Ελάχιστα Ζευγνύοντα Δένδρα

Ελάχιστα Ζευγνύοντα Δένδρα

Ζευγνύον υπογράφος

Υπογράφος ενός γράφου G
 που περιέχει όλες τις κορυφές
 του G

Ζευγνύον δένδρο

Ζευγνύον υπογράφος που είναι ένα (ελεύθερο) δένδρο

Ελάχιστο ζευγνύον δένδρο (MST)

- Σε ένα γράφο με βάρη ένα
 ζευγνύον δένδρο με ελάχιστο συνολικό βάρος ακμών
- Εφαρμογές
 - Δίκτυα επικοινωνιών
 - Δίκτυα μεταφορών

Δοθέντος ενός μη κατευθυνόμενου γράφου G με βάρη, να βρεθεί ένα δένδρο T που να έχει όλες τις κορυφές του G και να ελαχιστοποιεί το άθροισμα:

$$w(T) = \sum_{(v,u) \in T} w((v,u))$$

Ιδιότητα του Κύκλου

Ιδιότητα του Κύκλου:

- Έστω Τ ένα ελάχιστο ζευγνύον δένδρο ενός γράφου με βάρη G
- Έστω e μια ακμή του G που δεν ανήκει στο T και έστω C ο κύκλος που σχηματίζεται από την e στον T
- Για κάθε ακμή f του C, $weight(f) \le weight(e)$

Απόδειξη:

Αν weight(f) > weight(e)
 μπορούμε να έχουμε ένα
 ζευγνύον δένδρο με
 μικρότερο βάρος
 αντικαθιστώντας την f με
 την e

Αντικαθιστώντας την *f* με την *e* έχουμε ένα καλύτερο ζευγνύον δένδρο

Ιδιότητα της Διαμέρισης

Ιδιότητα της διαμέρισης:

- \blacksquare Έστω μια διαμέριση των κορυφών του G σε υποσύνολα U και V
 - Έστω e μια ακμή με ελάχιστο βάρος μεταξύ της διαμέρισης
 - Υπάρχει ένα ελάχιστο ζευγνύον δένδρο του *G* οπου περιέχει την ακμή *e*

Απόδειξη:

- Έστω Τ ένα MST του G
- Αν το Τ δεν περιέχει την e, έστω ο κύκλος C που σχηματίζεται από την e με το T και έστω f μια ακμή του C μεταξύ της διαμέρισης
- Με βάση την ιδιότητα του κύκλου, $weight(f) \le weight(e)$
- Επομένως , weight(f) = weight(e)
- Έχουμε ἐνα ἀλλο MST
 αντικαθιστώντας την f με την e

Η αντικατάσταση της f με την e δίνει άλλο MST

Αλγόριθμος του Kruskal

- Οι κορυφές διαμερίζονταισε ομάδες
 - Αρχικά, ομάδες μιας κορυφής
 - Κρατάμε ένα MST για κάθε ομάδα
 - Συγχώνευση των
 "πλησιέστερων" ομάδων
 και των MST τους
- Μια ουρά προτεραιότητας αποθηκεύει τις ακμές εκτός ομάδων
 - Κλειδί: βάρος
 - Στοιχείο: ακμή
- Στο τέλος του αλγορίθμου
 - Μια ομάδα και ένα MST

```
Algorithm KruskalMST(G)
for each vertex v in G do
   Δημιούργησε μια ομάδα που περιέχει το ν
Έστω Q μια ουρά προτεραιότητας.
Insert all edges into Q
T \leftarrow \emptyset
 { T είναι η ένωση των MST των ομάδων }
while T has fewer than n-1 edges do
e \leftarrow Q.removeMin().getValue()
   [u, v] \leftarrow G.endVertices(e)
   A \leftarrow getCluster(u)
   B \leftarrow getCluster(v)
   if A \neq B then
      Add edge e to T
      mergeClusters(A, B)
return T
```

Παράδειγμα

Παράδειγμα (συν.)

Δομή Δεδομένων για τον αλγόριθμου του Kruskal

- ο Ο αλγόριθμος διατηρεί ένα δάσος από δένδρα
- Μια ουρά προτεραιότητας εξάγει τις ακμές με αύξουσα σειρά βάρους
- Μια ακμή είναι αποδεκτή αν συνδέει διακριτά δένδρα
- Χρειαζόμαστε μια δομή δεδομένων που διατηρεί μια διαμέριση, π.χ., μια συλλογή από ξένα σύνολα, με πράξεις:
 - makeSet(u): δημιούργησε ένα σύνολο που αποτελείται από το u
 - find(u): επιστρέφει τα σύνολο που αποθηκεύει το u
 - union(A, B): αντικαθιστά τα σύνολα A και B με την ένωσή τους

Διαμέριση που βασίζεται σε λίστα

- Κάθε σύνολο αποθηκεύεται σε μια ακολουθία
- □ Κάθε στοιχείο έχει μια αναφορά πίσω στο σύνολο
 - η πράξη find(u) θέλει O(1) χρόνο, και επιστρέφει το σύνολο στο οποίο ανήκει η u.
 - στην πράξη union(A,B), μεταφέρουμε τα στοιχεία του μικρότερου συνόλου στην ακολουθία του μεγαλυτέρου συνόλου και ενημερώνουμε τις αναφορές τους
 - ο χρόνος για την πράξη union(A,B) είναι min(|A|, |B|)
- Όποτε επεξεργαζόμαστε ένα στοιχείο, πάει σε ένα σύνολο τουλάχιστον διπλού μεγέθους, επομένως η επεξεργασία κάθε στοιχείου γίνεται το πολύ log η φορές

Υλοποίηση που βασίζεται σε διαμέριση

- Εκδοχή του αλγορίθμου Kruskal που βασίζεται σε διαμέριση
 - Οι ομάδες συγχωνεύονται σαν ενώσεις
 - Θέσεις των ομάδων με την find
- □ Χρόνος τρεξίματος $O((n+m)\log n)$
 - PQ πράξεις O(m log
 n)
 - UF πράξεις O(n log
 n)

```
Algorithm KruskalMST(G)
 Initialize a partition P
for each vertex v in G do
    P.makeSet(v)
let Q be a priority queue.
Insert all edges into Q
T \leftarrow \emptyset
 {Τ είναι η ένωση των MSTs of the clusters}
 while T has fewer than n-1 edges do
e \leftarrow Q.removeMin().getValue()
   [u, v] \leftarrow G.endVertices(e)
   A \leftarrow P.find(u)
   B \leftarrow P.find(v)
   if A \neq B then
      Add edge e to T
      P.union(A, B)
return T
```

Παράδειγμα

Αλγόριθμος του Prim-Jarnik

- Μοιάζει με τον αλγόριθμο του Dijkstra
- Επιλέγουμε τυχαία μια κορυφή s και μεγαλώνουμε το
 MST σαν ένα νέφος από κορυφές, που αρχίζουν από την s
- Με κάθε κορυφή ν αποθηκεύουμε την ετικέτα d(ν) που παριστάνει το μικρότερο βάρος ακμής που συνδέει την ν με μια κορυφή στο νέφος
- Σε κάθε βήμα:
 - Προσθέτουμε στο νέφος την κορυφή *u* εκτός νέφους με την ετικέτα μικρότερου βάρους
 - Ενημερώνουμε τις ετικέτες των διαδοχικών κορυφών της u

Αλγόριθμος Prim-Jarnik (συν.)

- Μια προσαρμοσμένη ουρά προτεραιότητας που βασίζεται σε σωρό αποθηκεύει κορυφές εκτός νέφους με καταχωρήσεις ενήμερες της θέσης
 - Κλειδί: απόσταση
 - Τιμή: κορυφή
 - Θυμηθείτε την μέθοδο
 replace Key(l,k) που αλλάζει το
 κλειδί της καταχώρησης l
- Αποθηκεύουμε τρεις ετικέτες με κάθε κορυφή:
 - Απόσταση
 - Ο κόμβος γονέας στο MST
 - Καταχώρηση στην ουρά προτεραιότητας

```
Algorithm PrimJarnikMST(G)
Q \leftarrow new heap-based priority queue
s \leftarrow a vertex of G
for all v \in G.vertices()
   if v = s
      setDistance(v, 0)
   else
      setDistance(v, \infty)
   setParent(v, \emptyset)
   l \leftarrow Q.insert(getDistance(v), v)
   setLocator(v,l)
while \neg Q.isEmpty()
   l \leftarrow Q.removeMin()
   u \leftarrow l.getValue()
   for all e \in G.incidentEdges(u)
      z \leftarrow G.opposite(u,e)
      r \leftarrow weight(e)
      if r < getDistance(z)
         setDistance(z, r)
         setParent(z,e)
         Q.replaceKey(getEntry(z), r)
```

Παράδειγμα

Παράδειγμα (συν.)

Ανάλυση

- υ Πράξεις γράφων
 - Η μέθοδος incidentEdges καλείται μια φορά για κάθε κορυφή
 - Πράξεις ετικέτας
 - Θέτουμε/παίρνουμε την απόσταση, γονέα και εντοπιστή ετικέτας της κορυφής z O(deg(z)) φορές
 - Να θέσουμε ή να άρουμε μια ετικέτα θέλει O(1) χρόνο
 - Πράξεις ουράς προτεραιότητας
 - Μια κορυφή εισάγεται μια φορά και διαγράφεται μια φορά από την ουρά προτεραιότητας, και κάθε εισαγωγή ή διαγραφή απαιτεί χρόνο $O(\log n)$
 - Το κλειδί μιας κορυφής w στην ουρά προτεραιότητας τροποποιείται το πολύ deg(w) φορές, όπου κάθε αλλαγή του κλειδιού απαιτεί χρόνο O(log n)
 - ο αλγόριθμος Prim-Jarnik τρέχει σε χρόνο $O((n+m)\log n)$ εφόσον ο γράφος παριστάνεται από δομή λίστας γειτνίασης
 - $Iox\dot{u} \in \sum_{v} deg(v) = 2m$
 - \Box Ο χρόνος είναι $O(m \log n)$ εφόσον ο γράφος είναι συνεκτικός