

PRELIMINARY AMENDMENT
U.S. Application No.:

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

LISTING OF CLAIMS:

Claims 1-17 (canceled).

18. (new): A high-strength, low-temperature-sintered ceramic composition having a structure comprising hexagonal SrAl₂Si₂O₈ and an Al₂O₃ crystal, said ceramic composition having a bending strength of 300 MPa or more.

19. (new): A high-strength, low-temperature-sintered ceramic composition comprising hexagonal SrAl₂Si₂O₈ in an Al₂O₃-SiO₂-SrO-based matrix, which contains Al₂O₃ crystal grains and has a bending strength of 300 MPa or more.

20. (new): The high-strength, low-temperature-sintered ceramic composition according to claim 19, wherein said matrix is an amorphous phase, in which hexagonal SrAl₂Si₂O₈ is precipitated.

21. (new): The high-strength, low-temperature-sintered ceramic composition according to claim 19, wherein said matrix is substantially composed of a SrAl₂Si₂O₈ crystal, at least part of which is hexagonal SrAl₂Si₂O₈.

22. (new): The high-strength, low-temperature-sintered ceramic composition according to claim 19, wherein said matrix contains monoclinic SrAl₂Si₂O₈.

PRELIMINARY AMENDMENT
U.S. Application No.:

23. (new): A high-strength, low-temperature-sintered ceramic composition having a structure comprising a SrAl₂Si₂O₈ crystal and an Al₂O₃ crystal, said SrAl₂Si₂O₈ crystal being composed of hexagonal SrAl₂Si₂O₈ alone or hexagonal SrAl₂Si₂O₈ and monoclinic SrAl₂Si₂O₈, a peak intensity ratio represented by $I_{101} / (I_{101} + I_{002}) \times 100$ being 5% or more in an X-ray diffraction measurement by a Cu-K α line, wherein I₁₀₁ represents a peak intensity of a (101) plane of the hexagonal SrAl₂Si₂O₈, and I₀₀₂ represents a peak intensity of a (002) plane of the monoclinic SrAl₂Si₂O₈, and said ceramic composition having a bending strength of 300 MPa or more.

24. (new): The high-strength, low-temperature-sintered ceramic composition according to claim 23, wherein said peak intensity ratio is 50% or more.

25. (new): The high-strength, low-temperature-sintered ceramic composition according to claim 23, which has a structure comprising a matrix substantially composed of the SrAl₂Si₂O₈ crystal, which contains Al₂O₃ crystal grains, said SrAl₂Si₂O₈ crystal being composed of hexagonal SrAl₂Si₂O₈ alone or hexagonal SrAl₂Si₂O₈ and monoclinic SrAl₂Si₂O₈, and a percentage of said hexagonal SrAl₂Si₂O₈ in said SrAl₂Si₂O₈ crystal being 60% or more, and said ceramic composition having a bending strength of 400 MPa or more.

26. (new): The high-strength, low-temperature-sintered ceramic composition according to claim 18, wherein said Al₂O₃ crystal grains leave an average diameter of 1 μm or less.

27. (new): The high-strength, low-temperature-sintered ceramic composition according to claim 18, wherein it comprises (a) 100% by mass of main components comprising 10-60% by

PRELIMINARY AMENDMENT
U.S. Application No.:

mass of Al (as Al_2O_3), 25-60% by mass of Si (as SiO_2) and 7.5-50% by mass of Sr (as SrO), (b) auxiliary components comprising at least one selected from the group consisting of 0.1-10% by mass of Bi (as Bi_2O_3), 0.1-5% by mass of Na (as Na_2O), 0.1-5% by mass of K (as K_2O) and 0.1-5% by mass of Co (as CoO), and at least one selected from the group consisting of 0.01-5% by mass of Cu (as CuO), 0.01-5% by mass of Mn (as MnO_2), 0.01-5% by mass of Ag and 0.01-2% by mass of Zr (as ZrO_2), and (c) inevitable impurities.

28. (new): The high-strength, low-temperature-sintered ceramic composition according to claim 18, wherein it comprises (a) 100% by mass of main components comprising 10-60% by mass of Al (as Al_2O_3), 25-60% by mass of Si (as SiO_2), 7.5-50% by mass of Sr (as SrO) and 20% or less by mass of Ti (as TiO_2), (b) auxiliary components comprising at least one selected from the group consisting of 0.1-10% by mass of Bi (as Bi_2O_3), 0.1-5% by mass of Na (as Na_2O), 0.1-5% by mass of K (as K_2O) and 0.1-5% by mass of Co (as CoO), and at least one selected from the group consisting of 0.01-5% by mass of Cu (as CuO), 0.01-5% by mass of Mn (as MnO_2), 0.01-5% by mass of Ag and 0.01-2% by mass of Zr (as ZrO_2), and (c) inevitable impurities.

29. (new): The high-strength, low-temperature-sintered ceramic composition according to claim 18, wherein it comprises 10-60% by mass of Al (as Al_2O_3), 25-60% by mass of Si (as SiO_2), 7.5-50% by mass of Sr (as SrO), and inevitable impurities.

30. (new): A method for producing the high-strength, low-temperature-sintered ceramic composition recited in claim 18, by sintering a ceramic green body comprising aluminum oxide,

PRELIMINARY AMENDMENT

U.S. Application No.:

silicon oxide and strontium oxide, or aluminum oxide, silicon oxide, strontium oxide and titanium oxide as main starting materials, under such temperature and time conditions that a ratio of hexagonal $\text{SrAl}_2\text{Si}_2\text{O}_8$ in a $\text{SrAl}_2\text{Si}_2\text{O}_8$ crystal formed in a ceramic structure becomes 5% or more.

31. (new): A laminated electronic part comprising pluralities of dielectric layers made of the high-strength, low-temperature-sintered ceramic composition recited in claim 18, each of said dielectric layers being provided with a conductive pattern of a low-melting-point metal.

32. (new): The laminated electronic part according to claim 31, wherein said low-melting-point metal is silver, copper, gold or an alloy thereof.

33. (new): The laminated electronic part according to claim 31, wherein said conductive pattern constitutes an inductance element and/or a capacitance element.

34. (new): The laminated electronic part according to claim 31, onto which at least one selected from the group consisting of an inductance element, a capacitance element, a switching element and a filter element is mounted.