CIS 471/571(Fall 2020): Introduction to Artificial Intelligence

Lecture https://eduassistpro.github.jo/
Add WeChat edu_assist_pro

Thanh H. Nguyen

Most slides are by Pieter Abbeel, Dan Klein, Luke Zettlemoyer, John DeNero, Stuart Russell, Andrew Moore, or Daniel Lowd Source: http://ai.berkeley.edu/home.html

Announcement

- •Project 1
 - Deadline: Oct 13th, 2020

Assignment Project Exam Help

- Written Assignmen https://eduassistpro.github.io/
 - Will be posted today Add WeChat edu_assist_pro
 - Deadline: Oct 10th, 2020

Thanh H. Nguyen 9/30/20

Today

Agents that Plan Ahead

Assignment Project Exam Help

Search Problems

https://eduassistpro.github.io/

- •Uninformed Search Methods
 - Depth-First Search
 - Breadth-First Search
 - Uniform-Cost Search

Thanh H. Nguyen 9/30/20

Rational Agents

• An **agent** is an entity that *perceives* and *acts*.

• A rational agent selectement better Exam Help maximize its utility fu

Characteristics of the p https://eduassistpro.github.io/environment, and action space diction edu_assist_protechniques for selecting rational actio

Reflex Agents

- Reflex agents:
 - Choose action based on current percept (and maybe memory)

 Assignment Project Exam Help
 tions

 - Consider how the world https://eduassistpro.github.io/
- Can a reflex agent be rational? WeChat edu_assist_pro

Video of Demo Reflex Optimal

Assignment Project Exam Help

https://eduassistpro.github.io/

Video of Demo Reflex Odd

Assignment Project Exam Help

https://eduassistpro.github.io/

Goal-based Agents

- Goal-based agents:
 - Plan ahead
 - Ask "what if" Assignment Project Exam Help
 - Decisions based on (h consequences of actio
 https://eduassistpro.github.io/
 - Must have a model of how the worlt edu_assist_pro evolves in response to actions
 - Act on how the world WOULD BE

Video of Demo Mastermind

Assignment Project Exam Help

https://eduassistpro.github.io/

Search Problem

• A search problem consists of:

A state space

Assignment Project Exam Hel

https://eduassistpro.github.io/

 A successor function (with actions, costs)

- A start state and a goal test
- A solution is a sequence of actions (a plan) which transforms the start state to a goal state

Example: Romania

- State space:
 - Cities
- Successor function: Assignment Project Exam Help
 - Go to adj city with cos
 - = dist

https://eduassistpro.github.io/

Start state:

- Arad
- Goal test:
 - Is state == Bucharest?
- Solution?

What is in State Space

The world state includes every last detail of the environment

Assignment Project Exam Help

https://eduassistpro.github.io/

- Problem: Pathing
 - States: (x,y) location
 - Actions: NSEW
 - Successor: update location only
 - Goal test: is (x,y)=END

- Problem: Eat-All-Dots
 - States: {(x,y), dot booleans}
 - Actions: NSEW
 - Successor: update location and possibly a dot boolean
 - Goal test: dots all false

State Space Size

- Search Problem:Eat all of the food
- Pacman positions: 10 x 12 nept Project Exam Help
- Pacman facing: up, down,https://eduassistpro.github.io/
- Food Count: 30

- Ghost positions: 12
- How many
- World states? 120*(2³⁰)*(12²)*4
- States for pathing? 120
- States for eat-all-dots? 120*(230)

State Space Graphs

- State space graph: A mathematical representation of a search problem
 - Nodes are (abstracted) world configurations
 Arcs represent successors (action results)

 - The goal test is a set of goal no https://eduassistpro.github one)

- In a state space graph, each state occur only once!
- We can rarely build this full graph in memory (it's too big), but it's a useful idea

State Space Graphs

• State space graph: A mathematical representation of a search problem

Nodes are (abstracted) world configurations
 Arcs represent successors (action results)

• The goal test is a set of goal no https://eduassistpro.g

Add WeChat edu_assist

 In a state space graph, each state occur only once!

• We can rarely build this full graph in memory (it's too big), but it's a useful idea Tiny state space graph for a tiny search problem

Search Trees

- A search tree:
 - A "what if" tree of plans and their outcomes
 - The start state is the root node
 - Children correspond to successors
 - Nodes show states, but correspond to PLANS that achieve those states
 - For most problems, we can never actually build the whole tree

State Space Graphs vs. Search Trees

State Space Graph

Each NODE in in the search tree

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

We construct both on demand – and we construct as little as possible. Search Tree

Thanh H. Nguyen 9/30/20 17

Quiz: State Space Graphs vs. Search Trees

Consider this 4-state graph:

How big is its search tree (from S)?

Quiz: State Space Graphs vs. Search Trees

Consider this 4-state graph:

How big is its search tree (from S)?

Important: Lots of repeated structure in the search tree!

Tree Search

Assignment Project Exam Help

https://eduassistpro.github.io/

Search Example: Romania

Assignment Project Exam Help

https://eduassistpro.github.io/

Searching with a Search Tree

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

•Search:

- Expand out potential plans (tree nodes)
- Maintain a fringe of partial plans under consideration
- Try to expand as few tree nodes as possible

General Tree Search

- Tree Search
 - Initialize the *root node* of the search tree with the *start* state Assignment Project Exam Help
 - While there a es (fringe):
 - Choose a le https://eduassistpro.github.io/
 - If the node contains edu_assist_pro return the correspondi
 - Else: expand the node and add its children to the tree
- Important ideas:
 - Fringe
 - Expansion
- Strategy: which fringe nodes to explore?

Example: Tree Search

Depth-First Search (DFS)

Assignment Project Exam Help

https://eduassistpro.github.io/

Depth-First Search (DFS)

Strategy: expand a deepest node first

Implementation: Fringe

is a LIFO stack

https://eduassistpro.github.io/

Search Algorithm Properties

- Complete: Guaranteed to find a solution if one exists?
- Optimal: Guaranteed to find the least cost path?
- Time complexity?
- Space complexity?
- Cartoon of search tree:
 - b is the branching factor
 - m is the maximum depth
 - solutions at various depths

Assignment Project Exam Help

https://eduassistpro.github.io/

Add We@hat edu_assist_pro

1 node b nodes b² nodes

b^m nodes

- Number of nodes in entire tree?
 - $1 + b + b^2 + \dots b^m = O(b^m)$

DFS Properties

- What nodes DFS expand?
 - Some left prefix of the tree.
 - Could process the whole tree!
 - If m is finite, takes time O(signment Project Exam Help
- How much space does the frin https://eduassistpro.githyb.io/
 - Only has siblings on path to root, so O(bm)

Add WeChat edu_assist_pro

- Is it complete?
 - m could be infinite, so only if we prevent cycles (more later)
- Is it optimal?
 - No, it finds the "leftmost" solution, regardless of depth or cost

b² nodes

b^m nodes

Breadth-First Search (BFS)

Assignment Project Exam Help

https://eduassistpro.github.io/

Breadth-First Search (BFS)

Strategy: expand a shallowest node first

Implementation: Fringe is a FIFO queue

Search
Tiers

Add WeChat eclu_assist_prop

| Description of the column o

BFS Properties

- What nodes does BFS expand?
 - Processes all nodes above shallowest solution
 - Let depth of shallowest solution be s
 - Search takes time O(bs) Assignment Project Exam Help

How much space does the fri https://eduassistpro.github.io/

• O(b^{s+1})

Add WeChat edu_assist_pro

- Is it complete?
 - s must be finite if a solution exists, so yes!
- Is it optimal?
 - Only if costs are all 1 (more on costs later)

1 node

b nodes

b² nodes

b^s nodes

h^m nodes

DFS vs BFS

When will BFS outperform DFS?
 Assignment Project Exam Help

https://eduassistpro.github.io/

• When will DFS outperfection edu_assist_pro

Iterative Deepening

- Idea: get DFS's space advantage with
 BFS's time / shallow-solution
 advantages
 Assignment Project Exam Help
 - Run a DFS with depth li https://eduassistpro.github.io/
 - Run a DFS with depth limit@We@hat edu_assist_prosolution...
 - Run a DFS with depth limit 3.
- Isn't that wastefully redundant?
 - Generally most work happens in the lowest level searched, so not so bad!