Class relations: has-a

Kevin Schmidt, Susan Lindsey, Charlie Dey

Spring 2019

Has-a relationship

A class usually contains data members. These can be simple types or other classes. This allows you to make structured code.

```
class Course {
private:
    Person the_instructor;
    int year;
}
class Person {
    string name;
    ....
}
```

This is called the has-a relation.

Literal and figurative has-a

A line segment has a starting point and an end point.

```
A Segment class can store those
points:
class Segment {
private:
  Point starting_point,
    ending_point;
public:
  Point get_the_end_point() {
    return ending_point; };
}
  Segment somesegment;
  Point somepoint =
    somesegment.
    get_the_end_point();
```

```
or store one and derive the other:
class Segment {
private:
  Point starting_point;
  float length, angle;
public:
  Point get_the_end_point() {
    /* some computation from
    the
       starting point */ };
```

Implementation vs API: implementation can be very different from user

Exercise 1

 Make a class Rectangle (sides parallel to axes) with a constructor:

```
Rectangle(Point bl,float w,float h);
```

The logical implementation is to store these quantities. Implement methods

```
float area(); float rightedge(); float topedge();
```

• Add a second constructor

```
Rectangle(Point bl, Point tr);
```

Can you figure out how to use member initializer lists for the constructors?

 Write another version of your class so that it stores two Point objects.

Polymorphism in constructors

You have to decide what to store and what to derive, but you can construct two ways:

```
class Segment {
private:
   // up to you how to implement!
public:
   Segment( Point start,float length,float angle )
        { .... }
   Segment( Point start,Point end ) { ... }
```

Advantage: with a good API you can change your mind about the implementation without bothering the user.

