第三章作业一 计算:

- 1. 如下所示,随机产生1000个样本;
- a. Generate and plot a data set of N = 1,000 two-dimensional vectors that stem from three equiprobable classes modeled by normal distributions with mean vectors $m_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}^T$, $m_2 = \begin{bmatrix} 7 \\ 7 \end{bmatrix}^T$, $m_3 = \begin{bmatrix} 15 \\ 1 \end{bmatrix}^T$ and covariance matrices $S_1 = \begin{bmatrix} 12 & 0 \\ 0 & 1 \end{bmatrix}$, $S_2 = \begin{bmatrix} 8 & 3 \\ 3 & 2 \end{bmatrix}$, $S_3 = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$.
 - **b.** Repeat (a) when the *a priori* probabilities of the classes are given by the vector $P = [0.6, 0.3, 0.1]^T$.
- 2. 基于上述样本集,分别采用 MLE 和 BE 的方法,估计三类的参数;
- 3. 从上述样本集中,随机取 300 个样本,重复上述实验;
- 4. 分析三次实验的参数估计精度,分析误差产生的原因。

17. The purpose of this problem is to derive the Bayesian classifier for the d-dimensional multivariate Bernoulli case. As usual, work with each class separately, interpreting $P(\mathbf{x}|\mathcal{D})$ to mean $P(\mathbf{x}|\mathcal{D}_i,\omega_i)$. Let the conditional probability for a given category be given by

$$P(\mathbf{x}|\boldsymbol{\theta}) = \prod_{i=1}^{d} \theta_i^{x_i} (1 - \theta_i)^{1 - x_i},$$

and let $\mathcal{D} = \{\mathbf{x}_1, ..., \mathbf{x}_n\}$ be a set of n samples independently drawn according to this probability density.

(a) If $s = (s_1, ..., s_d)^t$ is the sum of the n samples, show that

$$P(\mathcal{D}|\boldsymbol{\theta}) = \prod_{i=1}^{d} \theta_i^{s_i} (1 - \theta_i)^{n - s_i}.$$

(b) Assuming a uniform a priori distribution for θ and using the identity

$$\int_{0}^{1} \theta^{m} (1 - \theta)^{n} d\theta = \frac{m! n!}{(m + n + 1)!},$$

show that

$$p(\theta|\mathcal{D}) = \prod_{i=1}^{d} \frac{(n+1)!}{s_i!(n-s_i)!} \theta_i^{s_i} (1-\theta_i)^{n-s_i}.$$

- (c) Plot this density for the case d=1, n=1, and for the two resulting possibilities for s_1 .
- (d) Integrate the product $P(\mathbf{x}|\boldsymbol{\theta})p(\boldsymbol{\theta}|\mathcal{D})$ over $\boldsymbol{\theta}$ to obtain the desired conditional probability

$$P(\mathbf{x}|\mathcal{D}) = \prod_{i=1}^{d} \left(\frac{s_i + 1}{n+2}\right)^{x_i} \left(1 - \frac{s_i + 1}{n+2}\right)^{1-x_i}.$$

(e) If we think of obtaining $P(\mathbf{x}|\mathcal{D})$ by substituting an estimate $\hat{\boldsymbol{\theta}}$ for $\boldsymbol{\theta}$ in $P(\mathbf{x}|\boldsymbol{\theta})$, what is the effective Bayesian estimate for $\boldsymbol{\theta}$?

第三章作业三 HMM:

11. Consider the use of hidden Markov models for classifying sequences of four visible states, A-D. Train two hidden Markov models, each consisting of three hidden states (plus a null initial state and a null final state), fully connected, with the following data. Assume that each sequence starts with a null symbol and ends with an end null symbol (not listed).

sample	ω_1	ω_2
1	AABBCCDD	DDCCBBAA
2	ABBCBBDD	DDABCBA
3	ACBCBCD	CDCDCBABA
4	AD	DDBBA
5	ACBCBABCDD	DADACBBAA
6	BABAADDD	CDDCCBA
7	BABCDCC	BDDBCAAAA
8	ABDBBCCDD	BBABBDDDCD
9	ABAAACDCCD	DDADDBCAA
10	ABD	DDCAAA

- (a) Print out the full transition matrices for each of the models.
- (b) Assume equal prior probabilities for the two models and classify each of the following sequences: ABBBCDDD, DADBCBAA, CDCBABA, and ADBBBCD.
- (c) As above, classify the test pattern BADBDCBA. Find the prior probabilities for your two trained models that would lead to equal posteriors for your two categories when applied to this pattern.