Matlab 6^{th} Homework

庄震丰 22920182204393

NOV.
$$7^{th}$$
, 2019

1 Limit

1.1 Plot Signal Curves

$$(2 - e^{(-t)})u(t)$$

 $t[u(t) - u(t-1)]$
 $[1 + cos(\pi t)][u(t) - u(t-2)]$
 $u(cos(t))$

1.2 Analysis

To generate step function u(t), use **stepfun()** or **heaviside()**.

1.3 Codes and Result

Question 1

ezplot(
$$'(2-exp(-t))$$
.*stepfun(t,0) $'$,[-3,3]);

Result

Question 2

```
ezplot('t.*(stepfun(t,0)-stepfun(t,1))',[-3,3]);
```

\mathbf{Result}

Question 3

```
\begin{array}{ll} & {\rm ezplot}\left(\ '\,(\,{\rm stepfun}\,(\,{\rm t}\,,0\,)\,-\,{\rm stepfun}\,(\,{\rm t}\,,2\,)\,\right).\,^*\big(1+\cos\left(\,{\rm pi}\,^*t\,\right)\,)\,\,'\,\,,[\,-3\,,3]\big)\,;\\ & {\rm 2} & {\rm grid} & {\rm on}\,;\\ & {\rm 3} & {\rm title}\left(\ '\,(1+\cos(\pi t))(u(t)-u(t-2))\,'\,\,,\,'\,{\rm Interpreter}\,'\,\,,\,'\,{\rm Latex}\,'\,\right)\,; \end{array}
```

Result

Question 4

```
t = -10:0.01:10;
y=heaviside(cos(t));
plot(t,y)
grid on;
hold on;
title('u(cos(t))');
xlabel('t');
ylabel('y')
```

Result

2 complex Plot

2.1 Description

Draw the real, imaginary, mold, and spoke angle of the following complex signals.

$$f(t) = 2 + e^{j\frac{\pi}{4}t} + e^{j\frac{\pi}{2}t}$$

2.2 Anaylsis

use function real(),imag(),angle(),abs().

2.3 Code and Result

```
1 t=-3:0.01:3;
2 f=2+exp(j*pi/4*t)+exp(j*pi/2*t);
3 subplot(2,2,1);
4 plot(t,real(f)); title('real'); grid on;
5 subplot(2,2,2);
6 plot(t,imag(f)); title('imag'); grid on;
7 subplot(2,2,3);
8 plot(t,abs(f)); title('abs'); grid on;
9 subplot(2,2,4);
10 plot(t,angle(f)); title('angle'); grid on;
```

Result

3 Rectangular pulse signal

3.1 Description

Produce a cycle rectangular pulse signal with a amplitude of 1, a period of 1, and a duty cycle of 0.5

3.2 Anaylsis

Use function square(2*pi*T,duty)

3.3 Code and Result

```
t = -4:0.01:4;
y=square(2*pi*t,50);
plot(t,y);
hold on;
grid on;
title('square');
xlabel('t');
ylabel('square');
axis([-4,4,-1.1,1.1]);
```

Result

4 Plot signal f

4.1 Description

Plot
$$f(t) = \frac{\sin \pi t}{t}$$
 and $f(2t)$ $f(1-0.5t)$.

4.2 Anaylsis

Use explot(), $\operatorname{sinc}(\mathbf{T}^*\mathbf{2}^*\pi)$.

4.3 Code and Result

```
syms t
f=sinc(t)*pi;

ezplot(f);
hold on;

ezplot(subs(f,t,2*t));

ezplot(subs(f,t,1-0.5*t));

grid on;

legend('f','f(2t)','f(1-0.5t)')
```

Result

