PAPER TIME SERIES

PERAMALAN HARGA EMAS INDONESIA DENGAN MENGGUNAKAN MODEL ARIMA

Oleh:

Kelas 3SE5

Ignasius Aryanto Tupen Soga (13.7658)

SEKOLAH TINGGI ILMU STATISTIK JAKARTA

2016

PENDAHULUAN

REVIEW PAPER

Judul Paper : Gold Price Forecasting Using ARIMA Model

Penulis : Banhi Guha and Gautam Bandyopadhyay

Paper ini menerapkan model time series ARIMA untuk melakukan forecast pada data Emas di India. Data yang digunakan untuk melakukan forecast adalah data Bulanan Emas dari November 2003 sampai Januari 2014. Data tersebut dikumpulkan dari Multi Commodity Exchange og India Ltd (MCX). Hasil forecast diharapkan dapat digukanan oleh investor untuk membeli ataupun menjual emas. Hasil yang didapat adalah model ARIMA (1,1,1) yang kemudian digunakan untuk meramalkan harga emas 6 bulan berikutnya.

Pada penelitian ini, saya akan melakukan forecast terhadap data harga emas Indonesia dengan menggunakan model time series ARIMA. Setelah mendapatkan model ARIMA yang cocok, akan dilanjutkan dengan melakukan uji Heteroskedastisitas untuk meliihat apakan model ARIMA yang dibentuk telah cocok atau perlu dilakukan model GARCH.

PEMBAHASAN

DATA & METODOLOGI

Data yang digunakan pada penelitian ini adalah data harian harga emas di Indonesia dari periode 1 Februari 2016 hingga 2 Mei 2016. Data Harga yang diperoleh awalnya memiliki satuan Rp/Troy Ounce yang kemudian dilakukan konversi ke satuan Rp/gr dengan ketentuan 1 Troy Ounce = 31,10347677, tujuan dari konversi ini agar memudahkan orang dalam membaca hasil dan memudahkan interpretasi.

Analisis data dalam penelitian ini adalah menggunakan metode ARIMA (Autoregressive Integrated Moving Average. Dengan langkah-langkah sebagai berikut:

PLOT DATA

Identifikasi model data ini dilakukan dengan melihat plot time series sebgai berikut:

Dari grafik diatas dapat terlihat bahwa data bergerak fluktuatif setiap harinnya dan cendrung tidak terdapat data pencilan (outlier). Untuk mengetahui data tersebut telah stasioner maka dilakukan uji stasioner. Sebelum dilakukan uji stasioner data tersebut di transformasi

menggunakan transformasi logaritma natural (ln), tujuan transformasi ini adalah untuk mengurangi nilai variasi yang tinggi karena data yang besar. Hasil data yang telah ditransformasi ini diplot dalam bentuk grafik sebagai berikut:

Data hadil transformasi diatas menunjukan nilai yang lebih kecil sehingga variasi data juga akan semakin kecil.

UJI STASIONERITAS DATA

Pengujian stasionertas data dilakukan dengan Unit Root didasarkan pada Augmented Dickey Fuller (ADF) test pada tingkat level, 1st difference, dan 2nd difference. Untuk menentukan data stasioner atau tidak, maka perlu dilakukan perbandingan antara nilai t-statistik ADF dengan nilai ADF. Apabila nilai absolut t-statistik pada ADF Test lebih kecil dari pada nilai kritis ADF dengan tingkat signifikansi tertentu maka data tersebut tidak stasioner. Hasil pengujian Unit Root pada ADF adalah sebagai berikut:

Variabel	Test for unit	Augmented	Nila	i Kritis Mc Ki	non	Drob	Votorongon
Variabei	root in	Dickey-Fuller	1%	5%	10%	Prob.	Keterangan
Log(emas)	Level	-3,922688	-3,53487	-2,90692	-2,59101	0,0032	Stasioner
	1st difference	-9,894615	-3,53659	-2,90766	-2,5914	0	Stasioner
	2nd difference	-6,412156	-3,55267	-2,91452	-2,59503	0	Stasioner

Dengan hipotesis awa (Ho) adalah data tidak stasioner, maka hasil pengujian unit root pada tingkat level, 1st difference, dan 2nd difference menunjukan bahwa data telah stasioner. Hal ini terlihat dari nilai absolut ADF yang lebih besar dari Nilai Kritis Mc Kinon pada nilai kritis 1%, 5%, dan 10%. Stasioner juga dapat dilihat dari nilai prob. yang kurang dari alpha (0,05) sehingga dapat diambil keputusan yaitu tolak Ho atau dengan kata lain data telah stasioner.

Pada paper yang dijadikan rujukan, peneliti tidak melakukan uji stasioner pada data melainkan peneliti melakukan uji Durbin-Watson (DW) untuk mengetahui bahwa data layak untuk dianalisis menggunakan analisis time series. Hasil uji Durbin-Watson (DW) menunjukan nilai 0,091 yang mengindikasikan data layak untuk dianalisis dengan analisis time series.

IDENTIFIKASI MODEL SEMENTARA

Identifikasi model ARIMA sementara dilakukan dengan melihat corellogram ACF dan PACF. Koefisien autokorelasi parsial (PACF) mengukur tingkat keeratan hubungan antara Xt dan Xt-k sedangkan pengaruh dari time lab 1,2,3,...,k-1 dianggap konstan. Dengan kata lain, koefisien autokorelasi parsial mengukur derajat hubungan antara nilai-nilai sekarang dengan nilai-nilai sebelumnya (untuk time lag tertentu), sedangkan pengaruh nilai variabel time lab yang lain dianggap konstan.

Pola ACF dan PACF

Tipe Model	Pola Tipikal ACF	Pola tipikal PACF
AR(p)	Menurun secara eksponensial menuju nol	Signifikan pada semua lag p
MA(q)	Signifikan pada semua lag p	Menurun secara eksponensial
		menuju nol
ARMA(p,q)	Menurun secara eksponensial menuju nol	Menurun secara eksponensial
	_	_
		menuju nol

Sumber : Gujarati 2003

Berikut adalah tampilan corellogram data log(emas) pada tingkat level:

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.638	0.638	28.120	0.000
ı	1 (1	2	0.394	-0.023	38.984	0.000
· 🗀		3	0.326	0.142	46.578	0.000
· 🗀 ·	'E '	4	0.184	-0.130	49.021	0.000
1 j a 1	1 1	5	0.089	0.003	49.605	0.000
1 j ij 1	1 1	6	0.094	0.059	50.265	0.000
· 🗓 ·		7	0.084	0.017	50.799	0.000
1 11 1	'('	8	0.039	-0.035	50.917	0.000
1 j i 1	' <u> </u>	9	0.069	0.073	51.294	0.000
י ון י	' [] '	10		-0.091	51.362	0.000
' ['	' ['	11		-0.066	51.587	0.000
' ['			-0.048	0.019	51.778	0.000
' " '	' □ '		-0.128		53.165	0.000
' □ '	' '		-0.122	0.096	54.447	0.000
' [] '			-0.057	0.020	54.734	0.000
' [] '	│ ' □ '		-0.122		56.063	0.000
' - '	'['		-0.177		58.923	0.000
' - '	' 🖺 '		-0.188		62.225	0.000
' - '	' '		-0.197		65.945	0.000
I	'¶'		-0.262		72.637	0.000
_ '	'['	21	-0.251		78.922	0.000
' - '	' '	22	-0.207	0.003	83.292	0.000
'	' '		-0.199		87.429	0.000
' = '	' ['		-0.176		90.728	0.000
'■ '	' '		-0.158		93.448	0.000
'	'[['		-0.150		95.986	0.000
' ! !	'] '	27	-0.097	0.058	97.071	0.000
' 🗓 '	'['	28	-0.074		97.714	0.000
<u> </u>		29	-0.043	0.009	97.939	0.000
	']	30	-0.008		97.947	0.000
1] 1	' 🗓 '	31		-0.031	97.947	0.000
1] 1	' 🗓 '	32	-0.013		97.970	0.000
' ['	'['	33	-0.013	-0.030	97.993	0.000

Dari correlogram diatas dapat dilihat bahwa diagram ACF memotong pada lag 1, lag 2, dan pada lag 3, sedangkan pada diagram PACF nilainya memotong pada lag 1. Sehingga model awal yang diduga dalah ARIMA (1, 0, 1), ARIMA(1, 0, 2), ARIMA(1, 0, 3). Tidak cukup sampai disitu, karena data stasioner pada 1st differecen dan 2nd difference maka peneliti membentuk pula model ARIMA dengan d = 1 dan 2, sehingga menjadi ARIMA(1, 1, 1, 1), ARIMA(1, 1, 2), ARIMA(1, 1, 3), ARIMA(1, 2, 1), ARIMA(1, 2, 2), ARIMA(1, 2, 3).

Setelah menetapkan model sementara dari hasil identifikasi, yaitu menentukan nilai p, d, dan q, langkah berikutnya adalah melakukan estimasi paramater autoregressive dan moving average yang tercakup dalam model. Terdapat 9 kemungkinan model sementara yang akan diuji dan diambil satu model terbaik. Rangkuman hasil run ke-9 model tersebut adalah sebagai berikut:

	Adj R-						р	value		
ARIMA (p, d, q)	squared	RMSE	MAPE	MAE	SSE	Constant	AR(1)	MA(1)	MA(2)	MA(3)
ARIMA (1, 0, 1)	0,537534	0,013824	0,075683	0,009972	0,008392	0	0	0,0047	-	-
ARIMA (1, 0, 2)	0,561723	0,01374	0,074453	0,00981	0,007953	0	0	-	0,0004	
ARIMA (1, 0, 3)	0,539327	0,013984	0,074707	0,009844	0,008359	0	0	-	-	0,0174
ARIMA (1, 1, 1)	0,1906	0,013846	0,074426	0,009807	0,008815	Tanpa Konstan	0	0	-	-
ARIMA (0, 1, 2)	0,076844	0,013874	0,074672	0,009841	0,01023	Tanpa Konstan	Tanpa AR		0,0016	
ARIMA (0, 1, 3)	0,058157	0,014092	0,075178	0,009907	0,010437	Tanpa Konstan	Tanpa AR			0,015
ARIMA (0, 2, 1)	0,586425	0,013735	0,088281	0,011628	0,011211	Tanpa Konstan	Tanpa AR	0		
ARIMA (1, 2, 2)	0,607901	0,019887	0,138532	0,018249	0,01028	0	0		0	
ARIMA (1, 2, 3)	0,322993	0,099159	0,631297	0,083218	0,0172	Tanpa Konstan	0,0002			0,0019

Catatan: Model tanpa konstan dan tanpa AR dikeluarkan dari model karena p value yang tidak signifikan.

Pada table diatas dapat dilihat bahwa terdapat beberapa kritera dalam memilih model terbaik yaitu melihat dari Adj R-squared yang terbesar, RMSE, MAPE, MAE, dan SSE yang terkecil. Selain itu pengujian juga dilihat dari signifikansi dari parameternya, jika parameter tidak signifikan mempengaruhi model maka parameter tersebut akan dikeluarkan dari model sehingga pada akhirnya didapatkan semua kemungkinan model dengan nilai parameter yang telah signifikan (kurang dari alpha 0,05).

Berdasarkan hasil diatas penelti mengambil kesimpulan bahwa model ARIMA terbaik adalah ARIMA (1, 0, 2) dengan melihat kriteria RMSE, MAPE, MAE, dan SSE yang paling kecil.

Pada paper yang menjadi rujukan pemilihan model sementara dilakukan dengan melihat pada ACF dan PACF. Sehingga didapat 6 model yang diduga merupakan model ARIMA terbaik yaitu ARIMA(1, 0, 1), ARIMA(1, 0, 2), ARIMA(1, 0, 3), ARIMA(1, 1, 1) ARIMA(1, 1, 2), ARIMA(1, 1, 3). Berdasarkan rangkuman model ARIMA yang telah dibuat didapatkanlah model terbaik yaitu ARIMA (1, 1, 1) dilihat dari nilai R-squared, RMSE, MAPE.

Setelah melakukan estimasi dan mendapatkan penduga paramater, agar model sementara dapat digunakan untuk peramalan, perlu dilakukan uji kelayakan terhadap model tersebut. Tahap ini disebut diagnostic checking, dimana pada tahap ini diuji apakah spesifikasi model sudah benar atau belum. Pengujian kelayanan ini dapat dilakukan dengan beberapa cara yaitu:

Dilihat dari nilai residualnya. Jika nilai-nilai koefisien autokorelasi residual untuk berbagai leg waktu tidak berbeda signifikan dari nol (nilai prob. lebih besar dari alpha 0,05) maka model dianggap memadai utuk dipakai sebagai peramalan.

Berikut adalah tampilan uji autokorelasi residual untuk model ARIMA (1, 0, 2) Q-statistic probabilities adjusted for 2 ARMA terms

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
	<u> </u>	1	-0.200	-0.200	2.7197	
ı b ı		2	0.067	0.028	3.0264	
ı 🗖 ı	<u> </u>	3	0.124	0.149	4.1090	0.043
' 🗖 '	'['	4	-0.130	-0.085	5.3214	0.070
ı j ı	1 1	5	0.062	0.005	5.6034	0.133
1 1		6	0.001	0.012	5.6036	0.231
1 j 1 1	<u> </u>	7	0.049	0.080	5.7803	0.328
' 	' '	8	0.116	0.127	6.8015	0.340
' '	' '	9	0.098	0.151	7.5510	0.374
1 j 1	יון י	10	0.035	0.059	7.6460	0.469
' 二 '	🗏 '	11		-0.272	11.840	0.222
' P '	' '	12	0.206	0.110	15.324	0.121
_ '	' - '		-0.265		21.210	0.031
י נו י		14	0.058	0.021	21.498	0.044
·] ·	'['	15		-0.055	21.561	0.063
1 1	' '	16	-0.000	0.082	21.561	0.088
ı j ı	'[]'	17		-0.074	21.632	0.118
' 🖣 '	'🖣 '		-0.112		22.804	0.119
' ('	'['		-0.040		22.955	0.151
'■ '	' □ '		-0.162		25.490	0.112
' " '	'□ '		-0.137		27.350	0.097
' ('	'🖣 '		-0.039		27.500	0.122
' 🖺 '		ı	-0.095		28.427	0.128
י ון י	' 🖣 '	24		-0.092	28.977	0.146
' 🖣 '	'['	25	-0.111		30.310	0.141
-	'['	26	-0.009		30.320	0.174
' 📮 '	'['	27	-0.123		32.059	0.156
ı j ı	' ' '	28	0.034	0.090	32.196	0.187

Pada uji Q-statistic diatas dapat dilihat bahwa pada lag ke-3, leg ke-13, dan leg ke-14, nilai prob. residualnya lebih kecil dari alpha 0,05 yang menandakan bahwa residual signifikan atau tidak menyebar randam, sehingga model ARIMA (1, 0, 2) tidak dapat digunakan sebagai model untuk peramalan, perlu dilakukan pemilihan model ARIMA yang lain.

Berdasarkan pada table rangkuman 9 model yang telah di dapatkan sebelumnya peneliti kemudian menutuskan untuk memilih lagi model ARIMA (1, 0, 1) sebagai model terbaik. Pemilihan model ini berdasarkan pada nilai Adj R-squared yang terbesar, RMSE, MAPE, MAE, dan SSE yang dilihat kecil.

Berikut adalah tampilan uji autokorelasi residual untuk model ARIMA (1, 0, 1)

Q-statistic	probabilities	adjusted for	2 ARMA terms
G Statistic	probabilities	aujusteu ioi	Z AIXIMA territo

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
· b ·	b	1	0.091	0.091	0.5645	
ı _ ı	<u> </u>	2	-0.195	-0.205	3.1903	
ı b ı		3	0.069	0.115	3.5269	0.060
' = '	🗖 '	4	-0.140	-0.216	4.9300	0.085
ı (ı	1 1	5	-0.049	0.044	5.1025	0.164
1 1	'['	6	-0.004	-0.103	5.1037	0.277
ı j ı ı		7	0.054	0.117	5.3250	0.378
ı 🗀 ı		8	0.195	0.131	8.2263	0.222
ı 🗀 ı		9	0.204	0.231	11.470	0.119
ı ('['	10	-0.065	-0.088	11.802	0.160
' 二 '	[11	-0.160	-0.060	13.863	0.127
ı j ı ı	1 1 1	12	0.049	0.055	14.059	0.170
' 二 '	"	13	-0.191	-0.215	17.108	0.105
1 (1	1 1 1	14	-0.046	0.073	17.286	0.139
ı 🗖 ı	'['	15	0.138	-0.041	18.956	0.124
ı þ i	' ='	16	0.106	0.155	19.945	0.132
1 j i 1	' 🖺 '	17	0.060	-0.112	20.269	0.162
ı (' '	18	-0.049	0.031	20.489	0.199
' [] '	'[]'	19	-0.070	-0.070	20.953	0.228
'■ '	'🖣 '	20	-0.178	-0.127	24.025	0.154
'■ '	'🖣 '	21	-0.164	-0.138	26.698	0.112
' [] '	'['	22	-0.077	-0.091	27.299	0.127
1 1	'('	23	-0.005	-0.045	27.301	0.161
1 j a 1	' 📮 '	24	0.083	-0.110	28.029	0.175
1 (1		25	-0.017	-0.022	28.061	0.213
ı Д т	'□ '	26	-0.075	-0.147	28.696	0.232
· Ц ·	1 1	27	-0.066	0.006	29.198	0.256
1 1	יולי	28	-0.001	0.042	29.198	0.302

Pada hasil uji Q statistic diatas dapat dilihat bahwa nilai prob untuk semua lag waktu adalah lebih besar dari alpha 0,05. Hal ini menandakan bahwa residul data telah menyebar secara acak/ random sehingga model ARIMA (1, 0, 1) layak untuk digunakan untuk peramalan.

Pada paper yang menjadi rujukan, setelah dilakukan pemilihan model terbaik penulis tidak melakukan uji kelayakan model tersebut, melainkan langsung melakukan peramalan

dengan model sementara yang dipilih tersebut. Hal ini menjadi kritik bagi paper tersebut karena jika ternyata model yang dipilih memiliki sebaran residual yang tidak random maka hasil peramalannya akan kurang baik.

MODEL ARIMA

Model yang layak digunakan untuk peramalan adalah model ARIMA (1, 0, 1) atau model ARMA (1, 1) dengan persamaan umumnya dalah sebagai berikut:

$$X_t = \mu + \emptyset X_{t-1} + \varepsilon_t + \theta \varepsilon_{t-1}$$

Dimana:

 μ = Constant

 \emptyset = Koefisien AR

 Θ = Koefisien MA

 X_t = Observasi ke t

 X_{t-1} = Observasi ke t-1

 ε_t = Error pada observasi ke t

 ε_{t-1} = Error pada observasi ke t-1

Tabel berkut menampilkan estimasi parameter dari ARIMA (1, 0, 1) beserta level signifikansinya.

	Estimasi	SE	t	sig.
Konstan	13,1784	0,004634	2843,928	0
AR(1)	0,794473	0,067625	11,74818	0
Didderence	0			
MA(1)	-0,416355	0,141804	-2,93612	0,0047

Dari hasil estimasi parameter diatas dapat dibuat model ARIMA (1, 0, 1) sebagai berikut:

$$X_t = 13,1784 + 0,794473 X_{t-1} + \varepsilon_t + (-0,416355) \varepsilon_{t-1}$$

Pada paper yang menjadi acuan diperoleh model terbaik adalah ARIMA (1, 1, 1) dengan persamaannya dalah sebagai berikut:

$$X_t = 190,708(1+0,734) + (-0,734) X_{t-1}(X_{t-1} - X_{t-2}) + 0,869 \varepsilon_{t-1}$$

Catatan: Data yang di run pada penelitian ini adalah data hasil transformasi logaritma natural pada data asli, sedangkan pada paper yang menjadi acuan data yang di run adalah data asli tanpa transformasi.

FORECASTING

Setelah model terbaik (layak untuk peramalan) diperoleh dan model ARIMA telah dibentuk maka selanjutnya dapat dilakukan peramalan. Peramalan harga emas ini dilakukan untuk 25 rentang waktu kedepan (25 hari berikutnya).

Berikut adalah table yang menyajikan data hasil forecasting harga emas dimulai pada tanggal 3/05/2016 hingga tanggal 6/06/2016.

Periode	Nilai Peramalan (ln)	Nila	i Asli (Rp/gr)
05/03/2016	13,1783561	Rp	528.795,00
05/04/2016	13,17835881	Rp	528.796,43
05/05/2016	13,17836097	Rp	528.797,57
05/06/2016	13,17836268	Rp	528.798,47
05/09/2016	13,17836404	Rp	528.799,19
05/10/2016	13,17836512	Rp	528.799,76
05/11/2016	13,17836597	Rp	528.800,21
05/12/2016	13,17836665	Rp	528.800,57
05/13/2016	13,1783672	Rp	528.800,86
05/16/2016	13,17836763	Rp	528.801,09
05/17/2016	13,17836797	Rp	528.801,27
05/18/2016	13,17836824	Rp	528.801,41
05/19/2016	13,17836846	Rp	528.801,53
05/20/2016	13,17836863	Rp	528.801,62
05/23/2016	13,17836876	Rp	528.801,69
05/24/2016	13,17836887	Rp	528.801,75
05/25/2016	13,17836896	Rp	528.801,79
05/26/2016	13,17836903	Rp	528.801,83
05/27/2016	13,17836908	Rp	528.801,86
05/30/2016	13,17836912	Rp	528.801,88
05/31/2016	13,17836916	Rp	528.801,90
06/01/2016	13,17836918	Rp	528.801,91
06/02/2016	13,17836921	Rp	528.801,92
06/03/2016	13,17836922	Rp	528.801,93
06/06/2016	13,17836924	Rp	528.801,94

Catatan: Data hasil forecasting merupakan data hasil transformasi logaritma natural sehingga data hadil forecasting tersebut perlu dikembalikan kedata asal dengan cara exponensial.

Dari table diatas dapat dilihat bahwa hasil peramalan tidak berbeda jauh untuk setiap observasi hal ini menunjukan bahwa hasil peramalan yang dihasilkan kurang baik. Berikut disajukan grafik perbandingan antara data asli dan data hasil forecasting:

Pada grafik 3 dapat dilihat bahwa pada periode awal hingga maret 2016, hasil forecasting masih mengikuti pergerakan data asli namun setelah periode maret 2016 hasil forecasting cendrung datar (memiliki nilai yang sama) dan tidak mengikuti pola data asli.

Pada paper yang menjadi acuan Hasil forecasting yang dihasilkan baik dilihat dari hasil forecast yang mengikuti pola data asli. Pada paper tersebut peramalan dilakukan pada 6 bulan berikutnya (6 observasi).

GARCH

Hasil peramalan yang didapatkan perlu diuji lagi heteroskedastisitasnya sehingga dapat ditentukan apakah model memiliki masalah pada heteroskedastisitas atau tidak. Pengujian dilakukan dengan heteroscedasticity test pada eview. Berikut adalah hasil pengujiaannya:

Heteroskedasticity Test: ARCH

F-statistic	Prob. F(1,62)	0.4355
Obs*R-squared	Prob. Chi-Square(1)	0.4275

Dari hasil tersebut terlihat bahwa keputusan adalah gagal tolah Ho dilihat dari nilai prob yang lebih besar dari 0,05 sehingga dapat disimpulkan data tidak bermasalah pasa heteroskedastisitas sehingga tidak dibutuhkan dilakukan pemodelan dengan GARCH.

PENUTUP

KESIMPULAN

Analisis peramalan Harga Emas di Indonesia mendapatkan model terbaik yaitu model ARIMA (1, 0, 1) model ini dipilih dari 9 model yang dicurigai merupakan model terbaik untuk peramalan. Model ARIMA (1, 0, 1) merupakan model yang layak karena sebaran residualnya acak dan memiliki nilai parameter yang signifikan serta merupakan model yang dipilih dengan kriteria Adj R-squared yang terbesar, RMSE, MAPE, MAE, dan SSE yang terkecil. Model ARIMA (1, 0, 1) dapat didefenisikan dengan persamaan :

$$X_t = 13,1784 + 0,794473 X_{t-1} + \varepsilon_t + (-0,416355) \varepsilon_{t-1}$$

Pengujian Heteroskedastisitas model menunjukan bahwa model yang dihasilkan tidak mengandung masalah heteroskesdastisitas sehingga tidak perlu dilanjutkan pada model GARCH.

KETERBATASAN

Dalam peramalan harga emas Indonesia menggunakan ARIMA dinilai tidak mendapatkan hasil yang terbaik karena keterbatasan model ARIMA yang hanya dapat memprediksi data dalam jangka waktu siingkat sedangkan dalam peramalan yang dilakukan meramal hingga 25 observasi sehingga hasilnya kurang tepat.

LAMPIRAN

					13,17832763	13,17488941	528779,94	526965	4/26/2016	13,16507223	13,16507223	521817	521817	3/14/2016
					13,17831686	13,17244223	528774,242	525677	4/25/2016	13,1833851	13,1833851	531461	531461	03/11/2016
13,17836924		528801,94		06/06/2016	13,17830329 06/06/2016	13,17594775	528767,069	527523	4/22/2016	13,18495876 4/22/2016	13,18495876	532298	532298	03/10/2016
13,17836922		528801,933		06/03/2016	13,17828622 06/03/2016	13,17772618	528758,042	528462	4/21/2016	13,17433894 4/21/2016	13,17433894	526675	526675	03/09/2016
13,17836921		528801,924		06/02/2016	13,17826473 06/02/2016	13,17866998	528746,679	528961	4/20/2016	13,19073205 4/20/2016	13,19073205	535380	535380	03/08/2016
13,17836918		528801,912		06/01/2016	13,17823768 06/01/2016	13,18187679	528732,377	530660	4/19/2016	13,1872106 4/19/2016	13,1872106	533498	533498	03/07/2016
13,17836916		528801,898		5/31/2016	13,17820363	13,16701547	528714,375	522832	4/18/2016	13,19837582 4/18/2016	13,19837582	539488	539488	03/04/2016
13,17836912		528801,88		5/30/2016	13,17816078	13,16116477	528691,718	519782	4/15/2016	13,1845886	13,1845886	532101	532101	03/03/2016
13,17836908		528801,857		5/27/2016	13,17810684 5/27/2016	13,1668414	528663,2	522741	4/14/2016	13,17966956	13,17966956	529490	529490	03/02/2016
13,17836903		528801,828		5/26/2016	13,17803894 5/26/2016	13,17511141	528627,308	527082	4/13/2016	13,18199174 4/13/2016	13,18199174	530721	530721	03/01/2016
13,17836896		528801,792		5/25/2016	13,17795348 5/25/2016	13,17864919	528582,133	528950	04/12/2016	13,18234403 04/12/2016	13,18234403	530908	530908	2/29/2016
13,17836887		528801,747		5/24/2016	13,17784591 5/24/2016	13,17983574	528525,278	529578	04/11/2016	13,1753694 04/11/2016	13,1753694	527218	527218	2/26/2016
13,17836876		528801,69		5/23/2016	13,17771052 5/23/2016	13,16875066	528453,723	523740	04/08/2016	13,18610971 04/08/2016	13,18610971	532911	532911	2/25/2016
13,17836863		528801,618		5/20/2016	13,1775401	13,17217588	528363,671	525537	04/07/2016	13,19812184 04/07/2016	13,19812184	539351	539351	2/24/2016
13,17836846		528801,527		5/19/2016	13,17732559	13,160108	528250,345	519233	04/06/2016	13,17526697 04/06/2016	13,17526697	527164	527164	2/23/2016
13,17836824		528801,413		5/18/2016	13,17705559	13,16787579		523282	04/05/2016	13,16768659 04/05/2016	13,16768659	523183	523183	2/22/2016
13,17836797		528801,269		5/17/2016	13,17671574 5/17/2016	13,154513		516336	04/04/2016	13,18845819 04/04/2016	13,18845819	534164	534164	2/19/2016
13,17836763		528801,089		5/16/2016	13,17628797 5/16/2016	13,14896441	527702,509	513479	04/01/2016	13,17176859 04/01/2016	13,17176859	525323	525323	2/18/2016
13,1783672		528800,861		5/13/2016	13,17563112 5/13/2016	13,17563112	527356	527356	3/31/2016	13,17224057 3/31/2016	13,17224057	525571	525571	2/17/2016
13,17836665		528800,575		05/12/2016	13,1755913 05/12/2016	13,1755913	527335	527335	3/30/2016	13,1636531 3/30/2016	13,1636531	521077	521077	2/16/2016
13,17836597		528800,215		05/11/2016	13,17701632 05/11/2016	13,17701632	528087	528087	3/29/2016	13,16071063 3/29/2016	13,16071063	519546	519546	2/15/2016
13,17836512		528799,761		05/10/2016	13,17068677 05/10/2016	13,17068677	524755	524755	3/28/2016	13,19504862 3/28/2016	13,19504862	537696	537696	02/12/2016
13,17836404		528799,19		05/09/2016	13,16204744 05/09/2016	13,16204744		520241	3/25/2016	13,19401591	13,19401591	537141	537141	02/11/2016
13,17836268		528798,472		05/06/2016	13,16204744 05/06/2016	13,16204744	520241	520241	3/24/2016	13,15205227 3/24/2016	13,15205227	515067	515067	02/10/2016
13,17836097		528797,567		05/05/2016	13,15358294 05/05/2016	13,15358294	515856	515856	3/23/2016	13,16342086 3/23/2016	13,16342086	520956	520956	02/09/2016
13,17835881		528796,429		05/04/2016	13,18203319 05/04/2016	13,18203319	530743	530743	3/22/2016	13,16677827 3/22/2016	13,16677827	522708	522708	02/08/2016
13,1783561		528794,996		05/03/2016	13,17347846 05/03/2016	13,17347846	526222	526222	3/21/2016	13,13016288 3/21/2016	13,13016288	503915	503915	02/05/2016
87 13,17835269	13,20804187	528793,192	544728	05/02/2016	13,17695951 05/02/2016	13,17695951	528057	528057	3/18/2016	13,13628206 3/18/2016	13,13628206	507008	507008	02/04/2016
07 13,1783484	13,20876307	528790,922	545121	4/29/2016	13,18667812	13,18667812	533214	533214	3/17/2016	13,12466872	13,12466872	501154	501154	02/03/2016
52 13,178343	13,18531752	532489 528788,064	532489	4/28/2016	13,16930231	13,16930231	524029	524029	3/16/2016	13,1155623	13,1155623	496611	496611	02/02/2016
79 13,17833619	13,17905179	529163 528784,467	529163	4/27/2016	13,16534049	13,16534049	521957	521957	3/15/2016	13,11012884 3/15/2016	13,11012884	493920	493920	02/01/2016
FC	In(Harga Emas)	ting		Periode	Forecasting)	In(Harga Emas)	ting	Emas	Periode	Forecasting)	In(Harga Emas)	Forecasting		Periode
, In(Hasil	1	Hasil	Harga	· ·	ln(Hasil		Hasil	Harga		In(Hasil		Hasil	Harga	
		91	- 6 Juni 201	bruari 2016	g) Periode 1 Fe	Tabel Harga Emas, Hasil Forecasting, In(Harga Emas), dan In(Hasil Forecasting) Periode 1 Februari 2016 - 6 Juni 2016	Emas), dan In(, In(Harga	Forecasting	rga Emas, Hasil	Tabel Ha			

Hasil Uji ADF tingkat Level

Null Hypothesis: LOGEMAS has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	ller test statistic 1% level 5% level 10% level	-3.922688 -3.534868 -2.906923 -2.591006	0.0032

^{*}MacKinnon (1996) one-sided p-values.

OUTPUT 2

Hasil Uji ADF tingkat 1st Difference

Null Hypothesis: D(LOGEMAS) has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	ller test statistic 1% level 5% level 10% level	-9.894615 -3.536587 -2.907660 -2.591396	0.0000

^{*}MacKinnon (1996) one-sided p-values.

OUTPUT 3

Hasil Uji ADF tingkat 2nd Difference

Null Hypothesis: D(LOGEMAS,2) has a unit root

Exogenous: Constant

Lag Length: 7 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	ler test statistic 1% level 5% level 10% level	-6.412156 -3.552666 -2.914517 -2.595033	0.0000

^{*}MacKinnon (1996) one-sided p-values.

OUTPUT 4

ARIMA (1, 0, 1)

Coefficient	Std. Error	t-Statistic	Prob.
13.17837	0.004634	2843.928	0.0000
0.794473	0.067625	11.74818	0.0000
-0.416355	0.141804	-2.936123	0.0047
0.551986	Mean depend	lent var	13.17268
0.537534	S.D. depende	nt var	0.017107
0.011634	Akaike info cri	iterion	-6.024735
0.008392	Schwarz crite	rion	-5.924379
198.8039	Hannan-Quin	n criter.	-5.985138
38.19426	Durbin-Watso	n stat	1.776665
0.000000			
.79			
.42			
	13.17837 0.794473 -0.416355 0.551986 0.537534 0.011634 0.008392 198.8039 38.19426 0.0000000	13.17837	13.17837 0.004634 2843.928 0.794473 0.067625 11.74818 -0.416355 0.141804 -2.936123 0.551986 Mean dependent var 0.537534 S.D. dependent var 0.011634 Akaike info criterion 0.008392 Schwarz criterion 198.8039 Hannan-Quinn criter. 38.19426 Durbin-Watson stat 0.0000000

