

Dual chip in single module solid-state power amplifier design for compact transmitter architecture

Tsung-Chi Yu, RF group

National Synchrotron Radiation Research Center (NSRRC)

Hsinchu, Taiwan

IPAC 2013

Outline

- Introduction
- SSPA transmitter module number reduction
 - 1kW SSPA module for 100kW
 - 2kW SSPA module for 100kW
- Low profile planar balun
- 500MHz, 1kW SSPA using old version planar balun: the drawback
 - Iteration design of the planar baluns
 - SSPA design and results using latest planar balun
- Dual chip combination concept: small SSPA and planar combiners
- Planar power splitting/combining methods
 - Y-junction two-way power divider/combiner
 - Wilkinson two-way power divider/combiner
 - Gysel two-way divider/combiner
 - Planar balun two-way power divider/combiner
- Power combining efficiency
- The dual chip in single module concept realization in progress
- Conclusion

Introduction

- 3GeV/3.3GeV Taiwan Photon Source, in NSRRC is under construction and planned to be commissioned in 2014
- At present, two 300kW klystron transmitters are available for initial TPS operation.
- With more insertion devices or higher beam current, more RF power will be required
- Solid-state power amplifier (SSPA) transmitter is the next candidate for economic RF power upgrade.
- The experience of SSPA circuits development will be presented here.

1kW PA modules: 100kW solid-state transmitter needs 128 modules

- This topology needs quite large number of modules
- Eight 1kW-SSPA modules as a basic group for 8kW
- 16 8kW-groups for 100kW transmitter
- Each SSPA module will operate at 850W nominally

2kW PA modules: 100kW solid-state transmitter needs only 64 modules

- With 2kW SSPA modules, total number of modules can be reduced in half for the same output power
- Space, control and maintenance requirement can greatly be released.

Low profile planar balun

• With the proposed compact planar balun for 500MHz solidstate power amplifier^[1], dual-chip combination within in single module becomes attractive.

500MHz, 1kW SSPA using old version planar balun: the drawback

- The 1kW SSPA reported in IPAC 2012
- Reach 1kW per module
- Heat generated at output balun (>188degC@1kW)

Iteration design of the planar baluns

The temperature decreases one by one

The latest planar balun for 1kW power

Features:

- Add air cooling fin on the top
- Heat sink surround the balun at bottom
- The cooling structure has no effects on RF performance
- Low insertion loss: 0.1dB loss back-to-back (0.05dB/1.15% loss for one)

1kW SSPA with latest balun design

Operation with fan cooling

Test results

- Compare with the prior version SSPA
 - Temperature decreased by about 85 degC
 - ~4% efficiency enhancement
 - ~0.5-1dB power gain improvement

Dual-chip combination within single module

 Two identical SSPAs with planar two-way power divider/combiner

Two amplifiers in single module

Compact dual chip SSPA module using planar balun

- SSPA size reduction by the compact planar balun
- 50% area saving is applicable

Planar power splitting/combining methods

- Four methods are chosen:
 - Y-junction power divider/combiner
 - Wilkinson power divider/combiner
 - Gysel power divider/combiner
 - Balun power divider/combiner

Planar combiners (1)

Y-junction two-way power divider/combiner

Planar combiners (2)

Wilkinson two-way power divider/combiner

Planar combiners (3)

Gysel power two-way divider/combiner

Planar combiners (4)

Planar balun two-way power divider/combiner

Summary of above planar splitters/combiners

Bandwidth of S11 and isolation

Туре	Y-junction	Wilkinson	Gysel	Planar balun
S11 bandwidth [MHz]	178	160	107	155
Isolation@500MHz[dB]	6.33	25.68	35.84	5.87

Combining efficiency investigation (1)

Adopting two identical 50W PA for power combination

The setup is as below:

Combination efficiency can be found by driving power and

Combining efficiency investigation (2)

- Y-junction and balance combiner need isolators
- Wilkinson and Gysel do not
- Isolators will bring additional insertion loss

Need circulator for combination

Combining efficiency investigation (3)

- Combining efficiency: P_{in}=? for the same P_{out}
- Gysel combiner reach 100W with minimum input power

Performance comparison of the planar dividers/combiners

Although the bandwidth of Gysel combiner is narrow, it brings the best efficiency for power combination

Planar power two way divider/combiner type	Bandwidth [MHz]	Additional component	Special cooling	Efficiency in actual combination
Y-junction	178	Two circulators	Bottom cooling	3 rd
Wilkinson	160	One 1000hm resistor	Bottom cooling	2 nd
Gysel	107	Two 500hm resistor	Bottom cooling	Best
Planar balun	155	Two circulators	Air cooling and bottom cooling	4 th

Dual chip combination concept

The cooling structure for high power test is under construction

Conclusion

- New planar balun design with better cooling
- Compact SSPA and dual chip in single module: planar balun and combiner
- Gysel power divider/splitter has best combining efficiency without circulators

Thank you for your attention

