

MOLECULAR DYNAMICS

Master of Science in Data Science

Damiano Piovesan

De novo prediction / Ab initio

- Secondary structure prediction; conformation of short fragments (Rosetta); molecular dynamics; Monte Carlo; quantum mechanics (unfeasible)
- Tough computation

Fold recognition

- Try to fit with known folds
- The fold space is not completely known (50% success)

Homology modelling

- Similar sequences have similar structures (+50% sequence identity)
- 40% of genes are not homologous to known structures

Energy functions

A mathematical algorithm that inputs the state of a system and outputs the energy

System state may include

- Coordinates
- Bonded structure
- External elements
- Empirical parameters
- Charge, spin

Energy function may include

- Logic
- Arithmetic
- Algebra
- Calculus
- Numerical procedures

Energy function can be

- Simple or complex
- Analytic or numerical
- QM or MM or other
- Ab initio or empirical
- Atomistic of Coarse-grained

Molecular Mechanics (MM)

A set of models which use an **empirical** (lot of parameters), **algebraic** (formulas), **atomistic** (individual atoms) energy function for chemical systems

$$E_{total} = E_{bonded} + E_{non-bonded}$$

$$E_{bonded} = E_{bonds} + E_{angles} + E_{torsions}$$

$$E_{non-bonded} = E_{elst} + E_{vdw}$$

Force field models

- Atoms: 3D point particles
- Structure: bonds, angles, torsions

Molecular Mechanics (MM)

Force fields vary in

- Energy function form
- Empirical parameters
- Simulation targets

Limitations

- Up to 1M of atoms
- Up to 10¹⁵ configurations
- Accuracy of energy
- Scope of parameters

Examples

- AMBER, assisted model building energy refinement (orginally for DNA)
- CHARM, chemistry at harvard MM (Martin Karplus nobel 2013)
- OPLS, optimized potential for liquid simulations (small molecules)
- GROMOS, used by Gromacs software
- MMFT, Merk Molecular force field (pharmaceutical)

Force field parameters

An arbitrary constant whose value characterize an element of a system

$$E_{total} = \sum_{bonds} K_b (r - r_{eq})^2 + \dots$$

$$E \rightarrow [kcal/mol]$$
 $r \rightarrow [Å]$

$$\mathsf{R}_{\mathsf{eq}} \to [\mathring{\mathsf{A}}] \hspace{1cm} \mathsf{K}_{\mathsf{b}} \to [\mathsf{kcal/mol*\mathring{A}^2}]$$

Sources

- Structures → crystal, density
- Spectra → IR, NMR
- Simulation → PES (potential energy surface, quantum mechanics)

Example

O-H in H₂O in AMBER95

$$R_{eq} = 0.960 \text{ Å}$$
 $k_{b} = 553.0 \text{ kcal/mol x Å}^{2}$

Desired properties

- General
- Transferable
- Accurate

Bond stretch terms

$$E_{bonds} = \sum_{bonds} K_b (r - r_{eq})^2$$

- Parameters
 - $r_{ea} \rightarrow equilibrium bond length$
 - $K_h \rightarrow bond spring constant$
- Variable
 r → bond length
- D_a → dissociation energy
- Typical $K_h \approx 300-600 \text{ kcal/mol*} \text{Å}^2$

Angle bend terms

$$E_{angles} = \sum_{angles} K_a (\theta - \theta_{eq})^2$$

Parameters

 $\theta_{\rm eq} \rightarrow {\rm equilibrium~bond~angle~[rad]}$

 $\theta_{\rm b} \to {\rm angle~spring~constant}$

Variable

 $\theta \rightarrow \text{bond angle [rad]}, 0 \le \theta \le \pi$

Typical $K_a \approx 100-150 \text{ kcal/mol*rad}^2$

Van der Waals terms

$$E_{vdw} = \sum_{i=1}^{N} \sum_{j=i+1}^{N} \varepsilon_{ij} \left[\left(\frac{r_0}{r_{ij}} \right)^{12} - 2 \left(\frac{r_0}{r_{ij}} \right)^{6} \right]$$

Parameters

$$\epsilon_{_{ii}} \rightarrow interaction \ strength \ [kcal/mol]$$

 $r_0 \rightarrow van der Waals radius (Å)$

Variable

$$r_{ii} \rightarrow interatomic distance (Å)$$

- Short range → exchange / steric repulsion (12)
- Long range → London dispersion attraction (6)

How to define parameters for all possible pairs? → "Combining rules"

$$\varepsilon_{ij} = \sqrt{\varepsilon_i \varepsilon_j}$$

"geometric mean"

$$R_0 = \frac{1}{2}(r_i + r_j)$$

"arithmetic mean"

$$\varepsilon_i$$
, $\varepsilon_i \rightarrow$ atomic parameters

Electrostatics terms

$$E_{elst} = \sum_{i=1}^{N} \sum_{j=i+1}^{N} \frac{q_i q_j}{4\pi \epsilon_0 r_{ij}}$$

Parameters

$$q_i$$
, q_i atomic partial charges (e)

- Variable
 - $\rm r_{ij}
 ightarrow interatomic distance (Å)$
- Same charge → repulsion
- Opposite charge → attraction
- Q_{tot} usually is zero

vdw
$$\propto \left(\frac{1}{r}\right)^6 \rightarrow \text{quick decay}$$

elst $\propto \left(\frac{1}{r}\right)^1 \rightarrow \text{slow decay}$

Elst is rate limiting step of MM

- O(N) bonded terms
- O(N²) non-bonded terms

Energy gradient

→ potential energy

(example: ½ kx²)

$$F(x) = -\frac{dV(x)}{dx}$$

 \rightarrow force

(example: -kx)

In 3D

$$-\frac{dV(x)}{dx}$$
 \rightarrow

$$\rightarrow -\left(\frac{\partial V}{\partial x}\widehat{x} + \frac{\partial V}{\partial y}\widehat{y} + \frac{\partial V}{\partial z}\widehat{z}\right)$$

 $-\nabla V(x,y,z)$

"Gradient"

N atoms → 3N coordinates

$$V = V(x_1, y_1, z_1, x_2, y_2, z_2, ..., x_N, y_N, z_N)$$

force

$$= V(\overline{r}_1, \overline{r}_1, \dots, \overline{r}_N) \qquad \overline{r}_1 = (x_i, y_i, z_i)$$

$$=V(\overline{r}^{3N})$$

 $-\nabla V(\bar{r}^{3N})$

$$V(\overline{r}^{3N}) \longrightarrow \text{energy}$$

Energy minimization

$$\frac{dV(x)}{dx} = 0$$
 \rightarrow "stationary point"

$$1D \rightarrow 3D$$

$$\frac{dV(x)}{dx} = 0$$
 $\left| \nabla V(\overline{r}^{3N}) \right| = 0$

$$\frac{d^2V(x)}{dx^2} > 0 \qquad \{\lambda_H\} \ge 0, \ H_{ij} = \frac{\partial^2V(\overline{r}^{3N})}{\partial q_i \partial q_j}$$

 $H \rightarrow 3N \times 3N$ real, symmetric "Hessian matrix"

- Lowest $V(\overline{r}^{3N})$ among local minima \rightarrow global minimum
- "Geometry Optimization" \rightarrow algorithm to find $\{\bar{r}^{3N}\}$ with minimum P.E.

Steepest descent

Method for obtaining local stationary points of a multi-dimensional function

Simple method for geometry optimization

- Guess X₀ "initial geometry"
- 2. Compute $V(x_i)$ and $\nabla V(x_i)$ energy and gradient
- 3. Update $x_{i+1} = x_i y_i \nabla V(x_i)$ displacement
- 4. Check for convergence
 - a. If yes: done $x_f = x_i$
 - b. If no: return to step 2

Various methods for choosing γ_n

Convergence checks

• $\|\nabla V(x_i)\| \approx 0$

• $|V(x_i)-V(x_{i-1})| \approx 0$

 $\bullet \qquad \|\mathbf{x}_{i} - \mathbf{x}_{i-1}\| \approx 0$

gradient

energy

displacement

Molecular dynamics (MD)

Calculate system properties by propagating through time and averaging

- Classical Mechanics → Newton's Laws (F=ma)
- MM → conservative (total energy is conserved, kinetic + potential energy), time-independent

$$F = ma = m\frac{d^{2}(x)}{dt^{2}} = \frac{d}{dt}\left(m\frac{d(x)}{dt}\right) = \frac{d}{dt}(mv) = \frac{dp}{dt}$$

$$F = -\frac{dV(x)}{dx} \qquad p = mv = m\frac{dx(t)}{dt}$$

$$\frac{\partial p_{x_{i}}}{\partial t} = -\frac{\partial V}{\partial x_{i}}$$

Solve for all 3N coordinates

Can't solve exactly → approximate numerically

Molecular dynamics

 $t = t + \Delta t$

- 1. Assign initial x_0 , q_0 , t = 0
- 2. Compute $V(x_i)$ and $\nabla V(x_i)$
- 3. Update $x_{i+1} = x_i + 1/m p_i \Delta t$
- 4. Update $p_{i+1} = p_i \nabla V(x_i) \Delta t$
- 5. Repeat (steps 2-4) until $t \ge t_f$
- 6. Compute desidered properties

 $\Delta t \rightarrow timestep (1fs = 10^{-15}s)$

 $T \rightarrow$ depends on goal

- Vibrations \rightarrow 10 1,000 fs
- Conformation changes → ps ns
- Diffusion / interaction → ns μs
- Protein folding → µs s

References & Links

TMP Chem (Trent Parker's YouTube channel)

https://www.youtube.com/user/TMPChem

Computational Chemistry

- 2.1, 2.2, 2.3
- 2.5, 2.6
- 2.9, 2.10
- 3.1, 3.2, 3.3
- 3.8

