Computer Vision

YY2015

Edge Detection

Yaya Wihardi, S.Kom., M.Kom. Email: yayawihardi@upi.edu

Department of Computer Science Education
Universitas Pendidikan Indonesia

Updated 01 Aug 2015

Outlines

- Edge detection
- A simple edge detector
- Canny edge detector
- A model fitting method for edge detection
 - -RANSAC

YY2015

3

- (A) Cave painting at Chauvet, France, about 30,000 B.C.;
- (B) Aerial photograph of the picture of a monkey as part of the Nazca Lines geoplyphs, Peru, about 700 200 B.C.;
- (C) Shen Zhou (1427-1509 A.D.): Poet on a mountain top, ink on paper, China;
- (D) Line drawing by 7-year old I. Lleras (2010 A.D.).

Edge Detection

V4

PPA

Walther, Chai, Caddigan, Beck & Fei-Fei, PNAS, 2011

Edge Detection

- Goal: mengidentifikasi sudden changes (discontinuities) dalam sebuah citra
 - Secara Intuitive, Sebagian besar semantic dan informasi bentuk dari sebuah citra dapat di encode dalam edge
 - Lebih sarat makna (compact) dibanding piksel
- Ideal: artist's line drawing

Source: D. Lowe

Kenapa Kita Peduli terhadap Edges?

 Mengekstrak informasi, mengenali objek

 Memperlihatkan Geometry dan ViewPoint

Source: J. Hayes

Pembentukan Edges

- Surface normal discontinuity
- Depth discontinuity

YY2015

- Surface color discontinuity
- Illumination discontinuity

Surface normal discontinuity

Surface normal discontinuity

Source: D. Hoiem

Depth discontinuity

Depth discontinuity

Source: D. Hoiem

10

Surface color discontinuity

Surface color discontinuity

Source: D. Hoiem

11

Computer Vision YY2015

Karakteristik Edges

 Edge merupakan posisi/tempat terjadinya perubahan secara drastis/ekstrim pada sebuah citra

14

Image Gradient

• Gradient Image: $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$

$$\nabla f = \left[\frac{\partial f}{\partial x}, \mathbf{0}\right]$$

Arah dari gradien tsb dihitung dengan persamaan:

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

Tingkat kekuatan edge ditentukan oleh magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Edge Detection

Bagaimana 'mendeteksi' perbedaan intensitas tersebut?

- Dengan mempertegas perbedaan (kalikan satu intensitas dengan nilai negatif, kemudian kalikan nilai positif pada intensitas lainnya)
 - Kasus A: 2 bersisian dgn 100 (edge) → 2*(-1) + 100*(1)= 99
 - Kasus B: 2 bersisian dgn 4 (not edge) → 2*(-1) + 4*(1)= 2
- Lakukan tresholding untuk memperjelas mana bagian sisi dan mana yang bukan
 - Ambil treshold = 90, maka Kasus A akan dianggap sebagai sisi, Kasus B tidak dianggap sis

Contoh Edge Detection

-1	-2	-1
0	0	0
1	2	1

-1	0	1
-2	0	2
-1	0	1

Sobel

-1	-1	-1
0	0	0
1	1	1

-1	0	1
-1	0	1
-1	0	1

Prewitt

(a) Gambar awal, (b) hasil dari Prewitt mask, (c) thresholding dari (b) pada nilai > 25 (white) (d) thresholding dari (b) pada nilai > 25 (white) dan < 25 (black)

Thank You