3 pratybos. Vektoriai erdvėje

Paulius Drungilas

Turinys

Vektorinė sandauga	2
Mišrioji sandauga	2
Uždaviniai	3

Tarkime, taškas $C(x_3,y_3,z_3)$ priklauso atkarpai, jungiančiai taškus $A(x_1,y_1,z_1)$ ir $B(x_2,y_2,z_2)$, ir dalija šią atkarpą santykiu $\lambda=|AC|/|CB|$. Tada taško C koordinatės yra

$$x_3 = \frac{x_1 + \lambda x_2}{1 + \lambda}, \ y_3 = \frac{y_1 + \lambda y_2}{1 + \lambda}, \ z_3 = \frac{z_1 + \lambda z_2}{1 + \lambda}.$$

Vektoriaus $\vec{a}(x, y, z)$ ilgis, žymimas $|\vec{a}|$, yra skaičius $\sqrt{x^2 + y^2 + z^2}$.

Dviejų vektorių, $\vec{a}(x_1,y_1,z_1)$ ir $\vec{b}(x_2,y_2,z_2)$, skaliarinė sandauga yra skaičius

$$\vec{a} \cdot \vec{b} := x_1 \cdot x_2 + y_1 \cdot y_2 + z_1 \cdot z_2$$
.

Kampas φ tarp vektorių $\vec{a}(x_1,y_1,z_1)$ ir $\vec{b}(x_2,y_2,z_2)$ skaičiuojamas pagal formulę

$$\cos \varphi = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|} = \frac{x_1 \cdot x_2 + y_1 \cdot y_2 + z_1 \cdot z_2}{\sqrt{x_1^2 + y_1^2 + z_1^2} \cdot \sqrt{x_2^2 + y_2^2 + z_2^2}}.$$

Skaičius ad-bc vadinamas skaičių $a,\,b,\,c,\,d$ determinantu ir žymimas

$$\left| \begin{array}{cc} a & b \\ c & d \end{array} \right| := ad - bc.$$

Skaičių a_{11} , a_{12} , a_{13} , a_{21} , a_{22} , a_{23} , a_{31} , a_{32} , a_{33} determinantu vadinamas skaičius, apibrėžtas tokia lygybe:

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} := a_{11} \cdot \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \cdot \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \cdot \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}.$$

Vektorinė sandauga. Dviejų vektorių, $\vec{a}(x_1, y_1, z_1)$ ir $\vec{b}(x_2, y_2, z_2)$, vektorinė sandauga yra vektorius

$$\vec{a} imes \vec{b} := \left(\left| egin{array}{cc} y_1 & z_1 \\ y_2 & z_2 \end{array} \right| \; ; - \left| \left| egin{array}{cc} x_1 & z_1 \\ x_2 & z_2 \end{array} \right| \; ; \left| \left| egin{array}{cc} x_1 & y_1 \\ x_2 & y_2 \end{array} \right|
ight) \; .$$

Vektorius $\vec{a} \times \vec{b}$ turi šias savybes :

- 1) Vektorius $\vec{a} \times \vec{b}$ yra statmenas vektoriams \vec{a} ir \vec{b} ;
- 2) Vektoriaus $\vec{a} \times \vec{b}$ ilgis lygus lygiagretainio, kurio kraštinės yra vektoriai \vec{a} ir \vec{b} , plotui;
- 3) Vektoriai \vec{a} , \vec{b} ir $\vec{a} \times \vec{b}$ sudaro dešininę sistemą (apie tai pašnekėsim per pratybas).

Taigi vektoriai \vec{a} ir \vec{b} yra kolinearūs tada ir tik tada, kai $\vec{a} \times \vec{b} = \mathcal{O}$, čia \mathcal{O} – nulinis vektorius.

Vektorinė sandauga taip pat pasižymi tokiomis savybėmis:

- a) $\vec{a} \times \vec{b} = -(\vec{b} \times \vec{a});$
- b) $(\lambda \vec{a}) \times \vec{b} = \lambda (\vec{a} \times \vec{b}), \ \lambda \in \mathbb{R};$
- c) $(\vec{a} + \vec{b}) \times \vec{c} = \vec{a} \times \vec{c} + \vec{b} \times \vec{c}$.

Mišrioji sandauga. Trijų vektorių $\vec{a}(x_1,y_1,z_1), \vec{b}(x_2,y_2,z_2)$ ir $\vec{c}(x_3,y_3,z_3)$ mišrioji sandauga yra skaičius

$$\vec{a} \cdot (\vec{b} \times \vec{c}) = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}.$$

Mišrioji sandauga turi šias savybes :

- 1) Mišriosios sandaugos modulis $|\vec{a} \cdot (\vec{b} \times \vec{c})|$ lygus gretasienio, kurio kraštinės yra vektoriai \vec{a} , \vec{b} ir \vec{c} , tūriui;
- 2) Piramidės, kurios kraštinės yra vektoriai $\vec{a}\,,\,\vec{b}$ ir $\vec{c}\,,$ tūris lygus

$$\frac{1}{6} \cdot |\vec{a} \cdot (\vec{b} \times \vec{c})|;$$

3) Vektoriai \vec{a} , \vec{b} ir \vec{c} yra komplanarūs (guli vienoje plokštumoje) tada ir tik tada, kai jų mišrioji sandauga $\vec{a} \cdot (\vec{b} \times \vec{c}) = 0$.

Trys erdvės vektoriai \vec{a} , \vec{b} ir \vec{c} vadinami **baze**, jei $\vec{a} \cdot (\vec{b} \times \vec{c}) \neq 0$. Jei vektoriai \vec{a} , \vec{b} ir \vec{c} yra erdvės bazė, tai bet kurį vektorių \vec{d} galima vienareikšmiškai išreikšti per bazės vektorius :

$$\vec{d} = x \cdot \vec{a} + y \cdot \vec{b} + z \cdot \vec{c},$$

čia $x,\,y,\,z\in\mathbb{R}$. Skaičiai $x\,,\,y$ ir z vadinami vektoriaus \vec{d} koordinatėmis bazėje $\vec{a}\,,\,\vec{b}$ ir $\vec{c}\,.$

1. **pavyzdys.** Įsitikinsime, kad vektoriai $\vec{a}(1,2,1)$, $\vec{b}(1,1,2)$ ir $\vec{c}(0,1,1)$ yra erdvės bazė ir rasime vektoriaus $\vec{d}(5,5,6)$ koordinates toje bazėje.

Sprendimas. Mišrioji sandauga lygi

$$\vec{a} \cdot (\vec{b} \times \vec{c}) = \begin{vmatrix} 1 & 2 & 1 \\ 1 & 1 & 2 \\ 0 & 1 & 1 \end{vmatrix} = -2 \neq 0.$$

Todėl, vektoriai \vec{a} , \vec{b} ir \vec{c} yra erdvės bazė. Dabar reikia rasti skaičius x, y ir z, tenkinančius lygybę

$$\vec{d} = x \cdot \vec{a} + y \cdot \vec{b} + z \cdot \vec{c}.$$

Sulyginę kairės ir dešinės pusių x-o koordinates, gauname lygybę 5 = x + y. Analogiškai, sulyginę kairės ir dešinės pusių y-o ir z-o koordinates, gauname lygybes 5 = 2x + y + z ir 6 = x + 2y + z atitinkamai. Išsprendę lygčių sistemą

$$\begin{cases} x+y = 5 \\ 2x+y+z = 5 \\ x+2y+z = 6 \end{cases},$$

gauname $x=2,\,y=3$ ir z=-2. Taigi $\vec{d}=(2,3,-2)$ bazėje $\vec{a}\,,\,\vec{b}$ ir $\vec{c}\,.$

2. pavyzdys. Trikampio viršūnės yra taškai A(1,-1,-3), B(2,1,-2) ir C(-5,2,-6). Rasime pusiaukampinės AM ilgį.

Uždaviniai.

1*. Duoti trys vektoriai $\vec{a} = (1,3,1), \ \vec{b} = (2,1,-3)$ ir $\vec{c} = (4,3,7)$. Apskaičiuokite a) $\vec{a} \times \vec{b}$; b) $\vec{a} \times (\vec{b} \times \vec{c})$; c) $(\vec{a} \times \vec{b}) \times \vec{c}$; d) $(\vec{a} \times \vec{b}) \times (\vec{b} \times \vec{c})$; e) $\vec{a} \times (\vec{b} + 2\vec{c})$.

Ats.: a) (-10,5,-5); b) (32,14,-74); c) (50,50,-50); d) (-120,-60,180); e) (26,-1,-23).

- 2*. Raskite vektorių, statmeną vektoriams \vec{a} ir \vec{b} : a) $\vec{a} = (1, 2, 1)$, $\vec{b} = (3, 1, 2)$; b) $\vec{a} = (0, 2, 3)$, $\vec{b} = (1, -1, 4)$; c) $\vec{a} = (4, 1, 5)$, $\vec{b} = (7, 2, -3)$; d) $\vec{a} = (4, 2, 4)$, $\vec{b} = (1, 1, 7)$.
 - Ats.: a) (3, 1, -5); b) (11, 3, -2); c) (-13, 47, 1); d) (10, -24, 2).
- 3*. Ar vektoriai \vec{a} , \vec{b} , \vec{c} yra vienoje plokštumoje? a) $\vec{a} = (1, 2, 4)$, $\vec{b} = (2, 4, 1)$, $\vec{c} = (1, 1, 7)$; b) $\vec{a} = (2, 1, 3)$, $\vec{b} = (1, 4, 1)$, $\vec{c} = (4, 9, 5)$; c) $\vec{a} = (1, 2, 1)$, $\vec{b} = (3, 2, 2)$, $\vec{c} = (4, 4, 3)$. Ats.: a) ne; b) taip; c) taip.
- 4*. Raskite lygiagretainio, kurio kraštinės yra vektoriai \vec{a} ir \vec{b} , plotą : a) $\vec{a} = (1,1,2)$, $\vec{b} = (0,2,5)$; b) $\vec{a} = (2,1,2)$, $\vec{b} = (1,1,3)$; c) $\vec{a} = (2,1,2)$, $\vec{b} = (4,2,4)$. Ats.: a) $\sqrt{30}$; b) $3\sqrt{2}$; c) 0.
- 5*. Duotas vektorius \vec{a} (1, 2, 1). Raskite vektorių \vec{b} , tenkinantį sąlygas $\vec{a} \times \vec{b} = (1, 1, -3)$ ir $\vec{a} \cdot \vec{b} = 5$. Ats.: \vec{b} (2, 1, 1).
- 6*. Duoti keturi vektoriai $\vec{a}(2,1,0)$, $\vec{b}(1,-1,2)$, $\vec{c}(2,2,-1)$ ir $\vec{d}(3,4,-3)$. Kiekvieną vektorių išreikškite kitais trim.

Ats.: $\vec{a} = \vec{b} - \vec{c} + \vec{d} \ \vec{b} = \vec{a} + \vec{c} - \vec{d}, \ \vec{c} = -\vec{a} + \vec{b} + \vec{d}, \ \vec{d} = \vec{a} - \vec{b} + \vec{c}.$

- 7*. Duoti vektoriai \vec{a} , \vec{b} ir \vec{c} . Įrodykite, kad vektoriai \vec{b} ($\vec{a} \cdot \vec{c}$) \vec{c} ($\vec{a} \cdot \vec{b}$) ir \vec{a} yra statmeni.
- 8*. Duoti vektoriai \vec{a} ir \vec{b} . Įrodykite, kad vektoriai

$$\vec{b} - \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^2} \vec{a}$$
 ir \vec{a}

yra statmeni.

9*. Duoti trys nenuliniai erdvės vektoriai \vec{a} , \vec{b} ir \vec{c} , kurie yra statmeni vienas kitam, o realieji skaičiai x_1 , x_2 ir x_3 yra tokie, kad

$$x_1\vec{a} + x_2\vec{b} + x_3\vec{c} = \mathcal{O}.$$

[rodykite, jog $x_1 = x_2 = x_3 = 0$.

- 10. Įrodykite, jog bet kuriems erdvės vektoriams \vec{a} ir \vec{b} teisingos tokios lygybės:
 - a) $|\vec{a} + \vec{b}|^2 + |\vec{a} \vec{b}|^2 = 2|\vec{a}|^2 + 2|\vec{b}|^2$
 - b) $|\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + 2\vec{a} \cdot \vec{b}$.
 - c) $|\vec{a} + \vec{b}|^2 |\vec{a} \vec{b}|^2 = 4\vec{a} \cdot \vec{b}$.

11. Tegul α – kampas tarp erdvės vektorių \vec{a} ir \vec{b} . Įrodykite Kosinusų teoremą:

$$|\vec{a} - \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 - 2|\vec{a}| |\vec{b}| \cos \alpha.$$

- 12. Tegul \vec{a} , \vec{b} ir \vec{c} nenuliniai erdvės vektoriai. Įrodykite, jog iš lygybės $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}$ nebūtinai išplaukia vektorių lygybė $\vec{b} = \vec{c}$.
- 13. Duoti taškai A(1,3,-1) ir B(-4,5,2). Raskite šių taškų koordinates:
 - a) atkarpos AB vidurio taško;
 - b) taškų, priklausančių atkarpai AB ir dalijančių šią atkarpą į tris lygias dalis;
 - c) taško P, priklausančio atkarpa
iABir dalijančio šią atkarpą santykiu AP:PB=1:4;
 - d) taško P, priklausančio atkarpa
i AB ir dalijančio šią atkarpą santykiu AP:PB=2:3.

Ats.: a)
$$\left(-\frac{3}{2}, 4, \frac{1}{2}\right)$$
; b) $\left(-\frac{2}{3}, \frac{11}{3}, 0\right)$, $\left(-\frac{7}{3}, \frac{13}{3}, 1\right)$; c) $\left(0, \frac{17}{5}, -\frac{2}{5}\right)$; d) $\left(-1, \frac{19}{5}, \frac{1}{5}\right)$.

14. Duotos trys lygiagretainio viršūnės A(3, -4, 7), B(-5, 3, -2) ir C(1, 2, -3). Raskite šio lygiagretainio viršūnės, priešingos viršūnei B, koordinates.

Ats.:
$$(9, -5, 6)$$
.

15. Duotos dvi gretimos lygiagretainio viršūnės A(-2,6) ir B(2,8) bei šio lygiagretainio įstrižainių susikirtimo taškas M(2,2). Raskite likusias dvi šio lygiagretainio viršūnes.

Ats.:
$$(6, -2)$$
 ir $(2, -4)$.

15. Koordinačių ašyje $\mathcal{O}y$ raskite tokį tašką M, kuris būtų vienodai nutolęs nuo taškų A(1,-4,7) ir B(5,6,-5).

Ats.:
$$M(0,1,0)$$
.

16. Duotos trikampio ABC viršūnės A(3, -1, 5), B(4, 2, -5) ir C(-4, 0, 3). Raskite pusiaukraštinės, išvestos iš viršūnės A, ilgį.

Ats.: 7.

17. Duotos trikampio ABC viršūnės A(1,-1,-3), B(2,1,-2) ir C(-6,3,-4). Raskite šio trikampio pusiaukraštinių susikirtimo taško koordinates.

Ats.:
$$(-1, 1, -3)$$
.

- 18. Irodykite, jog bet kuriems erdvės vektoriams \vec{a} ir \vec{b} teisinga lygybė $(\vec{a} - \vec{b}) \times (\vec{a} + \vec{b}) = 2(\vec{a} \times \vec{b}).$
- 19. Kokias sąlygas turi tenkinti vektoriai \vec{a} ir \vec{b} , kad vektoriai $\vec{a} + \vec{b}$ ir $\vec{a} - \vec{b}$ būtų kolinearūs?
- 20. Duoti erdvės vektoriai \vec{a} ir \vec{b} , kurių abiejų ilgis yra 5, o kampas tarp šių vektorių lygus $\pi/4$. Raskite trikampio, kurio dvi gretimos kraštinės yra vektoriai $\vec{a} - 2\vec{b}$ ir $3\vec{a} + 2\vec{b}$, plotą. Ats.: $50\sqrt{2}$.
- 21. Erdvės vektoriai \vec{a} , \vec{b} ir \vec{c} tenkina lygybe $\vec{a} + \vec{b} + \vec{c} = \mathcal{O}$. Irodykite, jog

$$\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$$
.

22. Raskite trikampio, kurio viršūnės yra taškai A(1,1,1), B(2,3,4) ir C(4,3,2), plota.

Ats.: $2\sqrt{6}$.

- 23. Duotos trikampio ABC viršūnės A(1,-1,2), B(5,-6,2) ir C(1,3,-1). Raskite šio trikampio aukštinės, nuleistos iš viršūnės B, ilgi. Ats.: 5.
- 24. Trys nenuliniai erdvės vektoriai $\vec{a},\,\vec{b}$ ir \vec{c} tenkina lygybes

$$\vec{a} = \vec{b} \times \vec{c}, \quad \vec{b} = \vec{c} \times \vec{a} \quad \text{ir} \quad \vec{c} = \vec{a} \times \vec{b}.$$

Raskite šių vektorių ilgius ir kampus tarp jų.

25. Irodykite, jog bet kuriems erdvės vektoriams \vec{a} , \vec{b} ir \vec{c} teisinga lygybė

$$\vec{a} \times (\vec{b} \times \vec{c}) = \vec{b} \cdot (\vec{a} \cdot \vec{c}) - \vec{c} \cdot (\vec{a} \cdot \vec{b}).$$

- 26. Įrodykite, jog taškai A(1,2,-1), B(0,1,5), C(-1,2,1) ir D(2,1,3)priklauso vienai plokštumai.
- 27. Duotas tetraedras, kurio viršūnės yra taškai A(1,1,1), B(2,0,2), C(2,2,2) ir D(3,4,-3). Raskite šio tetraedro aukštinės, išvestos iš viršūnės D, ilgį.

Ats.: $3\sqrt{2}$.

28. Įrodykite šias mišriosios sandaugos savybes:

a)
$$(\vec{a} + \vec{c}) \cdot (\vec{b} \times (\vec{a} + \vec{b})) = -\vec{a} \cdot (\vec{b} \times \vec{c})$$

a)
$$(\vec{a} + \vec{c}) \cdot (\vec{b} \times (\vec{a} + \vec{b})) = -\vec{a} \cdot (\vec{b} \times \vec{c});$$

b) $(\vec{a} - \vec{b}) \cdot ((\vec{a} - \vec{b} - \vec{c}) \times (\vec{a} + 2\vec{b} - \vec{c})) = 3 \vec{a} \cdot (\vec{b} \times \vec{c});$

c)
$$(\vec{a} + \vec{b}) \cdot (\vec{b} + \vec{c}) \times (\vec{c} + \vec{a}) = 2 \vec{a} \cdot (\vec{b} \times \vec{c}).$$