Alice Amaral José Ribeiro Marcos Pereira

UnB - Universidade de Brasília IFD - Instituto de Física Métodos Computacionais A - 1º/2018

- Teoria

- 6 Animações

- Teoria
- 4 Algoritmo

- 6 Animações

- Teoria
- 4 Algoritmo
- Programa
- 6 Animações

- Teoria
- 4 Algoritmo
- Operation of the property o
- Resultados
- 6 Animações

- Teoria
- 4 Algoritmo
- Operation of the property o
- Resultados
- 4 Animações

Abordagem Teórica

Potencial gravitacional

$$\Phi_1 = -G \frac{m_1}{\left[(x_2 - x_1)^2 + (y_2 - y_1)^2 \right]^{\frac{1}{2}}}$$
 (1)

Energia potencial

$$U_{12} = m_2 \Phi_1 \tag{2}$$

logo, se

$$\mathbf{F}_{ij} = -\nabla U_{ij} = -m_j \nabla \Phi_i$$

$$-\nabla U_{12} = -G \frac{m_1 m_2 \mathbf{r}_{12}}{\left[\left(x_2 - x_1 \right)^2 + \left(y_2 - y_1 \right)^2 \right]^{\frac{3}{2}}} = \nabla U_{21}$$

Os três corpos interagem entre si perturbando as trajetórias:

$$\mathbf{F}_{12} = -G \frac{\mathbf{r}_{12}}{\left[\left(x_2 - x_1 \right)^2 + \left(y_2 - y_1 \right)^2 \right]^{\frac{3}{2}}} = -\mathbf{F}_{21}.$$

• Interação entre 2 e 3:

$$\mathbf{F}_{32} = -G \frac{\mathbf{r}_{32}}{\left[\left(x_3 - x_2 \right)^2 + \left(y_3 - y_2 \right)^2 \right]^{\frac{3}{2}}} = -\mathbf{F}_{23} .$$

• Interação entre 1 e 3:

$$\mathbf{F}_{13} = -G \frac{\mathbf{r}_{13}}{\left[\left(x_3 - x_1 \right)^2 + \left(y_3 - y_1 \right)^2 \right]^{\frac{3}{2}}} = -\mathbf{F}_{31} \,.$$

Os três corpos interagem entre si perturbando as trajetórias:

Interação entre 1 e 2:

$$\mathbf{F}_{12} = -G \frac{\mathbf{r}_{12}}{\left[\left(x_2 - x_1 \right)^2 + \left(y_2 - y_1 \right)^2 \right]^{\frac{3}{2}}} = -\mathbf{F}_{21}.$$

• Interação entre 2 e 3:

$$\mathbf{F}_{32} = -G \frac{\mathbf{r}_{32}}{\left[\left(x_3 - x_2 \right)^2 + \left(y_3 - y_2 \right)^2 \right]^{\frac{3}{2}}} = -\mathbf{F}_{23} .$$

• Interação entre 1 e 3:

$$\mathbf{F}_{13} = -G \frac{\mathbf{r}_{13}}{\left[\left(x_3 - x_1 \right)^2 + \left(y_3 - y_1 \right)^2 \right]^{\frac{3}{2}}} = -\mathbf{F}_{31} \,.$$

Os três corpos interagem entre si perturbando as trajetórias:

Interação entre 1 e 2:

$$\mathbf{F}_{12} = -G \frac{\mathbf{r}_{12}}{\left[\left(x_2 - x_1 \right)^2 + \left(y_2 - y_1 \right)^2 \right]^{\frac{3}{2}}} = -\mathbf{F}_{21}.$$

Interação entre 2 e 3:

$$\mathbf{F}_{32} = -G \frac{\mathbf{r}_{32}}{\left[\left(x_3 - x_2 \right)^2 + \left(y_3 - y_2 \right)^2 \right]^{\frac{3}{2}}} = -\mathbf{F}_{23}.$$

• Interação entre 1 e 3:

$$\mathbf{F}_{13} = -G \frac{\mathbf{r}_{13}}{\left[\left(x_3 - x_1 \right)^2 + \left(y_3 - y_1 \right)^2 \right]^{\frac{3}{2}}} = -\mathbf{F}_{31} .$$

Os três corpos interagem entre si perturbando as trajetórias:

Interação entre 1 e 2:

$$\mathbf{F}_{12} = -G \frac{\mathbf{r}_{12}}{\left[\left(x_2 - x_1 \right)^2 + \left(y_2 - y_1 \right)^2 \right]^{\frac{3}{2}}} = -\mathbf{F}_{21}.$$

Interação entre 2 e 3:

$$\mathbf{F}_{32} = -G \frac{\mathbf{r}_{32}}{\left[\left(x_3 - x_2 \right)^2 + \left(y_3 - y_2 \right)^2 \right]^{\frac{3}{2}}} = -\mathbf{F}_{23}.$$

Interação entre 1 e 3:

$$\mathbf{F}_{13} = -G \frac{\mathbf{r}_{13}}{\left[(x_3 - x_1)^2 + (y_3 - y_1)^2 \right]^{\frac{3}{2}}} = -\mathbf{F}_{31}.$$

Matriz de co-ocorrência com d = 1 e $\theta = 0^{\circ}$:

	2		1	
1	2	1		
3	1		2	3
1	2	3		3
				1

		1	2	
		2	1	1
1	2		2	1
2	1	1		2
3	2	1	1	

	0	1	2	3
0	0.15	0.10	0.05	0.05
1	0.10	0.00	0.10	0.05
2	0.05	0.05	0.00	0.10
3	0.10	0.05	0.05	0.00

Matriz de co-ocorrência com d = 1 e $\theta = 0^{\circ}$:

3	2	0	1	0
1	2	1	3	0
3	1	0	2	3
1	2	3	0	3
0	0	0	0	1

		1	2	
		2	1	1
1	2		2	1
2	1	1		2
3	2	1	1	

	0	1	2	3
0	0.15	0.10	0.05	0.05
1	0.10	0.00	0.10	0.05
2	0.05	0.05	0.00	0.10
3	0.10	0.05	0.05	0.00

Matriz de co-ocorrência com d=1 e $\theta=0^\circ$:

3	2	0	1	0
1	2	1	3	0
3	1	0	2	3
1	2	3	0	3
0	0	0	0	1

	0	1	2	3
0	3	2	1	1
1	2	0	2	1
2	1	1	0	2
3	3 2 1 2	1	1	0

	0	1	2	3
0	0.15	0.10	0.05	0.05
1	0.10	0.00	0.10	0.05
2	0.05	0.05	0.00	0.10
3	0.10	0.05	0.05	0.00

Matriz de co-ocorrência com d=1 e $\theta=0^\circ$:

3	2	0	1	0
1	2	1	3	0
3	1	0	2	3
1	2	3	0	3
0	0	0	0	1

	0	1	2	3
0	3	2	1	1
1	2	0	2	1
2	1	1	0	2
3	3 2 1 2	1	1	0

	0	1	2	3
0	0.15	0.10	0.05	0.05
1	0.10	0.10 0.00 0.05 0.05	0.10	0.05
2	0.05	0.05	0.00	0.10
3	0.10	0.05	0.05	0.00

$$P(i,j,d,135^{\circ}) = \#\{\{(k,l),(m,n)\} \subset S \mid (k-m=d,l-n=d) \text{ ou } (k-m=-d,l-n=-d), f(k,l)=i, f(m,n)=j\}.$$

Pode-se normalizar os elementos da matriz de co-ocorrência para que representem probabilidades fazendo:

$$p(i,j) = \frac{P(i,j)}{\prod_{\substack{H_g \ H_g \\ p=0 \ g=0}} P(p,q)}$$

sendo H_{σ} o nível de cinza máximo na imagem.

$$P(i,j,d,135^{\circ}) = \#\{\{(k,l),(m,n)\} \subset S \mid (k-m=d,l-n=d) \text{ ou } (k-m=-d,l-n=-d), f(k,l)=i, f(m,n)=j\}.$$

Pode-se normalizar os elementos da matriz de co-ocorrência para que representem probabilidades fazendo:

$$p(i,j) = \frac{P(i,j)}{\prod_{\substack{H_g \ p=0 \ q=0}}^{H_g \ H_g} P(p,q)},$$

$$P(i,j,d,135^{\circ}) = \#\{\{(k,l),(m,n)\} \subset S \mid (k-m=d,l-n=d) \text{ ou } (k-m=-d,l-n=-d), f(k,l)=i, f(m,n)=j\}.$$

Pode-se normalizar os elementos da matriz de co-ocorrência para que representem probabilidades fazendo:

$$p(i,j) = \frac{P(i,j)}{\underset{p=0}{\sum} \sum_{q=0}^{\infty} P(p,q)},$$

$$P(i,j,d,135^{\circ}) = \#\{\{(k,l),(m,n)\} \subset S \mid (k-m=d,l-n=d) \text{ ou } (k-m=-d,l-n=-d), f(k,l)=i, f(m,n)=j\}.$$

Pode-se normalizar os elementos da matriz de co-ocorrência para que representem probabilidades fazendo:

$$p(i,j) = \frac{P(i,j)}{\underset{p=0}{\sum} \sum_{q=0}^{\infty} P(p,q)},$$

sendo H_g o nível de cinza máximo na imagem.

Tipos de Sinais – Exemplos

Uma imagem pode ser vista como um sinal que é, por sua vez, uma função de duas variáveis espaciais: x e y.

Referências I