

Instituto de Matemática e Estatística - IME Departamento de Análise - GAN Prof.^a Yuri Ki

1,5 1 2 2 3 3,5 4 3 Total 10

1^a Prova de Matemática Discreta 2023.1 - 17/05/2023

Nome: Kana P. Gedden

Observações: Resultados apresentados sem justificativas do raciocínio não serão considerados. Não é permitido sair da sala durante a prova. Não é permitido o uso de calculadora. O celular deve estar desligado e guardado.

Questão 1 (1,5 pontos)

Seja $A = \{\emptyset, \{1\}, 2, \{1, 2\}\}$. Verifique se as afirmações são verdadeiras ou falsas. No caso de ser falsa, reescreva a afirmação de modo a torná-la verdadeira.

$$F$$
 (a) $1 \in A$ 1 $\not\in A$

$$F(c)$$
 $\{1\} \subset A$ 1 $\in A$

$$\bigvee (e) \{2, \{1\}\} \in \mathcal{P}(A)$$

$$\lor$$
 (b) $\emptyset \in A$

$$\checkmark$$
 (d) $\{\{1\}\}\subset \mathcal{P}(A)$

Questão 2 (2 pontos)

Lê-se: o conj. com elemento £13 é subconjunto do conjunto de todos os subconj. de A

- (a) De quantas maneiras podemos fazer uma lista de três números inteiros (a, b e c) em que $0 \le a, b, c \le 9$ e a+b+c é par? [p.p.p] + (p.p.i) = (s.s.s) + (s.s.s) = 250
- (b) De quantas maneiras podemos fazer uma lista de três números inteiros (a, b e c) em que $0 \le a, b, c \le 9$ e $a \cdot b \cdot c$ é par?

$$(P \cdot X \cdot X) = (5 \cdot 10 \cdot 10) = 500$$

Questão 3 (3,5 pontos)

Usando o princípio de indução

1.1! +2-2! +... + n.n! +
$$(n+1)(n+1)! = [m+1+1]-1$$

- (a) Escolha e prove APENAS UM dos itens (i) ou (ii).
- [n+1]!-1+(n+1)(n+1)!=[(n+1)+1]!-1

Escolha e prove APENAS UM dos itens (i) ou (ii).
$$(n+1)! + (n+1)(n+1)! = [(n+1)+1]!$$
(i) $\frac{n}{6} + \frac{n^2}{2} + \frac{n^3}{3} \in \mathbb{Z}$, para todo $n \in \mathbb{N}$.
$$(n+1)! + (n+1)(n+1)! = [(n+1)+1]!$$

$$(n+1)! [1+(n+1)] = [(n+2)!$$

$$(n+1)! (n+2) = (n+2)!$$

$$(n+1)! [1+(n+1)] (n+2) = (n+2)!$$

todo inteiro positivo n . $\frac{(n+2)!}{(n+2)!} = (n+2)!$

- (ii) $1 \cdot 1! + 2 \cdot 2! + \dots + n \cdot n! = (n+1)! 1$, para todo inteiro positivo n. $\frac{(n+2)!}{(n+1)!} = (n+2)!$
- (b) Mostre que todo natural $n \ge 2$ é primo ou pode ser escrito como produto de números primos.

Questão 4 (3 pontos)

Obtenha a solução das equações de recorrência

(a) Escolha e determine a solução de APENAS UM dos itens (i) ou (ii).

(i)
$$y_{n+1} + \frac{y_n^2}{3} = \frac{7}{3}$$
 $y_0 = \sqrt{10}$ $y_1 + \frac{10}{3} = \frac{7}{3}$ $y_1 = 1$

(ii)
$$y_{n+2} - 6y_{n+1} + 9y_n = 0$$
 $y_0 = 2$ $y_1 = 9$ $y_2 = 36$

(h)
$$y_{n+2} - 0y_{n+1} + 9y_n = 0$$
 y_0
 $y_{n+2} - 54 + 8 = 0$
(b) $y_{n+1} + n y_n = 2n + 2$ $y_1 = 4$
 $x + 4 = 4$ $y_2 = 0$