0/9 Questions Answered

Week 3 Wednesday Review Quiz

Student Name

Search students by name or email...

Q1 Set-wise concatenation 4 Points

For alphabet Σ , given languages L_1 and L_2 over Σ , the set-wise concatenation is defined as $L_1\circ L_2=\{w\in \Sigma^*\mid w=uv \text{ for some strings } u\in L_1 \text{ and } v\in L_2\}$

Q1.1 1 Point

Consider the alphabet $\{a,b\}$. How many strings are in the set $\{\varepsilon,a,b\}$ \circ $\{\varepsilon,a,b\}$?

0 (i.e.\ the set is empty)

3

6

9

Some other (finite) number

Infinitely many unique strings

Q1.2 2 Points

Let $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ and $N_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$ be NFAs. When applying the construction in Theorem 1.47 to build the NFA $N=(Q,\Sigma,\delta,q_1,F_2)$ that recognizes $L(N_1)\circ L(N_2)$, select all and only the statements below that are universally true.

$\square \ Q > Q_1 $

$$\square \; |Q| > |Q_2|$$

$$\square |Q| > 2$$

$$\square |Q| = |Q_1| + |Q_2|$$

$$\square \; |Q| = |Q_1| \cdot |Q_2|$$

Q1.3 1 Point

The NFA whose state diagram below

is the result of applying the set-wise concatenation construction to obtain a machine that recognizes the language $\{w\in\{0,1\}^*|w\text{ has zeros followed by }1\mathrm{s}\}$

True

False, it is the result of applying the union construction instead to obtain the machine that recognizes the language $\{w\in\{0,1\}^*|w\text{ has all zeros or all }1\mathrm{s}\}$

False, it is the result of applying the intersection construction instead to obtain the machine that recognizes the language $\{w\in\{0,1\}^*|w\text{ has all zeros and all 1s}\}$

False, it is the result of applying the Kleene star construction instead to obtain the machine that recognizes the language $\{0,1\}^*$

Q2 Kleene star 2 Points

Q	2.1
1	Point

Select all and only the languages below for which $L^* = L$.

_ Ø	
\square $\{\varepsilon\}$	
□ {0}	
$\square \ \{0,1\}$	

Save Answer

Q2.2 1 Point

True or False: The construction from Theorem 1.49 for an NFA that recognizes L^{\ast} from an NFA that recognizes L always gives the smallest number of states required in an NFA that recognizes L^{\ast} .

True

False

Q3 NFA to DFA 2 Points

Consider the following state diagram of a NFA over the alphabet $\{a, b\}$.

Answer the following questions about applying the construction for building an equivalent DFA from Theorem 1.39.

What is the start state of the equivalent DFA?

$$q0$$

$$\{q0\}$$

$$\{q0,q,n\}$$

What is the output of the transition function for the equivalent DFA from the start state on reading the character a?

 \emptyset $\{q0\}$ $\{q\}$ $\{n\}$ $\{q,n\}$ $\{q,d\}$ $\{r,n\}$

None of the above, because DFA have a single state as the output of each transition function application, not a set of states.

Q4 Regular expression to NFA

1 Point

First diagram:

Second diagram:

Third diagram:

Which of the three diagrams above is a state diagram over the alphabet $\{a,b\}$ for a NFA that recognizes the language $L=\emptyset$?

first diagram

second diagram

third diagram

None of the above

Q5 DFA to regular expression 1 Point

Which of the following regular expressions describe the language recognized by the DFA with state diagram above? (Select all and only that apply.)

Submit Week	3 Wednesday Review Quiz Gradescope			
$\Box a^+ \cup b^+$				
\square $arepsilon \cup aa^* \cup bb^*$				
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $				
$\square \ aa^*b(a\cup b)^*\cup bb^*a(a\cup b)^*$				
$\Box \ a^+b(a\cup b)^*\cup b^+a(a\cup b)^*$				
Q6 Feedback 0 Points				
Any feedback about this week's material or comments you'd like to share? (Optional; not for credit)				
Save Answer				

Save All Answers

Submit & View Submission ➤