

NOTE HYDRAULIQUE

Rédacteur : E.BALKISSOON

Dossier : N°2017015 Date : 27/05/2019

Version : H

Modifications : Prise en compte de la Nouvelle notice hydraulique de la ville de

Toulor

PC4-5-1a

CONSTRUCTION DE 48 LOGEMENTS COLLECTIFS

CAP BRUN – 1821 Avenue de la Résistance 83000 TOULON

Table des matières 1. 2. 3. 4. Détermination du débit de fuite. 4 5. 6. 7. Calculs des hauteurs d'eau 6 8.

A. PRESENTATION DU PROJET

La présente note hydraulique porte sur la réalisation de quatre bâtiments en R+1 (A, B, C et D).

1. SITUATION.

Le terrain du projet se trouve au Sud Est de la commune de Toulon, à la limite des quartiers résidentiels du Cap Brun et de la Serinette. L'opération est à environs 700m de la mer.

L'unité foncière du projet est située en zone UE du PLU. Elle correspond aux parcelles BN n°23 et BN n°698 et a une contenance cadastrale total de 6955m2.

Zone PLU/POS : zone UE

B. METHODE DE DIMENSIONNEMENT.

2. Organigramme de calculs.

Nous appliquerons « la note de calcul des bassins de rétention de la ville de Toulon du 3 Mai 2019 », pour définir le volume de rétention destiné à compenser l'augmentation des débits générés par le projet.

- Définition des caractéristiques du projet,
- Détermination du débit de fuite suivant la localisation du projet,
- Calculs du débit spécifique de vidange du bassin,
- Calculs de l'intensité pluviométrique,
- Calculs des hauteurs d'eau,
- Et calculs du volume utile de stockage.

C. NOTE DE CALCUL.

Le projet sera décomposé de deux bassins versants distinctes :

- ➤ BV 1 = 3799 m2
- > BV 2 = 3156 m2

Deux bassins de rétention seront calculés.

3. Caractéristiques des BV.

BV 1:

Type de surface	Coefficient C	_	Surfaces en m2 🗾	Surfaces actives en m2 🔼
Piscine		1,00	0,00	0,00
Toitiure		0,90	1595,00	1435,50
Enrobés projet + chemin		0,90	957,00	861,30
Béton piétonnier		0,85	100,00	85,00
Pavés, dalles, carrelages, bois		0,70	53,00	37,10
Stabilisé		0,70	0,00	0,00
Gravillons - graviers		0,50	0,00	0,00
Espace verts		0,20	1194,00	238,80
			3899,00	
Bassin versant en m2			3799,00	
Bassin versant en ha			0,3799	
Coéfficient C moyen			0,70	0,70
Type de bassin versant			BV urbain C > 0,20	

BV 2:

Type de surface	Coefficient C	Surfaces en m2	Surfaces actives en m2
Piscine	1,00	105,00	105,00
Toitiure	0,90	429,00	386,10
Enrobés	0,90	0,00	0,00
Béton	0,85	45,00	38,25
Pavés, dalles, carrelages, bois	0,70	145,00	101,50
Stabilisé	0,70	0,00	0,00
Gravillons - graviers	0,50	575,00	287,50
Espace verts	0,20	1857,00	371,40
		3156,00	
Bassin versant en m2		3156,00	
Bassin versant en ha		0,3156	
Coéfficient C moyen		0,41	0,41
Type de bassin versant		BV urbain C > 0,20	

4. Détermination du débit de fuite.

Les bassins auront chacun un débit de fuite de 5 l/s. Le BV 1 se rejettera sur la voirie (avenue de la résistance) par pompage et le BV 2 se rejettera dans le fossé existant gravitairement.

5. Calculs du débit spécifique de vidange.

BV 1:

3) Calcul du débit spécifique de vidange (Qs)					
Sa	0,2658	ha			
Qf	0,005	m3/s			
Qs	6,77277	mm/h			

BV2:

3) Calcul du débit spécifique de vidans		
Sa	0,1290	ha
Qf	0,005	m3/s
Qs	13,95619	mm/h

6. Calculs de l'intensité pluviométrique.

BV 1 et BV 2:

4) Calcul de l'intensité pluviométri	que (i)					
	Coéficient de M	ontana en fonction	de la durée de la pluie (Stat	tion Toulon La	a Mitre 1971 -	2007)
	6 mn < t	<1h 1h < t < 6h			6h < t	< 24h
Période de retour	a	b	a	b	а	b
10 ans	269	0,415	639	0,637	1535	0,744
Durée de la pluie en mn	6		360		1440	1440
Intensité en mm/h	127,8849715		15,03613323		6,85941	

7. Calculs des hauteurs d'eau

BV 1:

Durée de la pluie t (mn)		i (mm/h)	h pluie (mm)	h fuite (mm)	dh (mm)
	6	127,885	12,788	0,677277345	12,111
	10	103,455	17,243	1,128795575	16,114
	15	87,433	21,858	1,693193363	20,165
	20	77,593	25,864	2,25759115	23,607
	30	65,576	32,788	3,386386725	29,402
	40	58,197	38,798	4,5151823	34,283
	60	49,184	49,184	6,772773451	42,411
	80	39,195	52,260	9,030364601	43,230
	100	34,002	56,670	11,28795575	45,382
	140	27,442	64,032	15,80313805	48,228
	180	23,383	70,148	20,31832035	49,829
	240	19,467	77,869	27,0910938	50,778
	360	15,036	90,217	40,6366407	49,580
	420	17,156	120,091	47,40941416	72,681
	480	15,533	124,267	54,18218761	70,085
	900	9,731	145,963	101,5916018	44,372
	1000	8,997	149,954	112,8795575	37,074
	1140	8,162	155,069	128,6826956	26,386
	1440	6,859	164,626	162,5465628	2,079

La valeur retenue pour la hauteur d'eau maximale dh max est : 72.681 mm BV 2 :

5) Calcul de la hauteur d'eau				
Durée de la pluie t (mn)	i (mm/h)	h pluie (mm)	h fuite (mm)	dh (mm)
6	127,885	12,788	1,395619306	11,393
10	103,455	17,243	2,326032177	14,916
15	87,433	21,858	3,489048265	18,369
20	77,593	25,864	4,652064354	21,212
30	65,576	32,788	6,97809653	25,810
40	58,197	38,798	9,304128707	29,494
60	49,184	49,184	13,95619306	35,227
80	39,195	52,260	18,60825741	33,652
100	34,002	56,670	23,26032177	33,409
140	27,442	64,032	32,56445047	31,467
180	23,383	70,148	41,86857918	28,279
240	19,467	77,869	55,82477224	22,045
360	15,036	90,217	83,73715836	6,480
420	17,156	120,091	97,69335142	22,397
480	15,533	124,267	111,6495445	12,617
900	9,731	145,963	209,3428959	-63,380
1000	8,997	149,954	232,6032177	-82,650
1140	8,162	155,069	265,1676682	-110,099
1440	6,859	164,626	334,9486335	-170,323

La valeur retenue pour la hauteur d'eau maximale dh max est : 35.227 mm

8. Calculs des volumes de stockage.

Pour le BV 1 le volume de stockage sera de 193 m3 avec un débit de fuite régulé par pompage de 5l/s.

Pour le BV 2 le volume de stockage est de 45m3 brute. Etant donné que le débit de fuite sera géré en gravitaire le volume de stockage sera majoré de 20% soit un volume net de 54 m3.

D. Annexes : Plans de principe des bassins de rétention