Bases de Datos 1

Alejandra Lliteras alejandra.lliteras@lifia.info.unlp.edu.ar

En la clase anterior...

Teoría de diseño de BBDD relacionales - EJERCICIO-

RECITALES(idRecital, idGrupo, idIntegranteGrupo, marcaInstrumento, vocalista, idOrganizador, nombreGrupo, nombreOrganizador)

Donde

- en un recital se presentan diversos grupos y un grupo se presenta en diversos recitales
- cada grupo tiene diversos integrantes. Los integrantes del grupo pueden variar para diferentes recitales
- cada grupo tiene solamente un vocalista, el vocalista del grupo no varía para los diferentes recitales en los que el grupo se presenta
- de un grupo se conoce el nombre, pero puedo suceder que dos grupos se llamen de igual manera
- de cada integrante de un grupo y para cada recital en los que el grupo se presenta, se sabe que marca de instrumento uso el integrante
- un integrante de una grupo puede pertenecer a más de un grupo
- un vocalista de un grupo puede ser vocalista de otros grupos
- cada recital tiene diversos organizadores y un organizador puede organizar diversos recitales
- el nombre del organizador se puede repetir para diferentes idOrganizador. El idOrganizador es único

Realizar el proceso de normalización para llevar RECITALES a 4FN

Teoría de diseño de BBDD relacionales - EJERCICIO-

 RECITALES (idRecital, idGrupo, idIntegranteGrupo, marcaInstrumento, vocalista, idOrganizador, nombreGrupo, nombreOrganizador)

Dep. funcionales:

df1)idGrupo → nombreGrupo,vocalista df2)idRecital,idGrupo ,idIntegranteGrupo → marcaInstrumento df3)idOrganizador → nombreOrganizador

Clave candidata:

{idRecital, idGrupo, idIntegranteGrupo, idOrganizador}

Una vez realizados los puntos mencionados como 1 y 2 del proceso, llevar RECITALES a BCNF

Una vez explicado y justificado el proceso hasta BCNF, se deben hallar las dependencias multivaluadas sobre la última partición en la que quedo la clave primaria

Teoría de diseño de BBDD relacionales - EJERCICIO-

 RECITALES (idRecital, idGrupo, idIntegranteGrupo, marcaInstrumento, vocalista, idOrganizador, nombreGrupo, nombreOrganizador)

Dep. funcionales:

df1)idGrupo → nombreGrupo,vocalista df2)idRecital,idGrupo ,idIntegranteGrupo → marcaInstrumento df3)idOrganizador → nombreOrganizador

Clave candidata:

{idRecital, idGrupo, idIntegranteGrupo, idOrganizador}

Dep. Multivaluadas:

DM1) idRecital,idGrupo ->> idIntegranteGrupo DM2) idRecital ->> idOrganizador

Una vez halladas las dependencias multivaluadas, realizar el proceso de normalización partiendo de un esquema en BCNF y llevando a 4FN

Ejercicio Grupal

Sobre el esquema propuesto valen las siguientes restricciones:

- Cada área tiene varios empleados.
- Cada empleado trabaja en una sola área.
- Cada área tiene un solo tipo de máquina.
- Dado el nombre de una máquina puedo recuperar el tipo de la maquina
- Un tipo de máquina puede tener muchos nombres
- Por área existe al menos un empleado asignado

Dependencias Funcionales

- ▶ df1 nombreMaquina → tipoMaquina
- b df2− #Empleado → nombreEmpleado, #Area
- b df3− #Area → nombreArea, tipoMaquina

Claves candidatas:

cc1: {#Empleado, nombreMaquina}

Dependencias Funcionales

- ▶ df1 nombreMaquina → tipoMaquina
- > df2- #Empleado → nombreEmpleado, #Area
- df3- #Area → nombreArea, tipoMaquina

Claves candidatas:

cc1: {#Empleado, nombreMaquina}

¿EMPRESA está en BCNF?

- ▶ El esquema EMPRESA no esta en BCNF porque al menos uno de los antecedentes de las dependencias funcionales 1-3 no es superclave en el esquema EMPRESA (Por ejemplo: la dependencia funcional 1). Entonces divido la tabla utilizando la dependencia funcional 1 quedando lo siguiente:
- E1 (nombreMaquina), tipoMaquina)
- ▶ **E2**(#Empleado, nombreEmpleado, #Area, nombreArea, nombreMaquina)

- ▶ df1 nombreMaquina → tipoMaquina
- → df2- #Empleado → nombreEmpleado, #Area
- b df3− #Area → nombreArea, tipoMaquina
- ▶ E1(nombreMaquina), tipoMaquina)
- ▶ **E2**(#Empleado, nombreEmpleado, #Area, nombreArea, nombreMaquina)
- El esquema E1 está en BCNF ya que el antecedente de la dependencia funcional 1 es superclave en E1 y vale la dependencia funcional 1 la cual se uso en el proceso de división.
- El problema que se plantea con este particionamiento es si la dependencia funcional 3 sigue valiendo en el esquema E2. Para analizar esto debo usar el algoritmo para verificar pérdida de dependencias funcionales.

 Se quiere analizar si se perdió la dependencia funcional #Area → nombreArea, tipoMaquina
 Para esto aplico el algoritmo para determinar pérdida de dependencias funcionales

RES: (#Area)

Mientras Res cambia

Para i= 1 to cant_de_ particiones_realizadas Res = Res \cup ((Res \cap Ri)⁺ \cap Ri)

#Area → nombreArea, tipoMaquina

- ▶ E1(<u>nombreMaquina</u>, tipoMaquina)
- E2(#Empleado, nombreEmpleado, #Area, nombreArea, nombreMaquina)

```
Desde i = 1 hasta 2
Paso 1)
Res =
(#Area)
(((#Area)
(nombreMaquina, tipoMaquina))+
Res = (\#Area) \cup
((\emptyset)^+
Res = (\#Area) \cup
(\emptyset)
Res = (\#Area)
```

#Area → nombreArea, tipoMaquina

- E1 (nombreMaquina , tipoMaquina)
- E2(#Empleado, nombreEmpleado, #Area, nombreArea, nombreMaquina)

```
Desde i = 1 hasta 2
```

Paso 2)

```
Res = (\#Area)
```

```
Res = (\#Area) \cup ((\#Area)
```

- (<u>#</u>Empleado, nombreEmpleado, #Area, nombreArea, nombreMaquina))

```
Res = (#Area) ∪
((#Area))<sup>+</sup> ∩
(<u>#</u>Empleado, nombreEmpleado, #Area, nombreArea, nombreMaquina))
```

```
-Debo hallar la clausura del conjunto de atributos (#Area)
Result:= X
While (hay cambios en result) do
For (cada dependencia funcional Y \rightarrow Z en F) do
       if (Y \subset result) then
                result := result \cup Z
result : (#Area)
para cada dependencia funcional del conjunto
  {nombreMaquina → tipoMaquina
  #Empleado → nombreEmpleado, #Area
  #Area → nombreArea, tipoMaquina}
Entra al while por primera vez y result= (#Area, nombreArea, tipoMaquina)
Como result cambio, entro una vez mas al while
  result : (#Area, nombreArea, tipoMaquina)
para cada dependencia funcional del conjunto
{nombreMaquina → tipoMaquina
#Empleado → nombreEmpleado, #Area
#Area → nombreArea, tipoMaguina}
En esta iteración, result queda igual y termino la iteración
```

```
-Una vez hallada la clausura del conjunto de atributos (#Area)
(#Area, nombreArea, tipoMaquina)
Se remplaza en la siguiente expresión
Res = (\#Area) \cup
((#Area))+ ∩
(#Empleado, nombreEmpleado, #Area, nombreArea, nombreMaquina))
Res = (#Area) \cup
((#Area, nombreArea, tipoMaquina) ∩
(#Empleado, nombreEmpleado, #Area, nombreArea, nombreMaquina))
```

Res = (#Area) ∪ (#Area, nombreArea) Res =(#Area, nombreArea)

Como se paso por las dos particiones y Res cambió, entonces se vuelve a iterar

Res = (#Area, nombreArea)

Trabajo con la primer partición realizada

```
Res=(#Area, nombreArea)
(((#Area, nombreArea)
(nombreMaquina, tipoMaquina))+

    ∩ (nombreMaquina , tipoMaquina))

Res = (#Area , nombreArea) \cup
((\emptyset)^+

    ∩ (nombreMaquina , tipoMaquina))

Res = (#Area , nombreArea) \cup
(\emptyset)
Res = (#Area , nombreArea)
```

```
Res = (#Area, nombreArea)
Trabajo con la segunda partición realizada
Res = (#Area,nombreArea)
Res = (#Area , nombreArea) \cup
(((#Area , nombreArea)
\cap (#Empleado, nombreEmpleado, #Area, nombreArea, nombreMaquina))+
\cap (#Empleado, nombreEmpleado, #Area, nombreArea, nombreMaquina))
Res = (#Area nombreArea) \cup
```

(#Empleado, nombreEmpleado, #Area, nombreArea, nombreMaquina))

 $((\#Area, nombreArea))^+ \cap$

Entra al while por primera vez y result= (#Area, nombreArea)

```
-Una vez hallada la clausura del conjunto de atributos (#Area, nombreArea)
(#Area, nombreArea)
Se remplaza en la siguiente expresión
Res = (#Area, nombreArea) \cup
((#Area, nombreArea))+ ∩
(#Empleado, nombreEmpleado, #Area, nombreArea, nombreMaquina))
Res = (#Area, nombreArea) \cup
((#Area, nombreArea) ∩
(#Empleado, nombreEmpleado, #Area, nombreArea, nombreMaquina))
```

```
Res = (#Area, nombreArea) ∪ (#Area, nombreArea)
Res = (#Area, nombreArea)
```

Como se paso por las dos particiones y Res no cambió, no se vuelve a iterar.

Luego de aplicar el algoritmo no se logro incorporar al conjunto res, el atributo tipoMaquina de la dependencia funcional que estamos validando si se perdió #Area -> nombreArea, tipoMaquina

Luego de aplicar el algoritmo no se logro incorporar al conjunto res, el atributo tipoMaquina de la dependencia funcional que estamos validando si se perdió #Area → nombreArea, tipoMaquina

Se concluye que la dependencia funcional $\#Area \rightarrow nombreArea$, tipoMaquina se pierde con la partición propuesta para llevar a BCNF.

Por lo anterior, se deja el esquema en 3FN

Las dependencias funcionales que aun no se trataron hasta el esquema **EMPRESA** son:

nombreMaquina -> tipoMaquina

#Empleado -> nombreEmpleado, #Area

#Area -> nombreArea, tipoMaquina

Particiones que surgen con el análisis de 3FN

R1_{3FN} (nombreMaquina, tipoMaquina)

R2_{3FN} (#Empleado, nombreEmpleado, #Area)

R3_{3FN} (#Area, nombreArea, tipoMaquina)

R4_{3FN} (#Empleado, nombreMaquina)

Particiones que quedan en 3FN

R1_{3FN} (<u>nombreMaquina</u>, tipoMaquina)

R2_{3FN} (#Empleado, nombreEmpleado, #Area)

R3_{3FN} (#Area, nombreArea, tipoMaquina)

R4_{3FN} (#Empleado, nombreMaquina)

Clave Primaria del esquema cp: {#Empleado, nombreMaquina}

R4_{3FN} cumple con 4FN?

R4_{3FN} cumple con 4FN?

EMPRESA(#Empleado, nombreEmpleado, #Area, nombreArea, tipoMaquina, nombreMaquina)

Sobre el esquema propuesto valen las siguientes restricciones:

- Cada área tiene varios empleados.
- Cada empleado trabaja en una sola área.
- Cada área tiene un solo tipo de máquina.
- Dado el nombre de una máquina puedo recuperar el tipo de la maquina
- Un tipo de máquina puede tener muchos nombres
- Por área existe al menos un empleado asignado

Dependencias Multivaluadas halladas en R4_{3FN}:

- DM1) \varnothing ->> #Empleado
- DM2) \varnothing ->> nombreMaquina

Dependencias Multivaluadas halladas en R4_{3FN}:

- DM1) \varnothing ->> #Empleado
- DM2) \varnothing ->> nombreMaquina

- El esquema $R4_{3FN}$ no esta en 4NF porque existen dependencias multivaluadas que no son triviales en $R4_{3FN}$.
- Entonces divido la tabla **R4**_{3FN} utilizando la dependencia multivaluada 1 quedando lo siguiente:
- R4.1_{4FN} (#Empleado)
- R4.2_{4FN} (nombreMaquina)
- El esquema **R4.1**_{4FN} esta en 4NF ya que sólo vale la dependencia multivaluada 1 que es trivial.
- El esquema R4.2_{4FN} esta en 4NF ya que sólo vale la dependencia multivaluada 2 que es trivial.

- R4.1_{4FN} (#Empleado)
- R4.2_{4FN} (nombreMaquina)
- El esquema **R4.1**_{4FN} esta en 4NF ya que sólo vale la dependencia multivaluada 1 que es trivial.
- El esquema **R4.2**_{4FN} esta en 4NF ya que sólo vale la dependencia multivaluada 2 que es trivial.

Una vez llevadas las particiones a 4FN, escribir de manera explicita al final de todo el proceso cuales son las tablas que considera que han quedado en 4FN

<u>Tablas en 4FN</u>: R1_{3FN}, R2_{3FN}, R3_{3FN}, R4.1_{4FN}, R4.2_{4FN}

Las particiones $R1_{3FN}$, $R2_{3FN}$, $R3_{3FN}$ se encuentran en 4FN, ya que no tienen dependencias multivaluadas

Retomando el AR como lenguaje de consulta

Ejercicio

Empleado (dni, nombre, domicilio, salario)

¿Qué empleados cobran el máximo valor de salario?

Ejercicio

Empleado (dni, nombre, domicilio, salario)

¿Qué empleados cobran el máximo valor de salario?

- Buscar el valor del salario máximo
 - Busco los salarios que están por debajo del resto
 - A todos los salarios le resto los mínimos
- Relaciono el máximo salario con las personas que lo perciben

Empleado(dni, nombre, domicilio, salario) ¿Qué empleados cobran el máximo valor de salario?

- Buscar el valor del salario máximo
 - Busco los salarios que están por debajo del resto

P_{EMP (dni,nom,sal)} (Empleado)

EMPLE←Π dni, nombre, salario (Empleado)

EmplBajoSalario $\leftarrow \sigma_{\text{salario} < \text{sal}}$ (EMPLE X EMP))

Salario Debajo Maximo $-\Pi_{salario}$ (EmplBajo Salario)

EMPLE

dni	nombre	salario
123456	Juan	10200
456789	Pedro	15000
567890	María	22000
234567	Joaquín	28000
345678	Martina	25000
678901	Mario	28000

EMP

dni	nom	sal
123456	Juan	10200
456789	Pedro	15000
567890	María	22000
234567	Joaquín	28000
345678	Martina	25000
678901	Mario	28000

EmplBajoSalario ←

$\sigma_{emple.salario < sal}$ (EMPLEX EMP))

EMPLE

dni	nombre	salario
123456	Juan	10200
456789	Pedro	15000
567890	María	22000
234567	Joaquín	28000
345678	Martina	25000
678901	Mario	28000

EMP

dni	nom	sal
123456	Juan	10200
456789	Pedro	15000
567890	María	22000
234567	Joaquín	28000
345678	Martina	25000
678901	Mario	28000

EmplBajoSalario

EMPLE.dni	nombre	salario	EMP.dni	nom	sal
123456	Juan	10200	456789	Pedro	15000
123456	Juan	10200	567890	María	22000
123456	Juan	10200	234567	Joaquín	28000
123456	Juan	10200	345678	Martina	25000
123456	Juan	10200	678901	Mario	28000
456789	Pedro	15000	567890	María	22000
456789	Pedro	15000	234567	Joaquín	28000
456789	Pedro	15000	345678	Martina	25000
456789	Pedro	15000	678901	Mario	28000
567890	María	22000	234567	Joaquín	28000
567890	María	22000	345678	Martina	25000
567890	María	22000	678901	Mario	28000
345678	Martina	25000	234567	Joaquín	28000
345678	Martina	25000	678901	Mario	28000

Salario Debajo Maximo $-\Pi_{salario}$ (EmplBajo Salario)

EmplBajoSalario

EMPLE.dni	nombre	salario	EMP.dni	nom	sal
123456	Juan	10200	456789	Pedro	15000
123456	Juan	10200	567890	María	22000
123456	Juan	10200	234567	Joaquín	28000
123456	Juan	10200	345678	Martina	25000
123456	Juan	10200	678901	Mario	28000
456789	Pedro	15000	567890	María	22000
456789	Pedro	15000	234567	Joaquín	28000
456789	Pedro	15000	345678	Martina	25000
456789	Pedro	15000	678901	Mario	28000
567890	María	22000	234567	Joaquín	28000
567890	María	22000	345678	Martina	25000
567890	María	22000	678901	Mario	28000
345678	Martina	25000	234567	Joaquín	28000
345678	Martina	25000	678901	Mario	28000

SalarioDebajoMaximo

salario		
10200		
15000		
22000		
25000		

Empleado(dni, nombre, domicilio, salario) ¿Qué empleados cobran el máximo valor de salario?

- Buscar el valor del salario máximo
 - Busco los salarios que están por debajo del resto
 - A todos los salarios le resto los mínimos

MaximoSalario $\leftarrow \Pi_{salario}$ (Empleado) – SalarioDebajoMaximo)

maximoSalario $\leftarrow \Pi_{salario}$ (Empleado) - salarioDebajoMaximo)

$\Pi_{salario}$ (Empleado)

SalarioDebajoMaximo

salario		
10200		
15000		
22000		
28000		
25000		

MaximoSalario

salario 28000 Empleado(dni, nombre, domicilio, salario) ¿Qué empleados cobran el máximo valor de salario?

- Buscar el valor del salario máximo
 - Busco los salarios que están por debajo del resto
 - A todos los salarios le resto los mínimos

Relaciono el máximo salario con las personas que lo perciben

Resultado ← Empleado |X| MaximoSalario

Empleado(dni, nombre, domicilio, salario) ¿Qué empleados cobran el máximo valor de salario?

- Buscar el valor del salario máximo
 - Busco los salarios que están por debajo del resto
 - A todos los salarios le resto los mínimos
- Relaciono el máximo salario con las personas que lo perciben

Resultado - Empleado |X| MaximoSalario

Empleado

dni	nombre	domicilio	salario
123456	Juan	1 y 36	10200
456789	Pedro	154 y 78	15000
567890	María	22 y 61	22000
234567	Joaquín	12 y 62	28000
345678	Martina	58 y 7	25000
678901	Mario	120 y 50	28000

MaximoSalario

salario 28000

Resultado

dni	nombre	domicilio	salario
234567	Joaquín	12 y 62	28000
678901	Mario	120 y 50	28000