

Instructor: Jackie CK Cheung & David I.
Adelani
COMP-550
Fall 2024
J&M Chapter 1

About Jakie

Associate Professor at McGill

2021 -

Associate Scientific Co-Director at Mila

Assistant Professor at McGill

2015 - 2021

PhD in Computer Science (Toronto)

2014

Research topics in my lab

- Natural language generation
- Automatic summarization
- Computational semantics
- Computational pragmatics
- Applications of NLP

About David

Assistant Professor at McGill	2024
Assistant Fibressor at McGin	2024

Core Academic Member at Mila

Senior Research Fellow at UCL 2022 – 2024

PhD in Computer Science (Saarland) 2023

Research topics in my lab

- Multilingual Natural language processing
- Machine translation
- Representation learning
- Speech processing

Preliminaries

Instructor: Jackie Chi Kit Cheung & David I. Adelani

Time and Loc.:11:35 – 12:55 Macdonald-Harrington, G-10

Office hours: Mon. 14:00-15:30 MC 108N (Jackie)

Wed. 14:00-15:30 MC 204N (David)

TAs: Shira Abramovich

Ziling Cheng

Gaurav Iyer

Xijuan Sun

Zihan Wang

Evaluation: 2 programming assignments (20%)

4 reading assignments (20%)

1 midterm (25%)

1 group project (35%)

Textbook

Jurafsky and Martin. Speech and Language Processing

(2nd edition)

Hard copy available at bookstore

Draft chapters of 3rd edition available online:

https://web.stanford.edu/~jurafsky/slp3/

Assignments

Two programming assignments (10% each x 2 = 20%)

Hand in online through myCourses

Programming to be done in Python 3.

Four reading assignments (5% each x 4 = 20%)

Covers advanced material and applications

Midterm

Worth 25% of your final grade

To be completed online as a myCourses quiz

Time: November 6, 2024

More details as we approach the midterm date.

Final Project

Worth 35%.

Experiment on some language data set

Summarize and review relevant papers

Report on experiments

Must be done in teams of three

Coming up with a project idea:

- Extend a model we see in class
- Work on a relevant topic of interest
- Consult a list of suggested projects, to be posted

Project Steps

Paper or project proposal

Progress update

Final submission

Due dates to be announced

General Policies

Lateness policy for assignments:

- Grace period of 24 hours
- > 24 hours: accepted if it is convenient for us at our discretion

Plagiarism: just don't do it—I regularly catch and submit cases.

Language policy: In accord with McGill policy, you have the right to write essays and examinations in English or in French.

Generative AI Usage

Fine to use in an assistive manner

- Help understand course content
- Search for information
- Brainstorm ideas
- Edit writing
 Must acknowledge use of this technology.

Not okay to use as primary means to complete tasks

- Feed in assignment questions to generate solutions
- Generate project report from scratch on a topic

Platforms

ed

Being adopted by many CS courses this term

You'll be added this week

Most releases will be done via this platform

myCourses

Assignment and project submissions

Midterm

Grade release

Computational Linguistics and Natural Language Processing

LLMs - Impressive Impact!

- Question answering, code generation, essay writing, summarization
- Commercial uses: customer service, personal assistants, healthcare
- Many informal uses: entertainment, settling disputes

The Sentences Computers Can't Understand, But Humans Can

(Those are affiliate links that give a commission to me or Gretchen, depending on country!) REFERENCES: Levesque, H.J., Davis, ...

Tom Scott, 2020

"Artificial language processing remains 10 years away, just as it has for the last few decades."

Tom Scott, 2023

"... that this new technology, the thing that was going to change everything, was starting to actually change everything"

How Do Language Models Work?

Key insight: learn correlations between words in context

Language modelling:

Mary had a little _____

• *lamb* GOOD

accident GOOD?

• *very* BAD

• *up* BAD

Do this at internet-scale with sophisticated statistical techniques (deep learning)!

What This Course Is About

- How did we get to large language models dominating NLP research?
- What was the progression of the field of NLP? Why did people try the methods that they did?
- What are some common tasks and paradigms involving natural language?
- How do we evaluate and analyze NLP systems?
- How are properties of natural language reflected in NLP research?

What This Course Is Not About

- The latest techniques in language modelling
- Deep learning / machine learning as a primary focus
 - We will touch on this, and you can do a final project that uses ML, but it is **not** the primary focus of the course.

Language is Everywhere

Languages Are Diverse

6000+ languages in the world

language

langue

ਭਾਸ਼ਾ

語言

idioma

Sprache

lingua

What is Language?

Some properties:

- Form of communication
- Arbitrary pairing between form and meaning
- Primarily vocal (exception: sign languages)
- Highly expressive and productive
- Nearly universal (barring developmental disorders)

How do these compare?

- Programming language (e.g., C, Python, Java)
- Vocalizations by your favourite animal
- Written English

Computational Linguistics (CL)

Modelling <u>natural language</u> with computational models and techniques

Domains of natural language

Acoustic signals, phonemes, words, syntax, semantics, ...

Speech vs. text

Natural language understanding (or comprehension) vs. natural language generation (or production)

Computational Linguistics (CL)

Modelling natural language with computational models and techniques

Goals

Language technology applications

Scientific understanding of how language works

Computational Linguistics (CL)

Modelling natural language with <u>computational models</u> and <u>techniques</u>

Methodology and techniques

Gathering data: language resources

Evaluation

Statistical methods and machine learning

Rule-based methods

Natural Language Processing

Computational linguistics and natural language processing (NLP) are sometimes used interchangeably. Slight difference in emphasis:

NLP CL

Goal: practical Goal: how language technologies actually works

Engineering Science

Understanding and Generation

Natural language understanding (NLU)

Language to form usable by machines or humans

Natural language generation (NLG)

Traditionally, semantic formalism to text

More recently, also text to text

Most work in NLP is in NLU

c.f. linguistics, where most theories deal primarily with production

Personal Assistant App

Understanding

Call a taxi to take me to the airport in 30 minutes.

What is the weather forecast for tomorrow?

Generation

Machine Translation

I like natural language processing.

1

Automatische Sprachverarbeitung gefällt mir.

Understanding

Generation

Computational Linguistics

Besides new language technologies, there are other reasons to study CL and NLP as well.

The Nature of Language

First language acquisition

Chomsky proposed a universal grammar

Is language an "instinct"?

What innate knowledge must children already have in order to learn their mother tongue, given their exposure to linguistic inputs?

Train a model to find out!

The Nature of Language

Language processing

Some sentences are supposed to be grammatically correct, but are difficult to process.

Formal mathematical models to account for this.

The rat escaped.

The rat the cat caught escaped.

?? The rat the cat the dog chased caught escaped.

Mathematical Foundations of CL

We describe language with various formal systems.

Mathematical Foundations of CL

Mathematical properties of formal systems and algorithms

Can they be efficiently learned from data?

Efficiently recovered from a sentence?

Complexity analysis

Implications for algorithm design

Types of Language

Text

In some sense, an idealization of spoken language.

Much of traditional NLP work has been on news text.

Clean, formal, standard English, but very limited!

More recent work on diversifying into multiple domains Political texts, text messages, Twitter

Speech

Messier: disfluencies, non-standard language

Automatic speech recognition (ASR)

Text-to-speech generation

Domains of Language

The grammar of a language has traditionally been divided into multiple levels.

Phonetics

Phonology

Morphology

Syntax

Semantics

Pragmatics

Discourse

Phonetics

Study of the speech sounds that make up language Articulation, transmission, perception

peach

[phi:tsh]

Involves closing of the lips, building up of pressure in the oral cavity, release with aspiration, ...

Vowel can be described by its formants, ...

Phonology

Study of the rules that govern sound patterns and how they are organized

```
peach[phi:tsh]/pi:t]/speech[spi:tsh]/spi:t]/beach[bi:tsh]/bi:t]/
```

The p in peach and speech are the same phoneme, but they actually are phonetically distinct!

Morphology

Word formation and meaning antidisestablishmentarianism anti- dis- establish -ment -arian -ism

establish
establishment
establishmentarian
establishmentarianism
disestablishmentarianism
antidisestablishmentarianism

Syntax

Study of the structure of language

*I a woman saw park in the.

I saw a woman in the park.

The first sentence is not well formed (it is ungrammatical), while the second one is.

 Words must be arranged in a certain order in a certain way to be a valid English sentence!

Syntax

There are two meanings for the first sentence in the comic! What are they? This is called **ambiguity**.

Semantics

Study of the meaning of language

bank

Ambiguity in the sense of the word

Semantics

Ross wants to marry <u>a</u> Swedish woman.

Study of the meaning of language in context.

Literal meaning (semantics) vs. meaning in context: http://www.smbc-comics.com/index.php?id=3730

Pragmatics - Deixis

Interpretation of expressions can depend on **extralinguistic** context

e.g., pronouns

<u>I</u> think cilantro tastes great!

The entity referred to (the **antecedent**) by *I* depends on who is saying this sentence.

Discourse

Study of the structure of larger spans of language (i.e., beyond individual clauses or sentences)

I am angry at her.

She lost my cell phone.

I am angry at her.

The rabbit jumped and ate two carrots.

NLP – the Technological

Perspective A combination of pre-specified knowledge and machine learning from data

Human annotations Linguistic knowledge

• • •

NLP Tools and Techniques

Major paradigms for NLP, not mutually exclusive:

Rule-based systems

- Often hand-engineered knowledge about language
- E.g., heureux -> happy

Machine learning

- Model learns about language through examples
- Classification: e.g., is this e-mail spam?
- Sequence models: make series of decisions
- Many other paradigms

Knowledge representation

- Formal structure to encode what model knows
- Logic? A large set of continuous-valued numbers?

Topics in COMP-550

Organized roughly by level of linguistic analysis and a corresponding technical approach (ML or otherwise)

NLP Topic	Linguistic layer	Techniques
Text classification	Words	Classification
Language modelling, POS tagging	Words (esp. syntactic structure of words)	Sequence models
Syntactic parsing	Syntactic structure	Structure prediction, dynamic programming
Computational semantics, coreference resolution	Meaning (semantics, discourse)	Logic, semi-supervised learning, neural models
Applications: MT, summarization, etc.	Various	Various

51

Applications in COMP-550

Last three weeks of the course focus on language technology applications and advanced topics Possible topics:

Vision and language

Automatic summarization

Machine translation

Evaluation issues in NLP

Accompanied by reading assignments!

Course Objectives

Understand the broad topics, applications and common terminology in the field

Prepare you for research or employment in CL/NLP

Learn some basic linguistics

Learn the basic algorithms

Be able to read an NLP paper

Understand the challenges in CL/NLP

Answer questions like "Is it easy or hard to..."

Next Lecture

The next lecture is Wednesday, Sept 4

Monday, Sept 2 is Labour Day – enjoy!