Project Report

Bannuru Rohit Kumar Reddy: 21CS30011

Dumpala Hashmitha: 21CS10023

١

Problem Statement:

Given an array of n elements, we have to find the maximum continuous subarray sum.

For that , we will calculate maximum subarray sum and minimum subarray sum in a normal array

final result =max(maximum subarray sum, total array sum-minimum subarray sum)

Algorithm:

Function to calculate both maximum subarray and minimum subarray
:
Initialize variable 'total_sum' to 0 ,'cur_maxsum' to 0 and variable 'max_sum' to INT_MIN, and 'cur_minsum'to 0 and 'min_sum' to INT_MAX
Run a loop in the array 'a' from i=0 to i=size-1
 total_sum=total_sum+a[i]
 update cur_maxsum as, cur_maxsum=cur_maxsum+a[i]
 update cur_minsum as, cur_minsum=cur_minsum+a[i]
 update max_sum as, max_sum=max(max_sum,cur_maxsum)
 update min_sum as, min_sum=max(min_sum,cur_minsum)
 if(cur_maxsum<0)
 update cur_maxsum=0
 if(cur_minsum>0)
 update cur_minsum=0

After the loop ends, we will get the final values of max_sum and min_sum Now, final result =maximum of (max_sum) and (total_sum-min_sum)

MIPS implementation:

We will store cur_maxsum in \$s2, max_sum in \$s3, cur_minsum in \$s4, min_sum in \$s5, total_sum in \$s6

then we will do ,li \$s3, -9999999 and li \$s5, 9999999 , assuming those are the max values of array elements the user can input

Then will take input n, which is the number of elements of the array

Then we will run a loop to take the input of n numbers

we will store n is \$s1 and then in the loop update values as discussed in the above algorithm

Example:

N = 7 Array = 8 -8 9 -9 10 -11 12

Total Linear sum: 11
Maximum Linear sum: 12
Minimum linear sum: -11

final sum of circular sum = Max (12, (11 - (11))) = 22