Chapitre 10.

Fonctions de référence

Les savoir-faire du parcours

- Savoir étudier la parité d'une fonction.
- Savoir déterminer graphiquement la parité d'une fonction.
- · Savoir étudier les variations de la fonction carré.
- · Savoir comparer des images par la fonction carré.
- · Savoir résoudre une équation, inéquation avec la fonction carré.
- · Savoir étudier les variations de la fonction cube.
- · Savoir comparer des images par la fonction cube.
- Savoir résoudre une inéquation avec la fonction cube.
- · Savoir étudier les variations de la fonction inverse.
- Savoir résoudre une inéquation avec la fonction inverse.
- Savoir étudier les variations de la fonction racine carrée.
- · Savoir résoudre une inéquation avec la fonction racine carrée.
- Savoir reconnaître une fonction de référence.

Les mathématiciennes et mathématiciens

Sophie Germain (1776-1831) était une mathématicienne française pionnière du XIXe siècle. Malgré les obstacles dus à sa condition de femme, elle a contribué de manière significative à la théorie des nombres et à la théorie des équations diophantiennes. Elle a utilisé un pseudonyme masculin pour correspondre avec d'autres mathématiciens, dont Carl Friedrich Gauss, et a été la première femme à recevoir la médaille de l'Académie des Sciences de Paris. Ses travaux ont jeté les bases de la théorie des nombres modernes.

								Competence.
x	$-\infty$		-2		$+\infty$			
Signe de $-3x-6$		+	Ö	_				
x	$-\infty$		0		1		$+\infty$	
Signe de $x^3 - 1$		_		_	0	+		
Signe de x		_	0	+		+		
Signe de $\frac{x^3-1}{x}$		+		_	0	+		

1

Fonctions paires, fonctions impaires

Définition 1: Fonction paire.

On dit qu'une fonction f est **paire** si :

- $\forall x \in D_f, -x \in D_f$
- $\forall x \in D_f, f(-x) = f(x)$

Remarque 2.

La **courbe représentative** d'une fonction pair est **symétrique** par rapport à l'**axe des ordonnées**.

Définition 3: Fonction impaire.

On dit qu'une fonction f est **impaire** si :

- $\forall x \in D_f, -x \in D_f$
- $\forall x \in D_f, f(-x) = -f(x)$

Remarque 4.

La **courbe représentative** d'une fonction pair est **symétrique** par rapport à l'**origine du repère**.

La fonction Carré

Définition 5: Fonction Carré.

La fonction Carré f est la fonction définie sur $\mathbb R$ par $f(x)=x^2$.

La **représentation graphique** de la fonction Carré s'appelle une **parabole** et son équation est $y=x^2$.

Théorème 6.

La fonction Carré f est paire.

La parabole d'équation $y=x^2$ est symétrique par rapport à l'axe des ordonnées.

Théorème 7: Variations de la fonction Carré.

Démonstration exigible

La fonction Carré est strictement décroissante sur \mathbb{R}^- et strictement croissante sur \mathbb{R}^+ .

Preuve : Etude des variations de $f: x \mapsto x^2$ sur $[0; +\infty[$:

Soient a et b deux nombres appartenant à $[0; +\infty[$ tels que a < b.

Comparons les images de a et b par la fonction f. $f(a) = a^2$ et $f(b) = b^2$

Pour les comparer on étudie le signe de leur différence :

$$f(a) - f(b) = a^2 - b^2 = (a+b)(a-b)$$

- a et b appartiennent à $[0;+\infty[$ donc a+b>0
- $a < b \operatorname{donc} a b < 0$
- $(a+b)(a-b) < 0 \Rightarrow a^2 b^2 < 0 \Rightarrow f(a) < f(b) \Rightarrow f(a) < f(b)$

Les images de a et b par la fonction f sont rangés dans le même ordre que ces nombres. La fonction est donc croissante sur $[0; +\infty[$.

Parité d'une fonction

Déterminer si les fonctions suivantes sont paires ou impaires.

Représenter. Raisonner.

Raisonner.

A partir de la définition, démontrer que la fonction $f:x\mapsto x^2$ est **paire**.

Connaitre et utiliser la fonction Carré

Comparer sans les calculer.

Raisonner.

• $(-11)^2$ et $(-6)^2$

		Raisonner. Calculer	r.
5	• Déterminer algébriquement l'intervalle de x^2 lorsque x appartient à $[1;3]$.		
			即即
			回数
			/b/ABCD
	• Déterminer algébriquement l'intervalle de x^2 lorsque x appartient à $[-1;4]$.		

La fonction Cube

Définition 8: Fonction Cube.

La **fonction Cube** f est la fonction définie sur \mathbb{R} par $f(x) = x^3$.

Théorème 9.

La fonction Cube f est impaire.

La courbe d'équation $y = x^3$ est symétrique par rapport à l'origine du repère.

Théorème 10: Variations de la fonction Cube

La fonction Cube est strictement croissante sur $\mathbb{R}^$ et strictement croissante sur \mathbb{R}^+ .

Positions relatives des courbes de x, x^2 et x^3

Propriété 11.

Démonstration exigible

- Si $0 \leqslant x \leqslant 1$ alors $x \geqslant x^2 \geqslant x^3$.
- Si $x\geqslant 1$ alors $x\leqslant x^2\leqslant x^3$

x	$-\infty$		0		1		$+\infty$
x		_	0	+		+	
x-1		_		_	0	+	
f(x)		+	0	_	0	+	

x	$-\infty$	$-\frac{p}{m}$	$+\infty$
f(x)		+ 0	_

x	$-\infty$		$-\frac{p}{m}$		$+\infty$
f(x)		_	0	+	

Preuve : Comparaison de x et x^2 sur $[0; +\infty[$.

Pour les comparer, on étudie le signe de leur différence.

On définit la fonction f par $f(x)=x^2-x$. $f(x)=x^2-x=x(x-1)$ On peut établir le tableau de signes de f(x).

$$f(x) = x^2 - x = x(x-1)$$

$$(E): f(x) = 0 \text{ alors } S(E) = \{0, 1\}$$

x	$-\infty$		0		1		$+\infty$
x		_	0	+		+	
x-1		_		_	0	+	
f(x)		+	0	_	0	+	

Ainsi:

- $\forall x \in]0;1[,f(x) < 0 \text{ donc } x^2 x < 0 \text{ donc } x^2 < x$
- $\forall x \in]1; +\infty, f(x) > 0$ donc $x^2 x > 0$ donc $x^2 > x$

Connaitre et utiliser la fonction Cube

		Raisonner.	
6	A partir de la définition, démontrer que la fonction $f:x\mapsto x^3$ est impaire .		
			쏋
			/b/ABCE
		Raisonner.	<u></u>
7	Comparer sans les calculer.		
	$ullet \left(rac{1}{5} ight)^3$ et π^3		讝
			/b/ABCE
	• $(-5)^3$ et $(-9)^3$		
	Position relatives des courbes		
	Raisonner. C	Communiquer.	
8	Comparer la position relative des courbes de x^2 et x^3 sur $[0; +\infty]$.		
			孍
			/b/ABCE
		Raisonner.	
9	Comparer sans les calculer.		
	$\bullet \ (\frac{1}{3})^3 \ {\rm et} \ (\frac{1}{3})^2$		讝
			/b/ABCE
	• $\frac{10}{9}$ et $(\frac{10}{9})^2$		
	9 \ 9 /		

La fonction Inverse

Définition 12: Fonction Inverse.

La fonction Inverse f est la fonction définie sur \mathbb{R}^* par $f(x) = \frac{1}{x}$.

La **représentation graphique** de la fonction Inverse s'appelle une **hyperbole** et son équation est $y = \frac{1}{x}$.

Théorème 13.

La fonction Inverse f est impaire.

La hyperbole d'équation $y=\frac{1}{x}$ est symétrique par rapport à l'origine du repère.

Théorème 14: Variations de la fonction Inverse.

Démonstration exigible

La fonction Carré est strictement décroissante sur \mathbb{R}_{-}^* et strictement décroissante sur \mathbb{R}_{+}^* .

Preuve : Étude des variations $f: x \mapsto \frac{1}{x} \text{ sur }] - \infty; 0[.$

Soient a et b deux nombres appartenant à $]-\infty;0[$ tels que a < b.

Comparons les images de a et b par la fonction f.

$$f(a) = \frac{1}{a}$$
 et $f(b) = \frac{1}{b}$

 $f(a) = \frac{1}{a} \text{ et } f(b) = \frac{1}{b}$ Pour les comparer on étudie le signe de leur différence. $f(a) - f(b) = \frac{1}{a} - \frac{1}{b} = \frac{b}{ab} - \frac{a}{ab} = \frac{b-a}{ab}$

$$f(a) - f(b) = \frac{1}{a} - \frac{1}{b} = \frac{b}{ab} - \frac{a}{ab} = \frac{b-a}{ab}$$

- a et b appartiennent à $]-\infty;0[$ donc ab>0
- $a < b \operatorname{donc} a b < 0 \operatorname{donc} b a > 0$
- $\frac{b-a}{ab} > 0 \Rightarrow \frac{1}{a} \frac{1}{b} > 0 \Rightarrow f(a) f(b) > 0 \Rightarrow f(a) > f(b)$

Les images de a et b par la fonction f sont rangés dans l'ordre contraire de celui de ces nombres. La fonction inverse est donc décroissante sur $]-\infty;0[$.

La fonction Racine carrée

Définition 15: Fonction Racine carrée.

La fonction Racine carrée f est la fonction définie sur \mathbb{R}^+ par $f(x) = \sqrt{x}$.

Remarque 16

L'ensemble de définition de la fonction Racine Carrée n'est pas centré. Donc la fonction Racine carrée n'est ni paire, ni impaire.

Théorème 17: Variations de la fonction Racine Carrée.

Démonstration exigible

La fonction Racine carrée est strictement croissante sur $\mathbb{R}^{+}.$

Preuve : Etude des variations de $f: x \mapsto \sqrt{x}$ sur $[0; +\infty[$.

Soient a et b deux nombres appartenant à $[0; +\infty[$ tels que a < b.

Comparons les images de a et b par la fonction f.

$$f(a) = \sqrt{a}$$
 et $f(b) = \sqrt{b}$

Pour les comparer on étudie le signe de leur différence.

$$f(a) - f(b) = \sqrt{a} - \sqrt{b} = (\sqrt{a} - \sqrt{b}) \times \frac{\sqrt{a} + \sqrt{b}}{\sqrt{a} + \sqrt{b}} = \frac{(\sqrt{a} - \sqrt{b})(\sqrt{a} + \sqrt{b})}{\sqrt{a} + \sqrt{b}} = \frac{\sqrt{a^2} - \sqrt{b^2}}{\sqrt{a} + \sqrt{b}} = \frac{a - b}{\sqrt{a} + \sqrt{b}}$$

- $\sqrt{a} + \sqrt{b} > 0$
- $a < b \operatorname{donc} a b < 0$
- $\frac{a-b}{\sqrt{a}+\sqrt{b}} < 0 \Rightarrow \sqrt{a} \sqrt{b} < 0 \Rightarrow f(a) f(b) < 0 \Rightarrow f(a) < f(b)$

Les images de a et b par la fonction f sont rangés dans le même ordre que celui de ces nombres. La fonction racine carrée est donc croissante sur $[0; +\infty[$.

Connaitre et utiliser les fonctions Inverse et Racine Carrée

		Raisonner.	<u></u>
A partir de la définition, démontrer que la fonction $f:x\mapsto rac{1}{x}$ est impaire .			
			回路
			/b/ABC
		Raisonner.	
Comparer sans les calculer.			
\bullet $\frac{1}{z}$ et $\frac{1}{4}$			
5 4			回解
			/b/ABC
1 1			
\bullet $-\frac{1}{4}$ et $-\frac{1}{6}$			
\bullet $\sqrt{10}$ et $\sqrt{100}$			
V 10 Gt V 100			
		D :	7
		Raisonner.	_ل_
Expliquer pourquoi la fonction Inverse n'est pas décroissante sur $\mathbb{R}^*.$			
	Danrásants	er. Raisonner.	$\overline{}$
	Represente	er. Raisonner.	_ل_
Résoudre graphiquement les équations, puis retrouver les résultats algébriquement.			
1. $\frac{1}{x} = 4$			
			/b/ABC
2. $\sqrt{x} = 2$			
· ·			
Valider ces résultats par le calcul.			

	Raisonner. Calculer.
1. Déterminer algébriquement l'intervalle de $\frac{1}{x}$ lorsque x appartient à $[1;3]$.	
	/b/ABCI
2. Déterminer algébriquement l'intervalle de \sqrt{x} lorsque x appartient à $[1;2]$.	

15

Associer à chaque représentation la fonction de référence qui lui correspond.

Compétence.

1. La fonction g est paire et telle que g(3)=6. Quelle est la valeur de g(-3)?

2. La fonction i est impaire et telle que i(2) = -5. Quelle est la valeur de i(-2)?

Raisonner. Calculer.

Résoudre dans $\ensuremath{\mathbb{R}}$ les équations et inéquations suivantes :

1.
$$x^2 = 6$$

2.
$$x^2 = \frac{5}{3}$$

3.
$$x^2 \le 3$$

4.
$$\frac{1}{x} \geqslant 1$$

Compétence.

Associer à chaque courbe la fonction qui correspond :

$$f: x \mapsto 2x^2$$
 $g: x \mapsto x^2 + 2$ $h: x \mapsto x^2 - 1$

Raisonner.

Dire si les phrases suivantes sont vraies ou fausses :

- 1. Un nombre et son carré ont toujours le même signe.
- 2. L'équation $x^2 = k$ a toujours une solution.
- 3. La fonction $x \mapsto x^2$ sera toujours supérieure à $x \mapsto x^2 1$.
- 4. Si $x \in [0,1]$ alors $x^2 \in [0,1]$.

Compétence.

Raisonner. Communiquer.

Démontrer que $f: x \mapsto x^2$ est décroissante sur $[-\infty; 0]$.

Raisonner. Communiquer.

En utilisant la propriété de parité de la fonction $x \mapsto x^2$, montrer que $2x^2 + 3$ est paire.

Raisonner. Calculer.

Résoudre dans $\mathbb R$ les équations et inéquations suivantes :

2.
$$\sqrt{x} = 25$$

3.
$$x^3 \geqslant \frac{8}{27}$$

4.
$$\frac{1}{x} \le 1$$

Raisonner.

Les hyperboles suivantes correspondent toutes à une fonction ayant la forme $x\mapsto \frac{k}{x}$. Analyser les courbes et identifier les fonctions:

$$f(x) = \frac{\cdot \cdot}{x}$$

$$f(x) = \frac{\dots}{x}$$
 $g(x) = \frac{\dots}{x}$ $h(x) = \frac{\dots}{x}$

$$h(x) = \frac{\dots}{x}$$

Dire si les phrases suivantes sont vraies ou fausses :

- 1. Un nombre et son cube ont toujours le même signe.
- 2. L'équation $\sqrt{x} = k$ admet toujours une solution.
- 3. La fonction $x\mapsto x^2$ n'admet pas de maximum.
- 4. La fonction inverse est décroissante sur [-1, 1].

Compétence.

Raisonner.

Raisonner.

Déterminer la parité de la fonction $f:x\mapsto \frac{1}{x^2+1}$. La fonction f n'admet pas de valeur interdite car $x^2+1>0$. Ainsi, elle est définit sur $\mathbb R$.

Pour
$$x\in\mathbb{R}$$
 calculons $f(-x)$:
$$f(-x)=\frac{1}{(-x)^2+1}=\frac{1}{x^2+1}=f(x).$$
 La fonction est paire.

Raisonner. Calculer

Résoudre dans ${\mathbb R}$ les équations et inéquations suivantes :

- 1. $4x^2 + 3 = 8$
- 2. $2\sqrt{x} = 72$
- 3. $x^3 + 2 \le 10$
- 4. $\frac{1}{x} 1 \leqslant -2$

Raisonner. Communiquer.

Sachant que $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$, montrer que $f: x \mapsto x^3$ est croissante sur $[0; +\infty[$.

Les courbes suivantes correspondent toutes à une fonction cubique, retrouver leur expressions.

$$f(x) = \dots$$

$$q(x) = \dots$$

$$f(x) = \dots \qquad g(x) = \dots \qquad h(x) = \dots$$

JI

Les courbes de la fonction racine carrée $f: x \mapsto \sqrt{x}$ et de la fonction linéaire y = x sont représentées sur le graphique suivant. Les points A et A' sont symétriques l'un de l'autre par rapport à la droite y = x

- 1. Donner les coordonnées des points A et A': A(4;2) A'(2;4).
- 2. Le point B a pour coordonnées B(3;1,73) sachant que l'ordonnée est approximative, quelle est son ordonnée exacte ? Expliquer.

B est un point de C_k son ordonnée est donc $f(3) = \sqrt{3} \approx 1,73$.

- 3. Déterminer les coordonnées exactes du point B' symétrique du point B par rapport à la droite y=x: $B'(\sqrt{3};3)$. Placer ce point sur le graphique.
- 4. Quelle relation existe-t-il entre les coordonnées de A et A', B et B'? L'abscisse de A est l'ordonnée de A' et vice versa, de même que pour B et B'.
- 5. Conjecturer de quelle fonction est la courbe symétrique de \mathcal{C}_k par rapport à la droite y=x. On l'appellera m. La fonction dont la courbe est symétrique à \mathcal{C}_k par rapport à y=x semble être la fonction $x\mapsto x^2$. En effet, $A'(2;2^2)$ et $B'(\sqrt{3};\sqrt{3}^2)$.
- 6. On dit que ces fonctions sont réciproques. Pour démontrer que deux fonctions f et g sont réciproques on montre que f(g(x)) = g(f(x)) = x. Démontrer la conjecture.
 - 1. Montrons que m(k(x)) = x:
 - $m(x) = x^2$ signifie que vous prenez un nombre x, le multipliez par lui-même, ce qui revient à élever x au carré.
 - $k(x) = \sqrt{x}$ signifie que vous prenez la racine carrée de x, c'est-à-dire trouver un nombre qui, lorsqu'il est multiplié par lui-même, donne x.

Maintenant, si nous prenons x, trouvons d'abord sa racine carrée en utilisant g(x), puis élevons cette racine carrée au carré en utilisant f(x), nous obtenons le même x de départ.

Donc, m(k(x)) = x pour tous les x réels.

- 2. Montrons que k(m(x)) = x:
- Avec k(m(x)), vous prenez d'abord x, l'élevez au carré en utilisant m(x) pour obtenir x^2 .
- Ensuite, vous prenez la racine carrée de x^2 en utilisant k(x), ce qui vous donne x.

Donc, pour tous les x réels, $m(x) = x^2$ est bien la fonction réciproque de $k(x) = \sqrt{x}$.

Enoncé	Α	В	С
f est affine tel que $f(2)=4$ et $f(7)=1$	f est croissante	f est décroissante	f est constante
Soit $f: x \mapsto 4,5x+4$, quel énoncé est vrai?	f est décroissante	f(-2) < 0	f(-1) = 0
Déterminer quelle est la courbe représentative de $f:x\mapsto -7x+5$			
$f: x \mapsto \frac{1}{x}$, sachant que $f(a) = -7,54$ que vaut $f(-a)$?	f(-a) = -7,54	f(-a) = 7,54	On ne peut pas sa- voir
Soient la fonction $f: x \mapsto x^2$ et deux nombres a et b appartenant à $]-\infty;0]$ tel que $a < b$. Que peut-on dire de $f(a)$ et $f(b)$?	f(a) < f(b)	f(a) = f(b)	f(a) > f(b)
Soient la fonction $g: x \mapsto x^3$ et deux nombres a et b appartenant à $]-\infty;0]$ tel que $a < b$. Que peut-on dire de $g(a)$ et $g(b)$?	g(a) < g(b)	g(a) = g(b)	g(a) > g(b)
Soient un nombre $a<1.$ Quelle inégalité est vraie?	$a^2 < a^3$	$a^2 > a^3$	$a < a^2$
La solution de l'équation $(E): x^2+6=-3.$	x = 3	x = -3	Il n'y a pas de solution.
La solution de l'équation $(E): 7\sqrt{x}+4=256.$	x = 6	x = -6	Il n'y a pas de solution.
La solution de l'inéquation $(I): x^2 < 5$.	$x \in]-\infty; +\infty[$	$x \in \left] -\sqrt{5}; +\sqrt{5} \right[$	$x \in \left[-\sqrt{5}; +\sqrt{5} \right]$

