Structure and Evaluation, Currying, Church Encodings

Sven Tennie

August 8, 2018

Dream IT https://dreamit.de

Introduction

Lambda Calculus

- Invented by Alonzo Church (1920s)
- Equally expressive to the Turing Machine(s)
- Formal Language
- Computational Model
 - Lisp (1950s)
 - ML
 - Haskell
- "Lambda Expressions" in almost every modern programming language

Why should I care?

- Simple Computational Model
 - to describe structure and behaviour (E.g. Operational Semantics, Type Systems)
 - to reason and prove

Why should I care?

- Simple Computational Model
 - to describe structure and behaviour (E.g. Operational Semantics, Type Systems)
 - to reason and prove
- Explains why things in FP are like they are
 - Pure Functions
 - Higher-Order Functions
 - Currying
 - Lazy Evaluation

Why should I care?

- Simple Computational Model
 - to describe structure and behaviour (E.g. Operational Semantics, Type Systems)
 - to reason and prove
- Explains why things in FP are like they are
 - Pure Functions
 - Higher-Order Functions
 - Currying
 - Lazy Evaluation
- Understand FP Compilers
 - Introduce FP stuff into other languages
 - Write your own compiler
 - GHC uses an enriched Lambda Calculus internally

Basics

t ::=	Terms:
X	Variable
$\lambda x.t$	Abstraction
t t	Application

$$t ::=$$
 Terms: x Variable $\lambda x.t$ Abstraction $t t$ Application

Example - Identity

Lambda Calculus

$$t ::=$$
 Terms: x Variable $\lambda x.t$ Abstraction $t \ t$ Application

Example - Identity

Lambda Calculus

$$\underbrace{\frac{\lambda x.x}{\text{Abstraction}} \underbrace{\frac{y}{\text{Variable}}} \rightarrow y}_{\text{Application}}$$

Javascript

$$\underbrace{\left(\underbrace{function} \; (x) \big\{ return \; x; \big\} \right) \left(\underbrace{y} \right)}_{Abstraction} \underbrace{\left(\underbrace{y} \right)}_{Variable}$$

Example - $(\lambda x.\lambda y.x\ y)$ a b

Abstractions

Think: Function Definitions

$$(\lambda x.\underline{\lambda y.x\ y})$$
 a b

Example - $(\lambda x.\lambda y.x\ y)$ a b

Abstractions

Think: Function Definitions

$$(\lambda x.\underline{\lambda y.x\ y})$$
 a b

Variables

Think: Parameters

$$(\lambda x.\lambda y.\underline{x}\ \underline{y})\ \underline{a}\ \underline{b}$$

Example - $(\lambda x. \lambda y. x \ y)$ a b

Abstractions

Think: Function Definitions

$$(\lambda x.\underline{\lambda y.x\ y})$$
 a b

Variables

Think: Parameters

$$(\lambda x.\lambda y.\underline{x}\ \underline{y})\ \underline{a}\ \underline{b}$$

Applications

Think: Function Calls

$$(\lambda x.\lambda y.\underline{x\ y})\ \underline{a\ b}$$

$$(\lambda x. \quad \lambda y. x \quad y) \quad a \quad b$$

$$(\lambda x. \quad \lambda y. x \quad y) \quad a \quad b \quad \text{Substitute } x \mapsto a$$

$$(\lambda x. \quad \lambda y.x \quad y)$$
 a b Substitute $x \mapsto a$
 $\rightarrow \quad (\lambda y.a \quad y)$ b

$$(\lambda x. \quad \lambda y.x \quad y)$$
 a b Substitute $x \mapsto a$
 $\rightarrow \quad (\lambda y.a \quad y)$ b Substitute $y \mapsto b$

$$(\lambda x. \quad \lambda y. x \quad y)$$
 a b Substitute $x \mapsto a$
 $\rightarrow \quad (\lambda y. a \quad y)$ b Substitute $y \mapsto b$

Notational Conventions

- We use parentheses to clearify what's meant
- Applications associate to the left

$$s t u \equiv (s t) u$$

Abstractions expand as much to the right as possible

$$\lambda x.\lambda y.x \ y \ x \equiv \lambda x.(\lambda y.(x \ y \ x))$$

Scope

$$\lambda x.\lambda y.x\ y\ z$$

Bound and Free

 λy y is bound, x and z are free λx x and y are bound, z is free λx , λy binders

Scope

$$\lambda x.\lambda y.x\ y\ z$$

Bound and Free

 λy y is bound, x and z are free λx x and y are bound, z is free λx , λy binders

A term with no free variables is closed

- A combinator
- $id \equiv \lambda x.x$
- Y, S, K, I ...

7

Higher Order Functions

- Functions that take or return functions
 - Are there "by definition"

Currying

Idea

- Take a function with *n* arguments
- ullet Create a function that takes one argument and returns a function with n-1 arguments

Currying

Idea

- Take a function with *n* arguments
- ullet Create a function that takes one argument and returns a function with n-1 arguments

Example

- (+1) Section in Haskell
- $(\lambda x.\lambda y. + x y) 1 \rightarrow \lambda y. + 1 y$

Currying

Idea

- Take a function with *n* arguments
- ullet Create a function that takes one argument and returns a function with n-1 arguments

Example

- (+1) Section in Haskell
- $(\lambda x.\lambda y. + x y) 1 \rightarrow \lambda y. + 1 y$
- Partial Function Application is there "by definition"
 - You can use this stunt to "curry" in every language that supports "Lambda Expressions"

9

Alpha Conversion

$$\lambda x.x \rightarrow_{\alpha} \lambda y.y$$

Alpha Conversion

$$\lambda x.x \rightarrow_{\alpha} \lambda y.y$$

Beta Reduction

$$(\lambda x.x) y \rightarrow_{\beta} y$$

Alpha Conversion

Beta Reduction

$$\lambda x.x \rightarrow_{\alpha} \lambda y.y$$

$$(\lambda x.x) y \rightarrow_{\beta} y$$

Eta Conversion

Iff (if and only if) x is not free in f:

$$(\lambda x.\underbrace{(\lambda y.y)}_{f} x) a \rightarrow_{\eta} \underbrace{(\lambda y.y)}_{f} a$$

Alpha Conversion

Beta Reduction

$$\lambda x.x \rightarrow_{\alpha} \lambda y.y$$

$$(\lambda x.x) y \rightarrow_{\beta} y$$

Eta Conversion

Iff (if and only if) x is not free in f:

$$(\lambda x.\underbrace{(\lambda y.y)}_{f} x) a \rightarrow_{\eta} \underbrace{(\lambda y.y)}_{f} a$$

If x is free in f, η conversion not possible:

$$\lambda x. \underbrace{\left(\lambda y. y \overset{\mathsf{Bound}}{\overset{\downarrow}{x}}\right)}_{f} x \not\rightarrow_{\eta} \left(\lambda y. y \overset{\mathsf{Free}?!}{\overset{\downarrow}{x}}\right)$$

Remarks

- Everything (Term) is an Expression
 - No statements
- No "destructive" Assignments
 - The reason why FP Languages promote pure functions
 - But you could invent a built-in function to manipulate "state"...

Evaluation

Operational Semantics

- We learned how to write down and talk about Lambda Calculus Terms
- How to evaluate them?
- Different Strategies
 - Interesting outcomes

Full Beta-Reduction

- RedEx
 - Reducible Expression
 - Always an Application

Full Beta-Reduction

- RedEx
 - Reducible Expression
 - Always an Application

$$\underbrace{(\lambda x.x)\;((\lambda y.y)\;(\lambda z.\underbrace{(\lambda a.a)\;z}))}_{RedEx}$$

Full Beta-Reduction

- Any RedEx, Any Time
- Like in Arithmetics
- Too vague for programming...

$$(\lambda x.x) ((\lambda y.y) (\lambda z.(\lambda a.a) z))$$

Normal Order Reduction

$$(\lambda x.x) ((\lambda y.y) (\lambda z.(\lambda a.a) z))$$

Normal Order Reduction

$$(\lambda x.x) ((\lambda y.y) (\lambda z.(\lambda a.a) z))$$
$$\rightarrow (\lambda y.y) (\lambda z.(\lambda a.a) z)$$

Normal Order Reduction

$$(\lambda x.x) ((\lambda y.y) (\lambda z.(\lambda a.a) z))$$

$$\rightarrow (\lambda y.y) (\lambda z.(\lambda a.a) z)$$

Normal Order Reduction

$$(\lambda x.x) ((\lambda y.y) (\lambda z.(\lambda a.a) z))$$

$$\rightarrow (\lambda y.y) (\lambda z.(\lambda a.a) z)$$

$$\rightarrow \lambda z.(\lambda a.a) z$$

Normal Order Reduction

$$(\lambda x.x) ((\lambda y.y) (\lambda z.(\lambda a.a) z))$$

$$\rightarrow (\lambda y.y) (\lambda z.(\lambda a.a) z)$$

$$\rightarrow \lambda z.(\lambda a.a) z$$

Normal Order Reduction

$$(\lambda x.x) ((\lambda y.y) (\lambda z.(\lambda a.a) z))$$

$$\rightarrow (\lambda y.y) (\lambda z.(\lambda a.a) z)$$

$$\rightarrow \lambda z.(\lambda a.a) z$$

$$\rightarrow \lambda z.z$$

Normal Order Reduction

$$(\lambda x.x) ((\lambda y.y) (\lambda z.(\lambda a.a) z))$$

- like Normal Order Reduction, but no reductions inside Abstractions
 - Abstractions are values
- lazy, non-strict
 - Parameters are not evaluated before they are used
- ullet Optimization: Save results o Call-by-Need

$$(\lambda x.x) ((\lambda y.y) (\lambda z.(\lambda a.a) z))$$

- like Normal Order Reduction, but no reductions inside Abstractions
 - Abstractions are values
- lazy, non-strict
 - Parameters are not evaluated before they are used
- ullet Optimization: Save results o Call-by-Need

$$(\lambda x.x) ((\lambda y.y) (\lambda z.(\lambda a.a) z))$$
$$\rightarrow (\lambda y.y) (\lambda z.(\lambda a.a) z)$$

- like Normal Order Reduction, but no reductions inside Abstractions
 - Abstractions are values
- lazy, non-strict
 - Parameters are not evaluated before they are used
- ullet Optimization: Save results o Call-by-Need

$$(\lambda x.x) ((\lambda y.y) (\lambda z.(\lambda a.a) z))$$

$$\rightarrow (\lambda y.y) (\lambda z.(\lambda a.a) z)$$

- like Normal Order Reduction, but no reductions inside Abstractions
 - Abstractions are values
- lazy, non-strict
 - Parameters are not evaluated before they are used
- ullet Optimization: Save results o Call-by-Need

$$(\lambda x.x) ((\lambda y.y) (\lambda z.(\lambda a.a) z))$$

$$\rightarrow (\lambda y.y) (\lambda z.(\lambda a.a) z)$$

$$\rightarrow \lambda z.(\lambda a.a) z$$

- like Normal Order Reduction, but no reductions inside Abstractions
 - Abstractions are values
- lazy, non-strict
 - Parameters are not evaluated before they are used
- Optimization: Save results → Call-by-Need

$$(\lambda x.x) ((\lambda y.y) (\lambda z.(\lambda a.a) z))$$

$$\rightarrow (\lambda y.y) (\lambda z.(\lambda a.a) z)$$

$$\rightarrow \lambda z.(\lambda a.a) z$$

- like Normal Order Reduction, but no reductions inside Abstractions
 - Abstractions are values
- lazy, non-strict
 - Parameters are not evaluated before they are used
- Optimization: Save results → Call-by-Need

$$(\lambda x.x) ((\lambda y.y) (\lambda z.(\lambda a.a) z))$$

- Outer-most, only if right-hand side was reduced to a value
- No reductions inside Abstractions
 - Abstractions are values
- eager, strict
 - Parameters are evaluated before they are used

$$(\lambda x.x) ((\lambda y.y) (\lambda z.(\lambda a.a) z))$$

- Outer-most, only if right-hand side was reduced to a value
- No reductions inside Abstractions
 - Abstractions are values
- eager, strict
 - Parameters are evaluated before they are used

$$(\lambda x.x) ((\lambda y.y) (\lambda z.(\lambda a.a) z))$$
$$\rightarrow (\lambda x.x) (\lambda z.(\lambda a.a) z)$$

- Outer-most, only if right-hand side was reduced to a value
- No reductions inside Abstractions
 - Abstractions are values
- eager, strict
 - Parameters are evaluated before they are used

$$(\lambda x.x) ((\lambda y.y) (\lambda z.(\lambda a.a) z))$$
$$\rightarrow (\lambda x.x) (\lambda z.(\lambda a.a) z)$$

- Outer-most, only if right-hand side was reduced to a value
- No reductions inside Abstractions
 - Abstractions are values
- eager, strict
 - Parameters are evaluated before they are used

$$(\lambda x.x) ((\lambda y.y) (\lambda z.(\lambda a.a) z))$$

$$\rightarrow (\lambda x.x) (\lambda z.(\lambda a.a) z)$$

$$\rightarrow \lambda z.(\lambda a.a) z$$

- Outer-most, only if right-hand side was reduced to a value
- No reductions inside Abstractions
 - Abstractions are values
- eager, strict
 - Parameters are evaluated before they are used

$$(\lambda x.x) ((\lambda y.y) (\lambda z.(\lambda a.a) z))$$

$$\rightarrow (\lambda x.x) (\lambda z.(\lambda a.a) z)$$

$$\rightarrow \lambda z.(\lambda a.a) z$$

$$\not \rightarrow$$

- Outer-most, only if right-hand side was reduced to a value
- No reductions inside Abstractions
 - Abstractions are values
- eager, strict
 - Parameters are evaluated before they are used

Church Encodings

Church Encodings

- Encode Data into the Lambda Calculus
- To simplify our formulas, let's say that we have declarations

$$id \equiv \lambda x. x$$
$$id \ y \rightarrow y$$

$true \equiv$	$\lambda t. \lambda f. t$
$\mathit{false} \equiv$	$\lambda t. \lambda f. f$

$$true \equiv \lambda t.\lambda f.t$$
 $false \equiv \lambda t.\lambda f.f$

$$test \equiv \lambda c. \lambda t. \lambda f. c t f$$

test true a b

$$true \equiv \lambda t. \lambda f. t$$

$$false \equiv \lambda t. \lambda f. f$$

$$test \equiv \lambda c. \lambda t. \lambda f. c t f$$

test true a b

$$true \equiv \lambda t. \lambda f. t$$

$$false \equiv \lambda t. \lambda f. f$$

$$test \equiv \lambda c. \lambda t. \lambda f. c t f$$

$$true \equiv \lambda t. \lambda f. t$$

$$false \equiv \lambda t. \lambda f. f$$

$$test \equiv \lambda c. \lambda t. \lambda f. c t f$$

test true a b $\equiv (\lambda c. \lambda t. \lambda f. c \ t \ f) \text{ true a b}$

$$true \equiv \lambda t. \lambda f. t$$

$$false \equiv \lambda t. \lambda f. f$$

$$test \equiv \lambda c. \lambda t. \lambda f. c t f$$

test true a b $\equiv (\lambda c. \lambda t. \lambda f. c \ t \ f) \ true \ a \ b$

$$true \equiv \lambda t. \lambda f. t$$
 $false \equiv \lambda t. \lambda f. f$

$$test \equiv \lambda c. \lambda t. \lambda f. c t f$$

test true a b
$$\equiv (\lambda c.\lambda t.\lambda f.c \ t \ f) \text{ true a b}$$

$$\rightarrow (\lambda t.\lambda f.true \ t \ f) \text{ a b}$$

$$true \equiv \lambda t.\lambda f.t$$
 $false \equiv \lambda t.\lambda f.f$

$$test \equiv \lambda c. \lambda t. \lambda f. c t f$$

test true a b
$$\equiv (\lambda c.\lambda t.\lambda f.c \ t \ f) \ true \ a \ b$$

$$\rightarrow (\lambda t.\lambda f.true \ t \ f) \ a \ b$$

$$true \equiv \lambda t.\lambda f.t$$
 $false \equiv \lambda t.\lambda f.f$
 $true \equiv \lambda t.\lambda f.f$
 $false \equiv \lambda t.\lambda f.f$
 $true \Rightarrow b$

test true a b

$$true \equiv \lambda t.\lambda f.t$$

$$false \equiv \lambda t.\lambda f.f$$

$$\Rightarrow (\lambda t.\lambda f.t c t f) true a b$$

$$\Rightarrow (\lambda t.\lambda f.t rue t f) a b$$

$$\Rightarrow (\lambda f.t rue a f) b$$

$$test \equiv \lambda c.\lambda t.\lambda f.c t f$$

test true a b

$$true \equiv \lambda t.\lambda f.t$$

$$false \equiv \lambda t.\lambda f.f$$

$$test \equiv \lambda c.\lambda t.\lambda f.c t f$$

$$test true a b$$

$$(\lambda t.\lambda f.c t f) true a b$$

$$(\lambda t.\lambda f.true a f) b$$

$$\rightarrow true a b$$

$$true \equiv \lambda t.\lambda f.t$$

$$false \equiv \lambda t.\lambda f.f$$

$$test \equiv \lambda c.\lambda t.\lambda f.c t f$$

$$true = b$$

$$\equiv (\lambda c.\lambda t.\lambda f.c t f) true a b$$

$$\rightarrow (\lambda t.\lambda f.true t f) a b$$

$$\rightarrow (\lambda f.true a f) b$$

$$\rightarrow true a b$$

$$true \equiv \lambda t.\lambda f.t$$

$$false \equiv \lambda t.\lambda f.f$$

$$test \equiv \lambda t.\lambda f.f$$

$$test \equiv \lambda c.\lambda t.\lambda f.c t f$$

$$test \equiv \lambda c.\lambda t.\lambda f.c t f$$

$$test \equiv \lambda c.\lambda t.\lambda f.c t f$$

$$test true a b$$

$$(\lambda t.\lambda f.c t f) true a b$$

$$(\lambda t.\lambda f.true a f) b$$

$$test \equiv \lambda c.\lambda t.\lambda f.c t f$$

$$\equiv (\lambda t.\lambda f.t) a b$$

$$true \equiv \lambda t.\lambda f.t$$

$$false \equiv \lambda t.\lambda f.f$$

$$test \equiv \lambda t.\lambda f.f$$

$$test \equiv \lambda c.\lambda t.\lambda f.c \ t \ f$$

$$test \equiv \lambda c.\lambda t.\lambda f.c \ t \ f$$

$$test \equiv \lambda c.\lambda t.\lambda f.c \ t \ f$$

$$test \equiv \lambda c.\lambda t.\lambda f.c \ t \ f$$

$$test \equiv \lambda c.\lambda t.\lambda f.c \ t \ f$$

$$true \equiv \lambda t.\lambda f.t$$

$$false \equiv \lambda t.\lambda f.f$$

$$test \equiv \lambda c.\lambda t.\lambda f.c t f$$

Booleans

$$true \equiv \lambda t.\lambda f.t$$

$$false \equiv \lambda t.\lambda f.f$$

$$test \equiv \lambda c.\lambda t.\lambda f.c t f$$

Booleans

$$true \equiv \lambda t.\lambda f.t$$

$$false \equiv \lambda t.\lambda f.f$$

$$\Rightarrow (\lambda t.\lambda f.true \ t \ f) \ a \ b$$

$$\Rightarrow (\lambda f.true \ a \ f) \ b$$

$$\Rightarrow true \ a \ b$$

$$\equiv (\lambda t.\lambda f.true \ a \ f) \ b$$

$$\Rightarrow true \ a \ b$$

$$\equiv (\lambda t.\lambda f.t) \ a \ b$$

$$\Rightarrow (\lambda f.a) \ b$$

$$\Rightarrow a$$

test true a b

 $true \equiv \lambda t.\lambda f.t$ $false \equiv \lambda t.\lambda f.f$

$$true \equiv \lambda t.\lambda f.t$$
 $false \equiv \lambda t.\lambda f.f$

and $\equiv \lambda p.\lambda q.p \ q \ p$

$$true \equiv \lambda t. \lambda f. t$$

$$false \equiv \lambda t.\lambda f.f$$

and
$$\equiv \lambda p.\lambda q.p \ q \ p$$

$$true \equiv \lambda t. \lambda f. t$$

$$false \equiv \lambda t.\lambda f.f$$

and
$$\equiv \lambda p.\lambda q.p \ q \ p$$

and true false

 $\equiv (\lambda p.\lambda q.p \ q \ p)$ true false

$$true \equiv \lambda t. \lambda f. t$$

$$false \equiv \lambda t.\lambda f.f$$

and
$$\equiv \lambda p.\lambda q.p \ q \ p$$

$$\equiv (\lambda p. \lambda q. p \ q \ p)$$
 true false

$$true \equiv \lambda t. \lambda f. t$$

$$false \equiv \lambda t.\lambda f.f$$

and
$$\equiv \lambda p.\lambda q.p \ q \ p$$

$$true \equiv \lambda t.\lambda f.t$$
 $false \equiv \lambda t.\lambda f.f$

and
$$\equiv \lambda p.\lambda q.p \ q \ p$$

and true false $\equiv (\lambda p. \lambda q. p \ q \ p) \ true \ false$ $\rightarrow (\lambda q. true \ q \ true) \ false$

$$true \equiv \lambda t. \lambda f. t$$

$$false \equiv \lambda t. \lambda f. f$$

and
$$\equiv \lambda p.\lambda q.p \ q \ p$$

and true false

 $\equiv (\lambda p.\lambda q.p \ q \ p)$ true false

 \rightarrow (λq .true q true) false

$$true \equiv \lambda t.\lambda f.t$$
 $false \equiv \lambda t.\lambda f.f$

and
$$\equiv \lambda p.\lambda q.p \ q \ p$$

and true false

 $\equiv (\lambda p. \lambda q. p \ q \ p)$ true false

 \rightarrow (λq .true q true) false

 \rightarrow true false true

$$true \equiv \lambda t. \lambda f. t$$
 $false \equiv \lambda t. \lambda f. f$

and
$$\equiv \lambda p.\lambda q.p \ q \ p$$

and true false

 $\equiv (\lambda p. \lambda q. p \ q \ p)$ true false

 \rightarrow (λq .true q true) false

→ true false true

$$true \equiv \lambda t.\lambda f.t$$
 $false \equiv \lambda t.\lambda f.f$
 $and \equiv \lambda p.\lambda q.p \ q \ p$

and true false $\equiv (\lambda p.\lambda q.p \ q \ p) \ true \ false$ $\rightarrow (\lambda q.true \ q \ true) \ false$ $\rightarrow true \ false \ true$ $\equiv (\lambda t.\lambda f.t) \ false \ true$

$$true \equiv \lambda t.\lambda f.t$$
 $false \equiv \lambda t.\lambda f.f$
 $and \equiv \lambda p.\lambda q.p \ q \ p$

and true false $\equiv (\lambda p.\lambda q.p \ q \ p) \ true \ false$ $\rightarrow (\lambda q.true \ q \ true) \ false$ $\rightarrow true \ false \ true$ $\equiv (\lambda t.\lambda f.t) \ false \ true$

$$true \equiv \lambda t.\lambda f.t$$
 $\equiv (\lambda p.\lambda q.p \ q \ p)$ $true \ false$ $\Rightarrow (\lambda q.true \ q \ true)$ $false$ $\Rightarrow true \ false \ true$ $\Rightarrow (\lambda t.\lambda f.t)$ $false \ true$ $\Rightarrow (\lambda f.t)$ $false \ true$ $\Rightarrow (\lambda f.false)$ $true$

$$true \equiv \lambda t.\lambda f.t$$
 $\equiv (\lambda p.\lambda q.p \ q \ p) \ true \ false$ $\Rightarrow \lambda t.\lambda f.f$ $\rightarrow (\lambda q.true \ q \ true) \ false$ $\rightarrow true \ false \ true$ $\equiv (\lambda t.\lambda f.t) \ false \ true$ $\Rightarrow (\lambda f.false) \ true$

$$true \equiv \lambda t.\lambda f.t$$
 $\equiv (\lambda p.\lambda q.p \ q \ p)$ $true \ false$ $false \equiv \lambda t.\lambda f.f$ $\Rightarrow (\lambda q.true \ q \ true)$ $false$ $\Rightarrow true \ false \ true$ $\Rightarrow (\lambda t.\lambda f.t)$ $false \ true$ $\Rightarrow (\lambda f.false)$ $true$ $\Rightarrow false$

Or

$$\lambda p. \lambda q. p p q$$

$$\textit{pair} \equiv \ \lambda x. \lambda y. \lambda z. z \ x \ y$$

$$pair \equiv \lambda x.\lambda y.\lambda z.z \times y$$
$$first \equiv (\lambda p.p) \lambda x.\lambda y.x$$
$$second \equiv (\lambda p.p) \lambda x.\lambda y.y$$

$$pair_{AB} \equiv pair \ a \ b$$

$$pair \equiv \lambda x.\lambda y.\lambda z.z \times y$$
$$first \equiv (\lambda p.p) \lambda x.\lambda y.x$$
$$second \equiv (\lambda p.p) \lambda x.\lambda y.y$$

$$pair_{AB} \equiv pair \ a \ b$$

$$pair \equiv \lambda x.\lambda y.\lambda z.z \times y$$
$$first \equiv (\lambda p.p) \lambda x.\lambda y.x$$
$$second \equiv (\lambda p.p) \lambda x.\lambda y.y$$

$$pair_{AB} \equiv pair \ a \ b$$

$$pair \equiv \lambda x.\lambda y.\lambda z.z \times y$$

$$first \equiv (\lambda p.p) \ \lambda x.\lambda y.x$$

$$second \equiv (\lambda p.p) \ \lambda x.\lambda y.y$$

$$pair \equiv \lambda x.\lambda y.\lambda z.z \times y$$

$$first \equiv (\lambda p.p) \lambda x.\lambda y.x$$

$$second \equiv (\lambda p.p) \lambda x.\lambda y.y$$

 $pair_{AB} \equiv$

pair a b

$$pair \equiv \lambda x.\lambda y.\lambda z.z \times y$$
$$first \equiv (\lambda p.p) \lambda x.\lambda y.x$$
$$second \equiv (\lambda p.p) \lambda x.\lambda y.y$$

$$pair_{AB} \equiv pair \ a \ b$$

$$\equiv (\lambda x. \lambda y. \lambda z. z \times y) \ a \ b$$

$$\rightarrow (\lambda y. \lambda z. z \ a \ y) \ b$$

$$pair \equiv \lambda x. \lambda y. \lambda z. z \times y$$
$$first \equiv (\lambda p. p) \lambda x. \lambda y. x$$
$$second \equiv (\lambda p. p) \lambda x. \lambda y. y$$

$$pair_{AB} \equiv pair \ a \ b$$

$$\equiv (\lambda x. \lambda y. \lambda z. z \times y) \ a \ b$$

$$\rightarrow (\lambda y. \lambda z. z \ a \ y) \ b$$

$$pair_{AB} \equiv pair \ a \ b$$

$$pair \equiv \lambda x.\lambda y.\lambda z.z \times y$$

$$first \equiv (\lambda p.p) \ \lambda x.\lambda y.x$$

$$second \equiv (\lambda p.p) \ \lambda x.\lambda y.y$$

$$\rightarrow (\lambda y.\lambda z.z \ a \ y) \ b$$

$$\rightarrow \lambda z.z \ a \ b$$

$$pair_{AB} \equiv pair \ a \ b$$

$$pair \equiv \lambda x.\lambda y.\lambda z.z \times y$$

$$first \equiv (\lambda p.p) \ \lambda x.\lambda y.x$$

$$second \equiv (\lambda p.p) \ \lambda x.\lambda y.y$$

$$\equiv pair_{AB} \equiv (\lambda x.\lambda y.\lambda z.z \times y) \ a \ b$$

$$\rightarrow (\lambda y.\lambda z.z \ a \ y) \ b$$

$$\rightarrow \lambda z.z \ a \ b$$

$$\equiv pair'_{ab}$$

$$pair \equiv \lambda x. \lambda y. \lambda z. z \times y$$
 $first \equiv (\lambda p. p) \lambda x. \lambda y. x$
 $pair'_{ab} \equiv \lambda z. z \ a \ b$

first pair'ab

$$pair \equiv \lambda x. \lambda y. \lambda z. z \times y$$
 $first \equiv (\lambda p. p) \lambda x. \lambda y. x$
 $pair'_{ab} \equiv \lambda z. z \ a \ b$

first pair'ab

$$pair \equiv \lambda x.\lambda y.\lambda z.z \times y$$
 $first \equiv (\lambda p.p) \lambda x.\lambda y.x$
 $pair'_{ab} \equiv \lambda z.z \ a \ b$

$$pair \equiv \lambda x.\lambda y.\lambda z.z \times y$$

$$first \equiv (\lambda p.p) \lambda x.\lambda y.x$$

$$pair'_{ab} \equiv \lambda z.z \cdot a \cdot b$$

first pair's

Numerals

Peano Axioms

Every natural number can be defined with 0 and a successor function

$$0 \equiv \lambda f.\lambda x.x$$

$$1 \equiv \lambda f.\lambda x.f x$$

$$2 \equiv \lambda f.\lambda x.f (f x)$$

$$3 \equiv \lambda f.\lambda x.f (f (f x))$$

Meaning

- 0 f is evaluated 0 times
- 1 *f* is evaluated once
- x can be every lambda term

$$0 \equiv \lambda f.\lambda x.x$$

$$1 \equiv \lambda f.\lambda x.f x$$

$$0 \equiv \lambda f. \lambda x. x$$
$$1 \equiv \lambda f. \lambda x. f x$$

$$successor \equiv \lambda n.\lambda f.\lambda x.f(n f x)$$

successor 1

$$0 \equiv \lambda f. \lambda x. x$$
$$1 \equiv \lambda f. \lambda x. f x$$

$$successor \equiv \lambda n.\lambda f.\lambda x.f(n f x)$$

successor 1

$$0 \equiv \lambda f. \lambda x. x$$
$$1 \equiv \lambda f. \lambda x. f x$$

$$successor \equiv \lambda n.\lambda f.\lambda x.f(n f x)$$

successor 1

$$0 \equiv \lambda f.\lambda x.x \equiv (\lambda n.\lambda f.\lambda x.f (n f x)) 1$$

$$1 \equiv \lambda f.\lambda x.f x$$

$$successor \equiv \lambda n.\lambda f.\lambda x.f(n f x)$$

 $1 \equiv$

```
0 \equiv \frac{\lambda f.\lambda x.x}{} \equiv \frac{(\lambda n.\lambda f.\lambda x.f (n f x))}{} 1
```

 $\lambda f. \lambda x. f. x$

$$successor \equiv \lambda n.\lambda f.\lambda x.f(n f x)$$

 $1 \equiv$

successor 1

```
0 \equiv \lambda f.\lambda x.x \qquad \equiv (\lambda n.\lambda f.\lambda x.f (n f x)) 1
1 \equiv \lambda f.\lambda x.f x \qquad \rightarrow \lambda f.\lambda x.f (1 f x)
```

$$successor \equiv \lambda n.\lambda f.\lambda x.f(n f x)$$

successor 1

 $0 \equiv \lambda f.\lambda x.x \qquad \Rightarrow \qquad \lambda f.\lambda x.f (n f x) 1$ $1 \equiv \lambda f.\lambda x.f x \qquad \rightarrow \lambda f.\lambda x.f (1 f x)$

$$successor \equiv \lambda n.\lambda f.\lambda x.f(n f x)$$

Note

 $0 \equiv \lambda f.\lambda x.x \qquad \equiv (\lambda n.\lambda f.\lambda x.f (n f x)) 1$ $1 \equiv \lambda f.\lambda x.f x \qquad \equiv \lambda f.\lambda x.f ((\lambda f.\lambda x.f x) f x)$

$$successor \equiv \lambda n.\lambda f.\lambda x.f(n f x)$$

Note

 $0 \equiv \lambda f.\lambda x.x \qquad \equiv (\lambda n.\lambda f.\lambda x.f (n f x)) 1$ $1 \equiv \lambda f.\lambda x.f x \qquad \equiv \lambda f.\lambda x.f ((\lambda f.\lambda x.f x) f x)$

$$successor \equiv \lambda n.\lambda f.\lambda x.f(n f x)$$

Note

```
0 \equiv \lambda f.\lambda x.x \qquad \equiv (\lambda n.\lambda f.\lambda x.f (n f x)) 1
1 \equiv \lambda f.\lambda x.f x \qquad \equiv \lambda f.\lambda x.f (1 f x)
\equiv \lambda f.\lambda x.f ((\lambda f.\lambda x.f x) f x)
\Rightarrow \lambda f.\lambda x.f ((\lambda x.f x) x)
successor \equiv \lambda n.\lambda f.\lambda x.f (n f x)
```

Note

```
0 \equiv \lambda f.\lambda x.x \qquad \equiv (\lambda n.\lambda f.\lambda x.f (n f x)) 1
1 \equiv \lambda f.\lambda x.f x \qquad \equiv \lambda f.\lambda x.f (1 f x)
\equiv \lambda f.\lambda x.f ((\lambda f.\lambda x.f x) f x)
\Rightarrow \lambda f.\lambda x.f ((\lambda x.f x) x)
successor \equiv \lambda n.\lambda f.\lambda x.f (n f x)
```

Note

Note

Note

$$0 \equiv \lambda f. \lambda x. x$$

$$0 \equiv \lambda f. \lambda x. x$$

$$plus \equiv \lambda m.\lambda n.\lambda f.\lambda x.m \ f \ (n \ f \ x)$$

plus 0 0

$$0 \equiv \lambda f. \lambda x. x$$

$$plus \equiv \lambda m.\lambda n.\lambda f.\lambda x.m \ f \ (n \ f \ x)$$

plus 0 0

$$0 \equiv \lambda f. \lambda x. x$$

$$plus \equiv \lambda m.\lambda n.\lambda f.\lambda x.m \ f \ (n \ f \ x)$$

$$\equiv (\lambda m.\lambda n.\lambda f.\lambda x.m f (n f x)) 0 0$$

$$0 \equiv \lambda f. \lambda x. x$$

$$plus \equiv \lambda m.\lambda n.\lambda f.\lambda x.m \ f \ (n \ f \ x)$$

plus 0 0

$$\equiv (\lambda m.\lambda n.\lambda f.\lambda x.m f (n f x)) 0 0$$

$$0 \equiv \lambda f. \lambda x. x$$

$$plus \equiv \lambda m.\lambda n.\lambda f.\lambda x.m \ f \ (n \ f \ x)$$

$$plus 0 0$$

$$\equiv (\lambda m.\lambda n.\lambda f.\lambda x.m f (n f x)) 0 0$$

$$\rightarrow (\lambda n.\lambda f.\lambda x.0 f (n f x)) 0$$

$$0 \equiv \lambda f.\lambda x.x$$

$$plus \equiv \lambda m.\lambda n.\lambda f.\lambda x.m f (n f x)$$

$$plus 0 0$$

$$\equiv (\lambda m.\lambda n.\lambda f.\lambda x.m f (n f x)) 0 0$$

$$\rightarrow (\lambda n.\lambda f.\lambda x.0 f (n f x)) 0$$

$$0 \equiv \lambda f.\lambda x.x$$

$$plus \equiv \lambda m.\lambda n.\lambda f.\lambda x.m f (n f x)$$

```
\begin{array}{rcl}
& plus \ 0 \ 0 \\
& \equiv & (\lambda m.\lambda n.\lambda f.\lambda x.m \ f \ (n \ f \ x)) \ 0 \ 0 \\
& \rightarrow & (\lambda n.\lambda f.\lambda x.0 \ f \ (n \ f \ x)) \ 0 \\
& \rightarrow & \lambda f.\lambda x.0 \ f \ (0 \ f \ x)
\end{array}

0 \equiv & \lambda f.\lambda x.x
```

 $plus \equiv \lambda m.\lambda n.\lambda f.\lambda x.m f (n f x)$

```
\begin{array}{cccc}
& plus & 0 & 0 \\
& \equiv & (\lambda m.\lambda n.\lambda f.\lambda x.m & f & (n & f & x)) & 0 & 0 \\
& \rightarrow & & (\lambda n.\lambda f.\lambda x.0 & f & (n & f & x)) & 0 \\
& \rightarrow & & & \lambda f.\lambda x.0 & f & (0 & f & x)
\end{array}

0 \equiv & \lambda f.\lambda x.x
```

 $plus \equiv \lambda m.\lambda n.\lambda f.\lambda x.m f (n f x)$

```
\begin{array}{cccc}
& plus & 0 & 0 \\
& & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& &
```

$$plus \equiv \lambda m.\lambda n.\lambda f.\lambda x.m f (n f x)$$

```
\begin{array}{cccc}
& plus & 0 & 0 \\
& & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & \\
& & & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
```

$$plus \equiv \lambda m.\lambda n.\lambda f.\lambda x.m f (n f x)$$

```
plus 0 0
\equiv (\lambda m.\lambda n.\lambda f.\lambda x.m f (n f x)) 0 0
\rightarrow (\lambda n.\lambda f.\lambda x.0 f (n f x)) 0
\rightarrow \lambda f.\lambda x.0 f (0 f x)
0 \equiv \lambda f.\lambda x.x \equiv \lambda f.\lambda x.(\lambda f.\lambda x.x) f (0 f x)
\rightarrow \lambda f.\lambda x.(\lambda f.\lambda x.x) f (0 f x)
plus \equiv \lambda m.\lambda n.\lambda f.\lambda x.m f (n f x)
```

```
plus 0 0
\equiv (\lambda m.\lambda n.\lambda f.\lambda x.m f (n f x)) 0 0
\rightarrow (\lambda n.\lambda f.\lambda x.0 f (n f x)) 0
\rightarrow \lambda f.\lambda x.0 f (0 f x)
0 \equiv \lambda f.\lambda x.x \equiv \lambda f.\lambda x.(\lambda f.\lambda x.x) f (0 f x)
\rightarrow \lambda f.\lambda x.(\lambda f.\lambda x.x) f (0 f x)
plus \equiv \lambda m.\lambda n.\lambda f.\lambda x.m f (n f x)
```

```
plus 0 0
                                                                                (\lambda m.\lambda n.\lambda f.\lambda x.m f (n f x)) 0 0
                                                                                              (\lambda n.\lambda f.\lambda x.0 f (n f x)) 0
                                                                                                            \lambda f.\lambda x.0 f (0 f x)
                                                                                           \lambda f.\lambda x.(\lambda f.\lambda x.x) f (0 f x)
     0 \equiv
                                                   \lambda f.\lambda x.x
                                                                                                     \lambda f.\lambda x.(\lambda x.x) (0 f x)
                                                                                                                       \lambda f. \lambda x. 0 f x
plus \equiv \lambda m.\lambda n.\lambda f.\lambda x.m f (n f x)
                                                                                                      \lambda f.\lambda x.(\lambda f.\lambda x.x) f x
                                                                        \equiv
```

```
plus 0 0
                                                                                (\lambda m.\lambda n.\lambda f.\lambda x.m f (n f x)) 0 0
                                                                                              (\lambda n.\lambda f.\lambda x.0 f (n f x)) 0
                                                                                                            \lambda f.\lambda x.0 f (0 f x)
                                                                                           \lambda f.\lambda x.(\lambda f.\lambda x.x) f (0 f x)
     0 \equiv
                                                   \lambda f.\lambda x.x
                                                                                                     \lambda f.\lambda x.(\lambda x.x) (0 f x)
                                                                                                                       \lambda f. \lambda x. 0 f x
plus \equiv \lambda m.\lambda n.\lambda f.\lambda x.m f (n f x)
                                                                                                      \lambda f.\lambda x.(\lambda f.\lambda x.x) f x
                                                                        \equiv
```

```
plus 0 0
                                                                                 (\lambda m.\lambda n.\lambda f.\lambda x.m f (n f x)) 0 0
                                                                                               (\lambda n.\lambda f.\lambda x.0 f (n f x)) 0
                                                                                                             \lambda f.\lambda x.0 f (0 f x)
                                                                                            \lambda f.\lambda x.(\lambda f.\lambda x.x) f (0 f x)
     0 \equiv
                                                    \lambda f.\lambda x.x
                                                                                                       \lambda f.\lambda x.(\lambda x.x) (0 f x)
                                                                                                                         \lambda f. \lambda x. 0 f x
plus \equiv \lambda m.\lambda n.\lambda f.\lambda x.m f (n f x)
                                                                                                        \lambda f.\lambda x.(\lambda f.\lambda x.x) f x
                                                                         \equiv
                                                                                                                  \lambda f.\lambda x.(\lambda x.x) x
```

```
plus 0 0
                                                                                 (\lambda m.\lambda n.\lambda f.\lambda x.m f (n f x)) 0 0
                                                                                               (\lambda n.\lambda f.\lambda x.0 f (n f x)) 0
                                                                                                             \lambda f.\lambda x.0 f (0 f x)
                                                                                            \lambda f.\lambda x.(\lambda f.\lambda x.x) f (0 f x)
     0 \equiv
                                                    \lambda f.\lambda x.x
                                                                                                       \lambda f.\lambda x.(\lambda x.x) (0 f x)
                                                                                                                         \lambda f. \lambda x. 0 f x
plus \equiv \lambda m.\lambda n.\lambda f.\lambda x.m f (n f x)
                                                                                                        \lambda f.\lambda x.(\lambda f.\lambda x.x) f x
                                                                         \equiv
                                                                                                                  \lambda f.\lambda x.(\lambda x.x) x
```

```
plus 0 0
                                                                                  (\lambda m.\lambda n.\lambda f.\lambda x.m f (n f x)) 0 0
                                                                                                (\lambda n.\lambda f.\lambda x.0 f (n f x)) 0
                                                                                                              \lambda f.\lambda x.0 f (0 f x)
                                                                                              \lambda f.\lambda x.(\lambda f.\lambda x.x) f (0 f x)
     0 \equiv
                                                    \lambda f.\lambda x.x
                                                                                                        \lambda f.\lambda x.(\lambda x.x) (0 f x)
                                                                                                                          \lambda f. \lambda x. 0 f x
plus \equiv \lambda m.\lambda n.\lambda f.\lambda x.m f (n f x)
                                                                                                         \lambda f.\lambda x.(\lambda f.\lambda x.x) f x
                                                                          \equiv
                                                                                                                    \lambda f.\lambda x.(\lambda x.x) x
                                                                                                                                  \lambda f.\lambda x.x
```

```
plus 0 0
                                                                                  (\lambda m.\lambda n.\lambda f.\lambda x.m f (n f x)) 0 0
                                                                                                (\lambda n.\lambda f.\lambda x.0 f (n f x)) 0
                                                                                                              \lambda f.\lambda x.0 f (0 f x)
                                                                                             \lambda f.\lambda x.(\lambda f.\lambda x.x) f (0 f x)
     0 \equiv
                                                    \lambda f.\lambda x.x
                                                                                                       \lambda f.\lambda x.(\lambda x.x) (0 f x)
                                                                                                                          \lambda f. \lambda x. 0 f x
plus \equiv \lambda m.\lambda n.\lambda f.\lambda x.m f (n f x)
                                                                                                        \lambda f.\lambda x.(\lambda f.\lambda x.x) f x
                                                                          \equiv
                                                                                                                   \lambda f.\lambda x.(\lambda x.x) x
                                                                                                                                 \lambda f.\lambda x.x
                                                                                                                                               0
                                                                                                                                               25
```

End

Thanks

- Hope you enjoyed this talk and learned something new.
- Hope it wasn't too much math and dusty formulas . . . :)

Good Math

"A Geek's Guide to the Beauty of Numbers, Logic, and Computation"

• Easy to understand

The Implementation of Functional Programming Languages

- How to compile to the Lambda Calculus?
- Out-of-print, but freely available
 - https://www.microsoft.com/enus/research/publication/theimplementation-of-functionalprogramming-languages/

Types and Programming Languages

- Types systems explained by building interpreters and proving properties
- Very "mathematical", but very complete and self-contained