六大基本初等函数图像及其性质

一、常值函数(也称常数函数) y =C(其中C为常数);

二、幂函数 $y = x^{\alpha}$, x 是自变量, α 是常数;

1. 幂函数的图像:

2. 幂函数的性质:

- 帝四致[1]工灰;		•			
性质函数	y = x	$y = x^2$	$y = x^3$	$y = x^{\frac{1}{2}}$	$y = x^{-1}$
定义域	R	R	R	[0, +∞)	$\{x \mid x \neq 0\}$
值域	R	[0, +∞)	R	[0, +∞)	{y y≠0}
奇偶性	奇	偶	奇	非奇非偶	奇
单调性	增	[0,+∞) 增 (-∞,0] 减	增	增	(0,+∞) 减 (-∞,0) 减
公共点			(1, 1)		

- 1)当 α 为正整数时,函数的定义域为区间为 $x \in (-\infty, +\infty)$,他们的图形都经过原点,并当 $\alpha > 1$ 时在原点处与 x 轴相切。且 α 为奇数时,图形关于原点对称; α 为偶数时图形关于 y 轴对称;
 - 2) 当 α 为负整数时。函数的定义域为除去 x=0 的所有实数;
- 3)当 α 为正有理数 $\frac{m}{n}$ 时,n 为偶数时函数的定义域为(0, $+\infty$),n 为奇数时函数的定义域为($-\infty$, $+\infty$),函数的图形均经过原点和(1 , 1);
- 4) 如果 m>n 图形于 x 轴相切,如果 m<n,图形于 y 轴相切,且 m 为偶数时,还跟 y 轴对称; m, n 均为奇数时,跟原点对称;
- 5)当 α 为负有理数时, n 为偶数时, 函数的定义域为大于零的一切实数; n 为奇数时, 定义域为去除 x=0 以外的一切实数。

三、指数函数 $y = a^x$ (x 是自变量, a 是常数且 a > 0, $a \ne 1$), 定义域是 R; [无界函数]

1. 指数函数的图象:

2. 指数函数的性质;

性质函数	$y = a^x \ (a > 1)$	$y = a^x \ (0 < a < 1)$	
定义域	R		
值域	(0, +∞)		
奇偶性	非奇非偶		
公共点	过点(0, 1), 即 $x = 0$ 时, $y = 1$		
单调性	在(-∞,+∞)是增函数	在(-∞,+∞)是减函数	

- 1) 当 a > 1 时函数为单调增,当 0 < a < 1 时函数为单调减;
- 2) 不论 x 为何值, y 总是正的, 图形在 x 轴上方;
- 3) 当 x = 0 时, y = 1, 所以它的图形通过 (0, 1) 点。 文案大全

3. (选,补充)指数函数值的大小比较 $a\in ext{N}^*$;

a. 底数互为倒数的两个指数函数

$$f(x) = a^x, \quad f(x) = \left(\frac{1}{a}\right)^x$$

的函数图像关于 y 轴对称。

b. 2. 当 0 < a < 1时,a 值越大, $y = a^x$ 的图像越远离 y 轴。

a. 整数指数幂的运算性质 $(a \ge 0, m, n \in Q)$;

$$(1) \quad a^m \cdot a^n = a^{m+n}$$

$$(2) \quad a^m \div a^n = a^{m-n}$$

(3)
$$(a^m)^n = a^{nm} = (a^n)^m$$

$$_{(4)} (ab)^n = a^n b^n$$

b. 1. 当 a > 1 时,a 值越大, $y = a^x$ 的图像越靠近 y 轴;

b. 根式的性质;

(1)
$$\left(\sqrt[n]{a}\right)^n = a$$
 ; (2) 当 n 为奇数时, $\sqrt[n]{a^n} = a$

当 n 为偶数时,
$$\sqrt[n]{a^n} = |a| = \begin{cases} a & (a \ge 0) \\ -a(a < 0) \end{cases}$$

c. 分数指数幂;

(1)
$$a^{\frac{m}{n}} = \sqrt[n]{a^m} (a > 0, m, n \in Z^*, n > 1)$$

(2)
$$a^{-\frac{m}{n}} = \frac{1}{a^{\frac{m}{n}}} = \frac{1}{\sqrt[n]{a^m}} (a > 0, m, n \in Z^*, n > 1)$$

四、对数函数 $y = \log_a x$ (a 是常数且 $a > 0, a \ne 1$),定义域 $x \in (0, +\infty)$ [无界]

1. 对数的概念: 如果 a(a>0, $a\ne 1$)的 b 次幂等于 N,就是 $a^b=N$,那么数 b 叫做以 a 为底 N 的对数,记作 $\log_a N=b$,其中 a 叫做对数的底数,N 叫做真数,式子 $\log_a N$ 叫做对数式。

对数函数 $y=\log_a x$ 与指数函数 $y=a^x$ 互为反函数,所以 $y=\log_a x$ 的图象与 $y=a^x$ 的图象 关于直线 y=x 对称。

- **2. 常用对数:** $\log_{10} N$ 的对数叫做常用对数,为了简便,N 的常用对数记作 $\lg N$ 。
- 3. **自然对数:** 使用以无理数 e=2.7182 为底的对数叫做自然对数,为了简便,N 的自然对数 $\log_e N$ 简记作 $\ln N$ 。

4. 对数函数的图象:

5. 对数函数的性质:

性质 函数	$y = \log_a x$ $(a > 1)$	$y = \log_a x$ $(0 < a < 1)$	
定义域	(0, +∞)		
值域	R		
奇偶性	非奇非偶		
公共点	过点(1, 0), 即 $x=1$ 时, $y=0$		
单调性	在(0,+∞)上是增函数	在(0,+∞)上是减函数	

- 1) 对数函数的图形为于 y 轴的右方, 并过点(1,0);
- 2)当a>1时,在区间(0,1),y的值为负,图形位于 x 的下方;在区间(1, + ∞),y 值为正,图形位于 x 轴上方,在定义域是单调增函数。a<1在实际中很少用到。

6. (选,补充)对数函数值的大小比较 $a\in\operatorname{N}^*$;

a. 底数互为倒数的两个对数函数

$$y = \log_a x$$
, $y = \log_{\frac{1}{a}} x$

的函数图像关于 x 轴对称。

a. 如果 a>0, a≠1, M>0, N>0, 那么:

$$\log_a(MN) = \log_a M + \log_a N$$
$$\log_a \frac{M}{N} = \log_a M - \log_a N$$

$$\log_a M^n = n \log_a M$$

b. 对数恒等式:

$$a^{\log_a N} = N \quad (a > 0 \perp a \neq 1, \quad N > 0)$$

 $f(x) = \log_3 x$ b. 1. 当a > 1时,a 值越大, $f(x) = \log_a x$ 的图像越靠近 x 轴;

c. 换底公式:

(1)
$$\log_b N = \frac{\log_a N}{\log_a b}$$
 ($a > 0, a \ne 1$,一般常常

换为 e 或 10 为底的对数, 即 $\log_b N = \frac{\ln N}{\ln b}$ 或

$$\log_b N = \frac{\lg N}{\lg b}$$

(2)由公式和运算性质推倒的结论:

$$\log_{a^n} b^n = \frac{n}{m} \log_a b$$

d. 对数运算性质

- (1)1 的对数是零,即 $\log_a 1 = 0$; 同理 $\ln 1 = 0$ 或 $\lg 1 = 0$
- (2) 底数的对数等于 1,即 $\log_a a = 1$; 同理 $\ln e = 1$ 或 $\lg 10 = 1$ 文案大全

五、三角函数

1. 正弦函数 $y = \sin x$, 有界函数,定义域 $x \in (-\infty, +\infty)$,值域 $y \in [-1, +1]$

图象: 五点作图法: 0,
$$\frac{\pi}{2}$$
, π , $\frac{3\pi}{2}$, 2π

2. 余弦函数 $y=\cos x$,有界函数,定义域 $x\in (-\infty,+\infty)$,值域 $y\in [-1,+1]$

图象: 五点作图法: 0,
$$\frac{\pi}{2}$$
, π , $\frac{3\pi}{2}$, 2π

3. 正、余弦函数的性质;

3. 正、永远函数的注灰;			
性质函数	$y = \sin x \ (k \in Z)$	$y = \cos x (k \in \mathbb{Z})$	
定义域	R		
值域	[-1, 1]	[-1, 1]	
奇偶性	奇函数	偶函数	
周期性	$T = 2\pi$	$T=2\pi$	
对称中心	$(k\pi,0)$	$(k\pi\frac{\pi}{2},0)$	
对称轴	$x = k\pi + \frac{\pi}{2}$	$(k\pi + \frac{\pi}{2},0)$	
单调性	在 $x \in \left[2k\pi - \frac{\pi}{2}, 2k\pi + \frac{\pi}{2}\right]$ 上是增函数 在 $x \in \left[2k\pi + \frac{\pi}{2}, 2k\pi + \frac{3\pi}{2}\right]$ 上是减函数	在 $x \in [2k\pi - \pi, 2k\pi]$ 上是增函数 在 $x \in [2k\pi, 2k\pi + \pi]$ 上是减函数	
最值	$x = 2k\pi + \frac{\pi}{2}$ 时, $y_{\text{max}} = 1$ $x = 2k\pi + \frac{\pi}{2}$ 时, $y_{\text{min}} = -1$	$x=2k\pi$ 时, $y_{\max}=1$ $x=2k\pi+\pi$ 时, $y_{\min}=-1$	

文案大全

5. 余切函数 $y = \cot x$, 无界函数, 定义域 $\{x | x \neq k\pi, k \in Z\}$, $y \in (-\infty, +\infty)$

 $y = \cot x$ 的图像

6. 正、余切函数的性质;

性质函数	$y = \tan x \ (k \in Z)$	$y = \cot x \ (k \in Z)$
定义域	$x \neq k\pi + \frac{\pi}{2}$	$x \neq k\pi$
值域	R	R
奇偶性	奇函数	奇函数
周期性	$T = \pi$	$T=\pi$
单调性	在 $\left(-\frac{\pi}{2}+k\pi,\frac{\pi}{2}+k\pi\right)$ 上都是增函数	在 $(k\pi,(k+1)\pi)$ 上都是减函数
对称中心	$(\frac{k\pi}{2},0)$	$(\frac{k\pi}{2},0)$
零点	$(k\pi,0)$	$(k\pi + \frac{\pi}{2}, 0)$

8. 余割函数 $y = \csc x = \frac{1}{\sin x}$, 无界函数,定义域 $\{x | x \neq k\pi, (k \in Z)\}$,值域 $|\csc x| \ge 1$

9. 正、余割函数的性质;

· 正、水田田:	×1101=101)	
性质函数	$y = \sec x \ (k \in Z)$	$y = \csc x \ (k \in Z)$
定义域	$\left\{x\middle x\neq\frac{\pi}{2}+k\pi\right\}$	$\{x x\neq k\pi\}$
值域	$(-\infty,-1] \cup [1,+\infty)$	$(-\infty,-1] \cup [1,+\infty)$
奇偶性	偶函数	奇函数
周期性	$T=2\pi$	$T=2\pi$
单调性	$(2k\pi - \frac{\pi}{2}, 2k\pi) \cup (2k\pi + \pi, 2k\pi + \frac{3\pi}{2})$ 减 $(2k\pi, 2k\pi + \frac{\pi}{2}) \cup (2k\pi + \frac{\pi}{2}, 2k\pi + \pi) $	$(2k\pi,2k\pi+\frac{\pi}{2})\cup(2k\pi+\frac{3\pi}{2},2k\pi+2\pi)$ 減 $(2k\pi+\frac{\pi}{2},2k\pi+\pi)\cup(2k\pi+\pi,2k\pi+\frac{3\pi}{2})$ 增

续表:

性质函数	$y = \sec x \ (k \in Z)$	$y = \csc x \ (k \in Z)$
对称中心	$(k\pi + \frac{\pi}{2}, 0)$	$(k\pi,0)$
对称轴	$x = k\pi$	$x = \frac{\pi}{2} + k\pi$
渐近线	$x = \frac{\pi}{2} + k\pi$	$x = k\pi$

六、反三角函数

1. 反正弦函数 $y = \arcsin x$, 无界函数,定义域[-1,1],值域 $[0,\pi]$

A. 反正弦函数的概念:正弦函数 $y=\sin x$ 在区间 $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ 上的反函数称为反正弦函数,记为

 $y = \arcsin x$

2. 反余弦弦函数 $y = \arccos x$, 无界函数,定义域[-1,1],值域 $[0,\pi]$

B. **反余弦函数的概念**: 余弦函数 $y = \cos x$ 在区间 $[0,\pi]$ 上的反函数称为反余弦函数,记为

3. 反正、余弦函数的性质;

性质函数	$y = \arcsin x$	$y = \arccos x$
定义域	[-1, 1]	[-1, 1]
值域	$[0,\pi]$	$[0,\pi]$
奇偶性	奇函数	非奇非偶函数
单调性	增函数	减函数

- 4. 反正切函数 $y=\arctan x$,有界函数,定义域 $x\in (-\infty,+\infty)$,值域 $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$
- C. **反正切函数的概念:**正切函数 $y=\tan x$ 在区间 $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ 上的反函数称为反正切函数,记为 $y=\arctan x$
- 5. 反余切函数 $y = arc \cot x$, 有界函数,定义域 $x \in (-\infty, +\infty)$, 值域 $(0, \pi)$
- D. **反余切函数的概念:**余切函数 $y=\cot x$ 在区间 $(0,\pi)$ 上的反函数称为反余切函数,记为 $y=arc\cot x$

6. 反正、余弦函数的性质;

函数 性质	$y = \arctan x$	$y = arc \cot x$
定义域		R
值域	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$	$(0,\pi)$
奇偶性	奇函数	非奇非偶
单调性	增函数	减函数

三角函数公式汇总

一、任意角的三角函数

在角 α 的终边上任取一点P(x,y),记: $r = \sqrt{x^2 + y^2}$ 。

正切:
$$\tan \alpha = \frac{y}{x}$$
 余切: $\cot \alpha = \frac{x}{y}$

正割:
$$\sec \alpha = \frac{r}{x}$$
 余割: $\csc \alpha = \frac{r}{v}$

二、同角三角函数的基本关系式

倒数关系: $\sin \alpha \cdot \csc \alpha = 1$, $\cos \alpha \cdot \sec \alpha = 1$, $\tan \alpha \cdot \cot \alpha = 1$

商数关系:
$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$$
, $\cot \alpha = \frac{\cos \alpha}{\sin \alpha}$

平方关系: $\sin^2 \alpha + \cos^2 \alpha = 1$, $1 + \tan^2 \alpha = \sec^2 \alpha$, $1 + \cot^2 \alpha = \csc^2 \alpha$

三、诱导公式

x 轴上的角,口诀:函数名不变,符号看象限;

y 轴上的角, 口诀: 函数名改变, 符号看象限。

四、和角公式和差角公式

$$\sin(\alpha + \beta) = \sin\alpha \cdot \cos\beta + \cos\alpha \cdot \sin\beta$$

$$\sin(\alpha - \beta) = \sin\alpha \cdot \cos\beta - \cos\alpha \cdot \sin\beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$$

$$\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \cdot \tan \beta}$$

$$\tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \cdot \tan \beta}$$

五、二倍角公式

$$\sin 2\alpha = 2\sin \alpha \cos \alpha$$

$$\tan 2\alpha = \frac{2\tan \alpha}{1 - \tan^2 \alpha}$$

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 2\cos^2 \alpha - 1 = 1 - 2\sin^2 \alpha$$

二倍角的余弦公式常用变形: (规律: 降幂扩角, 升幂缩角)

$$1 + \cos 2\alpha = 2\cos^2 \alpha$$

$$1 - \cos 2\alpha = 2\sin^2 \alpha$$

$$1 + \sin 2\alpha = (\sin \alpha + \cos \alpha)^2$$

$$1 + \sin 2\alpha = (\sin \alpha + \cos \alpha)^{2} \qquad 1 - \sin 2\alpha = (\sin \alpha - \cos \alpha)^{2}$$

$$\cos^2 \alpha = \frac{1 + \cos 2\alpha}{2}, \quad \sin^2 \alpha = \frac{1 + \sin 2\alpha}{2}, \quad \tan \alpha = \frac{1 - \cos 2\alpha}{\sin 2\alpha} = \frac{\sin 2\alpha}{1 + \cos 2\alpha}$$

六、三倍角公式

$$\sin 3\alpha = 3\sin \alpha - 4\sin^3 = 4\sin \alpha \sin(\frac{\pi}{3} - \alpha)\sin(\frac{\pi}{3} + \alpha)$$

$$\cos 3\alpha = 4\cos^3 - 3\cos \alpha = 4\cos \alpha \cos(\frac{\pi}{3} - \alpha)\cos(\frac{\pi}{3} + \alpha)$$

$$\tan 3\alpha = \frac{3\tan \alpha - \tan^3 \alpha}{1 - 3\tan^2 \alpha} = \tan \alpha \tan(\frac{\pi}{3} - \alpha)\tan(\frac{\pi}{3} + \alpha)$$

七、和差化积公式

$$\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$

$$\cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$

$$\sin \alpha - \sin \beta = 2 \cos \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$

$$\cos \alpha - \cos \beta = -2 \sin \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$

八、辅助角公式

$$a\sin x + b\cos x = \sqrt{a^2 + b^2}\sin(x + \varphi)$$

其中: 角 φ 的终边所在的象限与点(a,b)所在的象限相同,

$$\sin \varphi = \frac{b}{\sqrt{a^2 + b^2}}$$
, $\cos \varphi = \frac{a}{\sqrt{a^2 + b^2}}$, $\tan \varphi = \frac{b}{a}$

九、三角函数的周期公式

函数 $y = A\sin(\omega x + \varphi)$, $x \in R$ 及函数 $y = A\cos(\omega x + \varphi)$, $x \in R$ (A, ω, φ , 为常数, 且 $A \neq 0, \omega > 0$)

周期:
$$T = \frac{2\pi}{\alpha}$$

函数 $y = A \tan(\omega x + \varphi)$, $x \neq k\pi + \frac{\pi}{2}, k \in \mathbb{Z}$ (A, ω, φ , 为常数, 且 $A \neq 0, \omega > 0$)

周期:
$$T = \frac{\pi}{\omega}$$

十、正弦定理

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R \quad (R 为 \Delta ABC$$
外接圆半径)

十一、余弦定理

$$a^2 = b^2 + c^2 - 2bc \cdot \cos A$$

$$b^2 = a^2 + c^2 - 2ac \cdot \cos B$$

$$c^2 = a^2 + b^2 - 2ab \cdot \cos C$$