Segunda Lista de Problemas

Matemáticas para las Ciencias Aplicadas I Facultad de Ciencias, UNAM

> Flores Morán Julieta Melina Zarco Romero José Antonio

> > 15 de octubre de 2023

Primera Parte

1. Ejercicio 3

Flores Morán Julieta Melina

(a) Aproximar el valor del límite

$$\lim_{x \to 0} \frac{3^x - 2^x}{x}$$

hasta tres decimales mediante la construcción de una tabla de valores apropiada.

x	$\frac{3^x-2^x}{x}$	$\frac{3^x-2^x}{x}$
0.1	$\frac{3^{0.1}-2^{0.1}}{0.1}$	0.443
0.01	$\frac{3^{0.01}\!-\!2^{0.01}}{0.01}$	0.409
0.001	$\frac{3^{0.001} - 2^{0.001}}{0.001}$	0.405
0.0001	$\frac{3^{0.0001} - 2^{0.0001}}{0.0001}$	0.405
0.00001	$\frac{3^{0.00001} - 2^{0.00001}}{0.00001}$	0.405
0.000001	$\frac{3^{0.000001} - 2^{0.000001}}{0.000001}$	0.405

Con esta tabla podemos observar que el valor de lím $_{x\to 0}$ $\frac{3^x-2^x}{x}$ se acerca a 0.405 conforme x tiende a 0.

(b) Confirme su aproximación utilizando evidencia gráfica.

$$\therefore \lim_{x \to 0} \frac{3^x - 2^x}{x} \approx 0.405$$

2. Ejercicio 9

Zarco Romero José Antonio

$$\lim_{x \to +\infty} \frac{(2x-1)^5}{(3x^2 + 2x - 7)(x^3 - 9x)}$$

Para resolver este límite primero reescribiremos la expresión algebraica.

$$\frac{(2x-1)^5}{(3x^2+2x-7)(x^3-9x)} = \frac{32x^5-80x^4+80x^3-40x^2+10x-1}{3x^5+2x^4-34x^3-18x^2+63x} \cdot \frac{\frac{1}{x^5}}{\frac{1}{x^5}}$$

$$\frac{\frac{32x^5-80x^4+80x^3-40x^2+10x-1}{x^5}}{\frac{3x^5+2x^4-34x^3-18x^2+63x}{x^5}} = \frac{\frac{32x^5}{x^5}-\frac{80x^4}{x^5}+\frac{80x^3}{x^5}-\frac{40x^2}{x^5}+\frac{10x}{x^5}-\frac{1}{x^5}}{\frac{3x^5}{x^5}+\frac{2x^4}{x^5}-\frac{34x^3}{x^5}-\frac{18x^2}{x^5}+\frac{63x}{x^5}}$$

$$= \frac{32-\frac{80}{x}+\frac{80}{x^2}-\frac{40}{x^3}+\frac{10}{x^4}-\frac{1}{x^5}}{3+\frac{2}{x}-\frac{34x}{x^2}-\frac{18}{x^3}+\frac{63}{x^4}}$$

Ahora será más fácil calcular el límite de la función, considerando que un número divido entre un número muy grande tiende a 0.

$$\lim_{x \to +\infty} \frac{32 - \frac{80}{x} + \frac{80}{x^2} - \frac{40}{x^3} + \frac{10}{x^4} - \frac{1}{x^5}}{3 + \frac{2}{x} - \frac{34x}{x^2} - \frac{18}{x^3} + \frac{63}{x^4}} = \frac{\lim_{x \to +\infty} 32 - \frac{80}{x} + \frac{80}{x^2} - \frac{40}{x^3} + \frac{10}{x^4} - \frac{1}{x^5}}{\lim_{x \to +\infty} 3 + \frac{2}{x^2} - \frac{34x}{x^2} - \frac{18}{x^3} + \frac{63}{x^4}}$$

$$= \frac{\lim_{x \to +\infty} 32 - \lim_{x \to +\infty} \frac{80}{x} + \lim_{x \to +\infty} \frac{80}{x^2} - \lim_{x \to +\infty} \frac{40}{x^3} + \lim_{x \to +\infty} \frac{10}{x^4} - \lim_{x \to +\infty} \frac{1}{x^5}}{\lim_{x \to +\infty} 3 + \lim_{x \to +\infty} \frac{2}{x} - \lim_{x \to +\infty} \frac{34x}{x^2} - \lim_{x \to +\infty} \frac{18}{x^3} + \lim_{x \to +\infty} \frac{63}{x^4}}$$

$$= \frac{32 - 0 + 0 - 0 + 0 - 0}{3 + 0 - 0 - 0 + 0} = \frac{32}{3}$$

$$\therefore \lim_{x \to +\infty} \frac{(2x - 1)^5}{(3x^2 + 2x - 7)(x^3 - 9x)} = \frac{32}{3}$$

3. Ejercicio 18

Flores Morán Julieta Melina

$$\lim_{\theta \to 0^+} \ln(\sin 2\theta) - \ln(\tan \theta)$$

Primero reescribiremos la expresión

$$\ln(\sin 2\theta) - \ln(\tan \theta) = \ln(\frac{\sin 2\theta}{\tan \theta})$$

Considerando la fórmula para el seno de la suma de ángulos $\sin(\alpha + \beta) = \sin \alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta$, donde en este caso $\alpha = \beta = \theta$ se puede calcular

que $\sin 2\theta = \sin\theta \cdot \cos\theta + \cos\theta \cdot \sin\theta = 2 \cdot \cos\theta \cdot \sin\theta$ Entonces

$$\frac{\sin 2\theta}{\tan \theta} = \frac{2 \cdot \cos \theta \cdot \sin \theta}{\frac{\sin \theta}{\cos \theta}} = \frac{2 \cdot \cos \theta \cdot \sin \theta \cdot \cos \theta}{\sin \theta} = \frac{2 \cdot \sin \theta}{\sin \theta} \cdot [\cos \theta]^2 = 2 \cdot [\cos \theta]^2$$

$$\therefore \ln(\frac{\sin 2\theta}{\tan \theta}) = \ln(2 \cdot [\cos \theta]^2)$$

Ahora será más fácil calcular el límite de esta expresión

$$\lim_{\theta \to 0^+} \ln(\sin 2\theta) - \ln(\tan \theta) = \lim_{\theta \to 0^+} \ln(2 \cdot [\cos \theta]^2) = \ln(\lim_{\theta \to 0^+} (2 \cdot [\cos \theta]^2))$$

$$= \ln(2 \cdot [\cos 0]^2) = \ln(2 \cdot 1^2) = \ln(2)$$

$$\therefore \lim_{\theta \to 0^+} \ln(\sin 2\theta) - \ln(\tan \theta) = \ln(2)$$

4. Ejercicio 20

Zarco Romero José Antonio

$$\lim_{x \to +\infty} (1 + \frac{a}{x})^{bx} \quad , \quad a, b > 0$$

Supongamos que $t = \frac{a}{x}$ y, despejando $x = \frac{a}{t}$. Por lo anterior, se tiene que si x tiende a $+\infty$, entonces t tiende a 0. Por lo tanto, la fórmula original queda reescrita como:

$$\lim_{t \to 0} (1+t)^{b \cdot \frac{a}{t}} = \lim_{t \to 0} (1+t)^{\frac{1}{t} \cdot a \cdot b} = [\lim_{t \to 0} (1+t)^{\frac{1}{t}}]^{a \cdot b} = e^{a \cdot b}$$

$$\therefore \lim_{x \to +\infty} (1+\frac{a}{x})^{bx} = e^{a \cdot b} \quad \text{donde} \quad a, b > 0$$

5. Ejercicio 31

Zarco Romero José Antonio

Encuentre valores de x, si los hay, en los que la función dada no sea continua.

$$f(x) = \frac{x}{x^2 - 1}$$

Sabemos que las funciones y=x y $y=x^2-1$ son funciones polinomiales. De modo que son continuas en todo su dominio (para toda x); es decir, son continuas sobre $\mathbb{R}=(-\infty,\infty)$. Ahora, la función $f(x)=\frac{x}{x^2-1}$ es racional, así que es continua siempre que está definida; es decir, en su dominio que es $\{x\mid (x^2-1)\neq 0\}$. Si $x^2-1=0$, entonces:

$$x^{2} - 1 = 0$$

$$x^{2} = 1$$

$$x = \sqrt{1}$$

$$x_{0} = 1, x_{1} = -1$$

∴ La función $f(x) = \frac{x}{x^2 - 1}$ no es continua en los valores de $x_0 = 1$ y $x_1 = -1$.

(b)
$$f(x) = |x^3 - 2x^2|$$

- 1) La función dada es polinomial, por lo que está definida para toda x.
- 2) Calculando los límites laterales cuando x se acerca a un punto a.
 - Límite derecho en a:

$$\lim_{x \to a^+} f(x) = \lim_{x \to a^+} |x^3 - 2x^2| = \lim_{x \to a^+} |a^3 - 2a^2|$$

• Límite izquierdo en a:

$$\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{-}} |x^{3} - 2x^{2}| = \lim_{x \to a^{-}} |a^{3} - 2a^{2}|$$

Dado que los límites son iguales, entonces el límite existe para cualquier a.

- 3) Por el punto anterior, el valor del límite cuando x tiende a a es igual al valor de la función en a.
- \therefore La función $f(x) = |x^3 2x^2|$ es continua para toda x.

(c)
$$f(x) = \frac{x+3}{|x^2+3x|}$$

La función es racional, así que es continua siempre que está definida; es decir, en su dominio que es $\{x \mid |x^2 + 3x| \neq 0\}$. Si $|x^2 + 3x| = 0$, entonces:

$$|x^{2} + 3x| = 0$$

$$x^{2} + 3x = 0$$

$$x(x+3) = 0$$

$$x_{0} = 0 , x_{1} = -3$$

... La función $f(x) = \frac{x+3}{|x^2+3x|}$ no es continua en los valores de $x_0 = 0$ y $x_1 = -3$.

6. Ejercicio 36

Flores Morán Julieta Melina

Supongamos que f es continua en el intervalo [0,1], que f(0) = 2 y que f no tiene ceros en el intervalo. Demuestre que f(x) > 0 para todo x en [0,1].

Podemos utilizar el El Teorema del Valor Intermedio para demostrarlo. Este Teorema enuncia para este caso que, sea N un valor entre f(0) y f(1), cumple que f(0) < N < f(1) ó f(1) < N < f(0) y existe un $c \in (0,1)$ tal que f(c) = N.

Lo que queremos demostrar es que N>0 para cualquier $c\in(0,1)$. Considerando que f(0)=2 podemos considerar que 2< N< f(1) ó f(1)< N<2

En el primer caso donde la función es creciente, 2 < N asegura que N > 0En el segundo caso, tenemos que considerar que f(1) > 0 ya que de lo contrario, según el Teorema del Valor Intermedio f(c) tendría que ser 0 para alguna $c \in (0,1)$ ya que 0 es un valor intermedio entre f(0) = 2 y cualquier número negativo. Ya que se garantiza que no hay ceros en el intervalo [0,1], f(1) debe ser positivo, y por tanto en la desigualdad f(1) < N < f(0) si f(1) < N, entonces N es número positivo y por tanto N > 0

Segunda Parte

7. Ejercicio 5

Zarco Romero José Antonio

Utilice una aproximación cuadrática local apropiada para aproximar tan 61° y compare el resultado con el producido directamente por su utilidad de cálculo.

A fin de encontrar una fórmula para la aproximación cuadrática local de una función f acerca de $x=x_0$. Esta aproximación tiene la forma:

$$p_2(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2$$

Dado que $61^{\circ} = \frac{\pi}{3} + \frac{\pi}{180} rad$. Entonces, sea $f(x_0) = \tan x_0$ y $x_0 = \frac{\pi}{3}$; de este modo:

$$f(x_0) = \tan x_0 \quad f(\frac{\pi}{3}) = \tan \frac{\pi}{3} = \sqrt{3}rad$$

$$f'(x_0) = (\sec x_0)^2 \quad f'(\frac{\pi}{3}) = (\sec \frac{\pi}{3})^2 = 4rad$$

$$f''(x_0) = 2(\sec x_0)^2 \tan x_0 \quad f''(\frac{\pi}{3}) = 2(\sec \frac{\pi}{3})^2 \tan \frac{\pi}{3} = 8\sqrt{3}rad$$

Sustituyendo los valores, tenemos que:

$$p_2(x) = \sqrt{3} + 4\left(x - \frac{\pi}{3}\right) + \frac{8\sqrt{3}}{2 \cdot 1}\left(x - \frac{\pi}{3}\right)^2 = \sqrt{3} + 4\left(x - \frac{\pi}{3}\right) + 4\sqrt{3}\left(x - \frac{\pi}{3}\right)^2$$

Ya que $x = 61^{\circ} = \frac{\pi}{3} + \frac{\pi}{180} rad$

$$p_{2}(\frac{\pi}{3} + \frac{\pi}{180}rad) = \sqrt{3} + 4\left[\left(\frac{\pi}{3} + \frac{\pi}{180}rad\right) - \frac{\pi}{3}\right] + 4\sqrt{3}\left[\left(\frac{\pi}{3} + \frac{\pi}{180}rad\right) - \frac{\pi}{3}\right]^{2}$$

$$= \sqrt{3} + 4\left(\frac{\pi}{180}rad\right) + 4\sqrt{3}\left(\frac{\pi}{180}rad\right)^{2} = \sqrt{3} + \frac{\pi}{45}rad + 4\sqrt{3}\left(\frac{\pi}{180}rad\right)^{2}$$

$$\therefore p_{2}(61^{\circ}) \approx 1.803974$$

El valor de la aproximación cuadrática local fue de 1.803974, mientras que el producido directamente por la calculadora fue de 1.804047.

8. Ejercicio 10

Zarco Romero José Antonio

Encuentre los polinomios de Maclaurin de orden n=0,1,2,3,4, y luego encuentre los polinomios de Maclaurin enésimos para la función en notación sigma.

$$\sin \pi x$$

Sea $f(x) = \sin \pi x$; de este modo:

$$f(x) = \sin(\pi x) \quad f(0) = 0$$

$$f'(x) = \pi \cos(\pi x) \quad f'(0) = \pi$$

$$f''(x) = -\pi^2 \sin(\pi x) \quad f''(0) = 0$$

$$f'''(x) = -\pi^3 \cos(\pi x) \quad f'''(0) = -\pi^3$$

$$f^{(4)}(x) = \pi^4 \sin(\pi x) \quad f^{(4)}(0) = 0$$

Dado que el patrón $0, \pi^k, 0, -\pi^k$ se repetirá a medida que evaluemos derivadas sucesivas en 0; ya que $f^{(k)}(x) = 0$ cuando k es par y, cuando k es impar el resultado de $f^{(k)}(x)$ alterna entre π^k y $-\pi^k$. Por lo tanto, los polinomios de Maclaurin de orden n = 0, 1, 2, 3, 4 para $\sin \pi x$ son:

$$p_0(x) = 0$$

$$p_1(x) = 0 + \pi x = \pi x$$

$$p_2(x) = 0 + \pi x + 0 = \pi x$$

$$p_3(x) = 0 + \pi x + 0 + \frac{-\pi^3}{3!} x^3 = \pi x - \frac{\pi^3}{3!} x^3 = \pi - \frac{\pi^3}{6} x^3$$

$$p_4(x) = 0 + \pi x + 0 + \frac{-\pi^3}{3!} x^3 + 0 = \pi x - \frac{\pi^3}{3!} x^3 + 0 = \pi - \frac{\pi^3}{6} x^3$$

Se obtiene el enésimo polinomio de Maclaurin para la función $\sin \pi x$ en notación sigma.

$$p_n(x) = \sum_{k=0}^n \frac{(\pi)^k \cdot \sin(\frac{k\pi}{2})}{k!} (x)^k$$

9. Ejercicio 20

Zarco Romero José Antonio

Encuentre los polinomios de Taylor de orden n=0,1,2,3,4 alrededor de $x=x_0$ y luego encuentre el enésimo polinomio de Taylor para la función en notación sigma.

$$\frac{1}{x+2}$$
; $x_0 = 3$

Sea $f(x_0) = \frac{1}{x_0+2}$ y $x_0 = 3$; de este modo:

$$f(x_0) = \frac{1}{x_0 + 2} \qquad f(3) = \frac{1}{3 + 2} = \frac{1}{5}$$

$$f'(x_0) = -\frac{1}{(x_0 + 2)^2} \qquad f'(3) = -\frac{1}{(3 + 2)^2} = -\frac{1}{5^2} = -\frac{1}{25}$$

$$f''(x_0) = \frac{2}{(x_0 + 2)^3} \qquad f''(3) = \frac{2}{(3 + 2)^3} = \frac{2}{5^3} = \frac{2}{125}$$

$$f'''(x_0) = -\frac{6}{(x_0 + 2)^4} \qquad f'''(3) = -\frac{6}{(3 + 2)^4} = -\frac{6}{5^4} = -\frac{6}{625}$$

$$f^{(4)}(x_0) = \frac{24}{(x_0 + 2)^5} \qquad f^{(4)}(3) = \frac{24}{(3 + 2)^5} = \frac{24}{5^5} = \frac{24}{3125}$$

$$\vdots \qquad \vdots$$

$$f^{(k)}(x_0) = \sum_{k=0}^{n} (-1)^k \frac{k!}{(x + 2)^{k+1}} \qquad f^{(k)}(3) = \sum_{k=0}^{n} (-1)^k \frac{k!}{5^{k+1}}$$

Por lo tanto, los polinomios de Taylor de orden n = 0, 1, 2, 3, 4 para $f(x) = \frac{1}{x+2}$ alrededor de $x_0 = 3$ son:

$$p_{0}(x) = \frac{1}{5}$$

$$p_{1}(x) = \frac{1}{5} + (-\frac{1}{25})x = \frac{1}{5} - \frac{1}{25}x$$

$$p_{2}(x) = \frac{1}{5} + (-\frac{1}{25})x + \frac{\frac{2}{125}}{2!}(x-3)^{2} = \frac{1}{5} - \frac{1}{25}x + \frac{1}{125}(x-3)^{2}$$

$$p_{3}(x) = \frac{1}{5} + (-\frac{1}{25})x + \frac{\frac{125}{2!}}{2!}(x-3)^{2} + \frac{\frac{6}{625}}{3!}(x-3)^{3}$$

$$= \frac{1}{5} - \frac{1}{25}x + \frac{1}{125}(x-3)^{2} - \frac{1}{625}(x-3)^{3}$$

$$p_{4}(x) = \frac{1}{5} + (-\frac{1}{25})x + \frac{\frac{2}{125}}{2!}(x-3)^{2} + \frac{\frac{6}{625}}{3!}(x-3)^{3} + \frac{\frac{24}{3125}}{4!}(x-3)^{4}$$

$$= \frac{1}{5} - \frac{1}{25}x + \frac{1}{125}(x-3)^{2} - \frac{1}{625}(x-3)^{3} + \frac{1}{3125}(x-3)^{4}$$

Por tanto, sustituyendo $f^{(k)}(x_0) = \sum_{k=0}^n (-1)^k \frac{k!}{(x+2)^{k+1}}$ en la fórmula

$$\sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

Se obtiene el enésimo polinomio de Taylor para la función $\frac{1}{x+2}$; $x_0 = 3$ en notación sigma.

$$p_n(x) = \sum_{k=0}^{n} \frac{(-1)^k}{5^{k+1}} (x-3)^k$$

10. Ejercicio 36

Flores Morán Julieta Melina

Utilice el método del ejemplo 7 para aproximar la expresión dada a la precisión especificada. Verifique su respuesta con la producida directamente por su utilidad de cálculo.

$$\frac{1}{e}$$
; precisión de tres decimales

Sabiendo que $\frac{1}{e} = e^{-1}$, podemos usar el enésimo polinomio de Maclaurín de e^x para aproximar e^{-1} con una precisión de tres decimales considerando que la función exponencial e^x tiene derivadas de cualquier orden para todos los números reales x.

El enésimo polinomio de Maclaurin para e^x es:

$$\sum_{k=0}^{n} \frac{x^k}{k!} = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}$$

Por la cual obtenemos para x = -1

$$e^{-1} \approx \sum_{k=0}^{n} \frac{(-1)^k}{k!} = 1 - 1 + \frac{1}{2!} + \dots + \frac{(-1)^n}{n!}$$

El problema consiste en determinar cuantos términos incluir en e polinomio de Maclaurin de e^{-1} para alcanzar una precisión de tres decimales. Esto requiera que encontremos una n para la cual el valor absoluto de el enésimo residuo en x=-1 cumpla

$$|R_n(-1)| \le 0.0005$$

Para determinar n usamos el el Teorema de Estimación del Residuo remplazando la inecuación del teorema

$$|R_n(x)| \le \frac{M}{(n+1)!} |x - x_0|^{n+1}$$

Con $f(x) = e^x$, x = -1, $x_0 = 0$ y el intervalo [-1, 0] obtenemos

$$|R_n(-1)| \le \frac{M}{(n+1)!} |-1 - 0|^{n+1}$$

Donde M es una cota superior en el intervalo $f^{n+1}(x) = e^x$ para x en el intervalo [-1,0], esto es $|f^{n+1}(x)| \leq M$ para toda x en el intervalo. e^x es una función creciente, así que su máximo valor en el intervalo [-1,0] ocurre en x=0, es decir, $e^x \leq e^0 = 1$ en este intervalo. Entonces podemos considerar M=1 para obtener:

$$|R_n(-1)| = |e^{-1} - p_n(-1)| \le \frac{1}{(n+1)!} |-1|^{n+1}$$

$$\le \frac{1}{(n+1)!} (1)^{n+1}$$

$$\le \frac{1}{(n+1)!}$$

Con esta inecuación podemos alcanzar tres decimales de precisión encontrando una n para la cual

$$|R_n(-1)| \le \frac{1}{(n+1)!} \le 0.0005$$

O

$$(n+1)! \ge 2000$$

Para n = 5(5 + 1)! ≥ 2000 720 ≥ 2000 no se cumple

Para n = 6 $(6 + 1)! \ge 2000$ 5040 > 2000 sí se cumple

Entonces, para tener tres decimales de precisión:

$$e^{-1} \approx 1 - 1 + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} + \frac{1}{6!} \approx 0.368055556$$

Según la calculadora, $\frac{1}{e}=0.3678794412$ así que se cumple que

$$|R_n(-1)| = |e^{-1} - p_6(-1)|$$

$$= |0.3678794412 - 0.3680555556|$$

$$= |-0.0001761144286|$$

$$= 0.0001761144286$$

$$y \ 0.0001761144286 < 0.0005$$

Para n = 7 $(7+1)! \ge 40320$ $40320 \ge 2000$ sí se cumple

Entonces, para tener tres decimales de precisión:

$$e^{-1} \approx 1 - 1 + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} + \frac{1}{6!} - \frac{1}{7!} \approx 0.3678571429$$

Según la calculadora, $\frac{1}{e} = 0.3678794412$ así que se cumple que

$$|R_n(-1)| = |e^{-1} - p_7(-1)|$$

$$= |0.3678794412 - 0.3678571429|$$

$$= |0.0000229826986|$$

$$= 0.0000229826986$$

 $y \ 0.0000229826986 \le 0.0005$

Además, en 3 decimales $p_7(-1) = 0.367$ y $e^{-1} = 0.367$

n=6 es el valor más pequeño para el que se cumple que el residuo es menor a 0.0005, sin embargo n=7 tiene un menor residuo y al ser $R_7(-1)$ positivo se mantienen los primeros 3 decimales.

$$\therefore$$
 El polinomio $\sum_{k=0}^{7} \frac{(-1)^k}{k!}$

aproxima a $\frac{1}{e}$ con una precisión de 3 decimales.

11. Ejercicio 40

Flores Morán Julieta Melina

(a) La figura adjunta muestra un sector de radio r y ángulo central 2α . Suponiendo que el ángulo α es pequeño, utilice la aproximación cuadrática local de $\cos \alpha$ en $\alpha = 0$ para demostrar que $x \approx r\alpha^2/2$.

La aproximación cuadrática local de $\cos \alpha$ en $\alpha = 0$ se obtiene con el polinomio de Maclaurin

$$p_2(\alpha) = \sum_{k=0}^{2} \frac{f^{(k)}(0)}{k!} \alpha^k = f(0) + f'(0)\alpha + \frac{f''(0)}{2!} \alpha^2$$
(1)

$$f(\alpha) = \cos\alpha \quad f(0) = \cos(0) = 1$$

$$f'(\alpha) = \frac{d}{d\alpha}\cos x = -\sin\alpha \quad f'(0) = -\sin(0) = 0$$

$$f''(\alpha) = \frac{d^2}{d\alpha^2}\cos\alpha = \frac{d}{d\alpha} - \sin\alpha = -\cos x \quad f''(0) = -\cos(0) = -1$$

Sustituyendo en (1)

$$\cos\alpha \approx 1 + 0\alpha + \frac{-1}{2}\alpha^2 = 1 - \frac{\alpha^2}{2} \tag{2}$$

Observando la figura podemos concluir que x=r-z (3) donde z es el cateto adyacente al triángulo rectángulo donde encontramos α . Bajo estos términos, $\cos\alpha=\frac{z}{r}$ así que $z=\cos\alpha\cdot r$.

Sustituyendo z en (3) obtenemos $x = r - (\cos \alpha \cdot r)$ (4).

Remplazando $\cos\alpha$ en (4) por su aproximación antes obtenida en (2),

obtenemos que

$$x = r - (\cos\alpha \cdot r)$$

$$\approx r - (r \cdot (1 - \frac{\alpha^2}{2}))$$

$$\approx r - (r - \frac{\alpha^2 \cdot r}{2})$$

$$\approx r - r + \frac{\alpha^2 \cdot r}{2}$$

$$\approx \frac{\alpha^2 \cdot r}{2}$$

$$\therefore x \approx \frac{r \cdot \alpha^2}{2}$$

(b) Suponiendo que la Tierra es una esfera de radio 4000mi, use el resultado del inciso (a) para aproximar la cantidad máxima en la que un arco de 100mi a lo largo del ecuador divergirá de su cuerda.

Encontrar la cantidad en la que un arco de la Tierra divergirá del ecuador es equivalente a encontrar x en el inciso anterior. Para usar $x \approx \frac{r \cdot \alpha^2}{2}$ conocemos que el radio es de 4000 mi pero necesitamos conocer el ángulo también.

Conocemos que el tamaño del arco es de 100 mi y este se puede calcular dar en términos del radio y el ángulo, siendo que:

$$c = r \cdot \theta$$

donde: c es el tamaño del arco, r es el radio, θ es el ángulo que genera el segmento. Despejando, podemos calcular el ángulo θ :

$$\theta = \frac{c}{r}$$

Remplazando por los datos conocidos:

$$\theta = \frac{100}{4000} = 0.025 rad$$

Sin embargo, la ecuación según la figura esta dada para un ángulo α que es la mitad del ángulo θ que corresponde al del total del segmento. Así que

$$\alpha = \frac{\theta}{2} = \frac{0.025}{2} = 0.0125 rad$$

Una vez conocidos todos los valores necesarios, podemos aplicar la fórmula para x

$$x \approx \frac{r \cdot \alpha^2}{2}$$

$$\approx \frac{4000 \cdot 0.0125^2}{2}$$

$$\approx 0.3125 \ mi$$
(1)

 \therefore La cantidad máxima en la que un arco de 100mi a lo largo del ecuador divergirá de su cuerda es 0.3125 mi.

12. Identidad de Euler

Flores Morán Julieta Melina

Aplicar las definiciones de las funciones exponencial natural, seno y coseno como series de Taylor para demostrar la identidad de Euler:

$$e^{i\theta} = \cos(\theta) + i\sin(\theta)$$

y deducir, de aquí, que:

$$e^{i\pi} + 1 = 0$$

Para demostrar que $e^{i\theta} = \cos(\theta) + i\sin(\theta)$ hay que considerar las siguientes definiciones:

$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$

$$\cos \theta = \sum_{k=0}^{\infty} \frac{(-1)^k}{2k!} \cdot \theta^{2k} = 1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \frac{\theta^6}{6!} + \dots$$

$$\sin \theta = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} \cdot \theta^{2k+1} = \theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \frac{\theta^7}{7!} + \dots$$

Podemos desarrollar la función de exponencial natural como serie de Taylor

$$e^{i\theta} = \sum_{k=0}^{\infty} \frac{(i\theta)^k}{k!}$$

$$= 1 + i\theta + \frac{(i\theta)^2}{2!} + \frac{(i\theta)^3}{3!} + \frac{(i\theta)^4}{4!} + \frac{(i\theta)^5}{5!} + \frac{(i\theta)^6}{6!} + \frac{(i\theta)^7}{7!} + \dots$$

$$= 1 + i\theta - \frac{\theta^2}{2!} - \frac{i\theta^3}{3!} + \frac{\theta^4}{4!} + \frac{i\theta^5}{5!} - \frac{\theta^6}{6!} - \frac{i\theta^7}{7!} + \dots$$

Al agrupar los términos complejos y los reales.

$$e^{i\theta} = 1 + i\theta - \frac{\theta^2}{2!} - \frac{i\theta^3}{3!} + \frac{\theta^4}{4!} + \frac{i\theta^5}{5!} - \frac{\theta^6}{6!} - \frac{i\theta^7}{7!} + \dots$$

$$= \left[1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \frac{\theta^6}{6!} + \dots\right] + \left[i\theta - \frac{i\theta^3}{3!} + \frac{i\theta^5}{5!} - \frac{i\theta^7}{7!} + \dots\right]$$

$$= \left[1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \frac{\theta^6}{6!} + \dots\right] + i\left[\theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \frac{\theta^7}{7!} + \dots\right]$$

Estos grupos son las definiciones de $\cos \theta$ y $\sin \theta$

$$e^{i\theta} = \left[1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \frac{\theta^6}{6!} + \ldots\right] + i\left[\theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \frac{\theta^7}{7!} + \ldots\right]$$

$$= \sum_{k=0}^{\infty} \frac{(-1)^k}{2k!} \cdot \theta^{2k} + i\left[\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} \cdot \theta^{2k+1}\right]$$

$$= \cos\theta + i\left[\sin\theta\right]$$

$$\therefore e^{i\theta} = \cos(\theta) + i\sin(\theta)$$

Con este resultado, sustituyendo θ por π :

$$e^{i\pi} = \cos(\pi) + i\sin(\pi)$$
$$= -1 + i(0)$$
$$= -1$$

Considerando $e^{i\pi} = -1$, se puede deducir que

$$e^{i\pi} + 1 = 0$$

Tercera Parte

13. Ejercicio 11

Flores Morán Julieta Melina

⋖ Figure Ex-11

La figura adjunta muestra la gráfica de y = f'(x) para una función f no especificada.

- (a) ¿Para qué valores de x la curva y=f(x) tiene una recta tangente horizontal?
 - Dado que y = f'(x) representa la pendiente de la recta tangente a f(x), cuando f'(x) = 0 la pendiente de la recta tangente es horizontal. Por tanto, los valores de x son -2, -1, 1, 3.
- (b) ¿En qué intervalos la curva y = f(x) tiene rectas tangentes con pendiente positiva? $(-\infty, -2), (-1, 1), (3, +\infty)$.
- (c) ¿En qué intervalos la curva y = f(x) tiene rectas tangentes con pendiente negativa? (-2,-1),(1,3).

(d) Dado que $g(x) = f(x) \sin x$, encuentre g''(0).

$$g'(x) = f(x) \cdot \cos x + \sin x \cdot f'(x)$$

$$g''(x) = (-\sin x f(x) + \cos x f'(x)) + (\sin x f''(x) + \cos x f'(x))$$

$$g''(0) = (-\sin 0 \cdot f(0) + \cos 0 \cdot f'(0)) + (\sin 0 \cdot f''(0) + \cos 0 \cdot f'(0))$$

$$= f'(0) + f'(0)$$

$$= 2 + 2$$

$$= 4$$

14. Ejercicio 28

Flores Morán Julieta Melina

En cada parte, evalúa la expresión dado que f(1)=1, g(1)=-2, f'(1)=3 y g'(1)=-1.

(a)
$$\frac{d}{dx}[f(x)g(x)]|_{x=1}$$

$$\frac{d}{dx} [f(x)g(x)]\Big|_{x=1} = [f(x)g'(x) + g(x)f'(x)]_{x=1}$$

$$= f(1)g'(1) + g(1)f'(1)$$

$$= (1 \cdot -1) + (-2 \cdot 3)$$

$$= -1 + (-6)$$

$$= -1 - 6$$

$$= -7$$

(b)
$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right]_{x=1}$$

$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] \Big|_{x=1} = \left[\frac{g(x)f'(x) - f(x)g'(x)}{[g(x)]^2} \right] \Big|_{x=1}$$

$$= \frac{g(1)f'(1) - f(1)g'(1)}{[g(1)]^2}$$

$$= \frac{(-2 \cdot 3) - (1 \cdot -1)}{(-2)^2}$$

$$= \frac{(-6) - (-1)}{4}$$

$$= \frac{-6 + 1}{4}$$

$$= -\frac{5}{4}$$

(c) $\frac{d}{dx} \left[\sqrt{f(x)} \right]_{x=1}$

$$\frac{d}{dx} \left[\sqrt{f(x)} \right]_{x=1}^{1} = \frac{d}{dx} [f(x)]^{\frac{1}{2}} \Big|_{x=1}$$

$$= \left[\frac{1}{2} [f(x)]^{-\frac{1}{2}} \cdot f'(x) \right]_{x=1}^{1}$$

$$= \frac{1}{2} [f(1)]^{-\frac{1}{2}} \cdot f'(1)$$

$$= \frac{1}{2} (1)^{-\frac{1}{2}} \cdot 3$$

$$= \frac{1}{2} (1) \cdot 3$$

$$= \frac{3}{2}$$

(d)
$$\frac{d}{dx}[f(1)g'(1)]$$

$$\frac{d}{dx}[f(1)g'(1)] = \frac{d}{dx}[1 \cdot -1]$$
$$= \frac{d}{dx}[-1]$$
$$= 0$$

15. Ejercicio 31

Flores Morán Julieta Melina

Encuentre f'(x).

(a)
$$f(x) = \sqrt{3x+1}(x-1)^2$$

 $f(x) = (3x+1)^{\frac{1}{2}}(x-1)^2$

$$f'(x) = \left[(3x+1)^{\frac{1}{2}} \cdot \frac{d}{dx}(x-1)^2 \right] + \left[(x-1)^2 \cdot \frac{d}{dx}(3x+1)^{\frac{1}{2}} \right]$$

$$= \left\{ (3x+1)^{\frac{1}{2}} \left[2(x-1) \cdot \frac{d}{dx}(x-1) \right] \right\} + \left\{ (x-1)^2 \left[\frac{1}{2}(3x+1)^{-\frac{1}{2}} \cdot \frac{d}{dx}(3x+1) \right] \right\}$$

$$= \left\{ (3x+1)^{\frac{1}{2}} \left[2(x-1) \cdot 1 \right] \right\} + \left\{ (x-1)^2 \left[\frac{1}{2}(3x+1)^{-\frac{1}{2}} \cdot 3 \right] \right\}$$

$$= 2(x-1)(3x+1)^{\frac{1}{2}} + \frac{3(x-1)^2}{2(3x+1)^{\frac{1}{2}}}$$

$$= \frac{\left\{ 2(3x+1)^{\frac{1}{2}} \left[2(x-1)(3x+1)^{\frac{1}{2}} \right] \right\} + 3(x-1)^2}{2(3x+1)^{\frac{1}{2}}}$$

$$= \frac{4(x-1)(3x+1) + 3(x-1)^2}{2(3x+1)^{\frac{1}{2}}}$$

$$= \frac{(x-1)\left[4(3x+1) + 3(x-1) \right]}{2(3x+1)^{\frac{1}{2}}}$$

$$= \frac{(x-1)\left[12x + 4 + 3x - 3 \right]}{2(3x+1)^{\frac{1}{2}}}$$

$$= \frac{(x-1)(15x+1)}{2(3x+1)^{\frac{1}{2}}}$$

$$= \frac{(x-1)(15x+1)}{2\sqrt{3}x+1}$$

(b)
$$f(x) = \left(\frac{3x+1}{x^2}\right)^3$$

$$f'(x) = 3\left(\frac{3x+1}{x^2}\right)^2 \frac{d}{dx}\left(\frac{3x+1}{x^2}\right)$$

$$= 3\left(\frac{3x+1}{x^2}\right)^2 \frac{d}{dx}\left[(3x+1)(x^{-2})\right]$$

$$= 3\left(\frac{3x+1}{x^2}\right)^2 \left[(3x+1)\frac{d}{dx}(x^{-2}) + (x^{-2})\frac{d}{dx}(3x+1)\right]$$

$$= 3\left(\frac{3x+1}{x^2}\right)^2 \left[(3x+1)\frac{d}{dx}(x^{-2}) + (x^{-2})\frac{d}{dx}(3x+1)\right]$$

$$= 3\left(\frac{3x+1}{x^2}\right)^2 \left[(3x+1)(-2x^{-3}) + (x^{-2})(3)\right]$$

$$= 3 \cdot \frac{(3x+1)^2}{(x^2)^2} \left(-6x^{-2} - 2x^{-3} + 3x^{-2}\right)$$

$$= 3 \cdot \frac{(3x+1)^2}{x^4} \left(-3x^{-2} - 2x^{-3}\right)$$

$$= -\frac{3(3x+1)^2}{x^4} \left(\frac{3}{x^2} + \frac{2}{x^3}\right)$$

$$= -\frac{3(3x+1)^2}{x^4} \left(\frac{3x+2}{x^3}\right)$$

$$= -\frac{3(3x+1)^2}{x^4} \left(\frac{3x+2}{x^3}\right)$$

$$= -\frac{3(3x+1)^2}{x^4} \left(\frac{3x+2}{x^3}\right)$$

16. Ejercicio 41

Zarco Romero José Antonio

Supongamos que $f'(x) = 2x \cdot f(x)$ y f(2) = 5.

(a) Encuentra $g'(\pi/3)$ si $g(x) = f(\sec x)$.

$$g'(x) = f'(\sec x) \frac{d}{dx} \sec x$$

$$= 2 \sec x \cdot f(\sec x) \frac{d}{dx} \sec x$$

$$= 2 \sec x \cdot f(\sec x) \cdot \sec x \tan x$$

$$g'(\frac{\pi}{3}) = 2 \sec \frac{\pi}{3} \cdot f(\sec \frac{\pi}{3}) \cdot \sec \frac{\pi}{3} \tan \frac{\pi}{3}$$

$$= 2 \cdot 2 \cdot f(2) \cdot 2 \cdot \sqrt{3}$$

$$= 8 \cdot 5\sqrt{3}$$

$$= 40\sqrt{3}$$

(b) Encuentra h'(2) si $h(x) = [f(x)/(x-1)]^4$.

$$h'(x) = 4\left(\frac{f(x)}{x-1}\right)^3 \frac{(x-1)f'(x) - f(x)}{(x-1)^2}$$

$$= 4\left(\frac{f(x)}{x-1}\right)^3 \frac{(x-1)(2x \cdot f(x)) - f(x)}{(x-1)^2}$$

$$= 4 \cdot \frac{[f(x)]^3}{(x-1)^3} \cdot \frac{f(x)[(x-1)(2x) - 1]}{(x-1)^2}$$

$$= \frac{4[f(x)]^3}{(x-1)^3} \cdot \frac{f(x)(2x^2 - 2x - 1)}{(x-1)^2}$$

$$= \frac{4[f(x)]^4(2x^2 - 2x - 1)}{(x-1)^5}$$

$$h'(2) = \frac{4[f(2)]^4(2(2^2) - 2 \cdot 2 - 1)}{(2-1)^5}$$

$$= \frac{4(5)^4(2(4) - 4 - 1)}{1^5}$$

$$= 4 \cdot 625 \cdot 3$$

$$= 7500$$

17. Ejercicio 25

Zarco Romero José Antonio

Utilice la diferenciación implícita para encontrar la pendiente de la recta tangente a la curva en el punto especificado y verifique que su respuesta sea consistente con la gráfica adjunta en la página siguiente.

$$x^4 + y^4 = 16;$$
 $(1, \sqrt[4]{15})$ [Lamé's special quartic]

▲ Figure Ex-25

Derivamos y con respecto de x

$$4x^{3} + 4y^{3} \frac{dy}{dx} = 0$$
$$4(x^{3} + y^{3} \frac{dy}{dx}) = 0$$
$$x^{3} + y^{3} \frac{dy}{dx} = 0$$
$$\therefore \frac{dy}{dx} = -\frac{x^{3}}{y^{3}}$$

Evaluamos en el punto $(1, \sqrt[4]{15})$

$$\frac{dy}{dx} = -\frac{x^3}{y^3} \Big|_{(1,\sqrt[4]{15})}$$

$$= -\frac{1^3}{(\sqrt[4]{15})^3}$$

$$= -\frac{1}{\sqrt[4]{15^3}}$$

$$\approx -0.1312$$

18. Ejercicio 31

Zarco Romero José Antonio

Utilice la diferenciación implícita para encontrar la derivada especificada.

$$a^2\omega^2 + b^2\lambda^2 = 1$$
 (a, b constantes); $d\omega/d\lambda$

Diferenciando implícitamente ambos lados de la ecuación con respecto a λ produce

$$2a^{2}\omega \frac{d\omega}{d\lambda} + 2b^{2}\lambda = 0$$
$$2(a^{2}\omega \frac{d\omega}{d\lambda} + b^{2}\lambda) = 0$$
$$a^{2}\omega \frac{d\omega}{d\lambda} + b^{2}\lambda = 0$$
$$a^{2}\omega \frac{d\omega}{d\lambda} = -b^{2}\lambda$$
$$\therefore \frac{d\omega}{d\lambda} = -\frac{b^{2}\lambda}{a^{2}\omega}$$

19. Ejercicio 40

Zarco Romero José Antonio

Se dice que dos curvas son **ortogonales** si sus rectas tangentes son perpendiculares en cada punto de intersección, y se dice que dos familias de curvas son **trayectorias ortogonales** entre sí si cada miembro de una familia es ortogonal a cada miembro de la otra familia. Esta terminología se utiliza en estos ejercicios.

La figura adjunta muestra algunos miembros típicos de las familias de hipérbolas xy = c (curvas negras) y $x^2 - y^2 = k$ (curvas grises), donde $c \neq 0$ y $k \neq 0$. Utilice la sugerencia del ejercicio 39 para demostrar que estas familias son trayectorias ortogonales entre sí. [Sugerencia: para que las rectas tangentes sean perpendiculares en un punto de intersección, las pendientes de esas rectas tangentes deben ser recíprocas negativas entre sí.]

▲ Figure Ex-40

Diferenciar implícitamente ambos lados de las siguientes ecuaciones con respecto a x produce

1. xy = c

$$x\frac{dy}{dx} + 1 \cdot y = 0$$

De la que obtenemos

$$\frac{dy}{dx} = -\frac{y}{x} \tag{2}$$

2. $x^2 - y^2 = k$

$$2x - 2y\frac{dy}{dx} = 0$$
$$2(x - y\frac{dy}{dx}) = 0$$
$$x - y\frac{dy}{dx} = 0$$

De la que obtenemos

$$\frac{dy}{dx} = \frac{x}{y} \tag{3}$$

Al multiplicar las pendientes de las rectas tangentes de las familias de las hipérbolas, obtenemos

$$m_1 \cdot m_2 = -\frac{y}{x} \cdot \frac{x}{y} = -1$$

Por tanto, las pendientes de las rectas tangentes son recíprocas negativas entre sí, es decir:

$$\therefore xy = c \perp x^2 - y^2 = k$$

Lo demostrado anteriormente aplica para cualquier valor dado de x y y. No obstante, desarrollaremos los polinomios de las ecuaciones para encontrar los puntos de intersección de las curvas.

Sea xy = c, obtenemos que

$$y = \frac{c}{r} \tag{4}$$

Sustituyendo el valor de y de la ecuación (4)

$$x^{2} - y^{2} = k \Longrightarrow_{y = \frac{c}{x}} x^{2} - \left(\frac{c}{x}\right)^{2} = k$$
$$x^{2} - \frac{c^{2}}{x^{2}} - k = 0$$
$$x^{4} - kx^{2} - c^{2} = 0$$

Por lo tanto, los valores de x son

$$x_0 = \sqrt{\frac{2k + 2\sqrt{k^2 + 4c^2}}{2}}$$

$$x_1 = -\sqrt{\frac{2k + 2\sqrt{k^2 + 4c^2}}{2}}$$

$$x_2 = \sqrt{\frac{2k - 2\sqrt{k^2 + 4c^2}}{2}}$$

$$x_3 = -\sqrt{\frac{2k - 2\sqrt{k^2 + 4c^2}}{2}}$$

Sustituyendo el valor de cada x en la ecuación (4), obtenemos los valores de

y para cada valor de x

$$y_0 = \frac{c}{\sqrt{\frac{2k + 2\sqrt{k^2 + 4c^2}}{2}}}$$

$$y_1 = -\frac{c}{\sqrt{\frac{2k + 2\sqrt{k^2 + 4c^2}}{2}}}$$

$$y_2 = \frac{c}{\sqrt{\frac{2k - 2\sqrt{k^2 + 4c^2}}{2}}}$$

$$y_3 = -\frac{c}{\sqrt{\frac{2k - 2\sqrt{k^2 + 4c^2}}{2}}}$$

Ahora, evaluamos cada punto de intersección en la derivada de la ecuación xy=c

$$\frac{dy}{dx} = -\frac{y}{x} |_{(x_0, y_0)}$$

$$= -\frac{\sqrt{\frac{c}{2k + 2\sqrt{k^2 + 4c^2}}}}{\sqrt{\frac{2k + 2\sqrt{k^2 + 4c^2}}{2}}}$$

$$= -\frac{c}{\frac{2k + 2\sqrt{k^2 + 4c^2}}{2}}$$

$$\frac{dy}{dx} = -\frac{y}{x} |_{(x_1, y_1)}$$

$$= -\frac{y}{x} |_{(-\sqrt{\frac{2k + 2\sqrt{k^2 + 4c^2}}{2}}, -\frac{c}{\sqrt{\frac{2k + 2\sqrt{k^2 + 4c^2}}{2}}}})$$

$$= -\frac{c}{\frac{c}{\frac{2k + 2\sqrt{k^2 + 4c^2}}{2}}}$$

$$= -\frac{c}{\frac{2k + 2\sqrt{k^2 + 4c^2}}{2}}$$

$$\frac{dy}{dx} = -\frac{y}{x} |_{(x_2, y_2)}$$

$$= -\frac{y}{x} |_{(\sqrt{\frac{2k - 2\sqrt{k^2 + 4c^2}}{2}}, \frac{c}{\sqrt{\frac{2k - 2\sqrt{k^2 + 4c^2}}{2}}})}$$

$$= -\frac{\frac{c}{\sqrt{\frac{2k - 2\sqrt{k^2 + 4c^2}}{2}}}}{\sqrt{\frac{2k - 2\sqrt{k^2 + 4c^2}}{2}}}$$

$$= -\frac{\frac{dy}{dx}}{= -\frac{y}{x} |_{(x_3, y_3)}$$

$$= -\frac{y}{x} |_{(-\sqrt{\frac{2k - 2\sqrt{k^2 + 4c^2}}{2}}, -\frac{c}{\sqrt{\frac{2k - 2\sqrt{k^2 + 4c^2}}{2}}})}$$

$$= -\frac{\frac{c}{\sqrt{\frac{2k - 2\sqrt{k^2 + 4c^2}}{2}}}}{\sqrt{\frac{2k - 2\sqrt{k^2 + 4c^2}}{2}}}$$

$$= -\frac{c}{\frac{2k - 2\sqrt{k^2 + 4c^2}}{2}}$$

Enseguida, evaluamos cada punto de intersección en la derivada de la ecuación $x^2-y^2=k$

$$\frac{dy}{dx} = \frac{x}{y} \Big|_{(x_0, y_o)}$$

$$= \frac{x}{y} \Big|_{(\sqrt{\frac{2k + 2\sqrt{k^2 + 4c^2}}{2}}, \frac{c}{\sqrt{\frac{2k + 2\sqrt{k^2 + 4c^2}}{2}}})}$$

$$= \frac{\sqrt{\frac{2k + 2\sqrt{k^2 + 4c^2}}{2}}}{\frac{c}{\sqrt{\frac{2k + 2\sqrt{k^2 + 4c^2}}{2}}}}$$

$$= \frac{2k + 2\sqrt{k^2 + 4c^2}}{c}$$

$$\frac{dy}{dx} = \frac{x}{y} \left| {\binom{1}{(x_1, y_1)}} \right| = \frac{x}{y} \left| {\binom{1}{(x_1, y_1)}} {\binom{1}{(x_1, y_1)}} {\binom{1}{(x_1, y_1)}} \right| = \frac{x}{y} \left| {\binom{1}{(x_1, y_1)}} {\binom{1}{(x_1, y_1)}} \right| = \frac{x}{y} \left| {\binom{1}{(x_1, y_1)}} {\binom{1}{(x_1, y_1)}} \right| = \frac{x}{y} \left| {\binom{1}{(x_1, y_1)}}$$

$$\frac{dy}{dx} = \frac{x}{y} \Big|_{(x_2, y_2)}$$

$$= \frac{x}{y} \Big|_{(\sqrt{\frac{2k - 2\sqrt{k^2 + 4c^2}}{2}}, \frac{c}{\sqrt{\frac{2k - 2\sqrt{k^2 + 4c^2}}{2}}})}$$

$$= \frac{\sqrt{\frac{2k - 2\sqrt{k^2 + 4c^2}}{2}}}{\frac{c}{\sqrt{\frac{2k - 2\sqrt{k^2 + 4c^2}}{2}}}}$$

$$= \frac{\frac{2k - 2\sqrt{k^2 + 4c^2}}{2}}{c}$$

$$\frac{dy}{dx} = \frac{x}{y} \Big|_{(x_3, y_3)}$$

$$= \frac{x}{y} \Big|_{(-\sqrt{\frac{2k - 2\sqrt{k^2 + 4c^2}}{2}}, -\frac{c}{\sqrt{\frac{2k - 2\sqrt{k^2 + 4c^2}}{2}}})}$$

$$= \frac{\sqrt{\frac{2k - 2\sqrt{k^2 + 4c^2}}{2}}}{\frac{c}{\sqrt{\frac{2k - 2\sqrt{k^2 + 4c^2}}{2}}}}$$

$$= \frac{2k - 2\sqrt{k^2 + 4c^2}}{c}$$

Al multiplicar pendientes:

(x₀, y₀):
$$m_1 \cdot m_2 = -\frac{c}{\frac{2k+2\sqrt{k^2+4c^2}}{2}} \cdot \frac{\frac{2k+2\sqrt{k^2+4c^2}}{2}}{c} = -1$$

$$(\mathbf{x}_1, y_1): m_1 \cdot m_2 = -\frac{c}{\frac{2k+2\sqrt{k^2+4c^2}}{2}} \cdot \frac{\frac{2k+2\sqrt{k^2+4c^2}}{2}}{c} = -1$$

$$(\mathbf{x}_2, y_2): m_1 \cdot m_2 = -\frac{c}{\frac{2k-2\sqrt{k^2+4c^2}}{2}} \cdot \frac{\frac{2k-2\sqrt{k^2+4c^2}}{2}}{c} = -1$$

$$(\mathbf{x}_{1}, y_{1}): \quad m_{1} \cdot m_{2} = -\frac{c}{\frac{2k+2\sqrt{k^{2}+4c^{2}}}{2}} \cdot \frac{\frac{2k+2\sqrt{k^{2}+4c^{2}}}{2}}{c} = -1$$

$$(\mathbf{x}_{2}, y_{2}): \quad m_{1} \cdot m_{2} = -\frac{c}{\frac{2k-2\sqrt{k^{2}+4c^{2}}}{2}} \cdot \frac{\frac{2k-2\sqrt{k^{2}+4c^{2}}}{2}}{c} = -1$$

$$(\mathbf{x}_{3}, y_{3}): \quad m_{1} \cdot m_{2} = -\frac{c}{\frac{2k-2\sqrt{k^{2}+4c^{2}}}{2}} \cdot \frac{\frac{2k-2\sqrt{k^{2}+4c^{2}}}{2}}{c} = -1$$

Lo que demuestra que son recíprocas negativas entre sí y por tanto, trayectorias ortogonales.