PhD Qualifying Exam: Algebra

February 2, 2008

Answer any **five** of the following eight questions. You should state clearly any general results you use.

- 1. Let M and N be normal subgroups of G such that G = MN show that $G/M \cap N$ is isomorphic to $G/M \times G/N$.
- 2. If G is a group of order $3825 = 3^2.5^2.17$ and H is a normal subgroup of G of order 17 then $H \leq Z(G)$. State all the major results you have used in your solution.
- 3. Choose one from the following three:
 - (a) Every proper ideal in a ring with identity is contained in a maximal ideal.
 - (b) In a commutative ring R, P is a prime ideal in R if and only if the quotient ring R/P is an integral domain.
 - (c) In a commutative ring R, M is a maximal ideal if and only if the quotient ring R/M is a field.
- 4. Prove that the rings $\mathbb{Z}[X]$ and $\mathbb{Z}[X,Y]$ are not isomorphic.
- 5. Let p be a prime number and n an integer with n > 0.
 - (a) Show that the splitting field of $X^{p^n} X$ over $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ is a field with exactly p^n elements.
 - (b) Deduce that there exists an irreducible polynomial of degree n in $\mathbb{F}_p[X]$.
- 6. Find the Galois group of $X^4 4$ over the following fields.
 - (a) \mathbb{F}_5 ,
 - (b) \mathbb{R} ,
 - (c) \mathbb{Q} .

Please Turn Over.

- 7. State the Fundamental Theorem of Finitely Generated Abelian Groups. Give the number of nonisomorphic abelian groups of order 576. Justify your answer.
- 8. (a) Define the tensor product of two \mathbb{Z} -modules.
 - (b) Prove that $\mathbb{R} \otimes_{\mathbb{Z}} \mathbb{Z}[X] \cong \mathbb{R}[X]$.