Math 460

Homework 3

Trevor Klar

October 2, 2018

- 1. Show that (2-i) (that is, the ideal generated by 2-i) is maximal in $\mathbb{Z}[i]$ by following these steps:
 - a. Define a map $\phi: \mathbb{Z} \to \mathbb{Z}[i]/\langle 2-i \rangle$ by $\phi(n) = n + \langle 2-i \rangle$. Show ϕ is a ring homomorphism.

PROOF

- Since $\phi(1) = 1 + \langle 2 i \rangle$, then ϕ maps unity to unity.
- Let $a, b \in \mathbb{Z}$. Then

$$\phi(a+b) = (a+b) + \langle 2-i \rangle = \left(a + \langle 2-i \rangle\right) + \left(b + \langle 2-i \rangle\right) = \phi(a) + \phi(b).$$

• Let $a, b \in \mathbb{Z}$. Then

$$\phi(ab) = (ab) + \langle 2 - i \rangle = (a + \langle 2 - i \rangle)(b + \langle 2 - i \rangle) = \phi(a)\phi(b).$$

Thus ϕ is a ring homomorphism.

b. Now show ϕ is onto.

PROOF Let $(a+bi) + \langle 2-i \rangle \in \mathbb{Z}[i]/\langle 2-i \rangle$ be given. Choose n=a+2b. This means that $\phi(n) = \phi(a+2b) = (a+2b) + \langle 2-i \rangle = (a+bi) + \langle 2-i \rangle$.

To see that this last equality holds, observe that

$$(a+2b) - (a+bi) = 2b - bi = b(2-i) \in (2-i).$$

Therefore we can produce an integer which ϕ maps to any element of $\mathbb{Z}[i]/\langle 2-i\rangle$, so ϕ is onto.

c. Show $\ker \phi = 5\mathbb{Z}$.

PROOF (ker $\phi \supseteq 5\mathbb{Z}$) Observe that $2 + \langle 2 - i \rangle = i + \langle 2 - i \rangle$. Then for all $5n \in 5\mathbb{Z}$,

$$\begin{array}{rcl} \phi(5n) & = & 5n + \langle 2-i \rangle \\ & = & (2^2+1)n + \langle 2-i \rangle \\ & = & (i^2+1)n + \langle 2-i \rangle \\ & = & \langle 2-i \rangle \end{array}$$

Thus, $5\mathbb{Z} \subseteq \ker \phi$.

PROOF (ker $\phi \subseteq 5\mathbb{Z}$) Let $k \in \ker \phi$ be given. Then $k \in \langle 2-i \rangle$, so there exists $a, b \in \mathbb{Z}$ such that

$$k = (a+bi)(2-i) = (2a+b) + (-a+2b)i,$$

which implies that a = 2b, and k = 2a + b. Thus

$$k = 2a + b$$

$$= 2(2b) + b$$

$$= 5b.$$

Therefore, for all $k \in \ker \phi$, we can find $b \in \mathbb{Z}$ such that k = 5b, so $\ker \phi \subseteq 5\mathbb{Z}$.

1

d. Now, use the FHT.

Therefore, since $\phi: \mathbb{Z} \to \mathbb{Z}[i]/\langle 2-i \rangle$ is onto and $\ker \phi = 5\mathbb{Z}$, then

$$\mathbb{Z}/5\mathbb{Z} = \mathbb{Z}_5 \cong \mathbb{Z}[i]/\langle 2-i \rangle$$

by the FHT. Since \mathbb{Z}_5 is a field, then so is $\mathbb{Z}[i]/\langle 2-i\rangle$, which means that $\langle 2-i\rangle$ is a maximal ideal in $\mathbb{Z}[i]$.

- 2. Show that (3-i) (that is, the ideal generated by 3-i) is not prime in $\mathbb{Z}[i]$ by following these steps:
 - a. Define $\phi: \mathbb{Z} \to \mathbb{Z}[i]/\langle 3-i \rangle$ by $\phi(n) = n + \langle 3-i \rangle$. Show ϕ is an onto ring homomorphism.

Proof

- Since $\phi(1) = 1 + \langle 3 i \rangle$, then ϕ maps unity to unity.
- Let $a, b \in \mathbb{Z}$. Then

$$\phi(a+b) = (a+b) + \langle 3-i \rangle = (a+\langle 3-i \rangle) + (b+\langle 3-i \rangle) = \phi(a) + \phi(b).$$

• Let $a, b \in \mathbb{Z}$. Then

$$\phi(ab) = (ab) + \langle 3 - i \rangle = (a + \langle 3 - i \rangle)(b + \langle 3 - i \rangle) = \phi(a)\phi(b).$$

• Let $(a+bi) + \langle 3-i \rangle \in \mathbb{Z}[i]/\langle 3-i \rangle$ be given. Choose n=a+3b. Then since

$$(a+3b) - (a+bi) = b(3-i) \in \langle 3-i \rangle,$$

then

$$\phi(n) = (a+3b) + \langle 3-i \rangle = (a+bi) + \langle 3-i \rangle.$$

Therefore, ϕ is an onto homomorphism.

b. Show $\ker \phi = 10\mathbb{Z}$.

PROOF (ker $\phi \supseteq 10\mathbb{Z}$) Let $10n \in 10\mathbb{Z}$ be given. Observe that $3 + \langle 3 - i \rangle = i + \langle 3 - i \rangle$. Then

$$\begin{array}{rcl} \phi(10n) & = & 10n + \langle 3 - i \rangle \\ & = & (3^2 + 1)n + \langle 3 - i \rangle \\ & = & (i^2 + 1)n + \langle 3 - i \rangle \\ & = & \langle 3 - i \rangle \end{array}$$

Thus $10\mathbb{Z} \subseteq \ker \phi$.

PROOF (ker $\phi \subseteq 10\mathbb{Z}$) Let $k \in \ker \phi$ be given. Then $k \in \langle 3 - i \rangle$, which means that there exists $a, b \in \mathbb{Z}$ such that

$$k = (a+bi)(3-i) = (3a+b) + (3b-a)i,$$

which means that a = 3b and k = 3a + b. Thus

$$k = 3a + b$$

$$= 3(3b) + b$$

$$= 10b$$

Therefore, $\ker \phi \subseteq 10\mathbb{Z}$.

c. By FHT,

$$\mathbb{Z}/10\mathbb{Z} = \mathbb{Z}_{10} \cong \mathbb{Z}[i]/\langle 3-i \rangle,$$

so $\langle 3-i \rangle$ is not prime.

PROOF If $\langle 3-i \rangle$ were prime, then $\mathbb{Z}[i]/\langle 3-i \rangle$ would be an integral domain. However, \mathbb{Z}_{10} has zero divisors $(2 \times 5 = 0)$, so neither ring is an integral domain, so $\langle 3-i \rangle$ is not prime.

- 3. Define $N: \mathbb{Z}[\sqrt{6}] \to \mathbb{Z}$ by $N(a+b\sqrt{6}) = a^2 6b^2$.
 - a. Show that N is multiplicative, i.e. N(xy) = N(x)N(y) for all $x, y \in \mathbb{Z}[\sqrt{6}]$.

PROOF Let $x, y \in \mathbb{Z}[\sqrt{6}]$ be given. Then we can write $x = a + b\sqrt{6}$ and $y = c + d\sqrt{6}$. Then

$$\begin{array}{lll} N(xy) & = & N\left((a+b\sqrt{6})(c+d\sqrt{6})\right) \\ & = & N\left((ac+6bd)+(ad+bc)\sqrt{6}\right) \\ & = & a^2c^2+12abcd+36b^2d^2-6a^2d^2-12abcd-6b^2c^2 \\ & = & a^2c^2-6a^2d^2-6b^2c^2+36b^2d^2 \\ & = & (a^2-6b^2)(c^2-6d^2) \\ & = & N(a+b\sqrt{6})N(c+d\sqrt{6}) \\ & = & N(x)N(y) \end{array}$$

and we are done.

b. Use N to explain why the only invertible elements in $\mathbb{Z}[\sqrt{6}]$ have N of 1.

PROOF (\Longrightarrow) Let $x \in \mathbb{Z}[\sqrt{6}]$ be invertible. Then there exists $y \in \mathbb{Z}[\sqrt{6}]$ such that xy = 1. Taking N of both sides, we find that

$$N(x)N(y) = N(xy) = N(1) = 1.$$

Since $N(x), N(y) \in \mathbb{Z}$, then $N(x) = N(y) = \pm 1$. This means that if $x = a + b\sqrt{6}$, then

$$a^2 - 6b^2 = \pm 1.$$

This second-order Diophantine equation has no solutions for the negative case, but infinitely many for the positive, i.e. $N(1) = N(-1) = N(5 + 2\sqrt{6}) = N(5 - 2\sqrt{6}) = 1$. Thus, any invertible element $x \in \mathbb{Z}[\sqrt{6}]$ is such that N(x) = 1.

PROOF (\iff) Let $x \in \mathbb{Z}[\sqrt{6}]$ with N(x) = 1. Then if we write $x = (a + b\sqrt{6})$, choose $y = (a - b\sqrt{6})$. Then

$$xy = (a + b\sqrt{6})(a - b\sqrt{6}) = a^2 - 6b^2 = N(x) = 1,$$

so xy = 1 and x is invertible.

c. Show that $\sqrt{6}$ is not an irreducible element in $\mathbb{Z}[\sqrt{6}]$ by writing it as a product of two non-invertible elements in $\mathbb{Z}[\sqrt{6}]$.

PROOF Since $N(\sqrt{6}) = -6$, we have that $\sqrt{6}$ is nonzero and not a unit. However,

$$(2+\sqrt{6})(3-\sqrt{6})=\sqrt{6}$$

so $\sqrt{6}$ is reducible. To confirm this, we check that $(2+\sqrt{6})$ and $(3-\sqrt{6})$ are non-units. $N(2+\sqrt{6}) = -2$ and $N(3-\sqrt{6}) = 3$, and we know that N(x) = 1 for all $x \in U(\mathbb{Z}[\sqrt{6}])$, so we are done.

d. Prove that $(1+\sqrt{6})$ is irreducible in $\mathbb{Z}[\sqrt{6}]$.

PROOF Suppose $x, y \in \mathbb{Z}[\sqrt{6}]$ such that $xy = (1 + \sqrt{6})$. Then

$$N(x)N(y) = N(1+\sqrt{6}) = -5.$$

Since $N(x), N(y) \in \mathbb{Z}$, Then N(x), N(y) are 1,-5 or -1,5. We know already that there are no elements of $\mathbb{Z}[\sqrt{6}]$ with N of -1, so that means that either N(x) = 1 or N(y) = 1, and thus one of them is a unit.

e. Prove that $(1+\sqrt{6})$ is prime in $\mathbb{Z}[\sqrt{6}]$.

PROOF Suppose $(1+\sqrt{6})=ab$ for some $a,b\in\mathbb{Z}[\sqrt{6}]$. Since $(1+\sqrt{6})$ is irreducible, then either a or b is a unit. If a is invertible, then $a^{-1}(1+\sqrt{6})=a^{-1}ab=b$, so $(1+\sqrt{6})|b$. Otherwise if b is invertible, then $(1+\sqrt{6})b^{-1}=abb^{-1}=a$, so $(1+\sqrt{6})|a$.

4. Show that the domains $\mathbb{Z}[\sqrt{-6}]$ and $\mathbb{Z}[\sqrt{-7}]$ are not UFDs. Just look at how we did $\mathbb{Z}[\sqrt{-3}]$ in class. **Lemma** The only units of $\mathbb{Z}[\sqrt{-n}]$ where $1 < n \in \mathbb{Z}$ are ± 1 .

PROOF Consider $\eta: \mathbb{Z}[\sqrt{-n}] \to \mathbb{N}$ defined by $\eta(a+b\sqrt{-n}) = a^2 + nb^2$. η is multiplicative for the same reasons as in (3a), so for any units x, y we have that $\eta(x)\eta(y) = \eta(1) = 1$. If we write $x = (a+b\sqrt{-n})$, then

$$\eta(x) = a^2 + nb^2 = 1,$$

which can only hold for b = 0, $a = \pm 1$ (since $a, b \in \mathbb{Z}$).

Now we prove that $\mathbb{Z}[\sqrt{-6}]$ and $\mathbb{Z}[\sqrt{-7}]$ are not UFDs.

a. Claim. $\mathbb{Z}[\sqrt{-6}]$ is not a UFD, because $(2+\sqrt{-6})(2-\sqrt{-6})=10=(5)(2)$ and all of 2, 5, $(2\pm\sqrt{-6})$ are irreducible.

PROOF To see that $(2+\sqrt{-6})$ is irreducible, observe that $(2+\sqrt{-6}) \neq \pm 1$ and thus is not a unit and nonzero. Suppose $xy = (2+\sqrt{-6})$ where $x, y \in \mathbb{Z}[\sqrt{-6}]$ are not units. Then $\eta(x)\eta(y) = \eta(2+\sqrt{-6}) = 10$, so

$$\eta(x) = (a^2 + 6b^2) = 5, 2.$$

This has no solutions, since $(a^2 + 6b^2) > 5$ for $b \neq 0$ and 5, 2 are not square numbers. By the same argument, $(2 - \sqrt{-6})$ is irreducible as well.

A similar argument shows that 5 is irreducible. Observe that $5 \neq \pm 1$ and thus is not a unit and nonzero. Suppose xy = where $x, y \in \mathbb{Z}[\sqrt{-6}]$ are not units. Since $\eta(5) = \eta(5 + 6\sqrt{-6}) = 25$, then

$$\eta(x) = (a^2 + 6b^2) = 5,$$

and we have already seen that this has no solutions. The same argument shows that 2 is also irreducible.

b. Claim. $\mathbb{Z}[\sqrt{-7}]$ is not a UFD, because $(1+\sqrt{-7})(1-\sqrt{-7})=8=2^3$ and all of $2,(1\pm\sqrt{-7})$ are irreducible.

PROOF We use a similar proof as in (4a), and omit some notation. To see that $(1 + \sqrt{-7})$ is irreducible, observe that $(1 + \sqrt{-7}) \neq \pm 1$ and $\eta(x)\eta(y) = 8$, so

$$\eta(x) = (a^2 + 7b^2) = 2, 4.$$

Though $(2+0\sqrt{-7})$ is a solution to $\eta(x)=4$, there are no solutions to $\eta(x)=2$, so there is no such $x\in\mathbb{Z}[\sqrt{-7}]$ such that $2x=(1+\sqrt{-7})$. Thus we conclude that $(1+\sqrt{-7})$ is irreducible, and so is $(1-\sqrt{-7})$, since it has the same η . Also 2 is irreducible by the same reasoning as in the previous problem.