Bayesian Statistics Note 6 BUGS Examples

Keunbaik Lee

Sungkyunkwan University

Example: Linear Regression I

Example: Linear Regression II

- For n = 27 captured samples of the sirenian species *dugong* (sea cow), relate an animal's length in meters, Y_i , to its age in years, x_i .
- To avoid a nonlinear model for now, transform x_i to the log scale.
- Simple linear regression in WinBUGS:

$$Y_i = \beta_0 + \beta_1 \log(x_i) + \epsilon_i, \quad i = 1, \dots, n$$

where $\epsilon_i \sim^{iid} N(0, \sigma^2)$ and $\tau = 1/\sigma^2$ is the precision in the data.

Example: Linear Regression III

- Prior distributions: flat or β_0 , β_1 ; vague gamma on τ (say, Gamma(0.1, 0.1), which has mean 1 and variance 10) is traditional
- posterior correlation is reduced by centering the $log(x_i)$ around their own mean
- Andrew Gelman suggests placing a uniform prior on σ , bounding the prior away from 0 and $\infty => U(.01, 100)$?
- WinBUGS Code: dugongs_BUGS.txt

Example: Nonlinear Regression I

Example: Nonlinear Regression II

Model the untransformed dugong data as

$$Y_i = \alpha - \beta \gamma^{x_i} + \epsilon_i, \quad i = 1, \dots, n$$

where $\alpha > 0$, $\beta > 0$, $0 \le \gamma \le 1$, and as usual $\epsilon_i \sim^{iid} N(0, \sigma^2)$ with $\tau = 1/\sigma^2 > 0$.

- In this model,
 - lpha corresponds to the average length of a fully grown dugong $(x o \infty)$
 - \bullet $(\alpha \beta)$ is the length of a dugong at birth (x = 0)
 - $ightharpoonup \gamma$ determines the growth rate: lower values produce an initially steep growth curve while higher values lead to gradual, almost linear growth.

Example: Nonlinear Regression III

- Prior distributions: flat for α and β , U(.01,100) for σ , and U(0.5,1.0) for γ (hard to estimate)
- Code: dugongsNL_BUGS.txt
- Obtain posterior density estimates and autocorrelation plots for α , β , γ , and σ , and investigate the bivariate posterior of (α, β) using the *Correlation* tool on the *inference* menu

Example: One-way ANOVA example I

- Wish to employ a new mathematics tutor.
- The ability of four candidates is examined using a small study.
- A group of 25 students was randomly divided into four classes.

Candidate	Students' grades					
1	84 58 100 51 28 89					
2	97 50 76 83 45 42 83					
3	64 47 83 81 83 34 61					
4	77 69 94 80 55 79					

For $i = 1, \dots, 4$ and $j = 1, \dots, n_i$,

$$y_{ij} = \mu + \alpha_i + \epsilon_{ij}$$

where $\epsilon_{ii} \sim^{iid} N(0, \sigma^2)$ and $\sum_{i=1}^{a} \alpha_i = 0$.

See WinBUGS code: 'chap05_ex2_tutors_evaluation.txt'.

Deviance Information Criterion I

DIC scores for the three models:

$$DIC = \bar{D}(\theta) + p_D,$$

where $\bar{D}(\theta) = E\left[-2\log(p(y|\theta))|y\right]$, $D(\tilde{\theta}) = -2\log(p(y|\tilde{\theta}))$, and $p_D = \bar{D}(\theta) - D(\tilde{\theta})$ with $\tilde{\theta} = \text{posterior estimate of } \theta$.

Deviance Information Criterion II

- Properties of DIC
 - DIC is intended as a generalization of Akaike Information Criterion (AIC).
 - p_D is effective number of parameters.
 - Small DIC is better.
 - To compare two models, difference of DIC> 10, definitely better; 5 < Diff. < 10, substantially better; Diff < 5, no difference.

Example: Logistic Regression I

Consider a binary version of the dugong data,

$$Z_i = \left\{ egin{array}{ll} 1, & \mbox{if } Y_i > 2.4; \mbox{ (i.e., the dugong is "full grown")} \\ 0, & \mbox{otherwise.} \end{array}
ight.$$

■ A *logistic regression* model for $p_i = p(Z_i = 1)$ is then

$$logit(p_i) = log [p_i/(1-p_i)] = \beta_0 + \beta_1 log(x_i).$$

■ Two other commonly used link functions are the *probit*,

$$probit(p_i) = \Phi^{-1}(p_i) = \beta_0 + \beta_1 \log(x_i),$$

and the complementary log-log (cloglog),

$$\operatorname{cloglog}(p_i) = \log\left[-\log(1-p_i)\right] = \beta_0 + \beta_1 \log(x_i)$$

Example: Logistic Regression II

- Code: dugongsBin_BUGS.txt
- Code uses flat priors for β_0 and β_1 , and the *phi* function, instead of the less stable *probit* function.

model	Đ	p_D	DIC
logit	19.62	1.85	21.47
probit	19.30	1.87	21.17
cloglog	18.77	1.84	20.61

Example: Logistic Regression III

Figure: Fitted binary regression models

Example: Logistic Regression IV

In fact, these scores can be obtained from a single run; see the "trick version" at the bottom of the BUGS file.

- Use the *Comparison* tool to compare the posteriors of β_1 across models, and the Correlation tool to check the bivariate posteriors of (β_0, β_1) across models.
- The logit and probit fits appear very similar, but the cloglog fitted curve is slightly different.
- You can also compare p_i posterior boxplots (induced by the link function and the β_0 and β_1 posteriors) using the Comparison tool.

Example: Poisson hierarchical model I

Consider 10 power plant pumps. The number of failures X_i is assumed to follow a Poisson distribution

$$X_i \sim Poisson(\theta_i t_i), \quad i = 1, \dots, 10,$$

where θ_i is the failure rate for pump i and t_i is the length of operation time of the pump (in 1000s of hours).

Pu	mp	1	2	3	4	5	6	7	8	9	10
t	i	94.3	15.7	62.9	126	5.24	31.4	1.05	1.05	2.1	10.5
>	(i	5	1	5	14	3	19	1	1	4	22

Example: Poisson hierarchical model II

A conjugate gamma prior distribution is adopted for the failure rates:

$$heta_i \sim \textit{Gamma}(\alpha, \beta), i = 1, \dots, 10,$$

 $\alpha \sim \textit{Exponential}(1.0),$
 $\beta \sim \textit{Gamma}(0.1, 1.0).$

See WinBUGS code 'Pump_Poisson.txt'.

Example: Multinomial model I

- Political Party data: Data takes from Agresti (2002), page 303, Table 7.15, problem 7.3.
- Table refers to the effect on political party identification of gender and race.

		Party Identification					
Gender	Race	Democrat	Republican	Independent			
Male	White	132	176	127			
	Black	42	6	12			
Female	White	172	129	130			
	Black	56	4	15			

Example: Multinomial model II

■ Let $Y_i = (Y_{i1}, \dots, Y_{iK})$ be response with K = 3 levels where Y_{ik} denotes the frequency of the kth level. The multinomial logistic regression model is

$$Y_i \sim multinomial(\pi_i, N_i),$$

 $\log \frac{\pi_{ik}}{\pi_{i1}} = \beta_{0k} + \beta_{1k} \text{gender}_i + \beta_{2k} \text{race}_i$

See WinBUGS code '01_multi.txt'.

Example: Economic data I

- The data come from the U.S. Department of Commerce, Survey of Current Business, and describe activity from the first quarter of 1979 to fourth quarter 1989.
- Six economic indicators are measured at 44 time points x_1, \dots, x_{44} (labeled $1, 2, \dots, 44$).
- We model each indicator Y_{ij} , $i=1,\cdots,6$ and $j=1,\cdots,44$ as a function of (centered) time as follows:

$$\begin{split} Y_{ij} &\sim \textit{N}(\beta_{0i} + \beta_{1i} x_j, \tau) \\ \beta_{0i} &\sim \textit{N}(\mu_{\beta_0}, \tau_{\beta_0}), \quad \beta_{1i} \sim \textit{N}(\mu_{\beta_1}, \tau_{\beta_1}), \quad \tau \sim \textit{gamma}(0.01, 0.01) \\ \mu_{\beta_0} &\sim \textit{N}(0, 0.01), \quad \mu_{\beta_1} \sim \textit{N}(0, 0.01) \\ \tau_{\beta_0} &\sim \textit{gamma}(0.01, 0.01), \quad \tau_{\beta_1} \sim \textit{gamma}(0.01, 0.01) \end{split}$$

■ See WinBUGS code 'Economic_BUGS.txt' for inference on β_{0i} and β_{1i} .

Example: Hierarchical model I

■ Kobe Bryant's field goals in NBA

$$\begin{split} Y_t \sim \textit{binomial}(\textit{N}_t, \pi_t), \\ \text{logit}(\pi_t) &= \log\left(\frac{\pi_t}{1 - \pi_t}\right) = \theta_t, \\ \theta_t \sim \textit{N}(\mu_\theta, \sigma_\theta^2) \text{ for } t \in \{1999, 2000, \cdots, 2006\}, \\ \mu_\theta \sim \textit{N}(0, 100) \text{ and } \sigma_\theta^2 \sim \textit{IGamma}(0.01, 0.01). \end{split}$$

See WinBUGS code 'chap08_ex2_kobes1_hierarchical.txt'.