MATH-I ■ Assignment #1

(Real Number System, Sequences)

- Q1. Let x be a real number such that x^2 is irrational. Show that x is also irrational. Deduce that $\sqrt{2} + \sqrt{3}$ is irrational.
- Q2. Using the result "Let $m \in \mathbb{Z}$, $n \in \mathbb{N}$ and p be a prime. If $p|m^n$, then p|m." show that
 - 1. \sqrt{p} is irrational for any prime p.
 - 2. $\sqrt{15}$, $\sqrt[3]{2}$, $\sqrt[5]{16}$ are irrational.
- Q3. Find the infimum and supremum (if exists) of the sets $S_1 = \left\{ \frac{m}{m+n} : m, n \in \mathbb{N} \right\}, S_2 =$ $\left\{\frac{1}{n}:n\in\mathbb{N}\right\}.$
- Q4. Using Archimedean property of real numbers show that for any $a \in \mathbb{R}$, there is some $m, n \in \mathbb{N}$ such that -m < a < n.
- Q5. Use the Archimedean property of real numbers to show that $\bigcap_{n\in\mathbb{N}} \left(0,\frac{1}{n}\right] = \Phi$.
- Q6. Let $a_n \to a$ and $a \neq 0$. Then show that there is $m \in \mathbb{N}$ such that $a_n \neq 0$ for all $n \geq m$.
- Q7. Investigate the convergence/divergence of the following sequences:

(a)
$$x_n = \frac{1}{n^2+1} + \frac{2}{n^2+2} + \dots + \frac{n}{n^2+n}$$

(b)
$$x_n = \frac{n^2}{n^3 + n + 1} + \frac{n^2}{n^3 + n + 2} + \dots + \frac{n^2}{n^3 + 2n}$$

(a)
$$x_n = \frac{1}{n^2+1} + \frac{2}{n^2+2} + \dots + \frac{n}{n^2+n}$$

(b) $x_n = \frac{n^2}{n^3+n+1} + \frac{n^2}{n^3+n+2} + \dots + \frac{n^2}{n^3+2n}$
(c) $x_n = (n+1)^{\alpha} - n^{\alpha}$ for some $\alpha \in (0,1)$

(c)
$$x_n = (n+1)^n - n^n$$
 for some $\alpha \in (0,1)$
(d) $x_n = \left(\sqrt{2} - 2^{\frac{1}{3}}\right) \left(\sqrt{2} - 2^{\frac{1}{5}}\right) \cdots \left(\sqrt{2} - 2^{\frac{1}{2n+1}}\right)$
(e) $x_n = \frac{n!}{(2n+1)!!}$.

(e)
$$x_n = \frac{n!}{(2n+1)!!}$$

Q8. Let a>0 and $x_1>0$. Define $x_{n+1}=\frac{1}{2}\left(x_n+\frac{a}{x_n}\right)$ for all $n\in\mathbb{N}$. Prove that the sequence (x_n) converges to \sqrt{a} . These sequences are used in the numerical calculation of \sqrt{a} .

MATH-I \blacksquare Solutions Assignment #1

(Real Number System, Sequences)

- Q1. Let x be a real number such that x^2 is irrational. Show that x is also irrational. Deduce that $\sqrt{2} + \sqrt{3}$ is irrational.
- Ans. Let if possible x is rational then $x = \frac{m}{n}$ for some $m, n \in \mathbb{Z}, n \neq 0 \Longrightarrow x^2 = \frac{m^2}{n^2}$ is also rational which is a contradiction. $(\sqrt{2}+\sqrt{3})^2=5+\sqrt{6}$. Now if $5+\sqrt{6}=\frac{m}{n}\in\mathbb{Q}$ then $\sqrt{6}=\frac{m-5n}{n}\in\mathbb{Q}$, which is not
- Q2. Find the infimum and supremum (if exists) of the sets $S_1 = \left\{ \frac{m}{m+n} : m, n \in \mathbb{N} \right\}, S_2 = 0$ $\left\{\frac{1}{n}:n\in\mathbb{N}\right\}.$
- Ans. Let us first consider the set $\left\{\frac{m}{m+n}: m, n \in \mathbb{N}\right\}$. Note that $0 < \frac{m}{m+n} < 1$. We guess that inf = 0 because $\frac{1}{1+n}$ is in the set and it approaches 0 when n is very large. It is clear that 0 is a lower bound. So in order to show that 0 is the infimum, it remians to show that 0 is the least among all the lower bounds of the set. For this it is enough to show that a number $\alpha > 0$ cannot be a lower bound of the given set. This is true because we can find an n such that $\frac{1}{1+n} < \alpha$ using the Archimedean property and $\frac{1}{1+n} \in S_1$ and so α can not be a lower bound. Similarly, we can show that $\sup = 1$.

Clearly $S_2 \neq \Phi$ and 0 is a lower bound for S_2 . Therefore, S has an infimum (by completeness property). Let $\alpha = \inf S_2$ so $\alpha \geq 0$. Let $\epsilon > 0$ be arbitrary then by the Archimedean property $\exists n \in \mathbb{N}$ such that $\frac{1}{n} < \epsilon$. Therefore, $0 \le \alpha \le \frac{1}{n} < \epsilon \Longrightarrow \alpha = 0$ (since ϵ is arbitrary).

- Q3. Use the Archimedean property of real numbers to show that $\bigcap_{n\in\mathbb{N}} \left(0,\frac{1}{n}\right] = \Phi$.
- Ans. Suppose if possible $x \in \bigcap_{n \in \mathbb{N}} \left(0, \frac{1}{n}\right]$. Then for all $n \in \mathbb{N}$, $x \in \left(0, \frac{1}{n}\right]$, that is, for all $n \in \mathbb{N}, 0 < x \leq \frac{1}{n}$. But by the Archimedean Property, if x > 0, there exists $n \in \mathbb{N}$ with $\frac{1}{n} < x$, this is a contradiction. Therefore, $\bigcap_{n \in \mathbb{N}} \left(0, \frac{1}{n}\right] = \Phi$.
 - Q4. Investigate the convergence/divergence of the following sequences:

(a)
$$x_n = \frac{1}{n^2+1} + \frac{2}{n^2+2} + \cdots + \frac{n}{n^2+n}$$

(a)
$$x_n = \frac{1}{n^2+1} + \frac{2}{n^2+2} + \dots + \frac{n}{n^2+n}$$

(b) $x_n = \frac{n^2}{n^3+n+1} + \frac{n^2}{n^3+n+2} + \dots + \frac{n^2}{n^3+2n}$

(c)
$$x_n = (n+1)^{\alpha} - n^{\alpha}$$
 for some $\alpha \in (0,1)$

(d)
$$x_n = \frac{n^s}{(1+p)^n}$$
 for some $s > 0$ and $p > 0$
(e) $x_n = \frac{2^n}{n!}$

$$(e) x_n = \frac{2^n}{n!}$$

(e)
$$x_n = \frac{1}{n!}$$

(f) $x_n = \left(\sqrt{2} - 2^{\frac{1}{3}}\right) \left(\sqrt{2} - 2^{\frac{1}{5}}\right) \cdots \left(\sqrt{2} - 2^{\frac{1}{2n+1}}\right)$
(g) $x_n = \frac{n!}{(2n+1)!!}$

(g)
$$x_n = \frac{n!}{(2n+1)!!}$$

Ans. (a) Note that

$$\frac{1+2+\ldots+n}{n+n^2} \le x_n \le \frac{1+2+\ldots+n}{1+n^2}.$$

By Sandwich theorem $x_n \to \frac{1}{2}$.

(b) Note that

$$\frac{n \cdot n^2}{n^3 + 2n} \le x_n \le \frac{n \cdot n^2}{n^3 + n + 1}.$$

By Sandwich theorem $x_n \to 1$.

(c)
$$x_n = n^{\alpha} \left[\left(1 + \frac{1}{n} \right)^{\alpha} - 1 \right]$$
. As $0 < \alpha < 1$, $\left(1 + \frac{1}{n} \right)^{\alpha} < \left(1 + \frac{1}{n} \right)$. Thus $x_n < n^{\alpha} \left[1 + \frac{1}{n} - 1 \right] = n^{\alpha - 1} = \frac{1}{n^{1 - \alpha}} \to 0$.

(d) Note that $x_n > 0$ for all n and $\frac{x_{n+1}}{x_n} = \frac{(n+1)^s(1+p)^n}{n^s(1+p)^{n+1}} = \frac{1}{1+p} \left(1 + \frac{1}{n}\right)^s \to \frac{1}{1+n} < 1$. Hence, $\lim_{n\to\infty} x_n = 0$.

(e) Note that $x_n > 0$ for all n and $\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = 0 < 1$. Hence $\lim_{n \to \infty} x_n = 0$.

 $(f) \ x_n = \left(\sqrt{2} - 2^{\frac{1}{3}}\right) \left(\sqrt{2} - 2^{\frac{1}{5}}\right) \cdots \left(\sqrt{2} - 2^{\frac{1}{2n+1}}\right).$ Note that $0 \le x_n \le (\sqrt{2} - 1)^n$.

(g) Here $\frac{x_{n+1}}{x_n} < 1 \ \forall n$. Hence (x_n) is a decreasing sequence. Since $0 \le x_n \ \forall n$, therefore the sequence converges.

Q5. Let a>0 and $x_1>0$. Define $x_{n+1}=\frac{1}{2}\left(x_n+\frac{a}{x_n}\right)$ for all $n\in\mathbb{N}$. Prove that the sequence (x_n) converges to \sqrt{a} . These sequences are used in the numerical calculation of \sqrt{a} .

Ans. Note that $x_n > 0$ and $x_{n+1} - x_n = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right) - x_n = \frac{1}{2} \left(\frac{a - x_n^2}{x_n} \right)$. Also $2x_{n+1}x_n = \frac{1}{2} \left(\frac{a - x_n^2}{x_n} \right)$. $x_n^2 + a \ge 2\sqrt{x_n^2 a}$ (by the A.M - G.M. inequality). Thus $x_{n+1} \ge \sqrt{a}$. This implies that $x_{n+1} - x_n \le 0$. Therefore the sequence is decreasing and bounded below. Hence it converges. Let $\lim_{n\to\infty} x_n = l$. Then $l = \frac{1}{2} \left(\frac{l^2+a}{l} \right) \Rightarrow l = \sqrt{a}$.

Q6. Suppose that $0 < \alpha < 1$ and that (x_n) is a sequence which satisfies one of the following conditions:

(a)
$$|x_{n+1} - x_n| \le \alpha^n$$
, $n = 1, 2, 3, \dots$

(b)
$$|x_{n+2} - x_{n+1}| \le \alpha |x_{n+1} - x_n|, \quad n = 1, 2, 3, \dots$$

Then prove that (x_n) satisfies the Cauchy criterion. Whenever you use this result,

you have to show that the number α that you get, satisfies $0 < \alpha < 1$. The condition $|x_{n+2}-x_{n+1}| \leq |x_{n+1}-x_n|$ does not guarantee the convergence of (x_n) . Give examples.

Ans. (a) Let n > m. Then

$$|x_{n} - x_{m}| = |x_{n} - x_{n-1} + x_{n-1} - x_{n-2} + \dots + x_{m+1} - x_{m}|$$

$$\leq |x_{n} - x_{n-1}| + |x_{n-1} - x_{n-2}| + \dots + |x_{m+1} - x_{m}|$$

$$\leq \alpha^{n-1} + \alpha^{n-2} + \dots + \alpha^{m} = \alpha^{m} [1 + \alpha + \alpha^{2} + \dots + \alpha^{n-1+m}]$$

$$\leq \alpha^{m} [1 + \alpha + \alpha^{2} + \dots]$$

$$= \frac{\alpha^{m}}{1 - \alpha} \quad \text{as} \quad m \to \infty.$$

Thus (x_n) satisfies the Cauchy criterion.

(b) Note that

$$|x_{n+2} - x_{n+1}| \le \alpha |x_{n+1} - x_n| \le \alpha^2 |x_n - x_{n-1}| \le \ldots \le \alpha^n |x_2 - x_1|.$$

For n > m,

$$|x_n - x_m| \le \alpha^{n-2} + \alpha^{n-3} + \dots + \alpha^{m-1} |x_2 - x_1|$$

 $\le \frac{\alpha^m}{1 - \alpha} |x_2 - x_1| \to 0 \quad \text{ax} \quad m \to \infty.$

Thus (x_n) satisfies the Cauchy criterion.

Examples:

(i)
$$x_n = n$$
. Here, $|x_{n+2} - x_{n+1}| = 1 = |x_{n+1} - x_n|$.

(ii)
$$x_n = \sqrt{n}$$
. Here

$$|x_{n+2} - x_{n+1}| = |\sqrt{n+2} - \sqrt{n+1}| = \frac{1}{\sqrt{n+2} + \sqrt{n+1}} \le \frac{1}{\sqrt{n+1} + \sqrt{n}} = |x_{n+1} - x_n|.$$

Q7. Let $x_1 \in \mathbb{R}$ and let $x_{n+1} = \frac{1}{7}(x_n^3 + 2)$ for $n \in \mathbb{N}$. Show that (x_n) converges for $0 < x_1 < 1$. Also conclude that it converges to a root of $x^3 - 7x + 2$ lying between 0 and 1. Does the sequence converge for any starting value of $x_1 > 1$.

Ans. Note that

$$|x_{n+2}-x_{n+1}| = \frac{1}{7}|x_{n+1}^3-x_n^3| = \frac{1}{7}|x_{n+1}^2+x_{n+1}x_n+x_n^2||x_{n+1}-x_n| \le \frac{3}{7}|x_{n+1}-x_n|.$$
 By problem 6 (b), (x_n) satisfies the Cauchy criterion, hence it converges. It is clear that for $x_1=7, x_n\to\infty$.

MATH-I ■ Assignment #2

(Sequences Cont.)

- Q1. Investigate the convergence/divergence of the following sequences:
 - (a) $x_n = \frac{n^s}{(1+p)^n}$ for some s > 0 and p > 0(b) $x_n = \frac{2^n}{n!}$
- Q.2 Is the sequence $a_n = 1 + (-1)^n$ a cauchy sequence?
- Q.3 Is the sequence $a_n = \frac{1}{n}$ a cauchy sequence?
- Q4. Suppose that $0 < \alpha < 1$ and that (x_n) is a sequence which satisfies one of the following conditions:
 - (a) $|x_{n+1} x_n| \le \alpha^n$, $n = 1, 2, 3, \dots$
 - (b) $|x_{n+2} x_{n+1}| \le \alpha |x_{n+1} x_n|, \quad n = 1, 2, 3, \dots$

Then prove that (x_n) satisfies the Cauchy criterion. Whenever you use this result, you have to show that the number α that you get, satisfies $0 < \alpha < 1$. The condition $|x_{n+2}-x_{n+1}| \leq |x_{n+1}-x_n|$ does not guarantee the convergence of (x_n) . Give examples.

Q5. Let $x_1 \in \mathbb{R}$ and let $x_{n+1} = \frac{1}{7}(x_n^3 + 2)$ for $n \in \mathbb{N}$. Show that (x_n) converges for $0 < x_1 < 1$. Also conclude that it converges to a root of $x^3 - 7x + 2$ lying between 0 and 1. Does the sequence converge for any starting value of $x_1 > 1$.

MATH-I ■ Solutions Assignment #2

(Limits, Continuity, Intermediate Value Property)

- Q1. Suppose that the inequalities $1 \frac{x^2}{6} < \frac{x \sin x}{2 2 \cos x} < 1$ hold for all values of x close to zero. Find $\lim_{x \to 0} \frac{x \sin x}{2 2 \cos x}$.
- Ans. Apply sandwich theorem for limits to get $\lim_{x\to 0} \frac{x \sin x}{2 2 \cos x} = 1$.
- Q2. Given f(x) = mx, m > 0 and numbers l = 2m, $x_0 = 2$, $\epsilon = 0.003$. Find an open interval around x_0 and a $\delta > 0$ such that the inequality $|f(x) l| < \epsilon$ holds for all x satisfying $|x x_0| < \delta$.
- Ans. Open interval= $\left(2 \frac{0.003}{m}, 2 + \frac{0.003}{m}\right), \delta = \frac{0.003}{m}$.
- Q3. Determine the points of continuity for the function $f:[0,1] \to [0,1]$ defined by

$$f(x) = \begin{cases} 0, & \text{if } x \text{ is rational} \\ 1, & \text{if } x \text{ is irrational.} \end{cases}$$

- Ans. f is discontinuous everywhere. For, if x is a rational point, then we can find a sequence of irrationals (x_n) converging to x. However, $(f(x_n)) \to 1 \neq f(x) = 0$. Similarly, f is not continuous at any irrational point.
- Q4. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function and let $c \in \mathbb{R}$. Show that if $x_0 \in \mathbb{R}$ is such that $f(x_0) > c$, then there exists a $\delta > 0$ such that f(x) > c for all $x \in (x_0 \delta, x_0 + \delta)$.
- Ans. Since $f(x_0) c > 0$, choose ϵ such that $0 < \epsilon < f(x_0) c$. Since, f is continuous at x_0 , for this choice of ϵ , there exists a $\delta > 0$, such that $|x x_0| < \delta \Rightarrow |f(x) f(x_0)| < \epsilon$. Hence, for all $x \in (x_0 \delta, x_0 + \delta)$ $f(x) > f(x_0) \epsilon > c$.
- Q5. Prove that if a continuous function $f: \mathbb{R} \to \mathbb{R}$ is also one-one then either f is a strictly increasing function or f is a strictly decreasing function.
- Ans. Since f is 1-1, if $x \neq y$, $f(x) \neq f(y)$. Assume x < y and f(x) < f(y). Let $c \in (x,y)$. We claim that $f(c) \in (f(x),f(y))$.

 Clearly, $f(c) \neq f(x)$, f(y). If possible, assume that f(x) > f(c). Then, $\frac{f(x)+f(c)}{2}$ lies in both the intervals (f(c),f(x)) and (f(c),f(y)). By the intermediate value theorem, we can find, $x_1 \in (x,c)$ and $x_2 \in (c,y)$ such that $f(x_1) = \frac{f(x)+f(c)}{2}$ and $f(x_2) = \frac{f(x)+f(c)}{2}$. Here, $x_1 \neq x_2$, but $f(x_1) = f(x_2)$, a contradiction. Thus f(x) < f(c).

- Q6. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function which takes only rational values. Show that f is a constant function.
- Ans. Suppose $f(x) \neq f(y)$ for some $x, y \in \mathbb{R}$. Let us choose an irrational number α between f(x) and f(y). Since f is continuous by IVP, there exists $z \in (x, y)$ such that $f(z) = \alpha$ which is a contradiction (as f takes only rational values).
- Q7. Show that the polynomial $x^4 + 2x^3 9$ has at least two real roots.
- Ans. Let $p(x) = x^4 + 2x^3 9$. Then p(0) = -9 and $p(x) \to \infty$ as $x \to \pm \infty$. Therefore, by intermediate value theorem there exist two real roots say a > 0, b < 0 of p(x). Note that $p'(x) = 4x^3 + 6x^2 = 2x^2(2x+3)$ and $p\left(-\frac{3}{2}\right) = \neq 0$. a, b are simple roots of p. Since complex roots occur in pair, if p has three real roots, it will have all four as real roots. Also none of them is a repeated root. Therefore, p' must vanish at three distinct points, which is not true. Hence p has exactly two real roots.
- Q8. Let $f:[1,3] \to \mathbb{R}$ be a continuous function. Prove that there exist real numbers $x_1, x_2 \in [1,3]$ such that

$$x_2 - x_1 = 1$$
 and $f(x_2) - f(x_1) = \frac{1}{2}(f(3) - f(1)).$

Ans. Define $g(x) = f(x+1) - f(x) - \frac{1}{2}(f(3) - f(1))$. Then g(1) = -g(2). By the intermediate value property, there exists $c \in (1,2)$ such that g(c) = 0 i.e. $f(c+1) - f(c) = \frac{1}{2}(f(3) - f(1))$. Here $x_1 = c$ and $x_2 = c + 1$.

MATH-I ■ Assignment #3

(Infinite Series)

- Q1. Let $a_n \ge 0$. Then show that both the series $\sum_{n\ge 1} a_n$ and $\sum_{n\ge 1} \frac{a_n}{a_n+1}$ converge or diverge together.
- Q2. In each of the following cases, discuss the convergence/divergence of the series $\sum_{n\geq 1} a_n$,

where a_n equals:

(a) $1 - n \sin \frac{1}{n}$, (b) $\frac{1}{n} \log(1 + \frac{1}{n})$, (c) $1 - \cos \frac{1}{n}$, (d) $2^{-n-(-1)^n}$, (e) $\left(1 + \frac{1}{n}\right)^{n(n+1)}$, (f) $\frac{n \log n}{2^n}$.

- Q3. Test the series $\sum_{n>1} \tan^{-1}(e^{-n})$ and the series $\sum_{n>1} \left(1-\frac{1}{n}\right)^{n^2}$ for convergence.
- Q4. Let $\{a_n\}$ be a decreasing sequence, $a_n \geq 0$ and $\lim_{n \to \infty} a_n = 0$. For each $n \in \mathbb{N}$, let $b_n = \frac{a_1 + a_2 + ... + a_n}{n}$. Show that $\sum_{n \geq 1} (-1)^n b_n$ converges.
- Q5. Show that if $\sum_{n=1}^{\infty} |a_n|$ converges then $\sum_{n=1}^{\infty} a_n$ converges. Give an example to show that the converse need not be true
- Q6. Determine the values of x for which the following series converges: $(a) \sum_{n\geq 1} \frac{(x-1)^{2n}}{n^2 3^n}, \qquad (b) \sum_{n\geq 1} \frac{n^3}{3^n} x^n, \qquad (c) \sum_{n\geq 1} \frac{(2n)!}{(2^n n!)^2} \frac{x^{2n+1}}{2n+1}.$

- Q7. Let (a_n) be a constant sequence. If $\sum_{n} a_n$ converges then show that $a_n = 0$ for all n.
- Q8. Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be series of positive terms satisfying $\frac{a_{n+1}}{a_n} \leq \frac{b_{n+1}}{b_n}$ for $n \geq N$. Show that if $\sum_{n=1}^{\infty} b_n$ converges then $\sum_{n=1}^{\infty} a_n$ also converges. Test the series $\sum_{n=1}^{\infty} \frac{n^{n-2}}{e^n n!}$ for

MATH-I ■ Solutions Assignment #3

(Infinite Series)

- Q1. Let $a_n \ge 0$. Then show that both the series $\sum_{n\ge 1} a_n$ and $\sum_{n\ge 1} \frac{a_n}{a_n+1}$ converge or diverge together.
- Ans. Suppose $\sum_{n\geq 1} a_n$ converge. Since $0\leq \frac{a_n}{a_n+1}\leq a_n$ by comparison test $\sum_{n\geq 1} \frac{a_n}{a_n+1}$ converges. Suppose $\sum_{n\geq 1} \frac{a_n}{a_n+1}$ converges. By the necessary condition $\frac{a_n}{a_n+1} \to 0$. Hence $a_n \to 0$ and therefore $1 \le 1 + a_n < 2$ eventually. Hence $0 \le \frac{1}{2}a_n \le \frac{a_n}{a_n+1}$. Apply the comparison test.
- Q2. In each of the following cases, discuss the convergence/divergence of the series $\sum a_n$,

where
$$a_n$$
 equals

(b)
$$\frac{1}{n}\log(1+\frac{1}{n})$$

$$(c) 1 - \cos \frac{1}{n},$$

$$(d) 2^{-n-(-1)^n},$$

where
$$a_n$$
 equals:
(a) $1 - n \sin \frac{1}{n}$, (b) $\frac{1}{n} \log(1 + \frac{1}{n})$, (c) $1 - \cos \frac{1}{n}$, (d) $2^{-n-(-1)^n}$, (e) $\left(1 + \frac{1}{n}\right)^{n(n+1)}$, (f) $\frac{n \log n}{2^n}$.

$$(f) \frac{n \log n}{2^n}$$

- Ans. (a) Use Limit Comparison Test (LCT) with $\frac{1}{n^2}$. Since $1 n \sin \frac{1}{n} \le \frac{1}{3!n^2} < \frac{1}{n^2}$, one can also use comparison test.

 - (b) Use LCT or comparison test with $\frac{1}{n^2}$. (c) Use LCT with $\frac{1}{n^2}$ or comparison test because $1-\cos\frac{1}{n} \leq \frac{1}{2!n^2} < \frac{1}{n^2}$ or $1-\cos\frac{1}{n} = 2\sin^2\frac{1}{2n} < \frac{1}{2n^2}$.
 - (d) Use root test to show that $a_n^{\frac{1}{n}}$ converges to $\frac{1}{2}$ and therefore the series converges.
 - (e) Use root test to show that $a_n^{\frac{1}{n}}$ converges to e > 1 and hence the series is divergent. (f) By ratio test, we get $\frac{a_{n+1}}{a_n} \to \frac{1}{2}$ and therefore the series converges.
- Q3. Test the series $\sum_{n>1} \tan^{-1}(e^{-n})$ and the series $\sum_{n>1} \left(1-\frac{1}{n}\right)^{n^2}$ for convergence.

Ans. Applying ratio test we get

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{\tan^{-1}(e^{-(n+1)})}{\tan^{-1}(e^{-n})} = \lim_{n \to \infty} \frac{\frac{-e^{-(n+1)}}{1+e^{-2(n+1)}}}{\frac{-e^{-n}}{1+e^{-2n}}}$$
$$= \frac{1}{e} \lim_{n \to \infty} \frac{1 + e^{-2n}}{1 + e^{-2(n+1)}} = \frac{1}{e}.$$

Since $\frac{1}{e} < 1$, therefore by Ratio test the series converges.

Applying root test, we get $|a_n|^{\frac{1}{n}} = (1 - \frac{1}{n})^n$. Also,

$$\lim_{n\to\infty} \left(1 - \frac{1}{n}\right)^n = \frac{1}{e} < 1$$

(To see this, Let $y = (1 - \frac{1}{n})^n$. Then $\ln y = n \ln (1 - \frac{1}{n}) = \frac{\ln (1 - \frac{1}{n})}{\frac{1}{n}}$. Therefore, using L'Hopital rule we get $\lim_{n \to \infty} \ln y = -1 \Longrightarrow \lim_{n \to \infty} y = \frac{1}{e}$.)

Hence, the series converges by root test.

- Q4. Let $\{a_n\}$ be a decreasing sequence, $a_n \geq 0$ and $\lim_{n \to \infty} a_n = 0$. For each $n \in \mathbb{N}$, let $b_n = \frac{a_1 + a_2 + ... + a_n}{n}$. Show that $\sum_{n \geq 1} (-1)^n b_n$ converges.
- Ans. $b_{n+1} b_n = \frac{a_1 + a_2 + \dots + a_{n+1}}{n+1} \frac{a_1 + a_2 + \dots + a_n}{n} = \frac{a_{n+1}}{n+1} \frac{a_1 + a_2 + \dots + a_n}{n(n+1)}$. Since $\{a_n\}$ is decreasing, $a_1 + a_2 + \dots + a_n \ge na_n$. Therefore, $b_{n+1} b_n \le \frac{a_{n+1} a_n}{n+1} \le 0$. Therefore, $\{b_n\}$ is decreasing.

We now need to show that $b_n \to 0$. For a given $\epsilon > 0$, since $a_n \to 0$, there exists n_0 such that $a_n < \epsilon/2$, $\forall n \ge n_0$.

Therefore, $\left|\frac{a_1+a_2+...+a_n}{n}\right| = \left|\frac{a_1+a_2+...+a_{n_0}}{n} + \frac{a_{n_0+1}+a_2+...+a_n}{n}\right| \le \left|\frac{a_1+a_2+...+a_{n_0}}{n}\right| + \frac{n-n_0}{n}\frac{\epsilon}{2}$. Choose $N \ge n_0$ large enough so that $\frac{a_1+a_2+...+a_{n_0}}{N} < \frac{\epsilon}{2}$. Then, for all $n \ge N$, $\frac{a_1+a_2+...+a_n}{n} < \epsilon$. Hence, $b_n \to 0$. Use the Leibnitz test for convergence.

- Q5. Show that if $\sum_{n=1}^{\infty} |a_n|$ converges then $\sum_{n=1}^{\infty} a_n$ converges. Give an example to show that the converse need not be true.
- Ans. Let $\sum_{n=1}^{\infty} |a_n|$ converges. Then the sequence of partial sums of $\sum_{n=1}^{\infty} |a_n|$ satisfies the

Cauchy criterion. Therefore, the sequence of partial sums of $\sum_{n=1}^{\infty} a_n$ also satisfies the

Cauchy criterion (why?). This shows that the series $\sum_{n=0}^{\infty} a_n$ converges.

For the converse part, consider the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$. This series converges by

Leibnitz test, however the series $\sum_{n=1}^{\infty} \frac{1}{n}$ obtained on taking the absolute values of the terms of the original series diverges.

Q6. Determine the values of x for which the following series converge

(a)
$$\sum_{n>1} \frac{(x-1)^{2n}}{n^2 3^n}$$
,

$$(b) \sum_{n>1} \frac{n^3}{3^n} x^n,$$

(a)
$$\sum_{n\geq 1} \frac{(x-1)^{2n}}{n^2 3^n}$$
, (b) $\sum_{n\geq 1} \frac{n^3}{3^n} x^n$, (c) $\sum_{n\geq 1} \frac{(2n)!}{(2^n n!)^2} \frac{x^{2n+1}}{2n+1}$.

- Ans. (a) By root test the series converges for $|x-1| < \sqrt{3}$. If $x-1 = \pm \sqrt{3}$ the series converges. Therefore the series converges for $|x-1| \leq \sqrt{3}$.
 - (b) Use the ratio test to see that the series converges for |x| < 3. For $x = \pm 3$, the series diverges.
 - (c) Use ratio test to see that the series converges for |x| < 1. For $x = \pm 1$, the corresponding series will converge.
- Q7. Let (a_n) be a constant sequence. If $\sum_{n} a_n$ converges then show that $a_n = 0$ for all n.
- Ans. Let $a_n = c$ for some $c \in \mathbb{R}$ such that $c \neq 0$. Then $S_n = nc$. Given that S_n converges, $\frac{1}{c}S_n = n$ converges, which is a contradiction.
- Q8. Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be series of positive terms satisfying $\frac{a_{n+1}}{a_n} \leq \frac{b_{n+1}}{b_n}$ for $n \geq N$. Show that if $\sum_{n=1}^{\infty} b_n$ converges then $\sum_{n=1}^{\infty} a_n$ also converges. Test the series $\sum_{n\geq 1} \frac{n^{n-2}}{e^n n!}$ for convergence.
- Ans. Clearly, $c_{n+1} = \frac{a_{n+1}}{b_{n+1}} \le \frac{a_n}{b_n} = c_n \ \forall n \ge \mathbb{N}$. Thus $0 < c_n = \frac{a_n}{b_n} < \frac{a_N}{b_N} \ \forall n > \mathbb{N}$. Use the comparison test. For the other part, note that $\frac{a_{n+1}}{a_n} = \frac{\left(1 + \frac{1}{n}\right)^{n-2}}{e} = \frac{\left(1 + \frac{1}{n}\right)^n}{\left(1 + \frac{1}{n}\right)^2 e} < \frac{e}{\left(1 + \frac{1}{n}\right)^2 e} = \frac{\frac{1}{(1+n)^2}}{\frac{1}{n^2}}.$

MATH-I ■ Assignment #4

(Continuity, Intermediate Value Property, Derivatives)

Q1. Determine the points of continuity for the function $f:[0,1] \to [0,1]$ defined by

$$f(x) = \begin{cases} 0, & \text{if } x \text{ is rational} \\ 1, & \text{if } x \text{ is irrational.} \end{cases}$$

- Q2. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function and let $c \in \mathbb{R}$. Show that if $x_0 \in \mathbb{R}$ is such that $f(x_0) > c$, then there exists a $\delta > 0$ such that f(x) > c for all $x \in (x_0 \delta, x_0 + \delta)$.
- Q3. Prove that if a continuous function $f: \mathbb{R} \to \mathbb{R}$ is also one-one then either f is a strictly increasing function or f is a strictly decreasing function.
- Q4. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function which takes only rational values. Show that f is a constant function.
- Q5. Show that the polynomial $x^4 + 2x^3 9$ has at exactly two real roots.
- Q6. Let $f:[1,3] \to \mathbb{R}$ be a continuous function. Prove that there exist real numbers $x_1, x_2 \in [1,3]$ such that

$$x_2 - x_1 = 1$$
 and $f(x_2) - f(x_1) = \frac{1}{2}(f(3) - f(1)).$

- Q7. Show that the function f(x) = x|x| is differentiable at 0. More generally, if f is continuous at 0, then g(x) = xf(x) is differentiable at 0.
- Q8. Check the function $f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0. \end{cases}$ for differentiability.
- Q9. Show that the function $f(x) = \begin{cases} x^2 \sin \frac{1}{x^2}, & x \neq 0 \\ 0, & x = 0. \end{cases}$ is differentiable at all $x \in \mathbb{R}$. Also show that the function f'(x) is not bounded on the interval [-1,1]. From this deduce that f'(x) is not continuous at x = 0. Thus, a function that is differentiable at every point of \mathbb{R} need not have a continuous derivative f'(x).
- Q10. Prove that if $f: \mathbb{R} \to \mathbb{R}$ is an even function $[(f(-x) = f(x) \text{ for all } x \in \mathbb{R}] \text{ and has a derivative at every point, then the derivative } f' \text{ is an odd function } [(f(-x) = -f(x) \text{ for all } x \in \mathbb{R}].$

MATH-I ■ Solutions Assignment #4

(Continuity, Intermediate Value Property, Derivatives)

Q1. Determine the points of continuity for the function $f:[0,1] \to [0,1]$ defined by

$$f(x) = \begin{cases} 0, & \text{if } x \text{ is rational} \\ 1, & \text{if } x \text{ is irrational.} \end{cases}$$

- Ans. f is discontinuous everywhere.
 - For, if x is a rational point, then we can find a sequence of irrationals (x_n) converging to x. However, $(f(x_n)) \to 1 \neq f(x) = 0$. Similarly, f is not continuous at any irrational point.
- Q2. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function and let $c \in \mathbb{R}$. Show that if $x_0 \in \mathbb{R}$ is such that $f(x_0) > c$, then there exists a $\delta > 0$ such that f(x) > c for all $x \in (x_0 \delta, x_0 + \delta)$.
- Ans. Since $f(x_0)-c>0$, choose ϵ such that $0<\epsilon< f(x_0)-c$. Since, f is continuous at x_0 , for this choice of ϵ , there exists a $\delta>0$, such that $|x-x_0|<\delta\Rightarrow |f(x)-f(x_0)|<\epsilon$. Hence, for all $x\in (x_0-\delta,x_0+\delta)$ $f(x)>f(x_0)-\epsilon>c$.
- Q3. Prove that if a continuous function $f : \mathbb{R} \to \mathbb{R}$ is also one-one then either f is a strictly increasing function or f is a strictly decreasing function.
- Ans. Since f is 1-1, if $x \neq y$, $f(x) \neq f(y)$. Assume x < y and f(x) < f(y). Let $c \in (x,y)$. We claim that $f(c) \in (f(x),f(y))$.

 Clearly, $f(c) \neq f(x)$, f(y). If possible, assume that f(x) > f(c). Then, $\frac{f(x)+f(c)}{2}$ lies in both the intervals (f(c),f(x)) and (f(c),f(y)). By the intermediate value theorem, we can find, $x_1 \in (x,c)$ and $x_2 \in (c,y)$ such that $f(x_1) = \frac{f(x)+f(c)}{2}$ and $f(x_2) = \frac{f(x)+f(c)}{2}$. Here, $x_1 \neq x_2$, but $f(x_1) = f(x_2)$, a contradiction. Thus f(x) < f(c).
- Q4. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function which takes only rational values. Show that f is a constant function.
- Ans. Suppose $f(x) \neq f(y)$ for some $x, y \in \mathbb{R}$. Let us choose an irrational number α between f(x) and f(y). Since f is continuous by IVP, there exists $z \in (x, y)$ such that $f(z) = \alpha$ which is a contradiction (as f takes only rational values).
- Q5. Show that the polynomial $x^4 + 2x^3 9$ has at least two real roots.

- Ans. Let $p(x) = x^4 + 2x^3 9$. Then p(0) = -9 and $p(x) \to \infty$ as $x \to \pm \infty$. Therefore, by intermediate value theorem there exist two real roots say a > 0, b < 0 of p(x). Note that $p'(x) = 4x^3 + 6x^2 = 2x^2(2x+3)$ and $p\left(-\frac{3}{2}\right) = \neq 0$. a, b are simple roots of p. Since complex roots occur in pair, if p has three real roots, it will have all four as real roots. Also none of them is a repeated root. Therefore, p' must vanish at three distinct points, which is not true. Hence p has exactly two real roots.
- Q6. Let $f:[1,3] \to \mathbb{R}$ be a continuous function. Prove that there exist real numbers $x_1, x_2 \in [1,3]$ such that

$$x_2 - x_1 = 1$$
 and $f(x_2) - f(x_1) = \frac{1}{2}(f(3) - f(1)).$

- Ans. Define $g(x) = f(x+1) f(x) \frac{1}{2}(f(3) f(1))$. Then g(1) = -g(2). By the intermediate value property, there exists $c \in (1,2)$ such that g(c) = 0 i.e. $f(c+1) f(c) = \frac{1}{2}(f(3) f(1))$. Here $x_1 = c$ and $x_2 = c + 1$.
- Q7. Show that the function f(x) = x|x| is differentiable at 0. More generally, if f is continuous at 0, then g(x) = xf(x) is differentiable at 0.
- Ans. Easy. Use definition of the derivative of a function.
- Q8. Check the function $f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0. \end{cases}$ for differentiability.
- Ans. f'(0) does not exist as $\lim_{h\to 0} \frac{f(h)-f(0)}{h} = \lim_{h\to 0} \sin\frac{1}{h}$, which doesn't exist.
- Q9. Show that the function $f(x) = \begin{cases} x^2 \sin \frac{1}{x^2}, & x \neq 0 \\ 0, & x = 0. \end{cases}$ is differentiable at all $x \in \mathbb{R}$. Also show that the function f'(x) is not bounded on the interval [-1,1]. From this deduce that f'(x) is not continuous at x = 0. Thus, a function that is differentiable at every point of \mathbb{R} need not have a continuous derivative f'(x).
- Ans. Note that $f'(0) = \lim_{h \to 0} h \sin \frac{1}{h^2} = 0$. Therefore, f is differentiable at 0. At any other point f is differentiable being the product of two differentiable functions. Hence f is differentiable for all real x.

We have
$$f'(x) = \begin{cases} 2x \sin \frac{1}{x^2} - \frac{2}{x} \cos \frac{1}{x}, & x \neq 0 \\ 0, & x = 0. \end{cases}$$

Here $2x \sin \frac{1}{x^2}$ is bounded in [-1,1] but $\frac{2}{x} \cos \frac{1}{x^2}$ is not bounded in any interval containing 0. Hence f'(x) is not bounded on [-1,1] and so it can not be continuous at [-1,1].

Q10. Prove that if $f: \mathbb{R} \to \mathbb{R}$ is an even function $[(f(-x) = f(x) \text{ for all } x \in \mathbb{R}]$ and has a derivative at every point, then the derivative f' is an odd function $[(f(-x) = -f(x) \text{ for all } x \in \mathbb{R}]$.

Ans.
$$f'(-x) = \lim_{h \to 0} \frac{f(-x+h) - f(-x)}{h} = \lim_{x \to 0} \frac{f(x-h) - f(x)}{h} = -\lim_{k \to 0} \frac{f(x+k) - f(x)}{k} = -f'(x).$$

i.e. the derivative of f is an odd function.

MATH-I ■ Assignment #5

(Rolle's Theorem, Mean Value Theorem, Taylor's Theorem)

- Q1. Prove that the ploynomial $f(x) = x^3 3x + c$ has at most one root in [0, 1], no matter what c may be.
- Q2. Suppose f is continuous on [a, b], differentiable on (a, b), and satisfies $f^2(a) f^2(b) =$ $a^2 - b^2$. Then show that the equation f'(x)f(x) = x has at least one root in (a, b).
- Q3. Verify that $x^3 + 2x + 1$ satisfies the hypotheses of the Mean Value Theorem on [0, 1]. Then find all numbers that satisfy the conclusion of the Mean Value Theorem.
- Q4. Using Mean Value Theorems (MVT or CMVT) show that

(a)
$$\log(1+x) > \frac{x}{1+x}$$
, for all $x > 0$

(b)
$$e^x \ge 1 + x$$
 for $x \in \mathbb{R}$

$$(c) 1 - \frac{x^2}{2!} < \cos x \text{ for } x \neq 0$$

(a)
$$\log(1+x) > \frac{x}{1+x}$$
, for all $x > 0$
(b) $e^x \ge 1 + x$ for $x \in \mathbb{R}$
(c) $1 - \frac{x^2}{2!} < \cos x$ for $x \ne 0$
(d) $x - \frac{x^3}{3!} < \sin x < x - \frac{x^3}{3!} + \frac{x^5}{5!}$ for $x > 0$
(e) $1 - \frac{x^2}{2!} < \cos x < 1 - \frac{x^2}{2!} + \frac{x^4}{4!}$ for $x \ne 0$.

(e)
$$1 - \frac{x^2}{2!} < \cos x < 1 - \frac{x^2}{2!} + \frac{x^4}{4!}$$
 for $x \neq 0$.

Q5. Find
$$\lim_{x\to 5} (6-x)^{\frac{1}{x-5}}$$
 and $\lim_{x\to 0^+} \left(1+\frac{1}{x}\right)^x$.

- Q6. Suppose f is a three times differentiable function on [-1,1] such that f(-1)0, f(1) = 1 and f'(0) = 0. Using Taylor's theorem prove that $f'''(c) \geq 3$ for some $c \in (-1,1).$
- Q7. For x > -1, $x \neq 0$ prove that
 - (a) $(1+x)^{\alpha} > 1 + \alpha x$ whenever $\alpha < 0$, or $\alpha > 1$
 - (b) $(1+x)^{\alpha} < 1 + \alpha x$ whenever $0 < \alpha < 1$.
- Q8. Using Taylor's theorem, for any $k \in \mathbb{N}$ and for all x > 0, show that

$$x - \frac{1}{2}x^2 + \ldots + \frac{1}{2k}x^{2k} < \log(1+x) < x - \frac{1}{2}x^2 + \ldots + \frac{1}{2k+1}x^{2k+1}.$$

MATH-I ■ Solutions Assignment #5

(Series, Power Series, Taylor Series)

- Q1. Let $a_n \ge 0$. Then show that both the series $\sum_{n\ge 1} a_n$ and $\sum_{n\ge 1} \frac{a_n}{a_n+1}$ converge or diverge together.
- Ans. Suppose $\sum_{n\geq 1} a_n$ converge. Since $0\leq \frac{a_n}{a_n+1}\leq a_n$ by comparison test $\sum_{n\geq 1} \frac{a_n}{a_n+1}$ converges. Suppose $\sum_{n>1} \frac{a_n}{a_n+1}$ converges. By the necessary condition $\frac{a_n}{a_n+1} \to 0$. Hence $a_n \to 0$ and therefore $1 \le 1 + a_n < 2$ eventually. Hence $0 \le \frac{1}{2} a_n \le \frac{a_n}{a_n + 1}$. Apply the comparison test.
- Q2. Prove that $\sum_{n>1} (a_n a_{n+1})$ converges if and only if the sequence a_n converges. Use

this to decide the convergence/divergence of the following series:
(a)
$$\sum_{n=1}^{\infty} \frac{4}{(4n-3)(4n+1)}$$
, (b) $\sum_{n=1}^{\infty} \frac{2n+1}{n^2(n+1)^2}$.

(b)
$$\sum_{n=1}^{\infty} \frac{2n+1}{n^2(n+1)^2}.$$

- Ans. Note that the sequence of partial sums of the series $\sum_{n\geq 1} (a_n a_{n+1})$ is $(a_1 a_n)$. The conclusion now follows from the definition of convergence of the sequence a_n .
- Q3. In each of the following cases, discuss the convergence/divergence of the series $\sum a_n$, where a_n equals:

(a)
$$1 - n\sin\frac{1}{n}$$
,

(a)
$$1 - n \sin \frac{1}{n}$$
, (b) $\frac{1}{n} \log(1 + \frac{1}{n})$, (c) $1 - \cos \frac{1}{n}$, (d) $2^{-n-(-1)^n}$, (e) $\left(1 + \frac{1}{n}\right)^{n(n+1)}$, (f) $\frac{n \log n}{2^n}$.

$$(c) 1 - \cos \frac{1}{n}$$

$$(d) \ 2^{-n-(-1)^n}$$

$$(e) \left(1 + \frac{1}{n}\right)^{n(n+1)}$$

$$(f) \frac{n \log n}{2^n}$$

- Ans. (a) Use Limit Comparison Test (LCT) with $\frac{1}{n^2}$. Since $1 n \sin \frac{1}{n} \le \frac{1}{3!n^2} < \frac{1}{n^2}$, one can also use comparison test.

 - (b) Use LCT or comparison test with $\frac{1}{n^2}$. (c) Use LCT with $\frac{1}{n^2}$ or comparison test because $1-\cos\frac{1}{n} \leq \frac{1}{2!n^2} < \frac{1}{n^2}$ or $1-\cos\frac{1}{n} = 2\sin^2\frac{1}{2n} < \frac{1}{2n^2}$.
 - (d) Use root test to show that $a_n^{\frac{1}{n}}$ converges to $\frac{1}{2}$ and therefore the series converges.
 - (e) Use root test to show that $a_n^{\frac{1}{n}}$ converges to e > 1 and hence the series is divergent. (f) By ratio test, we get $\frac{a_{n+1}}{a_n} \to \frac{1}{2}$ and therefore the series converges.

- Q4. Let $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$ be series of positive terms satisfying $\frac{a_{n+1}}{a_n} \leq \frac{b_{n+1}}{b_n}$ for $n \geq N$. Show that if $\sum_{n=1}^{\infty} b_n$ converges then $\sum_{n=1}^{\infty} a_n$ also converges. Test the series $\sum_{n=1}^{\infty} \frac{n^{n-2}}{e^n n!}$ for convergence.
- Ans. Clearly, $c_{n+1} = \frac{a_{n+1}}{b_{n+1}} \le \frac{a_n}{b_n} = c_n \ \forall n \ge \mathbb{N}$. Thus $0 < c_n = \frac{a_n}{b_n} < \frac{a_N}{b_N} \ \forall n > \mathbb{N}$. Use the comparison test. For the other part, note that $\frac{a_{n+1}}{a_n} = \frac{\left(1 + \frac{1}{n}\right)^{n-2}}{e} = \frac{\left(1 + \frac{1}{n}\right)^n}{\left(1 + \frac{1}{n}\right)^2 e} < \frac{e}{\left(1 + \frac{1}{n}\right)^2 e} = \frac{\frac{1}{(1+n)^2}}{\frac{1}{n-2}}$.
- Q5. Let $\{a_n\}$ be a decreasing sequence, $a_n \geq 0$ and $\lim_{n \to \infty} a_n = 0$. For each $n \in \mathbb{N}$, let $b_n = \frac{a_1 + a_2 + \dots + a_n}{n}$. Show that $\sum_{n > 1} (-1)^n b_n$ converges.
- Ans. $b_{n+1} b_n = \frac{a_1 + a_2 + \dots + a_{n+1}}{n+1} \frac{a_1 + a_2 + \dots + a_n}{n} = \frac{a_{n+1}}{n+1} \frac{a_1 + a_2 + \dots + a_n}{n(n+1)}$. Since $\{a_n\}$ is decreasing, $a_1 + a_2 + \dots + a_n \ge na_n$. Therefore, $b_{n+1} b_n \le \frac{a_{n+1} a_n}{n+1} \le 0$. Therefore, $\{b_n\}$ is decreasing.

We now need to show that $b_n \to 0$. For a given $\epsilon > 0$, since $a_n \to 0$, there exists n_0

such that $a_n < \epsilon/2$, $\forall n \ge n_0$. Therefore, $\left| \frac{a_1 + a_2 + ... + a_n}{n} \right| = \left| \frac{a_1 + a_2 + ... + a_{n_0}}{n} + \frac{a_{n_0 + 1} + a_2 + ... + a_n}{n} \right| \le \left| \frac{a_1 + a_2 + ... + a_{n_0}}{n} \right| + \frac{n - n_0}{n} \frac{\epsilon}{2}$. Choose $N \ge n_0$ large enough so that $\frac{a_1 + a_2 + ... + a_{n_0}}{N} < \frac{\epsilon}{2}$. Then, for all $n \ge N$, $\frac{a_1+a_2+\ldots+a_n}{n} < \epsilon$. Hence, $b_n \to 0$. Use the Leibnitz test for convergence.

- Q6. Show that if $\sum_{n=1}^{\infty} |a_n|$ converges then $\sum_{n=1}^{\infty} a_n$ converges. Give an example to show that the converse need not be true.
- Ans. Let $\sum_{n=1}^{\infty} |a_n|$ converges. Then the sequence of partial sums of $\sum_{n=1}^{\infty} |a_n|$ satisfies the

Cauchy criterion. Therefore, the sequence of partial sums of $\sum a_n$ also satisfies the

Cauchy criterion (why?). This shows that the series $\sum a_n$ converges.

For the converse part, consider the series $\sum_{i=1}^{\infty} \frac{(-1)^{n-1}}{n}$. This series converges by

Leibnitz test, however the series $\sum_{n=1}^{\infty} \frac{1}{n}$ obtained on taking the absolute values of the terms of the original series diverges.

Q7. Determine the values of x for which the following series converges:

(a)
$$\sum_{n>1} \frac{(x-1)^{2n}}{n^2 3^n}$$

(b)
$$\sum_{n>1} \frac{n^3}{3^n} x^n$$
,

(a)
$$\sum_{n\geq 1} \frac{(x-1)^{2n}}{n^2 3^n}$$
, (b) $\sum_{n\geq 1} \frac{n^3}{3^n} x^n$, (c) $\sum_{n\geq 1} \frac{(2n)!}{(2^n n!)^2} \frac{x^{2n+1}}{2n+1}$.

- Ans. (a) By root test the series converges for $|x-1| < \sqrt{3}$. If $x-1 = \pm \sqrt{3}$ the series converges. Therefore the series converges for $|x-1| \leq \sqrt{3}$.
 - (b) Use the ratio test to see that the series converges for |x| < 3. For $x = \pm 3$, the series diverges.
 - (c) Use ratio test to see that the series converges for |x| < 1. For $x = \pm 1$, the corresponding series will converge.
- Q8. Find the Taylor series at 0 for each of the following functions and also the values of x for which the corresponding series converges:

(a)
$$f(x) = \frac{1}{x-a}, a \neq 0,$$

(b)
$$f(x) = \frac{1}{\sqrt{1-x}}$$
.

Ans. Easy. Leave it for the students to try at their own.

MATH-I ■ Assignment #6

(Riemann Integration, Improper Integral)

- Q1. If f is a bounded function such that f(x) = 0 except at a point $c \in [a, b]$. Then show that f is integrable on [a, b] and that $\int_a^b f = 0$.
- Q2. Let $f:[0,1] \to \mathbb{R}$ such that $f(x) = \begin{cases} \frac{1}{n}, & \text{if } x = \frac{1}{n} \\ 0, & \text{otherwise.} \end{cases}$ Show that f is integrable on [0,1] and $\int_0^1 f(x) dx = 0$.
- Q3. Define $f: [-1,1] \to \mathbb{R}$ by

$$f(x) = \begin{cases} -1, & -1 \le x \le 0 \\ 1, & 0 < x \le 1. \end{cases}$$

Is the function continuous on [-1,1]? Is the function Riemann integrable?

Q4. Does there exist a continuous function f on [0,1] such that

$$\int_0^1 x^n f(x) dx = \frac{1}{\sqrt{n}} \quad \text{for all} \quad n \in \mathbb{N}.$$

- Q5. Let $f:[0,1]\to\mathbb{R}$ such that $g_n(y)=\begin{cases} \frac{ny^{n-1}}{1+y}, & \text{if } 0\leq y<1\\ 0, & y=1. \end{cases}$. Then prove that $\lim_{n\to\infty}\int_0^1g_n(y)dy=\frac{1}{2}\text{ whereas }\int_0^1\lim_{n\to\infty}g_n(y)dy=0.$
- Q6. Test the convergence/divergence of the following improper integrals:

(a)
$$\int_0^1 \frac{dx}{\log(1+\sqrt{x})}$$
 (b) $\int_0^1 \frac{dx}{x-\log(1+x)}$ (c) $\int_0^1 \frac{\log x}{\sqrt{x}} dx$ (d) $\int_0^1 \sin\left(\frac{1}{x}\right) dx$ (e) $\int_1^\infty \frac{\sin\left(\frac{1}{x}\right)}{x} dx$ (f) $\int_0^\infty e^{-x^2} dx$ (g) $\int_0^{\pi/2} \frac{dx}{x-\sin x}$ (h) $\int_0^{\pi/2} \csc x dx$.

Q7. In each case, determine the values of p for which the following improper integrals converge

(a)
$$\int_0^\infty \frac{1 - e^{-x}}{x^p}$$
 (b) $\int_0^\infty \frac{t^{p-1}}{1 + t} dt$.

Q8. Show that the integrals $\int_0^\infty \frac{\sin x^2}{x^2} dx$ and $\int_0^\infty \frac{\sin x}{x} dx$ converge. Further, prove that

$$\int_0^\infty \frac{\sin x^2}{x^2} dx = \int_0^\infty \frac{\sin x}{x} dx.$$

- Q9. Show that $\int_0^\infty \frac{x \log x}{(1+x^2)^2} dx = 0.$
- Q10. Prove that $\int_{1}^{\infty} \frac{\sin x}{x^{p}} dx$ converges conditionally for 0 and absolutely for <math>p > 1.
- Q11. Show that $\int_0^s \frac{1+x}{1+x^2} dx$ and $\int_{-s}^0 \frac{1+x}{1+x^2} dx$ do not approach a limit as $s \to \infty$. However $\lim_{s \to \infty} \int_{-s}^s \frac{1+x}{1+x^2} dx$ exists.
- Q12. Investigate the convergence of the improper integral

$$I = \int_0^1 \frac{dx}{\sqrt{1 - x^3}}.$$

MATH-I ■ Solutions Assignment #6

(Riemann Integral, Improper Integrals)

- Q1. If f is a bounded function such that f(x) = 0 except at a point $c \in [a, b]$. then show that f is integrable on [a, b] and that $\int_a^b f = 0$.
- Ans. Using the definition: Let f(c) > 0 and P be any partition. Suppose $c \in [x_i, x_{i+1}]$. Then L(P, f) = 0 and $U(P, f) = f(c)\Delta x_i$. Since P is arbitrary, $\inf_P U(P, f) = 0$ and $\sup_P L(P, f) = 0$. Hence f is integrable and $\int_a^b f(x)dx = 0$. Using the " ϵP argument (essentially the same)": Let $\epsilon > 0$. Note that if P is a partition such that $\max_i \Delta x_i < \delta$ then L(P, f) = 0 and $U(P, f) \leq 2f(c)\delta$. Choose $\delta < \frac{\epsilon}{2f(c)}$. Then $U(P, f) L(P, f) < \epsilon$ and hence f is integrable by the Riemann criterion. Since the lower integral is 0 and the function is integrable, $\int_a^b f(x)dx = 0$.
- Q2. Let $f:[0,1] \to \mathbb{R}$ such that $f(x) = \begin{cases} \frac{1}{n}, & \text{if } x = \frac{1}{n} \\ 0, & \text{otherwise.} \end{cases}$ Show that f is integrable on [0,1] and $\int_0^1 f(x) dx = 0$.
- Ans. We will use the Riemann criterion to show that f is integrable on [0,1]. Let $\epsilon > 0$ be given. We need to find a partition P such that $U(P,f) L(P,f) < \epsilon$. Since $\frac{1}{n} \to 0$, there exists N such that $\frac{1}{n} \in [0,\epsilon]$ for all n > N.

 So only finite number of $\frac{1}{n}$'s lie in the interval $[\epsilon,1]$. Cover these finite number of $\frac{1}{n}$'s by the intervals $[x_1,x_2],[x_3,x_4],\ldots [x_{m-1},x_m]$ such that $x_i \in [\epsilon,1]$ for all $i=1,2,\ldots m$ and the sum of the length of these m intervals is less than ϵ . Consider the partition $P = \{0,\epsilon,x_1,x_2,\ldots,x_m\}$. It is clear that $U(P,f) L(P,f) < 2\epsilon$. Hence by the Reimann criterion the function is integrable. Since the lower integral is 0 and the function is integrable, $\int_0^1 f(x) dx = 0$.
- Q3. Define $f: [-1, 1] \to \mathbb{R}$ by

$$f(x) = \begin{cases} -1, & -1 \le x \le 0 \\ 1, & 0 < x \le 1. \end{cases}$$

Is the function continuous on [-1,1]? Is the function Riemann integrable?

Ans. Clearly f is not continuous at x = 0. Rest part is similar to exercise (1).

Q4. Does there exist a continuous function f on [0,1] such that

$$\int_0^1 x^n f(x) dx = \frac{1}{\sqrt{n}} \quad \text{for all} \quad n \in \mathbb{N}.$$

.

Ans. Suppose there is such a function f. Then, by the previous problem, for every n there exist $c_n \in [0,1]$ such that $f(c_n) \int_0^1 x^n dx = \frac{1}{\sqrt{n}}$. This implies that $f(c_n) = \frac{n+1}{n!} \to \infty$. That is, f is not bounded on [0,1] which is a contradiction.

Aliter: This problem can also done without using the previous problem. Suppose there is such a function f and $\sup f = M$. Then

$$\frac{1}{\sqrt{n}} = \left| \int_0^1 f(x) x^n dx \right| \le M \left| \int_0^1 x^n dx \right| = \frac{M}{n+1}.$$

This implies that $1 \leq \frac{M\sqrt{n}}{n+1} \to 0$ which is a contradiction.

- Q5. Let $f:[0,1]\to\mathbb{R}$ such that $g_n(y)=\begin{cases} \frac{ny^{n-1}}{1+y}, & \text{if } 0\leq y<1\\ 0, & y=1. \end{cases}$ Then prove that $\lim_{n\to\infty}\int_0^1g_n(y)dy=\frac{1}{2} \text{ whereas } \int_0^1\lim_{n\to\infty}g_n(y)dy=0.$
- Ans. From the ratio test for the sequence we can show that $\lim_{n\to\infty} \frac{ny^{n-1}}{1+y} = 0$, for each 0 < y < 1. Therefore $\int_0^1 \lim_{n\to\infty} g_n(y) dy = 0$.

For the other part, use integration by parts to see that $\int_0^1 \frac{ny^{n-1}}{1+y} dy = \frac{1}{2} + \int_0^1 \frac{y^n}{(1+y)^2} dy.$ Note that $\int_0^1 \frac{y^n}{(1+y)^2} dy \le \int_0^1 y^n = \frac{1}{n+1} \to 0 \text{ as } n \to \infty.$ Therefore,

$$\lim_{n \to \infty} \int_0^1 g_n(y) dy = \frac{1}{2} .$$

Q6. Test the convergence/divergence of the following improper integrals:

(a)
$$\int_{0}^{1} \frac{dx}{\log(1+\sqrt{x})}$$
 (b) $\int_{0}^{1} \frac{dx}{x-\log(1+x)}$ (c) $\int_{0}^{1} \frac{\log x}{\sqrt{x}} dx$ (d) $\int_{0}^{1} \sin\left(\frac{1}{x}\right) dx$ (e) $\int_{1}^{\infty} \frac{\sin\left(\frac{1}{x}\right)}{x} dx$ (f) $\int_{0}^{\infty} e^{-x^{2}} dx$ (g) $\int_{0}^{\pi/2} \frac{dx}{x-\sin x}$ (h) $\int_{0}^{\pi/2} \cos cx dx$.

Ans. (a) Converges by limit comparison test (LCT) with $\frac{1}{\sqrt{x}}$.

- (b) Diverges by LCT with $\frac{1}{x^2}$.
- (c) The integral $-\int_0^1 \frac{\log x}{\sqrt{x}}$ converges by LCT with $\frac{1}{x^p}$, where $\frac{1}{2} .$
- (d) Since $|\sin \frac{1}{x}| \le 1$, the integral converges. Note that in this case the integral is a proper integral.
- (e) Converges by LCT with $\frac{1}{x^2}$. (f) Converges by LCT with $\frac{1}{x^p}$, where $p \ge 2$.
- (g) Apply LCT with $\frac{1}{r^3}$. The integral diverges.

(h)
$$\int_0^{\pi/2} \csc x \, dx = \int_0^{\pi/2} \frac{1}{\sin x} \, dx$$
. Apply LCT with $\frac{1}{x}$. The integral is divergent.

Q7. In each case, determine the values of p for which the following improper integrals

(a)
$$\int_0^\infty \frac{1 - e^{-x}}{x^p}$$
 (b) $\int_0^\infty \frac{t^{p-1}}{1 + t} dt$.

Ans. (a)

$$\int_0^\infty \frac{1 - e^{-x}}{x^p} = \int_0^1 \frac{1 - e^{-x}}{x^p} + \int_1^\infty \frac{1 - e^{-x}}{x^p} = I_1 + I_2.$$

Now one has to see how the function $\frac{1-e^{-x}}{x^p}$ behaves in the respective intervals and

Since $\lim_{x\to 0} \frac{1-e^{-x}}{x} = 1$, by LCT with $\frac{1}{x^{p-1}}$, we see that I_1 is convergent iff p-1 < 1, i.e. p < 2. Similarly, I_2 is convergent (by applying LCT with $\frac{1}{x^p}$) iff p > 1. Therefore $\int_{0}^{\infty} \frac{1 - e^{-x}}{x^{p}} \text{ converges iff } 1$

(b)

$$\int_0^\infty \frac{t^{p-1}}{1+t} dt = \int_0^1 \frac{t^{p-1}}{1+t} dt + \int_1^\infty \frac{t^{p-1}}{1+t} dt = I_1 + I_2.$$

For I_1 , use LCT with t^{p-1} . We see that the integral converges iff p > 0. Similarly, for I_2 , Use LCT with t^{p-2} . The integral converges iff p < 1. Therefore, $\int_{0}^{\infty} \frac{t^{p-1}}{1+t} dt$ converges iff 0 .

Q8. Show that the integrals $\int_0^\infty \frac{\sin x^2}{x^2} dx$ and $\int_0^\infty \frac{\sin x}{x} dx$ converge. Further, prove that

$$\int_0^\infty \frac{\sin x^2}{x^2} dx = \int_0^\infty \frac{\sin x}{x} dx.$$

Ans.

$$\int_0^\infty \frac{\sin x^2}{x^2} dx = \int_0^1 \frac{\sin x^2}{x^2} dx + \int_1^\infty \frac{\sin x^2}{x^2} dx = I_1 + I_2.$$

 I_1 is a proper integral and I_2 converges by a comparison with $\frac{1}{x^2}$.

Similarly $\int_0^\infty \frac{\sin x}{x} dx$. converges by Dirichlet test.

Using integration by parts we see that

$$\int_0^\infty \frac{\sin x^2}{x^2} dx = -\frac{\sin x^2}{x} \bigg|_0^\infty + \int_0^\infty \frac{2\sin x \cos x}{x} dx = \int_0^\infty \frac{\sin 2x}{2x} d(2x) = \int_0^\infty \frac{\sin x}{x} dx.$$

Q9. Show that
$$\int_0^\infty \frac{x \log x}{(1+x^2)^2} dx = 0.$$

Ans.

$$\int_0^\infty \frac{x \log x}{(1+x^2)^2} dx = \int_0^1 \frac{x \log x}{(1+x^2)^2} dx + \int_1^\infty \frac{x \log x}{(1+x^2)^2} dx = I_1 + I_2.$$

Since, $\lim_{x\to 0} x \log x = 0$, I_1 is a proper integral.

For large x, $\log x \leq x$. Hence $\frac{x \log x}{(1+x^2)^2} \leq \frac{x^2}{(1+x^2)^2} \leq \frac{1}{1+x^2}$ and I_2 converges. Use the substitution $x = \frac{1}{t}$ in I_1 to get $I_1 = -I_2$.

- Q10. Prove that $\int_{1}^{\infty} \frac{\sin x}{x^{p}} dx$ converges conditionally for 0 and and absolutely for <math>p > 1.
- Ans. By Dirichlets Test, $\int_{1}^{\infty} \frac{\sin x}{x^{p}} dx$ converges for all p > 0.

 $\int_{1}^{\infty} \frac{|\sin x|}{x^{p}} dx \leq \int_{1}^{\infty} \frac{1}{x^{p}} dx.$ Therefore, the function converges absolutely for p > 1.

Now, let $0 . Since, <math>|\sin x| \ge \sin^2 x$, we see that $\left|\frac{\sin x}{x^p}\right| \ge \frac{\sin^2 x}{x^p} = \frac{1-\cos 2x}{2x^p}$. By Dirichlets Test, $\int_1^\infty \frac{\cos 2x}{x^p}$ converges $\forall p > 0$. But $\int_1^\infty \frac{1}{2x^p}$ diverges for $p \le 1$.

Hence, $\int_{1}^{\infty} \frac{\sin x}{x^{p}} dx$ converges conditionally for 0 and absolutely for <math>p > 1.

Q11. Show that $\int_0^s \frac{1+x}{1+x^2} dx$ and $\int_{-s}^0 \frac{1+x}{1+x^2} dx$ do not approach a limit as $s \to \infty$. However $\lim_{s \to \infty} \int_{-s}^s \frac{1+x}{1+x^2} dx$ exists.

Ans. $\int_0^s \frac{1+x}{1+x^2} dx$ diverges by limit comparison with $\frac{1}{x}$.

$$\int_{-s}^{s} \frac{1+x}{1+x^2} dx = \int_{-s}^{0} \frac{1+x}{1+x^2} dx + \int_{0}^{s} \frac{1+x}{1+x^2} dx$$
$$= \int_{0}^{s} \frac{1-u}{1+u^2} du + \int_{0}^{s} \frac{1+x}{1+x^2} dx$$
$$= \int_{0}^{s} \frac{2du}{1+u^2} du,$$

which converges.

Q12. Investigate the convergence of the improper integral

$$I = \int_0^1 \frac{dx}{\sqrt{1 - x^3}}.$$

Ans. Note that $1-x^3=(1-x)(1+x+x^2)$. Let us compare the given function with $\frac{1}{\sqrt{1-x}}$.

$$\lim_{x \to 1} \frac{1/\sqrt{1-x^3}}{1/\sqrt{1-x}} = \lim_{x \to 1} \frac{\sqrt{1-x}}{\sqrt{1-x^3}} = \lim_{x \to 1} \frac{1}{\sqrt{1+x+x^2}} = \frac{1}{\sqrt{3}}.$$

Now

$$\int_0^1 \frac{dx}{\sqrt{1-x}} = \left[-\frac{2}{\sqrt{1-x}} \right]_0^1 = 2.$$

and so by LCT the integral I converges.

MATH-I ■ Assignment #7

(Calculus of functions of several variables, Directional derivatives, Max/Min and Lagrange Multipliers)

- Q1. Examine the following functions for continuity at the point (0,0) where f(0,0)=0 and f(x,y) for $(x,y) \neq (0,0)$ is given by
 - (a) |x| + |y|, (b) $\frac{-x}{\sqrt{x^2 + y^2}}$, (c) $\frac{2x}{x^2 + x + y^2}$, (d) $\frac{x^4 y^2}{x^4 + y^2}$, (e) $\frac{x^4}{x^4 + y^2}$.
- Q2. Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x,y) = \begin{cases} 1, & \text{if } x = 0 \text{ or if } y = 0 \\ 0, & \text{otherwise.} \end{cases}$$

Show that the function satisfy the following:

- (a) The iterated limits $\lim_{x\to 0}\left[\lim_{y\to 0}f(x,y)\right]$ and $\lim_{y\to 0}\left[\lim_{x\to 0}f(x,y)\right]$ exist and equals 0, (b) $\lim_{(x,y)\to(0,0)}f(x,y)$ does not exist,
- (c) f(x,y) is not continuous at (0,0),
- (d) the partial derivatives exist at (0,0).
- Q3. Let

$$f(x,y) = \begin{cases} xy\left(\frac{x^2 - y^2}{x^2 + y^2}\right), & \text{if } (x,y) \neq (0,0) \\ 0, & \text{if } (x,y) = (0,0). \end{cases}$$

Prove that

- (a) $f_x(0,y) = -y$ and $f_y(x,0) = x$ for all x and y,
- (b) $f_{xy}(0,0) = -1$ and $f_{yx}(0,0) = 1$ and
- (c) f(x,y) is differentiable at (0,0).
- Q4. Suppose f is a function with $f_x(x,y) = f_y(x,y) = 0$ for all (x,y). Then show that f is constant.
- Q5. Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x,y) = \begin{cases} \frac{y^3}{x^2 + y^2}, & \text{if } (x,y) \neq 0\\ 0, & \text{otherwise.} \end{cases}$$

Show that f is continuous at (0,0), it has all directional derivatives at (0,0) but not differentiable at (0,0).

- Q6. Examine the following functions for local maxima, local minima and saddle points: (i) $4xy - x^4 - y^4$, (ii) $x^3 - 3xy$, (iii) $(x^2 + y^2) \exp^{-(x^2 + y^2)}$.
- Q7. Let $f(x,y) = 3x^4 4x^2y + y^2$. Show that f has a local minimum at (0,0) along every line through (0,0). Does f have a minimum at (0,0)? Is (0,0) a saddle point for f?
- Q8. Find the absolute maxima of f(x,y) = xy on the unit disc $\{f(x,y) : x^2 + y^2 \le 1\}$.
- Q9. Find the equation of the surface generated by the normals to the surface $x + 2yz + xyz^2 = 0$ at all points on the z-axis.
- Q10. Given n positive numbers a_1, a_2, \ldots, a_n , find the maximum value of the expression the function $a_1x_1 + a_2x_2 + \ldots + a_nx_n$ where $x_1^2 + x_2^2 + \ldots + x_n^2 = 1$.
- Q11. Assume that among all rectangular boxes with fixed surface area of 20 square meters, there is a box of largest possible volume. Find its dimensions.
- Q12. Minimize the function $x^2 + y^2 + z^2$ subject to the constraints x + 2y + 3z = 6 and x + 3y + 9z = 9.

MATH-I ■ Solutions Assignment #7

(Functions of several variables: Continuity, Differentiability, Directional derivatives, Maxima, Minima and Lagrange Multipliers)

Q1. Examine the following functions for continuity at the point (0,0) where f(0,0)=0 and f(x,y) for $(x,y)\neq (0,0)$ is given by

and f(x,y) for $(x,y) \neq (0,0)$ is given by $(a) |x| + |y|, \quad (b) \frac{-x}{\sqrt{x^2 + y^2}}, \quad (c) \frac{2x}{x^2 + x + y^2}, \quad (d) \frac{x^4 - y^2}{x^4 + y^2}, \quad (e) \frac{x^4}{x^4 + y^2}.$

Ans. (a) Given that f(0,0) = 0. Let $\epsilon > 0$ be given then $\left| (|x| + |y|) - 0 \right| = \left| |x| + |y| \right| \le |x| + |y| < \epsilon$, whenever $|x| < \delta = \epsilon/2$ and $|y| < \delta = \epsilon/2$. Therefore the function is continuous at (0,0).

Alternatively, the given function is continuous being the sum of two continuous functions.

(b) Let y = mx. Then $\lim_{(x,y)\to(0,0)} \frac{-x}{\sqrt{x^2+y^2}} = \frac{-1}{\sqrt{1+m^2}}$. Thus we get different limits for different values of m. Therefore, f is discontinuous at (0,0).

(c) Let $x = r \cos \theta$, $y = r \sin \theta$. Then

$$\frac{2x}{x^2 + x + y^2} = \frac{2r\cos\theta}{r^2\cos^2\theta + r\cos\theta + r^2\sin^2\theta} = \frac{2\cos\theta}{r + \cos\theta}.$$

Now, $\lim_{(x,y)\to(0,0)} \frac{2x}{x^2+x+y^2} = \lim_{r\to 0} \frac{2\cos\theta}{r+\cos\theta} = 2$. Therefore the function is continuous at (0,0).

- (d) Let $y = mx^2$. Then $\lim_{(x,y)\to(0,0)} \frac{x^4-y^2}{x^4+y^2} = \frac{1-m^2}{1+m^2}$. Thus we get different limits for different values of m. Therefore, f is discontinuous at (0,0).
- (e) Let $y = mx^2$. Then $\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^4+y^2} = \frac{m}{1+m^2}$. Thus we get different limits for different values of m. Therefore, f is discontinuous at (0,0).
- Q2. Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x,y) = \begin{cases} 1, & \text{if } x = 0 \text{ or if } y = 0 \\ 0, & \text{otherwise.} \end{cases}$$

Show that the function satisfy the following:

- (a) The iterated limits $\lim_{x\to 0} \left[\lim_{y\to 0} f(x,y) \right]$ and $\lim_{y\to 0} \left[\lim_{x\to 0} f(x,y) \right]$ exist and equals 0,
- (b) $\lim_{(x,y)\to(0,0)} f(x,y)$ does not exist,
- (c) f(x,y) is not continuous at (0,0),
- (d) the partial derivatives exist at (0,0).

Ans. (a) Let $x \neq 0$, then $\lim_{y \to 0} f(x, y) = 0$.

Similarly, if $y \neq 0$, then $\lim_{x \to 0} f(x, y) = 0$.

Therefore, $\lim_{x\to 0} \left[\lim_{y\to 0} f(x,y)\right] = \lim_{y\to 0} \left[\lim_{x\to 0} f(x,y)\right] = 0.$ (b) Along the line x=0, we have $\lim_{(x,y)\to(0,0)} f(x,y) = 1.$

Along the line y = x, we have $\lim_{(x,y)\to(0,0)} f(x,y) = 0$.

Hence, the limit does not exist.

- (c) From above, the function is not continuous.
- (d) Easy. Leave it to the students.
- Q3. Let

$$f(x,y) = \begin{cases} xy\left(\frac{x^2 - y^2}{x^2 + y^2}\right), & \text{if } (x,y) \neq (0,0) \\ 0, & \text{if } (x,y) = (0,0). \end{cases}$$

Prove that

- (a) $f_x(0,y) = -y$ and $f_y(x,0) = x$ for all x and y,
- (b) $f_{xy}(0,0) = -1$ and $f_{yx}(0,0) = 1$ and
- (c) f(x,y) is differentiable at (0,0).

Ans. Discussed in the class.

(a) Note that

$$f_x(0,k) = \lim_{h \to 0} \frac{f(0+h,k) - f(0,k)}{h} = \lim_{h \to 0} \frac{f(h,k) - f(0,k)}{h} = \lim_{h \to 0} k \left(\frac{h^2 - k^2}{h^2 + k^2}\right) = -k.$$

Thus $f_x(0, y) = -y$.

Similarly, $f_n(x,0) = x$.

- (b) Note that $f_{xy}(0,0) = \lim_{h\to 0} \frac{f(h,0) f(0,0)}{h} = -1$ and $f_{xy}(0,0) = 1$.
- (c) We need to show that

$$f(\Delta x, \Delta y) - f(0, 0) = f_x(0, 0)\Delta x + f_y(0, 0)\Delta y + \epsilon_1(\Delta x, \Delta y)\Delta x + \epsilon_2(\Delta x, \Delta y)\Delta y,$$

where $\epsilon_1, \epsilon_2 \to 0$ as Δx and $\Delta y \to 0$. Since $f_x(0,0) = 0$ and $f_y(0,0) = 0$ we will show that

$$f(\Delta x, \Delta y) - f(0, 0) = \epsilon_1(\Delta x, \Delta y)\Delta x + \epsilon_2(\Delta x, \Delta y)\Delta y.$$

Now
$$f(\Delta x, \Delta y) - f(0,0) = f(\Delta x, \Delta y) = \Delta x \Delta y \left(\frac{(\Delta x)^2 - (\Delta y)^2}{(\Delta x)^2 + (\Delta y)^2} \right) = \frac{(\Delta x)^2 \Delta y}{(\Delta x)^2 + (\Delta y)^2} \Delta x - \frac{\Delta x (\Delta y)^2}{(\Delta x)^2 + (\Delta y)^2} \Delta y = \epsilon_1 \Delta x + \epsilon_2 \Delta y.$$

Here $\epsilon_1(\Delta x, \Delta y) = \frac{(\Delta x)^2 \Delta y}{(\Delta x)^2 + (\Delta y)^2}$, $\epsilon_2(\Delta x, \Delta y) = \frac{\Delta x(\Delta y)^2}{(\Delta x)^2 + (\Delta y)^2} \to 0$ as Δx and $\Delta y \to 0$. So f is differentiable at (0,0).

Q4. Suppose f is a function with $f_x(x,y) = f_y(x,y) = 0$ for all (x,y). Then show that f is constant.

Ans. This follows immediately from the MVT for functions of several variables.

Q5. Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x,y) = \begin{cases} \frac{y^3}{x^2 + y^2}, & \text{if } (x,y) \neq 0\\ 0, & \text{otherwise.} \end{cases}$$

Show that f is continuous at (0,0), it has all directional derivatives at (0,0) but not differentiable at (0,0).

Ans. Using polar coordinates, we see that

$$\frac{y^3}{x^2 + y^2} = \frac{r^3 \sin^3 \theta}{r^2} = r \sin^3 \theta.$$

Therefore,

$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{(x,y)\to(0,0)} \frac{y^3}{x^2 + y^2} = \lim_{r\to 0} r \sin^3 \theta = 0.$$

 $\implies f$ is continuous at (0,0).

Let $U = (u_1, u_2)$ be a unit vector. Now $D_{(0,0)}f(U) = \lim_{t \to 0} \frac{f((0,0) + t(u_1, u_2)) - f(0,0)}{t} = 0$

 $\lim_{t\to 0} \frac{f(tu_1,tu_2)}{t} = 0.$ Therefore directional derivatives in all directions exist. Note that $f_x(0,0) = 0$ and $f_y(0,0) = 1$. If f is differentiable at (0,0) then f'(0,0) = 1.

(0,1). Now

$$f(\Delta x, \Delta y) - f(0,0) = f(\Delta x, \Delta y) = \Delta x + \frac{(\Delta y)^3}{(\Delta x)^2 + (\Delta y)^2} - \Delta x$$
$$= \Delta x + \frac{(\Delta y)^2}{(\Delta x)^2 + (\Delta y)^2} \Delta y - \Delta x.$$

Here $\epsilon_1 = -1$, $\epsilon_2 = \frac{(\Delta y)^2}{(\Delta x)^2 + (\Delta y)^2} \to 0$ as $\Delta x, \Delta y \to 0$. Therefore the function is not differentiable at (0,0).

Q6. Examine the following functions for local maxima, local minima and saddle points: (i) $4xy - x^4 - y^4$, (ii) $x^3 - 3xy$, (iii) $(x^2 + y^2) \exp^{-(x^2 + y^2)}$.

Ans. (i) For $f(x,y) = 4xy - x^4 - y^4$, $f_x(x_0, y_0) = f_y(x_0, y_0) = 0$ for $(x_0, y_0) = (0, 0)$, (1, 1)or (-1,-1). These are the critical points. By second derivative test, (0,0) ia a saddle point and (-1,1) and (1,1) are local maxima.

- (ii) $f(x,y) = x^3 3xy^2$, $f_x(x_0,y_0) = f_y(x_0,y_0) = 0$ for $(x_0,y_0) = (0,0)$. So (0,0) is the only critical point. Second derivative fails here. Along y = 0, $f(x,y) = x^3$, hence (0,0) is a saddle point.
- (iii) Similar, leave it to the students as an exercise.
- Q7. Let $f(x,y) = 3x^4 4x^2y + y^2$. Show that f has a local minimum at (0,0) along every line through (0,0). Does f have a minimum at (0,0)? Is (0,0) a saddle point for f?
- Ans. Let $f(x,y) = 3x^4 4x^2y + y^2$. Along, the x-axis, the local minimum of the function is at (0,0). Let $x = r\cos\theta$ and $y = r\sin\theta$, for a fixed $\theta \neq 0, \pi$ (or let y = mx). Then, $f(r\cos\theta, r\sin\theta) = 3r^4\sin^4\theta 4r^3\cos2\theta\sin\theta + r^2\sin^2\theta$ which is function of one variable. By the second derivative test (for functions of one variable), we see that (0,0) is a local minima.

Since $f(x,y) = (3x^2 - y)(x^2 - y)$, we see that in the region between the parabolas $3x^2 = y$ and $y = x^2$, the function takes negative values and is positive everywhere else. Thus, (0,0) is a saddle point for f.

- Q8. Find the absolute maxima of f(x,y) = xy on the unit disc $\{f(x,y) : x^2 + y^2 \le 1\}$.
- Ans. Given that f(x,y) = xy. Clearly, f is differentiable so f can assume extreme values at the points where $f_x = 0$, $f_y = 0$ and boundary points on the disk. $f_x = 0$, $f_y = 0 \Longrightarrow (x,y) = (0,0)$. The value of f at (0,0) is f = 0. On the boundary of the disk we have $f(x,y) = g(x) = x\sqrt{1-x^2}$, $-1 \le x \le 1$.

On the boundary of the disk we have $f(x,y) = g(x) = x\sqrt{1-x^2}$, $-1 \le x \le 1$. For maxima/minima we have g'(x) = 0. This gives $x = \pm \frac{1}{\sqrt{2}}$ and for this value of x, we have $y = \pm \frac{1}{\sqrt{2}}$. Moreover, $g''(x) = -\frac{1}{2} < 0$ at $x = \frac{1}{\sqrt{2}}$ and $g''(x) = \frac{1}{2}$ at $x = -\frac{1}{\sqrt{2}}$. Therefore, the function function f(x,y) takes values $-\frac{1}{2}$ and $\frac{1}{2}$ at the points $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$, $\left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$ and $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$, $\left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$ respectively. Thus all maxima/minima for f are $-\frac{1}{2}$, 0, $\frac{1}{2}$. Hence, the maximum of f(x,y) is

Thus all maxima/minima for f are $-\frac{1}{2}, 0, \frac{1}{2}$. Hence, the maximum of f(x, y) is $\frac{1}{2}$ which occur at $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right), \left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$ and the minimum is $-\frac{1}{2}$ which occur at $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right), \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$.

- Q9. Find the equation of the surface generated by the normals to the surface $x + 2yz + xyz^2 = 0$ at all points on the z-axis.
- Ans. $f(x, y, z) = x + 2yz + xyz^2 = 0$. Any point P_0 on the z-axis is of the form $(0, 0, z_0)$. The gradient is

$$\nabla f|_{P_0} = ((1+yz^2)\overrightarrow{i} + (2z+xz^2)\overrightarrow{j} + 2(y+xyz)\overrightarrow{k})_{(0,0,z_0)} = \overrightarrow{i} + 2z_0\overrightarrow{j}.$$

Equation of the normal lines is given by

$$\frac{x-0}{1} = \frac{y-0}{2z_0} = \frac{z-z_0}{0}$$

Solving, we get

$$y = 2xz_0, z = z_0.$$

Eliminating z_0 , we get equation of the surface as

$$2xz - y = 0.$$

- Q10. Given n positive numbers a_1, a_2, \ldots, a_n , find the maximum value of the expression the function $a_1x_1 + a_2x_2 + \ldots + a_nx_n$ where $x_1^2 + x_2^2 + \ldots + x_n^2 = 1$.
- Ans. Note that here $f(x_1, x_2, ..., x_n) = a_1x_1 + a_2x_2 + ... + a_nx_n$ and $g(x_1, x_2, ..., x_n) = a_1x_1 + a_2x_2 + ... + a_nx_n$ $x_1^2 + x_2^2 + \ldots + x_n^2 - 1.$

Using the method of lagrange multipliers let λ be such that $\nabla f = \lambda \nabla g$. This gives,

$$a_1 = \lambda x_1, a_2 = \lambda x_2, \dots, a_n = \lambda x_n$$
 and $x_1^2 + x_2^2 + \dots + x_n^2 - 1 = 0$.

Therefore, $a_1^2 + a_2^2 + \ldots + a_n^2 = 4\lambda^2$. This gives $\lambda = \pm \frac{\sqrt{a_1^2 + a_2^2 + \ldots + a_n^2}}{2}$. Since the continuous function f achieves its minimum and maximum on the closed and bounded set $x_1^2 + x_2^2 + \ldots + x_n^2 = 1$, $\lambda = \pm \frac{\sqrt{a_1^2 + a_2^2 + \ldots + a_n^2}}{2}$ leads to the maximum value $f\left(\frac{a_1}{2\lambda}, \frac{a_2}{2\lambda}, \ldots, \frac{a_n}{2\lambda}\right) = \sqrt{a_1^2 + a_2^2 + \ldots + a_n^2}$ and $\lambda = \pm \frac{\sqrt{a_1^2 + a_2^2 + \ldots + a_n^2}}{2}$ leads to the minimum value of fmum value of f.

- Q11. Assume that among all rectangular boxes with fixed surface area of 20 square meters, there is a box of largest possible volume. Find its dimensions.
- Ans. Let the box have sides of length x, y, z > 0. Then V(x, y, z) = xyz and xy + yz + xz = 010. Using the method of lagrange multipliers, we see that $yz = \lambda(y+z), xz = \lambda(x+z)$ and $xy = \lambda(x+y)$. It is easy to see that x, y, z > 0. Now, we can see that x = y = zand therefore, $x = y = z = \sqrt{\frac{10}{3}}$.
- Q12. Minimize the function $x^2 + y^2 + z^2$ subject to the constraints x + 2y + 3z = 6 and x + 3y + 9z = 9.
- Ans. Let $F(x, y, z) = x^2 + y^2 + z^2$, g(x, y, z) = x + 2y + 3z and h(x, y, z) = x + 3y + 9z, where x + 2y + 3z = 6 and x + 3y + 9z = 9.

Using the method of lagrange multipliers let λ and μ be such that $\nabla F = \lambda \nabla h + \mu \nabla g$. We get

$$\lambda + \mu = 2x, 2\lambda + 3\mu = 2y \quad \text{and} \quad 3\lambda + 9\mu = 2z. \tag{1}$$

From here, using x + 2y + 3z = 6 and x + 3y + 9z = 9, we get $7\lambda + 17\mu = 6$ and $34\lambda + 91\mu = 18.$

Hence, $\mu = -\frac{78}{59}$ and $\lambda = \frac{240}{59}$. From equation (1), we get $2(x^2 + y^2 + z^2) = 6\lambda + 9\mu$, hence the minimum value of of f is $\frac{369}{50}$.

MATH-I ■ Assignment #8

(Applications of Integration, Vectors, Curves, Surfaces, Vector Functions)

- Q1. Sketch the graphs $r = \cos(2\theta)$ and $r = \sin(2\theta)$. Also, find their points of intersection.
- Q2. Find the area of the inner loop of $r = 2 + 4\cos\theta$.
- Q3. Find the area that lies inside $r = 3 + 2\sin\theta$ and outside r = 2.
- Q4. Find the length of the following curves

 - (a) $C_1: y = x^{\frac{1}{2}} \frac{1}{3}x^{\frac{3}{2}}, 1 \le x \le 4$ (b) $C_2: \{(a\cos^3 t, a\sin^3 t): t \in [0, 2\pi]\}$ for some a > 0,
 - (c) $C_3: r = a(1 + \cos \theta)$, where $a > 0, 0 \le \theta \le 2\pi$.
- Q5. Determine the equation of the cylinder generated by a line through the curve $(x-2)^2 + y^2 =$ 4, z = 0 moving parallel to the vector $\overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$.
- Q6. Determine the equation of a cone with vertex (0, -a, 0) generated by a line passing through the curve $x^2 = 2y$, z = h.
- Q7. Reparametrize the following curves in terms of arc-length

 - $(a) c(t) = \frac{t^2}{2} \overrightarrow{i} + \frac{t^3}{3} \overrightarrow{k},$ $(b) c(t) = 2 \cos t \overrightarrow{i} + 2 \sin t \overrightarrow{j}.$
- Q8. If a plane curve has the Cartesian equation y = f(x) where f is a twice differentiable function, then show that the curvature at the point (x, f(x)) is

$$\frac{|f''(x)|}{(1+f'(x)^2)^{3/2}}.$$

Q9. Show that the parabola $y = ax^2$, $a \neq 0$ has its largest curvature at its vertex and has no minimum curvature.

MATH-I ■ Assignment #9

(Calculus of functions of several variables, Directional derivatives, Max/Min and Lagrange Multipliers)

Q1. Examine the following functions for continuity at the point (0,0) where f(0,0)=0 and f(x,y) for $(x,y)\neq (0,0)$ is given by

(a) |x| + |y|, (b) $\frac{-x}{\sqrt{x^2 + y^2}}$, (c) $\frac{x^4 - y^2}{x^4 + y^2}$, (d) $\frac{x^4}{x^4 + y^2}$.

- Q2. Let f(x,y) be defined in $S = \{f(x,y) \in \mathbb{R}^2 : a < x < b, c < y < d\}$. Suppose that the partial derivatives of f exist and are bounded in S. Then show that f is continuous in S.
- Q3. Let

$$f(x,y) = \begin{cases} xy\left(\frac{x^2 - y^2}{x^2 + y^2}\right), & \text{if } (x,y) \neq (0,0) \\ 0, & \text{if } (x,y) = (0,0). \end{cases}$$

Prove that

- (a) $f_x(0,y) = -y$ and $f_y(x,0) = x$ for all x and y,
- (b) $f_{xy}(0,0) = -1$ and $f_{yx}(0,0) = 1$ and
- (c) f(x,y) is differentiable at (0,0).
- Q4. Suppose f is a function with $f_x(x,y) = f_y(x,y) = 0$ for all (x,y). Then show that f is constant.
- Q5. Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x,y) = \begin{cases} \frac{y^3}{x^2 + y^2}, & \text{if } (x,y) \neq 0\\ 0, & \text{otherwise.} \end{cases}$$

Show that f is continuous at (0,0), it has all directional derivatives at (0,0) but not differentiable at (0,0).

- Q6. Examine the function $f(x,y) = 4xy x^4 y^4$ for local maxima, local minima and saddle points.
- Q7. Let $f(x,y) = 3x^4 4x^2y + y^2$. Show that f has a local minimum at (0,0) along every line through (0,0). Does f have a minimum at (0,0)? Is (0,0) a saddle point for f?
- Q8. Find the absolute maxima of f(x,y) = xy on the unit disc $\{f(x,y) : x^2 + y^2 \le 1\}$.
- Q9. Given n positive numbers a_1, a_2, \ldots, a_n , find the maximum value of the expression the function $a_1x_1 + a_2x_2 + \ldots + a_nx_n$ where $x_1^2 + x_2^2 + \ldots + x_n^2 = 1$.
- Q10. Assume that among all rectangular boxes with fixed surface area of 20 square meters, there is a box of largest possible volume. Find its dimensions.

MATH-I ■ Assignment #10

(Double/Triple Integrals, Green's/Stoke's/Gauss's Theorems)

- Q1. Evaluate the integral $\int \int_{R} (x+y)^2 dx dy$ over the triangle R with vertices (0,0), (2,2) and (0,1).
- Q2. Sketch the region R in the xy-plane bounded by the curves $y^2 = 2x$ and y = x, and find its area.
- Q3. Evaluate $\int \int_R x \, dx \, dy$ where R is the region $1 \le x(1-y) \le 2$ and $1 \le xy \le 2$.
- Q4. Change the order of integration to prove that

(a)
$$\int_0^x \int_0^u exp(m(x-t))f(t) dt du = \int_0^x (x-t)exp(m(x-t))f(t) dt$$
,

(b)
$$\int_0^x \int_0^v \int_0^u exp(m(x-t))f(t) dt du dv = \int_0^x \frac{(x-t)^2}{2} exp(m(x-t))f(t) dt$$
.

- Q5. Find the volume of the region B bounded by the paraboloid $z = 4 x^2 y^2$ and the xy-plane.
- Q6. Find the area of the surface of the portion of the sphere $x^2 + y^2 + z^2 = 4a^2$ that lies inside the cylinder $x^2 + y^2 = 2ax$.
- Q7. Compute $\int \int_S xy d\sigma$, where S is the surface of the cone $x = r\cos t$, $y = r\sin t$, z = r for $0 \le r \le 1$ and $0 \le t \le 2\pi$.
- Q8. Find the line integral of the vector field $F(x,y,z) = y\hat{i} x\hat{j} + \hat{k}$ along the path $c(t) = (\cos t, \sin t, \frac{t}{2\pi})$, $0 \le t \le 2\pi$ joining (1,0,0) to (1,0,1).
- Q9. Evaluate $\int_C \frac{xdy ydx}{x^2 + y^2}$ along any simple closed curve in the xy-plane not passing through the origin. Distinguish the cases where the region R enclosed by C:
 (a) includes the origin (b) does not include the origin.
- Q10. Show that the integral $\int_C yzdx + (xz+1)dy + xydz$ is independent of the path C joining (1,0,0) and (2,1,4).
- Q11. Use Green's Theorem to compute $\int_C (2x^2 y^2)dx + (x^2 + y^2)dy$ where C is the boundary of the region $\{(x,y): x,y \geq 0 \& x^2 + y^2 \leq 1\}$.
- Q12. Use Stoke's Theorem to evaluate the line integral $\int_C (-y^3 dx + x^3 dy z^3 dz)$, where C is the intersection of the cylinder $x^2 + y^2 = 1$ and the plane x + y + z = 1 and the orientation of C corresponds to counterclockwise motion in the xy-plane.
- Q13. Verify the Stoke's Theorem where $\overrightarrow{F} = (y, z, x)$ and S is the part of the cylinder $x^2 + y^2 = 1$ cut off by the planes z = 0 and z = x + 2, oriented with \overrightarrow{n} pointing outward.
- Q14. Let $\overrightarrow{F} = \frac{\overrightarrow{r}}{|\overrightarrow{r}|^3}$ where $\overrightarrow{r} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}$ and let S be any surface that surrounds the origin. Prove that $\int \int_S F \cdot nd\sigma = 4\pi$.
- Q15. Let D be the domain inside the cylinder $x^2+y^2=1$ cut off by the planes z=0 and z=x+2. If $\overrightarrow{F}=(x^2+ye^z,y^2+ze^x,z+xe^y)$, use the divergence theorem to evaluate $\int\int_{\partial D}\overrightarrow{F}.\overrightarrow{n}\ d\sigma$.