Bài 14. PHƯƠNG TRÌNH MẶT PHẨNG

A. LÝ THUYẾT CẦN NHỚ

1. Vectơ pháp tuyến của mặt phẳng

- \bigcirc **Dịnh nghĩa:** Vectơ pháp tuyến \overrightarrow{n} của mặt phẳng (P) là những vectơ khác $\overrightarrow{0}$ và có giá vuông góc với (P).
- Chú ý:
- $\vec{n} \neq \vec{0}$ và có giá vuông với (P);
- Nếu \overrightarrow{n} và $\overrightarrow{n'}$ cùng là vectơ pháp tuyến của (P) thì $\overrightarrow{n'}=k\cdot\overrightarrow{n}$ (tọa độ tỉ lệ nhau).

2. Cặp vectơ chỉ phương của mặt phẳng

- \bigcirc **Định nghĩa:** Trong không gian Oxyz, cho hai vecto \overrightarrow{u} , \overrightarrow{v} được gọi là cặp vecto chỉ phương của mặt phẳng (P) nếu chúng không cùng phương và có giá nằm trong hoặc song song với mặt phẳng (P).
- Chú ý:
- Cho hai vecto $\vec{u} = (a; b; c)$ và $\vec{v} =$ (a';b';c'). Khi đó

$$\overrightarrow{n} = (bc' - b'c; ca' - c'a; ab' - a'b)$$

vuông góc với cả hai vecto \vec{u} và \vec{v} , được gọi là tích có hướng của \vec{u} và \vec{v} , ký hiệu là $[\vec{u}, \vec{v}]$.

3. Phương trình tổng quát của mặt phẳng

 \bigcirc Công thức: Mặt phẳng (P) đi qua điểm $M(x_0; y_0; z_0)$ và nhận $\overrightarrow{n} = (a; b; c)$ làm vecto pháp tuyến có phương trình là

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

Thu gọn ta được dạng

$$ax + by + cz + d = 0$$

- Chú ý:
 - ① Phương trình các mặt phẳng tọa độ:
 - (Oxy): z = 0.
- (Oxz): y = 0.
- (Oyz): x = 0.
- 2 Phương trình mặt phẳng (α) song song với mặt phẳng toa độ:
 - $(\alpha) \# (Oxy) \Rightarrow z = a \quad a \neq 0.$ $(\alpha) \# (Oxz) \Rightarrow y = b \quad b \neq 0.$
 - $(\alpha) // (Oyz) \Rightarrow x = c \quad c \neq 0.$

4. Vi tri tương đối giữa hai mặt phẳng

Cho hai mặt phẳng (P): $a_1x + b_1y + c_1z + d_1 = 0$ và (Q): $a_2x + b_2y + c_2z + d_2 = 0$. Gọi $\overrightarrow{n_1} = (a_1; b_1; c_1), \overrightarrow{n_2} = (a_2; b_2; c_2)$ lần lượt là vecto pháp tuyến của (P) và (Q).

•	٠	٠	•	٠	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠
																																•

	•	•	•	•						•	•	•	•	•			

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

Q	ш		N	ОΤ	
71	u,		N	vi	-

- ① Nếu $\begin{cases} \overrightarrow{n_1} = k \cdot \overrightarrow{n_2} \\ d_1 = k \cdot d_2 \end{cases} \text{ thì } (P) \text{ trùng } (Q).$
- 3 Nếu $\overrightarrow{n_1}$ không cùng phương với $\overrightarrow{n_2}$ thì (P) cắt (Q).
- (4) Nếu $\overrightarrow{n_1} \perp \overrightarrow{n_2}$ hay $a_1a_2 + b_1b_2 + c_1c_2 = 0$ thì $(P) \perp (Q)$.

5. Khoảng cách từ một điểm đến mặt phẳng

Oịnh nghĩa: Cho điểm $M(x_0; y_0; z_0)$ và mặt phẳng (P): ax + by + cz + d = 0. Gọi H là hình chiếu vuông góc của điểm M lên mặt phẳng (P). Khi đó độ dài đoạn MH được gọi là khoảng cách từ điểm M đến (P). Kí hiệu d(M, (P)).

Công thức tính:

$$d(M,(P)) = \frac{\left| ax_0 + by_0 + cz_0 + d \right|}{\sqrt{a^2 + b^2 + c^2}}$$

🗘 Đặc biệt:

①
$$d(M,(Oxy)) = |z_M|$$
. ② $d(M,(Oxz)) = |y_M|$. ③ $d(M,(Oyz)) = |x_M|$.

B. PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN

Xác định vectơ pháp tuyến và điểm thuộc mặt phẳng

Cho mặt phẳng (α) .

- ① Nếu véct
ơ \overrightarrow{n} khác $\overrightarrow{0}$ và có giá vuông góc với
 (α) thì \overrightarrow{n} được gọi là véctơ pháp tuyến của
 $(\alpha).$
- ② Nếu hai véctơ \vec{a} , \vec{b} không cùng phương, có giá song song hoặc nằm trong (α) thì \vec{a} , \vec{b} được gọi là cặp véctơ chỉ phương của (α) . Khi đó, nếu $\vec{a} = (a_1; a_2; a_3)$, $\vec{b} = (b_1; b_2; b_3)$ thì

$$\overrightarrow{n} = [\overrightarrow{a}, \overrightarrow{b}] = \left(\left| \begin{array}{ccc} a_2 & a_3 \\ b_2 & b_3 \end{array} \right| ; \left| \begin{array}{ccc} a_3 & a_1 \\ b_3 & b_1 \end{array} \right| ; \left| \begin{array}{ccc} a_1 & a_2 \\ b_1 & b_2 \end{array} \right| \right)$$

là một vectơ pháp tuyến của mặt phẳng (P).

③ Nếu (α) : ax + by + cz + d = 0 thì vectơ pháp tuyến của (α) là $\overrightarrow{n} = (a; b; c)$.

1. Ví dụ minh hoạ

VÍ DU 1.

Cho hình lập phương ABCD.A'B'C'D'.

a) Xác định vecto pháp tuyến của các mặt phẳng (ABCD), (ABB'A'), (ACC'A'), (ADD'A').

b) Chứng minh $\overrightarrow{AB'}$ là một vectơ pháp tuyến của (BCD'A').

VÍ DỤ 2. Cho mặt phẳng (P): 2x - 3y + 4z + 5 = 0. Hãy chỉ ra một vectơ pháp tuyến của (P) và hai điểm thuộc (P).

VÍ DỤ 3. Cho (P) là mặt phẳng trung trực của MN với M(1; -2; 3), N(1; 4; 1). Hãy chỉ ra một vectơ pháp tuyến của (P) và một điểm thuộc (P).

VÍ DU 4. Chỉ ra một vectơ pháp tuyến của mặt phẳng (α) biết

- a) (α) di qua A(-1;3;5), B(3;2;-2) và C(0;3;0)
- b) (α) đi qua M(0;3;1), N(-3;2;5) và P(-2;0;0)

VÍ DỤ 5. Cho tứ diện ABCD có các đỉnh là A(5;1;3), B(1;6;2), C(5;0;4) và D(4;0;6). Gọi (α) là mặt phẳng chứa cạnh AB và song song với cạnh CD. Hãy tìm một điểm thuộc (α) và một vectơ pháp tuyến của (α) .

2. Bài tấp trắc nghiệm

CÂU 1. Cho mặt phẳng (α) : 2x - y + 3z - 2 = 0. Điểm nào sau đây thuộc mặt phẳng (α) ?

- (A) A(1; -3; 1).
- **(B)** B(2;-1;-1).
- (**C**) C(2;-1;1).
- (**D**) D(1;2;3).

CÂU 2. Cho mặt phẳng (α) : x + y + z - 6 = 0. Điểm nào dưới đây **không** thuộc (α) ?

- (A) M(1;-1;1).
- **(B)** N(2;2;2).
- (**c**) P(1;2;3).
- **(D)** Q(3;3;0).

CÂU 3. Cho (α) vuông góc với giá của $\vec{a} = (2; -1; 3)$. Vectơ nào dưới đây là vectơ pháp tuyến của (α) ?

- (A) $\overrightarrow{n_1} = (-2; 1; 3)$. (B) $\overrightarrow{n_2} = (-2; 1; -3)$. (C) $\overrightarrow{n_3} = (4; 2; 6)$.
- $(\mathbf{D}) \overrightarrow{n_4} = (4; -2; -6).$

CÂU 4. vecto nào sau đây **không** phải là vecto pháp tuyến của mặt phẳng (P): x + 3y -5z + 2 = 0.

 $(\mathbf{A}) \ \vec{n}_1 = (-1; -3; 5).$

(B) $\vec{n}_2 = (-2; -6; -10).$

 $\vec{\mathbf{C}}$) $\vec{n}_3 = (-3; -9; 15).$

 $(\mathbf{D}) \ \vec{n}_4 = (2; 6; -10).$

CÂU 5. Trong không gian Oxyz, mặt phẳng tọa độ (Oxy) có một vectơ pháp tuyến là

- $(\mathbf{A}) \ \vec{n} = (0; 1; 0).$
- **(B)** $\vec{n} = (0; 0; 1).$
- $(\mathbf{C}) \ \vec{n} = (1; 0; 0).$
- $(\mathbf{D}) \ \vec{n} = (1; 1; 0).$

CÂU 6. Trong không gian Oxyz, cho điểm A(4; -3; 7) và B(2; 1; 3). Một vecto pháp tuyến của mặt phẳng trung trực của đoạn AB là

- (A) $\vec{n} = (1; -2; 2)$.
- **(B)** $\vec{n} = (2; 4; 4)$.
- $(\mathbf{C}) \ \vec{n} = (6; -2; 10). \ (\mathbf{D}) \ \vec{n} = (-2; -4; 4).$

CÂU 7. Trong không gian Oxyz, (P) là mặt phẳng trung trực của đoạn AB, biết A(1;3;0), B(-2;1;-1). vecto nào sau đây là vecto pháp tuyến của (P)?

- (A) $\vec{n}_4 = (3; -2; -1)$. (B) $\vec{n}_2 = (-3; 2; -1)$. (C) $\vec{n}_3 = (-3; 4; 1)$. (D) $\vec{n}_1 = (3; 2; 1)$.

CÂU 8. Trong không gian Oxyz, vectơ nào sau đây là một vectơ pháp tuyến của (P). Biết $\vec{u} = (1, -2, 0), \vec{v} = (0, 2, -1)$ là cặp vecto chỉ phương của (P).

- (A) $\vec{n} = (1; 2; 0)$.
- **(B)** $\vec{n} = (2; 1; 2)$.
- (**c**) $\vec{n} = (2; -1; 2)$.
- (**D**) $\vec{n} = (0; 1; 2)$.

CÂU 9. Trong không gian Oxyz, cho (α) song song với giá của $\vec{a}=(1;-2;-3), \vec{b}=$ (-4;2;0). Vectơ nào dưới đây **không phải** là vectơ pháp tuyến của (α) ?

(A) $\vec{n_1} = (6; 12; -6)$.

(B) $\overrightarrow{n_2} = (1; 2; -1).$

 $(\vec{\mathbf{c}}) \vec{n_3} = (-2; -4; 2).$

 $(\mathbf{D}) \vec{n_4} = (-3; -6; -3).$

CÂU 10. Trong không gian Oxyz, cho ba điểm A(2;0;0), B(0;-3;0), C(0;0;6). Toa đô một vecto pháp tuyến của mặt phẳng (ABC) là

- (A) $\vec{n} = (1; -2; 3)$.
- **(B)** $\vec{n} = (3; 2; 1).$
- (**c**) $\vec{n} = (3; -2; 1)$.
- **(D)** $\vec{n} = (2; -3; 6).$

CÂU 11. Trong không gian Oxyz, cho ba điểm A(2; -1; 3), B(4; 0; 1) và C(-10; 5; 3). vector nào dưới đây là vecto pháp tuyến của mặt phẳng (ABC)?

- (A) $\vec{n} = (1; 2; 0)$.
- **(B)** $\vec{n} = (1; -2; 2).$
- (**c**) $\vec{n} = (1; 8; 2)$.
- (**D**) $\vec{n} = (1; 2; 2).$

CÂU 12. Trong không gian Oxyz, cho hai điểm A(2;-1;5), B(1;-2;3). Mặt phẳng (α) đi qua hai điểm A, B và song song với trực Ox có vecto pháp tuyến $\overrightarrow{n} = (0; a; b)$. Khi đó tỉ số $\frac{\dot{a}}{b}$ bằng

- $(\mathbf{A}) 2.$
- **B** $-\frac{3}{2}$.
- $(\mathbf{D}) 2.$

Lập phương trình mặt phẳng khi biết các yếu tố liên quan

& Công thức: Cho (P) qua điểm $M(x_0, y_0, z_0)$ và một vectơ pháp tuyến $\overrightarrow{n_P} =$

		-	 		4
ລເ	П	\sim	Ν	\sim	
SΑL	"	•	N	O	

(a,b,c). Khi đó, phương trình (P) là

$$(P): a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

- A Một số cách xác định vectơ pháp tuyến thường gặp:
 - ① Nếu $(P) \perp AB$ thì $\overrightarrow{n_P} = \overrightarrow{AB}$;
 - ② Nếu (P) là mặt phẳng trung trực của đoạn AB thì (P) qua trung điểm I của AB và $\overrightarrow{n_P} = \overrightarrow{AB}$;
 - 3 Nếu (P) có cặp vectơ chỉ phương \vec{u} , \vec{v} thì $\vec{n_P} = [\vec{u}, \vec{v}]$ là một vectơ pháp tuyến của (P).

 - ⑤ Nếu (P) qua hai điểm A, B phân biệt và song song với d thì $\overrightarrow{n_P} = \left[\overrightarrow{AB}, \overrightarrow{u_d}\right]$;
- Phương trình theo đoạn chắn: Cho (P) đi qua A(a;0;0), B(0;b;0), C(0;0;c) với $abc \neq 0$ thì $(P): \frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ (phương trình theo đoạn chắn)

1. Ví dụ minh hoạ

VÍ DỤ 1. Trong không gian Oxyz, cho ba điểm A(3; -2; -2), B(3; 2; 0), C(0; 2; 1).

- a) Lập phương trình mặt phẳng qua A và vuông góc với BC.
- b) Lập phương trình mặt phẳng trung trực của đoạn AB.
- c) Lập phương trình mặt phẳng (ABC).

VÍ DỤ 2. Cho tứ diện ABCD có các đỉnh A(5;1;3), B(1;6;2), C(5;0;4), D(4;0;6).

- a) Hãy viết phương trình của các mặt phẳng (ACD) và (BCD);
- b) Hãy viết phương trình mặt phẳng (α) chứa cạnh AB và song song với cạnh CD;
- c) Gọi A', B', C' lần lượt là hình chiếu vuông góc của A, B, C lên các trục Ox, Oy, Oz. Hãy viết phương trình mặt phẳng (A'B'C').

VÍ DỤ 3. Viết phương trình của mặt phẳng

- a) Chứa trục Ox và điểm M(-4;1;2);
- b) Chứa trục Oz và điểm P(3;0;-7).

VÍ DỤ 4. Một phần sân nhà bác An có dạng hình thang ABCD vuông tại A và B với độ dài AB=9 m, AD=5 m và BC=6 m như Hình bên dưới. Theo thiết kế ban đầu thì mặt sân bằng phẳng và A, B, C, D có độ cao như nhau. Sau đó bác An thay đổi thiết kế để nước có thể thoát về phía góc sân ở vị trí C bằng cách giữ nguyên độ cao ở A, giảm độ cao của sân ở vị trí B và D xuống thấp hơn độ cao ở A lần lượt là 6 cm và 3,6 cm. Để mặt sân sau khi lát gạch vẫn là bề mặt phẳng thì bác An cần phải giảm độ cao ở C xuống bao nhiêu centimét so với độ cao ở A?

2. Bài tập trắc nghiệm

CÂU 1. Phương trình mặt phẳng đi qua điểm A(1;2;3) và có vectơ pháp tuyến $\vec{n}=$ (-2;0;1) là

$$(\mathbf{A}) - 2x + z + 1 = 0.$$
 $(\mathbf{B}) - 2y + z - 1 = 0.$ $(\mathbf{C}) - 2x + z - 1 = 0.$ $(\mathbf{D}) - 2x + y - 1 = 0.$

CÂU 2. Phương trình nào được cho dưới đây là phương trình mặt phẳng (Oyz)?

$$\mathbf{B} y - z = 0.$$

(c)
$$y + z = 0$$
.

$$\mathbf{\widehat{D}} x = 0.$$

CÂU 3. Cho các điểm A(0;1;2), B(2;-2;1), C(-2;0;1). Phương trình mặt phẳng đi qua Avà vuông góc với BC là

(A)
$$2x - y - 1 = 0$$
. (B) $-y + 2z - 3 = 0$. (C) $2x - y + 1 = 0$. (D) $y + 2z - 5 = 0$.

CÂU 4. Cho hai điểm A(4;0;1) và B(-2;2;3). Phương trình nào dưới đây là phương trình mặt phẳng trung trực của đoạn thẳng AB?

(A)
$$3x - y - z + 1 = 0$$
.

B
$$3x + y + z - 6 = 0$$
.

$$\widehat{\textbf{C}} 3x - y - z = 0.$$

$$(\mathbf{D}) 6x - 2y - 2z - 1 = 0.$$

CÂU 5. Trong không gian Oxyz, cho hai điểm A(1;1;1) và B(1;3;5). Viết phương trình mặt phẳng trung trực của đoạn AB.

(A)
$$y - 2z - 6 = 0$$
. (B) $y - 2z + 2 = 0$. (C) $y - 3z + 4 = 0$. (D) $y + 2z - 8 = 0$.

(B)
$$y - 2z + 2 = 0$$
.

$$\mathbf{C} y - 3z + 4 = 0.$$

$$\mathbf{(D)}\,y + 2z - 8 = 0.$$

CÂU 6. Trông không gian Oxyz, phương trình mặt phẳng (P) đi qua A(0;-1;4) và song song với giá của hai vecto $\overrightarrow{u}=(3;2;1), \ \overrightarrow{v}=(-3;0;1)$ là

$$(\mathbf{A}) \ x - 3y + 3z - 15 = 0.$$

(B)
$$x - 2y + 3z - 14 = 0$$
.

$$(\mathbf{C}) x - y - z + 3 = 0.$$

$$(D) x - 3y + 3z - 9 = 0.$$

CÂU 7. Trong không gian Oxyz, cho ba điểm A(3; -2; -2), B(3; 2; 0), C(0; 2; 1). Phương trình mặt phẳng (ABC) là

$$(\mathbf{A}) 2x - 3y + 6z + 12 = 0.$$

(B)
$$2x + 3y - 6z - 12 = 0$$
.

$$(\mathbf{C}) 2x - 3y + 6z = 0.$$

$$(\mathbf{D}) 2x + 3y + 6z + 12 = 0.$$

CÂU 8. Trong không gian với hệ trục toạ độ Oxyz, cho ba điểm A(1;0;0), B(0;-1;-1), C(5;-1;1)...Mặt phẳng (ABC) có phương trình là

$$(A) $2x + 3y + 5z - 2 = 0.$$$

(B)
$$2x - 3y - 5z - 2 = 0$$
.

$$(c) 2x - 3y - 5z + 2 = 0.$$

$$\mathbf{D}$$
 $2x + 3y - 5z - 2 = 0$.

CÂU 9. Mặt phẳng (α) đi qua A(-1;4;-6) và chứa trục Oy có phương trình là

$$(\mathbf{A}) -2x + y + z = 0.$$

(B)
$$6x + z = 0$$
.

$$(\mathbf{C})$$
 $3x - y - 6z + 1 = 0.$

(D)
$$6x - z = 0$$
.

CÂU 10. Trong không gian Oxyz, mặt phẳng chứa trục Ox và đi qua điểm A(1;1;-1) có phương trình là

(A)
$$y + z = 0$$
.

(B)
$$z + 1 = 0$$
.

$$(\mathbf{C}) x + z = 0.$$

$$\widehat{(\mathbf{D})} \, x - y = 0.$$

CÂU 11. Trong không gian Oxyz, cho ba điểm A(2;1;1), B(3;0;-1), C(2;0;3). Mặt phẳng (α) đi qua hai điểm A, B và song song với đường thẳng OC có phương trình là

(A)
$$3x + y - 2z - 5 = 0$$
.

B)
$$4x + 2y + z - 11 = 0$$
.

(c)
$$x - y + z - 2 = 0$$
.

$$\mathbf{(D)} 3x + 7y - 2z - 11 = 0.$$

CÂU 12. Mặt phẳng đi qua hai điểm A(1;2;-1), B(0;4;3) và song song với trục Oz có phương trình là

(A)
$$2x + y - 4 = 0$$
.

B)
$$4x - 4y + 3z + 7 = 0$$
.

$$(\mathbf{C}) x + 2y - 5 = 0.$$

$$(\mathbf{D}) 2x + y + z - 3 = 0$$

CÂU 13. Cho điểm M(1;2;-3). Gọi M_1 , M_2 , M_3 lần lượt là hình chiếu vuông góc của Mlên trục Ox, Oy, Oz. Phương trình mặt phẳng đi qua ba điểm M_1 , M_2 , M_3 là

$$\mathbf{A} x + \frac{y}{2} - \frac{z}{2} = 1$$

$$\frac{x}{x} + \frac{y}{z} + \frac{z}{z} = 1$$

$$\mathbf{C}$$
 $x + \frac{y}{2} + \frac{z}{2} = 1$.

(A)
$$x + \frac{y}{2} - \frac{z}{3} = 1$$
. **(B)** $\frac{x}{3} + \frac{y}{2} + \frac{z}{1} = 1$. **(C)** $x + \frac{y}{2} + \frac{z}{3} = 1$. **(D)** $x + \frac{y}{2} + \frac{z}{3} = -1$.

CÂU 14. Mặt phẳng nào sau đây cắt các trục Ox, Oy, Oz lần lượt tại các điểm A, B, Csao cho tam giác ABC nhận điểm G(1;2;1) là trọng tâm?

$$(A) x + 2y + 2z - 6 = 0.$$

(B)
$$2x + y + 2z - 6 = 0$$
.

ဩ	ш	_	Ν	$\boldsymbol{-}$	т	
71	T.	•	N	u	ш	

(C)	2x	+	2u	+	2.	_	6	=	0.
١	. •	4.0	- 1	2y	- 1	~		U		\mathbf{o} .

$$(\mathbf{D}) 2x + 2y + 6z - 6 = 0.$$

CÂU 15. Cho mặt phẳng (P) đi qua điểm M(2; -4; 1) và chắn trên các trục tọa độ Ox, Oy, Oz theo ba đoạn có độ dài đại số lần lượt là a, b, c. Phương trình tổng quát của mặt phẳng (P) khi a, b, c theo thứ tự tạo thành một cấp số nhân có công bội bằng 2 là

$$(A) $4x + 2y - z - 1 = 0.$$$

B)
$$4x - 2y + z + 1 = 0$$
.

$$(C) $16x + 4y - 4z - 1 = 0.$$$

$$(\mathbf{D}) 4x + 2y + z - 1 = 0.$$

Vi trí tương đối của hai mặt phẳng

Cho hai mặt phẳng (P): $a_1x + b_1y + c_1z + d_1 = 0$ và (Q): $a_2x + b_2y + c_2z + d_2 = 0$.

② Nếu
$$\begin{cases} \overrightarrow{n_1} = k \cdot \overrightarrow{n_2} \\ d_1 \neq k \cdot d_2 \end{cases}$$
 thì (P) song song (Q) .

3 Nếu
$$\overrightarrow{n_1}$$
 không cùng phương với $\overrightarrow{n_2}$ thì (P) cắt (Q) .

① Nếu
$$\overrightarrow{n_1} \perp \overrightarrow{n_2}$$
 hay $a_1a_2 + b_1b_2 + c_1c_2 = 0$ thì $(P) \perp (Q)$.

1. Ví dụ minh hoạ

VÍ DỤ 1. Tìm các cặp mặt phẳng song song hoặc vuông góc trong các mặt phẳng sau

$$(P): 2x + 3y - 2z + 7 = 0$$

$$(Q)$$
: $3x - 2y - 11 = 0$

$$(R)$$
: $4x + 6y - 4z - 9 = 0$

$$(T): 7x + y - z + 1 = 0$$

VÍ DỤ 2. Trong không gian Oxyz, cho mặt phẳng (α) : 2x - 3y + z + 5 = 0.

a) Chứng minh rằng mặt phẳng (α') : -4x + 6y - 2z + 7 = 0 song song với (α) .

b) Viết phương trình mặt phẳng (β) đi qua điểm M(1; -2; 3) và song song với (α) .

VÍ DỤ 3. Trong không gian Oxyz, cho hai mặt phẳng (Q): x+y+3z=0, (R): 2x-y+z=0.

a) Xét vị trí tương đối của (Q) và (R);

b) Viết trình của mặt phẳng (P) đi qua điểm B(2;1;-3), đồng thời vuông góc với (Q)va(R).

VÍ DỤ 4. Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(-2;4;-1), B(1;1;3) và mặt phẳng (P) có phương trình x-3y+2z-5=0. Viết phương trình mặt phẳng (Q) đi qua hai điểm A, B và vuông góc với mặt phẳng (P).

2. Bài tấp trắc nghiệm

CÂU 1. Cho mặt phẳng (P): -x+y+3z+1=0. Mặt phẳng song song với mặt phẳng (P) có phương trình nào sau đây?

$$2x - 2y - 6z + 7 = 0.$$

$$B) -2x + 2y + 3z + 5 = 0.$$

(c)
$$x - y + 3z - 3 = 0$$
.

$$(\mathbf{D}) - x - y + 3z + 1 = 0.$$

CÂU 2. Cho hai mặt phẳng (P): 2x + 4y + 3z - 5 = 0 và (Q): mx - ny - 6z + 2 - 0. Giá trị của m, n sao cho $(P) /\!\!/ (Q)$ là

(A)
$$m = 4$$
; $n = -8$. (B) $m = n = 4$.

(B)
$$m = n = 4$$
.

(**C**)
$$m = -4$$
; $n = 8$. (**D**) $m = n = -4$.

(D)
$$m = n = -4$$

CÂU 3. Cho hai mặt phẳng (P): x + my + (m-1)z + 1 = 0 và (Q): x + y + 2z = 0. Tập hợp tất cả các giá trị m để hai mặt phẳng này **không** song song là

$$\bigcirc$$
 $(0 \cdot +\infty)$

$$(\mathbf{B}) \mathbb{R} \setminus \{-1; 1; 2\}.$$

$$(\mathbf{C})$$
 $(-\infty;3)$.

$$\bigcirc$$
 \mathbb{R}

CÂU 4. Cho mặt phẳng (α) : x+y+z-1=0. Trong các mặt phẳng sau, tìm mặt phẳng vuông góc với mặt phẳng (α) .

(A)
$$2x - y + z + 1 = 0$$
.

B)
$$2x - y - z + 1 = 0$$
.

$$(\mathbf{C}) 2x + 2y + 2z - 1 = 0.$$

$$(\mathbf{D}) x - y - z + 1 = 0.$$

CÂU 5. Cho mặt phẳng (P): 2x - y + 2z - 3 = 0 và (Q): x + my + z - 1 = 0. Tìm tham số mđể hai mặt phẳng P và Q vuông góc với nhau.

B
$$m = -\frac{1}{2}$$
.

$$\bigcirc m = \frac{1}{2}.$$

CÂU 6. Cho hai mặt phẳng (P): x+2y-z-1=0, (Q): 3x-(m+2)y+(2m-1)z+3=0.Tìm m để hai mặt phẳng (P) và (Q) vuông góc với nhau.

$$(\mathbf{A}) m = 0.$$

$$\bigcirc$$
 $m=2.$

(c)
$$m = -2$$
.

$$(\mathbf{D}) m = -1.$$

CÂU 7. Mặt phẳng đi qua A(1;3;-2) và song song với mặt phẳng (P):2x-y+3z+4=0có phương trình là

(A)
$$2x - y + 3z + 7 = 0$$
.

(B)
$$2x - y + 3z - 7 = 0$$
.

$$(\mathbf{C})$$
 $2x + y - 3z + 7 = 0.$

$$(\mathbf{D}) \, 2x + y + 3z + 7 = 0.$$

CÂU 8. Cho điểm A(2;-1;-3) và mặt phẳng (P): 3x-2y+4z-5=0. Mặt phẳng (Q) đi qua A và song song với mặt phẳng (P) có phương trình là

(
$$Q$$
): $3x - 2y + 4z + 4 = 0$.

B)
$$(Q)$$
: $3x + 2y + 4z + 8 = 0$.

$$\bigcirc$$
 (Q): $3x - 2y + 4z + 5 = 0$.

(D)
$$(Q)$$
: $3x - 2y + 4z - 4 = 0$.

CÂU 9. Cho mặt phẳng (P) đi qua các điểm A(-2;0;0), B(0;3;0), C(0;0;-3). Mặt phẳng (P) vuông góc với mặt phẳng nào trong các mặt phẳng sau?

$$(A)$$
 $2x + 2y - z - 1 = 0.$

(B)
$$x + y + z + 1 = 0$$
.

$$(\mathbf{C}) 3x - 2y + 2z + 6 = 0.$$

(D)
$$x - 2y - z - 3 = 0$$
.

CÂU 10. Mặt phẳng qua A(1;2;-1) và vuông góc với các mặt phẳng (P): 2x-y+3z-2=0;(Q): x + y + z - 1 = 0 có phương trình là

(A)
$$x - y + z + 2 = 0$$
.

(B)
$$4x - y + z - 1 = 0$$
.

$$(\mathbf{c}) x + y + 2z - 1 = 0.$$

$$(\mathbf{D}) 4x - y - 3z - 5 = 0.$$

CÂU 11. Cho hai mặt phẳng (P), (Q) lần lượt có phương trình là x+y-z=0, x-2y+3z=4và cho điểm M(1; -2; 5). Tìm phương trình mặt phẳng (α) đi qua điểm M và đồng thời vuông góc với hai mặt phẳng (P), (Q).

(A)
$$5x + 2y - z + 14 = 0$$
.

B)
$$x - 4y - 3z + 6 = 0$$
.

$$(\mathbf{c}) x - 4y - 3z - 6 = 0.$$

$$(\mathbf{D})$$
 $5x + 2y - z + 4 = 0.$

CÂU 12. Cho điểm A(-4;1;1) và mặt phẳng (P): x-2y-z+4=0. Mặt phẳng (Q) đi qua điểm A và song song với mặt phẳng (P) có phương trình là

(A)
$$(Q)$$
: $x - 2y - z + 7 = 0$.

(B)
$$(Q)$$
: $x - 2y - z - 7 = 0$.

(c)
$$(Q)$$
: $x - 2y + z + 5 = 0$.

$$(\mathbf{D})(Q): x - 2y + z - 5 = 0.$$

CÂU 13. Cho hai mặt phẳng (P): x - 3y + 2z - 1 = 0, (Q): x - z + 2 = 0. Mặt phẳng (α) vuông góc với hai mặt phẳng (P), (Q) đồng thời cắt trục Ox tại điểm có hoành độ bằng 3. Phương trình của (α) là

$$(A)$$
 $-2x + z + 6 = 0.$

$$(\mathbf{C}) x + y + z - 3 = 0.$$

(D)
$$x + y + z + 3 = 0$$
.

CÂU 14. Cho A(1;-1;2); B(2;1;1) và mặt phẳng (P): x+y+z+1=0. Mặt phẳng (Q)chứa A, B và vuông góc với mặt phẳng (P). Mặt phẳng (Q) có phương trình là

$$(A) 3x - 2y - z + 3 = 0.$$

(B)
$$3x - 2y - z - 3 = 0$$
.

$$(\mathbf{C}) - x + y = 0.$$

(D)
$$x + y + z - 2 = 0$$
.

CÂU 15. Cho hai điểm A(2;4;1), B(-1;1;3) và mặt phẳng (P): x-3y+2z-5=0.Một mặt phẳng (Q) đi qua hai điểm A, B và vuông góc với mặt phẳng (P) có dạng là ax + by + cz - 11 = 0. Tính a + b + c.

(A)
$$a + b + c = -7$$

(B)
$$a + b + c = 10$$

(**A**)
$$a+b+c=-7$$
. (**B**) $a+b+c=10$. (**C**) $a+b+c=5$. (**D**) $a+b+c=3$.

(D)
$$a + b + c = 3$$

																•

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

• • •	• • • •	• • • • •	 	

• •	• •	٠.	٠	٠.	٠	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

OII	ICK	NIZ	1
ລມ	ICK	N(ЭIF

	1	
1	4:	

Khoảng cách từ một điểm đến mặt phẳng, khoảng cách giữa hai mặt phẳng song song

 \bigcirc Khoảng cách từ một điểm đến mặt phẳng: Cho điểm $M(x_0; y_0; z_0)$ và mặt phẳng (P): ax + by + cz + d = 0. Khi đó

$$d(M, (P)) = \frac{\left| ax_0 + by_0 + cz_0 + d \right|}{\sqrt{a^2 + b^2 + c^2}}$$

 \bigcirc Khoảng cách giữa hai mặt phẳng song song: Cho hai mặt phẳng (P): ax+ $by + cz + d_1 = 0$ và (Q): $ax + by + cz + d_2 = 0$ song song nhau. Khi đó

$$d(P), (Q) = \frac{\left| d_1 - d_2 \right|}{\sqrt{a^2 + b^2 + c^2}}$$

1. Ví du minh hoa

VÍ DU 1. Tính khoảng cách từ điểm A(1;2;3) đến các mặt phẳng sau

a)
$$(P): 3x + 4z + 10 = 0;$$

b)
$$(Q): 2x - 10 = 0;$$

c)
$$(R): 2x+2y+z-3=0.$$

VÍ DỤ 2. Cho hai mặt phẳng (P): 2x + y + 2z + 12 = 0, (Q): 4x + 2y + 4z - 6 = 0.

a) Chứng minh $(P) /\!\!/ (Q)$.

b) Tính khoảng cách giữa hai mặt phẳng (P) và (Q).

VÍ DU 3.

Một kĩ sư xây dựng thiết kế khung một ngôi nhà trong không gian Oxyz như Hình 9 nhờ một phần mềm đồ họa máy tính.

a) Viết phương trình mặt phẳng mái nhà (DEMN).

b) Tính khoảng cách từ điểm B đến mái nhà (DEMN).

VÍ DỤ 4. Cho hình hộp chữ nhật ABCD.A'B'C'D' có $DA=2,\ DC=3,\ DD'=2.$ Tính khoảng cách từ đỉnh B' đến mặt phẳng (BA'C').

2. Bài tấp trắc nghiệm

CÂU 1. Khoảng cách từ A(-2;1;-6) đến mặt phẳng (Oxy) là

D
$$\frac{7}{\sqrt{41}}$$
.

CÂU 2. Cho hai điểm A(-2;1;3), B(4;1;-1). Khoảng cách từ trung điểm I của đoạn ABđến mặt phẳng (Oyz) là

$$(\mathbf{A})$$
 0.

CÂU 3. Cho mặt phẳng (P): 2x + 3y + 4z - 5 = 0 và điểm A(1; -3; 1). Khoảng cách từ điểm A đến mặt phẳng (P) bằng

A
$$\frac{8}{\sqrt{29}}$$
.

©
$$\frac{3}{\sqrt{29}}$$
.

$$\bigcirc \frac{8}{29}$$
.

CÂU 4. Gọi H là hình chiếu vuông góc của điểm A(2;3;-1) trên mặt phẳng $(\alpha):16x+$ 12y - 15z + 7 = 0. Tính độ dài đoạn thẳng AH.

A
$$\frac{19}{25}$$

B
$$\frac{12}{25}$$

$$\bigcirc$$
 $\frac{19}{625}$

$$\bigcirc$$
 $\frac{12}{625}$.

CÂU 5. Cho hai mặt phẳng (P): x + 2y - 2z + 3 = 0 và (Q): x + 2y - 2z - 1 = 0. Khoảng cách giữa hai mặt phẳng (P) và (Q) là

A
$$\frac{4}{9}$$
.

B
$$\frac{2}{3}$$
.

$$\bigcirc$$
 $\frac{4}{3}$.

$$\bigcirc$$
 $-\frac{4}{3}$.

CÂU 6. Biết rằng hai mặt phẳng 4x-4y+2z-7=0 và 2x-2y+z+4=0 chứa hai mặt của hình lập phương. Thể tích khối lập phương đó bằng

B
$$V = \frac{27}{8}$$
. **C** $V = \frac{81\sqrt{3}}{8}$. **D** $V = \frac{125}{8}$.

(D)
$$V = \frac{125}{8}$$
.

CÂU 7. Cho hai điểm A(2;2;-2) và B(3;-1;0). Đường thẳng AB cắt mặt phẳng (P): x+y-z+2=0tại điểm I. Tỉ số $\frac{\dot{I}A}{IR}$ bằng

$$\bigcirc$$
 4.

CÂU 8. Cho hai mặt phẳng (P): x+y-z+1=0 và (Q): x-y+z-5=0. Có bao nhiêu điểm M trên trục Oy thỏa mãn M cách đều hai mặt phẳng (P) và (Q)?

$$\bigcirc$$
 0.

$$(\mathbf{C})$$
 2.

CÂU 9. Cho điểm A(1;2;3) và mặt phẳng (P): x+y+z-2=0. Mặt phẳng (Q) song song với mặt phẳng (P) và (Q) cách điểm A một khoảng bằng $3\sqrt{3}$. Phương trình mặt phẳng

(A)
$$x + y + z + 3 = 0$$
 và $x + y + z - 3 = 0$.

(B)
$$x + y + z + 3 = 0$$
 và $x + y + z + 15 = 0$.

(c)
$$x + y + z + 3 = 0$$
 và $x + y + z - 15 = 0$.

$$(\mathbf{D}) x + y + z + 3 = 0 \text{ và } x + y - z - 15 = 0.$$

CÂU 10. Cho mặt phẳng (P): x + 2y + z - 4 = 0 và điểm D(1;0;3). Mặt phẳng (Q) song song với (P) và cách D một khoảng bằng $\sqrt{6}$ có phương trình là

B
$$x + 2y + z + 2 = 0$$
.

(a)
$$\begin{bmatrix} x + 2y - z - 10 = 0 \\ x + 2y - z + 2 = 0 \end{bmatrix}$$
 (c)
$$\begin{bmatrix} x + 2y + z + 2 = 0 \\ x + 2y + z - 10 = 0 \end{bmatrix}$$

D
$$x + 2y + z - 10 = 0$$
.

CÂU 11. Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. Biết $A(0;0;0), D(2;0;0), B(0;4;0), S(0;0;4), \dots$ Gọi M là trung điểm của SB. Tính khoảng cách từ B đến mặt phẳng (CDM).

$$(\mathbf{A}) d(B, (CDM)) = \sqrt{2}.$$

(B)
$$d(B, (CDM)) = 2$$
.

$$\bigcirc$$
 $d(B,(CDM)) = \frac{1}{\sqrt{2}}$.

CÂU 12. Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng 2. Khoảng cách giữa hai mặt phẳng (AB'D') và (BC'D) bằng

(A)
$$\frac{\sqrt{3}}{3}$$
.

B
$$\frac{2\sqrt{3}}{3}$$
.

$$\bigcirc$$
 $\frac{\sqrt{3}}{2}$.

$$\bigcirc$$
 $\sqrt{3}$.

CÂU 13. Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = a, AD = 2a, AA' = 3a. Gọi M, N, P lần lượt là trung điểm của BC, C'D' và DD'. Tính khoảng cách từ A đến (MNP).

(A)
$$\frac{15}{11}a$$
.

B
$$\frac{15}{22}a$$
.

$$\bigcirc$$
 $\frac{9}{11}a$.

$$\bigcirc$$
 $\frac{3}{4}a$

CÂU 14. Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh $a, SA \perp (ABCD)$ và $SA = a\sqrt{3}$. Tính khoảng cách từ điểm B đến mặt phẳng (SCD).

$$\bigcirc a\sqrt{3}$$
.

$$\bigcirc \frac{a\sqrt{2}}{3}$$
.

$$\bigcirc$$
 $\frac{a}{2}$.

CÂU 15. Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh $a, SD = \frac{3a}{2}$, hình chiếu vuông góc của S lên mặt phẳng (ABCD) là trung điểm của canh AB. Tính khoảng cách d từ A đến mặt phẳng (SBD).

©
$$d = \frac{3a}{2}$$
.

QUICK NOTE	C. BAITAP T	TRĂC NGHIỆ	M TỰ LUYỆN	
	CÂU 1. Trong khôn	•		ng án A, B, C, D. g (P) : $x - z + 3 = 0$. Mặt
	$ (\alpha) \colon 2x - y + 1 $	2z = 0.	(β) : $2x - y -$	2z = 0.
	$\mathbf{C}(Q)$: $-2x-y$	y + 2z = 0.	\bigcirc (R) : $2x + y -$	2z = 0.
			Oxyz, cho điểm $A(1;3;-$ đến mặt phẳng (P) bằn	-2) và mặt phẳng (P) : $2x +$
	A 2.	B) 1.	\mathbf{c} $\frac{2}{3}$.	D 3.
		<u> </u>	3	_
			Oxyz, cho mặt phẳng Oxyz, cho mặt phẳng ((P): $x - y + 3 = 0$. Véc-to P)?
	$\vec{a} = (3; -3; 0)$. B $\vec{a} = (1; -1; 0)$	0). $(\vec{c}) \vec{a} = (1; -1; 3).$	
	là hình chiếu của ${\cal M}$		y,Oz. Phương trình nà	(4) và gọi A, B, C lần lượt o dưới đây là phương trình
	(A) 4x - 12y + 3z	- ,	B $4x - 12y - 3z$	+12 = 0.
	© $4x + 12y - 3z$		(D) $4x - 12y - 3z$	
	CÂU 5. Trong khôn	g gian với hệ toa độ (0;0), B(0;-3;0), C(0;0;1).
		yến của mặt phẳng (0, 0,, = (0, 0,0), 0 (0,0,-).
	$\vec{n} = (3; -2; 6)$. B $\vec{n} = (2; -3; -3; -3; -3; -3; -3; -3; -3; -3; -3$	-1). $\bigcirc \vec{n} = (2; 3; 1)$.	D $\vec{n} = (2; -3; 1).$
		g gian với hệ tọa độ	Oxyz, cho điểm $M(2024)$	4;0;-1). Mệnh đề nào dưới
	đây đúng?			
		0	$\bigcirc M \in (Oxy).$	
	CAU 7. Trong không M ặt phẳng (ABC) α		Pxyz, cho ba điểm $A(-2;$	0;0), B(0;3;0) và $C(0;0;4)$.
	(A) $\frac{x}{-2} + \frac{y}{3} + \frac{z}{4} =$		B $\frac{x}{2} + \frac{y}{3} + \frac{z}{-4} =$	= 1
			2 3 4	
	$\frac{x}{2} + \frac{y}{-3} + \frac{z}{4} =$	= 1.		1.
				(x): $2x + 2y - z + m = 0$ (m) gốc tọa độ đến mặt phẳng
	(α) bằng 1.	·		
	\bigcirc -6.	B -3 .	© 3.	D 6.
	CÂU 9. Trong khôn trên mặt phẳng (Oy)		Oxyz, hình chiếu vuôn	g góc của điểm $M(2;3;-4)$
	i i	B $(0; 3; -4)$.	(c) (2: 3: 0).	(\mathbf{D}) $(0; 3; 0).$
		O 1	9 1	A(1;2;-1), B(-1;0;1) và
				A(1,2,-1), B(-1,0,1) va A(1,2,-1), B(-1,0,1
	(A) (Q): 3x - y +	~ -0	$\mathbf{B}(Q) \colon x + z = 0$	1
	© $(Q): 3x - y + Q$		(D) (Q) : $x + z = 0$	
			9 (1)	
	Mặt phẳng (α) đi q	jua điểm $A(1;2;5)$ và	à song song với giá của	$\vec{t} = (1; 2; 3), \ \vec{v} = (0; -1; 1).$ hai véc-tơ \vec{u} và \vec{v} . Véc-tơ
		véc-tơ pháp tuyến c		
	(A) $\vec{n}_3 = (-1; -1;$,	B $\vec{n}_2 = (5; -1; -1; -1; -1; -1; -1; -1; -1; -1; -1$	<i>,</i>
	\vec{c} $\vec{n}_1 = (5; 1; -1)$).	D $\vec{n}_4 = (-1; -1)$; 5).
		ông gian với hệ tọa $_{i}^{st}$ trình mặt phẳng (A		M = A(1; -1; 0), B(-1; 0; 1),
	$\bigcirc 3x + y + 5z -$		B $x + 3y + z + 2$	2 = 0.
	\bigcirc $3x - y + 5z - $		\bigcirc $3x + y + 5z +$	

Phần II. Trong mỗi ý a), b), c) và d) ở mỗi câu, học sinh chọn đúng hoặc sai. **CÂU 1.** Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A(1;2;3), B(3;4;4) và mặt phẳng $(\alpha): 2x + y + mz - 1 = 0$. Các mệnh đề sau đúng hay sai?

Mệnh đề	Ð	S
a) Mặt phẳng đi qua 3 điểm là hình chiếu vuông góc của $A(1;2;3)$ lên ba trực tọa độ có phương trình là $6x + 3y + 2z - 6 = 0$.		
b) Điểm A cách đều mặt phẳng (γ) : $2x + y + mz - 1 = 0$ và điểm B khi $m = -2$.		
c) Biết mặt phẳng (β) : $4x + (n-2)y + z - 3 = 0$ song song với mặt phẳng (α) . Khi đó, $2m + n = 5$.		
d) Khi $B \in (\alpha)$: $2x + y + mz - 1 = 0$ thì $m = -2$.		

CÂU 2. Trong không gian với hệ tọa độ Oxyz, cho A(1;2;-1), B(-1;0;1) và mặt phẳng (P): x+2y-z+1=0. Các mệnh đề sau đúng hay sai?

Mệnh đề	Ð	S
a) Biết điểm M nằm trên tia Ox mà khoảng cách từ M đến mặt phẳng (P) bằng $\sqrt{6}$. Khi đó, hoành độ điểm M là $x_M = 5$.		
b) Mặt phẳng (Q) qua A, B và vuông góc với (P) có phương trình là $x+z=0.$		
c) Mặt phẳng (P) có một véc-tơ pháp tuyến là $(1;2;-1)$.		
d) Khi $m=-4$ thì mặt phẳng $(R): 2x-my+3=0$ vuông góc với mặt phẳng (P) .		

CÂU 3. Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;2;1) và B(3;-1;5). Các mệnh đề sau đúng hay sai?

Mệnh đề	Ð	S
a) Phương trình mặt phẳng trung trực của đoạn thẳng AB là $2x-3y+4z-\frac{29}{2}=0.$		
b) Điểm $N(1;2;-1)$ đối xứng với $A(1;2;1)$ qua mặt phẳng (Oyz) .		
c) Mặt phẳng (P) vuông góc với đường thẳng AB và cắt các trục Ox , Oy và Oz lần lượt tại các điểm D, E và F . Khi thể tích của tứ diện $ODEF$ bằng $\frac{3}{2}$, phương trình mặt phẳng (P) là $2x-3y+4z\pm 6=0$.		
d) Véc-tơ \overrightarrow{AB} là một véc-tơ pháp tuyến của mặt phẳng (α) : $2x+3y+4z-2=0$.		

CÂU 4. Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α) : 3x - 2y + 2z + 7 = 0 và (β) : 5x - 4y + 3z + 1 = 0. Các mệnh đề sau đúng hay sai?

Mệnh đề	Đ	S
a) Hai mặt phẳng (α) , (β) song song với nhau.		
b) Điểm $A(1;2;-1)$ nằm trên mặt phẳng (α) : $3x-2y+2z+7=0$.		
c) Phương trình mặt phẳng qua O , đồng thời vuông góc với cả (α) và (β) có phương trình là $2x+y-2z=0$.		
d) Mặt phẳng (γ) đi qua điểm $I(1;0;-1)$ và song song với (α) : $3x - 2y + 2z + 7 = 0$ có phương trình là (γ) : $3x - 2y + 2z - 1 = 0$.		

Phần III. Học sinh điền kết quả vào ô trống.

CÂU 1. Từ mặt nước trong một bể nước, tại ba vị trí đôi một cách nhau 2 m, người ta lần lượt thả dây dọi để quả dọi chạm đáy bể. Phần dây dọi (thẳng) nằm trong nước tại ba vị trí đó lần lượt có độ dài 4 m; 4,4 m; 4,8 m. Biết đáy bể là phẳng. Hỏi đáy bể nghiêng so với mặt phẳng nằm ngang một góc bao nhiêu độ (làm tròn đến hàng phần chục)?

χU	ı	Л	ľ	U	Ш	
					-	

QUICK NOTE	CÂU 2. Trong không gian với hệ tọa độ $Oxyz$, cho mặt cầu (S) : $(x-1)^2 + (y+1)^2 + z^2 = 11$ và hai véc-tơ $\overrightarrow{u}_1 = (1;1;2)$, $\overrightarrow{u}_2 = (1;2;1)$. Gọi (P) là mặt phẳng tiếp xúc với mặt cầu (S) đồng thời song song với giá của hai véc-tơ \overrightarrow{u}_1 , \overrightarrow{u}_2 . Phương trình mặt phẳng (P) có dạng $3x + by + cz + d = 0$, với b , c , $d \in \mathbb{Z}$ và $d \neq -15$. Khi đó, $b + c + d$ bằng bao nhiêu?
	KQ:
	CÂU 3. Trong không gian với hệ tọa độ $Oxyz$, có hai mặt phẳng (P) và (Q) cùng thỏa mãn các điều kiện sau: đi qua hai điểm $A(1;1;1)$ và $B(0;-2;2)$, đồng thời cắt các trục tọa độ Ox , Oy tại hai điểm cách đều O . Giả sử (P) có phương trình $x+b_1y+c_1z+d_1=0$ và (Q) có phương trình $x+b_2y+c_2z+d_2=0$. Tính giá trị biểu thức $b_1b_2+c_1c_2$.
	KQ:
	CÂU 4. Trong không gian với hệ tọa độ $Oxyz$, cho mặt cầu $(S): (x+1)^2 + (y-2)^2 + (z-3)^2 = 8$ và điểm $A(1;3;2)$. Mặt phẳng (P) đi qua A và cắt (S) theo giao tuyến là đường tròn có bán kính nhỏ nhất. Biết phương trình của (P) có dạng $ax + by + cz + 6 = 0$. Tính $a + b + c$.
	KQ:
	CÂU 5. Trong không gian với hệ tọa độ $Oxyz$, cho hai điểm $A(2; -3; 1)$, $B(-1; 1; 0)$ và mặt phẳng $(P): x - y + z - 2 = 0$. Một mặt phẳng (Q) đi qua hai điểm A, B và vuông góc với (P) có dạng là $ax + by + cz + 2 = 0$. Tính $a^2 + b^2 + c^2$.
	KQ:
	CÂU 6. Trong không gian với hệ trục $Oxyz$, cho ba điểm $A(1;2;1)$, $B(2;-1;0)$, $C(1;1;3)$.
	Phương trình mặt phẳng đi qua ba điểm A , B , C có dạng $ax + by + cz - 12 = 0$. Khi đó, $a - b - 2c$ bằng
	KQ:
	—HÉT—

Bài 15. PHƯƠNG TRÌNH ĐƯỜNG THẨNG

A. LÝ THUYẾT CẦN NHỚ

1. Vecto chỉ phương của đường thẳng

 \bigcirc **Dịnh nghĩa:** Vectơ chỉ phương \overrightarrow{u} của đường thẳng d là những vecto khác $\overrightarrow{0}$ và có giá song song hoặc trùng với d.

- Chú ý:
- $\vec{u} \neq \vec{0}$ và có giá song song hoặc trùng với d.
- Nếu \overrightarrow{u} và $\overrightarrow{u'}$ cùng là vectơ chỉ phương của d thì $\overrightarrow{u'} = k \cdot \overrightarrow{u}$ (tọa độ tỉ lệ nhau).

2. Phương trình tham số của đường thẳng

 \bigcirc Công thức: Đường thẳng d đi qua điểm $M(x_0;y_0;z_0)$ và nhận $\overrightarrow{u}=(u_1;u_2;u_3)$ làm vecto chỉ phương có phương trình là

$$\begin{cases} x = x_0 + u_1 t \\ y = y_0 + u_2 t \\ z = z_0 + u_3 t \end{cases}$$
 $(t \in \mathbb{R})$ (1)

- Chú ý:
- ① Phương trình các trục tọa độ:

$$Ox: \begin{cases} x = t \\ y = 0 \\ z = 0 \end{cases}$$

$$\bullet \quad Oy \colon \begin{cases} x = 0 \\ y = t \\ z = 0 \end{cases}$$

$$\bullet \quad Ox: \begin{cases} x = t \\ y = 0 \\ z = 0 \end{cases} \qquad \bullet \quad Oy: \begin{cases} x = 0 \\ y = t \\ z = 0 \end{cases} \qquad \bullet \quad Oz: \begin{cases} x = 0 \\ y = 0 \\ z = t \end{cases}$$

② Nếu u_1 , u_2 và u_3 đều khác 0 thì (1) có thể được viết dưới dạng

$$\frac{x - x_0}{u_1} = \frac{y - y_0}{u_2} = \frac{z - z_0}{u_3} \quad (2)$$

(2) được gọi là phương trình chính tắc của đường thẳng d.

3. Vi tri tương đối giữa hai đường thẳng

Cho hai đường thẳng

- Δ_1 qua điểm $M(x_0; y_0; z_0)$, vecto chỉ phương $\overrightarrow{u} = (u_1; u_2; u_3)$;
- Δ_2 qua điểm $N(x_0'; y_0'; z_0')$, vecto chỉ phương $\overrightarrow{v} = (v_1; v_2; v_3)$.

Trường hợp 1: Nếu $|\vec{u}, \vec{v}| = \vec{0}$ và

- $\left[\overrightarrow{u},\overrightarrow{MN}\right] \neq \overrightarrow{0}$ thì Δ_1 song song Δ_2 ;
- $\left| \overrightarrow{u}, \overrightarrow{MN} \right| = \overrightarrow{0}$ thì Δ_1 trùng Δ_2 .

Trường hợp 2: Nếu $|\vec{u}, \vec{v}| \neq \vec{0}$ và

- $\left[\overrightarrow{u},\overrightarrow{v}\right]\cdot\overrightarrow{MN}\neq0$ thì Δ_1 chéo Δ_2 ;
- $\bullet \ \left[\overrightarrow{u}, \overrightarrow{v} \right] \cdot \overrightarrow{MN} = 0 \text{ thì } \Delta_1 \text{ cắt } \Delta_2.$

B. PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN

QUICK NOTE	Xác định điểm thuộc và vectơ chỉ phương của đường thẳng
	Cho đường thẳng d .
	① Nếu $\vec{u} \neq \vec{0}$ và có giá song song hoặc trùng với d thì \vec{u} là vectơ chỉ phương của d .
	② Nếu d qua hai điểm AB thì d có một vecto chỉ phương là $\overrightarrow{AB} = (x_B - x_A; y_B - y_A; z_B - z_A)$.
	vecto chỉ phương là $\vec{u} = [\vec{a}, \vec{b}]$.
	$\int x = x_0 + u_1 t$
	$\textcircled{4}$ Cho đường thẳng d : $\begin{cases} x = x_0 + u_1 t \\ y = y_0 + u_2 t \\ z = z_0 + u_3 t \end{cases}$ $(t \in \mathbb{R})$ thì
	$z = z_0 + u_3 t$
	• Một vectơ chỉ phương của d là $\overrightarrow{u} = (u_1; u_2; u_3)$ (hệ số của t).
	• Muốn xác định tọa độ một điểm thuộc d, ta chỉ cần cho trước giá trị cụ thể
	của tham số t , thay vào hệ phương trình tính x, y và z .
	1. Ví dụ minh hoạ
	VÍ DỤ 1. Cho đường thẳng $d:$ $\begin{cases} x=1-t\\ y=2+3t & (t\in\mathbb{R}). \text{ Tìm một vecto chỉ phương và hai}\\ z=2+t \end{cases}$
	VIDO 1. Cho duong thang $a: y=2+3t$ $(t \in \mathbb{R})$. Tim mọt vecto chi phương và nai $z=2+t$
	diểm thuộc đường thẳng d .
	VÍ DỤ 2. Trong không gian $Oxyz$, cho hình chóp $O.ABC$ có $A\left(2;0;0\right)$, $B\left(0;4;0\right)$ và $C\left(0;0;7\right)$
	a) Tìm tọa độ một vecto chỉ phương của đường thẳng AB , AC .
	b) Vecto $\vec{v} = (-1; 2; 0)$ có là vecto chỉ phương của đường thẳng AB không?
	VÍ DỤ 3. Trong không gian $Oxyz$, cho hai mặt phẳng $(P): 2x + y - z - 1 = 0$ và $(Q): x - 2y + z - 5 = 0$. Gọi Δ là giao tuyến của (P) và (Q) . Tìm một điểm thuộc Δ và một vecto
	chỉ phương của Δ .
	2. Bài tập trắc nghiệm
	$\int x = 1 + 2t$
	CÂU 1. Cho đường thẳng d : $\begin{cases} x=1+2t\\ y=-t \end{cases}$. Đường thẳng d có một vectơ chỉ phương là $z=4+5t$
	z = 4 + 5t
	$\overrightarrow{\mathbf{A}} \ \overrightarrow{u_2} = (2; -1; 5).$ $\overrightarrow{\mathbf{B}} \ \overrightarrow{u_4} = (1; -1; 4).$ $\overrightarrow{\mathbf{C}} \ \overrightarrow{u_3} = (1; -1; 5).$ $\overrightarrow{\mathbf{D}} \ \overrightarrow{u_1} = (1; 0; 4).$
	CÂU 2. Cho đường thẳng $d: \frac{x-2}{-1} = \frac{y-1}{2} = \frac{z}{1}$. Đường thẳng d có một vectơ chỉ phương
	-1 2 1
	(A) $\vec{u} = (-1; 2; 1)$. (B) $\vec{u} = (2; 1; 0)$. (C) $\vec{u} = (-1; 2; 0)$. (D) $\vec{u} = (2; 1; 1)$.
	CÂU 3. Cho đường thẳng $d: \frac{x-1}{2} = \frac{y+1}{3} = \frac{z}{2}$. Điểm nào trong các điểm dưới đây nằm
	trên đường thẳng d ?
	(a) $P(5;2;5)$. (b) $Q(1;0;0)$. (c) $M(3;2;2)$. (d) $N(1;-1;2)$.
	CÂU 4. Cho đường thẳng $d:$ $\begin{cases} x=1+2t\\ y=2+3t\\ z=5-t \end{cases}$ $(t\in\mathbb{R}).$ Đường thẳng d không đi qua điểm
	z = 5 - t
	nào sau đây?
	A $M(1;2;5)$. B $N(2;3;-1)$. C $P(3;5;4)$. D $Q(-1;-1;6)$.
	CÂU 5. Cho hai điểm $A(2;-1;4)$ và $B(-1;3;2)$. Đường thẳng AB có một vectơ chỉ phương là
	$ \vec{\textbf{A}} \ \vec{u}_1 = (1;2;2). \qquad \vec{\textbf{B}} \ \vec{u}_3 = (1;2;6). \qquad \vec{\textbf{C}} \ \vec{u}_2 = (3;-4;2). \qquad \vec{\textbf{D}} \ \vec{u}_4 = (1;-4;2). $
	CÂU 6. Cho tam giác ABC với $A(1;0;-2)$, $B(2;-3;-4)$, $C(3;0;-3)$. Gọi G là trọng tâm

tam giác ABC. vecto nào sau đây là một vecto chỉ phương của đường thẳng OG?

- (A) (-2;1;3).
- **B**) (3; -2; 1).
- (\mathbf{C}) (2; 1; 3).
- (\mathbf{D}) (-1; -3; 2).

CÂU 7. Cho đường thẳng d song song với trục Oy. Đường thẳng d có một vecto chỉ phương

- $\overrightarrow{\mathbf{A}}$) $\overrightarrow{u}_4 = (2019; 0; 2019).$
- **(B)** $\vec{u}_1 = (2019; 0; 0).$

 $\vec{\mathbf{c}}$) $\vec{u}_2 = (0; 2019; 0)$.

 $(\mathbf{D}) \vec{u}_3 = (0; 0; 2019).$

CÂU 8. Cho đường thẳng Δ vuông góc với mặt phẳng (α) : x + 2z + 3 = 0. Một vectơ chỉ phương của Δ là

- (A) $\vec{v} = (1; 2; 3)$.
- **(B)** $\vec{a} = (1; 0; 2).$
- $(\mathbf{C}) \ \vec{u} = (2; 0; -1).$ $(\mathbf{D}) \ \vec{b} = (2; -1; 0).$

CÂU 9. vectơ chỉ phương của đường thẳng vuông góc với mặt phẳng đi qua ba điểm A(1;2;4), B(-2;3;5), C(-9;7;6) có toạ độ là

- (A) (3; 4; -5).
- **(B)** (3; -4; 5).
- (\mathbf{C}) (-3; 4; -5).
- (\mathbf{D}) (3; 4; 5).

CÂU 10. Cho hai mặt phẳng (P): 3x-2y+2z-5=0, (Q): 4x+5y-z+1=0. Các điểm A, B phân biệt thuộc giao tuyến của hai mặt phẳng (P) và (Q). Khi đó \overrightarrow{AB} cùng phương với vectơ nào sau đây?

 $(\mathbf{A}) \ \vec{u} = (8; -11; -23).$

(B) $\vec{k} = (4; 5; -1).$

(**c**) $\vec{w} = (3; -2; 2)$.

 $(\mathbf{D}) \vec{v} = (-8; 11; -23).$

Viết phương trình đường thẳng d khi biết vài yếu tố liên quan

- lacktriangle Phương pháp chung: Ta cần xác định vectơ chỉ phương \overrightarrow{u} và một điểm Mthuộc đường thẳng.
- \bigcirc Một số kiểu xác định vectơ \overrightarrow{u} thường gặp:
 - ① d qua hai điểm A, B thì $\overrightarrow{u} = \overrightarrow{AB} = (x_B x_A; y_B y_A; z_B z_A)$.
 - 2 d song song với Δ thì $\vec{u} = \vec{u}_{\Delta}$.
 - 3 d vuông góc với (P) thì $\overrightarrow{u} = \overrightarrow{n}_P$.
 - 4 d vuông góc với giá của hai vecto \overrightarrow{a} và \overrightarrow{b} (không cùng phương) thì \overrightarrow{u} = $[\vec{a}, \vec{b}].$

1. Ví du minh hoa

VÍ DU 1. Lập phương trình chính tắc của đường thẳng d trong mỗi trường hợp sau

- a) d đi qua điểm A(4; -2; 5) và có vecto chỉ phương $\vec{a} = (7; 3; -9)$.
- b) d đi qua hai điểm M(0;0;1), N(3;3;6).
- c) d có phương trình tham số là $\begin{cases} x = 8 + 5t \\ y = 7 + 4t \end{cases}$

VÍ DU 2.

Trong một khu du lịch, người ta cho du khách trải nghiệm thiên nhiên bằng cách đu theo đường trượt zipline từ vị trí A cao 15 m của tháp 1 này sang vị trí B cao 10 m của tháp 2 trong khung cảnh tuyệt đẹp xung quanh. Với hệ trucuc toạ độ Oxyz cho trước (đơn vị: mét), toạ độ của A và B lần lượt là (3; 2, 5; 15) và (21; 27, 5; 10).

- a) Viết phương trình đường thẳng chứa đường trượt zipline này.
- b) Xác định toạ độ của du khách khi ở độ cao 12 mét.

VÍ DU 3. Trong không gian Oxyz, Lập phương trình tham số và phương trình chính tắc (nếu có) của đường thẳng d trong các trường hợp sau:

a) d đi qua điểm M và song song với đường thẳng Δ : $\frac{x-1}{2} = \frac{y+1}{1} = \frac{z}{-1}$

•	•							•			•					•	

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

	Ī	Ī	Ī	Ī	Ī								Ī						

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

b) d qua điểm M(3;2;-1) và vuông góc với mặt phẳng (P): x+z-2=0.

c) d đi qua điểm M(1;2;1), đồng thời vuông góc với cả hai đường thẳng $\Delta_1:\frac{x-2}{1}=$ $\frac{y+1}{z-1} = \frac{z-1}{1}$ và Δ_2 : $\frac{x+1}{1} = \frac{y-3}{2} = \frac{z-1}{z-1}$.

VÍ DỤ 4. Trong không gian Oxyz, cho điểm A(1;-2;0), mặt phẳng (P): 2x-3y+z+5=0và đường thẳng $d : \frac{x-1}{2} = \frac{y}{-1} = \frac{z+1}{1}$. Viết phương trình đường thẳng Δ đi qua A, cắt dvà song song với mặt phẳng (P).

VÍ DỤ 5. Trong Không gian với hệ tọa độ Oxyz, cho hai đường thẳng d_1 : $\frac{x-2}{1} = \frac{y-1}{1} = \frac{y-1}{1}$

 $\frac{z-2}{-1} \text{ và } d_2 \colon \begin{cases} x=t \\ y=3 \\ z=-2+t \end{cases}. \text{ Viết phương trình đường vuông góc chung của hai đường thẳng } thắng thẳng thắng thống thắng thắng thống thắng thắng thống thắng thắng thắng thắng thắng thống thắn$

2. Bài tập trắc nghiệm

CÂU 1. Cho đường thẳng Δ đi qua điểm M(2;0;-1) và có vecto chỉ phương $\vec{a}=(4;-6;2)$. Phương trình tham số của đường thẳng Δ là

CÂU 2. Cho hai điểm A(2;-1;3), B(3;2;-1). Phương trình nào sau đây là phương trình đường thẳng AB?

CÂU 3. Cho đường thẳng $\Delta: \frac{2x-1}{2} = \frac{y}{1} = \frac{z+1}{-1}$, điểm A(2;-3;4). Đường thẳng qua A

CÂU 4. Viết phương trình đường thẳng đi qua điểm N(2;-3;-5) và vuông góc với mặt $ph{\rm and}(P): 2x - 3y - z + 2 = 0.$

CÂU 5. Cho tam giác ABC có A(3;2;-4), B(4;1;1) và C(2;6;-3). Viết phương trình đường thẳng d đi qua trọng tâm G của tam giác ABC và vuông góc với mặt phẳng (ABC).

(A)
$$d: \frac{x-3}{3} = \frac{y-3}{2} = \frac{z+2}{-1}$$
.
(B) $d: \frac{x+12}{3} = \frac{y+7}{2} = \frac{z-3}{-1}$.
(C) $f: x-3 = \frac{y-3}{2} = \frac{z+2}{2}$.
(D) $f: x+12 = \frac{y+7}{2} = \frac{z-3}{2}$.

(c)
$$d: \frac{x-3}{7} = \frac{y-3}{2} = \frac{z+2}{-1}$$
. (d) $d: \frac{x+7}{3} = \frac{y+3}{2} = \frac{z-2}{-1}$.

CÂU 6. Cho hai điểm A(1; -1; 1) và B(-1; 2; 3) và đường thẳng $\Delta : \frac{x+1}{-2} = \frac{y-2}{1} = \frac{z-3}{3}$. Phương trình đường thẳng đi qua điểm A, đồng thời vuông góc với hai đường thẳng AB và

CÂU 7. Cho điểm A(1;2;3) và đường thẳng $d:\frac{x+1}{2}=\frac{y}{1}=\frac{z-3}{-2}$. Gọi Δ là đường thẳng đi qua điểm A, vuông góc với đường thẳng d và cắt trực hoành. Tìm một vectơ chỉ phương \vec{u} của đường thẳng Δ .

$$(\vec{A}) \vec{u} = (0; 2; 1).$$

(B)
$$\vec{u} = (1; 0; 1).$$

$$(\mathbf{C}) \ \overrightarrow{u} = (1; -2; 0). \quad (\mathbf{D}) \ \overrightarrow{u} = (2; 2; 3).$$

$$\vec{\mathbf{D}}$$
) $\vec{u} = (2; 2; 3)$

CÂU 8. Cho hai đường thẳng $d_1: \frac{x-1}{1} = \frac{y+1}{2} = \frac{z}{-1}$ và $d_2: \frac{x-2}{1} = \frac{y}{2} = \frac{z+3}{2}$. Viết phương trình đường thẳng Δ đi qua điểm A(1;0;2), cắt d_1 và vuông góc với d_2 .

B
$$\frac{x-3}{2} = \frac{y-3}{3} = \frac{z+2}{-4}$$
.

$$\bigcirc$$
 $\frac{x-5}{-2} = \frac{y-6}{-3} = \frac{z-2}{4}$.

CÂU 9. Cho đường thẳng Δ đi qua M(1;2;2), song song với mặt phẳng (P): x-y+z+3=0đồng thời cắt đường thẳng $d : \frac{x-1}{1} = \frac{y-2}{1} = \frac{z-3}{1}$ có phương trình là

$$\begin{cases} x = 1 - t \\ y = 2 - t \\ z = 2. \end{cases}$$

$$x = 1 - t$$

$$y = 2 + t$$

$$z = 2.$$

CÂU 10. Cho đường thẳng d: x = y = z. Viết phương trình đường thẳng d' là hình chiếu vuông góc của d lên mặt phẳng tọa độ (Oyz).

$$\begin{cases} x = t \\ y = t \\ z = 2t \end{cases}$$

$$\mathbf{D} \begin{cases} x = 0 \\ y = t \\ z = t \end{cases}$$

CÂU 11. Cho đường thẳng $d: \frac{x+1}{2} = \frac{y}{1} = \frac{z-2}{1}$, mặt phẳng (P): x+y-2z+5 = 0 và điểm A(1;-1;2). Viết phương trình đường thẳng Δ cắt d và (P) lần lượt tại M và N sao cho A là trung điểm của đoạn thắng MN.

B
$$\Delta : \frac{x-1}{6} = \frac{y+1}{1} = \frac{z-2}{2}.$$

(A)
$$\Delta : \frac{2}{2} = \frac{3}{3} = \frac{2}{2}$$
.
(C) $\Delta : \frac{x+5}{6} = \frac{y+2}{1} = \frac{z}{2}$.

CÂU 12. Trong không gian Oxyz, đường vuông góc chung của hai đường thẳng chéo nhau d_1 : $\frac{x-2}{2} = \frac{y-3}{3} = \frac{z+4}{-5}$ và d_2 : $\frac{x+1}{3} = \frac{y-4}{-2} = \frac{z-4}{-1}$ có phương trình là

$$\bigcirc \frac{x}{1} = \frac{y}{1} = \frac{z-1}{1}.$$

$$\mathbf{D} \frac{x}{2} = \frac{y-2}{3} = \frac{z-3}{-1}.$$

Vi trí tương đối của hai đường thẳng

Cho d qua điểm M và có vectơ chỉ phương \vec{u} ; d' qua điểm N và có vectơ chỉ phương

- ① Nếu \overrightarrow{u} cùng phương \overrightarrow{v} ($\overrightarrow{u} = k\overrightarrow{v}$) và $M \notin d'$ thì $d \not \mid d'$.
- ② Nếu \vec{u} cùng phương \vec{v} ($\vec{u} = k\vec{v}$) và $M \in d'$ thì d trùng với d'.
- 3 Nếu $[\overrightarrow{u}, \overrightarrow{v}] \cdot \overrightarrow{MN} \neq 0$ thì d và d' chéo nhau.
- 4 Nếu $[\overrightarrow{u}, \overrightarrow{v}] \cdot \overrightarrow{MN} = 0$ thì d và d' cắt nhau.
- \circ Nếu $\overrightarrow{u} \cdot \overrightarrow{v} = 0$ thì d và d' vuông góc nhau.

1. Ví dụ minh hoạ

VÍ DU 1.

Trên phần mềm mô phỏng 3D một máy khoan trong không gian Oxyz, cho biết phương trình trực a của mũi khoan và một đường rãnh b trên vật cần khoan (tham khảo hình vẽ bên) lần lượt là

a:
$$\begin{cases} x = 1 \\ y = 2 \\ z = 3t \end{cases}$$
 và b:
$$\begin{cases} x = 1 + 4t' \\ y = 2 + 2t' \\ z = 6. \end{cases}$$

- a) Chứng minh a, b vuông góc và cắt nhau.
- b) Tìm giao điểm của a và b.

VÍ DỤ 1. Trong khôn gian Oxyz, xét vị trí tương đối giữa hai đường thẳng d và d' trong mỗi trường hợp sau. Nếu chúng cắt nhau, hãy xác định tọa độ giao điểm.

a)
$$d:$$

$$\begin{cases} x = 2 + 3t \\ y = 3 + 2t \text{ và } d' : \\ z = 4 + 2t \end{cases}$$

$$\begin{cases} x = 8 + 9t' \\ y = 7 + 6t' \\ z = 8 + 6t'; \end{cases}$$

b)
$$d: \frac{x}{4} = \frac{y-3}{3} = \frac{z-1}{2}$$
 và $d': \frac{x-5}{8} = \frac{y-5}{6} = \frac{z-3}{4};$

c)
$$d:$$

$$\begin{cases} x = 2 \\ y = 3 + 2t \text{ và } d' : \frac{x - 4}{3} = \frac{y - 1}{4} = \frac{z - 5}{5}; \\ z = 1 - t \end{cases}$$

d)
$$d: \frac{x-2}{3} = \frac{y-3}{4} = \frac{z-2}{3}$$
 và $d': \begin{cases} x = 5 \\ y = 7 + 2t \\ z = 5 - t. \end{cases}$

2. Bài tập trắc nghiệm

CÂU 1. Cho hai đường thẳng d: $\begin{cases} x=1+t \\ y=2t \\ z=2-t \end{cases}$ và d': $\begin{cases} x=2+2t' \\ y=3+4t' \\ z=5-2t'. \end{cases}$ Mệnh đề nào sau đây

đúng?

 (\mathbf{A}) d và d' chéo nhau.

 \bigcirc b d trùng d'.

 \bigcirc d song song d'.

 \bigcirc $d \cot d'$.

CÂU 2. Cho hai đường thẳng
$$d_1$$
: $\frac{x-1}{1}=\frac{y+3}{-2}=\frac{z+3}{-3}$ và d_2 :
$$\begin{cases} x=3t\\ y=-1+2t. \text{ Mệnh đề}\\ z=0 \end{cases}$$

nào đưới đây đúng?

 (\mathbf{A}) d_1 cắt và không vuông góc với d_2 .

 $lackbox{\textbf{B}}$ d_1 cắt và vuông góc với d_2 .

 \bigcirc d_1 song song d_2 .

 \bigcirc d_1 chéo d_2 .

CÂU 3. Cho hai đường thẳng
$$d_1$$
:
$$\begin{cases} x=1-2t \\ y=1+t \\ z=1-t \end{cases}$$
 và d_2 : $\frac{x+1}{2}=\frac{y-2}{-1}=\frac{z}{1}$. Chọn khẳng

định đúng.

 $lack A d_1 \# d_2.$

 \bigcirc d_1, d_2 chéo nhau. \bigcirc d_1, d_2 cắt nhau.

CÂU 4. Vị trí tương đối của hai đường thẳng Δ_1 : $\frac{x-1}{3} = y = \frac{z+1}{2}$ và Δ_2 : $\frac{x}{2} = \frac{y-1}{-1} = \frac{z}{1}$,

(A) Trùng nhau .

B Chéo nhau.

© Song song.

(D) Cắt nhau

CÂU 5. Cho hai đường thẳng $d_1: \frac{x+1}{2} = \frac{y-1}{-m} = \frac{z-2}{-3}$ và $d_2: \frac{x-3}{1} = \frac{y}{1} = \frac{z-1}{1}$. Tìm tất cả các giá trị thực của m để d_1 vuông góc d_2 .

 $\mathbf{B} m = 1.$

 $\bigcirc m = -5.$

 $(\mathbf{D}) m = -1.$

18

CÂU 6. Cho hai đường thẳng $\Delta_1 : \frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ và $\Delta_2 : \frac{x-4}{1} = \frac{y-3}{-2} = \frac{z-5}{-2}$. Toa độ giao điểm M của hai đường thẳng đã cho là

(A) M(5; 1; 3).

(B) M(0;-1;-1). **(C)** M(3;5;7).

tham số). Tìm m để hai đường thẳng d_1 , d_2 cắt nhau.

$$(\mathbf{A}) m = 5.$$

$$\mathbf{B}) m = 7.$$

$$\bigcirc$$
 $m=9$

$$\bigcirc$$
 $m=4.$

CÂU 8. Cho hai đường thẳng d: $\begin{cases} x=1+mt\\y=t\\z=-1+2t \end{cases}$ $(t\in\mathbb{R})$ và d': $\begin{cases} x=1-t'\\y=2+2t'\ (t'\in\mathbb{R}). \text{ Giá}\\z=3-t' \end{cases}$

trị của m để hai đường thẳng d và d' cắt nhau là

$$(\mathbf{A}) m = 0.$$

$$\bigcirc$$
 $m=1.$

(c)
$$m = -1$$
.

$$(\mathbf{D}) m = 2$$

Vị trí tương đối của đường thẳng và mặt phẳng

Xét đường thẳng d: $\begin{cases} x = x_0 + u_1 t \\ y = y_0 + u_2 t \text{ và mặt phẳng } (P) \colon Ax + By + Cz + D = 0. \\ x - x_0 + u_2 t \end{cases}$

- \bigcirc Phương pháp: Xét $d\cap(P)\Rightarrow A(x_0+u_1t)+B(y_0+u_2t)+C(z_0+u_3t)+D=0$ (*)
 - Nếu (*) có đúng 1 nghiệm t thì d cắt (P);
 - Nếu (*) vô nghiệm thì d song song (P);
 - Nếu (*) nghiệm đúng với moi t thì d nằm trong (P).
- \bigcirc Đặc biệt: Với \overrightarrow{u} là vecto chỉ phương của d và \overrightarrow{n} là vecto pháp tuyến của (P)

$$d\perp(P)\Leftrightarrow \overrightarrow{u}$$
 cùng phương với \overrightarrow{n} hay $\overrightarrow{u}=k\cdot\overrightarrow{n}$

1. Ví du minh hoa

VÍ DỤ 1. Xét vị trí tương đối giữa đường thẳng và mặt phẳng được chỉ ra ở các câu sau:

a)
$$(\alpha)$$
: $y + 2z = 0$ và d :
$$\begin{cases} x = 2 - t \\ y = 4 + 2t \\ z = 1 \end{cases}$$

b) (P):
$$3x - 3y + 2z - 5 = 0$$
 và d:
$$\begin{cases} x = -1 + 2t \\ y = 3 + 4t \\ z = 3t \end{cases}$$

c)
$$(P)$$
: $3x - 3y + 2z + 1 = 0$ và d : $\frac{x+1}{1} = \frac{y}{-1} = \frac{z-1}{-3}$.

VÍ DU 2. Tìm điều kiện của tham số m để

a)
$$\Delta : \frac{x-10}{5} = \frac{y-2}{1} = \frac{z+2}{1}$$
 vuông góc với $(P) : 10x + 2y + mz + 11 = 0$.

b)
$$d: \frac{x-1}{2} = \frac{y+1}{3} = \frac{z-1}{-1}$$
 song song với $(\alpha): -x + m^2y + mz + 1 = 0$.

2. Bài tập trắc nghiệm

CÂU 1. Cho đường thẳng $d: \frac{x-1}{2} = \frac{y}{-2} = \frac{z-1}{1}$. Tìm tọa độ giao điểm M của đường thẳng d với mặt phẳng (Oxy).

$$(A)$$
 $M(-1;2;0).$

B
$$M(1;0;0)$$
.

$$\bigcirc$$
 $M(2;-1;0).$

$$\mathbf{D}$$
 $M(3;-2;0).$

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

		•						•	•	•	•						•	

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•											•	•	•	•	•	•											•	•

			•														

	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

	•															
																•
٠.																
٠.	•															•

		-	 		4
ລເ	П	\sim	Ν	\sim	
SΑL	"	•	N	O	

CÂU 2. Cho đường thẳng $d: \frac{x-1}{-1} = \frac{y+3}{2} = \frac{z-3}{1}$ và mặt phẳng (P): 2x+y-2z+9 = 0. Tìm toạ độ giao điểm của d và (P).

(A) (2; 1; 1).

(B) (0; -1; 4).

 (\mathbf{C}) (1; -3; 3).

CÂU 3. Cho mặt phẳng (α) : x+2y+3z-6=0 và đường thẳng Δ : $\frac{x+1}{-1}=\frac{y+1}{-1}=\frac{z-3}{1}$.

Mệnh đề nào sau đây đúng?

 $(\mathbf{A}) \Delta$ cắt và không vuông góc với (α) .

(B) $\Delta // (\alpha)$.

 $(\mathbf{C}) \Delta \subset (\alpha).$

 $(\mathbf{D}) \Delta \perp (\alpha).$

CÂU 4. Cho đường thẳng $d: \frac{x-1}{1} = \frac{y-1}{4} = \frac{z-m}{-1}$ và mặt phẳng $(P): 2x + my - (m^2 + m^2)$ $1)z + m - 2m^2 = 0$. Có bao nhiêu giá trị của m để đường thẳng d nằm trên (P)?

(B) 1.

(c) 2.

 $(\mathbf{D}) \text{ Vô số.}$

CÂU 5. Cho mặt phẳng $(\alpha): x+y+z-6=0$ và đường thẳng $\Delta: \begin{cases} y=-1+nt \ z=4+2t \end{cases}$

CÂU 6. Cho đường thẳng $d \colon \frac{x-1}{2} = \frac{y+2}{-1} = \frac{z+1}{1}$. Trong các mặt phẳng dưới đây mặt phẳng nào vuông góc với đường thẳng d?

(A) 2x - 2y + 2z + 4 = 0.

(B) 4x - 2y - 2z - 4 = 0.

(c) 4x + 2y + 2z + 4 = 0.

(D)<math>4x - 2y + 2z + 4 = 0.

CÂU 7. Cho đường thẳng d: $\begin{cases} x=3+2t\\ y=5-3mt \text{ và mặt phẳng } (P)\colon 4x-4y+2z-5=0. \text{ Giá}\\ z=-1+t. \end{cases}$

trị nào của m để đường thẳng d vuông góc với mặt phẳng (P).

(A)
$$m = -\frac{5}{6}$$
. **(B)** $m = \frac{2}{3}$. **(C)** $m = \frac{3}{2}$.

©
$$m = \frac{3}{2}$$
.

CÂU 8. Cho điểm A(1;2;3) và đường thẳng $d\colon \frac{x-2}{2} = \frac{y+2}{-1} = \frac{z-3}{1}$. Phương trình mặt phẳng (P) đi qua A và vuông góc với đường thẳng d là

(A) 2x - y + z - 3 = 0.

(B) x + 2y + 3z - 7 = 0.

(c) x + 2y + 3z - 1 = 0.

(D) 2x - y + z = 0.

CÂU 9. Cho hai đường thẳng chéo nhau $d_1: \frac{x-2}{2} = \frac{y+2}{1} = \frac{z-6}{-2}; d_2: \frac{x-4}{1} = \frac{y+2}{-2} = \frac{y+2}{1}$ $\frac{z+1}{3}$. Phương trình mặt phẳng (P) chứa d_1 và song song với d_2 là

(A) (P): x + 8y + 5z + 16 = 0.

B) (P): x + 4y + 3z - 12 = 0.

(C) (P): 2x + y - 6 = 0.

 $(\mathbf{D})(P): x + 8y + 5z - 16 = 0.$

CÂU 10. Cho hai đường thẳng d_1 : $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-3}{-5}$ và d_2 : $\begin{cases} x = -1+t \\ y = 4+3t \end{cases}$. Tìm

phương trình mặt phẳng chứa đường thẳng d_1 và song song với đường thẳng $d_2.$

(A)<math>18x - 7y + 3z + 34 = 0.

(B) 18x + 7y + 3z - 20 = 0.

 \mathbf{C} 18x + 7y + 3z + 20 = 0.

(D) 18x - 7y + 3z - 34 = 0.

Hình chiếu, đối xứng

lacktriangle Bài toán 1: Tìm hình chiếu vuông góc của điểm M trên (P):

- Viết phương trình đường thẳng MH qua Mvà nhận $\overrightarrow{n_P}$ làm vecto chỉ phương;
- tìm t. Từ đó, suy ra tọa độ H.

 $G_{Q}i M' \ d\hat{o}i \ x \acute{u}ng \ v \acute{o}i \ M \ qua \ mặt phẳng (P)$

$$\begin{cases} x'_{M} = 2x_{M} - x_{H} \\ y'_{M} = 2y_{M} - y_{H} \\ z'_{M} = 2z_{M} - z_{H} \end{cases}.$$

lacktriangle Bài toán 2: Tìm hình chiếu vuông góc của điểm M trên d:

- Tham số điểm $H \in d$ theo ẩn t;
- Giải $\overrightarrow{MH} \cdot \overrightarrow{u_d} = 0$, tìm t. Từ đó, suy ra tọa độ

Gọi M' đối xứng với M qua mặt phẳng d

$$\begin{cases} x'_{M} = 2x_{M} - x_{H} \\ y'_{M} = 2y_{M} - y_{H} \\ z'_{M} = 2z_{M} - z_{H} \end{cases}.$$

1. Ví du minh hoa

VÍ DỤ 1. Trong hệ tọa độ Oxyz, cho điểm M(2; -3; 1) và đường thẳng d: $\frac{x+1}{2} = \frac{y+2}{-1} = \frac{y+2}{2}$ $\frac{z}{2}$.

- a) Tìm tọa độ hình chiếu vuông góc của điểm M lên d.
- b) Tìm toa độ điểm M' đối xứng với điểm M qua d.

VÍ DỤ 2. Trong không gian với hệ tọa độ Oxyz, cho điểm M(2;7;-9) và mặt phẳng (P):x+2y - 3z - 1 = 0.

- a) Tìm tọa độ hình chiếu vuông góc của M trên mặt phẳng (P).
- b) Tìm tọa độ điểm M' đối xứng với điểm M qua (P).

2. Bài tấp trắc nghiệm

CÂU 1. Hình chiếu vuông góc của điểm A(3; -4; 5) trên mặt phẳng (Oxz) là điểm

- (A) M(3;0;0).
- **(B)** M(0; -4; 5).
- (**c**) M(0;0;5).
- **(D)** M(3;0;5).

CÂU 2. Hình chiếu vuông góc của điểm A(1;2;3) trên mặt phẳng (Oxy) là điểm

- (A) M(0;0;3).
- **(B)** N(1;2;0).
- (**C**) Q(0;2;0).
- **(D)** P(1;0;0).

CÂU 3. Hình chiếu vuông góc của điểm M(2;1;-3) lên mặt phẳng (Oyz) có tọa độ là

- (A) (2;0;0).
- **B**) (2; 1; 0).
- (\mathbf{C}) (0;1;-3).
- **(D)** (2;0;-3).

CÂU 4. Hình chiếu vuông góc của điểm A(3;2;1) trên trục Ox có tọa độ là

- (A) (0; 2; 1).
- **(B)** (0;2;0).
- (\mathbf{C}) (3; 0; 0).
- $(\mathbf{D})(0;0;1).$

CÂU 5. Hình chiếu của điểm M(2;3;-2) trên trục Oy có tọa độ là

- (A) (2;0;0).
- **(B)** (0;3;0).
- (**c**) (0;0;-2).
- **(D)** (2;0;-2).

CÂU 6. Cho điểm M(3;2;-1), điểm M'(a;b;c) đối xứng của M qua trục Oy, khi đó a+b+cbằng

- (A) 6.
- **(B)** 2.
- **(C)** 4.
- $(\mathbf{D}) 0.$

CÂU 7. Điểm đối xứng với điểm A(-2;7;5) qua mặt phẳng (Oxz) là điểm B có tọa độ là

- (A) B(2;7;-5).
- **(B)** B(-2; -7; 5).
- **(c)** B(-2;7;-5).
- **(D)** B(2; -7; -5).

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠
•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

•																	

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

					_
Ω၊	Ш	~	Ν	\mathbf{o}	
		 •			

CÂU 8. Tọa độ hình chiếu vuông góc của điểm A(2;-1;0) lên mặt phẳng (P):3x-2y+z + 6 = 0 là

$$(5; -3; 1).$$

$$(\mathbf{B})$$
 $(-1; 1; -1).$

$$(\mathbf{C})$$
 (1; 1; 1).

$$(\mathbf{D})$$
 (3; -2; 1).

CÂU 9. Gọi hình chiếu vuông góc của điểm A(3;-1;-4) lên mặt phẳng (P):2x-2y-z-3=0 là điểm H(a;b;c). Khi đó khẳng định nào sau đây đúng?

$$(\mathbf{A}) \ a + b + c = -1$$

$$\mathbf{B}) \ a + b + c = 3$$

$$a+b+c=5$$

(A)
$$a+b+c=-1$$
. **(B)** $a+b+c=3$. **(C)** $a+b+c=5$. **(D)** $a+b+c=-\frac{5}{3}$.

CÂU 10. Cho mặt phẳng (P): 2x+2y-z+9=0 và điểm A(-7;-6;1). Tìm tọa độ điểm A' đối xứng với điểm A qua mặt phẳng (P).

$$(A)$$
 $A'(1;2;-3).$

(B)
$$A'(1;2;1)$$
.

$$(c)$$
 $A'(5;4;9).$

CÂU 11. Cho điểm A(4;-3;2) và đường thẳng $d:\frac{x+2}{3}=\frac{y+2}{2}=\frac{z}{-1}.$ Gọi điểm H là hình chiếu vuông góc của điểm A lên đường thẳng d. Tọa độ điểm H là

A
$$H(5;4;-1)$$
.

(B)
$$H(1;0;-1)$$
.

$$\mathbf{C}$$
) $H(-5; -4; 1)$

©
$$H(-5; -4; 1)$$
. **D** $H(-2; -2; 0)$.

CÂU 12. Cho đường thẳng $d\colon \frac{x-1}{2}=\frac{y+1}{1}=\frac{z}{-1},$ M(2;1;0). Gọi H(a;b;c) là điểm thuộc d sao cho MH có độ dài nhỏ nhất. Tính $T=a^2+b^2+c^2.$

$$(\mathbf{A}) T = \sqrt{5}.$$

(B)
$$T = 12$$
.

(B)
$$T = 12$$
. **(C)** $T = 21$.

$$\widehat{\mathbf{D}}) T = 6.$$

CÂU 13. Cho điểm M (1;2;-6) và đường thẳng d : $\begin{cases} x=2+2t\\ y=1-t & (t\in\mathbb{R}). \text{ Diểm }N \text{ là điểm }z=-3+t \end{cases}$

đối xứng của M qua đường thẳng d có tọa độ là

(A)
$$N(0; 2; -4)$$
.

(B)
$$N(-1;2;-2)$$
. **(C)** $N(1;-2;2)$. **(D)** $N(-1;0;2)$.

$$\bigcirc$$
 $N(1;-2;2).$

$$ldot$$
 $N(-1;0;2).$

CÂU 14. Cho đường thẳng $\Delta: \frac{x}{2} = \frac{y+1}{1} = \frac{z-1}{-1}$ và hai điểm A(1;0;1), B(-1;1;2). Biết điểm M(a;b;c) thuộc Δ sao cho $\left|\overrightarrow{MA} - 3\overrightarrow{MB}\right|$ đạt giá trị nhỏ nhất. Khi đó, tổng a+2b+4cbằng bao nhiêu?

$$(\mathbf{A})$$
 0.

(B)
$$-1$$
.

$$\bigcirc$$
 1.

CÂU 15. Cho ba điểm A(0; -2; -1), B(-2; -4; 3), C(1; 3; -1) và mặt phẳng (P): x + y - 12z-3=0. Gọi $M(a;b;c)\in (P)$ sao cho $\left|\overrightarrow{MA}+\overrightarrow{MB}+2\overrightarrow{MC}\right|$ đạt giá trị nhỏ nhất. Tính a-b+2c.

B)
$$-1$$
.

$$\bigcirc$$
 -2 .

C. BÀI TẬP TRẮC NGHIỆM TỰ LUYỆN

Phần I. Mỗi câu hỏi học sinh chọn một trong bốn phương án A, B, C, D.

CÂU 1. Trong không gian với hệ truc toa độ Oxyz, cho hai điểm A(0;-1;-2) và B(2;2;2). Véc-tơ \vec{a} nào dưới đây là một véc-tơ chỉ phương của đường thẳng AB?

(A)
$$\vec{a} = (-2; 1; 0)$$
. **(B)** $\vec{a} = (2; 3; 0)$.

(B)
$$\vec{a} = (2; 3; 0).$$

$$\overrightarrow{c}$$
 $\overrightarrow{a} = (2; 1; 0).$

D
$$\vec{a} = (2; 3; 4).$$

CÂU 2. Đường thẳng (Δ) : $\frac{x-1}{2} = \frac{y+2}{1} = \frac{z}{-1}$ **không** đi qua điểm nào dưới đây?

(A)
$$C(3;-1;-1)$$
.

B
$$D(1; -2; 0)$$
.

$$A(-1;2;0)$$

©
$$A(-1;2;0)$$
. **D** $B(-1;-3;1)$.

CÂU 3. Cho đường thẳng Δ đi qua điểm M(2;0;-1) và có một véc-tơ chỉ phương \vec{a} (4, -6, 2). Phương trình tham số của đường thẳng Δ là

$$\begin{cases} x = 2 + 2t \\ y = -3t \\ z = -1 + t \end{cases}.$$

$$\begin{cases} x = -2 + 4 \\ y = -6t \\ z = 1 + 2t \end{cases}$$

$$x = 4 + 2t$$

$$y = -3t$$

$$z = 2 + t$$

CÂU 4. Trong không gian Oxyz, cho đường thẳng $d : \frac{x-1}{2} = \frac{y}{-1} = \frac{z-1}{-3}$. Một véc-tơ chỉ phương của đường thẳng d là

CÂU 5. Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) có phương trình là 2x+y-5z+6=0. Phương trình đường thẳng d đi qua điểm M(1;-2;7) và vuông góc với (P) là

(A)
$$d: \frac{x+1}{2} = \frac{y-2}{-1} = \frac{z+7}{-5}$$
.

B
$$d: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-7}{-5}.$$

©
$$d: \frac{x-1}{2} = \frac{y+2}{1} = \frac{z-7}{-5}.$$

(D)
$$d: \frac{x-2}{1} = \frac{y-1}{-2} = \frac{z+5}{7}.$$

CÂU 6. Trong không gian với hệ trực tọa độ Oxyz, cho hai đường thẳng $d_1 : \frac{x-1}{2} =$

$$\frac{y-2}{3} = \frac{z-3}{4} \text{ và } d_2 \colon \begin{cases} x=1+t \\ y=2+2t \text{. Mệnh đề nào sau đây đúng?} \\ z=3-2t \end{cases}$$

- (\mathbf{A}) d_1 và d_2 vừa cắt nhau vừa vuông góc.
- (\mathbf{B}) d_1 và d_2 không vuông góc và không cắt nhau.
- \mathbf{c} d_1 và d_2 cắt nhau nhưng không vuông góc.
- $(\mathbf{D}) d_1$ và d_2 vuông góc nhưng không cắt nhau.

CÂU 7. Trong không gian với hệ trực tọa độ Oxyz, véc-tơ nào dưới đây là véc-tơ chỉ phương của trục Oz?

$$(\mathbf{A}) \vec{m} = (1; 1; 1).$$

(B)
$$\vec{k} = (0; 0; 1).$$

B
$$\vec{k} = (0; 0; 1).$$
 C $\vec{i} = (1; 0; 0).$ **D** $\vec{j} = (0; 1; 0).$

$$(\mathbf{D}) \vec{j} = (0; 1; 0)$$

CÂU 8. Đường thẳng (Δ) : $\frac{x-1}{2} = \frac{y+2}{1} = \frac{z}{-1}$ đi qua điểm nào dưới đây?

$$\bigcirc$$
 $Q(-1;-2;0).$

B
$$N(-1;2;0)$$
.

$$(\mathbf{C}) P(3;1;-1)$$

B
$$N(-1;2;0)$$
. **C** $P(3;1;-1)$. **D** $M(1;-2;0)$.

CÂU 9. Đường thẳng $d \colon \frac{x-1}{2} = \frac{y+1}{-1} = \frac{z+3}{-1}$ vuông góc với đường thẳng nào dưới đây?

$$\mathbf{A} d_1: \begin{cases} x = 2 - 3t \\ y = -2t \\ z = 1 + 5t \end{cases}$$

$$\mathbf{C} d_3: \begin{cases} x = 2 + 3t \\ y = 3 - t \\ z = 5t \end{cases}$$

(B)
$$d_4$$
:
$$\begin{cases} x = 1 - 3t \\ y = 2 - t \\ z = 5 - 5t \end{cases}$$
$$\begin{cases} x = 2 \\ y = 3 - 3t \\ z = 1 + t \end{cases}$$

CÂU 10. Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d có véc-tơ chỉ phương \vec{u} và mặt phẳng (P) có véc-tơ pháp tuyến \vec{n} . Mệnh đề nào dưới đây đúng?

- (A) d song song với (P) thì \vec{u} cùng phương với \vec{n} .
- (\mathbf{B}) \overrightarrow{u} vuông góc với \overrightarrow{n} thì d song song với (P).
- (\mathbf{c}) \vec{u} không vuông góc với \vec{n} thì d cắt (P).
- (\mathbf{D}) d vuông góc với (P) thì \overrightarrow{u} vuông góc với \overrightarrow{n} .

CÂU 11. Cho đường thẳng d có phương trình tham số $\begin{cases} x=1+2t\\ y=2-t\\ z=2^{-1-t} \end{cases}$. Viết phương trình

chính tắc của đường thẳng d.

(A)
$$d: \frac{x-1}{2} = \frac{y-2}{-1} = \frac{z-3}{1}$$
.

B
$$d: \frac{x+1}{2} = \frac{y+2}{-1} = \frac{z-3}{1}.$$

©
$$d \colon \frac{x-1}{2} = \frac{y-2}{1} = \frac{z+3}{1}$$
.

(D)
$$d: \frac{x-1}{2} = \frac{y-2}{-1} = \frac{z+3}{1}$$

CÂU 12. Trong không gian Oxyz, cho đường thẳng $d\colon \frac{x+3}{2} = \frac{y+1}{1} = \frac{z}{-1}$ và mặt phẳng $(P)\colon x+y-3z-2=0$. Gọi d' là đường thẳng nằm trong mặt phẳng (P), cắt và vuông góc với d. Đường thẳng d' có phương trình là $\frac{x+1}{a} = \frac{y}{5} = \frac{z+1}{c}$. Tính S = a - c.

(A) :

$$\bigcirc$$
 -7 .

$$(c)$$
 -3.

$$\bigcirc$$
 4

Phần II. Trong mỗi ý a), b), c) và d) ở mỗi câu, học sinh chọn đúng hoặc sai.

CÂU 1. Trong không gian Oxyz cho đường thẳng d có phương trình tham số $\begin{cases} x = -1 + 2 \\ y = 1 + t \\ z = 3 - 2t \end{cases}$

വ	ICK	NO	ч.
ΘU	ICK	NC	41.

 a) Giao điểm của đt d và mặt phẳng (P): x+2y-3z+2 = 0 là I(0; 1; 2). b) Véc-tơ a = (4; 2; -3) là một véc-tơ chỉ phương của đường thẳng d. c) Đường thẳng d đi qua điểm A(-1; 1; 3). d) Phương trình chính tắc của đường thẳng d là x+1/2 = y-1/1 = z-3/-2. CÂU 2. Trong không gian Oxyz cho đường thẳng d: x-1/2 = y+1/-1 = z/1 			
c) Đường thẳng d đi qua điểm $A(-1;1;3)$. d) Phương trình chính tắc của đường thẳng d là $\frac{x+1}{2} = \frac{y-1}{1} = \frac{z-3}{-2}$.			
d) Phương trình chính tắc của đường thẳng d là $\frac{x+1}{2} = \frac{y-1}{1} = \frac{z-3}{-2}$.		1	
CÂU 2. Trong không gian $Oxyz$ cho đường thẳng $d : \frac{x-1}{2} = \frac{y+1}{-1} = \frac{z}{1}$			
1 - 1 - 1	và mă	t phẳn	g
(P): $x + y + 2z - 3 = 0$.	•		O
	Ð	S	
a) Đường thẳng d' đi qua điểm $A(1;0;-1)$ và vuông góc với mặt phẳng			
A) Duong thang u the quarties $A(1,0,-1)$ varyuong got voi mat phang $\int x = 1+t$			
(P). Phương trình tham số của đường thẳng d' là $\{y=t\}$			
z = -1 + 2t			
b) Đường thẳng d có một véc-tơ chỉ phương là $\vec{a} = (1; -1; 0)$.			
$oldsymbol{\mathbf{c}}$) Đường thẳng d đi qua điểm $M(2;-1;1).$			
	$\int x =$	2+t	
CAU 3. Trong không gian $Oxyz$ cho đường thắng d có phương trình tham số	$\begin{cases} y = 1 \end{cases}$	3-2t	
	z =	3t.	
Mệnh đề	Ð	S	
a) Đường thẳng d có một véc-tơ chỉ phương là $\overrightarrow{u}=(1;-2;3).$			
b) Đường thẳng d đi qua điểm $M(1; -2; 3)$.			
\mathbf{c}) Đường thẳng d' đi qua điểm $A(1;2;-2)$ và song song với đường thẳng			
d. Phương trình tham số của đường thẳng d' là $\begin{cases} y=2-2t \\ z=-2+3t \end{cases}$			
d) Khoảng cách từ điểm $B(0;1;2)$ đến đường thẳng d bằng 3 .			
	(r -	= 2 + 21	ŧ.
CÂU 4. Trong không gian $Oxyz$ cho đường thẳng d có phương trình tham số	\int_{u}^{x}	= 2 + 2t $= 1 - t$,
	z =	1 + 2t	·.
	· •		
	Đ	S	
Mệnh đề		1	
a) Đường thẳng d có một véc-tơ chỉ phương là $\vec{a}=(2;1;1)$.			
a) Đường thẳng d có một véc-tơ chỉ phương là $\vec{a}=(2;1;1)$. b) Điểm $B(4;0;3)$ thuộc đường thẳng d .			
 a) Đường thẳng d có một véc-tơ chỉ phương là \$\vec{a}\$ = (2;1;1). b) Điểm B(4;0;3) thuộc đường thẳng d. c) Khoảng cách giữa đường thẳng d và mặt phẳng (P): x + 2y - 3 = 0 			
a) Đường thẳng d có một véc-tơ chỉ phương là $\vec{a}=(2;1;1)$. b) Điểm $B(4;0;3)$ thuộc đường thẳng d .			

CÂU 2. Trong không gian Oxyz, một viên đạn được bắn ra từ điểm A(3;4;2) và trong 4 giây đầu đạn đi với vận tốc không đổi, véc-tơ vận tốc (trên giây) là $\overrightarrow{v}=(4;5;1)$. Biết viên đạn trúng mục tiêu tại điểm M(13;b;c), tính b+2c.

KO.		
KQ:		

CÂU 3. Trong không gian với hệ trực tọa độ Oxyz, cho điểm M(3;3;-2) và hai đường thẳng $d_1\colon \frac{x-1}{1}=\frac{y-2}{3}=\frac{z}{1};\ d_2\colon \frac{x+1}{-1}=\frac{y-1}{2}=\frac{z-2}{4}.$ Đường thẳng d đi qua M cắt $d_1,\ d_2$ lần lượt tại A và B. Khi đó độ dài đoạn thẳng AB bằng bao nhiêu?

CÂU 4. Hình vẽ dưới đây là hình ảnh Cầu Cổng Vàng (The Golden Gate Bridge) ở Mỹ. Xét hệ trục toạ độ Oxyz với O là bệ của chân cột trụ tại mặt nước, trục Oz trùng với cột trụ, mặt phẳng Oxy là mặt nước và xem như trục Oy cùng phương với cầu như hình vẽ. Dây cáp AD (xem như là một đoạn thẳng) đi qua đỉnh D thuộc trục Oz và điểm A thuộc mặt phẳng Oyz, trong đó điểm D là đỉnh cột trụ cách mặt nước 227 m, điểm A cách mặt nước 75 m và cách trục Oz khoảng 343 m.

 $(Ngu\`{o}n: https://www.goldengate.org/assets/1/6/ggb-exhibit-chapter-statistics.pdf)$

Giả sử ta dùng một đoạn dây nối điểm N trên dây cáp AD và điểm M trên thành cầu, biết M cách mặt nước 75 m và MN song song với cột trụ. Tính độ dài MN (đơn vị mét) biết điểm M cách trục Oz một khoảng bằng 230 m (kết quả làm tròn đến hàng phần mười).

KQ:			
		l	

CÂU 5. Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A(-2;-1;2) và B(5;-1;1). Dường thẳng d' là hình chiếu của đường thẳng AB lên mặt phẳng (P): x+2y+z+2=0 có một véc-tơ chỉ phương $\overrightarrow{u}=(a;b;2)$. Tính S=a+b.

KQ:		

CÂU 6. Trong không gian Oxyz, cho điểm A(1;0;2) và đường thẳng $d\colon \frac{x-1}{1} = \frac{y}{1} = \frac{z+1}{2}$. Đường thẳng Δ đi qua A, vuông góc và cắt d đi qua điểm M(a;b;0). Tính $\frac{a}{b}$.

KQ:		

—HÉТ—

GV.VŨ NGOC PHÁT

ລແ	ICK	NC	
SII	IIC K	MC) 2

Bài 16. CÔNG THỰC TÍNH GÓC TRONG KHÔNG GIAN

A. LÝ THUYẾT CẦN NHỚ

1. Góc giữa hai mặt phẳng

Công thức: Gọi $\overrightarrow{n_1} = (a_1; b_1; c_1)$, $\overrightarrow{n_2} = (a_2; b_2; c_2)$ lần lượt là vectơ pháp tuyến của (P) và (Q); φ là góc giữa hai mặt phẳng (P) và (Q), với $0^{\circ} \le \varphi \le 90^{\circ}$. Khi đó

$$\cos \varphi = \left| \cos \left(\overrightarrow{n_1}, \overrightarrow{n_2} \right) \right| = \frac{\left| a_1 a_2 + b_1 b_2 + c_1 c_2 \right|}{\sqrt{a_1^2 + b_1^2 + c_1^2} \cdot \sqrt{a_2^2 + b_2^2 + c_2^2}}$$

Chú ý:

- Nếu (P) song song hoặc trùng (Q) thì $\varphi = 0^{\circ}$.
- Nếu $(P) \perp (Q)$ thì $\varphi = 90^{\circ}$. Khi đó $\overrightarrow{n_1} \cdot \overrightarrow{n_2} = 0 \Leftrightarrow a_1 a_2 + b_1 b_2 + c_1 c_2 = 0$.

2. Góc giữa hai đường thẳng

Công thức: Gọi $\vec{u} = (u_1; u_2; u_3), \ \vec{v} = (v_1; v_2; v_3)$ lần lượt là vecto chỉ phương của d_1 và d_2 ; φ là góc giữa hai đường thẳng d_1 và d_2 , với $0^{\circ} \le \varphi \le 90^{\circ}$. Khi đó

$$\cos \varphi = \left| \cos \left(\vec{u}, \vec{v} \right) \right| = \frac{\left| u_1 v_1 + u_2 v_2 + u_3 v_3 \right|}{\sqrt{u_1^2 + u_2^2 + u_3^2} \cdot \sqrt{v_1^2 + v_2^2 + v_3^2}}$$

Chú ý:

- Nếu d_1 song song hoặc trùng d_2 thì $\varphi = 0^{\circ}$.
- Nếu $d_1 \perp d_2$ thì $\varphi = 90^\circ$. Khi đó $\overrightarrow{u} \cdot \overrightarrow{u} = 0 \Leftrightarrow u_1v_1 + u_2v_2 + u_3v_3 = 0$.

3. Góc giữa đường thẳng và mặt phẳng

Công thức: Gọi $\vec{u} = (u_1; u_2; u_3)$, $\vec{n} = (A; B; C)$ lần lượt là vectơ chỉ phương của d và vectơ pháp tuyến của (P); φ là góc giữa đường thẳng d và mặt phẳng (P), với $0^{\circ} \le \varphi \le 90^{\circ}$. Khi đó

$$\sin \varphi = \left| \cos \left(\vec{u}, \vec{n} \right) \right| = \frac{\left| u_1 A + u_2 B + u_3 C \right|}{\sqrt{u_1^2 + u_2^2 + u_3^2} \cdot \sqrt{A^2 + B^2 + C^2}}$$

Chú ý:

- Nếu d song song hoặc trùng (P) thì $\varphi = 0^{\circ}$, khi đó $\vec{u} \perp \vec{n}$
- Nếu d vuông góc với (P) thì $\varphi = 90^{\circ}$, khi đó $\overrightarrow{u} = k \cdot \overrightarrow{n}$.

B. PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN

Tính góc trong không gian Oxyz

- Xác định vecto chỉ phương (vecto pháp tuyến);
- Áp dụng đúng công thức.

1. Ví du minh hoa

VÍ DỤ 1. Trong không gian Oxyz, tính góc giữa hai mặt phẳng sau:

- a) (P): x + y + 4z 2 = 0 và (Q): 2x 2z + 7 = 0.
- b) (P): 2x y 2z 9 = 0 và (Q): x y 6 = 0.

VÍ DU 2. Trong không gian Oxyz, tính góc giữa hai đường thẳng sau:

a)
$$d: \begin{cases} x = 1 - t \\ y = t \\ z = 0 \end{cases}$$
 và $d': \frac{x}{-2} = \frac{y}{1} = \frac{z - 1}{-2}$.

b)
$$d_1$$
:
$$\begin{cases} x = 2 + t \\ y = -1 + t \text{ và } d_2 \end{cases} \begin{cases} x = 1 - t' \\ y = 2 \\ z = -2 + t' \end{cases}$$

VÍ DU 3. Trong không gian Oxyz, tính góc giữa đường thẳng và mặt phẳng sau:

- a) $d: \frac{x-1}{1} = \frac{y}{2} = \frac{z+1}{-1}$ và (P): x-y+2z+1 = 0.
- b) $d: \frac{x-1}{4} = \frac{y-6}{3} = \frac{z+4}{1}$ và (P): 4x+3y-z+1=0

2. Bài tập trắc nghiệm

CÂU 1. Cho mặt phẳng (P): x + 2y - 2z + 3 = 0, mặt phẳng (Q): x - 3y + 5z - 2 = 0. Cosin của góc giữa hai mặt phẳng (P), (Q) là

- \bigcirc $-\frac{\sqrt{35}}{7}$.

CÂU 2. Góc giữa hai mặt phẳng (P): x + 2y + z + 4 = 0 và (Q): -x + y + 2z + 3 = 0 bằng

- (A) 45°.
- **(B)** 90°.

CÂU 3. Tính góc α giữa mặt (P): x + z - 4 = 0 và mặt phẳng (Oxy).

- (A) 45°.
- **B**) 30°.

CÂU 4. Cho điểm H(2;1;2), điểm H là hình chiếu vuông góc của gốc tọa độ O xuống mặt phẳng (P), số đo góc giữa mặt phẳng (P) và mặt phẳng (Q): x+y-11=0 là

- **(A)** 45° .

CÂU 5. Cho hai đường thẳng d_1 : $\frac{x}{-1}=\frac{y+1}{2}=\frac{z}{2},\ d_2$: $\begin{cases} x=2t\\ y=1\\ z-1-t \end{cases}$. Gọi φ là góc giữa hai

đường thẳng d_1 , d_2 . Tính $\cos \varphi$.

CÂU 6. Cho đường thẳng d_1 : $\frac{x}{-1} = \frac{y+1}{1} = \frac{z-1}{-2}$ và d_2 : $\frac{x+1}{-1} = \frac{y}{1} = \frac{z-3}{1}$. Góc giữa hai đường thẳng bằng

- \bigcirc 90°.
- **(B)** 30°.
- **(D)** 45° .

CÂU 7. Cho đường thẳng d là giao tuyến của hai mặt phẳng $(P): x-z\cdot\sin\alpha+\cos\alpha=0$ và $(Q): y-z\cdot\cos\alpha-\sin\alpha=0, \alpha\in\left(0;\frac{\pi}{2}\right)$. Góc giữa d và

- trục Oz là (A) 90°.
- **B**) 30°.
- (**D**) 60°.

CÂU 8. Cho đường thẳng d: $\begin{cases} y=2+2t \text{ và mặt phẳng } (P) \colon x-y+3=0. \end{cases}$ Tính số đo góc

giữa đường thẳng d và mặt phẳng (P).

- (A) 45°.
- **(B)** 120°.
- (C) 60°.
- **(D)** 30°.

QUICK NOTE				thẳng d : $\begin{cases} x = 2 - 3t \\ y = -1 - 4t. \text{ Gó} \\ z = 5 - 5t \end{cases}$
	giữa đường thăng (A) 90°.	g d và mặt phẳng (P) là $\textcircled{\textbf{B}}$ $45^{\circ}.$		(D) 60°.
	CAU 10. Cho mặ <i>Oy</i> .	it phang (P) : $x+y-\sqrt{y}$	2z+5=0. Tinh góc	φ giữa mặt phẳng (P) và trụ
			$\bigcirc \varphi = 90^{\circ}.$	\bigcirc $\varphi = 30^{\circ}$.
	CÂU 11. Cho ha	i mặt phẳng (P) : $(m -$	1)x + y - 2z + m =	0 và (Q) : $2x - z + 3 = 0$. Tìm
	m để (P) vuông \mathfrak{g}	góc với (Q) .		
			© $m = 5$.	(D) $m = -1$.
	CÂU 12. Cho mặ	it phẳng $(P): x-3u+2$	z + 1 = 0 và (Q) : $(2a)$	(m-1)x + m(1-2m)y + (2m-1)x + m(1-2m)x + m(1-2m)
	4)z + 14 = 0 với r			$\operatorname{\mathring{t}\acute{e}}\left(P\right)$ và $\left(Q\right)$ vuông góc nha
	bằng	1	r	7
	$-\frac{3}{2}$.	B $-\frac{1}{2}$.	$\mathbf{c} - \frac{3}{2}$.	\bigcirc $-\frac{i}{2}$.
	CÂU 13 Cho hai	i mặt phẳng $(P) \cdot r \perp 2n$	$(O) \stackrel{2}{\approx} (O) = 2 + 2 = 2$	x - my + (m+1)z + m - 2 = 0
	với m là tham số	. Gọi S là tập hơn tất		a sao cho góc giữa (P) và (Q)
	bằng 60°. Tính tớ		9	1
	A 1.	B $-\frac{1}{2}$.	$\bigcirc \frac{3}{2}$.	\bigcirc $\frac{1}{2}$.
	CÂU 14 Hãy tìn	n tham số thực m để gó	e giữa hai đường thi	gu bằng 60°
	OAG 14. Hay till	i maii so mige m de ge	e graa nar daong un	ing sau bang oo .
		$\int x = 1 + t$	$\int x = 1 + t'$	
		$d: \begin{cases} x = 1 + t \\ y = -\sqrt{2}t \\ z = 1 + t \end{cases}$	Rvà d' : $\begin{cases} y = 1 + \sqrt{y} \end{cases}$	$\overline{2}t', t' \in \mathbb{R}$
		z = 1 + t	z = 1 + m	t'
	_ 1	_	_ 1	
		B -1 .	$(\mathbf{c}) - \frac{1}{2}$.	D 1.
	CÂU 15. Cho các	c điểm $A(-1; \sqrt{3}; 0), B($	$1; \sqrt{3}; 0), C(0; 0; \sqrt{3})$	và điểm M thuộc trục Oz sa
	cho hai mặt phẳr (MAB) và (OAB)		ruông góc với nhau.	Tính góc giữa hai mặt phẳn
	(A) 45°.	B) 60°.	© 15°.	\bigcirc 30° .
		độ hóa một số bài toć	in hình không gian	
		1 1		
	1. Ví dụ min	•		
				n giác OBC vuông tại O và c
	OB = 3a, OC = 6	a, OO' = 2a. Tính góc	giua	
	a) hai đường t	hẳng BO' và $B'C$;		
	b) hai mặt phế	$\operatorname{Ang}(O'BC)$ và (OBC) ;		
	,		24 - 20	
	c) đường thăng	g $B'C$ và mặt phẳng (C	O'BC).	
				ng cạnh bằng 4. Mặt bên SAI phẳng vuông góc với đáy.
	a) Tính góc α	giữa hai đường thẳng S	SD và BC ;	
	b) Tính góc β	giữa hai mặt phẳng (S)	AD) và (SCD) .	

VÍ DỤ 3.

......

Người ta muốn dựng một cột ăng-ten trên một sườn đồi. Ång-ten được dựng thẳng đứng trong không gian Oxyzvới độ dài đơn vị trên mỗi trục bằng 1 m. Gọi O là gốc cột, A là điểm buộc dây cáp vào cột ăng-ten và M, Nlà hai điểm neo dây cáp xuống mặt sườn đồi (hình vẽ). Cho biết toạ độ các điểm nói trên lần lượt là O(0;0;0), A(0;0;6), M(3;-4;3), N(-5;-2;2).

- a) Tính độ dài các đoạn dây cáp MA và NA.
- b) Tính góc tạo bởi các sợi dây cáp MA, NA với mặt phẳng sườn đồi.

2. Bài tấp trắc nghiệm

CÂU 1. Trong hệ trục toạ độ Oxyz, với mặt phẳng (Oxy) là mặt đất, một máy bay cất cánh từ vị trí A(0;10;0) với vận tốc $\vec{v}=(150;150;40)$. Tính góc nâng của máy bay (góc giữa hướng chuyển động bay lên của máy bay với đường băng và làm tròn kết quả đến hàng đơn vi).

- (A) 10°.
- (B) 12°.
- (**C**) 11°.

CÂU 2. Cho hình lập phương ABCD.A'B'C'D'có canh bằng a. Tính số đo góc giữa hai mặt phẳng (BA'C) và (DA'C).

- (A) 30°.
- **(B)** 120°.
- (**C**) 90°.
- (**D**) 60°.

CÂU 3. Cho hình lập phương MNPQ.M'N'P'Q' có E, F, G lần lượt là trung điểm của NN', PQ, M'Q' Tính góc giữa hai đường thẳng EG và P'F.

- (A) 60°.
- **B**) 90°.
- **(D)** 45°.

CÂU 4. Cho hình hộp chữ nhật ABCD.A'B'C'D' có các cạnh AB = 2, AD = 3, AA' = 4. Góc giữa hai mặt phẳng (AB'D') và (A'C'D) là α . Tính giá trị gần đúng của góc α .

- (A) 45, 2°.
- **(B)** 38.1°.

CÂU 5. Cho hình chóp SABCD có ABCD là hình vuông cạnh a, SA vuông góc (ABCD), SA = a. Goi E và F lần lượt là trung điểm SB, SD. Cô-sin của góc hợp bởi hai mặt phẳng (AEF) và (ABCD) là

- $(\mathbf{A}) \sqrt{3}$.
- **B** $\frac{\sqrt{3}}{2}$. **C** $\frac{1}{2}$.
- \bigcirc $\frac{\sqrt{3}}{2}$.

CÂU 6. Cho hình chóp tam giác O.ABC có OA, OB, OC đôi một vuông góc và OAOB = OC. Lấy M, N lần lượt là trung điểm của AB, OC. Gọi α là góc tạo bởi OA và MN. Tính $\cos \alpha$.

- **B** $\frac{1}{3}$. **C** $\frac{\sqrt{3}}{4}$. **D** $\frac{\sqrt{3}}{2}$.

CÂU 7. Hình chóp S.ABC có đáy là tam giác vuông tại B có AB = a, AC = 2a. SA vuông góc với mặt phẳng đáy, SA = 2a. Gọi ψ là góc tạo bởi hai mặt phẳng (SAC) và (SBC). Tính $\cos \psi$.

- **B** $\frac{\sqrt{3}}{5}$. **C** $\frac{\sqrt{3}}{2}$. **D** $\frac{\sqrt{15}}{5}$.

CÂU 8. Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, $BC = a\sqrt{3}$, SA = a và SA vuông góc với đáy ABCD. Tính $\sin \alpha$, với α là góc tạo bởi giữa đường thẳng BD và mặt phẳng (SBC).

- **B** $\frac{\sqrt{3}}{3}$. **C** $\frac{\sqrt{3}}{4}$. **D** $\frac{\sqrt{2}}{2}$.

CÂU 9. Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, tâm O. Gọi M và N lần lượt là trung điểm SA và BC. Biết góc giữa MN và (ABCD) bằng 60° , côsin góc giữa MNvà mặt phẳng (SBD) bằng

- **B** $\frac{2\sqrt{41}}{41}$. **C** $\frac{\sqrt{5}}{5}$. **D** $\frac{2\sqrt{5}}{5}$.

CÂU 10. Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B, AB = BC = a, AD = 2a, SA vuông góc với mặt đáy (ABCD), SA = a. Goi M, N lần lượt là trung điểm của SB và CD. Tính cosin của góc giữa MN và (SAC).

- $\bullet \frac{\sqrt{55}}{10}$.

QUICK NOTE	C. BÀI TẬP T	RẮC NGHIÊM	TƯ LUYÊN	
	•	ỏi học sinh chọn mớ	• • •	ng án A, B, C, D.
	•		$\int x = 6 + 5$	
	CÂU 1. Trong không	gian $Oxyz$, cho đường	thẳng d : $\begin{cases} y = 2 + t \\ z = 1 \end{cases}$	và mặt phẳng $(P):3x-$
	2y + 1 = 0. Tính góc	hợp bởi đường thẳng	\ .	
	A 30°.	B 45°.	© 60°.	D 90°.
			iểm $M(2;3;-1), N(-1)$	-1;1;1) và $P(1;m-1;2)$.
	Tìm m để tam giác N		6 0	6
	$(\mathbf{A}) m = 0.$		$\bigcirc m=2.$	
	CÂU 3. Trong không $d_2: \frac{x+1}{-1} = \frac{y}{1} = \frac{z-1}{1}$		giữa hai đường thẳng	d_1 : $\frac{x}{1} = \frac{y+1}{-1} = \frac{z-1}{2}$ và
	_1 1 1	_	(C) 450	
	A 60°.	B 30°.	© 45°.	D 90°.
	CÂU 4. Trong không	gian $Oxyz$, cho đườn	g thẳng $d \colon \frac{x-4}{1} = \frac{3}{2}$	$\frac{y-5}{2} = \frac{z}{3}$ mặt phẳng (α)
	chứa đường thẳng d sa mặt phẳng (α) và trụ		CO đến (α) đạt giá trị	lớn nhất. Khi đó góc giữa
	$ \mathbf{A} \sin \varphi = \frac{2}{3\sqrt{3}}.$	$\mathbf{B} \sin \varphi = \frac{1}{3\sqrt{3}}.$	$\mathbf{c}\sin\varphi = \frac{1}{2\sqrt{3}}.$	$\mathbf{D}\sin\varphi = \frac{1}{\sqrt{3}}.$
	CÂU 5. Trong không $y + z + 1 = 0$ một góc			Oy và tạo với mặt phẳng
			,	$\int x - z = 0$
			$ (\mathbf{C}) \begin{bmatrix} x + y = 0 \end{bmatrix}. $	$ (\mathbf{D}) \begin{bmatrix} x+z=0 \end{bmatrix}. $
	CÂU 6. Với giá trị nà	o của m thì đường thẳ	$\lim_{x \to 0} (D) : \frac{x+1}{2} = \frac{y-1}{2}$	$\frac{-3}{n} = \frac{z-1}{m-2}$ vuông góc với
	mặt phẳng $(P): x + 3$		$2 \qquad m$	m-2
	A 6.		\bigcirc -7.	D 1.
	CÂU 7. Trong không	gian $Oxyz$, cho mặt pl	$h\mathring{a}$ ng $(P): mx + my -$	2z-1=0 và đường thẳng
	$\frac{x}{n+1} = \frac{y}{m} = \frac{1-z}{1}$	với $m \neq 0, m \neq -1$. K	hi $(P) \perp d$ thì tổng m	+ n bằng bao nhiêu?
			_	$=\frac{y+1}{-1}=\frac{z-1}{2}$ và d_2 :
				-1 2
		_	_	
	A 90°.	B 60°.	_	D 45°.
	CÂU 9. Trong không	gian $Oxyz$, cho đườ	$\operatorname{deg} \Delta \colon x = \frac{y}{2}$	$z = \frac{z-1}{3}$ và mặt phẳng
	(P): 4x + 2y + z - 1		_	ng?
	_) và (P) lớn hơn 30° .		
	$\triangle \Delta \perp (P).$			
	CÂU 10. Trong không $(x-2-3t)$	g gian $Oxyz$, cho mặt	$ph \stackrel{\circ}{\text{ang}} (P): 3x + 4y +$	5z - 8 = 0 và đường thẳng
	$d: \begin{cases} x = 2 & \text{of} \\ y = -1 - 4t \text{. Go} \end{cases}$	oc giữa đường thẳng d	và mặt phẳng (P) là	
			. 1 3 ()	
	A 90°.		_	D 30°.
	_			$\int x = -1 - t$
	CÂU 11. Trong khôn	ng gian $Oxyz$, cho ha	ai đường thẳng d_1 :	$\begin{cases} x = -1 - t \\ y = 3 + 4t & \text{và } d_2 \colon \frac{x}{1} = \\ z = 3 + 3t \end{cases}$
	y+8 $z+3$ z		2 1	z = 3 + 3t
	$\frac{y+8}{-4} = \frac{z+3}{-3}$. Tính	goc hợp bởi đường thế	ang d_1 và d_2 .	

$\overline{}$		
(Λ)	ono	
	.7()	

B	60°
(-	00

$$(\mathbf{C})$$
 0°.

$$\bigcirc$$
 30°.

CÂU 12. Trong không gian Oxyz, cho mặt phẳng (P): $-\sqrt{3}x+y+1=0$. Tính góc tạo bởi (P) với trục Ox?

(A) 120° .

	200	
(\mathbf{D})	90	•

(c)
$$150^{\circ}$$
.

$$\bigcirc$$
 60° .

Phần II. Trong mỗi ý a), b), c) và d) ở mỗi câu, học sinh chọn đúng hoặc sai.

CÂU 1. Trong không gian
$$Oxyz$$
, cho hai đường thẳng d_1 :
$$\begin{cases} x = 2 + t \\ y = -1 + t \text{ và } d_2 \end{cases} : \begin{cases} x = 1 - t \\ y = 2 \end{cases}$$

Xét tính đúng sai của các khẳng định sau

Mệnh đề	Ð	S
a) Đường thẳng d_1 có một vectơ chỉ phương là $\overrightarrow{u_1} = (1;1;3)$.		
b) Góc giữa hai đường thẳng d_1 và d_2 bằng 60° .		
c) Đường thẳng d_2 có một vectơ chỉ phương là $\overrightarrow{u_2} = (-1; 0; 1)$.		
d) Giá trị cosin của góc giữa hai đường thẳng d_1 và d_2 bằng $-\frac{1}{2}$.		

CÂU 2. Trong không gian Oxyz, cho mặt phẳng (P): 2x + y + 2z - 1 = 0 và hai điểm A(1;-1;2), B(0;1;-1). Xét tính đúng sai của các khẳng định sau

Mệnh đề	Đ	S
a) Giá trị cosin của góc giữa đường thẳng AB và mặt phẳng (P) bằng $\frac{2}{\sqrt{21}}.$		
b) Đường thẳng AB vuông góc với mặt phẳng (P) .		
c) Mặt phẳng (OAB) có một vectơ pháp tuyến là $\overrightarrow{n}=(-1;1;1).$		
d) Giá trị cosin của góc giữa mặt phẳng (OAB) và mặt phẳng (P) bằng $\frac{\sqrt{3}}{9}$.		

CÂU 3. Trong không gian Oxyz, cho đường thẳng $d \colon \frac{x}{1} = \frac{y}{-2} = \frac{z}{1}$ và mặt phẳng $(P) \colon 5x + \frac{z}{1} = \frac{y}{1}$ 11y + 2z - 4 = 0. Xét tính đúng sai của các khẳng định sau

Mệnh đề	Ð	S
a) Đường thẳng d có một vectơ chỉ phương là $\overrightarrow{u}=(1;-2;1).$		
b) Mặt phẳng (P) có một vectơ pháp tuyến là $\overrightarrow{n}=(-5;-11;2).$		
c) Giá trị cosin của góc giữa đường thẳng d và mặt phẳng (P) bằng $\frac{1}{2}$.		
d) Góc giữa đường thẳng d và mặt phẳng bằng 30° .		

CÂU 4. Trong không gian Oxyz, cho mặt phẳng (P): 3x + 4y + 5z + 2 = 0 và đường thẳng d là giao tuyến của hai mặt phẳng $(\alpha): x-2y+1=0$ và $(\beta): x-2z-3=0$. Xét tính đúng sai của các khẳng định sau

Mệnh đề	Ð	S
a) Mặt phẳng (P) có một vectơ pháp tuyến là $\overrightarrow{n}=(3;4;5)$.		
b) Góc giữa đường thẳng d và mặt phẳng (P) bằng 30° .		
c) Đường thẳng d có một vectơ chỉ phương là $\overrightarrow{u} = (2; -1; 1)$.		
d) Đường thẳng d cắt mặt phẳng (P) tại $A\left(\frac{7}{15}; \frac{11}{15}; -\frac{19}{15}\right)$.		

Phần III. Học sinh điền kết quả vào ô trống.

QUICK NOTE	CÂU 1. Trong hệ tọa độ $Oxyz$, một vật chuyển động theo quĩ đạo là một đường thẳng. Tại thời điểm ban đầu, vật ở vị trí điểm $A(1;5;0)$, sau 10 phút vật ở vị trí điểm $B(101;205;1250)$. Hỏi vật chuyển động theo phương hợp với mặt đất góc bao nhiều độ (giả sử mặt đất là mặt phẳng Oxy , kết quả làm tròn đến hàng phần chục).
	KQ:
	CÂU 2. Cho hình lăng trụ tam giác đều $ABC.A'B'C'$ có cạnh bên $2a$, góc tạo bởi $A'B$ và
	mặt đáy là 60°. Gọi M là trung điểm BC . Ta có $\cos(A'C, AM) = \frac{\sqrt{a}}{b}$ với $\frac{a}{b}$ là phân số tối $\frac{\partial^2 A}{\partial b^2} = \frac{1}{b} + \frac$
	giản, $a, b \in N$. Tổng $a + b$ bằng bao nhiêu?
	KQ:
	x+1 $y-1$ $z+2$
	CÂU 3. Trong không gian $Oxyz$, cho đường thẳng $d : \frac{x+1}{2} = \frac{y-1}{2} = \frac{z+2}{1}$ và mặt phẳng
	(P): $3x + my - 1 = 0$ (m là tham số). Tìm m để đường thắng d tạo với mặt phẳng (P) góc
	α thỏa mãn $\sin \alpha = \frac{2}{3}$.
	KQ:
	Ite.
	CÂU 4. Trong không gian, cho mặt phẳng (P) có phương trình $ax + by + cz - 1 = 0$ với
	$c<0$ đi qua hai điểm $A(0;1;0),B(1;0;0)$ tạo với (Oyz) một góc 60°. Khi đó $a+b-\sqrt{2}c$ bằng
	KQ:
	CÂU 5. Có hai bức tường hình vuông cạnh $5m$, vuông góc với nhau và cùng vuông góc với mặt đất, hai mặt tường giao nhau tại cột d . Trên cột d có một điểm A cách mặt đất $2m$.
	Có một chiếc cột cao $1m$ đặt vuông góc với mặt đất, khoảng cách từ chân cột đến mỗi bức
	tường là 1m. Người ta muốn căng một chiếc bạt phẳng hình tam giác đi qua điểm A và đầu
	cột, hai đầu mút M , N thuộc hai chân tường sao cho diện tích bạt bé nhất. Hỏi phải căng chiếc bạt hợp với mặt đất góc bao nhiêu độ (Kết quả làm tròn đến hàng phần chục).
	chiec bật hợp với mặt dất gọc bao mineu dự (Tret qua làm tron den năng phân chiệc).
	KQ:
	CÂU 6. Trong không gian, tìm m để số đo góc giữa hai đường thẳng d_1 , d_2 bằng 60° biết
	$\begin{cases} x = 1 + t \end{cases} \qquad \begin{cases} x = 2 + mt \end{cases}$
	$d_1: \begin{cases} y = 1 - t \\ z = -3 + \sqrt{2}t \end{cases}, d_2: \begin{cases} y = 3 + t \\ z = \sqrt{2}t \end{cases}$
	KQ:
	—HÊT—

Bài 17. PHƯƠNG TRÌNH MẶT CẦU

A. LÝ THUYẾT CẦN NHỚ

1. Định nghĩa

lacktriangle Trong không gian, tập hợp tất cả các điểm M cách điểm I cố định một khoảng không đổi r (r>0) cho trước được gọi là mặt cầu tâm I bán kính R. Kí hiệu S(I;r) hay viết tắt là (S). Vậy $S(I;R) = \{M|IM = r\}.$

- ♥ Nhân xét:
 - Nếu IM = r thì M nằm trên mặt cầu.
 - Nếu IM < r thì M nằm trong mặt cầu.
 - Nếu IM > r thì M nằm ngoài mặt cầu.

2. Phương trình mặt cấu

lacktriangle Trong không gian Oxyz, mặt cầu (S) tâm I(a;b;c) bán kính r có phương trình là

$$(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2.$$

Dang khai triển: $x^2 + y^2 + z^2 - 2ax - 2by - 2cz + d = 0$, với $d = a^2 + b^2 + c^2 - r^2 > 0$.

B. PHÂN LOAI, PHƯƠNG PHÁP GIẢI TOÁN

Xác định tâm I, bán kính r của mặt cầu cho trước

- **Q Loại 1.** Cho (S): $(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2$. Khi đó
 - ① Tâm I(a;b;c) (đổi dấu số trong dấu ngoặc);
 - ② Bán kính r (Rút căn vế phải).
- **Loai 2.** Cho (S): $x^2 + y^2 + z^2 2ax 2by 2cz + d = 0$. Khi đó
 - ① Điều kiện để (*) là mặt cầu là $a^2 + b^2 + c^2 d > 0$;
 - ② Tâm I(a, b, c) (đổi dấu hệ số của x, y, z và chia đôi);
 - ③ Bán kính $R = \sqrt{a^2 + b^2 + c^2 d}$.

1. Ví du minh hoa

VÍ DU 1. Trong các phương trình sau, phương trình nào là phương trình mặt cầu? Hãy xác định tâm và bán kính (nếu là phương trình mặt cầu).

a)
$$(x-2)^2 + y^2 + (z+1)^2 = 4$$
.

b)
$$x^2 + y^2 + z^2 - 2x - 4y + 6z - 2 = 0$$
.

c)
$$x^2 + y^2 + z^2 - 2x + 4y + 3z + 8 = 0$$

c)
$$x^2 + y^2 + z^2 - 2x + 4y + 3z + 8 = 0$$
. d) $3x^2 + 3y^2 + 3z^2 + 6x + 12y - 9z + 1 = 0$

VÍ DỤ 2. Trong không gian Oxyz, tìm tất cả giá trị của tham số m để các phương trình sau là phương trình mặt cầu.

a)
$$x^2 + y^2 + z^2 - 2(m+2)x + 4my - 2mz + 5m^2 + 9 = 0$$
;

b)
$$x^2 + y^2 + z^2 + 2(m+2)x - 2(m-1)z + 3m^2 - 5 = 0$$
.

2. Bài tập trắc nghiệm

CÂU 1. Cho mặt cầu (S): $(x+1)^2 + (y-2)^2 + (z-1)^2 = 9$. Tìm tọa độ tâm I và tính bán kính R của (S).

(A)
$$I(1; -2; -1)$$
 và $R = 3$.

B)
$$I(1; -2; -1)$$
 và $R = 9$.

(c)
$$I(-1;2;1)$$
 và $R=3$.

D
$$I(-1;2;1)$$
 và $R=9$.

CÂU 2. Cho mặt cầu (S): $(x-1)^2 + (y+2)^2 + z^2 = 9$. Mặt cầu (S) có thể tích bằng

$$\triangle V = 36\pi$$
.

B
$$V = 14\pi$$
.

B
$$V = 14\pi$$
. **C** $V = \frac{4}{36}\pi$.

$$\bigcirc V = 16\pi.$$

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

•	•	•	•	•	•	•	•	•	•	•	٠	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	٠	•	•	•	•	•	•	٠	•	•	٠	٠	•	•	•	•	•	•	•	•	•	•	•	٠	٠	٠	•	٠	•	
•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

	Ī	Ī	Ī	Ī	Ī								Ī						

٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

•	•	•																														•	
•	•	•	•	•	•	•	•	•	•	•	•																•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•																														

VNPmath - 0962940819 ♥	
OUICK NOTE	
QUICK NOTE	
	١.
	,
	'
	١,
	'
	(
	′
	`
	1 `

CÂU 3. Cho mặt cầu (S): $x^2 + y^2 + z^2 - 4x - 6y + 8z - 7 = 0$. Tọa độ tâm và bán kính mặt cầu (S) lần lượt là

(A) I(-2; -3; 4), R = 6.

B) I(-2; -3; 4), R = 36.

(c) I(2;3;-4), R=36.

 $(\mathbf{D}) I(2; 3; -4), R = 6.$

CÂU 4. Cho mặt cầu (S): $x^2 + y^2 + z^2 - 8x + 2y + 1 = 0$. Tìm tọa độ tâm và bán kính của nặt cầu (S).

(A) I(4;-1;0), R=4.

B) I(-4;1;0), R=4.

 $(\mathbf{C}) I(-4;1;0), R=2.$

 $(\mathbf{D}) I(4;-1;0), R=2.$

CÂU 5. Cho mặt cầu (S): $2x^2 + 2y^2 + 2z^2 + 12x - 4y + 4 = 0$. Mặt cầu (S) có đường kính AB. Biết điểm A(-1;-1;0) thuộc mặt cầu (S). Tọa độ điểm B là

- (A) B(-5;3;-2).
- **(B)** B(-11;5;0).
- $(\mathbf{C}) B(-11; 5; -4).$
 - **(D)** B(-5;3;0).

CÂU 6. Phương trình nào dưới đây là phương trình mặt cầu?

- (A) $x^2 + y^2 z^2 + 4x 2y + 6z + 5 = 0$. (B) $x^2 + y^2 + z^2 + 4x 2y + 6z + 15 = 0$.
- \mathbf{C}) $x^2 + y^2 + z^2 + 4x 2y + z 1 = 0.$
- $\mathbf{P}(x^2 + y^2 + z^2 2x + 2xy + 6z 5 = 0.$

CÂU 7. Cho phương trình $x^2 + y^2 + z^2 - 2mx - 2(m+2)y - 2(m+3)z + 16m + 13 = 0$. Γ ìm tất cả các giá trị thực của m để phương trình trên là phương trình của một mặt cầu.

(A) m < 0 hay m > 2.

(B) $m \le -2$ hay $m \ge 0$.

(**c**) m < -2 hay m > 0.

(D) m < 0 hay m > 2.

CÂU 8. Có tất cả bao nhiêu giá trị của tham số m (biết $m \in \mathbb{N}$) để phương trình $x^2 + y^2 + y^2$ $z^2+2(m-2)y-2(m+3)z+3m^2+7=0$ là phương trình của một mặt cầu?

CÂU 9. Cho mặt cầu (S): $x^2 + y^2 + z^2 - 2x - 4y + 4z - m = 0$ (m là tham số). Biết mặt cầu có bán kính bằng 5. Tìm m.

- **(A)** m = 25.
- **(B)** m = 11.
- $(\mathbf{C}) m = 16.$ $(\mathbf{D}) m = -16.$

CÂU 10. Mặt cầu $(S): x^2+y^2+z^2-4mx+4y+2mz+m^2+4m=0$ có bán kính nhỏ nhất khi m bằng

- \bigcirc $\frac{1}{2}$.
- **©** $\frac{\sqrt{3}}{2}$.
- $(\mathbf{D}) 0.$

Lập phương trình mặt cầu và ứng dung thực tiễn

- **Phương pháp chung:** Cần xác định được tọa độ tâm I(a;b;c) và độ dài bán kính r.
- Các bài toán cơ bản:
 - ① Mặt cầu có tâm I(a;b;c) và đi qua điểm $A(x_A;y_A;z_A)$ thì bán kính

$$r = IA = \sqrt{(x_A - x_I)^2 + (y_A - y_I)^2 + (z_A - z_I)^2}.$$

- ② Mặt cầu (S) có đường kính AB thì
 - điểm I(a;b;c)ABhay $I\left(\frac{x_A+x_B}{2};\frac{y_A+y_B}{2};\frac{z_A+z_B}{2}\right).$
 - Bán kính $r = \frac{AB}{2} = \frac{\sqrt{(x_B x_A)^2 + (y_B y_A)^2 + (z_B z_A)^2}}{2}$.
- 3 Mặt cầu có tâm I(a;b;c) và tiếp xúc với (α) : Ax + By + Cz + D = 0 thì bán kính

$$r = d(I, (\alpha)) = \frac{\left| Aa + Bb + Cc + D \right|}{\sqrt{A^2 + B^2 + C^2}}.$$

4 Mặt cầu qua bốn điểm A, B, C, D không đồng phẳng (ngoại tiếp tứ diện

Gọi (S) có dạng $x^2 + y^2 + z^2 - 2ax - 2by - 2cz + d = 0$ (*)

Thay tọa độ 4 điểm A, B, C, D vào (*), ta được hệ phương trình 4 ẩn số a,

Giải tìm a, b, c, d. Suy ra tâm I(a, b, c), bán kính $R = \sqrt{a^2 + b^2 + c^2 - d}$.

1. Ví du minh hoa

VÍ DỤ 1. Trong không gian Oxyz, viết phương trình mặt cầu (S)

- a) Có tâm I(2; -1; 0) và đi qua điểm M(4; 1; -2);
- b) Có đường kính AB với A(0;1;3), B(4;-5;-1);
- c) Có tâm I(1; -2; 3) và tiếp xúc với trục Oy;
- d) Có tâm I(1;2;-1) và tiếp xúc với (P): x-2y-2z-8=0.

VÍ DU 2. Viết phương trình mặt cầu ngoại tiếp tứ diện ABCD, biết

- a) A(1;1;0), B(1;0;1), C(0;1;1), D(1;2;3).
- b) A(1;2;-4); B(1;-3;1), C(2;2;3), D(1;0;4).

VÍ DU 3. Giả sử người ta biểu diễn mô phỏng của tòa nhà Ericsson Globe ở phần Khởi động trong hệ trục tọa độ Oxyz bởi một mặt cầu có tâm I, đường kính 110 m và OA = 85 m như hình vẽ (đơn vị trên trục là mét). Hãy viết phương trình của mặt cầu này.

VÍ DU 4. Bạn Bình đố bạn Nam tìm được đường kính của quả bóng rổ, biết rằng nếu đặt quả bóng ở một góc căn phòng hình hộp chữ nhật, sao cho quả bóng chạm (tiếp xúc) với hai bức tường và nền nhà của căn phòng đó (khi đó khoảng cách từ tâm quả bóng đến hai bức tường và nền nhà đều bằng bán kính của quả bóng) thì có một điểm M trên quả bóng với khoảng cách lần lượt đến hai bức tường và nền nhà là 17 cm, 18 cm và 21 cm (Hình bên dưới). Hãy giúp Nam xác định đường kính của quả bóng rổ đó. Biết rằng loại bóng rổ tiêu chuẩn có đường kính từ 23 cm đến 24,5 cm.

2. Bài tập trắc nghiệm

CÂU 1. Mặt cầu tâm I(3; -1; 0), bán kính R = 5 có phương trình là

(A)
$$(x+3)^2 + (y-1)^2 + z^2 = 5$$
.

B)
$$(x-3)^2 + (y+1)^2 + z^2 = 5$$
.

$$\mathbf{\hat{c}}$$
 $(x-3)^2 + (y+1)^2 + z^2 = 25.$

$$(\mathbf{D})(x+3)^2 + (y-1)^2 + z^2 = 25.$$

CÂU 2. Phương trình mặt cầu tâm I(2; -3; -4), bán kính bằng 4 là

(A)
$$(x+2)^2 + (y-3)^2 + (z-4)^2 = 16$$
.

B
$$(x-2)^2 + (y+3)^2 + (z+4)^2 = 16.$$

$$(x+2)^2 + (y-3)^2 + (z-4)^2 = 4.$$

٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

▼ VNPmath - 0962940819 ♥			MÀI CAU - MÀI	PHANG - ĐƯƠNG THA
QUICK NOTE	CÂU 3. Viết phươ	ng trình mặt cầu (S) c	ó tâm $I(-1;1;-2)$ và	đi qua điểm $A(2;;1;2)$.
	_	$(2^2 + (y+1)^2 + (z-2)^2 =$		• (, , , ,
	B (S) : $(x-2)^2$	$(2 + (y-1)^2 + (z-2)^2 =$	= 25.	
	$(\mathbf{c})(S): (x+1)^2$	$(z^2 + (y-1)^2 + (z+2)^2 =$	= 25.	
	$(\mathbf{D})(S) \colon x^2 + y^2$	$+z^2 + 2x - 2y + 4z +$	1 = 0.	
	CÂU 4 Mặt cầu t	âm $I(-3;0;4)$ và đi qu	a điểm $A(-3:0:0)$ có	phương trình là
		$ann 1 (3,0,4) \text{ va di qu}$ $c^2 + (z+4)^2 = 4.$, , , , ,	
		$z^2 + (z-4)^2 = 16.$	_ , , ,	, ,
		,		,
		rình mặt cầu (S) đường	_	5; 5), $B(2; 1; 3)$ 1a -6x + 2y - 8z + 20 = 0.
				-6x + 2y - 8z + 20 = 0. $-6x + 2y - 8z + 26 = 0.$
	_		· ,_	mặt cầu đường kính AB
		$z^2 + (z-1)^2 = 9.$	<u> </u>	,
	\mathbf{C} $x^2 + (y-3)^2$	$^2 + (z+1)^2 = 3.$	(D) $x^2 + (y-3)^2$	$+(z+1)^2 = 9.$
	CÂU 7. Viết phươ là $V = 972\pi$.	ng trình mặt cầu (S) co	ố tâm $I(-1;4;2)$, biết	thể tích khối cầu tương
	_	$(z-4)^2 + (z-2)^2 = 81.$	B) $(x+1)^2 + (y)^2$	$(-4)^2 + (z-2)^2 = 9.$
	$(\mathbf{c})(x-1)^2 + (y)^2$	$(z+4)^2 + (z-2)^2 = 9.$	$(x-1)^2 + (y)^2$	$(z+4)^2 + (z+2)^2 = 81.$
		, , , ,	<u> </u>	tọa độ (Oyz) . Phương tr
	của mặt cầu (S) là		ich zuc zoi mät buang	tọa độ (Ogz) . I hương th
	(A) $(x+2)^2 + (y+2)^2 $	$(z+1)^2 + (z-1)^2 = 4.$	B $(x-2)^2 + (y$	$(-1)^2 + (z+1)^2 = 1.$
	$(x-2)^2 + (y-2)^2 + (y-2$	$(z-1)^2 + (z+1)^2 = 4.$	(D) $(x+2)^2 + (y)^2$	$(-1)^2 + (z+1)^2 = 2.$
	CÂU 9. Mặt cầu c	ó tâm $I(1;2;-3)$ và tiế	en xúc với truc <i>Ou</i> có	bán kính bằng
	(A) 2.	\bigcirc	_	\bigcirc $\sqrt{13}$.
	CÂU 10. Trong kh	nông gian $Oxuz$, mặt cầ	0	xúc với mặt phẳng (α) : 4
	3z + 19 = 0 có phu		- (-, ·, ·) ·····	F (***)
	A $(x-1)^2 + y^2$	$^2 + (z+3)^2 = 4.$	B $(x+1)^2 + y^2$	$+(z-3)^2 = 2.$
	$(x+1)^2 + y^2$	$^2 + (z - 3)^2 = 4.$	D $(x-1)^2 + y^2$	$+(z+3)^2 = 2.$
	CÂU 11. Viết phư	ơng trình mặt cầu (S)	đi qua $A(-1;2;0), B(-1;2;0)$	-2;1;1) và có tâm nằm t
	trục Oz .			
	$\mathbf{A} x^2 + y^2 + z^2$		B $x^2 + y^2 + z^2$	
	$x^2 + y^2 + z^2$	-x-5=0.	D $x^2 + y^2 + z^2$	-y-5=0.
				đi qua ba điểm $A(1;2;$ -
		(3). Tìm tọa độ điểm I		
	(A) $I(2;-1;0)$.	B $I(0;0;1)$.	$(\mathbf{C}) I(0;0;-2).$	(D) $I(-2;1;0)$.
				ı đi qua ba điểm A, B, C
	$(\mathbf{A}) T = 3.$	át phẳng (Oxz) , biết $I($	$(a; b; c)$. Thin tong $T = $ \mathbf{C} $T = -1$.	
		_		_
	CAU 14. Cho các chóp <i>OABC</i> là	diêm $A(1;0;0), B(0;2;$	0), $C(0;0;-2)$. Bán k	ính mặt cầu ngoại tiếp h
	$ \begin{array}{c c} \text{Chop } OADC \text{ is} \\ \hline \mathbf{A} \frac{7}{2}. \end{array} $	1	\bigcirc $\frac{3}{2}$.	$\bigcirc \frac{5}{2}$.
	$\overline{2}$.		$igotimes_{\overline{2}}$.	$igotimes \overline{2}$.
				chiếu vuông góc của D t
	các trực tọa độ O_3 mặt cầu (S) .	x, Oy, Oz. Gọi (S) là m	nạt cau ngoại tiếp tử (diện $ABCD$. Tính diện t

B $\frac{29\sqrt{29}\pi}{6}$.

a+b+c. $(\mathbf{D}) T = 2.$ nh mặt cầu ngoại tiếp hình **D** $\frac{5}{2}$. iếu vuông góc của D trên ện ABCD. Tính diện tích **(C)** 116π . **(D)** 29π . GV.VŨ NGỌC PHÁT

3

Vị trí tương đối của điểm, của mặt phẳng với mặt cầu

- **8 Bài toán 1:** Xét điểm $M(x_0; y_0; z_0)$ và mặt cầu $S: (x-a)^2 + (y-b)^2 + (z-c)^2 r^2 = 0$ (1). Thay tọa độ điểm M vào vế trái của (1), nếu
 - ① Kết quả bằng 0 thì $M \in (S)$.
 - ② Kết quả ra số âm thì M nằm trong (S).
 - 3 Kết quả ra số dương thì M nằm trong (S).

② Nếu d
$$(I,(P)) = \frac{\left|Aa + Bb + Cc + D\right|}{\sqrt{A^2 + B^2 + C^2}} = r \text{ thì } (P) \text{ tiếp xúc } (S).$$

3 Nếu d
$$(I,(P)) = \frac{\left|Aa + Bb + Cc + D\right|}{\sqrt{A^2 + B^2 + C^2}} < r$$
 thì (P) cắt (S) .

1. Ví du minh hoa

VÍ DỤ 1. Cho mặt cầu (S) có tâm I(2;-1;4) và bán kính R=5. Các điểm A(3;1;5), B(-1;11;14), C(6;2;4) nằm trong, nằm trên hay nằm ngoài mặt cầu (S)?

VÍ DU 2.

Trong không gian Oxyz (đơn vị trên mỗi trục là mét), một router phát sóng wifi có đầu thu phát được đặt tại điểm I(4; 2; 10).

- a) Cho biết bán kính phủ sóng wifi là 40 m. Viết phương trình mặt cầu (S) biểu diễn ranh giới của vùng phủ sóng.
- b) Một người sử dụng máy tính tại điểm M(6;12;0). Hãy cho biết điểm M nằm trong hay nằm ngoài mặt cầu (S) và người đó có thể sử dụng được sóng wifi của router nói trên hay không?
- c) Câu hỏi tương tự đối với người sử dụng máy tính ở điểm N(14;6;50).

- a) Chứng minh rằng mặt phẳng (P) cắt mặt cầu (S).
- b) Biết mặt cầu (S) cắt (P) theo giao tuyến là đường tròn (C). Tính bán kính r của đường tròn (C).

2. Bài tập trắc nghiệm

CÂU 1. Cho điểm M(1;-1;3) và mặt cầu (S) có phương trình $(x-1)^2 + (y+2)^2 + z^2 = 9$. Khẳng đinh đúng là

 (\mathbf{A}) M nằm ngoài (S).

 (\mathbf{B}) M nằm trong (S).

 (\mathbf{C}) M nằm trên(S).

 $(\mathbf{D}) M$ trùng với tâm của (S).

CÂU 2. Cho mặt cầu (S): $x^2 + y^2 + z^2 - 2x - 4y - 6z = 0$ và ba điểm O(0;0;0), A(1;2;3), B(2;-1;-1). Trong số ba điểm trên số điểm nằm trên mặt cầu là

/	$\overline{}$	
1	D)	\cap

(D)
$$1$$
.

QUICK NOTE

QUICK NOTE		t cầu $(S): x^2+y^2+z^2-4$ đề sau, mệnh đề nào đúr		át phẳng (P) : $x+y-z+4=0$.
	(P) tiếp xứ	fic (S).	$lackbox{\textbf{B}}(P)$ và (S)	không có điểm chung.
	\bigcirc (P) đi qua	tâm của (S) .	\bigcirc (P) cắt (S)).
	$m^2 + 4m - 5 = 0$	t phẳng (P) và mặt cầu (P); (S) : $x^2 + y^2 + z^2 - 2x$	(S) có phương trình $+2y-2z-6=0$.	lần lượt là (P) : $2x + 2y + z -$ Giá trị của m để (P) tiếp xúc
	(S) là		\bigcirc $m=-1.$	
	(A) $m = 5$. (C) $m = -1$ ho	. ¥ F	m = -1.	F
		$I\left(2;1;-1\right)$ bán kính R =		ng (P) : $2x + 2y + z - 2 = 0$ và g tròn giao của mặt phẳng (P)
			© $r = 1$.	$\bigcirc r = 3.$
		hông gian $Oxyz$, mặt cầu Oxz) theo một đường trò		$+y^2 + z^2 - 2x + 2y - 6z + 2 = 0$
	\mathbf{A} $3\sqrt{2}$.	(B) $2\sqrt{2}$.	© 5.	$(\mathbf{\overline{D}}) 4\sqrt{2}.$
			<u> </u>	cầu (S) : $(x-1)^2 + (y-2)^2 +$
	$(z-2)^2 = 9$ và			(P) cắt (S) theo giao tuyến là
			$\bigcirc r = 2\sqrt{2}.$	$\mathbf{D} r = \sqrt{3}.$
	$ \text{ phẳng } (P) \colon 2x + $			$z^2-6x-4y-12z=0$ và mặt nặt cầu (S) cắt bởi mặt phẳng
	(P) . \bullet	B $S = 49\pi$.	© 25π	\bigcirc 36π .
		0	_	
	_	$\operatorname{Aặt}$ cầu (S) có tâm I , cắt		(2x + 1; 1) và mặt phẳng (P) : $2x + 1; 1$ và mặt phẳng (P) : $2x + 1; 1$ và mặt (P) :
	. , -	~	B) $(x-2)^2 +$	$(y-1)^2 + (z-1)^2 = 2\sqrt{5}.$
	$(x-2)^2 +$	$(y-1)^2 + (z-1)^2 = 20.$	$(\mathbf{D})(x+2)^2 +$	$(y+1)^2 + (z+1)^2 = 20.$
	_			n $I(1;2;1)$ và cắt mặt phẳng
	(P): 2x - y + 2z $(S) là$	+7 = 0 theo một đường	tròn có đường kính	bằng 8. Phương trình mặt cầu
	$(x-1)^2 +$	$(y-2)^2 + (z-1)^2 = 25.$	B $(x-1)^2 +$	$(y-2)^2 + (z-1)^2 = 81.$
	$(x+1)^2 +$	$(y+2)^2 + (z+1)^2 = 9.$	D $(x-1)^2 +$	$(y-2)^2 + (z-1)^2 = 5.$
	C BÀITÂI	P TRẮC NGHIỆN	A TIĽ LIVÊN	
		âu hỏi học sinh chọn r		
	l _	hông gian $Oxyz$, điểm r		rong mặt cầu (S) : $(x-1)^2 +$
	, , ,	3). B $P(1;0;0)$.	\bigcirc $N(0;4;3).$	$\bigcirc Q(1;0;3).$
			<u> </u>	3; -1; 1) và đi qua $M(2; -2; 4)$.
	Phương trình mặ		(a) co tain 11 (e	, 1,1) va ai qua 11 (2, 2,1).
		$(y+1)^2 + (z-1)^2 = 11.$	O 1	, , ,
	$(x+3)^2 +$	$(y-1)^2 + (z+1)^2 = \sqrt{1}$	$\overline{1}$. (D) $(x-3)^2 +$	$(y+1)^2 + (z-1)^2 = \sqrt{11}.$
	CÂU 3. Trong kl kính của (S) bằn	hông gian $Oxyz$, cho mặt ng	$\hat{\text{cau}}(S) : (x-2)^2 +$	$+(y+2)^2 + (z-1)^2 = 18$. Bán
	A 9.	B 18.	© $6\sqrt{2}$.	D $3\sqrt{2}$.
	CÂU 4. Trong kl kính MN có phu			N(-1;6;-3). Mặt cầu đường
	_	$(y+2)^2 + (z+1)^2 = 6.$	B $(x-1)^2 +$	$(y-2)^2 + (z-1)^2 = 6.$
		$(y-2)^2 + (z-1)^2 = 36.$	<u> </u>	, , ,
		, , , , , ,		

CÂU 5. Trong không gian Oxyz, cho mặt cầu (S): $(x-5)^2+(y-1)^2+(z+2)^2=9$. Đường kính của mặt cầu (S) là

(A) 9.

(B) 3.

(D) 18.

CÂU 6. Trong không gian Oxyz, phương trình nào sau đây là phương trình của mặt cầu?

$$(A) $x^2 + z^2 + 3x - 2y + 4z - 1 = 0.$$$

(B)
$$x^2 + y^2 + z^2 - 2x + 2y - 4z + 8 = 0.$$

(c)
$$x^2 + y^2 + z^2 - 2x + 4z - 1 = 0$$
.

$$(\mathbf{D}) x^2 + y^2 + z^2 + 2xy - 4y + 4z - 1 = 0.$$

CÂU 7. Trong không gian với hệ toạ độ Oxyz, cho mặt cầu $(S): (x+2)^2+y^2+(z-3)^2=4$. Tâm của (S) có toạ độ là

$$(A) \left(-1; 0; \frac{3}{2}\right).$$
 $(B) (2; 0; -3).$

(c) $(1;0;\frac{3}{2}).$ (-2;0;3).

CÂU 8. Trong không gian Oxyz, một thiết bị phát sóng đặt tại vị trí A(2;0;0). Vùng phủ sóng của thiết bị có bán kính bằng 1. Điểm nào sau đây thuộc vùng phủ sóng của thiết bị nói trên?

(A) P(1;0;0).

(B) O(0;0;0).

(**c**) N(0;1;1).

(D) M(1;0;3).

CÂU 9. Trong không gian Oxyz, cho mặt cầu (S): $x^2 + y^2 + z^2 - 2x + 4y + 2z - 3 = 0$. Bán kính R của mặt cầu (S) bằng

(A) $\sqrt{3}$.

(B) 9.

(c) $3\sqrt{3}$.

CÂU 10. Trong không gian Oxyz, phương trình mặt cầu tâm I(1;2;3), bán kính R=2 có dang

$$(\mathbf{A})(x-1)^2 + (y-2)^2 + (z-3)^2 = 4.$$

(B)
$$(x-1)^2 + (y-2)^2 + (z-3)^2 = 2$$
.

$$\mathbf{\hat{C}}(x+1)^2 + (y+2)^2 + (z+3)^2 = 2.$$

$$(\mathbf{D})(x+1)^2 + (y+2)^2 + (z+3)^2 = 4.$$

CÂU 11. Trong không gian Oxyz, tìm m để phương trình $x^2+y^2+z^2-2x-y+4z-m=0$ là phương trình của mặt cầu.

 $\bigcirc m \ge \frac{21}{4}$. $\bigcirc m < \frac{21}{4}$.

CÂU 12. Trong không gian với hệ toạ độ Oxyz, mặt cầu (S): $x^2 + y^2 + z^2 - 2ax - 2by - 2ax -$ 2cz + d = 0 có bán kính R bằng

 $(\mathbf{A}) a^2 + b^2 + c^2 + d.$

B) $\sqrt{a^2 + b^2 + c^2 + d}$

 $(\mathbf{c})\sqrt{a^2+b^2+c^2-d}$

 $(\mathbf{D}) a^2 + b^2 + c^2 - d.$

Phần II. Trong mỗi ý a), b), c) và d) ở mỗi câu, học sinh chọn đúng hoặc sai.

CÂU 1. Trong không gian Oxyz, cho mặt cầu $(S): (x-2)^2+y^2+(z+1)^2=1$ và mặt phẳng (P): x + 2y - z + 1 = 0. Các mệnh đề sau đúng hay sai?

Mệnh đề	Ð	S
a) Khoảng cách từ tâm I đến mặt phẳng (P) bằng $\frac{\sqrt{6}}{3}$.		
b) Mặt cầu (S) có tâm $I(2;0;-1)$ và bán kính $R=1.$		
c) Mặt phẳng (P) tiếp xúc mặt cầu (S) .		
d) Phương trình mặt cầu tâm $I(2;0;-1)$ và tiếp xúc mặt phẳng (P)		
là: (S') : $x^2 + y^2 + z^2 - 4x + 2z + \frac{7}{3} = 0$.		

CÂU 2. Trong không gian Oxyz, cho mặt cầu (S): $(x-1)^2 + (y+3)^2 + (z-2)^2 = 49$.

Mệnh đề	Ð	\mathbf{S}
a) Mặt cầu (S) có bán kính $R=7$.		
b) Điểm $A(1;4;2)$ nằm trên mặt cầu (S) .		
c) Mặt cầu (S) có tâm $I(1;3;2)$.		
d) Mặt cầu (S) còn có phương trình: $x^2+y^2+z^2-2x+6y-4z-49=0$.		

CÂU 3. Trong không gian Oxyz, cho mặt cầu $(S): x^2 + y^2 + z^2 + 2x + 8y + 1 = 0$. Các mệnh đề sau đúng hay sai?

QUICK NOTE	Mệnh đề	Đ	S
······································	a) Mặt cầu (S) có tâm $I(1;4;0)$.		
	b) Mặt cầu (S) còn có phương trình: $(S): (x+1)^2 + (y+4)^2 + z^2 = 16$.		
	c) Điểm $M(0;3;4)$ nằm bên ngoài mặt cầu (S) .		
	d) Mặt cầu (S) có bán kính $R=4$.		
	a) 1.140 caa (2) co san 11111 10 1.		
	CÂU 4. Trong không gian $Oxyz$, cho ba điểm $A(1;2;-4),B(1;-3;1),C(2;2;1)$;3).	
	Mệnh đề	Ð	S
	a) Bán kính của mặt cầu (S_4) đi qua ba điểm A, B, C và có tâm nằm trên mặt phẳng (Oxy) là $R = \sqrt{26}$.		
	b) Mặt cầu (S_1) tâm A , bán kính $R=1$ có phương trình là: $(x-1)^2+$		
	$(y-2)^2 + (z-4)^2 = 1.$		
	c) Bán kính của mặt cầu (S_2) có tâm là A và đi qua điểm C là $\sqrt{50}$.		
	d) Mặt cầu (S_3) nhận AB làm đường kính có phương trình là: $(x-1)^2+$		
	$\left(y + \frac{1}{2}\right)^2 + \left(z + \frac{3}{2}\right)^2 = \frac{25}{2}.$		
	Phần III. Học sinh điền kết quả vào ô trống.		
	CÂU 1. Trong không gian $Oxyz$, cho phương trình $x^2 + y^2 + z^2 - 4x + 2my + z^2$	$3m^2 -$	-2m=0
	với m là tham số. Tính tổng tất cả các giá trị nguyên của m để phương tr	ình đ	ã cho là
	phương trình mặt cầu.		
	KQ:		
	CÂU 2. Trong không gian $Oxyz$ (đơn vị của các trục tọa độ là ki-lô-mét),	—⊢ đài ki	—⊢ ểm soát
	không lưu sân bay có tọa độ $(-64;128;64)$. Máy bay bay trong phạm vi cách	đài ki	iểm soát
	500 km thì sẽ hiển thị trên màn hình ra đa. Một máy bay N xuất hiện trên m		
	và một máy bay M nằm trong mặt phẳng (P) : $x - 2y + 2z - 1458 = 0$ sao cho M , N thuộc đường thẳng có vecto chỉ phương là $\overrightarrow{u} = (1;1;1)$. Khoảng cách :		
	hai máy bay M,N là bao nhiêu km? (kết quả làm tròn đến hàng đơn vị)		
	KQ:		
	Iteg.		
	CÂU 3. Một vỏ kem ốc quế là một loại bánh khô, hình nón (N) trong khôr		
	thường được làm bằng một chiếc bánh xốp dùng để đặt kem vào và cầm ăn thát hoặc muỗng. Người ta thả vào vỏ kem (N) một viên kem vani hình cầu có		_
	socola nhỏ tại hai vị trí $A(2;1;3)$ và $B(6;5;5)$ sao cho đường kính AB có B	là tân	n đường
	tròn đáy khối nón. Khi thể tích của khối nón (N) nhỏ nhất thì mặt phẳng qua khối nón (N) và song song với mặt phẳng chứa đường tròn đáy của (N) có		
	2x + by + cz + d = 0. Tính giá trị của biểu thức $T = b + c + d$.	phaoi	18 0111111
	KQ:		
	CÂU 4. Trong không gian $Oxyz$, cho mặt cầu (S) : $x^2 + y^2 + z^2 - 2x - 4y - 2x - 2x - 4y - 2x - 2$	+ 6 <i>z</i> −	-13 = 0
	x = -1 + t	,13	7
	và đường thẳng d : $\begin{cases} x=-1+t\\ y=-2+t \text{. Gọi } M(a;b;c) \text{ với } a<0 \text{ là điểm thuộc đườn}\\ z=1+t \end{cases}$	ig thai	$ag \ as ao$
	cho từ M kẻ được ba tiếp tuyến MA , MB , MC đến mặc cầu (S) $(A,B,C$ là c		
	thỏa mãn $\widehat{AMB}=60^\circ;$ $\widehat{BMC}=90^\circ;$ $\widehat{CMA}=120^\circ.$ Tính giá trị của biểu thức		
	KQ:		
	CÂU 5. Trong không gian $Oxyz$ (đơn vị của các trục tọa độ là ki–lô-mét),		
	phát sóng điện thoại di động có đầu thu đặt tại điểm $I(1;2;2)$ biết rằng sóng của trạm là 3 km. Hai người sử dụng điện thoại lần lượt tại $M(4;-4;2)$		
	Song của trại là 3 km. Hai người sử dựng diện thoại làn luột tại $M(4, -4, 2)$ Gọi $E(a;b;c)$ với $a<0$ là một điểm thuộc ranh giới vùng phủ sóng của trại		

khoảng cách từ E đến vị trí M và N lớn nhất. Tính T=a+b+c.

KQ:

CÂU 6. Người ta muốn thiết kế một bồn chứa khí hoá lỏng hình cầu bằng phần mềm 3D (tham khảo hình vẽ). Cho biết phương trình bề mặt của bồn chứa là (S): $(x-2)^2 + y^2 + (z+1)^2 = 1$. Phương trình mặt phẳng chứa nắp là (P): z-6=0. Tính khoảng cách từ tâm bồn chứa đến mặt phẳng chứa nắp.

KQ:

—HÉ́Т—

									3	j	l			C	•	K			١)											
		•	•	•	•		•			•					•	•	•	•	•	•	•	•	•										_
	•	•	•	•	•	•	•	•	•	•	٠	٠	٠	٠	•	٠	•	•	•	•	•	٠	٠	•	•	•	•	٠	٠	•	٠	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•					•			•					•	•														•		•	
	•	•	•	•	•	•	•	•		•					•																	٠	
	•		•	•	•																												
	•																																
									•																								
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•		
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	٠	٠	٠	٠	•	٠	•	•	•	•	•	٠	٠	•	•	•	•	٠	٠	•	٠	•	
•	•	٠	•	•	•	٠	•	٠	٠	•	٠	٠	٠	٠	•	•	•	•	•	•	•	•	•	•	•	•	٠	٠	٠	•	•	•	•
•	•	•	•	•	•	•	٠	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•					•	•	•	•	•	
			•	•	•												•	•	•	•	•												•
	•	•	•	•	•	•		•							•																	٠	
	•																																
	•																																
																																•	
																																•	
•	•																										•	•	•	•		•	•
	•	•													•		•	•	•	•	•						•			•			

Bài 14	1. PHƯƠNG TRÌNH MẶT PHẨNG	1
A	LÝ THUYẾT CẦN NHỚ	1
B		9
	Dạng 1. Xác định vectơ pháp tuyến và điểm thuộc mặt phẳng	
	🗁 Dạng 2. Lập phương trình mặt phẳng khi biết các yếu tố liên quan	
	Dạng 3. Vị trí tương đối của hai mặt phẳng	
	Dạng 4. Khoảng cách từ một điểm đến mặt phẳng, khoảng cách giữa hai mặt phẳng song	-
	BÀI TẬP TRẮC NGHIỆM TỰ LUYỆN	10
Bài 15	5. PHƯƠNG TRÌNH ĐƯỜNG THẮNG	13
A	LÝ THUYẾT CẦN NHỚ	13
\mathbf{B}	PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN	13
	🗁 Dạng 1. Xác định điểm thuộc và vectơ chỉ phương của đường thẳng	14
	ightharpoonup Dạng 2. Viết phương trình đường thẳng d khi biết vài yếu tố liên quan	
	Dạng 3. Vị trí tương đối của hai đường thẳng	
	Dạng 4. Vị trí tương đối của đường thẳng và mặt phẳng	
	BÀI TẬP TRẮC NGHIỆM TỰ LUYỆN	22
	5. CÔNG THỨC TÍNH GÓC TRONG KHÔNG GIAN	26
A	LÝ THUYẾT CẦN NHỚ	26
lacksquare	PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN	26
	🗁 Dạng 1. Tính góc trong không gian Oxyz	
	🗁 Dạng 2. Tọa độ hóa một số bài toán hình không gian	
	BÀI TẬP TRẮC NGHIỆM TỰ LUYỆN	30
Bài 17	7. PHƯƠNG TRÌNH MẶT CẦU	33
A	LÝ THUYẾT CẦN NHỚ	33
\mathbf{B}	PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN	3
•	ightharpoonup Dạng 1. Xác định tâm I , bán kính r của mặt cầu cho trước	35
	Dạng 2. Lập phương trình mặt cầu và ứng dụng thực tiễn	
	Dạng 3. Vị trí tương đối của điểm, của mặt phẳng với mặt cầu	37
	BÀI TẬP TRẮC NGHIỆM TỰ LUYỆN	38

