SS 2020 • Analysis IIa • Übungsaufgaben

Blatt 4

Abgabefrist: bis zum 22.05.2020 (Freitag!) um 10 Uhr als PDF-Datei an den zuständigen Tutor

Aufgabe 1 (1+1+2+2 Punkte). Sei $f:(a,b)\to\mathbb{R}$ unendlich oft differenzierbar mit $f^{(n)}(x)\geq 0$ für alle $n\in\mathbb{N}$ und alle $x\in(a,b)$.

1. Für $n \in \mathbb{N}$ und $x_0 \in (a, b)$ betrachte das nte Integralrestglied in der Taylorformel,

$$R_n(x_0, x) = \frac{1}{n!} \int_{x_0}^x (x - t)^n f^{(n+1)}(t) dt.$$

Zeigen Sie die Gleichheit $R_n(x_0, x) = \frac{(x - x_0)^{n+1}}{n!} \int_0^1 (1 - s)^n f(x_0 + s(x - x_0)) ds$.

2. Sei $\varepsilon > 0$ mit $[x_0 - \varepsilon, x_0 + \varepsilon] \subset (a, b)$ und $n \in \mathbb{N}$. Zeigen Sie:

(a)
$$R_n(x_0, x_0 + \varepsilon) \le f(x_0 + \varepsilon) - f(x_0)$$
, (b) $|R_n(x_0, x)| \le \left(\frac{|x - x_0|}{\varepsilon}\right)^{n+1} R_n(x_0, x_0 + \varepsilon)$.

3. Zeigen Sie, dass zu jedem $x_0 \in (a, b)$ ein $\delta > 0$ existiert mit

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n \text{ für alle } x \in (x_0 - \delta, x_0 + \delta).$$

Aufgabe 2 (4 Punkte). Sei $f:[1,+\infty)\to\mathbb{R}$ monoton fallend, nichtnegativ, Regelfunktion auf jedem Intervall [1,R] mit R>1. Zeigen Sie, dass die Folge

$$a_n = \int_1^{n+1} f(x) dx - \sum_{k=1}^n f(k),$$

konvergiert. Hinweis: Zeigen Sie, dass die Folge (a_n) monoton und beschränkt ist.

Aufgabe 3 (3+3 Punkte). Untersuchen Sie folgende uneigentliche Integrale auf die Konvergenz. (Das Grenzwertkriterium aus der Präsenzaufgaben kann bei Bedarf genutzt werden.)

(a)
$$\int_0^{+\infty} \frac{dx}{\sqrt{x} + e^x - 1}$$
, (b) $\int_0^1 \frac{\ln x}{(1 - x)^2} dx$.

Aufgabe 4 (2+2 Punkte). Berechnen Sie folgende uneigentliche Integrale:

(a)
$$\int_{-\infty}^{\infty} \frac{dx}{e^x + e^{-x}}$$
, (b) $\int_{0}^{1} \frac{dx}{(2-x)\sqrt{1-x}}$.

Präsenzaufgaben

1. Sei $f(x) = \sum_{n=0}^{\infty} c_n (x - x_0)^n$ eine Potenzreihe mit dem Konvergenzradius R > 0. Zeigen Sie die Identität

$$\int_{a}^{b} f(x) dx = \sum_{n=0}^{\infty} \int_{a}^{b} c_n (x - x_0)^n dx \text{ für alle } a, b \in (x_0 - R, x_0 + R).$$

- 2. (Grenzwertkriterium) Seien $f, g : [a, b) \to \mathbb{R}$ strikt positiv und stetig. Nehme an, dass der Grenzwert $C := \lim_{x \to b^-} f(x)/g(x)$ existiert und positiv ist $(0 < C < \infty)$. Zeigen Sie, dass die uneigentlichen Integrale $\int_a^b f$ und $\int_a^b g$ dasselbe Konvergenzverhalten haben.
- 3. Untersuchen Sie die Konvergenz folgender Integrale:

(a)
$$\int_{1}^{+\infty} \frac{\sin x}{x^{2}} dx$$
, (b) $\int_{0}^{+\infty} \frac{\sin x}{x^{2}} dx$, (c) $\int_{0}^{1} (\ln x)^{3} dx$, (d) $\int_{e}^{+\infty} \frac{1}{(\ln x)^{2}} dx$, (e) $\int_{0}^{\infty} \cos(x^{2}) dx$, (f) $\int_{0}^{\infty} \frac{dx}{x^{2} + \sqrt{x}}$

- 4. Berechnen Sie $\lim_{a\to 1^-}\int_{-a}^a \frac{x}{x^2-1}\,dx$. Ist $\int_{-1}^1 \frac{x}{x^2-1}\,dx$ konvergent?
- 5. Wir betrachten $\Gamma(s) = \int_0^\infty x^{s-1} e^{-x} dx$ mit $s \in \mathbb{R}$.
 - (a) Finden Sie alle $s \in \mathbb{R}$, für die das Integral $\Gamma(s)$ konvergiert. Betrachten Sie separat $\int_0^1 \operatorname{und} \int_1^\infty.$
 - (b) Zeigen Sie, dass $\Gamma(s+1) = s\Gamma(s)$ für alle zulässigen s.
 - (c) Berechnen Sie $\Gamma(n)$ für alle $n \in \mathbb{N}$.
- 6. Wir wollen das uneigentliche Integral $I = \int_0^{\pi} \ln \sin x \, dx$ ausrechnen. Zeigen Sie folgende Gleichheiten:

(a)
$$I = 2 \int_0^{\pi/2} \ln \sin x \, dx$$
, (b) $I = 2 \int_0^{\frac{\pi}{2}} \ln \sin(2x) \, dx$, (c) $\int_0^{\frac{\pi}{2}} \ln \sin x \, dx = \int_0^{\frac{\pi}{2}} \ln \cos x \, dx$.

und leiten Sie her, dass $I=-\pi\ln 2$. (Für die Frage (a) kann man die Substition $x=\pi-y$ nutzen.)

- 7. Zeigen Sie, dass die Integrale $I = \int_0^1 \frac{\ln x}{1+x^2} dx$ und $J = \int_1^\infty \frac{\ln x}{1+x^2} dx$ konvergieren und dass I + J = 0.
- 8. Auf $[0, +\infty)$ betrachte die Funktionen $f_n: x \mapsto \frac{1}{n}e^{-x/n}, n \in \mathbb{N}$.
 - (a) Zeigen Sie, dass f_n gleichmässig auf $[0, \infty)$ gegen eine Funktion f konvergieren (als $n \to \infty$).
 - (b) Hat man die Gleichheit $\int_0^{+\infty} f = \lim_{n \to +\infty} \int_0^{\infty} f_n$?