f(x) Unit Summary for Limits:

1. Describe in words and with a diagram/graph what $\lim_{x\to 2} f(x) = 3$ means.

As x approaches 2 from both the right and left-hand sides, the y-value approaches 3.

2. Describe in words, mathematical notation, or diagrams all cases in which $\lim_{x\to c} f(x)$ DNE.

 $\lim_{x \to c} f(x) \text{ DNE because the } y\text{-} \lim_{x \to c} f(x) \text{ DNE because the } y\text{-} \lim_{x \to c} f(x) \text{ DNE because the } y\text{-} \lim_{x \to c} f(x) \text{ DNE because } \lim_{x \to c} f(x) \text{ DNE because$

3. Sketch a function that demonstrates that $\lim_{x\to 2} f(x)$ exists and $\lim_{x\to 2} f(x) \neq f(2)$.

-3-2-11 1 2 3 4 5 6

- **4.** Explain why $f(x) = \frac{(x+1)(x-1)}{x-1}$ is not defined at x=1. g(x)=x+1 is not the same as f(x). Explain why cancelling the factors of x-1 changes the graph of f(x), and therefore the function.
- $f(x) = \frac{(x+1)(x-1)}{x-1}$ is not defined at x = 1 because when 1 is substituted for x, the resulting expression is of the form $\frac{0}{0}$. Division by zero is the reason for DNE.

Canceling the factors of (x-1) will remove the division by zero. This removal will eliminate the removable discontinuity at x = 1.

5. Given the exercise $\lim_{x\to\infty} \frac{\sqrt{x^2+2x-7}}{-x}$, explain in words why it is acceptable to state $\lim_{x\to\infty} \frac{\sqrt{x^2+2x-7}}{-x} = \lim_{x\to\infty} \frac{\sqrt{x^2}}{-x}$.

Since the limit is x approaching infinity, as x becomes very very large, the polynomial $x^2 + 2x + 7$ behaves like it's leading term. (very large)² is significantly larger than 2(very large) - 7.

6. A function f(x) is continuous at x = c if $\lim_{x \to c} f(x) = f(c)$. An alternate notation for the definition of continuity is $\lim_{x \to c} [f(x) - f(c)] = 0$. Choose one of the definitions and explain in words how this calculus definition is of continuity is **interpreted visually.**

$\lim_{x \to c} f\left(x\right) = f\left(c\right)$	$\lim_{x \to c} \left[f(x) - f(c) \right] = 0$
	As x approaches c from both the right and left- hand sides, the difference between the
converge to $f(c)$.	corresponding y-values and $f(c)$ go to zero.

Note: Many students lost points on this exercise because they did not interpret visually - they only mentioned limits and not what those limits mean visually.

Students also lost points because they described continuous functions, but did not link their explanations to the equation.

- 7. The Intermediate Value Theorem states that if f(x) is continuous on a closed interval [a,b] and k is a value between f(a) and f(b), then there exists a value c where $a \le c \le b$ and f(c) = k.
 - (a) Explain in words and with a diagram why the conclusion of the Intermediate Value Theorem does not hold if k is not between f(a) and f(b).

If the value of k is not between f(a) and f(b), then the function may be continuous on the closed interval [a,b] and never reach k. That is, the range of the function on the closed interval [a,b] may be restricted to the interval f(a) and f(b).

(b) Explain in words and with a diagram why the conclusion of the Intermediate Value Theorem does not hold if f(x) is not continuous on [a,b].

If f(x) is not continuous on [a,b], then f(x) may not have the value of k in the range of f(x) on the closed interval [a,b]. That is, the discontinuity could allow the function to "skip" over the line y = k.

8. Explain how the concept of infinitely small is applied to limits of the form $\lim_{x\to c} f(x)$ where c is a finite value. Explain how the concept of infinitely large is applied to limits of the form $\lim_{x\to c} f(x)$.

Infinitely Small	Infinitely Large
In limits of the form $\lim_{x\to c} f(x)$, x is getting very	In limits of the form $\lim_{x \to \pm \infty} f(x)$, the value of x
very close to the value of c . Therefore, the distance between x and c goes to zero. That is the distance between x and c is infinitely small (but never equal to zero).	continues to become a larger and larger positive/negative number. Therefore the magnitude of x continues to increase making the value of x infinitely large. The value of x is never equal to infinity, since infinity is not a value on the number line (it is a conceptual value).