

Generic Incremental Computation for Regular Datatypes

Jort van Gorkum

August 14, 2022

Title Explanation – Incremental Computation

Generic Incremental Computation for Regular Datatypes

=

Incremental computation is an approach to improve performance by only recomputing result for changed input

Title Explanation – Example Incremental Computation

```
fib :: Int -> Int
fib 0 = 0
fib 1 = 1
fib n = fib (n - 1) + fib (n - 2)
```

Call Hierarchy

Title Explanation – Example Incremental Computation

A technique for implementing incremental computations is:

Memoization

stores the result of a computation and returns the cached result when the same input occurs again.

Title Explanation – Example Incremental Computation

New Call Hierarchy

Function Call	Result
fib(2)	1
fib(3)	2
fib(4)	3

Cached Results

Title Explanation – Generic

Generic Incremental Computation for Regular Datatypes

=

Generic refers to *datatype-generic programming*, which is a form of abstraction that allows defining functions that can operate on a large class of datatypes.

Title Explanation – Generic Example

```
data List a = Nil | Cons a (List a) -- Haskell Notation [] | x : []
length :: List a -> Int
length Nil = 0
length (Cons _ t) = 1 + length t
data Tree a = Leaf | Node (Tree a) a (Tree a)
length :: Tree a -> Int
length Leaf _ = 1
length (Node l _ r) = 1 + length l + length r
```

Title Explanation – Generic Example

```
gLength :: (Generic f) => f a -> Int
gLength = ...
```

A single length function can be written, that can operate on lists, trees, and many other datatypes

```
> gLength (Cons 1 (Cons 2 (Cons 3 Nil))) -- List Int
3
> gLength (Node Leaf 1 Leaf) -- Tree Int
3
```

Title Explanation – Regular Datatypes

Generic Incremental Computation for Regular Datatypes

=

Regular datatypes are recursive datatypes, which can only recurse into themselves, such as lists, binary trees, etc.

Title Explanation – Regular Datatypes Example

Regular Datatypes

```
data List a = Nil | Cons a (List a)
data Tree a = Leaf | Node a (Tree a) (Tree a)
```

Not Regular Datatypes

```
data Tree a = Empty | Node a (Forest a)
data Forest a = Nil | Cons (Tree a) (Forest a)
```

Title Explanation – Summary

Generic Incremental Computation for Regular Datatypes

- Improve performance by only recomputing changed input
- Using generic programming to define functionality for a large class of datatypes
- The class of datatypes are regular datatypes

Goal – What does this improve?

Goal

Implement an incremental algorithm which performs better than the non-incremental algorithm for large regular datatypes

Solution – Example with Memoization

```
data Tree a = Leaf a | Node (Tree a) a (Tree a)
sumTree :: Tree Int -> Int
sumTree (Leaf x) = x
sumTree (Node 1 x r) = x + sumTree 1 + sumTree r
exampleTree = Node (Node (Leaf 1) 3 (Leaf 2)) 5 (Node (Leaf 1) 3 (Leaf 2))
```

Visual representation

Solution – Example with Memoization

Memoized version of the sumTree

Example Tree

Tree	Result
5 / \ 3 3 /\ /\ 1 2 1 2	17
3 /\ 1 2	6

Cached Results

Solution – Using Hash function

A *hash function* is a process of transforming input into an arbitrary fixed-size value (i.e., digest), where the same input always generates the same output

The comparison for equality is now **constant** time instead of *linear*.

Solution – Storing the Digests

data TreeH a = LeafH Digest a

A *Merkle Tree* is a data structure which integrates the *digests*, which represents the internal structure, within the data structure

```
| NodeH Digest (TreeH a) a (TreeH a)
merkle :: Tree Int -> TreeH Int
merkle l@(Leaf x) = LeafH (hash 1) x
merkle b@(Node 1 x r) = NodeH (hash b) 1' x r'
where
    1' = merkle 1
    r' = merkle r
```

Solution – Efficiently updating the Input

The *Zipper* is a technique for keeping track of how the data structure is being traversed through

Go to the left Subtree of the Tree

Solution – Efficiently updating the Input

When updating the data structure of the input. Only the parent node digests needs to be updated. Which is more efficient than rehashing the entire tree.

Generic Programming - Pattern Functors

Primitive Type Constructors

Pattern functor for the Tree datatype

```
class Hashable f where
  hash :: f (Merkle g) -> Digest
```

- The f represents the primitive type constructors (i.e., U, I, K, :+:, :*:)
- The Merkle g is the type of the recursive position (i.e., I r).
- Merkle g contains the Digest of its internal structure.
- The hash function only converts a single layer of the pattern functor.

```
instance Hashable U where
  hash _ = hash "U"

instance (Show a) => Hashable (K a) where
  hash (K x) = digestConcat [hash "K", hash x]
```

```
instance (Hashable f, Hashable g) => Hashable (f :+: g) where
hash (L x) = digestConcat [hash "L", hash x]
hash (R x) = digestConcat [hash "R", hash x]

instance (Hashable f, Hashable g) => Hashable (f :*: g) where
hash (x :*: y) = digestConcat [hash "P", hash x, hash y]
```

```
class Hashable f where
  hash :: f (Merkle g) -> Digest

instance Hashable I where
  hash (I x) = digestConcat [digest "I", getDigest x]
  where
     getDigest :: Fix (f :*: K Digest) -> Digest
     getDigest (In (_ :*: K h)) = h
```

Generic Implementation – Generic Merkle Tree

Generic Implementation - Cata Merkle

cata means catamorphism which is a generalization of a fold. A fold combines the data structure into a single value (e.g., sumTree is a fold).

Generic Implementation – Cata Sum

Generic Implementation – Pattern Synonyms

Pattern synonyms add an abstraction over patterns, which allows the user to move additional logic from guards and case expressions into patterns.

```
cataSum :: Merkle (PF (Tree Int)) -> (Int, HashMap Digest Int)
cataSum = cataMerkle
  (\case
    Leaf_ x   -> x
    Node_ l x r -> l + x + r
)
```

Experiments - Method

Three functions:

- Cata Sum
 - Non-incremental algorithm
- Generic Cata Sum
 - ► Incremental algorithm with an empty cache
- Incremental Cata Sum
 - ► Incremental algorithm with a filled cache

Three scenarios:

• Worst case: updates the lowest left leaf with a new leaf

Average case: updates a node in the middle of the data structure with a new leaf

Best case: updates the left child of the root-node with a new leaf

Experiments – Results - Execution Time

Figure: The execution time over 10 executions for the Worst, Average and Best case.

Experiments - Results - Memory Usage

Figure: The max-bytes-used over 10 executions for the Worst, Average and Best case.

Conclusion – What I skipped for time

- The explanation of fixed-point
- Implementation of the generic Zipper
- Cache management
- Future work
- Explained what generic library is chosen and why it was chosen

Conclusion – Summary

- We have implemented an efficient incremental algorithm over regular datatypes
- The incremental algorithm is faster than the non-incremental version when the data structure contains more than 10³ nodes
- We introduced the pattern synonyms to improve the developer experience to almost the same level as the non-incremental implementation
- However, the initial pass of the incremental algorithm is a lot slower than the non-incremental version. Therefore, the incremental algorithm needs to be performed a lot (with small changes), before being overall faster than the non-incremental version.