TIF330 Computational Continuum physics

Problem Set 1

Date: 2023-04-18

Students: Afonso Sequeira Azenha

. Problem set 1.
Propon 1: Expedict FLH with 5-poid Starois for the Rom
some Har
· Boar schoolingis - o groso.
. I bound spread two.
- 300 - 300
-1 950 = 01-3 (300,5 + 01-1 50,001 + 01 30,000 + 01 30,000,000,000,000,000,000,000,000,000,
IP De consider Strusseld. 0-5: 05 and 0-10.
It me consider thrusted. \arsin a-s = as and \arriver.
- 3: (2/5 x cu 5 + 2/1 x cu + 2/1 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2
- DE COS CONSONOS + CARON + CONSON + ON SUN + ON
4: = 120 - 1210 + 0127 - 1210 . Cin - 0121.
3: 05/ 12. SKdy + Frs 12, 2. 8/3 12. 2.
+ 18/2 (5/m - 75/2) April 2 + 0/6/
- 12 di (rui- proxu + 13 anu - 13 anu u + 12 anu u
The xxxxx en + died/
E: oolen.
7: 01 (100+ proxum + 75 miles + 13 miles + 15 comes
+ The sum of Aral
+ 1 Bra m v 35 kg min v 4 2 gg on un + 5 gg on un + 2 gg on un +
+ 1 8 ms 2 + 35 ms 2 + 35 ms 2 + 2 Mell.
Zowerdszeitherten

(Sr= 3 w+ OR - 5 (00+501+505/10 + + (18 45 + 13 21) 1 milet + (35 mg as + 32 m an / 5 mm w + one) . Dow, is order to askisse the Righest possions accounty. We require that: 1. 2=0 di=1-400 20. 178005-77-1505-0 150151-7 == | ds.-9 | ds.-9 | ds. 18 | D15 - 55. + Ris would unpert. LEN = re + 051 - 5 (0+150 m + 0+ oralli , ray - dramy + OBI + ORI , 0 + 0E1+ ONA - OLEVAI. 20, the EDH some was now to some - runs · Salves one morey to Granto / So to some bridge upon - ifer this, our tayou expansion ever the same to go to soon Rights order order. Harris and the thinks, 'son Orel: 25.5. Exte + 21.5 - 40/14. = 380 (Brds+ d) /+ OKN TEP TELLE 14 /5 . Had so grass alone and where sixtry rz.".
300 B-1 245+01=0=> 01=-B-205=7 => 76 3 + 84.0 " Drick at Lobbe" . Usp Rass arrived at a or modulator, so was course year solver absormance uses Aur of 141.

: luimed no Jistant firstood. Do aco, wood
E - 15/15 (- rues + 10 due - 20 due + some ours,
Tecous nouse-Alle zapraon: nu = xu sixuu =>
=0 7-7-06 - 50 mm + 10 = mm - 70 + 10 = mm - 50 = 0 = 0
=> \frac{5}{7-1} - \frac{15\pi_5}{35} \left(-30 + 35 \contark+ -5 \contark+ -5 \contark+
insid: conord: 1-50.15 (A). 1000 det.
7: 7+ 05 (35-80 200) (AM-5-4 200) =>
=2 7= 7+05.4 (2005/AM-18225/AM)
Statisting required that: 12152:
-7 = 7+ 35 (2145/21-1825 (Rtd) = 5:=>
=> -5:345 < 2:45/201-10215/24/20 => -5:345 < 2:45/201-10215/24/20 => -5:345/201-10215/24/20
=> - 5.3/2 < 2:45/10 - 10 21/2 (Apr) <0 030.
· moust cels, society: My 1 = =>
=> - SH3 < 0-18 < 0 =>
李松》1000 \$ \$ \$ \$ \$ \$ \$ \$ \$
=> [I = 3] / I: I'- barderge conag
Scotility condition.
· Date: Uate that 2249rm-1000s (And 80 is abouting
vodagen et gre 24 gr vie ist oak

Protion as FDTD modification without unasing dispasion along our of the grid 1.6-1.31. · Pho and Jose boices we the क्रा कार्य कार्य मेंड्र मेंट केंद्र Explored to the asdic-batheris Origina? Farigino 3 = - c. (3 - 3 = 1) to the = D = C = C = - C = - C = - 2 とこにはいまることにはいます。 ころにはいるととできなり vata the vappea. Be- 5 F. F. Cougany .

(c. s. seargid the exemple). Introducid the plus and Trow borner one Sex. T & 7 Scrifiquis-Accifiquis+ Doune

De 15 Scrifiquis-Accifiquis+ Doune + U-2 R1) & Eing. 42-26-3. 42 } - CAd
Re Painte ond,

- Dex = E2. x cu2, 4n 32 - x cu2, 4-32 + grown

+ E2. x cu2, 4n 32 - x cu2, 4n 32 + cod

Ry c cu32 + cod

Ry c cu32 - cod + (1-2 \(2) \) \(\times \) \(is the for the species forms: - 5 - 5 - 5 - 5 - 6 | E B C C + 6 M - 3 - 5 - 5 - 6 M - 2 + 5 - 5 - 6 M - 2 + 5 - 5 - 6 M - 2 + 5 - 5 - 6 M - 2 + 5 - 5 - 6 M - 2 + 5 - 5 - 6 M - 2 + 5 - 5 - 6 M - 2 + 5 - 6 M - 2 + 5 - 6 M - 2 + 5 - 6 M - 2 + 6 M - + Et. Acid 4-13- Acid 40-56/ Acid 43-20-343 TV-585/ X5019437-X50193318 X50-31957-8501943 - (21) & there two exercises stay the same of surface of the same can stay the same of the case of the 1000, in order to open desposion, use intodes exes - type saturdas:

Et : Cx & siest: 5 silkx Rx. m + valyn).

Ex : Cx & T. & S. T. & Car Ro common (2n Ro common). Enteriors Cheisers films Freuer Albert. (. 35 cuis of siare confront haby

2. 25-75-0/8 = 51000 31 are 02010. T & 5 50 20 (10 5 1) = 1, 12 4. (1-5 ET) = 5020 (10 5 4 -- [Es. Ex. siza (ABA) sixxex Es & siza (ABA) Ext + (T-5 \$ 5. 5000 (12/2) => =17. - Es entost & 2 & zutos / 5 control 1-5/+ + Ex. 2:4 (50000 1-1 Es Ex 2:4 (50000 1-5)+ + Ex. 200 (ABA)] => = -4 200 Started. => - C2 - + 154= C4. 5x1 1-4 = 52]-- Cx 22 7 - 6 \$ [23] . [1] - fection. In order to go farther, we use squatories ord of or the side that the side of an order of of or the side of order of order order. -> CS = St. CXEN C. C. SS XSINGERAL. SX:= SINGERAL SX:= SI Ey: Sider Er · out: 2: (25) - CS 05 2: Vinter) + The Color of the C + XX. 53 (1-4 & 53) =0

८०००, दिल्लाकाक, एक त्वारांद्र व कार्क्स्वराक विश्वरात्त्र व कार्क्स्वरात्त्र व कार्क्स्वरात्त्र व कार्क्स्वरात्त्र => 2F5 = (#5/5.2%. - TU occes to some no gistaligo ogits on applica 469 84 / E= -71 + Bis 55 coda 40: · 265 = (25/3.25 => 245-23 D Sig (25/2) - Sig (25/2) => ·Aux: Additionally, it's introduct to Some allsome as follows. + Ric I Son wearners I and price FLEON: Loth work quoal flow he considers gistoleia Debation. · ODE Boss advictA. I DEB => Enser on Solver governt enbloge alteres. Fristangigan central Age. E E = (E | 5 23 (7 - 1 E 23 | 4 E 2 63 (1-1 E 23 | 27 . LOS/8 52. . OD all check it for in saying for you work cois great generists. [ph=0] out [== 1 => 0 = E = (+12.5x2.(1-0/+0= 15x2 = 2) Drick wear on a this 4 - this 4 - this of one of other of the court in the one of other of

Problem 3

In this problem, we are asked to develop a C++ implementation of the 1D FDTD method for numerical solution of Maxwell's equations in vacuum:

$$\begin{cases}
\frac{\partial E_y}{\partial t} = -\frac{\partial B_z}{\partial x} \\
\frac{\partial B_z}{\partial t} = -\frac{\partial E_y}{\partial x}
\end{cases}$$
(1)

Moreover, we consider the propagation of a linearly polarized electromagnetic pulse, for $x \in [-1, 1]$, towards the positive x direction, and for a time $t \in [0, 2.5]$, starting from the following initial conditions:

$$E_y(x) = \begin{cases} \sin(20\pi x), & |x| < 0.1\\ 0 & |x| \ge 0.1 \end{cases}$$
 (2)

Since the value of $B_z(x, t = 0)$ is not specified, it is assumed to be zero everywhere.

Periodic boundary conditions

In this case, we are asked to plot $E_y(x)$ and $B_z(x)$ at t = 2.5. My code will generate a gif with an animation of the propagation of the electromagnetic fields (as well as many images, used to build that gif). The requested plot will be the last image. For convinence, I reproduce it here.

Figure 1: Electromagnetic fields at t = 2.5, in the periodic boundary condition case. The onset of numerical dispersion is clearly visible!

In order to produce the aforementioned \mathtt{gifs} and images, first compile and run the C++ code, followed by the Python script. The first will generate a bunch of .txt files with the values of the E and B fields (for all the many time-steps), resultant from the FDTD calculations, for each of the three boundary condition cases. The later will generate the corresponding images and \mathtt{gifs} , to help in the visualization of the results. Import aspects to mention about the developed code:

- 1. My space grid always starts at an E field point and, likewise, always ends at an E field point. This is just a choice that I made. As a consequence, we have one less B field point than E field points. By doing things this way, I also only need to implement boundary conditions for the (extreme) E field points (**not** for the B field), since there is no B field point at the grid boundary;
- 2. The time-step is chosen to be equal to the distance between adjacent E and B field points. This will be important, later, for the implementation of the perfect boundary condition. Also, note that (Courant) stability is assured so long as: $2h/\tau > c_0^1$ (I assume propagation in vacuum. Otherwise, we'd need to include n [refractive index] here as well). This condition, in our system of units, is written as $2h/\tau > 1$, since c_0 is taken to be 1. Thus, we have chosen $2h/\tau = 2$ (Stable!), which means that a certain value of the E(B) field will take two time-steps (2τ) to travel to the next position (index) in its corresponding vector, i.e., to go from ez[0] to $ez[1]^2$, if we take Fig. 2 as reference.

Figure 2: Considered FDM grid and relevant distances. Taken from Ref. [1]. Slight modifications to include distances h and 2h.

3. Finally, my code computes all the three boundary condition cases all at once. So, it needs only to be run once, followed by the Python script (also once). **Notes:** run the C++ and Python codes from the same directory, and keep in mind that the Python code requires numpy, matplotlib (plots) and imageio (for making the gif).

At each iteration, all the "middle" points are taken care of using "regular" 1D FDTD update equations. In my code, these would be:

$$E_y[mm] = E_y[mm] - (tau/(2*h))*(B_z[mm] - B_z[mm - 1]);$$

 $B_z[mm] = B_z[mm] - (tau/(2*h))*(E_y[mm + 1] - E_y[mm]);$
(3)

¹The reason why I write 2h instead of just h is because of the way I defined the grid in my code. There, the distance between adjacent E(B) points is 2h, whereas the distance between adjacent E and B points is just h (Alternating E and B points). Check Fig. 2.

²Also, note that Fig. 2 does not describe my code. It was taken from Ref. [1], where they have a different convention. In my case, I compute E_y and B_z , not E_z and B_y . This figure is merely used to illustrate the distances involved (in the (2)h discussion from above).

The only place where we can have "problems" is at the boundaries, where we would require the value of the magnetic field (and in my case only the magnetic field, since the grid's extreme points are E at both ends) outside of the grid. In the case of periodic boundary conditions, we simply allow our grid to loop back around. This means that, for the last E point, we utilize the B point before it, as well as the first B point of the grid. The same goes for the first E point of the grid. In my code, this reads:

$$E_y[0] = E_y[0] - (tau/h)*(B_z[0] - B_z[SIZE - 2]);$$

 $E_y[SIZE - 1] = E_y[SIZE - 1] - (tau/h)*(B_z[0] - B_z[SIZE - 2]);$
(4)

The results of implementing this type of boundary condition are very easily understood if we look at the produce gif, where we see the waves propagating towards the edge of the simulation grid, only to then reappear at the other end of the grid. (Note: All the [full] developed codes are presented in the appendix, below.)

Perfect magnetic conductor boundary conditions

In order to simulate perfect magnetic conductor (PMC) boundaries, we merely have to set the magnetic field outside the grid to zero. We no longer allow it to loop back around. On external boundaries, a perfect magnetic conductor can be interpreted as a "high surface impedance", which doesn't allow current to flow into it (surface current density is zero along this boundary surface). Due to the way I defined my grid (E points on both extremes), we have a PMC on both ends. Had I defined it with a B point in either of its edges, setting the E field outside the grid to zero would be equivalent to having a perfect electric conductor-type boundary, instead. Either way, given how I implemented my grid, the B field will be inverted when it reaches the end of the grid, just like waves on a rope, reflecting from a fixed end. The electric field, on the other hand, will reflect symmetrically, not inverting its sign. This can be very readily observed in the gif that my program produces. Explicitly, this type of boundary condition is implemented as such:

$$E_y[0] = E_y[0] - (tau/(2*h))*(B_z[0] - 0);$$

$$E_y[SIZE - 1] = E_y[SIZE - 1] - (tau/(2*h))*(0 - B_z[SIZE - 2]);$$
(5)

Perfect boundary conditions

Finally, in order to implement what I call "perfect boundary conditions", we come back to the definition of τ as $\tau = h$. As mentioned previously, this makes it so that after **two** time-steps, the E value that we had at position $e_y[n]$ will now be at position $e_y[n+1]$ (Same thing for B). In my code, the perfect boundary conditions are implemented as follows:

The reason why this works is the following. Suppose we are at an extreme E point. In order to compute its next value, we require the value of the B field **one index** outside the grid, as if there was no boundary and the grid just continued infinitely. Now, since

³More detailed definition in Ref. [2].

we know that after two time-steps, our fields will have advanced by one index, we can recognize that the value we are looking for is merely the value of the B field two time-steps ago (which we stored previously as part of our solution!). The description of this perfect boundary condition is described in more detail in Ref. [3], where a more involved discussion of the topic is presented.

With all this being said, I can now easily simulate a part of infinite space, as requested. More specifically, my code demonstrates this by simulating the continuous emission of an antenna placed inside the simulation region. The produced gif makes this type of boundary condition very easy to visualize, as it appears the waves simply wander off to infinity.

References

- [1] Chapter 3: Introduction to the Finite-Difference Time-Domain Method: FDTD in 1D, Lecture notes by John Schneider. Available at: https://eecs.wsu.edu/~schneidj/ufdtd/chap3.pdf;
- [2] Perfect Magnetic Conductor. Available at: https://doc.comsol.com/5.5/doc/com.comsol.help.rf/rf_ug_radio_frequency.07.12.html;
- [3] Lecture 6 (FDTD) Implementation of 1D FDTD. Available at: https://www.youtube.com/watch?v=hNN7EtZsJuU;
- [4] Chapter 8: Two-Dimensional FDTD Simulations, Lecture notes by John Schneider. Available at: https://eecs.wsu.edu/~schneidj/ufdtd/chap8.pdf;
- [5] Perfect Electric Conductor. Available at: https://doc.comsol.com/5.5/doc/com.comsol.help.rf/rf_ug_radio_frequency.07.11.html;

Developed code

```
C++ code: P3_Final.cpp
#include <iostream>
#include <cmath>
#include <vector>
#include <fstream>
#include <string>
#define SIZE 2048
using namespace std;
/* Auxiliary functions */
void Write_to_file(vector<vector<double>> &Res, string filename)
{
    cout << "Entering \"Write_to_file\"... " << endl;</pre>
    cout << "Matrix dimensions: " << size(Res) << " " << size(Res[0])</pre>
   << endl;
    fstream w_File;
    w_File.open(filename, fstream::out);
    for (int i = 0; i < size(Res); i++)</pre>
    {
        for (int j = 0; j < size(Res[0]); j++)</pre>
        {
        if(j < (size(Res[0]) - 1)) w_File << Res[i][j] << ",";</pre>
                                     w_File << Res[i][j] << endl;</pre>
        else
        }
    w_File.close();
void Write_Vec_to_file(vector<double> &Vec, string filename)
{
    cout << "Entering \"Write_Vec_to_file\"... " << endl;</pre>
    fstream w_File;
    w_File.open(filename, fstream::out);
    for (int i = 0; i < size(Vec); i++)</pre>
    {
        if(i < (size(Vec) - 1)) w_File << Vec[i] << ",";</pre>
        else
                                  w_File << Vec[i] << endl;</pre>
    }
}
void Add_to_Res(double* E_y, double* B_z, vector<vector<double>> &Res_E
   , vector<vector<double>> &Res_B)
{
    vector<double> E_y_, B_z_;
   E_y_.assign(E_y, E_y + SIZE);
```

```
B_z_assign(B_z, B_z + (SIZE - 1));
   Res_E.push_back(E_y_);
   Res_B.push_back(B_z_);
   E_y_.clear();
   B_z_.clear();
/* Main program */
int main(int argc, const char** argv)
{
/* Boundary condition type (different cases):
1 - Periodic;
2 - Perfect Magnetic Counductor;
3 - Perfect (Infinity). */
for (int BC_type = 1; BC_type < 4; BC_type++)</pre>
{
   /* Variables */
   vector<double> t_vec;
   vector<vector<double>> Res_E, Res_B;
   int
                  qTime, mm;
                                 = \{0.\}, B_z[SIZE - 1] = \{0.\};
   double
                  E_y[SIZE]
   double
                                  = 2/(2 * double(SIZE) - 2);
                  h
   double
                  tau
                                   = h;
                                = 2.5/tau;
   long int
                 maxTime
                  x[2 * SIZE - 1] = \{0.\};
   double
   bool
                  delay
                                 = false;
                              = {"Periodic_BC", "PMC_BC", "
   vector<string> names
   Perfect_BC"};
   /* These ended up not being needed */
                   numberOfImages = 500; /* We only save 500 images */
   int
                             = int(double(maxTime)/double(
   int
   numberOfImages));
   /* Printing for debugging/reference */
   printf("Parameters:
                                       \n");
                                  = %f \n'', h);
   printf("h
                                  = %d\n'', SIZE);
   printf("gridSize
                                   = %f\n", tau);
   printf("tau
                                  = %f > c = 1 \text{ (Stable)} \n'', (2*h)/tau)
   printf("2h/tau
   printf("numberOfIterations = %ld\n", maxTime);
   printf("numberOfImages = %d\n", numberOfImages);
                                  = %d\n'', stride);
   printf("stride
   /* Filling up space grid vector */
   for(mm = 0; mm < (2 * SIZE - 1); mm++) x[mm] = -1 + (mm * h);
   if(BC_type < 3)</pre>
```

```
/* Initial condition */
    for(mm = 0; mm < SIZE; mm++)</pre>
         if(abs(x[2 * mm]) < 0.1) E_y[mm] = sin(20 * M_PI * x[2 * mm])
]);
        else E_y[mm] = 0;
    }
}
/* 'Pushing back' intial condition */
t_vec.push_back(0.);
Add_to_Res(E_y, B_z, Res_E, Res_B);
/* Do time stepping */
for (qTime = 0; qTime < maxTime; qTime++)</pre>
{
    /* Update magnetic field. Was missing factors of (tau/h) here (
and in the electric field equation(s))! */
    for (mm = 0; mm < (SIZE - 1); mm++) B_z[mm] = B_z[mm] - (tau)
/(2*h))*(E_y[mm + 1] - E_y[mm]);
    /* Update electric field */
    switch (BC_type)
    {
    case 1:
         /* Boundary conditions - Periodic! First and last points,
respectively */
        E_y[0]
                     = E_y[0]
                                 - (tau/h)*(B_z[0] - B_z[SIZE]
- 2]);
        E_y[SIZE - 1] = E_y[SIZE - 1] - (tau/h)*(B_z[0] - B_z[SIZE
- 2]);
        break:
    case 2:
         /* Perfect magnetic conductor at edges */
                   = E_y[0]
                                - (tau/(2*h))*(B_z[0] - 0);
         E_y[SIZE - 1] = E_y[SIZE - 1] - (tau/(2*h))*(0 - B_z[SIZE -
 2]);
         break:
    case 3:
         /* Perfect boundary conditions */
         if(qTime > 0)
         {
            E_y[0]
                      = E_y[0] - (tau/(2*h))*(B_z[0] -
Res_B[(qTime + 1) - 2][0]);
            E_y[SIZE - 1] = E_y[SIZE - 1] - (tau/(2*h))*(Res_B[(
qTime + 1) - 2][SIZE - 2] - B_z[SIZE - 2]);
```

```
break;
    }
     /* All the other 'middle' points */
     for (mm = 1; mm < SIZE - 1; mm++) E_y[mm] = E_y[mm] - (tau/(2*h))
))*(B_z[mm] - B_z[mm - 1]);
     /* Delay counter: Antenna beeps and then waits for 500
iterations before beeping again */
     if(BC_type == 3)
     {
         if ((qTime+1) % 500 == 0) delay = !delay;
                                   E_y[SIZE/2] += 0.75 * abs(sin(
         if (!delay)
M_PI * (double(qTime)/500.));
     /* Results */
     if (qTime % 1 == 0) // 'stride' was changed to 1 for now.
         cout << "Progress: " << 100*(qTime/double(maxTime)) << " %"</pre>
 << endl:
         t_vec.push_back((qTime + 1)*tau);
         Add_to_Res(E_y, B_z, Res_E, Res_B);
     }
} /* End of time-stepping */
/* Writing to text file */
switch (BC_type)
{
case 1:
     Write_to_file(Res_E, "E_Periodic_BC.txt");
    Write_to_file(Res_B, "B_Periodic_BC.txt");
    break:
case 2:
    Write_to_file(Res_E, "E_PMC_BC.txt");
    Write_to_file(Res_B, "B_PMC_BC.txt");
    break;
case 3:
    Write_to_file(Res_E, "E_Perfect_BC.txt");
    Write_to_file(Res_B, "B_Perfect_BC.txt");
    break;
}
/* Additionally saving the time vector, for easier plotting later
// ofstream outFile("timeVec.txt");
// for (const auto &e : t_vec) outFile << e << "\n"; // Find out</pre>
why this doesn't work!
```

```
Write_Vec_to_file(t_vec, "timeVec.txt");
}
return(0);
}
```

Listing 1: C++ code utilized in Problem 3 to resolve the FDTD scheme. For ease of copying: https://codeshare.io/6p1Wbm.

Python script: P3_Gif.py

```
import matplotlib.pyplot as plt
import numpy as np
import imageio.v2 as imageio
from pathlib import Path
# Definitions
          = 2/(2 * float(2048) - 2); tau = 4/(2048**2)
h
x_E
          = [-1 + (j * 2*h) \text{ for } j \text{ in range}(2048)]
          = [(-1 + h) + (j * 2*h)  for j  in range (2047)]
x_B
          = {}
Data
ids
          = ['E_y_1', 'B_z_1',
             'E_v_2', 'B_z_2',
             'E_y_3', 'B_z_3', 'TimeVec']
          = ['./Periodic_BC', './PMC_BC', './Perfect_BC']
filenames = ['./E_Periodic_BC.txt', './B_Periodic_BC.txt',
             './E_PMC_BC.txt', './B_PMC_BC.txt',
             './E_Perfect_BC.txt', './B_Perfect_BC.txt', 'timeVec.txt'
   ]
for folder in cases:
    Path(f"{folder}").mkdir(parents=True, exist_ok=True)
for file, id in zip(filenames, ids):
    with open(file, 'r') as f:
        Data[id] = [[float(num) for num in line.split(',')] for line in
    f]
for ind in range(1,4):
    for i in range(0, len(Data[f'E_y_{ind}'])):
        if((i \% 40 == 0) or (i == (len(Data[f'E_y_{ind}]') - 1))):
            plt.plot(x_E, Data[f'E_y_{ind}'][i], label = 'E_y')
            plt.plot(x_B, Data[f'B_z_{ind}'][i], label = 'B_z')
            plt.title(f"E_y(x, t = {Data['TimeVec'][0][i]:.5f})) and B_z
   (x, t = {Data['TimeVec'][0][i]:.5f})")
            plt.ylabel(f"Field value")
            plt.xlabel("Position (x)")
            plt.ylim(-1, 1)
            plt.legend()
```

Listing 2: Python code utilized in Problem 3 to generate the plots and gif. For ease of copying: https://codeshare.io/OdyxwN.