The Architecture of the LSTM code using for prediction of protein backbone geometry

Feature Description of the Protein Sequence

Feature Description in detail

- 1. PSSM: Position Specific Scoring Matrix (20)
 - Amino acid order in PSSM: A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y, V
- 2. Probability 3- and 8- state secondary structure prediction (11):
 - Obtained from spot1d program
 - Order: P(8-B), P(8-E), P(8-G), P(8-H), P(8-I), P(8-C), P(8-S), P(8-T), P(3-C), P(3-E), P(8-H),
- 3. PP (7): Physio-chemical Properties (7)
 - Obtained from where? [It is not clear from where these value have been taken. AAindex is a database of amino acid indices, amino acid mutation matrices, and pair-wise contact potentials. Currently, 566 Amino Acid indices are there.]
 - In order: 'Steric Param', 'Polarity', 'Volume', 'Hydrophobicity', 'Isoelectric Pt', 'Helix Prob', 'Sheet Prob',
- 4. SASA (1): solvent accessible surface area (from where?) [Most likely PP and SASA have been taken from file.]
- 5. Position flag (3): pfm_start, pmf_middle and pfc_end
- 6. Hot encoding (20):
 - Order: ACDEFGHIKLMNPQRSTVWY

Parameters to be predicted (targets)

- 1. Protein backbone dihedral angles (3)
 - Phi (ϕ) : $C_i N_i CA_{i+1} C$; Psi (ψ) : $N_i CA_1 C_i N_{i+1}$ and Tau (τ) : $CA_{i-1} CA_{i-1} CA_{i+1} CA_{i+2}$
 - Obtained from SPOT1D or in-house script from PDB structure (dssp). However, In-house script is not available as backup data.
- 2. Protein backbone angle (4):
 - CA_i-C_i-N_{i+1} (<cacn); C_{i-1}-N_i-CA_i (<cnca) and N_i-CA_i-C_i(<ncac); CA_{i-1}-CA_i-CA_{i+1} (θ)
 - Calculated from PDB structure. We must write in-house code as both data and code are not availa ble
- 3. Protein backbone distance
 - Distance between C_{i-1}-N_i (d:cn); N_i-CA_i (d:nca) and CA_i-C_i(d:cac);
 - Calculated from PDB structure. (In-house code)

The architecture of the LSTM code

Flow chart of the LSTM code

(Input data for training)

From fasta ,pssm and

spot1d

(feature engineering) LSTM Model training

Generate input feature:

Positional flag; One Hot encoding

For smooth prediction of target:

Calculate cos and sin of θ, τ, ψ, ϕ

Split_data()

Split: Input feature into feature and target & in put sample into training and testing

Make_model()

Optimized the hyperparametes of BiLSTM

Make_model()

Optimized the hyperparametes of BiLSTM

Coding error in position flag calculation

The LSTM code: function data_augmentation()

Positional flag to identify start and end of a chain: 0 at start [1 0 0]; 2 at end [0 1 0] and 1 in between [0 0 1] pfc[0], pfc[1] and pfc[2]

COL['phi'] is int, however comparing with string '0'

Therefore, it does not encode the terminal of protein properly

The LSTM code: function split_data()

PharmCA

```
# Array columns to be used as features for LSTM model
window_cols = [
    'index', 'A', 'R', 'N', 'D', 'C', 'Q', 'E', 'G', 'H', 'I', 'L', 'K',
    'M', 'F', 'P', 'S', 'T', 'W', 'Y', 'V', 'ss8_B', 'ss8_E', 'ss8_G',
    'ss8_H', 'ss8_I', 'ss8_C', 'ss8_S', 'ss8_T', 'ss3_C', 'ss3_E', 'ss3_H',
    'Steric Param', 'Polarity', 'Volume', 'Hydrophobicity',
    'Isoelectric Pt', 'Helix Prob', 'Sheet Prob', 'SASA 'pfc_start',
    'pfc_middle', 'pfc_end', 'aa_A', 'aa_C', 'aa_D', 'aa_E', 'aa_F',
    'aa_G', 'aa_H', 'aa_I', 'aa_K', 'aa_L', 'aa_M', 'aa_N', 'aa_P',
    'aa_O', 'aa_R', 'aa_S', 'aa_T', 'aa_V', 'aa_W', 'aa_Y',
    position_flap
```

Data_augmentation() created three positional flags. pfc[0], pfc[1] and pfc[2].

However, in time for splitting feature and target (split_data ()) four positional flags are mentioned.

Phi and Psi are different in SPOT1D and DSSP

SPOT1D: 1ELK

	ip-10-219-3 jobc@ip-	-		pratiti/I	STM/comp	lete\$ he	ad -5 1E	I.KA spot	ld												
	AA	SS3	SS8			HSEa-d		theta	tau	phi	psi	P(3-C)	P(3-E)	P(3-H)	P(8-C)	P(8-S)	P(8-T)	P(8-H)	P(8-G)	P(8-I) P
8-E)	P(8-B)																				
	S	C	С	57.76	9.18	13.60	23.53	117.41	-161.90	-97.63	143.39	99.96	0.03	0.01	99.87	0.07	0.04	0.00	0.00	0.00	0
01	0.00																				
	D	C	C	104.03	4.29	13.55	19.26	104.35	-142.48	-85.81	21.95	88.32	1.18	10.49	78.89	1.83	9.17	3.95	4.85	0.00	0
53	0.67																				
	F	C	C	107.58	9.44	11.27	21.36	106.67	142.99	-87.22	55.11	80.01	2.34	17.65	42.03	16.43	22.06	4.53	12.47	0.00	1
LO	1.37																				
	L	C	C	82.82	10.42	11.61	22.53	108.87	106.41	-90.04	100.7	79.05	2.83	18.13	43.70	16.20	19.35	4.42	13.41	0.00	1
39	1.52																				

DSSP: 1ELK

I think we should calculate 10 target value from PDB structure, as PDB structure a re experimental value and SPOT1D

Spot1D program

 There was some conflict to use the common spot1d programmer. Therefore, we have created our own folder "PSP" and make a run properly.

Datasets:

- PSSM_2.txt and fasta files of ~6500 and ~7000 are present in the backup data. However, spot1d files are not in the backup data. Therefore, we are generating spot1d files for all fasta.
- "Clean_traning.pbz2" is not in the backup data. Therefore, we had to create it our-self

Interpretation and future direction:

As we identify some issues in the LSTM code and unavailable of the training dataset. (Some feature and targ
et value are missing), we can re-construct the LSTM model for protein structure prediction and try to i
mprove performance of the model.

OR

We can model the loop structure prediction model on base of the LSTM

Need Dr. Wu's suggestion at the point

