Probability 2

Raul Penaguiao - Mailbox in J floor

Due until: 24th September at 17h

Exercises marked with * should be easier after attending the lecture on Thursday.

Exercise 1 (2 points). Let X be a Binom(n, p) distributed r.v. and let Y follow a Ber $\left(\frac{X}{n}\right)$ distribution.

- (a) Describe the law of Y;
- (b) Describe the r.v. $\mathbb{E}[X|Y]$ as a function of Y.

Exercise 2 (2 points). Let X and Y be independent uniform random variables in $\{1, \ldots, 6\}$ and let S = X + Y. Compute $\mathbb{E}(X|X)$, $\mathbb{E}(X|Y)$, $\mathbb{E}(X|S)$, $\mathbb{E}(Y|X)$ and the remaining 5 conditional expectations.

(Hint: for $\mathbb{E}(X|S)$, $\mathbb{E}(Y|S)$, it might help to first prove that they are equal to each other and consider the sum.)

Exercise 3 (4 points *). For a real-valued random variable Y, we characterized all random variables X that are $\sigma(Y)$ -measurable in Lemma 2.12. In this exercise we will prove one of the implications in this lemma 1. Let X be a nonnegative or integrable function $\Omega \to \mathbb{R}$, measurable with respect to the σ -algebra

$$\sigma(Y):=\{A\subseteq\Omega:\,A=Y^{-1}(B)\text{ for some Borel subset }B\subseteq\mathbb{R}\}.$$

The goal is to show that X = f(Y) for some measurable function $f : \mathbb{R} \to \mathbb{R}$.

- (a) Prove the statement when X is a step function, i.e. a finite sum $\sum_i a_i \mathbf{1}_{A_i}$; (Hint: we can choose A_i that are $\sigma(Y)$ measurable)
- (b) Prove the statement when X is nonnegative (recall that nonnegative measurable functions can be written as pointwise limits of measurable step functions X_n);
- (c) Prove the statement when X is in L^1 (write $X = X^+ X^-$ with X^+ and X^- nonnegative).

¹This is in fact the only non-trivial implication in the lemma.

Exercise 4 (2 points *). If \mathcal{H} is a real Hilbert space, and $\mathcal{L} \subseteq \mathcal{H}$ a subspace, the projection operator $\Pi: \mathcal{H} \to \mathcal{L}$ is defined as

$$\Pi x := \min \arg_{y \in \mathcal{L}} \{ ||x - y|| \}.$$

Show the following properties of Π :

- (a) $\Pi x = x$ for $x \in \mathcal{L}$;
- (b) $\Pi^2 = \Pi$, that is, Π is idempotent;
- (c) Πx is the unique element in \mathcal{L} such that for any $y \in \mathcal{L}$

$$\langle y, \Pi x \rangle = \langle y, x \rangle;$$
 (CP)

(d) $\Pi x = 0$ for $x \in \mathcal{L}^{\perp}$.