

TRANSMITTAL OF APPEAL BRIEFDocket No.
65765-0085

In re Application of: Chin-Jui Chang et al.

Application No. 10/759,449-Conf. #7829	Filing Date January 16, 2004	Examiner M. A. Patterson	Group Art Unit 1794
---	---------------------------------	-----------------------------	------------------------

Invention: SOUND DEADENING AND STRUCTURAL REINFORCEMENT COMPOSITIONS AND METHODS OF USING THE SAME

TO THE COMMISSIONER OF PATENTS:

Transmitted herewith is the Appeal Brief in this application, with respect to the Notice of Appeal filed: February 23, 2009

The fee for filing this Appeal Brief is \$ 540.00.

Large Entity Small Entity

A petition for extension of time is also enclosed.

The fee for the extension of time is _____.

A check in the amount of _____ is enclosed.

Charge the amount of the fee to Deposit Account No. 18-0013.

Payment by credit card. Form PTO-2038 is attached.

The Director is hereby authorized to charge any additional fees that may be required or credit any overpayment to Deposit Account No. 18-0013.

/Linda D. Kennedy/
Linda D. Kennedy
Attorney Reg. No.: 44,183
RADER, FISHMAN & GRAUER PLLC
39533 Woodward Avenue
Suite 140
Bloomfield Hills, Michigan 48304
(248) 594-0619

Dated: April 17, 2009

Appeal Brief Transmittal

I hereby certify that this paper (along with any paper referred to as being attached or enclosed) is being transmitted via the Office electronic filing system in accordance with § 1.6(a)(4).

Dated: April 17, 2009

Electronic Signature for Linda D. Kennedy: /Linda D. Kennedy/

I hereby certify that this correspondence is being transmitted via the Office electronic filing system in accordance with §1.6(a)(4), on the date shown below.

Dated: April 17, 2009
Electronic Signature for Linda D. Kennedy: /Linda D. Kennedy/

Docket No.: 65765-0085

(PATENT)

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of:
Chin-Jui Chang et al.

Application No.: 10/759,449

Confirmation No.: 7829

Filed: January 16, 2004

Art Unit: 1794

For: SOUND DEADENING AND STRUCTURAL
REINFORCEMENT COMPOSITIONS AND
METHODS OF USING THE SAME

Examiner: M. A. Patterson

APPEAL BRIEF

MS Appeal Brief - Patents
Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Dear Sir:

This Appeal is from the Final Rejection of claims 1-27 set forth in the Final Office Action dated December 10, 2008. A Notice of Appeal was filed February 23, 2009.

TABLE OF CONTENTS

I. REAL PARTY IN INTEREST	PAGE 3
II. RELATED APPEALS AND INTERFERENCES.....	PAGE 4
III. STATUS OF CLAIMS.....	PAGE 5
IV. STATUS OF AMENDMENTS.....	PAGE 6
V. SUMMARY OF CLAIMED SUBJECT MATTER.....	PAGE 7
VI. GROUNDS OF REJECTION TO BE REVIEWED ON APPEAL.....	PAGE 9
VII. ARGUMENT	PAGE 10
VIII. CLAIMS APPENDIX	PAGE 17
IX. EVIDENCE APPENDIX.....	PAGE 23
X. RELATED PROCEEDINGS APPENDIX.....	PAGE 40

I. REAL PARTY IN INTEREST

The real party in interest for this appeal is: Sika Corporation, assignee, a corporation organized and existing under the laws of the state of New Jersey, and having a place of business at 30800 Stephenson Highway, Madison Heights, Michigan 48071.

II. RELATED APPEALS AND INTERFERENCES

There are no other appeals, interferences or judicial proceedings which will directly affect or be directly affected by or have a bearing on the Board's decision in this appeal.

III. STATUS OF CLAIMS

A. Total Number of Claims in Application

There are 27 claims pending in application.

B. Current Status of Claims

Claims 1-27 are finally rejected by the Office Action dated December 10, 2008.

C. Claims On Appeal

Claims 1-27 are on appeal.

IV. STATUS OF AMENDMENTS

Appellant filed a Response After Final Rejection, without amendments to the claims, on February 23, 2009, which the Examiner entered. The amendments to claims 23-27, dated September 9, 2008, were also entered.

V. SUMMARY OF CLAIMED SUBJECT MATTER

The following is a concise explanation of the subject matter defined in each of the independent claims involved in the appeal, as required by 37 C.F.R. § 41.37(c)(1)(v). References to the specification herein are intended to be exemplary and not limiting. There are four independent claims described herein: claims 1, 11, 12 and 13.

Independent claim 1 describes a composition that is useful for forming a reinforcing body. *See* specification page 1, lines 10-25; page 2, lines 7-15. In particular, claim 1 describes a composition that includes the following ingredients: (a) from about 20-30% by weight of an SBS block co-polymer; (b) from about 5-20% by weight polystyrene; (c) from about 0.5-5% by weight of a rubber; and (d) from about 30-45% by weight of an epoxy resin. *See* page 6 of the specification from lines 1 to 11 and example 3 on pages 13-14.

Independent claim 11 describes a composition that is useful for forming a reinforcing body. *See* specification page 1, lines 10-25; page 2, lines 7-15. The composition comprises from about 20-30% by weight of an SBS block co-polymer; from about 5-20% by weight polystyrene; from about 0.5-5% by weight of a rubber; and from about 30-45% by weight of an epoxy resin. *See* page 6 of the specification, lines 1-11. The composition has a percent expansion of from about 80-220% after heating thereof to a temperature of at least about 300°F. *See* page 8 of the specification, lines 9 to 19.

Independent claim 12 describes a composition that is useful for forming a reinforcing body. *See* specification page 1, lines 10-25; page 2, lines 7-15. The composition comprises from about 20-30% by weight of an SBS block co-polymer; from about 5-20% by weight polystyrene; from about 0.5-5% by weight of a rubber; and from about 30-45% by weight of an epoxy resin. *See*

page 6 of the specification, lines 1-11. The composition has a compressive strength of at least about 1400 psi upon being expanded by heating to a temperature of at least about 300°F. *See* page 8 of the specification, lines 9-19.

Independent claim 13 describes a composition that is useful for forming a reinforcing body. *See* specification page 1, lines 10-25; page 2, lines 7-15. The composition comprises from about 20-30% by weight of an SBS block co-polymer; from about 5-20% by weight polystyrene; from about 0.5-5% by weight of a rubber; and from about 30-45% by weight of an epoxy resin. The composition has a compressive strength of at least about 1400 psi and a percent expansion of from about 80-220% upon being expanded by heating to a temperature of at least about 300°F. *See* page 8 of the specification, lines 9-19.

VI. GROUNDS OF REJECTION TO BE REVIEWED ON APPEAL

1. The final rejection of claims 1, 7, 11-13, 19 and 23-27 under 35 U.S.C. § 102(b) over U.S. Patent No. 4,884,834 (“Yamamoto”).
2. The final rejection of claims 2, 4-6, 14 and 16-18 under 35 U.S.C. § 103 over U.S. Patent No. 4,884,834 (“Yamamoto”) in view of U.S. Patent No. 5,755,486 (“Wycech”).¹
3. The final rejection of claims 3 and 15 under 35 U.S.C. § 103 over U.S. Patent No. 4,884,834 (“Yamamoto”) in view of U.S. Patent No. 5,755,486 (“Wycech”) and in further view of U.S. Patent No. 5,782,730 (“Kawasaki”).
4. The final rejection of claims 8-9 and 20-21 under 35 U.S.C. § 103 over U.S. Patent No. 4,884,834 (“Yamamoto”) in view of U.S. Patent No. 5,755,486 (“Wycech”) and in further view of U.S. Patent No. 4,692,475 (“Rowland”).
5. The final rejection of claims 10 and 22 under 35 U.S.C. § 103 over U.S. Patent No. 4,884,834 (“Yamamoto”) in view of U.S. Patent No. 5,755,486 (“Wycech”) and in further view of U.S. Patent No. 5,782,730 (“Kawasaki”) and U.S. Patent No. 4,692,475 (“Rowland”) and U.S. Patent No. 5,021,513 (“Bagga”).

¹ The December 10, 2008 Final Office Action and the June 9, 2008 Non-Final Office Action do not identify Wycech in the summary of the rejection of claims 2, 4-6, 14, and 16-8, but the Wycech reference is applied by the Examiner on page 4 of the Non-Final Office Action, which is expressly “repeated” in the Final Office Action.

VII. ARGUMENT

A. Ground of Rejection 1 (Final Rejection of Claims 1, 7, 11-13, 19 and 23-27 over Yamamoto) Should Be Reversed.

As the Federal Circuit has stated numerous times, in order to demonstrate anticipation under 35 U.S.C. §102, the proponent must show that the four corners of a single prior art document describe every element of the claimed invention. *Net Moneyin, Inc. v. Verisign, Inc.*, 545 F.3d 1359, 1369 (Fed. Cir. 2008). Because the hallmark of anticipation is prior invention, the prior art reference must not only disclose all of the elements of the claim, but must also disclose those elements “as arranged in the claim.” *Id.* The meaning of “arranged in the claim” is readily understood in relation to claim drawn to things such as ingredients mixed in some claimed order. *Id.* at 1370. In such instances, a reference that discloses all of the ingredients, but not in the order claimed, would not anticipate. *Id.* This example is not limited to the order in which ingredients are mixed. In fact, the Federal Circuit expressly stated that the “arranged in the claim” legal requirement applies to all claims and refers to the need for an anticipatory reference to show all of the limitations of the claims “arranged or combined in the same way” as the recited claims. *Id.*

Here, Yamamoto does not anticipate claims 1, 7, 11-13, 19 or 23-27 because Yamamoto does not disclose all of the claimed ingredients combined in the same way as the recited claims. Specifically, each of the claims that is subject to Ground of Rejection 1 requires, *inter alia*, the combination of ingredients, “from about 20%-30% by weight of an SBS block co-polymer; from about 5-20% by weight polystyrene; and from about 30-40% by weight of an epoxy resin.” The claims and the specification make clear that polystyrene and the SBS block co-polymer are

separate ingredients. For example, polystyrene is explained as a homopolymer in paragraph 14 of the specification, and exemplified in the same paragraphs as the homopolymer Fina Crystal 500 and Fina Crystal 535. In Example 3, the polystyrene ingredient is the homopolymer Fina Crystal 500. (Specification, paragraph 59). Example 3 makes clear that the separate SBS block co-polymer ingredient is Fina Clear 530. (Specification paragraph 45, 59).

By contrast, Yamamoto does not disclose the homopolymer “polystyrene” as a separate ingredient anywhere in the four corners of the patent. Thus, Yamamoto certainly does not disclose polystyrene in combination with SBS block co-polymer and an epoxy resin in the claimed weight percentages. Accordingly, Yamamoto simply does not and cannot anticipate any of claims 1-27.

The Examiner has argued that because SBS block co-polymer is formed from both polystyrene chains and polybutadiene chains that Yamamoto’s disclosure of SBS block copolymer necessarily discloses SBS block co-polymer in combination with the homopolymer polystyrene. This is factually incorrect.

The polystyrene chains that exist within an SBS block co-polymer are not stand-alone; rather, they are covalently bonded to polybutadiene chains. The results of such bonding are the creation of a different chemical entity – SBS block co-polymer – which has chemical and physical traits that are substantially different from polystyrene. See, for example excerpts from the catalog included as Evidence Exhibit A. In Evidence Exhibit A, various physical properties are listed for each of the polymers identified. Such properties include melt flow rate, tensile strength, and flex modulus. (Evidence Exhibit A, page 26). The properties of polystyrene are very different from those of SBS block co-polymer. For example, the melt flow rate of

polystyrene listed under the “Blow Molding, Extrusion and Injection Molding” section ranges from 1.4-4 g/10 min. (Evidence Exhibit A, page 26). The melt flow rate of SBS block co-polymer listed under the “Blow Molding, Extrusion and Injection Molding” section ranges from 7.5-11 g/10 min. (Evidence Exhibit A, page 30). As one of skill in the art understands, this is a substantial difference. In another example, the tensile strength for polystyrene ranges from 7-7.6 yield at 1000 psi (Evidence Exhibit A, page 26), and from 3-3.7 yield at 1000 psi for SBS block co-polymer (Exhibit 1, page 30). These substantial differences between SBS block co-polymer and the homopolymer polystyrene demonstrate that disclosure of SBS block co-polymer does not disclose the homopolymer polystyrene by itself or in combination with SBS block co-polymer in the claimed weight percentages.

Thus, for at least these reasons, the Yamamoto reference does not anticipate claims 1, 7, 11-13, 19 or 23-27, and this Board should reverse the final rejection of these claims.

B. Ground of Rejection 2 (Final Rejection of Claims 2, 4-6, 14 and 16-18 over Yamamoto in view of Wycech) Should Be Reversed.

1. Claims 2, 4-6, 14 and 16-18 Are Not Obvious over Yamamoto in view of Wycech
(a). The Examiner Failed To Establish A *Prima Facie* Case Of Obviousness

It is the Examiner’s burden to set forth a *prima facie* case of obviousness in the initial or final Office Action. A *prima facie* case of obviousness has historically required that:

First, there must be some suggestion or motivation, either in the references themselves or in the knowledge generally available to one of ordinary skill in the art, to modify the reference or to combine reference teachings. Second, there must be a reasonable expectation of success. Finally, the prior art reference (or references when combined) must teach or suggest all the claim limitations.

MPEP § 2143 (Eighth Edition, Fifth Revision, August 2006) (*citing In re Vaeck*, 947 F.2d

488 (Fed. Cir. 1991).

So long as the motivation requirement for a *prima facie* case of obviousness is not rigidly applied, requiring the Examiner to show proper reasoning for combining prior art references is consistent with *KSR International Co. v. Teleflex, Inc.*, 127 S.Ct. 1727 (2007). In *KSR*, the Supreme Court stated that, “[i]t can be important to identify a reason that would have prompted a person of ordinary skill in the relevant field to combine the elements in the way the claimed new invention does. This is so because inventions in most, if not all, instances rely upon building blocks long since uncovered, and claimed discoveries almost of necessity will be combinations of what, in some sense, is already known.” *Id.* at 1741. Accordingly, the Court made clear that “a patent composed of several elements is not proved obvious merely by demonstrating that each of its elements was, independently, known in the prior art.” *Id.* at 1731.

Here, there is no *prima facie* case of obviousness because even if the references are combined, the combination does not teach or suggest all the elements of Appellant’s claims. Neither Yamamoto nor Wycech include any reference to polystyrene as a separate ingredient. For example, the word “polystyrene” cannot be found in either reference. The Examiner has not provided sufficient reasoning to make a *prima facie* case that it would have been obvious to one of skill in the art to have made the claimed combination of the homopolymer polystyrene, SBS block co-polymer, and rubber and epoxy resin in the particularly claimed weight percentages.

(b). If The Examiner Made A *Prima Facie* Case Of Obviousness,
Appellant Rebutted The *Prima Facie* Case

Appellant has found that the relative weight percentages of SBS block co-polymer with the homopolymer polystyrene and epoxy resin, when used in an expandable composition, bring about

an unexpected result.

In particular, the homopolymer polystyrene acts a sponge for both SBS block co-polymer and epoxy resin. In other words, SBS block co-polymer and epoxy resin compete with one another for solubility in polystyrene. If too much SBS block co-polymer is included in the formulation, it displaces the epoxy resin from the homopolymer polystyrene, and the resulting formulation does not have the desired traits for an expandable reinforcer composition that can adhere to the surface of a structural member. Similarly, if too little SBS block co-polymer is included, the expandable reinforcer composition does not have the desired mechanical properties, such as compressive strength. Thus, a specific balance is required among the ingredients. The claimed weight percentages are balanced to prevent too much leaking of epoxy resin out of the formulation by controlling the amount of SBS block co-polymer in the formulation relative to the epoxy resin. None of specific weight percentages among the distinctly claimed ingredients, or the ratio of weight percentages of the claimed ingredients, are taught or suggested by the combination of Yamamoto and Wycech.

Moreover, when the claimed formulation is expanded, Appellant achieved the surprising result that the particular combination of ingredients, in their relative amounts, led to a composition that both expanded to a high degree (80-220%) while maintaining such a high degree of compressive strength (at least about 1400 psi). (Specification page 8, lines 9-19). As explained in earlier amendments and in earlier appeal briefs, this is surprising because one of skill in the art would expect that, the more the composition expands, the less likely it would be able to maintain such a compressive strength.

The evidence supporting the previous arguments is included in Evidence Exhibits B and C,

which are inventor declarations, in the Evidence Appendix. Specifically, Evidence Exhibit B provides data that a composition taught in the cited Wycech reference does not demonstrate the compressive strength, following expansion, as taught in the pending claims and specification. Thus, the results of the claimed combination are unexpected given the teachings of Wycech. Evidence Exhibit C distinguishes the SBS block co-polymer of the pending claims from polyisoprene, which the Examiner had argued was interchangeable with SBS block co-polymer. The two compounds are not interchangeable; SBS block co-polymer is not chemically cross linked and is much more easily processed and shaped. Thus, the inclusion of polyisoprene in combination with other ingredients does not teach or suggest the inclusion of SBS block co-polymer in combination with such ingredients.

For at least the reasons set forth hereinabove, this Board should reverse the final rejection of claims 2, 4-6, 14 and 16-18 under 35 U.S.C. § 103.

C. Ground of Rejection 3 (Final Rejection of Claims 3 and 15 over Yamamoto in view of Wycech and in further view of Kawasaki) Should Be Reversed.

This Final Rejection requires the combination of Yamamoto and Wycech, which for all the reasons set forth in detail, above, in Subsection A of the “ARGUMENT” Section does not teach all the elements of the independent claims from which dependent claims 3 and 15 depend. Additionally, there is no reason that one of skill in the art would look to the Kawasaki reference to modify the teachings Yamamoto or Wycech, as the Kawasaki reference is drawn to a pressure roller in a fixing system of a xerographic copying machine, laser beam printer or the like. And even if one did turn to the Kawasaki reference, it does not cure the deficiencies of the Yamamoto reference. For example, the word “polystyrene” cannot be found in the Kawasaki reference, either alone or in combination with SBS block co-polymer, epoxy resin, and rubber. Thus, the combination of

Yamamoto, Wycech and Kawasaki does not render obvious claim 3 or 15. Accordingly, this Board should reverse the Section 103 rejections of claims 3 and 15.

D. Ground of Rejection 4 (Final Rejection of Claims 8-9 and 20-21 over Yamamoto in view of Wycech and in further view of Rowland) Should Be Reversed.

This Final Rejection requires the combination of Yamamoto and Wycech, which for all the reasons set forth in detail, above, in Subsection A of the “ARGUMENT” Section does not teach all the elements of the independent claims from which dependent claims 8-9 and 20-21 depend. The Rowland reference does not cure the deficiencies of the Yamamoto reference, even if used in combination with Wycech. Thus, the combination of Yamamoto, Wycech and Rowland does not render obvious claims 8-9 or 20-21. Accordingly, this Board should reverse the Section 103 rejections of claims 8-9 and 20-21.

E. Ground of Rejection 5 (Final Rejection of Claims 10 and 22 over Yamamoto in view of Wycech and in further view of Kawasaki and Rowland and Bagga) Should Be Reversed.

This Final Rejection requires the combination of Yamamoto and Wycech, which for all the reasons set forth in detail, above, in Subsection A of the “ARGUMENT” Section does not teach all the elements of the independent claims from which dependent claims 10 and 22 depend. None of the Kawasaki reference, the Rowland reference, or the Bagga reference (alone or in combination) cures the deficiencies of the Yamamoto reference, even if used in combination with Wycech. Thus, the combination of five independent references does not render obvious claim 10 or 22. Accordingly, this Board should reverse the Section 103 rejections of claims 10 and 22.

Dated: April 17, 2009

Respectfully submitted,

By: /Linda D. Kennedy/
Linda D. Kennedy
Registration No.: 44,183
Attorney for Applicant

VIII. CLAIMS APPENDIX

A clean copy of the claims of Application Serial No. 10/759,449 follows:

1. A composition useful for forming a reinforcing body, said composition comprising:
 - from about 20-30% by weight of an SBS block co-polymer;
 - from about 5-20% by weight polystyrene;
 - from about 0.5-5% by weight of a rubber; and
 - from about 30-45% by weight of an epoxy resin.
2. The composition of claim 1, said composition further comprising from about 0.5-5% by weight of a pigment.
3. The composition of claim 1, said composition further comprising from about 1-10% by weight hydrated amorphous silica.
4. The composition of claim 1, said composition further comprising from about 10-20% glass microspheres.
5. The composite of claim 1, said composition further comprising from about 0.1-5% by weight of a blowing agent.

6. The composition of claim 1, said composition further comprising from about 0.1-5% by weight of a catalyst.

7. The composition of claim 1, said composition further comprising from about 0.1-5% by weight of a curing agent.

8. The composition of claim 1, said composition further comprising a compound for lowering the blowing temperature of the composition.

9. The composition of claim 1, wherein said rubber is a nitrile-butadiene rubber and said epoxy resin is a bisphenol A-based liquid epoxy resin, and said composition further comprises:

- from about 0.5-5% by weight of a pigment;
- from about 1-10% by weight hydrated amorphous silica;
- from about 10-20% by weight glass microspheres;
- from about 0.1-5% by weight of a blowing agent;
- from about 0.1-5% by weight of a catalyst;
- from about 0.1-5% by weight of a curing agent; and
- up to about 5% by weight of a compound for lowering the blowing temperature of the composition.

10. The composition of claim 9, wherein said pigment comprises carbon black, said blowing agent comprises azodicarbonamide, said catalyst comprises N,N-dimethyl phenyl urea, said

curing agent comprises dicyandiamide, and said compound for lowering the blowing temperature comprises zinc oxide.

11. A composition useful for forming a reinforcing body, said composition comprising:
 - from about 20-30% by weight of an SBS block co-polymer;
 - from about 5-20% by weight polystyrene;
 - from about 0.5-5% by weight of a rubber; and
 - from about 30-45% by weight of an epoxy resin,

wherein said composition has a percent expansion of from about 80-220% after heating thereof to a temperature of at least about 300°F.

12. A composition useful for forming a reinforcing body, said composition comprising:
 - from about 20-30% by weight of an SBS block co-polymer;
 - from about 5-20% by weight polystyrene;
 - from about 0.5-5% by weight of a rubber; and
 - from about 30-45% by weight of an epoxy resin,

wherein said composition has a compressive strength of at least about 1400 psi upon being expanded by heating to a temperature of at least about 300°F.

- ~ 13. A composition useful for forming a reinforcing body, said composition comprising:
 - from about 20-30% by weight of an SBS block co-polymer;

from about 5-20% by weight polystyrene;
from about 0.5-5% by weight of a rubber; and
from about 30-45% by weight of an epoxy resin,

wherein said composition has a compressive strength of at least about 1400 psi and a percent expansion of from about 80-220% upon being expanded by heating to a temperature of at least about 300°F.

14. The composition of claim 13, said composition further comprising from about 0.5-5% by weight of a pigment.

15. The composition of claim 13, said composition further comprising from about 1-10% by weight hydrated amorphous silica.

16. The composition of claim 13, said composition further comprising from about 10-20% glass microspheres.

17. The composite of claim 13, said composition further comprising from about 0.1-5% by weight of a blowing agent.

18. The composition of claim 13 said composition further comprising from about 0.5-5% by weight of a catalyst.

19. The composition of claim 13, said composition further comprising from about 0.1-5% by weight of a curing agent.

20. The composition of claim 13, said composition further comprising a compound for lowering the blowing temperature of the composition.

21. The composition of claim 13, wherein said rubber is a nitrile-butadiene rubber and said epoxy resin is a bisphenol A-based liquid epoxy resin, and said composition further comprises:

- from about 0.5-5% by weight of a pigment;
- from about 1-10% by weight hydrated amorphous silica;
- from about 10-20% by weight glass microspheres;
- from about 0.1-5% by weight of a blowing agent;
- from about 0.1-5% by weight of a catalyst;
- from about 0.1-5% by weight of a curing agent; and
- up to about 5% by weight of a compound for lowering the blowing temperature of the composition.

22. The composition of claim 21, wherein said pigment comprises carbon black, said blowing agent comprises azodicarbonamide, said catalyst comprises N,N-dimethyl phenyl urea, said curing agent comprises dicyandiamide, and said compound for lowering the blowing temperature comprises zinc oxide.

23. A composition of claim 13 wherein the percent expansion is from about 95% to about 200%.
24. A composition of claim 23 wherein the compressive strength is at least about 1600 psi.
25. A composition of claim 13 wherein the percent expansion is from about 129% to about 147%.
26. A composition of claim 25 wherein the compressive strength is from about 1422 psi to about 2129 psi.
27. A composition of claim 25 wherein the compressive strength is at least about 1600 psi.

IX. EVIDENCE APPENDIX

Evidence Exhibit A: Excerpt from Plastics Technology, Processing Handbook & Buyers Guide 2005/2006. Following discussion of this his evidence in the Interview on January 21, 2009, this evidence was introduced to the record in the Response to Office Action dated February 23, 2009.

Evidence Exhibit B: Declaration 1 of Chin-Jui Chang, dated October 16, 2002, filed in the parent case, serial no. 09/572,754, and included in the August 16, 2006 Appeal Brief Evidence Appendix and in the March 6, 2008 Appeal Brief Evidence Appendix filed in the case presently on appeal.

Evidence Exhibit C: Declaration 2 of Chin-Jui Chang, dated October 16, 2002, filed in the parent case, serial no. 09/572,754, and included in the August 16, 2006 Appeal Brief Evidence Appendix and in the March 6, 2008 Appeal Brief Evidence Appendix filed in the case presently on appeal.

Evidence Exhibit A

PROCESSING HANDBOOK

SUPPLEMENT TO PLASTICS TECHNOLOGY MAGAZINE
A GARDNER PUBLICATION

NOVEMBER 2005

www.gardner.com

PLASTICS TECHNOLOGY

A GARDNER PUBLICATION

PROCESSING HANDBOOK

Buyers' Guide
2005/2006

PP/PE ALLOY (Continued)**INJECTION MOLDING (Continued)**

Manufacturer	Trade Name and/or Grade	Applications	Flow	Density	Impact	Tensile Strength	Elongation	Flexural Strength	Flexural Modulus
SohuImat, A.	Polytropic TPP 504-31	GOL, MOL	2	0.92	2.4	-	0.5	200	200
	Polytropic TPP 508	PNT, HFL, AUT	6	0.91	2.5	-	0.6	190	190
	Polytropic TPP 510	GOL, MOL	6.8	0.91	3	-	1	142	142
	Polytropic TPP 512	GOL, MOL	-	0.91	3.5	-	1.7	142	142

PP/PS ALLOY**BLOW MOLDING AND INJECTION MOLDING**

Base II N.A.	Hivalloy G706B	HI	36% GF	10	1.2	12.7	8.0	2.6	31620

INJECTION MOLDING

Base II N.A.	Hivalloy G-120	GP, HI, ST	-	5	0.94	4.8	6	2.6	200
	Hivalloy G-130	GP, HI, L	-	25	0.93	3.7	7	4.7	2.6
	Hivalloy G-170	GP, HI	-	15	0.92	3.8	10	4.7	2.6
	Hivalloy G-17D	GP, HI	-	5	0.93	4.1	9	1.8	190
	Hivalloy G305B	IM, GP, HI	-	2	0.92	3	25	1.1	190
	Hivalloy G305T	GP, HI	-	5	0.91	3.6	7	1.7	190
	Hivalloy G306B	GP, HI	-	51	0.91	3.4	9	1.6	190
	Hivalloy G6064	GP	-	5	1.2	3.1	3	2.0	2.7
	Hivalloy G7055	IM, GP, HI	36% GF	11	1.18	9.5	4	6.3	205
	Hivalloy G7062	IM, GP	20% GF	9	1.05	6.8	-	4.7	160
	Hivalloy G7072	GP	36% GF	7	1.2	16.4	-	11	160

POLYSTYRENE—GENERAL PURPOSE**BLOW MOLDING, EXTRUSION AND INJECTION MOLDING**

Ameri/ Polymers	API-370-21	OPT, TRP, HR	5	2	1.05	-	-	0.2	200
Chevron Phillips	EA-3080	TETRAPHOR	8	1.05	7	-	4.7	200	200
Dow Plastics	Styron 618	MED, TEN, TRP, HR	14	1.04	7.6	-	4.5	202	202
	Styron 823	MED, TRP, HR	4	1.04	7.8	-	4.5	203	203
	Styron 865	GP, MED, TRP, HR	2.2	1.04	7.6	-	4.7	205	205
	Styron 865D	GP, MED, TRP, HR	1.5	1.04	7.7	-	4.6	204	204
Ineos Styrenics	PolyStyrene 166H	GRTE, PKG	3.6	1.04	2	4.4	0.8	201	201
Total Petrochemical	Atollina 635	HR, HIT	4.1	1.05	7.4	-	4.8	200	200

BLOW MOLDING AND INJECTION MOLDING

Dow Plastics	Styron 866D	GP, MED, TRP, HR	-	8	1.04	8.6	-	4.6	VC 0.3

EXTRUSION

Chevron Phillips	EA-3000	THR	-	1.6	1.04	8	-	4.4	200
	EA-3100	THR	3	1.05	7.8	-	4.4	200	200
	EA-3200	FOY, HR	7	1.04	7.4	-	4.3	200	200
Dart Polymers	GPSS PS-102	DS, HGL, TRP, HR	2.6	1.05	7	-	4.7	200	200
Huhtala Chemica	1983	GE, H, GBT	3.5	1.04	8.5	-	0.3	200	200
	201	GP, HMW, HIT, PKG	1.4	1.04	7.4	-	4.7	200	200
LG Chemplast	ZOH-R-6	HR	6	1.05	8.8	-	4.7	203	203

POLYSTYRENE—GENERAL PURPOSE (Continued)

EXTRUSION (Continued)

Supplier	Group Name and/or Grade	Applicability	Thickness mm	Impact Strength kg/cm ²	Tensile Strength kg/mm ²	Elongation at Break %	Surface Hardness Shore D	Nucleated Polymer	Dendritic Polymer	Impact Strength kg/cm ²	Surface Hardness Shore D
DeChemical	25SP-E	HPL, PKG	2.0	2.6	1.05	7.1	6	4.7	0.8	205; 207	HB
Nova Chemicals	2114	HPL, PKG	2.0	2.3	1.03	4.9	3	8	2.65	199	HB
Total Petrochem	Atofina 623	HPL	2.0	11.2	4.9	6.5	5	4.8	2.3	201	—
	Atofina 624B	GP,HGL,TRP	2.0	9.5	4.9	6.7	5	4.6	2.0	201	—
	Atofina 655	GP	2.0	1.6	—	7.8	5	4.8	0.9	225	HB

EXTRUSION, SHEET

Dow Plastics	Slyron 697	TRP	—	1.0	1.04	6.6	—	—	—	218	—
Huntsman Chemical	T101LR	HMW,PKG	—	1.4	1.04	7.4	—	9.8	0.4	200	—
Ineos Styrenics	Polystyrene 168MO	GP,LOTRP,HR	—	—	1.04	—	8	4.6	0.3	201	—
Total Petrochem	Atofina 810E	GP	—	—	2.6	—	5	5.6	2.2	—	—

EXTRUSION AND INJECTION MOLDING

Exxon Phillips	MD-85PD	GP	—	—	8	1.05	7.0	—	4.6	0.4	180	—
Dow Plastics	Slyron 616APR	APT,TRP	—	—	14	1.04	6.4	—	4.6	0.3	191;168	HB
Huntsman Chemical	2110	GP,HPL,BLN	—	—	38	1.04	4.8	2	0.4	0.4	164	—
Ineos Styrenics	Polystyrene 146D	GP,HFL	—	—	14	1.04	—	2	4.4	0.3	173	—
	Polystyrene 147F	GP,MFL	—	—	9	1.04	—	2	4.6	0.3	185	—
	Polystyrene 148G	GP,MOL,PKG	—	—	6	1.04	—	2	4.6	0.3	191	—
	Folyatyręje 168 M	MED,TRP,HR	—	—	1.6	1.04	7.5	—	4.8	0.3	201	HB
Nova Chemicals	1200/1204	MOL,TEMP	—	—	1.6	1.04	7.6	—	5	0.4	187	HB
	1210	HR,HMW	—	—	1.6	1.04	7.4	—	4.7	0.4	200	HB
	1220/1230	MOL	—	—	1.9	1.04	7.4	—	4.7	0.4	200	—
	1280/1290	MOL	—	—	1.6	1.04	7.6	—	5	0.4	203	HB
	1300/1301	MOL,HR,PKG	—	—	3.5	1.04	7	—	4.4	0.4	200	HB
	1600	HR,MEL	—	—	5.5	1.04	6.8	—	5	0.4	180	—
	2100	ESG,HR,PKG	—	—	8.5	1.04	6.6	—	4.4	0.4	195	HB
	2110	MOL,HR,PKG	—	—	3.4	1.04	6.2	—	5	0.4	185	HB
	2500/2504/2590	HR,BLN	—	—	7	1.04	6.5	—	5	0.4	205	—
	FX110	MOL,MLB	—	—	1.3	1.04	—	—	4.7	0.4	205	—

INJECTION MOLDING

Amid Polymers	API 380	GP,TRP	—	—	8	1.05	—	—	—	0.3	190	—
	API 392	GP,TRP,HFL	—	—	12	1.05	7.8	—	4.6	0.3	180	—
	API 395	GP,THR,HFL	—	—	18	1.05	14.6	—	3.6	0.3	180	—
Chlorine Phillips	MC-3100	THR	—	—	3	1.05	7.8	—	4.6	0.4	193	—
	MC-3600	HFL	—	—	18	1.05	7	—	4.5	0.4	178	—
	MC-3700	FR	—	—	19	1.05	6	—	4.5	0.4	190	HB
Dart Polymers	GPPS RS-108	HGL,TRP,MFL,OP	—	—	8	1.05	6.5	—	—	—	162	HB
	GPPS PS-118	FOY,TRP,HFL	—	—	18	1.05	5.5	—	—	—	162	HB
Dow Polymers	GPPS-108	GP	—	—	8	1.04	—	—	4.5	0.4	188	—
Dow Plastics	Retalin PS-4000	RM,PKG,BOR	—	—	5.5	—	3.8	—	3.3	—	208;186	—
	Styron 612	GP	—	—	9	1.04	8.7	—	4.8	0.3	200;179	HB
	Styron 666APR	GP	—	—	8.5	1.04	7	—	4.7	0.3	200;164	HB
	Styron 665	GP,TRP,HR	—	—	1.5	1.04	7.6	—	4.5	0.4	210;164	—
Federal Plastics	FPC 2	GP	—	—	3	1.05	—	—	—	0.3	—	—
	FPC 3	GP	—	—	11	1.05	—	—	—	0.3	—	—
	FPC 4	GP,THR	—	—	4	1.05	—	—	—	0.3	—	—
	FPC 5	GP,TRP,MFL	—	—	12	1.05	7.5	—	—	0.3	—	—
	FPC 6	GP,HFL	—	—	22.5	1.05	6	—	—	0.3	160	—
	FPC 7	GP,TRP	—	—	7.5	1.05	—	—	—	0.3	—	—

POLYSTYRENE—IMPACT (Continued)

INJECTION MOLDING (Continued)

Supplier	Product Name	Grade	Material Type	Melt Flow Rate	Tensile Strength	Impact Strength	Flexural Strength	Thermal Deflection Temp.	Electrical Resistivity
Huntsman Chemical	870	GP,CST	—	5.5	1.04	7.2	—	4.5	0.4
	880	CDL,GP,HI	—	3.5	1.04	3	50	2.4	3.2
Ineos Styrenics	Polystyrene 446 C	MI,GP	—	14	1.04	3.1	—	2.4	1.2
LATI USA	Léotlrod RVO	FR,HI,HFL	—	0.5-0.6	1.18	4.4	2	2.9	1.5
	Lestlrod RV2	DS,FR,HI,HFL	—	0.2-0.4	1.09	5.8	2	4	1.3
LG Chemical	403AF	ER,WTR	—	9.5	1.06	3.8	4	3.3	2.2
	406AF	FR	—	14	1.16	3.7	4	3.3	1.6
	407AF	FR	—	9	1.1	3.7	4	3.4	2.2
	408AF	FR,GP	—	10	1.16	3.7	4	3.1	2
	479EF	FR	—	12	1.04	9.7	4	8.4	2.2
	501S	GP	—	7.5	1.03	3.8	5	3.1	1.9
	501S-L	GP	—	7.5	1.03	4	5	3.2	1.9
	504R	HR	—	4	1.03	4.1	5	3.1	2.4
	504R-Q	HR,HFL	—	5.6	1.03	3.8	5	3.1	2.4
	SG-910	HI,HFL	—	12	1.04	3.8	5	3.3	2.6
	SG-910	HGL,HI	—	3.7	1.04	4.8	5	3.3	3.1
	SG-950	HGL,HI	—	5.5	1.04	5.1	5	3.6	2.4
	SG-970	HGL,HI	—	6.5	1.04	5.3	5	3.7	2
	SI-610	HI,HFL	—	6.5	1.04	3.8	5	3.1	3.8
Network Polymers	NPS90-0304	—	—	2.4	1.04	4.1	—	3.3	4
	NPS90-0646	—	—	3	—	—	—	2.1	3
	NPS90-0802	—	—	8	1.04	—	—	2.8	1.9
	NPS90-0820	HI	—	8	1.04	—	—	2.8	1.9
	NPS90-0827	—	—	8	1.04	—	—	2.8	1.9
Nova Chemicals	4210/4214	—	—	3.5	1.04	5.4	—	4	1
	4211	—	—	4	1.04	5.8	—	3.8	1
	4601	HI	—	6.5	1.04	4.2	—	3.5	1.2
	5100/5104	HI,ST	—	2.7	1.04	3.8	—	3.4	1.5
	5124	HGL,HI	—	4.3	1.04	3.2	—	3.2	1.8
	5190	HGL,HI	—	5.5	1.04	4.8	—	3.2	1.8
	5511	—	—	8	1.04	3.5	—	2.6	2.4
	5920	ST,HR	—	2.7	1.04	2.9	—	3	1.8
	5711	HI,MED,HFL	—	15.6	1.04	4.2	—	3.1	1.8
	5751	MI,MED,HFL	—	18	1.04	3.2	—	3.5	1.5
	731G	HI,ST	—	4	1.04	3.8	—	2.5	2.2
Plastics World	DalcelStyrol GH10	FR,HR	—	8	1.16	3.1	—	3	1.8
	DalcelStyrol GW30	FR,UVR	—	10	1.16	4.3	—	3	1.2
	DalcelStyrol GW50	FR,UVR	—	5	1.16	3.5	—	2.6	1.3
	DalcelStyrol GS/60H	FR	—	4	1.12	6.5	—	3.7	0.6
	DalcelStyrol SK60	FR,UVR	—	4	1.06	4.4	—	3.6	1.6
RTP	400HI-FR	BLK,FR,HI,NAT	—	—	1.17	3.3	—	4	1.7
	400HI-SI	BLK,HI,LUB,NAT	—	—	1.03	3.1	—	3.2	2
	AD1HI	—	10%	—	1.11	5	—	5	1.1
	408HI	BLK,HI,NAT	20% GF	—	1.18	6	—	8	1.2
	408HI	BLK,HI,NAT	30% GF	—	1.25	11.5	—	14	1
	ESDA 400 HI	AST,BLK,IM	CB	—	1.1	3.2	2	3.3	1.2
	ESDA 430 HI	AST,CDL,HI	CF	—	1.06	5.8	0.6	9.5	1.1
	ESDA 630 HI	AST,BLK,EO,IM	CB	—	1.1	2.8	2	2.8	1.2
	ESDA 640 HI	AST,CDL,EO,HI	CF	—	1.08	7	0.6	10	1
Shurman	810	BLK	—	4-16	1.05	4.4	—	—	1.8-2
	811	BLK,MI	—	4-15.0	1.05	—	—	—	0.2-1.3
	811/B81	BLK,MI,MGL,MOL	—	4-15.0	1.1	5.2	—	—	0.9
	SP210/BB0	BLK,HI,MOL	—	6-10	1.1	4.4	—	—	1.8

POLYSTYRENE - IMPACT (Continued)

INJECTION MOLDING (Continued)

Supplier	Product Number	Features / Applications	Tensile Strength (MPa)	Impact Strength (KJ/m²)	Durability	Stiffness (GPa)	Thermal Resistance (°C)	Notched Impact Strength (KJ/m²)	Ductility
Spartech	SC2-1080U	GP,HST,LUB,UVR	5.1	2.7	—	4.2	—	3.7	217;210
	SC2-1098	GP,HST,LUB	—	0.4	—	9.1	—	3.6	07;107
	SC2-1099	GP,HST,LUB	—	0.6	—	7.1	—	3.4	16;107
	SC2-1220	GP,HST,LUB	20% GF	—	—	1.19	105;115	9.6	1.1;107
	SC2-1230	GP,HST,LUB	30% GF	—	—	1.28	12	12	1.2;107
	SC2-1230D	GP,GP,HST,LUB	30% GF	—	—	1.06	9	6.6	1.6;107
TP Composites	HIPS ABS	AST	—	—	—	1.15	29	2.0	1.6;100
	HIPS FR	FR	—	—	—	1.15	29	2.0	1.6;100
Total Petrochemical	Atofina 826	FÖY/HI	—	B	—	3.6	50	3.4	217;210

INJECTION MOLDING AND STRUCTURAL FOAM

Nova-Chemicals	6500/6504	BLD	7	1.04	9	3	2	188	HB
----------------	-----------	-----	---	------	---	---	---	-----	----

STRUCTURAL FOAM

Dow Plastics	Styron 426	GP,HI,MOL	—	12	1.04	4.5	—	1.2	199	—
	Styron 487	GP,HI,MOL	—	2.5	1.04	2.9	—	2.4	1.6	182;107
	Styron 456C	GP,HI,MOL	—	10	1.04	2.9	—	—	2.7	180
	Styron 4840	GP,HI,MOL	—	3	1.04	9.8	—	—	2.7	192
	Styron 60B7SF	GP,HI,FM	—	—	0.98	—	—	2.8	—	183;160
	Styron 6616	GP,HI,MOL	—	7.6	1.65	—	—	2.6	1.5	185
	Styron 667	GP,MED,HR,HFL	—	8	1.04	5.2	—	—	0.9	202
	Styron 668	GP,MED,HR,HFL	—	2	1.04	6.2	—	—	0.8	216
Nova-Chemicals	6640	HGL,HI	—	10	1.04	3.8	—	2.9	1.7	188
	6610	MOL,ST	—	3.5	1.04	4	—	2.6	2.3	185

SAN COPOLYMER

EXTRUSION

EniChem	Kostil B265	CHR	—	18	1.07	9.7	—	5.2	—	188
	Kostil B956B	CHR,HFL	—	30	1.07	9.6	—	5.1	—	188
	Kostil PD-D265	CHR	—	20	1.08	10.0	—	6.2	—	187
	Kostil PD-G365	CHR,HFL	—	30	1.08	10.6	—	5.2	—	187

EXTRUSION AND INJECTION MOLDING

Dow Plastics	Luran 369R	GP,TRP	—	12	1.08	10.9	—	0.6	216;208	HB
	Luran 369S	GP,TRP	—	8	1.08	12.2	—	0.6	217;210	HB
Dow Plastics	Tyril 800B	CHR,GP,TRP,HR	—	8	1.08	10.4	—	6.4	0.3	218
	Tyril 800	CHR,GP,TEM,TRP	—	3.5	1.08	11.0	—	5.9	0.5	216
	Tyril 800B	CHR,GP,TEM,HR	—	3.5	1.08	11.0	—	5.8	0.5	218

INJECTION MOLDING

Acto	SAAN00L	—	—	6	1.07	9.9	3	5.9	0.2	186;174
Dow Plastics	Luran 369N	GP,HGL,TRP,HFL	—	27	1.08	10.4	—	0.6	216;208	HB
Dow Plastics	DowBan 100	—	—	8	1.07	—	—	5.5	—	214
	DowBan 111	—	—	13	1.07	—	—	5.6	—	213
	Tyril 1011	CHR,MOL,UVR,AUT	—	7	1.08	9.3	—	5.2	0.3	216
	Tyril 125	GP,BLN	—	25	1.07	8	—	5.9	0.2	212
	Tyril 990	CHR,GP,MOL,TRP	—	8.7	1.07	9.7	—	6.1	0.4	219
EniChem	Kostil B266	CHR	—	18	1.07	9.7	—	5.2	—	188

SAN COPOLYMER (Continued)

INJECTION MOLDING (Continued)

Supplier	Product Name	Grade	Material	Tensile Strength	Elongation at Break	Density	Impact Strength	Flexural Modulus	Deflection Temp.	UL94 Rating	
AT&T	5007PE6	BLK,LUB,NAT		1.1	10	5	0.5	210;210	HB		
	5011	COL	10% CG	1.16	11.5	2	8	0.7	215;205	HB	
	5011 FR	COL,FR,MST,MOL	10% GF	1.39	10	1.5	8	1.1	215;205	V-O	
	5011 HB	COL,MBT,MOL,FLX	10% GF	1.15	11.5	2	8	0.7	215;205	HB	
	503	COL	20% CG	1.22	16	1.5	10	1	220;210	HB	
	503 FR	COL,DS,FR,ST	20% CG	1.46	14	1.5	12	1	220;210	V-O	
	503 HB	COL,DS,MOL,LW	20% CG	1.22	15	1.5	1	1	215;205	HB	
	503TFE10	BLK,LUB,NAT	20% GF	1.3	14	—	10	1	225;212	HB	
	505	COL	30% CG	1.31	15.5	1.2	14	1	225;210	V-O	
	505 FR	COL,DS,FR,ST	30% CG	1.58	16	1	16	1	225;212	HB	
	505 HB	COL,DS,MST,ST	30% CG	1.31	15.5	1.2	14	1	230;214	HB	
	506	COL	35% CG	1.35	16	1.1	14	1	230;214	HB	
	506 HB	COL,DS,ST,TEN	35% CG	1.35	16	1.1	14	1	230;217	HB	
	507	COL	40% CG	1.4	17	1.1	16	1	230;217	HB	
	507 HB	COL,DS,ST,TEN	40% CG	1.4	17	1.1	18	1	220;210	HB	
Coumaron A.	CoumAlloy 240-3020	DS,ST,TEN	20% CG	5-15	1.22	15.2	—	12.2	1	225;216	HB
	CoumAlloy 240-3030	DS,ST,TEN	30% CG	5-15	1.3	17	—	15	1.1	230;220	HB
	CoumAlloy 240-3040	DS,ST,TEN	40% GF	5-15	1.4	18.4	—	18.7	1.1	217;212	—
	CoumAlloy E-13040B	GP	30% BF	2.8	1.3	—	—	44.5	0.7	—	—
	SC6-1090	GP,HGL,HST,LUB	—	—	1.07	9	—	6.1	0.4	—	—
	SC6-1096	GP,HGL,HST,LUB	—	—	1.07	10.5	—	5	0.6	—	—
	SC6-6090	GP,HGL,HST,LUB	—	—	1.07	9	—	5.1	0.4	—	—

STYRENE BUTADIENE BLOCK COPOLYMER

BLOW MOLDING AND EXTRUSION

Supplier	Product Name	Grade	Material	Tensile Strength	Elongation at Break	Density	Impact Strength	Flexural Modulus	Deflection Temp.	UL94 Rating
Exxon Phillips	K-Resin KR05NW	MED,PRN,TRP,OP	—	7.5	1.01	3.7	—	2.1	0.8	—;163
										HB

BLOW MOLDING, EXTRUSION AND INJECTION MOLDING

Supplier	Product Name	Grade	Material	Tensile Strength	Elongation at Break	Density	Impact Strength	Flexural Modulus	Deflection Temp.	UL94 Rating
Coumaron Phillips	K-Resin KR05	MI,GP,ST,TRP	—	7.5	1.01	3.7	—	2.1	0.8	—;163
FinaClear 520	HI,TF,PKG	—	—	7.6	1.01	3	200	1.8	15	—
FinaClear 530	LGE,MOL	—	—	11	1.02	3.6	200	1.9	0.3	149;—

EXTRUSION, BLOWN FILM

Supplier	Product Name	Grade	Material	Tensile Strength	Elongation at Break	Density	Impact Strength	Flexural Modulus	Deflection Temp.	UL94 Rating
Exxon Phillips	K-Resin KR10	MI,BP,MED,ST	—	7.5	1.01	3.7	—	2.1	0.8	—;163
										HB

EXTRUSION, SHEET

Supplier	Product Name	Grade	Material	Tensile Strength	Elongation at Break	Density	Impact Strength	Flexural Modulus	Deflection Temp.	UL94 Rating
Exxon Phillips	K-Resin KK38	GP,HI,ST,TRP	—	9	1	1.9	—	1.5	—	—;148
										HB

EXTRUSION AND INJECTION MOLDING

Supplier	Product Name	Grade	Material	Tensile Strength	Elongation at Break	Density	Impact Strength	Flexural Modulus	Deflection Temp.	UL94 Rating
Coumaron Phillips	K-Resin BK10	GP,HI,ST,TF	—	15	1.01	3.1	—	2.2	—	—;144
Futura	Stereon B40A-B42A	GP,TRP,BLN	—	8-15	0.96	2	800	—	—	—

INJECTION MOLDING

Supplier	Product Name	Grade	Material	Tensile Strength	Elongation at Break	Density	Impact Strength	Flexural Modulus	Deflection Temp.	UL94 Rating
Coumaron Phillips	K-Resin KR01	MI,GP,MED,PRN	—	8	1.01	4.4	—	2.2	—	—;170
	K-Resin KR03	MI,GP,MED,ST	—	7.5	1.01	3.7	—	2.1	0.8	—;163
	K-Resin KR03NW	GP,MED,PRN,TRP	—	7.5	1.01	3.7	—	2.1	0.8	—;168
	K-Resin KR62	GP,HGL,HI	—	6	1.02	4.1	—	2.7	3.5	—

Evidence Exhibit B

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Application of:	Docket No.: 26845-E
CHANG, CHIN-JUI et al.	Group Art Unit No.: 1772
Serial No.: 09/572,754	
Filed: May 16, 2000	
SOUND DEADENING AND STRUCTURAL REINFORCEMENT COMPOSITIONS AND METHODS OF USING THE SAME	Examiner: M. Parkerson

Assistant Commissioner of Patents
Washington, D.C. 20231

Sir:

DECLARATION 1

I, CHIN-JUI CHANG, declare and state as follows:

1. I am one of the inventors named on the above-referenced patent application. I am a group leader in the Structural Materials section of Sika Corporation.
2. Under my direction and control, the composition set forth in Table 1 of this Declaration was used to prepare a composition following the procedures described in the text of U.S. Patent No. 5,755,486 to Wytech which was cited by the Examiner in the second office action of this application. The percent expansion and compressive strength of the Wytech composition was determined and is reported in Table 1 below. The composition reported in Table 1 corresponds exactly to the preferred formulation of Table 1 in the Wytech '486 patent.

Ingredient	Trade Name	Composition
Epoxy Resin	Araldite 6010 ¹	50.45% ²
Acrylonitrile-Butadiene Rubber	Nipol 1312 LV	4.33%
Calcium Carbonate	Winnifil SPT	5.81%
Carbon Black	Black Powder	0.13%
Fumed Silica	Cab-O-Sil TS720	3.55%
High Strength Glass Spheres	B38	22.4%
Curing Agent	Dicyandiamine G	4.33%
Accelerator	Amiture UR	1.29%
Blowing Agent	Celogen OT	0.71%
Volume Expansion, %		44.0% ± 0.1
Compressive Strength, psi		1131.0 psi ± 143.2

¹ A liquid Bisphenol-A based epoxy resin.

² These percentages by weight correspond to the percentages by weight given in Table I of the Wycoch patent.

3. These data clearly demonstrate that the compositions taught by Wycoch do not exhibit sufficient volumetric expansion or compressive strength for use in structural reinforcement applications according to the invention. Wycoch does not disclose a reinforcing composition which has a percent expansion of from about 80-220% as is recited by claims 11, 16, and 18 of the patent application. Furthermore, Wycoch does not disclose a composition having a compressive strength of at least about 1400 psi as is recited by claim 12 and 17 of the patent application. By comparison, the present application discloses a compressive strength of at least about 1400 psi on page 8, line 24, and a percent expansion of

Serial No. 09/572,754

Docket No. 26845-3

from about 80-220% on page 8, line 17. A specific example is provided in Example 3 which provides a composition meeting all of the claim limitations of the independent claims.

I further declare that all statements made herein of my own knowledge are true and all statements made on information and belief are believed to be true, and further that these statements were made with the knowledge that wilful, false statements and the like are punishable by fine or imprisonment, or both, under § 1001 of Title 18 of the United States Code, and such wilful false statements may jeopardize the validity of any patents issued from the patent application.

Any additional fee which is due in connection with this Declaration should be applied against Deposit Account No. 19-0522.

Chin-Jui Chang

Date: 10-16-2002

Evidence Exhibit C

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Application of:	Docket No.: 26845-B
CHANG, CHIN-JUI et al.	Group Art Unit No.: 1772
Serial No.: 09/572,754	Examiner: M. Patterson
Filed: May 16, 2000	
SOUND DEADENING AND STRUCTURAL REINFORCEMENT COMPOSITIONS AND METHODS OF USING THE SAME	

Assistant Commissioner of Patents
Washington, D.C. 20231

Sir:

DECLARATION 2

I, CHIN-JUI CHANG, declare and state as follows:

1. I am one of the inventors named on the above-referenced patent application. I am a group leader in the Structural Materials section of Sika Corporation.
2. Polyisoprene and SBS Block copolymer are fundamentally dissimilar because polyisoprene is a diene rubber that is a vulcanizable elastomer while SBS Block copolymer is a thermoplastic elastomer. Vulcanizable elastomers must be crosslinked by heating to provide strength and toughness, and are soft at room temperature. SBS Block copolymer can be handled like a thermoplastic elastomer and provides strength and toughness at room temperature without vulcanization. Upon cooling, SBS Block copolymer becomes hard and plastic. The structures of polyisoprene and SBS Block copolymer are as follows:

Polyisoprene

SBS Block copolymer

3. As is evident from these structures, SBS Block copolymer and polyisoprene are structurally very dissimilar. The structural characteristics of the SBS Block copolymer and polyisoprene clearly impart functional properties that are not consonant with one another. This is critical to an appreciation of why polyisoprene and SBS Block copolymer are not interchangeable for use in the present application. SBS Block copolymer is not covalently bonded, while polyisoprene is covalently bonded. Polyisoprene must undergo a chemical process of crosslinking called vulcanization which results in a homopolymer having covalent bonds. The polymer process for SBS Block copolymer is reversible unlike that for vulcanized polyisoprene. In contrast, SBS Block copolymer is unique because it is not chemically crosslinked. Therefore, it is more easily processed and can be shaped more readily. By virtue of being a thermoplastic elastomer, SBS Block copolymer has two distinct phases that cause it to become fluid and rubbery at higher temperatures and hard and plastic at lower temperatures, making SBS Block copolymer ideal for use in structural foams for reinforcing hollow bodies. Polyisoprene lacks such characteristics and properties.

4. I further declare that all statements made herein of my own knowledge are true and all statements made on information and belief are believed to be true, and further that these statements were made with the knowledge that wilful, false statements and the like are punishable by fine or imprisonment, or both, under § 1001 of Title 18 of the United States Code, and such wilful false statements may jeopardize the validity of any patents issued from the patent application.

Serial No. 09/572,754

Docket No. 25845-B

Any additional fee which is due in connection with this Declaration, should be applied against
Deposit Account No. 19-0522.

Chin-Jui Chang

Date: 10-16-2002

X. RELATED PROCEEDINGS APPENDIX

No related proceedings are referenced in Section II above. There are no decisions in related proceedings to include. Thus, this Appendix is included, but has no contents.