

#### UNIVERSITÀ DI PISA

DIPARTIMENTO DI INFORMATICA

Corso di Laurea Magistrale in Informatica

TESI DI LAUREA MAGISTRALE

# Data aggregation using Homomorphic Encryption in Mobile CrowdSensing context

Prof. Stefano Chessa

Dott. Michele Girolami

Chiara Boni 600159



**METHODOLOGY** 

THESIS
OBJECTIVES

TECHNOLOGIES EMPLOYED

#### Mobile CrowdSensing

The study that relies on a network of mobile sensors, which are able to collect information on the environment



**Tasks** 







END USERS

AGGREGATOR

CLOUD PLATFORM

#### **METHODOLOGY**

THESIS
OBJECTIVES

TECHNOLOGIES EMPLOYED

#### HOMOMORPHIC ENCRYPTION

Arithmetic operations directly on encrypted data, without the need to decrypt them

$$E(a \circ b) = E(a) \lozenge E(b)$$

### REDUNDANT RESIDUE NUMBER SYSTEM

Redundancy is provided by encoding more residues than are necessary for representation

CONFIDENTIALITY

**ROBUSTNESS** 

**METHODOLOGY** 

THESIS
OBJECTIVES

TECHNOLOGIES EMPLOYED

01

Study a MCS model, focusing on the privacy-preserving issues

02

Investigate homomorphic encryption into the MCS model

03

Simulate such research in a real scenario

04

Strengthen the data aggregation model by using redundancy with RRNS

**METHODOLOGY** 

THESIS
OBJECTIVES

TECHNOLOGIES EMPLOYED

03

Simulate such research in a real scenario



To test homomorphic encryption in an MCS context, the chosen example relies on modelling GPS coordinates to calculate the total distance covered

**METHODOLOGY** 

THESIS
OBJECTIVES

TECHNOLOGIES EMPLOYED



HOMOMORPHIC ENCRYPTION



**PALISADE** 

#### SCHEME IMPLEMENTATION



#### SCHEME IMPLEMENTATION

2

3

**SETUP** 

Devices collect and encrypt data

**SENDING** 

Devices calculate the RRNS representation of the ciphers and send it to the aggregator

**AGGREGATION** 

Aggregator receives the ciphers and sums them

#### SCHEME IMPLEMENTATION



#### SCHEME IMPLEMENTATION



#### SCHEME IMPLEMENTATION





// homomorphic addition
auto ciphertextResult = cryptoContext->EvalAdd(ciphertext1, ciphertext2);

## DATASET PROCESSING

#### **EVALUATIONS**



The real example case concerns the manipulation of GPS coordinates, in order to calculate the total distance traveled by a group of users





**Dataset Columns** 



## DATASET PROCESSING

#### **EVALUATIONS**



Taking a trajectory, distance calculation is performed between pairs of its consecutive points

765.041 distances

#### DATASET PROCESSING

#### **EVALUATIONS**



Despite the introduction of a over-structure, such as the one given by RRNS encoding, the system is still able to produce correct results



The analysis which concerns the correlation between the choice of parameters and the execution time

## DATASET PROCESSING

#### **EVALUATIONS**

|                   |               |                        |                       | BGV Integer Scheme |                  |                 |                  |                  |                  |                 |                  |  |
|-------------------|---------------|------------------------|-----------------------|--------------------|------------------|-----------------|------------------|------------------|------------------|-----------------|------------------|--|
|                   |               | *average o             | of 100 runs           |                    | Sending          | g Time*         |                  | Aggregator Time* |                  |                 |                  |  |
| Multipl.<br>Depth | Chunk<br>Size | Plaintext<br>Modulus** | # Modules<br>RNS Base | Wall<br>Time (s)   | Conf.<br>Interv. | CPU<br>Time (s) | Conf.<br>Interv. | Wall<br>Time (s) | Conf.<br>Interv. | CPU<br>Time (s) | Conf.<br>Interv. |  |
| 1                 | 5.000         | 65.537                 | 12                    | 3,15699            | ±0,004           | 8,44010         | ±0,045           | 3,50408          | ±0,014           | 3,61340         | ±0,008           |  |
| 2                 | 5.000         | 65.537                 | 12                    | 7,56084            | ±0,021           | 25,47307        | ±1,012           | 7,08278          | ±0,019           | 7,32784         | ±0,020           |  |
| 0                 | 5.000         | 65.537                 | 12                    | 0,89403            | ±0,008           | 3,00979         | ±0,058           | 0,93209          | ±0,003           | 0,98195         | ±0,022           |  |
|                   |               |                        |                       |                    |                  |                 |                  |                  |                  |                 |                  |  |
| 1                 | 10.000        | 65.537                 | 12                    | 1,63603            | ±0,013           | 4,63063         | ±0,066           | 1,76003          | ±0,005           | 1,84178         | ±0,021           |  |
| 1                 | 50.000        | 65.537                 | 12                    | 0,40069            | ±0,002           | 1,20935         | ±0,030           | 0,37179          | ±0,004           | 0,42848         | ±0,036           |  |

## DATASET PROCESSING

#### **EVALUATIONS**

|                   |               | *average o             | of 100 runs           |                  | Sending          | g Time*         |                  | Aggregator Time* |                  |                 |                  |
|-------------------|---------------|------------------------|-----------------------|------------------|------------------|-----------------|------------------|------------------|------------------|-----------------|------------------|
| Multipl.<br>Depth | Chunk<br>Size | Plaintext<br>Modulus** | # Modules<br>RNS Base | Wall<br>Time (s) | Conf.<br>Interv. | CPU<br>Time (s) | Conf.<br>Interv. | Wall<br>Time (s) | Conf.<br>Interv. | CPU<br>Time (s) | Conf.<br>Interv. |
| 1                 | 5.000         | 49.153                 | 12                    | 3,22643          | ±0,012           | 8,83064         | ±0,084           | 3,51076          | ±0,008           | 3,68469         | ±0,028           |
| 1                 | 5.000         | 73.729                 | 12                    | 3,23130          | ±0,011           | 8,81470         | ±0,076           | 3,51627          | ±0,008           | 3,63185         | ±0,012           |
| 1                 | 5.000         | 65.537                 | 8                     | 2,83338          | ±0,019           | 8,36826         | ±0,064           | 3,38839          | ±0,012           | 3,60736         | ±0,036           |
| 1                 | 5.000         | 65.537                 | 14                    | 3,56004          | ±0,065           | 9,83674         | ±0,281           | 3,52046          | ±0,009           | 3,62886         | ±0,012           |
|                   |               |                        |                       |                  |                  |                 |                  |                  |                  |                 |                  |
| 0                 | 50.000        | 65.537                 | 8                     | 0,11994          | ±0,0004          | 0,45632         | ±0,006           | 0,09620          | ±0,001           | 0,09477         | ±0,001           |



### CONCLUSIONS



The objective was to analyze a MCS architecture and focus on the confidentiality limit, addressing it via homomorphic encryption

Increasing robustness by inserting redundancy when sending data, from the devices to the aggregator, using RRNS encoding

This type of encryption is expensive: it requires powerful sensors such as smartphones

#### **FUTURE WORK**







Extend the use scenario to other homomorphic operations and contexts



Combining HE and RRNS to aggregate on the encrypted fragments instead of having to reconstruct the encrypted data

### REFERENCES







#### Files · release-v1.11.2 · PALISADE / PALISADE Development · GitLab

This is the development repository of the PALISADE lattice cryptography library. The current development version is...





Implementation and Performance
Evaluation of RNS Variants of the BFV...

Homomorphic encryption is an emerging form of encryption that provides the ability to compute on...

ieee.org



#### **GeoLife GPS Trajectories**

This GPS trajectory dataset was collected in (Microsoft Research Asia) Geolife project by 182 users in a period of over three years (from April 2007 to August 2012). Last...

Microsoft Download Center



#### CiteSeerX — Fully homomorphic encryption without bootstrapping

CiteSeerX - Document Details (Isaac Councill, Lee Giles, Pradeep Teregowda): We present a radically new...



#### (PDF) A reliable and energy efficient IoT data transmission...

PDF | On Jun 1, 2015, Chinmaya Mahapatra and others published A...



## DATASET PROCESSING

#### **EVALUATIONS**

|                   |               |                 |                       | CKKS Approximate Scheme |                  |                 |                  |                  |                  |                 |                  |  |
|-------------------|---------------|-----------------|-----------------------|-------------------------|------------------|-----------------|------------------|------------------|------------------|-----------------|------------------|--|
|                   |               | *average o      | of 100 runs           |                         | Sendin           | g Time*         |                  | Aggregator Time* |                  |                 |                  |  |
| Multipl.<br>Depth | Chunk<br>Size | Scale<br>Factor | # Modules<br>RNS Base | Wall<br>Time (s)        | Conf.<br>Interv. | CPU<br>Time (s) | Conf.<br>Interv. | Wall<br>Time (s) | Conf.<br>Interv. | CPU<br>Time (s) | Conf.<br>Interv. |  |
| 1                 | 5.000         | 50              | 12                    | 3,67258                 | ±0,033           | 13,53826        | ±0,023           | 3,94596          | ±0,011           | 8,48766         | ±0,034           |  |
| 2                 | 5.000         | 50              | 12                    | 7,51354                 | ±0,031           | 30,12514        | ±0,119           | 7,88696          | ±0,016           | 14,93852        | ±0,035           |  |
| 1                 | 10.000        | 50              | 12                    | 1,93718                 | ±0,010           | 7,50640         | ±0,166           | 1,98382          | ±0,008           | 4,24750         | ±0,059           |  |
|                   |               |                 |                       | -                       |                  | -               |                  | -                |                  | -               | -                |  |
| 1                 | 50.000        | 50              | 12                    | 0,53840                 | ±0,003           | 1,98702         | ±0,010           | 0,41315          | ±0,001           | 0,78828         | ±0,007           |  |

## DATASET PROCESSING

#### **EVALUATIONS**

|                   | Sending Time* |                 |                       |                  | Aggregator Time* |                 |                  |                  |                  |                 |                  |
|-------------------|---------------|-----------------|-----------------------|------------------|------------------|-----------------|------------------|------------------|------------------|-----------------|------------------|
| Multipl.<br>Depth | Chunk<br>Size | Scale<br>Factor | # Modules<br>RNS Base | Wall<br>Time (s) | Conf.<br>Interv. | CPU<br>Time (s) | Conf.<br>Interv. | Wall<br>Time (s) | Conf.<br>Interv. | CPU<br>Time (s) | Conf.<br>Interv. |
| 1                 | 5.000         | 20              | 12                    | 3,68496          | ±0,014           | 13,52364        | ±0,033           | 3,99427          | ±0,034           | 8,50812         | ±0,062           |
|                   |               |                 |                       |                  |                  |                 |                  |                  |                  |                 |                  |
| 1                 | 5.000         | 50              | 8                     | 3,29544          | ±0,024           | 13,40193        | ±0,068           | 3,76236          | ±0,006           | 8,37390         | ±0,051           |
| 1                 | 5.000         | 50              | 14                    | 3,85562          | ±0,017           | 13,95260        | ±0,118           | 3,93122          | ±0,006           | 8,50410         | ±0,036           |
|                   |               |                 |                       |                  |                  |                 |                  |                  |                  |                 |                  |
| 1                 | 50.000        | 50              | 8                     | 0,49035          | ±0,005           | 1,93060         | ±0,007           | 0,39361          | ±0,001           | 0,76717         | ±0,004           |



## HOMOMORPHIC ENCRYPTION



These models employ complex structures such as polynomial rings, i.e. a ring formed from the set of polynomials in one or more variables, with coefficients in another ring, often a field.

It can be parameterizable the size of

each ring.

Such ring is defined as  $R = Z[X]/(X^n + 1)$ .

## HOMOMORPHIC ENCRYPTION



Plaintext example with n = 16

https://humanata.com/blog/illustrated\_primer/

## HOMOMORPHIC ENCRYPTION

The ciphertext is represented by two polynomials calculated as:

$$ct = ([pk0 u + e1 + qm/t]q, [pk1 u + e2]q)$$



First part of the cipher

## HOMOMORPHIC ENCRYPTION

#### FRESH ENCRYPTION



- · Horizontal: each coefficient in a polynomial or in a vector.
- · Vertical: size of coefficients.
- · Initial noise is small in terms of coefficients' size.



## HOMOMORPHIC ENCRYPTION

#### AFTER SOME COMPUTATIONS

