Informe $N^{\circ}3$ - Inspección de multietapa y estudio de resupuesta en frecuencia

Circuitos Electrónicos - FIUBA

José F. González - 100063 - jfgonzalez@fi.uba.ar

Atento a: Ing. Zola, Ing. Schiffmacher, Ing. Kelly

Revisión 1.0

1. Introducción

Nos interesa estudiar la respuesta en frecuencia el circuito de la Figura 1, compuesto por un JFET de Canal P con $I_{DSS} = -16mA/V$ y $V_P = 3V$ en configuración seguidor por source para la señal y un TBJ NPN con $\beta = 200$ en configuración base común para la señal. La resistencia de entrada R_{GS} será un preset regulable a un valor a determinar tal que permita acoplar la carga con $V_O = 0V$.

Figura 1: Circuito completo con definiciones de corrientes positivas y tensiones referidas a común. T1: Transistor JFET de Canal P con $I_{DSS} = -16mA/V$ y $V_P = 3V$ en configuración seguidor por source para la señal. T2: Transistor TBJ NPN con $\beta = 200$ en configuración base común para la señal.

2. Polarización

En la Figura 2 se muestra el circuito equivalente de continua. La resolución se obtiene por las corrientes que impone la condición de tensión de acople $V_O=0$ V sobre T2, asumiendo a esté en modo de control con $V_{BEon}=0.7$ V y despreciando los efectos de carga de I_{B2} sobre el divisor resistivo que polariza a T2. En T1 circulan 4mA que determinan una tensión de control $V_{GS}=1.5$ V, el preset se debe ajustar a $R_{GS2}=810$ $k\Omega$ para obtener este valor.

Figura 2: Circuito de polarización con tensiones referidas a común y aproximaciones del 10 %. T1: Saturado con $I_D = 4mA$ y $V_{DS} = 30$ V, parámetros de señal $g_{m1} = 5.3mA/V$ y $r_{ds}, r_{gs} \to \infty$. T2: En modo activo con $I_C = 2mA$ y $V_{CE} = 10$ V, parámetros de señal $g_{m2}(27^{\circ}C) = 77mA/V$ y $r_{\pi} = 2.6$ k Ω .

3. Circuito de señal a frencuencias medias

En la Figura 3 se muestra el circuito de señal a frecuencias medias con las resistecias de carga de cada etapa. La ganancia del amplificador a frecuencias medias es el producto de la ganancia de etapas $A_v = 0.06 \times 516 = 31$. No se incluyeron efectos de segundo orden ni resistencia del cuerpo de la base.

Figura 3: Circuito de señal a frecuencias medias. T1: En seguidor por source con ganancia $A_{v2} = 0.06$. T2: En configuración base común sin resistencia de cuerpo de la base con ganancia $A_{v2} = 516$.

4. Frecuencia de corte inferior

Bajo las hipótesis de método de constantes de tiempo nos interesa estimar la frecuencia de corte inferior para el circuito equivalente a bajas frecuencias de la Figura 4.

Figura 4: Circuito de señal a bajas frecuencias. **Nodo G1:** Capacidad 20 veces inferior al nodo *B*2, resistencia equivalente 100 veces mayor. **Nodo B2:** Nodo dominante a bajas frecuencias.

La frecuencia ficticia asociada al nodo G1 será

$$f = \frac{1}{2\pi RC} = \frac{1}{2\pi \times 355k\Omega \times 0.1uF} = 4.5 \ Hz \tag{1}$$

mientras que la asociada al nodo B2 es superior y determina la frecuencia de corte inferior

$$f_L = \frac{1}{2\pi RC} = \frac{1}{2\pi \times 3.2k\Omega \times 2uF} = 25 Hz \tag{2}$$

5. Frecuencia de corte superior

En la Figura 5 se muestra el circuito equivalente a altas frecuencias luego de reflejar las impedancias internas por el Teorema de Miller. La resistencia de cuerpo de la base $r_x=100\Omega$ ya no es despreciable. Los nodos dominantes son G1 y B2 con valores

$$\begin{cases} C_{gs}^1 = 4pF(1 - A_{vGS}) = 4pF \times (1 - 0.06) = 3.8pF \\ C_{gd} = 1pF \\ \tau = RC = 4.8pF \times 9.7k\Omega = 46ns \rightarrow f = 3.4 \ MHz \end{cases}$$

$$\begin{cases} C_{\pi}^2 = 40pF \times (1 - A_{vBE}) = 40pF(1 - \frac{200}{200 + \frac{1}{77m}}) = 2pF \\ C_{\mu}^1 = 1pF(1 + A_{vBC}) = 517pF \\ \tau = RC = 519pF \times 100\Omega = 52ns \rightarrow f = 3.1 \ MHz \end{cases}$$

Figura 5: Circuito de señal a altas frecuencias con capacitores internos reflejados a común por el Teorema de Miller.

Las frecuencias están a menos de una octava de distancia, luego se toma como frecuencia de corte

$$f_H = \frac{1}{2\pi \times (46ns + 52ns)} = 1.7 \ MHz \tag{3}$$

6. Tiempo de crecimiento

Estudiamos el tiempo en que la señal de salida tarda en ir del 10 % al 90 % de su valor final para un tren de pulsos de frecuencias cercanas a la f_L y cercanas a f_H del circuito.

6.1. A bajas frecuencias

A bajas frecuencias el circuito se comporta como un pasa altos la señal en la zona plana de la salida se verá con un tiempo de crecimiento de

$$\tau_r = \tau_{90\%} - \tau_{10\%} = 2.3\tau_L - 0.1\tau_L = 2.2\tau_L = 2.2 \times 6.4ms = 14ms \tag{4}$$

el porcentaje de declinación asociado, para un pulso de duración $\delta < 5\tau_L$, por ejemplo $\delta = 10ms$, será

$$P = (1 - e^{-t/\tau_L}) = (1 - e^{-10ms/6, 4ms}) = 0.8 (80\%)$$
(5)

6.2. A altas frecuencias

A altas frecuencias el circuito se comporta como un pasa bajas la señal en los flancos de la salida se verá con un tiempo de crecimiento de

$$\tau_r = \tau_{90\%} - \tau_{10\%} = 2.3\tau_H - 0.1\tau_H = 2.2\tau_H = 2.2 \times 98ns = 216ns \tag{6}$$