

Strand-based Hair System

- A work in progress since 'The Heretic'
 - We used just stubble back then
- We needed a solution for 'Enemies'
 - Actress had long flowing hair
 - Wanted workflow for rapid iteration
 - No baking
 - Real-time simulation
- Encouraged by other teams' results
 - Frostbite video

Strand-based Hair System

- No prior solution offered by Unity
 - Let's build something nice
 - Something complete and user-facing
- Requirements grew with work on the demo
 - "Long hair to match the actress"
 - "Adding some curls sure would be nice"
 - "We're going to need to preserve clumps as well"
- Led to configurable system
 - Toggle features based on application needs

Overview

Overview

Simulation

- Iterative strand solver
 - Regular PBD [Müller et al. 2006]
 - Update positions to satisfy constraints
 - Update velocities from changes in positions
- Volume data
 - Splat particles to grid [Petrovic et al. 2005]
 - Iterative pressure solve [Harris 2004]
 - Poisson equation with divergence on rhs.
 - Modify divergence to include source term
 - Gives us density control and soft hair-hair interaction similar to [McAdams et al. 2009]

Simulation Frame

Simulation Frame

- Strands are pre-processed for the solver to assume certain things
 - Ordered by earliest LOD (that they are primary strands in)
 - Uniform number of particles per strand within group
 - Uniform particle spacing within strand
 - Particle data interleaved

Particle buffers

- Position, updated per iteration
- Velocity, updated per timestep
- Rest pose root offset, written on init
- Rest pose frame delta, written on init

M particles per strand, N strands

- Constraints are solved within a window
 - System only dealing with strands
 - Relationships are implicit
- Solver window
 - Initialized below the root of the strand
 - Moves down strand

- Window size depends on active set of constraints
 - Constraints in window affect the same particle a fixed number of times down the strand
 - E.g. particle-particle distance constraint will affect each particle twice
- Compile-time variants for window size + feature flags for individual constraints
- Simpler setup => less we try to carry

Supported constraints

- Boundary w/ friction [Macklin et al. 2014]
- Distance particle-particle [Müller et al. 2006]
- Distance particle-root [Kim et al. 2012]
- Distance FTL [Müller et al. 2012]
- Local bend limiter [Kelager et al. 2010]
- Local shape [Kugelstadt and Schömer 2016]
- Global rotation (local shape with bias)
- Order of evaluation is fixed

- What about orientation?
 - Fundamental to local shape
 - Resisting to load/store more data per particle
- ... local shape is rather important

- What about orientation?
 - Fundamental to local shape
 - Resisting to load/store more data per particle
- Build frame as we move down the strand
 - Added window always has size 2

- What about orientation?
 - Fundamental to local shape
 - Resisting to load/store more data per particle
 - Build frame as we move down the strand
 - Added window always has size 2
 - Position-only constraints handled first

- What about orientation?
 - Fundamental to local shape
 - Resisting to load/store more data per particle
- Build frame as we move down the strand
 - Added window always has size 2
 - Position-only constraints handled first
 - Then
 - $dq = qfromto(qmul(q'_{2N}, e^3), p'_{3N} p''_{2N})$
 - $q_{3N} = qmul(dq, q'_{2N})$
 - (e^3 = forward)

- What about orientation?
 - Fundamental to local shape
 - Resisting to load/store more data per particle
- Build frame as we move down the strand
 - Added window always has size 2
 - Position-only constraints handled first
 - Then
 - $dq = qfromto(qmul(q'_{2N}, e^3), p'_{3N} p''_{2N})$
 - $q_{3N} = qmul(dq, q'_{2N})$

- What about orientation?
 - Fundamental to local shape
 - Resisting to load/store more data per particle
- Build frame as we move down the strand
 - Added window always has size 2
 - Position-only constraints handled first
 - Then
 - dq = qfromto(qmul(q'_{2N} , e^3), p'_{3N} - p''_{2N})
 - $q_{3N} = qmul(dq, q'_{2N})$
 - Still storing just position

- Some immediate downsides
 - Always working with rotation minimizing frame
 - Twist not preserved between iterations/steps
 - Can't twist strands to make them coil
 - Can't render e.g. textured tubes that visibly twist

- Some immediate downsides
 - Always working with rotation minimizing frame
 - Twist not preserved between iterations/steps
 - Can't twist strands to make them coil
 - Can't render e.g. textured tubes that visibly twist
- More problematic: Stability Qp
 - [Kugelstadt et al. 2016] suggest not solving in sequential order => would require storing (q, w)

- Some immediate downsides
 - Always working with rotation minimizing frame
 - Twist not preserved between iterations/steps
 - Can't twist strands to make them coil
 - Can't render e.g. textured tubes that visibly twist
- More problematic: Stability
 - [Kugelstadt et al. 2016] suggest not solving in sequential order => would require storing (q, w)
 - Bring out the workarounds
 - Angular damping, bias towards reference, composition

Angular damping

- Per-segment during velocity update
 - w = angular(r, v)
 - $w_{damp} = decay(w)$
 - dv = linear(r, w_{damp} w)

Bias towards reference

- Internally, local shape is a composition of two constraints defined by [Kugelstadt et al. 2016]
 - bend-twist(q_a,q_b,w_a,w_b, ...)
 - stretch-shear(p_a,p_h,q, ...)
- $w_a = 0.5$ makes q_a more resistant to change

Composition of

- bend-twist(q_a,q_b, ...)
- stretch-shear(p_a,p_b,q, ...)

solve local shape

We have two modes

- "Forward"
- "Stitched"

- "Forward"
 - bend-twist(q_{2N},q_{3N}, ...)
 - stretch-shear(p_{2N},p_{3N},q_{3N}, ...)

- "Forward"
 - bend-twist(q_{2N},q_{3N}, ...)
 - stretch-shear(p_{2N},p_{3N},q_{3N}, ...)

- "Forward"
 - bend-twist(q_{2N},q_{3N}, ...)
 - stretch-shear(p_{2N} , p_{3N} , q_{3N} , ...)

- "Forward"
 - bend-twist(q_{2N},q_{3N}, ...)
 - stretch-shear(p_{2N} , p_{3N} , q_{3N} , ...)

- "Stitched"
 - stretch-shear($p_{2N}, p_{3N}, q_{3N}, ...$)
 - stretch-shear(p_N,p_{2N},q_{2N}, ...)
 - bend-twist(q_{2N},q_{3N}, ...)

- "Stitched"
 - stretch-shear(p_{2N} , p_{3N} , q_{3N} , ...)
 - stretch-shear($p_N, p_{2N}, q_{2N}, ...$)
 - bend-twist(q_{2N},q_{3N}, ...)

- "Stitched"
 - stretch-shear(p_{2N} , p_{3N} , q_{3N} , ...)
 - stretch-shear(p_N,p_{2N},q_{2N}, ...)
 - bend-twist(q_{2N},q_{3N}, ...)

- "Stitched"
 - stretch-shear($p_{2N}, p_{3N}, q_{3N}, ...$)
 - stretch-shear(p_N,p_{2N},q_{2N}, ...)
 - bend-twist(q_{2N},q_{3N}, ...)

- "Forward"
 - First / immediate approach
 - Carries information only forward
 - Thought maybe we can do better
- "Stitched"
 - After parallel implementations
 - Carries information back and forth within window (hence the name)
 - Converges faster

Clustering

- LOD data from just curves
 - Cluster roots, full strands, three-point simplified
 - Centroids => primary strands of single LOD
- Artistic use
 - Initially we were just simulating all the strands
 - No physical model of strands clumping together
 - Clumps easily diffusing != artistic vision
 - Simulating reduced set helps preserve clumps
 - Also cheaper
- Scalability
 - Primary strands carry volume of cluster

Clustering

- Ordering simulated interpolated

- Simulation fully supports the data
 - Volume and collisions intact for lower LODs
 - Enables higher density grooms without completely breaking the budget
- See the 'Lion' demo
 - ~2M strands
 - Smart use of clustering
 - ~4ms sim. on PS5 (w/ volume)

References

- [Bender et al. 2015] Position-Based Simulation Methods in Computer Graphics
- [Bridson and Müller-Fischer 2007] Fluid Simulation SIGGRAPH 2007 Course Notes
- [Gibou et al. 2002] A Second Order Accurate Symmetric Discretization of the Poisson Equation on Irregular Domains
- [Harris 2004] Fast Fluid Dynamics Simulation on the GPU
- [Kelager et al. 2010] A Triangle Bending Constraint Model for Position-Based Dynamics
- [Kim et al. 2012] Long Range Attachments A Method to Simulate Inextensible Clothing in Computer Games
- [Kugelstadt and Schömer 2016] Position and Orientation Based Cosserat Rods
- [Losasso et al. 2008] Two-Way Coupled SPH and Particle Level Set Fluid Simulation
- [Macklin et al. 2014] Unified particle physics for real-time application
- [Macklin et al. 2019] Small Steps in Physics Simulation
- [McAdams et al. 2009] Detail Preserving Continuum Simulation of Straight Hair
- [Müller et al. 2006] Position Based Dynamics
- [Müller et al. 2012] Fast Simulation of Inextensible Hair and Fur
- [Petrovic et al. 2005] Volumetric Methods for Simulation and Rendering of Hair
- [Zhu and Bridson 2005] Animating Sand as a Fluid