Singular Value Decomposition (SVD) to Recommend Movies

By: Cole Hanniwell, Einstein Oyewole, Jack Pentesco and Jacob Orrico

Agenda

- Introduction
- Dataset
- First Model
- Our Model
- Experiments
- Evaluation and Results
- Conclusion

Introduction

- **GOAL:** develop a movie recommendation system
- **OBJECTIVE:** accurately predict ratings that a user would give a movie
- **HOW:** recommend movies with higher predicted ratings to users

Dataset

What data did you use?

- Dataset of 610 users with 100386 ratings across 9742 movies
- Average overall rating of 3.5 with a standard deviation of 1.04
- First movie rated in 1996 and the last movie was rated in 2018
- 1475 unique tags that users gave to describe the movies
- Most common tag is "In Netflix Queue"
- Most common genres are "no genre listed" and "Film-Noir"

	userId	movieId	tag	timestamp
0	2	60756	funny	1445714994
1	2	60756	Highly quotable	1445714996
2	2	60756	will ferrell	1445714992
3	2	89774	Boxing story	1445715207
4	2	89774	MMA	1445715200

genres	title	movieId	
Adventurel Animation I Children I Comedy I Fantasy	Toy Story (1995)	1	0
AdventurelChildrenlFantasy	Jumanji (1995)	2	1
ComedylRomance	Grumpier Old Men (1995)	3	2
ComedylDramalRomance	Waiting to Exhale (1995)	4	3
Comedy	Father of the Bride Part II (1995)	5	4

	userId	movieId	rating	timestamp
0	1	1	4.0	964982703
1	1	3	4.0	964981247
2	1	6	4.0	964982224
3	1	47	5.0	964983815
4	1	50	5.0	964982931

First Model

Diagram Overview

- The action represents the movies they recommend
- Rewards in the diagram represent the ratings
- The state is the movies users have watched

Reinforced Learning (value-based)

- Goal is to maximize the immediate reward
- Actions and rewards must be trained, so that the model can generate new actions

Exploitation vs. Exploration

- Exploitation refers to the optimal actions
- Exploration aims to find a better solution
- Recommend actions and popular movies, helps us learn more about the user

First Model

Steps:

- 1. Dimension reduction (make sure to capture 80% of variance)
- 2. Similarity = Euclidean Distance, Cosine Similarity, Minkowski @p = 5
- **3.** Build the Q matrix , Q-value Score = [(rating threshold)/threshold]*similarity
- **4.** Use the ratings as rewards and propagate it in the users state
- 5. Threshold = 2.5
- **6.** Recommend movies to users

First Model

Why did we choose this method?

- Try to avoid limitations of collaborative filter and content based
 - These limitations are:
 - Difficult to make recommendations for new users and overspecialization for content based
 - Difficult to include other features and hard to predict ratings for brand new movies for collaborative filtering

Why it failed:

- Only suggested movies for users and did not predict actual ratings
- Could not use much training data because the computation time was too long
- When attempting to convert suggestions to ratings the model did not perform well

Our Model

- SVD is a collaborative filtering method
- SVD does a factorization of the matrix with UserId, MovieId and Rating into three separate matrices
- These 3 matrices represent low dimensional hidden factors (characteristics) for users and movies
- Use these matrices to predict ratings that did not exist in original matrix

Our Model

Steps:

- 1. Compute transpose of original matrix and multiply transpose matrix by the original matrix
- 2. Determine eigenvalues of the this matrix and sort them in descending order and square root to obtain singular values of the original matrix
- 3. Create matrix where the diagonal values are the singular values sorted in descending order and find the inverse of this matrix (Matrix D)
- 4. Use eigenvalues from step 2 to find the eigenvectors and place these along the columns of a new matrix and find the transpose of this matrix (Matrix V)
- 5. Using the original matrix, S and V solve for Matrix U

Experiments

- Take a test set out of the data
- Predict ratings for movies the users have already rated and compare the predicted ratings to the actual ratings to evaluate model
- Root Mean-Square Error (RMSE) is the metric
- Comparison methods (these are different prediction methods):
- Use global mean of all ratings, use average rating of each user, use average rating of each movie,
 classic methods (NMF and KNN)
- Compare all these to our Model RMSE

Evaluation and Results

- Global mean RMSE = 150.60
- User Mean RMSE = 132.37
- Movie Mean RMSE = 112.06
- Classic Method RMSE = NMF = 0.9220, KNN = 0.9477
- Our Model RMSE (SVD) = 0.8489

Demo

Conclusion

- Our model performs significantly better than the other prediction methods
- This means our ratings are more accurate
- To further enhance the model we could add more data

References

- SVD & NMF https://surprise.readthedocs.io/en/stable/matrix_factorization.html
- KNN https://surprise.readthedocs.io/en/stable/knn inspired.html
- Active RL Russell, Stuart J. (Stuart Jonathan). Artificial Intelligence: a Modern Approach. Upper Saddle River, N.J.: Prentice Hall, 2010

Questions?