Transition Metal Compounds

Lets look at the electron configurations for the first ten transition metals.

Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn
4s 3d									

Note they do not follow the pattern you may predict!

These are all very similar in size and give interesting reactions!

Complex Ion

Ligand

[CoCl₄²-]

How these compounds were arranged was a very big question

Alfred Werner

Formula CoCl₃·6NH₃

Color of Compound

CoCl₃·5NH₃

CoCl₃:4NH₃

We have experimental evidence that needs to be addressed:

 $CoCl_3 \cdot 6NH_3 + excessAgNO_3 \rightarrow$

 $CoCl_3:5NH_3 + excessAgNO_3$

 $CoCl_3$:4NH₃ + excessAgNO₃ \rightarrow

The first proposed structures from Joergensen:

These are wrong. Why?

Werner's Structures:

polydentate:

Nom	encl	latur	e

Rules for naming coordination compounds

- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.

Ligand Names

Prefixes

Name the following compounds:

- 1. $[Ag(NH_3)_2]Cl$
- 2. $[Co(NH_3)_3Cl_3]$
- 3. $[Co(NH_3)_3Cl_2]Cl$
- 4. $[Co(NH_3)_6]Cl_2$
- 5. $K_4[Fe(CN)_6]$
- 6. $[Ni(NH_3)_4]^{2+}$
- 7. [PtCl₄]²⁻
- 8. $[Pt(NO_2)_4]^{2-}$
- 9. K[Pt(NH₃)Cl₅]
- 10. [Co(NO₂)(NH₃)₄] Br₂
- 11. [Cu(NH₃)₄]²⁺
- 12. [CrCl(NH₃)I₄]Cl
- 13. K₂[Pt(SO₄)₂(NH₃)₄]
- 14. $[Fe(OH)_6]^{4-}$
- $_{15.}$ [Cu(NH₃)₄]SO₄

Isomerism

Isomers

This gives different chemical and physical properties.

Coordination Isomer

Linkage Isomer

Geometric Isomers

Stereo Isomer

Crystal Field Theory

Diamagnetic

Paramagnetic

Our focus will be on the d orbitals:

What happens to the energy of these d orbitals is what governs inorganic chemistry!

The orbitals experience a splitting due to repulsion when a ligand approaches it.

Octahedral

 \mathbf{e}_{g}

 $t_{\rm 2g}$

What is 10Dq?

Strong	Field	versus	Weak	Field
Strong	Field	Case		

Weak Field Case

Spectrochemical Series

$$CN^{-}>NO_{2}^{-}>en>NH_{3}>H_{2}O>OH^{-}>F^{-}>Cl^{-}>Br^{-}>l^{-}$$

How does charge affect splitting?

Low Spin

High Spin

Other C	Geometries
---------	------------

Tetrahedral

Square Planar

How do we count the number of electrons in a transition metal ion?

 $Mn^{^{2+}}$

 Co^{3+}

 Fe^{2+}

 $Au^{^{3+}} \\$

 Ni^{2+}

 $Cu^{^{2+}}$

1. Draw the d-orbital splitting diagram for the octahedral complex ions for V^{2+} .

2. The complex ion $Mn(OH)_6^{3-}$ is paramagnetic and octahedral. Draw the d-orbital splitting diagram and show why it is paramagnetic. OH- is a very STRONG ligand.

3. Draw the d-orbital splitting diagram for the octahedral complex ions for Ni²⁺.

4. Draw the d orbital splitting diagram for Co²⁺ in an octahedral field. Do this for both spin cases. Is it paramagnetic or diamagnetic.

5. The complex ion $Fe(CN)_6^{3-}$ is paramagnetic and octahedral. Draw the d-orbital splitting diagram and show why it is paramagnetic. CN^- is a very STRONG ligand.