1.2-1

Insertion sort: $f(n) = 8n^2$ steps. Merge sort: $g(n) = 64n \lg n$ steps

Solving the inequality $8n^2 \le 64n \lg n$, $\forall n \ge 0$ gives $n \le 8 \lg n$. One way to find n is by an approximation method such as fixed-point iteration. By fixed-point iteration, when n is 43.98, 8lg n is 43.67. Now, substitute n= 43 and n = 44, we have:

n	<i>f</i> (<i>n</i>)	g(n)
43	14792	14934
44	15548	15374

Both f(n) and g(n) are monotonically increasing. However, when n = 1, f(1) = 8 > g(1) = 0, Thus, for 1 < n < 44, the insertion sort beats the merge sort.

1-1

First express each function in term of t (i.e. f(t)=n):

First express each function in term of
$$t$$
 (i.e. $t(t)=n$):
$$1) \lg n = t \Rightarrow n = \lfloor 2^t \rfloor$$

$$2) \sqrt{n} = t \Rightarrow n = \lfloor t^2 \rfloor$$

$$3) n = t$$

$$4) n \lg n = t \Rightarrow \lg n = t / n \Rightarrow n = 2^{(t/n)}$$

$$5) n^2 = t \Rightarrow n = \lfloor \sqrt{t} \rfloor$$

$$6) n^3 = t \Rightarrow n = \lfloor \sqrt{t} \rfloor$$

$$7) 2^n = t \Rightarrow \lg 2^n = \lg t \Rightarrow n = \lfloor \lg t \rfloor$$

$$8) n! = t \Rightarrow \text{by guessing!}$$

Then express each time unit in term of microseconds, where $1s = 1 \times 10^6 \,\mu s$:

1 s	1 min	1 hr	1 day	1 mo	1 yr	1 century
$1E6=10^6$	6E7	3.6E9	8.64E10	2.592E12	3.1104E13	3.1104E15

Now find n by substituting each time unit from the second table into the functions in the first table. Only a portion of the table is given. The rest is left to the reader as exercise:

	1 s	1 min	1 hr	1 day	1 mo	1 yr	1 century
1)	2^{10^6}						
2)	1E12						
3)	1E6	6E7					
4)	62746	2801417					
5)	1000	7745					
6)	100	391					
7)	19	25					
8)	9	11					

2.2-1

 $\Theta(n^3)$. [Reason: there exists a constant c1=1/10000, c2=1, n0=120000 such that $0 \le c1 \cdot n^3 \le f(n) \le c2 \cdot n^3, \forall n \ge n0$.

2.3

a)

This problem is expected to be done using the way similar to p24 of the textbook. The analysis will be much easier if the while-loop is converted into a for-loop. Following the example, we have:

```
Lines Cost Times 1 \quad \text{Y} \leftarrow 0 \qquad \text{c1} \qquad 1 2 \quad \text{for i} \leftarrow \text{n to 0} \qquad \text{c2} \qquad (n+1)+1 \text{ (the } +1 \text{ is to check if } i < 0)} 3 \quad \text{Y} \leftarrow \text{a}_{\text{i}} + \text{x*y} \qquad \text{c3} \qquad \sum_{i=0}^{n+1} 1 = n+1
```

Thus, $T(n) = c1 + c2((n+1)+1) + c3(n+1) = \Theta(n)$, where ci>0.

```
b)
```

```
1  y ← 0
2  for i ← 0 to n
3   product ← 1
4  for j ← 1 to i
5   product ← product * x
6  y ← y + a[i] * product
7  return y
```

Step	Cost	Times
1	c1	1
2	c2	$1 + \sum_{i=0}^{n} 1 = n + 2$
3	c3	$\sum_{i=0}^{n} 1$
4	c4	$\sum_{i=0}^{n} \left(\sum_{j=1}^{i} 1 + 1 \right) = \sum_{i=0}^{n} \left(i + 1 \right) = 1 + \sum_{i=1}^{n} \left(i + 1 \right) = n(n-1)/2 + n + 1$
5	c5	$\sum_{i=0}^{n} \sum_{j=1}^{i} 1 = n(n-1)/2$
6	c6	n+1
7	c7	1

Thus,

$$T(n) = c1 + c2(n+2) + c3(n+1) + c4((n-1)/2 + n + 1) + c5(n(n-1)/2 + c6)n + 1) + c7 = \Theta(n^2)$$

3.1-1

Let f(n) and g(n) be any asymptotically nonnegative functions. Then obviously, $\exists n_0$ such that f(n) and g(n) are nonnegative, $\forall n \ge n_0$...(1)

By the definition of Θ -notation, $\Theta(f(n)+g(n))=\{h(n): \text{ there exists positive constants } c_1, c_2, n_0 \text{ such that } \forall n \ge n_0, 0 \le c_1 (f(n)+g(n)) \le h(n) \le c_2 (f(n)+g(n))\}...(2)$

By (1), $f(n) \le f(n) + g(n)$ and $g(n) \le f(n) + g(n)$. Now let $c_2 = 1$. Then,

 $\max(f(n),g(n)) \le c_2(f(n)+g(n))$

 $\Rightarrow 2 \max(f(n), g(n)) \le 2(f(n) + g(n))$

 $\Rightarrow f(n) + g(n) \le 2 \max(f(n), g(n)) \le 2(f(n) + g(n)) \quad \dots (3)$

 $\Rightarrow \frac{1}{2}(f(n)+g(n)) \le \max(f(n),g(n)) \le (f(n)+g(n))$

By (2) and (3), $0 \le c_1 (f(n) + g(n)) \le \max(f(n), g(n)) \le c_2 (f(n) + g(n))$, $\forall n \ge n_0$, where $c_1 = \frac{1}{2}$ and $c_2 = 1$. $\therefore \max(f(n), g(n)) = \Theta(f(n) + g(n))$.

3.1-2

Let $f(n)=(n+a)^b$, for real constants a, b > 0.

Case 1: $a \ge 0$.

Then $0 \le n \le n + a \le 2n$ for all $a \le n$. Also, $log(n) \le log(n+a) \le log(2n)$

Since b > 0, a^b is monotonically increasing in b.

 $b \log n \le b \log(n+1) \le b \log(2n)$

 $\Rightarrow \log n^b \le \log(n+a)^b \le \log(2n)^b$

 $\Rightarrow 0 \le n^b \le (n+a)^b \le (2^b)n^b$

 $\therefore \exists c1 = 1, c2 = 2^b, n0 = a : 0 \le c1n^b \le (n+a)^b \le c2n^b, \forall n \ge n0.$

 $\therefore (n+a)^b = \Theta(n^b)$

Case 2: a < 0 implies n + a = n - |a|.

Then $0 \le n/2 \le n - |a| \le n$, for all $2|a| \le n$. Similar to case 1,

 $0 \le n/2 \le n-|a| \le n$

 $\Rightarrow \log(n/2) \le \log(n-|a|) \le \log n$

 $\Rightarrow \log(n/2)^b \leq \log(n-|a|)^b \leq \log n^b$

 $\Rightarrow 0 \le (1/2)^b n^b \le (n-|a|)^b \le n^b$

 $\exists c1 = (1/2)^b, c2 = 1.$

 $\therefore (\mathbf{n} - |\mathbf{a}|)^{\mathbf{b}} = \Theta(\mathbf{n}^{\mathbf{b}})$

Combining Case 1 + case 2, $(n+a)^b = \Theta(n^b)$.