A simple prime-generating recurrence

Eric Rowland

erowland@math.rutgers.edu

Department of Mathematics Rutgers University

January 6, 2008

Classification and examples

Ribenboim's conditions:

- (a) f(n) is the *n*th prime. e.g., Gandhi's formula: $p_n = \left[1 \log_2\left(-\frac{1}{2} + \sum_{d \mid \prod_{k=1}^{n-1} p_k} \frac{\mu(d)}{2^d 1}\right)\right]$
- (b) f(n) is always prime, and $f(n) \neq f(m)$ for $n \neq m$. e.g., Mills' formula: $\lfloor \theta^{3^n} \rfloor$, where $\theta = 1.3064...$
- (c) The set of positive values of *f* is equal to the set of prime numbers. e.g., multivariate prime-generating polynomials of Matijasevič and Jones et al.

But all known examples are engineered.

Naturally occurring functions

Are there "naturally occurring" functions that generate primes?

• Euler's polynomial $n^2 + n + 41$ is prime for $0 \le n \le 39$.

The recurrence

Are there naturally occurring functions that always generate primes?

In 2003 Matthew Frank discovered the recurrence

$$f(n) = f(n-1) + \gcd(n, f(n-1)).$$

Consider the initial condition f(1) = 7.

First few terms

n	gcd(n, f(n-1))	f(n)	п	gcd(n, f(n-1))	f(n)	п	gcd(n, f(n-1))	f(n)
	gca(n, r(n-1))	1(11)		gcu(n, r(n-1))			gcu(n, r(n = 1))	
1		/	21	1	45	41	1	89
2	1	8	22	1	46	42	1	90
3	1	9	23	23	69	43	1	91
4	1	10	24	3	72	44	1	92
5	5	15	25	1	73	45	1	93
6	3	18	26	1	74	46	1	94
7	1	19	27	1	75	47	47	141
8	1	20	28	1	76	48	3	144
9	1	21	29	1	77	49	1	145
10	1	22	30	1	78	50	5	150
11	11	33	31	1	79	51	3	153
12	3	36	32	1	80	52	1	154
13	1	37	33	1	81	53	1	155
14	1	38	34	1	82	54	1	156
15	1	39	35	1	83	55	1	157
16	1	40	36	1	84	56	1	158
17	1	41	37	1	85	57	1	159
18	1	42	38	1	86	58	1	160
19	1	43	39	1	87	59	1	161
20	1	44	40	1	88	60	1	162

gcd(n, f(n-1)) appears to always be 1 or prime.

The sequence gcd(n, f(n-1))

Prime values of gcd(n, f(n-1))

5, 3, 11, 3, 23, 3, 47, 3, 5, 3, 101, 3, 7, 11, 3, 13, 233, 3, 467, 3, 5, 3, 941, 3, 7, 1889, 3, 3779, 3, 7559, 3, 13, 15131, 3, 53, 3, 7, 30323, 3, 60647, 3, 5, 3, 101, 3, 121403, 3, 242807, 3, 5, 3, 19, 7, 5, 3, 47, 3, 37, 5, 3, 17, 3, 199, 53, 3, 29, 3, 486041, 3, 7, 421, 23, 3, 972533, 3, 577, 7, 1945649, 3, 163, 7, 3891467, 3, 5, 3, 127, 443, 3, 31, 7783541, 3, 7, 15567089, 3, 19, 29, 3, 5323, 7, 5, 3, 31139561, 3, 41, 3, 5, 3, 62279171, 3, 7, 83, 3, 19, 29, 3, 1103, 3, 5, 3, 13, 7, 124559609, 3, 107, 3, 911, 3, 249120239, 3, 11, 3, 7, 61, 37, 179, 3, 31, 19051, 7, 3793, 23, 3, 5, 3, 6257, 3, 43, 11, 3, 13, 5, 3, 739, 37, 5, 3, 498270791, 3, 19, 11, 3, 41, 3, 5, 3, 996541661, 3, 7, 37, 5, 3, 67, 1993083437, 3, 5, 3, 83, 3, 5, 3, 73, 157, 7, 5, 3, 13, 3986167223, 3, 7, 73, 5, 3, 7, 37, 7, 11, 3, 13, 17, 3, 19, 29, 3, 13, 23, 3, 5, 3, 11, 3, 7972334723, 3, 7, 463, 5, 3, 31, 7, 3797, 3, 5, 3, 15944673761, 3, 11, 3, 5, 3, 17, 3, 53, 3, 139, 607, 17, 3, 5, 3, 11, 3. 7. 113. 3. 11. 3. 5. 3. 293. 3. 5. 3. 53. 3. 5. 3. 151. 11. 3. 31889349053. 3. 63778698107. 3. 5. 3. 491. 3. 1063. 5. 3, 11, 3, 7, 13, 29, 3, 6899, 3, 13, 127557404753, 3, 41, 3, 373, 19, 11, 3, 43, 17, 3, 320839, 255115130849, 3, 510230261699, 3, 72047, 3, 53, 3, 17, 3, 67, 5, 3, 79, 157, 5, 3, 110069, 3, 7, 1020460705907, 3, 5, 3, 43, 179, ...

First key observations

logarithmic plot of n_j , the *j*th value of *n* for which $gcd(n, f(n-1)) \neq 1$

Ratio between clusters is very nearly 2.

Each cluster is initiated by a large prime p.

Another key observation

n	gcd(n, f(n-1))	f(n)	n	gcd(n, f(n-1))	f(n)		$n \gcd(n, f(n))$	-1)) f(n)
1		7	21	1	45	4	1 1	89
2	1	8	22	1	46	4:	2 1	90
3	1	9	23	23	69	4	3 1	91
4	1	10	24	3	72	4	4 1	92
5	5	15	25	1	73	4	5 1	93
6	3	18	26	1	74	4	3 1	94
7	1	19	27	1	75	4	7 47	141
8	1	20	28	1	76	4	3	144
9	1	21	29	1	77	4	9 1	145
10	1	22	30	1	78	5		150
11	11	33	31	1	79	5	1 3	153
12	3	36	32	1	80	5	2 1	154
13	1	37	33	1	81	5		155
14	1	38	34	1	82	5-		156
15	1	39	35	1	83	5		157
16	1	40	36	1	84	5		158
17	1	41	37	1	85	5		159
18	1	42	38	i	86	5		160
19	1	43	39	i	87	5		161
20	i	44	40	i	88	6		162
_0	•		-10	•	00	0	'	102

f(n) = 3n whenever $gcd(n, f(n-1)) \neq 1$.

f(n)/n

This suggests looking at f(n)/n in general.

For $n \ge 3$, we have $2 < f(n)/n \le 3$.

Local structure

Lemma

Let $n_1 \ge 2$. Let $f(n_1) = 3n_1$, and for $n > n_1$ let

$$f(n) = f(n-1) + \gcd(n, f(n-1)).$$

Let n_2 be the smallest integer greater than n_1 such that $gcd(n_2, f(n_2 - 1)) \neq 1$. Then

- $gcd(n_2, f(n_2 1)) = p$ is prime,
- p is the smallest prime divisor of $2n_1 1$,
- $n_2 = n_1 + \frac{p-1}{2}$, and
- $f(n_2) = 3n_2$.

This lemma provides the inductive step.

Main result

Theorem

Let f(1) = 7, and for n > 1 let

$$f(n) = f(n-1) + \gcd(n, f(n-1)).$$

For each $n \ge 2$, gcd(n, f(n-1)) is either 1 or prime.

Shortcut

Since all 1s may be bypassed, the recurrence (with shortcut) is a naturally occurring generator of primes.

So perhaps it earns an honorable mention under Ribenboim's criterion

(b) f(n) is always prime, and $f(n) \neq f(m)$ for $n \neq m$.

Is the recurrence a "magical" producer of primes?

No.

Each step requires finding the smallest prime divisor of 2n - 1.

General case

```
Of course f(1) = 7 seems arbitrary.
Do all initial conditions produce only 1s and primes?
```

No.

$$f(1) = 532$$
 produces $gcd(18, f(17)) = 9$.
 $f(1) = 801$ produces $gcd(21, f(20)) = 21$.

Open problem

Conjecture

Let $n_1 \ge 1$ and $f(n_1) \ge 1$. For $n > n_1$ let

$$f(n) = f(n-1) + \gcd(n, f(n-1)).$$

Then there exists an N such that for each n > N gcd(n, f(n-1)) is either 1 or prime.

It would suffice to show that f(n)/n always reaches 1, 2, or 3.