Seminar of Ushio Lab.

B4 Yuma Yamakura

Outline

- Introduction
 - Markov Decision Process (MDP)
 - Q-learning
 - Discrete Event Systems (DESs)
 - Supervisory control
- Decentralized supervisory control of DESs based on reinforcement learning
- Simulation
- Future Work

Markov decision process (MDP)

Reference

木村元,"強化学習の基礎",計測と制御 第52巻 第1号 2013年1月号,公益社団法人 計測自動制御学会,2013

A finite MDP : $\langle X, U, P, R \rangle$

X: the finite set of environment states

A: the finite set of agent actions

 $P: X \times A \times X \rightarrow [0,1]$ the transition probability function

 $R: X \times A \times X \rightarrow \mathbb{R}$ the reward function

An agent's policy h

h: the rule of an agent's selecting an action a

An agent want to choose the optimal policy h^* such that its behavior maximizes the discounted return at each time.

$$V_t = \sum_{k=0}^{\infty} \gamma^k r_{t+k} \quad (\gamma \in [0,1))$$

The Bellman optimality equation

If the policy h is stationary, the following equations are satisfied.

 $Q: X \times A \to \mathbb{R}$ the action value function (Q-function)

(the expected discounted return of a state-action pair given the policy h)

The Bellman optimality equation

$$Q^{*}(x,a) = \sum_{x' \in X} P(x'|x,a) \left(R(x,a,x') + \gamma \max_{a} Q^{*}(x',a) \right) \qquad Q^{*}(x,a) = \max_{h} Q(x,a)$$

Q-learning

Q-learning is a learning algorithm of estimating $Q^*(x, a)$.

$$Q(x,a) \leftarrow Q(x,a) + \alpha \left[r + \gamma \max_{a \in A} Q(x',a) - Q(x,a) \right] \quad (\alpha, \gamma \in (0,1]: \text{the learning rate})$$

$$new \ Q-value$$

Q-learning algorithm

Initialize Q(x, a) for each Q-value and repeat the following steps.

- 1. Observe state x and decide $a \in \arg \max_{a} Q(x, a)$. \longleftarrow the policy h (stationary)
- 2. Acquire reward r and observe state transition to x'
- 3. Update $Q(x,a): Q(x,a) \leftarrow Q(x,a) + \alpha \left[r + \gamma \max_{a \in A} Q(x',a) Q(x,a)\right]$
- 4. t←t+1

Discrete Event Systems (DESs)

Reference
Tatsushi YAMASAKI and Toshimitsu
USHIO ,Members,"Decentralized Supervisory Control of Discrete
Event Systems Based on Reinforcement Learning",IEICE
TRANS.FUNDAMENTALS,VOL.E88-A,NO.11 NOVEMBER 2005

A DES G : $\langle X, \Sigma, f, x_0 \rangle$

X:a set of states

Σ:a set of events

 $f: X \times \Sigma \to X$ a state transition function

 $x_0 \in X$:an initial state

 $\Sigma^c \subseteq \Sigma$:a set of controllable events

 $\Sigma^o \subseteq \Sigma$:a set of observable events

 $\Sigma^{uc} = \Sigma - \Sigma^c$: a set of uncontrollable events

 $\Sigma^{uo} = \Sigma - \Sigma^o$: a set of unobservable events

Supervisory control

Supervisors assign a control pattern π which enables or prohibits some controllable events controllable events so that a given specification is satisfied. enable Supervisors don't cause a controllable event directly. (The environment cause a prohibit controllable event.) a control pattern π at xDES G uncontrollable event A supervisor can't assign π σ a control pattern π

Decentralized supervisory control of DESs

 $M_1^e:\Sigma \to \Sigma_i^o \cup \{\epsilon\}$ the projection from σ in the DES G to σ_i for SV_i

a DES of Each local supervisor SV_i : $\langle S_i, \Sigma_i, g_i, x_0 \rangle$

 $S_i \subseteq 2^X$:the set of states

 $\Sigma_i \subseteq \Sigma$:the set of events

 $g_i: S_i \times \Sigma_i^o \to S_i$ the state transition function

 $x_0 \in X$: the initial state of the DES G

 $\Sigma_i^o \subseteq \Sigma^o$:the set of observable events for each SV_i

a MDP of SV_i : $\langle S_i, \Pi_i, P_i, R_i \rangle$

 $S_i \subseteq 2^X$: the set of states of SV_i Π_i : the set of control patterns at each state $P_i: S_i \times \Pi_i \times S_i \to [0,1]$ the probability of the transition $R_i: S_i \times \Pi_i \times S_i \to \mathbb{R}$ the expected reward

The system model based on Q-learning

The Bellman optimal equation for each SV_i :

 $Q_i:S_i \times \Pi_i \to \mathbb{R}$ the expected discounted return of a state-control pattern pair for SV_i

$$Q_i^*(s_i, \pi_i) = \sum_{s_i' \in S_i} P_i(s_i' | s_i, \pi_i) \left(R_i(s_i, \pi_i, s_i') + \gamma \max_{\pi_i' \in \Pi_i(s_i')} Q_i^*(s_i', \pi_i') \right)$$

$$Q_i^*(s_i, \pi_i) = \max_{\pi_i \in \Pi_i(s_i)} Q_i (s_i, \pi_i)$$

Two assumptions for the system (1/2)

1. For each SV_i , The following equation holds:

$$P_{i}(s_{i}'|s_{i},\pi_{i}) = \sum_{\sigma_{i}^{o} \in \pi_{i} \cap \Sigma_{i}^{o}} P_{i}^{1}(s_{i},\pi_{i},\sigma_{i}^{o}) P_{i}^{2}(s_{i},\sigma_{i}^{o},s_{i}')$$

 P_i^1 : the probability of the occurrence of the observed event σ_i^o when SV_i selects π_i at s_i

 P_i^2 : the probability of the transition from s_i to s_i' by the observed event σ_i^o

The DES G has a parameter $\eta_i(s_i, \sigma_i^o)$ which indicates a probability of the occurrence of the event σ_i^o at state s_i .

$$P_i^1(s_i, \pi_i, \sigma_i^o) = \frac{\eta_i(s_i, \sigma_i^o)}{\sum_{\sigma_i^o \in \pi_i \cap \Sigma_i^o} \eta_i(s_i, \sigma_i^o)}$$

$$\eta_i(s_i, \sigma_i^o) > 0 \quad \sum_{\sigma_i^o \in F_i(s_i) \cap \Sigma_i^o} \eta_i(s_i, \sigma_i^o) = 1$$

SV_i selects π_i :

Two assumptions for the system (2/2)

2. The reward $R_i(s_i, \pi_i, s_i')$ consists of two terms as follows:

$$R_i(s_i, \pi_i, s_i') = R_i^1(s_i, \pi_i) + R_i^2(s_i, \sigma_i^o, s_i')$$
 R_i^1 : the expected reward when SV_i selects π_i at s_i \rightarrow the cost to disable controllable events
 R_i^2 : the expected reward when SV_i observes an event σ_i^o and makes a transition from s_i to s_i' \rightarrow the costs by the occurrence of the event and evaluation about task

 SV_i selects π_i :

Bellman optimal equation

By using the assumptions and Bellman optimal equation, the following equation is obtained:

$$Q_i^*(s_i, \pi_i) = R_i^1(s_i, \pi_i) + \sum_{\sigma_i^o \in \pi_i \cap \Sigma_i^o} \frac{\eta_i(s_i, \sigma_i^o)}{\sum_{\sigma_i^o \in \pi_i \cap \Sigma_i^o} \eta_i(s_i, \sigma_i^o)} T_i^*(s_i, \sigma_i^o)$$

$$T_i^*(s_i, \sigma_i^o) = \sum_{s_i' \in S_i} P_i^2(s_i, \sigma_i^o, s_i') \left(R_i^2(s_i, \sigma_i^o, s_i') + \gamma \max_{\pi_i' \in \Pi_i(s_i')} Q_i^*(s_i', \pi_i') \right)$$

similar to Q-learning

 $T_i^*(s_i, \sigma_i^o)$ denotes a discounted expected total reward when SV_i observes σ_i^o at s_i and selects the control pattern which has the maximum value Q_i^* at the new states.

Bellman optimal equation

$$Q_i^*(s_i, \pi_i) = \sum_{s_i' \in S_i} P_i(s_i' | s_i, \pi_i) \left(R_i(s_i, \pi_i, s_i') + \gamma \max_{\pi_i' \in \Pi_i(s_i')} Q_i^*(s_i', \pi_i') \right)$$

Assumption 1.

$$P_{i}(s_{i}'|s_{i}, \pi_{i}) = \sum_{\sigma_{i}^{o} \in \pi_{i} \cap \Sigma_{i}^{o}} P_{i}^{1}(s_{i}, \pi_{i}, \sigma_{i}^{o}) P_{i}^{2}(s_{i}, \sigma_{i}^{o}, s_{i}')$$

$$P_{i}^{1}(s_{i}, \pi_{i}, \sigma_{i}^{o}) = \frac{\eta_{i}(s_{i}, \sigma_{i}^{o})}{\sum_{\sigma_{i}^{o} \in \pi_{i} \cap \Sigma_{i}^{o}} \eta_{i}(s_{i}, \sigma_{i}^{o})}$$

$$P_i^1(s_i, \pi_i, \sigma_i^o) = \frac{\eta_i(s_i, \sigma_i^o)}{\sum_{\sigma_i^o \in \pi_i \cap \Sigma_i^o} \eta_i(s_i, \sigma_i^o)}$$

Assumption 2.

$$R(s_i, \pi_i, s_i') = R_i^1(s_i, \pi_i) + R_i^2(s_i, \sigma_i^o, s_i')$$

Bellman e.q.
$$Q^*(x,a) = \sum_{x' \in X} P(x'|x,a) \left(R(x,a,x') + \gamma \max_{a} Q^*(x',a) \right)$$

Q-learning Update
$$Q(x,a) \leftarrow Q(x,a) + \alpha \left[r + \gamma \max_{a \in A} Q(x',a) - Q(x,a) \right]$$

Formulation

Estimating $R_i^1(s_i, \pi_i)$, $\eta_i(s_i, \sigma_i^0)$ and $T_i(s_i, \sigma_i^0)$

$$T_{i}(s_{i}, \sigma_{i}^{o}) \leftarrow T_{i}(s_{i}, \sigma_{i}^{o}) + \alpha \left[r_{i}^{2} + \gamma \max_{\pi_{i}' \in \Pi_{i}(s_{i}')} Q_{i}(s_{i}', \pi_{i}') - T_{i}(s_{i}, \sigma_{i}^{o}) \right]$$

$$R_{i}^{1}(s_{i}, \pi_{i}) \leftarrow R_{i}^{1}(s_{i}, \pi_{i}) + \beta \left[r_{i}^{1} - R_{i}^{1}(s_{i}, \pi_{i}) \right]$$
for all $\sigma_{i}^{o} \in \pi$, OS_{i}^{o}

for all
$$\sigma_i^o \in \pi_i \cap \Sigma_i^o$$

$$\eta_{i}(s_{i}, \sigma_{i}^{o}) \leftarrow \begin{cases} (1 - \delta) \, \eta_{i}(s_{i}, \sigma_{i}^{o'}) & \text{if } \sigma_{i}^{o'} \neq \sigma_{i}^{o} \\ \eta_{i}(s_{i}, \sigma_{i}^{o'}) + \delta \left[\sum_{\sigma_{i}^{o} \in \pi_{i} \cap \Sigma_{i}^{o}} \eta_{i}(s_{i}, \sigma_{i}^{o}) - \eta_{i}(s_{i}, \sigma_{i}^{o'}) \right] & \text{if } \sigma_{i}^{o'} = \sigma_{i}^{o} \end{cases}$$

Updating Q values

$$\forall \pi_i' \in \Pi_i(s_i) \text{ s.t. } \pi_i' \cap \pi_i \neq \emptyset$$

$$Q_i (s_i, \pi_i') \leftarrow R_i^1(s_i, \pi_i') + \sum_{\sigma_i^o \in \pi_i \cap \Sigma_i^o} \frac{\eta_i(s_i, \sigma_i^o)}{\sum_{\sigma_i^o \in \pi_i \cap \Sigma_i^o} \eta_i(s_i, \sigma_i^o)} T_i (s_i, \sigma_i^o)$$

The proposed algorithm

- 1. Initialize $R_i^1(s_i, \pi_i)$, $\eta_i(s_i, \sigma_i^o)$, $T_i^{(s_i, \sigma_i^o)}$ and $Q_i^{(s_i, \pi_i)}$ for all $SV_i^{(s_i, \pi_i)}$
- 2. Repeat until any s_i is a terminal state
 - a. Initialize a state $s_i \leftarrow x_0$ for all SV_i
 - b. Repeat for each SV_i
 - i. Select a control pattern $\pi_i \in \Pi_i(s_i)$ based on the Q_i values by SV_i
 - ii . Observe the occurrence of event $\sigma_i^o \in \Sigma_i^o$
 - iii. Acquire rewards r_i^1 and r_i^2
 - iv. Make a transition $s_i \rightarrow s_i'$ in SV_i
 - v. Update $R_i^1(s_i, \pi_i)$, $\eta_i(s_i, \sigma_i^o)$ and $T_i^-(s_i, \sigma_i^o)$
 - vi. Update Q_i (s_i, π_i)
 - $\forall ii. s_i \leftarrow s_i'$

Simulation: Setting (the cat and mouse problem)

a setting of states

A mouse can move in room1, room2 and room3.

A cat can move in room3, room4 and room5.

a setting of SV_1

 SV_1 can observe the occurrences of the event

 $\sigma_i^o \in \Sigma_1^o = \{m1, m2, m3, c2, c3\}$ in the room1, room2 and room3.

 SV_1 can control m1, m2 and m3

a setting of SV₂

 SV_2 can observe the occurrences of the event

 $\sigma_i^o \in \Sigma_2^o = \{c1, c2, c3, m2, m3\}$ in the room3, room4 and room5.

 SV_2 can control c1, c2 and c3

This problem's goal

controlling doors so as not to encounter a cat and a mouse in the same room simultaneously

Simulation: Setting (the cat and mouse problem)

the initial state

$$x_0 = (\begin{array}{c} \text{room2} \end{array}, \begin{array}{c} \text{room4} \end{array})$$
 mouse cat

a reward r_i^1 and r_i^2

 $r_i^1 = -2 \times \text{(the number of doors closed by } SV_i)$ $r_i^2 = \begin{cases} 1 & \text{if } SV_i \text{ observes a cat and a mouse entering a new room } \\ -100 & \text{if } SV_i \text{ observes a cat and a mouse in room3} \\ 0 & \text{otherwise} \end{cases}$

observation noise (the normal distribution) μ =(true value) σ =0.1

 SV_i prefers to leave doors open if the encounter does not occur.

Simulation: Result

The transition diagram of the learned SV_1

The transition diagram of the learned SV_2

mi : controllable ci : uncontrollable

 \square : the unobservable state (4 or 5)

mi: uncontrollable ci: controllable

 \triangle : the unobservable state (1 or 2)

Simulation: Result

 \square : the unobservable state (4 or 5)

 \triangle : the unobservable state (1 or 2)

Future Work

- We propose a decentralized supervisory control method based on RL such that the control systems satisfy a LTL specifications.
- Simulation