FINAL

Data Science

Sistemas de recomendação

Turma TN05

10/02/2020

DigitalHouse > Evolução do conteúdo

DigitalHouse> Infoxication / Information overload

You know you're suffering from information overload when

NISE TO SIGNAL

DigitalHouse > O paradoxo da escolha

O aumento de opções para o usuário / consumidor não neccessariamente implica em uma maior satisfação das pessoas

Digital House > Sistemas de recomendação (RecSys) trazem comodidade...

DigitalHouse> ... E personalização, aumentando o potencial de vendas

Sistemas de Recomendação aumentam as vendas, principalmente com a expansão de produtos – quase que infinita - que podem ser ofertados online

DigitalHouse > Perspectiva do tempo

DigitalHouse > Netflix

Em 2006 a Netflix – ainda uma companhia que somente enviava DVDs a clientes pelo correio – lançou um desafio com prêmio de 1 milhão de dólares para quem implementasse um algoritmo com performance 10% acima do seu motor de recomendação da época - Cinematch.

DigitalHouse > Generalização

A coleta de dados pode ser explícita (perguntas ao usuário) ou implícita (através de seu comportamento)

DigitalHouse > Colaborativo

- Baseam-se nas interações passadas entre usuários e itens, gerando a Matriz de Interações Usuários x Itens.
- Vai sendo enriquecido com as interações de usuários e itens ao longo do tempo.
- Não necessitam de informações específicas dos usuários ou dos itens, portanto podem ser utilizados em diferentes contextos.

	i,	i ₂	i ₃	i ₄	i ₅
u ₁	5		4	1	
u ₂		3		3	
u ₃		2	4	4	1
u ₄	4	4	5		
u ₅	2	4		5	2

DigitalHouse > Colaborativo: usuário vs usuário

DigitalHouse > Colaborativo: item vs item

Digital House > Colaborativo: memory vs model based

RecSys colaborativos sofrem Cold Start – quando inicialmente não temos informações de itens ou usuários.

Memory base, podem ter problemas de escalabilidade por tratarem com matrizes esparsas

DigitalHouse > Baseado em conteúdo

- Usa características adicionais, além da Matriz de Interações – Usuários x Itens para alimentar o modelo que faz as recomendações.
- As recomendações são normalmente realizadas por modelos de Classificação ou de Regressão através dos algoritmos tradicionais (Árvores Decisão, Class. Bayes, Regressão Logística, Deep Learning, etc).

DigitalHouse > Baseado em conteúdo

Matrix Factorization

	M1	M2	МЗ	M4	M5
Comedy	3	1	1	3	1
Action	1	2	4	1	3

	Comedy	Action	
A A	1	0	
B	0	1	
C	1	0	
D	1	1	

DigitalHouse > Baseado em conteúdo

- Permite e utilização de diversas técnicas (NLP, Computer Vision, etc) – para enriquecer as informações de usuários e itens. Principalmente com as descrições em texto.
- Não sofre com os problemas de cold start, porém podem ser tão especializados/específicos que acabam recomendando itens sempre muito parecidos (filter bubble).

Fig. 3.1: High level architecture of a Content-based Recommender

DigitalHouse > Medidas de similaridade

CORRELAÇÃO DE PEARSON

$$ho = rac{\sum_{i=1}^n (x_i - ar{x})(y_i - ar{y})}{\sqrt{\sum_{i=1}^n (x_i - ar{x})^2} \cdot \sqrt{\sum_{i=1}^n (y_i - ar{y})^2}} = rac{\mathrm{cov}(X,Y)}{\sqrt{\mathrm{var}(X) \cdot \mathrm{var}(Y)}}$$

SIMILARIDADE COSSENOS

Cosine Distance/Similarity

JACCARD INDEX/SIMILARITY

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|} = \frac{|A \cap B|}{|A|+|B|-|A \cap B|}$$

Hybrid Recommenders

