Predictive Learning applied to Muon Chamber Monitoring

Data Quality Monitoring with Neural Networks

Candidate: Nicolò Lai

Supervisor: Prof. Marco Zanetti

December 14, 2021

Introduction

Deep learning algorithms for data quality monitoring

Employement of deep learning allows for

- Flexibility
- Accuracy
- Automation

The Detector

Università degli Stud di Padova

Experimental setup

- 4 muon chambers (superlayers)
- 4 staggered layers of 16 drift tubes each
- trigger-less data acquisition system
- 2 scintillator tiles

The Drift Time Distribution

Main features of the time box

Collection of the times that the electrons take to reach the anodic wire in the center of the cell

The external trigger

- allows to discriminate *muon hits* from background noise
- \blacksquare provides a *timing reference* t_0 for computing the drift time

Time box shape:

- approximately uniform
- \sim 400 ns width

The Deep Learning Algorithm

A brief overview

Tuning the Neural Network

Training the network on the reference dataset

Reference sample ${\cal R}$

$$N_{R} = 200000$$

Data sample ${\cal D}$

$$\mathcal{N}_{\mathcal{D}} = 3000$$
 sampled from \mathcal{R}

Tuning the Neural Network

Optimal weight clipping

400 samples of $\mathcal{N}_{\mathcal{D}} = 3000$ each

Discrepancy assessment

Discrepancy assessment

Discrepancy assessment

Neural network's data reconstruction

Summary of the Results

Improving the procedure automation

The current implementation of the algorithm

- lacksquare correctly detects discrepancies between ${\cal R}$ and ${\cal D}$
- \blacksquare returns larger t_{obs} when the anomalies are more evident

However

- the most critical anomalies are not always the most obvious
- the time box shape may vary for other reasons (e.g. due to correlations with other observables)

Example of Correlated Observables

Correlation between time box shape and muon crossing angle

Procedure improvements

- 1 Gathering correlated observables to improve flexibility
 - multi-dimensional input datasets
- 2 Mapping different data anomalies to the corresponding detector failures
 - systematic study of discrepant data collected with well-known detector setups
- 3 Building an online DQM framework for full automation
 - the current implementation of the algorithm is too slow
 - FalkonML¹ can be exploited to emulate our algorithm
 - training time lowers from \sim 47 min to \sim 2 sec

¹ GitHub repository: https://github.com/FalkonML/falkon

Thank you for your attention!

Drift Tubes

Specifics of the detector elementary cells

- DTs' transverse cross section is $L \times h = 42 \times 13 \, \text{mm}^2$
- \blacksquare Filled with an Ar-CO₂ (85/15 %) gas mixture at $\sim 1\,\text{atm}$
- lacktriangle Precise electrode configuration ensures $ec{\it E} \simeq {
 m uniform}$ inside DTs
- Almost constant drift velocity $v_{\text{drift}} \approx 54 \, \mu \text{m/ns}$

- Null hypothesis H_0 : $n(x \mid \mathcal{R}) \longrightarrow \text{data following the reference model } \mathcal{R}$
- Alternative hypothesis H_1 : $n(x | \mathbf{w}) = n(x | \mathcal{R}) e^{f(x; \mathbf{w})} \longrightarrow \text{parametrized by the NN}$

The most powerful statistical test is the likelihood-ratio test (Neyman-Pearson lemma)

The algorithm compares $n(x \mid \mathcal{R})$ with $n(x \mid \widehat{\boldsymbol{w}})$ where $\widehat{\boldsymbol{w}}$ is the parameters configuration that maximizes the likelihood

The Wilks' Theorem

Asymptotic distribution of the log-likelihood ratio statistic

The test statistic is given by

$$t(\mathcal{D}) = 2 \log \left[\frac{e^{-\mathcal{N}(\widehat{\mathbf{w}})}}{e^{-\mathcal{N}(\mathcal{R})}} \prod_{x \in \mathcal{D}} \frac{n(x \mid \widehat{\mathbf{w}})}{n(x \mid \mathcal{R})} \right]$$
$$= -2 \min_{\mathbf{w}} \left[\frac{\mathcal{N}(\mathcal{R})}{\mathcal{N}_{\mathcal{R}}} \sum_{x \in \mathcal{R}} \left(e^{f(x; \mathbf{w})} - 1 \right) - \sum_{x \in \mathcal{D}} f(x; \mathbf{w}) \right]$$

Wilks' theorem states that the $t(\mathcal{D})$ distribution asymptotically approaches a χ^2 distribution under the null hypothesis H_0

Tuning the Neural Network

Testing different weight clipping values

Data quality monitoring with kernel methods

Kernel methods:

$$\widehat{f}(x) = \sum_i \alpha_i k(x, x_i)$$
 where $k(x, x') = \exp(\frac{||x - x'||^2}{2\sigma^2})$

FalkonML:

■ implements the Nyström approximation

$$\widehat{f}(x) = \sum_{i} \alpha_{i} k(x, \widetilde{x}_{i}) \text{ where } \{\widetilde{x}_{i}\}_{i=1}^{m} \subset \{x_{i}\}_{i=1}^{n}$$

■ uses the logistic loss function

$$L[f] = \frac{N(\mathcal{R})}{N_{\mathcal{R}}} (1 - y) \log(1 + e^{f(x; \mathbf{w})}) + y \log(1 + e^{-f(x; \mathbf{w})})$$

■ the test statistic $t(\mathcal{D})$ is computed using $f(x; \hat{w})$