Harberts Alvin Note: 4/20 (score total : 4/20)

Nom et prénom, lisibles :

+208/1/20+

Identifiant (de haut en bas) :

QCM THLR 4

Harrets	
Alvin	● 0 □1 □2 □3 □4 □5 □6 □7 □8 □9
	□0 □1 ★2 □3 □4 □5 □6 □7 □8 □9
	□0 □1 □2 □3 ₩4 □5 □6 □7 □8 □9
	□0 □1 ■2 □3 □4 □5 □6 □7 □8 □9
]
plutôt que cocher. Renseigner les champs d'identi sieurs réponses justes. Toutes les autres n'en ont q plus restrictive (par exemple s'il est demandé si 0 pas possible de corriger une erreur, mais vous pou incorrectes pénalisent; les blanches et réponses m	i dans les éventuels cadres grisés « ». Noircir les cases ité. Les questions marquées par « » peuvent avoir pluqu'une; si plusieurs réponses sont valides, sélectionner la est nul, non nul, positif, ou négatif, cocher nul). Il n'est avez utiliser un crayon. Les réponses justes créditent; les aultiples valent 0. plet: les 2 entêtes sont +208/1/xx+···+208/2/xx+.
Q.2 Le langage $\{ \bigcap^n \bigcap^m \forall n, m \in \mathbb{N} \}$ est	
□ non reconnaissab	le par automate fini 🔲 fini 🔲 vide
Q.3 Le langage $\{ \mathfrak{S}^n \mid \forall n \in \mathbb{N} \}$ est	
🛛 rationnel 🗌 vide 🔲 nor	n reconnaissable par automate fini 🔲 fini
Q.4 Un automate fini qui a des transitions spon	tanées
\square n'accepte pas $arepsilon$ \boxtimes n'est pas déterm	iniste \square est déterministe \blacksquare accepte $arepsilon$
 Q.5 Un langage quelconque ☑ est toujours inclus (⊆) dans un langage rationnel ☐ peut n'être inclus dans aucun langage dénoté par une expression rationnelle ☐ n'est pas nécessairement dénombrable ☐ peut avoir une intersection non vide avec son complémentaire Q.6 Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur Σ = {a, b} dont la n-ième lettre avant la fin est un a (i.e., (a + b)*a(a + b)ⁿ⁻¹): 	
n+1 Il n'existe	e pas. \boxtimes 2^n \square $\frac{n(n+1)}{2}$
Q.7 Si un automate de n états accepte a^n , alors	il accepte
	$\boxtimes a^p(a^q)^*$ avec $p \in \mathbb{N}, q \in \mathbb{N}^* : p + q \le n$ a^m avec $m \in \mathbb{N}^*$
Q.8 Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b, c, d\}$ dont la n -ième lettre avant la fin est un a (i.e., $(a+b+c+d)^*a(a+b+c+d)^{n-1}$):	
2^n 4^n 1	n'existe pas.
Q.9 Déterminiser cet automate : $\xrightarrow{a,b}$ $\xrightarrow{a,b}$	

0/2

Q.10 Comment marche la minimisation de Brzozowski d'un automate A?

2/2

 \square $Det(T(Det(T(Det(\mathscr{A})))))$

 \Box $T(Det(T(Det(\mathcal{A}))))$

Fin de l'épreuve.