

Infraestruturas de Sistemas Distribuídos Conceitos e Definições

Caso, rede ANSR/SINCRO

Luís Osório

- Conjunto de Locais de Controlo de Trânsito (LCT)
 - Instalados em troços de via pública com assinalável incidência de acidentes
 - Equipamento de via, na primeira fase, uma cabine com um cinemómetro e elementos complementares, numa estrutura normalizada (standard), para a deteção de veículos em excesso de velocidade
 - Preocupação sobre normalização ou desenvolvimento de standards a enquadrar na Organização Internacional de Normalização no Inglês International Organization for Standardization (ISO)
- Passamos a designar os equipamentos de via por sistemas ou elementos de sistema ciberfísico
 - Parte de interface com o mundo físico, sensores/atuadores englobande partes mecânicas elétricas e eletrónica.
 - Parte ciber, lógica computacional em execução num computador local (também conhecido por sistema embebido/embutido, embedded system)
 - No dicionário "relativo, em simultâneo, ao espaço virtual e à realidade física" [ref]

■ Conjunto de Locais de Controlo de Trânsito (LCT)

Cinemómetro intermutável entre cabines

■ Arquitetura adotada no que se passou a designar por SINCRO 1.0, 2010-2012 (entrada em produção em 2014)

LCT-VI - Local de Controlo de Trânsito – Velocidade Instantânea
LCT-VM - Local de Controlo de Trânsito – Velocidade Média

■ Perspetiva de evolução para a adoção do quadro Sistema de Sistemas Informáticos ou Ciberfísicos (ISoS); projeto de investigação em curso

■ Perspetiva SINCRO 2.0, 2022-2025

Conceitos a Clarificar

ISystem

Interação entre elementos

Desafio de Coordenação

Síntese de Apresentação de Aspetos de Infraestrutura

- Como podem os Serviços.1..N ler e escrever no Serviço.vetor?
 - Modelo Remote Procedure Call (RPC)?
 - Comunicação por mensagens? (message oriented middlware MOM)
- Como configurar os Serviços._{1..N} para encontrarem o Serviço._{vetor}?
 - Transparência à localização através de serviço de diretoria (registry)?
 - Como operacionalizar a procura do serviço (seu(s) end-point(s))?
- Como garantir a consistência do Vetor perante acessos concorrentes de múltiplos Serviços._{1.N}?
 - Transações, propriedades ACID?

Recordando o Conceito de Transação, pelas suas propriedades

■ Propriedades de uma Transação (ACID)

- Atomicidade (Atomicity)
 - Assegura que todas as operações que constituem uma transação são executadas de forma atómica; ou todas ou nenhuma;
- Consistência (Consistency preservation)
 - Assegura que a base de dados transita de um estado consistente para um outro também consistente, depois de finalizada a transação (Commit)
- Isolamento (Isolation)
 - Uma transação não sofre qualquer interferência de outras transações em execução em concorrência
- Duração (Durability)
 - Assegura que o resultado da transação, após terminada com sucesso (Commit) persiste perante uma eventual falha

Exemplo (manual do SGBD PostgreSQL, <u>link</u>)

BEGIN;

- UPDATE accounts SET balance = balance 100.00
- WHERE name = 'Alice';
- SAVEPOINT my_savepoint;
- UPDATE accounts SET balance = balance + 100.00
- WHERE name = 'Bob';
- -- oops ... forget that and use Wally's account
 - ROLLBACK TO my_savepoint;
 - UPDATE accounts SET balance = balance + 100.00
 - WHERE name = 'Wally';

COMMIT;

■ Subentende a existência de um **Gestor de Transações** (*Transaction Manager*)

Síntese de Apresentação de Aspetos de Infraestrutura

- Como tornar o serviço fiável (*Reliable*) introduzindo mecanismos que garantam tolerância a falhas (parcial, de alguns elementos)?
 - Réplicas do Serviço._{vetor}?
- Como garantir que a resposta é independente do número de clientes, ou seja perante um aumento (escala/escalabilidade) significativo do número de clientes que acedem ao Serviço._{vetor}?
 - Aumentar o número de instâncias de Serviço.vetor?
- Como garantir que o Serviço está a funcionar de acordo com o planeado?
 - Infraestrutura (sistema?) de monitorização?

O Problemas perante acessos concorrentes

- Considere-se um vetor de inteiros de 0 a N 1 acedido por múltiplos elementos Service (clientes)
 - A implementação do acesso ao vetor é concretizada por alguma das tecnologias de interação direta, (ponto a ponto)
 - a tecnologia mais apropriada (desempenho, latências, simplicidade, reutilização de bibliotecas existentes, a tecnologia com competências mais especializadas na empresa, custo, qualidade, etc.)
- Assumindo como invariante $\sum_{i=0}^{N-1} vetor[i] = CONST$
 - Quando dois ou mais clientes, e.g., um elemento Service de um CES que por sua vez será elemento de um ISystem, acede para leitura e escrita de elementos do vetor, a questão é sabermos se, sem qualquer mecanismo de controlo, o invariante é violado.
- Como abordar o acesso de múltiplos clientes a um serviço vetor?
 - No garante de solução fundamentada e de qualidade (garante o invariante, fiável, (segura), sustentável (custo de desenvolvimento e gestão do seu ciclo de vida)

A Abordagem ao Problema

Structure of projects of ISoS elements: ISystem, CES, Service

- OPerations Entity (OPE)
 - Artifact that implements computational functional responsibilities and complementary resources
 - <artifactid>ope
- MOnitoring Entity (MOE)
 - Artifact responsible for the monitoring.
 - <artifactid>moe
- API and Models (APIM)
 - Artifact grouping API and data models.
 - <artifactid>apim
- Deloyment and Operations (DevOps) Entity (DOE)
 - Artifact responsibility for deployment.
 - <artifactid>doe