Eine Woche, ein Beispiel 12.1 weights of type E

It feels incomplete to discuss only the type E case without addressing the other classical cases.

Hence, this document serves as a complement to [2024.12.01].

1. The formula becomes

$$2 \frac{\langle \varpi_i, \lambda_j \rangle}{\langle \lambda_j, \lambda_j \rangle} = \delta_{ij} \qquad i.e., \quad \langle \varpi_i \frac{2}{\langle \lambda_i, \lambda_i \rangle}, \lambda_j \rangle = \delta_{ij}$$

when $i \neq j$, $\frac{2}{\langle \alpha_i, \alpha_i \rangle}$ won't impact, as $S_{ij} = 0$

$$S_k V = V - 2 \frac{\langle \lambda_k, v \rangle}{\langle \lambda_k, \lambda_k \rangle} \lambda_k$$

- 2. A = (<\ai, dj>), j is not Cartan matrix. It is \(2 \frac{\lambda_i, \alpha_i>}{\lambda_i, \alpha_i>} \), j.
- 3. The minuscule weight may not generate the whole lattice in type A, B, D
- 4. The minuscule weight may not be the wts nearest to the origin in type A,B,C,D

Since the coordinate itself already offers good symmetry(compared with type E case), we will omit many details.

5. In type B, C, F_4 , G_2 , the coordinate slightly affact the inner product structures, therefore the volume. We choose the coordinate such that most simple roots have length $\sqrt{2}$.

$$B_n \stackrel{\circ}{\underset{\stackrel{}{\longrightarrow}} \circ} \stackrel{\circ}{\underset$$

$$\langle a_i, a_i \rangle = |a_i|^2$$

$$F_4$$
 $\xrightarrow{\circ}$ $\xrightarrow{\circ}$ $\xrightarrow{\circ}$ $\xrightarrow{\circ}$ $\xrightarrow{\circ}$

$$G_1$$
 $\underset{1}{\overset{\leftarrow}{\rightleftharpoons}}$

- Weights nearest to the origin

There are n many minuscule representations of A_n:

typical coordinates

(6)
$$\frac{1}{6}(5,-1,-1,-1,-1,-1)^{\top}$$

(6) $\frac{1}{6}(4,4,-2,-2,-2,-2)^{\top}$

(6) $\frac{1}{6}(3,3,3,-3,-3,-3)^{\top}$

(6) $\frac{1}{6}(2,2,2,2,2,-4,-4)^{\top}$

(6) $\frac{1}{6}(1,1,1,1,1,-5)^{\top}$

$$\begin{aligned} \left| \mathcal{V}_{i} \right|^{2} &= \left\langle \mathcal{V}_{i}, \ \mathcal{V}_{i} \right\rangle \in \left\{ \frac{1}{6}, \frac{4}{3}, \frac{3}{2} \right\} \\ \text{in general, in } \binom{n+1}{k}, \qquad \left\langle \mathcal{V}_{i}, \ \mathcal{V}_{i} \right\rangle &= \frac{k \left(n+1-k \right)}{n+1} \end{aligned}$$

in
$$\left\{\sum_{i=1}^{n+1} Z_i = 0\right\} \cong \mathbb{R}^n$$

Restrict to the standard rep case,
$$(v_i, v_j > \epsilon \begin{cases} \frac{n}{n+1}, -1 \end{cases}$$
.

The graph has no edges.

Ex. Verify that all the $2\binom{n+1}{2} = 30$ roots are given by

- Weyl group action

Sn+1 acts by permutations. Nothing special.

- 2. Dn E.g. n=6 n>4 for avoiding special cases.
- Weights nearest to the origin

There are 3 minuscule representations of D_n:

in general,

$$\langle v_i, v_i \rangle \in \{1, \frac{n}{4}\}$$
 in \mathbb{R}^n

Restrict to the standard rep case, $\langle v_i, v_j \rangle \in \{1, 0, -1\}$.

$$v_j > \varepsilon | 1, v, -1 |$$

The graph is

Here, the weights corresponding to standard reps does not generate all other weights.

Ex. Verify that all the $4\binom{n}{2} = 60$ roots are given by

typical coordinates Symbol
$$(\pm 1, \pm 1, 0, 0, 0, 0)^{T}$$

$$(-1, 1, 0, 0, 0, 0)^{T}$$

$$2 \pm i \pm j$$

$$3 \pm i \pm j$$

$$S_{k} = S_{(k,k+1)} \quad \text{for } k = 1, ..., n-1.$$

$$S_{n} = \begin{pmatrix} 1 & & & \\ & \ddots & & \\ & & -1 \end{pmatrix}$$

$$W(D_n) \cong (\mathbb{Z}_{2\mathbb{Z}})^{n-1} \rtimes S_n \subseteq (\mathbb{Z}_{2\mathbb{Z}})^n \rtimes S_n$$

3. D4

- Weights nearest to the origin

D_4 is more symmetric.

#	typical coordinates $(1, 0, 0, 0)^{\top}$	symbol	0
8 = 2.4		Vi &-Vi	•—
8 = 23	$\frac{1}{2}(\pm 1, \pm 1, \pm 1, \pm 1)$ odd sign $\frac{1}{2}(1, 1, 1, 1)$	10 _{±±±±} 10-	الم
8 = 2 ³	$\frac{1}{2}(\pm 1, \pm 1, \pm 1, \pm 1)^{T}$ even sign	V _{±±±±}	

If not restricted to the standard representation case,

- minuscule weights

0-0-0-

The minuscule weight of B_n is usually not the nearest weight orbit:

#

typical coordinates

symbol

Spin $32 = 2^{t}$

\(\frac{1}{2}\)\(\fra

Utttt

 $\langle v_i, v_j \rangle \in \left\{ \frac{n}{4}, \frac{n^2}{4}, \cdots, \frac{-n}{4} \right\}.$

in IRⁿ

$$\begin{cases}
\lambda_{1}, & \lambda_{2}, & \lambda_{3}, & \lambda_{4}, & \lambda_{5} \\
= \begin{cases}
v_{1} - v_{2}, & v_{2} - v_{3}, & v_{3} - v_{4}, & v_{4} - v_{5}, & v_{5}
\end{cases}$$

$$= \begin{cases}
\begin{pmatrix}
1 \\
-1 \\
0 \\
0 \\
0
\end{pmatrix}, & \begin{pmatrix}
0 \\
0 \\
1 \\
0 \\
0
\end{pmatrix}, & \begin{pmatrix}
0 \\
0 \\
0 \\
1 \\
0
\end{pmatrix}, & \begin{pmatrix}
0 \\
0 \\
0 \\
0 \\
1
\end{pmatrix}$$

Ex. Verify that all the 2 n = 50 roots are given by

typical coordinates

$$20 = 2 \cdot {5 \choose 2}$$
 $(1, -1, 0, 0, 0)^{T}$
 $10 = 2 \cdot 5$ $(1, 0, 0, 0, 0)^{T}$
 $20 = 2 \cdot {5 \choose 2}$ $(1, 1, 0, 0, 0)^{T}$

- Fundamental weights

tal weights
$$\begin{cases}
w_{1}, & w_{2}, & w_{3}, & w_{4}, & w_{5} \\
w_{1}, & w_{1}, & w_{2}, & w_{3}, & w_{4}, & w_{5}
\end{cases}$$

$$= \begin{cases}
v_{1}, & v_{1} + v_{2}, & \sum_{i=1}^{3} v_{i}, & \sum_{i=1}^{4} v_{i}, & v_{+++++} \\
v_{1}, & v_{1} + v_{2}, & \sum_{i=1}^{4} v_{i}, & v_{+++++}
\end{cases}$$

$$= \begin{cases}
v_{1}, & v_{1} + v_{2}, & \sum_{i=1}^{4} v_{i}, & v_{+++++} \\
v_{1}, & v_{2}, & v_{3}, & v_{4}, & v_{5}
\end{cases}$$

$$= \begin{cases}
v_{1}, & v_{1} + v_{2}, & v_{1} + v_{2}, & v_{2} + v_{3}
\end{cases}$$

$$= \begin{cases}
v_{1}, & v_{1} + v_{2}, & v_{2} + v_{3}
\end{cases}$$

$$= \begin{cases}
v_{1}, & v_{1} + v_{2}, & v_{2} + v_{3}
\end{cases}$$

$$= \begin{cases}
v_{1}, & v_{1} + v_{2}, & v_{3} + v_{3}
\end{cases}$$

$$= \begin{cases}
v_{1}, & v_{1} + v_{2}, & v_{3} + v_{3}
\end{cases}$$

$$= \begin{cases}
v_{1}, & v_{1} + v_{2}, & v_{3} + v_{3}
\end{cases}$$

$$= \begin{cases}
v_{1}, & v_{1} + v_{2}, & v_{3} + v_{3}
\end{cases}$$

$$= \begin{cases}
v_{1}, & v_{1} + v_{2}, & v_{3} + v_{3}
\end{cases}$$

$$= \begin{cases}
v_{1}, & v_{1} + v_{2}, & v_{3} + v_{3}
\end{cases}$$

$$= \begin{cases}
v_{1}, & v_{1} + v_{2}, & v_{3} + v_{3}
\end{cases}$$

$$= \begin{cases}
v_{1}, & v_{1} + v_{2}, & v_{3} + v_{3}
\end{cases}$$

$$= \begin{cases}
v_{1}, & v_{1} + v_{2}, & v_{3} + v_{3}
\end{cases}$$

$$= \begin{cases}
v_{1}, & v_{2} + v_{3}
\end{cases}$$

$$S_{k} = S_{(k,k+1)} \qquad \text{for } k = 1, ..., n-1.$$

$$S_{n} = \begin{pmatrix} 1 & & & \\ & \ddots & & \\ & & & 1 \end{pmatrix}$$

$$W(B_n) \cong (\mathbb{Z}_{2\mathbb{Z}})^n \rtimes S_n$$

- minuscule weights

• - • - • - •

The minuscule representation of C_n is the standard representation:

#

typical coordinates

symbol

vector 10 = 2.5

(1,0,0,0,0)

vi & - Vi

 $\langle v_i, v_j \rangle \in \{1, 0\}.$

in IRⁿ

Ex. Verify that all the 2 n = 50 roots are given by

$$\begin{array}{c}
\#\\
20 = 2 \cdot {5 \choose 2} \\
10 = 2 \cdot 5 \\
20 = 2 \cdot {5 \choose 1}
\end{array}$$

typical coordinates

$$20 = 2 \cdot {5 \choose 2}$$
 $(1, -1, 0, 0, 0)^{T}$
 $10 = 2 \cdot 5$ $(2, 0, 0, 0, 0)^{T}$
 $20 = 2 \cdot {5 \choose 2}$ $(1, 1, 0, 0, 0)^{T}$

- Fundamental weights

$$S_k = S_{(k,k+1)}$$
 for $k = 1,...,n-1$.
 $S_n = \begin{pmatrix} 1 & & & \\ & \ddots & & \\ & & & 1 \\ & & & 1 \end{pmatrix}$

$$W(c_n) \cong (\mathbb{Z}_{2\mathbb{Z}})^n \rtimes S_n$$

6.F4

- Weights nearest to the origin

We make a list of the root lattices:

Restrict to the short roots:

$$\langle v_i, v_j \rangle \in \{1, \frac{1}{2}, 0, -\frac{1}{2}, -1\}$$
 in \mathbb{R}^4

Restrict to thhe short roots, the graph constructed has 24 vertices and 72 edges. It is not connected, and has 3 components. The connected component has HoG Id 176.

$$\begin{cases}
\lambda_{1}, & \lambda_{2}, & \lambda_{3}, & \lambda_{4} \\
= \begin{cases} \lambda_{1-3}, & \lambda_{3-4}, & e_{4}, & \lambda_{4---} \end{cases} \\
= \begin{cases} \begin{pmatrix} 0 \\ 1 \\ -1 \\ 0 \end{pmatrix}, & \begin{pmatrix} 0 \\ 0 \\ 1 \\ -1 \end{pmatrix}, & \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}, & \begin{pmatrix} 1 \\ -1 \\ -1 \\ -1 \end{pmatrix},
\end{cases}$$

- Fundamental weights

$$\begin{cases}
& \omega_{1}, & \omega_{2}, & \omega_{3}, & \omega_{4} \\
& \delta_{1+2}, \delta_{1+2} + \delta_{1+3}, e_{1} + \delta_{1+4+}, & e_{1}
\end{cases}$$

$$= \begin{cases}
\begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, & \begin{pmatrix} 2 \\ 1 \\ 1 \\ 0 \end{pmatrix}, & \begin{pmatrix} 3 \\ 1 \\ 1 \\ 1 \end{pmatrix}, & \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix},
\end{cases}$$

7. G2

- Weights nearest to the origin

We make a list of the root lattices:

typical coordinates symbol

$$\frac{1}{\sqrt{2}}(1, -1, 0)^{T} \qquad \qquad \qquad 2_{1-2} \quad \text{Short} \quad \rightleftharpoons 0$$

$$\frac{1}{\sqrt{2}}(2, -1, -1)^{T} \qquad \qquad \beta_{1} \& -\beta_{1} \quad \text{long} \quad 0 \Longrightarrow 0$$

Restrict to the short roots:

$$\langle v_i, v_j \rangle \in \{1, \frac{1}{2}, -\frac{1}{2}, -1\}$$

in $\{\sum_{i=1}^3 z_i = 0\} \cong \mathbb{R}^2$

000

- Simple roots

$$\begin{cases} \lambda_{1}, & \lambda_{2} \end{cases}$$

$$= \begin{cases} \lambda_{1-2}, & \beta_{2} \end{cases}$$

$$= \begin{cases} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, & \frac{1}{\sqrt{2}} \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix} \end{cases}$$

- Fundamental weights

$$\begin{cases} \omega_{1} & \omega_{2} \end{cases}$$

$$= \begin{cases} \lambda_{3-2} & -\beta_{3} \end{cases}$$

$$= \begin{cases} \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}, & \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} \end{cases}$$

$$S_1 = S_{(1,2)}$$
 $S_2 \longrightarrow \frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ 2 & 2 & -1 \\ 2 & -1 & 2 \end{pmatrix}$