Problem Section 7

Monday Feb 26 2024

Learning Outcomes

The problems are designed to build conceptual understanding and problem-solving skills. The emphasis is on learning to find, evaluate and build confidence. The specific tasks include:

- Calculate one and two-sided P-values
- Find the Type I and Type II errors for a given decision rule
- Find an empirical P-value
- Back up and support work with relevant explanations

Exercises

1. A children's game uses a six sided die with a picture of a ghost named Hugo on one side and numbers on the other sides. If the die is fair, the ghost should be rolled 1/6 of the time. You test the die by rolling it n = 10 times and and the ghost is rolled x = 3 times. Calculate the P-value for an exact binomial test of the hypothesis

$$H_0: \pi = \frac{1}{6} \quad H_1: \pi \neq \frac{1}{6}$$

- 2. As input for a new inflation model, economists predicted that the average cost of a hypothetical "food basket" in western WA in July would be \$145.75. The standard deviation (σ_0) of basket prices was assumed to be \$9.50, a figure that has held fairly constant over the years. To check their prediction, a sample of twenty-five baskets representing different parts of the region were checked in late July, and the average cost was \$149.75.
- a. Let μ_0 denote the true mean price of the food basket in July in Western WA. Write the null and alternative hypothesis.
- b. Suppose the test will be based on \bar{X} the sample mean. What is its sampling distribution? (You may assume the CLT applies)
- c. Calculate the P-value associated with $\bar{x} = \$149.75$.
- 3. An experimenter takes a sample of size 4 X_1, X_2, X_3, X_4 from the Poisson probability model,

$$f(x) = e^{-\lambda_0} \frac{\lambda_0^x}{x!}$$
 $x = 0, 1, 2, \dots$

and wishes to test $H0: \lambda_0 = 6$ versus $H_1: \lambda_0 < 6$. The test will be based on the statistic $S = X_1 + X_2 + X_3 + X_4$.

- a. Find the P-value associated with observing $s_{obs} = 15$.
- b. Suppose we decide to conduct the test at level $\alpha = 0.1$. What values of s_{obs} will you reject H_0 for?

1

c. Find the Type I error rate for your test in part b.

- d. Calculate the Type II error rate for your test in part b. when $\lambda_0 = 4$.
- 4. Suppose the following sample denoted by X_1, X_2, \ldots, X_n are drawn from a $Norm(0, \sigma_0^2)$ distribution:

We want to test $H_0: \sigma_0^2 = 1$ versus $\sigma_0^2 > 1$ using the sample variance:

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

as our test statistic.

a. Calculate s_{obs}^2 , the observed value of the estimator S^2 . Save it in a variable called obs_s2.

```
# calculate obs_s2, the observed value for S^2
```

b. Simulate the sampling distribution of S^2 under the null hypothesis. This means generate a new x assuming the null hypothesis is true and calculate s^2 for each such dataset. Fill in blanks in the code below and then remove the eval=F chunk option when knitting.

- c. Make a histogram of the values of s2star you have simulated under the null hypothesis, and mark the observed value with a vertical line.
- d. Calculate the empirical P-value. (Hint: S^2 is an unbiased estimator of the true value of σ_0^2 . Based on this fact, do large values, small values or both large and small values support H_1 ?)