Les transformations géométriques en 3D

Ahlem Bougarradh

 Un point dans l'espace 3d est représenté par ses coordonnées (x,y,z)

• Le point A(3,2,4)

Un vecteur 3D représente un déplacement

dans l'espace 3D.

• V (4,4,2)

 Exemple: faire un déplacement du point A(2,1,3) par le vecteur V(7,3,1).

Le résultant B(?,?,?)

Transformation Affine

- Toute composition de translation, rotation et de mise à l'échelle est appelée transformation affine.
- Soit deux points P1(x1,y1,z1) et P2(x2,y2,z2) de l'espace 3D en coordonnées euclidiennes.
- Si P2 est l'image de P1 par une transformation alors cette transformation est affine si elle respecte la condition suivante:

Transformation Affine

$$\begin{bmatrix} x2 \\ y2 \\ z2 \end{bmatrix} = \begin{bmatrix} m11 & m12 & m13 \\ m21 & m22 & m23 \\ m31 & m32 & m33 \end{bmatrix} \begin{bmatrix} x1 \\ y1 \\ z1 \end{bmatrix} + \begin{bmatrix} e \\ f \\ g \end{bmatrix} \rightarrow P2 = M.P1 + T$$

- P2 est obtenu en multipliant P1 par la matrice M puis en lui ajoutant la matrice T.
- La transformation affine préserve le parallélisme des droites
- Ne préserve pas les longueurs et les angles.

Translation

 Translation: consiste à déplacer un point d'une distance Tx suivant l'axe des X, d'une distance Ty suivant l'axe des Y et d'une distance Tz suivant l'axe des Z.

$$\begin{bmatrix} x2 \\ y2 \\ z2 \end{bmatrix} = \begin{bmatrix} x1 \\ y1 \\ z1 \end{bmatrix} + \begin{bmatrix} Tx \\ Ty \\ Tz \end{bmatrix} \rightarrow P2 = P1 + T \begin{cases} x2 = x1 + Tx \\ y2 = y1 + Ty \\ z2 = z1 + Tz \end{cases}$$

 Déterminez les coordonnées du Point P2 transformé de P1(4,0,6) par la matrice translation T(Tx=4, Ty=1, Tz=-2)

Translation

Mise à l'échelle

- La mise à l'échelle consiste à agrandir ou à réduire en fonction des facteurs d'échelles Sx selon l'axe X, Sy selon l'axe Y et Sz selon l'axe Z.
- P2=Ms*P1

$$\begin{bmatrix} x2 \\ y2 \\ z2 \end{bmatrix} = \begin{bmatrix} Sx & 0 & 0 \\ 0 & Sy & 0 \\ 0 & 0 & Sz \end{bmatrix} \begin{bmatrix} x1 \\ y1 \\ z1 \end{bmatrix} \rightarrow P2 = Ms.P1$$

Mise à l'échelle

$$\begin{bmatrix} x2 \\ y2 \\ z2 \end{bmatrix} = \begin{bmatrix} Sx & 0 & 0 \\ 0 & Sy & 0 \\ 0 & 0 & Sz \end{bmatrix} \begin{bmatrix} x1 \\ y1 \\ z1 \end{bmatrix}$$

$$x2 = Sx*x1 + 0*y1 + 0*z1$$

$$x2 = Sx*x1 + 0*y1 + 0*z1$$

$$x3 = Sx & 0 & 0 \\ 0 & Sy & 0 \\ 0 & 0 & Sz \end{bmatrix} \begin{bmatrix} x1 \\ y1 \\ z1 \end{bmatrix}$$

$$x2 = 0*x1 + Sy*y1 + 0*z1$$

$$x3 = Sx & 0 & 0 \\ 0 & Sy & 0 \end{bmatrix} \begin{bmatrix} x1 \\ y1 \\ z1 \end{bmatrix}$$

$$x3 = Sx & 0 & 0 \\ 0 & Sy & 0 \end{bmatrix} \begin{bmatrix} x1 \\ y1 \\ z2 = 0*x1 + 0*y1 + Sz*z1$$

$$x3 = Sx & 0 & 0 \\ 0 & Sy & 0 \end{bmatrix} \begin{bmatrix} x1 \\ y1 \\ z2 = 0*x1 + 0*y1 + Sz*z1$$

$$x3 = Sx & 0 & 0 \\ 0 & Sy & 0 \end{bmatrix} \begin{bmatrix} x1 \\ y1 \\ z2 = 0*x1 + 0*y1 + Sz*z1$$

$$x3 = Sx*z1$$

 Ex: déterminez P2(x2,xy2,y3) transformé du point P1(4,2,4) par la matrice de mise à l'échelle uniforme de valeur 2 S(Sx=2, Sy=2,Sz=2)

Mise à l'échelle

Rotation

 La matrice de Rotation: pour faire pivoter des points d'un angle alpha par rapport à l'axe des X.

$$\begin{bmatrix} x2 \\ y2 \\ z2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\alpha) & -\sin(\alpha) \\ 0 & \sin(\alpha) & \cos(\alpha) \end{bmatrix} \begin{bmatrix} x1 \\ y1 \\ z1 \end{bmatrix} \rightarrow P2 = Mr.P1$$

Rotation

 Ex: déterminez les coordonnées du segment [A2 B2] transformé du segment [A1B1] par une matrice de rotation d'un angle alpha=-90 autour de l'axe des X. A1(0,0,2) et B1(0,0,5).

Rotation d'un segment

Rotation

 De la même façon, la matrice de rotation pour faire pivoter les points d'un angle alpha autour de l'axe Y est:

$$\begin{bmatrix} x2 \\ y2 \\ z2 \end{bmatrix} = \begin{bmatrix} \cos(\alpha) & 0 & \sin(\alpha) \\ 0 & 1 & 0 \\ -\sin(\alpha) & 0 & \cos(\alpha) \end{bmatrix} \begin{bmatrix} x1 \\ y1 \\ z1 \end{bmatrix} \rightarrow P2 = Mr.P1$$

autour de l'axe Z est:

$$\begin{bmatrix} x2 \\ y2 \\ z2 \end{bmatrix} = \begin{bmatrix} \cos(\alpha) & -\sin(\alpha) & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x1 \\ y1 \\ z1 \end{bmatrix} \rightarrow P2 = Mr.P1$$

Etirement

- Etirement ou Cisaillement: c'est une opération qui consiste à déformer les objets.
- On distingue 3 types d'étirements: suivant l'axe X, Y et Z.
- La matrice d'étirement selon l'axe X:

$$\begin{bmatrix} x2 \\ y2 \\ z2 \end{bmatrix} = \begin{bmatrix} 1 & Cy & Cz \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{cases} x1 \\ y1 \\ z1 \end{cases} \rightarrow P2 = Mc.P1$$

Etirement

- X2=x1+y1*cy+z1*cz
- Y2=y2
- Z2=z1
- Déterminez les coordonnées du point A2 transformé de A1(1,2,0) par un etirement selon l'axe X avec cy=2 et cz=2.

Etirement

Etirement de la figure présentant un carré

Les coordonnées homogènes

- Les mathématiques des images par ordinateur sont liées à la multiplication matricielle.
- La translation d'un point ne correspond pas directement à une multiplication matricielle. (parce que la translation n'est pas une transformation linéaire).
- Pour contourner cette difficulté, il est classique d'introduire ce qu'on appelle les coordonnées homogènes.
- On Introduit une quatrième coordonnée différente de zéro W.

Les coordonnées homogènes

- Un point P(x,y,z) en coordonnées euclidiennes s'ecrit P(x/w,y/w,z/w,w) en coordonnées homogènes.
- Si w=1 alors P(x,y,z,1).
- Si w=0 représente les points à l'infini
- Les transformations 3d sont représentées par des matrices 4*4
- Une matrice unique 4*4 pourra effectuer toutes les transformations affines (translation, rotation, échelle, étirement).
- Rassembler en une seule matrice, une composition de transformations en effectuant une multiplication de matrices.

 Un point P1(x1,y1,z1,1) donnera un point P2(x2,y2,z2,1) par une matrice de transformation M:

$$\begin{bmatrix} x2 \\ y2 \\ z2 \end{bmatrix} = \begin{bmatrix} m11 & m12 & m13 & m14 \\ m21 & m22 & m23 & m24 \\ m31 & m32 & m33 & m34 \\ 1 & 0 & 0 & 0 & 1 \\ \end{bmatrix} \begin{bmatrix} x1 \\ y1 \\ z1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x2 \\ y2 \\ z2 \\ 1 \end{bmatrix} = \begin{bmatrix} m11 & m12 & m13 & m14 \\ m21 & m22 & m23 & m24 \\ m31 & m32 & m33 & m34 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x1 \\ y1 \\ z1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x2 \\ y2 \\ z2 \\ 1 \end{bmatrix} = \begin{bmatrix} m11 & m12 & m13 & m14 \\ m21 & m22 & m23 & m24 \\ m31 & m32 & m33 & m34 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x1 \\ y1 \\ z1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x2 \\ y2 \\ z2 \\ 1 \end{bmatrix} = \begin{bmatrix} m11 & m12 & m13 & m14 \\ m21 & m22 & m23 & m24 \\ m31 & m32 & m33 & m34 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x1 \\ y1 \\ z1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x2 \\ y2 \\ z2 \\ 1 \end{bmatrix} = \begin{bmatrix} m11 & m12 & m13 & m14 \\ m21 & m22 & m23 & m24 \\ m31 & m32 & m33 & m34 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x1 \\ y1 \\ z1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x2 \\ y2 \\ z2 \\ 1 \end{bmatrix} = \begin{bmatrix} m11 & m12 & m13 & m14 \\ m21 & m22 & m23 & m24 \\ m31 & m32 & m33 & m34 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x1 \\ y1 \\ z1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x2 \\ y2 \\ z2 \\ 1 \end{bmatrix} = \begin{bmatrix} m11 & m12 & m13 & m14 \\ m21 & m22 & m23 & m24 \\ m31 & m32 & m33 & m34 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x1 \\ y1 \\ z1 \\ z1 \end{bmatrix}$$

$$\begin{bmatrix} x2 \\ y2 \\ z2 \\ 1 \end{bmatrix} = \begin{bmatrix} m11 & m12 & m13 & m14 \\ m21 & m22 & m23 & m24 \\ m31 & m32 & m33 & m34 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x1 \\ y1 \\ z1 \\ z1 \end{bmatrix}$$

$$\begin{bmatrix} x2 \\ y2 \\ z2 \\ 1 \end{bmatrix} = \begin{bmatrix} m11 & m12 & m13 & m14 \\ m21 & m22 & m23 & m24 \\ m31 & m32 & m33 & m34 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x1 \\ y1 \\ z1 \\ z1 \end{bmatrix}$$

$$\begin{bmatrix} x2 \\ y2 \\ z2 \\ z2 \\ 1 \end{bmatrix} = \begin{bmatrix} m11 & m12 & m13 & m14 \\ m21 & m22 & m23 & m24 \\ m31 & m32 & m33 & m34 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x1 \\ y1 \\ z1 \\ z1 \end{bmatrix}$$

La matrice de transformation de translation:

$$\begin{bmatrix} x2 \\ y2 \\ z2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & Tx \\ 0 & 1 & 0 & Ty \\ 0 & 0 & 1 & Tz \\ 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{\text{P2}} \text{P2} = \text{Mt . P1}$$

Matrice de Rotation autour de l'axe X
$$\begin{bmatrix} x2 \\ y2 \\ z2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\alpha) & -\sin(\alpha) & 0 \\ 0 & \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x1 \\ y1 \\ z1 \\ 1 \end{bmatrix} \rightarrow P2 = Mr \cdot P1$$

Matrice de Rotation autour de l'axe Y

$$\begin{bmatrix} x2 \\ y2 \\ z2 \\ 1 \end{bmatrix} = \begin{bmatrix} \cos(\alpha) & 0 & \sin(\alpha) & 0 \\ 0 & 1 & 0 & 0 \\ -\sin(\alpha) & 0 & \cos(\alpha) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x1 \\ y1 \\ z1 \\ 1 \end{bmatrix} \rightarrow P2 = Mr \cdot P1$$

Matrice de Rotation autour de l'axe Z
$$\begin{bmatrix} x2 \\ y2 \\ z2 \\ 1 \end{bmatrix} = \begin{bmatrix} \cos(\alpha) & -\sin(\alpha) & 0 & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x1 \\ y1 \\ z1 \\ 1 \end{bmatrix} \rightarrow P2 = Mr \cdot P1$$

- La mise à l'échelle modifie la taille d'un objet par rapport à l'origine en l'agrandissant ou en la réduisant.
- La matrice de transformation Ms:

$$\begin{bmatrix} x2 \\ y2 \\ z2 \\ 1 \end{bmatrix} = \begin{bmatrix} Sx & 0 & 0 & 0 \\ 0 & Sy & 0 & 0 \\ 0 & 0 & Sz & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x1 \\ y1 \\ z1 \\ 1 \end{bmatrix} \rightarrow P2 = Ms \cdot P1$$

Matrice d'etirement autour de l'axe X
$$\begin{vmatrix} x2 \\ y2 \\ z2 \end{vmatrix} = \begin{bmatrix} 1 & Cy & Cz & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{vmatrix} x1 \\ y1 \\ z1 \\ 1 \end{vmatrix} \rightarrow P2 = Mc \cdot P1$$

Matrice d'etirement autour de l'axe Y
$$\begin{vmatrix} x2 \\ y2 \\ z2 \\ 1 \end{vmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ Cx & 1 & Cz & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{vmatrix} x1 \\ y1 \\ z1 \\ 1 \end{vmatrix} \rightarrow P2 = Mc \cdot P1$$

Matrice d'etirementautour de l'axe Z
$$\begin{vmatrix} x2 \\ y2 \\ z2 \\ 1 \end{vmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ Cx & Cy & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{vmatrix} x1 \\ y1 \\ z1 \\ 1 \end{vmatrix} \rightarrow P2 = Mc \cdot P1$$

Composition de matrices

Exemple de composition de transformation:

$$P' = M_r \cdot M_t \cdot P$$

$$P' = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1.5 \\ 10 \\ 2.1 \\ 1 \end{bmatrix}$$

$$P' = \begin{bmatrix} 3.5 \\ -6.1 \\ 11 \\ 1 \end{bmatrix}$$

Les transformations géométriques en Opengl

- void glTranslatef(float x,float y,float z);
- Cette fonction (et sa variante glTranslated() dont les paramètres sont de type 'double') multiplie (à droite) la matrice active par une matrice de translation de vecteur (x,y,z).
- void glRotatef(float theta,float x,float y,float z);
- Cette fonction multiplie la matrice active par une matrice de rotation d'angle thêta autour de l'axe passant par l'origine et porté par le vecteur (x,y,z).
- void glScalef(float hx,float hy,float hz);
- Cette fonction multiplie la matrice active par une matrice d'homothétie dont les facteurs suivant les axes X, Y et Z sont respectivement hx, hy et hz.

Matrice Modelview

- De l'objet à l'image, les coordonnées subissent un certain nombre de transformations géométriques (rotation, translation, perspective). Toutes sont modélisées par des matrices 4x4 opérant sur les coordonnées homogènes des points (x,y,z,w).
- OpenGL gère 3 piles de matrices, sélectionnées par glMatrixMode avec les arguments: GL_ModelView, GL_Projection et GL_Texture.
 - ModelView passe de l'objet au point de vue,
 - Projection effectue la perspective,
 - Texture opère sur les coordonnées des textures.
- Ces transformation sont directement appliquées par OpenGL lors de la visualisation

Matrice Modelview

- La méthode générale pour afficher chaque objet (rendu) est la suivante :
 - préparer la matrice "modelview" chargée de placer correctement l'objet dans la scène (basiquement : une translation, une rotation et une mise à la bonne taille).
 - définir l'objet (ensemble de facettes dont on donne les sommets et les arêtes): Les sommets sont donnés par rapport à l'origine du repère, "modelview" se chargeant de transformer leurs coordonnées et donc du placement dans la scène.
 - l'opération de projection de la scène sur l'écran (par exemple une projection perspective) la matrice « projection ».

Les transformations par objet

- Le chargement et l'initialisation de la matrice de Modelview:
 - glMatrixMode(GL_MODELVIEW);
 - glLoadIdentity();
- La matrice active à un moment donné est la première de la pile.
- glLoadMatrix, glLoadIdentity, glMultMatrix, glScale, glTranslate, glRotate modifient la matrice active.
- glPushMatrix glPopMatrix manipulent la pile.
- glPushMatrix() & glPopMatrix(): pour isoler les transformations appliquées à des objets différents.

Exemple

- Exemple: effectuer une transformation composée d'une translation de vecteur (0,1,0) suivie d'une rotation d'angle 45° autour de l'axe Z.
- En notant Mt la matrice de translation et Mr la matrice de rotation, la matrice résultante est le produit de Mr.Mt.
- L'ordre d'écriture des matrices est inversé par rapport à l'ordre d'application des transformations.
- La portion de code OpenGL pour accomplir cette tâche est la suivante :

```
glLoadIdentity();
glRotatef(45.0,0.0,0.0,1.0);
glTranslatef(0.0,1.0,0.0);
```

• A priori, on ne sait pas ce qui se trouve dans la matrice, et donc avant d'effectuer la moindre opération, il convient de la réinitialiser.

Exemple

- Exemple de composition de transformation:
- L'objectif est de dessiner un carré 2D centré à l'origine, auquel on a appliqué une rotation d'angle 'a' autour de l'axe Z, suivie d'une translation de vecteur (0.5,0.0,0.0) et d'une rotation d'angle 'b' autour de Z.

Exemple

• Le code correspondant:

```
glLoadIdentity();
glRotatef(b,0.0,0.0,1.0);
glTranslatef(0.5,0.0,0.0);
glRotatef(a, 0.0, 0.0, 1.0);
glBegin(GL_POLYGON);
glVertex3f(-0.2,-0.2, 0.0);
glVertex3f( 0.2,-0.2, 0.0);
glVertex3f( 0.2, 0.2, 0.0);
glVertex3f(-0.2, 0.2, 0.0);
glEnd();
```

Exercice

- 1- Modélisation de la scène.
- 2- Tester (pas en même temps) les trois translations de valeur 0.5 respectivement suivant les axes X, Y, Z.
- 3- Tester les trois Rotations d'angle 90° du teapot (pas en même temps) respectivement suivant les axes X, Y, Z.
- 4- Résultat de la transformation

RoT et ToR pour l'objet teapot

5- Ecrire une fonction clavier effectuant une rotation de 5° autour de l'axe Y à chaque frappe de la touche :

'a': rotation directe

'b': rotation indirecte

Les objets 3D en opengl

Objet Sphère glutWireSphere (double r. int ns, Rayon int nc); Nombre sections glutSolidSphere(double r), Nombre coupes int ns, int nc); Cube glutWireCube (double c) ; glutSolidCube(double c); Coté Tore glutWireTorus(double rint, double rext. Rayon intérieur int ns, Rayon extérieur int nr); Nombre côtés glutSolidTorus (double rint, Nombre anneaux double rext, int ns, int nr)); Cône glutWireCone (double r, double h. Rayon int ns, Hauteur int nc); Nombre sections glutSolidCone(double r, Nombre coupes double h, int ns, int nc);

Les objets 3D en opengl

```
Tétraèdre
                        glutWireTetrahedron(void);
                        glutSolidTetrahedron (void);
4 fores
Octoèdre
                        glutWireOctahedron (void);
                        glutSolidOctahedron(void);
8 faces
Icosaèdre
                        glutWireIcosahedron(void);
                        glutSolidIcosahedron (void);
12 faces
Dodécaèdre
                        glutWireDodecahedron(void);
                        glutSolidDodecahedron(void);
20 faces
                        glutWireTeapot (double s) ;
Teapot
                        glutSolidTeapot(double s) ;
```

Rayon