H₂O₂/O₃ 催化氧化改性活性炭研究

左 晶¹, 李紫萱², 杜晓旭¹, 杨青青¹

(1. 西安科技大学化学与化工学院, 陕西 西安 710054; 2. 西北大学化学与材料学院, 陕西 西安 710069)

摘 要:采用 H_2O_2/O_3 催化氧化改性活性炭。以含氧官能团总量为主要指标、比表面积和碘吸附值为辅助指标评价改性效果。在活性炭质量和 H_2O_2 体积一定的条件下,考察了 H_2O_2 质量分数、 O_3 浓度、反应时间及反应温度等因素对活性炭性能的影响。在 H_2O_2 质量分数为 10%、 O_3 浓度为 $4\cdot32$ mg • L^{-1} 、反应时间为 $2\cdot5$ h、反应温度为 50° C 的最优改性条件下,活性炭的含氧官能团总量为 $1\cdot525$ mmol • g^{-1} ,比改性前提高 $61\cdot38\%$ 。

关键词:活性炭;臭氧;过氧化氢;含氧官能团

中图分类号:TO 424.1

文献标识码:A

文章编号:1672-5425(2010)10-0021-04

活性炭是含碳有机物质经炭化、活化而制成的黑色固体多孔物质,具有丰富的孔隙结构和优良的吸附性能。根据氧化反应程度,活性炭可生成 H-型和 L-型两类, H-型活性炭在水中带正电荷,吸附强酸,具有疏水性; L-型活性炭在水中带负电荷,中和强酸,具有亲水性[1]。

活性炭表面化学组成的不同对其酸碱性、湿润性、吸附选择性、催化性能及导电性等都会产生影响^[2]。活性炭表面含有多种官能团:酸性官能团、中性官能团和碱性官能团。活性炭表面所含的氧,大多以含氧官能团的形式存在,这也是活性炭最主要的活性基团,包括强酸基、弱酸基、酚羟基、羰基等^[3]。表面氧化物赋予活性炭弱极性,增强或扩大了其催化性能,改变了其对有机物、无机物的吸附选择性。作者在此通过催化氧化方法改变活性炭的表面结构和化学特性,以期提高活性炭的吸附能力。

1 实验

1.1 主要试剂与仪器

粒状果壳活性炭、30%过氧化氢、氢氧化钠、碳酸氢钠、无水碳酸钠、盐酸、碘、碘化钾、淀粉、硫代硫酸钠、硫酸、重铬酸钾、无水乙醇、甲基橙、甲基红等,均为分析纯。

臭氧发生器,恒温磁力搅拌器,多头磁力加热搅拌器,可见分光光度计,多用振荡器,离心机,电子天平等。

1.2 样品氧化

- (1)活性炭预氧化:将活性炭与蒸馏水以约 1:10 (体积比)的比例放入烧杯中,搅拌下微沸 30 min,冷却,过滤;再加入蒸馏水微沸,过滤,反复 3次;110℃烘干至恒重,再放入干燥器中,备用。
- (2)活性炭氧化改性: 称取干燥活性炭 9 g 置于烧杯中,加入 50 mL H_2 O_2 , 再通入臭氧,搅拌使其反应;反应结束后,过滤,用蒸馏水洗涤,110 $^{\circ}$ 烘干至恒重,再放入干燥器中,备用。

1.3 性能测试

按国标要求对改性后的活性炭进行碘吸附值测定、比表面积测定;采用 Boehm 酸碱中和法测定活性炭表面官能团的含量。

2 结果与讨论

2.1 未改性活性炭的性能

未改性活性炭含氧官能团总量为 $0.945 \text{ mmol } \cdot \text{g}^{-1}$ 、比表面积为 769. 73 $\text{m}^2 \cdot \text{g}^{-1}$ 、碘吸附值为 1027. 07 $\text{mg} \cdot \text{g}^{-1}$ 。

2.2 O3 氧化对活性炭性能的影响

取预处理活性炭 9 g,加入 50 mL 蒸馏水,调节 O_3 流速 1.5 L • min⁻¹、氧化温度 25 $^{\circ}$ C,在不同的 O_3 浓度下反应 30 min。反应后活性炭性能如图 1 所示。

由图 1 可知,适宜浓度的 O_3 氧化可使活性炭表面含氧官能团总量增加,在 O_3 浓度为 8.64 mg • L^{-1} 时,含氧官能团总量达到最大;但当 O_3 浓度过大时,

收稿日期:2010-06-28

图 1 O₃ 氧化对活性炭性能的影响 Fig·1 Effect of O₃ treatment on properties of active carbon

含氧官能团总量却下降。这是因为活性炭同时含有碱性官能团, O_3 浓度过大,氧化性太强,使部分酸性官能团被氧化成碱性官能团。随着 O_3 浓度的增大,活性炭比表面积和碘吸附值逐渐减小;在 O_3 浓度为 8.64 mg \bullet L^{-1} 时两个指标开始升高,在 O_3 浓度为 17.28 mg \bullet L^{-1} 时,活性炭比表面积和碘吸附值分别为 958 m² \bullet g^{-1} 和 1128 mg \bullet g^{-1} ,均比未改性前的值大,这可能是由于氧化性太强,造成活性炭内部结构塌陷。可以推测 O_3 氧化对活性炭微孔影响不大。

2.3 H₂O₂/O₃氧化对活性炭性能的影响

取预处理活性炭 9 g, 与 50 mL 10% (质量分数,下同)的 H_2 O_2 混合,调节 O_3 流速为 1.5 L • min⁻¹、反应温度为 25%,在不同 O_3 浓度下反应 30 min。反应后活性炭性能如表 1 所示。

表 1 H_2O_2/O_3 氧化对活性炭性能的影响

Tab. 1 Effect of H₂O₂/O₃ treatment on properties of active carbon

O3 浓度	含氧官能团总量	比表面积	碘吸附值
${ m mg} {ullet} { m L}^{-1}$	$mmol \cdot g^{-1}$	$\mathbf{m}^2 \cdot \mathbf{g}^{-1}$	${\sf mg} {ullet} {\sf g}^{-1}$
2.16	1.180	934.86	1109.84
4.32	1.215	959.06	1113.04
8.64	1.195	906.57	1101.49
17.28	0.960	883.08	1099.92
34.56	0.635	861.94	1167.12

由表 1 可以看出,与 O_3 氧化相比, H_2O_2/O_3 氧化后活性炭的含氧官能团总量有所增加,且在 O_3 浓度为 4.32 mg \bullet L^{-1} 时,含氧官能团总量就达到最大。这是因为 O_3 与 H_2O_2 反应生成 \bullet O_4 自由基氧化能力更强,这样用少量的 O_3 就可以达到很好的氧化效果。 H_2O_2/O_3 氧化活性炭的比表面积和碘吸附值相对于 O_3 氧化活性炭有所下降。可能是体

系氧化性强,而致活性炭结构塌陷。

2.4 H₂O₂ 质量分数对活性炭性能的影响

取预处理活性炭 9 g, 与 50 mL 不同质量分数 H_2 O_2 混合, 调节 O_3 流速为 1.5 L • min⁻¹、 O_3 浓度为 8.64 mg • L⁻¹、反应温度为 25 $^{\circ}$ 、反应时间为 30 min。 反应后活性炭性能如图 2 所示。

图 2 H₂O₂ 质量分数对活性炭性能的影响 Fig· 2 Effect of H₂O₂ mass fraction on properties of active carbon

由图 2 可知, H₂O₂ 质量分数对活性炭性能有一定的影响。H₂O₂ 质量分数越大,与O₃ 生成•OH 自由基的机会越多,氧化性越强,则可能使含氧官能团被氧化成碱性官能团,含氧官能团总量下降,同时比表面积也有所下降;碘吸附值则随着 H₂O₂ 质量分数的增大先升高后降低。当 H₂O₂ 质量分数为 10%时,含氧官能团总量和比表面积达到最大,碘吸附值也达到一个较为理想的水平。因此, H₂O₂ 的质量分数宜选为10%。

2.5 反应时间对活性炭性能的影响

取 9 g 预处理的活性炭, 与 50 mL 10%的 H $_2$ O $_2$ 混合, 调节 O $_3$ 流速为 1.5 L • min $^{-1}$ 、O $_3$ 浓度为 8.64 mg • L $^{-1}$ 、反应温度为 25°C,反应不同时间。反应后活性炭性能如表 2 所示。

表 2 反应时间对活性炭性能的影响

Tab- 2 Effect of reaction time on properties of active carbon

反应时间	含氧官能团总量	比表面积	碘吸附值	
h	$mmol \cdot g^{-1}$	$\mathbf{m}^2 \cdot \mathbf{g}^{-1}$	${\sf mg} {ullet} {\sf g}^{-1}$	
0.5	1.195	906.57	1101.49	
1	1.230	856.85	1110.70	
2	1.415	966.10	1142.89	
3	1.385	868.06	1114.33	

由表 2 可知,随着反应时间的延长,活性炭的含氧 官能团总量,比表面积和碘吸附值都有一定程度的增 加。但当反应时间为 3 h 时,活性炭的含氧官能团总量、比表面积和碘吸附值则开始下降;而且在反应时间为 1 h 时,比表面积有所下降,可能是因为在此过程中 1 H 2 O 2 与 O 3 的浓度比下降,而使反应不完全所致。因此,适宜的反应时间为 2 h。

2.6 反应温度对活性炭性能的影响

取 9 g 预处理的活性炭,与 50 mL 10 %的 12 O 2 混合,调节 0 3 流速为 $^{1.5}$ L $^{\bullet}$ min $^{-1}$ 、O 3 浓度为 $^{8.64}$ mg $^{\bullet}$ L $^{-1}$,在不同温度下反应 2 h。反应后活性炭性能如表 3 所示。

随反应温度的升高, H_2O_2 的分解速率加快,在分解的同时,会带走一部分 O_3 ,使反应不能充分进行,因此要选择适宜的温度。由表 3 可知,含氧官能团总量在 25°°下最大,比表面积在 40°°的最大,碘吸附值在 60°°的最大。综合考虑,选择反应温度为 40°°。

表 3 反应温度对活性炭性能的影响 Tab. 3 Effect of reaction temperature on properties of active carbon

反应温度	含氧官能团总量	比表面积	碘吸附值	
℃	$mmol \cdot g^{-1}$	$\mathbf{m}^2 \cdot \mathbf{g}^{-1}$	${\sf mg} \cdot {\sf g}^{-1}$	
25	1.415	966.10	1142.89	
40	1.305	1058.4	1123.70	
60	1.125	954.30	1169.51	
75	1.030	779.89	1117.08	

2.7 正交实验

影响改性活性炭性能的主要因素有 H_2O_2 质量分数(A)、 O_3 浓度(B)、反应时间(C)及反应温度(D),以含氧官能团总量、比表面积和碘吸附值为考察指标,选择正交方案 $L_9(3^4)$ 进行实验,结果及分析见表 4,方差分析见表 5。

表 4 Tab. 4

正交实验结果与分析

The results and analysis of orthogonal experiment

实验号	H2O2 质量分数/%	O_3 浓度 $/$ mg • L^{-1}	反应时间/h	反应温度/℃	含氧官能团总量 $/$ mmol $ \cdot g^{-1}$	比表面积 $/\mathbf{m}^2 \cdot \mathbf{g}^{-1}$	碘吸附值 $/mg \cdot g^{-1}$
1	5	2.16	1.5	30	1.150	977.02	1110.93
2	5	4.32	2.0	40	1.235	1012.17	1129.46
3	5	8.64	2.5	50	1.325	951.31	1026.41
4	10	2.16	2.0	50	1.505	899.71	1120.70
5	10	4.32	2.5	30	1.365	864.56	1112.28
6	10	8.64	1.5	40	1.335	834.10	1097.27
7	15	2.16	2.5	40	1.290	854.51	1091.24
8	15	4.32	1.5	50	1.390	931.02	1104.96
9	15	8.64	2.0	30	1.235	891.05	1162.82
K_1	3.710	3.945	3.875	3.750			
K_2	4.205	3.990	3.975	3.860			
K3	3.915	3.895	3.980	4.220			
k1	1.237	1.315	1.292	1.250			
k^2	1.402	1.330	1.325	1.287			
k3	1.305	1.298	1.327	1.407			
R	0.165	0.032	0.035	0.157			

注: K 为每列各水平下的指标数据之和, k 为 K 的平均值, 两者均基于含氧官能团总量计算

由表 4 可知,各因素对活性炭含氧官能团总量的影响大小为 A > D > C > B,即对活性炭改性影响最大的是 H_2O_2 质量分数,其次是反应温度,再次是反应时间,最后是 O_3 浓度。优化反应条件为: H_2O_2 质量分数 10%、 O_3 浓度 4.32 mg • L^{-1} 、反应温度 50° C、反应时间 2.5 h。

由表 5 可知,因子 A 有显著影响,因子 C 无显著影响,因子 D 有显著影响,与直观分析结果一致。表明以 H_2 O_2 O_3 催化氧化改性活性炭时, H_2 O_2 质量分数对活

表 5 正交实验方差分析

Tab. 5 The variance analysis of orthogonal experiment

方差来源	偏差平方和	自由度	均方	F 值	显著性
A	0.041258	2	0.013753	21.29	有显著影响
C	0.002318	2	0.000773	1.200	无显著影响
D	0.040418	2	0.013473	20.86	有显著影响
误差(B)	0.001938	2	0.000646		11 32-13 79 11

注: $F_{0.01}(2,2)=99$; $F_{0.05}(2,2)=19$; $F_{0.1}(2,2)=9$

性炭含氧字能团总量影响最大,Q3j浓度影响最小nic Publishing H在最优条件下,对活性炭进行,H2Q2/Q3,催化氧化

改性,测得改性后活性炭含氧官能团总量为 1.525 mmol \cdot g $^{-1}$,比改性前提高了 61.38%。

3 结论

- (1) H_2O_2/O_3 催化氧化改性活性炭是可行的。 H_2O_2 作为一种强氧化剂在 O_3 作用下,对活性炭的化学性质和表面结构产生较大的影响。
- (2)单因素分析表明, H_2O_2/O_3 催化氧化改性活性炭比直接单用 O_3 改性的效果好。
- (3)各因素对改性活性炭含氧官能团总量的影响 大小为 H₂O₂ 质量分数>反应温度>反应时间>O₃

浓度。其优化工艺条件为: H_2O_2 质量分数 10%、 O_3 浓度 4.32 mg \bullet L^{-1} 、反应时间 2.5 h、反应温度 50° C。 在此优化工艺条件下,活性炭含氧官能团总量为1.525 mmol \bullet g $^{-1}$,较改性前提高了 61.38%。

参考文献:

- [1] Chiang H L, Huang C P, Chiang P C. The surface characteristics of activated carbon as affected by ozone and alkaline treatment [J]. Chemosphere, 2002, 47(3);257-265.
- [2] 杨娇平.超级电容器用多孔活性炭材料的研究[D].北京:北京化工大学,2005.
- [3] Lahaye J. The chemistry of carbon surfaces [J]. Fuel. 1998, 77(6): 543-547.

Study on the Modification of Active Carbon by H₂O₂/O₃ Catalytic Oxidation ZUO Jing¹, LI Zi-xuan², DU Xiao-xu¹, YANG Qing-qing¹

(1. College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China; 2. College of Chemistry and Materials, Northwest University, Xi'an 710069, China)

Abstract: The active carbon was modified by hydrogen peroxide and ozone catalytic oxidation. With total content of oxygen functional groups as a key indicator, specific surface area and iodine adsorption as ancillary indicators, the modification of active carbon was evaluated. The effects of H_2O_2 mass fraction, O_3 concentration, reaction time and reaction temperature on the properties of modified active carbon were investigated with certain conditions of quality of active carbon and volume of H_2O_2 . Optimization of modified conditions were obtained as follows: hydrogen peroxide mass fraction of 10%, O_3 concentration of 4.32 mg • L^{-1} , reaction time of 2.5 h, reaction temperature of 50°C. Under above optimum conditions, the total content of oxygen functional groups of active carbon was 1.525 mmol • g^{-1} , which was increased 61.38% than that of unmodified active carbon.

Keywords: active carbon; ozone; hydrogen peroxide; oxygen functional group

2011年征订启事

《精细化工中间体》(双月刊),中国化工学会精细化工专业委员会中间体协作网专业期刊,是美国《化学文摘》(CA)全球重点收录期刊,是 CA 摘用频度最大的 1000 种期刊之一,由湖南化工研究院主办。国内统一刊号 CN43—1354/TQ,国际标准刊号 ISSN1009—9212。着重报道国内外精细化工领域重点/热点产品或方向的研究开发进展情况;农药/医药及其中间体的研究开发、技术创新及分析测试;染料及其中间体的研究开发、应用研究及分析测试;其它多用途有机中间体的新产品/新工艺/新技术/新设备的研究开发成果;最新有机/无机功能材料的研究开发成果;精细有机化工行业设计、生产等领域的新工艺、新技术、新设备、新材料;精细有机化工生产企业的生产操作经验、技术改造、化工环保、资源再生、循环经济及生产节能;精细有机化工中间体新建项目可行性探讨、工艺技术路线选择与评价、新建项目的投资效益分析。主要栏目有:综述与专论、农药及中间体、医药及中间体、功能材料、有机合成原料、香精香料、表面活性剂、染料颜料涂料、水处理剂、分析测试等。邮发代号42-132,全年定价72元。地址:湖南长沙芙蓉中路二段251号(410007);电话:0731-85357909,85357908(传真);E-mail:iffci@163.com。