

### In this Chapter

- Design methodologies for large combinational circuits
  - Bit-parallel
  - Bit-serial
- Integer arithmetic as examples
  - Add, subtract, multiply, and divide as four basic arithmetic operations
- IEEE floating-point number standards
  - Floating-point Data Space
- Floating-point arithmetic
- Floating-point unit (FPU)

Digital Logic Design and Computer Organization with Computer Architecture for Security

#### **Top-Down Design Methodology**

- Bit-parallel
  - Partition n-bit design problem into smaller n-bit design problems
  - E.g., 8-bit ALU designed using 8-bit adder/subtractor and 8-bit bit-wise logic
- Bit-serial
  - Partition n-bit design problem into a fewer-bit design problem (called slice)
  - E.g., 8-bit ALU designed using eight 1-bit ALU modules
- Hybrid
- Design uses bit-parallel and bit-serial modules

Digital Logic Design and Computer Organization with Computer Architecture for Securit

## Carry Propagate Adder (A bit-serial adder)

- Use FA slices
- Carry bits generated sequentially, one at a time
- Propagation delay proportional to number of carry bits
- Assuming SOP expressions for sum and carry bits and 0.1 ns delay for NANDs determine:
  - ΔCPA(8)
  - ΔCPA(32)
- CPA is the slowest

 $\Delta$ CPA(8) = 1.7 ns

 $\Delta$ CPA(32) = 6.5 ns, too slow

# Carry Look-Ahead (CLA) Adder

- Goal: Generate carry bits in parallel
- Let's examine FA expressions
  - Easy to generate p and g bits in parallel
  - Carry bits are dependent, but can substitute carry expressions to break dependency
  - Once carry bits are known, easy to generate sum bits in parallel
  - $\Delta CLA(8) = ?$

0.8 ns

FA expression from Ch2:  $s_i = a_i \oplus b_i \oplus c_{i-1}$   $c_i = (a_i \oplus b_i)c_{i-1} + a_ib_i$ 

> Let,  $p_i = a_i \oplus b_i$  $g_i = a_i b_i$

 $s_i = p_i \oplus c_{i-1}$   $c_i = g_i + p_i c_{i-1}$ 

 $c_i = g_i + p_i c_{i-1}$ 

### **Observations**

- If keep substituting previous carry expression in next carry expression will run into Fan-in and fan-out problems
- Solution: Generate some carry bits sequentially and some in parallel (next slide)

Digital Logic Design and Computer Organization with Computer Architecture for Security

























## 







FP subtract, multiply, divide

• Subtraction

• Lineup decimal points

• Compute A - B if A.s = B.s or A + B if A.s ≠ B.s.

• Multiplication

• Integer multiply fractions

• Add exponents

• XOR the sign bits

• Division

• Integer divide fractions

• Subtract exponents

• XOR the sign bits

• The rounding and normalization steps are the same as in FP add