南京大学工程管理学院 20xx 级 工工/金工/自动化 专业

20××-20×× 学年第一学期

《运筹学》期末试卷

《									
学	号	姓名	得分						
得	分 一、选择题:								
1.	如果一个线性规划问题有 n 个变量, m 个约束方程($m < n$),系数矩阵的秩为 m ,则基本可行解的个数最多为(
	A. <i>m</i> 个 B. <i>n</i> 个	$C. C_n^m \uparrow$	D. $C_m^n \uparrow$						
2.	设运输问题的单位运价为 c_{ij} ,则检验数 λ_{ij} 与对偶变量 u_i, v_j 之间满足()								
	$A. \lambda_{ij} = c_{ij} - u_i - v_j$	B. $\lambda_{ij} = c$	$v_{ij} + u_i - v_j$						
	$C. \lambda_{ij} = c_{ij} - u_i + v_j$	D. $\lambda_{ij} = c$	$u_{ij} + u_i + v_j$						
3.	max $z = 3x_1 + 2x_2$, s.t. 2. 应的线性规划最优解是	. 2 .	$x_2 \le 4.5, x_1, x_2 \ge 0$ 且为整数, 其 $x_2 \le 0$ 是为整数, 其 $x_2 \ge 0$						
	A. (3,2) B. (
4.	对某整数线性规划的松势	则以 x_1 行为源行的割B. $\frac{6}{7} - \frac{1}{7}$	_						
5.	已知某个含 10 个节点的 1, 3, 1, 3, 则另一个		点的次(度)为 1, 1, 3, 1, 1						
	A. 1 B. 2	C. 3	D. 4						

得 分 二、填空题:

- 1. 设 $S_1 = \{x : x_1 + x_2 \le 1, x_1 \ge 0\}$, $S_2 = \{x : x_1 x_2 \le 0, x_1 \le 1\}$ 。令 $S = S_1 \cup S_2$,请判断集合S是否为凸集?_____。
- 2. 在资源配置优化的线性规划问题中,若某资源有剩余,则该资源的影子价格等于。
- 3. 若指派问题的系数矩阵的某一列元素分别加上一个常数 k ,最佳指派方案是否会发生变化?____。
- 4. 给一个图 G = (V, E),如果图 G' = (V', E'),使 $V' \subseteq V$ 及 $E' \subseteq E$,则称 G' 是 G 的一个
- 5. 在图G = (V, E)中,所有点的次之和是边数的______倍。

得 分 三、考虑线性规划问题:

max
$$-p_1x_1 + p_2x_2$$

s.t.
$$\begin{cases} x_1 - x_2 = 0 \\ 0 \le x_j \le 1, \ j = 1, 2 \end{cases}$$

请先写出该问题的对偶问题。然后,在以下三种情况下,分别求该问题和其对偶问题的最优解以及最优目标函数值。

- (1) $p_1 < p_2$
- (2) $p_1 = p_2$
- (3) $p_1 > p_2$
- [得分] 四、在组合拍卖问题中,允许投标人提交**项目组合**的投标。假设 $M = \{1, 2, \dots, m\}$ 为拍卖商要拍卖的项目集,规定每个项目至多中标
- 一次。每个投标标书记为 $B_j = (S_j, p_j)$, 其中非空集合 S_j 是项目组合子集 $(S_i \subseteq M)$, p_j 是相应项目组合的出价。
- (1) 假设拍卖商收到了n 份标书 B_1, B_2, \dots, B_n ,为了获得最大利益,拍卖商应如何确定中标者,试建立数学模型帮助拍卖商进行决策(建模不求解)。
- (2) 若现在有三个项目进行拍卖,拍卖商收到了以下 4 份投标标书: $B_1 = (\{1\}, 6)$, $B_2 = (\{2,3\}, 12)$, $B_3 = (\{1,2\}, 12)$, $B_4 = (\{1,2,3\}, 16)$,请写出在此情形下拍卖商的决策模型,并给出最优的中标策略。

得 分

五、考虑无约束优化问题:

$$\min f = 2x_1^2 + x_2^2 - 2x_1x_2 + 2x_1^3 + x_1^4$$

求出所有的静止点,并判断哪些静止点是局部极小点?

得 分

六、考虑非线性规划问题:

min
$$(x_1 - 1)^2 + (x_2 + 1)^2$$

s.t. $x_1 - x_2 + 1 \le 0$

请用库恩-塔克条件求解该问题。

得分 七、某风景区有 6 个海岛,相互间的距离如下表(单位: 哩)。现 欲架设海上浮桥,使各岛相连且与陆地相连。已知第 1 个海岛离海岸最近,为 0.3 哩,求使架设浮桥长度最短的方案。

	2	3	4	5	6
1	1.0	3.0	2.5	5.0	4.0
2		2.6	1.7	4.2	3.2
3			1.0	2.5	1.3
4				2.6	1.8
5					1.3

得分 八、某输油网络如图所示,节点为所经城市,图中弧上所标数据为连接两城市间的并行输油管道数量。试确定**最少**需切断多少条管道才能断绝城市1到城市6的原油输送?**需切断哪些**?为什么?

