Convertint Adreces IP a Binari

La conversió d'adreces IP a binari és una habilitat fonamental en el món de les xarxes informàtiques. Aquest procés ens permet entendre millor com funcionen les adreces IP a nivell de màquina.

Explorarem pas a pas com convertir una adreça IP decimal a la seua representació binària, utilitzant l'exemple de l'adreça 192.168.1.13.

Estructura d'una Adreça IP

Format Decimal

Una adreça IP en format decimal consisteix en quatre números separats per punts, cadascun entre 0 i 255.

Octets

Cada número decimal representa un octet (byte), que és un grup de 8 bits en binari.

Rang de Valors

Cada octet pot representar valors del 0 (00000000 en binari) al 255 (11111111 en binari).

Representació Total

En total, una adreça IP utilitza 32 bits per representar els quatre octets en binari.

Convertint el Primer Octet: 192

Identificar el Valor

Comencem amb el primer octet de l'adreça IP: 192.

2 ____ Divisió per 2

Dividim 192 entre 2 repetidament, anotant els residus: $192 \div 2 = 96$ residu $0, 96 \div 2 = 48$ residu $0, 48 \div 2 = 24$ residu $0, 24 \div 2 = 12$ residu $0, 12 \div 2 = 6$ residu $0, 6 \div 2 = 3$ residu $0, 3 \div 2 = 1$ residu $1, 1 \div 2 = 0$ residu 1,

3 Llegir els Residus

Llegim els residus de baix a dalt: 11000000.

1 _____ Resultat Final

El primer octet, 192, en binari és 11000000.

Convertint el Segon Octet: 168

Valor Inicial

El segon octet de l'adreça IP és 168.

Procés de Divisió

Dividim 168 entre 2 repetidament: $168 \div 2 = 84$ residu 0, $84 \div 2 = 42$ residu 0, $42 \div 2 = 21$ residu 0, $21 \div 2 = 10$ residu 1, $10 \div 2 = 5$ residu 0, $5 \div 2 = 2$ residu 1, $2 \div 2 = 1$ residu 0, $1 \div 2 = 0$ residu 1.

Lectura dels Residus

Llegim els residus de baix a dalt per obtenir la representació binària.

Resultat

2

3

4

El segon octet, 168, en binari és 10101000.

Convertint el Tercer Octet: 1

Valor Decimal

El tercer octet de l'adreça IP és 1, que és un valor molt simple de convertir a binari.

Procés de Conversió

Per convertir 1 a binari, només necessitem una divisió: 1 ÷ 2 = 0 residu 1. Com que el quocient ja és 0, el procés s'atura aquí.

Completant l'Octet

Afegim zeros a l'esquerra per completar els 8 bits de l'octet: 00000001. Això és important per mantenir la consistència en la representació de l'adreça IP.

Convertint el Quart Octet: 13

Valor Inicial

El quart i últim octet de l'adreça IP és 13.

Divisió Seqüencial

Dividim 13 entre 2 repetidament: $13 \div 2 = 6$ residu 1, $6 \div 2 = 3$ residu 0, $3 \div 2 = 1$ residu 1, $1 \div 2 = 0$ residu 1. Lectura dels Residus

Llegim els residus de baix a dalt: 1101.

Completar l'Octet

Afegim zeros a l'esquerra per obtenir els 8 bits: 00001101.

Combinant els Octets

Octet	Decimal	Binari
1	192	11000000
2	168	10101000
3	1	0000001
4	13	00001101

Resultat Final i Aplicacions

1 Adreça IP Completa en Binari

L'adreça IP 192.168.1.13 en binari és: 11000000.10101000.00000001.00001101

2 Importància en Xarxes

Entendre aquesta conversió és crucial per a la configuració de màscares de subxarxa, routing i altres aspectes de la gestió de xarxes.

3 Aplicacions Pràctiques

Aquest coneixement s'utilitza en la configuració de firewalls, en la resolució de problemes de connectivitat i en l'optimització del rendiment de la xarxa.

4 Futur de les Adreces IP

Amb l'adopció creixent d'IPv6, la comprensió de la representació binària de les adreces IP serà encara més important per als professionals de xarxes.