الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

دورة: جوان 2012

امتحان بكالوريا التعليم الثانوي

الشعبة: تسيير واقتصاد

اختبار في مادة: الرياضيات المحدة: 03 ساعات و 30د

على المترشح أن يختار أحد الموضوعين التاليين الموضوع الأول

التمرين الأول: (05 نقاط)

. $u_{n+1}=\frac{3\,u_n+4}{q}$ ، المتتالية العددية المعرّفة بِ $u_0=1$: ومن أجل كل عدد طبيعي المتتالية العددية المعرّفة بـ $u_0=1$

. $u_n > \frac{2}{3}$ ، n عدد طبیعی أنه من أجل كل عدد التراجع أنه من أجل (1

بيّن أن المتتالية (u_n) متناقصة.

 $v_n = u_n - \frac{2}{3}$: بعتبر المتتالية (v_n) المعرّفة من أجل كل عدد طبيعي (2

أ - بيّن أنّ (v_n) متتالية هندسية، يطلب تحديد أساسها وحدها الأول .

.
$$u_n=\frac{1}{3}\left[\left(\frac{1}{3}\right)^n+2\right]$$
 ، n عبارة v_n عبارة v_n شم استنتج أنّه من أجل كل عدد طبيعي v_n عبارة v_n عبارة v_n بدلالة v_n ثم استنالية v_n بدلاله v_n عبارة المتتالية v_n بدلاله v_n عبارة المتتالية v_n

 $S_n = u_0 + u_1 + u_2 + ... + u_n$: حسب، بدلالة n ، المجموع $S_n = u_0 + u_1 + u_2 + ... + u_n$ (3

التمرين الثاني: (05 نقاط)

يعطي الجدول أدناه، كميات الحليب، مقدرة بالهكتولتر hL، التي تمّ تجميعها في إحدى و لايات الوطن من سنة 2006 إلى سنة 2011:

السنة	2006	2007	2008	2009	2010	2011
x_i رتبة السنة	1	2	3	4	5	6
(hL بالهكتولتر y_i	25000	26000	28500	29000	31000	33498

ا) مثّل سحابة النقط $M\left(x_{i}\,;y_{i}\right)$ في معلم متعامد مبدؤه O'(0;20000) و بوحدة $M\left(x_{i}\,;y_{i}\right)$ محور الفواصل و O'(0;20000) على محور التراتيب.

2) أ- عين إحداثيتي النقطة المتوسطة G لهذه السحابة.

 (10^{-2}) الانحدار بالمربعات الدنيا. (10^{-2}) الدنياء الانحدار بالمربعات الدنياء (10^{-2})

- 3) قدّر كمية الحليب التي يمكن تجميعها في سنة 2015 باستعمال التعديل الخطى السابق.
- 4) إذا اعتبرنا أن كمية الحليب المجمعة في السنوات الموالية لسنة 2011 تَتِمُّ بنفس الوتيرة التي تمت بها من سنة 2000 إلى سنة 2000 ألى سنة ألى سنة ستعدى الكمية المجمعة 2000 ألى سنة ألى س

التمرين الثالث: (04 نقاط)

(تعطى النتائج على شكل كسور غير قابلة للاختزال).

عدد تلاميذ قسم دراسي هو 35 تلميذا من بينهم 15 بنتا. يختار كل تلميذ من القسم رياضة واحدة وواحدة فقط يمارسها في إطار نشاطات النادي الرياضي للمؤسسة. %75 من الأولاد اختاروا ممارسة كرة القدم و %15 اختاروا ممارسة كرة اليد بينما اختار %10 ممارسة الكرة الطائرة. %60 من البنات اخترن ممارسة الكرة الطائرة والبقية اخترن ممارسة كرة اليد. لتمثيل هذا القسم في منافسة رياضية، يتم اختيار تلميذ واحد منه بطريقة عشوائية. يرمز G إلى الحادثة " التلميذ المختار ولد " ويرمز F إلى الحادثة " التلميذ المختار بنت " .

يرمر G إلى الحادثة "التأميذ المختار وبد ويرمر F إلى الحادثة " .

يرمز M إلى الحادثة " التلميذ المختار يمارس كرة اليد " .

يرمز V إلى الحادثة " التاميذ المختار يمارس الكرة الطائرة ".

1) انقل الشجرة المقابلة على ورقة الإجابة، ثم أكملها.

- . V أحسب (P(V) احتمال أن تتحقق الحادثة
 - $P_{v}\left(G
 ight)$ أحسب الاحتمال الشرطى (3
- 4) أحسب احتمال أن يكون التلميذ المختار لا يمارس كرة القدم.

التمرين الرابع: (06 نقاط)

 $[1;+\infty[$ المقابل هو للدالة f المعرفة على المجال (C_f) المقابل هو للدالة c,b,a حيث f(x)=ax+b+cxlnx : بالعبارة

- .+ ∞ عند f ونهایة f عند $+\infty$ عند $+\infty$
- الدالة f'(x) عبارة f'(x) عبارة f'(x) هي الدالة المشتقة للدالة f على f'(x) على المشتقة للدالة f على المشتقة الدالة f على الدالة f

 $.f(5) = 16 - 10 \ln 5$ أن $.f(x) = 3x + 1 - 2x \ln x$ بــــ باستعمال معطیات في الشکل، و علما أن $.f(x) = 3x + 1 - 2x \ln x$

-ج- تحقق من صحة تخمينك في السؤال 1، ثم شكّل جدول تغيرات الدالة f

 $.4,95 < \alpha < 4,96$ أن المعادلة: $[1;+\infty]$ تقبل حلا وحيدا α على على أن المعادلة: (x) = 0

(4) نعرف العدد الحقيقي S كما يلي: $S = \int_{1}^{\alpha} f(x) dx$ (حيث α هو حل المعادلة S كما يلي: (4) S نعرف العدد الحقيقي

 $[1;+\infty]$ على أن الدالة: $g:x\mapsto 2x^2+x-x^2\ln x$ على أن الدالة:

. α أعط تفسير ا هندسيا للعدد α ، ثم احسبه بدلالة

. $S=\frac{1}{2}\alpha(\alpha+1)-3$: بيّن أن: $S=\frac{1}{2}\alpha(\alpha+1)-3$ ثم استنج حصر اللعدد

الموضوع الثاني

التمرين الأول: (05 نقاط)

في بداية جانفي 2008 وضع شخص مبلغا من المال قدره DA 50000 في صندوق التوفير والاحتياط. يقدم الصندوق فائدة قدرها 5% سنويا .

يسحب هذا الشخص نهاية كل سنة مبلغا قدره DA 5000 (بعد حساب الفوائد).

. 2008+n إلى المبلغ الذي يملكه هذا الشخص في حسابه بداية جانفي من السنة u_n يرمز

- u_{2} و u_{1} ، u_{0} و المسب كلا من u_{1} أ- أحسب كلا من
- (u_n) هندسية ؟ هل هي حسابية ؟ برّر إجابتك.
- $u_{n+1} = 1,05u_n 5000$ الدينا، $u_{n+1} = 1,05u_n 5000$ الدينا، $u_{n+1} = 1,05u_n 5000$
 - $v_n = u_n 100\,000$ ، n نضع من أجل كل عدد طبيعي (2
 - أ- بيّن أنّ المتتالية (v_n) هندسية ، حدّد أساسها وحدّها الأوّل.

 $u_n = -50\,000 \times \left(1,05\right)^n + 100\,000$ ، n عدد طبیعی عدد طبیعی شه استنتج أنّه من أجل كل عدد البيعی v_n بدلالة v_n

3) أ- ما هو المبلغ الذي يكون في حساب هذا الشخص نهاية عام 2015 ؟

ب- ابتداء من أية سنة لا تسمح إدارة الصندوق لهذا الشخص بسحب المبلغ المعتاد على سحبه في نهاية
 كل سنة؟

التمرين الثاني: (06 نقاط)

x	-1	0	$+\infty$	()
f'(x)	+	0	_	جدول التغيرات المقابل هو للدالة f المعرفة على المجال
		е		$f(x) = (x+1)e^{1-x}$ بالعبارة: $[-1; +\infty[$
f(x)		▼ \	_	ليكن $(C_{_f})$ تمثيلها البياني في المستوي المنسوب
	0/		→ 0	. $(O;ec{i},ec{j})$ إلى المعلم المتعامد والمتجانس

- . y=-x+3 : هي: (Δ) المماس للمنحنى (C_f) في النقطة ذات الفاصلة (Δ) معادلة ((Δ)
 - . $g(x) = -x e^{1-x} + 1$: بالعبارة إلى المعرفة على المجال إلى المعرفة على المجال $g(x) = -x e^{1-x} + 1$
 - أ- أدرس اتجاه تغيّر الدالة g .
 - . $[-1;+\infty[$ على المجال g(x) على المجال ، g(1) على ب- أحسب
 - $h(x) = (x+1)e^{1-x} + x 3$ بالعبارة: $[-1; +\infty[$ بالمجلف على الدالة المعرفة على المجال $[-1; +\infty[$
- - h'(x)=g(x) ، $[-1;+\infty[$ المجال x من المجال عبير ات الدالة h'(x)=g(x) ، h'(x)=g(x) ، المجال عبير ات الدالة x
 - ج- تحقق أنّ المعادلة: h(x)=0 تقبل حلا وحيدا في المجال $[-1;+\infty[$ يطلب تعيينه.
 - . (Δ) د حدّد إشارة h(x) ، ثمّ استنتج وضعية المنحنى (C_f) بالنسبة إلى المستقيم
 - (C_f) و المنحني (Δ) هـ أنشئ كلا من المماس

التمرين الثالث: (04 نقاط)

بيَّنت دراسة إحصائية لتلاميذ السنة الثالثة ثانوي بإحدى الثانويات أن % 30 من التلاميذ قدِموا من الإكمالية A و البقية من الإكمالية B و البقية من الإكمالية A و البقية A و البقية من الإكمالية A و البقية من الإكمالية A و البقية A و البقية

بعد اجتياز التلاميذ لامتحان البكالوريا تبيَّن ما يلي : نجح في الامتحان % 25 من التلاميذ القادمين من الإكمالية A و % 18 من الذين قدموا من الإكمالية B و % 84 من الذين قدموا من الإكمالية A و % 18 من الذين قدموا من الإكمالية A و % 18 من الذين قدموا من الإكمالية A و % 18 من الذين قدموا من الإكمالية A و % 18 من الدين قدموا من الإكمالية A و % 18 من الدين قدموا من الإكمالية A و % 18 من الدين قدموا من الإكمالية A 18 من الذين قدموا من الإكمالية A 18 من الذين قدموا من الإكمالية A 18 من الذين قدموا من الإكمالية A 18 من الدين قدموا من الإكمالية A 18 من الذين قدموا من الأدلية A 18 من الذين قدموا من الذين الذين قدموا من الأدلية A 18 من الذين قدموا من الأدلية A 18 من الذين ا

نختار تلميذا من تلاميذ السنة الثالثة ثانوي بطريقة عشوائية بعد اجتياز امتحان البكالوريا.

يرمز R إلى الحادثة "التاميذ المختار نجح في الامتحان"

"A إلى الحادثة "التلميذ المختار قادم من الإكمالية A

 $^{"}B$ يرمز $^{"}B$ إلى الحادثة "التلميذ المختار قادم من الإكمالية

 $^{\shortparallel}C$ يرمز C إلى الحادثة "التلميذ المختار قادم من الإكمالية

- 1) أنجز شجرة الاحتمالات التي تُتَمْذِج هذه الوضعية .
 - . $P(C \cap R) = 0,21$ أثبت أن (2
 - R احتمال الحادثة P(R) احتمال (3
 - $P_R(B)$ احسب الاحتمال الشرطى (4

التمرين الرابع: (05 نقاط)

. $f(x) = \frac{1}{3}x^3 + 100 + \frac{57600}{x+1}$: أبالعبارة : -1 ; + ∞ المجال على المجال على الدالة المعرفة على المجال إلى المجال إلى المجال ا

-1 عند f عند رعند f عند f اُحسب نهایتی اُعند f

. $f'(x) = \frac{(x^2 + x - 240)(x^2 + x + 240)}{(x+1)^2}$ ،]-1; $+\infty[$ المجال x من أجل كل x من أجل كل x من المجال (2

ب- استنتج اتجاه تغيّر الدالة f على المجال $]+\infty$; $+\infty$ المجال تغير اتها.

x=0 ج- جد الدالة الأصلية H للدالة $h:x\mapsto \frac{1}{x+1}$ على المجال x=0 والتي تنعدم من أجل x=0

(3) تنتج إحدى شركات تركيب آلات الغسيل خلال أسبوع 5 آلات على الأقل و 200 آلة على الأكثر. تُتَمْذَجُ الكلفة الهامشية C_m لإنتاج x آلة إضافية للشركة على المجال C_m بالدالة x أي أنّ: x من أجل كل x من المجال x من المحال x من ال

أ- ما هو عدد الآلات التي يجب أن تنتجها الشركة خلال أسبوع لكي تكون الكلفة الهامشية أقل ما يمكن؟ $C'(x) = C_m(x)$. $C'(x) = C_m(x)$ ألة. ونذكّر أنّ $C'(x) = C_m(x)$ للكلفة الإجمالية لإنتاج $C'(x) = C_m(x)$

جد عبارة الكلفة الإجمالية (C(x))، علما أن الكلفة الإجمالية لإنتاج 5 آلات الأولى هي 40000، ثم استنتج قيمة الكلفة الإجمالية لإنتاج 15 آلة الأولى.

العلامة		/ h & h			
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)			
		تمرين الأول			
	01	$u_n > \frac{2}{3}$ أ- إثبات أن (1			
	01	ب- اثبات أن (u_n) متناقصة			
	0,75	$q = \frac{1}{3}$ ، $v_0 = \frac{1}{3}$ ، متتالیة هندسیة. (u_n) –1 (2			
05	0,5+0,25	$u_n = \frac{1}{3} \left[\left(\frac{1}{3} \right)^n + 2 \right] \cdot v_n = \frac{1}{3} \left(\frac{1}{3} \right)^n - \varphi$			
	0,5	$\lim u_n = \frac{2}{3} -$			
	0,25	$v_0 + v_1 + \dots + v_n = \frac{1}{2} \left[1 - \left(\frac{1}{3} \right)^{n+1} \right]$ (3)			
	0,75	$S_n = \frac{1}{2} \left[1 - \left(\frac{1}{3} \right)^{n+1} \right] + \frac{2}{3} (n+1)$			
		التمرين الثاتي			
	01	1) تمثيل سحابة النقاط			
	0,5	G(3,5;28833) -1 (2			
05	0,5+1	b=23034 , a=1656,86 -ب			
03	0,5	3) - رتبة السنة 2015 هي 10			
	0,5	– الكمية المقدرة هي حوالي : 39602,6 hL			
	0,75	y>5000 (4 و منه x>16,27 أي x=17			
	0,25	السنة التي رتبتها 17 هي 2022			
		التمرين الثالث T P(G \cap T) = 3/7			
04	25	$G = \frac{15/100}{M} P(G \cap M) = 3/35$			
	5x0,5	$10/100 V P(G \cap V) = 2/35$			
		15/35 $F = 40/100 V P(F \cap M) = 6/35$ 60/100 $M P(F \cap V) = 9/35$			
		$60/100 \bullet M P(F \cap V) = 9/35$			
1 0	20				

	0,5	$P(V)=11/35 \tag{2}$				
	0,5	$P_{V}(G)=2/11$ (2)				
	0,5	$P(\bar{T})=1-P(T)=4/7$ (4)				
	2×0,25 0,25	مرین الرابع $\sqrt{e};+\infty$ و منتاقصة نماما علی متزایدة نماما علی متزاید \sqrt{e}				
	,,,,,	$\lim_{x \to +\infty} f(x) = -\infty$				
	0,25 2×0,25	$f'(x) = a + c(\ln x + 1) - \frac{1}{2}$ $f'(x) = a + c(\ln x + 1) - \frac{1}{2}$ $f'(\sqrt{e}) = 0 - \frac{1}{2}$				
	0,5	$\begin{cases} a + \frac{3}{2}c = 0\\ a + b = 4\\ 5a + b + 5c \ lnc = 16 - 10ln5 \end{cases}$				
	4×0,25	الطريقة + $c=-2$, $b=1$, $a=3$				
	0,25	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x \left[3 + \frac{1}{x} - \ln x \right] = -\infty - \mathbf{E}$				
06	0,25	$f'(x) = 1 - 2 \ln x$				
00	0,25	$\frac{1}{x}$ 1 \sqrt{e} $+\infty$				
	0,25	f'(x) + 0 - جدول تغيرات الدالة f.				
	0,25	$[1;\sqrt{e}]$ لا تقبل حلو لا على $f(x)=0$ المعادلة $f(x)=0$				
	0,25	- المعادلة $f(x) = 0$ تقبل حلا وحيدا على $-$				
	0,25	$f(4,95) \times f(4,96) < 0$				
	0,25	g'(x) = f(x) - 1 (4				
	0,25	C_f) والمستقيمات التي معادلاتها ب $-S$ هي مساحة الحيز المستوي المحدد بِ				
		$x = \alpha$ $y = 1$ $x = 1$				
	0,25	$S = 2\alpha^2 + \alpha - 3 - \alpha^2 \ln \alpha$				
	0,25	$S = \frac{1}{2}\alpha(\alpha+1) - 3$ ج- إثبات أن				
- text	0,25	11,72 < S < 11,78				

العلامة (٤)		/ 151 C			
مجموع	، مجزأة	عناصر الإجابة (الموضوع الثاني)			
()		نتمرين الأول			
24.540 1.11	0,75	$u_2, u_1, u_0 -1$ (1			
05	0,25	$u_1^2 \neq u_0 \times u_2$ ب ليست هندسية لأن $u_1 \neq u_0 \times u_2$			
05	0,25	$u_0 + u_2 \neq 2u_1$ ليست حسابية لأن لأن (u_n)			
87.		$u_{n+1} = u_n + u_n \times \frac{5}{100} - 5000$ $-$			
	2x0,25 +0,5	$q = 1.05$; $v_0 = -5 \times 10^4$; $v_{n+1} = 1.05 v_n - 1$ (2			
	2x0,5	$u_n = -5 \times 10^4 (1,05)^n + 10^5$; $v_n = -5 \cdot 10^4 \times (1,05)^n - \Box$			
	0,5	$u_8 = 26127, 23 \; DA$ هو 2015 أ- المبلغ في نهاية 2015 هو (3			
	0,25	$u_n < 5000$ —			
j.	0,25	$n = 14$ $n > 13,16$ $n > \frac{\ln(1,9)}{\ln(1,05)}$			
ń.	0,25	ابتداء من سنة 2022 لا يسمح لهذا الشخص بسحب المبلغ المعتاد			
4	on promoted to be the	تمرین الثانی			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3x0,25	$f(1) = 2$ • $f'(1) = -1$ • $f'(x) = -xe^{1-x}$ (1)			
	0,25	(D): y = -x + 3			
	0,25	$g'(x) = (x - 1)e^{1-x} - 1$ (2)			
06		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
	2x0,25	g'(x) - 0 +			
		g(x)			
	0,25	$g(x) \ge 0$ ، $[-1; +\infty[$ من أجل كل x من أجل كل $g(1) = 0$			

131

	r	
	0,25	h(x) = f(x) + x - 3 [3]
	0,25	$\lim_{x \to +\infty} f(x) = 0 \forall \lim_{x \to +\infty} h(x) = +\infty$
± 98 2	0,25	$h'(x) = g(x) - \psi$
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	0,5	$h(x)$ $-\infty$
	2	_4
	2x0,25	 ج- تطبيق مبر هنة القيم المتوسطة + الرتابة.
	2-0.25	(C_f) مماس له (Δ) معني $x=1$ يعني $h(x)=0$
	2x0,25	[h(x)=f(x)-(-x+3)] 1 في النقطة ذات الفاصلة
		$c - \operatorname{rad} \stackrel{\text{div}}{\text{div}} = 0$
	0,5	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	0,25	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	1	. [-1,1] و يقع أسفله في المجال (C_f) في $]0,+\infty[$ و يقع أسفله في المجال
		(Δ) (C_{Δ})
		التمرين الثالث
		1) شجرة الاحتمالات R • 25/100
		30/100 A
		3√100 <i>R</i>
	6x0,25	18/100 R
		45/100 B • \(\bar{R}\)
		25/100 R
04		To Company of the Com
	er.	· K
	0.5	P(C = P) 25 84 (2
	0,5	$P(C \cap R) = \frac{25}{100} \times \frac{84}{100} $ (2
	4x0,25	$P(R) = \frac{30}{100} \times \frac{25}{100} + \frac{45}{100} \times \frac{18}{100} + \frac{25}{100} \times \frac{84}{100} = 0,366 $ (3
	0,25x2	$P_{R}(B) = \frac{45}{100} \times \frac{18}{100} = 0{,}081 P_{R}(B) = \frac{P(R \cap B)}{P(R)} $ (4
	0,5	$P_{R}(B) = 0,22$

	2x025	التمرين الرابع
		$\lim_{x \longrightarrow +\infty} f(x) = +\infty i \lim_{x \longrightarrow -1} f(x) = +\infty (1$
	0,5	$f'(x) = x^2 - \frac{57600}{(x+1)^2} - 1$ (2)
	0,25	$f'(x) = \frac{(x^2 + x - 240)(x^2 + x + 240)}{(x+1)^2}$
	0,25]-1;+ ∞ [من أجل كل x من $(x+1)^2 > 0$ و $(x+1)^2 > 0$ من أجل كل
	0,5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
05	0,5	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	3x0,25	$C = 0$, $H(0) = 0$ e^{-x} $H(x) = \ln(x+1) + e^{-x}$
	0,5	3) أ- عدد الآلات هو 15
	2x0,25	$C(5)=4\cdot 10^4$ حيث $C_m=f$ الدالة الأصلية للدالة C
	0,5	$C(x) = \frac{1}{12}x^4 + 100x + 57600 \ln\left(\frac{x+1}{6}\right) + \frac{473375}{12}$
	0,25	$C(15) = 101662,43 \ DA$