Додаток 1

Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 2 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження алгоритмів

розгалуженяя»

Варіант 15

Виконав студен	г <u>ІП-12, Кириченко Владислав Сергійович</u>
·	(шифр, прізвище, ім'я, по батькові)
Поморімур	
Перевірив	
	(прізвище, ім'я, по батькові)

Лабораторна робота №2

Назва роботи: Дослідження алгоритмів розгалуження.

Мета: дослідити подання керувальної дії чергування у вигляді умовної та альтернативної

форм та набути практичних навичок їх використання під час складання програмних специфікацій.

Варіант 15

Умова задачі:

Обчислити y = f(x), де функція f(x) задана графіком:

Постановка задачі: Результатом розв'язку задачі ϵ координата У.

Побудова математичної моделі: Маємо координату X і графік, за яким ми повинні шукати значення Y.

Залежність наступна:

якщо
$$\mathbf{X} \le 0$$
: то $y = 1$
якщо $\mathbf{X} \ge \Pi \mathbf{u}$: то $y = -1$
якщо $0 \le \mathbf{X} \le \Pi \mathbf{u}$: то $y = \cos(\mathbf{x})$

Для побудови алгоритма знадобиться функція $\cos(x)$ - що дозволяє обрахувати значення косинуса для агрумента - X.

Складемо таблицю змінних:

Змінна	Тип	Ім'я	Призначення
Координата Х	Дійсний	X	Початкові дані
Значення Пи	Дійсний	Pi	Початкові дані
Координата Ү	Дійсний	Y	Результат

3.Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

Крок 1. Визначимо основні дії.

Крок 2. Деталізація перевірки чи 0<X<Рі.

Крок 3. Деталізаці перевірки чи X=>Pi, чи X<=0.

```
Псевдокод:
Крок 1.
початок
  введення X
  перевірка чи 0<Х<Рі
  перевірка чи X>=Pi, чи X=<0
  виведення Ү
кінець
Крок 2.
початок
  введення Х,Рі
  якщо 0<X<Рі
    To Y = cos(X)
  інакше
    перевірка чи X>=Pi, чи X<=0
  все якщо
  виведення Ү
кінець
Крок 3.
початок
  введення Х,Рі
  якщо 0<X<Рi
    To Y = cos(X)
  інакше
    якщо Х >= Рі
      TO Y = -1
    інакше
      Y = 1
    все якщо
  все якщо
  виведення Y
кінець
```

Блок схема:

4. Перевірка алгоритму

Блок	Дія	Дія	Дія
	Початок	Початок	Початок
1	Введення $X=34$,	Введення	Введення X =-3,
	Pi =3.14	X =0.5* Pi , Pi =3.14	Pi=3.14
2	0<34<3.14 - false	0<1.57<3.14 - true	0<-3<3.14 - false
3	34>0 - true	$Y = \cos(0.5 \cdot \mathbf{Pi}) = 0$	-3>0 - false
	T 7 4	D : 0	T 7 1
4	$\mathbf{Y} = -1$	Вивід: 0	$\mathbf{Y} = 1$
5	Вивід: -1	Кінець	Вивід: 1
		·	
	Кінець		Кінець

Висновок - Було досліджено подання керувальної дії чергування у вигляді умовної та альтернативної форм та набуто практичних навичок їх використання під час складання програмних специфікацій.