Logic Gates

			D 1 T •
Type	Gate	Truth Table	Boolean Logic
not		$\begin{array}{c c} \text{in} & \text{out} \\ \hline 0 & 1 \\ 1 & 0 \end{array}$	$Y = \overline{A}$
and		A B out 0 0 0 0 1 0 1 0 0 1 1 1	Y = AB
nand		A B out 0 0 1 0 1 1 1 0 1 1 1 0	$Y = \overline{AB}$
or		A B out 0 0 0 0 1 1 1 0 1 1 1 1	Y = A + B
nor	→	A B out 0 0 1 0 1 0 1 0 0 1 1 0 1 1 0	$Y = \overline{A + B}$
xor	>	A B out 0 0 0 0 1 1 1 0 1 1 1 0	$Y = A \oplus B$
xnor		A B out 0 0 1 0 1 0 1 0 0 1 1 1 1	$Y = \overline{A \oplus B}$

Logic Identities

- 1. A + B = B + A
- 2. AB = BA
- 3. A + (B + C) = (A + B) + C
- 4. A(BC) = (AB)C
- $5. \ A(B+C) = AB + AC$
- 6. (A+B)(C+D) = AC + AD + BC + BD
- 7. $\bar{1} = 0$
- 8. $\overline{0} = 1$
- 9. $A \cdot 0 = 0$
- 10. $A \cdot 1 = A$
- 11. A + 0 = A
- 12. A + 1 = 1
- 13. A + A = A
- 14. AA = A
- 15. $\overline{\overline{A}} = A$
- 16. $A + \overline{A} = 1$
- 17. $A\overline{A} = 0$
- 18. $\overline{A+B} = \overline{A} \cdot \overline{B}$
- 19. $\overline{A \cdot B} = \overline{A} + \overline{B}$
- $20. \ A + \overline{A}B = A + B$
- 21. $A \oplus B = \overline{A}B + A\overline{B} = (A+B)(\overline{AB})$
- 22. $\overline{A \oplus B} = AB + \overline{A} \cdot \overline{B}$

Boolean Math

Commutative Rules				
$A \cdot B = B \cdot A$				
A + B = B + A				
Associative Rules				
$(A \cdot B) \cdot C = A \cdot (B \cdot C)$				
(A + B) + C = A + (B + C)				
Distributive Rules				
$A \cdot (B+C) = A \cdot B + A \cdot C$				
$(A+B)\cdot(A+C)=A+(B\cdot C)$				
Absorption Rules				
$A \cdot (\overline{A} + B) = A$				
$A + (A \cdot B) = A$				

Logic Gate	NAND Eq.	NOR Eq.
->-	$A - \overline{AA} = \overline{A}$	$A - \overline{A + A} = \overline{A}$
		$A - \overline{Q}$
1	$\begin{array}{c} A \\ B \end{array} = \begin{array}{c} \overline{AB} \\ \overline{AB} \end{array}$	$B - \overline{B}$

De Morgan's Theorem