Recap

- "Classical" relational databases
 - The relational data model and algebra: bags and sets
 - SQL Queries, Modifications, DDL
 - Database Design
 - Views, constraints, triggers, and indexes
 - Query processing & optimization
 - Transactions
- Non-classical data systems
 - Data preparation:
 - Semi-structured data and document stores
 - Unstructured data and search engines
 - Data Exploration:
 - Cell-structured data and spreadsheets
 - Dataframes and dataframe systems
 - OLAP, summarization, and visual analytics
 - Batch Analytics:
 - Compression and column stores
 - Parallel data processing and map-reduce
 - Streaming, sketching, approximation
 - Special Topics:
 - Graph processing systems
 - Security and Privacy

Recap: The Classics

- "Classical" relational databases
 - The relational data model and algebra: bags and sets
 - SQL Queries, Modifications, DDL
 - Database Design
 - Views, constraints, triggers, and indexes
 - Query processing & optimization
 - Transactions
- The key takeaways for relational databases:
 - Tables and relational algebra as a basis for data-based computation
 - The notion of "declarative" querying
 - Query processing and optimization automatically handled for you
 - Transactions for supporting updates
 - Ways to control performance and enforce constraints: views, indexes, constraints, triggers

Non-Classical Data Systems

- Various axes of relaxation/specialization for structure or workload
- Structure
 - Tabular Structure
 - Relational to semi-structured (JSON, doc stores) to unstructured (text search) to somewhere-in-between (graph-structured)
 - Schema presence/absence
 - Schema present to schema flexible (dataframes) to no schema (spreadsheets)
- Workload
 - Workloads focused on reading/writing
 - Read-write to read-only with flexible workload (col stores) to read-only with fixed workload (OLAP) to read-only exploration-oriented workloads (visual analytics)
 - Workloads at scale
 - Normal single-node workloads to large workloads (parallel dbs and map-reduce) to extremely large workloads (streaming, approximation)

- Non-classical data systems
 - Data preparation:
 - Semi-structured data and document stores
 - Unstructured data and search engines
 - Data Exploration:
 - Cell-structured data and spreadsheets
 - Dataframes and dataframe systems
 - OLAP, summarization, and visual analytics
 - Batch Analytics:
 - Compression and column stores
 - Parallel data processing and map-reduce
 - Streaming, sketching, approximation
 - Special Topics:
 - Graph processing systems
 - Security and Privacy

What did I not cover

- From the classical side:
 - Database internals stuff
 - Details about query optimization, indexes, ...
 - Details about functional dependencies, normalization
 - Various forms of logging and recovery; concurrency control
- From the non-classical side:
 - Transaction processing at scale and weaker consistency models
 - Virtual machines, containerization, ...
 - Resource management, pricing, cloud computation
 - Deep learning systems

What I hope you took away from the class!

- An appreciation for the robustness and generality of RDBMSs
 - While understanding that new scenarios may require tweaks to many fundamental relational database assumptions
- An understanding for design decisions underlying data systems, capturing issues ranging from ease-of-use to scalability to flexibility
- Hands-on experience with:
 - At least three types of data systems, plus conceptual understanding of many more
 - Building an end-to-end data application powered by data systems
- This is an amazing time to be studying data systems and data engineering!
 - Data rules everything around us, and infrastructure to support analysis on data is going be increasingly essential even in the era of Al and ML

Where can I go from here?

- CS186/286a: focuses on database internals
- CS286b: research-oriented database internals class

- No better way to learn more about data systems than by building them from scratch!
 - Or contributing to existing open-source efforts
 - Happy to talk about research on developing data systems if you're interested!

