Statistical Research Methods I

Seongsoo Choi (최성수)

Estimating how a continuous variable and a categorical variable are associated

- We've learned about how to measure the association between
 - two categorical variables (chi-squared test, odds ratios)
 - two continuous variables (covariance, correlation coefficient)
- Then, how can we gauge the association between a continuous variable and a categorical variable?
 - Comparing groups
 - Comparing means (the two-group t-test)
 - Analysis of variance (ANOVA) & Analysis of Covariance (ANCOVA)

Comparing means across groups

- Suppose there are two groups (defined by a categorical variable, e.g., men and women) and we'd like to compare the means of a continuous variable y (e.g., math scores) between these groups
- . The parameter of our interest is the gap in x, $\mu_1-\mu_2$, and its sample estimator is $\bar{y}_1-\bar{y}_2$
- · The standard error of ${ar y}_1 {ar y}_2$ is

$$SE({ar y}_1-{ar y}_2)=\sqrt{(SE_1)^2+(SE_2)^2}=\sqrt{rac{s_1^2}{N_1}+rac{s_2^2}{N_2}}$$

- With this estimated SE, we can draw a statistical inference about the mean difference in y between two groups
 - T-test with the p-value or confidence intervals

Example: Heart Surgery Recovery and Prayer

- Outcome of interest (y): recovery from heart surgery with no complications
- Two groups: For Group A, Christian volunteers prayed for a successful surgery with a quick and healthy recovery. Group B did not have volunteers praying for them

	Whether Complications Occurred for Heart Surgery Patients Who Did or Did Not Have Group Prayer		
	Complications (1)		
Prayer	Yes (0)	No (1)	Total
Yes A	315	289	604
No B	304	293	597

Example: Heart Surgery Recovery and Prayer

TABLE 7.2: Whether Complications Occurred for Heart Surgery Patients Who Did or Did Not Have Group Prayer

	Complications (y)		
Prayer	Yes (0)	No (1)	Total
Yes A	315	289	604
No B	304	293	597

- · Note that the SD of the proportion $\hat{\pi}$ is: $s = SD(\hat{\pi}) = \sqrt{\hat{\pi}(1-\hat{\pi})}$
- What is the standard error? What is the null hypothesis, the t-statistic, and the p-value? What is the 95% CI?
- Were the prayers effective for successfuly recovery?

Example with Stata: Residential Areas and Commute Time in Japan

- Tabulate
- Two group t-test
- $^{\cdot}$ What if we'd like to examine group differences in y across more than two groups?

- What if there are more than two groups for a comparison?
 - e.g., wage differences across four race groups

- $^{\circ}$ Analysis of Variance (ANOVA): a model for comparing the means of y across multiple groups
 - ANOVA decomposes the variance of \boldsymbol{y} into the *between-group* component and the *within-group* component
 - Within Sum of Squares (WSS) = $\sum_{i}^{n_g} (y_i \bar{y}_g)^2$
 - Between Sum of Squares (BSS) = $\sum_{g}^{G} n_g (\bar{y}_g \bar{y})^2$
 - Total Sum of Squares (TSS) = $\sum_i^N (y_i ar{y})^2 = WSS + BSS$
 - where G: number of groups, n_g : number of observations in group g, \bar{y}_g : the mean of y in group g

- Total variance: $\frac{TSS}{N-1}$, Within-group variance: $\frac{WSS}{N-G}$, Between-group variance: $\frac{BSS}{G-1}$
- $^{\cdot}$ The F-statistic of the linear regression model where y is regressed on the categorical variable x is:

$$F_{G-1,N-G} = rac{ ext{Between-group variance}}{ ext{Within-group variance}}$$

• The F-statistic approaches to 1 when the means of y becomes equal between groups (e.g., $\mu_{g1}=\mu_{g2}=\ldots\mu_{gG}$) and increasingly exceeds 1 as groups differ in their means of y

Analysis of Variance (ANOVA) in practice

- In practice, ANOVA is a linear regression analysis with a categorical variable without no other covariates
 - The F-statistic indicates a statistical inference to figure out if the betweengroup variance (explained by our model; ESS) is greater than the withingroup variance (e.g., remains unexplained; RSS) statistically significantly
 - reg commute i.size
- · What if we would like to do ANOVA after controlling for some covariates \Longrightarrow Analysis of Covariance (ANCOVA)
- · What if we would like to do ANOVA with two categorical variables \Longrightarrow two-way ANOVA