實驗名稱: **主動濾波器** 學號: B11102112 姓名: 李家睿

一、目的

主動濾波器是一種用於消除電力系統中諧波的濾波器,也被稱為有源功率濾波器(Active Power Filters,簡稱 APF)。其目的在於改善電力系統的品質,特別是消除諧波。主動濾波器是由運算放大器、電阻和電容等元件組成的濾波電路,其工作原理是利用運算放大器的負反饋來實現對信號的頻率選擇。主動濾波器具有許多優點,例如:增益高、Q值高、體積小等,因此在電子電路中得到了廣泛的應用。

二、步驟

- 1. 將 OPA、電容與電阻組成題目所要求之電路
- 2. 用電源供應器在 OPA 的第八角接上+10V 電壓與在第四角接上-10V 電壓
- 3. 使用示波器測量輸出結果

三、數據

1. 低通電路

(1) Circuit diagram

(2) Output waveform

(a) $V_{in(f)} = 100 Hz$

(3)Output Result

V _{in(f)}	100	200	500	1k	1.5k	2k	2,5k	3k	3.5k	4k	4.5k	5k
Vo	3.44	3.32	2.88	2.04	1.56	1.24	1.08	0.92	0.76	0.7	0.64	0.56

2. 高通電路

(1) Circuit diagram

(2) Output waveform

a)
$$V_{in} = 100Hz$$

b) $V_{in} = 5KHz$

(3) Output Result

V _{in(f)}	100	200	500	1k	1.5k	2k	2,5k	3k	3.5k	4k	4.5k	5k
Vo	0.188	0.22	0.342	0.512	0.65	0.792	0.872	0.94	1	1.02	1.04	1.06

四、心得

這次的實習課讓我對高通低通電路的應用有更深入的了解。高通低通電路是一種常見的電子電路,由電阻、電容等元件組成,可以根據不同的截止頻率來阻隔或濾除特定頻率的信號。

在電子學課上,我們已經學過高通低通電路的原理和分析方法。但是,當時只停留在理論的層面,對於實際的應用並不清楚。透過這次的實習課,我終於知道高通低通電路可以用在音響的音效調整上。音響中的高音揚聲器負責播放高頻信號,而低音揚聲器負責播放低頻信號。如果音頻信號直接送到揚聲器,那麼所有頻率的信號都會被同時播放出來。但是,人耳對不同頻率的信號敏感度不同,我們通常更喜歡聆聽高音和低音較為突出的音效。因此,音響設計中會使用高通低通電路來對音頻信號進行處理。高通濾波器可以讓高頻信號通過,而低通濾波器則可以讓低頻信號通過。透過調整高通和低通濾波器的截止頻率,我們可以控制音響輸出音頻的頻率範圍,進而達到調整音效的目的。

這次的實習課讓我體會到,電路學不僅僅是枯燥的理論,它在現實生活中有著廣泛的應 用。透過實作,我可以將理論與實踐相結合,更加深刻地理解電路學的原理和應用。