Teoría de números algebraicos Tarea 8

Alexey Beshenov (alexey.beshenov@cimat.mx)

28 de octubre de 2020

Ejercicio 8.1. Demuestre que si X es un conjunto convexo simétrico compacto tal que vol $X = 2^n \cdot \operatorname{covol} \Lambda$, entonces $X \cap \Lambda \neq \{0\}$.

Ejercicio 8.2. Para t > 0 consideremos el conjunto convexo simétrico

$$X_t = \{(x_\tau)_\tau \in K_\mathbb{R} \mid |x_\tau| < t \text{ para todo } \tau\}.$$

Calcule que

$$vol(X_t) = 2^{r_1} (2\pi)^{r_2} t^n.$$

Ejercicio 8.3. Supongamos que $d=p_1\cdots p_s$, donde s>1 y los p_i son diferentes primos y consideremos el campo cuadrático imaginario $K=\mathbb{Q}(\sqrt{-d})$. Demuestre que los ideales correspondientes $\mathfrak{p}_1,\ldots,\mathfrak{p}_s\subset\mathcal{O}_K$ generan un subgrupo en $\mathrm{Cl}(K)$ isomorfo a $(\mathbb{Z}/2\mathbb{Z})^{s-1}$.

Ejercicio 8.4. Calcule los grupos de clases de campos

$$\mathbb{Q}(\sqrt{-110}), \quad \mathbb{Q}(\sqrt{-127}), \quad \mathbb{Q}(\sqrt{33}), \quad \mathbb{Q}(\sqrt[3]{19}), \quad \mathbb{Q}(\sqrt{-3}, \sqrt{-5}).$$

Ejercicio 8.5. Sea K/\mathbb{Q} un campo de números. Demuestre que para cualquier ideal $I \subset \mathcal{O}_K$ existe una extensión finita L/K tal que el ideal correspondiente $I \mathcal{O}_L$ es principal.

Ejercicio 8.6. Consideremos una sucesión exacta corta de *R*-módulos

$$0 \to M' \xrightarrow{i} M \xrightarrow{p} M'' \to 0$$

- 1) Demuestre que si M'' es un R-módulo libre, entonces el homomorfismo p admite una **sección** $s \colon M'' \to M$ tal que $p \circ s = id_{M''}$.
- 2) Demuestre si existe una sección s como arriba, entonces $M' \oplus M'' \cong M$.