Contents

Oay 14
Continuous Random Variables
Properties
Properties of $f(x)$
Uniform Random Variable
Example: Standard Uniform Random Variable
Normal Random Variable
Empirical (68-95-99.7) Rule
Standardization

Day 14

Continuous Random Variables

Can take any real number (IR) value within any given interval.

We cannot use a probability mass function so we will instead use a probability density function (PDF) denoted as f(x)

Properties

• The probability of being in an interval (a, b] is:

$$\int_{a}^{b} f(x)dx = \int_{-\infty}^{b} f(x) - \int_{-\infty}^{a} f(x)dx$$

- This is considered the area under the curve between a and b

• $P(X = x) = 0 \ \forall x$

$$-P(X \le x) = P(X < x)$$

- $P(X \ge x) = P(X > x)$

$$-P(X \ge x) = P(X > x)$$

f(x) is displayed graphically as a density curve

Properties of f(x)

• $\forall x \in \mathbb{R}, f(x) \ge 0$

– Density never goes below x-axis • $\int_{-\infty}^{\infty} f(x)dx = 1$

Mean of continuous random variable: $\mu_x = \int_{-\infty}^{\infty} x \times f(x) dx$

Variance of continous random variable is $\sigma^2 = \int_{-\infty}^{\infty} (X = \mu_x)^2 f(x) dx$

Uniform Random Variable

Figure 1: Graphical Representation

 $X \sim U(a,b)$

Example: Standard Uniform Random Variable

 $X \sim U(0, 1)$

Find

- $P(X \ge 0.3)$
- P(X = 0.3)
- $P(0.3 < X \le 1.3)$
- $P(0.2 \le X \le or 0.7 \le X \le 0.9)$
- P(X is not in the interval (0.4, 0.7))

Answers

- $\sqcap = (0.7) \times (1) = 0.7$
- $\square = 0$
 - The probability of being exactly on a point in the infinite sum will **always** be 0.
- $\Box = (0.7) \times (1) = 0.7$
- Do not keep shading when there is no density curve, meaning it is a hard stop at X=1• $\sqcap = ((0.25-0.2) \times \frac{1}{0.25-0.2}) + ((0.91-0.7) \times \frac{1}{0.91-0.7}) = 0.25$ $\sqcap = 0.4+0.3=0.7$

Normal Random Variable

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \ X \sim N(\mu \, \sigma)$$

Density curve is also a "bell curve"

Empirical (68-95-99.7) Rule

Figure 2: Bell Curve

$$X \sim N(\mu \, \sigma)$$

Standardization

It may be useful to <u>standardize</u> distributions to compare 2 variables with same density curve shape but different scales. For normal distributions $X \sim N(\mu, \sigma)$, we convert to <u>Z-Scores</u> $Z \sim N(0, 1)$

$$Z = \frac{x - \mu}{\sigma} = \frac{value - mean \, of \, distribution}{standard \, deviation}$$

$$P(Z \le z) = P(X \le x)$$

"Cumulative proportion"/"Cumulative probability"