CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA CSF DEPARTAMENTO DE DISCIPLINAS BÁSICAS E GERAIS

Nota

$1^{\underline{\mathbf{a}}}$ PROVA DE CÁLCULO A UMA VARIÁVEL -2008/1-09-04-08

Prof. Alexandre Soares

Nome		
Matrícula	Curso	
Assinatura		

- Leia <u>atentamente</u> as questões propostas.
- O tempo de prova é de 2 horas e meia.
- O aluno que desejar fazer qualquer pergunta sobre a prova o fará em particular, dirigindo-se à mesa do professor
- A folha de questões deve ser devolvida junto com as respostas. Não serão consideradas provas sem a folha de questões
- Não serão consideradas soluções parciais nas questões de 1 a 10.
- Respostas parciais podem ser consideradas nas questões de 11 a 14, no entanto não serão aceitas respostas desprovidas de explicação clara e objetiva em língua portuguesa (i.e. contendo exclusivamente símbolos matemáticos).
- 1. Considere dois pontos distintos de coordenadas (x_1, x_1^2) e (x_2, x_2^2) sobre o gráfico da parábola $y = x^2$. Encontre a equação da reta tangente à parábola que é paralela à reta passando pelos dois pontos dados.

Calcule a derivada das funções abaixo

2.
$$y = (3x+1)^4/(1-2x)^3$$
 5. $y = \log(x\sqrt{2x+1})$

3.
$$y = e^{1/x^2} + 1/e^{x^2}$$
 6. $y = \log(\sec x + \operatorname{tg} x)$

4.
$$y = \text{sen}(\log x^2)$$
 7. $y = x^{(x^x)}$

Nos problemas 8 e 9, considere a função quadrática geral $f(x) = ax^2 + bx + c$, com a > 0.

- 8. Calcule o valor mínimo de f.
- 9. Mostre que $f(x) \ge 0$ se e somente se $b^2 4ac = 0$.
- 10. Um ponto se move ao longo da parábola de modo que sua projeção sobre o eixo x tem velocidade constante. Mostre que sua projeção sobre o eixo y tem aceleração constante.