Tutorium Hardware- und Systemgrundlagen

Gruppe 1

Gruppe 2

Raum O - 103 Raum O - 207

Mittwoch, 11.30 Uhr

Mirko Bay

[mirko.bay@htwg-konstanz.de]

Michael Bernhardt

[michael.bernhardt@htwg-konstanz.de]

Sebastian Oberhauser

[sebastian.oberhauser@htwg-konstanz.de]

Zahlensysteme II

Dual-, Oktal-, Dezimal-, Hexadezimalsystem

Betrag + Vorzeichen Einer- / Zweierkomplement

IEEE-P 754-Floating-Point-Standard BCD-Zahl

Zahlensysteme II: Mögliche Aufgabentypen

Eine Zahl zur Basis 2 kann als "normale" Dualzahl, mit Betrag+Vorzeichen (B+VZ), als Einerkomplement (EK) und als Zweierkomplement (ZK) dargestellt werden:

Beispiel:
$$-(77)_{10} = -(0100\ 1101)_2 = (1100\ 1101)_{B+VZ} = (1011\ 0010)_{EK} = (1011\ 0011)_{ZK}$$

Dezimal \rightarrow **Dual** $-(77)_{10} \rightarrow -(?)_{2}$

$$- (77)_{10} = - (64+8+4+1)_{10}$$
$$= - (0100 1101)_{10}$$

Dual \rightarrow Betrag+Vorzeichen - (0100 1101)₂ \rightarrow (?)_{B+VZ}

Bei Darstellung als Betrag+Vorzeichen wird ein Bit zusätzlich (das vorderste Bit) für das Vorzeichen benötigt:

$$-(0100\ 1101)_2 = (1100\ 1101)_{B+VZ}$$

Dual \rightarrow **Einerkomplement** - (0100 1101)₂ \rightarrow (?)_{EK}

Bei der Darstellung als Einerkomplement werden alle Ziffern der Dualzahl "herumgedreht", also aus 0 wird 1 und umgekehrt:

$$-(0100 1101)_{2}$$
 $(1011 0010)_{EK}$

Dual			EK
	0000 =	0	1000 = -7
	0001 =	1	1001 = -6
	0010 =	2	1010 = -5
	0011 =	3	1011 = -4
	0100 =	4	1100 = -3
	0101 =	5	1101 = -2
	0110 =	6	1110 = -1
	0111 =	7	1111 = -0
_			

Einerkompl. \rightarrow Zweierkompl. (1011 0010)_{EK} \rightarrow (?)_{ZK}

Das Zweierkomplement baut auf dem Einerkomplement auf. Daher ist für die Ermittlung des ZK immer das EK notwendig!

Für das ZK muss zum EK noch eine (1), hinzu addiert werden:

Aufgabe 1: (-28)₁₀ als 16-Bit-Zahl im Einer- und Zweierkomplement!

Aufgabe 2: -(2⁶)₁₀ ins Zweierkomplement (Klausur SS 05)

Aufgabe 3: -(23)₁₂ in Zweierkomplementzahl mit 8 Stellen (Klausur WS 06/07)

Aufgabe 4:

Füllen Sie die Tabelle aus und geben Sie jeweils das Ergebnis der arithmetischen Operation in binärer Darstellung an. Darstellung mit 8 Bit.

(Testat WS 02/03)

Dezimal	Betrag + Vorzeichen	Einerkomplement	Zweierkomplement
- 71			
+ 38			
- 33			

Aufgabe 5:
$$-|\sqrt{(40)_{16}}|$$
 als Zweierkomplement mit 8 Stellen

(Klausur SS 10)

Aufgabe 6:

Gegeben sie eine Menge Z von Oktalzahlen $Z = \{ 7, 24, 52 \}$.

- a) Welche Dezimalzahl K ergibt sich aus der Summe der drei Oktalzahlen?
- b) Dezimalzahl K aus a) als Zahl in Form Betrag + Vorzeichen mit 8 Bit
- c) Dezimalzahl aus a) als negative Zahl (-K) im Zweierkomplement mit 8 Bit (Testat SS 06)

Aufgabe 7: Wie lautet die dezimale Summe, wenn zur Zahl (1001 0110) $_{\rm ZK}$ die

(Testat SS 03)

Zahl (63)₁₀ hinzu addiert wird?

Aufgabe 8:

Wie viele binäre Stellen braucht man mindestens, damit die Zahl (64)₁₀ in Zweierkomplement-Form darstellbar ist?

(Klausur WS 07/08)

Wandeln Sie $-|\sqrt{(61)_8}|$ **in eine Zweierkomplement-Zahl mit 8 Stellen um!** (Klausur WS 11/12)

Aufgabe 10:

Wie lauten die größte positive (z_{max}) und die kleinste negative $(-z_{min})$ Dezimalzahl, die sich mit m Stellen in der Form Betrag + Vorzeichen darstellen lassen?

(Klausur SS 2010)

Aufgabe 11:

In einem Rechnersystem müssen die beiden hexadezimalen Zahlen (45C,4)₁₆ und (1BD,F)₁₆ addiert werden. Zusätzlich muss dazu noch die Oktalzahl (37,2)₈ addiert werden. Geben Sie das Ergebnis der Addition der drei Zahlen als Hexadezimal und Zahl im Zweierkomplement an!

(Testat SS 06)