

Test Data Sheet

PM-Li_0.8

SN22.1235

Resonant electro-optic phase modulator

 $\quad \text{with} \quad$

- Temperature control option
 - Frequency tuning option

RF properties	Value	Unit	
Resonance frequency: f_0^{-1}	5.11	MHz	
Bandwidth: Δu	48.8	kHz	
Quality Factor: Q	105		
Required RF power for 1rad @ 780nm ²⁾	7.4	dBm	
max. RF power: RF _{max} ³⁾	0.5	W	

Optical properties	Value	Unit
Aperture	3×3	mm^2
Wavefront distortion (633nm)	$\lambda/6$	nm
Recommended optical intensity (780nm)	< 1	W/mm^2
AR coating ($R_{avg} < 1\%$)	630 - 1100	nm

 $^{^{1)}23^{\}circ}\text{C}~^{2)}\text{with}~50\Omega$ termination $^{3)}\text{no}$ damage with RFin $\!<\!1W$

Measured modulation

20

T' D **∮ (3** 0.00V = 5.10 MHz 0.75 = 2.40 rad $\lambda_{\text{test}} =$ 671 nm $RF_{in} = 13.5 dBm$ 0.5

Intensity [arb. units]

0.25

0

-20

Fig. 1: Oscilloscope trace

10

 $\beta = 1 \, \text{rad}$ unit λ_1 671 780 nm Р dBm 5.8 7.4 Ρ mW 4 5 U 0.6 0.7 V_p U_{π} V_p 2. 2.3

Fig.1: Recorded oscilloscope trace retrieved from a test setup as illustrated below.

- Fig.2: Squared absolute values of frst-kind Bessel functions vs. modulation depth. Vertical lines reveal the ratio between the carrier ||₀|² and the ith sideband ||_i|² at a specif c ß.
- Fig.3: Dependency between RF amplitude and modulation depth for different wavelengths. Points on the curve allow to retrieve either the required RF amplitude for a specif c/desired ß or the max. achievable modulation depth for a given/available RF power.

Table 1: Expected RF-amplitude/-power values and conversion factors for the required wavelength at the reference modulation depth of 1 rad. Note: Experimentally recorded modulation depth displayed in Fig.1 might vary from the respective values (B=1rad) provided in the table.

Fig. 3: RF-signal amplitude vs. modulation depth

Resonance Characteristics

- 45°

Transmission

EOM

+45°

laser

Handling instructions

- · Input laser polarization must be aligned with respect to the white markers on the housing
- · Please handle device carefully. Avoid shock. Don't drop.
- After turn on the resonance frequency might drift slightly with applied RF power. Please compensate by tuning the RF drive frequency until steady-state (~min).

Package drawing

(

•

Note 2: crystal aperture is 3x3mm.

