Week 2 Review

Week 2 review

- Using logic gates
 - Combinational circuits
 - Circuit reduction
 - Karnaugh maps

- How can you express a two-input XOR gate as a combination of NAND and NOT gates?
 - Draw the circuit using only these two logic gates.

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

Remember De Morgan's!

$$(\overline{W} + \overline{Z}) = (\overline{W} Z)$$

How can you implement a NOT gate from a 2-input NAND gate?

How can you implement a NOT gate from a 2-input NAND gate?

Question #2 - Minterms

Write Y in SOM (Sum Of Minterms) form.

$$Y = \overline{A} \cdot \overline{B} \cdot C + \overline{A} \cdot B \cdot \overline{C} + A \cdot B \cdot C$$

$$Y = m_1 + m_2 + m_4 + m_7$$

A	В	С	Y
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

• Given the minterms below, can you fill in the truth table on the right?

$$Y = m_2 + m_3 + m_7 + m_9 + m_{12} + m_{14}$$

A	В	С	D	Y
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

• Given the minterms below, can you fill in the truth table on the right?

$$Y = m_2 + m_3 + m_7 + m_9 + m_{12} + m_{14}$$

A	В	С	D	Y
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	1
1	1	1	1	0

What is the most reduced form, in sum of products form, of the function from the truth table on the right?

$$Y = m_0 + m_1 + m_2 + m_5$$

+ $m_7 + m_8 + m_9$
+ $m_{10} + m_{13} + m_{15}$

A	В	С	D	Y
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

Question #4 (cont'd)

	<u>C</u> · <u>D</u>	<u>C</u> ·D	C ·D	C · <u>D</u>
$\overline{A} \cdot \overline{B}$	1	1	0	1
Ā·B	0	1	1	0
A·B	0	1	1	0
A·B	1	1	0	1

$$Y = \overline{C} \cdot D + B \cdot D + \overline{B} \cdot \overline{D}$$

Question #4 (alternative)

• An alternative grouping:

	<u>C</u> · <u>D</u>	<u>C</u> ∙D	C ·D	O Ū
$\overline{A} \cdot \overline{B}$	1	1	0	1
Ā·B	0	1	1	0
A·B	0	1	1	0
A·B	1	1	0	1

$$Y = \overline{B} \cdot \overline{C} + B \cdot D + \overline{B} \cdot \overline{D}$$

Helpful Hint

