Complex Manifolds

Chapter 1

Complex Singularities

July 3, 2023

Introduction

In this course, we will explain how to extract **topological information** about a **complex manifold** by studying the holomorphic maps

$$f: X \to T, \dim T = 1$$

and their critical points.

Complex *n*-manifold

A complex *n*-manifold is...

...a locally compact Hausdorff¹ space X together with

- Open cover U_{α} of X
- Homeomorphisms $h_{\alpha}:U_{\alpha}\to\mathcal{O}_{\alpha}$ where $\mathcal{O}_{\alpha}\subset\mathbb{C}^n$ is open
- Change of coordinate maps are biholomorphic

biholomorphism: $\phi:U\subset\mathbb{C}^n\to V\subset\mathbb{C}^n$ such that U,V are open and ϕ,ϕ^{-1} are holomorphic.

Note that the charts map from X to \mathbb{C}^n , not the other way.

¹Other definitions also assume 2nd countability.

Holomorphic functions on X

A function $f: X \to \mathbb{C}$ is said to be **holomorphic** if $f|_{U_{\alpha}} \circ h_{\alpha}^{-1} : \mathcal{O}_{\alpha} \to \mathbb{C}$ is holomorphic.

Maps $f: X \to \mathbb{C}^m$ are **holomorphic** if each component function is holomorphic (in the sense defined above).

Similarly, if Y is a complex m-manifold with a holomorphic atlas (V_i, g_i) and if $F: X \to Y$ is continuous, then F is said to be **holomorphic** if for every i, the map $g_i \circ F: F^{-1}(V_i) \to g_i(U_i) \subset \mathbb{C}^m$ is holomorphic (in the sense defined above).

cf. Do Carmo, defining differentiable functions between surfaces

Further definitions

For a complex *n*-manifold X, we mean by **local coordinates near** x a biholomorphic map from a neighborhood of x onto an open subset of \mathbb{C}^n .

Remark: $\mathbb{C}^n = (z_1, \dots, z_n)$ with $z_k = x_k + iy_k$ is equipped with a canonical orientation given by

$$dx_1 \wedge dy_1 \wedge \cdots \wedge dx_n \wedge dy_n$$

and every biholomorphic map preserves this orientation. Therefore, every complex manifold has a natural orientation.

It is clear when we think about \mathbb{C}^1 , the complex plane has an obvious orientation (counterclockwise on the complex plane).

Further definitions

Suppose $F: X \to \mathbb{C}^m$, $F = (F_1, \dots, F_m)$ is a holomorphic map. A point $x \in X$ is regular if there exists local coordinates (z_1, \dots, z_n) near x such that the Jacobian matrix

$$\left(\frac{\partial F_i}{\partial z_j}(x)\right)_{1\leq i\leq m, 1\leq j\leq n}$$

has maximal rank.² This extends to holomorphic maps $F: X \to Y$. A point $x \in X$ which is not regular is called critical.³ A point $y \in Y$ is said to be a regular value of F if $F^{-1}(y)$ are regular points.

²⁷

³Respect to which *F*?

Further definitions

A critical point $x \in X$ is **nondegenerate** if there exists local coordinates near x and F(x) respectively such that F can be locally described as a function u(x) and the Hessian has nonzero determinant.

A holomorphic map $F: X \to Y$ is a **Morse map** if

- dim Y=1
- All critical points of F are nondegenerate
- For all critical values $y \in Y$, $F^{-1}(y)$ contains a unique critical point.

Example $f = z_1^2 + \cdots + z_n^2$ is Morse. dim \mathbb{C} is obviously 1. The only critical point is 0, for which the Hessian is $(2\delta_{ij})$ which has determinant $2^n \neq 0$. The third condition is clear.

⁴Holomorphic?

Projective space

N-dimensional complex projective space \mathbb{P}^N : The quotient of $\mathbb{C}^{N+1}\setminus\{0\}$ modulo the equivalence relation

$$u \sim v \Leftrightarrow \exists \lambda \in \mathbb{C}^*; v = \lambda u$$

The natural projection $\pi: \mathbb{C}^{N+1} \setminus \{0\} \to \mathbb{P}^N$ is defined by sending elements to their (equivalence) classes.

 \mathbb{P}^N is given a topology by having U open iff $\pi^{-1}(U)$ is open in $\mathbb{C}^{N+1}\setminus\{0\}$. **Example** \mathbb{P}^1 is called the Riemann sphere.

Projective space

Canonical holomorphic atlas on \mathbb{P}^n consists of the charts $(U_i, \phi_i)_{i \leq N}$ where

$$U_i = \{ [z_0 : \cdots : z_N] \mid z_i \neq 0 \}$$

and $\phi_i:U_i\to\mathbb{C}^N$ given by

$$\phi([z_0:\cdots:z_n])=(\zeta_1,\ldots,\zeta_N)$$

Read the text for the definition of ζ_k .

Each U_i is biholomorphic to \mathbb{C}^N , and $\mathbb{P}^N \setminus U_i = \{[z_0 : \cdots : z_N] \mid z_i = 0\}$ can be identified with \mathbb{P}^{N-1} .

⁵Why is this important?

Submanifolds

X, a complex n-manifold. A **codimension** k **submanifold** of X is a closed subset $Y \subset X$ such that for every point $y \in Y$ there exists an open neighborhood $U_y \subset X$, and local holomorphic coordinates (z_1, \ldots, z_n) on U_Y such that

- $z_1(y) = \cdots = z_n(y) = 0$
- $y' \in U_y \cap Y \iff z_1(y') = \cdots = z_k(y') = 0$

The codimension k submanifolds are complex n - k-manifolds.⁶

Implicit Function Theorem

Theorem. If $F: X \to Y$ is a holomorphic map, dim Y = k, and $y \in Y$ is a regular value of F, then the fiber $F^{-1}(y)$ is a codimension k submanifold of X.

This is an easy way of obtaining a submanifold.⁷ We omit the proof of this theorem.

Sard's Theorem

Theorem. If $F: X \to Y$ is a holomorphic map, then the set of critical points has measure zero.

Applying this to the IFT, we conclude that almost all fibers $F^{-1}(y)$ are smooth submanifolds, or in other words the generic fiber is smooth. Again, we omit the proof.⁸

⁸However, it is worthwhile to note that one of the most famous proofs of this theorem by J. Milnor depends on the second-countability of X, which in this case is omitted.

Sard's Theorem

Using this, we may regard X as a union of the fibers $F^{-1}(t)$ for $t \in T$. We show that the understanding of the changes in the topology and geometry of $F^{-1}(T)$ as t approaches critical values leads to nontrivial conclusions.

Algebraic Manifolds

An **algebraic manifold** is a smooth algebraic variety. They are constructed by the closed subsets

$$V_P = \{ [z_0 : \cdots : z_N] \in \mathbb{P}^N \mid P(z_0, \dots, z_N) = 0 \}$$

for $P \in \mathcal{P}_{d,N}$, which is the space of degree d homogeneous polynomials in N+1 variables over the base field \mathbb{C} .

 V_P are called hypersurfaces of degree d.

Algebraic Manifolds

You may have noticed that the V_p may fail to be manifolds. However using Sard's theorem we claim that almost all V_P are codimension-1 submanifolds of \mathbb{P}^N .

Algebraic Manifolds

Claim. For almost all $P \in \mathcal{P}_{d,N}$, V_p is a codimension 1 submanifold of \mathbb{P}^N . **Proof.** Consider the holomorphic map

$$F: X \to \mathbb{P}(d, N), \quad ([\mathbf{z}], [P]) \mapsto [P]$$

where $X = \{([\mathbf{z}], [P]) \in \mathbb{P}^N \times \mathbb{P}(d, N) \mid P(\mathbf{z}) = 0\}.^9$ We know X is a smooth manifold by the implicit function theorem. Then we may apply Sard's theorem to $F^{-1}(P) = V_P$, which shows that almost all of them are smooth.

 $^{^9\}mathbb{P}(d,N)=\mathcal{P}_{d,N}^*/\sim$ where $P\sim Q$ iff $\lambda P=Q$ for some $\lambda\in\mathbb{Q}$, where $\lambda\in\mathbb{Q}$ is $\lambda\in\mathbb{Q}$.

The case d = 1

If d=1 then all polynomials are linear. The zero set of linear polynomials are hyperplanes. In this case, the hyperplane V_P completely determines the image of P in $\mathbb{P}(1,N)$.¹⁰ Therefore, the space $\mathbb{P}(1,N)$ can be identified with the set of vector hyperplanes in \mathbb{P}^N .

 $\mathbb{P}(1,N)$ is called the dual of \mathbb{P}^N and is denoted by $\check{\mathbb{P}}^N$.

¹⁰This is because V_P are invariant to scalar multiples of $P_1 \rightarrow P_2 \rightarrow P_3 \rightarrow P_4 \rightarrow P_5 \rightarrow P_6 \rightarrow P$

Projective Variety

Given a set $(P_s)_{s\in S}$ of homogeneous polynomials in N+1 variables over \mathbb{C} , define

$$V(S) = \bigcup_{s \in S} V_{P_s}$$

V(S) is called a **projective variety**.

Often, a projective variety is a smooth submanifold. Chow's theorem states that an analytic subspace of complex projective space closed in the usual topology is an algebraic subvariety.

Suppose X is a smooth, degree d curve¹¹ in \mathbb{P}^2 . Note that lines in \mathbb{P}^2 are hyperplanes. Fix a point $C \in \mathbb{P}^2$ and a line $L \subset \mathbb{P}^2 \setminus \{C\}$.

For any $p \in \mathbb{P}^2 \setminus \{C\}$, denote [Cp] the unique projective line determined by C and p.

Denote by f(p) the intersection of [Cp] and L. Then f is holomorphic, and is called the **projection** from C to L.

Recall $X \subset \mathbb{P}^2$. If $C \notin X$ then the restriction $f|_X : X \to L$ is a holomorphic map. Its critical points are $p \in X$ such that [Cp] is tangent to X^{12}

Now suppose C is a point at infinity, i.e. the line $\{[0,z_1,z_2]\mid (z_1,z_2)\in\mathbb{C}^2\}\subset\mathbb{P}^2$. It is good practice to understand why the set of points at infinity is a line in projective space.

Since X is of degree d, every line in \mathbb{P}^2 intersects X in d points (counting multiplicities).

The **dual** of the center C is the line $\check{C} \in \check{\mathbb{P}}^2$ consisting of all affine hyperplanes in \mathbb{P}^2 passing through C.

The **dual** of X is the closed set $\check{X} \subset \check{\mathbb{P}}^2$ consisting of all the lines in \mathbb{P}^2 tangent to X.

 \check{X} is a (possibly) singular curve in \mathbb{P}^2 , i.e. it can be described as the zero locus of a homogeneous polynomial.¹³

A critical point of f corresponds to a line through C (point in \check{C}) which is tangent to X (belongs to \check{X}). Thus the expected number of critical points is the expected number of intersection points between \check{X} and \check{C} . This is precisely the degree of \check{X} .¹⁴

A Historical Remark

Consider the affine curve $\{(x,y)\in\mathbb{C}^2\mid y^2=x(x-1)(x-t)\}$. Now identify the complex (affine) plane \mathbb{C}^2 with $\mathbb{P}^2\setminus\{z_0=0\}$ by taking $x=z_1/z_0$ and $y=z_2/z_0$. This leads to the cubic

$$z_2^2 z_0 = z_1(z_1 - z_0)(z_1 - tz_0)$$

in \mathbb{P}^2 which can be regarded as the closure of the graph of the original function not mentioned here.¹⁵