物理学のための数学講座 第一回 集合論と数理論理学

小桜 未来

2022年12月3日

1 集合

Ø:空集合

ℙ:素数

№: 自然数

ℚ:有理数

ℝ:実数

ℂ:複素数

 $\{x|P\}: P$ が成り立つような x の集合

2 集合関係

∈:要素である。

Ex. $x \in \mathbb{R}$

 $\underline{\mathbf{Tr.}}$ x は集合 \mathbb{R} の要素である。

∉:要素でない。

 $\mathbf{Ex.} \ \forall x \in \mathbb{R}, x \notin \emptyset$

Tr. 任意の実数 x は空集合の要素でない。

⊂:部分集合である。

 $\underline{\mathbf{Ex.}}\ \mathbb{Z}\subset\mathbb{R}$

Tr. 整数は実数の部分集合である。

⊄:部分集合でない。

 $\underline{\mathbf{Ex.}} \; \mathbb{Q} \not\subset \mathbb{N}$

Tr. 有理数は自然数の部分集合でない。

3 論理記号

∃:存在。「ある~が、」「~が存在する。」という意味。

Ex. $\exists x \in \mathbb{R}$

Tr. 実数 x が存在する。

Ex. $\exists x \in \mathbb{R}, \exists y \in \mathbb{R}, x + y = 1$

Tr. ある実数 x, y に対して x + y = 1 が成り立つ。

∃!:一意的に存在。「ただ一つ存在する。」という意味。

Ex. $\exists ! x \in \mathbb{R}, x^2 = 0$

Tr. $x^2 = 0$ となるような実数 x がただ一つ存在する。

∀:全称。「任意の~」、「全ての~」という意味。

 $\mathbf{Ex.} \ \forall x \in \mathbb{R}, \ x^2 \ge 0$

Tr. 任意の実数 x に対して $x^2 > 0$ である。

∧:論理積。「かつ」という意味。

∨:論理和。「または」という意味。

¬: 否定。「~ではない。」という意味。

⇒:含意。「~ならば、~」という意味。

Ex. $(\forall x \in \mathbb{R}, 1 < x) \Rightarrow 1 < x^2$

Tr. 任意の実数 x に対して、1 < x ならば $1 < x^2$ 。

⇔:同値。

 $\mathbf{Ex.}$ $(\forall x \in \mathbb{R}, 1 < x^2) \Leftrightarrow ((x < -1) \lor (1 < x))$

Tr. 任意の実数 x に対して、 $1 < x^2$ は x < -1 または 1 < x と同値である。

丁:真。

 $\mathbf{Ex.} ((\forall x \in \mathbb{R}) \Rightarrow (x^2 \in \mathbb{R})) = \top$

Tr. 任意の実数 x に対して x^2 も実数であるという命題は真である。

丄:偽。

:: 結論。

∵:根拠。

上:論理的帰結。

4 集合の演算

5 順序構造

a < b: a と b の間に何らかの順序関係があるとき、a が先であることを表す。一般的には大小関係で a が b より小さいことを表す。

 $a \le b: (a < b) \lor (a = b)$

(a,b): 開区間。 $\{x|a < x < b\}$ [a,b]: 閉区間。 $\{x|a \le x \le b\}$ (a,b]: 半開区間。 $\{x|a < x \le b\}$ [a,b): 半開区間。 $\{x|a \le x < b\}$

6 真理値表

表 1 真理値表

Р	Q	Т	1	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \rightarrow Q$	$P \vdash Q$
1	1	1	0	0	1	1	1	1
1	0	1	0	0	0	1	0	0
0	1	1	0	1	0	1	1	1
0	0	1	0	1	0	0	1	1

7 数理論理と推論規則

否定の導入: $\{(P \vdash Q), (P \vdash \neg Q)\} \vdash \neg P$ 、背理法

否定の除去: $(\neg P) \vdash (P \rightarrow R)$

二重否定: $\neg \neg P \vdash P$

論理積の導入: $\{P,Q\} \vdash (P \land Q)$

論理積の除去: $(P \land Q) \vdash P$ 、 $(P \land Q) \vdash Q$ 論理和の導入: $P \vdash (P \lor Q)$ 、 $Q \vdash (P \lor Q)$

論理和の除去: $\{(P \lor Q), (P \to R), (Q \to R)\} \vdash R$

モーダスポネンス : $\{P,(P \to Q)\} \vdash Q$ モーダストレンス : $((P \to Q) \land \neg Q) \vdash \neg P$

条件付き証明: $(P \vdash Q) \vdash (P \rightarrow Q)$

量化記号の公理 1: $\forall x(P \to Q) \vdash (\forall x, P \to \forall x, Q)$

量化記号の公理 $2: \forall x(\neg P) \leftrightarrow \neg(\exists x, P)$

全称化: $P \vdash (\forall x, P)$

8 論理の証明

8.1 トートロジー

表 2 $A \rightarrow A$ の証明

1	A	前提	
2	$A \vee A$	1と1で論理和の導入	$A \vdash (A \lor A)$
3	$(A \lor A) \land A$	1と2で論理積の導入	$(A \lor A) \vdash (A \lor A) \land A$
4	A	3で論理積の除去	$(A \lor A) \land A \vdash A$
5	$A \to A$	1と4で条件付き証明	$(A \vdash A) \vdash (A \to A)$

8.2 三段論法

表 3 $((A \rightarrow B) \land (B \rightarrow C)) \vdash (A \rightarrow C)$ の証明

1	$A \to B$		
2	$B \to C$		
3	A	前提	
4	В	1と3でモーダスポネンス	$\{(A \to B), A\} \vdash B$
5	\mathbf{C}	2と4モーダスポネンス	$\{(B \to C), B\} \vdash C$
6	$A \to C$	3と5で条件付き証明	$((A \vdash C) \vdash (A \to C))$

9 演算規則

結合則: $(A \cdot B) \cdot C = A \cdot (B \cdot C)$

交換則: $A \cdot B = B \cdot A$

分配則: $(A+B) \cdot C = A \cdot C + B \cdot C$

10 写像

 $f: \mathcal{G}_{\circ} f: X \to Y, X \xrightarrow{f} Y$

 $g\circ f$: 合成写像。 $f:X\to Y$ かつ $g:Y\to Z$ のとき $g\circ f:X\to Z$ 、 $X\stackrel{f}{\to}Y\stackrel{g}{\to}Z$ のとき $X\stackrel{g\circ f}{\to}Z$ f^{-1} : 逆写像。 $f:X\to Y$ のとき $f^{-1}:Y\to X$ 、 $X\stackrel{f}{\to}Y$ のとき $Y\stackrel{f^{-1}}{\to}X$

全射

単射