Dynamic codesign in Poly

Marius Furter

February 6, 2022

Contents

1	Rec	cap of Poly
	1.1	Lenses in Poly
	1.2	Operations in Poly
	1.3	Mode-dependence
2	Cod	design in Poly
	2.1	Preliminaries
	2.2	Basic Setup
	2.3	Application to codesign
		2.3.1 Parallel Product
		2.3.2 Composition
	2.4	Recovering codesign problem

1 Recap of **Poly**

Recall that a representable functor has the form $\mathcal{C}(A,-):\mathcal{C}\to\mathsf{Set}$. When $\mathcal{C}=\mathsf{Set}$, we will denote $\mathsf{Set}(A,-)=:y^A$ and call this a monomial. A polynomial functor is any functor that is isomorphic to a sum of monomials

$$p \cong \sum_{i \in I} y^{p[i]},$$

where the $(p[i])_{i\in I}$ is a family of sets, and the sum is taken to be the coproduct in the functor category [Set, Set] given by taking the component-wise disjoint union of the sets in question. Observe that if we evaluate p at the singleton set 1, we recover the indexing set of the sum

$$p(1) \cong \sum_{i \in I} 1^{p[i]} \cong \sum_{i \in I} 1 \cong I.$$

Hence we will often write $p \cong \sum_{i \in p(1)} y^{p[i]}$ to avoid always having to name the index set. The elements of p(1) are called the *positions* of p, while the elements of p[i] are called the *directions* at position i.

Since polynomial functors are functors, morphisms between them are given by natural transformations. By using the universal property of coproducts in [Set, Set] along with the Yoneda lemma, one can observe that

$$\begin{split} \mathsf{Poly}(p,q) &= \mathsf{Poly}(\sum_{i \in p(1)} y^{p[i]}, \sum_{j \in q(1)} y^{q[j]}) \\ &\cong \prod_{i \in p(1)} \mathsf{Poly}(y^{p[i]}, \sum_{j \in q(1)} y^{q[j]}) \\ &\cong \prod_{i \in p(1)} \sum_{j \in q(1)} p[i]^{q[j]} \end{split}$$

The latter expression can be interpreted in terms of dependent products and sums: For every $i \in p(1)$ there exists $j \in q(1)$ with associated function $q[j] \to p[i]$. In other words, a morphism in Poly may be identified with a function $f: p(1) \to q(1)$ on positions, along with a family of functions $(f_i)_{i \in p(1)}$ where $f_i: q[f(i)] \to p[i]$ is a function on directions. This family can be expressed more concisely by assembling it into a dependent function $f^{\sharp}: (i \in I) \to q[f(i)] \to p[i]$.

1.1 Lenses in Poly

We can express lenses in Set within Poly as maps between special types of polynomials. Let us generalize the term *monomial* to include polynomials of the form $\sum_{i \in S} y^A \cong Sy^A$, where the direction sets are independent of the positions. Now consider a morphism

$$\begin{pmatrix} f^{\sharp} \\ f \end{pmatrix} : A^+ y^{A^-} \to B^+ y^{B^-}.$$

This consists of an on-positions function $f:A^+\to B^+$ and an on-directions dependent function $f^{\sharp}:(a^+\in A^+)\to B^-\to A^-$. However, since the direction sets are independent of the positions, this is just a regular function and can be curried to $f^{\sharp}:A^+\times B^-\to A^-$. We now recognize that this is just a lens

$$\begin{pmatrix} f^{\sharp} \\ f \end{pmatrix} : \begin{pmatrix} A^{-} \\ A^{+} \end{pmatrix} \stackrel{\longleftarrow}{\longleftrightarrow} \begin{pmatrix} B^{-} \\ B^{+} \end{pmatrix}.$$

1.2 Operations in Poly

Poly has four monoidal operations $+, \times, \circ$, and \otimes , where \times and \otimes are monoidal closed. The first two are simply the categorical coproduct and product, re-

spectively. For $p = \sum_{i \in p(1)} y^{p[i]}$ and $q = \sum_{j \in q(1)} y^{q[j]}$ these are given by the familiar addition and multiplication of polynomials:

$$p + q = \sum_{i \in p(1)} y^{p[i]} + \sum_{j \in q(1)} y^{q[j]},$$

$$p \times q = \sum_{i \in p(1)} \sum_{j \in q(1)} y^{p[i] + q[j]}.$$

On the other hand, \circ is just functor composition, which corresponds to variable substitution for polynomials. It can be computed as

$$p \circ q \cong \sum_{i \in p(1)} \prod_{d \in p[i]} \sum_{j \in q(1)} \prod_{e \in q[j]} y.$$

Finally, \otimes is given by multiplying both the postitions and directions:

$$p \otimes q = \sum_{i \in p(1)} \sum_{j \in q(1)} y^{p[i]q[j]}.$$

In fact, if we tensor two lenses

$$\binom{f^{\sharp}}{f}: A_1^+ y^{A_1^-} \to B_1^+ y^{B_1^-}.$$

$$\begin{pmatrix} g^{\sharp} \\ q \end{pmatrix}: A_2^+ y^{A_2^-} \to B_2^+ y^{B_2^-}.$$

we get a lens

$$(A_1^+ \times A_2^+) y^{A_1^- \times A_2^-} \to (B_1^+ \times B_2^+) y^{B_1^- \times B_2^-}$$

which recovers the usual tensor product of lenses.

1.3 Mode-dependence

We have seen that we can model lenses as polynomial morphisms

$$\begin{pmatrix} f^{\sharp} \\ f \end{pmatrix} : A^+ y^{A^-} \to B^+ y^{B^-}.$$

Translating a lens representing a dynamical system thus yields a morphism $Sy^S \to Oy^I$. We obtain mode-dependent systems by generalizing the former to morphisms of the type $Sy^S \to q$, where q is an arbitrary polynomial. Let us see how this differs from what we had before.

To specify a map $\sum_{s\in S} y^S \cong Sy^S \to \sum_{j\in q(1)} y^{q[j]}$ we must give a function $f:S\to q(1)$ on positions and a dependent function $f^\sharp:(s\in S)\to q[f(s)]\to S$ on directions. We still think of the elements of q(1) as outputs. The passback function f^\sharp now additionally takes into account what the current output is, since it goes from $q[f(s)]\to S$ for each $s\in S$. In other words, the possible inputs a system can receive now depend on what the current output is.

2 Codesign in Poly

2.1 Preliminaries

Let P be a preorder whose objects we interpret as resources and whose relation $a \leq b$ means that being able to provide b implies being able to provide a. A feasibility relation $\Phi: F \to R$ is then a monotone function $F^{\mathrm{op}} \times R \to \mathsf{Bool}$. Observe that

$$hom(F^{op} \times R, Bool) \cong hom(R, hom(F^{op}, Bool))$$

 $\cong hom(R, LF)$

Consider a monotone map $\varphi: LR \to LF$ which preserves unions. This induces a monotone map $\bar{\varphi}: R \to LF$ by $\bar{\varphi}(r) := \varphi(\downarrow r)$, where $\downarrow r$ denotes the lower closure of $\{r\}$. On the other hand, if we have a monotone map $\psi: R \to LF$ we can extend it in a unique way to a monotone map $\tilde{\psi}: LR \to LF$ which preserves unions by setting $\tilde{\psi}(\downarrow s) := \psi(s)$ on principal lower sets. Then $\tilde{\psi}(S) = \tilde{\psi}(\bigcup_{s \in S} \downarrow s) = \bigcup_{s \in S} \tilde{\psi}(\downarrow s) = \bigcup_{s \in S} \psi(s)$. Since these operations are inverse to one another we have shown that

$$hom(R, LF) \cong \{\varphi \colon LR \to LF : \varphi \text{ monotone and preserves unions.} \}$$

Combining with the above, this shows that feasibility relation are just union preserving monotone functions $LR \to LF$. Moreover, the composition of such functions is again monotone and preserves unions. This justifies restricting out attention to monotone maps with this special property.

2.2 Basic Setup

Let $f_t: A_t \to B_t$ be a family of functions between sets indexed by $t \in T$. Moreover, let $u_t: A_t \to T$ be a family of function indexed by T. We interpret T as a (branching) timeline. If at time $t \in T$ we choose to transform $a \in A_t$ to $f_t(a) \in B_t$, then the timeline advances to $u_t(a) \in T$.

We can view this data as a directed graph with vertices (f_t, t) for $t \in T$ where any vertex (f_t, t) has edges emanating from it indexed by A_t . The vertices of this graph are interpreted as the transformations $f_t : A_t \to B_t$ that are available to us at time t. Using f_t on $a \in A_t$ advances time to $u_t(a)$ where we now have $f_{u_t(a)} : A_{u_t(a)} \to B_{u_t(a)}$ available to us.

Example 2.1: Linear time

To model linear time we set $T := \mathbb{N}$ and put $u_t : A_t \to T$ to be $u_t(a) = t+1$ for all $a \in A_t$ and $t \in T$. The resulting graph looks like this:

Example 2.2: Branching time

Our model for time can accommodate branching which depends on our choices. Let $T := \{(n, i) : n \in \mathbb{N}, 1 \le i \le 2^n\}$, and let $A_t := \{0, 1\}$ for all $t \in T$. We can now consider the branching tree:

We now encode this data in a mode-dependent system in Poly with states

$$S := \{ (f_{u_t(a)}, f_t(a)) : a \in A_t \}.$$

The input set at time t will be A_t and the output set B_t . This means that we are considering the system

$$Sy^S \to \sum_{t \in T} B_t y^{A_t}$$

with on-positions map $(f_{u_t(a)}, f_t(a)) \mapsto f_t(a) \in B_t$ and on directions map $(f_t, x) \mapsto a \mapsto (f_{u_t(a)}, f_t(a))$.

We consider some special cases to illustrate this definition.

Example 2.3: Time-invariant system

If $T := \{*\}$, our system consist of a single function $f : A \to B$ and $u_* : A \times T \to T$ is uniquely defined. Hence our states are simply

$$S := \{ (f, f(a)) : a \in A \}.$$

Inputting $a_1 \in A$ into the system outputs $f(a_1)$ and updates the state to $f, f(a_1)$). Now inputting $a_2 \in A$ outputs $f(a_2)$ and updates the state to $f, f(a_2)$). So our system simply behaves like the function f and transforms a stream of inputs $(a_1, a_2, a_3, \ldots) \in A^{\mathbb{N}}$ into the stream $(f(a_1), f(a_2), f(a_3), \ldots) \in B^{\mathbb{N}}$.

Example 2.4: Linear time system with constant interface

Now consider $T := \mathbb{N}$ with $A_t = A$, $B_t = B$ for all t and set $u_t(a) = t + 1$ for all $a \in A$. However let $f_t : A \to B$ be potentially different functions. Hence our states are simply

$$S := \{ (f_{t+1}, f_t(a)) : t \in \mathbb{N}, a \in A \}.$$

Our systems always accepts inputs from A and outputs into B. Suppose we start in the state (f_0, x) , where $x \in B$ is some default initial output. Then inputting $a_0 \in A$ into the systems will update the state to $(f_1, f_0(a_1))$ and cause it to output $f_0(a_0)$. Inputting $a_1 \in A$ will update the

state to $(f_2, f_1(a_1))$ and output $f_1(a_1)$. So our system transforms inputs $(a_0, a_1, a_2, \ldots) \in A^{\mathbb{N}}$ into the stream $(f_0(a_0), f_1(a_1), f_2(a_2), \ldots) \in B^{\mathbb{N}}$.

Example 2.5: Linear time system with variable interfaces

We can change what input type the linear time system above accepts by letting the input and output sets A_t, B_t vary over time. Such a system transforms inputs $(a_0, a_1, a_2, ...) \in \prod_{t \in \mathbb{N}} A_t$ into the stream $(f_0(a_0), f_1(a_1), f_2(a_2), ...) \in \prod_{t \in \mathbb{N}} B_t$.

Example 2.6: Branching time system with constant interfaces

Let $A_t = \{0,1\}$ and $B_t = B$ for all $t \in T := \{(n,i) : n \in \mathbb{N}, 1 \leq i \leq 2^n\}$. Our available transformations and their transitions are given by the branching graph:

This graph is simultaneously the transition diagram for our system, where the second element in the tuple is what the system is currently outputting. Given a vertex s representing a state, the available inputs correspond to the labeled edges emanating from s. If we input a to the system, following the edge with label a leads to the new state, along with its output.

2.3 Application to codesign

To apply the above top codesign, we simply specialize the functions f_i : $A_i \to B_i$ to be monotone maps $\phi_i : \mathsf{L} R_i \to \mathsf{L} F_i$ which preserve unions. A nice feature is that each $\mathsf{L} P$ contains the emptyset which can act as a default value for input and output. Inputting the emptyset corresponds to waiting.

Example 2.7: Waiting

So far, each transition takes exactly one time-step which is modeled as an application of the function u_t . What if we want certain transformations to take longer? One way to achieve this is to close the input channel for several time-steps and only then outputting the functionality. This is illustrated by the following transition diagram:

We can think of a vanilla codesign problem as a time-invariant system as in Example 2.3. So there is a way to map any object in DP into poly using that construction. A nice feature of embedding codesign in Poly is that we can use the operations present there to build larger systems in an intuitive manner.

2.3.1 Parallel Product

Suppose we have two systems $\Phi:=(T^{\Phi},\varphi_t:\mathsf{L}R_i^{\Phi}\to\mathsf{L}F_i^{\Phi},u_t^{\Phi})$ and $\Psi:=(T^{\Psi},\psi_t:\mathsf{L}R_i^{\Psi}\to\mathsf{L}F_i^{\Psi},u_t^{\Psi})$. There parallel product has signature

$$(S^\Phi \times S^\Psi) y^{(S^\Phi \times S^\Psi)} \to \sum_{t \in T^\Phi} \sum_{f \in \mathsf{LF}_t^\Phi} \sum_{s \in T^\Psi} \sum_{g \in \mathsf{LF}_s^\Psi} y^{\mathsf{LR}_t^\Phi \times \mathsf{LR}_s^\Psi} \cong \sum_{(t,s) \in T^\Phi \times T^\Psi} (\mathsf{L}R_t^\Phi \times \mathsf{L}R_s^\Psi) y^{\mathsf{LR}_t^\Phi \times \mathsf{LR}_s^\Psi}$$

and has on positions map $((\varphi_{u_t^{\Phi}(r)}, \varphi_t(r)), (\psi_{u_t^{\Psi}(r')}, \psi_t(r'))) \mapsto (\varphi_t(r), \psi(r'))$ and for $s = ((\varphi_t, x), (\psi_{t'}, x'))$ it has on-directions map $(r, s) \mapsto ((\varphi_{u_t^{\Phi}(r)}, \varphi_t(r)), (\psi_{u_{t'}^{\Psi}(s)}, \psi(s)).$

2.3.2 Composition

2.4 Recovering codesign problem

How do trajectories compose?