MATH 277 Midtern (Fall 2015)

Thank you for attending my **PREP101** session!
Best of luck!

1.
$$\vec{r}(t) = \langle t^3, \sqrt{3}t^2, (2t+1) \rangle$$
 $0 \le t \le 2$
 $\vec{r}'(t) = \langle 3t^2, 2\sqrt{3}t, 2 \rangle$
 $\|\vec{r}'(t)\| = \sqrt{6t^4 + |2t^2 + 4} = (3t^2 + 2)$

$$L = \int_{0}^{2} (3t^{2}+2) dt = (t^{3}+2t)|_{0}^{2} = 8+4=12 \implies (A)$$

2. Ellipse centered at
$$(4,-2)$$

$$\frac{\left(\chi-4\right)^2}{a^2} + \frac{\left(y+2\right)^2}{b^2} = 1$$

$$\chi = a \cos t + 4 ; \quad y = b \sin t - 2 \implies (C)$$

3.
$$\vec{r}'(t) = \langle \chi'(t), y'(t) \rangle = \langle 6t^2 - 6t, 2t - 2 \rangle$$

Slope: $\frac{2(t-1)}{6(t^2-t)} = \frac{2(t-1)}{6t(t-1)} = \frac{1}{3t}$ when $t=1$ $m=\frac{1}{3}$

when
$$t=1$$
 $(x,y)=(0,1)$ \Rightarrow $y=\frac{1}{3}x+1$ \Rightarrow $\chi-3y+3=0 \Rightarrow (B)$

4.
$$4x^{2} + y^{2} + z^{2} = 8$$

 $z = -\sqrt{4x^{2} + y^{2}}$
 $4x^{2} + y^{2} + 4x^{2}y^{2} = 8$
 $4x^{2} + y^{2} + 4x^{2} + 4x^{2}y^{2} = 8$
 $4x^{2} + y^{2} + 4x^{2} + 4x^{2}$

$$\begin{array}{ccc}
\uparrow & \uparrow & \hat{T} \times \hat{N} = \hat{B} \\
\downarrow & \hat{N} \times \hat{B} = \hat{T} \Rightarrow (E) \\
\downarrow & \hat{B} \times \hat{T} = \hat{N}
\end{array}$$

Thank you for attending

6.
$$\vec{r}'(t) = \langle \frac{2}{t}, 1, -\frac{2}{t^2} \rangle$$
 $e^{-t} = 1$ $\vec{r}'(t) = \langle 2, 1, -2 \rangle$

@
$$t=1$$
 $r'(1) = \langle 2, 1, -2 \rangle$
 $||r'(1)|| = \sqrt{9} = 3$

$$\vec{F}''(t) = \left\langle -\frac{2}{t^2}, 0, \frac{4}{t^3} \right\rangle$$

$$\vec{r}' \times \vec{r}'' = \langle \frac{4}{t^3}, \frac{4}{t^4}, \frac{2}{t^5} \rangle \otimes t = 1 \langle 4, -4, 2 \rangle$$

$$|| r' \times r'' || = 2 \sqrt{4 + 4 + 1} = 2\sqrt{9} = 6$$

$$K_1 = \frac{6}{27} = \frac{2}{9} \implies \beta = \frac{9}{2} \implies (c)$$

7.
$$\vec{r}(t) = \langle -2 \sin t, 2 \omega st, 1 \rangle$$
 $||\vec{r}(t)|| = \sqrt{5}$ $||\vec{r}(t)|| = \sqrt{5}$

$$a_{\uparrow} = 0 \Rightarrow (c)$$

8.
$$W_x = \sqrt{5} \cos(\sqrt{5}x + 2y) \cosh z$$

$$Wy = 2 \cos (\sqrt{5}X + 2y) \cosh z$$

$$W_{XX} = -5 \sin(\sqrt{5}x + 2y) \cosh z$$

$$W_{XX} + W_{YY} + W_{ZZ} = 0$$

$$\Rightarrow K^2 = 0 \Rightarrow K = 3 \times -3$$

9. (A)
$$\chi^{2} + 4y^{2} - 63 \neq 0$$

 $\chi^{2} + 4y^{2} - 63 \neq 1$ $\Rightarrow \chi^{2} + 4y^{2} \neq 64$

Thank you for attending my **PREP101** session!
Best of luck!

11.
$$\frac{\partial z}{\partial y} = x y^{x-1}$$

$$\frac{\partial^2 z}{\partial x \partial y} = x y^{x-1} \cdot \ln y + y^{x-1} = y^{x-1} (x \ln y + 1)$$

12.
$$\frac{Z}{\partial n} = \frac{\partial Z}{\partial x} \frac{\partial x}{\partial n} + \frac{\partial Z}{\partial y} \frac{\partial y}{\partial n} \qquad (x_{i}y) = (z_{i}-1)$$

$$= (Z_{x}) v^{2} + (Z_{y})(\frac{1}{V})$$

$$= (3)(-1)^{2} + (-2)(-1) = 5$$

13.
$$\frac{dW}{dt} = \frac{\partial W}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial W}{\partial y} \frac{dy}{dt} = 2e^{2x+y} \cdot (1+\omega st) + e^{2x+y} (2)$$

When $t = 0$; $x = 0$, $y = -1$ $\Rightarrow \frac{dW}{dt} = 2e^{0-1} (1+1) + e^{2(0)-1} (2)$
 $= \frac{4}{e} + \frac{2}{e} = \frac{6}{e}$

14.
$$\nabla F = \langle 10x - 4y, 2 \rangle$$
 @ $(1,2,-3)$ $\langle 10, -8,2 \rangle$ chook $\vec{n} = \langle 5, -4, \rangle$

14. $(1,2,-3)$

15. $(x-1) - 4(y-2) + 1(z+3) = 0$

5. $(x-4) + z + 6 = 0$

15.
$$\frac{\partial y}{\partial z} = \frac{-F_z}{F_y} = \frac{+2\cos(3xy - 2z)}{2x^3y + 3x\cos(3xy - 2z)}$$

Thank you for attending my **PREP101** session!
Best of luck!

antoine.prep101@gmail.com

$$\frac{\partial y}{\partial \overline{z}} = \frac{2\cos(6)}{4+3\cos(6)} = \frac{2}{7}.$$

16.
$$\nabla f = \langle y + 3z, x + 2z, 3x + 2y \rangle$$
 (e (1,1,-1) $\nabla g = \langle -2, -1, 5 \rangle$
 $\overrightarrow{PQ} = \langle -2, 2, -1 \rangle$ $||\overrightarrow{PQ}|| = 3 \Rightarrow \vec{u} = \langle -\frac{2}{3}, \frac{2}{3}, -\frac{1}{3} \rangle$
 $D_{\hat{u}}f = -2(-\frac{1}{3}) - 1(\frac{2}{3}) + 5(-\frac{1}{3}) = 4 - \frac{2}{3} = -1$

17.
$$\overrightarrow{\nabla f} = \langle -6 \times^2, -3, 2 \neq \rangle$$
 @ $(1, -1, 3)$ $\overrightarrow{\nabla f} = \langle -6, -3, 6 \rangle = 3 \langle -2, 1, 2 \rangle$ $\|\overrightarrow{\nabla f}\| = 3 \sqrt{9} = 9.$

(D) is the FAISE Statement.

18.
$$R = \frac{Ky}{x^2} \qquad \frac{\Delta y}{y} = 0.01 \qquad \frac{\Delta x}{x} = -0.04$$

$$dR = \frac{\partial R}{\partial y} dy + \frac{\partial R}{\partial x} dx = \frac{K}{X^2} \cdot dy + \frac{-2Ky}{X^3} dx$$

$$\frac{dR}{R} = \frac{K/x^2}{Ky/x^2} dy + \frac{-2Ky/x^3}{Ky/x^2} dx = \frac{dy}{y} - \frac{2dx}{x} \approx 0.01 + 0.08$$

$$= 0.09 \quad (9\%)$$

$$\frac{y^2}{16} - \frac{\chi^2}{k^2} = 1$$

$$x^2 + y^2 = 4$$

Thank you for attending my PREP101 session! Best of luck!

$$\frac{\chi^2}{16} + \frac{y^2}{\xi^2} = 1.$$

Check (D)
$$c=1$$
 $4x^2 + 10y^2 - 64 = 12x^2 + 6y^2$ $c=0$ $4x^2 + 10y^2 = 64$ $4y^2 - 8x^2 = 64$ $\frac{x^2}{16} - \frac{x^2}{8} = 1$

$$\begin{cases} c = 0 & 4x^{2} + 10y^{2} = 64 \\ \frac{x^{2}}{16} + \frac{y^{2}}{64/10} = 1 \end{cases}$$

$$c=-1 4x^{2}+10y^{2}-64=-12x^{2}-6y^{2}$$

$$16x^{2}+16y^{2}=64$$

$$x^{2}+y^{3}=4$$

20.
$$M(\delta) = 40,000$$

$$1000 \text{ Kg/s}$$
, $V_e = 400 \text{ m/s}$ $V(0) = 0$

$$V(o) = 0$$
 $t = 30$ secs.

$$V(20) = V(30) = 400 \ln \left(\frac{40,000}{m(20)} \right) = 400 \ln 2. \Rightarrow (A)$$