

LUCRAREA 10

ANGRENAJE CILINDRICE. FORȚE NOMINALE ȘI FORȚE REALE

1. Scopul lucrării

Studiul forțelor care se dezvoltă la transmiterea puterii printr-un angrenaj cilindric.

2. Elemente teoretice

2.1. Forțe nominale în angrenaje cilindrice

În timpul funcționării, un angrenaj cilindric transmite momentul de torsion prin contactul dintre dinții celor două roți. Între acești dinți apar forțe de interacțiune dintre dinți, normale la profilele dinților, egale și de sens contrar pentru pinion 1 și pentru roata condusă 2, [1].

Neglijând frecarea dintre dinți, forțele normale sunt cuprinse în planul de angrenare. Pentru angrenajele cilindrice, se consideră că punctul de aplicatie al forței normale F_n este polul angrenării C, la mijlocul lățimii roții. Pentru calculul arborilor și lagărelor, este dificil să se lucreze cu forță normală F_n . Din acest motiv, această forță se descompune în mai multe componente, funcție de tipul danturii, dreaptă sau înclinață.

2.1.1. Forțe în angrenaje cilindrice cu dantură dreaptă

În cazul angrenajelor cilindrice cu dantură dreaptă, forța normală F_n se descompune în două componente figura 1: forța tangențială F_t - în planul frontal, după axa y și forța radială F_r - în planul axial, după direcția x.

Forța tangențială F_t se determină din condiția de transmitere a puterii, cu relația:

$$F_t = \frac{2 \cdot T}{d_w} = \frac{2 \cdot P}{d_w \cdot \omega} \quad (1)$$

în care T , P , ω reprezintă momentul de torsion transmis de roată, respectiv puterea și viteza unghiulară, iar d_w - diametrul de rostogolire al aceleiași roții.

Fig. 1 Forțe nominale dezvoltate în angrenajul cilindric cu dinți drepti

Forța radială rezultă din figura 1:

$$F_r = F_t \cdot \operatorname{tg} \alpha_w \quad (2)$$

Dacă se neglijăreză frecările relațiile de echilibru conduc la egalitățile:

$$F_{t2} = F_{t1}, \quad F_{r2} = F_{r1} \quad (3)$$

calculându-se, obișnuit, numai forțele corespunzătoare pinionului, F_n și F_{t1} .

2.1.2. Forțe în angrenaje cilindrice cu dantură înclinată

În cazul angrenajelor cilindrice cu dantură înclinată, forța F_n , de interacțiune dintre dinți, este normală atât la profilul dintelui cât și la direcția dintelui, [2], fiind cuprinsă în planul de angrenare, figura 2.

În planul normal $n-n$, forța F_n se descompune în două componente: forța F_{tn} - tangentă la cilindrul de rostogolire și normală la direcția dintelui și forța radială F_r - pe direcția x a planului xCz și îndreptată spre axa roții. În planul yCz , tangent la cilindrul de rostogolire, forța F_{tn} se descompune în alte două componente: forța tangențială F_t , pe direcția y, și forța axială F_a , pe direcția z.

Fig. 2 Forțe nominale dezvoltate în angrenajul cilindric cu dinți înclinați

Forța tangențială F_t se determină cu relația (1) ca și la angrenajele cu dantură dreaptă. Considerând $\beta_w = \beta$, forțele radiale F_r și axiale F_a rezultă din figura 2:

$$F_r = F_{tn} \cdot \operatorname{tg} \alpha_{wn} = \frac{F_t}{\cos \beta} \cdot \operatorname{tg} \alpha_{wn} \quad (4)$$

$$F_a = F_t \cdot \operatorname{tg} \beta \quad (5)$$

Fig. 3 Componentele forței normale, roată conducătoare și roată condusă

Forța tangențială solicită dintele la încovoiere, arborele roții fiind solicitat atât la încovoiere cât și la torsiune. Forța radială solicită dintele la compresiune, iar arborele la încovoiere. Efectul forței axiale, caracteristică danturilor înclinate, se manifestă asupra arborelui și a lagărelor, figura 3.

2.2. Forțe reale în angrenaje

Cei mai importanți coeficienți de corecție sunt coeficientul dinamic și coeficientul de repartizare neuniformă a sarcinii pe dintă.

Forțele reale se obțin prin înmulțirea forțelor nominale cu un coeficient global de corecție K_{real} , care la rândul său este definit de produsul coeficientilor parțiali de corecție:

$$F_{real} = F_{nominal} \cdot K_{real} \quad (6)$$

- pentru solicitarea de contact:

$$K_{real} = K_A \cdot K_V \cdot K_{H\beta} \cdot K_{H\alpha} \quad (7)$$

- pentru solicitarea de încovoiere:

$$K_{real} = K_A \cdot K_V \cdot K_{F\beta} \cdot K_{F\alpha} \quad (8)$$

unde:

K_A - factor de dinamicitate extern (deinde de tipul motorului și a mașinii antrenate, din STAS 12268, [3]), tabelul 2;

K_V - factor de dinamicitate intern (deinde de viteză și de treapta de precizie, din STAS 12268), figura 4;

$K_{H\alpha}, K_{F\alpha}$ - factori de repartiție a sarcinii în lungul profilului (deind de viteză și de treapta de precizie, din STAS 12268), tabelul 3;

$K_{H\beta}, K_{F\beta}$ - factori de neuniformitate a repartiției sarcinii (deind de lățimea danturii, de diametrul de divizare - geometrie, de treapta de precizie și modul de așezare a roții pe arbore, din STAS 12268), $K_{H\beta}$ - tabelul 5 și $K_{F\beta}$ - tabelul 6;

Tabelul 1 Treapta de precizie în funcție de viteză periferică a pinionului, [4]

Viteză periferică a pinionului pe cercul de divizare, $v_{pd} = \pi \cdot d_1 \cdot n_1 / 60$, [m/s]		0...2	2...5	5...10	10...40
Treapta de precizie	dantură înclinată	11-12	9-10	7-8	5-6
	dantură dreaptă	9-10	7-8	5-6	4

Tabelul 2 Factor de dinamicitate extern K_A

Caracteristica de funcționare a mașinii de lucru (antrenate)	Caracteristica de funcționare a mașinii motoare		
	uniformă	șocuri ușoare	șocuri medii
	motor electric turbină cu aburi sau gaze	motor cu ardere internă multicilindric	motor cu ardere internă monocilindric
Uniformă generatoare, ventilatoare, turbocompresoare, mecanisme de avans la mașini-unelte, transportoare, etc.	1,00	1,25	1,75
Șocuri medii transmisia principală a mașinilor-unelte, ascensoare grele, pompe multicilindrice cu piston, etc.	1,25	1,50	2,00
Șocuri puternice foarfece, șanțe, prese, laminoare, concasare, instalații de foraj, mașini și utilaje siderurgice, etc.	1,50	1,75	2,25

Fig. 4 Factorul de dinamicitate intern K_v

Tabelul 3 Factorii de repartiție a sarcinii în lungul profilului $K_{H\alpha}$, $K_{F\alpha}$

Tipul angrenajului	Treapta de precizie	$K_{H\alpha}$	$K_{F\alpha}$
Angrenaj cilindric cu dinți drepti sau înclinați	5	$K_{H\alpha} = 0,995 + 0,001 \cdot v_{pd}$	$K_{F\alpha} = 2 \cdot K_{H\alpha} - 1$
	6	$K_{H\alpha} = 1,000 + 0,003 \cdot v_{pd}$	
	7	$K_{H\alpha} = 1,020 + 0,005 \cdot v_{pd}$	
	8	$K_{H\alpha} = 1,046 + 0,008 \cdot v_{pd}$	
	9	$K_{H\alpha} = 1,100 + 0,012 \cdot v_{pd}$	
Angrenaj conic	8, 9 sau 10	$K_{H\alpha} = 1/Z_e$	$K_{F\alpha} = 1/Y_e$
	6 sau 7	$K_{H\alpha} = 1$	$K_{F\alpha} = 1$
Angrenaj melcat	6 sau 7	$K_{H\alpha} = 0,75$	$K_{F\alpha} = 0,75$
	8, 9 sau 10	$K_{H\alpha} = 1$	$K_{F\alpha} = 1$

Tabelul 4 Factorul de lățime a danturii ψ_d

Duritatea flancurilor	Amplasarea pinionului	Clasa de precizie		
		5-6	7-8	9-10
		$\psi_d = b/d_1 \leq$		
pentru una sau ambele danturi: $HB \leq 3500 \text{ MPa}$ (dantura roții nedurificată)	simetrică	1,3...1,4	1,1...1,3	0,7...0,8
	asimetrică	1...1,2	0,7...0,8	0,5...0,6
	în consolă	0,6...0,7	0,5...0,6	0,3...0,4
pentru ambele danturi: $HB \geq 3500 \text{ MPa}$ (danturi durificate superficial)	simetrică	0,5	0,5	0,4
	asimetrică	0,4	0,4	0,3
	în consolă	0,3	0,3	0,2

Tabelul 5 Factorul de neuniformitate a repartiției sarcinii $K_{H\beta}$

Poziția roții pe arbore	Treapta de precizie	Factorul de repartitie a sarcinii	
		danturi durificate	pinion durificat, roată nedurificată
în consolă	9-10	$K_{H\beta} = 1 + \psi_d$	$K_{H\beta} = 1 + 0,5 \cdot \psi_d$
în consolă nesimetrică	7-8 9-10	$K_{H\beta} = 1 + 0,7 \cdot \psi_d$	$K_{H\beta} = 1 + 0,35 \cdot \psi_d$
în consolă nesimetrică	5-6 7-8	$K_{H\beta} = 1 + 0,5 \cdot \psi_d$	$K_{H\beta} = 1 + 0,25 \cdot \psi_d$
simetrică nesimetrică	9-10 5-6	$K_{H\beta} = 1 + 0,3 \cdot \psi_d$	$K_{H\beta} = 1 + 0,15 \cdot \psi_d$
simetrică	7-8		
simetrică	5-6	$K_{H\beta} = 1 + 0,2 \cdot \psi_d$	$K_{H\beta} = 1 + 0,1 \cdot \psi_d$

unde: ψ_d - factor de lățime a danturii, $\psi_d = b / d_1$

Tabelul 6 Factorul de neuniformitate a repartiției sarcinii $K_{F\beta}$

Tipul angrenajului	Factorul de repartitie a sarcinii
Angrenaj cilindric cu dinți drepti sau înclinați	$K_{F\beta} = (K_{H\beta})^e$, unde $e = \frac{b^2 \cdot h^2}{1 + b \cdot h + b^2 \cdot h^2}$
Angrenaj conic	$K_{F\beta} = (K_{H\beta})^e$, unde $e = \frac{b^2 \cdot h^2}{1 + b \cdot h + b^2 \cdot h^2}$
Angrenaj melcat	$K_{F\beta} = K_{H\beta} = 1$

unde: b - lățimea danturii roții,
 h - înălțimea dintelui roții

3. Modul de lucru

Pentru aplicația primită în cadrul lucrării se parcurg următoarele:

- 1) Se realizează schema cinematică a reductorului.
- 2) Se consideră elementele geometrice ale danturii măsurate și calculate la Lucrarea 9 – „Reconstituirea elementelor geometrice ale unui angrenaj cilindric cu dinți înclinați”.
- 3) Se determină turația și puterea motorului de acționare în funcție de turația și puterea impuse ca necesare la ieșirea reductorului.
- 4) Se execută schița forțelor nominale dezvoltate în angrenaje.
- 5) Se determină valorile forțelor nominale din angrenaje.
- 6) Considerând aplicația primită (destinația transmisiei, antrenarea transmisiei, execuția angrenajului, poziția angrenajului, turația pinionului) se apreciază valorile forțelor reale pentru solicitarea de contact.
- 7) Se apreciază valorile forțelor reale pentru solicitarea de încovoiere.
- 8) Se interpretează valorile obținute pentru forțele reale în raport cu valorile nominale.

Bibliografie

1. Collins, J.A., 2003, *Mechanical design of machine elements and machines*, John Wiley & Sons, USA.
2. Gafitanu, M., Crețu, S., Pavelescu, D., §.a., 1983, *Organe de mașini*, vol. II, Editura Tehnică, București.
3. STAS 12268 - Angrenaje cilindrice cu dantură în evolventă. Calculul de rezistență.
4. Crețu, S., Hagi, Gh., Grigoraș, Ș., Leohchi, D., Hantemann, M., Bălan, R., 1992, *Proiectarea angrenajelor*, Rotaprint Iași.
5. Gafitanu, M., Crețu, S., Bariz, Gh., §.a., 1985, *Organe de mașini. Îndrumar de laborator*, Rotaprint, Iași.

Fig. 5 Reductor cu roți dințate cilindrice