Analyse — CM: 8

Par Lorenzo

07 novembre 2024

0.1 Suites adjacentes

Définition 0.1. Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites. Elles sont adjacentes si.

- (i) (u_n) est croissante, v_n décroissante
- (ii) $\forall n \in N, u_n \leq v_n$
- (iii) $\lim_{n\to+\infty} (v_n u_n) = 0$

Théorème 0.1. Si $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont deux suites adjacentes, alors elles convergent vers la même limite.

Démonstration 0.1.

Une suite $(u_n)_{n\in\mathbb{N}}$ croissante et une suite $(v_n)_{n\in\mathbb{N}}$ décroissante.

Ainsi $(u_n)_{n\in\mathbb{N}}$ est majorée par v_0 donc elle converge vers une limite l_1 et $(v_n)_{n\in\mathbb{N}}$ est minorée par u_0 donc elle converge vers une limite l_2

$$comme \lim_{n\to+\infty} (v_n - u_n) = 0 \implies l_2 - l_1 = 0 \implies l_2 = l_1$$

0.2 Les Sous-suites

Définition 0.2. Soit $(u_n)_{n\in\mathbb{N}}$. Une sous-suite ou suite extraite est une suite $(u_{\phi(n)})_{n\in\mathbb{N}}$ où

$$\phi: \underset{n \longmapsto \phi(n)}{\mathbb{N} \longmapsto \mathbb{N}}$$

est une fonction croissante.

Proposition 0.1.

Si la suite $(u_n)_{n\in\mathbb{N}}$ converge vers l, alors toute suite extraite convergent vers l.

Démonstration 0.2.

$$\lim_{n\to+\infty} u_n = l \iff \forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \geq N, |u_n - l| < \varepsilon$$

Comme ϕ est croissante, en particulier si $n \geq N$ alors $\phi(n) \geq \phi(N)$ et $|u_{\phi(n)} - l| < \varepsilon$.
Autrement dit, $\lim_{n\to+\infty} u_{\phi(n)} = l$

Corollaire 0.1. Si il existe une sous-suite qui diverge, ou deux sous-suites qui convergent vers deux limites différentes, alors la suite diverge.

Théorème 0.2. Le théorème de Bolzano-Weierstrass dit que toute suite bornée admet au moins une sous-suite qui converge.

Démonstration 0.3.

On procède par dichotomie. Comme la suite est bornée, on peut supposer qu'elle prend ses valeurs dans l'intervalle [a, b]

On pose $a_0 = a$, $b_0 = b$ et $\phi(0) = 0$ La suite $(u_n)_{n \in \mathbb{N}}$ a une infinité de valeurs dans $[a, \frac{a+b}{2}]$ ou $[\frac{a+b}{2}, b]$.

 \tilde{On} note $[a_1, \tilde{b}_1]$ cet intervalle $a_0 = a_1$ et

 $a_1=a$ si (u_n) a une infinité de valeurs dans $[a_1,\frac{a+b}{2}]$ sinon $a_1=\frac{a+b}{2}$

$$b_1 = \frac{a+b}{2}$$
 si (u_n) a une infinité de valeurs dans $[\frac{a+b}{2}, b_1]$ sinon $b_1 = b$

On peut ensuite construire un intervalle $[a_n, b_n]$ de longeur $\frac{b-a}{2^n}$ et un entier $\phi(n) \ge \phi(n-1)$ avec $u_{\phi(n)} \in [a_n, b_n]$.

Par construction la suite $(a_n)_{n\in\mathbb{N}}$ est croissante et la suite $(b_n)_{n\in\mathbb{N}}$ est décroissante, et $a_n \leq b_n$

De plus $\lim_{n\to+\infty} b_n - a_n = \lim_{n\to+\infty} \frac{b-a}{2^n} = 0.$

Donc xna et xnb sont adjacentes, elles convergent vers la même limite l.

Mais $u_{\phi(n)} \in [a_n, b_n]$, ou encore $a_n \le u_{\phi(n)} \le b_n$

et d'après le théorème des gendarmes, $\lim_{n\to+\infty} u_{\phi(n)} = l$

1 Etude de fonctions

1.1 Notion de fonction

Définition 1.1. Une fonction d'une variable réelle à valeurs réelles est une application $f: U \mapsto_{f(x)}^{\mathbb{R}} 0$ ù U est une partie de \mathbb{R} appelée ensemble de définition de f.

Le graphe Γ est la partie du plan \mathbb{R}^2 défini par $\Gamma = \{(x, f(x)); x \in U\}$. Pour $x \in U$, f(x) est l'image de x par f.

1.2 Opérations sur les fonctions

Soient $f:U\longmapsto\mathbb{R}$ et $g:U\longmapsto\mathbb{R}$ définies sur le même domaine U.

On définit la somme de deux fonctions h=f+g comme

$$\forall x \in U, h(x) = (f+g)(x) = f(x) + g(x)$$

On définit le produit de 2 fonctions $h=f\times g$ comme

$$\forall x \in U, h(x) = (f \times g)(x) = f(x) \times g(x)$$

Remarques 1.1. La multiplication par un scalaire $\lambda \in \mathbb{R}$ est définie comme, $\forall x \in U, (\lambda f)(x) = \lambda f(x)$

 $Ax \in \mathcal{O}, (Af)(x) = Af(x)$

1.3 Fonction monotone, bornée

Définition 1.2. Soient $f: U \longrightarrow \mathbb{R}$ et $g: U \longmapsto \mathbb{R}$

- 1. $f \le g \ si \ \forall x \in U, f(x) \le g(x)$
- 2. $f \ge 0$ si $\forall x \in U, f(x) \ge 0$
- 3. f est constante si $\exists C \in \mathbb{R}$ tel que $\forall x \in U, f(x) = C$

Définition 1.3.

- 1. la fonction f est croissante si $\forall x, y \in U, x \leq y \implies f(x) \leq f(y)$.
- 2. la fonction f est strictement croissante si $\forall x, y \in U, x < y \implies f(x) < f(y)$.
- 3. la fonction f est décroissante si $\forall x, y \in U, x \leq y \implies f(x) \geq f(y)$.
- 4. la fonction f est strictement décroissante si $\forall x, y \in U, x < y \implies f(x) > f(y)$.
- 5. f est monotone si elle est croissante ou décroissante.

Définition 1.4.

- 1. On dit que f est majorée si $\exists M \in \mathbb{R}, \forall x \in U, f(x) \leq M$.
- 2. On dit que f est minorée si $\exists m \in \mathbb{R}, \forall x \in U, f(x) \geq m$.
- 3. On dit que f est bornée si elle est majorée et minorée, ou encore si $\exists M \in \mathbb{R}, \forall x \in U, |f(x)| \leq M$

1.4 Parité et périodicité

Définition 1.5. Soit I un intervalle symétrique par rapport à 0 (I =] -a; a[) et $f : I \longrightarrow \mathbb{R}$.

- 1. On dit que f est paire si $\forall x \in I, f(-x) = f(x)$
- 2. On dit que f est impaire si $\forall x \in I, f(-x) = -f(x)$

Définition 1.6. Soient $f : \mathbb{R} \longmapsto \mathbb{R}$ et T un nombre réel strictement positif. La fonction f est périodique de période T si $\forall x \in \mathbb{R}, f(x+T) = f(x)$