

Optical Design of PICO, a Concept for a Space Mission to Probe Inflation and Cosmic Origins

K. Young^{1†}, M. Alverez², N. Battaglia³, J. Bock⁴, J. Borrill⁵, D. Chuss⁶, B. Crill⁷, J. Delabrouille⁸, M. Devlin⁹, L. Fissel¹⁰, R. Flauger¹¹, D. Green¹², K. Gorski⁷, S. Hanany¹, R. Hills¹³, J. Hubmayr¹⁴, B. Johnson¹⁵, B. Jones³, L. Knox¹⁶, A. Kogut¹⁷, C. Lawrence³, T. Matsumura¹⁸, J. McGuire⁷, J. McMahon¹⁹, R. O'Brient⁷, C. Pryke¹, X.Z. Tan¹, A. Trangsrud⁷, Q. Wen¹, G. de Zotti²⁰

¹Univ. of Minnesota, ²Univ. of California Berkeley, ³Princeton Univ, ⁴California Institute of Technology, ⁵Lawrence Berkeley National Laboratory, ⁶Villanova Univ., ⁷Jet Propulsion Laboratory, ⁸Astroparticule et Cosmologie, ⁹Univ. of Pennsylvania, ¹⁰National Radio Astronomy Observatory, ¹¹Univ. of California San Diego, ¹²Univ. of Toronto, ¹³Cavendish Laboratory, Univ. of Cambridge, ¹⁴National Institute of Standards and Technology, ¹⁵Columbia Univ., ¹⁶Univ. of California Davis, ¹⁷Goddard Space Flight Center, ¹⁸Kalvi IPMU, Univ. of Toyko, ¹⁹Univ. of Michigan, ²⁰Osservatorio Astronomico di Padova [†]Email: kyoung@astro.umn.edu

Scientific Observations

- Measure or set upper limits on primordial B-modes with $\sigma(r) \sim 10^{\text{-}5}$
- Determine the number of light relic particles, N_{eff} , to $\sigma(N_{eff}) = 0.03$
- Measure τ , the optical depth to reionization to cosmic variance limits, $\sigma(\tau) = 0.002$
 - Along with DESI-BAO observations measure $\Sigma m_{\rm w}$, the sum of neutrino masses at $\geq 4\sigma$
- Map Galactic magnetic fields from Galactic scales to 0.05 pc in 10 nearby molecular clouds
- Discover 10,000s of protoclusters and clusters via the SZ effect
- Map the CIB and dusty infrared galaxies across the full sky

Satellite and Instrument

- 70 times the polarization sensitivity of *Planck*
- 21 bands from 20 GHz to 800 GHz
- 25 % fractional bandwidth
- 12,996 polarization sensitive TES bolometers
- 1' resolution at 800 GHz, 38' at 20 GHz
- Full-sky coverage
- TDM readout: 128 rows, 100 columns
- Launch vehicle is a Falcon 9, 4.6 meter fairing
- L2 orbit, precession and spin based scan strategy with precession angle 26° and boresight angle 69°

- Multichroic pixel make stop illumination dependent on band
- Edge tapers are 4.8, 10, 20.7 dB for low, mid, high
- Affects optical efficiency, optical load, and telescope beam size

Reference

[1] C. Dragone, "First-order correction of aberrations in Cassegrainian and Gregorian antennas," in IEEE Transactions on Antennas and Propagation, vol. 31, September 1983.

Optical Design

- 1.4 m Open Dragone, numerically optimized
- 19 x 13 degree field of view
- f/1.42 system gives compact focal plane
- Low far sidelobes, largest 70 dB below main beam
- Cold stop reduces detector load

Focal Plane

Three color pixels, six polarization sensitive detectors per pixel

Detector Noise Predictions

Model

- White noise only
- Includes photon (dominates), phonon, readout, and TES Johnson noise terms
- 5 year mission at 95% observing efficiency
- Safety factor of 2, $P_{sat} = 2 P_{opt}$
- 70 % bolometer effeciency
- 100 % yield

The PICO collaboration thanks NASA for supporting this study.

Results

- CMB and stop are the largest optical load in all bands
- Maximum load from stop is at 223 GHz and is 4.7 times the CMB load
- NEP_{phonon} / NEP_{photon} is 65% at 21 GHz and 19% at 800 GHz
- Bose / Poisson photon noise is 1.5 at 21 GHz and drops below 10% at 321 GHz.
- Full sky polarization map depth is 0.62 μK_{CMB}-arcmin