

## Ch 5 Concurrency: Mutual Exclusion and Synchronization

Study online at quizlet.com/\_4r4nlu

| 1. List four design issues for which the concept of concurrency is relevant.                    | 1. The OS must be able to keep track of the various processes. This is done with the use of process control blocks                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                 | The OS must allocate and de-allocate various resources for each active process.  At times, multiple processes want access to the same resource                                                                                                                                                                                                                                                                                                              |
|                                                                                                 | 3. The OS must protect the data and physical resources of each process against unintended interference by other processes.  This involves techniques that relate to memory, files, and I/O devices.                                                                                                                                                                                                                                                         |
|                                                                                                 | 4. ensure that the processes and outputs are independent of the processing speed.                                                                                                                                                                                                                                                                                                                                                                           |
| 2. List the requirements for mutual exclusion.                                                  | <ol> <li>mutual exclusion must be enforced</li> <li>A process that halts must do so without interfering with other processes</li> <li>No deadlock or starvation.</li> <li>A process must not be denied access to a critical section when there is no other process using it</li> <li>No assumptions are made about relative process speeds or number of processes</li> <li>A process remains inside its critical section for a finite time only.</li> </ol> |
| 3. List the three control problems associated with competing processes and briefly define each. | Mutual Exclusion: when one process is in a critical section that accesses shared resources, no other process may be in a critical section that accesses any of those shared resources.  Deadlock: two or more processes are unable to proceed because each is waiting for one of the others to do something.  Starvation: A runnable process is overlooked indefinitely by the scheduler; although it is able                                               |
| 4. List three degrees of awareness between processes and briefly define each.                   | to proceed, it is never chosen.  Unaware of each other: Competition. Problems: mutual exclusion, deadlock, starvation.  Aware indirectly: Cooperation by sharing Problems: mutual exclusion, starvation, data coherence  Aware directly: Cooperation by communication. Problems: deadlock, starvation                                                                                                                                                       |
| 5. What are three contexts in which concurrency arises?                                         | <ul> <li>Multiple applications: invented to allow processing time to be shared among a number of active applications.</li> <li>Structured applications: As an extension of the principles of modular design and structured programming</li> <li>Operating system structure: The operating systems themselves as a set of processes or threads.</li> </ul>                                                                                                   |

| 6. What conditions are generally                                            | 1. Any number of readers may simultaneously read the file.                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| associated with                                                             | 2. Only one writer at a time may write to the file.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| readers/writers problem?                                                    | 3. If a writer is writing to the file, no reader may read it                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 7. What is a monitor?                                                       | The monitor is a programming-language construct that provides equivalent functionality to that of semaphores and that is easier to control.                                                                                                                                                                                                                                                                                                                                                                              |
| 8. What is the basic requirement for the execution of concurrent processes? | Mutual exclusive the ability to exclude all other processes from a course of action while one process is granted that ability.                                                                                                                                                                                                                                                                                                                                                                                           |
| 9. What is the difference                                                   | the semaphore value in binary just 0 and 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| between binary<br>and general<br>semaphores?                                | general semaphores can set the value to other integers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 10. What is the difference between strong                                   | Strong semaphores put the blocked process into a FIFO queue thus first blocked process will be the first one be pick.                                                                                                                                                                                                                                                                                                                                                                                                    |
| and weak semaphores?                                                        | Weak semaphores: the order in which processes are removed from the queue is not specified.                                                                                                                                                                                                                                                                                                                                                                                                                               |
| What is the     distinction     between blocking                            | • Blocking send, blocking receive: Both the sender and receiver are blocked until the message is delivered; this is sometimes referred to as a rendezvous. This combination allows for tight synchronization between processes.                                                                                                                                                                                                                                                                                          |
| and nonblocking<br>with respect to<br>messages?                             | • Nonblocking send, blocking receive: Although the sender may continue on, the receiver is blocked until the requested message arrives. This is probably the <b>most useful combination</b> . It allows a process to send one or more messages to a variety of destinations as quickly as possible. A process that must receive a message before it can do useful work needs to be blocked until such a message arrives. An example is a server process that exists to provide a service or resource to other processes. |
|                                                                             | Nonblocking send, nonblocking receive: Neither party is required to wait                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 12. What is the distinction between                                         | Competing processes: compete for resources, like access to the same file or I/O device, processor time.                                                                                                                                                                                                                                                                                                                                                                                                                  |
| competing                                                                   | Cooperating processes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| processes and cooperating processes?                                        | share resources or communication. may or may not be ware of each other.                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 13. What operations can be performed                                        | 1. initialized to a nonnegative integer value.                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| on a semaphore?                                                             | 2. semWait operation decrements the value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                             | 3. semSignal operation increments the value                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |