Teoria da Computação Redutibilidade

Leonardo Takuno {leonardo.takuno@gmail.com}

Centro Universitário Senac

Sumário

- Redutibilidade
- 2 Teorema de Rice
- 3 Reduções via Histórias de Computação
- Problemas indecidíveis sobre GLCs

Sumário

- Redutibilidade
- 2 Teorema de Rice
- 3 Reduções via Histórias de Computação
- 4 Problemas indecidíveis sobre GLCs

Apresentação

- Redutibilidade
 - Técnica para relacionar dois problemas (linguagens)
 - Usa-se uma máquina para a linguagem B para criar uma outra máquina para a linguagem A.
 - Assim, construímos uma "redução de A para B"

"Reduzir de A para B"

 M_A = "Sobre a entrada x:

- 1. Seja y = f(x)
- 2. Rode M_B sobre y
- 3. Aceite se M_B aceita. Rejeite se M_B rejeita.

"Reduzir de A para B"

$$A_{AFD} = \{\langle A, w \rangle | A \text{ \'e AFD que aceita } w\}$$

 $A_{AFN} = \{\langle A, w \rangle | A \text{ \'e AFN que aceita } w\}$
 $A_{ER} = \{\langle R, w \rangle | R \text{ \'e ER que aceita } w\}$

 $M_{AFD} =$ "Sobre a entrada $\langle B, w \rangle$, onde B é um AFD, e w, uma cadeia:

- Simule B sobre a entrada w;
- Se a simulação termina em um estado final, aceite. Caso contrário, rejeite"

Redução de A_{AFN} para A_{AFD} :

 $M_{AFN} =$ "Sobre a entrada $\langle B, w \rangle$ onde B é um AFN, e w, uma cadeia:

- Converta AFN B para um AFD equivalente C
- 2 Rode a MT M_{AFD} sobre $\langle C, w \rangle$.
- **3** Se M_{AFD} aceita, **aceite**; caso contrário, **rejeite**".

Redução de A_{ER} para A_{AFN} :

 $M_{A_{ER}}=$ "Sobre a entrada $\langle R,w \rangle$, onde R é uma expressão regular e w é uma cadeia:

- Onverta a expressão regular R para um AFN equivalente B
- 2 Rode a MT M_{AFN} sobre $\langle B, w \rangle$
- **3** Se M_{AFN} aceitar, **aceite**, caso contrário, **rejeite**"

$$\begin{aligned} V_{AFD} &= \{ \langle A \rangle | A \in \text{AFD e } L(A) = \emptyset \} \\ EQ_{AFD} &= \{ \langle A, B \rangle | A \in B \text{ são AFDs e } L(A) = L(B) \} \end{aligned}$$

Como usar $M_{V_{AFD}}$ que decide V_{AFD} para decidir EQ_{AFD} ? Dados AFDs A e B:

- $L(?) = \emptyset$, L(A) = L(B)
- $L(?) \neq \emptyset$, $L(A) \neq L(B)$

Redução de EQ_{AFD} para V_{AFD} :

 $M_{EQ_{AFD}} =$ "Sobre a entrada $\langle A, B \rangle$ onde A e B são AFDs:

- Construa o AFD C tal que $L(C) = (L(A) \cap \overline{L(B)}) \cup (\overline{L(A)} \cap L(B))$
- 2 Rode a $M_{V_{AFD}}$ sobre a entrada $\langle C \rangle$.
- **3** Se $M_{V_{AFD}}$ aceita, **aceite**. Caso contrário, **rejeite**"

Quais conclusões podemos obter?

Se A pode ser reduzido para B

- Se B é decidível, então A também é.
- Resolver B não pode ser mais difícil do que resolver A, pois qualquer solução para B diretamente dá uma solução para A.

Quais conclusões podemos obter?

Se A pode ser reduzido para B

- Se B é decidível, então A também é.
- Se A não é decidível, então B também não é.

Vamos utilizar a redutibilidade para provar o seguinte:

Teorema 5.1: A linguagem

$$PARA_{MT} = \{\langle M, w \rangle | M$$
 é uma MT e M pára sobre w $\}$

é indecidível.

- Sabemos que $A_{MT} = \{\langle M, w \rangle | M \text{ \'e uma MT que aceita } w \} \text{ \'e indecidível.}$
- Idéia:
 - Suponha que PARA_{MT} é decidível
 - Mostre que podemos usar $PARA_{MT}$ para decidir A_{MT} . (Redução)
 - Conclua que A_{MT} é decidível. Contradição.

Teorema 5.1: A linguagem

$$PARA_{MT} = \{\langle M, w \rangle | M \text{ \'e uma MT e M p\'ara sobre w} \}$$

é indecidível.

Prova: Prova por contradição. Supomos que $PARA_{MT}$ seja decidível e usamos essa suposição para mostrar que A_{MT} é decidível, contradizendo o Teorema 4.11. Suponha que MT R decida $PARA_{MT}$.

Teorema 5.1: A linguagem

$$PARA_{MT} = \{\langle M, w \rangle | M \text{ \'e uma MT e M p\'ara sobre w} \}$$

é indecidível.

Construímos a MT S para decidir A_{MT} da seguinte forma: S= "Sobre a entrada $\langle M,w\rangle$, uma codificação de uma MT M e uma cadeia w:

- **1** Rode MT R sobre a entrada $\langle M, w \rangle$
- Se R rejeita, rejeite
- 3 Se R aceita, simule M sobre w até que ela pare
- Se M aceita, aceite; se M rejeita, rejeite "

Redutibilidade Teorema de Rice Reduções via Histórias de Computação Problemas indecidíveis sobre GLCs

Redutibilidade

Nós vimos que A_{MT} é indecidível, logo é uma contradição e nossa hipótese de que $PARA_{MT}$ é decidível deve ser incorreta. \square

Teorema 5.2: A linguagem

$$V_{MT} = \{ \langle M \rangle | M \text{ \'e uma MT L}(M) = \emptyset \}$$

é indecidível.

- Utilizando a idéia anterior:
 - ullet Seja R uma MT que decida V_{MT}
 - Usaremos R para construir uma máquina MT S que decide A_{MT}
 - Prove A_{MT} é decidível. Contradição.
 - Então a MT R não pode existir.

Teorema 5.2: A linguagem

$$V_{MT} = \{\langle M \rangle | M$$
é uma MT L(M) = $\emptyset \}$

é indecidível.

Como S funcionará quando ela receber a entrada $\langle M, w \rangle$

- Idéia 1:
 - Rodar R sobre a entrada $\langle M \rangle$ e ver se aceita.
 - Se aceita, sabemos que $L(M) = \emptyset$, então M não aceita w.
 - Mas se R rejeita (M), M aceita alguma cadeia, mas não sabemos se M aceita w
 - Assim, usaremos uma idéia diferente.

Teorema 5.2: A linguagem

$$V_{MT} = \{ \langle M \rangle | M \text{ \'e uma MT L}(M) = \emptyset \}$$

é indecidível.

Como S funcionará quando ela receber a entrada $\langle M, w \rangle$

Idéia 2:

- Em vez de rodar R sobre \(\lambda M \rangle \), rodamos R sobre uma modificação de \(\lambda M \rangle \), a qual chamaremos de \(M 1 \).
- M1 rejeita todas as cadeias, exceto w.
- Então usamos R para determinar se M1 reconhece uma linguagem vazia.
- Se a linguagem é vazia, então M1 não aceita w, caso contrário, M1 aceita w.

Teorema 5.2: A linguagem

$$V_{MT} = \{ \langle M \rangle | M \text{ \'e uma MT L}(M) = \emptyset \}$$

é indecidível.

Prova: Por contradição. Assuma que V_{MT} é decidível e R é o decisor, e aí mostramos que A_{MT} é decidível - uma contradição. Supomos que a MT R decide V_{MT} e construímos a MT S que decide A_{MT} .

Teorema 5.2: A linguagem

$$V_{MT} = \{ \langle M \rangle | M \text{ \'e uma MT L}(M) = \emptyset \}$$

é indecidível.

S = "Sobre a entrada $\langle M, w \rangle$, uma codificação de uma MT M e uma cadeia w:

- Onstrua a máquina M1 a seguir :
 - M1 = "Sobre a entrada x
 - Se $x \neq w$, rejeite
 - 2 Se x = w, rode M sobre a entrada w e aceite se M aceita.
- **2** Execute R sobre $\langle M1 \rangle$
- Se R aceita, rejeite, se R rejeita, aceite." □

Teorema 5.3: A linguagem

 $REGULAR_{MT} = \{\langle M \rangle | M \text{ \'e MT e L(M) \'e uma linguagem regular} \}$

é indecidível.

- Suponha que $REGULAR_{MT}$ é decidível por uma MT R.
- Usaremos essa suposição para construir uma MT S que decide A_{MT} - uma contradição.

Teorema 5.3: A linguagem

 $REGULAR_{MT} = \{\langle M \rangle | M \text{ \'e } MT \text{ e } L(M) \text{ \'e uma linguagem regular} \}$ é indecidível.

- idéia: Sobre a entrada $\langle M, w \rangle$, modificar M de modo que a máquina resultante M2 reconhece uma linguagem regular se, e somente se, M reconhece w. Assim, temos
 - Se $w \in L(M)$ então $L(M2) = \Sigma^*$ (Uma linguagem regular qualquer)
 - Se $w \notin L(M)$ então $L(M2) = \{0^n 1^n | n \ge 0\}$ (Uma linguagem qualquer que não seja regular)

Teorema 5.3: A linguagem

$$REGULAR_{MT} = \{\langle M \rangle | M \text{ \'e MT e L(M) \'e uma linguagem regular} \}$$

é indecidível.

A máquina S decide A_{MT} , construída usando R é:

- $S = \text{"Entrada } \langle M, w \rangle$, onde M é uma MT e w é uma string
 - Construa uma MT M2:
 - M2 = Entrada string x
 - 1. Se x tem a forma $0^n 1^n$, aceite
 - Se x não tem essa forma, então executa M sobre a entrada w e aceita, se M aceita w.
 - 2 Execute R sobre a entrada $\langle M2 \rangle$
 - Se R aceita, aceite; se R rejeita, rejeite ." □

Teorema 5.4: A linguagem

$$EQ_{MT} = \{\langle M1, M2 \rangle | M_1 \text{ e } M_2 \text{ são MTs e } L(M_1) = L(M_2) \}$$

é indecidível.

- $V_{MT} = \{ \langle M \rangle | M \text{ é uma MT L}(M) = \emptyset \}$
- V_{MT} é redutível a EQ_{MT}
- Mostre que se EQ_{MT} fosse decidível, V_{MT} também seria.

Teorema 5.4: A linguagem

$$EQ_{MT} = \{\langle M1, M2 \rangle | M_1 \text{ e } M_2 \text{ são MTs e } L(M_1) = L(M_2) \}$$

é indecidível.

- Mostre que se EQ_{MT} fosse decidível, V_{MT} também seria.
 - Assuma que uma MT R decide EQ_{MT} e construa uma MT S para decidir V_{MT}
 - Utilize uma MT M1 que rejeite todas as entradas, ou seja, tenha linguagem vazia
 - Utilize R para comparar M com M1 e verificar se $L(M) = \emptyset$, aceitando ou rejeitando.
 - Conclua que V_{MT} é decidível. Contradição.

Teorema 5.4: A linguagem

$$EQ_{MT} = \{\langle M1, M2 \rangle | M_1 \text{ e } M_2 \text{ são MTs e } L(M_1) = L(M_2)\}$$

é indecidível.

Prova: Por contradição. Assuma que EQ_{MT} é decidível e R é um decisor. Mostramos que V_{MT} reduz EQ_{MT} por construir um decisor S para decidir V_{MT} .

Teorema 5.4: A linguagem

$$EQ_{MT} = \{\langle M1, M2 \rangle | M_1 \text{ e } M_2 \text{ são MTs e } L(M_1) = L(M_2) \}$$

é indecidível.

 $S = \text{"Sobre a entrada } \langle M \rangle$, onde M é uma MT:

- Rode R sobre a entrada $\langle M, M_1 \rangle$, onde M_1 é uma MT que rejeita todas as entradas.
- 2 Se R aceita, aceite; se R rejeita, rejeite."

Se R decide EQ_{MT} , S decide V_{MT} . Mas V_{MT} é indecidível pelo Teorema 5.2 portanto EQ_{MT} também tem de ser indecidível. \square

Sumário

- Redutibilidade
- 2 Teorema de Rice
- 3 Reduções via Histórias de Computação
- Problemas indecidíveis sobre GLCs

Teorema: Todo teste de qualquer propriedade (não trivial) de linguagens reconhecidas por máquinas de Turing é indecidível.

O que é uma propriedade de linguagem ?

- Um conjunto de linguagens que satisfazem a uma certa condição;
- Uma propriedade P de linguagem reconhecida por Máquina de Turing é uma coleção de descrições de máquinas de Turing satisfazendo

Se
$$L(M_1) = L(M_2)$$
 então $\langle M_1 \rangle \in P \Leftrightarrow \langle M_2 \rangle \in P$

Note que uma propriedade de linguagens é, ela mesma, uma linguagem que contém cadeias descrevendo MTs.

O que é uma propriedade trivial?

 Um propriedade trivial de linguagem é uma propriedade P que inclui todas as descrições de MTs, ou nenhuma.

Exemplos:

- $L(M) \subseteq \Sigma^*$ é trivial. Toda linguagem é subconjunto de Σ^* ;
- "A MT M aceita uma quantidade enumerável de cadeias?".
 Toda MT satisfaz isso.
- "A MT aceita e rejeita alguma cadeia?". Nenhuma MT faz isso.

O que é uma propriedade não-trivial?

- Uma propriedade não-trivial de linguagem é uma propriedade P tal que:
 - 1. P inclui pelo menos uma descrição de MT, e
 - 2. P não inclui todas as descrições de MTs.

Teorema: Todo teste de qualquer propriedade (não trivial) de linguagens reconhecidas por máquinas de Turing é indecidível.

Para mostra que uma **propriedade P** de uma linguagem é indecidível, devemos verificar as seguintes condições:

1. P é uma propriedade da linguagem da linguagem da MT

se
$$L(M1) = L(M2)$$
 então $\langle M1 \rangle \in P \Leftrightarrow \langle M2 \rangle \in P$

- 2. P é não-trivial: ela contém alguma descrição, mas não todas as descrições de MTs.
 - existe uma MT M1 para o qual $\langle M1 \rangle \in P$, e
 - existe uma MT M2 para o qual $\langle M2 \rangle \notin P$

Teorema: Todo teste de qualquer propriedade (não trivial) de linguagens reconhecidas por máquinas de Turing é indecidível.

exemplo:

- Testar se a linguagem reconhecida por uma MT é livre do contexto.
- Testar se linguagem reconhecida por uma MT é decidível.
- Testar se a linguagem reconhecida por uma máquina de Turing é finito.

Teorema de Rice

Teorema: Todo teste de qualquer propriedade (não trivial) de linguagens reconhecidas por máquinas de Turing é indecidível.

Prova: Por contradição. Seja P uma propriedade não-trivial de linguagem. Queremos mostrar que

$$L_P = \{ \langle M \rangle \mid L(M) \text{ satisfaz } P \},$$

é indecidível.

Assuma que L_P seja decidível e M_P é um decisor. Mostramos que podemos construir um decisor S para A_{MT} .

Teorema de Rice

Teorema: Todo teste de qualquer propriedade (não trivial) de linguagens reconhecidas por máquinas de Turing é indecidível.

- $S = \text{``Sobre a entrada } \langle M, w \rangle$, onde M é uma MT e w uma string:
 - ① Use MT M e w para construir a seguinte MT M': M' = Sobre a entrada $\langle T, x \rangle$, onde T é uma MT e x uma string
 - 1. Simule M sobre w. Se pára e rejeita, rejeite. se aceita, proceda os estágio 2
 - 2. Simule T sobre x. Se aceita, aceite (note: L_P não é trivial, então $\langle T \rangle \in L_P$ tem que existir.)
 - ② Execute M_P sobre M' para determinar se $\langle M' \rangle \in L_P$. Se M_P aceita, aceite. Caso contrário, rejeite."

Teorema de Rice

A MT M' simula T se M aceita w. Logo, L(M') é igual a L(T) se M aceita w e é igual a \emptyset , em caso contrário. Portanto, $\langle M' \rangle \in P$ sse M aceita w.

- M aceita $w \Rightarrow L(M') = L(T) \Rightarrow \langle M' \rangle \in P$
- M rejeita $w \Rightarrow L(M') = \emptyset = L(M_{\emptyset}) \Rightarrow \langle M' \rangle \notin P$
- M entra em loop sobre $w \Rightarrow L(M') = \emptyset = L(M_{\emptyset}) \Rightarrow \langle M' \rangle \notin P$

Visto que A_{MT} não é decidível, esta máquina não pode existir e nossa hipótese que L_P é decidível deve ser incorreta. \square

Teorema: A linguagem

$$INFINITA_{MT} = \{\langle M \rangle | M \text{ \'e uma MT e } L(M) \text{ \'e infinita} \}$$

é indecidível.

Prova: Para provar que $INFINITA_{MT}$ é indecidível, usamos o teorema de Rice. Para isso, observamos as condições:

1. Propriedade de uma linguagem de MT.

se
$$L(M1) = L(M2)$$
 então $\langle M1
angle \in \mathit{INFINITA}_{MT}$ sse $\langle M2
angle \in \mathit{INFINITA}_{MT}$

2. P é não-trivial

Seja
$$X$$
 uma MT com $L(X) = \Sigma^* \Rightarrow \langle X \rangle \in \mathit{INFINITA}_{\mathit{MT}}$
Seja Y uma MT com $L(Y) = \emptyset \Rightarrow \langle Y \rangle \notin \mathit{INFINITA}_{\mathit{MT}}$

Pelo Teorema de Rice *INFINITA_{MT}* é indecidível.

Teorema: A linguagem

$$REGULAR_{MT} = \{\langle M \rangle | M \text{ \'e uma MT e } L(M) \text{ \'e regular} \}$$

é indecidível.

Prova: Usando o teorema de Rice, observe as seguintes condições:

1. Propriedade de uma linguagem de MT.

se
$$L(M1) = L(M2)$$
 então $\langle M1 \rangle \in REGULAR_{MT}$ sse $\langle M2 \rangle \in REGULAR_{MT}$

2. P é não-trivial

Seja X uma MT com
$$L(X) = \emptyset$$

$$\Rightarrow \langle X \rangle \in REGULAR_{MT}$$

Seja Y uma MT que aceita a linguagem $\{0^n1^n : n \ge 0\}$

$$\Rightarrow \langle Y \rangle \notin REGULAR_{MT}$$

Pelo Teorema de Rice REGULAR_{MT} é indecidível.

Teorema: A linguagem

$$H_{\varepsilon} = \{\langle M \rangle | M \text{ \'e uma MT e } M \text{ aceita } \varepsilon\}$$

é indecidível.

Prova: Pelo teorema de Rice, verifique as seguintes condições:

1. Propriedade de uma linguagem de MT.

se
$$L(M1) = L(M2)$$
 então $\langle M1 \rangle \in H_{\varepsilon}$ sse $\langle M2 \rangle \in H_{\varepsilon}$

2. P é não-trivial

Seja
$$X$$
 uma MT com $L(X) = \Sigma^* \Rightarrow \langle X \rangle \in \mathcal{H}_{\varepsilon}$
Seja Y uma MT com $L(Y) = \emptyset \Rightarrow \langle Y \rangle \notin \mathcal{H}_{\varepsilon}$

Pelo Teorema de Rice H_{ε} é indecidível.

Teorema: A linguagem

$$TRES_{MT} = \{\langle M \rangle | M \text{ \'e uma MT com } | L(M) | \leq 3\}$$

é indecidível.

Prova: Pelo teorema de Rice, verifique as seguintes condições:

1. Propriedade de uma linguagem de MT.

se
$$L(M1) = L(M2)$$
 então $\langle M1 \rangle \in TRES_{MT}$ sse $\langle M2 \rangle \in TRES_{MT}$

P é não-trivial

Seja
$$X$$
 uma MT com $L(X) = \emptyset \Rightarrow \langle X \rangle \in TRES_{MT}$
Seja Y uma MT com $L(Y) = \Sigma^* \Rightarrow \langle Y \rangle \notin TRES_{MT}$

Pelo Teorema de Rice $TRES_{MT}$ é indecidível.

Teorema de Rice - exercícios

Utilize o teorema de Rice para provar a indecidibilidade das seguintes linguagens:

- $L(M) = \emptyset$
- $2 L(M) \neq \emptyset$
- **3** L(M) é finita? L(M) é infinita?
- \bullet L(M) contém pelo menos duas cadeias.
- \bullet L(M) é regular?
- \bullet L(M) é livre de contexto?
- $OL(M) = \Sigma^*$
- $L(M) = L(M)^{\mathcal{R}}$

Sumário

- Redutibilidade
- 2 Teorema de Rice
- 3 Reduções via Histórias de Computação
- Problemas indecidíveis sobre GLCs

Reduções via Histórias de Computação

Definição: História de computação é uma seqüência de configurações, C_1 , C_2 ,..., C_l , onde C_1 é a configuração inicial de M sobre w, C_l é uma configuração de aceitação ou de rejeição de M, e cada C_i segue C_{i-1} conforme as regras de M.

Definição: Um autômato linearmente limitado é um tipo restrito de máquina de Turing na qual à cabeça de leitura-escrita não é permitido mover-se para fora da parte da fita contendo a entrada.

FIGURA 5.7
Esquemática de um autômato linearmente limitado

Lema 5.8: Seja M um ALL com q estados e g símbolos no alfabeto de fita. Existem exatamente qng^n configurações distintas distintas de M para uma fita de comprimente n.

Prova: M tem q estados. O comprimento da sua fita é n, portanto, a cabeça pode estar em uma das n posições e g^n cadeias possíveis de símbolos de fita aparecem sobre a fita. O produto dessas três quantidades é o número total de configurações diferentes de M com uma fita de comprimento n. \square

Teorema 5.9:

$$A_{ALL} = \{\langle M, w \rangle | M$$
 é um ALL que aceita a cadeia $w \}$ é decidível.

Prova: O algoritmo que decide A_{ALL} é como segue.

L = "Sobre a entrada $\langle M, w \rangle$, onde M é um ALL e w é uma cadeia:

- Simule M sobre w por qngⁿ passos ou até que ela pare.
- Se M parou, aceite se ela aceitou e rejeite se ela rejeitou. Se ela n\u00e3o parou, rejeite."

Teorema 5.9:

$$A_{ALL} = \{\langle M, w \rangle | \text{M \'e um ALL que aceita a cadeia } w\}$$

é decidível.

Se M sobre w não parou dentro de qng^n passos, ela tem que estar repetindo uma configuração conforme o Lema 5.8 e, consequentemente, estar em loop. É por isso que nosso algoritmo rejeita nessa instância. \square

Teorema 5.10:

$$V_{ALL} = \{ \langle M \rangle | M \text{ \'e um ALL onde } L(M) = \emptyset \}$$

é indecidível.

Ideia da prova: Redução a partir de A_{MT} . Mostramos que se V_{ALL} fosse decidível, A_{MT} também seria.

- Suponha que V_{ALL} é decidível;
- Dado MT M e entrada w, construa um ALL B usando informações de M sobre w.
- Se L(B) é vazia, M não aceita w. Se L(B) não é vazia, M aceita w.

Teorema 5.10:

$$V_{ALL} = \{ \langle M \rangle | M \text{ \'e um ALL onde } L(M) = \emptyset \}$$

é indecidível.

Prova: Construímos um ALL B para aceitar uma entrada x se x é uma história de computação de aceitação para M sobre w. Assumimos que a história de computação de aceitação é apresentada como uma única cadeia, com as configurações separadas umas das outras pelo símbolo # como a figura 5.11.

FIGURA 5.11 Uma possível entrada para B

Teorema 5.10:

$$V_{ALL} = \{ \langle M \rangle | M \text{ \'e um ALL onde } L(M) = \emptyset \}$$

é indecidível.

Prova: O ALL B, então obtem a entrada x e verifica se é uma história de computação de aceitação,o qual deve satisfazer as três condições:

- **1** C_1 é a configuração inicial para M sobre w.
- 2 Cada C_{i+1} segue legitimamente de C_i .
- \circ C_I é uma configuração de aceitação para M.

Obs: Montamos o ALL B para alimentar o decisor de V_{ALL} que pressupomos existir

Teorema 5.10:

$$V_{ALL} = \{ \langle M \rangle | M \text{ \'e um ALL onde } L(M) = \emptyset \}$$

é indecidível.

Prova: Agora estamos prontos para enunciar a redução de A_{MT} para V_{ALL} . Suponha que MT R decide V_{ALL} . Construa MT S que decide A_{MT} .

Teorema 5.10:

$$V_{ALL} = \{ \langle M \rangle | M \text{ \'e um ALL onde } L(M) = \emptyset \}$$

é indecidível.

S = "Sobre a entrada $\langle M, w \rangle$, onde M é uma MT e w é uma cadeia:

- Construa o ALL B a partir de M e w conforme descrito.
- 2 Rode R sobre a entrada $\langle B \rangle$.
- 3 Se R rejeita, aceite; se R aceita, rejeite."

Observe:

- Se R aceita ⟨B⟩, então L(B) = ∅. Então, M não tem nenhuma história de computação de aceitação sobre w e M não aceita w. Conseqüentemente, S rejeita ⟨M, w⟩.
- Similarmente, se R rejeita (B), a linguagem de B é não vazia.
 A MT B aceita uma história de computação de aceitação para M sobre w. Portanto, M deve aceitar w. Como conseqüência, S aceita (M, w).

Sumário

- Redutibilidade
- 2 Teorema de Rice
- Reduções via Histórias de Computação
- Problemas indecidíveis sobre GLCs

Teorema 5.10:

$$TODAS_{GLC} = \{\langle G \rangle | G \text{ \'e uma GLC e } L(G) = \Sigma^* \}$$

é indecidível.

Prova: Para uma MT M e uma entrada w, construimos uma GLC G para gerar todas as strings que não são histórias de computação de aceitação para M sobre w.

Isto é, G gera todas as strings se e somente se M não aceita w.

Se $TODAS_{GLC}$ fosse decidível então A_{MT} também seria.

Teorema 5.10:

$$TODAS_{GLC} = \{\langle G \rangle | G \text{ \'e uma GLC e } L(G) = \Sigma^* \}$$

é indecidível.

Prova: Assuma que $TODAS_{GLC}$ é decidível. Construímos uma Autômato de Pilha D que aceita a string $\#C_1\#C_2^\mathcal{R}\#C_3\#C_4^\mathcal{R}\#...\#C_l\#$, tal que $\#C_1\#C_2\#C_3\#C_4\#...\#C_l\#$ não represente uma história de computação de aceitação de M sobre w.

Teorema 5.10:

$$TODAS_{GLC} = \{\langle G \rangle | G \text{ \'e uma GLC e } L(G) = \Sigma^* \}$$

é indecidível.

- D = "Sobre a entrada $\#C_1\#C_2^{\mathcal{R}}\#C_3\#C_4^{\mathcal{R}}\#...\#C_I\#$:
 - $oldsymbol{0}$ Se C_1 não é o estado inicial de M, então aceite
 - 2 Se C_I não é o estado de aceitação de M, então aceite
 - **3** Se C_i não produz C_{i+1} , então *aceite*"

No terceiro passo, D usa a pilha efetivamente.

Teorema 5.10:

$$TODAS_{GLC} = \{\langle G \rangle | G \text{ \'e uma GLC e } L(G) = \Sigma^* \}$$

é indecidível.

Note que :

- $L(D) = \Sigma^* \Leftrightarrow M$ não aceita w, e
- $L(D) \neq \Sigma^* \Leftrightarrow M$ aceita w

Г