Approximation Algorithms Part II: week 2 assignment

Anonymous

September 4, 2019

Primal-dual algorithm for Shortest Path problem

Q1. maximize
$$\sum_{S \in \mathcal{S}} y_S$$
 s.t.
$$\sum_{S \in \mathcal{S}: e \in S} y_S \leq w(e) \quad \forall e \in E$$

$$y_S \geq 0 \quad \forall S \in \mathcal{S}$$

Q2. At most |V| - 1 iterations.

Q3. After each iteration, an edge is added and the size of C increases by 1. After |V|-1 iterations, C contains all V. So there is at least one path from s to t when the algorithm terminates.

Proof of Lemma 1 We want to show after i iterations, $|F_i| = i$. Initially, $|F_0| = 0$ because C contains only s. After the 1st iteration, $|F_1| = 1$ because step 3 adds one edge. Assuming after iteration i - 1, $|F_{t-1}| = i - 1$. Then after iteration i, $|F_t| = |F_{t-1}| + 1 = t$ because of step 3. And this concludes our proof.

Q4. $val(y^*) \le val(P^*)$ due to weak complementary slackness.

Q5. At any iteration, suppose an edge e is added to F. And node in e' are included into C. Obviously, e is not crossing C and $V \setminus C$. In the next step, we only increase y_C . Therefore, the constraint in dual related to w(e') is never broken. Therefore, the solution y is feasible for the dual.

Q6. We have $val(y) \leq val(P^*)$.

Q7.
$$w(e) = \sum_{S \in \mathcal{S}: e \in \delta(S)} y_S.$$

Q8.
$$\sum_{e \in P} w(e) = \sum_{e \in P} \sum_{S \in \mathcal{S}: e \in \delta(S)} y_S$$

Q9.
$$\sum_{e \in P} \sum_{S \in \mathcal{S}: e \in \delta(S)} y_S = \sum_{S \in \mathcal{S}} y_S \sum_{e \in P \cap \delta(S)} = \sum_{S \in \mathcal{S}} y_S |P \cap \delta(S)|$$

Q10. If $|P \cap \delta(S)| >= 2$, it means there is a cycle in some S' after S. This contradicts with the fact that S' is a tree (Lemma 1).

Q11. The primal-dual algorithm is optimal.

Q12. Intuitively, pruning is needed to remove unnecessary edges. It's used in question 10.

Q13. The forward direction: if (s,i) is the first edge added to F, it means (s,i) has the minimum w(s,j) among all neighbors j of s. In Dijkstra algorithm, i is not in D and minimizes d(i). So it's selected.

The reverse direction, if i is selected, it means d(i) is minimal among all neighbors of s. And d(i) is initialized to be w(s,i). Therefore, (s,i) is chosen first by the primal-dual algorithm.

Q14. The vertex j with minimum l(j) will be added to C_0 .

Q15. $\{i \in \text{neighbor}(j) : i \notin S'\}$, i.e. j's neighbors that are not in S'

Q16. For $k \notin S'$, l(k) = l(j) + w(k, j).

Q17. The same order!

Q18. $O(n^2)$ if you consider a complete graph.