Chapter 2

Quadratic Equations

- 1. If the roots of the equation $bx^2 + cx + a = 0$ be imaginary, then for all real values of x, the expression $3b^2x^2 + 6bcx + 2c^2$ is **[AIEEE-2009]**
 - (1) Less than 4ab
- (2) Greater than -4ab
- (3) Less than -4ab
- (4) Greater than 4ab
- 2. If α and β are the roots of the equation

 $x^2 - x + 1 = 0$, then $\alpha^{2009} + \beta^{2009} =$

[AIEEE-2010]

- (1) -2
- (2) -1
- (3) 1
- (4) 2
- 3. Let for $a \neq a_1 \neq 0$,

 $f(x) = ax^2 + bx + c$, $g(x) = a_1x^2 + b_1x + c_1$ and p(x) = f(x) - g(x).

If p(x) = 0 only for x = -1 and p(-2) = 2, then the value of p(2) is **[AIEEE-2011]**

- (1) 6
- (2) 18
- (3) 3
- (4) 9
- 4. Sachin and Rahul attempted to solve a quadratic equation. Sachin made a mistake in writing down the constant term and ended up in roots (4, 3). Rahul made a mistake in writing down coefficient of x to get roots (3, 2). The correct roots of equation are: [AlEEE-2011]
 - (1) -6, -1
- (2) -4, -3
- (3) 6. 1
- (4) 4, 3
- 5. The real number k for which the equation $2x^3 + 3x + k = 0$ has two distinct real roots in [0, 1] [JEE (Main)-2013]
 - (1) Lies between 1 and 2
 - (2) Lies between 2 and 3
 - (3) Lies between -1 and 0
 - (4) Does not exist
- 6. If the equations $x^2 + 2x + 3 = 0$ and $ax^2 + bx + c = 0$, $a, b, c \in R$, have a common root, then a : b : c is

[JEE (Main)-2013]

- (1) 1:2:3
- (2) 3:2:1
- (3) 1:3:2
- (4) 3:1:2

7. Let α and β be the roots of equation $x^2 - 6x - 2 = 0$.

If $a_n = \alpha^n - \beta^n$, for $n \ge 1$, then the value of $\frac{a_{10} - 2a_8}{2a_9}$

is equal to

[JEE (Main)-2015]

- (1) 6
- (2) -6
- (3) 3
- (4) -3
- 8. The sum of all real values of x satisfying the equation $(x^2 5x + 5)^{x^2 + 4x 60} = 1$ is

[JEE (Main)-2016]

- (1) 4
- (2) 6

- (3) 5
- (4) 3
- 9. If, for a positive integer n, the quadratic equation,

 $x(x+1)+(x+1)(x+2)+...+(x+\overline{n-1})(x+n)=10n$

has two consecutive integral solutions, then n is equal to [JEE (Main)-2017]

- (1) 9
- (2) 10
- (3) 11
- (4) 12
- 10. Let $S = \{x \in R : x \ge 0 \text{ and }$

 $2|\sqrt{x}-3| + \sqrt{x}(\sqrt{x}-6) + 6 = 0$ }. Then S [JEE (Main)-2018]

- (1) Is an empty set
- (2) Contains exactly one element
- (3) Contains exactly two elements
- (4) Contains exactly four elements
- 11. If both the roots of the quadratic equation $x^2 mx + 4 = 0$ are real and distinct and they lie in the interval [1, 5] then m lies in the interval

[JEE (Main)-2019]

- (1) (-5, -4)
- (2) (3,4)
- (3) (4, 5)
- (4) (5, 6)
- 12. The number of all possible positive integral values of α for which the roots of the quadratic equation, $6x^2 11x + \alpha = 0$ are rational numbers is

[JEE (Main)-2019]

- (1) 4
- (2) 5
- (3) 2
- (4) 3

- 13. Consider the quadratic equation $(c 5)x^2 2cx +$ (c-4) = 0, $c \ne 5$. Let S be the set of all integral values of c for which one root of the equation lies in the interval (0, 2) and its other root lies in the interval (2, 3). Then the number of elements in S [JEE (Main)-2019]
 - (1) 11
- (2) 18
- (3) 12
- (4) 10
- 14. The value of λ such that sum of the squares of the roots of the quadratic equation, $x^2 + (3 - \lambda) x + 2$ = λ has the least value is [JEE (Main)-2019]
 - (1) 2
- (3) $\frac{15}{8}$
- 15. If one real root of the quadratic equation $81x^2 + kx$ + 256 = 0 is cube of the other root, then a value of k is [JEE (Main)-2019]
 - (1) -300
- (2) 144
- (3) -81
- (4) 100
- 16. Let α and β the roots of the quadratic equation $x^2 \sin\theta - x (\sin\theta \cos\theta + 1) + \cos\theta = 0$ $(0 < \theta < 45^{\circ})$, and $\alpha < \beta$. Then

$$\sum_{n=0}^{\infty} \left(\alpha^n + \frac{(-1)^n}{\beta^n} \right)$$
 is equal to [JEE (Main)-2019]

(1)
$$\frac{1}{1+\cos\theta} - \frac{1}{1-\sin\theta}$$
 (2) $\frac{1}{1-\cos\theta} + \frac{1}{1+\sin\theta}$

(3)
$$\frac{1}{1-\cos\theta} - \frac{1}{1+\sin\theta}$$
 (4) $\frac{1}{1+\cos\theta} + \frac{1}{1-\sin\theta}$

17. If λ be the ratio of the roots of the quadratic equation in x, $3m^2x^2 + m(m - 4)x + 2 = 0$, then the least value of m for which $\lambda + \frac{1}{\lambda} = 1$, is

[JEE (Main)-2019]

- (1) $4-2\sqrt{3}$ (2) $4-3\sqrt{2}$
- (3) $2-\sqrt{3}$
- (4) $-2 + \sqrt{2}$
- 18. The number of integral values of *m* for which the quadratic expression, $(1 + 2m)x^2 - 2(1 + 3m)x +$ 4(1 + m), $x \in R$, is always positive, is

[JEE (Main)-2019]

- (1) 8
- (2) 3
- (3) 6
- (4) 7
- 19. If α and β be the roots of the equation $x^2 2x +$
 - 2 = 0, then the least value of *n* for which $\left(\frac{\alpha}{\alpha}\right)^n = 1$

is

[JEE (Main)-2019]

- (1) 4
- (2) 5
- (3) 3
- (4) 2
- 20. The sum of the solutions of the equation $|\sqrt{x}-2| + \sqrt{x}(\sqrt{x}-4) + 2 = 0, (x>0)$ is equal to

[JEE (Main)-2019]

- (1) 4
- (2) 10
- (3) 9
- (4) 12
- 21. If three distinct numbers a, b, c are in G.P. and the equations $ax^2 + 2bx + c = 0$ and $dx^2 + 2ex + f =$ 0 have a common root, then which one of the following statements is correct?

[JEE (Main)-2019]

- (1) d, e, f are in A.P.
- (2) $\frac{d}{a}$, $\frac{e}{b}$, $\frac{f}{c}$ are in G.P.
- (3) $\frac{d}{a}$, $\frac{e}{b}$, $\frac{f}{c}$ are in A.P.
- (4) d, e, f are in G.P.
- The number of integral values of *m* for which the equation $(1 + m^2)x^2 - 2(1 + 3m)x + (1 + 8m) = 0$ has no real root is: [JEE (Main)-2019]
 - (1) Infinitely many
- (3) 2
- (4) 1
- 23. Let $p, q \in R$. If $2-\sqrt{3}$ is a root of the quadratic equation, $x^2 + px + q = 0$, then

[JEE (Main)-2019]

- (1) $q^2 4p 16 = 0$ (2) $p^2 4q + 12 = 0$
- (3) $p^2 4q 12 = 0$ (4) $q^2 + 4p + 14 = 0$
- 24. If m is chosen in the quadratic equation $(m^2 + 1) x^2 - 3x + (m^2 + 1)^2 = 0$ such that the sum of its roots is greatest, then the absolute difference of the cubes of its roots is [JEE (Main)-2019]
 - (1) $8\sqrt{3}$
- (2) $10\sqrt{5}$
- (3) $4\sqrt{3}$

25. If α and β are the roots of the equation

$$375x^2 - 25x - 2 = 0$$
, then $\lim_{n \to \infty} \sum_{r=1}^{n} \alpha^r + \lim_{n \to \infty} \sum_{r=1}^{n} \beta^r$

is equal to

[JEE (Main)-2019]

26. If α , β and γ are three consecutive terms of a nonconstant G.P. such that the equations $\alpha x^2 + 2\beta x + \gamma = 0$ and $x^2 + x - 1 = 0$ have a common root, then $\alpha(\beta + \gamma)$ is equal to

[JEE (Main)-2019]

- (1) 0
- (2) $\alpha \gamma$
- **(3)** βγ
- (4) $\alpha\beta$
- 27. Let α and β be two real roots of the equation $(k+1)\tan^2 x - \sqrt{2} \cdot \lambda \tan x = (1-k)$, where $k(\neq -1)$ 1) and λ are real numbers. If $\tan^2(\alpha + \beta) = 50$, then a value of λ is [JEE (Main)-2020]
 - (1) 10
- (2) $10\sqrt{2}$
- (3) 5
- (4) $5\sqrt{2}$
- 28. Let α and β be the roots of the equation $x^{2}-x-1=0$. If $p_{k}=(\alpha)^{k}+(\beta)^{k}$, $k \ge 1$, then which one of the following statements is not true?

[JEE (Main)-2020]

- (1) $p_3 = p_5 p_4$
- (2) $(p_1 + p_2 + p_3 + p_4 + p_5) = 26$
- (3) $p_5 = 11$
- (4) $p_5 = p_2 \cdot p_3$
- 29. Let S be the set of all real roots of the equation, $3^{x}(3^{x}-1)+2=|3^{x}-1|+|3^{x}-2|$. Then S

[JEE (Main)-2020]

- (1) Contains at least four elements
- (2) Is a singleton
- (3) Contains exactly two elements
- (4) Is an empty set
- 30. The number of real roots of the equation, $e^{4x} + e^{3x} - 4e^{2x} + e^{x} + 1 = 0$ is [JEE (Main)-2020]
 - (1) 4
- (2) 2
- (3) 3
- (4) 1

- 31. Let $a, b \in R$, $a \ne 0$ be such that the equation, $ax^2 - 2bx + 5 = 0$ has a repeated root α , which is also a root of the equation, $x^2 - 2bx - 10 = 0$. If β is the other root of this equation, then α^2 + β^2 is equal to [JEE (Main)-2020]
 - (1) 25
- (2) 24
- (3) 26
- (4) 28
- 32. Let α and β be the roots of the equation, $5x^2 + 6x - 2 = 0$. If $S_n = \alpha^n + \beta^n$, n = 1, 2, 3, ...[JEE (Main)-2020]

 - (1) $5S_6 + 6S_5 = 2S_4$ (2) $6S_6 + 5S_5 + 2S_4 = 0$

 - (3) $6S_6 + 5S_5 = 2S_4$ (4) $5S_6 + 6S_5 + 2S_4 = 0$
- 33. Let f(x) be a quadratic polynomial such that f(-1) + f(2) = 0. If one of the roots of f(x) = 0 is 3, then its other root lies in [JEE (Main)-2020]
 - (1) (-1, 0)
- (2) (-3, -1)
- (3) (0, 1)
- (4) (1, 3)
- 34. If α and β are the roots of the equation $x^2 + px + 2 = 0$ and $\frac{1}{\alpha}$ and $\frac{1}{\beta}$ are the roots of the equation $2x^2 + 2qx + 1 = 0$, then

$$\left(\alpha - \frac{1}{\alpha}\right)\left(\beta - \frac{1}{\beta}\right)\left(\alpha + \frac{1}{\beta}\right)\left(\beta + \frac{1}{\alpha}\right)$$
 is equal to

[JEE (Main)-2020]

- (1) $\frac{9}{4}(9-q^2)$ (2) $\frac{9}{4}(9+p^2)$
- (3) $\frac{9}{4}(9+q^2)$ (4) $\frac{9}{4}(9-p^2)$
- 35. The set of all real values of λ for which the quadratic equations, $(\lambda^2 + 1) x^2 - 4\lambda x + 2 = 0$ always have exactly one root in the interval [JEE (Main)-2020] (0, 1) is
 - (1) (-3, -1)
- (2) (2, 4]
- (3) (0, 2)
- (4) (1, 3]
- 36. Let $\lambda \neq 0$ be in R. If α and β are the roots of the equation, $x^2 - x + 2\lambda = 0$ and α and γ are the roots of the equation, $3x^2 - 10x + 27\lambda = 0$, then

 $\frac{\beta\gamma}{\lambda}$ is equal to

[JEE (Main)-2020]

- (1) 18
- (2) 9
- (3) 27
- (4) 36

- 37. The product of the roots of the equation $9x^2 - 18|x| + 5 = 0$, is [JEE (Main)-2020]

- 38. If α and β are the roots of the equation, $7x^2 - 3x - 2 = 0$, then the value of $\frac{\alpha}{1 - \alpha^2} + \frac{\beta}{1 - \beta^2}$ is equal to [JEE (Main)-2020]

- 39. If α and β be two roots of the equation $x^2 - 64x + 256 = 0$. Then the value of

$$\left(\frac{\alpha^3}{\beta^5}\right)^{\frac{1}{8}} + \left(\frac{\beta^3}{\alpha^5}\right)^{\frac{1}{8}}$$
 is [JEE (Main)-2020]

- (1) 3
- (2) 2
- (3) 4
- (4) 1
- 40. If α and β are the roots of the equation 2x(2x + 1) = 1, then β is equal to

[JEE (Main)-2020]

- (1) $2\alpha^2$
- (2) $-2\alpha(\alpha + 1)$
- (3) $2\alpha(\alpha-1)$
- (4) $2\alpha(\alpha + 1)$
- 41. The least positive value of 'a' for which the equation, $2x^2 + (a-10)x + \frac{33}{2} = 2a$ has real roots [JEE (Main)-2020]
- 42. The integer 'k', for which the inequality $x^2 - 2(3k - 1)x + 8k^2 - 7 > 0$ is valid for every x in R, is: [JEE (Main)-2021]
 - (1) 2

(2) 3

(3) 4

- (4) 0
- Let α and β be the roots of $x^2 6x 2 = 0$. If $a_n = \alpha^n - \beta^n$ for $n \ge 1$, then the value of $\frac{a_{10} - 2a_8}{a_{10} - a_{10}}$ is : [JEE (Main)-2021]
 - (1) 2

(2) 4

(3) 3

(4) 1

Let α and β be two real numbers such that α + β = 1 and $\alpha\beta$ = -1. Let p_n = $(\alpha)^n$ + $(\beta)^n$, p_{n-1} = 11 and p_{n+1} = 29 for some integer $n \ge 1$.

Then, the value of p_n^2 is _____

[JEE (Main)-2021]

45. The value of $4 + \frac{1}{5 + \frac{1}{4 + \frac{1}{5 + \frac{1}{4 + \dots \infty}}}}$ is :

JEE (Main)-2021]

- (1) $2 + \frac{4}{\sqrt{5}}\sqrt{30}$
 - (2) $4 + \frac{4}{\sqrt{5}}\sqrt{30}$
- (3) $2 + \frac{2}{5}\sqrt{30}$ (4) $5 + \frac{2}{5}\sqrt{30}$
- (1) $2 + \sqrt{3}$
 - (2) $3+2\sqrt{3}$
 - (3) $4 + \sqrt{3}$
 - (4) $1.5 + \sqrt{3}$

[JEE (Main)-2021]

47. The number of real roots of the equation

 $e^{6x} - e^{4x} - 2e^{3x} - 12e^{2x} + e^{x} + 1 = 0$ is

[JEE (Main)-2021]

(1) 1

(2) 2

(3) 6

- (4) 4
- 48. If α , β are roots of the equation $x^2 + 5(\sqrt{2})x + 10 = 0$, $\alpha > \beta$ and $P_n = \alpha^n - \beta^n$ for each positive integer n, then the value of

$$\left(\frac{P_{17}P_{20} + 5\sqrt{2}P_{17}P_{19}}{P_{18}P_{19} + 5\sqrt{2}P_{18}^2}\right) \text{ is equal to } \underline{\hspace{1cm}}.$$

[JEE (Main)-2021]

- 49. The number of real solutions of the equation, $x^2 - |x| - 12 = 0$ is [JEE (Main)-2021]
 - (1) 4

(2) 2

(3) 1

(4) 3

50. If a + b + c = 1, ab + bc + ca = 2 and abc = 3, then the value of $a^4 + b^4 + c^4$ is equal to

[JEE (Main)-2021]

- 51. Let α , β be two roots of the equation $x^{2} + (20)^{4} x + (5)^{2} = 0$. Then $\alpha^{8} + \beta^{8}$ is equal to
 - [JEE (Main)-2021]

- (1) 160
- (2) 10
- (3) 50

- 52. Let $\alpha = \max_{x \in \mathbb{R}^n} \{8^{2\sin 3x} \cdot 4^{4\cos 3x}\}$ and

$$\beta = \min_{x \in \mathbb{R}} \left\{ 8^{2\sin 3x} \cdot 4^{4\cos 3x} \right\}.$$

If $8x^2 + bx + c = 0$ is a quadratic equation whose

roots are $\alpha^{\frac{1}{5}}$ and $\beta^{\frac{1}{5}}$, then the value of c – b is equal [JEE (Main)-2021]

(1) 43

(2) 42

(3) 50

- (4) 47
- 53. The number of real roots of the equation $e^{4x} - e^{3x} - 4e^{2x} - e^{x} + 1 = 0$ is equal to

[JEE (Main)-2021]

- 54. The sum of all integral values of $k(k \neq 0)$ for which the equation $\frac{2}{x-1} - \frac{1}{x-2} = \frac{2}{k}$ in x has no real [JEE (Main)-2021] roots, is
- Let $\lambda \neq 0$ be in **R**. If α and β are the roots of the equation $x^2 - x + 2\lambda = 0$, and α and γ are the roots of the equation $3x^2 - 10x + 27\lambda = 0$, then $\frac{\beta \gamma}{\lambda}$ is [JEE (Main)-2021] equal to
- The set of all values of k > -1, for which the equation $(3x^2 + 4x + 3)^2 - (k + 1)(3x^2 + 4x + 3)(3x^2 + 4x + 2) + k(3x^2 + 4x + 2)^2 = 0$ has real
 - (1) $\left(\frac{1}{2}, \frac{3}{1}\right| \{1\}$ (2) $\left|-\frac{1}{2}, 1\right|$
 - (3) [2, 3)
- 57. cosec18° is a root of the equation

[JEE (Main)-2021]

- $(1) x^2 2x + 4 = 0$
 - (2) $x^2 + 2x 4 = 0$
- (3) $x^2 2x 4 = 0$
- (4) $4x^2 + 2x 1 = 0$
- 58. The number of pairs (a, b) of real numbers, such that whenever α is a root of the equation $x^2 + ax + b = 0$, α^2 – 2 is also a root of this equation, is:

[JEE (Main)-2021]

(1) 8

(2) 4

(3) 6

(4) 2

59. Let f(x) be a polynomial of degree 3 such that $f(k) = -\frac{2}{k}$ for k = 2, 3, 4, 5. Then the value of 52 - 10 f(10) is equal to ____

[JEE (Main)-2021]

60. If α and β are the roots of the quadratic equation, $x^2 + x \sin\theta - 2\sin\theta = 0, \ \theta \in \left(0, \frac{\pi}{2}\right), \ \text{then}$

$$\frac{\alpha^{12} + \beta^{12}}{(\alpha^{-12} + \beta^{-12}) \cdot (\alpha - \beta)^{24}}$$
 is equal to

[JEE (Main)-2021]

- (1) $\frac{2^{12}}{(\sin \theta 8)^6}$ (2) $\frac{2^{12}}{(\sin \theta 4)^{12}}$
- (3) $\frac{2^6}{(\sin\theta + 8)^{12}}$ (4) $\frac{2^{12}}{(\sin\theta + 8)^{12}}$
- 61. If for some p, q, $r \in \mathbb{R}$, not all have same sign, one of the roots of the equation $(p^2 + q^2)x^2 - 2q(p + r)x$ + q^2 + r^2 = 0 is also a root of the equation x^2 + 2x

$$-8 = 0$$
, then $\frac{q^2 + r^2}{p^2}$ is equal to ______.

[JEE (Main)-2022]

62. If α , β are the roots of the equation

$$x^{2} - \left(5 + 3^{\sqrt{\log_{3} 5}} - 5^{\sqrt{\log_{5} 3}}\right) + 3\left(3^{(\log_{3} 5)\frac{1}{2}} - 5^{(\log_{5} 3)\frac{2}{3}} - 1\right) = 0,$$

then the equation, whose roots are $\alpha + \frac{1}{8}$ and

$$\beta + \frac{1}{\alpha}$$
, is

[JEE (Main)-2022]

- (1) $3x^2 20x 12 = 0$ (2) $3x^2 10x 4 = 0$
- (3) $3x^2 10x + 2 = 0$ (4) $3x^2 20x + 16 = 0$
- 63. Let a, b be the roots of the equation

$$x^2 - \sqrt{2}x + \sqrt{6} = 0$$
 and $\frac{1}{\alpha^2} + 1$, $\frac{1}{\beta^2} + 1$, $\frac{1}{\beta^2} + 1$ be

the roots of the equation $x^2 + ax + b = 0$. Then the roots of the equation $x^2 - (a + b - 2)x + (a +$ b + 2) = 0 are [JEE (Main)-2022]

- non-real complex number
- real and both negative
- (3) real and both positive
- (4) real and exactly one of them is positive

64. Let $f(x) = ax^2 + bx + c$ be such that f(1) = 3, $f(-2) = \lambda$ and f(3) = 4. If f(0) + f(1) + f(-2) + f(3) = 14, then λ is equal to **[JEE (Main)-2022]**

- (1) -4
- (2) $\frac{13}{2}$
- (3) $\frac{23}{2}$
- (4) 4
- 65. Let a, b(a > b) be the roots of the quadratic equation $x^2 x 4 = 0$. If $P_n = \alpha^n \beta^n$, $n \in \mathbb{N}$,

then $\frac{P_{15}P_{16}-P_{14}P_{16}-P_{15}^2+P_{14}P_{15}}{P_{13}P_{14}} \quad \text{is equal to}$

[JEE (Main)-2022]

- 66. If the sum of the squares of the reciprocals of the roots α and β of the equation $3x^2 + \lambda x 1 = 0$ is 15, then $6(\alpha^3 + \beta^3)^2$ is equal to :
 - (1) 18

(2) 24

- (3) 36
- (4) 96

[JEE (Main)-2022]

- 67. The sum of all the real roots of the equation $(e^{2x} 4)(6e^{2x} 5e^x + 1) = 0$ is
 - $(1) \log_{e} 3$
- (2) -log₂3
- $(3) \log_{e} 6$
- (4) -log_6

[JEE (Main)-2022]

- 68. Let $a, b \in R$ be such that the equation $ax^2 2bx + 15 = 0$ has a repeated root α . If α and β are the roots of the equation $x^2 2bx + 21 = 0$, then $\alpha^2 + \beta^2$ is equal to
 - (1) 37

(2) 58

- (3) 68
- (4) 92

[JEE (Main)-2022]

69. The sum of the cubes of all the roots of the equation $x^4 - 3x^3 - 2x^2 + 3x + 1 = 0$ is _____.

[JEE (Main)-2022]

70. Let p and q be two real numbers such that p + q = 3

and
$$p^4 + q^4 = 369$$
. Then $\left(\frac{1}{p} + \frac{1}{q}\right)^{-2}$ is equal to _____

[JEE (Main)-2022]

- 71. If the sum of all the roots of the equation $e^{2x} 11e^x -$
 - $45e^{-x} + \frac{81}{2} = 0$ is $\log_e p$, then *p* is equal to _____.

[JEE (Main)-2022]

72. Let α , β be the roots of the equation $x^2 - 4\lambda x + 5 = 0$ and α , γ be the roots of the equation

$$x^2 - (3\sqrt{2} + 2\sqrt{3})x + 7 + 3\lambda\sqrt{3} = 0$$
, $\lambda > 0$. If

 $\beta + \lambda = 3\sqrt{2}$, then $(\alpha + 2\beta + \gamma)^2$ is equal to _____

[JEE (Main)-2022]

- 73. The number of real solutions of the equation $e^{4x} + 4e^{3x} 58e^{2x} + 4e^{x} + 1 = 0$ is _____
- 74. Let f(x) be a quadratic polynomial such that f(-2) + f(3) = 0. If one of the roots of f(x) = 0 is -1, then the sum of the roots of f(x) = 0 is equal to:
 - (1) $\frac{11}{3}$

(2) $\frac{7}{3}$

- (3) $\frac{13}{3}$
- (4) $\frac{14}{3}$

[JEE (Main)-2022]

75. Let f(x) and g(x) be two real polynomials of degree 2 and 1 respectively. If $f(g(x)) = 8x^2 - 2x$ and $g(f(x)) = 4x^2 + 6x + 1$, then the value of f(2) + g(2) is

[JEE (Main)-2022]

- 76. Let f(x) be a quadratic polynomial with leading coefficient 1 such that f(0) = p, $p \ne 0$, and
 - $f(1) = \frac{1}{3}$. If the equations f(x) = 0 and fofofo f(x)
 - = 0 have a common real root, then f(-3) is equal to _____.

[JEE (Main)-2022]

77. The sum of all real value of x for which

$$\frac{3x^2 - 9x + 17}{x^2 + 3x + 10} = \frac{5x^2 - 7x + 19}{3x^2 + 5x + 12}$$
 is equal to

______ [JEE (Main)-2022]

- 78. The minimum value of the sum of the squares of the roots of $x^2 + (3 a)x + 1 = 2a$ is [JEE (Main)-2022]
 - (1) 4

(2) 5

(3) 6

(4) 8