Grafos

Árvores: Fundamentos

Prof. Edson Alves

Faculdade UnB Gama

 \star Uma árvore é um grafo não-direcionado, conectado e acíclico com N vértices e N-1 arestas

 \star Uma árvore é um grafo não-direcionado, conectado e acíclico com N vértices e N-1 arestas

* A remoção de qualquer aresta divide a árvore em dois componentes

 \star Uma árvore é um grafo não-direcionado, conectado e acíclico com N vértices e N-1 arestas

* A remoção de qualquer aresta divide a árvore em dois componentes

* A adição de uma aresta cria um ciclo, descaracterizando a árvore

- \star Uma árvore é um grafo não-direcionado, conectado e acíclico com N vértices e N-1 arestas
 - * A remoção de qualquer aresta divide a árvore em dois componentes
 - * A adição de uma aresta cria um ciclo, descaracterizando a árvore
 - \star Para quaisquer vértices u e v da árvore existe um caminho único de u a v

Exemplo de árvore

Um nó deve ser escolhido como raiz

Um nó deve ser escolhido como raiz

Um nó deve ser escolhido como raiz

Os demais são organizados em níveis, de acordo com sua distância à raiz

Os demais são organizados em níveis, de acordo com sua distância à raiz

Filhos são vizinhos que estão no nível imediatamente inferior

Filhos são vizinhos que estão no nível imediatamente inferior

Filhos são vizinhos que estão no nível imediatamente inferior

Pai é o nó do nível imediatamente acima

Pai é o nó do nível imediatamente acima

Pai é o nó do nível imediatamente acima

A raiz não tem pai!

Folhas são nós com apenas um vizinho (sem filhos)

Folhas são nós com apenas um vizinho (sem filhos)

Cada nó pode ser interpretado como raiz de uma subárvore

Cada nó pode ser interpretado como raiz de uma subárvore

Cada nó pode ser interpretado como raiz de uma subárvore

O nível l(u) do nó u é igual ao número de nós no caminho de u até a raiz

O nível l(u) do nó u é igual ao número de nós no caminho de u até a raiz

A altura h é igual ao máximo entre os níveis de todos os nós

A altura h é igual ao máximo entre os níveis de todos os nós

Uma árvore com um único nó tem altura 1

Uma árvore com um único nó tem altura 1

4

Árvores vazias tem altura igual a zero

4

Árvores vazias tem altura igual a zero

1. Uma estrutura vazia é uma árvore

- 1. Uma estrutura vazia é uma árvore
- 2. Se T_1, T_2, \ldots, T_k são árvores disjuntas, então a estrutura cuja raiz tem como filhos as raizes de T_1, T_2, \ldots, T_k também é uma árvore

- 1. Uma estrutura vazia é uma árvore
- 2. Se T_1,T_2,\ldots,T_k são árvores disjuntas, então a estrutura cuja raiz tem como filhos as raizes de T_1,T_2,\ldots,T_k também é uma árvore
- $oxed{3}$. Apenas estruturas geradas pelas regras $oxed{1}$ e $oxed{2}$ são árvores

Referências

- 1. DROZDEK, Adam. Algoritmos e Estruturas de Dados em C++, 2002.
- 2. HALIM, Felix; HALIM, Steve. Competitive Programming 3, 2010.
- 3. LAAKSONEN, Antti. Competitive Programmer's Handbook, 2018.
- 4. SKIENA, Steven; REVILLA, Miguel. Programming Challenges, 2003.
- 5. Wikipédia. Tree (graph theory), acesso em 06/08/2021.