

CV503

USN M S 1

M S RAMAIAH I TE OF TECHNOLOGY

(AUTONOMOUS INSTITUTE, AFFILIATED TO VTU) **BANGALORE - 560 054**

Su	•		ER END EXAMINATION : B.E Civil Engineering : Environmental Engineering : CV503			Semes		ter : arks :	V 100 3 Hrs		
Ins	• A	Vrite sketch	ful es	l question wherever	from each						
1.	a) b)	advantage	s ai	nd disadva v you esti	different ty intages of ea	ch.	verage system. the factors affe		co		(10
2.	a)	Explain t			method of	estimation	of storm wa	iter with	CO	1	(05)
	b)	-			Time of cor	ncentration,	time of entry an	d time of	со	1	(05)
	c)	A certain	ea	of 40 Ha. data:		sign dischar	ulation of 50000 ge for the sewer		со	1	(10)
		ii.		Average	impermeabi	lity factor fo	r the area = 0.3				,
		iii.		Time of o	concentratio	n = 50 minu	tes				
		twice the	D	WF. Take	sewage ge la: R _i = 25.4	nerated as	ivalent to the Wequal to 75% mment on the re	of water			
3.	a)	Explain the explain the sewer lines	di	ffect of flo fferences i	w variation in the hydra	s on velocity ulic design	of flow in sew of water supply	ers. Also lines and	CO2	2	(10)
	b)		pla	in the sel	lf-cleaning	velocity an	d non-scouring	velocity	coa	2	(05)
	c)	Design a sebeing 135 at a slope of	ewe lpc	er to serve d of which I in 625 ar	a population 80% finds	its way into ould be design	the rate of wate sewer. The sew gned to carry the	er is laid	CO2	2	(05)

CV503

) Line	- 1		,	•
100	(S)	Explain the different shapes of sewers and their applications on the field with neat sketches.	CO2	(10)
BA	-/ 1 //	Explain how laying and testing of sewers are carried out.	CO2	(10)
		UNIT – III		
5.	. a)	What are sewer appurtenances? List them. Describe with neat sketch the components of a manhole.	CO3	(10)
	b)	Explain the following with sketches: i) Catch basins ii) Oil and grease traps.	CO3	(10)
6.	. a)	Clearly bring out the differences between the following terms: i) Aerobic and anaerobic decomposition ii) BOD and COD iii) Carbonaceous BOD and Nitrogenous BOD.	CO3	(10)
	b)	The BOD of sewage incubated for 1 day at 30°C has been found to be 200 mg/L. What will be its 5 day BOD at 20°C? Assume de-oxygenation constant (base 10) as 0. 12 per day at 20°C.	CO3	(10)
7.	. a)	UNIT - IV Draw a flow diagram of a municipal sewage treatment plant including sludge digestion. Give the removal of important polluting parameters by each of the treatment units.	CO4	(10)
	b)	Calculate the diameter, depth and weir loading of a primary sedimentation tank, using the following data: Sewage flow - 6 MLD Detention period - 2 hrs Overflow rate 1500 Its/m²/hr.	CO4	(10)
8.	a)	What are HRTF's? Explain importance of recirculation and its effect on the efficiency of HRTF's.	CO4	(10)
<u>.</u>	b)	Determine the depth of the filter, volume of the filter media and the efficiency of treatment of a standard the trickling filter, from the following data: Quantity of settled Sewage - 4.5 xl0 ⁶ l/day BOD of raw sewage - 150 mg/l Rate of organic loading - 159 gms/m ³ /day	CO4	(10)
		Rate of surface loading - 2000 l/m²/day		
. 9	. a)	UNIT - V Explain the stages of anaerobic sludge digestion.	CO4	(10)
	b)	Name the various traps used in sanitary plumbing system depending upon their shapes and their uses. Explain at least one type of trap briefly. What are the qualities of a good trap used in sanitary plumbing system.	CO4	(10)
10), a)	Name the various systems of plumbing. Explain any one in detail along with a neat sketch.	CO4	(10)
	b)	Draw a detailed drainage plan for a single storyed residential building.	CO4	(10)

No mobile phones