Markov chains with rewards

Hal Caswell University of Amsterdam

IDEM 128 May 2023

Lifetime accumulation

- imagine accumulating something over lifetime
- call it a "reward"

(much like kaiten sushi)

Individual lives

- trajectories through the life cycle
- probabilities given by transition matrix

$$\mathbf{P} = \left(\begin{array}{c|c} \mathbf{U} & \mathbf{0} \\ \mathbf{M} & \mathbf{I} \end{array}\right)$$

• trajectories (lives) are stochastic

Examples of rewards

reward	lifetime accumulation
a year of life	longevity
a year of healthy life	healthy longevity
an offspring	lifetime reproductive output
income	lifetime income

Analysis

transition matrix

$$\mathbf{P} = \left(\begin{array}{c|c} \mathbf{U} & \mathbf{0} \\ \hline \mathbf{M} & \mathbf{I} \end{array}\right)$$

define a reward matrix

$$\mathbf{R}(i,j)$$
 = reward for transition $j \rightarrow i$

but rewards are random, so define the moments of reward

$$\mathbf{R}_m(i,j) = m$$
th moment of reward $m = 1, 2, 3, ...$

assume no rewards for the dead

$$\mathbf{R}_m(i,j) = 0$$
 if j an absorbing state

Analysis

$$\begin{array}{rcl} E(\widetilde{\rho}) & = & \widetilde{\rho}_1 \\ V(\widetilde{\rho}) & = & \widetilde{\rho}_2 - \widetilde{\rho}_1 \circ \widetilde{\rho}_1 \\ SD(\widetilde{\rho}) & = & \sqrt{V(\widetilde{\rho})} \end{array}$$

(and skewness, kurtosis, etc.)

Analysis¹

 $\widetilde{\rho}_i$ = vector of *i*th moments of lifetime rewards

$$\begin{split} \widetilde{\rho}_1 &= \mathbf{N}^\mathsf{T} \mathbf{Z} (\mathbf{P} \circ \mathbf{R}_1)^\mathsf{T} \mathbf{1}_{s+1} \\ \widetilde{\rho}_2 &= \mathbf{N}^\mathsf{T} \left[\mathbf{Z} (\mathbf{P} \circ \mathbf{R}_2)^\mathsf{T} \mathbf{1}_{s+1} + 2 (\mathbf{U} \circ \widetilde{\mathbf{R}}_1)^\mathsf{T} \widetilde{\rho}_1 \right] \\ \widetilde{\rho}_3 &= \mathbf{N}^\mathsf{T} \left[\mathbf{Z} (\mathbf{P} \circ \mathbf{R}_3)^\mathsf{T} \mathbf{1}_{s+1} + 3 (\mathbf{U} \circ \widetilde{\mathbf{R}}_2)^\mathsf{T} \widetilde{\rho}_1 + 3 (\mathbf{U} \circ \widetilde{\mathbf{R}}_1)^\mathsf{T} \widetilde{\rho}_2 \right] \\ \text{where} \\ & \mathbf{N} &= (\mathbf{I} - \mathbf{U})^{-1} \\ & \mathbf{Z} &= \left(\mathbf{I}_{\tau \times \tau} \mid \mathbf{0}_{\tau \times \alpha} \right) \\ & \widetilde{\mathbf{R}}_m &= \mathbf{R}_m (1 : \tau, 1 : \tau) \end{split}$$

Healthy longevity: prevalence²

- prevalence is probability of having condition of interest
- prevalence measured from cross-sectional data
- health expectancy (HE), via Sullivan method
- Sullivan method for health expectancy

$$\ell(x) = P[\text{survival to age } x]$$

$$v(x)$$
 = prevalence of health at age x

$$HE(a) = \frac{1}{\ell(a)} \int_{a}^{\infty} \ell(x) v(x) dx$$

= E (healthy years remaining at age a)

treat health condition as a reward

¹van Daalen and Caswell 2017, Theoretical Ecology, Thm. 1. 2 > 4 2 > 2 < 9 < @

²Caswell and Zarulli 2018, Population Health Metrics

Reward matrices for prevalence

$$v_j$$
 = prevalence in age class j

then

reward
$$j \rightarrow i = \begin{cases} 1 & \text{with probability } v_j \\ 0 & \text{with probability } 1 - v_j \end{cases}$$

so

$$\mathbf{R}_1 = \left(egin{array}{ccc|c} v_1 & \cdots & v_\omega & 0 \ dots & dots & dots \ v_1 & \cdots & v_\omega & 0 \ \hline v_1/2 & \cdots & v_\omega/2 & 0 \end{array}
ight)$$

and

$$\mathbf{R}_2 = \mathbf{R}_3 = \cdots = \mathbf{R}_1$$

ロト 4回ト 4 重ト 4 重ト 重 めの()

Types of health rewards

- binary (e.g., disability-free)
 - Bernoulli distribution
- counts (e.g., number of hospitalizations)
 - maybe Poisson distribution
- quantitative measures (e.g., grip strength)
 - empirical measurement of moments
- amount of life lost (e.g., in DALY)
 - · moments calculated from Markov chain model

Stochasticity in healthy longevity: the missing ingredient

- stochasticity in trajectories
- stochasticity in health outcomes (prevalence)
- variance among individuals in lifetime experience

SHARE survey data

- Survey of Health, Ageing and Retirement in Europe
- wave 4, 2011, data for Germany, Sweden, France, Denmark, Switzerland, Belgium, Czech Republic, Portugal, and Estonia
- prevalence of disability (binary): moments calculated from Bernoulli distribution
- grip strength³ (continuous): moments calculated from empirical individual-level measures
- measurements only reliable to age 90

³Affects mortality, myocardial infarction, stroke, cardiovascular mortality 📱 🗸 a c

An example: healthy longevity from SHARE data⁴

 v_j = prevalence of disability-freedom in age class j

Rewards

$$r_{ij} = \begin{cases} 1 & \text{with probability } v_j \\ 0 & \text{with probability } 1 - v_j \end{cases}$$

Disability-free longevity (Belgium)

		M	en	Wo	Women		
		55	75	55	75		
mean	L	24.5	10.1	27.9	11.8		
	HL	20.6	7.6	22.2	7.9		
SD	L	9.4	5.1	8.5	5.1		
	HL	7.6	3.8	6.4	3.2		
CV	L	0.38	0.50	0.31	0.40		
	HL	0.37	0.50	0.29	0.41		
Sk	L	-0.75	-0.38	-1.34	-0.89		
	HL	-0.80	-0.28	-1.35	-0.51		

See the paper for more results

⁴Caswell and Zarulli 2018, Population Health Metrics

Healthy longevity: incidence models⁵

- incidence refers to transitions among health states
- · requires longitudinal data
- age-specific health transition matrices ...
- lead to age-stage multistate Markov chains
- health is part of the i-state, not just a prevalence
- basic questions
 - occupancy
 - longevity (total, healthy)
 - eventual fate
 - accumulation of rewards
 - life lost due to causes
 - · sensitivity analysis

Multistate model: ages and health stages

x = 1

x = 2

 $\mathbf{X} = \omega$

An example: a model for colorectal cancer⁶

BMC Cancer 2006. 6:136

http://www.biomedcentral.com/1471-2407/6/136

⁶Wu et al. 2006, BMC Cancer

How to measure "healthy longevity"

- 1. **Occupancy of health states.** How much life spent in a specified health condition, including combinations of ages and health stages?
- 2. Transitions among health states.
- 3. The "value" of occupancy of health states.
- 4. The "value" of transitions among states.

⁵Caswell and van Daalen 2021, Demographic Research → ⟨⟨⟨⟨⟨⟨⟨⟨⟩⟩⟩⟩ ⟨⟨⟨⟨⟨⟨⟩⟩⟩ ⟨⟨⟨⟨⟨⟩⟩⟩ ⟨⟨⟨⟨⟨⟩⟩⟩ ⟨⟨⟨⟨⟨⟩⟩⟩ ⟨⟨⟨⟨⟩⟩⟩ ⟨⟨⟨⟨⟨⟩⟩⟩ ⟨⟨⟨⟨⟩⟩⟩ ⟨⟨⟨⟨⟩⟩⟩ ⟨⟨⟨⟨⟩⟩⟩ ⟨⟨⟨⟨⟩⟩⟩ ⟨⟨⟨⟨⟩⟩⟩ ⟨⟨⟨⟨⟩⟩⟩ ⟨⟨⟨⟨⟩⟩⟩ ⟨⟨⟨⟩⟩⟩ ⟨⟨⟨⟨⟩⟩⟩ ⟨⟨⟨⟨⟩⟩⟩ ⟨⟨⟨⟩⟩⟩ ⟨⟨⟨⟨⟩⟩⟩ ⟨⟨⟨⟩⟩⟩ ⟨⟨⟨⟨⟩⟩⟩ ⟨⟨⟨⟩⟩⟩⟩ ⟨⟨⟨⟩⟩⟩ ⟨⟨⟨⟩⟩⟩ ⟨⟨⟩⟩⟩ ⟨⟨⟨⟩⟩⟩ ⟨⟨⟨⟩⟩⟩ ⟨⟨⟨⟩⟩⟩⟩ ⟨⟨⟨⟩⟩⟩⟩ ⟨⟨⟨⟩⟩⟩ ⟨⟨⟨⟩⟩⟩⟩⟩ ⟨⟨⟨⟩⟩⟩⟩ ⟨⟨⟨⟩⟩⟩⟩ ⟨⟨⟨⟩⟩⟩⟩ ⟨⟨⟨⟩⟩⟩⟩ ⟨⟨⟨⟩⟩⟩⟩ ⟨⟨⟨⟩⟩⟩⟩⟩ ⟨⟨⟨⟩⟩⟩⟩⟩ ⟨⟨⟨⟩⟩⟩⟩ ⟨⟨⟨⟩⟩⟩⟩⟩ ⟨⟨⟨⟩⟩⟩⟩⟩ ⟨⟨⟨⟩⟩⟩⟩ ⟨⟨⟨⟩⟩⟩⟩ ⟨⟨⟨⟩⟩⟩⟩ ⟨⟨⟨⟩⟩⟩⟩ ⟨⟨⟨⟩⟩⟩⟩ ⟨⟨⟨⟩⟩⟩⟩⟩

Constructing age × stage matrix models⁷

 \mathbf{U}_i = age-specific state transitions

 $\mathbb{U} = \mathsf{block} \, \mathsf{diagonal} \, \mathsf{matrix}$

 \mathbf{D}_{j} = stage-specific age transitions

 \mathbb{D} = block diagonal matrix

K = vec-permutation matrix

Then

$$\widetilde{\mathbf{U}} = \mathbf{K}^{\mathsf{T}} \mathbb{D} \mathbf{K} \mathbb{U}$$

$$\widetilde{\mathbf{P}} = \left(\begin{array}{c|c} \widetilde{\mathbf{U}} & \mathbf{0} \\ \hline \mathbf{M} & \mathbf{I} \end{array} \right)$$

Longevity by age and stage: the health matrix

Create an array ${\bf H}$ to specify age-stage combinations of interest

Stages
healthy
small adenoma
large adenoma
preclinical early CRC
preclinical late CRC
clinical early CRC
clinical late CRC

1	2	Age 3	es 4	 ω

Define "healthy" longevity in the CRC model

For example:

- 1. **Cancer-free longevity.** Time spent in any of the cancer-free stages (1–3) over a lifetime.
- 2. **Old age clinical cancer.** The time spent in any of the clinical cancer stages (6–7) after a specified age (65 years)

e.g., Cancer-free longevity

Put a 1 in cells that count as "healthy"

	Ages					
Stage	1	2	3	4		ω
normal cells	1	1	1	1	1	1
small adenoma	1	1	1	1	1	1
large adenoma	1	1	1	1	1	1
preclinical early CRC						
preclinical late CRC						
clinical early CRC						
clinical late CRC						

(zeros elsewhere)

Old age clinical cancer

Stages healthy small adenoma large adenoma preclinical early CRC preclinical late CRC clinical early CRC clinical late CRC

	$egin{array}{cccccccccccccccccccccccccccccccccccc$						
,	1	2	3	4		ω	
L							
;							
				1	• • •	1	
				1	• • •	1	

(zeros elsewhere)

How many definitions of health are there?

7 cancer stages \times 50 ages = 350 combinations

Number of definitions of health $= 2^{350} \approx 10^{105}$

Compare this to 10^{24} stars in the visible universe

How many definitions of health are there?

Reward matrices

Including partial occupancy when transitions into or out of states occur

Define

 $\mathbf{r} = \mathsf{vec}\,\mathbf{X}$

Then

 $\widetilde{\mathbf{R}}_1 = \mathbf{r}\mathbf{r}^{\mathsf{T}} + 0.5 \, (\sim \mathbf{r}) \, (\mathbf{r}^{\mathsf{T}}) + 0.5 \, (\mathbf{r}) \, (\sim \mathbf{r}^{\mathsf{T}})$

and

$$\begin{array}{rcl} \widetilde{R}_2 & = & \widetilde{R}_1 \circ \widetilde{R}_1 \\ \widetilde{R}_3 & = & \widetilde{R}_1 \circ \widetilde{R}_1 \circ \widetilde{R}_1 \end{array}$$

$$\widetilde{\mathbf{R}}_3 = \widetilde{\mathbf{R}}_1 \circ \widetilde{\mathbf{R}}_1 \circ \widetilde{\mathbf{R}}$$

Colorectal cancer

BMC Cancer 2006, 6:136

http://www.biomedcentral.com/1471-2407/6/136

Standard deviation healthy longevity

Mean healthy longevity

Coefficient of variation of healthy longevity

Concluding thoughts: MCWR

- very powerful tool for analyzing variation in lifetime experiences
- a fixation on expectancies neglects important aspects related to risk
- Markov chains with rewards give all the moments of lifetime accumulation
- in the case of health, provides limitless defintion of "healthy" longevity: any combination of health stages and ages
- extensions

 value or cost of occupancy, transitions into
 or out of stages, components of variance, decomposition of
 differences

