Parcameter Estimation

Common Z scores of Confidence levels: used to estimate an unknown population. 90% = 1.645 Value used to estimate an unknown = 1.20 imates | value used to estimate an unknown = 1.90 | value used to estimate an unknown = 1.00 | value used to esti population parcameter. Suppose confidence level in =95%. (1-9) = 0.95It can also be written as, A sample of 11 newly born baby, from a large normal spopulation, has a mean height of 2.20 feet. We know from past testing that the population standard deviation is 0.35 foot. Determine 95% confidence interval for the true mean height of the newly born baby on bir no given, confidence level = 95% Unbiasedness: E(0) = 050, Z'score = 196 .: Margin of enrore, E = 7 (Tn) idne ai moom signed of entimator of (20.0) xi.36.1 = LCL = Lower confidence limit UCL = Upper confidence limit : E = 0.2068 Confidence Intervals: .. Confidence Interval = X +E

2.20-0.2068 < μ < 2.20+0.2068 : 1.9932 < μ < 2.4068 So, we are 95% confident that the true mean is between 1.9932 to 2.4068 feet

Though the true mean may one may not be in this Interval, 95% of intervals formed in this manner will contain the true mean.

A random sample of n = 50 males showed a mean average daily intake of dairy products equal to 756g with a standard deviation of 35g. Find a 95% and 99% confidence interval for the population average?

for 95%, When confidence level in 90%, 72-score =1'06

CI = $72 \pm 2 \frac{6}{100}$

$$CI = 756 + 1.96 \frac{35}{\sqrt{50}} =$$

$$2.24 \times 4.96 \frac{35}{\sqrt{50}} = 6.96 = 1.9$$

746.39 < M < 765.70g

so, we are 95% confident that the trove mean in between 746.3g to 765.70g

for 99%, Z-score = 2.576 - X = 12.00

The confidence interval,
$$\frac{6}{\sqrt{10}}$$
 $\pm \frac{7}{\sqrt{10}}$ $\pm \frac{7}{\sqrt{10}}$

443.25g < M < 468.75g

So, we are 99% confident that, the true mean is between 443.259 to 468.759

Student's T Distribution

It is a probability distribution that is used to calculate population parameters when than sample size is small and when the population variance

(o) is unknown.

population std. n = 5 M-Xalest showed Sample std $\leftarrow \frac{S}{\sqrt{n}}$

t-value depends on off and sometime sometime

Ut-test type. winstal

1) One Sample t-test

Independent of test

(III) Pairced t-test

level in 90% , 2 15 m= 16.06 \square A sample of n = 25 has $\overline{x} = 50$ and 5 = 8. Form a 95% confidence interval for un

given n = 25 dt = 25-1 = 24

we know, $t = \frac{\overline{X} - \mu}{\frac{5}{5}}$

=> $t + \frac{s}{\sqrt{n}} = x_5 \mu . d = 0$ | $t_{24,0.025} = 2.0$

 $u = \overline{x} - (t \frac{s}{\sqrt{n}})$

When , 95% CI

 $\frac{1}{5}\sqrt{1}$ nobil nos $\frac{1}{n-1}, \frac{\alpha}{2} = \frac{1}{24}, \frac{0.05}{2^{1}}$

The confidence interival,

$$\bar{x} - \left(t \frac{5}{\sqrt{n}}\right) < \mu < \bar{x} + \left(t \frac{5}{\sqrt{n}}\right)$$

⇒ 50 - $\left(2.064 \times \frac{8}{\sqrt{25}}\right) < \mu < 50 + \left(2.064 \times \frac{8}{\sqrt{25}}\right)$

46.6976 < M < 53:3024

- One mean test:
 - · population std (पअमा थाकल z-test. नाशल t-test
 - · Null hypothesis कार्यानारे "+" निए लाम् ना only =, \gg , \leq
- two tail test

Test the claim that the true mean no. of children in BD homes is equal to 3. Assume, 0 = 0.8 t depends on aidt) Sample size, n=100.

Process:

Step-1: Draw the hypothesis

$$\Rightarrow$$
 Ho: $\mu = 3$

Step-2: draw the picture and fix the tail

→ H1: 4 = 3

Step-3: Fix the test logyd llun oust a topies. Here of is given and it is a single mean test. So, we have to perform Z-test. . It is called level of significance of

here,
$$\mu_0 = 3$$

$$\therefore Z = \frac{\overline{X} - \mu_0}{\sqrt{n}} = \frac{2.84 - 3}{\sqrt{100}} = -2$$

$$\Rightarrow \psi_0 = 3$$

$$\Rightarrow \psi_0$$

Two tail Test

Step4: Find Ztab

Z depends on a special

for two tail =
$$\frac{\alpha}{2}$$
 = 0.025

Step-5: Decision

Decision: Herre Zear falls into the nejection region of Ho. So, we may neject the null hypothesis.

· Step-6:

Conclusion: True mean number of children in BD home is not equal to 3.

The average cost of a blood test in a hospital is said to be Tk.168. A random sample of 25 patients resulted in $\bar{x}=Tk.172.50$ and s=Tk.15.40 x=0.05 level

Step-1: Ho: M = 168 Ha: U ≠ 168

Step-2:
$$\alpha = 0.05$$
 $\frac{\alpha}{2} = 0.025$

Step-3: Here σ is not given, so we have to perform $t = \frac{\overline{X} - \mu}{\frac{S}{\sqrt{n}}} = \frac{172.50 - 168}{\frac{15.40}{\sqrt{25}}} = 1.46$

Step-4: $t_{tab} = t_{df}, \frac{\alpha}{2} = t_{24}, 0.025 = 2.0639$

BD hooms

Step-5: <u>Decision</u>: Here, tab falls into the excepted region on Ho. So we may not neject Ho.

Step-6: <u>Conclusion</u>: We have sufficient evidence to prove that, statistically and significantly, the average cost of a blood test in a hospital is 168Tk at 5%. confidence level.

199-1: 16: 30 = 168 14: $4 \neq 168$

6tep 2: 0 = 0.05

Hypothesis Testing

A hypothesis is a claim (assumption) about a population parameter.

There are 2 types of Hypothesis refers to the status Quo

- 1) Null Hypothesis (Ho) always contain = 1/1/5 may on may not be rejected
- (1) Alternative Hypothesis (H1/Ha) challenges status Que opposite of Ho
 the hypothesis that
 researcher wants to prove

Level of significance (a) We know,

cI= 1-x

.. Q = 1 - CI

- · It Defines the rejection Ho: us3 region of sampling distribution H1: u>3
 - · It also provides the critical value of the test.

Two tail test

Ho: $\mu = 3$ H1: $\mu \neq 3$ Upper tail test

distribution H1: $\mu > 3$

Ho: 423

H1: 43

Matched Paircs: Test Statistic

It compares the mean of two different groups (example - before & after tried ment in the same group)

Do = hypothized mean different

$$\frac{1}{1} + \frac{\overline{J} - D \circ}{5d}$$

Do = hypothized mean difference Sd = Sample std dev. of difference n = Sample size (number of pairs)

Matched Paire

Assume you send your Doctors to a training	g workshop.
Has the training made a difference in the	
of complaints. You collect the following data	popula

Ho : 12x-	1) = 0 = 1. []
esothers of Up	tota .
Hi: Ux-	My 70
x = 0.01	

states Quo.

7	chen	Edi	51	-21	4.2
a		n	li.d	5	 4.2

Doctors	Number of Complaint		of the series (
Doctores	Before(1)	Atten(2)	(2)-(1)	
DMC	6	4	-2	
Mitford	12004	16	-14	
5mc	3	2	-1	
RMC	0	0	0	
cmc	and the A	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	H P-eve	

Herre we are percforming two means test and samples came from Zdiss = -21 the matched population. So, we have to perform matched / pained test.

matched population. 00, we have so perform

$$t = \frac{d - Do}{\frac{5d}{\sqrt{n}}} = \frac{4.2 - 0}{\frac{5.67}{\sqrt{5}}}$$

Solved the state of the second s

Decision: Here teal falls into the may not rieject Ho.

Conclusion: We have sufficient

evidence to prove that statistically -4.604

& significantly, the training has not made a difference in the

number of complaints at 10% significance level.

Pooled Variance t-test

Is there a difference in the ICU patients dying in DMC and smc per day? Assuming both populations are approximately normal with equal variance, is

14	DMC	sme
Number	21	25
avenage	3.27	2.53
dying sample std dev	1.30	1.16

there a difference in average number of dying (x=0.05)?

Here, we have two means and sample came from the

independent population. So, we have to perform independent t-test.

$$t = \frac{(\overline{x_1} - \overline{x_2}) - (\mu_1 - \mu_2)}{\sqrt{Sp^2(\frac{1}{n_1} + \frac{1}{n_2})}} = 2.040 = t_{cal}$$

$$t_{cal} = \frac{(3.27-2.53)-0}{\sqrt{1.5021(\frac{1}{21}+\frac{1}{25})}} = 2.040$$

$$Sp^{2} = \frac{(n_{1}-1)S_{1}^{2} + (n_{2}-1)S_{2}}{(n_{1}-1)(n_{2}-1)}$$

$$= \frac{(21-1)(1.30) + (25-1)}{(21-1) + (25-1)}$$

$$= 1.5021$$

