

Unit 2:

The Fundamentals of Machine Learning

Outline

Machine Learning

- Introduction
- Types of machine learning
- Challenges of Machine Learning
- The Machine Learning Framework

Reference:

Géron Chapter 1

Problems with Traditional Programming

<u>Traditional programming paradigm:</u>

- Problems of traditional programming paradigm:
 - complexity too many rules, very hard to cover all aspects of the problem, different problems require different rules
 - static cannot adapt to new input, need to keep writing new rules,
 very hard to maintain

The Machine Learning Framework

- Instead of handcraft rules, ML learns a model from training samples (data)
- One learning algorithm for different problems

What is Machine Learning?

"Machine Learning: Field of study that gives computers the ability to learn (from data) without being explicitly programmed."

[Arthur Samuel (1959)]

Why use Machine Learning?

- Some problems are too complex to solve by using rules
 - An example: image classification

Will work if given the same image again, but, given new images, the algorithm is bound to fail

Why use machine learning?

- Good for problems that evolves with time
 - Machine learning can automatically rebuild the model when necessary
 - Example: spam classifier learns new spam words when it become unusually frequent in spam flagged by users

Why use machine learning?

Help humans learn

- Can inspect ML to see what they learn
 - may find unsuspected correlations or new trends
 - learn the problem better
 - Example: can examine the list of words or its combination that ML identifies as the best predictors of spam filter

Data in Machine Learning

- Numerical (quantitative) data
 - Discrete (e.g. 1, 3, 8, -4, ...)
 - Continue (e.g. 2.321, 0.2437, ...)
- Categorical (qualitative) data
 - Ordinal (e.g. low, medium, high)
 - Nominal (e.g. red, blue, yellow)

Data in Machine Learning

- Labelled data vs unlabelled data
 - Labelled data: data that comes with a tag (e.g. name, value)
 - Unlabelled data: data that comes with no tag

Structured Data vs Unstructured Data

Structured Data

- Specific and stored in a predefined format
- Suitable for traditional machine learning
- Focused in this course

Unstructured Data

- Collection of varied types of data that are stored in their native formats (e.g. text, image, video, audio,...)
- Better result with deep learning techniques

Type of Machine Learning Algorithms

Supervised Learning

- In supervised learning, the algorithm is given some example input-output pair and it learns a function that maps from input to output
- input: the set of features used to describe the samples
- output: the attribute we are interested to predict
- Example: Fruit classification

Supervised Learning Tasks

Supervised Learning – Classification Applications

Income classification:

- Input: numerical and categorical data
- Output: 1 (income<=50K), 0 (income>50K) discrete
- Features: age, workclass, marital-status, race, education, area, ...

age	workclass	marital-status	race	class
39	State-gov	Never-married	White	<=50K
49	Self-emp-inc	Married-civ-spouse	White	> 50K
28	Private	Married-civ-spouse	Other	<=50K
35	Private	Divorced	White	> 50K
38	Private	Divorced	White	<=50K
53	Local-gov	Never-married	White	<=50K
28	Private	Married-civ-spouse	Black	<=50K
37	Private	Married-civ-spouse	Black	> 50K
37	Private	Married-civ-spouse	White	<=50K
49	Private	Married-spouse-absent	Black	<=50K
38	Federal-gov	Married-civ-spouse	White	> 50K
42	Private	Married-civ-spouse	White	>50K

More Classification Applications

Digit Classification Input: images / pixel grids Output: a digit 0-9 Features: Signatures Histogram of gradients Shape Patterns: NumComponents, AspectRatio, NumLoops Multiput (Image): Dutput (discrete): Extraction According to the pixel grids Extraction According to the pixel grids Extraction According to the pixel grids A

Spam mail classification

- Input: an email
- Output: spam or non-spam
- Features:
 - Words: FREE!, Earn, Call now,...
 - Text Patterns: \$\$\$, ALL CAPS
 - Non-text: SenderInContacts
 - ..

Input (Text): Output (discrete)

Dear Andy,

How you are doing, buddy? Hopefully you are adapting well to your new school. All of us miss you dearly here. We miss your silly jokes.

Hello, I have a special offer for you... WANT TO LOSE WEIGHT? The most powerful weight loss is now available without prescription.

Supervised Learning – Regression Applications

Predict the house price in the Boston area (regression):

- Input: numerical and categorical data
- Output: house price (in 1000usd) continue
- Features:
 - CRIM: per capita crime rate by town
 - ZN: proportion of residential land
 - INDUS: proportion of non-retail business acres per town
 - CHAS: Charles River dummy variable (= 1 if near river; 0 otherwise)
 - NOX: nitric oxides concentration (parts per 10 million)
 - RM: average number of rooms per dwelling
 - AGE: proportion of units built prior to 1940
 - DIS: weighted distance to employment centres
 - RAD: index of accessibility to radial highways
 - TAX: full-value property-tax rate per \$10,000

- ..

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	Price
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98	24.0
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14	21.6
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03	34.7
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94	33.4
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33	36.2
														\

A Simple Supervised Learning Example (1/6)

- Problem: want to predict IT salary
- Step 1: Collect Data
 - Consult domain expert/survey/research what key factors (features) affecting IT salary
 - Experience in years (used in this example)
 - Job title
 - Size of organization
 - Gender
 - Industry sector
 - Geographic region
 - ...

•	Col	ı	e	ct	· †	h	6	d	а	ta
,	-		\sim	\sim $^{\circ}$			_	v	u	··

- From survey/database
- Data processing for missing/incomplete data, normalization (see LO3)

Samples				
X (year)	y (salary, k)			
5	38			
10	64			
7	36			
8	44			
0	na			

A Simple Supervised Learning Example (2/6)

- Step 2: Model selection
 - Study the data and determine what model is suitable
 - For this plot, select linear regression

$$y = \theta_0 + \theta_1 \times x$$
 $(\theta_0, \theta_1) = \text{model parameters}$

A Simple Supervised Learning Example (3/6)

- Step 3: Train model
 - Separate data into training set (80%) and test set (20%)
 - Train model on training set, validate model using test set

A Simple Supervised Learning Example (4/6)

- Step 3: Train model (cont.)
 - Train model with training set
 - Use normal equation or gradient descent (see LO5)
 - Minimize sum-of-squared error (SSE) training error

A Simple Supervised Learning Example (5/6)

- Step 4: Validate model
 - Validate the model using test set test error

A Simple Supervised Learning Example (6/6)

- Step 5: Deploy model
 - Use the trained model for prediction

Supervised Learning Algorithms

• Algorithms for classification:

- k-Nearest neighbour (k-NN)
- Logistic Regression
- Decision Tree and Random Forests
- Support Vector Machine (SVM)
- Neural Networks (NN)
- ...

• Algorithms for regression:

- K-NN Regressor
- Linear Regression
- Decision Tree and Random Forests
- SVM Regressor
- NN
- Non-linear Regression ...

Unsupervised learning

Unsupervised Learning

- No labels are provided for all training samples
- Discovers the underlying structure, relationship or patterns based only on the features of the training sample

fruit 1
fruit 2
fruit 3
fruit 4
fruit m

Features					
length	width	weight			
165	38	172			
218	39	230			
76	80	145			
145	35	150			
•••	•••	•••			

Supervised Learning

Unsupervised Learning

Unsupervised Learning Task: Clustering

- Detect groups of similar samples
- Example:

Detecting groups of visitors who visit your blog

Example analysis:

- 40% visitors who love comic books and read in the evening
- 20% are young sci-fi lovers who visit before school, etc.

How does it help?

 Can target your posts for each group

Unsupervised Learning Task: Anomaly detection

 Identify items, events or observations which do not conform to an expected pattern or other items in a dataset

Anomalies are also referred to as outliers, novelties or

noise

Applications: Bank fraud, medical problems or errors in a text.

Unsupervised Learning Task: Association Rule Mining

 Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction.

TID	Items
1	Bread, Peanuts, Milk, Fruit, Jam
2	Bread, Jam, Soda, Chips, Milk, Fruit
3	Steak, Jam, Soda, Chips, Bread
4	Jam, Soda, Peanuts, Milk, Fruit
5	Jam, Soda, Chips, Milk, Bread
6	Fruit, Soda, Chips, Milk
7	Fruit, Soda, Peanuts, Milk
8	Fruit, Peanuts, Cheese, Yogurt

Support(Bread) = #Bread / #total Support(Jam) = #Jam / #total Support(Bread, Jam) = #(Bread+Jam) / #total

Unsupervised Learning Tasks and Algorithms

- Clustering
 - k-Means
 - Hierarchical Cluster Analysis (HCA)
 - Expectation Maximization

- Association rule learning
 - Apriori
 - Eclat

Semi-supervised learning

- Partially labeled training data.
 Typically more unlabeled data than labeled
- Most semi-supervised algorithms are combinations of unsupervised algorithms and supervised algorithms

	Features					
	length	width	weight			
fruit 1	165	38	172			
fruit 2	218	39	230			
fruit 3	76	80	145			
fruit 4	145	35	150			
			•••			
fruit <i>m</i>	•••	•••	•••			

Reinforcement Learning

- No training set is provided
- Learns based on the feedback of the environment:
 - effect of the agent' action on the environment (state)
 - rewards of taking a particular action
- Learns by itself the best policy (state-action) to get the most reward over time

Applications: games (chess, go, video), robotics, traffic control, trading,...

Reinforcement Learning Example

The agent

- 1. observes the environment
- 2. Select action using policy

- 3. Perform action
- 4. Get reward or penalty

- 5. Update policy (learning step)
- 6. Iterate until an optimal policy is found

Differences between Machine Learning Types

Supervised Learning	Unsupervised Learning	Reinforcement Learning
Labeled data with output specified	Unlabeled data, output not specified	Environment with rewards and penalty
Solves problems by mapping input to known output	Solves problems by discovering underlying patterns	Solves problems by trial and error
External supervision	No supervision	No supervision
Used for regression and classification tasks	Used for clustering and association tasks	Used for control and decision making tasks

Foundation Model & Self-Supervised Learning

- Conventionally, a AI model is trained on task-specific data to perform very specific task.
- A new paradigm in AI has emerged called foundation models.
 Unlike traditional AI, foundation models learn from massive datasets across different domains.
- Through self-supervised learning techniques, a foundation model teach itself to acquire broad scope of knowledge and understanding of the world (general intelligence).
- Large language models (LLM) such as OpenAI's GPT-4 and Google's PaLM are examples of foundation models.
- The foundation models can then be transferred to perform any other tasks through fine-tuning or prompting.
 - GPT -> ChatGPT, GPT -> Copilot, GPT -> Duolingo
- Foundation models require a lot more data and computing power to train.

Self-Supervised Learning

- Self-supervised learning is a new machine learning process where the model trains itself to learn one part of the input from another part of the input to obtain useful representations and knowledge.
- The trained model can help with downstream learning tasks.

How LLMs are trained

Source: Borealis Al

Challenges of Machine Learning

- Insufficient quantity of training data
- Poor data quality
- Non-representative training data
- Irrelevant features
- Underfitting & overfitting the training data

Poor-quality data

Training data may contain errors, for example:

- Data cleaning: Most data scientists spend a significant time to clean the data. For example:
 - Fill up missing value
 - Drop a column (feature) with many missing values/errors
 - Remove rows (samples) with outliers
 - Fix error/format manually

Non-representative data

- Training data should be representative of the new cases that you want to generalize to.
- Consider fitting a linear model to the GDP dataset with and without 7 missing countries :

(This model does not generalize well) without missing countries Brazil Mexico Chile Czech Republic Life satisfaction with missing countries Norway Switzerland Luxemboura 0, 20000 40000 60000 80000 100000 GDP per capita

Irrelevant features

- Selected features must be relevant to the task at hand. Having irrelevant features in your data can decrease the accuracy of the models.
 - For example, area or perimeter length are irrelevant feature for classifying shapes like circle and rectangle.

$$f(area) =$$
?

 Features such as signature, number of corners are more suitable for classifying shapes.

Feature Engineering

- Feature engineering is the process to come up with a good set of features to train on. It involves:
 - feature extraction use some tools to extract features from samples (e.g., extract shape signature, colors from an object).
 - feature selection choose the most useful features among all existing features that produce the best result for a machine learning model.

Deep learning learns features automatically but requires lots of training data.

Underfitting & Overfitting

- Underfitting (high bias) may happen when our model is over-simplified or not expressive enough (high training error and high test error).
- Overfitting (high variance) may happen when our model is too complex and fits too specifically to the training set, but it does not generalize well to new data (low training error but high test error).

Underfitting & Overfitting

Underfitting and overfitting in regression task

Hyperparameter Tuning

- Hyperparameter is a parameter whose value is set before the learning process begins and which is used to control the learning process.
 - For example, % of train-test split is a hyperparameter
- Different model has different set of hyperparameters. For example,
 - Polynomial model: degree
 - K-NN: n_neighbors, distance metric (Manhattan or Euclidean)
 - Neural Networks: α (learning rate), max_iter (maximum iterations)
 - SVM: kernel (linear, rbf), C (penalty parameter)
- In machine learning, hyperparameter tuning is the process of choosing a set of <u>optimal</u> hyperparameters for a learning algorithm.
- Need to balance between fitting the data perfectly and keeping the model simple to ensure it generalizes well (avoid underfit & overfit)
- Hyperparameter tuning is an important step of building a machine learning system.

The Machine Learning Framework

Divided into two phases

Next:

The Regression Pipeline