Rekursion

- Sie wissen, wie man Programme rekursiv entwickelt
- Sie kennen typische Beispiele von rekursiven Algorithmen
- Sie kennen die Vor-/Nachteile von rekursiven Algorithmen

Wenn man den Algorithmus kennt, dann ist es immer einfach...

6			1	9	7		
					2		
					3	1	9
		4					1
3				2	9		
			8	5		2	
9						6	5
	5	3	4	8			
8	7						

Soduko / 数独

Kurzform von: Ziffern dürfen nur einmal vorkommen / 数字は独身に限る («sûji wa dokushin ni kagiru»):

- 1. Regel: Es ist das Ziel, ein 9×9-Gitter mit den Ziffern 1 bis 9 so zu füllen, dass jede Ziffer in jeder Einheit (Spalte, Zeile, Block = 3×3-Unterquadrat) genau einmal vorkommt – und in jedem der 81 Felder exakt eine Ziffer vorkommt.
- 2. Wie viele Lösungen gibt es?
- 3. Wie sieht ein effizienter Algorithmus aus, der alle korrekten Lösungen findet?

Rekursiver Algorithmus

- Rekursiver Algorithmus:
 - Lösungsbeschrieb, der sich selber enthält.
 - Z.B. in der Mathematik sehr beliebt: Fakultät, Algorithmus nach Euklid
- Beispiel:
 - An welcher Position in der Schlange stehe ich?
 - Den Anfang der Schlange sieht man nicht.

Rekursiver Algorithmus

- 1. Frage Person vor dir, welche Position sie hat:
 - Falls sie zuvorderst steht, wird sie direkt antworten können,
 - sonst fragt sie einfach die Person vor sich.

Rekursiver Algorithmus

- 2. Sobald die Person an der ersten Stelle geantwortet hat
 - wird der Zweitvordersten geantwortet, usw.

Essenz eines Rekursiven Algorithmus:

Wiederholter Aufruf desselben Algorithmus (Methode), welcher das Problem zum Teil löst und dann zu einem Ganzen zusammengefügt wird

Beispiele

- Natur
 - Blätter des Farnstrauches
 - Fraktale Kurven
 - Schneeflocken

Mathematik

- Positive Ganzzahl:
 - 1 sei eine positive Ganzzahl
 - Der Nachfolger einer positiven Ganzzahl ist wieder eine positive Ganzzahl
- Fakultät:
 - fak(0) = 1
 - Wenn n>0, dann gilt fak(n) = n * fak(n -1)

Informatik

- Liste kann als Sequenz oder rekursiv definiert werden
- Baumstrukturen
 - Ein Baum ist entweder leer,
 - oder besteht aus einer Wurzel und zwei disjunkten Teilbäumen.

Beispiel: Fraktale Kurven

Figuren, bei denen man beliebig hinein zoomen kann und immer wieder ähnliche Muster entdeckt: z.B. Mandelbrot's «Apfelmännchen».

https://de.wikipedia.org/wiki/Mandelbrot-Menge

Beispiel: Fakultät

$$n! = 1*2*3...(n-1)*n$$

1, 1, 2, 6, 24, 120, 720, 5040, 40320, ...

$$n! = \begin{cases} 1 & \text{falls } n=0 \\ n*(n-1)! & \text{sonst} \end{cases}$$

Fakultätsberechnung mit Rekursion:

```
int fak(int n) {
    if (n == 0) return 1;
    else return n * fak(n-1);
}
Rekursiver Aufruf
```


Rekursive Algorithmen und Datenstrukturen

Wir werden in den Vorlesungen ab nächster Woche rekursive Algorithmen und Datenstrukturen intensiv nutzen.

Rekursion

Definition:

Ein Algorithmus/Datenstruktur heisst rekursiv definiert, wenn er/sie sich selbst als Teil enthält oder mit Hilfe von sich selbst definiert ist.

- Vorteil der rekursiven Beschreibung ist die Möglichkeit, eine unendliche Menge durch eine endliche Aussage zu beschreiben, z.B.:
 - Objekt x enthält wieder Objekt x
 - Algorithmus a ruft sich selber auf.
- In Java Programmen wird Rekursion durch Methoden implementiert, die sich selbst aufrufen, z.B.:
 - Methode p ruft Methode p auf.

Eine rekursiv definierte Datenstruktur

Liste nicht rekursiv definiert:

```
• Liste = (ListNode)*

Regex Notation
= definiert
()* beliebig oft, 0.. ∞
()? optional, 0..1
```

Liste rekursiv definiert:

- Liste = leer
- Liste = ListNode (Liste)?

Eine rekursive Methode, welche die Elemente einer einfach verketteten Liste der Reihe nach ausgibt (System.out.println).

```
class ListNode<T> {
    T element;
    ListNode<T> next;
}
```

```
private void printListForward(ListNode<T> n) {
    System.out.println(n.getElement().toString());
    if (n.next != null) {
        printListForward(n.next);
      }
}
```


Eine rekursive Methode, welche die Elemente einer einfach verketteten Liste in umgekehrter Reihenfolge ausgibt (System.out.println).

```
class ListNode<T> {
    T element;
    ListNode<T> next;
}
```

```
private void printListReverse(ListNode n) {
   if (n.next != null) {
      printListReverse(n.next);
   }
   System.out.println(n.getElement().toString());
}
```

Generelle Vorlage für rekursive Programme

Rekursive Programme sind das Programmäquivalent der vollständigen Induktion. Wesentlich ist somit, dass man zwischen zwei Fällen unterscheidet (wie bei den Beweisen):

1. Basis-Fall («Verankerung»): Man weiss z.B., dass fak(0) = 1 ist.

2. Allgemeiner Fall («Induktionsschritt»):

Für alle anderen Fälle (z.B. n>0) weiss man, dass sich die Lösung des Problems X(n) zusammensetzt aus einigen Operationen und einem Problem X(n-1), was eine Dimension kleiner als X(n) ist.

Z.B. fak(n) = n * fak(n-1) für n>0

Man zerlegt also das Problem für den allgemeinen Fall so lange, bis man auf den Basis Fall kommt.

Vorlage für rekursive Programme

- Damit muss eine allgemeine Vorlage für rekursive Programme diese beiden Fälle unterscheiden.
- Der Basis Fall stellt sicher, dass die rekursiven Programme endlich sind und terminieren (d.h. die Anzahl der rekursiven Aufrufe ist begrenzt).
- Vergisst man den Basis Fall, so werden im allgemeinen so viele rekursive Aufrufe durchgeführt, bis der Stack überläuft (Abbruch mit StackOverflow).

```
public int p(int n) {
   if (basecase) {
      // behandelt Basis Fall
   } else {
      p(n-1); // behandelt allg. Fall
   }
}

Führt sicher zum Basis-
Fall, da jetzt ein kleineres
Problem gelöst wird.
```

Übung

Schleifen: Operationen werden endlich oft wiederholt.

```
public void p() {
   int i = 0;
   while (i < 10)
      System.out.println(i++);
   }
}</pre>
```

Ausgabe auf Console von p():

Übung

Schleifen: Operationen werden endlich oft wiederholt.

```
public void p(int i) {
    if (i < 10) {
        System.out.println(i);
        p(i+1);
    }
    Lösung mit
    rekursivem Aufruf.</pre>
Initialer Aufruf
mit p(0);
```

Ausgabe auf Console von p(0):

Übung

Schleifen: Operationen werden endlich oft wiederholt.

```
public void p(int i) {
    if (i < 10) {
        p(i+1);
        System.out.println(i);
    }
}
Lösung mit
    rekursivem Aufruf.</pre>
Initialer Aufruf
mit p(0);
```

Ausgabe auf Console von p(0):

Direkte und indirekte Rekursion

Direkte Rekursion:

Bei der direkten Rekursion ruft eine Methode sich selber wieder auf.

```
public int p(int a) {
   int x = p(a-1);
}
```

Verankerung im Beispiel vernachlässigt.

Indirekte Rekursion:

Bei der indirekten Rekursion rufen sich 2 oder mehrere Methoden gegenseitig auf (häufig ungewollte Fehlerquelle beim Programmieren, insb. bei Events).

```
public int p(int a) {
   int x = q(a-1);
}
```

```
public int q(int a) {
   int x = p(a-1);
}
```

Endrekursion (tail recursion)→ Schleife

Programm mit Endrekursion:

```
int fak(int res, int n) {
   if (n == 0) {
      return res;
   } else {
      return fak(res*n, n-1);
   }
}
```

Programm mit Iteration:

```
int fak(int n) {
   if (n == 0) return 1;
   else {
     int res = n;
     while (n > 1) {
        n--; res = n * res;
     }
     return res;
   }
}
```

Erster Aufruf mit fak(1, n)

Ein Programm, bei dem der rekursive Aufruf die allerletzte Aktion in jedem Zweig ist (ausser im Basisfall), werden **endrekursiv** bezeichnet.

Endrekursive Programme lassen sich meist <u>einfach</u> in <u>iterative Form überführen</u>.

Gewisse Compiler optimieren Endrekursion und erzeugen automatisch einen iterativen Code (Java-Definition verlangt das nicht).

Gibt eventuell Probleme beim Debuggen.

Frage: lässt sich jedes Programm in eine nichtrekursive Form überführen (siehe nächste Folie)?

Rekursive Algorithmen sind weniger effizient als iterative Algorithmen \rightarrow überlegen Sie sich, ob Sie den Algorithmus iterativ schreiben.

Schleife & Endrekursion

In Java ist **i++** hier nicht möglich, das Beispiel ist so aber besser zu verstehen.

Schleifen (Iterationen) lassen/sich in Endrekursion überführen (und umgekehrt).

```
void p(int i) {
   while (<Bedingung>; i++)
      <Anweisung>
}
```

```
void p2(int i) {
   if (<Bedingung>) {
        <Anweisung>; i++;
        if (<Bedingung>) {
            <Anweisung>; i++;
            while (<Bedingung>; i++)
            <Anweisung>
        }
   }
}
```

```
void p1(int i) {
   if (<Bedingung>) {
        <Anweisung>; i++;
        while (<Bedingung>, i++ )
        <Anweisung>
   }
}
```

```
void pRekursiv(int i) {
  if (<Bedingung>) {
      <Anweisung>
      pRekursiv(i+1);
    }
}
```


Entwicklung von rekursiven Algorithmen

Ein Hamster soll bis zur nächsten Wand laufen.

Methoden: vor() und vorn_frei().

Iterative Lösung:

```
void zurMauer() {
   while (vorn_frei())
     vor();
}
```



```
void zurMauerRekursiv() {
   if (vorn_frei()) {
      vor();
      zurMauerRekursiv();
}
```


Der Hamster soll bis zur nächsten Wand und dann zurück zur Ausgangsposition laufen!

Direkt rekursive Lösung:

```
void hinUndZurueckRekursiv() {
   if (!vorn_frei()) {
      kehrt();
   }
   else {
      vor();
      hinUndZurueckRekursiv();
      vor();
   }
}
```

Der Hamster muss gleich viele Schritte zur Wand und zurück machen.

Hamster: Beispiel 2 im Detail


```
main:
            hUZR (1.)
                            hUZR (2.)
                                            hUZR (3.)
hUZR();
            vorn_frei() {true}
            vor();
            hUZR();
                     ----> vorn_frei() {true}
                            vor();
                            hUZR(); ----> vorn_frei() {false}
                                            kehrt();
                            vor();
                                               void hinUndZurueckRekursiv() {
                                                  if (!vorn frei()) {
            vor();
                                                     kehrt();
                                                  else {
Schrittfolge:
                                                     vor();
vor(); vor(); kehrt(); vor();
                                                     hinUndZurueckRekursiv();
                                                     vor();
                                               }
```


Der Hamster soll die Anzahl Schritte bis zur nächsten Mauer zählen.

Iterative Lösung

```
int anzahlSchritte() {
   int anzahl = 0;
   while (vorn_frei()) {
      vor();
      anzahl++;
   }
   return anzahl;
}
```

Rekursive Lösung

```
int anzahlSchritteRekursiv() {
   if (vorn_frei()) {
     vor();
     return 1 +
        anzahlSchritteRekursiv();
   } else {
     return 0;
   }
}
```

Dieses Beispiel macht in der Praxis wenig Sinn, da der Algorithmus eine schlechte Performance hat und schlechter lesbar ist.

Hamster: Beispiel 3 im Detail


```
main:
             aSR (1.)
                         aSR (2.)
                                            aSR (3.)
i=aSR();
             vorn frei {true}
                     ----> vorn_frei() {true}
                                    ----> vorn_frei() {false}
                                            return 0;
                            return 1 + 0;
                                            int anzahlSchritteRekursiv() {
             return 1 + 1;
                                               if (vorn_frei()) {
     <----
                                                  vor();
i=2;
                                                  return 1 +
                                                     anzahlSchritteRekursiv();
                                               } else {
                                                  return 0;
```


Der Hamster soll «anz» Schritte nach vorne gehen.

Der Hamster soll die Anzahl Körner zählen.

Stack:							
					aKR	anz	
			aKR	anz	aKR	anz	
	aKR	anz	aKR	anz	aKR	anz	
main	main		main		main		

Der Hamster soll die Anzahl Körner zählen. Sind beiden Algorithmen korrekt?

```
int anz = 0;

void anzahlKörnerRekursiv() {
   if (vorn_frei()) {
      anzahlKörnerRekursiv();
      anz += körner();
      vor();
   }
}
```

```
int anz = 0;

void anzahlKörnerRekursiv() {
   anz += körner();
   if (vorn_frei()) {
      vor();
      anzahlKörnerRekursiv();
   }
}
```

Rekursionstiefe «unendlich» (Endlosrekursion) erzeugt einen Laufzeitfehler: Stack Overflow.

Türme von Hanoi

Eine gegebene Anzahl von Scheiben unterschiedlicher Grösse soll von der Stange A nach Stange B bewegt werden, ohne dass eine grössere auf eine kleinere zu liegen kommt (Beispiel mit 3 Scheiben, C ist Hilfsstange):

Das folgende Beispiel ist rekursiv viel einfacher zu lösen, als in der iterativen Variant.

Türme von Hanoi: Demo

Türme von Hanoi: Vorgehen

- Basisfall/Verankerung (n = 1)
 - 1. bewege Scheibe von A nach B
- Lösung für (n = 2);
 - 1. bewege kleinere Scheibe von A nach C (Hilfsstange)
 - 2. bewege grössere Scheibe von A nach B
 - 3. bewege kleinere Scheibe von C (Hilfsstange) nach B
- Lösung für allgemeine n
 - 1. bewege Stapel (n-1) von A nach C
 - 2. bewege grösste Scheibe von A nach B
 - 3. bewege Stapel (n-1) von C nach B

Teile und Herrsche: Das Problem wird in Teile zerlegt, bis das Problem beherrscht wird.

Türme von Hanoi: Programm


```
void hanoi (int n, char from, char to, char help) {
   if (n == 1) {
      // bewege von from nach to
   }
   else {
      // bewege Stapel n-1 von from auf help
      // bewege unterste Scheibe von from nach to
      // bewege Stapel n-1 von help auf to
   }
}
Rekursion

Rekursion

Rekursion

Rekursion
```

```
weitere Vereinfachung:
```

```
void hanoi (int n, char from, char to, char help) {
   if (n > 0) {
      // bewege Stapel n-1 von from auf help
      // bewege unterste Scheibe von from nach to
      // bewege Stapel n-1 von help auf to
   }
   Stapel darf in
   Rekursion leer sein
```

Hilfsstange


```
void hanoi (int n, char from, char to, char help) {
   if (n > 0) {
      // bewege Stapel n-1 von from auf help
      hanoi(n-1, from, help, to);
      // bewege von from nach to
      System.out.println("bewege " + from + " nach " + to);
      // bewege Stapel n-1 von help auf to
      hanoi(n-1, help, to, from);
   }
}
```

```
main {
   hanoi (3, 'A', 'B', 'C');
}
```

```
bewege A nach B
bewege A nach C
bewege B nach C
bewege A nach B
bewege C nach A
bewege C nach B
bewege A nach B
```

Türme von Hanoi: Rekursionstiefe, Speicherkomplexität, Zeitkomplexität

- Rekursionstiefe:
 - Maximale «Tiefe» der Aufrufe einer Methode minus 1
 - hanoi(3) → hanoi(2) → hanoi(1) → hanoi(0): Rekursionstiefe = 3
- Zeitkomplexität (Rechenaufwand):

$$T_n = 1 + 2 * T_{n-1}$$

 $T_n = 1 + 2 * (1 + 2 * T_{n-2}) = 3 + 2 * 2 * T_{n-2}$
 $T_n = 3 + 2 * 2 * (1 + 2 * T_{n-3}) = 7 + 2 * 2 * 2 * T_{n-3}$
 $T_n = (2^n - 1) + 2^n = 2^{n+1} - 1$
d.h. Verdoppelung mit jedem Schritt, ergibt $T_n \sim 2^n$

- → Der Aufwand der Zeitkomplexität ist exponentiell O(2ⁿ)
- Speicherkomplexität: benötigter Speicher?

Fibonacci-Zahlen


```
fib(n) = \begin{cases} 0 & falls n = 0 \\ 1 & falls n = 1 \\ fib(n-1) + fib(n-2) & sonst \end{cases}
```

```
n 0 1 2 3 4 5 6 7 8 9 10 11 12 ...
fn 0 1 1 2 3 5 8 13 21 34 55 89 144 ..
```

```
public int fib(int n) {
   if (n == 0) return 0;
   else if (n == 1) return 1;
   else return fib(n-1) + fib(n-2);
}
```

Von welcher Ordnung ist dieser rekursive Algorithmus?

Fibonacci-Zahlen: Übung

Iterative Berechnung der Fibonacci Zahlen

```
int fib(int n) {
   int res = 0, zwRes0 = 1, zwRes1 = 1;
   if (n == 0) return 0;
   if (n == 1) return 1;
   for (int i = 2; i <= n; i++) {
      res = zwRes0 + zwRes1;
      zwRes0 = zwRes1;
      zwRes1 = res;
   }
   return res;
}</pre>
```

Von welcher Ordnung ist dieser iterative Algorithmus?

Rekursive Kurven

Einschub: Schildkröten-Graphik

- «Turtle» bewegt sich vorwärts
- «Turtle» dreht sich um Winkel

```
class Turtle
  double x, y;
  bewege(double distanz);
  drehe(double winkel):
}
```

Achtung:

Drehungen der Schildkröte sind relativ, nicht absolut.


```
bewege(0.2);
drehe(45);
bewege(0.4);
drehe(30);
bewege(0.2);
```

Rekursive Kurven: Schneeflockenkurve

Die Strecke wird je Rekursionsstufe dreigeteilt, der mittlere Teil wird durch die zwei Seiten eines gleichseitigen Dreiecks ersetzt

Java Programm für Schneeflocke


```
void schneeflocke(int stufe, double dist) {
if (stufe == 0) {
   turtle.bewege(dist)
} else {
   stufe--;
   dist = dist/3;
   schneeflocke(stufe, dist);
   turtle.drehe(60);
   schneeflocke(stufe, dist);
   turtle.drehe(-120);
   schneeflocke(stufe, dist);
   turtle.drehe(60);
   schneeflocke(stufe, dist);
```


Zusammenfassung

- Anmerkungen
 - zu jedem rekursiv formulierten Algorithmus gibt es einen äquivalenten iterativen Algorithmus
- Mögliche Vorteile rekursiver Algorithmen
 - kürzere Formulierung
 - · leicht verständliche Lösung
 - Einsparung von Variablen
 - teilweise sehr effiziente Problemlösungen (z.B. Quicksort, kommt später)
- Nachteile rekursiver Algorithmen
 - z.T. weniger effizientes Laufzeitverhalten (Overhead beim Methodenaufruf)
 - Konstruktion rekursiver Algorithmen «gewöhnungsbedürftig»

