5. Компактність в топологічних просторах

Велику роль в топології відіграє клас компактних просторів, які мають дуже важливі властивості. Введемо основні поняття.

Озн. 5.1. Система множин $S = \{A_i \subset X, i \in I\}$ називається **покриттям** простору X, якщо $\bigcup A_i = X$.

Озн. 5.2. Покриття S називається **відкритим** (замкненим), якщо кожна із множин A_i є **відкритою** (замкненою).

Озн. 5.3. Підсистема P покриття S простору X називається **підпокриттям** покриття S, якщо сама P утворює покриття X.

Теорема 5.1. (Ліндельоф). Якщо простір X має злічену базу, то із його довільного відкритого покриття можна виділити не більш ніж злічене підпокриття.

Доведення. Нехай $\beta = \{U_n\}$ — деяка злічена база простору X, а $S = \{G_i, i \in I\}$ — довільне відкрите покриття простору X. Для кожного $x \in X$ позначимо через $G_n(x)$ один із елементів покриття S, що містить точку x, а через $U_n(x)$ — один із елементів бази β , що містить точку x і цілком міститься у відкритій множині G_n (теорема 2.3).

$$x \in U_n(x) \subset G_n(x)$$
.

Відібрані нами множини $U_n(x) \in \beta$ утворюють злічену множину. Крім того, кожна точка x простору X міститься в деякій множині $U_n(x)$, отже

$$\bigcup_{x\in X}U_n(x)=X.$$

Вибираючи для кожного $U_n(x)$ відкриту множину $G_n(x)$, ми отримаємо не більш ніж злічену систему, яка є підпокриттям покриття S.

Озн. 5.4. Топологічний простір (X, τ) , в якому із довільного відкритого покриття можна виділити не більш ніж злічене підпокриття, називається **ліндельофовим**, або фінально компактним.

Звузимо клас ліндельофових просторів і введемо наступне поняття.

Озн. 5.5. Топологічний простір (X, τ) називається **компактним** (бікомпактним), якщо будь-яке його відкрите покриття містить скінченне підпокриття (умова Бореля—Лебега).

Приклад 5.1. Простір з тривіальної топологією є компактним.

Приклад 5.2. Простір з дискретною топологією є компактним тоді і лише тоді, коли він складається із скінченної кількості точок.

Приклад 5.3. Простір Зариського є компактним.

Приклад 5.4. Простір \mathbb{R}^n , $n \ge 1$ не є компактним.

Теорема 5.2 (перший критерій компактності). Для компактності топологічного простору (X, τ) необхідно і достатньо, щоб будь-яка сукупність його замкнених підмножин з порожнім перетином містила скінченну підмножину таких множин із порожнім перетином.

$$(X,\tau)$$
 — компактний \Leftrightarrow

$$\iff \forall \left\{ \overline{F}_{\alpha}, \alpha \in A : \prod_{\alpha \in A} \overline{F}_{\alpha} = \emptyset \right\} \ \exists \left\{ \overline{F}_{\alpha_{1}}, \overline{F}_{\alpha_{2}}, ..., \overline{F}_{\alpha_{n}} \right\} : \prod_{i=1}^{n} \overline{F}_{\alpha_{i}} = \emptyset.$$

Доведення. Heoбxiднicmь. Нехай (X, τ) — компактний, а $\{\overline{F}_{\alpha}, \alpha \in A\}$ — довільна сукупність замкнених множин, що задовольняє умові $\prod_{\alpha \in A} \overline{F}_{\alpha} = \emptyset$. Розглянемо множини

 $U_{\alpha}=X\setminus \overline{F}_{\alpha}$. За правилами де Моргана (принцип двоїстості) сукупність множин $\left\{U_{\alpha},\alpha\in A\right\}$ задовольняє умові $\bigcup_{\alpha\in A}U_{\alpha}=X$, тобто утворює покриття простору $\left(X,\tau\right)$. Оскільки, за припущенням, $\left(X,\tau\right)$ — компактний простір, то існує скінченна підмножина множин $\left\{U_{\alpha_{1}},U_{\alpha_{2}},...,U_{\alpha_{n}}\right\}$, які також утворюють покриття: $\bigcup_{i=1}^{n}U_{\alpha_{i}}=X$. Отже, за правилами де Моргана

$$X\setminus \coprod_{i=1}^n \overline{F}_{lpha_i} = igcup_{i=1}^n (X\setminus \overline{F}_{lpha_i}) = igcup_{i=1}^n U_{lpha_i} = X \implies \coprod_{i=1}^n \overline{F}_{lpha_i} = \varnothing.$$

Достатність. Нехай $\{U_{\alpha}, \alpha \in A\}$ — довільне відкрите покриття простору (X,τ) . Очевидно, що множини $\overline{F}_{\alpha} = X \setminus U_{\alpha}, \alpha \in A$ ϵ замкненими, а їх сукупність має порожній перетин: $\prod_{\alpha \in A} \overline{F}_{\alpha} = \emptyset$. За умовою, ця сукупність містить скінченну підмножину множин $\{\overline{F}_{\alpha_1}, \overline{F}_{\alpha_2}, ..., \overline{F}_{\alpha_n}\}$, таку що $\prod_{i=1}^n \overline{F}_{\alpha_i} = \emptyset$. Звідси випливає, що множини U_{α_n} , які ϵ доповненнями множин \overline{F}_{α_n} , утворюють покриття простору (X,τ) , тобто простір (X,τ) ϵ компактним. ■

Озн. 5.6. Система підмножин $\{M_{\alpha} \subset X, \alpha \in A\}$ називається **центрованою**, якщо перетин довільної скінченної кількості цих підмножин є непорожнім.

$$\forall \{\alpha_1, \alpha_2, ..., \alpha_n\} \in A \prod_{i=1}^n M_{\alpha_i} \neq \emptyset \implies$$

$$\Rightarrow$$
 $\{M_{\alpha} \subset X, \alpha \in A\}$ — центрована система.

Теорема 5.3 (другий критерій компактності). Для компактності топологічного простору (X, τ) необхідно і достатньо, щоб будь-яка центрована система його замкнених підмножин мала непорожній перетин.

Доведення. *Необхідність*. Нехай простір (X,τ) — компактний, а $\{F_{\alpha}\}$ — довільна центрована система замкнених підмножин. Множини $G_{\alpha} = X \setminus F_{\alpha}$ відкриті. Жодна скінченна система цих множин G_{α_n} , $1 \le n < \infty$ не покриває X, оскільки

$$\forall n \in N \prod_{i=1}^{n} F_{\alpha_{i}} \neq \emptyset \Rightarrow$$

$$\Rightarrow X \setminus \prod_{i=1}^{n} F_{\alpha_{i}} = \bigcup_{i=1}^{n} (X \setminus F_{\alpha_{i}}) = \bigcup_{i=1}^{n} G_{\alpha_{i}} \neq X \setminus \emptyset = X .$$

Отже, оскільки (X,τ) — компактний простір, система $\{G_{\alpha}\}$ не може бути покриттям компактного простору. Інакше ми могли б вибрати із системи $\{G_{\alpha}\}$ скінченне підпокриття $\{G_{\alpha_1},...,G_{\alpha_n}\}$, а це означало б, що $\prod_{i=1}^n F_{\alpha_i} = \varnothing$. Але, якщо $\{G_{\alpha}\}$ — не покриття, то $\prod_{\alpha_i} F_{\alpha_i} \neq \varnothing$:

$$\bigcup_{\alpha} G_{\alpha} \neq X \Rightarrow X \setminus \bigcup_{\alpha} G_{\alpha} \neq X \setminus X = \emptyset \Rightarrow \prod_{\alpha} (X \setminus G_{\alpha}) = \prod_{\alpha} F_{\alpha} \neq \emptyset.$$

 \mathcal{A} остатність. Припустимо, що довільна центрована система замкнених множин із X має непорожній перетин. Нехай $\{G_{\alpha}\}$ — відкрите покриття (X,τ) . Розглянемо множини $F_{\alpha} = X \setminus G_{\alpha}$. Тоді

$$\bigcup_{\alpha}G_{\alpha}=X\Rightarrow X\setminus\bigcup_{\alpha}G_{\alpha}=X\setminus X=\varnothing\Rightarrow \prod_{\alpha}\left(X\setminus G_{\alpha}\right)=\prod_{\alpha}F_{\alpha}=\varnothing\;.$$
 Це означає, що система $\left\{F_{\alpha}\right\}$ не є центрованою, тобто

існують множини $F_1, F_2, ..., F_N$, такі що

$$\prod_{i=1}^{N} F_{i} = \varnothing \Rightarrow X \setminus \prod_{i=1}^{N} F_{i} = X \setminus \varnothing = X \Rightarrow \bigcup_{i=1}^{N} G_{i} = X.$$

Отже, із покриття $\{G_{\alpha}\}$ ми виділили скінчену підсистему

$$\{G_1,...,G_N\} = \{X \setminus F_1,...,X \setminus F_N\},$$

таку що $\bigcup_{\alpha}^{N} G_{\alpha} = X$. Це означає, що простір (X, τ) є

компактним.

- **Озн. 5.7.** *Множина* $M \subset X$ називається **компактною** (бікомпактною), якщо топологічний підпростір (M, τ_{M}) , що породжується індукованою топологією, є компактним.
- **Озн. 5.8.** *Множина* $M \subset X$ називається відносно компактною (відносно бікомпактною), якщо її замикання $M \in {\it компактною множиною}.$
- Озн. 5.9. Компактний і хаусдорфів простір називається компактом (бікомпактом).
- **Озн. 5.10.** Топологічний простір (X, τ) називається зліченно компактним, якщо із його довільного зліченного покриття відкритого можна виділити скінченне підпокриття (умова Бореля).
- Озн. 5.11. Топологічний простір (X,τ) називається секвенційно компактним, якщо довільна нескінченна послідовність його елементів містить збіжну підпослідовність (умова Больцано-Вейєрштрасса).

Теорема 5.4 (перший критерій зліченної компактності). Для того щоб простір (X, τ) був зліченно компактним необхідно і достатньо, щоб кожна його нескінченна підмножина мала принаймні одну строгу граничну точку, тобто точку, в довільному околі якої міститься нескінченна кількість точок підмножини.

Доведення. Heoбxiднicmb. Нехай (X,τ) — зліченно компактний простір, а M — довільна нескінченна множина в X. Припустимо, усупереч твердженню, що M не має жодної строгої граничної точки. Розглянемо послідовність замкнених множин $\Phi_n \subset M$, таку що $\Phi_n \subset \Phi_{n+1}$. Візьмемо $x_n \in \Phi_n$. За припущенням нескінченна послідовність точок $x_1, x_2, ..., x_n, ...$ не має строгих граничних точок. Побудуємо скінченну систему підмножин $\{F_n, n \in \mathbb{N}\}$, поклавши $F_n = \{x_n, x_{n+1}, ..., ...\}$. Із структури цих множин випливає, що будь-яка скінченна сукупність точок F_n має непорожній перетин, всі множини F_n є замкненими, але $\prod_{n \in \mathbb{N}} F_n = \emptyset$. Отже, ми побудували зліченну центровану систему замкнених множин, перетин яких порожній, що суперечить припущенню, що простір (X,τ) зліченно компактним.

Достатність. Нехай в просторі (X,τ) кожна нескінченна множина M має строгу граничну точку. Доведемо, що простір (X,τ) є зліченно компактним. Для достатньо перевірити, ЩО будь-яка центрована система $\{F_n\}$ замкнених нижонм непорожній перетин. Побудуємо множини $\hat{F}_m = \prod_{k=1}^m F_k$. Оскільки система $\{F_n\}$ є центрованою, то замкнені непорожні множини \hat{F}_m утворюють послідовність $\hat{F}_1, \hat{F}_2, ..., \hat{F}_m, ...$, що не зростає. Очевидно, що $\prod_{n \in \mathbb{N}} F_n = \prod_{m \in \mathbb{N}} \hat{F}_m$.

Можливі два варіанти: серед множин \hat{F}_m є лише скінченна кількість попарно різних множин, або нескінченна кількість таких множин. Розглянемо ці варіанти окремо.

- 1). Якщо серед множин \hat{F}_m ϵ лише скінченна кількість попарно різних множин, то починаючи з деякого номера m_0 виконується умова $F_{m_0} = F_{m_0+1} = \dots$ Тоді твердження доведено, оскільки $\prod_{m \in \mathbb{N}} \hat{F}_m = \hat{F}_{m_0} \neq \emptyset$.
- 2). Якщо серед множин \hat{F}_m є лише нескінченна кількість попарно різних множин, то можна вважати, що $\hat{F}_m \setminus \hat{F}_{m+1} \neq \emptyset$. Оберемо по одній точці з кожної множини $\hat{F}_m \setminus \hat{F}_{m+1}$. Отже, ми побудували нескінченну множину різних точок, яка, за умовою, має граничну точку x^* . Всі точки x_m, x_{m+1}, \ldots належать множинам \hat{F}_m . Отже, $x^* \in \hat{F}_m' \ \forall m \in \mathbb{N}$, до того ж $\overline{\hat{F}_m} = \hat{F}_m$. З цього випливає, що $\mathbf{I} \quad \hat{F}_m \neq \emptyset$.

Зауваження 5.1. Вимогу наявності строгої граничної точки можна замінити аксіомою T_1 . Інакше кажучи, в досяжних просторах будь-яка гранична точка ϵ строгою. Припустимо, що X — досяжний простір, а гранична точка x множини A не ϵ строгою, і тому існу ϵ деякий окіл U, що містить лише скінчену кількість точок множини A, що відрізняються від x. Розглянемо множину

 $V = U \setminus ((A I \ U) \setminus \{x\})$, тобто різницю між множиною U і цим скінченним перетином. Оскільки простір X є досяжним, то в ньому будь-яка скінченна множина є замкненою. Отже, множина V є відкритою $(V = X \ I \ (U \setminus \{A I \ U \setminus \{x\}\}) = U \ I \ (X \setminus (U \ I \ A \setminus \{x\}))$, містить точку x, а перетин множин дорівнює $A I \ V = \{x\}$ або \emptyset . Це суперечить тому, що x — гранична точка множини A.

Зауваження 5.2. Чому не можна взагалі зняти умову наявності строгої граничної точки? Розглянемо як контрприклад топологію, що складається з натуральних чисел на відрізку [1,n], тобто $\tau = \{\emptyset, \Gamma, [1,n] \Gamma \mid \forall n \in \Gamma \}$. Цей простір не є зліченно компактним (порушується другий критерій компактності). Розглянемо нескінченну множину $A \subset \Gamma$ і покладемо $n = \min A$. Тоді будь-який $m \in A \setminus \{n\}$ є граничною точкою множини A, тобто Γ є слабко зліченно компактним простором.

Теорема 5.5 (другий критерій зліченної компактності). Для того щоб досяжний простір (X, τ) був зліченно компактним необхідно і достатньо, щоб кожна нескінченна множина точок із X мала принаймні одну граничну точку (такі простори називаються слабко зліченно компактними). Інакше кажучи, в досяжних просторах слабка зліченна компактність еквівалентна зліченній компактності.

Доведення. Необхідність. Припустимо, що A — злічена підмножина X, що не має граничних точок (це не обмежує загальності, оскільки в будь-якій нескінченій підмножині ми можемо вибрати злічену підмножину). Множина A є замкненою в X (оскільки будь-яка точка

множини $\overline{A} \setminus A$ ϵ граничною точкою множини A, яка за припущенням не має граничних точок, тому A = A). Нехай $A = \{a_1, a_2, ...\}$ і $A_n = \{a_n, a_{n+1}, ...\}$. Із сказаного вище випливає, що $A_n = \overline{A}_n$, інакше $A' \neq \emptyset$. Покладемо $G_n = X \setminus A_n$. Ця множина ϵ доповненням замкненої множини A_n , тому вона ϵ відкритою. Розглянемо послідовність множин G_n . Вона зростає і покриває X, тому що кожна точка x із множини $X \setminus A$ належить $G_{\scriptscriptstyle 1}$, а значить, усім множинам $G_{\scriptscriptstyle n}$, а якщо $x \in A$, то вона дорівнює якомусь a_N , отже, належить G_{N+1} . Таким чином, послідовність множин G_n є покриттям, але скінченне підпокриття вона може містити $\{G_{i}, G_{i}, ..., G_{i}\}$, оскільки об'єднання елементів цього скінченного підпокриття було б найбільшим серед усіх множин G_n (які утворюють зростаючу послідовність).

$$G_1 \subset G_2 \subset ... \subset \bigcup_{k=1}^m G_{i_k} = G_N = X$$
.

У цьому випадку об'єднання $G_N = \bigcup_{k=1}^m G_{i_k}$ не може містити усі елементи a_i , номер яких перевищує N (за конструкцією), отже, воно не покриває X. У такому випадку простір X не є зліченно компактним. Отримане протиріччя доводить бажане.

Достатність. Припустимо, що простір X не ϵ зліченно компактним. Значить, існу ϵ зліченне відкрите покриття $\{G_n\}_{n=1}$, що не містить скінченного підпокриття. Оскільки

жодна сукупність множин $\{G_1,G_2,...,G_i\}$ не ϵ покриттям, виберемо з множин $X\setminus \bigcup_{k=1}^i G_i$ по одній точці x_i і утворимо із них множину A .

Розглянемо довільну точку $x \in X$. Оскільки $\{G_n\}_{n \in \Gamma}$ — покриття простору X, точка x належить якійсь множині G_N , яка в свою чергу може містити лише такі точки x_i із множини A, номер яких задовольняє умові i < N (оскільки за означенням точка x_i не належить жодному G_j , якщо $j \le i$). Отже, множина G_N є околом точки x, перетин якої із множиною A є лише скінченним. В той же час, оскільки простір є досяжним, в околі граничної точки будь-якої множини повинно міститись нескінченна кількість точок цієї множини. Отже, точка x не є граничною точкою множини A. Це твердження є слушним для будь-якої точки x, отже, множина A не має жодної граничної точки. Отримане протиріччя доводить бажане. \blacksquare

Теорема 5.6 (про еквівалентність компактності і зліченої компактності). Для топологічного простору (X,τ) із зліченною базою компактність еквівалентна зліченній компактності.

Доведення. *Необхідність*. Нехай (X,τ) — компактний простір. Тоді із *довільного* відкритого покриття можна виділити скінченне покриття. Значить, скінченне покриття можна виділити із зліченного відкритого покриття.

Достатність. Нехай (X,τ) є зліченно компактним простором, а $S = \{U_{\alpha}, \alpha \in A\}$ — його довільне відкрите покриття. Оскільки простори із зліченою базою мають властивість Ліндельофа (теорема 5.1), то покриття S

містить підпокриття S', яке, внаслідок, зліченної компактності простору (X,τ) містить скінченне підпокриття S''. Отже, простір (X,τ) є зліченно компактним.

Теорема 5.7 (про еквівалентність компактності, секвенційної компактності і зліченної компактності). Для досяжних просторів із зліченою базою компактність, секвенційна компактність і зліченна компактність є еквівалентними.

Доведення. З огляду на теорему 5.6, достатньо показати, що злічена компактність в досяжному просторі із зліченною базою еквівалентна секвенційній компактності.

Heoбxiднicmb. Розглянемо зліченно компактний простір (X,τ) . Нехай $A = \{x_n\}_{n\in\Gamma}$ — довільна нескінченна послідовність (тобто послідовність, що містить нескінченну кількість різних точок), а простір є зліченно компактним. Отже, за теоремою 5.5, множина A має граничну точку x^* . Розглянувши зліченну локальну базу околів $\{G_k\}_{k\in\Gamma}$ точки x^* , так що $G_{k+1} \subset G_k$, можна виділити послідовність x_{n_k} , що збігається до x^* . Отже, простір (X,τ) є секвенційно компактним.

Достатність. Нехай простір (X,τ) є секвенційно компактним. Із теореми 5.4 випливає, що будь-яка зліченна нескінченна підмножина простору X має строгу граничну точку. Це означає, що будь-яка нескінченна зліченна послідовність має граничну точку, тобто із неї можна виділити збіжну підпослідовність.

Література

- 1. Александрян Р.А., Мирзаханян Э.А. Общая топология. М.: Высшая школа, 1979, с. 225–238.
- 2. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. М.: Наука, 1981, с. 98–105.
- 3. Энгелькинг Р. Общая топология. М.: Мир, 1986, с. 195–215.