Question 1. Marks

- a) Calculate, correct to 2 decimal places, $\frac{31.18 \sqrt{40.7}}{8.5}$
- b) Factorise fully, $a^2 b^2 + 3a + 3b$
- c) If $g(x) = x^2 + 1$ i) Evaluate g(-3)ii) For what values of x is g(x) = 2?
- d) Graph on the number line the solution set of: |3-2x| < 11
- e) After a discount of 40% is allowed, the cost of insuring a car is \$312. 2 Find the cost of insuring this car when no discount is allowed?
- f) Express $\frac{3}{\sqrt{5}+2}$ in the form $a\sqrt{5}+b$.

Question 2. (Start a new page)

- a) Find the values of x for which $5x^2 2x 3 = 0$
- b) Find the value of $\sqrt{20-tv}$ correct to 3 significant figures when $t = 5.3 \times 10^{-3}$ and $v = 7.8 \times 10^{-2}$
- c) i) Factorise $x^3 + 1$ 1

 ii) Hence evaluate $\frac{\lim}{x \to -1} = \frac{x^3 + 1}{x + 1}$ 1
- d) Solve $x + \frac{3-x}{5} = 12$
- e) Given that $\sin A = \frac{2}{5}$ and A is an obtuse angle, find the EXACT values of tan A and cos A.
- f) Find the values of tan x when $tan^2 x + sec^2 x = 7$.

Question 3 (Start a new page)

a) The course for a trail bike competition is shown in the diagram below:

From the start S, Sharon rode 3 km due east to A. At A, she proceeded to a bearing of 055° for 10 km to B. At B she changed course to a bearing of 130° and continued in this direction until she reached the finish at C. (C is due east of start S and A.)

- i) Copy this diagram onto your answer sheet.
- ii) Show that $\angle ACB = 40^{\circ}$
- iii) Use the SINE RULE to find the distance from B to C. Give your answer to the nearest km.
- iv) It took Sharon 24 minutes to travel from the start to the finish. What was her average speed in km/hour.

5

5

KLM is a triangle with KL = 9m, LM = 10m and MK = 12m as shown in the above figure.

- i) Use the cosine rule to find the size of angle MKL to the nearest degree.
- ii) Calculate the area of triangle KLM to the nearest square metre.

Use the Cosine rule to find the length of AB to the nearest metre.

2

Question 4 (Start a new page)

In the diagram below, the lines 4y = 7x + 21 and 4y = 31 - 3x intersect at the point B. Point A has coordinated (-3,0) and point C has coordinates (5,4)

a) Calculate the gradient of line AC

1

b) Show that the line AC has equation 2y = x + 3

1

c) Show that B has coordinates (1,7)

- 3
- d) Show that the perpendicular distance from B to the line AC is $2\sqrt{5}$ units.
- 3

e) Find the exact length of the interval AC. Express answer as a simplified surd.

2

f) Find the area of \triangle ABC

2

Question 5 (Start a new page)

In the diagram AE || BD, AC || ED, \angle AED = 130⁰ and \angle ABC = 90⁰

- i) Copy diagram onto your answer sheet.
- ii) Find the size of \angle BAC, giving reasons.
- b) In the diagram below, QT and RS are perpendicular to the line PT. M is the midpoint of the interval QR.

- i) Copy diagram onto your answer sheet.
- ii) Prove, giving reasons, that triangles QMT and RMS are congruent.
- iii) If PT = 21 cm and SP = 12 cm, what is the length of TM? 5 Give reasons for your answer.
- c) In the diagram below it is known that AB = x cm, and BC = 8 cm,

- i) Copy diagram onto your worksheet.
- ii) Prove triangles ABE and ACD are similar.
- iii) Find the value of x.

4

3

Question 6 (Start a new page)

a) Differentiate the following
i)
$$y = 4x^3 - 7x^2 + 3$$

$$ii) y = \frac{5}{x^2} 1$$

iii)
$$y = \sqrt{2x - 7}$$

$$iv) y = \frac{5x}{1-x} 2$$

v)
$$y = 7x(2x^2 + 1)^4$$

b) Find the equation of the normal to the curve $y = x^2 + 4x + 3$ at the point where x = 3. 3

c) Given
$$f(t) = 3t^4 - 2t^3 + 5t - 4$$
, find $f''(-2)$

Question 7 (Start a new page)

- a) Sketch the curve $f(x) = 2x^3 + 3x^2 36x + 5$ for $-3 \le x \le 3$, showing any turning points and point of inflexion. 5 Find the maximum and minimum values for the function $-3 \le x \le 3$.
- b) A farmer wants to make a rectangular paddock with an area of 4000 m². However fencing costs are high and she wants the paddock to have a minimum perimeter.
 - i) Show that the perimeter is given by the equation $P = 2x + \frac{8000}{100}$
 - ii) Find the dimensions of the rectangle that will give the minimum perimeter, correct to 1 decimal place
 - iii) Calculate the cost of fencing the paddock at \$22.45 per metre.
- c) Find the primitive function of:

i)
$$x^4 - 3x^2$$

ii) $\frac{1}{x^8}$
iii) \sqrt{x}