Problèmes aux limites en dimension 1

Simon Hergott

April 27, 2023

1 Introduction au problème

Cet article aura pour but de résumer les résultats et applications concernant les problèmes aux limites en dimension 1. Nous reviendrons sur la méthode des différences finies, fondant l'approximation des solutions des problèmes aux limites, et nous traiterons de plus quelques applications les plus courantes pour cette catégorie de problèmes. Éventuellement, nous verrons brièvement les méthodes de résolution de ces problèmes en dimension 2. Rappellons d'abord l'énoncé du modèle du problème aux limites en dimension 1:

$$-u''(x) = f(x) \qquad \forall x \in]0,1[\tag{1}$$

$$u(0) = u(1) = 0 (2)$$

Ce problème est donc simplement caractérisé par l'équation (1) munie des conditions limites (2). Une partie importante lors de la résolution de ce problème est donc de trouver les valeurs propres et les fonctions propres (fonctions ne subissant qu'une transformation scalaire lors de leur utilisation comme solution) de l'équation différentielle

$$X'' + \alpha X = 0 \qquad \forall X \in]0, 1[, \forall \alpha \in \mathbb{R}^*$$
 (3)

Nous pouvons alors écrire les solutions de (1) comme les fonctions de la forme

$$u(x) = c_1 + c_2 x - \int_0^x F(s) ds \quad c_1, c_2 \in \mathbb{R}$$
 (4)

selon le théorème fondamental de l'Analyse, avec

$$F(s) = \int_0^s f(t)dt \tag{5}$$

Nous verrons que l'on peut écrire u sous la forme

$$u(x) = \int_0^1 G(x, s) f(s) ds \quad x \in [0, 1]$$
 (6)

ce qui nous permettra d'introduire avec G le concept de Fonction de Greene.

Les applications du problème aux limites en dimension 1 sont multiples, et relativement nombreuses dans la physique où sa résolution permet la simulation de plusieurs phénomènes tels que la conduction de la chaleur, et les déformations élastiques.

2 Méthode des différences finies

Développée en 1715 par Brook Taylor dans son ouvrage *Methodus incrementorum directa et inversa*, la méthode des diffrences finies est un procédé courant utilisé pour approcher la solution d'équations différentielles. En résumé, on établit une grille de points généralement uniforme sur l'espace de recherche pour discrétiser le problème (le réduire à un nombre fini de pas), puis on réduit la distance entre les points pour approcher au maximum la solution. Formellement, on utilise la formule de Taylor pour discrétiser les différentielles n-ièmes : on peut alors choisir la formule de Taylor-Young, ou la formule de Taylor avec reste intégral pour évaluer les erreurs (la discrétisation induit une approximation, qui engendre des erreurs). Dans le cas de Taylor-Young simple (on appellera ici de cette manière la formule de Taylor sans reste intégral), on a:

$$f(x_0 + h) = f(x_0) + \sum_{0 \le i \le n} \frac{f^{(i)}(x_0)}{i!} h^i$$

La méthode des différences finies sert à approximer la dérivée de certaines fonctions par des valeurs numériques, qui ne peut parfois pas être calculées par des méthodes formelles classiques. En effet, généralement les fonctions ne peuvent pas être formulées analytiquement ce qui rend le calcul de leurs dérivées impossible.

Pour appliquer la méthode des différences finies, on se place sur un segment $[0, \alpha]$ (on verra plus tard que dans le cas du problème aux limites en dimension 1, $\alpha = 1$) sur lequel on ajoute un pas de discrétisation h et une suite de points $x_n | n \in [0, N]$ avec $Nh = \alpha$. Ici, le pas est uniforme mais il peut tout à fait être défini non uniformément sur chaque x_i pour tout $i \in [0, N-1]$ comme h_i , avec $\sum_{0 \le i \le N} h_i = \alpha$. On appellera x_n la grille.

Posons une fonction régulière u telle que: $u:[0,\alpha] \longrightarrow \mathbb{R}$, et on appellera u_n l'évaluation de u en chaque point x_n de la grille.

On appelle une différence finie à p points une combinaison linéaire de p u_n , servant à approximer au point x_n les dérivées de u. Considérons Du une différence finie, on dira qu'elle approche $u^{(l)}(x_n)$ à l'ordre q si :

$$\exists C > 0, h_0 > 0 \quad | \quad \forall h \in [0, h_0] \quad ||Du - u^{(l)}(x_n)|| \le Ch^q$$
 (7)

Cette méthode permet donc de décomposer les équations différentielles ordinaires en un système d'équations linéaires, solvable en utilisant l'algèbre linéaire.

3 Résolution du problème en dimension 1

Revenons à l'introduction de cet article : nous avions vu que pour $u \in C^2[0,1]$ satisfaisant l'équation (1), on avait u de la forme (4) Pour retrouver la fonction de Greene, nous devons intégrer par parties $\int_0^x F(s)ds$:

$$\int_0^x F(s)ds = [sF(s)]_0^x - \int_0^x sF'(s)ds = \int_0^x (x-s)f(s)ds$$
 (8)

D'après (2), les constantes c_1 et c_2 sont respectivement égales à 0 et $\int_0^1 (1-s)f(s)ds$. On peut alors écrire u sous la forme

$$u(x) = x \int_0^1 (1-s)f(s)ds - \int_0^x (x-s)f(s)ds = \int_0^1 G(x,s)f(s)ds$$
 (9)

avec

$$G(x,s) = \begin{cases} s(1-x) & s \in [0,x] \\ x(1-s) & s \in [x,1] \end{cases}$$
 (10)

On remarquera qu'on a continuité de la fonction G pour s=x, et que G est une fonction affine de x à s fixé, et de s à x fixé. Elle se nomme Fonction de Greene pour le problème aux limites défini par (1) et (2).

3.1 L'histoire avec Greene

La fonction de Greene est continue et symétrique sur $[0,1]^2$, ainsi que positive non strictement $(G(x,s)=0 \iff x=0 \lor s=0)$. Son existence dans le problème générique (1) (nous verrons plus tard des applications précises du problème comme la déformation d'une corde élastique) est assurée par sa définition sur tout l'intervalle entre les limites (dans notre cas, (2) mais on pourrait fixer d'autres limites).

On voit alors que lorsque G existe et qu'elle est connue formellement, on peut écrire explicitement les soutions du problème aux limites dans une forme très simple. Un des principaux avantages de la représentation (9) des solutions du problème est qu'elle élimine la dépendance au terme f(s), qui n'est dépendant que de l'équation différentielle en (1) et des limites qui nous sont imposées : une fois que l'on aura déterminé G, les solutions seront connues selon f(s) pour peu pqu'on puisse écrire les solutions sous la forme (9). Nous verrons dans les applications que cette forme n'est pas forcément admissible sous toutes les conditions.

De plus, la forme intégrale (9) est bien plus propice à l'analyse numérique que l'équation différentielle (1), ce qui rend le traitement par ordinateur bien plus simple et efficace. Les motivations principales sont donc de passer d'une recherche de u à une recherche de G: il faut alors trouver un moyen d'exprimer G sans avoir à résoudre l'équation (1).

Nous pouvons alors lister quelques propriétés de la fonction de Greene, qui nous seront utiles par la suite dans la résolution du problème:

1. G satisfait l'équation homogène de (1):

$$G'' = 0 (11)$$

sur les intervalles $0 \le s < x$ et $x < s \le L$ avec dans notre cas L = 1. Généralement, on a bien continuité en s = x, nous le prouverons dans le cas du problème de l'élasticité d'une corde. (ou pas? Remettre la démo éventuellement)

- 2. G(x,0) = G(x,L), elle satisfait donc les conditions limites (2).
- 3. G(x,s) = G(s,x), G est symétrique sur ses arguments.

A partir de ces propriétés, nous pouvons commencer la résolution du problème aux limites en supposant l'existence d'une fonction de Greene G. Si cette supposition est valide, alors nous pouvons retrouver (9) depuis (1), ainsi que ses propriétés listées précédemment. En effet, d'après (1), après une multiplication des deux côtés par G nous pouvons intégrer comme suit:

$$\int_0^1 u'' G(x,s) dx = -\int_0^1 f(x) G(x,s) dx \tag{12}$$

avec comme seule supposition la continuité lorsque $s \to x$. Pour être plus formel, nous pouvons exclure de l'intervalle d'intégration le point x = s et éviter toute intégrale impropre.

$$\int_{0}^{1} u''G(x,s)dx = \lim_{\epsilon \to s^{-}} \int_{0}^{\epsilon} u''G(x,s)dx + \lim_{\eta \to s^{+}} \int_{\eta}^{1} u''G(x,s)dx$$
 (13)

En intégrant deux fois par parties les deux intégrales à droite, nous avons:

$$\int_0^{\epsilon} u''G(x,s)dx = [Gu' - G'u]_0^{\epsilon} + \int_0^{\epsilon} uG''(x,s)dx \tag{14}$$

$$\int_{n}^{1} u''G(x,s)dx = [Gu' - G'u]_{0}^{\epsilon} + \int_{n}^{1} uG''(x,s)dx$$
 (15)

Or, en choisissant G(x,s) de manière à satisfaire G''=0 en tant que fonction de x dans les intervalles des intégrales ($[0,\epsilon] \cup [\eta,1]$), alors les intégrales à droite sont nulles. En ajoutant les termes restants (qu'on avait enlevés afin d'éviter les intégrales impropres), on revient en supposant G symétrique à:

$$-\int_{0}^{1} f(x)G(x,s)dx = (G(s,s^{-})u'(s^{-}) - G'(s,s^{-})u(s^{-}) - G(0,s)u'(0) + G(1,s)u'(1)$$

$$-G(s,s^{+})u'(s^{+}) + G'(s,s^{+})u(s^{+}))$$
(16)

En supposant que G vérifie les conditions limites et que u est continu en s, nous pouvons écrire:

$$\int_0^1 f(x)G(x,s)dx = -u(y)(G'(s,s^+) - G'(s,s^-)) + u'(s)(G(s,s^+) - G(s,s^-))$$
(17)

De plus, G est continue en x = s, tandis que G' y est discontinue. Nous aurons besoin de cette proposition pour continuer, nous allons la démontrer.

À partir de (1), nous pouvons utiliser la méthode de la variation des variables pour supposer que, si le problème existe, alors les solutions seront de la forme

$$u(x) = A(x)\cos(kx) + B(x)\sin(kx). \tag{18}$$

En dérivant deux fois selon x et en supposant qu'on ait A'(x)cos(kx) + B'(x)sin(kx) = 0, on trouve que (18) constitue effectivement une solution, à la condition

$$-kA'\sin(kx) + kB'\cos(kx) = -f(x)$$
(19)

En résolvant (19) accompagné de sa condition présupposée, nous pouvons alors exprimer A' et B':

$$A'(x) = \frac{f(x)\sin(kx)}{k} \tag{20}$$

$$B'(x) = \frac{-f(x)cos(kx)}{k} \tag{21}$$

Nous pouvons alors écrire la solution de (1) comme:

$$u(x) = \frac{\cos(kx)}{k} \int_{c_1}^{x} f(s)\sin(ks)ds - \frac{\sin(kx)}{k} \int_{c_2}^{x} f(s)\cos(ks)ds$$
 (22)

avec c_1, c_2 constantes bien choisies pour satisfaire les conditions (2). En utilisant la condition en 0 de (2), on trouve $c_1 = 0$. De même, la condition en 1 implique

$$u(x) = \frac{1}{k} \int_0^x f(s) \sin(k(s-x)) ds - \frac{\sin(kx)}{k\sin(kl)} \int_x^1 f(s) \sin(k(s-1)) ds$$
 (23)

ce qui nous donne enfin

$$u(x) = \int_0^x \frac{\sin(ks)\sin(k(1-x))}{k\sin(k)} ds + \int_x^1 f(s) \frac{\sin(kx)\sin(k(1-s))}{k\sin(kl)} ds$$
$$= \int_0^1 f(s)G(x,s)ds$$
(24)

qui revient au même pour introduire la fonction de Greene, de manière bien détaillée cette fois. On a par la même occasion montré la consistance du problème aux limites (revoir la def!!!!). Finalement, nous aboutissons à une forme de G intéressante:

$$G(x,s) = \frac{\sin(ky)\sin(k(1-x))}{k\sin(k)} \quad s \in [0,x]$$
(25)

$$G(x,s) = \frac{\sin(kx)\sin(k(1-s))}{k\sin(k)} \quad s \in [x,1]$$
(26)

À partir d'ici, nous pouvons vérifier aisément que la fonction G est continue en s=x, et que sa dérivée est discontinue en ce même point.

Depuis (17), nous pouvons alors conclure que

$$u(s) = \int_0^1 f(x)G(x,s)ds \tag{27}$$

et nous obtenons alors une représentation désirable de la solution du problème aux limites par une fonction G. Cette fonction vérifie tous les axiomes de la fonction de Greene énoncés au paravant, nous avons donc établi une méthode pour retrouver la solution des problèmes aux limites d'une manière relativement directe. Néanmoins, cette méthode suppose que nous connaissions la fonction G.

3.2 Suite de la resolution : approximation par différences finies

Sur la grille des points $(x_j)_{j=0}^n$ de pas uniforme h (on a donc $x_j = jh$) sur [0,1], l'approximation de la solution est une suite finie $(u_j)_{j=0}^n$ telle que:

$$-\frac{u_{j+1} - 2u_j + u_{j-1}}{h^2} = f(x_j) \quad j \in [[1, n-1]]$$
(28)

avec $u_i = 0$ aux points 0 et n. On a alors u_j approche $u(x_j)$, la valeur de chaque point de la grille. Pour s'en convaincre, on se réfèrera à ... dans la partie traitent des différences finies centrées, en remplaçant u''(x) par son approximation du 2nd ordre.

On posera $u = \langle u_1, ..., u_n - 1 \rangle$ et $f = \langle f_1, ..., f_n - 1 \rangle$ vecteurs avec $f_i = f(x_i)$, en utilisant une notation empruntée au C++. Nous pouvons alors voir que (28) peut s'écrire comme

$$A_{df}u = f (29)$$

avec A_{df} matrice carrée de différences finies de taille (n-1) définie par

$$A_{fd} = h^{-2} tridiag_{n-1}(-1, 2, -1)$$
(30)

Elle est à diagonale dominante par ligne, et définie positive (démontrable).

Alors, l'équation (29) n'admet qu'une unique solution.

Définissons les M-Matrices comme suit : une M-Matice est une matrice carrée inversible avec tous ses coefficients non sur la diagonale négatifs ou nuls, ainsi que tous les coefficients de son inverse sont positifs ou nuls. Nous pouvons noter que A_{df} est une M-Matrice, ce qui permet de satisfaire la condition de monotonie de la solution exacte u(x): nous avons alors $f > 0 \Longrightarrow u > 0$ (propriété du maximum discret).

Le but est maintenant de réécrire (28). Pour cela, nous pouvons considérer V_h ensemble de fonctions discrètes définies sur les x_j points de la grille. Pour tout v_h dans V_h , elle est alors définie en tout point de la grille, et $v_j = v_h(x_j)$.

On posera de plus $V_h^0 = \{v_h \in V_h | v_0 = v_n = 0\}$. On pourra définir L_h comme

$$(L_h v_h)(x_j) = -\frac{v_{j+1} - 2v_j + w_{j-1}}{h^2} \qquad v_h \in V_h \quad j \in [[1, n-1]]$$
(31)

On peut alors encore réécrire le problème (28) comme:

$$(L_h u_h)(x_j) = f(x_j) \quad j \in [[1, n-1]]$$
 (32)

en cherchant $u_h \in V_h^0$: on prend en compte les conditions limites.

3.3 Analyse de la stabilité

Nous allons maintenant analyser la *stabilité* du problème. On peut définir la stabilité par la capacité de l'algorithme de résolution à ne pas amplifier les erreurs, et à produire des résultats

cohérents. Ici, vous allons essayer de montrer que la solution renvoyée en appliquant la méthode des différences finies au problème est bornée par une des variables d'entrées.

Pour cela, nous aurons besoin de quelques notions supplémentaires. Nous définirons le produit scalaire discret comme

$$(w_h, v_h)_h = h \sum_{k=0}^n c_k w_k v_k \quad \forall v_h, w_h \in V_h$$
(33)

avec $c_i = 1 \forall i \in [[1, n-1]]$ et $c_0 = c_n = 1/2$. On peut retrouver le produit scalaire discret par différences finies, avec la formule composite du trapèze (voir partie sur les différences finies). On peut alors définir une norme sur V_h par la racine du produit scalaire d'un opérateur de V_h avec lui même.

Nous pouvons alors émettre plusieurs propriétés sur ce produit scalaire. Tout d'abord, il est symétrique et défini positif pour l'opérateur L_h dans V_h^0 :

$$(L_h w_h, v_h)_h = (v_h, L_h w_h)_h \quad (L_h v_h, v_h)_h \ge 0 (0 \Leftrightarrow v_h = 0)$$
 (34)

(démonstration possible)

On définit la norme $|||.|||_h$ sur V_h^0 par:

$$|||v_h||| = \left\{ h \sum_{j=0}^{n-1} \left(\frac{v_{j+1} - v_j}{h} \right)^2 \right\}^{1/2}$$
(35)

On peut alors constater que

$$(L_h v_h)_h = |||v_h|||_h^2 \quad \forall v_h \in V_h^0$$
 (36)

De plus, on a:

$$||v_h||_h^2 \le \frac{1}{\sqrt{2}}|||v_h|||_h \quad \forall v_h \in V_h^0$$
 (37)

(démonstration possible, on utilise l'inégalité de Minkowski en repartant de la définition des v_j) De même, on peut écrire la version discrète de l'inégalité de poincaré: en notant $v_h^{(1)}$ la fonction discrète de v_h dans V_h^0 prenant ses valeurs sur la grille par $(v_{j+1}-v_j)/h$ avec $j \in [[0, n-1]]$, on peut la voir commme la dérivée discrète de v_h .

On peut alors écrire l'inégalité comme

$$||v_h||_h \le \frac{1}{\sqrt{2}} ||v_h^{(1)}||_h \forall v_h \in V_h^0$$
(38)

À partir de (37), on peut multiplier chaque équation par (32) pour avoir

$$(L_h u_h, u_h)_h = (f, u_h)_h \tag{39}$$

Continuer avec l'analyse de la convergence des solutions : regarder dans un autre bouquin pour changer?

Si place, regarder les différences finies pour la résolution de problèmes à coefs variables; sinon, on s'en tape.

- 4 Introduction à la résolution du problème en dimension 2
- 5 Applications
- 5.1 Conduction de la chaleur
- 5.2 Déformation d'une corde élastique
- 5.3 Problème stationnaire elliptique
- 5.4 Problème hyperbolique