COS 344: L2 Chapter 3

Cobus Redelinghuys

University of Pretoria

19/02/2024

Class Representative

- 1. Who would like to be class representative for COS344 in 2024?
 - Only nominee: Hamza Mokiwa

Raster display:

- ► Image:
 - Rectangular array of pixels.
 - ► Pixel picture element

Raster display:

- ► Image:
 - Rectangular array of pixels.
 - Pixel picture element
- Color:
 - Mixing different intensities of red, blue, and green light to form color per pixel.

Raster display:

- ► Image:
 - Rectangular array of pixels.
 - Pixel picture element
- Color:
 - Mixing different intensities of red, blue, and green light to form color per pixel.
- Example:
 - Displays (output)
 - Printer (output)
 - Image sensor (input)

Introduction Section 3.2: Images, Pixels, and Geometry Section 3.3: RGB Color Section 3.4: Alpha Compositing

Raster images:

▶ What is the underlying data-structure?

- ▶ What is the underlying data-structure?
 - ▶ 2D array
 - Given an arbitrary image:
 - ▶ What are the dimensions of the 2D array?

- ▶ What is the underlying data-structure?
 - ▶ 2D array
 - Given an arbitrary image:
 - ▶ What are the dimensions of the 2D array?
- Each cell in the array is a pixel value.
 - RBG values

- ▶ What is the underlying data-structure?
 - 2D array
 - Given an arbitrary image:
 - What are the dimensions of the 2D array?
- Each cell in the array is a pixel value.
 - RBG values
- How can it be displayed from memory?
 - Each pixel of the stored image controls the pixel on the display.
 - A type of "naive" mapping.

- ▶ What is the underlying data-structure?
 - ▶ 2D array
 - Given an arbitrary image:
 - What are the dimensions of the 2D array?
- Each cell in the array is a pixel value.
 - RBG values
- How can it be displayed from memory?
 - Each pixel of the stored image controls the pixel on the display.
 - ► A type of "naive" mapping.
 - What are the advantages and disadvantages?

- ▶ What is the underlying data-structure?
 - ▶ 2D array
 - Given an arbitrary image:
 - ▶ What are the dimensions of the 2D array?
- Each cell in the array is a pixel value.
 - RBG values
- How can it be displayed from memory?
 - Each pixel of the stored image controls the pixel on the display.
 - A type of "naive" mapping.
 - What are the advantages and disadvantages?
- Device independent description of the image.
 - ► The display approximates the image.

Vector image:

► Alternative way of describing images.

Vector image:

- ► Alternative way of describing images.
- Stores description of shapes instead of pixels.
 - Shape: color area bounded by lines or curves.
- Resolution independent.
- Advantages and disadvantages?

Vector image:

- ► Alternative way of describing images.
- Stores description of shapes instead of pixels.
 - Shape: color area bounded by lines or curves.
- Resolution independent.
- Advantages and disadvantages?
 - Adv: Perfect for high resolution displays
 - DAdv: First be rasterized before displayed.
- ► Use cases?

Section 3.2: Images, Pixels, and Geometry

Section 3.3: RGB Color

Section 3.4: Alpha Compositing

Example

https://cdn.safe.com/wp-content/uploads/2021/05/03094728/vector-vs-raster.jpg

Section 3.2: Images, Pixels, and Geometry

- Section 3.1 is left to curious students.
- Graphical computations rely on abstraction of the display device.
- Images in the real world are functions defined over two-dimensional areas:
 - The light of the display is a function of the position on the display.
 - The light on a camera sensor is a function of the position on a camera sensor.
 - etc.
- ▶ An image can be abstracted to have the formula:

$$I(x,y): R \to V$$

where $R \subset \mathbb{R}^2$ and V is the set of possible pixel values.

▶ What is the dimensions of *V*?

Section 3.2: Images, Pixels, and Geometry

- Section 3.1 is left to curious students.
- Graphical computations rely on abstraction of the display device.
- Images in the real world are functions defined over two-dimensional areas:
 - ► The light of the display is a function of the position on the display.
 - The light on a camera sensor is a function of the position on a camera sensor.
 - etc.
- An image can be abstracted to have the formula:

$$I(x,y): R \to V$$

where $R \subset \mathbb{R}^2$ and V is the set of possible pixel values.

- ▶ What is the dimensions of *V*?
 - It depends on the pixel information.

Point sample

Local average of the color at a specific point.

Assume the colors in the raster image are the average of all the colors in a single "cell" when overlaid on the vector image.

2D coordinate convention

- The textbook's convention:
 - ▶ The position of a pixel in a raster image is given by: (i,j)
 - i is the x-Cartesian coordinate or column.
 - j is the y-Cartesian coordinate or row.
 - ▶ The origin (0,0) is in the bottom left corner.
 - If there are n_x columns and m_y rows, the top right coordinates are: $(n_x 1, m_y 1)$

Figure 3.10. Coordinates of a four pixel × three pixel screen. Note that in some APIs the y-axis will point downward.

From this formula $I(x,y): R \to V$, lets investigate V.

- From this formula $I(x,y): R \to V$, lets investigate V.
- Recall that V is dependant on the pixel's information.
- ▶ Pixel values are usually bounded between [0, 1] due to a finite maximum intensity.

- From this formula $I(x,y): R \to V$, lets investigate V.
- ► Recall that V is dependant on the pixel's information.
- ▶ Pixel values are usually bounded between [0,1] due to a finite maximum intensity.
- Example of 8-bit value:
 - Minimum value: 0
 - Maximum value: $\frac{255}{255}$ or 1
 - Number of possible values: 256.

- From this formula $I(x,y): R \to V$, lets investigate V.
- Recall that V is dependant on the pixel's information.
- ▶ Pixel values are usually bounded between [0,1] due to a finite maximum intensity.
- Example of 8-bit value:
 - Minimum value: 0
 - Maximum value: $\frac{255}{255}$ or 1
 - Number of possible values: 256.
- Low Dynamic Range (LDR) images.
 - ▶ Images using integer numbers to represent pixel values.
- High Dynamic Range(HDR) images.
 - Images using floating-point numbers to represent pixel values.
- Examples of V's dimension:
 - ▶ Grey scale: $V = \mathbb{R}^+$
 - $ightharpoonup \mathsf{RGB} \colon V = (\mathbb{R}^+)^3$

Introduction
Section 3.2: Images, Pixels, and Geometry
Section 3.3: RGB Color
Section 3.4: Alpha Compositing

▶ What are the effects of using less bits to store an image compared to the amount of bits used to create/capture it?

- What are the effects of using less bits to store an image compared to the amount of bits used to create/capture it?
 - Clipping
 - Quantization or banding

Clipping

When the value of a pixel exceeds the fixed-range, the value is bounded to the minimum or maximum value of the range.

Quantization or banding

The color jumping effect caused by the rounding of values to less precise values.

- ▶ What are examples of each?
- ► Section 3.2.2 skipped.

Introduction
Section 3.2: Images, Pixels, and Geometry
Section 3.3: RGB Color
Section 3.4: Alpha Compositing

Example

https:

//fujifilm-x.com/en-us/wp-content/uploads/sites/11/
2020/06/EXPOSURE CENTER 8-bit-10-bit Video-Colour.jpg

Section 3.3: RGB Color

- Colors are formed by blending three primary lights.
- Why is it not RYB?

Section 3.3: RGB Color

- Colors are formed by blending three primary lights.
- ▶ Why is it not RYB?
 - RYB are primary colors under subtractive color mixing.
 - ▶ RBG are primary colors under additive color mixing.

https://rmit.pressbooks.pub/app/uploads/sites/42/2022/10/additivesubtractivecolour-1024x524.png

Introduction Section 3.2: Images, Pixels, and Geometry Section 3.3: RGB Color Section 3.4: Alpha Compositing

Color cube

What if RBG is thought of as a 3D Cartesian coordinate system:

https://www.pngitem.com/pimgs/m/592-5920896_rgb-color-model-cube-hd-png-download.png_

► How to determine the number of possible levels each primary color has in RGB color system?

$$possibleLevels(n) = 2^{\frac{n}{3}}$$

where n is the number of color bits of the system.

Example: How many possible color levels does each primary color have in a 24-bit RGB color system? ► How to determine the number of possible levels each primary color has in RGB color system?

$$possibleLevels(n) = 2^{\frac{n}{3}}$$

where n is the number of color bits of the system.

Example: How many possible color levels does each primary color have in a 24-bit RGB color system?

$$possibleLevels(24) = 2^{\frac{24}{3}}$$
$$= 2^{8}$$
$$= 256$$

Introduction Section 3.2: Images, Pixels, and Geometry Section 3.3: RGB Color Section 3.4: Alpha Compositing

Section 3.4: Alpha Compositing

Compositing

Effect caused by having two images overlapping each other.

► The possible use cases for compositing and their effect on the background pixel:

Section 3.4: Alpha Compositing

Compositing

Effect caused by having two images overlapping each other.

- ➤ The possible use cases for compositing and their effect on the background pixel:
 - 1. Opaque foreground pixels
 - ► Replaces background pixel.
 - 2. Entirely transparent foreground pixels
 - Do not change the background pixel.
 - 3. Partially transparent foreground pixels
 - Blending of foreground and background pixel colors.

Example

https://i.stack.imgur.com/8rWZ5.png

Pixel blending

▶ In order to blend pixel colors the following equation is used:

$$c = \alpha c_f + (1 - \alpha)c_b$$

where:

- c is the resultant color
- $ightharpoonup c_f$ is the color of the foreground pixel
- c_b is the color of the background pixel
- $ightharpoonup \alpha$ is the fraction of the image covered by the foreground layer.
 - Think of this as the translucency of the foreground pixel.
- Fun examples:

https://ciechanow.ski/alpha-compositing/

Alpha channel

- ▶ The possible ways to store the alpha value of each pixel:
 - 1. As a separate grey-scale image.
 - 2. A fourth channel on the RGB system which is known as RGBA.
- Modifying the possibleLevels function to account for alpha values gives:

$$possibleLevelsAlpha(n) = 2^{\frac{n}{4}}$$

Visual Example

Figure 3.14. An example of compositing using Equation (3.2). The foreground image is in effect cropped by the α channel before being put on top of the background image. The resulting composite is shown on the bottom.

Introduction Section 3.2: Images, Pixels, and Geometry Section 3.3: RGB Color Section 3.4: Alpha Compositing

Calculation Example

Calculation Example

$$c = \alpha c_f + (1 - \alpha)c_b$$

Calculation Example

$$c = \alpha c_f + (1 - \alpha)c_b$$

$$= (0.3) \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} + (1 - 0.3) \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

Calculation Example

$$c = \alpha c_f + (1 - \alpha)c_b$$

$$= (0.3) \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} + (1 - 0.3) \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0.7 \\ 1 \\ 0 \end{bmatrix}$$

Section 3.4.1: Image Storage

▶ Due to the size of raw RGB images, most image formats have implemented some form of compression.

Section 3.4.1: Image Storage

▶ Due to the size of raw RGB images, most image formats have implemented some form of compression.

Lossless

No information is lost during the compression of lossless formats.

Lossy

Information is unrecoverably lost during compression of lossy formats.

Examples of file formats:

Introduction Section 3.2: Images, Pixels, and Geometry Section 3.3: RGB Color Section 3.4: Alpha Compositing

Section 3.4.1: Image Storage

▶ Due to the size of raw RGB images, most image formats have implemented some form of compression.

Lossless

No information is lost during the compression of lossless formats.

Lossy

Information is unrecoverably lost during compression of lossy formats.

- Examples of file formats:
 - 1. JPEG
 - 2. TIFF
 - 3. PPM
 - 4. PNG

- Note for the homework assignment you will need to be able to take a screenshot of the current image displayed to screen.
- ► This involves using a function like glReadPixels to retrieve all the rendered pixels.
- You will also need to investigate a file format other than ppm in which you will save the images.
- This involves reading the standard for the file format typical in the same fashion as one would find the RFC for networking protocols.

Any questions?

Joke of the day - By ChatGPT

Why did the RGB values go to therapy?

Joke of the day - By ChatGPT

Why did the RGB values go to therapy?

Because they couldn't agree on which color space to be in—they were feeling blue, green, and red all at once!