Predictive information criteria in hierarchical Bayesian models for clustered data

Sophia Rabe-Hesketh & Daniel Furr

Education & Biostatistics University of California, Berkeley sophiarh@berkeley.edu

Joint work with Ed Merkle

Psychological Sciences. University of Missouri

StanCon 2018. Asilomar. Pacific Grove

Rabe-Hesketh & Furr, StanCon 2018

Targets of predictive information criteria (non-hierarchical Bayesian model)

▶ Model likelihood: $f(y|\theta) = \prod_{i=1}^{N} f(y_i|\theta)$ Model prior: $p(\theta)$

- Assess model by how well it predicts future, out-of-sample data u^r
- ▶ Measure of prediction error (scoring function) is deviance:

$$-2\log f(\mathbf{y}^r|\boldsymbol{\theta}) = -2\sum_{i=1}^{N} \log f(y_i^r|\boldsymbol{\theta})$$

- What to do about unknowable θ?
 - DIC: plug in posterior mean $\widetilde{\theta}$

plug-in deviance =
$$-2\log f(y^r|\tilde{\theta})$$

- WAIC: integrate over $p(\theta|y)$, but use **pointwise** predictive densities $-2 \log \text{ pointwise predictive density} = -2 \sum_{i=1}^{N} \log F_{\theta(i)} f(\theta^i|\theta)$
 - $-2\log \text{ pointwise predictive density} = -2\sum_{i=1}\log \mathsf{E}_{\pmb{\theta}|\pmb{y}}f(y_i^{\mathbf{r}}|\pmb{\theta})$
- ightharpoonup Targets are **expectations** of the above over out-of-sample data y^r [Gelman, Hwang & Vehtari, 2014]

Outline of Talk

- Predictive information criteria
 DIC and WAIC with connections to leave-one-out (LOO) cross-validation
- Hierarchical Bayesian models for clustered data Mixed/multilevel models (MLM), structural equation models (SEM), item response theory (IRT) models
- Marginal versus conditional versions of DIC, WAIC, and LOO
- Application to IRT

Rabe-Hesketh & Furr, StanCon 2018

DIC (non-hierarchical Bayesian model)

Expectation of plug-in deviance (pid) over distribution of y^r:

$$\mathsf{expected} \ \mathsf{pid} = -2 \mathsf{E}_{\boldsymbol{y^r}} \mathsf{log} \, f(\boldsymbol{y^r} | \widetilde{\boldsymbol{\theta}})$$

- $lackbox{Data-generating distribution of } m{y}^{r}$ unknown & validation data $m{y}^{r}$ not available
- Use within-sample pid and penalize for using data twice

$$\mathsf{DIC} \ = \ -2\mathsf{log}\, f(\boldsymbol{y}|\widetilde{\boldsymbol{\theta}}) + 2p_{\mathsf{D}}$$

where p_{D} in penalty term is effective number of parameters

$$p_{\mathsf{D}} \ = \ \mathsf{E}_{\boldsymbol{\theta}|\boldsymbol{y}}[-2\mathsf{log}\,f(\boldsymbol{y}|\boldsymbol{\theta})] - [-2\mathsf{log}\,f(\boldsymbol{y}|\tilde{\boldsymbol{\theta}})]$$

Posterior means estimated as averages over MCMC draws

[Spiegelhalter, Best, Carlin & van der Linde, 2002]

Rabe-Hesketh & Furr, StanCon 2018

Rabe-Hesketh & Furr. StanCon 2018

WAIC (non-hierarchical Bayesian model)

▶ -2 expected log pointwise predictive density (elppd) over distribution of y^r :

$$-2\operatorname{elppd} = -2\sum_{i=1}^{N}\mathsf{E}_{\boldsymbol{y^r}}\mathsf{log}\,\mathsf{E}_{\boldsymbol{\theta}|\boldsymbol{y}}f(y_i^r|\boldsymbol{\theta})$$

- Data-generating distribution of y^r unknown & validation data y^t not available
- Use within-sample lond and penalize for using data twice

WAIC =
$$-2\sum_{i=1}^{N} \log E_{\theta|y} f(y_i|\theta) + 2p_W$$

where p_W in penalty term is effective number of parameters

$$p_{W} = \sum_{i=1}^{N} Var_{\theta|y} log f(y_{i}|\theta)$$

- Posterior means and variances estimated from MCMC draws
- Asymptotically equivalent to LOO cross-validation (LOO-CV)

Rabe-Hesketh & Furr, StanCon 2018

Hierarchical Bayesian models for clustered data

Stage		MLM Example	Densities, general notation	
3	Responses	$y_{ij} \sim N(\alpha + \zeta_j, \sigma^2)$	$f_c(y_{ij} \omega, \zeta_j)$	$\omega \equiv (\alpha, \sigma^2)'$
		unit $i = 1, \dots, n_j$		$\zeta_j \equiv \zeta_j$
2	Direct param.	$\zeta_j \sim N(0, \psi)$	$g(\zeta_j \psi)$	$\psi \equiv \psi$
		cluster $j=1,\ldots,J$		

Fully Bayesian

*				
		prior for α, σ^2	$p(\omega)$	
1	Hyperparameters	hyperprior for ψ	$p(\boldsymbol{\psi})$	

- C are direct parameters, varying intercepts/coefficients (MLM), latent variables (SEM/IRT), missing data
- In Bayesian setting, ambiguous whether () are parameters or (latent) variables

LOO-CV and PSIS-LOO (non-hierarchical Bayesian model)

Same target as WAIC

$$-2\operatorname{elppd} = -2\sum_{i=1}^{N} \mathsf{E}_{\boldsymbol{y}^{t}} \mathsf{log} \, \mathsf{E}_{\boldsymbol{\theta} | \boldsymbol{y}} f(\boldsymbol{y}_{i}^{t} | \boldsymbol{\theta})$$

▶ Estimate using LOO-CV

$$-2 \text{LOO-CV} = -2 \sum_{i=1}^{N} \log \mathbb{E}_{\theta|\mathbf{y}_{-i}} f(y_i|\theta)$$

- Where y_{-i} is the "training" data without unit i
- Requires running MCMC on each of N training datasets
- Approximate by Pareto-smoothed importance sampling (PSIS) Idea of importance sampling (IS)

$$-2\, \text{IS-LOO} \ = \ -2 \sum_{i=1}^{N} \log \mathsf{E}_{\boldsymbol{\theta}|\boldsymbol{y}} \bigg[\frac{p(\boldsymbol{\theta}|\boldsymbol{y}_{-i})}{p(\boldsymbol{\theta}|\boldsymbol{y})} \bigg] f(\boldsymbol{y}_{i}|\boldsymbol{\theta})$$
 importance ratio

Importance ratios
 ¹⁄_{f(w|H)}; Unstable, hence Pareto smoothing

[Vehtari, Gelman & Gabry, 2017]

Rabe-Hesketh & Furr, StanCon 2018

Revisit DIC

Two versions of the likelihood (or deviance)

Conditional likelihood: ∏_i f_c(y_i|ω, ζ_i), where

$$f_c(\boldsymbol{y}_j|\boldsymbol{\omega}, \boldsymbol{\zeta}_j) = \prod_{i=1}^{n_j} f_c(y_{ij}|\boldsymbol{\omega}, \boldsymbol{\zeta}_j)$$

- Natural definition in Stan (or BUGS/JAGS) code
- Condition on ω and ζ = (ζ', ..., ζ')'
- Marginal likelihood: ∏_j f_m(y_j|ω, ψ), where

$$f_m(y_j|\omega, \psi) = \int f_c(y_j|\omega, \zeta_j)g(\zeta_j|\psi)d\zeta_j$$

- Natural in maximum likelihood (ML) estimation (e.g., lmer in R)
- Condition on ω and ψ, the only parameters in ML setting
- In MLM example, f_m(y_i|ω, ψ) is MVN with means α, variances $\psi + \sigma^2$, and covariances ψ

Conditional and marginal DIC

► Conditional DIC

 ζ (and ω) "in focus" [Spiegelhalter, Best, Carlin & van der Linde, 2002]

$$\mathrm{DIC}_{c} = -2 \log f_{c}(\boldsymbol{y}|\tilde{\boldsymbol{\omega}}, \tilde{\boldsymbol{\zeta}}) + 2p_{\mathrm{Dc}}$$

 $p_{\mathrm{Dc}} = \mathbf{E}_{c,c,c,|\boldsymbol{y}|}[-2\log f_{c}(\boldsymbol{y}|\boldsymbol{\omega}, \boldsymbol{\zeta})] + 2\log f_{c}(\boldsymbol{y}|\tilde{\boldsymbol{\omega}}, \tilde{\boldsymbol{\zeta}})$

- Used in almost all application, easy with Stan, BUGS, JAGS
- Marginal DIC

 ψ (and ω) "in focus"

$$\mathrm{DIC}_{\mathrm{m}} = -2\mathrm{log}f_{\mathrm{m}}(\boldsymbol{y}|\tilde{\boldsymbol{\omega}},\tilde{\boldsymbol{\psi}}) + 2p_{\mathrm{Dm}}$$

$$p_{Dm} = E_{\omega,\psi|y}[-2\log f_m(y|\omega,\psi)] + 2\log f_m(y|\tilde{\omega},\tilde{\psi})$$

- Provided by R package blavaan [Merkle & Rosseel, 2018] for SEM (which evaluates f_m(y|ω, ψ) using lavaan) and by Mplus
- Efficient adaptive quadrature to evaluate intractable integrals [Furr, 2017; Rabe-Hesketh, Skrondal & Pickles, 2005]

Rabe-Hesketh & Furr, StanCon 2018

Conditional WAIC and LOuO-CV

$$\begin{split} \text{WAIC}_{\text{c}} &= -2\sum_{j=1}^{J}\sum_{i=1}^{n_{j}}\log\left[\mathbb{E}_{\omega,\zeta_{j}|\boldsymbol{y}}f_{\text{c}}(y_{ij}|\omega,\zeta_{j})\right] + 2p_{\text{Wc}} \\ p_{\text{Wc}} &= \sum_{j}\sum_{i=1}^{n_{j}}\operatorname{Var}_{\omega,\zeta_{j}|\boldsymbol{y}}\left[\log f_{\text{c}}(y_{ij}|\omega,\zeta_{j})\right] \end{split}$$

► Same target as leave-one-unit out (LOuO) CV

$$-2 \, \mathsf{LOuO\text{-}CV} \ = \ -2 \sum_{j=1}^J \sum_{i=1}^{n_j} \log \mathsf{E}_{\boldsymbol{\omega}, \zeta_j | \boldsymbol{y}_{-ij}} f_{\mathsf{c}}(\boldsymbol{y}_{ij} | \boldsymbol{\omega}, \zeta_j)$$

 WAIC_c and PSIS-LOuO provided by combination of Stan and R package loo [Vehtari, Gelman & Gabry, 2016]

Revisit WAIC

Two versions of predictive distributions

▶ Posterior predictive distribution for new unit in existing cluster

$$\mathsf{E}_{\omega,\zeta_{j}|\mathbf{y}}f_{\mathsf{c}}(y_{ij}^{r}|\omega,\zeta_{j}) = \int f_{\mathsf{c}}(y_{ij}^{r}|\omega,\zeta_{j}) \underbrace{\left[\int p(\zeta_{j}|\mathbf{y}_{j},\omega,\psi)p(\omega,\psi|\mathbf{y})d\psi\right]}_{p(\omega,\zeta_{j}|\mathbf{y})} d\omega d\zeta_{j}$$
Uses **posterior** for $\zeta_{i} \Rightarrow$ directly influenced by y_{i}

 \Rightarrow treats ζ_j and therefore cluster as within-sample

Mixed predictive distribution for new units in new cluster:

$$\mathsf{E}_{\omega,\psi|\mathbf{y}}f_m(\mathbf{y}_j^t|\boldsymbol{\omega},\psi) = \int \underbrace{\left[\int f_c(\mathbf{y}_j^t|\boldsymbol{\omega},\zeta_j)g(\zeta_j|\psi)d\zeta_j\right]}_{f_m(\mathbf{y}_j^t|\boldsymbol{\omega},\psi)} p(\boldsymbol{\omega},\psi|\mathbf{y})d\omega d\psi$$

Uses **prior** for ζ_i

 \Rightarrow treats ζ_j and therefore cluster as out-of-sample

[Gelman, Meng & Stern, 1996]

Rabe-Hesketh & Furr, StanCon 2018

Marginal WAIC and LOcO-CV

$$\begin{split} \text{WAIC}_{\text{m}} &= -2 \sum_{j=1}^{J} \log \left[\mathbb{E}_{\omega,\psi|y} f_{\text{m}}(y_{j}|\omega,\psi) \right] + 2 p_{\text{Wm}} \\ p_{\text{Wm}} &= \sum_{j=1}^{J} \text{Var}_{\omega,\psi|y} \left[\log f_{\text{m}}(y_{j}|\omega,\psi) \right] \end{split}$$

► Same target as leave-one-cluster out (LOcO) CV

$$-2\operatorname{LOcO-CV} \ = \ -2\sum_{j=1}^{J}\log\operatorname{E}_{\boldsymbol{\omega},\boldsymbol{\psi}|\boldsymbol{y}_{-j}}f_{\mathrm{m}}(\boldsymbol{y}_{j}|\boldsymbol{\omega},\boldsymbol{\psi})$$

- ▶ Can compute PSIS-LOcO using 100 package with posterior samples of $f_m(y_j|\omega,\psi)$ as input; automated in blavaan for SEM!
- Ever used??

11

- Hinted at [e.g., Gelman, Hwang & Vehtari, 2014 Section 2.5]
- Used for unclustered data with latent variables (e.g., overdispersed Poisson, meta-analysis) [Li, Qui & Feng, 2016; Millar, 2018]

Rabe-Hesketh & Furr, StanCon 2018

WAIC and LOO-CV for unclustered data

 In unclustered data with univariate y_j (instead of y_j), posterior predictive density collapses to mixed predictive density

No data for unit $j \Rightarrow$ **posterior** for ζ_i equals **prior** for ζ_i

 Therefore conditional PSIS-LOO makes no sense and not clear what WAICe represents!

[Millar, 2018]

Rabe-Hesketh & Furr, StanCon 2018

13

8 schools example

WAIC and LOO-CV for unclustered data

- Meta-analysis of SAT prep. programs in 8 schools (j = 1,...,8)
- Effect size estimates y_i with standard error estimates σ_i
- Hierarchical model

$$y_j|\zeta_j, \sigma_j^2 \sim N(\zeta_j, \sigma_j^2), \quad \zeta_j|\mu, \tau^2 \sim N(\mu, \tau^2), \quad p(\alpha, \tau) \propto 1$$

 $f_c(y_j|\zeta_j) = N(y_j|\zeta_j, \sigma_j^2) \qquad f_m(y_j|\tau^2) = N(y_j|\mu, \tau^2 + \sigma_j^2)$

- Scale data $y_j^* = S imes y_j, \ \sigma_j$ unchanged [Vehtari, Gelman & Gabry, 2017]

Scale factor S	WAIC	LOO-CV	WAIC _m
1	61.8	62.6	62.6
4	68.7	86.0	85.5

- ▶ WAIC_c terrible approximation to LOO-CV when S=4 [Vehtari, Gelman & Gabry, 2017 Figure 1a (did not consider WAIC_m)]
- WAIC_m much better approximation to LOO-CV
 Also found in other applications [Li, Qui & Feng, 2016; Millar, 2018]

Rabe-Hesketh & Furr, StanCon 2018

Dan Furr: Application to IRT

Discussion

- ▶ Make informed choice between conditional and marginal ICs
- Marginal ICs generally more justified than conditional ICs
 - Want to assess specification of prior $g(\zeta_j|\psi)$
- And/or want to generalize to other clusters
 Theoretical problems with conditional ICs
- i neoreticai problems with conditional ICs
 - WAIC_c and PSIS-LOuO make no sense for unclustered data
 - WAIC_c does not meet regularity conditions: (a) y_{ij} |ω, ζ_j not iid
 (b) number of parameters increases with sample size [Millar, 2018]
 - Penalty term for DIC_c problematic because number of parameters increases with sample size [Plummer, 2008]
- Empirical problem with conditional ICs
 - · Both WAIC, and DIC, can have huge Monte Carlo errors
 - WAIC_c can be poor approximation to PSIS-LOuO

Rabe-Hesketh & Furr, StanCon 2018 15 Rabe-Hesketh & Furr, StanCon 2018 16

References to other authors

Research 11, 3571-3594.

- Li, Qui & Feng (2016). Approximating cross-validatory predictive evaluation in Bayesian latent variable models with integrated IS and WAIC. Statistics and Computing 26 881-807
- Gelman, Meng & Stern (1996). Posterior predictive assessment of model fitness via realized discrepancies. Statistica Sinica 6, 733-807.
- Gelman, Hwang & Vehtari (2014). Understanding predictive information criteria for Bayesian models. Statistics and Computing 24, 997-1016.
- Millar (2018). Conditional vs. marginal estimation of predictive loss of hierarchical models using WAIC and cross-validation. Statistics and Computing. In press.
- Plummer (2008). Penalized loss functions for Bayesian model comparison. Biostatistics 9, 523-539.
- Spiegelhalter Best Carlin & van der Linde (2002) Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society Series B 64, 583-639.
- Vehtari, Gelman & Gabry (2016). 100: Efficient leave-one-out crossvalidation and WAIC for Bayesian models. https://github.com/stan-dev/loo
- Vehtari, Gelman & Gabry (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing 27, 1413-1432.
- Watanabe (2010). Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. Journal of Machine Learning

References to our work

- Furr (2017). Bayesian and frequentist cross-validation methods for explanatory item response models. PhD Thesis. UC Berkeley
- Merkle & Rosseel (2018). blavaan: Bayesian structural equation models via parameter expansion. Journal of Statistical Software. In Press.
- Merkle, Furr & Rabe-Hesketh (2018). Bayesian model assessment: Use of conditional vs marginal likelihoods. arXiv:1802.04452. http://arxiv.org/abs/1802.04452
- Rabe-Hesketh, Skrondal & Pickles (2005). Maximum likelihood estimation of limited and discrete dependent variable models with nested random effects. Journal of Econometrics 128, 301-323.
- ▶ Web page on Education Research using Stan: https://education-stan.github.io (contributions welcome) Tutorial and case-studies on IRT
 - Papers that use Stan in education research, broadly construed

Rabe-Hesketh & Furr, StanCon 2018 17 Rabe-Hesketh & Furr, StanCon 2018