- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

25 giugno 2012

																	L					
			(Co	gno	me)				_			(No	me)			_		ume	ro di	i ma	tric	ola)

CODICE = 213806

1	00000
2	00000
3	00000
4	00000
5	0000
6	
7	
8	
9	00000
10	0000

 $A \quad B \quad C \quad D \quad E$

1. L'integrale

$$\int_0^3 \frac{x}{x+1} \, dx$$

vale

A: $\frac{1}{2}\log(5/2)$ B: $\log(3e)$ C: $1 - \log(2/3)$ D: $1 + \log(9/16)$ E: N.A.

2. Modulo e argomento del numero complesso $z=(\frac{\sqrt{2}}{2}+i\frac{\sqrt{2}}{2})^{34}$ sono

A: $(2\sqrt{2}, -\pi/2)$ B: $(-1, \pi)$ C: $(1, \pi/3)$ D: $(1, \frac{\pi}{2})$ E: N.A.

3. Data $f(x) = (\log(x))^{(2^x)}$, allora f'(e) vale

A: e^{e-1} B: 2 C: N.A. D: $\frac{2^e}{e}$ E: N.E.

4. La funzione $f(x) = x^4 - x^2$ è concava per

A: N.A. B: $x \in [-1/\sqrt{2}, 0] \cup [1/\sqrt{2}, +\infty[$ C: $x \in \mathbb{R}^+$ D: x < 1 E: $|x| \ge 6^{-1/2}$

5. Inf, min, sup e max dell'insieme

 $A = \{k \in \mathbb{R} : \text{La soluzione di } y'(x) = k\,y(x),\; y(0) = 1 \text{ è integrabile in senso generalizzato su } [0, +\infty[\}] \}$

valgono

A: $\{-\infty, N.E., 0, 0\}$ B: $\{0, N.E., \pi, N.E.\}$ C: $\{-\infty, N.E., 0, N.E.\}$ D: $\{-1, -1, 1, 1\}$ E: N.A.

6. Il limite

$$\lim_{k \to +\infty} \frac{\int_0^{k^2} e^{-x/k} \, dx}{k}$$

vale

A: $+\infty$ B: 1 C: N.A. D: 0 E: N.E.

7. La funzione $f(x) = \begin{cases} \frac{1}{e^{e^x}} & \text{per } x < 0 \\ ax + 1/e & \text{per } x \ge 0 \end{cases}$ risulta derivabile in x = 0 per a uguale a

A: N.E. B: N.A. C: 1/e D: -e E: $-e^{-1}$

8. La funzione $f:\ \mathbb{R}^+\backslash\{1\}\to\mathbb{R}$ definita da $f(x)=3^{\log_3(x)}$ è

A: convessa B: non derivabile C: monotona decrescente D: N.A. E: limitata superiormente

9. L'integrale

$$\int_0^e \log(x) \, dx$$

vale

A: 0 B: $\frac{-1+2e}{e}$ C: N.A. D: -1 E: N.E.

10. La serie numerica

$$\sum_{n=1}^{\infty} \frac{n + \log(n^3)}{n^{\alpha} + \log(n^{\alpha})}$$

converge per $\alpha \geq 0$ tale che

A: $\alpha \geq 3$ B: N.A. C: $\alpha > 3$ D: $1 < \alpha < 2$ E: $0 \leq \alpha \leq 3$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

25 giugno 2012

			(Co	gnoi	me)				_			(No	me)				(Nı	ıme	ro u	i ma	atric	ola)

A	В	С	D	\mathbf{E}	

1	
2	0000
3	
4	
5	00000
6	00000
7	
8	
9	
10	00000

1. La funzione
$$f(x) = x^4 - x^2$$
 è concava per

A:
$$x < 1$$
 B: N.A. C: $x \in [-1/\sqrt{2}, 0] \cup [1/\sqrt{2}, +\infty[$ D: $|x| \ge 6^{-1/2}$ E: $x \in \mathbb{R}^+$

$$\lim_{k \to +\infty} \frac{\int_0^{k^2} e^{-x/k} \, dx}{k}$$

vale

A: N.E. B:
$$+\infty$$
 C: 1 D: 0 E: N.A.

3. La serie numerica

$$\sum_{n=1}^{\infty} \frac{n + \log(n^3)}{n^{\alpha} + \log(n^{\alpha})}$$

converge per $\alpha \geq 0$ tale che

A: N.A. B:
$$1 < \alpha < 2$$
 C: $\alpha > 3$ D: $0 \le \alpha \le 3$ E: $\alpha \ge 3$

4. Inf, min, sup e max dell'insieme

 $A = \{k \in \mathbb{R} : \text{La soluzione di } y'(x) = k y(x), \ y(0) = 1 \text{ è integrabile in senso generalizzato su } [0, +\infty[\}]$ valgono

$$\text{A:} \ \{-1,-1,1,1\} \quad \text{B:} \ \{-\infty, N.E., 0, N.E.\} \quad \text{C: N.A.} \quad \text{D:} \ \{0, N.E., \pi, N.E.\} \quad \text{E:} \ \{-\infty, N.E., 0, 0\}$$

5. Modulo e argomento del numero complesso $z=(\frac{\sqrt{2}}{2}+i\frac{\sqrt{2}}{2})^{34}$ sono

A:
$$(2\sqrt{2}, -\pi/2)$$
 B: N.A. C: $(1, \frac{\pi}{2})$ D: $(-1, \pi)$ E: $(1, \pi/3)$

6. L'integrale

$$\int_0^e \log(x) \, dx$$

vale

A: N.A. B:
$$N.E$$
. C: -1 D: 0 E: $\frac{-1+2e}{e}$

7. La funzione $f(x) = \begin{cases} \frac{1}{e^{e^x}} & \text{per } x < 0 \\ ax + 1/e & \text{per } x \ge 0 \end{cases}$ risulta derivabile in x = 0 per a uguale a

A: N.A. B:
$$-e$$
 C: $1/e$ D: N.E. E: $-e^{-1}$

8. L'integrale

$$\int_0^3 \frac{x}{x+1} \, dx$$

vale

A: N.A. B:
$$1 - \log(2/3)$$
 C: $\frac{1}{2} \log(5/2)$ D: $\log(3e)$ E: $1 + \log(9/16)$

9. La funzione $f: \mathbb{R}^+ \backslash \{1\} \to \mathbb{R}$ definita da $f(x) = 3^{\log_3(x)}$ è

A: convessa B: limitata superiormente C: non derivabile D: N.A. E: monotona decrescente

10. Data $f(x) = (\log(x))^{(2^x)}$, allora f'(e) vale

A:
$$\frac{2^e}{e}$$
 B: N.E. C: e^{e-1} D: 2 E: N.A.

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

25 giugno 2012

			(Co	ogno	me)				-			(No	me)			=	(N	ume	ero d	i ma	atric	

A	В	С	D	Ε	

1	
2	0000
3	
4	
5	00000
6	00000
7	
8	
9	
10	00000

1. La funzione $f: \mathbb{R}^+ \setminus \{1\} \to \mathbb{R}$ definita da $f(x) = 3^{\log_3(x)}$ è

A: monotona decrescente B: non derivabile C: convessa D: limitata superiormente E: N.A.

2. La funzione $f(x) = \begin{cases} \frac{1}{e^{e^x}} & \text{per } x < 0 \\ ax + 1/e & \text{per } x \ge 0 \end{cases}$ risulta derivabile in x = 0 per a uguale a

A: $-e^{-1}$ B: N.A. C: -e D: 1/e E: N.E.

3. Il limite

$$\lim_{k \to +\infty} \frac{\int_0^{k^2} e^{-x/k} \, dx}{k}$$

vale

A: N.E. B: 1 C: $+\infty$ D: N.A. E: 0

4. Inf, min, sup e max dell'insieme

 $A = \{k \in \mathbb{R} : \text{La soluzione di } y'(x) = k y(x), \ y(0) = 1 \text{ è integrabile in senso generalizzato su } [0, +\infty[\}]$ valgono

A: N.A. B: $\{-1, -1, 1, 1\}$ C: $\{0, N.E., \pi, N.E.\}$ D: $\{-\infty, N.E., 0, 0\}$ E: $\{-\infty, N.E., 0, N.E.\}$

5. Data $f(x) = (\log(x))^{(2^x)}$, allora f'(e) vale

 $A\colon e^{e-1} \quad B\colon N.E. \quad C\colon \tfrac{2^e}{e} \quad D\colon 2 \quad E\colon N.A.$

6. Modulo e argomento del numero complesso $z=(\frac{\sqrt{2}}{2}+i\frac{\sqrt{2}}{2})^{34}$ sono

A: $(1, \pi/3)$ B: $(1, \frac{\pi}{2})$ C: $(-1, \pi)$ D: N.A. E: $(2\sqrt{2}, -\pi/2)$

7. L'integrale

$$\int_0^3 \frac{x}{x+1} \, dx$$

vale

A: $\log(3e)$ B: N.A. C: $1 - \log(2/3)$ D: $\frac{1}{2}\log(5/2)$ E: $1 + \log(9/16)$

8. La funzione $f(x) = x^4 - x^2$ è concava per

A: N.A. B: $x \in \mathbb{R}^+$ C: $|x| \ge 6^{-1/2}$ D: x < 1 E: $x \in [-1/\sqrt{2}, 0] \cup [1/\sqrt{2}, +\infty[$

9. L'integrale

$$\int_0^e \log(x) \, dx$$

vale

A: 0 B: N.E. C: N.A. D: $\frac{-1+2e}{e}$ E: -1

10. La serie numerica

$$\sum_{n=1}^{\infty} \frac{n + \log(n^3)}{n^{\alpha} + \log(n^{\alpha})}$$

converge per $\alpha \geq 0$ tale che

A: $\alpha \ge 3$ B: $0 \le \alpha \le 3$ C: N.A. D: $1 < \alpha < 2$ E: $\alpha > 3$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

25 giugno 2012

			(Co	gno	me)				_			(N	ome)			_	ume	i ma	atric	ola)

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
4 0 0 0 0 5
5
6
7
8
9
10

1. Inf, min, sup e max dell'insieme

 $A = \{k \in \mathbb{R} : \text{La soluzione di } y'(x) = k y(x), \ y(0) = 1 \text{ è integrabile in senso generalizzato su } [0, +\infty[\}]$ valgono

A: $\{-\infty, N.E., 0, N.E.\}$ B: N.A. C: $\{-1, -1, 1, 1\}$ D: $\{0, N.E., \pi, N.E.\}$ E: $\{-\infty, N.E., 0, 0\}$

2. Il limite

$$\lim_{k \to +\infty} \frac{\int_0^{k^2} e^{-x/k} dx}{k}$$

vale

A: 1 B: 0 C: N.A. D: N.E. E: $+\infty$

3. La funzione $f(x) = \begin{cases} \frac{1}{e^{e^x}} & \text{per } x < 0 \\ & \text{risulta derivabile in } x = 0 \text{ per } a \text{ uguale a} \end{cases}$

A: N.A. B: -e C: N.E. D: $-e^{-1}$ E: 1/e

4. La serie numerica

$$\sum_{n=1}^{\infty} \frac{n + \log(n^3)}{n^{\alpha} + \log(n^{\alpha})}$$

converge per $\alpha \geq 0$ tale che

A: $1 < \alpha < 2$ B: $0 \le \alpha \le 3$ C: $\alpha > 3$ D: N.A. E: $\alpha \ge 3$

5. Modulo e argomento del numero complesso $z=(\frac{\sqrt{2}}{2}+i\frac{\sqrt{2}}{2})^{34}$ sono

A: $(1, \pi/3)$ B: $(1, \frac{\pi}{2})$ C: $(-1, \pi)$ D: N.A. E: $(2\sqrt{2}, -\pi/2)$

6. Data $f(x) = (\log(x))^{(2^x)},$ allora $f'(\mathbf{e})$ vale

A:
$$\frac{2^{e}}{e}$$
 B: N.E. C: N.A. D: e^{e-1} E: 2

7. La funzione $f(x) = x^4 - x^2$ è concava per

 $\mathbf{A} \colon |x| \geq 6^{-1/2} \quad \ \, \mathbf{B} \colon x \in [-1/\sqrt{2}, 0] \cup [1/\sqrt{2}, +\infty[\quad \ \, \mathbf{C} \colon x \in \mathbb{R}^+ \quad \ \, \mathbf{D} \colon x < 1 \quad \, \, \mathbf{E} \colon \mathbf{N}.\mathbf{A}.$

8. L'integrale

$$\int_0^e \log(x) \, dx$$

vale

A: 0 B: $\frac{-1+2e}{e}$ C: N.A. D: -1 E: N.E.

9. La funzione $f: \mathbb{R}^+ \setminus \{1\} \to \mathbb{R}$ definita da $f(x) = 3^{\log_3(x)}$ è

A: convessa B: non derivabile C: monotona decrescente D: N.A. E: limitata superiormente

10. L'integrale

$$\int_0^3 \frac{x}{x+1} \, dx$$

vale

A: N.A. B: $\log(3e)$ C: $1 + \log(9/16)$ D: $\frac{1}{2}\log(5/2)$ E: $1 - \log(2/3)$

25 giugno 2012

(Cognome)											_			(No	me)			-	ume	i ma	trice	la)				

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

25 giugno 2012

			(Co	gno	me)				_			(No	me)			-	ume	i ma	trice	la)

A B C D E

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

25 giugno 2012

			(Co	gno	me)				_			(No	me)			-	ume	i ma	trice	la)

	A	В	\mathbf{C}	D	\mathbf{E}	
--	---	---	--------------	---	--------------	--

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

25 giugno 2012

 (Cognome)									_			(N	ome	e)			-	ume	i ma	trice	la)						

A	В	С	D	\mathbf{E}	

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	$\boxed{\bullet \circ \circ \circ \circ}$