Project: Traffic Incident Severity Prediction

Objective

Develop a supervised machine learning model that predicts the **severity level (1–4)** of a traffic incident based on its spatial, temporal, and contextual features. This aids dispatchers and first responders in triaging incidents and allocating resources efficiently.

1. Data Preparation

1. Load and clean data

- Parse Start_Time/End_Time as datetime.
- o Drop or impute missing geographic coordinates.
- o Remove duplicate records.

2. Feature engineering

Temporal features:

- Hour of day (Start_Time.dt.hour)
- Day of week (Start Time.dt.weekday)
- Incident duration in minutes: (End_Time Start_Time). total_seconds()/60

Spatial features:

- Start latitude/longitude directly or binned grid cells
- Distance impacted (Distance(mi))
- o Traffic-control flags: use boolean columns (Traffic_Signal, Roundabout, etc.)
- Light condition: encode Sunrise_Sunset and twilight phases as categorical (one-hot)
- Text features (optional):
 - Encode Description via TF-IDF or keyword presence (e.g., "lane blocked,"
 "accident on")

3. Train/test split

o Stratify by Severity to ensure all levels appear in both sets.

o Typical 70/30 or 80/20 split.

2. Model Selection

1. Baseline models

o Logistic regression (multinomial) or decision tree as a simple benchmark.

2. Advanced models

- o Gradient-boosted trees for strong performance on tabular data.
- Random forest classifier as an ensemble alternative.

3. Hyperparameter tuning

 Use cross-validation with grid search or Bayesian optimization to tune tree depth, learning rate, number of estimators, etc.

3. Evaluation Metrics

- Accuracy, F1-score (macro) for overall performance across all severity levels.
- **Confusion matrix** to diagnose which severity levels are often misclassified.
- **ROC AUC** per class via one-vs-rest for additional insight.

4. Deployment & Interface

- Web dashboard (e.g., Streamlit or Flask) where users:
 - Upload or enter incident details (time, location, traffic features).
 - o Receive a predicted severity level and confidence scores.
 - o Visualize feature-importance via SHAP to explain model decisions.

This project provides actionable severity predictions and interpretable insights to enhance traffic incident response and public safety.