SurVAE Flows: Surjections to Bridge the Gap between VAEs and Flows

Didrik Nielsen¹, Priyank Jaini², Emiel Hoogeboom², Ole Winther¹, Max Welling²
Technical University of Denmark¹, UvA-Bosch Delta Lab, University of Amsterdam²
didni@dtu.dk, p.jaini@uva.nl, e.hoogeboom@uva.nl
olwi@dtu.dk, m.welling@uva.nl

Recap: Normalizing Flows and VAEs

$$\log p(x) = \log p(z) + \log |\det D_x z|$$
$$z = f^{-1}(x)$$

$$\log p(x) \ge E_{q(z|x)} \left[\log p(z) + \log \frac{p(x|z)}{q(z|x)} \right]$$

$$\approx \log p(z) + \log \frac{p(x|z)}{q(z|x)}, with \ z \sim q(z|x)$$

Flows

VAEs

- + Efficient to sample $x \sim p(x)$
- + Expressive (Villani 2003)
- + Exact computation of $\log p(x)$

- + Efficient to sample $x \sim p(x)$
- + Useful lower-dimensional latent representation

- No dimensionality reduction

- No exact computation of $\log p(x)$

Is it possible to have composable transformations that can alter dimensionality and allow for exact likelihood evaluation?

Combining Flows and VAEs

- 1. Forward Transformation : $p(x|z) = \delta(x f(z))$
- 2. Inverse Transformation: $q(z|x) = \delta(z f^{-1}(x))$
- 3. Likelihood Contribution:

$$\log p(x) = \log p(z) + \log |\det D_x z| \qquad z = f^{-1}(x)$$

$$\log p(x) \ge \log p(z) + \log \frac{p(x|z)}{q(z|x)} \qquad z \sim q(z|x)$$

SurVAE Flow

Sur(jection)VAE Flow

- $f: \mathcal{Z} \to \mathcal{X}$ is surjective, if $\forall x \in \mathcal{X}$ there exists $z \in \mathcal{Z}$ such that x = f(z)
- Surjections are in general not invertible, but right inverses exists i.e $g: \mathcal{X} \to \mathcal{Z}$, such that $f \circ g(x) = x$
- g can be stochatic, i.e q(z|x), with support only over the preimage of x, $B(x) \coloneqq \{z|x = f(z)\}$

Composable building blocks of SurVAE Flows

$$\begin{split} \log p(x) &= E_{q(Z|X)}[\log p(x|z)] - D_{kl}[q(z|x)||p(z)] + D_{kl}[q(z|x)||p(z|x)] \\ &= E_{q(Z|X)}\left[\log p(x|z) - \log\frac{q(z|x)}{p(z)} + \log\frac{q(z|x)}{p(z|x)}\right] \\ &= E_{q(Z|X)}\left[\log p(z) + \log\frac{p(x|z)}{q(z|x)} + \log\frac{q(z|x)}{p(z|x)}\right] \\ &\approx \log p(z) + \log\frac{p(x|z)}{q(z|x)} + \log\frac{q(z|x)}{p(z|x)}, \quad \text{where } z \sim q(z|x) \\ &= \log p(z) + \mathcal{V}(x,z) + \mathcal{E}(x,z), \quad \text{where } z \sim q(z|x) \end{split}$$

Transformation	$ \begin{array}{c} \textbf{Forward} \\ x \leftarrow z \end{array}$	$\begin{array}{ c c }\hline \textbf{Inverse}\\ \pmb{z} \leftarrow \pmb{x}\end{array}$	Likelihood Contribution $\mathcal{V}(\boldsymbol{x}, \boldsymbol{z})$	$egin{array}{c} \mathbf{Bound\ Gap} \ \mathcal{E}(oldsymbol{x},oldsymbol{z}) \end{array}$
Bijective	x = f(z)	$\left \ z=f^{-1}(x) \ \right $	$\log \det abla_{m{x}} m{z} $	0
Stochastic	$ x \sim p(x z)$	$igg egin{array}{c c} oldsymbol{z} \sim q(oldsymbol{z} oldsymbol{x}) \end{array}$	$\log rac{p(oldsymbol{x} oldsymbol{z})}{q(oldsymbol{z} oldsymbol{x})}$	$\log \frac{q(\boldsymbol{z} \boldsymbol{x})}{p(\boldsymbol{z} \boldsymbol{x})}$
Surjective (Gen.)	I	1	$\log rac{p(m{x} m{z})}{q(m{z} m{x})}$ as $rac{p(m{x} m{z}) o}{\delta(m{x}-f(m{z}))}$	$\log \frac{q(\boldsymbol{z} \boldsymbol{x})}{p(\boldsymbol{z} \boldsymbol{x})}$
Surjective (Inf.)	$x \sim p(x z)$	$\mid z = f^{-1}(x) \mid$	$\log \frac{p(\boldsymbol{x} \boldsymbol{z})}{q(\boldsymbol{z} \boldsymbol{x})}$ as $\frac{q(\boldsymbol{z} \boldsymbol{x}) \to}{\delta(\boldsymbol{z} - f^{-1}(\boldsymbol{x}))}$	0

Likelihood Contribution

Likelihood Contribution

$$\frac{\mathcal{V}(\boldsymbol{x}, \boldsymbol{z})}{\log |\det \nabla_{\boldsymbol{x}} \boldsymbol{z}|}$$

$$\log \frac{|\det \nabla_{\boldsymbol{x}} \boldsymbol{z}|}{|\operatorname{det} \nabla_{\boldsymbol{x}} \boldsymbol{z}|}$$

$$\log \frac{p(\boldsymbol{x}|\boldsymbol{z})}{q(\boldsymbol{z}|\boldsymbol{x})} \operatorname{as} \frac{p(\boldsymbol{x}|\boldsymbol{z}) \to}{\delta(\boldsymbol{x} - f(\boldsymbol{z}))}$$

$$\log \frac{p(\boldsymbol{x}|\boldsymbol{z})}{q(\boldsymbol{z}|\boldsymbol{x})} \operatorname{as} \frac{q(\boldsymbol{z}|\boldsymbol{x}) \to}{\delta(\boldsymbol{z} - f^{-1}(\boldsymbol{x}))}$$

$$f = f_1 \circ f_2 \circ \cdots \circ f_T$$

Algorithm 1: $\log - \text{likelihood}(x)$

Data:
$$x, p(z)$$
 & $\{f_t\}_{t=1}^T$
Result: $\mathcal{L}(x)$
for t in range (T) , do

| if f_t is bijective then
| $z = f_t^{-1}(x)$;
| $\mathcal{V}_t = \log \left| \det \frac{\partial z}{\partial x} \right|$;
| else if f_t is stochastic then
| $z \sim q_t(z|x)$;
| $\mathcal{V}_t = \log \frac{p_t(x|z)}{q_t(z|x)}$;
| $x = z$;

end

return
$$\log p(z) + \sum_{t=1}^{T} \mathcal{V}_t$$

Tensor Slicing

Let
$$x = (x_1, x_2) \in \mathbb{R}^d$$
, $x_1 = f^{-1}(x) = z$

$$p(x|z) = p(x_2|z)N(x_1|z,\sigma I)$$

$$q(z|x) = N(z|x_1,\sigma I) \xrightarrow{\sigma \to 0} \delta(z - f^{-1}(x))$$

$$\mathcal{V} = \lim_{\sigma \to 0} E_{q(z|x)} \left[\log \frac{p(x|z)}{q(z|x)} \right]$$

$$= \lim_{\sigma \to 0} E_{q(z|x)} \left[\log \frac{p(x_2|z)N(x_1|z,\sigma I)}{N(z|x_1,\sigma I)} \right]$$

$$= \lim_{\sigma \to 0} E_{q(z|x)} [\log p(x_2|z)]$$

 $\approx \log(p(x_2|z))$, where $z \sim \delta(z - f^{-1}(x))$

Absolute Value Surjection in inference direction

$$p(x|z) = \sum_{s \in \{1,-1\}} p(x|z,s)p(s|z) = \sum_{s \in \{1,-1\}} \delta(x-sz)p(s|z)$$
$$q(z|x) = \sum_{s \in \{1,-1\}} q(z|x,s)p(s|x) = \sum_{s \in \{1,-1\}} \delta(z-sx)\delta_{s,sign(x)}$$

$$\mathcal{V} = E_{q(z|x,s)q(s|x)} \left[log \frac{p(x|z,s)p(s|z)}{q(z|x,s)q(s|x)} \right]$$

$$= E_{\delta(z-sx)\delta_{sign(x),s}} \left[\log \frac{\delta(x-sz)p(s|z)}{\delta(z-sx)\delta_{s,sign(x)}} \right]$$

$$\approx \log p(s|z)$$
, where $z = |x|, s = sign(x)$

Summary of generative surjection layers

Surjection	Forward	Inverse	$\mathcal{V}(x,z)$
Rounding	$x = \lfloor z \rfloor$	$\mid z \sim q(z x)$ where $z \in [x,x+1) \mid$	$-\log q(z x)$
Slicing	$ x = z_1$	$oldsymbol{z}_1 = x, oldsymbol{z}_2 \sim q(oldsymbol{z}_2 oldsymbol{x})$	$-\log q({m z}_2 {m x})$
Abs	$s = \operatorname{sign} z$ $x = z $	$s \sim \operatorname{Bern}(\pi(x))$ $z = s \cdot x, \ s \in \{1, -1\}$	$-\log q(s x)$
Max	$k = \arg\max z$ $x = \max z$	$z_k = x, \mathbf{z}_{-k} \sim q(\mathbf{z}_{-k} x, k)$	$-\log q(k x) - \log q(oldsymbol{z}_{-k} x,k)$
Sort	$\mathcal{I} = \operatorname{argsort} \boldsymbol{z}$ $\boldsymbol{x} = \operatorname{sort} \boldsymbol{z}$	$egin{aligned} \mathcal{I} \sim \operatorname{Cat}(oldsymbol{\pi}(oldsymbol{x})) \ oldsymbol{z} = oldsymbol{x}_{\mathcal{I}} \end{aligned}$	$-\log q(\mathcal{I} m{x})$
ReLU	$x = \max(z, 0)$	$ $ if $x = 0: z \sim q(z)$, else: $z = x$	$\mathbb{I}(x=0)[-\log q(z)]$

Synthetic Data 4x Data Flow AbsFlow (ours) MLP N(0,I)**Affine** Flow $\boldsymbol{\chi}$ coupling MLPUNIF(0,1)**Absolute AbsFlow** X Value (Anti-Sym.) MLP 1/2 N(0,I)**AbsFlow Affine Absolute Dataset** Flow AbsFlow (ours) (Symmetric) coupling **Value** Checkerboard 3.65 3.49 3.19 3.03 Corners 2.86 Gaussians 3.01 2.99 Circles 3.44 11 4x in - log p(x)

Point Cloud Data

Model	PPLL
PermuteFlow	-5.30*
SortFlow	-5.53
Neural Statistican (Edwards and Storkey, 2017)	-5.37
FlowScan (Bender et al., 2020)	-5.26**

64x

12

Image Data

bits/dim ↓

Model	CIFAR-10	ImageNet32	ImageNet64
RealNVP (Dinh et al., 2017)	3.49	4.28	-
Glow (Kingma and Dhariwal, 2018)	3.35	4.09	3.81
Flow++ (Ho et al., 2019)	3.08	3.86	3.69
Baseline (Ours)	3.08	4.00	3.70
MaxPoolFlow (Ours)	3.09	4.01	3.74

Model	Inception ↑	FID ↓
DCGAN*	6.4	37.1
WGAN-GP*	6.5	36.4
PixelCNN*	4.60	65.93
PixelIQN*	5.29	49.46
Baseline (Ours)	5.08	49.56
MaxPoolFlow (Ours)	5.18	49.03

Contributions of the paper

- + Provides a unifying theoretical framework for many models and architectures
- + Shows that dimensionality reduction with exactly tractable log likelihood is possible
- + Offers a full software implementation of SurVAE Flow
- Experiments show only minor improvements or include strong inductive bias
- No Runtime comparison in the experiments

	Model	SurVAE Flow architecture
I	Probabilistic PCA (Tipping and Bishop, 1999) VAE (Kingma and Welling, 2014; Rezende et al., 2014) Diffusion Models (Sohl-Dickstein et al., 2015; Ho et al., 2020)	$\mathcal{Z} \xrightarrow{stochastic} \mathcal{X}$
	Dequantization (Uria et al., 2013; Ho et al., 2019)	$\mathcal{Z} \xrightarrow{round} \mathcal{X}$
	ANFs, VFlow (Huang et al., 2020; Chen et al., 2020)	$\mathcal{X} \xrightarrow{augment} \mathcal{X} \times \mathcal{E} \xrightarrow{bijection} \mathcal{Z}$
	Multi-scale Architectures (Dinh et al., 2017)	$\mathcal{X} \xrightarrow{bijection} \mathcal{Y} imes \mathcal{E} \xrightarrow{slice} \mathcal{Y} \xrightarrow{bijection} \mathcal{Z}$
	CIFs, Discretely Indexed Flows, DeepGMMs (Cornish et al., 2019; Duan, 2019; Oord and Dambre, 2015)	$\mathcal{X} \xrightarrow{augment} \mathcal{X} \times \mathcal{E} \xrightarrow{bijection} \mathcal{Z} \times \mathcal{E} \xrightarrow{slice} \mathcal{Z}$
	RAD Flows (Dinh et al., 2019)	$\mathcal{X} \xrightarrow{partition} \mathcal{X}_{\mathcal{E}} \times \mathcal{E} \xrightarrow{bijection} \mathcal{Z} \times \mathcal{E} \xrightarrow{slice} \mathcal{Z}$