Optical Sources LASER Diodes

L A S E R

AMPLIFIER

OR

OSCILLATOR

LASER

(Light Amplification by the Stimulated Emission of Radiation)

- Laser is an optical oscillator.
- It comprises a resonant optical amplifier whose output is fed back into its input with matching phase.
- Any oscillator contains:
 - An amplifier with a gain-saturated mechanism
 - > A feedback system
 - > A frequency selection mechanism
 - > An output coupling scheme

LASER

(Light Amplification by the Stimulated Emission of Radiation)

- In laser the amplifier is the pumped active medium, such as biased semiconductor region, feedback can be obtained by placing active medium in an optical resonator, such as Fabry-Perot structure, two mirrors separated by a prescribed distance.
- Frequency selection is achieved by resonant amplifier and by the resonators, which admits certain modes.
- Output coupling is accomplished by making one of the resonator mirrors partially transmitting.

Howling Dog Analogy

- 1. <u>absorption</u>: a dog in the ground state might hear the howl from another dog and become excited, thus making a transition to the excited state.
- 2. <u>spontaneous emission</u>: a dog in the excited state might randomly let out a howl, which, through release of tension, enables him to relax to the ground state.
- 3. <u>stimulated emission</u>: a dog in the excited state might be stimulated to let out a howl when he hears the howl from another dog. The single howl becomes two howls voiced simultaneously, thus sounding like one howl with twice the intensity!

Process for Laser Action

- Three main process:
 - 1- Photon absorption i.e. energy absorbed from incoming photons
 - 2- Spontaneous emission
 - 3- Stimulated emission

How process starts?

In Stimulated Emission incident and stimulated photons will have

- Identical energy → Identical wavelength
 → Narrow linewidth
- Identical direction

 Narrow beam width
- Identical phase

 Coherence and
- Identical polarization

Lasing in a pumped active medium

- In thermal equilibrium the stimulated emission is essentially negligible, since the density of electrons in the excited state is very small, and optical emission is mainly because of the spontaneous emission.
- Stimulated emission will exceed absorption only if the population of the excited states is greater than that of the ground state.
- This condition is known as Population Inversion.
- Population inversion is achieved by various pumping techniques.
- In a semiconductor laser, population inversion is accomplished by injecting electrons into the material to fill the lower energy states of the conduction band.

Laser Diode Rate Equations

- In order to study all the three phenomena above, certain coefficients have been assigned to these phenomena which are actually defined by the transition probabilities and are called as **Einstein coefficients**.
- The phenomenon that occurs in the absence of external stimulus i.e. spontaneous emission is assigned the coefficient, A21.
- The phenomena that occur in presence of external stimuli are denoted by "B".
- The absorption phenomenon is assigned B12.
- The stimulated emission is assigned B21.
- Note that the subscripts in the coefficients indicate the direction of transition from the initial level to the final level.
- Using these coefficients, the three processes can now be expressed in mathematically.

Two level system – Einstein's coefficients

assumption: n_1 atoms of energy ϵ_1 and n_2 atoms of energy ϵ_2 are in thermal equilibrium at temperature T with the radiation of spectral density $\rho(\nu)$:

Laser Diode Rate Equations

- An optical medium has the density of atoms N_1 in lower energy state E_1 and density of atoms N_2 in higher energy state E_2 .
- The **upward transition rate** is $R_{12} = B_{12}N_1\rho(hv)$ where B_{12} is a constant of proportionality, as *Einstein coefficient*.
- The **downward transition rate** is $R_{21} = A_{21}N_2 + B_{21}N_2\rho(hv)$ where A_{21} is a constant of proportionality. It is known as Einstein coefficient for spontaneous emission. B_{21} is a constant of proportionality as Einstein coefficient for stimulated emission.
- At thermal equilibrium condition $R_{12} = R_{21}$

Gives
$$\Rightarrow \rho(hv) = \frac{A_{21} / B_{21}}{B_{12} N_1 / B_{21} N_2 - 1}$$

$$\rho(hv) = \frac{A_{21} / B_{21}}{B_{22} \left(\exp \left[-\frac{E_2 - E_1}{kT} \right] \right) - 1}$$

Where, p is Radiation Spectral Density