Learning Objectives

- After this segment, students will be able to
 - Contrast global & spatial outliers
 - List spatial outlier detection tests

Outliers: Global (G) vs. Spatial (S)

Outlier Detection Tests: Variogram Cloud

Graphical Test: Variogram Cloud

Outlier Detection - Scatterplot

Quantitative Tests: Scatter Plot

Outlier Detection Test: Moran Scatterplot

Graphical Test: Moran Scatter Plot

Outlier Detection Tests: Spatial Z-test

- Quantitative Tests: Spatial Z-test
 - Algorithmic Structure: Spatial Join on neighbor relation

Spatial Outlier Detection: Computation

- Separate two phases
 - Model Building
 - Testing: test a node (or a set of nodes)
- Computation Structure of Model Building
 - Key insights:
 - Spatial self join using N(x) relationship
 - Algebraic aggregate function computed in one scan of spatial join

Trends in Spatial Outlier Detection

- Multiple spatial outlier detection
 - Eliminating the influence of neighboring outliers
- Multi-attribute spatial outlier detection
 - Use multiple attributes as features
- Scale up for large data

