Banco de Dados

Conceitos

Imagem retirada do material de aula do prof. André Santanchè . Disponível em:

https://www.ic.unicamp.br/~santanch/teaching/db/2016-2/slides/bd03-modelo-logico-v03-3.pdf. Acessado em 13/04/23

- Descreve conceitualmente um universo de discurso/mini-mundo;
- Utiliza conceitos e relações entre esses conceitos:
- entidades, tipos de dados, relações, restrições etc.
- Independente da implementação em SGBD oculta detalhes de armazenamento físico

- Descreve como os dados são organizados/estruturados.
 Portanto, representa os dados do ponto de vista da aplicação.
- Dependente de um SGBD particular
- Associado a um "modelo de dados de implementação" (Elmasri, 2005)
- Também não se detém com detalhes de armazenamento físico.

Tipos de Dados

- Quanto mais "organizados" (estruturados) os dados, mais simples é o processamento:
 - Ex. dados estruturados: listas, tabelas, matrizes;
 - Ex. de dados não-estruturados: texto, imagens, sons;
 - Ex. de dados semiestruturados: árvores, grafos

Modelo Relacional

Cliente (C)

		(-)
<u>C liI d</u>	Nom e	C P F
1 5 3 2	A sdrúbal	4 4 8 . 7 5 4 . 2 5 3 - 6 5
1 7 5 5	D oriana	5 6 7 . 3 8 7 . 3 8 7 - 4 4
1 7 8 0	Quincas	5 4 6 .3 7 3 .7 6 2 - 0 2

Pla ca	M arca	Modelo	A n o F a b
D A E 6 5 3 4	Ford	Fiesta	1999
D K L 4 5 9 8	W olk svagen	G 0 1	2 0 0 1
D K L 7 8 7 8	Ford	F ie sta	2 0 0 1
JD M 8776	Wolksvagen	Santana	2 0 0 2
JJM 3692	C h e v r o l e t	Corsa	1999

Corrida (R1)

C II d	P la c a	<u>DataPedido</u>
1755	D A E 6 5 3 4	1 5 / 0 2 / 2 0 0 3
1 9 8 2	JD M 8776	18/02/2003

Modelo original por prof. Geovane Cayres Magalhães Imagem retirada do material de aula do prof. André Santanchè . Disponível em: https://www.ic.unicamp.br/~santanch/teachi ng/db/2016-2/slides/bd03-modelo-logico-v03-3.pdf. Acessado em 13/04/23

 Descreve detalhes de como os dados são guardados fisicamente.

Qual o Foco do Sistema de Banco de Dados?

- Isolar os usuários dos detalhes do banco de dados,
- Promover a independência dos dados em relação às aplicações
- e suportar múltiplas visões;

O que ele garante?

- Visão abstrata do banco de dados para os usuários;
- Ocorre em 3 níveis: usuário/externo; conceitual; físico.

Importância de ter diferentes modelos: permitem a separação entre representação dos dados e a implementação física das estruturas

Imagem retirada do material de aula do prof. André Santanchè . Disponível em: https://www.ic.unicamp.br/~santanch/teaching/db/2016-2/slides/bd03-modelo-logico-v03-3.pdf. Acessado em 13/04/23

Arquitetura de um Sistema de Bancos de Dados

Nível Externo

descreve a parte do BD que os usuários têm acesso, de acordo com sua necessidade e perfil.

Nível Conceitual

descreve a estrutura de toda a base de dados. Apresenta quais dados estão armazenados e qual a relação entre eles.

Nível interno

descreve a estrutura de armazenamento físico da base de dados. Define como os dados estão armazenados.

Independência dos Dados

• O que é: capacidade de alterar o esquema de um nível sem ter que alterar o esquema no nível superior;

Benefícios:

- Aumenta a "imunidade" dos programas em relação a mudanças na estrutura do banco de dados;
- Um dos maiores benefícios de usar SBD/SGBD!

Independência Conceitual de Dados

• É a capacidade de alterar o esquema conceitual/lógico sem ter que mudar os esquemas externos ou os programas de aplicação.

 Pode-se mudar o esquema conceitual/Lógico: (i) para expandir a base de dados ou (ii) reduzir a base de dados removendo um tipo de registro.

 Neste último caso, esquemas externos que se referem aos dados remanescentes não devem ser afetados;

Alguns exemplos

Cliente

ID do cliente nome endereço fone e-mail

Com a independência conceitual de dados:

- Você pode adicionar o novo campo "Data de Cadastro" à tabela sem afetar diretamente as aplicações que consultam os dados dos clientes. Isto é, os aplicativos ainda podem acessar os dados dos clientes sem precisar serem atualizados para lidar com o novo campo.
- As consultas existentes que acessam os dados dos clientes podem continuar funcionando, mesmo que não incluam o novo campo "Data de Cadastro". A nova coluna só será utilizada quando necessário e não interferir nas operações de rotina.

Alguns exemplos

Cliente				
ID do cliente	nome	endereço	fone	e-mail

Cliente				
ID do cliente	nome	endereço	e-mail	

Com a independência conceitual de dados:

- A coluna "Número de Telefone" é removida da tabela de clientes no banco de dados;
- As aplicações que acessam os dados dos clientes podem continuar funcionando normalmente, desde que não dependem explicitamente do campo "Número de Telefone".
- As consultas que não incluem o campo excluído continuarão a funcionar sem alterações.

Independência Física de dados

• É a capacidade de alterar o esquema interno sem ter que alterar o esquema conceitual/lógico e externo.

 Mudanças no esquema interno podem ser necessárias devido a alguma reorganização de arquivos físicos para melhorar o desempenho nas recuperações e/ou modificações.

 Após a reorganização, se nenhum dado foi adicionado ou perdido, não haverá necessidade de modificar o esquema conceitual/lógico.

Alguns Exemplos

Existe uma tabela Produtos que armazena informações sobre os produtos (como nome do produto, preço, quantidade em estoque)

- 1. Armazenamento em Disco:
 - Inicialmente, os dados da tabela são armazenados em um disco rígido tradicional.
- 2. Mudança para Armazenamento em Memória:
 - A equipe de TI decide que é mais eficiente armazenar os dados em memória RAM para melhorar o desempenho do sistema
 - A mudança ocorre sem afetar a forma como os dados são acessados ou manipulados pelas aplicações que utilizam o sistema.
- 3. Migração para um Banco de Dados Distribuído:
 - A empresa migra os dados da tabela para um banco de dados distribuído que utiliza vários servidores para armazenamento e processamento.
 - Novamente, essa migração é feita sem que os usuários ou as aplicações percebam qualquer mudança na forma como acessam ou manipulam os dados dos produtos.
- 4. Transição para um Novo Sistema de Banco de Dados:
 - A empresa decide atualizar seu sistema de gerenciamento de banco de dados para uma tecnologia mais avançada que oferece recursos adicionais
 - Eles realizam a transição para o novo sistema de banco de dados sem interromper as operações comerciais ou afetar a funcionalidade das aplicações que dependem dos dados dos produtos.

Linguagem de Banco de Dados

Todo Sistema de Banco de Dados (relacional) fornece uma Linguagem para definir e manipular os dados: **SQL**

CREATE, ALTER, DROP Linguagem de definição de dados (DDL)

Usada para definir esquemas

Linguagem de manipulação de dados (DML)

Recuperação, inserção, remoção, modificação

DELETE, UPDATE, INSERT

SELECT

Linguagem de consulta

DML de alto nível usada em modo "stand-alone"

SQL

SQL: Standard Query Language (Linguagem de Consulta Estruturada):

- Empregada para realizar pesquisas/queries;
- Usada de maneira parecida na maioria da Sistema de BD;

Usuários de Banco de Dados

- Se diferenciam pela forma esperada de interação com o sistema:
 - Usuários leigos: acessam a base de dados através de uma aplicação;
 - Programadores de aplicação: interagem com a base de dados através de chamadas DML;
 - Usuários avançados: realizam consultas especializadas na base de dados através de ferramentas de consulta;
 - Administradores (DBA): usuários avançados que escrevem aplicações de banco de dados especializadas.

Armazenamento e Consulta de Dados

- Os componentes funcionais de um SGBD podem ser divididos em:
 - Gerenciador de armazenamento;
 - Processador de consulta;
- Por que eles s\u00e3o necess\u00e1rios?
 - A movimentação de dados entre memória RAM e disco é lenta. Portanto, torna-se crucial que o SGBD estruture os dados de modo a minimizar a necessidade de mover dados entre disco e memória principal.

Processador de Consulta

- Interpretador DDL: interpreta instruções DDL e registra as definições no dicionário de dados.
- Compilador DML: traduz instruções DML em uma linguagem de consulta para um plano de avaliação que o mecanismo de avaliação de consulta entende.
- Mecanismo de Avaliação de Consulta: executa instrução de baixo nível geradas pelo compilador DML

Gerenciador de Armazenamento

- Faz interface entre os dados armazenados no banco e os programas aplicativos/consultas submetidas no sistema.
- Traduz instruções DML em comandos que o sistema de arquivo (SO) entenda.

Portanto, é responsável por armazenar, recuperar e atualizar os dados no banco!

O que compõe o gerenciador?

- Gerenciador de autorização e integridade: testa a satisfação das restrições de integridade e verifica a autoridade dos usuários para acessar dados;
- Gerenciador de transação: garante que o banco de dados permaneça em estado consiste, apesar de falhas e execuções concorrentes.
- Gerenciador de arquivos: controla a alocação de espaço no disco e estruturas de dados usadas para representar informações.
- Gerenciador de Buffer: busca dados do disco para memoria principal e decide qual dados colocar em cache.

Gerenciamento de Transição (ACID)

Transação: sequência de operações executadas como uma única unidade lógica de trabalho.

Ex: transferência bancária (Débito na conta A -> Crédito na conta B)

Propriedades:

- 1. Atômica: a transação deve acontecer na sua totalidade: "Tudo ou nada"
- 2. Consistente: toda vez que ocorrer uma transação, esta deve preservar a consistência do banco.
- 3. Isolamento: uma transação não será interferida por nenhuma outra transação concorrente.
- 4. Durabilidade: toda vez que uma transação ocorrer, deve-se garantir a persistência dos dados, mesmo quando falhas ocorrerem.

Estrutura de Dados Geradas

- Arquivo de Dados: armazenam o banco de dados propriamente.
- Dicionário de Dados: armazena o metadados sobre a estrutura do BD.
 - São Informações sobre as tabelas, colunas, usuários, permissões, índices, visões, etc.
 - É como o "manual interno" do banco.
- **Índices:** tipo de estrutura de dados que fornece meios de acesso rápido aos itens de dados.
 - Funcionam como um índice de livro, acelerando a busca por dados.
 - São estruturas como árvores B+ ou hashes, que permitem encontrar informações rapidamente sem ler toda a tabela.

Tipos de Arquiteturas

Arquitetura Local

• SGBD executado no mesmo dispositivo da aplicação.

Arquitetura Cliente-servidor

• Uma máquina servidora mantém o SGBD e o BD para que máquinas clientes possam acessá-los através da rede.

Arquitetura 3 camadas

 Uma camada é o servidor que mantém o SGBD e o BD, outra camada responsável pelas regras do negócio, e outra camada que tem a aplicação.

Particionamento das Aplicações

Referências

SILBERSCHATZ, Abraham; KORTH, Henry F.; SUDARSHAN, S. Sistema de Banco de Dados. 5 ed. Rio de Janeiro: Elsevier, 2006. (capítulo 1)

Aula da profa. Mirlela Moro, disponível em: https://homepages.dcc.ufmg.br/~mirella/DCC011/aula02.pdf acesso 12_05_21

Aula do prof. André, disponível em: https://www.youtube.com/watch?v=i6yy6J0uNaw&t=3915s acesso 10_03_23