# Welcome to IIT Guwahati



## PH101: PHYSICS-I

### Lecture 1

#### Padma Kumar Padmanabhan

Uday Maiti

Department of Physics

IIT Guwahati

# **Topics**

## 1. Analytical (Classical) mechanics

(Up to Mid-Sem Exam; Of 50% marks)

Prof. P. Poulose Prof. Girish Setlur

# 2. Relativity

## 3. Quantum mechanics

(For End-Sem Exam; Of 50% marks)

## **Evaluations**

Quiz-I of 10% marks on 27<sup>th</sup> August 2018 (tentatively)

Mid-Semester Exam of 40% (as per institute time table)

Quiz-II of 10 marks (Dates will be announced later)

End-Semester exam of 40% (as per institute time table)

## **Course Web Page:**

#### http://www.iitg.ac.in/physics/fac/padmakumarp/Courses/PH101/JulyNov2018.htm



#### PHYSICS-I (PH101) July-Nov, 2018

| Sylla | bus & Textbooks | Tutorial Groups   |                     | Tutors  |  |
|-------|-----------------|-------------------|---------------------|---------|--|
|       | Lectures        | DIV-I/DIV-II (am) | DIV-III/DIV-IV (pm) |         |  |
|       | Tuesday         | 9-10 (am)         | 4-5                 | (pm)    |  |
|       | Wednesday       | 10-11 (am)        | 3-4                 | (pm)    |  |
|       | Thursday        | 11-12 (am)        | 2-3                 | (pm)    |  |
|       | Tutorials       | Monday: 8:00      | )-8:55 (Fo          | or All) |  |

#### **Lecture Notes & Tutorial Assignments**

| Month          | Monday     | Tuesday   | Wednesday | Thursday  | Friday | Saturday | Sunday |
|----------------|------------|-----------|-----------|-----------|--------|----------|--------|
|                |            | 24        | 25        | 26        | 27     | 28       | 29     |
| July           |            | Lecture#1 | Lecture#2 | Lecture#3 | 21     | 28       | 29     |
| 2018           | 30         | 31        |           | r i       |        | 1        |        |
|                | Tutorial#1 | Lecture#4 |           |           |        |          |        |
| August<br>2018 |            |           | 1         | 2         | 3      | 4        | 5      |
|                |            |           | Lecture#  | Lecture#  |        | DH.      |        |
|                | 6          | 7         | 8         | 9         | 10     | 11       | 12     |
|                | Tutorial#2 | Lecture#  | Lecture#  | Lecture#  |        |          |        |
|                | 13         | 14        | 15        | 16        | 17     | 18       | 19     |
|                | Tutorial#3 |           | Holiday   |           |        |          |        |
|                | 20         | 21        | 22        | 23        | 24     | 25       | 26     |
|                | Tutorial#4 |           | Holiday   |           |        | ,        |        |

# **Syllabus**

#### PH101: Physics - I (2-1-0-6)

Calculus of variation: Fermat's principle, Principle of least action, Euler-Lagrange equations and its applications.

Lagrangian mechanics: Degrees of freedom, Constraints and constraint forces, Generalized coordinates, Lagrange's equations of motion, Generalized momentum, Ignorable coordinates, Symmetry and conservation laws, Lagrange multipliers and constraint forces.

Hamiltonian mechanics: Concept of phase space, Hamiltonian, Hamilton's equations of motion and applications.

**Special Theory of Relativity**: Postulates of STR. Galilean transformation. Lorentz transformation. Simultaneity. Length Contraction. Time dilation. Relativistic addition of velocities. Energy momentum relationships.

Quantum Mechanics: Two-slit experiment. De Broglie's hypothesis. Uncertainty Principle, wave function and wave packets, phase and group velocities. Schrödinger Equation. Probabilities and Normalization. Expectation values. Eigenvalues and eigenfunctions.

**Applications in one dimension**: Infinite potential well and energy quantization. Finite square well, potential steps and barriers - notion of tunnelling, Harmonic oscillator problem zero point energy, ground state wavefunction and the stationary states.

## **Books**

#### **Text Books:**

- 1. Introduction to Classical Mechanics by Takwale R and Puranik P (McGraw Hill Education, 1 st Ed., 2077).
- 2. Classical mechanics by John Taylor (University Science, 2005).
- 3. Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles by R. Eisbergand R, Resnick [f ohn-Wiley, 2nd Ed., 2006).

#### **References:**

- A Student's Guide to Lagrangians and Hamiltonians by Patrick Hamilt (Cambridge University Press, 1st edition, 2013).
- 2. Theoretical Mechanics by M. R. Spiegel (Tata McGraw Hill, 2008).
- 3. The Feynman Lectures on Physics, Vol. lby R. P. Feynman, R. B. Leighton, and M.Sands, [Narosa Publishing House, 1998J.

#### Intro. Classical Mechanics, David Morin (Cambridge)

# Layout of mechanics course

- Mathematical concepts of partial differentiation and coordinate systems.
- Constraints, degree's of freedom and generalized coordinates.
- Challenges with unknown nature of constrain forces in Newtonian Mechanics
- D'Alembert's Principle of virtual work to remove the constrain forces from analysis.
- Lagrange's equation: An alternative to Newton's law
- Variational method and Lagrange's equation from variational principle
- Hamiltonian equations of motion

# **Analytical mechanics**

# Introduction of new concepts of mechanics beyond Newton's law: Largangian and Hamiltonian equations

Why this is important?

- ☐ Making the analysis easier, in particular complex dynamical situations with imposed constrains/conditions.
- ☐ More general concepts extendable to other modern area of physics like quantum mechanics, field theory etc.

# Review of certain mathematical concepts

Key to understand classical mechanics

## Total Differential: Function of one variable

y = f(x) is a function of one variable x

$$f'(x) = \frac{dy}{dx} = Lt \quad \frac{\Delta y}{\Delta x} = Lt \quad \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$dy = [f'(x)] dx$$



- Infinitesimal change of y around certain point (x) =(rate of change of y around the point) (magnitude of change in x)
- At stationary points (A,B,C), y does not changes [dy = 0] even if x is changed infinitesimally,

which implies that at those points f'(x) = 0.

# Partial differential: function of more than one variables

f(x, y) depends on two independent variables x and y.

**Example**: Height (f) of a hill as function of position coordinate (x, y).

 $\Box$  The rate of change (slope) in the 'x' direction, when y remains constant is denoted by

$$(\frac{\partial f}{\partial x})_y = Lt \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}$$
  
 $\Delta x \to 0$ 

 $\Box$  The rate of change in the 'y' direction, when x remains constant is denoted by

$$\left(\frac{\partial f}{\partial y}\right)_{x} = Lt \frac{f(x, y + \Delta y) - f(x, y)}{\Delta y}$$
$$\Delta y \to 0$$



## Partial differential



• Change in height if I walk in the 'x' direction [keeping 'y' fixed] by 'dx'?

$$[df]_{dx} = (\frac{\partial f}{\partial x})dx$$

= $(rate\ of\ change\ in\ 'x'\ direction)(amount\ of\ change\ in\ x)$ 

• Similarly,  $[df]_{dy} = (\frac{\partial f}{\partial y})dy$ 

## Partial differential



Change in height if I go in the arbitrary direction so that 'x' changes by 'dx' and 'y' also changes by 'dy'

$$df = \left(\frac{\partial f}{\partial x}\right) dx + \left(\frac{\partial f}{\partial y}\right) dy = [df]_{dx} + [df]_{dy}$$

• Generalization for a function which depends on several variables  $f(x_1, x_2, x_3 .... x_n)$ 

$$df = \left(\frac{\partial f}{\partial x_1}\right) dx_1 + \left(\frac{\partial f}{\partial x_2}\right) dx_2 + \dots + \left(\frac{\partial f}{\partial x_n}\right) dx_n = \sum \left(\frac{\partial f}{\partial x_i}\right) dx_i$$

# Partial differential (Examples)

$$\frac{\partial f}{\partial x} = 2 \text{ a x}$$

$$\frac{\partial f}{\partial x} = 2 \text{ a x} \qquad \frac{\partial f}{\partial y} = 2 \text{ b y}$$

$$\frac{\partial f}{\partial x} = 2 \text{ a x y} \qquad \frac{\partial f}{\partial y} = \text{ax2}$$

$$\frac{\partial f}{\partial y} = ax2$$

$$\frac{\partial f}{\partial x} = a \operatorname{Sin}(\theta)$$
  $\frac{\partial f}{\partial \theta} = a \times \operatorname{Cos}(\theta) + 2b \theta$ 

## Differentiation of function of functions

f(x,y) is such that x and y are function of another variable say, u. We wish to find the derivative  $\frac{df}{du}$ .

Example:  $f = xy + \ln y^2$ 

(we say, f depends x & y explicitly; f depends u implicitly!)

Let,  $x = a \cos u$  and  $y = a \sin u$ How to calculate  $\frac{df}{du}$ ?

Method 1: Direct substitution

Step 1:  $f = (a \cos u)(a \sin u) + \ln(a \sin u)^2$ 

Step 2: Find  $\frac{df}{du}$ 

# Example

Distance of the Projectile from the origin,

$$S(x,y) = \sqrt{x^2 + y^2}$$



But

$$x(t) = u_0 \cos(\theta) t$$

$$\&$$

$$y(t) = u_0 \sin(\theta) t - \frac{1}{2} g t^2$$

### Chain rule of partial differential

#### Method 2: Chain rule

You know, 
$$df = (\frac{\partial f}{\partial x}) dx + (\frac{\partial f}{\partial y}) dy$$

$$\frac{df}{du} = \left(\frac{\partial f}{\partial x}\right) \frac{dx}{du} + \left(\frac{\partial f}{\partial y}\right) \frac{dy}{du}$$

Find the First differentials individually

$$\frac{\partial f}{\partial x}$$
,  $\frac{\partial f}{\partial y}$ ,  $\frac{dx}{du}$ ,  $\frac{dy}{du}$ 

and then substitute in the above relation.

### Chain rule of partial differential

Generalization for a function depends on several variables  $f(x_1, x_2, x_3, \dots, x_n)$  and the variables are function of another set of variables, Let,  $x_i$  ( $u_1, u_2, \dots, u_n$ )

$$df = \left(\frac{\partial f}{\partial x_1}\right) dx_1 + \left(\frac{\partial f}{\partial x_2}\right) dx_2 + \dots + \left(\frac{\partial f}{\partial x_n}\right) dx_n = \sum_{i=1}^{n} \left(\frac{\partial f}{\partial x_i}\right) dx_i$$

$$\frac{\partial f}{\partial u_1} = \left(\frac{\partial f}{\partial x_1}\right) \frac{\partial x_1}{\partial u_1} + \left(\frac{\partial f}{\partial x_2}\right) \frac{\partial x_2}{\partial u_1} + \dots + \left(\frac{\partial f}{\partial x_n}\right) \frac{\partial x_n}{\partial u_1} = \sum_{1}^{n} \left(\frac{\partial f}{\partial x_i}\right) \frac{\partial x_i}{\partial u_1}$$

$$\frac{\partial f}{\partial u_j} = \sum_{1}^{n} \left(\frac{\partial f}{\partial x_i}\right) \frac{\partial x_i}{\partial u_j}$$

# Questions?