Few-Shot Learning

Few-Shot Learning. Что это?

FSL — область машинного обучения, особенная тем, что имеется малое количество данных для обучения.

- Малое количество размеченных данных
- Обучение происходит аналогично тому, как учится человек
- Возможно, имеем какие-то знания о похожих данных

Few-Shot Learning. Примеры

- ✓ Меньше требований к сбору данных и их разметке
- ✓ Подходит для редких случаев
- ✓ Обучается как человек

to als T	exper	fo		
task T	supervised information	prior knowledge	performance P	
character generation [76]	a few examples of new	pre-learned knowledge of	pass rate of visual	
	character	parts and relations	Turing test	
drug toxicity discovery [4]	new molecule's limited	similar molecules' assays	classification	
	assay		accuracy	
image classification [70]	a few labeled images for each class of the target T	raw images of other classes, or pre-trained models	classification accuracy	

Few-Shot Learning. Функция ошибки

- p(x,y) реальное распределение выхода y для входа x
- $l(\hat{y}, y)$ функция потерь
- h(x) предположение

Ожидаемый риск
$$R(h) = \int l(h(x),y) \ dp(x,y) = \mathrm{E}[l(h(x),y)]$$
 Эмпирический риск $R_I(h) = \frac{1}{I} \sum_{i=1}^I l(h(x_i),y_i)$

Few-Shot Learning. Разложение ошибки

- Н пространство гипотез
- \widehat{h} гипотеза, при которой минимизируем R
- h^* гипотеза из H, при которой минимизируем R
- h_I гипотеза из H, при которой минимизируем R_I

$$E[R(h_I) - R(\hat{h})] = E[R(h^*) - R(\hat{h})] - E[R(h_I) - R(h^*)]$$

Few-Shot Learning. Разложение ошибки

$$E[R(h_I) - R(\hat{h})] = E[R(h^*) - R(\hat{h})] - E[R(h_I) - R(h^*)]$$

- $\mathrm{E} \big[R(h^*) R(\hat{h}) \big] -$ ошибка приближения (approximation error)
- $\mathrm{E}[R(h_I) R(h^*)] -$ ошибка обучения (estimation error)

Few-Shot Learning. Задача

Основная задача: уменьшить эмпирический риск

Fig. 1. Comparison of learning with sufficient and few training samples.

Few-Shot Learning. Уменьшение ошибки

Уменьшение ошибки. Data

- Аугментация данных (поворот, сдвиг, приближение...)
- Преобразование данных с использованием априорных знаний

category	input (x, y)	transformer t	output (\tilde{x}, \tilde{y}) $(t(x_i), y_i)$	
$rac{ ext{train}}{D_{ ext{train}}}$	original (x_i, y_i)	learned transformation function on x_i		
transforming samples from a weakly labeled or unlabeled data set	weakly labeled or unlabeled $(\bar{x}, -)$	a predictor trained from D_{train}	$(\bar{x},t(\bar{x}))$	
transforming samples from similar data sets	samples $\{(\hat{x}_j, \hat{y}_j)\}$ from similar data sets	an aggregator to combine $\{(\hat{x}_j, \hat{y}_j)\}$	$(t(\{\hat{x}_j\}), t(\{\hat{y}_j\}))$	

Уменьшение ошибки. Algorithms

- Выбор лучшего начального приближения
- Изменение шагов поиска оптимального решения

strategy	prior knowledge	how to search θ of the h^* in \mathcal{H}		
refining existing parameters	learned θ_0	refine θ_0 by D_{train}		
refining meta-learned parameters	meta-learner	refine θ_0 by D_{train}		
learning the optimizer	meta-learner	use search steps provided by the meta-learner		

Уменьшение ошибки. Models

С помощью априорных знаний ограничиваем область гипотез Н

strategy	prior knowledge	how to constrain ${\cal H}$		
multitask learning	other T's with their data sets D's	share/tie parameter		
embedding learning	embedding learned from/together with other T's	project samples to a smaller embedding space in which similar and dissimilar samples can be easily discriminated refine samples using key-value pairs stored in memory		
learning with external memory	embedding learned from other T's to interact with memory			
generative modeling	prior model learned from other T's	restrict the form of distribution		

Multitask Learning. Hard parameter sharing

- Имеются общие слои
- Имеются собственные для каждой задачи слои

Multitask Learning. Soft parameter sharing

- Отдельные модели для каждой задачи
- Стремимся к близости весов некоторых слоев

Обучение представлений

Определение

• Метод автоматического получения представлений, необходимых для выявления признаков или классификации данных.

Мотивация

• Для сложных данных таких как, изображение и видео, тяжело алгоритмически выделить важные признаки.

Сиамские сети. Архитектура

Сиамские сети. Функция ошибки

Contrastive loss

$$l(x_i, x_j, z_{ij}) = (1 - z_{ij}) ||h_i - h_j||_2^2 + z_{ij} \max(0, \tau - ||h_i - h_j||_2^2)$$

Triplet loss

$$l(x_i, x_j, x_k) = \max(0, ||h_i - h_j||_2^2 - ||h_i - h_k||_2^2 + \alpha)$$

Генеративные модели

- Используем априорное знание, полученное на похожих данных
- Предсказываем распределение $x \sim \int p(x|z;\theta)p(z;\gamma)dz$
- Априорное знание $p(z; \gamma)$
- Обновляем распределение для наших данных

Variational autoencoder

Neural Statistician

Algorithm 4 K-way few-shot classification

```
D_0, \ldots, D_K \leftarrow sets of labelled examples for each class x \leftarrow datapoint to be classified N_x \leftarrow q(c|x;\phi) {approximate posterior over c given query point} for i=1 to K do N_i \leftarrow q(c|D_i;\phi) end for \hat{y} \leftarrow argmin_i D_{KL} \left(N_i \| N_x\right)
```

Neural Statistician

Плюсы:

- Не требуется много размеченных данных
- Хорошо работает при малом количестве классов
- Высокая обобщающая способность

Минусы:

- Каждый класс рассматривается отдельно
- С увеличением количества классов работает хуже
- Требуется много данных для априорного знания

Task		Method				
Test Dataset	K Shot	K Way	Siamese	MANN	Matching	Ours
MNIST	1	10	70	-	72	78.6
MNIST	5	10	-	-	-	93.2
OMNIGLOT	1	5	97.3	82.8	98.1	98.1
OMNIGLOT	5	5	98.4	94.9	98.9	99.5
OMNIGLOT	1	20	88.1	=	93.8	93.2
OMNIGLOT	5	20	97.0	-	98.7	98.1

Источники

- https://arxiv.org/pdf/1904.05046.pdf
- https://arxiv.org/ftp/arxiv/papers/1911/1911.07702.pdf Сиамские сети
- https://arxiv.org/ftp/arxiv/papers/1906/1906.09513.pdf Сиамские сети
- https://arxiv.org/pdf/1606.02185v2.pdf Neural Statistician