Homeworrk 4

Christian Tillich October 16, 2017

Setup 1

```
data(Fish, package = 'mnlogit')
fm <- formula(mode ~ price | income | catch)</pre>
CM <- mnlogit(fm, Fish, "alt")</pre>
summary(CM)
Call:
mnlogit(formula = fm, data = Fish, choiceVar = "alt")
Frequencies of alternatives in input data:
 beach boat charter pier
0.11337 0.35364 0.38240 0.15059
Number of observations in data = 1182
Number of alternatives = 4
Intercept turned: ON
Number of parameters in model = 11
 # individual specific variables = 2
 # choice specific coeff variables = 1
 # individual independent variables = 1
Maximum likelihood estimation using the Newton-Raphson method
  Number of iterations: 7
 Number of linesearch iterations: 10
At termination:
 Gradient norm = 2.09e-06
 Diff between last 2 loglik values = 0
 Stopping reason: Succesive loglik difference < ftol (1e-06).
Total estimation time (sec): 0.11
Time for Hessian calculations (sec): 0.03 using 1 processors.
Coefficients:
                      Estimate Std.Error t-value Pr(>|t|)
                    8.4184e-01 2.9996e-01 2.8065 0.0050080 **
(Intercept):boat
(Intercept):charter 2.1549e+00 2.9746e-01 7.2443 4.348e-13 ***
(Intercept):pier
                    1.0430e+00 2.9535e-01 3.5315 0.0004132 ***
                   5.5428e-05 5.2130e-05 1.0633 0.2876611
income:boat
                   -7.2337e-05 5.2557e-05 -1.3764 0.1687088
income:charter
                  -1.3550e-04 5.1172e-05 -2.6480 0.0080977 **
3.1177e+00 7.1305e-01 4.3724 1.229e-05 ***
income:pier
catch:beach
                    2.5425e+00 5.2274e-01 4.8638 1.152e-06 ***
catch:boat
catch:charter
                    7.5949e-01 1.5420e-01 4.9254 8.417e-07 ***
                    2.8512e+00 7.7464e-01 3.6807 0.0002326 ***
catch:pier
                   -2.5281e-02 1.7551e-03 -14.4046 < 2.2e-16 ***
price
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Log-Likelihood: -1199.1, df = 11
AIC: 2420.3
# columns y, income, price1, price2, price3, price4, catch1, catch2, catch3, catch4
# modes 1,2,3,4: beach, boat, charter, pier
df <- read.table("../data/fish.txt",header=T)</pre>
code <- "
  data {K <- 4}
  model {
     for (i in 1:1182) {
        y[i] ~ dcat(p[i,1:4])
       for (k in 1:K) {p[i,k] <- phi[i,k]/sum(phi[i,])}</pre>
```

```
log(phi[i,1]) <- gam*prices[1,i] + delta[1]*catchs[1,i]</pre>
      for (k in 2:K) {
        log(phi[i,k]) <- alph[k] + gam*prices[k,i] + beta[k]*incomes[i] +</pre>
           delta[k]*catchs[k,i]
      prices[1,i] <- price1[i]/100</pre>
      prices[2,i] <- price2[i]/100</pre>
      prices[3,i] <- price3[i]/100</pre>
      prices[4,i] <- price4[i]/100</pre>
      catchs[1,i] <- catch1[i]</pre>
      catchs[2,i] <- catch2[i]</pre>
      catchs[3,i] <- catch3[i]</pre>
      catchs[4,i] <- catch4[i]</pre>
      incomes[i] <- income[i]/1000</pre>
    }
  # priors
  alph[1] \leftarrow 0
  for (j in 2:K) \{alph[j] \sim dnorm(0,0.001)\}
  beta[1] <- 0
  for (j in 2:K) {beta[j] ~ dnorm(0,0.001)}
  for (j in 1:K) {delta[j] ~ dnorm(0,0.001)}
  gam ~ dnorm(0,0.001)
}" %>% strsplit('\n') %>% unlist
INI <- list(</pre>
   list(alph=c(NA,0,0,0), beta=c(NA,0,0,0), delta=c(0,0,0,0), gam=0)
  ,list(alph=c(NA,1,1,1), beta=c(NA,0,0,0), delta=c(1,1,1,1),gam=-2)
build.model(
  code, df, INI,
  params = c('alph','beta','delta','gam'),
  n.chains=2, n.adapt = 500, n.iter=5000) %>%
  jagsresults(c('alph','beta','delta','gam')) %>%
  as.data.frame %>%
  kable
```

	mean	sd	2.5%	25%	50%	75%	97.5%
alph[1]	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
alph[2]	0.8222045	0.2966271	0.2446822	0.6160411	0.8298598	1.0336202	1.3828310
alph[3]	2.1421413	0.2906826	1.5926020	1.9391297	2.1355737	2.3447801	2.7183574
alph[4]	1.0454487	0.2811843	0.4978146	0.8424119	1.0468941	1.2459935	1.5789357
beta[1]	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
beta[2]	0.0600922	0.0525752	-0.0368621	0.0230955	0.0591941	0.0949741	0.1674928
beta[3]	-0.0676567	0.0521964	-0.1676324	-0.1033833	-0.0671444	-0.0339024	0.0374832
beta[4]	-0.1362005	0.0509912	-0.2347758	-0.1717629	-0.1362673	-0.1013236	-0.0371095
delta[1]	3.0853029	0.7097213	1.7071046	2.6108726	3.0890999	3.5586004	4.4909404
delta[2]	2.5773773	0.5267124	1.5572572	2.2272126	2.5667709	2.9105955	3.6808201
delta[3]	0.7704606	0.1547233	0.4718385	0.6679736	0.7671460	0.8689160	1.0860102
delta[4]	2.8133927	0.8001414	1.2645903	2.2650472	2.8190602	3.3439866	4.3732003

	mean	sd	2.5%	25%	50%	75%	97.5%
gam	-2.5578738	0.1775671	-2.9179521	-2.6782558	-2.5560780	-2.4349833	-2.2172054

	mean	sd	2.5%	25%	50%	75%	97.5%
tot.dev	2409.22574	4.591796	2402.01346	2405.89275	2408.62972	2411.96812	2419.41190
dev[250]	15.37267	1.173242	13.13619	14.57377	15.32397	16.12672	17.79192
dev[344]	15.00979	1.026603	13.11040	14.29596	14.96793	15.67952	17.09855

Observation 250 and 344 have the largest deviance.

Time for Hessian calculations (sec): 0 using 1 processors.

Question 2

```
Fish$pc <- Fish$price*Fish$catch
fm <- formula(mode ~ price | income | catch + pc)</pre>
CM <- mnlogit(fm, Fish, "alt")</pre>
summary (CM)
Call:
mnlogit(formula = fm, data = Fish, choiceVar = "alt")
Frequencies of alternatives in input data:
          boat charter
 beach
                          pier
0.11337 0.35364 0.38240 0.15059
Number of observations in data = 1182
Number of alternatives = 4
Intercept turned: ON
Number of parameters in model = 15
  # individual specific variables = 2
  # choice specific coeff variables = 2
  \# individual independent variables = 1
Maximum likelihood estimation using the Newton-Raphson method
  Number of iterations: 8
  Number of linesearch iterations: 10
At termination:
  Gradient norm = 8.7e-07
 Diff between last 2 loglik values = 0
 Stopping reason: Succesive loglik difference < ftol (1e-06).
Total estimation time (sec): 0.05
```

```
Coefficients :
                      Estimate
                                Std.Error t-value Pr(>|t|)
(Intercept):boat
                    1.1980e+00 3.2650e-01 3.6693 0.0002433 ***
(Intercept):charter 2.5900e+00 3.1967e-01 8.1021 4.441e-16 ***
(Intercept):pier
                    1.1013e+00 3.0106e-01 3.6580 0.0002542 ***
                   -7.4931e-08 5.6281e-05 -0.0013 0.9989377
income:boat
                   -1.5172e-04 5.6502e-05 -2.6852 0.0072493 **
income:charter
                   -1.3313e-04 5.1832e-05 -2.5686 0.0102121 *
income:pier
catch:beach
                    5.3504e+00 1.1117e+00 4.8130 1.487e-06 ***
                    1.7382e+00
catch:boat
                                5.8942e-01
                                           2.9490 0.0031880 **
                    1.7330e-01 2.0745e-01 0.8354 0.4034936
catch:charter
                    5.5312e+00 1.2567e+00 4.4014 1.075e-05 ***
catch:pier
pc:beach
                   -2.0938e-02 1.0697e-02 -1.9575 0.0502927
                    1.0540e-02 8.8961e-03 1.1848 0.2361083
pc:boat
pc:charter
                    7.9104e-03 2.0564e-03 3.8468 0.0001197 ***
pc:pier
                   -3.1691e-02 1.4546e-02 -2.1787 0.0293560 *
                   -2.5732e-02 2.5827e-03 -9.9632 < 2.2e-16 ***
price
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Log-Likelihood: -1181, df = 15
AIC: 2392
```

The log likelihood, with price*catch interactions, is -1811. This represents an increase of (b) over 15 from the original -1199

Question 3

	mean	sd	2.5%	25%	50%	75%	97.5%
tot.dev	2377.276	5.578866	2368.257	2373.33	2376.654	2380.546	2390.038

The posterior mean deviance is 2377. This represents a fall of \sim 32 from the deviance when we exclude the choice*price interaction. So (b) less than 40.

Setup 2

```
CM <- clm(rating ~ contact + temp, data = wine)</pre>
# columns y, temp, contact, judge
df <- read.table("../data/wine.txt",header=T)</pre>
# JAGS
code <- "
  data { K <- 5; KM <- 4}
  model{
    for(i in 1:72){
      eta[i] <- beta[1]*contact[i] + beta[2]*temp[i]</pre>
      logit(Q[i,1]) <- theta[1]-eta[i]</pre>
      p[i,1] \leftarrow Q[i,1]
      for(j in 2:KM) {
        logit(Q[i,j]) <- theta[j]-eta[i]</pre>
        p[i,j] \leftarrow Q[i,j] - Q[i,j-1]
      p[i,K] <- 1 - Q[i,KM]
      y[i] ~ dcat(p[i,1:K])
      yrep[i] ~ dcat(p[i,1:K])
      match[i] <- equals(y[i],yrep[i])</pre>
    Classif.acc <- mean(match[])</pre>
  # prior for cut-points
  for(r in 1:4){ theta0[r] ~dnorm(0,1.0E-3)}
  theta <- sort(theta0)</pre>
  for (j in 1:2){beta[j] ~ dnorm(0,1.0E-3)}}
" %>% strsplit('\n') %>% unlist
INI <- list(</pre>
   list(theta0=c(-0.6,0,0.6,1.2),beta=c(0,0))
  ,list(theta0=c(-0.5,0,0.5,1),beta=c(0.5,0.5))
build.model(code, df[,-4], INI, c("beta", "theta"), n.chains=2, n.adapt=500, n.iter=5000) %>%
  jagsresults(c("beta","theta")) %>%
kable
```

	mean	sd	2.5%	25%	50%	75%	97.5%
beta[1]	1.591582	0.4813824	0.6623298	1.257978	1.591984	1.910229	2.527713
beta[2]	2.614519	0.5480654	1.5283228	2.254669	2.613380	2.981876	3.694723
theta[1]	-1.443650	0.5413944	-2.5904960	-1.793349	-1.417552	-1.055408	-0.476060
theta[2]	1.300296	0.4477275	0.4302601	0.999967	1.296048	1.599140	2.181827
theta[3]	3.612151	0.6124652	2.4491463	3.196893	3.593761	4.022637	4.818332
theta[4]	5.256168	0.7436549	3.8430034	4.742644	5.245876	5.766229	6.746988

```
code %>%
build.model(df[,-4], INI, "Classif.acc", n.chains=2, n.adapt=500, n.iter=5000) %>%
   jagsresults("Classif.acc") %>%
   kable
```

	mean	sd	2.5%	25%	50%	75%	97.5%
Classif.acc	0.3426181	0.0538146	0.2361111	0.3055556	0.3472222	0.375	0.444444

Accuracy rate is $\sim 34\%$, so (a) above 25%

Question 5

```
code %>%
{.[5] <- 'eta[i] <- beta[1]*contact[i] + beta[2]*temp[i] + omega[judge[i]]';.} %>%
append('for (j in 1:9){omega[j] ~ dnorm(0,1.0E-3)}',21) %>%
build.model(df, INI, "Classif.acc", n.chains=2, n.adapt=500, n.iter=5000) %>%
jagsresults("Classif.acc") %>%
kable
```

	mean	sd	2.5%	25%	50%	75%	97.5%
Classif.acc	0.4275431	0.0549144	0.3194444	0.3888889	0.4305556	0.4583333	0.5416667

The classification accuracy is now $\sim 43\%$, so (a) above 30%

Question 6

```
INI <- list(
    list(theta0=c(-0.6,0,0.6,1.2),beta=c(0,0,0))
    ,list(theta0=c(-0.5,0,0.5,1),beta=c(0.5,0.5,0.5))
)

code %>%
    {.[5] <- 'eta[i] <- beta[1]*contact[i] + beta[2]*temp[i] + beta[3]*temp[i]*contact[i] + omega[judge[i] append('for (j in 1:9){omega[j] ~ dnorm(0,1.0E-3)}',21) %>%
    {.[23] <- gsub('(j in 1:2)','j in 1:3',.[23]); .} %>%
    build.model(df, INI, "Classif.acc", n.chains=2, n.adapt=500, n.iter=5000) %>%
    jagsresults("Classif.acc") %>%
    kable
```

	mean	sd	2.5%	25%	50%	75%	97.5%
Classif.acc	0.4264819	0.0547395	0.3194444	0.3888889	0.4305556	0.4583333	0.5277778

The classification accuracy is still $\sim 43\%$, so (a) above 40%.

Setup 3

```
\begin{tabular}{ll} \# \ columns \ rating, \ complaints, learning, advance, privileges, raises, critical \\ \end{table(".../data/attitude.txt",header=T)}
# conventional least squares
LM <- lm(rating ~complaints+learning+advance+privileges+raises+critical, data=df)
summary(LM)
Call:
lm(formula = rating ~ complaints + learning + advance + privileges +
   raises + critical, data = df)
Residuals:
   Min
             1Q Median
                            30
                                     Max
-10.9418 -4.3555 0.3158 5.5425 11.5990
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 10.78708 11.58926 0.931 0.361634
complaints 0.61319
                    0.16098
                              3.809 0.000903 ***
learning
          0.32033
                     0.16852 1.901 0.069925 .
advance
                     0.17821 -1.218 0.235577
          -0.21706
privileges -0.07305
                     0.13572 -0.538 0.595594
raises
           0.08173
                     0.22148 0.369 0.715480
critical
           Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 7.068 on 23 degrees of freedom
Multiple R-squared: 0.7326,
                           Adjusted R-squared: 0.6628
F-statistic: 10.5 on 6 and 23 DF, p-value: 1.24e-05
code <-"
  data \{r \leftarrow 0.5; tau2[1] \leftarrow 0.01; tau2[2] \leftarrow 10; p \leftarrow 6\}
  model {
     for (i in 1:30) {
       rating[i] ~ dnorm(mu[i],tau)
       e[i] <- rating[i] - mu[i]
       mu[i] <- beta0 + beta[1]*complaints[i] + beta[2]*learning[i] +</pre>
          beta[3]*advance[i] + beta[4]*privileges[i] + beta[5]*raises[i] +
          beta[6]*critical[i]
     }
     #Priors
     for (j in 1:6) {
       beta[j] ~ dnorm(0, 1/tau2[G[j]])
       G[j] \leftarrow gam[j] + 1
       gam[j] ~ dbern(r)
     tau ~ dgamma(1,0.001)
     beta0 \sim dnorm(0,0.001)
     M \leftarrow 1 + gam[1]*pow(2,p-1) + gam[2]*pow(2,p-2) + gam[3]*pow(2,p-3) +
       gam[4]*pow(2,p-4) + gam[5]*pow(2,p-5) +gam[6]
     for (m in 1:64) \{ mod[m] \leftarrow equals(m,M) \}
" %>% strsplit('\n') %>% unlist
INI <- list(</pre>
    list(beta=c(0,0,0,0,0,0),tau=1, beta0=0)
   ,list(beta=c(0,0,0,0,0,0),tau=0.1, beta0=10)
)
```

```
build.model(code, df, INI, c("beta", "gam"), n.chains=2,n.adapt=500, n.iter=25000) %>%
    jagsresults(c('beta', 'gam')) %>%
    kable
```

	mean	sd	2.5%	25%	50%	75%	97.5%
beta[1]	0.7122544	0.1374631	0.4370599	0.6292513	0.7148504	0.8008064	0.9714375
beta[2]	0.1155896	0.1208960	-0.0775305	0.0361907	0.1004981	0.1731910	0.4243565
beta[3]	-0.0423405	0.0929622	-0.2285854	-0.0980773	-0.0396910	0.0184829	0.1272638
beta[4]	-0.0279988	0.0841817	-0.1942751	-0.0823776	-0.0267166	0.0273508	0.1355639
beta[5]	0.0229273	0.1029165	-0.1648808	-0.0407286	0.0210735	0.0827765	0.2104700
beta[6]	0.0114531	0.0879032	-0.1519373	-0.0436740	0.0104084	0.0630167	0.1785219
gam[1]	0.9932600	0.0818212	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000
gam[2]	0.1625000	0.3689126	0.0000000	0.0000000	0.0000000	0.0000000	1.0000000
gam[3]	0.0667000	0.2495042	0.0000000	0.0000000	0.0000000	0.0000000	1.0000000
gam[4]	0.0559200	0.2297695	0.0000000	0.0000000	0.0000000	0.0000000	1.0000000
gam[5]	0.0661800	0.2485990	0.0000000	0.0000000	0.0000000	0.0000000	1.0000000
gam[6]	0.0521800	0.2223921	0.0000000	0.0000000	0.0000000	0.0000000	1.0000000

Only one predictor - complaints - has a posterior probability of inclusion greater than 95%.

Question 8

```
cbind(df[1], scale(df[-1])) %>%
build.model(code, ., INI, c("beta","gam"),n.chains=2,n.adapt=500, n.iter=25000) %>%
    jagsresults(c('beta','gam')) %>%
    kable
```

	mean	sd	2.5%	25%	50%	75%	97.5%
beta[1]	7.1354516	1.5945209	3.8899137	6.0979427	7.1657100	8.2182929	10.1549925
beta[2]	2.4198604	1.8264193	-0.1476005	0.6428987	2.5419747	3.7478817	5.9043462
beta[3]	-0.6555642	1.2223975	-3.7760015	-1.2522078	-0.0783539	0.0363627	0.8694408
beta[4]	-0.0248618	0.8140233	-2.0759414	-0.1104657	-0.0022566	0.0995841	1.9414559
beta[5]	0.6438824	1.3516984	-1.2336262	-0.0494227	0.0670678	1.1545973	4.1832887
beta[6]	0.0586564	0.6790618	-1.4912021	-0.0862602	0.0077328	0.1087288	1.9121710
gam[1]	0.9996400	0.0189704	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000
gam[2]	0.7951400	0.4036033	0.0000000	1.0000000	1.0000000	1.0000000	1.0000000
gam[3]	0.4411400	0.4965284	0.0000000	0.0000000	0.0000000	1.0000000	1.0000000
gam[4]	0.3156200	0.4647670	0.0000000	0.0000000	0.0000000	1.0000000	1.0000000
gam[5]	0.4406000	0.4964641	0.0000000	0.0000000	0.0000000	1.0000000	1.0000000
gam[6]	0.2797600	0.4488857	0.0000000	0.0000000	0.0000000	1.0000000	1.0000000

The probability of inclusion increased across the board. However, still only complaints had a mean prosterior probability of inclusion greater than 95%.

```
cbind(df[1], scale(df[-1])) %>%
  build.model(code, ., INI, c("mod"),n.chains=2,n.adapt=500, n.iter=25000) %>%
  jagsresults(c('mod')) %>%
  as.data.frame %>%
  {.[order(-.$mean), ,drop=F]} %>%
  head(2) %>%
  kable
```

	mean	sd	2.5%	25%	50%	75%	97.5%
mod[49]	0.13202	0.3385159	0	0	0	0	1
mod[57]	0.09664	0.2954699	0	0	0	0	1

Model number 49 is the most probable. This model is represented 1 + X1 + X2.

Question 10

```
df2 <- cbind(df[1], scale(df[-1]))

code %>%
    {.[2] <- gsub('r <- 0.5; ','',.[2]); .} %>%
    append(' r[j] ~ dbeta(1,1)', 15) %>%
    {.[17] <- gsub('(r)','(r[j])',.[17], fixed=T); .} %>%
    build.model(df2, INI, "r",n.chains=2,n.adapt=500, n.iter=25000) %>%
    jagsresults("r") %>%
    kable
```

	mean	sd	2.5%	25%	50%	75%	97.5%
r[1]	0.6666471	0.2347213	0.1603592	0.5002633	0.7059556	0.8657286	0.9874615
r[2]	0.6049264	0.2686357	0.0631284	0.4012632	0.6457301	0.8352766	0.9843286
r[3]	0.4871133	0.2893581	0.0220935	0.2342124	0.4823639	0.7356993	0.9732482
r[4]	0.4369091	0.2807999	0.0187353	0.1924762	0.4083992	0.6660136	0.9598439
r[5]	0.4750572	0.2880225	0.0220371	0.2231734	0.4614410	0.7214490	0.9696898
r[6]	0.4301168	0.2796452	0.0177944	0.1851110	0.3996144	0.6537129	0.9580396

The posterior means for complaints and 'privileges' both exceed 0.50.