AI Planning Exercise Sheet 7

AI Planning Exercise Sheet 7

Date: December 11, 2014

Students: Axel Perschmann, Tarek Saier

Exercise 7.1

(a) $\Pi' = \{V, I, O, \gamma\}$ with

- $V = \{above-a, above-b, above-c, below-a, below-b, below-c\}$ $\mathcal{D}_{above-\Upsilon} = \{A, B, C, n\} \setminus \{\Upsilon\}$ $\mathcal{D}_{below-\Upsilon} = \{A, B, C, t\} \setminus \{\Upsilon\}$ where $\Upsilon \in \{A, B, C\}$
- I(a) = 1 for $a \in \{below b = t, above b = A, above a = n, below c = t, above c = n\}$ I(a) = 0 else
- $O = \{move-X-Y-Z, move-X-Table-Z, move-X-Y-Table\}$ $move-X-Y-Z = \langle (below-X=Y) \land (above-X=n) \land (above-Z=n),$ $(above-Y:=n) \land (below-X:=Z) \rangle$ $move-X-Table-Z = \langle (below-X=t) \land (above-X=n) \land (above-Z=n),$ $(below-X:=Z) \rangle$ $move-X-Y-Table = \langle (below-X=Y) \land (above-X=n),$ $(above-Y:=n) \land (below-X:=t) \rangle$ for pair-wise distinct $X, Y, Z \in \{A, B, C\}$
- $\bullet \ \ \gamma = (above{-}c = B) \wedge (above{-}a = C)$

And the addition¹ that every $above|below[:]=\Upsilon$ with $\Upsilon \in \{A,B,C\}$ implies it's counterpart (e.g. above-A[:]=B also tests/sets below-B[:]=A).

(b)
$$\Pi'' = \Pi$$

(c)

¹to make this a bit less verbose and better readable

AI Planning Exercise Sheet 7

Exercise 7.2

(a) Basic approach: since both h_1 and h_2 include the blank tile, $h_1 + h_2$ is not admissible.

(b) Basic approach: since for all tiles t_i it holds that $t_i \in h_3$ iff $t_i \notin h_4$ and vice verca and both h_3 and h_4 do not include the blank tile, $h_3 + h_4$ is admissible.