

Orbit Determination Accuracy Analysis of the Magnetospheric Multiscale Mission During Perigee

Raise

www.nasa.gov

Daniel A. Pachura, Matthew A. Vavrina
a.i. Solutions/NASA Flight Dynamics Facility
J. Russell Carpenter, Cinnamon A. Wright
NASA Goddard Space Flight Center
Space 2014, August 4-7 2014, San Diego

FLIGHT DYNAMICS FACILITY
NAVIGATION & MISSION DESIGN BRANCH
NASA GSFC

Code 595

MMS Mission Overview

- Formation of 4 identical spacecraft in a highly elliptical Earth orbit
- Studying fundamental plasma processes in Earth's magnetosphere
- Launching in 2015
- 2 year operational life

Orbit Overview

- Launch orbit
 - 240 km x 12 Earth Radii (R_E)
 - Inclined at 28.5
 - ~24 hour period
- Phase 1 orbit
 - $1.2 R_E \times 12 R_E$
- Phase 2 orbit
 - $1.2 R_E \times 25 R_E$
- Executes 5 perigee raise maneuvers near apogee within 2 weeks of launch

Orbit Determination Overview

- Spacecraft Separation to Launch + 8 weeks
 - TDRS range and Doppler and DSN Doppler used for orbit determination (OD)
 - Performed by the Flight Dynamics Facility (FDF)
 - Early orbit solutions from a batch least squares method implemented in Goddard Trajectory Determination System (GTDS)
 - Nominal support from extended Kalman filter implemented in Orbit Determination Toolkit (ODTK)
- Launch + 8 weeks to mission end-of-life
 - GPS data used for OD
 - Performed onboard spacecraft
 - NASA developed GPS-enhanced Onboard Navigation System (GEONS)

Maneuver Support Operations Concept

Perigee raise support requires accurate predictions at a nearly every-other-orbit cadence

Thruster Calibration Support

An accurate post-maneuver state is needed within 1 orbit to calibrate thruster performance and plan for the upcoming maneuvers

Accuracy Requirements

Definitive Velocity Error

- Solution required 1 revolution after 1st maneuver
- Magnitude of the velocity error must be
 - Less than 5 mm/s, or
 - Less than 1% of preceding maneuver's magnitude, whichever is greater
- 1% threshold ranges from about 30 - 180 mm/s

Predictive Velocity Error

- Prediction required 1 revolution prior to each maneuver
- Magnitude of the velocity error must be
 - Less than 5 mm/s, or
 - Less than 1% of upcoming maneuver's magnitude, whichever is greater
- 1 % threshold ranges from about 30 – 300 mm/s
- 5 mm/s is evaluation threshold

Requirements Validation With Monte Carlo Approach

- Monte Carlo analysis to validate requirements
 - Variation of a range of orbit parameters simultaneously
 - Characterize filter performance and response to measurement and modeling errors
- Simulate tracking observations and filter in ODTK
 - Exercises the operational toolset

Analysis Architecture

Analysis Setup

Simulator

- Reference initial states
- Reference maneuver time, magnitude, and direction
- Within each Monte Carlo Sample varied
 - Atmospheric Density
 - Ballistic Coefficient
 - Solar Radiation Pressure
 - Range observation noise and bias
 - Doppler observation noise

Filter

- Seeded with perturbed initial state
 - 100 m $1-\sigma$ position random error
 - 10 cm/s $1-\sigma$ velocity random error
- “Mis-modeled” maneuver magnitude and direction
 - Random errors of $2\%/\sqrt{3}$ maneuver magnitude along velocity vector and in the plane normal to velocity vector

Definitive Velocity Error Results

Definitive velocity error one orbit after first maneuver well under 5 mm/s velocity error threshold

Worst Case Definitive Error

Definitive error low through most of the orbit

Predictive Velocity Error Results

Predictive velocity error one orbit prior to 1st maneuver well over 5 mm/s velocity error threshold, but under 1% of maneuver magnitude

Predictive Error Histograms Of Poor Predictions

First maneuver and MMS3 and MMS4's second maneuver have consistent and significant errors greater than 5 mm/s

Predictive Error Growth

Cases failing to meet
5 mm/s threshold
begin diverging
following perigee

Atmospheric Density Variation During Transit

Red error > 5 mm/s
Blue error < 5 mm/s

Monte Carlo samples with error less than 5 mm/s error had minimal variation off of the nominal density

Atmosphere Model

- Jacchia-Roberts implemented in ODTK
- Solar Flux
 - $F_{10}/F_{10\bar{}} = 100$
 - $A_p = 10$
 - From Schatten predicts for late 2014
- σ of density is driven by ODTK internal model
 - Implemented as a function of perigee altitude
 - Ranges from ~0.1-0.2 for 200-400 km perigee altitude

Prediction Challenges

Perigee Altitudes After Each Maneuver				
	MMS1	MMS2	MMS3	MMS4
Separation, km	240	244	242	241
Post-Maneuver 1, km	520	410	355	310
Post-Maneuver 2, km	830	440	680	610
Post-Maneuver 3, km	1230	1170	1120	1120
Post-Maneuver 4, km	1430	1400	1340	1230
Post-Maneuver 5, km	1480	1460	1390	1280

- High velocity transit, 10.5 km/s, through low perigee altitude
- Higher density of atmosphere
- Significant orbit perturbations
- Atmospheric model variation near perigee critical

Conclusion

- High velocity transit combined with atmospheric density variations drive predictive errors
- Able to meet 5 mm/s definitive velocity error threshold
- Able to meet 1% maneuver magnitude predictive velocity error, but not 5 mm/s error threshold
- Monte Carlo approach provides valuable insight for mission design and requirements validation

BACKUP

Definitive Error Statistics

	MMS1	MMS2	MMS3	MMS4
Mean Velocity Error, mm/s	0.5	0.4	0.5	0.8
Mean Velocity Error, mm/s	0.4	0.4	0.4	0.7
Maximum Error, mm/s	2.0	1.1	1.3	2.5
1 % Maneuver Magnitude, mm/s	172.9	98.7	63.8	34.4

Predictive Error Statistics

		MMS1	MMS2	MMS3	MMS4
Maneuver 1	Median Velocity Error, mm/s	9.18	7.83	9.09	7.29
	Mean Velocity Error, mm/s	12.61	10.23	10.20	8.74
	Maximum Velocity Error, mm/s	56.65	32.75	30.21	22.83
	1 % Maneuver Magnitude, mm/s	173.00	98.70	63.80	34.40
Maneuver 2	Median Velocity Error, mm/s	0.41	1.06	1.72	3.67
	Mean Velocity Error, mm/s	0.47	1.24	2.01	4.30
	Maximum Velocity Error, mm/s	1.39	3.65	6.63	15.91
	1 % Maneuver Magnitude, mm/s	204.30	212.40	214.80	207.00
Maneuver 3	Median Velocity Error, mm/s	0.53	0.67	0.91	0.44
	Mean Velocity Error, mm/s	0.63	1.17	1.23	0.49
	Maximum Velocity Error, mm/s	3.40	10.69	4.81	1.37
	1 % Maneuver Magnitude, mm/s	261.10	273.10	273.20	267.60
Maneuver 4	Median Velocity Error, mm/s	0.41	0.25	0.39	0.25
	Mean Velocity Error, mm/s	0.69	0.31	0.51	0.26
	Maximum Velocity Error, mm/s	6.99	0.89	3.07	0.71
	1 % Maneuver Magnitude, mm/s	127.40	134.70	133.30	133.80
Maneuver 5	Median Velocity Error, mm/s	0.16	0.17	0.19	0.19
	Mean Velocity Error, mm/s	0.20	0.17	0.20	0.22
	Maximum Velocity Error, mm/s	1.06	0.40	0.48	0.57
	1 % Maneuver Magnitude, mm/s	19.30	19.70	18.50	18.50