Starting a tree diagram

The chance that the alarm is triggered depends on whether or not the bag contains a forbidden item, so we should first distinguish between bags that contain a forbidden item and those that don't.

"Suppose that 5% of bags contain forbidden items."

QUESTION 1

What is the probability that a randomly chosen bag does NOT contain a forbidden item?

$$P(ext{not forbidden}) = 0.95$$

Filling in the tree diagram

"If a bag contains a forbidden item, there is a 98% chance that it triggers the alarm."

"If a bag doesn't contain a forbidden item, there is an 8% chance that it triggers the alarm."

We can use these facts to fill in the next branches in the tree diagram like this:

QUESTION 2

Given that a bag contains a forbidden item, what is the probability that it does NOT trigger the alarm?

$$?_1 = 0.02$$

Check

Explain

QUESTION 3

Given that a bag does NOT contain a forbidden item, what is the probability that is does NOT trigger the alarm?

Completing the tree diagram

We multiply the probabilities along the branches to complete the tree diagram.

Here's the completed diagram:

Solving the original problem

"Given a randomly chosen bag triggers the alarm, what is the probability that it contains a forbidden item?"

Use the probabilities from the tree diagram and the conditional probability formula:

$$P(ext{forbidden} \mid ext{alarm}) = rac{P(ext{F} \cap ext{A})}{P(ext{A})}$$

[What do those symbols mean?]

QUESTION 4

Find the probability that a randomly selected bag contains a forbidden item AND triggers the alarm.

$$P(\mathrm{F}\cap\mathrm{A})=$$
 0.049

Check

Explain

QUESTION 5

Find the probability that a randomly selected bag triggers the alarm.

$$P(\mathbf{A}) = 0.125$$

Check

Explain

QUESTION 6

Given a randomly chosen bag triggers the alarm, what is the probability that it contains a forbidden item?

Use three decimal places in your answer.

[Wait, why is that probability so low?]

Try one on your own!

A hospital is testing patients for a certain disease. If a patient has the disease, the test is designed to return a "positive" result. If a patient does not have the disease, the test should return a "negative" result. No test is perfect though.

- 99% of patients who have the disease will test positive.
- 5% of patients who don't have the disease will also test positive.
- 10% of the population in question has the disease.

If a random patient tests positive, what is the probability that they have the disease?

STEP 1

Find the probability that a randomly selected patient has the disease AND tests positive.

$$P(\mathrm{D}\cap +) = 0.099$$

Math > AP®/College Statistics > Probability > Conditional probability Conditional probability

- Conditional probability and independence
- Conditional probability with Bayes' Theorem
- Practice: Calculating conditional probability
- Conditional probability using two-way tables
- Conditional probability and independence
- Conditional probability tree diagram example
- Tree diagrams and conditional probability

Check

Explain

STEP 2

Find the probability that a random patient tests positive.

$$P(+) = 0.144$$

Check

Explain

STEP 3

If a random patient tests positive, what is the probability that they have the disease?

Round to three decimal places.

$$P(\mathrm{D}|+)=$$
 0.688

Check

Explain

Sort by: Top Voted V

Questions

Tips & Thanks

Want to join the conversation?