COMP2611: Computer Organization

Data representation

- ☐ You will learn the following in this tutorial:
 - Data representations
 - Base conversions and two's complement
 - □ IEEE 754 single/double precision floating point numbers
 - □ ASCII encoding

Data representation

Data representation

- Base conversions, two's complement
- IEEE 754 floating point format,
- ASCII representation of characters

Exercises

- □ Computers use two's complement representation scheme for signed numbers
- Positive numbers are represented as usual
- Negative numbers are converted as follows:
 - \Box Each bit in the number is flipped (i.e., 0 -> 1 and 1 -> 0) to get its one's complement
 - □ Add 1 to the one's complement to get the two's complement
- □ Bit 31 is the sign bit. (bit 31 is 0 for +ve numbers, and 1 for -ve numbers)
- - ☐ Flip all bits to get its one's complement

```
1111 1111 1111 1111 1111 1111 1111 1010_{(2)}
```

□ Add1 to the one's complement to get the two's complement

```
1111 1111 1111 1111 1111 1111 1111 1011_{(2)}
```

- ☐ To convert a two's complement number back to its decimal form:
 - ☐ If the sign bit is zero, convert the binary number directly to decimal format
 - □ Otherwise, flip the bits in the number and add 1 to the inverted number
 - □ Convert the result to decimal format
 - □ Put a –ve sign to the number
- Example : Convert the two's complement number 1111 1111 1111 1111 1111 1111
 1111 1111 1111 1011₍₂₎ to decimal format
 - \square Sign bit =1, flip all bits:

 $0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0100_{(2)}$

□ Add 1 to the inverted number:

 $0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0101_{(2)}$

□ Convert the result to decimal format and add a –ve sign:

- □ Overflow (signed integer)
 - The value is bigger than the largest integer that can be represented
- □ **Underflow** (signed integer)
 - The value is smaller than the smallest integer that can be represented

- \square Example: Convert .625₍₁₀₎ to the binary format:
 - $0.625 \times 2 = 1.25$ LHS of decimal pt=1
 - 0.25 x 2 = 0.5 LHS of decimal pt=0
 - 0.5 x 2 = 1 LHS of decimal pt=1
 - $0.625_{(10)} = > 0.101_{(2)}$

- RHS = 0.25
- RHS = 0.5
- RHS = 0 done!

Most significant digit

Least significant digit

□ Example : Convert 101.101 (2) to the decimal format:

$$(1x2^2) + (0x2^1) + (1x2^0) + (1x2^{-1}) + (0x2^{-2}) + (1x2^{-3}) = 5.625_{(10)}$$

$$101.101_{(2)} = > 5.625_{(10)}$$

☐ The IEEE 754 standard uses 32 bits to represent single precision floating point numbers.

```
31 30
                22
                                                               0
      Exponent
                                   significand
1 bit 8 bits
                                    23 bits
```

: sign bit (0 positive, 1 negative)

☐ Exponent: 8-bit field, bias = 127

☐ Significant: 23-bit field

Exercise: Convert -5.625₍₁₀₎ to the single precision floating point format:

The IEEE 754 double precision floating point format 9

☐ The IEEE 754 standard uses 64 bits to represent double precision floating point numbers.

63 62 51

S Exponent significand

1 bit 11 bits 52 bits

 \square S : sign bit (0 positive, 1 negative)

 \square Exponent : 11-bit field, bias = 1023

☐ Significant: 52-bit field

Exercise: Convert -5.625 $_{(10)}$ to the double precision floating point format:

□ IEEE 754 Single precision format:

Exponent Significand	0	1 - 254	255
0	0	F-127	$(-1)^{S} \times (\infty)$
≠ 0	$(-1)^{s} \times (0.F) \times (2)^{-126}$	$(-1)^{S} \times (1.F) \times (2)^{E-127}$	non-numbers e.g. $0/0$, $\sqrt{-1}$

□ IEEE 754 Double precision format:

Exponent Significand	0	1 - 2046	2047
0	0	$(-1)^{s} \times (1.F) \times (2)^{E-1023}$	$(-1)^{S} \times (\infty)$
≠ 0	$(-1)^{S} \times (0F) \times (2)^{-1022}$		non-numbers e.g. $0/0$, $\sqrt{-1}$

- □ Overflow (floating-point)
 - A positive exponent becomes too large to fit in the exponent field

- □ **Underflow** (floating-point)
 - A negative exponent becomes too large to fit in the exponent field

- ☐ The American Standard Code for Information Interchange (ASCII)
- □ ASCII is a character encoding scheme for encoding text in 8 bits
- ☐ The list of the first 128 characters are shown below

Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char
0	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	`
1	1	[START OF HEADING]	33	21	!	65	41	Α	97	61	a
2	2	[START OF TEXT]	34	22	II .	66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	С	99	63	C
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	e
6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
7	7	[BELL]	39	27	1	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	Н	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	i
10	Α	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
11	В	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	С	[FORM FEED]	44	2C	,	76	4C	L	108	6C	1
13	D	[CARRIAGE RETURN]	45	2D	-	77	4D	M	109	6D	m
14	Е	[SHIFT OUT]	46	2E		78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	р
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	S
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	T	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	V
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	W	119	77	w
24	18	[CANCEL]	56	38	8	88	58	X	120	78	X
25	19	[END OF MEDIUM]	57	39	9	89	59	Υ	121	79	У
26	1A	[SUBSTITUTE]	58	3A	:	90	5A	Z	122	7A	z
27	1B	[ESCAPE]	59	3B	;	91	5B	[123	7B	{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5C	\	124	7C	Ť
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D	1	125	7D	}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F		127	7F	[DEL]
		-	•			•		_			•

Data representation

Data representation

- Base conversions, two's complement
- IEEE 754 floating point format,
- ASCII representation of characters

Exercises

- What is the value if this is a 2's complement representation?
- What if the pattern is an unsigned interger?
- What if it is an IEEE single precision number?
- What if it represents 4 ASCII characters (assume bits 31-24, 23-16, 15-8, 7-0 store the characters, and ASCII value of 128 is the symbol '€').

Question 2: Assume the bit pattern 1001 1100 follows the IEEE-like floating point representation format

S Exponent significand

1 bit 3 bits

4 bits

- What is the bias of the exponent?
- What value is the given pattern representing?
- What is the range of numbers that this IEEE-like floating point representation system can represent?
 - What is the granularity of this representation system?

- ☐ We have reviewed:
 - Simple base conversions
 - □ IEEE 754 floating point format
 - □ ASCII character scheme.