Lecture 5-2

Logistic (regression) classification: cost function & gradient decent

Sung Kim <hunkim+mr@gmail.com>

Cost

$$cost(W, b) = \frac{1}{m} \sum_{i=1}^{m} (H(x^{(i)}) - y^{(i)})^2$$
 when $\underline{H(x) = Wx + b}$

Cost function

$$cost(W,b) = \frac{1}{m} \sum_{i=1}^{m} (H(x^{(i)}) - y^{(i)})^{2}$$

$$H(x) = Wx + b$$

$$H(X) = \frac{1}{1 + e^{-W^T X}}$$

New cost function for logistic

$$\underline{cost(W)} = \frac{1}{m} \sum \underline{c(H(x), y)}$$

$$C(H(x), y) = \begin{cases} -log(H(x)) & : y = 1 \\ -log(1 - H(x)) & : y = 0 \end{cases}$$

understanding cost function

$$C(H(x),y) = \begin{cases} -\log(H(x)) & : y = 1 \\ -\log(1 - H(x)) & : y = 0 \end{cases}$$

$$y=0$$

$$H(x)=0 \quad g \quad cost=0$$

$$H(x)=1 \quad g \quad cost=conf$$

Cost function

$$COSt(W) = \frac{1}{m} \sum_{\substack{C \in H(x), y \\ -log(1 - H(x)) : y = 0}} c(H(x), y)$$

$$C(H(x),y) = ylog(H(x)) - (1-y)log(1-H(x))$$

$$J=1$$
, $C=-log(HOX))$

$$y=0$$
, $C=-1*log(1-H(x1))$

Minimize cost - Gradient decent algorithm

$$cost(W) = -\frac{1}{m} \sum y log(H(x)) + (1 - y) log(1 - H(x))$$

Gradient decent algorithm

Minimize

$$Cost(W) = -\frac{1}{m} \sum ylog(H(x)) + (1-y)log(1-H(x))$$

$$W := W - \alpha \frac{\partial}{\partial W} cost(W)$$

$$\# \ cost \ function \\ cost = \ tf.reduce_mean(-tf.reduce_sum(Y*tf.log(hypothesis) + (1-Y)*tf.log(1-hypothesis)))$$

$$\# \ Minimize \\ a = \ tf.Variable(0.1) \ \# \ Learning \ rate, \ alpha \\ optimizer = \ tf.train. \underline{GradientDescentOptimizer(a)} \\ train = \ optimizer.minimize(cost)$$

Next Multinomial Multinom (Softmax) classification

