Ewald Sum note

zhaoyihao

zhaoyihao@protonmail.com

2021年8月6日

在分子模拟中由于只能模拟有限大的体系,因此通常会加周期性边界条件(PBC)。而静电势是呈 r^{-1} 衰减,在三维空间中不能收敛。在 PBC 下,体系的总势能为:

$$E = \sum_{\mathbf{n}} \sum_{i}^{N} \sum_{j}^{N} \frac{q_{i}q_{j}}{4\pi\epsilon} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j} + \mathbf{nT}|}$$

其中 $\mathbf{n}=(\mathbf{n}_1,\mathbf{n}_2,\mathbf{n}_3),\mathbf{T}=(\mathbf{T}_1,\mathbf{T}_2,\mathbf{T}_3)$ 代表晶胞的三个基矢,"'" 代表在 $\mathbf{n}=0$ 时不存在 $\mathbf{i}=\mathbf{j}$ 项。

首先,单个点电荷周围的电场为:

$$\phi_i(\mathbf{r}) = \frac{q_i}{4\pi\epsilon} \frac{1}{|\mathbf{r} - \mathbf{r}_i|}$$

而点电荷密度可表示为:

$$\rho_i(\mathbf{r}) = \delta(\mathbf{r} - \mathbf{r}_i)$$

将原始晶格分为两个晶格,晶格一是具有原点电荷分布和以该点为中心的 三维对称的高斯分布的反向电荷分布,晶格二为正向的电荷分布。即:

$$\rho_i(\mathbf{r}) = [\delta(\mathbf{r} - \mathbf{r}_i) - G(\mathbf{r} - \mathbf{r}_i)] + [G(\mathbf{r} - \mathbf{r}_i)]$$
$$G(\mathbf{r}) = \frac{\alpha^3}{\pi^{\frac{3}{2}}} e^{-\alpha^2 |\mathbf{r}|^2}$$

由泊松方程:

$$\nabla^2 \Phi = -\frac{\rho}{\epsilon}$$

将高斯分布的单位电荷密度代入,由于电荷分布是球对称的,与 θ,ψ 无关:

$$\begin{split} \phi_i(r) &= -\frac{G(r)}{\epsilon} \\ \frac{1}{r} \frac{\partial^2}{\partial r^2} [r\phi(r)] &= -\frac{\alpha^3}{\epsilon \pi^{\frac{3}{2}}} e^{-\alpha^2 |r|^2} \\ \frac{\partial^2}{\partial r^2} [r\phi(r)] &= -\frac{\alpha^3}{\epsilon \pi^{\frac{3}{2}}} r e^{-\alpha^2 |r|^2} \\ \frac{\partial}{\partial r} [r\phi(r)] &= -\frac{\alpha^3}{\epsilon \pi^{\frac{3}{2}}} [-\frac{1}{2\alpha^2} e^{-\alpha^2 |r|^2}] + C_1 \\ \frac{\partial}{\partial r} [r\phi(r)] &= \frac{\alpha}{2\epsilon \pi^{\frac{3}{2}}} e^{-\alpha^2 |\mathbf{r}|^2} + C_1 \\ r\phi(r) &= \frac{\alpha}{2\epsilon \pi^{\frac{3}{2}}} \int_0^r dr e^{-\alpha^2 |r|^2} + C_1 r \\ \phi(r) &= \frac{\alpha}{2\epsilon \pi^{\frac{3}{2}} r} [\frac{\pi^{\frac{1}{2}}}{2\alpha} erf(\alpha r)] + C_1 \\ \phi(r) &= \frac{1}{4\pi\epsilon r} erf(\alpha r) + C_1 \end{split}$$

其中 $erf(z) = \frac{2}{\pi^{\frac{1}{2}}} \int_0^z dt e^{-t^2}$ 由边界条件

$$\lim_{r \to \infty} \phi(r) = 0$$

消去常数 C_1

$$\phi(r) = \frac{1}{4\pi\epsilon r} erf(\alpha r)$$

因此晶格二中任意一个高斯分布的单位电荷产生的电场为:

$$\phi_i(\mathbf{r}) = \frac{1}{4\pi\epsilon |\mathbf{r} - \mathbf{r}_i|} erf(\alpha |\mathbf{r} - \mathbf{r}_i|)$$

对应的晶格一中单位电荷产生的电场为:

$$\phi_i(\mathbf{r}) = \frac{1}{4\pi\epsilon |\mathbf{r} - \mathbf{r}_i|} erfc(\alpha |\mathbf{r} - \mathbf{r}_i|)$$

其中 erfc(z) = 1 - erf(z)。因此晶格一中的晶胞总势能为:

$$E^{a} = \frac{1}{2} \sum_{\mathbf{n}} \sum_{i}^{N} \sum_{j}^{N} \frac{q_{i}q_{j}}{4\pi\epsilon |\mathbf{r}_{i} - \mathbf{r}_{j} + \mathbf{n}\mathbf{T}|} erfc(\alpha |\mathbf{r}_{i} - \mathbf{r}_{j} + \mathbf{n}\mathbf{T}|)$$

而晶格二中晶胞的自相互作用项此时也可以求出

$$\lim_{z \to 0} erf(z) = \frac{2}{\pi^{\frac{1}{2}}}z$$

$$E^{self} = \sum_{i}^{N} \frac{q_i^2}{4\pi\epsilon} \frac{2}{\pi^{\frac{1}{2}}} \alpha$$

晶格二中中央晶胞受到的总势能的求法为将晶格二的电荷密度做 Fourier 变换带入到 k 空间中的泊松方程, 求得作用势再逆变换回实空间中。此处是只计算一个晶胞的电荷密度分布的 Fourier 变换, 再求得一个晶胞的电场, 再逆变换回去。晶格二中晶胞的单位电荷密度分布为:

$$\rho_{uc}^{L}(\mathbf{r}) = \sum_{j}^{N} G(\mathbf{r} - \mathbf{r}_{j})$$

$$\begin{split} \hat{\rho}_{uc}^{L}(\mathbf{k}) &= \int d\mathbf{r} \sum_{j}^{N} G(\mathbf{r} - \mathbf{r}_{j}) e^{-i\mathbf{k}\mathbf{r}} \\ &= \int d\mathbf{y} \sum_{j}^{N} G(\mathbf{y}) e^{-i\mathbf{k}(\mathbf{y} + \mathbf{r}_{j})} \\ &= \sum_{j}^{N} e^{-i\mathbf{k}\mathbf{r}_{j}} \hat{G}(\mathbf{k}) \\ &= \sum_{j}^{N} e^{-i\mathbf{k}\mathbf{r}_{j}} \hat{G}(\mathbf{k}) \end{split}$$

$$\begin{split} \hat{G}(\mathbf{k}) &= \int d\mathbf{y} G(\mathbf{y}) e^{-i\mathbf{k}\mathbf{y}} \\ &= \int d\mathbf{y} \frac{\alpha^3}{\pi^{\frac{3}{2}}} e^{-\alpha^2 |\mathbf{y}|^2} \\ &= \int d\mathbf{y} A e^{-a|\mathbf{y}|^2} \\ &= A \int \int \int e^{-ay_x^2 - ay_y^2 - ay_z^2} e^{-ik_x y_x - ik_y y_y - ik_z y_z} dy_z dy_y dy_z \\ &= A [\int dy_x e^{-ay_x^2 - ik_x y_x}] [] [] \end{split}$$

$$\int dy_x e^{-ay_x^2 - ik_x y_x} = \int dy_x e^{-(a^{\frac{1}{2}}y_x + \frac{ik_x}{2a^{\frac{1}{2}}})^2 - \frac{k_x^2}{4a}}$$

$$= e^{-\frac{k_x^2}{4a}} \int dU \frac{1}{a^{\frac{1}{2}}} e^{-U^2}$$

$$= \frac{\pi^{\frac{1}{2}}}{a^{\frac{1}{2}}} e^{-\frac{k_x^2}{4a}}$$

$$\hat{G}(\mathbf{k}) = A \frac{\pi^{\frac{3}{2}}}{a^{\frac{3}{2}}} e^{-\frac{|\mathbf{k}|^2}{4a}}$$
$$= \frac{\alpha^3}{\pi^{\frac{3}{2}}} \frac{\pi^{\frac{3}{2}}}{\alpha^3} e^{-\frac{|\mathbf{k}|^2}{4\alpha^2}}$$
$$= e^{-\frac{|\mathbf{k}|^2}{4\alpha^2}}$$

$$\hat{\rho}_{uc}^{L}(\mathbf{k}) = \sum_{j}^{N} e^{-i\mathbf{k}\mathbf{r}_{j}} e^{-\frac{|\mathbf{k}|^{2}}{4\alpha^{2}}}$$

将 $\hat{\rho}^L(\mathbf{k})$ 代入到 k 空间中的泊松方程中

$$k^2 \hat{\phi}(\mathbf{k}) = \frac{\hat{\rho}(\mathbf{k})}{\epsilon}$$

得到晶格二在 k 空间中一个晶胞产生的电场势:

$$\hat{\phi}_{uc}^{L}(\mathbf{k}) = \frac{1}{\epsilon} \sum_{j}^{N} e^{-i\mathbf{k}\mathbf{r}_{j}} \frac{e^{-\frac{|\mathbf{k}|^{2}}{4\alpha^{2}}}}{k^{2}}$$

运用泊松求和公式得到实空间中总的电场势:

$$\begin{split} \phi^L(\mathbf{r}) &= \sum_{\mathbf{n}} \phi^L_{uc}(\mathbf{r} + \mathbf{n}\mathbf{T}) \\ &= \frac{1}{V} \sum_{\mathbf{k}} \hat{\phi}^L_{uc}(\mathbf{k}) e^{i\mathbf{k}\mathbf{r}} \\ &= \frac{1}{V} \sum_{\mathbf{k}} e^{i\mathbf{k}\mathbf{r}} \frac{1}{\epsilon} \sum_{j}^{N} e^{-i\mathbf{k}\mathbf{r}_j} \frac{e^{-\frac{\left|\mathbf{k}\right|^2}{4\alpha^2}}}{k^2} \\ &= \frac{1}{V\epsilon} \sum_{\mathbf{k}} \sum_{j}^{N} e^{i\mathbf{k}\cdot(\mathbf{r} - \mathbf{r}_j)} \frac{e^{-\frac{\left|\mathbf{k}\right|^2}{4\alpha^2}}}{k^2} \end{split}$$

所以晶格二中中央晶胞的总势能为:

$$E^{b} = \frac{1}{2} \frac{1}{V \epsilon} \sum_{\mathbf{k}} \sum_{i}^{N} \sum_{j}^{N} \frac{q_{i} q_{j}}{k^{2}} e^{i \mathbf{k} \cdot (\mathbf{r}_{i} - \mathbf{r}_{j})} e^{-\frac{|\mathbf{k}|^{2}}{4\alpha^{2}}}$$

因此原始晶格中中央晶胞感受到的总静电能为:

$$E = E^{a} + E^{b} - \frac{1}{2}E_{self}$$

$$= \frac{1}{2}\sum_{\mathbf{n}}\sum_{i}^{N}\sum_{j}^{N'} \frac{q_{i}q_{j}}{4\pi\epsilon|\mathbf{r}_{i} - \mathbf{r}_{j} + \mathbf{n}\mathbf{T}|} erfc(\alpha|\mathbf{r}_{i} - \mathbf{r}_{j} + n\mathbf{T}|)$$

$$+ \frac{1}{2}\frac{1}{V\epsilon}\sum_{\mathbf{k}\neq0}\sum_{i}^{N}\sum_{j}^{N}\frac{q_{i}q_{j}}{k^{2}}e^{i\mathbf{k}\cdot(\mathbf{r}_{i} - \mathbf{r}_{j})}e^{-\frac{|\mathbf{k}|^{2}}{4\alpha^{2}}}$$

$$- \sum_{i}^{N}\frac{q_{i}^{2}}{4\pi\epsilon}\frac{\alpha}{\pi^{\frac{1}{2}}}$$

$$(1)$$

其中若 $\sum_i q_i = 0$ 则 $\mathbf{k} = 0$ 项贡献无贡献(这句话不是完全正确也不是完全错误,看老师 2014 年 JCTC)。 E^b 中是多了 $\frac{1}{2}E^{self}$ 所以减去 $\frac{1}{2}E^{self}$ 。这里边所有 Fourier 变换规定的为:

$$\hat{f}(k) = \int f(x)e^{-ikx}dx$$

1 Poisson's summation formula

泊松求和公式:

$$F(\mathbf{x}) = \sum_{\mathbf{n}} f(\mathbf{x} + \mathbf{n}\mathbf{T}) = \frac{1}{V} \sum_{\mathbf{k}} \hat{f}(\mathbf{k}) e^{i\mathbf{k}\mathbf{x}}$$

先推导一维的:

$$F(x) = \sum_{n} f(x + nL)$$
$$= f(x) * \sum_{n} \delta(x + nL)$$

如上把任意函数 f(x) 的周期性延展 F(x) 写成 f(x) 与 δ 函数的卷积。由于 $\sum_n \delta(x+nL)$ 是周期函数,将其展开为傅里叶级数:

$$\sum_{n} \delta(x + nL) = \sum_{m} C_{m} e^{im\frac{2\pi}{L}x}$$

$$C_{m} = \frac{1}{L} \int_{-\frac{L}{2}}^{\frac{L}{2}} dx \sum_{n} \delta(x + nL) e^{-im\frac{2\pi}{L}x}$$

$$= \frac{1}{L} \int_{-\frac{L}{2} - nL}^{\frac{L}{2} - nL} dt \sum_{n} \delta(t) e^{-im\frac{2\pi}{L}(t - nL)}$$

$$= \frac{1}{L} \sum_{n} \int_{-\frac{L}{2} - nL}^{\frac{L}{2} - nL} dt \delta(t) e^{-im\frac{2\pi}{L}t}$$

$$= \frac{1}{L} \int_{-\infty}^{\infty} dt \delta(t) e^{-im\frac{2\pi}{L}t}$$

$$= \frac{1}{L}$$

所以:

$$\sum_{n} \delta(x + nL) = \sum_{m} \frac{1}{L} e^{im\frac{2\pi}{L}x}$$

$$\begin{split} F(x) = & f(x) * \sum_{n} \delta(x + nL) \\ = & f(x) * \sum_{m} \frac{1}{L} e^{im\frac{2\pi}{L}x} \\ = & \sum_{m} \frac{1}{L} f(x) * e^{im\frac{2\pi}{L}x} \\ = & \sum_{m} \frac{1}{L} \int dx' f(x') e^{im\frac{2\pi}{L}(x - x')} \\ = & \sum_{m} \frac{1}{L} e^{im\frac{2\pi}{L}x} \int dx' f(x') e^{-im\frac{2\pi}{L}x'} \\ = & \sum_{m} \frac{1}{L} \hat{f}(m\frac{2\pi}{L}) e^{im\frac{2\pi}{L}x} \end{split}$$

三维同理:

$$\sum_{\mathbf{n}} f(\mathbf{x} + \mathbf{nT}) = \frac{1}{T_x T_y T_z} \sum_{\mathbf{k}} \hat{f}(\mathbf{k}) e^{i\mathbf{k}\mathbf{r}}$$

右式是对倒易点阵中求和, $\mathbf{k} = 2\pi \frac{\mathbf{m}}{\mathbf{T}}$

2 Poisson 方程

通过任意封闭曲面的电通量等于该曲面包围体积内的电荷总量除以介 电常数:

$$\oint_{S} \mathbf{E} d\mathbf{S} = \frac{1}{\epsilon} \int_{V} \rho(\mathbf{r}) dV$$

高斯公式:

$$\oint_{S} \mathbf{E} d\mathbf{S} = \int_{V} \nabla \mathbf{E} dV$$

而:

$$\mathbf{E} = -\nabla \phi(\mathbf{r})$$

因此:

$$\begin{split} \int_V \nabla [-\nabla \phi(\mathbf{r})] dV = & \frac{1}{\epsilon} \int_V \rho(\mathbf{r}) dV \\ \nabla^2 \phi(\mathbf{r}) = & -\frac{\rho(\mathbf{r})}{\epsilon} \end{split}$$

K 空间中的 Poisson 方程

$$\begin{split} \nabla^2 \phi(\mathbf{r}) = & \nabla^2 \int \hat{\phi}(\mathbf{k}) e^{i\mathbf{k}\mathbf{r}} d\mathbf{k} \\ = & \int \hat{\phi}(\mathbf{k}) \nabla^2 e^{i\mathbf{k}\mathbf{r}} d\mathbf{k} \\ = & \int \hat{\phi}(\mathbf{k}) [-|\mathbf{k}|^2 e^{i\mathbf{k}\mathbf{r}}] d\mathbf{k} \\ = & \int -|\mathbf{k}|^2 \hat{\phi}(\mathbf{k}) e^{i\mathbf{k}\mathbf{r}} d\mathbf{k} \end{split}$$

所以:

$$\begin{split} \mathcal{F}[\nabla^2 \phi(\mathbf{r})] &= - |\mathbf{k}|^2 \hat{\phi}(\mathbf{k}) \\ \mathcal{F}[-\frac{\rho(\mathbf{r})}{\epsilon}] &= -\frac{\hat{\rho}(\mathbf{k})}{\epsilon} \\ |\mathbf{k}|^2 \hat{\phi}(\mathbf{k}) &= \frac{\hat{\rho}(\mathbf{k})}{\epsilon} \end{split}$$