

Winning Space Race with Data Science

Saksham Chauhan

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Summary of methodologies
 - Data Collection
 - Data Wrangling
 - EDA with Data Visualization
 - EDA with SQL
 - Building an interactive map with Folium
 - Building a dashboard with Plotly Dash
 - Predictive Analytics Classification
- Summary of all results
 - EDA Results
 - Interactive Analysis/Visualization
 - Predictive Analytics

Introduction

- Project background and context
 - Spacex advertises it's Falcon 9 rocket launches, with a cost of \$62mn with other providers costing upwards of \$165mn for each launch. Much of these savings are due to SpaceX's capability of reusing first stage launches
- Problems you want to find answers
 - Predicting success of first stage landing of the SpaceX Falcon 9 rocket

Methodology

Executive Summary

- Data collection methodology:
 - SpaceX Rest API
 - Web Scrapping from Wikipedia
- Perform data wrangling
 - Data cleaning and One Hot Encoding of data fields to prepare data for analysis and predictive modeling
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - Logistic Regression, KNN, SVM and Decision Tree models used for predictions

Data Collection

- The following datasets were collected
 - SpaceX launch data collected from the SpaceX REST API
 - Data provides info on rockets used, payload delivered, launch specifications, landing specifications and landing outcomes
 - Data was also gathered from Wikipedia for the Falcon 9 launches through webscrapping using BeautifulSoup

Data Collection - SpaceX API

 Data collection with SpaceX Rest API

Github link: https://github.com/rkohli0010/SpaceX-Capstone-Project/blob/803bd7ecc229f17454bb3174342534ac92197e 05/SpaceX%20Part%201%20-%20Data%20Collection%20with%20REST%20API.ipynb

Data Collection - Scraping

 Webscrapping from Wikipedia

Github Link:

https://github.com/rkohli0010/SpaceX-Capstone-

Project/blob/f671f15dcfe5cf85ba193ac b42ec570bd3b2c99a/SpaceX%20Part %202%20-

%20Webscrapping%20with%20Beautifulsoup

Data Wrangling

• Github Link - https://github.com/rkohli0010/SpaceX-Capstone-Project/blob/1541d26c94dee91da839fd801ec533a0b8077415/Spacex%20Part%203%20:%20Data%20 Wrangling.ipynb

EDA with Data Visualization

• **Github Link** - https://github.com/rkohli0010/SpaceX-Capstone-Project/blob/b446aa440e39ffd358c18a657bc9a233e6c10529/Spacex%20Part%204%20-%20EDA%20and%20Data%20Visualization.ipynb

EDA with SQL

SQL Queries performed :

- Displaying names of unique launch sites
- Displaying 5 records where launch site begins with 'KSC'
- Displaying the total payload mass carried by boosters launched by NASA(CRS)
- Displaying average payload mass carried by booster version F9 v1.1
- Listing the date where the successful landing outcome in drone ship was achieved
- Listing names of boosters having success on ground pad and payload mass between 4000 and 6000
- Listing total number of successful and failure mission outcomes
- Listing booster versions with maximum payload mass
- Listing records displaying month, successful landing outcomes in ground pad and booster
- Versions and launch sites for months in year 2017
- Ranking count of successful landing outcomes between 206/04/2010 and 03/20/2017 in descending order
- Github Link https://github.com/rkohli0010/SpaceX-Capstone-Project/blob/fe5fa90d3ea5471052a3fa977e7bc350031374af/SpaceX%20Part%205%20-%20EDA%20with%20SQL.ipynb

Build an Interactive Map with Folium

• Github link - https://github.com/rkohli0010/SpaceX-Capstone-Project/blob/340f49f692b8b78cc1bcb1d4914e1beb9681b0a9/SpaceX%20Part%206%20-%20Visualization%20with%20maps-2.ipynb

Build a Dashboard with Plotly Dash

Predictive Analysis (Classification)

 The SVM, KNN, and Logistic Regression model achieved the highest accuracy at 83.3%, while the SVM performs the best in terms of Area

Under the Curve at 0.958.

Results

- Low weighted payloads perform better than heavier payloads
- Success rates for SpaceX launches are directly proportional to time in years
- KSCLC 39A had the most successful launches from all sites
- Orbit GEO, HEO, SSO, and ES L1 had the best success rates

Flight Number vs. Launch Site

 Launches from the site of CCAFS SLC 40 are significantly higher than launches form other sites.

Payload vs. Launch Site

 The majority of IPay Loads with lower Mass have been launched from CCAFS SLC 40.

Success Rate vs. Orbit Type

 The orbit types of ES-L1, GEO, HEO, SSO are among the highest success rate.

Flight Number vs. Orbit Type

 A trend can be observed of shifting to VLEO launches in recent years.

Payload vs. Orbit Type

 There are strong correlation between ISS and Payload at the range around 2000, as well as between GTO and the range of 4000-8000.

Launch Success Yearly Trend

 Launch success rate has increased significantly since 2013 and has stablised since 2019, potentially due to advance in technology and lessons learned.

All launch sites marked on map

Success/failed launches marked

Distance b/w launch site and proximities

Success rate for all launch sites

Payload Vs. Launch Outcome

Classification Accuracy

Confusion Matrix

