All of the names, notations and lemmas used here are taken from "Proofs and Types" book and lemmas and theorems will be used here without their proofs.

First we prove a result that the computational interpretation of types in L fragment as defined in Casinghino et al's paper "Step-Indexed Normalization for a Language with General Recursion" are actually reducibility candidates of types they are defined for.

Lemma 1. $\mathscr{C}[\![A]\!]_k^L$ is a reducibility candidate for type A. **Proof.** By definition of computational interpretation, $\mathscr{C}[\![A]\!]_k^L$ should satisfy conditions CR 1-3.

$$\mathscr{C}[\![A]\!]_k^L = \{a|. \vdash^L a : A \land a \leadsto^* v \in \mathscr{V}[\![A]\!]_k^L\}$$

- CR-1: by definition, terms in $\mathscr{C}[A]_k^L$ reduce to a value
- CR-2: If $a \leadsto a'$ then $a' \in \mathscr{C}[\![A]\!]_k^L$ as $a' \leadsto {}^*v \in \mathscr{V}[\![A]\!]_k^L$
- CR-3: Similarly, if a is neutral, and whenever we convert a redex of a, we get a term $a' \in \mathscr{C}[\![A]\!]_k^L$, then it means, $\forall a'$, $a \leadsto a' \leadsto {}^*v \in \mathscr{V}[\![A]\!]_k^L$, hence $a \in \mathscr{C}[\![A]\!]_k^L$. As we don't count computation steps in Logical fragment, k is constant in all cases above.

Parametric Reducibility and its lemmas are defined as in book "Proofs and Types", section 14.

We define ρ , the mapping of variables to terms :

Well formed value substitutions:

$$\begin{split} \mathcal{G}[\![.]\!] &= \{\phi\} \\ \mathcal{G}[\![\Gamma,x:\tau]\!]_k &= \{\rho[x\to v] \mid \rho \in \mathcal{G}[\![\Gamma]\!]_k \wedge v \in \mathscr{V}[\![\tau]\!]_k\} \end{split}$$

Theorem 1. Soundness: if $\Gamma \vdash^{\theta} a : A$ and $\Gamma \vDash_{k} \rho$ then

- If a has no type variables or in P fragment, $\rho a \in \mathscr{C}[\![A]\!]_k^\theta$
- If a has type variables and is in L fragment then, Suppose all the free variables of a are among $x_1, ..., x_n$ of types $U_1, ..., U_n$, and all the free type variables of $A, U_1, ..., U_n$ are among $X_1, ..., X_m$. If $\mathscr{C}[V_1]_k^L, ..., \mathscr{C}[V_m]_k^L$ are the reducibility candidates $R_1, ..., R_m$ of types $V_1, ..., V_m$ and $u_1, ..., u_n$ are terms of types $U_1[V/X], ..., U_n[V/X]$ which are in $RED_{U_1}[R/X], ..., RED_{U_n}[R/X]$ then $a[V/X][u/x] \in$ $RED_T[R/X]$.

Proof: By induction on typing derivations:

$$\frac{\Delta, \alpha, \Gamma \vdash^{L} e : B}{\Delta \Gamma \vdash^{L} L \Delta = 1 \lor 2}$$

Γ-UNIV-LAM-L $\frac{\Delta, \alpha, \Gamma \vdash^{L} e : B}{\Delta\Gamma \vdash^{L} \Lambda \alpha.e : \forall \alpha.B}$ By I.H., $\forall \nu : Type, \ e[\underline{V}/\underline{X}][\nu/\alpha][\underline{u}/\underline{x}] \in RED_{B}[\underline{R}/\underline{X}][\mathscr{C}[\nu]_{k}^{L}/\alpha]$ From Lemma 14.2.2, $\rho(\land \alpha.e[\underline{V}/\underline{X}]) \in RED_{\forall \alpha.B}[\underline{R}/\underline{X}]$

T-UNIV-APP-L
$$\frac{\Delta\Gamma \vdash^{L}e : \forall \alpha.A \quad \Delta \vdash B}{\Delta\Gamma \vdash^{L}e[B] : [B/\alpha]A}$$
By I.H., $e[\underline{V}/\underline{X}][\underline{u}/\underline{x}] \in RED_{\forall \alpha.A}[\underline{R}/\underline{X}].$

From Lemma 14.2.3, $\forall B: type, (e[B][V/X][u/x]) \in RED_{[B/\alpha]A}[R/X]$

In the P fragment, the value interpretation for universal type is defined as:

$$\mathscr{V}[\![\forall \alpha.A]\!]_k^P = \{ \land \alpha.e | . \vdash^P \land \alpha.e : \forall \alpha.A \ \land \forall T : type, \forall j < k \ s.t. \Delta \vdash T, [T/\alpha]e \in \mathscr{C}[\![T/\alpha]A]\!]_j^P \}$$

T-UNIV-LAM-P:

Proof: From the definition of $\mathscr{C}[\![\forall \alpha.B]\!]_k^P$, we need to prove

- . $\vdash^P \rho(\land \alpha.e)$: $\forall \alpha.B$ by appeal to the substitution lemma
- $\rho(\land \alpha.e) = \land \alpha.(\rho(e)).$

From definition of $\mathscr{C}[\![\forall \alpha.A]\!]_k^P$, if $\forall T: type, \ \rho([T/\alpha]e) \leadsto^j v$ for all j < k, then it suffices to show that

$$v\in \mathscr{V}[\![T/\alpha]B]\!]_{k-j}^P$$

By Induction Hypothesis,

$$\Delta, \alpha, \Gamma \vdash^P e : B$$

$$\forall T: type, \rho([T/\alpha]e) \in \mathscr{C}[\![T/\alpha]B]\!]_k^P$$

Now, we know that $(\rho([T/\alpha]e)) \leadsto^j v$ and from definition of $\mathscr{C}[\![T/\alpha]B]\!]_k^P$, we have

 $\begin{aligned} v &\in \mathscr{V}[\![([T/\alpha]B]\!]_{k-j}^P. \\ \text{Hence we get that } v &\in \mathscr{V}[\![[T/\alpha]B]\!]_{k-j}^P. \end{aligned}$