Ejercicio 17 de la colección de problemas

Enunciado:

En el circuito de la figura, determina:

- $\blacksquare u_R(t) y u_L(t)$
- Balance de potencias activas

Datos: $e_a(t) = 3\sqrt{2}\sin(10^3t) \text{ V}$; $e_b(t) = 30\sqrt{2}\sin(10^4t) \text{ V}$; $R = 30 \Omega$; L = 3 mH

Solución:

Dado que las fuentes trabajan a frecuencias diferentes, hay que resolver mediante superposición.

Cortocircuitamos una de las fuentes:

La resistencia está cortocircuitada. Por tanto:

$$u_{Ra}(t) = 0 \text{ V}$$

 $u_{La}(t) = \epsilon_a(t)$

En este circuito la potencia disipada por la resistencia es $P_{Ra}=0\,\mathrm{W}$ y, en consecuencia, la potencia entregada por el generador es $P_{\epsilon_a}=0\,\mathrm{W}$.

Hacemos el análisis con la otra fuente:

En este circuito:

$$u_{Rb}(t) = \epsilon_b(t)$$

$$u_{Lb}(t) = -\epsilon_b(t)$$

El balance de potencia activa es:

$$P_{Rb} = \frac{\epsilon_b^2}{R_b} = 30 \,\mathrm{W} = P_{\epsilon_b}$$

Por tanto:

$$u_R(t) = u_{Ra}(t) + u_{Rb}(t) = 30\sqrt{2}\sin(10^4 t) \text{ V}$$

 $u_L(t) = u_{La}(t) + u_{Lb}(t) = 3\sqrt{2}\sin(10^3 t) - 30\sqrt{2}\sin(10^4 t) \text{ V}$

Además, dado que las dos señales de los generadores son ortogonales, podemos sumar las potencias calculadas en cada circuito:

$$P_R = P_{Ra} + P_{Rb} = 30 \,\mathrm{W}$$

$$P_{\epsilon} = P_{\epsilon_a} + P_{\epsilon_b} = 30 \,\mathrm{W}$$