Theory of Computation, Fall 2023 Quiz 3 Solutions

Q1. In class, we have proved that EQ_{DFA} is recursive. Suppose Turing machine M_{EQ} decides

$$EQ_{DFA} = \{ M_1 M_2 : M_1 \text{ and } M_2 \text{ are two DFAs with } L(M_1) = L(M_2) \}.$$

To prove that S is recursive, it suffices to reduce S to EQ_{DFA} . We construct a Turing machine M_S that decides S as follows.

$$M_S = \text{ on input "}M":$$

- 1. construct a DFA M_R with $L(M_R) = \{w^R : w \in L(M)\}\$
- 2. run M_{EQ} on "M"" M_R "
- 3. return the result of M_{EQ}

This completes the proof.

Q2. Let $L = \{"M" : "M" \text{ is a Turing machine that halts on some input}\}$. In class, we have proved that L is not recursive. To prove that A is not recursive, it suffices to reduce L to A. Suppose there is a Turing machine M_A decides A. Then we can construct a Turing machine M_L that decides L as follows.

$$M_L = \text{ on input "}M":$$

- 1. construct a Turing machine M_{all} that halts on every input
- 2. run M_A on "M"" M_{all} "
- 3. return the result of M_A

This completes the proof.

Q3. We show that A is recursively enumerable by presenting a Turing machine M_A to semidecides A. We label the strings in Σ^* as s_1, s_2, \cdots in increasing length.

$$M_A = \text{ on input "}M$$
":

- 1. for $i = 2023, 2024, \cdots$
- 2. for $s = s_1, s_2, \dots, s_i$
- 3. if s is a palindrome
- 4. $\operatorname{run} M \text{ on } s \text{ for } i \text{ steps}$
- 5. if M halts on at least 2023 palindromes
- 6. halt

This completes the proof.

Q4. Bonus

- (a) Firstly, we proved that if $B \leq A$ then B is recursive. In class we have proved $A_{CFG} = \{"G""w" : G \text{ is a CFG that generates } w\}$ is recursive. There is a CGF G_A generates A, so $A \leq A_{CFG}$ by $f(w) = "G_A""w"$, thus A is recursive, then B is recursive.
- (b) Secondly, we proved that if B is recursive, then $B \leq A$. We can construct a reduction function f from B to A as follows. Here, B is recursive, so f(w) is computable.

If
$$w \in B$$
, $f(w) = 01 \in A$,
If $w \notin B$, $f(w) = 00 \notin A$.

Then $w \in B$ iff $f(w) \in A$. Thus, $B \leq A$.