MATH 326 : Mathématiques pour les sciences 3

Correction du contrôle continu nº 1.

Exercice 1. Si i et j sont deux entiers, $i \leq j$,

$$\forall x \neq 1, \quad \sum_{n=i}^{j} x^n = x^i \frac{1 - x^{j-i+1}}{1 - x}, \qquad \forall |x| < 1, \quad \sum_{n=i}^{+\infty} x^n = \frac{x^i}{1 - x}.$$

1. Par conséquent, puisque $0 < \frac{1}{3} = 3^{-1} < 1$,

$$\sum_{n=2}^{6} 2^n = 4 \frac{1 - 2^5}{1 - 2} = 4 \times 31 = 124, \qquad \sum_{n=4}^{+\infty} 3^{-n} = \frac{1}{3^4} \frac{1}{1 - \frac{1}{3}} = \frac{1}{3^4} \frac{3}{2} = \frac{1}{2 \times 3^3} = \frac{1}{54}.$$

2. On a, puisque 1/4, 1/2 et -1/2 appartiennent à l'intervalle]-1,1[,

$$\sum_{n=1}^{+\infty} 4^{-n} = \frac{1}{4} \times \frac{1}{1 - \frac{1}{4}} = \frac{1}{3}, \quad \sum_{n=2}^{+\infty} 2^{-n} = \frac{1}{4} \frac{1}{1 - \frac{1}{2}} = \frac{1}{2}, \quad \sum_{n=0}^{+\infty} (-2)^{-n} = \frac{1}{1 + \frac{1}{2}} = \frac{2}{3},$$

et l'égalité demandée s'en suit immédiatement.

Exercice 2. 1. Pour tout $n \ge 1$, $u_n > 0$ et

$$\frac{u_{n+1}}{u_n} = \frac{(n+1)!}{(n+1)^{n+1}} \frac{n^n}{n!} \frac{n^n}{n!} = \frac{(n+1)!}{n!} \frac{e^{n+1}}{e^n} \frac{n^n}{(n+1)^{n+1}} = (n+1) e^{-\frac{n^n}{(n+1)^{n+1}}} = e^{-\frac{n^n}{(n+1)^n}}.$$

Par conséquent,

$$\frac{u_{n+1}}{u_n} = e\left(\frac{n}{n+1}\right)^n = e\left/\left(\frac{n+1}{n}\right)^n = e\left/\left(1 + \frac{1}{n}\right)^n\right.$$

Puisque $\lim_{x\to 0} \ln(1+x)/x = 1$, par continuité de $x\longmapsto e^x$,

$$\lim_{n\to +\infty} \left(1+\frac{1}{n}\right)^n = \lim_{n\to +\infty} \exp\left(n\ln\left(1+\frac{1}{n}\right)\right) = e^1 = e, \quad \text{et} \quad \lim_{n\to +\infty} \frac{u_{n+1}}{u_n} = 1.$$

La règle de d'Alembert ne permet pas de préciser la nature de la série $\sum u_n$.

2. Soit $n \ge 1$. Comme $\ln(1+x) \le x$ pour tout x > -1, par croissance de $x \longmapsto e^x$,

$$\left(1 + \frac{1}{n}\right)^n = \exp\left(n\ln\left(1 + \frac{1}{n}\right)\right) \le \exp\left(n\frac{1}{n}\right) = e.$$

3. D'après la question précédente, comme $\left(1+\frac{1}{n}\right)^n>0$, pour tout $n\geq 1$,

$$\frac{u_{n+1}}{u_n} = e / \left(1 + \frac{1}{n}\right)^n \ge 1,$$

et comme $u_n > 0$, $u_{n+1} \ge u_n$. La suite $(u_n)_{n>1}$ est croissante.

4. La suite $(u_n)_{n\geq 1}$ étant croissante, pour tout $n\geq 1$, $u_n\geq u_1=e$. La suite $(u_n)_{n\geq 1}$ ne converge donc pas vers 0 et la série $\sum u_n$ est grossièrement divergente.

Exercice 3. 1. C'est une série à termes positifs. $\lim_{n\to+\infty} n^{\frac{1}{n}} = \lim_{n\to+\infty} e^{\ln n/n} = 1$; $\sum u_n$ est grossièrement divergente.

- 2. Pour tout $n \geq 0$, $0 \leq 1/2^n \leq \pi$ et $\sin(1/2^n) \geq 0$. Comme $\sin(x) \leq x$ pour $x \geq 0$, on a $0 \leq \sin(1/2^n) \leq 1/2^n$. La série géométrique $\sum 1/2^n$ est convergente puisque 1/2 appartient à]-1,1[. Par comparaison, $\sum \sin(1/2^n)$ l'est également.
- 3. C'est une série à termes positifs. On a

$$\sqrt[n]{\left(\frac{n}{n+1}\right)^{n^2}} = \left(\frac{n}{n+1}\right)^n = 1/\left(1+\frac{1}{n}\right)^n \longrightarrow 1/e < 1.$$

D'après la règle de Cauchy, la série est convergente.

- 4. Il s'agit d'une série télescopique. Puisque $\lim_{n\to\infty} n^{\frac{1}{n}} = 1$, la série est convergente.
- 5. Il s'agit d'une série à termes positifs. On a $\lim_{n\to+\infty} n \times \frac{1}{n\sqrt[n]{n}} = \lim_{n\to+\infty} \frac{1}{\sqrt[n]{n}} = 1 \left(\sqrt[n]{n} = n^{\frac{1}{n}}\right)$. D'après le critère de Riemann, la série est divergente.
- 6. On a $2^{\ln n}=e^{\ln n\,\ln 2}=n^{\ln 2}.$ C'est une série de Riemann d'ordre $\ln 2\leq 1$; elle est divergente.
- 7. C'est une série à termes positifs. On utilise la règle de d'Alembert :

$$0 \le \frac{u_{n+1}}{u_n} = \frac{(2n+2)!}{(n+1)^{3(n+1)}} \frac{n^{3n}}{(2n)!} = \frac{2(n+1)(2n+1)}{(n+1)^3} \frac{n^{3n}}{(n+1)^{3n}} \le \frac{2(2n+1)}{(n+1)^2} \longrightarrow 0 < 1.$$

La série est convergente.

- 8. Encore une série à termes positifs. On a $\lim_{n\to+\infty} n^2 \times \ln(n) 5^{-\sqrt{n}} = 0$. D'après le critère de Riemann, la série est convergente.
- 9. Les termes de la série ne sont pas de signe constant. On a, pour tout $n \ge 1$

$$\left| \frac{\sin(n^2)}{n^4 + n^2 + 1} \right| \le \frac{1}{n^4 + n^2 + 1} \le \frac{1}{n^4}.$$

Comme $\sum 1/n^4$ est convergente (Riemann $\alpha = 4$), la série est absolument convergente (donc convergente).