Vecteurs du plan

Décomposition de

Vecteur

Repères du pla Systèmes de

coordonnecs

vecteurs

directeurs

d'une droite

vecteurs directeur

Appartenance d'un

Équations de

Équation cartésienn

Équation réduite

Vecteurs et équations de droites

Vecteurs du plan

Colinéarité

vecteur

Repères du plan Systèmes de coordonnées

Critère de colinéari

vecteurs

directeurs
Vecteurs direc

Parallélisme et vecteurs directeur

Équations

Équation cartésien

Équation réduite d

Définition 1

Deux vecteurs \vec{u} et \vec{v} sont **colinéaires** si et seulement si il existe un réel tel que $\vec{u} =$ ou .

Vecteurs du plan

Colinéarité

Repères du plan

coordonnées Critère de colinéarit

vecteurs

directeurs

Parallélisme et vecteurs directeur

Équations

Équation cartésienn de droite Définition 1

Deux vecteurs \vec{u} et \vec{v} sont **colinéaires** si et seulement si il existe un réel k tel que $\vec{u} =$ ou .

Vecteurs du plan

Colinéarité

vecteur

Repères du plan Systèmes de coordonnées

Critère de colinéari

vecteurs

directeurs

Vecteurs direc

Parallélisme et vecteurs directeur

Équations

Équation cartésienr de droite

Équation réduite de

Définition 1

Deux vecteurs \vec{u} et \vec{v} sont **colinéaires** si et seulement si il existe un réel k tel que $\vec{u} = k\vec{v}$ ou

Colinéarité

Définition 1

Deux vecteurs \vec{u} et \vec{v} sont **colinéaires** si et seulement si il existe un réel k tel que $\vec{u} = k\vec{v}$ ou $\vec{v} = k\vec{u}$.

Vecteurs du plan

Colinéarité

Décomposition

Repères du plan Systèmes de

coordonnées

Critère de colinéarité

vecteurs

Voctours dire

Parallélisme et

vecteurs directeur Appartenance d'u

Équations de

Équation cartésien

de droite

Équation réduite d droite

Exemple 2

$$\vec{u} = \vec{v}$$

Vecteurs du plan

Colinéarité

Décomposition

Repères du plar

Systèmes de coordonnées Critère de colinéarité

vecteurs

airecteurs

d'une droite Parallélisme et

vecteurs directeur Appartenance d'u

Équations de

Équation cartésien

de droite Équation réduite d

Exemple 2

$$\vec{u} = -2\vec{v}$$

Vecteurs du plan

Colinéarité

Décomposition

Repères du plan Systèmes de coordonnées

vecteurs

directeurs

Parallélisme et vecteurs directeurs

Équations d

Équation cartésienn

Équation réduite de

Exemple 2

$$\vec{u} = -2\vec{v}$$

Vecteurs du plan

Décomposition de vecteur

Repères du plan Systèmes de coordonnées Critère de colinéarit

Droites et vecteurs directeurs

Vecteurs directeur d'une droite Parallélisme et vecteurs directeurs Appartenance d'un point à une droite

droites

Equation cartesienne de droite Équation réduite de droite

Théorème 3

Tout vecteur du plan peut s'exprimer en fonction de deux vecteurs non colinéaires.

Autrement dit, si \vec{v} et \vec{w} sont deux vecteurs non colinéaires alors pour tout vecteur \vec{u} , il existe un unique couple de réels (a,b) tel que $\vec{u}=a\vec{v}+b\vec{w}$.

Vecteurs di plan

Colinéarit

Décomposition de

Repères du plan Systèmes de

Critàra da calináarite

Droites et vecteurs

directeurs

Parallélisme et

Appartenance d'u

Appartenance d'u point à une droite

droites

Équation cartésienn

Équation réduite d droite

Décomposition de

$$\vec{AD}$$

$$= 0\vec{AB} + (-1)\vec{AC}$$

$$= 1\vec{AB} + 1\vec{AC}$$

Vecteurs d plan

Colinéarit

Décomposition de

Repères du plan Systèmes de

Critère de colinéarit

vecteurs

directeurs

Parallélisme et

Appartenance d'u

Équations d

Équation cartésien

Équation réduite d

$$\vec{AD}$$

$$= 0\vec{AB} + (-1)\vec{AC}$$

$$= 1\vec{AB} + 1\vec{AC}$$

Décomposition de

$$\vec{AD}$$

$$= 0\vec{AB} + (-1)\vec{AC}$$

$$= 1\vec{AB} + 1\vec{AC}$$

Vecteurs d plan

Colinéarité

Décomposition de

Systèmes de coordonnées

Critère de colinéarit

vecteurs

directeurs

Parallélisme et vecteurs directeur

Appartenance d'u

point à une droite

Équation cartésien

de droite Équation réduite d

$$\vec{AD}$$

$$= 0\vec{AB} + (-1)\vec{AC}$$

$$= 1\vec{AB} + 1\vec{AC}$$

Vecteurs du plan

Décomposition d

Repères du plan Systèmes de

Critère de colinéarité

vecteurs

directeurs

Parallélisme et vecteurs directeu

Équations

Équation cartésier

Équation réduite d droite

Définition 5

Un **repère** du plan est la donnée d'un point O, appelé origine du repère, et de deux vecteurs \vec{i} et \vec{j} non colinéaires. Il se note (O, \vec{i}, \vec{j}) .

Vecteurs du plan

Colinéarité
Décomposition de

Repères du plan

Systèmes de coordonnées

vecteurs

directeurs

Vecteurs direc

d'une droite

Parallélisme et
vecteurs directeurs

Appartenance d'un

Équations o droites

Équation cartésienn de droite

de droite Équation réduite de droite

Vecteurs du plan

Colinéarité Décomposition d

Repères du plan

Systèmes de coordonnées

Droites et vecteurs

directeurs

d'une droite

Parallélisme et vecteurs directeurs

Appartenance d'un

Équations d droites

Équation cartésienn de droite

de droite Équation réduite de droite

Vecteurs du plan

Colinéarité Décomposition d vecteur

Repères du pla Systèmes de coordonnées

Critère de colinéarit

vecteurs directeurs

Vecteurs directeur d'une droite Parallélisme et vecteurs directeurs

Appartenance d'u

Équation cartésien de droite

Proposition 7

Équivalence fondamentale :

Un point M du plan a pour coordonnées (x; y) dans le repère $(O; \vec{i}, \vec{j})$

si et seulement si \overrightarrow{OM} a pour coordonnées (x; y)

si et seulement si $\vec{OM} = x\vec{i} + y\vec{j}$.

Systèmes de coordonnées

Exemple 8

coordonnées pour dans repère $(0; \vec{i}, \vec{j}).$

I est le milieu de [BC].

$$\vec{AI} = \frac{1}{2}\vec{AB} + \frac{1}{2}\vec{AC}$$
 et $I(;)$ dans le repère $(A; \vec{AB}, \vec{AC})$.

Vecteurs di plan

Décomposition d vecteur

Repères du plar Systèmes de

coordonnées Critère de colinéarité

vecteurs

Vecteurs directeurs d'une droite Parallélisme et vecteurs directeurs

Appartenance d'u point à une droit

droites
Équation cartési

de droite Équation réduite de droite

Exemple 8

M a pour coordonnées M(1; 1, 5) dans le repère $(0; \vec{i}, \vec{j})$.

I est le milieu de [BC].

 $\vec{AI} = \frac{1}{2}\vec{AB} + \frac{1}{2}\vec{AC}$ et I(;) dans le repère $(A; \vec{AB}, \vec{AC})$.

Vecteurs di plan

Décomposition d vecteur

Repères du plar Systèmes de

coordonnées Critère de colinéarité

vecteurs

Vecteurs directeurs d'une droite Parallélisme et vecteurs directeurs

Appartenance d'u point à une droite

droites

de droite
Équation réduite de

droites Exemple 8

M a pour coordonnées M(1; 1, 5) dans le repère $(0; \vec{i}, \vec{j})$.

I est le milieu de [BC].

 $\vec{AI} = \frac{1}{2}\vec{AB} + \frac{1}{2}\vec{AC}$ et $I(\frac{1}{2}; \frac{1}{2})$ dans le repère $(A; \vec{AB}, \vec{AC})$.

Vecteurs du plan

Colinéarité Décomposition d

Repères du plan Systèmes de

Critère de colinéarit

vecteurs

directeurs

Parallélisme et vecteurs directeur

Appartenance d'u point à une droit

Équation cartésien

de droite Équation réduite de droite

Proposition 9

Soient \vec{u} et $\vec{u'}$ deux vecteurs de coordonnées $\vec{u}(x;y)$ et $\vec{u'} = (x';y')$ dans un repère.

 \vec{u} et $\vec{u'}$ sont colinéaires si et seulement si xy' - x'y = 0.

Vecteurs du plan

Colinéarité
Décomposition d

Repères du pla Systèmes de

Critère de colinéarité

vecteurs

directeurs

D HAT

vecteurs directe

point à une dro

Équation cartésien

Équation réduite de

Exemple 10

Soit $(O; \vec{i}, \vec{j})$ un repère. Les vecteurs suivants sont-ils colinéaires?

 $\vec{u}(1;2) \text{ et } \vec{v}(2;4)$

 $\vec{w}(2;3) \text{ et } \vec{z}(5;7)$

Critère de colinéarité

Exemple 10

Soit $(O; \vec{i}, \vec{j})$ un repère. Les vecteurs suivants sont-ils colinéaires?

$$\vec{u}(1;2)$$
 et $\vec{v}(2;4)$

$$1\times 4 - 2\times 2 = 0$$

$$\vec{w}(2;3)$$
 et $\vec{z}(5;7)$

Critère de colinéarité

Exemple 10

Soit $(O; \vec{i}, \vec{j})$ un repère. Les vecteurs suivants sont-ils colinéaires?

 $\vec{u}(1;2)$ et $\vec{v}(2;4)$

 $1 \times 4 - 2 \times 2 = 0$

 \vec{u} et \vec{v} sont colinéaires.

 $\vec{w}(2;3)$ et $\vec{z}(5;7)$

Vecteurs du plan

Colinéarité
Décomposition d

Repères du plai Systèmes de

Critère de colinéarit

vecteurs

directeurs

Parallélisme et vecteurs directeu

Appartenance d point à une dro

Équation cartésie de droite

de droite Équation réduite de

Exemple 10

Soit $(O; \vec{i}, \vec{j})$ un repère. Les vecteurs suivants sont-ils

colinéaires?

$$\vec{u}(1;2)$$
 et $\vec{v}(2;4)$

$$1\times 4 - 2\times 2 = 0$$

 \vec{u} et \vec{v} sont colinéaires.

$$\vec{w}(2;3)$$
 et $\vec{z}(5;7)$
2×7-3×5 = 14-15 = -1

de droite Équation réduite de droite

Exemple 10

Soit $(O; \vec{i}, \vec{j})$ un repère. Les vecteurs suivants sont-ils

colinéaires?

 $\vec{u}(1;2)$ et $\vec{v}(2;4)$

 $1\times 4 - 2\times 2 = 0$

 \vec{u} et \vec{v} sont colinéaires.

 $\vec{w}(2;3)$ et $\vec{z}(5;7)$ $2 \times 7 - 3 \times 5 = 14 - 15 = -1$ \vec{w} et \vec{z} ne sont pas colinéaires.

Vecteurs du plan

Colinéarité
Décomposition de vecteur

Repères du plan Systèmes de coordonnées

Critère de colinéarit

vecteurs

Vecteurs directeurs

Parallélisme et vecteurs directeu

Appartenance d' point à une droit

droites Équation cartés

> de droite Équation réduite de droite

Définition 11

On dit qu'un vecteur \vec{v} est un **vecteur directeur** d'une droite \mathcal{D} si il existe deux points A et B de \mathcal{D} tels que $\vec{v} =$

Vecteurs du plan

Colinéarité
Décomposition de vecteur

Repères du plan Systèmes de coordonnées

coordonnées Critère de colinéarit

vecteurs directeurs

Vecteurs directeurs

Parallélisme et vecteurs directeu

Appartenance d'i point à une droit

Équation cartésie

de droite Équation réduite de droite

Définition 11

On dit qu'un vecteur \vec{v} est un **vecteur directeur** d'une droite \mathcal{D} si il existe deux points A et B de \mathcal{D} tels que $\vec{v} = \vec{AB}$.

Vecteurs du

Colinéarité
Décomposition de

Repères du plan Systèmes de

coordonnées

Critère de colinéarité

directeurs

Vecteurs directeurs d'une droite

Parallélisme et vecteurs directeur

point à une droi

Equations of droites

Équation cartésien

Équation réduite d droite

Vecteurs du

Colinéarité
Décomposition de

Repères du plan Systèmes de

coordonnées

Critère de colinéarité

directeurs

Vecteurs directeurs d'une droite

Parallélisme et vecteurs directeur

Appartenance d'

Équations o

Équation cartésien

Équation réduite d droite

Vecteurs di plan

Décomposition d

Repères du plan Systèmes de coordonnées

Critère de colinéarité

vecteurs

Vecteurs directeurs d'une droite

Parallélisme et vecteurs directeur

Appartenance d'u point à une droite

Équations de

Équation cartésienr de droite

> Équation réduite de droite

Exemple 12

Le vecteur est un vecteur directeur de la droite (AB).

Vecteurs di plan

Décomposition d

Repères du plan Systèmes de

Critère de colinéarité

vecteurs

directeurs Vecteurs directeurs d'une droite

Parallélisme et vecteurs directeur

Appartenance d'u point à une droite

droites

Équation cartésier

de droite

Équation réduite d droite

Exemple 12

 \sim

Le vecteur \overrightarrow{AB} est un vecteur directeur de la droite (AB).

Vecteurs du plan

Colinéarité
Décomposition d

Repères du plan Systèmes de coordonnées

Critère de colinéarité

vecteurs directeurs

Vecteurs directeurs d'une droite Parallélisme et

Vecteurs directeurs

point à une droite

droites

Équation cartésienn de droite

Équation réduite d droite

Vecteurs di plan

Colinéarité
Décomposition d

Systèmes de coordonnées

Critère de colinéarité

vecteurs directeurs

Vecteurs directeurs d'une droite

Parallelisme et vecteurs directeur.

Appartenance d'u point à une droite

droites

Équation cartésienn de droite

Équation réduite d droite

Exemple 12

 \mathcal{D} \vec{u}

Le vecteur \overrightarrow{AB} est un vecteur directeur de la droite (AB).

 ${\cal D}$ est la droite passant par le point et dirigée par le vecteur .

Vecteurs di plan

Colinéarité
Décomposition d

Systèmes de coordonnées

Critère de colinéarit

directeurs Vecteurs directeurs

d'une droite

Parallélisme et vecteurs directeur

Appartenance d'u point à une droit

droites

Équation cartésienne de droite

Équation réduite de droite

Exemple 12

 \mathcal{D} \vec{u}

Le vecteur \overrightarrow{AB} est un vecteur directeur de la droite (AB).

 \mathcal{D} est la droite passant par le point \mathcal{C} et dirigée par le vecteur .

Vecteurs di plan

Décomposition de

Systèmes de coordonnées

Droites et

directeurs Vecteurs directeurs d'une droite

Parallélisme et vecteurs directeurs

Appartenance d'u point à une droit

droites

Équation cartésienne de droite

Équation réduite d droite

Exemple 12

 \mathcal{D} \vec{u}

Le vecteur \overrightarrow{AB} est un vecteur directeur de la droite (AB).

 \mathcal{D} est la droite passant par le point C et dirigée par le vecteur \vec{u} .

Vecteurs du plan

Colinéarité Décomposition d vecteur

Systèmes de coordonnées

Critère de colinéarit

vecteurs directeurs

Vecteurs directeurs d'une droite

Parallélisme et vecteurs directeur

Appartenance d'u

Équation cartésie

de droite Équation réduite de droite

Proposition 13

Soit $\mathcal D$ une droite de vecteur directeur $\vec u$. Les vecteurs directeurs de $\mathcal D$ sont tous les vecteurs non nuls colinéaires à .

Vecteurs du plan

Colinéarité Décomposition d vecteur

Systèmes de coordonnées

Critère de colinéarité

vecteurs directeurs

Vecteurs directeurs d'une droite

Parallélisme et vecteurs directeu

Appartenance d'u point à une droite

droites

Équation cartésie

de droite Équation réduite de

Proposition 13

Soit $\mathcal D$ une droite de vecteur directeur $\vec u$. Les vecteurs directeurs de $\mathcal D$ sont tous les vecteurs non nuls colinéaires à $\vec u$.

Vecteurs du plan

Décomposition de vecteur

Repères du plai Systèmes de

Critère de colinéarit

Critere de conneario

directeurs

Vecteurs directeurs d'une droite

Parallélisme et vecteurs directer

Appartenance d'u point à une droite

droites

Équation cartésiens

Vecteurs du plan

Décomposition de vecteur

Repères du plar Systèmes de

coordonnées Critère de colinéarit

Critère de colinéarité

directeurs

Vecteurs directeurs d'une droite

Parallélisme et vecteurs directer

Appartenance d'u point à une droite

droites

Équation cartésienn

Vecteurs du plan

Décomposition de vecteur

Repères du plar Systèmes de

Critàra do colinéarit

Critère de colinéarité

directeurs

Vecteurs directeurs d'une droite

Parallélisme et vecteurs directeu

Appartenance d'u point à une droite

Equations droites

Équation cartésiens

Vecteurs du plan

Décomposition de vecteur

Repères du pla Systèmes de

Critère de colinéarit

Critere de colinearite

directeurs

Vecteurs directeurs d'une droite

Parallélisme et vecteurs directeu

Appartenance d'u point à une droite

droites

Équation cartésiens

Équation réduite de droite

Vecteurs du plan

Décomposition de

Repères du plai Systèmes de

Critère de colinéarit

Critère de colinéarité

directeurs

Vecteurs directeurs d'une droite

Parallélisme et vecteurs directer

Appartenance d'u point à une droite

droites

Équation cartésiens

Vecteurs du plan

Décomposition de vecteur

Repères du plan Systèmes de

Critàra do colinéarite

Critère de colinéarit

directeurs

Vecteurs directeurs d'une droite

Parallélisme et vecteurs directer

Appartenance d'u point à une droite

droites

Équation cartésiens

Vecteurs du plan

Décomposition de

Repères du pla Systèmes de

coordonnees

Critère de colinéarité

vecteurs

Vecteurs directeurs d'une droite

Parallélisme et vecteurs directeu

Appartenance d'u

droites

Équation cartésiens

Équation réduite de droite

Vecteurs du plan

Colinéarité Décomposition d

Repères du plan Systèmes de coordonnées Critère de colinéarit

Droites e

directeurs

Vecteurs direct
d'une droite

Parallélisme et vecteurs directeurs

point à une droit

droites

Équation cartésien
de droite

de droite Équation réduite de droite

Théorème 15

Deux droites sont parallèles si et seulement si elles ont des vecteurs directeurs .

Aurement dit, \mathcal{D} et \mathcal{D}' de vecteurs directeurs respectifs \vec{u} et \vec{u}' sont parallèles si et seulement si et sont colinéaires.

Vecteurs du plan

Colinéarité Décomposition d

Repères du plan Systèmes de coordonnées Critère de colinéarit

Droites et

directeurs

Vecteurs direct

Parallélisme et vecteurs directeurs

Appartenance d'u point à une droit

droites Équation cartésie

> de droite Équation réduite de droite

Théorème 15

Deux droites sont parallèles si et seulement si elles ont des vecteurs directeurs colinéaires.

Aurement dit, \mathcal{D} et \mathcal{D}' de vecteurs directeurs respectifs \vec{u} et \vec{u}' sont parallèles si et seulement si et sont colinéaires.

Vecteurs du plan

Colinéarité Décomposition d

Repères du plan Systèmes de coordonnées Critère de colinéarit

Droites vecteurs

directeurs

Vecteurs direct
d'une droite

Parallélisme et vecteurs directeurs Appartenance d'un

point à une droit

droites

Équation cartésien
de droite

de droite Équation réduite de droite

Théorème 15

Deux droites sont parallèles si et seulement si elles ont des vecteurs directeurs colinéaires.

Aurement dit, \mathcal{D} et \mathcal{D}' de vecteurs directeurs respectifs \vec{u} et \vec{u}' sont parallèles si et seulement si \vec{u} et \vec{u}' sont colinéaires.

Vecteurs du plan

Colinéarité
Décomposition de

Repères du plan Systèmes de

Critàre de colinéarité

vecteurs

directeurs

Vecteurs direc d'une droite

Parallélisme et vecteurs directeurs

Appartenance d'u point à une droite

Équations (

Équation cartésienn

Équation réduite de droite

Vecteurs du plan

Colinéarité
Décomposition de

Repères du plan Systèmes de coordonnées

Critère de colinéarité

vecteurs

Vecteurs direct

Parallélisme et vecteurs directeurs

Appartenance d'u

point à une droit

droites

Équation cartésienn

Vecteurs du plan

Colinéarité
Décomposition de

Repères du plan Systèmes de coordonnées

Critère de colinéarité

vecteurs

Vecteurs direct

Parallélisme et vecteurs directeurs

Appartenance d'u

Équations droites

Équation cartésienn

Équation réduite de droite

Parallélisme et vecteurs directeurs

Exemple 16

La droite (AB) est parallèle à la droite (CD) si et seulement si (←⇒) le vecteur \vec{AB} est au vecteur \vec{CD} .

Parallélisme et vecteurs directeurs

Exemple 16

La droite (AB) est parallèle à la droite (CD) si et seulement si (←⇒) le vecteur \vec{AB} est colinéaire au vecteur \vec{CD} .

Vecteurs di plan

Décomposition d

Systèmes de coordonnées

Critère de colinéarit.

vecteurs directeurs

directeurs

Parallélisme et vecteurs directeurs

Appartenance d'u point à une droite

Équations de

Équation cartésien

Équation réduite de droite

Exemple 16

La droite (AB) est parallèle à la droite (CD) si et seulement si (\iff) le vecteur \overrightarrow{AB} est colinéaire au vecteur \overrightarrow{CD} .

Vecteurs d

Décomposition d vecteur Repères du plan

Repères du plan Systèmes de coordonnées Critère de colinéarité

vecteurs directeurs

Vecteurs directe d'une droite

Parallélisme et vecteurs directeurs

Appartenance d' point à une droit

droites

Équation cartésienne de droite

Équation réduite de froite

Exemple 16

La droite (AB) est parallèle à la droite (CD) si et seulement si (\iff) le vecteur \overrightarrow{AB} est colinéaire au vecteur \overrightarrow{CD} .

Les droites \mathcal{D} et \mathcal{D}' sont parallèles si et seulement si les vecteur \vec{u} et \vec{u} sont

Vecteurs d

Décomposition de vecteur
Repères du plan
Systèmes de coordonnées

vecteurs directeurs

d'une droite Parallélisme et vecteurs directeurs

point à une droite

droites

Equation cartesienne de droite Équation réduite de Exemple 16

La droite (AB) est parallèle à la droite (CD) si et seulement si (\iff) le vecteur \overrightarrow{AB} est colinéaire au vecteur \overrightarrow{CD} .

Les droites \mathcal{D} et \mathcal{D}' sont parallèles si et seulement si les vecteur \vec{u} et \vec{u} sont colinéaires.

Vecteurs du plan

Colinéarité Décomposition d vecteur

Repères du plan Systèmes de coordonnées

Critère de colinéari

vecteurs

directeurs

Vecteurs directe

Parallélisme et

vecteurs directeurs

Appartenance d'un
point à une droite

Équations o

Équation cartésie

de droite Équation réduite d

Proposition 17

Un point M appartient à la droite passant par A et de vecteur directeur \vec{u} si et seulement si le vecteur est colinéaire au vecteur \vec{u} .

Vecteurs du plan

Colinéarité Décomposition d vecteur

Repères du plan Systèmes de coordonnées

Critère de colinéarit

vecteurs

Vecteurs directer d'une droite

Parallélisme et vecteurs directe

Appartenance d'un point à une droite

droites Équation cartésie

Equation cartésienn de droite

Équation réduite d

Proposition 17

Un point M appartient à la droite passant par A et de vecteur directeur \vec{u} si et seulement si le vecteur \vec{AM} est colinéaire au vecteur \vec{u} .

Vecteurs de

Colinéarité
Décomposition de vecteur
Repères du plan
Systèmes de coordonnées
Critère de colinéarie

vecteurs directeurs

d'une droite

Parallélisme et
vecteurs directeurs

Appartenance d'un

Appartenance d'u point à une droit

droites Équation cartésien

Équation cartésienne de droite

Équation réduite de droite

Exemple 18

Les points A, B et M sont alignés si et seulement si est colinéaire au vecteur \overrightarrow{AB} .

Le point M appartient à la droite passant par le point C et dirigée par \vec{u} si et seulement si le vecteur est colinéaire au vecteur .

Appartenance d'un

point à une droite

Exemple 18

Les points A, B et M sont alignés si et seulement si est colinéaire au vecteur AB.

Le point M appartient à la droite passant par le point C et dirigée par \vec{u} si et seulement si le vecteur est colinéaire au vecteur

Appartenance d'un

Exemple 18

Les points A, B et M sont alignés si et seulement si AM est colinéaire au vecteur AB.

Le point M appartient à la droite passant par le point C et dirigée par \vec{u} si et seulement si le vecteur est colinéaire au vecteur

Vecteurs d plan Colinéarité

Décomposition de vecteur Repères du plan Systèmes de coordonnées Critère de colinéari

vecteurs directeurs

Vecteurs directeurs d'une droite Parallélisme et vecteurs directeurs

Appartenance d'un point à une droite

droites Équation cartésien

Equation cartésienne de droite

Équation réduite de droite

Exemple 18

Les points A, B et M sont alignés si et seulement si \overrightarrow{AM} est colinéaire au vecteur \overrightarrow{AB} .

Le point M appartient à la droite passant par le point C et dirigée par \vec{u} si et seulement si le vecteur est colinéaire au vecteur .

Vecteurs d plan Colinéarité

Colinéarité

Décomposition de vecteur

Repères du plan

Systèmes de coordonnées

Critère de colinéarit

vecteurs directeurs Vecteurs directe

d'une droite

Parallélisme et
vecteurs directeurs

Appartenance d'un

Appartenance d'u point à une droit

droites Équation cartésien

Équation cartésienne de droite

Équation réduite de droite

Exemple 18

M

Les points A, B et M sont alignés si et seulement si \overrightarrow{AM} est colinéaire au vecteur \overrightarrow{AB} .

Le point M appartient à la droite passant par le point C et dirigée par \vec{u} si et seulement si le vecteur \vec{CM} est colinéaire au vecteur .

Vecteurs d plan

Colinéarité

Décomposition de vecteur

Repères du plan

Systèmes de coordonnées

Critère de colinéari

vecteurs directeurs

Vecteurs directeurs d'une droite Parallélisme et vecteurs directeurs

Appartenance d'un point à une droite

droites Équation cartésien

Équation cartésienne de droite

Équation réduite de droite

Exemple 18

M \vec{u}

Les points A, B et M sont alignés si et seulement si \overrightarrow{AM} est colinéaire au vecteur \overrightarrow{AB} .

Le point M appartient à la droite passant par le point C et dirigée par \vec{u} si et seulement si le vecteur \vec{CM} est colinéaire au vecteur \vec{u} .

Jusqu'à la fin de ce cours, le plan est rapporté à un repère $(O; \vec{i}, \vec{j})$.

Théorème 19

Soient a, b, c trois réels tels que l'un au moins des nombres a et b est non nul.

L'ensemble des points M(x; y) dont les coordonnées vérifient l'équations

$$ax + by + c = 0$$

est une droite \mathcal{D} de vecteur directeur \vec{u} . L'équation ax + by + c = 0 est appelée une **équation** cartésienne de la droite \mathcal{D} .

Jusqu'à la fin de ce cours, le plan est rapporté à un repère $(O; \vec{i}, \vec{j})$.

Théorème 19

Soient a, b, c trois réels tels que l'un au moins des nombres a et b est non nul.

L'ensemble des points M(x; y) dont les coordonnées vérifient l'équations

$$ax + by + c = 0$$

est une droite \mathcal{D} de vecteur directeur $\vec{u}(-b; a)$. L'équation ax + by + c = 0 est appelée une **équation** cartésienne de la droite \mathcal{D} .

Vecteurs du plan

Colinéarité Décomposition d

Repères du plan Systèmes de coordonnées Critère de colinéar

vecteurs

directeurs

Parallélisme et vecteurs directeur

Appartenance d'u point à une droit

Équation cartésienne de droite

Équation réduite de droite

Théorème 20

Soient a, b deux réels tels que l'un au moins des nombres a et b est non nul.

Toute droite du plan de vecteur directeur $\vec{u}(-b;a)$ admet une équation de la forme

$$ax + by + c = 0, avec \ c \in \mathbb{R}$$

Équation cartésienne de droite

Démonstration 21

Soit \mathcal{D} une droite de vecteur directeur $\vec{u}(-b; a)$ et $A(x_A; y_A)$ un point de \mathcal{D} . Soit M(x; y) un point du plan.

$$M \in \mathcal{D}$$

$$\iff (;) est colinéaire à \iff (x - x_A) \times - \times (-b) = 0$$

$$\iff$$
 $ax + by + c = 0$ en posant $c =$

La droite \mathcal{D} admet donc bien une équation de la forme ax + by + c = 0.

Vecteurs d plan

Colinéarité Décomposition d vecteur

Repères du plan Systèmes de coordonnées Critère de colinéarit

vecteurs directeurs

Vecteurs direc

Parallélisme et vecteurs directeurs Appartenance d'ur point à une droite

droites Équation cartésienne

de droite Équation réduite de droite

Démonstration 21

Soit \mathcal{D} une droite de vecteur directeur $\vec{u}(-b; a)$ et $A(x_A; y_A)$ un point de \mathcal{D} . Soit M(x; y) un point du plan.

$$M \in \mathcal{D}$$

$$\iff \vec{AM}($$
 ;) est colinéaire à $\vec{u}(-b;a)$

$$\iff (x - x_A) \times - \times (-b) = 0$$

$$\iff$$
 $ax + by + c = 0$ en posant $c =$

La droite \mathcal{D} admet donc bien une équation de la forme ax + by + c = 0.

Vecteurs d plan

Colinéarité Décomposition d vecteur Repères du plan

Systèmes de coordonnées
Critère de colinéarité

vecteurs directeurs

directeurs Vecteurs direc

Parallélisme et vecteurs directeurs Appartenance d'un point à une droite

point à une droite Équations de

Équation cartésienne de droite Équation réduite de

Démonstration 21

Soit \mathcal{D} une droite de vecteur directeur $\vec{u}(-b;a)$ et $A(x_A;y_A)$ un point de \mathcal{D} . Soit M(x;y) un point du plan.

$$M \in \mathcal{D}$$

$$\iff \vec{AM}(x - x_A; y - y_A) \ est \ colinéaire \ \hat{a} \ \vec{u}(-b; a)$$

$$\iff (x - x_A) \times - \times (-b) = 0$$

$$\iff$$
 $ax + by + c = 0$ en posant $c =$

La droite \mathcal{D} admet donc bien une équation de la forme ax + by + c = 0.

Vecteurs d plan

Colinéarité
Décomposition d
vecteur

Systèmes de coordonnées
Critère de colinéarit

vecteurs directeurs

directeurs Vecteurs direc

Parallélisme et vecteurs directeurs Appartenance d'un point à une droite

Équations de

Équation cartésienne de droite Équation réduite de

Démonstration 21

Soit \mathcal{D} une droite de vecteur directeur $\vec{u}(-b;a)$ et $A(x_A;y_A)$ un point de \mathcal{D} . Soit M(x;y) un point du plan.

$$M \in \mathcal{D}$$

$$\iff A\vec{M}(x-x_A;y-y_A) \ est \ colinéaire \ \hat{u}(-b;a)$$

$$\iff (x - x_A) \times a - \times (-b) = 0$$

$$\iff$$
 $ax + by + c = 0$ en posant $c =$

La droite \mathcal{D} admet donc bien une équation de la forme ax + by + c = 0.

Vecteurs d plan

Colinéarité

Décomposition de vecteur

Repères du plan

Systèmes de

Systèmes de coordonnées Critère de colinéarité

vecteurs directeurs

Vecteurs direc

Parallélisme et vecteurs directeurs Appartenance d'un point à une droite

point à une droite Équations de

Équation cartésienne de droite Équation réduite de

Démonstration 21

Soit \mathcal{D} une droite de vecteur directeur $\vec{u}(-b; a)$ et $A(x_A; y_A)$ un point de \mathcal{D} . Soit M(x; y) un point du plan.

$$M \in \mathcal{D}$$

$$\iff \vec{AM}(x - x_A; y - y_A) \ est \ colinéaire \ \hat{u}(-b; a)$$

$$\iff (x - x_A) \times a - (y - y_A) \times (-b) = 0$$

$$\iff$$
 $ax + by + c = 0$ en posant $c =$

La droite \mathcal{D} admet donc bien une équation de la forme ax + by + c = 0.

Démonstration 21

Soit \mathcal{D} une droite de vecteur directeur $\vec{u}(-b;a)$ et $A(x_A;y_A)$ un point de \mathcal{D} . Soit M(x;y) un point du plan.

$$M \in \mathcal{D}$$

$$\iff AM(x - x_A; y - y_A) \ est \ colinéaire \ à \ \vec{u}(-b; a)$$

$$\iff (x - x_A) \times a - (y - y_A) \times (-b) = 0$$

$$\iff$$
 $ax + by + c = 0$ en posant $c = -ax_A - by_A$.

La droite \mathcal{D} admet donc bien une équation de la forme ax + by + c = 0.

Vecteurs d plan

Colinéarité
Décomposition d

Systèmes de coordonnées

Droites et

vecteurs directeurs

Vecteurs directeurs
d'une droite

Parallélisme et
vecteurs directeurs

point à une droite

Équations de droites

Équation cartésienne de droite

Équation réduite de droite

Exemple 22

Soit D: 2x + 3y - 4 = 0

$$6x + 9y - 12 = 0$$
 est aussi une équation pour \mathcal{D} .

$$A(-4;4) \in \mathcal{D} \iff$$

$$B(-1;2) \in \mathcal{D} \iff =$$

 $\overrightarrow{BA}(-4-(-1),4-2)=(-3;2)$ est un

Vecteurs d plan

Colinéarité

Décomposition ovecteur

Repères du plan

Systèmes de coordonnées

Droites et vecteurs

directeurs

Vecteurs direct

d'une droite

Parallélisme et
vecteurs directeurs

Appartenance d'ur

point a une droit

Équation cartésienne de droite

Équation réduite de droite

Exemple 22

Soit D: 2x + 3y - 4 = 0

$$6x + 9y - 12 = 0$$
 est aussi une équation pour \mathcal{D} .

$$A(-4;4) \in \mathcal{D} \iff 2(-4)+3(4)-4=0 \iff$$

$$B(-1;2) \in \mathcal{D} \iff$$

$$\vec{BA}(-4-(-1),4-2)=(-3;2)$$
 est un

Vecteurs d plan

Colinéarité

Décomposition d

vecteur

Repères du plan Systèmes de coordonnées

vecteurs

Vecteurs directeur d'une droite Parallélisme et vecteurs directeurs

point à une droit

Équation cartésienne de droite

Équation réduite de Iroite

Exemple 22

Soit D: 2x + 3y - 4 = 0

$$6x + 9y - 12 = 0$$
 est aussi une équation pour \mathcal{D} .

$$A(-4;4) \in \mathcal{D} \iff 2(-4) + 3(4) - 4 = 0 \iff 0 = 0$$

$$B(-1;2) \in \mathcal{D} \iff$$

$$BA(-4-(-1), 4-2) = (-3; 2)$$
 est un

Vecteurs d plan

Décomposition d vecteur

Repères du plan

Systèmes de coordonnées

Critère de colinéaris

vecteurs

Vecteurs directeurs d'une droite Parallélisme et vecteurs directeurs Appartenance d'un

Équations d

Équation cartésienne de droite

Se droite Équation réduite de droite

Exemple 22

Soit D: 2x + 3y - 4 = 0

$$6x + 9y - 12 = 0$$
 est aussi une équation pour \mathcal{D} .

$$A(-4;4) \in \mathcal{D} \iff 2(-4) + 3(4) - 4 = 0 \iff 0 = 0$$

$$B(-1;2) \in \mathcal{D} \iff 2(-1)+3(2)-4=0 \iff$$

$$BA(-4-(-1), 4-2) = (-3, 2)$$
 est un

Vecteurs d plan

Décomposition d vecteur

Repères du plan

Systèmes de coordonnées

Critère de colinéarit

vecteurs

Vecteurs directeurs d'une droite Parallélisme et vecteurs directeurs Appartenance d'un

Équations d

Équation cartésienne de droite

i**e droite** Équation réduite de Iroite

Exemple 22

Soit $\mathcal{D}: 2x + 3y - 4 = 0$

$$6x + 9y - 12 = 0$$
 est aussi une équation pour \mathcal{D} .

$$A(-4;4) \in \mathcal{D} \iff 2(-4) + 3(4) - 4 = 0 \iff 0 = 0$$

$$B(-1;2) \in \mathcal{D} \iff 2(-1) + 3(2) - 4 = 0 \iff 0 = 0$$

$$BA(-4-(-1),4-2)=(-3;2)$$
 est un

vecteurs

Vecteurs directeurs d'une droite Parallélisme et vecteurs directeurs Appartenance d'un

point a une droite Équations de

Équation cartésienne de droite Équation réduite de

Exemple 22

Soit D: 2x + 3y - 4 = 0

$$6x + 9y - 12 = 0$$
 est aussi une équation pour \mathcal{D} .

$$A(-4;4) \in \mathcal{D} \iff 2(-4) + 3(4) - 4 = 0 \iff 0 = 0$$

$$B(-1;2) \in \mathcal{D} \iff 2(-1) + 3(2) - 4 = 0 \iff 0 = 0$$

$$\vec{BA}(-4-(-1),4-2)=(-3,2)$$
 est un vecteur directeur de \mathcal{D} .

de droite Équation réduite de droite

- \mathcal{D} est une droite du plan non parallèle à l'axe des ordonnées si et seulement si \mathcal{D} admet une équation réduite de la forme y = mx + p, où m et p sont des réels. Un vecteur directeur de \mathcal{D} est \vec{u} , où m est le coefficient directeur de la droite.
- \mathcal{D} est une droite du plan parallèle à l'axe des ordonnées si et seulement si \mathcal{D} admet une unique équation réduite de la forme , où k est un réel. Un vecteur directeur de \mathcal{D} est $\vec{j}(0;1)$.
- Deux droites non parallèles à l'axe des ordonnées sont parallèles si et seulement si elles ont même

Équations de droites Équation cartésie

de droite

Équation réduite de

- D est une droite du plan non parallèle à l'axe des ordonnées si et seulement si D admet une unique équation réduite de la forme y = mx + p, où m et p sont des réels. Un vecteur directeur de D est ū , où m est le coefficient directeur de la droite.
- \mathcal{D} est une droite du plan parallèle à l'axe des ordonnées si et seulement si \mathcal{D} admet une unique équation réduite de la forme , où k est un réel. Un vecteur directeur de \mathcal{D} est $\vec{j}(0;1)$.
- Deux droites non parallèles à l'axe des ordonnées sont parallèles si et seulement si elles ont même

Equation cartésienn de droite Équation réduite de droite

- D est une droite du plan non parallèle à l'axe des ordonnées si et seulement si D admet une unique équation réduite de la forme y = mx + p, où m et p sont des réels. Un vecteur directeur de D est u(1; m), où m est le coefficient directeur de la droite.
- \mathcal{D} est une droite du plan parallèle à l'axe des ordonnées si et seulement si \mathcal{D} admet une unique équation réduite de la forme , où k est un réel. Un vecteur directeur de \mathcal{D} est $\vec{j}(0;1)$.
- Deux droites non parallèles à l'axe des ordonnées sont parallèles si et seulement si elles ont même

de droite

Équation réduite de

- D est une droite du plan non parallèle à l'axe des ordonnées si et seulement si D admet une unique équation réduite de la forme y = mx + p, où m et p sont des réels. Un vecteur directeur de D est u(1; m), où m est le coefficient directeur de la droite.
- \mathcal{D} est une droite du plan parallèle à l'axe des ordonnées si et seulement si \mathcal{D} admet une unique équation réduite de la forme x=k, où k est un réel. Un vecteur directeur de \mathcal{D} est $\vec{j}(0;1)$.
- Deux droites non parallèles à l'axe des ordonnées sont parallèles si et seulement si elles ont même

de droite Équation réduite de droite

- D est une droite du plan non parallèle à l'axe des ordonnées si et seulement si D admet une unique équation réduite de la forme y = mx + p, où m et p sont des réels. Un vecteur directeur de D est u(1; m), où m est le coefficient directeur de la droite.
- \mathcal{D} est une droite du plan parallèle à l'axe des ordonnées si et seulement si \mathcal{D} admet une unique équation réduite de la forme x = k, où k est un réel. Un vecteur directeur de \mathcal{D} est $\vec{j}(0;1)$.
- Deux droites non parallèles à l'axe des ordonnées sont parallèles si et seulement si elles ont même coefficient directeur.