Departamento de Análisis Matemático, Universidad de Granada

Variable Compleja I, Grado en Ingeniería Informática y Matemáticas

Convcatoria ordinaria

Ejercicio 1. (2.5 puntos) Sean $f, g \in \mathcal{H}(D(0,1))$ y supongamos que, para todo $n \in \mathbb{N}$ con $n \ge 2$, se tiene

$$f'(1/n)g(1/n) - f(1/n)g'(1/n) = 0.$$

¿Qué se puede afirmar sobre f y g?

Ejercicio 2. (2.5 puntos) Probar que, para $a, t \in \mathbb{R}^+$, se tiene:

$$\int_{-\infty}^{+\infty} \frac{\cos(tx)}{(x^2 + a^2)^2} dx = \frac{\pi}{2a^3} (1 + at) e^{-at}.$$

Ejercicio 3. (2.5 + 1.5 puntos) Sea $f \in \mathcal{H}(\mathbb{C}^*)$ y supongamos que f diverge en 0 y en ∞ . Probar que f se anula en algún punto de \mathbb{C}^* . (**Extra. 1.5 puntos**) Demostrar que, de hecho, f se anula al menos dos veces (contando multiplicidad) y que tiene un número finito de ceros.

Ejercicio 4. (2.5 puntos) Para cada $n \in \mathbb{N} \cup \{0\}$, sea $f_n : \mathbb{C} \to \mathbb{C}$ la función dada por

$$f_n(z) = \int_n^{n+1} \frac{\sin(t+z)}{1+t^2} dt \quad \forall z \in \mathbb{C}.$$

- a) Probar que $f_n \in \mathcal{H}(\mathbb{C})$.
- b) Probar que la serie de funciones $\sum_{n\geqslant 0} f_n$ converge en $\mathbb C$ y que su suma es una función entera.