

Discrete vs. Continuous

- Images are discrete objects. We are only given data at pixel locations.
- But many important geometry concepts are defined for continuous functions.
 - □ Derivatives and gradients
 - □ Area and volume
 - □ Curvature
 - □ Arc Length

Images as Functions

- We can think of an image as a function of two variables f(x,y) defined on some rectangular domain Ω.
- We know the value of the function at integer locations, e.g. f(2,3).
- But what is the value at non-integer locations, like f(2.2, 3.4)?
- Our data exists at discrete integer pixel locations. But we can pretend that the values exist in between the pixels.
- This allows us to discuss continuous concepts like derivatives and integrals on images.

Discretization

 Discretization is the process of approximating a mathematical concept defined for continuous objects (like functions) into an equivalent concept for discrete objects (like images).

Finite Differences

- Let's start with a 1D signal f(x).
- Recall the definition of the derivative.

$$f_x = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

- But we can't let h go to zero. The smallest h can become is 1, because our data points are 1 pixel apart.
- So we approximate the derivative with h=1: $f_x \approx f(x+1) - f(x)$
- This type of approximation of the derivative is called a finite difference.

Boundary Conditions

- So for our signal f(x), we can approximate the derivative f_x at each point by looking at the difference with the next point.
- Suppose our vector has length n: n = length(f);
- What happens when we reach the last point?

```
f_x(1) = f(2) - f(1);

f_x(2) = f(3) - f(2);

f_x(3) = f(4) - f(3);

....

f_x(n-1) = f(n) - f(n-1)

f_x(n) = ???
```

■ Why does this code not work? $f_x = f(2:n) - f(1:n)$;

Boundary Conditions

Neumann boundary conditions assumes an unknown

$$f_x(1) = f(2) - f(1);$$

 $f_x(2) = f(3) - f(2);$
 $f_x(3) = f(4) - f(3);$
....
 $f_x(n) = f(n) - f(n) = 0;$

 We can code this elegantly in one line of Matlab code using the colon operator. Just repeat the last entry.

$$f_x = f([2:n,n]) - f(1:n);$$

OR

Derivative of a Sine Wave

```
x = 0:0.1:2*pi;
f = sin(x);
n = length(f);
f_x = f([2:n,n]) - f;
subplot(121); plot(x, f);
subplot(122); plot(x, f x);
```

Finite Difference Schemes

- There are several ways we could approximate the derivative f_x. Different approaches are called <u>schemes</u>.
- Forward Difference: h=1

$$f_x \approx D_x^+ f = f(x+1) - f(x)$$

 $f_x = f([2:n,n]) - f_x$

■ Backward Difference: h=-1

$$f_x \approx D_x^- f = f(x) - f(x-1)$$

 $f_x = f - f([1,1:n-1]);$

■ Central Difference: h=2

$$f_x \approx D_x^0 f = \frac{f(x+1) - f(x-1)}{2}$$

 $f_x = (f([2:n,n]) - f([1,1:n-1])) / 2;$

- An image is O dimensional as we ha
- An image is 2-dimensional, so we have a derivative in the x-direction and a derivative in the y-direction.
- Let f(x,y) be a grayscale image.
- The forward differences would give:

```
[m,n] = size(f);

f_x = f(:,[2:n,n]) - f;

f_y = f([2:m,m]) - f; \leftarrow f_y \approx D_y^+ f = f(x,y+1) - f(x,y)
```


Partial Derivatives

- The derivative in x-direction u_x locates vertical edges.
- The derivative in y-direction u_y locates horizontal edges.

```
A = imread('cameraman.tif');

A = double(A);

[m,n] = size(A);

A_x = A(:,[2:n,n]) - A;

A_y = A([2:m,m],:) - A;

subplot(121); imagesc(A_x);

subplot(122); imagesc(A_y);
```

Finite Differences as Filters

- You can think of a finite difference as a 3x3 linear filter applied to an image.
- Forward Difference: h=1

$$f_x \approx D_x^+ f = f(x+1,y) - f(x,y)$$

Backward Difference: h=-1

$$f_x \approx D_x^- f = f(x, y) - f(x - 1, y)$$

Central Difference: h=2

$$f_x \approx D_x^0 f = \frac{f(x+1,y) - f(x-1,y)}{2}$$

Other Derivative Approximations

 The Prewitt filter uses more pixels so it is less sensitive to noise. But it de-emphasizes values near the center.

$$u_x \approx \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} \quad u_y \approx \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$$

 The Sobel filter gives more emphasis to changes around the center pixel.

$$u_x \approx \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} \quad u_y \approx \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$

 There are many other finite difference schemes, like upwind and minmod. Each has pros and cons.

The Gradient

The gradient is a 2D vector listing the values of the partial derivatives at each point:

$$\nabla u = \langle u_x, u_y \rangle$$

The gradient always points in the direction of maximum positive change (dark to light).

Norm of Gradient

 The norm (magnitude) of the gradient vector tells us the total amount of change at each pixel.

$$\|\nabla u\| = \sqrt{u_x^2 + u_y^2}$$

 The norm of the gradient is large at edges of the image and zero in flat (single color) regions.

■ We use the norm of the gradient to detect edges.

```
P = imread('pout.tif');

P = double(P);

[m,n] = size(P);

Px = P(:,[2:n,n]) - P;

Py = P([2:m,m],:) - P;

N = sqrt(Px.^2 +Py.^2);

imagesc(N);
```

Note the .^ for pointwise exponents.

Second Derivatives

 To approximate a second derivative, we take a finite difference of a finite difference.

$$u_{xx} \approx D_x^-(D_x^+u)$$

Note we use one forward and one backward difference.

3 Ways to Code u_y

1.) Forward then Backward Difference.

```
u_{xx} \approx D_x^-(D_x^+u)
Dolus = u(:.[2:n.n]) - u:
```

2.) Backward then Forward Difference.

$$u_{xx} \approx D_x^+(D_x^-u)$$

Dminus = u - u(:,[1,1:n-1]);

u xx = Dplus - Dplus(:.[1.1:n-1]):

$$u_xx = Dminus(:,[2:n,n]) - Dminus;$$

3.) Write out the formula.

$$u_{xx} \approx u(x+1,y) - 2u(x,y) + u(x-1,y)$$

 $u_{xx} = u(:,[2:n,n]) - 2*u + u(:,[1,1:n-1]);$

Second Derivatives

```
[m,n] = size(u):
% Second derivative in x: u xx
u xx = u(:.[2:n.n]) - 2*u + u(:.[1.1:n-1])
% Second derivative in y: u yy
u_y = u([2:m,m],:) - 2*u + u([1,1:m-1],:);
% Diagonal derivative u xy
u_xy = (u([2:m,m],[2:n,n])
       + u([1.1:m-1].[1.1:n-1])
      - u([1,1:m-1],[2:n,n])
       - u([2:m,m],[1,1:n-1]))/4;
```

The Laplacian

- The Laplacian is the sum of the second derivatives: $\Delta u = u_{xx} + u_{yy}$
- Recall we implemented a Laplacian filter.
- We use the Laplacian to locate edges. Subtracting the Laplacian sharpens the images.

Double Integrals

• The double integral of u(x,y) over the domain Ω is

$$\iint\limits_{\Omega} u(x,y)\,dx\,dy$$

 The discrete approximation is simply a double summation of all values of u(x,y):

```
d = sum(sum(u)):
```

Sometimes we get lazy and vectorize the variables as $\vec{x} = (x, y)$ so we can write a single integral:

$$\int u(\vec{x}) d\vec{x}$$

But don't let this fool you, it's still a double sum!

Measuring Noise

- We measured the noise levels last week using SNR and RMSE.
- But these statistics require an ideal noisefree image, which in general we don't have.
- We would like a way to judge how much noise an image contains without requiring a magical perfect image.

Total Variation

 The <u>Total Variation</u> (TV) energy of an image u(x,y) is found by <u>adding up the norm of the gradient</u> (Rudin-Osher-Fatemi, 1989).

$$\overline{TV(u)} = \iint \|\nabla u\| \ dx \ dy$$

- We interpret TV as the total amount of jumps (variation) in the image.
- Or if we vectorize $\vec{x} = (x, y)$, we can write as

$$TV(u) = \int_{\Omega} \|\nabla u\| \, d\vec{x}$$

1D TV

■ The 1-dimensional version for a function f(x) on [a,b] is

$$TV = \int_{a}^{b} |f'(x)| dx$$

EX Calculate the TV value of a sine wave on $[0,2\pi]$.

2D TV

- Calculate TV energy for the image below.
- Assume the image is 100x200 pixels and the gray square is 30x30 pixels.

Σ 250 100

The Co-Area Formula

- Co-Area Formula: The TV norm is equal to the perimeter of each shape times the jump at the perimeter.
- Suppose we have a circle of radius 5 pixels on a dark gray background. Calculate the TV energy value.

20 150

Noise on TV

- Again suppose we have a circle of radius 5 pixels on a dark gray background.
- Let's add one noise pixel with a value 250.

Measuring Noise

 TV does not tell us exactly how much noise is in the image, but if we have a version of an image with a high TV value then it is probably noisy.

TV Energy = 11,150,000

250

Your Very Own TV

 <u>Ex</u> Write a function that calculates the TV energy value of a grayscale image.

$$TV(u) = \iint_{\Omega} \|\nabla u\| \ dx \ dy$$

 We'll have to discretize this energy, so really we'll be computing an approximation of the TV energy.

Curvature

The curvature of a surface u(x,y) measures how quickly the unit tangent vector to the surface is changing:

$$\kappa = \nabla \cdot \left(\frac{\nabla u}{\|\nabla u\|} \right)$$

Ex Write a function that computes the curvature matrix of a grayscale image. Watch out for division by zero!