Machine learning model for gas-liquid interface reconstruction in CFD numerical simulations

ML4CFD - DATAIA 2020

Tamon NAKANO¹, Michele Alessandro BUCCI¹, Jean-Marc GRATIEN², Thibault FANEY² Guillaume CHARPIAT¹

¹ INRIA Saclay, Équipe-projet TAU

² IFPEN, Direction Sciences et Technologie du numérique

Background

Static mixer*

- Immiscible multiphase flow (ex. gas-liquid phase):
 - cavitation, cooling system, mixer
- Numerical method is an effective approach
- The Volume of Fluid (VoF) method:
 - Consider the dynamics of the surface tension force
 - Reconstructs the interface (i.e., normal, location, curvature)

Free surface

Surface reconstruction

Discretization & Reconstruction

Discretization

Reconstruction

velocity are stocked

- Geometrical information is lost
- In some models geometrical features are required (i.e. interface tension force computation)

Reconstruction by the VoF

The VoF is **accurate** (good at mass conservation) and performs well on **structured grids**.

Source: OpenFOAM

https://www.youtube.com/watch?v=F2WCsF8Sn84

Navier - Stokes in multiphase flow

Additional terms in the Navier-Stokes equations to deal with multiphase flows:

Momentum equation $\frac{\partial
ho \mathbf{U}}{\partial t} + \nabla \cdot (
ho \mathbf{U} \mathbf{U}) = -\nabla p +
ho \mathbf{g} + \nabla \cdot (\mu \nabla \mathbf{U}) +
ho \mathbf{S} + \sigma \kappa \hat{\mathbf{n}}_S \delta(\mathbf{x} - \mathbf{x}_s)$ Advection Gravity Extra forces

Continuity equation $rac{\partial
ho}{\partial t} +
abla \cdot (
ho \mathbf{U}) = 0$

Surface tension force

The surface tension depends on **local geometrical features** of the interface:

Constant and depends on the liquid/gas at play

Mean curvature

Local curvature of the interface:

$$\frac{1}{2}(\kappa_1+\kappa_2)$$

Normal

Normal direction to the interface in each point of the interface

kronecker delta

The surface tension is active only on the interface

State of art and limitations

- The bottlenecks of the VoF
 - High computation cost
 - Issue with unstructured grids which leads to residual currents
- Neural network approach to reduce the cost
 - Qi et al.(2018): Curvature estimation on 2D surface with Neural Networks (NNs)
 - Patel et al.(2019): Curvature estimation on 3D surface with NNs. Their approach outperformed the conventional methods

State of art and limitations

- Patel et al.(2019): Multi Layer Perceptron (MLP), emplayable on structured grids with constant discretization.
- Svyetlichnyy et al.(2017): MLP, estimate normal direction on 2D structured grid

	Structured grid	Unstructured grid	Other remarks
VoF	Good	Instability	Expensive
NN	Good	Not available	Less expensive

For industrial cases with complex geometries, unstructured grids are usually employed

Objective

- We propose a machine learning-based method:
 - o accurate enough to replace conventional reconstruction methods
 - less computational-demanding
- To that end, we study the use of Graph Neural Network architectures to recover interface properties (e.g., normal, curvature, etc.) from the discretized field.

Graph Neural Networks (GNNs)

Unstructured data are modeled as graph structure

GNNs:

- Geometrically generalized CNNs
- Able to handle a graph-structure (nodes, edges)

For the prediction, GNNs take:

- Node features: volume fraction α, coordinates of vertices
- Edges: element connections

We employ SAGEConv proposed by Hamilton et al.(2017)*

Message passing in SAGEConv

- 1) mean $_{j \in \mathcal{N}(i)} \mathbf{x}_j$
- 2) $\mathbf{W}_2 \cdot \text{mean}_{j \in \mathcal{N}(i)} \mathbf{x}_j$
- 3) $\mathbf{x}_i' = \mathbf{W}_1 \mathbf{x}_i + \mathbf{W}_2 \cdot \operatorname{mean}_{j \in \mathcal{N}(i)} \mathbf{x}_j$
- 4) $\sigma\left(\mathbf{x}_{i}' = \mathbf{W}_{1}\mathbf{x}_{i} + \mathbf{W}_{2} \cdot \operatorname{mean}_{j \in \mathcal{N}(i)} \mathbf{x}_{j}\right)$

*Inductive Representation Learning on Large Graphs William L. Hamilton, Rex Ying, Jure Leskovec

Synthetic dataset

All previous studies used spherical surfaces

- Larger error at saddle points
- Biased dataset: only spherical surfaces are considered in the training

In our study, we introduce a paraboloid-based dataset

$$\frac{x^2\kappa_1}{2} + \frac{y^2\kappa_2}{2} = z$$

K1, K2 are the curvature on the two parabola at the center which is randomly chosen in space

Error on the curvature prediction by ML by Patel et al.(2019)

Paraboloid

Distribution in the dataset

Normalized histogram of K1, K2

Normalized histogram of $rot_{x,y,z}$

Uniforme distribution:

- Curvature κ1, κ2
- 3D-rotation
- Volume fraction α
- Center point of the surface

of each paraboloid surface

=> A non-biased dataset has been then generated

Normal (1k graphs displayed for the simplicity)

Architecture

Training

- 500k graphs: 1 graph = 1 normal, 1 curvature
- Train/Validation/Test ratio: 7:2:1
- Variable learning rate (min.1e-6)
- Adam optimizer
- Input: node features, edges
- Predict: normal, curvature, etc.
- Loss: L2
 - Total = Normal + Curvature + Center(w/o label) + Area(w/o label)
- All the variables converge
- No improvement after 508th epoch
- No overfitting

Generalization

Prediction on a **new surface** different from the paraboloid for the training:

$$f(x) = 0.1\sin 9x\cos 9y$$

$$|H|_{
m max}=0.703$$

$$H_{ ext{training}} \, pprox [-0.75, 0.75]$$

Sur Savation indicate and included the surface of t

- $0.01 < \alpha < 0.99$
- Uniform and no dependence on the geometry
- Smooth distribution, no outlier in the histograms

- $0.01 < \alpha < 0.99$
- Uniform and no dependence on the geometry
- Smooth distribution, no outlier in the histograms

- α has non-uniform distribution.
- Curvature prediction, a large error at "marginal α"
 - A large α: the prediction is larger than the label
 - A small α: the prediction is smaller than the label
- This should be taken into consideration when implemented in real simulations

Histogram of α

Curvature (left) prediction vs label

Conclusions & Perspectives

Conclusion

- Graph Neural Networks can be an alternative to the conventional surface reconstruction methods
- 2. GNNs could be a promising reconstruction approach to unstructured grids

Perspectives

- 1. Employ the model in a CFD code (i.e. OpenFOAM)
- 2. Assessment of time performance of the model
- 3. Treatment of boundary conditions

Distribution in the dataset

Normalized histogram of κ_1, κ_2

Normalized histogram of $rot_{x,y,z}$

- $\kappa_1, \kappa_2 \sim \pm [0.001, 0.5]$ (uniforme distribution)
- $(rot_x, rot_y, rot_z) = \cos^{-1}(2u_2 1), \pi u_2, 2\pi u_2$ (uniform rotation in 3D)
- Alpha distribution is uncontrollable in advance => quasi-uniform is generated
- Center of graph randomized
- => A non-biased dataset has been then generated

Normal (1k graphs displayed for the simplicity)

Architecture

Normal, Curvature

Architecture

Loss function

$$\begin{aligned} & \operatorname{Loss_{total}} = \operatorname{Loss_{normal}} + \operatorname{Loss_{curv}} + \operatorname{Loss_{c:wl}} + \operatorname{Loss_{a:wl}} + \operatorname{Loss_{c:wol}} + \operatorname{Loss_{a:wol}} \\ & \operatorname{Loss_{normal}} = \frac{1}{N_b} \sum_{b=1}^{N_b} \sum_{i=1}^{3} \frac{(N_{b,i,label} - N_{b,i,pred})^2}{3} \\ & \operatorname{Loss_{c:wl,wol}} = \frac{1}{N_b} \sum_{b=1}^{N_b} \sum_{i=1}^{4} \frac{(p_{b,i,label} - p_{b,i,pred})^2}{4} \\ & \operatorname{Loss_{curv,a:wl,wol}} = \frac{1}{N_b} \sum_{b=1}^{N_b} (y_{b,label} - y_{b,pred})^2 \end{aligned}$$

Model performance

Table 1: Model performance at the 508th epoch

Type of loss	Training	Validation	MSE
Loss _{total}	7.50e-3	9.07e-3	9.30e-3
Loss _{normal}	2.30e-3	2.39e-3	2.41e-3
Losscurv	4.13e-3	5.26e-3	5.40e-3
Loss _{c:wl}	1.10e-4	2.01e-4	1.84e-4
Loss _{c:wol}	6.66e-4	9.76e-4	1.05e-3
Loss _{a:wl}	1.03e-4	5.53e-5	5.51e-5
Loss _{a:wol}	1.99e-4	1.95e-4	2.03e-4

Table 2: The model performance the test-No.1

Predicted variable	Median
$N_{error} = \ \mathbf{N}_{label} - \mathbf{N}_{pred}\ $	5.61e-2
$H_{error} = H_{label} - H_{pred} $	4.16e-2
$M_{error} = \ \mathbf{M}_{label} - \mathbf{M}_{pred}\ $	1.98e-2
$A_{error} = A_{label} - A_{pred} $	7.57e-3

Alpha Alpha R2: 0.8845110635138439 R2: 0.9684530479272729 0.8 0.6 0.8 - 0.8 0.4 0.6 Prediction - 0.6 0.0 0.4 - 0.4 -0.40.2 0.2 -0.6-0.8 -0.5 0.0 0.5 0.1 0.2 0.3 0.4 Label Label Curvature (left), Area (right) prediction vs label

