Apresentação de projeto final

GCC273 - BIG DATA

Arthur Nunes Caio Bastos Daniel Assis Paulo Pompeu Pedro Rabelo

Motivação e Proposta

- **Problema:** Alto volume de microdados do ENEM dificulta análises locais.
- **Objetivo:** Processar, analisar e extrair insights dos dados de forma distribuída.
- **Solução:** Pipeline de dados usando Apache Spark + HDFS em Docker Swarm.
- Volume de dados analisado: ~13 milhões de registros por ano.

Fonte de dados

- Dataset escolhido: Microdados do ENEM 2020, 2021 e 2023 (Exame Nacional do Ensino Médio)
- **Disponibilidade:** Disponível publicamente via Inep (dados abertos) e Kaggle
- Contexto e informações: Este conjunto fornece dados detalhados de ~2,7 milhões de participantes do ENEM por ano, incluindo informações socioeconômicas, desempenho nas provas e muito mais
- Campos utilizados: inscrição, ano, UF, tipo de escola, faixa de renda (Q006), nota geral, nota de matemática, entre outros.

Processamento a ser Realizado

Usaremos Apache Spark para processar os dados do ENEM, explorando paralelismo e memória distribuída. As principais tarefas planejadas incluem:

- Cada componente roda em um container.
- Comunicação por rede Docker interna (hadoop).
- Escalável com --scale spark-worker=X --scale datanode=Y.

Pipeline de Processamento

- Verifica/baixa/extrai os dados localmente.
- Envia os arquivos .csv para o HDFS (/user/enem/csv_raw/<ano>/).
- Lê os dados via Spark com schema tipado.
- Processa e salva em .parquet no HDFS e local.
- Executa análises e salva resultados.
- Durante o processo faz o log de métricas de análise.

- [AN1] Média por UF: Média de notas da prova fechada por estado/ano.
- [AN2] Média por Tipo de Escola: Comparação entre pública, privada, etc.
- [AN3] Correlação Renda x Nota: Relação entre Q006 (faixa de renda) e nota.
- [AN4] Desigualdade Regional: Média, desvio padrão e nº de alunos por região.
- [AN5] Faixas de Renda: Agrupamento por 4 faixas (até 1k, 1k–3k, etc.)

(AN1) Média Geral por UF

Exemplo de destaques (2020):

- São Paulo (SP): **541,20**
- Minas Gerais (MG): 534,08
- Acre (AC): 480,82
- Amapá (AP): 476,80

(AN2) Correlação Renda x Nota

Exemplo focado em 2020:

Tipo de Escola	Descrição	Média ENEM		
1	Não respondeu	520.03		
2	Pública	499.52		
3	Privada	610.63		

[AN3] Correlação de Renda Familiar

Ano	Correlação (Pearson)
2020	0.3945
2021	0.3745
2023	0.3824

(AN4) Desigualdade Regional

Região	Média	Desvio Padrão	Número Participantes	
Sudeste	559.36	123.15	2.531.820	
Sul	550.79	119.85	813.382	
Centro-Oeste	ntro-Oeste 528.26		627.912	
Nordeste 508.94		115.88	2.744.535	
Norte 487.11		103.82	818.062	

[AN5] Média por Faixa de Renda

Faixa de Renda	Média ENEM
Até 1k	490.49
1k-3k	544.49
3k-6k	598.89
Acima de 6k	650.86

Resultados Obtidos

- Total de registros: 13+ milhões
- Registros processados: Aproximadamente 7535711 registros.
- Throughput médio: 20679.14 linhas/s
- Correlação renda x nota: positiva, mas moderada (~0.38 nos 3 anos)
- Diferença clara entre regiões e tipos de escola.
- Região Sudeste e escolas privadas com maiores médias.

Experimentos de performance

Configuração	Tempo (s)	Registros	Throughput	CPU Total (%)	RAM (MB) por Worker	Treads por Worker
1W / 1D	415.66	7.535.711	18.129,37	50.0%	4096 MB	3.0
2W / 1D	362.80	7.535.711	20.770,75	50.0%	4096 MB	3.0
2W / 2D	365.82	7.535.711	20.599,35	50.0%	4096 MB	3.0

Podemos verificar que ao aumentar a quantidade de Workers diminuiu o tempo de execução, e aumento o throughput

Testando com 3 Workers tivemos problemas de alocamento de memória de RAM. Com isso mantivemos os testes até 2 Workers

Conclusões

- Pipeline completo, escalável e com análises relevantes.
- Custo de distribuição precisa ser balanceado (memória vs performance).
- Possível expansão para outros anos, análises e dashboards.
- Desafios com permissões HDFS e alocação de memória
- Overhead ao aumentar workers (troca entre nós)