To show that the maximum Gini index of a node is $1-\frac{1}{n_c}$ when all records are equally distributed among n_c different classes, we can start by recalling the formula for the Gini index.

The Gini index for a node is calculated as:

$$Gini = 1 - \sum_{i=1}^{n_c} p_i^2$$

where p_i is the proportion of records in the node that belong to class i, and n_c is the number of different classes.

Step 1: Set up equal distribution

When all records are equally distributed among the n_c classes, each class will have the same proportion of records. Therefore, for each class i:

$$p_i = rac{1}{n_c}$$

Step 2: Substitute the proportions into the Gini index formula

Now substitute $p_i=rac{1}{n_c}$ into the Gini index formula:

$$Gini = 1 - \sum_{i=1}^{n_c} \left(rac{1}{n_c}
ight)^2$$

Step 3: Simplify the summation

Since all p_i 's are the same, the summation simplifies to:

$$Gini = 1 - n_c imes \left(rac{1}{n_c^2}
ight)$$

$$Gini = 1 - rac{n_c}{n_c^2}$$

$$Gini = 1 - rac{1}{n_c}$$

Conclusion

Thus, when all records are equally distributed among the n_c classes, the Gini index is:

$$Gini = 1 - rac{1}{n_c}$$

This shows that the maximum Gini index of a node is $1-\frac{1}{n_c}$ when the records are equally distributed among n_c classes.