Лемма

Пусть у нас есть $t = sqr(\lfloor x/4 \rfloor)$, тогда заметим, что в случае $(2t+1)^2 \le x$ значение sqr(x) равно 2t+1, иначе оно равно 2t.

Доказательство:

- 1) Пусть $(2t+1)^2 \le x$. Предположим, что $sqr(x) \ne 2t+1$. Но тогда sqr(x) > 2t+1, так как это по определению это максимальное число, в квадрате не превосходящее аргумент. Пусть $sqr(x)=k\ge 2t+2$. Покажем, что $(2t+2)^2>x$. Пусть это не так. То есть выполнено $(2t+2)^2\le x$. Но тогда $(t+1)^2\le t^2+4t+1\le \lfloor x/4\rfloor$, противоречие с правильностью значения $sqr(\lfloor x/4\rfloor)$.
- **2)** $(2t+1)^2 > x$. Покажем, что обязательно выполнено $(2t)^2 \le x$. Пусть это не так, но тогда $4t^2 > x$. Тогда $t^2 > \lfloor x/4 \rfloor$, противоречие. Тогда в этом случае sqr(x) = 2t.