

División de Ciencias de la Ingeniería Centro Universitario de Occidente Quetzaltenango

I. Identificación General del Curso

Nombre del curso	Concreto Armado 1
Sección	A
Prerequisito	Resistencia De Materiales 2 Y Materiales De Construcción
Carrera	Ingeniería Civil
Responsable	Javiera Yolanda Maldonado De León
Código	935
Horas de Docencia Directa /Indirecta	48 horas presenciales y 96 horas de trabajo
Créditos	5. (48 horas de teoría, 64 horas de práctica , 32 de investigación)
Ciclo	Escuela de Vacaciones Diciembre 2023
Horario	Aula 5 Modulo G, Lunes a viernes de 16:00 a 18:00

II. Descripción del Curso

En este curso se estudiaran los conceptos y principios básicos de la teoría y comportamiento del concreto armado, dentro del mismo se explicaran los materiales constituyentes del concreto reforzado, el diseño de vigas simplemente y doblemente reforzadas a flexión, corte, torsión y deflexión, tomando en cuenta el modo de falla producido a partir de la cuantía de acero y los criterios sismoresistentes a partir del código ACI. Se estudiaran y diseñaran vigas "T", losas en una y dos direcciones a partir de métodos establecidos por el código ACI y se mostrara y aprenderá la forma de detallar el armadura de una viga y losa con los requisitos dados por el código.

III.- Competencias

1.- Competencias Genéricas

CG.1: Capacidad de aplicar los conocimientos en la práctica

CG.2: Capacidad para identificar, plantear y resolver problemas

CG3: Compromiso con la preservación del medio ambiente

2.- Competencias Específicas

CE 1: Aprende los materiales constituyentes del concreto reforzado para su buena aplicación en obra

Descripción: El estudiante podrá conocer los materiales que dispone para la construcción de estructuras de concreto reforzado para que el material sea de calidad y cumpla con las normativas vigente

CE 2: Diseña vigas de concreto reforzado a flexión, corte, torsión y deflexión para soportar esfuerzos provocados con las diferentes cargas que presenta una edificación

Descripción: el estudiante tendrá la capacidad de análisis y diseño de vigas, teniendo en claro la teoría del concreto reforzado, todo esto para diseñar obras seguras y optimizadas que soporten las solicitaciones de cargas.

CE 3: Analiza losas macizas en una y dos direcciones, para su posterior calculo a partir de la normativa vigente Descripción: el estudiante podrá analizar losas macizas determinando momentos para su posterior diseño.

IV. Contenidos

- 1. Materiales constituyentes del concreto reforzado
- a) Cemento
- b) Agregados

División de Ciencias de la Ingeniería Centro Universitario de Occidente Quetzaltenango

- c) Agua y aditivos
- d) Fibras y otros
- e) Acero de refuerzo
- 2. Teoría del concreto reforzado
- a) Hipótesis del concreto reforzado
- b) Consideraciones generales para el diseño de estructuras de concreto.
- c) Método de diseño por esfuerzos de trabajo.
- d) Método de diseño por resistencia.
- 3. Elementos sometidos a flexión
- a) Pre-dimensionamiento de vigas.
- b) Flexión simple
- c) Disposiciones de armado del ACI 318-19
- d) Cuantía balanceada, mínima y máxima de acero.
- e) Requisitos sísmicos del refuerzo longitudinal de la cama superior e inferior.
- 4. Detalles de armado
- a) Longitud de desarrollo
- b) Traslapes de barras, adherencia y anclajes
- c) Ganchos, dobleces, empalmes
- 5. Diseño de vigas T
- a) Requisitos de código ACI
- b) Refuerzo positivo y negativo
- 6. Elementos doblemente reforzados
- a) Refuerzo a compresión y tensión.
- b) Disposiciones de límites de seguridad código ACI.
- 7. Diseño de elementos sometidos a corte flexionante
- a) Teoría de la analogía de la armadura
- b) Diseño de estribos
- c) Requisitos ACI
- d) Diseño sismo-resistente a corte del ACI (Por desempeño)
- 8. Diseño de elementos sometidos a torsión
- a) Teoría
- b) Diseño de elementos
- c) Corte y torsión combinada
- 9. Control de deflexiones en concreto
- a) Sección transformada
- b) Calculo de deflexiones instantáneas
- c) Calculo de deflexiones a largo plazo
- d) Requisitos Aci
- Diseño de losas macizas de concreto
- a) Pre-dimensionamiento losas en uno y dos sentidos
- b) Losas reforzadas en un sentido, análisis por coeficientes
- c) Losas reforzadas en dos sentidos método 3
- d) Losas reforzadas en dos sentidos método de diseño directo
- e) Losas reforzadas en dos sentidos método de pórtico equivalente

División de Ciencias de la Ingeniería Centro Universitario de Occidente Quetzaltenango

- f) Método de los elementos finitos
- g) Detalles de armado

V. Requisito de asistencia

80% de asistencia a clases presenciales

VI. Recursos para el Aprendizaje

Tecnológicos

- · Libros digitales
- Equipo multimedia
- Computadora
- Página web
- Tutoriales
- Aula virtual
- Redes sociales

Bibliografía

- 1. ACI. (2019). Códigos de construcción en concreto ACI 318-19. American Concrete Institute. Estados Unidos.
- 2. AGIES. (2018). Normas de seguridad estructural NSE. Guatemala: AGIES.
- 3. ACI. (2014). Códigos de construcción en concreto ACI 318-14. American Concrete Institute. Estados Unidos.
- 4. ASTM. (2010). Normas para materiales. American Society for Testing and Materials. Estados Unidos.
- 5. McCormac, Jack. (2018). Diseño de concreto reforzado, Alfaomega, Estados Unidos.
- 6. NTG. (2010). Normas para materiales. Comité Guatemalteco de Normas. Guatemala.
- 7. Nilson, Arthur H. (2001). Diseño de Estructuras de Concreto, McGraw-Hill, Estados Unidos.
- 8. Park & Paulay. (1988). Estructuras de Concreto Reforzado, Editorial Limusa, Estados Unidos.
- 9. Parker, Harry., Ambrose, James. (2008). Diseño simplificado de concreto reforzado, Limusa, Estados Unidos.

Espacios

Aula 5 Modulo G

Online

Moodle

Contacto	Javiera Yolanda Maldonado de León
Versión	Diciembre 2023

División de Ciencias de la Ingeniería Centro Universitario de Occidente Quetzaltenango

VII. Cronograma de actividades docente

Fecha de realizacion de Actividad	Contenido	Estrategias de enseñanza (Actividades del docente)	Estrategias de aprendizaje (Actividades del estudiante)	Estrategias evaluativas y resultados de aprendizaje	Ponderación / acreditación
01/12/2023 al 08/12/2023	1.Materiales constituyentes del concreto reforzado a)Cemento b)Agregados c)Agua y aditivos d)Fibras y otros e)Acero de refuerzo 2.Teoría del concreto reforzado a)Hipótesis del concreto reforzado b)Consideraciones generales para el diseño de estructuras de concreto. c)Método de diseño por esfuerzos de trabajo. d)Método de diseño por resistencia.	Clase magistral Presentación de ejemplos	Lectura del código ACI Revisión de documento 1 del curso	Exámenes parciales Investigaciones	10%

Fecha de realizacion de Actividad	Contenido	Estrategias de enseñanza (Actividades del docente)	Estrategias de aprendizaje (Actividades del estudiante)	Estrategias evaluativas y resultados de aprendizaje	Ponderación / acreditación
11/12/2023 al 15/12/2023	3.Elementos sometidos a flexión a)Pre-dimensionamiento de vigas. b)Flexión simple c)Disposiciones de armado del ACI 318-19 d)Cuantía balanceada, mínima y máxima de acero. e)Requisitos sísmicos del	Clase magistral Presentación de ejemplos Elaboración de hojas de calculo	Lectura del código ACI Revisión de documento 2 y 3 del curso/Presentaciones método de diseño LRFD, Diseño de viga T doblemente reforzada	Exámenes parciales Hojas de calculo	40%

División de Ciencias de la Ingeniería Centro Universitario de Occidente Quetzaltenango

refuerzo longitudinal de la cama		
superior e inferior.		
4.Detalles de armado		
a)Longitud de desarrollo		
b)Traslapes de barras,		
adherencia y anclajes		
c)Ganchos, dobleces,		
empalmes		
5.Diseño de vigas T		
a)Requisitos de código ACI		
b)Refuerzo positivo y negativo		
6.Elementos doblemente		
reforzados		
a)Refuerzo a compresión y		
tensión.		
b)Disposiciones de límites de		
seguridad código ACI.		

Fecha de realizacion de Actividad	Contenido	Estrategias de enseñanza (Actividades del docente)	Estrategias de aprendizaje (Actividades del estudiante)	Estrategias evaluativas y resultados de aprendizaje	Ponderación / acreditación
18/12/2023 al 22/12/2023	7.Diseño de elementos sometidos a corte flexionante a)Teoría de la analogía de la armadura b)Diseño de estribos c)Requisitos ACI d)Diseño sismo-resistente a corte del ACI (Por desempeño) 8.Diseño de elementos sometidos a torsión a)Teoría b)Diseño de elementos c)Corte y torsión combinada 9.Control de deflexiones en concreto a)Sección transformada	Clase magistral Presentación de ejemplos Elaboración de hojas de calculo	Lectura del código ACI Lectura de presentaciones	Exámenes parciales Hojas de calculo	30%

División de Ciencias de la Ingeniería Centro Universitario de Occidente Quetzaltenango

b)Calculo de deflexiones instantáneas c)Calculo de deflexiones a largo plazo		
d)Requisitos ACI		

Fecha de realizacion de Actividad	Contenido	Estrategias de enseñanza (Actividades del docente)	Estrategias de aprendizaje (Actividades del estudiante)	Estrategias evaluativas y resultados de aprendizaje	Ponderación / acreditación
25/12/2023 al 29/12/2023	10.Diseño de losas macizas de concreto a)Pre-dimensionamiento losas en uno y dos sentidos b)Losas reforzadas en un sentido, análisis por coeficientes c)Losas reforzadas en dos sentidos método 3 d)Losas reforzadas en dos sentidos método de diseño directo e)Losas reforzadas en dos sentidos método de pórtico equivalente f)Método de los elementos finitos g)Detalles de armado	Clase magistral Presentación de ejemplos Elaboración de hojas de calculo	Lectura del código ACI Lectura de presentaciones	Exámenes parciales Hojas de calculo	20%

VIII. Cronograma de actividades de Investigación y Extensión

Fecha de realización	Tema	Eje a utilizar	Descripción de las actividades	Resultados Esperados
•				