ANSWER KEY

Chemical Bonding -1 Exercise - 1

PART - I

A-3. (a)
$$[: \ddot{S} - C = \ddot{N}]^{-}$$

(b) Covalent compound ;CI: :CI:

A-4.

B-1. 5

B-2. BCl₃ electron deficient molecule

XeF₂ Super octet molecule

NO odd electron

IF, Super octet molecule

NÓ, odd electron

CIF, Super octet molecule

CIO, odd electron

C-1. (i)
$$\begin{array}{c} O \\ | \\ O \\ \hline \end{array}$$
 Bond order = $\begin{array}{c} 2+1+1+2 \\ 4 \end{array} = 1.5$ $\begin{array}{c} O \\ | \\ O \\ \hline \end{array}$ $\begin{array}{c} O \\ | \\ O \\ \hline \end{array}$

Bond order =
$$\frac{2+1+1+2}{4}$$
 = 1.5

(ii)
$$CH_3 - C$$
 $CH_3 - C$

Bond order = 1 +
$$\frac{1}{2}$$
 = 1.5

Bond order = 1 + $\frac{1}{2}$ = 1.5

Bond order = $1 + \frac{1}{3} = 1.33$

Bond order = $1 + \frac{1}{4} = 1.25$

- C-2. (a) 2
- (b) 1
- C-3. Sodium formate exists as HCOO-Na+

 \rightarrow average B.O.= $1\frac{1}{3}$

 \rightarrow average B.O.= $1\frac{1}{2}$

Hence one bond in HSO_3^- is longer than S–O bond in SO_3^{2-} . But other two S–O bond in HSO_3^- are shorter

Number of sigma bonds is 7 & number of pi bonds is 3. D-1.

PART - III

1. (A) \rightarrow q, (B) \rightarrow r, (C) \rightarrow p, (D) \rightarrow s

								_					
						Exer	cise -	2					
PART - I													
1 8	(B) (A)	2. 9. æ.	(D) (D)	3 10	(B) (C)	4.	(D)	5.	(C)	6.	(D)	7. as	(A)
PART - II													
1. 7.	2 5	2.	5	3.	10	4.	3	5.	12	6. Sa.	5		
PART - III													
1.	(ACD)	2.8	(AC)	3.	(BC)		(AB) RT - IV		(ABC)			
1.	(D)	2.	(D)	3.	(C)	4. Exe	(B) rcise	5. 3	(A)				
							RT - I						
1.*	(ACD)	2.	8	3.*	(BC)	4.	6 RT - II						
1.	(3)	2.	(1)										
					Ch	emica	l Bond	ling-2					
							cise -	1					
						P	art - I						
A-1 .	Accord	ding to \ XeF。	/SEPR tl	heory					_	F			
	Numbe So, Nu Thus X	er of ele er of bor Imber o KeF, is li	ctron pa nd pairs : f lone pa near witl ositions c	= 2, iirs = 3 h 3 Ione	pairs occ al bipyrai	cupying midal so	o as to mi	nimize t	o the repul	-)	(linear)		
	Numbe So, Nu Thus X	er of elle er of bor Imber o KeF, is li	ctron pa nd pairs = f lone pa near witl	= 4, iirs = 2 h 2 Ione	pairs occ	cupying			F F)	quare pla	anar)	
	2 axia	positio	ns of octa	anedral	pyramida	aı so as	to minim	iize the r	epulsior	ıs.			

 $\begin{array}{c} XeO_2F_2\\ \text{Number of electron pairs (including super electron pairs)} = 5,\\ \text{Number of bond pairs} = 4,\\ \text{So, Number of lone pairs} = 1\\ \text{Thus XeO}_2F_2 \text{ is see-saw with 1 lone pairs occupying}\\ \text{one equatorial position and two double bonds occupying other}\\ \text{two equatorial positions of trigonal bipyramidal so as to minimize the repulsions.} \end{array}$

A-2. There are 5 electron pairs and all are bonds pairs in PCl₅. So to have the minimum repulsions between bond pairs it acquires trigonal bipyramidal shape. In BrF₅, there are 6 electrons pairs out of which one lone pair and rest all are bond pairs. So to have the minimum repulsions between bond pairs and lone pairs it acquires square pyramidal shape.

BrF₅ (square pyramidal)

PCI₅ (trigonal bipyramidal),

A-3. According to VSEPR theory two lone pairs out of six electron pairs are trans to each other to have minimum repulsion. The shape of XeF₄ is square planar and geometry is octahedral with sp³d² hybridisation. The molecule looks like:

In OSF₄, there are five electron pairs and all are bond pairs. So geometry is trigonal bipyramidal. As double bond creates more repulsion than singles bond, the double bond acquires one of equatorial position of trigonal bipyramidal to have minimum repulsions.

The structure looks like:

A-4. In NO_2^+ the N has sp hybridisation; so it is linear $O = N^+ = O$

In I_3^- there are 5 electron pairs around central iodine atom (3 lone pairs and 2 bond pairs). The hybridisation of iodine is thus sp³d. To have minimum repulsions between Ip-Ip and Ip-bp it acquires linear shape as shown below.

A-5. In PCI₅ there are 5 electron pairs around central phosphorus atom and all are bond pairs. The hybridisation of phosphorus is thus sp³d. To have minimum repulsions between bp-bp it acquires trigonal bipyramidal shape as shown below.

In ${\rm IF}_5$ there are 6 electron pairs around central iodine atom. The hybridisation of iodine is thus ${\rm sp^3d^2}$. 6 electron pairs contain 5 bond pairs and one lone pair so it will be square pyramidal to have minimum repulsions between Ip-bp and bp-bp.

B-1. 1.
$$F - Xe - F \longrightarrow sp^3d$$
.

3.
$$(CI)^{P} \longrightarrow Sp^3$$

5.
$$F \xrightarrow{F} S \xrightarrow{x} F \longrightarrow sp^{3}d^{2}$$

7.
$$IF_5: - F \xrightarrow{F} I \xrightarrow{F} F \longrightarrow sp^3d^2$$

9.
$$CH_4:-H \longrightarrow Sp^3$$
 10. $CCI_4:-CI \longrightarrow CI \longrightarrow Sp^3$

11.
$$SiCl_4 :- CI \longrightarrow Si \longrightarrow CI \longrightarrow Sp^3$$

13.
$$H_2O: -H \nearrow O \hookrightarrow H \longrightarrow sp^3$$

2.
$$F \xrightarrow{\times \times} F \xrightarrow{\times \times} sp^{3}d^{2}$$

$$F \xrightarrow{\times \times} F$$

$$CI \xrightarrow{\qquad \qquad } CI \xrightarrow{\qquad \qquad } sp^{3}d$$

$$CI \xrightarrow{\qquad \qquad } CI \xrightarrow{\qquad \qquad } sp^{3}d$$

I.
$$CI \longrightarrow Sp^3c$$

$$CI \longrightarrow CI \longrightarrow CI$$

$$CI \longrightarrow CI$$

6.
$$IF_3:-F \longrightarrow sp^3d$$

7.
$$IF_5: - F \xrightarrow{F} \stackrel{F}{\underset{\cdot}{\mid}} F \xrightarrow{F} sp^3d^2$$
8.
$$IF_7: - F \xrightarrow{F} \stackrel{F}{\underset{\cdot}{\mid}} F \xrightarrow{F} sp^3d^3$$

$$CCI_4: -CI \longrightarrow CI \longrightarrow Sp^3$$

11.
$$SiCl_4 :- CI \longrightarrow Si \longrightarrow CI \longrightarrow sp^3$$
12. $SiH_4 :- H \longrightarrow sp^3$
13. $H_2O :- H \longrightarrow Sp^3$
14. $NH_3 :- H \longrightarrow N \longrightarrow Sp^3$

16. BrF₅ F
$$\stackrel{F}{=}$$
 $\stackrel{F}{=}$ F $\stackrel{F}{=}$ $\stackrel{\longrightarrow}{=}$ sp³d²

18.
$$0 = C < 0 \longrightarrow sp$$

20.
$$:CI = 0$$
 $\longrightarrow sp^{n}$

- **B-2.** True, As the s character in hybrid orbital decrease, size of hybrid orbital increases.
- **B-3.** (a) SF₄ F F

4 bond pair & 1 lone pair, Hybridization = sp3d Shape : see saw

5 bond pair & 1 lone pair, Hybridization = sp3d2 Shape: Square pyramidal

CI, the most electronegative of the halogens in this series, pulls shared electrons the most strongly away from Sb, reducing electron density near Sb. The consequence is that the lone pair exerts the strongest influence on shape in SbCI₃.

Phosphorus is the most electronegative of the central atoms. Consequently, it exerts the strongest pull on shared electrons, concentrating these electrons near P and increasing bonding pair-bonding pair repulsions—hence, the largest angle in PI₃. Sb, the least electronegative central atoms, has the opposite effect: Shared electrons are attracted away from Sb, reducing repulsions between the Sb–I bonds. The consequence is that the effect of the lone pair is greatest in SbI₃, which has the smallest angle.

Atomic size arguments can also be used for these species. Larger outer atoms result in larger angles; larger central atoms result in smallest angles.

C-2. In Br₃⁻ there are 5 electron pairs around central bromine atom (3 lone pairs and 2 bond pairs). The hybridisation of bromine is thus sp³d. To have minimum repulsions between Ip-Ip and Ip-bp it acquires linear shape as shown below.

C-3. Order of C–H bond strength is $C_2H_2 > C_2H_4 > C_2H_6$ as % s character decreases in the same order.

C-4. Highest bond angle

 CH_{4} (1)

CO

H,Õ

(2)

(3)

(4)

CĨO, PF₃ (sp³ hybridisation) (5)

BF₃ (sp² hybridisation) (6)

(7) NH₃

(8) PCI₃ Lowest bond angle

SbH,

H,Te

 PH_3

Cl,Ŏ

PH₃ (no hybridisation)

NF₃(sp³ hybridisation)

 PF_3

C-5. (1)
$$C = C < C = C < C - C$$

$$(2) C - F < C - O < C - N$$

$$(3) HF < H - CI < H - Br < H-I$$

D-1. Structure of P₄O₁₀.

(a) 4 (b) 3

(c)3(d) 6 (e)4

(f)0

Ans. 2 (a,d) D-3.

(b) and (c) nitrogen does not have empty d-orbital.

(d)
$$HCIO_3$$
, OH O $p\pi$ -d π

Part - II

A-1. (C) B-1. (B) A-2.

(D) (A)

(D)

A-3. (D) A-4.

(A)

A-5. (D)

B-6. (A) B-2. B-7. (D)

B-3. (A) B-8. (C) B-4. (B) B-9. (A) B-5. (B) C-1. (D)

C-2. (B) C-3.

C-4. (B) C-5. (C) C-6. (B)

D-1. (C) D-6.

D-2. (D) D-7. (A)

D-3. (A)

D-4. (C) D-5. (B)

Part - III

1.
$$(A-p, q, r)$$
; $(B-q, r, t)$; $(C-s)$; $(D-r)$

(A-r); (B-q); (C-s); (D-p, t)2.

3.
$$(A-r,s)$$
; $(B-p,q,s)$; $(C-q)$; $(D-q,r)$

Chemical Bonding -3 Exercise - 1 Part - I

- **A-1.** (i) In NH $_3$ molecule N atom has lone pair in sp 3 hybrid orbital while in PH $_3$ as suggested by its bond angle (\approx 92°) the lone pair must be present in 'S' orbital which is much more contracted than sp 3 . Hence PH $_3$ becomes a poor donor than NH $_3$.
 - (ii) CH₃CN has lone pair on sp hybridized nitroge n atom while NH₃ has lone pair on sp³ hybridized nitrogen atom.
- **A-2.** In BCl₃, octet of Boron is incomplete. In SiF₄, silicon has vacant d-orbitals, by which it can accept electron pair.
- **A-3.** BF₃ molecule being electron deficient gets stabilised through $p\pi-p\pi$ back bonding. where as BH₃ removes its electron deficiency through dimerisation and thus exists as B₂H₆.
- **A-4.** sp³ hybridised orbital of both aluminium and sp³ hybridised orbital of carbon.

by nitrogen atom. Where as in BF_3 it is compensated by back bonding with F atom; back bonding is delocalised thus B-F bond has partial double bond character.

B-2. (Shows
$$p\pi - d\pi$$
 bonding) H Si = N = C = O

B-3. (i)
$$\int_{0}^{0} \int_{0}^{1} \int_{$$

(iii) $N \equiv N$ two $p\pi$ - $p\pi$ bond.

(iv) H — O —
$$\overset{\text{O}}{\underset{\text{II}}{\text{CI}}}$$
 O three $p\pi$ -d π bond.

C-1. Very strong hydrogen bonding occurs in the alkali metal hydrogen fluorides of formula M[HF₂]; there is a linear symmetrical anion having an over all, F–H–F distance of 2.26 Å.

$$F^- + HF \longrightarrow [FHF]^-$$
; $\Delta H = -161 \pm 8 \text{ kJ mol}^{-1}$

- **C-2.** Deuterium is more electropositive than hydrogen. Therefore, stronger H-bonding is found in D_2O than in H_2O . D_2O is also denser than H_2O .
- **D-1.** These compounds contain polar–OH groups which can form H-bonds with water.
- **D-2.** In ethanol, there is H-bonding but in diethyl ether, there is no H-bonding (because O-atom is attached to C-atom) but there exists weak dipole-dipole attraction in diethyl ether.

Part - II A-1. A-3. (A) A-2. (A) (B) A-4. (B) A-5. (D) **A-6** 🖎 (B) A-7. (D) B-1. (D) B-2. (A) B-3 🖎 (C) **C-1** (D) B-4. (C) C-2. B-5. (A) B-6. (B) (D) C-3. (D) C-4. (D) D-1. (D) **D-2.** (B) D-3. (D) **D-4.** (C)

1.
$$(A-q)$$
; $(B-r)$; $(C-s,p)$; $(D-p,r)$

2.
$$(A-p, q, r, s)$$
; $(B-p, q, r, s)$; $(C-p, q, r, s)$; $(D-r, s)$

3.
$$(A-r)$$
; $(B-p, r)$; $(C-p, q, r)$; $(D-p, r)$; $(E-p, r, s)$

Exercise - 2

Part - I

Part - II

Part - IV

Part - I

- 1. (i) $N(SiMe_3)_3$ is trigonal planar because in it silicon uses its vacant d-orbital for $p\pi$ -d π back bonding with lone pair of electrons of central N-atom and the $p\pi$ -d π bonding is delocalised as given in the structure. So, $N(SiMe_3)_3$ with steric number three is trigonal planar.
 - (ii) In N(Me₃), there is no such $p\pi$ -d π delocalisation of lone pair of electrons on N atom as carbon does not have vacant d-orbital. So N(Me)₃ with steric number four is trigonal pyramidal with a lone pair at the apex.

(ii) Me Me

Hence both are not isostructural.

2. 4

Part - II

6. (4)

Chemical Bonding - 4 Exercise - 1

A-2. (a)
$$B_2(b) C_2(c) O_2^{2+}(d) O_2$$
, (e) $F_2(f) N_2$

A-3. Molecular orbital electronic configuration of O₂ is as follows (Z is taken as molecular axis).

$$\sigma_{1s^2} \ \sigma^*_{1s^2} \ \sigma_{2s^2} \ \sigma^*_{2s^2} \ \sigma_{2p_z^2} \ \sigma_{2p_z^2} = \pi_{2p_z^2} \ \pi^*_{2p_x^{-1}} = \pi^*_{2p_y^{-1}}$$

Bond order =
$$\frac{10-6}{2}$$
 = 2.

As it contains two unpaired electrons in bonding π molecular orbitals ${\rm O_2}$ is paramagnetic.

So, Magnetic moment =
$$\sqrt{n (n+2)} = \sqrt{2(2+2)} = 2.83 \text{ B.M.}$$

B-1. The electronic configuration of O₂ will be:

$$O_2 = \sigma 1s^2 \sigma^* 1s^2 \sigma 2s^2 \sigma^* 2s^2 \sigma^2 2p_z^2 \pi^2 2p_x^2 = \pi^2 2p_x^2 \pi^* 2p_x^1 = \pi^* 2p_x^1$$

Now bond order = $\frac{N_b - N_a}{2}$

Where, $N_h = Number of electrons in bonding orbitals$

N_a = Number of electrons in antibonding orbitals

bond order =
$$\frac{10-6}{2}$$
 = 2

Similarly electronic configuration of O₂- (in KO₂) will be

$$\sigma 1s^2 \sigma^* 1s^2 \sigma 2s^2 \sigma^* 2s^2 \sigma 2p_z^2 \pi 2p_x^2 = \pi 2p_y^2 \pi^* 2p_x^2 = \pi^* 2p_y^1$$

Bond order =
$$\frac{10-7}{2} = \frac{3}{2} = 1.5$$

In O_2 [AsF₄]⁻, O_2 is O_2 ⁺.

The electronic configuration of O₂+ will be

$$\sigma 1s^2 \sigma^* 1s^2 \sigma 2s^2 \sigma^* 2s^2 \sigma 2p_z^2 \pi^2 p_x^2$$
, = $\pi 2p_y^2 \pi^* 2p_x^1$

bond order =
$$\frac{10-5}{2}$$
 = 2.5

Hence bond length order will be $O_2^+ < O_2^- < O_2^-$ because Bond order ∞ $\frac{1}{\text{Bond length}}$.

- **B-2.** Boron (B₂): B₂ is a good example of the energy level shift caused by the mixing of s and p orbitals. In the absence of mixing, the σ_g (2p) orbital is expected to be lower in energy than the π_u (2p) orbitals and the resulting molecule would be diamagnetic. However, mixing of the σ_g (2s) orbital with the σ_g (2p) orbital lowers the energy of the σ_g (2s) orbital and increases the energy of the σ_g (2p) orbital to a higher level than the π orbitals, giving the order of energies shown below. As a result, the last two electrons are unpaired in the degenerate (having the same energy) π orbitals, and the molecule is paramagnetic. $(\sigma 1s)^2 (\sigma^* 1s)^2 (\sigma^2 2s)^2 (\pi^2 2p)^2 (\pi 2p)^1 (\sigma p_z)^0$.
- **B-3.** NO⁺ and NO are derivative of N_2 ; so NO⁺ bond order = 3 and NO bond order = 2.5; B.O. ∞ bond strength. **B-4.** (ii) & (iv)
- **B-5. △** O–O bond length order is ii < i < iii
- **C-1.** Weakest metallic bonding amongst the 3d series elements → no unpaired electrons available for metallic bonding in case of zinc.
- **C-2.** Be should have higher melting point as it contain 2 electrons for metallic bonding where as Li contain only one. Further more, size of Be is smaller than that of Li.

Part - I									
A-1. 🗞	(C)	A-2. 🖎	(C)	A-3.	(A)	A-4.	(A)	A-5.	(C)
A-6.	(B)	A-7.	(D)	A-8.≿⊾	(D)	A-9. 🗞	(B)	A-10.5s.	(C)
A-11.	(B)	B-1.	(A)	B-2.	(A)	B-3.8	(B)	B-4.	(A)
B-5.8	(A)	B-6.	(C)	B-7.2s.	(D)	B-8.8	(D)	C-1. 🖎	(D)
C-2.	(D)	C-3.8x	(D)						

1.
$$(A-r)$$
; $(B-p)$; $(C-s)$; $(D-q)$ **2.** $(A-p,r)$; $(B-p,q,s)$; $(C-q,s)$; $(D-p,r)$

Exercise - 2

FANT-1										
1.8	(A)	2.	(A)	3.	(C)	4.	(B)	5.১ა.	(A)	
6.	(D)	7.	(B)	8.≿⊾	(C)	9.	(A)	10.	(D)	
11.	(D)	12.	(D)	13.	(A)	14.	(D)	15.	(D)	
16.	(C)	17.bs.	(D)	18.	(A)	19.	(C)			

PART - II 1.≽⊾ 4 2.3 $9~(\mathsf{NO_3}^{\mathsf{-}},~\mathsf{CO_3}^{\mathsf{2}\mathsf{-}},~\mathsf{F_2},~\mathsf{Cl_2},~\mathsf{Br_2},~\mathsf{O_2}^{\mathsf{2}\mathsf{-}},~\mathsf{O_2}^{\mathsf{-}},~\mathsf{Li_2}^{\mathsf{+}},~\mathsf{He_2}^{\mathsf{+}})$ 3. 4. PART - III 1. (ABC) 2. (ABC) 3. (BD) 4. (ABC) 5. (ABCD) 6. (BC) 8. (AC) 7. (ABD) PART - IV 1. 4. (D) 2. (D) 3. (B) (C) 5.8 (C) 7. 6. (D) (C) 8. (D) **EXERCISE - 3** PART - I 1. $(A) - p, \, q, \, r, \, t \; ; \; (B) - q, \, r, \, s, \, t \; ; \; (C) - p, \, q, \, r \; ; \; (D) - p, \, q, \, r, \, s$ 5. 2. (A) 3. (C) **4**. (C) (AC) PART - II 1. 4. (2) (1, 2)2. (3) **3**. (2) (3) 5.

6.

(1)

7.

(1)