

Correction to "Tautomerism in 4-Hydroxypyrimidine, S-Methyl-2-thiouracil, and 2-Thiouracil" [*The Journal of Physical Chemistry A* **2010**, *114*, 12725–12730. DOI: 10.1021/jp106883s]. Barbara M. Giuliano, Vitaliy Feyer,\* Kevin C. Prince, Marcello Coreno, Luca Evangelisti, Sonia Melandri, and Walther Caminati

The Gibbs free energy ( $\Delta G$ ) reported in Tables 1—3, calculated using the B3LYP and MP2 basis sets, and the corresponding populations (P) are corrected in the tables here.

Table 1. Relative Energies and Populations (%) of 4HP and 4PO, at the B3LYP and MP2 Levels of Approximation, with 6-311++G(d,p) Basis Sets<sup>a</sup>

|                                                    | 4HP   |      | 4PO   |      |  |
|----------------------------------------------------|-------|------|-------|------|--|
|                                                    | B3LYP | MP2  | B3LYP | MP2  |  |
| $\Delta E/\text{kJ mol}^{-1}$                      | 8.4   | 0.0  | 0.0   | 4.2  |  |
| $\Delta E_{\rm ZPE}/{\rm kJ~mol^{-1}}$             | 8.3   | 0.0  | 0.0   | 3.6  |  |
| $\Delta G_{(348 \text{ K})}/\text{kJ mol}^{-1}$    | 8.7   | 0.0  | 0.0   | 2.3  |  |
| P (348 K)/%                                        | 4.7   | 69.1 | 95.3  | 30.9 |  |
| $\Delta G_{(365 \text{ K})}$ /kJ mol <sup>-1</sup> | 8.8   | 0.0  | 0.0   | 2.3  |  |
| $P_{(365 \text{ K})}/\%$                           | 5.3   | 68.3 | 94.7  | 31.7 |  |
|                                                    |       |      | مريكي |      |  |

 $<sup>^</sup>a\Delta E=$  electronic energy difference.  $\Delta E_{\rm ZPE}=$  zero-point corrected energy difference.  $\Delta G=$  Gibbs free energy difference calculated at 348 and 365 K. P= population in % of the tautomers, estimated using the calculated  $\Delta G$  value.

Table 2. Relative Energies and Populations (%) of the Most Stable Species of 2TU, at the B3LYP and MP2 Levels of Approximation, with 6-311++G(d,p) Basis Sets<sup>a</sup>

|                                                          | 2TU/diketo |      | 2TU/keto |      | 2TU/enol |      |
|----------------------------------------------------------|------------|------|----------|------|----------|------|
|                                                          | B3LYP      | MP2  | B3LYP    | MP2  | B3LYP    | MP2  |
| $\Delta E/\text{kJ mol}^{-1}$                            | 0.0        | 0.0  | 48.8     | 36.4 | 52.3     | 28.7 |
| $\Delta E_{\mathrm{ZPE}}/\mathrm{kJ}\ \mathrm{mol}^{-1}$ | 0.0        | 0.0  | 38.2     | 23.8 | 42.1     | 17.4 |
| $\Delta G_{(339 \text{ K})}/\text{kJ mol}^{-1}$          | 0.0        | 0.0  | 37.4     | 19.9 | 42.2     | 16.1 |
| P <sub>(339 K)</sub> /%                                  | 100.0      | 99.4 | 0.0      | 0.1  | 0.0      | 0.5  |
| $\Delta G_{(435 \text{ K})}$ /kJ mol <sup>-1</sup>       | 0.0        | 0.0  | 36.8     | 18.0 | 42.0     | 16.0 |
| P <sub>(435 K)</sub> /%                                  | 100.0      | 98.1 | 0.0      | 0.7  | 0.0      | 1.2  |
|                                                          |            |      |          |      |          |      |

 $<sup>^</sup>a\Delta E$  = electronic energy difference.  $\Delta E_{\rm ZPE}$  = zero-point corrected energy difference.  $\Delta G$  = Gibbs free energy difference calculated at 339 and 435 K. P = population in % of the tautomers, estimated using the calculated  $\Delta G$  value.



Table 3. Relative Energies and Populations (%) of the Most Stable Species of SM2T, at the B3LYP and MP2 Levels of Approximation, with 6-311++G(d,p) Basis Sets<sup>a</sup>

|                                                          | SM2T/hydroxyl-1 |      | SM2T/oxo-1 |      | SM2T/hydroxyl-2            |      | SM2T/oxo-2 |      |
|----------------------------------------------------------|-----------------|------|------------|------|----------------------------|------|------------|------|
|                                                          | B3LYP           | MP2  | B3LYP      | MP2  | B3LYP                      | MP2  | B3LYP      | MP2  |
| $\Delta E/kJ \text{ mol}^{-1}$                           | 6.6             | 0.0  | 0.0        | 5.2  | 9.2                        | 2.7  | 12.5       | 18.7 |
| $\Delta E_{\mathrm{ZPE}}/\mathrm{kJ}\ \mathrm{mol}^{-1}$ | 6.7             | 0.0  | 0.0        | 4.2  | 9.1                        | 2.6  | 12.4       | 18.7 |
| $\Delta G_{(343 \text{ K})}/\text{kJ mol}^{-1}$          | 8.2             | 0.0  | 0.0        | 1.5  | 10.6                       | 2.5  | 13.2       | 18.4 |
| $P_{(343 \text{ K})}/\%$                                 | 4.9             | 48.9 | 92.2       | 29.9 | 2.1                        | 21.1 | 0.8        | 0.1  |
| $\Delta G_{(360 \text{ K})}/\text{kJ mol}^{-1}$          | 8.3             | 0.0  | 0.0        | 1.3  | 10.7                       | 2.5  | 13.3       | 18.4 |
| $P_{(360 \text{ K})}/\%$                                 | 5.4             | 48.0 | 91.2       | 31.1 | 2.4                        | 20.8 | 1.0        | 0.1  |
|                                                          |                 |      | ž          |      | ر<br>گر <mark>پا</mark> ند |      | A.         | Ċ    |

 $<sup>^</sup>a$  ΔE = electronic energy difference.  $\Delta E_{\rm ZPE}$  = zero-point corrected energy difference.  $\Delta G$  = Gibbs free energy difference calculated at 343 and 360 K. P = population in % of the tautomers, estimated using the calculated  $\Delta G$  value.

DOI: 10.1021/jp204996u Published on Web 06/22/2011