1 Measure Theory: Assignment Two - Constructing new measurable functions from old measurable functions

This sheet is all about building new measurable functions from existing measurable functions. Throughout this sheet we consider functions taking values in \mathbb{R} . We are interested in their measurability with respect to the Borel σ -algebra.

Question 1.1. Suppose that f is a measurable function. Show that -f and λf are both measurable functions, where λ is a strictly positive contant. 2 marks

Question 1.2. Suppose that f_1 and f_2 are measurable. Show that $f_1 \wedge f_2 = \min\{f_1, f_2\}$ is also measurable. 3 marks

Question 1.3. Suppose that f_1, f_2, f_3, \ldots is a sequence of measurable functions. Show that $\inf_n f_n$ is also a measurable function. Use this to show that $\sup_n f_n$ is a measurable function as well. 5 marks

Question 1.4. Again let f_1, f_2, f_3, \ldots be a sequence of measurable functions. Show that $\limsup_n f_n$ and $\liminf_n f_n$ are both measurable functions. Why does this mean that $\lim_n f_n$ will be a measurable function if it exists. 5 marks

Question 1.5. Suppose that f is a measurable function, show that f^2 is measurable. 2 marks

Question 1.6. Using the previous question, or otherwise, show that if f_1 an f_2 are measurable the f_1f_2 is also measurable. 3 marks

Question 1.7. Let f be a measurable function with f > 0 everywhere. Show that 1/f is also measurable. 5 marks