2021 年普通高等学校招生全国统一考试数学试题(甲卷·文科)

1. 设集合 $M = \{1, 3, 5, 7, 9\}, N = \{x | 2x > 7\}, 则M \cap N = ($

A. {7, 9}

- B. {5, 7, 9}
- C. {3, 5, 7, 9} D. {1, 3, 5, 7, 9}
- 2. 为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频 率分布直方图:

根据此频率分布直方图,下面结论中不正确的是(

- A. 该地农户家庭年收入低于4.5万元的农户比率估计为6%
- B. 该地农户家庭年收入不低于10.5万元的农户比率估计为10%
- C. 估计该地农户家庭年收入的平均值不超过6.5万元
- D. 估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间
- 3. 己知 $(1-i)^2z=3+2i$,则z=()

A. $-1 - \frac{3}{2}i$

- B. $-1+\frac{3}{2}i$
- C. $-\frac{3}{2}+i$

4. 下列函数中是增函数的为()

- A. f(x) = -x B. $f(x) = \left(\frac{2}{3}\right)^x$
- C. $f(x) = x^2$
- D. $f(x) = \sqrt[3]{x}$

5. 点(3, 0)到双曲线 $\frac{x^2}{16} - \frac{y^2}{9} = 1$ 的一条渐近线的距离为(

A. $\frac{9}{5}$

C.

- D. $\frac{4}{5}$
- 6. 青少年视力是社会普遍关注的问题,视力情况可借助视力表测量. 通常用五分记录法和小数记录法记录视力数 据,五分记录法的数据 L 和小数记录法的数据 V 满足 $L=5+\lg V$. 已知某同学视力的五分记录法的数据为 4.9,则 其视力的小数记录法的数据约为($\sqrt[10]{10} \approx 1.259$)()

A. 1.5

B. 1.2

C. 0.8

D. 0.6

7. 在一个正方体中,过顶点A的三条棱的中点分别为E, F, G. 该正方体截去三棱锥A-EFG后,所得多面体的三视 图中,正视图如右图所示,则相应的侧视图是(

8. 在 $\triangle ABC$ 中,已知 $B=120^{\circ}$, $AC=\sqrt{19}$,AB=2,则BC=(

B. $\sqrt{2}$

D. 3

9. 记 S_n 为等比数列 $\{a_n\}$ 的前n项和. 若 S_2 =4, S_4 =6, 则 S_6 =(

D. 10

10. 将3个1和2个0随机排成一行,则2个0不相邻的概率为(

A. 0.3

B. 0.5

C. 0.6

D. 0.8

11. 若 $\alpha \in (0, \frac{\pi}{2})$, $\tan 2\alpha = \frac{\cos \alpha}{2 - \sin \alpha}$, 则 $\tan \alpha = ($)

A.
$$\frac{\sqrt{15}}{15}$$

B. $\frac{\sqrt{5}}{5}$

C. $\frac{\sqrt{5}}{3}$

D. $\frac{\sqrt{15}}{3}$

12. 设 f(x) 是定义域为 R 的奇函数,且 f(1+x)=f(-x). 若 $f(-\frac{1}{3})=\frac{1}{3}$,则 $f(\frac{5}{3})=($

A.
$$-\frac{5}{3}$$

B. $-\frac{1}{3}$

D. $\frac{5}{3}$

二、填空题: 本题共 4 小题, 每小题 5 分, 共 20 分。

13. 若向量 \vec{a} , \vec{b} 满足 $|\vec{a}|=3$, $|\vec{a}-\vec{b}|=5$, $\vec{a}\cdot\vec{b}=1$, 则 $|\vec{b}|=1$

14. 己知一个圆锥的底面半径为 6, 其体积为 30π, 则该圆锥的侧面积为

15. 已知函数 $f(x) = 2\cos(\omega x + \varphi)$ 的部分图像如图所示,则 $f(\frac{\pi}{2}) =$

16. 己知 F_1 , F_2 为椭圆C: $\frac{x^2}{16} + \frac{y^2}{4} = 1$ 两个焦点,P,Q为C上关于坐标原点对称的两点,且 $|PQ| = |F_1F_2|$,则四边形P F_1QF_2 的面积为_____.

三、解答题: 共 70 分。解答应写出文字说明、证明过程或演算步骤。第 17~21 题为必考题,每个试题考生都必须作答。第 22、23 题为选考题,考生根据要求作答。

(一)必考题: 共60分。

17. 甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了 200 件产品,产品的质量情况统计如下表:

	一级品	二级品	合计
甲机床	150	50	200
乙机床	120	80	200
合计	270	130	400

- (1)甲机床、乙机床生产的产品中一级品的频率分别是多少?
- (2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?

附:
$$K^2 = \frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$$
,

$P(K^2 \ge k)$	0.050	0.010	0.001
k	3.841	6.635	10.828

18. 记 S_n 为 $\{a_n\}$ 的前n项和,已知 $a_n > 0$, $a_2 = 3a_1$,且数列 $\{\sqrt{S_n}\}$ 是等差数列. 证明: $\{a_n\}$ 是等差数列.

- 19. 已知直三棱柱 $ABC-A_1B_1C_1$ 中,侧面 AA_1B_1B 为正方形。AB=BC=2,E,F分别为AC和 CC_1 的中点, $BF \perp A_1B_1$.
 - (1)求三棱锥 F-EBC 的体积;
 - (2)已知D为棱 A_1B_1 上的点,证明: $BF \perp DE$.

- 20. 设函数 $f(x) = a^2x^2 + ax 3\ln x + 1$, 其中 a > 0.
- (1)讨论 f(x)的单调性;
- (2)若 y=f(x)的图像与 x 轴没有公共点,求 a 的取值范围.

- 21. 抛物线 C 的顶点为坐标原点 O,焦点在 x 轴上,直线 l: x=1 交 C 于 P, Q 两点,且 $OP \perp OQ$.已知点M(2,0),且 \bigcirc M与 l 相切.
 - (1)求 *C*, ⊙ *M*的方程;
- (2)设 A_1 , A_2 , A_3 是 C 上的三个点,直线 A_1A_2 , A_1A_3 均与 \odot M 相切. 判段直线 A_2A_3 与 \odot M的位置关系,并说明理由.

- (二)选考题: 共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。
- 22. [选修 4-4: 坐标系与参数方程]

在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为 $\rho=2\sqrt{2}\cos$ θ .

- (1)将C的极坐标方程化为直角坐标方程;
- (2)设点A的直角坐标为(1,0),M为C上的动点,点P满足 $\overrightarrow{AP} = \sqrt{2} \overrightarrow{AM}$,写出P的轨迹 C_1 的参数方程,并判断C与 C_1 是否有公共点.

23. [选修 4-5: 不等式选讲]

