Exercise 6.1

a). Mean and variance transformation formulae

Obtain mean and variance of fibrinogen

. tabstat fbg , s(n mean var)

variable	N		variance
fbg		2.469362	

. summ fbg , detail

brino	g/l

Percentiles	Smallest		
1.45	1.25		
1.7	1.4		
1.85	1.45	0bs	235
2.1	1.55	Sum of wgt.	235
2.35		Mean	2.469362
	Largest	Std. dev.	.5281778
2.8	3.9		
3.1	4	Variance	.2789718
3.25	4.2	Skewness	.8484106
4	4.8	Kurtosis	4.591
	1.45 1.7 1.85 2.1 2.35 2.8 3.1 3.25	1.45 1.25 1.7 1.4 1.85 1.45 2.1 1.55 2.35 Largest 2.8 3.9 3.1 4 3.25 4.2	1.45

Natural logarithm transformation

$$E[log_e(X)] \approx log_e(\mu) - \frac{\sigma^2}{2\mu^2} \qquad Var[log_e(X)] \approx \sigma^2 \left(\frac{1}{\mu}\right)^2 = \frac{\sigma^2}{\mu^2}$$

Approx mean of log FBG

. disp log(2.469362)-0.5*0.2789718/2.469362^2
.88108471

Approx variance of log FBG

- . disp 0.2789718/2.469362^2
- .04574998

Square root transformation

$$E\left[X^{\frac{1}{2}}\right] \approx \mu^{\frac{1}{2}} - \frac{\sigma^2}{8\mu^{\frac{3}{2}}} \qquad Var\left[X^{\frac{1}{2}}\right] \approx \sigma^2 \left(\frac{1}{2\mu^{\frac{1}{2}}}\right)^2 = \frac{\sigma^2}{4\mu}$$

Approx mean of square root FBG

- . disp $sqrt(2.469362)-(1/8)*0.2789718*2.469362^{-3/2}$
- 1.5624337

Approx variance of square root FBG

- . disp 0.2789718/(4*2.469362)
- .02824331

Create new transformed variables

```
. gen log_fbg=log(fbg)
. gen sqrt_fbg=sqrt(fbg)
```

. tabstat log_fbg sqrt_fbg , s(mean var) col(stat)

Transformation	Transformat	ion formulae	Sample	
Transformation	Mean	Variance	Mean	Variance
Loge	0.881	0.0457	0.882	0.0436
Square-root	1.562	0.0282	1.563	0.0271

Sample mean and SD for transformed variables are quite close to those from the transformation formulae above.

b). Checking normality of fibrinogen

. summarize fbg, detail

Fibrinogen (g/l)					
	Percentiles	Smallest			
1%	1.45	1.25			
5%	1.7	1.4			
10%	1.85	1.45	0bs	235	
25%	<u>2.1</u>	1.55	Sum of Wgt.	235	
50%	<u>2.35</u>		Mean	2.469362	
		Largest	Std. Dev.	.5281778	
75%	<u>2.8</u>	3.9			
90%	3.1	4	Variance	.2789718	
95%	3.25	4.2	Skewness	.8484107	
99%	4	4.8	Kurtosis	4.591	

The skew is 0.85 – so slightly positively skewed. The kurtosis is 4.59, slightly greater than 3, indicating heavy tails – this is likely to be mainly to the right as the distribution is positively skewed. Notice that the distance between the 50^{th} and 75^{th} percentiles (0.45) is substantially greater than that between the 50^{th} and 25^{th} percentiles (0.25). This is another indication of skewness.

Normal plots for fibrinogen and log(fibrinogen).

Looking at the normal plot for fibrinogen (left) the largest values are more extreme than they would be under normality and the smallest values are less extreme than they would be under normality. This indicates positive skew. The markers in the normal plot for log fibrinogen lie much closer to the line of equality, i.e. the log transformation reduces skewness and hence improves approximation of the distribution to normal.

It is not very easy to choose between the untransformed and log-transformed variables from the histogram or box-plots.

Output from the ladder, gladder and qladder commands suggests that the log transformation of fibrinogen provides the best approximation to normality.

Analytical Techniques 6: Practical Exercises Solution

. ladder fbg

Transformation	formula	chi2(2)	P(chi2)
cubic square identity square root log 1/(square root) inverse 1/square 1/cubic	fbg^3 fbg^2 fbg sqrt(fbg) log(fbg) 1/sqrt(fbg) 1/fbg 1/(fbg^2) 1/(fbg^3)	27.18 10.41 1.83 5.84 19.53 65.46	0.000 0.000 0.000 0.005 0.401 0.054 0.000 0.000
sqrt 50 00 00 00 00 00 00 00 00 00 00 00 00	square square 100 0 5 10 15	20 25 1 2	3 4 5
12 14 16 18 inverse	2 22 0 5 1	N	1/cubic
5 -8 -6 -4	Fibrinogen (s	g/l)	-3 -2 -1 0
cubic 00 00 00 00 00 00 00 00 00 00 00 00 00	square 500 101 90 00 101 101 101 101 101	0 4 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	identity
sqrt 77 77 78 89 97 71 71 71 71 71 71 71 71 71 71 71 71 71	2 .4 .6 .8 1	1.2 1.487	1/sqrt 654
inverse -,7 -,6 -,5 -,4 -,3	1/square	032	1/cubic
Quantile-Normal plots by trans	Fibrinogen (g/ formation	(1)	

Geometric mean and 95% CI for fibrinogen

. tabstat log_fbg, stat(n mean sd)

Variable		SD
log_fbg		.2088227

- . disp exp(0.8820977)
- 2.4159625

dis invt(234,0.975)

- 1.9701536
- . disp exp(0.8820977-1.9702*0.2088227/sqrt(235))2.3519861
- 2.3519845
- . disp exp(0.8820977+1.9702*0.2088227/sqrt(235))
- 2.481679

Geometric mean [95% CI] = 2.416 [2.352, 2.482]

We can use the ameans command in Stata to check answer.

. ameans fbg

Variable	Type +	0bs	Mean	[95% Conf.	Interval]
fbg	Arithmetic	235	2.469362	2.401481	2.537242
	Geometric	235	2.415962	2.351986	2.481679
	Harmonic	235	2.364299	2.302088	2.429965

c). Checking normality of lysis times

First need to recode the 999 as a missing value.

- . mvdecode lys, mv(999)
- . summ lys , d

Lysis Time (mins)

	Percentiles	Smallest		
1%	25	19		
5%	39	23		
10%	43	25	0bs	234
25%	92	27	Sum of Wgt.	234
50%	204		Mean	188.5598
		Largest	Std. Dev.	98.06671
75%	300	300		
90%	300	300	Variance	9617.08
95%	300	300	Skewness	2646756
99%	300	300	Kurtosis	1.54092

Normal plots for lysis times

. qnorm lys , ms(oh) name(norm_lys, replace) aspect(1)

For lysis times (left) extreme observations at both ends of the distribution are not as extreme as they would be were the data normally distributed, i.e. tails are light = kurtosis<3.

No POWER transformation can deal with the cluster of points at 300 minutes.

Exercise 6.2: Simulated data and distributional plots

a). Generate data

Generate data from four different distributions.

```
. clear
. set obs 500
. set seed 20171204
. gen n=rnormal(50,3)
. gen u=runiform(0,1)
. gen c=rchi2(8)
. gen b=rbeta(8,2)
```

b). Create plots using a loop

```
foreach v of varlist n u c b {
histogram `v' , normal name(hist_`v' , replace)
graph box `v' , name(box_`v', replace)
qnorm `v' , name(norm_`v', replace) ms(oh) aspect(1)
}
```

. tabstat n u c b , s(mean median skew kurtosis) col(stat) format(\$4.3f)

variable	mean	p50	skewness	kurtosis
n	49.839	49.920	0.013	2.985
u	0.464	0.442	0.170	1.792
С	7.963	7.192	0.967	3.979
b	0.796	0.812	-0.814	3.631

See next page for distributional plots

Normal – distribution is symmetric and tails as expected under normal. Note that even with data sampled from a truly normal distribution there will be some departure from line of equality, particularly toward extremes.

Uniform (0,1) – all values lie between 0 and 1. Distribution is symmetric but tails are lighter than expected under normality, i.e. observations at either end of distribution are not as extreme as expected.

Right skewed – asymmetry can be seen in all three plots. Lowest values are less extreme, and largest values are more extreme than expected under normality.

Left skewed – asymmetry can be seen in all three plots. Lowest values are more extreme, and largest values are less extreme than expected under normality.