

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Scrape the Data from the SpaceX website with Requests
- Clean the Data using Pandas
- Use SQL to explore the Data
- Visualize the Data using Matplotlib and Seaborn
- Visualize a Map of the Data with Folium
- · Create a Dashboard of the Data with Dash and Plotly
- Build Machine Learning Model to predict successful landing of rocket with Scikit-Learn

Introduction

- Have data on 90 rocket launches, plus whether they successfully landed or not
- Given the features, can we build a machine learning model to predict if a rocket will successfully land or not

Methodology

Executive Summary

- Data collection methodology:
 - Data collected from SpaceX website using Requests API
- Perform data wrangling
 - Cleaned out missing data
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - Used Scikit-learn API and compared many different models to find most accurate machine learning model

Data Collection

- Used the requests API
- Get SpaceX website
- · Convert to JSON and then to dataframe using pandas
- · Create new and more organized dataframe from this dataframe
 - more informative column names
 - keep important columns
- Filter dataframe for only Falcon 9 launches
- Clean Data
 - o Fill in missing numerical data with column average
- Added a 0/1s column for landing success (0 for failed landing, 1 for successful landing)

Data Collection – SpaceX API

Notebook

Data Collection - Scraping

Notebook

Data Wrangling

- Notebook
- Added extra column to dataframe
 - All negative outcomes were labelled with a 0
 - All positive outcomes were labelled with a 1

EDA with Data Visualization

- <u>Data Visualization Notebook</u>
- Flight number vs Payload
- Flight number vs Launch Site
- Payload vs Launch Site
- Success Rate of each Orbit Type
- Flight number vs Orbit Type
- Payload vs Orbit Type
- Launch success yearly trend

Also applied OneHotEncoding to the categorical features

EDA with SQL

- SQL Notebook
- Unique launch sites
- Launch Sites starting with 'CCA'
- Total Payload for boosters launched by NASA (CRS)
- Average Payload for booster version F9 v1.1
- First Successful Landing
- Successful landings where Payload between 4000kg and 6000kg
- Total number of successful and failed landings
- Months with failed landings in 2015
- Ranked the count of different types of successful landings between 04-06-2010 and 20-03-2017

Build an Interactive Map with Folium

Folium Map

- Circle object creates a circle on the map at a certain location
 - o can have a popup addition when mouse hovers over
- Marker object creates a marker on the map
- Marker cluster is a collection of markers
 - o can be added to the map first, and then add markers to the marker cluster

Build a Dashboard with Plotly Dash

Plotly Dash Dashboard Notebook

- A dropdown menu to select launch site, or select all launch sites
- · A slider to select range of payload considered; default 0kg to 10,000kg
- A pie chart that displays the success vs failure percentages for the selected launch site
- A scatter plot that displays payload vs success/failure for the selected launch site and payload range
 - data points color coded to display booster type

Predictive Analysis (Classification)

- Classification Notebook
- Ran Logistic Regression, SVM, Decision Tree, and KNN to predict success/failure of landing given features
- · Determined best model
 - Logistic Regression, SVM, and KNN tied for the best model

Results

- Exploratory data analysis results
 - There are 4 Launch Sites
 - Landing success rate increases with time
- Predictive analysis results
 - Logistic Regression, SVM, KNN give the most accurate models

Dashboard on next slide

Flight Number vs. Launch Site

- KSC LC 39A had later flight numbers
- VAFB SLC 4E had earlier flight numbers
- CCAFS SLC 40 had early and later flight numbers
 - o with a hiatus in the middle

Payload vs. Launch Site

- CCAFS SLC 40 and KSC LC 39A had the outliers with heavy payloads
- VAFB SLC 4E had the lowest average payload

Success Rate vs. Orbit Type

- 4 orbit types had a 100% success rate for landing
- The orbit types with the lowest success rates are SO, GTO, and then ISS

Flight Number vs. Orbit Type

- MEO, VLEO, SO, and GEO were used the later flights
- ES-LI, HEO, SO, and GEO were only used once
- Most commonly used were LEO, ISS, GTO, and VLEO

Payload vs. Orbit Type

- ISS had the greatest range of payload
- VLEO was mainly used for heavy payloads
- MEO, SSO, GTO were used for lighter payloads

Launch Success Yearly Trend

- Landing Success Rate generally increases with year
- In 2018, the landing success rate decreased from 2017

All Launch Site Names

- 4 unique Launch Site Names
 - o CCAFS LC-40, VAFB SLC-4E, KSC LC-39A, CCAFS SLC-40

Launch Site Names Begin with 'CCA'

CCAFS LC-40 starts with 'CCA'

CCAFS LC-40 CCAFS LC-40 CCAFS LC-40 CCAFS LC-40 CCAFS LC-40

Total Payload Mass

• 45596kg of payload were launched by NASA (CRS) in total

TOTAL_PAYLOAD_MASS_NASA_CRS 45596

Average Payload Mass by F9 v1.1

• Average payload mass for F9 v1.1 boosters was 2928.4 kg

AVG_PAYLOAD_MASS_F9_V1_1
2928.4

First Successful Ground Landing Date

 The first date with a successful landing on a ground pad was 01-05-2017 (May 1st, 2017)

> MIN_DATE_SUCCESS_GROUND_PAD 01-05-2017

Successful Drone Ship Landing with Payload between 4000 and 6000

 These 4 boosters had a successful drone ship landing while having a payload between 4000 kg and 6000 kg

Total Number of Successful and Failure Mission Outcomes

- 61 Successes and 10 Failures
- Note that some missions had 'None' for outcome, and we can't interpret anything from that data

Successes	Failure		
61	1		

Boosters Carried Maximum Payload

• These boosters carried a payload was that equivalent to the maximum payload

F9	B5	B1	048	4
F9	B5	B1	049	4
F9	В5	В1	051	.3
F9	85	B1	056	4
F9	В5	В1	048	,5
F9	85	В1	051	.4
F9	85	В1	049	5
F9	В5	В1	060	.2
F9	85	B1	058	.3
F9	В5	В1	051	.6
F9	B5	B1	060	3
F9	B5	В1	049	7

2015 Launch Records

These were launched in 2015 and failed to land

Month	Booster_Version	Launch_Site
01	F9 v1.1 B1012	CCAFS LC-40
04	F9 v1.1 B1015	CCAFS LC-40

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

- These are the counts for successful landing outcomes between 2010-06-04 and 2017-03-20, sorted in descending order
- Out of 34 successful landings, 20 were a plain success, 8 were on a drone ship, and 6 were on a ground pad

Locations of Launch Sites

Successes and Failures at each Launch Site

10 launches at this launch site

- green = success, red = failure
- 4 successful landings out of 10

Distances and Lines

•We see that the coast i 1.36 km from the space launch site, and we can see the line from the space launch site to the coast

Pie chart for all sites

Pie Chart for KSC LC-39A

KSC LC-39A had the greatest successful landing rate, at 76.9%. CCAFS LC-40 was close at 73.1%

Payload vs Launch Outcome

- v1.1 seems to perform poorly
- FT generally performs well
- heavier payloads tend to fail the landing more than lighter payloads

Classification Accuracy

- Logistic Regression, SVM, and KNN are tied with 83.33% accuracy
- Decision Tree is slightly lower at 77.78% accuracy

Confusion Matrix

- This is the confusion matrix for Logistic Regression
- For 3 launches in the test set that did not land, the model predicted it would land.
- For the other 15 launches in the test set, the model predicted it correctly
 - 12 landed and 3 did not land

Conclusions

- Heavier payloads were more likely to fail the landing
- Some booster versions were significantly better than others
- KSC LC-39A was the best launch site
- Our model used features such as launch site, serial number, booster type, payload mass to try to predict landing
 - worked with about 83.33% accuracy

Appendix

• Github

