1.3. Лабораторная работа 3

Циклические вычислительные процессы.

Задача табулирования

Лабораторная работа должна выполняться в соответствии с указаниями, приведенными в разделе "Порядок выполнения лабораторных работ".

1.3.1. Цель работы

Целью настоящей работы является получение практических навыков решения на ЭВМ задач по вычислению значений функции при различных значениях аргумента (табулирование функции).

1.3.2. Постановка задачи

Необходимо решить на ЭВМ задачу вычисления N значений функции y = f(x) для ряда равноотстоящих значений аргумента x, начиная от значения $x = x_{\text{нач}}$ вплоть до значения $x = x_{\text{кон}}$. Функция y = f(x) зависит от параметра a. Результаты вычислений следует оформить в виде таблицы, снабженной заголовком.

1.3.3. Варианты заданий

Вид функции y = f(x) и рабочий набор исходных данных приведены в табл. 1.3.1.

Таблица 1.3.1

N		Рабочи	абочий набор исходных		
	Вид функции $y = f(x)$	N	а	х	х кон
1	$\frac{e^{-X} + e^{\sqrt{a}}}{e^{X} - a}$	15	1	0,2	0,5
2	$\frac{\cos^4 x + \cos^2 a}{\cos ax + 1,5}$	10	0,5	-1,3	1
3	$\frac{tgax - x^2}{2 + a^2}$	12	2	0,3	0,35

$\frac{\sqrt{a+2,7}}{\sqrt[3]{a+x^3}}$	16	1	2	3	
--	----	---	---	---	--

Продолжение табл. 1.3.1

		Рабочи	ий набор и	сходных	данных	
N	Вид функции $y = f(x)$	N	A	х	х кон	
5	$\frac{\ln a-x }{\ln(a+2)+\ln x}$	12	10	2	6	
6	$\frac{e^{-a^2} + e^{-x^2}}{2,8ax}$	15	0,5	1	2	
7	$\frac{\sin\sqrt{a^3 + x}}{14 + ax}$	12	1	2	3	
8	$\frac{\cos^2 a + \cos ax}{ax + 2}$	15	1,5	1	2,5	
9	$\sqrt{\frac{1,6ax + \sqrt{x}}{2,9a + 1,2}}$	10	0,1	4,2	6	
10	$\frac{\ln \mathbf{a} + \mathbf{x} }{\ln \mathbf{a} + 1.5\ln x }$	8	-2,5	-1,9	-0,9	
11	$e^{x+a^{1,7}}$	10	1,1	1	2	
12	$\cos\frac{\sqrt{x} + \sqrt{a} + 1}{\sqrt{ax}}$	12	3	2	3	
13	$\frac{\sin ax + \sin^2 a}{4 + \sin^2 x}$	15	2	1,5	2,9	
14	$\frac{\sqrt[3]{a+x}+\sqrt[3]{a+2}}{a+x}$	10	3	1,5	3,5	

15	$\ln \frac{ 2ax }{ a-x }$	12	3	2	3,5
16	$\frac{1}{e^{ax} + 2e^a}$	15	1,5	1	2,5
17	$\frac{\sin^5 x + ax}{x + \cos^5 x}$	10	2	2,5	3,5
18	$\frac{\sqrt{a+3x}}{\sqrt{a}+3+x}$	12	2	0	5
19	$\sqrt[5]{\frac{a+30}{a+\sqrt{ax}}}$	20	4	1	10
20	$\frac{\ln(a^2 + x^2)}{ a + x }$	15	2	1	5
21	$1,5\cos^4\frac{a+x}{2a^2+2x^2}$	10	1,5	1	4

Окончание табл. 1.3.1

		Рабочи	й набор и	сходных	данных	
N	Вид функции $y = f(x)$	N	а	х	хкон	
22	$\frac{\sqrt{a + \sin x}}{\sqrt[3]{4 + \cos x}}$	15	2	0	1	
23	$\frac{\ln(x^4 - a^2)}{a^4 + 28}$	18	1,5	2	3,5	
24	$\frac{tgax + tgx}{tg(a+1)}$	15	1,2	0,1	0,25	
25	$\frac{\sin^4 a + \sin^4 x}{a + x}$	12	0,5	-π	+π	
26	$\frac{\sqrt{ax + 0.2x}}{2a^2 + x}$	15	1,5	2	4	
27	$\sqrt{\frac{3x + 4ax}{10a}}$	20	2	1	2,5	
28	$\frac{e^{-X} + e^{a}}{a + x}$	12	2,5	-1	1	
29	$5\sqrt{a + \ln a + \ln x}$	15	6	2	5	
30	$tgax + tg^2(a + 2,5)$	16	2	0	1	
31	$\frac{\cos\sqrt{x} + \cos x}{\sqrt{a+1} + x}$	20	3	4	8	

1.3.4. Методические указания по выполнению работы

Как известно, в языке **СИ** существуют три различных вида операторов цикла (циклы – *for, while u do_while*). При программировании на языке **СИ** циклических алгоритмов с заранее известным количеством повторений тела цикла (арифметические циклы) следует использовать оператор цикла *for*.

Общий вид алгоритма решения задач, относящихся к арифметическим циклам, приведен на рис. 1.3.1. Символ 2 соответствует оператору цикла *for*.

Рис. 1.3.1. Обобщенная схема алгоритма решения задачи

В качестве примера рассмотрим задачу варианта 31. Схема алгоритма для этой задачи приведена на рис.1.3.2. В соответствии с условием задачи необходимо предусмотреть ввод исходных данных: значений переменных N, $x_{\text{нач}}$ и $x_{\text{кон}}$

Подготовка к первому выполнению включает в себя присвоение независимой переменной x начального значения (символ 2 на рис. 1.3.2), вычисление величины шага изменения аргумента — dx (символ 2 на рис. 1.3.2) и вывода заголовка таблицы (символ 3 на рис. 1.3.2).

Анализ расчетной формулы для вычисления величины y показывает, что в нее входит выражение, независящее от x: $\sqrt{a+1}$. Введем для его обозначения вспомогательную переменную b:

$$b = \sqrt{a+1}.$$

Значение вспомогательной переменной b целесообразно вычислять заранее, при подготовке к первому вычислению цикла, что позволит избежать многократного вычисления этой величины в цикле (символ 2 на рис. 1.3.2). Процедуру, связанную с вынесением из цикла действий, результат выполнения которых в цикле не изменяется, называют "чисткой цикла".

В рабочей части цикла необходимо вычислять значение y и выводить на экран результат решения – значения i, x и y (символы 5 и 6 на рис. 1.3.2).

Подготовка к новому выполнению цикла состоит в изменении аргумента x на заданный шаг dx (символ 7 на рис. 1.3.2).

В таблице. 1.3.2 приведены идентификаторы переменных для варианта 31.

Рис. 1.3.2. Схема алгоритма решения задачи

Таблица 1.3.2 Таблица идентификаторов

Обозначение в задаче	Идентификатор	Назначение
N	n	Количество расчетных точек
а	а	Параметр функции
х нач	xn	Начальное значение аргумента
х кон	xk	Конечное значение аргумента
-	dx	Шаг изменения аргумента
х	x	Текущее значение аргумента
у	У	Вычисленное значение аргумента
-	i	Счетчик цикла
	b	Промежуточная переменная

Отметим, что при организации цикла очень важным является определение основной операции, применение которой позволяет получить нужный результат. Такую операцию будем называть **опорной**. Такой операцией при решении задачи табулирования является операция, задаваемая оператором присваивания x = x + dx. Эта операция позволяет повторно использовать для вычислений расчетную формулу, стоящую в рабочей части цикла.

По условию задачи результаты вычислений должны быть оформлены в виде таблицы, снабженной заголовком. Это легко реализуется при использовании форматированного вывода. При этом следует согласовывать элементы форматирования, используемые при выводе заголовка с элементами форматирований, которые используются при выводе строк таблицы.

Например, заголовок таблицы можно выводить с помощью следующего вызова printf():

printf("\n Hoмер Аргумент Функция");

В этом случае вывод очередной строки таблицы может быть выполнен с помощью следующего вызова процедуры printf():

printf ("/n %5d %10.3f %10.3f", i, x, y);

1.3.5. Методические указания по выполнению контрольного расчета

Для выполнения контрольного расчета в данной лабораторной работе необходимо выбрать численные значения величин N, a, xn, xk.

Для сокращения количества ручных вычислений, выполняемых в контрольном расчете, значение величины N можно взять равной 3. Заметим, что выбор в контрольном расчете N=2 является нежелательным. Дело заключается в том, что при организации цикла табулирования встречается ошибка, которую при N=2 выявить не удается. Такая ошибка возникает в том случае, когда оператор, осуществляющий подготовку к новому выполнению в цикле (символ 7 на рис. 1.3.2), неправильно записывают в следующем виде: x=xn+dx.

При выборе N=3 на компьютере прохождение цикла выполняется трижды, что позволит проверить правильность организации цикла. Значения величин xn, xk и a целесообразно выбирать таким образом, чтобы упростить вычисления, выполняемые вручную.

Например, для варианта 31 можно выбрать для контрольного расчета xn = 0.5, xk = 1.5 и a = 3.

Результаты вычислений контрольного расчета для рассматриваемого варианта приведены в табл. 1.3. 3.

Таблица 1.3.3 Таблица вычислений для варианта 31

	F	Іабор	данны	X	Результаты вычислений			
Назначение набора данных	N	а	xn	xk	ручных		машинных	
писори динизи					X	y	x	у
	ьный 3 3		0,5		0,5	0,65513		
Контрольный		3		1,5	1,0	0,36020		
					1,5	0,11712		
Рабочий	20	3	4	8				

1.3.6. Контрольные вопросы

- 1. Функциональная схема цикла и назначение ее отдельных частей.
- 2. Классификация циклов.
- 3. Назначение цикла *for* и его отдельных компонентов.
- 4. Укажите, сколько операторов можно разместить в теле цикла.
- 5. Можно ли в теле цикла *for* изменять значение параметра цикла?
- 6. Можно ли вне тела цикла *for* использовать значение параметра пикла?
- 7. С какой целью выполняется "чистка" цикла?

8. Как будет работать программа, если с помощью ; разделить заголовок и тело цикла?