Math 7550 HW 2

Duncan Wilkie

10 February 2023

Problem 1. If $\phi : \mathbb{R}^m \to \mathbb{R}^n$ is a linear map and we identify $T_p(\mathbb{R}^k)$ with \mathbb{R}^k by identifying $\frac{\partial}{\partial x}$ with the *ith standard basis vector, show that* ϕ_* *is just* ϕ .

In other words, using the $(d\phi)_p$ notation for ϕ_* at p, for any $p \in \mathbb{R}^m$, show that $(d\phi))_p = \phi$. (Note that you are implicitly showing that ϕ is differentiable)

Problem 2. Generalize Problem 1: if $\phi : \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}^k$ is a bilinear map, show that ϕ is differentiable, and that, for any $(p,q) \in \mathbb{R}^m \times \mathbb{R}^n$, we have $(d\phi)_{(p,q)}(x,y) = \phi(p,y) + \phi(x,q)$.

Problem 3. Let $M = M_{m,n}(\mathbb{R})$ be the set of $m \times n$ matrices with real entries. Fix $k \leq \min m, n$, and let $U_k = \{A \in MMMMMM \mid \operatorname{rank}(A) \geq q\}$. Describe a C^{∞} structure for U_k .

Hint: prove that U_k is open in M by showing that th complement is closed, and identify M.

Problem 4. The Grassman manifold or Grassmannian $G_{k,n}$: let $G_{k,n}$ be the set of all k-dimensional vector subspaces of \mathbb{R}^n . Show that $G_{k,n}$ is a smooth manifold of dimension k(n-k).