CSCI 699 Spring 2019

Machine Learning for Knowledge Extraction & Reasoning Homework 1^*

Chi Zhang

USC ID: 6099-4134-05

Department of Computer Science

University of Southern California

February 18, 2019

1 Code Repository

https://github.com/vermouth1992/CSCI699ml4know/tree/master/hw1

2 Conditional Random Field

We train conditional random field model using external library sklearn-crfsuite [3] by following the tutorial https://eli5.readthedocs.io/en/latest/tutorials/sklearn_crfsuite.html. The main goal in this part is to explore the effect of various features and use them for the RNN-based model.

2.1 Feature Selection

We follow [4] and the tutorial and select the following set of features:

- 1. The word itself, last three characters and last two characters.
- 2. Whether the word is uppercase.
- 3. Whether the word is title. The word is title if the string is a titlecased string and there is at least one character, for example uppercase characters may only follow uncased characters and lowercase characters only cased ones. We use Python builtin function istitle().
- 4. Whether the word is digit.
- 5. Whether the word is float.
- 6. Whether the word contains hyphen.

1

^{*}Instructor: Xiang Ren

Table 1: Performance of various features using CRF

Features Set	Validation F1	Testa F1
1	68.05	63.26
1 - 2	68.02	63.01
1 - 3	73.30	68.05
1 - 4	73.33	68.21
1 - 5	73.44	67.87
1 - 6	73.37	67.60
1 - 7	75.47	69.52
1 - 8	79.64	76.12

- 7. The Part-of-Speech tag of the word.
- 8. The context of the word. We follow [4] by using a window size of 3 that is shown to work best.

We use 25% of the training sentences as validation sentences. We measure the F1 score on validation sentences and testa sentences by adding the feature one by one. All the models are trained using LBFGS optimization with 100 iterations.

2.2 Result

We show the validation F1-score and testa data F1-score for models using various features in Table 1. We summarize the most important features as follows:

- By adding "istitle" feature, the performance boosts by 5%.
- By adding "POStag" feature, the performance boosts by 2%.
- By adding "context" feature, the performance boosts around 6%.

To analyze which label benefits from those features, we show label-specific performance of important features in Figure 1. B-FAC and B-LAW benefits a lot from istitle feature. This is because most B-FAC and B-LAW starts with capitalized characters such as Article-II and Education Improvement. The boost of Postag comes from B-Person, B-ORG, B-NORP and B-LOC. This is because most of these labeled word is NNP. The context feature is crucial important for I-tag because I-tag always comes after B-tag.

3 RNN-based Model

3.1 Overview

We implement RNN-based model using Pytorch version 1.0.0. We use GloVe [2] to initialize the embedding. After the embedding layer, we try BiLSTM vs. CNN layer followed by a fully-connected layer with softmax activation.

Label	Precision	Recall	F1	Support	Label	Precision	Recall	F1	Support
B-EVENT	0.812	0.454	0.582	86	B-EVENT	0.695	0.477	0.566	86
B-FAC	0.513	0.247	0.333	77	B-FAC	0.615	0.312	0.414	77
B-GPE	0.816	0.842	0.829	1630	B-GPE	0.829	0.854	0.841	1630
B-LANGUAGE	0.842	0.533	0.653	30	B-LANGUAGE	0.857	0.600	0.706	30
B-LAW	0.571	0.286	0.381	28	B-LAW	0.700	0.500	0.583	28
B-LOC	0.667	0.424	0.518	165	B-LOC	0.644	0.515	0.572	165
B-NORP	0.787	0.821	0.804	683	B-NORP	0.807	0.848	0.827	683
B-ORG	0.783	0.563	0.655	1705	B-ORG	0.788	0.706	0.745	1705
B-PERSON	0.845	0.647	0.733	1713	B-PERSON	0.821	0.733	0.775	1713
B-PRODUCT	0.826	0.297	0.437	64	B-PRODUCT	0.833	0.391	0.532	64
B-WORK_OF_ART	0.609	0.156	0.248	90	B-WORK_OF_ART	0.408	0.222	0.288	90
I-EVENT	0.726	0.418	0.531	184	I-EVENT	0.615	0.522	0.565	184
I-FAC	0.500	0.402	0.446	117	I-FAC	0.506	0.376	0.431	117
I-GPE	0.723	0.721	0.722	376	I-GPE	0.744	0.726	0.735	376
I-LANGUAGE			0.000	0	I-LANGUAGE			0.000	0
I-LAW	0.423	0.167	0.239	66	I-LAW	0.458	0.333	0.386	66
I-LOC	0.680	0.497	0.574	167	I-LOC	0.692	0.593	0.639	167
I-NORP	0.549	0.538	0.544	52	I-NORP	0.643	0.519	0.575	52
I-ORG	0.700	0.616	0.655	2365	I-ORG	0.747	0.816	0.780	2365
I-PERSON	0.854	0.736	0.791	1155	I-PERSON	0.774	0.817	0.795	1155
I-PRODUCT	0.750	0.500	0.600	48	I-PRODUCT	0.718	0.583	0.644	48
I-WORK_OF_ART	0.400	0.111	0.174	270	I-WORK_OF_ART	0.301	0.233	0.263	270
0	0.980	0.992	0.986	151747	0	0.989	0.991	0.990	151747

(a) Feature set 1 - 2 (No istitle)

(b) Feature set 1 - 6 (No POStag)

Label	Precision	Recall	F1	Support	Label	Precision	Recall	F1	Support
					B-EVENT	0.754	0.500	0.601	86
B-EVENT	0.661	0.500	0.570	86	B-FAC	0.522	0.312	0.390	77
B-FAC	0.611	0.286	0.389	77	B-GPE	0.851	0.882	0.867	1630
B-GPE	0.835	0.863	0.849	1630	B-LANGUAGE	0.737	0.467	0.571	30
B-LANGUAGE	0.773	0.567	0.654	30					
B-LAW	0.619	0.464	0.531	28	B-LAW	0.750	0.536	0.625	28
B-LOC	0.736	0.576	0.646	165	B-LOC	0.717	0.551	0.623	165
B-NORP	0.840	0.865	0.852	683	B-NORP	0.861	0.854	0.857	683
B-ORG	0.801	0.746	0.773	1705	B-ORG	0.819	0.781	0.799	1705
B-PERSON	0.820	0.788	0.804	1713	B-PERSON	0.868	0.841	0.854	1713
B-PRODUCT	0.833	0.391	0.532	64	B-PRODUCT	0.885	0.359	0.511	64
B-WORK_OF_ART	0.476	0.222	0.303	90	B-WORK_OF_ART	0.607	0.378	0.466	90
I-EVENT	0.569	0.538	0.553	184	I-EVENT	0.627	0.484	0.546	184
I-FAC	0.543	0.376	0.444	117	I-FAC	0.533	0.410	0.464	117
I-GPE	0.749	0.731	0.740	376	I-GPE	0.784	0.782	0.783	376
I-LANGUAGE			0.000	0	I-LANGUAGE			0.000	0
I-LAW	0.500	0.303	0.377	66	I-LAW	0.733	0.333	0.458	66
I-LOC	0.682	0.605	0.641	167	I-LOC	0.695	0.587	0.636	167
I-NORP	0.634	0.500	0.559	52	I-NORP	0.750	0.462	0.571	52
I-ORG	0.767	0.835	0.800	2365	I-ORG	0.808	0.859	0.833	2365
I-PERSON	0.789	0.870	0.828	1155	I-PERSON	0.861	0.897	0.878	1155
I-PRODUCT	0.757	0.583	0.659	48	I-PRODUCT	0.839	0.542	0.658	48
I-WORK_OF_ART	0.393	0.252	0.307	270	I-WORK_OF_ART	0.670	0.459	0.545	270
0	0.991	0.993	0.992	151747	0	0.992	0.994	0.993	151747

(c) Feature set 1 - 7 (No context)

(d) Feature set 1 - 8 (All)

Figure 1: Label-specific performance of various features

3.2 Architecture Comparison

3.2.1 CNN vs BiLSTM

The number of layer is 1 for both architecture. The filter size of CNN is 3 and hidden size for both architecture is 64. The learning rate is set to 1e-3. The F1 score of CNN on testa data is 66.39% and the F1 score of BiLSTM on testa data is 70.77%. The approximate 4% performance boost indicates

that name entity tags generally have long-term dependency instead of depending purely on local context words.

3.3 Additional Features

The word embedding can be viewed as features for the word itself. By using CNN or BiLSTM, we include features for context words. Like conditional random fielf, we add additional features including istitle, isdigit and isupper and part-of-speech tag to BiLSTM model and the F1 score on testa is 71.12%.

3.4 Number of Layers

We try 2 layer and 3 layer BiLSTM with 50% dropout. The F1 performance on testa dataset is 73.65% and 72.41%. The model becomes more and more overfitting by adding more layers.

3.5 Embedding Comparison

We try to use contextual embedding BERT [1] without case to finetune a transformer model based on tutorial https://www.depends-on-the-definition.com/named-entity-recognition-with-bert/. However, the final performance on testa data is only around 67% and it's hard to analyze what's going wrong.

3.6 Additional thoughts

GloVe and BERT is uncased embedding, which ignore the difference between Education Improvement and education improvement. However, as shown in Part 1, the character-level feature plays an important role in name entity recognition. Thus, we believe there would be huge performance boost by adding char-level features such as using CNN as extractor. Due to limited time, we leave this to future work.

References

- [1] J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: pre-training of deep bidirectional transformers for language understanding. *CoRR*, abs/1810.04805, 2018.
- [2] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word representation. In *In EMNLP*, 2014.
- [3] TeamHG-Memex. sklearn-crfsuite. https://eli5.readthedocs.io/en/latest/tutorials/.
- [4] M. Tkatchenko and A. Simanovsky. Named entity recognition: Exploring features. In KONVENS, 2012.