Interpretable Machine Learning

Dimensions of Interpretability

- Difference between intrinsic, model-specific, and model-agnostic interpretability
- Different types of explanations
- Local, global, and regional explanations
- Model/learner explanation (without/with refits)
- Levels of interpretability

INTRINSIC, MODEL-SPECIFIC, MODEL-AGNOSTIC

Intrinsically Interpretable Models:

- Simple model structure (e.g., weighted sum or tree)
- Examples: GLMs, decision trees
- Pro: Additional IML methods not necessarily required
- Con: Limited model complexity can reduce performance;
 can still be hard to interpret with many features /interactions

INTRINSIC, MODEL-SPECIFIC, MODEL-AGNOSTIC

Model-specific Methods:

- Designed for specific model types (e.g., NNs)
- Examples: Gini importance of tree-based models, Layer-wise relevance propagation (LRP)
- Pro: Exploit model structure
- Con: Restricted to specific model class

INTRINSIC, MODEL-SPECIFIC, MODEL-AGNOSTIC

Model-agnostic Methods:

- Applied after training (post-hoc)
- ◆ Applicable to intrinsically interpretable models
 → provides insights into explanations

Feature-based Explanations:

- Analyze the role of individual features in model behavior.
- Types of feature-based explanations:
 - Feature Importance
 - Feature Effects
 - Feature Interactions
- Common principle: Vary or perturb feature values and observe changes in predictions, variance, or performance.

Feature Importance quantifies relevance of features, e.g., their contribution to model prediction, predictive performance, or prediction variance.

- Model-agnostic methods: PFI, . . .
- Pendant in linear models: t-statistic, p-value (significant effect)

Feature Effects indicate changes (direction and magnitude) in model prediction due to changes in feature values.

- Model-agnostic methods: ICE curves, PD plots . . .
- Pendant in linear models: Weights / coefficients θ_j
- Further examples: ALE, SHAP, and LIME

Feature Interaction: How combinations of features jointly affect predictions.

- Model-agnostic methods:
 Friedman's H-statistic
- ullet Pendant in linear models: Coefficients of interaction terms $heta_{\it jk}$

Data Attribution: Identify which training instances most influenced a prediction.

Example: A model should distinguish muffins and dogs.

Question: Why does it misclassify this dog image (test point) as a muffin?

Data Attribution: Identify which training instances most influenced a prediction.

Example: A model should distinguish muffins and dogs.

Approach: Measure how perturbations to training instances affect prediction or loss.

- → Influential training instances drive prediction of test points.
- If these resemble muffins, the model may predict muffin instead of dog.

Counterfactual Explanations:

- Identify smallest necessary change in feature values so that a desired outcome is predicted
- Contrastive explanations
- Diverse counterfactuals
- Feasible & actionable explanations

Example (loan application):

What can a person do to obtain a favorable prediction from a given model?

Local – Explain model behavior for **single instances**:

- Provide nuanced instance-specific insights
- Crucial for complex models where features typically affect instances differently (due to interactions)
- Examples: Counterfactuals, LIME, SHAP, ICE

Local

individual instance

Global

"average" instance

"group" instance

Local – Explain model behavior for **single instances**:

- Provide nuanced instance-specific insights
- Crucial for complex models where features typically affect instances differently (due to interactions)
- Examples: Counterfactuals, LIME, SHAP, ICE

Global – Explain model behavior for **entire input space**:

- Provide high-level insights into model behavior, often by aggregating local explanations
- Easier to communicate but loss of detail & over-simplification (hides differences)
- Examples: PD plots, ALE plots, PFI

Local

individual instance

Global

"average" instance

Regional

"group" instance

Local – Explain model behavior for **single instances**:

- Provide nuanced instance-specific insights
- Crucial for complex models where features typically affect instances differently (due to interactions)
- Examples: Counterfactuals, LIME, SHAP, ICE

Global – Explain model behavior for **entire input space**:

- Provide high-level insights into model behavior, often by aggregating local explanations
- Easier to communicate but loss of detail & over-simplification (hides differences)
- Examples: PD plots, ALE plots, PFI

Regional explanations – for subspaces / regions:

- Compromise between nuanced & high-level insights
- Useful when local explanations group well without losing much detail

Local

individual instance

Global

"average" instance

Regional

"group" instance

- Local (red): ICE curves for one instance

 → Detailed but cluttered/obscure pattern
- Global (blue): PDP averaged over all days
 Averaged curve hides heterogeneity

- Local (red): ICE curves for one instance

 → Detailed but cluttered/obscure pattern
- Global (blue): PDP averaged over all days
 Averaged curve hides heterogeneity
- Regional: Split data on workingday
 - Region 1: morning and evening peak
 - Region 2: late-morning leisure peak

→ Preserves detail without overload (challenge: find regions automatically)

FIXED MODEL VS. REFITS

Input of global interpretation methods: model + data, output: explanations
 Explanations can be viewed as statistical estimators

- Situation in ML: Deployed model is trained on all available data
 - \leadsto No unseen test data left to, e.g., reliably estimate performance
 - → IML method could use same data model was trained on
 - → But: Some IML methods rely on measuring loss requiring unseen test data
- Alternative: Explain the inducer that created the model (instead of a fixed model)
 - → Idea: Use resample strategies (e.g., 4-fold CV) as in performance estimation
 - → Requires refitting

LEVELS OF INTERPRETABILITY

Research Question

Objects of analysis

1st level view

How to explain a given model fitted on a data set?

(deployed) model $heta \mapsto \hat{f}(heta)$

LEVELS OF INTERPRETABILITY

1 st

level

view 2nd

level

view

Research Question

How to explain a given model fitted on a data set?

How does an optimizer choose a model based on a data set?

Objects of analysis

(deployed) model $heta \mapsto \hat{f}(heta)$

Model selection process (e.g., decisions made by AutoML systems or HPO process)

LEVELS OF INTERPRETABILITY

Research Question

Objects of analysis

1st level view

view 2nd

level view

3rd level view How to explain a given model fitted on a data set?

How does an optimizer choose a model based on a data set?

How do data properties relate to performance of a learner and its hyperparameters?

(deployed) model $heta \mapsto \hat{f}(heta)$

Model selection process (e.g., decisions made by AutoML systems or HPO process)

properties of ML algorithms in general (benchmark)

