Obliczenia naukowe

2017/2018

Prowadzący: dr hab. Paweł Zieliński

czwartek TN, 11:15

Agata Jasionowska 229726

Laboratorium – Lista 1

1. Zadanie 1

1.1. Macheps

1.1.1. Opis problemu

Napisanie w języku Julia programu wyznaczającego w sposób iteracyjny epsilony maszynowe (czyli najmniejsze takie liczby macheps > 0, że 1.0 + macheps > 1.0) dla wszystkich dostępnych w tym języku typów zmiennopozycyjnych (Float16, Float32 oraz Float64).

1.1.2. Opis rozwiązania

W celu znalezienia liczby *macheps* dla danego typu liczby zmiennopozycyjnej skorzystano z operacji przesunięcia bitowego w prawo zgodnie z podanymi niżej krokami:

- 1. Zdefiniowanie zmiennej a = 1.0 wybranego typu;
- 2. Dopóki 1.0 + a > 1.0 przypisanie aktualnej wartości a w pomocniczej zmiennej b oraz wykonanie przesunięcia bitowego w prawo dla a.

Po zakończeniu wykonywania pętli zmienna b będzie przechowywała ostatnią przypisaną wartość większą niż 0.0, czyli poszukiwany macheps.

1.1.3. Wyniki

Uzyskano następujące wyniki dla kolejnych typów zmiennopozycyjnych (Tabela 1).

1.1.4. Wnioski

Uzyskano rozwiązania identyczne ze zwracanymi przez funkcje eps, co dowodzi prawidłowości przyjętego sposobu rozwiązania problemu.

typ	macheps	eps(typ)	С
	9.77e-4	9.77e-4	-
Float32	$1.1920929e{-7}$	$1.1920929e{-7}$	$1.19209289550781e{-7}$
Float64	$2.220446049250313\mathrm{e}{-16}$	$2.220446049250313\mathrm{e}{-16}$	$2.22044604925031e{-16}$

Tabela 1. Wyniki macheps wraz z prawidłowymi wartościami oraz danymi z C.

Aby dowiedzieć się, dlaczego to ta liczba spełnia warunek zadania wystarczy dodać ją do wartości 1.0 i przyjrzeć się zapisowi bitowemu rozwiązania. W arytmetyce Float32 uzyskano:

Zatem liczba będzie zgodna z zapisem: $2^0 \cdot 1.mantissa$, gdzie mantissa jest najmniejszą możliwą wartością, co jednocześnie koresponduje z precyzją arytmetyki (im mniejszy epsilon maszynowy, tym większa względna precyzja obliczeń).

1.2. ETA

1.2.1. Opis problemu

Napisanie w języku Julia programu wyznaczającego w iteracyjny sposób liczbę eta (taką, że eta > 0.0) dla dostępnych w nim typów zmiennopozycyjnych (Float16, Float32 oraz Float64).

1.2.2. Opis rozwiązania

Algorytm wyznaczenia liczby *eta* jest zbliżony do algorytmu obliczającego wartości *macheps*:

Algorithm 1 $a \leftarrow 1.0$ while a/2.0 > 0.0 do $a \leftarrow a/2.0$ end while

Po zakończeniu wykonywania pętli w zmiennej a pozostanie poszukiwana wartość eta.

1.2.3. Wyniki

Uzyskano następujące wyniki dla kolejnych typów zmiennopozycyjnych (Tabela 2).

1.2.4. Wnioski

W arytmetyce Float32 liczba eta zapisana bitowo to:

czyli jest to najmniejsza dodatnia liczba, którą można zapisać. Wszystkie bity cechy są równe zero, zatem ta liczba jest nieznormalizowana (subnormal).

typ	eta	nextfloat(0.0)
Float16	6.00e - 8	6.00e - 8
Float32	$1.0e{-45}$	$1.0e{-45}$
Float64	5.0e - 324	5.0e - 324

Tabela 2. Wyniki eta wraz z prawidłowymi wartościami.

1.3. MAX

1.3.1. Opis problemu

Napisanie w języku Julia programu wyznaczającego w iteracyjny sposób liczbę MAX dla dostępnych w nim typów zmiennopozycyjnych (Float16, Float32 oraz Float64).

1.3.2. Opis rozwiązania

W celu znalezienia wartości MAX dla danego typu liczby zmiennopozycyjnej skorzystano z operacji przesunięcia bitowego w prawo oraz z funkcji isinf(a) (zwracającej wartość true, jeżeli argument jest nieskończonością) zgodnie z podanymi niżej krokami:

- 1. Zdefiniowanie zmiennej a = 1.0 wybranego typu;
- 2. Dopóki $a \cdot \text{FloatX}(2.0)$, $(gdzie\ X \in 16, 32, 64)$ jest skończone, wykonanie przesunięcia bitowego w prawo dla a;
- 3. Wykonanie $a = a \cdot (\text{FloatX}(2.0) eps(a))$.

Po wyjściu z pętli w zmiennej a pozostanie żądana wartość MAX.

1.3.3. Wyniki

Uzyskano następujące wyniki dla kolejnych typów zmiennopozycyjnych:

typ	a	realmax(typ)	С
	6.55e+4 3.402 823 5e+38 1.797 693 134 862 315 7e+308	6.55e+4 3.402 823 5e+38 1.797 693 134 862 315 7e+308	$\begin{array}{c} -\\ 3.402823466385288598\mathrm{e}{+38} \\ 1.797693134862315708\mathrm{e}{+308} \end{array}$

Tabela 3. Wyniki MAX wraz z prawidłowymi wartościami.

1.3.4. Wnioski

Uzyskano rozwiązania identyczne ze zwracanymi przez funkcję $\mathtt{realmax}()$, co dowodzi prawidłowości przyjętego sposobu rozwiązania problemu. Wartości MAX dla kolejnych typów zmiennopozycyjnych są bardzo zbliżone do maksymalnych wartości deklarowanych w dokumentacji języka \mathtt{C} .

2. Zadanie 2

2.1. Opis problemu

Napisanie w języku Julia programu, który eksperymentalnie sprawdzi słuszność stwierdzenia Kahana (epsilon maszynowy może zostać wyznaczony w wyniku obliczenia 3(4/3-1)-1 w danej arytmetyce zmiennopozycyjnej) dla wszystkich dostępnych typów zmiennopozycyjnych.

2.2. Opis rozwiązania

Obliczenie wartości wyrażenia z użyciem właściwego rzutowania typów zgodnie z poniższym wzorem:

$$FloatX(3) \cdot ((FloatX(4)/FloatX(3)) - FloatX(1)) - FloatX(1), dla X \in \{16, 32, 64\}.$$

2.3. Wyniki

W wyniku obliczeń otrzymano następujące wyniki dla kolejnych typów zmiennopozycyjnych:

typ	Kahan	macheps
	-9.77e-4 $1.1920929e-7$	9.77e-4 $1.1920929e-7$
Float64	$-2.220446049250313\mathrm{e}{-16}$	$2.220446049250313\mathrm{e}{-16}$

Tabela 4. Wyniki twierdzenia Kahana wraz z prawidłowymi wartościami.

2.3.1. Wnioski

Powyższa tabela pokazuje, że prawidłowe rozwiązanie udało się uzyskać jedynie dla typu Float32. W dwóch pozostałych przypadkach wynik różnił się bitem znaku. Stwierdzenie Kahana byłoby słuszne, gdyby z wartości wyrażenia wziąć jego wartość bezwzględną.

3. Zadanie 3

3.1. Opis problemu

Napisanie w języku Julia programu, który eksperymentalnie sprawdzi, że w arytmetyce Float64 liczby zmiennopozycyjne są równomiernie rozmieszczone w [1,2] z krokiem $\delta=2^{-52}$. Równoznaczne jest to ze stwierdzeniem, iż każda liczby zmiennopozycyjna x z zakresu [1,2] może zostać przedstawiona jako $x=1+k\cdot\delta$ w danej arytmetyce, dla $k=1,2,\ldots,2^{52}-1$ i $\delta=2^{-52}$.

3.2. Opis rozwiązania

Eksperymentalne sprawdzenie rozmieszczenia liczb zgodne z poniższym schematem:

- 1. Utworzenie takiej zmiennej δ , że $\delta=2^k,\,k=0,-1,-2\ldots$ typu zmiennopozycyjnego;
- 2. Zdefiniowanie zmiennej a pierwszą wartością przedziału;
- 3. Zwiększanie a o wartość δ oraz wyświetlenie rezultatu wraz z jego zapisem bitowym (uzyskany przy pomocy funkcji bits(a).

3.3. Wyniki

1. Przedział [1, 2]

a	zapis bitowy a
1.0 $1.0 + \delta$ $1.0 + 2 \cdot \delta$	00111111111110000001 00111111111110000010 0011111111
$ \begin{array}{l} \vdots \\ 2.0-3\cdot\delta \\ 2.0-2\delta \\ 2.0-\delta \end{array}$: 0011111111111111 1101 001111111111

Tabela 5. Rozmieszczenie liczb w zakresie [1,2] dla $\delta = 2^{-52}$.

Można zaobserwować, że liczby z zakresu [1,2) różnią się jedynie mantysą, zaś cecha sprawia, że wyglądają one w następujący sposób: 2^0 (= 1) · 1.mantissa. Prowadzi to do wniosku, iż różnica pomiędzy kolejnymi liczbami w tym zakresie jest równa różnicy mantys tych liczb. Zapis bitowy pokazuje, że dodawanie do liczby a wartości $\delta = 2^{-52}$ zwiększa ją o kolejny jeden bit.

2. Przedział [0.5, 1]

a	zapis bitowy a
0.5 $0.5 + \delta$ $0.5 + 2 \cdot \delta$	00111111111100000010 00111111111100000100 0011111111
$ \begin{array}{c} \vdots \\ 1.0 - 3 \cdot \delta \\ 1.0 - 2\delta \\ 1.0 - \delta \end{array} $: 001111111111111 11011 001111111111

Tabela 6. Rozmieszczenie liczb w zakresie [0.5,1] dla $\delta=2^{-52}$.

Analizę rozmieszczenia liczb rozpoczęto od zbadania zmian w zapisie bitowym dla $\delta=2^{-52}$. Wyniki widoczne powyżej pokazują cykliczne zwiększanie się a o 2 bity, czyli wartości rozłożone są z dwukrotnie większym krokiem. Zatem rozmieszczenie dla tego przedziału to $\delta=\frac{1}{2}\cdot 2^{-52}=2^{-53}$.

3. Przedział [2, 4]

W ostatnim rozpatrywanym przedziale, z uwagi na dwukrotnie dłuższy zakres, gęstość liczb jest dwa razy większa. Zatem rozkład liczb w [2, 4] następuje z krokiem $\delta = 2^{-51}$ (Tabela 7).

a	zapis bitowy a
$ \begin{array}{c} 2.0 \\ 2.0 + \delta \\ 2.0 + 2 \cdot \delta \end{array} $	01000000000000 0000000 0100000000000
:	010000000000000 0000010 :
$4.0 - 3 \cdot \delta$ $4.0 - 2\delta$ $4.0 - \delta$	0100000000000111111101 0100000000000

Tabela 7. Rozmieszczenie liczb w zakresie [2,4] dla $\delta=2^{-51}$.

3.4. Wnioski

Analiza przypadku [1,2] dowodzi równomiernego rozmieszczenia liczb w tym przedziałe z krokiem $\delta=2^{-52}$, czyli prawdziwy jest wzór: $x=1+k\cdot\delta$. Zaobserwowano następujące rozmieszczenie w pozostałych przedziałach:

```
-- [0.5, 1]: x = 1 + k \cdot \delta, \delta = 2^{-53};

-- [2, 4]: x = 1 + k \cdot \delta, \delta = 2^{-51}
```

Prowadzi to do spostrzeżenia, że im bliżej wartości 0.0 znajdują się liczby, tym gęściej są rozmieszczone.

4. Zadanie 4

4.1. Opis problemu

Napisanie w języku Julia programu znajdującego eksperymentalnie taką liczbę zmiennopozycyjną Float64 1 < x < 2, że $x \cdot (1/x) \neq 1$ (tj. $fl(x \cdot fl(1/x)) \neq 1$) oraz wyznaczenie najmniejszej takiej wartości.

4.2. Opis rozwiązania

Zastosowanie programu działającego zgodnie z poniższym pseudokodem:

Algorithm 2

```
a \leftarrow \texttt{Float64}(1.0)

while a < \texttt{Float64}(2.0) do

if ((Float64(1.0)/a) \cdot a \neq Float64(1.0)) then wypisz a

end if

a \leftarrow \texttt{nextfloat}(a)

end while
```

4.3. Wyniki

W wyniku pracy programu znaleziono najmniejsze rozwiązanie równe 1.00000057228997. Jest to ciekawy przypadek nieodwracalności dzielenia -

próba odwrócenia działania da rozwiązanie : 0.99999999999999999. Taki rezultat wynika z ograniczoności zapisu i przy wykonywaniu kolejnych operacji może prowadzić do spotęgowania błędu obliczeń.

4.4. Wnioski

Wykonywanie działań na liczbach zmiennopozycyjnych powinno odbywać się zawsze z uwzględnieniem możliwego błędu (wynikłego z zaokrąglania wartości) oraz konsekwencji jego powielania (jak to ma miejsce w przypadku warunku z zadania).

5. Zadanie 5

5.1. Opis problemu

Napisanie w języku Julia implementacji czterech algorytmów obliczających iloczyn skalarny dwóch zadanych wektorów x i y z użyciem typów Float32 oraz Float64.

5.2. Opis rozwiązania

- 1. "W przód";
- 2. "W tył";
- 3. Od największego do najmniejszego;

Obliczenie sumy tym algorytmem zostało zaimplementowane w następujący sposób (przykład kodu dla arytmetyki Float32):

```
tab = Float32[]
s1 = Float32(0.0)
s2 = Float32(0.0)
i = 1
while i <= length(x)</pre>
      push!(tab, Float32(x[i] * y[i]))
      i += 1
end
sort!(tab, rev=true)
for i in tab
        if(i > 0) s1 += i
        end
end
sort!(tab)
for i in tab
        if(i < 0) s2 += i
        end
end
sum = Float32(s1+s2)
```

4. Od najmniejszego do największego.

Implementacja ostatniego z algorytmów jest analogiczna do kodu z poprzedniego podpunktu. Jedyna różnica polega tutaj na odpowiedniej kolejności sortowania tablicy z sumami częściowymi.

5.3. Wyniki

Poniższa tabela prezentuje uzyskane wyniki dla czterech algorytmów obliczających iloczyn skalarny:

podpunkt	Float32	Float64
1	-0.4999443	$1.0251881368296672\mathrm{e}{-10}$
2	-0.4543457	$-1.5643308870494366\mathrm{e}{-10}$
3	-0.5	0.0
4	-0.5	0.0

Tabela 8. Obliczanie iloczynu skalarnego wektorów.

5.4. Wnioski

Treść zadania podaje prawidłowy wynik równy -1.00657107000000e-11. Wynik iloczynu jest zbliżony do 0.0, co oznacza wektory prostopadłe (ortogonalne), które mają tendencję do generowania dużych błędów względnych.

6. Zadanie 6

6.1. Opis problemu

Obliczenie w języku Julia w arytmetyce Float
64 wartości funkcji $f(x)=\sqrt{x^2+1}-1$ oraz $g(x)=\frac{x^2}{\sqrt{x^2+1}+1}$ dla kolejnych wartości
 $x=8^{-1},8^{-2},\ldots$

6.2. Opis rozwiązania

Obliczanie wartości obu funkcji w pętli dla kolejnych argumentów.

6.3. Wyniki

Poniżej przedstawiono otrzymane rozwiązania (Tabela 9).

6.4. Wnioski

Analiza uzyskanych rozwiązań pozwala zaobserwować, iż dla argumentu 1 < x < 8 funkcje daje bardzo zbliżone wartości. Jednak dla x > 8 funkcja f zaczyna zwracać 0.0, zaś g podaje dokładny wynik. Pozwala to przypuszczać, że to właśnie jest bardziej wiarygodna funkcja.

Powodem różnic w wynikach obu tych funkcji jest wykonywanie odejmowania na wartościach do siebie zbliżonych. W funkcji f dla bardzo małego x zachodzi wtedy : $\sqrt{x^2 + 1} \approx 1$. Zatem odjęcie liczby bliskiej 1.0 oraz samej 1.0 generuje błąd, który dochodzić może do nawet 100%. Aby zapobiec

\overline{x}	f(x)	g(x)
8^{-1} 8^{-2}	7.7822185373186414e - 3 1.2206286282867573e - 4	7.7822185373187065e - 3 $1.2206286282875901e - 4$
8^{-3}	1.9073468138230965e - 6	1.907346813826566e - 6
:	:	:
8^{-7}	1.1368683772161603e - 13	1.1368683772160957e - 13
8^{-8}	1.7763568394002505e - 15	1.7763568394002489e - 15
8^{-9}	0.0	2.7755575615628914e - 17
8^{-10}	0.0	4.336808689942018e - 19

Tabela 9. Wartości funkcji f(x) oraz g(x).

takim sytuacjom można przekształcać wyrażenie do postaci alternatywnej bądź zastosować zwiększoną precyzję.

7. Zadanie 7

7.1. Opis problemu

Obliczenie w języku Julia w arytmetyce Float64 przybliżonej wartości pochodnej funkcji $f(x) = \sin x + \cos 3x$ w punkcie $x_0 = 1$ oraz błędów | $f'(x_0) - \tilde{f}(x_0)$ | dla h = 2 - n (n = 0, 1, 2, ..., 54).

7.2. Opis rozwiązania

Utworzenie funkcji f(x) oraz jej pochodnej g(x) ($g(x) = \cos x - 3\sin 3x$). Stworzenie pomocniczych funkcji: obliczającej przybliżoną pochodną oraz błąd pomiaru.

7.3. Wyniki

W wyniku pracy programu uzyskano następujące rezultaty (Tabela 10). Początkowo błąd maleje wraz ze wzrostem argumentu, najdokładniejszy wynik udało się uzyskać dla n=28. Jednak dalsze zmniejszanie h prowadziło do coraz większej utraty dokładności obliczeń (znaczny wzrost błędu).

7.4. Wnioski

Na podstawie otrzymanych wyników można zauważyć znaczną utratę danych na skutek dodawania do 1.0 bardzo małego $h-2^{-n}$. Zbyt mała wartość h spowoduje utratę dokładności podczas wykonywania operacji h+1, co wpłynie na dalsze błędy obliczeń (które mogą być względnie duże). Drugą z przyczyn zmniejszonej dokładności rachunków upatrywać można w odejmowaniu bardzo bliskich wartości liczbowych, w szczególności dla stosunkowo niewielkiego h. Związane jest to z utratą cyfr znaczących i wpływa na zaburzenia wyniku.

\overline{n}	f'(x)	błąd
0	2.0179892252685967	1.9010469435800585
1	1.8704413979316472	1.753499116243109
2	1.1077870952342974	0.9908448135457593
÷	:	:
16	0.11700383928837255	6.155759983439424e - 5
17	0.11697306045971345	3.077877117529937e - 5
18	0.11695767106721178	1.5389378673624776e - 5
÷	:	:
36	0.116943359375	1.0776864618478044e - 6
37	0.1169281005859375	1.4181102600652196e - 5
38	0.116943359375	1.0776864618478044e - 6
:	:	:
52	-0.5	0.6169422816885382
53	0.0	0.11694228168853815
54	0.0	0.11694228168853815

Tabela 10. Wartości funkcji $f(\boldsymbol{x})$ oraz błąd.