Trabajo Práctico N°2 Algoritmos Genéticos

Grupo 5

Gonzalo Baliarda Franco Nicolás Estevez Ezequiel Agustin Perez Leandro Ezequiel Rodriguez Lucas Agustín Vittor

Ejercicio 1 lmagen -> ASCII

Imagen a ASCII

Se busca representar una imagen cuadrada en escala de grises, usando caracteres ascii.

Genotipo - Alternativa 1

- Cada gen representa un píxel de la imagen original, los cuales varían en el intervalo [0, 255].
- Los alelos de cada gen serán un conjunto de caracteres ASCII.
- Cada alelo del conjunto se mapea a un subintervalo de [0, 255]:
 - o := [0, 20]
 - o (...)
 - o @:=[235, 255]

Genotipo - Alternativa 2

- Cada gen representa un cuadrado de MxM píxeles.
- Alelos pueden ser cualquier ASCII, los mismos se plasmarán sobre una imagen ocupando MxM píxeles, y luego se la comparará contra la original de a cuadrados (valor promedio).
- Se podría incluir un algoritmo de detección de formas en grupos de píxeles, para distinguir entre caracteres con distinta forma pero igual superficie.
 - 0 / vs \
 - 0 < VS > VS ^

Crossover y mutaciones

- Crossover uniforme, dado que no mantiene relación posicional entre alelos.
- Probabilidad de mutación decreciente con la cantidad de generaciones.

Ejercicio 2

Mezclar colores

- CMYK es mejor para imprimir/pintar ya que es sustractivo y los pigmentos absorben más luz al mezclarse, lo que resulta en colores más oscuros.
- RGB es mejor para dispositivos digitales ya que es aditivo y los colores se vuelven más brillantes al mezclarse, ya que emiten luz.

Estructura

Paleta de Colores

Se posee una paleta de N colores, la cual será la que está a disposición para formar los nuevos colores mediante una combinación de estos.

Estructura

Individuos

Cada individuo se estructuró como un array de tamaño N, donde cada índice determina la proporción que se utilizará del i-ésimo color de la paleta en la mezcla.

Parámetros

- Método de selección
- Método de crossover
- Método de mutación
- Delta de mutación
- Tasa de mutación
- Cantidad de individuos
- Color objetivo
- Paleta de colores

- Cantidad máxima de generaciones
- Fitness esperado
- Cantidad de generaciones sin cambios
- Tiempo máximo de ejecución

Fitness

Distancia euclídea entre los colores, normalizada.

fitness = 1 - (dist(color, target) / MAX_DIST)

Métodos de selección

- Elite
- Roulette
- Universal
- Ranking

Métodos de crossover

- One Point
- Two Point
- Anular
- Uniform

Métodos de mutaciones

- Limited
- Completed
- Uniform

Condiciones de corte

- Timeout del algoritmo
- Cantidad de generaciones
- El fitness de la generación actual es >= que un valor aceptable
- Mejor fitness no cambia a partir de una cantidad de generaciones

Demo

- Individuos: 8
- Selección: ruleta
- Cruce: uniforme
- Mutación: multigen limitada
- Tasa de mutación: 0.05
- Delta de mutación: 0.1

Corte en 75% de fitness (28.000 generaciones)

Variación de los individuos

	Roulette	Roulette Uniform Limited			
Individuals	8	16	24		
Time	2.03 ± 0.15	4.32 ± 0.25	6.61 ± 0.27		
Fitness	0.808 ± 0.059	0.888 ± 0.008	0.904 ± 0.011		

Mutation Rate 0.05 Mutation Delta 0.05 Generations 5000

Variación de la tasa de mutación

	Roulette U		
Mutation Rate	0.05	0.15	0.25
Time	2.03 ± 0.15	2.49 ± 0.18	2.61 ± 0.12
Fitness	0.808 ± 0.059	0.857 ± 0.027	0.861 ± 0.011

Individuals 8
Mutation Delta 0.05
Generations 5000

Variación del delta de mutación

	Roulette Uniform Limited		
Mutation Delta	0.05	0.15	0.25
Time	2.03 ± 0.15	2.25 ± 0.21	2.25 ± 0.16
Fitness	0.808 ± 0.059	0.867 ± 0.019	0.883 ± 0.019

Individuals 8
Mutation Rate 0.05
Generations 5000

Variación del método de selección

	Uniform Limited			
Selection	Roulette	Elite	Ranking	Universal
Time	2.15 ± 0.22	1.85 ± 0.16	2.23 ± 0.21	2.24 ± 0.21
Fitness	0.802 ± 0.546	0.929 ± 0.001	0.929 ± 0.001	0.798 ± 0.082

Mutation Rate 0.05 Mutation Delta 0.05 Generations 5000 Individuals 8

Variación del método de cruza

	Ranking Limited			
Crossover	One Point	Two Point	Anular	Uniform
Time	3.09 ± 1.02	3.03 ± 0.22	2.82 ± 0.27	2.80 ± 0.82
Fitness	0.929 ± 0.002	0.927 ± 0.01	0.925 ± 0.03	0.935 ± 0.001

Mutation Rate 0.05 Mutation Delta 0.05 Generations 5000 Individuals 8

Variación del método de mutación

	Ranking One Point			
Mutation	Limited	Uniform	Complete	
Time	2.28 ± 0.16	3.00 ± 0.27	2.18 ± 0.21	
Fitness	0.929 ± 0.001	0.891 ± 0.026	0.924 ± 0.008	

Mutation Rate 0.05 Mutation Delta 0.05 Generations 5000 Individuals 8

Tiempos para Ranking

Conclusiones

- ↑ cantidad de individuos ⇒ ↑ fitness (en rango analizado)
- ↑ tasa de mutación ⇒↑ fitness (en rango analizado)
- ↑ delta de mutación ⇒↑ fitness (en rango analizado)
- Método de cruza uniforme es levemente superior al resto en cuanto a fitness logrado.
- Método de mutación uniforme es más lento y retorna un fitness menor que limited y complete.
- Método de selección élite y ranking producen mejor fitness que los métodos roulette y universal.

Muchas Gracias