Long Run Macroeconomics

Prof. Giacomo Rondina University of California, San Diego Spring, 2023

Lecture 7 (note: this lecture will be recorded)

Looking ahead to the Midterm

- April 25, 27: The Solow Model
- May 2: How firms make investment decisions
- May 4: Review ahead of Midterm
- Monday May 8:

Out-of-Class Midterm, 7 pm – 9 pm, Solis 107

Econ 110A - Housekeeping

Problem Set 3 is posted

No Office Hours today, make-up tomorrow noon-1pm

Plan for Lecture 7

What did we learn from the Production Model?

- The Solow Model
 - Capital Accumulation
 - The Real Interest Rate
 - The Solow Diagram

The Production Model: what did we learn?

$$\underbrace{\frac{y_{\text{rich}}^*}{y_{\text{poor}}^*}}_{70} = \underbrace{\frac{\overline{A}_{\text{rich}}}{\overline{A}_{\text{poor}}}}_{14} \cdot \underbrace{\left(\frac{\overline{k}_{\text{rich}}}{\overline{k}_{\text{poor}}}\right)^{1/3}}_{5}$$

Differences in per-capita GDP largely due to Total Factor of Productivity (TFP)

Why are some countries more efficient at using capital and labor than others?

Importance of Institutions/Government is Clear...

...but Role of Institutions is Complicated

Taking Stock and Next Step

- Why some countries are so much richer than others?
 Capital matters but only partially. TFP plays a much bigger role.
- Why do some countries grow faster than others?
 Can the answer to this question help understand the role of TFP?

Two Pictures from 1960

Two Pictures from 1960

	South Korea	Philippines
Per Capita GDP	\$1,500	\$1,500
Population	25M	25M
Working Age Population	50%	50%
Attending College at 20	5%	13%

Two Pictures from 1960

More Specific Questions:

1. Can differences in **capital accumulation** explain differences in *growth* of GDP per capita across countries?

2. Is **capital accumulation** the *ultimate* source of sustained growth in GDP per capita?

Introducing *dynamics* into the production model.

Robert Solow

1.Production

2. Resource Constraint

d: depreciation rate

3. Capital Accumulation

define $\Delta K_{HI} = K_{HI} - K_{F}$

then $\Delta K_{++} = I_{+} - JK_{+}$

K++1 = K+ + I+ - dK+ I+: Investment

Jen U.S. in 2019: $\overline{J}_{K_{+}} = \$3 \text{ Trillion}$ $\overline{J}_{K_{+}} = \$3.3 \text{ Trillion}$ $K_{+} = \$20 \text{ Trillion}$ $\overline{J}_{K_{+}} = \overline{J} = \frac{\$37}{\$207} \approx 15\%$

Capital Accumulation: Example

Time t	Capital K_t	Investment \boldsymbol{I}_t	Depreciation $\overline{d}K_t$	Change in Capital ΔK_{t+1}
0	1000	200	100	100
1	1100	200	110	90
2	1190	200	119	81
3	1271	200		
4		200		

$$\Delta K_{t+1} = I_t - \bar{d}K_t \qquad \bar{d} = 0.10$$

4.Labor

5.Investment

$$I_{+} = S_{+}$$

$$S_{+} = \overline{S} Y_{+}$$

$$\overline{S} : saving rate$$
(investment rate)

Summary: 5 Equations in 5 Unknowns

$$\begin{array}{lll}
Y_{+} &= \overline{A} \ K_{+}^{\alpha} \ L_{+}^{1-\alpha} \\
Y_{+} &= C_{+} + \overline{I}_{+} \\
NK_{++1} &= \overline{I}_{+} - JK_{+} \\
L_{+} &= \overline{L} \\
I_{+} &= \overline{S} \ Y_{+} \\
F &= \overline{S} \ Y_$$

Quick check:

1. Where are the markets and prices of capital and labor?

2. Where is the consumption equation?

$$\lambda^{+} = C^{+} + 2^{+} = C^{+} + 2^{+} = C^{+} + 2 \lambda^{+} = \lambda \qquad C^{+} = \left(1 - 2\right) \lambda^{+}$$

3. What is a stock, what is a flow?

Solving The Solow Model

Solving fully the model with equations is not possible.

Our strategy:

- 1. Reduce equations to strictly necessary
- 2. Show solution on a diagram (Solow Diagram)
- 3. Solve for the "Long Run" of the model (Steady State)

Solve Equations

note
$$Y_{+} = \overline{A} K_{+}^{\alpha} L_{+}^{1-\alpha}$$
 and $L_{+} = \overline{L}$ s

Solow Diagram: Capital Dynamics

