Final exam 1

Duration : three hours

Documents and calculators not allowed

Name:	First name:	Class:
Exercise 1 (5 points 1. Using d'Alembert's test,	determine the nature of the series $\sum \frac{(n!)^2}{(3n)!}$.	
2. Let $k \in \mathbb{N}^*$. Using d'Aler	mbert's test, determine, depending on k , the nature of the ser	ries $\sum \frac{(n!)^2}{(kn)!}$.
		[this frame continues on next page]

3.	Let $a \in \mathbb{R}$. Using Cauchy's test, determine, depending on a , the nature of the series $\sum \left(\frac{n}{n+a}\right)^{n^2}$.

Exercise 2 (4 points)

Let $A = \begin{pmatrix} 0 & 3 & 0 \\ 1 & -2 & 4 \\ 1 & 1 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 2 & -4 \\ 1 & 1 & -3 \end{pmatrix}$.

Are A and B diagonalizable in $\mathcal{M}_3(\mathbb{R})$? If they are, determine D and P.

N.B. : the bases of the eigenspaces must be deduced from a clear reasoning, and not by randomly picking particular values.

[this frame continues on next page]

Exercise 3 (4 points)

Let $a \in \mathbb{R}$ and $A = \begin{pmatrix} -3 & 1 & 0 \\ a-3 & 0 & 1-a \\ -1 & 1 & -2 \end{pmatrix}$. Study the diagonalizability of A in $\mathcal{M}_3(\mathbb{R})$ depending on the value of a.

N.B.: when A is diagonalizable, the eigenbasis is not required.

Exercise 4 (4 points)

1. Let $f: \left\{ \begin{array}{ccc} \mathbb{R}_3[X] & \longrightarrow & \mathbb{R}_3[X] \\ \\ P(X) & \longmapsto & 3XP(X) - (X^2 - 1)P'(X) \end{array} \right.$

a. Determine (no need to justify) the matrix of f in the standard basis $\mathscr{B} = (1, X, X^2, X^3)$ of $\mathbb{R}_3[X]$.

2. Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$ and $f : \begin{cases} \mathcal{M}_2(\mathbb{R}) \to \mathcal{M}_2(\mathbb{R}) \\ X \mapsto AX - XA \end{cases}$. Determine (no need to justify) the matrix of f in the standard basis $\mathcal{B} = \begin{pmatrix} E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, E_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, E_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ of $\mathcal{M}_2(\mathbb{R})$.

Exercise 5 (4 points)

Let $(a, b, c, d, e, f) \in \mathbb{R}^6$ and $A = \begin{pmatrix} 1 & a & b & c \\ 0 & 2 & d & e \\ 0 & 0 & 2 & f \\ 0 & 0 & 0 & 2 \end{pmatrix}$.

Study the diagonalizability of A depending on the values of a, b, c, d, e and f. When A is diagonalizable, the eigenbasis is not required.

[this frame continues on next page]