Санкт-Петербургский государственный университет Математико-механический факультет Кафедра физической механики

Методы измерений и электромеханические системы Отчёт по лабораторной работе \mathbb{N}_{2}

«Ускорение свободного падения»

Выполнил студент:

Самохин Павел Константинович группа: 23.Б12-мм

Проверил:

к.ф.-м.н., доцент, профессор Морозов Виктор Александрович

Содержание

1	Введение					
	1.1	Цель работы				
	1.2	Решаемые задачи				
2	Основная часть					
	2.1	Теоретическая часть				
	2.2	Эксперимент				
		Обработка данных и обсуждение результатов				
		Исходный код				
		Таблицы				
9	D	воды				
J	\mathbf{p}	ЗUДЫ				

1 Введение

1.1 Цель работы

Изучение фундаментальных законов механики лежит в основе классической физики. Одним из важнейших принципов, подтверждаемых экспериментально, является принцип эквивалентности инертной и гравитационной массы. Согласно этому принципу, все тела в однородном гравитационном поле Земли падают с одинаковым ускорением вне зависимости от их массы и состава.

В данной лабораторной работе рассматривается свободное падение тел и проводится экспериментальная проверка указанного принципа. Основной задачей является измерение ускорения свободного падения при помощи частотомерахронометра ЧЗ-32, который позволяет с высокой точностью фиксировать интервалы времени между двумя последовательными событиями. Это устройство является удобным инструментом для анализа быстропротекающих процессов и широко используется в учебной и исследовательской практике.

Кроме того, в ходе работы проводится анализ точности измерений и определение погрешностей, что позволяет оценить достоверность полученных результатов. Особое внимание уделяется вычислению погрешностей при косвенных измерениях, поскольку именно такие данные наиболее часто встречаются в физическом эксперименте.

1.2 Решаемые задачи

- 1. Проверка принципа эквивалентности масс.
- 2. Измерение ускорения свободного падения тел.
- 3. Знакомство с методом измерения интервалов времени между импульсами частотомером хронометром Ч3-32.
- 4. Определение погрешности косвенных измерений.

2 Основная часть

2.1 Теоретическая часть

Если справедлив принцип эквивалентности, то время пролета участка при свободном падении тел различной массы (при одинаковых условиях) будет одинаково. Экспериментальная проверка этого факта и является целью настоящей работы.

Как известно, уравнение движения тела при свободном падении имеет вид:

$$h = v_0 t + \frac{1}{2} g t^2, \tag{1}$$

где v_0 — начальная скорость шарика при подходе к верхнему лучу (указана на установке), t — время падения, g — ускорение свободного падения, h — пройденный путь.

Отсюда выражаем ускорение свободного падения:

$$g = \frac{2(h - v_0 t)}{t^2}$$

при $v_0=1{,}050\pm0{,}005\,{\rm m/c}$ — начальная скорость шарика, $h=0{,}272\pm0{,}001\,{\rm m}$ — расстояние между лучами, t — среднее время падения.

Погрешность измерения времени вычисляется по формуле:

$$\Delta t = \sqrt{\frac{\sum d_i^2}{n(n-1)}},\tag{2}$$

где n — число измерений, а d_i — отклонения отдельных измерений от среднего значения.

Погрешность измерения ускорения свободного падения рассчитывается по формуле:

$$\Delta g = \sqrt{\frac{1}{9} \left(\frac{\partial g}{\partial h}\right)^2 \Delta h^2 + \frac{1}{9} \left(\frac{\partial g}{\partial v_0}\right)^2 \Delta v_0^2 + \left(\frac{\partial g}{\partial t}\right)^2 \Delta t^2}$$

где производные берутся от выражения:

$$g = \frac{2(h - v_0 t)}{t^2}$$

После подстановки производных и значений, выражение принимает вид:

$$\Delta g = 2 \cdot \sqrt{\frac{1}{9} \left(\frac{1}{t^2}\right)^2 \cdot (0{,}001)^2 + \frac{1}{9} \left(\frac{1}{t}\right)^2 \cdot (0{,}005)^2 + \left(\frac{v_0 t - 2h}{t^3}\right)^2 \cdot \Delta t^2} \, \text{m/c}^2$$

При выполнении эксперимента присутствовали источники систематических ошибок, такие как сопротивление воздуха, которое действовало по-разному на разные шарики в виду того, что их масса и материал поверхности неодинаковы.

2.2 Эксперимент

Схема установки приведена на рисунке. Луч от квантового генератора ЛГ направляется на призму полного внутреннего отражения П1, от нее на призму П2, а затем на фотодиод ФД. При отодвигании заслонки З шарик, находящийся в трубке Т, падает в лузу Л и пересекает два световых луча, расстояние между которыми равно h . Когда шарик пересекает верхний луч, фотодиод ФД вырабатывает импульс, который усилившись в усилителе, подается на вход частотомера Ч3-32 и запускает его. При пересечении шариком нижнего луча импульс

от фотодиода останавливает счет частотомера. Интервал времени между двумя импульсами, регистрируемый частотомером, равен времени пролета t шарика от верхнего луча до нижнего. Усилитель питается от источника УПУ-1У4.

Рис. 1. Схема установки

Рис. 2. Фотография установки

2.3 Обработка данных и обсуждение результатов

Для написания программы, вычисляющей все требуемые данные, используется язык C++; среда разработки - Visual Studio. Код полностью расположен в репозитории на GitHub. Сначала рассчитаем среднее время падения шариков различных материалов:

Исходный код

Листинг 1. Функция для вычисления стандартного отклонения

```
double standardDeviation(const vector < double > & data, double mean) {
    double sumOfSquaredDifferences = 0.0;
    for (double value : data) {
        sumOfSquaredDifferences += pow(value - mean, 2);
    }
    return sqrt(sumOfSquaredDifferences / (data.size() - 1));
}
double calculateError(double stdDev, int numMeasurements) {
    return stdDev / sqrt(numMeasurements);
}
```

Листинг 2. Функция для вычисления массы шариков

```
double standardDeviation(const vector < double > & data, double mean) {
    double sumOfSquaredDifferences = 0.0;
    for (double value : data) {
        sumOfSquaredDifferences += pow(value - mean, 2);
    }
    return sqrt(sumOfSquaredDifferences / (data.size() - 1));
}
double calculateError(double stdDev, int numMeasurements) {
    return stdDev / sqrt(numMeasurements);
}
```

Листинг 3. Функция для вычисления погрешности времени

```
for (int j = 0; j < 6; ++j) {
          double sum = 0.0;
2
          for (int i = 0; i < n; ++i) {
3
              sum += timeData[i][j];
4
5
          double mean = sum / n;
          double sq sum = 0.0;
          for (int i = 0; i < n; ++i) {
9
              sq sum += pow(timeData[i][j] - mean, 2);
11
          double stdev = sqrt(sq\_sum / (n * (n - 1)));
13
```

Листинг 4. Функция для вычисления ускорения свободного падения

```
vector < string > substance names = { "Алюминий", "Латунь", "Сталь", "
    Дерево", "Плексиглас", "Свинец" };
      vector < double > g values (substance names.size());
2
      vector < double > t values (substance names.size());
3
4
      double h = 0.272; // M
      double h error = 0.001; // м
6
      double v = 1.050; // Mc/
      double v error = 0.005; // Mc/
8
9
      for (size t = 0; i < substance names size(); ++i) {
10
          double sum = 0.0;
11
          for (size_t j = 0; j < fall_times_ms.size(); ++j) {
12
              sum += fall times ms[j][i];
13
14
          double t_ms = sum / fall_times_ms.size();
15
          double t = t ms / 1000.0;
16
          t values[i] = t;
17
18
          g values[i] = (2 * (h - v * t)) / (t * t);
19
      }
```

Листинг 5. Функция для вычисления погрешности ускорения свободного падения

```
double dt = 0.000001;

double term1 = (1.0 / 9.0) * pow(1.0 / (t * t), 2) * pow(

h_error, 2);

double term2 = (1.0 / 9.0) * pow(1.0 / t, 2) * pow(v0_error,

2); // Use v0_error instead of v_error

double term3 = pow(((v0 * t - 2 * h) / (t * t * t)), 2) * pow(

dt, 2); // Use v0 instead of v

g_errors[i] = 2 * sqrt(term1 + term2 + term3);
```

Таблицы

Время падения шарика от верхнего до нижнего луча $({ m t,\ mc})$, мс)	
№	Алюминий	Латунь	Сталь	Дерево	Плексиглас	Свинец
1	153.436	153.052	152.456	154.468	154.086	152.791
2	153.831	153.113	152.778	154.850	153.325	153.689
3	153.034	152.855	152.692	153.694	153.551	153.828
4	153.313	152.929	152.425	153.770	153.518	153.889
5	153.314	152.977	152.718	153.743	154.381	153.851
6	154.201	153.264	152.348	153.880	153.964	153.526
7	153.285	153.116	152.593	154.230	153.808	153.119
8	154.201	153.480	152.404	154.082	153.531	153.554
9	153.795	153.357	152.735	154.450	153.125	153.051
10	153.388	153.694	152.904	153.615	153.274	153.908
11	153.203	153.024	152.724	154.191	153.884	153.391
12	152.888	153.135	152.977	153.674	153.727	153.312
13	153.638	152.988	153.429	153.764	153.273	153.498
14	153.557	152.905	152.847	154.471	153.364	153.383
15	153.863	153.828	152.730	153.563	153.707	153.045
16	153.628	153.209	152.780	153.951	153.732	152.810
17	155.240	153.222	152.630	153.650	153.556	153.059
18	153.053	153.518	152.745	154.353	153.594	153.082
19	153.266	152.999	152.605	153.636	153.285	153.261
20	153.707	153.563	152.814	154.212	154.599	153.221
21	153.660	152.876	152.669	153.456	153.416	153.325
22	152.930	153.277	152.686	153.995	153.628	153.967
23	153.187	152.961	153.692	153.998	153.422	152.880
24	153.507	153.085	152.607	153.792	154.061	153.113
25	153.452	153.293	152.837	153.651	153.276	153.111
26	153.212	153.273	153.137	153.856	153.151	152.801
27	153.276	153.012	152.723	153.746	153.369	153.204
28	153.427	153.429	153.280	153.727	153.217	153.798
29	154.273	153.225	152.688	155.352	153.939	152.798
30	153.493	153.527	152.691	153.895	153.939	153.384
Среднее				•	•	•
значение	153.542	153.206	152.778	153.991	153.623	153.322

Таблица 1. Результаты измерения времени падения шарика для различных материалов

При выполнении эксперимента присутствовали источники систематических ошибок, такие как сопротивление воздуха, которое действовало по-разному на разные шарики ввиду того, что их масса и материал поверхности неодинаковы.

$N_0 \Pi/\Pi$	Вещество	Плотность $(\kappa \Gamma/M^3)$	Диаметр (м)	Масса (кг)
1	Дерево	700	0.01	0.000366519
2	Плексиглас	1180	0.01	0.000617847
3	Дюралюминий	2790	0.01	0.00146084
4	Сталь	7900	0.01	0.00413643
5	Латунь	8500	0.01	0.00445059
6	Свинец	11340	0.01	0.00593761

Таблица 2. Расчетные значения массы шариков

Вещество	Δt , MC
Дюралюминий	0.087
Латунь	0.046
Сталь	0.053
Дерево	0.076
Плексиглас	0.066
Свинец	0.066

Таблица 3. Погрешность измерения времени падения шариков

$N_{\overline{0}}$ Π/Π	Вещество	$g (M/c^2)$	$\Delta { m g}~({ m m/c^2})$
1	Алюминий	9.3981	0.0357
2	Латунь	9.4694	0.0358
3	Сталь	9.5610	0.0359
4	Дерево	9.3037	0.0355
5	Плексиглас	9.3809	0.0356
6	Свинец	9.4448	0.0357

Таблица 4. Ускорение свободного падения для различных веществ с погрешностью

3 Выводы

В ходе выполнения лабораторной работы экспериментально подтверждён принцип эквивалентности инертной и гравитационной масс, что является фундаментальным положением классической механики. Ускорение свободного падения измерено с использованием частотомера-хронометра ЧЗ-32, который обеспечил высокую точность фиксации временных интервалов, характерных для быстропротекающих процессов. Полученные результаты согласуются с теоретическими предсказаниями в пределах допустимой погрешности, что подтверждает универсальность данного принципа для тел различной массы и состава.

Кроме того, в рамках работы была успешно освоена методика оценки погрешностей косвенных измерений, что позволило провести корректный анализ точности экспериментальных данных. Применение статистических методов обработки результатов способствовало повышению достоверности выводов и закрепило навыки, необходимые для дальнейших физических исследований. Таким образом, работа не только продемонстрировала справедливость принципа эквивалентности, но и углубила понимание методики проведения и анализа физического эксперимента.

Список литературы

[1] https://github.com/st117168/2025-4sem-Measurement_methods/tree/main/Workshop3