CSC373 Worksheet 5 Solution

August 8, 2020

1. Rough Works:

Assume that a flow network G = (V, E) violates the assumption that the network contains a path $s \leadsto v \leadsto t$ for all vertices $v \in V$. Let u be a vertex for which there is no path $s \leadsto u \leadsto t$.

I must show such that there is no flow at vertex u. That is, there exists a maximum flow f in G such that f(u,v)=f(v,u)=0 for all vertices $v\in V$.

Assume for the sake of contradiction that there is some vertex u with flow f. That is, there exists some vertices $v \in V$ such that f(u, v) > 0 or f(v, u) > 0.

I see that three cases follows, and I will prove each separately.

- 1. Cases 1: f(u, v) > 0 and f(v, u) = 0
- 2. Cases 2: f(u, v) = 0 and f(v, u) > 0

Here, assume that f(u, v) = 0 for all $v \in V$ and f(v, u) > 0 for some $v \in V$.

- Show that $\sum_{v \in V} f(u, v) = 0$ and $\sum_{v \in V} f(v, u) > 0$
- Show that this violates flow conservation [contradiction]
- Conclude that f(u,v) = 0 and f(v,u) = 0
- 3. Cases 3: f(u, v) > 0 and f(v, u) > 0

Here, assume that f(u, v) > 0 and f(v, u) > 0 for some $v \in V$.

• Write that the path $s \leadsto u \leadsto t$ exists

Since $s \leadsto v \leadsto t$ and u is connected by some vertices v, we can write $s \leadsto u \leadsto t$.

• Write that this results in contradiction to the header that a vertex u has no path $s \rightsquigarrow u \rightsquigarrow t$.

Then, this violates the fact in header that the vertex u has no path $s \leadsto u \leadsto t$.

• Conclude that f(u,v)=0 and f(v,u)=0

Thus, by contradiction, f(u, v) = 0 and f(v, u) = 0.

Here, assume that f(u, v) > 0 and f(v, u) > 0 for some $v \in V$.

Since $s \leadsto v \leadsto t$ and u is connected by some vertices v, we can write $s \leadsto u \leadsto t$.

Then, this violates the fact in header that the vertex u has no path $s \rightsquigarrow u \rightsquigarrow t$.

Thus, by contradiction, f(u, v) = 0 and f(v, u) = 0.

Notes

• Maximum Flow:

- Finds a flow of maximum value [1]

Example

Here, the maximum flow is 10 + 5 + 13 = 28

• Flow Network:

-G = (V, E) is a directed graph in which each edge $(u, v) \in E$ has a nonnegative capacity $c(u, v) \geq 0$.

- Two vertices must exist: **source** s and **sink** t
- path from source s to vertax v to sink t is represented by $s \leadsto v \leadsto t$

• Capacity:

- Is a non-negative function $f: V \times V \to \mathbb{R}_{\geq 0}$
- Has capacity constraint where for all $u, v \in V$ $0 \le f(u, v) \le c(u, v)$
 - * Means flow cannot be above capacity constraint

• Flow:

- Is a real valued function $f: V \times V \to \mathbb{R}$ in G
- Satisfies **capacity constraint** (i.e for all $u, v \in V$, $0 \le f(u, v) \le c(u, v)$)
- Satisfies flow conservation

For all $u \in V - \{s, t\}$, we require

$$\sum_{v \in V} f(v, u) = \sum_{v \in V} f(u, v) \tag{1}$$

Means flow into vertex u is the same as flow going out of vertex u. [1]

Example:

$\underline{\mathbf{References}}$

1) Princeton University, Network Flow 1, link