Abelian Varieties

"如果是勇者辛美尔,他一定会这么做的!"

Contents

1	The	e First Properties of Abelian Varieties	1
	1.1	Definition and examples of Abelian Varieties	1
	1.2	Complex abelian varieties	•
2	Pica	ard Groups of Abelian Varieties	
	2.1	Pullback along group operations	
		Projectivity	
	2.3	Isogenies and finite subgroups	ŗ
		Dual abelian varieties	

1 The First Properties of Abelian Varieties

1.1 Definition and examples of Abelian Varieties

Definition 1.1. Let **k** be a field. An abelian variety over **k** is a proper variety A over **k** together with morphisms identity e: Spec $\mathbf{k} \to A$, multiplication $m: A \times A \to A$ and inversion $i: A \to A$ such that the following diagrams commute:

(a) (Associativity)

(b) (Identity)

$$A \times \operatorname{Spec} \mathbf{k} \xrightarrow{\operatorname{id}_A \times e} A \times A \xleftarrow{e \times \operatorname{id}_A} \operatorname{Spec} \mathbf{k} \times A$$

(c) (Inversion)

In other words, an abelian variety is a group object in the category of proper varieties over \mathbf{k} .

Date: September 14, 2025, Author: Tianle Yang, My Homepage

Example 1.2. Let E be an elliptic curve over a field \mathbf{k} . Then E is an abelian variety of dimension 1. Yang: To be completed.

In the following, we will always assume that A is an abelian variety over a field \mathbf{k} of dimension d. Temporarily, we will use the notation e_A, m_A, i_A to denote the identity section, multiplication morphism and inversion morphism of an abelian variety A. The *left translation* by $a \in A(\mathbf{k})$ is defined as

$$l_a:A\xrightarrow{\cong}\operatorname{Spec}\mathbf{k}\times A\xrightarrow{a imes\mathrm{id}_A}A\times A\xrightarrow{m_A}A.$$

Similar definition applies to the right translation r_a .

Proposition 1.3. Let A be an abelian variety. Then A is smooth.

Proof. By base changing to the algebraic closure of \mathbf{k} , we may assume that \mathbf{k} is algebraically closed. Note that there is a non-empty open subset $U \subset A$ which is smooth. Then apply the left translation morphism l_a .

Proposition 1.4. Let A be an abelian variety. Then the cotangent bundle Ω_A is trivial, i.e., $\Omega_A \cong \mathcal{O}_A^{\oplus d}$ where $d = \dim A$.

Proof. Consider Ω_A as a geometric vector bundle of rank d. Then the conclusion follows from the fact that the left translation morphism l_a induces a morphism of varieties $\Omega_A \to \Omega_A$ for every $a \in A(\mathbf{k})$. Yang: But how to show it is a morphism of varieties? Yang: To be completed.

Theorem 1.5. Let A and B be abelian varieties. Then any morphism $f:A\to B$ with $f(e_A)=e_B$ is a group homomorphism, i.e., for every **k**-scheme T, the induced map $f_T:A(T)\to B(T)$ is a group homomorphism.

Proof. Let \mathbb{k} be the algebraical closure of \mathbf{k} . For every \mathbf{k} -scheme T, we have the inclusion $A(T) \subset A_{\mathbb{k}}(T_{\mathbb{k}})$ and $B(T) \subset B_{\mathbb{k}}(T_{\mathbb{k}})$ which is compatible with the group structure and the morphism f. Thus we may assume that \mathbf{k} is algebraically closed.

For every $a \in A(\mathbf{k})$, the fiber $m_A^{-1}(a)$ is isomorphic to A via the projection to the first factor. In particular, $m_A^{-1}(a)$ is connected.

Consider the composition

$$A \times A \xrightarrow{\varphi} A \times A \xrightarrow{m_A} A$$
, $(x, y) \mapsto (x, m_A(i_A(x), y)) \mapsto m_A(x, m_A(i_A(x), y)) = y$.

Hence we have $(m_A \circ \varphi)_* \mathcal{O}_{A \times A} \cong \mathcal{O}_A \cong m_{A*} \mathcal{O}_{A \times A}$ since φ is an isomorphism. Then consider the diagram

$$\begin{array}{ccc}
A \times A & \xrightarrow{f \times f} & B \times B \\
\downarrow^{m_A} & & \downarrow^{m_B} \\
A & & B.
\end{array}$$

For every closed point $a \in A$, the fiber $m_A^{-1}(a) = \{(x, m_A(i_A(x), a)) | x \in A\}$ is contrac Yang: To be completed.

Proposition 1.6. Let A be an abelian variety. Then $A(\mathbf{k})$ is an abelian group.

Proof. Note that a group is abelian if and only if the inversion map is a homomorphism of groups. Then the conclusion follows from Theorem 1.5.

From now on, we will use the notation $0,+,[-1]_A,t_a$ to denote the identity section, addition morphism, inversion morphism and translation by a of an abelian variety A. For every $n \in \mathbb{Z}_{>0}$, the homomorphism of multiplication by n is defined as

$$[n]_A: A \xrightarrow{\Delta} A \times A \xrightarrow{[n-1]_A \times \mathrm{id}_A} A \times A \xrightarrow{+} A,$$

where Δ is the diagonal morphism.

1.2 Complex abelian varieties

Theorem 1.7. Let A be a complex abelian variety. Then A is a complex torus, i.e., there exists a lattice $\Lambda \subset \mathbb{C}^d$ such that $A \cong \mathbb{C}^d/\Lambda$. Conversely, let $A = \mathbb{C}^n/\Lambda$ be a complex torus for some lattice Λ . Then A is a complex abelian variety if and only if Λ Yang: To be completed.

2 Picard Groups of Abelian Varieties

2.1 Pullback along group operations

Theorem 2.1 (Seesaw Theorem). Let A be an abelian variety over k.

Theorem 2.2 (Theorem of the cube). Let X, Y, Z be completed varieties over \mathbbm{k} and \mathcal{L} a line bundle on $X \times Y \times Z$. Suppose that there exist $x \in X(\mathbbm{k}), y \in Y(\mathbbm{k}), z \in Z(\mathbbm{k})$ such that the restriction $\mathcal{L}|_{\{x\}\times Y\times Z}, \mathcal{L}|_{X\times \{y\}\times Z}$ and $\mathcal{L}|_{X\times Y\times \{z\}}$ are trivial. Then \mathcal{L} is trivial.

Proof. Yang: To be completed.

Remark 2.3. If we assume the existence of the Picard scheme, then the theorem of the cube can be deduced from the Rigidity Lemma. Yang: To be completed.

Proposition 2.4. Let A be an abelian variety over \mathbb{k} , $f, g, h : X \to A$ morphisms from a variety X to A and \mathcal{L} a line bundle on A. Then

$$(f+g+h)^*\mathcal{L} \cong (f+g)^*\mathcal{L} \otimes (f+h)^*\mathcal{L} \otimes (g+h)^*\mathcal{L} \otimes f^*\mathcal{L}^{-1} \otimes g^*\mathcal{L}^{-1} \otimes h^*\mathcal{L}^{-1}.$$

Proof. Yang: To be completed.

Proposition 2.5. Let A be an abelian variety over k, $n \in \mathbb{Z}$ and \mathcal{L} a line bundle on A. Then we have

$$[n]_A^* \mathcal{L} \cong \mathcal{L}^{\otimes \frac{1}{2}(n^2+n)} \otimes [-1]_A^* \mathcal{L}^{\otimes \frac{1}{2}(n^2-n)}.$$

Proof. Yang: To be completed.

Theorem 2.6 (Theorem of the square). Let A be an abelian variety over $k, x, y \in A(k)$ two points

and \mathcal{L} a line bundle on A. Then

$$t_{x+y}^* \mathcal{L} \otimes \mathcal{L} \cong t_x^* \mathcal{L} \otimes t_y^* \mathcal{L}.$$

Remark 2.7. We can define a map

$$\Phi_{\mathcal{L}}: A(\mathbb{k}) \to \operatorname{Pic}(A), \quad x \mapsto t_x^* \mathcal{L} \otimes \mathcal{L}^{-1}.$$

Then theorem of the square implies that $\Phi_{\mathcal{L}}$ is a homomorphism of groups. When we vary \mathcal{L} , the map

$$\Phi_{\square}\,:\, \mathrm{Pic}(A) \to \mathrm{Hom}_{\mathbf{Grp}}(A(\Bbbk),\mathrm{Pic}(A)), \quad \mathcal{L} \mapsto \Phi_{\mathcal{L}}$$

is a group homomorphism. For any $x \in A(\mathbb{k})$, we have

$$\Phi_{t_{\nu}^*\mathcal{L}} = \Phi_{\mathcal{L}}.$$

In the other words,

$$\Phi_{\mathcal{L}}(x) \in \operatorname{Ker} \Phi_{\square}, \quad \forall \mathcal{L} \in \operatorname{Pic}(A), x \in A(\mathbb{k}).$$

Yang: To be completed.

If we assume the scheme structure on $\operatorname{Pic}(A)$, then $\Phi_{\mathcal{L}}$ is a morphism of scheme and factors through $\operatorname{Pic}^{0}(A)$. Let $K(\mathcal{L}) := \operatorname{Ker} \Phi_{\mathcal{L}}$, then $K(\mathcal{L})$ is a subgroup scheme of A. We give another description of $K(\mathcal{L})$. From this point, we can recover the dual abelian variety $A^{\vee} = \operatorname{Pic}^{0}(A)$ as the quotient $A/K(\mathcal{L})$. Yang: To be completed.

2.2 Projectivity

Proposition 2.8. Let A be an abelian variety over \mathbb{k} and D an effective divisor on A. Then |2D| is base point free.

Theorem 2.9. Let A be an abelian variety over \mathbb{k} and D an effective divisor on A. TFAE:

- (a) the stabilizer Stab(D) of D is finite;
- (b) the morphism $\Phi_{|2D|}$ induced by the complete linear system |2D| is finite;
- (c) D is ample;
- (d) $K(o_A(D))$ is finite.

Theorem 2.10. Let A be an abelian variety over \mathbf{k} . Then A is projective.

Proof. Yang: To be completed.

2.3 Isogenies and finite subgroups

Theorem 2.11. Let A be an abelian variety of dimension d over k. Then the subgroup A[n] of n torsion points is finite and we have

- (a) if n is coprime to char(\mathbf{k}), then $A[n] \cong (\mathbb{Z}/n\mathbb{Z})^{2d}$;
- (b) if $n = p^k$ for $p = \operatorname{char}(\mathbf{k}) > 0$

Proof. Yang: To be completed.

Theorem 2.12. Let A be an abelian variety over k. There is a bijection between the isogenies from A over k and the finite subgroup schemes of A.

2.4 Dual abelian varieties

Theorem 2.13. Let A be an abelian variety over \mathbf{k} . Then $\operatorname{Pic}^{0}(A)$ has a natural structure of an abelian variety, called the *dual abelian variety* of A, denoted by A^{\vee} .

Proposition 2.14. There exists a unique line bundle \mathcal{P} on $A \times A^{\vee}$ such that for every $y = \mathcal{L} \in A^{\vee} = \operatorname{Pic}^{0}(A)$, we have $\mathcal{P}|_{A \times \{y\}} \cong \mathcal{L}$.

