg	Thr 170	Lys	His	His	Ala	Arg 175	Leu
25	Ser	Cys	Gly	Leu 180	Ile	Trp	Met	Ala	Ser 185	Val	Ser	Ala	Thr	Leu 190		Pro
	Phe	Thr	Ala 195	Val	His	Leu	Gln	His 200	Thr	Asp	Glu	Ala	Cys 205	Phe	Cys	Phe
30	Ala	Asp 210	Val	Arg	Glu	Val	Gln 215	Trp	Leu	Glu	Val	Thr 220	Leu	Gly	Phe	Ile
	Val 225	Pro	Phe	Ala	Ile	Ile 230	Gly	Leu	Cys	Tyr	Ser 235	Leu	Ile	Val	Arg	Val 240
	Leu	Val	Arg	Ala	His 245	Arg	His	Arg	Gly	Leu 250	Arg	Pro	Arg	Arg	Gln 255	Lys
35	Ala	Leu	Arg	Met 260	Ile	Leu	Ala	Val	Val 265	Leu	Val	Phe	Phe	Val 270	Cys	Trp

		Leu	Pro	Glu 275	Asn	Val	Phe	Ile	Ser 280	Val	His	Leu	Leu	Gln 285	Arg	Thr	Gln
		Pro	Gly 29C	Ala	Ala	Pro	Cys	Lys 295	Gln	Ser	Phe	Arg	His 300	Ala	His	Pro	Leu
5		Thr 305	Gly	His	Ile	Val	Asn 310	Leu	Thr	Ala	Phe	Ser 315	Asn	Ser	Cys	Leu	Asn 320
		Pro	Leu	Ile	Tyr	Ser 325	Phe	Leu	Gly	Glu	Thr 330	Phe	Arg	Asp	Lys	Leu 335	Arg
10		Leu	Tyr	Ile	Glu 340	Gln	Lys	Thr	Asn	Leu 345	Pro	Ala	Leu	Asn	Arg 350	Phe	Cys
		His	Ala	Ala 355	Leu	Lys	Ala	Val	Ile 360	Pro	Asp	Ser	Thr	Glu 365	Gln	Ser	Asp
		Val	Arg 370	Phe	Ser	Ser	Ala	Val 375									
15	(72)	INFO	RMAI	NOI	FOR	SEQ	ID N	IO:71	:								
20		(ii	(B) (C)	LEN TYF STR TOF	IGTH: PE: n PANDE POLOG	30 nucle DNES Y: 1	base ic a S: s inea	e pai icid ingl ir . (ge	rs e nomi		0:71	:					
	ACAG	AATTC	C TG	TGTG	GTTT	TAC	CGCC	CAG									3
25	(73)		SEQ (A) (B) (C)	UENC LEN TYP STR	E CH GTH: E: n	ARAC 30 ucle DNES		STIC: pai: cid ingle	S: rs								
30		(ii) MO	LECU.	LE T	YPE:	DNA	(gei	nomi	2)							
		(xi) SE	QUEN	CE D	ESCR:	IPTI	2 : NC	SEQ I	ED NO	0:72:	:					
	CTCGG	SATCC	A GG	CAGA	AGAG	TCG	CCTA'	r gg									30
	(74)	INFO	RMAT	ION I	FOR S	SEQ :	ID N	D:73:	:								
35		(i)	(B)	LENG TYPE	FTH: E: nu	113 cle:	reris	se pa	airs								

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:73:

	ATGGACCTGG	GGAAACCAAT	GAAAAGCGTG	CTGGTGGTGG	CTCTCCTTGT	CATTTTCCAG	60
5	GTATGCCTGT	GTCAAGATGA	GGTCACGGAC	GATTACATCG	GAGACAACAC	CACAGTGGAC	120
	TACACTTTGT	TCGAGTCTTT	GTGCTCCAAG	AAGGACGTGC	GGAACTTTAA	AGCCTGGTTC	180
	CTCCCTATCA	TGTACTCCAT	CATTTGTTTC	GTGGGCCTAC	TGGGCAATGG	GCTGGTCGTG	240
	TTGACCTATA	TCTATTTCAA	GAGGCTCAAG	ACCATGACCG	ATACCTACCT	GCTCAACCTG	300
	GCGGTGGCAG	ACATCCTCTT	CCTCCTGACC	CTTCCCTTCT	GGGCCTACAG	CGCGGCCAAG	360
10	TCCTGGGTCT	TCGGTGTCCA	CTTTTGCAAG	CTCATCTTTG	CCATCTACAA	GATGAGCTTC	420
	TTCAGTGGCA	TGCTCCTACT	TCTTTGCATC	AGCATTGACC	GCTACGTGGC	CATCGTCCAG	480
	GCTGTCTCAG	CTCACCGCCA	CCGTGCCCGC	GTCCTTCTCA	TCAGCAAGCT	GTCCTGTGTG	540
	GGCATCTGGA	TACTAGCCAC	AGTGCTCTCC	ATCCCAGAGC	TCCTGTACAG	TGACCTCCAG	600
	AGGAGCAGCA	GTGAGCAAGC	GATGCGATGC	TCTCTCATCA	CAGAGCATGT	GGAGGCCTTT	660
15	ATCACCATCC	AGGTGGCCCA	GATGGTGATC	GGCTTTCTGG	TCCCCCTGCT	GGCCATGAGC	720
	TTCTGTTACC	TTGTCATCAT	CCGCACCCTG	CTCCAGGCAC	GCAACTTTGA	GCGCAACAAG	780
	GCCATCAAGG	TGATCATCGC	TGTGGTCGTG	GTCTTCATAG	TCTTCCAGCT	GCCCTACAAT	840
	GGGGTGGTCC	TGGCCCAGAC	GGTGGCCAAC	TTCAACATCA	CCAGTAGCAC	CTGTGAGCTC	900
	AGTAAGCAAC	TCAACATCGC	CTACGACGTC	ACCTACAGCC	TGGCCTGCGT	CCGCTGCTGC	960
20	GTCAACCCTT	TCTTGTACGC	CTTCATCGGC	GTCAAGTTCC	GCAACGATCT	CTŢCAAGCTC	1020
	TTCAAGGACC	TGGGCTGCCT	CAGCCAGGAG	CAGCTCCGGC	AGTGGTCTTC	CTGTCGGCAC	1080
	ATCCGGCGCT	CCTCCATGAG	TGTGGAGGCC	GAGACCACCA	CCACCTTCTC	CCCATAG	1137
	•						

- (75) INFORMATION FOR SEQ ID NO:74:
- 25 (A) LENGTH: 378 amino acids
 - (B) TYPE: amino acid

(i) SEQUENCE CHARACTERISTICS:

- (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein
- 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:74:

WO 00/22129 PCT/US99/23938

	Met 1	Asp	Leu	Gly	Lys 5	Pro	Met	Lys	Ser	Val 10	Leu	Val	Val	Ala	Leu 15	Leu
	Val	Ile	Phe	Gln 20	Val	Cys	Leu	Cys	Cln 25	Asp	Glu	Val	Thr	Asp 30	Asp	Tyr
5	Ile	Gly	Asp 35	Asn	Thr	Thr	Val	Asp 40	Tyr	Thr	Leu	Phe	Glu 45	Ser	Leu	Cys
	Ser	Lys 50	Lys	Asp	Val	Arg	Asn 55	Phe	Lys	Ala	Trp	Phe 60	Leu	Pro	Ile	Met
10	Tyr 65	Ser	Ile	Ile	Cys	Phe 70	Val	Gly	Leu	Leu	Gly 75	Asn	Gly	Leu	Val	Val 80
	Leu	Thr	Tyr	Ile	Tyr 85	Phe	Lys	Arg	Leu	Lys 90	Thr	Met	Thr	Asp	Thr 95	Tyr
	. Leu	Leu	Asn	Leu 100	Ala	Val	Ala	Asp	Ile 105	Leu	Phe	Leu	Leu	Thr 110	Leu	Pro
15	Phe	Trp	Ala 115	Tyr	Ser	Ala	Ala	Lys 120	Ser	Trp	Val	Phe	Gly 125	Val	His	Phe
	Cys	Lys 130	Leu	Ile	Phe	Ala	Ile 135	Tyr	Lys	Met	Ser	Phe 140	Phe	Ser	Gly	Met
20	Leu 145	Leu	Leu	Leu	Cys	Ile 150	Ser	Ile	Asp	Arg	Tyr 155	Val	Ala	Ile	Val	Gln 160
	Ala	Val	Ser	Ala	His 165	Arg	His	Arg	Ala	Arg 170	Val	Leu	Leu	Ile	Ser 175	Lys
	Leu	Ser	Cys	Val 180	Gly	Ile	Trp	Ile	Leu 185	Ala	Thr	Val	Leu	Ser 190	Ile	Pro
25	Glu	Leu	Leu 195	Tyr	Ser	Asp	Leu	Gln 200	Arg	Ser	Ser	Ser	Glu 205	Gln	Ala	Met
	Arg	Cys 210	Ser	Leu	Ile	Thr	Glu 215	His	Val	Glu	Ala	Phe 220	Ile	Thr	Ile	Gln
30	Val 225	Ala	Gln	Met	Val	Ile 230	Gly	Phe	Leu	Val	Pro 235	Leu	Leu	Ala	Met	Ser 240
	Phe	Cys	Tyr	Leu	Val 245	Ile	Ile	Arg	Thr	Leu 250	Leu	Gln	Ala	Arg	Asn 255	Phe
	Glu	Arg	Asn	Lys 260	Ala	Ile	Lys	Val	Ile 265	Ile	Ala	Val	Val	Val 270	Val	Phe
35	Ile	Val	Phe 275	Gln	Leu	Pro	Tyr	Asn 280	Gly	Val	Val	Leu	Ala 285	Gln	Thr	Val

	Ala Asn Phe Asn Ile Thr Ser Ser Thr Cys Glu Leu Ser Lys Gln Leu 290 295 300	
	Asn Ile Ala Tyr Asp Val Thr Tyr Ser Leu Ala Cys Val Arg Cys Cys 305 310 315 320	
5	Val Asn Pro Phe Leu Tyr Ala Phe Ile Gly Val Lys Phe Arg Asn Asp 325 330 335	
	Leu Phe Lys Leu Phe Lys Asp Leu Gly Cys Leu Ser Gln Glu Gln Leu 340 345 350	
10	Arg Gln Trp Ser Ser Cys Arg His Ile Arg Arg Ser Ser Met Ser Val	
	Glu Ala Glu Thr Thr Thr Phe Ser Pro 370 375	
	(76) INFORMATION FOR SEQ ID NO:75:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:75:	
	CTGGAATTCA CCTGGACCAC CACCAATGGA TA	32
	(77) INFORMATION FOR SEQ ID NO:76:	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:76:	
30	CTCGGATCCT GCAAAGTTTG TCATACAGTT	30
	(78) INFORMATION FOR SEQ ID NO:77:	
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1085 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:77:

	ATGGATATAC	AAATGGCAAA	CAATTTTACT	CCGCCCTCTG	CAACTCCTCA	GGGAAATGAC	60
	TGTGACCTCT	ATGCACATCA	CAGCACGGCC	AGGATAGTAA	TGCCTCTGCA	TTACAGCCTC	120
	GTCTTCATCA	TTGGGCTCGT	GGGAAACTTA	CTAGCCTTGG	TCGTCATTGT	TCAAAACAGG	180
5	AAAAAAATCA	ACTCTACCAC	CCTCTATTCA	ACAAATTTGG	TGATTTCTGA	TATACTTTTT	240
	ACCACGGCTT	TGCCTACACG	AATAGCCTAC	TATGCAATGG	GCTTTGACTG	GAGAATCGGA	300
	GATGCCTTGT	GTAGGATAAC	TGCGCTAGTG	TTTTACATCA	ACACATATGC	AGGTGTGAAC	360
	TTTATGACCT	GCCTGAGTAT	TGACCGCTTC	ATTGCTGTGG	TGCACCCTCT	ACGCTACAAC	420
	AAGATAAAA	GGATTGAACA	TGCAAAAGGC	GTGTGCATAT	TTGTCTGGAT	TCTAGTATTT	480
10	GCTCAGACAC	TCCCACTCCT	CATCAACCCT	ATGTCAAAGC	AGGAGGCTGA	AAGGATTACA	540
	TGCATGGAGT	ATCCAAACTT	TGAAGAAACT	AAATCTCTTC	CCTGGATTCT	GCTTGGGGCA	600
	TGTTTCATAG	GATATGTACT	TCCACTTATA	ATCATTCTCA	TCTGCTATTC	TCAGATCTGC	660
	TGCAAACTCT	TCAGAACTGC	CAAACAAAAC	CCACTCACTG	AGAAATCTGG	TGTAAACAAA	720
	AAGGCTCTCA	ACACAATTAT	TCTTATTATT	GTTGTGTTTG	TTCTCTGTTT	CACACCTTAC	780
15	CATGTTGCAA	TTATTCAACA	TATGATTAAG	AAGCTTCGTT	TCTCTAATTT	CCTGGAATGT	840
	AGCCAAAGAC	ATTCGTTCCA	GATTTCTCTG	CACTTTACAG	TATGCCTGAT	GAACTTCAAT	900
	TGCTGCATGG	ACCCTTTTAT	CTACTTCTTT	GCATGTAAAG	GGTATAAGAG	AAAGGTTATG	960
	AGGATGCTGA	AACGGCAAGT	CAGTGTATCG	ATTTCTAGTG	CTGTGAAGTC	AGCCCCTGAA	1020
	GAAAATTCAC	GTGAAATGAC	AGAAACGCAG	ATGATGATAC	ATTCCAAGTC	TTCAAATGGA	1080
20	AAGTGA						1086
	(79) INFORM	ATION FOR S	EQ ID NO:78	J:			
	(EQUENCE CHA A) LENGTH: B) TYPE: am	361 amino a				
25	• (C) STRANDED	NESS:				

(C) STRANDEDNESS:

(D) TOPOLOGY: not relevant

- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:78:

Met Asp Ile Gln Met Ala Asn Asn Phe Thr Pro Pro Ser Ala Thr Pro 30 10 15

	Gln	Gly	Asn	Asp 20	Cys	Asp	Leu	Tyr	Ala 25	His	His	Ser	Thr	Ala 30	Arg	Ile
	Val	Met	Pro 35	Leu	His	Tyr	Ser	Leu 40	Val	Phe	Ile	Ile	Gly 45	Leu	Val	Gly
5	Asn	Leu 50	Leu	Ala	Leu	Val	Val 55	Ile	Val	Gln	Asn	Arg 60	Lys	Lys	Ile	Asn
	Ser 65	Thr	Thr	Leu	Tyr	Ser 70	Thr	Asn	Leu	Val	Ile 75	Ser	Asp	Ile	Leu	Phe 80
10	Thr	Thr	Ala	Leu	Pro 85	Thr	Arg	Ile	Ala	Tyr 90	Tyr	Ala	Met	Gly	Phe 95	Asp
	Trp	Arg	Ile	Gly 100	Asp	Ala	Leu	Cys	Arg 105	Ile	Thr	Ala	Leu	Val 110	Phe	Tyr
	Ile	Asn	Thr 115	Tyr	Ala	Gly	Val	Asn 120	Phe	Met	Thr	Cys	Leu 125	Ser	Ile	Asp
15	Arg	Phe 130	Ile	Ala	Val	Val	His 135	Pro	Leu	Arg	Tyr	Asn 140	Lys	Ile	Lys	Arg
	Ile 145	Glu	His	Ala	Lys	Gly 150	Val	Cys	Ile	Phe	Val 155	Trp	Ile	Leu	Val	Phe 160
20	Ala	Gln	Thr	Leu	Pro 165	Leu	Leu	Ile	Asn	Pro 170	Met	Ser	Lys	Gln	Glu 175	Ala
	Glu	Arg	Ile	Thr 180	Cys	Met	Glu	Tyr	Pro 185	Asn	Phe	Glu	Glu	Thr 190	Lys	Ser
	Leu	Pro	Trp 195	Ile	Leu	Leu	Gly	Ala 200	Cys	Phe	Ile	Gly	Tyr 205	Val	Leu	Pro
25	Leu	Ile 210	Ile	Ile	Leu	Ile	Cys 215	Tyr	Ser	Gln	Ile	Cys 220	Cys	Lys	Leu	Phe
	Arg 225	Thr	Ala	Lys	Gln	Asn 230	Pro	Leu	Thr	Glu	Lys 235	Ser	Gly	Val	Asn	Lys 240
30	Lys	Ala	Leu	Asn	Thr 245	Ile	Ile	Leu	Ile	Ile 250	Val	Val	Phe	Val	Leu 255	Cys
	Phe	Thr	Pro	Tyr 260		Val	Ala	Ile	Ile 265	Gln	His	Met	Ile	Lys 270	Lys	Leu
	Arg	Phe	Ser 275	Asn	Phe	Leu	Glu	Cys 280	Ser	Gln	Arg	His	Ser 285	Phe	Gln	Ile
35	Ser	Leu 290		Phe	Thr	Val	Cys 295		Met	Asn	Phe	Asn 300	Cys	Cys	Met	Asr
	Pro	Phe	Ile	Tvr	Phe	Phe	Ala	Cys	Lys	Glv	Tyr	Lys	Arq	Lys	Val	Met

		305					310					315					320	
		Arg	Met	Leu	Lys	Arg 325	Gln	Val	Ser	Val	Ser 330	Ile	Ser	Ser	Ala	Val 335	Lys	
5		Ser	Ala	Pro	Glu 340	Glu	Asn	Ser	Arg	Glu 345	Met	Thr	Glu	Thr	Gln 350	Met	Met	
		Ile	His	Ser 355	Lys	Ser	Ser	Asn	Gly 360	Lys								
	(80)	INFO	ORMA:	NOIT	FOR	SEQ	ID 1	10:79	€:									
10		(i)	(A) (B) (C)	LEN TYE STE	CE CHIGTH: PE: n RANDE	31 ucle DNES	base ic a S: s	pai cid ingl	rs									
		(ii	.) MC	LECU	LE I	YPE:	DNA	(ge	nomi	.c)								
15		(xi) SE	QUEN	ICE D	ESCR	IPTI	ON:	SEQ	ID N	0:79	:						
	CTGGA	ATTC	T CC	TGCT	'CATC	CAG	CCAT	GCG	G									31
	(81)	INFO	RMAT	ON	FOR	SEQ	ID N	0:80	:									
20		(i)	(A) (B) (C)	LEN TYP STR	E CH GTH: E: n ANDE OLOG	30 ucle DNES	base ic a S: s	pai cid ingl	rs									
		(ii) MO	LECU	LE T	YPE:	DNA	(ge	nomi	c)								
		(xi) SE	QUEN	CE D	ESCR:	IPTI	: NC	SEQ :	ID NO	O:80	:						
25	CCTGG	ATCC	C CA	cccc'	TACT	GGG	GCCT	CAG									-	30
	(82)	INFO	RMAT	ION :	FOR a	SEQ :	ID N	0:81	:									
30		(i)	(A) (B) (C)	LENG TYPI STR	E CHI GTH: E: no ANDEI OLOG!	1446 icle: ONES	basic ac	se pa cid ingle	airs									
		(ii)	MO	LECUI	LE T	PE:	DNA	(ger	nomic	=)								
		(xi)	SE	QUENC	CE DI	ESCRI	PTIC	ON: 5	SEQ I	ID NC):81:	:						
	ATGCGG	STGGC	C TG	rggco	CCT	GGCI	GTCI	CT (TTGC	TGTG	SA TI	TTG	CTGI	' GGG	GCTA	AGC	ϵ	50
35	AGGGT	CTCTC	G GG	GTG	ccc	CCTC	CACC	TG C	GCAG	GCAC	A GA	AGCCG	AGAC	CC	AGGAG	יראם:	3.5	20

	CAGAGCCGAT	CCAAGAGGGG	CACCGAGGAT	GAGGAGGCCA	AGGGCGTGCA	GCAGTATGTG	180
	CCTGAGGAGT	GGGCGGAGTA	CCCCCGGCCC	ATTCACCCTG	CTGGCCTGCA	GCCAACCAAG	240
	CCCTTGGTGG	CCACCAGCCC	TAACCCCGAC	AAGGATGGGG	GCACCCCAGA	CAGTGGGCAG	300
	GAACTGAGGG	GCAATCTGAC	AGGGGCACCA	GGGCAGAGGC	TACAGATCCA	GAACCCCCTG	360
5	TATCCGGTGA	CCGAGAGCTC	CTACAGTGCC	TATGCCATCA	TGCTTCTGGC	GCTGGTGGTG	420
	TTTGCGGTGG	GCATTGTGGG	CAACCTGTCG	GTCATGTGCA	TCGTGTGGCA	CAGCTACTAC	480
	CTGAAGAGCG	CCTGGAACTC	CATCCTTGCC	AGCCTGGCCC	TCTGGGATTT	TCTGGTCCTC	540
	TTTTTCTGCC	TCCCTATTGT	CATCTTCAAC	GAGATCACCA	AGCAGAGGCT	ACTGGGTGAC	600
	GTTTCTTGTC	GTGCCGTGCC	CTTCATGGAG	GTCTCCTCTC	TGGGAGTCAC	GACTTTCAGC	660
10	CTCTGTGCCC	TGGGCATTGA	CCGCTTCCAC	GTGGCCACCA	GCACCCTGCC	CAAGGTGAGG	720
	CCCATCGAGC	GGTGCCAATC	CATCCTGGCC	AAGTTGGCTG	TCATCTGGGT	GGGCTCCATG	780
	ACGCTGGCTG	TGCCTGAGCT	CCTGCTGTGG	CAGCTGGCAC	AGGAGCCTGC	CCCCACCATG	840
	GGCACCCTGG	ACTCATGCAT	CATGAAACCC	TCAGCCAGCC	TGCCCGAGTC	CCTGTATTCA	900
	CTGGTGATGA	CCTACCAGAA	CGCCCGCATG	TGGTGGTACT	TTGGCTGCTA	CTTCTGCCTG	960
15	CCCATCCTCT	TCACAGTCAC	CTGCCAGCTG	GTGACATGGC	GGGTGCGAGG	CCCTCCAGGG	1020
	AGGAAGTCAG	AGTGCAGGGC	CAGCAAGCAC	GAGCAGTGTG	AGAGCCAGCT	CAACAGCACC	1080
	GTGGTGGCC	TGACCGTGGT	CTACGCCTTC	TGCACCCTCC	CAGAGAACGT	CTGCAACATC	1140
	GTGGTGGCCT	ACCTCTCCAC	CGAGCTGACC	CGCCAGACCC	TGGACCTCCT	GGGCCTCATC	1200
	AACCAGTTCT	CCACCTTCTT	CAAGGGCGCC	ATCACCCCAG	TGCTGCTCCT	TTGCATCTGC	1260
20	AGGCCGCTGG	GCCAGGCCTT	CCTGGACTGC	TGCTGCTGCT	GCTGCTGTGA	GGAGTGCGGC	1320
	GGGGCTTCGG	AGGCCTCTGC	TGCCAATGGG	TCGGACAACA	AGCTCAAGAC	CGAGGTGTCC	1380
	TCTTCCATCT	ACTTCCACAA	GCCCAGGGAG	TCACCCCCAC	TCCTGCCCCT	GGGCACACCT	1440
	TGCTGA						1446

(83) INFORMATION FOR SEQ ID NO:82:

25 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 481 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant
- 30 (ii) MOLECULE TYPE: protein

(xi)	SEQUENCE	DESCRIPTION:	SEQ	ID	NO:82:
------	----------	--------------	-----	----	--------

	Met 1	Arg	Trp	Leu	Trp 5	Pro	Leu	Ala	Val	Ser 10	Leu	Ala	Val	Ile	Leu 15	Ala
5	Val	Gly	Leu	Ser 20	Arg	Val	Ser	Gly	Gly 25	Ala	Pro	Leu	His	Leu 30	Gly	Arg
	His	Arg	Ala 35	Glu	Thr	Gln	Glu	Gln 40	Gln	Ser	Arg	Ser	Lys 45	Arg	Gly	Thr
	Glu	Asp 50	Glu	Glu	Ala	Lys	Gly 55	Val	Gln	Gln	Tyr	Val 60	Pro	Glu	Glu	Trp
10	Ala 65	Glu	Tyr	Pro	Arg	Pro 70	Ile	His	Pro	Ala	Gly 75	Leu	Gln	Pro	Thr	Lys 80
	Pro	Leu	Val	Ala	Thr 85	Ser	Pro	Asn	Pro	Asp 90	Lys	Asp	Gly	Gly	Thr 95	Pro
15	Asp	Ser	Gly	Gln 100	Glu	Leu	Arg	Gly	Asn 105	Leu	Thr	Gly	Ala	Pro 110	Gly	Gln
	Arg	Leu	Gln 115	Ile	Gln	Asn	Pro	Leu 120	Tyr	Pro	Val	Thr	Glu 125	Ser	Ser	Tyr
	Ser	Ala 130	Tyr	Ala	Ile	Met	Leu 135	Leu	Ala	Leu	Val	Val 140	Phe	Ala	Val	Gly
20	Ile 145	Val	Gly	Asn	Leu	Ser 150	Val	Met	Cys	Ile	Val 155	Trp	His	Ser	Tyr	Tyr 160
	Leu	Lys	Ser	Ala	Trp 165	Asn	Ser	Ile	Leu	Ala 170	Ser	Leu	Ala	Leu	Trp 175	Asp
25	Phe	Leu	Val	Leu 180	Phe	Phe	Cys	Leu	Pro 185	Ile	Val	Ile	Phe	Asn 190	Glu	Ile
	Thr	Lys	Gln 195	Arg	Leu	Leu	Gly	Asp 200	Val	Ser	Cys	Arg	Ala 205	Val	Pro	Phe
	Met	Glu 210	Val	Ser	Ser		Gly 215	Val	Thr	Thr	Phe	Ser 220	Leu	Сув	Ala	Leu
30	Gly 225	Ile	Asp	Arg		His 230	Val	Ala	Thr	Ser	Thr 235	Leu	Pro	Lys	Val	Arg 240
	Pro	Ile	Glu		Cys 245	Gln	Ser	Ile	Leu	Ala 250	Lys	Leu	Ala	Val	Ile 255	Trp
35	Val	Gly		Met 260	Thr	Leu	Ala		Pro 265	Glu	Leu	Leu	Leu	Trp 270	Gln	Leu
	Ala	Gln	Glu	Pro	Ala	Pro	Thr	Met	Gly	Thr	Leu	Asp	Ser	Cys	Ile	Met

WO 00/22129 PCT/US99/23938

			275					280					285			
	Lys	Pro 290	Ser	Ala	Ser	Leu	Pro 295	Glu	Ser	Leu	Tyr	Ser 300	Leu	Val	Met	Thr
5	T yr 305	Gln	Asn	Ala	Arg	Met 310	Trp	Trp	Tyr	Phe	Gly 315	Cys	Tyr	Phe	Cys	Leu 320
	Pro	Ile	Leu	Phe	Thr 325	Val	Thr	Cys	Gln	Leu 330	Val	Thr	Trp	Arg	Val 335	Arg
	Gly	Pro	Pro	Gly 340	Arg	Lys	Ser	Glu	Cys 345	Arg	Ala	Ser	Lys	His 350	Glu	Gln
10	Cys	Glu	Ser 355	Gln	Leu	Asn	Ser	Thr 360	Val	Val	Gly	Leu	Thr 365	Val	Val	Tyr
	Ala	Phe 370	Cys	Thr	Leu	Pro	Glu 375	Asn	Val	Cys	Asn	Ile 380	Val	Val	Ala	Tyr
15	Leu 385	Ser	Thr	Glu	Leu	Thr 390	Arg	Gln	Thr	Leu	Asp 395	Leu	Leu	Gly	Leu	Ile 400
	Asn	Gln	Phe	Ser	Thr 405	Phe	Phe	Lys	Gly	Ala 410	Ile	Thr	Pro	Val	Leu 415	Leu
	Leu	Cys	Ile	Cys 420		Pro	Leu	Gly	Gln 425	Ala	Phe	Leu	Asp	Cys 430	Cys	Cys
20	Cys	Cys	Cys 435		Glu	Glu	Cys	Gly 440		Ala	Ser	Glu	Ala 445	Ser	Ala	Ala
	Asn	Gly 450		Asp	Asn	Lys	Leu 455		Thr	Glu	Val	Ser 460		Ser	Ile	Tyr
25	Phe 465		Lys	Pro	Arg	Glu 470		Pro	Pro	Leu	Leu 475		Leu	Gly	Thr	Pro 480
	Cys															
	(84) INF															
30	(i	(]	A) LE	ENGTE	I: 22	CTER bas	e pa	irs			•					
		((c) si	rani	EDNI	leic ESS: line	sing	l gle								
	į)	Li) [MOLE	CULE	TYPI	E: Dì) AI	genor	nic)							
35	(2)	ci) :	SEQUI	ENCE	DES	CRIP:	rion	: SE	QI Q	NO : 8	33:					
	ATGTGGA	ACG (CGAC	GCCC	AG C	G										

	(85) INFORMATION FOR SEQ ID NO:84:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:84:	
	TCATGTATTA ATACTAGATT CT	22
10	(86) INFORMATION FOR SEQ ID NO:85:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 38 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:85:	
	TACCATGTGG AACGCGACGC CCAGCGAAGA GCCGGGGT	38
	(87) INFORMATION FOR SEQ ID NO:86:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
25	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:86:	
	CGGAATTCAT GTATTAATAC TAGATTCTGT CCAGGCCCG	39
	(88) INFORMATION FOR SEQ ID NO:87:	
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1101 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:87:	

	ATGTGGAACG	CGACGCCCAG	CGAAGAGCCG	GGGTTCAACC	TCACACTGGC	CGACCTGGAC	60
	TGGGATGCTT	CCCCCGGCAA	CGACTCGCTG	GGCGACGAGC	TGCTGCAGCT	CTTCCCCGCG	120
	CCGCTGCTGG	CGGGCGTCAC	AGCCACCTGC	GTGGCACTCT	TCGTGGTGGG	TATCGCTGGC	180
	AACCTGCTCA	CCATGCTGGT	GGTGTCGCGC	TTCCGCGAGC	TGCGCACCAC	CACCAACCTC	240
5	TACCTGTCCA	GCATGGCCTT	CTCCGATCTG	CTCATCTTCC	TCTGCATGCC	CCTGGACCTC	300
	GTTCGCCTCT	GGCAGTACCG	GCCCTGGAAC	TTCGGCGACC	TCCTCTGCAA	ACTCTTCCAA	360
	TTCGTCAGTG	AGAGCTGCAC	CTACGCCACG	GTGCTCACCA	TCACAGCGCT	GAGCGTCGAG	420
•	CGCTACTTCG	CCATCTGCTT	CCCACTCCGG	GCCAAGGTGG	TGGTCACCAA	GGGGCGGTG	480
	AAGCTGGTCA	TCTTCGTCAT	CTGGGCCGTG	GCCTTCTGCA	GCGCCGGGCC	CATCTTCGTG	540
10	CTAGTCGGGG	TGGAGCACGA	GAACGGCACC	GACCCTTGGG	ACACCAACGA	GTGCCGCCCC	600
	ACCGAGTTTG	CGGTGCGCTC	TGGACTGCTC	ACGGTCATGG	TGTGGGTGTC	CAGCATCTTC	660
	TTCTTCCTTC	CTGTCTTCTG	TCTCACGGTC	CTCTACAGTC	TCATCGGCAG	GAAGCTGTGG	720
	CGGAGGAGGC	GCGGCGATGC	TGTCGTGGGT	GCCTCGCTCA	GGGACCAGAA	CCACAAGCAA	780
	ACCGTGAAAA	TGCTGGCTGT	AGTGGTGTTT	GCCTTCATCC	TCTGCTGGCT	CCCCTTCCAC	840
15	GTAGGGCGAT	ATTTATTTTC	CAAATCCTTT	GAGCCTGGCT	CCTTGGAGAT	TGCTCAGATC	900
	AGCCAGTACT	GCAACCTCGT	GTCCTTTGTC	CTCTTCTACC	TCAGTGCTGC	CATCAACCCC	960
	ATTCTGTACA	ACATCATGTC	CAAGAAGTAC	CGGGTGGCAG	TGTTCAGACT	TCTGGGATTC	1020
	GAACCCTTCT	CCCAGAGAAA	GCTCTCCACT	CTGAAAGATG	AAAGTTCTCG	GGCCTGGACA	1080
	GAATCTAGTA	TTAATACATG	A				1101

20 (89) INFORMATION FOR SEQ ID NO:88:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 366 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:88:

Met Trp Asn Ala Thr Pro Ser Glu Glu Pro Gly Phe Asn Leu Thr Leu

1 10 15

Ala Asp Leu Asp Trp Asp Ala Ser Pro Gly Asn Asp Ser Leu Gly Asp 20 25 30

	Glu	Leu	Leu 35	Gln	Leu	Phe	Pro	Ala 40	Pro	Leu	Leu	Ala	Gly 45	/ Val	. Thr	Ala
	Thr	Cys 50	Val	Ala	Leu	Phe	Val 55	Val	Gly	' Ile	Ala	Gly 60	Asn	Leu	Leu	Thi
5	Met 65	Leu	Val	Val	Ser	Arg 70	Phe	Arg	Glu	Leu	Arg 75	Thr	Thr	Thr	Asn	Leu 80
	Tyr	Leu	Ser	Ser	Met 85	Ala	Phe	Ser	Asp	Leu 90	Leu	Ile	Phe	Leu	Cys 95	Met
10	Pro	Leu	Asp	Leu 100	Val	Arg	Leu	Trp	Gln 105		Arg	Pro	Trp	Asn 110	Phe	Gly
	Asp	Leu	Leu 115	Cys	Lys	Leu	Phe	Gln 120	Phe	Val	Ser	Glu	Ser 125	Cys	Thr	Tyr
	Ala	Thr 130	Val	Leu	Thr	Ile	Thr 135	Ala	Leu	Ser	Val	Glu 140	Arg	Tyr	Phe	Ala
15	Ile 145	Cys	Phe	Pro	Leu	Arg 150	Ala	Lys	Val	Val	Val 155	Thr	Lys	Gly	Arg	Val 160
	Lys	Leu	Val	Ile	Phe 165	Val	Ile	Trp	Ala	Val 170	Ala	Phe	Cys	Ser	Ala 175	Gly
20	Pro	Ile	Phe	Val 180	Leu	Val	Gly	Val	Glu 185	His	Glu	Asn	Gly	Thr 190	Asp	Pro
	Trp	Asp	Thr 195	Asn	Glu	Cys	Arg	Pro 200	Thr	Glu	Phe	Ala	Val 205	Arg	Ser	Gly
	Leu	Leu 210	Thr	Val	Met	Val	Trp 215	Val	Ser	Ser	Ile	Phe 220	Phe	Phe	Leu	Pro
25	Val 225	Phe	Cys	Leu	Thr	Val 230	Leu	Tyr	Ser	Leu	Ile 235	Gly	Arg	Lys	Leu	Trp 240
	Arg	Arg	Arg	Arg	Gly 245	Asp	Ala	Val	Val	Gly 250	Ala	Ser	Leu	Arg	Asp 255	Gln
30	Asn	His	Lys	Gln 260	Thr	Val	Lys	Met	Leu 265	Ala	Val	Val	Val	Phe 270	Ala	Phe
	Ile	Leu	Cys 275	Trp	Leu	Pro	Phe	His 280	Val	Gly	Arg	Tyr	Leu 285	Phe	Ser	Lys
	Ser	Phe 290	Glu	Pro	Gly	Ser	Leu 295	Glu	Ile	Ala	Gln	Ile 300	Ser	Gln	Tyr	Cys
35	Asn 305	Leu	Val	Ser	Phe	Val 310	Leu	Phe	Tyr	Leu	Ser 315	Ala	Ala	Ile	Asn	Pro 320
	Ile	Leu	Tyr	Asn	Ile	Met	Ser	Lys	Lys	Tyr	Arg	Val	Ala	Val	Phe	Ara

PCT/US99/23938

	325 330 335	
	Leu Leu Gly Phe Glu Pro Phe Ser Gln Arg Lys Leu Ser Thr Leu 340 345 350	Lys
5	Asp Glu Ser Ser Arg Ala Trp Thr Glu Ser Ser Ile Asn Thr 355 360 365	
	(90) INFORMATION FOR SEQ ID NO:89:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:89:	
	GCAAGCTTGT GCCCTCACCA AGCCATGCGA GCC	33
15	(91) INFORMATION FOR SEQ ID NO:90:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:90:	
	CGGAATTCAG CAATGAGTTC CGACAGAAGC	30
	(92) INFORMATION FOR SEQ ID NO:91:	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1842 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
30	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:91:	
	ATGCGAGCCC CGGGCGCGT TCTCGCCCGC ATGTCGCGGC TACTGCTTCT GCTACTGCTC	60
	AAGGTGTCTG CCTCTTCTGC CCTCGGGGTC GCCCCTGCGT CCAGAAACGA AACTTGTCTG	120
	GGGGAGAGCT GTGCACCTAC AGTGATCCAG CGCCGCGGCA GGGACGCCTG GGGACCGGGA	.180
35	AATTCTGCAA GAGACGTTCT GCGAGCCCGA GCACCCAGGG AGGAGCAGGG GGCAGCGTTT	240

	C'I'TGCGGGAC	CCTCCTGGGA	CCTGCCGGCG	GCCCCGGGCC	GTGACCCGGC	TGCAGGCAGA	300
	GGGGCGGAGG	CGTCGGCAGC	CGGACCCCCG	GGACCTCCAA	CCAGGCCACC	TGGCCCCTGG	360
	AGGTGGAAAG	GTGCTCGGGG	TCAGGAGCCT	TCTGAAACTT	TGGGGAGAGG	GAACCCCACG	420
	GCCCTCCAGC	TCTTCCTTCA	GATCTCAGAG	GAGGAAGAGA	AGGGTCCCAG	AGGCGCTGGC	480
5	ATTTCCGGGC	GTAGCCAGGA	GCAGAGTGTG	AAGACAGTCC	CCGGAGCCAG	CGATCTTTTT	540
	TACTGGCCAA	GGAGAGCCGG	GAAACTCCAG	GGTTCCCACC	ACAAGCCCCT	GTCCAAGACG	600
	GCCAATGGAC	TGGCGGGGCA	CGAAGGGTGG	ACAATTGCAC	TCCCGGGCCG	GGCGCTGGCC	660
	CAGAATGGAT	CCTTGGGTGA	AGGAATCCAT	GAGCCTGGGG	GTCCCCGCCG	GGGAAACAGC	720
	ACGAACCGGC	GTGTGAGACT	GAAGAACCCC	TTCTACCCGC	TGACCCAGGA	GTCCTATGGA	780
10	GCCTACGCGG	TCATGTGTCT	GTCCGTGGTG	ATCTTCGGGA	CCGGCATCAT	TGGCAACCTG	840
	GCGGTGATGA	GCATCGTGTG	CCACAACTAC	TACATGCGGA	GCATCTCCAA	CTCCCTCTTG	900
	GCCAACCTGG	CCTTCTGGGA	CTTTCTCATC	ATCTTCTTCT	GCCTTCCGCT	GGTCATCTTC	960
	CACGAGCTGA	CCAAGAAGTG	GCTGCTGGAG	GACTTCTCCT	GCAAGATCGT	GCCCTATATA	1020
	GAGGTCGCTT	CTCTGGGAGT	CACCACTTTC	ACCTTATGTG	CTCTGTGCAT	AGACCGCTTC	1080
15	CGTGCTGCCA	CCAACGTACA	GATGTACTAC	GAAATGATCG	AAAACTGTTC	CTCAACAACT	1140
	GCCAAACTTG	CTGTTATATG	GGTGGGAGCT	CTATTGTTAG	CACTTCCAGA	AGTTGTTCTC	1200
	CGCCAGCTGA	GCAAGGAGGA	TTTGGGGTTT	AGTGGCCGAG	CTCCGGCAGA	AAGGTGCATT	1260
	ATTAAGATCT	CTCCTGATTT	ACCAGACACC	ATCTATGTTC	TAGCCCTCAC	CTACGACAGT	1320
	GCGAGACTGT	GGTGGTATTT	TGGCTGTTAC	TTTTGTTTGC	CCACGCTTTT	CACCATCACC	1380
20	TGCTCTCTAG	TGACTGCGAG	GAAAATCCGC	AAAGCAGAGA	AAGCCTGTAC	CCGAGGGAAT	1440
	AAACGGCAGA	TTCAACTAGA	GAGTCAGATG	AACTGTACAG	TAGTGGCACT	GACCATTTTA	1500
	TATGGATTTT	GCATTATTCC	TGAAAATATC	TGCAACATTG	TTACTGCCTA	CATGGCTACA	1560
	GGGGTTTCAC	AGCAGACAAT	GGACCTCCTT	AATATCATCA	GCCAGTTCCT	TTTGTTCTTT	1620
	AAGTCCTGTG	TCACCCCAGT	CCTCCTTTTC	TGTCTCTGCA	AACCCTTCAG	TCGGGCCTTC	1680
25	ATGGAGTGCT	GCTGCTGTTG	CTGTGAGGAA	TGCATTCAGA	AGTCTTCAAC	GGTGACCAGT	1740
	GATGACAATG	ACAACGAGTA	CACCACGGAA	CTCGAACTCT	CGCCTTTCAG	TACCATACGC	1800
	CGTGAAATGT	CCACTTTTGC	TTCTGTCGGA	ACTCATTGCT	GA		1842
	(93) INFORM	ATION FOR S	EQ ID NO:92	:			

5		(A) (B) (C) (D)	QUENC) LEI) TYI) STI) TOI	NGTH PE: 8 RANDI PCLO	: 61: amino EDNE: GY: 1	3 am o ac SS: not:	ino a id rele	acid vant	s							
	(x:	i) SI	EQUE	NCE 1	DESCI	RIPT	ION:	SEQ	ID I	NO : 9	2 :					
	Met 1	Arg	Ala	Pro	Gly 5	Ala	Leu	Leu	Ala	Arg 10	Met	Ser	Arg	Leu	Leu 15	Leu
10	Leu	Leu	Leu	Leu 20	Lys	Val	Ser	Ala	Ser 25	Ser	Ala	Leu	Gly	Val 30	Ala	Pro
	Ala	Ser	Arg 35	Asn	Glu	Thr	Cys	Leu 40	Gly	Glu	Ser	Cys	Ala 45	Pro	Thr	Val
15	Ile	Gln 50	Arg	Arg	Gly	Arg	Asp 55	Ala	Trp	Gly	Pro	Gly 60	Asn	Ser	Ala	Arg
	Asp 65	Val	Leu	Arg	Ala	Arg 70	Ala	Pro	Arg	Glu	Glu 75	Gln	Gly	Ala	Ala	Phe 80
	Leu	Ala	Gly	Pro	Ser 85	Trp	Asp	Leu	Pro	Ala 90	Ala	Pro	Gly	Arg	Asp 95	Pro
20	Ala	Ala	Gly	Arg 100	Gly	Ala	Glu	Ala	Ser 105	Ala	Ala	Gly	Pro	Pro 110	Gly	Pro
	Pro	Thr	Arg 115	Pro	Pro	Gly	Pro	Trp 120	Arg	Trp	Lys	Gly	Ala 125	Arg	Gly	Gln
25	Glu	Pro 130	Ser	Glu	Thr	Leu	Gly 135	Arg	Gly	Asn	Pro	Thr 140	Ala	Leu	Gln	Leu
	Phe 145	Leu	Gln	Ile	Ser	Glu 150	Glu	Glu	Glu	Lys	Gly 155	Pro	Arg	Gly		Gly 160
	Ile	Ser	Gly	Arg	Ser 165	Gln	Glu	Gln	Ser	Val 170	Lys	Thr	Val	Pro	Gly 175	Ala
30	Ser	Asp	Leu	Phe 180	Tyr	Trp	Pro	Arg	Arg 185	Ala	Gly	Lys	Leu	Gln 190	Gly	Ser
	His	His	Lys 195	Pro	Leu	Ser	Lys	Thr 200	Ala	Asn	Gly	Leu	Ala 205	Gly	His	Glu
35	Gly	Trp 210	Thr	Ile	Ala	Leu	Pro 215	Gly	Arg	Ala	Leu	Ala 220	Gln	Asn	Gly	Ser
	Leu 225	Gly	Glu	Gly	Ile	His 230	Glu	Pro	Gly	Gly	Pro 235	Arg	Arg	Gly	Asn	Ser 240

	Thi	c Asi	n Arg	g Arc	y Val 245		J Lei	ı Lys	s Asr	250		≘ Ту	r Pro	Let	1 Thi 25!	Gln
	Glı	ı Sei	туі	Gly 260	/ Ala	туг	Ala	ı Val	. Met 265		Lei	ı Sei	C Val	. Val		Phe
5	Gly	7 Thr	Gl _y 275	/ Ile	lle	Gly	' Asn	Let 280	Ala	val	. Met	Ser	1le 285		. Суз	His
	Asn	Туг 290	Tyr	Met	Arg	Ser	1le 295		Asn	Ser	Leu	Leu 300		Asn	Leu	Ala
10	Phe 305	Trp	Asp	Phe	Leu	Ile 310	Ile	Phe	Phe	Cys	Leu 315		Leu	Val	Ile	Phe 320
	His	Glu	Leu	Thr	Lys 325	Lys	Trp	Leu	Leu	Glu 330	Asp	Phe	Ser	Cys	Lys 335	Ile
	Val	Pro	Tyr	Ile 340	Glu	Val	Ala	Ser	Leu 345	Gly	Val	Thr	Thr	Phe 350	Thr	Leu
15	Cys	Ala	Leu 355	Cys	Ile	Asp	Arg	Phe 360	Arg	Ala	Ala	Thr	Asn 365	Val	Gln	Met
	Tyr	Tyr 370	Glu	Met	Ile	Glu	Asn 375	Cys	Ser	Ser	Thr	Thr 380	Ala	Lys	Leu	Ala
20	Val 385	Ile	Trp	Val	Gly	Ala 390	Leu	Leu	Leu	Ala	Leu 395	Pro	Glu	Val	Val	Leu 400
	Arg	Gln	Leu	Ser	Lys 405	Glu	Asp	Leu	Gly	Phe 410	Ser	Gly	Arg	Ala	Pro 415	Ala
	Glu	Arg	Cys	Ile 420	Ile	Lys	Ile	Ser	Pro 425	Asp	Leu	Pro	Asp	Thr 430	Ile	Tyr
25	Val	Leu	Ala 435	Leu	Thr	Tyr	Asp	Ser 440	Ala	Arg	Leu	Trp	Trp 445	Tyr	Phe	Gly
	Cys	Tyr 450	Phe	Cys	Leu	Pro	Thr 455	Leu	Phe	Thr	Ile	Thr 460	Cys	Ser	Leu	Val
30	Thr 465	Ala	Arg	Lys	Ile	Arg 470	Lys	Ala	Glu	Lys	Ala 475	Cys	Thr	Arg	Gly	Asn 480
	Lys	Arg	Gln		Gln 485	Leu	Glu	Ser		Met 490	Asn	Cys	Thr	Val	Val 495	Ala
	Leu	Thr	Ile	Leu 500	Tyr	Gly	Phe	Cys	Ile 505	Ile	Pro	Glu	Asn	Ile 510	Cys	Asn
35	Ile	Val	Thr 515	Ala	Tyr :	Met		Thr 520	Gly	Val	Ser	Gln	Gln 525	Thr	Met	Asp
	Leu	Leu	Asn	Ile	Ile.	Ser	Gln	Phe	Leu	Leu	Phe	Phe	Lys	Ser	Cys	Val

PCT/US99/23938

		530				535					540					
	Thr 545	Pro Val	Leu	Leu	Phe 550	Cys	Leu	Cys	Lys	Pro 555	Phe	Ser	Arg	Ala	Phe 560	
5	Met	Glu Cys		Cys 565	Cys	Cys	Cys	Glu	Glu 570	Cys	Ile	Gln	Lys	Ser 575	Ser	
	Thr	Val Thr	Ser . 580	Asp	Asp	Asn	Asp	Asn 585	Glu	Tyr	Thr	Thr	Glu 590	Leu	Glu	
	Leu	Ser Pro 595	Phe :	Ser	Thr	Ile	Arg 600	Arg	Glu	Met	Ser	Thr 605	Phe	Ala	Ser	
10		Gly Thr 610	His	Cys												
	(94) INFO	RMATION	FOR 2	SEQ	ID 1	10:93	3:									
15	(i)	SEQUENC (A) LEI (B) TYI (C) STI (D) TOI	NGTH: PE: n RANDE	34 ucle DNES	base ic a S: s	e pai cid singl	irs			٠						
	(ii	.) MOLEC	JLE T	YPE:	DNA	ı (ge	enomi	.c)								
	(xi	.) SEQUEI	NCE D	ESCR	IPTI	ON:	SEQ	ID N	10:93) :						
20	CAGAATTCA	G AGAAA	AAAAG	TGA	LATA	GGT	TTTT	,								34
	(95) INFO	RMATION	FOR :	SEQ	ID N	I O : 94	ŀ:			٠						
25	(i)	SEQUENC (A) LEI (B) TYI (C) STI (D) TOI	NGTH: PE: ni RANDEI	32 ucle DNES	base ic a S: s	e pai cid singl	rs									
	(ii	.) MOLECI	JLE T	YPE:	DNA	ı (ge	nomi	.c)								
	(x	i) SEQUI	ENCE 1	DESC	RIPI	: NOI	SEÇ	D	NO: 9	4:						
	TTGGATCCC	T GGTGC	ATAAC	AAT	TGA	AGA	АТ									32
30	(96) INFO	RMATION	FOR a	SEQ	ID N	10:95	5:									
35	(i)	SEQUENC (A) LEI (B) TYI (C) STI	NGTH: PE: n RANDE	124 ucle DNES	8 ba ic a S: s	se p cid singl	pairs	1								
ر ر	(ii	(D) TO					enomi	.c)							-	
	,	.,						,								

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:95:

	ATGGTTTTTG	CTCACAGAAT	GGATAACAGC	AAGCCACATT	TGATTATTCC	TACACTTCTG	60
	GTGCCCCTCC	AAAACCGCAG	CTGCACTGAA	ACAGCCACAC	CTCTGCCAAG	CCAATACCTG	120
	ATGGAATTAA	GTGAGGAGCA	CAGTTGGATG	AGCAACCAAA	CAGACCTTCA	CTATGTGCTG	180
5	AAACCCGGGG	AAGTGGCCAC	AGCCAGCATC	TTCTTTGGGA	TTCTGTGGTT	GTTTTCTATC	240
	TTCGGCAATT	CCCTGGTTTG	TTTGGTCATC	CATAGGAGTA	GGAGGACTCA	GTCTACCACC	300
	AACTACTTTG	TGGTCTCCAT	GGCATGTGCT	GACCTTCTCA	TCAGCGTTGC	CAGCACGCCT	360
	TTCGTCCTGC	TCCAGTTCAC	CACTGGAAGG	TGGACGCTGG	GTAGTGCAAC	GTGCAAGGTT	420
	GTGCGATATT	TTCAATATCT	CACTCCAGGT	GTCCAGATCT	ACGTTCTCCT	CTCCATCTGC	480
10	ATAGACCGGT	TCTACACCAT	CGTCTATCCT	CTGAGCTTCA	AGGTGTCCAG	AGAAAAAGCC	540
	AAGAAAATGA	TTGCGGCATC	GTGGATCTTT	GATGCAGGCT	TTGTGACCCC	TGTGCTCTTT	600
	TTCTATGGCT	CCAACTGGGA	CAGTCATTGT	AACTATTTCC	TCCCCTCCTC	TTGGGAAGGC	660
	ACTGCCTACA	CTGTCATCCA	CTTCTTGGTG	GGCTTTGTGA	TTCCATCTGT	CCTCATAATT	720
	TTATTTTACC	AAAAGGTCAT	AAAATATATT	TGGAGAATAG	GCACAGATGG	CCGAACGGTG	780
15	AGGAGGACAA	TGAACATTGT	CCCTCGGACA	AAAGTGAAAA	CTATCAAGAT	GTTCCTCATT	840
	TTAAATCTGT	TGTTTTTGCT	CTCCTGGCTG	CCTTTTCATG	TAGCTCAGCT	ATGGCACCCC	900
	CATGAACAAG	ACTATAAGAA	AAGTTCCCTT	GTTTTCACAG	CTATCACATG	GATATCCTTT	960
	AGTTCTTCAG	CCTCTAAACC	TACTCTGTAT	TCAATTTATA	ATGCCAATTT	TCGGAGAGGG	1020
	ATGAAAGAGA	CTTTTTGCAT	GTCCTCTATG	AAATGTTACC	GAAGCAATGC	CTATACTATC	1080
20	ACAACAAGTT	CAAGGATGGC	СААААААААС	TACGTTGGCA	TTTCAGAAAT	CCCTTCCATG	1140
	GCCAAAACTA	TTACCAAAGA	CTCGATCTAT	GACTCATTTG	ACAGAGAAGC	CAAGGAAAA	1200
	AAGCTTGCTT	GGCCCATTAA	CTCAAATCCA	CCAAATACTT	TTGTCTAA		1248

(97) INFORMATION FOR SEQ ID NO:96:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 415 amino acids

- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein
- 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:96:

	Met 1	Val	Phe	Ala	His 5	Arg	Met	Asp	Asn	Ser 10	Lys	Pro	His	Leu	Ile 15	Ile
	Pro	Thr	Leu	Leu 20	Val	Pro	Leu	Gln	Asn 25	Arg	Ser	Cys	Thr	Glu 30	Thr	Ala
5	Thr	Pro	Leu 35	Pro	Ser	Gln	Tyr	Leu 40	Met	Glu	Leu	Ser	Glu 45	Glu	His	Ser
	Trp	Met 50	Ser	Asn	Gln	Thr	Asp 55	Leu	His	Tyr	Val	Leu 60	Lys	Pro	Gly	Glu
10	Val 65	Ala	Thr	Ala	Ser	Ile 70	Phe	Phe	Gly	Ile	Leu 75	Trp	Leu	Phe	Ser	Ile 80
	Phe	Gly	Asn	Ser	Leu 85	Val	Cys	Leu	Val	Ile 90	His	Arg	Ser	Arg	Arg 95	Thr
	Gln	Ser	Thr	Thr 100	Asn	Tyr	Phe	Val	Val 105	Ser	Met	Ala	Cys	Ala 110	Asp	Leu
15	Leu	Ile	Ser 115	Val	Ala	Ser	Thr	Pro 120	Phe	Val	Leu	Leu	Gln 125	Phe	Thr	Thr
	Gly	Arg 130	Trp	Thr	Leu	Gly	Ser 135	Ala	Thr	Cys	Lys	Val 140	Val	Arg	Tyr	Phe
20	Gln 145	Tyr	Leu	Thr	Pro	Gly 150	Val	Gln	Ile	Tyr	Val 155	Leu	Leu	Ser	Ile	Cys 160
	Ile	Asp	Arg	Phe	Tyr 165	Thr	Ile	Val	Tyr	Pro 170	Leu	Ser	Phe	Lys	Val 175	Ser
	Arg	Glu	Lys	Ala 180	Lys	Lys	Met	Ile	Ala 185	Ala	Ser	Trp	Ile	Phe 190	Asp	Ala
25	Gly	Phe	Val 195	Thr	Pro	Val	Leu	Phe 200	Phe	Tyr	Gly	Ser	Asn 205	Trp	Asp	Ser
	His	Cys 210	Asn	Tyr	Phe	Leu	Pro 215	Ser	Ser	Trp	Glu	Gly 220	Thr	Ala	Tyr	Thr
30	Val 225	Ile	His	Phe	Leu	Val 230	Gly	Phe	Val	Ile	Pro 235	Ser	Val	Leu	Ile	Ile 240
	Leu	Phe	Tyr	Gln	Lys 245	Val	Ile	Lys	Tyr	Ile 250	Trp	Arg	Ile	Gly	Thr 255	Asp
	Gly	Arg	Thr	Val 260	Arg	Arg	Thr	Met	Asn 265	Ile	Val	Pro	Arg	Thr 270	Lys	Val
35	Lys	Thr	Ile 275	Lys	Met	Phe	Leu	Ile 280	Leu	Asn	Leu	Leu	Phe	Leu	Leu	Ser

WO 00/22129 PCT/US99/23938

		Trp	Leu 290	Pro	Phe	His	Val	Ala 295	Gln	Leu	Trp	His	Pro 300	His	Glu	Gln	Asp
		Tyr 305	Lys	Lys	Ser	Ser	Leu 310	Val	Phe	Thr	Ala	Ile C15	Thr	Trp	Ile	Ser	Phe 320
5		Ser	Ser	Ser	Ala	Ser 325	Lys	Pro	Thr	Leu	Tyr 330	Ser	Ile	Tyr	Asn	Ala 335	Asn
		Phe	Arg	Arg	Gly 340	Met	Lys	Glu	Thr	Phe 345	Cys	Met	Ser	Ser	Met 350	Lys	Cys
10		Tyr	Arg	Ser 355	Asn	Ala	Tyr	Thr	Ile 360	Thr	Thr	Ser	Ser	Arg 365	Met	Ala	Lys
		Lys	Asn 370	Tyr	Val	Gly	Ile	Ser 375	Glu	Ile	Pro	Ser	Met 380	Ala	Lys	Thr	Ile
		Thr 385	Lys	Asp	Ser	Ile	Tyr 390	qaA	Ser	Phe	Asp	Arg 395	Glu	Ala	Lys	Glu	Lys 400
15		Lys	Leu	Ala	Trp	Pro 405	Ile	Asn	Ser	Asn	Pro 410	Pro	Asn	Thr	Phe	Val 415	
	(98)	INFO	RMAI	CION	FOR	SEQ	ID N	10:97	:								
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 																
		(ii) MO	LECU	LE T	YPE:	DNA	(ge	nomi	c)							
		(x	i) S	EQUE	NCE	DESC	RIPT	'ION :	SEQ	ID :	NO:9	7:					
25	GGAAZ	GCTT.	A AC	GATC	CCCA	GGA	GCAA	CAT									30
	(99)	INFO	RMAT	ION	FOR	SEQ	ID N	0:98	:								
30		(i)	SEQ (A) (B) (C)	LEN TYP	GTH: E: n: ANDE	31 l ucle: DNES	base ic a S: s	ingl	rs								
		(ii) MO	LECU.	LE T	YPE:	DNA	(ge	nomi	=)							
		(xi)	SE	QUEN	CE DI	ESCR	IPTI	ON:	SEQ :	ID NO	D: 98 :	:					
	CTGGG	ATCC	r ac	GAGA	GCAT	TTT	CAC	ACA (3								31
35	(100)	INFO	ORMA:	rion	FOR	SEQ	ID 1	NO : 99) :								
		(i)	SEQU	JENCI	E CHA	ARACT	reri:	STICS	S:								

(A) LENGTH: 1842 base pairs(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

5 (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:99:

	ATGGGGCCCA	CCCTAGCGGT	TCCCACCCCC	TATGGCTGTA	TTGGCTGTAA	GCTACCCCAG	60
	CCAGAATACC	CACCGGCTCT	AATCATCTTT	ATGTTCTGCG	CGATGGTTAT	CACCATCGTT	120
	GTAGACCTAA	TCGGCAACTC	CATGGTCATT	TTGGCTGTGA	CGAAGAACAA	GAAGCTCCGG	180
10	AATTCTGGCA	ACATCTTCGT	GGTCAGTCTC	TCTGTGGCCG	ATATGCTGGT	GGCCATCTAC	240
	CCATACCCTT	TGATGCTGCA	TGCCATGTCC	ATTGGGGGCT	GGGATCTGAG	CCAGTTACAG	300
	TGCCAGATGG	TCGGGTTCAT	CACAGGGCTG	AGTGTGGTCG	GCTCCATCTT	CAACATCGTG	360
	GCAATCGCTA	TCAACCGTTA	CTGCTACATC	TGCCACAGCC	TCCAGTACGA	ACGGATCTTC	420
	AGTGTGCGCA	ATACCTGCAT	CTACCTGGTC	ATCACCTGGA	TCATGACCGT	CCTGGCTGTC	480
15	CTGCCCAACA	TGTACATTGG	CACCATCGAG	TACGATCCTC	GCACCTACAC	CTGCATCTTC	540
	AACTATCTGA	ACAACCCTGT	CTTCACTGTT	ACCATCGTCT	GCATCCACTT	CGTCCTCCCT	600
	CTCCTCATCG	TGGGTTTCTG	CTACGTGAGG	ATCTGGACCA	AAGTGCTGGC	GGCCCGTGAC	660
	CCTGCAGGGC	AGAATCCTGA	CAACCAACTT	GCTGAGGTTC	GCAATTTTCT	AACCATGTTT	720
	GTGATCTTCC	TCCTCTTTGC	AGTGTGCTGG	TGCCCTATCA	ACGTGCTCAC	TGTCTTGGTG	780
20	GCTGTCAGTC	CGAAGGAGAT	GGCAGGCAAG	ATCCCCAACT	GGCTTTATCT	TGCAGCCTAC	840
	TTCATAGCCT	ACTTCAACAG	CTGCCTCAAC	GCTGTGATCT	ACGGGCTCCT	CAATGAGAAT	900
	TTCCGAAGAG	AATACTGGAC	CATCTTCCAT	GCTATGCGGC	ACCCTATCAT	ATTCTTCCCT	960
	GGCCTCATCA	GTGATATTCG	TGAGATGCAG	GAGGCCCGTA	CCCTGGCCCG	CGCCCGTGCC	1020
	CATGCTCGCG	ACCAAGCTCG	TGAACAAGAC	CGTGCCCATG	CCTGTCCTGC	TGTGGAGGAA	1080
25	ACCCCGATGA	ATGTCCGGAA	TGTTCCATTA	CCTGGTGATG	CTGCAGCTGG	CCACCCCGAC	1140
	CGTGCCTCTG	GCCACCCTAA	GCCCCATTCC	AGATCCTCCT	CTGCCTATCG	CAAATCTGCC	1200
	TCTACCCACC	ACAAGTCTGT	CTTTAGCCAC	TCCAAGGCTG	CCTCTGGTCA	CCTCAAGCCT	1260
	GTCTCTGGCC	ACTCCAAGCC	TGCCTCTGGT	CACCCCAAGT	CTGCCACTGT	CTACCCTAAG	1320
	CCTGCCTCTG	TCCATTTCAA	GGGTGACTCT	GTCCATTTCA	AGGGTGACTC	TGTCCATTTC	1380

	AAGCCTGACT CTGTTCATTT CAAGCCTGCT TCCAGCAACC CCAAGCCCAT CACTGGCCAC	1440
	CATGTCTCTG CTGGCAGCCA CTCCAAGTCT GCCTTCAGTG CTGCCACCAG CCACCCTAAA	1500
	CCCATCAAGC CAGCTACCAG CCATGCTGAG CCCACCACTG CTGACTATCC CAAGCCTGCC	1560
	ACTACCAGCC ACCCTAAGCC CGCTGCTGCT GACAACCCTG AGCTCTCTGC CTCCCATTGC	1620
5	CCCGAGATCC CTGCCATTGC CCACCCTGTG TCTGACGACA GTGACCTCCC TGAGTCGGCC	1680
	TCTAGCCCTG CCGCTGGGCC CACCAAGCCT GCTGCCAGCC AGCTGGAGTC TGACACCATC	1740
	GCTGACCTTC CTGACCCTAC TGTAGTCACT ACCAGTACCA ATGATTACCA TGATGTCGTG	1800
	GTTGTTGATG TTGAAGATGA TCCTGATGAA ATGGCTGTGT GA	1842
	(101) INFORMATION FOR SEQ ID NO:100:	
10	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 613 amino acids(B) TYPE: amino acid	
	(C) STRANDEDNESS: (D) TOPOLOGY: not relevant	
15	(ii) MOLECULE TYPE: protein	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:100:	
	Met Gly Pro Thr Leu Ala Val Pro Thr Pro Tyr Gly Cys Ile Gly Cys 1 5 10 15	3
20	Lys Leu Pro Gln Pro Glu Tyr Pro Pro Ala Leu Ile Ile Phe Met Ph 20 25 30)
	Cys Ala Met Val Ile Thr Ile Val Val Asp Leu Ile Gly Asn Ser Me 35 40 45	Ξ.
	Val Ile Leu Ala Val Thr Lys Asn Lys Lys Leu Arg Asn Ser Gly Ass 50 55 60	1
25	Ile Phe Val Val Ser Leu Ser Val Ala Asp Met Leu Val Ala Ile Ty: 65 70 75 80	£
	Pro Tyr Pro Leu Met Leu His Ala Met Ser Ile Gly Gly Trp Asp Lei 85 90 95	1
30	Ser Gln Leu Gln Cys Gln Met Val Gly Phe Ile Thr Gly Leu Ser Va 100 105 110	L
	Val Gly Ser Ile Phe Asn Ile Val Ala Ile Ala Ile Asn Arg Tyr Cy 115 120 125	3
	Tyr Ile Cys His Ser Leu Gln Tyr Glu Arg Ile Phe Ser Val Arg As:	נ

135

140

	Thr 145	Cys	Ile	Tyr	Leu	Val 150	Ile	Thr	Trp	Ile	Met 155	Thr	Val	Leu	Ala	Val 160
	Leu	Pro	Asn	Met	Туг 165	Ile	Gly	Thr	Ile	Glu 170	Tyr	Asp	Pro	Arg	Thr 175	Tyr
5	Thr	Cys	Ile	Phe 180	Asn	Tyr	Leu	Asn	Asn 185	Pro	Val	Phe	Thr	Val 190	Thr	Ile
	Val	Cys	Ile 195	His	Phe	Val	Leu	Pro 200	Leu	Leu	Ile	Val	Gly 205	Phe	Cys	Tyr
10	Val	Arg 210	Ile	Trp	Thr	Lys	Val 215	Leu	Ala	Ala	Arg	Asp 220	Pro	Ala	Gly	Gln
	Asn 225	Pro	Asp	Asn	Gln	Leu 230	Ala	Glu	Val	Arg	Asn 235	Phe	Leu	Thr	Met	Phe 240
	Val	Ile	Phe	Leu	Leu 245	Phe	Ala	Val	Cys	Trp 250	Cys	Pro	Ile	Asn	Val 255	Leu
15	Thr	Val	Leu	Val 260	Ala	Val	Ser	Pro	Lys 265	Glu	Met	Ala	Gly	Lys 270	Ile	Pro
	Asn	Trp	Leu 275	Tyr	Leu	Ala	Ala	Tyr 280	Phe	Ile	Ala	Tyr	Phe 285	Asn	Ser	Cys
20	Leu	Asn 290	Ala	Val	Ile	Tyr	Gly 295	Leu	Leu	Asn	Glu	Asn 300	Phe	Arg	Arg	Glu
	Tyr 305	Trp	Thr	Ile	Phe	His 310	Ala	Met	Arg	His	Pro 315	Ile	Ile	Phe	Phe	Pro 320
	Gly	Leu	Ile	Ser	Asp 325	Ile	Arg	Glu	Met	Gln 330	Glu	Ala	Arg	Thr	Leu 335	Ala
25	Arg	Ala	Arg	Ala 340	His	Ala	Arg	Asp	Gln 345	Ala	Arg	Glu	Gln	Asp 350	Arg	Ala
	His	Ala	Cys 355	Pro	Ala	Val	Glu	Glu 360	Thr	Pro	Met	Asn	Val 365	Arg	Asn	Val
30	Pro	Leu 370	Pro	Gly	Asp	Ala	Ala 375	Ala	Gly	His	Pro	Asp 380	Arg	Ala	Ser	Gly
	His 385	Pro	Lys	Pro	His	Ser 390	Arg	Ser	Ser	Ser	Ala 395	Tyr	Arg	Lys	Ser	Ala 400
	Ser	Thr	His	His	Lys 405	Ser	Val	Phe	Ser	His 410	Ser	Lys	Ala	Ala	Ser 415	Gly
35	His	Leu	Lys	Pro 420	Val	Ser	Gly	His	Ser 425	Lys	Pro	Ala	Ser	Gly 430	His	Pro
	Lys	Ser	Ala	Thr	Val	Tyr	Pro	Lys	Pro	Ala	Ser	Val	His	Phe	Lys	Gly

				435					440					445	•		
		Asp	Ser 450	Val	His	Phe	Lys	Gly 455		Ser	Val	His	Phe 460		Pro	Asp	Ser
5		Val 465	His	Phe	Lys	Pro	Ala 470	Ser	Ser	Asn	Pro	Lys 475	Pro	Ile	Thr	Gly	His 480
		His	Val	Ser	Ala	Gly 485	Ser	His	Ser	Lys	Ser 490	Ala	Phe	Ser	Ala	Ala 495	Thr
		Ser	His	Pro	Lys 500	Pro	Ile	Lys	Pro	Ala 505	Thr	Ser	His	Ala	Glu 510	Pro	Thr
10		Thr	Ala	Asp 515	Tyr	Pro	Lys	Pro	Ala 520	Thr	Thr	Ser	His	Pro 525	Lys	Pro	Ala
		Ala	Ala 530	Asp	Asn	Pro	Glu	Leu 535	Ser	Ala	Ser	His	Cys 540	Pro	Glu	Ile	Pro
15		Ala 545	Ile	Ala	His	Pro	Val 550	Ser	Asp	Asp	Ser	Asp 555	Leu	Pro	Glu	Ser	Ala 560
		Ser	Ser	Pro	Ala	Ala 565	Gly	Pro	Thr	Lys	Pro 570	Ala	Ala	Ser	Gln	Leu 575	Glu
		Ser	Asp	Thr	Ile 580	Ala	Asp	Leu	Pro	Asp 585	Pro	Thr	Val	Val	Thr 590	Thr	Ser
20		Thr	Asn	Asp 595	Tyr	His	Asp	Val	Val 600	Val	Val	Asp	Val	Glu 605	Asp	Asp	Pro
		Asp	Glu 610	Met	Ala	Val											
	(102)	INF	ORMA	MOIT	FOR	SEQ	ID	NO:1	.01:								
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 																
30		(ii) MOLECULE TYPE: DNA (genomic)															
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:101:																
	TCCAA	•															32
																	32
35		(103) INFORMATION FOR SEQ ID NO:102: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single															

(D) TOPOLOGY: linear

	(ii)	MOLECULE I	YPE: DNA (c	genomic)			
	(xi)	SEQUENCE D	ESCRIPTION:	SEQ ID NO	:102:		
	CGTGAATTCC	AAGAATTTAC	AATCCTTGCT	?			30
5	(104) INFO	RMATION FOR	SEQ ID NO:	103:			
10	(ii)	SEQUENCE CH (A) LENGTH: (B) TYPE: n (C) STRANDE (D) TOPOLOG MOLECULE T	1548 base ucleic acid DNESS: sing Y: linear YPE: DNA (g	pairs le enomic)			
		SEQUENCE D					
						CGCGTCCGGC	
	GCCGAGGCTG	CGGGTGTGAA	CCGCAGCGCG	CTCGGGGAGT	TCGGCGAGGC	GCAGCTGTAC	120
15	CGCCAGTTCA	CCACCACCGT	GCAGGTCGTC	ATCTTCATAG	GCTCGCTGCT	CGGAAACTTC	180
	ATGGTGTTAT	GGTCAACTTG	CCGCACAACC	GTGTTCAAAT	CTGTCACCAA	CAGGTTCATT	240
	AAAAACCTGG	CCTGCTCGGG	GATTTGTGCC	AGCCTGGTCT	GTGTGCCCTT	CGACATCATC	300
	CTCAGCACCA	GTCCTCACTG	TTGCTGGTGG	ATCTACACCA	TGCTCTTCTG	CAAGGTCGTC	360
	AAATTTTTGC	ACAAAGTATT	CTGCTCTGTG	ACCATCCTCA	GCTTCCCTGC	TATTGCTTTG	420
20	GACAGGTACT	ACTCAGTCCT	CTATCCACTG	GAGAGGAAAA	TATCTGATGC	CAAGTCCCGT	480
	GAACTGGTGA	TGTACATCTG	GGCCCATGCA	GTGGTGGCCA	GTGTCCCTGT	GTTTGCAGTA	540
	ACCAATGTGG	CTGACATCTA	TGCCACGTCC	ACCTGCACGG	AAGTCTGGAG	CAACTCCTTG	600
	GGCCACCTGG	TGTACGTTCT	GGTGTATAAC	ATCACCACGG	TCATTGTGCC	TGTGGTGGTG	660
	GTGTTCCTCT	TCTTGATACT	GATCCGACGG	GCCCTGAGTG	CCAGCCAGAA	GAAGAAGGTC	720
25	ATCATAGCAG	CGCTCCGGAC	CCCACAGAAC	ACCATCTCTA	TTCCCTATGC	CTCCCAGCGG	780
	GAGGCCGAGC	TGCACGCCAC	CCTGCTCTCC	ATGGTGATGG	TCTTCATCTT	GTGTAGCGTG	840
	CCCTATGCCA	CCCTGGTCGT	CTACCAGACT	GTGCTCAATG	TCCCTGACAC	TTCCGTCTTC	900
	TTGCTGCTCA	CTGCTGTTTG	GCTGCCCAAA	GTCTCCCTGC	TGGCAAACCC	TGTTCTCTTT	960
	CTTACTGTGA	ACAAATCTGT	CCGCAAGTGC	TTGATAGGGA	CCCTGGTGCA	ACTACACCAC	1020
30	CGGTACAGTC	GCCGTAATGT	GGTCAGTACA	GGGAGTGGCA	TGGCTGAGGC	CAGCCTGGAA	1080

	CCCAGCATAC	GCTCC	GGTAG	CCAGC'	rccT(GAC	SATGI	TCC	ACA:	rtgg	GCA (GCAG	CAGAT	rc	1140
	TTTAAGCCCA	CAGAC	GATGA	GGAAG	AGAGI	GAC	GCCF	AGT	ACA	rtgg	CTC 2	AGCTO	SACTI	rc	1200
	CAGGCCAAGG	AGATA	ATTTAG	CACCTO	GCCTC	GAC	GGAG	AGC	AGGC	GCC	ACA (STTTC	GCGCC	CC	1260
	TCTGCCCCAC	CCCTG	GAGCAC	AGTGG!	ACTCI	GTA	ATCCC	AGG	TGGC	CACCO	GC A	AGCCC	CTGI	G:	1320
5	GAACCTGAAA	CATTO	CCTGA	TAAGTA	ATTCC	CTG	CAGT	TTG	GCTT	TGGG	SCC 1	TTTG	SAGTI	G :	1380
	CCTCCTCAGT	GGCTC	TCAGA	GACCCC	SAAAC	AGC	AAGA	AGC	GGCI	GCTI	CC C	CCCI	TGGG	ic :	1440
	AACACCCCAG	AAGAG	CTGAT	CCAGAC	CAAAG	GTG	CCCA	AGG	TAGG	CAGG	GT G	GAGC	GGAA	.G :	1500
	ATGAGCAGAA	ACAAT	'AAAGT	GAGCAT	TTTT	CCA	AAGG	TGG	ATTC	CTAG	i			=	1548
	(105) INF	ORMATI	ON FO	R SEQ I	D NO	:104	:								
10				ARACTER 515 am			s								
		(B) TY (C) ST		mino ac ONESS:	id										
		(D) TO	POLOG	Y: not	rele	vant									
15	(ii)	MOLEC	ULE TY	YPE: pr	otei	n									
				ESCRIPT											
	Met G] 1	ly His	Asn (Sly Ser	Trp	Ile	Ser	Pro 10	Asn	Ala	Ser	Glu	Pro 15	His	•
20	Asn Al	la Ser	Gly A	Ala Glu	Ala	Ala	Gly 25	Val	Asn	Arg	Ser	Ala 30	Leu	Gly	•
	Glu Ph	ne Gly 35	Glu A	ala Gln	Leu	Tyr 40	Arg	Gln	Phe	Thr	Thr 45	Thr	Val	Gln	
	Val Va 50		Phe I	le Gly	Ser 55	Leu	Leu	Gly	Asn	Phe 60	Met	Val	Leu	Trp	1
25	Ser Th	ır Cys	Arg T	hr Thr 70	Val	Phe	Lys	Ser	Val 75	Thr	Asn	Arg	Phe	Ile 80	
	Lys As	n Leu		ys Ser 5	Gly	Ile	Cys	Ala 90	Ser	Leu	Val	Cys	Val 95	Pro	
30	Phe As	p Ile	Ile L	eu Ser	Thr	Ser	Pro 105	His	Cys	Cys	Trp	Trp 110	Ile	Tyr	
	Thr Me	t Leu 115	Phe C	ys Lys	Val	Val 120	Lys	Phe	Leu	His	Lys 125	Val	Phe	Cys	
	Ser Va 13		Ile L	eu Ser	Phe 135	Pro	Ala	Ile	Ala	Leu 140	Asp	Arg	Tyr	Tyr	

WO 00/22129

	145	vai	Leu	ıyı	PIO	150	GIU	Arg	цуѕ	TIE	155	Asp	Ата	ьуs	Ser	160
	Glu	Leu	Val	Met	Tyr 165	Ile	Trp	Ala	His	Ala 170	Val	Val	Ala	Ser	Val 175	Pro
5	Val	Phe	Ala	Val 180	Thr	Asn	Val	Ala	Asp 185	Ile	Tyr	Ala	Thr	Ser 190	Thr	Cys
	Thr	Glu	Val 195	Trp	Ser	Asn	Ser	Leu 200	Gly	His	Leu	Val	Tyr 205	Val	Leu	Val
10	Tyr	Asn 210	Ile	Thr	Thr	Val	Ile 215	Val	Pro	Val	Val	Val 220	Val	Phe	Leu	Phe
	Leu 225	Ile	Leu	Ile	Arg	Arg 230	Ala	Leu	Ser	Ala	Ser 235	Glņ	Lys	Lys	Lys	Val 240
	Ile	Ile	Ala	Ala	Leu 245	Arg	Thr	Pro	Gln	Asn 250	Thr	Ile	Ser	Ile	Pro 255	Tyr
15	Ala	Ser	Gln	Arg 260	Glu	Ala	Glu	Leu	His 265	Ala	Thr	Leu	Leu	Ser 270	Met	Val
	Met	Val	Phe 275	Ile	Leu	Cys	Ser	Val 280	Pro	Tyr	Ala	Thr	Leu 285	Val	Val	Tyr
20	Gln	Thr 290	Val	Leu	Asn	Val	Pro 295	Asp	Thr	Ser	Val	Phe 300	Leu	Leu	Leu	Thr
	Ala 305	Val	Trp	Leu	Pro	Lys 310	Val	Ser	Leu	Leu	Ala 315	Asn	Pro	Val	Leu	Phe 320
	Leu	Thr	Val	Asn	Lys 325	Ser	Val	Arg	Lys	Cys 330	Leu	Ile	Gly	Thr	Leu 335	Val
25	Gln	Leu	His	His 340	Arg	Tyr	Ser	Arg	Arg 345	Asn	Val	Val	Ser	Thr 350	Gly	Ser
	Gly	Met	Ala 355	Glu	Ala	Ser	Leu	Glu 360	Pro	Ser	Ile	Arg	Ser 365	Gly	Ser	Gln
30	Leu	Leu 370	Glu	Met	Phe	His	Ile 375	Gly	Gln	Gln	Gln	Ile 380	Phe	Lys	Pro	Thr
	Glu 385	Asp	Glu	Glu	Glu	Ser 390	Glu	Ala	Lys	Tyr	Ile 395	Gly	Ser	Ala	Asp	Phe 400
	Gln	Ala	Lys	Glu	Ile 405	Phe	Ser	Thr	Cys	Leu 410	Glu	Gly	Glu	Gln	Gly 415	Pro
35	Gln	Phe	Ala	Pro 420	Ser	Ala	Pro	Pro	Leu 425	Ser	Thr	Val	Asp	Ser 430	Val	Ser
	Gln	Val	Ala	Pro	Ala	Ala	Pro	Val	Glu	Pro	Glu	Thr	Phe	Pro	Asp	Lys

			435					440					445				
	Туr	Ser 450	Leu	Gln	Phe	Gly	Phe 455	Gly	Pro	Phe	Glu	Leu 460	Pro	Pro	Gln	Trp	
5	Leu 465	Ser	Glu	Thr	Arg	Asn 470	Ser	Lys	Lys	Arg	Leu 475	Leu	Pro	Pro	Leu	Gly 480	
	Asn	Thr	Pro	Glu	Glu 485	Leu	Ile	Gln	Thr	Lys 490	Val	Pro	Lys	Val	Gly 495	Arg	
	Val	Glu	Arg	Lys 500	Met	Ser	Arg	Asn	Asn 505	Lys	Val	Ser	Ile	Phe 510	Pro	Lys	
10	Val	Asp	Ser 515														
	(106) IN	FORM	OITA	FOF	R SEÇ	O ID	NO:1	.05:									
15	(i	(B) (C)	LEN TYP STF	NGTH: PE: r RANDE	: 29 nucle EDNES	CTERI base eic a SS: s	e pai cid ingl	.rs									
	(i:	i) MC	LECU	JLE I	YPE:	DNA	(ge	nomi	.c)								
	(x:	i) SE	QUEN	ICE I	ESCF	RIPTI	ON:	SEQ	ID N	10:10)5:						
20	GGAGAATTO	CA CI	`AGGC	GAGG	G CGC	TCCA	TC										29
	(107) IN							06:									~ .
25 -	(i)	(B)	LEN TYP STR	IGTH: PE: n RANDE	30 ucle	base ic a S: s	pai cid ingl	rs									
	(i:	i) MC	LECU	LE I	YPE:	DNA	. (ge	nomi	c)								
	(x:	i) SE	QUEN	ICE D	ESCR	IPTI	ON:	SEQ	ID N	0:10	6:						
	GGAGGATC	CA GG	AAAC	CTTA	GGC	CGAG	TCC									:	3 (
30	(108) INI	FORMA	TION	FOR	SEQ	ID	NO:1	07:									
35		(B) (C) (D)	LEN TYP STR TOP	IGTH: PE: n PANDE POLOG	116 ucle DNES	4 ba ic a S: s inea	se p cid ingl r	airs e									
	(11	L) MO	ישבירט	LL I	ipe:	DIVA	ıge	110111	C)								

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:107:

	ATGAATCGGC	ACCATCTGCA	GGATCACTTT	CTGGAAATAG	ACAAGAAGAA	CTGCTGTGTG	60
	TTCCGAGATG	ACTTCATTGC	CAAGGTGTTG	CCGCCGGTGT	TGGGGCTGGA	GTTTATCTTT	120
	GGGCTTCTGG	GCAATGGCCT	TGCCCTGTGG	ATTTTCTGTT	TCCACCTCAA	GTCCTGGAAA	180
5	TCCAGCCGGA	TTTTCCTGTT	CAACCTGGCA	GTAGCTGACT	TTCTACTGAT	CATCTGCCTG	240
	CCGTTCGTGA	TGGACTACTA	TGTGCGGCGT	TCAGACTGGA	ACTTTGGGGA	CATCCCTTGC	300
	CGGCTGGTGC	TCTTCATGTT	TGCCATGAAC	CGCCAGGGCA	GCATCATCTT	CCTCACGGTG	360
	GTGGCGGTAG	ACAGGTATTT	CCGGGTGGTC	CATCCCCACC	ACGCCCTGAA	CAAGATCTCC	420
	AATTGGACAG	CAGCCATCAT	CTCTTGCCTT	CTGTGGGGCA	TCACTGTTGG	CCTAACAGTC	480
10	CACCTCCTGA	AGAAGAAGTT	GCTGATCCAG	AATGGCCCTG	CAAATGTGTG	CATCAGCTTC	540
	AGCATCTGCC	ATACCTTCCG	GTGGCACGAA	GCTATGTTCC	TCCTGGAGTT	CCTCCTGCCC	600
	CTGGGCATCA	TCCTGTTCTG	CTCAGCCAGA	ATTATCTGGA	GCCTGCGGCA	GAGACAAATG	660
	GACCGGCATG	CCAAGATCAA	GAGAGCCATC	ACCTTCATCA	TGGTGGTGGC	CATCGTCTTT	720
	GTCATCTGCT	TCCTTCCCAG	CGTGGTTGTG	CGGATCCGCA	TCTTCTGGCT	CCTGCACACT	780
15	TCGGGCACGC	AGAATTGTGA	AGTGTACCGC	TCGGTGGACC	TGGCGTTCTT	TATCACTCTC	840
	AGCTTCACCT	ACATGAACAG	CATGCTGGAC	CCCGTGGTGT	ACTACTTCTC	CAGCCCATCC	900
	TTTCCCAACT	TCTTCTCCAC	TTTGATCAAC	CGCTGCCTCC	AGAGGAAGAT	GACAGGTGAG	960
	CCAGATAATA	ACCGCAGCAC	GAGCGTCGAG	CTCACAGGGG	ACCCCAACAA	AACCAGAGGC	1020
	GCTCCAGAGG	CGTTAATGGC	CAACTCCGGT	GAGCCATGGA	GCCCCTCTTA	TCTGGGCCCA	1080
20	ACCTCAAATA	ACCATTCCAA	GAAGGGACAT	TGTCACCAAG	AACCAGCATC	TCTGGAGAAA	1140
	CAGTTGGGCT	GTTGCATCGA	GTAA				1164

(109) INFORMATION FOR SEQ ID NO:108:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 387 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:108:
- 30 Met Asn Arg His His Leu Gln Asp His Phe Leu Glu Ile Asp Lys Lys

	1				5					10					15	
	Asn	Cys	Cys	Val 20	Phe	Arg	Asp	Asp	Phe 25	: Ile	Ala	Lys	Val	Leu 30	Pro	Pro
5	Val	Leu	Gly 35	Leu	Glu	Phe	Ile	Phe 40	Gly	Leu	Leu	Gly	Asn 45	Gly	Leu	Ala
	Leu	Trp 50	Ile	Phe	Cys	Phe	His 55	Leu	Lys	Ser	Trp	Lys 60	Ser	Ser	Arg	Ile
	Phe 65	Leu	Phe	Asn	Leu	Ala 70	Val	Ala	Asp	Phe	Leu 75	Leu	Ile	Ile	Cys	Leu 80
10	Pro	Phe	Val	Met	Asp 85	Туr	Tyr	Val	Arg	Arg 90	Ser	Asp	Trp	Asn	Phe 95	Gly
	Asp	Ile	Pro	Cys 100	Arg	Leu	Val	Leu	Phe 105	Met	Phe	Ala	Met	Asn 110	Arg	Gln
15	Gly	Ser	Ile 115	Ile	Phe	Leu	Thr	Val 120	Val	Ala	Val	Asp	Arg 125	Tyr	Phe	Arg
	Val	Val 130	His	Pro	His	His	Ala 135	Leu	Asn	Lys	Ile	Ser 140	Asn	Trp	Thr	Ala
	Ala 145	Ile	Ile	Ser	Cys	Leu 150	Leu	Trp	Gly	Ile	Thr 155	Val	Gly	Leu	Thr	Val 160
20	His	Leu	Leu	Lys	Lys 165	Lys	Leu	Leu	Ile	Gln 170	Asn	Gly	Pro	Ala	Asn 175	Val
	Cys	Ile	Ser	Phe 180	Ser	Ile	Cys	His	Thr 185	Phe	Arg	Trp	His	Glu 190	Ala	Met
25	Phe	Leu	Leu 195	Glu	Phe	Leu	Leu	Pro 200	Leu	Gly	Ile	Ile	Leu 205	Phe	Cys	Ser
	Ala	Arg 210	Ile	Ile	Trp	Ser	Leu 215	Arg	Gln	Arg	Gln	Met 220	Asp	Arg	His	Ala
	Lys 225	Ile	Lys	Arg	Ala	Ile 230	Thr	Phe	Ile	Met	Val 235	Val	Ala	Ile	Val	Phe 240
30	Val	Ile	Cys	Phe	Leu 245	Pro	Ser	Val	Val	Val 250	Arg	Ile	Arg	Ile	Phe 255	Trp
	Leu	Leu	His	Thr 260	Ser	Gly	Thr	Gln	Asn 265	Cys	Glu	Val	Tyr	Arg 270	Ser	Val
35	Asp	Leu	Ala 275	Phe	Phe	Ile	Thr	Leu 280	Ser	Phe	Thr	Tyr	Met 285	Asn	Ser	Met
	Leu	Asp 290	Pro	Val	Val	Tyr	Tyr 295	Phe	Ser	Ser	Pro	Ser 300	Phe	Pro	Asn	Phe

	Phe S 305	Ser Thr	Leu	Ile	Asn 310	Arg	Cys	Leu	Gln	Arg 315	Lys	Met	Thr	Gly	Glu 320
	Pro A	sp Asn	Asn	Arg 325	Ser	Thr	Ser	Val	Glu 330	Leu	Thr	Gly	Asp	Pro 335	Asn
5	Lys T	hr Arg	Gly 340	Ala	Pro	Glu	Ala	Leu 345	Met	Ala	Asn	Ser	Gly 350	Glu	Pro
	Trp S	er Pro 355	Ser	Tyr	Leu	Gly	Pro 360	Thr	Ser	Asn	Asn	His 365	Ser	Lys	Lys
10		is Cys 70	His	Gln	Glu	Pro 375	Ala	Ser	Leu	Glu	Lys 380	Gln	Leu	Gly	Cys
	Cys I 385	le Glu													
	(110) INFO	RMATION	FOR	SEÇ	DI	NO:1	.09:								
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 37 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) 														
	(ii) MOLECULE TYPE: DNA (genomic)														
20	(iv) ANTI-SENSE: NO														
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:109:														
	ACCATGGCTT	GCAATG	GCAG	TGC	:GGCC	AGG	GGGC	ACT							3
	(111) INFO	RMATION	FOR	SEQ	ID	NO:1	10:								
25		SEQUENC (A) LEN (B) TYP (C) STR (D) TOP	GTH: E: n ANDE	39 ucle DNES	base ic a S: s	pai cid ingl	rs								
	(ii)	MOLECU	LE T	YPE:	DNA	(ge	nomi	c)							
30	(iv)	ANTI-S	ENSE	: YE	s		•								
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:110:														
	CGACCAGGAC	AAACAG	CATC	TTG	GTCA	.CTT	GTCT	ccgg	C						39
	(112) INFORMATION FOR SEQ ID NO:111:														
35		SEQUENC (A) LEN (B) TYP	GTH:	39	base	pai									

	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
5	(iv) ANTI-SENSE: NO	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:111:	
	GACCAAGATG CTGTTTGTCC TGGTCGTGGT GTTTGGCAT	39
	(113) INFORMATION FOR SEQ ID NO:112:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
15	(iv) ANTI-SENSE: YES	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:112:	
	CGGAATTCAG GATGGATCGG TCTCTTGCTG CGCCT	35
	(114) INFORMATION FOR SEQ ID NO:113:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1212 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:113:	
	ATGGCTTGCA ATGGCAGTGC GGCCAGGGGG CACTTTGACC CTGAGGACTT GAACCTGACT	60
	GACGAGGCAC TGAGACTCAA GTACCTGGGG CCCCAGCAGA CAGAGCTGTT CATGCCCATC	120
	TGTGCCACAT ACCTGCTGAT CTTCGTGGTG GGCGCTGTGG GCAATGGGCT GACCTGTCTG	180
	GTCATCCTGC GCCACAAGGC CATGCGCACG CCTACCAACT ACTACCTCTT CAGCCTGGCC	240
30	GTGTCGGACC TGCTGGTGCT GCTGGTGGGC CTGCCCCTGG AGCTCTATGA GATGTGGCAC	300
	AACTACCCCT TCCTGCTGGG CGTTGGTGGC TGCTATTTCC GCACGCTACT GTTTGAGATG	360
	GTCTGCCTGG CCTCAGTGCT CAACGTCACT GCCCTGAGCG TGGAACGCTA TGTGGCCGTG	420
	GTGCACCCAC TCCAGGCCAG GTCCATGGTG ACGCGGGCCC ATGTGCGCCG AGTGCTTGGG	480

	GCCGTCTGGG	GTCTTGCCAT	GCTCTGCTCC	CTGCCCAACA	CCAGCCTGCA	CGGCATCCGG	540
	CAGCTGCACG	TGCCCTGCCG	GGGCCCAGTG	CCAGACTCAG	CTGTTTGCAT	GCTGGTCCGC	600
	CCACGGGCCC	TCTACAACAT	GGTAGTGCAG	ACCACCGCGC	TGCTCTTCTT	CTGCCTGCCC	660
	ATGGCCATCA	TGAGCGTGCT	CTACCTGCTC	ATTGGGCTGC	GACTGCGGCG	GGAGAGGCTG	720
5	CTGCTCATGC	AGGAGGCCAA	GGGCAGGGGC	TCTGCAGCAG	CCAGGTCCAG	ATACACCTGC	780
	AGGCTCCAGC	AGCACGATCG	GGGCCGGAGA	CAAGTGACCA	AGATGCTGTT	TGTCCTGGTC	840
	GTGGTGTTTG	GCATCTGCTG	GGCCCCGTTC	CACGCCGACC	GCGTCATGTG	GAGCGTCGTG	900
	TCACAGTGGA	CAGATGGCCT	GCACCTGGCC	TTCCAGCACG	TGCACGTCAT	CTCCGGCATC	960
	TTCTTCTACC	TGGGCTCGGC	GGCCAACCCC	GTGCTCTATA	GCCTCATGTC	CAGCCGCTTC	1020
10	CGAGAGACCT	TCCAGGAGGC	CCTGTGCCTC	GGGGCCTGCT	GCCATCGCCT	CAGACCCCGC	1080
	CACAGCTCCC	ACAGCCTCAG	CAGGATGACC	ACAGGCAGCA	CCCTGTGTGA	TGTGGGCTCC	1140
	CTGGGCAGCT	GGGTCCACCC	CCTGGCTGGG	AACGATGGCC	CAGAGGCGCA	GCAAGAGACC	-1200
	GATCCATCCT	GA					1212
	(115) INFOR	MATION FOR	SEQ ID NO:1	.14:			

15 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 403 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant
- 20 (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:114:

Met Ala Cys Asn Gly Ser Ala Ala Arg Gly His Phe Asp Pro Glu Asp 5 10 15

Leu Asn Leu Thr Asp Glu Ala Leu Arg Leu Lys Tyr Leu Gly Pro Gln 25

Gln Thr Glu Leu Phe Met Pro Ile Cys Ala Thr Tyr Leu Leu Ile Phe

Val Val Gly Ala Val Gly Asn Gly Leu Thr Cys Leu Val Ile Leu Arg 50

30 His Lys Ala Met Arg Thr Pro Thr Asn Tyr Tyr Leu Phe Ser Leu Ala 75

> Val Ser Asp Leu Leu Val Leu Leu Val Gly Leu Pro Leu Glu Leu Tyr 90

WO 00/22129

	Glu	ı Met	Trp	His 100		Tyr	Pro	Phe	Leu 105		Gly	v Val	. Gly	Gly 110	Cys	Туг
	Phe	Arg	Thr 115		Leu	Phe	Glu	Met 120		Cys	Leu	ı Ala	Ser 125		Leu	Asn
5	Val	Thr 130		Leu	Ser	Val	Glu 135		Tyr	Val	Ala	Val 140		His	Pro	Leu
	Gln 145	Ala	Arg	Ser	Met	Val 150		Arg	Ala	His	Val 155		Arg	Val	Leu	Gly 160
10	Ala	Val	Trp	Gly	Leu 165	Ala	Met	Leu	Cys	Ser 170	Leu	Pro	Asn	Thr	Ser 175	Leu
	His	Gly	Ile	Arg 180	Gln	Leu	His	Val	Pro 185	Cys	Arg	Gly	Pro	Val 190	Pro	Asp
	Ser	Ala	Val 195	Суз	Met	Leu	Val	Arg 200	Pro	Arg	Ala	Leu	Туг 205	Asn	Met	Val
15	Val	Gln 210	Thr	Thr	Ala	Leu	Leu 215	Phe	Phe	Cys	Leu	Pro 220	Met	Ala	Ile	Met
	Ser 225	Val	Leu	Tyr	Leu	Leu 230	Ile	Gly	Leu	Arg	Leu 235	Arg	Arg	Glu	Arg	Leu 240
20	Leu	Leu	Met	Gln	Glu 245	Ala	Lys	Gly	Arg	Gly 250	Ser	Ala	Ala	Ala	Arg 255	Ser
	Arg	Tyr	Thr	Cys 260	Arg	Leu	Gln	Gln	His 265	Asp	Arg	Gly	Arg	Arg 270	Gln	Val
	Thr	Lys	Met 275	Leu	Phe	Val	Leu	Val 280	Val	Val	Phe	Gly	Ile 285	Cys	Trp	Ala
25	Pro	Phe 290	His	Ala	Asp	Arg	Val 295	Met	Trp	Ser	Val	Val 300	Ser	Gln	Trp	Thr
	Asp 305	Gly	Leu	His	Leu	Ala 310	Phe	Gln	His	Val	His 315	Val	Ile	Ser	Gly	Ile 320
30	Phe	Phe	Tyr	Leu	Gly 325	Ser	Ala	Ala	Asn	Pro 330	Val	Leu	Tyr	Ser	Leu 335	Met
	Ser	Ser	Arg	Phe 340	Arg	Glu	Thr	Phe	Gln 345	Glu	Ala	Leu	Cys	Leu 350	Gly	Ala
	Cys	Cys	His 355	Arg	Leu	Arg	Pro	Arg 360	His	Ser	Ser	His	Ser 365	Leu	Ser	Arg
35	Met	Thr 370	Thr	Gly	Ser	Thr	Leu 375	Cys	Asp	Val	Gly	Ser 380	Leu	Gly	Ser	Trp
	Val	His	Pro	Leu	Ala	Gly	Asn	Asp	Gly	Pro	Glu	Ala	Gln	Gln	Glu	Thr

	385	390		395		400
	Asp Pro	Ser				
	(116) INFORMA	TION FOR SEQ ID NO:	115:			
5	(A) (B) (C)	UENCE CHARACTERISTI LENGTH: 30 base pa TYPE: nucleic acid STRANDEDNESS: sing TOPOLOGY: linear	irs			
10	(ii) MO	LECULE TYPE: DNA (g	enomic)			
	(xi) S	EQUENCE DESCRIPTION	: SEQ ID NO	:115:		
	GGAAGCTTCA GG	CCCAAAGA TGGGGAACAT				30
	(117) INFORMA	TION FOR SEQ ID NO:	116:			
15	(A) (B) (C)	UENCE CHARACTERISTI LENGTH: 30 base pa TYPE: nucleic acid STRANDEDNESS: sing TOPOLOGY: linear	irs			
	(ii) MO	LECULE TYPE: DNA (g	enomic)			
20	(xi) SE	QUENCE DESCRIPTION:	SEQ ID NO:	116:		
	GTGGATCCAC CC	GCGGAGGA CCCAGGCTAG				30
	(118) INFORMA	TION FOR SEQ ID NO:	117:			
25	(A) (B) (C)	UENCE CHARACTERISTIC LENGTH: 1098 base p TYPE: nucleic acid STRANDEDNESS: sing TOPOLOGY: linear	pairs			
	(ii) MO	LECULE TYPE: DNA (ge	enomic)			
	(xi) SE	QUENCE DESCRIPTION:	SEQ ID NO:	117:		
30	ATGGGGAACA TC	ACTGCAGA CAACTCCTCG	ATGAGCTGTA	CCATCGACCA	TACCATCCAC	60
	CAGACGCTGG CC	CCGGTGGT CTATGTTACC	GTGCTGGTGG	TGGGCTTCCC	GGCCAACTGC	120
	CTGTCCCTCT AC	TTCGGCTA CCTGCAGATC	AAGGCCCGGA	ACGAGCTGGG	CGTGTACCTG	180
	TGCAACCTGA CG	GTGGCCGA CCTCTTCTAC	ATCTGCTCGC	TGCCCTTCTG	GCTGCAGTAC	240
	GTGCTGCAGC ACC	GACAACTG GTCTCACGGC	GACCTGTCCT	GCCAGGTGTG	CGGCATCCTC	. 300
35	CTGTACGAGA AC	ATCTACAT CAGCGTGGGC	ТТССТСТССТ	GCATCTCCGT	GGACCGCTAC	360

	CTGGCTGTGG	CCCATCCCTT	CCGCTTCCAC	CAGTTCCGGA	CCCTGAAGGC	GGCCGTCGGC	420
	GTCAGCGTGG	TCATCTGGGC	CAAGGAGCTG	CTGACCAGCA	TCTACTTCCT	GATGCACGAG	480
	GAGGTCATCG	AGGACGAGAA	CCAGCACCGC	GTGTGCTTTG	AGCACTACCC	CATCCAGGCA	540
	TGGCAGCGCG	CCATCAACTA	CTACCGCTTC	CTGGTGGGCT	TCCTCTTCCC	CATCTGCCTG	600
5	CTGCTGGCGT	CCTACCAGGG	CATCCTGCGC	GCCGTGCGCC	GGAGCCACGG	CACCCAGAAG	660
	AGCCGCAAGG	ACCAGATCCA	GCGGCTGGTG	CTCAGCACCG	TGGTCATCTT	CCTGGCCTGC	720
	TTCCTGCCCT	ACCACGTGTT	GCTGCTGGTG	CGCAGCGTCT	GGGAGGCCAG	CTGCGACTTC	780
	GCCAAGGGCG	TTTTCAACGC	CTACCACTTC	TCCCTCCTGC	TCACCAGCTT	CAACTGCGTC	840
	GCCGACCCCG	TGCTCTACTG	CTTCGTCAGC	GAGACCACCC	ACCGGGACCT	GGCCCGCCTC	900
10	CGCGGGGCCT	GCCTGGCCTT	CCTCACCTGC	TCCAGGACCG	GCCGGGCCAG	GGAGGCCTAC	960
	CCGCTGGGTG	CCCCGAGGC	CTCCGGGAAA	AGCGGGGCCC	AGGGTGAGGA	GCCCGAGCTG	1020
	TTGACCAAGC	TCCACCCGGC	CTTCCAGACC	CCTAACTCGC	CAGGGTCGGG	CGGGTTCCCC	1080
	ACGGGCAGGT	TGGCCTAG					1098

(119) INFORMATION FOR SEQ ID NO:118:

15 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 365 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant
- 20 (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:118:

Met Gly Asn Ile Thr Ala Asp Asn Ser Ser Met Ser Cys Thr Ile Asp 1 5 10 15

His Thr Ile His Gln Thr Leu Ala Pro Val Val Tyr Val Thr Val Leu 25 25 30

Val Val Gly Phe Pro Ala Asn Cys Leu Ser Leu Tyr Phe Gly Tyr Leu 35 40 45

Gln Ile Lys Ala Arg Asn Glu Leu Gly Val Tyr Leu Cys Asn Leu Thr 50 55 60

Val Ala Asp Leu Phe Tyr Ile Cys Ser Leu Pro Phe Trp Leu Gln Tyr 65 70 75 80

Val Leu Gln His Asp Asn Trp Ser His Gly Asp Leu Ser Cys Gln Val 85 90 95

	Cys	Gly	Ile	Leu 100	Leu	Tyr	Glu	Asn	Ile 105	Tyr	Ile	Ser	Val	Gly 110	Phe	Leu
	Cys	Cys	Ile 115	Ser	Val	Asp	Arg	Tyr 120	Leu	Ala	Val	Ala	His 125	Pro	Phe	Arg
5	Phe	His 130	Gln	Phe	Arg	Thr	Leu 135	Lys	Ala	Ala	Val	Gly 140	Val	Ser	Val	Val
	Ile 145	Trp	Ala	Lys	Glu	Leu 150	Leu	Thr	Ser	Ile	Tyr 155	Phe	Leu	Met	His	Glu 160
10	Glu	Val	Ile	Glu	Asp 165	Glu	Asn	Gln	His	Arg 170	Val	Cys	Phe	Glu	His 175	Tyr
	Pro	Ile	Gln	Ala 180	Trp	Gln	Arg	Ala	Ile 185	Asn	Tyr	Tyr	Arg	Phe 190	Leu	Val
	Gly	Phe	Leu 195	Phe	Pro	Ile	Cys	Leu 200	Leu	Leu	Ala	Ser	Tyr 205	Gln	Gly	Ile
15	Leu	Arg 210	Ala	Val	Arg	Arg	Ser 215	His	Gly	Thr	Gln	Lys 220	Ser	Arg	Lys	Asp
	Gln 225	Ile	Gln	Arg	Leu	Val 230	Leu	Ser	Thr	Val	Val 235		Phe	Leu	Ala	Cys 240
20 .	Phe	Leu	Pro	Tyr	His 245	Val	Leu	Leu	Leu	Val 250	Arg	Ser	Val	Trp	Glu 255	Ala
	Ser	Cys	Asp	Phe 260	Ala	Lys	Gly	Val	Phe 265	Asn	Ala	Tyr	His	Phe 270	Ser	Leu
	Leu	Leu	Thr 275	Ser	Phe	Asn	Cys	Val 280	Ala	Asp	Pro	Val	Leu 285	Tyr	Cys	Phe
25	Val	Ser 290	Glu	Thr	Thr	His	Arg 295	Asp	Leu	Ala	Arg	Leu 300	Arg	Gly	Ala	Cys
	Leu 305	Ala	Phe	Leu	Thr	Cys 310	Ser	Arg	Thr	Gly	Arg 315	Ala	Arg	Glu	Ala	Tyr 320
30	Pro	Leu	Gly	Ala	Pro 325	Glu	Ala	Ser	Gly	Lys 330	Ser	Gly	Ala	Gln	Gly 335	Glu
	Glu	Pro	Glu	Leu 340	Leu	Thr	Lys	Leu	His 345	Pro	Ala	Phe	Gln	Thr 350	Pro	Asn
	Ser	Pro	Gly 355	Ser	Gly	Gly	Phe	Pro 360	Thr	Gly	Arg	Leu	Ala 365			

- 35 (120) Information for seq ID NO:119:
 - (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 base pairs

	(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:119:	
	GACCTCGAGT CCTTCTACAC CTCATC	26
	(121) INFORMATION FOR SEQ ID NO:120:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:120:	
15	TGCTCTAGAT TCCAGATAGG TGAAAACTTG	30
	(122) INFORMATION FOR SEQ ID NO:121:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1416 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:121:	
	ATGGATATTC TTTGTGAAGA AAATACTTCT TTGAGCTCAA CTACGAACTC CCTAATGCAA	60
25	TTAAATGATG ACAACAGGCT CTACAGTAAT GACTTTAACT CCGGAGAAGC TAACACTTCT	120
	GATGCATTTA ACTGGACAGT CGACTCTGAA AATCGAACCA ACCTTTCCTG TGAAGGGTGC	180
	CTCTCACCGT CGTGTCTCTC CTTACTTCAT CTCCAGGAAA AAAACTGGTC TGCTTTACTG	240
	ACAGCCGTAG TGATTATTCT AACTATTGCT GGAAACATAC TCGTCATCAT GGCAGTGTCC	300
	CTAGAGAAAA AGCTGCAGAA TGCCACCAAC TATTTCCTGA TGTCACTTGC CATAGCTGAT	360
30	ATGCTGCTGG GTTTCCTTGT CATGCCCGTG TCCATGTTAA CCATCCTGTA TGGGTACCGG	420
	TGGCCTCTGC CGAGCAAGCT TTGTGCAGTC TGGATTTACC TGGACGTGCT CTTCTCCACG	480
	GCCTCCATCA TGCACCTCTG CGCCATCTCG CTGGACCGCT ACGTCGCCAT CCAGAATCCC	540
	ATCCACCACA GCCGCTTCAA CTCCAGAACT AAGGCATTTC TGAAAATCAT TGCTGTTTGG	600

	ACCATATCAG	TAGGTATATC	CATGCCAATA	CCAGTCTTTG	GGCTACAGGA	CGATTCGAAG	660
	GTCTTTAAGG	AGGGGAGTTG	CTTACTCGCC	GATGATAACT	TTGTCCTGAT	CGGCTCTTTT	720
	GTGTCATTTT	TCATTCCCTT	AACCATCATG	GTGATCACCT	ACTTTCTAAC	TATCAAGTCA	780
	CTCCAGAAAG	AAGCTACTTT	GTGTGTAAGT	GATCTTGGCA	CACGGGCCAA	ATTAGCTTCT	840
5	TTCAGCTTCC	TCCCTCAGAG	TTCTTTGTCT	TCAGAAAAGC	TCTTCCAGCG	GTCGATCCAT	900
	AGGGAGCCAG	GGTCCTACAC	AGGCAGGAGG	ACTATGCAGT	CCATCAGCAA	TGAGCAAAAG	960
	GCATGCAAGG	TGCTGGGCAT	CGTCTTCTTC	CTGTTTGTGG	TGATGTGGTG	CCCTTTCTTC	1020
	ATCACAAACA	TCATGGCCGT	CATCTGCAAA	GAGTCCTGCA	ATGAGGATGT	CATTGGGGCC	1080
	CTGCTCAATG	TGTTTGTTTG	GATCGGTTAT	CTCTCTTCAG	CAGTCAACCC	ACTAGTCTAC	1140
10	ACACTGTTCA	ACAAGACCTA	TAGGTCAGCC	TTTTCACGGT	ATATTCAGTG	TCAGTACAAG	1200
	GAAAACAAAA	AACCATTGCA	GTTAATTTTA	GTGAACACAA	TACCGGCTTT	GGCCTACAAG	1260
	TCTAGCCAAC	TTCAAATGGG	ACAAAAAAG	AATTCAAAGC	AAGATGCCAA	GACAACAGAT	1320
	AATGACTGCT	CAATGGTTGC	TCTAGGAAAG	CAGTATTCTG	AAGAGGCTTC	TAAAGACAAT	1380
	AGCGACGGAG	TGAATGAAAA	GGTGAGCTGT	GTGTGA			1416

15 (123) INFORMATION FOR SEQ ID NO:122:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 471 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
- 20 (D) TOPOLOGY: not relevant
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:122:

Met Asp Ile Leu Cys Glu Glu Asn Thr Ser Leu Ser Ser Thr Thr Asn 1 5 10 15

25 Ser Leu Met Gln Leu Asn Asp Asp Asn Arg Leu Tyr Ser Asn Asp Phe 20 25 30

Asn Ser Gly Glu Ala Asn Thr Ser Asp Ala Phe Asn Trp Thr Val Asp 35 40 45

Ser Glu Asn Arg Thr Asn Leu Ser Cys Glu Gly Cys Leu Ser Pro Ser 30 55 60

Cys Leu Ser Leu Leu His Leu Gln Glu Lys Asn Trp Ser Ala Leu Leu 65 70 75 80

WO 00/22129

	Thr	Ala	Val	Val	Ile 85	Ile	Leu	Thr	Ile	Ala 90	Gly	Asn	ılle	Leu	Val 95	Ile
	Met	Ala	Val	Ser 100		Glu	Lys	Lys	Leu 105		Asn	Ala	Thr	Asn 110	_	Phe
5	Leu	Met	Ser 115		Ala	Ile	Ala	Asp 120		Leu	Leu	Gly	Phe		Val	Met
	Pro	Val 130		Met	Leu	Thr	Ile 135	Leu	Tyr	Gly	Tyr	Arg 140		Pro	Leu	Pro
10	Ser 145	Lys	Leu	Cys	Ala	Val 150	Trp	Ile	Tyr	Leu	Asp 155	Val	Leu	Phe	Ser	Thr 160
	Ala	Ser	Ile	Met	His 165	Leu	Cys	Ala	Ile	Ser 170	Leu	Asp	Arg	Tyr	Val 175	Ala
	Ile	Gln	Asn	Pro 180	Ile	His	His	Ser	Arg 185	Phe	Asn	Ser	Arg	Thr 190	Lys	Ala
15	Phe	Leu	Lys 195	Ile	Ile	Ala	Val	Trp 200	Thr	Ile	Ser	Val	Gly 205	Ile	Ser	Met
	Pro	Ile 210	Pro	Val	Phe	Gly	Leu 215	Gln	Asp	Asp	Ser	Lys 220	Val	Phe	Lys	Glu
20	Gly 225	Ser	Cys	Leu	Leu	Ala 230	Asp	Asp	Asn	Phe	Val 235	Leu	Ile	Gly	Ser	Phe 240
	Val	Ser	Phe	Phe	Ile 245	Pro	Leu	Thr	Ile	Met 250	Val	Ile	Thr	Tyr	Phe 255	Leu
	Thr	Ile	Lys	Ser 260	Leu	Gln	Lys	Glu	Ala 265	Thr	Leu	Cys	Val	Ser 270	Asp	Leu
25	Gly	Thr	Arg 275	Ala	Lys	Leu	Ala	Ser 280	Phe	Ser	Phe	Leu	Pro 285	Gln	Ser	Ser
	Leu	Ser 290	Ser	Glu	Lys	Leu	Phe 295	Gln	Arg	Ser	Ile	His 300	Arg	Glu	Pro	Gly
30	Ser 305	Tyr	Thr	Gly	Arg	Arg 310	Thr	Met	Gln	Ser	Ile 315	Ser	Asn	Glu	Gln	Lys 320
	Ala	Cys	Lys	Val	Leu 325	Gly	Ile	Val	Phe	Phe 330	Leu	Phe	Val	Val	Met 335	Trp
	Cys	Pro	Phe	Phe 340	Ile	Thr	Asn	Ile	Met 345	Ala	Val	Ile	Cys	Lys 350	Glu	Ser
35	Cys	Asn	Glu 355	Asp	Val	Ile	Gly	Ala 360	Leu	Leu	Asn	Val	Phe 365	Val	Trp	Ile
	Gly	Tyr	Leu	Ser	Ser	Ala	Val	Asn	Pro	Leu	Val	Tyr	Thr	Leu	Phe	Asn

		370					375					380				
	Lys 385	Thr	Tyr	Arg	Ser	Ala 390	Phe	Ser	Arg	Tyr	Ile 395	Gln	Cys	Gln	Tyr	Lys 400
5	Glu	Asn :	Lys	Lys	Pro 405	Leu	Gln	Leu	Ile	Leu 410	Val	Asn	Thr	Ile	Pro 415	Ala
	Leu	Ala '	Tyr	Lys 420	Ser	Ser	Gln	Leu	Gln 425	Met	Gly	Gln	Lys	Lys 430	Asn	Ser
	Lys	Gln i	Asp 435	Ala	Lys	Thr	Thr	Asp 440	Asn	Asp	Cys	Ser	Met 445	Val	Ala	Leu
10	Gly	Lys (Gln	Tyr	Ser	Glu	Glu 455	Ala	Ser	Lys	Asp	Asn 460	Ser	Asp	Gly	Val
	Asn 465	Glu _, I	Lys	Val	Ser	Cys 470	Val									
	(124) INF	ORMAT	rion	FOR	SEÇ) ID	NO:1	.23:								
15	(i)	(B) (C)	LEN TYP STR	E CH GTH: E: n ANDE	27 ucle DNES	base ic a S: s	pai cid ingl	rs								
20	(ii) MOI	LECU	LE T	YPE:	DNA	(ge	nomi	c)							
	(xi) SEÇ	QUEN	CE D	ESCR	IPTI	ON:	SEQ	ID N	0:12	3:					
	GACCTCGAG	G TTC	CTT	AAGA	CTG	AAGC	!									27
	(125) INF	'ORMA'I	поі	FOR	SEQ	ID	NO:1	24:								
25	(i)	(B) (C)	LEN TYP STR	E CH GTH: E: n ANDE OLOG	27 ucle DNES	base ic a S: s	pai cid ingl	rs								
	(ii) MOL	ECU	LE T	YPE:	DNA	(ge	nomi	c)							
30	(xi) SEQ	UEN	CE D	ESCR	IPTI	ON:	SEQ	ID N	0:12	4:					
	ATTTCTAGA	C ATA	ATGT.	AGCT	TGT	ACCG										27
	(126) INF	ORMAT	OI	FOR	SEQ	ID	NO:1	25:								
35	(i)	(B) (C)	LENG TYP: STR	E CH. GTH: E: n ANDE	137 ucle DNES	7 ba ic a S: s	se p cid ingl	airs								

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:125:

	ATGGTGAACC	TGAGGAATGC	GGTGCATTCA	TTCCTTGTGC	ACCTAATTGG	CCTATTGGTT	60
	TGGCAATGTG	ATATTTCTGT	GAGCCCAGTA	GCAGCTATAG	TAACTGACAT	TTTCAATACC	120
5	TCCGATGGTG	GACGCTTCAA	ATTCCCAGAC	GGGGTACAAA	ACTGGCCAGC	ACTTTCAATC	180
	GTCATCATAA	TAATCATGAC	AATAGGTGGC	AACATCCTTG	TGATCATGGC	AGTAAGCATG	240
	GAAAAGAAAC	TGCACAATGC	CACCAATTAC	TTCTTAATGT	CCCTAGCCAT	TGCTGATATG	300
	CTAGTGGGAC	TACTTGTCAT	GCCCTGTCT	CTCCTGGCAA	TCCTTTATGA	TTATGTCTGG	360
	CCACTACCTA	GATATTTGTG	CCCCGTCTGG	ATTTCTTTAG	ATGTTTTATT	TTCAACAGCG	420
10	TCCATCATGC	ACCTCTGCGC	TATATCGCTG	GATCGGTATG	TAGCAATACG	TAATCCTATT	480
	GAGCATAGCC	GTTTCAATTC	GCGGACTAAG	GCCATCATGA	AGATTGCTAT	TGTTTGGGCA	540
	ATTTCTATAG	GTGTATCAGT	TCCTATCCCT	GTGATTGGAC	TGAGGGACGA	AGAAAAGGTG	600
	TTCGTGAACA	ACACGACGTG	CGTGCTCAAC	GACCCAAATT	TCGTTCTTAT	TGGGTCCTTC	660
	GTAGCTTTCT	TCATACCGCT	GACGATTATG	GTGATTACGT	ATTGCCTGAC	CATCTACGTT	720
15	CTGCGCCGAC	AAGCTTTGAT	GTTACTGCAC	GGCCACACCG	AGGAACCGCC	TGGACTAAGT	780
	CTGGATTTCC	TGAAGTGCTG	CAAGAGGAAT	ACGGCCGAGG	AAGAGAACTC	TGCAAACCCT	840
	AACCAAGACC	AGAACGCACG	CCGAAGAAAG	AAGAAGGAGA	GACGTCCTAG	GGGCACCATG	900
	CAGGCTATCA	ACAATGAAAG	AAAAGCTTCG	AAAGTCCTTG	GGATTGTTTT	CTTTGTGTTT	960
	CTGATCATGT	GGTGCCCATT	TTTCATTACC	AATATTCTGT	CTGTTCTTTG	TGAGAAGTCC	1020
20	TGTAACCAAA	AGCTCATGGA	AAAGCTTCTG	AATGTGTTTG	TTTGGATTGG	CTATGTTTGT	1080
	TCAGGAATCA	ATCCTCTGGT	GTATACTCTG	TTCAACAAAA	TTTACCGAAG	GGCATTCTCC	1140
	AACTATTTGC	GTTGCAATTA	TAAGGTAGAG	AAAAAGCCTC	CTGTCAGGCA	GATTCCAAGA	1200
	GTTGCCGCCA	CTGCTTTGTC	TGGGAGGGAG	CTTAATGTTA	ACATTTATCG	GCATACCAAT	1260
	GAACCGGTGA	TCGAGAAAGC	CAGTGACAAT	GAGCCCGGTA	TAGAGATGCA	AGTTGAGAAT	1320
25	TTAGAGTTAC	CAGTAAATCC	CTCCAGTGTG	GTTAGCGAAA	GGATTAGCAG	TGTGTGA	1377

- (127) INFORMATION FOR SEQ ID NO:126:
 - (A) LENGTH: 458 amino acids
 - (B) TYPE: amino acid

(i) SEQUENCE CHARACTERISTICS:

- (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:126:

5	Met 1	Val	Asn	Leu	Arg 5	Asn	Ala	Val	His	Ser 10	Phe	Leu	Val	His	Leu 15	Ile
	Gly	Leu	Leu	Val 20	Trp	Gln	Cys	Asp	Ile 25	Ser	Val	Ser	Pro	Val 30	Ala	Ala
10	Ile	Val	Thr 35	Asp	Ile	Phe	Asn	Thr 40	Ser	Asp	Gly	Gly	Arg 45	Phe	Lys	Phe
	Pro	Asp 50	Gly	Val	Gln	Asn	Trp 55	Pro	Ala	Leu	Ser	Ile 60	Val	Ile	Ile	Ile
	Ile 65	Met	Thr	Ile	Gly	Gly 70	Asn	Ile	Leu	Val	Ile 75	Met	Ala	Val	Ser	Met 80
15	Glu	Lys	Lys	Leu	His 85	Asn	Ala	Thr	Asn	Tyr 90	Phe	Leu	Met	Ser	Leu 95	Ala
	Ile	Ala	Asp	Met 100	Leu	Val	Gly	Leu	Leu 105	Val	Met	Pro	Leu	Ser	Leu	Leu
20	Ala	Ile	Leu 115	Tyr	Asp	Tyr	Val	Trp 120	Pro	Leu	Pro	Arg	Tyr 125	Leu	Cys	Pro
	Val	Trp 130	Ile	Ser	Leu	Asp	Val 135	Leu	Phe	Ser	Thr	Ala 140	Ser	Ile	Met	His
	Leu 145	Cys	Ala	Ile	Ser	Leu 150	Asp	Arg	Tyr	Val	Ala 155	Ile	Arg	Asn	Pro	Ile 160
25	Glu	His	Ser	Arg	Phe 165	Asn	Ser	Arg	Thr	Lys 170	Ala	Ile	Met	Lys	Ile 175	Ala
	Ile	Val	Trp	Ala 180	Ile	Ser	Ile	Gly	Val 185	Ser	Val	Pro	Ile	Pro 190	Val	Ile
30	Gly	Leu	Arg 195	Asp	Glu	Glu	Lys	Val 200	Phe	Val	Asn	Asn	Thr 205	Thr	Cys	Val
	Leu	Asn 210	Asp	Pro	Asn	Phe	Val 215	Leu	Ile	Gly	Ser	Phe 220	Val	Ala	Phe	Phe
	Ile 225	Pro	Leu	Thr	Ile	Met 230	Val	Ile	Thr	Tyr	Cys 235	Leu	Thr	Ile	Tyr	Val 240
35	Leu	Arg	Arg	Gln	Ala 245	Leu	Met	Leu	Leu	His 250	Gly	His	Thr	Glu	Glu 255	Pro ·

		Pro	Gly	Leu	Ser 260	Leu	Asp	Phe	Leu	Lys 265	Cys	Cys	Lys	Arg	Asn 270	Thr	Ala	l
		Glu	Glu	Glu 275	Asn	Ser	Ala	Asn	Pro 280	Asn	Gln	Asp	Gln	Asn 285	Ala	Arg	Arg	
5		Arg	Lys 290	Lys	Lys	Glu	Arg	Arg 295	Pro	Arg	Gly	Thr	Met 300	Gln	Ala	Ile	Asn	
		Asn 305	Glu	Arg	Lys	Ala	Ser 310	Lys	Val	Leu	Gly	Ile 315	Val	Phe	Phe	Val	Phe 320	
10		Leu	Ile	Met	Trp	Cys 325	Pro	Phe	Phe	Ile	Thr 330	Asn	Ile	Leu	Ser	Val 335	Leu	
		Cys	Glu	Lys	Ser 340	Cys	Asn	Gln	Lys	Leu 345	Met	Glu	Lys	Leu	Leu 350	Asn	Val	
		Phe	Val	Trp 355	Ile	Gly	Tyr	Val	Cys 360	Ser	Gly	Ile	Asn	Pro 365	Leu	Val	Tyr	
15		Thr	Leu 370	Phe	Asn	Lys	Ile	Tyr 375	Arg	Arg	Ala	Phe	Ser 380	Asn	Tyr	Leu	Arg	
		Cys 385	Asn	Tyr	Lys	Val	Glu 390	Lys	Lys	Pro	Pro	Val 395	Arg	Gl'n	Ile	Pro	Arg 400	
20		Val	Ala	Ala	Thr	Ala 405	Leu	Ser	Gly	Arg	Glu 410	Leu	Asn	Val	Asn	Ile 415	Tyr	
		Arg	His	Thr	Asn 420	Glu	Pro	Val	Ile	Glu 425	Lys	Ala	Ser	Asp	Asn 430	Glu	Pro	
		Gly	Ile	Glu 435	Met	Gln	Val	Glu	Asn 440	Leu	Glu	Leu	Pro	Val 445	Asn	Pro	Ser	
25		Ser	Val 450	Val	Ser	Glu	Arg	Ile 455	Ser	Ser	Val							
	(128)	INF	ORMA	MOIT	FOR	SEÇ	ID	NO:1	27:									
30		(i)	(B) (C)	LEN TYP STR	GTH: E: n ANDE	ARAC 30 ucle DNES	base ic a S: s	pai cid ingl	rs									
			.) MC															
) SE						SEQ	ID N	0:12	7:						
35	GGTAA	GCTT	G GC	AGTC	CACG	CCA	.GGCC	TTC										30
	(129)	INF	ORMA	TION	FOR	SEQ	ID	NO:1	28:									

5	 (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:128:	
	TCCGAATTCT CTGTAGACAC AAGGCTTTGG	. 30
	(130) INFORMATION FOR SEQ ID NO:129:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1068 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
15	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:129:	
	ATGGATCAGT TCCCTGAATC AGTGACAGAA AACTTTGAGT ACGATGATTT GGCTGAGGCC	60
	TGTTATATTG GGGACATCGT GGTCTTTGGG ACTGTGTTCC TGTCCATATT CTACTCCGTC	120
	ATCTTTGCCA TTGGCCTGGT GGGAAATTTG TTGGTAGTGT TTGCCCTCAC CAACAGCAAG	180
20	AAGCCCAAGA GTGTCACCGA CATTTACCTC CTGAACCTGG CCTTGTCTGA TCTGCTGTTT	240
	GTAGCCACTT TGCCCTTCTG GACTCACTAT TTGATAAATG AAAAGGGCCT CCACAATGCC	300
	ATGTGCAAAT TCACTACCGC CTTCTTCTTC ATCGGCTTTT TTGGAAGCAT ATTCTTCATC	360
	ACCGTCATCA GCATTGATAG GTACCTGGCC ATCGTCCTGG CCGCCAACTC CATGAACAAC	420
	CGGACCGTGC AGCATGGCGT CACCATCAGC CTAGGCGTCT GGGCAGCAGC CATTTTGGTG	480
25	GCAGCACCCC AGTTCATGTT CACAAAGCAG AAAGAAAATG AATGCCTTGG TGACTACCCC	540
	GAGGTCCTCC AGGAAATCTG GCCCGTGCTC CGCAATGTGG AAACAAATTT TCTTGGCTTC	600
	CTACTCCCCC TGCTCATTAT GAGTTATTGC TACTTCAGAA TCATCCAGAC GCTGTTTTCC	660
	TGCAAGAACC ACAAGAAAGC CAAAGCCATT AAACTGATCC TTCTGGTGGT CATCGTGTTT	720
	TTCCTCTTCT GGACACCCTA CAACGTTATG ATTTTCCTGG AGACGCTTAA GCTCTATGAC	780
30	TTCTTTCCCA GTTGTGACAT GAGGAAGGAT CTGAGGCTGG CCCTCAGTGT GACTGAGACG	840
	GTTGCATTTA GCCATTGTTG CCTGAATCCT CTCATCTATG CATTTGCTGG GGAGAAGTTC	900
	AGAAGATACC TTTACCACCT GTATGGGAAA TGCCTGGCTG TCCTGTGTGG GCGCTCAGTC	960

102

CACGTTGATT TCTCCTCATC TGAATCACAA AGGAGCAGGC ATGGAAGTGT TCTGAGCAGC 1020

	AATTTTAC	TT A	CCAC	ACGA	G TG	ATGG	AGAT	GCA'	TTGC'	TCC '	TTCT	CTGA				1068
	(131) IN	FORM	ATIO	N FO	R SE	Q ID	NO:	130:								
5	(i	(B (C) LE	NGTH PE: a RANDI	: 359 amino EDNES	5 am: o ac: SS:	ino a id	acid	s							
	(i	i) M	OLEC	JLE :	TYPE	: pro	otei	า								
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:130:															
	Met 1	Asp	Gln	Phe	Pro 5	Glu	Ser	Val	Thr	Glu 10	Asn	Phe	Glu	Tyr	Asp 15	Asp
	Leu	Ala	Glu	Ala 20	Cys	Tyr	Ile	Gly	Asp 25	Ile	Val	Val	Phe	Gly 30	Thr	Val
15	Phe	Leu	Ser 35	Ile	Phe	Tyr	Ser	Val 40	Ile	Phe	Ala	Ile	Gly 45	Leu	Val	Gly
	Asn	Leu 50	Leu	Val	Val	Phe	Ala 55	Leu	Thr	Asn	Ser	Lys 60	Lys	Pro	Lys	Ser
20	Val 65	Thr	Asp	Ile	Tyr	Leu 70	Leu	Asn	Leu	Ala	Leu 75	Ser	Asp	Leu	Leu	Phe 80
	Val	Ala	Thr	Leu	Pro 85	Phe	Trp	Thr	His	Tyr 90	Leu	Ile	Asn	Glu	Lys 95	Gly
	Leu	His	Asn	Ala 100	Met	Cys	Lys	Phe	Thr 105	Thr	Ala	Phe	Phe	Phe 110	Ile	Gly
25	Phe	Phe	Gly 115	Ser	Ile	Phe	Phe	Ile 120	Thr	Val	Ile	Ser	Ile 125	Asp	Arg	Tyr
	Leu	Ala 130	Ile	Val	Leu	Ala	Ala 135	Asn	Ser	Met	Asn	Asn 140	Arg	Thr	Val	Gln
30	His 145	Gly	Val	Thr	Ile	Ser 150	Leu	Gly	Val	Trp	Ala 155	Ala	Ala	Ile	Leu	Val 160
	Ala	Ala	Pro	Gln	Phe 165	Met	Phe	Thr	Lys	Gln 170	Lys	Glu	Asn	Glu	Cys 175	Leu
	Gly	Asp	Tyr	Pro 180	Glu	Val	Leu	Gln	Glu 185	Ile	Trp	Pro	Val	Leu 190	Arg	Asn
35	Val	Glu	Thr 195	Asn	Phe	Leu	Gly	Phe 200	Leu	Leu	Pro	Leu	Leu 205	Ile	Met	Ser

		Суs Т 210	yr Phe	Arg	Ile	Ile 215	Gln	Thr	Leu	Phe	Ser 220	Cys	Lys	Asn	His	
	Lys : 225	Lys A	la Lys	Ala	Ile 230	Lys	Leu	Ile	Leu	Leu 235	Val	Val	Ile	Val	Phe 240	
5	Phe 1	Leu P	he Trp	Thr 245	Pro	Tyr	Asn	Val	Met 250	Ile	Phe	Leu	Glu	Thr 255	Leu	
	Lys 1	Leu T	yr Asp 260	Phe	Phe	Pro	Ser	Cys 265	Asp	Met	Arg	Lys	Asp 270	Leu	Arg	
10	Leu i		eu Ser 75	Val	Thr		Thr 280	Val	Ala	Phe	Ser	His 285	Cys	Cys	Leu	
		Pro Lo 290	eu Ile	Tyr	Ala	Phe 295	Ala	Gly	Glu	Lys	Phe 300	Arg	Arg	Tyr	Leu	
	Tyr I 305	His L	eu Tyr	Gly	Lys 310	Cys	Leu	Ala	Val	Leu 315	Cys	Gly	Arg	Ser	Val 320	
15	His V	Val A	sp Phe	Ser 325	Ser	Ser	Glu	Ser	Gln 330	Arg	Ser	Arg	His	Gly 335	Ser	
	Val 1	Leu S	er Ser 340	Asn	Phe	Thr	Tyr	His 345	Thr	Ser	Asp	Gly	Asp 350	Ala	Leu	
20	Leu I	Leu Leu 3!	eu 55													
	(132) INFO	TAMAC	ION FOR	R SEÇ) ID	NO:1	31:									
25	(i)	(A) 1 (B) 5 (C) 5	ENCE CH LENGTH: TYPE: r STRANDE	32 ucle	base ic a SS: s	e pai cid singl	rs									
	(ii)) MOLI	ECULE 1	YPE:	DNA	ı (ge	enomi	.c)								
	(xi)) SEQ	UENCE I	ESCR	RIPTI	ON:	SEQ	ID N	10:13	:1:						
	GATCTCCAG	r Agg	CATAAGI	GGA	CAAI	TCT	GG								:	32
30	(133) INFO	ORMAT:	ION FOR	SEÇ) ID	NO: 1	.32:								•	
35	(i)	(A) 1 (B) 5 (C) 5	ENCE CH LENGTH: TYPE: 1 STRANDH	30 nucle	base ic a SS: s	e pai cid singl	.rs									
	(ii)) MOLI	ECULE 1	YPE:	DNA	A (ge	enomi	.c)								
	(xi)) SEQI	UENCE I	DESCR	RIPTI	: 100	SEQ	ID 1	10:.13	32:						

	CTCCT	TCGGT CCTCCTATCG TTGTCAGAAG	3 (
	(134)	INFORMATION FOR SEQ ID NO:133:	
5		 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
		(ii) MOLECULE TYPE: DNA (genomic)	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:133:	
10	AGAAG	GCCAA GATCGCGCGG CTGGCCCTCA	30
	(135)	INFORMATION FOR SEQ ID NO:134:	
15		 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
		(ii) MOLECULE TYPE: DNA (genomic)	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:134:	
	CGGCG	CCACC GCACGAAAAA GCTCATCTTC	30
20	(136)	INFORMATION FOR SEQ ID NO:135:	
25		(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 33 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
		(ii) MOLECULE TYPE: DNA (genomic)	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:135:	
	GCCAAG	GAAGC GGGTGAAGTT CCTGGTGGTG GCA	33
	(137)	INFORMATION FOR SEQ ID NO:136:	
30		(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 30 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
35		(ii) MOLECULE TYPE: DNA (genomic)	

		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:136:	
	CAGGC	GGAAG GTGAAAGTCC TGGTCCTCGT	30
	(138)	INFORMATION FOR SEQ ID NO:137:	
. 5		(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 33 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
		(ii) MOLECULE TYPE: DNA (genomic)	
10		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:137:	
	CGGCG	CCTGC GGGCCAAGCG GCTGGTGGTG GTG	33
	(139)	INFORMATION FOR SEQ ID NO:138:	
15		(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
		(ii) MOLECULE TYPE: DNA (genomic)	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:138:	
20	CCAAG	CACAA AGCCAAGAAA GTGACCATCA C	31
	(140)	INFORMATION FOR SEQ ID NO:139:	
25		 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
		(ii) MOLECULE TYPE: DNA (genomic)	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:139:	
	GCGCCC	GGCGC ACCAAATGCT TGCTGGTGGT	30
30	(141)	INFORMATION FOR SEQ ID NO:140:	
35		 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 41 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	

	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:140:	
	CAAAAAGCTG AAGAAATCTA AGAAGATCAT CTTTATTGTC G	4
	(142) INFORMATION FOR SEQ ID NO:141:	-
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:141:	
	CAAGACCAAG GCAAAACGCA TGATCGCCAT	30
	(143) INFORMATION FOR SEQ ID NO:142:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:142:	
	GTCAAGGAGA AGTCCAAAAG GATCATCATC	30
	(144) INFORMATION FOR SEQ ID NO:143:	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:143:	
30	CGCCGCGTGC GGGCCAAGCA GCTCCTGCTC	30
	(145) INFORMATION FOR SEQ ID NO:144:	
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	

		(ii) MOLECULE TYPE: DNA (genomic)	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:144:	
	CCTGA	TAAGC GCTATAAAAT GGTCCTGTTT CGA	33
	(146)	INFORMATION FOR SEQ ID NO:145:	
5		 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10		(ii) MOLECULE TYPE: DNA (genomic)	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:145:	
	GAAAG	ACAAA AGAGAGTCAA GAGGATGTCT TTATTG	36
	(147)	INFORMATION FOR SEQ ID NO:146:	
15		 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
		(ii) MOLECULE TYPE: DNA (genomic)	
20		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:146:	
	CGGAG!	AAAGA GGGTGAAACG CACAGCCATC GCC	33
	(148)	INFORMATION FOR SEQ ID NO:147:	
25		(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
		(ii) MOLECULE TYPE: DNA (genomic)	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:147:	
30	AAGCTT	CAGC GGGCCAAGGC ACTGGTCACC	30
	(149)	INFORMATION FOR SEQ ID NO:148:	
35		 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	

	((ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:148:	
	CAGCGGC	CAGA AGGCAAAAAG GGTGGCCATC	30
	(150) I	NFORMATION FOR SEQ ID NO:149:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
0	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:149:	
	CGGCAGA	AGG CGAAGCGCAT GATCCTCGCG	30
	(151) I	NFORMATION FOR SEQ ID NO:150:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:150:	
	GAGCGCA	ACA AGGCCAAAAA GGTGATCATC	30
	(152) I	NFORMATION FOR SEQ ID NO:151:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:151:	
30	GGTGTAA	ACA AAAAGGCTAA AAACACAATT ATTCTTATT	39
	(153) I	NFORMATION FOR SEQ ID NO:152:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	

	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:152:	
	GAGAGCCAGC TCAAGAGCAC CGTGGTG	27
	(154) INFORMATION FOR SEQ ID NO:153:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:153:	
	CCACAAGCAA ACCAAGAAAA TGCTGGCTGT	30
	(155) INFORMATION FOR SEQ ID NO:154:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:154:	
	CATCAAGTGT ATCATGTGCC AAGTACGCCC	30
	(156) INFORMATION FOR SEQ ID NO:155:	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:155:	
30	CTAGAGAGTC AGATGAAGTG TACAGTAGTG GCAC	34
	(157) INFORMATION FOR SEQ ID NO:156:	
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	

	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:156:	
	CGGACAAAG TGAAAACTAA AAAGATGTTC CTCATT	36
	(158) INFORMATION FOR SEQ ID NO:157:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:157:	
	GCTGAGGTTC GCAATAAACT AACCATGTTT GTG	33
	(159) INFORMATION FOR SEQ ID NO:158:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:158:	
	GGGAGGCCGA GCTGAAAGCC ACCCTGCTC	29
	(160) INFORMATION FOR SEQ ID NO:159:	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:159:	
80	CAAGATCAAG AGAGCCAAAA CCTTCATCAT G	31
	(161) INFORMATION FOR SEQ ID NO:160:	
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	

	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:160:	
	CCGGAGACAA GTGAAGAAGA TGCTGTTTGT C	31
	(162) INFORMATION FOR SEQ ID NO:161:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:161:	
	GCAAGGACCA GATCAAGCGG CTGGTGCTCA	30
	(163) INFORMATION FOR SEQ ID NO:162:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:162:	
	CAAGAAAGCC AAAGCCAAGA AACTGATCCT TCTG	34
	(164) INFORMATION FOR SEQ ID NO:163:	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1068 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:163:	
30	ATGGAAGATT TGGAGGAAAC ATTATTTGAA GAATTTGAAA ACTATTCCTA TGACCTAGAC	60
	TATTACTCTC TGGAGTCTGA TTTGGAGGAG AAAGTCCAGC TGGGAGTTGT TCACTGGGTC	120
	TCCCTGGTGT TATATTGTTT GGCTTTTGTT CTGGGAATTC CAGGAAATGC CATCGTCATT	180
	TGGTTCACGG GGCTCAAGTG GAAGAAGACA GTCACCACTC TGTGGTTCCT CAATCTAGCC	240
	ATTGCGGATT TCATTTTCT TCTCTTTCTG CCCCTGTACA TCTCCTATGT GGCCATGAAT	300

	TTCCACTG	GC C	CTTI	'GGCA	T CI	rggci	GTGC	' AAA	GCCA	TTA	CCTI	CACI	GC C	CCAGI	TGA	AC.	360
	ATGTTTGC	CA G	TGTT	TTTT	T CC	CTGAC	CAGTG	ATC	'AGCC	TGG	ACCA	CTAT	'AT C	CACI	TGAT	C	420
	CATCCTGT	CT I	'ATCT	'CATC	G GC	CATCG	SAACC	CTC	AAGA	ACT	CTCT	'GA T T	GT C	ATTA	TAT	C.	480
	ATCTGGCT	TT T	GGCT	TCTC'	r aa	TTGG	CGGT	CCT	GCCC	TGT	ACTT	'CCGG	GA C	ACTG	TGGA	'G	540
5	TTCAATAA	TC A	TACT	CTTT	G CI	'ATAA	CAAT	ттт	CAGA	AGC	ATGA	TCCT	GA C	CTCA	CTTT	'G	600
	ATCAGGCA	CC A	TGTT	CTGA	C TT	'GGGT	'GAAA	ттт	ATCA	TTG	GCTA	TCTC	TT C	CCTT	TGCT	A.	660
	ACAATGAG	TA T	TTGC	TACT	r gt	GTCT	CATC	TTC	AAGG	TGA	AGAA	GCGA	AC A	GTCC	TGAT	C	720
	TCCAGTAG	GC A	TAAG	TGGA	C AA	TTCT	GGTT	GTG	GTTG	TGG	CCTT	TGTG	GT T	TGCT	GGAC	Т	780
	CCTTATCA	сс т	GTTT.	AGCA:	тт т	GGGA	GCTC	ACC	ATTC	ACC	ACAA	TAGC	TA T	TCCC	ACCA	т	840
10	GTGATGCA	gg C	TGĠA	ATCC	C CC	TCTC	CACT	GGT	TTGG	CAT	TCCT	CAAT.	AG T	TGCT	TGAA	С	900
	CCCATCCT	rt a	TGTC	CTAAT	TA	GTAA	GAAG	TTC	CAAG	CTC	GCTT	CCGG	TC C	TCAG	TTGC	т :	960
	GAGATACTO	CA A	GTAC	ACACI	GT	GGGA	AGTC	AGC	rgtt:	CTG	GCAC.	AGTG.	AG T	GAAC.	AGCT	C 1	020
	AGGAACTCA	AG A	AACC	AAGA	TC	TGTG	TCTC	CTG	GAAA	CAG	CTCA	ATAA				1	068
	(165) IN	FORM	OITA	N FOF	SE	Q ID	NO:	164:									
15	(i)	(A (B) (C)	LEI TYI	CE CH NGTH: PE: a RANDE POLOG	35 min DNE	5 am o ac SS:	ino a id	acid	5								
20	(ii	L) M	OLEC	JLE I	'YPE	: pr	oteir	נ									
	ix)	i) S1	EQUE	NCE I	ESC	RIPT	ION:	SEQ	ID 1	NO:1	64:						
	Met 1	Glu	Asp	Leu	Glu 5	Glu	Thr	Leu		Glu 10	Glu	Phe	Glu	Asn	Tyr 15	Ser	
25	Туг	Asp	Leu	Asp 20	Tyr	Tyr	Ser	Leu	Glu 25	Ser	Asp	Leu	Glu	Glu 30	Lys	Val	
	Gln	Leu	Gly 35	Val	Val	His	Trp	Val 40	Ser	Leu	Val	Leu	Tyr 45	Cys	Leu	Ala	
	Phe	Val 50	Leu	Gly	Ile	Pro	Gly 55	Asn	Ala	Ile	Val	Ile 60	Trp	Phe	Thr	Gly	
30	Leu 65	Lys	Trp	Lys	Lys	Thr 70	Val	Thr	Thr	Leu	Trp 75	Phe	Leu	Asn	Leu	Ala 80	

	Val	Ala	Met	Asn 100	Phe	His	Trp	Pro	Phe 105	Gly	Ile	Trp	Leu	Cys 110	Lys	Ala
	Asn	Ser	Phe 115	Thr	Ala	Gln	Leu	Asn 120	Met	Phe	Ala	Ser	Val 125	Phe	Phe	Leu
5	Thr	Val 130	Ile	Ser	Leu	Asp	His 135	Tyr	Ile	His	Leu	Ile 140	His	Pro	Val	Leu
	Ser 145	His	Arg	His	Arg	Thr 150	Leu	Lys	Asn	Ser	Leu 155	Ile	Val	Ile	Ile	Phe 160
10	Ile	Trp	Leu	Leu	Ala 165	Ser	Leu	Ile	Gly	Gly 170	Pro	Ala	Leu	Tyr	Phe 175	Arg
	Asp	Thr	Val	Glu 180	Phe	Asn	Asn	His	Thr 185	Leu	Cys	Tyr	Asn	Asn 190	Phe	Gln
	Lys	His	Asp 195	Pro	Asp	Leu	Thr	Leu 200	Ile	Arg	His	His	Val 205	Leu	Thr	Trp
15	Val	Lys 210	Phe	Ile	Ile	Gly	Tyr 215	Leu	Phe	Pro	Leu	Leu 220	Thr	Met	Ser	Ile
	Cys 225	Tyr	Leu	Cys	Leu	Ile 230	Phe	Lys	Val	Lys	Lys 235	Arg	Thr	Val	Leu	Ile 240
20	Ser	Ser	Arg	His	Lys 245	Trp	Thr	Ile	Leu	Val 250	Val	Val	Val	Ala	Phe 255	Val
	Val	Cys	Trp	Thr 260	Pro	Tyr	His	Leu	Phe 265	Ser	Ile	Trp	Glu	Leu 270	Thr	Ile
	His	His	Asn 275	Ser	Tyr	Ser	His	His 280	Val	Met	Gln	Ala	Gly 285	Ile	Pro	Leu
25	Ser	Thr 290	Gly	Leu	Ala	Phe	Leu 295	Asn	Ser	Cys	Leu	Asn 300	Pro	Ile	Leu	Tyr
	Val 305	Leu	Ile	Ser	Lys	Lys 310	Phe	Gln	Ala	Arg	Phe 315	Arg	Ser	Ser	Val	Ala 320
30	Glu	Ile	Leu	Lys	Tyr 325	Thr	Leu	Trp	Glu	Val 330		Cys	Ser	Gly	Thr 335	Val
	Ser	Glu	Gln	Leu 340		Asn	Ser	Glu	Thr 345		Asn	Leu	Cys	Leu 350		Glu
	Thr	Ala	Gln 355													

355

35 (166) INFORMATION FOR SEQ ID NO:165:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 1089 base pairs

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:165:

	ATGGGCAACC	ACACGTGGGA	GGGCTGCCAC	GTGGACTCGC	GCGTGGACCA	CCTCTTTCCG	60
	CCATCCCTCT	ACATCTTTGT	CATCGGCGTG	GGGCTGCCCA	CCAACTGCCT	GGCTCTGTGG	120
	GCGGCCTACC	GCCAGGTGCA	ACAGCGCAAC	GAGCTGGGCG	TCTACCTGAT	GAACCTCAGC	180
	ATCGCCGACC	TGCTGTACAT	CTGCACGCTG	CCGCTGTGGG	TGGACTACTT	CCTGCACCAC	240
10	GACAACTGGA	TCCACGGCCC	CGGGTCCTGC	AAGCTCTTTG	GGTTCATCTT	CTACACCAAT	300
	ATCTACATCA	GCATCGCCTT	CCTGTGCTGC	ATCTCGGTGG	ACCGCTACCT	GGCTGTGGCC	360
	CACCCACTCC	GCTTCGCCCG	CCTGCGCCGC	GTCAAGACCG	CCGTGGCCGT	GAGCTCCGTG	420
	GTCTGGGCCA	CGGAGCTGGG	CGCCAACTCG	GCGCCCCTGT	TCCATGACGA	GCTCTTCCGA	480
	GACCGCTACA	ACCACACCTT	CTGCTTTGAG	AAGTTCCCCA	TGGAAGGCTG	GGTGGCCTGG	540
15	ATGAACCTCT	ATCGGGTGTT	CGTGGGCTTC	CTCTTCCCGT	GGGCGCTCAT	GCTGCTGTCG	600
	TACCGGGGCA	TCCTGCGGGC	CGTGCGGGGC	AGCGTGTCCA	CCGAGCGCCA	GGAGAAGGCC	660
	AAGATCGCGC	GGCTGGCCCT	CAGCCTCATC	GCCATCGTGC	TGGTCTGCTT	TGCGCCCTAT	720
	CACGTGCTCT	TGCTGTCCCG	CAGCGCCATC	TACCTGGGCC	GCCCCTGGGA	CTGCGGCTTC	780
	GAGGAGCGCG	TCTTTTCTGC	ATACCACAGC	TCACTGGCTT	TCACCAGCCT	CAACTGTGTG	840
20	GCGGACCCCA	TCCTCTACTG	CCTGGTCAAC	GAGGGCGCCC	GCAGCGATGT	GGCCAAGGCC	900
	CTGCACAACC	TGCTCCGCTT	TCTGGCCAGC	GACAAGCCCC	AGGAGATGGC	CAATGCCTCG	960
	CTCACCCTGG	AGACCCCACT	CACCTCCAAG	AGGAACAGCA	CAGCCAAAGC	CATGACTGGC	1020
	AGCTGGGCGG	CCACTCCGCC	TTCCCAGGGG	GACCAGGTGC	AGCTGAAGAT	GCTGCCGCCA	1080
	GCACAATGA						1089

- 25 (167) INFORMATION FOR SEQ ID NO:166:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 362 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
- 30 (D) TOPOLOGY: not relevant
 - (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:166:

	Met 1	Gly	Asn	His	Thr 5	Trp	Glu	Gly	Cys	His 10	Val	Asp	Ser	Arg	Val 15	Asp
5	His	Leu	Phe	Pro 20	Pro	Ser	Leu	Tyr	Ile 25	Phe	Val	Ile	Gly	Val 30	Gly	Leu
	Pro	Thr	Asn 35	Cys	Leu	Ala	Leu	Trp 40	Ala	Ala	Tyr	Arg	Gln 45	Val	Gln	Gln
	Arg	Asn 50	Glu	Leu	Gly	Val	Tyr 55	Leu	Met	Asn	Leu	Ser 60	Ile	Ala	Asp	Leu
10	Leu 65	Tyr	Ile	Cys	Thr	Leu 70	Pro	Leu	Trp	Val	Asp 75	Tyr	Phe	Leu	His	His 80
	Asp	Asn	Trp	Ile	His 85	Gly	Pro	Gly	Ser	Cys 90	Lys	Leu	Phe	Gly	Phe 95	Ile
15	Phe	Tyr	Thr	Asn 100	Ile	Tyr	Ile	Ser	Ile 105	Ala	Phe	Leu	Cys	Cys 110	Ile	Ser
	Val	Asp	Arg 115	Tyr	Leu	Ala	Val	Ala 120	His	Pro	Leu	Arg	Phe 125	Ala	Arg	.Leu
	Arg	Arg 130	Val	Lys	Thr	Ala	Val 135	Ala	Val	Ser	Ser	Val 140	Val	Trp	Ala	Thr
20	Glu 145	Leu	Gly	Ala	Asn	Ser 150	Ala	Pro	Leu	Phe	His 155	Asp	Glu	Leu	Phe	Arg 160
	Asp	Arg	Tyr	Asn	His 165	Thr	Phe	Cys	Phe	Glu 170	Lys	Phe	Pro	Met	Glu 175	Gly
25	Trp	Val	Ala	Trp 180	Met	Asn	Leu	Tyr	Arg 185	Val	Phe	Val	Gly	Phe 190	Leu	Phe
	Pro	Trp	Ala 195	Leu	Met	Leu	Leu	Ser 200	туr	Arg	Gly	Ile	Leu 205	Arg	Ala	Val
	Arg	Gly 210	Ser	Val	Ser	Thr	Glu 215	Arg	Gln	Glu	Lys	Ala 220	Lys	Ile	Ala	Arg
30	Leu 225		Leu	Ser	Leu	Ile 230	Ala	Ile	Val	Leu	Val 235	Cys	Phe	Ala	Pro	Tyr 240
	His	Val	Leu	Leu	Leu 245	Ser	Arg	Ser	Ala	Ile 250	Tyr	Leu	Gly	Arg	Pro 255	Trp
35	Asp	Cys	Gly	Phe 260	Glu	Glu	Arg	Val	Phe 265	Ser	Ala	Tyr	His	Ser 270	Ser	Leu
	Ala	Phe	Thr	Ser	Leu	Asn	Cys	Val	Ala	Asp	Pro	Ile	Leu	Tyr	Cys	Leu

116

		275				280					285			
		Asn Glu 290	Gly Ala		Ser 295	Asp	Val	Ala	Lys	Ala 300	Leu	His	Asn	Leu
5	Leu A 305	Arg Phe	Leu Ala	Ser <i>i</i> 310	Asp	Lys	Pro	Gln	Glu 315	Met	Ala	Asn	Ala	Ser 320
	Leu T	Thr Leu	Glu Thr		Leu	Thr	Ser	Lys 330	Arg	Asn	Ser	Thr	Ala 335	Lys
	Ala M	let Thr	Gly Ser 340	Trp A	Ala	Ala	Thr 345	Pro	Pro	Ser	Gln	Gly 350	Asp	Gln
10	Val G	ln Leu 355	Lys Met	Leu I		Pro 360	Ala	Gln						
	(168) INFO	RMATION	FOR SE	Q ID N	10:1	67:								
15	(i)	(B) TYP (C) STR	E CHARA GTH: 10 E: nucl ANDEDNE	02 bas eic ac SS: si	se paid ingl	airs								
	(ii)	MOLECU	LE TYPE	: DNA	(ge	nomi	c)							
	(xi)	SEQUEN	CE DESC	RIPTIC	ON: .	SEQ	ID N	0:16	7 :					
20	ATGGAGTCCT	CAGGCA	ACCC AG	AGAGCA	CC Z	ACCT	TTTT	TT A	.CTAT	GACC	т тс	'AGAG	CCAG	60
	CCGTGTGAGA	ACCAGG	CCTG GG	TCTTTG	CT A	ACCC	TCGC	CA C	CACT	GTCC	T GT	'ACTG	CCTG	120
	GTGTTTCTCC	TCAGCC	TAGT GG	GCAACA	GC (CTGG	TCCT	GT G	GGTC	CTGG	T GA	AGTA	TGAG	180
	AGCCTGGAGT	CCCTCA	CCAA CA	TCTTCA	TC (CTCA	ACCT	GT G	CCTC	TCAG	A CC	TGGT	GTTC	240
	GCCTGCTTGT	TGCCTG	TGTG GA	TCTCCC	CA :	FACC.	ACTG	gg g	CTGG	GTGC	T GG	GAGA	CTTC	300
25	CTCTGCAAAC	TCCTCA	ATAT GA	TCTTCT	CC A	ATCA	GCCT	CT A	CAGC	AGCA	т ст	тстт	CCTG	360
	ACCATCATGA	CCATCC	ACCG CT.	ACCTGT	'CG (GTAG'	TGAG	cc c	CCTC	TCCA	c cc	TGCG	CGTC	420
	CCCACCCTCC	GCTGCC	GGGT GC	TGGTGA	.CC I	ATGG	CTGT	GT G	GGTA	GCCA	G CA	TCCT	GTCC	480
	TCCATCCTCG	ACACCA'	TCTT CC.	ACAAGG	TG (CTTT	CTTC	GG G	CTGT	GATT.	A TT	CCGA	ACTC	540
	ACGTGGTACC	TCACCT	CCGT CT	ACCAGC	AC A	AACC'	TCTT(CT T	CCTG	CTGT	c cc	TGGG	GATT	600
30	ATCCTGTTCT	GCTACG:	TGGA GA	TCCTCA	.GG #	ACCC'	TGTT	CC G	CTCA	CGCT	C CA	AGCG	GCGC	660
	CACCGCACGA	AAAAGC'	TCAT CT	rcgcca	TC C	GTGG'	TGGC(CT A	CTTC	CTCA	G CT	GGGG	TCCC	720
	TACAACTTCA	CCCTGT	TTCT GC	AGACGC	TG 1	rttc	GGAC	CC A	GATC	ATCC	G GA	GCTG	CGAG	780

GCCAAACAGC	AGCTA	GAATA	CGCCC	TGCTC	ATC	TGCC	GCA .	ACCT	CGCC'	TT C	TCCC	ACTG	84	0
TGCTTTAACC	CGGTG	CTCTA	TGTCT	TCGTG	GGG	GTCA	AGT '	TCCG	CACA	CA C	CTGA	AACA	r 90	0
GTTCTCCGGC	AGTTC	TGGTT	CTGCC	GGCTG	CAG	GCAC	CCA (GCCC	AGCC'	rc g	ATCC	CCCA	96	0
TCCCCTGGTG	CCTTC	GCCTA	TGAGG	GCGCC	TCC	TTCT	ACT (GA					100	2
(169) INFO	RMATIO	N FOR	SEQ I	D NO:	168:									
	SEQUENCE (A) LE: (B) TY: (C) ST: (D) TO:	NGTH: PE: an RANDEI POLOGY	333 a mino a DNESS: Y: not	mino cid rele	acid vant	S								
(xi)	SEQUE	NCE DE	ESCRIP	TION:	SEQ	ID 1	NO:1	58:						
Met G 1	lu Ser		Gly As 5	n Pro	Glu	Ser	Thr	Thr	Phe	Phe	Tyr	Tyr 15	Asp	
Leu G	ln Ser	Gln E 20	Pro Cy	s Glu	Asn	Gln 25	Ala	Trp	Val	Phe	Ala 30	Thr	Leu	
Ala T	hr Thr 35	Val I	Leu Ty	r Cys	Leu 40	Val	Phe	Leu	Leu	Ser 45	Leu	Val	Gly	
	er Leu 0	Val I	Leu Tr	p Val 55	Leu	Val	Lys	Tyr	Glu 60	Ser	Leu	Glu	Ser	
Leu T 65	hr Asn	Ile E	Phe Il 70	e Leu	Asn	Leu	Cys	Leu 75	Ser	Asp	Leu	Val	Phe 80	
Ala C	ys Leu		Pro Va 85	l Trp	Ile	Ser	Pro 90	Tyr	His	Trp	Gly	Trp 95	Val	
Leu G	ly Asp	Phe I 100	-	s Lys							Ser 110		Ser	
Leu T	yr Ser 115	Ser 1	Ile Ph	e Phe	Leu 120		Ile	Met	Thr	Ile 125	His	Arg	Tyr	
	er Val	Val S	Ser Pr	o Leu 135	Ser	Thr	Leu	Arg	Val 140	Pro	Thr	Leu	Arg	
Cys A 145	arg Val	Leu \	Val Th 15		Ala	Val	Trp	Val 155	Ala	Ser	Ile	Leu	Ser 160 -	
Ser I	le Leu	_	Thr Il 165	e Phe	His	Lys	Val 170	Leu	Ser	Ser	Gly	Cys 175	Asp	
Tyr S	Ser Glu	Leu 1	Thr Tr	p Tyr	Leu	Thr 185	Ser	Val	Tyr	Gln	His 190	Asn	Leu	

	Phe	Phe	Leu 195	Leu	Ser	Leu	Gly	Ile 200	Ile	Leu	Phe	Cys	Туг 205	Val	Glu	Ile	
	Leu	Arg 210	Thr	Leu	Phe	Arg	Ser 215	Arg	Ser	Lys	Arg	Arg 220	His	Arg	Thr	Lys	
5	Lys 225	Leu	Ile	Phe	Ala	Ile 230	Val	Val	Ala	Tyr	Phe 235	Leu	Ser	Trp	Gly	Pro 240	
	Tyr	Asn	Phe	Thr	Leu 245	Phe	Leu	Gln	Thr	Leu 250	Phe	Arg	Thr	Gln	Ile 255	Ile	
10	Arg	Ser	Cys	Glu 260	Ala	Lys	Gln	Gln	Leu 265	Glu	Tyr	Ala	Leu	Leu 270	Ile	Cys	
	Arg	Asn	Leu 275	Ala	Phe	Ser	His	Cys 280	Cys	Phe	Asn	Pro	Val 285	Leu	Tyr	Val	
	Phe	Val 290	Gly	Val	Lys	Phe	Arg 295	Thr	His	Leu	Lys	His 300	Val	Leu	Arg	Gln	
15	Phe 305	Trp	Phe	Cys	Arg	Leu 310	Gln	Ala	Pro	Ser	Pro 315	Ala	Ser	Ile	Pro	His 320	
	Ser	Pro	Gly	Ala	Phe 325	Ala	Tyr	Glu	Gly	Ala 330	Ser	Phe	Tyr				
	(170) IN	FORM	OITA	1 FOI	R SEÇ	Q ID	NO:	169:									
20	(i)	(B)	LE1 TYI	CE CH NGTH: PE: r RANDE	: 987 nucle EDNES	7 bas eic a SS: s	se pa acid singl	airs									
25	(i:	i) M	OLEC	JLE 1	TYPE:	: DNA	A (ge	enomi	lc)								
	(x:	i) SI	EQUE	NCE I	DESCI	RIPT	ION:	SEQ	ID 1	10:16	59:						
	ATGGACAA	CG C	CTCG:	TTCT	C GG2	AGCC	CTGG	CCC	CCA	ACG C	CATCO	GGCC	CC GC	GACCO	CGGCC	3	60
	CTGAGCTG	CT C	CAAC	GCGT	C GA	CTCTC	GGCG	CCG	CTGCC	CGG C	CGCC	GCTGC	GC GC	STGG	CTGTA	A 3	120
	CCAGTTGT	CT A	CGCG	GTGAT	r CTC	GCGC	CGTG	GGT	CTGGC	CGG C	CAAC	CTCCC	SC C	STGC	CTAC	2 3	180
30	GTGTTGCT	GC G	GGCG	CCCC	G CA	rgaa(SACC	GTC	ACCAZ	ACC 1	rgtto	CATCO	CT C	AACC	rggco	2 2	240
	ATCGCCGA	CG A	GCTC:	TTCA	G GC	rggr	GCTG	CCC	ATCA	ACA T	rcgco	CGACT	TT C	CTGC	rgcgo	3 3	300
	CAGTGGCC	CT T	CGGGG	GAGC:	r CA	rgtgo	CAAG	CTC	ATCGT	rgg (CTATO	CGAC	CA G	raca:	ACAC	2 3	360
	TTCTCCAG	CC T	CTAC	TTCC	r ca	CCGT	CATG	AGC	GCCG <i>I</i>	ACC (GCTAG	CCTG	T GO	STGT:	rggc	2 4	420
	ACTGCGGA	GT C	GCGC	CGGG:	r gg	CCGG	CCGC	ACC:	racac	SCG (CCGC	GCGCC	GC G	GTGA	GCCT	3 4	480

119

	GCCGTGTG	GG G	GATC	GTCAC	AC'	rcgr	CGTG	CTG	CCCT	TCG	CAGT	CTTC	GC C	CGGC	TAGA	С	540
	GACGAGCA	GG G	CCGG	CGCCF	A GT	GCGT	GCTA	GTC	TTTC	CGC .	AGCC	CGAG	GC C	TTCT	GGTG	G	600
	CGCGCGAG	CC G	CCTC'	TACAC	GC'	rcgr	GCTG	GGC'	TTCG	CCA	TCCC	CGTG	TC C	ACCA'	TCTG'	Г	660
	GTCCTCTA	TA C	CACC	CTGCI	GTO	GCCG	GCTG	CAT	GCCA'	rgc ·	GGCT	GGAC.	AG C	CACG	CCAA	G	720
5	GCCCTGGA	GC G	CGCC	AAGAA	GC	GGT	GAAG	TTC	CTGG'	rgg	TGGC.	AATC	CT G	GCGG'	rgtg(C	780
	CTCCTCTG	CT G	GACG	CCCTA	CC	ACCT	GAGC	ACC	GTGG'	rgg (CGCT	CACC.	AC C	GACC'	rccc	3	840
	CAGACGCC	GC T	GGTC	ATCGC	TA?	rctco	CTAC	TTC	ATCA	CCA (GCCT	GACG'	TA C	GCCA	ACAG	C	900
	TGCCTCAA	CC C	CTTC	CTCTA	CGG	CCTT	CCTG	GAC	GCCA	GCT '	rccg	CAGG.	AA C	CTCC	GCCA	3	960
	CTGATAAC	TT G	CCGC	GCGGC	: AG	CTG	A									:	987
10	(171) IN	FORM	ATIO	N FOR	SEÇ	Q ID	NO:	170:									
15	(i	(A) (B) (C)	LEI TYI	CE CH NGTH: PE: a RANDE	328 mino DNES	3 ami 3 aci 3S:	ino a id	acid	5								
••	/ i	•-•		JLE T													
				NCE D		_			י חד	ĭ ∩ · 1 '	70.						
	мес 1	Asp	ASII	Ala	5 5	Pne	ser	GIU	Pro	11p	PIO	Ата	Asn	Ата		GIY	
															15		
20	Pro	Asp	Pro	Ala 20	Leu	Ser	Cys	Ser	Asn 25	Ala	Ser	Thr	Leu	Ala 30		Leu	
20							-		25				•	30	Pro		
20	Pro	Ala	Pro 35	20	Ala	Val	Ala	Val 40	25 Pro	Val	Val	Tyr	Ala 45	30 Val	Pro	Cys	
	Pro Ala	Ala Val 50	Pro 35 Gly	20 Leu	Ala Ala	Val Gly	Ala Asn 55	Val 40 Ser	25 Pro Ala	Val Val	Val Leu	Tyr Tyr 60	Ala 45 Val	30 Val Leu	Pro Ile Leu	Cys Arg	
	Pro Ala Ala 65	Ala Val 50 Pro	Pro 35 Gly Arg	20 Leu Leu Met	Ala Ala Lys	Val Gly Thr 70	Ala Asn 55 Val	Val 40 Ser Thr	25 Pro Ala Asn	Val Val Leu	Val Leu Phe 75	Tyr Tyr 60 Ile	Ala 45 Val Leu	30 Val Leu Asn	Pro Ile Leu	Cys Arg Ala 80	
	Pro Ala Ala 65 Ile	Ala Val 50 Pro	Pro 35 Gly Arg	20 Leu Leu Met	Ala Ala Lys Leu 85	Val Gly Thr 70 Phe	Ala Asn 55 Val	Val 40 Ser Thr	25 Pro Ala Asn Val	Val Val Leu Leu 90	Val Leu Phe 75 Pro	Tyr Tyr 60 Ile	Ala 45 Val Leu Asn	30 Val Leu Asn Ile	Pro Ile Leu Leu Ala 95	Cys Arg Ala 80 Asp	

Val Met Ser Ala Asp Arg Tyr Leu Val Val Leu Ala Thr Ala Glu Ser

... 120

		130					135					140					
	Arg 145	Arg	Val	Ala	Gly	Arg 150	Thr	Tyr	Ser	Ala	Ala 155	Arg	Ala	Val	Ser	Leu 160	
5	Ala	Val	Trp	Gly	Ile 165	Val	Thr	Leu	Val	Val 170	Leu	Pro	Phe	Ala	Val 175	Phe	
	Ala	Arg	Leu	Asp 180	Asp	Glu	Gln	Gly	Arg 185	Arg	Gln	Cys	Val	Leu 190	Val	Phe	
	Pro	Gln	Pro 195	Glu	Ala	Phe	Trp	Trp 200	Arg	Ala	Ser	Arg	Leu 205	туг	Thr	Leu	
10	Val	Leu 210	Gly	Phe	Ala	Ile	Pro 215	Val	Ser	Thr	Ile	Cys 220	Val	Leu	туг	Thr	
	Thr 225	Leu	Ļeu	Cys	Arg	Leu 230	His	Ala	Met	Arg	Leu 235	Asp	Ser	His	Ala	Lys 240	
15	Ala	Leu	Glu	Arg	Ala 245	Lys	Lys	Arg	Val	Lys 250	Phe	Leu	Val	Val	Ala 255	Ile	-
	Leu	Ala	Val	Cys 260	Leu	Leu	Cys	Trp	Thr 265	Pro	Tyr	His	Leu	Ser 270	Thr	Val	
	Val	Ala	Leu 275	Thr	Thr	Asp	Leu	Pro 280	Gln	Thr	Pro	Leu	Val 285	Ile	Ala	Ile	
20	Ser	Tyr 290	Phe	Ile	Thr	Ser	Leu 295	Thr	Tyr	Ala	Asn	Ser 300	Cys	Leu	Asn	Pro	
	Phe 305	Leu	Tyr	Ala	Phe	Leu 310	Asp	Ala	Ser	Phe	Arg 315	Arg	Asn	Leu	Arg	Gln 320	
25	Leu	Ile	Thr	Cys	Arg 325	Ala	Ala	Ala									
	(172) IN	FORMA	OITA	1 FOF	SEÇ) ID	NO:1	71:									•
30	(i)	(B) (C)	LEN TYI STI	CE CH NGTH: PE: IN RANDE	100 nucle)2 ba eic a SS: s	ase p acid singl	airs	:								
	(i:	L) MC	LECU	JLE I	YPE:	DNA	A (ge	nomi	c)								
	(x:	i) SE	EQUE1	ICE I	ESCR	IPTI	ON:	SEQ	ID N	0:17	1:						
	ATGCAGGC	CG CI	GGGC	CACCO	AGA	GCCC	CCTT	GACA	GCAG	GG G	CTCC	TTCT	c cc	TCCC	CACG		60
35	ATGGGTGC	CA AC	CGTCI	CTCA	GGA	CAAI	rggc	ACTG	GCCA	.CA A	TGCC	ACCT	T CI	'CCGA	.GCCA	. 1	20
	CTGCCGTT	CC TC	TATO	TGCT	CCI	GCCC	CGCC	GTGT	ACTO	CG G	GATC	TGTG	C TG	TGGG	GCTG	1.	80

PCT/US99/23938 WO 00/22129

121

	ACTGGCAACA	CGGCCGTCAT	CCTTGTAATC	CTAAGGGCGC	CCAAGATGAA	GACGGTGACC	240
	AACGTGTTCA	TCCTGAACCT	GGCCGTCGCC	GACGGGCTCT	TCACGCTGGT	ACTGCCTGTC	300
	AACATCGCGG	AGCACCTGCT	GCAGTACTGG	CCCTTCGGGG	AGCTGCTCTG	CAAGCTGGTG	360
	CTGGCCGTCG	ACCACTACAA	CATCTTCTCC	AGCATCTACT	TCCTAGCCGT	GATGAGCGTG	420
5	GACCGATACC	TGGTGGTGCT	GGCCACCGTG	AGGTCCCGCC	ACATGCCCTG	GCGCACCTAC	480
	CGGGGGGCGA	AGGTCGCCAG	CCTGTGTGTC	TGGCTGGGCG	TCACGGTCCT	GGTTCTGCCC	540
	TTCTTCTCTT	TCGCTGGCGT	CTACAGCAAC	GAGCTGCAGG	TCCCAAGCTG	TGGGCTGAGC	600
	TTCCCGTGGC	CCGAGCAGGT	CTGGTTCAAG	GCCAGCCGTG	TCTACACGTT	GGTCCTGGGC	660
	TTCGTGCTGC	CCGTGTGCAC	CATCTGTGTG	CTCTACACAG	ACCTCCTGCG	CAGGCTGCGG	720
10	GCCGTGCGGC	TCCGCTCTGG	AGCCAAGGCT	CTAGGCAAGG	CCAGGCGGAA	GGTGAAAGTC	780
	CTGGTCCTCG	TCGTGCTGGC	CGTGTGCCTC	CTCTGCTGGA	CGCCCTTCCA	CCTGGCCTCT	840
	GTCGTGGCCC	TGACCACGGA	CCTGCCCCAG	ACCCCACTGG	TCATCAGTAT	GTCCTACGTC	900
	ATCACCAGCC	TCACGTACGC	CAACTCGTGC	CTGAACCCCT	TCCTCTACGC	CTTTCTAGAT	960
	GACAACTTCC	GGAAGAACTT	CCGCAGCATA	TTGCGGTGCT	GA		1002
15	(173) INFOR	RMATION FOR	SEQ ID NO:1	L72:			

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 333 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:172:

Met Gln Ala Ala Gly His Pro Glu Pro Leu Asp Ser Arg Gly Ser Phe 5

25 Ser Leu Pro Thr Met Gly Ala Asn Val Ser Gln Asp Asn Gly Thr Gly

> His Asn Ala Thr Phe Ser Glu Pro Leu Pro Phe Leu Tyr Val Leu Leu 40

Pro Ala Val Tyr Ser Gly Ile Cys Ala Val Gly Leu Thr Gly Asn Thr 50 55

Ala Val Ile Leu Val Ile Leu Arg Ala Pro Lys Met Lys Thr Val Thr. 70 75

30

	Asn	Val	Phe	Ile	Leu 85	Asn	Leu	Ala	Val	Ala 90	Asp	Gly	Leu	Phe	Thr 95	Leu
	Val	Leu	Pro	Val 100	Asn	Ile	Ala	Glu	His 105	Leu	Leu	Gln	Tyr	Trp	Pro	Phe
5	Gly	Glu	Leu 115	Leu	Cys	Lys	Leu	Val 120	Leu	Ala	Val	Asp	His 125	Туг	Asn	Ile
	Phe	Ser 130	Ser	Ile	Tyr	Phe	Leu 135	Ala	Val	Met	Ser	Val 140	Asp	Arg	Tyr	Leu
10	Val 145	Val	Leu	Ala	Thr	Val 150	Arg	Ser	Arg	His	Met 155	Pro	Trp	Arg	Thr	Tyr 160
	Arg	Gly	Ala	Lys	Val 165	Ala	Ser	Leu	Cys	Val 170	Trp	Leu	Gly	Val	Thr 175	Val
	Leu	Val	Leu	Pro 180	Phe	Phe	Ser	Phe	Ala 185	Gly	Val	Tyr	Ser	Asn 190	Glu	Leu
15	Gln	Val	Pro 195	Ser	Cys	Gly	Leu	Ser 200	Phe	Pro	Trp	Pro	Glu 205	Gln	Val	Trp
	Phe	Lys 210	Ala	Ser	Arg	Val	Tyr 215	Thr	Leu	Val	Leu	Gly 220	Phe	Val	Leu	Pro
20	Val 225	Cys	Thr	Ile	Cys	Val 230	Leu	Tyr	Thr	Asp	Leu 235	Leu	Arg	Arg	Leu	Arg 240
	Ala	Val	Arg	Leu	Arg 245	Ser	Gly	Ala	Lys	Ala 250	Leu	Gly	Lys	Ala	Arg 255	Arg
	Lys	Val	Lys	Val 260	Leu	Val	Leu	Val	Val 265	Leu	Ala	Val	Cys	Leu 270	Leu	Cys
25	Trp		Pro 275	Phe	His	Leu	Ala	Ser 280	Val	Val	Ala	Leu	Thr 285	Thr	qzA	Leu
	Pro	Gln 290	Thr	Pro	Leu	Val	Ile 295	Ser	Met	Ser	Tyr	Val 300	Ile	Thr	Ser	Leu
30	Thr 305	Tyr	Ala	Asn	Ser	Cys 310	Leu	Asn	Pro	Phe	Leu 315	Tyr	Ala	Phe	Leu	Asp 320
	Asp .	Asn	Phe	Arg	Lys 325	Asn	Phe	Arg	Ser	Ile 330	Leu	Arg	Cys			

(174) INFORMATION FOR SEQ ID NO:173:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1107 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:173:

	ATGGTCCTTG	AGGTGAGTGA	CCACCAAGTG	CTAAATGACG	CCGAGGTTGC	CGCCCTCCTG	60
	GAGAACTTCA	GCTCTTCCTA	TGACTATGGA	GAAAACGAGA	GTGACTCGTG	CTGTACCTCC	120
5	CCGCCCTGCC	CACAGGACTT	CAGCCTGAAC	TTCGACCGGG	CCTTCCTGCC	AGCCCTCTAC	180
	AGCCTCCTCT	TTCTGCTGGG	GCTGCTGGGC	AACGGCGCGG	TGGCAGCCGT	GCTGCTGAGC	240
	CGGCGGACAG	CCCTGAGCAG	CACCGACACC	TTCCTGCTCC	ACCTAGCTGT	AGCAGACACG	300
	CTGCTGGTGC	TGACACTGCC	GCTCTGGGCA	GTGGACGCTG	CCGTCCAGTG	GGTCTTTGGC	360
	TCTGGCCTCT	GCAAAGTGGC	AGGTGCCCTC	TTCAACATCA	ACTTCTACGC	AGGAGCCCTC	420
10	CTGCTGGCCT	GCATCAGCTT	TGACCGCTAC	CTGAACATAG	TTCATGCCAC	CCAGCTCTAC	480
	CGCCGGGGGC	CCCCGGCCCG	CGTGACCCTC	ACCTGCCTGG	CTGTCTGGGG	GCTCTGCCTG	540
	CTTTTCGCCC	TCCCAGACTT	CATCTTCCTG	TCGGCCCACC	ACGACGAGCG	CCTCAACGCC	600
	ACCCACTGCC	AATACAACTT	CCCACAGGTG	GGCCGCACGG	CTCTGCGGGT	GCTGCAGCTG	660
	GTGGCTGGCT	TTCTGCTGCC	CCTGCTGGTC	ATGGCCTACT	GCTATGCCCA	CATCCTGGCC	720
15	GTGCTGCTGG	TTTCCAGGGG	CCAGCGGCGC	CTGCGGGCCA	AGCGGCTGGT	GGTGGTGGTC	780
	GTGGTGGCCT	TTGCCCTCTG	CTGGACCCCC	TATCACCTGG	TGGTGCTGGT	GGACATCCTC	840
	ATGGACCTGG	GCGCTTTGGC	CCGCAACTGT	GGCCGAGAAA	GCAGGGTAGA	CGTGGCCAAG	900
	TCGGTCACCT	CAGGCCTGGG	CTACATGCAC	TGCTGCCTCA	ACCCGCTGCT	CTATGCCTTT	960
	GTAGGGGTCA	AGTTCCGGGA	GCGGATGTGG	ATGCTGCTCT	TGCGCCTGGG	CTGCCCCAAC	1020
20	CAGAGAGGGC	TCCAGAGGCA	GCCATCGTCT	TCCCGCCGGG	ATTCATCCTG	GTCTGAGACC	1080
	TCAGAGGCCT	CCTACTCGGG	CTTGTGA				1107

(175) INFORMATION FOR SEQ ID NO:174:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 368 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:174:

	Met 1	Val	Leu	Glu	Val 5	Ser	Asp	His	Gln	Val 10	Leu	Asn	Asp	Ala	Glu 15	Val
	Ala	Ala	Leu	Leu 20	Glu	Asn	Phe	Ser	Ser 25	Ser	Tyr	Asp	Tyr	Gly 30	Glu	Asn
5	Glu	Ser	Asp 35	Ser	Cys	Cys	Thr	Ser 40	Pro	Pro	Cys	Pro	Gln 45	Asp	Phe	Ser
	Leu	Asn 50	Phe	Asp	Arg	Ala	Phe 55	Leu	Pro	Ala	Leu	Tyr 60	Ser	Leu	Leu	Phe
10	Leu 65	Leu	Gly	Leu	Leu	Gly 70	Asn	Gly	Ala	Val	Ala 75	Ala	Val	Leu	Leu	Ser 80
	Arg	Arg	Thr	Ala	Leu 85	Ser	Ser	Thr	Asp	Thr 90	Phe	Leu	Leu	His	Leu 95	Ala
	Val	Ala	Asp	Thr 100	Leu	Leu	Val	Leu	Thr 105	Leu	Pro	Leu	Trp	Ala 110	Val	Asp
15	Ala	Ala	Val 115	Gln	Trp	Val	Phe	Gly 120	Ser	Gly	Leu	Cys	Lys 125	Val	Ala	Gly
	Ala	Leu 130	Phe	Asn	Ile	Asn	Phe 135	Tyr	Ala	Gly	Ala	Leu 140	Leu	Leu	Ala	Cys
20	Ile 145	Ser	Phe	Asp	Arg	Tyr 150	Leu	Asn	Ile	Val	His 155	Ala	Thr	Gln	Leu	Tyr 160
	Arg	Arg	Gly	Pro	Pro 165	Ala	Arg	Val	Thr	Leu 170	Thr	Cys	Leu	Ala	Val 175	Trp
	Gly	Leu	Cys	Leu 180	Leu	Phe	Ala	Leu	Pro 185	Asp	Phe	Ile	Phe	Leu 190	Ser	Ala
25	His	His	Asp 195	Glu	Arg	Leu	Asn	Ala 200	Thr	His	Cys	Gln	Tyr 205	Asn	Phe	Pro
	Gln	Val 210	Gly	Arg	Thr	Ala	Leu 215	Arg	Val	Leu	Gln	Leu 220	Val	Ala	Gly	Phe
30	Leu 225	Leu	Pro	Leu	Leu	Val 230	Met	Ala	Tyr	Cys	Tyr 235	Ala	His	Ile	Leu	Ala 240
	Val	Leu	Leu	Val	Ser 245	Arg	Gly	Gln	Arg	Arg 250	Leu	Arg	Ala	Lys	Arg 255	Leu
	Val	Val	Val	Val 260	Val	Val	Ala	Phe	Ala 265	Leu	Cys	Trp	Thr	Pro 270	Tyr	His
35	Leu	Val	Val 275	Leu	Val	Asp	Ile	Leu 280	Met	Asp	Leu	Gly	Ala 285	Leu	Ala	Arg
	Asn	Cys	Gly	Arg	Glu	Ser	Arg	Val	Asp	Val	Ala	Lys	Ser	Val	Thr	Ser

	5	290		295	5				300				
	Gly 1 305	Leu Gly '	Tyr Met	His Cys	s Cys	Leu	Asn	Pro 315	Leu	Leu	Tyr	Ala	Phe 320
5	Val (Gly Val 1	Lys Phe 325	Arg Glı	ı Arg	Met	Trp 330	Met	Leu	Leu	Leu	Arg 335	Leu
	Gly (Cys Pro A	Asn Gln 340	Arg Gly	⁄ Leu	Gln 345	Arg	Gln	Pro	Ser	Ser 350	Ser	Arg
	Arg A	Asp Ser S 355	Ser Trp	Ser Glu	Thr 360	Ser	Glu	Ala	Ser	Tyr 365	Ser	Gly	Leu
10	(176) INFC	ORMATION	FOR SEC	D ID NO:	175:								
15		SEQUENCE (A) LENG (B) TYPE (C) STRA (D) TOPO	E CHARAC ETH: 107 E: nucle ANDEDNES	TERISTI 4 base ic acid 5: sing	CS: pairs	5							
	(ii)	MOLECUI	LE TYPE:	DNA (g	enomi	.c)							
	(xi)	SEQUENC	CE DESCR	IPTION:	SEQ	ID N	0:17	5 :					
	ATGGCTGATG	ACTATGG	CTC TGA	ATCCACA	TCTI	'CCAT	GG A	AGAC	TACG	T TA	ACTT	'CAAC	60
	TTCACTGACT	TCTACTG	TGA GAA	AAACAAT	GTCA	.GGCA	GT T	TGCG	AGCC.	а тт	TCCT	CCCA	120
20	CCCTTGTACT	GGCTCGT	GTT CAT	CGTGGGT	GCCT	TGGG	CA A	CAGT	CTTG'	T TA	TCCT	TGTC	180
	TACTGGTACT	GCACAAG	AGT GAA	GACCATG	ACCG	ACAT	GT T	CCTT	TTGA	а тт	TGGC	AATT	240
	GCTGACCTCC	TCTTTCT	TGT CAC	TCTTCCC	TTCT	GGGC	CA T	TGCT	GCTG	C TG	ACCA	GTGG	300
	AAGTTCCAGA	CCTTCAT	GTG CAA	GGTGGTC	AACA	GCAT	GT A	CAAG.	ATGA	A CT	TCTA	CAGC	360
	TGTGTGTTGC	TGATCAT	GTG CAT	CAGCGTG	GACA	GGTA	CA T	TGCC	ATTG	c cc.	AGGC	CATG	420
25	AGAGCACATA	CTTGGAG	GGA GAA	AAGGCTT	TTGT	ACAG	CA A	AATG	GTTT	G CT	TTAC	CATC	480
	TGGGTATTGG	CAGCTGC	TCT CTG	CATCCCA	GAAA	TCTT	A TA	CAGC	CAAA:	r cai	AGGA	GGAA	540
	TCCGGCATTG	CTATCTG	CAC CAT	GGTTTAC	CCTA	GCGA:	rg A	GAGC	ACCA	A AC'	rga a (GTCA	600
	GCTGTCTTGA	CCCTGAA	GGT CAT	TCTGGGG	TTCT	TCCT	rc c	CTTC	GTGG:	r ca'	rggc'	TTGC	660
	TGCTATACCA	TCATCAT	TCA CAC	CCTGATA	CAAG	CCAA	SA AG	GTCT'	rcca <i>i</i>	A GC	ACAA	AGCC	720
30	AAGAAAGTGA	CCATCAC	TGT CCT	GACCGTC	TTTG	TCTT	T C	rcag:	FTTC	CT2	ACAA	CTGC	780
	ATTTTGTTGG	TGCAGAC	CAT TGAG	CGCCTAT	GCCA	ፐርጥጥር	ידי מי	מייר בי	ላ አ ር ጥር	ב ידירי	7000	TTCC	

ACCAACAT.	TG A	CATC	TGCT	T CC	AGGT	CACC	CAG	ACCA	TCG	CCTT	CTTC	CA C	AGTT	GCCT	G	900
AACCCTGT	rc T	CTAT	GTTT	T TG	TGGG	TGAG	AGA	TTCC	GCC	GGGA	тстс	GT G	AAAA	CCCT	G	960
AAGAACTTO	GG G	TTGC	ATCA	G CC	^GGC	CCAG	TGG	GTTT	CAT	TTAC	AAGG	AG A	.GAGG	GAAG	C 1	020
TTGAAGCT	GT C	GTCT.	ATGT	T GC	TGGA	GACA	ACC'	TCAG	GAG	CACT	CTCC	ст с	TGA		1	074
(177) INI	FORM	ATIO	N FO	R SE	Q ID	NO:	176:									
	(A (B (C) (D)) LE	CE C NGTH PE: R RAND POLOG	: 35 amine EDNE:	7 am o ac SS: not:	ino id rele	acid: vant	S								
(xi	i) SI	EQUEI	NCE I	DESC	RIPT	ION:	SEQ	ID I	NO:1	76 :						
Met 1	Ala	Asp	Asp	Tyr 5	Gly	Ser	Glu	Ser	Thr 10	Ser	Ser	Met	Glu	Asp 15	Tyr	
Val	Asn	Phe	Asn 20	Phe	Thr	Asp	Phe	Tyr. 25	Cys	Glu	Lys	Asn	Asn 30	Val	Arg	
Gln	Phe	Ala 35	Ser	His	Phe	Leu	Pro 40	Pro	Leu	Tyr	Trp	Leu 45	Val	Phe	Ile	
Val	Gly 50	Ala	Leu	Gly	Asn	Ser 55	Leu	Val	Ile	Leu	Val 60	Tyr	Trp	Tyr	Cys	
Thr 65	Arg	Val	Lys	Thr	Met 70	Thr	Asp	Met	Phe	Leu 75	Leu	Asn	Leu	Ala	Ile 80	
Ala	Asp	Leu	Leu	Phe 85	Leu	Val	Thr	Leu	Pro 90	Phe	Trp	Ala	Ile	Ala 95	Ala	
Ala	Asp	Gln	Trp 100	Lys	Phe	Gln	Thr	Phe 105	Met	Cys	Lys	Val	Val 110	Asn	Ser	
Met	Tyr	Lys 115	Met	Asn	Phe	Tyr	Ser 120	Cys	Val	Leu	Leu	Ile 125	Met	Cys	Ile	
	Val 130	Asp	Arg	Tyr	Ile	Ala 135	Ile	Ala	Gln	Ala	Met 140	Arg	Ala	His	Thr	
Trp 145	Arg	Glu	Lys	Arg	Leu 150	Leu	Tyr	Ser	Lys	Met 155	Val	Cys	Phe	Thr	Ile 160	
Trp	Val	Leu	Ala	Ala 165	Ala	Leu	Cys	Ile	Pro 170	Glu	Ile	Leu	Tyr	Ser 175	Gln	
Ile	Lys	Glu	Glu 180	Ser	Gly	Ile	Ala	Ile 185	Cys	Thr	Met	Val	Tyr 190	Pro	Ser	

	Asp	Glu	Ser 195	Thr	Lys	Leu	Lys	Ser 200	Ala	Val	Leu	Thr	Leu 205	Lys	Val	Ile	
	Leu	Gly 210	Phe	Phe	Leu	Pro	Phe 215	Val	Val	Met	Ala	Cys 220	Cys	Tyr	Thr	Ile	
5	Ile 225	Ile	His	Thr	Leu	Ile 230	Gln	Ala	Lys	Lys	Ser 235	Ser	Lys	His	Lys	Ala 240	
	Lys	Lys	Val	Thr	Ile 245	Thr	Val	Leu	Thr	Val 250	Phe	Val	Leu	Ser	Gln 255	Phe	
10	Pro	Tyr	Asn	Cys 260	Ile	Leu	Leu	Val	Gln 265	Thr	Ile	Asp	Ala	Туг 270	Ala	Met	
	Phe	Ile	Ser 275	Asn	Cys	Ala	Val	Ser 280	Thr	Asn	Ile	Asp	Ile 285	Cys	Phe	Gln	
	Val	Thr 290	Gln	Thr	Ile	Ala	Phe 295	Phe	His	Ser	Cys	Leu 300	Asn	Pro	Val	Leu	
15	Tyr 305	Val	Phe	Val	Gly	Glu 310	Arg	Phe	Arg	Arg	Asp 315	Leu	Val	Lys	Thr	Leu 320	
	Lys	Asn	Leu	Gly	Cys 325	Ile	Ser	Gln	Ala	Gln 330	Trp	Val	Ser	Phe	Thr 335	Arg	
20	Arg	Glu	Gly	Ser 340	Leu	Lys	Leu	Ser	Ser 345	Met	Leu	Leu	Glu	Thr 350	Thr	Ser	
	Gly	Ala	Leu 355	Ser	Leu												
	(178) IN	FORMA	10IT	1 FOR	SEÇ) ID	NO:1	77:									
25	(i)	(A) (B)	LEN TYI STF	CE CH NGTH: PE: r RANDE POLOG	111 ucle DNES	lO ba eic a SS: s	se p cid singl	airs	3							·	
	(i .i	i) MC	DLECT	JLE T	YPE:	DNA	4 (ge	enomi	.c)								
30	(xi	i) SE	EQUE1	ICE I	ESCR	RIPTI	ON:	SEQ	ID N	10:17	77 :						
	ATGGCCTC	AT CO	FACCE	ACTCG	GGG	CCCC	CAGG	GTTI	CTGA	CT I	TTTAT	TCTG	G GC	TGCC	GCCG	; (60
	GCGGTCAC	AA CI	rccc	CCAA	CCA	AGAGC	CGCA	GAGG	CCTC	GG C	CGGGC	AACG	G GT	CGGT	GGCT	` 1:	20
	GGCGCGGA																80
	GGGCTGAT	CG TO	CTGC	TCTA	CAG	CGTC	GTG	GTGG	TCGI	GG G	GCTG	GTGG	G CA	ACTG	CCTG	24	40
35	CTGGTGCTC	GG TG	SATC	CGCG	GGI	GCCG	CGG	CTGC	ACAA	CG I	GACG	AACT	T CC	TCAT	'CGGC	3 (00

128

	AACCTGGCCT	TGTCCGACGT	GCTCATGTGC	ACCGCCTGCG	TGCCGCTCAC	GCTGGCCTAT	360
	GCCTTCGAGC	CACGCGGCTG	GGTGTTCGGC	GGCGGCCTGT	GCCACCTGGT	CTTCTTCCTG	420
	CAGCCGGTCA	CCGTCTATGT	GTCGGTGTTC	ACGCTCACCA	CCATCGCAGT	GGACCGCTAC	480
	GTCGTGCTGG	TGCACCCGCT	GAGGCGCGCA	TCTCGCTGCG	CCTCAGCCTA	CGCTGTGCTG	540
5	GCCATCTGGG	CGCTGTCCGC	GGTGCTGGCG	CTGCCGCCCG	CCGTGCACAC	CTATCACGTG	600
	GAGCTCAAGC	CGCACGACGT	GCGCCTCTGC	GAGGAGTTCT	GGGGCTCCCA	GGAGCGCCAG	660
	CGCCAGCTCT	ACGCCTGGGG	GCTGCTGCTG	GTCACCTACC	TGCTCCCTCT	GCTGGTCATC	720
	CTCCTGTCTT	ACGTCCGGGT	GTCAGTGAAG	CTCCGCAACC	GCGTGGTGCC	GGGCTGCGTG	780
	ACCCAGAGCC	AGGCCGACTG	GGACCGCGCT	CGGCGCCGGC	GCACCAAATG	CTTGCTGGTG	840
10	GTGGTCGTGG	TGGTGTTCGC	CGTCTGCTGG	CTGCCGCTGC	ACGTCTTCAA	CCTGCTGCGG	900
	GACCTCGACC	CCCACGCCAT	CGACCCTTAC	GCCTTTGGGC	TGGTGCAGCT	GCTCTGCCAC	960
	TGGCTCGCCA	TGAGTTCGGC	CTGCTACAAC	CCCTTCATCT	ACGCCTGGCT	GCACGACAGC	1020
	TTCCGCGAGG	AGCTGCGCAA	ACTGTTGGTC	GCTTGGCCCC	GCAAGATAGC	CCCCCATGGC	1080
	CAGAATATGA	CCGTCAGCGT	GGTCATCTGA				1110
15	(179) INFOR	RMATION FOR	SEQ ID NO:1	.78:			

- 1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 369 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
- 20 (D) TOPOLOGY: not relevant
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:178:

Met Ala Ser Ser Thr Thr Arg Gly Pro Arg Val Ser Asp Leu Phe Ser 5

25 Gly Leu Pro Pro Ala Val Thr Thr Pro Ala Asn Gln Ser Ala Glu Ala 25

> Ser Ala Gly Asn Gly Ser Val Ala Gly Ala Asp Ala Pro Ala Val Thr 35 40

Pro Phe Gln Ser Leu Gln Leu Val His Gln Leu Lys Gly Leu Ile Val

Leu Leu Tyr Ser Val Val Val Val Gly Leu Val Gly Asn Cys Leu 70

	Leu	val	Let	ı Val	. Ile 85	Ala	Arg	Val	. Pro	90	j Leu	His	Asn	Val	Thr 95	Ası
	Phe	Lev	ıle	e Gly 100		Leu	Ala	Leu	Ser 105		Val	Leu	Met	Cys		Ala
5	Cys	Val	Pro 115	Leu	Thr	Leu	Ala	Tyr 120		Phe	e Glu	Pro	Arg 125		Trp	Val
	Phe	Gly 130	Gly	Gly	Leu	Cys	His 135		Val	Phe	Phe	Leu 140		Pro	Val	Thr
10	Val 145	Tyr	Val	Ser	Val	Phe 150		Leu	Thr	Thr	Ile 155	Ala	Val	Asp	Arg	Tyr 160
	Val	Val	Leu	Val	His 165	Pro	Leu	Arg	Arg	Ala 170	Ser	Arg	Cys	Ala	Ser 175	Ala
	Tyr	Ala	Val	Leu 180	Ala	Ile	Trp	Ala	Leu 185	Ser	Ala	Val	Leu	Ala 190	Leu	Pro
15	Pro	Ala	Val 195	His	Thr	Tyr	His	Val 200	Glu	Leu	Lys	Pro	His 205	Asp	Val	Arg
	Leu	Cys 210	Glu	Glu	Phe	Trp	Gly 215	Ser	Gln	Glu	Arg	Gln 220	Arg	Gln	Leu	Tyr
20	Ala 225	Trp	Gly	Leu	Leu	Leu 230	Val	Thr	Tyr	Leu	Leu 235	Pro	Leu	Leu	Val	Ile 240
	Leu	Leu	Ser	Tyr	Val 245	Arg	Val	Ser	Val	Lys 250	Leu	Arg	Asn	Arg	Val 255	Val
	Pro	Gly	Cys	Val 260	Thr	Gln	Ser	Gln	Ala 265	Asp	Trp	Asp	Arg	Ala 270	Arg	Arg
25	Arg	Arg	Thr 275	Lys	Cys	Leu	Leu	Val 280	Val	Val	Val	Val	Val 285	Phe	Ala	Val
	Cys	Trp 290	Leu	Pro	Leu	His	Val 295	Phe	Asn	Leu	Leu	Arg 300	Asp	Leu	Asp	Pro
30	His 305	Ala	Ile	Asp	Pro	Tyr 310	Ala	Phe	Gly	Leu	Val 315	Gln	Leu	Leu	Cys	His 320
	Trp	Leu	Ala	Met	Ser 325	Ser	Ala	Cys	Tyr	Asn 330	Pro	Phe	Ile	Tyr	Ala 335	Trp
	Leu	His	Asp	Ser 340	Phe	Arg	Glu	Glu	Leu 345	Arg	Lys	Leu	Leu	Val 350	Ala	Trp
35	Pro	Arg	Lys 355	Ile	Ala	Pro	His	Gly 360	Gln	Asn	Met	Thr	Val 365	Ser	Val	Val
	T1 -															

130

(180)	INFORMATION	FOR	SEQ	$_{ m ID}$	NO:179
-------	-------------	-----	-----	------------	--------

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1083 base pairs
- (B) TYPE: nucleic acid

5

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:179:

10	ATGGACCCAG	AAGAAACTTC	AGTTTATTTG	GATTATTACT	ATGCTACGAG	CCCAAACTCT	60
	GACATCAGGG	AGACCCACTC	CCATGTTCCT	TACACCTCTG	TCTTCCTTCC	AGTCTTTTAC	120
	ACAGCTGTGT	TCCTGACTGG	AGTGCTGGGG	AACCTTGTTC	TCATGGGAGC	GTTGCATTTC	180
	AAACCCGGCA	GCCGAAGACT	GATCGACATC	TTTATCATCA	ATCTGGCTGC	CTCTGACTTC	240
	ATTTTTCTTG	TCACATTGCC	TCTCTGGGTG	GATAAAGAAG	CATCTCTAGG	ACTGTGGAGG	300
15	ACGGGCTCCT	TCCTGTGCAA	AGGGAGCTCC	TACATGATCT	CCGTCAATAT	GCACTGCAGT	360
	GTCCTCCTGC	TCACTTGCAT	GAGTGTTGAC	CGCTACCTGG	CCATTGTGTG	GCCAGTCGTA	420
	TCCAGGAAAT	TCAGAAGGAC	AGACTGTGCA	TATGTAGTCT	GTGCCAGCAT	CTGGTTTATC	480
	TCCTGCCTGC	TGGGGTTGCC	TACTCTTCTG	TCCAGGGAGC	TCACGCTGAT	TGATGATAAG	540
	CCATACTGTG	CAGAGAAAAA	GGCAACTCCA	ATTAAACTCA	TATGGTCCCT	GGTGGCCTTA	600
20	ATTTTCACCT	TTTTTGTCCC	TTTGTTGAGC	ATTGTGACCT	GCTACTGTTG	CATTGCAAGG	660
	AAGCTGTGTG	CCCATTACCA	GCAATCAGGA	AAGCACAACA	AAAAGCTGAA	GAAATCTAAG	720
	AAGATCATCT	TTATTGTCGT	GGCAGCCTTT	CTTGTCTCCT	GGCTGCCCTT	CAATACTTTC	780
	AAGTTCCTGG	CCATTGTCTC	TGGGTTGCGG	CAAGAACACT	ATTTACCCTC	AGCTATTCTT	840
	CAGCTTGGTA	TGGAGGTGAG	TGGACCCTTG	GCATTTGCCA	ACAGCTGTGT	CAACCCTTTC	900
25	ATTTACTATA	TCTTCGACAG	CTACATCCGC	CGGGCCATTG	TCCACTGCTT	GTGCCCTTGC	960
	CTGAAAAACT	ATGACTTTGG	GAGTAGCACT	GAGACATCAG	ATAGTCACCT	CACTAAGGCT	1020
	CTCTCCACCT	TCATTCATGC	AGAAGATTTT	GCCAGGAGGA	GGAAGAGGTC	TGTGTCACTC	1080
	TAA						1083

(181) INFORMATION FOR SEQ ID NO:180:

- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein

	(i:	i) M(OLECU	JLE 1	TYPE	: pro	otei	n								
5	(x:	i) SI	EQUE	NCE I	DESCI	RIPT	ION:	SEQ	ID 1	10:18	30:					
	Met 1	Asp	Pro	Glu	Glu 5	Thr	Ser	Val	Tyr	Leu 10	Asp	Tyr	Tyr	Tyr	Ala 15	Thr
	Ser	Pro	Asn	Ser 20	Asp	Ile	Arg	Glu	Thr 25	His	Ser	His	Val	Pro 30	Tyr	Thr
10	Ser	Val	Phe 35	Leu	Pro	Val	Phe	Tyr 40	Thr	Ala	Val	Phe	Leu 45	Thr	Gly	Val
	Leu	Gly 50	Așn	Leu	Val	Leu	Met 55	Gly	Ala	Leu	His	Phe 60	Lys	Pro	Gly	Ser
15	Arg 65	Arg	Leu	Ile	Asp	Ile 70	Phe	Ile	Ile	Asn	Leu 75	Ala	Ala	Ser	Asp	Phe 80
	Ile	Phe	Leu	Val	Thr 85	Leu	Pro	Leu	Trp	Val 90	Asp	Lys	Glu	Ala	Ser 95	Leu
	Gly	Leu	Trp	Arg 100	Thr	Gly	Ser	Phe	Leu 105	Cys	Lys	Gly	Ser	Ser 110	Tyr	Met
20	Ile	Ser	Val 115	Asn	Met	His	Cys	Ser 120	Val	Leu	Leu	Leu	Thr 125	Cys	Met	Ser
	Val	Asp 130	Arg	Tyr	Leu	Ala	Ile 135	Val	Trp	Pro	Val	Val 140	Ser	Arg	Lys	Phe
25	Arg 145	Arg	Thr	Asp	Cys	Ala 150	Tyr	Val	Val	Cys	Ala 155	Ser	Ile	Trṗ	Phe	Ile 160
	Ser	Cys	Leu	Leu	Gly 165	Leu	Pro	Thr	Leu	Leu 170	Ser	Arg	Glu	Leu	Thr 175	Leu
	Ile	Asp	Asp	Lys 180	Pro	Tyr	Cys	Ala	Glu 185	Lys	Lys	Ala	Thr	Pro 190	Ile	Lys
30	Leu	Ile	Trp 195	Ser	Leu	Val	Ala	Leu 200	Ile	Phe	Thr	Phe	Phe 205	Val	Pro	Leu
	Leu	Ser 210	Ile	Val	Thr	Cys	Туг 215	Cys	Cys	Ile	Ala	Arg 220	Lys	Leu	Cys	Ala
35	His 225	Tyr	Gln	Gln	Ser	Gly 230	Lys	His	Asn	Lys	Lys 235	Leu	Lys	Lys	Ser	Lys 240
	Lys	Ile	Ile	Phe	Ile 245	Val	Val	Ala	Ala	Phe 250	Leu	Val	Ser	Trp	Leu 255	Pro

	Phe	Asn	Thr	Phe 260	Lys	Phe	Leu	Ala	Ile 265	Val	Ser	Gly	Leu	Arg 270	Gln	Glu	
	His	Tyr	Leu 275	Pro	Ser	Ala	Ile	Leu 280	Gln	Leu	Gly	Met	Glu 285	Val	Ser	Gly	
5	Pro	Leu 290	Ala	Phe	Ala	Asn	Ser 295	Cys	Val	Asn	Pro	Phe 300	Ile	Tyr	Tyr	Ile	
	Phe 305	Asp	Ser	Tyr	Ile	Arg 310	Arg	Ala	Ile	Val	His 315	Cys	Leu	Cys	Pro	Cys 320	
10	Leu	Lys	Asn	Tyr	Asp 325	Phe	Gly	Ser	Ser	Thr 330	Glu	Thr	Ser	Asp	Ser 335	His	
	Leu	Thr	Lys	Ala 340	Leu	Ser	Thr	Phe	Ile 345	His	Ala	Glu	Asp	Phe 350	Ala	Arg	
	Arg	Arg	Lys 355	Arg	Ser	Val	Ser	Leu 360									
15	(182) IN	FORM	1OITA	1 FOR	SEÇ) ID	NO:	181:									
	(i)	SEÇ	QUENC	CE CH	LARAC	TER	STIC	CS:									
			LEN TYP					oairs	5								
20		(C)	STE	RANDE	DNES	SS: 8	ingl	le									
-	1::								\								
			OLECU														
			EQUEN														
	ATGAATGG	CC TI	rgaac	TGGC	TCC	CCCF	AGGT	CTGA	TCAC	CA I	ACTTO	TCCC	T GO	CCAC	GGCA	7	60
	GAGCAATGT	rg go	CCAGG	SAGAC	GCC	ACTO	GAG	AACA	TGCT	GT I	rcgcc	TCCT	T CI	ACCI	TCTG	; 1	.20
25	GATTTTATO	CC TC	GCTI	TAGT	TGG	CAAT	CACC	CTGG	CTCI	GT C	GCTI	TTCA	T CC	GAGA	CCAC	. 1	.80
	AAGTCCGGG	SA CO	CCCGG	CCAA	CGI	GTTC	CCTG	ATGC	ATCI	GG (CCGTG	GCCG	A CI	TGTC	:GTGC	. 2	40
	GTGCTGGTC	CC TC	GCCA	CCCG	CCI	GGTC	CTAC	CACI	TCTC	TG G	GAAC	CACT	G GC	CATI	TGGG	3	00
	GAAATCGCA	AT GO	CCGTC	TCAC	CGG	CTTC	CTC	TTCI	ACCI	CA A	CATG	TACG	C CA	GCAT	CTAC	: 3	60
	TTCCTCACC	CT GO	CATCA	\GCGC	CGA	CCGI	TTC	CTGG	CCAI	TG I	GCAC	CCGG	T CA	AGTC	CCTC	4	20
30	AAGCTCCGC	CA GO	SCCCC	TCTA	CGC	ACAC	CTG	GCCI	GTGC	CT T	CCTG	TGGG	T GG	TGGI	GGCT	4	80
	GTGGCCATC	G CC	CCCGC	TGCT	GGI	'GAGC	CCA	CAGA	CCGI	GC F	GACC	AACC	A CA	CGGT	GGTC	: 5	40
	TGCCTGCAG	C TO	STACC	GGGA	GAA	GGCC	CTCC	CACC	'ATGC	CC 1	GGTG	TCCC	T GG	CAGT	GGCC	: 6	00
	TTCACCTTC	cc cc	STTCA	TCAC	CAC	GGTC	CACC	TGCT	'ACCI	GC 1	GATO	ATCC	G CA	GCCI	'GCGG	6	60

	133
	CAGGGCCTGC GTGTGGAGAA GCGCCTCAAG ACCAAGGCAA AACGCATGAT CGCCATAGTG 720
	CTGGCCATCT TCCTGGTCTG CTTCGTGCCC TACCACGTCA ACCGCTCCGT CTACGTGCTG 780
	CACTACCGCA GCCATGGGGC CTCCTGCGCC ACCCAGCGCA TCCTGGCCCT GGCAAACCGC 840
	ATCACCTCCT GCCTCACCAG CCTCAACGGG GCACTCGACC CCATCATGTA TTTCTTCGTG 900
5	GCTGAGAAGT TCCGCCACGC CCTGTGCAAC TTGCTCTGTG GCAAAAGGCT CAAGGGCCCG 960
	CCCCCCAGCT TCGAAGGGAA AACCAACGAG AGCTCGCTGA GTGCCAAGTC AGAGCTGTGA 1020
	(183) INFORMATION FOR SEQ ID NO:182:
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 339 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: not relevant (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:182:
15	Met Asn Gly Leu Glu Val Ala Pro Pro Gly Leu Ile Thr Asn Phe Ser
13	1 5 10 15
	Leu Ala Thr Ala Glu Gln Cys Gly Gln Glu Thr Pro Leu Glu Asn Met 20 25 30
20	Leu Phe Ala Ser Phe Tyr Leu Leu Asp Phe Ile Leu Ala Leu Val Gly 35 40 45
	Asn Thr Leu Ala Leu Trp Leu Phe Ile Arg Asp His Lys Ser Gly Thr 50 55 60
	Pro Ala Asn Val Phe Leu Met His Leu Ala Val Ala Asp Leu Ser Cys 65 70 75 80

Val Leu Val Leu Pro Thr Arg Leu Val Tyr His Phe Ser Gly Asn His 85 90 95

Trp Pro Phe Gly Glu Ile Ala Cys Arg Leu Thr Gly Phe Leu Phe Tyr 100 105 110

Leu Asn Met Tyr Ala Ser Ile Tyr Phe Leu Thr Cys Ile Ser Ala Asp 115 120 125

Arg Phe Leu Ala Ile Val His Pro Val Lys Ser Leu Lys Leu Arg Arg 130 135 140

35 Val Ala Met Ala Pro Leu Leu Val Ser Pro Gln Thr Val Gln Thr Asn

					165					170					175	
	His	Thr	Val	Val 180	Cys	Leu	Gln	Leu	Tyr 185		Glu	Lys	Ala	Ser 190		His
5	Ala	Leu	Val 195	Ser	Leu	Ala	Val	Ala 200	Phe	Thr	Phe	Pro	Phe 205	Ile	Thr	Thr
	Val	Thr 210	Cys	Tyr	Leu	Leu	Ile 215	Ile	Arg	Ser	Leu	Arg 220	Gln	Gly	Leu	Arg
	Val 225	Glu	Lys	Arg	Leu	Lys 230	Thr	Lys	Ala	Lys	Arg 235	Met	Ile	Ala	Ile	Val 240
10	Leu	Ala	Ile	Phe	Leu 245	Val	Cys	Phe	Val	Pro 250	Tyr	His	Val	Asn	Arg 255	Ser
	Val	Tyr	Val	Leu 260	His	Tyr	Arg	Ser	His 265	Gly	Ala	Ser	Cys	Ala 270	Thr	Gln
15	Arg	Ile	Leu 275	Ala	Leu	Ala	Asn	Arg 280	Ile	Thr	Ser	Cys	Leu 285	Thr	Ser	Leu
	Asn	Gly 290	Ala	Leu	Asp	Pro	Ile 295	Met	Tyr	Phe	Phe	Val 300	Ala	Glu	Lys	Phe
	Arg 305	His	Ala	Leu	Cys	Asn 310	Leu	Leu	Cys	Gly	Lys 315	Arg	Leu	Lys	Gly	Pro 320
20	Pro	Pro	Ser	Phe	Glu 325	Gly	Lys	Thr	Asn	Glu 330	Ser	Ser	Leu	Ser	Ala 335	Lys
	Ser	Glu	Leu													
	(183) INF	ORMA	TION	FOR	SEQ	ID	NO : 1	83:								
25	(i)	(A) (B) (C)	UENC LEN TYP STR TOP	GTH: E: n ANDE	996 ucle DNES	bas ic a S: s	e pa cid ingl	irs								
30	(ii) MO	LECU	LE T	YPE:	DNA	(ge	nomi	c)							
	(xi) SE	QUEN	CE D	ESCR	IPTI	ON:	SEQ :	ID N	0:18	3:					
	ATGATCACC	C TG	AACA	ATCA	AGA'	TCAA	CCT	GTCC	CTTT"	TA A	CAGC'	rcac:	A TC	CAGA'	TGAA	60
	TACAAAATT	G CA	GCCC'	TTGT	CTT	CTAT	AGC '	TGTA	rctt(CA T	AATT	GGAT'	r at	TTGT	TAAC	120
	ATCACTGCA	T TA	TGGG'	TTTT	CAG'	TTGT	ACC A	ACCA	AGAA	GA G	AACC	ACGG:	T AA	CCAT	СТАТ	180
35	ATGATGAAT	G TG	GCAT'	TAGT	GGA	CTTG	ATA '	TTTA:	TAAT	GA C	TTA	CCCT	r TC	GAAT	GT TT	240

	TATTATGCAA AAGATGAATG GCCATTTGGA GAGTACTTCT GCCAGATTCT TGGAGCTCTC 30	00
	ACAGTGTTTT ACCCAAGCAT TGCTTTATGG CTTCTTGCCT TTATTAGTGC TGACAGATAC 36	60
	ATGGCCATTG TACAGCCGAA GTACGCCAAA GAACTTAAAA ACACGTGCAA AGCCGTGCTG 42	20
	GCGTGTGTGG GAGTCTGGAT AATGACCCTG ACCACGACCA CCCCTCTGCT ACTGCTCTAT 48	30
5	AAAGACCCAG ATAAAGACTC CACTCCCGCC ACCTGCCTCA AGATTTCTGA CATCATCTAT 54	40
	CTAAAAGCTG TGAACGTGCT GAACCTCACT CGACTGACAT TTTTTTTCTT GATTCCTTTG 60	00
	TTCATCATGA TTGGGTGCTA CTTGGTCATT ATTCATAATC TCCTTCACGG CAGGACGTCT 66	50
	AAGCTGAAAC CCAAAGTCAA GGAGAAGTCC AAAAGGATCA TCATCACGCT GCTGGTGCAG 72	20
•	GTGCTCGTCT GCTTTATGCC CTTCCACATC TGTTTCGCTT TCCTGATGCT GGGAACGGGG 78	30
10	GAGAATAGTT ACAATCCCTG GGGAGCCTTT ACCACCTTCC TCATGAACCT CAGCACGTGT 84	10
	CTGGATGTGA TTCTCTACTA CATCGTTTCA AAACAATTTC AGGCTCGAGT CATTAGTGTC 90	00
	ATGCTATACC GTAATTACCT TCGAAGCATG CGCAGAAAAA GTTTCCGATC TGGTAGTCTA 96	0
	AGGTCACTAA GCAATATAAA CAGTGAAATG TTATGA 99	96
	(185) INFORMATION FOR SEQ ID NO:184:	
15	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 331 amino acids(B) TYPE: amino acid(C) STRANDEDNESS:(D) TOPOLOGY: not relevant	
20	(ii) MOLECULE TYPE: protein	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:184:	
	Met Ile Thr Leu Asn Asn Gln Asp Gln Pro Val Pro Phe Asn Ser Ser 1 5 10 15	
25	His Pro Asp Glu Tyr Lys Ile Ala Ala Leu Val Phe Tyr Ser Cys Ile 20 25 30	
	Phe Ile Ile Gly Leu Phe Val Asn Ile Thr Ala Leu Trp Val Phe Ser 35 40 45	
	Cys Thr Thr Lys Lys Arg Thr Thr Val Thr Ile Tyr Met Met Asn Val 50 55 60	
30	Ala Leu Val Asp Leu Ile Phe Ile Met Thr Leu Pro Phe Arg Met Phe 65 70 75 80	
	Tyr Tyr Ala Lys Asp Glu Trp Pro Phe Gly Glu Tyr Phe Cys Gln Ile 85 90 95	

		Leu	Gly	Ala	Leu 100	Thr	Val	Phe	Tyr	Pro 105	Ser	Ile	Ala	Leu	Trp 110	Leu	Leu
		Ala	Phe	Ile 115	Ser	Ala	Asp	Arg	Tyr 120	Met	Ala	Ile	Val	Gln 125	Pro	Lys	Tyr
5		Ala	Lys 130	Glu	Leu	Lys	Asn	Thr 135	Cys	Lys	Ala	Val	Leu 140	Ala	Cys	Val	Gly
		Val 145	Trp	Ile	Met	Thr	Leu 150	Thr	Thr	Thr	Thr	Pro 155	Leu	Leu	Leu	Leu	Tyr 160
10		Lys	Asp	Pro	Asp	Lys 165	Asp	Ser	Thr	Pro	Ala 170	Thr	Cys	Leu	Lys	Ile 175	Ser
		Asp	Ile	Ile	Tyr 180	Leu	Lys	Ala	Val	Asn 185	Val	Leu	Asn	Leu	Thr 190	Arg	Leu
		Thr	Phe	Phe 195	Phe	Leu	Ile	Pro	Leu 200	Phe	Ile	Met	Ile	Gly 205	Cys	Tyr	Leu
15		Val	Ile 210	Ile	His	Asn	Leu	Leu 215	His	Gly	Arg	Thr	Ser 220	Lys	Leu	Lys	Pro
		Lys 225	Val	Lys	Glu	Lys	Ser 230	Lys	Arg	Ile	Ile	Ile 235	Thr	Leu	Leu	Val	Gln 240
20		Val	Leu	Val	Cys	Phe 245	Met	Pro	Phe	His	Ile 250	Cys	Phe	Ala	Phe	Leu 255	Met
	:	Leu	Gly	Thr	Gly 260	Glu	Asn	Ser	Tyr	Asn 265	Pro	Trp	Gly	Ala	Phe 270	Thr	Thr
		Phe	Leu	Met 275	Asn	Leu	Ser	Thr	Cys 280	Leu	Asp	Val	Ile	Leu 285	Tyr	Tyr	Ile
25	•	Val	Ser 290	Lys	Gln	Phe	Gln	Ala 295	Arg	Val	Ile	Ser	Val 300	Met	Leu	Tyr	Arg
		Asn 305	Tyr	Leu	Arg	Ser	Met 310	Arg	Arg	Lys	Ser	Phe 315	Arg	Ser	Gly	Ser	Leu 320
30	<u>;</u>	Arg	Ser	Leu	Ser	Asn 325	Ile	Asn	Ser	Glu	Met 330	Leu					
	(186)		-) ID CTERI										
35		(1)	(A) (B) (C)	LEN TYP	IGTH: PE: r RANDE	107 nucle EDNES	77 ba eic a SS: s linea	se p cid ingl	airs	S							
		(ii	.) MC	LECU	JLE I	YPE:	DNA	ı (ge	nomi	.c)							

PCT/US99/23938

137

	(xi)	SEQUENCE DE	ESCRIPTION:	SEQ ID NO:	185:		
	ATGCCCTCTG	TGTCTCCAGC	GGGGCCCTCG	GCCGGGGCAG	TCCCCAATGC	CACCGCAGTG	60
	ACAACAGTGC	GGACCAATGC	CAGCGGGCTG	GAGGTGCCCC	TGTTCCACCT	GTTTGCCCGG	120
	CTGGACGAGG	AGCTGCATGG	CACCTTCCCA	GGCCTGTGCG	TGGCGCTGAT	GGCGGTGCAC	180
5	GGAGCCATCT	TCCTGGCAGG	GCTGGTGCTC	AACGGGCTGG	CGCTGTACGT	CTTCTGCTGC	240
	CGCACCCGGG	CCAAGACACC	CTCAGTCATC	TACACCATCA	ACCTGGTGGT	GACCGATCTA	300
	CTGGTAGGGC	TGTCCCTGCC	CACGCGCTTC	GCTGTGTACT	ACGGCGCCAG	GGGCTGCCTG	360
	CGCTGTGCCT	TCCCGCACGT	CCTCGGTTAC	TTCCTCAACA	TGCACTGCTC	CATCCTCTTC	420
	CTCACCTGCA	TCTGCGTGGA	CCGCTACCTG	GCCATCGTGC	GGCCCGAAGG	CTCCCGCCGC	480
10	TGCCGCCAGC	CTGCCTGTGC	CAGGGCCGTG	TGCGCCTTCG	TGTGGCTGGC	CGCCGGTGCC	540
	GTCACCCTGT	CGGTGCTGGG	CGTGACAGGC	AGCCGGCCCT	GCTGCCGTGT	CTTTGCGCTG	600
	ACTGTCCTGG	AGTTCCTGCT	GCCCCTGCTG	GTCATCAGCG	TGTTTACCGG	CCGCATCATG	660
	TGTGCACTGT	CGCGGCCGGG	TCTGCTCCAC	CAGGGTCGCC	AGCGCCGCGT	GCGGGCCAAG	720
	CAGCTCCTGC	TCACGGTGCT	CATCATCTTT	CTCGTCTGCT	TCACGCCCTT	CCACGCCCGC	780
15	CAAGTGGCCG	TGGCGCTGTG	GCCCGACATG	CCACACCACA	CGAGCCTCGT	GGTCTACCAC	840
	GTGGCCGTGA	CCCTCAGCAG	CCTCAACAGC	TGCATGGACC	CCATCGTCTA	CTGCTTCGTC	900
	ACCAGTGGCT	TCCAGGCCAC	CGTCCGAGGC	CTCTTCGGCC	AGCACGGAGA	GCGTGAGCCC	960
	AGCAGCGGTG	ACGTGGTCAG	CATGCACAGG	AGCTCCAAGG	GCTCAGGCCG	TCATCACATC	1020
	CTCAGTGCCG	GCCCTCACGC	CCTCACCCAG	GCCCTGGCTA	ATGGGCCCGA	GGCTTAG	1077
20	(187) INFOF	RMATION FOR	SEQ ID NO:1	186:			
25	(SEQUENCE CHA (A) LENGTH: (B) TYPE: am (C) STRANDED (D) TOPOLOGY	358 amino a nino acid DNESS: 7: not relev	acids vant			
	(11)	MOLECULE TY	re: protein	1			

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:186:

Met Pro Ser Val Ser Pro Ala Gly Pro Ser Ala Gly Ala Val Pro Asn 1 5 10 15

Ala Thr Ala Val Thr Thr Val Arg Thr Asn Ala Ser Gly Leu Glu Val 20 25 30

	Pro	Leu	Phe 35	His	Leu	Phe	Ala	Arg 40	Leu	Asp	Glu	Glu	Leu 45	His	Gly	Thr
	Phe	Pro 50	Gly	Leu	Cys	Val	Ala 55	Leu	Met	Ala	Val	His 60	Gly	Ala	Ile	Phe
5	Leu 65	Ala	Gly	Leu	Val	Leu 70	Asn	Gly	Leu	Ala	Leu 75	Tyr	Val	Phe	Cys	Cys 80
	Arg	Thr	Arg	Ala	Lys 85	Thr	Pro	Ser	Val	Ile 90	Tyr	Thr	Ile	Asn	Leu 95	Val
10	Val	Thr	Asp	Leu 100	Leu	Val	Gly	Leu	Ser 105	Leu	Pro	Thr	Arg	Phe 110	Ala	Val
	Tyr	Tyr	Gly 115	Ala	Arg	Gly	Cys	Leu 120	Arg	Cys	Ala	Phe	Pro 125	His	Val	Leu
	Gly	Tyr 130	Phe	Leu	Asn	Met	His 135	Cys	Ser	Ile	Leu	Phe 140	Leu	Thr	Cys	Ile
15	Cys 145	Val	Asp	Arg	Tyr	Leu 150	Ala	Ile	Val	Arg	Pro 155	Glu	Gly	Ser	Arg	Ala 160
	Cys	Arg	Gln	Pro	Ala 165	Cys	Ala	Arg	Ala	Val 170	Cys	Ala	Phe	Val	Trp 175	Leu
20	Ala	Ala	Gly	Ala 180	Val	Thr	Leu	Ser	Val 185	Leu	Gly	Val	Thr	Gly 190	Ser	Arg
	Pro	Cys	Cys 195	Arg	Val	Phe	Ala	Leu 200	Thr	Val	Leu	Glu	Phe 205	Leu	Leu	Pro
	Leu	Leu 210	Val	Ile	Ser	Val	Phe 215	Thr	Gly	Arg	Ile	Met 220	Cys	Ala	Leu	Ser
25	Arg 225	Pro	Gly	Leu	Leu	His 230	Gln	Gly	Arg	Gln	Arg 235	Arg	Val	Arg	Ala	Lys 240
	Gln	Leu	Leu	Leu	Thr 245	Val	Leu	Ile	Ile	Phe 250	Leu	Val	Cys	Phe	Thr 255	Pro
30	Phe	His	Ala	Arg 260	Gln	Val	Ala	Val	Ala 265	Leu	Trp	Pro	Asp	Met 270	Pro	His
	His	Thr	Ser 275	Leu	Val	Val	Tyr	His 280	Val	Ala	Val	Thr	Leu 285	Ser	Ser	Leu
	Asn	Ser 290	Cys	Met	Asp	Pro	Ile 295	Val	Tyr	Cys	Phe	Val 300	Thr	Ser	Gly	Phe
35	Gln 305	Ala	Thr	Val	Arg	Gly 310	Leu	Phe	Gly	Gln	His 315	Gly	Glu	Arg	Glu	Pro 320
	Ser	Ser	Gly	Asp	Val	Val	Ser	Met	His	Ara	Ser	Ser	Lvs	Glv	Ser	Glv

139

325 . 330 335

Arg His His Ile Leu Ser Ala Gly Pro His Ala Leu Thr Gln Ala Leu 340 345

Ala Asn Gly Pro Glu Ala 5 355

ø

10

(188) INFORMATION FOR SEQ ID NO:187:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1050 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:187:

	ATGAACTCCA	CCTTGGATGG	TAATCAGAGC	AGCCACCCTT	TTTGCCTCTT	GGCATTTGGC	60
15	TATTTGGAAA	CTGTCAATTT	TTGCCTTTTG	GAAGTATTGA	TTATTGTCTT	TCTAACTGTA	120
	TTGATTATTT	CTGGCAACAT	CATTGTGATT	TTTGTATTTC	ACTGTGCACC	TTTGTTGAAC	180
	CATCACACTA	CAAGTTATTT	TATCCAGACT	ATGGCATATG	CTGACCTTTT	TGTTGGGGTG	240
	AGCTGCGTGG	TCCCTTCTTT	ATCACTCCTC	CATCACCCCC	TTCCAGTAGA	GGAGTCCTTG	300
	ACTTGCCAGA	TATTTGGTTT	TGTAGTATCA	GTTCTGAAGA	GCGTCTCCAT	GGCTTCTCTG	360
20	GCCTGTATCA	GCATTGATAG	ATACATTGCC	ATTACTAAAC	CTTTAACCTA	TAATACTCTG	420
	GTTACACCCT	GGAGACTACG	CCTGTGTATT	TTCCTGATTT	GGCTATACTC	GACCCTGGTC	480
	TTCCTGCCTT	CCTTTTTCCA	CTGGGGCAAA	CCTGGATATC	ATGGAGATGT	GTTTCAGTGG	540
	TGTGCGGAGT	CCTGGCACAC	CGACTCCTAC	TTCACCCTGT	TCATCGTGAT	GATGTTATAT	600
	GCCCCAGCAG	CCCTTATTGT	CTGCTTCACC	TATTTCAACA	TCTTCCGCAT	CTGCCAACAG	660
25	CACACAAAGG	ATATCAGCGA	AAGGCAAGCC	CGCTTCAGCA	GCCAGAGTGG	GGAGACTGGG	720
	GAAGTGCAGG	CCTGTCCTGA	TAAGCGCTAT	AAAATGGTCC	TGTTTCGAAT	CACTAGTGTA	780
	TTTTACATCC	TCTGGTTGCC	ATATATCATC	TACTTCTTGT	TGGAAAGCTC	CACTGGCCAC	840
	AGCAACCGCT	TCGCATCCTT	CTTGACCACC	TGGCTTGCTA	TTAGTAACAG	TTTCTGCAAC	900
	TGTGTAATTT	ATAGTCTCTC	CAACAGTGTA	TTCCAAAGAG	GACTAAAGCG	CCTCTCAGGG	960
30	GCTATGTGTA	CTTCTTGTGC	AAGTCAGACT	ACAGCCAACG	ACCCTTACAC	AGTTAGAAGC	1020
	AAAGGCCCTC	TTAATGGATG	TCATATCTGA				1050

5

(189) INFORMATION FOR SEQ ID NO:188	(189)	ORMATION FO	R SEQ	ID	NO:188	:
-------------------------------------	-------	-------------	-------	----	--------	---

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 349 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:

195

210

- (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein

	(xi) SE	EQUEN	ICE I	ESCF	RIPTI	ON:	SEQ	ID N	10:18	88:					
10	Met 1	Asn	Ser	Thr	Leu 5	Asp	Gly	Asn	Gln	Ser 10	Ser	His	Pro	Phe	Cys 15	Leu
	Leu	Ala	Phe	Gly 20	Tyr	Leu	Glu	Thr	Val 25	Asn	Phe	Cys	Leu	Leu 30	Glu	Val
	Leu	Ile	Ile 35	Val	Phe	Leu	Thr	Val 40	Leu	Ile	Ile	Ser	Gly 45	Asn	Ile	Ile
15	Val	Ile 50	Phe	Val	Phe	His	Cys 55	Ala	Pro	Leu	Leu	Asn 60	His	His	Thr	Thr
	Ser 65	Tyr	Phe	Ile	Gln	Thr 70	Met	Ala	Tyr	Ala	Asp 75	Leu	Phe	Val	Gly	Val 80
20	Ser	Cys	Val	Val	Pro 85	Ser	Leu	Ser	Leu	Leu 90	His	His	Pro	Leu	Pro 95	Val
	Glu	Glu	Ser	Leu 100	Thr	Cys	Gln	Ile	Phe 105	Gly	Phe	Val	Val	Ser 110	Val	Leu
	Lys	Ser	Val 115	Ser	Met	Ala	Ser	Leu 120	Ala	Cys	Ile	Ser	Ile 125	Asp	Arg	Tyr
25	Ile	Ala 130	Ile	Thr	Lys	Pro	Leu 135	Thr	Tyr	Asn	Thr	Leu 140	Val	Thr	Pro	Trp
	Arg 145	Leu	Arg	Leu	Cys	Ile 150	Phe	Leu	Ile	Trp	Leu 155	Tyr	Ser	Thr	Leu	Val 160
30		Leu			165					170					175	
	Val	Phe	Gln	Trp 180	Cys	Ala	Glu	Ser	Trp 185	His	Thr	Asp	Ser	Tyr 190	Phe	Thr

Leu Phe Ile Val Met Met Leu Tyr Ala Pro Ala Ala Leu Ile Val Cys 200

Phe Thr Tyr Phe Asn Ile Phe Arg Ile Cys Gln Gln His Thr Lys Asp

215

	Ile 225	Ser	Glu	Arg	Gln	Ala 230	Arg	Phe	Ser	Ser	Gln 235	Ser	Gly	Glu	Thr	Gly 240	
	Glu	Val	Gln	Ala	Cys 245	Pro	Asp	Lys	Arg	Tyr 250	Lys	Met	Val	Leu	Phe 255	Arg	
5	Ile	Thr	Ser	Val 260	Phe	Tyr	Ile	Leu	Trp 265	Leu	Pro	Tyr	Ile	Ile 270	Tyr	Phe	
	Leu	Leu	Glu 275	Ser	Ser	Thr	Gly	His 280	Ser	Asn	Arg	Phe	Ala 285	Ser	Phe	Leu	
10	Thr	Thr 290	Trp	Leu	Ala	Ile	Ser 295	Asn	Ser	Phe	Cys	Asn 300	Cys	Val	Ile	Tyr	
	Ser 305	Leu	Ser	Asn	Ser	Val 310	Phe	Gln	Arg	Gly	Leu 315	Lys	Arg	Leu	Ser	Gly 320	
	Ala	Met	Cys	Thr	Ser 325	Cys	Ala	Ser	Gln	Thr 330	Thr	Ala	Asņ	Asp	Pro 335	Tyr	
15	Thr	Val	Arg	Ser 340	Lys	Gly	Pro	Leu	Asn 345	Gly	Cys	His	Ile				
	(190) INE	FORMA	ATION	1 FOR	SEÇ) ID	NO:1	.89:									
20	(i)	(A) (B) (C)	LEN TYP	CE CH IGTH: PE: n RANDE	130 ucle DNES	02 ba eic a SS: s	se p cid ingl	airs	ŀ								
	(ii	.) MC	DLECU	ILE I	YPE:	DNA	ı (ge	nomi	c)			-					
	(xi	.) SE	EQUEN	ICE D	ESCR	IPTI	ON:	SEQ	ID N	0:18	9:						
25	ATGTGTTT	T CI	CCCA	TTCT	' GGA	AATC	AAC	ATGC	AGTO	TG A	ATCT	'AACA	T TA	CAGI	GCGA	. 6	0
	GATGACATT	G AI		TCAA	CAC	CAAT	ATG	TACC	AACC	AC I	'ATCA	TATC	C GI	'TAAG	CTTT	12	0
	CAAGTGTCT	C TC	CACCG	GATT	TCI	TATG	ATT	GAAA	TTGT	GT I	GGGA	CTTG	G CA	GCAA	CCTC	18	0
	ACTGTATTG	G TA	CTTI	ACTG	CAT	'GAAA	TCC	AACT	TAAT	CA A	.CTCT	GTCA	G TA	ACAT	TATT	24	О
	ACAATGAAT	'C TI	CATG	TACT	TGA	TGTA	ATA	ATTT	GTGT	GG G	ATGT	ATTC	C TC	TAAC	TATA	30	0
30	GTTATCCTT	C TG	CTTT	CACT	GGA	GAGT	'AAC	ACTG	CTCT	CA T	TTGC	TGTT	T CC	ATGA	GGCT	36	0
	TGTGTATCT	T TI	GCAA	GTGT	CTC	AACA	.GCA	ATCA	ACGT	тт т	TGCT	ATCA	с тт	TGGA	CAGA	42	0
	TATGACATO	т ст	GTAA	AACC	TGC	AAAC	CGA	ATTC	TGAC	AA T	GGGC	AGAG	C TG	TAAT	GTTA	48	0
	ATGATATCO	'A TI	TGGA	TTTT	TTC	TTTT	TTC	TCTT	TCCT	GA T	TCCT	TTTA	T TG	AGGT	TAAA	54	0
	TTTTTCAGT	C TI	CAAA	GTGG	AAA	TACC	TGG	GAAA	ACAA	GA C	ACTT	TATT	G TG	TCAG	TACA	60	0

	AATGAATACT	ACACTGAACT	GGGAATGTAT	TATCACCTGT	TAGTACAGAT	CCCAATATTC	660
	TTTTTCACTG	TTGTAGTAAT	GTTAATCACA	TACACCAAAA	TACTTCAGGC	TCTTAATATT	720
	CGAATAGGCA	CAAGATTTTC	AACAGGGCAG	AAGAAGAAAG	CAAGAAAGAA	AAAGACAATT	780
	TCTCTAACCA	CACAACATGA	GGCTACAGAC	ATGTCACAAA	GCAGTGGTGG	GAGAAATGTA	840
5	GTCTTTGGTG	TAAGAACTTC	AGTTTCTGTA	ATAATTGCCC	TCCGGCGAGC	TGTGAAACGA	900
	CACCGTGAAC	GACGAGAAAG	ACAAAAGAGA	GTCAAGAGGA	TGTCTTTATT	GATTATTTCT	960
	ACATTTCTTC	TCTGCTGGAC	ACCAATTTCT	GTTTTAAATA	CCACCATTTT	ATGTTTAGGC	1020
	CCAAGTGACC	TTTTAGTAAA	ATTAAGATTG	TGTTTTTAG	TCATGGCTTA	TGGAACAACT	1080
	ATATTTCACC	CTCTATTATA	TGCATTCACT	AGACAAAAAT	TTCAAAAGGT	CTTGAAAAGT	1140
10	AAAATGAAAA	AGCGAGTTGT	TTCTATAGTA	GAAGCTGATC	CCCTGCCTAA	TAATGCTGTA	1200
	ATACACAACT	CTTGGATAGA	TCCCAAAAGA	AACAAAAAA	TTACCTTTGA	AGATAGTGAA	1260
	ATAAGAGAAA	AACGTTTAGT	GCCTCAGGTT	GTCACAGACT	AG		1302
	(191) INFOR	RMATION FOR	SEQ ID NO:1	190:			
	(i) S	EQUENCE CHA	RACTERISTIC	CS:			
15	(A) LENGTH:	433 amino a	cids			

- (A) LENGTH: 433 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: not relevant
 - (ii) MOLECULE TYPE: protein
- 20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:190:

Met Cys Phe Ser Pro Ile Leu Glu Ile Asn Met Gln Ser Glu Ser Asn

Ile Thr Val Arg Asp Asp Ile Asp Asp Ile Asn Thr Asn Met Tyr Gln

25 Pro Leu Ser Tyr Pro Leu Ser Phe Gln Val Ser Leu Thr Gly Phe Leu

Met Leu Glu Ile Val Leu Gly Leu Gly Ser Asn Leu Thr Val Leu Val

Leu Tyr Cys Met Lys Ser Asn Leu Ile Asn Ser Val Ser Asn Ile Ile 30 70 75

Thr Met Asn Leu His Val Leu Asp Val Ile Ile Cys Val Gly Cys Ile

Pro Leu Thr Ile Val Ile Leu Leu Leu Ser Leu Glu Ser Asn Thr Ala

143

				100					105					110		
	Leu	Ile	Cys 115	Cys	Phe	His	Glu	Ala 120	Cys	Val	Ser	Phe	Ala 125	Ser	Val	Ser
5	Thr	Ala 130	Ile	Asn	Val	Phe	Ala 135	Ile	Thr	Leu	Asp	Arg 140	Tyr	Asp	Ile	Ser
	Val 145	Lys	Pro	Ala	Asn	Arg 150	Ile	Leu	Thr	Met	Gly 155	Arg	Ala	Val	Met	Leu 160
	Met	Ile	Ser	Ile	Trp 165	Ile	Phe	Ser	Phe	Phe 170	Ser	Phe	Leu	Ile	Pro 175	Phe
10	Ile	Glu	Val	Asn 180	Phe	Phe	Ser	Leu	Gln 185	Ser	Gly	Asn	Thr	Trp 190	Glu	Asn
	Lys	Thr	Leu 195	Leu	Cys	Val	Ser	Thr 200	Asn	Glu	Tyr	Tyr	Thr 205	Glu	Leu	Gly
15	Met	Tyr 210	Tyr	His	Leu	Leu	Val 215	Gln	Ile	Pro	Ile	Phe 220	Phe	Phe	Thr	Val
	Val 225	Val	Met	Leu	Ile	Thr 230	Tyr	Thr	Lys	Ile	Leu 235	Gln	Ala	Leu	Asn	Ile 240
	Arg	Ile	Gly	Thr	Arg 245	Phe	Ser	Thr	Gly	Gln 250	Lys	Lys	Lys	Ala	Arg 255	Lys
20	Lys	Lys	Thr	Ile 260	Ser	Leu	Thr	Thr	Gln 265	His	Glu	Ala	Thr	Asp 270	Met	Ser
	Gln	Ser	Ser 275	Gly	Gly	Arg	Asn	Val 280	Val	Phe	Gly	Val	Arg 285	Thr	Ser	Val
25	Ser	Val 290	Ile	Ile	Ala		Arg 295	Arg	Ala	Val	Lys	Arg 300	His	Arg	Glu	Arg
	Arg 305	Glu	Arg	Gln	Lys	Arg 310	Val	Lys	Arg	Met	Ser 315	Leu	Leu	Ile	Ile	Ser 320
	Thr	Phe	Leu	Leu	Cys 325	Trp	Thr	Pro	Ile	Ser 330	Val	Leu	Asn	Thr	Thr 335	Ile
30	Leu	Cys	Leu	Gly 340	Pro	Ser	Asp	Leu	Leu 345	Val	Lys	Leu	Arg	Leu 350	Cys	Phe
	Leu	Val	Met 355	Ala	Tyr	Gly	Thr	Thr 360	Ile	Phe	His	Pro	Leu 365	Leu	Tyr	Ala
35	Phe	Thr 370	Arg	Gln	Lys	Phe	Gln 375	Lys	Val	Leu	Lys	Ser 380	Lys	Met	Lys	Lys
	Arg 385	Val	Val	Ser	Ile	Val 390	Glu	Ala	Asp	Pro	Leu 395	Pro	Asn	Asn	Ala	Val 400

õ

144

Ile His Asn Ser Trp Ile Asp Pro Lys Arg Asn Lys Lys Ile Thr Phe
405 410 415

Glu Asp Ser Glu Ile Arg Glu Lys Arg Leu Val Pro Gln Val Val Thr 420 425 430

5 Asp

(192) INFORMATION FOR SEQ ID NO:191:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1209 base pairs
- 10 (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:191:

15 ATGTTGTGTC CTTCCAAGAC AGATGGCTCA GGGCACTCTG GTAGGATTCA CCAGGAAACT 60 CATGGAGAAG GGAAAAGGGA CAAGATTAGC AACAGTGAAG GGAGGGAGAA TGGTGGGAGA 120 GGATTCCAGA TGAACGGTGG GTCGCTGGAG GCTGAGCATG CCAGCAGGAT GTCAGTTCTC 180 AGAGCAAAGC CCATGTCAAA CAGCCAACGC TTGCTCCTTC TGTCCCCAGG ATCACCTCCT 240 CGCACGGGGA GCATCTCCTA CATCAACATC ATCATGCCTT CGGTGTTCGG CACCATCTGC 300 20 CTCCTGGGCA TCATCGGGAA CTCCACGGTC ATCTTCGCGG TCGTGAAGAA GTCCAAGCTG 360 CACTGGTGCA ACAACGTCCC CGACATCTTC ATCATCAACC TCTCGGTAGT AGATCTCCTC 420 TTTCTCCTGG GCATGCCCTT CATGATCCAC CAGCTCATGG GCAATGGGGT GTGGCACTTT 480 GGGGAGACCA TGTGCACCCT CATCACGGCC ATGGATGCCA ATAGTCAGTT CACCAGCACC 540 TACATCCTGA CCGCCATGGC CATTGACCGC TACCTGGCCA CTGTCCACCC CATCTCTTCC 600 ACGAAGTTCC GGAAGCCCTC TGTGGCCACC CTGGTGATCT GCCTCCTGTG GGCCCTCTCC 660 25 TTCATCAGCA TCACCCCTGT GTGGCTGTAT GCCAGACTCA TCCCCTTCCC AGGAGGTGCA 720 GTGGGCTGCG GCATACGCCT GCCCAACCCA GACACTGACC TCTACTGGTT CACCCTGTAC 780 CAGTTTTTCC TGGCCTTTGC CCTGCCTTTT GTGGTCATCA CAGCCGCATA CGTGAGGATC 840 CTGCAGCGCA TGACGTCCTC AGTGGCCCCC GCCTCCCAGC GCAGCATCCG GCTGCGGACA 900 AAGAGGGTGA AACGCACAGC CATCGCCATC TGTCTGGTCT TCTTTGTGTG CTGGGCACCC 960 30 TACTATGTGC TACAGCTGAC CCAGTTGTCC ATCAGCCGCC CGACCCTCAC CTTTGTCTAC 1020 TTATACAATG CGGCCATCAG CTTGGGCTAT GCCAACAGCT GCCTCAACCC CTTTGTGTAC 1080

145

ATCGTGCTCT GTGAGACGTT CCGCAAACGC TTGGTCCTGT CGGTGAAGCC TGCAGCCCAG 1140

GGGCAGCTTC GCGCTGTCAG CAACGCTCAG ACGGCTGACG AGGAGAGGAC AGAAAGCAAA 1200

GGCACCTCA 1209

(193) INFORMATION FOR SEQ ID NO:192:

(19	93) IN	FORM	ATTO	N FOI	K SE(מד כ	NO:	192:								
5	(i	(B)	LEI TYI	CE CI NGTH PE: & RANDI POLO	: 402 amino EDNES	2 am: o ac: SS:	ino a id	acid	S							
10	(i:	i) M	OLECT	JLE 3	TYPE:	pro	oteir	n								
	(x:	i) SI	EQUE1	NCE I	DESCI	RIPT	EON:	SEQ	ID 1	NO:19	92 :					
	Met 1	Leu	Cys	Pro	Ser 5	Lys	Thr	Asp	Gly	Ser 10	Gly	His	Ser	Gly	Arg 15	Ile
15	His	Gln	Glu	Thr 20	His	Gly	Glu	Gly	Lys 25	Arg	Asp	Lys	Ile	Ser 30	Asn	Ser
	Glu	Gly	Arg 35	Glu	Asn	Gly	Gly	Arg 40	Gly	Phe	Gln	Met	Asn 45	Gly	Gly	Ser
	Leu	Glu 50	Ala	Glu	His	Ala	Ser 55	Arg	Met	Ser	Val	Leu 60	Arg	Ala	Lys	Pro
20	Met 65	Ser	Asn	Ser	Gln	Arg 70	Leu	Leu	Leu	Leu	Ser 75	Pro	Gly	Ser	Pro	Pro 80
	Arg	Thr	Gly	Ser	Ile 85	Ser	Tyr	Ile	Asn	Ile 90	Ile	Met	Pro	Ser	Val 95	Phe
25	Gly	Thr	Ile	Cys 100	Leu	Leu	Gly	Ile	Ile 105	Gly	Asn	Ser	Thr	Val 110	Ile	Phe
	Ala	Val	Val 115	Lys	Lys	Ser	Lys	Leu 120	His	Trp	Cys	Asn	Asn 125	Val	Pro	Asp
	Ile	Phe 130	Ilė	Ile	Asn	Leu	Ser 135	Val	Val	Asp	Leu	Leu 140	Phe	Leu	Leu	Gly
30	Met 145	Pro	Phe	Met	Ile	His 150	Gln	Leu	Met	Gly	Asn 155	Gly	Val	Trp	His	Phe 160
	Gly	Glu	Thr	Met	Cys 165	Thr	Leu	Ile	Thr	Ala 170	Met	Asp	Ala	Asn	Ser 175	Gln
35	Phe	Thr	Ser	Thr 180	Tyr	Ile	Leu	Thr	Ala 185	Met	Ala	Ile	Asp	Arg 190	Tyr	Leu

Ala Thr Val His Pro Ile Ser Ser Thr Lys Phe Arg Lys Pro Ser Val

			195					200					205			
	Ala	Thr 210		Val	Ile	Cys	Leu 215	Leu	Trp	Ala	Leu	Ser 220	Phe	Ile	Ser	Ile
5	Thr 225	Pro	Val	Trp	Leu	Tyr 230	Ala	Arg	Leu	Ile	Pro 235	Phe	Pro	Gly	Gly	Ala 240
	Val	Gly	Cys	Gly	Ile 245	Arg	Leu	Pro	Asn	Pro 250	Asp	Thr	Asp	Leu	Tyr 255	Trp
	Phe	Thr	Leu	Tyr 260	Gln	Phe	Phe	Leu	Ala 265	Phe	Ala	Leu	Pro	Phe 270	Val	Val
10	Ile	Thr	Ala 275	Ala	Tyr	Val	Arg	Ile 280	Leu	Gln	Arg	Met	Thr 285	Ser	Ser	Val
	Ala	Pro 290	Ala	Ser	Gln	Arg	Ser 295	Ile	Arg	Leu	Arg	Thr 300	Lys	Arg	Val	Lys
15	Arg 305	Thr	Ala	Ile	Ala	Ile 310	Cys	Leu	Val	Phe	Phe 315	Val	Cys	Trp	Ala	Pro 320
	Tyr	Tyr	Val	Leu	Gln 325	Leu	Thr	Gln	Leu	Ser 330	Ile	Ser	Arg	Pro	Thr 335	Leu
	Thr	Phe	Val	Tyr 340	Leu	Tyr	Asn	Ala	Ala 345	Ile	Ser	Leu	Gly	Tyr 350	Ala	Asn
20	Ser	Cys	Leu 355	Asn	Pro	Phe	Val	Tyr 360	Ile	Val	Leu	Cys	Glu 365	Thr	Phe	Arg
	Lys	Arg 370	Leu	Val	Leu	Ser	Val 375	Lys	Pro	Ala	Ala	Gln 380	Gly	Gln	Leu	Arg
25	Ala 385	Val	Ser	Asn	Ala	Gln 390	Thr	Ala	Asp	Glu	Glu 395	Arg	Thr	Glu	Ser	Lys 400
	Gly	Thr														
	(194) IN	FORM	OITA	1 FOF	SEÇ	O ID	NO:1	.93 :								
30	(i	(B)	QUENC LEM TYI STI	NGTH: PE: 1 RANDE	: 112 nucle EDNES	28 ba eic a SS: s	ase p acid singl	airs	3							
	(i	i) M	OLECT	JLE T	TYPE:	DNA	4 (ge	nomi	.c)							
35	(x	i) SI	EQUE	ICE I	DESCR	RIPTI	ON:	SEQ	ID N	10:1 9	3:					
	ATGGATGT	GA C	rtccc	CAAGO	c ccc	GGGC	GTG	GGCC	TGGA	GA I	GTAC	CCAG	G CF	ACCGC	CGCAC	60
	GCTGCGGC	cc co	CAACA	ACCAC	CTC	cccc	GAG	CTCA	ACCI	GT C	CCAC	CCGC	T CC	TGGG	CACC	120

PCT/US99/23938

	GCCCTGGCCA	ATGGGACAGG	TGAGCTCTCG	GAGCACCAGC	AGTACGTGAT	CGGCCTGTTC	180
	CTCTCGTGCC	TCTACACCAT	CTTCCTCTTC	CCCATCGGCT	TTGTGGGCAA	CATCCTGATC	240
	CTGGTGGTGA	ACATCAGCTT	CCGCGAGAAG	ATGACCATCC	CCGACCTGTA	CTTCATCAAC	300
	CTGGCGGTGG	CGGACCTCAT	CCTGGTGGCC	GACTCCCTCA	TTGAGGTGTT	CAACCTGCAC	360
5	GAGCGGTACT	ACGACATCGC	CGTCCTGTGC	ACCTTCATGT	CGCTCTTCCT	GCAGGTCAAC	420
	ATGTACAGCA	GCGTCTTCTT	CCTCACCTGG	ATGAGCTTCG	ACCGCTACAT	CGCCCTGGCC	480
	AGGGCCATGC	GCTGCAGCCT	GTTCCGCACC	AAGCACCACG	CCCGGCTGAG	CTGTGGCCTC	540
	ATCTGGATGG	CATCCGTGTC	AGCCACGCTG	GTGCCCTTCA	CCGCCGTGCA	CCTGCAGCAC	600
	ACCGACGAGG	CCTGCTTCTG	TTTCGCGGAT	GTCCGGGAGG	TGCAGTGGCT	CGAGGTCACG	660
10	CTGGGCTTCA	TCGTGCCCTT	CGCCATCATC	GGCCTGTGCT	ACTCCCTCAT	TGTCCGGGTG	720
	CTGGTCAGGG	CGCACCGGCA	CCGTGGGCTG	CGGCCCCGGC	GGCAGAAGGC	GAAACGCATG	780
	ATCCTCGCGG	TGGTGCTGGT	CTTCTTCGTC	TGCTGGCTGC	CGGAGAACGT	CTTCATCAGC	840
	GTGCACCTCC	TGCAGCGGAC	GCAGCCTGGG	GCCGCTCCCT	GCAAGCAGTC	TTTCCGCCAT	900
	GCCCACCCC	TCACGGGCCA	CATTGTCAAC	CTCGCCGCCT	TCTCCAACAG	CTGCCTAAAC	960
15	CCCCTCATCT	ACAGCTTTCT	CGGGGAGACC	TTCAGGGACA	AGCTGAGGCT	GTACATTGAG	1020
	CAGAAAACAA	ATTTGCCGGC	CCTGAACCGC	TTCTGTCACG	CTGCCCTGAA	GGCCGTCATT	1080
	CCAGACAGCA	CCGAGCAGTC	GGATGTGAGG	TTCAGCAGTG	CCGTGTGA		1128

(195) INFORMATION FOR SEQ ID NO:194:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 375 amino acids

(B) TYPE: amino acid

- (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein
- 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:194:

Met Asp Val Thr Ser Gln Ala Arg Gly Val Gly Leu Glu Met Tyr Pro 1 10 15

Gly Thr Ala His Ala Ala Ala Pro Asn Thr Thr Ser Pro Glu Leu Asn 20 25 30

30 Leu Ser His Pro Leu Leu Gly Thr Ala Leu Ala Asn Gly Thr Gly Glu 35 40 45

	Leu	Ser 50	Glu	His	Gln	Gln	Tyr 55	Val	Ile	Gly	Leu	Phe 60	Leu	Ser	Cys	Leu
	Tyr 65	Thr	Ile	Phe	Leu	Phe 70	Pro	Ile	Gly	Phe	Val 75	Gly	Asn	Ile	Leu	Ile 80
5	Leu	Val	Val	Asn	Ile 85	Ser	Phe	Arg	Glu	Lys 90	Met	Thr	Ile	Pro	Asp 95	Leu
	Tyr	Phe	Ile	Asn 100	Leu	Ala	Val	Ala	Asp 105	Leu	Ile	Leu	Val	Ala 110	Asp	Ser
10	Leu	Ile	Glu 115	Val	Phe	Asn	Leu	His 120	Glu	Arg	Tyr	Tyr	Asp 125	Ile	Ala	Val
	Leu	Cys 130	Thr	Phe	Met	Ser	Leu 135	Phe	Leu	Gln	Val	Asn 140	Met	Tyr	Ser	Ser
	Val 145	Phe	Phe	Leu	Thr	Trp 150	Met	Ser	Phe	Asp	Arg 155	Tyr	Ile	Ala	Leu	Ala 160
15	Arg	Ala	Met	Arg	Cys 165	Ser	Leu	Phe	Arg	Thr 170	Lys	His	His	Ala	Arg 175	Leu
	Ser	Cys	Gly	Leu 180	Ile	Trp	Met	Ala	Ser 185	Val	Ser	Ala	Thr	Leu 190	Val	Pro
20	Phe	Thr	Ala 195	Val	His	Leu	Gln	His 200	Thr	Asp	Glu	Ala	Cys 205	Phe	Cys	Phe
	Ala	Asp 210	Val	Arg	Glu	Val	Gln 215	Trp	Leu	Glu	Val	Thr 220	Leu	Gly	Phe	Ile
	Val 225	Pro	Phe	Ala	Ile	Ile 230	Gly	Leu	Cys	Tyr	Ser 235	Leu	Ile	Val	Arg	Val 240
25	Leu	Val	Arg	Ala	His 245	Arg	His	Arg	Gly	Leu 250	Arg	Pro	Arg	Arg	Gln 255	Lys
	Ala	Lys	Arg	Met 260	Ile	Leu	Ala	Val	Val 265	Leu	Val	Phe	Phe	Val 270	Cys	Trp
30	Leu	Pro	Glu 275	Asn	Val	Phe	Ile	Ser 280	Val	His	Leu	Leu	Gln 285	Arg	Thr	Gln
	Pro	Gly 290	Ala	Ala	Pro	Cys	Lys 295	Gln	Ser	Phe	Arg	His 300	Ala	His	Pro	Leu
	Thr 305	Gly	His	Ile	Val	Asn 310	Leu	Ala	Ala	Phe	Ser 315	Asn	Ser	Cys	Leu	Asn 320
35	Pro	Leu	Ile	Tyr	Ser 325	Phe	Leu	Gly	Glu	Thr 330	Phe	Arg	Asp	Lys	Leu 335	Arg
	Leu	Tyr	Ile	Glu	Gln	Lys	Thr	Asn	Leu	Pro	Ala	Leu	Asn	Arg	Phe	Cys

149

340 345 350

His Ala Ala Leu Lys Ala Val Ile Pro Asp Ser Thr Glu Gln Ser Asp 355 360 365

Val Arg Phe Ser Ser Ala Val 5 370 375

(196) INFORMATION FOR SEQ ID NO:195:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 960 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:195:

ATGCCATTCC CAAACTGCTC AGCCCCCAGC ACTGTGGTGG CCACAGCTGT GGGTGTCTTG 15 CTGGGGCTGG AGTGTGGGCT GGGTCTGCTG GGCAACGCGG TGGCGCTGTG GACCTTCCTG 120 TTCCGGGTCA GGGTGTGGAA GCCGTACGCT GTCTACCTGC TCAACCTGGC CCTGGCTGAC CTGCTGTTGG CTGCGTGCCT GCCTTTCCTG GCCGCCTTCT ACCTGAGCCT CCAGGCTTGG 240 CATCTGGGCC GTGTGGGCTG CTGGGCCCTG CGCTTCCTGC TGGACCTCAG CCGCAGCGTG GGGATGGCCT TCCTGGCCGC CGTGGCTTTG GACCGGTACC TCCGTGTGGT CCACCCTCGG 360 CTTAAGGTCA ACCTGCTGTC TCCTCAGGCG GCCCTGGGGG TCTCGGGCCT CGTCTGGCTC 20 420 CTGATGGTCG CCCTCACCTG CCCGGGCTTG CTCATCTCTG AGGCCGCCCA GAACTCCACC 480 AGGTGCCACA GTTTCTACTC CAGGGCAGAC GGCTCCTTCA GCATCATCTG GCAGGAAGCA 540 CTCTCCTGCC TTCAGTTTGT CCTCCCCTTT GGCCTCATCG TGTTCTGCAA TGCAGGCATC 600 ATCAGGGCTC TCCAGAAAAG ACTCCGGGAG CCTGAGAAAC AGCCCAAGCT TCAGCGGGCC 660 AAGGCACTGG TCACCTTGGT GGTGGTGCTG TTTGCTCTGT GCTTTCTGCC CTGCTTCCTG 720 GCCAGAGTCC TGATGCACAT CTTCCAGAAT CTGGGGAGCT GCAGGGCCCT TTGTGCAGTG 780 GCTCATACCT CGGATGTCAC GGGCAGCCTC ACCTACCTGC ACAGTGTCGT CAACCCCGTG GTATACTGCT TCTCCAGCCC CACCTTCAGG AGCTCCTATC GGAGGGTCTT CCACACCCTC 900 CGAGGCAAAG GGCAGGCAGC AGAGCCCCCA GATTTCAACC CCAGAGACTC CTATTCCTGA 960

30 (197) INFORMATION FOR SEQ ID NO:196:

(i) SEOUENCE CHARACTERISTICS:

(A) LENGTH: 319 amino acids

			((c) si	rani	amiı DEDNI DGY:	ESS:		evant	t							
	5	(i	li) N	OLE	CULE	ТҮРІ	E: pı	rotei	in								
		(×	(i) S	EQUE	ENCE	DESC	CRIPT	CION:	SEÇ	Q ID	NO:	196 :					
		Met 1	Pro	Phe	Pro	Asr 5	1 Суя	s Ser	Ala	a Pro	Sei 10	Thi	r Val	l Val	. Ala	Thr 15	` Ala
1	0	Val	Gly	val	Leu 20	ı Lev	Gly	/ Leu	Glu	1 Cys 25	Gly	/ Lei	ı Gly	/ Leu	Leu 30	Gly	Asr
		Ala	Val	Ala 35	Leu	Trp	Thr	Phe	Leu 40	Phe	Arg	y Val	. Arg	Val 45	Trp	Lys	Pro
		Tyr	Ala 50	Val	Tyr	Leu	Leu	Asn 55	Leu	Ala	Leu	ı Ala	Asp 60	Leu	Leu	Leu	Ala
1	5	Ala 65	Cys	Leu	Pro	Phe	Leu 70	Ala	Ala	Phe	Tyr	Leu 75	Ser	Leu	Gln	Ala	Trp
		His	Leu	Gly	Arg	Val 85	Gly	Cys	Trp	Ala	Leu 90	Arg	Phe	Leu	Leu	Asp 95	Leu
20	0	Ser	Arg	Ser	Val 100	Gly	Met	Ala	Phe	Leu 105	Ala	Ala	Val	Ala	Leu 110	Asp	Arg
		Tyr	Leu	Arg 115	Val	Val	His	Pro	Arg 120	Leu	Lys	Val	Asn	Leu 125	Leu	Ser	Pro
		Gln	Ala 130	Ala	Leu	Gly	Val	Ser 135	Gly	Leu	Val	Trp	Leu 140	Leu	Met	Val	Ala
25		 Leu 145	Thr	Cys	Pro	Gly	Leu 150	Leu	Ile	Ser	Glu	Ala 155	Ala	Gln	Asn	Ser	Thr 160
		Arg	Cys	His	Ser	Phe 165	Tyr	Ser	Arg	Ala	Asp 170	Gly	Ser	Phe	Ser	Ile 175	Ile
30)	Trp	Gln	Glu	Ala 180	Leu	Ser	Cys	Leu	Gln 185	Phe	Val	Leu	Pro	Phe 190	Gly	Leu
		Ile	Val	Phe 195	Cys	Asn	Ala	Gly	Ile 200	Ile	Arg	Ala	Leu	Gln 205	Lys	Arg	Leu
		Arg	Glu 210	Pro	Glu	Lys	Gln	Pro 215	Lys	Leu	Gln	Arg	Ala 220	Lys	Ala	Leu	Val
35	;	Thr 225	Leu	Val	Val	Val	Leu 230	Phe	Ala	Leu	Cys	Phe 235	Leu	Pro	Cys	Phe	Leu 240
		Ala	Arg	Val	Leu	Met	His	Ile	Phe	Gln	Asn	Leu	Gly	Ser	Cys	Arg	Ala

	Leu Cys Ala Val Ala His Thr Ser Asp Val Thr Gly Ser Leu Thr Ty 260 265 270	כ
5	Leu His Ser Val Val Asn Pro Val Val Tyr Cys Phe Ser Ser Pro Thi 275 280 285	r
	Phe Arg Ser Ser Tyr Arg Arg Val Phe His Thr Leu Arg Gly Lys Gly 290 295 300	Y
	Gln Ala Ala Glu Pro Pro Asp Phe Asn Pro Arg Asp Ser Tyr Ser 305 310 315	
10	(198) INFORMATION FOR SEQ ID NO:197:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1143 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:197:	
	ATGGAGGAAG GTGGTGATTT TGACAACTAC TATGGGGCAG ACAACCAGTC TGAGTGTGAG	60
	TACACAGACT GGAAATCCTC GGGGGCCCTC ATCCCTGCCA TCTACATGTT GGTCTTCCTC	120
20	CTGGGCACCA CGGGAAACGG TCTGGTGCTC TGGACCGTGT TTCGGAGCAG CCGGGAGAAG	180
	AGGCGCTCAG CTGATATCTT CATTGCTAGC CTGGCGGTGG CTGACCTGAC	240
	ACGCTGCCCC TGTGGGCTAC CTACACGTAC CGGGACTATG ACTGGCCCTT TGGGACCTTC	300
	TTCTGCAAGC TCAGCAGCTA CCTCATCTTC GTCAACATGT ACGCCAGCGT CTTCTGCCTC	360
	ACCGGCCTCA GCTTCGACCG CTACCTGGCC ATCGTGAGGC CAGTGGCCAA TGCTCGGCTG	420
25	AGGCTGCGGG TCAGCGGGGC CGTGGCCACG GCAGTTCTTT GGGTGCTGGC CGCCCTCCTG	480
	GCCATGCCTG TCATGGTGTT ACGCACCACC GGGGACTTGG AGAACACCAC TAAGGTGCAG	540
	TGCTACATGG ACTACTCCAT GGTGGCCACT GTGAGCTCAG AGTGGGCCTG GGAGGTGGGC	600
	CTTGGGGTCT CGTCCACCAC CGTGGGCTTT GTGGTGCCCT TCACCATCAT GCTGACCTGT	660
	TACTTCTTCA TCGCCCAAAC CATCGCTGGC CACTTCCGCA AGGAACGCAT CGAGGGCCTG	720
30	CGGAAGCGGC GCCGGCTTAA GAGCATCATC GTGGTGCTGG TGGTGACCTT TGCCCTGTGC	780
	TGGATGCCCT ACCACCTGGT GAAGACGCTG TACATGCTGG GCAGCCTGCT GCACTGGCCC	840

	AACAGCTGCC TCAACCCCTT CCTCTATGCC TTTTTCGACC CCCGCTTCCG CCAGGCCTGC 960
	ACCTCCATGC TCTGCTGTGG CCAGAGCAGG TGCGCAGGCA CCTCCCACAG CAGCAGTGGG 1020
	GAGAAGTCAG CCAGCTACTC TTCGGGGCAC AGCCAGGGGC CCGGCCCCAA CATCGGCAAG 1080
	GGTGGAGAAC AGATGCACGA GAAATCCATC CCCTACAGCC AGGAGACCCT TGTGGTTGAC 1140
5	TAG 1143
	(199) INFORMATION FOR SEQ ID NO:198:
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 380 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: not relevant
	(ii) MOLECULE TYPE: protein
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:198:
15	Met Glu Glu Gly Gly Asp Phe Asp Asn Tyr Tyr Gly Ala Asp Asn Gln 1 5 10 15
	Ser Glu Cys Glu Tyr Thr Asp Trp Lys Ser Ser Gly Ala Leu Ile Pro 20 25 30
	Ala Ile Tyr Met Leu Val Phe Leu Leu Gly Thr Thr Gly Asn Gly Leu 35 40 45
20	Val Leu Trp Thr Val Phe Arg Ser Ser Arg Glu Lys Arg Arg Ser Ala 50 55 60
	Asp Ile Phe Ile Ala Ser Leu Ala Val Ala Asp Leu Thr Phe Val Val 65 70 75 80
25	Thr Leu Pro Leu Trp Ala Thr Tyr Thr Tyr Arg Asp Tyr Asp Trp Pro 85 90 95
	Phe Gly Thr Phe Phe Cys Lys Leu Ser Ser Tyr Leu Ile Phe Val Asn 100 105 110
	Met Tyr Ala Ser Val Phe Cys Leu Thr Gly Leu Ser Phe Asp Arg Tyr 115 120 125
30	Leu Ala Ile Val Arg Pro Val Ala Asn Ala Arg Leu Arg Leu Arg Val 130 135 140
	Ser Gly Ala Val Ala Thr Ala Val Leu Trp Val Leu Ala Ala Leu Leu 145 150 155 160
35	Ala Met Pro Val Met Val Leu Arg Thr Thr Gly Asp Leu Glu Asn Thr 165 170 175

	5	Thr	Lys	Val	Gln 180	Cys	Tyr	Met	Asp	Tyr 185	Ser	Met	Val	Ala	Thr 190	Val	Ser	
	\$	Ser	Glu	Trp 195	Ala	Trp	Glu	Val	Gly 200	Leu	Gly	Val	Ser	Ser 205	Thr	Thr	Val	
5	(Gly	Phe 210	Val	Val	Pro	Phe	Thr 215	Ile	Met	Leu	Thr	Cys 220	Tyr	Phe	Phe	Ile	
		Ala 225	Gln	Thr	Ile	Ala	Gly 230	His	Phe	Arg	Lys	Glu 235	Arg	Ile	Glu	Gly	Leu 240	
10	1	Arg	Lys	Arg	Arg	Arg 245	Leu	Lys	Ser	Ile	Ile 250	Val	Val	Leu	Val	Val 255	Thr	
	3	Phe	Ala	Leu	Cys 260	Trp	Met	Pro	Tyr	His 265	Leu	Val	Lys	Thr	Leu 270	Tyr	Met	
	1	Leu	Gly	Ser 275	Leu	Leu	His	Trp	Pro 280	Cys	Asp	Phe	Asp	Leu 285	Phe	Leu	Met	
15	1	Asn	Ile 290	Phe	Pro	Tyr	Cys	Thr 295	Cys	Ile	Ser	Tyr	Val 300	Asn	Ser	Cys	Leu	
		Asn 305	Pro	Phe	Leu	Tyr	Ala 310	Phe	Phe	Asp	Pro	Arg 315	Phe	Arg	Gln	Ala	Cys 320	
20	-	Thr	Ser	Met	Leu	Cys 325	Cys	Gly	Gln	Ser	Arg 330	Cys	Ala	Gly	Thr	Ser 335	His	
		Ser	Ser	Ser	Gly 340	Glu	Lys	Ser	Ala	Ser 345	Tyr	Ser	Ser	Gly	His 350	Ser	Gln	
	(Gly	Pro	Gly 355	Pro	Asn	Met	Gly	Lys 360	Gly	Gly	Glu	Gln	Met 365	His	Glu	Lys	
25	S	Ser	Ile 370	Pro	Tyr	Ser	Gln	Glu 375	Thr	Leu	Val	Val	Asp 380					
	(200)	INF	ORMA	(OIT	FOF	SEÇ	OID	NO: 1	.99:									
30		(i)	(A) (B) (C)	LEN TYI STI	CE CHIGTH: PE: TEANDE	111 nucle EDNES	l9 ba eic a SS: s	ase p acid singl	oairs	3								
					LE I						10.1 6							
25	3.00C3.3.1	•	•	~	ICE I				-				7C 7 C C	m 05		7007 T		.
35	ATGAA																	60
	CTGGA	CAGA	AT TO	GAC	ACTA	AT.	ACGA(JACC	TCCC	TGG	rgg <i>I</i>	\AAA)	CATC	rr Cl	GCCC	TGC	. 1	.20

	ACAGAGGGTC	CCCTCATGGC	CTCCTTCAAG	GCCGTGTTCG	TGCCCGTGGC	CTACAGCCTC	180
	ATCTTCCTCC	TGGGCGTGAT	CGGCAACGTC	CTGGTGCTGG	TGATCCTGGA	GCGGCACCGG	240
	CAGACACGCA	GTTCCACGGA	GACCTTCCTG	TTCCACCTGG	CCGTGGCCGA	CCTCCTGCTG	300
	GTCTTCATCT	TGCCCTTTGC	CGTGGCCGAG	GGCTCTGTGG	GCTGGGTCCT	GGGGACCTTC	360
5	CTCTGCAAAA	CTGTGATTGC	CCTGCACAAA	GTCAACTTCT	ACTGCAGCAG	CCTGCTCCTG	420
	GCCTGCATCG	CCGTGGACCG	CTACCTGGCC	ATTGTCCACG	CCGTCCATGC	CTACCGCCAC	480
	CGCCGCCTCC	TCTCCATCCA	CATCACCTGT	GGGACCATCT	GGCTGGTGGG	CTTCCTCCTT	540
	GCCTTGCCAG	AGATTCTCTT	CGCCAAAGTC	AGCCAAGGCC	ATCACAACAA	CTCCCTGCCA	600
	CGTTGCACCT	TCTCCCAAGA	GAACCAAGCA	GAAACGCATG	CCTGGTTCAC	CTCCCGATTC	660
10	CTCTACCATG	TGGCGGGATT	CCTGCTGCCC	ATGCTGGTGA	TGGGCTGGTG	CTACGTGGGG	720
	GTAGTGCACA	GGTTGCGCCA	GGCCCAGCGG	CGCCCTCAGC	GGCAGAAGGC	AAAAAGGGTG	780
	GCCATCCTGG	TGACAAGCAT	CTTCTTCCTC	TGCTGGTCAC	CCTACCACAT	CGTCATCTTC	840
	CTGGACACCC	TGGCGAGGCT	GAAGGCCGTG	GACAATACCT	GCAAGCTGAA	TGGCTCTCTC	900
	CCCGTGGCCA	TCACCATGTG	TGAGTTCCTG	GGCCTGGCCC	ACTGCTGCCT	CAACCCCATG	960
15	CTCTACACTT	TCGCCGGCGT	GAAGTTCCGC	AGTGACCTGT	CGCGGCTCCT	GACCAAGCTG	1020
	GGCTGTACCG	GCCCTGCCTC	CCTGTGCCAG	CTCTTCCCTA	GCTGGCGCAG	GAGCAGTCTC	1080
	TCTGAGTCAG	AGAATGCCAC	CTCTCTCACC	ACGTTCTAG			1119

(201) INFORMATION FOR SEQ ID NO:200:

(i) SEQUENCE CHARACTERISTICS: 20

(A) LENGTH: 372 amino acids

(B) TYPE: amino acid

- (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein
- 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:200:

Met Asn Tyr Pro Leu Thr Leu Glu Met Asp Leu Glu Asn Leu Glu Asp 10

Leu Phe Trp Glu Leu Asp Arg Leu Asp Asn Tyr Asn Asp Thr Ser Leu 25

30 Val Glu Asn His Leu Cys Pro Ala Thr Glu Gly Pro Leu Met Ala Ser 35 40 45

Phe Lys Ala Val Phe Val Pro Val Ala Tyr Ser Leu Ile Phe Leu Leu

		50					55					60				
	Gly 65	Val	Ile	Gly	Asn	Val 70	Leu	Val	Leu	Val	Ile 75	Leu	Glu	Arg	His	Arg 80
5	Gln	Thr	Arg	Ser	Ser 85	Thr	Glu	Thr	Phe	Leu 90	Phe	His	Leu	Ala	Val 95	Ala
	Asp	Leu	Leu	Leu 100	Val	Phe	Ile	Leu	Pro 105	Phe	Ala	Val	Ala	Glu 110	Gly	Ser
	Val	Gly	Trp 115	Val	Leu	Gly	Thr	Phe 120	Leu	Cys	Lys	Thr	Val 125	Ile	Ala	Leu
10	His	Lys 130	Val	Asn	Phe	Tyr	Cys 135	Ser	Ser	Leu	Leu	Leu 140	Ala	Cys	Ile	Ala
	Val 145	Asp	Arg	Tyr	Leu	Ala 150	Ile	Val	His	Ala	Val 155	His	Ala	Tyr	Arg	His 160
15	Arg	Arg	Leu	Leu	Ser 165	Ile	His	Ile	Thr	Cys 170	Gly	Thr	Ile	Trp	Leu 175	Val
	Gly	Phe	Leu	Leu 180	Ala	Leu	Pro	Glu	Ile 185	Leu	Phe	Ala	Lys	Val 190	Ser	Gln
	Gly	His	His 195	Asn	Asn	Ser	Leu	Pro 200	Arg	Cys	Thr	Phe	Ser 205	Gln	Glu	Asn
20	Gln	Ala 210	Glu	Thr	His	Ala	Trp 215	Phe	Thr	Ser	Arg	Phe 220	Leu	Tyr	His	Val
	Ala 225	Gly	Phe	Leu	Leu	Pro 230	Met	Leu	Val	Met	Gly 235	Trp	Cys	Tyr	Val	Gly 240
25	Val	Val	His	Arg	Leu 245	Arg	Gln	Ala	Gln	Arg 250	Arg	Pro	Gln	Arg	Gln 255	Lys
	Ala	Lys	Arg	Val 260	Ala	Ile	Leu	Val	Thr 265	Ser	Ile	Phe	Phe	Leu 270	Cys	Trp
	Ser	Pro	Туг 275	His	Ile	Val	Ile	Phe 280	Leu	Asp	Thr	Leu	Ala 285	Arg	Leu	Lys
30	Ala	Val 290	Asp	Asn	Thr	Cys	Lys 295	Leu	Asn	Gly	Ser	Leu 300	Pro	Val	Ala	Ile
	Thr 305	Met	Cys	Glu	Phe	Leu 310	Gly	Leu	Ala	His	Cys 315	Cys	Leu	Asn	Pro	Met 320
35	Leu	туг	Thr	Phe	Ala 325	Gly	Val	Lys	Phe	Arg 330	Ser	Asp	Leu	Ser	Arg 335	Leu
	Leu	Thr	Lys	Leu 340	Gly	Cys	Thr	Gly	Pro	Ala	Ser	Leu	Cys	Gln 350	Leu	Phe

156

Pro Ser Trp Arg Arg Ser Ser Leu Ser Glu Ser Glu Asn Ala Thr Ser 355 360 365

Leu Thr Thr Phe 370

- 5 (202) INFORMATION FOR SEQ ID NO:201:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1128 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
- 10 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:201:

ATGGATGTGA CTTCCCAAGC CCGGGGCGTG GGCCTGGAGA TGTACCCAGG CACCGCGCAG 60 CCTGCGGCCC CCAACACCAC CTCCCCCGAG CTCAACCTGT CCCACCCGCT CCTGGGCACC 120 GCCCTGGCCA ATGGGACAGG TGAGCTCTCG GAGCACCAGC AGTACGTGAT CGGCCTGTTC 15 180 CTCTCGTGCC TCTACACCAT CTTCCTCTTC CCCATCGGCT TTGTGGGCAA CATCCTGATC 240 CTGGTGGTGA ACATCAGCTT CCGCGAGAAG ATGACCATCC CCGACCTGTA CTTCATCAAC 300 CTGGCGGTGG CGGACCTCAT CCTGGTGGCC GACTCCCTCA TTGAGGTGTT CAACCTGCAC 360 GAGCGGTACT ACGACATCGC CGTCCTGTGC ACCTTCATGT CGCTCTTCCT GCAGGTCAAC 420 ATGTACAGCA GCGTCTTCTT CCTCACCTGG ATGAGCTTCG ACCGCTACAT CGCCCTGGCC 20 480 AGGGCCATGC GCTGCAGCCT GTTCCGCACC AAGCACCACG CCCGGCTGAG CTGTGGCCTC 540 ATCTGGATGG CATCCGTGTC AGCCACGCTG GTGCCCTTCA CCGCCGTGCA CCTGCAGCAC 600 ACCGACGAGG CCTGCTTCTG TTTCGCGGAT GTCCGGGAGG TGCAGTGGCT CGAGGTCACG 660 CTGGGCTTCA TCGTGCCCTT CGCCATCATC GGCCTGTGCT ACTCCCTCAT TGTCCGGGTG 720 25 CTGGTCAGGG CGCACCGGCA CCGTGGGCTG CGGCCCCGGC GGCAGAAGGC GAAGCGCATG 780 840 GTGCACCTCC TGCAGCGGAC GCAGCCTGGG GCCGCTCCCT GCAAGCAGTC TTTCCGCCAT 900 GCCCACCCC TCACGGCCA CATTGTCAAC CTCACCGCCT TCTCCAACAG CTGCCTAAAC 960 CCCCTCATCT ACAGCTTTCT CGGGGAGACC TTCAGGGACA AGCTGAGGCT GTACATTGAG 1020 CAGAAAACAA ATTTGCCGGC CCTGAACCGC TTCTGTCACG CTGCCCTGAA GGCCGTCATT 30 1080 CCAGACAGCA CCGAGCAGTC GGATGTGAGG TTCAGCAGTG CCGTGTAG 1128

(203)	INFORMATION	FOR	SEO	ID	NO:	202:
-------	-------------	-----	-----	----	-----	------

- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 375 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS:
 (D) TOPOLOGY: not relevant

 (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:202:

10	Met 1	Asp	Val	Thr	Ser 5	Gln	Ala	Arg	Gly	Val 10	Gly	Leu	Glu	Met	Туг 15	Pro
	Gly	Thr	Ala	Gln 20	Pro	Ala	Ala	Pro	Asn 25	Thr	Thr	Ser	Pro	Glu 30	Leu	Asn
	Leu	Ser	His 35	Pro	Leu	Leu	Gly	Thr 40	Ala	Leu	Ala	Asn	Gly 45	Thr	Gly	Glu
15	Leu	Ser 50	Glu	His	Gln	Gln	Tyr 55	Val	Ile	Gly	Leu	Phe 60	Leu	Ser	Cys	Leu
	Tyr 65	Thr	Ile	Phe	Leu	Phe 70	Pro	Ile	Gly	Phe	Val 75	Gly	Asn	Ile	Leu	Ile 80
20	Leu	Val	Val	Asn	Ile 85	Ser	Phe	Arg	Glu	Lys 90	Met	Thr	Ile	Pro	Asp 95	Leu
	Tyr	Phe	Ile	Asn 100	Leu	Ala	Val	Ala	Asp 105	Leu	Ile	Leu	Val	Ala 110	Asp	Ser
	Leu	Ile	Glu 115	Val	Phe	Asn	Leu	His 120	Glu	Arg	Tyr	Tyr	Asp 125	Ile	Ala	Val
25	Leu	Cys 130	Thr	Phe	Met	Ser	Leu 135	Phe	Leu	Gln	Val	Asn 140	Met	Tyr	Ser	Ser
	Val 145	Phe	Phe	Leu	Thr	Trp 150	Met	Ser	Phe	Asp	Arg 155	Tyr	Ile	Ala	Leu	Ala 160
30	Arg	Ala	Met	Arg	Cys 165	Ser	Leu	Phe	Arg	Thr 170	Lys	His	His	Ala	Arg 175	Leu
	Ser	Cys	Gly	Leu 180	Ile	Trp	Met	Ala	Ser 185	Val	Ser	Ala	Thr	Leu 190	Val	Pro
	Phe	Thr	Ala 195	Val	His	Leu	Gln	His 200	Thr	Asp	Glu	Ala	Cys 205	Phe	Cys	Phe
35	Ala	Asp 210	Val	Arg	Glu	Val	Gln 215	Trp	Leu	Glu	Val	Thr 220	Leu	Gly	Phe	Ile
	Val	Pro	Phe	Ala	Ile	Ile	Gly	Leu	Cys	Tyr	Ser	Leu	Ile	Val	Arg	Val

WO 00/22129 PCT/US99/23938 .

		225					230					235					240	
		Leu	Val	Arg	Ala	His 245	Arg	His	Arg	Gly	Leu 250	Arg	Pro	Arg	Arg	Gln 255	Lys	
5		Ala	Lys	Arg	Met 260	Ile	Leu	Ala	Val	Val 265	Leu	Val	Phe	Phe	Val 270	Cys	Trp	
		Leu	Pro	Glu 275	Asn	Val	Phe	Ile	Ser 280	Val	His	Leu	Leu	Gln 285	Arg	Thr	Gln	
		Pro	Gly 290	Ala	Ala	Pro	Cys	Lys 295	Gln	Ser	Phe	Arg	His 300	Ala	His	Pro	Leu	
10		Thr 305	Gly	His	Ile	Val	Asn 310	Leu	Thr	Ala	Phe	Ser 315	Asn	Ser	Cys	Leu	Asn 320	
		Pro	Leu	Ile	Tyr	Ser 325	Phe	Leu	Gly	Glu	Thr 330	Phe	Arg	Asp	Lys	Leu 335	Arg	
15		Leu	Tyr	Ile	Glu 340	Gln	Lys	Thr	Asn	Leu 345	Pro	Ala	Leu	Asn	Arg 350	Phe	Cys	
		His	Ala	Ala 355	Leu	Lys	Ala	Val	Ile 360	Pro	Asp	Ser	Thr	Glu 365	Gln	Ser	Asp	
		Val	Arg 370	Phe	Ser	Ser	Ala	Val 375										
20	(204)	INE	FORM	OITA	1 FOF	SEÇ) ID	NO:2	203:									
25		(i)	(B)	LEI TYI STI	CE CH NGTH: PE: n RANDE	113 nucle	37 ba eic a SS: s	ase p acid singl	airs	;								
		(ii	L) MC	LECU	LE I	YPE:	DNA	4 (ge	nomi	.c)								
		(xi	L) SE	EQUE	ICE I	ESCF	RIPTI	ON:	SEQ	ID N	10:20	3:						
	ATGGA	ACCTO	G G	AAAG	CCAAI	GAA	AAGC	CGTG	CTGG	TGGT	'GG C	TCTC	CTTG	T CA	ATTTI	CCAG	60)
	GTATO	CCT	er Gi	CAAC	SATGA	GGI	CACG	GAC	GATT	'ACAT	CG G	AGAC	'AACA	C CA	CAGI	GGAC	120)
30	TACAC	TTTC	T TC	GAGI	CTTI	GTG	CTCC	CAAG	AAGG	ACGI	GC G	GAAC	TTTA	A AG	CCTG	GTTC	180)
	CTCCC	TATO	CA TO	TACI	CCAI	CAT	TTGT	TTC	GTGG	GCCI	AC I	GGGC	AATG	G GC	TGGT	CGTG	240	ı
	TTGAC	CTAT	T AT	TAT	TCAA	GAG	GCTC	CAAG	ACCA	TGAC	CG A	TACC	TACC	T GC	TCAA	CCTG	300	ı
	GCGGT	rggc <i>i</i>	AG AC	CATCO	CTCTI	CCI	CCTG	FACC	CTTC	CCTI	CT G	GGCC	TACA	.G CG	CGGC	CAAG	360	,
	TCCTC	GGTC	т т	CGGT	STCCA	CTI	TTGC	CAAG	CTCA	TCTT	TG C	CATO	TACA	A GA	TGAG	CTTC	420)

	TTCAGTGGCA	TGCTCCTACT	TCTTTGCATC	AGCATTGACC	GCTACGTGGC	CATCGTCCAG	480
	GCTGTCTCAG	CTCACCGCCA	CCGTGCCCGC	GTCCTTCTCA	TCAGCAAGCT	GTCCTGTGTG	540
	GGCATCTGGA	TACTAGCCAC	AGTGCTCTCC	ATCCCAGAGC	TCCTGTACAG	TGACCTCCAG	600
	AGGAGCAGCA	GTGAGCAAGC	GATGCGATGC	TCTCTCATCA	CAGAGCATGT	GGAGGCCTTT	660
5	ATCACCATCC	AGGTGGCCCA	GATGGTGATC	GGCTTTCTGG	TCCCCCTGCT	GGCCATGAGC	720
	TTCTGTTACC	TTGTCATCAT	CCGCACCCTG	CTCCAGGCAC	GCAACTTTGA	GCGCAACAAG	780
	GCCAAAAAGG	TGATCATCGC	TGTGGTCGTG	GTCTTCATAG	TCTTCCAGCT	GCCCTACAAT	840
	GGGGTGGTCC	TGGCCCAGAC	GGTGGCCAAC	TTCAACATCA	CCAGTAGCAC	CTGTGAGCTC	900
	AGTAAGCAAC	TCAACATCGC	CTACGACGTC	ACCTACAGCC	TGGCCTGCGT	CCGCTGCTGC	960
10	GTCAACCCTT	TCTTGTACGC	CTTCATCGGC	GTCAAGTTCC	GCAACGATCT	CTTCAAGCTC	1020
	TTCAAGGACC	TGGGCTGCCT	CAGCCAGGAG	CAGCTCCGGC	AGTGGTCTTC	CTGTCGGCAC	1080
	ATCCGGCGCT	CCTCCATGAG	TGTGGAGGCC	GAGACCACCA	CCACCTTCTC	CCCATAG	1137
	(205) INFO	RMATION FOR	SEQ ID NO:	204:			

(i) SEQUENCE CHARACTERISTICS:

15

(A) LENGTH: 378 amino acids

(B) TYPE: amino acid

- (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:204: 20

Met Asp Leu Gly Lys Pro Met Lys Ser Val Leu Val Val Ala Leu Leu 5

Val Ile Phe Gln Val Cys Leu Cys Gln Asp Glu Val Thr Asp Asp Tyr

Ile Gly Asp Asn Thr Thr Val Asp Tyr Thr Leu Phe Glu Ser Leu Cys 25

Ser Lys Lys Asp Val Arg Asn Phe Lys Ala Trp Phe Leu Pro Ile Met

Tyr Ser Ile Ile Cys Phe Val Gly Leu Leu Gly Asn Gly Leu Val Val 30

Leu Thr Tyr Ile Tyr Phe Lys Arg Leu Lys Thr Met Thr Asp Thr Tyr

Leu Leu Asn Leu Ala Val Ala Asp Ile Leu Phe Leu Leu Thr Leu Pro

160

				100					105					110		
	Phe	Trp	Ala 115	Tyr	Ser	Ala	Ala	Lys 120	Ser	Trp	Val	Phe	Gly 125	Val	His	Phe
5	Cys	Lys 130	Leu	Ile	Phe	Ala	Ile 135	Tyr	Lys	Met	Ser	Phe 140	Phe	Ser	Gly	Met
	Leu 145	Leu	Leu	Leu	Cys	Ile 150	Ser	Ile	Asp	Arg	Tyr 155	Val	Ala	Ile	Val	Gln 160
	Ala	Val	Ser	Ala	His 165	Arg	His	Arg	Ala	Arg 170	Val	Leu	Leu	Ile	Ser 175	Lys
10	Leu	Ser	Cys	Val 180	Gly	Ile	Trp	Ile	Leu 185	Ala	Thr	Val	Leu	Ser 190	Ile	Pro
	Glu	Leu	Leu 195	Tyr	Ser	Asp	Leu	Gln 200	Arg	Ser	Ser	Ser	Glu 205	Gln	Ala	Met
15	Arg	Cys 210	Ser	Leu	Ile	Thr	Glu 215	His	Val	Glu	Ala	Phe 220	Ile	Thr	Ile	Gln
	Val 225	Ala	Gln	Met	Val	Ile 230	Gly	Phe	Leu	Val	Pro 235	Leu	Leu	Ala	Met	Ser 240
	Phe	Cys	Tyr	Leu	Val 245	Ile	Ile	Arg	Thr	Leu 250	Leu	Gln	Ala	Arg	Asn 255	Phe
20	Glu	Arg	Asn	Lys 260	Ala	Lys	Lys	Val	Ile 265	Ile	Ala	Val	Val	Val 270	Val	Phe
	Ile	Val	Phe 275	Gln	Leu	Pro	Tyr	Asn 280	Gly	Val	Val	Leu	Ala 285	Gln	Thr	Val
25	Ala	Asn 290	Phe	Asn	Ile	Thr	Ser 295	Ser	Thr	Cys	Glu	Leu 300	Ser	Lys	Gln	Leu
	Asn 305	Ile	Ala	Tyr	Asp	Val 310	Thr	Tyr	Ser	Leu	Ala 315	Cys	Val	Arg	Cys	Cys 320
	Val	Asn	Pro	Phe	Leu 325	Tyr	Ala	Phe	Ile	Gly 330	Val	Lys	Phe	Arg	Asn 335	Asp
30	Leu	Phe	Lys	Leu 340	Phe	Lys	Asp	Leu	Gly 345	Cys	Leu	Ser	Gln	Glu 350	Gln	Leu
	Arg	Gln	Trp 355	Ser	Ser	Cys	Arg	His 360	Ile	Arg	Arg	Ser	Ser 365	Met	Ser	Val
35	Glu	Ala 370	Glu	Thr	Thr	Thr	Thr 375	Phe	Ser	Pro						

(206) INFORMATION FOR SEQ ID NO:205:

161

/ ~ \	CONTRACT	CHARACTERISTICS	
	SECUENCE	CHARACIERISIICS	ı

- (A) LENGTH: 1086 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- 5 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:205:

ATGGATATAC AAATGGCAAA CAATTTTACT CCGCCCTCTG CAACTCCTCA GGGAAATGAC 60 TGTGACCTCT ATGCACATCA CAGCACGGCC AGGATAGTAA TGCCTCTGCA TTACAGCCTC 120 10 GTCTTCATCA TTGGGCTCGT GGGAAACTTA CTAGCCTTGG TCGTCATTGT TCAAAACAGG 180 AAAAAAATCA ACTCTACCAC CCTCTATTCA ACAAATTTGG TGATTTCTGA TATACTTTTT 240 ACCACGGCTT TGCCTACACG AATAGCCTAC TATGCAATGG GCTTTGACTG GAGAATCGGA 300 GATGCCTTGT GTAGGATAAC TGCGCTAGTG TTTTACATCA ACACATATGC AGGTGTGAAC 360 TTTATGACCT GCCTGAGTAT TGACCGCTTC ATTGCTGTGG TGCACCCTCT ACGCTACAAC 420 15 AAGATAAAAA GGATTGAACA TGCAAAAGGC GTGTGCATAT TTGTCTGGAT TCTAGTATTT 480 GCTCAGACAC TCCCACTCCT CATCAACCCT ATGTCAAAGC AGGAGGCTGA AAGGATTACA 540 TGCATGGAGT ATCCAAACTT TGAAGAAACT AAATCTCTTC CCTGGATTCT GCTTGGGGCA 600 TGTTTCATAG GATATGTACT TCCACTTATA ATCATTCTCA TCTGCTATTC TCAGATCTGC 660 TGCAAACTCT TCAGAACTGC CAAACAAAAC CCACTCACTG AGAAATCTGG TGTAAACAAA 720 20 AAGGCTAAAA ACACAATTAT TCTTATTATT GTTGTGTTTG TTCTCTGTTT CACACCTTAC 780 CATGTTGCAA TTATTCAACA TATGATTAAG AAGCTTCGTT TCTCTAATTT CCTGGAATGT 840 AGCCAAAGAC ATTCGTTCCA GATTTCTCTG CACTTTACAG TATGCCTGAT GAACTTCAAT 900 TGCTGCATGG ACCCTTTTAT CTACTTCTTT GCATGTAAAG GGTATAAGAG AAAGGTTATG AGGATGCTGA AACGGCAAGT CAGTGTATCG ATTTCTAGTG CTGTGAAGTC AGCCCCTGAA 1020 25 GAAAATTCAC GTGAAATGAC AGAAACGCAG ATGATGATAC ATTCCAAGTC TTCAAATGGA 1080 AAGTGA 1086

(207) INFORMATION FOR SEQ ID NO:206:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 361 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: not relevant

	(i	i) M	OLEC	JLE '	TYPE	: pro	oteir	1								
	(x	i) s	EQUEI	NCE I	DESC	RIPT	ION:	SEQ	ID 1	10 : 20	06:					
	Met 1	Asp	Ile	Gln	Met 5	Ala	Asn	Asn	Phe	Thr 10	Pro	Pro	Ser	Ala	Thr 15	Pro
5	Gln	Gly	Asn	Asp 20	Cys	Asp	Leu	Tyr	Ala 25	His	His	Ser	Thr	Ala 30	Arg	Ile
	Val	Met	Pro 35	Leu	His	Tyr	Ser	Leu 40	Val	Phe	Ile	Ile	Gly 45	Leu	Val	Gly
10	Asn	Leu 50	Leu	Ala	Leu	Val	Val 55	Ile	Val	Gln	Asn	Arg 60	Lys	Lys	Ile	Asn
	Ser 65	Thr	Thr	Leu	Tyr	Ser 70	Thr	Asn	Leu	Val	Ile 75	Ser	Asp	Ile	Leu	Phe 80
	Thr	Thr	Ala	Leu	Pro 85	Thr	Arg	Ile	Ala	Tyr 90	Tyr	Ala	Met	Gly	Phe 95	Asp
15	Trp	Arg	Ile	Gly 100	Asp	Ala	Leu	Cys	Arg 105	Ile	Thr	Ala	Leu	Val 110	Phe	Tyr
	Ile	Asn	Thr 115	туг	Ala	Gly	Val	Asn 120	Phe	Met	Thr	Cys	Leu 125	Ser	Ile	Asp
20	Arg	Phe 130	Ile	Ala	Val	Val	His 135	Pro	Leu	Arg	Tyr	Asn 140	Lys	Ile	Lys	Arg
	Ile 145	Glu	His	Ala	Lys	Gly 150	Val	Cys	Ile	Phe	Val 155	Trp	Ile	Leu	Val	Phe 160
	Ala	Gln	Thr	Leu	Pro 165	Leu	Leu	Ile	Asn	Pro 170	Met	Ser	Lys	Gln	Glu 175	Ala
25	Glu	Arg	Ile	Thr 180	Cys	Met	Glu	Tyr	Pro 185	Asn	Phe	Glu	Glu	Thr 190	Lys	Ser
	Leu	Pro	Trp 195	Ile	Leu	Leu	Gly	Ala 200	Cys	Phe	Ile	Gly	Tyr 205	Val	Leu	Pro
30	Leu	Ile 210	Ile	Ile	Leu	Ile	Cys 215	Tyr	Ser	Gln	Ile	Cys 220	Cys	Lys	Leu	Phe
	Arg 225	Thr	Ala	Lys	Gln	Asn 230	Pro	Leu	Thr	Glu	Lys 235	Ser	Gly	Val	Asn	Lys 240
	Lys	Ala	Lys	Asn	Thr 245	Ile	Ile	Leu	Ile	Ile 250	Val	Val	Phe	Val	Leu 255	Cys
35	Phe	Thr	Pro	Tyr 260	His	Val	Ala	Ile	Ile 265	Gln	His	Met	Ile	Lys 270	Lys	Leu

163

	Arg	Phe	Ser 275	Asn	Phe	Leu	Glu	Cys 280	Ser	Gln	Arg	His	Ser 285	Phe	Gln	Ile	
	Ser	Leu 290	His	Phe	Thr	Val	Cys 295	Leu	Met	Asn	Phe	Asn 300	Cys	Cys	Met	Asp	
5	Pro 305	Phe	Ile	туr	Phe	Phe 310	Ala	Cys	Lys	Gly	Туr 315	Lys	Arg	Lys	Val	Met 320	
	Arg	Met	Leu	Lys	Arg 325	Gln	Val	Ser	Val	Ser 330	Ile	Ser	Ser	Ala	Val 335	Lys	
10	Ser	Ala	Pro	Glu 340	Glu	Asn	Ser	Arg	Glu 345	Met	Thr	Glu	Thr	Gln 350	Met	Met	
	Ile	His	Ser 355	Lys	Ser	Ser	Asn	Gly 360	Lys								
	(208) INF	FORM	OITA	N FOR	SEÇ) ID	NO:2	207:									
15	(i)	(A) (B) (C)	LEN TYI	CE CH NGTH: PE: n RANDE	144 nucle DNES	16 ba eic a SS: s	ase pacid	pairs	5								
	(ii	L) MC	LECU	JLE I	YPE:	DNA	A (ge	enomi	ic)								
20	(xi	l) SI	EQUE1	NCE E	ESCF	RIPT	ON:	SEQ	ID 1	10:20	7:						
	ATGCGGTGG	C TO	GTGG	CCCT	. GGC	CTGT	CTCT	CTT	CTGT	rga 1	TTTT	GCT	T GO	GGC1	raago	2	60
	AGGGTCTCT	rg go	GGT	3CCCC	CCI	rgca(CCTG	GGC	AGGC	ACA (BAGCO	GAGA	C CC	CAGG	AGCAC	3 :	120
	CAGAGCCGA	AT CO	CAAGA	AGGGG	CAC	CCGAC	GGAT	GAGO	BAGG	CCA A	AGGGC	CGTGC	A GO	CAGTA	ATGTO	3 :	180
	CCTGAGGAG	et Go	GCGC	SAGTA	ccc	CCGG	GCCC	ATTO	CACCO	CTG (CTGGC	CTGC	A GO	CCAAC	CCAAC	3 2	240
25	CCCTTGGTG	G C	CACC	AGCCC	TA	ACCC	CGAC	AAGO	ATGO	GGG (CACC	CCAG	A C	AGTGC	GCAC	3	300
	GAACTGAGG	G G	CAATO	CTGAC	AGG	GGC2	ACCA	GGG	CAGAC	GGC 1	TACAC	ATCO	A GA	AACCO	CCTC	3 3	360
	TATCCGGT	A CO	CGAGA	AGCTC	CTA	ACAG:	rgcc	TATO	CCA	rca 1	rgcti	CTGG	C GC	TGG	rggto	3 4	420
	TTTGCGGT	G G	CATTO	GTGGG	CA	ACCTO	STCG	GTC	ATGTO	GCA 1	CGT	TGGC	A CA	AGCT	ACTAC	2 4	480
	CTGAAGAĠ	CG CC	CTGG	AACTO	CAT	CCT:	rgcc	AGC	CTGG	CCC 7	CTGC	GATI	т то	CTGGT	CCTC	C !	540
30	TTTTTCTG	CC TO	CCT	ATTGI	CAT	CTT	CAAC	GAG	ATCAC	CCA A	AGCAC	BAGGO	T AC	CTGGC	TGAC	· •	600
	GTTTCTTGT	rc G	rgcco	GTGCC	CTI	CATO	GGAG	GTC	CCT	CTC 7	rgggz	AGTC	C G	ACTTI	rcago	2 (660
	CTCTGTGC	CC TO	GGC/	ATTGA	CCC	CTT	CCAC	GTG	CCA	CA (CAC	CTGC	C C	AAGGT	rgago	3 .	720

CCCATCGAGC GGTGCCAATC CATCCTGGCC AAGTTGGCTG TCATCTGGGT GGGCTCCATG

	ACGCTGGCTG	TGCCTGAGCT	CCTGCTGTGG	CAGCTGGCAC	AGGAGCCTGC	CCCCACCATG	840
	GGCACCCTGG	ACTCATGCAT	CATGAAACCC	TCAGCCAGCC	TGCCCGAGTC	CCTGTATTCA	900
	CTGGTGATGA	CCTACCAGAA	CGCCCGCATG	TGGTGGTACT	TTGGCTGCTA	CTTCTGCCTG	960
	CCCATCCTCT	TCACAGTCAC	CTGCCAGCTG	GTGACATGGC	GGGTGCGAGG	CCCTCCAGGG	1020
5	AGGAAGTCAG	AGTGCAGGGC	CAGCAAGCAC	GAGCAGTGTG	AGAGCCAGCT	CAAGAGCACC	1080
	GTGGTGGCC	TGACCGTGGT	CTACGCCTTC	TGCACCCTCC	CAGAGAACGT	CTGCAACATC	1140
	GTGGTGGCCT	ACCTCTCCAC	CGAGCTGACC	CGCCAGACCC	TGGACCTCCT	GGGCCTCATC	1200
	AACCAGTTCT	CCACCTTCTT	CAAGGGCGCC	ATCACCCCAG	TGCTGCTCCT	TTGCATCTGC	1260
	AGGCCGCTGG	GCCAGGCCTT	CCTGGACTGC	TGCTGCTGCT	GCTGCTGTGA	GGAGTGCGGC	1320
10	GGGGCTTCGG	AGGCCTCTGC	TGCCAATGGG	TCGGACAACA	AGCTCAAGAC	CGAGGTGTCC	1380
	TCTTCCATCT	ACTTCCACAA	GCCCAGGGAG	TCACCCCCAC	TCCTGCCCCT	GGGCACACCT	1440
	TGCTGA						1446

(209) INFORMATION FOR SEQ ID NO:208:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 481 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein
- 20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:208:

Met Arg Trp Leu Trp Pro Leu Ala Val Ser Leu Ala Val Ile Leu Ala 1 5 10 15

Val Gly Leu Ser Arg Val Ser Gly Gly Ala Pro Leu His Leu Gly Arg 20 25 30

25 His Arg Ala Glu Thr Gln Glu Gln Gln Ser Arg Ser Lys Arg Gly Thr 35 40 45

Glu Asp Glu Glu Ala Lys Gly Val Gln Gln Tyr Val Pro Glu Glu Trp 50 55 60

Ala Glu Tyr Pro Arg Pro Ile His Pro Ala Gly Leu Gln Pro Thr Lys
65 70 75 80

Pro Leu Val Ala Thr Ser Pro Asn Pro Asp Lys Asp Gly Gly Thr Pro 85 90 95

Asp Ser Gly Gln Glu Leu Arg Gly Asn Leu Thr Gly Ala Pro Gly Gln

				100					105					110		
	Arg	Leu	Gln 115	Ile	Gln	Asn	Pro	Leu 120	Tyr	Pro	Val	Thr	Glu 125	Ser	Ser	Tyr
5	Ser	Ala 130	Tyr	Ala	Ile	Met	Leu 135	Leu	Ala	Leu	Val	Val 140	Phe	Ala	Val	Gly
	Ile 145	Val	Gly	Asn	Leu	Ser 150	Val	Met	Cys	Ile	Val 155	Trp	His	Ser	Tyr	Tyr 160
	Leu	Lys	Ser	Ala	Trp 165	Asn	Ser	Ile	Leu	Ala 170	Ser	Leu	Ala	Leu	Trp 175	Asp
10	Phe	Leu	Val	Leu 180	Phe	Phe	Cys	Leu	Pro 185	Ile	Val	Ile	Phe	Asn 190	Glu	Ile
	Thr	Lys	Ģln 195	Arg	Leu	Leu	Gly	Asp 200	Val	Ser	Cys	Arg	Ala 205	Val	Pro	Phe
15	Met	Glu 210	Val	Ser	Ser	Leu	Gly 215	Val	Thr	Thr	Phe	Ser 220	Leu	Cys	Ala	Leu
	Gly 225	Ile	Asp	Arg	Phe	His 230	Val	Ala	Thr	Ser	Thr 235	Leu	Pro	Lys	Val	Arg 240
	Pro	Ile	Glu	Arg	Cys 245	Gln	Ser	Ile	Leu	Ala 250	Lys	Leu	Ala	Val	Ile 255	Trp
20	Val	Gly	Ser	Met 260	Thr	Leu	Ala	Val	Pro 265	Glu	Leu	Leu	Leu	Trp 270	Gln	Leu
	Ala	Gln	Glu 275	Pro	Ala	Pro	Thr	Met 280	Gly	Thr	Leu	Asp	Ser 285	Cys	Ile	Met
25	Lys	Pro 290	Ser	Ala	Ser	Leu	Pro 295	Glu	Ser	Leu	Tyr	Ser 300	Leu	Val	Met	Thr
	Tyr 305	Gln	Asn	Ala	Arg	Met 310	Trp	Trp	Tyr	Phe	Gly 315	Cys	Tyr	Phe	Cys	Leu 320
	Pro	Ile	Leu	Phe	Thr 325	Val	Thr	Cys	Gln	Leu 330	Val	Thr	Trp	Arg	Val 335	Arg
30	Gly	Pro	Pro	Gly 340	Arg	Lys	Ser	Glu	Cys 345	Arg	Ala	Ser	Lys	His 350	Glu	Gln
	Cys	Glu	Ser 355	Gln	Leu	Lys	Ser	Thr 360	Val	Val	Gly	Leu	Thr 365	Val	Val	Tyr
35	Ala	Phe 370	Cys	Thr	Leu	Pro	Glu 375	Asn	Val	Cys	Asn	Ile 380	Val	Val	Ala	Tyr
	Leu 385	Ser	Thr	Glu	Leu	Thr 390	Arg	Gln	Thr	Leu	Asp 395	Leu	Leu	Gly	Leu	Ile 400

	Asn	Gln	Phe	Ser	Thr 405	Phe	Phe	Lys	Gly	Ala 410	Ile	Thr	Pro	Val	Leu 415	Leu	
	Leu	Cys	Ile	Cys 420	Arg	Pro	Leu	Gly	Gln 425	Ala	Phe	Leu	Asp	Cys 430	Cys	Cys	
5	Cys		Cys 435	Cys	Glu	Glu	Cys	Gly 440	Gly	Ala	Ser	Glu	Ala 445	Ser	Ala	Ala	
	Asn (Gly : 450	Ser	Asp	Asn	Lys	Leu 455	Lys	Thr	Glu	Val	Ser 460	Ser	Ser	Ile	Tyr	
10	Phe 1 465	His 1	Lys	Pro	Arg	Glu 470	Ser	Pro	Pro	Leu	Leu 475	Pro	Leu	Gly	Thr	Pro 480	
	Cys																
	(210) INFO	RMAC	rion	FOR	SEQ	ID	NO:2	09:									
15	(i)	(B)	LENG TYP: STR	GTH: E: n ANDE	110 ucle DNES		se p cid ingl	airs									
	(ii)	MOL	LECU	LE T	YPE:	DNA	(ge	nomi	c)								
20	(xi)	SEQ)UEN	CE D	ESCR	IPTI	ON:	SEQ	ID N	0:20	9:						
	ATGTGGAACG	G CGA	ACGC	CCAG	CGA	AGAG	CCG	GGGT	TCAA	сс т	CACA	CTGG	C CG	ACCT	GGAC	6	o
	TGGGATGCTT	ccc	CCG	GCAA	CGA	CTCG	CTG	GGCG.	ACGA	GC T	GCTG	CAGC'	т ст	TCCC	CGCG	120	0
	CCGCTGCTGG	GGG	GCG	rcac	AGC	CACC'	TGC	GTGG	CACT	CT T	CGTG	GTGG	G TA	TCGC	TGGC	180	0
	AACCTGCTCA	CCA	TGC	rggt	GGT	GTCG	CGC '	TTCC	GCGA	GC T	GCGC	ACCA	C CA	CCAA	CCTC	240	Э
25	TACCTGTCCA	GCA	TGGC	CCTT	CTC	CGAT	CTG (CTCA'	rctt(CC T	CTGC	ATGC	C CC	TGGA	CCTC	300)
	GTTCGCCTCT	. GGC	AGTA	ACCG	GCC	CTGG	AAC 1	TTCG	GCGA	CC T	CCTC:	rgca <i>i</i>	A AC'	TCTT	CCAA	360)
	TTCGTCAGTG	AGA	GCT0	CAC	CTA	CGCC	ACG (GTGC:	rcac(CA TO	CACA	GCGC	r ga	GCGT	CGAG	420)
	CGCTACTTCG	CCA	TCTG	CTT	CCCI	ACTC	CGG (GCCA!	AGGT	GG T	GTC	ACCA	A GG	GGCG	GTG	480)
	AAGCTGGTCA	TCT	TCGI	CAT	CTG	GCCC	GTG (GCCT"	rctgo	CA GO	CGCC	GGC	CA!	rctt(CGTG	540)
30	CTAGTCGGGG	TGG.	AGCA	ACGA	GAA	CGGC	ACC (GACC	CTTGO	G A	CACCA	AACGA	A GTO	3CCG(CCCC	600)
	ACCGAGTTTG	CGG'	TGCG	CTC	TGG	ACTGO	CTC 1	ACGGT	TCATO	G T	GTGGG	STGTO	CAC	GCAT	CTTC	660)
	TTCTTCCTTC	CTG	TCTI	CTG	TCTC	CACGO	STC (CTCTA	ACAGI	C TO	CATCO	GCAG	GAA	AGCTO	STGG	720)
	CGGAGGAGGC	GCG	GCGA	TGC	TGT	CGTGC	GT (CCTC	CGCTC	CA GO	GACC	CAGAZ	A CC	ACAAC	SCAA	780)

	ACCAAGAAA	A TG	CTGG	CTGT	AGT	GGTG	TTT	GCCT	TCAT	CC 1	CTGC	TGGC	т сс	CCTT	CCAC	840
	GTAGGGCGA	TA T	TATT	TTTC	CAA	ATCC	TTT	GAGC	CTGG	CT (CCTTG	GAGA	т те	CTCA	GATC	900
	AGCCAGTAC	T GC	AACC	TCGT	GTC	CTTT	GTC	CTCT	тста	.cc 1	CAGT	GCTG	C CA	TCAA	cccc	960
	ATTCTGTAC	A AC	'ATCA	TGTC	CAA	GAAG	TAC	CGGG	TGGC	AG T	rgttc	AGAC	ттс	TGGG	ATTC	1020
5	GAACCCTTC	т сс	CAGA	GAAA	GCT	CTCC	ACT	CTGA	AAGA	TG A	AAGT	TCTC	G GG	CCTG	GACA	1080
	GAATCTAGT	TT A	'AATA	CATG	A											1101
	(211) INF	ORMA	MOIT	I FOR	SEÇ	ID	NO:2	10:								
10	(i)	(A) (B) (C)	LEN TYP	CE CH IGTH: PE: a RANDE POLOG	366 minc DNES	ami aci S:	.no a .d	cids	ı							
	(ii) MC	LECU	LE I	YPE:	pro	teir	1								
				ICE I												
15	Met 1	Trp	Asn	Ala	Thr 5	Pro	Ser	Glu	Glu	Pro 10	Gly	Phe	Asn	Leu	Thr 15	Leu
	Ala	Asp	Leu	Asp 20	Trp	Asp	Ala	Ser	Pro 25	Gly	Asn	Asp	Ser	Leu 30	Gly	Asp
20	Glu	Leu	Leu 35	Gln	Leu	Phe	Pro	Ala 40	Pro	Leu	Leu	Ala	Gly 45	Val	Thr	Ala
	Thr	Суs 50	Val	Ala	Leu	Phe	Val 55	Val	Gly	Ile	Ala	Gly 60	Asn	Leu	Leu	Thr
	Met 65	Leu	Val	Val	Ser	Arg 70		Arg	Glu	Leu	Arg 75	Thr	Thr	Thr	Asn	Leu 80
25	Tyr	Leu	Ser	Ser	Met 85	Ala	Phe	Ser	Asp	Leu 90	Leu	Ile	Phe	Leu	Cys 95	Met
	Pro	Leu	Asp	Leu 100	Val	Arg	Leu	Trp	Gln 105	Tyr	Arg	Pro	Trp	Asn 110	Phe	Gly
30	Asp	Leu	Leu 115	Cys	Lys	Leu	Phe	Gln 120	Phe	Val	Ser	Glu	Ser 125	Cys	Thr	Tyr
	Ala	Thr	Val	Leu	Thr	Ile	Thr 135	Ala	Leu	Ser	Val	Glu 140	Arg	Tyr	Phe	Ala

Ile Cys Phe Pro Leu Arg Ala Lys Val Val Val Thr Lys Gly Arg Val 150 , 155

Lys Leu Val Ile Phe Val Ile Trp Ala Val Ala Phe Cys Ser Ala Gly

35

145

					165					170					175		
	Pro	Ile	Phe	Val 180	Leu	Val	Gly	Val	Glu 185	His	Glu	Asn	Gly	Thr 190	Asp	Pro	
5	Trp	Asp	Thr 195	Asn	Glu	Cys	Arg	Pro 200	Thr	Glu	Phe	Ala	Val 205	Arg	Ser	Gly	
	Leu	Leu 210	Thr	Val	Met	Val	Trp 215	Val	Ser	Ser	Ile	Phe 220	Phe	Phe	Leu	Pro	
	Val 225	Phe	Cys	Leu	Thr	Val 230	Leu	Tyr	Ser	Leu	Ile 235	Gly	Arg	Lys	Leu	Trp 240	
10	Arg	Arg	Arg	Arg	Gly 245	Asp	Ala	Val	Val	Gly 250	Ala	Ser	Leu	Arg	Asp 255	Gln	
	Asn	His	Ļys	Gln 260	Thr	Lys	Lys	Met	Leu 265	Ala	Val	Val	Val	Phe 270	Ala	Phe	
15	Ile	Leu	Cys 275	Trp	Leu	Pro	Phe	His 280	Val	Gly	Arg	Tyr	Leu 285	Phe	Ser	Lys	
	Ser	Phe 290	Glu	Pro	Gly	Ser	Leu 295	Glu	Ile	Ala	Gln	Ile 300	Ser	Gln	Tyr	Cys	
	Asn 305	Leu	Val	Ser	Phe	Val 310	Leu	Phe	Tyr	Leu	Ser 315	Ala	Ala	Ile	Asn	Pro 320	
20	Ile	Leu	Tyr	Asn	Ile 325	Met	Ser	Lys	Lys	Tyr 330	Arg	Val	Ala	Val	Phe 335	Arg	
	Leu	Leu	Gly	Phe 340	Glu	Pro	Phe	Ser	Gln 345	Arg	Lys	Leu	Ser	Thr 350	Leu	Lys	
25	Asp	Glu	Ser 355	Ser	Arg	Ala	Trp	Thr 360	Glu	Ser	Ser	Ile	Asn 365	Thr			
	(212) INE	FORM	ATION	1 FOF	R SEÇ) ID	NO:2	:11:									
30	(i)	(A) (B) (C)	UENC LEN TYP STF TOP	IGTH: PE: r RANDE	: 184 nucle EDNES	l2 ba lic a SS: s	ase p acid singl	airs	3								
	(ii	L) MC	LECU	TLE T	TYPE:	DNA	4 (ge	nomi	.c)								
	(xi	i) SI	EQUEN	ICE I	ESCF	RIPTI	ON:	SEQ	ID N	10:21	.1:						
	ATGCGAGCC	cc co	GGCG	GCGCI	TCI	CGCC	CCGC	ATGT	CGCG	GC I	'ACTG	CTTC	T GC	TACI	GCTC	:	60
35	AAGGTGTCT	rg co	CTCTI	CTGC	CCI	CGGG	GTC	GCCC	CTGC	GT C	CAGA	AACG	AA AA	CTTG	TCTG	; 1	20
	GGGGAGAG	T GI	GCAC	CTAC	C AGI	GATO	CCAG	CGCC	GCGG	CA G	GGAC	GCCT	'G GG	GACC	GGGA	. 1	.80

	AATTCTGCAA	GAGACGTTCT	GCGAGCCCGA	GCACCCAGGG	AGGAGCAGGG	GGCAGCGIII	240
	CTTGCGGGAC	CCTCCTGGGA	CCTGCCGGCG	GCCCCGGGCC	GTGACCCGGC	TGCAGGCAGA	300
	GGGGCGGAGG	CGTCGGCAGC	CGGACCCCCG	GGACCTCCAA	CCAGGCCACC	TGGCCCCTGG	360
	AGGTGGAAAG	GTGCTCGGGG	TCAGGAGCCT	TCTGAAACTT	TGGGGAGAGG	GAACCCCACG	420
5	GCCCTCCAGC	TCTTCCTTCA	GATCTCAGAĢ	GAGGAAGAGA	AGGGTCCCAG	AGGCGCTGGC	480
	ATTTCCGGGC	GTAGCCAGGA	GCAGAGTGTG	AAGACAGTCC	CCGGAGCCAG	CGATCTTTTT	540
	TACTGGCCAA	GGAGAGCCGG	GAAACTCCAG	GGTTCCCACC	ACAAGCCCCT	GTCCAAGACG	600
	GCCAATGGAC	TGGCGGGGCA	CGAAGGGTGG	ACAATTGCAC	TCCCGGGCCG	GGCGCTGGCC	660
	CAGAATGGAT	CCTTGGGTGA	AGGAATCCAT	GAGCCTGGGG	GTCCCCGCCG	GGGAAACAGC	720
10	ACGAACCGGC	GTGTGAGACT	GAAGAACCCC	TTCTACCCGC	TGACCCAGGA	GTCCTATGGA	780
	GCCTACGCGG	TCATGTGTCT	GTCCGTGGTG	ATCTTCGGGA	CCGGCATCAT	TGGCAACCTG	840
	GCGGTGATGT	GCATCGTGTG	CCACAACTAC	TACATGCGGA	GCATCTCCAA	CTCCCTCTTG	900
	GCCAACCTGG	CCTTCTGGGA	CTTTCTCATC	ATCTTCTTCT	GCCTTCCGCT	GGTCATCTTC	960
	CACGAGCTGA	CCAAGAAGTG	GCTGCTGGAG	GACTTCTCCT	GCAAGATCGT	GCCCTATATA	1020
15	GAGGTCGCCT	CTCTGGGAGT	CACCACTTTC	ACCTTATGTG	CTCTGTGCAT	AGACCGCTTC	1080
	CGTGCTGCCA	CCAACGTACA	GATGTACTAC	GAAATGATCG	AAAATTGTTC	CTCAACAACT	1140
	GCCAAACTTG	CTGTTATATG	GGTGGGAGCT	CTATTGTTAG	CACTTCCAGA	AGTTGTTCTC	1200
	CGCCAGCTGA	GCAAGGAGGA	TTTGGGGTTT	AGTGGCCGAG	CTCCGGCAGA	AAGGTGCATT	1260
	ATTAAGATCT	CTCCTGATTT	ACCAGACACC	ATCTATGTTC	TAGCCCTCAC	CTACGACAGT	1320
20	GCGAGACTGT	GGTGGTATTT	TGGCTGTTAC	TTTTGTTTGC	CCACGCTTTT	CACCATCACC	1380
	TGCTCTCTAG	TGACTGCGAG	GAAAATCCGC	AAAGCAGAGA	AAGCCTGTAC	CCGAGGGAAT	1440
	AAACGGCAGA	TTCAACTAGA	GAGTCAGATG	AAGTGTACAG	TAGTGGCACT	GACCATTTTA	1500
	TATGGATTTT	GCATTATTCC	TGAAAATATC	TGCAACATTG	TTACTGCCTA	CATGGCTACA	1560
	GGGGTTTCAC	AGCAGACAAT	GGACCTCCTT	AATATCATCA	GCCAGTTCCT	TTTGTTCTTT	1620
25	AAGTCCTGTG	TCACCCCAGT	CCTCCTTTTC	TGTCTCTGCA	AACCCTTCAG	TCGGGCCTTC	1680
	ATGGAGTGCT	GCTGCTGTTG	CTGTGAGGA	A TGCATTCAGA	AGTCTTCAAC	GGTGACCAGT	1740
	GATGACAATG	G ACAACGAGTA	CACCACGGA	A CTCGAACTCI	CGCCTTTCAG	TACCATACGC	1800
	CGTGAAATGT	r CCACTTTTGC	TTCTGTCGG	A ACTCATTGCT	. GA		1842

(213)) INFORMATION	FOR	SEQ	ID	NO:212:
-------	---------------	-----	-----	----	---------

(i) SEQUENCE CHARACTERISTICS:

5	(EQUENCE (A) LENG (B) TYPE (C) STRAI (D) TOPO	TH: 6 ami: IDEDNI	13 an no ac ESS:	nino cid	acid								
	(ii)	MOLECULI	TYPI	E: pr	otei	.n								
	(xi)	SEQUENCE	DESC	CRIPT	CION:	SEQ	ID	NO:2	12:					
10	Met Ar 1	g Ala Pı	o Gly 5	/ Ala	Leu	Leu	Ala	Arg 10	Met	Ser	Arg	Leu	Leu 15	Leu
	Leu Le	u Leu Le 20		Val	Ser	Ala	Ser 25	Ser	Ala	Leu	Gly	Val 30	Ala	Pro
	Ala Se	r Arg As 35	n Glu	Thr	Cys	Leu 40	Gly	Glu	Ser	Cys	Ala 45	Pro	Thr	Val
15	Ile Gl	n Arg Ar	g Gly	' Arg	Asp 55	Ala	Trp	Gly	Pro	Gly 60	Asn	Ser	Ala	Arg
	Asp Va 65	l Leu Ar	g Ala	Arg 70	Ala	Pro	Arg	Glu	Glu 75	Gln	Gly	Ala	Ala	Phe 80
20	Leu Ala	a Gly Pr	o Ser 85	Trp	Asp	Leu	Pro	Ala 90	Ala	Pro	Gly	Arg	Asp 95	Pro
	Ala Ala	a Gly Ar 10		Ala	Glu	Ala	Ser 105	Ala	Ala	Gly	Pro	Pro 110	Gly	Pro
	Pro Th	Arg Pr 115	o Pro	Gly	Pro	Trp 120	Arg	Trp	Lys	Gly	Ala 125	Arg	Gly	Gln
25	Glu Pro	Ser Gl	u Thr	Leu	Gly 135	Arg	Gly	Asn	Pro	Thr 140	Ala	Leu	Gln	Leu
	Phe Lei 145	Gln Il	e Ser	Glu 150	Glu	Glu	Glu	Lys	Gly 155	Pro	Arg	Gly	Ala	Gly 160
30	Ile Ser	Gly Ar	3 Ser 165	Gln	Glu	Gln	Ser	Val 170	Lys	Thr	Val	Pro	Gly 175	Ala
	Ser Asr	Leu Pho		Trp	Pro	Arg	Arg 185	Ala	Gly	Lys	Leu	Gln 190	Gly	Ser
	His His	Lys Pro	Leu	Ser	Lys	Thr 200	Ala	Asn	Gly	Leu	Ala 205	Gly	His	Glu
35	Gly Trp 210	Thr Ile	e Ala	Leu	Pro 215	Gly	Arg	Ala	Leu	Ala 220	Gln	Asn	Gly	Ser
	Leu Gly	Glu Gly	, Ile	His	Glu	Pro	Gly	Gly	Pro	Arg	Arg	Gly	Asn	Ser

	225					230					235					240
	Thr	Asn	Arg	Arg	Val 245	Arg	Leu	Lys	Asn	Pro 250	Phe	Tyr	Pro	Leu	Thr 255	Gln
5	Glu	Ser	Tyr	Gly 260	Ala	Tyr	Ala	Val	Met 265	Cys	Leu	Ser	Val	Val 270	Ile	Phe
,	Gly	Thr	Gly 275	Ile	Ile	Gly	Asn	Leu 280	Ala	Val	Met	Cys	Ile 285	Val	Cys	His
	Asn	Tyr 290	Tyr	Met	Arg	Ser	Ile 295	Ser	Asn	Ser	Leu	Leu 300	Ala	Asn	Leu	Ala
10	Phe 305	Trp	Asp	Phe	Leu	Ile 310	Ile	Phe	Phe	Cys	Leu 315	Pro	Leu	Val	Ile	Phe 320
	His	Glu	Ļeu	Thr	Lys 325	Lys	Trp	Leu	Leu	Glu 330	Asp	Phe	Ser	Cys	Lys 335	Ile
15	Val	Pro	Tyr	Ile 340	Glu	Val	Ala	Ser	Leu 345	Gly	Val	Thr	Thr	Phe 350	Thr	Leu
	Cys	Ala	Leu 355	Cys	Ile	Asp	Arg	Phe 360	Arg	Ala	Ala	Thr	Asn 365	Val	Gln	Met
	Tyr	Tyr 370	Glu	Met	Ile	Glu	Asn 375	Cys	Ser	Ser	Thr	Thr 380	Ala	Lys	Leu	Ala
20	Val 385	Ile	Trp	Val	Gly	Ala 390	Leu	Leu	Leu	Ala	Leu 395	Pro	Glu	Val	Val	Leu 400
	Arg	Gln	Leu	Ser	Lys 405	Glu	Asp	Leu	Gly	Phe 410	Ser	Gly	Arg	Ala	Pro 415	Ala
25	Glu	Arg	Cys	11e 420	Ile	Lys	Ile	Ser	Pro 425	Asp	Leu	Pro	Asp	Thr 430	Ile	Tyr
	Val	Leu	Ala 435	Leu	Thr	Tyr	Asp	Ser 440	Ala	Arg	Leu	Trp	Trp 445	Tyr	Phe	Gly
	Cys	Tyr 450	Phe	Cys	Leu	Pro	Thr 455	Leu	Phe	Thr	Ile	Thr 460	Cys	Ser	Leu	Val
30	Thr 465	Ala	Arg	Lys	Ile	Arg 470	Lys	Ala	Glu	Lys	Ala 475	Cys	Thr	Arg	Gly	Asn 480
	Lys	Arg	Gln	Ile	Gln 485	Leu	Glu	Ser	Gln	Met 490	Lys	Cys	Thr	Val	Val 495	Ala
35	Leu	Thr	Ile	Leu 500	Tyr	Gly	Phe	Cys	11e 505	Ile	Pro	Glu	Asn	Ile 510	Cys	Asn
	Ile	Val	Thr 515	Ala	Tyr	Met	Ala	Thr 520		Val	Ser	Gln	Gln 525	Thr	Met	Asp

	Leu	Leu 530	Asn	Ile	Ile	Ser	Gln 535	Phe	Leu	Leu	Phe	Phe 540	Lys	Ser	Cys	Val	
	Thr 545	Pro	Val	Leu	Leu	Phe 550	Cys	Leu	Cys	Lys	Pro 555	Phe	Ser	Arg	Ala	Phe 560	
5	Met	Glu	Cys	Cys	Cys 565	Cys	Cys	Cys	Glu	Glu 570	Cys	Ile	Gln	Lys	Ser 575	Ser	
	Thr	Val	Thr	Ser 580	Asp	Asp	Asn	Asp	Asn 585	Glu	Tyr	Thr	Thr	Glu 590	Leu	Glu	
10	Leu	Ser	Pro 595	Phe	Ser	Thr	Ile	Arg 600	Arg	Glu	Met	Ser	Thr 605	Phe	Ala	Ser	
	Val	Gly 610	Thr	His	Cys												
	(214) INF	FORMA	MOITA	FOF	SEÇ) ID	NO:2	213:									
15	(i)	(A) (B) (C)	LEN TYF STR	IGTH : PE : T LANDE	HARAC 124 nucle DNES	8 ba ic a S: s	se p cid ingl	airs	3								
	(ii	.) MC	LECU	LE I	YPE:	DNA	. (ge	nomi	.c)								
20	(xi) SE	QUEN	CE I	ESCR	IPTI	ON:	SEQ	ID N	0:21	.3:						
	ATGGTTTTT	G CI	'CACA	GAAT	' GGA	TAAC	AGC	AAGC	CACA	тт т	GATT	ATTC	C TA	.CACT	TCTG	60	
	GTGCCCCTC																
	ATGGAATTA																
25	AAACCCGGG																
23	TTCGGCAAT																
	TTCGTCCTG																
	GTGCGATAT																
	ATAGACCGG	T TC	TACA	CCAT	CGT	CTAT	ССТ	CTGA	GCTT	CA A	GGTG'	rcca(G AG	AAAA	AGCC	540	
30	AAGAAAATG.	A TT	GCGG	CATC	GTG	GATC'	TTT	GATG	CAGG	CT T	TGT'G	ACCC	C TG	TGCT	СТТТ	600	
	TTCTATGGC	T CC	AACT	GGGA	CAG	TCAT'	TGT .	AACT.	ATTT	CC T	CCCC'	rcct(C TT	GGGA	AGGC	660	
	ACTGCCTAC	A CT	GTCA	TCCA	CTT	CTTG	GTG	GGCT	TTGT	GA T	TCCA	rctg'	r cc	TCAT	AATT	720	
	TTATTTTAC	C AA	AAGG'	TCAT	AAA	ATAT	TTA	TGGA	GAAT	AG G	CACA	TATG	3 CC	CDAC	CCTC	790	

173

	AGGAGGACAA	TGAACATTGT	CCCTCGGACA	AAAGTGAAAA	CTAAAAAGAT	GTTCCTCATT	840
	TTAAATCTGT	TGTTTTTGCT	CTCCTGGCTG	CCTTTTCATG	TAGCTCAGCT	ATGGCACCCC	900
	CATGAACAAG	ACTATAAGAA	AAGTTCCCTT	GTTTTCACAG	CTATCACATG	GATATCCTTT	260
	AGTTCTTCAG	CCTCTAAACC	TACTCTGTAT	TCAATTTATA	ATGCCAATTT	TCGGAGAGGG	1020
5	ATGAAAGAGA	CTTTTTGCAT	GTCCTCTATG	AAATGTTACC	GAAGCAATGC	CTATACTATC	1080
	ACAACAAGTT	CAAGGATGGC	CAAAAAAAAC	TACGTTGGCA	TTTCAGAAAT	CCCTTCCATG	1140
	GCCAAAACTA	TTACCAAAGA	CTCGATCTAT	GACTCATTTG	ACAGAGAAGC	CAAGGAAAAA	1200
	AAGCTTGCTT	GGCCCATTAA	CTCAAATCCA	CCAAATACTT	TTGTCTAA		1248
	(215) INFO	RMATION FOR	SEQ ID NO:2	214:			

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 415 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: not relevant
- 15 (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:214:

Met Val Phe Ala His Arg Met Asp Asn Ser Lys Pro His Leu Ile Ile 1 5 10 15

Pro Thr Leu Leu Val Pro Leu Gln Asn Arg Ser Cys Thr Glu Thr Ala 20 25 30

Thr Pro Leu Pro Ser Gln Tyr Leu Met Glu Leu Ser Glu Glu His Ser 35 40 45

Trp Met Ser Asn Gln Thr Asp Leu His Tyr Val Leu Lys Pro Gly Glu 50 60

Val Ala Thr Ala Ser Ile Phe Phe Gly Ile Leu Trp Leu Phe Ser Ile
65 70 75 80

Phe Gly Asn Ser Leu Val Cys Leu Val Ile His Arg Ser Arg Arg Thr 85 90 95

Gln Ser Thr Thr Asn Tyr Phe Val Val Ser Met Ala Cys Ala Asp Leu 100 105 110

Leu Ile Ser Val Ala Ser Thr Pro Phe Val Leu Leu Gln Phe Thr Thr
115 120 125

Gly Arg Trp Thr Leu Gly Ser Ala Thr Cys Lys Val Val Arg Tyr Phe 130 135 140

	Gln 145		Leu	Thr	Pro	Gly 150		Gln	ılle	туг	Val		Leu	ser	Ile	Cys 160
	Ile	Asp	Arg	Phe	Tyr 165		Ile	Val	Tyr	Pro 170		Ser	Phe	Lys	Val	Ser
5	Arg	Glu	Lys	Ala 180		Lys	Met	Ile	Ala 185		Ser	Trp	Ile	Phe 190		Ala
	Gly	Phe	Val 195		Pro	Val	Leu	Phe 200		Tyr	Gly	Ser	Asn 205		Asp	Ser
10	His	Cys 210		Tyr	Phe	Leu	Pro 215	Ser	Ser	Trp	Glu	Gly 220	Thr	Ala	Туr	Thr
	Val 225	Ile	His	Phe	Leu	Val 230	Gly	Phe	Val	Ile	Pro 235	Ser	Val	Leu	Ile	Ile 240
	Leu	Phe	Tyr	Gln	Lys 245	Val	Ile	Lys	Tyr	Ile 250	Trp	Arg	Ile	Gly	Thr 255	Asp
15	Gly	Arg	Thr	Val 260	Arg	Arg	Thr	Met	Asn 265	Ile	Val	Pro	Arg	Thr 270	Lys	Val
	Lys	Thr	Lys 275	Lys	Met	Phe	Leu	Ile 280	Leu	Asn	Leu	Leu	Phe 285	Leu	Leu	Ser
20	Trp	Leu 290	Pro	Phe	His	Val	Ala 295	Gln	Leu	Trp	His	Pro 300	His	Glu	Gln	Asp
	Tyr 305	Lys	Lys	Ser	Ser	Leu 310	Val	Phe	Thr	Ala	Ile 315	Thr	Trp	Ile	Ser	Phe 320
	Ser	Ser	Ser	Ala	Ser 325	Lys	Pro	Thr	Leu	Tyr 330	Ser	Ile	Tyr	Asn	Ala 335	Asn
25	Phe	Arg	Arg	Gly 340	Met	Lys	Glu	Thr	Phe 345	Cys	Met	Ser	Ser	Met 350	Lys	Cys
	Tyr	Arg	Ser 355	Asn	Ala	Tyr	Thr	Ile 360	Thr	Thr	Ser	Ser	Arg 365	Met	Ala	Lys
30	Lys	Asn 370	Tyr	Val	Gly	Ile	Ser 375	Glu	Ile	Pro	Ser	Met 380	Ala	Lys	Thr	Ile
	Thr 385	Lys	Asp	Ser	Ile	Tyr 390	Asp	Ser	Phe	Asp	Arg 395	Glu	Ala	Lys	Glu	Lys 400
	Lys	Leu	Ala	Trp	Pro 405	Ile	Asn	Ser	Asn	Pro 410	Pro	Asn	Thr	Phe	Val 415	

- $35\,$ (216) Information for SEQ ID NO:215:
 - (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1842 base pairs

175

(B) TYPE: nucleic acid (C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:215:

ATGGGGCCCA CCCTAGCGGT TCCCACCCC TATGGCTGTA TTGGCTGTAA GCTACCCCAG 60 CCAGAATACC CACCGGCTCT AATCATCTTT ATGTTCTGCG CGATGGTTAT CACCATCGTT 120 GTAGACCTAA TCGGCAACTC CATGGTCATT TTGGCTGTGA CGAAGAACAA GAAGCTCCGG 180 AATTCTGGCA ACATCTTCGT GGTCAGTCTC TCTGTGGCCG ATATGCTGGT GGCCATCTAC 240 10 CCATACCCTT TGATGCTGCA TGCCATGTCC ATTGGGGGCT GGGATCTGAG CCAGTTACAG 300 TGCCAGATGG TCGGGTTCAT CACAGGGCTG AGTGTGGTCG GCTCCATCTT CAACATCGTG 360 GCAATCGCTA TCAACCGTTA CTGCTACATC TGCCACAGCC TCCAGTACGA ACGGATCTTC 420 AGTGTGCGCA ATACCTGCAT CTACCTGGTC ATCACCTGGA TCATGACCGT CCTGGCTGTC 480 CTGCCCAACA TGTACATTGG CACCATCGAG TACGATCCTC GCACCTACAC CTGCATCTTC 540 15 AACTATCTGA ACAACCCTGT CTTCACTGTT ACCATCGTCT GCATCCACTT CGTCCTCCCT 600 CTCCTCATCG TGGGTTTCTG CTACGTGAGG ATCTGGACCA AAGTGCTGGC GGCCCGTGAC 660 CCTGCAGGGC AGAATCCTGA CAACCAACTT GCTGAGGTTC GCAATAAACT AACCATGTTT 720 GTGATCTTCC TCCTCTTTGC AGTGTGCTGG TGCCCTATCA ACGTGCTCAC TGTCTTGGTG 780 GCTGTCAGTC CGAAGGAGAT GGCAGGCAAG ATCCCCAACT GGCTTTATCT TGCAGCCTAC 840 TTCATAGCCT ACTTCAACAG CTGCCTCAAC GCTGTGATCT ACGGGCTCCT CAATGAGAAT 20 900 TTCCGAAGAG AATACTGGAC CATCTTCCAT GCTATGCGGC ACCCTATCAT ATTCTTCTCT 960 GGCCTCATCA GTGATATTCG TGAGATGCAG GAGGCCCGTA CCCTGGCCCG CGCCCGTGCC 1020 CATGCTCGCG ACCAAGCTCG TGAACAAGAC CGTGCCCATG CCTGTCCTGC TGTGGAGGAA 1080 ACCCCGATGA ATGTCCGGAA TGTTCCATTA CCTGGTGATG CTGCAGCTGG CCACCCCGAC 1140 CGTGCCTCTG GCCACCCTAA GCCCCATTCC AGATCCTCCT CTGCCTATCG CAAATCTGCC 1200 TCTACCCACC ACAAGTCTGT CTTTAGCCAC TCCAAGGCTG CCTCTGGTCA CCTCAAGCCT 1260 GTCTCTGGCC ACTCCAAGCC TGCCTCTGGT CACCCCAAGT CTGCCACTGT CTACCCTAAG 1320 CCTGCCTCTG TCCATTTCAA GGCTGACTCT GTCCATTTCA AGGGTGACTC TGTCCATTTC 1380 AAGCCTGACT CTGTTCATTT CAAGCCTGCT TCCAGCAACC CCAAGCCCAT CACTGGCCAC 1440

	CATGTCTC	CTG C	CTGGC	CAGCO	CA CI	CCA	AGTCI	GCC	CTTC	ATG	CTGC	CCACC	CAG (CCAC	CCTA	AA .	1500
	CCCATCAA	GC C	CAGCI	CACCA	AG CC	CATGO	CTGAC	CCC	CACC	ACTG	CTG	CTA	rcc (CAAGO	CCTGC	CC :	1560
	ACTACCAG	CC A	CCCI	TAAGO	CC CG	CTGC	CTGCT	GAC	CAACC	CTG	AGCI	CTCI	rgc (CTCCC	CATTO	GC :	1620
	CCCGAGAT	cc c	TGCC	:ATTG	SC CC	CACCO	TGT	TCI	GACG	SACA	GTGA	CCTC	CC I	GAGI	rcggc	CC :	1680
5	TCTAGCCC	TG C	CGCT	'GGGC	C CA	CCAA	GCCI	GCI	'GCCA	.GCC	AGCI	'GGAG	TC 1	GACA	CCAT	C :	L740
	GCTGACCT	TC C	TGAC	CCTA	C TG	TAGI	CACT	' ACC	AGTA	CCA	ATGA	TTAC	CA 1	GATO	STCGI	G 1	1800
	GTTGTTGA	TG T	'TGAA	GATG	A TC	CTGA	TGAA	ATG	GCTG	TGT	GA					1	1842
	(217) IN	FORM	OITA	N FO	R SE	Q ID	NO:	216:									
10	(i	(A (B (C	QUEN) LE) TY) ST) TO	NGTH PE : RAND	: 61 amin EDNE	3 am o ac	ino id	acid									
	(i	i) M	OLEC	ULE	TYPE	: pr	otei	n									
15	(x:	i) S	EQUE	NCE	DESC	RIPT	: NOI	SEQ	ID	NO : 2	16:						
	Met 1	Gly	Pro	Thr	Leu 5	Ala	Val	Pro	Thr	Pro 10	Tyr	Gly	Cys	Ile	Gly 15	Cys	
	Lys	Leu	Pro	Gln 20	Pro	Glu	Tyr	Pro	Pro 25	Ala	Leu	Ile	Ile	Phe 30	Met	Phe	
20	Cys	Ala	Met 35	Val	Ile	Thr	Ile	Val 40	Val	Asp	Leu	Ile	Gly 45	Asn	Ser	Met	
	Val	Ile 50	Leu	Ala	Val	Thr	Lys 55	Asn	Lys	Lys	Leu	Arg 60	Asn	Ser	Gly	Asn	
25	Ile 65	Phe	Val	Val	Ser	Leu 70	Ser	Val	Ala	Asp	Met 75	Leu	Val	Ala		Tyr 80	
	Pro	Tyr	Pro	Leu	Met 85	Leu	His	Ala	Met	Ser 90	Ile	Gly	Gly	Trp	Asp 95	Leu	
	Ser	Gln	Leu	Gln 100	Cys	Gln	Met	Val	Gly 105	Phe	Ile	Thr	Gly	Leu 110	Ser	Val	
30	Val	Gly	Ser 115	Ile	Phe	Asn	Ile	Val 120	Ala	Ile	Ala	Ile	Asn 125	Arg	Tyr	Cys	
	Tyr	Ile 130	Cys	His	Ser	Leu	Gln 135	Tyr	Glu	Arg	Ile	Phe 140	Ser	Val	Arg	Asn	
35	Thr 145	Cys	Ile	Tyr	Leu	Val 150	Ile	Thr	Trp	Ile	Met 155	Thr	Val	Leu	Ala	Val 160	

	Leu	Pro	Asn	Met	Tyr 165	Ile	Gly	Thr	Ile	Glu 170	Tyr	Asp	Pro	Arg	Thr 175	Tyr
	Thr	Cys	Ile	Phe 180	Asn	Tyr	Leu	Asn	Asn 185	Pro	Val	Phe	Thr	Val 190	Thr	Ile
5	Val	Cys	Ile 195	His	Phe	Val	Leu	Pro 200	Leu	Leu	Ile	Val	Gly 205	Phe	Cys	Tyr
	Val	Arg 210	Ile	Trp	Thr	Lys	Val 215	Leu	Ala	Ala	Arg	Asp 220	Pro	Ala	Gly	Gln
10	Asn 225	Pro	Asp	Asn	Gln	Leu 230	Ala	Glu	Val	Arg	Asn 235	Lys	Leu	Thr	Met	Phe 240
	Val	Ile	Phe	Leu	Leu 245	Phe	Ala	Val	Cys	Trp 250	Cys	Pro	Ile	Asn	Val 255	Leu
	Thr	Val	Leu	Val 260	Ala	Val	Ser	Pro	Lys 265	Glu	Met	Ala	Gly	Lys 270	Ile	Pro
15	Asn	Trp	Leu 275	Tyr	Leu	Ala	Ala	Tyr 280	Phe	Ile	Ala	Tyr	Phe 285	Asn	Ser	Cys
	Leu	Asn 290	Ala	Val	Ile	Tyr	Gly 295	Leu	Leu	Asn	Glu	Asn 300	Phe	Arg	Arg	Glu
20	Tyr 305	Trp	Thr	Ile	Phe	His 310	Ala	Met	Arg	His	Pro 315	Ile	Ile	Phe	Phe	Ser 320
	Gly	Leu	Ile	Ser	Asp 325	Ile	Arg	Glu	Met	Gln 330	Glu	Ala	Arg	Thr	Leu 335	Ala
	Arg	Ala	Arg	Ala 340	His	Ala	Arg	Asp	Gln 345	Ala	Arg	Glu	Gln	Asp 350	Arg	Ala
25	His	Ala	Cys 355	Pro	Ala	Val	Glu	Glu 360	Thr	Pro	Met	Asn	Val 365	Arg	Asn	Val
	Pro	Leu 370	Pro	Gly	Asp	Ala	Ala 375	Ala	Gly	His	Pro	Asp 380	Arg	Ala	Ser	Gly
30	His 385	Pro	Lys	Pro	His	Ser 390	Arg	Ser	Ser	Ser	Ala 395	Tyr	Arg	Lys	Ser	Ala 400
	Ser	Thr	His	His	Lys 405	Ser	Val	Phe	Ser	His 410	Ser	Lys	Ala	Ala	Ser 415	Gly
	His	Leu	Lys	Pro 420	Val	Ser	Gly	His	Ser 425	Lys	Pro	Ala	Ser	Gly 430	His	Pro
. 35	Lys	Ser	Ala 435	Thr	Val	Tyr	Pro	Lys 440	Pro	Ala	Ser	Val	His 445	Phe	Lys	Ala
	Asp	Ser	Val	His	Phe	Lys	Gly	Asp	Ser	Val	His	Phe	Lys	Pro	Asp	Ser

		450					455					460				
	Val 465		Phe	Lys	Pro	Ala 470		Ser	Asn	Pro	Lys 475	Pro	Ile	Thr	Gly	His 480
5	His	Val	Ser	Ala	Gly 485	Ser	His	Ser	Lys	Ser 490	Ala	Phe	Asn	Ala	Ala 495	Thr
	Ser	His	Pro	Lys 500	Pro	Ile	Lys	Pro	Ala 505	Thr	Ser	His	Ala	Glu 510	Pro	Thr
	Thr	Ala	Asp 515	Tyr	Pro	Lys	Pro	Ala 520	Thr	Thr	Ser	His	Pro 525	Lys	Pro	Ala
10	Ala	Ala 530	Asp	Asn	Pro	Glu	Leu 535	Ser	Ala	Ser	His	Cys 540	Pro	Glu	Ile	Pro
	Ala 545	Ile	Ala	His	Pro	Val 550	Ser	Asp	Asp	Ser	Asp 555	Leu	Pro	Glu	Ser	Ala 560
15	Ser	Ser	Pro	Ala	Ala 565	Gly	Pro	Thr	Lys	Pro 570	Ala	Ala	Ser	Gln	Leu 575	Glu
	Ser	Asp	Thr	Ile 580	Ala	Asp	Leu	Pro	Asp 585	Pro	Thr	Val	Val	Thr 590	Thr	Ser
	Thr	Asn	Asp 595	Tyr	His	Asp	Val	Val 600	Val	Val	Asp	Val	Glu 605	Asp	Asp	Pro
20	Asp	Glu 610	Met	Ala	Val											
	(218) IN	FORM	10ITA	1 FOF	SEÇ) ID	NO:2	217:								
25	(i)	(A) (B) (C)	LEN TYE STE	CE CH NGTH: PE: n RANDE	185 ucle	64 ba eic a SS: s	ase p acid singl	airs	3							
	(ii	L) MC	LECU	LE I	YPE:	DNA	ı (ge	nomi	.c)							
	(xi	L) SE	EQUEN	ICE I	ESCR	PTI	ON:	SEQ	ID N	10:21	.7:					
30	ATGGGGCCC	CA CC	CTAG	CGGI	TCC	CACC	CCC	TATO	GCTG	TA T	TGGC	TGTA	A GC	TACC	CCAG	60
	CCAGAATAC	CC CF	ACCGG	CTCI	TAA '	CATO	TTT	ATGI	TCTG	SCG C	GATG	GTTA	т са	CCAT	CGTT	120
	GTAGACCTA	AA TO	CGGCA	ACTO	CAI	GGTC	TTA	TTGG	CTGI	GA C	GAAG	AACA	A GA	AGCT	CCGG	180
	AATTCTGGC	CA AC	CATCI	TCGI	GGI	CAGI	CTC	TCTG	TGGC	CG A	TATG	CTGG	T GG	CCAT	CTAC	240
	CCATACCCT	т то	SATGO	TGCA	TGC	CATO	STCC	ATTG	GGGG	ст с	GGAT	CTGA	G CC	AGTT	'ACAG	300
35	TGCCAGATO	G TO	GGGI	TCAT	CAC	AGGG	CTG	AGTG	TGGT	CG G	CTCC	ATCT	т са	ACAT	CGTG	360

	GCAATCGCTA	TCAACCGTTA	CTGCTACATC	TGCCACAGCC	TCCAGTACGA	ACGGATCTTC	420
	AGTGTGCGCA	ATACCTGCAT	CTACCTGGTC	ATCACCTGGA	TCATGACCGT	CCTGGCTGTC	480
	CTGCCCAACA	TGTACATTGG	CACCATCGAG	TACGATCCTC	GCACCTACAC	CTGCATCTTC	540
	AACTATCTGA	ACAACCCTGT	CTTCACTGTT	ACCATCGTCT	GCATCCACTT	CGTCCTCCCT	600
5	CTCCTCATCG	TGGGTTTCTG	CTACGTGAGG	ATCTGGACCA	AAGTGCTGGC	GGCCCGTGAC	660
	CCTGCAGGGC	AGAATCCTGA	CAACCAACTT	GCTGAGGTTC	GCAATAAACT	AACCATGTTT	. 720
	GTGATCTTCC	TCCTCTTTGC	AGTGTGCTGG	TGCCCTATCA	ACGTGCTCAC	TGTCTTGGTG	780
	GCTGTCAGTC	CGAAGGAGAT	GGCAGGCAAG	ATCCCCAACT	GGCTTTATCT	TGCAGCCTAC	840
	TTCATAGCCT	ACTTCAACAG	CTGCCTCAAC	GCTGTGATCT	ACGGGCTCCT	CAATGAGAAT	900
10	TTCCGAAGAG	AATACTGGAC	CATCTTCCAT	GCTATGCGGC	ACCCTATCAT	ATTCTTCTCT	960
	GGCCTCATCA	GTGATATTCG	TGAGATGCAG	GAGGCCCGTA	CCCTGGCCCG	CGCCCGTGCC	1020
	CATGCTCGCG	ACCAAGCTCG	TGAACAAGAC	CGTGCCCATG	CCTGTCCTGC	TGTGGAGGAA	1080
	ACCCCGATGA	ATGTCCGGAA	TGTTCCATTA	CCTGGTGATG	CTGCAGCTGG	CCACCCGAC	1140
	CGTGCCTCTG	GCCACCCTAA	GCCCCATTCC	AGATCCTCCT	CTGCCTATCG	CAAATCTGCC	1200
15	TCTACCCACC	ACAAGTCTGT	CTTTAGCCAC	TCCAAGGCTG	CCTCTGGTCA	CCTCAAGCCT	1260
	GTCTCTGGCC	ACTCCAAGCC	TGCCTCTGGT	CACCCCAAGT	CTGCCACTGT	CTACCCTAAG	1320
	CCTGCCTCTG	TCCATTTCAA	GGCTGACTCT	GTCCATTTCA	AGGGTGACTC	TGTCCATTTC	1380
	AAGCCTGACT	CTGTTCATTT	CAAGCCTGCT	TCCAGCAACC	CCAAGCCCAT	CACTGGCCAC	1440
	CATGTCTCTG	CTGGCAGCCA	CTCCAAGTCT	GCCTTCAGTG	CTGCCACCAG	CCACCCTAAA	1500
20	CCCACCACTG	GCCACATCAA	GCCAGCTACC	AGCCATGCTG	AGCCCACCAC	TGCTGACTAT	1560
	CCCAAGCCTG	CCACTACCAG	CCACCCTAAG	CCCACTGCTG	CTGACAACCC	TGAGCTCTCT	1620
	GCCTCCCATT	GCCCCGAGAT	CCCTGCCATT	GCCCACCCTG	TGTCTGACGA	CAGTGACCTC	1680
	CCTGAGTCGG	CCTCTAGCCC	TGCCGCTGGG	CCCACCAAGC	CTGCTGCCAG	CCAGCTGGAG	1740
	TCTGACACCA	TCGCTGACCT	TCCTGACCCT	ACTGTAGTCA	CTACCAGTAC	CAATGATTAC	1800
25	CATGATGTCG	TGGTTGTTGA	TGTTGAAGAT	GATCCTGATG	AAATGGCTGT	GTGA	1854

(219) INFORMATION FOR SEQ ID NO:218:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 617 amino acids
 - (B) TYPE: amino acid

- (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:218:

	(32	1, 5	200	THE I	2000		LOIV.	SEQ	י עד	140.2	10:					
5	Met 1	Gly	Pro	Thr	Leu 5	Ala	Val	Pro	Thr	Pro 10	Tyr	Gly	Cys	Ile	Gly 15	Cys
	Lys	Leu	Pro	Gln 20	Pro	Glu	Tyr	Pro	Pro 25	Ala	Leu	Ile	Ile	Phe 30	Met	Phe
10	Cys	Ala	Met 35	Val	Ile	Thr	Ile	Val 40	Val	Asp	Leu	Ile	Gly 45	Asn	Ser	Met
	Val	Ile 50	Leu	Ala	Val	Thr	Lys 55	Asn	Lys	Lys	Leu	Arg 60	Asn	Ser	Gly	Asn
	Ile 65	Phe	Val	Val	Ser	Leu 70	Ser	Val	Ala	Asp	Met 75	Leu	Val	Ala	Ile	Tyr 80
15	Pro	Tyr	Pro	Leu	Met 85	Leu	His	Ala	Met	Ser 90	Ile	Gly	Gly	Trp	Asp 95	Leu
	Ser	Gln	Leu	Gln 100	Cys	Gln	Met	Val	Gly 105	Phe	Ile	Thr	Gly	Leu 110	Ser	Val
20	Val	Gly	Ser 115	Ile	Phe	Asn	Ile	Val 120	Ala	Ile	Ala	Ile	Asn 125	Arg	Tyr	Cys
	Tyr	Ile 130	Cys	His	Ser	Leu	Gln 135	Tyr	Glu	Arg	Ile	Phe 140	Ser	Val	Arg	Asn
	Thr 145	Cys	Ile	Tyr	Leu	Val 150	Ile	Thr	Trp	Ile	Met 155	Thr	Val	Leu	Ala	Val 160
25	Leu	Pro	Asn	Met	Tyr 165	Ile	Gly	Thr	Ile	Glu 170	Tyr	Asp	Pro	Arg	Thr 175	Tyr
	Thr	Cys	Ile	Phe 180	Asn	Tyr	Leu	Asn	Asn 185	Pro	Val	Phe	Thr	Val 190	Thr	Ile
30	Val	Cys	Ile 195	His	Phe	Val	Leu	Pro 200	Leu	Leu	Ile	Val	Gly 205	Phe	Cys	Tyr
	Val	Arg 210	Ile	Trp	Thr		Val 215	Leu	Ala	Ala	Arg	Asp 220	Pro	Ala	Gly	Gln
	Asn 225	Pro	Asp	Asn	Gln	Leu 230	Ala	Glu	Val	Arg	Asn 235	Lys	Leu	Thr	Met	Phe 240

Val Ile Phe Leu Leu Phe Ala Val Cys Trp Cys Pro Ile Asn Val Leu

250

255

	Thr	Val	Leu	Val 260	Ala	Val	Ser	Pro	Lys 265	Glu	Met	Ala	Gly	Lys 270	Ile	Pro
	Asn	Trp	Leu 275	Tyr	Leu	Ala	Ala	Tyr 280	Phe	Ile	Ala	Tyr	Phe 285	Asn	Ser	Cys
5	Leu	Asn 290	Ala	Val	Ile	Tyr	Gly 295	Leu	Leu	Asn	Glu	Asn 300	Phe	Arg	Arg	Glu
	Tyr 305	Trp	Thr	Ile	Phe	His 310	Ala	Met	Arg	His	Pro 315	Ile	Ile	Phe	Phe	Ser 320
10	Gly	Leu	Ile	Ser	Asp 325	Ile	Arg	Glu	Met	Gln 330	Glu	Ala	Arg	Thr	Leu 335	Ala
	Arg	Ala	Arg	Ala 340	His	Ala	Arg	Asp	Gln 345	Ala	Arg	Glu	Gln	Asp 350	Arg	Ala
	His	Ala	Cys 355	Pro	Ala	Val	Glu	Glu 360	Thr	Pro	Met	Asn	Val 365	Arg	Asn	Val
15	Pro	Leu 370	Pro	Gly	Asp	Ala	Ala 375	Ala	Gly	His	Pro	Asp 380	Arg	Ala	Ser	Gly
	His 385	Pro	Lys	Pro	His	Ser 390	Arg	Ser	Ser	Ser	Ala 395	Tyr	Arg	Lys	Ser	Ala 400
20	Ser	Thr	His	His	Lys 405	Ser	Val	Phe	Ser	His 410	Ser	Lys	Ala	Ala	Ser 415	Gly
	His	Leu	Lys	Pro 420	Val	Ser	Gly	His	Ser 425	Lys	Pro	Ala	Ser	Gly 430	His	Pro
	Lys	Ser	Ala 435	Thr	Val	Tyr	Pro	Lys 440	Pro	Ala	Ser	Val	His 445	Phe	Lys	Ala
25	Asp	Ser 450	Val	His	Phe	Lys	Gly 455	Asp	Ser	Val	His	Phe 460	Lys	Pro	Asp	Ser
	Val 465	His	Phe	Lys	Pro	Ala 470		Ser	Asn	Pro	Lys 475	Pro	Ile	Thr	Gly	His 480
30	His	Val	Ser	Ala	Gly 485		His	Ser	Lys	Ser 490		Phe	Ser	Ala	Ala 495	Thr
	Ser	His	Pro	Lys 500		Thr	Thr	Gly	His 505		Lys	Pro	Ala	Thr 510	Ser	His
	Ala	Glu	Pro 515		Thr	Ala	Asp	Tyr 520		Lys	Pro	Ala	Thr 525		Ser	His
35	Pro	Lys 530		Thr	Ala	Ala	Asp 535		Pro	Glu	Leu	Ser 540		Ser	His	Cys
	Pro	Glu	Ile	Pro	Ala	Ile	Ala	His	Pro	Val	Ser	Asp	Asp	Ser	Asp	Leu

	545			550					555					560	
	Pro (Glu Ser	Ala Ser 565	Ser :	Pro	Ala	Ala	Gly 570	Pro	Thr	Lys	Pro	Ala 575	Ala	
5	Ser (Gln Leu	Glu Ser 580	Asp '	Thr	Ile	Ala 585	Asp	Leu	Pro	Asp	Pro 590	Thr	Val	
	Val :	Thr Thr 595	Ser Thr	Asn i		Tyr 600	His	Asp	Val	Val	Val 605	Val	Asp	Val	
		Asp Asp 510	Pro Asp		Met 615	Ala	Val								
10	(220) INFO	ORMATION	FOR SE	o ID 1	NO : 2	19:									
15	(i i)	(B) TYP	GTH: 154 E: nucle ANDEDNES OLOGY: 1	18 baseic ac SS: si Linear	se p cid ingl r (ge	airs e nomi	c)	0:21	9:						
	ATGGGACATA	ACGGGA	GCTG GAT	CTCTC	CCA .	AATG	CCAG	CG A	.GCCG	CACA	A CG	CGTC	CGGC	60	
	GCCGAGGCTG	GGGGTG	TGAA CCC	CAGCO	GCG (CTCG	GGGA	GT T	CGGC	GAGG	C GC	'AGCT	'GTAC	120	
20	CGCCAGTTCA														
	ATGGTGTTAT														
	AAAAACCTGG														
	CTCAGCACCA														
	AAATTTTTGC	ACAAAGI	TATT CTO	CTCTG	STG 1	ACCA	TCCT	CA G	CTTC	CCTG	C TA	TTGC	TTTG	420	
25	GACAGGTACT	' ACTCAG	ICCT CTA	TCCAC	TG (GAGA	GGAA.	AA T	ATCT	GATG	C CA	AGTC	CCGT	480	
	GAACTGGTGA	TGTACAT	ICTG GGC	CCATG	CA (GTGG	TGGC	CA G	TGTC	CCTG	T GT	TTGC	AGTA	540	
	ACCAATGTGG	CTGACAT	ICTA TGO	CACGI	CC A	ACCT	GCAC	GG A	AGTC'	TGGA	G CA	ACTC	CTTG	600	
	GGCCACCTGG	TGTACGT	ITCT GGT	GTATA	AC A	ATCA	CCAC	GG T	CATT	GTGC	C TG	TGGT	GGT G	660	
	GTGTTCCTCT	TCTTGAT	FACT GAT	CCGAC	GG (GCCC'	TGAG'	TG C	CAGC	CAGA	A GA	AGAA	GGTC	720	
30	ATCATAGCAG	CGCTCCC	GAC CCC	ACAGA	AC A	ACCA'	TCTC'	TA T	TCCC'	TATG	C CT	CCCA	GCGG	780	
	GAGGCCGAGC	TGAAAGO	CCAC CCT	GCTCT	CC 1	ATGG'	TGAT	GG T	CTTC.	ATCT	r GT	GTAG	CGTG	840	
	CCCTATGCCA	СССТССТ	rcgn ርጥ <u>ል</u>	CCAGA	ሊሮጥ ረ	3ጥርረ	יממיד	רכי די	<u> </u>	מיט מים	~ നന	രഗത	വകഥവ	900	

183

	TTGCTGCTCA	CTGCTGTTTG	GCTGCCCAAA	GTCTCCCTGC	TGGCAAACCC	TGTTCTCTTT	960
	CTTACTGTGA	ACAAATCTGT	CCGCAAGTGC	TTGATAGGGA	CCCTGGTGCA	ACTACACCAC	1020
	CGGTACAGTC	GCCGTAATGT	GGTCAGTACA	GGGAGTGGCA	TGGCTGAGGC	CAGCCTGGAA	1080
	CCCAGCATAC	GCTCGGGTAG	CCAGCTCCTG	GAGATGTTCC	ACATTGGGCA	GCAGCAGATC	1140
5	TTTAAGCCCA	CAGAGGATGA	GGAAGAGAGT	GAGGCCAAGT	ACATTGGCTC	AGCTGACTTC	1200
	CAGGCCAAGG	AGATATTTAG	CACCTGCCTG	GAGGGAGAGC	AGGGGCCACA	GTTTGCGCCC	1260
	TCTGCCCCAC	CCCTGAGCAC	AGTGGACTCT	GTATCCCAGG	TGGCACCGGC	AGCCCCTGTG	1320
	GAACCTGAAA	CATTCCCTGA	TAAGTATTCC	CTGCAGTTTG	GCTTTGGGCC	TTTTGAGTTG	1380
	CCTCCTCAGT	GGCTCTCAGA	GACCCGAAAC	AGCAAGAAGC	GGCTGCTTCC	CCCCTTGGGC	1440
10	AACACCCCAG	AAGAGCTGAT	CCAGACAAAG	GTGCCCAAGG	TAGGCAGGGT	GGAGCGGAAG	1500
	ATGAGCAGAA	ACAATAAAGT	GAGCATTTTT	CCAAAGGTGG	ATTCCTAG		1548
	(221) INFOR	RMATION FOR	SEQ ID NO:2	220:			
			D 3 COURS T COURT	70			

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 515 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:220:
- 20 Met Gly His Asn Gly Ser Trp Ile Ser Pro Asn Ala Ser Glu Pro His 1 5 10 15
 - Asn Ala Ser Gly Ala Glu Ala Ala Gly Val Asn Arg Ser Ala Leu Gly 20 25 30
- Glu Phe Gly Glu Ala Gln Leu Tyr Arg Gln Phe Thr Thr Val Gln 25 40 45
 - Val Val Ile Phe Ile Gly Ser Leu Leu Gly Asn Phe Met Val Leu Trp 50 55 60
 - Ser Thr Cys Arg Thr Thr Val Phe Lys Ser Val Thr Asn Arg Phe Ile 70 75 80
- Lys Asn Leu Ala Cys Ser Gly Ile Cys Ala Ser Leu Val Cys Val Pro 85 90 95
 - Phe Asp Ile Ile Leu Ser Thr Ser Pro His Cys Cys Trp Trp Ile Tyr 100 105 110

	Th	r Me	t Lei 11!	u Phe	e Cys	s Lys	s Val	l Vai		s Phe	e Lei	ı His	5 Lys 129		l Phe	e Cys
	Sei	r Vai	l Thi	c Ile	e Let	ı Sei	2 Phe 135	e Pro	o Ala	a Ile	e Ala	Let 140		o Arg	д Туі	Tyr
5	Ser 145	r Val	l Leu	і Туг	Pro	Let 150	ı Glu	ı Arg	J Lys	s Il ϵ	e Ser 155		Ala	Lys	s Ser	Arg 160
	Glı	ı Leı	ı Val	. Met	165	Ile	Trp	Ala	His	170		Val	Ala	Ser	Val	Pro
10	Val	. Phe	e Ala	Val 180	Thr	Asn	val	Ala	185		Tyr	Ala	Thr	Ser 190		Cys
	Thr	Glu	Val 195	Trp	Ser	Asn	Ser	Leu 200		His	Leu	Val	Туг 205		Leu	Val
	Tyr	Asn 210	Ile	Thr	Thr	Val	Ile 215		Pro	Val	Val	Val 220		Phe	Leu	Phe
15	Leu 225	Ile	Leu	Ile	Arg	Arg 230	Ala	Leu	Ser	Ala	Ser 235	Gln	Lys	Lys	Lys	Val 240
	Ile	Ile	Ala	Ala	Leu 245	Arg	Thr	Pro	Gln	Asn 250	Thr	Ile	Ser	Ile	Pro 255	Tyr
20	Ala	Ser	Gln	Arg 260	Glu	Ala	Glu	Leu	Lys 265	Ala	Thr	Leu	Leu	Ser 270	Met	Val
	Met	Val	Phe 275	Ile	Leu	Cys	Ser	Val 280	Pro	Tyr	Ala	Thr	Leu 285	Val	Val	Tyr
	Gln	Thr 290	Val	Leu	Asn	Val	Pro 295	Asp	Thr	Ser	Val	Phe 300	Leu	Leu	Leu	Thr
25	Ala 305	Val	Trp	Leu	Pro	Lys 310	Val	Ser	Leu	Leu	Ala 315	Asn	Pro	Val	Leu	Phe 320
	Leu	Thr	Val	Asn	Lys 325	Ser	Val	Arg	Lys	Cys 330	Leu	Ile	Gly	Thr	Leu 335	Val
30	Gln	Leu	His	His 340	Arg	Tyr	Ser	Arg	Arg 345	Asn	Val	Val	Ser	Thr 350	Gly	Ser
	Gly	Met	Ala 355	Glu	Ala	Ser	Leu	Glu 360	Pro	Ser	Ile	Arg	Ser 365	Gly	Ser	Gln
	Leu	Leu 370	Glu	Met	Phe	His	Ile 375	Gly	Gln	Gln	Gln	Ile 380	Phe	Lys	Pro	Thr
35	Glu 385	Asp	Glu	Glu	Glu	Ser 390	Glu	Ala	Lys	Tyr	Ile 395	Gly	Ser	Ala	Asp	Phe 400
	Gln	Ala	Lys	Glu	Ile	Phe	Ser	Thr	Cvs	Leu	Glu	Glv	Glu	Gln	Gly	Dro

					405					410					415		
	Gln	Phe	Ala	Pro 420	Ser	Ala	Pro	Pro	Leu 425	Ser	Thr	Val	Asp	Ser 430	Val	Ser	
5	Gln	Val	Ala 435	Pro	Ala	Ala	Pro	Val 440	Glu	Pro	Glu	Thr	Phe 445	Pro	Asp	Lys	
	Tyr	Ser 450	Leu	Gln	Phe	Gly	Phe 455	Gly	Pro	Phe	Glu	Leu 460	Pro	Pro	Gln	Trp	
	Leu 465	Ser	Glu	Thr	Arg	Asn 470	Ser	Lys	Lys	Arg	Leu 475	Leu	Pro	Pro	Leu	Gly 480	
10	Asn	Thr	Pro	Glu	Glu 485	Leu	Ile	Gln	Thr	Lys 490	Val	Pro	Lys	Val	Gly 495	Arg	
	Val	Glu	Arg	Lys 500	Met	Ser	Arg	Asn	Asn 505		Val	Ser	Ile	Phe 510	Pro	Lys	
15	Val	Asp	Ser 515														
	(222) INI	FORM	OITA	N FOI	R SE	Q ID	NO:	221:									
20		(A) (B) (C) (D)	LEI TYI STI	CE CENGTH PE: 1 RANDI POLOG	: 116 nucle EDNES GY: 1	64 ba eic a 68: s linea	ase pacid sing: ar	pair: le									
	(x:	ı) Sl	EQUEI	NCE I	DESCI	RIPT.	ION:	SEQ	ID	NO: 27	21:						
	ATGAATCG	GC A	CCAT	CTGC	A GG	ATCA	CTTT	CTG	CAAAE	rag 1	ACAA	GAAGA	AA C	rgcto	STGT	3	60
25	TTCCGAGA	rg A	CTTC	ATTG	C CA	AGGT	GTTG	CCG	CCGGT	rgr :	rggg	GCTGC	GA G	TTTA:	rc'tt'	r :	120
	GGGCTTCTC	GG GG	CAATO	GGCC	r TG	CCT	GTGG	ATT	TTCT	GTT :	rcca	CCTC	AA G	rcct(GAA	A :	180
	TCCAGCCGG	GA T	rttco	CTGT:	r CA	ACCTO	GGCA	GTA	GCTG/	ACT :	TTCT/	ACTG?	AT C	ATCT	GCT(3 3	240
	CCGTTCGT	GA TO	GGAC'	TACT	A TG	rgcg	GCGT	TCA	GACTO	GGA A	AGTT:	rggg	GA C	ATCC	CTTGO	:	300
	CGGCTGGT	GC T	CTTC	ATGT'	r TG	CCAT	GAAC	CGC	CAGG	GCA (GCAT	CATC	TT C	CTCA	CGGT	3 3	360
30	GTGGCGGT	AG A	CAGG:	TATT'	r cc	GGT	GGTC	CAT	CCCC	ACC A	ACGC	CCTG	AA C	AAGA:	rctc	c 4	420
	AATTGGAC	AG C	AGCC	ATCA:	г ст	CTTG	CCTT	CTG	rggg	GCA :	rcac:	rgtto	GG C	CTAA	CAGT	c 4	480
	CACCTCCT	GA AC	GAAG	AAGT'	r GC	rga t (CCAG	AAT	GCC	CTG (CAAA!	rgtg:	rg c	ATCA	GCTT	c !	540
	AGCATCTG	CC A'	racc'	TTCC	G GT	GGCA	CGAA	GCT	ልጥ ር ምግ	rcc '	тссто	GAG	rr c	CTCC	rgcc		500

	CTGGGCAT	rca :	rccr(GTTCI	G C	rcag(CCAGA	A AT	FATC:	rgga	GCC'	rgcg	GCA (GAGA	CAAA'	T G	660
	GACCGGC	ATG (CCAA	GATCA	A G	AGAGO	CCAAA	A AC	CTTC	ATCA	TGG	rggto	GGC (CATC	GTCT	ГT	720
	GTCATCTC	GCT T	rcct:	rccca	G C	STGG:	rtgto	G CGC	GATCO	CGCA	TCT	rctg	GCT (CCTG	CACA	CT	780
	TCGGGCAC	CGC A	AGAA:	TTGTG	A AC	STGTA	ACCGC	TCC	GTGC	SACC	TGG	CGTT	CTT :	ratc <i>i</i>	ACTCT	rc	840
5	AGCTTCAC	CT A	ACATO	SAACA	G C	ATGCT	rggac	CCC	CGTGC	STGT	ACT	ACTTO	CTC (CAGCO	CCATO	CC	900
	TTTCCCAA	CT I	CTTC	TCCA	C TI	TGAT	ГСААС	CGC	CTGCC	CTCC	AGAC	GAAC	AT (GACAC	GTG#	4G	960
	CCAGATAA	ATA A	ACCGC	CAGCA	C GA	AGCĞI	CGAG	CTC	CACAC	GGG	ACCC	CCAAC	CAA A	AACCA	GAGG	GC :	1020
	GCTCCAGA	.GG C	GTTA	ATGG	C CA	ACTO	CGGT	' GAG	CCAT	GGA	GCCC	CTCI	TA 1	rctge	GCCC	A :	1080
	ACCTCAAA	TA A	CCAI	TCCA	A GA	AGGG	SACAT	TGI	CACC	AAG	AACC	AGCA	TC 1	CTGG	AGAA	A 1	1140
10	CAGTTGGG	CT G	TTGC	'ATCG	A GI	'AA										ב	1164
	(223) IN	FORM	ATIC	N FO	R SE	Q ID	NO:	222:									
15		(A (B (C (D	LE TY ST TO	CE CINGTH PE: 6 RANDI POLOG	: 38 amin EDNE GY:	7 am o ac SS: not	ino id rele	acid vant									
				NCE I					ID	NO : 2	22:	•					
20	Met 1	Asn	Arg	His	His 5	Leu	Gln	Asp	His	Phe 10	Leu	Glu	Ile	Asp	Lys 15	Lys	
	Asn	Cys	Cys	Val 20	Phe	Arg	Asp	Asp	Phe 25	Ile	Ala	Lys	Val	Leu 30	Pro	Pro	
	Val	Leu	Gly 35	Leu	Glu	Phe	Ile	Phe 40	Gly	Leu	Leu	Gly	Asn 45	Gly	Leu	Ala	
25	Leu	Trp 50	Ile	Phe	Cys	Phe	His 55	Leu	Lys	Ser	Trp	Lys 60	Ser	Ser	Arg	Ile	
	Phe 65	Leu	Phe	Asn	Leu	Ala 70	Val	Ala	Asp	Phe	Leu 75	Leu	Ile	Ile	Cys	Leu 80	
30	Pro	Phe	Val	Met	Asp 85	Tyr	Tyr	Val	Arg	Arg 90	Ser	Asp	Trp	Lys	Phe 95	Gly	
	Asp	Ile	Pro	Cys 100	Arg	Leu	Val	Leu	Phe 105	Met	Phe	Ala	Met	Asn 110	Arg	Gln	
	Gly	Ser	Ile 115	Ile	Phe	Leu	Thr	Val	Val	Ala	Val	Asp	Arg	Tyr	Phe	Arg	

	Val	Val 130	His	Pro	His	His	Ala 135	Leu	Asn	Lys	Ile	Ser 140	Asn	Trp	Thr	Ala
	Ala 145	Ile	Ile	Ser	Cys	Leu 150	Leu	Trp	Gly	Ile	Thr 155	Val	Gly	Leu	Thr	Val 160
5	His	Leu	Leu	Lys	Lys 165	Lys	Leu	Leu	Ile	Gln 170	Asn	Gly	Pro	Ala	Asn 175	Val
	Cys	Ile	Ser	Phe 180	Ser	Ile	Cys	His	Thr 185	Phe	Arg	Trp	His	Glu 190	Ala	Met
10	Phe	Leu	Leu 195	Glu	Phe	Leu	Leu	Pro 200	Leu	Gly	Ile	Ile	Leu 205	Phe	Cys	Ser
	Ala	Arg 210	Ile	Ile	Trp	Ser	Leu 215	Arg	Gln	Arg	Gln	Met 220	Asp	Arg	His	Ala
	Lys 225	Ile	Lys	Arg	Ala	Lys 230	Thr	Phe	Ile	Met	Val 235	Val	Ala	Ile	Val	Phe 240
15	Val	Ile	Cys	Phe	Leu 245	Pro	Ser	Val	Val	Val 250	Arg	Ile	Arg	Ile	Phe 255	Trp
	Leu	Leu	His	Thr 260	Ser	Gly	Thr	Gln	Asn 265	Cys	Glu	Val	Tyr	Arg 270	Ser	Val
20	Asp	Leu	Ala 275	Phe	Phe	Ile	Thr	Leu 280	Ser	Phe	Thr	Tyr	Met 285	Asn	Ser	Met
	Leu	Asp 290	Pro	Val	Val	Tyr	Tyr 295	Phe	Ser	Ser	Pro	Ser 300	Phe	Pro	Asn	Phe
	Phe 305	Ser	Thr	Leu ,	Ile	Asn 310	Arg	Cys	Leu	Gln	Arg 315	Lys	Met	Thr	Gly	Glu 320
25	Pro	Asp	Asn	Asn	Arg 325	Ser	Thr	Ser	Val	Glu 330	Leu	Thr	Gly	Asp	Pro 335	Asn
	Lys	Thr	Arg	Gly 340	Ala	Pro	Glu	Ala	Leu 345	Met	Ala	Asn	Ser	Gly 350	Glu	Pro
30	Trp	Ser	Pro 355	Ser	Tyr	Leu	Gly	Pro 360	Thr	Ser	Asn	Asn	His 365	Ser	Lys	Lys
	Gly.	His 370	Cys	His	Gln	Glu	Pro 375	Ala	Ser	Leu	Glu	Lys 380	Gln	Leu	Gly	Cys
	Cys 385	Ile	Glu													

- 35 (224) INFORMATION FOR SEQ ID NO:223:
 - (i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1212 base pairs

(B)	TYPE:	nucleic	acid
. ~ `			

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: DNA (genomic)
- 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:223:

	ATGGCTTGCA	ATGGCAGTGC	GGCCAGGGG	CACTTTGACC	CTGAGGACTT	GAACCTGACT	60
	GACGAGGCAC	TGAGACTCAA	GTACCTGGGG	CCCCAGCAGA	CAGAGCTGTT	CATGCCCATC	120
	TGTGCCACAT	ACCTGCTGAT	CTTCGTGGTG	GGCGCTGTGG	GCAATGGGCT	GACCTGTCTG	180
	GTCATCCTGC	GCCACAAGGC	CATGCGCACG	CCTACCAACT	ACTACCTCTT	CAGCCTGGCC	240
10	GTGTCGGACC	TGCTGGTGCT	GCTGGTGGGC	CTGCCCCTGG	AGCTCTATGA	GATGTGGCAC	300
	AACTACCCCT	TCCTGCTGGG	CGTTGGTGGC	TGCTATTTCC	GCACGCTACT	GTTTGAGATG	360
	GTCTGCCTGG	CCTCAGTGCT	CAACGTCACT	GCCCTGAGCG	TGGAACGCTA	TGTGGCCGTG	420
	GTGCACCCAC	TCCAGGCCAG	GTCCATGGTG	ACGCGGGCCC	ATGTGCGCCG	AGTGCTTGGG	480
	GCCGTCTGGG	GTCTTGCCAT	GCTCTGCTCC	CTGCCCAACA	CCAGCCTGCA	CGGCATCCGG	540
15	CAGCTGCACG	TGCCCTGCCG	GGGCCCAGTG	CCAGACTCAG	CTGTTTGCAT	GCTGGTCCGC	600
	CCACGGGCCC	TCTACAACAT	GGTAGTGCAG	ACCACCGCGC	TGCTCTTCTT	CTGCCTGCCC	660
	ATGGCCATCA	TGAGCGTGCT	CTACCTGCTC	ATTGGGCTGC	GACTGCGGCG	GGAGAGGCTG	720
	CTGCTCATGC	AGGAGGCCAA	GGGCAGGGGC	TCTGCAGCAG	CCAGGTCCAG	ATACACCTGC	780
	AGGCTCCAGC	AGCACGATCG	GGGCCGGAGA	CAAGTGAAGA	AGATGCTGTT	TGTCCTGGTC	840
20	GTGGTGTTTG	GCATCTGCTG	GGCCCCGTTC	CACGCCGACC	GCGTCATGTG	GAGCGTCGTG	900
	TCACAGTGGA	CAGATGGCCT	GCACCTGGCC	TTCCAGCACG	TGCACGTCAT	CTCCGGCATC	960
	TTCTTCTACC	TGGGCTCGGC	GGCCAACCCC	GTGCTCTATA	GCCTCATGTC	CAGCCGCTTC	1020
	CGAGAGACCT	TCCAGGAGGC	CCTGTGCCTC	GGGGCCTGCT	GCCATCGCCT	CAGACCCCGC	1080
	CACAGCTCCC	ACAGCCTCAG	CAGGATGACC	ACAGGCAGCA	CCCTGTGTGA	TGTGGGCTCC	1140
25	CTGGGCAGCT	GGGTCCACCC	CCTGGCTGGG	AACGATGGCC	CAGAGGCGCA	GCAAGAGACC	1200
	GATCCATCCT	GA					1212

(225) INFORMATION FOR SEQ ID NO:224:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 403 amino acids
- 30 (B) TYPE: amino acid

- (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:224:

5	Met 1	Ala	Cys	Asn	Gly 5	Ser	Ala	Ala	Arg	Gly 10	His	Phe	Asp	Pro	Glu 15	Asp
	Leu	Asn	Leu	Thr 20	Asp	Glu	Ala	Leu	Arg 25	Leu	Lys	Tyr	Leu	Gly 30	Pro	Gln
10	Gln	Thr	Glu 35	Leu	Phe	Met	Pro	Ile 40	Cys	Ala	Thr	Tyr	Leu 45	Leu	Ile	Phe
	Val	Val 50	Gly	Ala	Val	Gly	Asn 55	Gly	Leu	Thr	Cys	Leu 60	Val	Ile	Leu	Arg
	His 65	Lys	Ala	Met	Arg	Thr 70	Pro	Thr	Asn	туr	Tyr 75	Leu	Phe	Ser	Leu	Ala 80
15	Val	Ser	Asp	Leu	Leu 85	Val	Leu	Leu	Val	Gly 90	Leu	Pro	Leu	Glu	Leu 95	Tyr
	Glu	Met	Trp	His 100	Asn	Tyr	Pro	Phe	Leu 105	Leu	Gly	Val	Gly	Gly 110	Cys	Tyr
20	Phe	Arg	Thr 115	Leu	Leu	Phe	Glu	Met 120	Val	Cys	Leu	Ala	Ser 125	Val	Leu	Asn
	Val	Thr 130	Ala	Leu	Ser	Val	Glu 135	Arg	Tyr	Val	Ala	Val 140	Val	His	Pro	Leu
	Gln 145	Ala	Arg	Ser	Met	Val 150	Thr	Arg	Ala	His	Val 155	Arg	Arg	Val	Leu	Gly 160
25	Ala	Val	Trp	Gly	Leu 165	Ala	Met	Leu	Cys	Ser 170	Leu	Pro	Asn	Thr	Ser 175	Leu
	His	Gly	Ile	Arg 180	Gln	Leu	His	Val	Pro 185	Cys	Arg	Gly	Pro	Val 190	Pro	Asp
30	Ser	Ala	Val 195	Cys	Met	Leu	Val	Arg 200	Pro	Arg	Ala	Leu	Tyr 205	Asn	Met	Val
	Val	Gln 210	Thr	Thr	Ala	Leu	Leu 215	Phe	Phe	Cys	Leu	Pro 220	Met	Ala	Ile	Met
	Ser 225	Val	Leu	Tyr	Leu	Leu 230	Ile	Gly	Leu	Arg	Leu 235	Arg	Arg	Glu	Arg	Leu 240
35	Leu	Leu	Met	Gln	Glu 245	Ala	Lys	Gly	Arg	Gly 250	Ser	Ala	Ala	Ala	Arg 255	Ser

	Arg	Tyr	Thr	Cys 260	Arg	Leu	Gln	Gln	His 265	Asp	Arg	Gly	Arg	Arg 270	Gln	Val
	Lys	Lys	Met 275	Leu	Phe	Val	Leu	Val 280	Val	Val	Phe	Gly	Ile 285	Cys	Trp	Ala
5	Pro	Phe 290	His	Ala	Asp	Arg	Val 295	Met	Trp	Ser	Val	Val 300	Ser	Gln	Trp	Thr
	Asp 305	Gly	Leu	His	Leu	Ala 310	Phe	Gln	His	Val	His 315	Val	Ile	Ser	Gly	Ile 320
10	Phe	Phe	Tyr	Leu	Gly 325	Ser	Ala	Ala	Asn	Pro 330	Val	Leu	Tyr	Ser	Leu 335	Met
	Ser	Ser	Arg	Phe 340	Arg	Glu	Thr	Phe	Gln 345	Glu	Ala	Leu	Cys	Leu 350	Gly	Ala
	Cys	Cys	His 355	Arg	Leu	Arg	Pro	Arg 360	His	Ser	Ser	His	Ser 365	Leu	Ser	Arg
15	Met	Thr 370	Thr	Gly	Ser	Thr	Leu 375	Cys	Asp	Val	Gly	Ser 380	Leu	Gly	Ser	Trp
	Val 385	His	Pro	Leu	Ala	Gly 390	Asn	Asp	Gly	Pro	Glu 395	Ala	Gln	Gln	Glu	Thr 400
20	Asp	Pro	Ser													
	(226) INF	FORMA	OITA	1 FOR	SEÇ) ID	NO:2	25:								
25	(i)	(A) (B) (C)	LEN TYI STR	IGTH: PE: n RANDE	109 ucle DNES	TERI 08 ba eic a SS: s	se p cid ingl	airs	;							
	(ii	.) MC	LECU	TE I	YPE:	DNA	(ge	nomi	.c)							
	(xi	.) SE	QUEN	ICE D	ESCR	IPTI	ON:	SEQ	ID N	iO:22	5:					
	ATGGGGAAC	A TC	ACTG	CAGA	CAA	CTCC	TCG	ATGA	GCTG	TA C	CATC	GACC	A TA	CCAT	'CCAC	60
30	CAGACGCTG	G CC	CCGG	TGGT	CTA	TGTT	ACC	GTGC	TGGT	'GG I	GGGC	TTCC	C GG	CCAA	CTGC	120
	CTGTCCCTC	T AC	TTCG	GCTA	CCI	'GCAG	ATC	AAGG	CCCG	GA A	.CGAG	CTGG	G CG	TGTA	CCTG	180
	TGCAACCTG	A CG	GTGG	CCGA	CCI	CTTC	TAC	ATCT	GCTC	GC I	GCCC	TTCT	G GC	TGCA	GTAC	240
	GTGCTGCAG	C AC	'GACA	ACTG	GTC	TCAC	GGC	GACC	TGTC	CT G	CCAG	GTGT	G CG	GCAT	'CCTC	300
	CTGTACGAG	A AC	ATCI	ACAT	CAG	CGTG	GGC	TTCC	TCTG	CT G	CATC	TCCG	T GG	ACCG	CTAC	360
35	CTGGCTGTG	G CC	CATC	CCTT	CCG	CTTC	CAC	CAGT	TCCG	GA C	CCTG	AAGG	C GG	CCGT	'CGGC	420

191

	GTCAGCGTGG	TCATCTGGGC	CAAGGAGCTG	CTGACCAGCA	TCTACTTCCT	GATGCACGAG	480
	GAGGTCATCG	AGGACGAGAA	CCAGCACCGC	GTGTGCTTTG	AGCACTACCC	CATCCAGGCA	540
	TGGCAGCGCG	CCATCAACTA	CTACCGCTTC	CTGGTGGGCT	TCCTCTTCCC	CATCTGCCTG	600
	CTGCTGGCGT	CCTACCAGGG	CATCCTGCGC	GCCGTGCGCC	GGAGCCACGG	CACCCAGAAG	660
5	AGCCGCAAGG	ACCAGATCAA	GCGGCTGGTG	CTCAGCACCG	TGGTCATCTT	CCTGGCCTGC	720
	TTCCTGCCCT	ACCACGTGTT	GCTGCTGGTG	CGCAGCGTCT	GGGAGGCCAG	CTGCGACTTC	780
	GCCAAGGGCG	TTTTCAACGC	CTACCACTTC	TCCCTCCTGC	TCACCAGCTT	CAACTGCGTC	840
	GCCGACCCCG	TGCTCTACTG	CTTCGTCAGC	GAGACCACCC	ACCGGGACCT	GGCCCGCCTC	900
	CGCGGGGCCT	GCCTGGCCTT	CCTCACCTGC	TCCAGGACCG	GCCGGGCCAG	GGAGGCCTAC	960
10	CCGCTGGGTG	CCCCGAGGC	CTCCGGGAAA	AGCGGGGCCC	AGGGTGAGGA	GCCCGAGCTG	1020
	TTGACCAAGC	TCCACCCGGC	CTTCCAGACC	CCTAACTCGC	CAGGGTCGGG	CGGGTTCCCC	1080
	ACGGGCAGGT	TGGCCTAG					1098

(227) INFORMATION FOR SEQ ID NO:226:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 365 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: not relevant
 - (ii) MOLECULE TYPE: protein
- 20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:226:

Met Gly Asn Ile Thr Ala Asp Asn Ser Ser Met Ser Cys Thr Ile Asp

His Thr Ile His Gln Thr Leu Ala Pro Val Val Tyr Val Thr Val Leu 20 25 30

Val Val Gly Phe Pro Ala Asn Cys Leu Ser Leu Tyr Phe Gly Tyr Leu 35 40 45

Gln Ile Lys Ala Arg Asn Glu Leu Gly Val Tyr Leu Cys Asn Leu Thr
50 55 60

Val Ala Asp Leu Phe Tyr Ile Cys Ser Leu Pro Phe Trp Leu Gln Tyr 30 65 70 75 80

Val Leu Gln His Asp Asn Trp Ser His Gly Asp Leu Ser Cys Gln Val 85 90 95

Cys Gly Ile Leu Leu Tyr Glu Asn Ile Tyr Ile Ser Val Gly Phe Leu

192

				100					105					110		
	Cys	Cys	Ile 115	Ser	Val	Asp	Arg	Tyr 120	Leu	Ala	Val	Ala	His 125	Pro	Phe	Arg
5	Phe	His 130	Gln	Phe	Arg	Thr	Leu 135	Lys	Ala	Ala	Val	Gly 140	Val	Ser	Val	Val
	Ile 145	Trp	Ala	Lys	Glu	Leu 150	Leu	Thr	Ser	Ile	Tyr 155	Phe	Leu	Met	His	Glu 160
	Glu	Val	Ile	Glu	Asp 165	Glu	Asn	Gln	His	Arg 170	Val	Cys	Phe	Glu	His 175	Tyr
10	Pro	Ile	Gln	Ala 180	Trp	Gln	Arg	Ala	Ile 185	Asn	Tyr	Tyr	Arg	Phe 190	Leu	Val
	Gly	Phe	Leu 195	Phe	Pro	Ile	Cys	Leu 200	Leu	Leu	Ala	Ser	Tyr 205	Gln	Gly	Ile
15	Leu	Arg 210	Ala	Val	Arg	Arg	Ser 215	His	Gly	Thr	Gln	Lys 220	Ser	Arg	Lys	Asp
	Gln 225	Ile	Lys	Arg	Leu	Val 230	Leu	Ser	Thr	Val	Val 235	Ile	Phe	Leu	Ala	Cys 240
19	Phe	Leu	Pro	Tyr	His 245	Val	Leu	Leu	Leu	Val 250	Arg	Ser	Val	Trp	Glu 255	Ala
20	Ser	Cys	Asp	Phe 260	Ala	Lys	Gly	Val	Phe 265	Asn	Ala	Tyr	His	Phe 270	Ser	Leu
	Leu	Leu	Thr 275	Ser	Phe	Asn	Cys	Val 280	Ala	Asp	Pro	Val	Leu 285	Tyr	Cys	Phe
25	Val	Ser 290	Glu	Thr	Thr	His	Arg 295	Asp	Leu	Ala	Arg	Leu 300	Arg	Gly	Ala	Cys
	Leu 305	Ala	Phe	Leu	Thr	Cys 310	Ser	Arg	Thr	Gly	Arg 315	Ala	Arg	Glu	Ala	Tyr 320
	Pro	Leu	Gly	Ala	Pro 325	Glu	Ala	Ser	Gly	Lys 330	Ser	Gly	Ala	Gln	Gly 335	Glu
30	Glu	Pro	Glu	Leu 340	Leu	Thr	Lys	Leu	His 345	Pro	Ala	Phe	Gln	Thr 350	Pro	Asn
	Ser	Pro	Gly 355	Ser	Gly	Gly	Phe	Pro 360	Thr	Gly	Arg	Leu	Ala 365			
	(228) INF	FORMA	TION	FOR	SEÇ	D	NO:2	27:								
35	(i)	SEC	UENC	E CH	ARAC	TERI	STIC	:S:								

(B) TYPE: nucleic acid

(A) LENGTH: 1416 base pairs

- (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:227:

5	ATGGATATTC	TTTGTGAAGA	AAATACTTCT	TTGAGCTCAA	CTACGAACTC	CCTAATGCAA	60
	TTAAATGATG	ACAACAGGCT	CTACAGTAAT	GACTTTAACT	CCGGAGAAGC	TAACACTTCT	120
	GATGCATTTA	ACTGGACAGT	CGACTCTGAA	AATCGAACCA	ACCTTTCCTG	TGAAGGGTGC	180
	CTCTCACCGT	CGTGTCTCTC	CTTACTTCAT	CTCCAGGAAA	AAAACTGGTC	TGCTTTACTG	240
	ACAGCCGTAG	TGATTATTCT	AACTATTGCT	GGAAACATAC	TCGTCATCAT	GGCAGTGTCC	300
10	CTAGAGAAAA	AGCTGCAGAA	TGCCACCAAC	TATTTCCTGA	TGTCACTTGC	CATAGCTGAT	360
	ATGCTGCTGG	GTTTCCTTGT	CATGCCCGTG	TCCATGTTAA	CCATCCTGTA	TGGGTACCGG	420
	TGGCCTCTGC	CGAGCAAGCT	TTGTGCAGTC	TGGATTTACC	TGGACGTGCT	CTTCTCCACG	480
	GCCTCCATCA	TGCACCTCTG	CGCCATCTCG	CTGGACCGCT	ACGTCGCCAT	CCAGAATCCC	540
	ATCCACCACA	GCCGCTTCAA	CTCCAGAACT	AAGGCATTTC	TGAAAATCAT	TGCTGTTTGG	600
15	ACCATATCAG	TAGGTATATC	CATGCCAATA	CCAGTCTTTG	GGCTACAGGA	CGATTCGAAG	660
	GTCTTTAAGG	AGGGGAGTTG	CTTACTCGCC	GATGATAACT	TTGTCCTGAT	CGGCTCTTTT	720
	GTGTCATTTT	TCATTCCCTT	AACCATCATG	GTGATCACCT	ACTTTCTAAC	TATCAAGTCA	780
	CTCCAGAAAG	AAGCTACTTT	GTGTGTAAGT	GATCTTGGCA	CACGGGCCAA	ATTAGCTTCT	840
	TTCAGCTTCC	TCCCTCAGAG	TTCTTTGTCT	TCAGAAAAGC	TCTTCCAGCG	GTCGATCCAT	900
20	AGGGAGCCAG	GGTCCTACAC	AGGCAGGAGG	ACTATGCAGT	CCATCAGCAA	TGAGCAAAAG	960
	GCAAAGAAGG	TGCTGGGCAT	CGTCTTCTTC	CTGTTTGTGG	TGATGTGGTG	CCCTTTCTTC	1020
	ATCACAAACA	TCATGGCCGT	CATCTGCAAA	GAGTCCTGCA	ATGAGGATGT	CATTGGGGCC	1080
	CTGCTCAATG	TGTTTGTTTG	GATCGGTTAT	CTCTCTTCAG	CAGTCAACCC	ACTAGTCTAC	1140
	ACACTGTTCA	ACAAGACCTA	TAGGTCAGCC	TTTTCACGGT	ATATTCAGTG	TCAGTACAAG	1200
25	GAAAACAAAA	AACCATTGCA	GTTAATTTTA	GTGAACACAA	TACCGGCTTT	GGCCTACAAG	1260
	TCTAGCCAAC	TTCAAATGGG	ACAAAAAAAG	AATTCAAAGC	AAGATGCCAA	GACAACAGAT	1320
	AATGACTGCT	CAATGGTTGC	TCTAGGAAAG	CAGTATTCTG	AAGAGGCTTC	TAAAGACAAT	1380
	AGCGACGGAG	TGAATGAAAA	GGTGAGCTGT	GTGTGA			1416

(229)	TNFORMATION	FOR	SEO	TD	MO - 228 -

- 29) INFORMATION FOR SEQ ID NO:228: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 470 amino acids (B) TYPE: amino acid 5 (C) STRANDEDNESS: (D) TOPOLOGY: not relevant (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:228:
- Met Asp Ile Leu Cys Glu Glu Asn Thr Ser Leu Ser Ser Thr Thr Asn 10 ı 10 Ser Leu Met Gln Leu Asn Asp Asp Asn Arg Leu Tyr Ser Asn Asp Phe Asn Ser Gly Glu Ala Asn Thr Ser Asp Ala Phe Asn Trp Thr Val Asp 15 Ser Glu Asn Arg Thr Asn Leu Ser Cys Glu Gly Cys Leu Ser Pro Ser 55 Cys Leu Ser Leu Leu His Leu Gln Glu Lys Asn Trp Ser Ala Leu Leu Thr Ala Val Val Ile Ile Leu Thr Ile Ala Gly Asn Ile Leu Val Ile 20 90 Met Ala Val Ser Leu Glu Lys Lys Leu Gln Asn Ala Thr Asn Tyr Phe 105 Leu Met Ser Leu Ala Ile Ala Asp Met Leu Leu Gly Phe Leu Val Met 25 Pro Val Ser Met Leu Thr Ile Leu Tyr Gly Tyr Arg Trp Pro Leu Pro 135 Ser Lys Leu Cys Ala Val Trp Ile Tyr Leu Asp Val Leu Phe Ser Thr 145 150 Ala Ser Ile Met His Leu Cys Ala Ile Ser Leu Asp Arg Tyr Val Ala 30 170 Ile Gln Asn Pro Ile His His Ser Arg Phe Asn Ser Arg Thr Lys Ala 185 190 Phe Leu Lys Ile Ile Ala Val Trp Thr Ile Ser Val Gly Ile Ser Met 195 200 35 Pro Ile Pro Val Phe Gly Leu Gln Asp Asp Ser Lys Val Phe Lys Glu 215 Gly Ser Cys Leu Leu Ala Asp Asp Asn Phe Val Leu Ile Gly Ser Phe

230

235

240

Ð

\$

WO 00/22129 PCT/US99/23938

195

		Val	Ser	Phe	Phe	Ile 245	Pro	Leu	Thr	Ile	Met 250	Val	Ile	Thr	Tyr	Phe 255	Leu
		Thr	Ile	Lys	Ser 260	Leu	Gln	Lys	Glu	Ala 265	Thr	Leu	Cys	Val	Ser 270	Asp	Leu
5		Gly	Thr	Arg 275	Ala	Lys	Leu	Ala	Ser 280	Phe	Ser	Phe	Leu	Pro 285	Gln	Ser	Ser
		Leu	Ser 290	Ser	Glu	Lys	Leu	Phe 295	Gln	Arg	Ser	Ile	His 300	Arg	Glu	Pro	Gly
10		Ser 305	Tyr	Thr	Gly	Arg	Arg 310	Thr	Met	Gln	Ser	Ile 315	Ser	Asn	Glu	Gln	Lys 320
		Ala	Lys	Lys	Val	Leu 325	Gly	Ile	Val	Phe	Phe 330	Leu	Phe	Val	Val	Met 335	Trp
		Cys	Pro	Phe	Phe 340	Ile	Thr	Asn	Ile	Met 345	Ala	Val	Ile	Cys	Lys 350	Glu	Ser
15		Cys	Asn	Glu 355	Asp	Val	Ile	Gly	Ala 360	Leu	Leu	Asn	Val	Phe 365	Val	Trp	Ile
		Gly	Tyr 370	Leu	Ser	Ser	Ala	Val 375	Asn	Pro	Leu	Val	Tyr 380	Thr	Leu	Phe	Asn
20		Lys 385	Thr	Tyr	Arg	Ser	Ala 390	Phe	Ser	Arg	Tyr	Ile 395	Gln	Cys	Gln	Tyr	Lys 400
		Glu	Asn	Lys	Lys	Pro 405	Leu	Gln	Leu	Ile	Leu 410	Val	Asn	Thr	Ile	Pro 415	Ala
		Leu	Ala	Tyr	Lys 420	Ser	Ser	Gln	Leu	Gln 425	Met	Gly	Gln	Lys	Lys 430	Asn	Ser
25		Lys	Gln	Asp 435	Ala	Lys	Thr	Thr	Asp 440	Asn	Asp	Cys	Ser	Met 445	Val	Ala	Leu
		Gly	Lys 450	Gln	Tyr	Ser	Glu	Glu 455	Ala	Ser	Lys	Asp	Asn 460	Ser	Asp	Gly	Val
30		Asn 465	Glu	Lys	Val	Ser	Cys 470	Val									
	(230)	INE	FORM	OITA	1 FOR	R SEQ) ID	NO:2	229:								
35		(i)	(A) (B) (C)	LEN TYI	CE CH NGTH: PE: 1 RANDI POLO(: 137 nucle EDNES	77 ba eic a SS: s	ase pacid	oairs	5							

(ii) MOLECULE TYPE: DNA (genomic)

	(xi)	SEQUENCE D	ESCRIPTION:	SEQ ID NO:	229:		
	ATGGTGAACC	TGAGGAATGC	GGTGCATTCA	TTCCTTGTGC	ACCTAATTGO	CCTATTGGTT	60
	TGGCAATGTG	ATATTTCTGT	GAGCCCAGTA	GCAGCTATAG	TAACTGACAT	TTTCAATACC	120
	TCCGATGGTG	GACGCTTCAA	ATTCCCAGAC	GGGGTACAAA	ACTGGCCAGC	CACTTTCAATC	180
5	GTCATCATAA	TAATCATGAC	AATAGGTGGC	AACATCCTTG	TGATCATGGC	AGTAAGCATG	240
	GAAAAGAAAC	TGCACAATGC	CACCAATTAC	TTCTTAATGT	CCCTAGCCAT	TGCTGATATG	300
	CTAGTGGGAC	TACTTGTCAT	GCCCCTGTCT	CTCCTGGCAA	TCCTTTATGA	TTATGTCTGG	360
	CCACTACCTA	GATATTTGTG	CCCCGTCTGG	ATTTCTTTAG	ATGTTTTATT	TTCAACAGCG	420
	TCCATCATGC	ACCTCTGCGC	TATATCGCTG	GATCGGTATG	TAGCAATACG	TAATCCTATT	480
10	GAGCATAGCC	GTTTCAATTC	GCGGACTAAG	GCCATCATGA	AGATTGCTAT	TGTTTGGGCA	540
	ATTTCTATAG	GTGTATCAGT	TCCTATCCCT	GTGATTGGAC	TGAGGGACGA	AGAAAAGGTG	600
	TTCGTGAACA	ACACGACGTG	CGTGCTCAAC	GACCCAAATT	TCGTTCTTAT	TGGGTCCTTC	660
	GTAGCTTTCT	TCATACCGCT	GACGATTATG	GTGATTACGT	ATTGCCTGAC	CATCTACGTT	720
	CTGCGCCGAC	AAGCTTTGAT	GTTACTGCAC	GGCCACACCG	AGGAACCGCC	TGGACTAAGT	780
15	CTGGATTTCC	TGAAGTGCTG	CAAGAGGAAT	ACGGCCGAGG	AAGAGAACTC	TGCAAACCCT	840
	AACCAAGACC	AGAACGCACG	CCGAAGAAAG	AAGAAGGAGA	GACGTCCTAG	GGGCACCATG	900
	CAGGCTATCA	ACAATGAAAG	AAAAGCTAAG	AAAGTCCTTG	GGATTGTTTT	CTTTGTGTTT	960
	CTGATCATGT	GGTGCCCATT	TTTCATTACC	AATATTCTGT	CTGTTCTTTG	TGAGAAGTCC	1020
	TGTAACCAAA	AGCTCATGGA	AAAGCTTCTG	AATGTGTTTG	TTTGGATTGG	CTATGTTTGT	1080
20	TCAGGAATCA	ATCCTCTGGT	GTATACTCTG	TTCAACAAAA	TTTACCGAAG	GGCATTCTCC	1140
	AACTATTTGC	GTTGCAATTA	TAAGGTAGAG	AAAAAGCCTC	CTGTCAGGCA	GATTCCAAGA	1200
	GTTGCCGCCA	CTGCTTTGTC	TGGGAGGGAG	CTTAATGTTA	ACATTTATCG	GCATACCAAT	1260
	GAACCGGTGA	TCGAGAAAGC	CAGTGACAAT	GAGCCCGGTA	TAGAGATGCA	AGTTGAGAAT	1320
	TTAGAGTTAC	CAGTAAATCC	CTCCAGTGTG	GTTAGCGAAA	GGATTAGCAG	TGTGTGA	1377

- (231) INFORMATION FOR SEQ ID NO:230:
 - (A) LENGTH: 458 amino acids
 - (B) TYPE: amino acid

(i) SEQUENCE CHARACTERISTICS:

(C) STRANDEDNESS:

(D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:230:

5	Met V	al Asn	Leu	Arg 5	Asn	Ala	Val	His	Ser 10	Phe	Leu	Val	His	Leu 15	Ile
	Gly L	eu Leu	Val 20	Trp	Gln	Cys	Asp	Ile 25	Ser	Val	Ser	Pro	Val 30	Ala	Ala
	Ile V	al Thr 35	Asp	Ile	Phe	Asn	Thr 40	Ser	Asp	Gly	Gly	Arg 45	Phe	Lys	Phe
10	Pro A	sp Gly O	Val	Gln	Asn	Trp 55	Pro	Ala	Leu	Ser	Ile 60	Val	Ile	Ile	Ile
	Ile M	et Thr	Ile	Gly	Gly 70	Asn	Ile	Leu	Val	Ile 75	Met	Ala	Val	Ser	Met 80
15	Glu L	ys Lys	Leu	His 85	Asn	Ala	Thr	Asn	Tyr 90	Phe	Leu	Met	Ser	Leu 95	Ala
	Ile A	la Asp	Met 100	Leu	Val	Gly	Leu	Leu 105	Val	Met	Pro	Leu	Ser 110	Leu	Leu
	Ala I	le Leu 115		Asp	Tyr	Val	Trp 120	Pro	Leu	Pro	Arg	Tyr 125	Leu	Cys	Pro
20		rp Ile 30	Ser	Leu	Asp	Val 135	Leu	Phe	Ser	Thr	Ala 140	Ser	Ile	Met	His
	Leu C	ys Ala	Ile	Ser	Leu 150	Asp	Arg	Tyr	Val	Ala 155	Ile	Arg	Asn	Pro	Ile 160
25	Glu H	is Ser	Arg	Phe 165	Asn	Ser	Arg	Thr	Lys 170	Ala	Ile	Met	Lys	Ile 175	Ala
	Ile V	al Trp	Ala 180	Ile	Ser	Ile	Gly	Val 185	Ser	Val	Pro	Ile	Pro 190	Val	Ile
	Gly L	eu Arg 195	_	Glu	Glu	Lys	Val 200	Phe	Val	Asn	Asn	Thr 205	Thr	Cys	Val
30		sn Asp 10	Pro	Asn	Phe	Val 215	Leu	Ile	Gly	Ser	Phe 220	Val	Ala	Phe	Phe
	Ile P 225	ro Leu	Thr	Ile	Met 230	Val	Ile	Thr	Tyr	Cys 235	Leu	Thr	Ile	Tyr	Val 240
35	Leu A	rg Arg	Gln	Ala 245	Leu	Met	Leu	Leu	His 250	Gly	His	Thr	Glu	Glu 255	Pro
	Pro G	ly Lev	Ser	Leu	Asp	Phe	Leu	Lys	Cys	Cys	Lys	Arg	Asn	Thr	Ala

WO 00/22129 PCT/US99/23938 2

				260					265					270		
	Glu	Glu	Glu 275		Ser	Ala	Asn	Pro 280	Asn	Gln	Asp	Gln	Asn 285	Ala	Arg	Arg
5	Arg	Lys 290	Lys	Lys	Glu	Arg	Arg 295	Pro	Arg	Gly	Thr	Met 300	Gln	Ala	Ile	Asn
	Asn 305	Glu	Arg	Lys	Ala	Lys 310	Lys	Val	Leu	Gly	Ile 315	Val	Phe	Phe	Val	Phe 320
	Leu	Ile	Met	Trp	Cys 325	Pro	Phe	Phe	Ile	Thr 330	Asn	Ile	Leu	Ser	Val 335	Leu
10	Cys	Glu	Lys	Ser 340	Cys	Asn	Gln	Lys	Leu 345	Met	Glu	Lys	Leu	Leu 350	Asn	Val
	Phe	Val	Trp 355	Ile	Gly	туг	Val	Cys 360	Ser	Gly	Ile	Asn	Pro 365	Leu	Val	Tyr
15	Thr	Leu 370	Phe	Asn	Lys	Ile	Tyr 375	Arg	Arg	Ala	Phe	Ser 380	Asn	туr	Leu	Arg
	Cys 385	Asn	Tyr	Lys	Val	Glu 390	Lys	Lys	Pro	Pro	Val 395	Arg	Gln	Ile	Pro	Arg 400
	Val	Ala	Ala	Thr	Ala 405	Leu	Ser	Gly	Arg	Glu 410	Leu	Asn	Val	Asn	Ile 415	Tyr
20	Arg	His	Thr	Asn 420	Glu	Pro	Val	Ile	Glu 425	Lys	Ala	Ser	Asp	Asn 430	Glu	Pro
	Gly	Ile	Glu 435	Met	Gln	Val	Glu	Asn 440	Leu	Glu	Leu	Pro	Val 445	Asn	Pro	Ser
25	Ser	Val 450	Val	Ser	Glu	Arg	Ile 455	Ser	Ser	Val						
	(232) IN	ORM	OITA	1 FOF	SEÇ	OID	NO:2	231 :								
30	(i)	(A) (B) (C)	QUENC LEN TYI STI	NGTH: PE: r RANDE	106 nucle EDNES	8 ba eic a 88: s	se p cid singl	airs	;							
	(ii	i.) MC	LECU	JLE 1	YPE:	DNA	4 (ge	nomi	.c)							
	(xi	i) si	EQUE	CE I	ESCF	RIPTI	ON:	SEQ	ID N	10:23	1:					
	ATGGATCAC	T TO	CCTC	SAATO	AGT	GACA	AGAA	AACI	TTGA	AGT A	CGAT	'GAT'I	T GO	CTG	\GGCC	60
35	TGTTATAT	rg go	GAC	ATCGI	GG1	CTTI	rggg	ACTO	TGTI	CC I	GTCC	rata:	T CI	ACTO	CGTC	120
	ATCTTTGC	CA T	rggco	CTGG1	GGG	LAAA	TTG	TTGG	TAGI	GT I	TGCC	CTCA	C CA	ACAG	CAAC	180

				100			
	AAGCCCAAGA	GTGTCACCGA	CATTTACCTC	CTGAACCTGG	CCTTGTCTGA	TCTGCTGTTT	240
	GTAGCCACTT	TGCCCTTCTG	GACTCACTAT	TTGATAAATG	AAAAGGGCCT	CCACAATGCC	300
	ATGTGCAAAT	TCACTACCGC	CTTCTTCTTC	ATCGGCTTTT	TTGGAAGCAT	ATTCTTCATC	360
	ACCGTCATCA	GCATTGATAG	GTACCTGGCC	ATCGTCCTGG	CCGCCAACTC	CATGAACAAC	420
5	CGGACCGTGC	AGCATGGCGT	CACCATCAGC	CTAGGCGTCT	GGGCAGCAGC	CATTTTGGTG	480
	GCAGCACCCC	AGTTCATGTT	CACAAAGCAG	AAAGAAAATG	AATGCCTTGG	TGACTACCCC	540
	GAGGTCCTCC	AGGAAATCTG	GCCCGTGCTC	CGCAATGTGG	AAACAAATTT	TCTTGGCTTC	600
	CTACTCCCCC	TGCTCATTAT	GAGTTATTGC	TACTTCAGAA	TCATCCAGAC	GCTGTTTTCC	660
	TGCAAGAACC	ACAAGAAAGC	CAAAGCCAAG	AAACTGATCC	TTCTGGTGGT	CATCGTGTTT	720
10	TTCCTCTTCT	GGACACCCTA	CAACGTTATG	ATTTTCCTGG	AGACGCTTAA	GCTCTATGAC	780
	TTCTTTCCCA	GTTGTGACAT	GAGGAAGGAT	CTGAGGCTGG	CCCTCAGTGT	GACTGAGACG	840
	GTTGCATTTA	GCCATTGTTG	CCTGAATCCT	CTCATCTATG	CATTTGCTGG	GGAGAAGTTC	900
	AGAAGATACC	TTTACCACCT	GTATGGGAAA	TGCCTGGCTG	TCCTGTGTGG	GCGCTCAGTC	960
	CACGTTGATT	TCTCCTCATC	TGAATCACAA	AGGAGCAGGC	ATGGAAGTGT	TCTGAGCAGC	1020
15	AATTTTACTT	ACCACACGAG	TGATGGAGAT	GCATTGCTCC	TTCTCTGA		1068
	(233) INFO	RMATION FOR	SEQ ID NO:	232:			
20		SEQUENCE CH (A) LENGTH: (B) TYPE: au (C) STRANDEI (D) TOPOLOG	355 amino a mino acid DNESS:	acids			
	(55)	MOLECULE T					
		SEQUENCE D	_		232:		
						lu Tvr Asp <i>l</i>	\en
							3.71.

Met Asp Gln Phe Pro Glu Ser Val Thr Glu Asn Phe Glu Tyr Asp As

Leu Ala Glu Ala Cys Tyr Ile Gly Asp Ile Val Val Phe Gly Thr Val

Phe Leu Ser Ile Phe Tyr Ser Val Ile Phe Ala Ile Gly Leu Val Gly 35 40 45

Asn Leu Leu Val Val Phe Ala Leu Thr Asn Ser Lys Lys Pro Lys Ser 50 55 60

Val Thr Asp Ile Tyr Leu Leu Asn Leu Ala Leu Ser Asp Leu Leu Phe

	65					70					75					80
	Val	Ala	Thr	Leu	Pro 85	Phe	Trp	Thr	His	Tyr 90	Leu	Ile	Asn	Glu	Lys 95	Gly
5	Leu	His	Asn	Ala 100	Met	Cys	Lys	Phe	Thr		Ala	Phe	Phe	Phe 110	Ile	Gly
	Phe	Phe	Gly 115	Ser	Ile	Phe	Phe	Ile 120		Val	Ile	Ser	Ile 125	Asp	Arg	Tyr
	Leu	Ala 130	Ile	Val	Leu	Ala	Ala 135	Asn	Ser	Met	Asn	Asn 140	Arg	Thr	Val	Gln
10	His 145	Gly	Val	Thr	Ile	Ser 150	Leu	Gly	Val	Trp	Ala 155	Ala	Ala	Ile	Leu	Val 160
	Ala	Ala	Pro	Gln	Phe 165	Met	Phe	Thr	Lys	Gln 170	Lys	Glu	Asn	Glu	Cys 175	Leu
15	Gly	Asp	Tyr	Pro 180	Glu	Val	Leu	Gln	Glu 185	Ile	Trp	Pro	Val	Leu 190	Arg	Asn
	Val	Glu	Thr 195	Asn	Phe	Leu	Gly	Phe 200	Leu	Leu	Pro	Leu	Leu 205	Ile	Met	Ser
	Tyr	Cys 210	Tyr	Phe	Arg	Ile	Ile 215	Gln	Thr	Leu	Phe	Ser 220	Cys	Lys	Asn	His
20	Lys 225	Lys	Ala	Lys	Ala	Lys 230	Lys	Leu	Ile	Leu	Leu 235	Val	Val	Ile	Val	Phe 240
	Phe	Leu	Phe	Trp	Thr 245	Pro	Tyr	Asn	Val	Met 250	Ile	Phe	Leu	Glu	Thr 255	Leu
25	Lys	Leu	Tyr	Asp 260	Phe	Phe	Pro	Ser	Cys 265	Asp	Met	Arg	Lys	Asp 270	Leu	Arg
	Leu	Ala	Leu 275	Ser	Val	Thr	Glu	Thr 280	Val	Ala	Phe	Ser	His 285		Cys	Leu
	Asn	Pro 290	Leu	Ile	Tyr	Ala	Phe 295	Ala	Gly	Glu	Lys	Phe 300	Arg	Arg	Tyr	Leu
30	Tyr 305	His	Leu	Tyr	Gly	Lys 310	Cys	Leu	Ala	Val	Leu 315	Cys	Gly	Arg	Ser	Val 320
	His	Val	Asp	Phe	Ser 325	Ser	Ser	Glu	Ser	Gln 330	Arg	Ser	Arg	His	Gly 335	Ser
35	Val	Leu	Ser	Ser 340	Asn	Phe	Thr	Tyr	His 345	Thr	Ser	Asp		Asp 350	Ala	Leu
	Leu		Leu													

	(234)	INFORMATION FOR SEQ ID NO:233:	
5		 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
		(ii) MOLECULE TYPE: DNA (genomic)	
		(iv) ANTI-SENSE: NO	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:233:	
10	GGCTT	AAGAG CATCATCGTG GTGCTGGTG	29
	(235)	INFORMATION FOR SEQ ID NO:234:	
15		 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
		(ii) MOLECULE TYPE: DNA (genomic)	
		(iv) ANTI-SENSE: YES	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:234:	
20	GTCAC	CACCA GCACCACGAT GATGCTCTTA AGCC	34
	(236)	INFORMATION FOR SEQ ID NO:235:	
25		 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
		(ii) MOLECULE TYPE: DNA (genomic) (xi) SEQUENCE DESCRIPTION: SEQ ID NO:235:	
	CAAAG	AAAGT ACTGGGCATC GTCTTCTTCC T	31
30	(237)	INFORMATION FOR SEQ ID NO:236:	
35		(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
دد		(D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic)	
		(II) NOBBEOTH III. DIA (SCHOULE)	

```
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:236:
     TGCTCTAGAT TCCAGATAGG TGAAAACTTG
                                                                             30
      (238) INFORMATION FOR SEQ ID NO.237:
            (i) SEQUENCE CHARACTERISTICS:
  5
                (A) LENGTH: 50 base pairs
                (B) TYPE: nucleic acid
                (C) STRANDEDNESS: single
                (D) TOPOLOGY: linear
            (ii) MOLECULE TYPE: DNA (genomic)
10
            (iv) ANTI-SENSE: NO
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO:237:
     CTAGGGGCAC CATGCAGGCT ATCAACAATG AAAGAAAAGC TAAGAAAGTC
                                                                            50
     (239) INFORMATION FOR SEQ ID NO:238:
           (i) SEQUENCE CHARACTERISTICS:
15
                (A) LENGTH: 50 base pairs
                (B) TYPE: nucleic acid
                (C) STRANDEDNESS: single
                (D) TOPOLOGY: linear
           (ii) MOLECULE TYPE: DNA (genomic)
20
           (iv) ANTI-SENSE: YES
           (xi) SEQUENCE DESCRIPTION: SEQ ID NO:238:
     CAAGGACTTT CTTAGCTTTT CTTTCATTGT TGATAGCCTG CATGGTGCCC
                                                                            50
     (240) INFORMATION FOR SEQ ID NO:239:
           (i) SEQUENCE CHARACTERISTICS:
25
               (A) LENGTH: 35 base pairs
               (B) TYPE: nucleic acid
               (C) STRANDEDNESS: single
               (D) TOPOLOGY: linear
           (ii) MOLECULE TYPE: DNA (genomic)
30
           (xi) SEQUENCE DESCRIPTION: SEQ ID NO:239:
    CGGCGGCAGA AGGCGAAACG CATGATCCTC GCGGT
                                                                            35
     (241) INFORMATION FOR SEQ ID NO:240:
           (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 35 base pairs
35
               (B) TYPE: nucleic acid
```

	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:240:	
5	ACCGCGAGGA TCATGCGTTT CGCCTTCTGC CGCCG	35
	(242) INFORMATION FOR SEQ ID NO:241:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:241:	
	GAGACATATT ATCTGCCACG GAGG	24
15	(243) INFORMATION FOR SEQ ID NO:242:	
20	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 24 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:242:	
	TTGGCATAGA AACCGGACCC AAGG	24
	(244) INFORMATION FOR SEQ ID NO:243:	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
30	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:243:	
	TAAGAATTCC ATAAAAATTA TGGAATGG	28
	(245) INFORMATION FOR SEQ ID NO:244:	
	(i) SEQUENCE CHARACTERISTICS:	

	(A) LENGTH: 30 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
5	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:244:	
	CCAGGATCCA GCTGAAGTCT TCCATCATTC	30
	(246) INFORMATION FOR SEQ ID NO:245:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1071 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:245:	
	ATGAATGGGG TCTCGGAGGG GACCAGAGGC TGCAGTGACA GGCAACCTGG GGTCCTG	ACA 60
	CGTGATCGCT CTTGTTCCAG GAAGATGAAC TCTTCCGGAT GCCTGTCTGA GGAGGTG	GG 120
	TCCCTCCGCC CACTGACTGT GGTTATCCTG TCTGCGTCCA TTGTCGTCGG AGTGCTGC	GC 180
	AATGGGCTGG TGCTGTGGAT GACTGTCTTC CGTATGGCAC GCACGGTCTC CACCGTCT	TGC 240
20	TTCTTCCACC TGGCCCTTGC CGATTTCATG CTCTCACTGT CTCTGCCCAT TGCCATGT	TAC 300
	TATATTGTCT CCAGGCAGTG GCTCCTCGGA GAGTGGGCCT GCAAACTCTA CATCACCT	TTT 360
	GTGTTCCTCA GCTACTTTGC CAGTAACTGC CTCCTTGTCT TCATCTCTGT GGACCGTT	CGC 420
	ATCTCTGTCC TCTACCCCGT CTGGGCCCTG AACCACCGCA CTGTGCAGCG GGCGAGCT	CGG 480
	CTGGCCTTTG GGGTGTGGCT CCTGGCCGCC GCCTTGTGCT CTGCGCACCT GAAATTCC	GG 540
25	ACAACCAGAA AATGGAATGG CTGTACGCAC TGCTACTTGG CGTTCAACTC TGACAATG	AG 600
	ACTGCCCAGA TTTGGATTGA AGGGGTCGTG GAGGGACACA TTATAGGGAC CATTGGCC	AC 660
	TTCCTGCTGG GCTTCCTGGG GCCCTTAGCA ATCATAGGCA CCTGCGCCCA CCTCATCC	GG 720
	GCCAAGCTCT TGCGGGAGGG CTGGGTCCAT GCCAACCGGC CCGCGAGGCT GCTGCTGG	TG 780
	CTGGTGAGCG CTTTCTTAT CTTCTGGTCC CCGTTTAACG TGGTGCTGTT GGTCCATC	TG 840
30	TGGCGACGGG TGATGCTCAA GGAAATCTAC CACCCCCGGA TGCTGCTCAT CCTCCAGG	CT 900
	AGCTTTGCCT TGGGCTGTGT CAACAGCAGC CTCAACCCCT TCCTCTACGT CTTCGTTG	GC 960

AGAGATTTCC AAGAAAAGTT TTTCCAGTCT TTGACTTCTG CCCTGGCGAG GGCGTTTGGA 1020

GAGGAGGAGT TTCTGTCATC CTGTCCCCGT GGCAACGCCC CCCGGGAATG A 1071

(247) INFORMATION FOR SEQ ID NO:246:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 356 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:

5

- (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein
- 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:246:

Met Asn Gly Val Ser Glu Gly Thr Arg Gly Cys Ser Asp Arg Gln Pro 1 5 10 15

Gly Val Leu Thr Arg Asp Arg Ser Cys Ser Arg Lys Met Asn Ser Ser 20 25 30

Gly Cys Leu Ser Glu Glu Val Gly Ser Leu Arg Pro Leu Thr Val Val
35 40 45

Ile Leu Ser Ala Ser Ile Val Val Gly Val Leu Gly Asn Gly Leu Val 50 55 60

Leu Trp Met Thr Val Phe Arg Met Ala Arg Thr Val Ser Thr Val Cys 65 70 75 80

Phe Phe His Leu Ala Leu Ala Asp Phe Met Leu Ser Leu Ser Leu Pro 85 90 95

Ile Ala Met Tyr Tyr Ile Val Ser Arg Gln Trp Leu Leu Gly Glu Trp
100 105 110

25 Ala Cys Lys Leu Tyr Ile Thr Phe Val Phe Leu Ser Tyr Phe Ala Ser 115 120 125

Asn Cys Leu Leu Val Phe Ile Ser Val Asp Arg Cys Ile Ser Val Leu 130 135 140

Tyr Pro Val Trp Ala Leu Asn His Arg Thr Val Gln Arg Ala Ser Trp 30 145 150 155 160

Leu Ala Phe Gly Val Trp Leu Leu Ala Ala Ala Leu Cys Ser Ala His 165 170 175

Leu Lys Phe Arg Thr Thr Arg Lys Trp Asn Gly Cys Thr His Cys Tyr 180 185 190

Leu Ala Phe Asn Ser Asp Asn Glu Thr Ala Gln Ile Trp Ile Glu Gly
195 200 205

	V		Val 210	Glu	Gly	His	Ile	Ile 215	Gly	Thr	Ile	Gly	His 220	Phe	Leu	Leu	Gly	
		he :	Leu	Gly	Pro	Leu	Ala 230	Ile	Ile	Gly	Thr	Cys 235	Ala	His	Leu	Ile	Ar g 240	
5	A	la :	Lys	Leu	Leu	Arg 245	Glu	Gly	Trp	Val	His 250	Ala	Asn	Arg	Pro	Ala 255	Arg	
	Le	eu 1	Leu	Leu	Val 260	Leu	Val	Ser	Ala	Phe 265	Phe	Ile	Phe	Trp	Ser 270	Pro	Phe	
10	A	sn V	Val	Val 275	Leu	Leu	Val	His	Leu 280	Trp	Arg	Arg	Val	Met 285	Leu	Lys	Glu	
	I	le :	Tyr 290	His	Pro	Arg	Met	Leu 295	Leu	Ile	Leu	Gln	Ala 300	Ser	Phe	Ala	Leu	
		ly (Cys	Val	Asn	Ser	Ser 310	Leu	Asn	Pro	Phe	Leu 315	Tyr	Val	Phe	Val	Gly 320	
15	Aı	rg A	Asp	Phe	Gln	Glu 325	Lys	Phe	Phe	Gln	Ser 330	Leu	Thr	Ser	Ala	Leu 335	Ala	
	Ar	rg I	Ala	Phe	Gly 340	Glu	Glu	Glu	Phe	Leu 345	Ser	Ser	Cys	Pro	Arg 350	Gly	Asn	
20	Al	La E		Arg 355	Glu													
	(248) I	NFC	RMA	TION	FOR	SEQ) ID	NO:2	47:									
25	((i)	(A) (B) (C)	LEN TYP STR	GTH: E: n ANDE	32 ucle DNES	TERI base ic a S: s inea	pai cid ingl	rs									
	(ii)	MO	LECU	LE T	YPE:	DNA	(ge	nomi	c)								
	(xi)	SE	QUEN	CE D	ESCR	IPTI	ON:	SEQ	ID N	0:24	7:						
	GCAGAAT	TCG	GC	GGCC	CCAT	GGA	CCTG	ccc	CC									32
30	(249) I	NFO	RMA'	rion	FOR	SEQ	ID	NO:2	48:									
35	(i)	(A) (B) (C)	LEN TYP STR	GTH: E: n ANDE	30 ucle DNES	TERI base ic a S: s inea	pai cid ingl	rs									
	(ii)	MOI	LECU	LE T	YPE:	DNA	(ge:	nomi	c)								
	(xi)	SE	QUEN	CE D	ESCR	IPTI	: : MC	SEQ	ID N	0:24	8 :						

207

	GCTGGATCCC CCGAGCAGTG GCGTTACTTC (250) INFORMATION FOR SEQ ID NO:249:													
	(250) INFORMATION FOR SEQ ID NO:249:													
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 903 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 													
	(ii) MOLECULE TYPE: DNA (genomic)													
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:249:													
0	ATGGACCTGC CCCCGCAGCT CTCCTTCGGC CTCTATGTGG CCGCCTTTGC GCTGGGCTTC	60												
	CCGCTCAACG TCCTGGCCAT CCGAGGCGCG ACGGCCCACG CCCGGCTCCG TCTCACCCCT	120												
	AGCCTGGTCT ACGCCCTGAA CCTGGGCTGC TCCGACCTGC TGCTGACAGT CTCTCTGCCC	180												
	CTGAAGGCGG TGGAGGCGCT AGCCTCCGGG GCCTGGCCTC TGCCGGCCTC GCTGTGCCCC	240												
	GTCTTCGCGG TGGCCCACTT CTTCCCACTC TATGCCGGCG GGGGCTTCCT GGCCGCCCTG	300												
15	AGTGCAGGCC GCTACCTGGG AGCAGCCTTC CCCTTGGGCT ACCAAGCCTT CCGGAGGCCG	360												
	TGCTATTCCT GGGGGGTGTG CGCGGCCATC TGGGCCCTCG TCCTGTGTCA CCTGGGTCTG	420												
	GTCTTTGGGT TGGAGGCTCC AGGAGGCTGG CTGGACCACA GCAACACCTC CCTGGGCATC	480												
	AACACACCGG TCAACGGCTC TCCGGTCTGC CTGGAGGCCT GGGACCCGGC CTCTGCCGGC	540												
	CCGGCCCGCT TCAGCCTCTC TCTCCTGCTC TTTTTTCTGC CCTTGGCCAT CACAGCCTTC	600												
20	TGCTACGTGG GCTGCCTCCG GGCACTGGCC CGCTCCGGCC TGACGCACAG GCGGAAGCTG	660												
	CGGGCCGCCT GGGTGGCCGG CGGGGCCCTC CTCACGCTGC TGCTCTGCGT AGGACCCTAC	720												
	AACGCCTCCA ACGTGGCCAG CTTCCTGTAC CCCAATCTAG GAGGCTCCTG GCGGAAGCTG	780												
	GGGCTCATCA CGGGTGCCTG GAGTGTGGTG CTTAATCCGC TGGTGACCGG TTACTTGGGA	840												
	AGGGGTCCTG GCCTGAAGAC AGTGTGTGCG GCAAGAACGC AAGGGGGCAA GTCCCAGAAG	900												
25	TAA	903												
	(251) INFORMATION FOR SEQ ID NO:250:													
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 300 amino acids													

(B) TYPE: amino acid

(D) TOPOLOGY: not relevant

(C) STRANDEDNESS:

			OLEC SEQUE) ID	NO : 2	250:					
	Met 1	Asp	Leu	Pro	Pro 5	Gln	Leu	Ser	Ph∈	Gly	Leu	Tyr	Val	Ala	Ala	Phe
5	Ala	Leu	Gly	Phe 20	Pro	Leu	Asn	Val	Leu 25	Ala	Ile	Arg	Gly	Ala 30	Thr	Ala
	His	Ala	Arg 35	Leu	Arg	Leu	Thr	Pro 40	Ser	Leu	Val	Tyr	Ala 45	Leu	Asn	Leu
10	Gly	Cys 50	Ser	Asp	Leu	Leu	Leu 55	Thr	Val	Ser	Leu	Pro 60	Leu	Lys	Ala	Val
	Glu 65	Ala	Leu	Ala	Ser	Gly 70	Ala	Trp	Pro	Leu	Pro 75	Ala	Ser	Leu	Cys	Pro 80
	Val	Phe	Ala	Val	Ala 85	His	Phe	Phe	Pro	Leu 90	Tyr	Ala	Gly	Gly	Gly 95	Phe
15	Leu	Ala	Ala	Leu 100	Ser	Ala	Gly	Arg	Tyr 105	Leu	Gly	Ala	Ala	Phe 110	Pro	Leu
	Gly	Tyr	Gln 115	Ala	Phe	Arg	Arg	Pro 120	Cys	Tyr	Ser	Trp	Gly 125	Val	Cys	Ala
20	Ala	Ile 130	Trp	Ala	Leu	Val	Leu 135	Cys	His	Leu	Gly	Leu 140	Val	Phe	Gly	Leu
	Glu 145	Ala	Pro	Gly	Gly	Trp 150	Leu	Asp	His	Ser	Asn 155	Thr	Ser	Leu	Gly	Ile 160
	Asn	Thr	Pro	Val	Asn 165	Gly	Ser	Pro	Val	Cys 170	Leu	Glu	Ala	Trp	Asp 175	Pro
25	Ala	Ser	Ala	Gly 180	Pro	Ala	Arg	Phe	Ser 185	Leu	Ser	Leu	Leu	Leu 190	Phe	Phe
	Leu	Pro	Leu 195	Ala	Ile	Thr	Ala	Phe 200	Cys	Tyr	Val	Gly	Cys 205	Leu	Arg	Ala
30	Leu	Ala 210	Arg	Ser	Gly	Leu	Thr 215	His	Arg	Arg	Lys	Leu 220	Arg	Ala	Ala	Trp
	Val 225	Ala	Gly	Gly	Ala	Leu 230	Leu	Thr	Leu	Leu	Leu 235	Cys	Val	Gly	Pro	Tyr 240
	Asn	Ala	Ser	Asn	Val 245	Ala	Ser	Phe	Leu	Tyr 250	Pro	Asn	Leu	Gly	Gly 255	Ser
35	Trp	Arg	Lys	Leu 260	Gly	Leu	Ile	Thr	Gly 265	Ala	Trp	Ser	Val	Val 270	Leu	Asn
	Pro	Leu	Val	Thr	Gly	Tyr	Leu	Gly	Arg	Gly	Pro	Gly	Leu	Lys	Thr	Val

	275 280 285	
	Cys Ala Ala Arg Thr Gln Gly Gly Lys Ser Gln Lys 290 295 300	
	(252) INFORMATION FOR SEQ ID NO:251:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:251:	
	CTCAAGCTTA CTCTCTCA CCAGTGGCCA C	31
	(253) INFORMATION FOR SEQ ID NO:252:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:252:	
	CCCTCCTCCC CCGGAGGACC TAGC	24
	(254) INFORMATION FOR SEQ ID NO:253:	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1041 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:253:	
30	ATGGATACAG GCCCCGACCA GTCCTACTTC TCCGGCAATC ACTGGTTCGT CTTCT	rcggtg 60
	TACCTTCTCA CTTTCCTGGT GGGGCTCCCC CTCAACCTGC TGGCCCTGGT GGTCT	TTCGTG 120
	GGCAAGCTGC AGCGCCGCCC GGTGGCCGTG GACGTGCTCC TGCTCAACCT GACCG	GCCTCG 180
	GACCTGCTCC TGCTGCTGTT CCTGCCTTTC CGCATGGTGG AGGCAGCCAA TGGCA	ATGCAC 240
	TGGCCCTGC CCTTCATCCT CTGCCCACTC TCTGGATTCA TCTTCTTCAC CACCA	ATCTAT 300

	CTCACCGCCC TCTTCCTGGC AGCTGTGAGC ATTGAACGCT TCCTGAGTGT GGCCCACCCA 36	0
	CTGTGGTACA AGACCCGGCC GAGGCTGGGG CAGGCAGGTC TGGTGAGTGT GGCCTGCTGG 420	0
	CTGTTGGCCT CTGCTCACTG CAGCGTGGTC TACGTCATAG AATTCTCAGG GGACATCTCC 480	0
	CACAGCCAGG GCACCAATGG GACCTGCTAC CTGGAGTTCC GGAAGGACCA GCTAGCCATC 540	Э
5	CTCCTGCCCG TGCGGCTGGA GATGGCTGTG GTCCTCTTTG TGGTCCCGCT GATCATCACC 600)
	AGCTACTGCT ACAGCCGCCT GGTGTGGATC CTCGGCAGAG GGGGCAGCCA CCGCCGGCAG 660)
	AGGAGGTGG CGGGGCTGTT GGCGGCCACG CTGCTCAACT TCCTTGTCTG CTTTGGGCCC 720)
	TACAACGTGT CCCATGTCGT GGGCTATATC TGCGGTGAAA GCCCGGCATG GAGGATCTAC 780)
	GTGACGCTTC TCAGCACCCT GAACTCCTGT GTCGACCCCT TTGTCTACTA CTTCTCCTCC 840)
10	TCCGGGTTCC AAGCCGACTT TCATGAGCTG CTGAGGAGGT TGTGTGGGCC CTGGGGCCAG 900)
	TGGCAGCAGG AGAGCAGCAT GGAGCTGAAG GAGCAGAAGG GAGGGGAGGA GCAGAGAGCG 960)
	GACCGACCAG CTGAAAGAAA GACCAGTGAA CACTCACAGG GCTGTGGAAC TGGTGGCCAG 1020)
	GTGGCCTGTG CTGAAAGCTA G	-
	(255) INFORMATION FOR SEQ ID NO:254:	
15	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 346 amino acids(B) TYPE: amino acid(C) STRANDEDNESS:(D) TOPOLOGY: not relevant	
20	(ii) MOLECULE TYPE: protein	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:254:	
	Met Asp Thr Gly Pro Asp Gln Ser Tyr Phe Ser Gly Asn His Trp Phe 1 5 10 15	
25	Val Phe Ser Val Tyr Leu Leu Thr Phe Leu Val Gly Leu Pro Leu Asn 20 25 30	
	Leu Leu Ala Leu Val Val Phe Val Gly Lys Leu Gln Arg Arg Pro Val 35 40 45	
	Ala Val Asp Val Leu Leu Leu Asn Leu Thr Ala Ser Asp Leu Leu Leu 50 55 60	
30	Leu Leu Phe Leu Pro Phe Arg Met Val Glu Ala Ala Asn Gly Met His 65 70 75 80	
	Trp Pro Leu Pro Phe Ile Leu Cys Pro Leu Ser Gly Phe Ile Phe Phe	

211

		Thr	Thr	Ile	Tyr 100	Leu	Thr	Ala	Leu	Phe	Leu	Ala	Ala	Val	Ser 110	Ile	Glu
		Arg	Phe	Leu 115	Ser	Val	Ala	His	Pro 120	Leu	Trp	туr	Lys	Thr 125	Arg	Pro	Arg
5	:	Leu	Gly 130	Gln	Ala	Gly	Leu	Val 135	Ser	Val	Ala	Cys	Trp 140	Leu	Leu	Ala	Ser
		Ala 145	His	Cys	Ser	Val	Val 150	Tyr	Val	Ile	Glu	Phe 155	Ser	Gly	Asp	Ile	Ser 160
10	:	His	Ser	Gln	Gly	Thr 165	Asn	Gly	Thr	Cys	Туг 170	Leu	Glu	Phe	Arg	Lys 175	Asp
	(Gln	Leu	Ala	Ile 180	Leu	Leu	Pro	Val	Arg 185	Leu	Glu	Met	Ala	Val 190	Val	Leu
		Phe	Val	Val 195	Pro	Leu	Ile	Ile	Thr 200	Ser	Tyr	Cys	Tyr	Ser 205	Arg	Leu	Val
15	•	Trp	Ile 210	Leu	Gly	Arg	Gly	Gly 215	Ser	His	Arg	Arg	Gln 220	Arg	Arg	Val	Ala
		Gly 225	Leu	Leu	Ala	Ala	Thr ["] 230	Leu	Leu	Asn	Phe	Leu 235	Val	Cys	Phe	Gly	Pro 240
20	•	Tyr	Asn	Val	Ser	His 245	Val	Val	Gly	Tyr	11e 250	Cys	Gly	Glu	Ser	Pro 255	Ala
	•	Trp	Arg	Ile	Tyr 260	Val	Thr	Leu	Leu	Ser 265	Thr	Leu	Asn	Ser	Cys 270	Val	Asp
	:	Pro	Phe	Val 275	Tyr	Tyr	Phe	Ser	Ser 280	Ser	Gly	Phe	Gln	Ala 285	Asp	Phe	His
25	(Glu	Leu 290	Leu	Arg	Arg	Leu	Cys 295	Gly	Leu	Trp	Gly	Gln 300	Trp	Gln	Gln	Glu
		Ser 305	Ser	Met	Glu	Leu	Lys 310	Glu	Gln	Lys	Gly	Gly 315	Glu	Glu	Gln	Arg	Ala 320
30	1	Asp	Arg	Pro	Ala	Glu 325	Arg	Lys	Thr	Ser	Glu 330	His	Ser	Gln	Gly	Cys 335	Gly
	•	Thṛ	Gly	Gly	Gln 340	Val	Ala	Cys	Ala	Glu 345	Ser						
	(256)	INF	FORMA	ATION	FOF	SEÇ) ID	NO:2	255:								

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 31 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

	(11) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:255:	
	TTTAAGCTTC CCCTCCAGGA TGCTGCCGGA C	31
	(257) INFORMATION FOR SEQ ID NO:256:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: not relevant 	
10	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:256:	
	GGCGAATTCT GAAGGTCCAG GGAAACTGCT A	31
	(258) INFORMATION FOR SEQ ID NO:257:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 993 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:257:	
	ATGCTGCCGG ACTGGAAGAG CTCCTTGATC CTCATGGCTT ACATCATCAT CTTCCTCACT	60
	GGCCTCCCTG CCAACCTCCT GGCCCTGCGG GCCTTTGTGG GGCGGATCCG CCAGCCCCAG	120
	CCTGCACCTG TGCACATCCT CCTGCTGAGC CTGACGCTGG CCGACCTCCT CCTGCTGCTG	180
	CTGCTGCCCT TCAAGATCAT CGAGGCTGCG TCGAACTTCC GCTGGTACCT GCCCAAGGTC	240
25	GTCTGCGCCC TCACGAGTTT TGGCTTCTAC AGCAGCATCT ACTGCAGCAC GTGGCTCCTG	300
	GCGGGCATCA GCATCGAGCG CTACCTGGGA GTGGCTTTCC CCGTGCAGTA CAAGCTCTCC	360
	CGCCGGCCTC TGTATGGAGT GATTGCAGCT CTGGTGGCCT GGGTTATGTC CTTTGGTCAC	420
	GCACCATCG TGATCATCGT TCAATACTTG AACACGACTG AGCAGGTCAG AAGTGGCAAT	480
	GAAATTACCT GCTACGAGAA CTTCACCGAT AACCAGTTGG ACGTGGTGCT GCCCGTGCGG	540
30	TTGGAGCTGT GCCTGGTGCT CTTCTTCATC CCCATGGCAG TCACCATCTT CTGCTACTGG	600
	CGTTTTGTGT GGATCATGCT CTCCCAGCCC CTTGTGGGGG CCCAGAGGCG GCGCCGAGCC	660
	TGGGGCTGG CTGTGGTGAC GCTGCTCAAT TTCCTGGTGT GCTTCGGACC TTACAACGTG	720

.

	TCCCACCTGG TGGG	GTATCA CCAGA	AGAAAA AGC	CCCTGGT GGC	GGTCAAT A	GCCGTGGT	780
	TTCAGTTCAC TCAA	CGCCAG TCTGG	SACCCC CTG	CTCTTCT ATT	TCTCTTC T	TCAGTGGT	840
	CGCAGGGCAT TTGG	GAGAGG GCTGC	CAGGTG CTG	CGGAATC AGG	GCTCCTC C	CTGTTGGG	900
	CGCAGAGGCA AAGA	CACAGC AGAGG	GGACA AAT	GAGGACA GGG	GTGTGGG T	CAAGGAGA	960
5	GGGATGCCAA GTTC	GGACTT CACTA	ACAGAG TAG				993
	(259) INFORMATI	ON FOR SEQ I	D NO:258:				
10	(A) L (B) T (C) S (D) T	NCE CHARACTE ENGTH: 362 a YPE: amino a TRANDEDNESS: OPOLOGY: not	mino acid cid relevant	s			
		CULE TYPE: p		TD WO 050			
		ENCE DESCRIP				m ~1	
15	Met Leu Pr 1	o Asp Trp Ly 5	s ser ser	10	u Met Ala	15 15	lle
	Ile Phe Le	u Thr Gly Le 20	eu Pro Ala	Asn Leu Le 25	u Ala Leu	Arg Ala 30	Phe
	Val Gly Ar 35	g Ile Arg Gl	n Pro Gln 40	Pro Ala Pr	o Val His 45	Ile Leu	Leu
20	Leu Ser Le 50	u Thr Leu Al	a Asp Leu 55	Leu Leu Le	u Leu Leu 60	Leu Pro	Phe
	Lys Ile Il 65	e Glu Ala Al 70		Phe Arg Tr 75	- -	Pro Lys	Val 80
25	Val Cys Al	a Leu Thr Se 85	er Phe Gly	Phe Tyr Se 90	r Ser Ile	Tyr Cys 95	Ser
	Thr Trp Le	u Leu Ala Gl 100	y Ile Ser	Ile Glu Ar 105	g Tyr Leu	Gly Val 110	Ala
	Phe Pro Va 11	l Gln Tyr Ly 5	s Leu Ser 120	Arg Arg Pr	o Leu Tyr 125	Gly Val	Ile
30	Ala Ala Le 130	u Val Ala Tr	rp Val Met 135	Ser Phe Gl	y His Cys 140	Thr Ile	Val
	Ile Ile Va 145	l Gln Tyr Le 15		Thr Glu Gl	_	Ser Gly	Asn 160
35	Glu Ile Th	r Cys Tyr Gl 165	u Asn Phe	Thr Asp As	n Gln Leu	Asp Val	Val

		Leu	Pro	Val	Arg 180	Leu	Glu	Leu	Cys	Leu 185	Val	Leu	Phe	Phe	Ile 190	Pro	Met	
		Ala	Val	Thr 195	Ile	Phe	Cys	Tyr	Trp 200	Arg	Phe	Val	Trp	Ile 205	Met	Leu	Ser	
5		Gln	Pro 210	Leu	Val	Gly	Ala	Gln 215	Arg	Arg	Arg	Arg	Ala 220	Val	Gly	Leu	Ala	
		Val 225	Val	Thr	Leu	Leu	Asn 230	Phe	Leu	Val	Cys	Phe 235	Gly	Pro	Tyr	Asn	Val 240	
10		Ser	His	Leu	Val	Gly 245	Tyr	His	Gln	Arg	Lys 250	Ser	Pro	Trp	Trp	Arg 255	Ser	
		Ile	Ala	Val	Val 260	Phe	Ser	Ser	Leu	Asn 265	Ala	Ser	Leu	Asp	Pro 270	Leu	Leu	
		Phe	Tyr	Phe 275	Ser	Ser	Ser	Val	Val 280	Arg	Arg	Ala	Phe	Gly 285	Arg	Gly	Leu	
15		Gln	Val 290	Leu	Arg	Asn	Gln	Gly 295	Ser	Ser	Leu	Leu	Gly 300	Arg	Arg	Gly	Lys	
		Asp 305	Thr	Ala	Glu	Gly	Thr 310	Asn	Glu	Asp	Arg	Gly 315	Val	Gly	Gln	Gly	Glu 320	
20		Gly	Met	Pro	Ser	Ser 325	Asp	Phe	Thr	Thr	Glu 330							
	(260)	INF	ORMA	TION	FOR	SEQ	ID	NO:2	59:									
25		(i)	(A) (B) (C)	LEN TYP STR	GTH: E: n ANDE	ARAC 30 ucle DNES Y: 1	base ic a S: s	pai cid ingl	rs									
		(ii) MO	LECU	LE T	YPE:	DNA	(ge	nomi	c)								
		(xi) SE	QUEN	CE D	ESCR	IPTI	ON:	SEQ	ID N	0:25	9:						
	CCCAA	GCTT	C GG	GCAC	CATG	GAC	ACCT	CCC										30
30	(261)	INF	ORMA'	TION	FOR	SEQ	ID :	NO:2	60:									
35		(i)	(A) (B) (C)	LENO TYPI STR	GTH: E: n: ANDE	ARAC' 30 l ucle: DNES: Y: l:	base ic a S: s:	pai: cid ingle	rs									
		(ii)) MOI	LECUI	LE T	YPE:	DNA	(gei	nomi	=)								
		(xi)) SE(QUEN	CE D	ESCR	IPTIO	ои: 8	SEQ I	ID NO	0:26	0:						

	ACAGGATCCA AATGCACAGC ACTGGTAAGC	30
	(262) INFORMATION FOR SEQ ID NO:261:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:261:	
10	CTATAACTGG GTTACATGGT TTAAC	25
	(263) INFORMATION FOR SEQ ID NO:262:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:262:	
	TTTGAATTCA CATATTAATT AGAGACATGG	30
20	(264) INFORMATION FOR SEQ ID NO:263:	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2724 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:263:	
	ATGGACACCT CCCGGCTCGG TGTGCTCCTG TCCTTGCCTG TGCTGCTGCA GCTGGCGACC	60
	GGGGGCAGCT CTCCCAGGTC TGGTGTGTTG CTGAGGGGCT GCCCCACACA CTGTCATTGC	120
30	GAGCCCGACG GCAGGATGTT GCTCAGGGTG GACTGCTCCG ACCTGGGGCT CTCGGAGCTG	180
	CCTTCCAACC TCAGCGTCTT CACCTCCTAC CTAGACCTCA GTATGAACAA CATCAGTCAG	240
	CTGCTCCCGA ATCCCCTGCC CAGTCTCCGC TTCCTGGAGG AGTTACGTCT TGCGGGAAAC	300
	GCTCTGACAT ACATTCCCAA GGGAGCATTC ACTGGCCTTT ACAGTCTTAA AGTTCTTATG	360

	CTGCAGAATA	ATCAGCTAAG	ACACGTACCC	CACAGAAGCTO	TGCAGAATT	I GCGAAGCCTT	420
	CAATCCCTGC	GTCTGGATGC	TAACCACATO	CAGCTATGTGC	CCCCAAGCT	G TTTCAGTGGC	480
	CTGCATTCCC	TGAGGCACCT	GTGGCTGGAT	GACAATGCG1	TAACAGAAA	r ccccgtccag	540
	GCTTTTAGAA	GTTTATCGGC	ATTGCAAGCC	ATGACCTTGG	CCCTGAACA	A AATACACCAC	600
5	ATACCAGACT	ATGCCTTTGG	AAACCTCTCC	AGCTTGGTAG	TTCTACATC	CCATAACAAT	660
	AGAATCCACT	CCCTGGGAAA	GAAATGCTTT	GATGGGCTCC	ACAGCCTAGA	GACTTTAGAT	720
	TTAAATTACA	ATAACCTTGA	TGAATTCCCC	ACTGCAATTA	GGACACTCTC	CAACCTTAAA	780
	GAACTAGGAT	TTCATAGCAA	CAATATCAGG	TCGATACCTG	AGAAAGCATT	TGTAGGCAAC	840
	CCTTCTCTTA	TTACAATACA	TTTCTATGAC	AATCCCATCC	AATTTGTTGG	GAGATCTGCT	900
10	TTTCAACATT	TÁCCTGAACT	AAGAACACTG	ACTCTGAATG	GTGCCTCACA	AATAACTGAA	960
	TTTCCTGATT	TAACTGGAAC	TGCAAACCTG	GAGAGTCTGA	CTTTAACTGG	AGCACAGATC	1020
	TCATCTCTTC	CTCAAACCGT	CTGCAATCAG	TTACCTAATC	TCCAAGTGCT	AGATCTGTCT	1080
	TACAACCTAT	TAGAAGATTT	ACCCAGTTTT	TCAGTCTGCC	AAAAGCTTCA	GAAAATTGAC	1140
	CTAAGACATA	ATGAAATCTA	CGAAATTAAA	GTTGACACTT	TCCAGCAGTT	GCTTAGCCTC	1200
15	CGATCGCTGA	ATTTGGCTTG	GAACAAAATT	GCTATTATTC	ACCCCAATGC	ATTTTCCACT	1260
	TTGCCATCCC	TAATAAAGCT	GGACCTATCG	TCCAACCTCC	TGTCGTCTTT	TCCTATAACT	1320
	GGGTTACATG	GTTTAACTCA	СТТААААТТА	ACAGGAAATC	ATGCCTTACA	GAGCTTGATA	1380
	TCATCTGAAA	ACTTTCCAGA	ACTCAAGGTT	ATAGAAATGC	CTTATGCTTA	CCAGTGCTGT	1440
	GCATTTGGAG	TGTGTGAGAA	TGCCTATAAG	ATTTCTAATC	AATGGAATAA	AGGTGACAAC	1500
20	AGCAGTATGG	ACGACCTTCA	TAAGAAAGAT	GCTGGAATGT	TTCAGGCTCA	AGATGAACGT	1560
	GACCTTGAAG	ATTTCCTGCT	TGACTTTGAG	GAAGACCTGA	AAGCCCTTCA	TTCAGTGCAG	1620
	TGTTCACCTT	CCCCAGGCCC	CTTCAAACCC	TGTGAACACC	TGCTTGATGG	CTGGCTGATC	1680
	AGAATTGGAG	TGTGGACCAT	AGCAGTTCTG	GCACTTACTT	GTAATGCTTT	GGTGACTTCA	1740
	ACAGTTTTCA	GATCCCCTCT	GTACATTTCC	CCCATTAAAC	TGTTAATTGG	GGTCATCGCA	1800
25	GCAGTGAACA	TGCTCACGGG	AGTCTCCAGT	GCCGTGCTGG	CTGGTGTGGA	TGCGTTCACT	1860
	TTTGGCAGCT	TTGCACGACA	TGGTGCCTGG	TGGGAGAATG	GGGTTGGTTG	CCATGTCATT	1920
	GGTTTTTTGT	CCATTTTTGC	TTCAGAATCA	TCTGTTTTCC	TGCTTACTCT	GGCAGCCCTG	1980
	GAGCGTGGGT	TCTCTGTGAA .	ATATTCTGCA	AAATTTGAAA	CGAAAGCTCC	ATTTTCTAGC	2040

217

	CTGAAAGTAA	TCATTTTGCT	CTGTGCCCTG	CTGGCCTTGA	CCATGGCCGC	AGTTCCCCTG	2100
	CTGGGTGGCA	GCAAGTATGG	CGCCTCCCCT	CTCTGCCTGC	CTTTGCCTTT	TGGGGAGCCC	2160
	AGCACCATGG	GCTACATGGT	CGCTCTCATC	TTGCTCAATT	CCCTTTGCTT	CCTCATGATG	2220
	ACCATTGCCT	ACACCAAGCT	CTACTGCAAT	TTGGACAAGG	GAGACCTGGA	GAATATTTGG	2280
5	GACTGCTCTA	TGGTAAAACA	CATTGCCCTG	TTGCTCTTCA	CCAACTGCAT	CCTAAACTGC	2340
	CCTGTGGCTT	TCTTGTCCTT	CTCCTCTTTA	ATAAACCTTA	CATTTATCAG	TCCTGAAGTA	2400
	ATTAAGTTTA	TCCTTCTGGT	GGTAGTCCCA	CTTCCTGCAT	GTCTCAATCC	CCTTCTCTAC	2460
	ATCTTGTTCA	ATCCTCACTT	TAAGGAGGAT	CTGGTGAGCC	TGAGAAAGCA	AACCTACGTC	2520
	TGGACAAGAT	CAAAACACCC	AAGCTTGATG	TCAATTAACT	CTGATGATGT	CGAAAAACAG	2580
10	TCCTGTGACT	CAACTCAAGC	CTTGGTAACC	TTTACCAGCT	CCAGCATCAC	TTATGACCTG	2640
	CCTCCCAGTT	CCGTGCCATC	ACCAGCTTAT	CCAGTGACTG	AGAGCTGCCA	TCTTTCCTCT	2700
	GTGGCATTTG	TCCCATGTCT	CTAA				2724

(265) INFORMATION FOR SEQ ID NO:264:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 907 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: not relevant
 - (ii) MOLECULE TYPE: protein
- 20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:264:

Met Asp Thr Ser Arg Leu Gly Val Leu Leu Ser Leu Pro Val Leu Leu 1 5 10 15

Gln Leu Ala Thr Gly Gly Ser Ser Pro Arg Ser Gly Val Leu Leu Arg 20 25 30

25 Gly Cys Pro Thr His Cys His Cys Glu Pro Asp Gly Arg Met Leu Leu 35 40 45

Arg Val Asp Cys Ser Asp Leu Gly Leu Ser Glu Leu Pro Ser Asn Leu 50 55 60

Ser Val Phe Thr Ser Tyr Leu Asp Leu Ser Met Asn Asn Ile Ser Gln 65 70 75 80

Leu Leu Pro Asn Pro Leu Pro Ser Leu Arg Phe Leu Glu Glu Leu Arg 85 90 95

Leu Ala Gly Asn Ala Leu Thr Tyr Ile Pro Lys Gly Ala Phe Thr Gly

				100)				109	5				110)	
	Leu	Tyr	Ser 115	Let	ı Lys	val	l Leu	120		ı Glr	n Asn	Asr	1 Gln		ı Arg	J His
5	Val	Prc 130	Thr	Glu	Ala	Let	135		ı Lev	ı Arç	, Ser	Leu 140		Ser	Leu	Arg
	Leu 145	. Asp	Ala	Asn	His	11e	e Ser	Туг	Val	. Pro	Pro 155		. Cys	Phe	e Ser	Gly 160
	Leu	His	Ser	Leu	Arg 165	His	Leu	Trp	Leu	170		Asn	Ala	Leu	Thr 175	Glu
10	Ile	Pro	Val	Gln 180	Ala	Phe	Arg	Ser	Leu 185		Ala	Leu	Gln	Ala 190		Thr
	Leu	Ala	Leu 195	Asn	Lys	Ile	His	His 200		Pro	Asp	Tyr	Ala 205	Phe	Gly	Asn
15	Leu	Ser 210	Ser	Leu	Val	Val	Leu 215	His	Leu	His	Asn	Asn 220	Arg	Ile	His	Ser
	Leu 225	Gly	Lys	Lys	Cys	Phe 230	Asp	Gly	Leu	His	Ser 235	Leu	Glu	Thr	Leu	Asp 240
	Leu	Asn	Tyr	Asn	Asn 245	Leu	Asp	Glu	Phe	Pro 250	Thr	Ala	Ile	Arg	Thr 255	Leu
20	Ser	Asn	Leu	Lys 260	Glu	Leu	Gly	Phe	His 265	Ser	Asn	Asn	Ile	Arg 270	Ser	Ile
	Pro	Glu	Lys 275	Ala	Phe	Val	Gly	Asn 280	Pro	Ser	Leu	Ile	Thr 285	Ile	His	Phe
25	Tyr	Asp 290	Asn	Pro	Ile	Gln	Phe 295	Val	Gly	Arg	Ser	Ala 300	Phe	Gln	His	Leu
	Pro 305	Glu	Leu	Arg	Thr	Leu 310	Thr	Leu	Asn	Gly	Ala 315	Ser	Gln	Ile	Thr	Glu 320
	Phe	Pro	Asp	Leu	Thr 325	Gly	Thr	Ala	Asn	Leu 330	Glu	Ser	Leu	Thr	Leu 335	Thr
30	Gly	Ala	Gln	Ile 340	Ser	Ser	Leu	Pro	Gln 345	Thr	Val	Cys	Asn	Gln 350	Leu	Pro
	Asn	Leu	Gln 355	Val	Leu	Asp	Leu	Ser 360	Tyr	Asn	Leu	Leu	Glu 365	Asp	Leu	Pro
35	Ser	Phe 370	Ser	Val	Cys	Gln	Lys 375	Leu	Gln	Lys		Asp 380	Leu	Arg	His	Asn
	Glu 385	Ile	Tyr	Glu	Ile	Lys 390	Val	Asp	Thr	Phe	Gln 395	Gln	Leu	Leu	Ser	Leu

	Arg	Ser	Leu	Asn	Leu 405		Trp	Asn	Lys	Ile 410		Ile	: Ile	His	Pro 415	Asn
	Ala	Phe	Ser	Thr 420		Pro	Ser	Leu	Ile 425		Leu	Asp	Leu	Ser 430		Asn
5	Leu	Leu	Ser 435	Ser	Phe	Pro	Ile	Thr 440		Leu	His	Gly	Leu 445	Thr	His	Leu
	Lys	Leu 450	Thr	Gly	Asn	His	Ala 455		Gln	Ser	Leu	Ile 460		Ser	Glu	Asn
10	Phe 465	Pro	Glu	Leu	Lys	Val 470		Glu	Met	Pro	Tyr 475	Ala	Tyr	Gln	Cys	Cys 480
	Ala	Phe	Gly	Val	Cys 485	Glu	Asn	Ala	Tyr	Lys 490	Ile	Ser	Asn	Gln	Trp 495	Asn
	Lys	Gly	Asp	Asn 500	Ser	Ser	Met	Asp	Asp 505	Leu	His	Lys	Lys	Asp 510	Ala	Gly
15	Met	Phe	Gln 515	Ala	Gln	Asp	Glu	Arg 520	Asp	Leu	Glu	Asp	Phe 525	Leu	Leu	Asp
	Phe	Glu 530	Glu	Asp	Leu	Lys	Ala 535	Leu	His	Ser	Val	Gln 540	Cys	Ser	Pro	Ser
20	Pro 545	Gly	Pro	Phe	Lys	Pro 550	Cys	Glu	His	Leu	Leu 555	Asp	Gly	Trp	Leu	Ile 560
	Arg	Ile	Gly	Val	Trp 565	Thr	Ile	Ala	Val	Leu 570	Ala	Leu	Thr	Cys	Asn 575	Ala
	Leu	Val	Thr	Ser 580	Thr	Val	Phe	Arg	Ser 585	Pro	Leu	Tyr	Ile	Ser 590	Pro	Ile
25	Lys	Leu	Leu 595	Ile	Gly	Val	Ile	Ala 600	Ala	Val	Asn	Met	Leu 605	Thr	Gly	Val
	Ser	Ser 610	Ala	Val	Leu	Ala	Gly 615	Val	Asp	Ala	Phe	Thr 620	Phe	Gly	Ser	Phe
30	Ala 625	Arg	His	Gly	Ala	Trp 630	Trp	Glu	Asn	Gly	Val 635	Gly	Cys	His	Val	Ile 640
	Gly	Phe	Leu	Ser	Ile 645	Phe	Ala	Ser	Glu	Ser 650	Ser	Val	Phe	Leu	Leu 655	Thr
	Leu	Ala	Ala	Leu 660	Glu	Arg	Gly	Phe	Ser 665	Val	Lys	Tyr	Ser	Ala 670	Lys	Phe
35	Glu	Thr	Lys 675	Ala	Pro	Phe	Ser	Ser 680	Leu	Lys	Val	Ile	Ile 685	Leu	Leu	Cys
	Ala	Leu	Leu	Ala	Leu	Thr	Met	Ala	Ala	Val	Pro	Leu	Len	Glv	Glv	Sar

220

		690					695					700				
	Lys 705		Gly	Ala	Ser	Pro 710		Cys	Leu	Pro	Leu 715	Pro	Phe	Gly	Glu	Pro 720
5	Ser	Thr	Met	Gly	Tyr 725	Met	Val	Ala	Leu	Ile 730	Leu	Leu	Asn	Ser	Leu 735	Cys
	Phe	Leu	Met	Met 740	Thr	Ile	Ala	Tyr	Thr 745	Lys	Leu	Tyr	Cys	Asn 750	Leu	Asp
	Lys	Gly	Asp 755	Leu	Glu	Asn	Ile	Trp 760	Asp	Cys	Ser	Met	Val 765	Lys	His	Ile
10	Ala	Leu 770	Leu	Leu	Phe	Thr	Asn 775	Cys	Ile	Leu	Asn	Cys 780	Pro	Val	Ala	Phe
	Leu 785	Ser	Phe	Ser	Ser	Leu 790	Ile	Asn	Leu	Thr	Phe 795	Ile	Ser	Pro	Glu	Val 800
15	Ile	Lys	Phe	Ile	Leu 805	Leu	Val	Val	Val	Pro 810	Leu	Pro	Ala	Cys	Leu 815	Asn
	Pro	Leu	Leu	Tyr 820	Ile	Leu	Phe	Asn	Pro 825	His	Phe	Lys	Glu	Asp 830	Leu	Val
	Ser	Leu	Arg 835	Lys	Gln	Thr	Tyr	Val 840	Trp	Thr	Arg	Ser	Lys 845	His	Pro	Ser
20	Leu	Met 850	Ser	Ile	Asn	Ser	Asp 855	Asp	Val	Glu	Lys	Gln 860	Ser	Cys	Asp	Ser
	Thr 865	Gln	Ala	Leu	Val	Thr 870	Phe	Thr	Ser	Ser	Ser 875	Ile	Thr	Tyr	Asp	Leu 880
25	Pro	Pro	Ser	Ser	Val 885	Pro	Ser	Pro	Ala	Tyr 890	Pro	Val	Thr	Glu	Ser 895	Cys
	His	Leu	Ser	Ser 900	Val	Ala	Phe	Val	Pro 905	Cys	Leu					
	(266) INF	FORMA	MOIT	FOR	SEÇ) ID	NO:2	65:								
30	(i)	SEQ			IARAC 30											
50		(B)	TYP	E: n	ucle	ic a	cid									
					DNES Y: 1		_	e								
	(ii	.) M O	LECU	LE I	YPE:	DNA	(ge	nomi	c)							
35	(xi	.) SE	QUEN	CE D	ESCR	IPTI	ON:	SEQ	ID N	0:26	5:					
	CGGAAGCTG	C GG	GCCA	AATG	GGT	GGCC	GGC									

	(267) INFORMATION FOR SEQ ID NO:266:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic) (xi) SEQUENCE DESCRIPTION: SEQ ID NO:266:	
	CAGAGGAGGG TGAAGGGGCT GTTGGCG	27
10	(268) INFORMATION FOR SEQ ID NO:267:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:267:	
	GGCGGCGCG AGCCAAGGGG CTGGCTGTGG	30
	(269) INFORMATION FOR SEQ ID NO:268:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
25	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:268:	
	GGGACTGCTC TATGAAAAAA CACATTGCCC TG	32
	(270) INFORMATION FOR SEQ ID NO:269:	
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1071 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:269:	
	ATGAATGGGG TCTCGGAGGG GACCAGAGGC TGCAGTGACA GGCAACCTGG GGTCCTG	7C7 C0

	CGTGATCGCT	CTTGTTCCAG	GAAGATGAAC	TCTTCCGGAT	GCCTGTCTGA	GGAGGTGGGG	120
	TCCCTCCGCC	CACTGACTGT	GGTTATCCTG	TCTGCGTCCA	TTGTCGTCGG	AGTGCTGGGC	180
	AATGGGCTGG	TGCTGTGGAT	GACTGTCTTC	CGTATGGCAC	GCACGGTCTC	CACCGTCTGC	240
	TTCTTCCACC	TGGCCCTTGC	CGATTTCATG	CTCTCACTGT	CTCTGCCCAT	TGCCATGTAC	300
5	TATATTGTCT	CCAGGCAGTG	GCTCCTCGGA	GAGTGGGCCT	GCAAACTCTA	CATCACCTTT	360
	GTGTTCCTCA	GCTACTTTGC	CAGTAACTGC	CTCCTTGTCT	TCATCTCTGT	GGACCGTTGC	420
	ATCTCTGTCC	TCTACCCCGT	CTGGGCCCTG	AACCACCGCA	CTGTGCAGCG	GGCGAGCTGG	480
	CTGGCCTTTG	GGGTGTGGCT	CCTGGCCGCC	GCCTTGTGCT	CTGCGCACCT	GAAATTCCGG	540
	ACAACCAGAA	AATGGAATGG	CTGTACGCAC	TGCTACTTGG	CGTTCAACTC	TGACAATGAG	600
10	ACTGCCCAGA	TTTGGATTGA	AGGGGTCGTG	GAGGGACACA	TTATAGGGAC	CATTGGCCAC	660
	TTCCTGCTGG	GCTTCCTGGG	GCCCTTAGCA	ATCATAGGCA	CCTGCGCCCA	CCTCATCCGG	720
	GCCAAGCTCT	TGCGGGAGGG	CTGGGTCCAT	GCCAACCGGC	CCAAGAGGCT	GCTGCTGGTG	780
	CTGGTGAGCG	CTTTCTTTAT	CTTCTGGTCC	CCGTTTAACG	TGGTGCTGTT	GGTCCATCTG	840
	TGGCGACGGG	TGATGCTCAA	GGAAATCTAC	CACCCCGGA	TGCTGCTCAT	CCTCCAGGCT	900
15	AGCTTTGCCT	TGGGCTGTGT	CAACAGCAGC	CTCAACCCCT	TCCTCTACGT	CTTCGTTGGC	960
	AGAGATTTCC	AAGAAAAGTT	TTTCCAGTCT	TTGACTTCTG	CCCTGGCGAG	GGCGTTTGGA	1020
	GAGGAGGAGT	TTCTGTCATC	CTGTCCCCGT	GGCAACGCCC	CCCGGGAATG	А	1071
	(271) INFOR	MATION FOR	SEQ ID NO:2	?70 :			

(i) SEQUENCE CHARACTERISTICS: 20

(A) LENGTH: 356 amino acids

(B) TYPE: amino acid

- (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein
- 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:270:

Met Asn Gly Val Ser Glu Gly Thr Arg Gly Cys Ser Asp Arg Gln Pro 1 15

Gly Val Leu Thr Arg Asp Arg Ser Cys Ser Arg Lys Met Asn Ser Ser

30 Gly Cys Leu Ser Glu Glu Val Gly Ser Leu Arg Pro Leu Thr Val Val 40

	Ile	Leu 50	Ser	Ala	Ser	Ile	Val 55	Val	Gly	Val	Leu	Gly 60	Asn	Gly	Leu	Val
	Leu 65	Trp	Met	Thr	Val	Phe 70	Arg	Met	Ala	Arg	Thr 75	Val	Ser	Thr	Val	Cys 80
5	Phe	Phe	His	Leu	Ala 85	Leu	Ala	Asp	Phe	Met 90	Leu	Ser	Leu	Ser	Leu 95	Pro
	Ile	Ala	Met	Tyr 100	Tyr	Ile	Val	Ser	Arg 105	Gln	Trp	Leu	Leu	Gly 110	Glu	Trp
10	Ala	Cys	Lys 115	Leu	Tyr	Ile	Thr	Phe 120	Val	Phe	Leu	Ser	Tyr 125	Phe	Ala	Ser
	Asn	Cys 130	Leu	Leu	Val	Phe	Ile 135	Ser	Val	Asp	Arg	Cys 140	Ile	Ser	Val	Leu
	Tyr 145	Pro	Val	Trp	Ala	Leu 150	Asn	His	Arg	Thr	Val 155	Gln	Arg	Ala	Ser	Trp 160
15	Leu	Ala	Phe	Gly	Val 165	Trp	Leu	Leu	Ala	Ala 170	Ala	Leu	Cys	Ser	Ala 175	His
	Leu	Lys	Phe	Arg 180	Thr	Thr	Arg	Lys	Trp 185	Asn	Gly	Cys	Thr	His 190	Cys	Tyr
20	Leu	Ala	Phe 195	Asn	Ser	Asp	Asn	Glu 200	Thr	Ala	Gln	Ile	Trp 205	Ile	Glu	Gly
	Val	Val 210	Glu	Gly	His	Ile	Ile 215	Gly	Thr	Ile	Gly	His 220	Phe	Leu	Leu	Gly
	Phe 225	Leu	Gly	Pro	Leu	Ala 230	Ile	Ile	Gly	Thr	Cys 235	Ala	His	Leu	Ile	Arg 240
25	Ala	Lys	Leu	Leu	Arg 245	Glu	Gly	Trp	Val	His 250	Ala	Asn	Arg	Pro	Lys 255	Arg
	Leu	Leu	Leu	Val 260	Leu	Val	Ser	Ala	Phe 265	Phe	Ile	Phe	Trp	Ser 270	Pro	Phe
30	Asn	Val	Val 275	Leu	Leu	Val	His	Leu 280	Trp	Arg	Arg	Val	Met 285	Leu	Lys	Glu
	Ile	Tyr 290	His	Pro	Arg	Met	Leu 295	Leu	Ile	Leu	Gln	Ala 300	Ser	Phe	Ala	Leu
	Gly 305	Cys	Val	Asn	Ser	Ser 310	Leu	Asn	Pro	Phe	Leu 315	Tyr	Val	Phe	Val	Gly 320
35	Arg	Asp	Phe	Gln	Glu 325	Lys	Phe	Phe	Gln	Ser 330	Leu	Thr	Ser	Ala	Leu 335	Ala
	λνα	λla	Dhe	Glv	Glu	Glu	Glu	Dhe	T.211	Ser	Ser	Cve	Pro	Dra	Glv	λen

224

340 345 350

Ala Pro Arg Glu 355

(272) INFORMATION FOR SEQ ID NO:271:

5 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 903 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

10

15

20

25

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:271:

ATGGACCTGC CCCCGCAGCT CTCCTTCGGC CTCTATGTGG CCGCCTTTGC GCTGGGCTTC 60 CCGCTCAACG TCCTGGCCAT CCGAGGCGCG ACGGCCCACG CCCGGCTCCG TCTCACCCCT 120 AGCCTGGTCT ACGCCCTGAA CCTGGGCTGC TCCGACCTGC TGCTGACAGT CTCTCTGCCC 180 CTGAAGGCGG TGGAGGCGCT AGCCTCCGGG GCCTGGCCTC TGCCGGCCTC GCTGTGCCCC 240 GTCTTCGCGG TGGCCCACTT CTTCCCACTC TATGCCGGCG GGGGCTTCCT GGCCGCCCTG 300 AGTGCAGGCC GCTACCTGGG AGCAGCCTTC CCCTTGGGCT ACCAAGCCTT CCGGAGGCCG 360 TGCTATTCCT GGGGGGTGTG CGCGGCCATC TGGGCCCTCG TCCTGTGTCA CCTGGGTCTG 420 GTCTTTGGGT TGGAGGCTCC AGGAGGCTGG CTGGACCACA GCAACACCTC CCTGGGCATC 480 AACACACCGG TCAACGGCTC TCCGGTCTGC CTGGAGGCCT GGGACCCGGC CTCTGCCGGC 540 CCGGCCCGCT TCAGCCTCTC TCTCCTGCTC TTTTTTCTGC CCTTGGCCAT CACAGCCTTC 600 TGCTACGTGG GCTGCCTCCG GGCACTGGCC CGCTCCGGCC TGACGCACAG GCGGAAGCTG 660 CGGGCCAAAT GGGTGGCCGG CGGGGCCCTC CTCACGCTGC TGCTCTGCGT AGGACCCTAC 720 AACGCCTCCA ACGTGGCCAG CTTCCTGTAC CCCAATCTAG GAGGCTCCTG GCGGAAGCTG 780 GGGCTCATCA CGGGTGCCTG GAGTGTGGTG CTTAATCCGC TGGTGACCGG TTACTTGGGA 840 AGGGGTCCTG GCCTGAAGAC AGTGTGTGCG GCAAGAACGC AAGGGGGCAA GTCCCAGAAG 900 TAA 903

(273) INFORMATION FOR SEQ ID NO:272:

30 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 300 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:

(D)	TOPOLOGY:	not	relevant
-----	-----------	-----	----------

- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:272:

5	Met 1	Asp	Leu	Pro	Pro 5	Gln	Leu	Ser	Phe	Gly 10	Leu	Tyr	Val	Ala	Ala 15	Phe
	Ala	Leu	Gly	Phe 20	Pro	Leu	Asn	Val	Leu 25	Ala	Ile	Arg	Gly	Ala 30	Thr	Ala
	His	Ala	Arg 35	Leu	Arg	Leu	Thr	Pro 40	Ser	Leu	Val	Tyr	Ala 45	Leu	Asn	Leu
10	Gly	Cys 50	Ser	Asp	Leu	Leu	Leu 55	Thr	Val	Ser	Leu	Pro 60	Leu	Lys	Ala	Val
	Glu 65	Ala	Leu	Ala	Ser	Gly 70	Ala	Trp	Pro	Leu	Pro 75	Ala	Ser	Leu	Cys	Pro 80
15	Val	Phe	Ala	Val	Ala 85	His	Phe	Phe	Pro	Leu 90	Tyr	Ala	Gly	Gly	Gly 95	Phe
	Leu	Ala	Ala	Leu 100	Ser	Ala	Gly	Arg	Tyr 105	Leu	Gly	Ala	Ala	Phe 110	Pro	Leu
	Gly	Tyr	Gln 115	Ala	Phe	Arg	Arg	Pro 120	Cys	Tyr	Ser	Trp	Gly 125	Val	Cys	Ala
20	Ala	Ile 130	Trp	Ala	Leu	Val	Leu 135	Cys	His	Leu	Gly	Leu 140	Val	Phe	Gly	Leu
	Glu 145	Ala	Pro	Gly	Gly	Trp 150	Leu	Asp	His	Ser	Asn 155	Thr	Ser	Leu	Gly	Ile 160
25	Asn	Thr	Pro	Val	Asn 165	Gly	Ser	Pro	Val	Cys 170	Leu	Glu	Ala	Trp	Asp 175	Pro
	Ala	Ser	Ala	Gly 180	Pro	Ala	Arg	Phe	Ser 185	Leu	Ser	Leu	Leu	Leu 190	Phe	Phe
	Leu	Pro	Leu 195	Ala	Ile	Thr	Ala	Phe 200	Cys	Tyr	Val	Gly	Cys 205	Leu	Arg	Ala
30	Leu	Ala 210	Arg	Ser	Gly	Leu	Thr 215	His	Arg	Arg	Lys	Leu 220	Arg	Ala	Lys	Trp
	Val 225	Ala	Gly	Gly	Ala	Leu 230	Leu	Thr	Leu	Leu	Leu 235	Cys	Val	Gly	Pro	Tyr 240
35	Asn	Ala	Ser	Asn	Val 245	Ala	Ser	Phe	Leu	Tyr 250	Pro	Asn	Leu	Gly	Gly 255	Ser
	Trp	Arg	Lys	Leu	Gly	Leu	Ile	Thr	Gly	Ala	Trp	Ser	Val	Val	Leu	Asn

WO 00/22129 PCT/US99/23938

226

260 265 270

Pro Leu Val Thr Gly Tyr Leu Gly Arg Gly Pro Gly Leu Lys Thr Val

Cvs Ala Ala Arg Thr Gln Gly Gly Lys Ser Gln Lys 5 290 295

(274) INFORMATION FOR SEQ ID NO:273:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1041 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:273:

ATGGATACAG GCCCCGACCA GTCCTACTTC TCCGGCAATC ACTGGTTCGT CTTCTCGGTG 60 15 TACCTTCTCA CTTTCCTGGT GGGGCTCCCC CTCAACCTGC TGGCCCTGGT GGTCTTCGTG 120 GGCAAGCTGC AGCGCCGCCC GGTGGCCGTG GACGTGCTCC TGCTCAACCT GACCGCCTCG 1.80 GACCTGCTCC TGCTGCTGTT CCTGCCTTTC CGCATGGTGG AGGCAGCCAA TGGCATGCAC 240 TGGCCCCTGC CCTTCATCCT CTGCCCACTC TCTGGATTCA TCTTCTTCAC CACCATCTAT 300 CTCACCGCCC TCTTCCTGGC AGCTGTGAGC ATTGAACGCT TCCTGAGTGT GGCCCACCCA 360 CTGTGGTACA AGACCCGGCC GAGGCTGGGG CAGGCAGGTC TGGTGAGTGT GGCCTGCTGG 20 420 CTGTTGGCCT CTGCTCACTG CAGCGTGGTC TACGTCATAG AATTCTCAGG GGACATCTCC 480 CACAGCCAGG GCACCAATGG GACCTGCTAC CTGGAGTTCC GGAAGGACCA GCTAGCCATC 540 CTCCTGCCCG TGCGGCTGGA GATGGCTGTG GTCCTCTTTG TGGTCCCGCT GATCATCACC 600 AGCTACTGCT ACAGCCGCCT GGTGTGGATC CTCGGCAGAG GGGGCAGCCA CCGCCGGCAG 660 25 AGGAGGGTGA AGGGGCTGTT GGCGGCCACG CTGCTCAACT TCCTTGTCTG CTTTGGGCCC 720 TACAACGTGT CCCATGTCGT GGGCTATATC TGCGGTGAAA GCCCGGCATG GAGGATCTAC 780 GTGACGCTTC TCAGCACCCT GAACTCCTGT GTCGACCCCT TTGTCTACTA CTTCTCCTCC 840 TCCGGGTTCC AAGCCGACTT TCATGAGCTG CTGAGGAGGT TGTGTGGGCC CTGGGGCCAG 900 TGGCAGCAGG AGAGCAGCAT GGAGCTGAAG GAGCAGAAGG GAGGGGAGGA GCAGAGAGCG 960 30 GACCGACCAG CTGAAAGAAA GACCAGTGAA CACTCACAGG GCTGTGGAAC TGGTGGCCAG 1020 GTGGCCTGTG CTGAAAGCTA G

1041

(275) INFORMATION FOR SEQ ID NO:274:

5		(A (B (C (D) LEI) TY:) STI) TO:	CE CINGTH PE: 6 RANDI POLOG	: 340 amino EDNE: GY: 1	6 am. o ac: SS: not:	ino a id rele	acid vant	S							
				NCE 1					ID I	NO:2	74:					
10				Gly								Gly	Asn	His	Trp 15	Phe
	Val	Phe	Ser	Val 20	Tyr	Leu	Leu	Thr	Phe 25	Leu	Val	Gly	Leu	Pro 30	Leu	Asn
	Leu	Leu	Ala 35	Leu	Val	Val	Phe	Val 40	Gly	Lys	Leu	Gln	Arg 45	Arg	Pro	Val
15	Ala	Val 50	Asp	Val	Leu	Leu	Leu 55	Asn	Leu	Thr	Ala	Ser 60	Asp	Leu	Leu	Leu
	Leu 65	Leu	Phe	Leu	Pro	Phe 70	Arg	Met	Val	Glu	Ala 75	Ala	Asn	Gly	Met	His 80
20	Trp	Pro	Leu	Pro	Phe 85	Ile	Leu	Cys	Pro	Leu 90	Ser	Gly	Phe	Ile	Phe 95	Phe
÷	Thr	Thr	Ile	Tyr 100	Leu	Thr	Ala	Leu	Phe 105	Leu	Ala	Ala	Val	Ser 110	Ile	Glu
	Arg	Phe	Leu 115	Ser	Val	Ala	His	Pro 120	Leu	Trp	Tyr	Lys	Thr 125	Arg	Pro	Arg
25	Leu	Gly 130	Gln	Ala	Gly	Leu	Val 135	Ser	Val	Ala	Cys	Trp 140	Leu	Leu	Ala	Ser
	Ala 145	His	Cys	Ser	Val	Val 150	Tyr	Val	Ile	Glu	Phe 155	Ser	Gly	Asp	Ile	Ser 160
30	His	Ser	Gln	Gly	Thr 165	Asn	Gly	Thr	Cys	Tyr 170	Leu	Glu	Phe	Arg	Lys 175	Asp
	Gln	Leu	Ala	Ile 180	Leu	Leu	Pro	Val	Arg 185	Leu	Glu	Met	Ala	Val 190	Val	Leu
	Phe	Val	Val 195	Pro	Leu	Ile	Ile	Thr 200	Ser	Tyr	Cys	Tyr	Ser 205	Arg	Leu	Val
35	Trp	Ile 210	Leu	Gly	Arg	Gly	Gly 215	Ser	His	Arg	Arg	Gln 220	Arg	Arg	Val	Lys
	Gly	Leu	Leu	Ala	Ala	Thr	Leu	Leu	Asn	Phe	Leu	Val	Cys	Phe	Gly	Pro

WO 00/22129 PCT/US99/23938

	Tyr	Asn	Val	Ser	His 245	Val	Val	Gly	Tyr	Ile 250	Cys	Gly	Glu	Ser	Pro 255	Ala	
5	Trp	Arg	Ile	Tyr 260	Val	Thr	Leu	Leu	Ser 265	Thr	Leu	Asn	Ser	Cys 270	Val	Asp	
	Pro	Phe	Val 275	Tyr	Tyr	Phe	Ser	Ser 280	Ser	Gly	Phe	Gln	Ala 285	Asp	Phe	His	
	Glu	Leu 290	Leu	Arg	Arg	Leu	Cys 295	Gly	Leu	Trp	Gly	Gln 300	Trp	Gln	Gln	Glu	
10	Ser 305	Ser	Met	Glu	Leu	Lys 310	Glu	Gln	Lys	Gly	Gly 315	Glu	Glu	Gln	Arg	Ala 320	
	Asp	Arg	Pro	Ala	Glu 325	Arg	Lys	Thr	Ser	Glu 330	His	Ser	Gln	Gly	Cys 335	Gly	
15	Thr	Gly	Gly	Gln 340	Val	Ala	Cys	Ala	Glu 345	Ser							
	(276) INE	FORM	OITA	1 FOF	SEÇ	O ID	NO:2	275:									
	(i)	SEÇ	-														
			LEI TYI				-	airs									
20			STI TOI				_	le									
	/ i i i	i.) MC						nomi	ر م								
		i) SE								TO . 25	7 E .						
												מא שמא	.m. 00	maan		,	60
25	ATGCTGCCC																60
23	GGCCTCCCT																.20
	CCTGCACCT																.80
	CTGCTGCC	CT TO	CAAGA	ATCAT	CGA	AGGCI	rgcg	TCGF	ACTI	CC C	CTGG	TACC	T GC	CCAA	GGTC	2	40
	GTCTGCGC	CC TC	CACGA	AGTTI	TGG	CTTC	CTAC	AGC	AGCAT	CT A	ACTGC	CAGCA	C GI	GGCT	CCT	3	00
	GCGGGCATC	CA GO	CATCO	AGC	CTA	ACCTO	GGA	GTGG	CTTI	CC C	CCGT	CAGI	A CA	AGCI	CTCC	3	60
30	CGCCGGCCT	rc To	TATO	GAGI	GA1	TGC	AGCT	CTGC	STGGC	CT C	GGTI	`ATGT	C CI	TTG	TCAC	2 4	20
	TGCACCATO	CG TO	SATC	ATCGI	TCF	ATA	CTTG	AACA	ACGAC	TG I	AGCAG	GTCA	G A	GTGG	CAAT	. 4	80
	GAAATTACO	CT GO	TAC	SAGAA	CTI	CACC	CGAT	AACC	CAGTI	rgg 1	ACGTG	GTGC	T GC	CCGI	GCGG	5 5	40
	СТССАССТС	יד פר	יריתכנ	יתכריז	י רידים	יכייייכ	ישיר	CCCI	יייניני	ים בי	יראכר	י איזיים מי	יתי כיו	יכריייזי	CTCC		.00

	CGTTTTGT	GT G	GATC	'ATGC'	т ст	CCCA	.GCCC	CTT	GTGG	GGG	CCCA	GAGG	CG G	CGCC	GAGC	:C	660
	AAGGGGCT	GG C	TGTG	GTGA	c gc	TGCT	CAAT	TTC	CTGG	TGT	GCTT	CGGA	CC 1	TACA	ACGT	'G	720
	TCCCACCT	GG T	GGGG	TATC	A CC	AGAG	AAAA	AGC	CCCT	GGT	GGCG	GTCA	AT A	GCCG	TGGT	'G	780
	TTCAGTTC	AC T	CAAC	GCCA	g TĆ	TGGA	.cccc	CTG	CTCT	TCT	ATTT	CTCT	TC I	TCAG	TGGT	G	840
5	CGCAGGGC.	T TA	TGGG	AGAG	g GC	TGCA	GGTG	CTG	CGGA	ATC	AGGG	CTCC	TC C	C T GT	TGGG	A	900
	CGCAGAGG	CA A	AGAC.	ACAG(C AG	AGGG	GACA	AAT	GAGG	ACA	GGGG	TGTG	GG T	'CAAG	GAGA	A	960
	GGGATGCC	AA G	TTCG	GACT'	r ca	CTAC	AGAG	TAG									993
	(277) IN	FORM	ATIO	N FOI	R SE	Q ID	NO:	276:									
10	(i	(A (B (C) LE	CE CI NGTH PE: & RANDI POLO	: 33 amin EDNE	0 am o ac SS:	ino a	acid	s								
	(i:			ULE :													
15	(x:	i) S	EQUE	NCE I	DESC	RIPT	ION:	SEQ	ID I	NO : 2	76:						
	Met 1	Leu	Pro	Asp	Trp 5	Lys	Ser	Ser	Leu 	Ile 10	Leu	Met	Ala	Tyr	Ile 15	Ile	
	Ile	Phe	Leu	Thr 20	Gly	Leu	Pro	Ala	Asn 25	Leu	Leu	Ala	Leu	Arg 30	Ala	Phe	
20	Val	Gly	Arg 35	Ile	Arg	Gln	Pro	Gln 40	Pro	Ala	Pro	Val	His 45	Ile	Leu	Leu	
	Leu	Ser 50	Leu	Thr	Leu	Ala	Asp 55	Leu	Leu	Leu	Leu	Leu 60	Leu	Leu	Pro	Phe	
25	Lys 65	Ile	Ile	Glu	Ala	Ala 70	Ser	Asn	Phe	Arg	Trp 75	Tyr	Leu	Pro	Lys	Val 80	
	Val	Cys	Ala	Leu	Thr 85	Ser	Phe	Gly	Phe	Tyr 90	Ser	Ser	Ile	Tyr	Суs 95	Ser	
	Thr	Trp	Leu	Leu 100	Ala	Gly	Ile	Ser	Ile 105	Glu	Arg	Tyr	Leu	Gly 110	Val	Ala	
30	Phe	Pro	Val 115	Gln	Tyr	Lys	Leu	Ser 120	Arg	Arg	Pro	Leu	Tyr 125	Gly	Val	Ile	
	Ala	Ala 130	Leu	Val	Ala	Trp	Val 135	Met	Ser	Phe	Gly	His 140	Cys	Thr	Ile	Val	
35	Ile 145	Ile	Val	Gln	Tyr	Leu 150	Asn	Thr	Thr	Glu	Gln 155	Val	Arg	Ser	Gly	Asn 160	

		Glu	Ile	Thr	Cys	Туr 165	Glu	Asn	Phe	Thr	Asp 170	Asn	Gln	Leu	Asp	Val 175	Val
		Leu	Pro	Val	Arg 180	Leu	Glu	Leu	Cys	Leu 185	Val	Leu	Phe	Phe	Ile 190	Pro	Met
5		Ala	Val	Thr 195	Ile	Phe	Cys	Tyr	Trp 200	Arg	Phe	Val	Trp	Ile 205	Met	Leu	Ser
		Gln	Pro 210	Leu	Val	Gly	Ala	Gln 215	Arg	Arg	Arg	Arg	Ala 220	Lys	Gly	Leu	Ala
10		Val 225	Val	Thr	Leu	Leu	Asn 230	Phe	Leu	Val	Cys	Phe 235	Gly	Pro	Tyr	Asn	Val 240
		Ser	His	Leu	Val	Gly 245	Tyr	His	Gln	Arg	Lys 250	Ser	Pro	Trp	Trp	Arg 255	Ser
		Ile	Ala	Val	Val 260	Phe	Ser	Ser	Leu	Asn 265	Ala	Ser	Leu	Asp	Pro 270	Leu	Leu
15		Phe	Tyr	Phe 275	Ser	Ser	Ser	Val	Val 280	Arg	Arg	Ala	Phe	Gly 285	Arg	Gly	Leu
		Gln	Val 290	Leu	Arg	Asn	Gln	Gly 295	Ser	Ser	Leu	Leu	Gly 300	Arg	Arg	Gly	Lys
20		Asp 305	Thr	Ala	Glu	Gly	Thr 310	Asn	Glu	Asp		Gly 315	Val	Gly	Gln	Gly	Glu 320
		Gly	Met	Pro	Ser	Ser 325	Asp	Phe	Thr		Glu 330						
	(278)	INF	ORMA	TION	I FOR	SEQ	ID	NO : 2	77:								
25		(i)	(A) (B) (C)	LEN TYP STR	E CH IGTH: E: n ANDE	272 ucle DNES	4 ba ic a S: s	se p cid ingl	airs								
		(ii) MO	LECU	LE T	YPE:	DNA	(ge	nomi	c)							
30		(xi) SE	QUEN	CE D	ESCR	IPTI	ON:	SEQ :	ID N	0:27	7 :					
	ATGGA																
	GGGGG	CAGC'	r cr	CCCA	GGTC	TGG	TGTG	TTG	CTGA	3GGG(CT G	CCCC	ACAC	A CT	GTCA'	TTGC	120
	GAGCC	CGAC	G GC	AGGA	TGTT	GCT	CAGG	GTG (GACT	GCTC(CG A	CCTG	GGC'	r cr	CGGA	GCTG	180
	CCTTC	CAAC	C TC	AGCG'	TCTT	CAC	CTCC	TAC	CTAG	ACCT	CA G	TATGI	AACA	A CA	rcag:	ICA G	240
35	CTGCT	CCCG	A AT	CCCC	TGCC	CAG	TCTC	cgc '	TTCC	rgga	GG A	STTA	CGTC	r TG	CGGGZ	AAAC	300

	GCTCTGACAT	ACATTCCCAA	GGGAGCATTC	ACTGGCCTTT	ACAGTCTTAA	AGTTCTTATG	360
	CTGCAGAATA	ATCAGCTAAG	ACACGTACCC	ACAGAAGCTC	TGCAGAATTT	GCGAAGCCTT	420
	CAATCCCTGC	GTCTGGATGC	TAACCACATC	AGCTATGTGC	CCCCAAGCTG	TTTCAGTGGC	400
	CTGCATTCCC	TGAGGCACCT	GTGGCTGGAT	GACAATGCGT	TAACAGAAAT	CCCCGTCCAG	540
5	GCTTTTAGAA	GTTTATCGGC	ATTGCAAGCC	ATGACCTTGG	CCCTGAACAA	AATACACCAC	600
	ATACCAGACT	ATGCCTTTGG	AAACCTCTCC	AGCTTGGTAG	TTCTACATCT	CCATAACAAT	660
	AGAATCCACT	CCCTGGGAAA	GAAATGCTTT	GATGGGCTCC	ACAGCCTAGA	GACTTTAGAT	720
	TTAAATTACA	ATAACCTTGA	TGAATTCCCC	ACTGCAATTA	GGACACTCTC	CAACCTTAAA	780
	GAACTAGGAT	TTCATAGCAA	CAATATCAGG	TCGATACCTG	AGAAAGCATT	TGTAGGCAAC	840
10	CCTTCTCTTA	TTACAATACA	TTTCTATGAC	AATCCCATCC	AATTTGTTGG	GAGATCTGCT	900
	TTTCAACATT	TACCTGAACT	AAGAACACTG	ACTCTGAATG	GTGCCTCACA	AATAACTGAA	960
	TTTCCTGATT	TAACTGGAAC	TGCAAACCTG	GAGAGTCTGA	CTTTAACTGG	AGCACAGATC	1020
	TCATCTCTTC	CTCAAACCGT	CTGCAATCAG	TTACCTAATC	TCCAAGTGCT	AGATCTGTCT	1080
	TACAACCTAT	TAGAAGATTT	ACCCAGTTTT	TCAGTCTGCC	AAAAGCTTCA	GAAAATTGAC	1140
15	CTAAGACATA	ATGAAATCTA	CGAAATTAAA	GTTGACACTT	TCCAGCAGTT	GCTTAGCCTC	1200
	CGATCGCTGA	ATTTGGCTTG	GAACAAAATT	GCTATTATTC	ACCCCAATGC	ATTTTCCACT	1260
	TTGCCATCCC	TAATAAAGCT	GGACCTATCG	TCCAACCTCC	TGTCGTCTTT	TCCTATAACT	1320
	GGGTTACATG	GTTTAACTCA	CTTAAAATTA	ACAGGAAATC	ATGCCTTACA	GAGCTTGATA	1380
	TCATCTGAAA	ACTTTCCAGA	ACTCAAGGTT	ATAGAAATGC	CTTATGCTTA	CCAGTGCTGT	1440
20	GCATTTGGAG	TGTGTGAGAA	TGCCTATAAG	ATTTCTAATC	AATGGAATAA	AGGTGACAAC	1500
	AGCAGTATGG	ACGACCTTCA	TAAGAAAGAT	GCTGGAATGT	TTCAGGCTCA	AGATGAACGT	1560
	GACCTTGAAG	ATTTCCTGCT	TGACTTTGAG	GAAGACCTGA	AAGCCCTTCA	TTCAGTGCAG	1620
	TGTTCACCTT	CCCCAGGCCC	CTTCAAACCC	TGTGAACACC	TGCTTGATGG	CTGGCTGATC	1680
	AGAATTGGAG	TGTGGACCAT	AGCAGTTCTG	GCACTTACTT	GTAATGCTTT	GGTGACTTCA	1740
25	ACAGTTTTCA	GATCCCCTCT	GTACATTTCC	CCCATTAAAC	TGTTAATTGG	GGTCATCGCA	1800
	GCAGTGAACA	TGCTCACGGG	AGTCTCCAGT	GCCGTGCTGG	CTGGTGTGGA	TGCGTTCACT	1860
	TTTGGCAGCT	TTGCACGACA	TGGTGCCTGG	TGGGAGAATG	GGGTTGGTTG	CCATGTCATT	. 1920
	GGTTTTTTGT	CCATTTTTGC	TTCAGAATCA	TCTGTTTTCC	ТССТТАСТСТ	GGCAGCCCTG	1980

	232	
	GAGCGTGGGT TCTCTGTGAA ATATTCTGCA AAATTTGAAA CGAAAGCTCC ATTTTCTAGC	2040
	CTGAAAGTAA TCATTTTGCT CTGTGCCCTG CTGGCCTTGA CCATGGCCGC AGTTCCCCTG	2100
	CTGGGTGGCA GCAAGTATGG CGCCTCCCCT CTCTGCCTGC CTTTGCCTTT TGGGGAGCCC	2160
	AGCACCATGG GCTACATGGT CGCTCTCATC TTGCTCAATT CCCTTTGCTT CCTCATGATG	2220
5	ACCATTGCCT ACACCAAGCT CTACTGCAAT TTGGACAAGG GAGACCTGGA GAATATTTGG	2280
	GACTGCTCTA TGAAAAAACA CATTGCCCTG TTGCTCTTCA CCAACTGCAT CCTAAACTGC	2340
	CCTGTGGCTT TCTTGTCCTT CTCCTCTTTA ATAAACCTTA CATTTATCAG TCCTGAAGTA	2400
	ATTAAGTTTA TCCTTCTGGT GGTAGTCCCA CTTCCTGCAT GTCTCAATCC CCTTCTCTAC	2460
	ATCTTGTTCA ATCCTCACTT TAAGGAGGAT CTGGTGAGCC TGAGAAAGCA AACCTACGTC	2520
10	TGGACAAGAT CAAAACACCC AAGCTTGATG TCAATTAACT CTGATGATGT CGAAAAACAG	2580
	TCCTGTGACT CAACTCAAGC CTTGGTAACC TTTACCAGCT CCAGCATCAC TTATGACCTG	2640
	CCTCCCAGTT CCGTGCCATC ACCAGCTTAT CCAGTGACTG AGAGCTGCCA TCTTTCCTCT	2700
	GTGGCATTTG TCCCATGTCT CTAA	2724
	(279) INFORMATION FOR SEQ ID NO:278:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 907 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: not relevant 	
20	(ii) MOLECULE TYPE: protein	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:278:	
	Met Asp Thr Ser Arg Leu Gly Val Leu Leu Ser Leu Pro Val Leu Leu 1 5 10 15	1
25	Gln Leu Ala Thr Gly Gly Ser Ser Pro Arg Ser Gly Val Leu Leu Arg 20 25 30	ı
	Gly Cys Pro Thr His Cys His Cys Glu Pro Asp Gly Arg Met Leu Leu	1

Leu Leu Pro Asn Pro Leu Pro Ser Leu Arg Phe Leu Glu Glu Leu Arg 85 90 95

55

70

Arg Val Asp Cys Ser Asp Leu Gly Leu Ser Glu Leu Pro Ser Asn Leu

Ser Val Phe Thr Ser Tyr Leu Asp Leu Ser Met Asn Asn Ile Ser Gln

75

45

35

	Leu	Ala	Gly	Asn 100	Ala	Leu	Thr	Tyr	Ile 105	Pro	Lys	Gly	Ala	Phe 110	Thr	Gly
	Leu	Tyr	Ser 115	Leu	Lys	Val	Leu	Met 120	Leu	Gln	Asn	Asn	Gln 125	Leu	Arg	His
5	Val	Pro 130	Thr	Glu	Ala	Leu	Gln 135	Asn	Leu	Arg	Ser	Leu 140	Gln	Ser	Leu	Arg
	Leu 145	Asp	Ala	Asn	His	Ile 150	Ser	Tyr	Val	Pro	Pro 155	Ser	Cys	Phe	Ser	Gly 160
10	Leu	His	Ser	Leu	Arg 165	His	Leu	Trp	Leu	Asp 170	Asp	Asn	Ala	Leu	Thr 175	Glu
	Ile	Pro	Val	Gln 180	Ala	Phe	Arg	Ser	Leu 185	Ser	Ala	Leu	Gln	Ala 190	Met	Thr
	Leu	Ala	Leu 195	Asn	Lys	Ile	His	His 200	Ile	Pro	Asp	Tyr	Ala 205	Phe	Gly	Asn
15	Leu	Ser 210	Ser	Leu	Val	Val	Leu 215	His	Leu	His	Asn	Asn 220	Arg	Ile	His	Ser
	Leu 225	Gly	Lys	Lys	Cys	Phe 230	Asp	Gly	Leu	His	Ser 235	Leu	Glu	Thr	Leu	Asp 240
20	Leu	Asn	Tyr	Asn	Asn 245	Leu	Asp	Glu	Phe	Pro 250	Thr	Ala	Ile	Arg	Thr 255	Leu
	Ser	Asn	Leu	Lys 260	Glu	Leu	Gly	Phe	His 265	Ser	Asn	Asn	Ile	Arg 270	Ser	Ile
	Pro	Glu	Lys 275	Ala	Phe	Val	Gly	Asn 280	Pro	Ser	Leu	Ile	Thr 285	Ile	His	Phe
25	Tyr	Asp 290	Asn	Pro	Ile	Gln	Phe 295	Val	Gly	Arg	Ser	Ala 300	Phe	Gln	His	Leu
	Pro 305	Glu	Leu	Arg	Thr	Leu 310	Thr	Leu	Asn	Gly	Ala 315	Ser	Gln	Ile	Thr	Glu 320
30	Phe	Pro	Asp	Leu	Thr 325	Gly	Thr	Ala	Asn	Leu 330	Glu	Ser	Leu	Thr	Leu 335	Thr
	Gly	Ala	Gln	11e 340	Ser	Ser	Leu	Pro	Gln 345	Thr	Val	Cys	Asn	Gln 350	Leu	Pro
	Asn	Leu	Gln 355	Val	Leu	Asp	Leu	Ser 360	Tyr	Asn	Leu	Leu	Glu 365	Asp	Leu	Pro
35	Ser	Phe 370	Ser	Val	Cys	Gln	Lys 375	Leu	Gln	Lys	Ile	Asp 380	Leu	Arg	His	Asn
	G1	T10	The	Gla	Tle	Larc	Ual	Ven	Thr	Phe	Gln	Gln	נים. ז	T.e.i	Ser	T.011

	385	5				390)				395	5				400
	Arg	g Ser	: Leu	ı Asn	Leu 405		Trp) Asr	Lys	1l∈ 410		ılle	e Ile	His	Pro 415	Asn
5	Ala	Phe	e Ser	Thr 420		Pro	Ser	Leu	11e 425		: Leu	Asp	Leu	Ser 430		Asn
	Leu	Leu	Ser 435	Ser	Phe	Pro	Ile	Thr 440		Leu	His	Gly	Leu 445		His	Leu
	Lys	Leu 450	Thr	Gly	Asn	His	Ala 455		Gln	Ser	Leu	Ile 460		Ser	Glu	Asn
10	Phe 465	Pro	Glu	Leu	Lys	Val 470		Glu	Met	Pro	Tyr 475	Ala	Tyr	Gln	Cys	Cys 480
	Ala	Phe	Gly	Val	Cys 485	Glu	Asn	Ala	Tyr	Lys 490		Ser	Asn	Gln	Trp 495	Asn
15	Lys	Gly	Asp	Asn 500	Ser	Ser	Met	Asp	Asp 505	Leu	His	Lys	Lys	Asp 510	Ala	Gly
	Met	Phe	Gln 515	Ala	Gln	Asp	Glu	Arg 520	Asp	Leu	Glu	Asp	Phe 525	Leu	Leu	Asp
	Phe	Glu 530	Glu	Asp	Leu	Lys	Ala 535	Leu	His	Ser	Val	Gln 540	Cys	Ser	Pro	Ser
20	Pro 545	Gly	Pro	Phe	Lys	Pro 550	Cys	Glu	His	Leu	Leu 555	Asp	Gly	Trp	Leu	Ile 560
	Arg	Ile	Gly	Val	Trp 565	Thr	Ile	Ala	Val	Leu 570	Ala	Leu	Thr	Cys	Asn 575	Ala
25	Leu	Val	Thr	Ser 580	Thr	Val	Phe	Arg	Ser 585	Pro	Leu	Tyr	Ile	Ser 590	Pro	Ile
	Lys	Leu	Leu 595	Ile	Gly	Val	Ile	Ala 600	Ala	Val	Asn	Met	Leu 605	Thr	Gly	Val
	Ser	Ser 610	Ala	Val	Leu	Ala	Gly 615	Val	Asp	Ala	Phe	Thr 620	Phe	Gly	Ser	Phe
30	Ala 625	Arg	His	Gly	Ala	Trp 630	Trp	Glu	Asn	Gly	Val 635	Gly	Cys	His	Val	Ile 640
	Gly	Phe	Leu	Ser	Ile 645	Phe	Ala	Ser	Glu	Ser 650	Ser	Val	Phe	Leu	Leu 655	Thr
35	Leu	Ala	Ala	Leu 660	Glu	Arg	Gly	Phe	Ser 665	Val	Lys	Tyr	Ser	Ala 670	Lys	Phe
	Glu	Thr	Lys 675	Ala	Pro	Phe	Ser	Ser 680	Leu	Lys	Val	Ile	Ile 685	Leu	Leu	Cys

PCT/US99/23938

235

		Ala	Leu 690	Leu	Ala	Leu	Thr	Met 695	Ala	Ala	Val	Pro	Leu 700	Leu	Gly	Gly	Ser
		Lys 705	Tyr	Gly	Ala	Ser	Pro 7 10	Leu	Cys	Leu	Pro	Leu 715	Pro	Phe	Gly	Glu	Pro 720
5		Ser	Thr	Met	Gly	Tyr 725	Met	Val	Ala	Leu	Ile 730	Leu	Leu	Asn	Ser	Leu 735	Cys
		Phe	Leu	Met	Met 740	Thr	Ile	Ala	Tyr	Thr 745	Lys	Leu	Tyr	Cys	Asn 750	Leu	Asp
10		Lys	Gly	Asp 755	Leu	Glu	Asn	Ile	Trp 760	Asp	Cys	Ser	Met	Lys 765	Lys	His	Ile
		Ala	Leu 770	Leu	Leu	Phe	Thr	Asn 775	Cys	Ile	Leu	Asn	Cys 780	Pro	Val	Ala	Phe
		Leu 785	Ser	Phe	Ser	Ser	Leu 790	Ile	Asn	Leu	Thr	Phe 795	Ile	Ser	Pro	Glu	Val 800
15		Ile	Lys	Phe	Ile	Leu 805	Leu	Val	Val	Val	Pro 810	Leu	Pro	Ala	Cys	Leu 815	Asn
		Pro	Leu	Leu	Tyr 820	Ile	Leu	Phe	Asn	Pro 825	His	Phe	Lys	Glu	Asp 830	Leu	Val
20		Ser	Leu	Arg 835	Lys	Gln	Thr	Tyr	Val 840	Trp	Thr	Arg	Ser	Lys 845	His	Pro	Ser
		Leu	Met 850	Ser	Ile	Asn	Ser	Asp 855	Asp	Val	Glu	Lys	Gln 860	Ser	Cys	Asp	Ser
		Thr 865	Gln	Ala	Leu	Val	Thr 870	Phe	Thr	Ser	Ser	Ser 875	Ile	Thr	Tyr	Asp	Leu 880
25		Pro	Pro	Ser	Ser	Val 885	Pro	Ser	Pro	Ala	Tyr 890	Pro	Val	Thr	Glu	Ser 895	Cys
		His	Leu	Ser	Ser 900	Val	Ala	Phe	Val	Pro 905	Cys	Leu					
	(280)) INE	ORMA	4OITA	1 FOF	R SEÇ	O ID	NO:2	279:								
30		(i)	(B) (C)	LEN TYI STI	CE CH NGTH: PE: r RANDE	32 nucle EDNES	base ic a SS: s	e pai cid singl	rs								
35		(ii	i) MC	LECU	LE I	YPE:	DNA	A (ae	nomi	.c)							

CATGCCAACC GGCCCGCGAG GCTGCTGCTG GT

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:279:

236

(281) INFORMATION FOR SEQ ID NO:280:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 32 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:280:

ACCAGCAGCA GCCTCGCGGG CCGGTTGGCA TG

Int. Ional Application No PCT/US 99/23938

						<u> </u>
A. CLASSI IPC 7	C12N15/12	C07K14/72	G01N33/	50	G01N33/566	
According t	to International Patent Cla	esification (IBC) or to had	th pational descitio	ation and	1180	
	SEARCHED	ssincation (IPC) or to bot	n national dassing	ation and	JIPC	
	ocumentation searched (classification system folio	wed by classificati	ion symbo	ols)	··-
IPC 7	C12N C07K	GOIN	·	·		
Documenta	tion searched other than	minimum documentation	to the extent that s	such docu	uments are included in the fie	olds searched
Electronic d	lata base consulted during	g the international search	n (name of data ba	se and,	where practical, search terms	used)
			·			
C. DOCUM	ENTS CONSIDERED TO	BE RELEVANT				
Category °	Citation of document, w	vith indication, where app	propriate, of the rel-	evant pa	ssages	Relevant to claim No.
					· · · · · · · · · · · · · · · · · · ·	
Х		M. A. ET AL.: OF THE ALPHA			Ε	1,2, 4-13,
}		Y ALL AMINO A	CID SUBSTI	ITUTI	ONS	15-33,
	AT A SINGLE		UCM TOTOV			35-37,41
	vol. 267,	BIOLOGICAL C no. 3.	HEMISIKI,			
	25 January	1992 (1992-0	1-25), pag	ies		
	1430-1433,	XP002911764		•		
	ISSN: 002 the whole					
	the whole (
			_	-/		
	<u> </u>		<u> </u>			
X Furth	her documents are listed i	n the continuation of box	(C.	X	Patent family members are I	isted in annex.
° Special cat	tegories of cited documen	nts:			document published after the	
	ent defining the general statement to be of particular rel		ıt	cité	priority date and not in conflict and to understand the principle	
"E" eartier d	locument but published or		al .	"X" docu	ention ıment of particular relevance;	the claimed invention
	nt which may throw doubt				nnot be considered novel or ca olve an inventive step when th	
	is cited to establish the pu n or other special reason (•		rment of particular relevance; anot be considered to involve	
"O" docume other n	ent referring to an oral disc neans	closure, use, exhibition o	ж	doc	cument is combined with one onto the name of the name	or more other such docu-
	ent published prior to the in nan the priority date claims			in ti	he art. Iment member of the same pa	·
Date of the a	actual completion of the in	nternational search			e of mailing of the internation	
2	March 2000				09/03/2000	_
Name and m	nailing address of the ISA			Auth	norized officer	
ı	NL - 2280 HV Rijswi		12			
I	Tel. (+31-70) 340-20	040, Tx. 31 651 epo nl,	į	1	Mandl, B	

Inte ional Application No PCT/US 99/23938

Intion) DOCIMENTS CONSIDERED TO BE	PC1/US 99/23938		
	Relevant to claim No.		
-FL -Florid of the talastatic hassadas	nelevant to claim No.		
SCHEER A. ET AL.: "CONSTITUTIVELY ACTIVE G PROTEIN-COUPLED RECEPTORS: POTENTIAL MECHANISMS OF RECEPTOR ACTIVATION" JOURNAL OF RECEPTOR AND SIGNAL TRANSDUCTION RESEARCH, vol. 17, no. 1/03, 1997, pages 57-73, XP000867531 ISSN: 1079-9893 the whole document	1,2, 4-13, 15-33, 35-37,41		
WO 97 21731 A (NEW ENGLAND MEDICAL CENTER INC) 19 June 1997 (1997-06-19)	1,2,4, 9-13, 20-32, 35-37,41		
the whole document, especially Fig. 2-3	33 37,41		
WO 98 38217 A (HERRICK DAVIS KATHARINE; TEITLER MILT (US); EGAN CHRISTINA C (US)) 3 September 1998 (1998-09-03) the whole document, especially page 7, lines 24-27, and figure 4	1,2, 4-13, 15-33, 35-37,41		
PAUWELS P. J. ET AL.: "REVIEW: AMINO ACID DOMAINS INVOLVED IN CONSTITUTIVE ACTIVATION OF G-PROTEIN-COUPLED RECEPTORS" MOLECULAR NEUROBIOLOGY, vol. 17, no. 1/03, 1998, pages 109-135, XP000866477 ISSN: 0893-7648 the whole document	1,2, 4-13, 15-33, 35-37,41		
	G PROTEIN-COUPLED RECEPTORS: POTENTIAL MECHANISMS OF RECEPTOR ACTIVATION" JOURNAL OF RECEPTOR AND SIGNAL TRANSDUCTION RESEARCH, vol. 17, no. 1/03, 1997, pages 57-73, XP000867531 ISSN: 1079-9893 the whole document WO 97 21731 A (NEW ENGLAND MEDICAL CENTER INC) 19 June 1997 (1997-06-19) the whole document, especially Fig. 2-3 WO 98 38217 A (HERRICK DAVIS KATHARINE; TEITLER MILT (US); EGAN CHRISTINA C (US)) 3 September 1998 (1998-09-03) the whole document, especially page 7, lines 24-27, and figure 4 PAUWELS P. J. ET AL.: "REVIEW: AMINO ACID DOMAINS INVOLVED IN CONSTITUTIVE ACTIVATION OF G-PROTEIN-COUPLED RECEPTORS" MOLECULAR NEUROBIOLOGY, vol. 17, no. 1/03, 1998, pages 109-135, XP000866477 ISSN: 0893-7648 the whole document		

1

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

. Inational application No.

PCT/US 99/23938

Box I Observations where certain claims were found ur	nsearchable (Continuation of item 1 of first sheet)
This International Search Report has not been established in respect	of certain claims under Article 17(2)(a) for the following reasons:
Claims Nos.: because they relate to subject matter not required to be sea	rched by this Authority, namely:
2. X Claims Nos.: 34,38-40,42,43 because they relate to parts of the International Application of an extent that no meaningful International Search can be can See FURTHER INFORMATION sheet PCT/I	· · · ·
3. Claims Nos.: because they are dependent claims and are not drafted in a	ccordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this	; international application, as follows:
As all required additional search fees were timely paid by the searchable claims.	e applicant, this International Search Report covers all
As all searchable claims could be searched without effort just of any additional fee.	stifying an additional fee, this Authority did not invite payment
As only some of the required additional search fees were time covers only those claims for which fees were paid, specifically.	ely paid by the applicant, this International Search Report ly claims Nos.:
No required additional search fees were timely paid by the agree trestricted to the invention first mentioned in the claims; it is considered.	oplicant. Consequently, this International Search Report is overed by claims Nos.:
] [itional search fees were accompanied by the applicant's protest.

International Application No. PCT/US 99 23938

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Claims Nos.: 34,38-40,42,43

Claims 34, 38-40, 42 and 43 refer to compounds with an agonistic effect on a GPCR without giving a true technical characterization. Moreover, no such specific compounds are defined in the application. In consequence, the scope of said claims is ambiguous and vague, and their subject-matter is not sufficiently disclosed and supported (Art. 5 and 6 PCT). No search can be carried out for such purely speculative claims whose wording is, in fact, a mere recitation of the results to be achieved.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

Information on patent family members

Inte ional Application No
PCT/US 99/23938

Patent document cited in search report	nt	Publication date		Patent family member(s)	Publication date
WO 9721731	А	19-06-1997	US AU CA EP	5750353 A 1334397 A 2239293 A 0869975 A	12-05-1998 03-07-1997 19-06-1997 14-10-1998
WO 9838217	Α	03-09-1998	AU	6343998 A	18-09-1998

Form PCT/ISA/210 (patent family annex) (July 1992)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
☐ FADED TEXT OR DRAWING	
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	
OTHER:	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.