Niveau: Première année de PCSI

COLLE 23 = POLYNÔMES, FRACTIONS RATIONNELLES, FONCTIONS DÉRIVABLES ET FONCTIONS À PLUSIEURS VARIABLES

Polynômes et Fractions rationnelles :

Exercice 1.

Décomposer les fractions suivantes en éléments simples sur \mathbb{R} , par identification des coefficients.

1.
$$F = \frac{X}{X^2 - 4}$$

3.
$$H = \frac{2X^3 + X^2 - X + 1}{X^2 - 2X + 1}$$

1.
$$F = \frac{X}{X^2 - 4}$$
 3. $H = \frac{2X^3 + X^2 - X + 1}{X^2 - 2X + 1}$ 2. $G = \frac{X^3 - 3X^2 + X - 4}{X - 1}$ 4. $K = \frac{X + 1}{X^4 + 1}$

4.
$$K = \frac{X+1}{X^4 + 1}$$

Exercice 2.

On pose $Q_0 = (X-1)(X-2)^2$, $Q_1 = X(X-2)^2$ et $Q_2 = X(X-1)$. À l'aide de la décomposition en éléments simples de $\frac{1}{X(X-1)(X-2)^2}$, trouver des polynômes $A_0,\ A_1,\ A_2$ tels que $A_0Q_0 + A_1Q_1 + A_2Q_2 = 1.$

Exercice 3.

Calculer les intégrales suivantes :

1.
$$\int_0^{\frac{\pi}{4}} \frac{\sin^3(t)}{1 + \cos^2(t)} dt$$
 2.
$$\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{dt}{\sin(t)}$$

$$2. \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{dt}{\sin(t)}$$

Exercice 4.

Soit $T_n(x) = \cos(n \arccos(x))$ pour $x \in [-1, 1]$.

- 1. (a) Montrer que pour tout $\theta \in [0, \pi]$, $T_n(\cos\theta) = \cos(n\theta).$
 - (b) Calculer T_0 et T_1 .
 - (c) Montrer la relation de récurrence $T_{n+2}(x) = 2xT_{n+1}(x) - T_n(x)$, pour tout
 - (d) En déduire que T_n une fonction polynomiale de degré n.
- 2. Soit $P(X) = \lambda(X a_1) \cdots (X a_n)$ un polynôme, où les a_k sont deux à deux distincts et $\lambda \neq 0$. Montrer que

$$\frac{1}{P(X)} = \sum_{k=1}^{n} \frac{\frac{1}{P'(a_k)}}{X - a_k}$$

3. Décomposer $\frac{1}{T_n}$ en éléments simples.

Exercice 5.

Intégrer les fractions rationnelles suivantes :

1.
$$\int \frac{x^3}{x^2 - x - 6} dx$$

1.
$$\int \frac{x^3}{x^2 - x - 6} dx$$
 2. $\int \frac{x^3}{x^2 + 4x + 4} dx$

Fonctions à plusieurs variables :

Exercice 6.

Pour $(x,y) \in \mathbb{R}^2$, on pose

$$f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}.$$

Montrer que f est de classe C^1 (au moins) sur \mathbb{R}^2 .

Exercice 7.

Soit
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

$$(x,y) \mapsto \begin{cases} 0 \text{ si } y = 0 \\ y^2 \sin\left(\frac{x}{y}\right) \text{ si } y \neq 0 \end{cases}$$

- 1. Etudier la continuité de f
- 2. Etudier l'existence et la valeur éventuelle de dérivées partielles d'ordre 1 sur \mathbb{R}^2 .
- 3. Étudier $\frac{\partial^2 f}{\partial x \partial y}$ et $\frac{\partial^2 f}{\partial y \partial x}$ en (0,0).

Exercice 8.

Trouver les extrema locaux de

2.
$$f: \mathbb{R}^2 \to \mathbb{R}$$

 $(x,y) \mapsto x^2 + 2y^2 - 2xy - 2y + 1$
3. $f: \mathbb{R}^2 \to \mathbb{R}$
 $(x,y) \mapsto x^4 + y^4 - 4xy$

3.
$$f: \mathbb{R}^2 \to \mathbb{R}$$

 $(x,y) \mapsto x^4 + y^4 - 4xy$

Exercice 9.

On désire fabriquer une boite ayant la forme d'un parallélépipède rectangle, sans couvercle sur le dessus. Le volume de cette boite doit être égal à $0.5m^3$ et pour optimiser la quantité de mâtière utilisée, on désire que la somme des aires des faces soit aussi petite que possible. Quelles dimensions doit-on choisir pour fabriquer la boite?