Chapter Three Data Representation and Computer Arithmetic

- Number Systems and Conversion
- Units of Data Representation
- Coding Methods
- Binary Arithmetic
- Complements
- Fixed and Floating points representation
- Boolean Algebra and Logic Circuits

Number systems and conversion

- Number Systems
 - Decimal
 - Binary
 - Octal
 - Hexadecimal
- Conversion

Decimal systems

The decimal system

- Base 10 with ten distinct digits (0, 1, 2, ..., 9)
- Any number greater than 9 is represented by a combination of these digits
- > The weight of a digit based on power of 10

Example:

The number 81924 is actually the sum of: $(8X10^4)+(1X10^3)+(9X10^2)+(2X10^1)+(4X10^0)$

Binary systems

Computers use the binary system to store and compute numbers.

27	2 ⁶	25	24	23	2 ²	21	20
128	64	32	16	8	4	2	1
0 or 1	0 or 1	0 or 1	0 or 1	0 or 1	0 or 1	0 or 1	0 or 1

To represent any decimal number using the binary system, each place is simply assigned a value of either 0 or 1. To convert binary to decimal, simply add up the value of each place.

Example:

27		26		25		24		23		2	2		21		20		
1		0		0		1		1)		0		1		
128		0		0		16		8)		0		1		
128	+	0	+	0	+	16	+	8	+	- ()	+	0	+	1	=	15
							1001	1001	= 1	153							

Binary systems

- The binary system (0 & 1)
 - The two digits representation is called a binary system
 - Two electrical states on (1) & off (0)
 - > The position weights are based on the **power of 2**
 - The various combination of the two digits representation gives us the final value

Examples:

- i) 1011011 in binary = 91 in decimal
- ii) 1101.01 in binary = 13.25 in decimal

Binary into Decimal conversion

5th4th3rd2nd1st0th

1 0 1 1 1
$$1_2$$
 = (1X2⁵)+(0X2⁴)+(1X2³)+(1X2²)+(1X2¹)+(1X2⁰)
= 32+8+4+2+1
= 47₁₀

$$11001_2 = 25_{10}$$

Exercise:

Convert the following binary numbers into their decimal equivalent

- $11010_2 = (?)_{10}$
- $101.1101_2 = (?)_{10}$

Binary Fractions

Binary fractions can also be represented:

Position Value: 2⁻¹ 2⁻² 2⁻³ 2⁻⁴ 2⁻⁵ etc.

Fractions: 1/2 1/4 1/8 1/16 1/32

Decimal: .5 .25 .125 .0625 .03125

Conversion of Decimal to Binary

Divide by 2 (remainder division) till the dividend is zero and read remainders in reverse order.

Read answer in this direction, Write answer left to right

mod 2	637	
1	318	
0	159	
1	79	
1	39	637 ₁₀ = 1001111101 ₂
1	19	
1	9	
1	4	
0	2	Convert 789 ₁₀ to base 2
0	1	
1	0	

To Binary Fractions - Conversions

Multiply by 2 till enough digits are obtained, say 8, or a product is zero.

	.637 ₁₀	
	1.274	
Read answer	0.548	
in this direction	1.096	
write it left	0.192	Ans= 0.10100011 ₂
to right	0.384	
	0.768	
	1.536	
	1.072	

 \triangleright Convert 0.325₁₀ to base 2

Octal system

- Octal system
 - Base 8 systems (0, 1, 2, ..., 7)
 - Used to give shorthand ways to deal with the long strings of 1 & 0 created in binary
 - Numbers 0 .. 7 can be represented by three binary digits

Examples :-

- i) $(3137)_8 = 1631$
- ii) 134 in octal = 1011100 in binary
- iii) (6) $_{8}$ = (110) $_{2}$
- iv) 432.2 in octal = 282.25 in decimal
- v) 123.45 in octal = 001010011.100101 in binary

Hexadecimal systems

The Hexadecimal system

- Base 16 system
- 0 .. 9 and letters A .. F for sixteen place holders needed
- A = 10, B = 11, ..., F = 15
- Used in programming as a short cut to the binary number systems
- Can be represented by four binary digits

Examples:-

- i) $(1D7F)_{16} = 7551_{10}$
- ii) 6B2 in hexadecimal = 011010110010 in binary
- iii) 101000010111 in binary = A17 in hexadecimal

Exercise – Convert ...

Decimal	Binary	Octal	Hexa- decimal
29.8			
	101.1101		
		3.07	
			C.82

Bits

- The two <u>binary digits</u> 0 and 1 are frequently referred to as bits.
- How many bits does a computer use to store an integer?
 - Intel Pentium PC = 32 bits
 - Alpha = 64 bits
- What if we try to compute or store a larger integer?
 - If we try to compute a value larger than the computer can store, we get an <u>arithmetic overflow</u> error.

Representing Unsigned Integers

How does a 16-bit computer represent the value 14?

What is the largest 16-bit integer?

$$= 1x2^{15} + 1x2^{14} + ... + 1x2^{1} + 1x2^{0} = 65,535$$

Representing Signed Integers

How does a 16 bit computer represent the value -14?

What is the largest 16-bit signed integer?

- Problem
 the value 0 is represented twice!
 - Most computers use a different representation, called <u>two's</u> complement.

Signed-magnitude representation

- Also called, "sign-and-magnitude representation"
- A number consists of a magnitude and a symbol representing the sign
- Usually 0 means positive, 1 negative
 - Sign bit
 - Usually the entire number is represented with 1 sign bit to the left, followed by a number of magnitude bits

Machine arithmetic with signedmagnitude representation

- Takes several steps to add a pair of numbers
 - Examine signs of the addends
 - If same, add magnitudes and give the result the same sign as the operands
 - If different, must...
 - Compare magnitude of the two operands
 - Subtract smaller number from larger
 - Give the result the sign of the larger magnitude operand
 - If magnitudes are equal and sign is different; two representations of zero problem
- For this reason the signed-magnitude representation is not as popular as one might think because of its "naturalness"

Complement number systems

- Negates a number by *taking its complement* instead of negating the sign
- Not natural for humans, but better for machine arithmetic
- Will describe 2 complement number systems
 - > Radix complement very popular in real computers
 - Must first decide how many bits to represent the number say n.
 - Complement of a number = r^n number
 - Example: 2's Complement
 - ➤ Diminished radix-complement not very useful, may skip or not spend much time on it
 - Example: 1's Complement

Two's-complement representation

- Just radix-complement when radix = 2
- The most used representation of integers in computers and other digital arithmetic circuits
- 0 and positive numbers: leftmost bit = 0
- Negative numbers: leftmost bit = 1
- Representation of zero
 - i.e. 0 is represented as 0000 using 4-bit binary sequence.
- To find a number's 2's-complement just flip all the bits and add 1

Properties of Two's Complement Notation

Relationship between +n and -n.

Two's Complement Notation with 4-bits

Binary Pattern	Value in 2's complement.	
0 1 1 1	7	
0 1 1 0	6	
0 1 0 1	5	
0 1 0 0	4	
0 0 1 1	3	
0 0 1 0	2	
0 0 0 1	1	
0 0 0 0	0	
1 1 1 1	-1	
1 1 1 0	-2	
1 1 0 1	-3	
1 1 0 0	-4	
1 0 1 1	-5	
1 0 1 0	-6	
1 0 0 1	-7	
1 0 0 0	-8	21

Advantages of Two's Complement Notation

It is easy to add two numbers.

- Subtraction can be easily performed.
- Multiplication is just a repeated addition.
- Division is just a repeated subtraction
- Two's complement is widely used in **ALU**

Comparison of decimal and 4-bit numbers Complements and other Notations

Decimal	Two's Complement	Ones' Complement	Signed Magnitude	Excess 2^{m-1}
-8	1000	_	_	0000
-7	1001	1000	1111	0001
-6	1010	1001	1110	0010
-5	1011	1010	1101	0011
-4	1100	1011	1100	0100
-3	1101	1100	1011	0101
-2	1110	1101	1010	0110
-1	1111	1110	1001	0111
0	0000	1111 or 0000	1000 or 0000	1000
1	0001	0001	0001	1001
2	0010	0010	0010	1010
3	0011	0011	0011	1011
4	0100	0100	0100	1100
5	0101	0101	0101	1101
6	0110	0110	0110	1110
7	0111	0111	0111	1111

Excess is $2^{4-1} = 8$; Thus, retrieved value=stored value-8

Decimal numbers, their two's complements, ones' complements, signed magnitude and excess 2^{m-1} binary codes

EXPLAIN

Existence of two zeros!

Two's-Comp Addition and Subtraction Rules

- Starting from 1000 (-8) on up, each successive 2's comp number all the way to 0111 (+7) can be obtained by adding 1 to the previous one, ignoring any carries beyond the 4th bit position
- Since addition is just an extension of ordinary counting, 2's comp numbers can be added by ordinary binary addition!
- No different cases based on operands' signs!
- Overflow possible
 - > Occurs if result is out of range
 - > Happens if operands are the same sign but sum is a different sign of that of the operands

Storing an integer in two's complement format:

- Convert the integer to an n-bit binary.
- If it is **positive** or **zero**, it is stored as it is. If it is **negative**, take the two's complement and then store it.

Retrieving an integer in two's complement format:

- If the **leftmost bit** is 1, the computer applies the two's complement operation to the n-bit binary. If the leftmost bit is 0, no operation is applied.
- The computer changes the binary to decimal (integer) and corresponding sign is added.

