Алгоритмы и структуры данных

Сергей Григорян

11 сентября 2024 г.

Содержание

1	Инфа	3
2	Основные понятия	3
3	Асимптотика, время работы	4
4	Бинарный поиск	6
5	Сортировки 5.1 Merge Sort (Сортировка слиянием)	7 8
	 5.2 Quick Sort (Быстрая сортировка; Сортировка Хоара) 5.3 Quick Select 	9 10

1 Инфа

Лектор: Степанов Илья Данилович.

telegram: @irkstepanov

2 Основные понятия

Фабула решения задачи

- Условие
- Алгоритм (реализация)
- Корректность
- Асимптотика/Время работы

Элементарные действия

- Сложение, умножения, сравнение чисел;
- Условные конструкции;
- Обращение по индексу (! Большое кол-во = иногда вредно);

Модель вычислений: RAM модель (Random Access Memory)

Замечание. Бывают и др. модели:

- Параллельные вычисления
- Внешняя память

3 Асимптотика, время работы

Пример. Найти минимум в массиве.

```
int n;
read(n);
int a[n];
read(a);
int x = +inf;
for i = 0..n-1:
    if (x < a[i]):
        x = a[i]
print(x)</pre>
```

Листинг 1: Нахождение минимума

 $A c u м n m o m u \kappa a : O(n)$

Определение 3.1. Пусть $f, g : \mathbb{N} \to \mathbb{N}$. Тогда:

$$f = O(g) \iff \exists N, C \colon \forall n \ge N \colon f(n) \le C * g(n)$$

Пример.

$$6n + 4 = O(n), 6n + 4 \le 7n, npu \ n \ge 4.$$

Утверждение 3.1.
$$f = O(g) \iff \exists D \colon \forall n \colon f(n) \leq D * g(n)$$

Доказательство.

$$\Leftarrow$$
) $N = 1: n \ge N, C = D, f(n) \le c * g(n)$

⇒) Надо обеспечить:

$$f(2) \le Dg(2)$$

$$\vdots$$

$$f(N) \le Dg(N).$$

$$f(1) \quad f(2) \qquad f(N)$$

$$\Rightarrow D = \max(C, \frac{f(1)}{g(1)}, \frac{f(2)}{g(2)}, \cdots, \frac{f(N)}{g(N)})$$

f(1) < Dq(1)

Определение 3.2. Пусть $f,g:\mathbb{N}\to\mathbb{N}.$ Тогда $f=\Omega(g),$ если $\exists C>0,N\colon \forall n\geq N:$

$$f(n) \ge C * g(n)$$

Определение 0.3.3. $f,g:\mathbb{N}\to\mathbb{N}.$ Тогда $f=\Theta(g)\iff\exists c_1,c_2>0.$

$$c_1 * g(n) \le f(n) \le c_2 * g(n).$$

Пример. 1. $n^a, n^b, a, b = const$

$$n^{a} = O(n^{b}), a \leq b.$$

$$n^{a} = \Omega(n^{b}), a \geq b.$$

$$n^{a} = \Theta(n^{b}), a = b.$$

- 2. $\log_a n = \Theta(\log_b n); a, b = const$
- 3. $n^n = O(2^{2^n}), 2^{2^n} = \omega(n^n)$

Утверждение 3.2.

$$\log n^a < n^b < c^n, \forall a > 0, b > 0, c > 1.$$

Утверждение 3.3. Пусть T(n) - время работы влгоритма на входных данных. Пусть:

$$T(n) = T(\lfloor \frac{n}{2} \rfloor) + T(\lceil \frac{n}{2} \rceil) + O(n).$$

Tогда $T(n) = O(n \log n)$

Доказательство. $T(n) \leq T(\left\lfloor \frac{n}{2} \right\rfloor) + T(\left\lceil \frac{n}{2} \right\rceil) + Dn$ Докажем по индукции, что:

$$T(n) \leq C * n \log n$$
, при $n \geq 2$

База индукции: $T(2), T(3), \cdots, T(10)$ - Взяли C, чтоб было верно. **Переход**: Пусть $T(k) \le Ck \log_2 k, k \le n-1$ Докажем для k=n:

$$T(n) \leq 2*T(\left\lceil\frac{n}{2}\right\rceil) + Dn$$

$$\left\lceil\frac{n}{2}\right\rceil \leq \frac{n+1}{2} \Rightarrow$$

$$\Rightarrow T(n) \leq 2*T(\left\lceil\frac{n}{2}\right\rceil) + Dn \leq$$

$$\leq 2*C*\frac{n+1}{2}\log_2\frac{n+1}{2} + Dn = C(n+1)(\log_2(n+1)-1) + Dn ==$$

$$n+1 \leq n\sqrt{2}$$

$$\Rightarrow \log_2 n + 1 \leq \log_2 n\sqrt{2} = \log_2 n + \frac{1}{2}$$

$$== C(n+1)(\log_2 n - \frac{1}{2}) + Dn = Cn\log_2 n - \frac{1}{2}Cn + C\log_2 n - \frac{1}{2}C + Dn \leq Cn\log_2 n.$$
 Достаточно д-ть, что $Dn + C\log_2 n \leq \frac{1}{2}Cn$ Для этого дост. положить $C \geq 6D$:

$$C = 6D.$$

$$Dn + 6D \log_2 n \le 3Dn.$$

$$6 \log_2 n \le 2n.$$

4 Бинарный поиск

Задача 4.1. $a_0 \le a_1 \le a_2 \le \cdots \le a_{n-1}$ Узнать, есть ли x в a. Наивное решение: q запросов $\Rightarrow O(nq)$

паивное решение: q запросов $\Rightarrow O(nq)$

Решение. Используем бинпоиск:

```
int left = 0, right = n;
while (right - left > 1) {
    mid = (left + right) / 2
    if (a[mid] > x) right = mid
    else left = mid
}
```

```
if (a[left] == x) print("Yes");
else print("No");
```

Листинг 2: Binary Search

 $A c u м n m o m u \kappa a : O(\log_2 n)$

5 Сортировки

Задача 5.1. a_1, a_2, \ldots, a_n - дано Найти $b = \operatorname{sort}(a)$

Задача 5.2. a_1, a_2, \ldots, a_n - дано. Найти перестановку $G: \{1, 2, \ldots, n\} \to \{1, 2, \ldots, n\}: a_{G(1)} \le a_{G(2)} \le \ldots \le a_{G(n)}$

Утверждение 5.1. Пусть $T(n) \ge n$. Тогда, если одна задача решается за O(T(n)), то и вторая тоже.

Доказательство. $2 \Rightarrow 1$: $b_1 = a_{G(1)}, \dots, b_n = a_{G(n)}$ $1 \Rightarrow 2$: Отсортируем массив пар: $(a_1, 1), (a_2, 2), \dots, (a_n, n)$

$$(x_1, y_1) \le (x_2, y_2) \iff \begin{bmatrix} x_1 < x_2 \\ x_1 = x_2, y_1 < y_2 \end{bmatrix}$$

Теорема 5.1 (Оценка кол-во сравнений в сортировке сравнениями). *Если алгоритм может только сравнивать эл-ты, то время сортировки массива* $\in \Omega(n \log n)$

 $\@ifnextchar[{\it Доказательство.}]{\it a}_1, a_2, \ldots, a_n$ - все эл-ты попарно различны.

Вопрос алгоса: a_i ? a_i (Дерево сравнений)

Рез-т работы алгоритма зависит от n и п-ти получаемых ответов (< , >)

Пусть алгоритм всегда совершает $\leq q$ запросов $(a_i?a_j)$. Тогда есть не более $2^0+2^1+\ldots+2^q=2^{q+1}-1\leq 2^{q+1}$ возм. протоколов работы алгоритма. Должно быть хотя бы n! разл. протоколов. \Rightarrow

$$n! \le 2^{q+1} \Rightarrow q = \Omega(n \log n)$$
?

Лемма 5.2.

$$\log(n!) = \theta(n \log n)$$

Доказательство. 1)

$$\log_2(n!) \le n \log_2(n) \Rightarrow \log(n!) = O(n \log n)$$

 $n! = 1 * 2 * \dots * n < n^n$

2)
$$n = 2k \Rightarrow n! \ge (k+1) * \dots * (2k) \ge k^{k+1}$$

$$\log_2(n!) \ge \log_2(k^{k+1}) = (k+1)\log_2 k \ge \frac{n}{2}\log_2(\frac{n}{2}) = \frac{1}{2}n(\log n - 1) = \frac{1}{2}n\log n - \frac{1}{2} \ge \frac{1}{2}n\log n$$

$$\Rightarrow \log_2(n!) = \Omega(n\log_2 n)$$

Аналогично, при n = 2k + 1

5.1 Merge Sort (Сортировка слиянием)

Алгоритм:

- 1) Если массив длины 1, то выходим, иначе делим его на 2 половины;
- 2) Рекурсивно сортируем половины
- 3) "Мёрджим" две половины.

Операция merge:

```
merge(a[0..n - 1], b[0..m - 1], to[0..n + m - 1]):
    i = 0, j = 0
    while (i < n || j < m):
        if (j == m || (i < n && a[i] <= b[j])):
            to[i + j] = a[i]
            ++i
    else
        to[i + j] = b[j]
            ++j</pre>
```

Листинг 3: Merge

```
MergeSort(a[0..n - 1]):
    if (n <= 1) return
    k = n / 2
    l = a[0..k]
    r = a[k + 1..n - 1]
    MergeSort(1)
    MergeSort(r)
    Merge(1, r, a)</pre>
```

Листинг 4: MergeSort

Асимптотика: $T(n) = 2T(\frac{n}{2}) + O(n) \Rightarrow T(n) = O(n \log n)$

Задача 5.3. 1) Сделать потребление памяти O(n)

2) Сделать нерекурсивный MergeSort

Задача 5.4 (О числе инверсий в массиве).

```
a_1, a_2, \dots, a_n - дано
Инверсия (i, j) := i < j \land a_i > a_j
```

Решение. Для решения просто модифицируем тегде:

Листинг 5: Merge for inversions

5.2 Quick Sort

(Быстрая сортировка; Сортировка Хоара)

Листинг 6: Quick Sort

Теорема 5.3. B среднем $acumnm. = O(n \log n)$

5.3 Quick Select

Определение 5.1. a_1, a_2, \dots, a_n - массив **k-ая порядковая статисти- ка:** - эл-т на k-ом эл-те после сортировки.

Задача 5.5. Найти k-ую порядковую статистику в массиве a.

Решение.

```
1 QuickSelect(a[1..n], k):
2     if (n == 1) return a[1];
3     l, m, r = Partition(a, a[random(1, n)])
4     if (k <= l) return QuickSelect(a[1..l], k)
5     if (k <= l + m) return x
6     return QuickSelect(a[l + m..n], k - l - m)</pre>
```

Листинг 7: QuickSelect