

TRABAJO FIN DE GRADO GRADO EN INGENIERÍA INFORMÁTICA

Desarrollo de un simulador de escenarios con usuarios móviles para la evaluación de algoritmos de recomendaciones

Autor

Slavcho Georgiev Ivanov

Director

Sergio Ilarri Artigas

ESCUELA DE INGENIERÍA Y ARQUITECTURA ÁREA DE LENGUAJES Y SISTEMAS INFORMÁTICOS DEPARTAMENTO DE INFORMÁTICA E INGENIERÍA DE SISTEMAS

Zaragoza, 11 de abril de 2016

Desarrollo de un simulador de escenarios con usuarios móviles para la evaluación de algoritmos de recomendaciones

Resumen

Los sistemas de recomendación proporcionan sugerencias acerca de elementos que pueden resultar de interés para el usuario como pueden ser los hoteles, restaurantes, libros, películas, lineas de taxis y autobuses etc. Habitualmente estos sistemas se evalúan con conjuntos de datos estáticos clásicos pero el inconveniente que esto conlleva es que solo podemos realizar un análisis sobre el comportamiento de los usuarios en el pasado perdiendo la capacidad de poder calibrar correctamente los algoritmos de recomendaciones para su correcta evaluación.

El objetivo de este Trabajo Fin de Grado es desarrollar un simulador de escenarios con usuarios móviles que recolecte y proporciones conjuntos de datos dinámicos para la evaluación de algoritmos de recomendaciones.

El sistema desarrollado utiliza técnicas de crowdsourcing, también conocido como colaboración abierta distribuida, y consiste en delegar tareas a un grupo de personas o comunidad a través de una convocatoria abierta.

La arquitectura del sistema consta de un navegador web, un servidor web Node.js, un servidor de recomendaciones y una base de datos mongoDB. Se trata de una aplicación de una sola página desarrollada con Angular.js y Node.js que nos permite configurar distintos escenarios con conjuntos de datos reales obtenidos a partir del servicio de mapas de OpenStreetMap.

La integración entre los distintos componentes del sistemas está realizada de dos maneras. La primera es una REST API y el intercambio de mensajería JSON para realizar operaciones de tipo CRUD para las distintas configuraciones del simulador y la segunda es un sistema bidireccional dirigido por eventos utilizado durante las simulaciones para compartir información entre los distintos componentes del sistema sin que estos la hayan solicitado evitando mucha peticiones innecesarias y consiguiendo que las simulaciones funcionen en tiempo real.

Para la gestión del proyecto se ha elegido el modelo en espiral como modelo de trabajo. Esto me ha permitido evaluar los requisitos en cada iteración y reorientar el proyecto al encontrar dificultados y limitaciones.

Agradecimientos

Me gustaría agradecer este Trabajo Fin de Grado a todas las personas que lo han echo posible con su apoyo y dedicación.

En su primer lugar a mi director Sergio Ilarri por la oportunidad que me ha dado para realizar este proyecto, su paciencia y ayuda, sin la cual este proyecto no hubiera sido posible. A mis compañeros y amigos de clase, con los que he compartido estos años de carrera, por hacer que los momentos de estudio y prácticas fuesen agradables y amenos. A mi familia y amigos más cercanos, por su paciencia y por motivarme para seguir adelante en los momentos más complicados.

Y por supuesto a la Universidad de Zaragoza y a todos aquellos profesores de lo que he aprendido tanto a los largo de estos años.

Índice general

1.	Intr	oducción 1
	1.1.	Motivación del proyecto
	1.2.	Objetivos
	1.3.	Contexto Tecnológico
	1.4.	Herramientas utilizadas
	1.5.	Modelo de proceso seleccionado
	1.6.	Estructura de la memoria
2.	Tral	ajo desarrollado
	2.1.	Resumen del simulador
	2.2.	Análisis de requisitos
		2.2.1. Requisitos no funcionales
		2.2.2. Requisitos funcionales
	2.3.	Arquitectura del sistema
		2.3.1. Arquitectura del front-end
		2.3.2. Arquitectura del back-end
		2.3.3. Arquitectura de recomendador
	2.4.	Menús del simulador de escenarios 16
	2.5.	Navegación por estima
	2.6.	Diseño final
3.	Ges	ión del proyecto
	3.1.	Modelo de proceso seleccionado
		3.1.1. Primer ciclo de la espiral
		3.1.2. Segundo ciclo de la espiral
		3.1.3. Tercer ciclo de la espiral
		3.1.4. Cuarto ciclo de la espiral
		3.1.5. Quinto ciclo de la espiral
		3.1.6. Sexto ciclo de la espiral
	3.2.	Tiempo dedicado

4.	Con	clusiones	25
	4.1.	Resultados	25
	4.2.	Rendimientos del simulador	26
		4.2.1. Rendimientos con Linux	26
		4.2.2. Rendimientos con Windows	27
		4.2.3. Conclusiones de las pruebas de estrés	28
	4.3.	Trabajos futuros	28
	4.4.	Valoración personal	29
Bi	bliog	grafía	32
Aı	nexos	S	33
Α.	Mar	nual del usuario	35
	A.1.	Visión general	35
		A.1.1. Introducción	35
		A.1.2. ¿Que es el simulador de escenarios con usuarios móviles?	35
		A.1.3. Tipos de tecnologías utilizadas	35
		A.1.4. Instalación	36
		A.1.5. Primeros pasos	39
	A.2.	Configuración del recomendador	40
		Configuración de los objetos estáticos	41
		Configuración de los objetos dinámicos	41
		Crear un un nuevo usuario	42
		Actualizar el perfil de un usuario	42
		Búsqueda de mapas	43
		Crear un nuevo mapa	44
		Crear una nueva escena	44
		Edición de mapas y escenas	44
	A.11	.Simulación	45
		A.11.1. Controles del usuario	46
		A.11.2 Recomendaciones	46
		A.11.3. Votaciones	46
В.	Aná	ilisis	47
	B.1.	Análisis de requisitos	47
		B.1.1. Requisitos no funcionales	47
		B.1.2. Requisitos funcionales	48
	B.2.	Objetivos de Usabilidad	49
		Diagrama de casos de uso	51
	B.4.	Diagrama de casos de uso detallados	51
C.	Dise	eño	5 3
D	Imp	lement ación	55

ÍNDICE GENERAL	iii
E. Pruebas de estrés	57
F. Integración con un recomendador externo	59

Índice de figuras

2.1.	Simulación en Actur, Zaragoza con un solo usuario	7
2.2.	Arquitectura de componentes del sistema	11
2.3.	Arquitectura del front-end	12
2.4.	Diagrama de eventos	15
2.5.	Diagrama uml del patrón de diseño de tipo Strategy	15
2.6.	Mapa de navegación	16
2.7.	Registro y autentificación de un usuario	17
2.8.	Busqueda de mapas	18
2.9.	Simulación en Actur, Zaragoza	18
2.10.	Configuración de los objetos estáticos	18
3.1.	Diagrama de Gantt de las distintas fases del proyecto	24
A.1.	Configuración del recomendador	40
A.2.	Configuración de los objetos estáticos	41
A.3.	Configuración de los objetos dinámicos	41
A.4.	Crear un nuevo usuario	42
A.5.	Actualizar el perfil de un usuario	43
A.6.	Búsqueda de mapas	43
A.7.	Crear un nuevo mapa	44
A.8.	Edición de mapas y escenas	45
A.9.	Simulación	45

Índice de cuadros

2.1.	Requisitos no funcionales
2.2.	Requisitos funcionales
3.1.	Tareas del primer ciclo de la espiral
	Tareas segundo ciclo de la espiral
	Tareas tercer ciclo de la espiral
	Tareas cuarto ciclo de la espiral
	Tareas quinto ciclo de la espiral
3.6.	Separación por horas de las distintas fases
4.1.	Pruebas de estrés con 100 usuarios concurrentes
4.2.	Pruebas de estrés con 500 usuarios concurrentes
4.3.	Pruebas de estrés con 1000 usuarios concurrentes
B.1.	Requisitos no funcionales
	Requisitos funcionales
В.3.	Objetivos de usabilidad

Capítulo 1

Introducción

En este capítulo se mostrará la motivación existente para la realización de este Trabajo Fin de Grado, los objetivos que han sido marcados por el proyecto, las librerías y herramientas utilizadas para su elaboración, el modelo de trabajo seleccionado y también se analizará el contexto tecnológico. Finalmente se mostrará la estructura seguida en este documento.

1.1. Motivación del proyecto

Han sido varias las razones que me llevaron a elegir desarrollar este Trabajo Fin de Grado. La primera y principal ha sido el interés personal en los sistemas de recomendaciones y su amplia aplicación en sistemas comerciales y la web. Por otro lado, realizar un proyecto complejo, partiendo desde cero y sin tener ningún conocimiento particular de este ámbito, suponía un gran reto que deseaba afrontar porque me permitiría ampliar mis conocimientos en campos diversos como Ingeniería del Software, Arquitecturas de Software etc., de las que poseía unos conocimientos limitados. Además, consideré que la experiencia y conocimientos que adquiriría en este proyecto aumentarían mis posibilidades de desarrollar mi carrera profesional en este ámbito.

1.2. Objetivos

El Trabajo Fin de Grado que se describe en este documento tiene los siguientes objetivos:

Desarrollar un simulador de escenarios con usuarios móviles, que cuente con mapas de ciudades con objetos móviles y estáticos.

- Desarrollar lo necesario para que se permita que los mapas de ciudades sean reales de tal forma que estos sean obtenidos de un sistema que proporcione mapas.
- Desarrollar lo necesario para que los usuarios puedan crear, editar, borrar y configurar los mapas y escenarios del simulador.
- Desarrollar lo necesario para que todas las configuraciones de mapas y escenarios sean parametrizables desde la interfaz de usuario.
- Desarrollar lo necesario para que la simulación de escenas funcione en tiempo real de tal forma que los eventos de una escena se reflejen en los dispositivos de los usuarios conectados al mismo mapa y escena.
- Desarrollar una interfaz que permita la integración con un recomendador externo de tal forma que exista una comunicación bidireccional basada en eventos entre el simulador y el recomendador.

Además de los objetivos marcados por la propuesta del Trabajo Fin de Grado, también se han tenido en cuenta como objetivos lograr que el simulador utilice los recursos hardware mínimos, permitir que este sea fácilmente escalable y que pueda desplegarse en un entorno distribuido. De esta forma logramos ahorrar costes de infraestructura y futuros desarrollos.

1.3. Contexto Tecnológico

Habitualmente los sistemas de recomendación se evalúan con conjuntos de datos estáticos clásicos. El inconveniente que esto conlleva es que solo podemos realizar un análisis sobre el comportamiento de los usuarios en el pasado perdiendo la capacidad de poder calibrar correctamente los algoritmos de recomendaciones para su correcta evaluación. Con el fin de evitar este inconveniente surge la necesidad de evaluar los algoritmos de recomendaciones con conjuntos de datos dinámicos.

Una de las formas de recolectar y proveer conjuntos de datos dinámicos es mediante el crowdsourcing. El crowdsourcing, también conocido como colaboración abierta distribuida, consiste en delegar tareas a un grupo de personas o comunidad a través de una convocatoria abierta.

Así que a medida que el grupo de personas o comunidad vayan realizando las tareas asignadas el sistema va recolectado y suministrando datos sobre las acciones que realizan estos para llevar a cabo sus tareas. Esto nos da la oportunidad para suministrar datos a los algoritmos de recomendaciones en tiempo real, es decir, suministrar datos a medida que el grupo de personas vayan cumpliendo con sus tareas.

Introducción 3

1.4. Herramientas utilizadas

En esta sección se listan las tecnologías, liberarías externas y herramientas utilizadas para el desarrollo del proyecto acompañada de una breve descripción.

Librerías usadas

Para el desarrollo del proyecto se ha hecho uso de diversas librerías externas que han permitido la implementación en un tiempo razonable de ciertas funciones necesarias que no formaban parte de los objetivos del proyecto:

- Openlayers: framework de OpenStreetMap que nos permite el uso libre de mapas.
- Node.js v0.12.4: entorno Javascript del lado del servidor basado en el motor V8 de Google.
- Express v4.12.4: framework de Node.js destinado a la creación de APIs Rest
- Angular.js: framework javascript que facilita la creación de aplicaciones en una sola página.
- Mongoose v4.1.2: framework de Node.js destinado al modelado de objetos para MongoDB.
- jwt.io v5.0.4: framework destinado a la creación y distribución de web tokens.
- socket.io v1.4.4: framework de Node.js destinado a la creación de comunicaciones bidirecionales basadas en eventos
- **Apache mahout v0.11.1**: framework de Java destinado al aprendizaje automático.
- socket.io-client v0.1.0: cliente Java para socket.io desarrollado por Naoyuki Kanezawa

Herramienta de desarrollo

Durante el desarrollo de este Trabajo Fin de Grado se han utilizado las siguientes herramientas:

- Eclipse Java EE IDE: editor de código Java versión Mars 4.5.1
- Maven v3.2.5: gestor de paquetes para desarrollos Java
- Brackets.io v1.6.0: editor de código para desarrollos web
- **Git v1.9.4**: sistema de control de versiones
- GitHub: repositorio de código
- Cmder: emulador cmd de Windows
- Sublime text 2: editor de texto avanzado
- CityEngine 2014: software de modelado de ciudades
- Unity 5: motor gráfico para la creación de videojuegos
- **OSM2Word**: visualizador de datos con formato OSM

Herramienta de documentación

Se han usado las siguientes herramientas para la elaboración de la documentación del proyecto:

- Latex: lenguaje usado para la elaboración de este documento
- GanttProject: editor de diagramas de Gantt
- Gliffy Diagrams: editor de múltiples tipos de diagramas (diagramas de flujos, UML, etc.)
- Apache Benchmark: herramienta para hacer pruebas de carga de sitios web
- http://newrelic.com/: sitio web para motorización de servidores

Introducción 5

1.5. Modelo de proceso seleccionado

El modelo de trabajo seleccionado está basado en el modelo de espiral. Las actividades de este modelo forman una espiral de tal forma que cada iteración representa un conjunto de actividades. Se ha elegido este modelo de trabajo porque nos permitiría integrar el desarrollo con el mantenimiento y evaluar en cada iteración si dichos requisitos siguen encajando de lo que se esperaba de la aplicación para conseguir los objetivos propuestos. De esta forma se reduce el riesgo del proyecto y se incorporan objetivos de calidad.

1.6. Estructura de la memoria

El contenido de la memoria está distribuido de la siguiente forma:

- En el capítulo 2 se expone el trabajo desarrollado para la elaboración de este simulador
- En el capítulo 3 se expone la gestión del proyecto y las distintas etapas por las que ha pasado este proyecto
- En el capítulo 4 se muestran las conclusiones del proyecto y el posible trabajo futuro de cara a mejorar el simulador

Capítulo 2

Trabajo desarrollado

En este capítulo se explican las funcionalidades básicas del simulador desarrollado centradose únicamente en los aspectos más importantes.

2.1. Resumen del simulador

Se trata de un sistema de colaboración abierta distribuida que permite configurar distintos escenarios con objetos móviles y estáticos sobre mapas de ciudades reales obtenidos a partir del servicio de mapas de OpenStreet-Map.

El simulador de escenarios está basado en el simulador Mavsim desarrollado por el Grupo de Sistemas de Información Distribuidos de la Universidad de Zaragoza utilizado para la simulación de VANETs en el cual hay muchos vehículos distribuidos en una amplia zona geográfica.

Figura 2.1: Simulación en Actur, Zaragoza con un solo usuario

Puede ser usado a través de cualquier dispositivo (PC, tablet, móvil etc.)

con conexión a Internet y un navegador web. Permite a los usuarios crear sus propios mapas y escenarios. Durante la creación de una escena el usuario elige cual es la cuidad donde se realiza la simulación, el recomendador a utilizar, si el mapa es colaborativo o no, introducir los objetos estáticos y configurar cuales son los objetos móviles y sus rutas.

Para realizar una simulación el usuario tiene que buscar y seleccionar el mapa y escenario donde moverse tanto para obtener recomendaciones como para realizar votaciones sobre los distintos objetos de este entorno.

2.2. Análisis de requisitos

2.2.1. Requisitos no funcionales

Código	Descripción
RNF-1	La aplicación tratara de un simulador. Dicha simulación se rea-
	lizara sobre mapas online
RNF-2	La navegación por los menús de la aplicación se realizara me-
	diante una interfaz gráfica
RNF-3	Los textos por defecto de la aplicación serán en inglés
RNF-4	La autenfiticación de usuarios se realizará mediante web tokens
RNF-5	La interfaz gráfica debe ser responsive desarrollada con boots-
	trap
RNF-6	El back-end debe ser desarrollado con node.js, sockets.io y ex-
	press
RNF-7	El front-end debe ser desarrollado con Angular.js

Cuadro 2.1: Requisitos no funcionales

${\bf 2.2.2.} \quad {\bf Requisitos \ funcionales}$

Código	Descripción	
RF-1	La aplicación permitirá crear un nuevo usuario	
RF-2	La aplicación permitirá al usuario buscar mapas por su nom-	
	bre, tipo, estado, cuidad y fecha de creación	
RF-3	La aplicación permitirá al usuario crear un nuevo mapa	
RF-4	La aplicación permitirá al usuario crear una nueva escena	
	asociada a un mapa existente	
RF-5	La aplicación listara todas las escenas de un mapa	
RF-6	La aplicación permitirá al usuario editar un mapa existente	
RF-7	La aplicación permitirá al usuario editar las escenas de un	
	mapa existente	
RF-8	La aplicación permitirá al usuario crear un nuevo tipo de	
	objeto estático	
RF-9	La aplicación permitirá al usuario crear un nuevo tipo de	
	objeto dinámico	
RF-10	La aplicación listará todos los tipos de objetos estáticos crea-	
	dos	
RF-11	La aplicación listará todos los tipos de objetos dinámicos	
	creados	
RF-12	La aplicación permitirá al usuario editar los objetos estáticos	
	credos	
RF-13	La aplicación permitirá al usuario editar los objetos dinámi-	
	cos creados	
RF-14	La aplicación permitirá al usuario cambiar el nombre	
RF-15	La aplicación permitirá al usuario cambiar su contraseña	
RF-16	La aplicación permitirá al usuario cambiar la imagen aso-	
	ciada a un usuario	
RF-17	La aplicación permitirá al usuario configurar un nuevo tipo	
	de recomendador	
RF-18	La aplicación permitirá al usuario editar la configuración de	
	recomendador existente	
RF-18	La aplicación permitirá al usuario asociar un recomendador	
	existente a una escena	
RF-19	La aplicación permitirá al usuario definir los limites de una	
DE 0°	escena	
RF-20	La aplicación permitirá al usuario asociar un objeto estático	
DE :	a una escena	
RF-21	La aplicación permitirá al usuario cargar todos los objetos	
	estáticos desde un fichero JSON	

Código	Descripción
RF-22	La aplicación permitirá asociar un objeto dinámico y su de-
	finir su ruta en una escena
RF-23	La aplicación permitirá al usuario cargar todos los objetos
	dinámicos y sus rutas desde un fichero JSON
RF-24	La aplicación listará todos objetos estáticos asociados a una
	escena
RF-25	La aplicación listará todos los objetos dinámicos asociados
	a una escena
RF-26	La aplicación permitirá borrar un objeto estático asociado
	a una escena
RF-27	La aplicación permitirá borrar un objeto dinámico asociado
	a una escena
RF-28	La aplicación permitirá al usuario elegir un si mapa es cola-
	borativo o no
RF-29	La aplicación permitirá al usuario ejecuta una simulación
	sobre la escena de un mapa
RF-30	La aplicación permitirá al usuario solicitar recomendaciones
	mientras se está ejecutando una simulación siempre y cuando
	el recomendador asociado a la escena es de tipo pull
RF-31	El usuario recibirá recomendaciones sin haberlas solicitado
	siempre y cuando el recomendador asociado a la escena de
	es tipo push
RF-32	El usuario puede arrancar/pausar una simulación

Cuadro 2.2: Requisitos funcionales

2.3. Arquitectura del sistema

La arquitectura del sistema consta de cliente o navegador web, servidor web Node.js, servidor de recomendaciones y base de datos mongoDB (figura 2.2).

El la figura 2.2 observamos que el navegador web se conecta al servidor Node.js mediante dos maneras: la primera es HTTP y la segunda es un sistema bidireccional dirigido por eventos. Las funcionalidades como creación de escenas, búsqueda de mapas etc. están desarrollados sobre una REST API y el intercambio de mensajes JSON.

El sistema bidireccional dirigido por eventos es utilizado durante la simulación por una parte para reflejar los eventos generados por un usuario al resto de usuarios, y por otra para integrar el navegador, el servidor Node.js y el recomendador. De esta manera conseguimos compartir información entre los distintos componentes sin que estos los hayan solicitado evitando muchas peticiones innecesarias.

Figura 2.2: Arquitectura de componentes del sistema

2.3.1. Arquitectura del front-end

Para el desarrollo del front-end se han utilizado los frameworks Angular.js¹ y bootstrap². Se ha decidido utilizar estas tecnologías porque nos ofrece varias ventajas: ahorro de recursos³, mejora de la productividad y la posibilidad de realizar una simulación sobre dispositivos móviles⁴ con el mismo código fuente.

La arquitectura del front-end está basada en el patrón Modelo-Vista-Controllador de tal forma que para cada vista existe un controlador que contiene la lógica de negocio de esta. El controlador también es el encargado de establecer comunicación con el back end. Esta comunicación se realiza entre los llamados Servicios⁵ de Angular.js y la REST API del back end. Los Servicios de Angular.js son muy necesarios y útiles ya que nos permiten crear un envoltorio sobre la REST API que nos ofrece el back end y de esta forma centralizar las llamas a la API.

Figura 2.3: Arquitectura del front-end

¹framework que nos permite desarrollar aplicaciones de una sola página

²framework que nos ofrece un sistema de componentes reutilizables y adaptables a la pantalla del dispositivo

³angular.js va transmitiendo las vistas de la interfaz gráfica y las cachea al lado del cliente para ser reutilizadas posteriormente. Vuelve a solicitar una vista si y solo si esta ha sufrido algún cambio en el servidor

⁴esto nos da la oportunidad de utilizar la posición geográfica del usuario para obtener recomendaciones en el entorno de una cuidad real. De está manera obtenemos datos reales y muchas más precisión a la hora de evaluar los algoritmos de recomendaciones

 $^{^5}$ es pequeña fabrica de funciones y objetos inyectada en los controladores

2.3.2. Arquitectura del back-end

Para el desarrollo del back-end se han utilizado Node.js⁶, Express⁷, socket.io⁸ y mongoose ⁹. Se ha decidido utilizar estas tecnología por que nos ofrecen las siguientes ventajas: mejora la productividad a la hora de desarrollar el back-end, nos permite desarrollar un back-end ligero que consuma pocos recursos y el modulo sockets.io nos ofrece la posibilidad de desarrollar un sistema bidireccional dirigido por eventos.

La arquitectura del back-end se basa en la filosofía de desarrollo de aplicaciones con Node.js y Express y consiste de la siguiente estructura de directorios:

⁶javascript al lado del servidor

 $^{^7\}mathrm{modulo}$ de Node.js que nos ofrece la posibilidad de desarrollar una REST API

⁸sistema bidireccional dirigido por eventos

⁹modelado de objetos sobre mongoDB

A continuación vamos a ver más detalladamente cual es la función de cada elemento de este directorio:

- app.js: centraliza las configuraciones de nuestra aplicación como por ejemplo en que puerto arranca el servidor, establecer conexiones con la base de datos, configuraciones del router¹⁰ etc.
- package.json: es un gestor de paquetes y contiene los módulos que se están utilizando en nuestra aplicación.
- public: es un directorio que contiene la parte visual, es decir el frontend. Podemos ver que este contiene varios subdirectorios:
 - en images se ubican las imágenes o iconos usados en la aplicación.
 - en javascript se ubican los frameworks Javascript usados en en el front-end como Angular.js, Bootstrap, OpenLayers etc. En el subdirectorio angular podemos encontrar las configuraciones de Angular.js, los controladores de las vistas, los Servicios etc.
 - en views se ubican las vistas del front-end.
 - en stylesheets están ubicadas las hojas de estilos
- en routes se ubican las distintas rutas de Express. En nuestro caso tenemos una para cada menú de la aplicación. Por ejemplo todas las operaciones referentes al menú Maps se encuentra en el fichero maps.js etc.

2.3.3. Arquitectura de recomendador

El desarrollo del recomendador está realizado con Java 7, la librería Apache Mahout y socket.io-client. El recomendador desarrollado es un recomendador pull¹¹ de ejemplo basado en los usuarios (User based recommender).

Aunque sea un recomendador de ejemplo este está pensado para se expandido, tanto para otro tipo de recomendadores (como pueden ser los recomendadores de tipo push¹²) como para la implementación de nuevos tipos de estrategias para el recomendador de tipo pull.

Durante el arranque el servidor del recomendador lanza un hilo por cada tipo de recomendador. En nuestro caso solo lanza un hilo que se corresponde al servidor de tipo pull. Este hilo es el que contiene los eventos que invoca

 $^{^{10}\}mathrm{el}$ router de Node.
js es el encargado del direccionamiento de las peticiones y hace referencia a la definición de puntos finales de aplicación (URI) y cómo responden a las solicitudes de cliente

¹¹tipo de recomendador en el cual los usuarios solicitan recomendaciones

¹²tipo de recomendador que realiza recomendaciones sin que el usuario los haya solicitado

el simulador de escenarios. En la figura 2.4 observamos que tenemos solo dos eventos: uno para recuperar los tipos de implementaciones 13 y otro para realizar las recomendaciones.

Figura 2.4: Diagrama de eventos

El evento recommend es el que se dispara cuando uno de los usuarios solicita una recomendación. Para que se puedan utilizar distintos tipos de implementaciones del recomendador de tipo pull se ha implementado un patrón de diseño de tipo Strategy. Este patrón de diseños nos permite cambiar de estrategia de recomendación en tiempo de ejecución:

Figura 2.5: Diagrama uml del patrón de diseño de tipo Strategy

¹³ en nuestro caso es User based recommender pero existen otros tipos como Item based recommender

2.4. Menús del simulador de escenarios

Como en todas las aplicaciones, el simulador de escenarios cuenta con un sistema de menús que dan acceso a las distintas opciones del simulador. En este caso se ha seguido la paradigma WIMP para la organización de los menús y distintas opciones (figura 2.6). Existen 4 tipos de caminos organizados en forma de árbol:

- busqueda y gestión (creación, edición y borrados) de mapas y escenas
- simulación de un mapa y escena
- gestión de tipos de recomendadores, objetos estáticos ¹⁴ y dinámicos ¹⁵
- configuraciones del perfil del usuario

Figura 2.6: Mapa de navegación

¹⁴objetos que no cambian de posición a medida que pasa el tiempo

¹⁵objetos que cambian de posición a medida que pasa el tiempo. Tienen una ruta definida durante la creación de la escena

2.5. Navegación por estima

La navegación por estima es una técnica que se aplica en el cliente. Consiste en procesar en cada ciclo el estado de los objetos móviles. Se trata de una técnica analítica utilizada en la náutica para la navegación y situación de los barcos y se tienen en cuenta los siguientes elementos: la situación actual, rumbo y velocidad. Es decir, sabiendo la velocidad, el rumbo de la nave y el tiempo transcurrido se puede estimar la posición de la misma al cabo del tiempo.

Con este método conseguimos calcular cual es la siguiente posición geográfica donde tenemos que colocar un objeto móvil al acabo de un tiempo (el tiempo de refresco de la pantalla). Como ventaja conseguimos disminuir el error en el cálculo de las posiciones de los objetos móviles. Así obtenemos movimientos muy precisos incluso en grafos de movimientos con nodos muy cercanos.

2.6. Diseño final

En esta sección se dejan solo algunas de las pantallas más relevantes de la aplicación. Para ver más pantallas debe acudir al manual de usuario en los anexos.

(a) Autentificación de un usuario

(b) Crear un nuevo usuario

Figura 2.7: Registro y autentificación de un usuario

18 2.6. Diseño final

Figura 2.8: Busqueda de mapas

Figura 2.9: Simulación en Actur, Zaragoza

Figura 2.10: Configuración de los objetos estáticos

Capítulo 3

Gestión del proyecto

En este capítulo se explican el modelo de proceso seleccionado y las distintas etapas por las que ha pasado el este Trabajo Fin de Grado centradose únicamente en los aspectos más importantes.

3.1. Modelo de proceso seleccionado

Este Trabajo Fin de Grado ha surgido una importante evolución desde el primer planteamiento hasta la obtención del sistema final. La primera idea para la evaluación de los algoritmos de recomendaciones era la utilización de un videojuego ya que este podría recolectar datos de forma transparente mientras los usuarios se divertian. El videojuego consistiría en el cumplimiento de misiones en una cuidad basandose en algún videojuego de aventuras como el videojuego Paperboy del año 1985 donde un chico reparte periódicos en una cuidad.

Por esto se ha planteado usar el motor gráfico Unity 5 para el desarrollo del videojuego ya que no tenía sentido desarrollar un videojuego usando simplemente un lenguaje de programación. Pero existía la incertidumbre si todos los requisitos podrían ser implementados. Esto era debido porque por una parte no se conocían de antemano todos los requisitos y por otra no se conocía si el motor gráfico tenía algún tipo de limite.

Para solucionar estos problemas se ha tomado la decisión de elegir el modelo en espiral como modelo de trabajo. Las actividades de este modelo forman una espiral de tal forma que cada iteración representa un conjunto de actividades. Esto nos permitiría segmentar el trabajo en tareas más pequeñas e ir definiendo los requisitos mientras se desarrollaba el videojuego. De esta manera podríamos evaluar si los requisitos propuestos podrían o no ser implementados con Unity 5. En caso de que el motor gráfico tuviese algún límite tendríamos la capacidad de reorientar el proyecto.

3.1.1. Primer ciclo de la espiral

En la tabla 3.1 podemos encontrar las tareas que han sido definidas para esta etapa:

Código	Descripción
RQ-0	Formación básica con Unity 5
RQ-1	Establecer puntos en el mapa para que el jugador pueda ir a
	buscarlos.
RQ-2	Los puntos establecidos en el requisitos RQ-1 deben de ser ex-
	traibles desde un servidor externo
RQ-3	Establecer una conexión HTTP/JSON entre Unity 5 y un ser-
	vidor externo.
RQ-4	Sacar el modelado geométrico de un servidor externo
RQ-5	El videojugo debe de tener un menú principal
RQ-6	Investigar si se puede usar Longitud y Latitud con Unity 5
RQ-7	Investigar si los edificio generados con CityEngine 2014 son
	reales o no
RQ-8	Permitir que el juego se realice sobre mapas de ciudades reales
RQ-9	Investigar si es posible el desarrollo de videojuego en 3D

Cuadro 3.1: Tareas del primer ciclo de la espiral

Como conclusión de esta etapa obtenemos el siguiente resultado:

- puede establecerse una conexión con un servidor externo mediante HTTP/JSON (RQ-3).
- pueden establecerse puntos en el mapa para que el jugador pueda ir a buscarlos(RQ-1).
- pueden extraerse puntos desde un servidor externo para que el usuarios pueda ir a buscarlos (RQ-1 y RQ-3).
- la realización del menú principal del videojuego ha sido posible.
- Unity 5 utiliza eje de abscisas. Por lo tanto si queremos usar coordenadas geográficas tenemos que calcular la Longitud y Latitud a partir del eje de coordenadas (x, y, z).
- los datos sobre los edificios de OpenStreetMap no están completos.
- se ha decido de dejar atrás el modelado 3D ya que se han detectado los siguientes problemas: coste en cuanto a tiempo demasiado grande para

el diseño de una ciudad, CityEngine 2014 no interpreta correctamente los datos exportados además no existe ninguna otra herramienta que nos permita la correcta interpretación de los datos (por lo menos yo no podido encontrarla).

3.1.2. Segundo ciclo de la espiral

En la tabla 3.2 podemos encontrar las tareas que han sido definidas para esta etapa:

Código	Descripción
RQ-10	Investigar como se desarrollan grafos en Unity para la posterior implementación de la IA sobre estos para el movimiento de los vehículos etc.
RQ-11	Diseñar y desarrollar un mapa del juego

Cuadro 3.2: Tareas segundo ciclo de la espiral

Como conclusión de esta etapa obtenemos el siguiente resultado:

- Unity 5 dispone de su propio modulo de IA y por lo tanto no hace falta implementar algoritmos de IA para el comportamiento de los objetos dinámicos.
- en esta etapa se ha definido el requisito que el juego tiene que funcionar sobre cualquier mapa del mundo. Por lo tanto en la siguiente etapa hay que investigar si es posible la integración de Unity 5 con OpenStreetMap.

3.1.3. Tercer ciclo de la espiral

En la tabla 3.3 podemos encontrar las tareas que han sido definidas para esta etapa:

Código	Descripción
RQ-11	Investigar en que consiste el formato OSM
RQ-12	Investigar si es posible la integración de OpenStreetMap con
	Unity

Cuadro 3.3: Tareas tercer ciclo de la espiral

Como conclusión de esta etapa obtenemos el siguiente resultado:

- Unity 5 no puede ser integrado con OpenStreetMap y no es capaz de renderizar mapas a partir sus datos (ficheros OSM).
- en esta etapa se ha decido reorientar el proyecto por las siguientes razones: Unity 5 no puede ser integrado con OpenStreetMap por lo tanto la única opción para desarrollar un videojuego sobre mapas reales es desarrollando el videojuego desde cero con algún lenguaje como Java y el inconveniente que esto representa es que es demasiado costoso en cuanto a tiempo y dificultad.

3.1.4. Cuarto ciclo de la espiral

En la tabla 3.4 podemos encontrar las tareas que han sido definidas para esta etapa:

Código	Descripción
RQ-12	instalar mongoDB
RQ-13	instalar Node.js y NPM
RQ-14	instalar git
RQ-14	instalar Java y Apache maven
RQ-16	Desarrollar y configurar la base de la aplicación con Node.js
RQ-17	Instalar y configurar Angular.js
RQ-18	Instalar y configurar OpenLayers.js
RQ-19	Instalar y configurar Bootstrap

Cuadro 3.4: Tareas cuarto ciclo de la espiral

Como conclusión de esta etapa obtenemos el siguiente resultado:

• se han instalado y configurado todas las herramientas y frameworks necesarios para el desarrollo de la aplicación.

3.1.5. Quinto ciclo de la espiral

En la tabla 3.6 podemos encontrar las tareas que han sido definidas para esta etapa:

Código	Descripción
RQ-20	Definir lo requisitos funcionales y no funcionales de la aplicación
RQ-21	Desarrollar el front-end
RQ-22	Deseñar la base de datos
RQ-23	Diseñar y desarrollar el back-end
RQ-24	Diseñar y desarrollar el recomendador
RQ-25	Realizar pruebas funcionales de la aplicación

Cuadro 3.5: Tareas quinto ciclo de la espiral

Como conclusión de esta etapa obtenemos el siguiente resultado:

- la parte mas costosa de esta etapa ha sido la definición de los requisitos de la aplicación.
- una vez definidos los requisitos el resto del trabajo ha sido puramente técnico.

3.1.6. Sexto ciclo de la espiral

La última etapa consiste en documentar el trabajo realizado en este Trabajo Fin de Grado.

3.2. Tiempo dedicado

Como ya se ha comentado anteriormente, el desarrollo del proyecto se ha realizado siguiendo el modelo en espiral. En esta sección se mostrará el tiempo dedicado y también un cronograma de las diferentes etapas.

Fase	Horas
Fase 1	54
Fase 2	6.5
Fase 3	38
Fase 4	3.5
Fase 5	247
Fase 6	42.5
Reuniones	7
Pruebas de carga	11.5
Total	410

Cuadro 3.6: Separación por horas de las distintas fases

Figura 3.1: Diagrama de Gantt de las distintas fases del proyecto

Capítulo 4

Conclusiones

En este capítulo se explican los resultados que se han obtenido de este Trabajo Fin de Grado, los rendimientos del simulador, el trabajo futuro y una valoración personal.

4.1. Resultados

A lo largo de este Trabajo Fin de Grado se ha desarrollado un simulador de escenarios con usuarios móviles para la evaluación de algoritmos de recomendaciones. El simulador puede ser usado de forma cooperativa por varias personas a través de cualquier dispositivo con conexión a Internet y un navegador web. Cuenta con escenarios basados en datos reales obtenidos a través del servicio de mapas de OpenStreetMap y permite integrar de un recomendador externo.

Como se puede comprobar a continuación, se han cumplido todos los objetivos marcados inicialmente en la propuesta del Trabajo Fin de Grado:

- Se he desarrollado un simulador de escenarios con usuarios móviles que cuenta con mapas de ciudades con objetos móviles y estáticos.
- Los mapas de las ciudades utilizados en las simulaciones están creados a partir de datos reales obtenidos a través del servicio de mapas de OpenStreetMap.
- Los usuarios puedan crear, editar, borrar y configurar los mapas y escenarios del simulador.
- Se ha desarrollado un sistema bidireccional basada en eventos que permite integrar un recomendador externo y realizar simulaciones en tiempo real de tal forma que los eventos de los usuarios se reflejen en los dispositivos conectados al mismo mapa y escena.

4.2. Rendimientos del simulador

El limite teórico máximo de peticiones de las aplicaciones desarrolladas con Node.js es igual al número máximo de sockets que se puedan crear en el servidor, es decir, un servidor con un Sistema Operativo Linux puede crear 65535 sockets. Pero hay que tener en cuenta que una parte esta reservada para el Sistema Operativo. Esto nos deja entre 30.000 - 45.000 sockets que podemos usar. Tenemos que comprobar como se comporta el simulador y por lo tanto hemos realizado unas prueba de estrés tanto con Linux como con Windows.

4.2.1. Rendimientos con Linux

En este apartado se describe los resultados de las pruebas de estrés realizadas con un Sistema Operativo Linux con las siguientes características:

Sistema Operativo: Linux v15.10 64 bits

■ RAM: 3.3 GB

• CPU: Intel i3 1.8 GHz

	Peticiones	CPU	Memoria	Kbytes/sec	Peticiones/seg	Segundos por petición
	50.000	24.8	134MB	1593,86	508,76	$0,\!196555$
	100.000	30.2	133 MB	1716,46	547,89	0,182517
Ì	500.000	45.4	138MB	1199,38	382,84	0,261204

Cuadro 4.1: Pruebas de estrés con 100 usuarios concurrentes

Peticiones	CPU	Memoria	Kbytes/sec	Peticiones/seg	Segundos por petición
50.000	25.9	147MB	1196,85	382,04	1,308774
100.000	40.6	160MB	1286,86	410,78	1,2172
500.000	44.6	162 MB	n/d	n/d	n/d

Cuadro 4.2: Pruebas de estrés con 500 usuarios concurrentes

Conclusiones 27

Peticiones	CPU	Memoria	Kbytes/sec	Peticiones/seg	Segundos por petición
50.000	24.3	160 MB	1408,94	449,74	2,223517
100.000	26.3	167MB	n/d	n/d	n/d
500.000	n/d	n/d	n/d	n/d	n/d

Cuadro 4.3: Pruebas de estrés con 1000 usuarios concurrentes

En el caso de la pruebas con 500 usuarios concurrentes nos da dado el error apr socket recv Connection timed out (110) y se han completado 105.195 peticiones en la prueba con 500.000 peticiones. En el caso de la prueba con 1000 usuarios concurrentes nos ha dado el mismo fallo que en el caso de los 500 usuarios concurrentes y se han completado 54.599 peticiones en la prueba con 100.000 peticiones.

En el resto de casos las pruebas de carga han sido satisfactorias. Observamos que el peor de los casos se ha obtenido una media de 2,2 segundos por petición en el caso que tenemos 1000 usuarios concurrentes que han generado 50.000 peticiones.

4.2.2. Rendimientos con Windows

En este apartado se describe los resultados de las pruebas de estrés realizadas con un Sistema Operativo Windows con las siguientes características:

• Sistema Operativo: Windows 10 Home 64 bits

■ RAM: 8 GB

■ CPU: Intel i3 1.8 GHz

```
slavcho@ubuntu:~/testing$ ab -g resultados4.csv -n 50000 -c 100 http
://192.168.1.102:81/

This is ApacheBench, Version 2.3 <$Revision: 1638069 $>

Copyright 1996 Adam Twiss, Zeus Technology Ltd, http://www.zeustech.
net/

Licensed to The Apache Software Foundation, http://www.apache.org/

Benchmarking 192.168.1.102 (be patient)

Completed 5000 requests
Completed 10000 requests
Completed 15000 requests
Gompleted 15000 requests
apr_socket_recv: Connection timed out (110)
Total of 19219 requests completed
slavcho@ubuntu:~/testing$
```

```
slavcho@ubuntu:~/testing$ ab -g resultados4.csv -n 50000 -c 500 http
://192.168.1.102:81/

This is ApacheBench, Version 2.3 <$Revision: 1638069 $>

Copyright 1996 Adam Twiss, Zeus Technology Ltd, http://www.zeustech.
net/

Licensed to The Apache Software Foundation, http://www.apache.org/

Benchmarking 192.168.1.102 (be patient)
apr_socket_recv: Connection refused (111)
Total of 558 requests completed
```

```
slavcho@ubuntu:~/testing$ ab -g resultados4.csv -n 100000 -c 500 http
://192.168.1.102:81/

This is ApacheBench, Version 2.3 <$Revision: 1638069 $>

Copyright 1996 Adam Twiss, Zeus Technology Ltd, http://www.zeustech.
net/
Licensed to The Apache Software Foundation, http://www.apache.org/

Benchmarking 192.168.1.102 (be patient)
apr_socket_recv: Connection refused (111)
Total of 524 requests completed
```

En las pruebas realizadas observamos que nos ha dado fallo en todas las pruebas. En el caso de la prueba con 100 usuarios concurrentes 50.000 peticiones se ha completado 19.219 de las peticiones. En el caso de la prueba con 500 usuarios concurrentes y 50.000 peticiones se han completado 558 peticiones. En el caso de la prueba con 500 usuarios concurrentes y 100.000 peticiones se han completado 524 peticiones.

4.2.3. Conclusiones de las pruebas de estrés

Como conclusión podemos determinar que el Sistema Operativo Linux se comporta bastante mejor que el Windows para esta aplicación. Por lo tanto recomiendo la utilización de un servidor Linux para el simulador de escenarios para aprovechar mejor tanto la aplicación como el hardware.

4.3. Trabajos futuros

A continuación se proponen algunas posibles mejoras futuras:

- implementar lo necesario para simular eventos sobre el mapa como pueden ser las calles cortadas, ofertas de descuentos en algún local cierto día o días de la semana etc.
- implementar lo necesario para exportar los datos del mapa: tanto el grafo de carreteras como la configuración de los objetos estáticos y dinámicos.

Conclusiones 29

- implementar lo necesario para importar datos exportados.
- implementar lo necesario para que los objetos dinámicos se generen y se muevan por el mapa mediante distintas técnicas de la Inteligencia Artificial.
- implementar lo necesario para que el servidor web Node.js pueda ejecutarse sobre multiples hilos aprovechando mejor las CPUs actuales. Actualmente solo se ejecuta sobre un proceso de un solo hilo y para escalar el sistema existe la necesidad de clusterizar el servidor web.
- utilizar algún framework de Javascript que nos permita desarrollar pruebas automaticas tanto al lado del cliente como al lado del servidor.

4.4. Valoración personal

El trabajo realizado ha sido muy satisfactorio ya que me ha aportado muchos conocimientos relacionados con la rama de Sistemas de Información en la que he estado especializandome y además me ha permitido profundizar en muchas tecnologías como Node.js y Angular.js en las que he estado interesado por el auge que están sufriendo en al actualidad. Además creo los conocimientos adquiridos me dan valor añadido como futuro profesional del sector de las tecnologías de la información.

Aún así durante el tiempo de desarrollo de todo el proyecto existían preguntas que he estado haciendome continuamente. ¿Si las tecnologías y decisiones que he tomado han sido las adecuadas? ¿Es fácil de implementar y sin perder tiempo? ¿Sería fácil de mantener el sistema en el futuro? ¿Las tecnologías elegidas tendrían algún limite que no permita o dificulte la implementación de ciertas funcionalidades en el futuro?

Como conclusión personal he obtenido que no existe la perfección y de lo complicado que es desarrollar una buena aplicación. Lo que realmente importa es ser constante y comprometido con el trabajo que se está haciendo y aprender a ser autodidacta.

Bibliografía

- [1] GitHub. Github repositorio de código del proyecto. https://github.com/slavcho87/Simulator.
- [2] Unity Tecnologies. Unity game engine. https://unity3d.com/es.
- [3] Unity Tecnologies. Unity video tutoriales. https://unity3d.com/es/learn/tutorials.
- [4] Esri. Cityengine 3d modeling software for urban environments. http://www.esri.com/software/cityengine.
- [5] Google. Angular.js javascript mvw framework. https://angularjs.org/.
- [6] Node.js Foundation. Node.js javascript server-side framework. https://nodejs.org/en/.
- [7] Jesús Conde. Angular.js video tutoriales. https://www.youtube.com/playlist?list=PLEtcGQaT56cgHfdvGguisToK90z321pRl.
- [8] Jesús Conde. Node.js video tutoriales. https://www.youtube.com/playlist?list=PL38CA7BD8CB5F3FF9.
- [9] Hüseyin Babal. Autenticación basada en token con angularjs y nodejs. http://code.tutsplus.com/es/tutorials/token-based-authenticationwith-angularjs-nodejs-cms-22543.
- [10] Movable Type Ltd. Calcular distancia entre dos coordenadas geográficas. http://www.movable-type.co.uk/scripts/latlong.html.
- [11] Blog Doble Vías Transporte e ingeniería. Dirección de una línea (rumbo y azimut). https://doblevia.wordpress.com/2007/07/25/direccion-de-una-linea-rumbo-y-azimut/.
- [12] Blog Doble Vías Transporte e ingeniería. Cálculos de navegación por estima. http://mercatorlab.com/downloads/loxodromia.java.
- [13] MIT. Socket.io framework de node.js. http://socket.io/.

32 BIBLIOGRAFÍA

- [14] MIT. Socket.io chat demo. http://socket.io/demos/chat/.
- [15] Software Freedom Conservancy. Git sistema de control de versiones. https://git-scm.com/.
- [16] Adobe Systems Incorporated. Brackets.io editor de código. http://brackets.io/.
- [17] The Eclipse Foundation. Eclipse editor de código java. https://eclipse.org/.

Anexos

Anexos A

Manual del usuario

A.1. Visión general

A.1.1. Introducción

En el siguiente documento se recoge una descripción del funcionamiento del simulador de escenarios con usuarios móviles para la evaluación de algoritmos de recomendaciones.

A.1.2. ¿Que es el simulador de escenarios con usuarios móviles?

El simulador de escenarios con usuarios móviles es una herramienta que trata de simular distintos tipos de algoritmos de recomendaciones en el entorno de una ciudad real con el fin de evaluar su correcto funcionamiento.

Se trata de un sistema multiusuario donde distintos tipos de usuarios se conectan y se mueven en una ciudad real (el entorno es configurado de antelación). El recomendador tiene en cuenta distintos tipos de parámetros: desde sus posiciones geográficas hasta sus perfiles y preferencias.

A.1.3. Tipos de tecnologías utilizadas

Esta herramienta consta de dos partes: la primera es el simulador y la segunda es el recomendador.

El Simulador esta desarrollado con nodejs, sockets-io, angularjs, bootstrap y como base de datos utiliza mongodb. El recomendador está desarrollado con java. La integración entre el navegador (cliente), simulador y recomendador está realizada mediante un sistema de evetos bidirecciona-

les (sockets-io). De esta forma conseguimos comunicar todas la partes del sistema en tiempo real.

A.1.4. Instalación

Paso 1: Instalar mongoDB

Lo primero que tenemos que hacer es instalar mongodb. Los pasos para la instalación de mongodb depeden del tipo de sistema operativo que disponemos. Por esto no vamos a entrar en detalle de como se instala y vamos a seguir el tutorial disponible en la web oficial:

- Linux: https://docs.mongodb.org/manual/administration/install-on-linux/
- Windows: https://docs.mongodb.org/manual/tutorial/install-mongodbon-windows/
- Mac OS: https://docs.mongodb.org/manual/tutorial/install-mongodbon-os-x/

Paso 2: Instalar Node.js y NPM

Vamos en la web oficial de nodejs (https://nodejs.org) y descargamos e instalamos la version v0.12.4. En el caso de Windows la instalación es igual que la de cualquier otro programa. Para la instalación en otros SO visitar https://nodejs.org/en/download/.

A continuación tenemos que instalar el gestor de paquetes NPM v2.10.1. En el caso de Windows vamos en la web oficial (https://nodejs.org/en/download/) y nos descargamos e instalamos el ejecutable. En el caso de Linux ejecutamos el siguiente comando en la consola:

```
sudo apt-get install npm
```

Paso 3: Instalar git

Git es un sistema distribuido de control de versiones. Para la instalación de este nos descargamos el ejecutable de https://git-scm.com/downloads y seguimos los pasos que nos indica este.

Paso 4: Clonar el proyecto de github e instalarlo

A continuacion tenemos que clonar el proyecto del Simulador de github. Para esto abrimos una consola y nos situamos en el directorio donde queremos clonar el proyecto. A continuacion ejecutamos el siguiente comando:

```
git clone https://github.com/slavcho87/Simulator
```

Vemos que se ha creado un directorio llamado Simulator. Lo primero que tenemos que hacer es bajarnos todas las dependencias del proyecto. Por esto ejecutamos el siguiente comando:

```
npm install
```

Una vez que nos hemos clonado el proyecto y descargado las dependencias de este podemos arrancar el servidor mediante el siguiente comando:

```
npm start
```

Paso 4.1: Configuraciones básicas del simulador En el fichero base-Config.json disponemos de las siguientes basicas para el simulador como el puerto donde se ejecuta el servidor y la localizacion de la base de datos. Si editamos el fichero baseConfig.json veremos que tiene el siguiente contenido:

```
{
    "port": 81,
    "locationDB": "localhost",
    "nameDB": "simulator"
}
```

Las variables del fichero baseConfig.json tienen el siguiente significado:

- port: es el puerto donde se va a ejecutar el servidor
- locationDB: es la localización donde se va a ejecutar mongodb.
- nameDB: es el nombre del esquema de la base de datos donde nos conectamos.

Dichas configuraciones son importantes ya que de esta forma tenemos la opción de llevarnos la base de datos en un servidor diferente para darle más potencia.

Paso 4.2: Posibles problemas durante la ejecución del simulador Se puede dar el caso que al intentar arrancar el simulador nos de el siguiente error:

```
Error: listen EACCES 0.0.0.0:81

at Object.exports._errnoException (util.js:870:11)

at exports._exceptionWithHostPort (util.js:893:20)

4 at Server._listen2 (net.js:1218:19)

5 at listen (net.js:1267:10)

6 at Server.listen (net.js:1363:5)
```

El error EACCES ocurre cuando no tenemos suficientes privilegios sobre el puerto donde estamos lanzando el servidor Node.js. La solución depende del Sistema Operativo que estamos usando. En el caso de Windows tenemos que cambiar el puerto donde lanzamos el servidor siempre y cuando estemos usando un usuario que tenga suficientes privilegios. En el caso de Linux tenemos que lanzar el servidor con el comando sudo delante de la siguiente manera:

```
slavcho@ubuntu:~/Simulator/scripts$ sudo ./ejecutarSimulador.sh
```

Paso 5: Instalación del recomendador

Paso 5.1: Instalar Apache maven Antes de todo tenemos que instalar Apache maven que es un gestor de paquetes. Por lo tanto vamos en la web oficial (https://maven.apache.org/) y descargamos y descomprimimos el ficheros compromido. A continuación tenemos que añadir en la variable PATH la dirección de la carpeta donde hemos descomprimido maven. Para ver que maven se haya instalado correctamente ejecutamos el siguiente comando:

```
1 mvn -v
```

De esta forma comprobamos la version de maven que tenemos instalado. Tenemos que ver una salida como la siguiente:

```
Apache Maven 3.2.5 (12a6b3acb947671f09b81f49094c53f426d8cea1;
2014-12-14T18:29:23+01:00)

Maven home: C:\maven

Java version: 1.7.0_79, vendor: Oracle Corporation

Java home: C:\Program Files (x86)\Java\jdk1.7.0_79\jre

Default locale: es_ES, platform encoding: Cp1252

OS name: "windows 8.1", version: "6.3", arch: "x86", family: "windows"
```

Paso 5.2: Compilar el recomendador Una vez que hayamos instalado maven correctamente tenemos que compilar el recomendador. Por esto ejecutamos el ficheros compilarRecommender que se encuentra en la carpeta scripts. Existen dos versiones: uno para Windows y otro para Linux.

Paso 5.3: Configuraciones básicas del recomendador Si editamos el fichero configs/baseConfig.txt podemos ver que tiene el siguiente formato:

- host: es la dirección donde se ejecuta el simulador. En el ejemplo este se está ejecutando en local
- port: es el puerto donde se ejecuta el simulador. En el ejemplo este se ejecuta en el puerto 81
- hostMongo: es la dirección de la base de datos. En el ejemplo esta se está ejecutando en local
- portMongo: es el puerto donde se ejecuta la base de datos.
- nameDB: es el nombre del esquema de la base de datos

Paso 5.4: Ejecutar el recomendador Para ejecutar el recomendar tenemos que ejecutar el ficheros ejecutarRecommender que se encuentra en la carpeta scripts. Existe dos versiones de este fichero: uno para Windows y otro para Linux.

A.1.5. Primeros pasos

El primero paso al instalar el simulador es crear nuestro usuario (apartado A.5). A continuación vamos en Settings y realizamos las configuraciones realizadas en los capítulos A.2, A.3 y A.4.

Se trata de crear nuevas configuraciones para el recomendador y crear los tipos de objetos dinámicos y estáticos que usaremos posteriormente en la creación de mapa (apartado A.8) y escenas (apartado A.9).

A.2. Configuración del recomendador

Para configurar los parámetros del recomendador primero tenemos que estar autentificados con nuestros usuario. Una vez autentificados vamos en Settings \rightarrow Recommender settings y vemos la siguiente pantalla:

Figura A.1: Configuración del recomendador

En este formulario tenemos que introducir los siguientes datos:

- Pool name: es nombre que vamos a dato al conjunto de parámetros
- Recommender type: es el tipo de recomendador. Podemos elegir entre pull (el usuario solicita una recomendación) o push (el recomendador realiza recomendaciones sin que el usuario lo haya solicitado)
- Strategy type:: indicar el tipo de implementación que queremos para el recomendador
- Maximum distance to go (meters): es la distancia máxima (en metros)
 que está dispuesto a recorrer el usuario
- Visibility radius (meters): radio (en metros) de visibilidad del usuario.
 Los items que están fuera de este radio son invisibles para el usuario
- Number of items to recommend: número máximo de items que va a recomendar el recomendador cada vez
- Minimum score for recommending an item: puntuación mínima para que un item sea recomendado

A.3. Configuración de los objetos estáticos

Para crear un nuevo tipo de objeto estático primero tenemos que estar autentificados con nuestros usuario. Una vez autentificados vamos en Settings \rightarrow Static item type y vemos la siguiente pantalla:

Figura A.2: Configuración de los objetos estáticos

En este formulario tenemos que introducir los siguientes datos:

- Name: es el nombre del tipo del objeto estático
- Icon: icono del tipo del objeto estático

Por debajo del formulario de creación nuevos tipos de objetos estáticos aparecerá la lista con todos los tipos de objetos estáticos que han sido creados. En el apartado opciones podemos gestionar cada uno de estos objeto.

A.4. Configuración de los objetos dinámicos

Para crear un nuevo tipo de objeto dinámicos primero tenemos que estar autentificados con nuestros usuario. Una vez autentificados vamos en Settings \rightarrow Dynamic item type y vemos la siguiente pantalla:

Figura A.3: Configuración de los objetos dinámicos

En este formulario tenemos que introducir los siguientes datos:

- Name: es el nombre del tipo del objeto dinámicos
- Icon: icono del tipo del objeto dinámicos

Por debajo del formulario de creación nuevos tipos de objetos dinámicos aparecerá la lista con todos los tipos de objetos dinámicos que han sido creados. En el apartado opciones podemos gestionar cada uno de estos objeto.

A.5. Crear un un nuevo usuario

Para registrar un nuevo usuario lo que tenemos que hacer es pinchar en el enlace Register en la página lo login. Se nos muestra la siguiente pantalla:

Figura A.4: Crear un nuevo usuario

En este formulario tenemos que añadir el nombre del usuario, su contraseña y subir su imagen. Esta imagen aparecerá en el mapa del simulador. Una vez que hayamos creado el usuario tenemos que pulsar el botón "Go to login" para volver en la pantalla de login para introducir el nombre de nuestro usuario su contraseña.

A.6. Actualizar el perfil de un usuario

Para realizar cambios en el nombre del usuario, cambiar la imagen del perfil o cambiar la contraseña tenemos que ir en el menú Perfil:

Figura A.5: Actualizar el perfil de un usuario

Vemos que hay 3 formularios:

- uno para cambiar el nombre del usuario
- otro para cambiar la contraseña del usuario
- otro para cambiar la imagen del perfil del usuarios

Al realizar cualquier cambio el el sistema nos informara si la acción ha salido bien o no.

A.7. Búsqueda de mapas

La opción Maps \to map search nos permite buscar mapas a los cuales queremos conectarnos para realizar alguna simulación:

Figura A.6: Búsqueda de mapas

En la imagen vemos que disponemos de distintos tipos de filtros para la búsqueda de mapas. Estos filtros son: por nombre, por tipo, por estado, por ciudad, por fechas de creación o solo buscar solo mis mapas. Si no introducimos ningún filtro devolverá todos los mapas que están creados en el sistema.

A.8. Crear un nuevo mapa

Para crear un nuevo mapa vamos en Map
s \rightarrow new map y vemos el siguiente formulario:

Figura A.7: Crear un nuevo mapa

Tenemos que rellenar los siguientes datos:

- Name: es el nombre que queremos dar al mapa.
- Type: tipo que mapa. Podemos elegir entre publico (puede conectarse cualquier usuarios) y privado (solo puede conectarse el que la hacreado).
- State: estado del mapa. Podemos elegir entre activa (que el mapa está disponible para realizar simulaciones) y borrador (el mapa todavía no está disponible para realizar simulaciones)

Una vez que hayamos rellenado el formulario pulsamos en el botón Save y el sistema nos informara si el guardado ha salido con éxito o no. Si se ha guardado con éxito por debajo de este formulario aparece el formulario de creaciones de escenas y una lista de las escenas actuales. Lo normales es que la lista de escenas creadas aparezca vacía ya que todavía no hemos creado ninguna escena. Para ver los detalles de como crear una escena consultar el capítulo A.9.

A.9. Crear una nueva escena

A.10. Edición de mapas y escenas

Para modificar un mapa o escena primero tenemos que realizar una busque de mapas en Maps \rightarrow maps search y en la lista de resultados pulsamos sobre el icono de editar imagen. Solo podemos editar un mapa si la hayamos creado nosotros. De lo contrario el icono de editar imagen no aparecerá. Una vez que hayamos pulsado el icono de editar imagen entonces veremos la siguiente pantalla:

Figura A.8: Edición de mapas y escenas

En esta pantalla disponemos de distintos tipos de opciones entre los cuales modificar datos del mapa, crear o modificar escenas.

A.11. Simulación

Para ejecutar una simulación lo primero que tenemos que hacer es realizar la búsqueda de un mapa explicado en el capítulo A.7. Una vez que hayamos realizado la búsqueda pulsamos el botón "Playz a continuación se nos muestra una pantalla en la cual tenemos que elegir la escena a la cual queremos conectarnos.

Figura A.9: Simulación

Para iniciar la simulación y que todos los items empiecen a moverse tenemos que pulsar el botón play. Hay que tener en cuenta que existe la posibilidad que de ya haya usuario que estén ejecutando una simulación sobre este escenario. Por esto cuando nos conectemos a la escena veremos que los objetos ya se estén moviendo. En cualquier momento podemos pausar la simulación. Entonces la simulación se pausa en todos los usuarios que están conectados en la escena. En cualquier momento cualquier usuario puede reanudar la simulación. Para salir de la simulación lo único que tenemos que

hacer es salir de la pantalla de simulación.

A.11.1. Controles del usuario

Una vez que este cargada la escena tenemos que elegir donde queremos situarnos en el mapa. Por esto tenemos que hacer click en mapa para situar el usuario. A continuación podemos empezar a movernos por el mapa con los siguientes controles:

- tecla w: movimiento hacia arriba
- tecla s: movimiento hacia abajo
- tecla a: movimiento hacia la izquierda
- tecla d: movimiento hacia la derecha
- espacio: pausar el movimiento del usuario

A.11.2. Recomendaciones

Para obtener recomendaciones tenemos que seguir los siguientes pasos:

- paso 1: seleccionamos los tipos de items sobre los cuales queremos obtener resultados (items types to recommend)
- paso 2: en Result type show elegimos como queremos que se nos muestren los resultados. Por defecto si el recomendador no tiene items que recomendar mostrará una lista vacía.
- paso 3: pulsamos el botón Recommend items para obtener resultados

A.11.3. Votaciones

Para realizar las votaciones disponemos de los siguientes opciones:

- opción 1: pulsamos sobre el item concreto en el mapa y se nos abrirá una select donde podemos votar
- opción 2: una vez que hayamos obtenido una lista con items recomendados disponemos de un select donde podemos realizar la votación

Anexos B

Análisis

B.1. Análisis de requisitos

B.1.1. Requisitos no funcionales

Código	Descripción
RNF-1	La aplicación tratara de un simulador. Dicha simulación se rea-
	lizara sobre mapas online
RNF-2	La navegación por los menús de la aplicación se realizara me-
	diante una interfaz gráfica
RNF-3	Los textos por defecto de la aplicación serán en inglés
RNF-4	La autenfiticación de usuarios se realizará mediante web tokens
RNF-5	La interfaz gráfica debe ser responsive desarrollada con boots-
	trap
RNF-6	El back-end debe ser desarrollado con node.js, sockets.io y ex-
	press
RNF-7	El front-end debe ser desarrollado con Angular.js

Cuadro B.1: Requisitos no funcionales

B.1.2. Requisitos funcionales

Código	Descripción
RF-1	La aplicación permitirá crear un nuevo usuario
RF-2	La aplicación permitirá al usuario buscar mapas por su nom-
	bre, tipo, estado, cuidad y fecha de creación
RF-3	La aplicación permitirá al usuario crear un nuevo mapa
RF-4	La aplicación permitirá al usuario crear una nueva escena
	asociada a un mapa existente
RF-5	La aplicación listara todas las escenas de un mapa
RF-6	La aplicación permitirá al usuario editar un mapa existente
RF-7	La aplicación permitirá al usuario editar las escenas de un
	mapa existente
RF-8	La aplicación permitirá al usuario crear un nuevo tipo de
	objeto estático
RF-9	La aplicación permitirá al usuario crear un nuevo tipo de
	objeto dinámico
RF-10	La aplicación listará todos los tipos de objetos estáticos crea-
	dos
RF-11	La aplicación listará todos los tipos de objetos dinámicos
	creados
RF-12	La aplicación permitirá al usuario editar los objetos estáticos
	credos
RF-13	La aplicación permitirá al usuario editar los objetos dinámi-
	cos creados
RF-14	La aplicación permitirá al usuario cambiar el nombre
RF-15	La aplicación permitirá al usuario cambiar su contraseña
RF-16	La aplicación permitirá al usuario cambiar la imagen aso-
DD 15	ciada a un usuario
RF-17	La aplicación permitirá al usuario configurar un nuevo tipo
DE 10	de recomendador
RF-18	La aplicación permitirá al usuario editar la configuración de recomendador existente
RF-18	
NF-10	La aplicación permitirá al usuario asociar un recomendador existente a una escena
RF-19	La aplicación permitirá al usuario definir los limites de una
101-19	escena
RF-20	La aplicación permitirá al usuario asociar un objeto estático
101 20	a una escena
RF-21	La aplicación permitirá al usuario cargar todos los objetos
	estáticos desde un fichero JSON
	I

Análisis 49

Código	Descripción
RF-22	La aplicación permitirá asociar un objeto dinámico y su de-
	finir su ruta en una escena
RF-23	La aplicación permitirá al usuario cargar todos los objetos
	dinámicos y sus rutas desde un fichero JSON
RF-24	La aplicación listará todos objetos estáticos asociados a una
	escena
RF-25	La aplicación listará todos los objetos dinámicos asociados
	a una escena
RF-26	La aplicación permitirá borrar un objeto estático asociado
	a una escena
RF-27	La aplicación permitirá borrar un objeto dinámico asociado
	a una escena
RF-28	La aplicación permitirá al usuario elegir un si mapa es cola-
	borativo o no
RF-29	La aplicación permitirá al usuario ejecuta una simulación
	sobre la escena de un mapa
RF-30	La aplicación permitirá al usuario solicitar recomendaciones
	mientras se está ejecutando una simulación siempre y cuando
	el recomendador asociado a la escena es de tipo pull
RF-31	El usuario recibirá recomendaciones sin haberlas solicitado
	siempre y cuando el recomendador asociado a la escena de
	es tipo push
RF-32	El usuario puede arrancar/pausar una simulación

Cuadro B.2: Requisitos funcionales

B.2. Objetivos de Usabilidad

La Usabilidad, según el estándar ISO 9241-11, se define como la medida en la que un producto se puede usar por determinados usuarios para conseguir objetivos específicos de efectividad, eficiencia y satisfacción de un contexto de uso específico.

Así que para poder garantizar la calidad y la satisfacción de los usuarios tenemos que tener en cuenta los objetivos de usabilidad descritos:

- **Efectividad**: asegurar que la aplicación desempeñe correctamente todos los objetivos de la aplicación.
- Eficiencia: asegurar que cada objetivo de aplicación sea realizado en el menor tiempo posible desempeñando correctamente su tareas .
- Utilidad:para que el sistema pueda hacer todas las tareas que el usuario deba hacer, la aplicación tendrá conexión a Internet ya que estable-

cerá conexión con un servidor en el que se encuentra toda la información de los productos. Siempre y cuando la conexión sea satisfactoria, el usuario podrá realizar las tareas descritas en el apartado de análisis de requisitos funcionales.

• Seguridad: asegurar que aplicación evite situaciones de pérdida de información, evitar que se cuelgue y garantizar la confidencialidad de la información ya que la aplicación tiene acceso a Internet.

Objetivos	Eficacia	Eficiencia	Satisfacción
Utilizabilidad glo-	Usuarios que ter-	Tiempo de reali-	Frecuencia de
bal	minan la tarea	zación de tareas:8	quejas: 2 - 4 de
	con éxito: 99% de	seg.	cada 100
	usuarios		
Satisface las ne-	Tareas termina-	Tiempo de reali-	Evaluación de sa-
cesidades de los	das con éxito:	zación de tareas: 5	tisfacción en el
usuarios habitua-	95% de tareas	seg.	uso de las funcio-
les			nes: 9/10
Satisface las ne-	Tareas termina-	Tiempo de reali-	Tiempo de uso
cesidades de los	das con éxito en	zación de las ta-	no obligatorio: 10
usuarios noveles	el primer intento:	reas: 15 seg.	seg 20 seg.
	90% de tareas		
Facilidad de	Número de	Número de usos	Evaluación de
aprendizaje	funciones apren-	para aprendizaje:	la facilidad de
	didas: 100% de	2 - 3 usos	aprendizaje: 8/10
	las funciones		
Tolerancia a erro-	Errores registra-	Tiempo empleado	tratamiento de
res	dos o corregidos	en corregir erro-	errores: 9/10
	por el sistema:	res: 30 seg.	
	100% de errores		
Legibilidad	Palabras leídas	Tiempo necesa-	Evaluación de las
	correctamente a	rios par leer la	molestias visua-
	distancia normal:	pantalla: 10 seg	les: $1/10$ (menos
	100% de palabras	15 seg.	nota implica
			menor molestia)

Cuadro B.3: Objetivos de usabilidad

Análisis 51

B.3. Diagrama de casos de uso

En esta sección se mostrarán los diagramas de casos de usos analizados. El análisis se ha dividido entre, por un lado, la navegación por los menús y por otro lado la simulación en sí.

B.4. Diagrama de casos de uso detallados

Anexos C

Diseño

Anexos D

Implementación

Anexos E

Pruebas de estrés

Anexos F

Integración con un recomendador externo