Homework 7 – Solutions

Section 6.5

Question:

- 4. Let *G* be a group of order 55.
 - a) Prove that *G* is generated by two elements *x*, *y*, with the relations $x^{11} = 1$, $y^5 = 1$, $yxy^{-1} = x^r$, for some r, $1 \le r < 11$.

Answer:

a) Assume |G| = 55 = 5.11. By the third Sylow theorem we can conclude that G has one Sylow 11-subgroup and either 1 or 5 Sylow 5-subgroups. Let H be the only Sylow 11-subgroup, then $H = \langle x \rangle$ where |x| = 11. Let K be a Sylow 5-subgroup, then $K = \langle y \rangle$ where |y| = 5. Since the orders of H and K are distinct primes we have that $H \cap K = 1$. Hence, the product map $p: H \times K \to G$ is injective, but |HK| = 55 and $HK \le G$, so $G \approx H \times K$. Next, since $H \triangleleft G$, then $yHy^{-1} = H$ which means that $yxy^{-1} = x^r$ for some $0 \le r < 11$. But if r = 0 we have $yxy^{-1} = 1 \Rightarrow x = 1$ a contradiction. Thus $yxy^{-1} = x^r$ for $1 \le r < 11$.

Question:

b) Prove that the following values of r are not possible: 2, 6, 7, 8, 10.

Answer:

b) Note that for any integer
$$t$$
, $yx^{t}y^{-1} = \underbrace{(yxy^{-1})(yxy^{-1})...(yxy^{-1})}_{t \text{ factors}} = (x^{r})^{t} = x^{rt}$

$$x = y^{5} xy^{-5} = y^{4} yxy^{-1} y^{4} = y^{4}x^{r} y^{-4}$$
But
$$= \vdots$$

$$= x^{r^{5}}$$

Which means that $r^5 \equiv 1 \mod 11$. Hence the integers 2, 6, 7, 8 and 10 are not possible solutions to this equation while 1, 3, 4, 5, or 9 are possible solutions.

Question:

c) Prove that the remaining values are possible, and there are two isomorphism classes of groups of order 55.

Answer:

c) Let $n_5 = 1$ then $K = \langle y \rangle \triangleleft G$ and from proposition 2.8.6 we have that $G \approx H \times K \approx C_{11} \times C_5 \approx C_{55}$ and thus G is the cyclic (abelian) group of order 55. If $n_5 \neq 1$ then clearly K is not a normal subgroup of G, and thus G is not abelian. We claim that all the groups $G_i = \langle x, y; x^{11}, y^5, yxy^{-1}x^{-i} \rangle$ are isomorphic for i = 3, 4, 5, 9. One way to do this is to show that say G_i for i = 3, 4, 5 are isomorphic to G_9 . So in G_9 we have that $yxy^{-1} = x^9$. Notice that in G_3 we have $yxy^{-1} = x^3$. Substituting y^2 for y we have that $y^2xy^{-2} = yx^3y^{-1} = x^9$. But y^2 is also a generator for $K = \langle y \rangle$. Thus $G_3 = \langle x, y'; x^{11}, (y')^5, y'x(y')^{-1}x^{-9} \rangle \approx G_9$, where $y' = y^2$. Similarly for G_4 substitute y^3 for y, and in G_5 y^4 for y, to obtain $G_4 \approx G_5 \approx G_3 \approx G_9$.

Section 6

Question:

18. Prove that if a proper normal subgroup of S_n contains a 3-cyle, it is A_n .

Answer:

Let $H \triangleleft S_n$ be a proper normal subgroup of S_n for $n \ge 3$ and assume that $\sigma \in H$, where σ is a 3-cycle.

Since $H \triangleleft S_n$ we have that $\tau H \tau^{-1} = H$, $\forall \tau \in S_n$, which means that $\tau \sigma \tau^{-1} \in H$, $\forall \tau \in S_n$, hence that H contains all 3-cycles of S_n since 3-cycles are all conjugate to one another. Thus, we have that $A_n \leq H$; but since $[S_n : A_n] = 2$ and since H is a proper subgroup of S_n , we have that $A_n = H$. Note, in this proof we are assuming the result of exercise #17 that says that A_n is generated by 3-cycles.

Section 8

Question:

- 9. The *commutator subgroup C* of a group *G* is the smallest subgroup containing all commutators.
 - a) Prove that the commutator subgroup is a characteristic subgroup.

Answer:

a) Let G be a group and $C = \left\langle \left\{ aba^{-1}b^{-1} \middle| a, \ b \in G \right\} \right\rangle$ be the smallest subgroup of G that contains C; this means that C is generated by elements of the form $(aba^{-1}b^{-1})^i$ for i=1, or -1, note that if i=-1 $(aba^{-1}b^{-1})^{-1}=bab^{-1}a^{-1}$ which is of the form $cdc^{-1}d^{-1}$. Let $\gamma \in \operatorname{Aut}(G)$. Then $\gamma(aba^{-1}b^{-1})=\gamma(a)\gamma(b)\gamma(a)^{-1}\gamma(b)^{-1}\in C$. Since γ is a group automorphism if the generators of C are mapped into C then $\gamma(C)=C$.

Ouestion:

b) Prove that G/C is an abelian group.

Answer:

b) Since $\gamma \in \operatorname{Aut}(G)$, then for all inner automorphisms I_g we have that $I_g(C) = gCg^{-1} = C$. Thus $C \triangleleft G$. Next, consider $G/C \cdot \forall \ a,b \in G$ we have that $aba^{-1}b^{-1} \in C \Rightarrow aba^{-1}b^{-1}C = C$ $\Rightarrow ab(ba)^{-1}C = C$ $\Rightarrow abC(ba)^{-1}C = C$ $\Rightarrow (ab)C = (ba)C$ $\Rightarrow aC \cdot bC = bC \cdot aC$

which means that G/C is abelian

Ouestion:

14. Let N be a normal subgroup of a group G. Prove that G/N is abelian if and only if N contains the commutator subgroup of G.

Answer:

Let $N \triangleleft G$. First we show that if $N \supseteq C$, where C is the commutator subgroup of G, then G/N is abelian. Since $N \supset C$, then for all $a,b \in G$ we have that $aba^{-1}b^{-1} \in N$. Then proceed as in the previous exercise.

Next we show that if G/N is abelian then N contains C. $\forall a,b \in G$ we have that

$$aNbN = bNaN \Rightarrow abN = baN$$

 $\Rightarrow (ba)abN = N$
 $\Rightarrow a^{-1}b^{-1}abN = N$
 $\Rightarrow a^{-1}b^{-1}ab \in N \ \forall \ a,b \in G$

 $\Rightarrow N$ contains C.

Miscellaneous Problems

Question:

- 7. Let H, N be subgroups of a group G, and assume that N is a normal subgroup.
 - a) Determine the kernels of the restrictions of the canonical homomorphism $\pi: G \to G/N$ to the subgroups H and HN.
 - b) Apply the First Isomorphism Theorem to these restrictions to prove the *Second Isomorphism Theorem*: $H/H(H \cap N)$ is isomorphic to (HN)/N.

Answers:

See Fraleigh's book: A first course in Abstract Algebra, page 211.

Question:

- 8. Let H, N be normal subgroups of a group G such that $H \supset N$, and let $\overline{H} = H/N$, $\overline{G} = G/N$.
 - a) Prove that \overline{H} is a normal subgroup of \overline{G} .
 - c) Use the composed homomorphism $G \to \overline{G} \to \overline{G}/\overline{H}$ to prove the *Third Isomorphism Theorem*: G/H is isomorphic to $\overline{G}/\overline{H}$.

Answers:

See Fraleigh's book: A first course in Abstract Algebra, page 211.