Linear Programming: Chapter 12 Regression

Robert J. Vanderbei

October 17, 2007

Operations Research and Financial Engineering Princeton University Princeton, NJ 08544 http://www.princeton.edu/~rvdb

Outline

- Means and Medians
- Least Squares Regression
- Least Absolute Deviation (LAD) Regression
- LAD via LP
- Average Complexity of Parametric Self-Dual Simplex Method

1995 Adjusted Gross Incomes

Consider 1995 Adjusted Gross Incomes on Individual Tax Returns:

b_1	b_2	b_3	 b_{m-1}	b_m
\$25,462	\$45,110	\$15,505	 \$33,265	\$75,420

Real summary data is shown on the next slide...

Table 1.--1995, Individual Income Tax Returns

[All figures are estimates based on samples—money amounts are in thousands of dollars]

Size of adjusted gross income	Number of returns	Adjusted gross income		
	(1)	(2)		
All retums	118,218,327	4,189,353,615		
No adjusted gross income	944,141	-55,253,648		
\$1 under \$5,000	14,646,131	37,604,828		
\$5,000 under \$10,000	13,982,404	104,603,365		
\$10,000 under \$15,000	13,562,088	169,317,443		
\$15,000 under \$20,000	11,385,632	198,418,324		
\$20,000 under \$25,000	9,970,099	223,400,219		
\$25,000 under \$30,000	7,847,862	215,200,244		
\$30,000 under \$40,000	12,380,339	430,491,242		
\$40,000 under \$50,000	9,098,760	406,638,597		
\$50,000 under \$75,000	13,679,023	828,349,278		
\$75,000 under \$100,000	5,374,489	458,505,650		
\$100,000 under \$200,000	4,074,852	532,030,480		
\$200,000 under \$500,000	1,007,136	292,117,517		
\$500,000 under \$1,000,000	178,374	120,347,093		
\$1,000,000 or more	86,998	227,582,987		
Taxable returns	89,252,989	4,007,580,441		
Nontaxable returns	28,965,338	181,773,174		

Means and Medians

Median:

$$\hat{x} = b_{\frac{1+m}{2}} \approx $22,500.$$

Mean:

$$\bar{x} = \frac{1}{m} \sum_{i=1}^{m} b_i = \$4,189,353,615,000/118,218,327 = \$35,437.$$

Mean's Connection with Optimization

$$\bar{x} = \operatorname{argmin}_x \sum_{i=1}^m (x - b_i)^2$$
.

Proof:

$$f(x) = \sum_{i=1}^{m} (x - b_i)^2$$

$$f'(x) = \sum_{i=1}^{m} 2(x - b_i)$$

$$f'(\bar{x}) = 0 \implies \bar{x} = \frac{1}{m} \sum_{i=1}^{m} b_i$$

$$\lim_{x \to \pm \infty} f(x) = +\infty \implies \bar{x} \text{ is a minimum}$$

Median's Connection with Optimization

$$\hat{x} = \operatorname{argmin}_x \sum_{i=1}^m |x - b_i|.$$

Proof:

$$\begin{split} f(x) &= \sum_{i=1}^m |x - b_i| \\ f'(x) &= \sum_{i=1}^m \mathrm{sgn}\,(x - b_i) & \text{where } \mathrm{sgn}(x) = \begin{cases} 1 & x > 0 \\ 0 & x = 0 \\ -1 & x < 0 \end{cases} \\ &= (\# \text{ of } b_i \text{'s smaller than } x) - (\# \text{ of } b_i \text{'s larger than } x) \,. \end{split}$$

 $\begin{array}{ll} \text{If} & m & \text{is} \\ \text{odd:} & \\ \end{array}$

A Regression Model for Algorithm Efficiency

Observed Data:

$$t = \#$$
 of iterations $m = \#$ of constraints $n = \#$ of variables

Model:

$$t \approx 2^{\alpha}(m+n)^{\beta}$$

Linearization: Take logs:

$$\log t = \alpha \log 2 + \beta \log(m+n) + \epsilon$$
error

Regression Model Continued

Solve several instances:

$$\begin{bmatrix} \log t_1 \\ \log t_2 \\ \vdots \\ \log t_k \end{bmatrix} = \begin{bmatrix} \log 2 & \log(m_1 + n_1) \\ \log 2 & \log(m_2 + n_2) \\ \vdots & \vdots \\ \log 2 & \log(m_k + n_k) \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} + \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_k \end{bmatrix}$$

In matrix notation:

$$b = Ax + \epsilon$$

Goal: find x that "minimizes" ϵ .

Least Squares Regression

Euclidean Distance: $||x||_2 = \left(\sum_i x_i^2\right)^{1/2}$

Least Squares Regression: $\bar{x} = \operatorname{argmin}_{x} ||b - Ax||_{2}^{2}$

Calculus:

$$f(x) = \|b - Ax\|_{2}^{2} = \sum_{i} \left(b_{i} - \sum_{j} a_{ij} x_{j}\right)^{2}$$
$$\frac{\partial f}{\partial x_{k}}(\bar{x}) = \sum_{i} 2 \left(b_{i} - \sum_{j} a_{ij} \bar{x}_{j}\right) (-a_{ik}) = 0, \qquad k = 1, 2, \dots, n$$

Rearranging,

$$\sum_{i} a_{ik} b_i = \sum_{i} \sum_{j} a_{ik} a_{ij} \bar{x}_j, \qquad k = 1, 2, \dots, n$$

In matrix notation,

$$A^T b = A^T A \bar{x}$$

Assuming A^TA is invertible,

$$\bar{x} = \left(A^T A\right)^{-1} A^T b$$

Least Absolute Deviation Regression

Manhattan Distance: $||x||_1 = \sum_i |x_i|$

Least Absolute Deviation Regression: $\hat{x} = \operatorname{argmin}_{x} ||b - Ax||_{1}$

Calculus:

$$f(x) = \|b - Ax\|_1 = \sum_i \left| b_i - \sum_j a_{ij} x_j \right|$$
$$\frac{\partial f}{\partial x_k}(\hat{x}) = \sum_i \frac{b_i - \sum_j a_{ij} \hat{x}_j}{\left| b_i - \sum_j a_{ij} \hat{x}_j \right|} (-a_{ik}) = 0, \qquad k = 1, 2, \dots, n$$

Rearranging,

$$\sum_{i} \frac{a_{ik}b_{i}}{\epsilon_{i}(\hat{x})} = \sum_{i} \sum_{j} \frac{a_{ik}a_{ij}\hat{x}_{j}}{\epsilon_{i}(\hat{x})}, \qquad k = 1, 2, \dots, n$$

In matrix notation,

$$A^T E(\hat{x})b = A^T E(\hat{x})A\hat{x}, \quad \text{where } E(\hat{x}) = \mathsf{Diag}(\epsilon(\hat{x}))^{-1}$$

Assuming $A^T E(\hat{x}) A$ is invertible,

$$\hat{x} = \left(A^T E(\hat{x}) A\right)^{-1} A^T E(\hat{x}) b$$

Least Absolute Deviation Regression— Continued

An implicit equation.

Can be solved using successive approximations:

$$x^{0} = 0$$

$$x^{1} = (A^{T}E(x^{0})A)^{-1}A^{T}E(x^{0})b$$

$$x^{2} = (A^{T}E(x^{1})A)^{-1}A^{T}E(x^{1})b$$

$$\vdots$$

$$x^{k+1} = (A^{T}E(x^{k})A)^{-1}A^{T}E(x^{k})b$$

$$\vdots$$

$$\hat{x} = \lim_{k \to \infty} x^{k}$$

Least Absolute Deviation Regression via Linear Programming

$$\min \sum_{i} \left| b_i - \sum_{j} a_{ij} x_j \right|$$

Equivalent Linear Program:

$$\min \sum_{i} t_{i}$$

$$-t_{i} \leq b_{i} - \sum_{j} a_{ij}x_{j} \leq t_{i} \qquad i = 1, 2, \dots, m$$

AMPL Model

```
param m;
param n;
set I := \{1..m\};
set J := \{1..n\};
param A {I,J};
param b {I};
var x{J};
var t{I};
minimize sum_dev:
        sum {i in I} t[i];
subject to lower_bound {i in I}:
    -t[i] \le b[i] - sum \{j in J\} A[i,j]*x[j];
subject to upper_bound {i in I}:
              b[i] - sum \{j in J\} A[i,j]*x[j] <= t[i];
```

Parametric Self-Dual Simplex Method

Thought experiment:

- μ starts at ∞ .
- In reducing μ , there are n+m barriers.
- At each iteration, one barrier is passed—the others move about randomly.
- ullet To get μ to zero, we must on average pass half the barriers.
- Therefore, on average the algorithm should take (m+n)/2 iterations.

Least Squares Regression:

$$\begin{bmatrix} \bar{\alpha} \\ \bar{\beta} \end{bmatrix} = \begin{bmatrix} -1.03561 \\ 1.05152 \end{bmatrix} \Longrightarrow T \approx 0.488(m+n)^{1.052}$$

Least Absolute Deviation Regression:

$$\begin{bmatrix} \hat{\alpha} \\ \hat{\beta} \end{bmatrix} = \begin{bmatrix} -0.9508 \\ 1.0491 \end{bmatrix} \implies T \approx 0.517(m+n)^{1.049}$$

Parametric Self-Dual Simplex Method: Data

Name	m	n	iters	Name	m	n	iters
25fv47	777	1545	5089	nesm	646	2740	5829
80bau3b	2021	9195	10514	recipe	74	136	80
adlittle	53	96	141	sc105	104	103	92
afiro	25	32	16	sc205	203	202	191
agg2	481	301	204	sc50a	49	48	46
agg3	481	301	193	sc50b	48	48	53
bandm	224	379	1139	scagr25	347	499	1336
beaconfd	111	172	113	scagr7	95	139	339
blend	72	83	117	scfxm1	282	439	531
bnl1	564	1113	2580	scfxm2	564	878	1197
bnl2	1874	3134	6381	scfxm3	846	1317	1886
boeing1	298	373	619	scorpion	292	331	411
boeing2	125	143	168	scrs8	447	1131	783
bore3d	138	188	227	scsd1	77	760	172
brandy	123	205	585	scsd6	147	1350	494
czprob	689	2770	2635	scsd8	397	2750	1548
d6cube	403	6183	5883	sctap1	284	480	643
degen2	444	534	1421	sctap2	1033	1880	1037
degen3	1503	1818	6398	sctap3	1408	2480	1339
e226	162	260	598	seba	449	896	766

Data Continued

Name	m	n	iters	Name	m	n	iters
etamacro	334	542	1580	share1b	107	217	404
fffff800	476	817	1029	share2b	93	79	189
finnis	398	541	680	shell	487	1476	1155
fit1d	24	1026	925	ship04l	317	1915	597
fit1p	627	1677	15284	ship04s	241	1291	560
forplan	133	415	576	ship08l	520	3149	1091
ganges	1121	1493	2716	ship08s	326	1632	897
greenbea	1948	4131	21476	ship12l	687	4224	1654
grow15	300	645	681	ship12s	417	1996	1360
grow22	440	946	999	sierra	1212	2016	793
grow7	140	301	322	standata	301	1038	74
israel	163	142	209	standmps	409	1038	295
kb2	43	41	63	stocfor1	98	100	81
lotfi	134	300	242	stocfor2	2129	2015	2127
maros	680	1062	2998				

Parametric Self-Dual Simplex Method: Plot

A log-log plot of T vs. m+n and the L^1 and L^2 regression lines.