| Reg.No |  |
|--------|--|
|--------|--|



## MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL UNIVERSITY, MANIPAL - 576 104



IV SEMESTER B.E DEGREE END SEMESTER MAKE UP EXAMINATION – July, 2014

## SUB: PROBABILITY, STATISTICS AND STOCHASTIC PROCESS – IV (MAT –CSE/IT – 212) (REVISED CREDIT SYSTEM)

Time: 3 Hrs. Max.Marks: 50

## 

- 1A. The odds that a book will be reviewed favorably by 3 independent critics are 5 to 2, 4 to 3, 3 to 4. What is the probability that of the 3 reviews, a majority will be favorable?
- 1B. If the random variable 'K' is uniformly distributed over [0, 5], what is the probability that the roots of the equation  $4x^2 + 4xK + K + 2 = 0$  are real?
- 1C. In a bolt factory machines A, B, C manufacture respectively 25%, 35% and 40% of total. Of these output 5, 4, 2 percent are defective bolts. A bolt is drawn at random from the product and is found to be defective. What is the probability that it was manufactured from B?
- 2A. A continuous random variable X has the p.d.f.  $f(x) = 6x(1-x), 0 \le x \le 1$ . Determine the mean and variance of this distribution.
- 2B. Suppose that 15% of the families in a certain community have no children, 20% have 1, 35% have 2 and 30% have 3 and suppose further that in each family each child is equally likely to be a boy or girl. If a family is chosen at random from this community, find the joint p .d. f of the number of boys and number of girls.
- 2C. In a normal distribution 31% of the items are under 45 and 8% are over 64. Find the mean and variance of the distribution.
- 3A. Suppose that the random variable X is uniformly distributed over  $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ . Find the p.d.f of Y = tan X
- 3B. If the random variable X has  $N\left(\mu,\ \sigma^2\right)$  distribution, then show that the random variable  $Z = \frac{X \mu}{\sigma} \ \text{has } N(0,\,1) \text{ and that } \ V = \frac{\left(X \mu\right)^2}{\sigma^2} \ \text{has } \chi^2(1) \,.$
- 3C. Find the m.g.f of binomial distribution. Hence find its mean and variance.

- 4A. If X is a random variable and  $P(x) = ab^x$ , where a and b are positive such that a + b = 1 and X = 0,1,2,... Find the moment generating function of X. Hence, show that  $m_2 = m_1 (2m_1 + 1)$  where  $m_1$  and  $m_2$  being the first two moments.
- 4B. Two independent random variables  $X_1$  and  $X_2$  have means 5, 10 and variance 4, 9. Find covariance between  $U = 3X_1 + 4X_2$  and  $V = 3X_1 X_2$ .
- 4C. Compute an approximate probability that mean of a random sample of size 15 from a distribution having pdf  $f(x) = \begin{cases} 3x^2, & 0 < x < 1 \\ 0, & \text{elsewhere} \end{cases}$ 
  - is between  $\frac{3}{5} \& \frac{4}{5}$ .
- 5A. Let  $(X_1, X_2, ..., X_n)$  denote a random sample of size n from the distribution with pdf  $f(x,\theta) = \begin{cases} \frac{\theta^x e^{-\theta}}{x!}, & x = 0,1,2,...,\theta > 0 \\ 0, & \text{elsewhere} \end{cases}$ . Find MLE for  $\theta$ .
- 5B. Show that the sample mean  $\overline{X}$  is both unbiased and consistent estimator for the population mean.
- 5C. Let  $\overline{X}$  be the sample mean of a random sample of size 20 from a normal distribution which is N( $\mu$ , 100). Find a 95% confidence interval for  $\mu$ .
- 6A. Let us assume that the life length of a tyre in miles, say X is normally distributed with mean  $\theta$  and standard deviation 5000. Past experience indicates that  $\theta=30,000$  the manufacturer claims that the tyres made by a new procedure have mean  $\theta>30,000$  and it is very possible that  $\theta=35,\,000$ . Let us check this claim by testing  $H_0:\theta<30,000$  against  $H_1:\theta>30,000$ . We shall observe n independent values of X say  $X_1,\,X_2,\,\ldots,\,X_n$  and we shall reject  $H_0$  if and only if  $x\geq c$ . Determine n and c so that the power function  $K(\theta)$  of the test has values K (30,000)=0.01 and K (35,000)=0.98.
- 6B. A two dimensional random variable (X, Y) is uniformly distributed over a rectangle with vertices (-1,0), (1,0), (0,-1) and (0,1). Find E(x) and E(Y).
- 6C. The Mendelian theory states that the probabilities of classification A, B, C, D are respectively  $\frac{9}{16}$ ,  $\frac{3}{16}$ ,  $\frac{3}{16}$ . From a sample of 160 the actual numbers observed were 86, 35, 26 and 13. Is this data consistent with the theory at 0.01 significance level?

\*\*\*\*\*\*