

Artificial Intelligence Applied to the Web

Chapter 4 Part 3 - Recommendation Systems

Diego Cornejo, Felipe Hernández and Juan Velásquez

University of Chile
Departament of Industrial Engineering

Spring 2025

Outline

Web Usage Data - Recommendation Systems

Motivation

- Information overload
 - Many choices available
 - "The paradox of choice" (Jam experiment, choice overload)
- Recommender system
 - Provide aid
 - Set of items + user "context" → selection of items (predicted to be "good" for the user)
- What recommender systems do you know?
- What recommender systems would you like to have?

The Paradox of Choice

Too many choices?

Figure 1: Fuente: Your Marketing Rules

Examples of Applications

- Movies, online videos, music.
- Books
- Software (apps)
- Products in general
- People (dating, friends)
- Services (restaurants, accommodation, ...)
- Research articles
- Jokes

Examples of Applications - Amazon

It uses item-to-item collaborative filtering recommendations on most pages of their website and e-mail campaigns.

Spring 2025

Examples of Applications - Netflix

- A data-driven company that leverages recommendation systems to boost customer satisfaction.
- The 75% of Netflix viewing is due to recommendations.
- The Netflix Prize (2009): The most accurate movie recommendation algorithm wins a prize worth \$1,000,000.

Examples of Applications - Spotify

- "Discover Weekly" which is a personalized list of 30 songs based on users unique music taste.
- "AI Dj" a personalized lineup of music recommendations with generative AI.
- Collaborative filtering: Filtering songs by comparing users' historical listening data with other users' listening history.
- Natural language processing: Scraping the Web for information about specific artists and songs.
- Audio file analysis: To analyze the audio file's characteristics (tempo, loudness, key and time signature) to prepare the recommendations.

Where's the value in recommendations?

- Netflix: 2/3 of the movies watched
- Amazon: 35% sales
- Google news: recommendations \rightarrow 38% more clickthrough

Definition

Definition

A recommendation system (or recommender system) is a class of machine learning that uses data to help predict, narrow down, and find what people are looking for among an exponentially growing number of options (NVIDIA).

Types

- Collaborative filtering: Considers the information of the user and other similar users.
- Content-based: Uses information about the object and the users past experience.
- Knowledge-based: Uses knowledge about how an object meets a need.
- Community-based: Uses information associated with the users "friends".
- Hybrid approaches: A combination of the previously mentioned approaches.

Functions: Provider's point of view

- Sell more items.
- Sell more diverse items (long tail)
- Increase user satisfaction, fidelity.
- Better understand what users want.

Functions: User's point of view

- Looking for something:
 - Find some good items.
 - Find all good items (closer to information retrieval) recommend a sequence, a bundle.
- Just browsing.
- Side-effects (collaborative filtering systems):
 - Express self.
 - Help others.
 - Influence others.

The Usefulness of Recommendations

- Implementing recommendations is non-trivial.
- Is it worthwhile? It depends ...
 - Is there "large" number of items?
 - Do users know exactly what are they looking for?

RecSys and Information Retrieval

Information Retrieval

Is the activity of obtaining information resources relevant to an information need from a collection of information resources (Wikipedia).

Recommender System

The goal of a Recommender System is to generate meaningful recommendations to a collection of users for items or products that might interest them (Melville, Sindhwani).

RecSys and Information Retrieval

- RecSys and IR closely connected (many similar or analogical techniques)
- Different goals:
 - IR "I know what I'm looking for"
 - RecSys "I'm not sure what I'm looking for"

Serendipity

- Unsought finding: unexpected, but useful result.
- Do not recommend items the user already knows or would find anyway, try something more interesting
- Example books:
 - I like books by Remarque, Potok, Skacel recommending
 - Another book by Remarque not very useful.
 - Recommending Munro = Serendipity.

Warning: Implementing Personalized Systems is Difficult

- (Sometimes) complex algorithms.
- (Always) difficult debugging, testing, evaluation.
 - \bullet Personalization \rightarrow different behaviour for each user
 - Hard to distinguish bugs and surprising results

Collaborative Filtering (CF)

- The most prominent approach to generate recommendations
 - Used by large, commercial e-commerce sites
 - Well-understood, various algorithms and variations exist
 - Applicable in many domains (book, movies, DVDs, ..)
- Approach
 - Use the *wisdom of the crowd* to recommend items
- Basic assumption and idea
 - Users give ratings to catalog items (implicitly or explicitly)
 - Customers who had similar tastes in the past, will have similar tastes in the future

Pure CF Approaches

- Input
 - Only a matrix of given user–item ratings
- Output types
 - A (numerical) prediction indicating to what degree the current user will like or dislike a certain item
 - A top-N list of recommended items

User-based nearest-neighbor collaborative filtering (1)

- Main idea
 - Given a ratings database and a user u, identify other users that had similar preferences to those of u in the past. We refer to these users as *nearest neighbors*.
 - Then, for every *p* item that *u* has not seen, a prediction is computed based on the ratings for *p* made by the nearest neighbors.

Spring 2025

User-based nearest-neighbor collaborative filtering (2)

• Example: A database of ratings of the current user, Alice, and some other users is given

	ltem1	ltem2	Item3	Item4	ltem5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

• Determine whether Alice will like or dislike Item5, which Alice has not yet seen.

User-based nearest-neighbor collaborative filtering (3)

- Some first questions
 - How do we measure similarity?
 - How many neighbors should we consider?
 - How do we generate a prediction from the neighbors' ratings?

	ltem1	ltem2	Item3	ltem4	ltem5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

Measuring user similarity (1)

- A popular similarity measure in user-based CF: Pearson correlation
 - *a*, *b*: users
 - $r_{a,p}$: rating of a user a for a item p.
 - ullet P: set of items, rated both by users a and b.
- \bullet Possible similarity values between -1 and 1.

$$\mathrm{sim}(a,b) = \frac{\sum_{p \in P} \left(r_{a,p} - \overline{r}_a\right) \left(r_{b,p} - \overline{r}_b\right)}{\sqrt{\sum_{p \in P} \left(r_{a,p} - \overline{r}_a\right)^2} \sqrt{\sum_{p \in P} \left(r_{b,p} - \overline{r}_b\right)^2}}$$

Measuring user similarity (2)

- A popular similarity measure in user-based CF: Pearson correlation
 - *a*, *b*: users
 - $r_{a,p}$: rating of a user a for a item p.
 - ullet P: set of items, rated both by users a and b.
- \bullet Possible similarity values between -1 and 1.

	ltem1	Item2	Item3	Item4	Item5		
Alice	5	3	4	4	?		
User1	3	1	2	3	3		sim = 0,85
User2	4	3	4	3	5		sim = 0,00
User3	3	3	1	5	4		sim = 0,70
User4	1	5	5	2	1	4	sim = -0,79

Pearson correlation

• Takes differences in rating behavior into account

• Works well in usual domains, compared with alternative measures, such as cosine similarity

Making predictions

A common prediction function:

$$\operatorname{pred}(a,p) = \overline{r}_a + \frac{\sum_{b \in N} \left[\operatorname{sim}(a,b) * \left(r_{b,p} - \overline{r}_b \right) \right]}{\sum_{b \in N} \operatorname{sim}(a,b)}$$

- Calculate, whether the neighbors' ratings for the unseen item i are higher or lower than their average
- Combine the rating differences use the similarity with a as a weight

Spring 2025

• Add/subtract the neighbors' bias from the active user's average and use this as a prediction

Improving the metrics / prediction function

- Not all neighbor ratings might be equally "valuable"
 - Agreement on commonly liked items is not so informative as agreement on controversial items
 - Possible solution: Give more weight to items that have a higher variance
- Case amplification
 - Intuition: Give more weight to "very similar" neighbors, i.e., where the similarity value is close to 1.
- Neighborhood selection
 - Use similarity threshold or fixed number of neighbors

Memory-based and model-based approaches

- User-based CF is said to be "memory-based"
 - the rating matrix is directly used to find neighbors / make predictions
 - does not scale for most real-world scenarios
 - large e-commerce sites have tens of millions of customers and millions of items

Memory-based and model-based approaches

- Model-based approaches
 - based on an offline pre-processing or "model-learning" phase
 - at run-time, only the learned model is used to make predictions
 - models are updated / re-trained periodically
 - large variety of techniques used
 - model-building and updating can be computationally expensive
 - item-based CF is an example for model-based approaches

Spring 2025

Item-based collaborative filtering

- Basic idea
 - Use the similarity between items (and not users) to make predictions
- Example:
 - Look for items that are similar to Item5
 - Take Alice's ratings for these items to predict the rating for Item5

	Item1	ltem2	Item3	Item4	ltem5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

Spring 2025

Item-based collaborative filtering

- Produces better results in item-to-item filtering
- Ratings are seen as vector in n-dimensional space
- Similarity is calculated based on the angle between the vectors

$$\operatorname{sim}(\vec{a}, \vec{b}) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| * |\vec{b}|}$$

Item-based collaborative filtering

- Adjusted cosine similarity
 - Take average user ratings into account, transform the original ratings
 - U: set of users who have rated both items a and b

$$\mathrm{sim}(a,b) = \frac{\sum_{u \in U} \left(r_{u,a} - \overline{r}_u\right) \left(r_{u,b} - \overline{r}_u\right)}{\sqrt{\sum_{u \in U} \left(r_{u,a} - \overline{r}_u\right)^2} \sqrt{\sum_{u \in U} \left(r_{u,b} - \overline{r}_u\right)^2}}$$

Making predictions

A common prediction function:

$$\operatorname{pred}(u,p) = \frac{\sum_{i \in \operatorname{ratedItem}(u)} \operatorname{sim}(i,p) * r_{u,i}}{\sum_{i \in \operatorname{ratedItem}(u)} \operatorname{sim}(i,p)}$$

- Neighborhood size is typically also limited to a specific size
- Not all neighbors are taken into account for the prediction
- An analysis of the MovieLens dataset indicates that "in most real-world situations, a neighborhood of 20 to 50 neighbors seems reasonable" (Herlocker et al. 2002)

Pre-processing for item-based filtering

- Item-based filtering does not solve the scalability problem itself
- Pre-processing approach by Amazon.com (in 2003)
 - Calculate all pair-wise item similarities in advance
 - The neighborhood to be used at run-time is typically rather small, because only items are taken into account which the user has rated
 - Item similarities are supposed to be more stable than user similarities

Pre-processing for item-based filtering

- Memory requirements
 - Up to N^2 pair-wise similarities to be memorized (N = number of items) in theory
 - In practice, this is significantly lower (items with no co-ratings)
 - Further reductions possible
 - Minimum threshold for co-ratings
 - Limit the neighborhood size (might affect recommendation accuracy)

Spring 2025

Collaborative Filtering

More on ratings – Explicit ratings

- Probably the most precise type of rating.
- Optimal scale is an area of research, more granular scales can capture preferences better and improve the user experience.
- Main problem is data sparsity. Users are often reluctant to provide ratings, leading to sparse matrices and poor recommendations.

More on ratings – Implicit ratings

- User actions automatically observed and logged by the system (e.g., purchases, clicks, time on page).
- They are abundant and easy to collect, as they require no extra effort from the user.
- The main problem: ambiguity. You can't be certain if an action truly reflects a user's preference (e.g., was a book bought for themselves or as a gift?).
- Implicit ratings are more plentiful but noisier than explicit ratings.

Spring 2025

Data sparsity problems

- Cold start problem
 - How to recommend new items? What to recommend to new users?
- Straightforward approaches
 - Ask/force users to rate a set of items
 - Use another method (e.g., content-based, demographic or simply non-personalized) in the initial phase
 - Default voting: assign default values to items that only one of the two users to be compared has rated (Breese et al. 1998)

Data sparsity problems

- Alternatives
 - Use better algorithms (beyond nearest-neighbor approaches)
 - Example:
 - In nearest-neighbor approaches, the set of sufficiently similar neighbors might be too small to make good predictions
 - Assume "transitivity" of neighborhoods

Graph-based methods (1)

- "Spreading activation" (Huang et al. 2004)
 - Exploit the supposed "transitivity" of customer tastes and thereby augment the matrix with additional information
 - Assume that we are looking for a recommendation for User1
 - When using a standard CF approach, User2 will be considered a peer for User1 because they both bought Item2 and Item4
 - Thus Item3 will be recommended to User1 because the nearest neighbor, User2, also bought or liked it

Graph-based methods (2)

- "Spreading activation" (Huang et al. 2004)
 - In a standard user-based or item-based CF approach, paths of length 3 will be considered that is, Item3 is relevant for User1 because there exists a three-step path (User1–Item2–User2–Item3) between them
 - Because the number of such paths of length 3 is small in sparse rating databases, the idea is to also consider longer paths (indirect associations) to compute recommendations
 - Using path length 5, for instance

Graph-based methods (3)

- "Spreading activation" (Huang et al. 2004)
 - \bullet Idea: Use paths of lengths > 3 to recommend items
 - Length 3: Recommend Item3 to User1
 - Length 5: Item1 also recommendable

More model-based approaches

- Plethora of different techniques proposed in the last years, e.g.,
 - Matrix factorization techniques, statistics
 - Singular Value Decomposition (SVD), Principal Component Analysis (PCA)
 - Association rule mining
 - Compare: shopping basket analysis
 - Probabilistic models
 - Clustering models, Bayesian networks, probabilistic Latent Semantic Analysis (pLSA)
 - Various other machine learning approaches
- Costs of pre-processing
 - Usually not discussed
 - Incremental updates possible?

Spring 2025

2000: Application of Dimensionality Reduction in Recommender System, B. Sarwar et al., WebKDD Workshop

- Basic idea: Trade more complex offline model building for faster online prediction generation
- Singular Value Decomposition for dimensionality reduction of rating matrices
 - Captures important factors/aspects and their weights in the data
 - factors can be genre, actors but also non-understandable ones
 - Assumption that k dimensions capture the signals and filter out noise (K = 20 to 100)
- Constant time to make recommendations
- Approach also popular in IR (Latent Semantic Indexing), data compression,...

Matrix factorization

ullet Informally, the SVD theorem (Golub and Kahan 1965) states that a given matrix M can be decomposed into a product of three matrices as follows

$$M = U \times \Sigma \times V^T$$

- where U and V are called *left* and *right* singular vectors and the values of the diagonal of Σ are called the singular values
- We can approximate the full matrix by observing only the most important features those with the largest singular values
- In the example, we calculate U, V and Σ (with the help of some linear algebra software) but retain only the two most important features by taking only the first two columns of U and V^T

Spring 2025

Example for SVD-based recommendation

SVD:
$$M_k = U_k \times \Sigma_k \times V_k^T$$

U _k	Dim1	Dim2	
Alice	0.47	-0.30	
Bob	-0.44	0.23	
Mary	0.70	-0.06	
Sue	0.31	0.93	

Terminator Die Hard Voue Pretty Woman						
V_k^T				Te .	Q _{II}	
Dim1	-0.44	-0.57	0.06	0.38	0.57	
Dim2	0.58	-0.66	0.26	0.18	-0.36	

Prediction:
$$V_k^{T(\mathrm{EPL})}$$

$$\hat{r}_{ui} = \overline{r}_u + U_{k(\text{Alice})} \times \Sigma_k \times$$

\sum_{k}	Dim1 Dim2	
Dim1	5.63	0
Dim2	0	3.23

The projection of U and V^T in the 2 dimensional space (U_2, V_2^T)

Discussion about dimensionality reduction (Sarwar et al. 2000a)

- Matrix factorization
 - Generate low-rank approximation of matrix
 - Detection of latent factors
 - Projecting items and users in the same n-dimensional space
- Prediction quality can decrease because...
 - the original ratings are not taken into account

Discussion about dimensionality reduction (Sarwar et al. 2000a)

- Prediction quality can increase as a consequence of...
 - filtering out some "noise" in the data and
 - detecting nontrivial correlations in the data
- Depends on the right choice of the amount of data reduction
 - number of singular values in the SVD approach
 - Parameters can be determined and fine-tuned only based on experiments in a certain domain
 - Koren et al. 2009 talk about 20 to 100 factors that are derived from the rating patterns

Association rule mining

- Commonly used for shopping behavior analysis
 - aims at detection of rules such as
 - "If a customer purchases beer then he also buys diapers in 70% of the cases"
- Association rule mining algorithms
 - can detect rules of the form $X\to Y$ (e.g. beers \to diapers) from a set of sales transactions $D=\{t_1,t_2,...,t_n\}$
 - measure of quality: support, confidence
 - used e.g. as a threshold to cut off unimportant rules
- let freq $(X) = \{x \mid x \subseteq t_i, t_i \in D\}$
- support = $\frac{\text{freq}(X \cup Y)}{|D|}$, confidence = $\frac{\text{freq}(X \cup Y)}{\text{freq}(X)}$

Recommendation based on Association Rule Mining

- Simplest approach
 - Transform 5-point ratings into binary ratings (1 = above user average)
- Mine rules such as
 - Item1 \rightarrow Item5
 - Support (2/4), confidence (2/2) (without Alice)

	ltem1	Item2	Item3	Item4	Item5
Alice	1	0	0	0	?
User1	1	0	1	0	1
User2	1	0	1	0	1
User3	0	0	0	1	1
User4	0	1	1	0	0

Recommendation based on Association Rule Mining

- Make recommendations for Alice (basic method)
 - Determine "relevant" rules based on Alice's transactions (the above rule will be relevant as Alice bought Item1)
 - Determine items not already bought by Alice
 - Sort the items based on the rules' confidence values
- Different variations possible
 - dislike statements, user associations ...

	ltem1	Item2	Item3	Item4	Item5
Alice	1	0	0	0	?
User1	1	0	1	0	1
User2	1	0	1	0	1
User3	0	0	0	1	1
User4	0	1	1	0	0

Probabilistic methods

- Basic idea (simplistic version for illustration):
 - Given the user/item rating matrix
 - Determine the probability that user Alice will like an item i
 - Base the recommendation on such these probabilities

Probabilistic methods

- Calculation of rating probabilities based on Bayes Theorem
 - How probable is rating value "1" for Item5 given Alice's previous ratings?
 - Corresponds to conditional probability $P(\text{Item5} = 1 \mid X)$, where
 - X = Alice's previous ratings = (Item1 =1, Item2=3, Item3= ...)
 - Can be estimated based on Bayes' Theorem

$$P(Y|X) = \frac{P(X|Y) \times P(Y)}{P(X)}$$

,

$$P(Y|X) = \frac{\prod_{i=1}^{d} P(X_i|Y) \times P(Y)}{P(X)}$$

Probabilistic methods (2)

	ltem1	Item2	Item3	Item4	Item5
Alice	1	3	3	2	?
User1	2	4	2	2	4
User2	1	3	3	5	1
User3	4	5	2	3	3
User4	1	1	5	2	1

$$P(X|Item5 = 1)$$

= $P(Item1 = 1|Item5 = 1) \times P(Item2 = 3|Item5 = 1)$
 $\times P(Item3 = 3|Item5 = 1) \times P(Item4 = 2|Item5 = 1) = \frac{2}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$
 ≈ 0.125
 $P(X|Item5 = 2)$
= $P(Item1 = 1|Item5 = 2) \times P(Item2 = 3|Item5 = 2)$
 $\times P(Item3 = 3|Item5 = 2) \times P(Item4 = 2|Item5 = 2) = \frac{0}{0} \times \dots \times \dots \times \dots$

= 0

Probabilistic methods (3)

- More to consider
 - Zeros (smoothing required)
 - like/dislike simplification possible

Practical probabilistic approaches

- Use a cluster-based approach (Breese et al. 1998)
 - assume users fall into a small number of subgroups (clusters)
 - Make predictions based on estimates
 - probability of Alice falling into cluster c
 - probability of Alice liking item i given a certain cluster and her previous ratings

•
$$P(C = c, v_1, ..., v_n) = P(C = c) \prod_{i=1}^n P(v_i | C = c)$$

- Based on model-based clustering (mixture model)
 - Number of classes and model parameters have to be learned from data in advance (EM algorithm)

Practical probabilistic approaches

- Others:
 - Bayesian Networks, Probabilistic Latent,
- Empirical analysis shows:
 - Probabilistic methods lead to relatively good results (movie domain)
 - No consistent winner; small memory-footprint of network model

RF-Rec predictors (Gedikli et al. 2011)

- Idea: Take rating frequencies into account for computing a prediction
- \bullet Basic scheme: $\hat{r}_{u,i} = \mathrm{argmax}_{v \in R} f_{\mathrm{user}(u,v)} * f_{\mathrm{item}(i,v)}$
 - R: Set of all rating values, e.g., $R = \{1, 2, 3, 4, 5\}$ on a 5-point rating scale
 - $f_{\text{user}(u,v)}$ and f_{item} basically describe how often a rating v was assigned by user u and to item i respectively.

RF-Rec predictors (Gedikli et al. 2011)

• Example:

	ltem1	Item2	Item3	Item4	Item5
Alice	1	1	?	5	4
User1	2		5	5	5
User2			1	1	
User3		5	2		2
User4	3		1	1	
User5	1	2	2		4

• p(Alice, Item3) = 1

Collaborative Filtering Issues

- Pros:
 - Well-understood, works well in some domains, no knowledge engineering required
- Cons:
 - Requires user community, sparsity problems, no integration of other knowledge sources, no explanation of results

Spring 2025

Artificial Intelligence Applied to the Web

Chapter 4 Part 3 - Recommendation Systems

Diego Cornejo, Felipe Hernández and Juan Velásquez

University of Chile
Departament of Industrial Engineering

Spring 2025