CS/ECE/ME 532 Matrix Methods in Machine Learning

Welcome!

Announcements

Mon	Tue	Wed	Thu	Fri
			04/25 Act. 22	04/26
04/29	04/30 Act. 23 (due 12/05) Act. 24 (due 12/07)	05/01 Assignment 9*	05/02 Act. 24 due Review	05/03 Assignment 10*
05/06	05/07 Assessment 4 @ 5:35pm			

If you have a conflict, you must let me know TODAY! (fill out "Request for taking Assessment 4 at a different time")

^{*} We will drop the *two* lowest Assignments (instead of only one)

Activity 22

Recall:

$$oldsymbol{w}^* = \arg\min_{oldsymbol{w}} ||oldsymbol{\Phi} oldsymbol{w} - oldsymbol{y}|| + \lambda ||oldsymbol{w}||^2$$

$$\boldsymbol{w}^* = (\boldsymbol{\Phi}^T \boldsymbol{\Phi} + \lambda \boldsymbol{I})^{-1} \boldsymbol{\Phi}^T \boldsymbol{y}$$

Activity 21, problem 2

$$\boldsymbol{w}^* = \boldsymbol{\Phi}^T (\boldsymbol{\Phi} \boldsymbol{\Phi}^T + \lambda \boldsymbol{I})^{-1} \boldsymbol{y}$$

$$\widehat{y} = \boldsymbol{\phi}(\boldsymbol{x})^T \boldsymbol{w}^* \longrightarrow \widehat{y} = \sum_i \alpha_i K(\boldsymbol{x}, \boldsymbol{x}_i)$$

$$\boldsymbol{\alpha} = (\boldsymbol{\Phi} \boldsymbol{\Phi}^T + \lambda \boldsymbol{I})^{-1} \boldsymbol{y}$$

where $\mathbf{\Phi}\mathbf{\Phi}^T$ has i, j entry $K(\mathbf{x}_i, \mathbf{x}_j)$

No need to compute $\phi(\cdot)$ to compute $K(\cdot,\cdot)$ or \hat{y} !

Some Insights:

If
$$\lambda$$
 , $\frac{{m w}}{\alpha}$, and $\widehat{y}({m x})$,

$$K(\boldsymbol{x}, \boldsymbol{x}_i)$$
 $\widehat{y}(\boldsymbol{x})$

Narrow \longrightarrow Rough

Broad \longrightarrow Smooth

Kernel SVMs

$$\widehat{y} = \operatorname{sign}\left(\sum_{i} \alpha_{i} K(\boldsymbol{x}, \boldsymbol{x}_{i})\right)$$

How do we find good α_i ?

→ Iterative methods – subgradient descent

Support vectors have nonzero $\,lpha_i\,$

Kernel classification

$$x = \begin{bmatrix} 0.3 \\ 0.1 \end{bmatrix}$$
 How do we predict class of x ?

$$\widehat{y} = \operatorname{sign}\left(\sum_{i} \alpha_{i} K(\boldsymbol{x}, \boldsymbol{x}_{i})\right)$$

$$K(oldsymbol{x},oldsymbol{x}_i) = \exp\left(-\left|\left|oldsymbol{x} - oldsymbol{x}_i
ight|^2
ight)$$

$$\widehat{y} = \operatorname{sign}\left(\sum_{i} \alpha_{i} \exp\left(-\left\|\begin{bmatrix} 0.3\\0.1\end{bmatrix} - \boldsymbol{x}_{i}\right\|^{2}\right)\right)$$