2007 高教社杯全国大学生数学建模竞赛

承 诺 书

我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网 上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从 A/B/C/D 中选择一项填写):B
我们的参赛报名号为(如果赛区设置报名号的话):
所属学校(请填写完整的全名): 北京邮电大学
参赛队员 (打印并签名): 1. 翟仡譞
2. 郭翰琦
3韩国梁
指导教师或指导教师组负责人 (打印并签名):

日期: 2007 年 9 月 24 日

基于多种评价方案的公交线路选择优化模型

摘要

本文运用图论有关知识,将公交网络用一个有向图来表示,从而把问题转化为一个图的优化模型。模型1从人们乘坐公交出行主要考虑的换乘次数、出行时间、出行费用出发,分别建立了以这三个因素最优为单目标的评价标准,以及用层次分析法综合考虑这三个因素的综合评价标准。文中建立了基于搜索算法的模型1,但效率较低,因此又建立了基于Dijstra 算法的带权有向图模型2,大大提高了运算效率,并求出了不同评价标准下的最优解。

对于问题一、问题二、问题三,模型 2 运用等效的思想把每一个实际的公交站点(节点)在图中拆分成 2~3 个子节点, 用构造"影子站"的方式将等车的时间等效为原始站点与影子站点之间的行驶时间,将不同的评价标准等价为图中各有向边上的不同权值,最终将复杂的公交线路系统转换成简明的带权有向图,并用图论中的知识和 Dijstra 最短路算法很好的求解了实际中的公汽与公汽,地铁与地铁,公交汽车与地铁之间换乘的问题以及公汽与公汽间通过地铁站连通的问题,同时通过将步行视为另外一种交通工具,运用类似的方法很好的解答了考虑步行换乘时的出行路径选择问题。

在模型拓展中,我们考虑到实际情况中等车时间不可能是一个恒定值而是以一定概率分布这一现象,提出了对高峰期和交通顺畅期公交路径选择进行对比的模型。同时,我们又提出一种基于电路模拟的模型,并对这种模型的可行性进行了说明,并发现它可以方便的求解我们的问题,但缺点是开发周期长,电路板的焊制成本高。

关键词

层次分析法 评价标准 Dijkstra 算法 带权有向图 影子结点 电路模拟 车流量比较模型

问题重述

2008年奥运会已经临近。这些年来,城市的公交系统有了很大发展,北京市的公交 线路已达800条以上, 使得公众的出行更加通畅、便利, 但同时也面临多条线路的选择 问题。我们希望能够提供一种服务,为市民特别是外来旅游、出差、就医等急需了解本 地道路情况的人提供方便、快捷、经济、高效地利用公交线路的查询系统,使得不同需 求的人们能够快速、准确、全面地得到各种评价标准下的最优路线,甚至得到不同时期 (如高峰期和交通平缓区)的不同的乘车方案,已经是一个很急迫的问题。现有三个问 题如下:

- 1、仅考虑公汽线路,给出任意两公汽站点之间线路选择问题的一般数学模型与算法。 并根据附录数据,利用你们的模型与算法,求出以下6对起始站→终到站之间的最佳路 线 (要有清晰的评价说明)。
- (1), $S3359 \rightarrow S1828$ (2), $S1557 \rightarrow S0481$ (3), $S0971 \rightarrow S0485$
- (4)、S0008→S0073
- (5), S0148 \rightarrow S0485
- (6)、S0087→S3676
- 2、同时考虑公汽与地铁线路,解决以上问题。
- 3、假设又知道所有站点之间的步行时间,请你给出任意两站点之间线路选择问题的数 学模型。

模型假设

- 1、假设乘客在换乘的时候,等车的时间和步行时间是恒定的,均为题目中所给数据;
- 2、假设乘客换乘时不存在由于公交车辆满载等下一趟车的情况:
- 3、假设每一种公交线路都不存在堵车现象,行驶时间恒定:
- 4、假设乘客不会乘坐其他交通工具如出租车,自行车等;
- 5、在问题二和问题三中,假设同一地铁站对应的任意两个公共汽车站之间可以通过地 铁站换乘(无需支付地铁费)。而所用时间为公汽站步行到地铁站平均步行时间与地 铁站步行到公汽站平均步行时间之和:
- 6、假设起点站都是公汽车站, 计算出行时间时要加上等第一辆车的时间:
- 7、假设乘客在起点站开始乘车等车时间与公汽换公汽平均耗时相同。

符号说明

- M ——公交站点数, 此题为 3957
- N ——公交线路数,此题为520
- Ω——所给数据中一条公交线路所包含的最大站点数,此题为84
- S_i —编号为i的公交车站 i=1,2,...,M
- L_i ——编号为i的公交线路 i=1,2,...,N
- D_i ——编号为i的地铁车站 i = 1, 2, ..., 39

T——编号为i的地铁线路 i=1,2

 $A = (a_{ij})_{M \times M}$ —— $a_{ij} = 1$ 表示从 S_i 到 S_j 有公交线路直达; $a_{ij} = 0$ 表示从 S_i 到 S_j 没有公交线路直达。

$$B = (b_{ij})_{N \times \Omega}$$
 — $b_{ij} = S_k$ 表示第 i 号公交线路经过 S_k 站

 $F = (f_{ij})_{N \times 1}$ — $f_{ij} = 1$ 表示 $L_k = i$ 的公交线路执行单一票制, $f_{ij} = 0$ 表示 $L_k = i$ 的公交线路执行分段计价。

 $P = (p_{ij})_{M \times N}$ $p_{ij} = k$ 表示 $L_i = \frac{j}{2}$ 或 $\frac{j+1}{2}$ 的公交线路(区分上下行)在线路的第 k 站到达车站 $S_t = i$

Q——换乘次数上限

模型建立与求解

(一) 问题一的解答:

问题分析:

我们希望能够提供一种服务,为市民特别是外来旅游、出差、就医等急需了解本地 道路情况的人提供方便、快捷、经济、高效地利用公交线路的方案,将方便他们的出行和生活,同时减少不必要的交通流量。这已是一个越来越迫切的现实问题。当给定两个起始终止点时,我们要方便高效的算出针对不同需求的人做公交的最佳方案。于是,有不同的评价标准和算法的高效性是我们解这一问的思路。我们建立了两种效率不同的模型,并建立了许多评价标准。

1 模型 1.1: 基于换乘次数优先的模型

在公交换乘的过程中,不同的乘客可能有很多种优先考虑的因素,比如说换乘次数,总站数,时间,费用等等,但我们经过分析后认为,乘客一般会优先考虑换乘次数最少的方案,比如说在有直达车到达的情况下,乘客一般不会选择换乘一次才能到达目的地的路线,在有多辆车同时直达的情况下才会考虑时间费用等因素,因为换乘所带来的不便和不可预期的等待时间往往是人们力图避免的。因此,我们建立了如下模型:模型建立:

我们根据题目中所给的公交线路存在上行和下行以及环行的情况,将每条公交车路线分解为两条线路,即用有向线来对应公交网络中的公交线路,同一条线路的上行线和下行线用不同的有向线来表示。这样就将题目中所给的公交网络抽象为一个有向图G。

对于这个有向图 G,我们建立了不同站点之间的邻接 0-1 矩阵 $A=(a_{ii})_{M\times M}$,当从i地

到 j 地有公交线路经过时, $a_{ij}=1$,否则为 0。显然,A 是一个有向的矩阵。同时,我们又构造了公交线路和公交站点的矩阵 B,记录每一条公交线路所经过的所有站点名称,当站点数不够 Ω 的时候,其余的矩阵项补 0。记换乘次数为 r;

于是在给定起点站 S 和终点站 T 的时候, 我们的目标就变为:

min
$$r$$

$$s.t. \qquad \exists \mathbf{v}_1, \mathbf{v}_2 \cdots \mathbf{v}_r \in \mathbf{G},$$

$$a_{S, \mathbf{v}_1} = a_{\mathbf{v}_i, \mathbf{v}_{i+1}} = a_{\mathbf{v}_r, T} = 1(1 \le i \le r - 1)$$

$$\mathbf{r} \in \mathbf{N}, \mathbf{r} \le Q$$

其中,Q为换乘次数的上界。从实际考虑,我们认为换乘 3 次已经达到人们出行的心理上限,因此我们选择Q=3,如果换乘更多的次数才能到达目的地,我们建议公交公司加开公共汽车线路。

模型求解:

在这个模型中,我们力图找出在以换乘次数最少为原则,综合考虑时间,费用的最优解。于是根据图论中的广度优先搜索的方法,设计如下算法:

Step 1: 输入乘车的起始站点 S 和目的站点 T;

Step 2: 搜索所得到的数据矩阵 B, 设经过起始站点 A 的公交线路存为

$$X(i)$$
 ($i = 1, 2, 3, \dots, n$ 为正整数, $n \le N$),

经过目的站点 T 的公交线路存为 $Y(j)(j=1,2,3,\cdots n,n)$ 正整数, $n \leq N$

Step 3: 判断是否有 X(i) = Y(j),将满足条件的存入 Z; 若 card $Z \ge 1$,则公交线路 X(i) 即 Y(j) 位从站点 S 到站点 T 的直达最优线路,输出结果并结束运算。

Step 4: 搜索数据矩阵 B,将公交线路 X(i) 所包含的公交站点存为公交换乘矩阵 $O(i,u)(u=1,2,3,\cdots g,g)$ 正整数, $g\leq M$),公交线路 Y(j) 所包含的站点存为公交换乘矩阵 $P(j,v)(v=1,2,3,\cdots h,h)$ 正整数, $h\leq M$)

Step 5: 判断是否有O(i,u) = P(j,v),将满足条件的存入W。若 $card\ W \ge 1$,则站点O(i,u) 即P(j,v)为从站点 S 到站点 T 的一次换乘站点,公交线路X(i)和Y(j)为换乘一次的最优路线,输出结果并结束运算。

Step 6: 搜索数据矩阵 B,将经过站点 O(i,u) 的全部公交线路存为 R(k),其中 $(k=1,2,3,\cdots p,p)$ 正整数, $p\leq N$)。公交线路 R(k) 所包含的站点 G(k,t),

 $(t=1,2,3,\cdots g,g$ 为正整数, $g\leq N$)扩充到公交换乘矩阵 O(i,u) 中。

Step 7: 判断是否有 G(k,t) = P(j,v),将满足条件的存入W。若 card $W \ge 1$,则站点 G(k,t)

即 P(j,v) 为从站点 S 到站点 T 的二次换乘站点,公交线路 X(i) , R(k) 和 Y(j) 为换乘二次的最优路线,输出结果并结束运算

Step 8: 在不大于上界 Q 次换乘的某次循环中找到可行路径,若可行路径有多条,则考虑时间最少和费用最低两个方面,分别求出最优路径并输出。

图 1 是一个示意图,其中各圆圈表示站点,各站点之间的连线表示有公交线路经过(为简便起见,未标明线路名称)。我们先寻找经过起点 S 的线路所经过的节点,发现这些节点不包括 T,即没有直达的线路;然后,寻找经过这些节点的线路所经过的节点,发现仍然不包括 T,表明没有换乘一次车的线路;继续循环,这时发现 A6 站和终点直接相连,于是我们便找到了换乘两次就可以到达终点 T 的路径 $S \to A1 \to A6 \to T$ 。

在这个模型中, 我们的评价标准是:

- 1、在所有能从起点到终点的换乘次数小于Q的方案路线中,无论时间,费用或其它因素的值是多少,换乘次数越少,方案越优。
- 2、在换乘次数相同的情况下,出行时间最短的解为最优解一。
- 3、在换乘次数相同的情况下,出行费用最低的解为最优解二。 在方案的选择上,我们用时间最短的原则,对题目中所给的6组起始终止点求出了 最优路径和最优解一如下表:

最优解	最少	换乘	以时间最短为目标的最优路线	最短
	换乘	站点		时间
始末站	次数			/分钟
(1) $S3359 \rightarrow S1828$	1	S3695	$S3359 \xrightarrow{L436} S3695 \xrightarrow{L217} S1828$	118
(2) $S1557 \rightarrow S0481$	2	S1919 S3186	$S1557 \xrightarrow{L084 au} S1919 \xrightarrow{L189} 3 au$	111
			$S3186 \xrightarrow{L460} S1828$	
(3) S0971 → S0485	1	S2607	S0971—L013 →S2607—L377 →S0485	193

(4) $S0008 \rightarrow S0073$	1	S3919	S0008 → S3919 → S0073	154
(5) $S0148 \rightarrow S0485$	2	S0036 S2210	$S0148 \xrightarrow{L308} S0036 \xrightarrow{L156 \pm} $	111
			$S2210 \xrightarrow{L417} S0485$	
(6) $S0087 \rightarrow S3676$	1	S1159	S0087—L454—S3496—L209—S3676	70

计算关于费用最小的最优解二时,利用题目中所给的费用标准(分段计价和单一票价)建立了费用矩阵 D,并类似的求出了相应结果,但因为最优路线太多,这里就不一一列出了。

2 基于另外的评价标准的模型 1.2 和 1.3: 时间优先模型和费用优先模型 2.1 模型建立:

在实际中,由于不同的乘客的需求不同,他们可能并不在意换乘一次和换乘两次的区别,比如说对于上班,上学的人,由于需要赶时间,他们并不想乘坐一趟不需要换乘但要走很长时间的车。再比如说有些人比较在意费用的多少,对他们来说最便宜的线路就是最好的,不管换乘几次。因此,在这个模型中,我们的**评价标准**是在换乘次数不大于上界*Q*的情况下,综合考虑各种可行解,在这些解中分别考虑时间最少和费用最低两个方面,分别求出最优路径并解出相应的最短时间和最低费用。

于是,模型 1. 2 就变为: 在所有图 G 中可以从 S 到 T 的通路公共汽车线路中,找出换乘次数不大于Q的花费时间最短的路线。其中,设任一条线路 L_k 从 i 站到 j 站的站数为 $f_{L_k}(i,j)$,每一条方案路线的换车地点分别为 $v_1,v_2,\cdots v_r$ ($r\in N,r\leq Q$),分别乘坐线路 $L_{k_1},L_{k_2},\cdots L_{k_{r+1}}$ 则对于这条方案路线来说,花费时间可由下式计算:

$$t_{E} = 3 \times (f_{L_1}(S, v_1) + \sum_{i=1}^{r-1} f_{L_{i+1}}(v_i, v_{i+1}) + f_{L_{r+1}}(v_r, T)) + 5 \times (r+1)$$

于是我们的目标就是求出 $t_{\dot{\alpha}}$ 的最小值及相应方案。

类似的,模型 1.3 也可以求出相应费用函数 $m_{\dot{e}}$ 的最小值和相应方案。

2.2 模型求解

在算法方面,同上一个模型 1.1 类似,只是在搜索到n 次换乘($0 \le n \le Q$)的可行解时,不结束运算,而是将这条路径和相应的时间和花费保存下来,最后分别求出时间和花费的最小值。仍以图 1 为例,取 Q=3,这时我们的可行解就有两条: $S \to A1 \to A6 \to T$ 和 $S \to A1 \to A5 \to A7 \to T$,再对结果进行比较。

在这两个模型中我们的评价标准为:

- 1、换乘次数小于三次的解为可行解;
- 2、在1的基础上,出行时间越短,模型1.2越优;
- 3、在1的基础上,所花费用越少,模型1.3越优;

我们对题目中所给的6组起始终止点进行求解的结果如下::

	百十/// 11 10 组起相尺			LH PA
\ 最优		相应		相应
解		时间		时间
始	换乘 1 次的时间最短	(分	换乘 2 次的时间最短路线	(分
末站	路线	钟)和		钟)和
		费用		费用
		(元)		(元)
(1) S3359	S3359 <u>L436</u> S3695	118	$S3359 L324 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	69
→ S1828	—————————————————————————————————————	3	S1784————————————————————————————————————	3
(2)			C1557 L084下 、C1010 L189 、	111
S1557			$S1557 \xrightarrow{L084 \text{${\Gamma}$}} S1919 \xrightarrow{L189} \xrightarrow{3\text{${\text{$\dot{\mu}$}}$}} S1919 \xrightarrow{S1557} S1919 \xrightarrow{S1577} S1919 S199 S1919 S1919 S1919 S1919 S1919 S1919 S1919 S1919 S1919$	
→ S0481	无解	无解	$S3186 \xrightarrow{L460} S1828$	3
			1778	
(3) S0971	S0971—L013 40站→S2607	193	$S0971 \xrightarrow{L013} S2517 \xrightarrow{L290} 13 \text{is}$	108
→ S 0485	<u>1377</u> →S0485	4	S2159————————————————————————————————————	3
(4) S0008	S0008——————————————————————————————————	154	$S0008 \xrightarrow{L043} S1383 \xrightarrow{L290} $	72
→ S0073	————————————————————————————————————	3	S2184 $\xrightarrow{L345 \pm}$ S0073	3
(5) S0148			$S0148 \xrightarrow{L308} S0036 \xrightarrow{L156 \pm} S0036 \xrightarrow{15\text{id}}$	111
→ S0485	无解	无解	$S2210 \xrightarrow{L417} S0485$	3
(6) S0087	S0087—L454→S3496	70	$S0087 \xrightarrow{L021} S0088 \xrightarrow{L231 \pm} 10 \text{站}$	51
30087 → S3676	$\xrightarrow{L209}$ \$3676	2	$S0427 \xrightarrow{L97 \pm} S3676$	3
836/6	9站 755070		bull	

最优解	相应		相应
- V D B/N 1	时间		时间
	(分钟)	换乘 3 次的时间最短路线	(分
	和	DOME O DESTRUCTION	钟)和
始末站	费用		费用
AHATOAH	(元)		(元)
(1) $S3359 \rightarrow S1828$	69	S3359— L324下 3 站 → S1746— L027 4 站 →	74
	3	$S0391 \xrightarrow{L485} S1784 \xrightarrow{L217} S1828$	4
(2) S1557 → S0481	111	$S1557$ — $L084$ 下 $\longrightarrow S1919$ — $L189$ $\longrightarrow 3$ 站 \longrightarrow	104
	3	$S3186 \xrightarrow{L091} S0902 \xrightarrow{L254} S0481$	4
(3) S0971 → S0485	108	$S0971 \xrightarrow{L310} S1030 \xrightarrow{L137} 3$ $\xrightarrow{3$ $\cancel{\text{3}}$ $\cancel{\text{3}}$	110
	3	$S3501 \xrightarrow{L 290} S2159 \xrightarrow{L 469} S0485$	4
(4) S0008 → S0073	72	S0008— L 159 8站 → S0630— L 231 4站 →	68
	3	$S0483 \xrightarrow{L 328} S0525 \xrightarrow{L 103} S0073$	4
$(5) \text{ S0148} \rightarrow \text{S0485}$	111	S0148— L 308 → S3604— L 123下 → 2站	107
	3	$S2361 \xrightarrow{L \ 156} S2210 \xrightarrow{L \ 417} S0485$	4
(6) S0087 → S3676	51	$S0087 \xrightarrow{L 21} S0088 \xrightarrow{L 231} 9$ $\xrightarrow{9$ $\xrightarrow{1}$	56
	3	$S0456 \xrightarrow{L\ 017} S0427 \xrightarrow{L\ 097} S3676$	4

最优解始末站	以时间最短为目标的最优路线	最短时间	换乘 次数	费用
(1) S3359 → S1828	$S3359 \xrightarrow{L324 {}_{{}}} S1746 \xrightarrow{L485 {}_{{}}} $ $S1784 \xrightarrow{L167 {}_{{}}} S1828$	69	2	3
(2) $S1557 \rightarrow S0481$	$S1557 \xrightarrow{L084 \text{ F}} S1919 \xrightarrow{L189} 3 \text{ 站}$ $S3186 \xrightarrow{L091} S0902 \xrightarrow{L254} S0481$	104	3	4
(3) S0971 → S0485	$S0971 \xrightarrow{L013} S2517 \xrightarrow{L290} 13 \text{站}$ $S2159 \xrightarrow{L469 \pm} S0485$	108	2	3
(4) S0008 → S0073	$S0008$ $\xrightarrow{L 159}$ $\xrightarrow{8 \text{站}}$ $\xrightarrow{S0630}$ $\xrightarrow{L 231}$ $\xrightarrow{4 \text{站}}$ $\xrightarrow{S0483}$ $\xrightarrow{L 328}$ $\xrightarrow{2 \text{站}}$ $\xrightarrow{S0525}$ $\xrightarrow{L 103}$ $\xrightarrow{2 \text{站}}$ $\xrightarrow{S0073}$	68	3	4
$(5) \text{ S}0148 \rightarrow \text{S}0485$	$S0148$ $\xrightarrow{L 308}$ $\longrightarrow S3604$ $\xrightarrow{L 123 \text{ F}}$ \longrightarrow $S2361$ $\xrightarrow{L 156}$ $\longrightarrow S2210$ $\xrightarrow{L 417}$ $\longrightarrow S0485$	107	3	4
(6) S0087 → S3676	$S0087 \xrightarrow{L021} S0088 \xrightarrow{L231 \pm} 10$ S0427 $\xrightarrow{197 \pm} S3676$	51	2	3

3 模型 1.4: 基于层次分析评价的模型

3.1 模型建立:

i建立层次结构模型

如右图所示,我们自上而下地建立了三个层次:目标层,准则层和方案层。其中在准则层中,我们考虑三方面的因素:总时间,费用和换乘次数。

ii构造成对比较矩阵

我们运用1-9尺度来对三个准则进行成对比较。根据三个因素对评价结果的比较分析,

构造出成对比较矩阵 A, 其

iii用"和法"求出 A 的特征 向量λ的近似值为

3.06599, 近似的特征向量 $w = (w_1, w_2, w_3) \approx (0.1932, 0.0833, 0.7235)^T$

根据特征值 λ 可算出一致性指标 $CI = \frac{\lambda - n}{n - 1} = 0.033$,从而算出一致性比率

$$CR = \frac{CI}{RI} = 0.0569 < 0.1$$
,

一致性检验通过,于是w可作为权向量。

iv 我们对每一种换乘次数小于或等于 3 的方案进行绝对评价。我们分别对每个准则的 具体指标设定一个归一化的等级标准 z_i (i=1,2,3),如对于换乘次数,不换车为 1 分,

换一次为 $\frac{3}{4}$ 分,换两次为 $\frac{2}{4}$ 分,换三次为 $\frac{1}{4}$ 分;对于费用 z_2 ,一元为1分,二元为 $\frac{3}{4}$ 分,

三元为 $\frac{2}{4}$ 分,四元为 $\frac{1}{4}$ 分。总时间的等级标准如下:

时间段	0-15	15-30	30-45	45-60	60-80	80-100	100-120	120 以上
/分钟								
等级标	1	7	6	5	4	3	2	1
准/分数		8	8	8	8	8	8	$\frac{\overline{8}}{8}$

于是每一个出行方案的绝对指标为:

$$H = \sum_{i=1}^{3} w_i \times z_i$$

我们的目标就是在换乘次数小于或等于3的情况下,求出使得H取得最大值的方案。 3.2 模型求解:

以第六问为例,求解结果:

一次换乘的最优解: $H_{\text{max}} = 0.708725$, 并且有两个方案, 路线分别为 $S0087 \rightarrow S1893 \rightarrow S3676$ 和 $S0087 \rightarrow S3496 \rightarrow S3676$,经过的站数分别为 22 站 和 20 站,对应的总时间分别为 76 分钟和 70 分钟。

两次换乘的最优解: $H_{\text{max}} = 0.527683$, 共有 11 种方案, 这里略去。

三次换乘的最优解: $H_{\text{max}} = 0.319042$, 方案数亦很多, 这里不再一一列举。

3.3 模型结果分析

从上面的一个例子我们可以看出,两次和三次换乘的情况下,目标函数的最大值要比一次换乘小得多,这是因为我们在层次分析法中换乘次数的权重十分大的缘故。我们可以理解为,在实际情况中,在总时间不是特别长或是费用不是特别高的情况下,一般乘客总会选择换乘次数最少的线路,因为换乘次数每增加一次,给乘客带来的不便和等待时间的不可预期的风险就要陡然增加了。

4 模型 2.1: 带权有向网络图模型

由于模型 1.1、1.2、1.3、1.4 的求解算法效率不高,我们想求得出行时间最短或出行花费最少的全局最优解则,建立基于图论理论的带权有向网络图模型,并用 Dijkstra 求解。首先我们将换乘时间以及乘车时间在网络图中划归为有向边的边权,具体步骤如下图所示:

假设 A 为一个有三条公交线路通过的可换乘站点,考虑到乘客可以在 A 站换乘,将 A 点按照拆分原则(见下)拆分成 A1、A2、A3 三个节点,并在三个节点间添加以换乘等待时间 x 为权值的边,其中:

$$x = \begin{cases} 5 & \text{公汽换乘公汽} \\ 4 & \text{地铁换乘地铁} \\ 7 & \text{地铁换乘公汽} \\ 6 & \text{公汽换乘地铁} \end{cases}$$

这样把较复杂的换乘问题等价为乘车问题。

4.1 拆分原则: 我们将一个换乘站点拆分的目的是将换乘时间等效为乘车时间,现实中

在某站换乘的情况当且仅当乘客的下一站目的地不在当前的公交线路上时出现,因此,对任意 Y 站点的拆分应根据 Y 的出度(即从 Y 站出发的下一个目的地)来拆分。 综上,总结换乘站点的拆分原则为:若有向图中 A 点的出度为 k,则拆分为 k 个点。

4.2 模型建立:

建立城市公交汽车系统的数学模型的图(上图为示意图),原则如下:1、节点:

每个公交站点在图中建立两个节点 S_B 和B,其中S为原始站点,B为影子站点。

2、邻接矩阵 $X = (x_{ii})_{M \times M} (M = 3957)$

当图中有从 i 节点到 k 节点的有向边时, x_{ii} 取有向边的权值,否则取 $+\infty$

- 3、有向边:
 - $\langle 1 \rangle$ 对于节点S,建立由S出发的有向边,指向从S出发能直接到达的所有公交站点的影子站。
 - $\langle 2 \rangle$ 对于节点S的影子站B,建立从这些节点出发到达其对应节点S的有向边。
- 4、有向边的边权:
 - <1>以出行时间最短为目标:
 - $\langle a \rangle$ 从S出发能直接到达的所有公交站点的影子站B的边权为:

从S出发到达的所有公交站点的影子站B所用时间

- t=每两站间行驶时间(公汽3分钟)×站数
- $\langle b \rangle$ 影子站 B 到对应原始站 S 节点的有向边权: 在此站换乘同种交通工具的时间(公汽 S 分钟)
- <2>以出行费用最少为目标:
 - $\langle a \rangle$ 从S出发能直接到达的所有公交站点的影子站B的边权为:

从
$$S$$
出发到达的所有公交站点的影子站 B , T 车费:

 $Y = \begin{cases} 1 & \text{单一票制公汽} \\ k & \text{分段计费公汽,乘坐站数为n,10k ≤ n<10(k+1)} \end{cases}$

〈b〉影子站 B 到对应节点 S 的有向边权:在此站换乘同种交通工具的费用为 0。4.3 模型求解

用 Dijstra 算法求出的最优解为: (这里略去 Dijstra 算法的步骤)

最优解始末站	换乘 次数	以时间最短为目标的最优路线	最短 时间 /分钟	费用 /元
(1) S3359 → S1828	2	$\begin{array}{c} S3359 \xrightarrow{\stackrel{L15}{1\bar{\pi}}} S2903 \xrightarrow{\stackrel{L485}{1\bar{\pi}}} \\ S1784 \xrightarrow{\stackrel{L167}{1\bar{\pi}}} S1828 \end{array}$	64	3
(2) $S1557 \rightarrow S0481$	3	$S1557 \xrightarrow{184 \text{ F}} S1919 \xrightarrow{1189} 1\overline{\pi} \rightarrow S186 \xrightarrow{191} S0902 \xrightarrow{12254} S0481$	99	4
(3) S0971→S0485	2	$\begin{array}{c} S0971 \xrightarrow{113} S2517 \xrightarrow{1290} \\ S2159 \xrightarrow{111469} S0485 \end{array}$	103	3
(4) S0008 → S0073	4	$S0008 \xrightarrow{L198} S1691 \xrightarrow{L476 \overline{\Gamma}} $ $S2085 \xrightarrow{L17} S0609 \xrightarrow{L328} $ $S0525 \xrightarrow{L103 \pm} S0073$	59	5
$(5) \text{ S0148} \rightarrow \text{S0485}$	3	$S0148 \xrightarrow{L308} S3604 \xrightarrow{L354} S2361 \xrightarrow{L156} S2210 \xrightarrow{L417} S0485$	102	4
(6) S0087 → S3676	2	$S0087 \xrightarrow{\stackrel{L021}{1}} S0088 \xrightarrow{\stackrel{L231}{1}} S427 \xrightarrow{\stackrel{L381}{1}} S3676$	46	3

(二) 问题二的解答:

问题分析

当我们将地铁考虑到公交换乘系统中时,由于实际中若人们出行选择换乘地铁时, 换乘次数会增加很多,并且人们一般不会在意地铁之间换乘次数的多少。 基于实际情况,从出行时间的角度出发,考虑到不同公交工具之间换乘的时间(公汽- 公汽、公汽-地铁、地铁-公汽、地铁-地铁),以及公交汽车站与地铁站互相联通的情况,我们将原有的带权有向网络图进行改动,建立模型。

模型 2.2:

模型建立

在模型二的基础上建立城市公交系统(含地铁)的数学模型的图(上图为示意图),原则如下:

1、节点:

对于每个地铁站,在图中添加两个节点 S_{τ} 和T,其中 S_{τ} 为原始站点,T为影子站点。

2、邻接矩阵 $X = (x_{ii})_{M \times M} (M = 3996, 3998 \sim 3996$ 为地铁节点)

当图中有从 i 节点到 k 节点的有向边时, x_{ii} 取有向边的权值,否则取 $+\infty$

3、有向边:

 $\langle 1 \rangle$ 对于节点 S ,建立由 S 出发的有向边,指向从 S 出发能直接到达的所有公交站点的影子站 B , T 。

其中,若以出行时间最短为目标,则地铁站点 T_1 和 T_2 间各站,除 D_{12} D_{18} 外不能直接到达。

若以出行费用最少为目标,则地铁站点T,和T,间各站,都能直接到达。

- $\langle 2 \rangle$ 对于节点S的影子站 $B \setminus T$,建立从这些节点出发到达其对应节点S的有向边。
- $\langle 3 \rangle$ 考虑到公共汽车站和地铁站之间存在互相联通的情况,则在连通的 S_B ,B, S_T ,T之间建立如下有向边:

$$B \to S_T, S_T \to B, T \to S_R, S_R \to T, T \to B, B \to T, S_R \to S_T, S_T \to S_R$$

4、有向边的边权:

<1>以出行时间最短为目标:

 $\langle a \rangle$ 从S出发能直接到达的所有公交站点的影子站B,T的边权为:从S出发到达的所有公交站点的影子站B,T所用时间

- t=每两站间行驶时间(公汽3分钟,地铁2.5分钟)×站数
- 〈c〉公共汽车站和地铁站之间存在互相联通的情况:

$B \rightarrow S_T$	$S_T \to B$	$T \rightarrow S_B$	$S_B \to T$	$T \rightarrow B$	$B \rightarrow T$	$S_B \rightarrow S_T$	$S_T \rightarrow S_B$
6	4	7	4	4	4	6	7

<2>以出行费用最少为目标:

 $\langle a \rangle$ 从 S 出发能直接到达的所有公交站点的影子站 B , T 的边权为: 从 S 出发到达的所有公交站点的影子站 B , T 车费:

$$Y =$$
 $\begin{cases} 1 & \text{单一票制公汽} \\ 3 & \text{地铁} \\ k & \text{分段计费公汽, 乘坐站数为n,10k \leq n \leq 10(k+1)} \end{cases}$

 $\langle b \rangle$ 影子站 $B \setminus T$ 到对应节点S的有向边权:在此站换乘同种交通工具的费用为

0.

〈c〉表示公共汽车站和地铁站之间互通的有向边的边权为 0。

模型解释

现实中乘车方式在模型中的解释

〈1〉由于将换乘时间与乘车时间等效,从某站 i 出发在 j 站倒车到 k 站在模型中的步骤为:从 i 站的原始节点 S 出发,到 j 站的影子节点,到 j 站的原始节点,到 k 站的影子节点。中间每一步都计算相应有向边的权值,并进行分析。

从中可看出影子节点的主要功能是充当到站与换乘的中点。

<2>考虑到一些公交汽车站与地铁站相连,在其原始节点和影子节点间都加入了有向边,在以最短出行时间为目标进行求解时,可能出现下列情况与实际不符,但由于采用Dijkstra算法求解,所得解出行时间最短,仍符合实际情况。

与实际不符的情况:

从某车站步行到相通的公交或地铁站,然后在此站换乘。此时,在图中有两种走法:一种为直接到其原始节点换乘;另一种为先到其影子站点再从影子站点到原始站点换乘。显然,第二种情况重复计算了一部分步行时间,而且与实际不符。但由于前一种方案所需时间总小于后一种方案所需时间,并不影响求解。

<3>由于可从相通站点对应的节点直接走到其影子节点,而且每次下车都在影子节点, 所以实际情况中的终点站在图中为其对应原始节点的影子节点。

模型求解

i以时间最短为目标函数的求解结果

最优解始末站	以时间最短为目标的最优路线	最短 时间 /分 钟	费用 /元
(1) S3359 → S1828	$\begin{array}{c} S3359 \xrightarrow{\frac{L123}{1\pi}} S2903 \xrightarrow{\frac{L201}{1\pi}} \\ S609 \xrightarrow{\frac{\cancel{5}\cancel{7}}{\cancel{5}\cancel{5}}} D15 \xrightarrow{\frac{T2}{3\pi}} \\ D37 \xrightarrow{\frac{\cancel{5}\cancel{7}}{\cancel{5}\cancel{5}}} S1961 \xrightarrow{\frac{L428}{1\pi}} \\ S0167 \xrightarrow{\frac{L041}{1\pi}} S1828 \end{array}$	62	7
(2) $S1557 \rightarrow S0481$	$S1557 \xrightarrow{L84 \overline{\vdash}} S1919 \xrightarrow{L189} \overline{\downarrow}$ $S3186 \xrightarrow{L91} S0902 \xrightarrow{L2254} S0481$	99	4

(3) S0971 → S0485	$\begin{array}{c} S0971 \xrightarrow{L119} S0567 \xrightarrow{\text{步行}} \\ D1 \xrightarrow{T1} D15 \xrightarrow{\text{步行}} \\ S2534 \xrightarrow{L156} S2210 \\ \xrightarrow{L471} S0485 \end{array}$	95	6
(4) $S0008 \rightarrow S0073$	$S0008 \xrightarrow{1200} S2534 \xrightarrow{\cancel{5}7}$ $D15 \xrightarrow{11} D12 \xrightarrow{12}$ $D25 \xrightarrow{\cancel{5}7} S0525 \xrightarrow{L103} S0073$	53. 5	5
$(5) \text{ S}0148 \rightarrow \text{S}0485$	$\begin{array}{c} S0148 \xrightarrow{1.24} S1487 \xrightarrow{\cancel{5}7} \\ D2 \xrightarrow{T1} D15 \xrightarrow{\cancel{5}7} S0485 \end{array}$	86. 5	4
(6) S0087 → S3676	$\begin{array}{c} S0087 \xrightarrow{L028} S0608 \xrightarrow{\overline{57}} \\ D12 \xrightarrow{T2} D36 \xrightarrow{\overline{57}} S3676 \end{array}$	33. 5	4

ii以费用最少为目标函数的求解结果

最优解始末站	以费用最小为目标的最优路线	最短 时间 /分钟	费用/元
(1) $S3359 \rightarrow S1828$	$\begin{array}{c} S3359 \xrightarrow{\frac{L469}{14 \text{ in}}} S0772 \xrightarrow{\frac{L204}{20 \text{ in}}} \\ S0096 \xrightarrow{\frac{L167}{11 \text{ in}}} S1828 \end{array}$	150	3
(2) $S1557 \rightarrow S0481$	$S1557 \xrightarrow{L84} S0978 \xrightarrow{\overline{b}7} S0497$ $D32 \xrightarrow{\overline{b}7} S0497$ $\xrightarrow{L206L} S0857 \xrightarrow{\overline{b}7} D28 \xrightarrow{\overline{b}7} S0854 \xrightarrow{L447} S0481$	147	3
(3) S0971 → S0485	S0971—L119 →S0872—L417 →S0485	154	3
(4) S0008 → S0073	S0008——————————————————————————————————	88	2

$(5) \text{ S}0148 \rightarrow \text{S}0485$	$S0148$ $\xrightarrow{1308}$ $S3604$ $\xrightarrow{121}$ $S248$ $\xrightarrow{1469}$ $S0485$	129	3
(6) S0087 → S3676	$S0087 \xrightarrow{\text{步行}} D27 \xrightarrow{\text{步行}} S0088 \xrightarrow{\text{L381}} $ $S427 \xrightarrow{\text{步行}} D36 \xrightarrow{\text{步行}} S3676$	49	1

(三) 问题三的解答:

问题分析

生活中人们乘公交出行,经常在倒车时步行到附近的其它车站,如果能知道两两站点间的步行时间,在问题二的模型中就增加了一种除乘坐公共汽车和地铁外的另外一种方式。类似于问题一的分析,将步行问题等效为一种特殊的公交线路。如下图所示

模型 2.3

模型假设:

1>只能步行到相邻车站,这里定义临近车站为公交汽车线路上相隔一站的公汽车站。2>只能在公汽站点之间步行。

模型建立

在模型三的基础上建立城市公交系统的数学模型的图,以出行时间最短为目标求解(上图为示意图),原则如下:

1、节点:

在模型三的基础上增加一组对应于原始公交节点的步行影子节点W。

2、邻接矩阵 $X = (x_{ii})_{M \times M} (M = 7953)$

当图中有从 i 节点到 k 节点的有向边时, x_{ii} 取有向边的权值,否则取 $+\infty$

3、有向边及有向边的边权:

在模型三的基础上添加两种有向边:

- $\langle 1 \rangle$ W \to $S_{\rm B}$ 边权为 0,表示从任何一个公共汽车出发步行到此公共汽车站的时间为 0。
- 〈2〉 $B \to W$ 边权为 7(考虑到等公交车并坐一站的时间为 8,若此边权小于 8 则步行没有意义),其中的 B,W 对应不同的 S_i,S_i 是相邻的两个公交站。

模型求解,

根据假设 5,同一地铁站对应的两个公共汽车站之间可以通过地铁站换乘而无需支付地铁费,这时我们一时间最短为目标函数求得最优解如下:

最优解	以时间最短为目标的最优路线	最短	费用
		时间	/元
始末站		/分钟	
(1) S3359 → S1828	$\begin{array}{c} \text{S3359} \xrightarrow{\begin{subarray}{c} $\pm f \\ $>$ $>$ $>$ $>$ $>$ $>$ $>$ $>$ $>$ $$	60	5
(2) S1557 → S0481	$\begin{array}{c} S1557 \xrightarrow{L84 \overline{\Gamma}} S1919 \xrightarrow{L189} \\ S3186 \xrightarrow{L91} S0902 \\ \xrightarrow{L254} S0481 \end{array} $ (无变化)	104	4

(3) S0971 → S0485	$S0971 \xrightarrow{L94} S0567 \xrightarrow{\text{步行}}$ $D1 \xrightarrow{T1} D15 \xrightarrow{\text{步行}}$ $S2534 \xrightarrow{L156} S3351$ $\xrightarrow{\text{步行}} S0485$	94	5
(4) S0008 → S0073	$S0008$ $\xrightarrow{1200}$ $S2953$ $\xrightarrow{\overline{57}}$ $S3874$ \longrightarrow $D30$ $\xrightarrow{T2}$ \longrightarrow $S0525$ $\xrightarrow{L103}$ \longrightarrow $S0073$	53	5
(5) S0148 → S0485	$S0148 \xrightarrow{124} S1487$ $\xrightarrow{\cancel{5}\cancel{17}} D2 \xrightarrow{11} \longrightarrow D15 \xrightarrow{\cancel{5}\cancel{17}} S2534 \xrightarrow{L156} S3351 \xrightarrow{\cancel{5}\cancel{17}} S0485$	85. 5	5
(6) S0087 → S3676	S0087───────────────────────────────────	31	3

模型结果分析

对比问题三与问题二的结果可以看出,凡是在模型二中乘一站的公交线路在模型三中全改为步行。进一步对汽车行驶速度以及步行速度分析可以发现,当汽车行驶速度大于步行速度时,若等车时间加上乘 k 站公交汽车时间大于步行 k 站的时间,就选择步行。

对于汽车行驶速度的分析:

题目中假设公交汽车的行驶速度为3分钟/站,若在上下班高峰期道路拥堵,假设公交汽车的行驶速度为6分钟/站,可以想象此时乘客回尽量步行或乘坐地铁来缩短出行时间。作为一个例子,我们求出第一组起点终点站的解如下(不同的地方用方框标出):

最	公交汽车的行驶速度为3分钟/站	公交汽车的行驶速度为6分钟/站
大 优解		
始末站		

模型拓展:

1、电路模拟法 先声明一个公理:

公理 0: 在如右图的电路中,当 A,B 两点之间施加的电压从 \mathbf{U}_{ab} 从 0 逐渐增大时,二极管最少的支路最先导通。

这是显然的,因为二极管的性质是在两端电压达到阈值 0.7V 时导通。当 \mathbf{U}_{ab} 从 0逐渐增大时,从 \mathbf{A} 到 \mathbf{B} 的通路上的二极管数目越多,需要的导通电压越大,于是二极管数目最少的支路最先导通。

模型建立

根据公理 0,我们将原来的有向图改用 电路模拟,其中原来的有向图中每两点之间

的带权边(以时间为权)用带发光二极管的线路来取代,该有权边的方向为二极管的正极到负极的方向。发光二极管的数目为权值的二倍。(由于题目中所给数据有不是整数的情况,所以都乘以 2 使得二极管的数目为整数)。这样,我们就构造出一个由二极管构成的电路网络,任两点之间都可以利用二极管的正向导通特性从而间接相连。模型解释

当已知起点 S 和终点 T 后,我们将 T 点接地,S 点施加从 0 开始以一个小步长 ε 不断增长的电压 U_{ab} 。显然,刚开始的时候没有电流流经终点 T,因为所有的二极管均不导通。当 U_{ab} 增长到一定限度时,S 和 T 之间就会有一条或几条二极管数目最少的通路导通,特征是这条路上的二极管均发光,T 点也就有电流注入了。当我们观察到这一现象的时候,让 S 点的电压停止增长,这样就得到了一条花费时间最短的路径。显然,在这个过程中,任意一个二极管都不会烧掉,因为二极管烧掉都是在导通之后电压继续增大造成的,而在这里我们在有二极管导通的瞬间就使 S 点的电压停止增长,所以不用担

心。我们可以很容易的数出此时任一条通路上的二极管数目,除以 2 就是最短的花费时间。同理,我们可以利用以费用为权的有向图,用电路模拟的方法进行仿真求出费用最少的线路和最小费用。

实现方法

在具体实现中,我们需要利用电路模拟软件 *Pspice*, 对题目中所给的公共汽车线路, 地铁线路以及步行时间矩阵(求费用的时候, 步行的费用为 0), 作出如上述的电路图进行仿真。

或直接在一块可编程芯片上实现,由于本题数据规模大,这种实现方式在设计、烧制芯片时用时很长,但一旦芯片制作完毕,查询用时最短的公交线路会非常迅速。

2、车流高峰与交通通畅时段出行方案的比较模型

考虑实际情况中公交高峰时期和普通时期等车时间的期望不同,而且公交汽车的等车时间随上下班车流高峰期变化较大,可能以出行时间最短的最优解可能不同。基于这种考虑建立模型。

模型假设:

1>对于一个公交汽车车站乘客等车时间 t 服从期望值为 3 的正态分布(3 分钟为在公交汽车站等车的平均时间)。

2〉公交汽车站的等车时间 t 的正态分布的方差 σ 与此到达公共汽车站的公交线路数 β 的 关系由下式给出:

$$\sigma = \frac{\beta - \min \beta}{\max \beta - \min \beta}, \min \beta$$
表示最小的 β 值, $\max \beta$ 表示最大的 β 值

$$3$$
>高峰期等车时间 $\varphi_i = \begin{cases} 3+3\sigma & \beta \ge \frac{\max \beta - \min \beta}{2} \\ 3 & \beta < \frac{\max \beta - \min \beta}{2} \end{cases}, i = 1, 2 \cdots 3957$

$$4$$
〉交通通畅时段等车时间 φ_{i} =
$$\begin{cases} 3-3\sigma & \beta \geq \frac{\max \beta - \min \beta}{2} \\ 3 & \beta < \frac{\max \beta - \min \beta}{2}, i = 1, 2 \cdots 3957 \end{cases}$$

假设解释

假设 1>: 由于不能确定公交汽车等车时间的精确分布,按正态分布拟合,并用假设 2>限制了 t 的方差,使得 97%的概率内等车时间大于 0 分钟,比较符合实际。

假设 3>与假设 4>出于这种考虑:

在公交汽车线路汇聚的站点通常在高峰期有较多的客流导致公交汽车进出站的拥堵从 而取等车时间 t 在 95%置信区间的上限值。

在交通通畅时段,通常乘客较少,而在公交汽车线路汇聚的站点会为这些乘客提供更多的出行方案导致等车时间的减少,从而取等车时间 t 在 95%置信区间的下限值。

对于公交汽车线路较少的车站往往不是人流密集的地方,基本不受车流的影响。

模型建立

将 φ_i 与 φ'_i 分别代入模型 2.3 中求解即可。

模型评价

本文充分利用题目中所给数据,分别用搜索的模型和带权有向图的模型对出行的方案优劣进行了研究,给出了多种评价标准,较为准确、全面地满足了不同需求的乘客的需要,特别是带权有向图的模型大大提高了运算的效率。同时在模型拓展中,我们对题中所给的等待时间做出了随机化处理,提出了车流高峰与交通通畅时段出行方案的比较模型,可以说反映出一定的实际情况。电路模拟模型经过了验证,但由于开发周期长,电路板的焊制成本高,我们并没有应用它来解决实际问题。

参考文献

- [1] 姜启源,谢金星,叶俊。《数学模型(第三版)》。北京,高等教育出版社。2004年4月。
- [2] 严蔚敏,吴伟民。《数据结构(第二版)》。北京,清华大学出版社。1992年6月。
- [3] 《运筹学》教材编写组。《运筹学》。北京,清华大学出版社。2005年6月。
- [4]潘金贵,顾铁成,李成法,叶懋。《算法导论》。北京,机械工业出版社。2007年3月。