שאלה 1 הפרך. $A,B,C\in\mathbb{R}^{n imes n}$ הוכח או הפרך.

$$B=C$$
 אז $AB=AC$ אם

$$B=0$$
 או $A=0$ או $AB=0$

$$.(A+B)^2 = A^2 + 2AB + B^2$$
 (2)

$$A(A+B)(A-B) = A^2 - B^2$$

$$A(AB)^t = A^t B^t$$

$$(A+B)^t = A^t + B^t$$

1)

שאלה 2 הוכיחו או הפריכו ע"י דוגמה נגדית את הטענות הבאות:

- אם $A\cdot B$ מטריצה משולשת עליונה ו- B מטריצה משולשת עליונה, אז אם $A\cdot B$ אם אם $A\cdot B$
 - AB = BA אם A מטריצות אלכסוניות, אז B
 - $AB^2=B^2A$ אז AB=BA אז אם A מטריצות ריבועיות המקיימות B

שאלה
$$b\in\mathbb{R}^n$$
 -נניח ש a למערכת $X=egin{pmatrix} x_1\\x_2\\\vdots\\x_n \end{pmatrix}\in\mathbb{R}^n$, $A\in\mathbb{R}^{n imes n}$ - מטריצה של משתנים ו $A\in\mathbb{R}^n$ - נניח שאלה X

$$AX = b$$
, $b \neq \bar{0}$.

יש יותר מפתרון אחד אז A לא הפיכה.

שאלה 4

- $|A| \neq 0$ נניח כי הפיכה אז הוכיחו או הוכיחו . $A \in \mathbb{R}^{n imes n}$
- ב) ביכה A הפיכה אז A הפיכה אז הפריכו: אם $A,B\in\mathbb{R}^{n\times n}$ נניח כי
 - גא הפיכה A+B -ו הפיכה א
ס הוכיחו כי אם $A,B\in\mathbb{F}^{n\times n}$ הפיכה אז

$$(A+B)^{-1} = A^{-1} - A^{-1}B(A+B)^{-1}$$
.

שאלה 5 הוכיחו או הפריכו: . $A,B,C\in\mathbb{R}^{n imes n}$ שאלה 5

$$B=C$$
 אז $BA=CA$ אז A אם A הפיכה ו

- B=C אז AB=AC גו
- אט AB=0 אינן הפיכות.
- איננה הפיכה. AB=0 אי $A\neq 0$ איננה הפיכה.
 - הפיכות. B -ו A הפיכות AB הפיכות.
 - אם A הפיכה אז AB הפיכה.
- אם A+B הפיכה ו- B הפיכה A+B אם
- ת) אם A+B לא הפיכה ו- B לא הפיכה מו
- . תהי A ויהי $A\in\mathbb{R}^{n imes n}$ פולינום כך ש- $f(x)=2x^4-x^2+3x-2$ ויהי $A\in\mathbb{R}^{n imes n}$
 - אם $A + A^t$ הפיכה A הפיכה.

שאלה 6 הוכיחו או הפריכו ע"י דוגמה נגדית:

תהיינה A+B - אם A הפיכה או $A,B\in\mathbb{F}^{n\times n}$

$$(A+B)^{-1} = A^{-1} - A^{-1}B(A+B)^{-1}$$
.

ישאלה 7. הוכיחו או הפריכו ע"י דוגמה נגדית: $\{u_1,u_2,u_3\}$ של ווקטורים במרחב ווקטורים $\{u_1,u_2,u_3\}$ בת"ל אז הווקטורים בת"ל אז הווקטורים $\{u_1,u_2,u_3\}$ בת"ל אז הווקטורים בת"ל אווקטורים בת"ל אווקטור

.1 אומרים כי $A\in\mathbb{R}^{2 imes 2}$ תהי אם הסכום של האיברים בכל עמודה שווה $A\in\mathbb{R}^{2 imes 2}$ תהי $A\in\mathbb{R}^{2 imes 2}$ אומרים כי $A\in\mathbb{R}^{2 imes 2}$ אומרים כי מטריצות סטוקסטיות שווה למטריצה סטוקסטית.

אלה
$$X=egin{pmatrix} x_1\\x_2\\\vdots\\x_n \end{pmatrix}\in \mathbb{F}^n$$
 -ווקטור המשתנים של המערכת $A\in \mathbb{F}^{n imes n}$ - נניח ש $A\in \mathbb{F}^{n imes n}$

. (ווקטור האפס) איז הפתרון אם או האבר למערכת האפס) איז הפתרון היחיד הפתרון אם או הפתרון היחיד למערכת האפס).

שאלה 10 - תן דוגמא לשתי קבוצות S, T כך ש- S ומתקיים:

- . \mathbb{R}^4 את פורשת את S -ו \mathbb{R}^4 את פורשת את T
- . \mathbb{R}^4 את פורשת את א ו- S לא פורשת את T
 - . \mathbb{R}^4 את פורשת את S -ו \mathbb{R}^4 פורשת את T

שאלה 11

 $A \mid A \mid A \mid A^8 + A = 0$ ומתקיים $A \in \mathbb{R}^{10 \times 10}$ מצאו את גתון כי

. אז A אז אז אז אז אז אז אז אז אז אומתקיים או ומתקיים אז או הפריכו: אם $A \in \mathbb{R}^{5 imes 5}$

שאלה 13

- נניח כי הוכיחו או הפריכו ע"י דוגמה בת"ל ונניח ש $\{u_1,\cdots,u_k\}\in\mathbb{R}^n$ נניח כי נניח כי קבוצת ווקטורים בת"ל קבוצת ווקטורים בת"ל נגדית:
 - בת"ל. $\{u_1,\cdots,u_k\}$ בת"ל אז גם $\{Au_1,\cdots,Au_k\}$ בת"ל.
 - $\{Au_1,\cdots,Au_k\}$ בת"ל. $\{u_1,\cdots,u_k\}$ בת"ל.

שאלה 14 תהיינה $X\subseteq Y$ קבוצות של וקטורים ב- \mathbb{R}^n . הוכח או הפרך:

- \mathbb{R}^n אס Y פורשת את \mathbb{R}^n אז אז פורשת אם Y
 - \mathbb{R}^n אם X פורשת את $0 \in X$
 - \mathbb{R}^n אם X לא פורשת את X לא
- \mathbb{R}^n אם Y פורשת את \mathbb{R}^n אז X פורשת את אם
- \mathbb{R}^n אם מספר הוקטורים ב- X גדול מ- n אז X פורשת את
 - $\operatorname{sp}(Y)
 eq \operatorname{sp}(X)$ אז $v \notin X$ כך ש- $v \in Y$ אז $v \in Y$

שאלה 15 תהי $A\in\mathbb{R}^{3 imes n}$ תהי תהי

- . אם למערכת $AX=\begin{pmatrix}7\\4\\3\end{pmatrix}$ אז למערכת $AX=\begin{pmatrix}3\\4\\7\end{pmatrix}$ אם למערכת אם למערכת אים פתרון איז למערכת אם אינים פתרון
- . אם $AX=\begin{pmatrix}7\\4\\3\end{pmatrix}$ אם למערכת $AX=\begin{pmatrix}3\\4\\7\end{pmatrix}$ קיים פתרון יחיד אז למערכת אם n=3
 - . אם למערכת $AX=\begin{pmatrix} 7\\4\\3 \end{pmatrix}$ איים פתרון אז למערכת $AX=\begin{pmatrix} 0\\0\\0 \end{pmatrix}$ אם למערכת אם למערכת פתרון אז למערכת פתרון אז למערכת
- למערכת פתרון, אז למערכת אז פתרון ולמערכת אז למערכת אז למערכת אז למערכת היי
טAX=c אם למערכת היינ אז למערכת פתרון.

. ומתקיים: $S\subseteq T$ - כך ש- \mathbb{R}^4 - ומתקיים: מתקיים אשתי קבוצות המוכלות ב- ומתקיים:

- א) בת"ל ו-S בת"ל.
 - ב) T ת"ל ו-S ת"ל.
- גי S בת"ל. T

שאלה 17

. הוכח או הפרך. \mathbb{R}^n - תהיינה $X\subseteq Y$ קבוצות של וקטורים ב

- אט X בת"ל אז Y בת"ל.
- בת"ל. X בת"ל אז Y בת"ל.
 - X אם $X \in X$ אם X ת"ל.
- . אם מספר הוקטורים בX קטן מn אז X בת"ל.

 $\{u_1,\dots,u_n\}\in U$ יהי ווקטורים כי ווקטורי, T:U o V העתקה לינארית ונניח כי ווקטורים V יהי ווקטורים. הוכיחו או הפריכו על ידי דוגמה נגדיתאת הטענה הבאה:

- אט u_1,\ldots,u_n בת"ל אז $T\left(u_1
 ight),\ldots,T\left(u_n
 ight)$ בת"ל.
- בת"ל. $T\left(u_{1}\right),\ldots,T\left(u_{n}\right)$ בת"ל אז u_{1},\ldots,u_{n} בת"ל.

שאלה 19

- v_1,v_2 וכן $Av_1=Av_2=0$ כך ש $v_1,v_2\in\mathbb{F}^2$ כאשר A שדה. נתון שקיימים $A\in\mathbb{F}^{m imes 2}$ כאשר $A\in\mathbb{F}^{m imes 2}$ הוכיחו ש- A=0
 - ב) תהי A מטריצה ריבועית מעל שדה $\mathbb F$ המקיימת את מטריצה ריבועית

$$A^2 + 5A + I = 0$$
.

 A^{-1} את ומצאו הפיכה A -ש

שאלה 20 תהיינה $Y\subseteq Y$ קבוצות של וקטורים ב- \mathbb{R}^n . הוכח או הפרך:

- \mathbb{R}^n אז X פורשת את \mathbb{R}^n אז Y פורשת את Y
 - \mathbb{R}^n אם X פורשת את $0 \in X$
 - \mathbb{R}^n אם X לא פורשת את X

- \mathbb{R}^n אם X פורשת את \mathbb{R}^n אז Y פורשת את אם (7
- \mathbb{R}^n אם מספר הוקטורים ב- X גדול מ- אז X פורשת את (ה
 - $\operatorname{sp}(Y)
 eq \operatorname{sp}(X)$ אז $\operatorname{v}
 otin X$ כך ש $\operatorname{v}
 otin X$ אם קיים $\operatorname{v}
 otin Y$

פתרונות

שאלה 1

ינה הפריכו: . $A,B,C\in\mathbb{R}^{n\times n}$ הוכיחו או הפריכו

$$B=C$$
 אם $AB=AC$ אם (א

טענה לא נכונה. דוגמה נגדית:

$$.C=\begin{pmatrix}1&1\\1&1\end{pmatrix}$$
 , $B=\begin{pmatrix}1&2\\3&4\end{pmatrix}$, $A=\begin{pmatrix}0&0\\0&0\end{pmatrix}$

$$A \cdot B = A \cdot C = 0$$
, $B \neq C$.

$$B=0$$
 או $A=0$ או $AB=0$

טענה לא נכונה. דוגמה נגדית:

$$.B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
 , $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$

$$A \cdot B = 0 \ , \qquad A \neq 0 \ , B \neq 0 \ .$$

$$:(A+B)^2 = A^2 + 2AB + B^2$$
 (2

טענה לא נכונה. הסבר:

$$(A+B)^2 = (A+B) \cdot (A+B) = A^2 + AB + BA + B^2 \neq A^2 + 2AB + B^2$$

עבור מטריצות A,B לא מתחלפות.

דוגמה נגדית:

$$.B = \begin{pmatrix} -1 & 2 \\ 0 & 0 \end{pmatrix}$$
 , $A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$

$$A \cdot B = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} -1 & 2 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 2 \\ 0 & 0 \end{pmatrix} , \qquad B \cdot A = \begin{pmatrix} -1 & 2 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix} .$$

לכן $AB \neq BA$

$$A^{2} + AB + BA + B^{2} \neq A^{2} + 2AB + B^{2}$$
.

$$:(A+B)(A-B) = A^2 - B^2$$

טענה לא נכונה. הסבר:

$$(A+B)(A-B) = A^2 - AB + BA - B^2 = A^2 - B^2$$

AB = BA רק עבור מטריצות מתחלפות, ז"א

דוגמה נגדית:

$$.B = \begin{pmatrix} -1 & 2 \\ 0 & 0 \end{pmatrix}$$
 , $A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$

$$A \cdot B = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} -1 & 2 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 2 \\ 0 & 0 \end{pmatrix} \ , \qquad B \cdot A = \begin{pmatrix} -1 & 2 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix} \ .$$

לכן $AB \neq BA$

$$(A+B)(A-B) = A^2 - AB + BA - B^2 \neq A^2 - B^2$$
.

$$:(AB)^t=A^tB^t$$
 (ក

טענה לא נכונה. דוגמה נגדית:

$$.B = \begin{pmatrix} -1 & 5 \\ 2 & 0 \end{pmatrix}$$
 , $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$

$$A \cdot B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \cdot \begin{pmatrix} -1 & 5 \\ 2 & 0 \end{pmatrix} = \begin{pmatrix} 3 & 5 \\ 5 & 15 \end{pmatrix} , \qquad (A \cdot B)^t = \begin{pmatrix} 3 & 5 \\ 5 & 15 \end{pmatrix} .$$

$$.B^t = \begin{pmatrix} -1 & 2 \\ 5 & 0 \end{pmatrix}$$
 , $A^t = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$

$$A^t \cdot B^t = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} \cdot \begin{pmatrix} -1 & 2 \\ 5 & 0 \end{pmatrix} = \begin{pmatrix} 14 & 2 \\ 18 & 4 \end{pmatrix} .$$

 $AB^t \neq A^t B^t$ א"ז

$$: \underline{(A+B)^t = A^t + B^t}$$
 (1)

טענה נכונה. הוכחה:

.($i,j=1,\ldots n$) של B_{ij} וכל איבר איבר איבר איבר לכל איבר לכל איבר נוכיח את הטענה לכל

$$((A+B)^t)_{ij} = A_{ji} + B_{ji} = (A^t)_{ij} + (B^t)_{ij} = (A^t + B^t)_{ij}$$

 $i, j = 1, \dots n$ לכל

1)

שאלה 2

(אטענה: אם A, B משולשית עליונה אז $A\cdot B$ משולשית עליונה אז B

$$A\cdot B_{ij}=0$$
 ככל להוכיח מספיק להוכיח כי

.i > j - נניח שניחה:

$$(A \cdot B)_{ij} = A_{i1}B_{1j} + A_{i2}B_{2j} + \dots A_{in}B_{nj}$$
.

:אפשריות איבר $A_{ik}B_{kj}$ יש לכל

 $:i>j\geq k$

 $A_{ik}=0$ משולשית עליונה לכן A

:i > k > j

 $A_{ik}=0$ ו- $A_{ik}=0$ רבן לכונה לכן משולשית משולשית ו- B

:i=k>j

 $B_{kj}=0$ משולשית עליונה לכן B

:i>k=j

 $A_{ik}=0$ משולשית עליונה לכן A

 $:k>i\geq j$

 $B_{kj}=0$ משולשית עליונה לכן B

A -שביר מתאפס בגלל איבר מהאפשריות, כל איבר בסכום, בסה"כ עבור כל אחד מהאפשריות, כל איבר בסכום, $A_{ik}B_{kj}=0$ משולשית עליונה ו- B משולשית עליונה.

לפיכך, מאמנו כי אם i>j אז האנו כי מש"ל.

AB=BA טענה: אם אלכסוניות, אז אלכסוניות, אז

 $A\cdot B_{ij}=(B\cdot A)_{ij}$ צריך להוכיח:

הוכחה (שיטה 1):

המכפלה של שתי מטריצות אלכסוניות B ,A שווה למטריצה אלכסונית, והאיברים באלכסון של המטריצה המתקבלת שווים למכפלה של האיברים על האלכסונים של B ו- B , כלומר אם

$$A = \begin{pmatrix} A_{11} & 0 & 0 & \cdots & 0 \\ 0 & A_{22} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & 0 \\ 0 & 0 & 0 & \cdots & A_{nn} \end{pmatrix} , \qquad B = \begin{pmatrix} B_{11} & 0 & 0 & \cdots & 0 \\ 0 & B_{22} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & 0 \\ 0 & 0 & 0 & \cdots & B_{nn} \end{pmatrix} ,$$

אז

$$A \cdot B = \begin{pmatrix} A_{11}B_{11} & 0 & 0 & \cdots & 0 \\ 0 & A_{22}B_{22} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & 0 \\ 0 & 0 & 0 & \cdots & A_{nn}B_{nn} \end{pmatrix}.$$

לכו

$$A \cdot B = \begin{pmatrix} A_{11}B_{11} & 0 & 0 & \cdots & 0 \\ 0 & A_{22}B_{22} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & 0 \\ 0 & 0 & 0 & \cdots & A_{nn}B_{nn} \end{pmatrix} = \begin{pmatrix} B_{11}A_{11} & 0 & 0 & \cdots & 0 \\ 0 & B_{22}A_{22} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & 0 \\ 0 & 0 & 0 & \cdots & B_{nn}A_{nn} \end{pmatrix} = B \cdot A$$

מש"ל.

הוכחה (שיטה 1):

אם A, אלכסוניות, אז

$$(A \cdot B)_{ij} = A_{i1}B_{1j} + A_{i2}B_{2j} + \dots + A_{ii}B_{ij} + \dots + A_{in}B_{nj} = A_{ii}B_{ij}$$

$$= \begin{cases} A_{ii}B_{ii} & i = j, \\ 0 & i \neq j. \end{cases}$$

מצד שני,

$$(B \cdot A)_{ij} = \begin{cases} B_{ii}A_{ii} & i = j \\ 0 & i \neq j \end{cases} = \begin{cases} A_{ii}B_{ii} & i = j \\ 0 & i \neq j \end{cases}.$$

ז"א

$$(A \cdot B)_{ij} = (B \cdot A)_{ij}$$

לכן AB = BA מש"ל.

שאלה 3

נוכיח דרך השלילה.

 $.b
eq ar{0}$ ו- $X_1
eq X_2$ כאשר אבר ,Ax= b מערכת פתרונות פתרונות אבר נניח איז.

נניח ש-A הפיכה.

$$AX_2=b$$
 רו $AX_1=b$ אז

לכן

$$A \cdot (X_1 - X_2) = b - b = \bar{0} .$$

ונקבל שמאל שמאל ב- A^{-1} מצד שמאל ונקבל A^{-1} הפיכה אז

$$A^{-1} \cdot A \cdot (X_1 - X_2) = A^{-1} \cdot \bar{0} \quad \Rightarrow \quad I \cdot (X_1 - X_2) = \bar{0} \quad \Rightarrow \quad X_1 - X_2 = \bar{0} \quad \Rightarrow \quad X_1 = X_2 ,$$

.הפיכה לכך א יכולה לכן לכן אל $X_1 \neq X_2$ -ש בסתירה לכך בסתירה לכך אינות הפיכה.

שאלה 4

- א) טענה נכונה. A הפיכה A^{-1} קיימת A^{-1} כך ש- $A^{-1}=|I|=1$ $\Leftrightarrow |AA^{-1}|=|I|=1$ ולכן $|A||A^{-1}|=1$ |A|=1
 - . הפכיה A לכן $B| \neq 0$ ו- $|A| \neq 0$ לכן $|A||B| \neq 0$ לכן $|AB| \neq 0$ הפכיה AB

$$(A+B)^{-1}(A+B) = A^{-1}(A+B) - A^{-1}B(A+B)^{-1}(A+B) = I_{n \times n} + A^{-1}B - A^{-1}BI_{n \times n} = I_{n \times n}.$$

B=C אז BA=CA אז A

טענה נכונה. הוכחה:

 A^{-1} -ב ימין מצד מצד נכפיל A^{-1} הפיכה לכן קיימת A

$$B \cdot A \cdot A^{-1} = C \cdot A \cdot A^{-1} \qquad \Rightarrow \qquad B = C \ .$$

B=C אז AB=AC גו

טענה לא נכונה. דוגמה נגדית:

$$A=\begin{pmatrix}0&0\\0&0\end{pmatrix}$$
 , $B=\begin{pmatrix}1&2\\3&4\end{pmatrix}$, $C=\begin{pmatrix}5&1\\8&7\end{pmatrix}$.
$$.B\neq C$$
 , $AB=AC=0$

אינן הפיכות. B איז A אינן הפיכות.

טענה לא נכונה. דוגמה נגדית:

$$A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} , \qquad B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} .$$

. ו- B הפיכה $B \cdot A \cdot B = 0$

אז B איננה הפיכה. AB=0 אז B איננה הפיכה.

טענה נכונה. הוכחה:

נוכיח בדרך השליליה. נניח ש- B=0 ו- $A \neq 0$ ו- B=0 הפיכה. B^{-1} אז קיימת B^{-1} . נכפיל את B=0 מצד ימין ב- B^{-1} :

$$A \cdot B \cdot B^{-1} = 0 \cdot B^{-1} \quad \Rightarrow \quad A \cdot I = 0 \quad \Rightarrow \quad A = 0$$

 $A \neq 0$ בסתירה דכך ש-

 \underline{AB} אם \underline{AB} הפיכות אז \underline{AB} ו-

טענה נכונה. הוכחה:

. הפיכה B הפיכה וגם A הפיכה ואם $|A| \neq 0 \Leftarrow |A| \cdot |B| \neq 0 \Leftrightarrow |AB| \neq 0 \Leftrightarrow AB$

אם A הפיכה אז AB הפיכה.

טענה לא נכונה. דוגמה נגדית:

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} , \qquad B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} , \qquad AB = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} .$$

. הפיכה אבל AB לא הפיכה A

אם A הפיכה ו- B הפיכה אז A+B הפיכה.

טענה לא נכונה. דוגמה נגדית:

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + I_{2\times 2} , \qquad B = -I , \qquad A + B = I_{2\times 2} - I_{2\times 2} = 0_{2\times 2} .$$

$$|A| = |I| = 1$$

$$|B| = |-I| = (-1)^2 |I| = 1$$

$$.|A+B|=0$$

לא הפיכה, A+B הפיכה, B הפיכה.

_ אם A הפיכה ו- B לא הפיכה אז A+B לא הפיכה.

טענה לא נכונה. דוגמה נגדית:

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} , \qquad B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} , \qquad A + B = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} .$$

|A + B| = 2, |B| = 0, |A| = 1

.הפיכה, A+B הפיכה, לא הפיכה A+B הפיכה

. אזי
$$A\in\mathbb{R}^{n imes n}$$
 פולינום כך ש- $f(x)=2x^4-x^2+3x-2$ אזי ויהי $A\in\mathbb{R}^{n imes n}$

טענה נכונה. הוכחה:

לפי הנתון,

$$f(A) = 2A^4 - A^2 + 3A - 2I = 0 \quad \Rightarrow \quad A \cdot (2A^3 - A + 3) = 2I \quad \Rightarrow \quad A^{-1} = \frac{1}{2} \left(2A^3 - A + 3I \right)$$

. הפיכה A קיימת לכן A^{-1} א"א

אם A הפיכה אז $A+A^t$ הפיכה.

טענה לא נכונה. דוגמה נגדית:

$$A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$
 , $A^t = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$, $A + A^t = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}$.

הפיכה. $A \Leftarrow |A| = 1$

לא הפיכה. $A+A^t \Leftarrow |A+A^t|=0$

שאלה 6 הטענה נכונה. הוכחה:

:A+B -נכפיל מצד ימין

$$(A+B)^{-1}(A+B) = A^{-1}(A+B) - A^{-1}B(A+B)^{-1}(A+B) = I_{n \times n} + A^{-1}B - A^{-1}BI_{n \times n} = I_{n \times n}.$$

שאלה 7

הטענה לא נכונה. דוגמה נגדית:

$$u_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
 , $u_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $u_3 = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$.

 $.u_3 = 2u_1$ -ש בגלל שי $\{u_1, u_2, u_3\}$ ו- בת"ל ו- $\{u_1, u_2\}$

שאלה 8

$$A_1 = \begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix} , \qquad A_2 = \begin{pmatrix} a_2 & b_2 \\ c_2 & d_2 \end{pmatrix} .$$

$$A_1 A_2 = \begin{pmatrix} a_1 a_2 + b_1 c_2 & a_1 b_2 + b_1 d_2 \\ c_1 a_2 + d_1 c_2 & c_1 b_2 + d_1 d_2 \end{pmatrix}$$

$$a_1a_2 + b_1c_2 + c_1a_2 + d_1c_2 = a_2(a_1 + c_1) + c_2(b_1 + d_1) = a_2 + c_2 = 1$$
,

$$a_1b_2 + b_1d_2 + c_1b_2 + d_1d_2 = b_2(a_1 + c_1) + d_2(b_1 + d_1) = b_2 + d_2 = 1$$
.

 $X \neq 0$ נוכיח דרך השלילה. נניח ש A הפיכה ו קיים פתרון נוכיח עאלה פ

. הפיכה אז A^{-1} קיימת A

$$AX = 0 \Rightarrow A^{-1}AX = A^{-1} \cdot 0 \Rightarrow IX = 0 \Rightarrow X = 0$$

 $X \neq 0$ בסתירה לכך ש-

שאלה 10

אט
$$S$$
 $S\subseteq T$, $T=\left\{egin{pmatrix}1\\0\\0\\0\end{pmatrix}, \begin{pmatrix}0\\1\\0\\0\end{pmatrix}, \begin{pmatrix}0\\0\\1\\0\end{pmatrix}, \begin{pmatrix}0\\0\\0\\1\end{pmatrix}\right\}$, $S=\left\{\begin{pmatrix}1\\0\\0\\0\\0\end{pmatrix}\right\}$ ער פורשת את S $S=\left\{\begin{pmatrix}1\\0\\0\\0\\0\end{pmatrix}\right\}$ כי S הוא הבסיס הסטנדרטי של S 4.

$$\mathbb{R}^4$$
 את את את את T ו S $.S\subseteq T$, $T=\left\{egin{pmatrix}1\\0\\0\\0\end{pmatrix},egin{pmatrix}0\\1\\0\\0\end{pmatrix}
ight\}$, $S=\left\{egin{pmatrix}1\\0\\0\\0\end{pmatrix}
ight\}$

$$.S = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\}, T = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \right\}$$

$$A^8+A=0$$
 \Rightarrow $A^8=-A$ \Rightarrow $|A^8|=(-1)^8|A|$ \Rightarrow $|A|^8=|A|$ $:|A|$ לכן אפשר לחלק ב- $|A|$

$$|A|^8 = |A| \quad \Rightarrow \quad |A|^7 = 1 \quad \Rightarrow \quad |A| = 1$$
.

שאלה 12

$$A^5+A=0$$
 \Rightarrow $A^5=-A$ \Rightarrow $|A^5|=|-A|$ \Rightarrow $|A|^5=-|A|$.
$$(14) + (1$$

$$|A|^4 = -1 .$$

בסתירה לכך ש- $|A|^4$ חיובי.

שאלה 13

:טענה נכונה. הסבר

נניח ש-
$$\{Au_1,\ldots,Au_k\}$$
 בת"ל.

 $A \neq 0$ לכן אכן $\{Au_1, \dots, Au_k\}$ הקבוצה לא בקבוער האפס לכן ווקטור העני

. בת"ל דרך השלילה $\{u_1,\cdots,u_k\}$ -עניכיח נוכיח בת"ל

נניח כי
$$\{u_1,\cdots,u_k\}$$
 ת"ל.

 $t_1u_1+\cdots+t_ku_k=ar{0}$ -שימים כך שלא כולם שלא פולרים שלא קיימים סקלרים אניימים א

-א"א קיימים סקלרים שלא כולם אפסים כך ש

$$A(t_1u_1 + \dots + t_ku_k) = A\bar{0} \quad \Rightarrow \quad t_1Au_1 + \dots + t_kAu_k = \bar{0}$$

ת"ל. $\{Au_1,\ldots,Au_k\}$ ת"ל.

בת"ל. $\{Au_1,\ldots,Au_k\}$ בת"ל.

A=0 , $A\in\mathbb{R}^{2 imes 2}$ בת"ל. נניח כי $\left\{u_1=\begin{pmatrix}1\\0\end{pmatrix},u_2=\begin{pmatrix}0\\1\end{pmatrix}.
ight\}$ בת"ל. נניח כי $\left\{Au_1=\begin{pmatrix}0\\0\end{pmatrix},Au_2=\begin{pmatrix}0\\0\end{pmatrix}.
ight\}$ אז $\left\{Au_1=\begin{pmatrix}0\\0\end{pmatrix},Au_2=\begin{pmatrix}0\\0\end{pmatrix}.
ight\}$ ת"ל.

 $X \leftarrow \mathbb{R}^n$ פורשת $X \leftarrow \mathbb{R}^n$ פורשת א ו- $X \subseteq Y$

דוגמה נגדית:

$$Y = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} , \quad X = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\} ,$$

 \mathbb{R}^2 את פורשת אל X , \mathbb{R}^2 את פורשת את Y . $X,Y\in\mathbb{R}^2$

 \mathbb{R}^n את פורשת את $X \Leftarrow 0 \in X$

דוגמה נגדית:

$$X = \left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\} \subseteq \mathbb{R}^2$$

 \mathbb{R}^2 את פורשת X

 \mathbb{R}^n לא פורשת את $X \Leftarrow 0 \in X$

דוגמה נגדית:

$$X = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}$$

 \mathbb{R}^2 פורשת את X

 \mathbb{R}^n פורשת את $Y \Leftarrow \mathbb{R}^n$ פורשת את את את X

$$\operatorname{sp}(X) = \mathbb{R}^n, X \subseteq Y$$
 :נתוך:

.sp $(Y)=\mathbb{R}^n$:צ"ל:

הוכחה:

נקח $u_1,\dots,u_m\in\mathbb{R}^n$ לכן קיימים .v $\in \operatorname{sp}(X)$ אז .v $\in\mathbb{R}^n$ נקח

$$\mathbf{v} = k_1 u_1 + \ldots + k_m u_m \ .$$

$$\mathbf{v} \in \mathrm{sp}(Y) \Leftarrow \mathbf{u}_1, \dots, \mathbf{u}_m \in Y$$
 לכן, $X \subseteq Y$

 $\underline{\mathbb{R}^n}$ את פורשת אר $X \Leftarrow n$ גדול מ- און מספר הוקטורים ב-

דוגמה נגדית:

$$X = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ 0 \end{pmatrix} \right\} .$$

 \mathbb{R}^2 אינה פורשת את X

 $\operatorname{sp}(Y) \neq \operatorname{sp}(X) \Leftarrow \operatorname{v} \notin X$ כך ש- כך ער פיים (1)

דוגמה נגדית:

$$\begin{split} X &= \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} \;, \qquad Y &= \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\} \\ \mathrm{sp}(Y) &= \mathrm{sp}(X) = \mathbb{R}^2 \;. \end{split}$$

 $u_1,\ldots,u_n\in\mathbb{R}^3$ אז u_1,\ldots,u_n נסמן את העמודות , $A\in\mathbb{R}^{3 imes n}$

$$v=egin{pmatrix} 3\\4\\7 \end{pmatrix}\in \mathrm{sp}(u_1,\dots,u_n)$$
 טענה: למערכת $AX=egin{pmatrix} 3\\4\\7 \end{pmatrix}$ יש פתרון, ז"א וקטור $AX=egin{pmatrix} 3\\7 \end{pmatrix}$ א $v'=egin{pmatrix} 7\\4\\3 \end{pmatrix}
otin \mathrm{sp}(u_1,u_2)$ וקטור $v\in \mathrm{sp}(u_1,u_2)$. $u_2=egin{pmatrix} 0\\0\\0 \end{pmatrix}$, $u_1=egin{pmatrix} 3\\4\\7 \end{pmatrix}$: דוגמה נגדית:

בת"ל, לכן
$$u_2,u_1$$
 .v = $\begin{pmatrix} 3\\4\\7 \end{pmatrix} = u_1 + u_2$ יכי $v \in \operatorname{sp}(u_1,u_2)$. $u_1 = \begin{pmatrix} 2\\4\\7 \end{pmatrix}$ $u_1 = \begin{pmatrix} 1\\0\\0 \end{pmatrix}$ בת"ל, לכן $AX = v$ למערכת $AX = v$ יש פתרון יחיד.

יש פתרון:
$$AX = \begin{pmatrix} 7 \\ 4 \\ 3 \end{pmatrix}$$
 יש פתרון:

$$\left(\begin{array}{cc|c}
1 & 2 & 7 \\
0 & 4 & 4 \\
0 & 7 & 3
\end{array}\right) \to \left(\begin{array}{cc|c}
1 & 2 & 7 \\
0 & 1 & 1 \\
0 & 7 & 3
\end{array}\right) \to \left(\begin{array}{cc|c}
1 & 2 & 7 \\
0 & 1 & 1 \\
0 & 0 & -4
\end{array}\right)$$

אין פתרון למערכת.

עסיס מהווים
$$u_1,u_2,u_3$$
 לכן, u_1,u_2,u_3 בח"ל. לכן הוקטורים $AX={
m v}$ מהווים בסיס $AX={
m v}$ למערכת $AX={
m v}$ של $AX={
m v}$ למערכת $AX={
m v}$ יש פתרון יחיד.

דוגמה נגדית: (ד

$$u_1=egin{pmatrix}1\\0\\0\end{pmatrix}$$
 , $u_2=egin{pmatrix}0\\1\\0\end{pmatrix}$.
$$.$$
 . dayler AX = $AX=egin{pmatrix}7\\4\\3\end{pmatrix}$ אין פתרון. למערכת $AX=0$ אין פתרון.

.AX=d המערכת פתרון של פתרון אי \mathbf{v}_2 וב בי אוב אל פתרון של פתרון איז פתרון איז פתרון איז איז"ג

$$A\mathbf{v}_1 = c , \qquad A\mathbf{v}_2 = d .$$

לכן

$$A(\mathbf{v}_1 + \mathbf{v}_2) = A\mathbf{v}_1 + A\mathbf{v}_2 = c + d$$
.

שאלה 16

$$T = \left\{ \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix} \right\}, \qquad S = \left\{ \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} \right\}$$

$$T = \{\bar{0}\} , \qquad S = \{\bar{0}\}$$

$$T = \left\{ \begin{pmatrix} 1\\0\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 2\\0\\0\\0 \end{pmatrix} \right\}, \qquad S = \left\{ \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} \right\}$$

$X\subseteq Y$, $X,Y\in\mathbb{R}^n$:נתון

.טענה: $X \Leftarrow Y$ בת"ל בת"ל

דוגמה נגדית:

. אייל.
$$Y=\left\{egin{pmatrix}1\\0\end{pmatrix},egin{pmatrix}2\\0\end{pmatrix}\right\}\subseteq\mathbb{R}^2$$
 בת"ל. $X=\left\{egin{pmatrix}1\\0\end{pmatrix}\right\}\subseteq\mathbb{R}^2$

בת"ל. $Y \subseteq Y$ בת"ל.

עריך להוכיח: X בת"ל.

<u>הוכחה:</u>

נניח מדרך השלילה, k_1 ,... , k_n פיימים סקלרים ת"ל. לכן $X=\{\mathbf{v}_1,\ldots,\mathbf{v}_n\}$ שלא כולם אפסים כך עניח מדרך השלילה, $X=\{\mathbf{v}_1,\ldots,\mathbf{v}_n\}$ שר $X=\{\mathbf{v}_1,\ldots,\mathbf{v}_n\}$

$$ar{0} \in X$$
 , $X \subseteq Y$ נתון:

צ"ל : X ת"ל

: הוכחה

לכל $\mathbf{v}_1,\dots,\mathbf{v}_n\in X$ מתקיים

$$0 \cdot \mathbf{v}_1 + \dots 0 \cdot \mathbf{v}_n + 1 \cdot \bar{\mathbf{0}} = \bar{\mathbf{0}} .$$

לכן X ת"ל.

.טענה: מספר הוקטורים ב $X \leftarrow n$ קטן מ $X \leftarrow N$ בת"ל.

דוגמה נגדית:

. ת"ל.
$$X = \left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix}
ight\} \in \mathbb{R}^2$$

שאלה 18

הטענה נכונה. הסבר:

נתון: $T\left(u_{1}
ight),\ldots,T\left(u_{n}
ight)$ בת"ל. T:U o V בת"ל.

צריך להוכיח: u_1, \ldots, u_n בת"ל.

שכולם אפסים כך ש או הוכחה: נוכיח דרך השלילה. נניח כי u_1,\dots,u_n ת"ל. או קיימים סקלרים k_1,\dots,k_n שכולם אפסים כך ש

$$k_1u_1+\ldots+k_nu_n=\bar{0}.$$

לכן

$$T\left(k_1u_1+\ldots+k_nu_n\right)=T\left(\bar{0}\right)=\bar{0}$$

 \Leftarrow

$$k_1 \cdot T(u_1) + \ldots + k_n \cdot T(u_n) = \bar{0}$$

ת"ל. $T\left(u_{1}\right),\ldots,T\left(u_{n}\right)$ ת"ל.

בת"ל. $T\left(u_{1}\right),\ldots,T\left(u_{n}\right)$ בת"ל.

ענה לא נכונה. דוגמה נגדית: נניח כי T העתקה לינארית שמוגדרת $u \in U$ לכל $u \in U$ לכל טענה לא נכונה. דוגמה בת"ל. הקבוצה $\{T(u_1)=0,\dots,T(u_n)=0\}$ בת"ל. הקבוצה $\{u_1,\dots,u_n\}$ בת"ל.

<u>שאלה 19</u>

על. v_1,v_2 וכן Aיבת Aיבת על. Aיבת על.

 $A extbf{v}_2 = ar{0}$, $A extbf{v}_1 = ar{0}$ בתין: $extbf{v}_1, extbf{v}_2$ בתי

A=0 צריך להוכיח::

הוכחה:

אז $.k_1
eq 0, k_2,
eq 0$ -טקלירם כך א $.k_1, k_2 \in F$ יהיו ' $.k_2 = ar{0}$ ו- ' $.k_1 = ar{0}$

$$k_1 \cdot A v_1 + k_2 \cdot A v_2 = \bar{0}$$
 \Rightarrow $A \cdot (k_1 v_1 + k_2 v_2) = \bar{0}$.

 $.k_1\mathbf{v}_1 + k_2\mathbf{v}_2 = 0$ או A = 0 ז"א

אם שלא כולם עם מקדמים עם $\mathbf{v}_1,\mathbf{v}_2$ אם אם לינארי של פיים צירוף איז קיים איז השווה אווה לאפס עם איז איז קיים אירוף לינארי של $k_1\mathbf{v}_1+k_2\mathbf{v}_2=0$ ואז $\mathbf{v}_1,\mathbf{v}_2$ איז $\mathbf{v}_1,\mathbf{v}_2$

וואת בסתירה לכך ש- v_1, v_2 בת"ל.

$$A=0$$
 לכן

$$A^2 + 5A + I = 0$$
 :נתון לכן

$$A^{2} + 5A = -I \implies A(A+5I) = -I \implies |A| \cdot |A+5I| = (-1)^{n}$$
.

נניח כי A לא הפיכה |A|=0 ואז נקבל כי |A|=0. סתירה. לכן A הפיכה.

$$-A(A+5I) = I \implies A^{-1} = -(A+5I)$$
.

שאלה 20

:דוגמה נגדית

$$X = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\}, \qquad Y = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$$

 \mathbb{R}^2 את פורשת את Y , \mathbb{R}^2 את את X

- \mathbb{R}^2 את פורשת את $X=\{ar{0}\}$ דוגמה נגדית:
- \mathbb{R}^2 את את $X=\left\{egin{pmatrix}1\\0\end{pmatrix},egin{pmatrix}0\\1\end{pmatrix},egin{pmatrix}0\\0\end{pmatrix}
 ight\}$ פורשת את את (גדית:
 - $X \subseteq Y$ נתון:

 \mathbb{R}^n צ"ל: Y פורשת את

הוכחה

כך ש $\mathbf{v}_1,\dots,\mathbf{v}_n\in X$ קיימים $u\in\mathbb{R}^n$ לכן לכל , $\mathsf{sp}(X)=\mathbb{R}^n$

$$u = k_1 \mathbf{v}_1 + \ldots + k_n \mathbf{v}_n \ .$$

$$.\mathsf{sp}(Y) = \mathbb{R}^n$$
 א"א $u \in \mathsf{sp}(\mathsf{v}_1, \dots, \mathsf{v}_n) \Leftarrow \mathsf{v}_1, \dots, \mathsf{v}_n \in Y$ לכך $X \subseteq Y$

$$\mathbb{R}^2$$
 את פורשת את $X=\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ 0 \end{pmatrix}
ight\}$: דוגמה נגדית:

$$\operatorname{sp}(X)=\operatorname{sp}(Y)$$
 , $Y=\left\{egin{pmatrix}1\\0\end{pmatrix}$, $X=\left\{egin{pmatrix}1\\0\end{pmatrix}
ight\}$, $X=\left\{egin{pmatrix}1\\0\end{pmatrix}
ight\}$.