Course description Blockchain theory and usage

SDU &

Blockchain theory and usage

Academic Study Board of the Faculty of Engineering

Teaching language: English EKA: T520011102, T520011112 Censorship: Second examiner: External, Second examiner: None Grading: 7-point grading scale, Pass/Fail

Offered in: Odense

Course ID: T520011101 ECTS value: 5

Date of Approval: 07-04-2021

Duration: 1 semester

Version: Archive

▼ Course ID

Level: Master

▼ Course Title

Blockchain theory and usage

▼ ECTS value

▼ Internal Course Code

▼ Responsible study board

Academic Study Board of the Faculty of Engineering

▼ Date of Approval

▼ Course Responsible

Name	Email	Department
Mikkel Baun Kjærgaard	mbkj@mmmi.sdu.dk	Mærsk Mc-Kinney Møller Instituttet, SDU Software Engineering
Sofie Birch	sbirch@tek.sdu.dk	Uddannelsesadministration, Den Tekniske Fakultetsadministration

▼ Teachers

Name	Email	Department	City
Torben Worm	tow@mmmi.sdu.dk	Mærsk Mc-Kinney Møller Instituttet, SDU Software Engineering	

▼ Programme Secretary

•	▼ Programme Secretary				
	Name	Email	Department	City	
	Anna Schollain	avs@tek.sdu.dk	TEK Uddannelseskoordinering og -support , Den Tekniske Fakultetsadministration		

▼ Offered in

▼ Level

▼ Offered in

▼ Duration

▼ Recommended prerequisites

To follow this course in practice it is strongly recommended to have the following:

- Basic programming skills
- · Knowledge of software engineering processes
- Fundamental understanding of mathematics and mathematical notation

▼ Learning objectives - Knowledge At the end of the course the student is expected to:

- Describe the features, and pros and cons, of blockchain technology
- Explain the theory of distributed ledgers Explain the theory of smart contracts
- Describe types of applications of distributed ledgers and smart contracts
- Explain cryptocurrencies, different categorizations and their use Explain byzantine agreement
- Explain the common methods for achieving consensus on the blockchain Describe the security risks and tradeoffs of smart contracts
- Explain authenticated agreement
- Explain distributed storage
- Explain symmetric and asymmetric cryptography

▼ Learning objectives - Skills

Explain concepts behind and implementation of the following:

• Distributed ledgers

- · Smart contracts
- Decentralization Cryptocurrencies
- Ciphers and encryption

▼ Learning objectives - Competences

- Ability to design and implement an application based on blockchain technology
- Ability to analyse the application of blockchain technologies to specific problems

 Ability to rationalize and motivate over the use of blockchain database versus traditional databases and vice-versa for applications
- Ability to implement a prototype using blockchain technology

▼ Content

The purpose of the course is to give an understanding of distributed ledgers, decentralization, and smart contracts. The course provides both a theoretical and practical perspective of blockchain and related technologies.

The following topics will be covered

- The theory behind distributed ledgers, decentralization, and smart contracts Cryptocurrencies
- Basics of Cryptography
- Tools and technologies for implementing blockchain, smart contracts, and cryptocurrencies

▼ URL for Skemaplan

Odense Show full time table

▼ Teaching Method

Lectures, laboratory exercises, and project work.

▼ Number of lessons

48 hours per semester

▼ Teaching language

▼ Examination regulations

▼ Exam regulations

▼ Name

Exam regulations

▼ Examination is held

By the end of the semeste

▼ Tests

▼ Exam

▼ EKA

T520011102

▼ Name

▼ Description

The individual portfolio/project report will be included in the assessment.

▼ Form of examination

▼ Censorship

Second examiner: External

▼ Grading

7-point grading scale

▼ Identification

Student Identification Card - Date of birth

▼ Language

English

▼ ECTS value

▼ Prerequisites

Prerequisite name Prerequisite course Type T520011112, Examination conditions T520011101, Blockchain theory and usage Exam

▼ Exam regulations

▼ Name

Exam regulations

▼ Examination is held

By the end of the semeste

▼ Tests

▼ Examination conditions

▼ EKA

T520011112 ▼ Name

Examination conditions

▼ Description Completion of the mandatory activities and the project in the module is a prerequisite for the exam. Criteria of fulfilment will be determined before the module starts and described in the module plan.

▼ Form of examination Compulsory assignment

▼ Censorship
Second examiner: None

▼ Grading Pass/Fail

▼ Identification Student Identification Card - Date of birth

▼ Language

▼ ECTS value

▼ Courses offered

Coulous Choice				
Period	Offer type	Profile	Programme	Semester
Fall 2020	Optional	Software Engineering 2018-2019	Master of Science in Engineering (Software Engineering) Odense	
Fall 2020	Optional	Software Engineering, MSc, 2020	Master of Science in Engineering (Software Engineering) Odense	

▼ Studieforløb

Profile	Programme	Semester	Period