COC2072 – Digital Logic and System Design

Prof. M. M. Sufyan Beg
Department of Computer Engineering
Z. H. College of Engineering & Technology
Aligarh Muslim University, India

Unit III – Sequential Circuits

Basic Flip-Flop Circuit with NAND Gates

Clocked RS Flip-Flop

Characteristic equation

Q(t+1) = S + R'Q

SR = 0

Reference: M. Morris Mano, "Digital Logic and Computer Design", PHI

Indeterminate

D Flip-Flop

RS Flip-Flop and D Flip-Flop

S	R	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	Indeterminate

D	Q(t+1)
0	0
1	1

JK Flip-Flop

Τ	Q(t+1)
0	Q(t)
1	Q(t)'

Q	T	Q(t+1)
0	0	0
0	1	1
1	0	1
1	1	0
477.0		

Characteristic table Characteristic equation

Binary Ripple Counter

Master-Slave Flip-Flop

Race Around Condition in JK FF

Clocked Master-Slave JK Flip-Flop

Flip-Flop Excitation Tables

S	R	Q(t+1)	Q(t)	Q(t+1)	S	R
0	0	O(t)	0	0	0	X
0	1	- ô´	0	I	1	0
1	0	1	1	. 0	0	1
1	1	?	1	1	X	0

Characteristic Table

D Q(t+1) 0 0 1 1

Excitation Table

Q(t)	Q(t+1)	D
0	0	0
0	1	1
1	0	0
ì	1	1

Flip-Flop Excitation Tables (contd.)

J	K	Q(t+1)	Q(t)	Q(t+1)	J	K
0	0	O(t)	0	0	0	X
Õ	1	0	0	1	1	X
1	0	1	1	0	X	1
ì	ŀ	Q'(t)	1	1	X	0

Characteristic Table

Excitation Table

T	Q(t+1)	Q(t)	Q(t+1)	T
2		0	0	0
0	Q(t)	0	l	1
1	Q'(t)	1	0	1
	: 227.27.27.2	1	ì	0

Sequential Circuit Design Using RS-FF

	Next	state	Output		
Present State	x = 0	x = 1	x = 0	x = 1	
AB	AB	AB	у	у	
00	00	01	0	0	
01	11	01	0	0	
10	10	00	0	1	
11	10	11	0	0	

Sequential Circuit Design Using RS-FF (contd.)

Preser	Present State		Next	State	Required Flip-Flop Inputs				Output
Α	В	x	Α	В	SA	RA	SB	RB	Υ
0	0	0	0	0	0	Χ	0	Х	0
0	0	1	0	1	0	Χ	1	0	0
0	1	0	1	1	1	0	Χ	0	0
0	1	1	0	1	0	X	Χ	0	0
1	0	0	1	0	Χ	0	0	Χ	0
1	0	1	0	0	0	1	0	Х	1
1	1	0	1	0	Х	0	0	1	0
1	1	1	1	1	Х	0	Χ	0	0

Sequential Circuit Design Using RS-FF (contd.)

Sequential Circuit Design Using JK-FF

			Next	t state.		
Present state		Present state $x = 0$		= 0	x = 1	
A	В	A	В	A	В	
0	0	0	0	0	1	
0	1	1	0	o o	1	
1	0	. I	0	1	î	
1	1	1	1	ò	ō	

Sequential Circuit Design Using JK-FF (contd.)

			Excitation	table	2.71.71		35.55	
Inputs of combinational circuit			310%	con	Outp mbination		uit	
Present state		Input	Next	state		Flip-flo	p inputs	
Α	В	x	A	В	JA	KA	JB	KB
0	0	0	0	0	0	X	0	X
0	0	1	0	1	0	X	1	X
0	1	0	1	0	1	X	X	1
0	1	1	0	1	0	X	X	0
1	0	0	1	0	X	0	0	X
1	0	1	1	1	X	0	1	X
1	1	0	1	1	X	0	X	0
1	1	1	0	0	X	1	X	1

Block Diagram of the Sequential Circuit

Maps for the Combinational Circuit

$$KA = Bx$$

$$KB = A \odot x$$

Logic Diagram of the Sequential Circuit

State diagram of a 3-bit binary counter 3-bit Binary Counter

Excitation table for a 3-bit binary counter

Count sequence			Fl	Flip-flop inputs				
A 2	A_1	A ₀	TA ₂	TA ₁	TA ₀			
0	0	0	0	0	1			
0	0	1	0	1	ŀ			
0	1	0	0	0	1			
0	1	1	l	1	1			
1	0	0	0	0	1			
1	0	1	0	-1	1			
1	1	0	0	0	ı			
1	1	1	1	1	1			

3-bit Binary Counter (contd.)

Self Starting Counters

 A counter that can start from any state, but eventually reaches the normal count sequence

Present Count State Next Coun				Count S	State	tate Required Flip-Flop Inputs					
Α	В	С	Α	В	С	JA	KA	JB	KB	JC	КС
0	0	0	0	0	1	0	Χ	0	Х	1	Х
0	0	1	0	1	0	0	X	1	Χ	Х	1
0	1	0	1	0	0	1	X	Х	1	0	Х
0	1	1	1	0	0	1	X	Х	1	Х	1
1	0	0	1	0	1	Χ	0	0	Χ	1	Х
1	0	1	1	1	0	Χ	0	1	Χ	Χ	1
1	1	0	0	0	0	Χ	1	Х	1	0	Х
1	1	1	0	0	0	Χ	1	Х	1	Х	1

K-Maps for the Self Starting Counter

Logic Diagram for the Self Starting Counter

$$JA = B$$
 $KA = B$
 $JB = C$ $KB = 1$
 $JC = B'$ $KC = 1$

Registers

A register is a group of binary storage cells suitable for holding binary information. A group of flip-flops constitutes a register, since each flip-flop is a binary cell capable of storing one bit of information. An n-bit register has a group

4-bit Register with Parallel Load

Register with Parallel Load Using D-FF

Shift Registers

4-bit Bidirectional Shift Register with Parallel Load

BCD Ripple Counter

- We have already seen the Mod-16 Ripple Counter
- The State Diagram of the BDC Ripple Counter is now given below
- A BCD Counter may also be called a Decade Counter

BCD Ripple Counter (contd.)

- 1. Q_1 is complemented on the negative edge of every count pulse.
- 2. Q_2 is complemented if $Q_8 = 0$ and Q_1 goes from 1 to 0. Q_2 is cleared if $Q_8 = 1$ and Q_1 goes from 1 to 0.
- 3. Q_4 is complemented when Q_2 goes from 1 to 0.
- 4. Q_8 is complemented when $Q_4Q_2 = 11$ and Q_1 goes from 1 to 0. Q_8 is cleared if either Q_4 or Q_2 is 0 and Q_1 goes from 1 to 0.

Timing Diagram of the BCD Ripple Counter

3-Decade Decimal BCD Counter

- We have seen the asynchronous (ripple) BCD Counter just now
- Design the synchronous BCD counter also
- Using any of the above two, we can design n Decade Counter
- We can use the BCD-to-7 Segment Decoder at the output of this n – Decade Counter

4-bit Synchronous Binary Counter

Binary Count Sequence

A ₄	A ₃	A ₂	A ₁
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

4-bit Up-Down Binary Counter

Synchronous BCD Counter

Count sequence				Output carry			
24 (Q_2	Q_1	TQ_8	TQ_4	TQ_2	TQ_1	y
) (0	0	0	0	0	1	0
) (0	1	0	0	1	1	0
)	1	0	0	0	0	1	0
)	1	1	0	1	1	1	0
	0	0	0	0	0	1	0
	0	1	0	0	1	1	0
	1	0	0	0	0	1	0
	Ī	1	1	1	1	1	0
) (0	0	0	0	0	1	0
) (0	1	1	0	0	1	1
	TQ: TQ: TQ:	$Q_{8} = Q_{8}'Q_{1}$ $Q_{1} = Q_{2}Q_{1}$ $Q_{2} = Q_{8}Q_{1}$	+ Q ₄ Q ₂	Q_1			
	24	Q ₄ Q ₂ 0 0 0 1 1 0 0 1 1 0 TQ TQ TQ	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Binary Counter with Parallel Load

Memory Unit

Memory Cell

Memory Organization

Unit-III Completed

UNIT III.

SEQUENTIAL LOGIC

Definition and state representation of Flip-Flops, RS, D, JK-M/S, their working characteristics, State Tables, Excitation Tables and triggering. Asynchronous and Synchronous Counters-Design and Analysis, Counter Applications, Description and Operations of Shift Registers, Shift Register/Counters.

Course Outcome

3. Analyse and synthesize digital sequential units.