```
def affine forward(x, w, b):
 Computes the forward pass for an affine (fully-connected) layer.
 The input x has shape (N, d_1, ..., d_k) and contains a minibatch of N
 examples, where each example x[i] has shape (d_1, \ldots, d_k). We will
 reshape each input into a vector of dimension D = d \ 1 \ * \ldots \ * \ d \ k, and
 then transform it to an output vector of dimension M.
 Inputs:
 - x: A numpy array containing input data, of shape (N, d 1, ..., d k)
 - w: A numpy array of weights, of shape (D, M)
 - b: A numpy array of biases, of shape (M,)
 Returns a tuple of:
 - out: output, of shape (N, M)
 - cache: (x, w, b)
 # ============== #
 # YOUR CODE HERE:
 # Calculate the output of the forward pass. Notice the dimensions
   of w are D x M, which is the transpose of what we did in earlier
   assignments.
 reshaped input = np.reshape(x, (x.shape[0], -1))
 out = np.dot(reshaped input, w) + b
 # ------ #
 # END YOUR CODE HERE
 cache = (x, w, b)
 return out, cache
def affine_backward(dout, cache):
 Computes the backward pass for an affine layer.
 Inputs:
 - dout: Upstream derivative, of shape (N, M)
 - cache: Tuple of:
   - x: Input data, of shape (N, d_1, ... d_k)
   - w: Weights, of shape (D, M)
 Returns a tuple of:
 - dx: Gradient with respect to x, of shape (N, d1, ..., d k)
 - dw: Gradient with respect to w, of shape (D, M)
 - db: Gradient with respect to b, of shape (M,)
 x, w, b = cache
 dx, dw, db = None, None, None
 # YOUR CODE HERE:
 # Calculate the gradients for the backward pass.
 # dout is N x M
```

import numpy as np

import pdb

```
\# dx should be N x d1 x ... x dk; it relates to dout through multiplication with w, which is
 \# dw should be D x M; it relates to dout through multiplication with x, which is N x D after
reshaping
 # db should be M; it is just the sum over dout examples
 dx = np.dot(dout, w.T).reshape(x.shape)
 dw = np.dot(x.reshape(x.shape[0], -1).T, dout)
 db = np.sum(dout, axis=0)
 # ------ #
 # END YOUR CODE HERE
 # ============== #
 return dx, dw, db
def relu forward(x):
 Computes the forward pass for a layer of rectified linear units (ReLUs).
 Input:
 - x: Inputs, of any shape
 Returns a tuple of:
 - out: Output, of the same shape as x
 - cache: x
 # ============== #
 # YOUR CODE HERE:
   Implement the ReLU forward pass.
 # ------ #
 out = np.maximum(x, 0)
 # END YOUR CODE HERE
 # ============== #
 cache = x
 return out, cache
def relu_backward(dout, cache):
 Computes the backward pass for a layer of rectified linear units (ReLUs).
 Input:
 - dout: Upstream derivatives, of any shape
 - cache: Input x, of same shape as dout
 Returns:
 - dx: Gradient with respect to x
 x = cache
 # ----- #
 # YOUR CODE HERE:
 # Implement the ReLU backward pass
 # ------ #
 # ReLU directs linearly to those > 0
 dx = dout * (x >= 0)
```

END YOUR CODE HERE

```
return dx
```

```
def softmax loss(x, y):
  Computes the loss and gradient for softmax classification.
  Inputs:
  - x: Input data, of shape (N, C) where x[i, j] is the score for the jth class
   for the ith input.
  - y: Vector of labels, of shape (N,) where y[i] is the label for x[i] and
   0 <= y[i] < C
  Returns a tuple of:
  - loss: Scalar giving the loss
  - dx: Gradient of the loss with respect to x
  probs = np.exp(x - np.max(x, axis=1, keepdims=True))
  probs /= np.sum(probs, axis=1, keepdims=True)
  N = x.shape[0]
  loss = -np.sum(np.log(probs[np.arange(N), y])) / N
  dx = probs.copy()
  dx[np.arange(N), y] = 1
  dx /= N
  return loss, dx
```