# Shenzhen Meihua Electonic Technology Co., Ltd.

Report No.: TB-FCC110435 Page: 1 of 60

# **FCC Radio Test Report**

FCC ID: ZBZFL-2000G

: TB-FCC110435 Report No.

**Applicant** : ShenZhen C2S Technology Co.,Ltd.

**Equipment Under Test (EUT)** 

**EUT Name** : Vehicle GPS Tracking Terminal

Model No. : FL-2000G

Serial No. : FL-2000N, FL-2000F, FL-2000L

**Brand Name** : C2STEK

**Receipt Date** : 2011-02-09

**Test Date** : 2010-02-10 to 2010-03-01

**Issue Date** : 2011-03-04

FCC Part 2

Standards : FCC Part 22 Subpart H

FCC Part 24 Subpart E

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above,

The EUT technically complies with the FCC requirements

**Test/Witness Engineer** 

Ray Lair Lacky Wong **Approved& Authorized** 

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

## **Contents**

| COI | N1EN15                                                       |            |
|-----|--------------------------------------------------------------|------------|
| 1.  | GENERAL INFORMATION ABOUT EUT                                |            |
|     | 1.1 Client Information                                       |            |
|     | 1.2 General Description of EUT (Equipment Under Test)        |            |
|     | 1.3 Block Diagram Showing The Configuration of System Tested |            |
|     | 1.4 Description of Support Units                             |            |
|     | 1.5 Description of Test Mode                                 | 5          |
|     | 1.6 Test Facility                                            | <i>.</i>   |
| 2.  | TEST SUMMARY                                                 |            |
| 3.  | FREQUENCIES                                                  | 8          |
|     | 4.1 Test Standard and Requirement                            |            |
|     | 4.2 Test Setup                                               |            |
|     | 4.3 Test Procedure                                           | 9          |
|     | 4.4 EUT Operating Condition                                  |            |
|     | 4.5 Test Equipment                                           | 9          |
| 4.  | CONDUCTED RF OUTPUT POWER                                    | 12         |
|     | 5.1 Test Standard and Limit                                  | 12         |
|     | 5.2 Test Setup                                               | 12         |
|     | 5.3 Test Procedure                                           | 12         |
|     | 5.4 EUT Operating Condition                                  | 12         |
|     | 5.5 Test Equipment                                           | 12         |
| 5.  | RADIATED OUTPUT POWER                                        | 29         |
|     | 6.1 Test Standard and Limit                                  | 29         |
|     | 6.2 Test Setup                                               | 29         |
|     | 6.3 Test Procedure                                           | 29         |
|     | 6.4 EUT Operating Condition                                  |            |
|     | 6.5 Test Equipment                                           |            |
|     | 6.6 Test Data                                                | 31         |
| 6.  | OCCUPIED BANDWIDTH                                           | 33         |
|     | 7.1 Test Standard and Limit                                  |            |
|     | 7.2 Test Setup                                               |            |
|     | 7.3 Test Procedure                                           |            |
|     | 7.4 EUT Operating Condition                                  |            |
|     | 7.5 Test Equipment                                           |            |
| 7.  | CONDUCTED OUT OF BAND EMISSIONS                              | <b>4</b> 1 |
|     | 8.1 Test Standard and Limit                                  | 41         |
|     | 8.2 Test Setup                                               |            |
|     | 8.3 Test Procedure                                           | 41         |

|    | 8.4 EUT Operating Condition    | 41 |
|----|--------------------------------|----|
|    | 8.5 Test Equipment             | 41 |
|    | 8.6 Test Data                  |    |
| 8. | BAND EDGE TEST                 | 53 |
|    | 9.1 Test Standard and Limit    | 53 |
|    | 9.2 Test Setup                 | 53 |
|    | 9.3 Test Procedure             |    |
|    | 9.4 EUT Operating Condition    | 53 |
|    | 9.5 Test Equipment             | 53 |
|    | 8.6 Test Data                  | 54 |
| 9. | RADIATED OUT BAND OF EMISSIONS | 57 |
|    | 10.1 Test Standard and Limit   | 57 |
|    | 10.2 Test Setup                | 57 |
|    | 10.3 Test Procedure            |    |
|    | 10.4 EUT Operating Condition   | 58 |
|    | 10.5 Test Equipment            | 58 |
|    | 10.6 Test Data                 | 58 |

Report No.: TB-FCC107794
Page: 4 of 60

## 1. General Information about EUT

## 1.1 Client Information

| Applicant    | : | ShenZhen C2S Technology Co.,Ltd.                                                 |
|--------------|---|----------------------------------------------------------------------------------|
| Address      | : | E2008, Eastern Tower of Nanshan Software Park, Nanshan District, Shenzhen, China |
| Manufacturer | : | ShenZhen C2S Technology Co.,Ltd.                                                 |
| Address      | : | E2008, Eastern Tower of Nanshan Software Park, Nanshan District, Shenzhen, China |

## 1.2 General Description of EUT (Equipment Under Test)

| EUT Name            | : | Vehicle GPS Tracking Terminal                      |                                            |  |
|---------------------|---|----------------------------------------------------|--------------------------------------------|--|
| Model No.           | : | FL-2000G, FL-2000N, FL-2000F, FL-2000L             |                                            |  |
| Model               |   | The different models ar                            | e identical in schematic, structure and    |  |
| Difference          | : | critical components, the on                        | ly different is the different accessories. |  |
|                     |   | Operation Frequency:<br>GSM/GPRS 850/900/1800/1900 |                                            |  |
|                     |   | GSM 850 Power:                                     | Cond:31.67 dBm ERP:31.52 dBm               |  |
| Product Description |   | GPRS 850 Power:                                    | Cond:31.13 dBm ERP:30.98 dBm               |  |
| Description         | • | GSM 1900 Power:                                    | Cond:29.08 dBm EIRP:31.08 dBm              |  |
|                     |   | GPRS 1900 Power:                                   | Cond:28.71 dBm EIRP:30.71 dBm              |  |
|                     |   | Antenna Gain: 2 dBi Note(2)                        |                                            |  |
|                     |   | Modulation Type: GMSK                              |                                            |  |
| FCC Operating       | : | 824.2 MHz~848.8 MHz                                |                                            |  |
| Frequency           |   | 1850.2 MHz~1909.8 MHz                              |                                            |  |
| Power Supply        | : | DC Voltage supplied from DC Supply                 |                                            |  |
|                     |   | DC Voltage supplied from Li-ion batter             |                                            |  |
| <b>Power Rating</b> | : | DC 12V from DC Supply                              |                                            |  |
|                     |   | DC 3.7V from Li-ion battery                        |                                            |  |
| Connecting I/O      | : | Please refer to the User's Manual                  |                                            |  |
| Port(S)             |   |                                                    |                                            |  |

#### Note:

- (1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (2) Antenna Description:

Report No.: TB-FCC107794
Page: 5 of 60

| Ant | Brand             | Model Name     | Antenna Type | Gain (dBi) |
|-----|-------------------|----------------|--------------|------------|
| 01  | GAOKE<br>ZHONGSHI | GKZS-GSM-SMAZ5 | External Ant | 2          |

## 1.3 Block Diagram Showing the Configuration of System Tested



The above block diagram of setup is the normal mode. And more detail please refer to the test setup of each test item of bellow.

## 1.4 Description of Support Units

The EUT has been tested as an independent unit.

## 1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

| Operating Mode |         |                |  |  |
|----------------|---------|----------------|--|--|
| Mode           | Channel | Frequency(MHz) |  |  |
|                | 128     | 824.2          |  |  |
| GSM 850        | 190     | 836.6          |  |  |
|                | 251     | 848.8          |  |  |
|                | 512     | 1850.2         |  |  |
| PCS 1900       | 661     | 1880.0         |  |  |
|                | 810     | 1909.8         |  |  |

Report No.: TB-FCC107794
Page: 6 of 60

| Pre-scanning test Mode | Description                       |
|------------------------|-----------------------------------|
| GSM 850                | highest , middle, lowest channels |
| GPRS 850               | highest, middle, lowest channels  |
| GSM 1900               | highest , middle, lowest channels |
| GPRS 1900              | highest, middle, lowest channels  |
| Final test Mode        | Description                       |
| GSM 850                | highest , middle, lowest channels |
| GSM 1900               | highest, middle, lowest channels  |

#### Note:

- (1) The measurements are performed at the highest, middle, lowest available channels.
- (2) During the testing procedure, the EUT is in link mode with base station emulator at maximum power level in each test mode.
- (3) The EUT has GSM, GPRS functions, and after pre-testing, GSM function is the worst case for all the emission tests.

### 1.6 Test Facility

The tests were perform at:

Bontek Compliance Testing Laboratory Ltd

1/F., Block East H-3, OCT Eastern Ind. Zone, Qiaocheng East Road, Nanshan, Shenzhen, 518055 China

Tel: 86-755-86337020 Fax: 86-755-86337028

At the time of testing, the Laboratory is accredited. It is listed in the United States of American Federal Communications Commission (FCC), and the registration number is 338263.

The test report was fulfilled by Shenzhen Meihua Electronic Co., Ltd. Shenzhen Meihua Electronic Technology Co., Ltd. is assumed full responsibility for the accuracy and completeness of these measurements results.

Report No.: TB-FCC107794
Page: 7 of 60

# 2. Test Summary

| Test Standards and Test Results                  |                                                                               |      |     |  |  |
|--------------------------------------------------|-------------------------------------------------------------------------------|------|-----|--|--|
| Standard                                         | Standard Document Title                                                       |      |     |  |  |
| FCC Part 2<br>(10-1-05 Edition)                  | Frequency Allocations and Radio Treaty Matters; General Rules and Regulations |      |     |  |  |
| FCC Part 22<br>(10-1-05 Edition)                 | Public Mobile Services                                                        |      |     |  |  |
| FCC Part 24<br>(10-1-05 Edition)                 | Personal Communications Services                                              |      |     |  |  |
| Standard Section                                 | Test Item Judgment Remark                                                     |      |     |  |  |
| 2.1046                                           | Conducted RF Output Power                                                     | PASS | N/A |  |  |
| 2.1049; 22.917;<br>24.238                        | 20 dB Occupied Bandwidth                                                      | PASS | N/A |  |  |
| 2.1055; 22.355;<br>24.235                        | Frequency Stability                                                           | PASS | N/A |  |  |
| 2.1051; 2.1057;<br>22.917; 24.238                | Conducted Out of Band<br>Emissions                                            | PASS | N/A |  |  |
| 2.1051; 2.1057;<br>22.917; 24.238                | Band Edge                                                                     | PASS | N/A |  |  |
| 22.913; 24.238                                   | Transmitter Radiated Power (EIRP/ERP)                                         | PASS | N/A |  |  |
| 2.1053; 2.1057;<br>22.917; 24.238                | Radiated Out of Band<br>Emissions                                             | PASS | N/A |  |  |
| Note: N/A is an abbreviation for Not Applicable. |                                                                               |      |     |  |  |

Report No.: TB-FCC107794 Page: 8 of 60

## 3. Frequency Stability

### 4.1 Test Standard and Requirement

#### 4.1.1 Test Standard

FCC Part 2.1055

FCC Part 22.355

FCC Part 24.235

#### 4.1.2 Requirement

According to FCC section 22.355 and FCC section 24.235, the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. According to FCC section 2.1055, the test conditions are:

### (1) Temperature:

The temperature is varied from -30  $^{\circ}$ C to +50  $^{\circ}$ C at intervals of not more than 10  $^{\circ}$ C.

### (2) Primary Supply Voltage:

For hand carried battery powered equipment, the primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacture. The supply voltage shall be measured at input to the cable normally provide with the equipment, or at the power supply terminals if cables are not normally provided.

## 4.2 Test Setup

#### For Temperature Test:



### For Voltage Test:



Report No.: TB-FCC107794
Page: 9 of 60

#### 4.3 Test Procedure

Test Procedures for Temperature Variation:

- (1) The EUT was set up in the thermal chamber and connected with the base station.
- (2) With power off, the temperature was decreased to -30°C and the EUT was stabilized for three hours. Power was applied and the maximum change in frequency was recorded within one minute.
- (3) With power off, the temperature was raised in 10 °C set up to 50 °C and the EUT was stabilized for three hours. Power was applied and the maximum change in frequency was recorded within one minute.
- (4) If the EUT can not be turned on at -30°C, the testing lowest temperature will be raised in 10°C step until the EUT can be turned on.

Test Procedures for Voltage Variation:

- (1) The EUT was placed in a temperature chamber at  $25\pm5^{\circ}$ C and connected with the base station..
- (2) The power supply voltage to the EUT was varied from 15V to 9V.
- (3) The variation in frequency was measured for the worst case.

### 4.4 EUT Operating Condition

The Equipment Under Test was set to Communication with the Base Station.

## 4.5 Test Equipment

| Description            | Manufacturer      | Model No. | Serial No. | Cal. Date  | Cal. Date  |
|------------------------|-------------------|-----------|------------|------------|------------|
| Spectrum<br>Analyzer   | ROHDE&<br>SCHWARZ | FSEA20    | DE25181    | 2010-08-12 | 2011-08-11 |
| Attenuator             | Agilent           | 8504B     | M368574    | 2010-07-21 | 2011-07-20 |
| Attenuator             | Agilent           | 8504B     | M368575    | 2010-07-21 | 2011-07-20 |
| Power<br>Splitter      | Anritsu           | K240C     | 06872      | 2010-08-12 | 2011-08-11 |
| Coaxial<br>Cable       | SCHWARZBEC<br>K   | AK9513    | 9513-10    | 2010-08-12 | 2011-08-11 |
| Base Station           | ROHDE&<br>SCHWARZ | CMU200    | 109038     | 2010-07-21 | 2011-07-20 |
| Signal<br>Generator    | HP                | HP84657A  | 2479S63205 | 2010-07-21 | 2011-07-20 |
| Temperature<br>Chamber | WUHUAN            | HTP204    | 20040012   | 2010-06-30 | 2011-06-29 |
| DC power               | Good Will         | G020654   | EF363502   | 2010-07-21 | 2011-07-20 |

Report No.: TB-FCC107794
Page: 10 of 60

## 4.6 Test Data

| EUT: Vehicle GPS Tracking Terminal | Model: FL-2000G      |
|------------------------------------|----------------------|
| Temperature:25°C                   | Humidity: 55%        |
| Power Supply: 9V~15V               | Test Engineer: Jason |

| Frequency Error (Voltage) |                |                         |                       |  |  |
|---------------------------|----------------|-------------------------|-----------------------|--|--|
| Mode                      | Voltage<br>(V) | Frequency Error<br>(Hz) | Frequency Error (ppm) |  |  |
|                           | 15             | 27                      | 0.032273              |  |  |
|                           | 14             | 24                      | 0.028688              |  |  |
| GSM 850                   | 13             | 20                      | 0.023906              |  |  |
| CH 190                    | 12             | 14                      | 0.016734              |  |  |
| 836.6 MHz                 | 11             | 18                      | 0.021516              |  |  |
|                           | 10             | 22                      | 0.026927              |  |  |
|                           | 9              | 23                      | 0.027492              |  |  |
|                           | 15             | 26                      | 0.013829              |  |  |
|                           | 14             | 24                      | 0.012765              |  |  |
| PCS 1900                  | 13             | 20                      | 0.010638              |  |  |
| CH 661                    | 12             | 16                      | 0.008510              |  |  |
| 1880.0 MHz                | 11             | 21                      | 0.011170              |  |  |
|                           | 10             | 23                      | 0.012234              |  |  |
|                           | 9              | 28                      | 0.012893              |  |  |

Report No.: TB-FCC107794
Page: 11 of 60

| EUT: Vehicle GPS Tracking Terminal | Model: FL-2000G      |
|------------------------------------|----------------------|
| Temperature:-30°C~55°C             | Humidity: 55%        |
| Power Supply: 12V                  | Test Engineer: Jason |

| Frequency Error (Temperature) |           |    |          |  |  |  |  |  |  |
|-------------------------------|-----------|----|----------|--|--|--|--|--|--|
| Mode                          | (°C) (Hz) |    |          |  |  |  |  |  |  |
|                               | -30       | 28 | 0.033468 |  |  |  |  |  |  |
|                               | -20       | 25 | 0.029882 |  |  |  |  |  |  |
|                               | -10       | 22 | 0.026296 |  |  |  |  |  |  |
|                               | 0         | 21 | 0.025101 |  |  |  |  |  |  |
| GSM 850<br>CH 190             | 10        | 20 | 0.023906 |  |  |  |  |  |  |
| 836.6 MHz                     | 20        | 20 | 0.023906 |  |  |  |  |  |  |
|                               | 30        | 18 | 0.027492 |  |  |  |  |  |  |
|                               | 40        | 18 | 0.021515 |  |  |  |  |  |  |
|                               | 50        | 16 | 0.019125 |  |  |  |  |  |  |
|                               | 55        | 16 | 0.019125 |  |  |  |  |  |  |
|                               | -30       | 27 | 0.014361 |  |  |  |  |  |  |
|                               | -20       | 24 | 0.012765 |  |  |  |  |  |  |
|                               | -10       | 22 | 0.011702 |  |  |  |  |  |  |
|                               | 0         | 20 | 0.010638 |  |  |  |  |  |  |
| PCS 1900                      | 10        | 19 | 0.010106 |  |  |  |  |  |  |
| CH 661<br>1880.0 MHz          | 20        | 19 | 0.010106 |  |  |  |  |  |  |
| . 550.0 1111.12               | 30        | 18 | 0.009574 |  |  |  |  |  |  |
|                               | 40        | 16 | 0.008510 |  |  |  |  |  |  |
|                               | 50        | 15 | 0.007978 |  |  |  |  |  |  |
|                               | 55        | 16 | 0.008510 |  |  |  |  |  |  |

Report No.: TB-FCC107794 Page: 12 of 60

## 4. Conducted RF Output Power

#### 5.1 Test Standard and Limit

5.1.1 Test Standard

FCC Part 2: 2.1046

FCC Part 22H: 22.913 (a) FCC Part 24E: 24.232 (c)

5.1.2 Test Limit

| Cellular Telephone | PCS 1900 MHz  |
|--------------------|---------------|
| 850 MHz            |               |
| 38.5 dBm (ERP)     | 33 dBm (EIRP) |

#### 5.2 Test Setup



#### 5.3 Test Procedure

- (1) The EUT is coupled to the Spectrum Analyzer and the Base Station with the suitable Attenuators through the Power Splitter, the path loss is calibrated to correct the reading.
- (2) A call is set up by the Base Station to the generic call set up procedure.
- (3) Set EUT at maximum power level through base station by power level command.
- (4) Set the frequency range of the Spectrum Analyzer suitably to capture the waveform; search peak and mark it; finally record the peak and the plot.

## 5.4 EUT Operating Condition

The EUT was continuously connected with the Base station and transmitting in the max power during the test.

Report No.: TB-FCC107794
Page: 13 of 60

## 5.5 Test Equipment

| Description          | Manufacturer      | Model No. | Serial No. | Cal. Date  | Cal. Date  |
|----------------------|-------------------|-----------|------------|------------|------------|
| Spectrum<br>Analyzer | ROHDE&<br>SCHWARZ | FSEA20    | DE25181    | 2010-08-12 | 2011-08-11 |
| Attenuator           | Agilent           | 8504B     | M368574    | 2010-07-21 | 2011-07-20 |
| Attenuator           | Agilent           | 8504B     | M368575    | 2010-07-21 | 2011-07-20 |
| Power<br>Splitter    | Anritsu           | K240C     | 06872      | 2010-08-12 | 2011-08-11 |
| Amplifier            | Agilent           | 8447F     | 3113A06717 | 2010-08-12 | 2011-08-11 |
| Amplifier            | Agilent           | 8447D     | 3444D07855 | 2010-08-12 | 2011-08-11 |
| Coaxial<br>Cable     | SCHWARZBEC<br>K   | AK9513    | 9513-10    | 2010-08-12 | 2011-08-11 |
| Base Station         | ROHDE&<br>SCHWARZ | CMU200    | 109038     | 2010-07-21 | 2011-07-20 |
| Signal<br>Generator  | HP                | HP84657A  | 2479S63205 | 2010-07-21 | 2011-07-20 |

Report No.: TB-FCC107794
Page: 14 of 60

## 5.6 Test Data

| EUT: Vehicle GPS Tracking Terminal | Model: FL-2000G      |  |  |
|------------------------------------|----------------------|--|--|
| Temperature: 24                    | Humidity: 55%        |  |  |
| Power Supply: DC 12V               | Test Engineer: Jason |  |  |

| Modo              | Channal      | PK Output | ERP   | EIRP  | Lir      | mit       |
|-------------------|--------------|-----------|-------|-------|----------|-----------|
| iviode            | Mode Channel |           | (dBm) | (dBm) | ERP(dBm) | EIRP(dBm) |
|                   | 128          | 31.61     | 31.46 | /     | 38.5     | /         |
| GSM 850           | 190          | 31.62     | 31.47 | /     | 38.5     | /         |
|                   | 251          | 31.67     | 31.52 | /     | 38.5     | /         |
|                   | 128          | 31.06     | 30.91 | /     | 38.5     | /         |
| GPRS 850<br>Slot1 | 190          | 31.11     | 30.96 | /     | 38.5     | /         |
| Olotti            | 251          | 31.13     | 30.98 | /     | 38.5     | /         |
|                   | 128          | 30.58     | 30.43 | /     | 38.5     | /         |
| GPRS 850<br>Slot2 | 190          | 30.47     | 30.32 | /     | 38.5     | /         |
| 0.0.0             | 251          | 30.39     | 30.24 | /     | 38.5     | /         |
|                   | 128          | 29.08     | 28.93 | /     | 38.5     | /         |
| GPRS 850<br>Slot3 | 190          | 29.09     | 28.94 | /     | 38.5     | /         |
| 0.0.0             | 251          | 29.02     | 28.87 | /     | 38.5     | /         |
|                   | 128          | 28.34     | 28.19 | /     | 38.5     | /         |
| GPRS 850<br>Slot4 | 190          | 28.30     | 28.15 | /     | 38.5     | /         |
|                   | 251          | 28.21     | 28.06 | /     | 38.5     | /         |

Note: EIRP=PK output power + Antenna Gain(2 dBi)

ERP= PK output power + Antenna Gain(2 dBi)-2.15

Please refer the following plots:

Report No.: TB-FCC107794
Page: 15 of 60

#### **GSM 850 CH 128**



#### **GSM 850 CH 190**



Report No.: TB-FCC107794 Page: 16 of 60

#### **GSM 850 CH 251**



#### **GPRS 850 Slot 1 CH 128**



Report No.: TB-FCC107794 Page: 17 of 60

#### **GPRS 850 Slot 1 CH 190**



#### **GPRS 850 Slot 1 CH 251**



Report No.: TB-FCC107794
Page: 18 of 60

#### **GPRS 850 Slot 2 CH 128**



#### **GPRS 850 Slot 2 CH 190**



Report No.: TB-FCC107794 Page: 19 of 60

#### **GPRS 850 Slot 2 CH 251**



#### **GPRS 850 Slot 3 CH 128**



Report No.: TB-FCC107794 Page: 20 of 60

#### **GPRS 850 Slot 3 CH 190**



#### **GPRS 850 Slot 3 CH 251**



Report No.: TB-FCC107794
Page: 21 of 60

#### **GPRS 850 Slot 4 CH 128**



#### **GPRS 850 Slot 4 CH 190**



Report No.: TB-FCC107794
Page: 22 of 60

#### **GPRS 850 Slot 4 CH 251**



Report No.: TB-FCC107794
Page: 23 of 60

| EUT: Vehicle GPS Tracking Terminal | Model: FL-2000G      |
|------------------------------------|----------------------|
| Temperature: 24                    | Humidity: 55%        |
| Power Supply: DC 12V               | Test Engineer: Allen |

| Mode          | Channel | PK Output  | ERP   | EIRP  | Lir      | mit       |
|---------------|---------|------------|-------|-------|----------|-----------|
| Mode          | Charmer | Power(dBm) | (dBm) | (dBm) | ERP(dBm) | EIRP(dBm) |
|               | 512     | 28.62      | /     | 30.62 | /        | 33        |
| PCS 1900      | 661     | 28.81      | /     | 30.81 | /        | 33        |
|               | 810     | 29.08      | /     | 31.08 | /        | 33        |
| GPRS          | 512     | 28.71      | /     | 30.71 | /        | 33        |
| 1900          | 661     | 28.37      | /     | 30.37 | /        | 33        |
| Slot1         | 810     | 28.16      | /     | 30.16 | /        | 33        |
| GPRS          | 512     | 28.33      | /     | 30.33 | /        | 33        |
| 1900<br>Slot2 | 661     | 27.89      | /     | 29.89 | /        | 33        |
|               | 810     | 27.59      | /     | 29.59 | /        | 33        |

Note: EIRP=PK output power + Antenna Gain(2 dBi)
ERP= PK output power + Antenna Gain(2 dBi)-2.15

Report No.: TB-FCC107794 Page: 24 of 60

#### PCS 1900 CH 512



#### PCS 1900 CH 661



Report No.: TB-FCC107794
Page: 25 of 60

#### PCS 1900 CH 810



#### **GPRS 1900 Slot 1 CH 512**



Report No.: TB-FCC107794
Page: 26 of 60

#### **GPRS 1900 Slot 1 CH 661**



### **GPRS 1900 Slot 1 CH 810**



Report No.: TB-FCC107794 Page: 27 of 60

#### **GPRS 1900 Slot 2 CH 512**



### **GPRS 1900 Slot 2 CH 661**



Report No.: TB-FCC107794
Page: 28 of 60

#### **GPRS 1900 Slot 2 CH 810**



Report No.: TB-FCC107794 Page: 29 of 60

## 5. Radiated Output Power

#### 6.1 Test Standard and Limit

#### 5.1.1 Test Standard

FCC Part 22H : 22.913 (a) FCC Part 24E: 24.232 (c)

#### 5.1.2 Test Limit

According to FCC Part 22.913 (a), the ERP of Cellular mobile transmitters must not exceed 7 Watts(38.5 dBm).

According to FCC Part 24.232 (c), the Mobile/portable stations are limited to 2 Watts(33 dBm) EIRP peak power.

| Cellular Telephone<br>850 MHz | PCS 1900 MHz  |  |  |  |
|-------------------------------|---------------|--|--|--|
| 38.5 dBm (ERP)                | 33 dBm (EIRP) |  |  |  |

### 6.2 Test Setup



#### 6.3 Test Procedure

- (1) The EUT was placed on an non-conductive rotating platform with 0.8 meter height in an anechoic chamber. The radiated emission at the fundamental frequency was measured at 3 m with a test antenna and a spectrum analyzer with RBW=3 MHz, VBW=3 MHz and peak detector settings.
- (2) During the measurement, the EUT was enforced in maximum power and linked with the Base Station. The highest was recorded from analyzer power level (LVT) from the 360 degrees

Report No.: TB-FCC107794 Page: 30 of 60

rotation of the turntable and the test antenna raised and lowered over a range from 1 to 4 meters in both horizontally and vertically polarized orientations.

(3) Effective Isotropic Radiated Power (EIRP) was measured by substitution method according to TIA/EIA-603-C. The EUT was replaced by dipole antenna (for frequency below 1 GHz) or Horn antenna (for frequency above 1 GHz) at same location with same polarize of receiver antenna and then a known power of each measure frequency from S.G. was applied into the dipole antenna or Horn antenna through a TX cable, and then recorded the maximum Analyzer reading through raised and lowered the test antenna.

Then the EUT's EIRP and ERP was calculated with the correction factor:

ERP=S.G.Level +Antenna Gain Cord.(dBd)-Cable Loss(dB)

EIRP=S.G.Level+Antenna Gain Cord.(dBi)-Cable Loss(dB)

## 6.4 EUT Operating Condition

The EUT was continuously connected with the Base station and transmitting in the max power during the test.

## 6.5 Test Equipment

| Description               | Manufacturer         | Model No. | Serial No.  | Cal. Date  | Cal. Date  |
|---------------------------|----------------------|-----------|-------------|------------|------------|
| Spectrum<br>Analyzer      | ROHDE&<br>SCHWARZ    | FSEA20    | DE25181     | 2010-08-12 | 2011-08-11 |
| Positioning<br>Controller | C&C                  | CC-C-1F   | N/A         | 2010-08-12 | 2011-08-11 |
| Sunol<br>Sciences         | Broadband<br>Antenna | JB1       | A05261      | 2010-08-12 | 2011-08-11 |
| Sunol<br>Sciences         | Horn Antenna         | KRH-118   | A05247      | 2010-08-12 | 2011-08-11 |
| Attenuator                | Agilent              | 8504B     | M368574     | 2010-07-21 | 2011-07-20 |
| Attenuator                | Agilent              | 8504B     | M368575     | 2010-07-21 | 2011-07-20 |
| Power<br>Splitter         | Anritsu              | K240C     | 06872       | 2010-08-12 | 2011-08-11 |
| Amplifier                 | Agilent              | 8447F     | 3113A06717  | 2010-08-12 | 2011-08-11 |
| Amplifier                 | Agilent              | 8447D     | 3444D07855  | 2010-08-12 | 2011-08-11 |
| Coaxial<br>Cable          | SCHWARZBEC<br>K      | AK9513    | 9513-10     | 2010-08-12 | 2011-08-11 |
| Horn<br>Antenna           | A.H. System          | HF906     | 100013      | 2010-08-12 | 2011-08-11 |
| Dipole<br>Antenna         | COM POWER            | AD-100    | 05100       | 2010-08-12 | 2011-08-11 |
| Base Station              | ROHDE&<br>SCHWARZ    | CMU200    | 109038      | 2010-07-21 | 2011-07-20 |
| Signal<br>Generator       | HP                   | HP84657A  | 2479\$63205 | 2010-07-21 | 2011-07-20 |

Report No.: TB-FCC107794
Page: 31 of 60

## 6.6 Test Data

## ERP Power Cellular Band (Part 22H)

| Indic              | ated                      | Table           | Test Ar       | ntenna         | Su                 | Substituted            |                        | Antenna                     | Cable        | Absolute       | Part 22H       |
|--------------------|---------------------------|-----------------|---------------|----------------|--------------------|------------------------|------------------------|-----------------------------|--------------|----------------|----------------|
| Frequency<br>(MHz) | S.A.<br>Reading<br>(dBµV) | Angle<br>Degree | Height<br>(m) | Polar<br>(H/V) | Frequency<br>(MHz) | S.G.<br>Level<br>(dBm) | Ant.<br>Polar<br>(H/V) | Gain<br>Correction<br>(dBd) | Loss<br>(dB) | Level<br>(dBm) | Limit<br>(dBm) |
|                    |                           |                 |               |                | GSM 850            | CH 128                 |                        |                             |              |                |                |
| 824.2              | 114.18                    | 210             | 1.8           | Н              | 824.2              | 30.1                   | Н                      | 0                           | 0.8          | 29.30          | 38.45          |
| 824.2              | 112.12                    | 0               | 1.5           | V              | 824.2              | 28.2                   | ٧                      | 0                           | 0.8          | 27.40          | 38.45          |
|                    |                           |                 |               |                | GSM 850            | CH 190                 |                        |                             |              |                |                |
| 836.6              | 114.22                    | 157             | 1.9           | Н              | 836.6              | 30.2                   | Н                      | 0                           | 0.9          | 29.30          | 38.45          |
| 836.6              | 112.24                    | 142             | 2.0           | >              | 836.6              | 28.5                   | >                      | 0                           | 0.9          | 27.60          | 38.45          |
|                    | GSM 850 CH 251            |                 |               |                |                    |                        |                        |                             |              |                |                |
| 848.8              | 114.26                    | 245             | 2.0           | Η              | 848.8              | 30.3                   | Н                      | 0                           | 0.9          | 29.40          | 38.45          |
| 848.8              | 112.40                    | 220             | 2.0           | ٧              | 848.8              | 28.8                   | ٧                      | 0                           | 0.9          | 27.90          | 38.45          |

Report No.: TB-FCC107794
Page: 32 of 60

## EIRP Power PCS Band (Part 24E)

| Indic              | ated                      | Table           | Test Ar    | ntenna         | Su                 | bstituted              |                        | Antenna                     | Antenna Cable A |                | Part 22H       |
|--------------------|---------------------------|-----------------|------------|----------------|--------------------|------------------------|------------------------|-----------------------------|-----------------|----------------|----------------|
| Frequency<br>(MHz) | S.A.<br>Reading<br>(dBµV) | Angle<br>Degree | Height (m) | Polar<br>(H/V) | Frequency<br>(MHz) | S.G.<br>Level<br>(dBm) | Ant.<br>Polar<br>(H/V) | Gain<br>Correction<br>(dBi) | Loss            | Level<br>(dBm) | Limit<br>(dBm) |
|                    |                           |                 |            |                | PCS 1900           | CH 512                 |                        |                             |                 |                |                |
| 1850.2             | 95.01                     | 45              | 1.4        | Ι              | 1850.2             | 20.1                   | Н                      | 6.2                         | 1.11            | 25.19          | 33             |
| 1850.2             | 92.32                     | 156             | 1.5        | ٧              | 1850.2             | 17.2                   | V                      | 6.2                         | 1.11            | 22.29          | 33             |
|                    |                           |                 |            |                | PCS 1900           | CH 661                 |                        |                             |                 |                |                |
| 1880.0             | 95.25                     | 351             | 1.2        | Н              | 1880.0             | 20.4                   | Н                      | 6.2                         | 1.11            | 25.49          | 33             |
| 1880.0             | 92.56                     | 278             | 1.0        | ٧              | 1880.0             | 17.5                   | V                      | 6.2                         | 1.11            | 22.59          | 33             |
|                    | PCS 1900 CH 810           |                 |            |                |                    |                        |                        |                             |                 |                |                |
| 1909.8             | 95.49                     | 320             | 1.9        | Н              | 1909.8             | 20.6                   | Н                      | 6.2                         | 1.11            | 25.69          | 33             |
| 1909.8             | 92.91                     | 82              | 1.1        | V              | 1909.8             | 17.9                   | V                      | 6.2                         | 1.11            | 22.99          | 33             |

Report No.: TB-FCC107794 Page: 33 of 60

## 6. Occupied Bandwidth

#### 7.1 Test Standard and Limit

#### 5.1.1 Test Standard

FCC Part 2: 2.1049

FCC Part 22H: 22.913 (a) FCC Part 24E: 24.232 (c)

#### 5.1.2 Test Requirement

According to FCC section 2.1049, the occupied bandwidth is the frequency bandwidth such that below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission.

Occupied bandwidth is also known as 99% power and -26dBC occupied bandwidths.

### 7.2 Test Setup



#### 7.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and Base station via power splitter as show in the block diagram above.
- (2) The resolution bandwidth of the Spectrum Analyzer is set to at least 1% of the occupied bandwidth. For testing, set RBW=30 kHz, VBW=100 kHz
- (3) The low, middle and the high channels are selected to perform tests respectively.
- (4) Set the frequency range of the Spectrum Analyzer suitably to capture the waveform; search peak; make a line whose value is 26dB lower than the peak; mark two points which the line intersected the waveform at; finally record the delta of the two points as the occupied bandwidth and the plot.
- (5) Set the Spectrum Analyzer Occupied bandwidth function to measure the 99% occupied bandwidth.

Report No.: TB-FCC107794
Page: 34 of 60

## 7.4 EUT Operating Condition

The EUT was continuously connected with the Base station and transmitting in the max power during the test.

## 7.5 Test Equipment

| Description          | Manufacturer      | Model No. | Serial No.  | Cal. Date  | Cal. Date  |
|----------------------|-------------------|-----------|-------------|------------|------------|
| Spectrum<br>Analyzer | ROHDE&<br>SCHWARZ | FSEA20    | DE25181     | 2010-08-12 | 2011-08-11 |
| Attenuator           | Agilent           | 8504B     | M368574     | 2010-07-21 | 2011-07-20 |
| Attenuator           | Agilent           | 8504B     | M368575     | 2010-07-21 | 2011-07-20 |
| Power<br>Splitter    | Anritsu           | K240C     | 06872       | 2010-08-12 | 2011-08-11 |
| Amplifier            | Agilent           | 8447F     | 3113A06717  | 2010-08-12 | 2011-08-11 |
| Amplifier            | Agilent           | 8447D     | 3444D07855  | 2010-08-12 | 2011-08-11 |
| Coaxial<br>Cable     | SCHWARZBEC<br>K   | AK9513    | 9513-10     | 2010-08-12 | 2011-08-11 |
| Base Station         | ROHDE&<br>SCHWARZ | CMU200    | 109038      | 2010-07-21 | 2011-07-20 |
| Signal<br>Generator  | HP                | HP84657A  | 2479\$63205 | 2010-07-21 | 2011-07-20 |

## 7.6 Test Data

| EUT: Vehicle GPS Tracking Terminal | Model: FL-2000G      |
|------------------------------------|----------------------|
| Temperature: 24                    | Humidity: 55%        |
| Power Supply: DC 12V               | Test Engineer: Allen |

| Mode        | Channel | Frequency  | 99% Occupied<br>Bandwidth<br>(kHz) | -26dBc<br>Bandwidth<br>(kHz) |
|-------------|---------|------------|------------------------------------|------------------------------|
| GSM 850     | 128     | 824.2 MHz  | 248.000                            | 334.000                      |
|             | 190     | 836.6 MHz  | 252.000                            | 336.000                      |
|             | 251     | 848.8 MHz  | 248.000                            | 334.000                      |
| PCS<br>1900 | 512     | 1850.2 MHz | 248.000                            | 336.000                      |
|             | 661     | 1880.0 MHz | 252.000                            | 332.000                      |
|             | 810     | 1909.8 MHz | 248.000                            | 334.000                      |

Please refer the follow plots:

Report No.: TB-FCC107794
Page: 35 of 60

#### GSM 850 CH 128

## 99% OBW



#### -26 dB Bandwidth



Report No.: TB-FCC107794
Page: 36 of 60

#### GSM 850 CH 190

## 99% OBW



#### -26 dB Bandwidth



Report No.: TB-FCC107794
Page: 37 of 60

## GSM 850 CH 251

# 99% OBW





Report No.: TB-FCC107794
Page: 38 of 60

## PCS 1900 CH 512

# 99% OBW





Report No.: TB-FCC107794
Page: 39 of 60

## PCS 1900 CH 661

# 99% OBW





Report No.: TB-FCC107794
Page: 40 of 60

## PCS 1900 CH 810

# 99% OBW





Report No.: TB-FCC107794
Page: 41 of 60

# 7. Conducted Out of Band Emissions

#### 8.1 Test Standard and Limit

#### 8.1.1 Test Standard

FCC Part 2: 2.1051, 2.1057 FCC Part 22H: 22.917(a) FCC Part 24E: 24.238(a)

#### 8.1.2 Test Limit

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power(P) by a factor of at least 43+10log(P) dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.

## 8.2 Test Setup



#### 8.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and Base station via power splitter as show in the block diagram above.
- (2) Spectrum Setting:

Frequency bellow 1 GHz: RBW=100 kHz, VBW=300 kHz.

Frequency above 1 GHz: RBW=1 MHz, VBW=3 MHz.

(3) The low, middle and high channels of each band and mode's spurious emissions for 30 MHz to 10<sup>th</sup> Harmonic were measured by Spectrum analyzer.

# 8.4 EUT Operating Condition

The EUT was continuously connected with the Base station and transmitting in the max power during the test.

Report No.: TB-FCC107794
Page: 42 of 60

# 8.5 Test Equipment

| Description          | Manufacturer      | Model No. | Serial No. | Cal. Date  | Cal. Date  |
|----------------------|-------------------|-----------|------------|------------|------------|
| Spectrum<br>Analyzer | ROHDE&<br>SCHWARZ | FSEA20    | DE25181    | 2010-08-12 | 2011-08-11 |
| Attenuator           | Agilent           | 8504B     | M368574    | 2010-07-21 | 2011-07-20 |
| Attenuator           | Agilent           | 8504B     | M368575    | 2010-07-21 | 2011-07-20 |
| Power<br>Splitter    | Anritsu           | K240C     | 06872      | 2010-08-12 | 2011-08-11 |
| Amplifier            | Agilent           | 8447F     | 3113A06717 | 2010-08-12 | 2011-08-11 |
| Amplifier            | Agilent           | 8447D     | 3444D07855 | 2010-08-12 | 2011-08-11 |
| Coaxial<br>Cable     | SCHWARZBEC<br>K   | AK9513    | 9513-10    | 2010-08-12 | 2011-08-11 |
| Base Station         | ROHDE&<br>SCHWARZ | CMU200    | 109038     | 2010-07-21 | 2011-07-20 |
| Signal<br>Generator  | HP                | HP84657A  | 2479S63205 | 2010-07-21 | 2011-07-20 |

# 8.6 Test Data

Please refer following plots:

Report No.: TB-FCC107794 Page: 43 of 60

## GSM 850 CH 128

## 30MHz~1GHz



## 1 GHz~3 GHz



Report No.: TB-FCC107794 Page: 44 of 60

## 3 GHz~10 GHz



## GSM 850 CH 190

## 30MHz~1GHz



Report No.: TB-FCC107794 Page: 45 of 60

## 1 GHz~3 GHz



## 3 GHz~10 GHz



Report No.: TB-FCC107794
Page: 46 of 60

## GSM 850 CH 251

## 30MHz~1GHz



## 1 GHz~3 GHz



Report No.: TB-FCC107794 Page: 47 of 60

## 3 GHz~10 GHz



# PCS 1900 CH 512

## 30M~1GHz



Report No.: TB-FCC107794 Page: 48 of 60

## 1 GHz~3 GHz



## 3 GHz~20 GHz



Report No.: TB-FCC107794 Page: 49 of 60

## PCS 1900 CH 661

## 30MHz~1GHz



## 1GHz~2GHz



Report No.: TB-FCC107794
Page: 50 of 60

## 2GHz~3GHz



#### 3GHz~20 GHz



Report No.: TB-FCC107794
Page: 51 of 60

## PCS 1900 CH 810

## 30MHz~1GHz



## 1 GHz~3 GHz



Report No.: TB-FCC107794
Page: 52 of 60

# 3 GHz~20 GHz



Report No.: TB-FCC107794 Page: 53 of 60

# 8. Band Edge Test

#### 9.1 Test Standard and Limit

#### 9.1.1 Test Standard

FCC Part 2: 2.1051, 2.1057 FCC Part 22H: 22.917(a) FCC Part 24E: 24.238(a)

#### 9.1.2 Test Limit

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power(P) by a factor of at least 43+10log(P) dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.

## 9.2 Test Setup



#### 9.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and Base station via power splitter as show in the block diagram above.
- (2) Spectrum Setting:
  - RBW=3 kHz, VBW=10 kHz, Span 2 MHz, Detector: Peak Mode.
- (3) The band edges of low and high channels for the highest RF powers were measured.

## 9.4 EUT Operating Condition

The EUT was continuously connected with the Base station and transmitting in the max power during the test.

Report No.: TB-FCC107794
Page: 54 of 60

# 9.5 Test Equipment

| Description          | Manufacturer      | Model No. | Serial No.  | Cal. Date  | Cal. Date  |
|----------------------|-------------------|-----------|-------------|------------|------------|
| Spectrum<br>Analyzer | ROHDE&<br>SCHWARZ | FSEA20    | DE25181     | 2010-08-12 | 2011-08-11 |
| Attenuator           | Agilent           | 8504B     | M368574     | 2010-07-21 | 2011-07-20 |
| Attenuator           | Agilent           | 8504B     | M368575     | 2010-07-21 | 2011-07-20 |
| Power<br>Splitter    | Anritsu           | K240C     | 06872       | 2010-08-12 | 2011-08-11 |
| Amplifier            | Agilent           | 8447F     | 3113A06717  | 2010-08-12 | 2011-08-11 |
| Amplifier            | Agilent           | 8447D     | 3444D07855  | 2010-08-12 | 2011-08-11 |
| Coaxial<br>Cable     | SCHWARZBEC<br>K   | AK9513    | 9513-10     | 2010-08-12 | 2011-08-11 |
| Base Station         | ROHDE&<br>SCHWARZ | CMU200    | 109038      | 2010-07-21 | 2011-07-20 |
| Signal<br>Generator  | HP                | HP84657A  | 2479\$63205 | 2010-07-21 | 2011-07-20 |

# 8.6 Test Data

| EUT: Vehicle GPS Tracking Ter | minal  | Model: FL-2000G      |            |  |  |
|-------------------------------|--------|----------------------|------------|--|--|
| Temperature: 24               |        | Humidity: 55%        |            |  |  |
| Power Supply: DC 12V          |        | Test Engineer: Allen |            |  |  |
|                               | Band E | Edge Test            |            |  |  |
|                               | GSM    | И 850                |            |  |  |
| Frequency(MHz)                | Emi    | ssion                | Limit(dBm) |  |  |
| 824.0000                      | -15    | 5.89                 | -13        |  |  |
| 849.0160                      | -14    | 4.75                 | -13        |  |  |
|                               | PCS    | 1900                 |            |  |  |
| Frequency(MHz)                | Emi    | ssion                | Limit(dBm) |  |  |
| 1850.0000                     | -18    | 3.20                 | -13        |  |  |
| 1910.0200                     | -20    | 0.42                 | -13        |  |  |

Please refer the following plots:

Report No.: TB-FCC107794 Page: 55 of 60

Plot 1: GSM 850 CH 128



Plot 2: GSM 850 CH 251



Report No.: TB-FCC107794
Page: 56 of 60

Plot 3: PCS 1900 CH 512



Plot 4: PCS 1900 CH 810



Report No.: TB-FCC107794 Page: 57 of 60

# 9. Radiated Out Band of Emissions

#### 10.1 Test Standard and Limit

#### 10.1.1 Test Standard

FCC Part 2: 2.1053, 2.1057 FCC Part 22H: 22.917 FCC Part 24E: 24.238

10.1.2 Test Limit

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power(P) by a factor of at least 43+10log(P) dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.

## 10.2 Test Setup



#### 10.3 Test Procedure

- (1) The test system setup as show in the block diagram above.
- (2) The EUT was placed on an non-conductive rotating platform in an anechoic chamber. The radiated spurious emissions from 30MHz to 10<sup>th</sup> harmonious of fundamental frequency were measured at 3 m with a test antenna and a spectrum analyzer with RBW=1 MHz, VBW=1 MHz, peak detector settings.
- (3) During the measurement, the EUT was enforced in maximum power and linked with a base station. All the spurious emissions at 3m were measured by rotation of the turntable and the test antenna raised and lowered over a range from 1 to 4 meters in both horizontally and vertically polarized orientations.
- (4) When found the maximum level of emissions from the EUT. Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Report No.: TB-FCC107794 Page: 58 of 60

Spurious emissions in dB=10 log(TX power in Watts/0.001)-the absolute level Spurious attenuation limit in dB=43+10 log(power out in Watts)

# 10.4 EUT Operating Condition

The EUT was continuously connected with the Base station and transmitting in the max power during the test.

# 10.5 Test Equipment

| Description               | Manufacturer         | Model No. | Serial No.  | Cal. Date  | Cal. Date  |
|---------------------------|----------------------|-----------|-------------|------------|------------|
| Spectrum<br>Analyzer      | ROHDE&<br>SCHWARZ    | FSEA20    | DE25181     | 2010-08-12 | 2011-08-11 |
| Sunol<br>Sciences         | Broadband<br>Antenna | JB1       | A05261      | 2010-08-12 | 2011-08-11 |
| Positioning<br>Controller | C&C                  | CC-C-1F   | N/A         | 2010-08-12 | 2011-08-11 |
| Sunol<br>Sciences         | Horn Antenna         | KRH-118   | A05247      | 2010-08-12 | 2011-08-11 |
| Attenuator                | Agilent              | 8504B     | M368574     | 2010-07-21 | 2011-07-20 |
| Attenuator                | Agilent              | 8504B     | M368575     | 2010-07-21 | 2011-07-20 |
| Power<br>Splitter         | Anritsu              | K240C     | 06872       | 2010-08-12 | 2011-08-11 |
| Amplifier                 | Agilent              | 8447F     | 3113A06717  | 2010-08-12 | 2011-08-11 |
| Amplifier                 | Agilent              | 8447D     | 3444D07855  | 2010-08-12 | 2011-08-11 |
| Coaxial<br>Cable          | SCHWARZBEC<br>K      | AK9513    | 9513-10     | 2010-08-12 | 2011-08-11 |
| Horn<br>Antenna           | A.H. System          | HF906     | 100013      | 2010-08-12 | 2011-08-11 |
| Dipole<br>Antenna         | COM POWER            | AD-100    | 05100       | 2010-08-12 | 2011-08-11 |
| Base Station              | ROHDE&<br>SCHWARZ    | CMU200    | 109038      | 2010-07-21 | 2011-07-20 |
| Signal<br>Generator       | НР                   | HP84657A  | 2479\$63205 | 2010-07-21 | 2011-07-20 |

#### 10.6 Test Data

Report No.: TB-FCC107794
Page: 59 of 60

| Indica            | otod        | Table  | Test Ant | onno  | e.        | ubstitute | d                  |               |                   |       |        |
|-------------------|-------------|--------|----------|-------|-----------|-----------|--------------------|---------------|-------------------|-------|--------|
| Frequency         | Amp.        | Angle  | Height   | Polar | Frequency | Level     | Antenna            | Cable<br>Loss | Absolute<br>Level | Limit | Margin |
| (MHz)             | (dBuV)      | Degree | (M)      | H/V   | (MHz)     | (dBm)     | Gain<br>Correction | (dB)          | (dBm)             | (dBm) | (dB)   |
| GSM 850 Bellow 1G |             |        |          |       |           |           |                    |               |                   |       |        |
| High Channel      |             |        |          |       |           |           |                    |               |                   |       |        |
| 144.42            | 45.42       | 150    | 1.7      | V     | 144.42    | -51.2     | 0                  | 0.68          | -51.88            | -13   | 38.88  |
| 790.56            | 44.80       | 220    | 1.6      | V     | 790.56    | -52.4     | 0                  | 0.76          | -53.16            | -13   | 40.16  |
| 144.42            | 41.68       | 118    | 1.8      | Н     | 144.42    | -55.3     | 0                  | 0.68          | -55.98            | -13   | 42.98  |
| 790.56            | 40.95       | 145    | 1.9      | Н     | 790.56    | -55.8     | 0                  | 0.76          | -56.56            | -13   | 43.56  |
|                   |             |        |          |       | Low Cha   | annel     |                    |               |                   |       |        |
| 790.56            | 43.85       | 148    | 1.8      | V     | 790.56    | -53.0     | 0                  | 0.76          | -53.76            | -13   | 40.76  |
| 790.56            | 40.52       | 52     | 1.0      | Н     | 790.56    | -56.2     | 0                  | 0.76          | -56.96            | -13   | 43.96  |
|                   |             |        |          |       | Middle C  | hannel    |                    |               |                   |       |        |
| 790.56            | 43.24       | 8      | 1.7      | V     | 790.56    | -53.4     | 0                  | 0.76          | -54.16            | -13   | 41.16  |
| 790.56            | 40.32       | 85     | 1.2      | Н     | 790.56    | -56.7     | 0                  | 0.76          | -57.46            | -13   | 44.46  |
|                   |             |        |          |       | GSM 850 A | bove 1G   |                    |               |                   |       |        |
|                   |             |        |          |       | High Ch   | annel     |                    |               |                   |       |        |
| 1697.6            | 53.09       | 232    | 2.0      | Н     | 1697.6    | -43.5     | 6.2                | 0.94          | -38.24            | -13   | 25.24  |
| 1697.6            | 56.15       | 277    | 1.5      | V     | 1697.6    | -40.2     | 6.2                | 0.94          | -34.94            | -13   | 21.94  |
| 2546.4            | 50.32       | 120    | 1.8      | Н     | 2546.4    | -46.4     | 7.3                | 1.19          | -40.29            | -13   | 27.29  |
| 2546.4            | 55.42       | 56     | 1.3      | V     | 2546.4    | -41.3     | 7.3                | 1.19          | -35.19            | -13   | 22.19  |
| 3395.2            | 50.21       | 176    | 1.7      | Н     | 3395.2    | -46.7     | 6.7                | 1.38          | -41.38            | -13   | 28.38  |
| 3395.2            | 54.45       | 200    | 1.2      | V     | 3395.2    | -42.1     | 6.7                | 1.38          | -36.78            | -13   | 23.78  |
|                   | Low Channel |        |          |       |           |           |                    |               |                   |       |        |
| 1648.4            | 54.85       | 148    | 1.8      | V     | 1648.4    | -41.7     | 6.2                | 0.94          | -42.64            | -13   | 29.64  |
| 1648.4            | 50.52       | 52     | 1.0      | Н     | 1648.4    | -46.2     | 6.2                | 0.94          | -47.14            | -13   | 34.14  |
|                   |             |        |          |       | Middle C  | hannel    |                    |               |                   |       |        |
| 1673.2            | 55.24       | 8      | 1.7      | V     | 1673.2    | -41.5     | 6.2                | 0.94          | -42.44            | -13   | 29.44  |
| 1673.2            | 50.32       | 85     | 1.2      | Н     | 1673.2    | -46.4     | 6.2                | 0.94          | -47.34            | -13   | 34.34  |

Report No.: TB-FCC107794
Page: 60 of 60

| Indica             | ated           | Table           | Test Ant      | enna         | Sı                 | ubstitute      | d                             | Cable        | Absolute | Limit | Margin |
|--------------------|----------------|-----------------|---------------|--------------|--------------------|----------------|-------------------------------|--------------|----------|-------|--------|
| Frequency (MHz)    | Amp.<br>(dBuV) | Angle<br>Degree | Height<br>(M) | Polar<br>H/V | Frequency<br>(MHz) | Level<br>(dBm) | Antenna<br>Gain<br>Correction | Loss<br>(dB) |          | (dBm) | (dB)   |
| PCS 1900 Bellow 1G |                |                 |               |              |                    |                |                               |              |          |       |        |
| High Channel       |                |                 |               |              |                    |                |                               |              |          |       |        |
| 704.78             | 44.79          | 0               | 1.2           | V            | 705.52             | -52.4          | 0                             | 0.70         | -53.10   | -13   | 40.10  |
| 772.65             | 45.98          | 102             | 1.3           | V            | 763.40             | -50.8          | 0                             | 0.76         | -51.56   | -13   | 38.56  |
| 704.78             | 41.56          | 158             | 1.8           | Н            | 709.25             | -55.5          | 0                             | 0.70         | -56.20   | -13   | 43.20  |
| 772.65             | 41.23          | 77              | 1.6           | Н            | 765.32             | -55.9          | 0                             | 0.76         | -56.66   | -13   | 43.66  |
|                    |                |                 |               |              | Low Cha            | annel          |                               |              |          |       |        |
| 772.65             | 44.05          | 108             | 1.8           | V            | 772.65             | -52.7          | 0                             | 0.76         | -53.46   | -13   | 40.46  |
| 772.65             | 40.12          | 32              | 1.0           | Н            | 772.65             | -56.9          | 0                             | 0.76         | -57.66   | -13   | 44.66  |
|                    |                |                 |               |              | Middle Cl          | hannel         |                               |              |          |       |        |
| 772.65             | 44.98          | 18              | 1.7           | V            | 772.65             | -51.7          | 0                             | 0.76         | -52.46   | -13   | 39.46  |
| 772.65             | 40.58          | 55              | 1.2           | Н            | 772.65             | -56.5          | 0                             | 0.76         | -57.26   | -13   | 44.26  |
|                    |                |                 |               |              | PCS 1900 A         | bove 1G        |                               |              |          |       |        |
|                    |                |                 |               |              | High Ch            | annel          |                               |              |          |       |        |
| 3819.6             | 51.21          | 221             | 2.0           | Н            | 3819.6             | -45.2          | 6.9                           | 1.47         | -39.77   | -13   | 26.77  |
| 3819.6             | 55.32          | 222             | 2.1           | V            | 3819.6             | -41.4          | 6.9                           | 1.47         | -35.97   | -13   | 22.97  |
| 5729.4             | 55.65          | 251             | 1.6           | Н            | 5729.4             | -41.1          | 8.3                           | 1.76         | -34.56   | -13   | 21.56  |
| 5729.4             | 57.24          | 201             | 1.4           | V            | 5729.4             | -39.8          | 8.3                           | 1.76         | -33.26   | -13   | 20.26  |
| 7639.2             | 55.57          | 173             | 2.1           | Н            | 7639.2             | -41.2          | 7.6                           | 2.09         | -35.69   | -13   | 22.69  |
| 7639.2             | 53.33          | 71              | 1.5           | V            | 7639.2             | -43.4          | 7.6                           | 2.09         | -37.89   | -13   | 24.89  |
|                    |                |                 |               |              | Low Cha            | annel          |                               |              |          |       |        |
| 3700.4             | 54.25          | 57              | 1.9           | V            | 3700.4             | -42.6          | 6.1                           | 0.92         | -43.52   | -13   | 30.52  |
| 3700.4             | 50.45          | 145             | 1.1           | Н            | 3700.4             | -46.1          | 6.1                           | 0.92         | -47.02   | -13   | 34.02  |
|                    |                | ,               |               | ,            | Middle Cl          | hannel         |                               |              |          |       |        |
| 3819.6             | 54.32          | 98              | 1.2           | V            | 3819.6             | -42.3          | 6.4                           | 1.00         | -43.3    | -13   | 30.3   |
| 3819.6             | 50.64          | 54              | 1.5           | Н            | 3819.6             | -45.9          | 6.4                           | 1.00         | -46.9    | -13   | 33.9   |