Оптимальный байесовский классификатор Непараметрическое восстановление плотности Параметрическое восстановление плотности Восстановление смеси распределений

Статистические (байесовские) методы классификации

Содержание

- Вероятностная постановка задачи классификации
- Оптимальный байесовский классификатор
- Задача восстановления плотности распределения
- Наивный байесовский классификатор

- Одномерный случай
- Многомерный случай
- Метод парзеновского окна
- Выбор метрики, ядра, ширины окна

3 Параметрическое восстановление плотности

- Принцип максимума правдоподобия
- Нормальный дискриминантный анализ
- Геометрический смысл
- Проблемы мультиколлинеарности и переобучения

Восстановление смеси распределений

- Модель смеси распределений
- ЕМ-алгоритм
- Некоторые модификации ЕМ-алгоритма
- Сеть радиальных базисных функций

Постановка задачи

$$X$$
 — объекты, Y — ответы, $X \times Y$ — в.п. с плотностью $p(x,y)$;

Дано:

$$X^{\ell} = (x_i, y_i)_{i=1}^{\ell}$$
 — простая выборка;

Найти:

классификатор $a\colon X \to Y$ с минимальной вероятностью ошибки.

Временное допущение: пусть известна совместная плотность

$$p(x, y) = p(x) P(y|x) = P(y)p(x|y).$$

$$P(y) \equiv P_y$$
 — априорная вероятность класса y ; $p(x|y) \equiv p_y(x)$ — функция правдоподобия класса y ; $P(y|x)$ — апостериорная вероятность класса y ;

Принцип максимума апостериорной вероятности:

$$a(x) = \arg \max_{y \in Y} P(y|x) = \arg \max_{y \in Y} P_y p_y(x).$$

Вероятностная постановка задачи классификации Оптимальный байесовский классификатор Задача восстановления плотности распределения Наивный байесовский классификатор

Классификация по максимуму функции правдоподобия

Частный случай: $a(x) = \arg\max_{y \in Y} p_y(x)$ при $P_y = \mathrm{const.}$

Функционал среднего риска

 $a: X \to Y$ разбивает X на непересекающиеся области:

$$A_{v} = \{x \in X \mid a(x) = y\}, \quad y \in Y.$$

Ошибка: объект x класса y попадает в A_s , $s \neq y$.

Вероятность ошибки: $P(A_s, y) = \int_{A_s} p(x, y) dx$.

Потеря от ошибки: задана $\lambda_{ys}\geqslant 0$, для всех $(y,s)\in Y imes Y$.

Средний риск — мат.ожидание потери для классификатора а:

$$R(a) = \sum_{y \in Y} \sum_{s \in Y} \lambda_{ys} P(A_s, y),$$

Вероятностная постановка задачи классификации Оптимальный байесовский классификатор Задача восстановления плотности распределения Наивный байесовский классификатор

Две теоремы об оптимальности байесовского классификатора

Теорема

Если известны $P_y = P(y)$ и $p_y(x) = p(x|y)$, то минимум среднего риска R(a) достигается при

$$a(x) = \arg\min_{s \in Y} \sum_{y \in Y} \lambda_{ys} P_y p_y(x).$$

Теорема

Если к тому же $\lambda_{yy}=0$ и $\lambda_{ys}\equiv\lambda_y$ для всех $y,s\in Y$, то минимум среднего риска R(a) достигается при

$$a(x) = \arg\max_{y \in Y} \lambda_y P_y p_y(x).$$

При чём тут Байес?

Апостериорная вероятность по формуле Байеса:

$$P(y|x) = \frac{p(x,y)}{p(x)} = \frac{P_y p_y(x)}{\sum\limits_{s \in Y} P_s p_s(x)}.$$

Если $\lambda_y = 1$, то получаем всё тот же принцип максимума апостериорной вероятности:

$$a(x) = \arg \max_{y \in Y} \lambda_y P_y p_y(x) = \arg \max_{y \in Y} P(y|x).$$

Ожидаемая потеря на объекте х:

$$R(x) = \sum_{y \in Y} \lambda_y P(y|x).$$

Итак, есть две подзадачи, причём вторую мы уже решили!

1 Дано:

$$X^{\ell} = (x_i, y_i)_{i=1}^{\ell}$$
 — обучающая выборка.

Найти:

эмпирические оценки \hat{P}_y и $\hat{p}_y(x)$, $y \in Y$ (восстановить плотность распределения по выборке).

Дано:

априорные вероятности
$$P_y$$
, функции правдоподобия $p_v(x)$, $y \in Y$.

Найти:

классификатор $a: X \times Y$, минимизирующий R(a).

Ехидное замечание: Когда вместо P_y и $p_y(x)$ подставляются их эмпирические оценки, байесовский классификатор перестаёт быть оптимальным.

Задачи эмпирического оценивания

• Оценивание априорных вероятностей частотами

$$\hat{P}_y = \frac{\ell_y}{\ell}, \quad \ell_y = |X_y|, \quad X_y = \big\{x_i \in X \colon y_i = y\big\}, \quad y \in Y.$$

• Оценивание функций правдоподобия:

Дано:

$$X^m = \{x_1, \dots, x_m\}$$
 — простая выборка $(X_y$ без ответов y_i).

Найти:

эмпирическую оценку плотности $\hat{p}(x)$, аппроксимирующую истинную плотность p(x) на всём X:

$$\hat{p}(x) \to p(x)$$
 при $m \to \infty$.

Анонс: три подхода к оцениванию плотностей

■ Параметрическое оценивание плотности:

$$\hat{p}(x) = \varphi(x, \theta).$$

Восстановление смеси распределений:

$$\hat{p}(x) = \sum_{i=1}^{k} w_j \varphi(x, \theta_j), \quad k \ll m.$$

Непараметрическое оценивание плотности:

$$\hat{p}(x) = \sum_{i=1}^{m} \frac{1}{mV(h)} K\left(\frac{\rho(x, x_i)}{h}\right).$$

Наивный байесовский классификатор

Допущение (наивное):

Признаки $f_j: X \to D_j$ — независимые случайные величины с плотностями распределения, $p_{v,j}(\xi)$, $y \in Y$, $j = 1, \ldots, n$.

Тогда функции правдоподобия классов представимы в виде произведения одномерных плотностей по признакам:

$$p_{y}(x) = p_{y,1}(\xi_1) \cdots p_{y,n}(\xi_n), \quad x = (\xi_1, \dots, \xi_n), \quad y \in Y.$$

Прологарифмируем (для удобства). Получим классификатор

$$a(x) = \arg\max_{y \in Y} \left(\ln \lambda_y \hat{P}_y + \sum_{i=1}^n \ln \hat{p}_{yi}(\xi_i) \right).$$

Восстановление п одномерных плотностей

— намного более простая задача, чем одной *п*-мерной.

Начнём с определения плотности вероятности

Дискретный случай: $|X| \ll m$. Гистограмма значений x_i :

$$\hat{p}(x) = \frac{1}{m} \sum_{i=1}^{m} [x_i = x].$$

Одномерный непрерывный случай: $X = \mathbb{R}$. По определению плотности, если P[a,b] — вероятностная мера отрезка [a,b]:

$$p(x) = \lim_{h \to 0} \frac{1}{2h} P[x - h, x + h],$$

Эмпирическая оценка плотности по окну ширины h:

$$\hat{p}_h(x) = \frac{1}{2mh} \sum_{i=1}^m [|x - x_i| < h].$$

Локальная непараметрическая оценка Парзена-Розенблатта

Эмпирическая оценка плотности по окну ширины h:

$$\hat{p}_h(x) = \frac{1}{mh} \sum_{i=1}^m \frac{1}{2} \left[\frac{|x - x_i|}{h} < 1 \right].$$

Обобщение: оценка Парзена-Розенблатта по окну ширины h:

$$\hat{p}_h(x) = \frac{1}{mh} \sum_{i=1}^m K\left(\frac{x - x_i}{h}\right),$$

где K(r) — *ядро*, удовлетворяющее требованиям:

- чётная функция;
- нормированная функция: $\int K(r) dr = 1$;
- (как правило) невозрастающая, неотрицательная функция.

В частности, при $K(r) = \frac{1}{2} \big[|r| < 1 \big]$ имеем эмпирическую оценку.

Пример. Ядерные оценки плотности при разных h

Оценка $\hat{p}_h(x)$ существенно зависит от ширины окна h:

Обоснование оценки Парзена-Розенблатта

Теорема (одномерный случай, $X=\mathbb{R})$

Пусть выполнены следующие условия:

- 1) X^m простая выборка из распределения p(x);
- 2) ядро K(z) непрерывно и ограничено: $\int_X K^2(z) dz < \infty$;
- 3) последовательность h_m : $\lim_{m \to \infty} h_m = 0$ и $\lim_{m \to \infty} m h_m = \infty$.

Тогда:

- 1) $\hat{p}_{h_m}(x) o p(x)$ при $m o \infty$ для почти всех $x \in X$;
- 2) скорость сходимости имеет порядок $O(m^{-2/5})$.

А как быть в многомерном случае, когда $X = \mathbb{R}^n$?

Два варианта обобщения на многомерный случай

1. Если объекты описываются n числовыми признаками $f_i \colon X \to \mathbb{R}, \ j=1,\ldots,n.$

$$\hat{p}_h(x) = \frac{1}{m} \sum_{i=1}^m \prod_{j=1}^n \frac{1}{h_j} K\left(\frac{f_j(x) - f_j(x_i)}{h_j}\right).$$

2. Если на X задана функция расстояния $\rho(x, x')$:

$$\hat{p}_h(x) = \frac{1}{mV(h)} \sum_{i=1}^m K\left(\frac{\rho(x,x_i)}{h}\right),$$

где $V(h) = \int_X K\left(rac{
ho(imes, imes_i)}{h}
ight) dx$ — нормирующий множитель.

Замечание: V(h) не должен зависеть от x_i (однородность $\langle X, \rho \rangle$).

Метод парзеновского окна

Парзеновская оценка плотности для каждого класса $y \in Y$:

$$\hat{p}_{y,h}(x) = \frac{1}{\ell_y V(h)} \sum_{i: y_i = y} K\left(\frac{\rho(x, x_i)}{h}\right),$$

Метод парзеновского окна (Parzen window):

$$a(x; X^{\ell}, h) = \arg \max_{y \in Y} \lambda_y \frac{P_y}{\ell_y} \sum_{i: y_i = y} K\left(\frac{\rho(x, x_i)}{h}\right).$$

Остаются вопросы:

- 1) на что влияет ядро K(r) и как его выбрать?
- 2) на что влияет ширина окна h и как её выбрать?
- 3) откуда взять функцию расстояния $\rho(x, x')$?

Пример. Визуализация парзеновского классификатора

Метод парзеновского окна (Parzen window):

$$a(x; X^{\ell}, h) = \arg\max_{y \in Y} \Gamma_{y}(x), \quad \Gamma_{y}(x) = \lambda_{y} \frac{P_{y}}{\ell_{y}} \sum_{i: y_{i} = y} K\left(\frac{\rho(x, x_{i})}{h}\right)$$

Цветом передаётся значение разности $\Gamma_+(x) - \Gamma_*(x)$:

Выбор метрики (функция расстояния)

Один из возможных вариантов

— взвешенная метрика Минковского:

$$\rho(x,x') = \left(\sum_{j=1}^{n} w_{j} |f_{j}(x) - f_{j}(x')|^{p}\right)^{\frac{1}{p}},$$

где w_i — неотрицательные веса признаков, p > 0.

В частности, если $w_i \equiv 1$ и p=2, то имеем евклидову метрику.

Роль весов w_i :

- 1) нормировка признаков;
- 2) степень важности признаков;
- 3) отбор признаков (какие $w_i = 0$?);

Часто используемые ядра

$$E(r)=rac{3}{4}(1-r^2)ig[|r|\leqslant 1ig]$$
 — оптимальное (Епанечникова); $Q(r)=rac{15}{16}(1-r^2)^2ig[|r|\leqslant 1ig]$ — квартическое; $T(r)=ig(1-|r|ig)ig[|r|\leqslant 1ig]$ — треугольное; $G(r)=(2\pi)^{-1/2}\exp(-rac{1}{2}r^2)$ — гауссовское; $\Pi(r)=rac{1}{2}ig[|r|\leqslant 1ig]$ — прямоугольное.

Выбор ядра почти не влияет на качество восстановления

Функционал качества восстановления плотности:

$$J(K) = \int_{-\infty}^{+\infty} \mathsf{E}\big(\hat{p}_h(x) - p(x)\big)^2 \, dx.$$

ядро $K(r)$	степень гладкости	$J(K^*)/J(K)$
Епанечникова $K^*(r)$	\hat{p}_h' разрывна	1.000
Квартическое	$\hat{p}_h^{\prime\prime}$ разрывна	0.995
Треугольное	\hat{p}_h' разрывна	0.989
Гауссовское	∞ дифференцируема	0.961
Прямоугольное	\hat{p}_h разрывна	0.943

Замечание: в таблице представлены асимптотические значения отношения $J(K^*)/J(K)$ при $m \to \infty$, причём это отношение не зависит от p(x).

Выбор ширины окна

Скользящий контроль Leave One Out:

$$LOO(h, X^{\ell}) = \sum_{i=1}^{\ell} \left[a(x_i; X^{\ell} \backslash x_i, h) \neq y_i \right] \to \min_h,$$

Типичный вид зависимости LOO от h:

Окна переменной ширины

Проблема:

при наличии локальных сгущений любая h не оптимальна.

Идея:

задавать не ширину окна h, а число соседей k.

$$h(x) = \rho(x, x^{(k+1)}),$$

где $x^{(i)}-i$ -й сосед объекта x при ранжировании выборки X^{ℓ} :

$$\rho(x,x^{(1)}) \leqslant \cdots \leqslant \rho(x,x^{(\ell)})$$

Замечание 1:

нормировка V(k) не должна зависеть от y, поэтому выборка ранжируется целиком, а не по классам X_v .

Замечание 2:

Оптимизация k по LOO аналогична оптимизации h.

Резюме в конце лекции

- $a(x) = \arg\max_{y \in Y} \lambda_y P_y p_y(x)$ эту формулу надо помнить.
- Наивный байесовский классификатор основан на «драконовском» предположении о независимости признаков. Как ни странно, иногда это работает.
- Три основных подхода к восстановлению функций правдоподобия $p_{V}(x)$ по выборке: параметрический, непараметрический и смесь распределений.
- Непараметрический подход наиболее прост и приводит к методу парзеновского окна.
- Проблемы непараметрического подхода:
 - выбор ширины окна h или числа соседей k;
 - выбор сглаживающего ядра K;
 - выбор метрики.

Принцип максимума правдоподобия

Пусть известна параметрическая модель плотности

$$p(x) = \varphi(x; \theta),$$

где θ — параметр, φ — фиксированная функция.

Задача — найти оптимальное θ по простой выборке X^m .

Принцип максимума (взвешенного) правдоподобия:

$$L(\theta; X^m, G^m) = \sum_{i=1}^m g_i \ln \varphi(x_i; \theta) \to \max_{\theta},$$

где $G^m = (g_1, \dots, g_m)$ — вектор весов объектов.

Необходимое условие оптимума:

$$\frac{\partial}{\partial \theta} L(\theta; X^m, G^m) = \sum_{i=1}^m g_i \frac{\partial}{\partial \theta} \ln \varphi(x_i; \theta) = 0,$$

где функция $\varphi(x;\theta)$ достаточно гладкая по параметру θ .

Многомерное нормальное распределение

Пусть $X = \mathbb{R}^n$ — объекты описываются n числовыми признаками.

Гипотеза: классы имеют n-мерные гауссовские плотности:

$$p_{y}(x) = \mathcal{N}(x; \mu_{y}, \Sigma_{y}) = \frac{e^{-\frac{1}{2}(x - \mu_{y})^{\mathsf{T}} \Sigma_{y}^{-1}(x - \mu_{y})}}{\sqrt{(2\pi)^{n} \det \Sigma_{y}}}, \quad y \in Y,$$

где $\mu_y \in \mathbb{R}^n$ — вектор матожидания (центр) класса $y \in Y$, $\Sigma_y \in \mathbb{R}^{n \times n}$ — ковариационная матрица класса $y \in Y$ (симметричная, невырожденная, положительно определённая).

Теорема

- 1. Разделяющая поверхность $\{x \in X \mid \lambda_y P_y p_y(x) = \lambda_s P_s p_s(x)\}$ квадратична для всех $y, s \in Y, y \neq s$.
- 2. Если $\Sigma_{v} = \Sigma_{s}$, то она вырождается в линейную.

Квадратичный дискриминант

Теорема

Оценки максимума взвешенного правдоподобия, $y \in Y$:

$$\hat{\mu}_{y} = rac{1}{G_{y}} \sum_{i: y_{i} = y} g_{i} x_{i};$$
 $\hat{\Sigma}_{y} = rac{1}{G_{y}} \sum_{i: y_{i} = y} g_{i} (x_{i} - \hat{\mu}_{y}) (x_{i} - \hat{\mu}_{y})^{\mathsf{T}};$
где $G_{y} = \sum_{i: y_{i} = y} g_{i}.$

Квадратичный дискриминант — подстановочный алгоритм:

$$a(x) = \arg\max_{y \in Y} \bigg(\ln \lambda_y P_y - \tfrac{1}{2} (x - \hat{\mu}_y)^\mathsf{T} \hat{\Sigma}_y^{-1} (x - \hat{\mu}_y) - \tfrac{1}{2} \ln \det \hat{\Sigma}_y \bigg).$$

Линейный дискриминант Фишера

Допущение:

ковариационные матрицы классов равны: $\Sigma_{\gamma} = \Sigma$, $y \in Y$.

Оценка максимума правдоподобия для Σ:

$$\hat{\Sigma} = \frac{1}{G} \sum_{i=1}^{\ell} g_i (x_i - \hat{\mu}_{y_i}) (x_i - \hat{\mu}_{y_i})^{\mathsf{T}}, \quad G = \sum_{i=1}^{\ell} g_i$$

Линейный дискриминант — подстановочный алгоритм:

$$\begin{split} \mathbf{a}(\mathbf{x}) &= \arg\max_{\mathbf{y} \in Y} \ \lambda_{\mathbf{y}} \hat{P}_{\mathbf{y}} \hat{p}_{\mathbf{y}}(\mathbf{x}) = \\ &= \arg\max_{\mathbf{y} \in Y} \ \left(\underbrace{\ln(\lambda_{\mathbf{y}} \hat{P}_{\mathbf{y}}) - \frac{1}{2} \hat{\mu}_{\mathbf{y}}^{\mathsf{T}} \hat{\Sigma}^{-1} \hat{\mu}_{\mathbf{y}}}_{\beta_{\mathbf{y}}} + \mathbf{x}^{\mathsf{T}} \underbrace{\hat{\Sigma}^{-1} \hat{\mu}_{\mathbf{y}}}_{\alpha_{\mathbf{y}}} \right); \\ \mathbf{a}(\mathbf{x}) &= \arg\max_{\mathbf{y} \in Y} \ \left(\mathbf{x}^{\mathsf{T}} \alpha_{\mathbf{y}} + \beta_{\mathbf{y}} \right). \end{split}$$

Геометрический смысл предположения о нормальности классов

Каждый класс — облако точек эллиптической формы:

Если $\Sigma = \mathrm{diag}(\sigma_1^2, \dots, \sigma_n^2)$: оси эллипсоида параллельны ортам В общем случае: $\Sigma = VSV^{\mathsf{T}}$ — спектральное разложение, $V = (v_1, \dots, v_n)$ — ортогональные собственные векторы Σ , $S = \mathrm{diag}(\lambda_1, \dots, \lambda_n)$ — собственные значения $(x-\mu)^{\mathsf{T}}\Sigma^{-1}(x-\mu) = (x-\mu)^{\mathsf{T}}VS^{-1}V^{\mathsf{T}}(x-\mu) = (x'-\mu')^{\mathsf{T}}S^{-1}(x'-\mu')$.

 $x' = V^{\mathsf{T}}x$ — декоррелирующее ортогональное преобразование

Геометрический смысл квадратичного дискриминанта

Пример. Ирисы Фишера: три класса по 50 объектов, разделяющие поверхности — квадратичные

Если $\Sigma_s = \Sigma_t$, то разделяющая поверхность линейная:

$$(x - \mu_{st})^{\mathsf{T}} \Sigma^{-1} (\mu_s - \mu_t) = \ln(\lambda_t P_t / \lambda_s P_s),$$

где $\mu_{st} = \frac{1}{2}(\mu_s + \mu_t)$ — середина между центрами классов.

Принцип максимума правдоподобия Нормальный дискриминантный анализ Геометрический смысл Проблемы мультиколлинеарности и переобучения

Геометрический смысл квадратичного дискриминанта

Геометрический смысл линейного дискриминанта

В одномерной проекции на направляющий вектор разделяющей гиперплоскости классы разделяются наиболее чётко, то есть вероятность ошибки минимальна.

Квадратичный дискриминант

Недостатки квадратичного дискриминанта:

- ullet Если $\ell_y < n$, то матрица $\hat{\Sigma}_y$ вырождена.
- ullet Чем меньше ℓ_y , тем менее устойчива оценка $\hat{\Sigma}_y$.
- ullet Оценки $\hat{\mu}_{y}$, $\hat{\Sigma}_{y}$ неустойчивы к выбросам.
- Если классы не нормальны, всё совсем плохо...

Линейный дискриминант:

- более устойчив,
- но хуже описывает классы различной формы.

Далее — меры по улучшению алгоритма:

- Регуляризация ковариационной матрицы
- Цензурирование выборки (отсев шума)
- Смеси нормальных распределений

Проблема мулитиколлинеарности

Проявления мулитиколлинеарности:

- ullet матрица $\hat{\Sigma}$ (или $\hat{\Sigma}_{v}$) близка к вырожденной;
- есть (приближённые) линейные зависимости признаков;
- есть собственные значения $\hat{\Sigma}$, близкие к нулю;
- число обусловленности $\mu(\hat{\Sigma}) = \frac{\lambda_{\max}}{\lambda_{\min}} \gg 1.$

Последствия мулитиколлинеарности:

- ullet обратная матрица $\hat{\Sigma}^{-1}$ неустойчива;
- относительные погрешности растут: если $v = \hat{\Sigma}^{-1} u$, то $\frac{\|\delta v\|}{\|v\|} \leqslant \mu(\hat{\Sigma}) \frac{\|\delta u\|}{\|u\|}$;
- ullet векторы нормалей $lpha_{\scriptscriptstyle Y}=\hat{\Sigma}^{-1}\hat{\mu}_{\scriptscriptstyle Y}$ неустойчивы;
- ullet переобучение: на X^ℓ всё хорошо, на X^k всё плохо.

Пути повышения качества классификации

- Улучшение обусловленности ковариационной матрицы:
 - регуляризация
 - обнуление недиагональных элементов
 - наивный байесовский классификатор
- Понижение размерности:
 - отбор признаков (features selection)
 - преобразование n признаков в n' < n признаков (PCA)
 - редукция размерности по А.М.Шурыгину (частный случай отбора признаков)
- Цензурирование выборки (отсев шума)
- Усложнение модели (смесь нормальных распределений)

Регуляризация ковариационной матрицы

Идея:

преобразовать матрицу $\hat{\Sigma}$ так, чтобы все собственные векторы v остались, а все собственные значения λ увеличились на τ :

$$(\hat{\Sigma} + \tau I_n)v = \lambda v + \tau v = (\lambda + \tau)v.$$

Рецепт:

- 1) обращение $\hat{\Sigma} + \tau I_n$ вместо $\hat{\Sigma}$;
- 2) выбор параметра регуляризации au по скользящему контролю.

Обнуление элементов ковариационной матрицы

$$\hat{\Sigma} = \|\sigma_{ij}\|_{n \times n}$$

Идея: обнулить статистически незначимые ковариации σ_{ij} .

Воплощение:

Для всех i, j = 1, ..., n, i < j

- 1) вычисляется коэффициент корреляции $r_{ij}=rac{\sigma_{ij}}{\sqrt{\sigma_{ii}\sigma_{ji}}};$
- 2) статистика $T_{ij}=rac{r_{ij}\sqrt{n-2}}{\sqrt{1-r_{ij}^2}}$ имеет t-распределение Стьюдента с n-2 степенями свободы;
- 3) если $|T_{ij}|\leqslant t_{1-\frac{\alpha}{2}}$ кванти́ль распределения Стьюдента при заданном уровне значимости α , то полагается $\sigma_{ii}:=\sigma_{ii}:=0$.

Диагонализация ковариационной матрицы

Идея: пусть признаки некоррелированы: $\sigma_{ij}=0$, $i\neq j$.

Замечание: для нормального распределения некоррелированность независимость

Получаем наивный байесовский классификатор:

$$\hat{p}_{yj}(\xi) = \frac{1}{\sqrt{2\pi}\hat{\sigma}_{yj}} \exp\left(-\frac{(\xi - \hat{\mu}_{yj})^2}{2\hat{\sigma}_{yj}^2}\right), \quad y \in Y, \quad j = 1, \dots, n;$$

$$a(x) = \arg\max_{y \in Y} \left(\ln \lambda_y \hat{P}_y + \sum_{i=1}^n \ln \hat{p}_{yj}(\xi_j)\right), \quad x \equiv (\xi_1, \dots, \xi_n);$$

где $\hat{\mu}_{yj}$ и $\hat{\sigma}_{yj}$ — оценки среднего и дисперсии j-го признака, вычисленные по X_v — подвыборке класса y.

Редукция размерности по А. М. Шурыгину

Идея:

сведение *п*-мерной задачи к серии двумерных задач путём подключения признаков по одному.

Набросок алгоритма:

- 1) найти два признака, в подпространстве которых классы наилучшим образом разделимы;
- 2) новый признак: $\psi(x) = x^{\mathsf{T}} \alpha_y$ проекция на нормаль к разделяющей прямой в пространстве двух признаков;
- 3) выбрать из оставшихся признаков тот, который в паре с $\psi(x)$ даёт наилучшую разделимость;
- 4) если разделимость не улучшилась, прекратить;
- 5) иначе GOTO 2);

Проблема выбросов (outliers)

Эмпирическое среднее является оценкой матожидания, неустойчивой к редким большим выбросам.

Пример. Одномерная нормальная плотность $\mathcal{N}(0,1)$, загрязнённая равномерным на [-20,+20] распределением, $\ell=50$, смещение эмпирического среднего 0.359.

Цензурирование выборки (отсев выбросов)

Идея: задача решается дважды; после первого раза объекты с наибольшими ошибками исключаются из обучения.

Алгоритм (для задачи восстановления плотности)

- 1) оценить параметр $\hat{\theta}$ по всей выборке X^m ;
- 2) вычислить правдоподобия $\pi_i = \varphi(x_i; \hat{\theta})$ для всех $x_i \in X^m$;
- 3) отсортировать выборку по убыванию: $\pi_1 \ge ... \ge \pi_m$;
- 4) удалить из X^m объекты, попавшие в конец ряда;
- 5) оценить параметр $\hat{\theta}$ по укороченной выборке X^m ;

Резюме в конце лекции

- Параметрический подход = модель плотности распределения + принцип максимума правдоподобия.
- Модель гауссовских плотностей приводит к квадратичному или линейному дискриминанту.
- Их основная проблема неустойчивость обращения ковариационной матрицы. Некоторые решения:
 - регуляризация
 - диагонализация
 - обнуление незначимых ковариаций
 - жадное добавление признаков (метод Шурыгина)
 - отбор признаков (далее...)
 - преобразование признаков (далее...)

Модель смеси распределений

Модель плотности:

$$p(x) = \sum_{j=1}^{k} w_j p_j(x), \qquad \sum_{j=1}^{k} w_j = 1, \qquad w_j \geqslant 0,$$

 $p_j(x) = \varphi(x; \theta_j)$ — функция правдоподобия j-й компоненты смеси; w_j — её априорная вероятность; k — число компонент смеси.

Задача 1: имея простую выборку $X^m \sim p(x)$, зная число k и функцию φ , оценить вектор параметров $\Theta = (w_1, \dots, w_k, \theta_1, \dots, \theta_k)$.

Задача 2: оценить ещё и k.

Общая схема ЕМ-алгоритма

Проблема:

попытка применить принцип максимума правдоподобия «в лоб» приводит к очень сложной многоэкстремальной задаче оптимизации

Идея: вводятся *скрытые переменные* G.

Итерационный алгоритм Expectation-Maximization:

```
1: начальное приближение вектора параметров \Theta;
```

повторять

```
3: G := E-шаг(\Theta);
```

4:
$$\Theta := M$$
-шаг (Θ, G) ;

5: **пока** Θ и G не стабилизируются.

Задача Е-шага

По формуле условной вероятности

$$p(x, \theta_j) = p(x) P(\theta_j | x) = w_j p_j(x).$$

Скрытые переменные $G=(g_{ij})_{m imes k}=(g_1,\ldots,g_j)$:

$$g_{ij} \equiv P(\theta_j|x_i), \quad i=1,\ldots,m, \ j=1,\ldots,k.$$

Зная параметры компонент $w_j, \, \theta_j, \,$ по формуле Байеса легко вычислить $g_{ij}, \, i=1,\ldots,m, \, j=1,\ldots,k$:

$$g_{ij} = \frac{w_j p_j(x_i)}{p(x_i)} = \frac{w_j p_j(x_i)}{\sum_{s=1}^k w_s p_s(x_i)}.$$

Очевидно, выполнено условие нормировки: $\sum_{j=1}^k g_{ij} = 1$.

Задача М-шага

Задача: максимизировать логарифм правдоподобия

$$Q(\Theta) = \ln \prod_{i=1}^m p(x_i) = \sum_{i=1}^m \ln \sum_{j=1}^k w_j p_j(x_i) \to \max_{\Theta}.$$

при ограничениях $\sum_{j=1}^{k} w_{j} = 1$; $w_{j} \geqslant 0$.

Если скрытые переменные известны, то задача максимизации $Q(\Theta)$ распадается на k независимых подзадач:

$$heta_j := rg \max_{ heta} \sum_{i=1}^m g_{ij} \ln arphi(x_i; heta), \quad j = 1, \dots, k.$$

а оптимальные веса компонент вычисляются аналитически:

$$w_j := \frac{1}{m} \sum_{i=1}^m g_{ij}, \quad j = 1, \dots, k.$$

Вывод формул М-шага (основные шаги)

Лагранжиан оптимизационной задачи « $Q(\Theta)
ightarrow ext{max}$ »:

$$L(\Theta; X^m) = \sum_{i=1}^m \ln \left(\underbrace{\sum_{j=1}^k w_j p_j(x_i)}_{p(x_i)} \right) - \lambda \left(\sum_{j=1}^k w_j - 1 \right).$$

Приравниваем нулю производные:

$$\frac{\partial L}{\partial w_j} = 0 \quad \Rightarrow \quad \lambda = m; \quad w_j = \frac{1}{m} \sum_{i=1}^m \underbrace{\frac{w_j p_j(x_i)}{p(x_i)}}_{g_{ij}} = \frac{1}{m} \sum_{i=1}^m g_{ij},$$

$$\frac{\partial L}{\partial \theta_j} = \sum_{i=1}^m \underbrace{\frac{w_j p_j(x_i)}{p(x_i)}}_{g_{ii}} \frac{\partial}{\partial \theta_j} \ln p_j(x_i) = \frac{\partial}{\partial \theta_j} \sum_{i=1}^m g_{ij} \ln p_j(x_i) = 0.$$

ЕМ-алгоритм

Вход:

выборка
$$X^m = \{x_1, \dots, x_m\};$$

k — число компонент смеси;

$$\Theta = (w_j, \theta_j)_{i=1}^k$$
 — начальное приближение параметров;

 δ — параметр критерия останова;

Выход:

$$\Theta = (w_j, heta_j)_{j=1}^k$$
 — оптимизированный вектор параметров

для смеси
$$p(x)=\sum\limits_{i=1}^k w_j arphi(x, heta_j), \ \sum\limits_{i=1}^k w_j=1.$$

Базовый вариант ЕМ-алгоритма

- 1: ПРОЦЕДУРА ЕМ (X^m, k, Θ, δ) ;
- 2: повторять
- 3: E-шаг (expectation):

для всех
$$i=1,\ldots,m,\;j=1,\ldots,k$$

$$g_{ij}^0:=g_{ij};\quad g_{ij}:=\frac{w_j\varphi(\mathsf{x}_i;\theta_j)}{\sum_{s=1}^k w_s\varphi(\mathsf{x}_i;\theta_s)};$$

4: M-шаг (maximization):

для всех
$$j=1,\ldots,k$$

$$\theta_j := \arg\max_{\theta} \sum_{i=1}^m g_{ij} \ln \varphi(x_i; \theta); \quad w_j := \frac{1}{m} \sum_{i=1}^m g_{ij};$$

- 5: пока $\max_{i,j} |g_{ij} g_{ij}^0| > \delta;$
- 6: **вернуть** $(w_j, \theta_j)_{j=1}^k$;

Пример

Две гауссовские компоненты k=2 в пространстве $X=\mathbb{R}^2$. Расположение компонент в зависимости от номера итерации L:

Проблемы базового варианта ЕМ-алгоритма

- Как выбирать начальное приближение?
- Как определять число компонент?
- Как ускорить сходимость?

Решение сразу многих проблем:

ЕМ-алгоритм с последовательным добавлением компонент

ЕМ-алгоритм с последовательным добавлением компонент

Вход:

```
выборка X^m = \{x_1, \dots, x_m\};
```

R — допустимый разброс правдоподобия объектов;

 m_0 — минимальная длина выборки, по которой можно восстанавливать плотность;

 δ — параметр критерия останова;

Выход:

```
k — число компонент смеси;
```

$$\Theta = (w_j, \theta_j)_{i=1}^k$$
 — веса и параметры компонент;

ЕМ-алгоритм с последовательным добавлением компонент

1: начальное приближение — одна компонента:

$$\theta_1 := \arg\max_{\theta} \sum_{i=1}^m \ln \varphi(x_i; \theta); \quad w_1 := 1; \quad k := 1;$$

- 2: для всех $k := 2, 3, \dots$
- 3: выделить объекты с низким правдоподобием:

$$U:=\big\{x_i\in X^m\;\big|\;p(x_i)<\tfrac{1}{R}\max_j p(x_j)\big\};$$

- 4: если $|U| < m_0$ то
- 5: **выход** из цикла по k;
- 6: начальное приближение для k-й компоненты:

$$\theta_k := \arg\max_{\theta} \sum_{x_i \in U} \ln \varphi(x_i; \theta); \quad w_k := \frac{1}{m} |U|;$$

$$w_j := w_j(1 - w_k), \ j = 1, \ldots, k-1;$$

7: выполнить ЕМ (X^m, k, Θ, δ) ;

Модель смеси распределений EM-алгоритм Некоторые модификации EM-алгоритма Сеть радиальных базисных функций

GEM — обобщённый **EM**-алгоритм

Идея:

Не обязательно добиваться высокой точности на М-шаге. Достаточно лишь сместиться в направлении максимума, сделав одну или несколько итераций, и затем выполнить Е-шаг.

Преимущество:

уменьшение времени работы при сопоставимом качестве решения.

Модель смеси распределений EM-алгоритм Некоторые модификации EM-алгоритма Сеть радиальных базисных функций

SEM — стохастический EM-алгоритм

Идея: на М-шаге вместо максимизации

$$\theta_j := \arg\max_{\theta} \sum_{i=1}^m g_{ij} \ln \varphi(x_i; \theta)$$

максимизируется обычное, невзвешенное, правдоподобие

$$\theta_j := \arg \max_{\theta} \sum_{x_i \in X_j} \ln \varphi(x_i; \theta),$$

выборки X_j строятся путём стохастического моделирования: для каждого $i=1,\ldots,m$ генерируется $j\sim \mathsf{P}(\theta_j|x_i)\equiv g_{ij}$ и объект x_i помещается в X_i .

Преимущества:

ускорение сходимости, предотвращение зацикливаний.

HEM — иерархический EM-алгоритм

Идея:

«Плохо описанные» компоненты расщепляются на две или более *дочерних* компонент.

Преимущество:

автоматически выявляется иерархическая структура каждого класса, которую затем можно интерпретировать содержательно.

Гауссовская смесь с диагональными матрицами ковариации

Допущения:

- 1. Функции правдоподобия классов $p_{y}(x)$ представимы в виде смесей k_{y} компонент, $y \in Y = \{1, \dots, M\}$.
- 2. Компоненты имеют *п*-мерные гауссовские плотности с некоррелированными признаками:

$$\mu_{yj} = (\mu_{yj1}, \dots, \mu_{yjn}), \quad \Sigma_{yj} = \text{diag}(\sigma_{yj1}^2, \dots, \sigma_{yjn}^2), \quad j = 1, \dots, k_y$$
:

$$egin{align} p_y(x) &= \sum_{j=1}^{k_y} w_{yj} p_{yj}(x), \quad p_{yj}(x) = \mathcal{N}(x; \mu_{yj}, \Sigma_{yj}), \ &\sum_{j=1}^{k_y} w_{yj} = 1, \quad w_{yj} \geqslant 0; \end{aligned}$$

Эмпирические оценки средних и дисперсий

Числовые признаки: $f_d: X \to \mathbb{R}, \ d=1,\ldots,n$.

Решение задачи М-шага:

для всех классов $y \in Y$ и всех компонент $j = 1, \ldots, k_y$,

$$w_{yj} = \frac{1}{\ell_y} \sum_{i: y_i = y} g_{yij}$$

для всех размерностей (признаков) $d=1,\ldots,n$

$$\hat{\mu}_{yjd} = \frac{1}{\ell_y w_{yj}} \sum_{i: y_i = y} g_{yij} f_d(x_i);$$

$$\hat{\sigma}_{yjd}^2 = \frac{1}{\ell_y w_{yj}} \sum_{i: y_i = y} g_{yij} (f_d(x_i) - \hat{\mu}_{yjd})^2;$$

Замечание: компоненты «наивны», но смесь не «наивна».

Алгоритм классификации

Подставим гауссовскую смесь в байесовский классификатор:

$$a(x) = \arg\max_{y \in Y} \lambda_y P_y \sum_{j=1}^{k_y} w_{yj} \underbrace{\mathcal{N}_{yj} \exp\left(-\frac{1}{2}\rho_{yj}^2(x, \mu_{yj})\right)}_{p_{yj}(x)},$$

 $\mathcal{N}_{yj} = (2\pi)^{-\frac{n}{2}} (\sigma_{yj1} \cdots \sigma_{yjn})^{-1}$ — нормировочные множители; $\rho_{yj}(x,\mu_{yj})$ — взвешенная евклидова метрика в $X=\mathbb{R}^n$:

$$\rho_{yj}^{2}(x,\mu_{yj}) = \sum_{d=1}^{n} \frac{1}{\sigma_{yjd}^{2}} (f_{d}(x) - \mu_{yjd})^{2}.$$

Сеть радиальных базисных функций

Radial Basis Functions (RBF) — трёхуровневая суперпозиция:

Преимущества EM-RBF

ЕМ — один из лучших алгоритмов обучения радиальных сетей.

Преимущества EM-алгоритма (перед SVM, ANN):

- ЕМ-алгоритм легко сделать устойчивым к шуму
- ЕМ-алгоритм довольно быстро сходится
- **3** автоматически строится *структурное описание* каждого класса в виде совокупности компонент *кластеров*

Недостатки ЕМ-алгоритма:

- ЕМ-алгоритм чувствителен к начальному приближению
- Определение числа компонент трудная задача (простые эвристики могут плохо работать)

Резюме в конце лекции

- Восстановление смеси наиболее мощный подход к оцениванию плотности распределения по выборке.
- ЕМ алгоритм сводит сложную многоэкстремальную задачу к серии стандартных подзадач максимизации правдоподобия для отдельных компонент смеси.
- ЕМ алгоритм очень мощная штука.
 Он применяется не только для восстановления смесей.
- У него есть масса обобщений: GEM, SEM, HEM,...
- Предполагая, что компоненты смеси гауссовские с диагональными матрицами ковариации, получили метод обучения радиальных базисных функций

Общее резюме по байесовским классификаторам

- ullet Эту формулу надо помнить: $a(x) = \arg\max_{y \in Y} \lambda_y P_y p_y(x)$.
- Три основных подхода к восстановлению функций правдоподобия $p_y(x)$ по выборке: параметрический, непараметрический и смесь распределений.
- Наивный байесовский классификатор основан на «драконовском» предположении о независимости признаков. Как ни странно, иногда это работает.
- Непараметрический подход наиболее прост, но возникает проблема выбора метрики.
- Параметрический подход требует задания вида распределения.
 Для примера мы ограничились гауссовскими.
- Восстановление смеси наиболее гибкий подход.
 В случае гауссовских распределений он приводит к сильному методу — RBF (радиальных базисных функций).