Entwicklung eines Vorgehensmodells für Cloud-Migrationen zu Salesforce

Eine Betrachtung aus Sicht eines Independent Software Vendors Bachelorthesis Claus Steffen Pegenau (1933040)

Technische Universität Darmstadt

Fachbereich Rechts- und Wirtschaftswissenschaften

Fachgebiet Wirtschaftsinformatik - Information Systems & Electronic Services

Prof. Dr. Alexander Benlian

Betreuer: Prof. Dr. Alexander Benlian

Bachelorthesis zu dem Thema:

Entwicklung eines Vorgehensmodells für Cloud-Migrationen zu Salesforce

Eine Betrachtung aus Sicht eines Independent Software Vendors

Bearbeitet von: Claus Steffen Pegenau

Matr.-Nr.: 1933040

Studiengang: Wirtschaftsinformatik

Eingereicht am: 15.03.2017

Förmliche Erklärung
Hiermit erkläre ich, Claus Steffen Pegenau, geboren am 16.03.1990, an Eides statt, dass ich die vorliegende Bachelorthesis ohne fremde Hilfe und nur unter Verwendung der zulässigen Mittel sowie der angegebenen Literatur angefertigt habe.
Die Arbeit wurde bisher keiner anderen Prüfungsbehörde vorgelegt und auch noch nicht veröffentlicht.
Darmstadt, den 15.03.2017

(Unterschrift)

Inhaltsverzeichnis

Α	bbil	dungsverzeichnis	Vi
T	abel	lenverzeichnis	vii
1	Ein	eitung	1
2	Gru	ndlagen	4
	2.1	(Cloud-)Migrationen und Outsourcing	4
		2.1.1 TODO: On-Premise Definition (hier) einbauen	4
		2.1.2 Vorteile der Cloud und ihre Realisierung	5
		2.1.3 Cloud-Migration	7
		2.1.4 Abgrenzung zum Outsourcing	8
	2.2	Independent Software Vendor (ISV)	8
		2.2.1 Vorteile für ISV	8
		2.2.2 Risiken für ISV	8
		2.2.3 Auswirkungen auf das Geschäft durch SaaS	8
		2.2.4 Entwicklung	11
		2.2.5 Organisationsstrukturen	11
		2.2.6 Wahl des Cloud-Anbieters	11
	2.3	TODO: Devops als Entwicklungsmodell?	12
	2.4	Salesforce als Zielplattform	12
	2.5	Die Migration bestimmende Faktoren	12
		2.5.1 Wirtschaftliche Faktoren	13
		2.5.2 Technische Faktoren	13
	2.6	Das Fünf-Phasen-Wasserfallmodell	14
	2.7	TODO: Hinweis, dass sich diese Arbeit auf die ersten drei Phasen beschränkt	15
3	Vor	gehensmodell für Cloud-Migrationen zu Salesforce	16
	3.1	Phase 1: Machbarkeitsstudie	16
		3.1.1 Technische Machbarkeit	16
		3.1.2 Wirtschaftliche Machbarkeit	16
	3.2	Phase 2: Anforderungsanalyse und -Planung	16
		3.2.1 Anforderungsermittlung	16
		3.2.2 Return on Investment (ROI)	16
		3.2.3 Total Cost of Ownership (TCO)	16
	3.3	Phase 3: Migration	16
	3.4	Phase 4: Tests und Auslieferung	17
	3.5	Phase 5: Überwachung und Wartung	17

Inhaltsverzeichnis

	3.6 Gesamtbetrachtung	
4	4 Forschungsmethoden	 18
5	5 Ideen	 20
	5.1 Einleitung	 20
	5.2 Gamechanger Cloud	 20
	5.2.1 Lifecycle	 20
	5.2.2 Service Migration – Herausforderungen	 21
	5.3 Charakteristika Enterprise Applications	 21
	5.4 Assessment und Guidelines	 22
	5.4.1 Assessment	 22
	5.4.2 Guidelines	 22
	5.5 Inhaltsbeschreibungen	 22
Li	Literatur	 ı

Inhaltsverzeichnis

Abbildungsverzeichnis

Abbildung 1:	Prognose zum Umsatz mit Cloud Computing weltweit von 2009 bis 2015 mit geschätztem Wert für 2016 entnommen aus Statista (2016)	1
Abbildung 2:	Umsatzzahlen entnommen aus salesforce.com (2016), S. 43	2
Abbildung 3:	Total Cost of Ownership/Server aus Harms & Yamartino (2010)	5
Abbildung 4:	XaaS im Vergleich: Umfang von Dienstleistung und Eigenverantwortung. Aus Harms & Yamartino (2010)	7
Abbildung 5:	Der Einfluss des Preises auf das Geschäft. Aus Chappell (2012)	10
Abbildung 6:	Die Umsätze von On-Premise-Anwendungen im Vergleich zu SaaS- Anwendungen. Aus Chappell (2012)	10
Abbildung 7:	Organisationsstrukturelle SaaS-Umsetzungsmöglichkeiten für ISV. Aus Chappell (2012)	11
Abbildung 8:	Das Fünf-Phasen-Wasserfallmodell aus Rai: Sahoo: Mehfuz (2012)	15

Abbildungsverzeichnis vi

Tabellenverzeichnis

Tabelle 1:	Forschungsfragen dieser Arbeit und Stichwörter für die Literaturrecherche. Darstellung und Stichwörter angelehnt an Rai; Sahoo; Mehfuz (2015)	3
Tabelle 2:	Forschungsfragen und zugehörige Rechercheausdrücke. Angelehnt an Rai; Sahoo; Mehfuz (2015)	18
Tabelle 3:	Literaturdatenbanken und für welche Fragen sie herangezogen wurden. Quellen: Rai; Sahoo; Mehfuz (2015) und Benlian (2016)	18

Tabellenverzeichnis vii

1 Einleitung

Die Cloud ist im Mainstream angekommen. (Chase et al. 2014) Wie in Abbildung 1 darsgestellt, wuchs der weltweite Umsatz mit Cloud-Computing von 58,6 Milliarden US-Dollar im Jahr 2009 auf geschätzte 203,9 Milliarden US-Dollar im Jahr 2016, was einem durchschnittlichen jährlichen Wachstum von 16,87%¹ entspricht. (Statista 2016)

Auch deutsche Unternehmen drängen zunehmend in die Cloud. Das Marktforschungsunternehmen PAC schätzt, dass der deutsche Cloud-Markt im Jahr 2016 eine Größe von 12,5 Milliarden Euro hatte und mit durchschnittlich jährlich 20,9%² auf 31,4 Milliarden im Jahr 2020 anwächst. Im deutlichen Gegensatz dazu prognostiziert PAC für den Markt der traditionellen IT-Dienstleistungen ein negatives Wachstum von -1,7%³. (Dufft 2016)

Prognose zum Umsatz mit Cloud Computing weltweit von 2009 bis 2016

Abbildung 1: Prognose zum Umsatz mit Cloud Computing weltweit von 2009 bis 2015 mit geschätztem Wert für 2016 entnommen aus Statista (2016)

Gerade Softwarehersteller aus diesem traditionellen Bereich der IT-Dienstleistungen sehen sich unter Druck gesetzt, ihre Unternehmungen von diesem schrumpfenden Markt weg, in den stark wachsenden Cloud-Markt zu verlagern. Dabei ist es intuitiv vernünftig, vorhandenes Know-How durch Migrationen bestehender Produkte zu nutzen, um Wettbewerbsvorteile auf dem neuen Markt zu nutzen.

Doch nicht nur die Umsatzentwicklung des Marktes setzt die Softwarehersteller unter Druck. Die Kunden haben sich an Anwendungen in der Cloud gewöhnt und erwarten sich - von ihr - eine günstigere, schnellere, einfachere, flexiblere und effizientere IT. Günstiger, weil bei der Beschaffung, der Wartung und dem Betrieb des Rechenzentrums Skalenerträge erzielt werden können. Schneller, weil Cloud-Anbieter Leistungsreserven in einem Umfang bilden können und müssen, wie es für einzelne Firmen in ihren IT-Landschaften kaum möglich ist. Einfacher, weil

1 Einleitung 1

 $^{^{1}}$ CAGR(2009,2016) = 16,87%

 $^{^{2}}$ CAGR(2016,2020) = 20,9%

 $^{^{3}}$ CAGR(2015,2019) = -1,7%

Cloud-Dienste in der Regel auch mit Mobilgeräten gut bedienbar sind. Flexibler, weil sich Leistungen unkompliziert über das Internet buchen lassen und automatisch skalieren. Effizienter, weil nur der Umfang bezahlt wird, der auch genutzt wird. (Harms & Yamartino 2010) Diese bei den Nutzern geweckten Erwartungen sorgen bei den Softwareherstellern für zusätzlichen Migrationsdruck, sie setzen aber auch einen neuen, höheren Maßstab für Software im Allgemeinen.

Entschließt sich ein Softwarehersteller dazu, seine Produkte als Dienstleistungen in der Cloud anzubieten, ändert sich nicht nur die technologische, sondern auch die wirtschaftliche Umgebung erheblich, da ein neuer Markt erschlossen wird und die Positionierung der Software auf dem Markt zu bedenken ist. Die hat nicht nur für das Vertriebsmodell Auswirkungen - man denke an Fragen der Lizenzierung und Preismodelle - sondern auch den Leistungsumfang, denn je standardisierter eine Software ist, je geringer die nötige Anpassbarkeit, desto wahrscheinlicher lassen sich bei einem Betrieb in der Cloud die genannten Vorteile realisieren. (Buxmann; Hess; Lehmann 2008) Dies hängt damit zusammen, dass sich bei standardisierter Software Stellschrauben vor dem Nutzer verbergen lassen. Im Optimalfall spielen Netzwerktopologie, Betriebssystem, Laufzeitumgebung und Datenbanken keine Rolle; der Anwender sieht und arbeitet lediglich mit der Software. In diesem Fall spricht man von "Software as a Service" (SaaS). (Harms & Yamartino 2010, S. 11)

Als SaaS-Vertriebsplattform soll in dieser Arbeit schwerpunktmäßig Salesforce betrachtet werden, das mit "AppExchange" einen Marktplatz zur Verfügung stellt, auf dem Hersteller ihre auf der Salesforceplattform laufenden Anwendungen anbieten können. Die Konzentration auf Salesforce als Zielplattform war zum einen durch das Unternehmen gegeben, mit dem in freundlicher Kooperation diese Thesis entstanden ist.

Abbildung 2: Umsatzzahlen entnommen aus salesforce.com (2016), S. 43

1 Einleitung 2

Zum anderen aber gehört Salesforce neben Microsoft und Google zu den größten SaaS-Anbietern (Buxmann; Diefenbach; Hess 2015, S. 247) und konnte zwischen 2012 und 2016 den Umsatz mit durchschnittlich 31% von 2,267 Milliarden US-Dollar auf 6,667 Milliarden US-Dollar rasant steigern (Vgl. Abbildung 2). Daher dürfte es als Zielplattform für viele Unternehmen eine Option sein.

Diese Arbeit richtet sich vor allem an kleine und mittlere Unternehmen, die eine gewachsene Anwendung in die Cloud migrieren wollen. In ihr soll ein Vorgehensmodell entwickelt werden, das drüber Auskunft gibt, wie die technische und wirtschaftliche Machbarkeit der Migration geprüft wird, das neue Produkt mit seinen Funktionalitäten definiert, entwickelt, getestet, ausgerollt, überwacht und gewartet wird.

Diese Arbeit versucht die in Tabelle 1 genannten Fragen zu beantworten; die beigefügten Stichwörter sind Grundlage der Literaturrecherche.

#	Frage	Stichwörter
1	In welche Aufgaben lässt sich die Migration einer On-	tasks, needs
	Premise-Software zu Salesforce unterteilen?	
2	Welche Methoden unterstützen diesen Migrationspro-	methods, standards, frame-
	zess?	work
3	Wie unterstützt Salesforce die Migration technisch?	tools, interfaces, api
4	Wie wirkt sich die Migration auf die strategische Markt-	strategy, market
	position aus?	

Tabelle 1: Forschungsfragen dieser Arbeit und Stichwörter für die Literaturrecherche. Darstellung und Stichwörter angelehnt an Rai; Sahoo; Mehfuz (2015)

1 Einleitung 3

2 Grundlagen

In dieser Arbeit soll für "Independent Software Vendors", also unabhängige Softwarehersteller ein Vorgehensmodell für Cloud-Migrationen zu Salesforce entwickelt werden. Aus diesem Ziel ergeben sich grundlegende Fragen, die in diesem Kapitel beantwortet werden sollen:

- Welche Vorteile bietet die Cloud und wie lassen sie sich erzielen? Inwiefern unterscheiden sich Cloud-Migrationen von herkömmlichen Migrationen in der IT und wie lassen sie sich zum Outsourcing abgrenzen? (siehe Kapitel 2.1)
- Was wird in dieser Arbeit unter "Independent Software Vendors" verstanden? Welche Besonderheiten weisen sie und ihre Projekte auf und welchen Einfluss haben diese Besonderheiten auf Cloud-Migrationen? (siehe Kapitel 2.2)
- Warum ist Salesforce als Zielplattform für Migrationen geeignet? (siehe Kapitel 2.4)
- Welche Faktoren beeinflussen die Cloud-Migration und ihren Erfolg? (siehe Kapitel 2.5)

Das Kapitel wird von einer Vorstellung des Fünf-Phasen-Modells abgeschlossen, auf dem das entwickelte Vorgehensmodell basiert. Auch wird die Wahl für dieses Modell als Arbeitsgrundlage begründet. (Siehe Kapitel 2.6)

2.1 (Cloud-)Migrationen und Outsourcing

2.1.1 TODO: On-Premise Definition (hier) einbauen

Die Migration von Software, wird in der Norm ISO/IEC 14764 "Software Engineering – Software Life Cycle Processes – Maintenance" als spezielle Form der Wartung, als anpassende Wartung ("Adaptive Maintenance") und Weiterentwicklung definiert, bei der eine Software nach Auslieferung geändert wird, um das Produkt in geänderten oder sich ändernden Umgebung nutzbar zu halten. (Williams & Carver 2010)

Beispiel für eine solche Migration könnte der Umzug einer Software auf neue Hardware mit aktualisiertem Betriebssystem sein. Grund für den Umzug könnte ein technischer sein, wie etwa dass keine Ersatzteile mehr für die vorhandene Hardware angeboten werden, dass der Support des Herstellers für das laufende Betriebssystem ausläuft. Aber auch wirtschaftliche Gründe, wie etwa eine höhere Leistungsfähigkeit oder ein geringerer Energieverbrauch des neuen Systems sind denkbar.

Um die Software lauffähig zu halten, muss sie gegebenenfalls an das aktualisierte Betriebssystem oder die Laufzeitumgebung angepasst werden. Je standardisierter und verbreiteter die Anforderung der zu migrierenden Software, desto geringer werden die nötigen Anpassungen an der Software ausfallen, womit die Migration einfacher und kostengünstiger wird. Eventuell wird lediglich eine virtuelle Maschine auf einen neuen Server gestartet.

2 Grundlagen 4

Eine solche virtuelle Maschine ließe sich auch in der Cloud starten. Auf diese Weise ließen sich die Vorteile der Cloud jedoch nicht optimal nutzen. Um zu zeigen, welche Änderungen nötig sind, werden nun zunächst die Vorteile herausgestellt, daran anschließend wieso diese Änderungen die Cloud-Migration zu mehr machen, als die oben genannte Weiterentwicklung.

2.1.2 Vorteile der Cloud und ihre Realisierung

Rai; Sahoo; Mehfuz (2015) identifizieren im Rahmen ihrer Literaturrecherche die vier Hauptgründe für eine Cloud-Migration, die hier als Rahmen dienen sollen, um die Vorteile, die die Cloud-Nutzung hat, zu beschreiben und aufzuzeigen wie sie zu realisieren sind.

Kosteneinsparungen Cloud-Anbieter, die große Rechenzentren mit vielen Servern betreiben können die Total Cost of Ownership pro Server um bis zu 80% reduzieren (Vgl. Abbildung 3). Hauptsächlich geschieht dies über die Faktoren Energie-, Lohn- und Hardware-

Abbildung 3: Total Cost of Ownership/Server aus Harms & Yamartino (2010)

kosten. Energiekosten lassen sich durch die Wahl eines Standortes mit günstigem Strom niedrigen Umgebungstemperaturen senken. Durch Automatisierungstechniken lässt sich die Zahl der Server, die ein Administrator betreibt verzehnfachen, wodurch die Lohnkosten sinken. Hardwarekosten fallen durch bessere Verhandlugspositionen großer Cloud-Anbieter niedriger aus. (Höllwarth 2012)

Die niedrigeren Kosten werden über den Markt teilweise an die Kunden weiter gegeben, die die kapitalintensive Beschaffung der Hard- und Software sowie die Vorhaltung eigener Personalressourcen zur Entwicklung und Wartung reduzieren können. (Repschläger; Pannicke; Zarnekow 2010)

Effiziente Ressourcennutzung In der konventionellen IT-Welt werden geschätzte 80% der Ressourcen dazu verwendet, bestehende Infrastruktur und Dienstleistungen zu betreiben, wodurch wenig Kapazität für wertstiftende Tätigkeiten, wie die Entwicklung neuer Geschäftsfelder oder die Umsetzung von Kundenwünschen bleibt. Cloud-Nutzung kann dieses Verhältnis der Innovation verschieben. (Harms & Yamartino 2010)

Automatisierte, schnelle und unbegrenzte Skalierbarkeit der Ressourcen Die Zuteilung zusätzlicher, auf den Kunden unbegrenzt wirkender Rechenleistung erfolgt in der Cloud entweder über ein einfaches Webformular oder ausgerichtet am momentanen Bedarf voll automatisch. Da der Kunde nur das bezahlen muss, was er benötigt, ist die Cloud gerade für Start-ups, kleine und mittlere Unternehmen, sowie Unternehmen interessant, die entweder einen stark schwankenden oder nicht abschätzbaren Bedarf haben; die Gefahr zu viel Rechenleistung vorzuhalten, was zu unnötig hohen Kosten führt oder zu wenig Rechenleistung, was Kunden abschrecken könnte, sinkt. (Harms & Yamartino 2010; Johnson & Qu 2012; Azeemi; Lewis; Tryfonas 2013)

Das schnelle Deployment in der Cloud ermöglicht es, neue Ideen sehr schnell zu implementieren, zu testen (falls gewünscht sogar im Vergleich zu anderen Lösungen) und auszuwerten. Dadurch kann die Innovationsgeschwindigkeit, Flexibilität und die "Time to Market" beachtlich gesteigert werden. (Sill 2014; Martens & Teuteberg 2011; Höllwarth 2012)

Geringerer Wartungsaufwand Die Cloud treibt die Standardisierung von Schnittstellen voran, sodass bestehende Funktionalitäten leichter wiederverwendet werden können. Dadurch wird die Weiterentwicklung und Wartung von Software reduziert. (Harms & Yamartino 2010)

Der Grad, in dem diese Vorteile realisiert werden, hängt davon ab, in welchem Umfang Leistungen in der Cloud in Anspruch genommen werden, was wiederum Einfluss auf den Migrationsprozess hat. (Pahl; Xiong; Walshe 2013, S. 213)

Zur Kategorisierung des Leistungsumfangs dienen "as a Service"-Modelle. Es gibt recht viele dieser Modelle - Schaffer (2009) zählt 35 Varianten - die mehr oder weniger verbreitet sind und mit "Everything as a Service", abgekürzt als EaaS oder XaaS zusammengefasst werden. Dabei werden nicht nur Technologien als Dienstleistung angeboten, sondern auch Ziele; so gibt es beispielsweise auch "Hardware-as-a-Service (HaaS)" und "Business-Process-as-a-Service (BPaaS)". (Bouvry 2014; Benlian; Hess; Buxmann 2010)

Das National Institute of Standards and Technology sieht drei Service Modelle anerkannte vor, die sich im Anteil der selbst zu verwaltenden, technologischen Anteile (Integrationstiefe) unterscheiden und in dieser Hinsicht in Abbildung 4 mit der herkömmlichen IT verglichen werden. (Mell & Grance 2011; Chase et al. 2014)

Abbildung 4: XaaS im Vergleich: Umfang von Dienstleistung und Eigenverantwortung. Aus Harms & Yamartino (2010)

Infrastructure as a Service (IaaS) Dem Kunden werden Netzwerk, Speicher und Rechenleistung zur Verfügung gestellt. Über die darauf laufende Software, teilweise sogar über das Betriebssystem kann selbst verfügt werden.

Kunden versprechen sich von IaaS vor allem Flexibilität in der Bereitstellung und dem Betrieb von Servern, Datenspeichern und Netzwerkressourcen. (Pahl; Xiong; Walshe 2013, S. 213)

Platform as a Service (PaaS) Der Kunde kann bereitgestellte oder selbst entwickelte Software in der Cloud laufen lassen und eventuell Einfluss auf die Anwendungsumgebung nehmen.

Software as a Service (SaaS) Der Kunde kann eine vom Anbieter bereitgestellte Software nutzen und in begrenztem Maße konfigurieren.

2.1.3 Cloud-Migration

Das für die Migration genannte Beispiel, eine virtuelle Maschine zu verschieben, lässt sich mit Abbildung 4 für den Cloud-Fall dem Modell IaaS zuordnen. Der Cloud-Kunde muss sich in diesem Fall neben der eigentlichen Anwendung nach wie vor um das virtualisierte Betriebssystem, Middleware, Laufzeitumgebung und Datenhaltung kümmern. Um die Vorteile der Cloud besser auszuschöpfen, müsste die Anwendung entweder so angepasst werden, dass sie auf einer zur Verfügung gestellten, fremdverwalteten Laufzeitumgebung läuft (PaaS). Oder es wird eine bestehende Anwendung in der Cloud genutzt und gegebenenfalls angepasst (SaaS). Beide Optimierungen machen das Treffen konsequenzenreicher, kritischer Entscheidungen nötig, die nicht nur technische, sondern auch betriebswirtschaftliche und strategische Fragen beantworten

müssen. (Pahl & Xiong 2013) Aus diesem Grund ist eine Cloud-Migration⁴ (Pahl; Xiong; Walshe 2013) in ihrem Umfang viel größer als herkömmliche Migration und erfordert entsprechend eine viel umfangreichere Planung. (Ahmad & Babar 2014; Alkhalil; Sahandi; John 2016)

2.1.4 Abgrenzung zum Outsourcing

2.2 Independent Software Vendor (ISV)

Aus Chappell (2012)

2.2.1 Vorteile für ISV

- Der Cloud-Markt ist größer und hat das Potential neue Kunden zu erreichen, zum Beispiel kleinere Unternehmen für die eine Cloud-Lösung günstiger ist oder Kunden in geographisch großer Distanz.
- Lösungen können direkt an Manager verkauft werden; Verhandlungen mit den IT Abteilungen des Kunden werden minimiert. Inkompatibilitäten in Hard- und Software beim Kunden werden vermieden.
- Monatliche oder j\u00e4hrliche Lizenzierungsgeb\u00fchren stellen einen kontinuierlicheren Umsatzstrom dar als Kaufvertr\u00e4ge.
- Anstatt Support für viele Instanzen in unterschiedlichen Umgebungen bei Kunden muss nur noch Support für die Cloud-Anwendung geleistet werden.
- Da sich alle Kunden in der Cloud bewegen, weiß der ISV viel mehr über sie und ihre Nutzungsart.

2.2.2 Risiken für ISV

- Der Wechsel in der Cloud erfordert viele neue Ansätze, zum Beispiel bei der Lizenzierung oder dem Verkauf und stellt einen großen Umbruch dar.
- Da der Kunde die Cloud-Lösung in der Regel vor Vertragsabschluss ausprobieren kann, muss der Anbieter einen echten Wert bieten.
- Umsätze kommen zwar stetig aber in viel geringerer Höhe als bei einem Kauf.
- Durch die Standardisierung bei SaaS kann die Anpassbarkeit der Softwarelösung leiden.

2.2.3 Auswirkungen auf das Geschäft durch SaaS

Aus Chappell (2012)

Der Vollständigkeit halber eine formale Definition der Cloud-Migration: "Prozess der anteiligen oder vollständigen Bereitstellung von digitalen Gütern, Dienstleistungen, IT-Ressourcen oder Anwendungen in der Cloud"

Markt Das Angebot einer SaaS-Lösung könnte darauf abzielen, bestehende Kunden und Märkte besser zu erreichen; möglicherweise unter Kannibalisierung des bestehenden On-Premise-Produktes. Ziel könnte aber auch sein, neue Märkte zu erschließen. Beide Ziele sind nicht exklusiv. Es ist jedoch wichtig, sich der Möglichkeit der Schwerpunktbildung in dieser Frage bewusst zu sein.

Preisgestaltung Die meisten Preismodelle für SaaS-Anwendungen haben eines der drei folgenden Modelle als Grundlage:

- Abonnement Nutzer pro Monat oder Gerät pro Jahr. Dies ist das verbreitetste Modell. Durch Vergünstigungen bei Vorauszahlung für einen längeren Zeitraum, können früh höhere Umsätze generiert werden.
- Pro Einheit Zahlung für jede Transaktion, jedes gespeichertes/übertragenes Gigabyte oder für eine andere messbare Einheit, die einen Nutzungsumfang beschreibt
- Free(mium) Das Basisprodukt ist kostenlos nutzbar oder wird durch Werbeeinblendungen finanziert; Premiumfunktionen müssen bezahlt werden

Die Wahl der Preisgestaltung hat bedeutenden Einfluss auf den Cashflow des Unternehmens und ist in Abbildung 6 dargestellt. Gerade die Anfangsinvestition ist bei SaaS-Anwendungen häufig größer als bei On-Premise-Anwendungen, gerade wenn das Unternehmen noch keine Erfahrungen mit der Umsetzung hat. Diese Anfangsinvestition müssen ISV häufig leisten, bevor Kunden akquiriert wurden.

Der Einfluss, den die Höhe des Preises auf das Geschäft hat, ist in Abbildung 5 dargestellt. Bei der Umstellung auf SaaS sollte darauf geachtet werden, dass Preis und die Ausprägungen der anderen Aspekte in der gleichen Zeile liegen. So wird es sich in der Regel für eine sehr günstige Anwendung nicht lohnen, einen externen Verkaufsdienst in Anspruch zu nehmen oder eine persönliche Kundenbetreuung zu garantieren.

Verkauf Bei On-Premise-Anwendungen kann der Kunde die Anwendung häufig erst nach dem Kauf in seiner Unternehmensumgebung testen und damit den wahren Produktwert festellen, weil die Inbetriebnahme für Tests vor dem Kauf zu aufwändig wäre. Bei SaaS-Anwendungen ist ein ausführliches Testen schon vor Abschluss eines großen Lizenzvertrages möglich. Für den ISV kann dies ein Vorteil sein, da die Einstiegshürden für Kunden vermindert sind: Mögliche Fehlinvestitionen lassen sich reduzieren oder vermeiden, weshalb Nutzungsentscheidungen vom Kunden von einer kleineren Gruppe von Managern getroffen werden können. Ist das Produkt im Unternehmen, lassen sich benötigte oder gewünschte Features leichter ermitteln. Der Kunde erhält ein Produkt nach seinen Wünschen, der ISV Projektverträge um die Anwendung anzupassen oder weiterzuentwickeln. Dieser Ansatz wird als "land and expand" bezeichnet.

Average Selling Price	Customer Acquisition Cost	Sales Force	Customer Relationship	Allowable User Training	Example Customer
\$\$\$\$\$	High	External	Personal	Significant	Enterprise
\$\$\$	Moderate	Inside	Telephone	Moderate	Department, SMB
\$	Low	None	Web	Minimal	SMB, Individual

Abbildung 5: Der Einfluss des Preises auf das Geschäft. Aus Chappell (2012)

Abbildung 6: Die Umsätze von On-Premise-Anwendungen im Vergleich zu SaaS- Anwendungen. Aus Chappell (2012)

Figure 9: An established ISV has three main organizational options for embracing SaaS

Abbildung 7: Organisationsstrukturelle SaaS-Umsetzungsmöglichkeiten für ISV. Aus Chappell (2012)

2.2.4 Entwicklung

Da SaaS-Anwendungen werden typischerweise sehr viel häufiger geupdatet, als On-Premise-Anwendungen. (Chappell 2012)

Die hohe Updatefrequenz macht agile Entwicklungsmodelle erforderlich, zum Beispiel DevOps. (Chappell 2012)

2.2.5 Organisationsstrukturen

Was die Unternehmensstruktur angeht, gibt es für ISV, die ins SaaS-Geschäft einsteigen wollen, drei Optionen, die in Abbildung 7 dargestellt sind. (Chappell 2012)

- 1. SaaS-Anwendungen entwickeln, ohne die bestehende Unternehmensstruktur anzupassen hält den organisatorischen Aufwand zunächst gering. Sollte das bestehende On-Premise-Geschäft weiterbetrieben werden, ist es allerdings aufgrund der genannten Unterschiede zwischen den Modellen schwierig, beides gut zu machen.
- 2. Um dieses Problem zu lösen, kann eine Gruppe im Unternehmen gegründet werden, dass sich ausschließlich mit dem Thema SaaS befasst.
- 3. Manche Firmen lagern ihre SaaS-Bemühungen in eine wirtschaftlich selbstständige Einheit aus. Dieser Ansatz erfordert unter Umständen die größten strukturellen Änderungen, weil mit dem neuen Unternehmen erheblicher Verwaltungsoverhead (Personalmanagement, Buchhaltung, etc.) einhergeht.

2.2.6 Wahl des Cloud-Anbieters

Chappell (2012) identifiziert vier Faktoren, die bei der Entscheidung für einen CLoud-Anbieter zur Realisierung einer SaaS-Anwendung berücksichtigt werden sollten:

Anbietergröße Wie in Kapitel 2.1.2 geschildert, haben große Cloud-Anbieter Vorteile gegenüber kleinen. Vorhandene Beziehungen und persönlichere Betreuung könnten dennoch für einen kleineren Anbieter sprechen.

Geografische Verteilung Um die Antwortzeiten für Kunden bei Benutzung der SaaS-Anwendung niedrig zu halten, sollten Serverzentren geografisch nah liegen. Entsprechend sollte ein weltweit agierender Cloud-Provider gewählt werden, wenn ein weltweiter Markt adressiert werden soll. Auch die Sicherheit vor Katastrophen spricht für eine möglichst breite Verteilung.

Zuverlässigkeit Mangelnde Zuverlässigkeit des Cloud-Providers wird auf den ISV zurückfallen, weshalb ein in Backup-Mechanismen erfahrener Provider gewählt werden sollte. Auch hier kann geografische Streuung ein positiver Einflussfaktor sein.

Regulatorische Vorschriften Gesetzliche Vorgaben können erforderlich machen, dass der Cloud-Provider Nachweise über ihre Einhaltung führt oder sogar, dass Daten in einem bestimmten Land gehalten werden. Nicht alle Anbieter können dies leisten.

Die Änderungen, die SaaS für das Geschäft bringt überwiegen die technischen. Da Änderungen aber sowieso erforderlich sind, um auf dem Markt zu bestehen, gibt es aber eigentlich keine Wahl. (Chappell 2012)

Weil der Umstieg auf die Cloud nicht nur ein technisches Umdenken erforderlich macht, sondern auch ein wirtschaftliches spricht Chappell (2012) von einem ganz neuen Anbieter, dem Cloud Service Vendors (CSV) anstatt ISV. (Chappell 2012, S. 3)

2.3 TODO: Devops als Entwicklungsmodell?

2.4 Salesforce als Zielplattform

"Die Ergebnisse belegen: Sämtliche Unternehmen konnten mit Force.com hinsichtlich Entwicklungszeit und Supportkosten wesentliche Einsparungen verzeichnen. Die Entwicklung mit Force.com war 4,9-mal schneller als mit JAVA oder .NET" (Benlian; Hess; Buxmann 2010, S. 120)

Customer Relationship Management (CRM) hat das Ziel Kunden zu gewinnen und zu halten und kombiniert dafür die Themen Prozesse, Menschen und Technologie als übergeordnete Strategie, bei der es darum geht möglichst viel über den Kunden zu erfahren. Salesforce kommt standardmäßig mit CRM.

Force.com ist eine etablierte Plattform um Cloud-Anwendungen zu entwickeln, zu vertreiben und bei einer Verfügbarkeit von 99,9% zu betreiben. (Pullarao & Thirupathirao 2013)

2.5 Die Migration bestimmende Faktoren

Rai; Sahoo; Mehfuz (2012) identifizieren wirtschaftliche und technische Faktoren, die sowohl die Migrationseignung einer Anwendung als auch die Migration selbst beeinflussen.

Martens & Teuteberg (2011) sehen viele Parallelen zwischen dem Outsourcen von IT zu externen Dienstleistern und dem Betrieb in der Cloud, weshalb sich Erfahrungen bei Outsourcing-Projekten bei Cloud-Migrationen anwenden lassen. Aus diesem Grund sind die folgenden Faktoren auch aus der Literatur über IT-Outsourcing zusammengetragen.

2.5.1 Wirtschaftliche Faktoren

Bereits getätigte IT-Investitionen: In der Regel wachsen die bereits getätigten IT-Ausgaben mit dem Unternehmen und mit ihnen die Komplexität der Migration. Deshalb ist es in kleinen Unternehmen eher möglich, direkt zu migrieren, während bei größeren Unternehmen der Übergang in die Cloud wesentlich mehr Planung und gegebenenfalls einen parallelen Betrieb erforderlich macht.

Kosten: In der herkömmlichen IT bestehen Kosten aus der "kapitalintensiven Beschaffung der Hard- und Software sowie der Vorhaltung eigener Personalressourcen" (Repschläger; Pannicke; Zarnekow 2010). Diese Kosten sind zwar hoch, aber aufgrund der langjährigen Erfahrung auch vorhersagbar und in Budgets eingeplant. Die Migration in die Cloud dagegen bedeutet den Umstieg zu einem "pay per use"-Modell (Khan 2014), von einem von Fixkosten dominierten Modell zu einem, das von variablen Kosten bestimmt ist. Um zu verhindern, dass Kosteneinsparungen aufgezehrt werden, ist es nötig den Umfang der Anwendungsnutzung und die Migrationskosten abzuschätzen.

Datensicherheit: Bevor eine Anwendung in die Cloud migriert wird, sollte bedacht werden, wie kritisch die zugehörigen Daten für den Unternehmenserfolg sind.

Rechtliche Restriktionen: Vor der Migration sollte geprüft werden, ob rechtliche Bestimmungen auch bei einem Betrieb in der Cloud eingehalten werden können.

Zuteilung von Rechenleistungen: Anwendungen, die kurzzeitig große Rechenleistungen benötigen und gut skalierbar sein sollen, lassen sich in der Cloud wahrscheinlich kostengünstiger betreiben als auf eigenen Servern, die ganzjährig reserviert sind und die meiste Zeit im Leerlauf verbringen.

2.5.2 Technische Faktoren

Bestehende Infrastruktur: Bereits die Migration einer einzigen Anwendung kann Änderungen in der internen IT-Infrastruktur erforderlich machen. Zum Beispiel wenn Daten zwischen verschiedenen Diensten ausgetauscht werden soll. Auch die Arbeit des Supports könnte dur

Sicherheitsarchitektur: Um die Daten im Cloud-Umfeld zu schützen, muss das bestehende Sicherheitskonzept an die Gegebenheiten der Cloud angepasst werden.

Komplexität: Während einfache, standardisierte Anwendungen womöglich bereits in der Cloud angeboten werden, steigt mit der Komplexität auch der Planungs-, Implementierungs und Testbedarf bei der Migration.

- Netzwerk und Support: Je mehr Daten in der Cloud liegen, desto höher ist die Abhängigkeit von einer funktionierenden Internetverbindung. Hier können zusätzliche Kosten für redundante Verbindungen, Verbindungen mit höheren Kapazitäten oder Verträge mit garantierten Reaktionszeiten im Störungsfall anfallen.
- IT-Fähigkeiten: Auch wenn im Cloudbetrieb auf existierende Technologien und idealerweise existierende Software zurückgegriffen wird, erfordert die Migration dem IT-Team Fähigkeiten und Kenntnisse in den Bereichen Architekturen, Implementierung, Entwicklung und Betrieb ab. Hinzu kommt, dass der Umfang, in dem Kontrolle über die Systeme im Cloudbetrieb abgegeben wird, von den verantwortlichen IT-Mitarbeitern eine "kulturelle" Herausforderung darstellen kann.
- Service Level Agreements (SLAs): Geprüft werden sollte auch, ob Cloud-Anbieter SLAs bieten können, die zum unternehmerischen Bedarf hinsichtlich Verfügbarkeit, Vertraulichkeit und Integrität passen. Auch sollte geregelt sein, welche Verantwortlichkeiten der Anbieter trägt und welche Vertragsstrafen bei Nichteinhaltung drohen.

2.6 Das Fünf-Phasen-Wasserfallmodell

Das in (Rai; Sahoo; Mehfuz 2012) vorgeschlagene Vorgehensmodell zur Migration einer Anwendung in die Cloud ähnelt dem aus der Softwareentwicklung bekannten, iterativen Wasserfallmodell und besteht aus den folgenden fünf Phasen, die in Abbildung 8 dargestellt sind.

- Phase 1 Machbarkeitsstudie In dieser Phase wird ergebnisoffen geprüft, ob die Migration einer Anwendung technisch und wirtschaftlich möglich und sinnvoll ist. Dabei wird nicht nur die Anwendung selbst analysiert, sondern auch alle Rahmenbedingungen, die Einfluss auf das Verhalten des Systems ausüben können. Außerdem wird eine detaillierte Kosten-Nutzen-Analyse erstellt.
- Phase 2 Anforderungsanalyse und -Planung Um die zu migrierende Anwendung und ihre Anforderungen zu verstehen, wird in der Planungsphase die bestehende IT-Umgebung unter Berücksichtigung der genannten, die Migration beeinflussenden Faktoren (siehe Kapitel 2.5) genau begutachtet. Gilt die Anwendung auch nach Begutachtung als zur Migration geeignet, werden der Return on Investment (ROI) sowie die Total Cost of Ownership (TCO) berechnet, um die durch die Migration entstehende Kostenvorteile zu verstehen.
- Phase 3 Migration Die existierende Anwendung wird in die Cloud portiert und in Hinblick auf Leistungsfähigkeit und Performanz strukturiert getestet. Zum Schluss wird die neue Plattform in einem User Acceptance Testing (UAT) validiert.
- Phase 4 Tests und Auslieferung Die Daten aus der Produktion werden in die Cloud portiert. Anschließend wird die Software erneut getestet und freigegeben. In dieser Phase ist ein hoher Grade an Überwachung und Support nötig, um unvorhergesehene Probleme auffangen zu können. Unter Umständen wird parallel zum Start der Cloud-Anwendung die Altsoftware zunächst weiter betrieben.

Abbildung 8: Das Fünf-Phasen-Wasserfallmodell aus Rai; Sahoo; Mehfuz (2012)

Phase 5 - Überwachung und Wartung Nach der Migration in die Cloud ist es naturgemäß notwendig, die Leistungserfüllung durch den Anbieter in Hinblick auf Leistungsfähigkeit, Verfügbarkeit und Sicherheit zu überwachen um gegebenenfalls Gegenmaßnahmen einleiten zu können.

2.7 TODO: Hinweis, dass sich diese Arbeit auf die ersten drei Phasen beschränkt

3 Vorgehensmodell für Cloud-Migrationen zu Salesforce

In diesem Kapitel soll das Fünf-Phasen-Modell auf die Anforderungen eines Independent Software Vendors angepasst werden.

3.1 Phase 1: Machbarkeitsstudie

3.1.1 Technische Machbarkeit

3.1.2 Wirtschaftliche Machbarkeit

"In diesem Punkt unterscheidet sich Cloud-Computing von früheren Pradaigmen wie Outsourcing, welches nicht auf das Geschäftsmodell des Unternehmens wirken will. Durch neue Anwendungsszenarien kann mit Cloud-Computing ein beachtlicher Mehrwert geschaffen werden." (Höllwarth 2012, S. 154)

"Cloud-Computing verändert die Preisgestaltung von IT-Services und kann als eine Reaktion auf das straffere Kostenmanagement im Nachgang der Finanzkrise 2008 verwendet werden. Unternehmenskunden wollen sich nicht mehr mit fixen IT-Kosten binden. Sie wollen auch in der IT des Unternehmens die Capital Expenditures (CAPEX) in Operational Expenditures (OPEX) umwandeln. Dies ist der Hauptgrund, wieso das 'Pay-per-Use-Pricing' von Cloud-Services bei den Unternehmen so viel Interesse geweckt hat." (Höllwarth 2012, S. 156)

"[Cloud-Computing] liefert mehr Kapazitäten und gewährt besseren Zugang zu IT-Expertise, als sich die meisten KMU-Unternehmen jemals mit einer internen IT hätten leisten können, un dies zusätzlich noch bei großen Kosteneinsparungen" (Höllwarth 2012, S. 156)

"Mögliche betriebswirtschaftliche Vorteile: bessere Nutzung des Ressourcen-Pools des Unternehmens, Verbesserung der Zeit zur Markteinführung neuer Produkte und Dienstleistungen, Steigerung der Agilität und letztlich Verbesserung der Erfahrungen der Kunden im Umgang mit dem Unternehmen, welches auf Cloud-Computing setzt." (Höllwarth 2012, S. 157)

"Alle Empfehlungen sollten mit einem Business Case hinterlegt werden, der die Höhe der Kostenreduktion und die Verbesserung des Servicelevels zeigt." (Höllwarth 2012, S. 158)

3.2 Phase 2: Anforderungsanalyse und -Planung

3.2.1 Anforderungsermittlung

3.2.2 Return on Investment (ROI)

3.2.3 Total Cost of Ownership (TCO)

3.3 Phase 3: Migration

- 3.4 Phase 4: Tests und Auslieferung
- 3.5 Phase 5: Überwachung und Wartung
- 3.6 Gesamtbetrachtung
- 3.6.1 Agilität

4 Forschungsmethoden

Grundlage des in dieser Arbeit entwickelten Vorgehensmodells ist eine systematische Literaturübersicht wie von Kitchenham (2004) vorgeschlagen. Dabei werden zunächst für jede Forschungsfrage Schlüsselwörter und ihre Synonyme identifiziert (Vgl. Tabelle 1) und mit booleschen Operatoren verknüpft. Die entstandenen Ausdrücke (Vgl. Tabelle 2) dienten anschließend der Recherche in Literaturdatenbanken (Vgl. Tabelle 3)

#	Frage	Rechercheausdruck			
1	In welche Aufgaben lässt sich	(tasks OR needs OR requirements)			
	die Migration einer On-Premise-	AND			
	Software zu Salesforce untertei-	(migration OR adoption)			
	len?	AND			
		salesforce			
2	Welche Methoden unterstützen	(methods OR standards OR framework)			
	diesen Migrationsprozess?	AND			
		('cloud migration' OR 'cloud adaption' OR 'sales-			
		force')			
3	Wie unterstützt Salesforce die Mi-	(tools OR interfaces OR api)			
	gration technisch?	AND			
		(migration OR adoption)			
		AND			
		salesforce			
4	Wie wirkt sich die Migration	(strategy OR market)			
	auf die strategische Marktpositi-	AND			
	on aus?	('cloud migration' OR 'cloud adaption')			

Tabelle 2: Forschungsfragen und zugehörige Rechercheausdrücke. Angelehnt an Rai; Sahoo; Mehfuz (2015)

Bei der systematischen Literaturübersicht wurden Ergebnisse berücksichtigt, die

- den Rechercheausdrücken entsprachen
- in deutscher oder englischer Sprache vorlagen
- · vollständig vorlagen
- in Abstract oder Fazit einen Zusammenhang zu den Forschungsfragen aufwiesen
- seit einschließlich dem Jahr 2010 erschienen sind

Die fachliche Disziplin der Fragen beeinflusste die Wahl der Literaturdatenbanken und ist in Tabelle 3 dargestellt. So wurde beispielsweise darauf verzichtet in technischen Datenbanken nach Literatur zu marktstrategischen Fragen zu suchen.

Name und URL	Fragen
--------------	--------

Tabelle 3: Literaturdatenbanken und für welche Fragen sie herangezogen wurden. Quellen: Rai; Sahoo; Mehfuz (2015) und Benlian (2016)

	Forschungsfragen			
Name und URL	1	2	3	4
ACM Digital Library		\checkmark		
http://dl.acm.org/				
Science Direct	$\sqrt{}$	√	√	√
http://www.sciencedirect.com/				
Wiley	Keine	booleschen A	Ausdrücke m	nöglich
http://eu.wiley.com/				
Elektronische Zeitschriftenbibliothek	Keine	booleschen A	Ausdrücke m	nöglich
(EZB)				
http://rzblx1.uni-regensburg.de/				
ezeit/fl.phtml?bibid=TUDA				
Compendex	Keine	booleschen A	Ausdrücke m	nöglich
https://www.elsevier.com/solutions/				
engineering-village/content/				
compendex				
AIS Electronic Library (AISeL)	Keine booleschen Ausdrücke möglich			
http://aisel.aisnet.org/				
Zeitschriftendatenbank (ZDB)	Keine Ergebnisse			
http://dispatch.opac.ddb.de/DB=1.				
1/srt=YOP/				
IEEE Xplore	\checkmark	?	?	?
http://ieeexplore.ieee.org/Xplore/				
dynhome.jsp?tag=1				
Springer-Online: Bücher/Beiträge des	?	?	?	?
Springer Verlags				
http://www.springerlink.com				
Rechercheangebot der ULB	?	?	?	?
http://www.ulb.tu-darmstadt.de/				
recherche/				
WiSo Net: deutschsprachige Literatur	?	?	?	?
zu Wirtschafts- und Sozialwissenschaf-				
ten				
www.wiso-net.de				
EBSCO: internationale wirtschafts-	?	?	?	?
wiss. Zeitschriften				
http://search.ebscohost.com				

5 Ideen

5.1 Einleitung

Benlian SaaS 2010: Chancen und Risiken für diesen Anwendungsfall aus Anwendersicht prüfen. In Softwareindustrie werden die einzelnen Chancen und Risiken genauer ausgeführt. S. 236 Auch Chancen und Risiken aus Anbietersicht. Softwareindustrie: S: 240 => Verweis auf Benlian 2010, S. 233

Wind: Eval. und Auswahl von Enterprise Cloud Services: Konkretisierung von Zieldimensionen (Flexibilität, Kosten, Leistungsumfang & Leistungsfähigkeit, Service & Cloud Management, IT-Sicherheit & Compliance, Ausfallsicherheit & Vertrauenswürdigkeit). Ab Seite 103. Anforderungsrahmen für die Zieldimensionen und den einzelnen XaaS-Arten. Ab S. 122. Viele Definitionen für Cloud.

Benlian Opportunities and risks of saas 2011: Sicherheit ein Hauptfaktor bei Entscheidung für oder gegen SaaS. Taxonomy of it security risks als Checkliste zur Identifikation von Risiken in bestimmtren Szenarien.

Softwareindustrie: Simple Definition für Cloud aus Standard.

Ackermann, Tobias: IT Security Risk Management. Kapitel 5 enthält Empfehlungen für Risk Identification, - Quantification, - Treatment, - Review and Evaluation, - Cloud Computing Providers. S. 22-23 enthält Beschreibung der Risiken im Cloud Kontext.

5.2 Gamechanger Cloud

"What is it about cloud that makes it a game-changer? It is reported that the business at large find cloud's affordable, flexible, on-demand, elastic delivery method, to be extremely beneficial" – (Sarkar et al. 2012)

Durch Nutzung der Cloud-Plattform stehen drei infrastrukturelle Elemente zur Verfügung: das Soziale, Möglichkeiten der Analyse und das Mobile. Durch das Soziale wird die angebotene Dienstleistung inklusiver; Nutzer lassen sich besser in die Weiterentwicklung des Dienstes einbeziehen.

Da alle Kunden auf der Cloud arbeiten, lässt sich eine Vielzahl von Informationen über sie sammeln mit der zukünftige Enstcheidungen fundierter getroffen werden können.

Die Möglichkeit Dienste mobil in Anspruch zu nehmen, sorgt für eine höhere Marktdurchdringung. (Sarkar et al. 2012)

5.2.1 Lifecycle

Aus Sarkar et al. (2012)

5 Ideen 20

Design RE und Design des Dienstes.

Service Composition Es gibt einen Trend dazu, Dienste mehrerer Cloud-Dienstleister zusammenzustellen. Wie auch im On-Premise-Bereich ist auf eine lose Kopplung der
Komponenten zu achten, um sie bei Bedarf gegen Alternativen tauschen zu können.
Außerdem ist es wichtig, das Thema Fehlertoleranz zu Bedenken. Damit Ausfälle
einzelner Komponenten sich möglichst wenig auf den Dienst auswirken oder sich
Ausfallwahrscheinlichkeiten aufaddieren.

Interoperabilität Unter anderem Amazon, Google, Microsoft, VMWare und Salesforce bieten Cloud-Plattformen zur Anwendungsentwicklung an. Bei Nutzung einer solchen Plattform kann nachhaltige Interoperabilität, gerade bei Nutzung einer privaten oder hybriden Cloud ein Faktor sein.

Information Centric Design Bei der Nutzung durch Kunden anfallende Informationen sollten ständig ausgewertet werden und möglichst in Echtzeit in zukünftige Entscheidungen einfließen.

Engineering Entwicklung, Testen und Operationalisierung

Deployment

Usage Measurement

Support und Wartung Informationen, die im Support gesammelt werden, werden zur Weiterentwicklung genutzt.

Experience Um Kunden zu halten, muss die User Experience verbessert werden

5.2.2 Service Migration – Herausforderungen

Aus Sarkar et al. (2012)

• Was für Auswirkungen hat das neue pay-per-use-Modell?

5.3 Charakteristika Enterprise Applications

Aus Hajjat et al. (2010):

Bestehen in der Regel aus mehreren Layern (MVC – Datenbanken, Frontend, Logik), sind in der Regel aber viel komplexer als dieses dreischichtige Modell, da jede Schicht aus mehreren, miteinander interagierenden Komponenten aufgebaut sein kann.

Unternehmensanwendungen könnten von zwei verschiedenen Nutzergruppen nutzbar sein: Unternehmensinterne und -externe Personengruppen.

5.4 Assessment und Guidelines

Aus Scandurra et al. (2015):

5.4.1 Assessment

- Gründe für die Migration Es ist wichtig die Gründe für die Migration sowie Anforderungen und Rahmenbedingungen zu kennen, um ihnen zu genügen.
- Analyse der Anwendungsumgebung Alle Programme, Skripte und Interfaces listen, die auf die Anwendung zugreifen.
- Analyse der neuen Umgebung Welche Ressourcen werden benötigt?
- Design und Analyse der Architektur Analyse der Architektur der bestehenden Anwendung mit allen Bibliotheken, Programmen und Plattformen
- Migrationstools Kleine Proof-of-Concept-Projekte um Migrationstoosl nach Effizienz, Genauigkeit und Optionen testen.

5.4.2 Guidelines

Interoperabilität und Zusammenstellen Nutzen von Schnittstellen wie der RESTful API.

Vermeiden des Lock-in Effektes

- Modellierung des Dienstes und Cloud Deployment Artefakte Cloud Modellierungsnotationen sind nützlich.
- Legacy Software verpacken Es ist unter Umständen einfacher, praktikabler, sicherer und flexibler Legacy Anwendungen virtualisiert in die CLoud zu migrieren und über eine Schnittstelle verfügbar zu machen.
- Ausbalancieren von Kosten und Reifegrad Die Risiken junger, eventuell unreifer Software sollten in den Aspekt Kosten einbezogen werden.

5.5 Inhaltsbeschreibungen

- Sarkar et al. (2012) Viele zu bedenkende Aspekte, nicht nur für die Migration, sondern auch für den Cloudbetrieb. Eine Zusammenfassung findet sich auf Seite 9 des PDFs.
- Hajjat et al. (2010) Hybride Cloud. Darstellung Charakteristike Enterprise Applications. Sonst extrem mathematisch.

Literatur

- Ahmad, Aakash & Babar, Muhammad Ali (2014): *A framework for architecture-driven migration of legacy systems to cloud-enabled software*, In: Proceedings of the WICSA 2014 Companion Volume,, S. 1–8.
- Alkhalil, Adel; Sahandi, Reza & John, David (2016): *A Review of the Current Level of Support to Aid Decisions for Migrating to Cloud Computing*, In: Proceedings of the International Conference on Internet of things and Cloud Computing,, S. 58, ISSN 1450340636.
- Azeemi, Imran Khan; Lewis, Mike & Tryfonas, Theo (2013): *Migrating To The Cloud: Lessons And Limitations Of 'Traditional' IS Success Models*, In: Procedia Computer Science, 16, S. 737–746 http://www.sciencedirect.com/science/article/pii/S1877050913000781, ISSN 1877–0509.
- Benlian, Alexander (2016): Formatvorlage zur Anfertigung von Abschluss-, Studien- und Seminararbeiten, http://www.ise.tu-darmstadt.de/ise/lehre_4/abschlussarbeiten_6/ organisatorisches 1/organisatorisches.de.jsp.
- Benlian, Alexander; Hess, Thomas & Buxmann, Peter (2010): *Software-as-a-Service : Anbieter-strategien, Kundenbedürfnisse und Wertschöpfungsstrukturen*, Wiesbaden Gabler http://dx.doi.org/10.1007/978-3-8349-8731-0, ISBN 383498731X (Sekundärausgabe).
- Bouvry, Pascal (2014): *Emerging paradigms and areas for expansion*, In: IEEE Cloud Computing, 1 (1), S. 58–61, ISSN 2325–6095.
- Buxmann, Peter; Diefenbach, Heiner & Hess, Thomas (2015): *Die Softwareindustrie : ökonomische Prinzipien, Strategien, Perspektiven*, 3. Auflage. Berlin u.a. Springer Gabler http://www.gbv.de/dms/zbw/821541447.pdf, ISBN 3662455897.
- Buxmann, Peter; Hess, Thomas & Lehmann, Sonja (2008): *Software as a Service*, In: Wirtschafts-informatik, 50 (6), S. 500–503, ISSN 0937–6429.
- Chappell, David (2012): How SaaS Changes an ISV's Business, Sponsored by Microsoft Corporation,.
- Chase, Jeff et al. (2014): *Thoughts on the State of Cloud over the Next Five Years*, In: IEEE Cloud Computing, 2 (1), S. 26–40, ISSN 2325–6095.
- Dufft, Nicole (2016): Market Vision: Key Market Trends in Germany 2017,.
- Hajjat, Mohammad et al. (2010): *Cloudward bound: planning for beneficial migration of enterprise applications to the cloud*, In: ACM SIGCOMM Computer Communication Review, 40 (4), S. 243–254, ISSN 1450302017.
- Harms, Rolf & Yamartino, Michael (2010): *The economics of the cloud*, In: Microsoft whitepaper, Microsoft Corporation.

5 Literatur I

- Höllwarth, Tobias (2012): Cloud Migration, MITP-Verlags GmbH und Co. KG, ISBN 3826692241.
- Johnson, Bjorn & Qu, Yanzhen (2012): *A holistic model for making cloud migration decision: A consideration of security, architecture and business economics*, In: 2012 IEEE 10th International Symposium on Parallel and Distributed Processing with Applications,, S. 435–441, ISSN 1467316318.
- Khan, S. U. (2014): *Elements of Cloud Adoption*, In: IEEE Cloud Computing, 1 (1), S. 71–73, ISSN 2325–6095.
- Kitchenham, Barbara (2004): *Procedures for performing systematic reviews*, In: Keele, UK, Keele University, 33 (2004), S. 1–26.
- Martens, Benedikt & Teuteberg, Frank (2011): *Decision-making in cloud computing environments: A cost and risk based approach*, In: Information Systems Frontiers, 14 (4), S. 871–893, ISSN 1387–3326 1572–9419.
- Mell, Peter & Grance, Tim (2011): *The NIST definition of cloud computing*, In: National Institute of Standards and Technology.
- Pahl, Claus & Xiong, Huanhuan (2013): *Migration to PaaS clouds-migration process and architectural concerns*, In: Maintenance and Evolution of Service-Oriented and Cloud-Based Systems (MESOCA), 2013 IEEE 7th International Symposium on the,, S. 86–91, ISSN 2326–6910.
- Pahl, Claus; Xiong, Huanhuan & Walshe, Ray (2013): *A Comparison of On-Premise to Cloud Migration Approaches*, In: Service-Oriented and Cloud Computing: Second European Conference, ESOCC 2013, Málaga, Spain, September 11-13, 2013. Proceedings,, S. 212–226 http://dx.doi.org/10.1007/978-3-642-40651-5_18, ISSN 978-3-642-40651-5.
- Pullarao, K & Thirupathirao, K (2013): *A new way of developing applications in cloud environment using force. com (salesforce. com)*, In: International Journal of Computer Application 1 (3).
- Rai, Rashmi; Sahoo, Gadadhar & Mehfuz, Shabana (2012): *A five-phased approach for the cloud migration*, In: International Journal of Emerging Technology and Advanced Engineering, 2 (4), S. 286–291.
- Rai, Rashmi; Sahoo, Gadadhar & Mehfuz, Shabana (2015): *Exploring the factors influencing the cloud computing adoption: a systematic study on cloud migration*, In: SpringerPlus, 4 (1), S. 1, ISSN 2193–1801.
- Repschläger, Jonas; Pannicke, Danny & Zarnekow, Rüdiger (2010): *Cloud Computing: Definitionen, Geschäftsmodelle und Entwicklungspotenziale*, In: HMD Praxis der Wirtschaftsinformatik, 47 (5), S. 6–15 http://dx.doi.org/10.1007/BF03340507, ISSN 2198–2775.
- salesforce.com (2016): *Annual Report 2016*, http://s1.q4cdn.com/454432842/files/doc_financials/2016/Annual/Salesforce-FY-2016-Annual-Report.pdf.

Literatur II

- Sarkar, S. et al. (2012): *Cloud Based Next Generation Service and Key Challenges*, In: 2012 Third International Conference on Services in Emerging Markets,, S. 20–29.
- Scandurra, Patrizia et al. (2015): *Challenges and assessment in migrating IT legacy applications to the cloud*, In: 2015 IEEE 9th International Symposium on the Maintenance and Evolution of Service-Oriented and Cloud-Based Environments (MESOCA), S. 7–14, ISSN 2326–6910.
- Schaffer, Henry E (2009): *X* as a service, cloud computing, and the need for good judgment, In: IT professional, 11 (5), S. 4–5, ISSN 1520–9202.
- Sill, Alan (2014): Factors in Development and Adoption of New Cloud Software and Standards, In: IEEE Cloud Computing, 1 (4), S. 10–13, ISSN 2325–6095.
- Statista (2016): *Umsatz mit Cloud Computing weltweit von 2009 bis 2016 (in Milliarden US-Dollar) erhoben durch Gartner*, In: statista, https://de.statista.com/statistik/daten/studie/195760/umfrage/umsatz-mit-cloud-computing-weltweit-seit-2009/.
- Williams, Byron J & Carver, Jeffrey C (2010): *Characterizing software architecture changes: A systematic review*, In: Information and Software Technology, 52 (1), S. 31–51, ISSN 0950–5849.

Literatur