Asynchronous Design Technique in Reverse → Analysis

Analysis Technique

- Reverse order for analysis
- Start with logic diagram
- Generate equations
- Put equations in K-Map (Final State Table)
- Determine stable, unstable states
- Generate State Diagram
- Determine behavior

Start with Simplest Feedback

Now Work on Three Input NAND

 $\overline{\text{CK}} \bullet \text{CON} \bullet (\overline{\text{CON}} + \overline{\text{F1}})$

 $\overline{\text{CK}} \bullet \text{CON} \bullet \overline{\text{CON}} + \overline{\text{CK}} \bullet \text{CON} \bullet \overline{\text{F1}}$

 $\overline{CK} \bullet CON \bullet \overline{F1}$

Now Work on Second Three Input NAND

 $CON \bullet (\overline{CON} + \overline{F1}) \bullet F0$

 $CON \bullet \overline{CON} \bullet F0 + CON \bullet \overline{F1} \bullet F0$

 $CON \bullet \overline{F1} \bullet F0$

And Finally, Generate Equations

From Equations – K-Maps

From Equations – K-Maps

Put Maps Together for Final State Table

Identify States in Final State Table

Finish Table with Stable, Unstable States

