DFSr - Hierarquia de Profundidade

Por Neilor Tonin, URI ■ Brasil

Timelimit: 1

A rotina PathR é bem conhecida em grafos. É também chamada de **dfs** ou **dfsr**. Trata-se de uma busca em profundidade dos nodos do grafo, utilizando backtracking. A tarefa aqui é, dado o grafo de entrada, simplesmente gerar o desenho da hierarquia dos nodos pesquisados. Para isso, é apresentada a rotina PathR abaixo, como apoio.

Entrada

A entrada será um arquivo contendo vários casos de teste. A primeira linha do arquivo de entrada contém um inteiro N que indica a quantidade de casos de teste que vem a seguir. Cada um dos N casos de teste contém, na primeira linha, duas informações: V ($1 \le V \le 20$) e E ($1 \le E \le 20$) que são, respectivamente, a quantidade de Vértices e de Arestas (Edges) do grafo. Seguem E linhas contendo informações sobre cada uma das arestas do grafo.

Saída

Para cada caso de entrada, deve ser apresentada uma saída que representa a busca em profundidade de todos os nodos, respeitando a hierarquia e profundidade de cada um deles. O símbolo b representam um espaço em branco. Veja o exemplo abaixo para ilustrar:

bb0-2 pathR(G,2) bbbb2-1 pathR(G,1) bbbb2-4 pathR(G,4) bbbbbb4-1

E assim sucessivamente...

Obs.: Há uma linha em branco depois de cada segmento impresso do grafo, inclusive após o último segmento.

Exemplo de Saída
Caso 1:
0-1 pathR(G,1)
1-5 pathR(G,5)
5-6 pathR(G,6)
1-7 pathR(G,7)
7-8 pathR(G,8)

4 2 2 3 7 8 1 7	0-4 pathR(G,4) 4-2 pathR(G,2) 2-3 pathR(G,3)
10 11 11 8	10-11 pathR(G,11)
0 1 1 2 3 4 4 3	Caso 2: 0-1 pathR(G,1) 1-2 pathR(G,2)
56879	3-4 pathR(G,4) 4-3
9 10	5-6 pathR(G,6) 6-8 pathR(G,8)
	7-9 pathR(G,9) 9-10 pathR(G,10)