Mathématiques pour la 3D

Présenté par :
Bart GEORGE
EISTI
ING3 – Option Visual Computing

Sources pour ce cours

- Fletcher Dunn & Ian Parberry: 3D Math Primer for Graphics and Game Development (Worldware, 2002, 2ème éd. CRC Press 2011)
- Jason Gregory : *Game Engine Architecture* (AK Peters, 2009, 2ème éd. CRC Press 2014)
- R. Stuart Ferguson: Practical Algorithms for 3D Computer Graphics (2ème ed. CRC Press 2014)
- Cours de Rémi Ronfard, INRIA: https://team.inria.fr/imagine/remi-ronfard/remi-ronfard-teaching/

Deuxième partie

Coordonnées polaires Rotations et orientation en 3D

Plan

- Coordonnées polaires
- Rotations et orientation en 3D

Plan

- Coordonnées polaires
 - Espace de coordonnées polaires en 2D
 - A quoi servent les coordonnées polaires
 - Espace de coordonnées polaires en 3D
 - Coordonnées 3D cylindriques
 - Coordonnées 3D sphériques
- Rotations et orientation en 3D

- Espace de coordonnées polaires en 2D
 - Une origine (ou un pôle) qui définit le centre de l'espace de coordonnées
 - Un seul axe, dit polaire, représenté par un rayon partant de l'origine
 - En général
 - On le fait partir à droite
 - Il représente l'axe des x du système cartésien

- Espace de coordonnées polaires en 2D
 - Représentation d'un point
 - Coordonnées cartésiennes : 2 distances signées (x,y)
 - Coordonnées polaires : une distance r et un angle θ

- Espace de coordonnées polaires en 2D
 - Représentation d'un point (r,θ)
 - D'abord on fait la rotation, puis on s'occupe de la distance

- Espace de coordonnées polaires en 2D
 - Attention aux proportions
 - Dans un système de coordonnées cartésiennes, une unité peut représenter n'importe quoi (mètres, miles, années-lumières...), l'échelle est la même pour x et y, donc les proportions restent inchangées
 - Dans un système de coordonnées polaires
 - Les deux composantes r et θ n'ont pas la même unité
 - L'utilisation d'unités de mesure différentes pour θ peut changer les proportions
 - Degrés ou radians ?
 - Les humains préfèrent les degrés (180°, 360°…)
 - Les machines préfèrent les radians (π radians, 2π radians...)
 - Le tout est de choisir une unité et de s'y tenir

- Espace de coordonnées polaires en 2D
 - Problème de l'aliasing
 - Quelques questions spécifiques à un espace polaire
 - Est-ce que *r* peut être négatif ? (peut-on revenir en arrière ?)
 - Est-ce que θ peut aller au-delà de l'intervalle [-180°,180°] ?
 - Quelle est la valeur de θ directement "à l'ouest" ? + ou 180° ?
 - Quand r=0, quelle est la valeur de θ ?
 - Une même réponse : oui
 - Pour un point donné, il y a une infinité de couples de coordonnées polaires qui peuvent servir à le décrire
 - Une définition : plusieurs références pour une donnée
 - Deux paires de coordonnées polaires sont **alias** l'une de l'autre si elles ont différentes valeurs, mais décrivent le même point
 - Les alias du couple (r,θ) sont tous les couples $((-1)^{k*}r,\theta+k*180^{\circ})$

- Espace de coordonnées polaires en 2D
 - Problème de l'aliasing
 - Une solution : mettre les coordonnées en forme canonique
 - Propriétés
 - On ne mesure pas le retour en arrière : r ≥ 0
 - Un angle est limité à une demi-révolution : -180° < θ ≤ 180°
 - A l'origine, l'angle est nul : $r = 0 \Rightarrow \theta = 0$
 - Algorithme correspondant
 - Si r = 0 alors θ ←0
 - Si r < 0 alors r ← -r, et on ajoute 180° à θ
 - Si θ ≤ -180° alors on ajoute 360° à θ jusqu'à ce que θ > -180°
 - Si θ > 180° alors on soustrait 360° à θ jusqu'à ce que θ ≤ 180°

- Espace de coordonnées polaires en 2D
 - Conversion entre coordonnées cartésiennes et coordonnées polaires
 - Coordonnées polaires $(r,\theta) \rightarrow$ coordonnées cartésiennes

$$x = r \cos \theta$$

 $y = r \sin \theta$

- Espace de coordonnées polaires en 2D
 - Conversion entre coordonnées cartésiennes et coordonnées polaires
 - Coordonnées cartésiennes $(x,y) \rightarrow$ coordonnées polaires
 - Pour trouver r

$$r = \sqrt{x^2 + y^2}$$

• Pour trouver θ

$$\frac{y}{x} = \frac{r \sin \theta}{r \cos \theta},$$

$$\frac{y}{x} = \frac{\sin \theta}{\cos \theta},$$

$$y/x = \tan \theta,$$

$$\theta = \arctan(y/x)$$

- Espace de coordonnées polaires en 2D
 - Conversion entre coordonnées cartésiennes et coordonnées polaires
 - Problèmes
 - Si x=0, la division n'est pas possible
 - La fonction arctan est confinée dans l'intervalle [-90°,+90°]
 - Quand x/y >0, est-ce que x>0 et y>0 ? Ou x<0 et y<0 ?

$$\begin{array}{lll} - & \text{Solution: la fonction atan2} \\ - & \text{Résultat} \\ r = \sqrt{x^2 + y^2} \\ \theta = & \tan 2(y, x) \end{array} & \tan 2(y, x) = \begin{cases} 0, & x = 0, y = 0, \\ +90^{\circ}, & x = 0, y > 0, \\ -90^{\circ}, & x = 0, y < 0, \\ \arctan(y/x), & x > 0, \\ \arctan(y/x) + 180^{\circ}, & x < 0, y \geq 0, \\ \arctan(y/x) - 180^{\circ}, & x < 0, y < 0. \end{cases}$$

- A quoi servent les coordonnées polaires ?
 - Elles sont plus "naturelles" pour nous
 - Un humain ne décrit pas sa position avec des coordonnées purement cartésiennes
 - "Tourner à droite dans 5km", "10km au sud-ouest de..."
 - La terre et ronde. La latitude et la longitude sont polaires
 - Dans un monde 3D, on en a constamment besoin
 - Orienter la caméra (celle du joueur, celle du jeu…)
 - Rotation d'un modèle dans un outil ou un moteur 3D

- Espace de coordonnées polaires en 3D
 - La 3ème dimension rajoute une 3ème coordonnée
 - Cette 3ème coordonnée peut être
 - Une deuxième distance (comme *r*)
 - Dans ce cas, on parle de coordonnées cylindriques
 - Ces coordonnées sont plus intuitives
 - Un deuxième angle (comme θ)
 - Dans ce cas, on parle de coordonnées **sphériques**
 - Ces coordonnées sont les plus communes et les plus utilisées

Coordonnées 3D cylindriques

 On rajoute une deuxième distance selon un axe (z) vertical et perpendiculaire au premier axe

- Pour localiser un point
 - On cherche r et θ comme en 2D
 - On va en haut (ou en bas)
- Pour convertir en coordonnées cartésiennes
 - On convertit r et θ comme en 2D
 - La conversion de z est immédiate

- Coordonnées 3D sphériques
 - Une distance **radiale** *r*
 - Deux axes polaires
 - Un horizontal (x)
 - Un vertical (y)
 - Deux angles qui définissent la direction
 - Par rapport à $x : \theta$
 - Par rapport à *y : Φ*
 - Rotation positive
 - Antihoraire (main droite)
 - Horaire (main gauche)

- Coordonnées 3D sphériques
 - Vocabulaire et équivalences
 - L'angle Θ est appelé azimuth
 - C'est aussi la latitude
 - L'angle ϕ est appelé **zénith**
 - La longitude correspond à 90°- Φ
 - Les conventions de notation varient
 - Parfois, r est noté ρ
 - Les angles Θ et Φ sont parfois inversés (ex: en physique)
 - En informatique, dans un système main gauche
 - L'angle horizontal est renommé h (heading) et pointe devant
 - L'angle vertical est renommé p ou (**pitch**) et pointe vers le bas
 - Le sens positif de rotation est horaire

- Coordonnées 3D sphériques
 - D'abord, on effectue la rotation horizontale, ensuite la rotation verticale, et enfin on se déplace de *r*
 - Problème de l'aliasing et de la singularité
 - Un alias de (h,p) peut être généré par $(h \pm 180^{\circ}, 180^{\circ}-p)$
 - Exemple : au lieu de tourner à droite de 90° et se baisser de 45°, on peut tourner à gauche de 90°, et se baisser de 180-45 = 135°
 - Quand l'angle p est de $\pm 90^{\circ}$, h perd toute signification
 - Exemple : au lieu de tourner à gauche ou à droite de 35°, 50°, 110°... puis de se basser de 90°, il suffit... de se baisser de 90°
 - C'est ce qu'on appelle le blocage de cardan ou gimbal lock (nous y reviendrons)
 - Il nous faut à nouveau des coordonnées canoniques

- Coordonnées 3D sphériques
 - Forme canonique pour un espace 3D sphérique
 - Pas de retour en arrière

$$r \ge 0$$

- L'angle horizontal est limité à une demi-révolution
 -180° < h ≤ 180°
- L'angle vertical est limité à un quart de révolution
 -90°
- A l'origine, les deux angles sont nuls

$$r = 0 \Rightarrow h = p = 0$$

 Si on regarde tout en haut ou tout en bas, l'angle horizontal est nul

$$|p| = 90^{\circ} \Rightarrow h = 0$$

- Coordonnées 3D sphériques
 - Forme canonique pour un espace 3D sphérique
 - Algorithme
 - Si r = 0, alors $h \leftarrow 0$ et $p \leftarrow 0$
 - Si r < 0, alors $r \leftarrow -r$, $h \leftarrow h + 180^\circ$ et $p \leftarrow -p$
 - Si $p < -90^\circ$, alors on ajoute 360° à p jusqu'à ce que $p \ge -90^\circ$
 - Si $p > 270^\circ$, alors on retranche 360° à p jusqu'à ce que $p \le 270^\circ$
 - Si $p > 90^\circ$, alors $h \leftarrow h + 180^\circ$ et $p \leftarrow 180^\circ$ p
 - Si $h \le -180^\circ$, alors on ajoute 360° jusqu'à ce que $h > -180^\circ$
 - Si $h > 180^\circ$, alors on retranche 360° à h jusqu'à ce que $h \le 180^\circ$

Coordonnées 3D sphériques

Conversion entre coordonnées cartésiennes et

coordonnées sphériques

- Convention "main-droite"
 - Soit un point (r, θ, Φ) (coord. polaires)
 - On veut l'équivalent cartésien (x,y,z)
 - Soit *d* la distance horizontale entre le point et l'axe vertical

$$z/r = \cos \Phi$$

 $d/r = \sin \Phi$
 $x/d = \cos \theta$
 $y/d = \sin \theta$

On en déduit

 $x = r \sin \Phi \cos \theta$ $y = r \sin \Phi \sin \theta$ $z = r \cos \Phi$

- Coordonnées 3D sphériques
 - Conversion entre coordonnées cartésiennes et coordonnées sphériques
 - Convention "main gauche" et notation informatique
 - Coordonnées sphériques → cartésiennes : on adapte les équations "main droite" précédentes :

$$x = r \cos p \sin h$$
 $y = -r \sin p$ $z = r \cos p \cos h$

Coordonnées cartésiennes → sphériques

$$r = \sqrt{x^2 + y^2 + z^2}$$

$$h = \operatorname{atan2}(x, z)$$

$$y = -r \sin p,$$

$$-y/r = \sin p,$$

$$p = \arcsin(-y/r)$$

- Utilisation des coordonnées polaires pour spécifier des vecteurs
 - Les deux proprités clés d'un vecteur sont la longueur et la direction
 - Sous forme polaire, elles sont décrites directement
 - Sous forme cartésienne, elles sont obtenues indirectement via des calculs impliquant une conversion en forme polaire
 - Les vecteurs sont aussi utilisés pour décrire des points (qui sont des "vecteurs position")
 - Les formules utilisées pour décrire les points d'une forme à l'autre marchent donc pour les vecteurs

Plan

- Coordonnées polaires
- Rotations et orientation en 3D
 - Définitions
 - Matrices
 - Angles d'Euler
 - Quaternions
 - Comparaison entre les différentes méthodes
 - Conversion entre les représentations

- Décrire l'orientation d'un objet en 3D est un problème difficile
- Certaines notions ("orientation" et "déplacement angulaire") peuvent prêter à confusion
- Plusieurs méthodes existent, certaines plus adaptées que d'autres dans des cas précis
- Il est par conséquent nécessaire
 - De les connaître, avec leurs avantages, leurs limites
 - De savoir choisir la bonne méthode au bon moment
 - De savoir faire la conversion de l'une à l'autre

Définitions

- Intuitivement, on sait que "l'orientation" d'un objet nous informe sur la direction vers laquelle il pointe
- Cependant, "orientation" et "direction" ne veulent pas forcément dire la même chose

 Exemple : quand on "tord" un vecteur, il ne change pas, contrairement à un objet

Définitions

- Différence de taille entre "direction" et "orientation"
 - On peut paramétrer une direction en 3D avec juste 2 nombres (angles des coordonnées sphériques)
 - Un vecteur a donc une direction, mais pas d'orientation
 - Pour l'orientation complète, on a besoin d'un 3ème angle
- Notion de déplacement angulaire
 - Une rotation consiste à passer d'une orientation à une autre
 - Le degré de rotation est appelé "déplacement angulaire"
 - Décrire une orientation revient à décrire un déplacement angulaire... MAIS ce n'est pas la même chose

Définitions

- Orientation vs. déplacement angulaire
 - Même distinction qu'entre points et vecteurs
 - Deux notions mathématiquement équivalentes, mais pas identiques conceptuellement
 - La première notion désigne un seul état, la deuxième désigne la différence entre deux états, la direction prise d'un état à l'autre
 - De même qu'un point peut être désigné par un "vecteur position" un déplacement angulaire peut désigner un "vecteur orientation"
 - Lien avec les représentations que nous allons voir
 - Les matrices et quaternions décrivent des déplacements angulaires
 - Les angles d'Euler, quant à eux, décrivent des orientations

Matrices

- Avantages
 - Format utilisé par les API graphiques
 - Rotations immédiatement disponibles
 - Possibilité de concaténer les rotations (mult.)
 - Possibilité de défaire une rotation (inverse)

Matrices

- Inconvénients d'une matrice
 - Encombrement de la mémoire
 - 9 nombres, alors que 3 sont vraiment nécessaires
 - Pas forcément intuitifs
 - A la base : uniquement des nombres, qu'il faut déchiffrer
 - Possibilité pour une matrice d'être "malformée"
 - Beaucoup de contraintes sur une "bonne" matrice de rotation
 - Exemple
 - On exécute plusieurs rotations les unes après les autres
 - Ce qui signifie une série de multiplications de matrices
 - Or il arrive qu'il y ait des erreurs de précision derrière la virgule
 - Avec une multiplication de matrices, ces erreurs risquent de s'accumuler jusqu'à devenir ingérables

- Angles d'Euler
 - Nommés d'après le célèbre mathématicien qui les a développés, le suisse Leonhard Eu...

!!! PAUSE !!!

• Si vous voulez garder votre *street cred*...

(surtout à l'étranger)

... vous ne dites pas
 "Euh-lère" ni "You-leure"
 mais "Oy-leur"

- Angles d'Euler
 - Nommés d'après le célèbre mathématicien qui les a développés, le suisse Leonhard Euler (1707-1783)

- Angles d'Euler
 - Idée de base
 - Un déplacement angulaire est défini comme une séquence de 3 rotations autour de 3 axes perpendiculaires 2 à 2
 - Confusion dans la spécification
 - On peut effectuer les rotations dans n'importe quel ordre
 - Il existe une douzaine (au moins)
 de notations possibles
 - Convention utilisée ici
 - Système "main gauche"
 - x à droite, y au-dessus, z au fond 1

- Angles d'Euler
 - Convention utilisée ici
 - D'abord, "heading" (axe y), sens positif horaire (à droite)
 - Ensuite, "pitch" (axe x), sens positif horaire (en bas)
 - Enfin, "bank" (axe z), sens positif antihoraire (à gauche)

Angles d'Euler

- Autres conventions
 - Noms de code : "yaw pitch roll"
 - Utilisée dans l'aéronautique ("tangage", "roulis", "lacet")
 - Héritée du vocabulaire marin (dans "aéronautique" il y a "nautique")
 - On la retrouve dans le livre "Game Engine Architecture"
 - Grosso modo, "yaw"

 "heading" et "roll"

 "bank"
 - Parfois, l'ordre change (exemple : notation "roll pitch yaw")
 - Autres expressions : "Azimuth Elevation Tilt" (ou "Twist")
 - Symboles mathématiques
 - (Φ, θ, α) (livre "Practical Algorithms for 3D Computer Graphics")
 - Autres notations : (θ, Φ, α) , (Φ, θ, ψ) , (ψ, θ, Φ) , (Ω, i, ω) , $(\alpha, \beta, \Upsilon)$, ...
 - De façon générale
 - Attention à l'ordre dans lequel s'effectuent les rotations!

Angles d'Euler

Autres conventions

 Exemple de notation pour un système "main droite" (source : "Practical Algorithms for 3D Computer Graphics")

- Angles d'Euler
 - Avantages des angles d'Euler
 - Intuitifs et faciles d'utilisation du point de vue "humain"
 - La plus petite représentation possible d'une orientation
 - N'importe quel ensemble de 3 nombres est valide
 - Inconvénients des angles d'Euler
 - La représentation d'une orientation donnée n'est pas unique
 - L'interpolation entre deux orientations est problématique

Angles d'Euler

- Où l'on retrouve le problème de l'aliasing
 - Pour une orientation donnée, il existe plusieurs triplets d'angles d'Euler capables de la décrire
 - Exemple : si on ajoute 360° à l'orientation, celle-ci ne change pas, mais les valeurs, si
 - Autre exemple : trois rotations heading 180°, puis pitch 45°, puis bank 180° équivalent à une rotation pitch 135°
- Blocage de Cardan ("Gimbal lock")
 - Heading 45° puis pitch 90° ⇔ pitch 90°, puis bank 45°
 - Choisir un angle de ±90° pour pitch restreint fortement les deux autres rotations, qui se limitent autour de l'axe vertical

- Angles d'Euler
 - Blocage de Cardan ("Gimbal lock")

- Angles d'Euler
 - Blocage de Cardan ("Gimbal lock")

Angles d'Euler

- Problème de l'interpolation
 - Interpolation : opération permettant de construire une courbe à partir d'un nombre fini de points
 - Interpolation linéaire (LERP) : permet de trouver un point intermédiaire entre deux points connus

I = LERP(**a**,**b**,β) = (1 – β) **a** + β**b**
= [(1 – β)
$$a_x$$
 + β b_x , (1 – β) a_y + β b_y , (1 – β) a_z + β b_z]

Interprétation géométrique
 LERP(a,b,β) est le vecteur
 position d'un point qui se trouve
 à β% du segment entre a et b

- Angles d'Euler
 - Problème de l'interpolation
 - Indispensable pour l'animation et le contrôle de la caméra
 - Exemple : si on veut animer un objet d'un point a à un point b sur une séquence de 2 secondes à 30 FPS, il faut trouver 60 vecteurs positions intermédiaires entre a et b
 - Animation sous Blender (et autres logiciels 3D)
 - Simuler un "travelling" avec la caméra
 - Animation de personnage ("keyframes")
 - Editeur de personnage dans un RPG
 - Etc...

- Angles d'Euler
 - Problème de l'interpolation
 - Interpolation angulaire
 - Soient deux orientations R₀ et R₁
 - Pour un paramètre t donné, $0 \le t \le 1$, on veut calculer une orientation intermédiaire $\mathbf{R}(t)$ qui interpole de \mathbf{R}_0 à \mathbf{R}_1 tandis que t va de 0 à 1
 - Approche "naïve"
 - Interpolation linéaire (LERP) entre 2 angles : $\Delta \theta = \theta_1 \theta_0$,
 - On l'applique sur les 3 angles d'Euler

$$\theta_t = \theta_0 + t \, \Delta \theta$$

 $+180^{\circ}$

 $R_0 = 720^{\circ}$

 $R_{1} = 45^{\circ}$

 $+90^{\circ}$

-270°

- Problème
 - Soient h_0 et h_1 les angles h de $\mathbf{R_0}$ et $\mathbf{R_1}$, avec h_0 =720° et h_1 =45°

 $\frac{-90^{\circ}}{+270^{\circ}}$

- $-h_0$ et h_1 sont éloignés de 45° seulement
- Or, avec LERP, on tourne 2 fois dans la mauvaise direction

Angles d'Euler

- Problème de l'interpolation
 - Forme canonique
 - On limite la rotation des 3 angles
 - Si pitch est de ±90°, bank est mis à 0
 - Encore un problème malgré tout
 - Supposons que $h_0 = -170^{\circ}$ et $h_1 = +170^{\circ}$
 - Ce sont des angles canoniques
 - Ils ne sont séparés que de 20°
 - Et pourtant, avec LERP, on fait une rotation horaire de 340°
 - Toujours pas de chemin "torque minimal"
 - Chemin le plus direct sur la surface extérieure d'une sphère ("torque" = "collier")

$$-180^{\circ} < h \le 180^{\circ}$$

 $-90^{\circ} \le p \le 90^{\circ}$
 $-180^{\circ} < b \le 180^{\circ}$
 $p = \pm 90^{\circ} \implies b = 0$

- Angles d'Euler
 - Problème de l'interpolation
 - Solution : "Envelopper" les angles de rotation entre ±180°

```
wrapPi(x) = x - 360^{\circ} \lfloor (x + 180^{\circ})/360^{\circ} \rfloor (signifie qu'on renvoie l'entier le plus proche de a)
```

- L'interpolation devient alors : $\Delta \theta = \text{wrapPi}(\theta_1 \theta_0)$,
- Toujours un problème ! $\theta_t = \theta_0 + t \Delta \theta$.
 - Certes, on n'a plus d'aliasing...
 - Certes, on a une interpolation "torque minimale"...
 - MAIS on a encore un risque de blocage de Cardan
 - ... et le pire, c'est qu'on ne peut pas le résoudre complètement
 - En effet, c'est un problème inhérent à cette représentation
 - On n'a "que" 3 nombres pour représenter un espace 3D
- Solution : les quaternions

Quaternions

- Motivations
 - On a vu que pour représenter les translations en 3D, on passait par des matrices (et vecteurs) 4D
 - Pour les rotations, c'est le même principe
 - 3 valeurs pour 3 dimensions ⇒ problèmes de singularité
 - Dans ce cas, on va prendre 4 valeurs!

Utilisation

- Depuis longtemps dans les jeux vidéo
 - cf. *Tomb Raider* (1996)
- Omniprésent dans les moteurs 3D
 - Unity, Unreal Engine, Blender...

- Développés par Sir William Rowan Hamilton en 1843 comme extension des nombres complexes
 - De fait, on peut les interpréter comme des nombres complexes 4D

William Rowan Hamilton (1805-1865)

- Notation utilisée ici
 - Un quaternion contient deux composantes principales
 - Un scalaire w
 - Un vecteur v (ou [x y z])
 - La notation est alors $[w \ v]$ ou $[w \ (x \ y \ z)]$
 - On peut aussi le noter verticalement (ici, ça ne change rien)
 - Notation complexe : $\mathbf{q} = w + ix + jy + kz$

Quaternions

- Interprétation géométrique
 - Soit θ l'angle de rotation
 - Soit $\hat{\mathbf{n}}$ le vecteur unitaire parallèle à l'axe de rotation
 - Alors le quaternion peut être défini comme suit

$$\begin{bmatrix} w & \mathbf{v} \end{bmatrix} = \begin{bmatrix} \cos(\theta/2) & \sin(\theta/2)\hat{\mathbf{n}} \end{bmatrix}$$

Notation alternative

$$\begin{bmatrix} w & (x & y & z) \end{bmatrix} = \begin{bmatrix} \cos(\theta/2) & (\sin(\theta/2)n_x & \sin(\theta/2)n_y & \sin(\theta/2)n_z) \end{bmatrix}$$

- Quaternions
 - Négation d'un quaternion
 - On effectue la négation de toutes les composantes

$$-\mathbf{q} = -\begin{bmatrix} w & (x & y & z) \end{bmatrix} = \begin{bmatrix} -w & (-x & -y & -z) \end{bmatrix}$$
$$= -\begin{bmatrix} w & \mathbf{v} \end{bmatrix} = \begin{bmatrix} -w & -\mathbf{v} \end{bmatrix}.$$

- Mais ça ne change en rien le déplacement angulaire
 - Explication
 - Reprenons la formule précédente

$$\begin{bmatrix} w & \mathbf{v} \end{bmatrix} = \begin{bmatrix} \cos(\theta/2) & \sin(\theta/2)\hat{\mathbf{n}} \end{bmatrix}$$

- Si on ajoute 360° à θ , ça ne change rien à la rotation
- En revanche

$$cos (\theta/2 + 180) = -cos (\theta/2)$$

 $sin (\theta/2 + 180) = -sin (\theta/2)$

- Quaternion identité
 - Point de vue géométrique
 - Il existe deux quaternions "identité" qui signifient : "pas de déplacement angulaire"

```
[1 0] et [-1 0]
```

- Point de vue algébrique
 - Il n'existe en fait qu'un seul quaternion identité : [1 0]
 - Explication
 - Si on multiplie un quaternion **q** par [1 **0**], ça donne **q**
 - Si on multiplie un quaternion q par [-1 0], ça donne -q
 - Si géométriquement parlant, q et -q désignent le même déplacement angulaire, algébriquement parlant, ils ne sont pas égaux
 - Donc [-1 0] n'est pas un "vrai" quaternion identité

Quaternions

Magnitude (norme) d'un quaternion

$$\|\mathbf{q}\| = \|[w \quad (x \quad y \quad z)]\| = \sqrt{w^2 + x^2 + y^2 + z^2}$$

= $\|[w \quad \mathbf{v}]\| = \sqrt{w^2 + \|\mathbf{v}\|^2}$.

- Interprétation géométrique
 - Les quaternions de rotation sont unitaires (norme 1)
 - On parlera donc de quaternions unitaires pour les désigner

$$\|\mathbf{q}\| = \|[w \quad \mathbf{v}]\| = \sqrt{w^2 + \|\mathbf{v}\|^2}$$

$$= \sqrt{\cos^2(\theta/2) + (\sin(\theta/2)\|\hat{\mathbf{n}}\|)^2}$$

$$= \sqrt{\cos^2(\theta/2) + \sin^2(\theta/2)\|\hat{\mathbf{n}}\|^2}$$

$$= \sqrt{\cos^2(\theta/2) + \sin^2(\theta/2)(1)}$$

$$= \sqrt{1}$$

$$= 1.$$

- Conjugué et inverse d'un quaternion
 - Conjugué (q*): négation de la partie vectorielle

$$\mathbf{q}^* = \begin{bmatrix} w & \mathbf{v} \end{bmatrix}^* = \begin{bmatrix} w & -\mathbf{v} \end{bmatrix}$$
$$= \begin{bmatrix} w & (x & y & z) \end{bmatrix}^* = \begin{bmatrix} w & (-x & -y & -z) \end{bmatrix}$$

- Inverse (\mathbf{q}^{-1}): conjugué divisé par la norme $\mathbf{q}^{-1} = \frac{\mathbf{q}^*}{\|\mathbf{q}\|}$
- Interprétation géométrique
 - Pour un quaternion unitaire, la norme est 1, donc le conjugué et l'inverse sont équivalents
 - Le conjugué (ou l'inverse) d'un quaternion unitaire représente le déplacement angulaire opposé
 - D'ailleurs, quand on multiplie un quaternion par son inverse, on obtient le quaternion identité [1 0]

- Quaternions
 - Addition de quaternions
 - On additionne les composantes une à une

$$\mathbf{q_1} + \mathbf{q_2} = [w_1 \ \mathbf{v_1}] + [w_2 \ \mathbf{v_2}] = [w_1 + w_2 \ \mathbf{v_1} + \mathbf{v_2}]$$
$$= [w_1 + w_2 \ (x_1 + x_2 \ y_1 + y_2 \ z_1 + z_2)]$$

Produit de quaternions (ou "produit de Hamilton")

$$\mathbf{q}_{1}\mathbf{q}_{2} = \begin{bmatrix} w_{1} & (x_{1} & y_{1} & z_{1}) \end{bmatrix} \begin{bmatrix} w_{2} & (x_{2} & y_{2} & z_{2}) \end{bmatrix}$$

$$= \begin{bmatrix} w_{1}w_{2} - x_{1}x_{2} - y_{1}y_{2} - z_{1}z_{2} \\ w_{1}x_{2} + x_{1}w_{2} + y_{1}z_{2} - z_{1}y_{2} \\ w_{1}y_{2} + y_{1}w_{2} + z_{1}x_{2} - x_{1}z_{2} \\ w_{1}z_{2} + z_{1}w_{2} + x_{1}y_{2} - y_{1}x_{2} \end{bmatrix}$$

$$= \begin{bmatrix} w_{1} & \mathbf{v}_{1} \end{bmatrix} \begin{bmatrix} w_{2} & \mathbf{v}_{2} \end{bmatrix}$$

$$= \begin{bmatrix} w_{1} & \mathbf{v}_{1} \end{bmatrix} \begin{bmatrix} w_{2} & \mathbf{v}_{2} \end{bmatrix}$$

$$= \begin{bmatrix} w_{1}w_{2} - \mathbf{v}_{1} \cdot \mathbf{v}_{2} & w_{1}\mathbf{v}_{2} + w_{2}\mathbf{v}_{1} + \mathbf{v}_{1} \times \mathbf{v}_{2} \end{bmatrix}$$

- Quaternions
 - Produit de quaternions (ou "produit de Hamilton")
 - Propriétés
 - Similaire au produit vectoriel (moins la croix)
 - Renvoie un quaternion, et n'est pas commutatif
 - Associatif, mais pas commutatif

$$(\mathbf{ab})\mathbf{c} = \mathbf{a}(\mathbf{bc})$$

 $\mathbf{ab} \neq \mathbf{ba}.$

• Magnitude du produit = produit des magnitudes $\|\mathbf{q}_1\mathbf{q}_2\| = \|\mathbf{q}_1\|\|\mathbf{q}_2\|$

Inverse du produit = produit des inverses dans l'ordre inverse

$$(\mathbf{a}\mathbf{b})^{-1} = \mathbf{b}^{-1}\mathbf{a}^{-1},$$

 $(\mathbf{q}_1\mathbf{q}_2\cdots\mathbf{q}_{n-1}\mathbf{q}_n)^{-1} = \mathbf{q}_n^{-1}\mathbf{q}_{n-1}^{-1}\cdots\mathbf{q}_2^{-1}\mathbf{q}_1^{-1}$

- Quaternions
 - Produit de quaternions (ou "produit de Hamilton")
 - Utilisation pour la rotation d'un vecteur 3D
 - Soit un point 3D (x,y,z) (ou plutôt un vecteur position $[x \ y \ z]$
 - Étendons-le pour en faire un quaternion $\mathbf{p} = [0 \ (x \ y \ z)]$
 - Soit q un quaternion unitaire $\mathbf{q} = [\cos \theta/2, \, \hat{\mathbf{n}} \, \sin \theta/2]$
 - La rotation **p'** de **p** autour de θ s'effectue comme suit : **p'**=**qpq**-1
 - Concaténation de plusieurs rotations
 - Soient les quaternions unitaires a et b
 - La rotation de p par a, puis par b, s'effectue comme suit :

$$\mathbf{p}' = \mathbf{b}(\mathbf{a}\mathbf{p}\mathbf{a}^{-1})\mathbf{b}^{-1}$$
$$= (\mathbf{b}\mathbf{a})\mathbf{p}(\mathbf{a}^{-1}\mathbf{b}^{-1})$$
$$= (\mathbf{b}\mathbf{a})\mathbf{p}(\mathbf{b}\mathbf{a})^{-1}.$$

 Une rotation par a puis par b équivaut à une unique rotation par le produit de quaternions ba

- Quaternions
 - "Différence" entre deux quaternions
 - Soient deux orientations a et b
 - On peut calculer le déplacement angulaire d qui effectue la rotation de a vers b
 - On appelle ça "différence", mais c'est plus une division
 - Le déplacement s'effectue comme suit : da = b
 - Le produit de quaternions exécute les rotations de droite à gauche
 - On va à présent calculer d :

$$(\mathbf{da})\mathbf{a}^{-1} = \mathbf{ba}^{-1}$$
$$\mathbf{d}(\mathbf{aa}^{-1}) = \mathbf{ba}^{-1}$$
$$\mathbf{d}\begin{bmatrix}1 & \mathbf{0}\end{bmatrix} = \mathbf{ba}^{-1}$$
$$\mathbf{d} = \mathbf{ba}^{-1}$$

- Quaternions
 - Produit scalaire de quaternions
 - Similaire au produit scalaire entre deux vecteurs
 - Le résultat est un scalaire
 - Il sert à mesurer la similarité entre deux orientations
 - Résultat du produit scalaire

$$\mathbf{q}_{1} \cdot \mathbf{q}_{2} = \begin{bmatrix} w_{1} & \mathbf{v}_{1} \end{bmatrix} \cdot \begin{bmatrix} w_{2} & \mathbf{v}_{2} \end{bmatrix}$$

$$= w_{1}w_{2} + \mathbf{v}_{1} \cdot \mathbf{v}_{2}$$

$$= \begin{bmatrix} w_{1} & (x_{1} & y_{1} & z_{1}) \end{bmatrix} \cdot \begin{bmatrix} w_{2} & (x_{2} & y_{2} & z_{2}) \end{bmatrix}$$

$$= w_{1}w_{2} + x_{1}x_{2} + y_{1}y_{2} + z_{1}z_{2}.$$

- Pour un quaternion unitaire : $-1 \le \mathbf{a} \cdot \mathbf{b} \le 1$

- Logarithme d'un quaternion
 - Soit $\mathbf{q} = [\cos \theta/2, \, \hat{\mathbf{n}} \sin \theta/2]$ un quaternion unitaire
 - Soit le demi-angle $\alpha = \theta/2$, tel que $\mathbf{q} = [\cos \alpha, \, \hat{\mathbf{n}} \sin \alpha]$
 - Logarithme de \mathbf{q} : $\log \mathbf{q} = \log ([\cos \alpha \ \hat{\mathbf{n}} \sin \alpha]) \equiv [0 \ \alpha \hat{\mathbf{n}}]$
- Exponentielle d'un quaternion
 - Soit **p** un quaternion de la forme $p = [0 \ \alpha \hat{\mathbf{n}}] \ (||\hat{\mathbf{n}}|| = 1)$
 - Exponentielle de \mathbf{p} : $\exp \mathbf{p} = \exp (\begin{bmatrix} 0 & \alpha \hat{\mathbf{n}} \end{bmatrix}) \equiv \begin{bmatrix} \cos \alpha & \hat{\mathbf{n}} \sin \alpha \end{bmatrix}$
 - L'exponentielle est l'inverse du logarithme : exp(log q) = q
- Multiplication d'un quaternion par un scalaire
 - Soient un scalaire k et un quaternion \mathbf{q}
 - Alors $k\mathbf{q} = k[w \ \mathbf{v}] = [kw \ k\mathbf{v}]$

- Exponentiation d'un quaternion
 - Multiplie le quaternion par lui-même un certain nombre de fois (c'est la fonction puissance d'un quaternion)
 - Pour un quaternion \mathbf{q} et un scalaire $t: \mathbf{q}^t = \exp(t \log \mathbf{q})$
 - Quand t varie de 0 à 1, q^t varie de [1 0] à q
 - C'est utile pour calculer une partie du déplacement angulaire représenté par q (c'est une fraction de t)
 - Exemple : q^{1/3} représente 1/3 du déplacement angulaire q
 - Quand t>1, q^t représente t fois le déplacement angulaire q
 - Exemple : si q=30° alors q² est une rotation horaire de 60°
 - Quand t<0, \mathbf{q}^t représente une rotation dans le sens inverse
 - Exemple : si $q=30^{\circ}$ alors $q^{-1/3}$ est une rotation antihoraire de 10°

- Interpolation linéaire sphérique (SLERP)
 - C'est LA raison pour laquelle les quaternions sont autant utilisés dans les jeux et applications 3D
 - Reprenons la formule standard de l'interpolation linéaire LERP entre deux scalaires a_0 et a_1

$$\Delta a = a_1 - a_0,$$
$$\operatorname{lerp}(a_0, a_1, t) = a_0 + t \Delta a.$$

- Cette formule consiste en 3 étapes
 - D'abord, on calcule la différence entre a_1 et a_0
 - Ensuite, on prend une fraction de cette différence
 - Enfin, on "ajuste" a_0 avec cette fraction de différence

- Interpolation linéaire sphérique (SLERP)
 - Appliquons le principe pour interpoler entre deux orientations $\mathbf{q_0}$ et $\mathbf{q_1}$
 - Calcul de la "différence" entre $\mathbf{q_1}$ et $\mathbf{q_0}$

$$\Delta \mathbf{q} = \mathbf{q_1} \mathbf{q_0}^{-1}$$

- Fraction de cette "différence" $(\Delta \mathbf{q})^t$
- Ajustement de \mathbf{q}_0 avec cette fraction de "différence" $(\Delta \mathbf{q})^t \mathbf{q}_0$
- On obtient l'équation suivante pour SLERP slerp($\mathbf{q}_0, \mathbf{q}_1, t$) = $(\mathbf{q}_1 \mathbf{q}_0^{-1})^t \mathbf{q}_0$
- Mais ce n'est que la forme algébrique, théorique

- Quaternions
 - Interpolation linéaire sphérique (SLERP)
 - Formule alternative (plus efficace)
 - Considérons l'espace 4D
 - Les quaternions qui nous intéressent étant unitaires, ils résident à la surface d'une hypersphère 4D
 - Nous allons donc interpoler autour de l'arc qui connecte les deux quaternions à la surface de cette hypersphère 4D
 - ... d'où la notion d'interpolation linéaire sphérique

- Quaternions
 - Interpolation linéaire sphérique (SLERP)
 - Formule alternative (plus efficace)
 - Soient deux vecteurs unitaires 2D $\mathbf{v_0}$ et $\mathbf{v_1}$
 - On veut calculer \mathbf{v}_t , qui est le résultat de l'interpolation autour de l'arc par une fraction t de la distance de \mathbf{v}_0 à \mathbf{v}_1

 $(1-t)\omega$

- Soit ω l'angle entre \mathbf{v}_0 et \mathbf{v}_1 sur l'arc
- Alors $\mathbf{v}_{\mathbf{t}}$ est le résultat de la rotation de $\mathbf{v}_{\mathbf{0}}$ d'un angle de $t\omega$ autour de cet arc

- Quaternions
 - Interpolation linéaire sphérique (SLERP)
 - Formule alternative (plus efficace)

• Il existe des constantes positives k_o et k_1 telles que $\mathbf{v_t} = k_o \mathbf{v_0} + k_1 \mathbf{v_1}$ (combinaison linéaire)

• Sachant que $\mathbf{v_1}$ est un vecteur unitaire $\sin \omega = \frac{\sin t\omega}{k_1}$ $k_1 = \frac{\sin t\omega}{\sin \omega}$

• Même technique pour k_o

$$k_0 = \frac{\sin(1-t)\omega}{\sin\omega}$$

• On peut donc exprimer \mathbf{v}_{t} comme suit

$$\mathbf{v}_t = k_0 \mathbf{v}_0 + k_1 \mathbf{v}_1 = \frac{\sin(1-t)\omega}{\sin\omega} \mathbf{v}_0 + \frac{\sin t\omega}{\sin\omega} \mathbf{v}_1$$

- Quaternions
 - Interpolation linéaire sphérique (SLERP)
 - Formule alternative (plus efficace)
 - On peut étendre le principe à l'espace des quaternions, et reformuler la formule SLERP comme suit

slerp(
$$\mathbf{q}_0, \mathbf{q}_1, t$$
) = $\frac{\sin(1-t)\omega}{\sin\omega}\mathbf{q}_0 + \frac{\sin t\omega}{\sin\omega}\mathbf{q}_1$

- Pour calculer "l'angle" ω qui est cette fois entre deux quaternions, il suffit de se souvenir que leur produit scalaire est égal à cos ω
- Deux conditions toutefois
 - Choisir les signes de $\mathbf{q_0}$ et $\mathbf{q_1}$ de sorte que leur produit scalaire ne soit pas négatif
 - Ainsi, l'arc de rotation entre les deux sera le plus court
 - Si \mathbf{q}_0 et \mathbf{q}_1 sont très rapprochés, l'angle sera très petit, tout comme sin ω , et dans ce cas il faudra utiliser une simple LERP

- Interpolation linéaire normalisée (NLERP)
 - LERP adaptée aux rotations

- La formule est la suivante :
$$nlerp(\mathbf{q}_0, \mathbf{q}_1, t) = \frac{(1-t)\mathbf{q}_0 + t\mathbf{q}_1}{||(1-t)\mathbf{q}_0 + t\mathbf{q}_1||}$$

- Avantages
 - Commutatif, contrairement à SLERP
 - Moins coûteux que SLERP (n'utilise ni sinus, ni cosinus)
- Inconvénients
 - Cette interpolation ne prend pas en compte le fait que les quaternions sont des points dans une hypersphère 4D
 - En conséquence, contrairement à une interpolation SLERP, elle ne s'effectue pas à une vélocité constante
 - Ce qui peut conduire à des animations qui auront l'air trop rapides au milieu de la rotation, mais trop lentes à la fin

- Avantages des quaternions
 - Interpolation "lisse" ("smooth") et "torque minimal"
 - Rapidité de concaténation et d'inversion de déplacements angulaires
 - Rapidité de conversion avec des matrices
 - Seulement 4 nombres (contre 9 pour une matrice)
- Inconvénients des quaternions
 - Plus grands de 33% que les angles d'Euler
 - Peuvent devenir invalides en cas d'accumulation de mauvaises données (mais on peut les normaliser)
 - Difficulté à travailler avec (beaucoup moins intuitifs que les angles d'Euler, par exemple)

- Quaternions
 - L'usage du SLERP fait débat
 - Exemple : "Understanding Slerp, Then Not Using It", article de Jonathan Blow (*Braid*, *Witness*) publié en 2004 sur son blog (source)
 - Pour lui, SLERP est trop complexe et trop coûteux
 - On peut essayer de comprendre la technique...
 - ... afin d'éviter de l'utiliser (pour s'en remettre à NLERP)
 - Point de vue de Jason Gregory dans son livre
 - Les développeurs de Naughty Dog (*Uncharted*) ont trouvé qu'une bonne implémentation de SLERP était aussi performante que NLERP (tests effectués sur PS3)
 - Avoir SLERP aux côtés d'autres algorithmes (LERP, NLERP...) est une bonne chose. Il faut juste savoir lequel, dans un contexte donné, est le plus efficace

- Comparaison entre les différentes méthodes
 - Rotations de points entre deux espaces de coordonnées
 - Matrices : possible et optimisable
 - Angles d'Euler : impossible
 - Quaternions : très difficile en pratique
 - Concaténation de plusieurs rotations
 - Matrices : possible et optimisable, avec risque d'erreurs
 - Angles d'Euler : impossible
 - Quaternions : possible, rapide, avec risque d'erreurs
 - Inversion de rotations
 - Matrices : facile et rapide avec la transposée
 - Angles d'Euler : pas facile
 - Quaternions : facile et rapide avec le conjugué

- Comparaison entre les différentes méthodes
 - Interpolation
 - Matrices : extrêmement problématique
 - Angles d'Euler : possible, mais blocage de Cardan
 - Quaternions : possible, "lisse" et efficace grâce au SLERP
 - Interprétation "humaine" immédiate
 - Matrices : difficile
 - Angles d'Euler : immédiat
 - Quaternions : très difficile
 - Stockage (dans la mémoire ou dans un fichier)
 - Matrices: 9 nombres
 - Angles d'Euler : 3 nombres
 - Quaternions: 4 nombres

- Comparaison entre les différentes méthodes
 - Représentation unique pour une rotation donnée
 - Matrices : oui
 - Angles d'Euler : non, en raison de l'aliasing
 - Quaternions : exactement deux pour chaque déplacement angulaire, chacun est la négation de l'autre
 - Possibilité d'être invalide
 - Matrices : oui
 - Angles d'Euler : jamais
 - Quaternions : oui

- Conversions entre les représentations
 - Conversion angles d'Euler → matrice
 - On considère les rotations autour des angles h (heading),
 p (pitch) et b (bank) comme des matrices de rotation

$$\mathbf{B} = \mathbf{R}_z(b) = \begin{bmatrix} \cos b & \sin b & 0 \\ -\sin b & \cos b & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{P} = \mathbf{R}_x(p) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos p & \sin p \\ 0 & -\sin p & \cos p \end{bmatrix}$$

$$\mathbf{H} = \mathbf{R}_y(h) = \begin{bmatrix} \cos h & 0 & -\sin h \\ 0 & 1 & 0 \\ \sin h & 0 & \cos h \end{bmatrix}$$

- Conversions entre les représentations
 - Conversion angles d'Euler → matrice
 - On utilisera les raccourcis suivants

$$ch = \cos h,$$
 $cp = \cos p,$ $cb = \cos b,$
 $sh = \sin h,$ $sp = \sin p,$ $sb = \sin b.$

- On effectue les rotations dans le sens inverse

- Pour l'opération inverse : $H^{-1}P^{-1}B^{-1} = R_v(-h)R_x(-p)R_z(-b) =$

$$\begin{bmatrix} ch cb + sh sp sb & -ch sb + sh sp cb & sh cp \\ sb cp & cb cp & -sp \\ -sh cb + ch sp sb & sb sh + ch sp cb & ch cp \end{bmatrix}$$

- Conversions entre les représentations
 - Conversion matrice → angles d'Euler (canoniques)

$$\mathbf{M} = \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{bmatrix}$$

$$= \begin{bmatrix} \cos h \cos b + \sin h \sin p \sin b & \sin b \cos p & -\sin h \cos b + \cos h \sin p \sin b \\ -\cos h \sin b + \sin h \sin p \cos b & \cos b \cos p & \sin b \sin h + \cos h \sin p \cos b \\ \sin h \cos p & -\sin p & \cos h \cos p \end{bmatrix}$$

- Calcul de $p : m_{32} = -\sin p$, d'où : $p = \arcsin(-m_{32})$
- Calcul de h: $m_{31} = \sin h \cos p$, $m_{33} = \cos h \cos p$, $m_{31}/\cos p = \sin h$, $m_{33}/\cos p = \cos h$. $h = \operatorname{atan2}(\sin h, \cos h) = \operatorname{atan2}(m_{31}/\cos p, m_{33}/\cos p)$
- Calcul de b: $m_{12} = \sin b \cos p$ $m_{22} = \cos b \cos p$ $b = \operatorname{atan2}(\sin b, \cos b) = \operatorname{atan2}(m_{12}/\cos p, m_{22}/\cos p)$

- Conversions entre les représentations
 - Conversion quaternion → matrice
 - Quaternion de départ $[w \quad \mathbf{v}] = [\cos(\theta/2) \quad \sin(\theta/2)\hat{\mathbf{n}}]$
 - Matrice résultat

$$\begin{bmatrix} n_x^2 (1 - \cos \theta) + \cos \theta & n_x n_y (1 - \cos \theta) + n_z \sin \theta & n_x n_z (1 - \cos \theta) - n_y \sin \theta \\ n_x n_y (1 - \cos \theta) - n_z \sin \theta & n_y^2 (1 - \cos \theta) + \cos \theta & n_y n_z (1 - \cos \theta) + n_x \sin \theta \\ n_x n_z (1 - \cos \theta) + n_y \sin \theta & n_y n_z (1 - \cos \theta) - n_x \sin \theta & n_z^2 (1 - \cos \theta) + \cos \theta \end{bmatrix}$$

$$w = \cos(\theta/2)$$
 $x = n_x \sin(\theta/2)$ $y = n_y \sin(\theta/2)$ $z = n_z \sin(\theta/2)$

$$\begin{bmatrix} 1 - 2y^2 - 2z^2 & 2xy + 2wz & 2xz - 2wy \\ 2xy - 2wz & 1 - 2x^2 - 2z^2 & 2yz + 2wx \\ 2xz + 2wy & 2yz - 2wx & 1 - 2x^2 - 2y^2 \end{bmatrix}$$

- Conversions entre les représentations
 - Conversion matrice → quaternion

- Matrice de départ
$$\mathbf{M} = \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{bmatrix}$$

Quaternion résultat :

$$w = \frac{\sqrt{m_{11} + m_{22} + m_{33} + 1}}{2} \quad \Longrightarrow \quad x = \frac{m_{23} - m_{32}}{4w} \quad y = \frac{m_{31} - m_{13}}{4w} \quad z = \frac{m_{12} - m_{21}}{4w}$$

$$x = \frac{\sqrt{m_{11} - m_{22} - m_{33} + 1}}{2} \quad \Longrightarrow \quad w = \frac{m_{23} - m_{32}}{4x} \quad y = \frac{m_{12} + m_{21}}{4x} \quad z = \frac{m_{31} + m_{13}}{4x}$$

$$y = \frac{\sqrt{-m_{11} + m_{22} - m_{33} + 1}}{2} \quad \Longrightarrow \quad w = \frac{m_{31} - m_{13}}{4y} \quad x = \frac{m_{12} + m_{21}}{4y} \quad z = \frac{m_{23} + m_{32}}{4y}$$

$$z = \frac{\sqrt{-m_{11} - m_{22} + m_{33} + 1}}{2} \quad \Longrightarrow \quad w = \frac{m_{12} - m_{21}}{4z} \quad x = \frac{m_{31} + m_{13}}{4z} \quad y = \frac{m_{23} + m_{32}}{4z}$$

- Conversions entre les représentations
 - Conversion angles d'Euler → quaternion
 - Soient h, p et b les quaternions qui effectuent les rotations autour des axes respectifs y, x et z
 - On en déduit le quaternion résultat :

$$\mathbf{q}(h,p,b) = \mathbf{hpb} = \begin{bmatrix} \cos(h/2) \\ 0 \\ \sin(h/2) \\ 0 \end{bmatrix} \begin{bmatrix} \cos(p/2) \\ \sin(p/2) \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} \cos(b/2) \\ 0 \\ \sin(b/2) \end{bmatrix}$$

$$= \begin{bmatrix} \cos(h/2)\cos(p/2) \\ \cos(h/2)\sin(p/2) \\ \sin(h/2)\cos(p/2) \\ -\sin(h/2)\sin(p/2) \end{bmatrix} \begin{bmatrix} \cos(b/2) \\ 0 \\ 0 \\ \sin(b/2) \end{bmatrix}$$

$$= \begin{bmatrix} \cos(h/2)\cos(p/2) \\ \cos(h/2)\sin(p/2) \end{bmatrix} \begin{bmatrix} \cos(b/2) \\ 0 \\ \sin(b/2) \end{bmatrix}$$

$$= \begin{bmatrix} \cos(h/2)\cos(p/2)\cos(b/2) + \sin(h/2)\sin(p/2)\sin(b/2) \\ \cos(h/2)\sin(p/2)\cos(b/2) + \sin(h/2)\cos(p/2)\sin(b/2) \\ \sin(h/2)\cos(p/2)\cos(b/2) - \cos(h/2)\sin(p/2)\sin(b/2) \\ \cos(h/2)\cos(p/2)\sin(b/2) - \sin(h/2)\sin(p/2)\cos(b/2) \end{bmatrix}$$

- Conversions entre les représentations
 - Conversion quaternion → angles d'Euler
 - On peut d'abord convertir du quaternion à une matrice, puis de la matrice aux angles d'Euler
 - On aura besoin en particulier des cellules suivantes :

$$m_{11} = 1 - 2y^2 - 2z^2$$
, $m_{12} = 2xy + 2wz$, $m_{13} = 2xz - 2wy$, $m_{22} = 1 - 2x^2 - 2z^2$, $m_{31} = 2xz + 2wy$, $m_{32} = 2yz - 2wx$, $m_{33} = 1 - 2x^2 - 2y^2$

Conversions entre les représentations

 $p = \arcsin(-m_{32})$

 $= \arcsin(-2(yz - wx))$

Conversion quaternion → angles d'Euler

$$h = \begin{cases} \tan 2(m_{31}, m_{33}) \\ = \tan 2(2xz + 2wy, 1 - 2x^2 - 2y^2) \\ = \tan 2(xz + wy, 1/2 - x^2 - y^2) \end{cases} \quad \text{si } \cos p \neq 0$$

$$h = \begin{cases} \tan 2(-m_{13}, m_{11}) \\ = \tan 2(-2xz + 2wy, 1 - 2y^2 - 2z^2) \\ = \tan 2(-xz + wy, 1/2 - y^2 - z^2) \end{cases} \quad \text{sinon}$$

$$b = \begin{cases} \tan 2(m_{12}, m_{22}) \\ = \tan 2(2xy + 2wz, 1 - 2x^2 - 2z^2) \\ = \tan 2(xy + wz, 1/2 - x^2 - z^2) \end{cases} \quad \text{si } \cos p \neq 0$$

$$b = \begin{cases} \tan 2(xy + wz, 1/2 - x^2 - z^2) \\ = \sin 2(xy + wz, 1/2 - x^2 - z^2) \end{cases} \quad \text{si } \cos p \neq 0$$

Fin de la deuxième partie