Zhejiang University Department of Physics

General Physics (H)

Problem Set #6

- A sinusoidal wave traveling in the x direction (to the left) has an amplitude of 20.0 cm, a wavelength of 35.0 cm, and a frequency of 12.0 Hz. The displacement of the wave at t = 0, x = 0 is y = -3.00 cm; at this same point, a particle of the medium has a positive velocity.
 (a) Sketch the wave at t = 0. (b) Find the angular wave number, period, angular frequency, and wave speed of the wave. (c) Write an expression for the wave function y(x, t).
- 2. An earthquake on the ocean floor in the Gulf of Alaska produces a tsunami (sometimes called a "tidal wave") that reaches Hilo, Hawaii, 4 450 km away, in a time of 9 h 30 min. Tsunamis have enormous wavelengths (100-200 km), and the propagation speed of these waves is $v \approx \sqrt{gd}$, where \overline{d} is the average depth of the water. From the information given, find the average wave speed and the average ocean depth between Alaska and Hawaii. (This method was used in 1856 to estimate the average depth of the Pacific Ocean long before soundings were made to obtain direct measurements.)

3. Two identical speakers 10.0 m apart are driven by the same oscillator with a frequency of f = 21.5 Hz (Fig. P18.6). (a) Explain why a receiver at point A records a minimum in sound intensity from the two speakers. (b) If the receiver is moved in the plane of the speakers, what path should it take so that the intensity remains at a minimum? That is, determine the relationship between x and y (the coordinates of the receiver) that causes the receiver to record a minimum in sound intensity. Take the speed of sound to be 343 m/s.

4. A 2.00-m-long wire having a mass of 0.100 kg is fixed at both ends. The tension in the wire is maintained at 20.0 N. What are the frequencies of the first three allowed modes of vibration? If a node is observed at a point 0.400 m from one end, in what mode and with what frequency is it vibrating?

5. In the arrangement shown in Figure P18.25, a mass can be hung from a string (with a linear mass density of $\mu = 0.002~00~\mathrm{kg/m}$) that passes over a light pulley. The string is connected to a vibrator (of constant frequency f), and the length of the string between point P and the pulley is $L = 2.00~\mathrm{m}$. When the mass m is either 16.0 kg or 25.0 kg, standing waves are observed; however, no standing waves are observed with any mass between these values. (a) What is the frequency of the vibrator? (*Hint:* The greater the tension in the string, the smaller the number of nodes in the standing wave.) (b) What is the largest mass for which standing waves could be observed?

Figure P18.25