COMPITO DI CONTROLLI AUTOMATICI

Ingegneria dell'Informazione 31 Agosto 2018

Esercizio 1. [9.5 punti] Data la funzione di trasferimento

$$G(s) = \frac{1 + \frac{3}{2}s + s^2}{s(1 - \frac{3}{2}s + s^2)}$$

- i) Si determini il diagramma di Bode (modulo e fase) della risposta in frequenza del sistema;
- ii) si determini il diagramma di Nyquist di $G(j\omega)$ per $\omega \in \mathbb{R}$, calcolando eventuali asintoti ed intersezioni con gli assi;
- iii) si studi, attraverso il criterio di Nyquist, la stabilità BIBO del sistema $\frac{KG(s)}{1+KG(s)}$ (determinandone l'eventuale numero di poli a parte reale positiva e/o nulla) al variare di K in $\mathbb{R}, K \neq 0$.

Esercizio 2. [10 punti] Dato il sistema di funzione di trasferimento

$$G(s) = \frac{s^2 + 2s + 2}{s^2(s-a)},$$

si determini il parametro reale a sapendo che s=1 è punto doppio del luogo. Si traccino, quindi, i luoghi positivo e negativo, evidenziandone punti doppi, intersezioni con l'asse immaginario, e studiando quindi la BIBO stabilità di $W(s)=\frac{KG(s)}{1+KG(s)}$ al variare di K reale.

Esercizio 3. [6 punti] Dato il processo di funzione di trasferimento

$$G(s) = \frac{10^4}{(s+1)^2}$$

- i) si progetti un controllore proprio e stabilizzante $C_1(s) \in \mathbb{R}(s)$ che attribuisca al sistema retroazionato $W(s) = \frac{C_1(s)G(s)}{1+C_1(s)G(s)}$ tipo 0 e relativo errore a regime (al gradino) $e_{rp}^{(1)} \simeq 10^{-4}$, mentre la funzione di trasferimento in catena aperta $C_1(s)G(s)$ abbia $\omega_A \simeq \omega_A^* = 10 \text{ rad/s}, m_\psi \simeq m_\psi^* = 90^\circ;$
- ii) si progetti un controllore stabilizzante $C_2(s) \in \mathbb{R}(s)$ di tipo PID (eventualmente P, PD, PI) che attribuisca al sistema retroazionato $W(s) = \frac{C_2(s)G(s)}{1+C_2(s)G(s)}$ tipo 1 e relativo errore a regime (alla rampa lineare) $e_{rp}^{(2)} \simeq 1$, mentre la funzione di trasferimento in catena aperta $C_2(s)G(s)$ abbia $\omega_A \simeq \omega_A^* = 10 \text{ rad/s}, m_\psi \simeq m_\psi^* = 90^\circ$.

Teoria. [4+1.5 punti] Sia $G(s) \in \mathbb{R}(s)$ una funzione razionale propria con guadagno di Evans $K_E = 1$, ovvero

$$G(s) = \frac{n(s)}{d(s)},$$

con $n(s), d(s) \in \mathbb{R}[s]$ monici e deg $d(s) \ge \deg n(s)$. Si enunci e dimostri la regola che determina quali punti dell'asse reale appartengono al luogo positivo e al luogo negativo di G(s).

Si dimostri che se tutti gli zeri di G(s) hanno parte reale negativa e il grado relativo (differenza tra numero di poli e di zeri) di G(s) è 0 (G(s) è una funzione razionale propria ma non strettamente propria), allora W(s) è certamente BIBO stabile per |K| sufficientemente grande, mentre se il grado relativo è 1 la stessa cosa accade solo per K > 0.

SOLUZIONI

Esercizio 1. Il diagramma di Bode del modulo è monotono decrescente, e coincide con quello del solo termine 1/s visto che i diagrammi reali dei due termini trinomi sono uguali e contrari e si compensano perfettamente. Invece la fase è monotona crescente e passa da -90° a $+270^{\circ}$.

Lo studio di $G(j\omega)$ conduce a

$$G(j\omega) = \frac{3(1-\omega^2)}{(1-\omega^2)^2 + \frac{9}{4}\omega^2} + j\frac{\frac{17}{4}\omega^2 - 1 - \omega^4}{\omega[(1-\omega^2)^2 + \frac{9}{4}\omega^2]}$$

pulsazione [rad/s]

da cui la parte reale si annulla in $\omega=1$ (limitandoci alle frequenze positive), dove vale G(j1)=j. Per determinare dove si annulla la parte immaginaria è necessario studiare l'equazione

$$z^2 - \frac{17}{4}z + 1 = 0.$$

Essa ha radici

$$z_{1,2} = \frac{\frac{17}{4} \pm \sqrt{\frac{17^2}{16} - 4}}{2} = \{4, 1/4\}$$

e pertanto, limitandoci alle frequenze positive, la parte immaginaria si annulla per $\omega = \frac{1}{2}, \omega = 2$. Si ha quindi $G\left(\frac{j}{2}\right) = 2$, e $G(2j) = -\frac{1}{2}$. L'asintoto verticale è centrato in s = 3 > 0, visto il comportamento di $G(j\omega)$ per $\omega \to 0^+$, che tende a $3 - j\infty$.

Ora si ha $n_{G_+} = 2$ e la valutazione del numero di giri N attorno al punto $-\frac{1}{K}$ (dopo aver aggiunto la chiusura all'infinito con un semicerchio percorso in senso orario) porge la seguente casistica

$$\begin{array}{lll} K < -\frac{1}{2} & \Rightarrow & N = +1, n_{W_+} = 1 \\ -\frac{1}{2} < K < 0 & \Rightarrow & N = -1, n_{W_+} = 3 \\ 0 < K < 2 & \Rightarrow & N = 0, n_{W_+} = 2 \\ K > 2 & \Rightarrow & N = +2, n_{W_+} = 0 \end{array}$$

Quindi la stabilità BIBO di W(s) è assicurata se e solo se K > 2 (per $K = -\frac{1}{2}$ le radici sono $\pm \frac{j}{2}$, 2, per K = 2 sono $\pm 2j$, $-\frac{1}{2}$, mentre per K = 0 abbiamo i poli di G(s), ovvero due poli a parte reale positiva oltre ad s = 0).

Esercizio 2. L'equazione dei punti doppi porge, dopo alcuni calcoli

$$s[s^3 + 4s^2 + 2(3-a)s - 4a] = 0$$

ed imponendo che s=1 la soddisfi, si trova l'unico valore di a possibile, ovvero $a=\frac{11}{6}$. Effettuando quindi la divisione del termine di terzo grado per (s-1) si perviene a

$$s(s-1)\left(s^2+5s+\frac{22}{3}\right)=0 \implies (s=0,k=0), \left(s=1,k=\frac{1}{6}\right)$$

oltre a due radici complesse che vanno scartate in quanto il grado di d(s) + Kn(s) è minore di 4 (per cui punti doppi non-reali non possono esistere). Studiando le intersezioni con l'asse immaginario si trova

$$j\omega(2k - \omega^2) + \left[\frac{11}{6}\omega^2 + k(2 - \omega^2)\right] = 0.$$

La parte immaginaria si annulla per $\omega=0$ e per $\omega^2=2k$. Sostituendo $\omega=0$ nella parte reale si trova k=0, mentre sostituendo $\omega^2=2k$ si ottiene k=0 (e lo stesso punto trovato poco fa), oppure $k=\frac{17}{6}$ che corrisponde a $\omega=\pm\sqrt{\frac{17}{3}}$. Quindi nel luogo positivo ci sono tre rami. Due rami partono da s=0: uno va verso il punto improprio $s=-\infty$ (unico asintoto) lungo l'asse reale negativo, l'altro verso il ramo che parte da $s=\frac{11}{6}$. Questi ultimi due rami si muovono uno verso l'altro sull'asse reale e si incontrano per $k=\frac{1}{6}$ nel punto doppio s=1, poi escono nel piano complesso con simmetria coniugata ed attraversano l'asse immaginario per $k=\frac{17}{6}$ in $s=\pm j\sqrt{\frac{17}{3}}$, per poi dirigersi verso la coppia di zeri complessi $-1\pm j$.

Si ha quindi BIBO stabilità per $k > \frac{17}{6}$, mentre per $0 < k < \frac{17}{6}$ si hanno due poli a parte reale positiva ed uno negativo, ed infine per $k = \frac{17}{6}$ due poli immaginari puri $(s = \pm j\sqrt{\frac{17}{3}})$ ed un polo negativo (s = -1), in quanto il denominatore di W(s) fattorizza per tale valore di k come $(s + 1)(s^2 + \frac{17}{3})$. Per k = 0 si hanno ovviamente i tre poli di G(s), cioè un polo doppio in s = 0 ed un polo positivo in $s = \frac{11}{6}$.

Il luogo negativo è più semplice: un ramo si muove sull'asse reale da $s = \frac{11}{6}$ verso $s = +\infty$ (l'unico asintoto), mentre gli altri due rami evolvono sul semipiano complesso negativo con simmetria coniugata da s = 0 verso i due zeri senza mai attraversare l'asse immaginario (non essendo state trovate intersezioni per k < 0).

Quindi per k<0 abbiamo un polo reale positivo e due poli complessi a parte reale negativa, e non c'è mai BIBO stabilità.

Esercizio 3. i) Tipo ed errore a regime sono già a posto, quindi non serve alcun precompensatore, ovvero $C'_1(s) = 1$. Se ora tracciamo il diagramma di Bode di $C'_1(s)G(s) = G(s)$:

osserviamo che $\omega_A=100$ rad/s e quindi la pulsazione di attraversamento ω_A è maggiore di quella desiderata. Infatti per $\omega=\omega_A^*$ il modulo vale 40 dB. D'altra parte per $\omega=\omega_A^*$ la fase vale circa -180° e quindi tale fase va aumentata di circa 90° . Una rete a sella che per $\omega=\omega_A^*$ abbassi il modulo di 40dB ed alzi la fase (e quindi $m_\psi(\omega_A^*)$) di circa 90° è sufficiente. Possiamo ad esempio scendere di 60dB con la prima coppia polo-zero (rete attenuatrice), per poi risalire di 20dB (con la rete anticipatrice). Un modo per riuscirci (che semplifica i calcoli in quanto introduce una doppia cancellazione zero-polo ammissibile) è piazzare il polo 4 decadi prima di $\omega_A^*=10$ rad/s, i due zeri 1 decade prima, e l'ultimo polo in alta frequenza (rispetto ad ω_A , ad esempio 2 decadi dopo), al solo scopo di rendere proprio il compensatore. Il compensatore

$$C_1(s) = \frac{(1+s)^2}{(1+10^3 s) \left(1+\frac{s}{10^3}\right)}$$

permette il soddisfacimento di tutti i requisiti (compresa la stabilità BIBO del sistema retroazionato, grazie al Criterio di Bode applicato a $C_1(s)G(s)$), ed è uno degli infiniti $C_1(s)$ che vanno bene.

ii) Nel secondo caso, per sistemare la specifica sul tipo è necessario introdurre un integratore e modificare il guadagno di Bode in catena aperta. Precisamente è necessario il ricorso al pre-compensatore

$$C_2'(s) = \frac{1}{10^4 s} \implies C_2'(s)G(s) = \frac{1}{s(s+1)^2}.$$

Ciò significa che dovremo ricorrere o a un controllore PI oppure ad un PID. Ora tracciamo il diagramma di Bode di $C_2'(s)G(s)$:

In questo caso è evidente che $\omega_A < \omega_A^*$ e che per $\omega = \omega_A^*$ si ha margine di fase negativo (circa -90 gradi). Pertanto sono necessari 2 zeri stabili in modo da alzare la fase di 180° e il modulo di 60 dB in $\omega_A^* = 10$. Ponendo ad esempio uno zero in -1 (una decade prima) (in modo da introdurre una cancellazione zero-polo) e l'altro in -0.1 (due decadi prima), si ottiene il risultato desiderato. Pertanto

$$C_2(s) = \frac{(1+10s)(1+s)}{10^4s} = 10^{-4}\frac{1}{s} + 11 \cdot 10^{-4} + 10^{-3}s$$

è uno degli infiniti PID che vanno bene (soddisfacendo sia le specifiche che il Criterio di Bode per $C_2(s)G(s)$).

Teoria. Per la regola su quali punti dell'asse reale appartengano al luogo si veda il libro di testo, Capitolo 8, pagine 228-229.

Nel caso in cui G(s) abbia numeratore e denominatore di ugual grado, i rami partono tutti dai poli e vanno tutti a finire negli zeri, sia nel luogo positivo che nel luogo negativo. Pertanto per |K| elevato i rami del luogo sono tutti nelle vicinanze degli zeri e quindi se tali zeri sono stabili a partire da un certo valore in poi tutti i rami sono nel semipiano reale negativo, il che assicura la BIBO stabilità del sistema retroazionato. Se il grado relativo è 1 avremo nel luogo positivo un ramo che va a $-\infty$ e gli altri n-1 che vanno agli zeri. Se tali zeri sono stabili a partire da un certo valore in poi tutti i rami sono nel semipiano reale negativo, il che assicura ancora una volta la BIBO stabilità del sistema retroazionato. Invece nel luogo negativo avremo sempre un ramo che a va a $+\infty$ lungo l'asse reale e quindi certamente da un certo valore di K (negativo) in poi (con K che va $a-\infty$) avremo un polo reale positivo, il che impedisce la stabilità BIBO del sistema retroazionato.