Real Analysis - P1

Learning Theory and Applications Group

Academic Year 2024-2025

Contents

Ι	Lebesgue Intergration	1
	The Real Number: Sets, Sequences, and Functions	1
	1.1 The Field, Positivity, and Completeness Axioms	1
	1.1.1 Excercise	1
	1.2 The Natural and Rational Numbers	3
	1.2.1 Excercise	3
	1.3 The Countable and Uncountable Sets	3
	1.3.1 Excercise	3

Part I

Lebesgue Intergration

Key definitions here:

1 The Real Number: Sets, Sequences, and Functions

1.1 The Field, Positivity, and Completeness Axioms

1.1.1 Excercise

Ex 1. For $a \neq 0$ and $b \neq 0$, show that $(ab)^{-1} = a^{-1}b^{-1}$

$$(a^{-1}b^{-1})(ab) = a^{-1}b^{-1}ba = a^{-1}1a = 1$$

As a result, $a^{-1}b^{-1} = (ab^{-1})$

Ex 2. Verify the following:

- For each real number $a \neq 0$, $a^2 > 0$. In particular, 1 > 0 since $1 \neq 0$ and $1 = 1^2$
- For each positive number a, its multiplicative inverse a^{-1} also is positive
- If a > b, then

$$ac > bc$$
 if $c > 0$ and $ac < bc$ if $c < 0$

For the first point, we first need to prove that, for any a, then -a = (-1)a,

$$a + (-a) = 0 = (1 + (-1))a = a + (-1)a$$

Next, for each $a \neq 0$, if a is positive, then a^2 is positive by definition of positiveness. On the other hand, if a < 0, then let a = -b with b > 0,

$$a^{2} = (-b)^{2} = (-1)b(-1)b = (-1)(-b)b = (-1)^{2}b^{2} > 0$$
(1)

For the second point, assuming by contradiction that $a^{-1} < 0$ for any a > 0, then let $a^{-1} = -b$ with b > 0. then

$$1 = a(a^{-1}) = a(-b) = (-1)ab < 0$$

Here ab > 0 since both a and b are positive, and we know from previous point that 0 > -(ab) = (-1)abThe last point is straighforward from the definition of >.

$$ac - bc = \underbrace{(a - b)}_{>0} \underbrace{c}_{>0} > 0$$

$$ac - bc = \underbrace{(a-b)}_{>0} \underbrace{c}_{<0} = (-1) \underbrace{(a-b)}_{>0} \underbrace{d}_{>0} < 0 \text{ with } d = -c$$

Ex 3. For a nonempty set of real numbers E, show that inf $E = \sup E$ if and only if E consists of a single point.

If the set E has a single element, then the least upper bound equal to that single element. This similarly applies to lowerbound. In other word, its sup and inf coincides.

On the other direction, if a set E has its sup and inf equal, and assuming by contradiction that E has at least 2 distinct elements, then the gap between these two points $\neq 0$. The difference between sup and inf is lowerbounded by this gap, so they cannot equal.

Ex 4. Let a and b be real numbers.

- i Show that if ab = 0, then a = 0 or b = 0
- ii Verify that $a^2 b^2 = (a b)(a + b)$ and conclude from part (i) that if $a^2 = b^2$, then a = b or a = -b.
- iii Let c be a positive real number. Define $E = \{x \in \mathbb{R} | x^2 < c\}$ verify that E is nonempty and bounded above. Define $x_0 = \sup E$. Show that $x_0^2 = c$. Use part (ii) to show that there is a unique x > 0 for which $x^2 = c$. It

For the first point, suppose that ab = 0 and both a and b are not 0, then there exists a^{-1} and b^{-1} , then we have

$$abb^{-1}a^{-1} = 1$$

which means that $b^{-1}a^{-1}=(ab)^{-1}$, but since ab=0, no such number exists.

The second point is a straighforward application of distributive property,

$$(a-b)(a+b) = a(a+b) + (-b)(a+b) = a^2 + ab - ba - b^2 = a^2 - b^2$$

Then from part (i), since (a - b)(a + b) = 0, one of the two terms must be 0.

In part (iii), we see that $0^2 = 0 < c$ for all c > 0, so E is nonempty. By contradiction, suppose E is not bounded from above, that is, for every b>0, we can always choose some $x\in E$ such that x>b, letting b>c lead to a contradiction with the definition of E.

Next, since E is bounded from above, then it has a supremum by completeness axiom. Denote $x_0 = \sup E$. We will show that $x_0^2 \ge c$ and $x_0^2 \le c$ to conclude that $x_0^2 = c$. Since $x^2 < c, \forall x \in E$, c is an upperbound of E^2 , and because $\sup E$ is the smallest/least upperbound, then

 $\sup(E)^2 \le c$. On the otherhand, $x_0 \ge x, \forall x \in E$ and E contains all real numbers whose square less than c, so $x_0^2 \ge c$.

Finally, we need to show that x_0 is a unique positive real number such that $x_0^2 = c$. By contradiction, suppose there is some x > 0 such that $x \neq x_0$ and $x^2 = c$, then by part (ii), since $x_0^2 = x^2$, we have either $x = x_0$ or $x = -x_0$, but x is positive and $-x_0$ is negetive, so $x = x_0$.

Ex 5. Let a, b, c be real bumbers such that $a \neq 0$ and consider the quadratic equation

$$ax^2 + bx + c = 0, x \in \mathbb{R}$$

i Suppose $b^2 - 4ac > 0$, use the Field Axiom and the preceding problem to complete the square and thereby show that this equation has exactly two solutions given by

$$x = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
 $x = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$.

ii Now suppose $b^2 - 4ac < 0$. Show that the quadratic equation fails to have any solution.

Suppose that $b^2 - 4ac > 0$, then from previous problem, there exists a unique positive number $\sqrt{b^2 - 4ac}$. we can verify that

$$\left(x - \frac{-b + \sqrt{b^2 - 4ac}}{2a}\right) \left(x - \frac{-b - \sqrt{b^2 - 4ac}}{2a}\right) = x^2 - x \frac{-b - \sqrt{b^2 - 4ac}}{2a} - x \frac{-b + \sqrt{b^2 - 4ac}}{2a} + \frac{b^2 - b^2 + 4ac}{4a^2}$$
$$= x^2 + x \frac{b}{a} + \frac{c}{a} = 0.$$

Then also from the previous problem, either one of the two terms equal 0. As a result, the equation has exactly two solutions.

On the other hand, if $b^2 - 4ac < 0$, then the equation can be rewritten as

$$ax^{2} + bx + c = a\left(x^{2} + \frac{b}{a}x + \frac{c}{a}\right) = a\left(x^{2} + \frac{b}{a}x + \frac{b^{2}}{4a^{2}} + \frac{4ac - b^{2}}{4a}\right) = a\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2} - 4ac}{4} > 0,$$

which does not have any solution.

Ex 6. Use the Completeness Axiom to show that every nonempty set of real numbers that is bounded below has an infimum and that

$$\inf E = -\sup\{-x | x \in E\}.$$

The set E is bounded below, which means that the set $E' = \{-x | x \in E\}$ is bounded from above, then its supremum exists by completeness axiom. Denote $x_0 = \sup E'$, then $x_0 \ge -x, \forall x \in E \rightleftarrows -x_0 \le x, \forall x \in E$. As a result, $-x_0 \le \inf E$.

Suppose that there exists some x' such that $x' > -x_0$ and $x' \le x, \forall x \in E$; i.e. x' is a "greater" lowerbound of E than x_0 . Then we can show that -x' is a "smaller" upperbound of E', which contradicts with the definition of supremum. As a result, no such x' exists, and $-x_0$ is the infimum of E

Ex 7. For real bumbers a and b, verify the following:

$$|ab| = |a||b|$$

ii
$$|a+b| \le |a| + |b|$$

iii For
$$\epsilon > 0$$
,

$$|x-a| < \epsilon$$
 if and only if $a - \epsilon < x < a + \epsilon$

First we define the sign operator as $sg(x) \in \{1, -1\}, x \neq 0$. The absolute value can be written as the product with the sign operator

$$|a| = a \operatorname{sg}(a)$$

Then the first claim can be verified as

$$|ab| = absg(ab) = asg(a)bsg(b) = |a||b|$$

by noting sg(ab) = sg(a)sg(b), and

$$|a+b| = (a+b)\operatorname{sg}(a+b) = a\operatorname{sg}(a+b) + b\operatorname{sg}(a+b) \le a\operatorname{sg}(a) + b\operatorname{sg}(b) = |a| + |b|$$

by noting $asg(a) = max(a, -a) > asg(c), \forall c$

Final point: if x - a > 0, then |x - a| = x - a and $|x - a| < \epsilon \rightleftharpoons a < x < a + \epsilon$

Similar, if x-a < 0, then $|x-a| < \epsilon \rightleftharpoons a > x > a - \epsilon$, combining the both cases and with the zero case yield the desired claim.

1.2 The Natural and Rational Numbers

Hoang Anh:

1.2.1 Excercise

1.3 The Countable and Uncountable Sets

Quan:

1.3.1 Excercise