Predicting political affiliation based on tweets

Cooper Chia, Evan Yip, and Walker Azam

Motivation and Background

- How to politicians and candidates interact with the public/voters?
 - Twitter!!
- How can an automated algorithm help inform voters?
 - Gauging potential political bias
 - Political leaning of 'non-partial' users.
 - Deciphering political biases of self-proclaimed nonpartisan media sources
 - New politicians
- Why now?
 - o 2020 is an election year
 - Fake news through twitter 'bot-accounts' as a persistent issue

Research Questions

- 1. Can we use ML to predict political affiliation based on tweets?
 - a. Yes, our model was able to predict with high levels of accuracy. ~95%
- 2. What are the limitations of the Naive Bayes model?
 - a. The assumption of independent occurrences of each word in a tweet.
- 3. What is the best way to visualize the accuracy of our model?
 - Bar charts and confusion matrix proved to provide a useful visualization of our model.
- 4. Given the results/accuracy of our model, is the model a suitable tool for determining the political sentiment of other public figures and non-politicians?
 - a. Yes, to an extent.

$$P(A \mid B) = \frac{P(B \mid A) \cdot P(A)}{P(B)}$$

A,B = events

P(A|B) = probability of A given B is true P(B|A) = probability of B given A is true

 $P(A), P(B) \mbox{=}\mbox{ the independent probabilities of A and B}$

1. Collect Tweets

2. Train ML model

3. Test Model

- Existing Data (Kaggle)
- Web-scraping (Beautiful Soup)

- Naive Bayes Algorithm
 - Bayes' Theorem
 - Assumption of Independence
 - Multiple training/test splits

 Test on Kaggle data and scraped data

How naive...

Thomas Bayes

Results

Figure 1: Confusion matrices of the Naive Bayes model applied to test data. High accuracy models correspond to darker values along the diagonal.

Strengths:

- Quantitative values
- Standard visualization

Weaknesses:

Harder to interpret

NB Model Confusion Matrices with varying test sizes

Results

Figure 2: Bar plots of the accuracy of the Naive Bayes model at various test sizes.

Strengths:

- Conveys scale of accuracy with size
- Highlights differences between Dem vs Rep

Weaknesses:

 Hard to compare relative changes in accuracy

NB Model Accuracy Bar plots with varying test sizes

Results

Figure 3: This scatterplot highlights the decrease in prediction accuracy of the model when test size becomes extremely large (ergo, train size is extremely small).

Strengths:

Emphasizes relationship between test size and accuracy

Weaknesses:

Loss of information (Democrat vs Republican)

Classifications (Scraped Data)

Twitter User	Prediction
Barack Obama	Democrat
Jay Inslee	Republican
Donald Trump	Democrat
Elon Musk	Republican
Grimes	Democrat
Bill Gates	Democrat
Robert Downey Jr.	Democrat
Susan Delbene	Democrat

*small sample sizes (~20 tweets)

Jenny Durkan	Democrat
Justin Trudeau	Democrat
Bernie Sanders	Democrat
Mike Pence	Republican
Mitch McConnell	Democrat
Boris Johnson	Democrat

Future work

- Update web-scraping code
- Write Naive Bayes Algorithm ourselves (no Sklearn)
- Different ML models?
- Apply Naive Bayes in other forms of sentiment analysis?