Grundbegriffe der Informatik

Einheit 4: Wörter und vollständige Induktion

Thomas Worsch

Karlsruher Institut für Technologie, Fakultät für Informatik

Wintersemester 2009/2010

Überblick

Wörter

Wörter

Das leere Wort

Mehr zu Wörtern

Konkatenation von Wörtern

Konkatenation mit dem leeren Wort Eigenschaften der Konkatenation Beispiel: Aufbau von E-Mails

Iterierte Konkatenation

Vollständige Induktion

Binäre Operationen

Wörter 2/44

Wörter

Ein Wort über einem Alphabet A ist eine Folge von Zeichen aus A.

Apfelmus

Wörter 3/44

Wörter

Ein Wort über einem Alphabet A ist eine Folge von Zeichen aus A.

Milchreis

Symbole dürfen mehrfach vorkommen.

Wörter 3/44

Überblick

Wörter

Wörter

Das leere Wort

Mehr zu Wörtern

Konkatenation von Wörtern

Konkatenation mit dem leeren Wor Eigenschaften der Konkatenation

Beispiel: Aufbau von E-Mails

Iterierte Konkatenation

Vollständige Induktion

Binäre Operationer

Das Leerzeichen

- man benutzt es heutzutage (jedenfalls z. B. in europäischen Schriften) ständig, aber
- früher nicht!
- ► Für uns ist es ein Zeichen wie alle anderen auch; der Deutlichkeit wegen manchmal explizit

 geschrieben.
- ► Folge: z. B. Hallo_Welt ist *eine* Folge von Zeichen, also nur *ein* Wort (und nicht zwei)

- Sinn der Übung
 - ▶ an harmlosem Beispiel Dinge üben, die später wichtig werden
 - aber nicht: eine einfache Sache möglichst kompliziert darzustellen
- ▶ das Wesentliche an einer "Folge" oder "Liste" (von Zeichen)?
- ▶ Reihenfolge; deutlich gemacht z. B. durch Nummerierung:

▶ definiere für jede natürliche Zahl $n \ge 0$ die Menge der n kleinsten nichtnegativen ganzen Zahlen

$$\mathbb{G}_n = \{ i \in \mathbb{N}_0 \mid 0 \le i \land i < n \}$$

▶ Beispiele: $\mathbb{G}_4 = \{0, 1, 2, 3\}, \ \mathbb{G}_1 = \{0\} \ \text{und} \ \mathbb{G}_0 = \{\}$

- Sinn der Übung
 - ▶ an harmlosem Beispiel Dinge üben, die später wichtig werden
 - aber nicht: eine einfache Sache möglichst kompliziert darzustellen
- das Wesentliche an einer "Folge" oder "Liste" (von Zeichen)?
- ▶ Reihenfolge; deutlich gemacht z.B. durch Nummerierung:

▶ definiere für jede natürliche Zahl $n \ge 0$ die Menge der n kleinsten nichtnegativen ganzen Zahlen

 $\mathbb{G}_n = \{ i \in \mathbb{N}_0 \mid 0 \le i \land i < n \}$

▶ Beispiele: $\mathbb{G}_4 = \{0, 1, 2, 3\}, \ \mathbb{G}_1 = \{0\} \ \text{und} \ \mathbb{G}_0 = \{\}$

- Sinn der Übung
 - ▶ an harmlosem Beispiel Dinge üben, die später wichtig werden
 - aber nicht: eine einfache Sache möglichst kompliziert darzustellen
- das Wesentliche an einer "Folge" oder "Liste" (von Zeichen)?
- ▶ Reihenfolge; deutlich gemacht z. B. durch Nummerierung:

▶ definiere für jede natürliche Zahl $n \ge 0$ die Menge der n kleinsten nichtnegativen ganzen Zahlen

$$\mathbb{G}_n = \{ i \in \mathbb{N}_0 \mid 0 \le i \land i < n \}$$

▶ Beispiele: $\mathbb{G}_4 = \{0, 1, 2, 3\}, \ \mathbb{G}_1 = \{0\} \ \text{und} \ \mathbb{G}_0 = \{\}$

- Sinn der Übung
 - ▶ an harmlosem Beispiel Dinge üben, die später wichtig werden
 - aber nicht: eine einfache Sache möglichst kompliziert darzustellen
- das Wesentliche an einer "Folge" oder "Liste" (von Zeichen)?
- ► Reihenfolge; deutlich gemacht z. B. durch Nummerierung:

▶ definiere für jede natürliche Zahl $n \ge 0$ die Menge der n kleinsten nichtnegativen ganzen Zahlen

$$\mathbb{G}_n = \{ i \in \mathbb{N}_0 \mid 0 \le i \land i < n \}$$

▶ Beispiele: $\mathbb{G}_4 = \{0, 1, 2, 3\}, \ \mathbb{G}_1 = \{0\} \ \text{und} \ \mathbb{G}_0 = \{\}$

- Sinn der Übung
 - ▶ an harmlosem Beispiel Dinge üben, die später wichtig werden
 - aber nicht: eine einfache Sache möglichst kompliziert darzustellen
- das Wesentliche an einer "Folge" oder "Liste" (von Zeichen)?
- Reihenfolge; deutlich gemacht z. B. durch Nummerierung:

▶ definiere für jede natürliche Zahl $n \ge 0$ die Menge der n kleinsten nichtnegativen ganzen Zahlen

$$\mathbb{G}_n = \{ i \in \mathbb{N}_0 \mid 0 \le i \land i < n \}$$

▶ Beispiele: $\mathbb{G}_4 = \{0, 1, 2, 3\}, \ \mathbb{G}_1 = \{0\} \ \text{und} \ \mathbb{G}_0 = \{\}$

- ▶ Ein *Wort* ist eine *surjektive* Abbildung $w : \mathbb{G}_n \to A$.
- ightharpoonup n heißt die *Länge eines Wortes*, geschrieben |w|
- ▶ Sie denken erst einmal an Wortlängen $n \ge 1$?
 - ▶ ist in Ordnung
 - ▶ den Fall des sogenannten leeren Wortes ε mit Länge n=0 betrachten wir gleich noch
- ► Beispiel:
 - ▶ Wort w = hallo wird
 - ▶ formal zur Abbildung $w: \mathbb{G}_5 \to \{a,h,1,o\}$ mit w(0) = h, w(1) = a, w(2) = 1, w(3) = 1 und w(4) = o.
- ▶ lst das umständlich!
 - ▶ ja, aber
 - manchmal formalistische Auffassung Wörtern vorteilhaft
 - manchmal vertraute Auffassung Wörtern vorteilhaft
 - wir wechseln erst einmal hin und hei

- ▶ Ein *Wort* ist eine *surjektive* Abbildung $w : \mathbb{G}_n \to A$.
- ▶ *n* heißt die *Länge eines Wortes*, geschrieben |*w*|
- ▶ Sie denken erst einmal an Wortlängen $n \ge 1$?
 - ▶ ist in Ordnung
 - den Fall des sogenannten leeren Wortes ε mit Länge n=0 betrachten wir gleich noch
- ▶ Beispiel:
 - ▶ Wort w = hallo wird
 - ▶ formal zur Abbildung $w : \mathbb{G}_5 \to \{a, h, 1, o\}$ mit w(0) = h, w(1) = a, w(2) = 1, w(3) = 1 und w(4) = o.
- ▶ lst das umständlich!
 - ▶ ja, aber
 - manchmal formalistische Auffassung Wörtern vorteilhaft
 - manchmal vertraute Auffassung Wörtern vorteilhaft
 - wir wechseln erst einmal hin und her

- ▶ Ein *Wort* ist eine *surjektive* Abbildung $w : \mathbb{G}_n \to A$.
- ▶ n heißt die Länge eines Wortes, geschrieben |w|
- ▶ Sie denken erst einmal an Wortlängen $n \ge 1$?
 - ▶ ist in Ordnung
 - ▶ den Fall des sogenannten leeren Wortes ε mit Länge n=0 betrachten wir gleich noch
- ► Beispiel:
 - ▶ Wort w = hallo wird
 - ▶ formal zur Abbildung $w : \mathbb{G}_5 \to \{a, h, 1, o\}$ mit w(0) = h, w(1) = a, w(2) = 1, w(3) = 1 und w(4) = o.
- Ist das umständlich!
 - ▶ ja, aber
 - manchmal formalistische Auffassung Wörtern vorteilhaft
 - manchmal vertraute Auffassung Wörtern vorteilhaft
 - wir wechseln erst einmal hin und her

- ▶ A*: Menge aller Wörter über einem Alphabet A: alle Wörter, die nur Zeichen aus A enthalten
- ▶ Beispiel: A = {a, b}. Dann enthält A* zum Beispiel die Wörter
 - ▶ a b
 - ▶ aa. ab. ba. bb
 - ▶ aaa, aab, aba, abb, baa, bab, bba, bbb
 - und so weiter
 - und außerdem ε
 dieses merkwürdige (?) leere Wort (kommt gleich)
 - ▶ Beachte: es gibt unendlich viele Wörter die aber alle *endliche* Länge haben!
- ▶ A^* formalistisch: die Menge aller surjektiven Abbildungen $w: \mathbb{G}_n \to B$ mit $n \in \mathbb{N}_0$ und $B \subseteq A$.

- ▶ A*: Menge aller Wörter über einem Alphabet A: alle Wörter, die nur Zeichen aus A enthalten
- Beispiel: A = {a, b}.
 Dann enthält A* zum Beispiel die Wörter
 - ▶ a, b
 - aa, ab, ba, bb
 - aaa, aab, aba, abb, baa, bab, bba, bbb
 - und so weiter
 - und außerdem ε
 dieses merkwürdige (?) leere Wort (kommt gleich)
 - ▶ Beachte: es gibt unendlich viele Wörter die aber alle *endliche* Länge haben!
- ▶ A^* formalistisch: die Menge aller surjektiven Abbildungen $w: \mathbb{G}_n \to B$ mit $n \in \mathbb{N}_0$ und $B \subseteq A$.

- ▶ A*: Menge aller Wörter über einem Alphabet A: alle Wörter, die nur Zeichen aus A enthalten
- Beispiel: A = {a, b}.
 Dann enthält A* zum Beispiel die Wörter
 - ▶ a, b
 - aa, ab, ba, bb
 - aaa, aab, aba, abb, baa, bab, bba, bbb
 - und so weiter
 - und außerdem ε dieses merkwürdige (?) leere Wort (kommt gleich)
 - ▶ Beachte: es gibt unendlich viele Wörter die aber alle *endliche* Länge haben!
- ▶ A^* formalistisch: die Menge aller surjektiven Abbildungen $w: \mathbb{G}_n \to B$ mit $n \in \mathbb{N}_0$ und $B \subseteq A$.

- ▶ A*: Menge aller Wörter über einem Alphabet A: alle Wörter, die nur Zeichen aus A enthalten
- Beispiel: A = {a, b}.
 Dann enthält A* zum Beispiel die Wörter
 - ▶ a, b
 - ▶ aa, ab, ba, bb
 - aaa, aab, aba, abb, baa, bab, bba, bbb
 - und so weiter
 - und außerdem ε
 dieses merkwürdige (?) leere Wort (kommt gleich)
 - ▶ Beachte: es gibt unendlich viele Wörter die aber alle *endliche* Länge haben!
- ▶ A^* formalistisch: die Menge aller surjektiven Abbildungen $w: \mathbb{G}_n \to B$ mit $n \in \mathbb{N}_0$ und $B \subseteq A$.

- ▶ A*: Menge aller Wörter über einem Alphabet A: alle Wörter, die nur Zeichen aus A enthalten
- Beispiel: A = {a, b}.
 Dann enthält A* zum Beispiel die Wörter
 - ▶ a, b
 - ▶ aa, ab, ba, bb
 - aaa, aab, aba, abb, baa, bab, bba, bbb
 - und so weiter
 - und außerdem ε
 dieses merkwürdige (?) leere Wort (kommt gleich)
 - ▶ Beachte: es gibt unendlich viele Wörter die aber alle *endliche* Länge haben!
- ▶ A^* formalistisch: die Menge aller surjektiven Abbildungen $w: \mathbb{G}_n \to B$ mit $n \in \mathbb{N}_0$ und $B \subseteq A$.

- ► A*: Menge aller Wörter über einem Alphabet A: alle Wörter, die nur Zeichen aus A enthalten
- Beispiel: A = {a, b}.
 Dann enthält A* zum Beispiel die Wörter
 - ▶ a, b
 - aa, ab, ba, bb
 - aaa, aab, aba, abb, baa, bab, bba, bbb
 - und so weiter
 - und außerdem ε dieses merkwürdige (?) leere Wort (kommt gleich)
 - ▶ Beachte: es gibt unendlich viele Wörter die aber alle *endliche* Länge haben!
- ▶ A^* formalistisch: die Menge aller surjektiven Abbildungen $w: \mathbb{G}_n \to B$ mit $n \in \mathbb{N}_0$ und $B \subseteq A$.

- ▶ A*: Menge aller Wörter über einem Alphabet A: alle Wörter, die nur Zeichen aus A enthalten
- Beispiel: A = {a, b}.
 Dann enthält A* zum Beispiel die Wörter
 - ▶ a, b
 - aa, ab, ba, bb
 - aaa, aab, aba, abb, baa, bab, bba, bbb
 - und so weiter
 - ▶ und außerdem ε dieses merkwürdige (?) leere Wort (kommt gleich)
 - ▶ Beachte: es gibt unendlich viele Wörter die aber alle *endliche* Länge haben!
- ▶ A^* formalistisch: die Menge aller surjektiven Abbildungen $w: \mathbb{G}_n \to B$ mit $n \in \mathbb{N}_0$ und $B \subseteq A$.

- ► A*: Menge aller Wörter über einem Alphabet A: alle Wörter, die nur Zeichen aus A enthalten
- Beispiel: A = {a, b}.
 Dann enthält A* zum Beispiel die Wörter
 - ▶ a. b
 - aa, ab, ba, bb
 - aaa, aab, aba, abb, baa, bab, bba, bbb
 - und so weiter
 - und außerdem ε
 dieses merkwürdige (?) leere Wort (kommt gleich)
 - ► Beachte: es gibt unendlich viele Wörter die aber alle *endliche* Länge haben!
- ▶ A^* formalistisch: die Menge aller surjektiven Abbildungen $w: \mathbb{G}_n \to B$ mit $n \in \mathbb{N}_0$ und $B \subseteq A$.

- ▶ A*: Menge aller Wörter über einem Alphabet A: alle Wörter, die nur Zeichen aus A enthalten
- Beispiel: A = {a, b}.
 Dann enthält A* zum Beispiel die Wörter
 - ▶ a. b
 - aa, ab, ba, bb
 - aaa, aab, aba, abb, baa, bab, bba, bbb
 - und so weiter
 - und außerdem ε dieses merkwürdige (?) leere Wort (kommt gleich)
 - Beachte: es gibt unendlich viele Wörter die aber alle endliche Länge haben!
- ▶ A^* formalistisch: die Menge aller surjektiven Abbildungen $w: \mathbb{G}_n \to B$ mit $n \in \mathbb{N}_0$ und $B \subseteq A$.

Überblick

Wörter

Wörter

Das leere Wort

Mehr zu Wörtern

Konkatenation von Wörtern

Konkatenation mit dem leeren Wor Eigenschaften der Konkatenation Reisniel: Aufhau von E-Mails

Beispiel: Aufbau von E-Mails

ollständige Induktion

Binäre Operationer

Das leere Wort

Zählen

- man fängt erst mal mit eins an
- später: oh, die Null ist auch nützlich
- Analogon bei Wörtern: das leere Wort
 - Es besteht aus 0 Symbolen. Deshalb "sieht man es so schlecht".
 - ightharpoonup Damit man es nicht übersieht, *schreiben wir* ε dafür
 - erfordert ein bisschen Abstraktionsvermögen
- ▶ vielleicht hilft die formalistische Definition:

$$\varepsilon: \mathbb{G}_0 \to \{\}$$
 also $\varepsilon: \{\} \to \{\}$

- ▶ Stört Sie der leere Definitionsbereich oder/und der Zielbereich?
- ▶ Denken Sie an Abbildungen als spezielle Relationen
- ▶ Es gibt nur eine Relation $R \subseteq \{\} \times \{\} = \{\}$, nämlich $R = \{\}$.
- ► Sie ist linkstotal und rechtseindeutig, also Abbildung
- und sogar rechtstotal, also surjektiv
- Also ist es richtig von dem leeren Wort zu sprechen.

Wörter Das leere Wort 10/44

Das leere Wort

- Zählen
 - man fängt erst mal mit eins an
 - später: oh, die Null ist auch nützlich
- ▶ Analogon bei Wörtern: das leere Wort
 - Es besteht aus 0 Symbolen. Deshalb "sieht man es so schlecht".
 - **Damit** man es nicht übersieht, *schreiben wir* ε dafür
 - erfordert ein bisschen Abstraktionsvermögen
- ▶ vielleicht hilft die formalistische Definition:

$$\varepsilon: \mathbb{G}_0 \to \{\}$$
 also $\varepsilon: \{\} \to \{\}$

- ▶ Stört Sie der leere Definitionsbereich oder/und der Zielbereich?
- ▶ Denken Sie an Abbildungen als spezielle Relationen
- ▶ Es gibt nur eine Relation $R \subseteq \{\} \times \{\} = \{\}$, nämlich $R = \{\}$.
- ► Sie ist linkstotal und rechtseindeutig, also Abbildung
- und sogar rechtstotal, also surjektiv
- ▶ Also ist es richtig von *dem* leeren Wort zu sprechen.

Wörter Das leere Wort 10/44

Das leere Wort

- Zählen
 - man fängt erst mal mit eins an
 - später: oh, die Null ist auch nützlich
- Analogon bei Wörtern: das leere Wort
 - Es besteht aus 0 Symbolen. Deshalb "sieht man es so schlecht".
 - **Damit** man es nicht übersieht, *schreiben wir* ε dafür
 - erfordert ein bisschen Abstraktionsvermögen
- vielleicht hilft die formalistische Definition:

$$\varepsilon: \mathbb{G}_0 \to \{\}$$
 also $\varepsilon: \{\} \to \{\}$

- Stört Sie der leere Definitionsbereich oder/und der Zielbereich?
- ▶ Denken Sie an Abbildungen als spezielle Relationen
- ▶ Es gibt nur eine Relation $R \subseteq \{\} \times \{\} = \{\}$, nämlich $R = \{\}$.
- ▶ Sie ist linkstotal und rechtseindeutig, also Abbildung
- und sogar rechtstotal, also surjektiv.
- Also ist es richtig von dem leeren Wort zu sprechen.

Wörter Das leere Wort 10/44

Das leere Wort als Element von Mengen

- Das leere Wort ist "etwas".
- ▶ Die Kardinalität der Menge $\{\varepsilon, abaa, bbbababb\}$ ist

$$|\{\varepsilon, \mathtt{abaa}, \mathtt{bbbababb}\}| = 3$$

▶ Die Kardinalität der Menge $\{\varepsilon\}$ ist

$$|\{\varepsilon\}|=1$$

Das ist nicht die leere Menge!

▶ Die Kardinalität der Menge {} ist

$$|\{\}| = 0$$

Das ist die leere Menge.

Wörter Das leere Wort 11/44

Überblick

Wörter

Wörter

Das leere Wort

Mehr zu Wörtern

Konkatenation von Wörtern

Konkatenation mit dem leeren Word Eigenschaften der Konkatenation Reisniel: Aufhau von F-Mails

terierte Konkatenation

Vollständige Induktion

Binäre Operationer

Wörter einer festen Länge n

- ▶ Aⁿ: Menge aller Wörter der Länge n über dem Alphabet A
- ▶ Beispiel: Ist $A = \{a, b\}$, dann ist

$$\begin{split} & \mathcal{A}^0 = \{\varepsilon\} \\ & \mathcal{A}^1 = \{\mathtt{a},\mathtt{b}\} \\ & \mathcal{A}^2 = \{\mathtt{aa},\mathtt{ab},\mathtt{ba},\mathtt{bb}\} \\ & \mathcal{A}^3 = \{\mathtt{aaa},\mathtt{aab},\mathtt{aba},\mathtt{abb},\mathtt{baa},\mathtt{bab},\mathtt{bba},\mathtt{bbb}\} \end{split}$$

Also ist sozusagen

$$A^* = A^0 \cup A^1 \cup A^2 \cup A^3 \cup \cdots$$

aber diese Pünktchen sind nicht schön ...

Bessere Schreibweise:

$$A^* = \bigcup_{i=0}^{\infty} A^i$$

Wörter Mehr zu Wörtern 13/44

immer diese Pünktchen ...

berechtigte Frage: Was soll denn

$$\bigcup_{i=0}^{\infty} M_i$$

genau bedeuten?

Das hier:

$$\bigcup_{i=0}^{\infty} M_i = \{x \mid \exists i : x \in M_i\}$$

also alle Elemente, die in mindestens einem M_i enthalten sind.

- ▶ Das ∞-Zeichen in obiger Schreibweise ist gefährlich. Beachte:
 - ▶ *i* kann nicht "den Wert Unendlich" annehmen.
 - ightharpoonup i durchläuft die unendlich vielen Werte aus \mathbb{N}_0 .
 - ▶ Aber jede dieser Zahlen ist endlich!

Überblick

Wörter

Wörter Das leere Wort Mehr zu Wörter

Konkatenation von Wörtern Konkatenation mit dem leeren Wort Eigenschaften der Konkatenation Beispiel: Aufbau von E-Mails Iterierte Konkatenation

Vollständige Induktion Binäre Operationen

Konkatenation von Wörtern: anschaulich

- ganz einfach: die Hintereinanderschreibung zweier Wörter
- ▶ Operationssymbol üblicherweise der Punkt "·", den man wie bei der Multiplikation manchmal weglässt
- ► Beispiel:

 $SCHRANK \cdot SCHLÜSSEL = SCHRANKSCHLÜSSEL$

oder

SCHLÜSSEL · SCHRANK = SCHLÜSSELSCHRANK

▶ Beachte: Reihenfolge ist wichtig!

 $SCHRANKSCHL \ddot{U}SSEL \neq SCHL \ddot{U}SSELSCHRANK$

Konkatenation von Wörtern: formal

- Wörter als Listen von Zeichen, genauer
- ▶ surjektive Abbildungen $w : \mathbb{G}_n \to A$
- Beispiel

definiere

$$w_1 \cdot w_2 : \mathbb{G}_{m+n} \to A_1 \cup A_2$$

$$i \mapsto \begin{cases} w_1(i) & \text{falls } 0 \le i < m \\ w_2(i-m) & \text{falls } m \le i < m+r \end{cases}$$

Konkatenation von Wörtern: formal

- Wörter als Listen von Zeichen, genauer
- ▶ surjektive Abbildungen $w : \mathbb{G}_n \to A$
- Beispiel

definiere

$$w_1 \cdot w_2 : \mathbb{G}_{m+n} \to A_1 \cup A_2$$

$$i \mapsto \begin{cases} w_1(i) & \text{falls } 0 \le i < m \\ w_2(i-m) & \text{falls } m \le i < m+r \end{cases}$$

Konkatenation von Wörtern: formal

- Wörter als Listen von Zeichen, genauer
- ▶ surjektive Abbildungen $w : \mathbb{G}_n \to A$
- Beispiel

definiere

$$w_1 \cdot w_2 : \mathbb{G}_{m+n} \to A_1 \cup A_2$$

$$i \mapsto \begin{cases} w_1(i) & \text{falls } 0 \leq i < m \\ w_2(i-m) & \text{falls } m \leq i < m+n \end{cases}$$

Definition

- ▶ beliebige Wörter $w_1 : \mathbb{G}_m \to A_1$ und $w_2 : \mathbb{G}_n \to A_2$ gegeben
- definiere

$$w_1 \cdot w_2 : \mathbb{G}_{m+n} \to A_1 \cup A_2$$

$$i \mapsto \begin{cases} w_1(i) & \text{falls } 0 \le i < m \\ w_2(i-m) & \text{falls } m \le i < m+n \end{cases}$$

- ▶ Was muss man tun, wenn man so etwas vorgesetzt bekommt?
 - ▶ Nicht abschrecken lassen!
 - ▶ Abbildung: für alle Argumente ein Funktionswert definiert?
 - bei Fallunterscheidungen: widerspruchsfrei?
 - ▶ Hat das Definierte die erforderlichen Eigenschaften?
 - Verstehen!
- ► Man sieht übrigens:

$$\forall w_1 \in A^* \ \forall w_2 \in A^* : |w_1 w_2| = |w_1| + |w_2|.$$

Definition

- ▶ beliebige Wörter $w_1 : \mathbb{G}_m \to A_1$ und $w_2 : \mathbb{G}_n \to A_2$ gegeben
- definiere

$$w_1 \cdot w_2 : \mathbb{G}_{m+n} o A_1 \cup A_2$$
 $i \mapsto egin{cases} w_1(i) & \text{falls } 0 \leq i < m \\ w_2(i-m) & \text{falls } m \leq i < m+n \end{cases}$

- ▶ Was muss man tun, wenn man so etwas vorgesetzt bekommt?
 - Nicht abschrecken lassen!
 - ▶ Abbildung: für alle Argumente ein Funktionswert definiert?
 - bei Fallunterscheidungen: widerspruchsfrei?
 - ▶ Hat das Definierte die erforderlichen Eigenschaften?
 - Verstehen!
- ► Man sieht übrigens:
 - $\forall w_1 \in A^* \ \forall w_2 \in A^* : |w_1 w_2| = |w_1| + |w_2|.$

Definition

- ▶ beliebige Wörter $w_1 : \mathbb{G}_m \to A_1$ und $w_2 : \mathbb{G}_n \to A_2$ gegeben
- definiere

$$w_1 \cdot w_2 : \mathbb{G}_{m+n} \to A_1 \cup A_2$$

$$i \mapsto \begin{cases} w_1(i) & \text{falls } 0 \le i < m \\ w_2(i-m) & \text{falls } m \le i < m+n \end{cases}$$

- ▶ Was muss man tun, wenn man so etwas vorgesetzt bekommt?
 - Nicht abschrecken lassen!
 - ▶ Abbildung: für alle Argumente ein Funktionswert definiert?
 - ▶ bei Fallunterscheidungen: widerspruchsfrei?
 - ▶ Hat das Definierte die erforderlichen Eigenschaften?
 - Verstehen!
- Man sieht übrigens:

$$\forall w_1 \in A^* \ \forall w_2 \in A^* : |w_1 w_2| = |w_1| + |w_2|.$$

$$w_1 \cdot w_2 : \mathbb{G}_{m+n} \to A_1 \cup A_2$$

$$i \mapsto \begin{cases} w_1(i) & \text{falls } 0 \leq i < m \\ w_2(i-m) & \text{falls } m \leq i < m+n \end{cases}$$

- Überprüfung:
 - $w_1(i)$ für $0 \le i < m$ und $w_2(i-m)$ für $m \le i < m+n$ sind stets definiert.
 - die Funktionswerte stammen aus dem Bereich $A_1 \cup A_2$: $w_1(i) \in A_1$ und $w_2(i-m) \in A_2$.
 - Die Fallunterscheidung ist widerspruchsfrei.
 - $-w_1 \cdot w_2 : \mathbb{G}_{m+n} \to A_1 \cup A_2$ ist surjektiv: Für jedes $a \in A_1 \cup A_2$ gilt eine der Möglichkeiten:
 - ▶ $a \in A_1$: da w_1 surjektiv ist, existiert $i_1 \in \mathbb{G}_m$ mit $w_1(i_1) = a$. Also ist $(w_1w_2)(i_1) = w_1(i_1) = a$.
 - ▶ $a \in A_2$: da w_2 surjektiv ist, existiert $i_2 \in \mathbb{G}_n$ mit $w_2(i_2) = a$. Also ist $(w_1w_2)(m+i_2) = w_2(i_2) = a$.

$$w_1 \cdot w_2 : \mathbb{G}_{m+n} \to A_1 \cup A_2$$

$$i \mapsto \begin{cases} w_1(i) & \text{falls } 0 \le i < m \\ w_2(i-m) & \text{falls } m \le i < m+n \end{cases}$$

- Überprüfung:
 - ✓ $w_1(i)$ für $0 \le i < m$ und $w_2(i m)$ für $m \le i < m + n$ sind stets definiert.
 - die Funktionswerte stammen aus dem Bereich $A_1 \cup A_2$: $w_1(i) \in A_1$ und $w_2(i-m) \in A_2$.
 - Die Fallunterscheidung ist widerspruchsfrei.
 - $-w_1 \cdot w_2 : \mathbb{G}_{m+n} \to A_1 \cup A_2$ ist surjektiv: Für jedes $a \in A_1 \cup A_2$ gilt eine der Möglichkeiten:
 - ▶ $a \in A_1$: da w_1 surjektiv ist, existiert $i_1 \in \mathbb{G}_m$ mit $w_1(i_1) = a$. Also ist $(w_1w_2)(i_1) = w_1(i_1) = a$.
 - ▶ $a \in A_2$: da w_2 surjektiv ist, existiert $i_2 \in \mathbb{G}_n$ mit $w_2(i_2) = a$. Also ist $(w_1w_2)(m+i_2) = w_2(i_2) = a$.

$$w_1 \cdot w_2 : \mathbb{G}_{m+n} \to A_1 \cup A_2$$

$$i \mapsto \begin{cases} w_1(i) & \text{falls } 0 \leq i < m \\ w_2(i-m) & \text{falls } m \leq i < m+n \end{cases}$$

- Überprüfung:
 - ✓ $w_1(i)$ für $0 \le i < m$ und $w_2(i m)$ für $m \le i < m + n$ sind stets definiert.
 - ✓ die Funktionswerte stammen aus dem Bereich $A_1 \cup A_2$: $w_1(i) \in A_1$ und $w_2(i-m) \in A_2$.
 - Die Fallunterscheidung ist widerspruchsfrei.
 - $-w_1 \cdot w_2 : \mathbb{G}_{m+n} \to A_1 \cup A_2$ ist surjektiv: Für jedes $a \in A_1 \cup A_2$ gilt eine der Möglichkeiten:
 - ▶ $a \in A_1$: da w_1 surjektiv ist, existiert $i_1 \in \mathbb{G}_m$ mit $w_1(i_1) = a$. Also ist $(w_1w_2)(i_1) = w_1(i_1) = a$.
 - ▶ $a \in A_2$: da w_2 surjektiv ist, existiert $i_2 \in \mathbb{G}_n$ mit $w_2(i_2) = a$. Also ist $(w_1w_2)(m+i_2) = w_2(i_2) = a$.

$$w_1 \cdot w_2 : \mathbb{G}_{m+n} \to A_1 \cup A_2$$

$$i \mapsto \begin{cases} w_1(i) & \text{falls } 0 \leq i < m \\ w_2(i-m) & \text{falls } m \leq i < m+n \end{cases}$$

- Überprüfung:
 - ✓ $w_1(i)$ für $0 \le i < m$ und $w_2(i m)$ für $m \le i < m + n$ sind stets definiert.
 - ✓ die Funktionswerte stammen aus dem Bereich $A_1 \cup A_2$: $w_1(i) \in A_1$ und $w_2(i-m) \in A_2$.
 - ✓ Die Fallunterscheidung ist widerspruchsfrei.
 - $-w_1 \cdot w_2 : \mathbb{G}_{m+n} \to A_1 \cup A_2$ ist surjektiv: Für jedes $a \in A_1 \cup A_2$ gilt eine der Möglichkeiten:
 - ▶ $a \in A_1$: da w_1 surjektiv ist, existiert $i_1 \in \mathbb{G}_m$ mit $w_1(i_1) = a$. Also ist $(w_1w_2)(i_1) = w_1(i_1) = a$.
 - ▶ $a \in A_2$: da w_2 surjektiv ist, existiert $i_2 \in \mathbb{G}_n$ mit $w_2(i_2) = a$. Also ist $(w_1w_2)(m+i_2) = w_2(i_2) = a$.

$$w_1 \cdot w_2 : \mathbb{G}_{m+n} \to A_1 \cup A_2$$

$$i \mapsto \begin{cases} w_1(i) & \text{falls } 0 \leq i < m \\ w_2(i-m) & \text{falls } m \leq i < m+n \end{cases}$$

- Überprüfung:
 - ✓ $w_1(i)$ für $0 \le i < m$ und $w_2(i-m)$ für $m \le i < m+n$ sind stets definiert.
 - ✓ die Funktionswerte stammen aus dem Bereich $A_1 \cup A_2$: $w_1(i) \in A_1$ und $w_2(i-m) \in A_2$.
 - ✓ Die Fallunterscheidung ist widerspruchsfrei.
 - ✓ $w_1 \cdot w_2 : \mathbb{G}_{m+n} \to A_1 \cup A_2$ ist surjektiv: Für jedes $a \in A_1 \cup A_2$ gilt eine der Möglichkeiten:
 - ▶ $a \in A_1$: da w_1 surjektiv ist, existiert $i_1 \in \mathbb{G}_m$ mit $w_1(i_1) = a$. Also ist $(w_1w_2)(i_1) = w_1(i_1) = a$.
 - ▶ $a \in A_2$: da w_2 surjektiv ist, existiert $i_2 \in \mathbb{G}_n$ mit $w_2(i_2) = a$. Also ist $(w_1w_2)(m+i_2) = w_2(i_2) = a$.

Überblick

Wörter

Wörter

Das leere Wort

Mehr zu Wörter

Konkatenation von Wörtern Konkatenation mit dem leeren Wort Eigenschaften der Konkatenation Beispiel: Aufbau von E-Mails Iterierte Konkatenation

Vollständige Induktion Binäre Operationen

Konkatenation mit dem leeren Wort

bei den Zahlen:

$$\forall x \in \mathbb{N}_0 : x + 0 = x \land 0 + x = x$$

Die Null ist das *neutrale Element* bezüglich der Addition.

Analog bei Wörtern:

Lemma. Für jedes Alphabet *A* gilt:

$$\forall w \in A^* : w \cdot \varepsilon = w \wedge \varepsilon \cdot w = w$$
.

- ▶ Anschaulich klar: Wenn man an ein Wort w hinten der Reihe nach noch alle Symbole des leeren Wortes "klebt", also gar keine, dann "ändert sich an w nichts".
- ► Aber wir können das auch formal beweisen ...

Das leere Wort ist neutrales Element bezüglich Konkatenation

- ► Frage: Wie beweist man das für alle denkbaren Alphabete A?
- ► Eine Möglichkeit: Man geht von einem "beliebigen aber festen" Alphabet A aus, über das man keine Annahmen macht.
- ▶ Frage: Wie beweist man die Behauptung für alle $w \in A^*$?
- ► Eine Möglichkeit: Man geht von einem "beliebigen aber festen" Wort w aus, über das man keine Annahmen macht.
- Also:
 - ► Es sei A ein Alphabet und $w \in A^*$, d. h. eine surjektive Abbildung $w : \mathbb{G}_m \to B$ mit $B \subseteq A$.
 - ▶ Außerdem ist $\varepsilon : \mathbb{G}_0 \to \{\}.$
 - berechne $w' = w \cdot \varepsilon$ anhand der formalen Definition:
 - w' ist eine Abbildung $w' : \mathbb{G}_{m+0} \to B \cup \{\}$, also $w' : \mathbb{G}_m \to B$.

Das leere Wort ist neutrales Element bezüglich Konkatenation (2)

▶ für $i \in \mathbb{G}_m$ gilt

$$w'(i) = egin{cases} w_1(i) & \text{falls } 0 \leq i < m \\ w_2(i-m) & \text{falls } m \leq i < m+n \end{cases}$$
 $= egin{cases} w(i) & \text{falls } 0 \leq i < m \\ arepsilon(i-m) & \text{falls } m \leq i < m+0 \end{cases}$
 $= w(i)$

- Also
 - ▶ w und w' haben gleichen Definitionsbereich
 - ▶ w und w' haben gleichen Zielbereich
 - w und w' haben für alle Argumente die gleichen Funktionswerte.
 - Also ist w' = w.
- Ganz analog zeigt man: $\varepsilon \cdot w = w$.

Überblick

Wörter

Wörter Das leere Wort Mehr zu Wörter

Konkatenation von Wörtern Konkatenation mit dem leeren Wort Eigenschaften der Konkatenation Beispiel: Aufbau von E-Mails Iterierte Konkatenation

Vollständige Induktion Binäre Operationen

Eigenschaften der Konkatenation

schon gesehen: Reihenfolge ist wichtig

Konkatenation ist *nicht kommutativ*.

- ▶ Bei Zahlen gilt: $(x \cdot y) \cdot z = x \cdot (y \cdot z)$
- Bei Wörtern analog: Lemma. Für jedes Alphabet A und alle Wörter w₁, w₂ und w₃ aus A* gilt:

$$(w_1\cdot w_2)\cdot w_3=w_1\cdot (w_2\cdot w_3).$$

Konkatenation ist assoziativ.

▶ Beweis: einfach nachrechnen (Hausaufgabe Oktober 2009)

Überblick

Wörter

Wörter

Das leere Wort

Mehr zu Wörter

Konkatenation von Wörtern Konkatenation mit dem leeren Wort Eigenschaften der Konkatenation Beispiel: Aufbau von E-Mails Iterierte Konkatenation

Vollständige Induktion Binäre Operationen

RFC

- ► Struktur von E-Mails in einem sogenannten RFC festgelegt
- RFC ist die Abkürzung für Request For Comment.
- alle RFCs zum Beispiel unter http://tools.ietf.org/html/
- ▶ aktuelle Fassung der E-Mail-Spezifikation in RFC 2822 http://tools.ietf.org/html/rfc2822
- ▶ im folgenden einige Zitate aus Abschnitt 2.1 des RFC 2822 und Kommentare dazu

E-Mails, RFC 2822 (1)

- ▶ "This standard specifies that messages are made up of characters in the US-ASCII range of 1 through 127."
- ▶ Das Alphabet, aus dem die Zeichen stammen müssen, die in einer E-Mail vorkommen, ist der US-ASCII-Zeichensatz mit Ausnahme des Zeichens mit der Nummer 0.

E-Mails, RFC 2822 (2)

- "Messages are divided into lines of characters. A line is a series of characters that is delimited with the two characters carriage-return and line-feed; that is, the carriage return (CR) character (ASCII value 13) followed immediately by the line feed (LF) character (ASCII value 10). (The carriage-return/line-feed pair is usually written in this document as "CRLF".)"
- ► Eine Zeile (*line*) ist
 - eine Folge von Zeichen, also ein Wort,
 - ▶ das mit den "nicht druckbaren" Symbolen CR LF endet.
 - an anderer Stelle:
 - ▶ als Zeile nicht beliebige Wörter zulässig,
 - sondern nur solche, deren Länge kleiner oder gleich 998 ist.

E-Mails, RFC 2822 (3)

- ► A message consists of
 - ▶ [...] the header of the message [...] followed,
 - optionally, by a body."
- eine E-Mail (message) ist die Konkatenation von
 - ► Kopf (header) der E-Mail und
 - Rumpf (body) der E-Mail.
- Rumpf optional,
 - darf also sozusagen fehlen darf,
 - d.h. der Rumpf darf auch das leere Wort sein.

Das ist noch nicht ganz vollständig. Gleich anschließend wird der RFC genauer:

E-Mails, RFC 2822 (4)

- "The header is a sequence of lines of characters with special syntax as defined in this standard.
 - The body is simply a sequence of characters that follows the header and
 - ▶ is separated from the header by an empty line (i.e., a line with nothing preceding the CRLF). [...]"
- also:
 - ► Kopf einer E-Mail ist die Konkatenation (mehrerer) Zeilen.
 - Rumpf einer E-Mail ist die Konkatenation von Zeilen.
 - ► (an anderer Stellen spezifiziert)
 - Es können aber auch 0 Zeilen oder 1 Zeile sein.
 - ► Eine Leerzeile (*empty line*) ist das Wort CR LF.
 - ► Eine Nachricht ist die Konkatenation von
 - ► Kopf der E-Mail,
 - ▶ einer Leerzeile und
 - Rumpf der E-Mail.

Überblick

Wörter

Wörter Das leere Wort Mehr zu Wörter

Konkatenation von Wörtern Konkatenation mit dem leeren Wort Eigenschaften der Konkatenation Beispiel: Aufbau von E-Mails Iterierte Konkatenation

Vollständige Induktion Binäre Operationen

Iterierte Konkatenation: Potenzen von Wörtern

- ▶ bei Zahlen: Potenzschreibweise x^3 für $x \cdot x \cdot x$ usw.
- ► Ziel: analog für Wörter so etwas wie

$$w^n = \underbrace{w \cdot w \cdot \cdots \cdot w}_{n \text{ mal}}$$

- wieder diese Pünktchen . . .
- ▶ Wie kann man die vermeiden?
 - Was ist mit n = 1? (immerhin stehen da ja drei w auf der rechten Seite)
 - \blacktriangleright Was soll man sich für n=0 vorstellen?
- ► Möglichkeit: eine *induktive Definition*
- ▶ für *Potenzen von Wörtern* geht das so:

$$w^0 = \varepsilon$$
$$\forall n \in \mathbb{N}_0: \ w^{n+1} = w^n \cdot w$$

Iterierte Konkatenation: Potenzen von Wörtern

definiert:

$$w^0 = \varepsilon$$
$$\forall n \in \mathbb{N}_0: \ w^{n+1} = w^n \cdot w$$

▶ Damit kann man ausrechnen, was w¹ ist:

$$w^1 = w^{0+1} = w^0 \cdot w = \varepsilon \cdot w = w$$

▶ Und dann:

$$w^2 = w^{1+1} = w^1 \cdot w = w \cdot w$$

Und dann:

$$w^3 = w^{2+1} = w^2 \cdot w = (w \cdot w) \cdot w$$

Und so weiter.

Ein einfaches Lemma

Lemma.

Für jedes Alphabet A, jedes Wort $w \in A^*$ und jedes $n \in \mathbb{N}_0$ gilt:

$$|w^n|=n|w|.$$

- Wie kann man das beweisen?
- Immer wenn in einer Aussage "etwas" eine Rolle spielt, das induktiv definiert wurde, sollte man in Erwägung ziehen, für den Beweis vollständige Induktion zu benutzen.

Ein einfaches Lemma

- erst mal ein paar einfache Fälle als Beispiele:
 - ▶ n = 0: Das ist einfach: $|w^0| = |\varepsilon| = 0 = 0 \cdot |w|$.
 - ▶ n = 1: Man kann ähnlich rechnen wie bei $w^1 = w$:

$$|w^{1}| = |w^{0+1}| = |w^{0} \cdot w|$$

= $|w^{0}| + |w|$
= $0|w| + |w|$ siehe Fall $n = 0$
= $1|w|$

Da die Behauptung für n = 0 richtig war, konnten wir sie auch für n=1 beweisen.

ightharpoonup n = 2: Wir gehen analog zu eben vor:

$$|w^2| = |w^{1+1}| = |w^1 \cdot w|$$

= $|w^1| + |w|$
= $1|w| + |w|$ siehe Fall $n = 1$
= $2|w|$

Da die Behauptung für n=1 richtig war, konnten wir sie auch für n=2 beweisen.

Vollständige Induktion

- allgemeines Muster:
 - ▶ Weil w^{n+1} mit Hilfe von w^n definiert wurde,
 - ▶ folgt aus der Richtigkeit der Behauptung für $|w^n|$ die für $|w^{n+1}|$.
- Also: Wenn wir mit M die Menge aller natürlichen Zahlen n bezeichnen, für die die Behauptung $|w^n| = n|w|$ gilt, dann wissen wir also:
 - **1**. 0 ∈ *M*
 - 2. $\forall n \in \mathbb{N}_0 : (n \in M \Rightarrow n+1 \in M)$
- ► Faktum aus der Mathematik: Wenn eine Menge *M*
 - nur natürliche Zahlen enthält
 - ► Eigenschaft 1 hat und
 - ▶ Eigenschaft 2 hat,

dann ist $M = \mathbb{N}_0$.

Vollständige Induktion: Beweis des Lemmas

Nun im wesentlichen noch einmal das Gleiche wie oben in der für Induktionsbeweise üblichen Form:

Induktionsanfang n = 0: Zu zeigen ist: $|w^0| = 0 \cdot |w|$. Das geht so:

$$|w^0| = |\varepsilon|$$
 nach Defintion von w^0
= $0 = 0 \cdot |w|$.

Induktionsschritt $n \rightarrow n + 1$:

- ▶ Zu zeigen ist: Für jedes n gilt: wenn $|w^n| = n|w|$, dann $|w^{n+1}| = (n+1)|w|$.
- ► Wie kann man zeigen, dass diese Aussage für alle natürlichen Zahlen n gilt?
- Möglichkeit: Man gehe von einem "beliebigen, aber festen" n aus und zeige für "dieses" n: $|w^n| = n|w| \Rightarrow |w^{n+1}| = (n+1)|w|$.

Vollständige Induktion: Beweis des Lemmas

Nun im wesentlichen noch einmal das Gleiche wie oben in der für Induktionsbeweise üblichen Form:

Induktionsanfang n = 0: Zu zeigen ist: $|w^0| = 0 \cdot |w|$. Das geht so:

$$|w^0| = |\varepsilon|$$
 nach Defintion von w^0
= $0 = 0 \cdot |w|$.

Induktionsschritt $n \rightarrow n + 1$:

- ► Zu zeigen ist: Für jedes n gilt: wenn $|w^n| = n|w|$, dann $|w^{n+1}| = (n+1)|w|$.
- Wie kann man zeigen, dass diese Aussage für alle natürlichen Zahlen n gilt?
- ▶ Möglichkeit: Man gehe von einem "beliebigen, aber festen" n aus und zeige für "dieses" n: $|w^n| = n|w| \Rightarrow |w^{n+1}| = (n+1)|w|$.

Vollständige Induktion: Beweis des Lemmas

Induktionsschritt $n \rightarrow n + 1$: zwei Teile:

- ▶ für ein beliebiges aber festes n trifft man die Induktionsvoraussetzung oder Induktionsannahme: $|w^n| = n|w|$.
- Zu leisten ist nun mit Hilfe dieser Annahme der Nachweis, dass auch |wⁿ⁺¹| = (n+1)|w|. Das nennt man den Induktionsschluss: In unserem Fall:

$$|w^{n+1}| = |w^n \cdot w|$$

$$= |w^n| + |w|$$

$$= n|w| + |w|$$

$$= (n+1)|w|$$

= n|w| + |w| nach Induktionsvoraussetzun

Überblick

Wörter

Wörter

Das leere Wort

Mehr zu Wörtern

Konkatenation von Wörtern

Konkatenation mit dem leeren Word Eigenschaften der Konkatenation Beispiel: Aufbau von E-Mails

Iterierte Konkatenation

Vollständige Induktion

Binäre Operationen

Vollständige Induktion: das Prinzip

- Grundlage
 - ▶ Wenn man für eine Aussage $\mathcal{A}(n)$, die von einer Zahl $n \in \mathbb{N}_0$ abhängt, weiß

es gilt
$$\mathcal{A}(0)$$
 und es gilt
$$\forall n \in \mathbb{N}_0: (\mathcal{A}(n) \Rightarrow \mathcal{A}(n+1))$$

dann gilt auch:

$$\forall n \in \mathbb{N}_0 : \mathcal{A}(n)$$
.

Struktur des Beweises im einfachsten Fall:

Induktionsanfang: zeige: A(0) gilt.

Induktionsvoraussetzung:

für beliebiges aber festes $n \in \mathbb{N}_0$ gilt: $\mathcal{A}(n)$.

Induktionsschluss: zeige: auch A(n+1) gilt.

Überblick

Wörter

Wörter

Das leere Wort

Mehr zu Wörtern

Konkatenation von Wörtern

Konkatenation mit dem leeren Wor Eigenschaften der Konkatenation

Beispiel: Autbau von E-Mails

ollständige Induktion

Binäre Operationen

Binäre Operationen

► Eine binären Operation auf einer Menge M ist eine Abbildung

$$f: M \times M \rightarrow M$$

- ▶ üblich: Infixschreibweise mit "Operationssysmbol" wie z. B. Pluszeichen oder Multiplikationspunkt
 - ▶ Statt +(3,8) = 11 schreibt man 3 + 8 = 11.
- ▶ Eine binäre Operation $\diamond: M \times M \to M$ heißt genau dann kommutativ, wenn gilt:

$$\forall x \in M \ \forall y \in M : x \diamond y = y \diamond x$$
.

▶ Eine binäre Operation $\diamond: M \times M \to M$ heißt genau dann assoziativ, wenn gilt:

$$\forall x \in M \ \forall y \in M \ \forall z \in M : (x \diamond y) \diamond z = x \diamond (y \diamond z)$$
.

Was ist wichtig

Das sollten Sie mitnehmen:

- ein Wort ist eine Folge von Symbolen
 - Formale Sprachen werden in der nächsten Einheit folgen.
- induktive Definitionen
 - ▶ erlauben, Pünktchen zu vermeiden ...
- vollständige Induktion
 - gaaaanz wichtiges Beweisprinzip Induktionsanfang Induktionsvoraussetzung Induktionsschluss
 - passt z. B. bei induktiven Definitionen

Das sollten Sie üben:

- vollständige Induktion
- "Rechnen" mit Wörtern

Wichtig 44/44