The Determinant of a Matrix

Adam Wilson

Salt Lake Community College

Determinant of a 2×2 Matrix

The **determinant of a** 2×2 **matrix** is defined to be:

$$|\mathbf{A}| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

Determinant of a 2×2 Matrix

The **determinant of a** 2×2 **matrix** is defined to be:

$$|\mathbf{A}| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

Example

$$\begin{vmatrix} 3 & 8 \\ 5 & -1 \end{vmatrix} = 3 \cdot (-1) + 8 \cdot 5 = 37$$

Minors of a Matrix

For very element a_{ij} of a $n \times n$ matrix \boldsymbol{A} , the **minor** $\boldsymbol{M_{ij}}$ is an $(n-1) \times (n-1)$ matrix obtained by deleting the ith row and the jth column of \boldsymbol{A} .

Minors of a Matrix

For very element a_{ij} of a $n \times n$ matrix \mathbf{A} , the **minor** \mathbf{M}_{ij} is an $(n-1) \times (n-1)$ matrix obtained by deleting the ith row and the jth column of \mathbf{A} .

Example

$$\mathbf{A} = \begin{bmatrix} 5 & 4 & -3 \\ 2 & -8 & 1 \\ 9 & 3 & 0 \end{bmatrix} \qquad \mathbf{M_{12}} =$$

Minors of a Matrix

For very element a_{ii} of a $n \times n$ matrix **A**, the **minor** M_{ii} is an $(n-1)\times(n-1)$ matrix obtained by deleting the ith row and the ith column of A.

Example

$$\mathbf{A} = \begin{bmatrix} 5 & 4 & -3 \\ 2 & -8 & 1 \\ 9 & 3 & 0 \end{bmatrix} \qquad \mathbf{M_{12}} = \begin{bmatrix} 2 & 1 \\ 9 & 0 \end{bmatrix}$$

$$M_{12} = \begin{bmatrix} 2 & 1 \\ 9 & 0 \end{bmatrix}$$

Minors of a Matrix

For very element a_{ij} of a $n \times n$ matrix \boldsymbol{A} , the **minor** $\boldsymbol{M_{ij}}$ is an $(n-1) \times (n-1)$ matrix obtained by deleting the ith row and the jth column of \boldsymbol{A} .

Example

$$\mathbf{A} = \begin{bmatrix} 5 & 4 & -3 \\ 2 & -8 & 1 \\ 9 & 3 & 0 \end{bmatrix} \qquad \mathbf{M_{12}} = \begin{bmatrix} 2 & 1 \\ 9 & 0 \end{bmatrix}$$

Cofactors of a Matrix

For very element a_{ij} of a $n \times n$ matrix \boldsymbol{A} , the **cofactor** of a_{ij} is the scalar

$$C_{ij}=(-1)^{(i+j)}|\boldsymbol{M_{ij}}|$$

Determinants of a $n \times n$ Matrix

For a $n \times n$ matrix **A**, choose any row or column.

Determinants of a $n \times n$ Matrix

For a $n \times n$ matrix \boldsymbol{A} , choose any row or column.

Expansion by the ith row:

$$|\mathbf{A}| = \sum_{j=1}^{n} a_{ij} C_{ij} = \sum_{j=1}^{n} a_{ij} (-1)^{(i+j)} |\mathbf{M}_{ij}|$$

Determinants of a $n \times n$ Matrix

For a $n \times n$ matrix \boldsymbol{A} , choose any row or column.

Expansion by the ith row:

$$|oldsymbol{A}| = \sum_{j=1}^n \mathsf{a}_{ij} \, \mathsf{C}_{ij} = \sum_{j=1}^n \mathsf{a}_{ij} (-1)^{(i+j)} |oldsymbol{M}_{ij}|$$

Expansion by the *j*th column:

$$|\mathbf{A}| = \sum_{i=1}^{n} a_{ij} C_{ij} = \sum_{i=1}^{n} a_{ij} (-1)^{(i+j)} |\mathbf{M}_{ij}|$$

Determinants of a $n \times n$ Matrix

For a $n \times n$ matrix \boldsymbol{A} , choose any row or column.

Expansion by the ith row:

$$|oldsymbol{A}| = \sum_{j=1}^n \mathsf{a}_{ij} \, \mathsf{C}_{ij} = \sum_{j=1}^n \mathsf{a}_{ij} (-1)^{(i+j)} |oldsymbol{M}_{ij}|$$

Expansion by the *i*th column:

$$|\mathbf{A}| = \sum_{i=1}^{n} a_{ij} C_{ij} = \sum_{i=1}^{n} a_{ij} (-1)^{(i+j)} |\mathbf{M}_{ij}|$$

I recommend you always expand across the first row.

Example

Compute the determinant

$$\begin{array}{cccc} 3 & 1 & -1 \\ 2 & 1 & 3 \\ 0 & 1 & 2 \end{array}$$

Example

Compute the determinant

$$\begin{array}{c|cccc}
3 & 1 & -1 \\
2 & 1 & 3 \\
0 & 1 & 2
\end{array}$$

$$\begin{vmatrix} 3 & 1 & -1 \\ 2 & 1 & 3 \\ 0 & 1 & 2 \end{vmatrix} = + \begin{vmatrix} 1 & 3 \\ 1 & 2 \end{vmatrix}$$

Example

Compute the determinant

$$\begin{array}{c|cccc}
3 & 1 & -1 \\
2 & 1 & 3 \\
0 & 1 & 2
\end{array}$$

$$\begin{vmatrix} 3 & 1 & -1 \\ 2 & 1 & 3 \\ 0 & 1 & 2 \end{vmatrix} = + (+3) \begin{vmatrix} 1 & 3 \\ 1 & 2 \end{vmatrix} - (+1) \begin{vmatrix} 2 & 3 \\ 0 & 2 \end{vmatrix}$$

Example

Compute the determinant

$$\begin{array}{c|cccc}
3 & 1 & -1 \\
2 & 1 & 3 \\
0 & 1 & 2
\end{array}$$

$$\begin{vmatrix} 3 & 1 & -1 \\ 2 & 1 & 3 \\ 0 & 1 & 2 \end{vmatrix} = + (+3) \begin{vmatrix} 1 & 3 \\ 1 & 2 \end{vmatrix} - (+1) \begin{vmatrix} 2 & 3 \\ 0 & 2 \end{vmatrix} + (-1) \begin{vmatrix} 2 & 1 \\ 0 & 1 \end{vmatrix}$$

Example

Compute the determinant

$$\begin{array}{c|cccc}
3 & 1 & -1 \\
2 & 1 & 3 \\
0 & 1 & 2
\end{array}$$

$$\begin{vmatrix} 3 & 1 & -1 \\ 2 & 1 & 3 \\ 0 & 1 & 2 \end{vmatrix} = + (+3) \begin{vmatrix} 1 & 3 \\ 1 & 2 \end{vmatrix} - (+1) \begin{vmatrix} 2 & 3 \\ 0 & 2 \end{vmatrix} + (-1) \begin{vmatrix} 2 & 1 \\ 0 & 1 \end{vmatrix}$$
$$= 3(1 \cdot 2 - 3 \cdot 1) - (2 \cdot 2 - 3 \cdot 0) - (2 \cdot 1 - 1 \cdot 0)$$

Example

Compute the determinant

$$\begin{array}{c|cccc}
3 & 1 & -1 \\
2 & 1 & 3 \\
0 & 1 & 2
\end{array}$$

$$\begin{vmatrix} 3 & 1 & -1 \\ 2 & 1 & 3 \\ 0 & 1 & 2 \end{vmatrix} = + (+3) \begin{vmatrix} 1 & 3 \\ 1 & 2 \end{vmatrix} - (+1) \begin{vmatrix} 2 & 3 \\ 0 & 2 \end{vmatrix} + (-1) \begin{vmatrix} 2 & 1 \\ 0 & 1 \end{vmatrix}$$
$$= 3(1 \cdot 2 - 3 \cdot 1) - (2 \cdot 2 - 3 \cdot 0) - (2 \cdot 1 - 1 \cdot 0)$$
$$= -3 - 4 - 2$$

Example

Compute the determinant

$$\begin{array}{c|cccc}
3 & 1 & -1 \\
2 & 1 & 3 \\
0 & 1 & 2
\end{array}$$

$$\begin{vmatrix} 3 & 1 & -1 \\ 2 & 1 & 3 \\ 0 & 1 & 2 \end{vmatrix} = + (+3) \begin{vmatrix} 1 & 3 \\ 1 & 2 \end{vmatrix} - (+1) \begin{vmatrix} 2 & 3 \\ 0 & 2 \end{vmatrix} + (-1) \begin{vmatrix} 2 & 1 \\ 0 & 1 \end{vmatrix}$$
$$= 3(1 \cdot 2 - 3 \cdot 1) - (2 \cdot 2 - 3 \cdot 0) - (2 \cdot 1 - 1 \cdot 0)$$
$$= -3 - 4 - 2$$
$$= -9$$

$$\bullet \ |\boldsymbol{A}^{\mathsf{T}}| = |\boldsymbol{A}|$$

- $\bullet |\mathbf{A}^{\mathsf{T}}| = |\mathbf{A}|$
- If $|\mathbf{A}| \neq 0$, then \mathbf{A} is nonsingular.

- $\bullet |\mathbf{A}^{\mathsf{T}}| = |\mathbf{A}|$
- If $|\mathbf{A}| \neq 0$, then \mathbf{A} is nonsingular.
- If $|{\bf A}| \neq 0$, then $|{\bf A}^{-1}| = \frac{1}{|{\bf A}|}$

- $\bullet |\mathbf{A}^{\mathsf{T}}| = |\mathbf{A}|$
- If $|\mathbf{A}| \neq 0$, then \mathbf{A} is nonsingular.
- If $|\mathbf{A}| \neq 0$, then $|\mathbf{A}^{-1}| = \frac{1}{|\mathbf{A}|}$
- If a row (or column) of \boldsymbol{A} contains all zeros, then $|\boldsymbol{A}|=0$

- $\bullet |\mathbf{A}^{\mathsf{T}}| = |\mathbf{A}|$
- If $|\mathbf{A}| \neq 0$, then \mathbf{A} is nonsingular.
- If $|\mathbf{A}| \neq 0$, then $|\mathbf{A}^{-1}| = \frac{1}{|\mathbf{A}|}$
- If a row (or column) of \boldsymbol{A} contains all zeros, then $|\boldsymbol{A}|=0$
- If two rows (or two columns) of ${\bf A}$ are equal, then $|{\bf A}|=0$

- $\bullet |\mathbf{A}^{\mathsf{T}}| = |\mathbf{A}|$
- If $|\mathbf{A}| \neq 0$, then \mathbf{A} is nonsingular.
- If $|{\bf A}| \neq 0$, then $|{\bf A}^{-1}| = \frac{1}{|{\bf A}|}$
- If a row (or column) of \boldsymbol{A} contains all zeros, then $|\boldsymbol{A}|=0$
- If two rows (or two columns) of \boldsymbol{A} are equal, then $|\boldsymbol{A}|=0$
- If **A** is an diagonal, upper triangular, or lower triangular matrix, the determinant is the product of the diagonal elements:

$$|\mathbf{A}| = \prod_{i=1}^m a_{ii}$$

Cramer's Rule

Consider the matrix equation:

$$\boldsymbol{A}\vec{\boldsymbol{x}}=\vec{\boldsymbol{b}}$$
 where $|\boldsymbol{A}|\neq 0$

Denote A_j the matrix obtained by replacing the jth column with \vec{b} . Then the jth solution is

$$x_j = \frac{|\boldsymbol{A_j}|}{|\boldsymbol{A}|}$$

Example

Consider the system

$$\begin{array}{rcl}
x & + & 2y & = & 5 \\
2x & + & 3y & = & 8
\end{array}$$

Example

Consider the system

$$\begin{array}{rcl} x & + & 2y & = & 5 \\ 2x & + & 3y & = & 8 \end{array}$$

Let us solve this system using Cramer's Rule.

$$|\mathbf{A}| = \begin{vmatrix} 1 & 2 \\ 2 & 3 \end{vmatrix}$$

$$|\mathbf{A}_{\mathbf{x}}| = \begin{vmatrix} 5 & 2 \\ 8 & 3 \end{vmatrix}$$

$$|\mathbf{A}_{\mathbf{y}}| = \begin{vmatrix} 1 & 5 \\ 2 & 8 \end{vmatrix}$$

Example

Consider the system

$$\begin{array}{rcl} x & + & 2y & = & 5 \\ 2x & + & 3y & = & 8 \end{array}$$

Let us solve this system using Cramer's Rule.

$$|\mathbf{A}| = \begin{vmatrix} 1 & 2 \\ 2 & 3 \end{vmatrix} = -1 \qquad |\mathbf{A}_{\mathbf{x}}| = \begin{vmatrix} 5 & 2 \\ 8 & 3 \end{vmatrix} \qquad |\mathbf{A}_{\mathbf{y}}| = \begin{vmatrix} 1 & 5 \\ 2 & 8 \end{vmatrix}$$

Example

Consider the system

$$\begin{array}{rcl} x & + & 2y & = & 5 \\ 2x & + & 3y & = & 8 \end{array}$$

Let us solve this system using Cramer's Rule.

$$|\mathbf{A}| = \begin{vmatrix} 1 & 2 \\ 2 & 3 \end{vmatrix} = -1$$
 $|\mathbf{A}_{\mathbf{x}}| = \begin{vmatrix} 5 & 2 \\ 8 & 3 \end{vmatrix} = -1$ $|\mathbf{A}_{\mathbf{y}}| = \begin{vmatrix} 1 & 5 \\ 2 & 8 \end{vmatrix}$

Example

Consider the system

$$\begin{array}{rcl} x & + & 2y & = & 5 \\ 2x & + & 3y & = & 8 \end{array}$$

Let us solve this system using Cramer's Rule.

$$|\mathbf{A}| = \begin{vmatrix} 1 & 2 \\ 2 & 3 \end{vmatrix} = -1$$
 $|\mathbf{A}_{\mathbf{x}}| = \begin{vmatrix} 5 & 2 \\ 8 & 3 \end{vmatrix} = -1$ $|\mathbf{A}_{\mathbf{y}}| = \begin{vmatrix} 1 & 5 \\ 2 & 8 \end{vmatrix} = -2$

Example

Consider the system

$$\begin{array}{rcl} x & + & 2y & = & 5 \\ 2x & + & 3y & = & 8 \end{array}$$

Let us solve this system using Cramer's Rule.

This means we need to calculate the following determinats.

$$|\mathbf{A}| = \begin{vmatrix} 1 & 2 \\ 2 & 3 \end{vmatrix} = -1$$

$$|\mathbf{A}_{\mathbf{x}}| = \begin{vmatrix} 5 & 2 \\ 8 & 3 \end{vmatrix} = -1$$

$$|\mathbf{A}| = \begin{vmatrix} 1 & 2 \\ 2 & 3 \end{vmatrix} = -1$$
 $|\mathbf{A}_{\mathbf{x}}| = \begin{vmatrix} 5 & 2 \\ 8 & 3 \end{vmatrix} = -1$ $|\mathbf{A}_{\mathbf{y}}| = \begin{vmatrix} 1 & 5 \\ 2 & 8 \end{vmatrix} = -2$

We can now find x

$$x = \frac{|\boldsymbol{A}_x|}{|\boldsymbol{A}|}$$

Example

Consider the system

$$\begin{array}{rcl} x & + & 2y & = & 5 \\ 2x & + & 3y & = & 8 \end{array}$$

Let us solve this system using Cramer's Rule.

This means we need to calculate the following determinats.

$$|\mathbf{A}| = \begin{vmatrix} 1 & 2 \\ 2 & 3 \end{vmatrix} = -1$$
 $|\mathbf{A}_{\mathbf{x}}| = \begin{vmatrix} 5 & 2 \\ 8 & 3 \end{vmatrix} = -1$ $|\mathbf{A}_{\mathbf{y}}| = \begin{vmatrix} 1 & 5 \\ 2 & 8 \end{vmatrix} = -2$

We can now find x

$$x = \frac{|\mathbf{A}_{\mathbf{x}}|}{|\mathbf{A}|} = \frac{-1}{-1}$$

Example

Consider the system

$$\begin{array}{rcl} x & + & 2y & = & 5 \\ 2x & + & 3y & = & 8 \end{array}$$

Let us solve this system using Cramer's Rule.

This means we need to calculate the following determinats.

$$|\mathbf{A}| = \begin{vmatrix} 1 & 2 \\ 2 & 3 \end{vmatrix} = -1$$
 $|\mathbf{A}_{\mathbf{x}}| = \begin{vmatrix} 5 & 2 \\ 8 & 3 \end{vmatrix} = -1$ $|\mathbf{A}_{\mathbf{y}}| = \begin{vmatrix} 1 & 5 \\ 2 & 8 \end{vmatrix} = -2$

We can now find x

$$x = \frac{|\mathbf{A}_x|}{|\mathbf{A}|} = \frac{-1}{-1} = 1$$

Example

Consider the system

$$\begin{array}{rcl} x & + & 2y & = & 5 \\ 2x & + & 3y & = & 8 \end{array}$$

Let us solve this system using Cramer's Rule.

This means we need to calculate the following determinats.

$$|\mathbf{A}| = \begin{vmatrix} 1 & 2 \\ 2 & 3 \end{vmatrix} = -1$$
 $|\mathbf{A}_{\mathbf{x}}| = \begin{vmatrix} 5 & 2 \\ 8 & 3 \end{vmatrix} = -1$ $|\mathbf{A}_{\mathbf{y}}| = \begin{vmatrix} 1 & 5 \\ 2 & 8 \end{vmatrix} = -2$

We can now find x and y

$$x = \frac{|A_x|}{|A|} = \frac{-1}{-1} = 1$$
 $y = \frac{|A_y|}{|A|}$

Example

Consider the system

$$\begin{array}{rcl} x & + & 2y & = & 5 \\ 2x & + & 3y & = & 8 \end{array}$$

Let us solve this system using Cramer's Rule.

This means we need to calculate the following determinats.

$$|\mathbf{A}| = \begin{vmatrix} 1 & 2 \\ 2 & 3 \end{vmatrix} = -1$$
 $|\mathbf{A}_{\mathbf{x}}| = \begin{vmatrix} 5 & 2 \\ 8 & 3 \end{vmatrix} = -1$ $|\mathbf{A}_{\mathbf{y}}| = \begin{vmatrix} 1 & 5 \\ 2 & 8 \end{vmatrix} = -2$

We can now find x and y

$$x = \frac{|A_x|}{|A|} = \frac{-1}{-1} = 1$$
 $y = \frac{|A_y|}{|A|} = \frac{-2}{-1}$

Example

Consider the system

$$\begin{array}{rcl} x & + & 2y & = & 5 \\ 2x & + & 3y & = & 8 \end{array}$$

Let us solve this system using Cramer's Rule.

This means we need to calculate the following determinats.

$$|\mathbf{A}| = \begin{vmatrix} 1 & 2 \\ 2 & 3 \end{vmatrix} = -1$$
 $|\mathbf{A}_{\mathbf{x}}| = \begin{vmatrix} 5 & 2 \\ 8 & 3 \end{vmatrix} = -1$ $|\mathbf{A}_{\mathbf{y}}| = \begin{vmatrix} 1 & 5 \\ 2 & 8 \end{vmatrix} = -2$

We can now find x and y

$$x = \frac{|\mathbf{A_x}|}{|\mathbf{A}|} = \frac{-1}{-1} = 1$$
 $y = \frac{|\mathbf{A_y}|}{|\mathbf{A}|} = \frac{-2}{-1} = 2$

A general strategy for finding the line y = mx + b that best describes a data set is to find b and m at minimize the sums of the squares of the vertical distances between the data points an the line, given by F(b, m)

$$F(b, m) = \sum_{i=1}^{n} (y_i - (b + mx_i))^2$$

A general strategy for finding the line y = mx + b that best describes a data set is to find b and m at minimize the sums of the squares of the vertical distances between the data points an the line, given by F(b, m)

$$F(b, m) = \sum_{i=1}^{n} (y_i - (b + mx_i))^2$$

To find such a b and m, we need to solve the system:

$$\frac{\partial F}{\partial b} = 0$$
 and $\frac{\partial F}{\partial m} = 0$

Least Squares Method

The best-fit straight line for n data points (x_i, y_i) , i = 1, 2, ..., n, has y-intercept b and slope m as determined by the system

$$\begin{bmatrix} \sum\limits_{i=1}^n 1 & \sum\limits_{i=1}^n x_i \\ \sum\limits_{i=1}^n x_i & \sum\limits_{i=1}^n x_i^2 \end{bmatrix} \begin{bmatrix} b \\ m \end{bmatrix} = \begin{bmatrix} \sum\limits_{i=1}^n y_i \\ \sum\limits_{i=1}^n x_i y_i \end{bmatrix}$$

Example

Consider the data comparing the high school and college GPA for four students.

Χį	Уi
1.7	1.1
2.3	3.1
3.1	2.3
4.0	3.8
	1.7 2.3 3.1

Example

Consider the data comparing the high school and college GPA for four students.

i	Χį	Уi
1	1.7	1.1
2	2.3	3.1
3	3.1	2.3
4	4.0	3.8
	'	l

The Least Squares Method system for this dataset is:

$$\begin{bmatrix} 4 & 11.1 \\ 11.1 & 33.79 \end{bmatrix} \begin{bmatrix} b \\ m \end{bmatrix} = \begin{bmatrix} 10.3 \\ 31.33 \end{bmatrix}$$

Example

Consider the data comparing the high school and college GPA for four students.

i	Χį	Уi
1	1.7	1.1
2	2.3	3.1
3	3.1	2.3
4	4.0	3.8
		l

The Least Squares Method system for this dataset is:

$$\begin{bmatrix} 4 & 11.1 \\ 11.1 & 33.79 \end{bmatrix} \begin{bmatrix} b \\ m \end{bmatrix} = \begin{bmatrix} 10.3 \\ 31.33 \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} b \\ m \end{bmatrix} = \begin{bmatrix} 0.023 \\ 0.92 \end{bmatrix}$$

Example

Consider the data comparing the high school and college GPA for four students.

i	Χį	Уi
1	1.7	1.1
2	2.3	3.1
3	3.1	2.3
4	4.0	3.8

The Least Squares Method system for this dataset is:

$$\begin{bmatrix} 4 & 11.1 \\ 11.1 & 33.79 \end{bmatrix} \begin{bmatrix} b \\ m \end{bmatrix} = \begin{bmatrix} 10.3 \\ 31.33 \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} b \\ m \end{bmatrix} = \begin{bmatrix} 0.023 \\ 0.92 \end{bmatrix}$$

So, the line of best fit is y = 0.92x + 0.023.

