INTRODUCCIÓN AL CURSO

Paul Muñoz Abril 19, 2025

Paul Muñoz

UCUENCA

2024

2^{do} Postdoc

Aplicaciones de Al

en Agua y Clima

Website

High-tech WR

monitoring

MSc.
Ingeniería de
Recursos Hídricos

ML para RH

Ph.D. Recursos Hídricos

2023

1^{er} Postdoc

DL y RS (ciencia aplicada) AI en Agua y Clima

Experiencia

- ¿Cómo desarrollar modelos de pronóstico hidrológico para regionessistemas con escasez de datos?
- ¿Cómo mejorar el pronóstico de valores/eventos extremos?
- ¡Pero que se pueda operacionalizar!

Contenido del curso

Módulo 1: Introducción a Machine Learning

Módulo 2: Uso de productos de precipitación satelital

Módulo 3: Modelos de predicción

Módulo 4: Desarrollo de modelos de predicción y pronóstico hidrológico (caso práctico)

Trabajo final: Proyecto

Logística

- Curso hands-on, Python + Google Colab
- Proyecto individual
- Certificado de participación

Sesión	Fecha	Día	Horario
S1	19-abril	Sábado	08:00–11:00
S2	04-mayo	Domingo	08:00–11:00
S3	10-mayo	Sábado	08:00–11:00
S 4	11-mayo	Domingo	08:00–11:00
S5	17-mayo	Sábado	08:00-12:00
S6	24-mayo	Sábado	08:00–12:00

¿Cómo funciona **C** ? **GitHub**

Es una plataforma para almacenar y compartir código, notebooks y documentos del curso.

- ¿Qué contiene el repositorio?
 Notebooks en Jupyter (.ipynb)
 Archivos de presentación (.pptx)
 Archivo README con instrucciones

 - Archivos de configuración (pyproject.toml, etc.)
- ¿Cómo se accede?
 - Desde un enlace directo al notebook en Google Colab
 - O clonando el repositorio completo dentro del entorno de Colab
- Ventajas del uso de GitHub:
 - Acceso centralizado a todo el material

 - ✓ Versionado automático y transparente
 ✓ Posibilidad de actualizaciones durante el curso

Es un servicio en la nube para ejecutar notebooks Jupyter

- ¿Cómo se conecta Google Colab a GitHub?
 - Abrir un notebook directamente desde el repo
 - O clonar el repositorio en un notebook de Colab
- ¿Dónde se ejecuta el notebook?
 - → En una máquina virtual (VM) en los servidores de Google
- ¿Depende de la conexión a internet?
 - Sí: abrir Colab, clonar el repo, descargar/subir datos
 - No: procesar el código y los datos en la VM
- Hardware disponible:
- Hardware disponible:
 - ☑ CPU (por defecto)☑ GPU (opcional)

 - ☑ TPU (para deep learning)

Recurso	¿Dónde ocurre?	¿Instala en local?	¿Usa tu red?
Código Python	En la nube (VM)	×	~
Bibliotecas	En la VM temporal	×	

Material para el curso

https://github.com/paulmunozpauta/Curso_ML_pronostico_hidrologico

Contacto:

paul.andres.munoz@gmail.com