Calculus Reference

Algorithms

Corazza

Suppose f is a function from the set of real numbers to the set of real numbers. The following notations mean the same thing:

- 1. f'(x)
- $2. \ \frac{d}{dx}f(x)$
- 3. $\frac{df}{dx}$

Facts About Derivatives

- (1) $\frac{d}{dx}a = 0$ for any real number a.
- (2) $\frac{d}{dx}x^r = rx^{r-1}$, for any real number $r \neq 0$.
- (3) If f(x) has a derivative and a is any real number $\frac{d}{dx} a f(x) = a \frac{d}{dx} f(x)$.
- $(4) \ \frac{d}{dx}e^x = e^x.$
- (5) $\frac{d}{dx} 2^x = 2^x \ln 2$
- (6) $\frac{d}{dx}b^x = b^x \ln b$ whenever b > 0
- (7) $\frac{d}{dx} \ln x = \frac{1}{x}$
- (8) $\frac{d}{dx} \log x = \frac{1}{x} \cdot \log e$
- $(9) \ \frac{d}{dx} \log_b x = \frac{1}{x} \cdot \log_b e$
- (10) For any functions f(x), g(x) (whose derivatives exist)
 - (a) $\frac{d}{dx}(f(x) + g(x)) = \frac{d}{dx}f(x) + \frac{d}{dx}g(x)$
 - (b) $\frac{d}{dx}(f(x) \cdot g(x)) = f(x) \cdot \frac{d}{dx}g(x) + g(x) \cdot \frac{d}{dx}f(x)$
 - (c) $\frac{d}{dx}(\frac{1}{f(x)}) = \frac{-f'(x)}{[f(x)]^2}$

(d)
$$\frac{d}{dx}(f(g(x))) = f'(g(x)) \cdot g'(x)$$

(11) Important special cases (a denotes a real number)

(a)
$$\frac{d}{dx}ax = a$$

(b)
$$\frac{d}{dx}ax^2 = 2ax$$

(c)
$$\frac{d}{dx}ax^3 = 3ax^2$$

(d)
$$\frac{d}{dx} \frac{1}{x} = \frac{-1}{x^2}$$
.

(e)
$$\frac{d}{dx}\sqrt{x} = \frac{d}{dx}x^{1/2} = \frac{1}{2}x^{-1/2} = \frac{1}{2\sqrt{x}}$$
.

Facts About Limits

(1)
$$\lim_{n\to\infty} \frac{1}{n^r} = 0$$
 for any $r > 0$

(2)
$$\lim_{n\to\infty} n = \infty$$

(3)
$$\lim_{n\to\infty} 2^n = \infty$$

(4) Suppose
$$p(n)$$
 and $q(n)$ are polynomials If $\deg(p(n)) < \deg(q(n))$ then $\lim_{n \to \infty} \frac{p(n)}{q(n)} = 0$ and $\lim_{n \to \infty} \frac{q(n)}{p(n)} = \infty$

(5) [L'Hopital's Rule] Suppose f and g have derivatives (at least when x is large) and their limits as $x \to \infty$ are either both 0 or both infinite. Then

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$$

as long as these limits exist.