Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

Кафедра электронной техники и технологии

Отчёт по лабораторной работе №1 "Создание базового проекта для микроконтроллера STM32F407. Порты ввода-вывода"

Проверил:

Косарева А.А.

Выполнили: студенты гр. 711101 Новиков К. Д. Фан Е. Ч.

Теоретические сведения

Микроконтроллеры семейства STM32 позволяют производить тонкую настройку почти каждого вывода микросхемы. Каждый вывод подписан определённым названием. Есть несколько выводов для подключения питания, внешнего резонатора, земли и др. Оставшиеся выводы являются портами ввода вывода микроконтроллера. Порт, в данном случае, означает объединение 16-ти выводов. Портами в микроконтроллерах STM32 называются буквами латинского алфавита (A, B, C...).

Для предоставления максимальной гибкости работы каждый вывод общего назначения имеет в микроконтроллере структуру конфигурации, позволяющей настраивать режим работы вывода. У самого выхода находятся два защитных диода, защищающие микроконтроллер при подаче на вывод микросхемы напряжение ниже земли (например –3,3В) или выше напряжения питания микроконтроллера (например +6В).

Существуют следующие режимы работы вывода общего назначения:

- а) Высокоимпедансный вход. На выходе установлена пара комплементарных полевых транзисторов (один р-типа, другой п-типа). Полевой транзистор в закрытом состоянии имеет почти бесконечное сопротивление между стоком и истоком. В этом режиме оба транзистора в закрытом состоянии, поэтому вывод не подключён ни к земле, ни к питанию поэтому ведёт себя как не подключённый к схеме.
- б) Вход с подтяжкой к питанию. Между входом и напряжением питания включается подтягивающий резистор (порядка 1 кОм), что позволяет находится в высоком состоянии, когда к входу не приложено внешнее напряжение. Это позволяет избежать спонтанных появлений 0 на входе.
- в) Вход с подтяжкой к земле. Между входом и землей включается подтягивающий резистор (обычно 40 кОм), что позволяет находиться в низком состоянии, когда не приложено внешнее напряжение.
- г) Аналоговый вход/выход. В этом случае вывод подключается к АЦП/ЦАП.
- д) Выход с открытым стоком. Также возможно включать подтяжку к питанию/земле. В данном случае происходит управление только транзистора птипа, когда транзистор р-типа закрыт. Это позволяет подключать вывод микросхемам с другим напряжением питания (2,5 B; 5 B и др.).
- е) Двухтактный выход. Также возможно включать подтяжку к питанию/земле. Оба транзистора управляются, т.е. когда подаём на вывод 1-цу, то транзистор птипа закрывается, а транзистор р-типа открывается, тем самым подавая на выход микросхемы напряжение питания (чуть меньшее). Когда подаём на вывод 0, то транзистор р-типа открывается, а транзистор п-типа закрывается, тем самым подавая на выход микросхемы напряжение земля (чуть большее).
- ж) Альтернативная функция. Переключает вывод в режим альтернативной функции. У каждого вывода своя альтернативная функция (ЦАП, UART, SPI, и.т.д.), значение которой нужно смотреть в документации к микроконтроллеру.

Исходный код программы

```
// Подключение необходимых библиотек
#include "stm32f4xx.h"
#include "stm32f4xx_gpio.h"
#include "stm32f4xx_rcc.h"
/// Функция реализующая задержку в работе программы
void Delay(volatile uint32_t tick)
{
    for(uint32_t i = 0; i < tick; i++);</pre>
}
int main(void)
{
    // Включаем тактирование порта D
    RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOD, ENABLE);
    // Создаём структуру для инициализации портов ввода-вывода
    GPIO_InitTypeDef GPIO_InitStruct;
    // Структура заполняется значениями по умолчанию
    GPIO_StructInit(&GPIO_InitStruct);
    // Настраиваем выводы 12 и 13
    GPIO_InitStruct.GPIO_Pin = GPIO_Pin_12 | GPIO_Pin_14;
    // Направление работы этих выводов - "Выход"
    GPIO_InitStruct.GPIO_Mode = GPIO_Mode_OUT;
    // Устанавливаем скорость тактирования выводов в 2 МГц
    GPIO_InitStruct.GPIO_Speed = GPIO_Speed_2MHz;
    // Устанавливаем тив вывода "двухтактный"
    GPIO_InitStruct.GPIO_OType = GPIO_OType_PP;
    // Задаём параметр подтяжки "нет подтяжки"
    GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL;
    // Инициализируем порты с помощью структуры
    GPIO_Init(GPIOD, &GPIO_InitStruct);
```

```
while(1) // цикл работы программы
    {
        // Подаём сигнал на 14 выход
        GPIO_SetBits(GPIOD, GPIO_Pin_14);
        // ждём 500000 тактов
        Delay(500000);
        // Убираем сигнал с 14 выхода
        GPIO_ResetBits(GPIOD, GPIO_Pin_14);
        // Устанавливаем сигнал на 12 выход
        GPIO_SetBits(GPIOD, GPIO_Pin_12);
        // Ждём ещё 500000 тактов
        Delay(500000);
        // Удаляем сигнал с 12 выхода
        GPIO_ResetBits(GPIOD, GPIO_Pin_12);
        // повторяем цикл
   }
}
```

Вывод

Изучили процесс создания базового проекта для микроконтроллера STM32F407, а также порты ввода и вывода. Ознакомились с режимами работы вывода общего назначения и стандартными компонентами для работы микроконтроллера. Создали на практике с помощью программы CoIDE базовый проект, настроили в нем интерфейс ввода/вывода и выполнили индивидуальное задание.