PhD Diary Week Beginning 19th November

Nathan Hughes

November 23, 2018

CONTENTS November 23, 2018

Contents

1	Lab	work	3
2	Ide	us .	3
	2.1	TODO Jeroen suggested using 2D diffusion model to work out potential diffusion of chitin	3
		2.1.1 TODO Find out diffusion constant of chitin	3
3	Gei	eral Maths/Programming	3
	3.1	DONE Generators	3
	3.2	DONE Python Decorators	3
	3.3	Timing/Profiling functions	3
		Vectorising with Numpy	
		3.4.1 OOP Approach	4
		3.4.2 Vectorised	5
		3.4.3 Vectorised with numpy	

1 Lab work

- Spent 2 days in lab with Jeroen
 - Harvested leaf tissue
 - Did PCR
 - Ran gels on DNA to check for homozygous

2 Ideas

2.1 **TODO** Jeroen suggested using 2D diffusion model to work out potential diffusion of chitin

- This would allow us to know where to make our "no-mans-zone" for sampling before RNA-seq
- Possible reference here (Chalykh et al., 2014) for the diffusion constants of chitin

2.1.1 TODO Find out diffusion constant of chitin

3 General Maths/Programming

This week I have been working on some more maths in relation to programming. In particular better utilising the numpy library to support faster operations. An online resource: "From Python to Numpy" (Rougier, 2016) has been most enlightening.

3.1 **DONE** Generators

https://www.geeksforgeeks.org/use-yield-keyword-instead-return-keyword-python/

3.2 **DONE** Python Decorators

3.3 Timing/Profiling functions

```
def timeit(method):
import time
def timed(*args, **kw):

ts = time.time()
result = method(*args, **kw)

te = time.time()
return (result, (te-ts))

return timed
```

3.4 Vectorising with Numpy

3.4.1 OOP Approach

```
import matplotlib.pyplot as plt
    from random import randint
    import seaborn as sns
    sns.set()
    %matplotlib inline
    class RandomWalker:
            init (self):
          self.position = 0
10
11
       def walk(self, n):
12
          self.position = 0
13
          for i in range(n):
14
              yield self.position
15
              self.position += 2*randint(0, 1)-1
16
17
18
    @timeit
19
    def make walkers(x,y):
20
       return [[p for p in RandomWalker().walk(y)] for in range(x) ]
21
22
    N = 10000
23
    res, time = make walkers(N,N)
24
    for walker in res:
25
       plt.plot(walker)
26
    plt.suptitle('Time taken: {0:.2f}'.format(time))
27
```


Figure 1: Random Walkers

3.4.2 Vectorised

```
from itertools import accumulate
    from random import choices
    import matplotlib.pyplot as plt
    %matplotlib inline
6
    def random_walk_faster(n=1000):
       steps = choices([-1, +1], k=n)
       return [0]+list(accumulate(steps))
10
11
    @timeit
12
    def make walkers(x, y):
13
       return [[p for p in random_walk_faster(x)] for _ in range(y)]
14
15
16
    res, time = make_walkers(N,N)
17
    for walker in res:
18
       plt.plot(walker)
19
    plt.suptitle('Time taken: {0:.2f}'.format(time))
20
```


Figure 2: Random Walkers (vectorised)

3.4.3 Vectorised with numpy

```
import matplotlib.pyplot as plt
    import numpy as np
    %matplotlib inline
    def random walk fastest(n=1000):
       steps = np.random.choice([-1, 1], n)
       return np.cumsum(steps)
    @timeit
10
    def make_walkers(x, y):
11
       return [[p for p in random_walk_fastest(x)] for _ in range(y)]
12
13
    res, time = make walkers(N,N)
14
15
    for walker in res:
16
        plt.plot(walker)
17
    plt.suptitle('Time taken: {0:.2f}'.format(time))
18
```


Figure 3: Random Walkers (numpy vectorised)

REFERENCES November 23, 2018

References

A. E. Chalykh, T. F. Petrova, R. R. Khasbiullin, and A. N. Ozerin. Water sorption on and water diffusion in chitin and chitosan. *Polymer Science Series A*, 56(5):614-622, September 2014. ISSN 1555-6107. doi: 10.1134/S0965545X14050034.

Nicolas P. Rougier. Rougier/from-Python-to-Numpy: Version 1.1. Zenodo, December 2016. doi: 10.5281/zenodo.225783.