4.3.1 Понятие вычислимой функции

Пусть Z — машина Тьюринга с состояниями q_1, q_2, \ldots . Каждой n-ке (m_1, \ldots, m_n) неотрицательных чисел мы поставим в соответствие конфигурацию

$$\alpha_1 = q_1 \, \overline{m_1} \, B \, \overline{m_2} \, B \dots B \, \overline{m_1}$$

Если для машины Z существует вычисление, начинающееся конфигурацией α_1 и доходящее до заключительной конфигурации α_p :

$$\alpha_1 \to \alpha_2 \to \cdots \to \alpha_p$$

то число $\langle \alpha_p \rangle$ есть функция от Z и начальной n-ки; мы будем писать

$$\langle \alpha_p \rangle = \Psi_Z^{(n)}(m_1, \dots, m_n).$$

Если же вычисления, начинающегося с α_1 , не существует, т.е. не существует целого числа p, такого, что конфигурация α_p является заключительной, то функция $\Psi_Z^{(n)}$ не определена для рассматриваемой n-ки.

Определение. Будем говорить, что функция f, определённая на некотором подмножестве множества \mathbb{N}^n , является *частично вычислимой*, если существует машина Тьюринга Z, такая, что для всякой n-ки (x_1, \ldots, x_n) , которой отвечает некоторое значение f, выполняется равенство

$$f(x_1,\ldots,x_n)=\Psi_Z^{(n)}(x_1,\ldots,x_n)$$

Назовём функцию f вычислимой, если она определена на \mathbb{N}^n и является частично вычислимой.

5.4.0 Функции $Q_z^p(\mathscr{X})$

Всякой частично вычислимой функции $f(\mathscr{X})$, где $\mathscr{X} \in \mathbb{N}^p$, можно сопоставить гёделевский номер z той машины Тьюринга, которая эту функцию вычисляет (может существовать несколько разных машин, вычисляющих одну и ту же функцию).

Определение. Пусть имеется пара, образованная целым неотрицательным числом z и входным заданием $\mathscr{X} \in \mathbb{N}^p$. Тогда:

- Если z есть гёделевский номер машины Z, вычисляющей частично вычислимую функцию $f(\mathcal{X})$, то $Q_z^p(\mathcal{X})$ совпадает с $f(\mathcal{X})$.
- Если z не является гёделевским номером никакой машины, то $Q_z^p(\mathscr{X})$ принимает значение 0, т.е. функция на всех аргументах равная нулю.

Последовательность

$$Q_0^p(\mathcal{X}), Q_1^p(\mathcal{X}), \dots, Q_n^p(\mathcal{X}), \dots$$

перечисляет, быть может с повторениями, множество частично вычислимых функций от p аргументов. Таким образом, мы ещё перечисляем области определения частично вычислимых функций.

Определение. Машина Тьюринга, вычисляющая функцию $Q_z^p(\mathscr{X})$, называется *универсальной*: если поместить на её ленте подходящее число z, то она сможет вычислять частично вычислимую функцию, соответствующую этому числу.

5.4.3 Рекурсивные и рекурсивно перечислимые множества

Определение. Пусть $E \subset \mathbb{N}$. Тогда характеристическая функция множества E, обозначаемая через C_E , определяется следующим образом:

$$C_E(x) = \begin{cases} 1, & x \in E, \\ 0, & x \notin E. \end{cases}$$

Аналогично определяется характеристическая функция множества $E \subset \mathbb{N}^p$.

Определение. Будем говорить, что некоторое множество *рекурсивно*, если его характеристическая функция вычислима. Если множество рекурсивно, то существует машина Тьюринга, которая, получив на вход элемент этого множества, всегда ставит ему в соответствие некоторый ответ: либо 1, либо 0.

Определение. Множество называется *рекурсивно перечислимым*, если оно является областью определения некоторой частично вычислимой функции.

Теоретически мы умеем перечислять частично вычислимые функции от одной целочисленной переменной, от двух целочисленных переменных и т.д.; следовательно, в принципе мы умеем перечислять и рекурсивно перечислимые множества (области определения): $\mathcal{R}_0, \mathcal{R}_1, \ldots, \mathcal{R}_i, \ldots$

Теорема. Множество является рекурсивным тогда и только тогда, когда оно само и его дополнение рекурсивно перечислимы.

5.4.5 Неэквивалентность рекурсивности и рекурсивной перечислимости

Рассмотрим множество MT_1 машин Тьюринга, вычисляющих функции от одного аргумента.

$$T_1 \mid T_2 \mid T_3 \mid \dots$$

Каждой из этих машин мы будем предлагать в качестве исходного задания её собственный гёделевский номер. Возможно одно из двух: либо, начав вычисления с $t_n = ng(T_n)$, машина T_n когда-нибудь остановится и выдаст некоторый результат (в таком случае машину называют *само-применимой*), либо она никогда не остановится. Разделим MT_1 на подмножества самоприменимых SMT_1 и не самоприменимых машин $NSMT_1$ (ясно, что никаких других машин в MT_1 нет):

$$SMT_1 - \boxed{T_{i_1} \mid T_{i_2} \mid T_{i_3} \mid \dots}$$
 $NSMT_1 - \boxed{T_{j_1} \mid T_{j_2} \mid T_{j_3} \mid \dots}$

Определим теперь функцию \mathscr{F} , которая берёт гёделевский номер t_n машины T_n из MT_1 и даёт этой же машине на вход. Тогда получается, что $\mathscr{F}(z)=Q_z^1(z)$, следовательно она частично вычислима. Можно построить машину Тьюринга, вычисляющую эту функцию; для это надо сначала построить универсальную машину, вычисляющую $Q_z^1(x)$, т.е. вычисляющую любую из MT_1 .

Таким образом, областью определения частично вычислимой функции $\mathscr F$ является множество G гёделевских номеров машин из SMT_1 , так как если номер самоприменимой машины, то машина вычисляющая $\mathscr F$ всегда останавливается, иначе работает вечно. Значит G оказывается рекурсивно перечислимым множеством.

Теперь предположим, что оно является и рекурсивным. Это равносильно рекурсивной перечислимости его дополнения \overline{G} .

В таком случае должна существовать машина Тьюринга с каким-то номером λ , находящаяся или в SMT_1 , или в $NSMT_1$ и перечисляющая \overline{G} (т.е. вычисляющая некоторую функцию с областью определения \overline{G}); в перечислении рекурсивно перечислимых множеств множество \overline{G} носило бы именно этот номер:

$$\overline{G} = \mathscr{R}_{\lambda}$$

Тогда мы имеем следующее

$$\forall x (x \in \overline{G} \Leftrightarrow x \in \mathcal{R}_{\lambda}), x \in \mathbb{N}$$

Однако в силу самого определения \overline{G} : если x принадлежит \overline{G} , значит машина Тьюринга с номером x находится в $NSMT_1$, т.е. x не входит в её область определения

$$\forall x (x \in \overline{G} \Leftrightarrow x \notin \mathscr{R}_x), x \in \mathbb{N}$$

Следовательно,

$$\forall x (x \in \mathcal{R}_{\lambda} \Leftrightarrow x \notin \mathcal{R}_{x}), x \in \mathbb{N}$$

Теперь посмотрим машина, перечисляющая \overline{G} , находится в SMT_1 или в $NSMT_1$. Пусть в SMT_1 . Тогда её номер должен быть в области определения функции, которую она вычисляет, т.е. $\lambda \in \mathscr{R}_{\lambda}$, но из предыдущего утверждения следует

$$\lambda \in \mathcal{R}_{\lambda} \Leftrightarrow \lambda \notin \mathcal{R}_{\lambda}$$

Полученное противоречие доказывает, что не существует машины Тьюринга, перечисляющей множество \overline{G} гёделевских номеров не самоприменимых машин. Следовательно, G не является рекурсивным множеством.