FICHE 02-08: Les p-groupes: MET-1 1.2.10

Yvann Le Fay

Juillet 2019

Enoncé

Soit G un groupe d'ordre p^2 , démontrer que G est abélien.

Solution

D'après l'équation aux classes, il existe une famille finie de sous groupes stricts de G, $(H_i)_{i\in I}$ tels que

$$p^2 = |Z(G)| + \sum_{i \in I} \frac{p^2}{|H_i|}$$

D'après le théorème de Lagrange, pour tout $i \in I$, $\frac{p^2}{|H_i|} \in \{1, p, p^2\}$, le cas 1 est à exclure car H_i est un sous groupe strict, par l'équation aux classes, on en déduit que $p \mid |Z(G)|$. Supposons par l'absurde que |Z(G)| = p, il existe $x \in G \setminus Z(G)$, alors $N_x = \{g \in G : gx = xg\}$ est un sous-groupe strict de G. Aussi $Z(G) \subset N_x$ donc nécessairement $|N_x| = p$ puis $Z(G) = N_x$, ce qui est absurde.