ICCS 313: Assignment 1

Tawan Chaeyklinthes u5980963

Date: 14 Sep 2018

Problem 1

(a)
$$3n^3 + 75n^2 + 8\log_2 n \in \mathcal{O}(n^3)$$

Proof:

$$3n^3 + 75n^2 + 8\log_2 n \le 3n^3 + 75n^3 + 8^3$$
 ; for $n \ge 1$ $\le 90n^3$

Therefor this is true when c = 5 and $n_0 = 1$.

(b)
$$1+3+5+...+(2n-1) \in \mathcal{O}(n^2)$$

Proof: We know that $1+2+3+\ldots+(2n-1)=\sum_{i=1}^n(2i-1)$. Which can be written as:

$$\sum_{i=1}^{n} 2i - \sum_{i=1}^{n} 1 = 2\left(\frac{n(n+1)}{2}\right) - n$$
$$= n^{2} + n - 2n$$

Thus,

$$n^2 \leqslant n^2$$
 ; for $n \geqslant 1$

So, this is true when c = 1 and $n_0 = 1$.

(c)
$$1 + 2 + 4 + 8 + ... + 2n^2 \in \mathcal{O}(2^n)$$

Proof: Let $S(n) = 1 + 2 + 4 + 8 + \dots + 2n^2$,

$$S(n) = 2^{0} + 2^{1} + 2^{2} + \dots + 2^{n}$$

$$2S(n) = 2^{1} + 2^{2} + \dots + 2^{n} + 2^{n+1}$$

$$= S(n) - 1 + 2^{n+1}$$

$$S(n) = 2^{n+1} - 1$$

$$= 2(2^{n}) - 1$$

Thus,

$$2(2^n) - 1 \le 2(2^n)$$
 ; for $n \ge 1$

So, this is true when c=2 and $n_0=1$.

(d)
$$1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n} \in \mathcal{O}(1)$$

Proof: Let
$$S(n) = 1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n}$$

$$S(n) = \frac{1}{2^0} + \frac{1}{2^1} + \frac{1}{2^2} + \dots + \frac{1}{2^n}$$

$$\frac{S(n)}{2} = \frac{1}{2^1} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n} + \frac{1}{2^{n+1}}$$

$$= S(n) - 1 + \frac{1}{2^{n+1}}$$

$$-S(n)(\frac{1}{2}) = \frac{1}{2^{n+1}} - 1$$

$$S(n) = 2 - \frac{1}{2^n}$$

Therefor, we can see that:

$$2 - \frac{1}{2^n} \leqslant 2(1) \qquad ; \text{ for } n \geqslant 1$$

So, this is true when c = 2 and $n_0 = 1$.

Problem 2

- (a) We need to show that all the elements in A remains in A after the loop.
- (b) Loop-invariant: At the start of each iteration, in the sub-array A[j...n], A[j] is the smallest.

Initialized: At the start, j = n so the sub-array is A[n]. Since A[n] is the only element, it is the smallest.

Maintenance: Let k = iteration number. Suppose that $A[j_k] < A[j-1_k]$, the value of $A[j_k]$ and $A[j-1_k]$ will then be swapped. The value of $A[j-1_k]$ is now the smallest since $A[j_k]$ was originally the smallest in $A[j_k...n]$. Therefore, in the next iteration, value of $A[j_{k+1}]$ will be the smallest in $A[j_{k+1}...n]$. If $A[j_k] > A[j-1_k]$, it means that $A[j-1_k]$ is now the smallest in $A[j-1_k...]$. There will be no swapping so in the next iteration, $A[j_{k+1}]$ will be the smallest in $A[j_{k+1}...n]$. Thus, the invariant is maintained.

Termination: The for-loop will terminate at j = i. From the loop-invariant, this will give us a sub-array A[i...n] where A[i] is the smallest.

(c) Loop-invariant: At the start of each iteration, the sub-array A[1...i] is sorted Initialized: At the start i = 1, the sub-array A[1] is already sorted.

Maintenance: Let i = k where k is an iteration of the for-loop. Using invariant from part (b), we know that A[k] is the smallest in A[k...n]. And with invariant from part (c), we know that A[1...k-1] is already sorted. We also know that as the value of i increases, the length of final sub-array in inner-loop decreases. Therefore, we are sure that A[k-1] must be the smallest value in A[k-1,k,...n] the iteration before. Thus, at the end of the iteration, we would have A[1...k] which is sorted.

Termination: The loop will terminate when i = n. With our invariant, this will give us a sub-array A[1...n] that is sorted. By observation, the sub-array is our array. Thus, the algorithm gives us a sorted array upon termination.

(d) The worst-case is when the array is sorted in descending order. The running-time would be :

$$T(n) = \sum_{i=2}^{n-1} i$$

$$\approx \frac{n(n+1)}{2}$$

$$= \mathcal{O}(n^2)$$

Which is the same as the worst-case running time for insertion sort.

Problem 3

$$S(n) = 1^c + 2^c + 3^c + \dots + n^c$$

(a) S(n) is $\mathcal{O}(n^c+1)$

Proof:

$$1^{c} + 2^{c} + 3^{c} + \dots + n^{c} \le n(n^{c})$$
; for $n \ge 1$

So, this is true when constant = n and $n_0 = 1$.

(b)

Proof:

$$\begin{aligned} 1^c + 2^c + 3^c + \dots + n^c &\geqslant (\frac{n}{2})^c + \dots + n^c \\ &\geqslant (\frac{n}{2})(\frac{n}{2})^c \\ &\geqslant (\frac{n}{2})^{c+1} \\ &\geqslant (\frac{1}{2})^{c+1} n^{c+1} \end{aligned} ; \text{ for } n \geqslant 1$$

So, this is true when constant $= (\frac{1}{2})^{c+1}$ and $n \ge 1$.

Problem 4

- (a) Observations: 2 = 2 bits, 4 = 3 bits, 8 = 4 bits, $2^n = n + 1$ bits. So the big-O is: $\mathcal{O}(\log_2 n + 1) = \mathcal{O}(\log_2 n)$.
- (b) The number n is being divided by 2 for each loop. So the numbers of times that n has to be divided by 2 before reaching 1 is $\log_2 n$ and the total iteration is $\log_2 n + 1$. Thus the big-O is $\mathcal{O}(\log_2 n)$.

(c) Each iteration that the code makes, the input size is reduced by half. So we can write the running time as follow:

$$T(n) = n^{3} + (\frac{n}{2})^{3} + (\frac{n}{2^{2}})^{3} + (\frac{n}{2^{3}})^{3} + \dots + 1$$

$$= n^{3} + (\frac{n^{3}}{8}) + (\frac{n^{3}}{8^{2}}) + (\frac{n^{3}}{8^{3}}) + \dots + 1$$

$$\frac{T(n)}{8} = (\frac{n^{3}}{8}) + (\frac{n^{3}}{8^{2}}) + (\frac{n^{3}}{8^{3}}) + (\frac{n^{3}}{8^{4}}) + \dots + 1 + \frac{1}{8}$$

$$= T(n) - n^{3} + \frac{1}{8}$$

$$\frac{7}{8}T(n) = n^{3} - \frac{1}{8}$$

$$T(n) = \frac{8n^{3}}{7} - 7$$

$$= \mathcal{O}(n^{3})$$

So the running time is $\mathcal{O}(n^3)$.

Problem 5

- (a) Function foo() takes in a sorted list, integers m and val. The function first search for an interval of size m+1 where the value val could be inside. If such interval is not found, function returns -1. Else, it would then search the interval one by one for the value val. If the value is found, function will return the index of the value, otherwise ,it returns -1.
- (b) Lemma 1 : The first while-loop will terminate with the right interval (if exist) for $m \ge 1$.

<u>Proof</u>: When $m \ge 1$, first while-loop will terminate on 2 conditions. Firstly, the loop will break if an interval where $alist[left] \le val$ and $alist[right] \ge val$ since there is a statement checking for this condition. Hence, this break will give us the correct interval and will terminate. If such interval doesn't exist, the value of left will keep increasing until $left \ge length$ or alist[left] > val. This will then return -1 on line 10 which indicates that val doesn't exist in the array.

<u>Lemma 2</u>: The second while-loop will return the index of val or -1.

<u>Proof</u>: In second while-loop, it will iterate over the range that we got from the first while-loop one element at a time. If the element is equal to val it will return that index, thus, returning the index of val. However, if val is not in the array, i will keep increasing till i > r or alist[i] > val which will terminate the while-loop and returns -1.

With this 2 lemmas, it can be seen that this code will return the right answer.

(c) The worst-case is when m = 1 and the value to find is more than last index. This will give us a running time of:

$$T(n) = n = \mathcal{O}(n)$$

(d) The maximum number of comparison made in first-loop is $\frac{n}{m}$ and the second loop is m. So to find the minimum we take the derivative of function: $\frac{n}{m} + m$.

$$\frac{d}{dm}(\frac{n}{m}+m) = \frac{-n}{m^2} + 1$$

To find the minimum, we let : $\frac{d}{dm}(\frac{n}{m} + m) = 0$:

$$\frac{-n}{m^2} + 1 = 0$$

$$\frac{n}{m^2} = 1$$

$$n = m^2$$

$$m = \sqrt{n}$$

Therefore, the $m=\sqrt{n}$ for the minimum comparison.

Problem 6

- (a) $\mathcal{O}(n^3)$
- (b) $\mathcal{O}(nlogn)$
- (c) $\mathcal{O}(3^n)$
- (d) $\mathcal{O}(n^3)$
- (e) $O(n^4)$