Lic.^a Eng. Informática da FCTUC

3-2-2021

Duração: 2:30

Nome completo:

Número de estudante:

Este teste tem 9 perguntas. Na perguntas 1 e 2 responda apenas ao que lhe é pedido nos lugares indicados para o efeito. Nas restantes perguntas deverá justificar a sua resposta e indicar os cálculos.

Nota: C(n,k) $e\binom{n}{k}$ denotam o mesmo número.

- 1. Indique na caixa à direita,
 - (a) o coeficiente de $\frac{1}{x^{127}}$ no desenvolvimento de $\frac{(x+1)^{327}}{x^{327}}$.
 - (b) o número de divisores de $39 \times 170 \times 101 \times 19$ que têm exactamente 4 factores na sua factorização em primos?
 - (c) o número de soluções $(x_1,x_2,x_3,x_4,x_5,x_6,x_7)$, para $x_i\geq 2,\ 1\leq i\leq 7,$ da equação $x_1+x_2+x_3+x_4+x_5+x_6+x_7=19.$
- 2. Acrescente um número mínimo de arestas ao grafo abaixo de modo a que o grafo resultante seja semieuleriano.

- 3. Prove que $(c \lor \neg a) \land (c \to e) \land (\neg a \to g) \land \neg g \to e$ é uma tautologia usando uma prova por contradição.
- 4. Determine uma fórmula que não contenha o operador \neg que corresponda à negação da fórmula,

$$\forall x \forall y \Big[(x \neq y \land Dodec(x) \land Dodec(y)) \rightarrow \neg SameSize(x,y) \Big]$$

5. Indique o valor lógico (V: verdade; F: falso) das seguintes sentenças nos mundos A e B abaixo.

Sentenças	A	В
$\neg \big[Tet(b) \to RightOf(b,a)) \big]$		
$\exists x LeftOf(x, a) \land \exists x (Dodec(x) \land Large(x))$		
$\neg \big[\exists x RightOf(c, x) \leftrightarrow (Tet(a) \lor Tet(c))\big]$		
$\forall x \forall y \Big[(x \neq y \land Dodec(x) \land Dodec(y)) \rightarrow \neg SameSize(x, y) \Big]$		

Mundo A

Mundo B

- Tetraedro Pequeno
 - Tetraedro Médio
- Tetraedro Grande
- Cubo Pequeno
 - Cubo Médio

Cubo Grande

- Dodecaedro Pequeno
- Dodecaedro Médio

- 6. Use a indução matemática para provar a igualdade $\sum_{j=1}^{n} \frac{1}{2^{j}} = \frac{2^{n}-1}{2^{n}}$, para $n \ge 1$.
- 7. (a) Calcule $\sum_{i=0}^{30} \sum_{j=2}^{42} 3i(j-2) + \sum_{j=1}^{56} \frac{1}{2^j}.$
 - (b) Use o algoritmo de Euclides para determinar a e b tais que mdc(31, 15) = 31a + 15b.
 - (c) Determine a solução da congruência $22x \equiv_{29} 28$ em \mathbb{Z}_{29} .
- 8. Quantos números com exactamente 27 factores primos podemos formar com os números inteiros positivos primos que não excedem 20 sabendo que o primo 11 tem multiplicidade pelo menos três e o primo 7 aparece exactamente duas vezes?
- (a) Considere o grafo G and a considere of G and a considere of G and G and G and G are considered on G and G and G are considered on G and G and G are considered on G and G are conside

- (b) Use a matriz A de adjacência do grafo G, calculada em (a), para determinar o número de caminhos fechados de comprimento cinco com início e fim no vértice 1.
- (c) O grafo G acima é bipartido? Caso seja, exiba uma bipartição.