Solutions to the book: $H.\ L.\ Royden,\ Real\ Analysis,\ 3rd$ edition

Meng-Gen Tsai plover@gmail.com

July 21, 2021

Contents

§3.3: Measurable Sets and Lebesgue Measure	13
Problem 3.9	13
Problem 3.10	13
Problem 3.11	14
Problem 3.12	14
Problem 3.13	15
§3.4: A Nonmeasurable Set	16
$\S 3.5$: Measurable Functions	16
§3.6: Littlewood's Three Principles	16

Chapter 1: Set Theory

§1.1: Introduction

Problem 1.1.

Show that $\{x: x \neq x\} = \emptyset$.

Proof. Every element x of $\{x: x \neq x\}$ satisfying $x \neq x$, contrary to x = x. That is, there are no elements in $\{x: x \neq x\}$, or $\{x: x \neq x\} = \emptyset$. \square

Problem 1.2.

Show that if $x \in \emptyset$, then x is a green-eyed lion.

Proof. $\emptyset \subseteq \{ a \text{ green-eyed lion} \}. \square$

Problem 1.3.

Show that in general the sets $X \times (Y \times Z)$ and $(X \times Y) \times Z$ are different but that there is a natural correspondence between each of them and $X \times Y \times Z$.

Proof.

(1)

$$\begin{split} X\times (Y\times Z) &= \{\langle x, \langle y, z\rangle\rangle : x\in X, y\in Y, z\in Z\}\\ (X\times Y)\times Z &= \{\langle \langle x, y\rangle, z\rangle : x\in X, y\in Y, z\in Z\}\\ X\times Y\times Z &= \{\langle x, y, z\rangle : x\in X, y\in Y, z\in Z\} \end{split}$$

are all not the same.

(2) There is a natural correspondence

$$X \times (Y \times Z) \longleftrightarrow (X \times Y) \times Z \longleftrightarrow X \times Y \times Z$$

defined by

$$\langle x, \langle y, z \rangle \rangle \longleftrightarrow \langle \langle x, y \rangle, z \rangle \longleftrightarrow \langle x, y, z \rangle$$

for every $x \in X, y \in Y, z \in Z$.

Problem 1.4.

Show that the well-ordering principle implies the principle of mathematical induction. (Hint: Consider the set $\{n \in \mathbb{N} : P(n) \text{ is false}\}.$)

Proof (Hint). Suppose that

- (1) P(n) be a proposition defined for each $n \in \mathbb{N}$,
- (2) P(1) is true,
- (3) $[P(n) \Rightarrow P(n+1)]$ is true.

Consider the set

$$S = \{n \in \mathbb{N} : P(n) \text{ is false}\} \subseteq \mathbb{N}.$$

Want to show S is empty, or the principle of mathematical induction holds. If S were nonempty, by the well-ordering principle S has a smallest element m. m cannot be 1 by (2). Say m > 1. Therefore, $m - 1 \in \mathbb{N}$ and P(m - 1) is true by the minimality of m. By (3), P((m - 1) + 1) = P(m) is true, which is absurd. \square

Problem 1.5.

Use mathematical induction to establish that the well-ordering principle. (Hint: Given a set S of positive integers, let P(n) be the proposition 'If $n \in S$, then S has a least element'.)

Proof (Modified hint).

- (1) Given a set S of positive integers, let P(n) be the proposition 'If $m \in S$ for some $m \leq n$, then S has a least element'. Want to show P(n) is true for all $n \in \mathbb{N}$.
 - (a) P(1) is true. For $m \in S$ with $m \le n = 1$, or m = 1 by the minimality of $1 \in \mathbb{N}$, S has a least element 1 (m itself) in \mathbb{N} .
 - (b) Suppose P(n) is true. If $n+1 \in S$, then there are only two possible cases.
 - (i) There is a positive integer $m \in S$ less than n+1. So $n \ge m \in S$. Since P(n) is true, S has a least element.
 - (ii) There is no positive integer $m \in S$ less than n+1. In this case n+1 is the least element in S.

In any cases (i)(ii), S has a least element, or P(n+1) is true.

By mathematical induction, P(n) is true for all $n \in \mathbb{N}$.

(2) Show that the well-ordering principle holds. Let T be a nonempty subset of \mathbb{N} , so there exists a positive integer $k \in T$. Notice that P(k) is true by (1), thus T has a least element since $k \leq k$.

§1.3: Unions, Intersections, and Complements

Problem 1.9.

Show that $A \subseteq B \Leftrightarrow A \cap B = A \Leftrightarrow A \cup B = B$.

Proof.

- (1) $A \subseteq B \iff A \cap B = A$.
 - (a) (\Longrightarrow) It suffices to show $A \cap B \supseteq A$. For any $x \in A$, $x \in B$ by $A \subseteq B$, so $x \in A \cap B$, so $A \cap B \supseteq A$.
 - (b) (\Leftarrow) $A = A \cap B \subseteq B$.
- (2) $A \subseteq B \Leftrightarrow A \cup B = B$.
 - (a) (\Longrightarrow) It suffices to show $A \cup B \subseteq B$. For any $x \in A \cup B$, $x \in A$ or $x \in B$. By $A \subseteq B$, $x \in B$ or $x \in B$. $x \in B$, so $x \in B$.
 - (b) (\Leftarrow) $A \subseteq A \cup B = B$.

Problem 1.11.

Show that $A \subseteq B \Leftrightarrow \widetilde{B} \subseteq \widetilde{A}$.

Proof.

$$\begin{split} A \subseteq B &\iff x \in A \Rightarrow x \in B \\ &\iff x \not\in B \Rightarrow x \not\in A \\ &\iff \widetilde{B} \subseteq \widetilde{A}. \end{split}$$

Problem 1.14.

 $Show\ that$

$$B\cap \left[\bigcup_{A\in\mathscr{C}}A\right]=\bigcup_{A\in\mathscr{C}}(B\cap A).$$

Proof.

$$\begin{split} x \in B \cap \left[\bigcup_{A \in \mathscr{C}} A \right] &\Longleftrightarrow x \in B \text{ and } x \in \bigcup_{A \in \mathscr{C}} A \\ &\iff x \in B \text{ and } x \in A \text{ for some } A \in \mathscr{C} \\ &\iff x \in B \cap A \text{ for some } A \in \mathscr{C} \\ &\iff x \in \bigcup_{A \in \mathscr{C}} (B \cap A). \end{split}$$

Chapter 2: The Real Number System

§2.1: Axioms for the Real Numbers

Problem 2.1.

Show that $1 \in P$.

Proof. By the field axioms,

- (a) $1 \in \mathbb{R}$ such that $1 \neq 0$.
- (b) $-1 \in \mathbb{R}$.
- (c) $(-1) \cdot (-1) = 1$.

By the axioms of order, 1=0 or $1\in P$ or $-1\in P$. Consider three possible cases,

- (1) 1 = 0, contrary to the field axioms $1 \neq 0$.
- (2) $1 \in P$.
- (3) $-1 \in P$. By the axioms of order, $(-1)(-1) \in P$. Since (-1)(-1) = 1 by the field axioms, $1 \in P$. By the axioms of order, $-1 \notin P$, contrary to $-1 \in P$.

By (1)(2)(3), $1 \in P$. \square

Applying the similar argument to $\sqrt{-1}$, we get $\sqrt{-1} \notin \mathbb{R}$ as our expectation.

Chapter 3: Lebesgue Measure

§3.1: Introduction

Problem 3.1. (Monotonicity)

If A and B are two sets in \mathfrak{M} with $A \subseteq B$, then $mA \leq mB$. This property is called monotonicity.

Proof. Write

$$B = B \cap X = B \cap (A \cup \widetilde{A}) = (B \cap A) \cup (B \cap \widetilde{A}) = A \cup (B - A).$$

Here $B \cap A = A$ comes from $A \subseteq B$ (Problem 1.9). Notice that A and B - A are disjoint. Since m is a countably additive measure (m is nonnegative) on a σ -algebra \mathfrak{M} ,

$$mB = mA + m(B - A) \ge mA$$
.

Problem 3.2. (Countable subadditivity)

Let $\langle E_n \rangle$ be any sequence of sets in \mathfrak{M} . Then $m(\bigcup E_n) \leq \sum mE_n$. (Hint: Use Proposition 1.2) This property of a measure is called countable subadditivity.

As the argument in Problem 3.1.

Proof. Since $\langle E_n \rangle$ is a sequence of sets in σ -algebra \mathfrak{M} , by Proposition 1.2 and its proof, there is a sequence $\langle F_n \rangle$ of sets in σ -algebra \mathfrak{M} such that all F_n are pairwise disjoint, $F_n \subseteq E_n$, and

$$\bigcup E_n = \bigcup F_n.$$

Since m is a countably additive measure on a σ -algebra \mathfrak{M} ,

$$m\left(\bigcup E_n\right) = m\left(\bigcup F_n\right) = \sum mF_n \ge \sum mE_n.$$

The last inequality holds by applying Problem 3.1 on $F_n \subseteq E_n$ for any n. \square

Problem 3.3.

If there is a set A in \mathfrak{M} such that $mA < \infty$, then $m\varnothing = 0$.

Proof. For such A, write $A = A \cup \emptyset$. A and \emptyset are disjoint. Since m is a countably additive measure on a σ -algebra \mathfrak{M} ,

$$mA = mA + m\varnothing$$
.

Since $mA < \infty$, we can cancel out mA on the both sides to get $m\varnothing = 0$. \square

Problem 3.4. (Counting measure)

Let nE be ∞ for an infinite set E and be equal to the number of elements of E for a finite set. Show that n is a countably additive set function that is translation invariant and defined for all sets of real numbers. This measure is called the **counting measure**.

Proof.

- (1) Show that n is a countably additive set function. Note that n is defined on any subset of real numbers since the finiteness is defined on any subset of real numbers. Suppose $\langle E_m \rangle$ is a sequence of disjoint sets of real numbers. We need to show that $n(\bigcup E_m) = \sum nE_m$.
- (2) If E_m is infinite for some m=k, then $\bigcup E_m$ is also infinite. Hence, $n(\bigcup E_m)=\infty$, and $\sum nE_m\geq nE_k=\infty\Longrightarrow \sum nE_m=\infty$.
- (3) Suppose all E_n are finite. Note that $\bigcup E_m$ is infinite if and only if all but finitely many $E_m \neq \emptyset$ if and only if $\sum nE_m = \infty$. Besides, if $\bigcup E_m$ is finite, then all but finitely many $E_m = \emptyset$ and thus

$$n\left(\bigcup_{m} E_{m}\right) = \sum_{E_{m} \neq \varnothing} nE_{m} = \sum_{m} nE_{m} < \infty.$$

(4) Since

$$\begin{split} n(E+y) &= n(\{x+y: x \in E\}) \\ &= \text{the number of elements } x \in E \\ &= n(E), \end{split}$$

n is translation invariant.

§3.2: Outer Measure

Problem 3.5.

Let A be the set of rational numbers between 0 and 1, and let $\{I_n\}$ be a finite collection of open intervals covering A. Then $\sum \ell(I_n) \geq 1$.

Idea. If $\{I_n\}$ is a covering of [0,1] then we are done since the length of [0,1] is 1. However, $\{I_n\}$ only covers A and not necessarily covers [0,1]. (For example, $\{I_n\} = \left\{\left(-89, \frac{1}{\sqrt{2}}\right), \left(\frac{1}{\sqrt{2}}, 64\right)\right\}$ covers A but not $\frac{1}{\sqrt{2}}$.) Hence, it is natural to consider the closure of A and the closure of I_n . Now $\{\overline{I_n}\}$ is a (closed) covering of $\overline{A} = [0,1]$.

Proof.

$$1 = m^*[0, 1]$$
 (Proposition 3.1)

$$= m^* \overline{A}$$
 (A is dense in [0, 1])

$$\leq m^* \left(\overline{\bigcup I_n} \right)$$
 (Proposition 2.10)

$$= m^* \left(\overline{\bigcup I_n} \right)$$
 (Proposition 2.10)

$$\leq \sum m^*(\overline{I_n})$$
 (Proposition 3.2)

$$= \sum \ell(\overline{I_n})$$
 (Proposition 3.1)

$$= \sum \ell(I_n).$$
 (Definition of length)

Supplement 3.5.

Exercise about considering the closure. (Exercise 4.52 in the textbook: T. M. Apostol, Mathematical Analysis, 2nd edition.) Assume that f is uniformly continuous on a bounded set S in \mathbb{R}^n . Prove that f must be bounded on S.

Proof.

- (1) Since $f: S \to T$ is uniformly continuous, given any $\varepsilon > 0$, there is $\delta > 0$ such that $d_T(f(x), f(y)) < \varepsilon$ whenever $d_S(x, y) < \delta$. Choose $\varepsilon = 1 > 0$.
- (2) For such $\delta > 0$, construct an open covering of $\overline{S} \subseteq \mathbb{R}^n$. Pick a collection \mathscr{F} of open balls $B(a; \delta) \subseteq \mathbb{R}^n$ where a runs over all elements of S. \mathscr{F} covers \overline{S} (by the definition of accumulation points). Since \overline{S} is closed and bounded (since S is bounded), \overline{S} is compact So there is a finite subcollection \mathscr{F}' of

 \mathscr{F} also covers \overline{S} , say

$$\mathscr{F}' = \{B(a_1; \delta)), B(a_2; \delta), \dots, B(a_m; \delta)\}.$$

(3) Given any $x \in S \subseteq \overline{S}$, there is some $a_i \in S$ $(1 \le i \le m)$ such that $x \in B(a_i; \delta)$. In such ball, $d_S(x, a_i) < \delta$. By (1), $||f(x) - f(a_i)|| < 1$, or $||f(x)|| < 1 + ||f(a_i)||$. Therefore, for any $x \in S$,

$$||f(x)|| < 1 + \max_{1 \le i \le m} ||f(a_i)||.$$

Problem 3.6.

Prove Proposition 5: Given any set A and any $\varepsilon > 0$, there is an open set O such that $A \subseteq O$ and $m^*O \le m^*A + \varepsilon$. There is a $G \in G_\delta$ such that $m^*G = m^*A$.

Proof.

(1) Use the definition of the outer measure. By the definition of m^* , for such $\varepsilon > 0$ there exists a countable collection $\{I_n\}$ of open intervals that covers A and

$$m^*A + \varepsilon \ge \sum \ell(I_n).$$

- (2) Construct an open set O. Let $O = \bigcup I_n \supseteq A$ which is the union of any collection of open sets I_n . By Proposition 2.7, O is open.
- (3) Show that $m^*O \leq m^*A + \varepsilon$. By Proposition 3.2 and 3.1,

$$m^*O = m^*\left(\bigcup I_n\right) \le \sum m^*I_n = \sum \ell(I_n) \le m^*A + \varepsilon.$$

Therefore, given any set A and any $\varepsilon > 0$, there is an open set O such that $A \subseteq O$ and $m^*O \le m^*A + \varepsilon$.

(4) Construct $G \in G_{\delta}$ in a natural way. Given any $n \in \mathbb{N}$, there exists an open set O_n such that $O_n \supseteq A$ and $m^*O_n \le m^*A + \frac{1}{n}$. Let

$$G = \bigcap_{n=1}^{\infty} O_n \in G_{\delta}.$$

- (5) Show that $m^*G = m^*A$.
 - (a) Since $A \subseteq O_n$ for any $n \in \mathbb{N}$, $A \subseteq \bigcap_{n=1}^{\infty} O_n = G$. Thus $m^*A \le m^*G$.

(b) Since $O_n \supseteq \bigcap_{n=1}^{\infty} O_n = G$ for any $n \in \mathbb{N}$,

$$m^*A + \frac{1}{n} \ge m^*O_n \ge m^*G$$

for any $n \in \mathbb{N}$. Since $n \in \mathbb{N}$ is arbitrary, $m^*A \geq m^*G$.

By (a)(b), $m^*A = m^*G$.

Problem 3.7. (Translation invariant)

Prove that m^* is translation invariant.

Proof. Given $E \in \mathfrak{M}$ and $y \in \mathbb{R}$.

(1) $m^*(E+y) \leq m^*E$. Let $\{I_n\}$ of open intervals that cover E. Then $\{I_n+y\}$ of open intervals that cover E+y. Notice that the definition of m^* and $\ell(I_n+y)=\ell(I_n)$, then

$$m^*(E+y) \le \sum \ell(I_n+y) = \sum \ell(I_n).$$

Take the infimum of all such sum $\sum \ell(I_n)$, $m^*(E+y) \leq m^*E$.

(2) $m^*(E) \le m^*(E+y)$. Similar to (1).

By (1)(2), $m^*(E+y) = m^*E$, that is, m^* is translation invariant. \square

Problem 3.8.

Prove that if $m^*A = 0$, then $m^*(A \cup B) = m^*B$.

Proof.

- (1) $m^*(A \cup B) \ge m^*B$ since $A \cup B \supseteq B$ and the definition of m^* . (Any covering of $A \cup B$ by open intervals is also a covering of B so that the latter infimum is taken over a larger collection than the former.)
- (2) $m^*(A \cup B) \leq m^*B$. By Proposition 3.2,

$$m^*(A \cup B) \le m^*A + m^*B = 0 + m^*B = m^*B.$$

By (1)(2), $m^*(A \cup B) = m^*B$. \square

§3.3: Measurable Sets and Lebesgue Measure

Problem 3.9.

Show that if E is a measurable set, then each translate E + y of E is also measurable.

Proof.

(1) E is measurable if and only if for each set A, each $y \in \mathbb{R}$,

$$m^*(A+y) = m^*((A+y) \cap E) + m^*((A+y) \cap \widetilde{E}).$$

- (a) (\Longrightarrow) E is measurable and A+y is a set (for any set A and $y \in \mathbb{R}$).
- (b) (\Leftarrow) A = (A y) + y for any set A and $y \in \mathbb{R}$.
- (2) For any set E and $y \in \mathbb{R}$, $\widetilde{E+y} = \widetilde{E} + y$ by the definition of translation.
- (3) For any sets E_1 , E_2 and $y \in \mathbb{R}$, $(E_1 \cap E_2) + y = (E_1 + y) + (E_2 + y)$ by the definition of translation.
- (4) For each set A and $y \in \mathbb{R}$,

$$m^{*}((A+y)\cap(E+y)) + m^{*}((A+y)\cap(\widetilde{E+y}))$$

$$= m^{*}((A+y)\cap(E+y)) + m^{*}((A+y)\cap(\widetilde{E}+y)) \qquad ((2))$$

$$= m^{*}((A\cap E) + y) + m^{*}((A\cap \widetilde{E}) + y) \qquad ((3))$$

$$= m^{*}(A\cap E) + m^{*}(A\cap \widetilde{E}) \qquad (Problem 3.7)$$

$$= m^{*}A \qquad (Measurability of E)$$

$$= m^{*}(A+y). \qquad (Problem 3.7)$$

By (1), E + y is measurable.

Problem 3.10.

Show that if E_1 and E_2 are measurable, then

$$m(E_1 \cup E_2) + m(E_1 \cap E_2) = mE_1 + mE_2.$$

Proof. Since the collection \mathfrak{M} of measurable sets is a σ -algebra (Theorem 3.10) and m is countable additive (Proposition 3.13),

$$m(E_1 \cup E_2) + m(E_1 \cap E_2) = \left(m(E_1) + m(E_2 \cap \widetilde{E_1})\right) + m(E_2 \cap E_1)$$
$$= m(E_1) + \left(m(E_2 \cap \widetilde{E_1}) + m(E_2 \cap E_1)\right)$$
$$= m(E_1) + m(E_2).$$

 $(E_1 \text{ and } E_2 \cap \widetilde{E_1} \text{ are disjoint. } E_2 \cap \widetilde{E_1} \text{ and } E_2 \cap E_1 \text{ are disjoint too.}) \square$

Problem 3.11.

Show that the condition $mE_1 < \infty$ is necessary in Proposition 3.14 by giving a decreasing sequence $\langle E_n \rangle$ of measurable sets with $\varnothing = \bigcap E_n$ and $mE_n = \infty$ for each n.

Proof. Set

$$E_n = (n, \infty)$$

for each $n \in \mathbb{N}$.

- (1) $\langle E_n \rangle$ is a decreasing sequence of measurable sets. $E_n \supseteq E_{n+1}$ by definition. Besides, each E_n is measurable by Lemma 3.11.
- (2) $\bigcap E_n = \emptyset$. For each $x \in \mathbb{R}$, $x \notin E_1$ if $x \leq 1$; $x \notin E_{[x]}$ if $x \geq 1$ where $x \mapsto [x]$ is the floor function.
- (3) $mE_n = \infty$ for each n. The length of each E_n is ∞ (Proposition 3.1).

Problem 3.12.

Let $\langle E_n \rangle$ be a sequence of disjoint measurable sets and A any set. Then m^* $(A \cap \bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} m^* (A \cap E_i)$.

Proof.

- (1) $A \cap \bigcup_{i=1}^{\infty} E_i = \bigcup_{i=1}^{\infty} (A \cap E_i)$ (Problem 1.14).
- (2) $m^* \left(\bigcup_{i=1}^{\infty} (A \cap E_i) \right) \leq \sum_{i=1}^{\infty} m^* (A \cap E_i)$ by the subadditivity of m^* (Proposition 3.2).

(3) By Lemma 3.9,

$$m^* \left(\bigcup_{i=1}^n (A \cap E_i) \right) = \sum_{i=1}^n m^* (A \cap E_i)$$

for any $n \in \mathbb{N}$. Since $\bigcup_{i=1}^{\infty} (A \cap E_i) \supseteq \bigcup_{i=1}^{n} (A \cap E_i)$, $m^* (\bigcup_{i=1}^{\infty} (A \cap E_i)) \ge m^* (\bigcup_{i=1}^{n} (A \cap E_i))$ by the monotonicity of m^* . Thus,

$$m^* \left(\bigcup_{i=1}^{\infty} (A \cap E_i) \right) \ge \sum_{i=1}^{n} m^* (A \cap E_i)$$

for any $n \in \mathbb{N}$. Since $\sum_{i=1}^{n} m^*(A \cap E_i)$ is bounded and increasing (by the non-negativity of m^*),

$$m^* \left(\bigcup_{i=1}^{\infty} (A \cap E_i) \right) \ge \sum_{i=1}^{\infty} m^* (A \cap E_i).$$

By (2)(3),
$$m^* (A \cap \bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} m^* (A \cap E_i)$$
. \square

Problem 3.13.

Prove Proposition 15: Let E be a given set. The the following five statements are equivalent:

- (i) E is measurable.
- (ii) Given $\varepsilon > 0$, there is an open set $O \supseteq E$ with $m^*(O E) < \varepsilon$.
- (iii) Given $\varepsilon > 0$, there is an open set $F \subseteq E$ with $m^*(E F) < \varepsilon$.
- (iv) There is an G in G_{δ} with $G \supseteq E$, $m^*(G E) = 0$.
- (v) There is an F in F_{σ} with $F \subseteq E$, $m^*(E F) = 0$.

If m^*E is finite, the above statements are equivalent to:

(vi) Given $\varepsilon > 0$, there is a finite union U of open intervals such that

$$m^*(U\Delta E) < \varepsilon$$
.

(Hints:

- (a) Show that for $m^*E < \infty$, (i) \Rightarrow (ii) \Leftrightarrow (vi) (cf. Proposition 5).
- (b) Use (a) to show that for arbitrary sets E, (i) \Rightarrow (ii) \Rightarrow (vi) \Rightarrow (i).
- (c) Use (b) to show that (i) \Rightarrow (iii).)

Proof.

(1) Show that for $m^*E < \infty$, $(i) \Rightarrow (ii)$. Given $\varepsilon > 0$, there is a countable collections $\{I_n\}$ of open intervals that cover E such that

$$\sum \ell(I_n) < m^*E + \varepsilon = mE + \varepsilon$$

by the definition of the outer measure and measurable sets. Take $O = \bigcup I_n$ be an open set which contains E. Hence,

$$m^*(O-E) = m(O-E)$$
 (O, E: measurable)
= $mO - mE$
= $m\left(\bigcup I_n\right) - mE$
 $\leq \sum \ell(I_n) - mE$
 $\leq \varepsilon$.

(2)

- $\S 3.4$: A Nonmeasurable Set
- §3.5: Measurable Functions
- §3.6: Littlewood's Three Principles