

Basic Laws

Prepared by- Md. Manjurul Gani Assistant Professor, EEE, CUET

Presented by- Sancoy Barua Lecturer, EEE, CUET

Law of Equivalent resistance

Law of equivalent resistance

Series Circuit

Conditions to be series

- 1. One common terminal.
- 2. No current-carrying element is connected to that common point.

Total resistance for series resistances

$$R_T = R_1 + R_2 + R_3 + \cdots + R_N$$

Parallel Circuit

Condition to be parallel

They have two common point

Total resistance for parallel resistances

$$\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_N}$$

$$R_T = (R_1^{-1} + R_2^{-1} + R_3^{-1} + \dots + R_N^{-1})^{-1}$$

If all the resistance are same (i.e. $R1=R2=....=R_N=R$) then, $R_T=R$ / N

Sancoy Barua, EEE, CUET

Quiz

Ans: 10Ω

Ans: 25Ω

Ans: 20Ω

Ans: 110Ω

14

Ans: 1.05Ω

Ans: 0.5Ω

All the resistance are 9Ω

Ans: 12Ω
Sancoy Barua, EEE, CUET

All the resistance are $\mathbf{8\Omega}$

Ans: 12Ω
Sancoy Barua, EEE, CUET

All the resistance are 4Ω

18

Ans: 1.60Ω

Ans: 1.09Ω

Ans: 2.86Ω

20

05-Aug-19 Sancoy Barua, EEE, CUET

Ans: 9.78KΩ

Ans: 10.55Ω

Ans: 10Ω

Ans: 4Ω

Ans: 10Ω

Ans: 1.88Ω

05-Aug-19 Sancoy Barua, EEE, CUET

□If 2 same valued resistors are connected in parallel then, their combined resistance will be half of the value of a single resistor.

$$R_1 = R$$
 $R_2 = R$
 $then$

$$R_p = \frac{R_1}{2} = \frac{R}{2}$$

Ans: 12Ω

29

05-Aug-19 Sancoy Barua, EEE, CUET

Ans: 20Ω

Ans: 174.12Ω

31

05-Aug-19 Sancoy Barua, EEE, CUET

Ans: 3.43Ω

32

05-Aug-19 Sancoy Barua, EEE, CUET

Ans: 5Ω

Ans: 5Ω

Ans: 5.6Ω

35

05-Aug-19 Sancoy Barua, EEE, CUET

German (Erlangen, Cologne) (1789–1854) Physicist and Mathematician Professor of Physics, University of Cologne

In 1827, developed one of the most important laws of electric circuits: Ohm's law. When the law was first introduced, the supporting documentation was considered lacking and foolish, causing him to lose his teaching position and search for a living doing odd jobs and some tutoring. It took some 22 years for his work to be recognized as a major contribution to the field. He was then awarded a chair at the University of Munich and received the Copley Medal of the Royal Society in 1841. His research also extended into the areas of molecular physics, acoustics, and telegraphic communication.

Statement: It states that, when the conditions of the surrounding remains unchanged the current I flowing through a resistor is directly proportional to the voltage V across the resistor.

$$I \propto V$$

 $I = GV$, here G=conductance
 $I = \frac{V}{R}$, G = 1/R R is resistance

$$I = \frac{E}{R}$$
 Here, $V = E$

Consider the following relationship:

$$Effect = \frac{cause}{opposition}$$
 (4.1)

Every conversion of energy from one form to another can be related to this equation. In electric circuits, the *effect* we are trying to establish is the flow of charge, or *current*. The *potential difference*, or voltage, between two points is the *cause* ("pressure"), and the opposition is the *resistance* encountered.

Substituting the terms introduced above into Eq. (4.1) results in

$$Current = \frac{potential\ difference}{resistance}$$

and

$$I = \frac{E}{R}$$
 (amperes, A) (4.2)

Plotting Ohm's Law

Consider current (I) in Y-axis and voltage (V) in X-axis. If the resistance (R) is 5Ω , using ohm's law we get the current which is given below-

V (volt)	0	5	10	15	20
I (amp)	0	1	2	3	4

After plotting the above value in the graph we obtain the following straight line

The **linear** (straight-line) graph reveals that the **resistance** is not changing with current or voltage level; rather, it is a **fixed** quantity throughout.

We can calculate the resistance at any point of the graph using the formula given below-

$$R_{dc} = \frac{V}{I}$$

For example, at V= 20V and I = 4A, $R_{dc} = V/I = 20 \text{ V/4 A} = 5 \Omega$.

If we write Ohm's law in the following manner and relate it to the basic straight-line equation

$$I = \frac{1}{R} \cdot E + 0$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$y = m \cdot x + b$$

we find that the slope is equal to 1 divided by the resistance value, as indicated by the following:

$$m = \text{slope} = \frac{\Delta y}{\Delta x} = \frac{\Delta I}{\Delta V} = \frac{1}{R}$$
 (4.6)

Equation (4.6) clearly reveals that the greater the resistance, the less the slope. If written in the following form, Equation (4.6) can be used to determine the resistance from the linear curve:

$$R = \frac{\Delta V}{\Delta I} \qquad \text{(ohms)}$$

05-Aug-19

- 1) R1 > R22) R1 < R2

Q. If an electric heater draws 9.5 A when connected to a 120-V supply, what is the internal resistance of the heater?

Voltage Rise and Drop

05-Aug-19

Sancoy Barua, EEE, CUET

Potential Rise

Potential Drop

Gustav Robert Kirchhoff (1824-1887)

Statement: It states that, the algebraic sum of the potential rises and drops around a closed loop (or path) is zero.

What is the difference between Algebraic Sum & Sum?

- > Sum consists of only numbers for addition.
- > Simple Sum means addition of the magnitude of the given quantities.
- Algebraic Sum consists of both addition (+) & subtraction (-).
- > Algebraic Sum is the sum of quantities taking both magnitude and signs.

Applying KVL (clock wise),

$$\Sigma_{\rm C} V = 0$$

$$+E-V1-V2=0$$

$$E = V1 + V2$$

$$\Sigma_{\odot} V_{\text{rises}} = \Sigma_{\odot} V_{\text{drops}}$$

Using KVL find V1 and V2

Using KVL find V1 and V2

- □Voltage remains same in parallel elements, divides among series elements.
- ☐ Current remains same in series elements, divides among parallel elements.

According to VDR the voltage across the resistive elements will divide as the magnitude of the resistance levels.

$$V1 = \frac{R1}{R1 + R2 + R3} \times E$$

$$V1 = \frac{6}{6+3+1} \times 20 = 12V$$

$$V2 = \frac{R2}{R1 + R2 + R3} \times E$$

$$V3 = \frac{R3}{R1 + R2 + R3} \times E$$

Find voltage across the resistance R₄

Find voltage V_{R4}

Proof

$$R_T = R_1 + R_2$$

and

$$I = \frac{E}{R_T}$$

Applying Ohm's law:

$$V_1 = IR_1 = \left(\frac{E}{R_T}\right)R_1 = \frac{R_1E}{R_T}$$

with

$$V_2 = IR_2 = \left(\frac{E}{R_T}\right)R_2 = \frac{R_2E}{R_T}$$

Note that the format for V_1 and V_2 is

(voltage divider rule)

Example
5.10, 5.12, 5.13, 5.15,
5.16, 5.18, 5.20, 5.26

Exercise
20-34

KIRCHHOFF'S CURRENT LAW (KCL)

Kirchhoff's current law (KCL) states that, the algebraic sum of the currents entering and leaving an area, system, or junction is zero.

$$\Sigma I_{\text{entering}} = \Sigma I_{\text{leaving}}$$

$$I_1 + I_4 = I_2 + I_3$$

 $4 A + 8 A = 2 A + 10 A$
 $12 A = 12 A$

68

05-Aug-19 Sancoy Barua, EEE, CUET

Consider the unknown is leaving

Then apply KCL

If the sign of unknown current is (+) then the current is leaving

If the sign of unknown current is (-) then the current is entering

CURRENT DIVIDER RULE (CDR)

For two parallel elements of equal value, the current will divide equally.

For parallel elements with different values, the smaller the resistance, the greater the share of input current.

For parallel elements of different values, the current will split with a ratio equal to the inverse of their resistor values.

$$I = \frac{V}{R_T} = \frac{I_x R_x}{R_T}$$

$$I_x = \frac{R_T}{R_x} I$$

05-Aug-19

CDR for 2 elements connected in parallel

$$I1 = \frac{R2}{R1 + R2} \times I$$

$$I2 = \frac{R1}{R1 + R2} \times I$$

Thank You

