

$$\frac{1}{4} = \omega^{2} \left(\overrightarrow{x} \rho - \overrightarrow{x} \right)$$

*
$$\widehat{Z} \overrightarrow{T}_{i} = \overline{Z} m_{i} \omega^{2} (\overrightarrow{X}_{f} - X_{i}) = \omega^{2} \overline{Z} m_{i} (\overrightarrow{X}_{f} - \overrightarrow{X}_{i})$$

	3 mi (x cn - X1) = 0			
	Z mi (xcm - Z mi X			
	Xp < Xcn			
	Xim Zmi - 2 mi.	χ' ₁ =]		
	X1m = 3m x1 =	m, X1 + m x2 +) 0 12 00	
	7	m +m2 +m3	-> 120um NIJ Kuit	
	7 M			
	7 - : 0 (
	y cm = <u>Zni yi</u> Zni			
	Z ni			
	2 cm = 2 m zi 3 m			
	3mi			
	(22)			
Ĺ	(3,1) 	M, = 1 k, x		
		m2 2 Us)		
	m 0 0 m2	n3 = 3ly		
	~ 0 0 r2 (6.0)			
	X cm = = 1,5	2 x - 5 y =0	10 = ×1 2 ×	
	y m = 1,5	27 = 57	10 = 7×	
			10 = 7x 5	
		$\frac{1}{\sqrt{1}} = \frac{\lambda}{\lambda}$		
		1- 1 ×	₹ = x	
		1 = 2 ×	ž	
	Italo diguru piurtryn, cu ny	a tetap to V tenjun scal gr	bempah.	
돠	Center of Mars Berda con	tinne		
2,				
	dx M			

$$X_{cm} = \int \overline{X} \cdot dm$$
 _s benda continue

$$dm \longrightarrow \frac{d^{y}}{1} \cdot M$$

$$x cm = \int x dm = \int x \left(\frac{m}{L}\right) dx$$

$$\int dm \int \frac{M}{L} dx$$

$$= \underbrace{\frac{M}{L} \int \times dx}_{I}$$

ı	c L
xcm = M- xdx	_ x dx
$Xcm = M - \int_{L}^{L} x dx$	
/ i J dx	$\int_{\Sigma} dt$
= 1 × 10	1 []
7,11 =	
×) •	
* hather conje	konlu halak uniform
	$\lambda = \alpha \times \lambda$
4.0	$\frac{dm}{dt} = \lambda = \infty \times$
∀ =0	
	dm z XX dX
	N.
L	
$\times cm = \int \times dm$	$=$ $\int x dx dx$
ſĹ.	
$x cm = \int_{1}^{L} x dm$	o) ax dt
= a x dx	13 x 3 1
90	- 7
$\propto \int_{-1}^{1} dt$	
, Gran	trank unitra
mipm;	V 1 11 11 11 11 11 11 11 11 11 11 11 11
<u> </u>	(1) 11 11 pomerar
l l	
1/2	<u>2</u> L
	3
To Kecepatan Paint Massa	
*1	m x l+ m + x 3 m 3
m, 0> V,	Xcm = mx1+m+x3m3 Ti+m2+m3
	$\times cm' = \frac{ri(x_1 + v_1 + v_2) + m_2(x_2 + v_2 + v_3) + m_3(x_3 + v_2 + v_3)}{r_1 + m_2 + m_3}$
m 0 × 3	
	Xcm'-Xcm = MIVID2 + M2 V2 St + M3 V3 At

