

NSi8140/NSi8141/NSi8142: High Reliabilit y Quad-Channel Digital Isolators

Datasheet (EN) 1.4

Product Overview

The NSi814x devices are high reliability quad-channel digital isolators. The NSi814x device is safety certified by UL1577 support several insulation withstand voltages (3.75kV_{rms}, 5kV_{rms}), while providing high electromagnetic immunity and low emissions at low power consumption. The data rate of the NSi814x is up to 150Mbps, and the common-mode transient immunity (CMTI) is up to 150kV/us. The NSi814x device provides digital channel direction configuration and the default output level configuration when the input power is lost. Wide supply voltage of the NSi814x device support to connect with most digital interface directly, easy to do the level shift. High system level EMC performance enhance reliability and stability of use. AEC-Q100 (Grade 1) option is provided for all devices.

Key Features

Up to 5000V_{rms} Insulation voltage

Date rate: DC to 150Mbps

Power supply voltage: 2.5V to 5.5V

AEC-Q100 Grade 1 available for all devices

High CMTI: 150kV/us

Chip level ESD: HBM: ±6kV

High system level EMC performance:
 Enhanced system level ESD, EFT, Surge immunity

Default output high level or low level option

Isolation barrier life: >60 years

Low power consumption: 1.5mA/ch (1 Mbps)

Low propagation delay: <15ns

Operation temperature: -40 °C~125 °C

RoHS-compliant packages:

SOIC-16 narrow body SOIC-16 wide body

Safety Regulatory Approvals

- UL recognition: up to 5000V_{rms} for 1 minute per UL1577
- CQC certification per GB4943.1-2011
- CSA component notice 5A
- DIN VDE V 0884-11:2017-01

Applications

- Industrial automation system
- Isolated SPI, RS232, RS485
- General-purpose multichannel isolation
- Motor control

Functional Block Diagrams

Figure 1. NSi814x Block Diagram

Index

1.0	ABSOLUTE MAXIMUM RATINGS	
2.0	SPECIFICATIONS	3
2.1 2.2 2.3 2.4 2.5	THERMAL CHARACTERISTICS	4 4 9
3.0	HIGH VOLTAGE FEATURE DESCRIPTION	12
3.1 3.2 3.3	2. DIN VDE V 0884-11 (VDE V 0884-11) :2017-01 insulation charateristics	12 14
4.0	FUNCTION DESCRIPTION	15
5.0	APPLICATION NOTE	16
5.1 5.2 5.3	HIGH SPEED PERFORMANCE	16 17
6.0	PACKAGE INFORMATION	
7.0	ORDER INFORMATION	
8.0	TAPE AND REEL INFORMATION	22
9.0	REVISION HISTORY	24

1.0 ABSOLUTE MAXIMUM RATINGS

Parameters	Symbol	Min	Тур	Max	Unit	Comments
Power Supply Voltage	VDD1, VDD2	-0.5		6.5	V	
Maximum Input Voltage	VINA,VINB, VINC, VIND	-0.4		VDD+0.4	V	
Maximum Output Voltage	VOUTA,VOUTB, VOUTC	-0.4		VDD+0.4	V	
Maximum Input/Output Pulse Voltage	VINA, VINB, VINC,VOUTA, VOUTB,VOUTC	-0.8		VDD+0.8	V	Pulse width should be less than 100ns, and the duty cycle should be less than 10%
Common-Mode Transients	CMTI			±150	kV/us	
Output current	lo	-15		15	mA	
Maximum Surge Isolation Voltage	V_{IOSM}			5.3	kV	
Operating Temperature	Topr	-40		125	℃	
Storage Temperature	Tstg	-40		150	℃	
Floatrostatio discharge	НВМ			±6000	V	
Electrostatic discharge	CDM			±2000	V	

2.0 SPECIFICATIONS

Parameters	Symbol	Min	Тур	Max	Unit	Comments
Power on Reset	VDD_{POR}		2.2		V	POR threshold as during power- up
	VDD _{HYS}		0.1		V	POR threshold Hysteresis
Input Threshold	V _{IT}		1.6		V	Input Threshold at rising edge
	V _{IT_HYS}		0.4		V	Input Threshold Hysteresis
High Level Input Voltage	V _{IH}	2			V	
Low Level Input Voltage	V _{IL}			0.8	V	
High Level Output Voltage	V _{OH}	VDD- 0.3			V	I _{OH} =- 4mA
Low Level Output Voltage	V _{OL}			0.3	V	I _{OL} = 4mA
Output Impedance	R _{out}		50		ohm	
Input Pull high or low Current	I _{pull}		8	15	uA	
Start Up Time after POR	trbs		40		usec	

Common Mode Transient	CMTI	100	150	kV/us
Immunity				

2.1. RECOMMENDED OPERATING CONDITIONS

Parameters	Symbol	min	typ	max	unit
Power Supply Voltage	VDD1, VDD2	2.5		5.5	V
Operating Temperature	Topr	-40		125	$^{\circ}$
High Level Input Voltage	VIH	2			V
Low Level Input Voltage	Low Level Input Voltage VIL			0.8	V
Data rate	DR			150	Mbps

2.2. THERMAL CHARACTERISTICS

Parameters	Symbol	WB SOIC-16	NB-SOIC-16	Unit
IC Junction-to-Air Thermal Resistance	θ DA	78.9	78.9	° C/W
Junction-to-case (top) thermal resistance	$\theta_{\text{JC (top)}}$	41.6	41.1	° C/W
Junction-to-board thermal resistance	θ ЈВ	43.6	49.5	° C/W

2.3. ELECTRICAL CHARACTERISTICS

(VDD1=2.5V \sim 5.5V, VDD2=2.5V \sim 5.5V, Ta=-40 $^{\circ}$ C to 125 $^{\circ}$ C. Unless otherwise noted, Typical values are at VDD1 = 5V, VDD2 = 5V, Ta = 25 $^{\circ}$ C)

Parameters	Symbol	Min	Тур	Max	Unit	Comments
Power on Reset	VDD_{POR}		2.2		V	POR threshold as during power- up
	VDD _{HYS}		0.1		V	POR threshold Hysteresis
Input Threshold	V_{IT}		1.6		V	Input Threshold at rising edge
	$V_{\text{IT_HYS}}$		0.4		V	Input Threshold Hysteresis
High Level Input Voltage	V_{IH}	2			V	
Low Level Input Voltage	V _{IL}			0.8	V	
High Level Output Voltage	V _{он}	VDD- 0.3			V	I _{OH} =- 4mA
Low Level Output Voltage	V _{OL}			0.3	V	I _{OL} = 4mA
Output Impedance	R _{out}		50		ohm	
Input Pull high or low Current	I _{pull}		8	15	uA	
Start Up Time after POR	trbs		40		usec	

Common Mode Transient	CMTI	100	150	kV/us
Immunity				

 $(VDD1=5V\pm 10\%, VDD2=5V\pm 10\%, Ta=-40$ °C to 125°C. Unless otherwise noted, Typical values are at VDD1=5V, VDD2=5V, Ta=25°C)

Parameters	Symbol Min	Тур	Max	Unit	Comments					
	NSi8140									
	I _{DD1} (Q0)	0.894	1.50	mA	All Input 0V for NSi8140x0 Or All					
	I _{DD2} (Q0)	2.326	3.5	mA	Input at supply for NSi8140x1					
	I _{DD1} (Q1)	5.316	7.8	mA	All Input at supply for NSi8140x0					
	I _{DD2} (Q1)	2.432	3.65	mA	Or All Input OV for NSi8140x1					
	I _{DD1} (1M)	3.087	4.63	mA	All Input with 1Mbps,					
	I _{DD2} (1M)	2.728	4.09	mA	C _L =15pF					
	I _{DD1} (10M)	3.182	4.77	mA	All Input with 10Mbps,					
	I _{DD2} (10M)	5.834	8.75	mA	C _L =15pF					
	I _{DD1} (100M)	3.918	5.88	mA	All Input with 100Mbps,					
	I _{DD2} (100M)	37.06	55.6	mA	C _L =15pF					
	NSi8141									
	I _{DD1} (Q0)	1.244	1.87	mA	All Input OV for NSi8141x0 Or All					
Supply current	I _{DD2} (Q0)	2.164	3.25	mA	Input at supply for NSi8141x1					
	I _{DD1} (Q1)	4.658	7	mA	All Input at supply for NSi8141x0					
	I _{DD2} (Q1)	3.416	5	mA	Or All Input 0V for NSi8141x1					
	I _{DD1} (1M)	3.07	4.6	mA	All Input with 1Mbps,					
	I _{DD2} (1M)	3.064	4. 6	mA	C _L =15pF					
	I _{DD1} (10M)	3.82	5.7	mA	All Input with 10Mbps,					
	I _{DD2} (10M)	5.496	8.2	mA	C _L =15pF					
	I _{DD1} (100M)	10.708	16.06	mA	All Input with 100Mbps,					
	I _{DD2} (100M)	29.336	44	mA	C _L = 15pF					
	NSi8142									
	I _{DD1} (Q0)	1.688	2.5	mA	All Input OV for NSi8142x0 Or All					
	I _{DD2} (Q0)	1.704	2.56	mA	Input at supply for NSi8142x1					
	I _{DD1} (Q1)	4.038	6.06	mA	All Input at supply for NSi8142x0					
	I _{DD2} (Q1)	4.1	6.15	mA	Or All Input 0V for NSi8142x1					

	I _{DD1} (1M)		3.06	4.6	mA	All Input with 1Mbps,
	I _{DD2} (1M)		3.108	4.7	mA	C _L =15pF
	I _{DD1} (10M)		4.578	6.9	mA	All Input with 10Mbps,
	I _{DD2} (10M)		4.694	7	mA	C _L =15pF
	I _{DD1} (100M)		19	28.5	mA	All Input with 100Mbps,
	I _{DD2} (100M)		20.868	31	mA	C _L = 15pF
Data Rate	DR	0		150	Mbps	
Minimum Pulse Width	PW			5.0	ns	
Propagation Delay	t _{PLH}	5	8.20	15	ns	See Figure 2.9, C _L = 15pF
	t _{PHL}	5	10.56	15	ns	See Figure 2.9, C _L = 15pF
Pulse Width Distortion	PWD			5.0	ns	See Figure 2.9, C _L = 15pF
t _{PHL} -t _{PLH}						
Rising Time	t _r			5.0	ns	See Figure 2.9, C _L = 15pF
Falling Time	t _f			5.0	ns	See Figure 2.9, C _L = 15pF
Peak Eye Diagram Jitter	t _{JIT} (PK)		350		ps	
Channel-to-Channel Delay Skew	t _{sk} (c2c)			2.5	ns	
Part-to-Part Delay Skew	t _{sk} (p2p)			5.0	ns	
Disable high to Tri-State	t _{PHZ}		14.88		ns	See Figure 2.10, $C_L = 15pF$, $R_L=1k$
Enable to Data high Valid	t _{PZH}		10.00		ns	See Figure 2.10, $C_L = 15pF$, $R_L=1k$
Disable low to Tri-State	t _{PLZ}		17.25		ns	See <u>Figure 2.10</u> , C _L = 15pF, R _L =1k
Enable to Data high Valid	t _{PZL}		10.85		ns	See <u>Figure 2.10</u> , $C_L = 15pF$, $R_L=1k$

(VDD1=3.3V \pm 10%, VDD2=3.3V \pm 10%, Ta=-40°C to 125°C. Unless otherwise noted, Typical values are at VDD1 = 3.3V, VDD2 = 3.3V, Ta = 25°C)

Parameters	Symbol	Min	Тур	Max	Unit	Comments
	NSi8140					
	I _{DD1} (Q0)		0.832	1.25	mA	All Input 0V for NSi8140x0 Or All
	I _{DD2} (Q0)		2.214	3.3	mA	Input at supply for NSi8140x1
Supply current	I _{DD1} (Q1)		5.23	7.9	mA	All Input at supply for NSi8140x0
	I _{DD2} (Q1)		2.32	3.48	mA	Or All Input OV for NSi8140x1
	I _{DD1} (1M)		3.01	4.5	mA	All Input with 1Mbps,
	I _{DD2} (1M)		2.486	3.73	mA	C _L =15pF

						_						
	I _{DD1} (10M)		3.106	4.66	mA	All Input with 10Mbps,						
	I _{DD2} (10M)		4.476	6.7	mA	C _L =15pF						
	I _{DD1} (100M)		3.826	5.74	mA	All Input with 100Mbps,						
	I _{DD2} (100M)		25.5	38	mA	C _L =15pF						
	NSi8141	NSi8141										
	I _{DD1} (Q0)		1.165	1.75	mA	All Input 0V for NSi8141x0 Or All						
	I _{DD2} (Q0)		2.062	3.1	mA	Input at supply for NSi8141x1						
	I _{DD1} (Q1)		4.566	6.85	mA	All Input at supply for NSi8141x0						
	I _{DD2} (Q1)		3.306	5	mA	Or All Input OV for NSi8141x1						
	I _{DD1} (1M)		2.954	4.4	mA	All Input with 1Mbps,						
	I _{DD2} (1M)		2.862	4.3	mA	C _L =15pF						
	I _{DD1} (10M)		3.452	5.2	mA	All Input with 10Mbps,						
	I _{DD2} (10M)		4.368	6.5	mA	C _L =15pF						
	I _{DD1} (100M)		8.084	12	mA	All Input with 100Mbps,						
	I _{DD2} (100M)		19.96	30	mA	C _L = 15pF						
	NSi8142				II.							
	I _{DD1} (Q0)		1.598	2.4	mA	All Input 0V for NSi8142x0 Or All						
	I _{DD2} (Q0)		1.618	2.43	mA	Input at supply for NSi8142x1						
	I _{DD1} (Q1)		3.942	5.9	mA	All Input at supply for NSi8142x0						
	I _{DD2} (Q1)		4.004	6	mA	Or All Input 0V for NSi8142x1						
	I _{DD1} (1M)		2.901	4.3	mA	All Input with 1Mbps,						
	I _{DD2} (1M)		2.9452	4.4	mA	C _L =15pF						
	I _{DD1} (10M)		3.898	5.85	mA	All Input with 10Mbps,						
	I _{DD2} (10M)		3.976	6	mA	C _L =15pF						
	I _{DD1} (100M)		12.9	19	mA	All Input with 100Mbps,						
	I _{DD2} (100M)		14.868	22	mA	C _L = 15pF						
Data Rate	DR	0		150	Mbps							
Minimum Pulse Width	PW			5.0	ns							
Propagation Delay	t _{PLH}	5	9.20	15	ns	See <u>Figure 2.9</u> , C _L = 15pF						
	t _{PHL}	5	10.40	15	ns	See Figure 2.9, C _L = 15pF						
Pulse Width Distortion	PWD			5.0	ns	See <u>Figure 2.9</u> , C _L = 15pF						
t PHL - t PLH												

Rising Time	t _r		5.0	ns	See <u>Figure 2.9</u> , C _L = 15pF
Falling Time	t _f		5.0	ns	See <u>Figure 2.9</u> , C _L = 15pF
Peak Eye Diagram Jitter	t _{JIT} (PK)	350		ps	
Channel-to-Channel Delay Skew	t _{sk} (c2c)		2.5	ns	
Part-to-Part Delay Skew	t _{sk} (p2p)		5.0	ns	
Disable high to Tri-State	t _{PHZ}	17.85		ns	See Figure 2.10, $C_L = 15pF$, $R_L=1k$
Enable to Data high Valid	t _{PZH}	13.37		ns	See Figure 2.10, $C_L = 15pF$, $R_L=1k$
Disable low to Tri-State	t _{PLZ}	20.6		ns	See Figure 2.10, $C_L = 15pF$, $R_L=1k$
Enable to Data high Valid	t _{PZL}	13.67		ns	See Figure 2.10, $C_L = 15pF$, $R_L=1k$

(VDD1=2.5V \pm 10%, VDD2=2.5V \pm 10%, Ta=-40°C to 125°C. Unless otherwise noted, Typical values are at VDD1 = 2.5V, VDD2 = 2.5V, Ta = 25°C)

Parameters	Symbol	Min	Тур	Max	Unit	Comments
	NSi8140					
	I _{DD1} (Q0)		0.802	1.2	mA	All Input 0V for NSi8140x0 Or All
	I _{DD2} (Q0)		2.161	3.24	mA	Input at supply for NSi8140x1
	I _{DD1} (Q1)		5.17	7.8	mA	All Input at supply for NSi8140x0
	I _{DD2} (Q1)		2.282	3.4	mA	Or All Input OV for NSi8140x1
	I _{DD1} (1M)		2.968	4.45	mA	All Input with 1Mbps,
	I _{DD2} (1M)		2.384	3.58	mA	C _L =15pF
	I _{DD1} (10M)		3.056	4.58	mA	All Input with 10Mbps,
	I _{DD2} (10M)		3.862	5.8	mA	C _L =15pF
Supply current	I _{DD1} (100M)		3.772	5.67	mA	All Input with 100Mbps,
	I _{DD2} (100M)		19.54	29.3	mA	C _L =15pF
	NSi8141					
	I _{DD1} (Q0)		1.128	1.7	mA	All Input 0V for NSi8141x0 Or All
	I _{DD2} (Q0)		2.012	3	mA	Input at supply for NSi8141x1
	I _{DD1} (Q1)		4.51	6.8	mA	All Input at supply for NSi8141x0
	I _{DD2} (Q1)		3.248	4.9	mA	Or All Input OV for NSi8141x1
	I _{DD1} (1M)		2.894	4.3	mA	All Input with 1Mbps,
	I _{DD2} (1M)		2.766	4.15	mA	C _L =15pF
	I _{DD1} (10M)		3.272	4.9	mA	All Input with 10Mbps,

	. , .		Ι		1 .	C _L =15pF
	I _{DD2} (10M)		3.892	5.8	mA	·
	I _{DD1} (100M)		6.95	10.4	mA	All Input with 100Mbps,
	I _{DD2} (100M)		15.706	23.56	mA	C _L = 15pF
	NSi8142					
	I _{DD1} (Q0)		1.556	2.3	mA	All Input OV for NSi8142x0 Or All
	I _{DD2} (Q0)		1.574	2.4	mA	Input at supply for NSi8142x1
	I _{DD1} (Q1)		3.884	5.8	mA	All Input at supply for NSi8142x0
	I _{DD2} (Q1)		3.942	5.9	mA	Or All Input 0V for NSi8142x1
	I _{DD1} (1M)		2.824	4.3	mA	All Input with 1Mbps,
	I _{DD2} (1M)		2.866	4.3	mA	C _L =15pF
	I _{DD1} (10M)		3.574	5.36	mA	All Input with 10Mbps,
	I _{DD2} (10M)		3.642	5.46	mA	C _L =15pF
	I _{DD1} (100M)		10.678	16	mA	All Input with 100Mbps,
	I _{DD2} (100M)		11.618	17	mA	$C_L = 15pF$
Data Rate	DR	0		150	Mbps	
Minimum Pulse Width	PW			5.0	ns	
Propagation Delay	t _{PLH}	5	10.0	15	ns	See Figure 2.9, C _L = 15pF
	t _{PHL}	5	10.0	15	ns	See <u>Figure 2.9</u> , C _L = 15pF
Pulse Width Distortion	PWD			5.0	ns	See Figure 2.9, C _L = 15pF
t _{PHL} - t _{PLH}						
Rising Time	t _r			5.0	ns	See <u>Figure 2.9</u> , C _L = 15pF
Falling Time	t _f			5.0	ns	See <u>Figure 2.9</u> , C _L = 15pF
Peak Eye Diagram Jitter	t _{JIT} (PK)		350		ps	
Channel-to-Channel Delay Skew	t _{sk} (c2c)			2.5	ns	
Part-to-Part Delay Skew	t _{sk} (p2p)			5.0	ns	
Disable high to Tri-State	t _{PHZ}		20.6		ns	See <u>Figure 2.10</u> , $C_L = 15pF$, $R_L=1k$
Enable to Data high Valid	t _{PZH}		18.12		ns	See Figure 2.10, $C_L = 15pF$, $R_L=1k$
Disable low to Tri-State	t _{PLZ}		21.85		ns	See <u>Figure 2.10</u> , $C_L = 15pF$, $R_L=1k$
Enable to Data high Valid	t _{PZL}		20.02		ns	See Figure 2.10, $C_L = 15pF$, $R_L=1k$

2.4. TYPICAL PERFORMANCE CHARACTERISTICS

Figure 2.1 NSi8140 VDD1 Supply Current vs Data Rate

Figure 2.3 NSi8141 VDD1 Supply Current vs Data Rate

Figure 2.5 NSi8142 VDD1 Supply Current vs Data Rate

Figure 2.2 NSi8140 VDD2 Supply Current vs Data Rate

Figure 2.4 NSi8141 VDD2 Supply Current vs Data Rate

Figure 2.6 NSi8142 VDD2 Supply Current vs Data Rate

Figure 2.7 Rising Edge Propagation Delay Vs Temp

Figure 2.8 Falling Edge Propagation Delay Vs Temp

2.5. PARAMETER MEASUREMENT INFORMATION

Figure 2.9 Switching Characteristics Test Circuit and Waveform

Figure 2.10 Enable/Disable Propagation Delay Time Test Circuit and Waveform

Figure 2.11 Common-Mode Transient Immunity Test Circuit

Note A :The input pulse is supplied by a generator having the following characteristics: PRR \leq 50 kHz, 50% duty cycle, tr \leq 3 ns, tf \leq 3 ns, Z₀ = 50 Ω . At the input, a 50- Ω resistor is required to terminate the Input Generator signal. It is not needed in actual application.

NoteB: $C_L = 15$ pF and includes instrumentation and fixture capacitance within $\pm 20\%$.

3.0 HIGH VOLTAGE FEATURE DESCRIPTION

3.1. INSULATION AND SAFETY RELATED SPECIFICATIONS

		ν	/alue				
Parameters	Symbol	NB- SOIC-16	WB- SOIC-16	Unit	Comments		
Minimum External Air Gap (Clearance)	L(I01)	4.0	8.0	mm	Shortest terminal-to-terminal distance through air		
Minimum External Tracking (Creepage)	L(102)	4.0	8.0	mm	Shortest terminal-to-terminal distance across the package surface		
Minimum internal gap	DTI	2	20	um	Distance through insulation		
Tracking Resistance(Comparative Tracking Index)	СТІ	>400		>400		V	DIN EN 60112 (VDE 0303-11); IEC 60112
Material Group		п					

3.2. DIN VDE V 0884-11 (VDE V 0884-11) :2017-01 INSULATION CHARATERISTICS

Description	Test Condition	Symbol	Val	lue	Unit
			NB-SOIC- 16	WB-SOIC- 16	
Installation Classification per DIN VDE 0110					
For Rated Mains Voltage ≤ 150V _{rms}			I to IV	I to IV	
For Rated Mains Voltage ≤ 300V _{rms}			I to Ⅲ	I to IV	

For Rated Mains Voltage ≤ 400V _{rms}			I to III	I to IV	
Climatic Classification			10/105/2 1	10/105/2 1	
Pollution Degree per DIN VDE 0110, Table 1			2	2	
Maximum repetitive peak isolation voltage		V_{IORM}	565	1166	Vpeak
Maximum working isolation voltage	AC voltage	V _{IOWM}	400	824	V _{RMS}
	DC voltage		565	1166	Vpeak
Input to Output Test Voltage, Method B1	$V_{IORM} \times 1.5 = V_{pd(m)}$, 100% production test, $t_{ini} = t_m = 1$ sec, partial	V _{pd (m)}	847	1749	Vpeak
	discharge < 5 pC				
Input to Output Test Voltage, Method A					
After Environmental Tests Subgroup 1	$V_{IORM} \times 1.2 = V_{pd (m)}$, $t_{ini} = 60$ sec, $t_m = 10$ sec, partial discharge < 5 pC	V _{pd (m)}	678	1399	Vpeak
After Input and /or Safety Test Subgroup 2 and Subgroup 3	$V_{IORM} \times 1.2 = V_{pd (m)}$, $t_{ini} = 60$ sec, $t_m = 10$ sec, partial discharge < 5 pC	V _{pd (m)}	678	1399	Vpeak
Maximum transient isolation voltage	t = 60 sec	VIOTM	5300	7000	Vpeak
Maximum Surge Isolation Voltage	Test method per IEC60065,1.2/50us waveform, VTEST=VIOSM×1.3	VIOSM	5384	5384	Vpeak
Isolation resistance	VIO =500V	RIO	>109	>109	Ω
Isolation capacitance	f = 1MHz	CIO	0.6	0.6	pF
Input capacitance		CI	2	2	pF
Total Power Dissipation at 25°C		Ps		1499	W
Cafebrian to autous	θJA = 140 °C/W, V I = 5.5 V, T J = 150 °C, T A = 25 °C		160		mA
Safety input, output, or supply current	θJA = 84 °C/W, V I = 5.5 V, T J = 150 °C, T A = 25 °C	ls		237	mA
Case Temperature		Ts	150	150	°C

Figure 3.1 NSi8140N/NSi8141N/NSi8142N Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per DIN VDE V 0884-11

Figure 3.2 NSi8140W/NSi8141W/NSi8142W Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per DIN VDE V 0884-11

3.3. REGULATORY INFORMATION

The NSi8140N/NSi8141N/NSi8142N are approved or pending approval by the organizations listed in table.

	CUL	VDE	cqc
UL 1577 Component Recognition Program ¹	Approved under CSA Component Acceptance Notice 5A	DIN VDE V 0884- 11(VDE V 0884- 11):2017-01 ²	Certified by CQC11- 471543-2012 GB4943.1-2011
Single Protection, 3750V _{rms} Isolation voltage	Single Protection, 3750V _{rms} Isolation voltage	Basic Insulation 565Vpeak, V _{IOSM} =5384Vpeak	Basic insulation at 400V _{rms} (565Vpeak)
File (E500602)	File (E500602)	File (5024579-4880- 0001)	File (pending)

 $^{^{1}}$ In accordance with UL 1577, each NSi8140N/NSi8141N/NSi8142N is proof tested by applying an insulation test voltage \geq 4500 V $_{rms}$ for 1 sec.

The NSi8140W/NSi8141W/NSi8142W are approved or pending approval by the organizations listed in table.

CUL		VDE	cqc
UL 1577 Component Recognition Program ¹	Approved under CSA Component Acceptance Notice 5A	DIN VDE V 0884- 11(VDE V 0884- 11):2017-01 ²	Certified by CQC11- 471543-2012 GB4943.1-2011

 $^{^2}$ In accordance with DIN VDE V 0884-11, each NSi8140N/NSi8141N/NSi8142N is proof tested by applying an insulation test voltage ≥ 847 V peak for 1 sec (partial discharge detection limit = 5 pC). The * marking branded on the component designates DIN VDE V 0884-11 approval.

Single Protection, 5000V _{rms} Isolation voltage	Single Protection, 5000V _{rms} Isolation voltage	Basic Insulation 1166Vpeak, V _{IOSM} =5384Vpeak	Basic insulation at 824V _{RMS} (1166Vpeak) Reinforced insulation at 400V _{RMS} (565Vpeak)
File (E500602)	File (E500602)	File (5024579-4880- 0001)	File (pending)

¹ In accordance with UL 1577, each NSi8140W/NSi8141W/NSi8142W is proof tested by applying an insulation test voltage ≥ 6000 V rms for 1 sec.

4.0 FUNCTION DESCRIPTION

The NSi814x is a Quad-channel digital isolator based on a capacitive isolation barrier technique. The digital signal is modulated with RF carrier generated by the internal oscillator at the Transmitter side. Then it is transferred through the capacitive isolation barrier and demodulated at the Receiver side.

The NSi814x devices are high reliability quad-channel digital isolator with AEC-Q100 qualified. The NSi814x device is safety certified by UL1577 support several insulation withstand voltages (3.75kV_{rms}, 5kV_{rms}), while providing high electromagnetic immunity and low emissions at low power consumption. The data rate of the NSi814x is up to 150Mbps, and the common-mode transient immunity (CMTI) is up to 150kV/us. The NSi814x device provides digital channel direction configuration and the default output level configuration when the input power is lost. Wide supply voltage of the NSi814x device support to connect with most digital interface directly, easy to do the level shift. High system level EMC performance enhance reliability and stability of use.

The NSi814x has a default output status when VDDIN is unready and VDDOUT is ready as shown in Table 4.1, which helps for diagnosis when power is missing at the transmitter side. The output B follows the same status with the input A within 60us after powering up.

Figure 4.1 Simplified Channel Diagram

Table 4.1 Output status vs. power status

Input	EN_X	VDD1 status	VDD2 status	Output	Comment
Н	H or NC	Ready	Ready	Н	Normal operation.
L	H or NC	Ready	Ready	L	
X	L	Ready	Ready	Z	Output Disabled, the output is high impedance
Х	H or NC	Unready	Ready	L H	The output follows the same status with the input within 60us after input side VDD1 is powered on.
X	L	Unready	Ready	Z	Output Disabled, the output is high impedance
X	Х	Ready	Unready	Х	The output follows the same status with the input within 60us after output side VDD2 is powered on.

 $^{^{2}}$ In accordance with DIN VDE V 0884-11, each NSi8140W/NSi8141W/NSi8142W is proof tested by applying an insulation test voltage ≥ 1749 V peak for 1 sec (partial discharge detection limit = 5 pC). The * marking branded on the component designates DIN VDE V 0884-11 approval.

5.0 APPLICATION NOTE

5.1. PCB LAYOUT

The NSi814x requires a 0.1 μ F bypass capacitor between VDD1 and GND1, VDD2 and GND2. The capacitor should be placed as close as possible to the package. Figure 5.1 show the recommended schematic diagram , Figure 5.2 to Figure 5.3 show the recommended PCB layout, make sure the space under the chip should keep free from planes, traces, pads and via. To enhance the robustness of a design, the user may also include resistors (50–300 Ω) in series with the inputs and outputs if the system is excessively noisy. The series resistors also improve the system reliability such as latch-up immunity.

The typical output impedance of an isolator driver channel is approximately 50 Ω , \pm 40%. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces.

Figure 5.1 Recommended schematic diagram

Figure 5.2 Recommended PCB Layout — Top Layer

Figure 5.3 Recommended PCB Layout — Bottom Layer

5.2. HIGH SPEED PERFORMANCE

Figure 5.4 shows the eye diagram of NSi814x at 200Mbps data rate output. The result shows a typical measurement on the NSi814x with 350ps p-p jitter.

Figure 5.4 NSi814x Eye Diagram

5.3. TYPICAL SUPPLY CURRENT EQUATIONS

The typical supply current of NSi814x can be calculated using below equations. I_{DD1} and I_{DD2} are typical supply currents measured in mA, f is data rate measured in Mbps, C_L is the capacitive load measured in pF

NSi8140:

 I_{DD1} = 0.19 *a1+1.45*b1+0.82*c1. I_{DD2} = 1.36+ VDD1*f* C_L *c1*10-9

When a1 is the channel number of low input at side 1, b1 is the channel number of high input at side 1, c1 is the channel number of switch signal input at side 1.

NSi8141:

 $I_{DD1} = 0.87 + 1.26*b1 + 0.63*c1 + VDD1*f* C_L *c2*10^{-9}$ $I_{DD2} = 0.87 + 1.26*b2 + 0.63*c2 + VDD1*f* C_L *c1*10^{-9}$

When b1 is the channel number of high input at side 1, c1 is the channel number of switch signal input at side 1, b2 is the channel number of high input at side 2, c2 is the channel number of switch signal input at side 2.

NSi8142

 I_{DD1} = 0.87 +1.26*b1+0.63*c1+ VDD1*f* C_L *c2*10⁻⁹ I_{DD2} = 0.87 +1.26*b2+0.63*c2+ VDD1*f* C_L *c1*10⁻⁹

When b1 is the channel number of high input at side 1, c1 is the channel number of switch signal input at side 1, b2 is the channel number of high input at side 2, c2 is the channel number of switch signal input at side 2.

6.0 PACKAGE INFORMATION

Figure 6.1 NSi8140N Package

Figure 6.2 NSi8141N Package

Figure 6.3 NSi8142N Package

CONTROLLING DIMENSION : MM								
YMBOL	MIL	LIMETE	R	INCH				
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.		
Α			1.75			0.069		
A1	0.10		0.25	0.004		0.010		
A2	1.25		1.45	0.049	-	0.057		
ь	0.36		0.49	0.014	i	0.019		
С	0.19		0.25	0.007	-	0.010		
D	9.80	9.90	10.0	0.386	0.390	0.394		
Ε	3.80	3.90	4.00	0.150	0.154	0.158		
HE	5.80		6.20	0.228	-	0.244		
Q	0.60		0.70	0.024	-	0.028		
е	1	.27 b	sc	C	.050	bsc		
L	1	.05 b	sc	(0.041	bsc		
Lp	0.40		1.00	0.016		0.039		
Υ		0.10			0.004			
A3		0.25			0.010			
Z	0.30		0.70	0.012		0.028		
А	U.		8*	O.		8*		

Figure 6.4 NB SOIC16 Package Shape and Dimension in millimeters (inches) $\,$

Table 6.1 NSi 8140 N/ NSi 8141 N/ NSi 8142 N Pin Configuration and Description

NSi8140N PIN NO.	NSi8141N PIN NO.	NSi8142N PIN NO.	SYMBOL	FUNCTION
1	1	1	VDD ₁	Power Supply for Isolator Side 1
2	2	2	GND_1	Ground 1, the ground reference for Isolator Side 1

3	3	3	INA	Logic Input A	
4	4	4	INB	Logic Input B	
5	5	12	INC	Logic Input C	
6	11	11	IND	Logic Input D	
7	7	7	NC/ EN ₁	No Connection. or	
				Output Enable 1. Active high logic input. When EN_1 is high or NC, the output of Side 1 are enabled. When EN_1 is low, the output of Side 1 are disabled to high impedance state.	
8	8	8	GND_1	Ground 1, the ground reference for Isolator Side 1	
9	9	9	GND ₂	Ground 2, the ground reference for Isolator Side 2	
10	10	10	EN ₂	Output Enable 2. Active high logic input. When EN_2 is high or NC, the output of Side 2 are enabled. When EN_2 is low, the output of Side 2 are disabled to high impedance state.	
11	6	6	OUTD	Logic Output D	
12	12	5	OUTC	Logic Output C	
13	13	13	OUTB	Logic Output B	
14	14	14	OUTA	Logic Output A	
15	15	15	GND2	Ground 2, the ground reference for Isolator Side 2	
16	16	16	VDD2	Power Supply for Isolator Side 2	

Figure 6.5 NSi8140W Package

Figure 6.6 NSi8141W Package

Figure 6.7 NSi8142W Package

Figure 6.8 WB SOIC16 Package Shape and Dimension in millimeters and (inches)

Table 6.2 NSi8140W/ NSi8141W/ NSi8142W Pin Configuration and Description

NSi8140W PIN NO.	NSi8141W PIN NO.	NSi8142W PIN NO.	SYMBOL	FUNCTION	
1	1	1	VDD_1	Power Supply for Isolator Side 1	
2	2	2	GND_1	Ground 1, the ground reference for Isolator Side 1	
3	3	3	INA	Logic Input A	
4	4	4	INB	Logic Input B	
5	5	12	INC	Logic Input C	
6	11	11	IND	Logic Input D	
7	7	7	NC/ EN ₁	No Connection. or	
				Output Enable 1. Active high logic input. When EN_1 is high or NC, the output of Side 1 are enabled. When EN_1 is low, the output of Side 1 are disabled to high impedance state.	
8	8	8	GND_1	Ground 1, the ground reference for Isolator Side 1	
9	9	9	GND ₂	Ground 2, the ground reference for Isolator Side 2	
10	10	10	EN ₂	Output Enable 2. Active high logic input. When EN ₂ is high or NC, the output of Side 2 are enabled. When EN ₂ is low, the output of Side 2 are disabled to high impedance state.	
11	6	6	OUTD	Logic Output D	

12	12	5	OUTC	Logic Output C	
13	13	13	OUTB	Logic Output B	
14	14	14	OUTA	Logic Output A	
15	15	15	GND2	Ground 2, the ground reference for Isolator Side 2	
16	16	16	VDD2	Power Supply for Isolator Side 2	

7.0 ORDER INFORMATION

Part No.	Isolati on Rating (kV)	Numb er of side 1 inputs	Numb er of side 2 inputs	Max Data Rate (Mbps)	Default Output State	MSL level	Temperature	Auto moti ve	Package Qty	Package
NSi8140N0	3.75	4	0	150	Low	1	-40 to 125 ℃	NO	2500	NB SOIC16
NSi8140N1	3.75	4	0	150	High	1	-40 to 125 ℃	NO	2500	NB SOIC16
NSi8141N0	3.75	3	1	150	Low	1	-40 to 125 ℃	NO	2500	NB SOIC16
NSi8141N1	3.75	3	1	150	High	1	-40 to 125 ℃	NO	2500	NB SOIC16
NSi8142N0	3.75	2	2	150	Low	1	-40 to 125 ℃	NO	2500	NB SOIC16
NSi8142N1	3.75	2	2	150	High	1	-40 to 125 ℃	NO	2500	NB SOIC16
NSi8140W0	5	4	0	150	Low	2	-40 to 125 ℃	NO	1000	WB SOIC16
NSi8140W1	5	4	0	150	High	2	-40 to 125 ℃	NO	1000	WB SOIC16
NSi8141W0	5	3	1	150	Low	2	-40 to 125 °C	NO	1000	WB SOIC16
NSi8141W1	5	3	1	150	High	2	-40 to 125 ℃	NO	1000	WB SOIC16
NSi8142W0	5	2	2	150	Low	2	-40 to 125 ℃	NO	1000	WB SOIC16
NSi8142W1	5	2	2	150	High	2	-40 to 125 ℃	NO	1000	WB SOIC16
NSi8140W0Q	5	4	0	150	Low	2	-40 to 125 ℃	YES	1000	WB SOIC16
NSi8140W1Q	5	4	0	150	High	1	-40 to 125 ℃	YES	1000	WB SOIC16
NSi8141W0Q	5	3	1	150	Low	1	-40 to 125 ℃	YES	1000	WB SOIC16
NSi8141W1Q	5	3	1	150	High	1	-40 to 125 ℃	YES	1000	WB SOIC16
NSi8142W0Q	5	2	2	150	Low	1	-40 to 125 °C	YES	1000	WB SOIC16
NSi8142W1Q	5	2	2	150	High	1	-40 to 125 ℃	YES	1000	WB SOIC16

NOTE: All packages are RoHS-compliant with peak reflow temperatures of 260 °C according to the JEDEC industry standard classifications and peak solder temperatures.

All devices are AEC-Q100 qualified.

Part Number Rule:

8.0 TAPE AND REEL INFORMATION

PRODUCT SPECIFICATION								
TAPE WIDTH	ØA ± 2.0	øN ± 2.0	W1	W2 (MAX)	W3	E (MIN)		
08MM	330	178	8.4 +1.5	14.4		5.5		
12MM	330	178	12.4 1 2.0	18.4	SHALL ACCOMMODATE	5.5		
16MM	330	178	16.4 = 2.0	22.4	TAPE WIDTH	5.5		
24MM	330	178	24.4 = 2.0	30.4	NTERFERENCE	5.5		
32MM	330	178	32.4 = 20	38.4		5.5		

SURFACE RESISTIVITY							
LEGEND	SR RANGE	TYPE	COLOUR				
Α	BELOW 1012	ANTISTATIC	ALL TYPES				
В	10 ⁶ TO 10 ¹¹	STATIC DISSIPATIVE	BLACK ONLY				
С	105 & BELOW 105	CONDUCTIVE (GENERIC)	BLACK ONLY				
E	10° TO 10 ¹¹	ANTISTATIC (COATED)	ALL TYPES				

NOTES:

- 1. LO SPROCKET HOLE PITCH CUMILATIVE TOLERANCE ±0.2
- 2. POCKET POSITION RELATIVE TO SPROCKET HOLE MEASURED AS TRLE POSITION OF POCKET, NOT POCKET HOLE
- 3. Ao AND BO ARE CALCILLATED ON A PLANE AT A DISTANCE "R" ABOVE THE BOTTOM OF THE POCKET.

Ao = 10.90 Bo = 10.80 Ko = 3.1

Figure 8.1 Tape and Reel Information of WB SOIC16

	PRODUCT SPECIFICATION								
TAPE WIDTH	ØA ±2.0	øN ±2.0	W1	W2 (MAX)	W3	E (MIN)			
овмм	330	178	8.4 13	14.4	SHALL	5.5			
12MM	330	178	12.4±33	18.4	ACCOMMODATE	5.5			
16MM	330	178	16.4±88	22.4	TAPE WITH	5.5			
24MM	330	178	24.4 = 38	30.4	INTERFERENCE	5.5			
32MM	330	178	32.4±級	38.4		5.5			

SURFACE RESISTIVITY							
LEGEND	SR RANGE	TYPE	COLOUR				
A	BELOW 10 ¹²	ANTISTATIC	ALL TYPES				
В	10° TO 10"	STATIC DISSIPATIVE	BLACK ONLY				
С	10° & BELOW 10°	CONDUCTIVE (GENERIC)	BLACK ONLY				
E	10° TO 10"	ANTISTATIC (COATED)	ALL TYPES				

Figure 8.2 Tape and Reel Information of NB SOIC16

9.0 REVISION HISTORY

Revision	Description	Date
1.0		2017/11/15
1.1	Add maximum operation current spec.	2018/10/12
1.2	Change to ordering information	2018/12/20
1.3	Change Certification Information	2019/06/17
1.4	Add Thermal characteristics, MSL level, Recommended schematic diagram, Simplified Channel Diagram; change Package Shape and Dimension in millimeters and (inches) add recommended operation recommEnded operating conditions	2020/2/11
1.5	Change NSi8140 IDD1(Q0) MAX value	2020/4/17