# 单缝衍射实验报告

<u>专业: 计算机科学与技术 班级: 计科 1802 学号: 20188068 姓名: 孔天欣 实验</u>序号: 16

创建人:周红仙 总分:100

## 一、实验目的

- 1. 定性观察单缝衍射现象和其特点。
- 2. 学会用光电元件测量单缝衍射光强分布,并且绘制曲线。

## 二、实验仪器

单缝衍射实验装置包括: He-Ne 激光器、衍射狭缝、光具座、白屏、光电探头、光功率计。 He-Ne激光器:

用途: 氦氖激光器是以中性原子气体氦和氖作为工作物质的气体激光器。以连续激励方式输出连续激光。在可见光和近红外区主要有 0.6328um、3.39um 和 1.15um 三条谱线,其中 0.6328um 的红光最常用。氦氖激光器的输出功率一般为几毫瓦到几百毫瓦。本实验中使用 632.8nm 的红光进行实验。

# 三、实验原理

波长为 λ 的单色平行光垂直照射到单缝上,在接收屏上,将得到单缝衍射图样,即一组平 行于狭缝的明暗相间条纹。单缝衍射图样的暗纹中心满足条件:

$$x = \pm \frac{f}{a}k\lambda \quad (k = 1, 2, 3, \dots)$$
 (1)

式中,x为暗纹中心在接收屏上的x轴坐标,f为单缝到接收屏的距离;a为单缝的宽度,k为暗纹级数。在 $\pm 1$  级暗纹间为中央明条纹。中间明条纹最亮,其宽度约为其他明纹宽度的两倍。

实验装置示意图如图 1 所示。



图 1 实验装置示意图

光电探头(即硅光电池探测器)是光电转换元件。当光照射到光电探头表面时,在光电探头的上下两表面产生电势差  $\Delta U$ ,  $\Delta U$  的大小与入射光强成线性关系。光电探头与光电流放大器连接形成回路,回路中电流的大小与  $\Delta U$  成正比。因此,通过电流的大小就可以反映出入射到光电探头的光强大小。

# 四、实验内容

- 1. 观察单缝衍射的衍射图形;
- 2. 测定单缝衍射的光强分布;
- 3. 利用光强分布图形计算单缝宽度。

# 五、数据处理

实验内容:测定单缝衍射的光强分布

注意事项:实验时,主极大、各次极大、各极小位置要找准。讲义上从第三极小位置开始测量,将第三极小的位置的记为 x=0.000mm,每半圈及移动 0.500mm 测一次;也可以从主极大的位置开始测量,将主极大的位置记为 x=0.000mm,每半圈及移动 0.500mm 测一次。

#### ★ (1)原始测量数据

#### ☆ 数据记录表格:

| X(mm) | 0.000  | 0.500  | 1.000  | 1.500  | 2.000  | 2.500  | 3.000  | 3.500  | 4.000  |
|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| P(mw) | 0.001  | 0.006  | 0.013  | 0.019  | 0.017  | 0.015  | 0.008  | 0.005  | 0.005  |
| P/P   | 0.0007 | 0.0040 | 0.0087 | 0.0127 | 0.0114 | 0.0100 | 0.0050 | 0.0033 | 0.0033 |
| max   |        |        |        |        |        |        |        |        |        |

| 4.500  | 5.000  | 5.500  | 6.000  | 6.500  | 7.000  | 7.500  | 8.000  | 8.500  | 9.000  |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 0.002  | 0.011  | 0.029  | 0.049  | 0.063  | 0.065  | 0.051  | 0.027  | 0.003  | 0.001  |
| 0.0013 | 0.0074 | 0.0195 | 0.0329 | 0.0423 | 0.0437 | 0.0343 | 0.0181 | 0.0020 | 0.0007 |

| 9.500 | 10.000 | 10.500 | 11.000 | 11.500 | 12.000 | 12.500 | 13.000 | 13.500 | 14.000 |
|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 0.026 | 0.109  | 0.254  | 0.460  | 0.707  | 0.969  | 1.209  | 1.391  | 1.486  | 1.477  |

| 0.0175 | 0.0733 | 0.1709 | 0.3096 | 0.4758 | 0.6521 | 0.8136 | 0.9361 | 1.0000 | 0.9939 |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|        |        |        |        |        |        |        |        |        |        |
| 14.500 | 15.000 | 15.500 | 16.000 | 16.500 | 17.000 | 17.500 | 18.000 | 18.500 | 19.000 |
| 1.368  | 1.175  | 0.929  | 0.667  | 0.424  | 0.228  | 0.092  | 0.018  | 0.003  | 0.006  |
| 0.9201 | 0.7907 | 0.6252 | 0.4489 | 0.2853 | 0.1534 | 0.0619 | 0.0121 | 0.0020 | 0.0061 |
|        |        |        |        |        |        |        |        |        |        |
| 19.500 | 20.000 | 20.500 | 21.000 | 21.500 | 22.000 | 22.500 | 23.000 | 23.500 | 24.000 |
| 0.031  | 0.054  | 0.065  | 0.062  | 0.046  | 0.026  | 0.009  | 0.005  | 0.003  | 0.005  |
| 0.0200 | 0.0363 | 0.0437 | 0.0417 | 0.0310 | 0.0175 | 0.0061 | 0.0034 | 0.0020 | 0.0034 |
|        |        |        |        |        |        |        |        |        |        |
| 24.500 | 25.000 | 25.500 | 26.000 | 26.500 | 27.000 | 27.500 |        |        |        |
| 0.009  | 0.016  | 0.020  | 0.018  | 0.012  | 0.005  | 0.002  |        |        |        |
| 0.0061 | 0.0108 | 0.0135 | 0.0121 | 0.0081 | 0.0034 | 0.0013 |        |        |        |
| \      |        |        |        |        |        |        |        |        |        |

计算每个位置的光功率 P 与主极大光功率 Pmax 的比值,填入上面表格的第三行。 **单缝衍射的光强分布曲线图** 



#### ★ (2) 利用光强分布图形计算单缝宽度

| 各级暗纹    | 土1级暗纹 | 土2级暗纹 | 土3 级暗纹 |
|---------|-------|-------|--------|
| 距离/mm   | 9.50  | 19.00 | 27.50  |
| 单缝宽度/mm | 0.102 | 0.102 | 0.105  |

- ☆ 千分尺上的单缝宽度 D= 0.100 mm
- ☆ 计算得单缝平均宽度 d= 0.103 mm
- ☆ 计算得相对误差= 3.00 %

## 六、误差分析 (10分)

- 1. 仪器的精度可能产生误差。
- 2. 读示数时可能存在读取不精确的问题,从而产生误差。
- 3. 接收屏上的中间亮条纹与置物轨的轴的位置存在细小偏差。

# 七、实验总结 (10分)

通过本次实验,观察并掌握了单缝衍射现象和其特点;同时能够学会用光电元件测量单缝衍射光强分布,并得出光强分布的曲线,从而成功计算出了单缝的宽度,加深了对光学相关物理知识的认知。

八、原始数据及数据处理过程(拍照之后粘贴在下方)(<mark>无此项实验</mark> 无效,不给成绩)





评分: