Jean-Baptiste Kwizera

September 17, 2019

1 Part 1

Algorithm 1. Cubic bruteforce algorithm finds the maximum sum of a contiguous subarray by checking all subarrays and comparing their sums.

```
def cubic(nums):
N = len(nums)
maxs = float('-inf')
for i in range(N+1):
    for j in range(i):
        maxs = max(maxs, sum(nums[j:i]))
return maxs
```

Proposition A. The running time of alg. 1 is $\mathcal{O}(N^3)$.

Proof: The inner loop takes $\sum_{j=0}^{i} j$ operations each time to compute the sum of subarray j to i. From i=0 to i=N, the inner loop takes $\sum_{i=0}^{N} \sum_{j=0}^{i} j$ operations in total.

Therefore, the exact total number of operations done is

$$\sum_{i=0}^{N} \sum_{j=0}^{i} j = \sum_{i=0}^{N} \frac{i}{2} (i+1) = \frac{1}{2} \left(\sum_{i=0}^{N} i^2 + \sum_{i=0}^{N} i \right) = \frac{N}{6} (N+1) (N+2) \sim \frac{N^3}{6}$$
 and $\frac{N^3}{6}$ is $\mathcal{O}(N^3)$.

Algorithm 2. Quadratic bruteforce algorithm finds the max. sum by checking all subarrays. However, unlike **alg 1.**, **alg 2.** compares a running sum from j = i to j = N - 1 against the maximum sum so far given by some subarray located anywhere between 0^{th} and i^{th} indexes.

```
def quadratic(nums):
N = len(nums)
maxs = float('-inf')
for i in range(N):
    curr = 0
    for j in range(i, N):
        curr += nums[j]
        maxs = max(maxs, curr)
return maxs
```

Proposition B. The running time complexity of **alg. 2** is $\mathcal{O}(N^2)$. **Proof:** Inner loop runs 2 operations for $N, N-1, \dots, 2, 1, 0$ times. Therefore, total number of operations run is

$$2\sum_{i=0}^{N} i = 2\left(\frac{N}{2}(N+1)\right) = N(N+1) \sim N^2 \text{ and } N^2 \text{ is } \mathcal{O}(N^2).$$

Algorithm 3. Linear optimal algorithm.

```
def linear(nums):
N = len(nums)
maxs = float('-inf')
curr = float('-inf')
for i in range(N):
    curr = max(nums[i], curr + nums[i])
    maxs = max(maxs, curr)
return maxs
```

alg 3. extends the idea of alg 2. of keeping a running sum. It keeps a running sum for the maximum sum ending at current index— i^{th} index. The maximum at the i^{th} may contain nums[i] or not, in which case it's just nums[i]. Then, it updates the maximum sum if curr > maxs.

Proof of correctness by induction: At i=0, maxs=nums[0], since $-\infty < nums[0]$ and curr=nums[0], and is the maximum so far. For i< N-1, curr is the sum of a subarray including nums[i] or just nums[i] if nums[i] > curr+nums[i]. curr=nums[i] when curr<0 and |curr|>nums[i]. Now with curr updated, it's checked against maxs to update maxs if curr>maxs. Thus each time the loop ends, maxs is the maximum possible of some contiguous subarray between indexes 0 and i. Therefore, by induction, when i=N-1 and the loop terminates, maxs is the maximum sum given by a contiguous subarray between indexes 0 and N-1.

Proposition C. The running time of alg. 3 is $\mathcal{O}(N)$.

Proof: alg. 3 consists of one *for* loop that does a constant time operation (finding a maximum of two numbers) twice N times. So, **alg. 3** takes exactly 2N operations and is therefore linear.

2 Part 2

Problem 5. Show that $\frac{x^2+1}{x+1}$ is $\mathcal{O}(x)$.

Proof. $\frac{x^2+1}{x+1} \le \frac{x^2+2x+1}{x+1} = \frac{(x+1)^2}{x+1} = x+1 \le x+x = 2x$, whenever x > 1. Therefore, with C=2 and k=1 as witnesses, f(x) is $\mathcal{O}(x)$.

Problem 6. Show that $\frac{x^3+2x}{2x+1}$ is $\mathcal{O}(x^2)$.

Proof. $\frac{x^3+2x}{2x+1} \le \frac{x^3+2x}{2x} \le \frac{x^2+2}{2} = \frac{x^2}{2} + 1 \le 3x$. With C = 3 and k = 1 as witnesses, f(x) is $\mathcal{O}(x^2)$.

Problem 8.

- a) $f(x) = 2x^2 + x^3 \log(x) = \mathcal{O}(x^2) + \mathcal{O}(x^4) = \mathcal{O}(x^4) \Rightarrow n = 3$.
- **b)** $f(x) = 3x^5 + (\log x)^4 = \mathcal{O}(x^5) + \mathcal{O}(x^4) = \mathcal{O}(x^5) \Rightarrow n = 5$.
- c) $f(x) = \frac{3x^4 + x^2 + 1}{x^4 + 1} = \mathcal{O}(\frac{x^4}{x^4}) = \mathcal{O}(1) \Rightarrow n = 0$. d) $f(x) = \frac{x^3 + 5\log x}{x^4 + 1} = \mathcal{O}(\frac{x^4}{x^4}) = \mathcal{O}(1) \Rightarrow n = 0$.

Problem 14.

- a) No. Assume $x^3 \leq Cx^2$ for all x > k, where $k \in \mathbb{Z}^+$. Then $x \leq C$. For any chosen value of C, $\exists x \in \mathcal{Z}^+ \mid x > C$, since the set of positive integers is unbounded. Thus x^3 is not $\mathcal{O}(x^2)$.
- b) Yes. $x^3 < Cx^3$, whenever C = 1 and k = 1.
- c) Yes. Consider $x^3 \le x^2 + x^3 \le 2x^3 \le Cx^3$. $x^3 \le Cx^3$ for C = 1 and k = 1.
- d) Yes. Consider $x^3 < x^2 + x^4 < 2x^4 < Cx^4$. $x^3 < Cx^4$ for C = 1 and k = 1.
- e) Yes. $x^3 \le C3^x$, whenever C = 1 and k = 1.
- f) Yes. $x^3 \leq \frac{C}{2}x^3$, whenever C=2 and k=1.

Problem 19.

- a) $(n^2 + 8)(n + 1)$ is $\mathcal{O}(n^2 \cdot n) = \mathcal{O}(n^3)$.
- **b)** $(n \log n + n^2)(n^3 + 2)$ is $\mathcal{O}(n^2 \cdot n^3) = \mathcal{O}(n^5)$.
- c) $(n! + 2^n)(n^3 + \log(n^2 + 1))$ is $\mathcal{O}(n! \cdot n^3) = \mathcal{O}(n^n \cdot n^3) = \mathcal{O}(n^{n+3})$.

Problem 20.

- a) $(n^3 + n^2 \log n)(\log n + 1) + (17 \log n + 19)(n^2 + 2)$ is $\mathcal{O}(\max(n^3 \log n, n^2 \log n)) = \mathcal{O}(n^3 \log n)$.
- **b)** $(2^n + n^2)(n^3 + 3^n)$ is $\mathcal{O}(2^n \cdot 3^n) = \mathcal{O}(2^n 3^n)$.
- c) $(n^n + n2^n + 5^n)(n! + 5^n)$ is $\mathcal{O}(n^n \cdot n!) = \mathcal{O}(n^n \cdot n^n) = \mathcal{O}(n^{2n})$.

Problem 62. Show that $n \log n$ is $\mathcal{O}(\log n!)$.

Proof. Consider $f(n) = n \log n$ and $g(n) = \log n!$. f(n) is $\mathcal{O}(g(n))$ if $f(n) < \infty$ Cg(n) for all n > k, where $C, k \in \mathbb{Z}^+$.

 $g(n) = \log n! = \log 1 + \log 2 + \dots + \log n \le \log n + \log n + \dots + \log n = n \log n.$ Therefore, $f(n) = n \log n$ is $\mathcal{O}(\log n!)$, with C = 1 and k = 1 as witnesses. \square