University of BOUIRA
Faculty of sciences
Department of Informatics

Module

Logique Mathematique

2ème Année Licence

Cours 9

Logique des prédicats

Sémantique

BY: BENAISSI Sellami

s.benaissi@gmail.com

Part 1

logique des prédicats Sémantique

SÉMANTIQUE DE LOGIQUES DES PRÉDICATS

Formule bien formée + Interprétation + Valuation =

Valeur de Vérité

INTERPRÉTATION

Interprétation:

- ▶ Une interprétation *I* est constituée de:
 - ▶ un ensemble non-vide *D* appelé domaine d'individus.
 - ightharpoonup une relation pour chaque symbole de prédicat P. $I_P \colon D^n \to \{0,1\}$
 - ▶ une opération pour chaque symbole de fonction f. I_f : $D^n \to D$
 - ightharpoonup un élément pour chaque symbole de constante a_i . I_a : $d_i \in D$

INTERPRÉTATION

Exemple:

- ▶ Soit la formule F = P(f(x, y), y)
- ▶ On peut présenter deux interprétations pour cette formule:
 - $D=\mathbb{Z}$ (ensemble des nombres entiers),
 - f(x,y)=x-y,
 - $P(x,y) = \langle (x > y) \rangle$

- D=R (ensemble des nombres réels),
- $f(x,y)=(x^2-y)/2$,
- $P(x,y) = \langle (x = y) \rangle$

INTERPRÉTATION

Valuation:

- ▶ Une valuation est une fonction qui assigne à chaque variable un élément de *D*.
- La valuation d'une formule dépend de la valuation des composants de la formules: formules atomique, connecteurs logiques, et les qualificateurs.

INTERPRÉTATION

Formule vraie:

▶ Une formule A est vraie pour une interprétation I si v(A) = 1 (vraie) dans I.

Formule fausse:

▶ Une formule A est fausse pour une interprétation I si v(A) = 0 (fausse) dans I.

INTERPRÉTATION

Valuation (suite):

Formule: F = P(f(x, y), y)

Interprétation: $D=\mathbb{N}$, f(x,y)=x-y, $P(x,y)=\langle x \rangle y$

Valuation:

- V(x) = 8 et V(y)= 2 alors la valeur de vérité de F est: Vraie
- V(x) = 3 et V(y) = 2 alors la valeur de vérité de F est: fausse

INTERPRÉTATION

Remarque importante:

- $\blacktriangleright \forall x \ (P) \ \forall rai \ ssi \ P \ est \ vraie \ pour toute interprétation <math>I(x)$.
- Pour prouver qu'une proposition de forme $\exists x P(x)$ est vraie, il suffit de vérifier la proposition pour un élément.
- ▶ Pour prouver que une proposition de forme $\forall x P(x)$ est fausse, il suffit de vérifier d'un contre-exemple.

INTERPRÉTATION

Exemples:

- ▶ Soient la proposition $\exists x P(x)$ et l'interprétation, $D=\mathbb{N}$ et $P(x)= \langle x \rangle > 5$ ».
 - ▶ Si on suppose x = 7 alors $\exists x P(x)$ est vraie. Alors la formule est vraie,
- ▶ Soient la proposition $\forall x P(x)$ et l'interprétation, $D=\mathbb{N}$ et $P(x)=\langle x\rangle$ 5».
 - ► On a un contre-exemple, x=2. la formule est fausse,

VALIDITÉ ET SATISFIABILITÉ

Formule satisfiable:

- ▶ Une formule **A** est dite satisfaite s'il existe une interprétation I et une valuation v (avec assignement les variables libres) t.q. A est vraie dans I et v.
- ▶ On note $I \models A_v$.

VALIDITÉ ET SATISFIABILITÉ

Formule satisfiable (suite):

Exemple: soit la formule F = P(f(x, y), y)

- ▶ Interprétation: $D=\mathbb{N}$, f(x,y)=x-y, $P(x,y)=\langle (x,y)=\langle (x,y)=\langle (x,y)=(x$
- Pour V(x)=5 et V(y)=2 alors v(F)=P(f(5,2),2). v(F) est vraie. Cette valuation satisfait F pour I ($I \models A_v$).
- ▶ Pour V(x) = 5 et V(y) = 4 alors v(F) = P(f(5,4),4). v(F) est fausse. Cette valuation ne satisfait pas F pour $I(I \neq Av)$.
- ▶ La formule *F* est satisfiable.

VALIDITÉ ET SATISFIABILITÉ

Formule insatisfiable:

▶ Une formule A est dite insatisfaite si sa valeur de vérité est fausse pour toute interprétation et toute valuation.

Exemple:

$$F = \exists x (P(x,y) \land \neg P(x,y))$$

F est une formule insatisfiable.

VALIDITÉ ET SATISFIABILITÉ

Formule valide:

- ▶ La formule A est valide si sa valeur de vérité est vraie pour toute interprétation et toute valuation.
- ▶ On note \models A signifie A est vraie dans toute I et quelque soit la valuation.
- ▶ Il existe plusieurs techniques pour vérifier qu'une formule est valide ou non:
 - analyse tous les cas possibles,
 - ▶ par l'absurde,
 - trouver un contre-exemple.

VALIDITÉ ET SATISFIABILITÉ

Formule valide (suite):

Exemple:

Montrer que $F = \forall x \forall y ((x \neq y) \lor P(x,y) \lor \neg P(y,x)))$ est valide.

- ▶ On a deux cas possibles quelque soit l'interprétation *I* considérée:
 - ightharpoonup igh
 - \rightarrow x \neq y: est vraie à cause la première prédicat $(x \neq y)$ est vraie.
- ▶ Donc F est valide (\models F).

FORME NORMALE PRÉNEXE

Définition:

Une formule F est dite en forme prénexe ssi elle est de la forme:

$$Q_1x_1 \dots Q_nx_n A'$$
,

- Q_i est un quantificateur \forall ou \exists
- A' formule ne contient pas des quantificateurs.

Théorème:

Pour toute formule A il existe une formule A' en forme prénexe t.q:

$$A \equiv A'$$
.

FORME NORMALE PRÉNEXE

Algorithme:

- 1. Renommer les variables pour éviter les conflits.
- 2. Élimination des implications et des équivalences.
- 3. Mettre les quantificateur en tête de la formule.

FORME NORMALE PRÉNEXE

1. Renommer les variables pour éviter les conflits.

On renomme les variables dans les cas suivantes:

- Variables liées de portées différentes.
- Conflit variable libre et liée
- Variable dépendant de plusieurs portées.

Exemples:

- $\forall x (\exists y P(x,y) \land \exists x Q(x,A))$ Aprés: $\forall x (\exists y P(x,y) \land \exists z Q(z,A))$
- $\forall x (\exists y \ P(x,y) \land M(x,y))$ Aprés: $\forall x (\exists y \ P(x,y) \land M(x,z))$
- $\forall x \ \forall z \ (\exists y \ P(x,y) \land \exists y \ Q(z,y))$ Aprés: $\forall x \ \forall z \ (\exists y \ P(x,y) \land \exists w \ Q(z,y))$

FORME NORMALE PRÉNEXE

2. Eliminer les implications et les équivalences

Comme en logique propositionnelle :

$$\blacksquare P \Leftrightarrow Q \equiv (P \Rightarrow Q) \land (Q \Rightarrow P)$$

$$\blacksquare P \Rightarrow Q \equiv \neg P \lor Q$$

Dans cette étape, on peut réduire la négation de façon:

$$\blacksquare \neg \forall x P \equiv \exists x \neg P$$

$$\blacksquare \neg \exists x P \equiv \forall x \neg P$$

$$\blacksquare \neg (\neg P) \equiv P$$

$$\blacksquare \neg (P \land Q) \equiv \neg P \lor \neg Q$$

$$\blacksquare \neg (P \lor Q) \equiv \neg P \land \neg Q$$

FORME NORMALE PRÉNEXE

3. Mettre les quantificateurs en tête de la formule

Pour cela on utilise les équivalences suivantes :

$$\blacksquare$$
($\forall x A$) ∨ $B \equiv \forall x (A ∨ B)$ ssi x n'est pas liée dans B

$$\blacksquare$$
(∃x A) ∨ B \equiv ∃x (A ∨ B) ssi x n'est pas liée dans B

$$\blacksquare$$
($\forall x A$) ∧ $B \equiv \forall x (A ∧ B)$ ssi x n'est pas liée dans B

$$\blacksquare$$
(∃x A) \land B \equiv ∃x (A \land B) ssi x n'est pas liée dans B

FORME NORMALE PRÉNEXE

Exemple 1: $\forall x(P(x) \Rightarrow \exists xQ(x))$

- 1. Renommer les variables pour éviter les conflits:
- 2. Eliminer les implications et les équivalences:
- $\vdash \ \forall x(\neg \ P(x) \lor \exists \ yQ(y))$
- 3. Mettre les quantificateurs en tête de la formule:
- $ightharpoonup \forall x \exists y (\neg P(x) \lor Q(y)) FNP$

FORME NORMALE SKOLEM

La skolémisation s'agit de remplacer les variables quantifiées existentiellement.

- par une constante si la variable est dans la portée d'aucune autre quantification universelle.
- par une fonction $f(x_1, ..., x_n)$ où les x_i sont les variables quantifiées universellement précédant la variable quantifiées existentiellement. (f est appelé fonction de Skolem).

FORME NORMALE SKOLEM

Exemples 1:

 $\exists x \forall y \ A(x,y) \ devient \ \forall y \ A(B,y) \ (remplacer x par la constante B).$

 $\forall y \exists x A(x,y)$ devient $\forall y A(f(y),y)$ (remplacer x par la fonction f(y)).

 $\forall y \ \forall z \ \exists \ xA(x,y) \ devient \ \forall yA(f(y,z),y) \ (remplacer x par la fonction f(y,z)).$

FORME NORMALE CONJONCTIVE

- La formule est écrite en FN Skolem
- Distribution de ∨ sur ∧

Comme pour la logique des propositions :

$$\blacksquare (P \land Q) \lor R \equiv (P \lor R) \land (Q \lor R)$$

$$(A(f(x)) \land \neg M(x,f(x))) \lor M(g(x),x)$$

La formule est en FNC:

$$(A(f(x)) \lor M(g(x),x)) \land (\neg M(x,f(x)) \lor M(g(x),x))$$

FORME NORMALE CONJECTIVE

Exercice:

Mettre la formule suivante sous forme normale conjective $\forall x (\forall y (P(y) \Rightarrow Q(x,y))) \Rightarrow (\exists y Q(y,x))$

1. Renommer les variables pour éviter les conflits.

$$\forall x (\forall y (P(y) \Rightarrow \neg Q(x,y))) \Rightarrow (\exists y Q(y,x))$$
$$\forall x (\forall y (P(y) \Rightarrow \neg Q(x,y))) \Rightarrow (\exists z Q(z,x))$$

FORME NORMALE PRÉNEXE

2. Elimination des implications et des équivalences

$$\forall x \ (\forall y \ (P(y) \Rightarrow Q(x,y))) \Rightarrow (\exists z Q(z,x))$$

$$\forall x \ (\forall y (\neg P(y) \lor Q(x,y))) \Rightarrow (\exists z Q(z,x))$$

$$\forall x \ (\neg \ (\forall y (\neg P(y) \lor Q(x,y))) \lor (\exists z \ Q(z,x))$$

$$\forall x \ (\exists y \ \neg \ (\neg \ P(y) \lor Q(x,y))) \lor (\exists z \ Q(z,x))$$

$$\forall x \ (\exists y \ (P(y) \land \neg \ Q(x,y))) \lor (\exists z \ Q(z,x))$$

FORME NORMALE PRÉNEXE

3. Mettre les quantificateurs en tête de la formule en respectant leur ordre

$$\forall x (\exists y (P (y) \land \neg Q(x,y))) \lor (\exists z Q(z,x))$$

$$\forall x \exists y \exists z ((P(y) \land \neg Q(x,y)) \lor Q(z,x))$$

La forme normale prénexe de la formule:

$$\forall x (\forall y (P(y) \Rightarrow Q(x,y))) \Rightarrow (\exists y Q(y,x))$$

est: $\forall x \exists y \exists z ((P(y) \land \neg Q(x,y)) \lor Q(z,x))$

FORME NORMALE CONJONCTIVE

4. Skolémisation

$$\forall x \exists y \exists z \ ((P(y) \land \neg Q(x,y)) \lor Q(z,x))$$

$$\forall x \exists z \ ((P(f(x)) \land \neg Q(x, f(x))) \lor Q(z,x))$$

$$\forall x \exists z \ ((P(f(x)) \land \neg Q(x, f(x))) \lor Q(z,x))$$

$$\forall x \ ((P(f(x)) \land \neg Q(x, f(x))) \lor Q(g(x),x)) \quad \text{FN Skolem}$$

5. Suppression des quantificateurs universels

$$(P(f(x)) \land \neg Q(x, f(x)) \lor Q(g(x), x))$$

Comme toutes les variables sont maintenant universellement quantifiées on peut supprimer les \forall (ils deviennent implicites).

FORME NORMALE CONJONCTIVE

6. Distribution de ∨ sur ∧:

$$(P(f(x)) \land \neg Q(x, f(x)) \lor Q(g(x), x))$$

La formule est en FNC:

$$(P(f(x)) \vee Q(g(x),x)) \wedge (\neg Q(x,f(x)) \vee Q(g(x),x))$$

Thank you