Решения вариантов заключительного этапа Олимпиады по комплексу предметов (физика, информатика, математика) (2018/2019 учебный год).

Приведено общее решение для всех классов. Те вопросы, которые давались только 11 классу или только 10 классу выделены соответствующими пометками.

1. Начнем с простейшего случая, когда в тепловой контакт приводится вся имеющаяся вода. Обозначим через t установившуюся равновесную температуру и запишем уравнение теплового баланса

$$c_B m_B(t - t_B) = c_C m_C(t_C - t).$$

Отсюда

$$t = \frac{c_B m_B t_B + c_C m_C t_C}{c_B m_B + c_C m_C}.$$

Если подставить в полученную формулу данные из условия задачи, получим величину t_1 , являющуюся ответом на первый вопрос. Соответствующая ей величина $W_1 = \frac{t_C}{t_-}$.

2. Далее рассмотрим случай, когда вода делится на две равные порции. Обозначим через $t^{(1)}$ температуру, которую приобретет сверло после первого этапа охлаждения. Она же будет начальной температурой второго этапа.

Погружению в первую порцию соответствует уравнение теплового баланса

$$c_B \frac{m_B}{2} (t^{(1)} - t_B) = c_C m_C (t_C - t^{(1)}),$$

откуда

$$t^{(1)} = \frac{c_B m_B t_B + 2c_C m_C t_C}{c_B m_B + 2c_C m_C}.$$

После погружении во вторую порцию воды сверло приобретет температуру $t^{(2)}$. Для ее нахождения имеем

$$c_B \frac{m_B}{2} (t^{(2)} - t_B) = c_C m_C (t^{(1)} - t^{(2)}),$$

откуда

$$t^{(2)} = \frac{c_B m_B t_B + 2c_C m_C t^{(1)}}{c_B m_B + 2c_C m_C}.$$

Таким образом, после завершения процесса охлаждения (состоящего в данном случае

из двух этапов) сверло охладится до температуры $t_2=t^{(2)}$. Эта температура и соответствующая ей величина $W_2=\frac{t_C}{t_2}$ будут являться ответом на второй вопрос.

3. Теперь опишем процесс охлаждения, состоящий из k этапов, на каждом из которых используется масса воды $\frac{m_B}{k}$.

Сначала сверло имело температуру $t^{(0)} = t_C$. Пусть после j-го этапа сверло приобрело температуру $t^{(j)}$. Тогда на следующем, (j+1)-ом, этапе будет выполняться уравнение теплового баланса

$$c_B \frac{m_B}{k} (t^{(j+1)} - t_B) = c_C m_C (t^{(j)} - t^{(j+1)}),$$

откуда

$$t^{(j+1)} = \frac{c_B m_B t_B + k c_C m_C t^{(j)}}{c_B m_B + k c_C m_C}.$$

Описанный процесс состоит из k шагов и завершается нахождением величины $t_k = t^{(k)}$, являющейся финальной температурой охлажденного сверла.

4. Запишем этот алгоритм на псевдокоде.

Для промежуточных переменных $t^{(j)}$ не будем создавать массив, а воспользуемся двумя вспомогательными переменными t_0 и t_2 , которые будут соответствовать температурам в начале и в конце очередного этапа охлаждения.

Начало алгоритма

Задать
$$m_B=0.1, \quad m_C=0.1,$$
 $c_B=4.19\cdot 10^3, \quad c_C=0.46\cdot 10^3$ Ввести k $t_0=t_C$ ДЛЯ j от 0 до k
$$t_2=\frac{c_B\,m_B\,t_B+k\,c_C\,m_C\,t_0}{c_B\,m_B+k\,c_C\,m_C}$$
 $t_0=t_2$

КОНЕЦ ДЛЯ

Вывести t_2

Конец алгоритма

Исполняя этот алгоритм для значений k, указанных в третьем вопросе, находим температуры и заполняем второй столбец таблицы. Величины в третьем столбце рассчитываем по формуле

$$W_k = \frac{t_C}{t_k},$$

используя данные второго столбца. Их подсчет также можно добавить в алгоритм.

5. Для ответа на четвертый вопрос можно воспользоваться перебором, запуская алгоритм при различных значениях k. Либо можно устроить еще один внешний цикл, увеличивая в нем значения k до тех пор, пока не станет верным неравенство $W_k \ge 8000$.

Условие задачи не гарантирует, что такое значение k найдется, поэтому следует предусмотреть возможность досрочного прерывания цикла. Например, можно для каждого k, кратного 1000, выдавать на экран текущее значение W_k и спрашивать, продолжать ли вычисления дальше. При ответе «Нет» последнее выведенное W_k будет являться ответом на четвертый вопрос.

Если аккуратно выполнить описанные действия, то выяснится, что исследуемая стратегия охлаждения весьма эффективна, и 8000-кратный эффект возможен.

6. (только 10 класс)

После завершения многоэтапного процесса охлаждения будут соединены вместе k_M порции воды одинаковой массы, но разной температуры. Ясно, что температура j-ой порции воды будет равна температуре $t^{(j)}$ теплового равновесия, установившейся на j-м этапе процесса. Обозначим через t температуру воды после соединения всех частей и установления равновесия. Для ее поиска запишем уравнение теплового баланса

$$c_B \frac{m_B}{k_M} (t^{(1)} - t) + c_B \frac{m_B}{k_M} (t^{(2)} - t) + \dots + c_B \frac{m_B}{k_M} (t^{(k_M)} - t) = 0,$$

из которого получаем

$$t = \frac{1}{k_M} \sum_{j=1}^{k_M} t^{(j)}.$$

Внесем соответствующие дополнения в алгоритм. Будем в том же цикле подсчитывать сумму промежуточных температур, а после завершения цикла разделим накопленную сумму на количество слагаемых.

Начало алгоритма 2

Задать
$$m_B = 0.1, \quad m_C = 0.1,$$
 $c_B = 4.19 \cdot 10^3, \quad c_C = 0.46 \cdot 10^3$ Ввести k $t_0 = t_C$ $S = 0$ ДЛЯ j от 0 до k $t_2 = \frac{c_B \, m_B \, t_B + k \, c_C \, m_C \, t_0}{c_B \, m_B + k \, c_C \, m_C}$ $t_0 = t_2$ $S = S + t_2$ КОНЕЦ_ДЛЯ $t_{Bk} = S/k$ Вывести t_{Bk}

Конец алгоритма 2

7. (только 11 класс)

Использование воды со льдом принципиально меняет структуру процесса. Теплота сверла будет затрачиваться на плавление льда одновременно с нагревом воды (в том числе и образовавшейся при плавлении). Если вся ледяная вода разделена на k порций, то в каждой порции будет $\frac{0.99\,m_B}{k}$ воды и $\frac{0.01\,m_B}{k}$ льда.

Опишем k-этапный процесс охлаждения, на каждом этапе которого используется масса снега $\frac{m_B}{k}$.

Сначала сверло имело температуру $t^{(0)} = t_C$. Пусть после j-го этапа сверло приобрело температуру $t^{(j)}$. Тогда на следующем, (j+1)-ом, этапе будет выполняться уравнение теплового баланса (в нем учтено, что вода, образовавшаяся после плавления льда, также нагревается)

$$\lambda \frac{0.01 \, m_B}{k} + c_B \frac{m_B}{k} (t^{(j+1)} - t_B) = c_C m_C (t^{(j)} - t^{(j+1)}),$$

откуда

$$t^{(j+1)} = \frac{c_B m_B t_B + k c_C m_C t^{(j)} - 0.01 \,\lambda m_B}{c_B m_B + k c_C m_C}.$$

Описанный процесс может состоять из k шагов и завершаться нахождением величины $t_k=t^{(k)},$ являющейся финальной температурой охлажденного сверла.

Но теперь возможен еще один исход. На некотором этапе процесса оставшейся теплоты сверла может оказаться недостаточно для того, чтобы расплавить весь имеющийся в воде лед. В такой ситуации процесс охлаждения прекратится. Сверло будет охлаждено до минимально возможной температуры $\theta_{\min} = t_B = 0$. Часть льда будет расплавлена, но вода останется при той же температуре $t_B = 0$.

Сказанное следует учесть в алгоритме для досрочного выхода из цикла.

8. Запишем новый алгоритм на псевдокоде.

Для промежуточных переменных $t^{(j)}$ не будем создавать массив, а воспользуемся двумя вспомогательными переменными t_0 и t_2 , которые будут соответствовать температурам в начале и в конце очередного этапа охлаждения.

Для отслеживания дополнительного критерия окончания можно поступить по-разному. Во-первых, можно использовать цикл ПОКА с двумя условиями: теплоты достаточно для плавления всего льда, и номер этапа не превышает общего количества этапов. Во-вторых, можно оставить цикл ДЛЯ, но на каждой итерации цикла проверять условие достаточности теплоты. Ниже будет написан второй вариант.

Начало алгоритма 3

Задать
$$m_B=0.1, \quad m_C=0.1,$$
 $c_B=4.19\cdot 10^3, \quad c_C=0.46\cdot 10^3$ Ввести k $t_0=t_C$ ДЛЯ j от 0 до k ЕСЛИ $(c_C\,m_C\,t_0>0.01\,\lambda m_B/k)$ ТО $t_2=0;$ выйти из цикла КОНЕЦ_ЕСЛИ
$$t_2=\frac{c_B\,m_B\,t_B+k\,c_C\,m_C\,t_0-0.01\,\lambda\,m_B}{c_B\,m_B+k\,c_C\,m_C}$$
 $t_0=t_2$

КОНЕЦ_ДЛЯ

Вывести t_2

Конец алгоритма 3

Ответы для 9 класса

1.
$$t_1 = 9.89$$
°C, $W_1 \approx 10$ (pa₃).

2.
$$t_2 = 3.24$$
°С, $W_2 \approx 31$ (раза).

3.

k	t_K	W_K
1	9.892	10
2	3.241	31
3	1.521	66
5	0.559	179
10	0.154	649
20	0.055	1819
30	0.035	2848
50	0.023	4306
100	0.016	6109

4. При $k_M = 336$ достигается $W_k = 8002$.

Ответы для 10 класса

1.
$$t_1 = 9.89$$
°C, $W_1 \approx 10$ (pa₃).

2.
$$t_2 = 3.24$$
°С, $W_2 \approx 31$ (раза).

3.

k	t_K	W_K	t_{Bk}
1	9.892	10	9.89
2	3.241	31	10.62
3	1.521	66	10.81
5	0.559	179	10.91
10	0.154	649	10.96
20	0.055	1819	10.97
30	0.035	2848	10.97
50	0.023	4306	10.98
100	0.016	6109	10.98

- 4. При $k_M = 336$ достигается $W_k = 8002$.
- 5. Ответ вписан в таблицу п. 3. (выше).

Ответы для 11 класса

- 1. $t_1 = 9.89$ °С, $W_1 \approx 10$ (раз).
- 2. $t_2 = 3.24$ °С, $W_2 \approx 31$ (раза).

3.

k	t_K	W_K	$ heta_k$
1	9.892	10	9.17
2	3.241	31	2.47
3	1.521	66	0.74
5	0.559	179	0
10	0.154	649	0
20	0.055	1819	0
30	0.035	2848	0
50	0.023	4306	0
100	0.016	6109	0

- 4. При $k_M = 336$ достигается $W_k = 8002$.
- 5. Ответ вписан в таблицу п. 3. (выше)