Final Project Setup

Yobin Timilsena & Mitchell Valdes-Bobes

March 7, 2022

1 Model

• Households live for *T* periods, without retirement. Agents are heterogeneous in human capital *h* and assets *k*. Agents are either employed or unemployed (but looking for a job). They spend *s* proportion of time in school each period. Moreover, *S* represents cumulative years of schooling. There are two kinds of firms: a high type and a low type.

1.1 Firms

- There are 2 firm types $I \in \{L, H\}$, with μ fraction of firms being the low type.
- Firm type I = L hires all workers while firm type I = H hires only workers with $S \ge \underline{S}$.

1.2 Workers

• Law of motion of human capital is: $h' = \exp(z)H(h,s)$ where $z \in \mathbb{R}_+$ is a random shock.

1.2.1 Unemployed Workers

- Search for a job with intensity γ , $(\gamma + s = 1)$.
- Receive a job offer with probability $\pi(\gamma, S)$, $(\pi(0, \cdot) = 0) \pi_t(\gamma, S) = \gamma \cdot \frac{S}{t}$.
- Dependent on *S* they might receive an offer from just *L* or both firms.
- Receive unemployment benefits *b* while unemployed.
- There are 3 state variables:
 - h ∈ \mathbb{R}_+ human capital. Law of motion $h' = \exp z' H(h, s)$.

- **-** k ∈ \mathbb{R}_+ assets.
- S ∈ \mathbb{R}_+ (accumulated) schooling. Law of motion S' = S + s.

Value Function if $S < \underline{S}$

$$U_{t}(h,k,S) = \max_{k',s} \left\{ u(c) + \beta \mathbb{E} \left[\pi(\gamma,S) W_{t+1}^{L}(h',k',S') + (1-\pi(\gamma,S)) U_{t+1}^{L}(h',k',S') \right] \right\}$$

Value Function if $S \ge \underline{S}$

$$\begin{aligned} U_{t}(h,k,S) &= \max_{k',s} \left\{ u(c) + \beta \mathbb{E} \left[\pi(\gamma,S) \left[\mu W_{t+1}^{L}(h',k',S') + (1-\mu) W_{t+1}^{H}(h',k',S') \right] \right. \right. \\ &\left. + (1-\pi(\gamma,S)) U_{t+1}^{L}(h',k',S') \right] \right\} \end{aligned}$$

with the budget constraint

$$c + k' \le b + k(1+r).$$

1.2.2 Employed Workers

- Divide their time for s + l = 1.
- No on-the-job search allowed.

Value function

$$W_{t}^{I}(h, k, S) = \max_{k', s} \left\{ u(c) + \beta \mathbb{E} \left[(1 - \delta) W_{t+1}^{I}(h', k', S') + \delta U_{t+1}(h', k', S') \right] \right\}$$

with the budget constraint

$$c + k' \le R_t^I h l + k(1+r)$$