1 (базовый уровень, время – 1 мин)

Тема: Системы счисления и двоичное представление информации в памяти компьютера. **Что нужно знать**:

• перевод чисел между десятичной, двоичной, восьмеричной и шестнадцатеричной системами счисления (см. презентацию «Системы счисления»)

Полезно помнить, что в двоичной системе:

- четные числа оканчиваются на 0. нечетные на 1:
- числа, которые делятся на 4, оканчиваются на 00, и т.д.; числа, которые делятся на 2^k , оканчиваются на k нулей
- если число N принадлежит интервалу $2^{k\cdot 1} \le N < 2^k$, в его двоичной записи будет всего k цифр, например, для числа **125**:

$$2^6 = 64 \le 125 < 128 = 2^7$$
, $125 = 11111101_2$ (7 цифр)

- числа вида 2^k записываются в двоичной системе как единица и k нулей, например: $16 = 2^4 = 10000_2$
- числа вида 2^k -1 записываются в двоичной системе k единиц, например: $15 = 2^4 \cdot 1 = 1111_2$
- если известна двоичная запись числа N, то двоичную запись числа 2·N можно легко получить, приписав в конец ноль, например:

$$15 = 1111_2$$
, $30 = 11110_2$, $60 = 111100_2$, $120 = 1111000_2$

желательно выучить наизусть таблицу двоичного представления чисел 0-7 в виде триад (групп из 3-х битов):

X ₁₀ , X ₈	X ₂
0	000
1	001
2	010
3	011

X ₁₀ , X ₈	\mathbf{X}_2
4	100
5	101
6	110
7	111

и таблицу двоичного представления чисел 0-15 (в шестнадцатеричной системе – 0- F_{16}) в виде $mempa\partial$ (групп из 4-х битов):

X ₁₀	\mathbf{X}_2
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111

X ₁₀	X ₁₆	\mathbf{X}_2
8	8	1000
9	9	1001
10	A	1010
11	В	1011
12	С	1100
13	D	1101
14	E	1110
15	F	1111

- отрицательные целые числа хранятся в памяти в двоичном дополнительном коде (подробнее см. презентацию «Компьютер изнутри»)
- для перевода отрицательного числа (-a) в двоичный дополнительный код нужно сделать следующие операции:
 - □ перевести число a-1 в двоичную систему счисления;
 - сделать инверсию битов: заменить все нули на единицы и единицы на нули в пределах разрядной сетки (см. пример P-00 далее).

1

Пример задания:

P-06. Сколько единиц в двоичной записи восьмеричного числа 1731₈?

Решение:

 для решения достаточно знать двоичные коды чисел от 1 до 7, поскольку для перевода восьмеричного числа в двоичную систему можно достаточно каждую цифру отдельно записать в виде тройки двоичных (триады):

Тема 7

- 2) 1731₈ = 001 111 011 001₂
- 3) в этой записи 7 единиц
- 4) Ответ: <mark>7</mark>

Ещё пример задания:

P-05. Укажите наименьшее четырёхзначное восьмеричное число, двоичная запись которого содержит 5 единиц. В ответе запишите только само восьмеричное число, основание системы счисления указывать не нужно.

Решение:

- вообще, минимальное двоичное число, содержащее 5 единиц это 11111₂, но в восьмеричной системе оно записывается как 37 – двухзначное число
- 6) минимальное четырёхзначное восьмеричное число $-1000_8 = 1\,000\,000\,000_2$, для решения задачи в конце этого числа нужно заменить четыре нуля на единицы: $1\,000\,001\,111_7 = 1017_8$
- 7) Ответ: <mark>1017</mark>

Ещё пример задания:

Р-04. Сколько единиц в двоичной записи десятичного числа 519?

Решение:

8) проще всего представить заданное число в виде суммы степеней числа 2:

$$519 = 512 + 7 = 2^9 + 4 + 3 = 2^9 + 2^2 + 2 + 1 = 2^9 + 2^2 + 2^1 + 2^0$$

- 9) количество единиц в двоичной записи числа равно количеству слагаемых в таком разложении
- 10) Ответ: <mark>4</mark>

Ещё пример задания:

P-03. Даны 4 числа, они записаны с использованием различных систем счисления. Укажите среди этих чисел то, в двоичной записи которого содержится ровно 6 единиц. Если таких чисел несколько. укажите наибольшее из них.

Решение:

- нужно перевести все заданные числа в двоичную систему, подсчитать число единиц и выбрать наибольшее из чисел, в которых ровно 6 единиц;
- 12) для первого варианта переведем оба сомножителя в двоичную систему:

$$63_{10} = 1111111_2$$
 $4_{10} = 100_2$

в первом числе ровно 6 единиц, умножение на второе добавляет в конец два нуля:

$$63_{10} * 4_{10} = 1111111_2 * 100_2 = 111111100_2$$

2

то есть в этом числе 6 единиц

13) для второго варианта воспользуемся связью между шестнадцатеричной и двоичной системами счисления: каждую цифру шестнадцатеричного числа можно переводить отдельно в тетраду (4 двоичных цифры):

```
F_{16} = 1111_2 8_{16} = 1000_2 F_{16} = 11111000_2
```

после добавления единицы $F8_{16} + 1 = 1111\ 100\frac{1}{2}$ также получаем число, содержащее ровно 6 единиц, но оно меньше, чем число в первом варианте ответа

14) для третьего варианта используем связь между восьмеричной и двоичной системами: каждую цифру восьмеричного числа переводим отдельно в триаду (группу из трёх) двоичных цифр:

```
333_8 = 011\ 011\ 011_2 = 11011011_2
```

это число тоже содержит 6 единиц, но меньше, чем число в первом варианте ответа

- 15) последнее число 11100111₂ уже записано в двоичной системе, оно тоже содержит ровно 6 единиц, но меньше первого числа
- 16) таким образом, все 4 числа, указанные в вариантах ответов содержат ровно 6 единиц, но наибольшее из них первое
- 17) Ответ: <mark>1</mark>.

Ещё пример задания:

Р-02. Сколько единиц в двоичной записи числа 1025?

1) 1 2) 2 3) 10

Решение (вариант 1, прямой перевод):

- 18) переводим число 1025 в двоичную систему: 1025 = 1000000001₂
- 19) считаем единицы, их две
- 20) Ответ: <mark>2</mark>

Возможные проблемы:

легко запутаться при переводе больших чисел.

Решение (вариант 2, разложение на сумму степеней двойки):

1) тут очень полезно знать наизусть таблицу степеней двойки. где $1024 = 2^{10}$ и $1 = 2^{0}$

4) 11

- 2) таким образом, $1025 = 1024 + 1 = 2^{10} + 2^{0}$
- вспоминая, как переводится число из двоичной системы в десятичную (значение каждой цифры умножается на 2 в степени, равной её разряду), понимаем, что в двоичной записи числа ровно столько единиц, сколько в приведенной сумме различных степеней двойки, то есть, 2
- 4) Ответ: <mark>2</mark>

Возможные проблемы:

нужно помнить таблицу степеней двойки.

Когда удобно использовать:

• когда число чуть больше какой-то степени двойки

Ещё пример задания:

P-01. Дано: $a = D7_{16}$ и $b = 331_8$. Какое из чисел c, записанных в двоичной системе счисления, удовлетворяет неравенству a < c < b?

3

Тема 7

1) 11011001₂ 2) 11011100₂ 3) 11010111₂ 4) 11011000₂

Общий подход:

перевести все числа (и исходные данные, и ответы) в одну (любую!) систему счисления и сравнить.

Решение (вариант 1, через десятичную систему):

- 5) $a = D7_{16} = 13.16 + 7 = 215$
- 6) $b = 331_8 = 3 \cdot 8^2 + 3 \cdot 8 + 1 = 217$
- 7) переводим в десятичную систему все ответы: 11011001₂ = 217, 11011100 ₂= 220, 11010111₂ = 215, 11011000₂=216
- 8) очевидно, что между числами 215 и 217 может быть только 216
- 9) таким образом, верный ответ 4.

Возможные проблемы:

арифметические ошибки при переводе из других систем в десятичную.

Решение (вариант 2, через двоичную систему):

- 1) $a = D7_{16} = 1101 \ 0111_2 = 11010111_2$ (каждая цифра шестнадцатеричной системы *отдельно* переводится в четыре двоичных *mempady*):
- 2) $b = 331_8 = 011 \ 011 \ 001_2 = 11011001_2$ (каждая цифра восьмеричной системы *отдельно* переводится в три двоичных *триаду*, старшие нули можно не писать);
- 3) теперь нужно сообразить, что между этими числами находится только двоичное число 11011000_2 это ответ 4.

Возможные проблемы:

запись двоичных чисел однородна, содержит много одинаковых символов – нулей и единиц, поэтому легко запутаться и сделать ошибку.

Решение (вариант 3, через восьмеричную систему):

- 1) $a = D7_{16} = 11010111_2 = 011 \ 010 \ 111_2 = 327_8$ (сначала перевели в двоичную систему, потом двоичную запись числа разбили на триады **справа налево**, каждую триаду перевели *отдельно* в десятичную систему, так как для чисел от 0 до 7 их восьмеричная запись совпадает с десятичной);
- 2) $b = 33 \, 1_8$, никуда переводить не нужно;
- 3) переводим в восьмеричную систему все ответы: $11011001_2 = 011 \ 011 \ 001_2 = 331_8 (разбили на триады$ **справа налево**, каждую триаду перевели*отвельно* $в десятичную систему, как в п. 1) <math display="block">11011100_2 = 334_8, \quad 11010111_2 = 327_8, \qquad 11011000_2 = 330_8$
- 4) в восьмеричной системе между числами 327_8 и 331_8 может быть только 330_8
- 5) таким образом, верный ответ 4.

Возможные проблемы:

нужно помнить двоичную запись чисел от 0 до 7 (или переводить эти числа в двоичную систему при решении).

Решение (вариант 4, через шестнадцатеричную систему):

4

- 1) $a = D7_{16}$ никуда переводить не нужно;
- 2) $b = 33\,l_8 = 11011001_2 = 1101\,\,\,1001_2 = D9_{16}$ (сначала перевели в двоичную систему, потом двоичную запись числа разбили на тетрады **справа налево**, каждую тетраду перевели в шестнадцатеричную систему; при этом тетрады можно переводить из двоичной системы в десятичную, а затем заменить все числа. большие 9. на буквы A. B. C. D. E. F):
- 3) переводим в шестнадцатеричную систему все ответы: $11011001_2 = 1101\ 1001_2 = D9_{16}$ (разбили на тетрады **справа налево**, каждую тетраду перевели *отдельно* в десятичную систему, все числа, большие 9, заменили на буквы A, B, C, D, E, F, как в п. 1)

 $11011100_{2} = DC_{16}$, $11010111_{2} = D7_{16}$, $11011000_{2} = D8_{16}$

- 4) в шестнадцатеричной системе между числами $D7_{16}$ и $D9_{16}$ может быть только $D8_{16}$
- 5) таким образом, верный ответ 4.

Возможные проблемы:

нужно помнить двоичную запись чисел от 0 до 15 (или переводить эти числа в двоичную систему при решении).

Выводы:

- есть несколько способов решения, «каждый выбирает для себя»;
- наиболее сложные вычисления при переводе всех чисел в десятичную систему, можно легко ошибиться:
- сравнивать числа в двоичной системе сложно, также легко ошибиться;
- видимо, в этой задаче наиболее простой вариант использовать восьмеричную систему, нужно просто запомнить двоичные записи чисел от 0 до 7 и аккуратно все сделать;
- в других задачах может быть так, что выгоднее переводить все в десятичную или шестнадцатеричную систему счисления.

Еще пример задания:

P-00. Для хранения целого числа со знаком используется один байт. Сколько единиц содержит внутреннее представление числа (-78)?

Решение (вариант 1, классический):

1) переводим число 78 в двоичную систему счисления:

$$78 = 64 + 8 + 4 + 2 = 2^6 + 2^3 + 2^2 + 2^1 = 1001110_2$$

- по условию число занимает в памяти 1 байт = 8 бит, поэтому нужно представить число с помощью 8 разрядов
- 3) чтобы получилось всего 8 разрядов (бит), добавляем впереди один ноль:

4) делаем инверсию битов (заменяем везде 0 на 1 и 1 на 0):

$$01001110_2 \rightarrow 10110001_2$$

5) добавляем к результату единицу

$$10110001_2 + 1 = 10110010_2$$

5

это и есть число (-78) в двоичном дополнительно коде

- 6) в записи этого числа 4 единицы
- 7) таким образом, верный ответ 2.

Возможные ловушки и проблемы:

 нужно не забыть в конце добавить единицу, причем это может быть не так тривиально, если будут переносы в следующий разряд – тут тоже есть шанс ошибиться из-за невнимательности

Тема 7

Решение (вариант 2, неклассический):

1) переводим число 78 – 1=77 в двоичную систему счисления:

$$77 = 64 + 8 + 4 + 1 = 2^6 + 2^3 + 2^2 + 2^0 = 1001101_2$$

- по условию число занимает в памяти 1 байт = 8 бит, поэтому нужно представить число с помощью 8 разрядов
- 3) чтобы получилось всего 8 разрядов (бит), добавляем впереди один ноль:

4) делаем инверсию битов (заменяем везде 0 на 1 и 1 на 0):

$$01001101_2 \rightarrow 10110010_2$$

это и есть число (-78) в двоичном дополнительно коде

- 5) в записи этого числа 4 единицы
- 6) таким образом, верный ответ 2.

Возможные ловушки и проблемы:

нужно помнить, что в этом способе в двоичную систему переводится не число а, а число
а-1; именно этот прием позволяет избежать добавления единицы в конце (легче вычесть в
десятичной системе, чем добавить в двоичной)

Решение (вариант 3, неклассический):

1) переводим число 78 в двоичную систему счисления:

$$78 = 64 + 8 + 4 + 2 = 2^6 + 2^3 + 2^2 + 2^1 = 1001110_2$$

- по условию число занимает в памяти 1 байт = 8 бит, поэтому нужно представить число с помощью 8 разрядов
- 3) чтобы получилось всего 8 разрядов (бит), добавляем впереди один ноль:

 для всех битов, которые стоят слева от младшей единицы, делаем инверсию битов (заменяем везде 0 на 1 и 1 на 0):

$$01001110_{2} \rightarrow 10110010_{2}$$

это и есть число (-78) в двоичном дополнительно коде

- 5) в записи этого числа 4 единицы
- 6) таким образом, верный ответ 2.

Возможные ловушки и проблемы:

• нужно помнить, что при инверсии младшая единица и все нули после нее не меняются

6

Задачи для тренировки1:

1) Как пр	елставлено	число	8310 F	к лвоичной	системе	счисления?
-----------	------------	-------	--------	------------	---------	------------

1) 10010112 2) 11001012 3) 10100112 4) 1010012

2) Сколько единиц в двоичной записи числа 195?

3) Сколько единиц в двоичной записи числа 173?

4) Как представлено число 25 в двоичной системе счисления?

1) 1001₂

2) 110012

3) 100112

4) 110102

5) Как представлено число 82 в двоичной системе счисления?

1) 1010010₂ 2) 1010011₂ 3) 100101₂

4) 10001002

6) Как представлено число 263 в восьмеричной системе счисления?

1) 301₈

2) 650。

3) 407₈

4) 777.

7) Как записывается число 567₈ в двоичной системе счисления?

1) 1011101, 2) 100110111, 3) 101110111, 4) 11110111,

8) Как записывается число А87₁₆ в восьмеричной системе счисления?

1) 4358

2) 1577

3) 52078

4) 64008

9) Как записывается число 7548 в шестнадцатеричной системе счисления?

1) 73816

2) 1A4₁₆

3) 1EC₁₆

4) A56₁₆

10) Для хранения целого числа со знаком используется один байт. Сколько единиц содержит внутреннее представление числа (-128)?

11) Для хранения целого числа со знаком используется один байт. Сколько единиц содержит внутреннее представление числа (-35)?

12) Дано: $a = 9D_{c}$, $b = 237_{o}$. Какое из чисел C, записанных в двоичной системе счисления, удовлетворяет неравенству a < C < b?

1) 100110102

2) 100111102

3) 100111112

4) 11011110₂

1. Демонстрационные варианты ЕГЭ 2004-2016 гг.

2. Тренировочные и диагностические работы МИОО.

3. Гусева И.Ю. ЕГЭ. Информатика: раздаточный материал тренировочных тестов. — СПб: Тригон, 2009.

4. Якушкин П.А., Лещинер В.Р., Кириенко Д.П. ЕГЭ 2010. Информатика, Типовые тестовые задания. — М.: Экзамен, 2010.

5. Абрамян М.Э., Михалкович С.С., Русанова Я.М., Чердынцева М.И. Информатика. ЕГЭ шаг за шагом. — М.: НИИ школьных технологий. 2010.

6. Чуркина Т.Е. ЕГЭ 2011. Информатика. Тематические тренировочные задания. — М.: Эксмо, 2010.

7. Самылкина Н.Н., Островская Е.М. ЕГЭ 2011. Информатика. Тематические тренировочные задания. — М.: Эксмо. 2010.

8. Крылов С.С., Ушаков Д.М. ЕГЭ 2015. Информатика. Тематические тестовые задания. — М.: Экзамен, 2015.

9. Ушаков Д.М. ЕГЭ-2015. Информатика. 20 типовых вариантов экзаменационных работ для подготовки к ЕГЭ. М.: Астрель. 2014.

Тема 7

13) Дано: $a = F7_{16}$, $b = 371_{\circ}$. Какое из чисел С, записанных в двоичной системе счисления, удовлетворяет неравенству a < C < b?

1) 111110012

2) 110110002

3) 111101112 4) 111110002

14) Дано: $a = DD_{16}$, $b = 337_8$. Какое из чисел C, записанных в двоичной системе счисления, удовлетворяет неравенству a < C < b?

1) 11011010₂

2) 11111110₂

3) 110111102 4) 110111112

15) Дано: $a = EA_{16}$, $b = 354_8$. Какое из чисел C, записанных в двоичной системе счисления, удовлетворяет неравенству a < C < b?

1) 111010102

2) 111011102

3) 111010112

4) 111011002

16) Дано: $a = E7_{16}$, $b = 351_{\circ}$. Какое из чисел C, записанных в двоичной системе счисления, удовлетворяет неравенству a < C < b?

1) 11101010₂

2) 11101000

3) 11101011₂

4) 111011002

17) Дано: $a=322_{\rm s}$, $b=D4_{\rm i.s.}$. Какое из чисел C, записанных в двоичной системе счисления, удовлетворяет неравенству a < C < b?

1) 110100112

2) 110011102

3) 110010102

4) 110011002

18) Дано: $a = D1_{16}$, $b = 333_{\circ}$. Какое из чисел C, записанных в двоичной системе счисления, удовлетворяет неравенству a < C < b?

1) 111000112

2) 110110102

3) 101011012

4) 110111012

19) Сколько единиц в двоичной записи числа 64?

20) Сколько единиц в двоичной записи числа 127?

21) Сколько значащих нулей в двоичной записи числа 48?

22) Сколько значащих нулей в двоичной записи числа 254?

23) Какое из чисел является наименьшим?

1) E6₁₆

2) 3478

3) 111001012 4) 232

24) Какое из чисел является наибольшим?

1) 9B₁₆

2) 2348

3) 10011010₂ 4) 153

25) Дано: $a = A7_{16}$, $b = 251_8$. Какое из чисел C, записанных в двоичной системе счисления, удовлетворяет неравенству a < C < b?

1) 101011002

2) 101010102

3) 101010112

4) 10101000₂

26) Дано: $a = DD_{16}$, $b = 337_8$. Какое из чисел C, записанных в двоичной системе счисления, удовлетворяет неравенству a < C < b?

1) 11011010₂

2) 11111110₂

3) 11011111₂

4) 11011110₂

¹ Источники заданий:

27) Дано: $a = 222_8$, $b = $ удовлетворяет нера		л С, записанных в д	цвоичной системе счисления,
1) 100010102		3) 10010011 ₂	4) 10001100 ₂
28) Дано: $a = EA_{16}$, $b =$ удовлетворяет нера		ел С, записанных в д	двоичной системе счисления,
1) 11101010 ₂	2) 111011102	3) 11101100 ₂	4) 11101011 ₂
29) Дано: $a = AA_{16}$, $b =$ удовлетворяет нера		ел С, записанных в ,	двоичной системе счисления,
1) 101010102	2) 101111002	3) 101000112	4) 10101100 ₂
30) Сколько единиц в д 31) Дано: $a=70_{10},\ b=$ удовлетворяет нера	40_{16} . Какое из чисел		воичной системе счисления,
1) 10000002	2) 10001102	3) 1000101 ₂	4) 10001112
32) Дано: $a = 91_{16}$, $b =$ удовлетворяет нера		л С, записанных в д	цвоичной системе счисления,
1) 100010012	2) 10001100 ₂	3) 11010111 ₂	4) 11111000 ₂
	$0_{\!\scriptscriptstyle 2}$, $b=271_{\!\scriptscriptstyle 8}$. Какое в		ных в шестнадцатеричной системе
1) AA ₁₆	2) B8 ₁₆	3) D6 ₁₆	4) FO ₁₆
удовлетворяет нера			з двоичной системе счисления,
35) Дано: $a = 1011011$ удовлетворяет нера	=	із чисел С, записані	ных в двоичной системе счисления,
1) 10111010 ₂	2) 10101010 ₂	3) 101010100 ₂	4) 10100010 ₂
 36) Сколько единиц в д 37) Сколько нулей в дво 38) Для каждого из перчисло, двоичная заг 	ричной записи десят ечисленных ниже де	ичного числа 497? сятичных чисел по	строили двоичную запись. Укажите
1) 1 2)	11 3) 3	4) 33	
39) Для каждого из пер- число, двоичная заг			строили двоичную запись. Укажите цы.
1) 7 2)	11 3) 12	4) 15	

9

					Тел
40			•	десятичных чисел построили двоичную запись. Ука ржит ровно 4 единицы.	жите
	1) 15	2) 21	3) 32	4) 35	
41				десятичных чисел построили двоичную запись. Ука ржит ровно 2 единицы.	жите
	1) 14	2) 16	3) 18	4) 31	
42				десятичных чисел построили двоичную запись. Ука ржит ровно 3 единицы.	жите
	1) 8	2) 10	3) 12	4) 14	
43		•	•	десятичных чисел построили двоичную запись. Ука ржит наибольшее количество единиц.	жите
	1) 13	2) 14	3) 15	4) 16	
44		•	•	десятичных чисел построили двоичную запись. Ука ржит наибольшее количество единиц.	жите
	1) 23	2) 24	3) 25	4) 26	
45				десятичных чисел построили двоичную запись. Ука ржит наибольшее количество значащих нулей.	жите
	1) 3	2) 8	3) 11	4) 15	
46		•	•	десятичных чисел построили двоичную запись. Ука ржит наибольшее количество значащих нулей.	жите
	1) 13	2) 18	3) 21	4) 25	
47) Даны 4 целых 10001 Сколько среди	.011, 101110	00, 1001101	1, 10110100.	
48) Даны 4 целых 1 10101 Сколько среди	.011, 110011	00, 1100011	1, 11110100.	
49) Даны 4 целых (11000 Сколько среди	0000, 110000	11, 1101100	1, 11011111.	

50) Даны 4 целых числа, записанные в двоичной системе: 10111010, 10110100, 10101111, 10101100.

- 51) Даны 4 числа, они записаны с использованием различных систем счисления. Укажите среди этих чисел то, в двоичной записи которого содержится ровно 5 единиц. Если таких чисел несколько, укажите наибольшее из них.
 - 1) 31₁₀ * 8₁₀ + 1₁₀
- 2) FO₁₆ + 1₁₀ 3) 351₈
- 4) 111000112
- 52) Даны 4 числа, они записаны с использованием различных систем счисления. Укажите среди этих чисел то, в двоичной записи которого содержится ровно 4 единицы. Если таких чисел несколько, укажите наибольшее из них.
 - 1) 15₁₀ * 16₁₀ + 4₁₀
- 2) D7₁₆ + 1₁₀ 3) 344₈
- 448
- 4) 111000012
- 53) (http://ege.yandex.ru) Сколько единиц в троичной записи десятичного числа 243?
- 54) (http://ege.yandex.ru) Сколько единиц в троичной записи десятичного числа 242?
- 55) (http://ege.yandex.ru) Даны 4 числа, они записаны с использованием различных систем счисления. Укажите среди этих чисел то, в двоичной записи которого содержится ровно 5 единиц. Если таких чисел несколько, укажите наибольшее из них.

3) 345

- 1) 1510

2) 77_°

- 4) FA₁₆
- 56) Укажите наименьшее четырёхзначное восьмеричное число, двоичная запись которого содержит 6 единиц. В ответе запишите только само восьмеричное число, основание системы счисления указывать не нужно.
- 57) Укажите наименьшее четырёхзначное восьмеричное число, двоичная запись которого содержит ровно 3 нуля. В ответе запишите только само восьмеричное число, основание системы счисления указывать не нужно.
- 58) Укажите набольшее четырёхзначное восьмеричное число, двоичная запись которого содержит 4 единицы. В ответе запишите только само восьмеричное число, основание системы счисления указывать не нужно.
- 59) Укажите наибольшее четырёхзначное восьмеричное число, двоичная запись которого содержит ровно 4 нуля. В ответе запишите только само восьмеричное число, основание системы счисления указывать не нужно.
- 60) Укажите наименьшее число, двоичная запись которого содержит ровно три значащих нуля и две единицы. Ответ запишите в десятичной системе счисления.
- 61) Укажите набольшее число, двоичная запись которого содержит ровно три значащих нуля и две единицы. Ответ запишите в десятичной системе счисления.
- 62) Сколько единиц в двоичной записи десятичного числа 245?
- 63) Сколько единиц в двоичной записи десятичного числа 501?
- 64) Укажите наименьшее четырёхзначное шестнадцатеричное число, двоичная запись которого содержит ровно 5 нулей. В ответе запишите только само шестнадцатеричное число, основание системы счисления указывать не нужно.
- 65) Укажите наименьшее четырёхзначное шестнадцатеричное число, двоичная запись которого содержит ровно 7 нулей. В ответе запишите только само шестнадцатеричное число, основание системы счисления указывать не нужно.
- 66) Укажите наибольшее четырёхзначное шестнадцатеричное число, двоичная запись которого содержит ровно 6 нулей. В ответе запишите только само шестнадцатеричное число, основание системы счисления указывать не нужно.

- 67) Укажите наибольшее четырёхзначное шестнадцатеричное число, двоичная запись которого содержит ровно 9 нулей. В ответе запишите только само шестнадцатеричное число, основание системы счисления указывать не нужно.
- 68) Укажите наименьшее четырёхзначное шестнадцатеричное число, двоичная запись которого содержит ровно 6 нулей. В ответе запишите только само шестнадцатеричное число, основание системы счисления указывать не нужно.
- 69) Укажите наибольшее число, двоичная запись которого содержит ровно три значащих нуля и две единицы, причём единицы не стоят рядом. Ответ запишите в десятичной системе счисления.
- 70) Сколько единиц в двоичной записи восьмеричного числа 65438?
- 71) Сколько единиц в двоичной записи восьмеричного числа 12348?
- 72) Сколько единиц в двоичной записи восьмеричного числа 61238?
- 73) Сколько значащих нулей в двоичной записи восьмеричного числа 7512₈?
- 74) Сколько значащих нулей в двоичной записи восьмеричного числа 1253₈?
- 75) Сколько значащих нулей в двоичной записи восьмеричного числа 7715₈?
- 76) Сколько единиц в двоичной записи шестнадцатеричного числа 4FA7₁₆? 77) Сколько единиц в двоичной записи шестнадцатеричного числа 1234₁₆?
- 78) Сколько единиц в двоичной записи шестнадцатеричного числа 6АВ1₁₆?
- 79) Сколько значащих нулей в двоичной записи шестнадцатеричного числа 75ВD₁₆?
- 80) Сколько значащих нулей в двоичной записи шестнадцатеричного числа 1253₁₆?
- 81) Сколько значащих нулей в двоичной записи шестнадцатеричного числа 3FC5₁₆?
- 82) Вычислите: 10101010₂ 252₈ + 7₁₆. Ответ запишите в десятичной системе счисления.
- 83) Вычислите: $10101011_2 253_8 + 6_{16}$. Ответ запишите в десятичной системе счисления.
- 84) Определите количество натуральных чисел, удовлетворяющих неравенству: $11001011_2 < x < CF_{16}$.
- 85) Определите количество натуральных чисел, удовлетворяющих неравенству: $11000111_2 < x < CD_{16}$.
- 86) Определите количество натуральных чисел, удовлетворяющих неравенству: $11000011_2 < x < CA_{16}$.
- 87) Определите количество натуральных чисел, удовлетворяющих неравенству: $11010010_2 < x < DA_{16}$.
- 88) Определите количество натуральных чисел, удовлетворяющих неравенству: $11010111_2 < x < DB_{16}$.
- 89) Определите количество натуральных чисел, удовлетворяющих неравенству: $11010110_2 < x < DC_{16}$.
- 90) Определите количество натуральных чисел, удовлетворяющих неравенству: 11010011₂ < *x* < DF₁₆.
- 91) Определите количество натуральных чисел, удовлетворяющих неравенству: $110011110_2 < x < DE_{16}$.
- 92) Определите количество натуральных чисел, удовлетворяющих неравенству: $11110000_2 < x < FA_{16}$. 93) Определите количество натуральных чисел, удовлетворяющих неравенству: $11100101_2 < x < FC_{16}$.
- 94) (Д.В. Богданов) Определите количество натуральных чисел, удовлетворяющих неравенству:
- $EEA_{16} < x < 7640_8$.