This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-269284

(43)Date of publication of application: 27.09.1994

(51)Int.CI.

C12N 5/08

(21)Application number: 05-082445

(71)Applicant: SUNTORY LTD

(22)Date of filing:

18.03.1993

(72)Inventor: MIURA TAKEHISA

(54) NEW HUMAN LEUKEMIC CELL STRAIN

(57) Abstract:

GP3b/Ila CD34

PURPOSE: To obtain a stable cell system useful for screening a factor taking part in a hematopoietic system. CONSTITUTION: This human leukemic cell strain has the self proliferating ability and any one of the following properties: (1) capable of manifesting the expression type positive to CD34 and negative to GPIIb/IIIa, (2) capable of manifesting the expression type positive to the CD34 and positive to the GPIIb/IIIa and (3) capable of manifesting the expression type negative to the CD34 and positive to the GPIIb/IIIa. The cell strain is useful for search assay of a factor taking part in a hematopoietic system, i.e., a factor taking part in the self replication of a hematopoietic stem cell, proliferation or differentiation of a megakaryocyte or production of blood platelet.

LEGAL STATUS

[Date of request for examination]

13.03.2000

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-269284

(43)公開日 平成6年(1994)9月27日

技術表示箇所

8412-4B

C12N 5/00

FΙ

E

審査請求 未請求 請求項の数7 FD (全 6 頁)

(21)出願番号

特願平5-82445

(22)出願日

平成5年(1993)3月18日

(71)出願人 000001904

サントリー株式会社

大阪府大阪市北区堂島浜2丁目1番40号

(72)発明者 三浦 健寿

大阪府三島郡島本町若山台1丁目1番1号

サントリー株式会社生物医学研究所内

(74)代理人 弁理士 宇井 正一 (外4名)

(54) 【発明の名称】 新規ヒト白血病細胞株

(57)【要約】

【構成】 自己増殖能を有し、次の性質のいずれか1つ、(1) CD34陽性及びGPIIb/III a陰性の表現型を示す、(2) CD34陽性及びGPIIb/III a 陽性の表現型を示す、(3) CD34陰性及びGPIIb/III a 陽性の表現型を示す、を有するヒト白血病細胞株。

【効果】 本発明の細胞株は、造血系に関与する因子、 すなわち、造血幹細胞の自己複製、巨核球の増殖や分 化、また血小板の産生に関与する因子の探索アッセイに 有用である。

1

【特許請求の範囲】

【請求項1】 自己増殖能を有し、次の性質のいずれか

- (1) CD34陽性及びGPIIb/III a陰性の表現型 を示す、
- (2) CD34陽性及びGPIIb/III a陽性の表現型 を示す、
- (3) CD34陰性及びGPIIb/III a陽性の表現型 を示す、を有するヒト白血病細胞株。

【請求項2】 骨髄性白血病細胞由来の細胞株である、 請求項1に記載の細胞株。

さらに自己分化能を有する請求項1又は 【請求項3】 2に記載の細胞株。

前記自己分化能が、CD34陽性及びG 【請求項4】 PIIb/III a陽性の表現型からCD34陰性及びGP IIb/III a陽性の表現型への分化能である、請求項3 に記載の細胞株。

【請求項5】 急性巨核球性白血病細胞由来の細胞株で ある請求項1ないし4記載の細胞株。

ある請求項5記載の細胞株。

【請求項7】 慢性骨髄性白血病細胞由来の細胞株であ る請求項1ないし4記載の細胞株。

【発明の詳細な説明】

[0 0 0 1]

【産業上の利用分野】本発明は、特定の表現型及び自己 増殖能を有し、場合によってはさらに自己分化能をも有 するヒト白血病細胞株に関する。本細胞株は造血系に関 与する因子、すなわち、造血幹細胞の自己複製、巨核球 の増殖や分化、また血小板の産生に関与する因子のアッ 30 セイに有用である。これらの因子が取得できれば、骨髄 移植やがんの化学療法や放射線療法後の血小板減少など に広く応用されうる。

[0002]

【従来の技術】造血幹細胞の自己複製因子については、 現在までに確立されたアッセイ法はない。しかし、マウ スでは脾コロニー形成細胞(CFU-S)測定法や芽球 コロニー形成細胞培養法(Blast colony アッセイ) などが応用されている。ヒトでは、骨髄ある いは末梢血単核細胞中のCD34陽性細胞が単離され、 コロニー法あるいは液体培養法に供されている。

【0003】巨核球の増殖や分化、または血小板産生に 関与する因子は、骨髄巨核球前駆細胞由来のコロニー (CFU-Meg) 形成法やアセチルコリンエテラーゼ (Ach E) 活性測定法あるいはプロイディー (DN A量)の測定等によりアッセイされている。また、骨髄 中の巨核球の単離法が進歩したため、巨核球を直接用い ることも可能となった。

【0004】ヒト由来の因子は種特異性の点からできる 限りヒトの系でアッセイすることが望ましい。しかし、

2

ヒトの骨髄細胞は一般的に入手が困難であるし、しかも CD34陽性細胞や巨核球は頻度が低く、それぞれ骨髄 単核細胞の約1%および0.05%~0.5%でしかな い。さらに、巨核球は物理的刺激に弱く壊れやすい。ま た、CFU-Megコロニー形成法は、時間がかかり (ヒトでは約2週間)、しかも均一な結果を得ることが 困難である。

【0005】そこで、ヒト由来の因子の探索に簡便で常 時実施可能なアッセイ系としてヒト株化細胞を利用する 10 ことが試みられている。しかし、培養中に細胞自身の性 質に変化がみられ、種々の因子に対する反応性が低下し たり、さらには反応性にパラツキが生じ、均一なアッセ イ結果を得られない場合も多い。そのため、本来の性質 を保持しているうちに大量の細胞を凍結保存しておき、 性質や反応性に変化が生じたら、新たな細胞を融解して 使用する等の対策がなされている。

[0006]

【発明が解決しようとする課題】本発明者は、上記の様 な実情に鑑み、簡便で常時実施可能な、かつ信頼しうる 【請求項6】 急性巨核球性白血病細胞がCMK細胞で 20 均一な結果が得られるヒト由来の因子の探索アッセイ系 を取得すべく、細胞の性質や因子に対する反応性の変化 の原因を鋭意研究した結果、培養中に一部の細胞が自発 的に分化し、不均一な性質の細胞集団となることが原因 の1つであることを解明した。そして、細胞表面に存在 している分化抗原(分化に伴い消長する分子)の有無に 着目して細胞をクローニングすることにより、目的のア ッセイに有用な細胞株を取得し、本発明の完成に至っ た。

[0007]

【課題を解決するための手段】本発明は、特定の表現型 を示し自己増殖能を有し、場合によってはさらに自己分 化能も有するヒト白血病細胞株に関する。すなわち、本 発明は、骨髄性白血病細胞由来の細胞であって、CD3 4陽性及びGPIIb/III a陰性の表現型を示す細胞 株、CD34陽性及びGPIIb/III a陽性の表現型を 示す細胞株、並びにCD34陰性及びGPIIb/III a 陽性の表現型を示す細胞株に関する。

【0008】自己増殖能を有するヒト白血病細胞とは、 特定の表現型を保持したまま増殖し、長期間安定である 細胞であり、さらに自己分化能をも有する細胞とは一定 期間の培養により増殖しつつも自己分化し表現型が変化 する細胞を意味する。例えば骨髄性白血病細胞、好まし くは急性巨核球性白血病細胞、慢性骨髄性白血病細胞等 に由来する細胞があげられる。

【0009】特定の表現型を示し自己増殖能を有し、場 合によってはさらに自己分化能も有するヒト白血病細胞 株は、骨髄性白血病細胞、好ましくは急性巨核球性白血 病細胞、例えばCMK細胞、UT-7細胞、M-07細 胞等、または慢性骨髄性白血病細胞、例えばKU812 50 細胞 (理化学研究所細胞銀行No.RCB495) 等より

3

取得できる。

【0010】本発明のヒト白血病細胞株は、特定の表現型を保持したまま長期間培養でき、しかも造血幹細胞や巨核球系細胞に反応する種々の因子(サイトカイン)に反応することによって、各種造血系に関与する因子、すなわち、造血幹細胞の自己複製、巨核球の増殖や分化、また血小板の産生に関与する因子のアッセイに有用である。

【0011】本発明において表現型とは、分化抗原により特定される表現型をいい、CD34陽性及びGPIIb/II a除性の表現型、CD34陽性及びGPIIb/II a陽性の表現型並びにCD34陰性及びGPIIb/II a陽性等の表現型があげられる。この表現型により分化過程における段階が特定される。したがって、本発明の表現型の選択により構築された細胞株を用いれば、特定された分化過程段階における、所望の活性因子のアッセイが、特に煩雑困難な技術を用いることなく、通常の技術を用いて可能となる。

[0012] 例えば、上記例示した表現型により特定される細胞株は、それぞれ特定の分化過程段階、すなわち多分化能を有する初期の分化段階、一段分化して分化の方向が巨核球系へと決定した段階、およびさらに一段分化した巨核芽球の段階にあると考えられ、造血幹細胞の自己複製因子、巨核球の増殖分化因子や血小板産生因子のアッセイに用いることができる。

【0013】すなわち、CD34陽性及びGPIIb/II I a陰性の表現型を示す細胞株は、CD34が陽性のまま長期間培養可能なことより、造血幹細胞の自己複製因子の探索アッセイなどに有用である。また、CD34陽性及びGPIIb/III a陽性の表現型を示す細胞株は、増殖しつつも一定期間の培養中に自己分化してCD34陰性の表現型を示すようになるため、巨核球の増殖や分化に関与する因子の探索アッセイに有用である。

【0014】さらに、CD34陰性及びGPIIb/III a陽性の表現型を示す細胞株は、巨核球の成熟を促進させる巨核球増幅因子や巨核球から血小板を産生させる因子の探索アッセイに有用である。なお、CD34とは分子量が105~120kDの糖タンパクであり、別名Human stem cell antigenとも呼ばれ造血幹細胞のマーカーとして利用され、分化に伴い 40消失する抗原である。

【0015】また、GPIIb/III aとは血小板膜糖タンパク質であり、GPIIb(分子量約130kDのH鎖と約23kDのL鎖で構成)分子とGPIII a(分子量約95kD)分子の1:1の複合体である。血小板と巨核球に特異的に発現しており、巨核球の分化に伴い増強される分化抗原である。各陽性および陰性は、通常の方法にしたがい、それぞれ、抗CD34モノクローナル抗体および抗GPIIb/III aモノクローナル抗体を用いたフローサイトメトリーによって確認できる。

4

【0016】本発明の細胞株は、例えば、CD34陽性細胞およびGPIIb/III a陽性細胞が混在したヒト骨髄性白血病細胞から、抗CD34モノクローナル抗体および抗GPIIb/III aモノクローナル抗体を用いた免疫磁気ビーズ法あるいはフローサイトメトリーによる細胞ソーティング法、もしくは限界希釈法によるクローニングにより、通常の方法にしたがって、取得できる。

【0017】例えば、CD34陽性及びGPIIb/III a陰性の表現型を示す細胞株、CD34陽性及びGPII b/III a陽性の表現型を示す細胞株、並びにCD34陰性及びGPIIb/III a陽性の表現型を示す細胞株は、それぞれ急性巨核球性白血病細胞、例えばCMK細胞を限界希釈法により再クローニングし、すなわち10%FCS RPMI1640培地に懸濁させ、96穴マイクロブレートに一穴あたり0.3個の濃度で播種し、得られたクローンをフローサイトメトリーにより解析して得ることができる。

【0018】なお、CD34陽性及びGPIIb/III a 陰性の表現型を示す細胞株並びにCD34陽性及びGP 20 IIb/III a陽性の表現型を有する細胞株は、それぞれ Human myeloid leukemic cell S6 SBM332及び Human myeloid leukemic cell S5 SBM333と命名されて、1993年3月9日付けで通商産業省工業技術院生命工学工業技術研究所にFERM BP-4227及びFERM BP-4228として寄託されている。

[0019]

【実施例】以下、実施例によってさらに詳細に本発明を 説明するが、本発明はこれにより限定されるものではな 30 い。

実施例 1.

(1) 液体窒素中 (-196℃) に凍結保存していたC MK細胞を37℃にて融解後、10%FCS RPMI 1640 培地にて培養し、経時的にCD34とGPIIb /III aの陽性細胞の割合をフローサイトメトリーにて 測定した。CD34は培養1週目では陽性率は約80% あったが、培養に伴い減少し13週目には約30%となった。一方、GPIIb / III aは培養1週間目では陽性率は約30%であり、培養に伴い増加し13週目には80%強となった。これらの結果から、CMK細胞は自己増殖能だけでなく、自己分化能をも有する可能性が示された。結果を図1に示す。

【0020】(2)自己増殖能だけでなく自己分化能をも有する可能性が示唆されたCMK細胞を再クローニングし、得られたクローンをフローサイトメトリーにより解析した。すなわち、CMK細胞を10%FCS RPMI1640培地に懸濁させ、96穴マイクロプレートに一穴あたり0.3個の濃度で播種し、得られたクローンをフローサイトメトリーにより解析した。

70 【0021】その結果、得られたクローンはCD34と

GPIIb/III aの発現の有無により、CD34陽性及 びGPIIb/III a陰性 (クローンS6)、CD34陽 性及びGPIIb/III a陽性(クローンS5)、並びに CD34陰性及びGPIIb/III a陽性 (クローンS1 0) の3群に分類できた。結果を図2に示す。

【0022】 (3) 新規に得られたクローンS6 (CD 34陽性及びGPIIb/III a陰性) とクローンS10 (CD34陰性及びGPIIb/III a陽性)の増殖能を 比較検討した。両細胞とも105 個/mlの濃度で培養を 開始し、経時的に細胞数を測定した。クローンS6は明 10 らかにS10より増殖能は高かった。また、クローンS 5 (CD34陽性及びGPIIb/III a陽性) はほぼS 6と同じ増殖能を示した。結果を図3に示す。

【0023】 (4) 新規クローンS6 (CD34陽性及 びGPIIb/III a陰性) とS10 (CD34陰性およ びGPIIb/III a陽性)の形態学的特徴を示した。S 6 は付着性がまったく無く、幼若細胞に特徴的な芽球様 形態を示す。S10はS6よりも胞体が大きく球状で、 約30%の細胞が付着性を示し、そのほとんどの細胞は* *伸展し突起を形成する。結果を図4及び図5に示す。

【0024】また、S5 (CD34陽性及びGPIIb/ III a陽性) は培養初期には芽球様細胞と球状細胞が認 められ、約10%の細胞が付着性を示す。その後、培養 に伴いS10の表現型(CD34陰性及びGPIIb/II I a陽性) およびS10と同様の形態を示すようにな る。すなわち、S10はS5の通常の培養により得るこ とができる。

6

【0025】実施例2.

(1) 造血系に関与する種々のサイトカインのクローン S6 (CD34陽性及びGPIIb/III a陰性) とS1 0 (CD34陰性及びGPIIb/III a陽性) の増殖に およぼす影響を³H・TdRの取り込み法により検討し た。すなわち、96 穴マイクロプレートにて10% FC S存在下、5×103 個の細胞に表1に示す過度の各サ イトカインを加え、48時間培養後、0.5μCiの3 H・TdRを添加し、4時間後のアイソトープの取り込 みを測定した。

[0026]

サイトカイン -		対照に対する%	
		S 6	S 1 0
I L 1 – β	(1 ng/ml)	9 1	109
IL3	(100 ng/ml)	119	1 3 6
IL6	(100 ng/ml)	106	118
IL11	(1 ng/ml)	106	216
G-CSF	(1 mg/ml)	103	1 2 1
GM-CSF	(10ng/ml)	126	136
EPO	(10u/ml)	106	101
LIF	(10ng/ml)	106	142
SCF	(10ng/ml)	149	288

【0027】全般的にS10はS6に比べてサイトカイ ンに対する反応性が高く、とくに巨核球の増殖に関与す ると考えられるIL-11やSCFに対しては2倍以上 の増殖が認められた。したがって、56あるいは510 の増殖促進を指標として、造血に関与する因子、すなわ 40 ち造血幹細胞の自己複製因子や巨核球の増殖因子などを 探索アッセイに本発明の細胞株は有用である。

【0028】(2)クローンS6(CD34陽性及びG PIIb/III a陰性) は長期間の培養によっても表現型 の変化を示さない。しかし、潜在的な分化能を有する可 能性もあり、TPAによる分化誘導を試みた。すなわ ち、S6を10%FCS RPMI1640培地の10 5 個/mlの没度で懸濁し、12-O-テトラデカノイル ホルボール13-アセテート(TPA)(10-7M)

34とGPIIb/III aの発現をフローサイトメトリー により解析した。

【0029】TPA添加1日でGPIIb/III aの劇的 な増強が観察され、その後3日目にCD34の減少が始 まり、さらに7日目までにCD34は減少し、GPIIb ノIII aは増強した。すなわち、S6は潜在的な分化能 を有していることが確認された。したがって、S6は造 血幹細胞の自己複製因子だけでなく、巨核球の分化因子 の探索アッセイに有用である。結果を図6に示す。

[0030]

【発明の効果】本発明の細胞株は、造血系に関与する因 子、すなわち、造血幹細胞の自己複製、巨核球の増殖や 分化、また血小板の産生に関与する因子の探索アッセイ に有用である。例えば、CD34陽性及びGPIIb/II (シグマ社製)を添加し、経時的に細胞を採取し、CD 50 I a 陰性の表現型を示す細胞株 S 6 並びにCD 3 4 陰性 20

7

及びGPIIb/III a陽性の表現型を示す細胞株S10 は、長期間の培養によってもその表現型の変動を示さないので、造血に関与する因子の探索アッセイにも安定して使用でき、これまでに使用されてきた公知の細胞株に比べて有用である。

【0031】さらにCD34陽性及びGPIIb/III a 陽性の表現型を示すS5は自己分化能をも有することから、巨核球の増殖や分化に関与する因子のアッセイのみならず、巨核球の分化のメカニズムの解明にも応用でき、またS6は現在まで解明されていないCD34の機 10 能やそのリガンドの探索にも有用である。

【図面の簡単な説明】

【図1】図1は、CMK細胞の培養中におけるCD34 陽性細胞及びGPIIb/III a陽性細胞の割合をフロー サイトメトリーにより測定した結果を示すグラフであ る。

【図2】図2は、CD34陽性及びGPIIb/III a陰性の細胞(クローンS6)、CD34陽性及びGPIIb/III a陽性の細胞(クローンS5)、並びにCD34陰性及びGPIIb/III a陽性の細胞(クローン10)

の、CD34抗体及びGPIIb/III a抗体を用いて得られたフローサイトメトリー図を示すグラフである。

【図3】図3は、CD34陽性及びGPIIb/III a陰性の細胞 (クローンS6) とCD34陰性及びGPIIb/III a陽性の細胞 (クローンS10) の増殖能を比較したグラフである。

【図4】図4は、CD34陽性及びGPIIb/III a陰性の細胞(クローンS6)の形態学を示すものであり、生物の形態を示す図面に代る写真である。

【図5】図5は、CD34陰性及びGPIIb/III a陽性の細胞(クローンS10)の形態学的特徴を示すものであり、生物の形態を示す図面に代る写真である。

【図6】図6は、CD34陽性及びGPIIb/III a陰性の細胞(クローンS6)をTPA(10-7M)の存在下に培養した場合に、CD34陽性及びGPIIb/III a陽性の細胞(クローンS5)に分化し、さらにCD34陰性及びGPIIb/III a陽性の細胞(クローン10)に分化することを示す、フローサイトメトリー図である。

[図1]

[図2]

[図4]

[図5]

[図6]

