

Cel projektu

Celem projektu jest opracowanie strategii transportu jęczmienia i piwa w Shire tak, aby zminimalizować koszty naprawy dróg, utrzymując maksymalną ilość piwa dostarczanego do karczm.

Problem wymaga:

- odpowiedniego odwzorowania pól jęczmienia, browarów, karczm i dróg w strukturach danych,
- obliczenia maksymalnego przepływu (jęczmień → browary → piwo → karczmy),
- uwzględnienia kosztów naprawy zniszczonych dróg,
- wprowadzenia zróżnicowanej wydajności pól w różnych ćwiartkach Shire,
- opracowanie sposobu wyszukiwania słów kluczowych w dokumentach (takich jak "piwo", "jęczmień", "browar").

Podział na podproblemy

Znalezienie maksymalnej ilości piwa, którą można dostarczyć do karczm

Przy zachowaniu ilości przewożonego towaru koszt naprawy dróg był możliwie najmniejszy. Ilości jęczmienia wyrastające w różnych ćwiartkach Shire różnią się od siebie

Zapisanie rozwiązania na przyszłość. Wyszukiwać w rozwiązaniach słów.

Założenia

- Cały transport odbywa się jednego dnia.
- Jedną krawędzią skierowaną mogą być przepuszczane rożne jednostki towaru na raz.
- Browar po wykorzystaniu pojemności nie przetwarza więcej jęczmienia, ale towar może być przepuszczany dalej.
- Koszt naprawy jest liczony dla każdej wykorzystanej drogi tylko raz.

Poniższe założenia wynikają ze sposobu implementacji projektu oraz ustaleń zespołu:

- Każde pole musi znajdować się wewnątrz ćwiartki.
- Wszystkie wartości zmiennoprzecinkowe ograniczone są do dwóch miejsc po przecinku.

Język: C++ (Backend), C# (interfejsy graficzne)

Środowisko: Visual Studio, Unity (GUI),

Windows Presentation Foundation (GUI generatora)

Rozwiązanie składa się z sześciu modułów:

01

Analizator przepływu

Analizator wyznacza maksymalny przepływ o minimalnym koszcie, używając algorytmów
Edmonds'a-Karp'a oraz
Busacker'a-Gowen'a, na podstawie pliku z danymi wejściowymi.

02

Wyszukiwarka tekstu

Wyszukiwarka tekstu – Program służy do wyszukiwania wzorca tekstowego w pliku tekstowym przy użyciu wybranego algorytmu wyszukiwania.

Obsługiwane algorytmy wyszukiwania:

- Naiwny "Szukaj wszędzie po kolei"
- Rabin-karp "Szukaj po numerkach"
- KMP "Jak już raz coś nie pasuje, to nie wracaj tam"
- Boyer-Moore "Zaczynaj od końca i skacz dalej"

03

04

Archiwizator plików

Archiwizator plików - umożliwia kompresję i dekompresję plików za pomocą **algorytmu Huffman'a.**

Generator map

Generator map – generuje pliki wejściowe, pozwala również na dostosowanie wyjściowego grafu miasta, różnorodności połączeń czy wyboru pomiędzy połączeniami jednokierunkowymi lub dwukierunkowymi. 05

Interfejs graficzny generatora

Interfejs graficzny generatora –
pozwala na przyjazne dla użytkownika
wprowadzanie danych do generatora.
Dba o poprawność danych
wejściowych generatora oraz
proponuje rekomendowane wartości.

Interfejs główny

Interfejs główny - aplikacja zintegrowana z pięcioma poprzednimi modułami, pozwalająca również na wygodne tworzenie i wizualizację danych wejściowych oraz wizualizację danych wyjściowych.

Zespół

Karol Ławicki

Koordynator, Programista GUI, integrator

Dominika Karbowiak

Programistka, autorka dokumentacji, testerka

Jakub Klonowski

Projektant danych wejściowych, programista, specjalista pomocniczy

Mateusz Wójciak

Inżynier modelu grafowego, Programista grafów przepływowych

Weronika Gburek

Programistka, testerka, autorka dokumentacji i prezentacji

Zespół 5 (LE)

Podział obowiązków

Analizator przepływu ~Mateusz Wójciak

Generator map
Interfejs graficzny generatora
~Jakub Klonowski

Wyszukiwarka tekstu ~Weronika Gburek

~Dominika Karbowiak

05

Interfejs główny ~Karol Ławicki

O3 Archiwizator plików ~Dominika Karbowiak

06

Testy ~Wszyscy

Szczegółowy podział zadań

Mateusz Wójciak

Implementacja struktur danych i algorytmu maksymalnego przepływu, testowanie i rozszerzenie analizatora o koszty (Min-Cost Max-Flow)

Dominika Karbowiak

Implementacja kompresji i dekompresji danych metodą Huffmana, eksport danych, testowanie i poprawki modułu wyszukiwania, pomoc przy rozbudowie analizatora przepływu, testy jednostkowe

Weronika Gburek

Implementacja algorytmów wyszukiwania wzorców (naiwny, Rabin-Karp, KMP, Boyer-Moore), import danych, przygotowanie prezentacji i dokumentacji, pomoc przy rozbudowie analizatora przepływu, testy wyszukiwarki

Jakub Klonowski

Projektowanie danych wejściowych, generowanie sieci residualnych, integracja danych wejściowych z pozostałymi modułami, implementacja obsługi ćwiartek (algorytmów geometrycznych), budowa drzewa Huffmana

Karol Ławicki

Planowanie i koordynacja prac projektowych, projekt i implementacja interfejsu graficznego, integracja frontendu z backendem, dokumentacja techniczna, pomoc przy algorytmach geometrycznych (m.in. wypukła otoczka), ogólna pomoc w różnych częściach projektu