Maximizar $2x_1 + x_2$

$$s. a: \begin{cases} x_1 + 4x_2 \le 6 \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$$

En la columna b tenemos la solución

			2	1	0
c_B	x_B	b	x_1	x_2	x_3
2	x_1	6	1	4	1
		12	2	8	2
			0	7	2

Se acaba el Simplex cuando en la última fila todos los valores son positivos

$$Minimizar -x_1 + 4x_2$$

$$\begin{cases} -x_1 + 5x_2 \le 1 \\ x_1 - 4x_2 \le 8 \end{cases}$$

$$\begin{cases} x_1 - 4x_2 \le 8 \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$$

 $Maximizar \quad x_1 - 4x_2$

$$s. a: \begin{cases} -x_1 + 5x_2 + x_3 = 1 \\ x_1 - 4x_2 + x_4 = 8 \\ x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0 \end{cases}$$

8º: Restamos a cada z los coeficientes c

			1	-4	0	0
c_B	x_B	b	x_1	x_2	x_3	x_4
0	x_3	1	-1	5	1	0
0	x_4	8	1	-4	0	1
		0	0	0	0	0
			-1	4	0	0

No son todo positivos. No hemos acabado (veremos más adelante como seguir)

Última fila. Entre los valores negativos, elegimos el más pequeño

			1	-4	0	0
c_B	x_B	b	x_1	x_2	x_3	x_4
0	x_3	1	-1	5	1	0
0	x_4	8	1	-4	0	1
		0	0	0	0	0
			-1	4	0	0

En las filas de las restricciones, nos fijamos en los números positivos

			1	-4	0	0
c_B	x_B	b	x_1	x_2	x_3	x_4
0	x_3	1	-1	5	1	0
0	x_4	8	1	-4	0	1
		0	0	0	0	0
			-1	4	0	0

Si hubiera varios positivos, calculamos b/a (8/1) de cada uno y elegimos el menor

			1	-4	0	0
c_B	x_B	b	x_1	x_2	x_3	x_4
0	x_3	1	-1	5	1	0
0	x_4	8	1	-4	0	1
		0	0	0	0	0
			-1	4	0	0

			1	-4	0	0
c_B	x_B	b	x_1	x_2	x_3	x_4
0	x_3		0		1	
1	x_1		1		0	

			1	-4	0	0
c_B	x_B	b	x_1	x_2	x_3	x_4
0	x_3	9	0	1	1	1
1	x_1	8	1	-4	0	1
		8	1	-4	0	1
			0	0	0	1

Solución 1:
$$\begin{cases} x_1 = 8 \\ x_2 = 0 \\ x_3 = 9 \\ x_4 = 0 \end{cases}$$

			1	-4	0	0
c_B	x_B	b	x_1	x_2	x_3	x_4
0	x_2		0	1		
1	x_1		1	0		

			1	-4	0	0
c_B	x_B	b	x_1	x_2	x_3	x_4
-4	x_2	9	0	1	1	1
1	x_1	44	1	0	4	5
		8	1	-4	0	1
			0	0	0	1

Solución 2:
$$\begin{cases} x_1 = 44 \\ x_2 = 9 \\ x_3 = 0 \\ x_4 = 0 \end{cases}$$

Cualquier combinación lineal entre las dos soluciones será solución

 $Maximizar - 2x_1 - x_2$

$$s. a: \begin{cases} 2x_1 + 4x_2 \le -6 \\ x_1 \le 0, x_2 \le 0 \end{cases}$$

$$Maximizar$$
 $2x_1 + x_2$

$$\begin{cases} 2x_1 + 4x_2 - x_3 = 6 \\ x_1 \ge 0, x_2 \ge 0, x_3 \ge 0 \end{cases}$$

Maximizar $2x_1 + x_2 - Mx_4$

$$\begin{cases} 2x_1 + 4x_2 - x_3 + x_4 = 6 \\ x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0 \end{cases}$$

8º: Restamos a cada z los coeficientes c

			2	1	0	-M
			x_1	x_2	x_3	x_4
-M	x_4	6	2	4	-1	1
		-6M	-2M	-4M	M	-M
			-2M-2	-4M-1	M	0

No son todo positivos. No hemos acabado (veremos más adelante como seguir)

Última fila. Entre los valores negativos, elegimos el más pequeño

			2	1	0	-M
			x_1	x_2	x_3	x_4
-M	x_4	6	2	4	-1	1
		-6M	-2M	-4M	M	-M
			-2M-2	-4M-1	M	0

		2	1	0	-M
		x_1	x_2	x_3	x_4
-M	x_2				

			2	1	0	-M
			x_1	x_2	x_3	x_4
1	x_2	3/2	1/2	1	-1/4	1/4
		3/2	1/2	1	-1/4	1/4
			-3/4	0	-1/4	1/4+M

			2	1	0	-M
			x_1	x_2	x_3	x_4
2	x_1	3	1	2	-1/2	1/2
		6	2	4	-1	1
			0	3	-1	1+M

No podemos seguir: Solución No Finita

Maximizar $3x_1 - 2x_2 + x_3$

$$s.a: \begin{cases} x_1 + 2x_2 - x_3 \le 2 \\ 2x_1 + 4x_2 + 2x_3 \le 3 \\ x_1 \ge 0, x_2 \ge 0, x_3 \ge 0 \end{cases}$$

$$\begin{cases} x_1 + 2x_2 - x_3 \le 2 \\ 2x_1 + 4x_2 + 2x_3 \le 3 \\ x_1 \ge 0, x_2 \ge 0, x_3 \ge 0 \end{cases}$$

$$\downarrow$$

$$\begin{cases} x_1 + 2x_2 - x_3 + x_4 = 2 \\ 2x_1 + 4x_2 + 2x_3 + x_5 = 3 \\ x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0 \end{cases}$$

1º: Variables

	x_1	x_2	x_3	x_4	x_5

2º: Coeficientes en la función objetivo

	$c_1 = 3$	$c_2 = -2$	$c_3 = 1$	$c_4 = 0$	$c_5 = 0$
	x_1	x_2	x_3	x_4	x_5

3º: Coeficientes de las restricciones

	3	-2	1	0	0
	x_1	x_2	x_3	x_4	x_5
	1	2	-1	1	0
	2	4	2	0	1

4º: Términos independientes de las restricciones

		3	-2	1	0	0
	b	x_1	x_2	x_3	x_4	x_5
	2	1	2	-1	1	0
	3	2	4	2	0	1

5º: Elegimos solución factible básica, variables que formen la matriz unidad

		3	-2	1	0	0
x_B	b	x_1	x_2	x_3	x_4	x_5
x_4	2	1	2	-1	1	0
x_5	3	2	4	2	0	1

6º: Coeficientes de las variables elegidas en la función objetivo

			3	-2	1	0	0
C_B	x_B	b	x_1	x_2	x_3	x_4	x_5
0	x_4	2	1	2	-1	1	0
0	x_5	3	2	4	2	0	1

 $Z = c_B * b$. $z_i = c_B * (columna de <math>x_i)$. $z_1 = 0 * 1 + 0 * 2$, $z_2 = 0 * 2 + 0 * 4$...

			3	-2	1	0	0
c_B	x_B	b	x_1	x_2	x_3	x_4	x_5
0	x_4	2	1	2	-1	1	0
0	x_5	3	2	4	2	0	1
		Z = 0	$z_1 = 0$	$z_2 = 0$	$z_2 = 0$	$z_2 = 0$	$z_2 = 0$

8º: Restamos a cada z los coeficientes c

			3	-2	1	0	0
c_B	χ_B	b	x_1	x_2	x_3	x_4	x_5
0	x_4	2	1	2	-1	1	0
0	x_5	3	2	4	2	0	1
		0	0	0	0	0	0
			$z_1 - c_1$ -3	$z_2 - c_2$ 2	$z_3 - c_3$ -1	$z_4 - c_4 \\ 0$	$z_5 - c_5 \\ 0$

			3	-2	1	0	0
c_B	x_B	b	x_1	x_2	x_3	x_4	x_5
0	x_4	2	1	2	-1	1	0
0	x_5	3	2	4	2	0	1
		0	0	0	0	0	0
			-3	2	-1	0	0

Resolución: 1º, nos fijamos en la última fila.

			3	-2	1	0	0
C_B	x_B	b	x_1	x_2	x_3	x_4	x_5
0	x_4	2	1	2	-1	1	0
0	x_5	3	2	4	2	0	1
		0	0	0	0	0	0
			-3	2	-1	0	0

Metemos la variable con el menor valor en z-c

			3	-2	1	0	0
C_B	x_B	b	x_1	x_2	x_3	x_4	x_5
0	x_4	2	1	2	-1	1	0
0	x_5	3	2	4	2	0	1
		0	0	0	0	0	0
			-3	2	-1	0	0

Buscamos los valores a_{ji} de la columna que sean positivos.

			3	-2	1	0	0
C_B	x_B	b	x_1	x_2	x_3	x_4	x_5
0	x_4	2	1	2	-1	1	0
0	x_5	3	2	4	2	0	1
		0	0	0	0	0	0
			-3	2	-1	0	0

Elegimos la fila con el menor valor de b/a_{ji} . 2/1=2. 3/2=1.5.

			3	-2	1	0	0
c_B	x_B	b	x_1	x_2	x_3	x_4	x_5
0	x_4	2	1	2	-1	1	0
0	x_5	3	2	4	2	0	1
		0	0	0	0	0	0
			-3	2	-1	0	0

En la columna de la variable elegida, el pivote debe ser 1, el resto 0

			3	-2	1	0	0
c_B	x_B	b	x_1	x_2	x_3	x_4	x_5
0	x_4	2	1	2	-1	1	0
	x_1	3	2	4	2	0	1
		0	0	0	0	0	0
			-3	2	-1	0	0

Dividimos la fila de x1 por 2, y a la fila de x4 le restaremos la nueva fila de x1

			3	-2	1	0	0
C_B	x_B	b	x_1	x_2	x_3	x_4	x_5
0	x_4	2	1	2	-1	1	0
	x_1	3	2	4	2	0	1
		0	0	0	0	0	0
			-3	2	-1	0	0

			3	-2	1	0	0
c_B	x_B	b	x_1	x_2	x_3	x_4	x_5
0	x_4	1/2	0	0	-2	1	-1/2
	x_1	3/2	1	2	1	0	1/2

Colocamos el coeficiente de x_1 y rellenamos z y z-c

			3	-2	1	0	0
c_B	x_B	b	x_1	x_2	x_3	x_4	x_5
0	x_4	1/2	0	0	-2	1	-1/2
3	x_1	3/2	1	2	1	0	1/2
		9/2	3	6	3	0	3/2
			0	8	2	0	3/2

Fila de z-c: Todos positivos, fin del problema. $x_1 = 3/2$

			3	-2	1	0	0
C_B	x_B	b	x_1	x_2	x_3	x_4	x_5
0	x_4	1/2	0	0	-2	1	-1/2
3	x_1	3/2	1	2	1	0	1/2
		9/2	3	6	3	0	3/2
			0	8	2	0	3/2

Solución:
$$\begin{cases} x_1 = 3/2 \\ x_2 = 0 \\ x_3 = 0 \\ x_4 = 1/2 \\ x_5 = 0 \end{cases}$$