Spark: Resilient Distributed Datasets as Workflow System

Big Data Analytics, The Class

Goal: Generalizations A *model* or *summarization* of the data.

Data Frameworks

Hadoop File System

Streaming

MapReduce

Tensorflow

Spark

Algorithms and Analyses

Similarity Search

Hypothesis Testing

Graph Analysis

Recommendation Systems

Deep Learning

Where is MapReduce Inefficient?

Where is MapReduce Inefficient?

- Long pipelines sharing data
- Interactive applications
- Streaming applications
- Iterative algorithms (optimization problems)

(Anytime where MapReduce would need to write and read from disk a lot).

Where is MapReduce Inefficient?

- Long pipelines sharing data
- Interactive applications
- Streaming applications
- Iterative algorithms (optimization problems)

(Anytime where MapReduce would need to write and read from disk a lot).

Resilient Distributed Datasets (RDDs) -- Read-only partitioned collection of records (like a DFS) but with a record of how the dataset was created as combination of *transformations* from other dataset(s).

dfs:// filename RDD1

(can drop
the data)
created from
dfs://filename

- Enables rebuilding datasets on the fly.
- Intermediate datasets not stored on disk (and only in memory if needed and enough space)

Resilient Distributed Datasets (RDDs) -- Read-only partitioned collection of records (like a DFS) but with a record of how the dataset was created as combination of *transformations* from other dataset(s).

dfs:// filename

created from dfs://filename

RDD1

Resilient Distributed Datasets (RDDs) -- Read-only partitioned collection of records (like a DFS) but with a record of how the dataset was created as combination of transformations from other dataset(s).

dfs:// filename

created from dfs://filename

RDD1

created from

dfs://filename

filename

Resilient Distributed Datasets (RDDs) -- Read-only partitioned collection of records (like a DFS) but with a record RDD4 of how the dataset was created as combination of transformations from other dataset(s). (DATA) transformation3 from RDD2 RDD1 RDD2 RDD3 transformation2() dfs:// (will recreate (DATA)

data)
transformation1

from RDD1

transformation2

from RDD2

Resilient Distributed Datasets (RDDs) -- Read-only partitioned collection of records (like a DFS) but with a record RDD4 of how the dataset was created as combination of transformations from other dataset(s). (DATA) transformation3 from RDD2 RDD1 RDD2 RDD3 transformation2() dfs:// (will recreate (DATA) filename data) transformation1 transformation2 created from from RDD1 from RDD2 dfs://filename

Resilient Distributed Datasets (RDDs) -- Read-only partitioned collection of records (like a DFS) but with a record RDD4 of how the dataset was created as combination of transformations from other dataset(s). (DATA) transformation3 from RDD2 RDD1 RDD2 RDD3 transformation2() dfs:// (will recreate (DATA) filename data) transformation1 transformation2 created from from RDD1 from RDD2 dfs://filename

```
map(f:T\Rightarrow U) : RDD[T]\Rightarrow RDD[U]
                                  filter(f: T \Rightarrow Bool) : RDD[T] \Rightarrow RDD[T]
                            flatMap(f: T \Rightarrow Seq[U]) : RDD[T] \Rightarrow RDD[U]
                              sample(fraction : Float) :
                                                              RDD[T] \Rightarrow RDD[T] (Deterministic sampling)
                                        groupByKey():
                                                              RDD[(K, V)] \Rightarrow RDD[(K, Seq[V])]
                        reduceByKey(f:(V,V) \Rightarrow V)
                                                              RDD[(K, V)] \Rightarrow RDD[(K, V)]
Transformations
                                               union():
                                                            (RDD[T], RDD[T]) \Rightarrow RDD[T]
                                                              (RDD[(K, V)], RDD[(K, W)]) \Rightarrow RDD[(K, (V, W))]
                                                 join()
                                             cogroup()
                                                              (RDD[(K, V)], RDD[(K, W)]) \Rightarrow RDD[(K, (Seq[V], Seq[W]))]
                                       crossProduct():
                                                              (RDD[T], RDD[U]) \Rightarrow RDD[(T, U)]
                              mapValues(f : V \Rightarrow W)
                                                              RDD[(K, V)] \Rightarrow RDD[(K, W)] (Preserves partitioning)
                              sort(c : Comparator[K])
                                                              RDD[(K, V)] \Rightarrow RDD[(K, V)]
                                                              RDD[(K, V)] \Rightarrow RDD[(K, V)]
                       partitionBy(p:Partitioner[K])
```

Table 2: Transformations and actions available on RDDs in Spark. Seq[T] denotes a sequence of elements of type T.

```
map(f:T\Rightarrow \underline{U}) : RDD[T] \Rightarrow RDD[U]
                                   filter(f: T \Rightarrow Bool) : RDD[T] \Rightarrow RDD[T]
                             flatMap(f: T \Rightarrow Seq[U]) : RDD[T] \Rightarrow RDD[U]
                               sample(fraction. Float) :
                                                               RDD[T] \Rightarrow RDD[T] (Deterministic sampling)
                                                               RDD[(K, V)] \Rightarrow RDD[(K, Seq[V])]
                                                               RDD[(K, V)] \Rightarrow RDD[(K, V)]
Transformations
                                                              (RDD[T], RDD[T]) \Rightarrow RDD[T]
                     Multiple Records
                                                               (RDD[(K, V)], RDD[(K, W)]) \Rightarrow RDD[(K, (V, W))]
                                              cogroup()
                                                                (RDD[(K, V)], RDD[(K, W)]) \Rightarrow RDD[(K, (Seq[V], Seq[W]))]
                                        crossProduct() :
                                                               (RDD[T], RDD[U]) \Rightarrow RDD[(T, U)]
                               mapValues(f : V \Rightarrow W):
                                                               RDD[(K, V)] \Rightarrow RDD[(K, W)] (Preserves partitioning)
                               sort(c : Comparator[K])
                                                               RDD[(K, V)] \Rightarrow RDD[(K, V)]
                        partitionBy(p:Partitioner[K])
                                                               RDD[(K, V)] \Rightarrow RDD[(K, V)]
```

Table 2: Transformations and actions available on RDDs in Spark. Seq[T] denotes a sequence of elements of type T.

```
map(f:T\Rightarrow U) : RDD[T]\Rightarrow \underline{RDD[U]}
                                   filter(f: T \Rightarrow Bool) : RDD[T] \Rightarrow \overline{RDD}[T]
                             flatMap(f: T \Rightarrow Seq[U]) : RDD[T] \Rightarrow RDD[U]
                               sample(fraction : Float) :
                                                               RDD[T] \Rightarrow RDD[T] (Deterministic sampling)
                                          groupByKey():
                                                               RDD[(K, V)] \Rightarrow RDD[(K, Seq[V])]
                        reduceByKey(f:(V,V) \Rightarrow V)
                                                               RDD[(K, V)] \Rightarrow RDD[(K, V)]
Transformations
                                                union():
                                                              (RDD[T], RDD[T]) \Rightarrow RDD[T]
                                                                (RDD[(K, V)], RDD[(K, W)]) \Rightarrow RDD[(K, (V, W))]
                                                  join()
                                              cogroup()
                                                                (RDD[(K, V)], RDD[(K, W)]) \Rightarrow RDD[(K, (Seq[V], Seq[W]))]
                                        crossProduct():
                                                                (RDD[T], RDD[U]) \Rightarrow RDD[(T, U)]
                               mapValues(f : V \Rightarrow W)
                                                                RDD[(K, V)] \Rightarrow RDD[(K, W)] (Preserves partitioning)
                               sort(c : Comparator[K])
                                                               RDD[(K, V)] \Rightarrow RDD[(K, V)]
                        partitionBy(p: Partitioner[K])
                                                                RDD[(K, V)] \Rightarrow RDD[(K, V)]
```

Table 2: Transformations and actions available on RDDs in Spark. Seq[T] denotes a sequence of elements of type T.

```
RDD[T] \Rightarrow RDD[U]
                                       map(f:T\Rightarrow U):
                                   filter(f: T \Rightarrow Bool):
                                                               RDD[T] \Rightarrow \overline{RDD}[T]
                             flatMap(f:T \Rightarrow Seq[U]):
                                                               RDD[T] \Rightarrow RDD[U]
                               sample(fraction : Float) :
                                                                RDD[T] \Rightarrow RDD[T] (Deterministic sampling)
                                                                RDD[(K, V)] \Rightarrow RDD[(K, Seq[V])]
                                          groupByKey():
                        reduceByKey(f:(V,V) \Rightarrow V)
                                                                RDD[(K, V)] \Rightarrow RDD[(K, V)]
Transformations
                                                 union():
                                                                (RDD[T], RDD[T]) \Rightarrow RDD[T]
                                                                (RDD[(K, V)], RDD[(K, W)]) \Rightarrow RDD[(K, (V, W))]
                                                  join()
                                              cogroup()
                                                                (RDD[(K, V)], RDD[(K, W)]) \Rightarrow RDD[(K, (Seq[V], Seq[W]))]
                                         crossProduct():
                                                                (RDD[T], RDD[U]) \Rightarrow RDD[(T, U)]
                               mapValues(f : V \Rightarrow W)
                                                                RDD[(K, V)] \Rightarrow RDD[(K, W)] (Preserves partitioning)
                               sort(c : Comparator[K])
                                                                RDD[(K, V)] \Rightarrow RDD[(K, V)]
                        partitionBy(p : Partitioner[K])
                                                                RDD[(K, V)] \Rightarrow RDD[(K, V)]
```

(orig.) Actions: RDD to Value Object, or Storage

```
count() : RDD[T] \Rightarrow Long
collect() : RDD[T] \Rightarrow Seq[T]
reduce(f : (T,T) \Rightarrow T) : RDD[T] \Rightarrow T
lookup(k : K) : RDD[(K, V)] \Rightarrow Seq[V] (On hash/range partitioned RDDs)
save(path : String) : Outputs RDD to a storage system, e.g., HDFS
```

DDDITI - I one

Current Transformations and Actions

http://spark.apache.org/docs/latest/rdd-programming-guide.html#transformations

common transformations: filter, map, flatMap, reduceByKey, groupByKey

http://spark.apache.org/docs/latest/rdd-programming-guide.html#actions

common actions: collect, count, take

Count errors in a log file:

TYPE MESSAGE TIME

Count errors in a log file:

TYPE MESSAGE TIME

: Pseudocode:

lines = sc.textFile("dfs:...")
errors =
 lines.filter(_.startswith("ERROR"))
errors.count

Collect times of hdfs-related errors

TYPE MESSAGE TIME

```
Pseudocode:
```

```
lines = sc.textFile("dfs:...")
errors =
    lines.filter(_.startswith("ERROR"))
errors.persist
errors.count
```


Collect times of hdfs-related errors

TYPE MESSAGE TIME

```
Pseudocode:
```

```
lines = sc.textFile("dfs:...")
errors =
    lines.filter(_.startswith("ERROR"))
errors.persist
errors.count
```

Persistance

Can specify that an RDD "persists" in memory so other queries can use it.

Can specify a priority for persistance; lower priority => moves to disk, if needed, earlier

Collect times of hdfs-related errors

TYPE MESSAGE TIME

```
Pseudocode:
```

```
lines = sc.textFile("dfs:...")
errors =
    lines.filter(_.startswith("ERROR"))
errors.persist
errors.count
```

Persistance

Can specify that an RDD "persists" in memory so other queries can use it.

Can specify a priority for persistance; lower priority => moves to disk, if needed, earlier

parameters for persist

- Pseudocode:

Collect times of hdfs-related errors

TYPE MESSAGE TIME

```
lines = sc.textFile("dfs:...")
errors =
    lines.filter(_.startswith("ERROR"))
errors.persist
errors.count
errors.filter(_.contains("HDFS"))
```


Collect times of hdfs-related errors

TYPE MESSAGE TIME

```
Pseudocode:
lines = sc.textFile("dfs:...")
errors =
    lines.filter(_.startswith("ERROR"))
errors.persist
errors.count
errors.filter(_.contains("HDFS"))
    .map(_split('\t')(3))
    .collect()
```


Collect times of hdfs-related errors

TYPE MESSAGE TIME

```
Pseudocode:
lines = sc.textFile("dfs:...")
errors =
    lines.filter(_.startswith("ERROR"))
errors.persist
errors.count
errors.filter(_.contains("HDFS"))
    .map(_split('\t')(3))
    .collect()
```

Functional Programming

Collect times of hdfs-related errors

TYPE MESSAGE TIME

Functional Programming

lines filter.(.startsWith("ERROR")) errors filter.(.contains("HDFS")) (HDFS errors) $map.(_.split('\t')(3))$ (time fields) collect()

Advantages as Workflow System

- More efficient failure recovery
- More efficient grouping of tasks and scheduling
- Integration of programming language features:
 - loops (not a "cyclic" workflow system).
 - function libraries

The Spark Programming Model

Word Count

```
Scala:
val textFile =
     sc.textFile("hdfs://...")
val counts = textFile
     .flatMap(line => line.split(" "))
     .map(word => (word, 1))
     .reduceByKey( + )
counts.saveAsTextFile("hdfs://...")
```


Apache Spark Examples http://spark.apache.org/examples.html

Word Count

```
Python:

textFile = sc.textFile("hdfs://...")
counts = textFile
    .flatMap(lambda line: line.split(" "))
    .map(lambda word: (word, 1))
    .reduceByKey(lambda a, b: a + b)
counts.saveAsTextFile("hdfs://...")
```


Apache Spark Examples http://spark.apache.org/examples.html

PySpark Demo

https://data.worldbank.org/data-catalog/poverty-and-equity-database

Lazy Evaluation

Spark waits to **load data** and **execute transformations** until necessary -- *lazy* Spark tries to complete **actions** as immediately as possible -- **eager**

Why?

- Only executes what is necessary to achieve action.
- Can optimize the complete chain of operations to reduce communication

Lazy Evaluation

Spark waits to *load data* and *execute transformations* until necessary -- *lazy* Spark tries to complete actions as quickly as possible -- *eager*

Why?

- Only executes what is necessary to achieve action.
- Can optimize the complete chain of operations to reduce communication

```
e.g.
```

Broadcast Variables

Read-only objects can be shared across all nodes.

Broadcast variable is a wrapper: access object with .value

```
Python:

filterWords = ['one', 'two', 'three', 'four', ...]

fwBC = sc.broadcast(set(filterWords))

...
...
```

Broadcast Variables

Read-only objects can be shared across all nodes.

Broadcast variable is a wrapper: access object with .value

```
Python:
filterWords = ['one', 'two', 'three', 'four', ...]
fwBC = sc.broadcast(set(filterWords))
itextFile = sc.textFile("hdfs:...")
- counts = textFile
     .map(lambda line: line.split(" "))
     .filter(lambda words: len(set(words) and word in fwBC.value) > 0)
     .flatMap(lambda word: (word, 1))
     .reduceByKey(lambda a, b: a + b)
counts.saveAsTextFile("hdfs:...")
```

Accumulators

Write-only objects that keep a running aggregation

Default Accumulator assumes sum function

Accumulators

Write-only objects that keep a running aggregation

Default Accumulator assumes sum function

Custom Accumulator: Inherit (AccumulatorParam) as class and override methods

```
initialValue = 0
• sumAcc = sc.accumulator(initialValue)
rdd.foreeach(lambda i: sumAcc.add(i))
:print(minAcc.value)
 class MinAccum(AccumulatorParam):
     def zero(self, zeroValue = np.inf):#overwrite this
          return zeroValue
     def addInPlace(self, v1, v2):#overwrite this
          return min(v1, v2)
minAcc = sc.accumulator(np.inf, minAccum())
irdd.foreeach(lambda i: minAcc.add(i))
 print(minAcc.value)
```

Spark System: Review

- RDD provides full recovery by backing up transformations from stable storage rather than backing up the data itself.
- RDDs, which are immutable, can be stored in memory and thus are often much faster.
- Functional programming is used to define transformation and actions on RDDs.

Eager action -> sets off (lazy) chain of transformations
-> launches jobs -> broken into stages -> broken into tasks

Eager action -> sets off (lazy) chain of transformations
-> launches jobs -> broken into stages -> broken into tasks

Eager action -> sets off (lazy) chain of **transformations**-> launches jobs -> broken into tasks

Eager action -> sets off (lazy) chain of **transformations**-> launches jobs -> broken into tasks

Image from Nguyen: https://trongkhoanguyen.com/spark/understand-rdd-operations-transformations-and-actions/

Co-partitions:

Ea If the partitions for two RDDs are based on the same hash function and key.

y) chain of *transformations* es *jobs* -> broken intertages -> broken into *tasks*

"Narrow deps: map, filter join with inputs counion partitioned

"Wide" (shuffle) deps: Narrow:

join with inputs not co-partitioned

record in-> process

record in-> process -> record[s] out **Wide:**

records in-> **shuffle:** regroup across cluster -> process-> record[s] out

For reading from DFS; disk persisted RDDs; extra space for **shuffles**

Spark System: Scheduling

Eager *action* -> sets off (lazy) chain of *transformations*-> launches *jobs* -> broken into *stages* -> broken into *tasks*

Jobs: A series of transformations (in a DAG) needed for the action

Stages: 1 or more per job -- 1 per set of operations separated by shuffle

Tasks: many per stage -- repeats exact same operation per partition

Spark System: Scheduling

Spark System: Scheduling

Image from Nguyen: https://trongkhoanguyen.com/spark/understand-rdd-operations-transformations-and-actions/

MapReduce or Spark?

- Spark is typically faster
 - RDDs in memory
 - Lazy evaluation enables optimizing chain of operations.
- Spark is typically more flexible (custom chains of transformations)

MapReduce or Spark?

- Spark is typically faster
 - RDDs in memory
 - Lazy evaluation enables optimizing chain of operations.
- Spark is typically more flexible (custom chains of transformations)

However:

- Still need Hadoop (or some DFS) to hold original or resulting data efficiently and reliably.
- Memory across Spark cluster should be large enough to hold entire dataset to fully leverage speed.

Thus, MapReduce may sometimes be more cost-effective for very large data that does not fit in memory.