Contents

1	mot	ivation	1
2	mea	sure of density	1
	2.1	edge density	1
	2.2	edge ratio	1
	2.3	triangle density	1
	2.4	triangle ratio	2
	2.5	k-core	2
	2.6	α -quasiclique	2
	2.7	k-clique	2
	2.8	k-club	2
	2.9	k-plex	2
3	Den	sest Subgraph	3
	3.1	Undirected Graph	3
		3.1.1 Goldberg's Algorithm	3
		3.1.2 Greedy Algorithm	3

1 motivation

2 measure of density

2.1 edge density

$$d(S) = \frac{2|E(S)|}{|S|}$$

2.2 edge ratio

$$\delta(S) = \frac{|E(S,S)|}{\binom{|S|}{2}}$$

2.3 triangle density

$$t(S) = \frac{|T(S)|}{|S|}$$

2.4 triangle ratio

$$\tau(S) = \frac{|T(S)|}{\binom{|S|}{3}}$$

2.5 k-core

every vertex in S is connected to at least k other vertices in S.

2.6 α -quasiclique

$$E(S) \ge \alpha \left(\begin{array}{c} |S| \\ 2 \end{array} \right)$$

2.7 k-clique

subset of vertices with pairwise distances at most **k**

- distances defined using intermediaries, outside the set
- not well connected

2.8 k-club

a subgraph of diameter $\leq k$

2.9 k-plex

a subgraph S in which each vertex is connected to at least |S|-k other verteces.

• 1-plex is clique

3 Densest Subgraph

3.1 Undirected Graph

3.1.1 Goldberg's Algorithm

consider: is there a subgraph S with $d(S) \geq c$?

$$\frac{2|E(S,S)|}{|S|} \ge c \tag{1}$$

$$2|E(S,S)| \ge c \tag{2}$$

$$\sum_{u \in S} \deg(u) - |E(S, \bar{S})| \ge c \tag{3}$$

$$\sum_{u \in S} \deg(u) + \sum_{u \in \bar{S}} \deg(u) - \sum_{u \in \bar{S}} \deg(u) - |E(S, \bar{S})| \ge c \tag{4}$$

$$\sum_{u \in \bar{S}} \deg(u) + |E(S, \bar{S})| + c|S| \le 2|E| \tag{5}$$

transform this constraint to min-cut problem: how to transform

3.1.2 Greedy Algorithm

Algorithm Proof1 Proof2