Solutions of Tutorial-1

Problem set 1.1

- **1** The combinations give (a) a line in \mathbb{R}^3 (b) a plane in \mathbb{R}^3 (c) all of \mathbb{R}^3 .
- **2** v + w = (2,3) and v w = (6,-1) will be the diagonals of the parallelogram with v and w as two sides going out from (0,0).
- 17 All vectors $c\mathbf{v} + c\mathbf{w}$ are on the line passing through (0,0) and $\mathbf{u} = \frac{1}{2}\mathbf{v} + \frac{1}{2}\mathbf{w}$. That line continues out beyond $\mathbf{v} + \mathbf{w}$ and back beyond (0,0). With $c \ge 0$, half of this line is removed, leaving a ray that starts at (0,0).
- 18 The combinations cv + dw with $0 \le c \le 1$ and $0 \le d \le 1$ fill the parallelogram with sides v and w. For example, if v = (1,0) and w = (0,1) then cv + dw fills the unit square. But when v = (a,0) and w = (b,0) these combinations only fill a segment of a line.

Problem set 1.2

- 2 $\|u\| = 1$ and $\|v\| = 5$ and $\|w\| = \sqrt{5}$. Then $|u \cdot v| = 0 < (1)(5)$ and $|v \cdot w| = 10 < 5\sqrt{5}$, confirming the Schwarz inequality.
- 3 Unit vectors $\mathbf{v}/\|\mathbf{v}\| = (\frac{4}{5}, \frac{3}{5}) = (0.8, 0.6)$. The vectors $\mathbf{w}, (2, -1)$, and $-\mathbf{w}$ make $0^{\circ}, 90^{\circ}, 180^{\circ}$ angles with \mathbf{w} and $\mathbf{w}/\|\mathbf{w}\| = (1/\sqrt{5}, 2/\sqrt{5})$. The cosine of θ is $\frac{\mathbf{v}}{\|\mathbf{v}\|} \cdot \frac{\mathbf{w}}{\|\mathbf{w}\|} = 10/5\sqrt{5}$.
- 9 If $v_2w_2/v_1w_1 = -1$ then $v_2w_2 = -v_1w_1$ or $v_1w_1 + v_2w_2 = \boldsymbol{v} \cdot \boldsymbol{w} = 0$: perpendicular! The vectors (1,4) and $(1,-\frac{1}{4})$ are perpendicular.
- **22** $v_1^2 w_1^2 + 2v_1 w_1 v_2 w_2 + v_2^2 w_2^2 \le v_1^2 w_1^2 + v_1^2 w_2^2 + v_2^2 w_1^2 + v_2^2 w_2^2$ is true (cancel 4 terms) because the difference is $v_1^2 w_2^2 + v_2^2 w_1^2 2v_1 w_1 v_2 w_2$ which is $(v_1 w_2 v_2 w_1)^2 \ge 0$.

Problem set 1.3

1 $2s_1 + 3s_2 + 4s_3 = (2, 5, 9)$. The same vector **b** comes from S times x = (2, 3, 4):

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} (\text{row } 1) \cdot \boldsymbol{x} \\ (\text{row } 2) \cdot \boldsymbol{x} \\ (\text{row } 2) \cdot \boldsymbol{x} \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ 9 \end{bmatrix}.$$

2 The solutions are $y_1 = 1$, $y_2 = 0$, $y_3 = 0$ (right side = column 1) and $y_1 = 1$, $y_2 = 3$, $y_3 = 5$. That second example illustrates that the first n odd numbers add to n^2 .

7 All three rows are perpendicular to the solution x (the three equations $r_1 \cdot x = 0$ and $r_2 \cdot x = 0$ and $r_3 \cdot x = 0$ tell us this). Then the whole plane of the rows is perpendicular to x (the plane is also perpendicular to all multiples cx).

Problem set 2.1

1 The row picture for A = I has 3 perpendicular planes x = 2 and y = 3 and z = 4. Those are perpendicular to the x and y and z axes: z = 4 is a horizontal plane at height 4.

The column vectors are $\mathbf{i} = (1,0,0)$ and $\mathbf{j} = (0,1,0)$ and $\mathbf{k} = (0,0,1)$. Then $\mathbf{b} = (2,3,4)$ is the linear combination $2\mathbf{i} + 3\mathbf{j} + 4\mathbf{k}$.

- 4 If z=2 then x+y=0 and x-y=2 give the point (x,y,z)=(1,-1,2). If z=0 then x+y=6 and x-y=4 produce (5,1,0). Halfway between those is (3,0,1).
 - **9** (a) Ax = (18, 5, 0) and (b) Ax = (3, 4, 5, 5).
- **10** Multiplying as linear combinations of the columns gives the same Ax = (18, 5, 0) and (3, 4, 5, 5). By rows or by columns: **9** separate multiplications when A is 3 by 3.

17
$$P = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$
 produces $\begin{bmatrix} y \\ z \\ x \end{bmatrix}$ and $Q = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ recovers $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$. Q is the

inverse of P. Later we write QP = I and $Q = P^{-1}$.

18
$$E = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$$
 and $E = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ subtract the first component from the second.