Capteurs et conditionnement

F. Pépin www-pepin.ensea.fr

Électronique et conditionnement

- 1. Notion de mesure
- 2. Constitution d'une chaîne de mesure
- 3. Caractéristiques d'une chaîne de mesure
- 4. Amplificateurs d'instrumentation
- 5. Amplificateurs d'isolement
- 6. Conditionneurs de capteurs passifs
- 7. Conversion des signaux
- 8. Bruit électronique
- 9. Capteurs de température
- 10. Conditionneurs intégrés
- 11. Capteurs de position et de déplacement
- 12. Capteurs de déformation
- 13. Capteurs de pression et de force par corps d'épreuve
- 14. La piézo-électricité

1. Notion de mesure.

$$Mesure = \frac{Grandeur à mesurer}{Grandeur de référence}$$

Système international d'unités (S.I.) :

7 unités de base : m, kg, s, K, A, cd, mol

Mesurage: ensemble d'opérations ayant pour but de déterminer la valeur d'une grandeur.

Métrologie: domaine des connaissances relatives aux mesurages.

Notion de mesure

2. Constitution d'une chaîne de mesure.

Objectif: grandeur physique ---- grandeur électrique

3. Caractéristiques d'une chaîne de mesure.

- Caractéristique de transfert statique.
 - obtenue par étalonnage.
 - Étendue de mesure (EM) :

domaine nominal des variations du mesurande.

Limite d'utilisation du capteur :

domaine de non-détérioration.

Sensibilité statique :

$$S = \frac{\Delta y}{\Delta x} \bigg|_{x_0}$$

- Décalage du zéro
- Linéarité :

décrit le degré de concordance entre le diagramme d'étalonnage statique et une droite choisie comme référence.

- Hystérésis.
- Résolution :

accroissement minimum de la grandeur d'entrée provoquant une modification de la grandeur de sortie.

- Dérives
- Finesse:

permet d'estimer l'influence de la présence du capteur et de la chaîne de mesure sur la valeur du mesurande.

- Caractéristiques dynamiques :
 - Sensibilité en fonction de la fréquence S(f)
 - Rapidité : temps de réponse.
- Erreurs de mesure.

x₀: valeur vraie

x_i: résultat de mesure

Erreur : $e_i = x_i - x_0$

- Erreurs systématiques
- > Erreurs accidentelles

Expérience : n mesures $x_1 \dots x_n$

	Cas 1	Cas 2	Cas 3	Cas 4
Justesse	non	non	oui	oui
Fidélité	oui	non	non	oui

4. Amplificateur d'instrumentation.

- Les objectifs.
 - amplifier le signal pour le rendre plus perceptible
 - Impédance d'entrée infinie
 - Impédance de sortie nulle
 - Une tension de sortie proportionnelle à la différence des deux entrées :

Rappel sur le mode différentiel et le mode commun.

Amplificateur d'instrumentation :

Circuit prévu pour **amplifier un signal dans un milieu hostile**, caractérisé par des déviations par rapport à l'idéal (température, bruit, chute de tension de l'alimentation,...).

- Exemples de réalisation.
 - Montage à trois amplificateurs opérationnels

Montage à deux amplificateurs opérationnels : en TD.

Exemple : le circuit AD623

Single and Dual-Supply, Rail-to-Rail, Low Cost Instrumentation Amplifier

Data Sheet AD623

FEATURES

Easy to use

Rail-to-rail output swing

Input voltage range extends 150 mV below ground (single supply)

Low power, 550 µA maximum supply current

Gain set with one external resistor

Gain range: 1 to 1000

High accuracy dc performance

0.10% gain accuracy (G = 1)

0.35% gain accuracy (G > 1)

Noise: 35 nV/√Hz RTI noise at 1 kHz

Excellent dynamic specifications

800 kHz bandwidth (G = 1)

20 μ s settling time to 0.01% (G = 10)

APPLICATIONS

Low power medical instrumentation

Transducer interfaces

Thermocouple amplifiers

Industrial process controls

Difference amplifiers

Low power data acquisition

Part No.	Total V _s (V dc)	Typical I _Q (μA)
AD8235	5.5	30
AD8236	5.5	33
AD8237	5.5	33
AD8226	36	350
AD8227	36	325
AD8420	36	85
AD8422	36	300
AD8426	36	325 (per channel)

Schéma interne simplifié:

Utilisation:

Exemples d'application :

Système d'acquisition pour un capteur passif :

Interfaçage d'un thermocouple :

Mesure d'une température de -200°C à +200 °C :

Circuit de garde :

Schéma équivalent

■ A l'entrée

Schéma couramment utilisé :

Justification : Soient les deux courants d'entrée :

$$V_{e1}$$
 R_{ec} R_{ed} R_{ec}

$$i_{e1} = G_{11} v_{e1} + G_{12} v_{e2}$$

 $i_{e2} = G_{21} v_{e1} + G_{22} v_{e2}$

$$i_{e1} = \frac{G_{11} - G_{12}}{2} v_{ed} + (G_{11} + G_{12}) v_{ec}$$

$$i_{e2} = \frac{G_{21} - G_{22}}{2} v_{ed} + (G_{22} + G_{21}) v_{ec}$$

Hypothèse : amplificateur d'instrumentation symétrique

$$G_{11} = G_{22}$$
 et $G_{12} = G_{21}$

$$R_{ed} = \frac{2}{G_{11} - G_{12}} = -\frac{2}{G_{21} - G_{22}}$$

$$R_{ed} = \frac{2}{G_{11} - G_{12}} = -\frac{2}{G_{21} - G_{22}}$$
 $R_{ec} = \frac{1}{G_{11} + G_{12}} = \frac{1}{G_{22} + G_{21}}$

$$i_{e1} = \frac{v_{ed}}{R_{ed}} + \frac{v_{ec}}{R_{ec}} = \frac{v_{ed}}{R_{ed}} + \frac{v_{e1} + v_{e2}}{2 R_{ec}}$$

$$i_{e2} = -\frac{v_{ed}}{R_{ed}} + \frac{v_{e1} + v_{e2}}{2 R_{ec}}$$

Ce qui donne le schéma suivant :

➤ En mode différentiel (ve1 = - ve2) :

➤ En mode commun (ve1 = ve2):

$$R_{ed} = 2 G\Omega$$

 $R_{ec} = 2 G\Omega$

$$R_{\rm ec} = 2 \, G\Omega$$

A la sortie :

- > Résistance de sortie
- > Tension proportionnelle à la tension en mode différentiel
- > Tension fonction du mode commun.

Schéma complet :

- Taux de réjection du mode commun, circuit de garde.
 - Définition du taux de réjection du mode commun (TRMC)

$$TRMC = \frac{A_d}{A_c} \qquad A_d = \frac{V_{sd}}{V_{ed}}$$

$$A_d = \frac{V_{sd}}{V_{ed}}$$

$$A_{c} = \frac{V_{sc}}{V_{ec}}$$

en dB:
$$TRMC = 20 \log \frac{A_d}{A_c}$$

$$A d = 100$$

Exemple:
$$A d = 100$$
 $ved = 10 \text{ mV}$

vec = 10 V TRMC = 80 dB

$$Ad.ved = 1V$$
 et

Ad. ved = 1 V et
$$\frac{A_d}{TRMC}$$
 . v_{ec} = 0,1 V

soit une erreur de 10 %!

Analyse du fonctionnement

En modifiant la disposition des composants du schéma :

Si
$$r1 = r2$$
 et $Zch = Zcb$ $Vp = 0$

Cas étudié : r1 = 0

$$\label{eq:vp} \mathbf{V}_p = \left| \begin{array}{c} \frac{r_2/\!/Z_d}{r_2/\!/Z_d + Z_{c\;b}} \end{array} \right| \ . \ \mathbf{V}_c$$

et TRMC = $\frac{r_2//Z_d + Z_{cb}}{r_2//Z_d}$

$$r2 << Zd \ et \ Zcb : TRMC = \left| rac{Z_{cb}}{r_2} \right|$$

$$Z_{cb} = 1000 \text{ M}\Omega // 10 \text{ pF } r_2 = 100 \Omega$$

$$Z_{cb}=1000~\text{M}\Omega$$
 // $10~\text{pF}~r_2=100~\Omega$

$$TRMC = \frac{Z_{cb}}{r_2}$$

- >pour un signal de mode commun en continu, on a TRMC = 140dB
- \triangleright pour f = 50 Hz, TRMC = 130 dB
- ➤Si le signal est amené par un câble coaxial de 1m:

Solution : circuit de garde

Caractéristiques d'un amplificateur d'instrumentation

Data Sheet AD623

DUAL SUPPLIES

Typical at 25°C dual supply, $V_S = \pm 5$ V, and $R_L = 10$ k Ω , unless otherwise noted.

Table 3.

	Test Conditions/		AD623	A		D623A	RM				
Parameter	Comments	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
GAIN	$G = 1 + (100 \text{ k/R}_G)$										
Gain Range		1		1000	1		1000	1		1000	
Gain Error ¹	G1 V _{OUT} = -4.8 V to +3.5 V										
	G > 1 V _{OUT} = 0.05 V to 4.5 V										
G = 1			0.03	0.10		0.03	0.10		0.03	0.05	96
G = 10			0.10	0.35		0.10	0.35		0.10	0.35	%
G = 100			0.10	0.35		0.10	0.35		0.10	0.35	%
G = 1000			0.10	0.35		0.10	0.35		0.10	0.35	%
Nonlinearity	G1 Vour = -4.8 V to +3.5 V										
	G > 1 Vout = -4.8 V to +4.5 V										
G = 1 to 1000			50			50			50		ppm
Gain vs. Temperature											
G = 1			5	10		5	10		5	10	ppm/°C
G > 11			50			50			50		ppm/°C

	Test Conditions/		AD623	A	Al	D623Al	RM		AD623	В	
Parameter	Comments	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
VOLTAGE OFFSET	Total RTI error = Vosi + Voso/G										
Input Offset, Vosi			25	200		200	500		25	100	μV
Over Temperature				350			650			160	μV
Average Tempco			0.1	2		0.1	2		0.1	1	μV/°C
Output Offset, Voso			200	1000		500	2000		200	500	μV
Over Temperature				1500			2600			1100	μV
Average Tempco			2.5	10		2.5	10		2.5	10	μV/°C
Offset Referred to the Input vs. Supply (PSR)											
G = 1		80	100		80	100		80	100		dB
G = 10		100	120		100	120		100	120		dB
G = 100		120	140		120	140		120	140		dB
G = 1000		120	140		120	140		120	140		dB
INPUT CURRENT											
Input Bias Current			17	25		17	25		17	25	nA
Over Temperature				27.5			27.5			27.5	nA
Average Tempco			25			25			25		pA/°C
Input Offset Current			0.25	2		0.25	2		0.25	2	nΑ
Over Temperature				2.5			2.5			2.5	nΑ
Average Tempco			5			5			5		pA/°C
INPUT											
Input Impedance											
Differential			2 2			2 2			2 2		GΩ p
Common-Mode			2 2			2 2			2 2		GΩ p
Input Voltage Range ²	$V_S = +2.5 \text{ V to } \pm 6 \text{ V}$	(-V _s) - 0.15		(+V _s) – 1.5	(–V _S) – 0.15		(+V₃) – 1.5	(–V _s) – 0.15		(+V _S) – 1.5	٧

	Test Conditions/		AD623/	A	A	D623AF	RM	AD623B			
Parameter	Comments	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Common-Mode Rejection											
at 60 Hz with 1 kΩ											
Source Imbalance											
G = 1	Vcm = +3.5 V to -5.15 V	70	80		70	80		77	86		dB
G = 10	V _{CM} = +3.5 V to -5.15 V	90	100		90	100		94	100		dB
G = 100	V _{CM} = +3.5 V to -5.15 V	105	110		105	110		105	110		dB
G = 1000	V _{CM} = +3.5 V to -5.15 V	105	110		105	110		105	110		dB
OUTPUT											
Output Swing	$R_L = 10 \text{ k}\Omega$	$(-V_s) +$		$(+V_5)$ —	(-V ₅) +		$(+V_5)$ —	$(-V_s) +$		$(+V_5)$ —	V
	$V_S = \pm 5 \text{ V}$	0.2		0.5	0.2		0.5	0.2		0.5	
	$R_L = 100 \text{ k}\Omega$	$(-V_s) +$		$(+V_s)$ —	(-V ₂) +		$(+V_s)$ —	$(-V_s) +$		$(+V_s)$ —	V
		0.05		0.15	0.05		0.15	0.05		0.15	
DYNAMIC RESPONSE											
Small Signal –3 dB Bandwidth											
G = 1			800			800			800		kHz
G = 10			100			100			100		kHz
G = 100			10			10			10		kHz
G = 1000			2			2			2		kHz
Slew Rate			0.3			0.3			0.3		V/µs
Settling Time to 0.01%	$V_S = \pm 5 \text{ V}, 5 \text{ V step}$										
G = 1			30			30			30		μs
G = 10			20			20			20		μs

SPECIFICATIONS COMMON TO DUAL AND SINGLE SUPPLIES

Table 4.

	Test Conditions/		AD623A			AD623AR	M				
Parameter	Comments	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
NOISE											
Voltage Noise, 1 kHz	Total RTI noise =										
	$\sqrt{(e_{nt})^2 + (2e_{no}/G)^2}$										
Input, Voltage Noise, en			35			35			35		nV/√Hz
Output, Voltage Noise, e _{no}			50			50			50		nV/√Hz
RTI, 0.1 Hz to 10 Hz											
G = 1			3.0			3.0			3.0		μ∨р-р
G = 1000			1.5			1.5			1.5		μ∨р-р
Current Noise	f = 1 kHz		100			100			100		fA√√Hz
0.1 Hz to 10 Hz			1.5			1.5			1.5		pA p-p
REFERENCE INPUT											
R _{IN}			100 ±			100 ±			100 ±		kΩ
			20%			20%			20%		
I _{IN}	$V_{IN}+, V_{REF}=0 V$		50	60		50	60		50	60	μА
Voltage Range		-Vs		$+V_s$	-Vs		$+V_s$	-Vs		$+V_s$	V
Gain to Output			1 ±			1 ±			1 ±		V
			0.0002			0.0002			0.0002		
POWER SUPPLY											
Operating Range	Dual supply	±2.5		±6	±2.5		±6	±2.5		±6	V
	Single supply	2.7		12	2.7		12	2.7		12	V
Quiescent Current	Dual supply		375	550		375	550		375	550	μΑ
	Single supply		305	480		305	480		305	480	μА
Over Temperature				625			625			625	μА
TEMPERATURE RANGE											
For Specified Performance		-40		+85	-40		+85	-40		+85	°C

Bilan des erreurs

Schéma d'application :

Trois types d'erreur:

- les erreurs initiales, facilement corrigibles par un réglage
- les erreurs pouvant être réduites par un système intelligent
- les erreurs irréductibles

5. Amplificateur d'isolement.

 Amplificateur d'instrumentation classique : tension de mode commun < tension d'alimentation

• Un amplificateur d'isolement permet aussi d'assurer un isolement galvanique entre la source et le reste de la chaîne de mesure.

Mais c'est à la base un amplificateur d'instrumentation.

Application : équipement médical.

2 procédés : Transformateur
 Couplage optique

• Principe :

• Exemple : AD210

Schéma bloc :

Caractéristiques :

FEATURES

High CMV Isolation: 2500 V rms Continuous

±3500 V Peak Continuous

Small Size: 1.00" × 2.10" × 0.350"

Three-Port Isolation: Input, Output, and Power

Low Nonlinearity: ±0.012% max

Wide Bandwidth: 20 kHz Full-Power (–3 dB)

Low Gain Drift: ±25 ppm/°C max

High CMR: $120 \, dB \, (G = 100 \, V/V)$

Isolated Power: ±15 V @ ±5 mA

Uncommitted Input Amplifier

APPLICATIONS

Multichannel Data Acquisition

High Voltage Instrumentation Amplifier

Current Shunt Measurements

Process Signal Isolation

■ Exemple de montage :

• Le concept d'isolement permet donc de définir des masses différentes.

Tension d'isolement : entre la masse d'entrée et la masse de sortie

• Caractéristiques du AD210 :

-			
Model	AD210AN		
GAIN			
Range	1 V/V - 100 V/V		
Error	±2% max		
vs. Temperature(0°C to +70°C)	+25 ppm/°C max		
(−25°C to +85°C)	±50 ppm/°C max		
vs. Supply Voltage	±0.002%/V		
Nonlinearity ¹	±0.025% max		
INPUT VOLTAGE RATINGS			
Linear Differential Range	±10 V		
Maximum Safe Differential Input	±15 V		
Max. CMV Input-to-Output	*		
ac, 60 Hz, Continuous	2500 V rms		
dc, Continuous	±3500 V peak		
Common-Mode Rejection	*		
60 Hz, G = 100 V/V	*		
$R_S \le 500 \Omega$ Impedance Imbalance	120 dB		
Leakage Current Input-to-Output	*		
@ 240 V rms, 60 Hz	2 μA rms max		

INPUT IMPEDANCE	
Differential	$10^{12} \Omega$
Common Mode	5 GΩ∥5 pF
INPUT BIAS CURRENT	
Initial, @ +25°C	30 pA typ (400 pA max)
vs. Temperature (0°C to +70°C)	10 nA max
(-25°C to +85°C)	30 nA max
INPUT DIFFERENCE CURRENT	
Initial, @ +25°C	5 pA typ (200 pA max)
vs. Temperature(0°C to + 70°C)	2 nA max
(-25°C to +85°C)	10 nA max
INPUT NOISE	
Voltage (l kHz)	18 nV/√ Hz
(10 Hz to 10 kHz)	4 μV rms
Current (1 kHz)	0.01 pA/√ Hz
FREQUENCY RESPONSE	
Bandwidth (-3 dB)	*
G = 1 V/V	20 kHz
G = 100 V/V	15 kHz
Settling Time (±10 mV, 20 V Step)	*
G = 1 V/V	150 μs
G = 100 V/V	500 μs
Slew Rate (G = 1 V/V)	1 V/μs

OFFSET VOLTAGE (RTI) ² Initial, @ +25°C vs. Temperature (0°C to +70°C) (-25°C to +85°C)	±15 ±45/G) mV max (±10 ±30/G) μV/°C (±10 ±50/G) μV/°C
RATED OUTPUT ³ Voltage, 2 kΩ Load Impedance Ripple (Bandwidth = 100 kHz)	± 10 V min 1 Ω max 10 mV p-p max
ISOLATED POWER OUTPUTS ⁴ Voltage, No Load Accuracy Current Regulation, No Load to Full Load Ripple	±15 V ±10% ±5 mA See Text See Text
POWER SUPPLY Voltage, Rated Performance Voltage, Operating Current, Quiescent Current, Full Load – Full Signal	+15 V dc ± 5% +15 V dc ± 10% 50 mA 80 mA
TEMPERATURE RANGE Rated Performance Operating Storage	–25°C to +85°C –40°C to +85°C –40°C to +85°C

6. Conditionneurs de capteurs passifs.

Objectifs:

Capteur passif : $Z_c = f(m)$ m étant le mesurande

Variation de Z_c en fonction du mesurande → variation d'une grandeur électrique

en associant au capteur :

- une source de tension e_s ou une source de courant i_s
- d'autres impédances

Convertisseur de mesure : c'est une partie du conditionneur, dont le rôle est d'effectuer cette transformation.

Deux types de sortie :

$$v_m = e_s f(Z_c, Z_k)$$

 $f_m = f(Z_c, Z_k)$

· Sensibilité:

Sensibilité globale :

$$s_t = \frac{\Delta v_m}{\Delta m} = \frac{\Delta v_m}{\Delta Z_c} \frac{\Delta Z_c}{\Delta m}$$
 Sensibilité du capteur

Sensibilité rajoutée par le convertisseur

- Points à considérer :
 - ightharpoonup Linéarité : $\frac{\Delta v_{\rm m}}{\Delta Z_{\rm c}}$ indépendant de $Z_{\rm c}$
 - > Grandeurs d'influence

Montage en pont :

-> Fournir une tension de mesure différentielle

$$i_d = f(R_1, R_2, R_3, R_4, R_s, R_d)$$

$$i_d=0$$
 si $R_1 R_4 = R_2 R_3$ donc $v_m=0$

En négligeant l'influence des résistances Rs et Rd :

$$v_{m} = e_{s} \frac{R_{2} R_{3} - R_{1} R_{4}}{(R_{1} + R_{2})(R_{3} + R_{4})}$$

On prendra $R_1=R_2=R_3=R_4=R_o$ à l'équilibre.

■ Un capteur : $R_2 = R_0 + \Delta R_c$

$$R_1 = R_3 = R_4 = R_0$$

$$v_{m} = \frac{e_{s}}{4 R_{o}} \frac{\Delta R_{c}}{1 + \frac{\Delta R_{c}}{2 R_{o}}}$$

Avec x

$$x = \frac{\Delta R_c}{R_o}$$

$$v_{\mathbf{m}} = e_{\mathbf{S}} \frac{\mathbf{x}}{4} \frac{1}{1 + \frac{\mathbf{x}}{2}}$$

Non linéaire!

Deux capteurs, à variations identiques :

$$R_2 = R_3 = R_o + \Delta R_c$$

$$R_1 = R_4 = R_0$$

$$v_{m} = \frac{e_{s}}{2} \frac{x}{1 + \frac{x}{2}}$$

Non linéaire

Deux capteurs, à variations opposés :

$$R_2 = R_0 + \Delta R_c$$

$$R_1 = R_0 - \Delta R_c$$

$$v_{\mathbf{m}} = e_{\mathbf{S}} \frac{\mathbf{x}}{2}$$

Linéaire

Montage push-pull: 4 capteurs

$$R_2 = R_3 = R_o + \Delta R_c$$

$$R_1 = R_4 = R_0 - \Delta R_c$$

$$v_{\mathbf{m}} = e_{\mathbf{S}} \mathbf{x}$$

Linéaire

$$x = \frac{\Delta R_c}{R_o}$$

Application : jauges de contrainte

Étude de l'influence d'une grandeur parasite (g)

Un capteur:

$$R_2 = R_o + S\Delta m + S_g \Delta g$$

Un capteur de compensation :

$$R_1 = R_0 + S_g \Delta g$$

$$v_{m} = \frac{e_{s}}{4 R_{o}} \frac{S\Delta m}{1 + \frac{S\Delta m}{2 R_{o}} + \frac{Sg\Delta g}{R_{o}}}$$

Étude de l'influence d'une grandeur parasite (g)

Montage push-pull :
$$\Delta R_2 = \Delta R_3 = S \Delta m + S_g \Delta g$$

$$\Delta R_1 = \Delta R_4 = -S \Delta m + S_g \Delta g$$

$$v_m = e_S \frac{S\Delta m}{R_O} \frac{1}{1 + S_g \Delta g}$$

La sensibilité dépend de la grandeur d'influence

Exemple de compensation : g = température

$$\Delta g = T - T_0$$
 $(T_0 \rightarrow R_0)$

$$R(T) = R_{o(1+\alpha_R.\Delta T)} \text{ donc } S_g = R_o \alpha_R$$

S(T) : la sensibilité du capteur est fonction de la température

Cela donne
$$v_m = e_S \frac{S(T)}{R(T)} \Delta m$$

Principe de la compensation : résistance de source Rs sensible à la température

Principe de la compensation : résistance de source Rs sensible à la température

Avant: $v_m = e_s \frac{S(T)}{R(T)} \Delta m$

$$v_m = e_s \frac{R_{eq}(T)}{R_{eq}(T) + R_s(T)} \frac{S(T)}{R(T)} \Delta m$$

$$\mathsf{mais} \quad R_{eq}(T) = R(T)$$

$$v_{m} = e_{s} \frac{S(T)}{R(T) + R_{s}(T)} \Delta m$$

$$v_{\rm m} = e_{\rm S} \frac{S(T)}{R(T) + R_{\rm S}(T)} \Delta m$$

$$R(T) = R_0 (1 + \alpha_R . \Delta T)$$

$$R(T) = R_{O(1 + \alpha_R.\Delta T)} \qquad R_{S}(T) = R_{SO(1 + \alpha_S.\Delta T)}$$

Coefficients de température

$$S(T) = S_{0} (1 + \beta.\Delta T)$$

$$R_{SO} = k R_{O}$$

On obtient:

$$v_m = e_s \frac{s_o}{R_o(1+k)} \frac{1+\beta\Delta T}{\alpha_R + k \alpha_s} \Delta m$$

$$1 + \frac{\alpha_R + k \alpha_s}{1+k} \Delta T$$

$$\beta = \frac{\alpha_R + k \alpha_s}{1 + k}$$

$$\beta = \frac{\alpha_R + k \alpha_s}{1+k} \quad \text{et} \quad R_{so} = \frac{\alpha_R - \beta}{\beta - \alpha_s} R_o$$

Élimination des perturbations dues aux fils de liaison :

7. Conversion des signaux.

 Objectif : transformer une grandeur analogique en une grandeur numérique "fidèle"

Mot **non signé** de n bits : $a_{n-1} a_{n-2} \dots a_2 a_1 a_0$

$$V_{m} = \frac{V_{REF}}{2^{n}} (a_{n-1}.2^{n-1} + a_{n-2}.2^{n-2} + ... + a_{1}.2^{1} + a_{0}.2^{0})$$

$$V_{m \text{ max}} = V_{REF} \cdot \left(1 - \frac{1}{2^n}\right)$$
 1 LSB (quantum) = $\frac{V_{REF}}{2^n}$

- Les différents codes :
 - Fonctionnement unipolaire : code binaire naturel
 - > Fonctionnement bipolaire : code complément à deux
- Fonction de transfert idéal :

- Spécifications des CAN (et des CNA)
 - Erreur de décalage, erreur de gain

Dérives du gain et du décalage

Non linéarité intégrale :

Non linéarité différentielle :

Code manquant :

Un convertisseur analogique numérique dont la linéarité différentielle est de 1 LSB doit être garanti sans code manquant.

Budget d'erreurs

- Les différents types de convertisseurs :
 - Convertisseurs à approximations successives
 - Convertisseurs simple rampe, double rampe, triple rampe
 - Convertisseurs "flash"
 - Convertisseur sigma-delta.

• Exemple 1 : AD7870

LC²MOS Complete, 12-Bit, 100 kHz, Sampling ADCs

AD7870/AD7875/AD7876

FEATURES

Complete Monolithic 12-Bit ADC with:

2 μs Track/Hold Amplifier

8 μs A/D Converter

On-Chip Reference

Laser-Trimmed Clock

Parallel, Byte and Serial Digital Interface

72 dB SNR at 10 kHz Input Frequency

(AD7870, AD7875)

57 ns Data Access Time

Low Power: -60 mW typ

Variety of Input Ranges:

±3 V for AD7870

0 V to +5 V for AD7875

±10 V for AD7876

Caractéristiques du AD7870 :

AD7870/AD7875/AD7876—SPECIFICATIONS $(V_{DD} = +5 \text{ V} \pm 5\%, V_{SS} = -5 \text{$

A6ND = DGND = 0 V, f_{CLK} = 2.5 MHz external, unless otherwise stated. All Specifications T_{min} to T_{max} unless otherwise noted.)

	AD7870						
Parameter	J, Al	K, Bl	L, Cl	S ^l	Tl	Units	Test Conditions/Comments
DC ACCURACY							
Resolution	12	12	12	12	12	Bits	
Minimum Resolution for which							
No Missing Codes are Guaranteed	12	12	12	12	12	Bits	
Integral Nonlinearity	±1/2	±1/2	±1/4	$\pm 1/2$	±1/2	LSB typ	
Integral Nonlinearity		±1	±1/2		±1	LSB max	
Differential Nonlinearity		±1	±1		±1	LSB max	
Bipolar Zero Error	±5	±5	±5	±5	±5	LSB max	
Positive Full-Scale Error ⁴	±5	±5	±5	±5	±5	LSB max	
Negative Full-Scale Error ⁴	±5	±5	±5	±5	±5	LSB max	
ANALOG INPUT							
Input Voltage Range	±3	±3	±3	±3	±3	Volts	
Input Current	±500	±500	±500	±500	±500	μA max	

Exemple 2 : AD7874

3 V/5 V, CMOS, 500 µA Signal Conditioning ADC

AD7714*

FEATURES

Charge Balancing ADC

24 Bits No Missing Codes

0.0015% Nonlinearity

Five-Channel Programmable Gain Front End

Gains from 1 to 128

Can Be Configured as Three Fully Differential

Inputs or Five Pseudo-Differential Inputs

Three-Wire Serial Interface

SPI™, QSPI™, MICROWIRE™ and DSP Compatible

3 V (AD7714-3) or 5 V (AD7714-5) Operation

Low Noise (<150 nV rms)

Low Current (350 μA typ) with Power-Down (5 μA typ) AD7714Y Grade:

+2.7 V to 3.3 V or +4.75 V to +5.25 V Operation

0.0010% Linearity Error

-40°C to +105°C Temperature Range

Schmitt Trigger on SCLK and DIN

Low Current (226 μA typ) with Power-Down (4 μA typ)

Lower Power Dissipation than Standard AD7714

Available in 24-Lead TSSOP Package

Low-Pass Filter with Programmable Filter Cutoffs

Ability to Read/Write Calibration Coefficients

APPLICATIONS

Portable Industrial Instruments

Portable Weigh Scales

Loop-Powered Systems

Pressure Transducers

Caractéristiques du AD7874 :

Parameter	A Versions ¹	Units
STATIC PERFORMANCE		
No Missing Codes	24	Bits min
	22	Bits min
	18	Bits min
	15	Bits min
	12	Bits min
Output Noise	See Tables I to IV	
Integral Nonlinearity	±0.0015	% of FSR max
Unipolar Offset Error	See Note 2	
Unipolar Offset Drift ³	0.5	μV/°C typ
_	0.3	μV/°C typ
Bipolar Zero Error	See Note 2	
Bipolar Zero Drift ³	0.5	μV/°C typ
	0.3	μV/°C typ
Positive Full-Scale Error ⁴	See Note 2	
Full-Scale Drift ^{3, 5}	0.5	μV/°C typ
	0.3	μV/°C typ
Gain Error ⁶	See Note 2	
Gain Drift ^{3, 7}	0.5	ppm of FSR/°C typ
Bipolar Negative Full-Scale Error	±0.0015	% of FSR max
Bipolar Negative Full-Scale Drift ³	1	μV/°C typ
	0.6	μV/°C typ

8. Bruit électronique.

Amplificateur d'instrumentation AD623 :

SPECIFICATIONS COMMON TO DUAL AND SINGLE SUPPLIES

Table 4.

	Test Conditions/		AD623A		-	AD623AF	RM		AD623B		
Parameter	Comments	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
NOISE											
Voltage Noise, 1 kHz	Total RTI noise =										
	$\sqrt{(e_{nt})^2 + (2e_{no}/G)^2}$										
Input, Voltage Noise, en			35			35			35		nV/√Hz
Output, Voltage Noise, eno			50			50			50		nV/√Hz
RTI, 0.1 Hz to 10 Hz											
G = 1			3.0			3.0			3.0		μV p-p
G = 1000			1.5			1.5			1.5		μV р-р
Current Noise	f = 1 kHz		100			100			100		fA/√Hz
0.1 Hz to 10 Hz			1.5			1.5			1.5		рАр-р

Bruit électronique 66

Rappels:

Objectif d'une chaîne de mesure : fournir une représentation aussi exacte que possible du mesurande

MAIS imperfections ... erreurs → BUDGET D'ERREURS

Rappels 67

Grandeurs d'influence :

- température
- humidité
- pression atmosphérique
- chocs et vibrations
- . .
- Perturbation due au mode commun

Perturbations électromagnétiques (CEM)

Bruits électroniques(d'origine interne)

Auto-calibration Auto-test

Rappels 68

9. Capteurs de température.

- 9.1. Échelles de température.
- Échelle thermométrique
- Échelle thermodynamique (ou absolue) : le Kelvin (K)
 Échelles dérivées :

	Kelvin	Celsius	Rankin	Fahrenheit
	(K)	(°C)	(°R)	(°F)
Zéro absolu	0	-273,15	0	-459,67
Température d'équilibre du mélange eau-glace	273,15	0	491,67	32
sous pression atmosphérique normale				
Point triple de l'eau	273,16	0,01	491,69	32,02
Température d'ébullition de l'eau sous p.a.m.	373,15	100	471,67	212

- Échelle internationale pratique de température
 - ➤ Choix de trois grandeurs physiques : résistance, f.e.m. d'un thermocouple et rayonnement du corps noir
 - ➤ 11 points fixes primaires, 27 points secondaires

Exemple: point triple de l'hydrogène: 13,31 K

Point triple de l'oxygène : 54,361 K

Point d'ébullition de l'eau: 373,15 K

> formules d'interpolation

Entre 0°C et 630,74 °C:
$$R(T) = R_o.(1 + a.T + b.T^2)$$

a et b : à partir de deux points fixes

9.2. Sondes métalliques de température.

Relation résistance - température :

$$R = \rho \cdot \frac{L}{S}$$

$$L = L_o \cdot (1 + a \cdot \theta)$$

$$S = S_o \cdot (1 + a \cdot \theta)^2 \quad \theta \text{ en}^\circ C$$

$$\rho = \rho_o \cdot (1 + \lambda \cdot \theta)$$

a : coefficient moyen de dilatation linéaire du matériau

 λ : coefficient moyen de température de la résistivité du métal

$$R(\theta) = \frac{\rho_0.L_0}{S_0} \cdot \frac{1 + \lambda.\theta}{1 + a.\theta}$$
 a: de l'ordre de 10^{-5} (°C)⁻¹
\(\lambda:\) peu variable pour les n

 λ : peu variable pour les métaux ≈4 10⁻⁴ (°C)⁻¹

$$R(\theta) = R_o \cdot (1 + (\lambda - a) \cdot \theta - \lambda \cdot a \cdot \theta^2)$$

De façon générale :
$$R(\theta) = R_o \cdot (1 + a \cdot \theta + b \cdot \theta^2)$$

- Caractéristiques souhaitées pour le métal :
 - coefficient de température élevé pour une plus grande sensibilité,
 - grande résistivité,
 - stabilité.

Remarque: la linéarité de la relation résistance-température n'est plus un impératif pour le choix du métal.

	R(100°C)/R(0°C)	Résistivité à 0°C	Domaine d'utilisation
Platine	1,3850	9,81 $10^{-8} \Omega m$	-200 à 850 °C
Nickel	1,618	$5,75 \ 10^{-8} \ \Omega m$	-60 à 180 °C

- Le platine : Le plus inaltérable, le plus inoxydable et le plus invariable.
 - température de fusion : 1769 °C
 - peut être obtenu très pur (99,999%) : caractéristiques identiques d'une sonde à l'autre
 - loi de variation simple
- Norme DIN 43760 (éditée par l'AFNOR) : Régit les capteurs de température pour usages scientifiques et industriels comportant une résistance en fil de platine ou de nickel
 - tableau de valeurs
 - > pour le platine entre 0°C et 850 °C :

$$R(\theta) = 100.(1 + 3,90802.10^{-3}.\theta - 0,580195.10^{-6}.\theta^2)$$
 en Ω

9.3. Thermistances.

Résistances à semi-conducteur :

- > Grande sensibilité
- > Non linéaire
- ➤ Domaine d'utilisation : -100°C à 450°C environ
- ➤ Interchangeabilité en nette progression (de 0,1 à 0,2 °C)

• Relation résistance – température

$$R = a.exp\left(\frac{b}{T}\right) avec b > 0$$

si R_o connue à T_o:
$$R = R_o.exp\left(b.\left(\frac{1}{T} - \frac{1}{T_o}\right)\right)$$

Coefficient de température
$$\alpha$$
 : $\alpha = \frac{1}{R(T)} \cdot \frac{dR}{dT} = -\frac{b}{T^2}$

- α < 0 pour une CTN
- α grand si T petit : utilisation dans la partie gauche de la caractéristique

- α: -5.10⁻² K⁻¹ à -1.10⁻² K⁻¹
 Note: pour une sonde au platine 3,9.10⁻³ K⁻¹
- Une thermistance est donnée par
 - une valeur de résistance à une température donnée
 - le coefficient de température à cette température.

Exemple :
$$R_{298K} = 12 \text{ k}\Omega$$
 $\alpha_{298K} = -5.10^{-2} \text{ K}^{-1}$

- Constante de temps thermique faible
- Exemple de montage

9.4. Capteurs à diodes ou transistors :

$$S = \frac{dv}{dT}$$

non constante en fonction de la température

→ Utilisation de transistors appairés

Relation tension – température

$$I = I_{S} \cdot \left(exp \left(\frac{q \cdot v}{k \cdot T} \right) - 1 \right)$$

T en K

q charge élémentaire de l'électron (1,6.10⁻¹⁹ C), k constante de Boltzmann (1,38.10⁻²³ J.K⁻¹)

Is courant de saturation

En polarisation directe:

$$I = I_S.exp\left(\frac{q.v}{k.T}\right)$$

$$I_S = C.T^m.exp \left(-\frac{q.V_{\Phi}}{k.T} \right)$$

 $I_S = C.T^m.exp \left(-\frac{q.V_{\Phi}}{l_{c.T}}\right)$ V\$\phi\$: hauteur de la bande interdite exprimée en V (1,12 V pour le silicium) m voisin de 3 C constante indépendante de T.

$$\rightarrow$$
 $v = V_{\Phi} - \frac{k.T}{q} (m.\ln T - \ln \frac{I}{C})$

Sensibilité

$$v = V_{\Phi} - \frac{k.T}{q}(m.lnT - ln\frac{I}{C})$$

$$\frac{dv}{dT} = \frac{k}{q} (ln \frac{I}{C} - m.lnT) - \frac{m.k}{q}$$

$$\frac{dv}{dT} = \frac{v - V_{\Phi}}{T} - \frac{m.k}{q}$$

Application numérique :

$$v = 0.6 \text{ V} \quad V_{\Phi} = 1.12 \text{ V} \quad \frac{dv}{dT} = -2 \text{ mV.K}^{-1}$$

Utilisation de transistors appairés

$$Q_1, Q_2 = I_1, I_2 = v_1, v_2$$
 courant I_s identique

$$I_{1} = I_{s}.exp\left(\frac{q.v_{1}}{k.T}\right)$$

$$I_{2} = I_{s}.exp\left(\frac{q.v_{2}}{k.T}\right)$$

$$I_{2} = I_{s}.exp\left(\frac{q.v_{2}}{k.T}\right)$$

$$v_d = v_1 - v_2 = \frac{k.T}{q}.ln\frac{I_1}{I_2}$$

Exemple:
$$\frac{I_1}{I_2} = 2$$
 $v_d = 59,78.T$ en μV

• Capteurs intégrés : par exemple le AD590.

Schéma simplifié:

$$I_T = \left(\frac{k}{q}.\frac{2}{R}.Ln 8\right).T$$

avec R = 358 Ω , on obtient $1 \mu A.K^{-1}$

Documentation technique:

FEATURES

Linear current output: 1 µA/K

Wide temperature range: -55°C to +150°C

Probe-compatible ceramic sensor package

2-terminal device: voltage in/current out

Laser trimmed to ±0.5°C calibration accuracy (AD590M)

Excellent linearity: ±0.3°C over full range (AD590M)

Wide power supply range: 4 V to 30 V

Sensor isolation from case

Low cost

PIN CONFIGURATIONS NC 1 TOP VIEW 7 NC V- 3 (Not to Scale) © NC NC 4 NC = NO CONNECT Figure 1. 2-Lead CQFP Figure 2. 8-Lead SOIC

Figure 3. 3-Pin TO-52

Caractéristiques :

		AD590J		AD590K			
Parameter	Min	Тур	Max	Min	Тур	Max	Unit
POWER SUPPLY							
Operating Voltage Range	4		30	4		30	٧
OUTPUT							
Nominal Current Output @ 25°C (298.2K)		298.2			298.2		μΑ
Nominal Temperature Coefficient		1			1		μA/K
Calibration Error @ 25°C			±5.0			±2.5	°C
Absolute Error (Over Rated Performance Temperature Range)							
Without External Calibration Adjustment			±10			±5.5	°C
With 25°C Calibration Error Set to Zero			±3.0			±2.0	°C
Nonlinearity							
For TO-52 and CQFP Packages			±1.5			±0.8	°C
For 8-Lead SOIC Package			±1.5			±1.0	°C
Repeatability ²			±0.1			±0.1	°C
Long-Term Drift ³			±0.1			±0.1	°C
Current Noise		40			40		pA/√Hz
Power Supply Rejection							
4 V ≤ V _s ≤ 5 V		0.5			0.5		μ Α /V
5 V ≤ Vs ≤ 15 V		0.2			0.2		μV/V
15 V ≤ V _s ≤ 30 V		0.1			0.1		μA/V
Case Isolation to Either Lead		1010			1010		Ω
Effective Shunt Capacitance		100			100		рF
Electrical Turn-On Time		20			20		μs
Reverse Bias Leakage Current (Reverse Voltage = 10 V)4		10			10		pΑ

9.5. Thermocouple.

• Énoncé de l'effet Seebeck (1821) :

Le circuit est le siège d'une f.e.m. fonction des deux températures T1 et T2, mais aussi des deux matériaux A et B :

e(T1, T2, A, B) f.e.m. thermo-couple

Couple thermo-électrique, ou thermocouple

Application:

T2 constante, mesure de T1 par l'intermédiaire de la f.e.m.

Propriétés:

- e(T1, T1)=0
- e(T1, T2) = -e(T2, T1)
- la puissance électrique se transforme intégralement en effet Joule

- Étude de l'effet Seebeck : l'effet Peltier et l'effet Thomson.
 - → Bilan énergétique (électrique et thermique)

1. Effet Joule:

$$\frac{dQ}{dt} = r.i^2$$

2. Conduction thermique:

$$\frac{dQ}{dt} = -k \cdot S \cdot \frac{dT}{dx}$$

3. Effet Peltier:

$$\frac{dQ}{dt} = \pi(A, B, T).i$$

Application: module Peltier

4. Effet Thomson:

$$d\left(\frac{dQ}{dt}\right) = h_A \cdot i \cdot dT$$

• Lois du thermocouple : T_2 = constante, T_1 = T à mesurer

Hypothèses : pas d'effet Joule, pas de conduction thermique

$$\frac{dQ}{dt} = \pi(A, B, T).i \quad (= V.I)$$

$$d\left(\frac{dQ}{dt}\right) = h_A.i.dT$$

Bilan énergétique

$$\frac{de}{dT} = \frac{\pi(A, B, T)}{T}$$

Bilan entropique

$$\frac{d^2e}{dT^2} = \frac{h_A - h_B}{T}$$

• f.e.m. d'un thermocouple :

Hypothèses: pas d'effet Joule, pas de conduction thermique

$$\frac{dQ}{dt} = \pi(A, B, T).i$$

$$d\left(\frac{dQ}{dt}\right) = h_A \cdot i \cdot dT$$

$$e(T_1, T_2) = e_{AB}^{T_1} - e_{AB}^{T_2} + \int_{T_1}^{T_2} (h_A - h_B) dT$$

• Loi des métaux intermédiaires :

Partie du circuit isotherme

→ La f.e.m. est inchangée

• Loi des températures successives :

$$\underline{e(T_1, T_2)} = e_{AB}^{T_1} - e_{AB}^{T_2} + \int_{T_1}^{T_2} (h_A - h_B) . dT$$

$$\underline{e(T_1, T_0)} = e_{AB}^{T_1} - e_{AB}^{T_0} + \int_{T_1}^{T_0} (h_A - h_B) . dT$$

$$\underline{e(T_0, T_2)} = e_{AB}^{T_0} - e_{AB}^{T_2} + \int_{T_0}^{T_2} (h_A - h_B) . dT$$

$$e(T_1,T_2) = e_{AB}^{T_1} - e_{AB}^{T_0} + e_{AB}^{T_0} - e_{AB}^{T_2} + \int\limits_{T_1}^{T_0} (h_A - h_B) . dT + \int\limits_{T_0}^{T_2} (h_A - h_B) . dT$$

donc

$$e(T_1,T_2)=e(T_1,T_0)+e(T_0,T_2)$$

• Utilisation d'un thermocouple :

$$e = e_{AB}^{T_{C}} + \int_{T_{C}}^{T_{A}} h_{A}.dT + e_{CB}^{T_{A}} + \int_{T_{A}}^{T_{V}} h_{C}.dT + 0 + \int_{T_{V}}^{T_{A}} h_{C}.dT + e_{BC}^{T_{A}} + \int_{T_{A}}^{T_{C}} h_{B}.dT$$

 $\text{mais} \quad e_{BC}^{TA} + e_{CA}^{TA} = e_{BA}^{TA} = -e_{AB}^{TA}$

$$e = e_{AB}^{T_C} - e_{AB}^{T_A} + \int_{T_C}^{T_A} (h_A - h_B) dT = e(T_C, T_A)$$

Utilisation d'un thermocouple (suite) :

$$e = e_{AB}^{T_C} - e_{AB}^{T_A} + \int_{T_C}^{T_A} (h_A - h_B) dT = e(T_C, T_A)$$

et
$$e(T_C,0^{\circ}C) = e(T_C,T_A) + e(T_A,0^{\circ}C)$$

Compensation de la soudure froide

- \triangleright Mesure de e(T_C,T_A)
- ➤ Calcul de e(T_C,0°C)
- > Table ou relation : détermination de T_C

- Thermocouples usuels :
 - type J : Fer / Cuivre-Nickel

-210°C à 800°C

-8,096 mV à 45,498 mV

type K : Nickel-Chrome/Nickel-Aluminium

-270°C à 1250 °C -5,354 mV à 50,633 mV

et d'autres comme :

type R : Platine-13%Rhodium / Platine

-50°C à 1500 °C

-0,226 mV à 17,445 mV

Conditionneurs intégrés pour type J et K : AD594 et AD595

Monolithic Thermocouple Amplifiers with Cold Junction Compensation

AD594/AD595

FEATURES

Pretrimmed for Type J (AD594) or Type K (AD595) Thermocouples

Can Be Used with Type T Thermocouple Inputs

Low Impedance Voltage Output: 10 mV/°C

Built-In Ice Point Compensation

Wide Power Supply Range: +5 V to ±15 V

Low Power: <1 mW typical

Thermocouple Failure Alarm

Laser Wafer Trimmed to 1°C Calibration Accuracy

Setpoint Mode Operation

Self-Contained Celsius Thermometer Operation

High Impedance Differential Input

Side-Brazed DIP or Low Cost Cerdip

Montage:

Sensibilité de cette chaîne de mesure

Thermocouple Temperature °C	Type J Voltage mV	AD594 Output mV	Type K Voltage mV	AD595 Output mV
-200	-7.890	-1523	-5.891	-1454
-180	-7.402	-1428	-5.550	-1370
-160	-6.821	-1316	-5.141	-1269
-140	-6.159	-1188	-4.669	-1152
-120	-5.426	-1046	-4.138	-1021
-100	-4.632	-893	-3.553	-876
-80	-3.785	-729	-2.920	-719
-60	-2.892	-556	-2.243	-552
-40	-1.960	-376	-1.527	-375
-20	995	-189	777	-189
-10	501	-94	392	-94
0	0	3.1	0	2.7
10	.507	101	.397	101
20	1.019	200	.798	200
25	1.277	250	1.000	250
30	1.536	300	1.203	300
40	2.058	401	1.611	401
50	2.585	503	2.022	503
60	3.115	606	2.436	605
80	4.186	813	3.266	810
100	5.268	1022	4.095	1015
120	6.359	1233	4.919	1219
140	7.457	1445	5.733	1420
160	8.560	1659	6.539	1620
180	9.667	1873	7.338	1817
200	10.777	2087	8.137	2015
220	11.887	2302	8.938	2213
240	12.998	2517	9.745	2413
260	14.108	2732	10.560	2614
280	15.217	2946	11.381	2817
300	16.325	3160	12.207	3022
320	17.432	3374	13.039	3227
340	18.537	3588	13.874	3434
360	19.640	3801	14.712	3641
380	20.743	4015	15.552	3849
400	21.846	4228	16.395	4057
420	22.949	4441	17.241	4266
440	24.054	4655	18.088	4476
460	25.161	4869	18.938	4686
480	26.272	5084	19.788	4896

Thermocouple Temperature °C	Type J Voltage mV	AD 594 Output mV	Type K Voltage mV	AD 595 Output mV
500	27.388	5300	20,640	5107
520	28.511	5517	21.493	5318
540	29.642	5736	22.346	5529
560	30.782	5956	23.198	5740
580	31.933	6179	24.050	5950
600	33.096	6404	24.902	6161
620	34.273	6632	25.751	6371
640	35.464	6862	26.599	6581
660	36.671	7095	27.445	6790
680	37.893	7332	28.288	6998
700	39.130	7571	29.128	7206
720	40.382	7813	29.965	7413
740	41.647	8058	30.799	7619
750	42.283	8181	31.214	7722
760	-	-	31.629	7825
780	-	-	32.455	8029
800	-	-	33.277	8232
820	-	-	34.095	8434
840	-	-	34.909	8636
860	-	-	35.718	8836
880	-	-	36.524	9035
900	-	-	37.325	9233
920	-	-	38.122	9430
940	-	-	38.915	9626
960	-	-	39.703	9821
980	-	-	40.488	10015
1000	-	-	41.269	10209
1020	-	-	42.045	10400
1040	-	-	42.817	10591
1060	-	-	43.585	10781
1080	_	_	44.439	10970
1100	_	-	45.108	11158
1120	_	-	45.863	11345
1140	_	-	46.612	11530
1160	-	-	47.356	11714
1180	-	-	48.095	11897
1200	-	-	48.828	12078
1220	_	-	49.555	12258
1240	_	-	50.276	12436
1250	-	-	50.633	12524

9.6. Influence du montage d'un capteur de température.

Capteur industriel:

10. Conditionneurs intégrés.

Isolated Linearized 4-Wire RTD Input

Isolated Thermocouple Input

Model	Input Type	Input Range
5B37-J-01	Type J	-100°C to +760°C (-148°F to +1400°F)
5B37-K-02	Type K	-100°C to +1350°C (-148°F to +2462°F)
5B37-T-03	Туре Т	-100°C to +400°C (-148°F to +752°F)
5B37-E-04	Type E	0°C to +900°C (+32°F to +1652°F)
5B37-R-05	Type R	0°C to +1750°C (+32°F to +3182°F)
5B37-S-05	Type S	0°C to +1750°C (+32°F to +3182°F)
5B37-B-06	Type B	0°C to +1800°C (+32°F to +3272°F)
5B37-N-08	Type N	0°C to +1300°C (+32°F to +2372°F)
5B37-Custom	Type J, K, T, E, R, S, B, N, C	*

Isolated, Wide-Bandwidth Strain Gage Input

Isolated Current Output

11. Capteurs de position et de déplacement.

- Contrôle de position ou de déplacement exemple : machine-outil
- Pour mesurer une autre grandeur physique exemple : force, accélération

11.1. Potentiomètre.

• Principe:

Remarque : déplacement linéaire ou angulaire

- > Simplicité du principe
- > Niveau du signal important, donc pas de circuit spécifique
- > Frottements, donc erreur de finesse et usure.
- Fil bobiné:

Coefficient de température faible

Résolution: n spires 2n-2 positions

par exemple 10 μm

Vitesse maximale du curseur(donc fréquence maximale) par exemple 1,25 m/s

Bonne linéarité

Durée de vie : 10⁶ à 10⁷ manœuvres.

• Piste conductrice : coefficient de température plus élevé.

Remarque: montage ratio-métrique pour éliminer l'influence de la tension d'alimentation.

11.2. Capteurs inductifs.

- Principe : élément mobile = noyau ferromagnétique
 - Modification du coefficient d'auto-induction
 - Changement du couplage entre les enroulements primaire et secondaires d'un transformateur.
- Bobine à noyau plongeur :

→ Mesure de L pour avoir la position du noyau

Loi LF

Mise en équation :

$$\begin{split} L = & L_0 + L_F + 2.M & M = k.\sqrt{L_0.L_F} & 0 \leq k \leq 1 \\ L_0 = & \mu_0.\frac{N_0^2.s_0}{l_0} & N_0 = N.\frac{l_0}{l} \\ L_0 = & \mu_0.\frac{N^2.s_0.l_0}{l^2} = \mu_0.\frac{N^2.s_0}{l^2}.(l - l_F) \\ L_F = & \mu_0.\mu_r.\frac{N^2.s_F.l_F}{l^2} \\ L = & \mu_0.\frac{N^2}{l^2} \Big(s_0.(l - l_F) + \mu_r.s_F.l_F + k.\sqrt{s_0.(l - l_F)}.\sqrt{\mu_r.s_F.l_F}\Big) \end{split}$$

Non linéaire!

Transformateur différentiel :

→ Modification du couplage entre le primaire et chaque secondaire.

$$\begin{split} e_1 &= \big(R_1 + j.L_1.\omega\big).I_1 + j\omega\big(M'(x) - M''(x)\big).I_2 \\ 0 &= \Big(R_2^{'} + R_2^{''} + R_m^{}\Big)I_2 + j.\omega.\Big(L_2^{'} + L_2^{''}\Big)I_2 + j.\omega.\big(M'(x) - M''(x)\big).I_2 \\ v_m &= R_m.I_2 \end{split}$$

Si R_m très grande : $I_2 \approx 0$ donc

$$v_{\rm m} = \frac{j.\omega.(M'(x) - M''(x))}{R_1 + j.L_1.\omega}.e_1$$

$$\begin{array}{c|c} & & & \\ &$$

$$v_{\rm m} = \frac{j.\omega.(M'(x) - M''(x))}{R_1 + j.L_1.\omega}.e_1$$

$$M'(x) = M(0) + a.x + b.x^{2}$$

 $M''(x) = M(0) + a.x - b.x^{2}$

$$M''(x) = M(0) + a.x - b.x^2$$

$$v_{m} = \frac{-2 ja \omega e_{1}}{R_{1} + j.L_{1}.\omega}.x$$

$$\frac{\Delta v_{\rm m}}{\Delta x} = \frac{2.a.\omega.a_1}{\sqrt{R_1^2 + (L_1.\omega)^2}}$$

Montage : démodulation synchrone.

Conditionneur intégré :

LVDT Signal Conditioner

AD598

12. Capteurs de déformation.

Déformation :
$$\varepsilon = \frac{\Delta 1}{1}$$

$$\frac{\Delta R}{R_0} = K.\epsilon$$

K : facteur de jauge

Utilisation: - essais de matériaux,

- dans d'autres capteurs.

12.1. Quelques relations de mécanique des milieux continus.

• Contrainte : champ de vecteurs

$$\vec{\sigma}(M, \vec{n}) = \lim_{dS \to 0} \frac{d\vec{F}}{dS}$$

- Contraintes normale et tangentielle : $\vec{\sigma}_n\big(M,\vec{n}\big)$ et $\vec{\sigma}_t\big(M,\vec{n}\big)$

Tenseur des contraintes

$$\vec{\sigma}(M, \vec{n}) = \begin{pmatrix} \vec{\sigma}_1(M, \vec{n}) \\ \vec{\sigma}_2(M, \vec{n}) \\ \vec{\sigma}_3(M, \vec{n}) \end{pmatrix} = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{pmatrix} \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix}$$

- Déformation au voisinage d'un point

$$\vec{\epsilon}(M,\vec{n}) = \frac{|M'N'| - |MN|}{|MN|} = \frac{dl' - dl}{dl}$$

- Lois de comportement : milieu élastique, isotrope et linéaire.
 - Module de Young (Y): soit un essai de traction

$$(\sigma_{ij}) = \begin{pmatrix} \sigma_{11} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 avec
$$\sigma_{11} = \frac{F}{S}$$

on a
$$\sigma_{11} = Y.\epsilon_{11}$$

• Coefficient de Poisson :
$$\epsilon_{22} = \epsilon_{33} = -\nu.\epsilon_{11}$$

12.2. Jauges métalliques.

C'est un capteur passif : déformation → variation de résistance

Ordre de grandeur des déformations mesurables : $\pm 10^{-5} \text{à} \pm 10^{-1}$

Jauges à trames pelliculaires :

$$\frac{\Delta R}{R_0} = K.\epsilon$$

$$\epsilon = \frac{\Delta 1}{1}$$

• Quelques exemples de jauges :

Calcul de la sensibilité :

longueur I, n brins, section s = a .b

$$R = \rho \cdot \frac{n \cdot l}{s} \qquad \frac{\Delta R}{R} = \frac{\Delta \rho}{l \rho} + \frac{\Delta l}{l} - \frac{\Delta s}{s}$$
$$\frac{\Delta s}{s} = \frac{\Delta a}{a} + \frac{\Delta b}{b} = -2 \cdot \nu \cdot \frac{\Delta l}{l}$$
$$\frac{\Delta \rho}{\rho} = C \cdot \frac{\Delta V}{V} = (1 - 2 \cdot \nu) \cdot \frac{\Delta l}{l}$$

$$\frac{\Delta R}{R} = (1 + 2.\nu + C.(1 - 2.\nu)).\frac{\Delta 1}{1} = K.\frac{\Delta 1}{1}$$

- Influence de la température :
 - Sur le facteur de jauge :

$$K(T) = K_0 \cdot (1 + \alpha_K \cdot (T - T_0))$$

Constantan :
$$\alpha_K = 0.01\% / ^{\circ}C$$

Sur la résistance de la jauge fixée sur une structure.

4 variations à prendre en compte :

$$\rho(T) = \rho_0 \cdot (1 + \alpha_p \cdot (T - T_0))$$

$$1(T) = 1_0 \cdot (1 + \lambda_j \cdot (T - T_0))$$

$$a(T) = a_0 \cdot (1 + \lambda_j \cdot (T - T_0)) \text{ et } b(T) = b_0 \cdot (1 + \lambda_j \cdot (T - T_0))$$

$$\frac{\text{structure}}{\text{possible}}$$
Dilatation thermique de la $\frac{\text{structure}}{\text{jauge}}$

• Influence de la température (suite) :

$$\rho(T) = \rho_0 \cdot (1 + \alpha_\rho \cdot (T - T_0))$$

$$1(T) = 1_0 \cdot (1 + \lambda_j \cdot (T - T_0))$$

$$a(T) = a_0 \cdot (1 + \lambda_j \cdot (T - T_0)) \text{ et } b(T) = b_0 \cdot (1 + \lambda_j \cdot (T - T_0))$$
Dilatation thermique de la jauge (\(\lambda_s\)).

structure

$$\frac{\Delta R}{R} = ((\alpha_{\rho} - \lambda_{j}) + K.(\lambda_{s} - \lambda_{j})) \Delta T$$

Jauge auto compensée en température :

par un choix convenable et par un traitement thermique spécifique de l'alliage constituant la jauge par rapport au matériau de la structure.

12.3. Jauges semi-conductrices.

Piézorésistivité:

phénomène liant la variation relative du volume d'un métal ou semi-conducteur à sa variation relative de résistivité.

Semi-conducteur:

$$\frac{\Delta \rho}{\rho} = \pi.\sigma = \pi.Y.\frac{\Delta l}{l}$$

 π : coefficient piézorésistif

$$\frac{\Delta R}{R} = (1 + 2.\nu + \pi.Y) \cdot \frac{\Delta l}{1} = K \cdot \frac{\Delta l}{1}$$

K : 50 à 100, mais coefficient de température plus élevé par rapport aux jauges métalliques.

13. Capteurs de pression et de force par corps d'épreuve.

13.1. Capteurs de pression d'un fluide.

- Mesure directe : en fixant sur la paroi ou sur la conduite des jauges de déformation.
- Par l'intermédiaire d'un corps d'épreuve :

• Par l'intermédiaire d'un corps d'épreuve :

• Forme des jauges de déformation :

• Exemple de capteur industriel :

13.2. Capteurs de force.

Exemple de corps d'épreuve :

Capteurs de force

Exemple de capteur industriel :

Exemple de fiche technique d'un capteur de force :

FOURNISSEUR: TECHNOLOGIES_ET_EQUIPEMENTS_INDUSTRIELS

MARQUE COMMERCIALE: L'ESSOR_FRANCAIS_ELECTRONIQUE CONSTRUCTEUR: L'ESSOR_FRANCAIS_ELECTRONIQUE

DESIGNATION: F 121 TC GRANDEUR MESUREE: force

ETENDUE DE MESURE (N): 100 250 500 1000 2500 MODE D'ACTION: traction-compression

FORME GENERALE: cylindre LONGUEUR ou DIAMETRE (mm): 20 HAUTEUR (mm): 45 MASSE: 100

MATERIAU: acier inoxydable DISPOSITIF APPLIC. EFFORT: embouts filets M6

SIGNAL DE SORTIE: bas niveau

NBRE DE SIGNAUX DE SORTIE: 1

SENSIBILITE: 1.5 a 2mV/V/EM

ALIMENTATION: 10Vdc
IMPEDANCE D'ENTREE (Ohms): 350
IMPEDANCE DE SORTIE (Ohms): 350

CONNEXION ELECTRIQUE: presse étoupe et câble

TEMP. MINI PLAGE COMP. (°C):

TEMP. MAXI PLAGE COMP. (°C):

60

TEMP. MINI UTILISATION (°C):

TEMP. MAXI UTILISATION (°C):

100

INDICE DE PROTECTION:

IP65

TENUE ATMOSPH. EXPLOSIVE:

non

CHARGE LIMITE DE SECURITE: 150% de l'EM

BUTEE SURCHARGE INTEG.: non

TYPE DE CORPS D'EPREUVE: membrane en flexion
TYPE D'ELEMENT SENSIBLE: jauges ... trame pelliculaire

INCERTITUDE MESURE (% EM): +/-0.35
DERIVE TEMP. ZERO (% EM/°C): +/-0.01
DERIV TEMP SENSIB(% mes/°C): +/-0.02
CHARGE TRANSV MAX (% E.M.): 10%
DECENTRAGE MAXI (mm): +/-1mm

14. La piézo-électricité.

 Structure cristalline : 7 mailles primitives et 7 maille dérivées Maille cubique, maille rhomboédrique, ...

Exemple : le chlorure de sodium

ion Sodium (Na+)

ion Chlorure (Cl⁻)

 \bigcirc ion Sodium (Na⁺) \bigcirc ion Chlorure (Cl)

Polarisation d'un diélectrique :

 $\overrightarrow{dm} = \overrightarrow{P}$. dv \overrightarrow{P} : vecteur polarisation dv: volume

• Enoncé de la piézo-électricité : apparition d'une polarisation (ou variation d'une polarisation) électrique dans certains diélectriques anisotropes lorsqu'ils sont déformés sous l'action d'une contrainte de direction convenable.

Armatures → apparition de charges → différence de potentiel

Application : mesure de force, de pression, d'accélération.

Piézo-électricité 131

Corps ferroélectriques.

Titanate de Baryum:

• Le quartz :

Au repos : barycentre des charges positives = barycentre des charges négatives

donc pas de polarisation

Si contrainte suivant l'axe mécanique :

→ Polarisation suivant l'axe électrique.

Coefficients piézoélectriques

Contraintes:

 σ_1 , σ_2 et σ_3 : contraintes normales

 τ_1 , τ_2 et τ_3 : contraintes tangentielles

Coefficients piézoélectriques (suite)

q1 : densité de charges récupérées suivant l'axe électrique

q2 : densité de charges récupérées suivant l'axe mécanique

q3: densité de charges récupérées suivant l'axe optique

$$\begin{split} q_1 &= h_{11}.\sigma_1 + h_{12}.\sigma_2 + h_{13}.\sigma_3 + h_{14}.\tau_4 + h_{15}.\tau_5 + h_{16}.\tau_6 \\ q_2 &= h_{21}.\sigma_1 + h_{22}.\sigma_2 + h_{23}.\sigma_3 + h_{24}.\tau_4 + h_{25}.\tau_5 + h_{26}.\tau_6 \\ q_3 &= h_{31}.\sigma_1 + h_{32}.\sigma_2 + h_{33}.\sigma_3 + h_{34}.\tau_4 + h_{35}.\tau_5 + h_{36}.\tau_6 \end{split}$$

Pour le quartz, la matrice des coefficients est de la forme :

$$\begin{pmatrix} h_{11} & -h_{11} & 0 & h_{14} & 0 & 0 \\ 0 & 0 & 0 & 0 & -h_{14} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \quad \begin{array}{l} h_{11} = 2,3.10^{-12} \, \text{C.N}^{-1} \\ h_{14} = -0,7.10^{-12} \, \text{C.N}^{-1} \\ \end{array}$$

$$h_{11} = 2,3.10^{-12} \text{ C.N}^{-1}$$
 $h_{11} = -0.7 \cdot 10^{-12} \text{ C.N}^{-1}$

$$\begin{split} q_1 &= h_{11}.\sigma_1 + h_{12}.\sigma_2 + h_{13}.\sigma_3 + h_{14}.\tau_4 + h_{15}.\tau_5 + h_{16}.\tau_6 \\ q_2 &= h_{21}.\sigma_1 + h_{22}.\sigma_2 + h_{23}.\sigma_3 + h_{24}.\tau_4 + h_{25}.\tau_5 + h_{26}.\tau_6 \\ q_3 &= h_{31}.\sigma_1 + h_{32}.\sigma_2 + h_{33}.\sigma_3 + h_{34}.\tau_4 + h_{35}.\tau_5 + h_{36}.\tau_6 \end{split}$$

• Exemple de capteurs piézo-électriques :

Force - FSN

Caractéristiques:

D

• Accéléromètre piézo-électrique :

Туре	Unit	8202A10	8203A50
Acceleration Range	g	±2000	±1000
Threshold nom. (noise 100µVrms)	grms	0,001	0,001
Sensitivity	pC/g	-10	-50
Resonant Frequency mounted, nom.	kHz	45	24
Frequency Response ±5%	Hz	5 10000	5 4000
Amplitude Non-linearity	%FSO	±1	±1
Insulation Resistance (24°C)	Ω	≥1 x 10 ⁸	≥1 x 10 ⁸
Capacitance	pF	500	1400
Transverse Sensitivity nom., (max. 5%)	%	1,5	1,5
Long Term Stability	%	±1	±1
Environmental:			
Base Strain Sensitivity @ 250με	g/με	0,005	0,005
Shock Limit (1ms pulse) gpk	5000	5000	
Temperature Coefficient of Sensitivity	%/°C	0,13	0,13
Temperature Range Operating	°C	-70 245	-70 245
Construction:			
Sensing Element	type	Ceramic Shear	Ceramic Shear
Housing/Base	material	St. Stl.	St. Stl.
Sealing-housing/connector	type	Hermetic/ceramic	Hermetic/ceramic
Connector	type	10-32 neg	10-32 neg
Weight	grams	14,5	44,5
Mounting	type	10-32 UNF-2B thread	1/4 - 28 thread

Montage : amplificateur de charge

- Amplificateur de charge à un canal
- Entrée Piezotron[®] (Option)
- Saut de zéro compensé
- Affichage à cristaux liquides (128x128 pixels)
- · Commande par menus
- Evaluation directe du signal
- Filtres passe-haut et passe-bas à réglage convivial
- Compatible avec l'amplificateur de charge de type 5011B
- Logiciel pour PC et Virtual Instrument Driver pour LabVIEW™

Entrée de charge				
Type de connecteur	BNC neg.			
Plage de mesure FS	рС	±2 2'200'000		
Erreur de mesure				
Plage FS <10 pC	%	<±3		
Plage FS <100 pC	%	<±1		
Plage FS ≥100 pC	%	<±0,5		
Dérive, mode de mesure DC (Long)				
à 25 °C	pC/s	<±0,03		
à 50 °C	pC/s	<±0,3		
Tension de mode commun	V	<±30		
max. entre masse d'entrée				
et masse de sortie				

KISTLER Chargemètre

Schéma synoptique :

- TD n°8: On veut concevoir un capteur de vibration en utilisant une lame de quartz, autrement dit un accéléromètre piézo-électrique.
- 1. On découpe une lame de quartz de la façon suivante :

On applique une contrainte de cisaillement sur les deux faces horizontales dans le sens de l'axe mécanique (donc τ 4) et on récupère les charges générées suivant l'axe électrique.

Les coefficients piézo-électriques du quartz sont : $h_{11} = 2.3 \text{ pC/N}$ $h_{14} = -0.7 \text{ pC/N}$

Déterminer la quantité de charges récupérée en fonction de la force de cisaillement (notée F).

2. Cette lame est montée de la façon suivante :

L'objectif est de mesurer l'accélération (notée γ b) de la base du capteur. La lame de quartz est montée entre une structure solidaire de la base et une masse sismique (de masse m). Cette lame est caractérisée par une rigidité mécanique notée k.

On donne: m = 50 g k = 3 kN/mm

2.1. Montrer, à l'aide d'un modèle simple de ce système mécanique, que la fonction de transfert (en Laplace) donnant la force s'exerçant sur la lame de quartz en fonction de l'accélération de la base est :

$$\frac{F(p)}{\gamma_b(p)} = m \frac{1}{1 + \frac{m}{k} p^2}$$

2.2. Déterminer la fonction de transfert donnant la quantité de charges récupérée (notée Q) en fonction de l'accélération.

Quelle est la sensibilité de ce capteur dans la bande passante (exprimée en pC/g, g étant l'accélération de la pesanteur, g = 9,81 ms-2)? Application numérique.

Calculer la fréquence de résonance de ce capteur.

$$\frac{F(p)}{\gamma_b(p)} = m \frac{1}{1 + \frac{m}{k}p^2}$$

3. Ce capteur est relié à un amplificateur de charge :

En supposant l'amplificateur opérationnel idéal, déterminer la fonction de

transfert
$$\frac{V_s(p)}{\gamma_b(p)}$$

Esquisser son diagramme de Bode du gain.

Déterminer les composants pour avoir une sensibilité de 1 mV/g, et permettant de mesurer une accélération supérieure à 10 Hz.