SATVIK DIXIT

MS Student in Electrical and Computer Engineering, Carnegie Mellon University
Email: satvikdixit@cmu.edu | Website: https://satvik-dixit.github.io/ | LinkedIn | Google Scholar | https://satvik-dixit.github.io/ | LinkedIn | Google Scholar | https://satvik-dixit.github.io/ | LinkedIn | Google Scholar | https://satvik-dixit.github.io/ | <a href="mailto:https://satvik-dixit.gith

EDUCATION

Carnegie Mellon University

Pittsburgh, PA

Master of Science in Electrical and Computer Engineering

Aug 2023 - Dec 2024

- Research areas: Audio and Speech Processing | GPA: 4.0/4.0
- Advisors: Dr Bhiksha Raj, Dr. Chris Donahue

Indian Institute of Technology (IIT) Delhi

New Delhi, India

Bachelor of Technology in Electrical Engineering

Aug 2019 - Aug 2023

• Research areas: ML, Signal Processing | GPA: 8.6/10.0

EXPERIENCE

Carnegie Mellon University

Research Assistant | Professor Bhiksha Raj

May 2024 - Sept 2024

- Developed a novel MFCon (Multi-scale Feature Contrastive) loss, for speaker verification systems, achieving a 9.05% improvement in Equal Error Rate (EER) over SOTA on the VoxCeleb-10 benchmark
- Showed that explicitly enhancing the speaker separability of the intermediate feature maps by using contrastive losses, improves the discriminative ability of the final speaker embedding
- Conducted comprehensive ablation studies to identify optimal configurations and hyperparameters
- Submitted results to ICASSP 2025 [5][PDF][Code]

Massachusetts Institute of Technology

Research Assistant | Professor Satrajit Ghosh

May 2022 - Aug 2023

- Developed a novel framework to explain deep learning embeddings for speech-emotion recognition
- Implemented the probing-based method and evaluated it by explaining WavLM embeddings using EgeMAPS acoustic features for the RAVDESS and SAVEE datasets
- Created a novel metric, Information Increase, to quantify the relevance of specific acoustic features in the embedding and identified the most important feature categories
- Submitted results to ICASSP 2025 [4][PDF][Code]

PROJECTS

Leveraging Audio To Evaluate Audio Captioning Systems

Advisor: Professor Bhiksha Raj, CMU

Sep 2024 - Oct 2024

- Developed a novel metric MACE (<u>Multimodal Audio Caption Evaluation</u>) the first metric that incorporates both audio and reference captions for comprehensive audio caption evaluation
- Achieved a new SOTA with a 3.28% and 4.36% relative human-preference-match accuracy improvement over the widely-used FENSE metric on Clotho-Eval and AudioCaps-Eval benchmarks
- Submitted to ICASSP Speech and Audio Language Models Workshop 2025 [2][PDF][Code]

Evaluating Visual Language Models on Audio Spectrogram Classification

Advisor: Professor Chris Donahue, CMU

July 2024 - Sep 2024

- Developed a novel task VSC (<u>V</u>isual <u>Spectrogram Classification</u>) to evaluate the ability of Vision Language Models to classify audio using spectrogram images
- Benchmarked zero-shot and few-shot performance of state-of-the-art VLMs (GPT-4o, Claude, and Gemini) on the VSC task and performed ablation studies to optimize spectrogram hyperparameters

- Conducted human studies to show VLMs display human-expert-level performance on the VSC task
- Accepted at Neurips Audio Imagination Workshop 2025 [3][PDF]

Text to Audio Morph Generation

Advisor: Professor Chris Donahue, CMU

July 2024 - Present

- Worked on combining two or more categories of sounds to produce novel hybrid sounds
- Implemented methods to extend generative text-to-audio models to be capable of combining text and audio prompts with user defined weights and temporal envelopes

Auditing Audio Text Datasets

Advisor: Professor Chris Donahue, CMU

Oct 2024 - Present

- Worked on an audit of 15+ widely-used audio-text datasets
- Evaluated the dataset caption quality by judging factors such as accuracy, coverage, vagueness, etc.

Automatic Speech Recognition For Low Resource Languages

Advisor: Professor Shinji Watanabe, CMU

Jan 2024 - Mar 2024

- Added the ASR recipe for a Luganda (African dialect) dataset to the lab's ESPNet toolkit (7k+ stars)
- Achieved a 28.3% improvement in the WER compared to baseline by using CTC-attention-based architecture with spec augment and speed perturbation [PR]

Room Acoustics Simulation

Advisor: Dr. Robin Scheibler, EPFL

June 2021 - Aug 2021

- Worked on developing Pyroomacoustics: an open-source package for room acoustics simulation
- Improved RIR simulation accuracy by adding a 'directivity' functionality to mics and sources [demo]

SELECTED PUBLICATIONS

[1] Satvik Dixit,

- [2] Satvik Dixit, Soham Deshmukh, Bhiksha Raj. "MACE: Leveraging Audio for Evaluating Audio Captioning Systems." (under review at ICASSP SALMA Workshop 2025)
- [3] Satvik Dixit, Laurie Heller, Chris Donahue. "Vision Language Models Are Few-Shot Audio Spectrogram Classifiers." NeurIPS Audio Imagination Workshop 2024
- [4] Satvik Dixit, Massa Baali, Rita Singh, and Bhiksha Raj. "Improving Speaker Representations Using Contrastive Losses on Multi-scale Features." (under review at ICASSP 2025)
- [5] Satvik Dixit, Daniel Low, Gasser, Fabio Catania, Satrajit Ghosh. "Explaining Deep Learning Embeddings for Speech Emotion Recognition by Predicting Interpretable Acoustic Features." (under review at ICASSP 2025)

EXTRACURRICULAR ACTIVITIES

Teaching Assistant: Signals and Systems (18290) for Fall 2024

Teaching Assistant: Signals and Systems (18290) for Spring 2024

Reviewer: ICASSP Speech and Audio Language Models (SALMA) Workshop 2025

SKILLS

Programming Languages: Python, Java, LaTeX, Linux, MATLAB

Frameworks and Tools: PyTorch, Hugging Face, GCP, AWS, Git, CUDA, Speechbrain, ESPNet

CMU Coursework: Speech Recognition and Understanding, Deep Generative Modeling, Advanced Natural Language Processing, Machine Learning (ML), Deep Learning, ML for Signal Processing