26.10.2023

Diskrete Strukturen in der Informatik Edgar Großkopf, Felix Suhl

Tutorium Donnerstag, 10-12 Uhr bei Daniel Yu

2. Übungszettel

1. Aussagen und logische Terme

(4 + 6 Punkte)

a) a := Der Kuchen ist gut, b := der Kuchen ist billig

Der Slogan "Guter Kuchen ist nicht billig!" kann als Term $a \to \neg b$ dargestellt werden. Der Slogan "Billiger Kuchen ist nicht gut!" kann als Term $b \to \neg a$ dargestellt werden. Prüft man die Aussagen mit einer Wahrheitstabelle, zeigt sich:

a	b	$\neg a$	$\neg b$	$a \rightarrow \neg b$	$b \to \neg a$
0	0	1	1	1	1
0	1	1	0	1	1
1	0	0	1	1	1
1	1	0	0	0	0

V sehr gut i

Beide Terme sind für alle Belegungen gleich ausgewertet und damit logisch äquivalent, somit ist bei den Slogans dasselbe Gemeint.

b)

(i)
$$r \land \neg p \quad \checkmark$$

(ii)
$$r \wedge p \rightarrow q \ \checkmark$$

(iii)
$$\neg r \rightarrow \neg q$$

2. Eigenschaften von logischen Termen

(8 + 2 Punkte)

a)

$$t_1 := b \wedge (a \vee c) \vee (a \wedge c)$$

a	b	c	$a \lor c$	$a \wedge c$	$b \wedge (a \vee c)$	$b \wedge (a \vee c) \vee (a \wedge c)$
0	0	0	0	0	0	0
0	0	1	1	0	0	0
0	1	0	0	0	0	0
0	1	1	1	0	1	1
1	0	0	1	0	0	0
1	0	1	1	1	0	1
1	1	0	1	0	1	1
1	1	1	1	1	1	1

Der Term t_1 ist erfüllbar.

$$t_2 \coloneqq (\neg a \wedge b) \vee (\neg c \vee b)$$

Jaksh as yselvide

0 0 0 0 1 1 0 1	a	b	c	$\neg a \wedge c$	$\neg c \lor b$	$(\neg a \land b) \lor (\neg c \lor b)$
0 0 1 1 0 1	0	0	0	0	1	1
	0	0	1	1	0	1

0	1	0	0	1	1
0	1	1	1	1	1
1	0	0	0	1	1
1	0	1	0	0	0
1	1	0	0	1	1
1	1	1	0	1	1

Der Term t_2 ist erfüllbar.

$$t_3 \coloneqq ((a \land b) \lor (b \land c)) \lor (a \land c)$$

a	b	c	$a \wedge b$	$b \wedge c$	$a \wedge c$	$(a \wedge b) \vee (b \wedge c)$	$((a \wedge b) \vee (b \wedge c)) \vee (a \wedge c)$
0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0
0	1	0	0	0	0	0	0
0	1	1	0	1	0	1	1
1	0	0	0	0	0	0	0
1	0	1	0	0	1	0	1
1	1	0	1	0	0	1	1
1	1	1	1	1	1	1	1

Der Term t_3 ist erfüllbar.

$$t_4 \coloneqq (a \land b) \lor ((c \lor a) \lor \neg a)$$

a	b	c	$a \wedge b$	$c \vee a$	$\neg a$	$(c \vee a) \vee \neg a$	$(a \wedge b) \vee ((c \vee a) \vee \neg a)$
0	0	0	0	0	1	1	1
0	0	1	0	1	1	1	1
0	1	0	0	0	1	1	1
0	1	1	0	1	1	1	1
1	0	0	0	1	0	1	1
1	0	1	0	1	0	1	1
1	1	0	1	1	0	1	1
1	1	1	1	1	0	1	1
						•	

Der Term t_4 ist eine Tautologie.

b) Die Terme t_1 und t_3 sind logisch äquivalent zueinander.

3. Zählen mit logischen Termen

a)
$$(p_1 \wedge p_2) \vee (p_3 \wedge p_4)$$
 $\qquad \qquad \bigvee \bigvee$

b) $p_1 \wedge p_2 \wedge \neg (p_3 \vee p_4)$

c) $p_1 \wedge ... \wedge p_k \wedge \neg (p_{k+1} \vee ... \vee p_n)$ Alle Aussagen von p_1 bis p_k sind wahr, während alle Aussagen von p_{k+1} bis p_n , wobei k < n, nicht wahr sind. Das ist äquivalent zu "Genau k der Aussagen $p_1, p_2, p_3, ..., p_n$ sind wahr." Für den fall, dass k=n, ließe sich der Ausdruck auf $p_1 \wedge \ldots \wedge p_n$ vereinfachen.

P1 1 P2 1 1 P3 1 P4 / P1 = P2 = 0 1 0.5/3