CLASSIFICATION - HOUSE GRADE DATA

Build a predictive model to determine the Grade of house.

Importing libraries

```
In [1]:
          1 #IMPORT REQUIRED LIBRARIES
          2 import numpy as np
          3 import pandas as pd
          4 from numpy import mean
          5 from numpy import std
          6
          7
            import warnings
            warnings.simplefilter(action='ignore')
In [2]:
          1 | from sklearn.preprocessing import StandardScaler
          2 from sklearn.naive_bayes import GaussianNB
          3 from sklearn.metrics import confusion_matrix
          4 from matplotlib.colors import ListedColormap
          5 from sklearn.metrics import precision_score, recall_score, accuracy_score, f1_score
```

Out[3]:

	ld	Area(total)	Trooms	Nbedrooms	Nbwashrooms	Twashrooms	roof	Roof(Area)	Lawn(Area)	Nfloors
0	1	339	6	5	4	6	NO	0	76	
1	2	358	5	4	3	4	YES	71	96	;
2	3	324	7	5	4	5	YES	101	117	ţ
3	4	330	6	4	3	5	YES	101	82	2
4	5	320	7	4	4	5	NO	0	75	;
5	6	314	8	7	6	7	YES	81	93	(
6	7	332	9	8	7	9	YES	103	120	(
7	8	323	9	8	7	9	NO	0	95	(
8	9	351	8	6	6	8	YES	89	97	(
9	10	339	6	5	5	6	NO	0	111	2
10	11	308	5	3	2	3	YES	74	105	
11	12	309	6	4	4	6	NO	0	115	4
12	13	324	6	5	5	7	NO	0	109	2
13	14	303	5	3	2	3	NO	0	84	2
14	15	321	9	6	5	7	NO	0	80	(
15	16	345	8	7	6	7	YES	116	83	(
16	17	307	7	6	6	7	NO	0	81	;
4										•

Data preprocessing

In [4]: 1 house_df.sample(7)

Out[4]:

	ld	Area(total)	Trooms	Nbedrooms	Nbwashrooms	Twashrooms	roof	Roof(Area)	Lawn(Area)	N1
1537	1538	305	7	5	5	6	YES	86	71	
195	196	308	7	4	3	4	YES	79	119	
2868	2869	334	6	5	5	7	YES	109	80	
2162	2163	322	9	8	8	10	YES	108	78	
2987	2988	303	9	8	7	9	YES	97	85	
2655	2656	293	5	3	3	5	YES	105	95	
1757	1758	291	8	7	6	7	YES	75	98	
4										•

```
In [5]: 1 house_df.shape
Out[5]: (3000, 14)
```

In [6]: 1 house_df.dtypes

Out[6]: Id int64 Area(total) int64 Trooms int64 Nbedrooms int64 Nbwashrooms int64 Twashrooms int64 roof object Roof(Area) int64 Lawn(Area) int64 Nfloors int64 API int64 ANB int64 Expected price int64 Grade object dtype: object

In [7]: 1 house_df.describe().T

Out[7]:

	count	mean	std	min	25%	50%	75%	max
ld	3000.0	1500.500000	866.169729	1.0	750.75	1500.5	2250.25	3000.0
Area(total)	3000.0	325.117000	20.507742	290.0	308.00	325.0	343.00	360.0
Trooms	3000.0	7.021667	1.421221	5.0	6.00	7.0	8.00	9.0
Nbedrooms	3000.0	5.023000	1.634838	2.0	4.00	5.0	6.00	8.0
Nbwashrooms	3000.0	4.513667	1.715263	1.0	3.00	4.0	6.00	8.0
Twashrooms	3000.0	6.010667	1.786136	2.0	5.00	6.0	7.00	10.0
Roof(Area)	3000.0	48.980667	48.746641	0.0	0.00	71.0	96.00	120.0
Lawn(Area)	3000.0	95.609333	14.837388	70.0	83.00	96.0	109.00	120.0
Nfloors	3000.0	4.013333	1.621532	1.0	3.00	4.0	5.00	7.0
API	3000.0	70.190667	17.563460	40.0	55.00	70.0	85.00	100.0
ANB	3000.0	3.479000	1.694260	1.0	2.00	4.0	5.00	6.0
Expected price	3000.0	3782,938333	567.189995	2504.0	3354.00	3771.0	4208.00	5216.0

```
1 # Checking for null value in each column
In [8]:
          2 house_df.isnull().sum()
Out[8]: Id
                           0
        Area(total)
                           0
        Trooms
                           0
        Nbedrooms
                           0
                           0
        Nbwashrooms
        Twashrooms
                           0
        roof
                           0
        Roof(Area)
                           0
        Lawn(Area)
                           0
        Nfloors
                           0
        API
                           0
        ANB
                           0
        Expected price
                           0
        Grade
                           0
        dtype: int64
```

There are no null values in the House Grade Dataset

Data Visualization

```
In [40]:
           1 #Gradewise houses percentage
           2
             fig = plt.figure(figsize =(10, 7))
             labels = ['Good','Average','Better','Best','Worst']
           4
             bins= [0,290 ,300,330 ,340 ,360]
           6 | #data = pd.cut(females["Grade"], labels = labels)
           7
             #data = data.value_counts()
             data = pd.cut(house_df["Grade"],bins=bins, labels = labels)
             data =house_df['Grade'].value_counts()
          10
          11
             plt.pie(x = data, labels = labels, explode = [0.09, .02, 0.04, 0.03,0], pctdistand
          12 plt.title("Grade-wise house Count distribution")
          13 plt.show()
```

Grade-wise house Count distribution

Interpretation-Maximum number of house are of Good quality i.e, "C" Grade houses

In [11]: 1 pd.crosstab(house_df['Grade'],house_df['roof']).plot(kind='bar');

Interpretation- Maximum Houses of Grade A ,B ,C have roofs whereas houses of Grade D and E don't have roofs

Out[12]: Text(0.5, 1.0, ' Gradewise Number of bedrooms')

'A' grade houses have maximum number of rooms i.e,7 followed by 'B' Grade houses with 6 number of rooms

Interpretation- The Total Area wise and number of floor wise maximum houses are Good and minimum houses are of better quality.

```
In [14]: 1 sns.barplot(x ='Grade', y ='Nfloors', data = house_df, palette ='pastel').set(title
```


Interpretation -'A' grade houses have maximum number of floors i.e,6 followed by 'B' Grade houses with 5 number of rooms

Label Encoding

```
In [16]:
           1 house_df.dtypes
Out[16]: Id
                             int64
          Area(total)
                             int64
          Trooms
                             int64
          Nbedrooms
                             int64
          Nbwashrooms
                             int64
          Twashrooms
                             int64
          roof
                             int32
          Roof(Area)
                             int64
          Lawn(Area)
                             int64
          Nfloors
                             int64
          API
                             int64
          ANB
                             int64
          Expected price
                             int64
          Grade
                             int32
          dtype: object
In [17]:
              house df['Grade'].value counts()
Out[17]: 3
               1270
          2
                716
          1
                539
          0
                399
          4
                 76
          Name: Grade, dtype: int64
```

In Grade 'A' indicates are the best houses and 'E' indicates the worst houses

DATA SPLITTING

```
In [18]:
             #2) Create a test-split with 30% test data and random state =11
          1
             from sklearn.model selection import train test split
             X = house_df.iloc[:, [1,3,5,6,7,8,9,10,12]].values
             y = house df.iloc[:, -1].values
           6 X_train, X_test, y_train, y_test = train_test_split(X, y, train_size = 0.80 ,rando
           7
             print('Size of training dataset: ', X_train.shape)
             print('Size of test dataset: ', y test.shape)
         Size of training dataset: (2400, 9)
         Size of test dataset: (600,)
In [19]:
             #3) Normalizing and Standardizing using Standard Scalar
           1
           3 sc = StandardScaler()
           4 X_train = sc.fit_transform(X_train)
           5 X test = sc.fit transform(X test)
```

MODEL BUILDING

Naive Bayes Model

Out[20]: GaussianNB()

Evaluate the Model

```
In [21]: 1 # Predicting the Test set results
2 y_pred = classifier.predict(X_test)
3
```

Confusion Matrix

```
In [22]:
             # Making the Confusion Matrix
              cm = confusion_matrix(y_test, y_pred)
              cm
Out[22]: array([[ 72,
                        15,
                              0,
                                   0,
                                        0],
                   1,
                        93,
                                        0],
                             12,
                                   0,
                   0,
                        29,
                             81,
                                 15,
                                        0],
                   0,
                         0,
                             28, 239,
                                        5],
                   0,
                         0,
                              0,
                                   2,
                                        8]], dtype=int64)
           1 | # Evaluate Accuracy Score
In [23]:
           2 accuracy_score(y_test, y_pred)
Out[23]: 0.8216666666666667
```

Evaluation metrics

```
In [24]: 1 print('accuracy:', accuracy_score(y_test, y_pred))
2 print('recall:', recall_score(y_test, y_pred, average='weighted'))
3 print('f1-score:', f1_score(y_test, y_pred, average='weighted'))
4 print('precision:', precision_score(y_test, y_pred, average='weighted'))
```

accuracy: 0.8216666666666667 recall: 0.82166666666666667 f1-score: 0.8249197027023704 precision: 0.8358890927698394

Decision Tree Classifier

Accuracy-Score: 0.793 (0.022)

Evaluation metrics

```
In [27]: 1 print('accuracy:', accuracy_score(y_test, y_pred))
2 print('recall:', recall_score(y_test, y_pred, average='weighted'))
3 print('f1-score:', f1_score(y_test, y_pred, average='weighted'))
4 print('precision:', precision_score(y_test, y_pred, average='weighted'))
```

accuracy: 0.8216666666666667 recall: 0.8216666666666667 f1-score: 0.8249197027023704 precision: 0.8358890927698394

Evaluate the Model

```
In [28]: 1 # Predicting the Test set results
2 model.fit(X_train, y_train)
y_pred = model.predict(X_test)
```

Confusion Matrix

```
In [29]:
          1 # Making the Confusion Matrix
          2
             cm = confusion_matrix(y_test, y_pred)
           3
             cm
Out[29]: array([[ 72, 15,
                                      0],
                            0,
                                 0,
                [ 12, 82, 12,
                                 0,
                                      0],
                [ 0, 18, 91, 16,
                                      0],
                       0, 30, 241,
                  0,
                                      1],
                            0, 4,
                                      6]], dtype=int64)
                [ 0,
                       0,
```

Random Forest Classifier

```
In [30]:
             from sklearn.ensemble import RandomForestClassifier
In [31]:
             # define the model
             model2 = RandomForestClassifier()
           3
             # evaluate the model
           5 cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=42)
           6 | n_scores = cross_val_score(model2, X, y, scoring='accuracy', cv=cv, n_jobs=-1, error
             # report performance
             print('Accuracy-Score: %.3f (%.3f)' % (mean(n_scores), std(n_scores)))
         Accuracy-Score: 0.860 (0.025)
In [32]:
           1
           2 print('accuracy:', accuracy_score(y_test, y_pred))
           3 print('recall:', recall score(y test, y pred, average='weighted'))
           4 | print('f1-score:', f1_score(y_test, y_pred, average='weighted'))
             print('precision:', precision_score(y_test, y_pred , average='weighted'))
         accuracy: 0.82
         recall: 0.82
         f1-score: 0.821891071775741
         precision: 0.8256814495843139
         Evaluate the Model
In [33]:
           1 # Predicting the Test set results
           2 model2.fit(X_train, y_train)
           3 y_pred2 = model2.predict(X_test)
         Confusion Matrix
In [34]:
             # Making the Confusion Matrix
           1
           2
             cm = confusion matrix(y test, y pred2)
           3
             cm
Out[34]: array([[ 76,
                       11,
                             0,
                                  0,
                                       0],
                   5,
                       91,
                            10,
                                  0,
                                       0],
                   0,
                      17,
                            91, 17,
                                       0],
                        0,
                   0,
                            10, 262,
                                       0],
                   0,
                                       2]], dtype=int64)
                        0,
                             0,
                                  8,
         Adaboost Classifier
In [35]:
             from sklearn.ensemble import AdaBoostClassifier
```

Accuracy-Score: 0.688 (0.046)

Stacking

```
In [37]:

1 # required Python Libraries
2 from sklearn.linear_model import LogisticRegression #META MODEL
3 from sklearn.tree import DecisionTreeClassifier #BASE MODEL
4 from sklearn.naive_bayes import GaussianNB #BASE MODEL
5 from sklearn.neighbors import KNeighborsClassifier #BASE MODEL
6 from sklearn.svm import SVC #BASE MODEL
7 from sklearn.ensemble import StackingClassifier #BASE MODEL
```

```
In [38]:
           1 # get a stacking ensemble of models
             def get stacking():
           2
           3
                  #BASE MODELS
           4
                  level0 = list()
           5
                  level0.append(('lr', LogisticRegression()))
                  level0.append(('dt', DecisionTreeClassifier()))
           6
                  level0.append(('nb', GaussianNB()))
           7
                  level0.append(('knn', KNeighborsClassifier()))
           8
           9
                  level0.append(('svm', SVC()))
          10
          11
                  #META MODEL
          12
                  level1 = LogisticRegression()
          13
          14
                  # ENSEMBLE STACKING
          15
                  model = StackingClassifier(estimators=level0 , final_estimator=level1, cv= 5)
                  return model
          16
```

Accuracy-Score: 0.838 (0.020)

Business Interpretation

- Maximum number of house are of average quality i.e, "C" Grade houses
- 'A' grade houses have maximum number of rooms i.e,7 followed by 'B' Grade houses with 6 number of rooms
- Maximum Houses of Grade A ,B ,C have roofs whereas houses of Grade D and E don't have roofs,
- Interpretation- The Total Area wise and number of floor wise maximum houses are Good and minimum houses are of better quality.
- 'A' grade houses have maximum number of floors i.e,6 followed by 'B' Grade houses with 5 number of rooms
- The Random forest Classifier Model performs the best for house grade dataset and gives the good accuracy score i.e, 86% among all the models (Naive Bayes Model, Random forest Classifier Model, Decision Tree Classifier, Adaboost Classifier, Stacking)

In []:	1	