Information Aggregation for Constrained Online Control

Tongxin Li, Yue Chen, Bo Sun, Steven H. Low and Adam Wierman

Revisit Linear Control Systems

Classical Feedback Controller State
$$x_t$$
 Device x_{t-1} x_{t-1}

Simple well-studied setting:

Dynamics	Cost	Predictions
$x_{t+1} = f_t(x_t, u_t) = Ax_t + Bu_t + w_t$	$\sum_{t=0}^{T-1} x_t^{\top} Q x_t + u_t^{\top} R u_t + x_T^{\top} Q_f x_T$	w_t, \ldots, w_{t+k} at time t

Classic linear control theory

Optimal controller $x_t = -Ku_t$

Regret analysis with **predictions**

MPC is optimal [Yu 2020]

General Nonlinear Systems

Classical Feedback Controller State
$$x_t$$
 Device x_{t-1} x_{t-1}

Nonlinear setting:

Dynamics	Cost	Predictions
$x_{t+1} = f_t(x_t, u_t) = Ax_t + Bu_t + w_t$	$\sum_{t=0}^{T-1} x_t^{\top} Q x_t + u_t^{\top} R u_t + x_T^{\top} Q_f x_T$	w_t, \ldots, w_{t+k} at time t
$x_{t+1} = f_t(x_t, u_t)$ Borel-measurable $x_t \in X_t(\mathbf{x}_{< t}, \mathbf{u}_{< t})$ $u_t \in U_t(\mathbf{x}_{< t}, \mathbf{u}_{< t})$	$\sum_{t=0}^{T-1} c_t(x_t, u_t) \text{ Lipschitz-continuous}$	c_t, \dots, c_{t+k} at time t Dynamics Constraints

General Nonlinear Systems

Classical Feedback Controller State
$$x_t$$
 Device x_{t-1} x_{t-1}

Nonlinear setting:

Dynamics	Cost	Predictions
$x_{t+1} = f_t(x_t, u_t) = Ax_t + Bu_t + w_t$	$\sum_{t=0}^{T-1} x_t^{\top} Q x_t + u_t^{\top} R u_t + x_T^{\top} Q_f x_T$	w_t, \ldots, w_{t+k} at time t
$x_{t+1} = f_t(x_t, u_t)$ Borel-measurable $x_t \in X_t(\mathbf{x}_{< t}, \mathbf{u}_{< t})$ $u_t \in U_t(\mathbf{x}_{< t}, \mathbf{u}_{< t})$ Time-coupling	$\sum_{t=0}^{T-1} c_t(x_t, u_t) \text{ Lipschitz-continuous}$	c_t, \ldots, c_{t+k} at time t X_t, \ldots, X_{t+k} U_t, \ldots, U_{t+k} Feasibility Issues f_t, \ldots, f_{t+k}

General Nonlinear Systems

Classical Feedback Controller State
$$x_t$$
 Device x_{t-1} x_{t-1}

Nonlinear setting:

Dynamics	Cost	Predictions
$x_{t+1} = f_t(x_t, u_t) = Ax_t + Bu_t + w_t$	$\sum_{t=0}^{T-1} x_t^{\top} Q x_t + u_t^{\top} R u_t + x_T^{\top} Q_f x_T$	w_t, \ldots, w_{t+k} at time t
$x_{t+1} = f_t(x_t, u_t)$ Borel-measurable $x_t \in X_t(\mathbf{x}_{< t}, \mathbf{u}_{< t})$ $u_t \in U_t(\mathbf{x}_{< t}, \mathbf{u}_{< t})$	$\sum_{t=0}^{T-1} c_t(x_t, u_t) \text{ Lipschitz-continuous}$	$c_t,, c_{t+k}$ at time t $p_t,, p_{t+k}$ ML-learned Feasibility feedback

Control System Model

Classical
Feedback
Control

Controller State
$$x_t$$

Action u_t

Device x_t
 x_t
 x_{t-1}

Large-scale

Feedback Control

Two-controller System

Control System Model

Challenges

- (1) Central controller cannot access dynamic and sub-system states
- (2) Local controller does not know the central controller's objective
- (3) Design of feedback
- (4) Online; Uncertainty

This Work: Control + Learning

Assumptions

Assumptions:

- (1) Predictions $p_t, ..., p_{t+w}, c_t, ..., c_{t+w}$ are available
- (2) Action space is much smaller than state space $|U| \ll |X|$
- (3) The dynamic $f_t(\cdot, \cdot) : X_t \times U_t \to X_{t+1}$ is a Borel measurable function $\forall t \in [T]$
- (4) The cost $c_t(\cdot): U_t \to \mathbb{R}_+$ are Lipschitz continuous $\forall t \in [T]$

Joint Objective
of Central and Local Controllers:

$$\min_{\mathbf{u}} \sum_{t=1}^{T} c_t(u_t) \qquad \text{s.t}$$

$$\begin{aligned} x_{t+1} &= f_t(x_t, \boldsymbol{u}_t) \\ x_t &\in \mathsf{X}_t \left(\mathbf{x}_{< t}, \mathbf{u}_{< t} \right) \subseteq \mathsf{X} & \forall t = 0, \dots, T \\ \boldsymbol{u}_t &\in \mathsf{U}_t \left(\mathbf{x}_{< t}, \mathbf{u}_{< t} \right) \subseteq \mathsf{U} \end{aligned}$$

A Power System Example

Closed-loop Aggregator-Operator Coordination

Real-time Market Real-time Control Action u_t System Operator Feedback p_t Action u_t Aggregator State x_t Action u_t State x_t Network

System Model

Example

 $\min_{\mathbf{u}} \sum_{t=1}^{T} c_t(u_t) \quad \text{s.t.} \quad \text{Constraints}(t), \forall t = 0, ..., T$

Goal: Minimize cumulative costs

Generic dynamical system

$$x_{t+1} = f_t(x_t, u_t)$$

$$x_t \in X_t \left(\mathbf{x}_{< t}, \mathbf{u}_{< t} \right) \subseteq X$$

$$u_t \in U_t \left(\mathbf{x}_{< t}, \mathbf{u}_{< t} \right) \subseteq U$$
Constraints(t)

System Operator Only Cares about Actions

Set of feasible Actions

Question: How to do information aggregation in real-time?

Our Solution

Maximum Entropy-based Real-time Aggregate Flexibility

Decomposition
$$S \xrightarrow{p_1, \dots, p_T} p_1, \dots, p_T$$

$$\max_{p_1, \dots, p_T} \sum_{t=1}^{T} \mathbb{H} \left(U_t | \mathbf{U}_{< t} \right)$$
subject to $\mathbf{U} \in S$

- Maximize the information encapsulated in $p_1, ..., p_T$
- The variables are conditional densities (feedback): $p_t := p_t(\cdot | \cdot) := \mathbb{P}_{X_t | X_{< t}}(\cdot | \cdot), t \in [T]$
- $\mathbf{U} = (U_1, ..., U_T) \in \mathbb{U}^T$ is a random variable distributed according to the joint distribution $\prod_{t=1}^T p_t$

Maximum entropy feedback

Decomposition
$$S \xrightarrow{p_1, \dots, p_T} p_1, \dots, p_T$$

$$\max_{p_1, \dots, p_T} \sum_{t=1}^{T} \mathbb{H} \left(U_t | \mathbf{U}_{< t} \right)$$

$$\text{subject to } \mathbf{U} \in S$$

$$(1)$$

Definition (MEF)

Maximum entropy feedback (MEF) $p_1^*, ..., p_T^*$ if it is a unique optimal solution of (1)

- Time-based decomposition of the set of feasible action trajectories
- The variable $p_t^* = p_t^*(\cdot | \mathbf{u}_{< t})$ conditioning on previous actions is a *density function* on $\mathbb U$

Our Solution

Decomposition
$$S \xrightarrow{p_1, \dots, p_T} p_1, \dots, p_T$$

$$\max_{p_1, \dots, p_T} \sum_{t=1}^T \mathbb{H} \left(U_t | \mathbf{U}_{< t} \right)$$
subject to $\mathbf{U} \in S$ (1)

Definition (MEF)

Maximum entropy feedback (MEF) $p_1^*, ..., p_T^*$ if it is a unique optimal solution of (1)

- What are the properties of the MEF?
- How can we use the MEF to minimize cumulative costs?

MEF Properties

Proposition (Feasibility)

For any trajectory $\mathbf{u} = (u_1, ..., u_T)$, if $p_t^*(u_t | \mathbf{u}_{< t}) > 0$, $\forall t \in [T]$, then $\mathbf{u} \in S$

Proposition (Self-Interpretability)

For all $u_t, u_t' \in \mathbb{U}$ at each time $t \in [T]$, if $p_t^*(u_t|\mathbf{u}_{< t}) \geq p_t^*(u_t'|\mathbf{u}_{< t})$, then

$$\mu\left(\mathsf{S}((\mathbf{u}_{< t}, u_t))\right) \ge \mu\left(\mathsf{S}((\mathbf{u}_{< t}, u_t'))\right)$$

where $\mu(\cdot)$ is the Lebesgue measure and the set of subsequent feasible trajectories is

$$S(\mathbf{u}_{\leq t}) := \left\{ \mathbf{v} \in S : \mathbf{v}_{\leq t} \equiv \mathbf{u}_{\leq t} \right\}$$

MEF Properties

Proof of the Propositions:

Lemma

The maximum entropy feedback (MEF) is given by

$$p_t^*(u \mid \mathbf{u}_{< t}) \equiv \frac{\mu\left(\mathsf{S}((\mathbf{u}_{< t}, u))\right)}{\mu\left(\mathsf{S}(\mathbf{u}_{< t})\right)}, \quad \forall u \in \mathbb{U} \text{ and } \mathbf{u}_{< t} \in \mathbb{U}^{t-1}.$$

(Assume feasible sets are atomic)

This Work: Control + Learning

This Work: Control + Learning

Penalized Predictive Control

Model Predictive Control (time τ)

$$\min_{\mathbf{u}_{t:t+w}} \sum_{\tau=t}^{t+w} c_t(u_t)$$
s.t. $\forall \tau = t, ..., t+w$

$$x_{\tau+1} = f_{\tau}(x_{\tau}, u_{\tau})$$

$$x_{\tau} \in \mathsf{X}_{\tau} \left(\mathbf{x}_{<\tau}, \mathbf{u}_{<\tau}\right) \subseteq \mathsf{X}$$

$$u_{\tau} \in \mathsf{U}_{\tau} \left(\mathbf{x}_{<\tau}, \mathbf{u}_{<\tau}\right) \subseteq \mathsf{U}$$

Penalized Predictive Control (time τ)

$$\min_{\mathbf{u}_{t:t+w}} \sum_{\tau=t}^{t+w} c_t(u_t) - \beta \log p_{\tau}^*(u_{\tau}|\mathbf{u}_{<\tau})$$
s.t. $\forall \tau = t, ..., t+w$

$$u_{\tau} \in \mathsf{U}$$

Tuning Parameter $\beta > 0$

Need to know the dynamics, constraints and the states

Need to solve a large-scale optimization

Variable Bits: $\Omega(w \log |X|)$

$$|\mathbb{U}| \ll |\mathbb{X}|$$

VS

Only need to know the feedback

Theorem (Feasibility)

For any predication window size $w \ge 1$, the sequence of actions $\mathbf{u} = (u_1, ..., u_T)$ generated

by the penalized predictive control always satisfies $\mathbf{u} \in S$

Dynamic Regret

Regret(
$$\mathbf{u}$$
) := $\sup_{\mathbf{c} \in C} \sup_{S} C_T(\mathbf{u}) - \inf_{\mathbf{u} \in S} C_T(\mathbf{u})$

$$C_T(\mathbf{u}) := \sum_{t=1}^T c_t(u_t)$$

Theorem (Dynamic Regret; Informal)

Without assumptions, any sequence of actions generated by a deterministic online policy that can access the sets $\{U_t: t \in [T]\}$ and $\{X_t: t \in [T]\}$ with a prediction window size $w \geq 1$ gives $\text{Regret}(\mathbf{u}) = \Omega(d(T-w))$ where d is the diameter of U

 $S_{w}(\mathbf{u}) := Set \ of \ length-w \ subsequent \ actions \ given \ \mathbf{u}$

Causal Invariance

There exists constants $\delta, \lambda > 0$ such that

- (1) For any t and $\mathbf{u}_{\leq t}$, $\mathbf{v}_{\leq t}$
- (Hausdorff distance) $d_{H}\left(S_{w}(\mathbf{u}_{\leq t}), S_{w}(\mathbf{v}_{\leq t})\right) \leq \delta \left(\frac{\left|\mu(S(\mathbf{u}_{\leq t})) \mu(S(\mathbf{v}_{\leq t}))\right|}{\mu\left(\mathcal{B}\right)}\right)^{1/((T-t)m)}$ (U $\subseteq \mathbb{R}^{m}$)

 For any t and $\mathbf{u}_{\leq t}$ $\frac{\mu\left(S\left(\mathbf{u}_{\leq t}\right)\right)}{\mu\left(S\left(\overline{\mathbf{u}}_{\leq t}\right)\right)} \leq \lambda \left(\frac{\mu\left(S\left(\mathbf{u}_{\leq t}, \overline{\mathbf{u}}_{t+1:t+w}\right)\right)}{\mu\left(S\left(\overline{\mathbf{u}}_{\leq t+w}\right)\right)}\right)^{\frac{T-t}{T-t-w}}}{\left(\overline{\mathbf{u}}_{t+1:t+w} := \operatorname{argsup}_{\mathbf{u} \in \mathsf{U}^{w}} \mu\left(S_{w}\left(\mathbf{u}_{\leq t}, \mathbf{u}\right)\right)\right)$ (2) For any t and $\mathbf{u}_{\leq t}$

Theorem (Dynamic Regret; Informal)

Under causal invariance assumptions, the sequence of actions generated by the penalized

predictive control always satisfies $Regret(\mathbf{u}) = O(dT/w^{1/4})$

$$w = \omega(1)$$
 \Longrightarrow Regret(\mathbf{u}) = $o(T)$

Inventory constraints

$$\sum_{t=1}^{T} ||u_t||_2^2 \le \gamma \qquad u_t \in \mathbb{R}^m$$

The inventory constraints are causally invariant with $\,\delta=\lambda=1\,$

Tracking constraints

$$\sum_{t=1}^{T} |u_t - y_t|^p \le \sigma \qquad u_t, y_t \in \mathbb{R}, p \ge 2$$

The tracking constraints are causally invariant with $\delta = \frac{2}{\sqrt{\pi}}, \lambda = 1$

Adaptive Charging Network (ACN)

ev.caltech.edu

State Space Dimension

(Number of EVSEs)

Caltech Garage: 54

JPL Workplace: 52

Action Space Dimension

(Number of Power levels)

10

Closed-loop Aggregator-Operator Coordination

- $\phi_t(j)$ Scheduling
- *a*(*j*) Arriving time
- d(j) Departure time
- e(j) Energy to be delivered
- r(j) Charging rate limit
- *C*_t Electricity price at each time
- n Number of accepted EVs

Operator Objective

EV Constraints

$$\phi_{t}(j) = 0 , t < a(j), j = 1,...,n,$$

$$\phi_{t}(j) = 0 , t > d(j), j = 1,...,n,$$

$$\sum_{j=1}^{n} \phi_{t}(j) = u_{t}, t = 1,...,T,$$

$$\sum_{t=1}^{T} \phi_{t}(j) = e(j), j = 1,...,n,$$

$$0 \le \phi_{t}(j) \le r(j), t = 1,...,T$$

(EV arrives)

(Assigning Aggregate Power)

(Charging) (Linear and lossless)

(Rate Limit)

Training: Nov. 18 - Nov. 19

Testing: Dec. 19 - Jan. 20

RL Reward function

MEF Definition + Charging Performance + Match Operator's Action

$$\mathsf{MPE}(\phi, \mathbf{x}) := 1 - \sum_{k=1}^{L} \sum_{t=1}^{T} \sum_{j=1}^{N} \phi_t^{(k)}(j) \big/ \Big((L \times T) \cdot \sum_{j=1}^{N} e(j) \Big) \times \%$$

$$\mathsf{Charged\ Energy} \qquad \mathsf{Total\ Energy}$$

Cumulative costs for different prediction window sizes (16 Days)

Thank You For Your Attention

tongxin@caltech.edu

