Cryptologie Avancée — 4TCY903U Responsables : G. Castagnos – G. Zémor

Devoir Surveillé — 4 novembre 2019

Documents non autorisés

Partie G. Zémor

- Exercice 1. On souhaite réaliser un protocole sans divulgation qui démontre qu'un certain graphe G à n sommets est hamiltonien. Ce graphe est connu de toutes les parties concernées. Les sommets du graphe sont numérotés de 1 à n et il est donné par une matrice d'adjacence.

On propose un protocole où le prouveur commence par s'engager sur une matrice (a_{ij}) de dimension $n \times n$. On pourra considérer que le prouveur confie au vérificateur n^2 enveloppes marquées (i,j), $1 \le i,j \le n$, et que (a_{ij}) est censée être une matrice d'adjacence d'un graphe, c'est-à-dire symétrique, telle que $a_{ii} = 0$ et $a_{ij} = 0$ ou 1.

Le vérificateur tire un bit b aléatoire et le révèle au prouveur :

- si b=0 le prouveur révèle une permutation σ de $\{1,2,\ldots,\}$ et autorise le vérificateur à ouvrir toutes les enveloppes.
- si b=1 le prouveur autorise le vérificateur à ouvrir n enveloppes soigneusement choisies.

Terminer la description du protocole. Que doit vérifier le vérificateur dans les deux cas? Montrer que le protocole est complet, valide et sans divulgation.

- Exercice 2. Soient donnés un nombre premier p et deux entiers g et h chacun d'ordre multiplicatif q modulo p, pour q un diviseur premier de p-1. Un prouveur souhaite démontrer à un vérificateur qu'un entier Y modulo p est de la forme $Y = g^x h^y$ où y est un entier arbitraire et où x = 0 ou x = 1.

On propose le protocole suivant.

— Le prouveur choisit u_0, u_1, r des entiers aléatoires uniformes de $\mathbb{Z}/q\mathbb{Z}$, puis il calcule dans $\mathbb{Z}/p\mathbb{Z}$ et communique au vérificateur les quantités

$$a_0 = h^{u_0} g^{-xr}, \quad a_1 = h^{u_1} g^{(1-x)r}.$$

— le vérificateur communique au prouveur le défi $d \in \mathbf{Z}/q\mathbf{Z}$.

— Le prouveur calcule dans $\mathbf{Z}/q\mathbf{Z}$

$$e = x(d - r) + (1 - x)r$$

 $z_0 = u_0 + (d - e)y$
 $z_1 = u_1 + ey$

puis communique au vérificateur e, z_0, z_1 .

— Le vérificateur accepte si

$$h^{z_0} = a_0 Y^{d-e}$$

 $h^{z_1} = a_1 (Yg^{-1})^e$

- (a) Démontrer que le protocole est complet.
- (b) Démontrer que le protocole est valide. On pourra montrer en particulier que si un faux prouveur est capable de répondre à deux défis distincts d et d' alors Y est bien de la forme requise. On distinguera le cas où le faux prouveur répond aux deux défis d, d' avec un même e ou bien avec des e et e' distincts.
- (c) Démontrer que le protocole est sans divulgation (Zero-knowledge).

Partie G. Castagnos

- Exercice 3. Dependent-RSA (Pointcheval 99)

On considère la variante suivante de RSA. Soit k un paramètre de sécurité et un algorithme polynomial probabiliste, GenRSA, qui prend en entrée 1^k et ressort les paramètres n, e, d de RSA. Pour chiffrer $m \in (\mathbf{Z}/n\mathbf{Z})^{\times}$, on choisit $r \stackrel{\$}{\leftarrow} (\mathbf{Z}/n\mathbf{Z})^{\times}$ et on calcule $A = r^e, B = m \times (r+1)^e$. Le couple (A, B) est le chiffré pour la clef publique pk = (n, e).

- (a) Quelle est la clef privée? Décrire l'algorithme de déchiffrement.
- (b) Ce schéma a-t-il des propriétés homomorphes?

On fait l'hypothèse suivante (DRSA) : étant donné (n,e) retourné par GenRSA, il est difficile de distinguer des couples d'éléments de la forme $(r^e,(r+1)^e)$ avec r tiré uniformément dans $(\mathbf{Z}/n\mathbf{Z})^{\times}$ de couples d'éléments tirés uniformément dans $(\mathbf{Z}/n\mathbf{Z})^{\times} \times (\mathbf{Z}/n\mathbf{Z})^{\times}$

- (c) Donner une formulation précise de cette hypothèse DRSA sous forme d'expérience.
- (d) Montrer que le schéma de chiffrement est IND CPA sous l'hypothèse DRSA.

- Exercice 4. Soit G un groupe cyclique d'ordre premier q et soit g un générateur de G. Dans ce qui suit, on suppose G,q,g fixés.
 - (a) Soit X, Y deux éléments de G et a, b deux éléments de $\mathbb{Z}/q\mathbb{Z}$. Soit $Z' \in G$ une solution du problème calculatoire Diffie-Hellman, CDH, sous l'entrée (Xg^a, Yg^b) , c'est à dire tel que (Xg^a, Yg^b, Z') soit un triplet Diffie-Hellman. Montrer que connaissant a, b et Z' il est possible de calculer en temps polynomial une solution du problème CDH sous l'entrée (X, Y).
 - (b) Soit \mathcal{A} un algorithme polynomial probabiliste ayant un succès 1/100 pour résoudre le problème CDH dans le groupe G. À l'aide de la question précédente, construire un algorithme polynomial probabiliste \mathcal{B} utilisant \mathcal{A} , ayant un succès supérieur à $1-e^{-5}\approx 0$, 99 pour retourner une liste d'éléments de G contenant une solution d'un problème CDH. Pour l'analyse de la probabilité de succès, on pourra utiliser le fait que pour tout réel z, $1-z\leqslant e^{-z}$.