Aritmética

Vazquez Rocha Jorge Ivan

Escuela Superior de Física y Matemáticas Instituto Politécnico Nacional

03/02/20

Aritmética

- 1 Definiciones
 - Divisibilidad
 - Máximo común divisor
- 2 Teoremas
 - Algoritmo de la división
 - Algoritmo de Euclides
 - Teorema chico de Fermat

Divisibilidad

Dados dos números enteros a y b (con $a \neq 0$), se dice que a divide a b, y lo escribimos como $a \mid b$, si existe un $c \in Z$ tal que b = ac.

Máximo común divisor

Dados dos enteros a y b distintos de 0, decimos que el entero d>1 es un máximo común divisor, o mcd, de a y b

si $d \mid a, d \mid b$ y para cualquier otro $c \in Z$ tal que $c \mid a$ y $c \mid b$, entonces $c \mid d$.

Algoritmo de la división

Dados $a, b \in Z$, $con \ b \neq 0$, existen dos únicos números enteros q, r tales que:

$$a = bq + r$$
 $0 \le r < |b|$

Algoritmo de Euclides

Para calcular el mcd de dos enteros a y b (ambos > 0, suponemos a > b) se definen q_i y r_i recursivamente mediante las ecuaciones:

$$a = bq_1 + r_1 \qquad (0 < r_1 < b)$$

$$b = r_1q_2 + r_2 \qquad (0 < r_2 < r_1)$$

$$r_1 = r_2q_3 + r_3 \qquad (0 < r_3 < r_2)$$

$$\vdots$$

$$r_{k-3} = r_{k-2}q_{k-1} + r_{k-1} \qquad (0 < r_{k-1} < r_{k-2})$$

$$r_{k-2} = r_{k-1}q_k + r_k \qquad (r_k = 0)$$

Y de la proposición anterior, se sigue que:

$$mcd(a, b) = mcd(b, r_1) = mcd(r_1, r_2) = \cdots = mcd(r_{k-2}, r_{k-1}) = r_{k-1}$$

Teorema chico de Fermat

Si p es un número primo, entonces, para cada número natural a, con a>0 , $a^p=a (mod\ p)$