

Bayesian Learning 732A46: Lecture 9

Matias Quiroz^{1,2}

¹Division of Statistics and Machine Learning, Linköping University

²Research Division, Sveriges Riksbank

April 2016

Lecture overview

- ► The Metropolis sampler
- ► The Metropolis-Hastings sampler
- ► Metropolis-Hastings within Gibbs sampler
- ▶ Why does MCMC work?
- Measures of efficiency
- ► Assessing converge of MCMC simulation

The general idea from last week

Construct a Markov sequence with the property

$$\{\theta^{(i)}\}_{i>J}^N$$
 is distributed according to $\pi(\theta)$ for large enough J .

- ▶ The posterior $\pi(\theta)$ is the **stationary distribution** of the Markov chain.
- ▶ The period 0, 1, ... J is the **burn-in period** of the chain.
- ► The draws obtained are used for computing the expectation of a function.

 Average a function over the posterior distribution.
- ▶ Even if the draws are dependent, still true that

$$\frac{1}{N}\sum_{i=1}^{N}h(\theta^{(i)})\stackrel{a.s}{\longrightarrow} E[h(\theta)] = \int h(\theta)\pi(\theta)d\theta.$$

The Metropolis algorithm

- Powerful when distributions are not of known form, not even after conditioning.
- ► A Markov chain version of rejection sampling.
- ▶ Only requirement: $\pi(\theta)$ can be evaluated (up to \propto)
- ► The Metropolis requires a symmetric proposal distribution.
- ▶ **Metropolis-Hastings**: **relaxes** the symmetry requirement.

The Metropolis algorithm

The Metropolis algorithm

Obtain N samples from $\pi(\theta) \propto p(y|\theta)p(\theta)$.

► Set an (arbitrary) start point

$$\theta_c = \theta^{(0)},$$

where θ_c denotes the current state of the chain.

- ▶ For i = 1, ..., N, repeat
- 1. **Propose** a draw $\theta_p \sim q(\theta|\theta_c)$ (q proposal distribution).
- 2. Evaluate

$$\alpha(\theta_c, \theta_p) = \min\left(1, \frac{\pi(\theta_p)}{\pi(\theta_c)}\right) = \min\left(1, \frac{p(y|\theta_p)p(\theta_p)}{p(y|\theta_c)p(\theta_c)}\right).$$

- 3. Sample $u \sim \text{uniform}(0, 1)$.
- 4. If $u \leq \alpha(\theta_c, \theta_p) \implies \theta^{(i)} = \theta_p$, else $\theta^{(i)} = \theta_c$

The Metropolis algorithm, cont

- ▶ "Climbing up the hill" will always be accepted.
- ▶ "Down the hill" accepted with fraction $\pi(\theta_p)/\pi(\theta_c)$.
- ▶ **Note**: if we reject the draw we **keep the current draw in the chain**. A Metropolis that rejects **too often** gives a "sticky" chain.
- ► Common choice of proposal: $q(\cdot|\theta_c) = \mathcal{N}(\theta_c, \Sigma)$ (has to be symmetric). Random walk type (notice the mean).
- ▶ $\Sigma = \tilde{c}I$. Choose \tilde{c} so that your **acceptance probability** (on average) is $\alpha \approx 0.23$.
- ▶ If the parameters are **heavily correlated**: $\Sigma = \tilde{c}\Sigma_{\star}$, where Σ^{*} is the **posterior covariance** evaluated at the mode θ^{\star} (recall: optim in R).
- ▶ Question: Why do you think that $\alpha \approx 1$ is not desirable with a Random walk proposal?

The Metropolis algorithm, cont

- ▶ "Climbing up the hill" will always be accepted.
- ▶ "Down the hill" accepted with fraction $\pi(\theta_p)/\pi(\theta_c)$.
- ▶ **Note**: if we reject the draw we **keep the current draw in the chain**. A Metropolis that rejects **too often** gives a "sticky" chain.
- ► Common choice of proposal: $q(\cdot|\theta_c) = \mathcal{N}(\theta_c, \Sigma)$ (has to be symmetric). Random walk type (notice the mean).
- ▶ $\Sigma = \tilde{c}I$. Choose \tilde{c} so that your **acceptance probability** (on average) is $\alpha \approx 0.23$.
- ▶ If the parameters are **heavily correlated**: $\Sigma = \tilde{c}\Sigma_{\star}$, where Σ^{*} is the **posterior covariance** evaluated at the mode θ^{\star} (recall: optim in R).
- ▶ Question: Why do you think that $\alpha \approx 1$ is **not** desirable with a Random walk proposal?
- Will give a slow mixing (inefficient) chain. More on this later.

The Metropolis-Hastings algorithm

- ► A more general version of the Metropolis algorithm.
- ▶ Same setting: we can evaluate

$$\pi(\theta) \propto p(y|\theta)p(\theta)$$
.

- ▶ Metropolis-Hastings: Symmetry of proposal is not required.
- ▶ What do we gain?: can move away from a Random Walk (RW) q().
- ► Note:

The RW proposal is **local** (proposes from the **current state** of the chain). **Moves around slowly** in θ space.

▶ A good proposal q() explores the parameter space efficiently. Propose globally (where the posterior mass is located).

The Metropolis-Hastings algorithm, cont.

The Metropolis-Hastings algorithm

Obtain N samples from $\pi(\theta) \propto p(y|\theta)p(\theta)$.

► Set an (arbitrary) start point

$$\theta_c = \theta^{(0)},$$

where θ_c denotes the current state of the chain.

- ▶ For i = 1, ..., N, repeat
- 1. **Propose** a draw $\theta_p \sim q(\theta|\theta_c)$ (q proposal distribution).
- 2. Evaluate

$$\alpha(\theta_c, \theta_p) = \min\left(1, \frac{\pi(\theta_p)/q(\theta_p|\theta_c)}{\pi(\theta_c)/q(\theta_c|\theta_p)}\right) = \min\left(1, \frac{p(y|\theta_p)p(\theta_p)/q(\theta_p|\theta_c)}{p(y|\theta_c)p(\theta_c)/q(\theta_c|\theta_p)}\right).$$

- 3. Sample $u \sim \text{uniform}(0, 1)$.
- 4. If $u \leq \alpha(\theta_c, \theta_p) \implies \theta^{(i)} = \theta_p$, else $\theta^{(i)} = \theta_c$

The Metropolis-Hastings algorithm, cont

- ▶ **Note**: if $q(\theta)$ = symmetric \implies **Metropolis** algorithm [q cancels].
- ► Independence Metropolis-Hastings:

$$q(\theta|\theta_c) = q(\theta)$$
 [ind. of the current state (not a RW)]

Example:

$$q(\cdot) = t_{\nu}(\theta^*, \Sigma_{\theta^*}),$$

where

 $\theta^* = \text{the mode from a numerical optimization}$ $\Sigma_{\theta^*} = \text{the covariance at } \theta^* = [-H_{\theta^*}^{-1}].$

- ▶ Very efficient... but can get stuck!
- ▶ Make sure $t_{\nu}(\theta^*, \Sigma_{\theta^*})$ has **heavier tails** than $p(y|\theta)p(\theta)$.

Metropolis-Hastings within Gibbs algorithm

▶ **Recall Gibbs**: sample the **blocks** $\theta = (\theta_1, \dots, \theta_K)$., by

$$\pi(\theta_1|\theta_2,\theta_3\ldots,\theta_K)$$
 \vdots
 $\pi(\theta_K|\theta_1,\theta_2,\ldots,\theta_{K-1})$

- ► Assumption: can sample from each full conditional [known form].
- ▶ What if not all are of known form? M-H within Gibbs to the rescue.
- **Example:** let K = 3 and suppose $\pi(\theta_2|\theta_1, \theta_3)$ is **not** of known form. Updating θ_2 at iteration i: **Propose**

$$heta_{
ho} = heta_2^{(i)} \sim q(heta_2 | heta_1^{(i)}, heta_2^{(i-1)}, heta_3^{(i-1)}) \quad \left[extstyle extstyle extstyle heta_c = heta_2^{(i-1)}
ight].$$

Then

$$\alpha = \min \left(1, \frac{\pi(\theta_{\rho}|\theta_1^{(i)}, \theta_3^{(i-1)}) / q(\theta_{\rho}|\theta_1^{(i)}, \theta_c, \theta_3^{(i-1)})}{\pi(\theta_{c}|\theta_1^{(i)}, \theta_3^{(i)}) / q(\theta_{c}|\theta_1^{(i)}, \theta_p, \theta_3^{(i-1)})} \right), \text{ decide to accept/reject.}$$

Heteroscedastic regression

► M-H within Gibbs: Heteroscedastic regression:

$$y_i = x_i'\beta + \varepsilon_i$$

where the errors are heteroscedastic

$$\varepsilon_i \sim \mathcal{N}\left(0, \sigma^2 \exp\left(x_i'\gamma\right)\right).$$

- ► Priors:
 - ▶ Multivariate normal for β and γ .
 - ▶ Inv- χ^2 for σ^2 .
- Gibbs sampling (two blocks):
 - $\triangleright \beta, \sigma^2 | \gamma, y$
 - $\triangleright \gamma | \beta, \sigma^2, y$

M-H within Gibbs: Heteroscedastic regression, cont.

- ▶ Draws from β , $\sigma^2 | \gamma$, y can be obtained as in standard (homoscedastic) linear regression but on transformed data. Standard trick.
- ► Rewrite the model as

$$\tilde{y}_i = \tilde{x}_i' \beta + \tilde{\varepsilon}_i,$$

where

- $\tilde{y}_i = \exp(-x_i'\gamma/2) y_i$
- $\tilde{x}_i' = \exp\left(-x_i'\gamma/2\right)x_i'$
- $\tilde{\varepsilon}_i = \exp(-x_i'\gamma/2)\,\varepsilon_i.$
- ▶ Note that $Var(\tilde{\varepsilon}_i) = \sigma^2$, so homoscedastic.
- ▶ $p(\beta, \sigma^2 | \gamma, y)$ using a \mathcal{N} -Inv- χ^2 conjugate prior (with transformed data).
- ▶ $p(\gamma|\beta, \sigma^2, y)$ is non-standard, but we can use **M-H to sample** with a Random walk proposal...
- ▶ ... Or an independence M-H proposal $\mathcal{N}(\gamma^*, \Sigma_{\gamma^*})$, $\gamma^*, \Sigma_{\gamma^*}$ obtained with optim in R.

Connecting the Gibbs sampler to M-H

▶ Updating a block in a Gibbs step is a special case of M-H where

Proposal = Full conditional posterior,

so that $\alpha = 1$.

In our example

$$q(\theta_2|\theta_1^{(i)},\theta_2^{(i-1)},\theta_3^{(i-1)}) = \pi(\theta_2|\theta_1^{(i)},\theta_3^{(i-1)}) \quad \text{[gives $\alpha=1$]} \,.$$

Why does MCMC work?

- ► Excellent paper: Chib and Greenberg (1995).
- ▶ The **transition kernel** of the M-H Markov chain:

$$T(\theta_c \to d\theta_p) = \overbrace{\int T(\theta_c \to \theta_p) d\theta_p + \overbrace{r(\theta_c)}^{\text{Pr(stay)}} \delta_{\theta_c}(d\theta_p),}^{\text{Pr(stay)}}$$

where

$$T(\theta_c \to \theta_p) = q(\theta_p | \theta_c) \alpha(\theta_c, \theta_p)$$
 and $r(\theta_c) = 1 - \int T(\theta_c \to \theta_p) d\theta_p$,

with

$$\delta_{\theta_c}(d\theta_p) = \begin{cases} 1, & \text{if } \theta_c \in d\theta_p \\ 0, & \text{if } \theta_c \notin d\theta_p. \end{cases}$$

 \blacktriangleright M-H chooses α so that

$$\pi(\theta_c)T(\theta_c \to \theta_p) = \pi(\theta_p)T(\theta_p \to \theta_c)$$
 [detailed balance].

Why does MCMC work?, cont.

Proof that M-H's transition kernel fulfills detailed balance [extra, if you are interested].

$$\begin{split} \left[\alpha(\theta_c,\theta_p) &= \min\left(1,\frac{\pi(\theta_p)/q(\theta_p|\theta_c)}{\pi(\theta_c)/q(\theta_c|\theta_p)}\right) \quad \text{and} \quad T(\theta_c \to \theta_p) = q(\theta_p|\theta_c)\alpha(\theta_c,\theta_p) \right] \\ \pi(\theta_c)T(\theta_c \to \theta_p) &= \pi(\theta_c)q(\theta_p|\theta_c)\min\left(1,\frac{\pi(\theta_p)/q(\theta_p|\theta_c)}{\pi(\theta_c)/q(\theta_c|\theta_p)}\right) \\ &= \pi(\theta_c)q(\theta_p|\theta_c)\min\left(\frac{\pi(\theta_c)q(\theta_p|\theta_c)}{\pi(\theta_c)q(\theta_p|\theta_c)},\frac{\pi(\theta_p)q(\theta_c|\theta_p)}{\pi(\theta_c)q(\theta_p|\theta_c)}\right) \\ &= \pi(\theta_p)q(\theta_c|\theta_p)\min\left(\frac{\pi(\theta_c)q(\theta_p|\theta_c)}{\pi(\theta_p)q(\theta_c|\theta_p)},1\right) \\ &= \pi(\theta_p)q(\theta_c|\theta_p)\alpha(\theta_p,\theta_c) \\ &= \pi(\theta_p)T(\theta_p \to \theta_c). \end{split}$$

Thus, $\pi(\theta)$ is the **stationary distribution** of the Markov chain generated by M-H.

▶ Convergence to $\pi(\theta)$: q has positive density on the support of $\pi(\theta)$.

Illustrating the concept of efficiency

Figure : Left: trace plots of chain. Middle: auto-correlation of chain at lag k. Right: True posterior (red line) and MCMC approximation (histogram)

Measures of efficiency - IF and ESS

- ▶ With MCMC: The generated $\{\theta^{(i)}\}_{i=1}^N$ is a **dependent** sequence.
- ► How **efficient** is **MCMC** compared to **iid**. **sampling**?
- ► Variance of posterior mean estimate if the sequence is iid.

$$V[\bar{\theta}] = Var\left[\frac{1}{N}\sum_{i=1}^{N}\theta^{(i)}\right] = \frac{\sigma^2}{N} \quad \left[\sigma^2 = V[\theta]\right].$$

► Variance of posterior mean estimate if the sequence is dependent

$$V[\bar{\theta}] = Var\left[\frac{1}{N}\sum_{i=1}^{N}\theta^{(i)}\right] = \frac{\sigma^2}{N} \times IF, \quad IF = \left(1 + 2\sum_{k=1}^{\infty}\rho_k\right),$$

where $\rho_k = Corr(\theta^{(i)}, \theta^{(i+k)})$ is the **auto-correlation** at lag k.

Measures of efficiency - IF and ESS, cont.

- ▶ IF is the **Inefficiency Factor** (IF) (or *integrated auto-correlation time*): The variance of the estimate **inflates** *IF* times for my MCMC (relative to iid. sampling).
- ► Effective Sample Size (ESS): ESS = N/IF.
- ► Tells you: how many equivalent to iid. draws you get with your MCMC.
- ► Can be computed with the CODA package in R (Plummer et al., 2006). Useful function: effectiveSize.

Improving the efficiency of MCMC

- ► Most **essential** (but also the **most difficult**) find a **better proposal** *q*.
- ▶ Modify your proposal. For example in a R-W Metropolis make sure $\alpha \approx 0.23$.

$$\tilde{c} = \frac{2.4}{\sqrt{p}}$$
 gives [in theory] $\alpha \approx 0.23$ [$p =$ number of parameters].

Note: only for a **R-W**. With **IMH** you want α as high as possible.

- **Re-parametrization** helps a lot. **Especially** if the support of θ is **restricted**.
- Example

if
$$\theta \in \mathbb{R}^+$$
 use $\phi = \log(\theta)$
if $\theta \in [0, 1]$ use $\phi = \operatorname{logit}(\theta)$,

but (again!) do not forget the Jacobian! [transformation of variables]

► Simple way to **reduce** auto-correlation: **thinning** - keep every *b*th sample.

Assessing convergence of MCMC

- ► **How long** is the **burn-in** period?
- Convergence diagnostics:
 - ▶ Plot the Markov chains. Do they seem to settle?
 - ▶ Plot cumulative means. Do the means converge?
 - ▶ Interested in a function $h(\theta)$? Monitor its convergence.

Example:

Objective: $h(\theta) = Pr(\theta > 2)$. **MCMC estimate** is

$$\hat{I}_N = \{\#\{\theta^{(i)}\}_{i=1}^N > 2\}/N$$
 [when **all** N draws are available].

Compute (and plot) \hat{I}_k for k = 1, ..., N and see if it converges.

- ▶ Do you suspect your posterior is multimodal? Try different starting values.
- ▶ Question: How long to sample after the burn-in period?
- Answer: depends on IF (and ESS). An ESS of 1000 is usually sufficient for most tasks.

References

Chib, S. and Greenberg, E. (1995). Understanding the M-H algorithm. *The American Statistician*, 49(4):327-335.

Plummer, M., Best, N., Cowles, K., and Vines, K. (2006). Coda: Convergence diagnosis and output analysis for MCMC, *R News*, 6(1):7-11.