PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-133189

(43)Date of publication of application: 18.05.2001

(51)Int.Cl.

9/02 F28F F28D 1/053 F28D 7/16

F28F 9/26

(21)Application number: 11-312151

(71)Applicant: ZEXEL VALEO CLIMATE CONTROL CORP

(22)Date of filing:

02.11.1999

(72)Inventor: MATSUMOTO TAKEHIDE

(54) HEAT EXCHANGER

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a heat exchanger capable of being easily provided with a tube inserting hole at a header tank. SOLUTION: In the heat exchanger comprising a tube 2 for distributing a refrigerant, and a header tank 4 connected with the tube 2, thereby heat exchanging the refrigerant with a heat transferred to the tube 2, the tank 4 is constituted of a plurality of members 420, 430, 440, has a tube inserting hole 410 for inserting the end of the tube 2, and the hole 410 is formed by providing holes 411 at the members 430, 440 for constituting the tank 4 and superposing the holes 411. Or, the holes 410 is formed by providing an opening at the member 470 for constituting the tank 4 and providing a guide member 480 for guiding the end of the tube 2 in the opening.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国物許庁(JP)

(12) 公開特許公報(A)

(II)特許山東公開發号 特開2001-133189

(P2001 - 133189A)

(43)公開日 平成13	坪5月18	EI (2001.	5, 18)
--------------	-------	-----------	--------

(51) Int.CL'		裁別記号	FΙ		;	├~マユード(参考)
F28F	9/02	301	F28F	9/02	301A	3L065
F28D	1/053		F28D	1/053	A	3L103
	7/18			7/16	A	
F28F	9/26		F28F	9/26		

密査論求 未請求 語求項の数5 OL (全8 円)

		-
(21)出職番号	特級平11-312151	(71)出題人 500309126 株式会社ゼクセルヴァレオクライメートコ
(22)出顧日	平成11年11月2日(1999.11.2)	ントロール 埼玉県大旦郡江南町大字千代字東駅39番地
		(72)発明者 松本 健秀 埼玉県東松山市衛马町 3 丁目13番26 株式 会社ゼクセル東松山工場内 Fターム(参考) 3L065 FA14 3L103 AM1 AA05 AA50 BB42 CC23 CC28 DD12 DD32 DD43 DD54 DD58

(54) 【発明の名称】 幾交換器

(57)【要約】

【課題】 ヘッダタンクにチューブ挿入孔を容易に設けることができる熱交換器を提供すること。

【解決手段】 冷塊を流道するチューブ2と、チューブ2を接続したヘッダタンク4とを備え、チューブ2に伝わる数によって冷塊の熱交換を行う熱交換器において、ヘッダタンク4は、複数の部材420、430、440で構成されるとともに、チューブ2の端部を挿入するチューブ挿入孔410を備え、チューブ挿入孔410は、ヘッダタンク4を構成する複数の部材430、440にそれぞれ孔部411を設けるとともに、これちの孔部411を目む合わせてなる構成の熱交換器である。又は、チューブ挿入孔410は、ヘッダタンク4を構成するが470に関口部を設けるとともに、前記期口部にチューブ2の端部を案内するガイド部材480を設けてなる構成の熱交換器である。

【特許請求の範囲】

【詰求項1】 冷礁を強適するチューブと、前記チューブを接続したヘッダタンクとを備え、前記チューブに伝わる熱によって前配冷燥の熱交換を行う熱交換器において

【語求項3】 卸配ヘッダタンクを構成する複数の部材としては、関内部を設けた円筒形状の部材と、前配円筒形状の部材の際内部に密着される板状の部材とを備え、前記孔部は、前配円筒形状の部材の標内部、及び前配板状の部材にそれぞれ設けたことを特徴とする請求項1配 20 転の数交換器。

【語求項4】 前記孔部には、前記へッダタンクの外側 に向うテーバーを設けたことを特徴とする請求項1万至 3のいずれか記載の熱交換器。

【館水項5】 冷線を遙適するチューブと、前配チューブを接続したヘッダタンクとを備え、前記チューブに伝わる熱によって前記冷線の熱交換を行う熱交換器において、

前記ヘッダタンクは、前記チューブの協部を挿入するチューブ挿入孔を備え、前記チューブ挿入孔は、前記ヘッダタンクを構成する部材に開口部を設けるとともに、前記開口部に前記チューブの端部を実内するガイド部材を設けてなることを特徴とする熱交換器。

【発明の詳細な説明】

[0001]

【発明の届する技術分野】本発明は、冷媒を流通するチューブと、チューブを接続したヘッダタンクとを構え、チューブに伝わる熱によって冷媒の熱交換を行う熱交換 歴化関する。

[0002]

【従来の技術】一般に、冷凍サイクルにおける飲熱器やエバボレータ等の熱交換器は、冷碟を流通するチューブ及びチューブを接続したヘッダタンクを備え、チューブに伝わる熱によって冷媒の熱交換を行うように構成されている。チューブとヘッダタンクとの接続は、ヘッダタンクの要所にチューブ挿入孔を設け、チューブの端部をチューブ挿入孔に挿入してなされている。

な成分とする冷線が用いられるようになりつつある。 【0004】

【発明が解決しようとする課題】ところで、前述したように二酸化炭素を冷噤に用いる熱交換器は、フロン系の冷蝶を用いるものと比較して、数倍から数十倍程度の非常に高い耐圧性が要求される。

【0005】しかして、このような熱交換器にあっては、所製の耐圧性を確保するべく、ヘッダタンクの内厚が大きく設定されるので、ヘッダタンクにおけるチュー 7 挿入孔の加工が著しく困難になるという問題がある。 【0006】すなわち、チューブ挿入孔は、プレス成形によれば短時間のうちに効率よく設けることができるが、ヘッダタンクの内厚が大きくなると、そのようなプレス成形が非常に困難又は不可能になるため、切削形成せざるを得ず、これが熱交換器の生産館率の低下やコストの上昇等を招く原因となっている。

【0007】そこで本発明は、このような現状に鑑み、 ヘッダタンクにチューブ挿入孔を容易に設けることができる熱交換器を提供することを目的としている。

[0008]

【課題を解決するための手段】本願第1請求項に記載した発明は、冷媒を流通するチューブと、前記チューブを接続したヘッダタンクとを備え、前記チューブに伝わる熱によって前記冷媒の熱交換を行う熱交換器において、前記ヘッダタンクは、複数の部材で構成されるとともに、前記チューブ婦入孔は、前記ヘッダタンクを構成する複数の部材にそれぞれ孔郎を設けるとともに、これらの孔郎を重ね合わせてなる構成の熱交換器であり、このような構成によると、ヘッダタンクには、チューブ婦入孔が容易に設けられる。

【0009】例えば、冷媒として二酸化炭素を用いる熱 交換器においては、非常に高い耐圧性が要求されるた め、内厚の大きなヘッダタンクが用いられる。

【0010】従来では、このようなヘッダタンクのチューブ挿入孔は、ブレス成形するのが非常に困難又は不可能であることから、切削形成せざるを得ず、これが熱交換器の生産能率の低下やコストの上昇を招く原因となっていた。

6 【0011】しかし本発明では、ヘッダケンクを構成する各部材毎に孔部をプレス成形することが可能であり、そのような不都合が回避される。

【10012】本願第2請求項に記載した発明は、臨求項 1において、前記ヘッダタンクを構成する複数の部材と しては、半円質形状の部材と、互いに密号され且つ前記 半円質形状の部材に終音される複数の板状の部材とを備 え、前記礼部は、前記複数の板状の部材にそれぞれ数け た構成の熱交換器であり、このような構成によると、各 部材には礼部を効率よく殴けることが可能であるととも に、ヘッダタンクを原便に構成することが可能である。 る.

【0013】本願第3話求項に記載した発明は、語求項1において、前記ヘッダタンクを構成する複数の部材としては、薄肉部を設けた円園形状の部材と、前記円筒形状の部材の薄内部に密音される板状の部材とを備え、前記孔部は、前記円筒形状の部材の薄内部、及び前記板状の部材にそれぞれ設けた構成の熱交換器であり、このような構成によると、各部材には孔部を効率よく設けることが可能であるとともに、ヘッダタンクを簡便に構成することが可能である。

【0014】本願資4請求項に記載した発明は、詰求項1乃至3のいずれかにおいて、前記孔部には、前記ヘッダタンクの外側に向うテーバーを設けた構成の熱交換器であり、このような構成によると、チューブ挿入孔には、チューブの端部を容易に挿入することが可能である。

【0015】また特に、チューブの増離とチューブ挿入 孔とをろう付けする場合には、溶融したろう材がテーバーに避まることにより、これちのろう付けがより確実に 行われ、これらの支持強度及び密閉性が満足に確保される。

【0016】本願第5請求項に記載した発明は、冷嬢を確適するチューブと、前記チューブを接続したヘッダタンクとを備え、前記チューブに伝わる数によって前記冷嬢の数交換を行う熱交換器において、前記ヘッダタンクは、前記チューブの鑑部を挿入するチューブ挿入孔を備え、前記チューブ挿入孔は、前記ヘッダタンクを構成する部村に関口部を設けるとともに、前記関口部に前記チューブの鑑部を案内するガイド部材を設けてなる構成の熱交換器であり、このような機成によると、ヘッダタンクには、チューブ挿入孔が容易に設けられる。

【0017】例えば、冷媒として二酸化炭素を用いる熱 交換器においては、非常に高い耐圧性が要求されるた め、内厚の大きなヘッダタンクが用いられる。

【0018】従来では、このようなヘッダタンクのチューブ挿入孔は、プレス成形するのが非常に困難又は不可能であることから、切削形成せざるを得ず、これが熱交換器の生産能率の低下やコストの上昇を招く原因となっていた。

【9919】しかし本発明では、チューブ挿入孔は、切削形成せずとも、ヘッダタンクを構成する部材に開口部 40を設けるとともに、関口部にガイド部科を設けてなるので、そのような不都合が回過される。

[0020]

【発明の真旋の形態】以下に、本発明の具体例を図面に 基づいて詳細に説明する。

【0021】図1に示すように、本例の熱交換器は、直内空間設置用の冷凍サイクルにおける放熱器又はエバボレータであって、複数のチューブ2と複数のフィン3とを交互に積層するとともに、各チューブ2の蟾蜍を一対のヘッダタンク4にそれぞれる共通発物、工機のトーナー

【0022】冷竦は、一方のヘッダタンク4に設けられた人口部5から内部に取り入れられて、チューブ2及びフィン3に伝わる熱によって熱交換をしつつチューブ2

フィン3に伝わる旅によって糸交換をしつつチューブ2 を流道した後、他方のヘッダケンク4に設けられた出口 部6から外部に排出される。尚、冷媒としては、二酸化 炭素を採用している。

とが可能であるとともに、ヘッダタンクを簡便に構成す 【0023】チューブ2及びフィン3からなる層の上下ることが可能である。 には、領強部村たるサイドブレートでそれぞれ設けて【0014】本願賞4請求項に記載した発明は、詰求項 16 おり、各サイドブレートでの始部は、ヘッダタンク4に【7万至3のいずれかにおいて、前記孔部には、前記ヘッ 支持している。

【0024】また、チューブ2、フィン3、ヘッダタンク4、入口部5、出口部6、及びサイドプレート7は、これらを構成する各部材を組み付けて、この組み付け体を炉中で加熱処理することによって一体に形成している。各部材の要所には、予め、ろう材のクラッド及びフラックスの塗布等を施している。

【0025】図2に示すように、本例のチューブ2は、 アルミニウム合金を押し出し成形してなる偏平状のもの 20 であり、幅方向に亘って、適宜関隔で複数の冷媒流路2 10が設けられている。

【0026】当該チューブ2は、幅方向の両路に、複数の空孔220が設けられた部位を備えている。この両脇の部位によれば、チューブ2の伝熱面積が拡大されて、冷媒の熱交換性が一層向上される。

【0027】特に、空孔220は、冷媒を適通しない孔であり、押し出し成形時において、冷媒確路210を設ける郎位と両脇の部位との圧力をおよそ均等に保つために設けられる。すなわち、押し出し成形性を維持するためのものである。

【0028】また、チューブ2の機能には、ヘッダタンク4の内部に挿入する挿入部230を設けている。 挿入部230は、押し出し成形の後、前述した両脇の部位を削除して設けている。

【0029】図3乃至図5に示すように、本例のヘッダタンク4は、チューブ2の幅部を挿入するチューブ挿入 孔410を長手方向に亘って複数酸けたものであり、所定の素材を押し出し成形又はロール成形してなる半円筒形状の部材420に、複数の板状の部材430、440を組み付けて円筒形状とし、更にその両端部をキャップで閉鎖して構成している。

【0030】板状の各部村430,440は、所要の曲率を有し、互いに密着されるとともに、半円筒形状の部材420に対しては、それぞれ長手方向に亘る舞部同士を付き合わせて鉄着される。

【0031】チューブ挿入孔410は、板状の各部材430、440にそれぞれ設けた孔部411を宣ね合わせて構成している。孔部411は、各部材430、440年に、プレス成形によって設けている。

のヘッダタンク4にそれぞれそ進通接続して構成してい 50 【0032】このような構成によれば、チューブ挿入孔

410は、切削形成せずとも設けることができ、ヘッダ タンク4の肉厚に対し、比較的容易に設けることができ る

【0033】また、本例の各孔部411には、ヘッダケンク4の外側に向うテーバー412をそれぞれ設けている。これちのテーパー411によれば、チューブ挿入孔410には、チューブ2の端部を容易に挿入することができる。

【0034】また、ろう付けの際には、溶融したろう材がテーパーに選まるので、これらのろう付けをより確実 10に行うことができる。

【0035】尚本例では、チューブ2としては、押し出 し成形してなるものを用いたが、或いは、プレートをロ ール成形してなるチューブを用いてもよい。

【0036】以上設明したように、本例の検交換器によると、ヘッダタンクは、複数の部材で構成されるとともに、チューブの端部を挿入するチューブ挿入孔を構え、 【 ① チューブ挿入孔は、ヘッダタンクを構成する複数の部材 はそれぞれ孔郎を設けるとともに、これらの孔郎を重ね タン合わせてなるので、ヘッダタンクには、チューブ挿入孔 20 る。を容易に設けるととができる。 【 ①

【0037】例えば、冷嬢として二酸化炭素を用いる熱 交換器においては、非常に高い耐圧性が要求されるた め、内厚の大きなヘッダタンクが用いられる。

【0038】従来では、このようなヘッダタンクのチューブ挿入孔は、プレス成形するのが非常に困難又は不可能であることから、切削形成せざるを得ず、これが熱交換器の生産能率の低下やコストの上昇を招く原因となっていた。

【0039】しかし本例では、ヘッダタンクを構成する 30 各部付毎に孔郎をプレス成形することができ、そのよう な不都台を回避することができる。

【0040】更に、本例の熱交換器によると、ヘッダタンクを構成する複数の部村としては、半円筒形状の部材と、互いに密着され且つ半円筒形状の部材に装着される複数の板状の部村とを備え、孔部は、複数の板状の部村にそれぞれ競けたので、各部材には孔部を効率よく競けることができるとともに、ヘッダタンクを節便に構成することができる。

【0041】更に、本例の熱交換器によると、孔部には、ヘッダタンクの外側に向うテーバーを設けたので、チューブ挿入孔には、チューブの進部を容易に挿入することができる。

【0042】また特に、チューブの端部とチュープ挿入 孔とをろう付けする場合には、溶融したろう材がテーバ ーに選まることにより、これらのろう付けがより確実に 行われ、これらの支持強度及び密閉性を満足に確保する ことができる。

【10043】次に、本発明の第2具体例を図6乃至図7 に芸づいて説明する。 [0044] これらの図に示すように、本例のヘッダタンク4は、所定の景材を押し出し成形してなる円筒形状の部付450に、板状の部付460を組み付けて構成している。尚、その他の枠成は、前述した具体例と同様であるので、その説明は省略する。

【0045】円筒形状の部村450には、長手方向に亘って解内部451を設けている。この薄内部451は、耐圧性に関してヘッダバイブ4が必要とする内厚よりも、ある程度薄く形成された部位である。

[0046] そして、板状の部材460は、薄内部45 1に密君する曲率を有し、円筒形状の部材450に対し では、薄内部451に装着して組み付けられている。 [0047] チューブ挿入孔410は、薄内部451及 び板状の部材460にそれぞれ設けた孔部411を含わ

台わせて構成している。孔郎411は、各部材450。

460年に、プレス成形によって設けている。 【0048】このような構成によれば、チューブ挿入孔 410は、切削形成せずとも設けることができ、ヘッダ タンク4の肉厚に対し、比較的容易に設けることができ

【1049】以上説明したように、本例の熱交換器によると、ヘッダタンクを構成する複数の部材としては、障肉部を設けた円筒形状の部材と、円筒形状の部材の薄肉部に密着される板状の部材とを備え、孔部は、円筒形状の部材の薄肉部、及び板状の部材にそれぞれ設けたので、各部材には孔部を効率よく設けることができるととして、ヘッダタンクを餌使に構成することができる。 【1050】次に、本発明の第3具体例を図8乃至図12に基づいて説明する。

0 【0051】図8乃至図10に示すように、本例のヘッダタンク4は、所定の素材を押し出し成形又はロール成形してなる半円筒形状の部材470の開口部に、チューブ2の端部を案内する複数のガイド部材480は、半円筒形状の部材470の長手方向に亘る関口部において、その部材470の歳部に当接されつつ箱屋され、チューブ挿入孔410は、横層された複数のガイド部材480の間に形成される。また、チューブ2の挿入部230は、半円筒形状の部材470の内面に密着される平坦な側面を有するものである。尚、その他の構成については、前述した具体例と同様であるので、その説明を省略する

【9052】本例のガイド部材480は、押し出し成形部村に加工を貼したもの、又は厳造成形したものであり、その両脇が半円筒形状の部材470の縁部に当接されるブロック部481と、ヘッダケンク4の内面を機成する突部482と、チューブ2の幅方向の側面を保持するチューブ保持部483とを備えている。

【 0 0 5 3 】複数のガイド部材 4 8 0 は、チューブ2 を 50 間に挟むとともに、互いにチューブ保持部 4 8 3 同士を 付き合わせて慎層される。

【0054】とのような構成によれば、チューブ挿入孔 4.10は、切削形成せずとも設けることができ、ヘッダ タンク4の肉厚に対し、比較的容易に設けることができ

【0055】尚、ガイド部村410としては、図11万 至図12に示すように、チューブ保持部483がないも のを用いてもよい。

【0056】以上護明したように、本例の熱交換器によ ると、ヘッダタンクは、チューブの蟷部を挿入するチュー16ーであり、このような挫成によると、チューブ挿入孔に ープ挿入孔を備え、チューブ挿入孔は、ヘッダタンクを 格成する部材に開口部を設けるとともに、関口部にチュ ープの総部を案内するガイド部材を設けてなるので、へ ッダタンクには、チューブ挿入孔を容易に設けることが

【0057】例えば、冷媒として二酸化炭素を用いる熱 交換器においては、非常に高い耐圧性が要求されるた め、肉厚の大きなヘッダタンクが用いられる。

【りり58】従来では、このようなヘッダタンクのチュ 餡であることから、切削形成せざるを得ず、これが熱交 換器の生産能率の低下やコストの上昇を招く原因となっ ていた。

【0059】しかし本例では、チューブ挿入孔は、切削 形成せずとも、ヘッダタンクを構成する部材に開口部を 設けるとともに、関口部にガイド部村を設けてなるの で、そのような不都台を回過することができる。

[0060]

【発明の効果】本願第1語求項に記載した発明は、冷媒 を流道するチューブと、前記チューブを接続したヘッダ 30 タンクとを備え、前記チューブに伝わる熱によって前記 冷媒の熱交換を行う熱交換器において、前記ペッダタン クは、複数の部分で構成されるとともに、前記チューブ の協部を挿入するチューブ挿入孔を備え、前記チューブ 挿入孔は、前配ヘッダタンクを格成する複数の部材にそ れぞれ孔部を設けるとともに、これらの孔部を重ね合わ せてなる構成の熱交換器であり、このような構成による と、ヘッダタンクには、チューブ挿入孔を容易に設ける ことができる。

【0061】本願第2請求項に記載した発明は、語求項 1において、前記ヘッダタンクを模成する複数の部材と しては、半円筒形状の部付と、互いに密着され且つ前起 半円筒形状の部村に装着される複数の板状の部村とを借 え、前記孔部は、前記複数の板状の部材にそれぞれ設け た構成の熱交換器であり、とのような構成によると、各 部村には孔部を効率よく設けることができるとともに、 ヘッダタンクを簡便に模成することができる。

【0062】本願第3請求項に記載した発明は、 館求項 1において、前記ヘッダタンクを構成する複数の部材と しては、薄肉部を設けた円筒形状の部村と、前記円筒形 刃 【図12】 本発明の具体例に係り、ガイド部村を示す

状の部材の海角部に密着される板状の部材とを備え、前 記孔部は、前記円筒形状の部材の荷角部、及び前記板状 の部村にそれぞれ設けた構成の熱交換器であり、このよ うな構成によると、各部村には孔部を効率よく設けるこ とができるとともに、ヘッダタンクを簡便に枠成するこ とができる。

【0063】本願第4請求項に記載した発明は、請求項 1万至3のいずれかにおいて、前記孔部には、前記へっ ダタンクの外側に向うテーバーを設けた構成の熱交換器 は、チューブの端部を容易に挿入することができる。

【0064】また特に、チューブの熾部とチューブ挿入 孔とをろう付けする場合には、恣酷したろう材がテーバ ーに選まることにより、これらのろう付けをより確実に 行うことができ、これらの支持強度及び密閉性を満足に 確保することができる。

【0065】本願第5請求項に記載した発明は、冷媒を **遠道するチューブと、前記チューブを接続したヘッダタ** ングとを備え、前記チューブに伝わる熱によって前記冷 ープ挿入孔は、プレス成形するのが非常に困難又は不可 20 娘の熱交換を行う熱交換器において、前記ヘッダタンク は、前記チューブの端部を挿入するチューブ挿入孔を借 え、前記チューブ挿入孔は、前記ヘッダタンクを構成す る部村に関口部を設けるとともに、前配関口部に前記チ ューブの端部を案内するガイド部材を設けてなる構成の 熱交換器であり、このような構成によると、ヘッダタン りには、チューブ挿入孔を容易に設けることができる。 【図面の簡単な説明】

> 【図1】 本発明の具体例に係り、熱交換器を示す正面 図である。

【図2】 本発明の具体例に係り、チューブを示す斜視 図である。

【図3】 本発明の具体例に係り、ヘッダタンクの要部 を示す斜視図である。

【図4】 本発明の具体例に係り、ヘッダタンクの要部 を示す分解斜視関である。

【図5】 本発明の具体例に係り、ヘッダタンク及びチ ューブを示す断面図である。

【図6】 本発明の具体例に係り、ヘッダタンクの要部 を示す斜視図である。

【図?】 本発明の具体例に係り、ヘッダタンクの要部 を示す分解斜視図である。

【図8】 本発明の具体例に係り、チューブを示す斜視 図である。

【図9】 本発明の具体例に係り、ヘッダタンクの要部 を示す斜視図である。

【図10】 本発明の具体例に係り、ガイド部材を示す 斜視図である。

【図11】 本発明の具体例に係り、ヘッダタンクの要 部を示す斜視図である。

