UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS CARRERA DE MATEMÁTICO

TOPOLOGÍA DIFERENCIAL II (ejemplo)

HORAS A LA SEMANA/SEMESTRE

SEMESTRE: Séptimo u octavo

CLAVE: **0939**

TEÓRICAS	PRÁCTICAS	CRÉDITOS
5/80	0	10

CARÁCTER: **OPTATIVO**. MODALIDAD: **CURSO**.

SERIACIÓN INDICATIVA ANTECEDENTE: Topología Diferencial I.

SERIACIÓN INDICATIVA SUBSECUENTE: Ninguna.

OBJETIVO(S): Reforzar la teoría de campos vectoriales y los teoremas de Poincaré-Hopf y el de grado de Hopf, así como formular ecuaciones diferenciales en el lenguaje de variedades y flujos, introducir los conceptos de isotopía y suma conexa y establecer el teorema de la vecindad tubular en su forma general. En la segunda parte del curso se da una introducción a los grupos de Lie o a la teoría de integración, a elección del profesor.

NUM. HORAS	UNIDADES TEMÁTICAS
10	1. Los teoremas de Poincaré-Hopf y de Hopf
	1.1 Campos vectoriales y el teorema de Poincaré-Hopf. Ejemplos de
	singularidades y aplicación del teorema.
	1.2 El teorema de grado de Hopf. Aplicaciones.
10	2. Sistemas dinámicos
	2.1 Definición de sistema dinámico y sistema dinámico local.
	2.2 Teorema de existencia y unicidad de solución de ecuaciones dife-
	renciales y del flujo local y su extensión a variedades. Flujos comple-
	tos. Ejemplos. Teorema de Ehresmann.
15	3. Isotopía de encajes y suma conexa
	3.1 Definición de isotopía. Difeotopía. Teorema del encaje de isotopías
	en difeotopías (Thom).
	3.2 Isotopía de encajes en \mathbb{R}^n . Definición de suma conexa. Prueba de
	la independencia de elección del removimiento de bolas para la suma
	conexa. Ejemplos de sumas conexas con superficies.

15	4. Ecuaciones diferenciales de segundo orden, sprays y Teo-
	rema de vecindad tubular
	4.1 Ecuaciones diferenciales de segundo orden, de sprays y existencia
	de éstos.
	4.2 Definición de la aplicación exponencial y construcción de la ve-
	cindad tubular.
	4.3 Explosiones y aplicaciones.
15	5. Elementos de la Teoría de grupos de Lie
	5.1 Definición de grupo de Lie y de álgebra de Lie. Campos vectoriales
	invariantes por la izquierda. Formas invariantes por la izquierda.
	5.2 Homomorfismos. Subgrupos de Lie. Cubiertas. Grupos de Lie
	simplemente conexos. Aplicación exponencial.
	5.3 Homomorfismos continuos. Representación adjunta. Subvarieda-
	des homogéneas.
15	6. Integración en variedades
	6.1 Álgebra exterior. Formas diferenciales.
	6.2 Integración. Derivada exterior y teorema de Stokes.
	6.3 Teorema de Gauss-Bonnet.

BIBLIOGRAFÍA BÁSICA:

- 1. Abraham, R., Marsden, J.E., Ratiu, T., Manifolds, Tensor Analysis and Applications, New York: Springer-Verlag, 1988.
- 2. Guillemin, V.W., Pollack, A., *Topología Diferencial*. Traducción de Óscar Palmas. México: Aportaciones de la SMM, Textos volumen 20, 2003.

BIBLIOGRAFÍA COMPLEMENTARIA:

1. Warner, F.W., Foundations of Differentiable Manifolds and Lie Groups, New York: Springer-Verlag, 1983.

SUGERENCIAS DIDÁCTICAS: Lograr la participación activa de los alumnos mediante exposiciones.

SUGERENCIA PARA LA EVALUACIÓN DE LA ASIGNATURA: Además de las calificaciones en exámenes y tareas se tomará en cuenta la participación del alumno.

PERFIL PROFESIOGRÁFICO: Matemático, físico, actuario o licenciado en ciencias de la computación, especialista en el área de la asignatura a juicio del comité de asignación de cursos.