CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International Advanced Level

MARK SCHEME for the May/June 2015 series

9231 FURTHER MATHEMATICS

www. tirenepapers.com

9231/13 Paper 1, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

 ${\small \circledR}$ IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – May/June 2015	9231	13

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following
 on from previously incorrect results. Otherwise, A or B marks are given for correct work
 only. A and B marks are not given for fortuitously "correct" answers or results obtained from
 incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – May/June 2015	9231	13

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through \(\frac{1}{2} \)" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR−2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – May/June 2015	9231	13

Qn & Part	Solution	Marks
1	i $2\alpha + 2\beta = 0$ ii $\alpha^2 + 4\alpha\beta + \beta^2 = -p$ iii $2\alpha^2\beta + 2\alpha\beta^2 = -q$ iv $\alpha^2\beta^2 = -r$	
	All four correct (Any two correct) Use of $\beta = -\alpha$ in ii, iii or iv	B2 (B1) M1
	$\Rightarrow p = 2\alpha^2 \text{ and } \alpha^4 = -r \Rightarrow p^2 + 4r = 0 \text{ (AG)}$ and $q = 0 \text{ (CAO)}$	M1A1 B1 (6) Total 6
2	$s = \int_0^\alpha \sqrt{e^{8\theta} + 16e^{8\theta}} d\theta = \int_0^\alpha \sqrt{17}e^{4\theta} d\theta = (AEF) \text{ (LNR)}$	M1A1
	$= \left[\frac{\sqrt{17}}{4} e^{4\theta}\right]_0^{\alpha} \Rightarrow \frac{\sqrt{17}}{4} e^{4\alpha} - \frac{\sqrt{17}}{4} = 2015$	dM1A1
	\Rightarrow e ^{4α} = 1955.837 \Rightarrow α = 1.89 CAO	dM1A1 (6) Total 6
3	$H_k: \sum_{r=1}^k \frac{1}{(2r)^2 - 1} = \frac{k}{2k+1}$ is true for some integer k.	B1
	$\frac{1}{2^2 - 1} = \frac{1}{3} = \frac{1}{2 \times 1 + 1} \Rightarrow H_1 \text{ is true.}$	B1
	$\frac{k}{2k+1} + \frac{1}{(2k+2)^2 - 1} = \frac{k}{2k+1} + \frac{1}{(2k+1)(2k+3)} = \frac{2k^2 + 3k + 1}{(2k+1)(2k+3)}$	M1A1
	$=\frac{(2k+1)(k+1)}{(2k+1)(2k+3)} = \frac{k+1}{2[k+1]+1}$	A1
	\therefore H _k \Rightarrow H _{k+1} \therefore (By Principle of Mathematical Induction) H _n is true for all positive integers n. (This mark requires all previous marks.)	A1 (6)
	$\sum_{r=1}^{\infty} \frac{1}{(2r)^2 - 1} = \frac{1}{2}$	B1 (1) Total 7

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – May/June 2015	9231	13

Qn & Part	Solution	Marks
4	$A = \tan^{-1}(x+1); B = \tan^{-1}(x-1) \Rightarrow \tan(A-B) = \frac{(x+1) - (x-1)}{1 + (x+1)(x-1)}$	M1A1
	$\tan(A - B) = \frac{2}{x^2} \Rightarrow A - B = \tan^{-1}\left(\frac{2}{x^2}\right) (AG)$ $LUS = (\tan^{-1} 2 + \tan^{-1} 0) + (\tan^{-1} 2 + \tan^{-1} 1) + (\tan^{-1} n + \tan^{-1} n + \tan^{-$	A1 (3)
	LHS = $(\tan^{-1} 2 - \tan^{-1} 0) + (\tan^{-1} 3 - \tan^{-1} 1) + + (\tan^{-1} n - \tan^{-1} [n-2])$ $+ (\tan^{-1} [n+1] - \tan^{-1} [n-1]).$ = $\tan^{-1} [n+1] + \tan^{-1} n - \tan^{-1} 1 - \tan^{-1} 0 = \tan^{-1} [n+1] + \tan^{-1} n - \frac{1}{4}\pi$	M1A1 A1A1
		(4) Total 7
5	$I_n + I_{n-1} = \int_0^{\pi} \frac{\sin(2n\theta) + \sin(2n-2)\theta}{\cos\theta} d\theta = \int_0^{\pi} \frac{2\sin(2n-1)\theta\cos\theta}{\cos\theta} d\theta (LR)$	M1A1
	$= \int_0^{\frac{\pi}{2}} 2\sin(2n-1)\theta d\theta = \left[-\frac{2\cos(2n-1)\theta}{(2n-1)} \right]_0^{\frac{\pi}{2}} $ (LR)	dM1A1
	$= [0] - \left[-\frac{2}{(2n-1)} \right] = \frac{2}{2n-1} (AG)$	A1 (5)
	$I_{1} = \int_{0}^{\frac{\pi}{2}} \frac{\sin 2\theta}{\cos \theta} d\theta = \int_{0}^{\frac{\pi}{2}} 2\sin \theta d\theta = \left[-2\cos \theta \right]_{0}^{\frac{\pi}{2}} = [0] - [-2] = 2$	B1
	$I_2 = \frac{2}{3} - 2 = -\frac{4}{3}$	M1A1
	$\Rightarrow I_3 = \frac{2}{5} + \frac{4}{3} = \frac{26}{15} \Rightarrow I_4 = \frac{2}{7} - \frac{26}{15} = -\frac{152}{105}$	A1 (4) Total 9
6	$(1+z)^n = 1 + \binom{n}{1}z + \binom{n}{2}z^2 + \dots + \binom{n}{n}z^n$	B1
	$\operatorname{Re}\left\{\left(1+z\right)^{n}\right\} = 1 + \binom{n}{1}\cos\theta + \binom{n}{2}\cos2\theta + \dots + \binom{n}{n}\cos n\theta$	M1A1
	$\operatorname{Re}([1+\cos\theta]+\mathrm{i}\sin\theta)^n = \operatorname{Re}\left(2\cos^2\left[\frac{1}{2}\theta\right]+2\mathrm{i}\sin\left[\frac{1}{2}\theta\right]\cos\left[\frac{1}{2}\theta\right]\right)^n$	M1A1
	$= 2^{n} \cos^{n} \left(\frac{1}{2}\theta\right) \operatorname{Re} \left(\cos \left[\frac{1}{2}\theta\right] + i \sin \left[\frac{1}{2}\theta\right]\right)^{n}$	A1
	$\Rightarrow \binom{n}{1} \cos \theta + \binom{n}{2} \cos 2\theta + \dots + \binom{n}{n} \cos n\theta = 2^n \cos^n \left(\frac{1}{2}\theta\right) \cos\left(\frac{1}{2}n\theta\right) - 1 (AG)$	A1 (7)
	$\operatorname{Im}\{(1+z)^n\} = \binom{n}{1} \sin \theta + \binom{n}{2} \sin 2\theta + \dots + \binom{n}{n} \sin n\theta$	M1
	$\Rightarrow \binom{n}{1} \sin \theta + \binom{n}{2} \sin 2\theta + \dots + \binom{n}{n} \sin n\theta = 2^n \cos^n \left(\frac{1}{2}\theta\right) \sin\left(\frac{1}{2}n\theta\right)$	A1 (2) Total 9

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – May/June 2015	9231	13

Qn & Part	Solution	Marks
7	$2x + 2\left(x\frac{dy}{dx} + y\right) - 8y\frac{dy}{dx} = 0 (1^{st} B1 \text{ for } 1^{st} \text{ and } 3^{rd} \text{ terms, } 2^{nd} B1 \text{ for rest including} = 0).$	B1B1
	$\Rightarrow \frac{dy}{dx}(x-4y) = -(x+y) \Rightarrow y = -x \text{ when } \frac{dy}{dx} = 0$	B1 (3)
	Substituting for $y \Rightarrow x^2 - 2x^2 - 4x^2 + 20 = 0 \Rightarrow 5x^2 = 20 \Rightarrow x \pm 2$ Coordinates are $(2, -2)$ and $(-2, 2)$	M1 A1
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} (x - 4y) + \frac{\mathrm{d}y}{\mathrm{d}x} \left(1 - 4\frac{\mathrm{d}y}{\mathrm{d}x} \right) = -1 - \frac{\mathrm{d}y}{\mathrm{d}x} (OE)$	M1A1
	Substituting either (2, -2) or (-2, 2) and $\frac{dy}{dx} = 0$	dM1
	At $(2, -2)$ $y''(2) = -\frac{1}{10} \Rightarrow \max$.	A1
	At $(-2, 2)$ $y''(2) = \frac{1}{10} \Rightarrow \min$.	A1 (7) Total 10
8	$\begin{pmatrix} 3+2\lambda \\ \lambda \\ 2-2\lambda \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = 3$ $3+2\lambda+2\lambda+2-2\lambda=3 \Rightarrow \lambda=-1$ <i>P</i> is $(1,-1,4)$ (Accept position vector.)	M1 A1 A1
	$\mathbf{n} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$	(3) B1
	$\mathbf{w} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & 1 \\ 2 & 1 & -2 \end{vmatrix} = \begin{pmatrix} -5 \\ 4 \\ -3 \end{pmatrix}$	M1A1 (3)
	Direction of PQ is $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -5 & 4 & -3 \\ 1 & 2 & 1 \end{vmatrix} = \begin{pmatrix} 10 \\ 2 \\ -14 \end{pmatrix} \sim \begin{pmatrix} 5 \\ 1 \\ -7 \end{pmatrix}$ (OE)	M1A1
	Equation of PQ is $\mathbf{r} = \begin{pmatrix} 1 \\ -1 \\ 4 \end{pmatrix} + \mu \begin{pmatrix} 5 \\ 1 \\ -7 \end{pmatrix}$ [N.B. For methods not using \mathbf{w} at most three B1 marks.]	dM1A1 (4) Total 10

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – May/June 2015	9231	13

Qn & Part	Solution	Marks
9	$(m-5)(m+2) = 0 \Rightarrow CF : x = Ae^{5t} + Be^{-2t}$	M1A1
	PI: $x = p \sin t + q \cos t \Rightarrow \dot{x} = p \cos t - q \sin t \Rightarrow \ddot{x} = -p \sin t - q \cos t$ $\Rightarrow -p \sin t - q \cos t - 3p \cos t + 3q \sin t - 10p \sin t - 10q \cos t = 2 \sin t - 3 \cos t$ $\Rightarrow -11p + 3q = 2$ and $3p + 11q = 3 \Rightarrow p = -0.1$, $q = 0.3$	M1 A1 dM1A1
	GS: $x = Ae^{5t} + Be^{-2t} + 0.3 \cos t - 0.1 \sin t$ CAO	A1
	Initial conditions $\Rightarrow A + B + 0.3 = 3.3 \Rightarrow A + B = 3$ and from $\dot{x} = 5Ae^{5t} - 2Be^{-2t} - 0.3 \sin t - 0.1 \cos t$ $5A - 2B - 0.1 = 0.9 \Rightarrow 5A - 2B = 1$	B1 M1 A1
	$A = 1$, $B = 2 \Rightarrow x = e^{5t} + 2e^{-2t} + 0.3 \cos t - 0.1 \sin t$ CAO	A1 (11) Total 11
10	$-\frac{1}{2} + \frac{(3x-1)^2}{2(x^2+1)} = \frac{-x^2 - 1 + 9x^2 - 6x + 1}{2(x^2+1)} = \frac{8x^2 - 6x}{2(x^2+1)} = \frac{4x^2 - 3x}{x^2 + 1}$	M1A1
	$\frac{9}{2} - \frac{(x+3)^2}{2(x^2+1)} = \frac{9x^2 + 9 - x^2 - 6x - 9}{2(x^2+1)} = \frac{8x^2 - 6x}{2(x^2+1)} = \frac{4x^2 - 3x}{x^2 + 1}$	A1 (3)
	$\frac{(3x-1)^2}{2(x^2+1)} \geqslant 0 \Rightarrow y \geqslant -\frac{1}{2}$	B1
	$\frac{(x+3)^2}{2(x^2+1)} \ge 0 \Rightarrow y \le \frac{9}{2} \Rightarrow -\frac{1}{2} \le y \le \frac{9}{2} \text{(Not hence gets B1 only.)}$	B1 (2)
	Turning points occur at equality, so $\left(-3, \frac{9}{2}\right)$ and $\left(\frac{1}{3}, -\frac{1}{2}\right)$	B1B1 (2)
	Asymptote is $y = 4$.	B1 (1)
	Intersection with axes at $(0,0)$ and $\left(\frac{3}{4},0\right)$, Intersection with asymptote at $\left(-\frac{4}{3},4\right)$	B1B1
	Correct graph.	B1 (3) Total 11

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – May/June 2015	9231	13

Qn & Part	Solution	Marks
11 E (i)	$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & -1 & 2 & 3 \\ 1 & -3 & 3 & 5 \\ 1 & 4 & 2 & 2 \end{pmatrix} \longrightarrow \cdots \longrightarrow \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 3 & 1 & 1 \\ 0 & 0 & 5 & 8 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $\Rightarrow \text{Dim}(V) = 3$	M1A1 A1 (3)
(ii)	$a \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} + b \begin{pmatrix} 2 \\ -1 \\ -3 \\ 4 \end{pmatrix} + c \begin{pmatrix} 3 \\ 2 \\ 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$	M1
	i $a+2b+3c=0$ ii $a-b+2c=0$ iii $a-3b+3c=0$ i $-iii \Rightarrow b=0 \Rightarrow a+3c=0$ and $a+2c=0$	M1A1
	$\Rightarrow c = 0 \text{ and } a = 0. \text{ So vectors are linearly independent.}$ Since $\begin{cases} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ -1 \\ -3 \\ 4 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \\ 3 \\ 2 \end{pmatrix} \text{ has three linearly independent vectors, it forms a basis for } V.$	B1 (5)
(iii)	W is not a vector space as it does not contain the zero vector.	B1 (1)

Page 9	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – May/June 2015	9231	13

Qn & Part	Solution	Marks
(iv)	$\begin{pmatrix} 1 & 2 & 3 & x \\ 1 & -1 & 2 & y \\ 1 & -3 & 3 & z \\ 1 & 4 & 2 & t \end{pmatrix} \longrightarrow \cdots \longrightarrow \begin{pmatrix} 1 & 2 & 3 & x \\ 0 & 3 & 1 & x - y \\ 0 & 0 & 5 & 2x - 5y + 3z \\ 0 & 0 & 0 & -x - y + z + t \end{pmatrix}$	M1A1
	Alternatively:	
	$\begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \alpha \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} + \beta \begin{pmatrix} 2 \\ -1 \\ -3 \\ 4 \end{pmatrix} + \gamma \begin{pmatrix} 3 \\ 2 \\ 3 \\ 2 \end{pmatrix} $ (i.e. in V) $x = \alpha + 2\beta + 3\gamma$ $y = \alpha - \beta + 2\gamma$ $y = \alpha - \beta + 2\gamma$ $z = \alpha - 3\beta + 3\gamma$ $t = \alpha + 4\beta + 2\gamma$ $\Rightarrow z + t = 2\alpha + \beta + 5\gamma$ $\Rightarrow (x + y) - (z + t) = 0$ Vector belongs to V iff $x + y = z + t$. (OE) So belongs to W iff $x + y \neq z + t$. (AG)	(M1A1) A1 M1 A1 (5) Total 14
11 0	$\begin{vmatrix} 12 & -4 & 2 \\ -4 & \alpha + 9 & 6 \\ 2 & 6 & 7 \end{vmatrix} = 0 \Rightarrow 80\alpha + 80 = 0 \Rightarrow \alpha = -1$	M1A1 A1 (3)
	$\begin{vmatrix} 3 - \lambda & -4 & 2 \\ -4 & -1 - \lambda & 6 \\ 2 & 6 & -2 - \lambda \end{vmatrix} = 0$	M1
	$\Rightarrow \lambda^3 - 63\lambda + 162 = 0$ \Rightarrow (\lambda + 9)(\lambda - 3)(\lambda - 6) = 0 \Rightarrow \lambda_1 = 6 \text{ and } \lambda_2 = 3.	M1A1 M1A1 (5)

Page 10	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – May/June 2015	9231	13

Qn & Part	Solution		Marks
	$\lambda = -9 \Rightarrow \mathbf{e} = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$	(Award M1A1 for any one	M1A1
	$\lambda_1 = 6 \Rightarrow \mathbf{e}_1 = \begin{pmatrix} -2\\2\\1 \end{pmatrix} \text{ and } \lambda_2 = 3 \Rightarrow \mathbf{e}_2 = \begin{pmatrix} 2\\1\\2 \end{pmatrix}$	and A1 for the other two).	A1 (3)
	$\mathbf{M}\mathbf{x} = \mathbf{M}(a\mathbf{e}_1 + b\mathbf{e}_2) = a\mathbf{M}\mathbf{e}_1 + b\mathbf{M}\mathbf{e}_2$ $= a\lambda_1\mathbf{e}_1 + b\lambda_2\mathbf{e}_2$ $= 6a\mathbf{e}_1 + 3b\mathbf{e}_2$		B1 B1 B1 (3) Total 14