Захватывающая история о градиенте стратегии в RL

NSU Hackspace

5 августа 2022 г.

1 Основные понятия и задачи RL

Начнём разговор с описания окружающего ландшафта и посмотрим ещё раз на основные элементы RL.

Опр. Траектория $\tau = s_0, a_0, r_0, \ldots$ – последовательность состояний s_t , между которыми перемещается агент, совершая действия a_t и получая вознаграждение r_t . Конечную траекторию будем также называть эпизодом.

При выборе очередного действия, агент использует стратегию π_{θ} .

Опр. Стратегия π_{θ} — отображение пространства состояний на пространство действий. Для каждого состояния s_t стратегия возвращает распределение вероятностей выбора того или иного действия $\pi_{\theta}(s_t)$.

В роли стратегии π_{θ} выступает какая-то хитрая функция с набором параметров θ , покрутив которые можно обучить её нужному поведению. Для удобства мы можем считать, что это нейросеть.

Эффективность стратегии π_{θ} определяется вознаграждением, которое агент получил при движении вдоль траектории τ , порожденной π_{θ} .

Опр. Функция вознаграждения $R_t(\tau)$ представляет собой сумму всех вознаграждений r_t , которые получил агент, начиная с момента времени t и до конца эпизода T. Коэффициент обесценивания γ регулирует влияние отдаленных шагов на текущий момент времени t

$$R_t(\tau) = \sum_{t'=t}^{T} \gamma^{t'-t} r_t$$

Если траекторию рассматриваем целиком, то обозначение слегка упрощается (исчезает индекс t):

$$R(\tau) := R_0(\tau) = \sum_{t=0}^{T} \gamma^t r_t$$

В сложных средах траектории будут сильно различаться даже для одной и той же стратегии π_{θ} , поэтому для оценки поведения агента удобнее усреднять вознаграждение по набору траекторий.

Опр. Целевая функция $J(\pi_{\theta})$ – это среднее вознаграждение агента по всем траекториям, порожденным с помощью стратегии π_{θ} .

$$J(\pi_{\theta}) = E_{\tau \sim \pi_{\theta}} \left[R(\tau) \right] = E_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{T} \gamma^{t} r_{t} \right]$$

Возникает естественное желание, изменяя параметры θ стратегии π_{θ} , максимизировать целевую функцию, чтобы добиться наибольшего вознаграждения для агента.

$$\max_{\theta} J(\pi_{\theta}) = E_{\tau \sim \pi_{\theta}} \left[R(\tau) \right]$$

Т.к. мы договорились считать π_{θ} нейросетью, то набор параметров θ – это просто веса сети.

2 Градиентные затруднения

В первом приближении карта местности определена. Цель: увеличить среднее вознаграждение, которое получает агент в процессе взаимодействия со средой, руководствуясь стратегией π_{θ} . Математическим языком эту цель можно выразить в виде задачи оптимизации

$$\max_{\theta} J(\pi_{\theta}) = E_{\tau \sim \pi_{\theta}} [R(\tau)] \tag{2.1}$$

Как это можно сделать? Первый ответ, который приходит в голову специалистам по ML, воспользоваться градиентом целевой функции $J(\pi_{\theta})$ по набору параметров θ : $\nabla_{\theta}J(\pi_{\theta})$! Схему градиентного подъема можно записать вот так

$$\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\pi_{\theta})$$

Но как воспользоваться ей на практике?

Посмотрим внимательно на уравнение нашей задачи оптимизации (2.1). Ключевым элементом выражения является функция вознаграждения $R(\tau)$. Что же нам известно о ней? Как она зависит от θ ?

К сожалению, мы не знаем об $R(\tau)$ почти ничего, она выступает в роли загадочного черного ящика. Выражение $R(\tau) = \sum_{t=0}^{T} \gamma^t r_t$ не получится продифференцировать по θ . Но связь между θ и $R(\tau)$ можно почувствовать, сэмплируя траектории $\tau \sim \pi_{\theta}$ и вычисляя вдоль них вознаграждение $R(\tau)$. То есть, нужная информация хранится в распределении $\tau \sim \pi_{\theta}$ и нужно найти способ до неё добраться.

3 Теорема о градиенте

Такой способ существует и называется теоремой о градиенте стратегии. Для удобства восприятия, мы сперва разберем её в упрощенных обозначениях, а затем подставим интересующие выражения и выведем основной результат.

Пусть определены следующие объекты: функция f(x), условное (или параметризованное) распределение вероятностей $p(x|\theta)$ и математическое ожидание $E_{x\sim p(x|\theta)}[f(x)]$. Найдем градиент математического ожидания по параметру θ

$$\nabla_{\theta} E_{x \sim p(x|\theta)} [f(x)] = \qquad \qquad \text{(сперва выпишем определение мат. ожидания)}$$

$$= \nabla_{\theta} \int f(x) p(x|\theta) dx = \qquad \qquad \text{(вносим } \nabla_{\theta} \text{ под знак интеграла })$$

$$= \int \nabla_{\theta} (f(x) p(x|\theta)) dx = \qquad \qquad \text{(применяем оператор дифференцирования)}$$

$$= \int f(x) \nabla_{\theta} p(x|\theta) dx = \qquad \qquad \text{(домножим на единицу в виде } \frac{p(x|\theta)}{p(x|\theta)})$$

$$= \int f(x) p(x|\theta) \nabla_{\theta} \log p(x|\theta) dx = \qquad \qquad \text{(вносим } \frac{1}{p(x|\theta)} \text{ под оператор дифференцирования })$$

$$= \int f(x) p(x|\theta) \nabla_{\theta} \log p(x|\theta) dx = \qquad \text{(собираем обратно выражение для мат. ожидания)}$$

$$= E_{x \sim p(x|\theta)} [f(x) \nabla_{\theta} \log p(x|\theta)]$$

За счет смены порядка операторов дифференцирования и интегрирования, а также пары математических трюков удалось получить тождество, в котором градиент находится под интегралом и действует только на распределение $p(x|\theta)$, явным образом зависящее от параметра θ .

$$\nabla_{\theta} E_{x \sim p(x|\theta)} [f(x)] = E_{x \sim p(x|\theta)} [f(x) \nabla_{\theta} \log p(x|\theta)]$$
(3.1)

На функцию f(x) при этом накладываются минимальные требования: мы хотим, чтобы она была интегрируемой. Тогда интеграл для мат. ожидания можно оценивать численно с помощью выборок $x \sim p(x|\theta)$.

Чтобы вернуться обратно к градиенту целевой функции $\nabla_{\theta} J(\pi_{\theta})$, подставим в получившееся тождество (3.1) выражения для стратегии π_{θ} . Теперь в роли x выступает траектория τ , $f(x) = R(\tau)$, а $p(x|\theta) = p(\tau|\theta)$.

$$\nabla_{\theta} J(\pi_{\theta}) = E_{\tau \sim \pi_{\theta}} \left[R(\tau) \nabla_{\theta} \log p(\tau | \theta) \right] \tag{3.2}$$

В целом выражение выглядит хорошо, но появился множитель $p(\tau|\theta)$, который выражает вероятность возникновения траектории τ , при условии, что стратегия задана набором параметров θ . Как его вычислить?

Мы знаем, что для каждого шага t вероятность действия a_t определяется стратегией и равна $\pi_{\theta}(a_t|s_t)$, а вероятность перехода между состояниями s_t и s_{t+1} определяется как $p(s_{t+1}|s_t,a_t)$. Тогда вероятность осуществления всей траектории τ равна произведению вероятностей этих переходов.

$$p(\tau|\theta) = \prod_{t>0} p(s_{t+1}|s_t, a_t) \pi_{\theta}(a_t|s_t)$$
(3.3)

Загадка множителя $p(\tau|\theta)$ разгадана, но попробуем ещё немного улучшить уравнение градиента, прологарифмировав выражение (3.3) и вычислив градиент по θ

$$\log p(\tau|\theta) = \log \prod_{t \ge 0} p(s_{t+1}|s_t, a_t) \pi_{\theta}(a_t|s_t) = \sum_{t \ge 0} (\log p(s_{t+1}|s_t, a_t) + \log \pi_{\theta}(a_t|s_t))$$

$$\nabla_{\theta} \log p(\tau|\theta) = \nabla_{\theta} \sum_{t \ge 0} (\log p(s_{t+1}|s_t, a_t) + \log \pi_{\theta}(a_t|s_t)) = \nabla_{\theta} \sum_{t \ge 0} \log \pi_{\theta}(a_t|s_t)$$

$$\nabla_{\theta} \log p(\tau|\theta) = \nabla_{\theta} \sum_{t \ge 0} \log \pi_{\theta}(a_t|s_t)$$

$$(3.4)$$

В равенстве (3.4) удалось избавиться от вероятностей, связанных с переходами между состояниями, которые не зависят от стратегии, т.е. агент не может на них повлиять.

Собрав все множители под знаком суммы, получаем формулировку теоремы о градиенте стратегии.

Теорема 3.1 (теорема о градиенте стратегии).

$$\nabla_{\theta} J(\pi_{\theta}) = E_{\tau \sim \pi_{\theta}} \left[\sum_{t > 0} R(\tau) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \right]$$
(3.5)

На практике имеет смысл выполнить ещё одно преобразование, хотя оно уже и не будет тождественным. В выражении (3.5) каждое слагаемое содержит коэффициент $R(\tau)$, зависящий от полной траектории. Т.е. информация о порядке действий a_t не используется. Это можно исправить, если считать вознаграждения по отдельности для каждого временного шага t. Для этого мы заменим $R(\tau)$ на $R_t(\tau)$.

$$\nabla_{\theta} J(\pi_{\theta}) = E_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{T} R_{t}(\tau) \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \right]$$
(3.6)

Получившиеся выражения (3.5) и (3.6) в общем случае не получится аналитически проинтегрировать, но на самом деле этого и не требуется. Основная ценность уравнений градиента заключается в том, что с их помощью можно определять направление, в котором следует изменить стратегию π_{θ} , чтобы увеличить совокупное вознаграждение. Нужно просто собирать информацию о пройденных траекториях и пересчитывать значения суммы для всех шагов.

Последнее замечание касается множителя $\nabla_{\theta} \log \pi_{\theta}(a_t|s_t)$. Т.к. π_{θ} является по сути нейросетью, возвращающей вероятностные распределения для действий на каждом шаге, значит с вычислением градиента способен справиться любой DL-фреймворк.

4 Пример алгоритма

В настоящее время достаточно много продвинутых RL-алгоритмов в том или ином виде опираются на градиент стратегии. В качестве примера разберем простейший из них, который называется REINFORCE. Это алгоритм, использующий для обучения только актуальный опыт, то есть текущую траекторию.

```
def reinforce(env, pi, n_episode, gamma=1.0):
   Алгоритм REINFORCE
   Oparam env: имя среды Gym
   @param pi: сеть, аппроксимирующая стратегию
   @param n_episode: количество эпизодов
   Орагат датта: коэффициент обесценивания
   for episode in range(n_episode):
     log_probs = []
     rewards = []
     state = env.reset()
     while True:
       action, log_prob = pi.get_action(state)
       next_state, reward, is_done, _ = env.step(action)
       log_probs.append(log_prob)
       rewards.append(reward)
       if is_done:
          returns = []
          Gt, k = 0, 0
          for reward in rewards[::-1]:
             Gt += gamma ** k * reward
             k += 1
             returns.append(Gt)
       returns = torch.tensor(returns)
       pi.update(returns, log_probs)
```

5 Использованные источники