

Pilani Campus

Firmware verification for Automotive Wireless Battery Monitoring Systems

Author: Sai Kartik (2020A3PS0435P) Manager: Mr. Abhinandan Subbarao

Professor: Dr. Sathisha Shet K PS Station: Analog Devices, India

Aim

The objective of this project is to validate the firmware on the battery monitor sensors in order to ensure its compliance with established functional safety criteria for a wireless battery monitoring system used in an automotive environment.

Introduction

- Growing need for modern cockpit electronics: Result of the industry's shift toward electric mobility
- Also a growing need for highly safe systems to monitor various components of the automotive in concern
- The battery is the most important component in any electric vehicle and requires constant monitoring. Especially considering most of the vehicles have packs with Li-ion substrates. The damage can be catastrophic if not monitored closely and properly

Introduction

- Growing need for modern cockpit electronics: Result of the industry's shift toward electric mobility
- Also a growing need for highly safe systems to monitor various components of the automotive in concern
- The battery is the most important component in any electric vehicle and requires constant monitoring. Especially considering most of the vehicles have packs with Li-ion substrates. The damage can be catastrophic if not monitored closely and properly
- ADI provides various wBMS solutions that can help address concerns regarding the same

Product Walkthrough

- Hardware setup
 - Sensors
 - Monitors
 - Connected wirelessly through specific connection protocols
 - Specialised library designed to work with client microcontollers to collect data
 - Various safety guidelines agreed upon by all parties involved. These will be implemented on all the hardware components involved
- Software setup
 - Relevant firmware that runs on each controller present
 - Using the software that runs on the sensors, various functional safety capabilities can be tested
 - \bullet Either inject erroneous instructions into the sensor, or corrupt the sensor output
 - Compare this to a set baseline to evaluate the performance
 - Various frameworks that utilise this concept have been developed and tested in the field

Testing Methodologies

- Original testing procedure was implemented using python scripts with a combination of scripting techniques and OOP concepts
 - Problems: Difficult to maintain, non-flexible framework
- Solution: Newer test frameworks being developed are utilising OOP concepts to aid in easy maintenance of the codebase and retain flexibility of requirement-based changes
- Use APIs exposed by ADI's internal software to directly communicate with the system to evaluate/baseline performance. Also helps in keeping the codebase modular

Work Progress

- Completed understanding of various hardware and software components of the system
- Analysed various faults with the previous testing methodologies and how they can be improved
- Basic implementation of the newer framework using OOP concepts has been implemented. With minor modifications, the test framework will be easy to use for all possible test cases
- Modularised code to a large extent
- (Timelines for specific events updated in the diary)

Future Work

- Complete implementation of said OOP framework
- Work on automation of testing the various cases possible [1]
- Extend the framework to work with various sensor families

Product Innovation

A major innovative aspect of this project is to purpose various freely available tools (like python/pytest) [2, 3] to generate automatic reports on testing various firmware which is very specific to a certain use case

References¹

- [1] Automation of testing: (CI/CD Pipeline). URL: https://www.jenkins.io/.
- [2] Python docs. URL: https://docs.python.org/3.9/.
- [3] Python test scripts. URL: https://docs.pytest.org/en/7.1.x/contents.html.

¹Other documents regarding specific hardware/software architecture are for internal use only and cannot be shared as open sources/references