Desarrollo Teórico Parcial 1.

g) El coeficiente a será la diferencia divida de orden cero, b la de orden 1 y C la de orden 2.

a = f[X₀, X₁, X₂]

b = f[X₀, X₁] - (X₀+X₁) f [X₀, X₁, X₂]

c = f(x₀) - X₀ f[X₀, X₁] + X₀ X₁ f[X₀, X₁, X₂]

Para demostrar lo anterior partimos de $f(X) \cong f(X_0) + f(X_0, X_1, X_1) + f(X_1, X_1, X_2)(X_1, X_2)(X_1, X_2)(X_1, X_1, X_2)(X_1, X_2)(X_1, X_1, X_2)(X_1, X_2)(X_1, X_2)(X_1, X_2)(X_1, X_1, X_2)(X_1, X_2)(X_2, X_3)(X_1, X_2)(X_1, X_2)(X_2, X_3)(X_1, X_2)(X_1, X_2)(X_2, X_3)(X_1, X_2)(X_1, X_3)(X_2, X_3)(X_1, X_3)(X_2, X_3)(X_1, X_3)(X_2, X_3)(X_1, X_3)(X_2, X_3)(X_1, X_3)(X_2, X_3)(X_1, X_3)(X_2, X_3)(X_1, X_3)(X_2, X_3)(X_2, X_3)(X_1, X_3)(X_2, X_3)(X_1, X_3)(X_2, X_3)(X_2, X_3)(X_1, X_3)(X_2, X_3)(X_2, X_3)(X_3, X_3)(X_1, X_3)(X_2, X_3)(X_2, X_3)(X_3, X_3$

$$f(x) = f(x_0) + f(x_0, x_1)(x_1 - x_0) + f(x_0, x_1 - x_0) + f(x_0) + f(x_0, x_1 - x_0) + f(x_0, x_1 -$$

- i) Tenemos $\chi_3 = \frac{-2c}{b \pm \sqrt{b^2 4ac}}$. Además, partimos de la condición $b^2 >> 4ac$
 - -- Gracias a la condición anterior la Formula se puede reescribir como $k_3 = \frac{-2c}{b \pm \sqrt{b^2}}$
 - Decir que si b < 0 hay que tomor el signo negativo garantiza que el denominador no se hage (ero pues tondríamos: $\frac{-2c}{-b-b} \neq 0$.
 - Lo mismo ocurre en el caro poritivo.