Devoir à la maison n° 9

À rendre le 20 décembre

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle bornée telle que $\left(u_n + \frac{u_{2n}}{2}\right) \xrightarrow[n \to +\infty]{} 1$.

- 1) On suppose que (u_n) converge. Montrer qu'elle converge vers $\frac{2}{3}$. Dans toute la suite, on ne suppose plus que (u_n) converge.
 - 2) a) Justifier qu'il existe une sous-suite $(u_{\varphi(n)})$ qui converge. On notera ℓ sa limite.
 - b) Donner une sous-suite de (u_n) qui converge vers $\ell' = 2(1 \ell)$, et une sous-suite de (u_n) qui converge vers $2(1 \ell')$.

On étudie maintenant la suite récurrente définie par $x_0 = \ell$ et pour tout $n \in \mathbb{N}$,

$$x_{n+1} = 2(1 - x_n).$$

On pose également, pour tout $n \in \mathbb{N}$, $y_n = x_n - \frac{2}{3}$.

- 3) a) Pour tout $n \in \mathbb{N}$, donner une sous-suite de $(u_n)_{n \in \mathbb{N}}$ qui converge vers x_n .
 - b) Donner une relation de récurrence entre y_{n+1} et y_n .
 - c) Pour tout $n \in \mathbb{N}$, exprimer $|y_n|$ en fonction de $|y_0|$.
 - d) Montrer que $(|y_n|)$ a une limite, et donner ses valeurs possibles.
 - e) En utilisant 3)a), montrer que si $\ell \neq \frac{2}{3}$, alors (u_n) n'est pas bornée. En déduire que toutes les sous-suites convergentes de (u_n) ont pour limite $\frac{2}{3}$.
- 4) On suppose maintenant que (u_n) diverge.
 - a) En revenant à la définition de limite, montrer qu'il existe $\varepsilon > 0$ et une sous-suite $(u_{\psi(n)})$ tels que pour tout $n \in \mathbb{N}, \left|u_{\psi(n)} \frac{2}{3}\right| > \varepsilon$.
 - **b)** En déduire qu'il existe une sous-suite de (u_n) qui a une limite autre que $\frac{2}{3}$.
 - c) Conclure.

Remarques : On appelle valeur d'adhérence d'une suite tout scalaire ℓ pour lequel il existe une sous-suite de (u_n) de limite ℓ .

- Le théorème de Bolzano-Weierstrass assure que tout suite réelle bornée a au moins une valeur d'adhérence.
- La question 3) assure que (u_n) a une seule valeur d'adhérence.
- La question 4) assure qu'une suite bornée ayant une seule valeur d'adhérence converge vers cette valeur.

— FIN —