Insper

Elementos de Sistemas

"A verdadeira viagem de descoberta não consiste em buscar novas paisagens, mas em ter um novos olhos." "Le véritable voyage de découverte ne consiste pas à chercher de nouveaux paysages, mais à avoir de nouveaux yeux."

Marcel Proust (1871–1922) escritor francês apud Nisan, N. & Schocken, S. 2005. Elements of Computing Systems

Objetivos

Objetivos do curso

ESSENCIAIS

- Implementar um computador digital em dispositivos lógicos programáveis.
- Desenvolver e integrar as camadas de software moderno de um computador digital.
- Trabalhar de forma colaborativa no desenvolvimento de um sistema computacional.

COMPLEMENTARES

Compreender a evolução da informática.

Ideia inicial do curso

Tem online de graça e oficial (até a metade do livro)

https://www.nand2tetris.org/course

Histórico do Curso

Curso idealizado e desenvolvido pelo Prof. Luciano Soares que ministrou as aulas em 2016 e 2017-a

<u>lpsoares@insper.edu.br</u>

Posteriormente ministrado pelo Prof. Rafael Corsi até 2021 rafael.corsi@insper.edu.br

2021-2

Renan Trevisoli renantd@insper.edu.br

3s : Elementos de Sistemas

Alex Fukunaga Prof. Auxiliar

3s: Elementos de Sistemas5s: Computação Embarcada

Rafael Corsi rafael.corsi@insper.edu.br

Lab. Arquitetura de Computadores

3s : Elementos de Sistemas
5s : Computação Embarcada
Eletiva: SoC e Linux Embarcado

Lícia Sales

Laboratório Informática

3s : Elementos de Sistemas 3s : Robórica Computacional

Arnaldo Viana Jr.

Laboratório Informática

3s : Elementos de Sistemas
3s : Robótica Computacional

4s: Camada Física da Computação

Marco Melo

Laboratório de Arquitetura de Computadores

3s : Elementos de Sistemas 5s : Computação Embarcada 6s : Design de Computadores

2021-2

Horários das aulas:

Quartas – 13h30 (híbrido) **Sextas – 7h30 (online)**

Atendimento:

- Segundas – 10h00

Plano de ensino

Verificar o plano de aprendizagem no Blackboard. Lá você encontrará mais informações de:

- Rubricas;
- Avaliações;
- Cronograma das atividades;
- Horário de atendimento;
- Bibliografia.

https://insper.blackboard.com/

Formato do curso

Insper

Estudo prévio

Vocês deveram estudar a teoria por conta, antes das aulas!

- Leitura/Teoria
- Vídeos
- Livros

Projetos / APS

- No final vocês terão desenvolvido um computador do ZERO (hardware e software)
- 9 APS no total
- APS em grupo (5/6 alunos)
 - Cada aluno será avaliado individualmente
- Desenvolvimento colaborativo/ágil
 - Cada aluno terá seu papel no grupo
 - Facilitador/ Desenvolvedor

Avaliações

- 4 Individuais (2 em Aula + AI + AF)
 - acumular 60 pontos de HW
 - acumular 60 pontos de SW

Mescla de Teoria e prática

- Projetos
 - Duas notas: Grupo e Individual
 - Grupo só pode ter um projeto < C
 - Individual no máximo 2 < C

Cronograma

Elementos de Sistemas

	Quarta	Sexta	
Álgebra Boolea	na 18/08	20/08	Álgebra Booleana
Álgebra Boolea	na 25/08	27/08	Álgebra Booleana
B - Lógica boole	an 01/09	03/09	AV1
B - Lógica boole	an 08/09	10/09	C - ULA
C - ULa	15/09	17/09	D - Seq
D - Seq	22/09	24/09	E - ASM
E - ASM	29/09	01/10	Al-AV2
AI	06/10	08/10	Aula cancelada
E - ASM	13/10	15/10	E - ASM
F - CPU	20/10	22/10	F - CPU
F - CPU	27/10	29/10	AV3
G - Assemble	er 03/11	05/11	G - Assembler
G - Assemble	r 10/11	12/11	H - VM
H - VM	17/11	19/11	H - VM
I - VM Translat	or 24/11	26/11	I - VM Translator
CPU real	01/12	03/12	AF - AV4
]
SUB	15/12	23/6	

Ferramental

git + github

- Todo o desenvolvimento do projeto deve ser entregue pelo github.
 - trabalho em equipe
 - dúvidas
 - avaliação
 - •

github - projects

Muito git!

Site da disciplina

https://insper.github.io/Z01.1/

- Teoria
- Exercícios
- Laboratórios
- Projetos
- Simulados
- E muito mais!

Repositório da disciplina

http://github.com/insper/Z01.1

Projetos (fonte)

MS Teams

Iremos usar para aulas, projetos, atendimentos e muito mais!

Livros de referência

The Elements of Computing SystemsNoam Nisan
Shimon Schocken

Computer Organization and DesignDavid A. Patterson

John L. Hennessy

SSD Insper

- Robótica e Elementos De Sistemas
- Retirar no Insper/ receber em casa (enviamos por e-mail!)
- Marcar com Arnaldo/Licia para testar no computador de vocês (ideal já usar nas aulas)
- Atividade complementar
 - 20 e 27/08

Entregas

Aproximadamente uma por semana

em grupo

duas notas: grupo e individual

Hardware

DE0-CV

Para quem for nas aulas presenciais

Insper

Aula 1 – Organização Básica de Computadores

Aula 1

- Conhecer a organização básica de computadores;
- Refletir sobre o impacto da computação na sociedade;

Atividades:

- Montar grupos
- Mural
- Laboratório 1

Conteúdos: Organização de Computadores;

Usuário

Os usuários veem as aplicações, porém esse é um resultado de uma série de desenvolvimentos.

E vocês como engenheiros de computação, serão capazes de compreender e produzir sistemas computacionais

Snake

Pong

Evolução da Computação

ENIAC (1946)

Intel 4004 @ 0,1 MIPS (1971) primeiro microprocessador comercial

Fortran (1957) primeira linguagem largamente usada

US Department of Energy and IBM @ 200 petaflops (2019) supercomputador mais rápido no mundo

Em cerca de meio século evoluímos muito

Evolução da Eletrônica

Válvulas 1904

Primeiro transistor 1947

IBM

Próximos nós

Hardware e Software

HW

Desenvolvimento da CPU

Ferramentas de SW para programar a CPU

Começando

Visão Geral

https://prezi.com/view/InQMPs4wjxMtznUGIW6L/

Camadas de abstração

Muitas vezes usamos algo sem saber como funciona:

- Não temos tempo de estudar;
- Não temos interesse de compreender;
- Não temos conhecimento básico para entender;
- Não temos acesso ao mecanismos interno;

Assim abstraímos o funcionamento de algo e simplesmente usamos. Falamos que é uma caixa preta (black box).

Se as interfaces entre as camadas de abstração forem bem definidas, podemos futuramente mudar uma camada e mesmo assim tudo continuar funcionando.

Camadas de rede

TCP/IP model	Protocols and services	OSI model
	HTTP, FTTP,	Application
Application	Telnet, NTP, DHCP, PING	Presentation
		Session
Transport	TCP, UDP (Transport
Network) IP, ARP, ICMP, IGMP (Network
Network	[Data Link
Interface	Ethernet	Physical

Camadas OpenGL (gráfico)

Game / 3D Software

DirectX

OpenGL

Device Driver

Hardware Abstraction Layer (HAL)

Graphics Card / Chipset

Camadas de um computador

????

Montar grupos

Criar grupos de: 5/6 pessoas

- cada grupo em um canal (A, B, C, D,)
 - criar uma chamada de vídeo!
- os grupos ficam até o final do semestre
- realizar a atividade de forma colaborativa!

Realizar a atividade (filets/ mural)

Parte 1

Ordene os filetes no mural de forma que as camadas de abstrações mais básicas estejam na base e as mais complexas na parte superior.

Caso não saiba, pesquise na Internet do que se trata.

Parte 2

Com os filetes montados, atribua a cada um ao menos uma das aplicações reais recebidas.

Caso não saiba, pesquise na Internet do que se trata.

Parte 3

Responda em grupo as seguintes perguntas:

- 1. De forma geral, quais dos níveis de abstração vocês acham que mais mudaram/evoluíram nos últimos 50 anos.
- 2. O que mais influenciou e viabilizou mudanças no tema que você escolheu, a evolução do Hardware ou do Software?
- 3. O que mais impactou a mudança no tema que você escolheu, os grandes servidores ou a computação móvel?
- 4. As pessoas levam menos tempo para fazer algo, ou não fazem mais, ou começaram a fazer algo?
- 5. Quais seriam as próximas mudanças que vocês visualizam para os próximos 50 anos?

Níveis de Abstração

Software

Hardware

Arquitetura de Computador

Insper

Hollerith

O senso dos Estados Unidos de 1880 levou 7,5 anos. A automatização era claramente necessária. Foi quando Herman Hollerith, propôs o uso de sua máquina de tabular para os cálculos.

A empresa do Hollerith viria a se transforma na:

Tabulador Eletrônico de Hollerith, 1902 (www.census.gov)

Reflexão

Alguns fundamentos dificilmente mudam

As implementações normalmente evoluem

O estilo de vida das pessoas pode mudar

Próxima Aula

Estudar Teoria Álgebra Booleana (site da disciplina)

Laboratório 1

Voltar para os grupos

Realizar o laboratório 1 (preparar github)

uma pessoa irá realizar, os demais acompanham e ajudam..

Insper

www.insper.edu.br