Ordinal and Multinomial Logistic Regression

Andy Grogan-Kaylor

17 May 2020

Meta-Background

Figure 1: Tweet About Ordinal Models

Key Concepts and Commands

- Implementations differ; formulas are our friends
- Extensions to logistic model: ordinal and multinomial logit

$$F(y) = \beta_0 + \beta x_1 + \beta x_2 + \dots$$

• Ordinal model

$$y(1, 2, 3, \text{ etc.}) = \beta_0 + \beta x_1 + \beta x_2 + \dots$$

• Multinomial model

$$y(2 \text{ vs. } 1) = \beta_0 + \beta x_1 + \beta x_2 + \dots$$

 $y(3 \text{ vs. } 1) = \beta_0 + \beta x_1 + \beta x_2 + \dots$

• Think about OR's, predicted probabilities, non-linearity

Get The Data (General Social Survey)

- . clear all
- . set maxvar 10000 // increase number of allowable variables
- . use "/Users/agrogan/Box Sync/DATA WAREHOUSE/General Social Survey/GSS7218_R1.DTA", clear
- . keep sex maeduc paeduc age degree
- . save GSSsmall.dta, replace file GSSsmall.dta saved
- . describe // describe the data Contains data from GSSsmall.dta

obs: 64,814 vars: 5 size: 324,070

17 May 2020 20:45

variable name	storage type	display format	value label	variable label
age paeduc maeduc degree sex	byte byte byte byte byte	%8.0g %8.0g %8.0g %8.0g %8.0g	AGE LABK LABK LABL SEX	age of respondent highest year school completed, father highest year school completed, mother r's highest degree respondents sex

Sorted by:

Thinking About Your Data and Data Wrangling

It is always good to think about your data and what the values of different variables represent. In Stata, however, there is very little additional data wrangling to prepare the data. In R, there is considerable data wrangling since we have to employ special commands just to get *variable* and *value* labels, and to ensure that *numeric dependent* variables are recoded as *factors*. In Stata there are no such issues!!!

Descriptive Statistics

. summarize

Variable	0bs	Mean	Std. Dev.	Min	Max
age	64,586	46.09936	17.5347	18	89
paeduc	45,837	10.71026	4.342689	0	20
maeduc	53,870	10.85365	3.768792	0	20
degree	64,641	1.35858	1.175289	0	4
sex	64,814	1.558521	.4965673	1	2

. tabulate degree

r's highest degree	Freq.	Percent	Cum.
lt high school	13,587	21.02	21.02
high school	33,195	51.35	72.37
junior college	3,668	5.67	78.05
bachelor	9,475	14.66	92.70
graduate	4,716	7.30	100.00
Total	64,641	100.00	

The Ordinal Model (k categories)

$$ln(\frac{p(y \le k)}{p(y > k)}) = \beta_0 + \beta_1 x + \dots$$

0.0000

0.1016

Ordinal Regression

Iteration 0: log likelihood = -56160.846
Iteration 1: log likelihood = -50678.236
Iteration 2: log likelihood = -50453.401
Iteration 3: log likelihood = -50452.782

. ologit degree sex age paeduc maeduc

Iteration 4: \log likelihood = -50452.782 Ordered logistic regression Number of obs = 42,583 LR chi2(4) = 11416.13

Prob > chi2 Log likelihood = -50452.782 Pseudo R2

degree	Coef.	Std. Err.	z	P> z	[95% Conf.	. Interval]
sex age paeduc maeduc	0756255 .0124686 .151748 .157931	.0188243 .0006014 .0031156 .0036724	-4.02 20.73 48.71 43.00	0.000 0.000 0.000 0.000	1125204 .0112899 .1456416 .1507332	0387307 .0136474 .1578545 .1651288
/cut1 /cut2 /cut3 /cut4	1.686014 4.710994 5.061419 6.542017	.0565978 .06085 .0614286 .0645181			1.575084 4.59173 4.941021 6.415564	1.796944 4.830258 5.181817 6.66847

Many commands for regression of categorical dependent variables in R do not provide p values, and an extra step has to be taken to get p values. This is not a problem in Stata!

Exponentiating Coefficients: e^{β}

. ologit degree sex age paeduc maeduc, or

Iteration 0: log likelihood = -56160.846

Iteration 1: log likelihood = -50678.236

Iteration 2: log likelihood = -50453.401

Iteration 3: log likelihood = -50452.782

Iteration 4: \log likelihood = -50452.782 Ordered logistic regression Number of obs = 42,583 LR chi2(4) = 11416.13

Prob > chi2 = 0.0000 Log likelihood = -50452.782 Pseudo R2 = 0.1016

degree	Odds Ratio	Std. Err.	z	P> z	[95% Conf.	Interval]
sex age paeduc maeduc	.9271633 1.012547 1.163867 1.171085	.0174532 .000609 .0036261 .0043007	-4.02 20.73 48.71 43.00	0.000 0.000 0.000 0.000	.8935791 1.011354 1.156782 1.162686	.9620098 1.013741 1.170996 1.179545
/cut1 /cut2 /cut3 /cut4	1.686014 4.710994 5.061419 6.542017	.0565978 .06085 .0614286 .0645181			1.575084 4.59173 4.941021 6.415564	1.796944 4.830258 5.181817 6.66847

Note: Estimates are transformed only in the first equation.

The Proportional Odds Assumption

The Brant Test

The Multinomial Model

$$ln(\frac{P(y=y_2)}{P(y=y_1)}) = ln(\frac{P(y=\text{something else})}{P(y=\text{something})})$$

$$= \beta_0 + \beta_1 + \dots$$

$$ln(\frac{P(y=y_3)}{P(y=y_1)}) = ln(\frac{P(y=\text{something else altogether})}{P(y=\text{something})})$$

$$= \beta_0 + \beta_1 + \dots$$

Estimation

```
. mlogit degree sex age paeduc maeduc
```

Iteration 0: log likelihood = -56160.846
Iteration 1: log likelihood = -50661.077
Iteration 2: log likelihood = -49974.278
Iteration 3: log likelihood = -49965.555
Iteration 4: log likelihood = -49965.546
Iteration 5: log likelihood = -49965.546

Multinomial logistic regression

Number of obs = 42,583 LR chi2(16) = 12390.60 Prob > chi2 = 0.0000 Pseudo R2 = 0.1103

Log likelihood = -49965.546

Log likelihood	10000.010			i beddo itz		0.1100
degree	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
lt_high_school						
sex	1565067	.0315659	-4.96	0.000	2183747	0946388
age	.0086206	.000955	9.03	0.000	.0067488	.0104925
paeduc	1118775	.0050541	-22.14	0.000	1217833	1019718
maeduc	1581699	.005415	-29.21	0.000	168783	1475568
_cons	1.013337	.085875	11.80	0.000	.8450251	1.181649
high_school	(base outco	ome)				
junior_college						
sex	.10857	.0419854	2.59	0.010	.0262802	.1908597
age	.0027976	.0013664	2.05	0.041	.0001195	.0054756
paeduc	.0671707	.0069222	9.70	0.000	.0536034	.0807381
maeduc	.0537209	.0084844	6.33	0.000	.0370918	.0703501
_cons	-3.78768	.1379641	-27.45	0.000	-4.058084	-3.517275
bachelor						
sex	1383151	.0276789	-5.00	0.000	1925648	0840654
age	.0159393	.0008977	17.76	0.000	.0141798	.0176989
paeduc	.1430438	.0046993	30.44	0.000	.1338333	.1522543
maeduc	.1164455	.0058259	19.99	0.000	.105027	.127864
_cons	-4.618421	.0963738	-47.92	0.000	-4.807311	-4.429532
graduate						
sex	3641641	.0363253	-10.03	0.000	4353605	2929677
age	.0362201	.0011387	31.81	0.000	.0339882	.038452

paeduc	.1749678	.0061332	28.53	0.000	.1629469	.1869887
maeduc	.1348214	.0076177	17.70	0.000	.1198909	.1497519
_cons	-6.541676	.128908	-50.75	0.000	-6.794331	-6.289021

Exponentiating Coefficients

1.114683

. mlogit, rr

junior_college

sex

Multinomial logistic regression Number of obs 42,583 LR chi2(16) 12390.60 Prob > chi2 0.0000 Log likelihood = -49965.546Pseudo R2 0.1103 RRR Std. Err. P>|z| [95% Conf. Interval] degree lt_high_school .8551258 .0269928 -4.96 0.000 .8038242 .9097015 1.008658 age .0009633 9.03 0.000 1.006772 1.010548 paeduc .8941538 .0045191 0.000 .8853402 .903055 -22.14 .8537047 .8628135 .0046228 -29.21 0.000 .8446922 ${\tt maeduc}$ _cons 2.754778 .2365665 11.80 0.000 2.328036 3.259744 high_school (base outcome)

.0468004

age	1.002801	.0013702	2.05	0.041	1.00012	1.005491
paeduc	1.069478	.0074032	9.70	0.000	1.055066	1.084087
maeduc	1.05519	.0089527	6.33	0.000	1.037788	1.072884
_cons	.0226481	.0031246	-27.45	0.000	.0172821	.0296802
bachelor						
sex	.8708243	.0241035	-5.00	0.000	.8248409	.9193711
age	1.016067	.0009122	17.76	0.000	1.014281	1.017856
paeduc	1.15378	.005422	30.44	0.000	1.143202	1.164456
maeduc	1.123496	.0065453	19.99	0.000	1.110741	1.136398
_cons	.0098684	.0009511	-47.92	0.000	.0081698	.0119201
graduate						
sex	.6947772	.025238	-10.03	0.000	.6470314	.7460462
age	1.036884	.0011807	31.81	0.000	1.034572	1.039201
paeduc	1.191208	.0073059	28.53	0.000	1.176974	1.205614
maeduc	1.144332	.0087172	17.70	0.000	1.127374	1.161546
_cons	.0014421	.0001859	-50.75	0.000	.0011201	.0018566

2.59

0.010

1.026629

1.21029

Note: _cons estimates baseline relative risk for each outcome.

Predicted Probabilities