| Accueil / Mes cour     | rs / 2024 S6 LOFO / Sections / Examen final / Final exam / Examen final / Final exam |
|------------------------|--------------------------------------------------------------------------------------|
|                        |                                                                                      |
|                        | <b>e</b> Wednesday 29 June 2022, 15:17                                               |
|                        | <b>t</b> Terminé                                                                     |
|                        | <b>e</b> Wednesday 29 June 2022, 16:13                                               |
|                        | <b>s</b> 56 min 31 s                                                                 |
| Note                   | e 19,50 sur 23,00 (84,78%)                                                           |
| Question <b>1</b>      |                                                                                      |
| Incorrect              |                                                                                      |
| Note de -0,50 sur 1,00 |                                                                                      |
|                        |                                                                                      |
| [FR] Le calcul à la    | Hilbert intuitionniste est :                                                         |
| [EN] Intuitionistic    | Hilbert calculus is:                                                                 |
| a. Cohérent            | t mais incomplet.                                                                    |
|                        | ut not complete.                                                                     |
| b. Cohérent            | t et complet. ×                                                                      |
| Sound an               | nd complete.                                                                         |
| o. Complet             | mais pas cohérent.                                                                   |
| Complete               | e but not sound.                                                                     |
| O d. Ni cohére         | ent, ni complet.                                                                     |
| Neither c              | omplete nor sound.                                                                   |
|                        |                                                                                      |
| Question <b>2</b>      |                                                                                      |
| Non répondue           |                                                                                      |
| Noté sur 1,00          |                                                                                      |
|                        |                                                                                      |
| [FR] La déduction      | n naturelle intuitionniste est :                                                     |
| [EN] Intuitionistic    | natural deduction is:                                                                |
| a. Ni cohére           | ente, ni complète.                                                                   |
|                        | omplete nor sound.                                                                   |
|                        | e mais pas cohérente.<br>e but not sound.                                            |
|                        | te mais incomplète.<br>ut not complete.                                              |
| d. Cohérent            | te et complète.<br>ad complete.                                                      |

Question **3** 

Correct

Note de 1,00 sur 1,00

[FR] Une coupure dans une preuve est :

[EN] A cut in a proof is:

- a. L'élimination d'un symbole. Eliminating a symbol.
- b. La division d'une preuve en deux sous-preuves.
   Splitting a proof into two sub-proofs.
- c. L'arrêt inattendu d'une preuve.The unexpected end of a proof.
- d. L'insertion d'un symbole suivie de son élimination immédiate.
   The insertion of symbol followed by its immediate elimination.

Question **4** 

Correct

Note de 1,00 sur 1,00

[FR] Quelle est la forme pleinement parenthésée de  $\lambda u \cdot u \lambda v \cdot vvu$  ?

**[EN]** What is the fully parenthesised form of  $\lambda u \cdot u \lambda v \cdot vvu$ ?

- $\bigcirc$  a.  $\lambda u \cdot (u(\lambda v \cdot v(vu)))$
- lacksquare b.  $\lambda u \cdot (u(\lambda v \cdot (vv)u))$
- $\bigcirc$  c.  $\lambda u \cdot (u(\lambda v \cdot (vv))u)$
- $\bigcirc$  d.  $\lambda u \cdot (u(\lambda v \cdot vv)))u$

Question  ${\bf 5}$ 

Correct

Note de 1,00 sur 1,00

[FR] Quel terme est lpha-congruent à  $\lambda x \cdot xy$  ?

**[EN]** Which term is  $\alpha$ -congruent to  $\lambda x \cdot xy$ ?

- $\bigcirc$  a.  $\lambda x \cdot xz$
- $\bigcirc$  b.  $\lambda y \cdot yz$
- $\bigcirc$  c.  $\lambda xy \cdot xy$
- $\bigcirc$  d.  $\lambda z \cdot zy \checkmark$

Question **6**Correct
Note de 1,00 sur 1,00

[FR] Quelle équivalence est fausse?

[EN] One of these equivalences is wrong; which one?

- $\bigcirc$  a.  $x\lambda y \cdot yy \equiv y\lambda x \cdot xx \checkmark$
- $\bigcirc$  b.  $\lambda a \cdot \lambda b \cdot ab \equiv \lambda xy \cdot xy$
- $\bigcirc$  c.  $x\lambda x \cdot x \equiv x(\lambda y \cdot y)$
- $\bigcirc$  d.  $\lambda x \cdot \lambda y \cdot xy \equiv \lambda xy \cdot xy$

Question 7

Non répondue

Non noté

[FR] Considérons les termes suivants :

[EN] Consider the following terms:

 $A = \lambda yuv \cdot uu(yuv)$ 

 $B = \lambda a \cdot aA$ 

 $C = \lambda b \cdot b(Bb)$ 

[FR] Calculez la forme normale du terme A  $\underline{5}$ . Répondez avec l'entier de Church associé (par exemple, 0 si la réponse est  $\underline{0}$ ).

Cette question vaut 2 points.

**[EN]** Compute the normal form of the term  $A \underline{5}$ . Answer with the matching Church integer (as an example, write 0 if the answer is  $\underline{0}$ ).

This question is worth 2 points.

Réponse / Answer:

**[FR]** Calculez la forme normale du terme  $B \ge 5$ . Répondez avec l'entier de Church associé (par exemple, 0 si la réponse est 0).

**[EN]** Compute the normal form of the term  $B \ \underline{2} \ \underline{5}$ . Answer with the matching Church integer (as an example, write 0 if the answer is  $\underline{0}$ ).

This question is worth 2 points.

Cette question vaut 2 points.

Réponse / Answer :

**[FR]** Calculez la forme normale du terme  $C \le \underline{5}$ . Répondez avec l'entier de Church associé (par exemple, 0 si la réponse est  $\underline{0}$ ).

Cette question vaut 3 points.

**[EN]** Compute the normal form of the term  $C \ge 5$ . Answer with the matching Church integer (as an example, write 0 if the answer is 0).

This question is worth 3 points.

Réponse / Answer:

Description

[FR] La déduction naturelle contient les règles suivantes :

[EN] Natural deduction contains the following rules:

$$\begin{array}{c}
[A] \\
\vdots \\
B \\
\overline{A \Rightarrow B} \end{array} [\mathbf{1}][\Rightarrow_{I}] \\
\frac{A}{A \land B} \begin{bmatrix} \mathbf{3} \end{bmatrix}[\land_{I}] \\
\frac{A \land B}{A} \begin{bmatrix} \mathbf{4} \end{bmatrix}[\land_{E}] \\
\frac{A \land B}{A} \begin{bmatrix} \mathbf{4} \end{bmatrix}[\land_{E}] \\
A \land B \end{bmatrix} \begin{bmatrix} \mathbf{5} \end{bmatrix}[\land_{E}] \\
A \land B \end{bmatrix} \begin{bmatrix} \mathbf{6} \end{bmatrix}[\lor_{I}] \\
\frac{A}{A \lor B} \begin{bmatrix} \mathbf{6} \end{bmatrix}[\lor_{I}] \\
\vdots \\
A \lor B \\
C \\
C
\end{bmatrix} \begin{bmatrix} A \land B \\
B \\
B \end{bmatrix} \begin{bmatrix} \mathbf{5} \end{bmatrix}[\land_{E}] \\
A \lor B \\
C \\
C
\end{bmatrix} \begin{bmatrix} A \land B \\
B \\
B \end{bmatrix} [\mathbf{5}][\land_{E}] \\
A \lor B \\
C \\
C
\end{bmatrix} \begin{bmatrix} \mathbf{6} \end{bmatrix}[\lor_{E}] \\
\frac{A \lor B \\
C \\
C \end{bmatrix}}
\begin{bmatrix} A \\
A \\
A \\
A \end{bmatrix} \begin{bmatrix} \mathbf{6} \end{bmatrix}[\lor_{E}] \\
\frac{A}{\neg A} \begin{bmatrix} \mathbf{6} \end{bmatrix}[\lor_{I}] \\
\frac{A}{\rightarrow$$

Description

[FR] Le système de typage étendu contient les règles suivantes :

**[EN]** The **extended type system** contains the following rules:

$$\begin{array}{c} [x:\sigma] \\ \vdots \\ \frac{M:\tau}{\lambda x \cdot M : \sigma \to \tau} [\mathbf{1}][\lambda] \\ \\ \frac{M:\sigma}{\langle M,N \rangle : \sigma \times \tau} [\mathbf{3}][\times_I] \\ \\ \frac{M:\sigma}{\langle M,N \rangle : \sigma \times \tau} [\mathbf{6}][\cup_I^l] \\ \\ \frac{M:\sigma}{\langle M,M \rangle : \sigma} [\mathbf{9}][\emptyset_E] \\ \end{array} \begin{array}{c} \frac{M:\sigma \to \tau}{M : \sigma \to \tau} \frac{N:\sigma}{M : \sigma \times \tau} [\mathbf{2}][A] \\ \\ \frac{M:\sigma \to \tau}{M : \sigma} [\mathbf{1}][X_E] \\ \\ \frac{M:\sigma \to \tau}{\Pi_1(M) : \sigma}$$

| Question | 8 |
|----------|---|
| Correct  |   |

Note de 15,00 sur 15,00

## Partie 1

**[FR]** Prouvez  $\vdash_{\mathcal{N}} (A\Rightarrow B) \land (A\lor B)\Rightarrow B$  en remplissant l'arbre de déduction suivant :

**[EN]** Prove that  $\vdash_{\mathcal{N}} (A \Rightarrow B) \land (A \lor B) \Rightarrow B$  by filling in the blanks of the following deduction tree:



[FR] Quelle est la règle utilisée en X ? Entrez son numéro.

[EN] What is the rule used in location X? Type its numerical identifier.

Réponse / Answer:



[FR] Quelle est la règle utilisée en Y? Entrez son numéro.

**[EN]** What is the rule used in location **Y**? Type its numerical identifier.

Réponse / Answer :



**~** 

[FR] Quelle est la règle utilisée en Z? Entrez son numéro.

[EN] What is the rule used in location **Z**? Type its numerical identifier.

Réponse / Answer:



[FR] Quelle est la formule étiquetant le nœud P ?

[EN] What is the formula labelling the node **P**?

Réponse / Answer : 
$$(A \Rightarrow B) \land (A \lor B)$$

[FR] Quelle est la formule étiquetant le nœud Q?

[EN] What is the formula labelling the node Q?

Réponse / Answer : A ∨ B

[FR] Quelle est la règle utilisée pour annuler U? Entrez son exposant (à ne pas confondre avec l'index dans le nom de la règle).

[EN] What is the rule used to cancel U? Type its exponent (not to be mistaken with the index featured in the rule's name).

Réponse / Answer:



## Partie 2

**[FR]** Trouvez un terme dans  $\Lambda_{ext}$  de type  $(\sigma o au) imes (\sigma \cup au) o au$  en remplissant l'arbre de déduction suivant :

**[EN]** Then find a term in  $\Lambda_{ext}$  of type  $(\sigma \to \tau) \times (\sigma \cup \tau) \to \tau$  by filling in the blanks of the following derivation tree:



[FR] Quelle est la règle utilisée en P? Entrez son numéro.

[EN] What is the rule used in location P? Type its numerical identifier.

Réponse / Answer :



[FR] Quelle est la règle utilisée en Q? Entrez son numéro.

**[EN]** What is the rule used in location **Q**? Type its numerical identifier.

Réponse / Answer :



[FR] Quel est le terme étiquetant le nœud A ?

**[EN]** What is the term labelling the node **A**?

Réponse / Answer :  $\Pi_1(x)$ 

[FR] Quel est le terme étiquetant le nœud B?

[EN] What is the term labelling the node B?

Réponse / Answer :  $\Pi_1(x)y$ 

[FR] Quel est le terme étiquetant le nœud C?

**[EN]** What is the term labelling the node **C**?

Réponse / *Answer* :  $\oplus (\lambda y \cdot \Pi_1(x)y, \lambda z \cdot z, \Pi_2(x))$ 

[FR] Quel est le terme étiquetant le nœud D?

[EN] What is the term labelling the node D?

Réponse / Answer :  $\lambda x \cdot \oplus (\lambda y \cdot \Pi_1(x)y, \lambda z \cdot z, \Pi_2(x))$ 

[FR] Quel est le type étiquetant le nœud u?

**[EN]** What is the type labelling the node  $\mathbf{u}$ ?

Réponse / Answer :  $(\sigma \to \tau) \times (\sigma \cup \tau)$ 

[FR] Quel est le type étiquetant le nœud  $\mathbf{v}$ ?

**[EN]** What is the type labelling the node  $\mathbf{v}$ ?

| Réponse / <i>Answer</i> : | $\sigma  ightarrow 	au$ | ~ |
|---------------------------|-------------------------|---|
|---------------------------|-------------------------|---|

[FR] Quel est le type étiquetant le nœud  ${\bf w}$  ?

**[EN]** What is the type labelling the node **w**?

Réponse / Answer : τ

Question **9** 

Non répondue

Noté sur 1,00

[FR] Tout terme typable est:

[EN] Every typable term is:

- a. Normalisable.Normalizable.
- b. Faiblement normalisable.Weakly normalizable.
- c. Pas nécessairement normalisable.
   Not necessarily normalizable.
- d. Fortement normalisable.Strongly normalizable.

Question 10

Correct

Note de 1,00 sur 1,00

[FR] Quel type **peut** être assigné au terme  $\lambda xy \cdot xy$  ?

**[EN]** Which type **can** be assigned to the term  $\lambda xy \cdot xy$ ?

- igcirc a.  $(\sigma 
  ightarrow (
  ho 
  ightarrow 
  ho)) 
  ightarrow au$
- $\ \, 0 \ \, \mathrm{b.} \quad \sigma \to \tau \to \rho$
- lacksquare c.  $(\sigma 
  ightarrow \sigma) 
  ightarrow \sigma 
  ightarrow \sigma$
- $\odot$  d.  $\sigma \rightarrow au \rightarrow \sigma$

Annonces

Aller à...

Examen de mi-parcours / Mid-term exam ►