Tentauppgifter till Lektion 7

Dessa fyra uppgifter ger totalt 32p. Tentan är på totalt 20p

1

Nedan visas konsumtion i löpande pris för varugruppen Ekologiskt kött. Mnkr

År	Värde i löpande pris	KPI
2014	834	313,5
2015	1104	313,4
2016	1212	316,4
2017	värde saknas	322,1

a) Räkna om de löpande priserna i tabellen ovan till fasta priser med hjälp av KPI. Basår 2014.

2p

b) Hur stor förändring (i %) har det varit i den allmänna prisutvecklingen i Sverige mellan år 2015 och 2017?

2

I grafen nedan ser vi prisbasbeloppet i kr i Sverige mellan 1960 och 2008.

Till dessa data har en enkel linjär regressionsmodell anpassats vilket visas i figuren nedan.

Eftersom detta inte alls ser ut att vara en bra modell så har endast observationerna från 1992 och framåt använts och då blev anpassningen enligt figuren nedan.

Regression Analysis: basbelopp versus år

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	1	69176471	69176471	406,45	0,000
Residual Error	15	2552941	170196		
Total	16	71729412			
Term (Coef	SE Coef			
Constant -786	5235	40848			
år 411	.,76	20,42			
S = 412,548	≀-Sq	= 96,4%	R-Sq(adj)	= 96,2%	
Durbin-Watson s	stati	stic = 0,5	552711		
The regression	equa	tion is			
basbelopp = - 7	18623	5 + 412 å:	r		

Uppgifter:

- a) Hur mycket har basbeloppet ökat i snitt per år sedan 1992 enligt modellen ovan? 1p
- b) Beräkna ett 95% konfidensintervall för lutningskoefficienten i modellen ovan. Tolka intervallet.
- c) Undersök om residualerna kan antas vara okorrelerade i modellen ovan.

De 10 sista åren i tidsserien ovan är basbeloppet: 36400, 36600, 36900, 37900, 38600, 39300, 39400, 39700, 40300, 41000

- d) Använd dubbel exponentiell utjämning och visa hur de 3 sista åren utjämnas. Du kan använda direkt $l_{2005}=39109,3\,$ och $b_{2005}=286,153.$ Gör även prognos för 2009, 2010 samt 2011 då du står vid tidpunkt 2008. Låt $\,\alpha=\gamma=0,3\,$
- e) Beräkna 5 punkters centrerade glidande medelvärden för de 10 sista åren. 2p

3

En restaurang-kedja vill undersöka andelen kvinnliga anställda. Data samlades in i 60 månader. Antalet restauranger ändrades något under tidens gång.

Nedan ses data i en tidsseriegraf samt 3 anpassade modeller. Uppgifterna kommer efter alla utskrifter.

Modell 1
ARIMA Model: Andel kvinnor
Final Estimates of Parameters

Type	Coef	SE Coef	T-Value	P-Value
AR 1	0,508	0,116	4,39	0,000
SMA 12	-0,516	0,161	-3,20	0,002
Constant	28,483	0,921	30,93	0,000
Mean	57,93	1,87		

Number of observations: 60

Residual Sums of Squares

Modified Box-Pierce (Ljung-Box) Chi-Square Statistic

Lag	12	24	36	48
Chi-Square	14,30	37,99	50,50	67,45
DF	9	21	33	45
P-Value	0,112	0,013	0,026	0,017

ACF of Residuals for Andel kvinnor

Andel kvinnor Residuals Månad Tid 61,2 -1,827010 46 57,9 -0,5750 11 47 57,8 -1,9073 12 48 -0,9264 54,8 1 49 50,2 -4,6201 50 2 54,6 0,6842 3 51 43,4 -14**,**3682 4 52 54,8 5,6480 5 53 60,0 8,2352 6 54 68,1 4,1445 7 55 71,3 7,4591 8 56 75,5 7,3100 9 57 66,0 0,0846 58 10 60,5 -1**,**2328 11 59 55,7 -2,5496 12 60

Modellen kan skrivas som

$$y_t = \delta + \phi_1 y_{t-1} + a_t - \theta_{1,12} a_{t-12}$$

Modell 2

Regression Analysis: Andel kvinnor versus Tid; Månad Analysis of Variance

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Regression	2	588,32	294,16	8,14	0,001
Error	57	2060,11	36,14		
Total	59	2648,43			

Model Summary

S	R-sq	R-sq(adj)	R-sq(pred)
6,01185	22,21%	19,48%	13,88%

Coefficients

Term	Coef	SE Coef	T-Value	P-Value	VIF
Constant	50,95	1,99	25,66	0,000	
Tid	0,0516	0,0457	1,13	0,264	1,04
Månad	0,819	0,229	3,57	0,001	1,04

Regression Equation

Andel kvinnor = 50,95 + 0,0516 Tid + 0,819 Månad

Modell 3

Regression Analysis: Andel kvinnor versus Tid; Månad_1; ...; Månad_11

Analysis of Variance

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Regression	12	2189,74	182,478	18,70	0,000
Error	47	458,69	9,759		
Total	59	2648,43			

Model Summary

S	R-sq	R-sq(adj)	R-sq(pred)
3.12399	82,68%	78,26%	71,42%

Coefficients

Term	Coef	SE Coef	T-Value	P-Value	VIF
Constant	54,02	1,64	32,98	0,000	
Tid	0,0516	0,0238	2,17	0,035	1,04
Månad_1	-2,11	1,99	-1,06	0,295	1,87
Månad_2	-2,24	1,99	-1,13	0,265	1,86
Månad_3	-2,52	1,99	-1,27	0,212	1,85
Månad_4	-3,73	1,98	-1,88	0,067	1,85
Månad_5	-2,00	1,98	-1,01	0,319	1,85
Månad_6	-0,11	1,98	-0,06	0,956	1,84
Månad_7	9,56	1,98	4,83	0,000	1,84
Månad_8	11,49	1,98	5,81	0,000	1,84
Månad_9	14,45	1,98	7,31	0,000	1,84
Månad_10	3,20	1,98	1,62	0,112	1,83
Månad_11	1,09	1,98	0,55	0,583	1,83

Regression Equation

Andel = 54,02 + 0,0516 Tid - 2,11 Månad_1 - 2,24 Månad_2 - 2,52 Månad_3 kvinnor - 3,73 Månad_4 - 2,00 Månad_5 - 0,11 Månad_6 + 9,56 Månad_7 + 11,49 Månad_8

+ 14,45 Månad_9 + 3,20 Månad_10 + 1,09 Månad_11

Uppgifter:

- a) Modell 1. Testa om alla autokorrelationer för residualerna är skilda från noll på tidsförskjutningarna 1 till 24. Använd signifikansnivå 1%.
- b) Hur stor är den skattade medelnivån i tidsserien enligt modell 1?
- c) Beräkna prognoser för tidpunkt 61 och 62 då du står vid tidpunkt 60 med hjälp av modell
 1.
- d) Modell 2 och 3 är två tidsserie-regressionsmodeller. Förklara varför modell 2 är felaktig medans modell 3 är korrekt uppställd.
- e) Beräkna prognos för tidpunkt 61 och 62 då du står vid tidpunkt 60 med hjälp av modell 3.
 - 1p
- f) Tolka den skattade beta-koefficienten för januari i modell 3.
- g) Hur mycket har andelen anställda kvinnor ökat under dessa 5 år enligt modell 3? 1p

4

Avkastningen i % Y_t från en kemisk process ska analyseras. Tiden är i timmar. Samtidigt som man mätt avkastningen så har man mätt temperaturen x_t .

Nedan har två modeller anpassats.

I utskriften finns variabler av typ Yt_lagk som ska läsas som Y_{t-k}

Modell 1

Regression Equation

 $Yt = -5.1 - 0.570 xt + 1.518 Yt_{Lag1} - 0.667 Yt_{Lag2} + 0.908 xt_{Lag1} - 0.212 xt_{Lag2}$

Coefficients

Term	Coef	SE Coef	T-Value	P-Value	VIF
Constant	-5,1	17,1	-0,30	0,766	
xt	-0,570	0,182	-3,13	0,003	3,60
Yt_Lag1	1,518	0,132	11,46	0,000	9,04
Yt_Lag2	-0,667	0,127	-5,25	0,000	8,35
xt_Lag1	0,908	0,230	3,94	0,000	5,77
xt_Lag2	-0,212	0,173	-1,22	0,228	3,32

Model Summary

Värden på serien för de 8 sista timmarna ges nedan.

Medelvärdet för xt för hela serien är 150,5.

Hour	Yt	xt
43	90,6	145
44	91,2	143
45	88,3	145
46	84,1	150
47	86,5	147
48	88,2	150
49	89,5	151
50	89,5	152

Uppgifter: a-d avser modell 1

a) Utvärdera modell 1. Hur kan den förbättras

- 2p
- b) Beräkna prognos för timma 47 till 50 då du står vid tidpunkt 46. Om du saknar värden på x_t då du ska göra prognos så använd medelvärdet för x_t .
- c) Utvärdera prognoserna genom att jämföra med de faktiska värdena. 1p
- d) I c-uppgiften så har prognoser för x_t satts till medelvärdet. Ge förslag på hur man skulle kunna gå tillväga med x_t på ett bättre sätt.
- e) Nedan har SAC och SPAC för Y_t givits i två grafer. Vilken ARMA modell förslår du med hjälp av dessa grafer?
- f) Beräkna prognos för timma 47 till 50 med modell 2 då du står vid tidpunkt 46. Utvärdera även nu prognoserna genom att jämföra med faktiska värden. 3p
- g) Använd lämpligt mått för att jämföra modellerna samt resultat från prognosfelen ovan.Vilken modell tycker du är bäst.

Modell 2

Final Estimates of Parameters

Type		Coef	SE Coef	T-Value	P-Value
AR	1	0,8240	0,0976	8,44	0,000
MA	1	-0,504	0,156	-3,24	0,002
MA	2	-0,331	0,153	-2,16	0,036
Cons	stant	16,190	0,579	27,94	0,000
Mea	n	92,00	3,29		

Residual Sums of Squares

DF	SS	MS
46	226.835	4 93119

Back forecasts excluded

-0,009 Residualer för timme 43 tll 50 från modell 2

1,040

-3,562

-3,399

3,904

-0,110

-0,607

-0,097