Przykład 1. *Uwaga:* jeżeli np. $f: \mathbb{R}^2 \to \mathbb{R}^2$, to znaczy, że $f(x,y) = \begin{bmatrix} f_1(x,y) \\ f_2(x,y) \end{bmatrix}$, $f_1: \mathbb{R}^2 \to \mathbb{R}^1$, $f_2: \mathbb{R}^2 \to \mathbb{R}^1$, wówczas

$$\frac{\partial f}{\partial x} = \begin{bmatrix} \frac{\partial}{\partial x} f_1 \\ \frac{\partial}{\partial x} f_2 \end{bmatrix}, \frac{\partial}{\partial y} f = \begin{bmatrix} \frac{\partial}{\partial y} f_1 \\ \frac{\partial}{\partial y} f_2 \end{bmatrix}$$

Przykład 2.

$$f(x,y) = \begin{bmatrix} 2xy^2 \\ x^3y \end{bmatrix}$$

Wtedy pochodne czątkowe:

$$\frac{\partial f}{\partial x} = \begin{bmatrix} 2y^2 \\ 3x^2y \end{bmatrix}, \frac{\partial f}{\partial y} = \begin{bmatrix} 4xy \\ x^3 \end{bmatrix}$$

$$\begin{split} f(x+h) - f(x) &= \\ &= \frac{\partial f}{\partial x} h^x + \frac{\partial f}{\partial y} h^y + r((x,y),h) = \\ &= \begin{bmatrix} 2y^2 \\ 3x^2y \end{bmatrix} h^x + \begin{bmatrix} 4xy \\ x^3 \end{bmatrix} h^y + r((x,y),h) \\ &= \begin{bmatrix} 2y^2 & 4xy \\ 3x^2y & x^3 \end{bmatrix} \begin{bmatrix} h^x \\ h^y \end{bmatrix} + r((x,y),h). \end{split}$$

Czyli

$$f' = \begin{bmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{bmatrix}$$

i ogólniej: jeżeli $f: \mathbb{R}^n \to \mathbb{R}^k$, to

$$f' = \begin{bmatrix} \frac{\partial f_1}{\partial x^1} & \cdots & \frac{\partial f_1}{\partial x^n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_k}{\partial x^1} & \cdots & \frac{\partial f_k}{\partial x^n} \end{bmatrix}$$

0.1 Uzupełnienie:

Stwierdzenie 1. Niech V - przestrzeń wektorowa z normą ||.|| i $x_0 \in V$, wówczas

$$f(x) = ||x||, f: V \to \mathbb{R}^1$$
 - ciągła w x_0 .

Dowód. Chcemy pokazać, że

$$\forall_{\varepsilon>0} \exists_{\delta} \forall_{x} d_{x}(x,x_{0}) < \delta \implies d_{\mathbb{R}}(f(x),f(x_{0})) < \varepsilon$$

ale

$$d_x(x,y) = ||x-y||, d_{\mathbb{R}^1}(x,y) = |x-y|.$$

Czyli pokażemy, że

$$\bigvee_{\varepsilon>0} \exists \forall \quad ||x-x_0|| < \delta \implies \big|||x|| - ||x_0||\big| < \varepsilon.$$

Ale wiemy, że

$$||x|| = ||x - y + y|| \le ||x - y|| + ||y||, ||x|| - ||y|| \le ||x - y||,$$

$$||y|| = ||y - x + x|| \le ||y - x|| + ||x||,$$

 $||y|| - ||x|| \le ||x - y||,$

czyli |||x|| - ||y||| $\leqslant \|x-y\|.$ Niech $\delta = \frac{\varepsilon}{2},$ otrzymujemy $\varepsilon > \frac{\varepsilon}{2} > ||x-y|| \geqslant \left|||x|| - ||y||\right| \geqslant 0$

Pytanie 1. Niech $f(x,y) = 7x + 6y^2$ i $g(t) = \begin{bmatrix} cos(t) \\ sin(t) \end{bmatrix}$. Wówczas $h(t) = (f \circ g)(t) : \mathbb{R} \to \mathbb{R}$. Ile wynosi pochodna?

$$f' = [7, 12y], g' = \begin{bmatrix} -sin(t) \\ cos(t) \end{bmatrix}$$

Twierdzenie 1. Niech $G: U \rightarrow Y, U \subset X, U$ - otwarte,

X - przestrzeń wektorowa unormowana,

 $F: G(U) \to Z, G(U) \subset V$

G - $r\acute{o}\dot{z}niczkowalna\ w\ x_0 \in U$,

F - $r\acute{o}zniczkowalna\ w\ G(x_0) \in U$.

Wówczas: $(F \circ G)$ - różniczkowalna w x_0 oraz

$$(F \circ G)'(x_0) = F'(x)|_{x=G(x_0)} G'(x_0).$$

Dowód.

$$G(x_0 + h_1) - G(x_0) = G'(x_0)h_1 + r_1(x_0, h_1), \text{ gdy } \frac{r(x_0, h_1)}{\|h_1\|_x} \to 0$$
$$F(y_0 + h_2) - F(y_0) = F'(y_0)h_2 + r_2(y_0, h_2), \text{ gdy } \frac{r(y_0, h_2)}{\|h_2\|_y} \to 0$$

$$F(G(x_0 + h)) - F(G(x_0)) =$$

$$= F(G(x_0) + G'(x_0)h_1 + r_1(x_0, h_1)) - F(G(x_0)) =$$

$$= F(G(x_0)) + F'(G(x_0)) \cdot (G'(x_0)h_1 + r_1(x_0, h_1)) +$$

$$= r_2(G(x_0), G'(x_0)h_1 + r_1(x_0, h_1)) - F(G(x_0)).$$

zatem:

$$F(G(x_0 + h)) - F(G(x_0)) =$$

$$= F'(G(x_0)) \cdot G'(x_0)h_1 + F'(G(x_0)) \cdot r_1(x_0, h_1) +$$

$$= r_2 \cdot (G(x_0), G'(x_0)h_1 + r_1(x_0, h_1)).$$

Wystarczy pokazać, że

$$\frac{r_3}{||h_1||} \to 0,$$

ale

$$\begin{split} \frac{r_3}{||h_1||} &= F'(G(x_0)) \frac{r_1(x_0, h_1)}{||h_1||} + \\ &+ \underbrace{\frac{r_2(G(x_0), G'(x_0)h_1 + r_1(x_0, h_1))}{||G'(x_0)h_1 + r_1(x_0, h_1)||}}_{\rightarrow 0 \text{ kiedy } h_1 \rightarrow 0} \cdot \underbrace{\frac{||G'(x_0)h_1 + r_1(x_0, h_1)||}{||h_1||}}_{\text{jest ograniczony}}. \end{split}$$

ale jeżeli $h_1 \to 0$, to $h_2 = G'(x_0)h_1 + r_1(x_0, h_1)$, zatem F(G(x)) - różniczkowalna w x_0

$$\begin{aligned} \mathbf{Przykład} \ \mathbf{3.} \ f(x,y) &= \begin{bmatrix} 2xy^2 \\ x^3y \end{bmatrix}, \varphi(t) = \begin{bmatrix} 2t^2 \\ t^3 \end{bmatrix}, h(t) = (f \circ \varphi)(t), h : \mathbb{R} \to \mathbb{R}^2. \\ Policzmy \ H'. \ f' &= \begin{bmatrix} 2y^2 & 4xy \\ 3x^2y & x^3 \end{bmatrix}, \varphi'(t) = \begin{bmatrix} 4t \\ 3t^2 \end{bmatrix}, \ tzn. \\ H' &= \begin{bmatrix} 2y^2 & 4xy \\ 3x^2y & x^3 \end{bmatrix} \bigg|_{x=2t^2, y=t^3} \cdot \begin{bmatrix} 4t \\ 3t^2 \end{bmatrix} = \begin{bmatrix} 2(2t^2)^2 4t + 4(2t^2)(t^3) 3t^2 \\ 3(2t^2)^2 t^3 4 + (2t^3)^3 3t^2 \end{bmatrix} \end{aligned}$$

Przykład 4. Niech $f: \mathbb{R}^2 \to \mathbb{R}$,

 $\Psi: \mathbb{R}^2 o \mathbb{R}^2,$

$$\Psi(r,\varphi) = \begin{bmatrix} \Psi_1(r,\varphi) \\ \Psi_2(r,\varphi) \end{bmatrix} \ \Psi_1 : \mathbb{R}^2 \to \mathbb{R} \ \Psi_2 : \mathbb{R}^2 \to \mathbb{R}$$

Niech $H(r,\varphi) = (f \circ \Psi)(r,\varphi)$, czyli $H : \mathbb{R}^2 \to \mathbb{R}$. Szukamy pochodnej H, ale

$$f' = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right], \Psi' = \begin{bmatrix} \frac{\partial \Psi_1}{\partial r} & \frac{\partial \Psi_1}{\partial \varphi} \\ \frac{\partial \Psi_2}{\partial r} & \frac{\partial \Psi_2}{\partial \varphi} \end{bmatrix}$$

Czyli

$$H' = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right] \Big|_{x = \Psi_1(r,\varphi), y = \Psi_1(r,\varphi)} \begin{bmatrix} \frac{\partial \Psi_1}{\partial r} & \frac{\partial \Psi_1}{\partial \varphi} \\ \frac{\partial \Psi_2}{\partial r} & \frac{\partial \Psi_2}{\partial \varphi} \end{bmatrix}$$

Co daje:

$$\left[\frac{\partial H}{\partial r},\frac{\partial H}{\partial \varphi}\right] = \left[\frac{\partial f}{\partial x}\frac{\partial \Psi_1}{\partial r} + \frac{\partial f}{\partial y}\frac{\partial \Psi_2}{\partial r},\frac{\partial f}{\partial x}\frac{\partial \Psi_1}{\partial \varphi} + \frac{\partial f}{\partial y}\frac{\partial \Psi_2}{\partial \varphi}\right]\bigg|_{x=\Psi_1(r,\varphi),y=\Psi_2(r,\varphi)}$$