# **FCC 47 CFR MPE REPORT**

Voxx Accessories Corp.

Wireless Speaker

Model Number:SP491

FCC ID:VIXSP491

| Prepared for:            | Voxx Accessories Corp.                                                |  |  |  |
|--------------------------|-----------------------------------------------------------------------|--|--|--|
|                          | 3502 Woodview Trace, suite 220, Indianapolis, IN 46268, United States |  |  |  |
|                          |                                                                       |  |  |  |
| Prepared By:             | EST Technology Co., Ltd.                                              |  |  |  |
|                          | Chilingxiang, Qishantou, Santun, Houjie, Dongguan, Guangdong, China   |  |  |  |
| Tel: 86-769-83081888-808 |                                                                       |  |  |  |

| Report Number:  | ESTE-R1803042     |  |  |
|-----------------|-------------------|--|--|
| Date of Test:   | Mar. 06~ 19, 2018 |  |  |
| Date of Report: | Mar. 22, 2018     |  |  |



# **Maximum Permissible Exposure**

#### 1. Applicable Standard

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2m normally can be maintained between the user and the device.

# (a) Limits for Occupational / Controlled Exposure

| Frequency   | Electric Field | Magnetic       | Power       | Averaging      |
|-------------|----------------|----------------|-------------|----------------|
| Range (MHz) | Strength E)    | Field Strength | Density (S) | Times   E      |
|             | (V/m)          | (H) (A/m)      | (mW/cm2)    | 2 ,   H   2 or |
|             |                |                |             | S (minutes)    |
| 0.3-3.0     | 614            | 1.63           | (100)*      | 6              |
| 3.0-30      | 1842/f         | 4.89/f         | (900/f)*    | 6              |
| 30-300      | 61.4           | 0.163          | 1.0         | 6              |
| 300-1500    |                |                | F/300       | 6              |
| 1500-10000  |                |                | 5           | 6              |

### (b). Limits for General Population / Uncontrolled Exposure

| -           |                |                |             |               |
|-------------|----------------|----------------|-------------|---------------|
| Frequency   | Electric Field | Magnetic       | Power       | Averaging     |
| Range (MHz) | Strength E)    | Field Strength | Density (S) | Times   E     |
|             | (V/m)          | (H) (A/m)      | (mW/cm2)    | 2,   H   2 or |
|             |                |                |             | S (minutes)   |
| 0.3-1.34    | 614            | 1.63           | (100)*      | 30            |
| 1.34-30     | 824/f          | 2.19/f         | (180/f)*    | 30            |
| 30-300      | 27.5           | 0.073          | 0.2         | 30            |
| 300-1500    |                |                | F/1500      | 30            |
| 1500-10000  |                |                | 1.0         | 30            |

Note: f=frequency in MHz; \*Plane-wave equivalent power density

#### 2. MPE Calculation Method

E (V/m) = (30\*P\*G) 0.5/d Power Density: Pd (W/m2) = E2/377

E = Electric Field (V/m)

P = Peak RF output Power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

Pd = (30\*P\*G) / (377\*d2)

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained



EST Technology Co. ,Ltd Report No. ESTE-R1803042 Page 2 of 4

### FCC ID:VIXSP491

# 3. Conducted Power Result

| Mode   | Frequency (MHz) | Peak output power (dBm) |                        | Target      | Antenna gain |          |
|--------|-----------------|-------------------------|------------------------|-------------|--------------|----------|
|        |                 |                         | Peak output power (mW) | power (dBm) | (dBi)        | (Linear) |
| GFSK   | 2402            | -3.293                  | 0.468                  | -4±1        | 0            | 1        |
|        | 2441            | -2.955                  | 0.506                  | -3±1        | 0            | 1        |
|        | 2480            | -2.254                  | 0.595                  | -3±1        | 0            | 1        |
| 8-DPSK | 2402            | -0.508                  | 0.890                  | -1±1        | 0            | 1        |
|        | 2441            | 0.023                   | 1.005                  | 0±1         | 0            | 1        |
|        | 2480            | 0.917                   | 1.235                  | 0±1         | 0            | 1        |



# 4. Calculated Result and Limit

|           |             | Antenna gain |           |         | Limited |          |
|-----------|-------------|--------------|-----------|---------|---------|----------|
|           |             |              |           | Power   | of      |          |
|           | Target      |              |           | Density | Power   | Test     |
| Mode      | power (dBm) | (4D:)        | (I import | (S)     | Density | Result   |
|           |             | (ubi)        | (Linear)  | (mW     | (S)     | Kesuit   |
|           |             |              |           | /cm2)   | (mW     | 1        |
|           |             |              |           |         | /cm2)   |          |
| 2.4G Band |             |              |           |         |         |          |
| GFSK      | -2          | 0            | 1         | 0.00013 | 1       | Compiles |
| 8-DPSK    | 1           | 0            | 1         | 0.00025 | 1       | Compiles |

