Update: Waveform Unfolding for the PDOM

John Kelley and Jim Braun PINGU Hardware Call October 16, 2014

Reminder

- IceCube runs feature extraction to convert raw waveforms to a pulse series
 - pairs of (charge, time) with given pulse templates
 - filtering clients calibrate
 data and run on all events
- Goal: pull this code out of IceTray and get it running on a SOCkit dev kit
 - benchmarking... can we unfold SPEs at > 1 kHz?
 - power consumption

Initial benchmarking (ARM Cortex A9)

Not quite fast enough... but in the ballpark after I day of tuning Preliminary tests suggest a multithreaded version will be > I kHz

Updates since Geneva

- J. Braun taking over WaveDeform project from J. van Santen
- New optimizations (by J. B.):
 - automatic selection of waveform length, model matrix size (pick interesting portion of waveform)
 - simplify first iterations through the unfolding algorithm
 - added SPE-only "unfolding"
 - not a fundamentally different algorithm, just an optimized first iteration of WaveDeform
 - no time-consuming matrix operations!
- General speed improvements can also be back-ported to IceCube

Latest Benchmarks: SPE unfolding rate

Both new methods are fast enough to run on the dark noise

Arm Core Necessary?

- Demonstrated that our best feature extraction can run on a Gen2 DOM with ARM core
- If we only feature-extract SPEs, though, do we need the ARM?
 - SPE algorithm can be adapted to firmware or maybe soft core
 - don't expect to save 800 mW, though (ARM power at full bore)
 - power consumption TBD
- Still should use a processor for DAQ slow control, managing data requests etc.
 - NIOS soft-core power depends on config (200 mW for ii/f?)
 - ARM power (good clock management) might still be OK if load is moderate
- Still open issues besides the algorithm
 - data buffering, movement
 - droop correction (!)

Backup

domwave

- http://github.com/WIPACrepo/domwave
- Standalone C99 port of WaveDeform
 - pull out all IceTray hooks
 - PDOM simplifications (single-channel front end)
 - add prototype pulse shape (courtesy K. Jero)
 - add command-line interface for testing
- SPE-only algorithm: see getPulsesSPE() in domwave.c

Waveform Unfolding

Use time-shifted SPE pulse templates as a set of basis functions for a PMT waveform

- Non-negative least squares solution to matrix equation y = Ax
 - y is the binned waveform as a column vector
 - A is the basis matrix (pulse templates as columns)
 - **x** is the best-fit unfolding (pulse amplitudes as column vector)
- Minimization code (Lawson-Hanson) can be used as-is from IceCube
- Some other tweaks
 - input waveforms are "road-graded" (bins below noise threshold set to zero)
 - saturated bins are not included

Sample Results

SPE data from early K. Jero lab setup (PMT + TI ADC + prototype firmware)

SoCKit power consumption

SoCKit state	Power (W)	
bootloader	5.95	
Linux (idle)	5.77	delta: 370 mW
Linux (unfolding, CPU at 100%)	6.14	ueita. 370 iiivv

N.B.: SoCKit contains a lot of subsystems not on a mainboard (serial, Ethernet, backlit LCD)

Unknown idle draw of CPU alone... estimate is 250-500 mW (update from K. Hanson: estimate is 800 mW from spreadsheet)