COMP9319 Web Data Compression and Search

Web data compression & search in industry - case studies & a demo

The most important slide

Raymond, please "RECORD THIS LECTURE!"

Announcements

- Final exam details and a sample exam available early next week.
- No assignment hurdle
- Next week (wk 10) is the last week:
 - Live lecture covers: course revision, exam scope & QA, ways to tackle a2
- a2 marks to be released end of wk 10.
- Extra consultations (schedule tbc at WebCMS) for a2 marking & exam qns
- Your feedback in MyExperience please!

Bigtable: A Distributed Storage System for (Semi)-Structured Data

Applications

- Storage system used by
 - Web indexing
 - MapReduce
 - Google App Engine
 - Google Cloud Datastore
 - and many many more…

Google's Motivation – Scale!

- Scale Problem
 - Lots of data
 - Millions of machines
 - Different project/applications
 - Hundreds of millions of users
- Storage for (semi-)structured data
- No commercial system big enough
 - Couldn't afford if there was one
- Low-level storage optimization help performance significantly
 - Much harder to do when running on top of a database layer

Bigtable

- Distributed multi-level map
- Fault-tolerant, persistent
- Scalable
 - Thousands of servers
 - Terabytes of in-memory data
 - Petabyte of disk-based data
 - Millions of reads/writes per second, efficient scans
- Self-managing
 - Servers can be added/removed dynamically
 - Servers adjust to load imbalance

 a sparse, distributed persistent multidimensional sorted map

(row, column, timestamp) -> cell contents

- Rows
 - Arbitrary string
 - Access to data in a row is atomic
 - Ordered lexicographically

- Column
 - Name structure:
 - family: qualifier
 - Column Family is the unit of access control

- Timestamps
 - Store different versions of data in a cell
 - Lookup options
 - Return most recent K values
 - Return all values

- The row range for a table is dynamically partitioned
- Each row range is called a tablet
- Tablet is the unit for distribution and load balancing

APIs

Metadata operations

Create/delete tables, column families, change metadata

Writes

- Set(): write cells in a row
- DeleteCells(): delete cells in a row
- DeleteRow(): delete all cells in a row

Reads

- Scanner: read arbitrary cells in a bigtable
 - Fach row read is atomic
 - Can restrict returned rows to a particular range
 - Can ask for just data from 1 row, all rows, etc.
 - Can ask for all columns, just certain column families, or specific columns

Refinement – Locality groups &

- Compression Locality Groups
 - Can group multiple column families into a locality group
 - Separate SSTable is created for each locality group in each tablet.
 - Segregating columns families that are not typically accessed together enables more efficient reads.
 - In WebTable, page metadata can be in one group and contents of the page in another group.

Compression

- Many opportunities for compression
 - Similar values in the cell at different timestamps
 - Similar values in different columns
 - Similar values across adjacent rows

Real Applications

Project	Table size	Compression	# Cells	# Column	# Locality	% in	Latency-
name	(TB)	ratio	(billions)	Families	Groups	memory	sensitive?
Crawl	800	11%	1000	16	8	0%	No
Crawl	50	33%	200	2	2	0%	No
Google Analytics	20	29%	10	1	1	0%	Yes
Google Analytics	200	14%	80	1	1	0%	Yes
Google Base	2	31%	10	29	3	15%	Yes
Google Earth	0.5	64%	8	7	2	33%	Yes
Google Earth	70	_	9	8	3	0%	No
Orkut	9	_	0.9	8	5	1%	Yes
Personalized Search	4	47%	6	93	11	5%	Yes

DATA OPTIMIZATION ON CLOUD

Cloud Computing

Content optimization

Figure 2. Delivery of content with content optimization

Table I
PRICING FOR AMAZON EC2 ON-DEMAND INSTANCES FOR LINUX/UNIX
USAGE

Instances	_	Pricing /Hr (Singapore)	Pricing /Hr (Tokyo)
Extra Large	0.320	0.360	0.368
Standard Extra Large	0.640	0.720	0.736
High-CPU Extra Large	0.660	0.744	0.760
High-Memory Quadruple	1.800	2.024	2.072

Table II
PRICING FOR AMAZON EC2 DATA TRANSFER

Data transfer out /month	Pricing /GB (US)	Pricing /GB (Singapore)	Pricing /GB (Tokyo)
First 1 GB	0.000	0.000	0.000
Up to 10 TB	0.120	0.190	0.201
Next 40 TB	0.090	0.150	0.158
Next 100 TB	0.070	0.130	0.137

Table III
PRICING FOR AMAZON S3 STANDARD STORAGE

Size /month	Pricing /GB (US / Singapore)	•	Pricing /GB (Northern CA)
First 1 TB	0.125	0.130	0.140
Next 49 TB	0.110	0.115	0.125
Next 450 TB	0.095	0.100	0.115

Table IV
DATA COMPRESSION BENCHMARK FOR A 301MB FILE

Program	Compression ratio (%)	Compression time (sec)	Decompression time (sec)
7-Zip	72.00	49.2	7.1
GZip	63.51	15.5	10.2
BZip2	65.95	48.7	14.1
LZW	51.55	154	5.7

Mobile bandwidth cost in AU

- Pay As You Go: \$2 / MB
- \$69 per month plan: 12GB, excess \$0.05
 / MB
- Assume \$10 per month plan: 1GB, excess \$0.25 / MB, i.e., avg rate \$0.01 / MB

Assumption

- 50TB static content
- Updated once a month (e.g., magazine)
- Each user accesses 100MB
- Hosted in Amazon Singapore

Table V
DATA COMPRESSION ON AMAZON CLOUD

	Original	7-Zip	GZip	BZip2	LZW
Size (TB)	50	14	18.245	17.025	24.225
Storage (\$)	5515	1555	2021.95	1887.75	2679.75 <
Data transfer (\$)	7900	2500	3136.75	2953.75	4033.75
Compression time (hrs)	0	2270.21	715.21	2247.14	7105.94
High-CPU EL (\$)	0	1689.04	532.12	1671.87	5286.82 <
Mobile bandwidth per					
content item (\$)	1.00	0.28	0.3649	0.3405	0.4845
Decompression time per					
content item (sec)	0	2.36	3.39	4.68	1.89

Findings

- Data transfer in is free
- CPU computation cost is more significant than storage & bandwidth costs

Table VI COHESIVE DATA'S OPTIMIZATION PERFORMANCE FOR 250MB FILES

Encode time (sec)	72.09
Decode time (sec)	12.13
Compression ratio (%)	73.60
Encode time for 10MB file (sec)	3.07
Size of 10MB file encoded (MB)	2.66
Append time for 10MB file (sec)	2.32

Table VIII
PERFORMANCE OF CONTENT OPTIMIZATION ON AMAZON CLOUD

	Original	Cohesive
Size (TB)	50	13.2
Storage (\$)	5515	1467
Data transfer (\$)	7900	2380
Compression time (hrs)	0	4005
High-CPU EL (\$)	0	2979.72
Mobile bandwidth cost per 10MB (\$)	0.100	0.0264
Decompression time per 10MB (sec)	0	0.4852

Table VII
COHESIVE DATA'S OPTIMIZATION FOR WEB BROWSING

Website	Raw (KB)	Optimized (KB)	Compression ratio (%)	Rendering speedup
Amazon	920	271	70.54	250%
Yahoo	1073	197	81.64	220%
Ebay	1089	149	86.32	250%
Wikipedia	749	200	73.30	400%
Blogger	1882	945	49.79	211%
Fox Sports	1620	203	87.47	233%
ESPN	1159	106	90.85	165%
Weather.com	1140	88	92.28	157%
Best Buy	1320	139	89.47	243%
NY Times	1283	135	89.48	320%

Maximizing the value

- Need to be stored for a long period
- Will be transmitted many times
- Further processing on the cloud is needed
- Low-cost updates for dynamic content

A demo