Attorney ocket No: N1085-00261 [TSMC 2003-1117]

What is claimed is:

1

2

3

1

2

1

2

3

4

1

2

1. A method for mapping surface topography of a substrate comprising:

- 2 forming a non-metallic film over a substrate;
- forming a metal film over said non-metallic film;
- 4 polishing to remove at least a portion of said metal film; and
- distinguishing first regions in which said metal film remains, from second regions in which said metal film has been removed and said non-metallic film is exposed.
- 1 2. The method as in claim 1, wherein said forming a non-metallic film over a substrate comprises forming a dielectric film over a semiconductor substrate.
 - 3. The method as in claim 1, wherein said substrate includes at least one further film formed thereover, and said forming a non-metallic film comprises forming a dielectric film over said at least one further film.
 - 4. The method as in claim 3, wherein said at least one further film includes a patterned polysilicon film and a polished interlevel dielectric film formed thereover.
 - 5. The method as in claim 3, wherein said polishing and said distinguishing take place during in-line processing of semiconductor devices being formed on said substrate and further comprising generating topographical data of a surface of said substrate.
- 1 6. The method as in claim 1, wherein said forming a metal film comprises 2 forming a copper film.
- 7. The method as in claim 1, wherein said polishing comprises chemical mechanical polishing (CMP).
 - 8. The method as in claim 1, wherein said distinguishing includes using an interferometer to monitor optical signals directed to a top surface of said substrate.

SD/45781.1 11

Attorney ocket No: N1085-00261 [TSMC 2003-1117]

9. The method as in claim 1, wherein said distinguishing is repeated periodically during said polishing.

- 10. The method as in claim 1, wherein said distinguishing is repeated substantially continuously during said polishing.
- 11. The method as in claim 10, wherein said distinguishing includes spatially distinguishing said first regions from said second regions a plurality of times during said polishing, and further comprising generating a three-dimensional topographical map of said substrate based on said distinguishing.
- 12. The method as in claim 1, wherein said distinguishing includes directing an optical signal to a top surface of said substrate and using an interferometer to detect one of a return refracted signal and a return reflected signal.
- 13. The method as in claim 12, wherein said directing an optical signal includes causing said optical signal to scan across said top surface.
- 14. The method as in claim 1, further comprising generating a map of substrate topography based on data obtained during said distinguishing.
- 15. The method as claim 14, further comprising instituting in-line process controls based on said map.
 - 16. The method as in claim 14, wherein said first regions correspond to relatively depressed regions of said substrate and said second regions correspond to relatively raised regions of said substrate.
 - 17. The method as in claim 1, wherein said substrate is generally round and includes a diameter of about 12 inches and said distinguishing includes monitoring optical signals directed to a plurality of locations, each of said plurality of locations separated from other of said plurality of locations by about 10-20 mm.
- 18. The method as in claim 1, wherein said substrate comprises a semiconductor substrate upon which a plurality of semiconductor devices are being

SD45781.1 12

3	formed, and said distinguishing includes monitoring optical signals directed to a plurality
4	of scribe lines between respective semiconductor devices of said plurality of
5	semiconductor devices on said semiconductor substrate.
1	19. A method for mapping surface topography of a substrate comprising:
2	forming a non-reflective film over a substrate;
3	forming a reflective film over said non-reflective film;
4	polishing to remove at least a portion of said reflective film; and
5 .	distinguishing first regions in which said reflective film remains, from second
6	regions in which said reflective film has been removed and said non-reflective film is
7	exposed.
1	20. An apparatus for in-line monitoring of surface topography of a substrate
2	comprising:
3	a body for receiving a substrate thereon;
4	polishing means for polishing a surface of said substrate; and
5	detecting means for detecting a presence or absence of a reflective film at a
6	plurality of locations on said surface during said polishing operation.
7	
1	21. The apparatus as in claim 20, wherein said detecting means comprise an
2	optical system.
3	
1	22. The apparatus as in claim 20, wherein said detecting means comprise an
2	interferometer.
3	
1	23. The apparatus as in claim 20, wherein said polishing means comprise a
2	chemical mechanical polishing apparatus.

13

3

EXPRESS MAIL LABEL . J. EV 306255205 US

Attorney ocket No: N1085-00261 [TSMC 2003-1117]

24. The apparatus as in claim 20, wherein said detecting means detects a presence or absence of said reflective film at a plurality of locations on said surface, several times during a polishing operation.

4

3

1 2

25. The apparatus as in claim 20, further comprising display means that provide an output indicative of topography of said substrate.

3 1

2

2

26. The apparatus as in claim 25, in which said display means is coupled to electronic circuitry that compares said output to pass/fail criteria.

SD\45781.1 14