COMS W3261

Computer Science Theory

Lecture 19 Satisfiability

Alexander Roth

2014 - 11 - 12

Outline

- Boolean expressions
- The satisfiability problem
- Normal forms for boolean expressions
- The problems CSAT and kSAT
- SAT is NP-complete: The Cook-Levin theorem

1 Boolean Expressions

• Boolean expressions are generated by the following CFG:

$$E \to E \vee T \mid T$$

$$T \to T \wedge F \,|\, F$$

$$F \to (E) \mid \neg \mid var$$

var represents a variable whose value can be either 1 (for true) or 0 (for false). The operator \land stands for logical AND, \lor for logical OR, and \neg for logical NOT. Note that the grammar gives the operator \neg the highest precedence, then \land , then \lor .

Class Notes

Normal Forms for BE's

• Conjunction: AND $x \wedge y$ xy

• Disjunction: OR $x \vee y$ x + y

• Negation: NOT $\neg x \ \overline{x}$

• Literal: variable or negated variable x, \overline{x}

• Clause: logical OR of one or more literals.

A BE is in Conjunctive Normal Form (CNF) if it is the logical AND of clauses, e.g., $(x + \overline{y})(\overline{x} + y) = (x \vee \neg y) \wedge (\neg x \vee y)$

2 The Satisfiability Problem

- A truth assignment for a boolean expression assigns either the value true (1) or the value false(0) to each of the variables in the expression.
- The value E(T) of an expression E given a truth assignment T is the result of evaluating E with each variable x in E replaced by T(x).
- A truth assignment T satisfies E if E(T) = 1.
- ullet An expression E is satisfiable if there exists a truth assignment T that satisfies E.
- The *satisfiability problem* (SAT) is to determine whether a given boolean expression is satisfiable.
 - The value of $E = x \land \neg (y \lor z)$ given the truth assignment T(x) = 1, T(y) = 0, T(z) = 0 is 1. $[1 \land \neq (0 \lor 0) = 1]$. Thus, E is satisfiable.
 - The expression $E = x \land (\neq x \lor y) \land \neg y$ is not satisfiable because none of the four truth assignments to the variables x and y causes E to have the value 1.
- We shall shortly prove that SAT is NP-complete.

Class Notes

SAT Given a BE E, is E satisfiable?

Theorem 1. (Cook-Levin Theorem) SAT is NP-complete

- 1. SAT is in NP.
- 2. Every problem in NP can be reduced in polynomial time to SAT.

3 Normal Forms for Boolean Expressions

- In boolean expressions
 - Logical AND, as in $x \wedge y$, is often called conjunction and is sometimes written as a product, as in xy.
 - Logical OR, as in $x \vee y$, is often called disjunction and is sometimes written as a sum, as in x + y.
 - Logical NOT, as in $\neg x$, is often called negation and is sometimes written with an overbar, as in \overline{x} .
 - A literal is a variable or a negated variable; e.g., x and $\neg x$ are both literals.
 - A clause is the logical OR (disjunction) of one or more literals; e.g., $x \vee \neg y$ is a clause.
- A boolean expression is in conjunctive normal form (CNF) if it is the local AND (conjunction) of clauses; e.g., $(x \lor \neg y) \land (\neg x \lor z)$ is in CNF.
- A boolean expression is in k-CNF if it is the logical AND of clauses each one of which is the logical OR of exactly k distinct literals; e.g., $(w \lor \neg x \lor y) \land (x \lor \neg y \lor z)$ is in 3-CNF.
- Two boolean expressions are equivalent if they have the same result on any truth assignment to their variables.

4 The Problems CSAT and kSAT

- CSAT
 - Given a boolean expression E in k-CNF, is E satisfiable?
 - We can view CNF as the language $\{E \mid E \text{ is the representation of a satisfiable CNF boolean expressions }\}.$
 - CST is NP-complete.
- kSAT
 - Given a boolean expression E in k-CNF, is E satisfiable?
 - 1SAT and 2SAT are in P; kSAT is NP=complete for k > 3.

5 SAT is NP-complete: the Cook-Levin theorem

• SAT is in NP

- Given a boolean expression E of length n, a multitape nondeterministic Turing machine can guess a truth assignment T for E in O(n) time
- The NTM can then evaluate E using the truth assignment T in $O(n^2)$ time
- If E(T) = 1, then the NTM accepts E.
- The NTM can be simulated by a single-tape deterministic TM in $O(n^4)$ time.
- If L is in NP, then there is a polynomial-time reduction of L to SAT.
- If a NTM M accepts an input w of length n in p(n) time, then M has a sequence of moves such that
 - 1. α_0 is the initial ID of M with input w.
 - 2. $\alpha_0 \vdash \alpha_1 \vdash \ldots \vdash \alpha_k$ where $k \leq p(n)$.
 - 3. α_k is an ID with an accepting state.
 - 4. Each α_i consists only of nonblanks unless α_i ends in a state and a blank, and extends from the initial head position to the right.
- From M and w, we can construct a boolean expression $E_{M,w}$ that is satisfiable iff M accepts w within p(n) moves. See HMU, pp. 400–446 for details.

Class Notes

$$E_{M,w} = U \wedge S \wedge S \wedge N \wedge F$$

where

- \bullet *U* is the unique symbol in each cell
- \bullet S starts off right
- \bullet N next move is right
- F finishes right.

Class Notes

Some Examples of NP-Complete Problems

- SAT
- CSAT