Package 'FAMEFMR'

April 16, 2021

Title Functions used in the DELWP FAME fire analysis process

Version 0.2.4

Description The package contains all the functions necessary to run the DELWP FAME process of analysis of effects of a given fire history on environmental resilience metrics. These include Tolerable fire Inteval (TFI) status, area burned below TFI (BBTFI) and changes in relative abundance (RA) of fauna species. It allows calcuation of all inter fire intervals and numbers of times an area has been burned by a given sequence of fires supplied as a shapefile. The FAME analysis can be run using stadard R scripts, or alternatively via a shiny web GUI. The package does not contain the required input files (lookup tables, rasters of species HDMs etc) as these are too large to be loaded to github and are availble separately from an aws repository. The package is best used with the associated scripts and shiny app that can be cloned or downlaoded from https://github.com/nevilamos/FAMEshiny.

```
License GPL-2
Encoding UTF-8
LazyData true
Roxygen list(markdown = TRUE)
RoxygenNote 7.1.1
Imports doParallel,
      dplyr,
      fasterize,
      foreign,
      foreach,
      iterators,
      magrittr,
      Matrix.utils,
      mgcv,
      qs,
      raster,
      Rfast,
      rlang,
      sf,
      tabularaster,
      tibble,
      tictoc,
      tidyr,
      tidyselect
```

2 add_xystring

Depends data.table

R topics documented:

add_:	xystring	Adds constant dentify tions.	Sin	nple	Fea	ture	sp	oly	gon	ob	jec	t. '	This	St	rin	g a	cts	as	a i	key	to
Index																					20
	unlistPivot_wider .																				19
	$remove Empty Dirs \ . \\$																				
	notAllIn																				18
	make_Spp_LU_list																				18
	makeHDMValsfrom	Rasters																			17
	makeHDMVals																				17
	makeGS_Summary																				16
	makeGS_LU	_																			
	makeAbundDataLor	ıg																			15
	LBY_f																				
	Join_Names																				
	inputRasters																				
	get_Spp_No																				
	geoMean																				
	fhProcess																				
	cropNAborder																				
	cellsToHectares																				
	calc_Spp_EFG_EM calc_TFI_2																				
	calc_SpeciesRA calc_Spp_EFG_LM																				
	calc_G																				
	calc_DraftSpList .																				
	calcU_All_Combs.																				
	calcDeltaAbund																				
	calcBBTFI_2																				
	add_xystring																				

Description

Adds concatenated String of X and Y coordinates of centroids of polygons to Simple Features polygon object. This String acts as a key to identify spatially identical polygons for use in tidyverse pivot functions.

Usage

```
add_xystring(myDF)
```

Arguments

myDF sf polygon object

calcBBTFI_2 3

Value

character vector of XYStrings

calcBBTFI_2

Calculate area BBTFI and BBTFI rasters

Description

Calculate area BBTFI and BBTFI rasters

Usage

```
calcBBTFI_2(
  myFHAnalysis = FHAnalysis,
  myAllCombs = allCombs,
  makeBBTFIrasters = makeBBTFIrasters,
  myResultsDir = NULL
)
```

Arguments

```
myFHAnalysis list of Fhire history analysis components created by function fhProcess()

myAllCombs list made by function calc_U_AllCombs

makeBBTFIrasters logical whether or not to export rasters for BBTFI to disk

myResultsDir path of directory where results will be written usually generated by FAME script
```

Details

Calculate summary area burned below TFI BBTFI for each SEASON in analysis (accommodating Hi and Lo fire intensity of first burn to determine TFI) and cumulative area BBTFI. Also optionally outputs rasters mapping areas BBTFI

Value

list containing:

- the date sequence matrix for each cell of the raster
- the EFG TFI Lookup for each cell of the raster
- the raster resolution used.
- Optionally outputs rasters of BBTFI to disk if makeBBTFIrasters==TRUE.

4 calcU_All_Combs

calcDeltaAbund Summary of changes in relative abundance	
---	--

Description

Summary of changes in relative abundance

Usage

```
calcDeltaAbund(SpYearSumm = SpYearSummWide, myFHAnalysis, myBaseline)
```

Arguments

SpYearSumm data.frame output by function calc_SpeciesRA()

myFHAnalysis list containing all the fire history spatial attributes created by function fhProcess

myBaseline integer single SEASON or sequence of SEASONS used to create the baseline relative species abundance for comparison of change #'

Details

Calculates the change in relative abundance compared to a baseline SEASON or mean of SEASONS

Value

data frame wide format summary change in relative abundance of species by SEASON relative to a Baseline

calcU_All_Combs

Calculate all combinations of input raster values

Description

Calculate all combinations of input raster values

Usage

```
calcU_All_Combs(
  myFHAnalysis = FHAnalysis,
  myCropRasters = cropRasters,
  myRasterRes = RasterRes
)
```

Arguments

myRasterRes list containing all the fire history spatial attributes created by function fhProcess()

myCropRasters list of rasters and indices and cell values created by function cropNAborder()

myRasterRes Resolution of Rasters to be used in the analysis set in settings file in R-script version needs to be set in shiny version

calc_DraftSpList 5

Value

list of:

· data.table giving all combinations of cell values from the input rasters for the FAME analysis

• integer index mapping unique combinations (above) to raster cells

calc_DraftSpList

Calculate a draft species list for defined polygon

Description

Calculate a draft species list for defined polygon

Usage

```
calc_DraftSpList(
   REG_NO,
   RasterRes = 225,
   PUBLIC_LAND_ONLY,
   myPoly = clipPoly,
   generalRasterDir = "./InputGeneralRasters",
   splist = "./ReferenceTables/DraftTaxonListStatewidev2.csv",
   myHDMVals = "./HDMS/HDMVals225.qs"
)
```

Arguments

REG_NO integer DELWP fire region number 1:6,99 for Statewide analysis, or 7 for ad-

hoc boundary polygon default =7 (see look up table REG_LUT for values)

RasterRes integer 225 - raster resolution is always 225 for this function for speed

PUBLIC_LAND_ONLY

logical whether to restrict analysis to public land only or the whole polygon

myPoly default clipPoly sf polygon data frame of LF_REGIONs (default) or ad hoc

polygon - used in conjunction with REG_NO

generalRasterDir

relative path to directory containing rasters of FIRE_REG, and PUBLIC LAND

(PLM_GEN)

splist path to default species attribute table default is

myHDMVals matrix of cell values for Habitat Distribution Model rasters always 225m for

speed

Details

Calculate the proportion of cells for the HDM in the region for each species is intended only as a starting point and requires manual quality control to produce a useful species list for the area by editing the resulting .csv file

6 calc_SpeciesRA

Value

data.frame created from splist with columns appended for:

- cellsInState count of the number of cells in the state within the Binary HDM for the species
- cellsInArea count of the number of cells within myPoly and within the Binary HDM for the species
- areaProp proportion of binary HDM for the state within myPoly

calc_G

Calculate Geometric means of columns

Description

Calculate Geometric means of columns

Usage

```
calc_G(
  x = "raDeltaAbund",
  y = c("TAXON_ID", "COMMON_NAME", "SCIENTIFIC_NAME", "DIVNAME", "EPBC_ACT_STATUS",
    "VIC_ADVISORY_STATUS", "CombThreshold", "Baseline", "NoLessthanThreshhold",
    "LastLessThanThreshold")
)
```

Arguments

x data.frame containing columns with numeric values

y vector of names of columns to exclude from calculation

Details

Calculates geometric means of numeric columns of dataframe

Value

vector numeric or NA if not all values in column are > 0

calc_SpeciesRA

Species' relative abundance calculation and summary

Description

Species' relative abundance calculation and summary

calc_SpeciesRA 7

Usage

```
calc_SpeciesRA(
  myFHAnalysis,
  myAllCombs = allCombs,
  myHDMSpp_NO = HDMSpp_NO,
  myWriteSpRasters = FALSE,
  myLU_List = LU_List,
  myResultsDir = ResultsDir,
  myHDMVals = HDMVals,
  myTaxonList = TaxonList,
  writeYears = NULL,
  myWriteSp = writeSp,
  myIDX = cropRasters$IDX
)
```

Arguments

myFHAna	lysis	list containing all the fire history spatial attributes created by function fhProcess
myAllCo	mbs	all combinations of raster values object produced by function calc_U_AllCombs
myHDMSp	p_N0	vector of TAXON_IDs for species to be included in output
myWrite	SpRaste	rs
		logical: whether to also write species abundance rasters to disk
myLU_Li	st	list of species abundance lookup arrays created by function make_Spp_LU_list()
myResul	tsDir	path of directory where results will be written usually generated by FAME script
myHDMVa	ls	list of sparse matrices of cell values for Habitat Distribution Model rasters for (at least) all TAXON_ID in myHDMSpp_NO generally provided in settings file and read by FAME script
myTaxon	List	data.frame of species attributes (read from default or user provided .csv)
writeYe	ars	vector for SEASONS for which rasters are to be written otherwise if write- SpRasters == TRUE, if writeYears == NULL then all SEASONS are written out
myWrite	Sp	vector of TAXON_IDs provided if only subset of species rasters are required as output.
myIDX		index of cells to extract values for from cropRasters object

Details

Calculates the relative abundance of species for each raster cell in analysis and summaries these as summed abundance each season. Optionally it also write relative abundance rasters for species to disk

Value

list of two data frames:

- SpYearSummWide summary of relative abundance of species by pivoted wide by SEASONS
- SpYearSummLong Long Format summary of relative abundance of species by SEASONS

calc_Spp_EFG_LMU

Calculate the species in each EFG in given area for GSO calculations.

Description

works by using the indices of the standard dimensions raster that are in the supplied shapefile region boundary (via function cropNAborder)

Usage

```
calc_Spp_EFG_LMU(
 REG_NO,
 RasterRes = 225,
 PUBLIC_LAND_ONLY,
 myPoly = clipPoly,
  generalRasterDir = "./InputGeneralRasters",
  splist = "./ReferenceTables/DraftTaxonListStatewidev2.csv",
 myHDMVals = "./HDMS/HDMVals225.qs",
 myResultsDir = ResultsDir,
  TFI_LUT = TFI_LUT
)
```

Arguments

integer DELWP fire region number 1:6,99 for Statewide analysis, or 7 for ad REG_NO

hoc boundary polygon default =7 (see look up table REG_LUT for values)

integer 225 - raster resolution is always 225 for this function for speed RasterRes

PUBLIC_LAND_ONLY

logical whether to restrict analysis to public land only or the whole polygon

default clipPoly sf polygon data frame of LF_REGIONs (default) or ad hoc myPoly

polygon - used in conjunction with REG_NO

generalRasterDir

splist

relative path to directory containing rasters of FIRE_REG, and PUBLIC LAND

path to default species attribute table default is "./ReferenceTables/DraftTaxonListStatewidev2.csv"

(PLM_GEN)

myHDMVals sparse matrix of cell values for Habitat Distribution Model rasters at 225m pixel

size #' saved as a qs file on disk

path of directory where output will be saved myResultsDir data.frame lookup table for EFG loaded in setup TFI_LUT

Value

list of two data frames LMU_EFG_AREA and Spp_EFG_LMU used as inputs to aspatial GSO calcautaions

calc_TFI_2

_		_
6016	TET	2
carc	11 T	

Main Tolerable fire interval (TFI) status calculation

Description

Main Tolerable fire interval (TFI) status calculation

Usage

```
calc_TFI_2(
  myFHAnalysis = FHAnalysis,
  myAllCombs = allCombs,
  myTFI_LUT = TFI_LUT,
  OutputRasters = makeTFIRasters,
  myResultsDir = ResultsDir
)
```

Arguments

myFHAnalysis list containing all the fire history spatial attributes created by function fhPro-

cess()

myAllCombs list made by function calc_U_AllCombs

myTFI_LUT data.frame Lookup table from EFG for "MIN_LO_TFI", "MIN_HI_TFI", "MAX_TFI", "EFG_NAME"

read from settings

OutputRasters logical whether to output rasters of TFI status for each year

myResultsDir path of directory where results will be written usually generated by FAME script

Details

Calculates where each cell is currently at below MinTFI or above MAX_TFI returns the per cell and long table summarised by multiple admin units and evc

Value

data.frame with area in each TFI status for each combination in myAllCombs

cellsToHectares	Calculates multiplier to convert from raster cell count to area in
	hectares

Description

Calculates multiplier to convert from raster cell count to area in hectares

Usage

```
cellsToHectares(RasterMetres = RasterRes)
```

10 cropNAborder

Arguments

RasterMetres numeric Value cell resolution in Metres (usually from RasterRes in settings file).

Value

numeric Multiplier to convert cell count to area in hectares

cropNAborder

crop border of NA cells from rasters and get cell indices for remaning cells function to get the minimum bounding box of the cells with non NA values in a raster and save them to crop other rasters to same extent. also creates some rasters cropped to correct extent for instance for region and EFG also gets indices of cells in raster of same extent as crop to the shape provided

Description

crop border of NA cells from rasters and get cell indices for remaning cells function to get the minimum bounding box of the cells with non NA values in a raster and save them to crop other rasters to same extent. also creates some rasters cropped to correct extent for instance for region and EFG also gets indices of cells in raster of same extent as crop to the shape provided

Usage

```
cropNAborder(
  REG_NO = 7,
  myRasterRes = RasterRes,
  PUBLIC_LAND_ONLY,
  myPoly = clipPoly,
  generalRasterDir = "./InputGeneralRasters")
```

Arguments

REG_NO integer DELWP fire region number 1:6 ,99 for Statewide analysis, or 7 for ad

hoc boundary polygon default =7 (see look up table REG_LUT for values)

myRasterRes numeric raster resolution of the analysis in metres (usually set in settings file or

shiny app)

PUBLIC_LAND_ONLY

Logical TRUE/FALSE

myPoly default clipPoly sf polygon data frame of LF_REGIONs (default) or ad hoc

polygon - used in conjunction with REG_NO

generalRasterDir

relative path to directory containing rasters of DELWP FIRE_REG, DELWP

REGION, EFG, PUBLIC LAND (PLM_GEN)

fhProcess 11

Value

A list containing:

• Raster raster cropped of all border rows and columns that are all NA,

- Extent extent of the raster
- IDX integer vector cell numbers of cells in the cropped raster
- clipIDX integer vector cell numbers only for cells with the input polygon
- EFG integer vector EFG values for cells within clipped area
- RGN integer vector Fire Region numbers for cells within clipped area
- DELWP integer vector DELWP Region numbers for cells within clipped area
- PLM logical for cells within clipped area

fhProcess

Main Fire History Fire Sequence analysis function

Description

Main Fire History Fire Sequence analysis function

Usage

```
fhProcess(
  rawFH = "path of the rawFH file to use - a shapefile",
  start.SEASON = NULL,
  end.SEASON = NULL,
  OtherAndUnknown,
  validFIRETYPE
)
```

Arguments

rawFH path to the input fire history shapefile usually provided in settings

start. SEASON integer First SEASON for which output is wanted (four digit year as integer), if

NUll then second season in in history is used (cannot use first season because it

has no interval, this may still fail if there is no overlap)

end. SEASON integer Last SEASON required, if NULL then largest value in fire history sce-

nario used

OtherAndUnknown

integer Value to use for cases where fire type is: "OTHER" or "UNKNOWN" = NA, "BURN" = 1, "BUSHFIRE" = 2. NA = Fire excluded from analysis.

usually set in settings file

validFIRETYPE character vector of valid FIRETYPE values for checking the input file, provided

in settings file.

12 geoMean

Details

The function takes a shapefile of Fire history contain polygons with two fields FIRETYPE and SEASON Where polygons of different FIRETYPE or SEASON overlap the function constructs unique non-overlapping polygon of their intersections (and non intersecting areas) and attributes each polygon with sequential fire SEASON (SEASO1, SEASO2 ...) and corresponding FIRETYPE (TYPE01,TYPE02 ...)

It then calculates all the intervals between sequential fires, and Time Since fire (TSF) and Last Fire Type (LFT) and Last burnt year (LBY) for each SEASON as defined in the input arguments, these values are append to the output sf polygon dataframe.

Value

A list containing:

- OutDF sf polygons dataframe containing all the fire history attributes
- TimeSpan integer vector sequence of SEASONS to in the analysis output
- YSFNames names of TSF years in output, needed by downstream functions
- · LBYNames names of LBY years in output, needed by downstream functions
- · LFTNames names of LBY years in output, needed by downstream functions

geoMean

Calculate Geometric mean

Description

Calculate Geometric mean

Usage

geoMean(x)

Arguments

Х

numeric vector

Details

Calculates geometric mean of a vector of positive numeric values

Value

numeric or NA if values are not all > 0

get_Spp_No

get_Spp_No	Extract VBA (Victorian Biodiversity Atlas) species ID numbers from
	file paths extracts four or five digit species numbers (Victorian Biodi-
	versity Atlas TAXON_IDs) from vector of paths or file names contain-
	ing files of e.g. species HDMS containing the 5 digit TAXON_ID in
	their name

Description

Extract VBA (Victorian Biodiversity Atlas) species ID numbers from file paths extracts four or five digit species numbers (Victorian Biodiversity Atlas TAXON_IDs) from vector of paths or file names containing files of e.g. species HDMS containing the 5 digit TAXON_ID in their name

Usage

```
get_Spp_No(x = "Vector of Sp file Pathnames")
```

Arguments

Х

Vector of species file Pathnames containing VBA numbers

Value

numeric vector of 4or 5 digits (ususally TAXON_ID)

inputRasters

Set correct input general rasters

Description

Set correct input general rasters

Usage

```
inputRasters(RasterRes)
```

Arguments

RasterRes

numeric raster resolution of the analysis in metres (usually set in settings file or shiny app)

Value

list of input raster names correct for RasterRes or error if RasterRes is not 75 or 225

 $LBY_{-}f$

Description

Joins one or more lookup tables to table containing ID values Function joins Lookup tables (LUTS) to dataframe containing ID_NO: Name combinations

Usage

```
Join_Names(myDF, LUTS = c("TFI_LUT", "FIREFMZ_LUT", "REG_LUT", "DELWP_LUT"))
```

Arguments

myDF dataframe or similar containing indices for the LUTS listed, to which the LUTS

will be dplyr::left_joined

LUTS vector of names of LUTS in memory defaults =c("TFI_LUT","FIREFMZ_LUT","REG_LUT","DELY

Value

a data.frame with the LUTS joined to it

LBY_f

Calculate last burned year matrix (LBY)

Description

Calculate last burned year matrix (LBY)

Usage

```
LBY_f(M, y)
```

Arguments

M numeric matrix of fire sequences sequence in rows, values are SEASON

y numeric SEASON

Details

Function to calculate last burnt year (LBY) from matrix of rows of fire season iterating by year (y) used in calc_TFI_2

Value

matrix of last burned year row for each unique fire history column for each SEASON

makeAbundDataLong 15

makeAbundDataLong

Makes Long format Fauna abundance table

Description

Makes Long format Fauna abundance table

Usage

```
makeAbundDataLong(
   AbundDataByGSFile = "./ReferenceTables/OrdinalExpertLong.csv",
   myEFG_TSF_4GS = EFG_TSF_4GS
)
```

Arguments

AbundDataByGSFile

.csv input file containing fields "EFG_NO", "GS4_NO", "FireType" , "Abund", "TAXON_ID" with Abund values for' both FireTypes for each growth stage "GS4_NO"

myEFG_TSF_4GS

table of each combination of "EFG_NO", "GS4_NO", and "YSF" generally read in at beginning of FAME in settings file

Details

Supporting function to Make long format table for fauna abundance scores by "TAXON_ID" ,Fire-Type EFG and Growth Stage from input wide format table currently deals only with FireType of "High" and "Low" which are converted to 2 and 1 respectively

Value

long format table with one row for each combination of "EFG_NO", "GS4_NO", "FireType" , "Abund", "TAXON_ID" and "YSF" sorted by TAXON_ID

makeGS_LU

Make long format Growth Stage Lookup matrix

Description

Make long format Growth Stage Lookup matrix

Usage

```
makeGS_LU(myEFG_TSF_4GS = EFG_TSF_4GS)
```

Arguments

myEFG_TSF_4GS data.fame of growth stages for each EFG with start and end years

16 makeGS_Summary

Details

expands a growth stage lookup table (provided in settings file) from four growth stages (1:4) per EFG with their years since fire spans as min(YSF) and max(YSF) to an array with YSF as row, EFG_NO as column and growth stage (1:4) as value. NOTE: YSF has 1 added to both the Lookup and the input to deal with YSF==0 which cannot be used in the array indexing

Value

matrix rows YSF, columns EFG_NO, values GS number (1:4)

makeGS_Summary

Summarise area by growth stage.

Description

Summarise area by growth stage.

Usage

```
makeGS_Summary(myFHAnalysis = FHAnalysis, myAllCombs = allCombs)
```

Arguments

myFHAnalysis list containing all the fire history spatial attributes created by function fhProcess myAllCombs list made by function calc_U_AllCombs

Details

Generates wide and long format summary of area for each EFG and season grouped by EFG, EFG_NAME, PLM ,FIRE_FMZ_NAME, FIRE_REGION_NAME, DELWP_REGION.

Value

list of two data.frames grouped by EFG, EFG_NAME, PLM ,FIRE_FMZ_NAME, FIRE_REGION_NAME, DELWP_REGION

- GS_Summary_wide Wide format table summarises area by Growth Stage and SEASON
- GS_Summary_long Long format table summarises area by Growth Stage and SEASON

makeHDMVals 17

makeHDMVals	Extract HDM values for relevant cells and resolution for use in RA
	calculations

Description

Extract HDM values for relevant cells and resolution for use in RA calculations

Usage

```
makeHDMVals(
  myHDMSpp_NO = HDMSpp_NO,
  myCropRasters = cropRasters,
  RasterRes = myFHAnalysis$RasterRes
)
```

Arguments

myHDMSpp_NO vector of TAXON_IDs for species to be included in output
myCropRasters list of rasters and indices and cell values created by function cropNAborder()

RasterRes numeric raster resolution of the analysis in metres (225 or 75 usually set in settings file or shiny app)

 ${\it makeHDMValsfromRasters}$

Function makes a matrix of HDM values(1,NA) constrained to those cells that are indexed in the cropped area

Description

Function makes a matrix of HDM values(1,NA) constrained to those cells that are indexed in the cropped area

Usage

```
makeHDMValsfromRasters(myHDMSpp_NO = HDMSpp_NO, myCropRasters = cropRasters)
```

Arguments

```
myHDMSpp_NO vector of TAXON_IDs for species to be included in output
myCropRasters list of rasters and indices and cell values created by function cropNAborder()
```

18 notAlIIn

make_Spp_LU_list

Generate list of species abundance lookup arrays

Description

Generate list of species abundance lookup arrays

Usage

```
make_Spp_LU_list(myHDMSpp_NO = HDMSpp_NO, myAbundDataLong = ExpertDataLong)
```

Arguments

```
myHDMSpp_NO vector of VBA IDs for species to be included in analysis myAbundDataLong
```

long format input lookup table of species abundance x YSF xEFG_NO x FIRE-TYPE_NO

Details

function creates a list of Lookup arrays for each taxon (TAXON_ID) for YSF x EFGNO x Fire-TypeNo these are then used in spatial calculation of species abundance functions

Value

list of 3D arrays named by TAXON_ID of relative abundance value for YSF x EFG x FIRE-TYPE_NO

 ${\tt notAllIn}$

Checks whether all values in one vector are in another vector

Description

Checks whether all values in one vector are in another vector

Usage

```
notAllIn(x, v = V)
```

Arguments

x Vector of values to check if all are in second vector

v Second vector of values that may or may not contain all values in x

Value

logical

removeEmptyDirs 19

removeEmptyDirs

remove empty directories from path

Description

remove empty directories from path

Usage

```
removeEmptyDirs(rootDir = "./Results")
```

Arguments

rootDir

relative path to remove all empty subdirectories from. Default value "./Results"

Details

Removes all empty subdirectories from the nominated path does not remove the nominated path directory even if empty

unlistPivot_wider

Fix Pivot_wider list of lists columns

Description

Fix Pivot_wider list of lists columns

Usage

```
unlistPivot_wider(df)
```

Arguments

df

wide format data frame with fields that are lists of lists

Details

Supporting function to deal with pivot_wider returning list of lists in some cases

Value

wide format data frame without fields that are lists of lists

Index

```
add_xystring, 2
calc_DraftSpList, 5
calc_G, 6
calc_SpeciesRA, 6
calc_Spp_EFG_LMU, 8
calc_TFI_2, 9
calcBBTFI_2, 3
calcDeltaAbund, 4
calcU_All_Combs, 4
cellsToHectares, 9
cropNAborder, 10
fhProcess, 11
geoMean, 12
get_Spp_No, 13
{\tt inputRasters}, {\tt 13}
Join_Names, 14
LBY_f, 14
{\tt make\_Spp\_LU\_list}, \textcolor{red}{18}
makeAbundDataLong, 15
makeGS_LU, 15
makeGS_Summary, 16
makeHDMVals, 17
{\tt makeHDMValsfromRasters}, 17
notAllIn, 18
{\tt removeEmptyDirs}, 19
unlistPivot_wider, 19
```