



## Low-temperature CO oxidation over $\text{Co}_3\text{O}_4$ -based catalysts: Significant promoting effect of $\text{Bi}_2\text{O}_3$ on $\text{Co}_3\text{O}_4$ catalyst



Yang Lou, Li Wang\*, Zhenyang Zhao, Yanhui Zhang, Zhigang Zhang,  
Guanzhong Lu, Yun Guo\*, Yanglong Guo

Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai, 200237, China

### ARTICLE INFO

#### Article history:

Received 31 October 2012

Received in revised form 5 March 2013

Accepted 11 June 2013

Available online 20 June 2013

#### Keywords:

Low-temperature CO oxidation

Oxygen vacancy

$\text{Co}_3\text{O}_4$

$\text{Bi}_2\text{O}_3$

$\text{O}_2$  activation

### ABSTRACT

The modification of  $\text{Co}_3\text{O}_4$  by  $\text{Bi}_2\text{O}_3$  significantly enhanced its catalytic performance for CO oxidation. The 20 wt.%  $\text{Bi}_2\text{O}_3$ - $\text{Co}_3\text{O}_4$  exhibited the best catalytic performance. The results of H<sub>2</sub>-TPR and CO-TPR revealed that the mobility of oxygen was accelerated greatly and the ability of low-temperature oxygen activation was the crucial factor to improve the catalytic performance.  $\text{Bi}_2\text{O}_3$  entered the lattice of  $\text{Co}_3\text{O}_4$  caused the structural defect and lattice distortion, which should be the origin of the high  $\text{O}_2$  activation ability and mobility. Structure-performance correlation demonstrated that the low-temperature oxygen activation was dependent on the defective degree of structure, which was determined by the content of  $\text{Bi}_2\text{O}_3$ . The catalytic behaviors under different reaction conditions revealed that CO could effectively adsorb on the surface active sites and  $\text{CO}_2$  could competitively adsorb on the active sites. The ability to supply the active  $\text{O}_2$  species was suggested to be a key step. The kinetic data showed not only the amount of surface active sites were increased on the surface of  $\text{Co}_3\text{O}_4$  but also the catalytic ability of single active site was enhanced greatly.

© 2013 Elsevier B.V. All rights reserved.

### 1. Introduction:

Low-temperature CO oxidation has not only great value on academic but also practical application [1–18]. Among these catalysts, supported noble metal catalysts showed high activity for CO oxidation [1–5]. Although some achievements have been obtained, the high cost of noble metals still inhibited their application. Hence, the study of low-temperature CO oxidation catalyzed by transition metal has been a very important and practical topic.

$\text{Co}_3\text{O}_4$  is considered as an alternative to noble metal because of the high activity for low-temperature CO oxidation [6–13].  $\text{Co}_3\text{O}_4$  has a spinel structure containing  $\text{Co}^{3+}$  in an octahedral coordination and  $\text{Co}^{2+}$  in a tetrahedral coordination [8,10]. Haruta and co-workers [7] reported that  $\text{Co}_3\text{O}_4$  exhibited excellent low-temperature activity for CO oxidation that  $T_{50}$  could be obtained at  $-54^\circ\text{C}$ . Thormählen et al. [9] reported that  $\text{CoO}_x/\text{Al}_2\text{O}_3$  could completely convert CO to  $\text{CO}_2$  at  $-43^\circ\text{C}$  and obtain 50% CO conversion at  $-63^\circ\text{C}$ . Xie et al. [10] reported that the  $\text{Co}_3\text{O}_4$  nanorods with specific morphology mainly exposed [110] plane could catalyze CO oxidation at temperature as low as

$-77^\circ\text{C}$  and sustain 100% CO conversion to  $\text{CO}_2$  during the initial 6 h.

However, the  $\text{Co}_3\text{O}_4$  surface was very sensitive to the reaction condition and water concentration. The water was thought to inhibit the  $\text{O}_2$  activation [13,14] and the different reaction conditions might influence the accumulation of surface carbonate species [14]. In fact, the good performance of  $\text{Co}_3\text{O}_4$  catalyst for CO oxidation could be attributed to high activity of lattice oxygen. The experimental and theoretical results [6,7,10–14] indicated that the oxygen activation played a very important role in the reaction processes on the surface of  $\text{Co}_3\text{O}_4$  and oxygen vacancy was thought to be the best active site for oxygen activation. Hence, it should be a useful method to increase the CO oxidation performance of  $\text{Co}_3\text{O}_4$  by tuning the amount of surface oxygen vacancy through the pretreatments under different conditions [13], doping the heteroatom in the bulk of  $\text{Co}_3\text{O}_4$  [6] and etc. In our previous work, the  $\text{Bi}_2\text{O}_3$  was used to modify the amount of surface oxygen vacancy and the catalytic performance of  $\text{Co}_3\text{O}_4$  for CO oxidation was enhanced greatly [6].

In our study, we found the modification of  $\text{Co}_3\text{O}_4$  by  $\text{Bi}_2\text{O}_3$  could significantly enhance the catalytic performance. This paper would report the catalytic behaviors under different reaction conditions and the effects of  $\text{Bi}_2\text{O}_3$  on the structural and surface properties of  $\text{Co}_3\text{O}_4$  catalysts. The reason for the significantly promoted activity of CO oxidation on  $\text{Bi}_2\text{O}_3$ - $\text{Co}_3\text{O}_4$  surface was also discussed from perspective of kinetics.

\* Corresponding author. Tel.: +86 21 64253703.

E-mail addresses: [wangli@ecust.edu.cn](mailto:wangli@ecust.edu.cn) (L. Wang), [\(Y. Guo\).](mailto:yunguo@ecust.edu.cn)

## 2. Experimental

### 2.1. Catalyst preparation

The samples were prepared by precipitation and co-precipitation methods. The cobalt acetate ( $\text{Co}(\text{CH}_3\text{COO})_2 \cdot 4\text{H}_2\text{O}$ ) and bismuth chloride ( $\text{BiCl}_3$ ) were used as precursor salts, and sodium carbonate ( $\text{Na}_2\text{CO}_3$ ) was used as precipitant. The preparation method was similar to the reference [10]. 4.98 g cobalt acetate and matching bismuth chloride were dissolved into 80 ml ethylene glycol, and the system was degassed by vacuum. Then the mixture was heated to 160 °C and kept in  $\text{N}_2$  flow for 40 min. 200 ml of 0.22 M  $\text{Na}_2\text{CO}_3$  solution heated at 80 °C was added into the above solution prepared, and mixture was further aged at 160 °C for 1 h under vigorously stirring. The precipitate was washed using distilled water until no  $\text{Cl}^-$  was detected by  $\text{AgNO}_3$  solution. After filtering, the solid powder obtained was dried at 65 °C overnight and calcined at 350 °C for 4 h in air. The calculated contents of  $\text{Bi}_2\text{O}_3$  were 15, 18, 20, 22 and 25 wt.%.

### 2.2. Evaluation of the catalytic performance

The activity of catalysts for CO oxidation was evaluated in a fixed-bed reactor at atmospheric pressure, and 200 mg catalyst (40–60 mesh) was used. The feed gas of 1 vol.% CO and 20 vol.%  $\text{O}_2$  in  $\text{N}_2$  passed through the catalytic bed at a flow rate of 50 ml/min. Before the experiments, the catalyst was pretreated at 350 °C for 40 min in 20 vol.%  $\text{O}_2/\text{N}_2$  (50 ml/min). The dry feed gas was obtained by passing the feed gas through molecular-sieve trap cooled to –80 °C. The conversion of CO was measured from room temperature to the temperature of CO conversion below 20%. The temperature was adjusted by using ethanol and liquid nitrogen mixture. The concentrations of CO and  $\text{CO}_2$  in the outlet stream were measured by an on-line gas chromatograph after the catalyst bed temperature was stabilized at the settled value for 15 min to obtain the steady state. For testing the effects of preadsorption, the procedures were followed: the gas (CO,  $\text{O}_2$  and  $\text{CO}_2$ ) was preadsorbed for 15 min, then the catalytic activity was tested as described at above and the feed gas was 1 vol.% CO, 20 vol.%  $\text{O}_2$  and  $\text{N}_2$  balanced.

### 2.3. Catalyst characterization

#### 2.3.1. CO-TPR

The temperature-programmed reduction of CO (CO-TPR) was performed under a flow of 5 vol.% CO/ $\text{N}_2$  (50 ml/min) over 200 mg catalyst using a heating rate of 10 °C/min. Before CO-TPR experiment, the samples were pretreated using 20 vol.%  $\text{O}_2/\text{N}_2$  (50 ml/min) mixed gas at 350 °C for 40 min. A mass spectrometer (MS, ICP 400, INFICON, Co. Ltd.) was used for monitoring the effluent gas. The mass signal of  $\text{CO}_2$  ( $m/z = 44$ ) was recorded. For the low temperature CO-TPR, the sample was cooled to –80 °C and then adsorbed CO for 1 h. The blank experiment was carried on with the same procedure in the flow of pure  $\text{N}_2$ .

#### 2.3.2. $\text{H}_2$ -TPR

The temperature-programmed reduction of  $\text{H}_2$  ( $\text{H}_2$ -TPR) was performed with a commercial temperature-programmed system. 50 mg of the catalyst was heated in the flow of 5 vol.%  $\text{H}_2/\text{N}_2$  (20 ml/min) at a heating rate of 10 °C/min from –80 °C to room temperature (Low-temperature  $\text{H}_2$ -TPR) or from room temperature to 850 °C (High-temperature  $\text{H}_2$ -TPR). The amount of  $\text{H}_2$  uptake during the reduction was measured by thermal conductivity detector (TCD). Before  $\text{H}_2$ -TPR experiment, the samples were pretreated by 20 vol.%  $\text{O}_2/\text{N}_2$  (50 ml/min) mixed gas at 350 °C for 40 min.

#### 2.3.3. XRD

In order to get the information about the structure of the samples, the XRD spectra were obtained with Rigaku D/max 2550 VB/PC diffractometer using a Cu K $\alpha$  radiation ( $\lambda = 1.54056 \text{ \AA}$ ). The X-ray tube was operated at 40 kV and 100 mA. The intensity data was collected at room temperature in a 2 $\theta$  range from 10° to 80° with a scan rate of 6°/min.

#### 2.3.4. BET

The BET surface areas were measured by nitrogen adsorption at liquid nitrogen temperature by using a surface area and porosity analyzer (Quantachrome NOVA 4000e apparatus). Before measurement, the samples were degassed at 180 °C for 6 h in vacuum.

#### 2.3.5. Raman

Raman spectra was recorded with thin wafer on a Renishaw spectrometer by using a 514 nm Ar $^+$  laser as the excitation source at room temperature. The laser beam intensity and the spectrum slit width were 2 mW and 3.5 cm $^{-1}$ , respectively.

#### 2.3.6. Kinetic measurements

The kinetic measurements were carried out in the temperature range of –55 °C to –102 °C and space velocity of 40,000–600,000 ml/g/h with feed steams of 0.2–2 vol.% CO and 5–20 vol.%  $\text{O}_2$ , balanced with  $\text{N}_2$ , to make sure the CO conversion was below 15% so as to eliminate the thermal effect and diffusion effect before calculating the reaction rates.

#### 2.3.7. $\text{O}_2$ -TPD

The temperature-programmed desorption of  $\text{O}_2$  ( $\text{O}_2$ -TPD) was performed from –80 °C to room temperature. The procedures were as followed: (1) the sample was pretreated under 20 vol.%  $\text{O}_2/\text{N}_2$  (50 ml/min) mixed gas at 350 °C for 40 min; (2) the sample was cooled to –80 °C and sustained  $\text{O}_2$  adsorption for 1 h; (3) the sample was purged with He for 1 h; (4) the sample was heated at a rate of 10 °C/min from –80 °C to room temperature. The signal of  $\text{O}_2$  desorption from the sample was measured by thermal conductivity detector (TCD).

## 3. Results

### 3.1. The effects of $\text{Bi}_2\text{O}_3$ content on catalytic performance of the $\text{Bi}_2\text{O}_3$ -modified $\text{Co}_3\text{O}_4$ catalysts

The effects of  $\text{Bi}_2\text{O}_3$  contents on the catalytic activity of  $\text{Co}_3\text{O}_4$  catalysts were shown in Fig. 1. Only 10% conversion of CO could be obtained on the pure  $\text{Bi}_2\text{O}_3$  at room temperature. For pure  $\text{Co}_3\text{O}_4$ , the lowest temperature of complete conversion (LTCC) of CO was –40 °C. The doping of  $\text{Bi}_2\text{O}_3$  on  $\text{Co}_3\text{O}_4$  could greatly enhance the CO oxidation and the amount of  $\text{Bi}_2\text{O}_3$  showed great effect on the catalytic activity and stability. However, the excessive amount of  $\text{Bi}_2\text{O}_3$  did not further promote the catalytic activity of  $\text{Co}_3\text{O}_4$ .

**Table 1**

The LTCC, Reaction rate and TOF of different  $\text{Bi}_2\text{O}_3$ - $\text{Co}_3\text{O}_4$  catalysts for CO oxidation.

| $\text{Bi}_2\text{O}_3$ content (wt.%) | LTCC <sup>a</sup> (°C) | Reaction rate <sup>b</sup> ( $\mu\text{mol g}^{-1} \text{s}^{-1}$ ) | TOF <sup>c</sup> ( $10^{-8} \text{ mol/s m}^2$ ) |
|----------------------------------------|------------------------|---------------------------------------------------------------------|--------------------------------------------------|
| 0                                      | –40                    | 3.89                                                                | 3.2                                              |
| 15                                     | –86                    | 11.74                                                               | 8.0                                              |
| 20                                     | –89                    | 17.05                                                               | 12.8                                             |
| 25                                     | –58                    | 7.89                                                                | 6.0                                              |

<sup>a</sup> LTCC: the lowest temperature of complete conversion

<sup>b</sup> Reaction rate: measured at –75 °C under reaction condition of 2 vol.% CO, 10 vol.%  $\text{O}_2$ ,  $\text{N}_2$  balance with SV = 600,000 ml/g/h.

<sup>c</sup> TOF values were calculated based on the BET surface area not on the amount of surface active sites.



**Fig. 1.** The catalytic activities of Bi<sub>2</sub>O<sub>3</sub>-Co<sub>3</sub>O<sub>4</sub> samples for CO oxidation (a) and The catalytic stability of pure Co<sub>3</sub>O<sub>4</sub> was measured at -40 °C and 20 wt.% Bi<sub>2</sub>O<sub>3</sub>-Co<sub>3</sub>O<sub>4</sub> was measured at -75 °C under dry condition (b).

20 wt.% Bi<sub>2</sub>O<sub>3</sub>-Co<sub>3</sub>O<sub>4</sub> exhibited the highest catalytic activity and the LTCC of CO was -89 °C. Compared with the pure Co<sub>3</sub>O<sub>4</sub>, the reaction rate of Bi<sub>2</sub>O<sub>3</sub>-Co<sub>3</sub>O<sub>4</sub> samples was increased greatly from the kinetic data showed in the Table 1. Especially, the reaction rate of 20 wt.% Bi<sub>2</sub>O<sub>3</sub>-Co<sub>3</sub>O<sub>4</sub> was about 4.4 times to that of Co<sub>3</sub>O<sub>4</sub>. At the same time, the stability of Co<sub>3</sub>O<sub>4</sub> was enhanced greatly. Under dry feed gas condition, the complete CO conversion was sustained at -40 °C for 80 min over pure Co<sub>3</sub>O<sub>4</sub>, while 20 wt.% Bi<sub>2</sub>O<sub>3</sub>-Co<sub>3</sub>O<sub>4</sub> could completely oxidize CO at -75 °C for 600 min.

### 3.2. Catalytic behaviors of 20 wt.% Bi<sub>2</sub>O<sub>3</sub>-Co<sub>3</sub>O<sub>4</sub> catalysts under different reaction conditions.

#### 3.2.1. The effect of CO concentration on the catalytic activity of 20 wt.% Bi<sub>2</sub>O<sub>3</sub>-Co<sub>3</sub>O<sub>4</sub>

The CO concentration had great effect on the activity of 20 wt.% Bi<sub>2</sub>O<sub>3</sub>-Co<sub>3</sub>O<sub>4</sub> as shown in Fig. 2. The catalyst exhibited much better activity under lower CO concentration condition. The CO could be completely converted even at -108 °C when the CO concentration was decreased to 0.5 vol.%. But when increasing CO concentration to 2 vol.% and pre-adsorbing CO on the surface, the LTCC was



**Fig. 2.** The effects of CO concentration and pre-adsorption on the activity of 20 wt.% Bi<sub>2</sub>O<sub>3</sub>-Co<sub>3</sub>O<sub>4</sub>.

decreased to -84 °C and -70 °C. These results indicated that pre-adsorbed CO could occupy the active sites and inhibit the adsorption and dissociation of O<sub>2</sub>. For the higher CO concentration, the supply of active oxygen might not match the consumption of adsorbed CO, which decreased the activity for CO oxidation.

#### 3.2.2. The effect of O<sub>2</sub> concentration on the catalytic activity of 20 wt.% Bi<sub>2</sub>O<sub>3</sub>-Co<sub>3</sub>O<sub>4</sub>

The oxygen played an important role in CO oxidation over Co<sub>3</sub>O<sub>4</sub> catalysts. As shown in Fig. 3, increasing the oxygen concentration could significantly improve the catalytic activity. When the O<sub>2</sub> concentration was up to 30 vol.%, CO could be completely converted to CO<sub>2</sub> at as low as -105 °C and 50% CO conversion was obtained even at -115 °C. Moreover, the pre-adsorption of O<sub>2</sub> also obviously promoted the catalytic activity and the LTCC could be obtained at -106 °C. The catalytic activity was the worst when the O<sub>2</sub> concentration was 10 vol.%.



**Fig. 3.** The effects of oxygen concentration and oxygen pre-adsorption on the catalytic activity of 20 wt.% Bi<sub>2</sub>O<sub>3</sub>-Co<sub>3</sub>O<sub>4</sub>.



Fig. 4. The effects of CO<sub>2</sub> concentration and pre-adsorption on the catalytic activity of 20 wt.% Bi<sub>2</sub>O<sub>3</sub>-Co<sub>3</sub>O<sub>4</sub>.

### 3.2.3. The effect of CO<sub>2</sub> concentration on the catalytic activity of 20 wt.% Bi<sub>2</sub>O<sub>3</sub>-Co<sub>3</sub>O<sub>4</sub>

For investigating the influence of reaction product on the catalytic reaction, the effect of CO<sub>2</sub> was studied as shown in Fig. 4. The presence of CO<sub>2</sub> in the feed stream obviously inhibited the CO oxidation on 20 wt.% Bi<sub>2</sub>O<sub>3</sub>-Co<sub>3</sub>O<sub>4</sub>. The LTCC increased from -89 °C to -51 °C when adding 1 vol.% CO<sub>2</sub> into the feed gas. The activity didn't further decrease with the increase of CO<sub>2</sub> concentration. And the LTCC of 20 wt.% Bi<sub>2</sub>O<sub>3</sub>-Co<sub>3</sub>O<sub>4</sub> was raised to -74 °C after pre-adsorbing CO<sub>2</sub>. These results implied that the CO<sub>2</sub> molecule might competitively adsorb on the active sites with the reactants and inhibit the adsorption of reactants.

### 3.3. Structural characteristics of the Co<sub>3</sub>O<sub>4</sub> catalysts modified by Bi<sub>2</sub>O<sub>3</sub>

#### 3.3.1. Surface area and crystalline structure

XRD patterns of different Bi<sub>2</sub>O<sub>3</sub>-Co<sub>3</sub>O<sub>4</sub> catalysts were shown in Fig. 5. For the Bi<sub>2</sub>O<sub>3</sub>-Co<sub>3</sub>O<sub>4</sub>, the characteristic peak of Bi<sub>2</sub>O<sub>3</sub> was observed at about 32.8°. And the diffraction peaks of Co<sub>3</sub>O<sub>4</sub> shifted to lower 2θ degree slightly. It indicated that the Bi<sup>3+</sup> inserted the lattice of Co<sub>3</sub>O<sub>4</sub> during the preparation process, and the lattice



Fig. 5. XRD patterns of Bi<sub>2</sub>O<sub>3</sub>-Co<sub>3</sub>O<sub>4</sub> samples, \*: Co<sub>3</sub>O<sub>4</sub> phase; δ: Bi<sub>2</sub>O<sub>3</sub> phase.

Table 2

BET surface areas and crystal sizes of Co<sub>3</sub>O<sub>4</sub> samples doped by different Bi<sub>2</sub>O<sub>3</sub> contents.

| Bi <sub>2</sub> O <sub>3</sub> content (wt.%) | 0     | 15    | 20    | 25    |
|-----------------------------------------------|-------|-------|-------|-------|
| BET (m <sup>2</sup> /g)                       | 121.6 | 147.3 | 133.6 | 132.2 |
| Crystal size (nm)                             | 7.3   | 5.0   | 5.4   | 5.5   |

parameter of Co<sub>3</sub>O<sub>4</sub> was changed due to the unmatched larger radius of Bi<sup>3+</sup> ( $r=0.103\text{ nm}$ ). At the same time, the characteristic peak of Co<sub>3</sub>O<sub>4</sub> became broad obviously after the deposition of Bi<sub>2</sub>O<sub>3</sub>, which revealed the reduction of crystalline size. The crystal sizes of Bi<sub>2</sub>O<sub>3</sub>-Co<sub>3</sub>O<sub>4</sub> samples calculated based on Scherrer Equation were similar, but smaller than that of pure Co<sub>3</sub>O<sub>4</sub> (7.3 nm) shown in Table 2. The results indicated that the insertion of Bi<sub>2</sub>O<sub>3</sub> induced the structural change of Co<sub>3</sub>O<sub>4</sub> and suppressed the growth of crystal.

#### 3.3.2. Structural defects of the Bi<sub>2</sub>O<sub>3</sub>-Co<sub>3</sub>O<sub>4</sub> catalysts

Fig. 6 showed the Raman spectra of Bi<sub>2</sub>O<sub>3</sub>-Co<sub>3</sub>O<sub>4</sub> samples and pure Co<sub>3</sub>O<sub>4</sub>. For pure Co<sub>3</sub>O<sub>4</sub>, five Raman peaks at 191, 481, 524, 617 and 688 cm<sup>-1</sup> were observed corresponding to the F<sub>2g</sub><sup>(1)</sup>, E<sub>g</sub>, F<sub>2g</sub><sup>(2)</sup>, F<sub>2g</sub><sup>(3)</sup> and A<sub>1g</sub> symmetry of Co<sub>3</sub>O<sub>4</sub> [19–21], respectively. Bi<sub>2</sub>O<sub>3</sub>-Co<sub>3</sub>O<sub>4</sub> samples gave the similar Raman spectra with Co<sub>3</sub>O<sub>4</sub>, while the characteristic peaks of Bi<sub>2</sub>O<sub>3</sub> could not be detected [22,23]. Compared with Co<sub>3</sub>O<sub>4</sub>, all of the Raman peaks on Bi<sub>2</sub>O<sub>3</sub>-Co<sub>3</sub>O<sub>4</sub> samples shifted to the lower frequencies and broadened, which was associated with the lattice distortion or residual stress of the spinel structure [24]. The results of XRD and Raman spectra showed that 20 wt.% Bi<sub>2</sub>O<sub>3</sub>-Co<sub>3</sub>O<sub>4</sub> exhibited the maximum structural defects, which was in line with 20 wt.% Bi<sub>2</sub>O<sub>3</sub>-Co<sub>3</sub>O<sub>4</sub> owning the highest catalytic activity.

### 3.4. Reducibility of the Bi<sub>2</sub>O<sub>3</sub>-Co<sub>3</sub>O<sub>4</sub> catalysts

#### 3.4.1. H<sub>2</sub>-TPR

The high-temperature H<sub>2</sub>-TPR profiles of pure Co<sub>3</sub>O<sub>4</sub>, pure Bi<sub>2</sub>O<sub>3</sub> and Bi<sub>2</sub>O<sub>3</sub>-Co<sub>3</sub>O<sub>4</sub> samples were shown in Fig. 7(a). The TPR of Bi<sub>2</sub>O<sub>3</sub> showed a broad reduction peak at the temperature range of 350–600 °C. Three reduction peaks were observed on Co<sub>3</sub>O<sub>4</sub>, which corresponded to the reduction of surface oxygen species (130 °C), the reduction of Co<sup>3+</sup> to Co<sup>2+</sup> ( $\alpha_1$ ), and the reduction of Co<sup>2+</sup> to Co<sup>0</sup> ( $\alpha_2$ ), respectively [25–29].



Fig. 6. Raman spectra of 15 wt.% Bi<sub>2</sub>O<sub>3</sub>-Co<sub>3</sub>O<sub>4</sub>, 20 wt.% Bi<sub>2</sub>O<sub>3</sub>-Co<sub>3</sub>O<sub>4</sub>, 25 wt.% Bi<sub>2</sub>O<sub>3</sub>-Co<sub>3</sub>O<sub>4</sub> and Co<sub>3</sub>O<sub>4</sub>.



**Fig. 7.** High-temperature (a) / Low-temperature (b)-H<sub>2</sub>-TPR profiles of pure Co<sub>3</sub>O<sub>4</sub> and Bi<sub>2</sub>O<sub>3</sub>-Co<sub>3</sub>O<sub>4</sub> samples.

Compared with the pure Co<sub>3</sub>O<sub>4</sub>, the reduction of Bi<sub>2</sub>O<sub>3</sub>-Co<sub>3</sub>O<sub>4</sub> samples became more complex. The new peak in the temperature range of 360 to 460 °C could be ascribed to the reduction of Bi<sub>2</sub>O<sub>3</sub>. The reduction peaks in the temperature range of 450 to 700 °C, including a weak broad peak and a sharp reduction peak, could be attributed to the reduction of Co<sup>2+</sup>. The reduction of Co<sup>3+</sup> (α<sub>1</sub>) and Co<sup>2+</sup> (α<sub>2</sub>) shifted to lower temperature after the deposition of Bi<sub>2</sub>O<sub>3</sub>. The sharp reduction peak, attributed to the reduction of Co<sup>2+</sup>, implied that the oxygen diffusion in bulk Co<sub>3</sub>O<sub>4</sub> was accelerated significantly.

The low-temperature H<sub>2</sub>-TPR profiles of pure Co<sub>3</sub>O<sub>4</sub> and Bi<sub>2</sub>O<sub>3</sub>-Co<sub>3</sub>O<sub>4</sub> samples showed in the Fig. 7 (b). There was an obvious reduction peak at -60 °C on pure Co<sub>3</sub>O<sub>4</sub> and obvious reduction peak at around -70 °C on the Bi<sub>2</sub>O<sub>3</sub>-Co<sub>3</sub>O<sub>4</sub> samples. However, there was another obvious peak at -80 °C on the 20 wt.% Bi<sub>2</sub>O<sub>3</sub>-Co<sub>3</sub>O<sub>4</sub>. Continuously increasing the content of Bi<sub>2</sub>O<sub>3</sub> to 25%, the reduction peak at -80 °C disappeared. The 20 wt.% Bi<sub>2</sub>O<sub>3</sub>-Co<sub>3</sub>O<sub>4</sub> showed the best reducibility, which was in accordance with its highest catalytic activity. These results revealed the doping of Bi<sub>2</sub>O<sub>3</sub> promoted the reducibility and oxygen mobility of Co<sub>3</sub>O<sub>4</sub> and enhanced the CO oxidation activity.

#### 3.4.2. CO-TPR

The low-temperature CO-TPR of pure Co<sub>3</sub>O<sub>4</sub> and 20 wt.% Bi<sub>2</sub>O<sub>3</sub>-Co<sub>3</sub>O<sub>4</sub> were showed in Fig. 8. The lattice oxygen on surface layer was regarded as playing an important role in this reduction reaction [30–34]. Two obvious CO consumption peaks could be observed on 20 wt.% Bi<sub>2</sub>O<sub>3</sub>-Co<sub>3</sub>O<sub>4</sub> at the temperature range of -80 to -20 °C, which was ascribed to the contribution of surface highly active lattice oxygen or weakly adsorbed molecular oxygen species. However, the CO consumption was obviously detected over pure Co<sub>3</sub>O<sub>4</sub> only at the temperature higher than -20 °C, which indicated that the activation of lattice oxygen was accelerated significantly on 20 wt.% Bi<sub>2</sub>O<sub>3</sub>-Co<sub>3</sub>O<sub>4</sub> due to the structural defects and the interaction between Bi<sub>2</sub>O<sub>3</sub> and Co<sub>3</sub>O<sub>4</sub>.

#### 3.4.3. Low-temperature O<sub>2</sub>-TPD

To further investigate the adsorption and activation of oxygen on the surface of Co<sub>3</sub>O<sub>4</sub>-based catalysts, low-temperature O<sub>2</sub>-TPD experiments were carried out from -80 °C to 0 °C, the results were shown in the Fig. 9. An obvious O<sub>2</sub> desorption peak was observed in the temperature range of -75 to -50 °C. The desorption peak of the Co<sub>3</sub>O<sub>4</sub>-based catalysts could be attributed to the molecular oxygen species adsorbed on the oxygen vacancy [13]. The nature of the active site of the catalyst could be evaluated by the difference of the amount of the active sites and the intrinsic activity of the active

sites [17]. For the Bi<sub>2</sub>O<sub>3</sub>-Co<sub>3</sub>O<sub>4</sub> samples, the O<sub>2</sub> desorption peak gradually shifted to the lower temperature with the increasing of Bi<sub>2</sub>O<sub>3</sub> contents, meanwhile, the desorption amount of O<sub>2</sub> increased. For example, the desorption amount of O<sub>2</sub> on 20 wt.% Bi<sub>2</sub>O<sub>3</sub>-Co<sub>3</sub>O<sub>4</sub>-Co<sub>3</sub>O<sub>4</sub> was 1.76 times of that on pure Co<sub>3</sub>O<sub>4</sub>. However, the O<sub>2</sub> desorption peak shifted to higher temperature with continuously increasing the Bi<sub>2</sub>O<sub>3</sub> contents to 25%, and the amount of desorbed O<sub>2</sub> decreased about 8%.

#### 3.5. Reaction order and apparent activation energy

The kinetic data was showed in the Fig. 10. The apparent activation energy calculated were 19.0 kJ mol<sup>-1</sup> and 20.1 kJ mol<sup>-1</sup> for 20 wt.% Bi<sub>2</sub>O<sub>3</sub>-Co<sub>3</sub>O<sub>4</sub> and pure Co<sub>3</sub>O<sub>4</sub> as shown in Fig. 10 (a), which was in line with the previous data [10,13]. The reaction orders of CO and O<sub>2</sub> shown in Fig. 10 (b) were -1.54 and 0.65 over the 20 wt.% Bi<sub>2</sub>O<sub>3</sub>-Co<sub>3</sub>O<sub>4</sub> and -0.84 and 1.02 over pure Co<sub>3</sub>O<sub>4</sub>, respectively.

## 4. Discussion

Our results showed that Bi<sub>2</sub>O<sub>3</sub>-Co<sub>3</sub>O<sub>4</sub> samples exhibited much higher catalytic activity than pure Co<sub>3</sub>O<sub>4</sub> and 20 wt.% Bi<sub>2</sub>O<sub>3</sub>-Co<sub>3</sub>O<sub>4</sub>



**Fig. 8.** Low-temperature CO-TPR profiles of 20 wt.% Bi<sub>2</sub>O<sub>3</sub>-Co<sub>3</sub>O<sub>4</sub> and Co<sub>3</sub>O<sub>4</sub>.



**Fig. 9.** Low-temperature  $O_2$ -TPD of pure  $Co_3O_4$  and  $Bi_2O_3$ - $Co_3O_4$  samples.



**Fig. 10.** The kinetic data of pure  $Co_3O_4$  and 20 wt.%  $Bi_2O_3$ - $Co_3O_4$ : Activation energy (a), Reaction order of pure  $Co_3O_4$  and 20 wt.%  $Bi_2O_3$ - $Co_3O_4$  (b), (●) CO over pure  $Co_3O_4$ ; (■)  $O_2$  over pure  $Co_3O_4$ ; (▼) CO over 20 wt.%  $Bi_2O_3$ - $Co_3O_4$ ; (▲)  $O_2$  over 20 wt.%  $Bi_2O_3$ - $Co_3O_4$ .

showed the best catalytic activity. However, the excessive  $Bi_2O_3$  (25 wt.%) did not further improve the activity of  $Co_3O_4$ .

As we know, for the CO oxidation over  $Co_3O_4$  catalysts, CO firstly adsorbed on the  $Co^{3+}$ , then the adsorbed CO reacted with the lattice oxygen to produce  $CO_2$  and oxygen vacancy. The oxygen vacancy would be replenished by  $O_2$  to form the new active oxygen species and complete the redox cycle [10,14]. Therefore, the activity of lattice oxygen and the activation of gas  $O_2$  played an important role in the CO oxidation.

The results of XRD and Raman confirmed that the structural defects and distortion induced by the insertion of  $Bi^{3+}$  into the lattice of  $Co_3O_4$  and the interaction between  $Bi_2O_3$  and  $Co_3O_4$ . The significant  $Bi_2O_3$  phase was observed in  $Bi_2O_3$ - $Co_3O_4$  samples and the diffraction peaks of  $Bi_2O_3$  increased with increasing the  $Bi_2O_3$  contents from 15 wt.% to 20 wt%. However, the diffraction peaks of 25 wt.%  $Bi_2O_3$ - $Co_3O_4$  did not show the further shift of  $Co_3O_4$ , and the peak intensity of  $Bi_2O_3$  did not enhance as expected. Combined with the results of Raman, it was implied that the introduction of 20 wt.%  $Bi_2O_3$  in  $Co_3O_4$  produced the maximum structural defects, and the excessive  $Bi_2O_3$  could not aggravate the structural defect and lattice distortion.

The structural defects and lattice distortion could promote the formation of oxygen vacancy, which was beneficial for the activation and mobility of oxygen. The  $H_2$ -TPR and CO-TPR results showed that the activation and mobility of lattice oxygen were accelerated on  $Bi_2O_3$ - $Co_3O_4$ , which meant the ability of supplying active oxygen was enhanced greatly after the deposition of  $Bi_2O_3$ .  $O_2$ -TPD results also indicated that the ability of  $O_2$  adsorption on the  $Bi_2O_3$ - $Co_3O_4$  was enhanced. At the same time, the effects of CO and  $O_2$  concentration on the activity showed the supplying of active oxygen species played a very important role in the CO oxidation over  $Co_3O_4$ -based catalyst. Hence, the structural defects of  $Co_3O_4$  induced by the insertion of  $Bi^{3+}$  and the interaction between  $Bi_2O_3$  and  $Co_3O_4$  were suggested to be the origin of the high abilities for the activation and mobility of  $O_2$ . The formation of a thin layer of inactive  $Bi_2O_3$  on the surface was also probably reduced the activity of 25 wt.%  $Bi_2O_3$ - $Co_3O_4$  for CO oxidation.

The kinetic data showed that the activation energy of pure  $Co_3O_4$  ( $20.1\text{ kJ mol}^{-1}$ ) was almost same as that of 20 wt.%  $Bi_2O_3$ - $Co_3O_4$  sample ( $19.0\text{ kJ mol}^{-1}$ ). However, the pre-exponential factor of 20 wt.%  $Bi_2O_3$ - $Co_3O_4$  was about 32 times to that of pure  $Co_3O_4$ . Xie et al. [10] reported that the increase on the pre-exponential factor stood for the increase on the amount of active sites on the  $Co_3O_4$  for CO oxidation. Hence, it was clear that the amount of active sites on 20 wt.%  $Bi_2O_3$ - $Co_3O_4$  increased obviously compared with that on pure  $Co_3O_4$ .

At the same time, the reaction rates of  $Bi_2O_3$ - $Co_3O_4$  samples were obviously higher than that of  $Co_3O_4$  under the same reaction condition. For example, the TOF on 20 wt.%  $Bi_2O_3$ - $Co_3O_4$  was about 4.4 times to that on  $Co_3O_4$ . The reaction orders of CO on 20 wt.%  $Bi_2O_3$ - $Co_3O_4$  were lower ( $-1.54$ ) than that of  $Co_3O_4$  ( $-0.84$ ), which indicated the CO adsorption on 20 wt.%  $Bi_2O_3$ - $Co_3O_4$  was stronger than that on  $Co_3O_4$  [35]. However, the reaction orders of  $O_2$  on 20 wt.%  $Bi_2O_3$ - $Co_3O_4$  and  $Co_3O_4$  showed different trends, 0.65 on 20 wt.%  $Bi_2O_3$ - $Co_3O_4$  catalyst and 1.02 on pure  $Co_3O_4$  which suggested the adsorption and activation of  $O_2$  over 20 wt.%  $Bi_2O_3$ - $Co_3O_4$  was easier than that over pure  $Co_3O_4$  [13]. These results indicated that the doping of  $Bi_2O_3$  not only increased the amount of active sites but also promoted the catalytic ability of active sites.

## 5. Conclusions

The  $Bi_2O_3$ - $Co_3O_4$  showed high catalytic activity for low-temperature CO oxidation. Under dry feed gas condition, the 20 wt.%  $Bi_2O_3$ - $Co_3O_4$  showed the best catalytic performance and

CO could be completely converted to CO<sub>2</sub> at as low as –89 °C and sustain the complete conversion at –75 °C for 600 min. But the excessive doped content of Bi<sub>2</sub>O<sub>3</sub> inhibited the catalytic activity. The redox ability of Co<sub>3</sub>O<sub>4</sub> was significantly promoted by the structure defects and the interaction between Bi<sub>2</sub>O<sub>3</sub> and Co<sub>3</sub>O<sub>4</sub>, which promoted the activation and the mobility of active oxygen species. The kinetic data suggested the ability to provide the active O<sub>2</sub> species should be a key step. The modification of Co<sub>3</sub>O<sub>4</sub> by Bi<sub>2</sub>O<sub>3</sub> increased the amount of surface active sites, and enhanced the adsorption of CO and activation of O<sub>2</sub>.

## Acknowledgements

This project was supported financially by the National Basic Research Program of China (2010CB732300, 2013CB933201), the National High Technology Research and Development Program of China (2011AA03A406), National Natural Science Foundation of China (21171055), and the New Century Excellent Talents in University (NECT-10-0377).

## References

- [1] S.A.C. Carabineiro, B.F. Machado, R.R. Bacsab, P. Serpb, G. Dražić, J.L. Faria, J.L. Figueiredo, *J. Catal.* 273 (2010) 191.
- [2] S.Y. Li, G. Liu, H.L. Lian, M.J. Jia, G.M. Zhao, D.Z. Jiang, W.X. Zhang, *Catal. Commun.* 9 (2008) 1045.
- [3] M. Haruta, T. Kobayashi, N. Yamada, *Chem. Lett.* 16 (1987) 405.
- [4] M.S. Chen, D.W. Goodman, *Science* 306 (2004) 252.
- [5] B.T. Qiao, L.Q. Liu, J. Zhang, Y.Q. Deng, *J. Catal.* 261 (2009) 241.
- [6] Y. Lou, L. Wang, Y.H. Zhang, Z.Y. Zhao, Z.G. Zhang, G.Z. Lu, Y. Guo, *Catal. Today* 175 (2011) 610.
- [7] D.A.H. Cunningham, T. Kobayashi, N. Kamijo, M. Haruta, *Catal. Lett.* 25 (1994) 257.
- [8] Y.Z. Wang, Y.X. Zhao, C.G. Gao, D.S. Liu, *Catal. Lett.* 116 (2007) 136.
- [9] P. Thormählen, M. Skoglundh, E. Fridell, B. Andersson, *J. Catal.* 188 (1999) 300.
- [10] X.W. Xie, Y. Li, Z.Q. Liu, M. Haruta, W.J. Shen, *Nature* 458 (2009) 746.
- [11] J.Jansson, A.E.C. Palmqvist, E. Fridell, M. Skoglundh, L. Österlund, P. Thormählen, V. Langer, *J. Catal.* 211 (2002) 387.
- [12] J.Jansson, *J. Catal.* 194 (2000) 55.
- [13] Y.B. Yu, T. Takei, H. Ohashi, H. He, X.L. Zhang, M. Haruta, *J. Catal.* 267 (2009) 121.
- [14] H.F. Wang, R. Kavanagh, Y.L. Guo, Y. Guo, G.Z. Lu, P. Hu, *Angew. Chem. Int. Ed.* 51 (2011) 6657.
- [15] J. Xu, T. White, P. Li, C.H. He, J.G. Yu, W.K. Yuan, Y.F. Han, *J. Am. Chem. Soc.* 132 (2010) 10398.
- [16] M.S. Chen, D. Kumar, C.W. Yi, D.W. Goodman, *Science* 310 (2005) 291.
- [17] Y. Liu, C. Wen, Y. Guo, G.Z. Lu, Y.Q. Wang, *J. Phys. Chem. C* 114 (2010) 9889.
- [18] S. Kunz, F.F. Schweinberger, V. Habibpour, M. Röttgen, C. Harding, M. Arenz, U. Heiz, *J. Phys. Chem. C* 114 (2010) 1651.
- [19] L. He, Z.C. Li, Z.J. Zhang, *Nanotechnology* 19 (2008) 155606.
- [20] V.G. Hadjievl, M.N. Iliev, I.V. Vergilov, *J. Phys. C: Solid State Phys.* 21 (1988) 199.
- [21] Q. Liu, L.C. Wang, M. Chen, Y. Cao, H.Y. He, K.N. Fan, *J. Catal.* 263 (2009) 104.
- [22] S.N. Narang, N.D. Patel, V.B. Kartha, *J. Mol. Struct.* 327 (1994) 221.
- [23] M. Prekajski, A. Kremenović, B. Babić, M. Rosić, B. Matović, A.R. Mihajlović, M. Radović, *Mater. Lett.* 64 (2010) 2247.
- [24] I. Lopes, N.E. Hassan, H. Guerba, G. Wallez, A. Davidson, *Chem. Mater.* 18 (2006) 5826.
- [25] L. Xue, C.B. Zhang, H. He, Y. Teraoka, *Appl. Catal. B* 75 (2007) 167.
- [26] P.G. Harrison, I.K. Ball, W. Daniell, P. Lukinskas, M. Céspedes, E.E. Miró, M.A. Ulla, *Chem. Eng. J.* 95 (2003) 47.
- [27] N. Bahlawane, E.F. Rivera, K.K. Höinghaus, A. Brechling, U. Kleineberg, *Appl. Catal. B* 53 (2004) 245.
- [28] H.Y. Lin, Y.W. Chen, *Mater. Chem. Phys.* 85 (2004) 171.
- [29] B. Mazumder, J.C. Védrine, *Appl. Catal. A: Gen.* 245 (2003) 87.
- [30] L.F. Liotta, G.D. Carlo, G. Pantaleo, G. Deganello, *Catal. Commun.* 6 (2005) 329.
- [31] H.F.J. van't Blik, R. Prins, *J. Catal.* 97 (1986) 188.
- [32] A.A. Yaremchenko, V.V. Kharton, S.A. Veniaminov, V.D. Belyaev, V.A. Sobyanin, F.M.B. Marques, *Catal. Commun.* 8 (2007) 335.
- [33] M.V.D. Bossche, S.J. McIntosh, *J. Catal.* 255 (2008) 313.
- [34] L.H. Hu, K.Q. Sun, Q. Peng, B.Q. Xu, Y.D. Li, *Nano Res.* 3 (2010) 363.
- [35] M.M. Schubert, M.J. Kahlich, H.A. Gasteiger, R.J. Behm, *J. Power Sources* 8 (1999) 175.