1 Оценка сверху для АСТ КФ в случае знакопостоянного веса

Далее действуем в предположении, что вес $\rho(x)$ знакопостоянен на (a,b), не умаляя общности можно считать его неотрицательным.

Определение

Назовем узел x_k *внутренним*, если $x_k \in (a,b)$ и *внешним* в противном случае.

Пусть весовая функция $\rho(x) > 0 \ \forall x \in (a, b)$.

Пусть у К Φ n внутренних узлов и m внешних узлов (полное число узлов N=n+m).

$$\int_{a}^{b} \rho(x)f(x) dx \approx \sum_{k=1}^{n} A_{k}f(x_{k}) + \sum_{j=1}^{m} B_{j}f(y_{j}), \quad x_{k} \in (a,b) \ y_{j} \notin (a,b).$$
 (1)

Теорема

АСТ КФ (1) удовлетворяет неравенству $d_N \le 2n + m - 1 = (2N - 1) - m$.

Доказательство:

Предположим противное. Пусть $ACT \ge (2n+m)$. Тогда предъявим многочлен степени 2n+m, для которого эта $K\Phi$ будет не точна. Рассмотрим

$$Q_{2n+m}(x) = \prod_{k=1}^{n} (x - x_k)^2 \prod_{j=1}^{m} (x - y_j).$$

По определению многочлен $Q_{2n+m} \not\equiv 0$. На (a,b) $Q_{2n+m}(x)$ знак не меняет, так как все его корни лежащие внутри (a,b) имеют кратность 2. Значит

$$\int_{a}^{b} \rho(x)Q_{2n+m}(x) \, \mathrm{d}x \neq 0$$

потому что $\rho(x)$ и $Q_{2n+m}(x)$ не эквивалентны нулю и знакопостоянны.

С другой стороны тот же интеграл равен нулю, так как для $Q_{2n+m}(x)$ формула (1) должна быть точна и так как x_k, y_j — корни $Q_{2n+m}(x)$.

$$\int_{a}^{b} \rho(x)Q_{2n+m}(x) dx = \sum_{k=1}^{n} A_{k}Q_{2n+m}(x_{k}) + \sum_{j=1}^{m} B_{j}Q_{2n+m}(y_{j}) = 0$$

ПРОТИВОРЕЧИЕ! нашему предположению, что $d_N \ge (2n+m)$. Следовательно, $d_N \le (2n+m-1)$. Теорема доказана.

Замечание

Таким образом, в случае знакопостоянного веса АСТ ИКФ с N узлами удовлетворяет двусторонней оценке:

$$N-1 \le d_N \le (2N-1) - m \le 2N-1.$$

При этом оценка снизу достигается специальным выбором коэффициентов A_k в случае когда узлы выбраны произвольными попарно различными. Отметим, что ограничения знакопостоянства веса здесь нет. В случае же если вес знакопостоянен, можно повысить АСТ ИКФ за счет специального выбора узлов, по которым далее построить ИКФ. Наивысшая АСТ КФ с N узлами равна 2N-1. И больше быть не может, так как общее число параметров КФ с N узлами равно 2N (N узлов и N коэффициентов).

КФ, имеющие наивысшую АСТ будут рассмотрены несколько позже. Сейчас рассмотрим вопрос сходимости последовательности ИКФ к интегралу.

Оценки погрешности КФ и сходимость КФ 2

Пусть [a, b] – конечен. Рассмотрим КФ следующего вида

$$\int_{a}^{b} \rho(x)f(x) dx \approx \sum_{k=1}^{N} A_{k}f(x_{k}).$$
 (2)

Пусть узлы $x_k \in [a,b]$ и, кроме того, АСТ КФ $(2)=d\geq 0$. Известно, что $\forall f\in C\left[a,b\right]\ \exists !P_d^*$: $||f - P_d^*||_{C[a,b]} = E_d(f).$

Хотим получить оценку для погрешности $K\Phi$ (2). Погрешность $K\Phi$ (2)

$$R_{N}(f) = \int_{a}^{b} \rho(x)f(x) dx - \sum_{k=1}^{N} A_{k}f(x_{k})$$

$$= \int_{a}^{b} \rho(x) (f(x) - P_{d}^{*}(x)) dx + \int_{a}^{b} \rho(x)P_{d}^{*}(x) dx$$

$$- \sum_{k=1}^{N} A_{k}f(x_{k}) + \sum_{k=1}^{N} A_{k}P_{d}^{*}(x_{k}) - \sum_{k=1}^{N} A_{k}P_{d}^{*}(x_{k})$$

$$= \int_{a}^{b} \rho(x) (f(x) - P_{d}^{*}(x)) dx + \sum_{k=1}^{N} A_{k} (P_{d}^{*}(x_{k}) - f(x_{k})).$$

Причем очевидно, так как все узлы $x_k \in [a,b]$, то $|P_d^*(x_k) - f(x_k)| \le E_d(f) \quad \forall k=1,2,\dots,N$ и

$$\int_{a}^{b} \rho(x) P_{d}^{*}(x) dx - \sum_{k=1}^{N} A_{k} P_{d}^{*}(x_{k}) = 0,$$

так как по предположению ${
m ACT}=d,$ значит для P_d^* интеграл совпадет с квадратурной суммой. Теперь легко получается оценка по абсолютной величине

$$|R_N(f)| \le E_d(f) \int_a^b |\rho(x)| \, dx + E_d(f) \sum_{k=1}^N |A_k| = E_d(f) \left(\int_a^b |\rho(x)| \, dx + \sum_{k=1}^N |A_k| \right). \tag{3}$$

Замечание

Здесь важна конечность [a,b]. Иначе $E_d(f) = \|f - P_d^*\|_{C[a,b]} = +\infty$ и оценка (3) перестает быть содержательной.

Утверждение 1

Пусть [a,b] конечен. Пусть $f \in C[a,b]$, а узлы КФ вида (2) $x_k \in [a,b]$. Пусть выполнены два условия:

1) $\sum_{k=1}^{N} |A_k| \le M$, 2) $d_N \xrightarrow[N \to +\infty]{} +\infty$.

Тогда $\forall f \in C[a,b]$ $R_N(f) \xrightarrow{N \to +\infty} 0.$

Доказательство:

Известно, что наилучшее равномерное приближение $E_{d_N}(f) \xrightarrow[d_N \to +\infty]{} 0$ для конечного [a,b]. Так как выполнено условие 1), то $\int_a^b |\rho(x)| dx + \sum_{k=1}^N |A_k|$ ограничена. И, следовательно, так как верна оценка (3) для $|R_N(f)|$, то $R_N(f) \xrightarrow[N \to +\infty]{} 0$. Утверждение 1 доказано.

Определение

Говорят, что остаточный член квадратурной формулы (2) допускает представление в форме Лагранжа, если $\exists Const$, $\exists m \in N : \forall f \in C^m[a,b] \ \exists \xi \in [a,b]$ такая, что

$$R_N(f) = Const \cdot f^{(m)}(\xi) \tag{4}$$

Замечание

КФ может не иметь остатка в форме Лагранжа.

Утверждение 2

Если КФ имеет представление остатка в форме Лагранжа, то $m = d_N + 1$. Доказательство: без доказательства.

Утверждение 3

Пусть вес $\rho(x)$ КФ (2) знакопостоянен (например, $\rho(x) \ge 0$). Пусть КФ (2) имеет АСТ = d. Если все коэффициенты КФ (2) одного знака. Тогда

$$|R_N(f)| \le 2|\mu_0|E_d(f).$$
 (5)

Доказательство:

Заметим, что знак коэффициентов КФ (если все они одного знака) связан со знаком весовой функции (если вес знакопостоянен). А именно: пусть, например, $\rho(x) \ge 0$, тогда если $\exists d \ge 0$ — АСТ КФ (2), то будет точность для констант. Рассмотрим $f(x) \equiv 1$, для нее

$$\mu_0 = \int_a^b \rho(x) \cdot 1 \, dx = \sum_{k=1}^N A_k \cdot f(x_k) = \sum_{k=1}^N A_k.$$

Значит, если $\rho(x) \geq 0$, то $\mu_0 > 0$ и все $A_k > 0$. Иначе, если $\rho(x) \leq 0$, то $\mu_0 < 0$ и все $A_k < 0$. Также, очевидно, $\int_a^b |\rho(x)| \, \mathrm{d}x = \int_a^b \rho(x) \cdot 1 \, \mathrm{d}x = \mu_0$. А если вес неотрицателен, то $\sum_{k=1}^N |A_k| = \sum_{k=1}^N A_k = \mu_0$. Тогда из оценки (3) немедленно следует, что $|R_N(f)| \leq 2\mu_0 E_d(f)$. Утверждение 3 доказано.

Замечание:

1) Пусть вес $\rho(x) \geq 0$ и пусть $\exists \ d \geq 0$ — АСТ КФ. Тогда, если среди коэффициентов A_k есть отрицательные, то оценка

$$|R_N(f)| \le \left(\int_a^b |\rho(x)| \, dx + \sum_{k=1}^N |A_k| \right) E_d(f)$$

будет хуже чем оценка (5) для положительных коэффициентов. Ведь в этом случае

$$\sum |A_k| \ge \left| \sum A_k \right| = \left| \int_a^b \rho(x) \, \mathrm{d}x \right| = \int_a^b \rho(x) \, \mathrm{d}x = \mu_0.$$

- 2) ВАЖНО! если вес $\rho(x) \ge 0$, желательно использовать КФ, все коэффициенты которой > 0, и наоборот, если вес $\rho(x) \le 0$, лучше использовать КФ, все коэффициенты которой < 0.
- 3) Еще одно пояснение, почему лучше строить КФ с коэффициентами одного знака: сумма модулей коэффициентов КФ характеризует устойчивость вычислений. А именно: рассмотрим результат вычисления интеграла при помощи КФ "в машине". Мы имеем дело с приближенной суммой

$$\sum_{k=1}^{N} A_k \widetilde{f}(x_k) = \sum_{k=1}^{N} A_k (f(x_k) + \epsilon_k) = \sum_{k=1}^{N} A_k f(x_k) + \sum_{k=1}^{N} A_k \epsilon_k.$$

Вторая сумма представляет собой погрешность, вызванную погрешностями ошибок в вычислении значений функции. Тогда

$$\left| \sum_{k=1}^{N} A_k \epsilon_k \right| \le \left(\sum_{k=1}^{N} |A_k| \right) \cdot \max_k |\epsilon_k|.$$

При этом $\max_k |\epsilon_k|$ не улучшаема, а коэффициент усиления этой ошибки $\sum_{k=1}^N |A_k|$ минимален, если все A_k одного знака.

3 Подобные квадратурные формулы

Пусть вес $\rho(x)\equiv 1$. Тогда, чтобы $\exists \mu_0=\int_a^b \rho(x)\,\mathrm{d}x=\int_a^b \mathrm{d}x=b-a$, требуется конечность [a,b]. Рассмотрим КФ вида

$$\int_{a}^{b} f(x) dx \approx \sum_{k=1}^{N} A_{k} f(x_{k}), \qquad (6)$$

узлы которой $x_k \in [a, b]$.

Предположим, мы хотим вычислить интеграл следующего вида

$$\int_{c}^{d} g(y) \, \mathrm{d}y,$$

при этом конечный $[c,d] \neq [a,b]$.

Выполним линейную замену переменной интегрирования, переводящую [a,b] в [c,d] :

$$y = c + \frac{d-c}{b-a}(x-a),$$

при этом $\mathrm{d}y=q\,\mathrm{d}x,$ где $q=\frac{d-c}{b-a}$ — коэффициент подобия. Имеем

$$\int_{c}^{d} g(y) \, \mathrm{d}y = \int_{a}^{b} g(c + q(x - a)) q \, \mathrm{d}x \approx \sum_{k=1}^{N} A_{k} \cdot q \cdot g(c + q(x_{k} - a)) = \sum_{k=1}^{N} B_{k} \cdot g(y_{k}),$$

где

$$B_k = A_k \cdot q$$

 $y_k = c + q(x_k - a), \qquad k = 1, 2, ..., N.$ (7)

Определение

Формулы

$$\int_a^b f(x) dx \approx \sum_{k=1}^N A_k f(x_k), \qquad \int_c^d g(y) dy \approx \sum_{k=1}^N B_k g(y_k)$$

называются подобными квадратурными формулами, если для их коэффициентов и узлов выполнены равенства (7).

4 Свойства КФ

Пусть вес $\rho(x) \equiv 1$, и, следовательно, [a, b] конечен.

- 1. Если КФ (6) точна для констант (АСТ КФ ≥ 0), то $\sum_{k=1}^{N} A_k = b a$.
- 2. АСТ подобных формул совпадают.
- 3. Если одна из подобных КФ интерполяционная (ИКФ), то другая тоже ИКФ.
- 4. Пусть

$$\int_{-a}^{a} f(x) dx \approx \sum_{k=1}^{N} A_k f(x_k)$$

интерполяционная, вес $\rho(-x) = \rho(x)$ (четен на [-a,a]), а узлы $x_k = -x_{N+1-k}$, k = 1, 2, ..., N (симметричны). Тогда

$$A_k = A_{N+1-k}$$

— коэффициенты, отвечающие симметричным узлам равны.

Доказательство:

Так как по условию $K\Phi - HK\Phi$, то по определению $HK\Phi$

$$A_k = \int_{-a}^{a} \rho(x) \ell_{kN}(x) \, \mathrm{d}x.$$

Из-за симметрии узлов при четном N многочлен $\omega_N(x) = \prod_{k=1}^{N/2} (x-x_k)(x+x_k) = \prod_{k=1}^{N/2} (x^2-x_k^2)$ – четная функция. Тогда многочлены влияния (лагранжевы коэффициенты) будут связаны равенствами

$$\ell_{kN}(x) = \frac{\omega_N(x)}{(x - x_k)\omega_N'(x_k)} = \frac{\omega_N(-x)}{(-x + x_k)(-\omega_N'(x_k))} = \frac{\omega_N(-x)}{(-x + x_k)(\omega_N'(x_{N+1-k}))}$$
$$= \frac{\omega_N(-x)}{(-x - x_{N+1-k})\omega_N'(x_{N+1-k})} = \ell_{N+1-k,N}(-x).$$

Теперь получим равенство коэффициентов:

$$A_{N+1-k} = \int_{-a}^{a} \rho(x)\ell_{N+1-k,N}(x) \, \mathrm{d}x = \int_{-a}^{a} \rho(x)\ell_{kN}(-x) \, \mathrm{d}x = \int_{-a}^{a} \rho(-x)\ell_{kN}(-x) \, \mathrm{d}x = A_k.$$

Свойство доказано.

- 5. Можно сдвинуть [-a, a], но если при этом вес будет четен относительно середины отрезка, то есть $\rho(a+b-x)=\rho(x), \quad x\in [a,b]$, а узлы КФ расположены симметрично (если x_k узел, то и $a+b-x_k$ узел). А также КФ ИКФ, то снова $A_k=A_{N+1-k}$.
- 6. Пусть формулы $\int_a^b f(x) \, \mathrm{d}x \approx \sum_{k=1}^N A_k f(x_k)$ и $\int_c^d g(y) \, \mathrm{d}y \approx \sum_{k=1}^N B_k g(y_k)$ подобны. Пусть первая КФ имеет представление остатка в форме Лагранжа: $R_N(f) = C_1 f^{(m)}(\xi)$; тогда вторая также имеет представление остатка в форме Лагранжа $R_N(g) = C_2 g^{(m)}(\eta)$, где

$$C_2 = C_1 \left(\frac{d-c}{b-a}\right)^{m+1}.$$

Доказательство:

Рассмотрим f(x) = g(c + q(x - a)). Тогда

$$\int_{c}^{d} g(y) \, dy = q \cdot \int_{a}^{b} f(x) \, dx = q \left(\sum_{k=1}^{N} A_{k} f(x_{k}) + R_{N}(f) \right)$$

$$= \sum_{k=1}^{N} q A_{k} g(c + q(x_{k} - a)) + q C_{1} f^{(m)}(\xi)$$

$$= \sum_{k=1}^{N} B_{k} g(y_{k}) + q C_{1} q^{m} g^{(m)}(\eta)$$

$$= \sum_{k=1}^{N} B_{k} g(y_{k}) + R_{N}(g),$$

где $\eta = c + q(\xi - a)$. Следовательно, $R_N(g) = C_1 q^{m+1} g^{(m)}(\eta)$. Свойство доказано.