Throughout this document x and y will be either row or column vectors and A will always be a matrix.

Basics	
clc	Clear command window
clear	Clear all variables
clf	Clear all plots
close all	Close all plots
doc function	Open help page for function
% This is a comment	Comments
ctrl-c	Abort the current operation
format short	Display 4 decimal places
format long	Display 15 decimal places
<pre>disp('text')</pre>	Print text

Defining/Changing Variables	
x = 3	Define variable x to be 3
x = [1, 2, 3]	Set x to be the row vector $[1,2,3]$
x = [1; 2; 3]	Set x to be the column vector $[1,2,3]^T$
A = [1, 2, 3, 4;	Set A to be a 3×4 matrix
5, 6, 7, 8;	
9, 10, 11, 12]	
x(2) = 7	Change x from $\left[1,2,3\right]$ to $\left[1,7,3\right]$
A(2,1) = 0	Change $A_{2,1}$ from 5 to 0

Basic Arithmetic and Functions	
3*4, 7+4, 2-6, 8/3	multiply, add, subtract and divide
3^7	Compute 3^7
sqrt(5)	Compute $\sqrt{5}$
log(3)	Compute $\ln(3)$
log10(100)	Compute $\log_{10}(100)$
abs(-5)	Compute $ -5 $
sin(5*pi/3)	Compute $\sin(5\pi/3)$
floor(3.8)	Compute [3.8]

Constructing Matrices/Vectors	
zeros(12, 5)	Make a $12 imes 5$ matrix of zeros
ones(12, 5)	Make a 12×5 matrix of ones
eye(5)	Make a 5×5 identity matrix
eye(12, 5)	Make a 12×5 identity matrix
linspace(1.4, 6.3, 1004)	Make a vector with 1004 elements evenly spaced between $1.4~{\rm and}~6.3$
logspace(1.4, 6.3, 1004)	Make a vector with 1004 elements where the log of the spacing is evenly increasing between 1.4 and 6.3
7:15	Row vector of $7, 8, \ldots, 14, 15$

Operations	on Matrices/Vectors
3 * x	Multiply every element of x by 3
x + 2	Add 2 to every element of x
x + y	Element-wise addition of two vectors x and y
A * y	Product of a matrix and vector
A * B	Product of two matrices
A .* B	Element-wise product of two matrices
A ^ 3	Square matrix A to the third power
A .^ 3	Every element of A to the third power
cos(A)	Compute the cosine of every element of A
abs(A)	Compute the absolute values of every element of \boldsymbol{A}
Α'	Transpose of A
inv(A)	Compute the inverse of A
det(A)	Compute the determinant of A
eig(A)	Compute the eigenvalues of A
size(A)	Get the size of A

Portions on Matrices/Vectors	
x(2:12)	The 2^{nd} to the 12^{th} elements of x
x(2:end)	The 2^{nd} to the last elements of x
x(1:3:end)	Every third element of \boldsymbol{x} from the first to last
A(5,:)	Get the $5^{ ext{th}}$ row of A
A(:,5)	Get the $5^{ ext{th}}$ column of A
A(5, 1:3)	Get the first to third elements in the 5 th row

Plotting	
plot(x,y)	Plot y versus x (must be the same length)
loglog(x,y)	Plot y versus x on a log-log scale (both axes have a logarithmic scale)
semilogx(x, y)	Plot y versus x with x on a log scale
semilogy(x, y)	Plot y versus x with y on a log scale
axis equal	Force the \boldsymbol{x} and \boldsymbol{y} axes to be scaled equally
title('A Title')	Add a title to the plot
<pre>xlabel('x label')</pre>	Add a label to the x axis
<pre>ylabel('y label')</pre>	Add a label to the y axis
legend('foo', 'bar')	Label 2 curves for the plot
grid	Add a grid to the plot
hold on	Multiple plots on single figure
figure	Start a new plot

Constants	
рi	$\pi = 3.141592653589793$
NaN	Not a number (i.e. $0/0$)
Inf	Infinity
realmax	Largest positive floating-point number $1.7977 \cdot 10^{308}$
realmin	Smallest positive floating-point number $2.2251 \cdot 10^{-308}$

MATLAB CHEAT SHEET

For loops for k = 1:5 disp(k); end

```
Logicals

a = 10; % Assign a the value of 10

a == 5 % Test if a is equal to 5
false

a == 10 % Test if a is equal to 10
true

a >= 5 % Test if a is greater than or equal to 5
true

a < 11 % Test if a is less than 11
true

a ~= 4 % Test if a is not equal to 4
true

a > 1 & & a ~= 10 % Test if a is greater than 1 AND
false % not equal to 10

a > 1 | | a ~= 10 % Test if a is greater than 1 OR
true % not equal to 10
```

```
if a > 10
    disp('Greater than 10');
elseif a == 5
    disp('a is 5');
else
    disp('Neither condition met');
end
```

```
functions

function output = addNumbers(x, y)
    output = x + y;
end

addNumbers(10, -5)
5
```

```
function Handles

f = a(x) sin(x.^2)./(5*x);

f(pi/2)
    0.0795
f([-pi/2, 0, pi/2])
    -0.0795 NaN 0.0795
```

Plotting

-1

-1.5

-5

```
x = linspace(-3*pi, 3*pi, 1000);
y1 = \sin(x);
y2 = cos(x);
% Set the axis limits
axis([-3*pi, 3*pi, -1.5, 1.5])
% Add axis labels
xlabel('x');
ylabel('y');
% Add a title
title('A plot of cos(x) and sin(x)');
% Add a legend
legend('sin(x)', 'cos(x)');
                   A plot of cos(x) and sin(x)
    1.5
                                              sin(x)
                                              cos(x)
     1
    0.5
     0
    -0.5
```

0

5