Jhon Adrián Cerón-Guzmán Elizabeth León-Guzmán

Departamento de Ingeniería de Sistemas e Industrial Universidad Nacional de Colombia, Bogotá D.C., Colombia {jacerong,eleonguz}@unal.edu.co

April, 2016

Introduction

- Social media platforms have led to deep changes in the paradigm of information generation and consumption.
- Twitter is nowadays a popular microblogging site where users receive and exchange information instantaneously.
- 'Tweeting', therefore, has become an activity par excellence to say what one thinks or feels.

Briefly

What people say on Twitter has turned into a rich source of information to understand social behavior.

Resources

Introduction

The Problem

- However, in the same way that Twitter data constitute an useful source, a vast amount of noise can be found in them.
- Analyzing this large amount of user-generated content presents several challenges, including:
 - 1 To distinguish noisy, useless, and irrelevant information from valuable data.
 - To develop text analysis approaches based on NLP techniques, which properly adapt to the informal genre and the free writing style of Twitter.

Introduction

Scope of the Work

- To deal with several lexical variation phenomena that occur on the content generation in order to improve the quality of natural language analysis.
- A lexical normalization approach of Spanish tweets, which normalizes non-standard word forms (i.e., out-of-vocabulary words) to their standard lexical forms, is proposed.
- This work proposes a one-to-many normalization approach to also deal with word segmentation problems such as lack of spacing between words.

The System Architecture

Detecting OOV Words

Input: A tweet written in Spanish

- 1 Tokenize the tweet text using the FreeLing tool.
- Each resulting token is passed through a set of basic modules to identify standard word forms and other valid constructions.
- If a token is not recognized by any of the modules, it is marked as OOV.

Output: A list of OOV tokens and a list of (token, POS tag) pairs

False Positives of Named Entities

(Real) Tweet

"Lo mejor es que me da igual todo SOI FELIZ."
(The best is that I do not care anything, I AM HAPPY)

The tokens "SOI FELIZ" are wrongly recognized as an entity:

- "SOI" is a typo of the standard word form "soy" (I am).
- "Feliz" (happy) is a standard word form.

Treatment of Named Entities

Input: A filtered list of (token, POS tag) pairs whose POS tag is named entity

- 1 Tokenize each named entity by white-space.
- **2** Look up each token in the dictionary of standard word forms.
- If there is not an entry matching the token, it is marked as OOV.

Output: An expanded list of OOV words and a reduced list of (token, POS tag) pairs

Lexical Variation Phenomena

000000

- Character repetition: "claseeeesss" → clases (classes)
- ullet Alteration of valid onomatopoeia: "ajajajjaja" o ja (ha)
- Language-dependent orthographic errors:
 - Missing of diacritical marks: "tendre" → tendré (I will have)
 - Uppercase/lowercase confussion: "francia" → Francia (France)
 - Letter confusion: $v \rightarrow b$, $II \rightarrow y$, $h \rightarrow 0$
- Initialisms: "xk" → porque (because)

Lexical Variation Phenomena

- Shortenings: "pa" $\rightarrow para$ (for)
- Homophonic confusion: "pokitin" → poquitín (little bit)
- Standard non-correct endings: "mercao" → mercado (market)
- ullet Word segmentation problems: "alomejor" o a lo mejor (at best)

Correct OOV Words and III-formed OOV Words

To determine if an OOV token is a correct word:

- 1 The OOV token is included in its confusion set.
- If the OOV token is which best fits the language model, it is considered as correct.

Generating the Confusion Set

Generating the Confusion Set

Matching Simple Rules

- Simple regular expressions.
- A normalization dictionary.

Phenomena
Alteration of valid onomatopoeia
Missing of diacritical marks
Initialisms
Shortenings

Phonetic Transcription & Suffixes Search

- Normalization candidates are suggested by their phonetic similarity to the OOV word.
- A suffixes search is performed to recognize inflected word forms:
 - Enclitic pronouns.
 - Adverbs ending in -mente.
 - Diminutive forms.

Phenomena

Homophonic confusion

Standard non-correct endings

Uppercase/lowercase confusion

Letter confusion

Vowels Insertion & Edit Distance & Split Words

- Vowels insertion.
- Language $L(_L)^+$, where L is the language of standard word forms.
- Levenshtein distance of one.
- The Longest Common Subsequence filters out candidates whose ratio is below a threshold.

Phenomena

Letter omission

Word segmentation problems

Candidate Selection

Input: OOV words and their confusion set

- Candidate combinations are evaluated against the 3-grams language model.
- The one that obtains the highest log probability of sequence of words is selected.

Output: Normalization candidate selected for each OOV word

Post-processing

A selected candidate is uppercased if one of the following conditions is satisfied:

- The OOV word is in initial position of tweet.
- **2** The OOV word is preceded by one of the following punctuation marks: ".!?".
- The previous token is an ellipsis mark, and the OOV word begins with a capital letter.

- A dictionary of 619,550 Spanish standard word forms.
- **2** A normalization dictionary of 529 (non-standard word form, canonical form) pairs.
- 3 A gazetteer of 53,531 unigrams of proper nouns.

Dataset

Resources provided by the TweetNorm 2013 shared task:

- **Development set:** 475 tweets with 653 OOV tokens.
- Test set: 462 tweets with 572 OOV tokens.

Resources

Annotation Process

(Real) Tweet

"Obykikomatamoros Qué te pasa a ti con Iker? Diego y valdés lo estarán haciendo bien, pero que rápido olvidamos. A Mou le falta humildad"

(@bykikomatamoros What's wrong with Iker? Diego and valdés are doing it well, but We forget fast. Mou lacks humility.)

OOV tokens:

- Iker (ill-formed OOV) → Íker
- valdés (ill-formed OOV) → Valdés
- Mou (correct OOV)

Metrics

$$\textbf{ Detection rate} = \frac{\sum_{t \in T} \sum_{oov \in OOV_t'} [oov \in OOV_t]}{\sum_{t \in T} |OOV_t|}$$

$$\textbf{2} \ \ \textit{Candidate coverage} = \frac{\sum_{t \in T} \sum_{oov \in OOV_t'} [corr_{oov}^t \in C_{oov}^t]}{\sum_{t \in T} |OOV_t'|}$$

$$\textbf{4} \; \textit{Recall} \; (R) = \frac{\sum_{t \in T} \sum_{oov \in OOV_t'} [sel_{oov}^t = corr_{oov}^t]}{\sum_{t \in T} |OOV_t|}$$

5 F1-score
$$(F) = \frac{2 \times P \times R}{P+R}$$

Where,

- T is the collection of tweets,
- OOV, the set of OOV tokens in tweet $t \in T$.
- OOV['] the set of detected OOV tokens.
- C_{oov}^t the confusion set of an OOV token.
- selt the normalization candidate selected.
- corrt the proper correction of the OOV token.

ŏo

Detecting OOV Words

Approach	Detection rate		
Tokens without analysis	75%		
Tokens without analysis + Named Entities	98.77%		

Table: Detection approaches

Estimating the Language Model

N-grams	Precision
2-grams	71.32%
3-grams	71.78%
4-grams	71.32%

Table: Orders of the language model

•0

Results and Evaluation

Active components	Candidate coverage	Р	R	F1
All	79.65	69.65	69.41	69.53
All – Matching simple rules	68.95	55.96	55.77	55.86
All - Confusion set generation	63.68	61.40	61.19	61.29
All - Phonetic transcription - Suffixes search	80.35	64.39	64.16	64.27
All - Vowels insertion - Edit distance - Split words	74.21	69.30	69.06	69.18
All - Post-processing	72.46	62.11	61.89	62.00

Table: Performance on the test set with different isolated components. Values are given in percentages

0

Performance Comparison

Rank	System	R
1	RAE	78.32%
2	ours	69.41%
3	Citius-Imaxin	66.43%
4	UPC	65.56%
5	Elhuyar	63.81%

Table: Performance comparison with participating systems in the TweetNorm 2013 shared task

- The Lexical Normalization system correctly detected OOV tokens in Spanish tweets.
- Most of the cases the proper normalization of an OOV token was suggested.
- There is a great room for improvement in the candidate selection, which was not properly adapted to the informal genre and the free writing style of Twitter.

To build a large corpus of tweets from users who, in theory, write correctly, in order to improve the performance of the candidate selection.

Thank you!