Covid 19 detection with CV

Megan Zhou

Outline

- Background
- Dataset and exploratory data analysis
- Data preprocessing
- Model development
- Conclusion
- Limitation and potential improvement
- Business use case

Project background

- More than 400 million cases
- Taken more than 5 million lives worldwide
- Need for rapid and effective screening tools
- Computed Tomography has been proposed

- 194,922 CT slices of cases with confirmed COVID-19 diagnoses
- 3745 patients
- Image data and metadata

Distribution of image data:

Chest CT image distribution

Туре	Normal	Pneumonia	COVID-19	Total
train	35996	25496	82286	143778
val	11842	7400	6244	25486
test	12245	7395	6018	25658

Patient distribution

Туре	Normal	Pneumonia	COVID-19	Total
train	321	558	1958	2837
val	126	190	166	482
test	126	125	175	426

The metadata includes:

- Patient ID
- Data source
- Country (if available)
- Age (if available)
- Sex
- Finding (Normal, Pneumonia, or COVID-19)
- Verified finding, which indicates whether the finding is confirmed (Yes or No)
- Slice selection, which indicates how slice selection was performed (either Expert, Non-expert, or Automatic)
- View (all are axial CT)
- Modality

• Size of our data (28 GB)

```
[ ] #Configuration environment
import os

os.environ['KAGGLE_USERNAME'] = "skyeczy" # username from the json file
os.environ['KAGGLE_KEY'] = "69bd62b67f259bdc16a56d9c423bf0fe" # key from the json file

[ ] !kaggle datasets download -d hgunraj/covidxct

Downloading covidxct.zip to /content
100% 28.7G/28.7G [05:50<00:00, 121MB/s]
100% 28.7G/28.7G [05:50<00:00, 87.9MB/s]</pre>
```

Distribution of our label

Label distribution with regard to sex

Visual inspection of x-ray images

Data preprocessing

Model development

- CNN
- Transfer learning
 - o VCG16
 - o ResNet50
- Traditional Machine Learning models

CNN

Model: "sequential_3"		
Layer (type)	Output Shape	Param #
conv2d_9 (Conv2D)	(None, 126, 126, 32)	896
max_pooling2d_9 (MaxPooling 2D)	(None, 63, 63, 32)	0
conv2d_10 (Conv2D)	(None, 61, 61, 64)	18496
<pre>max_pooling2d_10 (MaxPoolin g2D)</pre>	(None, 30, 30, 64)	0
conv2d_11 (Conv2D)	(None, 28, 28, 128)	73856
<pre>max_pooling2d_11 (MaxPoolin g2D)</pre>	(None, 14, 14, 128)	0
flatten_3 (Flatten)	(None, 25088)	0
dense_9 (Dense)	(None, 96)	2408544
dense_10 (Dense)	(None, 64)	6208
dense_11 (Dense)	(None, 3)	195
Total params: 2,508,195 Trainable params: 2,508,195 Non-trainable params: 0		

With augmentation

CNN with augmentation					
	Precision	Recall	F1-score	Accuracy	
COVID-19	0.9	0.51	0.65		
Pneumonia	0.68	0.93	0.79		
Normal	0.88	0.93	0.9		
Overall	0.82	0.79	0.78	0.79	

Without augmentation

CNN without augmentation				
	Precision	Recall	F1-score	Accuracy
COVID-19	0.85	0.68	0.76	
Pneumonia	0.78	0.91	0.84	
Normal	0.89	0.92	0.9	
Overall	0.84	0.84	0.84	0.84

Transfer Learning with VCG16

-one of the winning models in ILSVRC

Layer (type)	Output Shape	Param #
vgg16 (Functional)	(None, 4, 4, 512)	14714688
<pre>global_average_pooling2d (G lobalAveragePooling2D)</pre>	(None, 512)	0
dense (Dense)	(None, 64)	32832
dense_1 (Dense)	(None, 3)	195

With augmentation

VGG with augmentation					
	Precision	Recall	F1-score	Accuracy	
COVID-19	0.66	0.46	0.54		
Pneumonia	0.6	0.79	0.68		
Normal	0.85	0.84	0.85		
Overall	0.7	0.7	0.69	0.7	

Without augmentation VGG without augmentation

VGG without augmentation					
	Precision	Recall	F1-score	Accuracy	
COVID-19	0.87	0.66	0.75		
Pneumonia	0.73	0.94	0.82		
Normal	0.94	0.89	0.92		
Overall	0.85	0.83	0.83	0.83	

Transfer Learning with ResNet50

Layer (type)	Output Shape	Param #
resnet50 (Functional)	(None, 4, 4, 2048)	23587712
global_average_pooling2d_1 (GlobalAveragePooling2D)	(None, 2048)	0
dense_2 (Dense)	(None, 64)	131136
dense_3 (Dense)	(None, 3)	195
Total params: 23,719,043 Trainable params: 23,665,923 Non-trainable params: 53,120		

With augmentation

Without augmentation

Resnet with augmentation					
	Precision	Recall	F1-score	Accuracy	
COVID-19	0.87	0.87	0.87		
Pneumonia	0.83	0.88	0.86		
Normal	0.96	0.92	0.94		
Overall	0.89	0.9	0.89	0.89	

Training and Validation Accuracy

Resnet without augmentation						
	Precision	Precision Recall F1-score Accuracy				
COVID-19	0.87	0.91	0.89			
Pneumonia	0.95	0.87	0.91			
Normal	0.94	0.97	0.95			
Overall	0.92	0.92	0.92	0.92		

Traditional ML

Processing: raw and histogram

```
[ ] def extract_color_histogram(image, bins=(8, 8, 8)):
    # extract a 3D color histogram from the HSV color space using
    # the supplied number of `bins` per channel
    hsv = cv2.cvtColor(image, cv2.CoLor_BGR2HSV)
    hist = cv2.calcHist([hsv], [0, 1, 2], None, bins,[0, 180, 0, 256, 0, 256])

if imutils.is_cv2():
    hist = cv2.normalize(hist)

else:
    cv2.normalize(hist, hist)
    # return the flattened histogram as the feature vector
    return hist.flatten()
```

Different Performance

Performance of traditional ML models				
Model	Raw pixel accuracy	Histogram accuracy		
Naïve Bayes	0.47	0.62		
Linear SVC	0.58	0.59		
Random Forest	0.9	0.81		

Result of Random Forest

Random Forest Classifier					
	Precision	Recall	F1-score	Accuracy	
COVID-19	0.98	0.8	0.88		
Pneumonia	0.9	0.96	0.93		
Normal	0.86	0.96	0.91		
Overall	0.91	0.91	0.91	0.9	

Conclusion

Comparison of different models				
Framework	work Model			
Deep Neural Network	CNN with augmentation	79%		
Deep Neural Network	CNN w/o augmentation	84%		
Transfer Learning	VGG16 with augmentation	70%		
Transfer Learning	VGG16 w/o augmentation	83%		
Transfer Learning	ResNet50 with augmentation	89%		
Transfer Learning	ResNet50 w/o augmentation	92%		
Traditional ML model	Naïve Bayes with raw pixel data	47%		
Traditional ML model	Naïve Bayes with color histogram data	62%		
Traditional ML model	Linear SVC with raw pixel data	58%		
Traditional ML model	Linear SVC with color histogram data	59%		
Traditional ML model	Random Forest with raw pixel data	90%		
Traditional ML model	Random Forest with color histogram data	81%		

Limitation and possible improvement

Limitation:

Size of our data

Possible improvement:

- Use of GPU
- Combine with text data for symptoms, or demographic variables
- Tune threshold based on recall

Potential business use case

- Rapid diagnosis
- Incorporated into insurance underwriting process
 - Ask user to submit their chest ct image when filling application
 - Compute risk of chest-related disease
 - o Include the risk when considering approval/pricing of insurance

Question