# IRIS FLOWER CLASSIFICATION

### Introduction

The Iris flower classification problem is a popular introductory machine learning task. The dataset consists of measurements of three species of Iris flowers: **setosa**, **versicolor**, and **virginica**. Each flower is described by four numerical features: sepal length, sepal width, petal length, and petal width. Using these measurements, the objective is to train a machine learning model that can accurately classify the species of Iris flowers.

# **Objective**

The main goal of this task is to develop a machine learning model that can:

- 1. Learn from the features of the Iris dataset.
- 2. Accurately predict the species of Iris flowers based on their measurements.
- 3. Demonstrate basic steps in data preprocessing, model training, and evaluation.

### **Dataset Overview**

The Iris dataset is a small, clean, and balanced dataset that is commonly used in classification tasks. It has the following characteristics:

• Samples: 150 (50 for each species)

• **Features**: 4 numerical features

• Classes: 3 species (setosa, versicolor, virginica)

## **Data Dictionary**

Feature Name Description

**Sepal Length (cm)** Length of the sepal in centimeters

Sepal Width (cm) Width of the sepal in centimeters

**Petal Length (cm)** Length of the petal in centimeters

Petal Width (cm) Width of the petal in centimeters

**Species** Species of the Iris flower (setosa, versicolor, virginica)

# **Steps in the Process**

- 1. Import Libraries
- 2. Load Dataset

- 3. Exploratory Data Analysis (EDA)
- 4. Data Preprocessing
- 5. Model Training
- 6. Model Evaluation
- 7. Conclusion and Insights

### **Required Python Packages**

### Data Manipulation and Visualization

- numpy: For numerical computations.
- pandas: For manipulating and analyzing data.
- seaborn and matplotlib: For visualizing relationships and distributions.

### Machine Learning

- scikit-learn:
- load\_iris: To load the Iris dataset.
- train\_test\_split: To split data into training and testing sets.
- StandardScaler: To standardize feature values.
- RandomForestClassifier: To train the classification model.
- Metrics like classification\_report, accuracy\_score, and confusion\_matrix.

# **# 1. Loading the Dataset and Libraries**

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report, accuracy_score, confusion_matrix
from sklearn.datasets import load_iris
```

### # 2. Load the dataset

```
# Load the Iris dataset
iris = load_iris()
df = pd.DataFrame(data=iris.data, columns=iris.feature_names)
df['species'] = iris.target
df['species'] = df['species'].map({0: 'setosa', 1: 'versicolor', 2: 'virginica'})
print('First few rows:\n',df.head())
```

### First few rows:

sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) species

```
0
           5.1
                        3.5
                                     1.4
                                                 0.2 setosa
           4.9
                        3.0
                                     1.4
                                                 0.2 setosa
1
           4.7
                        3.2
                                     1.3
                                                 0.2 setosa
3
                                     1.5
                                                 0.2 setosa
           4.6
                        3.1
4
           5.0
                        3.6
                                     1.4
                                                 0.2 setosa
```

```
# Summary statistics of the dataset
print(df.describe())

# Check for missing values
print(df.isnull().sum())

# Count of each species
print(df['species'].value_counts())
```

sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)

| count | 150.000000 | 150.000000 | 150.000000 | 150.000000 |
|-------|------------|------------|------------|------------|
| mean  | 5.843333   | 3.057333   | 3.758000   | 1.199333   |
| std   | 0.828066   | 0.435866   | 1.765298   | 0.762238   |
| min   | 4.300000   | 2.000000   | 1.000000   | 0.100000   |
| 25%   | 5.100000   | 2.800000   | 1.600000   | 0.300000   |
| 50%   | 5.800000   | 3.000000   | 4.350000   | 1.300000   |
| 75%   | 6.400000   | 3.300000   | 5.100000   | 1.800000   |
| max   | 7.900000   | 4.400000   | 6.900000   | 2.500000   |

sepal length (cm) 0

sepal width (cm) 0

petal length (cm) 0

petal width (cm) 0

species 0

dtype: int64

species

setosa 50

versicolor 50

virginica 50

Name: count, dtype: int64

<class 'pandas.core.frame.DataFrame'>

```
RangeIndex: 150 entries, 0 to 149

Data columns (total 5 columns):

# Column Non-Null Count Dtype

--- -----

0 sepal length (cm) 150 non-null float64

1 sepal width (cm) 150 non-null float64

2 petal length (cm) 150 non-null float64

3 petal width (cm) 150 non-null float64

4 species 150 non-null object

dtypes: float64(4), object(1)

memory usage: 6.0+ KB
```

# # 3. Exploratory Data Analysis (EDA)

```
# Check dataset information
print('\nDataset Information:\n',df.info())
# Statistical summary
print(df.describe())
```

### Dataset Information:

None

sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)

| count | 150.000000 | 150.000000 | 150.000000 | 150.000000 |
|-------|------------|------------|------------|------------|
| mean  | 5.843333   | 3.057333   | 3.758000   | 1.199333   |
| std   | 0.828066   | 0.435866   | 1.765298   | 0.762238   |
| min   | 4.300000   | 2.000000   | 1.000000   | 0.100000   |
| 25%   | 5.100000   | 2.800000   | 1.600000   | 0.300000   |
| 50%   | 5.800000   | 3.000000   | 4.350000   | 1.300000   |
| 75%   | 6.400000   | 3.300000   | 5.100000   | 1.800000   |
| max   | 7.900000   | 4.400000   | 6.900000   | 2.500000   |

### # Pair Plot

```
# Visualizing the pairplot
sns.pairplot(df, hue='species', diag_kind='kde')
plt.show()
```



```
# Compute correlation matrix excluding the 'species' column
correlation_matrix = df.drop('species', axis=1).corr()
print(correlation_matrix)
```

```
      sepal length (cm)
      ...
      petal width (cm)

      sepal length (cm)
      1.000000
      ...
      0.817941

      sepal width (cm)
      -0.117570
      ...
      -0.366126

      petal length (cm)
      0.871754
      ...
      0.962865

      petal width (cm)
      0.817941
      ...
      1.000000
```

[4 rows x 4 columns]

# # Correlation Matrix:

```
# Plot the heatmap
plt.figure(figsize=(8, 6))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f")
plt.title('Correlation Matrix')
plt.show()
```



# #4. Data Preprocessing

```
# Define features and target
X = df.drop('species', axis=1)
y = df['species']

# Split the dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Standardize the feature values
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
```

Standardization ensures that features are on the same scale, improving model performance.

### #5. Train the Model

```
# Initialize and train the Random Forest Classifier
model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X_train, y_train)
```

Random Forest is an ensemble model that combines decision trees to make robust predictions.

### # 6. Evaluate the Model

```
# Predictions and Accuracy
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy:.2f}")

# Display classification report
print("Classification Report:\n", classification_report(y_test, y_pred))
```

Accuracy: 1.00

# Classification Report:

1.00 1.00 1.00 10 setosa versicolor 1.00 1.00 1.00 9 virginica 1.00 1.00 1.00 11 accuracy 1.00 30 1.00 1.00 macro avg 1.00 30 weighted avg 1.00 1.00 1.00 30

precision recall f1-score support

### **# Confusion Matrix**

```
conf_matrix = confusion_matrix(y_test, y_pred)
plt.figure(figsize=(6, 4))
sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues',
xticklabels=iris.target_names, yticklabels=iris.target_names)
plt.title('Confusion Matrix')
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.show()
```



# Conclusion

The Random Forest model performed exceptionally well, achieving 100% accuracy on the test set. Petal length and petal width were particularly influential in classifying the species. The Iris dataset demonstrates the power of Random Forest for multiclass classification tasks.