Banker's Algorithm

- Copy the alloc[i,j] table to alloc'[i,j]
- Given C, maxc and alloc', compute avail vector
- Find p_i : maxc[i,j] alloc'[i,j] \leq avail[j] for $0 \leq j < m$ and $0 \leq i < n$.
 - If no such p_i exists, the state is unsafe
 - If alloc'[i,j] is 0 for all i and j, the state is safe
- Set alloc'[i,j] to 0; deallocate all resources held by p_i; go to Step 2

Example

Maximum Claim

Process	R_0	R_1	R_2	R_3
p_0	3	2	1	4
p_1	0	2	5	2
p_2	5	1	0	5
p_3	1	5	3	0
p_4	3	0	3	3

Allocated Resources

Process	R_0	R_1	R_2	R_3
p_0	2	0	1	1
p_1	0	1	2	1
p_2	4	0	0	3
p_3	0	2	1	0
p_4	1	0	3	0
Sum	7	3	7	5

$C = \langle 8, 5, 9, 7 \rangle$

- Compute total allocated
- •Determine available units

•Can anyone's maxc be met?

$$\max[2,0]$$
-alloc' $[2,0] = 5-4 = 1 \le 1 = \text{avail}[0]$
 $\max[2,1]$ -alloc' $[2,1] = 1-0 = 1 \le 2 = \text{avail}[1]$
 $\max[2,2]$ -alloc' $[2,2] = 0-0 = 0 \le 2 = \text{avail}[2]$
 $\max[2,3]$ -alloc' $[2,3] = 5-3 = 2 \le 2 = \text{avail}[3]$

•P₂ can exercise max claim

Example

Maximum Claim

Process	R_0	R_1	R_2	R_3
p_0	3	2	1	4
p_1	0	2	5	2
p_2	5	1	0	5
p_3	1	5	3	0
p_4	3	0	3	3

Allocated Resources

Process	R_0	R_1	R_2	R_3
p_0	2	0	1	1
p_1	0	1	2	1
p_2	0	0	0	0
p_3	0	2	1	0
p_4	1	0	3	0
Sum	3	3	7	2

$C = \langle 8, 5, 9, 7 \rangle$

- Compute total allocated
- •Determine available units

•Can anyone's maxc be met?

$$\max(4,0]$$
-alloc' $[4,0] = 5-1 = 4 \le 5 = \text{avail}[0]$
 $\max(4,1]$ -alloc' $[4,1] = 0-0 = 0 \le 2 = \text{avail}[1]$
 $\max(4,2]$ -alloc' $[4,2] = 3-3 = 0 \le 2 = \text{avail}[2]$
 $\max(4,3)$ -alloc' $[4,3] = 3-0 = 3 \le 5 = \text{avail}[3]$

•P₄ can exercise max claim

Example

Maximum Claim

Process	R_0	R_1	R_2	R_3
p_0	3	2	1	4
p_1	0	2	5	2
p_2	5	1	0	5
p_3	1	5	3	0
p_4	3	0	3	3

Allocated Resources

Process	R_0	R_1	R_2	R_3
p_0	2	0	1	1
\mathbf{p}_1	0	1	2	1
p_2	0	0	0	0
p_3	0	2	1	0
p_4	0	0	0	0
Sum	2	1	4	2

$$C = \langle 8, 5, 9, 7 \rangle$$

- Compute total allocated
- •Determine available units

•Can anyone's maxc be met? (Yes, any of them can)