Graph Models 2 and Random Walks

Sarunas Girdzijauskas

ID2211

March 2019

Recap

- Basic Notations
- Type of graphs
- Paths/cycles/Connectivity/Giant component
- Centrality measures
- Metrics Comparison
- Clustering Coefficient
- Degree Distributions
- Real Networks
- Graph Models:
 - Random Graph, Configuration, Pref. attachment, Watts-Strogatz Small-world, Navigable Networks

Overview of the Results

Navigable

Search time T:

$$O((\log n)^{\beta})$$

Kleinberg's model

$$O((\log n)^2)$$

Not navigable

Search time T:

$$O(n^{\alpha})$$

Watts-Strogatz

$$O(n^{\frac{2}{3}})$$

Erdős-Rényi

Note: We know these graphs have diameter O(log n). So in Kleinberg's model search time is <u>polynomial</u> in log n, while in Watts-Strogatz it is <u>exponential</u> (in log n).

How could we make Small-World Navigable?

Kleinberg's model of Small-Worlds

- Kleinberg claims that Watts and Strogatz model is not effective for decentralized search;
- presents the infinite family of SW networks
 that generalizes Watts and Strogatz model and
 shows that decentralized search algorithms can
 find short paths with high probability;
- proves that there exist only one unique model within that family for which decentralized algorithms are effective.
- What's the intuition for his model?
 - Links are not random, but inversely proportional to the distance

Navigable Small-World networks

- Kleinberg's Small-World's model
 - 2-dimensional lattice
 - Lattice (Manhattan) distance
 - Two type of links:
 - Short range (neighborhood lattice)
 - Long range
 - Probability for a node u to have a node v as a long range contact is proportional to

$$P(u \to v) \sim \frac{1}{d(u,v)^r}$$

How does it work in practice?

$$P(u \to v) \sim \frac{1}{d(u, v)^r}$$

$$P(u \to v) = \frac{1}{d(u,v)^r} \cdot \frac{1}{Z}$$

 Normalization constant have to be calculated:

$$Z = \sum_{\forall i \neq u} \frac{1}{d(u, i)^r}$$

Example
• Choose among 3 friends (1-dimension)

- A (1 mile away)
- B (2 miles away)
- C (3 miles away)

• C (3 miles away)
• Normalization constant $\sum_{\forall i \neq u} \frac{1}{d(u,i)} = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} = \frac{11}{6}$

$$P(selectingA) = \frac{\frac{1}{1}}{\frac{11}{6}} = \frac{6}{11}$$

$$P(selectingB) = \frac{\frac{1}{2}}{\frac{11}{6}} = \frac{3}{11}$$

$$P(selectingC) = \frac{\frac{1}{3}}{\frac{11}{6}} = \frac{2}{11}$$

1-dimensional continuous case

- Peers uniformly distributed on a unit interval (or a ring structure)
- Long range links chosen by Kleinberg's small-world principle

Search cost

O(log²N/k) with k long-range links

O(logN) with O(logN) longrange links

Approximation of Kleinberg's model

- Given node u if we can partition the remaining peers into sets A_1 , A_2 , A_3 , ..., A_{logN} , where A_i , consists of all nodes whose distance from u is between 2^{-i} and 2^{-i+1} .
 - Then given r=dim each long range contact of u is nearly equally likely to belong to any of the sets A_i
 - When q=logN-on average each node will have link in each set of A_i

Why Does it Work?

If I have O(logN) long-range links I can on expectation halve a distance at each step! Search cost O(logN) If I have O(1) long-range links will have to spend O(logN) time at each stage until I can halve a distance at each step!

Search cost O(log² N)

Influence of "r"

• Each peer u has link to the peer v with probability proportional to where d(u,v) is the distance between u and v.

• Tuning "r"

 When r=0 – long range contacts are chosen uniformly (Similar to Watts-Strogatz). The short paths exist between every pair of vertices, BUT there is no decentralized algorithm capable finding these paths efficiently.

 $d(u,v)^r$

- When **r<dim** we tend to choose more far away neighbors (decentralized algorithm can quickly approach the neighborhood of target, but then slows down till finally reaches target itself).
- When **r>dim** we tend to choose more close neighbors (algorithm finds quarter target in it's neighborhood, but reaches it slowly if it is far away).
- When **r=dim** (dimension of the space), the algorithm exhibits optimal performance.

Small r: too many long links

Big r: to many short links

lower bound T on delivery time

(given as log_n T)

Performance with r=dim

- When there is one long range link (q = 1):
 - The expected search cost is bounded by O(log² N)
- When there are constant number of long range links ($q = k \le log N$):
 - The expected search cost is bounded by

 $O(log^2 N)/k$

- When q = log N:
 - The expected search cost is bounded by O(log N)
 - Notice similarity with P2P systems!

Traditional DHTs and Kleinberg model

- Most of the structured P2P systems are similar to Kleinberg's model and are called logarithmic-like approaches. E.g.
 - Chord (randomized version) q=logN, r=1
 - When q is O(logN), then "ring-link" is expected to appear from longrange link process.
- Randomized Chord's model

Kleinberg's model

Data on the Overlay

8.0

0.2

Identifier Space

- Peers mapped on the ring
 - Uniform hash function (e.g., SHA-1)
- Resources mapped on the ring
 - Uniform hash function
- 0.26 Connectivity establishment
 - Based on Kleinbergian Principles
 - E.g., Chord, Symphony etc.
 - **Uniform** peer key (id) distribution

are distributed non-

in real world networks?

Liben-Nowell et a. "Geographic routing in social networks" 2005

LiveJournal Data

• Bloggers + Zip Codes

$$rank_u(v) := |\{w : d(u, w) < d(u, v)\}|$$

- $P(u \rightarrow v) = rank_u(v)^{-\alpha}$
- What is best α ?
 - For equally spaced pairs: α = dim. of the space
 - In this special case $\alpha = 1$ is best for search

Basic Navigation Principles

- So why can we navigate in the network and find short paths without any global view of the system?
 - We have globaly agreed ID space, with a distance function —>
 - Allows us to make local decisions on minimizing distance to the target
 - (Implicit) Existinace of the underlying lattice (i.e., ring) ->
 - Assures us to always be able to make progress navigating towards the target, i.e.,
 - Target will always be reached!
 - Existance of Kleinbergian long-range links ->
 - Allows us to progres towards the target rapidly (in polylog steps)
 - Why is it so in "real-world" it is still an open question...

Recap: Network properties

- Each network is unique "microscopically", but in large scale networks one can observe macroscopic properties:
 - **Diameter** (six-degrees of separation);
 - Clustering coefficient (triangles, friends-of-friends are also friends);
 - Degree distribution (are there many "hubs" in the network?);
 - Largest Component (how many "islands" and how big?)
 - Navigability (can you do efficient routing?=
- Network models:
 - Erdos-Renyi
 - Configuration
 - Preferential attachment
 - Watts-Strogatz
 - Kleinberg

Expanders

- Expanders are graphs with very strong connectivity properties.
 - sparse yet very well-connected
- Example
 - N nodes, E edges N=E
 - Does this graph have good connectivity properties?
 - 2 edges fail ->
 isolates up to N/2 nodes

Can one isolate large number of nodes by removing small number of edges?

Expansion

• Expansion α :

- How robust are your graphs?
- To isolate k nodes one needs to remove at least α*k edges

Examples

 Which networks do you think have good expansion (random graph, tree, grid)?

Properties of Expander Graphs

- A graph is an expander if the number of edges originating from every subset of vertices is larger than the number of vertices at least by a constant factor (more than 1).
 - Sparse yet very well-connected (no small cuts, no bottlenecks)
 - Small second eigenvalue λ_2 (we will talk about it later)
 - Rapid convergence of random walk
- For all practical reasons, random walk of TTL = O(logN) on an expander graph with fixed node degree gives an uniform random node from the population

Random Walks on Graphs

Random Walks

- Let G(V,E) be connected graph.
- Consider random walk on G from node v.
 - We move to a neighboring node with probability 1/d(v)
 - The sequence of random walks is Markov chain

Random Walks

The initial node can be fixed, but also can be drawn from some initial distribution P₀

Convergence?

- For any connected non-bipartite
 bidirectional graph, and any starting point, the random walk converges
 - Converges to unique stationary distribution
 - Power Iteration

t		1	0	0	0	0
1	0.00	0.50	0.50	0.00	0.00	
2	0.42	0.00	0.00	0.42	0.17	
3	0.00	0.35	0.43	0.08	0.14	
4	0.32	0.03	0.10	0.39	0.17	
5	0.05	0.29	0.37	0.13	0.16	
6	0.27	0.07	0.15	0.35	0.17	
7	0.08	0.25	0.33	0.17	0.17	
8	0.24	0.10	0.18	0.32	0.17	
9	0.11	0.22	0.31	0.19	0.17	
10	0.22	0.12	0.20	0.30	0.17	
11	0.13	0.21	0.29	0.21	0.17	
12	0.20	0.13	0.22	0.28	0.17	
13	0.14	0.19	0.28	0.22	0.17	
14	0.19	0.14	0.23	0.27	0.17	
15	0.15	0.19	0.27	0.23	0.17	
16	0.18	0.15	0.23	0.27	0.17	
17	0.15	0.18	0.26	0.24	0.17	
18	0.18	0.16	0.24	0.26	0.17	
19	0.16	0.18	0.26	0.24	0.17	
20	0.17	0.16	0.24	0.26	0.17	
21	0.16	0.17	0.26	0.24	0.17	
22	0.17	0.16	0.24	0.26	0.17	
23	0.16	0.17	0.25	0.25	0.17	
24	0.17	0.16	0.25	0.25	0.17	
25	0.16	0.17	0.25	0.25	0.17	
26	0.17	0.16	0.25	0.25	0.17	
27	0.16	0.17	0.25	0.25	0.17	
28	0.17	0.16	0.25	0.25	0.17	
29	0.17	0.17	0.25	0.25	0.17	
30	0.17	0.17	0.25	0.25	0.17	

Stationary Distribution

• Which distribution does the random walk converge in our graph?

π	0.17	0.17	0.25	0.25	0.17
π'	0.17	0.17	0.25	0.25	0.17

Random walk converges to the stationary distribution:

$$\pi(v) = d(v)/2m$$

- d(v) = degree of v, i.e. # of neighbors.
- m: |E|, i.e. # of edges.
- If Graph d-regular then to uniform distribution

$$\sum_{u: (u,v) \in E} \frac{\sum_{u: (u,v) \in E} \frac{\sum_{u: (u,v) \in E} \frac{\sum_{u: (u,v) \in E} \frac{\sum_{u: (u,v) \in E} \frac{1}{\sum_{u: (u,v$$

Implications

• The stationary distribution $\pi(v) = d(v)/2m$ is proportional to the degree of v.

- What's the intuition?
- The more neighbors you have, the more chance you'll be visited.
 - We'll talk about it later in ID2222 Data Mining course

Definitions

$$A = \begin{pmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{pmatrix}$$

Adjacency Matrix

$$D = \begin{pmatrix} 1/2 & 0 & 0 & 0 & 0 \\ 0 & 1/2 & 0 & 0 & 0 \\ 0 & 0 & 1/3 & 0 & 0 \\ 0 & 0 & 0 & 1/3 & 0 \\ 0 & 0 & 0 & 0 & 1/2 \end{pmatrix}$$

Diagonal matrix with $D_{i,i} = 1/d(i)$

$$\mathsf{M} = \begin{pmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \\ 1/3 & 0 & 0 & 1/3 & 1/3 \\ 0 & 1/3 & 1/3 & 0 & 1/3 \\ 0 & 0 & 1/2 & 1/2 & 0 \end{pmatrix}$$

Transition (random walk) Matrix M=DA

Adjacency Matrix

- A is n x n adjacency matrix of G=(V,E)
 - A_{ii} is 1 if there is a link between i and j nodes and 0 otherwise
- Gives us all 1-hop paths.

Matrix manipulations

- A² gives us # of 2-hop paths
- A³ gives us ?
 - # of 3-hop paths, etc.
 - Technically it is not a path, but a walk (not simple paths, you can visit the same node several times).
- What about taking a vector v=(1 0 0 0 0) that represents a message at the first node and multiplying it by A?

$$vA = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{pmatrix}$$

- vA=(0 1 1 0 0)
 - indicates how many walks of length 1 from node 1 end up in node i.
- $vA^2 = (2 0 0 2 1)$
 - Indicates how many walks of length 2 from node 1 end up in node i.
- $vA^3 = (0.4512)$
 - Indicates how many walks of length 3 from node 1 end up in node i.

Matrix manipulations (cont.)

• What about multiplying by a Random $\begin{pmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \\ 1/3 & 0 & 0 & 1/3 & 1/3 \\ 0 & 1/3 & 1/3 & 0 & 1/3 \\ 0 & 0 & 1/2 & 1/2 & 0 \end{pmatrix}$

Transition (random walk) Matrix M=DA

$$(1 \quad 0 \quad 0 \quad 0 \quad 0) \begin{pmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \\ 1/3 & 0 & 0 & 1/3 & 1/3 \\ 0 & 1/3 & 1/3 & 0 & 1/3 \\ 0 & 0 & 1/2 & 1/2 & 0 \end{pmatrix} = (0 \quad 1/2 \quad 1/2 \quad 0 \quad 0)$$

$$\begin{pmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \\ 1/3 & 0 & 0 & 1/3 & 1/3 \\ 0 & 1/3 & 1/3 & 0 & 1/3 \\ 0 & 0 & 1/2 & 1/2 & 0 \end{pmatrix} = (0.42 \quad 0 \quad 0 \quad 0.42 \quad 0.17)$$

What about Random Walk Matrix M? (cont.)

- Recap: Random walk on a graph G: we start at a node v_0 and at the t-th step we are at a node v_t . We move to a neighbor of v_t with probability $1/d(v_t)$.
 - The sequence of random nodes (v_t:t=0,1,2...) is a Markov chain
- We start from the initial state of the system, e.g. P₀: [1 0 0 0 0];
 - Can also be drawn from some initial distribution
- $P_t = P_0 M^t$
 - Or can be written as $P_t = (M^T)^t P_0$ if we represent P as a column vector

Again the same Example

$$\mathbf{P_t} = \mathbf{P_0} \mathbf{M^t}$$

$$(1 \ 0 \ 0 \ 0) \begin{pmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \\ 1/3 & 0 & 0 & 1/3 & 1/3 \\ 0 & 1/3 & 1/3 & 0 & 1/3 \\ 0 & 0 & 1/2 & 1/2 & 0 \end{pmatrix} = (0 \ 1/2 \ 1/2 \ 0 \ 0)$$

$$\begin{pmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \\ 1/3 & 0 & 0 & 1/3 & 1/3 \\ 0 & 1/3 & 1/3 & 0 & 1/3 \\ 0 & 0 & 1/2 & 1/2 & 0 \end{pmatrix} = (0.42 \quad 0 \quad 0.42 \quad 0.17)$$

- When $P_{t+1} = P_t = \pi$, we have reached stationary distribution, i.e. $\pi M = \pi$
- Recall: that v is **eigenvector** of matrix M and λ its eigenvalue if **vM=\lambdav**
 - so π is eigenvector of M with eigenvalue $\lambda=1$