

Probabilistic Graphical Models

Directed GMs: Bayesian Networks

01010001 Ω

Eric Xing
Lecture 2, January 16, 2019

Reading: see class homepage

Two types of GMs

Directed edges give causality relationships (Bayesian Network or Directed Graphical Model):

$$P(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8)$$

$$= P(X_1) P(X_2) P(X_3 | X_1) P(X_4 | X_2) P(X_5 | X_2)$$

$$P(X_6 | X_3, X_4) P(X_7 | X_6) P(X_8 | X_5, X_6)$$

 Undirected edges simply give correlations between variables (Markov Random Field or Undirected Graphical model):

$$P(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8)$$

$$= \frac{1}{Z} \exp\{E(X_1) + E(X_2) + E(X_3, X_1) + E(X_4, X_2) + E(X_5, X_2) + E(X_6, X_3, X_4) + E(X_7, X_6) + E(X_8, X_5, X_6)\}$$

Notation

- Variable, value and index
- Random variable
- Random vector
- Random matrix
- Parameters

Example: The Dishonest Casino

- A casino has two dice:
 - □ Fair die

$$P(1) = P(2) = P(3) = P(5) = P(6) = 1/6$$

■ Loaded die

$$P(1) = P(2) = P(3) = P(5) = 1/10$$

- P(6) = 1/2
- Casino player switches back-&-forth between fair and loaded die once every 20 turns
- □ Game:
 - You bet \$1
 - You roll (always with a fair die)
 - Casino player rolls (maybe with fair die, maybe with loaded die)
 - □ Highest number wins \$2

Puzzles regarding the dishonest casino

GIVEN: A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

QUESTION

- How likely is this sequence, given our model of how the casino works?
 - □ This is the **EVALUATION** problem
- What portion of the sequence was generated with the fair die, and what portion with the loaded die?
 - This is the DECODING question
- How "loaded" is the loaded die? How "fair" is the fair die? How often does the casino player change from fair to loaded, and back?
 - This is the LEARNING question

Knowledge Engineering

- Picking variables
 - Observed
 - Hidden
 - Discrete
 - Continuous
- Picking structure
 - CAUSAL
 - Generative
 - Coupling
- Picking Probabilities
 - "Natural"
 - Zero probabilities
 - Orders of magnitudes
 - Relative values

Hidden Markov Model

The underlying source:

Speech signal genome function dice

The sequence:

Phonemes
DNA sequence
sequence of rolls

Probability of a parse

- Given a sequence $\mathbf{x} = \mathbf{x}_1, \dots, \mathbf{x}_T$ and a parse $\mathbf{y} = \mathbf{y}_1, \dots, \mathbf{y}_T$
- To find how likely is the parse: (given our HMM and the sequence)

$$p(\mathbf{x}, \mathbf{y}) = p(x_1, \dots, x_T, y_1, \dots, y_T)$$
 (Joint probability)
= $p(y_1) p(x_1 | y_1) p(y_2 | y_1) p(x_2 | y_2) \dots p(y_T | y_{T-1}) p(x_T | y_T)$
= $p(y_1) P(y_2 | y_1) \dots p(y_T | y_{T-1}) \times p(x_1 | y_1) p(x_2 | y_2) \dots p(x_T | y_T)$
= $p(y_1, \dots, y_T) p(x_1, \dots, x_T | y_1, \dots, y_T)$

- Marginal probability:
- Posterior probability: $p(\mathbf{x}) = \sum_{\mathbf{y}} p(\mathbf{x}, \mathbf{y}) = \sum_{y_1} \sum_{y_2} \cdots \sum_{y_N} \pi_{y_1} \prod_{t=2}^{L} a_{y_{t-1}, y_t} \prod_{t=1}^{L} p(x_t \mid y_t)$ $p(\mathbf{y} \mid \mathbf{x}) = p(\mathbf{x}, \mathbf{y}) / p(\mathbf{x})$
- We will learn how to do this efficiently (polynomial time)

Bayesian Network:

- A BN is a directed graph whose nodes represent the random variables and whose edges represent direct influence of one variable on another.
- It is a data structure that provides the skeleton for representing a joint distribution compactly in a factorized way;
- It offers a compact representation for a set of conditional independence assumptions about a distribution;
- We can view the graph as encoding a generative sampling process executed by nature, where the value for each variable is selected by nature using a distribution that depends only on its parents. In other words, each variable is a stochastic function of its parents.

Bayesian Network: Factorization Theorem

Theorem:

Given a DAG, The most general form of the probability distribution that is consistent with the graph factors according to "node given its parents":

$$P(\mathbf{X}) = \prod_{i=1:d} P(X_i \mid \mathbf{X}_{\pi_i})$$

where X_{π_i} is the set of parents of X_i , d is the number of nodes (variables) in the graph.

Specification of a directed GM

- There are two components to any GM:
 - the *qualitative* specification
 - the *quantitative* specification

Qualitative Specification

- Where does the qualitative specification come from?
 - Prior knowledge of causal relationships
 - Prior knowledge of modular relationships
 - Assessment from experts
 - Learning from data
 - We simply like a certain architecture (e.g. a layered graph)
 - **.** . . .

Local Structures & Independencies

- Common parent
 - Fixing B decouples A and C
 "given the level of gene B, the levels of A and C are independent"
- Cascade
 - Knowing B decouples A and C
 "given the level of gene B, the level gene A provides no extra prediction value for the level of gene C"
- V-structure
 - Knowing C couples A and B
 because A can "explain away" B w.r.t. C
 "If A correlates to C, then chance for B to also correlate to B will decrease"
- The language is compact, the concepts are rich!

A simple justification

I-maps

- **Defn**: Let P be a distribution over X. We define I(P) to be the set of independence assertions of the form $(X \perp Y \mid Z)$ that hold in P (however how we set the parameter-values).
- Defn: Let K be any graph object associated with a set of independencies I(K). We say that K is an I-map for a set of independencies I, if I(K) ⊆ I.

We now say that G is an I-map for P if G is an I-map for I(P), where we use I(G) as the set of independencies associated.

Facts about I-map

For G to be an I-map of P, it is necessary that G does not mislead us regarding independencies in P:

any independence that G asserts must also hold in P. Conversely, P may have additional independencies that are not reflected in G

Example:

$$\begin{array}{c|ccc} X & Y & P(X,Y) \\ \hline x^0 & y^0 & 0.08 \\ x^0 & y^1 & 0.32 \\ \hline x^1 & y^0 & 0.12 \\ x^1 & y^1 & 0.48 \\ \hline \end{array}$$

$$\begin{array}{c|cccc} X & Y & P(X,Y) \\ \hline x^0 & y^0 & 0.4 \\ x^0 & y^1 & 0.3 \\ x^1 & y^0 & 0.2 \\ x^1 & y^1 & 0.1 \\ \end{array}$$

What is in I(G) --local Markov assumptions of BN

A Bayesian network structure G is a directed acyclic graph whose nodes represent random variables X_1, \ldots, X_n .

local Markov assumptions

Defn :

Let Pa_{Xi} denote the parents of X_i in G, and $NonDescendants_{Xi}$ denote the variables in the graph that are not descendants of X_i . Then G encodes the following set of *local conditional independence assumptions* $I_A(G)$:

```
I_{\ell}(G): \{X_i \perp NonDescendants_{X_i} \mid Pa_{X_i} : \forall i\},
```

In other words, each node X_i is independent of its nondescendants given its parents.

Graph separation criterion

D-separation criterion for Bayesian networks (D for Directed edges):

Defn: variables x and y are *D-separated* (conditionally independent) given z if they are separated in the *moralized* ancestral graph

Example:

What is in I(G) --Global Markov properties of BN

X is d-separated (directed-separated) from Z given Y if we can't send a ball from any node in X to any node in Z using the "Bayes-ball" algorithm illustrated bellow (and plus some boundary conditions):

• Defn: *I(G)*=all independence properties that correspond to dseparation:

$$I(G) = \{ X \perp Z | Y : dsep_G(X; Z | Y) \}$$

 D-separation is sound and complete (more details later)

Example:

Complete the I(G) of this graph:

Toward quantitative specification of probability distribution

- Separation properties in the graph imply independence properties about the associated variables
- The Equivalence Theorem

For a graph G,

Let D₁ denote the family of **all distributions** that satisfy I(G), Let D₂ denote the family of **all distributions** that factor according to G,

Then
$$D_1 \equiv D_2$$
.

$$P(\mathbf{X}) = \prod_{i=1:d} P(X_i \mid \mathbf{X}_{\pi_i})$$

 For the graph to be useful, any conditional independence properties we can derive from the graph should hold for the probability distribution that the graph represents

Conditional probability tables (CPTs)

a^0	0.75
a ¹	0.25

b^0	0.33
b ¹	0.67

P(a,b,c.d) = P(a)P(b)P(c|a,b)P(d|c)

	a ⁰ b ⁰	a ⁰ b ¹	a¹b ⁰	a ¹ b ¹
c ₀	0.45	1	0.9	0.7
c ¹	0.55	0	0.1	0.3

	c ₀	c ¹
d^0	0.3	0.5
d ¹	07	0.5

Conditional probability density func. (CPDs)

P(a,b,c.d) = P(a)P(b)P(c|a,b)P(d|c)

Summary of BN semantics

- Defn: A Bayesian network is a pair (G, P) where P factorizes over G, and where P is specified as set of CPDs associated with G's nodes.
 - Conditional independencies imply factorization
 - Factorization according to G implies the associated conditional independencies.
 - Are there other independences that hold for every distribution P that factorizes over G?

Soundness and completeness

D-separation is sound and "complete" w.r.t. BN factorization law

Soundness:

Theorem: If a distribution P factorizes according to G, then $I(G) \subseteq I(P)$.

"Completeness":

"Claim": For any distribution P that factorizes over G, if $(X \perp Y \mid Z) \in I(P)$ then $d\text{-}sep_G(X; Y \mid Z)$.

Contrapositive of the completeness statement

- "If X and Y are not d-separated given Z in G, then X and Y are dependent in all distributions P that factorize over G."
- □ Is this true?

Distributional equivalence and I-equivalence

- \Box All independence in $I_d(G)$ will be captured in $I_f(G)$, is the reverse true?
- Are "not-independence" from G all honored in P_f?

Distributional equivalence and I-equivalence

- \rightarrow All independence in $I_d(G)$ will be captured in $I_f(G)$, is the reverse true?
- Are "not-independence" from G all honored in P_f?

Soundness and completeness

- Contrapositive of the completeness statement
 - "If X and Y are **not** d-separated given Z in G, then X and Y are **dependent** in **all** distributions P that factorize over G."
 - □ Is this true?
- No. Even if a distribution factorizes over G, it can still contain additional independencies that are not reflected in the structure
 - Example: graph A->B, for actually independent A and B (the independence can be captured by some subtle way of parameterization)

$$\begin{array}{c|cccc} A & b^0 & b^1 \\ \hline a^0 & 0.4 & 0.6 \\ a^1 & 0.4 & 0.6 \\ \end{array}$$

□ Thm: Let G be a BN graph. If X and Y are not d-separated given Z in G, then X and Y are dependent in some distribution P that factorizes over G.

Theorem: For almost all distributions P that factorize over G, i.e., for all distributions except for a set of "measure zero" in the space of CPD parameterizations, we have that I(P) = I(G)

Uniqueness of BN

 Very different BN graphs can actually be equivalent, in that they encode precisely the same set of conditional independence assertions.

I-equivalence

- **Defn**: Two BN graphs G1 and G2 over X are I-equivalent if I(G1) = I(G2).
 - The set of all graphs over *X* is partitioned into a set of mutually exclusive and exhaustive *I-equivalence classes*, which are the set of equivalence classes induced by the I-equivalence relation.

- Any distribution P that can be factorized over one of these graphs can be factorized over the other.
- □ Furthermore, there is no intrinsic property of P that would allow us associate it with one graph rather than an equivalent one.
- This observation has important implications with respect to our ability to determine the directionality of influence.

Simple BNs:Conditionally Independent Observations

The "Plate" Micro

Model parameters

Data =
$$\{y_1, ..., y_n\}$$

Plate = rectangle in graphical model

variables within a plate are replicated in a conditionally independent manner

Hidden Markov Model: from static to dynamic mixture models

Static mixture

Dynamic mixture

Definition (of HMM)

- Observation space
 - Alphabetic set:

Euclidean space:

 $C = \{c_1, c_2, \dots, c_k\}$ R^{d}

Index set of hidden states

$$I = \{1, 2, \cdots, M\}$$

Transition probabilities between any two states

$$p(y_t^j = 1 | y_{t-1}^i = 1) = a_{i,j},$$

or

$$p(y_t \mid y_{t-1}^i = 1) \sim \text{Multinomial}(a_{i,1}, a_{i,1}, \dots, a_{i,M}), \forall i \in I.$$

Start probabilities

$$p(y_1) \sim \text{Multinomial}(\pi_1, \pi_2, ..., \pi_M)$$
.

Emission probabilities associated with each state

or in general:

$$p(x_t \mid y_t^i = 1) \sim \text{Multinomial}(b_{i,1}, b_{i,1}, ..., b_{i,K}), \forall i \in I.$$

$$p(\mathbf{x}_t \mid \mathbf{y}_t^i = 1) \sim f(\cdot \mid \theta_i), \forall i \in I.$$

Probability of a parse

- Given a sequence $\mathbf{x} = \mathbf{x}_1, \dots, \mathbf{x}_T$ and a parse $\mathbf{y} = \mathbf{y}_1, \dots, \mathbf{y}_T$
- To find how likely is the parse:(given our HMM and the sequence)

Summary: Representing Multivariate Distribution

Representation: what is the joint probability dist. on multiple variables?

$$P(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8,)$$

- How many state configurations in total? --- 28
- Are they all needed to be represented?
- Do we get any scientific/medical insight?
- Factored representation: the chain-rule

$$\begin{split} &P(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8) \\ &= P(X_1) P(X_2 \mid X_1) P(X_3 \mid X_1, X_2) P(X_4 \mid X_1, X_2, X_3) P(X_5 \mid X_1, X_2, X_3, X_4) P(X_6 \mid X_1, X_2, X_3, X_4, X_5) \\ &P(X_7 \mid X_1, X_2, X_3, X_4, X_5, X_6) P(X_8 \mid X_1, X_2, X_3, X_4, X_5, X_6, X_7) \end{split}$$

- □ This factorization is true for any distribution and any variable ordering
- Do we save any parameterization cost?
- □ If X_i 's are independent: $(P(X_i/\bullet) = P(X_i))$

$$P(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8)$$

$$= P(X_1)P(X_2)P(X_3)P(X_4)P(X_5)P(X_6)P(X_7)P(X_8) = \prod_{i} P(X_i)$$

- What do we gain?
- > What do we lose?

A

В

E

Summary: take home messages

- Defn (3.2.5): A Bayesian network is a pair (G, P) where P factorizes over G, and where P is specified as set of local conditional probability dist.
 CPDs associated with G's nodes.
- A BN capture "causality", "generative schemes", "asymmetric influences", etc., between entities
- Local and global independence properties identifiable via d- separation criteria (Bayes ball)
- Computing joint likelihood amounts multiplying CPDs
 - But computing marginal can be difficult
 - Thus inference is in general hard
- Important special cases:
 - Hidden Markov models
 - Tree models

A few myths about graphical models

■ They require a localist semantics for the nodes

They require a causal semantics for the edges

They are necessarily Bayesian

They are intractable

