Instrukcja do ćwiczeń

Przedmiot: Elementy metod numerycznych

Rodzaj zajęć: ćwiczenia komputerowe

Numer zajęć: ćwiczenia nr 3

Temat: Wzory interpolacyjne Newtona

Prowadzący: dr Artur Woike

Napisać skrypt Scilab'a przybliżający wartość funkcji f w punkcie \bar{x} wartością $W_n(\bar{x})$ wielomianu interpolacyjnego. W zależności od tego jakie są węzły interpolacji należy użyć wzoru interpolacyjnego Newtona dla węzłów dowolnych lub równoodległych.

Dane:

$$n \in \mathbb{N}, x_0, \ldots, x_n, \bar{x} \in \langle x_0, x_n \rangle, y_0 = f(x_0), \ldots, y_n = f(x_n).$$

Szukane:

tablica ilorazów różnicowych lub różnic progresywnych, $W_n(\bar{x})$.

Dane testowe 1:

$$n = 7$$
, $\bar{x} = \frac{\pi}{2}$, $f(x) = \sin(x)$,
 $x_0 = 1$, $x_1 = 2$, $x_2 = 3$, $x_3 = 4$, $x_4 = 5$, $x_5 = 6$, $x_6 = 7$, $x_7 = 8$,
 $y_0 = f(x_0)$, $y_1 = f(x_1)$, $y_2 = f(x_2)$, $y_3 = f(x_3)$, $y_4 = f(x_4)$,
 $y_5 = f(x_5)$, $y_6 = f(x_6)$, $y_7 = f(x_7)$.

Dane testowe 2:

$$n = 5, \ \bar{x} = 0, \ f(x) = e^x,$$

$$x_0 = -3, x_1 = -2, x_2 = -1, x_3 = 1, x_4 = 2, x_5 = 3,$$

$$y_0 = f(x_0), y_1 = f(x_1), y_2 = f(x_2), y_3 = f(x_3), y_4 = f(x_4),$$

$$y_5 = f(x_5).$$

Schemat skryptu:

- 1. Wprowadzić dane: $n, x_0, \ldots, x_n, \bar{x}$.
- 2. Zadeklarować funkcje f.
- 3. Wygenerować wartości y_0, \ldots, y_n . $y_i = f(x_i)$
- 4. Zbadać czy węzły x_0, \ldots, x_n są równoodległe (jeśli tak to wyznaczyć h).
- 5. Zadeklarować funkcję ω_n .

$$\omega_n(x) = (x - x_0)(x - x_1) \dots (x - x_n)$$

- a) Wygenerować wektor o składowych $(x x_i)$.
- b) Wyliczyć iloczyn składowych tego wektora za pomocą funkcji "prod".
- c) Obliczony iloczyn zwrócić jako wynik funkcji ω_n .
- 6. Przygotować pusta tablice na ilorazy różnicowe lub różnice progresywne:
 - a) Prawdziwe wymiary tablicy to $(n+1) \times (n+1)$.
 - b) Kolejne kolumny tablicy będą przechowywały kolejne rzędy ilorazów lub różnic.

- c) Pierwsza kolumna powinna zawierać rząd 0 ilorazów lub różnic, czyli wektor kolumnowy wartości $y_i = f(x_i)$.
- d) Należy uwzględnić różnice w numeracji elementów tablicy i numeracji elementów we wzorach.
- e) Z wyjątkiem pierwszej kolumny (rząd 0) kolejne kolumny tablicy nie będą w pełni wykorzystane (w każdym kolejnym rzędzie jest o jeden element mniej).
- f) Elementy tablicy obliczamy kolejnymi kolumnami (tj. kolejnymi rzędami ilorazów lub różnic).
- g) Ilorazy lub różnice występujące we wzorach Newtona znajdują się w pierwszym wierszu naszej tablicy.
- 7. Jeśli węzły są dowolne:
 - a) Obliczyć tablicę ilorazów różnicowych:

$$f(x_i, x_{i+1}) = \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i}, i = 0, \dots, n-1$$

$$f(x_i, \dots, x_{i+k}) = \frac{f(x_{i+1}, \dots, x_{i+k}) - f(x_i, \dots, x_{i+k-1})}{x_{i+k} - x_i},$$

$$k = 2, \dots, n, \quad i = 0, \dots, n-k.$$

b) Obliczyć wartość $W_n(\bar{x})$:

$$W_n(\bar{x}) = f(x_0) + \sum_{i=1}^n f(x_0, \dots, x_i) \omega_{i-1}(\bar{x}).$$

Sumę obliczamy za pomocą pętli "for":

- i. Utworzyć i zainicjować odpowiednio zmienną tymczasową $s = f(x_0)$.
- ii. W pętli "for" obliczać kolejne elementy sumy i dodawać je do zmiennej tymczasowei s.
- iii. Po zakończeniu działania pętli "for" w zmiennej s znajduje się szukana wartość $W_n(\bar{x})$.
- 8. Jeśli węzły są równoodległe:
 - a) Obliczyć tablice różnic różnic progresywnych:

$$\Delta^{0} y_{i} = y_{i}, \quad i = 0, \dots, n,$$

$$\Delta^{k} y_{i} = \Delta^{k-1} y_{i+1} - \Delta^{k-1} y_{i},$$

$$k = 1, \dots, n, \quad i = 0, \dots, n - k.$$

b) Obliczyć wartość $W_n(\bar{x})$:

$$W_n(x) = \Delta^0 y_0 + \sum_{i=1}^n \frac{\Delta^i y_0}{i!h^i} \omega_{i-1}(\bar{x}).$$

Sumę obliczamy za pomocą funkcji "sum":

- i. Wygenerować wektor tymczasowy przechowujący kolejne składniki obliczanej sumy.
- ii. Wyliczyć sumę składowych tego wektora za pomocą funkcji "sum".
- iii. Obliczoną sumę zwrócić jako $W_n(\bar{x})$.
- 9. Wypisać w konsoli wartość $W_n(\bar{x})$.

Instrukcja do ćwiczeń

Przedmiot: Elementy metod numerycznych Rodzaj zajęć: ćwiczenia komputerowe

Numer zajeć: ćwiczenia nr 4

Temat: Metody połowienia, regula falsi i siecznych

Prowadzący: dr Artur Woike

Napisać skrypt Scilab'a wyznaczający z dokładnością 10^{-r} rozwiązanie przybliżone równania nieliniowego f(x) = 0 położone wewnątrz przedziału $\langle a, b \rangle$.

Wykorzystać następujące połączenie metody połowienia i metody regula falsi (lub metody siecznych):

- 1. jeśli spełnione są założenia metody regula falsi (metody siecznych), to stosujemy jedną z tych metod do wyznaczenia rozwiązania,
- 2. jeśli nie są spełnione założenia metody regula falsi, ale są spełnione założenia metody połowienia, to wykonujemy jeden krok metody połowienia (zmniejszamy przedział $\langle a,b\rangle$) i wracamy do punktu 1;
- 3. jeśli nie są spełnione założenia metody połowienia, to nie wykonujemy żadnych obliczeń

Założenia metody regula falsi (metody siecznych) weryfikujemy w sposób przybliżony:

- pierwszą i drugą pochodną przybliżamy za pomocą odpowiednich ilorazów różnicowych;
- cały przedział $\langle a, b \rangle$ zastępujemy punktami a i b (czyli sprawdzamy tylko warunek konieczny).

Wykorzystujemy dodatkowy warunek przerwania obliczeń – łączna liczba iteracji nie może przekroczyć ustalonej wartości n_{max} .

Dane:

funkcja f, przedział $\langle a, b \rangle$, parametry r, n_{max} i h.

Szukane:

przybliżenie x_i , takie że $|x_i - x_{i-1}| < 10^{-r}$ oraz $i \leq n_{max}$.

Dane testowe:

$$f(x) = (x^2 - 3)\sin x, \langle a, b \rangle = \langle 0.5, -2 \rangle,$$

 $r = 4, n_{max} = 50, h = 0.001.$

Schemat skryptu:

- 1. Wprowadzić dane: a, b, r, n_{max}, h .
- 2. Zadeklarować funkcję f.

3. Zadeklarować przybliżenia pierwszej i drugiej pochodnej funkcji f za pomocą ilorazów różnicowych:

$$f'(x) \approx \frac{f(x+h) - f(x)}{h},$$

$$f''(x) \approx \frac{f'(x+h) - f'(x)}{h}.$$

- 4. Przyjąć aktualną liczbę wykonanych iteracji wi = 0.
- 5. Sprawdzić założenia metody połowienia:

$$f(a) \cdot f(b) < 0.$$

Jeśli powyższy warunek nie jest spełnione, to skrypt kończy działanie.

6. Sprawdzić (w dwóch punktach) założenia metody regula falsi (metody siecznych):

$$f'(a) \cdot f'(b) > 0,$$

$$f''(a) \cdot f''(b) > 0.$$

7. Jeśli warunki z punktu 6 nie są spełnione, to obliczamy za pomocą metody połowienia przybliżenie \bar{x} i używamy go do wyznaczenia nowego przedziału $\langle a, b \rangle$:

$$\bar{x} = \frac{a+b}{2},$$

jeśli $f(a) \cdot f(\bar{x}) < 0$, to $\langle a, b \rangle := \langle a, \bar{x} \rangle$, w przeciwnym wypadku $\langle a, b \rangle := \langle \bar{x}, b \rangle$. Po wyznaczeniu nowego przedziału $\langle a, b \rangle$ zwiększamy o 1 licznik wi wykonanych iteracji i wracamy do punktu 6.

- 8. Jeśli warunki z punktu 6 są spełnione to stosujemy metodę regula falsi lub metodę siecznych:
 - a) metoda regula falsi:
 - i. jeżeli f'(x)f''(x) < 0, to c = a i $x_0 = b$, w przeciwnym wypadku c = b i $x_0 = a$;
 - ii. obliczamy nowe przybliżenie x_n ,

$$x_n = x_{n-1} - \frac{f(x_{n-1})}{f(c) - f(x_{n-1})} (c - x_{n-1}), \quad n = 1, 2, \dots;$$

- iii. zwiększamy o 1 licznik wi wykonanych iteracji;
- iv. jeśli $wi > n_{max}$ to kończymy działanie skryptu (nie udało się osiągnąć żądanej dokładności);
- v. jeżeli zachodzi warunek na dokładność przybliżenia $|x_n x_{n-1}| < 10^{-r}$, to kończymy obliczenia (ostatnie wyliczone przybliżenie jest naszym rozwiązaniem przybliżonym), w przeciwnym wypadku wracamy do punktu ii.
- b) metoda siecznych:
 - i. jeżeli f'(x)f''(x) < 0, to $x_{-1} = b$ i $x_0 = a$, w przeciwnym wypadku $x_{-1} = a$ i $x_0 = b$:
 - ii. obliczamy nowe przybliżenie x_n ,

$$x_n = x_{n-1} - \frac{f(x_{n-1})}{f(x_{n-1}) - f(x_{n-2})} (x_{n-1} - x_{n-2}), \quad n = 1, 2, \dots;$$

iii. zwiększamy o 1 licznik wi wykonanych iteracji;

- iv. jeśli $wi > n_{max}$ to kończymy działanie skryptu (nie udało się osiągnąć żądanej dokładności);
- v. jeżeli zachodzi warunek na dokładność przybliżenia $|x_n x_{n-1}| < 10^{-r}$, to kończymy obliczenia (ostatnie wyliczone przybliżenie jest naszym rozwiązaniem przybliżonym), w przeciwnym wypadku wracamy do punktu ii.
- 9. obliczone w ten sposób rozwiązanie przybliżone wypisujemy w konsoli wraz z zawartością licznika wi.

Instrukcja do ćwiczeń

Przedmiot: Elementy metod numerycznych Rodzaj zajęć: ćwiczenia komputerowe

Numer zajęć: ćwiczenia nr 5

Temat: Metody Newtona, Steffensena i Halleya

Prowadzący: dr Artur Woike

Napisać skrypt Scilab'a wyznaczający z dokładnością 10^{-r} rozwiązanie przybliżone równania nieliniowego f(x) = 0 położone wewnątrz przedziału $\langle a, b \rangle$.

Do rozwiązania numerycznego powyższego równania wykorzystać metodę Steffensena. Założenia metody Steffensena (metody Newtona) weryfikujemy w sposób przybliżony:

- pierwszą i drugą pochodną przybliżamy za pomocą odpowiednich ilorazów różnicowych;
- cały przedział $\langle a,b\rangle$ zastępujemy punktami a i b (czyli sprawdzamy tylko warunek konieczny).

Wykorzystać przybliżony warunek przerwania obliczeń $|x_n - \alpha| < 10^{-r}$ w połączeniu z dodatkowym warunkiem przerwania obliczeń – łączna liczba iteracji nie może przekroczyć ustalonej wartości n_{max} .

Dane:

funkcja f, przedział $\langle a, b \rangle$, parametry r, n_{max} i h.

Szukane:

przybliżenie x_n , takie że $|x_n - \alpha| < 10^{-r}$ oraz $n \leq n_{max}$.

Dane testowe:

$$f(x) = x \exp(\sin x) + \cos x, \langle a, b \rangle = \langle -2, -0.8 \rangle,$$

 $r = 10, n_{max} = 100, h = 0.001.$

Schemat skryptu:

- 1. Wprowadzić dane: a, b, r, n_{max}, h .
- 2. Zadeklarować funkcje f.
- 3. Zadeklarować przybliżenia pierwszej i drugiej pochodnej funkcji f za pomocą ilorazów różnicowych:

$$f'(x) \approx \frac{f(x+h) - f(x)}{h},$$

$$f''(x) \approx \frac{f'(x+h) - f'(x)}{h}.$$

4. Zadeklarować pomocniczą funkcję g z metody Steffensena:

$$g(x) = \frac{f(x + f(x)) - f(x)}{f(x)}.$$

5. Przyjąć aktualną liczbę wykonanych iteracji wi = 0.

6. Sprawdzić (w dwóch punktach) założenia metody Steffensena (Newtona):

$$f(a) \cdot f(b) < 0,$$

$$f'(a) \cdot f'(b) > 0,$$

$$f''(a) \cdot f''(b) > 0.$$

- 7. Jeśli powyższe warunki nie są spełnione, to skrypt kończy działanie.
- 8. Jeśli warunki z punktu 6 są spełnione to stosujemy metodę Steffensena:
 - a) jeżeli $f(a) \cdot f''(a) > 0$, to $x_0 = a$, w przeciwnym wypadku $x_0 = b$;
 - b) obliczamy nowe przybliżenie x_n ,

$$x_n = x_{n-1} - \frac{f(x_{n-1})}{g(x_{n-1})}, \quad n = 1, 2, \dots;$$

- c) zwiększamy o 1 licznik wi wykonanych iteracji;
- d) jeśli $wi > n_{max}$ to kończymy działanie skryptu (nie udało się osiągnąć żądanej dokładności);
- e) jeżeli zachodzi przybliżony warunek na dokładność przybliżenia

$$|x_n - \alpha| \approx \frac{|x_n - x_{n-1}|}{|f(x_n) - f(x_{n-1})|} |f(x_n)| < 10^{-r},$$

to kończymy obliczenia (ostatnie wyliczone przybliżenie jest naszym rozwiązaniem przybliżonym), w przeciwnym wypadku wracamy do punktu b.

9. obliczone w ten sposób rozwiązanie przybliżone wypisujemy w konsoli wraz z zawartością licznika wi.