Docker for Reproducibility

Kristin Chen

Agenda

- Why do we need containers?
- How can containers solve those problems?
- What is a Docker container?
 - How does Docker containerize?
- Demo: running r analysis in a container
- Reference

Why do we need containers?

Scenario 1: rerun my_analysis_12042018_KC.rmd but get
 an error: "Error in xx: could not find function "xx"

You then figure out the function xx is deprecated

Why do we need containers?

 Scenario 1: rerun my_analysis_12042018_KC.rmd but get an error: "Error in xx: could not find function "xx"

Scenario 2:

- You send analysis_12042019_KC.rmd to your teammate, along with the private library stored in the project directory created by packrat to manage package dependencies
- A few minutes later, your teammate pins you on Team and says he encountered an error: "package 'X' is not available (for R version 3.3.0)"
 - You two then figure out it's because the R version in your PC is 3.6.0, which is compatible for package X; however, your teammate has R version 3.3.0 installed in his PC

Why do we need containers?

challenge:

- the computation environment where the analyses build is different from where the analyses execute
- replicating prior analysis or allowing other users to reproduce your analysis in their machines become troublesome
 - computation environment, in the context of analysis in R programming, is included functions in the packages, packages, and R version, etc.

Shiny

ggplot2

tidyr

rmarkdown

R Studio

How can containers solve those problems?

- containerize the computation environment, or the infrastructure of your analyses as code
 - run each
 analysis/service with its
 own dependencies in
 separate containers,
 ensuring same results
 replicate on any
 computer environment
 - isolate from the main computation environment in that PC

How can containers solve those problems?

- containerize the computation environment, or the infrastructure of your analyses as code
- run each
 analysis/service with its
 own dependencies in
 separate containers,
 ensuring same results
 replicate on any
 computer environment
- isolate from the main computation environment in that PC

Containerized Applications

What is a Docker container?

- Docker: shipping companies, which carry containers from one part of the world to another
 - no containers:
 - everything needs to be transported are individually loaded into the ship
 - loading and unloading of goods difficult
 - with containers:
 - everything can be loaded or unloaded quickly using cranes

What is a Docker container?

- Docker ships containers in which containerize analyses
 - analysis: a collection of computation pieces included packages, system dependencies, codes, reports, etc.
 - Docker creates a "containerized" version of the analysis, and everything needed to run the analysis is included
 - allow reproducing the analysis wherever on Linux, Mac or Windows

What is a Docker container? - how does Docker containerize?

- build an image from Dockerfile, and spin up a running container from that image
 - Docker image: a template of your analyses/applications computation environment
 - Docker container: a running instance of Docker image
 - Dockerfile: a list of commands in a special text file to create an image

Demo: running r analysis in container

- repo: https://github.com/jiatingchen/docker-for-reproducibility
- step:
 - docker build Dockerfile
 - docker run image-nme
 - render my_analysis.rmd to my_analysis.html in container
 - copy my_analysis.html to local machine
- walk through Dockerfile:
 - rocker: https://www.rocker-project.org/
 - FROM RUN COPY CMD
 - differences between computation env in container vs that in my PC

```
library(e1071)
library(caret)
sessionInfo()
## R version 3.6.0 (2019-04-26)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## other attached packages:
## [1] caret_6.0-81 ggplot2_3.2.1 lattice_0.20-38 e1071_1.7-0.1
```

build repo in binder

Reference

```
https://reproducible-analysis-
workshop.readthedocs.io/en/latest/8.Intro-Docker.html
https://arxiv.org/pdf/1410.0846.pdf
https://hackernoon.com/5-free-online-courses-to-learn-docker-
for-beginners-492cfc488ecb
https://cloudblogs.microsoft.com/opensource/2019/07/15/how
-to-get-started-containers-docker-kubernetes/
https://nickjanetakis.com/blog/understanding-how-the-docker-
daemon-and-docker-cli-work-together
https://ropenscilabs.github.io/r-docker-tutorial/
https://machinelearningmastery.com/machine-learning-in-r-
step-by-step/
https://colinfay.me/docker-r-reproducibility/
```

Thank you!

