(hall) s (complement

Igor Rončević (dironcev

Part #2: Binary Systems and Codes

Motivation: "Subtraction by Addition"

$$214 - 78 =$$
 $214 - 078 =$

$$214 + 1000 - 1000 - 078 =$$

This is indeed only addition ;-) 214 + 999 + 1 - 078 - 1000 =

$$214 + 999 - 078 + 1 - 1000 =$$
Extremely easy to calculate ;-)

Just the "distance" between

each digit and 9.

9's complement of 078.

$$1136 - 1000 =$$

In the end, we just need to drop the leading 1. No heavy subtraction.

136

Motivation: "Subtraction by Addition"

$$214 - 78$$
 $214 - 078$
 $921 \text{ is 9's complement of 078.}$
 $214 + 921 + 1$
 136

☼ E.g., 1's Complement in Binary System

$$101 - 11 =$$

$$101 - 011 =$$

$$101 + 1000 - 1000 - 011 =$$

$$101 + 111 + 1 - 011 - 1000 =$$

$$101 + 111 - 011 + 1 - 1000 =$$

$$101 + 100 + 1 - 1000 =$$

$$Extremely easy to calculate; -)
Just swap 0s and 1s.$$

1's complement of 011.

$$1010 - 1000 =$$

☼ E.g., 1's Complement in Binary System

$$101 - 11$$
 $101 - 011$
 $100 \text{ is 1's complement of 011.}$
 $101 + 100 + 1$
 1010

☼ (r-1)'s or Diminished Radix Complement

$$N = (d_n \dots d_1 d_0)_r$$

Number N represented as a numeral of n+1 digits in the positional system with base r. E.g., $(123)_{10}$.

$$(r^{n+1}-1) - N$$

(r-1)'s complement or diminished radix complement of the number N represented as a numeral in the positional system with base r. E.g., $(10^3-1)_{10}$ - $(123)_{10}$ = $(876)_{10}$.

$$d_{max} = v^{-1}(r-1)$$

Digit with the maximum value in the positional system with base r. E.g., 9.

$$(r^{n+1}-1) = (d_{max_n} \dots d_{max_1} d_{max_0})_r$$

 $(r^{n+1}-1)$ in the positional system with base r will always contain exactly n+1 digits of the maximum value. E.g., $(999)_{10}$.

☼ E.g., (r-1)'s Complement of Numerals

$N = (d_n \dots d_1 d_0)_r$	d_{max}	$(r^{n+1}-1)$	$(r^{n+1}-1)-N$
$(901)_{10}$	9	$(999)_{10}$	$(098)_{10}$
$(023)_{10}$	9	$(999)_{10}$	(976) ₁₀
$(F2A)_{16}$	F	$(FFF)_{16}$	$(0D5)_{16}$
$(0F3)_{10}$	F	$(FFF)_{16}$	$(F0C)_{16}$
$(101)_2$	1	$(111)_2$	$(010)_2$
$(010)_2$	1	$(111)_2$	$(101)_2$