Theorem 1 content...

 $\notin \beta$

Theorem 2

Definition 1

the signatures of the transition relations:

$$T \in \mathbb{P}(Q \times V \times Q)$$

$$T \in V \to P(Q \times Q)$$

$$T \in Q \times Q \rightarrow P(V)$$

$$T \in Q \times V \rightarrow P(Q)$$

$$T \in Q \rightarrow P(V \times Q)$$

for example, the function $T \in Q \to P(V \times Q)$ is defined as $T(p) = \{(a,q): (p,a,q) \in T\}$

ε -transition relation:

$$E \in P(Q \times Q)$$

$$E \in Q \rightarrow P(Q)$$

$$T \in P(Q \times V \times Q), T = \{(s, a, q)\}$$

$$T(s) \in Q \to P(V \times Q), T(s) = \{(a,q) : (s,a,q) \in T\}$$

$$Q_{map}: P(Q \times V), Q_{map} = \{(q, a): (s, a, q) \in T\}$$

$$Q_{map}(q) = \{a : (s, a, q) \in T\}$$

$$Q_{map}^{-1}: V \rightarrow P(Q), Q_{map}^{-1} = \{(a,q): (s,a,q) \in T\}$$

According to Convention A.4 (Tuple projection):

$$\bar{\pi}_2(T) = \{(s,q) : (s,a,q) \in T\}$$

$$Q_{map} = (\bar{\pi}_1(T))^R, Q_{map} = \{(a,q) : (s,a,q) \in T\}^R = \{(q,a) : (s,a,q) \in T\}$$

$$f(a) = (f(a^R))^R$$

Prefix-closure: Let $L \subseteq V^*$, then

$$\overline{L} := \{ s \in V^* : (\exists t \in V^*) [st \in L] \}$$

In words, the prefix closure of L is the language denoted by \overline{L} and consisting of all the prefixes in L. In general, $L \subseteq \overline{L}$.

L is said to be prefix-closed if $L = \overline{L}$. Thus language L is prefix-closed if any prefix of any string in L is also an element of L.

$$\begin{split} L_1 &= \{\varepsilon, a, aa\}, L_1 = \overline{L_1}, L_1 \text{ is prefix-closed.} \\ L_2 &= \{a, b, ab\}, \overline{L_2} = \{\varepsilon, a, b, ab\}, L_2 \subset \overline{L_2}, L_2 \text{ is not prefix closed.} \end{split}$$

Post-language: Let $L \subseteq V^*$ and $s \in L$. Then the post-language of L after s, denoted by L/s, is the language

$$L/s := \{t \in V^* : st \in L\}$$

By definition, $L/s = \emptyset$ if $s \notin \overline{L}$.

Definition 2 (Left derivatives) : Given language $A \subseteq V^*$ and $w \in V^*$ we define the left derivative of A with respect to w as:

$$w^{-1}A = \{x \in V^* : wx \in A\}$$

A 关于 w 的左导数,就是 A 中: $\{w$ 的后缀组成的字符串集合 $\}$ 。

Sometimes derivatives are written as D_wA or as $\frac{dA}{dw}$. Right derivatives are analogously defined. Derivatives can also be extended to $B^{-1}A$ where B is also a language.

Example 1
$$A = \{a, aab, baa\}, a^{-1}A = D_aA = \frac{dA}{da} = \{\varepsilon, ab, \emptyset\} = \{\varepsilon, ab\}$$

Example 2
$$L = \{ba, baa, baab, ca\}, w = \{ba\},$$

 $w^{-1}L = \{\varepsilon, a, ab, \emptyset\} = \{\varepsilon, a, ab\}$
 $(wa)^{-1}L = (baa)^{-1}L = \{\emptyset, \varepsilon, b, \emptyset\} = \{\varepsilon, b\}$
 $a^{-1}(w^{-1}L) = a^{-1}\{\varepsilon, a, ab\} = \{\emptyset, \varepsilon, b\} = \{\varepsilon, b\}$

$$w \in L \equiv \varepsilon \in w^{-1}L, and(wa)^{-1}L = a^{-1}(w^{-1}L)$$

Example 3
$$a^{-1}\{a\} = \{\epsilon\}; \quad a^{-1}\{b\} = \emptyset, \quad \Leftarrow if(a \neq b)$$

Example 4
$$L_0 = \{ab\}, L_1 = \{ac\}, L_0L_1 = \{abac\}$$

 $a^{-1}(L_0L_1) = \{bac\}$
 $a^{-1}(L_0L_1) = (a^{-1}L_0)L_1 \cup \emptyset \quad \Leftarrow (\varepsilon \notin L_0)$
 $= \{b\}L_1 = \{bac\}$

Example 5
$$L_0 = \{\varepsilon, ab\}, L_1 = \{ac\}, L_0L_1 = \{ac, abac\}$$

 $a^{-1}(L_0L_1) = \{c, bac\}$
 $a^{-1}(L_0L_1) = (a^{-1}L_0)L_1 \cup a^{-1}L_1 \quad \Leftarrow (\varepsilon \in L_0)$
 $= \{\emptyset, b\}L_1 \cup \{c\} = \{c, bac\}$

Proof 1
$$a^{-1}(L_0L_1)$$

1. $if(\varepsilon \in L_0) \Rightarrow a^{-1}(L_0L_1) = (a^{-1}L_0)L_1 \cup a^{-1}L_1$
 $L_0 = (L_0 \setminus \{\varepsilon\}) \cup \{\varepsilon\}$
 $a^{-1}(L_0L_1) = a^{-1}(((L_0 \setminus \{\varepsilon\}) \cup \{\varepsilon\})L_1)$
 $= a^{-1}(L_0L_1 \cup L_1)$
 $a^{-1}L_0 = a^{-1}((L_0 \setminus \{\varepsilon\}) \cup \{\varepsilon\})$
 $= a^{-1}(L_0 \setminus \{\varepsilon\}) \cup a^{-1}\{\varepsilon\}$
 $= a^{-1}L_0 \cup \emptyset = a^{-1}L_0$

自动机理论、语言和计算机导论,P99

- (1) 如果 L 是一个语言,a 是一个符号,则 L/a(称作 L 和 a 的商) 是所有满足如下条件的串 w 的集合: wa 属于 L。例如,如果 $L = \{a, aab, baa\}$,则 $L/a = \{\varepsilon, ba\}$,证明: 如果 L 是正则的,那么 L/a 也是。提示: 从 L 的 DFA 出发,考虑接受状态的集合。
- (2) 如果 L 是一个语言,a 是一个符号,则 $a \setminus L$ 是所有满足如下条件的串 w 的集合: aw 属于 L。例如,如果 $L = \{a,aab,baa\}$,则 $a \setminus L = \{\varepsilon,ab\}$,证明:如果 L 是正则的,那么 $a \setminus L$ 也是。提示:记得正则语言在反转运算下是封闭的,又由 (1) 知,正则语言的商运算下是封闭的。

Definition 3 (Kleene-closure) : Let $L \subseteq V^*$, then

$$L^* := \{\varepsilon\} \cup L \cup LL \cup LLL \cup \cdots$$

This is the same operation that we defined above for the set V, except that now it is applied to set L whose elements may be strings of length greater than one. An element of L^* is formed by the concatenation of a finite (but possibly arbitrarily large) number of elements of L; this includes the concatenation of "zero" elements, that is the empty string ε . Note that * operation is idempotent: $(L^*)^* = L^*$.

$$L^* = (L \setminus \{\varepsilon\})L^* \cup \{\varepsilon\}$$
$$= \{\varepsilon\} \cup L \cup LL \cup LLL \cup \dots$$