

Fundação CECIERJ - Vice Presidência de Educação Superior a Distância

Curso de Tecnologia em Sistemas de Computação Disciplina: Computação Gráfica AP2 - 2° semestre de 2016.

Nome -

Assinatura -

Observações:

- i) Prova sem consulta e sem uso de máquina de calcular.
- ii) Use caneta para preencher o seu nome e assinar nas folhas de questões e nas folhas de respostas.
- iii) Você pode usar lápis para responder as questões.
- iv) Ao final da prova devolva as folhas de questões e as de respostas.
- v) Todas as respostas devem ser transcritas nas folhas de respostas. As respostas nas folhas de questões não serão corrigidas.

Na última página encontra-se a folha de respostas. Preencha corretamente e sem rasuras. Todas as questões tem o mesmo peso.

- Seja I a intensidade da luz incidente em um ponto p, I o vetor que indica a direção de incidência da luz, v a posição do observador, n a normal em p e r o raio de luz refletido.
 NÃO podemos afirmar sobre a equação (r.v)^x
 - A Trata-se da componente especular do modelo Phong
 - B Quanto maior x, mais distante o material está de um espelho
 - C não são todos os materiais que possuem esta componente
 - D Esta componente é variante de acordo com a posição do observador
 - E r e v devem estar normalizados para que esta equação seja válida
- 2) As coordenadas de texturas usadas em malhas 3D :
 - A São vértices colocados de forma artificial
 - B Devem ser criadas durante o pipeline gráfico
 - C São coordenadas bidimensionais, atreladas a um vértice
 - D São usadas apenas em texturas procedurais
 - E São geradas depois do estágio de iluminação
- 3) Se não fosse pelo **Z-Buffer**:
 - A Não poderíamos realizar a interpolação das cores dos vértices.
 - B Faltariam informações para o clipping
 - C Não haveria como estimar quais polígonos estão fora do frustrum da camera
 - D Não seria possível pintar os polígonos na ordem de profundidade
 - E Não seria possível aplicar cullings

- 4) Qual destes elementos não são necessários para calcular o frustrum culling (por exemplo, a BSP):
 - A posição da câmera
 - B Lista de vértices da malha
 - C Lista de Fontes de Luz
 - D Direção da camera
 - E Angulo de abertura da camera.

5) <u>Não podemos dizer</u> que um <u>vertex shader</u>:

- A pode ser programado.
- B Pode gerar novos triângulos
- C altera os vértices da geometria.
- D Pode conter um modelo de iluminação
- E permite manipular coordenadas de texturas

6) Um kernel é:

- A Uma função que é executada na GPU
- B Outro nome dado ao polígono
- C Um modelo de interpolação
- D Um shader
- E Um modelo de iluminação

7) Usamos Quaternions porque:

- A São ótimos algoritmos de iluminação
- B Para resolver problemas de profundidade, na etapa de projeção
- C Para realizar clipping de polígonos
- D Para construir as matrizes de transformação
- E No lugar da matriz de rotação, para evitar erros acumulados

8) Podemos dizer que as texturas procedurais:

- A São texturas que correspondem a uma imagem bitmap estática
- B são funções que em geral não contém periodicidade de padrões
- C São texturas sempre usadas para aplicar rugosidade nas superficies
- D São usadas para substituir o reflexo no tempo real
- E São métodos de anti-aliasing para imagens

9) Não podemos dizer que o bump-mapping:

- A cria deformações aparentes na superfície
- B não deforma a malha
- C Precisa de um mapeamento de textura
- D Podem ser usadas em tempo real
- E Não permite o uso do componente especular

10) Podemos afirmar que a função glSwapBuffers(...) permite

- A apagar os bits de profundidade do framebuffer.
- B inverter os canais de cores do framebuffer.

C trocar o conteúdo atual do *frontbuffer* pelo do *backbuffer*, fazendo com o que o desenho feito no *backbuffer* seja exibido na tela.

D o uso de um único buffer (single buffer) no processo de visualização.

E combinar o conteúdo do frontbuffer com o backbuffer.

11) A custo computacional do algoritmo de Raytracing não depende da:

- A quantidade de polígonos na cena.
- B número de pixels na imagem final a ser gerada.
- C quantidade de níveis de recursão das reflexões e transmissões de raios no algoritmo.
- D quantidade de fontes luz na cena.
- E do ângulo que as fontes de luz fazem com a cena.

12) <u>Assinale a função da OpenGL</u> que <u>permite definir os parâmetros</u> intrínsecos de uma <u>câmera sintética</u>

- <u>Camera Sintetica</u>
- $A \ glLookAt(...).$
- B glTranslate(...).
- C glRotate(...).
- D glBegin(...).
- E **glFrustum**(...).

Tabela de respostas. Preencha sem rasuras apenas uma resposta:

Questão	1	2	3	4	5	6	7	8	9	10	11	12
Resposta	В	С	D	С	В	Α	Е	В	Е	С	Е	Е