"ALGORITMI"

CORSO DI STUDIO IN INFORMATICA (laurea triennale) UNIVERSITÀ DEGLI STUDI DI CATANIA ANNO ACCADEMICO 2018/19

Prima sessione di esami (I appello) – 07 febbraio 2019

Si svolgano i seguenti esercizi, argomentando adeguatamente le risposte.

ESERCIZIO 5

- (A) Si enuncino il Teorema Master ed il suo Corollario.
- (B) Si definiscano le notazioni asintotiche $\mathcal{O}(f(n))$, $\Theta(f(n))$ e $\Omega(f(n))$ per una data funzione $f : \mathbb{N} \to \mathbb{N}$.
- (C) Si risolva l'equazione di ricorrenza $T(n) = 27 \cdot T(\frac{n}{h}) + \Theta(n^3 \log^3 n)$ al variare del parametro reale b > 1.
- (D) Sia T(n) la funzione di cui al punto precedente. Si stabilisca per quali valori del parametro b si ha

(i)
$$T(n) = \mathcal{O}(n^4);$$
 (ii) $T(n) = \Theta(n^3 \log^2 n);$

(iii) $T(n) = \Omega(n^3 \log^4 n)$.

ESERCIZIO 6

Si consideri la seguente operazione \otimes sui numeri naturali, definita da: $a \otimes b =_{Def} ab + 3b$.

- (a) Si verifichi con un esempio a scelta che l'operazione \otimes non è associativa.
- (b) Utilizzando la metodologia della programmazione dinamica, si progetti un algoritmo che, data una sequenza di numeri naturali a_1, a_2, \ldots, a_n , calcoli il valore massimo che l'espressione $a_1 \otimes a_2 \otimes \cdots \otimes a_n$ possa assumere al variare di tutte le possibili parentesizzazioni.
 - Si determini la complessità computazionale dell'algoritmo ottenuto.