Introduction to Optimization Through the Lens of Data Science Course Exercises

Sexercises - Section 1: Lecture 3 – Binary Modeling with Truth Tables - Questions

For each of the following constraints, write the truth table to either demonstrate that the math and gurobipy match the English, or show where the math and gurobipy don't match the English. The variables for these constraints are defined as follows:

English	Math	gurobipy
For each of the features in the data set,	x_i	import gurobipy as gp
is the feature used in a logistic		from gurobipy import GRB
regression model? (1=yes, 0=no)		
		<pre>m = gp.Model()</pre>
		x = m.addVars(J, type=GRB.BINARY)

1.

English	Math	Gurobipy
Either feature 6 or feature 11 (or both)	$x_6 + x_{11} \ge 1$	<pre>m.addConstr(x[6] +</pre>
must be used.		x[11] >= 1)

Truth table:

2.

English	Math	gurobipy
At least two of features 4, 6, and 11 must	$x_4 + x_6 + x_{11} \ge 2$	<pre>m.addConstr(x[4] +</pre>
be used.		x[6] + x[11] >= 2)

Truth table:

3.

English	Math	gurobipy
Feature 4, and either feature 6 or feature	$x_4 + x_6 + x_{11} \ge 2$	m.addConstr(x[4] +
11 (or both), must be used.		x[6] + x[11] >= 2)

Truth table:

Introduction to Optimization Through the Lens of Data Science Course Exercises

4.

English	Math	gurobipy
Feature 4, and either feature 6 or feature	$2x_4 + x_6 + x_{11} \ge 3$	m.addConstr(2 * x[4]
11 (or both), must be used.		+ x[6] + x[11] >= 3)

Truth table:

5.

English	Math	gurobipy
Feature 4, and either feature 6 or feature	$2x_4 + x_6 + x_{11} \ge 4$	m.addConstr(2 * x[4]
11 (or both), must be used.		+ x[6] + x[11] >= 4)

Truth table:

6.

English	Math	gurobipy
If feature 4 is not used, then either feature	$x_4 + x_6 + x_{11} \ge 1$	<pre>m.addConstr(x[4] +</pre>
6 or feature 11 (or both), must be used.		x[6] + x[11] >= 1)

For each of the following truth tables, write the corresponding constraint in English, math, and gurobipy. The variables for these constraints are defined as follows:

English	Math	gurobipy
For each of the features in	x_i	x = m.addVars(J,
the data set, is the feature		vtype=GRB.BINARY)
used in a logistic regression		
model? (1=yes, 0=no)		

7. Truth table:

x_2	x_3	$x_2 + x_3$	Outcome
0	0	0	True
0	1	1	True
1	0	1	True
1	1	2	False

English	Math	gurobipy

Introduction to Optimization Through the Lens of Data Science Course Exercises

8. Truth table:

x_1	x_2	x_3	$-x_1 + 2x_2 - x_3$	Outcome
0	0	0	0	False
0	0	1	-1	False
0	1	0	2	True
0	1	1	1	True
1	0	0	-1	False
1	0	1	-2	False
1	1	0	1	True
1	1	1	0	False

English	Math	gurobipy

9. Truth table:

x_1	x_2	x_3	$-x_1 + 2x_2 - x_3$	Outcome
0	0	0	0	True
0	0	1	-1	False
0	1	0	2	False
0	1	1	1	False
1	0	0	-1	False
1	0	1	-2	False
1	1	0	1	False
1	1	1	0	True

English	Math	gurobipy

10. Truth table:

x_2	x_3	Outcome	
0	0	False	
0	1	True	
1	0	True	
1	1	False	

Introduction to Optimization Through the Lens of Data Science Course Exercises

English	Math	gurobipy

11. Truth table:

x_1	x_2	x_3	Outcome
0	0	0	False
0	0	1	False
0	1	0	False
0	1	1	True
1	0	0	False
1	0	1	True
1	1	0	True
1	1	1	True

English	Math	gurobipy

12. Truth table:

x_1	x_2	x_3	Outcome
0	0	0	False
0	0	1	True
0	1	0	True
0	1	1	True
1	0	0	False
1	0	1	False
1	1	0	False
1	1	1	True

English	Math	gurobipy

NOTES:		
NOTES.		

This is an open education course, and we encourage faculty and students to use the exercises and materials included to help meet educational and instructional goals. Gurobi Optimization, LLC ("Gurobi") is the owner of the content (all right, title, and interest) of this course ("Content"). Content is not designed or intended for commercial use or for the sale of courses. Gurobi makes this Content available at no cost for educational and instructional use via faculty and student download and use of Content in courses offered at your institution/organization; provided that such use does not scale or otherwise result in the use of Content for monetary gain including in any other online course. Content is offered as-is and all risk of use resides with you. Gurobi makes no warranties or guarantees of a particular outcome and accepts no liability, direct, consequential, or otherwise, arising from the access to or use of the course and Content contained in it.