# Defining canonically best factorization theorems for the generating functions of special convolution type sums

#### Maxie Dion Schmidt

Georgia Institute of Technology School of Mathematics

mschmidt34@gatech.edu

 $http://people.math.gatech.edu/^mschmidt34/$ 

February 10, 2021

#### Goals of the talk

- Identify a general method for expanding out the generating functions of special sums (many examples)
- Questions about the most natural ways of forming the generating-function-based expansions of these sums

### Generating functions of sequences

- Recall that an ordinary generating function (or OGF) of a sequence (or arithmetic function)  $\{f_n\}_{n\geq 0}$  is defined by  $F(z):=\sum_{n\geq 0}f_n\cdot z^n$ .
- ▶ We write the series coefficient extraction operator in the notation  $[z^n]F(z) \equiv f_n$  for n > 0.
- Why generating functions are useful in studying sequence properties?

### Motivating examples

## Motivating examples

### Review: Multiplicative functions in number theory

- ▶ Recall that an arithmetic function f is called *multiplicative* if  $f(ab) = f(a) \cdot f(b)$  for all integers  $a, b \ge 1$  such that (a, b) = 1.
- Examples of multiplicative functions:
  - The Möbius function  $\mu(n)$  is the signed indicator function of the squarefree integers.

  - **③** The generalized sum-of-divisors functions  $\sigma_{\alpha}(n) := \sum_{d|n} d^{\alpha}$  with the special cases  $d(n) = \sigma_0(n)$  and  $\sigma(n) = \sigma_1(n)$ .
  - The completely multiplicative Liouville lambda function  $\lambda(n) = (-1)^{\Omega(n)}$ .



### What is a Lambert series generating function (LGF)?

▶ Formally, given an arithmetic function  $f: \mathbb{Z}^+ \to \mathbb{C}$  we define its Lambert series generating function (or LGF) to be

$$L_f(q):=\sum_{n\geq 1}rac{f(n)q^n}{1-q^n}=\sum_{m\geq 1}\left(\sum_{d|m}f(d)
ight)q^m,|q|<1.$$

- ▶ For \* denoting *Dirichlet convolution*, the RHS coefficients generated by  $L_f(q)$  are  $[q^n]L_f(q) = (f*1)(n) = \sum_{d|n} f(d)$  for  $n \ge 1$ .
- Multiplicative functions tend to have nice expressions in terms of divisor sum convolutions of this type.

### Examples of Lambert series generating functions

$$\sum_{n \ge 1} \frac{\mu(n)q^n}{1 - q^n} = q,\tag{1a}$$

$$\sum_{n \ge 1} \frac{\phi(n)q^n}{1 - q^n} = \frac{q}{(1 - q)^2},\tag{1b}$$

$$\sum_{n\geq 1} \frac{n^{\alpha} q^n}{1-q^n} = \sum_{m\geq 1} \sigma_{\alpha}(n) q^n, \tag{1c}$$

$$\sum_{n\geq 1} \frac{\lambda(n)q^n}{1-q^n} = \sum_{m\geq 1} q^{m^2},\tag{1d}$$

$$\sum_{n\geq 1} \frac{\mu^2(n)q^n}{1-q^n} = \sum_{m\geq 1} 2^{\omega(m)} q^m.$$
 (1e)

### Review: The partition function p(n)

- A partition of a positive integer n is a (finite) sequence of positive integers whose sum is n.
- More formally, we may partition n as a sum of integers  $\lambda_1 \geq \lambda_1 \geq \cdots \geq \lambda_k \geq 1$  such that  $\lambda_1 + \lambda_2 + \cdots + \lambda_k = n$ .
- ▶ We denote the total number of partitions of n by p(n)
- ▶ For example, p(5) = 7 since the distinct partitions of 5 are given by

$$5, 4+1, 3+2, 3+1+1, 2+2+1, 2+1+1+1, 1+1+1+1+1$$

### Examples of partition function OGFs

#### Table 14.1 Generating functions

| Generating function $\prod_{m=1}^{\infty} \frac{1}{1 - x^{2m-1}}$ $\prod_{m=1}^{\infty} \frac{1}{1 - x^{2m}}$ | The number of partitions of n into parts which are |                                      |                  |
|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------|------------------|
|                                                                                                               | odd                                                | $\prod_{m=1}^{\infty} (1+x^{2m-1})$  | odd and unequal  |
| $\prod_{i=1}^{n-1} \frac{1-x^{2m}}{1-x^{m^2}}$                                                                | squares                                            | $\prod_{m=1}^{\infty} (1 + x^{2m})$  | even and unequa  |
| $I_{\frac{1}{1-x^p}}$                                                                                         | primes                                             | $\prod_{m=1}^{\infty} (1 + x^{m^2})$ | distinct squares |
| $\int_{1}^{\infty} (1+x^{m})$                                                                                 | unequal                                            | $\prod_{p} (1 + x^{p})$              | distinct primes  |

#### Work on Lambert series factorization theorems

- ▶ Let  $s_e(n, k)$  and  $s_0(n, k)$  respectively denote the number of k's in all partitions of n into an even (odd) number of distinct parts.
- Let  $(a;q)_{\infty} = \prod_{m \geq 1} (1 aq^{m-1})$  denote the infinite q-Pochhammer symbol.
- ▶ Then we have

$$\sum_{n\geq 1} \frac{f(n)q^n}{1\pm q^n} = \frac{1}{(\mp q;q)_{\infty}} \sum_{n\geq 1} \left( \sum_{k=1}^n (s_o(n,k) \pm s_e(n,k)) f(k) \right) q^n,$$

# Lambert series factorization theorems (expressions by invertible matrices)

▶ Re-write the previous factorization theorem statement as

$$\sum_{n\geq 1}\frac{f(n)q^n}{1-q^n}=\frac{1}{(q;q)_{\infty}}\sum_{n\geq 1}\left(\sum_{k=1}^n s_{n,k}f(k)\right)q^n.$$

- ▶ The matrices formed by the lower triangular sequence of  $s_{n,k}$  are invertible with ones on the diagonal.
- ▶ We can prove exactly how  $s_{n,k}^{-1}$  is related to p(n):

$$s_{n,k}^{-1} = \sum_{d|n} p(d-k)\mu\left(\frac{n}{d}\right).$$

# Relation of the matrices to partition functions brings up a natural question

- ▶ There is a very **natural** relation of <u>both</u> sequences of  $s_{n,k}$  and  $s_{n,k}^{-1}$  to partition theoretic functions.
- ► This is unusual in so much as LGFs typically generate *multiplicative* functions (product based properties), whereas partition function variants have a much more *additive* structure
- ▶ Brings up a natural question: Why did partitions fit so naturally with the multiplicative functions enumerated by the LGFs above?

#### More general constructions ( $\mathcal{D}$ -convolution type sums)

Generalized classes of convolution type sums

# Examples: What other sum types are we interested in studying?

$$S_f(n) = \sum_{d|n} f(d)$$
 (e.g., LGF cases) (2a)

$$S_f(n) = \sum_{\substack{1 \le d \le n \\ 1 \le d}} f(d) \tag{2b}$$

$$S_f(n) = \sum_{\substack{d \in A_n \\ A_n \subset \{1, 2, \dots, n\}}} f(d)$$
 (and weighted versions) (2c)

$$S_f(n) = \sum_{d=1}^n {n \brack d} (-1)^{n-d} f(d)$$
 (cf. Stirling transform) (2d)

$$S_{f,g}(n) = \sum_{d=1}^{n} {d \choose n} f(d)g(n+1-d)$$
 (cf. binomial transform) (2e)

### Generating functions for a more general class of sums

- ▶ Consider a fixed *kernel* function  $\mathcal{D}: (\mathbb{Z}^+)^2 \to \mathbb{Z}$ .
- ▶ Suppose that  $\mathcal{D}(n, k)$  is lower triangular so that  $\mathcal{D}(n, k) = 0$  whenever k > n.
- ▶ Suppose that  $\mathcal{D}$  is invertible so that  $\mathcal{D}(n, n) \neq 0$  for all  $n \geq 1$ .
- For any arithmetic functions f, g, we consider the class of  $\mathcal{D}$ -convolution sums of the form

$$(f \boxtimes_{\mathcal{D}} g)(n) := \sum_{k=1}^{n} f(k)g(n+1-k)\mathcal{D}(n,k), n \geq 1.$$

# Defining analogous factorization theorems to generate these sums (up to an undetermined OGF)

▶ We expand the generalized *factorization theorems* for any fixed (C, D) that uniquely determines the following expansions:

$$(f \boxdot_{\mathcal{D}} 1)(n) := [q^n] \left( \frac{1}{\mathcal{C}(q)} \times \sum_{n \geq 1} \sum_{k=1}^n s_{n,k}(\mathcal{C}, \mathcal{D}) \cdot f(k) \cdot q^n \right), n \geq 1.$$

- ▶ Take C(q) any OGF with integer coefficients such that  $C(0) \neq 0$  (typically set to one up to normalization).
- ▶ For this fixed function, define the series coefficients  $c_n(\mathcal{C}) := [q^n]\mathcal{C}(q)$  and  $p_n(\mathcal{C}) := [q^n]\mathcal{C}(q)^{-1}$  for  $n \ge 0$ .

### How do we choose a "canonically best" OGF C?

- ▶ In the LGF case, the products for  $C(q) := (q; q)_{\infty}$  arise in arithmetic with these generating functions.
- ► The observation of how well the structurally revealing "natural choice" of sequences was from the LGF case is still very fuzzy and qualitative.
- ▶ **Big Question:** How do we *quantify* the notion of how well related the structures of the respective sequences  $\{p_n(\mathcal{C})\}_{n\geq 0}$  and  $\{\mathcal{D}(n,k)\}_{n\geq k\geq 1}$  are so that we can then prove the form of an optimal, or most structurally revealing, or say "canonically best" OGF  $\mathcal{C}(q)$ ?

# Idea: Define suitable cross-correlation statistics (and then sum them up)

- Consider a metric (statistic) that indicates the cross-correlation between these sequences.
- There are many ways to do this!
- ► A variant of the standard formula for a *Pearson correlation* statistic between any two *N*-tuples:

PearsonCorr(
$$N; \vec{a}, \vec{b}$$
) :=  $\frac{1}{N} \times \frac{\sum\limits_{j=1}^{N} a_j \cdot b_j}{\sqrt{\sum\limits_{1 \leq i,j \leq N} a_i^2 \cdot b_j^2}}$ .

#### More general cross-correlation statistic formulas to consider

Let's look at finding C(q) such that the following statistic is maximized (minimized):

$$\mathsf{Corr}(\mathcal{C},\mathcal{D}) := \sum_{n \geq 1} \frac{1}{n} \times \frac{\sum\limits_{k=1}^{n} |c_k(\mathcal{C})\mathcal{D}^{-1}(n,k)|}{\sqrt{\left(\sum\limits_{k=1}^{n} c_k(\mathcal{C})^2\right) \left(\sum\limits_{k=1}^{n} \mathcal{D}^{-1}(n,k)^2\right)}}.$$

▶ Conjecture. If Corr(C, D) is optimized by a particular OGF C(q), then so is the alternate statistic

$$\mathsf{Corr}_*(\mathcal{C},\mathcal{D}) := \sum_{n \geq 1} \frac{1}{n} \times \frac{\sum\limits_{k=1}^n |p_k(\mathcal{C})\mathcal{D}(n,k)|}{\sqrt{\left(\sum\limits_{k=1}^n p_k(\mathcal{C})^2\right)\left(\sum\limits_{k=1}^n \mathcal{D}(n,k)^2\right)}}.$$

#### Back to the LGF expansion cases

- For the LGF case, we have that  $\mathcal{D}(n,k) := [k|n]_{\delta}$  and  $\mathcal{D}^{-1}(n,k) = \mu(n/k) [k|n]_{\delta}$ .
- ▶ This leads to the explicit formula for Corr(C, D) given by

$$\mathsf{Corr}_{LGF}(\mathcal{C}) := \lim_{n \to \infty} \sum_{k=1}^n \frac{\mu^2(k)}{k(\sqrt{2})^{\omega(k)}} \times \sum_{j \leq \left \lfloor \frac{j}{k} \right \rfloor} \frac{|c_j(\mathcal{C})|}{j \cdot \rho_{\mathcal{C}}(jk)(\sqrt{2})^{\omega\left(\frac{j}{(j,k)}\right)}}.$$

where we define the partial variance of  ${\mathcal C}$  to be

$$\rho_{\mathcal{C}}(N) := \sqrt{\sum_{1 \leq i \leq N} c_i(\mathcal{C})^2}, N \geq 1.$$

#### Back to the LGF expansion cases

**Theorem.** Fix any  $0 < \delta < +\infty$ . Suppose that C(q) is an OGF whose series coefficients are integer valued so that  $c_0(C) = 1$  and where

$$\mathcal{A}_0(\mathcal{C},\delta) := \lim_{N o \infty} rac{1}{N^{rac{\delta}{2}}} imes \sqrt{\sum_{1 \leq n \leq N} c_n(\mathcal{C})^2} \in [1,+\infty).$$

We have that

$$\mathsf{Corr}_{\mathsf{LGF}}(\mathcal{C})^{-1} \geq \left(1 + \frac{1}{2\mathcal{A}_0(\mathcal{C}, \delta)} \left(\frac{\zeta\left(\frac{2+\delta}{2}\right)}{\zeta(2+\delta)} - 1\right) \mathsf{DGF} \left|\mathcal{C}\right| \left(\frac{2+\delta}{2}\right) + \widehat{\omega}_{\ell}(\mathcal{C})\right)^{-1},$$

and

$$\mathsf{Corr}_{\mathsf{LGF}}(\mathcal{C})^{-1} \leq \left(\frac{1}{A_0(\mathcal{C},\delta)} \cdot \frac{\zeta\left(\frac{3+\delta}{2}\right)}{\zeta(3+\delta)} \cdot \mathsf{DGF} \left| \mathcal{C} \right| \left(\frac{3+\delta}{2}\right) - \widehat{\omega}_{\mathit{u}}(\mathcal{C}) \right)^{-1},$$

where the constants  $\hat{\omega}_{\ell}(\mathcal{C})$  and  $\hat{\omega}_{u}(\mathcal{C})$  can be explicitly bounded given any fixed  $(\delta, \mathcal{C}(q))$ .

#### Back to the LGF expansion cases (some numerical data)

- Numerically, we find that the upper and lower bounds from my theorem yield a theoretical range of  $Corr_{LGF}(C) \in [0.169825, 0.7491]$ .
- ▶ The actual sums for the ideal (q-Pochhammer) OGF for the LGF expansions yield that  $\mathsf{Corr}_{\mathsf{LGF}}((q;q)_{\infty})^{-1} \approx 0.195349$ .
- ► This is pretty close to actually maximizing the correlation up to some error terms (up to some error that may not be attainable).

## Lingering questions and request for algebra audience feedback

- ▶ Is it possible to do better for the LGF case?
- ▶ That is, can we define a more natural statistic to optimize so that  $C(q) := (q; q)_{\infty} *IS*$  actually going to yield the theoretical best possible correlation?
- ► What about constructions for the more general  $\mathcal{D}$ -convolution sums (many special sum types are wrapped into this definition)?

#### Concluding remarks and discussion

### The End

Questions?

Comments?

Feedback?

### Thank you for attending!

#### References I



G. E. Andrews, The Theory of partitions, Cambridge, 1984.



M. Merca, The Lambert series factorization theorem, *Ramanujan J.*, **44** (2017), 417–435.



M. Merca and M. D. Schmidt, A partition identity related to Stanley's theorem, *Amer. Math. Monthly* **125** (2018), 929–933.



M. Merca and M. D. Schmidt, Factorization Theorems for Generalized Lambert Series and Applications, *Ramanujan Journal* (2018).



M. Merca and M. D. Schmidt, Generating Special Arithmetic Functions by Lambert Series Factorizations, *Contributions to Discrete Mathematics* (2018).



M. Merca and M. D. Schmidt, New Factor Pairs for Factorizations of Lambert Series Generating Functions, https://arxiv.org/abs/1706.02359 (2017).

#### References II



H. Mousavi and M. D. Schmidt, Factorization Theorems for Relatively Prime Divisor Sums, GCD Sums and Generalized Ramanujan Sums, *Ramanujan Journal*, to appear (2020).



J. Sandor and B. Crstici, *Handbook of Number Theory II*, Kluwer Adademic Publishers, 2004.



M. D. Schmidt, A catalog of interesting and useful Lambert series identities, https://arxiv.org/abs/2004.02976 (2020).



M. D. Schmidt, New recurrence relations and matrix equations for arithmetic functions generated by Lambert series, *Acta Arithmetica* **181**, 2017.