

Topological Omics for Non-tree Evolution

Claire Angelie Gabisay and Alfonso Miguel Cruz

Mentored by: CJ Palpal-latoc

16 August 2024

Viral Recombination

Viral lineages infect the same cell

Combine their genetic material

And form a new hybrid lineage

But they are difficult to detect

Existing Work

Recombinants form loops in a phylogenetic network

A constructed ancestral recombination graph

Left: Chan (2013) Right: Cámara (2016)

Topology: The Study of Holes

Types of Holes include:

1D holes (connected components) H_0 - set of 1D holes with β_0 elements

2D holes (loops) H_1 - set of 2D holes with β_1 elements

3D holes (voids) H_2 - set of 3D holes with β_2 elements

Ghrist (2008)

where H_k - k^{th} homology group (set of (k-1) dimensional holes), β_k - Betti number of H_k (number of elements in H_k)

Hole Genome Sequencing

 $S_{\lambda} = TCGATAGGTTGG$

 $S_3 = TCGCTAGGAACC$

Sequence Data

 $S_1 S_2 S_1$

 S_1

0 2 6

 S_2

 2
 0
 5

 6
 5
 0

Hamming Distances

Our Goals

Our main goal:

Determine whether topology can detect recombination

?

Is topology robust to noise and sparse genomic samples?

Does recombination change the topology of genomic samples?

Methodology

Goal 1 Pipeline

Goal 2 Pipeline

3 Recombinant Lineages and their Parent Lineages were taken from GISAID (XBC.1, XBE, XBZ) and were used to get the birth and death time pairs

Results

Population Genetics Simulations

Sensitivity Analysis

components

loops

Betti numbers vs increasing noise and varying sampling sparsity

Increased sampling → increased data → more representative structures

Increased noise distorts actual data

→ creates new loops and voids

Increased sampling ratio and noise creates new structures

Noise and the mutation rate θ

The mutation rate does not drive the changes in topology.

Sampling sparsity and the mutation rate θ

The mutation rate does not drive the changes in topology.

TopONE

Noise and the recombination rate ρ

Increased recombinations in data drives the change in topology.

Sampling sparsity and the recombination rate ρ

Increased recombinations in data drives the change in topology.

Statistical Analysis

SARS-CoV-2 GISAID Samples

Persistence Distributions

Barcode Lengths of Persistence Diagrams

High-recombinant yield samples

Hypothesis Testing

Is there a significant difference in the birth and death times distributions between different group types in each country?

	XBC.1)	XBE		
p-values	Philippines	UK	USA	Denmark	
Birth Times	0.003	0.014	0.019	0.321	
Death Times	0.003	0.015	0.023	0.298	

Results from Kruskal-Wallis Test and Independent Mann-Whitney U Test at 5% level of significance

High-recombinant yield samples

Post-hoc Analysis

Which group type pairs are significantly different?

	XB	C.1		XI	X	XBZ		
p-values	Philippines		UK		US	SA	Denmark	
	Births	Deaths	Births	Deaths	Births	Deaths	Births	Deaths
Mixed vs Non-recombinant	0.002	0.013	0.059	0.057	1.000	1.000	1.000	0.937
Mixed vs Recombinant	1.000	1.000	1.000	1.000	0.017	0.020	0.491	0.472
Recombinant vs Non-recombinant	0.484	0.478	0.019	0.021	1.000	1.000	1.000	1.000

Significant

Not significant

Low-recombinant yield samples

Hypothesis Testing

Is there a significant difference in the birth and death times distributions between different group types in each country?

		ХВС		XBZ			
p-values	China	Singapore	S. Korea	USA	Austria	Germany	
Birth Times	0.969	0.300	0.008	0.361	0.921	0.297	
Death Times	0.958	0.398	0.023	0.407	0.729	0.110	

Results from Kruskal-Wallis Test and Independent Mann-Whitney U Test at 5% level of significance

Low-recombinant yield samples

Post-hoc Analysis

Which gene type pairs are significantly different?

		XBC.1								XBZ			
<i>p</i> -values	China		Singapore		S. Korea		USA		Austria		Germany		
	Births	Deaths	Births	Deaths	Births	Deaths	Births	Deaths	Births	Deaths	Births	Deaths	
Mixed vs Non-recombinant	0.969	0.958	0.300	0.398			0.361	0.407	0.921	0.729	0.724	0.199	
Mixed vs Recombinant					0.008	0.023					0.578	0.433	
Recombinant vs Non-recombinant											1.000	1.000	
												Significant	
Results taken at 5% level of significance													

Summary

? Is the data topology robust to noise and sparse genomic samples?

Increased sampling builds more representative data

? Does recombination change the data topology of genomic samples?

🌞 Yes but subject to further investigation

Can topology detect recombination?

Potentially so. Further analysis is recommended for more real-world samples.

Thank you!