REGRAS DE DERIVAÇÃO

DERIVADAS SIMPLES

• Soma/Diferença: $(f \pm g)' = f' \pm g'$

• Produto: (fg)' = f'g + fg'Constante: $(\alpha f)' = \alpha f'$

• Quociente: $\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$

• Potência: $(f^{\alpha})' = \alpha f^{\alpha-1} f'$

• Exponencial: $(\alpha^f)' = f'a^f(\ln \alpha)$ Base e: $(e^f)' = f'e^f$

• Logaritmo: $(\log_{\alpha} f)' = \frac{f'}{f(\ln \alpha)}$ Base e: $(\ln f)' = \frac{f'}{f}$

• Funções Trigonométricas:

$$- (\sin f)' = f'(\cos f)$$

$$- (\cos f)' = -f'(\sin f)$$

$$- (\tan f)' = \frac{f'}{\cos^2 f}$$

$$- (\arcsin f)' = \frac{f'}{\sqrt{1 - f^2}}$$

$$- (\arccos f)' = -\frac{f'}{\sqrt{1 - f^2}}$$

$$- (\arctan f)' = \frac{f'}{1 + f^2}$$

• Função Hiperbólicas:

$$- (\sinh f)' = f'(\cosh f)$$

$$- (\cosh f)' = f'(\sinh f)$$

DERIVADA DA FUNÇÃO COMPOSTA

• $f[g(x)]' = f'[g(x)] \times g'(x)$

DERIVADA DA FUNÇÃO INVERSA

•
$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}$$

REGRAS DE PRIMITIVAÇÃO

PRIMITIVAS IMADIATAS E QUASE-IMEDIATAS

•

PRIMITIVAÇÃO POR PARTES

•
$$\int u(x) \cdot v'(x) dx = u(x) \cdot v(x) - \int u'(x) \cdot v(x) dx$$

PRIMITIVAÇÃO POR SUBSTITUIÇÃO

•
$$\int f(x) dx = \left(\int f(u(t)) u'(t) dt \right)_{t=u^{-1}(x)}$$