Zadanie 8

Treść

Operacja swap (i, j) na permutacji powoduje przestawienie elementów znajdujących się na pozycjach i oraz j. Koszt takiej operacji określamy na |i-j|. Kosztem ciągu operacji swap jest suma kosztów poszczególnych operacji.

Ułóż algorytm, który dla danych π oraz σ - permutacji liczb $\{1, 2, ..., n\}$, znajdzie ciąg operacji swap o najmniejszym koszcie, który przekształca permutację π w permutację σ .

Redukcja problemu

Problem transformacji permutacji π w σ można sprowadzić do problemu posortowania pewnej permutacji pomocniczej p do permutacji identycznościowej (1, 2, ..., n).

Zdefiniujmy permutację p w następujący sposób: p_i jest docelową pozycją elementu, który w permutacji π znajduje się na pozycji i. Elementem na pozycji i w π jest π_i . Jego docelową pozycją w permutacji σ jest takie j, że $\sigma_j = \pi_i$. Innymi słowy, $j = \sigma^{-1}(\pi_i)$.

Zatem permutacja, którą będziemy sortować, to:

$$p_i = \sigma^{-1}(\pi_i)$$
dla $i=1,2,...,n$

Naszym celem jest teraz znalezienie sekwencji operacji swap na indeksach tablicy reprezentującej p, która przekształci ją w permutację identycznościową ($p_i=i$ dla wszystkich i) i zminimalizuje sumaryczny koszt $\sum |i-j|$.

Algorytm

- 1. Oblicz tablicę pos sigma, gdzie pos sigma[v] przechowuje pozycję wartości v w permutacji σ .
- 2. Stwórz permutację p do posortowania: dla i=1,...,n, ustaw

$$p_i = \mathsf{pos_sigma}[\pi_i]$$

- 3. Dla i od 1 do n:
 - i. Jeśli $p_i < i$:
 - a. Zainicjalizuj pusty stos sciezka
 - b. Ustaw cel := p_i
 - c. Dopóki $\operatorname{cel} < i$:

sciezka.push(cel)

cel = p[cel]

- d. Ustaw poprzedni = i.
- e. Dopóki stos sciezka nie jest pusty:
 - aktualny = sciezka.pop()
 - Wykonaj operację swap (poprzedni, aktualny) na permutacji p.
 - poprzedni = aktualny

Dowód poprawności

Dowód poprawności przeprowadzimy, korzystając z niezmiennika pętli.

Po zakończeniu i-tej iteracji pętli głównej (dla ustalonego i), dla każdego indeksu $j \leq i$ zachodzi warunek $p_j \geq j$ (żadny element na lewo od i, nie chce "iść" w lewo).

Inicjalizacja

Przed pierwszą iteracją i = 0, niezmiennik jest trywialnie prawdziwy.

Utrzymanie

1. $p_i \ge i$:

W tej sytuacji warunek z niezmiennika jest spełniony dla j=i, a dla j< i był spełniony z założenia utrzymania. Niezmiennik pozostaje prawdziwy.

2. $p_i < i$:

Niech p oznacza stan permutacji przed operacjami, a p' stan po operacjach. Algorytm znajduje ścieżkę $c_1,c_2,...,c_k$ taką, że $c_1=p_i,\,c_2=p_{c_1}$, itd. Sekwencja operacji swap wykonuje cykliczne przesunięcie elementów na pozycjach $(i,c_1,...,c_k)$. Element z pozycji i trafia na c_1 , z c_1 na c_2 , itd., aż element c_k trafia na i.

W efekcie, dla każdego $m \in \{1, ..., k\}$, n a pozycję c_m trafia element, którego celem (w permutacji p) była właśnie pozycja c_m . Formalnie:

- Na pozycję c_1 trafia element z pozycji i. Jego celem było $p_i=c_1$. Zatem nowa wartość w permutacji $p_{c_1}'=c_1$.
- ...i tak dalej, aż do $p'_{c_k} = c_k$.

Po tej operacji, dla każdego $m \in \{1,...,k\}$, nowa wartość $p'_{c_m} = c_m$. Ponieważ $c_m < i$ warunek $p'_{c_m} \ge c_m$ jest spełniony. Co więcej, te pozycje nie będą już nigdy modyfikowane. Nowa wartość na pozycji i to $p'_i = p_{c_k}$, a z definicji ścieżki wiemy, że $p_{c_k} \ge i$. Zatem niezmiennik jest zachowany.

Terminacja

Po zakończeniu pętli dla i=n, wiemy, że dla wszystkich $j\in\{1,...,n\}$ zachodzi $p_j\geq j$. Ponieważ p jest permutacją zbioru $\{1,...,n\}$, jedyną możliwością jest $p_j=j$ dla wszystkich j. Permutacja jest posortowana.

Dowód minimalności kosztu

Całkowity koszt sortowania jest sumą kosztów wszystkich wykonanych operacji swap:

koszt całkowity =
$$\sum_{\text{operacje}} |i - j|$$

Koszt ten można interpretować jako sumaryczną odległość, o jaką przesuwane są wszystkie elementy. Minimalny koszt jest osiągany wtedy, gdy każdy element przemieszcza się od swojej pozycji początkowej do docelowej po najkrótszej możliwej drodze, czyli monotonicznie (zawsze w lewo lub zawsze w prawo, nigdy w obu kierunkach).

Obserwacja 1

Sumaryczny koszt przemieszczenia elementu z pozycji s na pozycję t za pomocą ciągu zamian jest nie mniejszy niż |s-t|. Równość zachodzi wtedy, gdy każda zamiana z udziałem tego elementu przesuwa go w stronę jego celu.

Obserwacja 2

Nasz algorytm zapewnia monotoniczność ruchów:

- 1. Gdy element na pozycji k musi przesunąć się w **lewo** (tj. $p_k < k$), algorytm uruchamia się, gdy pętla główna osiągnie i=k. Element ten jest przesuwany w lewo w ramach cyklicznej zamiany i ląduje na swojej docelowej pozycji p_k . Ponieważ pętla główna już minęła indeks p_k , element ten nie zostanie nigdy więcej poruszony.
- 2. Gdy element na pozycji k musi przesunąć się w **prawo** (tj. $p_k > k$), może on zostać przesunięty, zanim pętla główna dojdzie do i = k. Stanie się tak, jeśli inny element będzie musiał zająć pozycję k. Taka zamiana swap (j, k) będzie zainicjowana z pozycji j > k. Element z pozycji k zostanie przesunięty na pozycję j, czyli dalej w prawo, co jest zgodne z jego docelowym kierunkiem ruchu.

Ponieważ każdy element porusza się wyłącznie w kierunku swojej pozycji docelowej, całkowity koszt jest sumą minimalnych odległości, jakie każdy element musi pokonać, co jest zgodne z jego docelowym kierunkiem ruchu. Algorytm realizuje zatem sortowanie o minimalnym koszcie.

Analiza złożoności obliczeniowej

1. Obliczenie permutacji p (w tym tablicy pos_sigma)

O(n)

2. Główna pętla:

Pętla zewnętrzna wykonuje się n razy.

Rozważmy pojedyncze wejście do bloku if w i-tej iteracji pętli. Niech p oznacza stan permutacji przed zamianami, a p' to stan po. Pętla while cel < i buduje na stosie sciezka ciąg indeksów $c_1,...,c_k$. Koszt znalezienia tej ścieżki i wykonania k operacji swap jest proporcjonalny do jej długości, czyli wynosi O(k).

Z konstrukcji pętli while wynikają dwie kluczowe właściwości:

i. Dla każdego elementu ścieżki (z wyjątkiem ostatniego) zachodzi relacja: $p_{c_m}=c_{m+1}$. Zatem mamy zagwarantowane:

$$p_i = c_1, \quad p_{c_1} = c_2, \quad ..., \quad p_{c_{k-1}} = c_k$$

- ii. Pętla kończy się, ponieważ cel zostaje ustawione na p_{c_k} , a ta wartość spełnia warunek $p_{c_k} \geq i$. Sekwencja operacji swap wykonuje cykliczne przesunięcie elementów, które pierwotnie znajdowały się na pozycjach $(i,c_1,...,c_k)$. Prześledźmy, jak to wpływa na nową permutację p':
- i. Na pozycję c_1 trafia element, który pierwotnie był na pozycji i. Jego celem było $p_i=c_1$. Zatem nowa wartość w permutacji $p'_{c_1}=c_1$. Pozycja c_1 została naprawiona.
- ii. Na kolejnych pozycjach (idąc do c_k) będzie podobnie.
- iii. Na pozycję i trafia element, który pierwotnie był na pozycji c_k . Jego celem było p_{c_k} . Jeśli przypadkiem $p_{c_k}=i$, to również pozycja i zostanie naprawiona, ale nie jest to gwarantowane.

W rezultacie, po wykonaniu k operacji swap, naprawiamy przynajmniej k pozycji.

Pozycja j, która raz została naprawiona (tzn. $p_j=j$), już nigdy nie zostanie zmodyfikowana, ponieważ pętla główna nie wraca do przetworzonych indeksów, a warunek $p_j < j$ nie będzie już dla niej spełniony. Dodatkowo żaden inny element nie może prowadzić na pozycję elementu na właściwym miejscu.

Zatem, każda z n pozycji w permutacji może zostać naprawiona (trafi na swoje miejsce) dokładnie raz, a praca wykonana wewnątrz bloków if jest bezpośrednio związana z naprawianiem pozycji. Skoro za koszt O(k) naprawiamy przynajmniej k unikalnych pozycji, to łączny koszt naprawienia wszystkich n pozycji w trakcie całego działania algorytmu nie przekroczy O(n).

O(n)

Zatem, łączna złożoność wynosi: O(n) + O(n) = O(n).

Złożoność pamięciowa także wynosi O(n), ze względu na przechowywanie permutacji i stosu.