

ANALYTICS **INFS7450**

Graph Essentials

Prof. Hongzhi Yin School of EECS The University of Queensland

Why should I care about networks or graphs in this course?

Ways to Analyze Social Media

- Social Media is a complex system consisting of
 - individuals (also called users)
 - information (e.g., reviews, posts, photos, short videos, video, live stream)
 - and their interactions
- Networks are a general language for describing such complex systems

We will never be able to model and predict the social media system unless we understand the networks behind it!

Why Networks?

- Universal language for describing complex data
 - Networks from science, nature, and technology are more similar than one would expect
- Shared vocabulary between fields

Road networks

Communication graphs

Why Networks?

- Universal language for describing complex data
 - Networks from science, nature, and technology are more similar than one would expect
- Shared vocabulary between fields

Information networks: Web & citations

Networks of neurons

Many Types of Data are Networks

Graph Basics

Structure of Networks

A network is a collection of objects where some pairs of objects are connected by links

What are components of a network?

Components of a Network

- Objects: nodes, vertices
- Interactions: links, edges
- System: network, graph

V

 \boldsymbol{E}

G(V,E)

Networks or Graphs?

- Network often refers to real systems
 - Web, Social network, Road network

Language: Network, node, link

 Graph is a mathematical representation of a network

Language: Graph, vertex, edge

We will try to make this distinction whenever it is necessary, but in most cases we will use the two terms interchangeably

Nodes or Actors

- In a friendship social graph, nodes are users and a link denotes the friendship between two users
- Depending on the context, these nodes have different names
 - In a web graph, "nodes" represent sites and the connection between nodes indicates web-links between them
 - In a social setting, these nodes are called actors

$$V = \{v_1, v_2, \dots, v_n\}$$

The number of nodes is

$$|V| = \mathbf{n}$$

Edges

 Links/edges that connect user nodes are also known as ties or relationships in the social setting

 In a social setting, where nodes represent social entities such as people, edges indicate social relationships, therefore known as social ties

$$E = \{e_1, e_2, \dots, e_m\}$$

The number of edges (size of the edge-set) is denoted as

$$|E| = \mathbf{m}$$

Directed Edges and Directed Graphs

Edges can have directions. A directed edge is sometimes called an arc

- An edge is represented by a starting end node pair $e(v_2, v_1)$
- In undirected graphs both representations $e(v_2, v_1)$ and $e(v_1, v_2)$ are the same, referring to the same edge.

Directed Graphs vs. Undirected Graphs

Undirected

 Links: undirected (symmetrical, reciprocal)

- Examples:
 - Collaborations
 - Friendship on Facebook

Directed

Links: directed (arcs)

- Examples:
 - Phone calls
 - Following on Twitter

Neighbourhood and Degree

- For any node v, in an undirected graph, the set of nodes it is directly connected to is called its neighbourhood and is represented as N(v)
 - Directed graphs have incoming neighbors $N_{in}(v)$ (nodes that point to v) and outgoing neighbors $N_{out}(v)$ (nodes that are pointed by v).
- The number of edges connected to one node is the degree of that node (the size of its neighborhood)
 - Degree of a node i is usually presented using notation d_i
- In directed graphs:
 - d_i^{in} in-degrees is the number of edges pointing towards a node
 - d_i^{out} out-degree is the number of edges pointing away from a node

Degree and Degree Distribution

• **Theorem 1.** The summation of node degrees in an undirected graph is twice the number of edges $\sum d_i = 2|E|$

What is the average degree of an undirected graph?

 Lemma 1. In any directed graph, the summation of in-degrees is equal to the summation of outdegrees,

$$\sum_{i} d_{i}^{out} = \sum_{j} d_{j}^{in}$$

Complete Graph

The maximum number of edges in an undirected graph on N nodes is

$$E_{\text{max}} = \binom{N}{2} = \frac{N(N-1)}{2}$$

An undirected graph with the number of edges $|E| = E_{max}$ is called a complete graph, and its average degree is N-1

Degree Distribution

When dealing with very large graphs, the nodes' degree distribution is an important property of a network.

$$\pi(d) = \{d_1, d_2, \dots, d_n\}$$
 (Degree sequence)

$$p_d = rac{n_d}{n}$$
 (Probability of degree d , i.e, the fraction of nodes having degree d)

 n_d is the number of nodes with degree d

$$\sum_{d=0}^{\infty} p_d = 1$$

Degree Distribution Plot

The x-axis represents the degree and the y-axis represents the fraction of nodes having that degree

On social networking sites
 There exist many users with few connections and there exist a handful of users with very large numbers of friends.
 (Power-law degree distribution)

Facebook
Degree Distribution

Subgraph

 A subgraph S of a graph G is another graph formed from a subset of the vertices and edges of G.

Def: Induced subgraph is another graph, formed from a subset of vertices and all of the edges connecting the vertices in that subset.

Induced subgraph:

Not induced subgraph:

Graph Representation

- Adjacency Matrix
- Edge List
- Adjacency List
- Embedding

Adjacency Matrix

$$A_{ij} = 1$$
 if there is a link from node *i* to node *j*

$$A_{ij} = 0$$
 otherwise

$$A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} \qquad A = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$
$$(A = A^{T})$$

$$A = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

Note that for a directed graph (right) the matrix is not symmetric.

Adjacency Matrix

Undirected

$$A_{ij} = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

$$A_{ij} = A_{ji}$$

$$A_{ij} = 0$$

$$\mathsf{d}_i = \sum_{j=1}^N A_{ij}$$

$$\mathsf{d}_j = \sum_{i=1}^N A_{ij}$$

Directed

$$A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

$$A_{ij} \neq A_{ji}$$
$$A_{ii} = 0$$

$$\mathbf{d}_i^{out} = \sum_{j=1}^N A_{ij}$$

$$\mathbf{d}_j^{in} = \sum_{i=1}^N A_{ij}$$

Social media networks have very sparse Adjacency matrices

Networks are Sparse Graphs

Most real-world networks are sparse

$$|E| \ll E_{max}$$
 (or $\overline{d} \ll N-1$)

WWW (Stanford-Berkeley): N=319.717 $\langle d \rangle = 9.65$ Social networks (LinkedIn): N=6.946.668 $\langle d \rangle = 8.87$ N=242,720,596 $\langle d \rangle = 11.1$ Communication (MSN IM): N=317,080 $\langle d \rangle = 6.62$ Coauthorships (DBLP): $\langle d \rangle = 14.91$ N=1,719,037Internet (AS-Skitter): $\langle d \rangle = 2.82$ Roads (California): N=1,957,027 $\langle d \rangle = 2.39$ Proteins (S. Cerevisiae): N=1.870

(Source: Leskovec et al., Internet Mathematics, 2009)

Consequence: Adjacency matrix is filled with zeros!

(Density of the matrix ($|E|/N^2$): WWW=1.51×10⁻⁵, MSN IM = 2.27×10⁻⁸)

Edge List

• In this representation, each element is an edge and is usually represented as (u, v), denoting that node u is connected to node v

Given a node v, how to find all its neighbors? What is the time complexity?

Adjacency List

 In an adjacency list, for every node, we maintain a list of its neighbors

The list is usually sorted based on the node order or

other preferences

Key	Value
Node	Connected To
v_1	v_2
v_2	v_1 , v_3 , v_4
v_3	v_2 , v_4
v_4	v_2 , v_3 , v_5 , v_6
v_5	v_4
v_6	v_4

Adjacency List

Adjacency list:

- Easier to work with if network is
 - Large
 - Sparse
- Allows us to quickly retrieve all neighbors of a given node
 - **1**:
 - **2**: 3, 4
 - **3**: 2, 4
 - **4**: 5
 - **5**: 1, 2

Network Embedding/Graph Representation Learning

 We map each node in a network into a low dimensional space so that the network structure information can be effectively preserved.

We use a low-dimensional vector to represent a node. Why is the vector called "low dimensional"?

Connectivity in Graphs

 Adjacent nodes/Incident Edges, Walk/Path/Trail/Tour/Cycle

Adjacent nodes and Incident Edges

- Two nodes are adjacent if they are connected via an edge.
- Two edges are incident, if they share one node
- When the graph is directed, edge directions must match for edges to be incident
 - Incident edges should have the same direction in a directed graph

Walk, Path, Trail, Tour, and Cycle

Walk: A walk is a sequence of incident edges visited one after another

- Open walk: A walk does not end where it starts
- Closed walk: A walk returns to where it starts
- Representing a walk:
 - A sequence of edges: $e_1, e_2, ..., e_n$
 - A sequence of nodes: $v_1, v_2, ..., v_n$
- Length of walk: the number of visited edges

Length of walk= 8

Random walk

 A walk in which the next node is selected randomly among the neighbors each time

- A random walk starting from v_1
 - v_1, v_3, v_6, v_4, v2, v5...
 - v_1, v_3, v_6, v_4, v_3, v6...

Trail

 A trail is a walk where no edge is visited more than once and all walk edges are distinct

 A closed trail (one that ends where it starts) is called a **tour** or **circuit**

Path

- A walk where nodes and edges are distinct is called a path
- One special case the starting node and end node can be the same one. In this case, it is called a cycle.
- The length of a path in an unweighted graph is the number of edges visited in the path

Path

- A walk where nodes and edges are distinct is called a path
- One special case the starting node and end node can be the same one. In this case, it is called a cycle.
- The length of a path in a weighted graph is the sum of the weights of the edges visited in the path

Connectivity

- A node v_i is connected to node v_j (or reachable from v_j) if they are adjacent or there exists a **path** from v_i to v_i .
- A graph is connected, if there exists a path between any pair of nodes in it
 - In a directed graph, a graph is strongly connected if there exists a directed path between any pair of nodes
 - In a directed graph, a graph is weakly connected if there exists a path between any pair of nodes, without considering the edge directions
- A graph is disconnected, if it not connected.

Connectivity: Example

Component

- A component of an undirected graph is a subgraph
 - where any two nodes are connected to each other, and
 - which is connected to no additional nodes in the supergraph
- A component is **strongly connected** in a directed graph if there exists a **directed path** from any node u to any other node v in the component.
- A component is weakly connected if it is connected without considering the edge directions

Component

There are two connected components in above undirected graph

012

34

Connectivity of Undirected Graphs

 A disconnected graph is made up by two or more connected components

Bridge edge: If we erase the edge, the graph becomes disconnected Articulation node: If we erase the node, the graph becomes disconnected

Shortest Path

- **Shortest Path** is the path between two nodes that has the shortest length.
 - We denote the length of the shortest path between nodes v_i and v_i as $l_{i,j}$
- The length of the shortest path is called **network distance** or distance on a graph from v_i to v_i .

Diameter

The diameter of a graph is the **length of the longest shortest path** between any pair of nodes in the graph

$$diameter_G = \max_{(v_i, v_j) \in V \times V} l_{i,j}$$

 How big is the diameter of the social graph in Facebook?

Types of Graphs

Edge Attributes

Possible options:

- Weight (e.g. frequency of communication)
- Type (friend, relative, co-worker)
- Sign: Friend vs. Foe, Trust vs. Distrust
- Properties depending on the structure of the rest of the graph: number of common friends

Signed Graphs

When edge weights are binary (0/1, -1/1, +/-)
 we have a signed graph

It is used to represent friends or foes

Signed Graphs

One person trusting/distrusting another

Research challenge: How does one 'propagate' negative feelings in a social network? Is my enemy's enemy my friend?

sample of positive & negative ratings from Epinions network

Simple Graphs and Multigraphs

- Simple graphs are graphs where only a single edge is allowed to exist between any pair of nodes
- Multigraphs are graphs where you can have multiple edges between two nodes (loops are allowed)

- The adjacency matrix for multigraphs can include elements larger than one, indicating multiple edges between nodes;
 - A_ij denotes the number of edges between node i and node j.

Weighted Graph

- A weighted graph G(V, E, W) is one where edges are associated with weights
 - For example, a graph could represent a map where nodes are cities and edges are roads between them
 - The weight associated with each edge could represent the distance between the corresponding cities

$$A_{ij} = \begin{cases} w_{ij} \text{ or } w(i, j), w \in R \\ 0, \text{ There is no edge between } v_i \text{ and } v_j \end{cases}$$

Weighted Graph

Unweighted

Weighted

How to compute the degree of each node in a weighted graph?

Trees and Forests

- Trees are special cases of undirected graphs
- A tree is a graph structure that has no cycle in it
- In a tree, there is exactly one path between any pair of nodes
- In a tree: |V| = |E| + 1
- A set of disconnected trees is called a **forest**

A forest containing 3 trees

Bipartite Graphs

Bipartite graph is a graph whose nodes can be divided into two disjoint sets U and V such that every link connects a node in U to one in V; that is, U and V are independent sets

- Authors-to-Papers (they authored)
- Actors-to-Movies (they appeared in)
- Users-to-Movies (they rated)
- Recipes-to-Ingredients (they contain)

Line graph

- The **line graph** of an <u>undirected graph</u> *G* is another graph L(*G*) that represents the adjacencies between <u>edges</u> of *G*.
- L(G) is constructed in the following way:
 - for each edge in G, make a vertex in L(G);
 - for every two edges in G that have a vertex in common, make an edge between their corresponding vertices in L(G).

Each edge in the graph corresponds to a node in the line graph.

References

- R. Zafarani, M. A. Abbasi, and H. Liu, Social Media Mining: An Introduction, Cambridge University Press, 2014.
- http://socialmediamining.info/
- Stanford CS224W Analysis of Networks