Preuve "élémentaire" du TCL pour une loi de Bernoulli

Avril 2024

Soit $(X_k)_{k\geqslant 1}$ une suite de variables aléatoires indépendantes, de loi de Bernoulli $\mathcal{B}(1/2)$. Pour tout $k\geqslant 1$, on a ainsi $m=E(X_k)=\frac{1}{2}$ et $\sigma^2=V(X_k)=\frac{1}{4}$.

On cherche à démontrer dans ce cas très particulier, de manière élémentaire, la convergence en loi annoncée par le **Théorème Central Limite** :

En notant, pour tout
$$n \ge 1$$
, $Z_n = \frac{\sqrt{n}}{\sigma} \left(\frac{1}{n} \sum_{k=1}^n X_k - m \right) = \frac{2}{\sqrt{n}} \left(\sum_{k=1}^n X_k - \frac{n}{2} \right)$,

on a la convergence : $Z_n \xrightarrow[n \to +\infty]{\text{en loi}} Z$ où Z suit la loi normale centrée réduite $\mathcal{N}(0,1)$.

On va ici démontrer ce résultat avec pour seul pré-requis la **formule de Stirling pour** n! (on découvre au passage que le $\sqrt{2\pi}$ qui apparait dans la distribution normale est "le même" que celui de Stirling...) et le **développement limité à l'ordre** 2 **de** $\ln(1+x)$.

Introduisons $B_n = \sum_{k=1}^n X_k$ de sorte que $Z_n = \frac{2}{\sqrt{n}} \left(B_n - \frac{n}{2} \right)$ et B_n suit la loi binomiale $\mathcal{B}\left(n, \frac{1}{2} \right)$.

Le support de la variable aléatoire B_n étant [0, n], celui de Z_n est l'ensemble $E_n = \left\{ \frac{2}{\sqrt{n}} \left(k - \frac{n}{2} \right), k \in [0, n] \right\}$.

Lorsque n est grand, on s'attend à ce que la loi de Z_n , c'est à dire la donnée des probabilités $\left(P(Z_n=x_n)\right)_{x_n\in E_n}$, "ressemble" à la distribution normale $f:x\mapsto \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$. Ceci est illustré par le résultat suivant :

★ Théorème 1 (Limite des probabilités "ponctuelles")

Soit $(x_n)_{n\geqslant 1}$ une suite bornée avec $x_n\in E_n$ pour tout $n\geqslant 1$. Alors, en notant $f(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$:

$$P(Z_n = x_n) \underset{n \to +\infty}{\sim} \frac{2}{\sqrt{n}} \cdot f(x_n).$$

Preuve:

Pour tout $n \ge 1$, puisque $x_n \in E_n$, on peut écrire $x_n = \frac{2}{\sqrt{n}} \left(k_n - \frac{n}{2} \right)$ pour un certain $k_n \in [0, n]$. Précisément :

$$k_n = \frac{n}{2} + \frac{x_n}{2}\sqrt{n}. (1)$$

On a ainsi, avec les notations introduites précédemment,

$$P(Z_n = x_n) = P\left(\frac{2}{\sqrt{n}}\left(B_n - \frac{n}{2}\right) = x_n\right) = P(B_n = k_n) = \binom{n}{k_n} \frac{1}{2^n} = \frac{n!}{(k_n)!(n - k_n)!} \cdot \frac{1}{2^n}$$
(2)

puisque B_n suit la loi $\mathcal{B}\left(n,\frac{1}{2}\right)$. La suite $(x_n)_{n\geqslant 1}$ étant bornée, le développement (1) garantit que

$$k_n \underset{n \to +\infty}{\sim} \frac{n}{2} \to +\infty \text{ et } n-k_n \underset{n \to +\infty}{\sim} \frac{n}{2} \to +\infty.$$

On dispose donc des équivalents donnés par la formule de Stirling :

$$n! \underset{n \to +\infty}{\sim} \sqrt{2\pi} \cdot n^{n+\frac{1}{2}} \cdot e^{-n}$$

$$k_n! \underset{n \to +\infty}{\sim} \sqrt{2\pi} \cdot (k_n)^{k_n+\frac{1}{2}} \cdot e^{-k_n}$$

$$(n-k_n)! \underset{n \to +\infty}{\sim} \sqrt{2\pi} \cdot (n-k_n)^{n-k_n+\frac{1}{2}} \cdot e^{-(n-k_n)}.$$

En remplaçant dans (2) et en simplifiant, on obtient ainsi

$$P(Z_n = x_n) \underset{n \to +\infty}{\sim} \frac{1}{\sqrt{2\pi}} \cdot \frac{n^{n+\frac{1}{2}}}{(k_n)^{k_n + \frac{1}{2}} (n - k_n)^{n - k_n + \frac{1}{2}}} \cdot \frac{1}{2^n}.$$

Puisque $(k_n)^{k_n+\frac{1}{2}} = (k_n)^{k_n} (k_n)^{\frac{1}{2}} \underset{n \to +\infty}{\sim} (k_n)^{k_n} \left(\frac{n}{2}\right)^{\frac{1}{2}}$ et de même $(n-k_n)^{n-k_n+\frac{1}{2}} \underset{n \to +\infty}{\sim} (n-k_n)^{n-k_n} \left(\frac{n}{2}\right)^{\frac{1}{2}}$, on obtient l'équivalent

$$P(Z_n = x_n) \underset{n \to +\infty}{\sim} \frac{1}{\sqrt{n}} \cdot \frac{1}{\sqrt{2\pi}} \cdot \frac{2 \cdot n^n}{(k_n)^{k_n} (n - k_n)^{n - k_n}} \cdot \frac{1}{2^n} \underset{n \to +\infty}{\sim} \frac{2}{\sqrt{n}} \cdot \frac{1}{\sqrt{2\pi}} \cdot R_n$$

où $R_n = \frac{\left(\frac{n}{2}\right)^n}{(k_n)^{k_n}(n-k_n)^{n-k_n}}$. Exprimons à présent $\ln(R_n)$:

$$\ln(R_n) = n \ln\left(\frac{n}{2}\right) - k_n \ln(k_n) - (n - k_n) \ln(n - k_n)$$

$$= n \ln\left(\frac{n}{2}\right) - k_n \left(\ln\left(\frac{n}{2}\right) + \ln\left(\frac{2}{n}k_n\right)\right) - (n - k_n) \left(\ln\left(\frac{n}{2}\right) + \ln\left(\frac{2}{n}(n - k_n)\right)\right)$$

$$= -k_n \ln\left(\frac{2}{n}k_n\right) - (n - k_n) \ln\left(\frac{2}{n}(n - k_n)\right).$$

En revenant au développement (1) de k_n , on obtient :

$$\ln(R_n) = -\left(\frac{n}{2} + \frac{x_n}{2}\sqrt{n}\right)\ln\left(1 + \frac{x_n}{\sqrt{n}}\right) - \left(\frac{n}{2} - \frac{x_n}{2}\sqrt{n}\right)\ln\left(1 - \frac{x_n}{\sqrt{n}}\right).$$

On applique enfin le développement limité $\ln(1+x) = x - \frac{x^2}{2} + o(x^2)$, la suite $(x_n)_{n \geqslant 1}$ étant bornée :

$$\ln(R_n) \underset{n \to +\infty}{=} -\left(\frac{n}{2} + \frac{x_n}{2}\sqrt{n}\right) \left(\frac{x_n}{\sqrt{n}} - \frac{x_n^2}{2n} + o\left(\frac{1}{n}\right)\right) - \left(\frac{n}{2} - \frac{x_n}{2}\sqrt{n}\right) \left(-\frac{x_n}{\sqrt{n}} - \frac{x_n^2}{2n} + o\left(\frac{1}{n}\right)\right)$$

$$\underset{n \to +\infty}{=} \left(-\sqrt{n}\frac{x_n}{2} + \frac{x_n^2}{4} - \frac{x_n^2}{2} + o(1)\right) + \left(\sqrt{n}\frac{x_n}{2} + \frac{x_n^2}{4} - \frac{x_n^2}{2} + o(1)\right)$$

$$\underset{n \to +\infty}{=} -\frac{x_n^2}{2} + o(1).$$

Ceci garantit que $R_n \underset{n \to +\infty}{\sim} e^{-\frac{x_n^2}{2}}$, d'où le résultat voulu.

En étant un peu plus précis dans la preuve, on peut en réalité montrer que la convergence du théorème précédent est "uniforme sur tout compact" au sens suivant.

<u>★</u> Théorème 2 (Limite uniforme sur tout compact)

Pour tous réels a, b tels que a < b, on a la convergence :

$$\sup_{x_n \in E_n \cap [a,b]} \left| \frac{\sqrt{n}}{2} P\left(Z_n = x_n \right) - f(x_n) \right| \xrightarrow[n \to +\infty]{} 0.$$

Preuve:

On reprend les notations précédentes : si $x_n \in E_n$, on peut écrire $x_n = \frac{2}{\sqrt{n}} \left(k_n - \frac{n}{2} \right)$, avec $k_n = \frac{n}{2} + \frac{x_n}{2} \sqrt{n}$. Lorsque $x_n \in [a, b]$, on a ainsi les encadrements

$$\frac{n}{2} + \frac{a}{2}\sqrt{n} \leqslant k_n \leqslant \frac{n}{2} + \frac{b}{2}\sqrt{n} \quad \text{et} \quad \frac{n}{2} - \frac{b}{2}\sqrt{n} \leqslant n - k_n \leqslant \frac{n}{2} - \frac{a}{2}\sqrt{n}. \tag{3}$$

Afin de simplifier les notations dans la suite, pour toute expression A_n dépendant de x_n , on notera

$$||A_n|| = \sup_{x_n \in E_n \cap [a,b]} |A_n|$$

Comme dans la preuve précédente, on a d'abord

$$P(Z_n = x_n) = \frac{n!}{(k_n)!(n - k_n)!} \cdot \frac{1}{2^n}$$
(4)

La formule de Stirling peut s'écrire :

$$n! = \sqrt{2\pi} \cdot n^{n + \frac{1}{2}} \cdot e^{-n} \cdot \Theta(n), \quad \text{où } \Theta(n) \xrightarrow[n \to +\infty]{} 1.$$

On a donc de même

$$(k_n)! = \sqrt{2\pi} \cdot (k_n)^{k_n + \frac{1}{2}} \cdot e^{-k_n} \cdot \Theta(k_n)$$
 et $(n - k_n)! = \sqrt{2\pi} \cdot (n - k_n)^{n - k_n + \frac{1}{2}} \cdot e^{-(n - k_n)} \cdot \Theta(n - k_n)$

et en remplaçant, (4) devient :

$$P(Z_n = x_n) = \frac{1}{\sqrt{2\pi}} \cdot \frac{n^{n+\frac{1}{2}}}{(k_n)^{k_n+\frac{1}{2}}(n-k_n)^{n-k_n+\frac{1}{2}}} \cdot \frac{1}{2^n} \cdot \frac{\Theta(n)}{\Theta(k_n)\Theta(n-k_n)}.$$
 (5)

On note que puisque $\Theta(n) \xrightarrow[n \to +\infty]{} 1$, les encadrements (3) permettent facilement d'affirmer que

$$\|\Theta(k_n) - 1\| \xrightarrow[n \to +\infty]{} 0$$
 et $\|\Theta(n - k_n) - 1\| \xrightarrow[n \to +\infty]{} 0$.

Ensuite, on peut écrire $(k_n)^{k_n+\frac{1}{2}}=(k_n)^{k_n}\left(\frac{n}{2}\right)^{\frac{1}{2}}\cdot\lambda_n$ et $(n-k_n)^{n-k_n+\frac{1}{2}}=(n-k_n)^{n-k_n}\left(\frac{n}{2}\right)^{\frac{1}{2}}\cdot\mu_n$, où

$$\lambda_n = \left(\frac{k_n}{n/2}\right)^{1/2}$$
 et $\mu_n = \left(\frac{n - k_n}{n/2}\right)^{1/2}$.

A nouveau, les encadrements (3) permettent d'affirmer que

$$\|\lambda_n - 1\| \xrightarrow[n \to +\infty]{} 0$$
 et $\|\mu_n - 1\| \xrightarrow[n \to +\infty]{} 0$.

En remplaçant, (5) devient :

$$P(Z_n = x_n) = \frac{2}{\sqrt{n}} \cdot \frac{1}{\sqrt{2\pi}} \cdot R_n \cdot \frac{\Theta(n)}{\Theta(k_n)\Theta(n - k_n)} \cdot \frac{1}{\lambda_n \mu_n},\tag{6}$$

où, comme précédemment, $R_n = \frac{\left(\frac{n}{2}\right)^n}{(k_n)^{k_n}(n-k_n)^{n-k_n}}.$ On a déjà vu que

$$\ln(R_n) = -\left(\frac{n}{2} + \frac{x_n}{2}\sqrt{n}\right)\ln\left(1 + \frac{x_n}{\sqrt{n}}\right) - \left(\frac{n}{2} - \frac{x_n}{2}\sqrt{n}\right)\ln\left(1 - \frac{x_n}{\sqrt{n}}\right).$$

On applique ensuite $\ln(1+x) = x - \frac{x^2}{2} + x^2 \varepsilon(x)$, où $\varepsilon(x) \xrightarrow[x \to 0]{} 0$, ce qui donne :

$$\ln(R_n) = -\left(\frac{n}{2} + \frac{x_n}{2}\sqrt{n}\right)\left(\frac{x_n}{\sqrt{n}} - \frac{x_n^2}{2n} + \frac{x_n^2}{n}\varepsilon\left(\frac{x_n}{\sqrt{n}}\right)\right) - \left(\frac{n}{2} - \frac{x_n}{2}\sqrt{n}\right)\left(-\frac{x_n}{\sqrt{n}} - \frac{x_n^2}{2n} + \frac{x_n^2}{n}\varepsilon\left(\frac{x_n}{\sqrt{n}}\right)\right).$$

Puisque $\varepsilon(x) \xrightarrow[x \to 0]{} 0$, on a sans problème $\left\| \varepsilon\left(\frac{x_n}{\sqrt{n}}\right) \right\| \xrightarrow[n \to +\infty]{} 0$. En développant ces produits et en simplifiant comme dans la preuve précédente, on obtiendra alors :

$$\ln(R_n) = -\frac{x_n^2}{2} + \Lambda_n$$
, avec $\|\Lambda_n\| \xrightarrow[n \to +\infty]{} 0$.

Il en résulte que $R_n = e^{-\frac{x_n^2}{2}} e^{\Lambda_n}$, et donc en revenant à (6), on obtient finalement :

$$P(Z_n = x_n) = \frac{2}{\sqrt{n}} \cdot f(x_n) \cdot A_n, \quad \text{où } A_n = \frac{\Theta(n)}{\Theta(k_n)\Theta(n - k_n)} \cdot \frac{e^{\Lambda_n}}{\lambda_n \mu_n}.$$

Pour conclure, on en déduit que

$$\left| \frac{\sqrt{n}}{2} P(Z_n = x_n) - f(x_n) \right| = \left| (A_n - 1) f(x_n) \right|,$$

et donc, avec $|f(x)| \leq 1$ pour tout $x \in \mathbb{R}$,

$$\left\| \frac{\sqrt{n}}{2} P\left(Z_n = x_n\right) - f(x_n) \right\| \leqslant \|A_n - 1\|.$$

Puisque $\Theta(n) \to 1$, $\|\Theta(k_n) - 1\| \to 0$, $\|\Theta(n - k_n) - 1\| \to 0$, $\|\lambda_n - 1\| \to 0$, $\|\mu_n - 1\| \to 0$ et $\|\Lambda_n\| \to 0$, on déduit sans difficulté que $\|A_n - 1\| \to 0$, ce qui conclut la preuve.

On peut à présent déduire de la convergence des probabilités "ponctuelles" le vrai résultat de convergence en loi annoncé par le Théorème Central Limite.

★ Théorème 3 (Convergence en loi)

Pour tous réels a, b tels que a < b, on a la convergence :

$$P(Z_n \in [a,b]) \xrightarrow[n \to +\infty]{} P(Z \in [a,b]) = \int_a^b f(x)dx.$$

Preuve:

Soit $n \ge 1$. Rappelons que le support de Z_n est $E_n = \left\{ \frac{2}{\sqrt{n}} \left(k - \frac{n}{2} \right), k \in [0, n] \right\}$.

Pour tout $k \in [0, n]$, notons $x_n^k = \frac{2}{\sqrt{n}} \left(k - \frac{n}{2} \right) \in E_n$, et considérons ceux qui appartiennent au segment [a, b]. On introduit $i_n, j_n \in [0, n]$ de sorte que

$$E_n \cap [a,b] = \left\{ x_n^k, \ k \in \llbracket i_n, j_n \rrbracket \right\} \quad \text{(en fait on a facilement } i_n = \left\lceil \frac{n}{2} + \frac{a}{2} \sqrt{n} \right\rceil \text{ et } j_n = \left\lfloor \frac{n}{2} + \frac{b}{2} \sqrt{n} \right\rfloor \text{)}.$$

On a ainsi:

$$\forall k \in [[i_n, j_n - 1]], \ x_n^{k+1} - x_n^k = \frac{2}{\sqrt{n}}, \qquad a \leqslant x_n^{i_n} \leqslant a + \frac{2}{\sqrt{n}}, \qquad b - \frac{2}{\sqrt{n}} \leqslant x_n^{j_n} \leqslant b, \qquad j_n - i_n \leqslant \frac{b - a}{2} \sqrt{n}.$$

En notant toujours la densité normale $f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$, on peut alors décomposer :

$$P(Z_n \in [a, b]) = \sum_{k=i_n}^{j_n} P(Z_n = x_n^k)$$

$$P(Z \in [a, b]) = \int_a^b f(x)dx = \int_a^{x_n^{i_n}} f(x)dx + \sum_{k=i_n}^{j_n-1} \int_{x_n^k}^{x_n^{k+1}} f(x)dx + \int_{x_n^{j_n}}^b f(x)dx.$$

Avec l'inégalité triangulaire, on obtient :

$$\left| P\left(Z_n \in [a,b]\right) - P\left(Z \in [a,b]\right) \right| \leqslant \underbrace{\int_a^{x_n^{i_n}} f(x) dx}_{1} + \underbrace{\sum_{k=i_n}^{j_n-1} \left| P\left(Z_n = x_n^k\right) - \int_{x_n^k}^{x_n^{k+1}} f(x) dx \right|}_{2} + \underbrace{\left| P\left(Z_n = x_n^{j_n}\right) - \int_{x_n^{j_n}}^b f(x) dx \right|}_{3}.$$

- Puisque $(x_n^{i_n} a) \leqslant \frac{2}{\sqrt{n}}$ et $|f(x)| \leqslant 1$ on a la majoration : $\boxed{1} \leqslant \frac{2}{\sqrt{n}}$.
- Majorons à présent 2. Pour tout $k \in [i_n, j_n 1]$

$$\left| P\left(Z_n = x_n^k \right) - \int_{x_n^k}^{x_n^{k+1}} f(x) dx \right| \leq \left| P\left(Z_n = x_n^k \right) - \frac{2}{\sqrt{n}} f(x_n^k) \right| + \left| \int_{x_n^k}^{x_n^{k+1}} f(x) dx - \frac{2}{\sqrt{n}} f(x_n^k) \right| \\
= \frac{2}{\sqrt{n}} \left| \frac{\sqrt{n}}{2} P\left(Z_n = x_n^k \right) - f(x_n^k) \right| + \left| \int_{x_n^k}^{x_n^{k+1}} (f(x) - f(x_n^k)) dx \right| \\
\leq \frac{2}{\sqrt{n}} \left| \frac{\sqrt{n}}{2} P\left(Z_n = x_n^k \right) - f(x_n^k) \right| + \int_{x_n^k}^{x_n^{k+1}} |f(x) - f(x_n^k)| dx.$$

En introduisant la borne supérieure mise en jeu dans le Théorème 2

$$S_n = \sup_{x_n \in E_n \cap [a,b]} \left| \frac{\sqrt{n}}{2} P(Z_n = x_n) - f(x_n) \right|,$$

on peut majorer le premier morceau par $\frac{2}{\sqrt{n}}S_n$. Par ailleurs, puisque $|f(x)-f(y)| \leq |x-y|$,

$$\int_{x_n^k}^{x_n^{k+1}} |f(x) - f(x_n^k)| dx \leqslant \int_{x_n^k}^{x_n^{k+1}} (x - x_n^k) dx \leqslant \int_{x_n^k}^{x_n^{k+1}} \frac{2}{\sqrt{n}} dx = \frac{4}{n}.$$

En sommant pour $k \in [[i_n, j_n - 1]]$, on obtient ainsi :

$$\boxed{2} \leqslant (j_n - i_n) \left(\frac{2}{\sqrt{n}} S_n + \frac{4}{n} \right) \leqslant \frac{b - a}{2} \sqrt{n} \left(\frac{2}{\sqrt{n}} S_n + \frac{4}{n} \right) \leqslant (b - a) S_n + \frac{2(b - a)}{\sqrt{n}}.$$

• Enfin, on a $\boxed{3} \leqslant P\Big(Z_n = x_n^{j_n}\Big) + \int_{x_n^{j_n}}^b f(x) dx$. On peut majorer la probabilité avec

$$P(Z_n = x_n^{j_n}) = \frac{2}{\sqrt{n}} \left(\frac{\sqrt{n}}{2} P(Z_n = x_n^{j_n}) - f(x_n^{j_n}) \right) + \frac{2}{\sqrt{n}} f(x_n^{j_n}) \leqslant \frac{2}{\sqrt{n}} S_n + \frac{2}{\sqrt{n}} f(x_n^{j_n}) \leqslant \frac{2}{\sqrt{n}} f(x_n^{j$$

et l'intégrale comme pour $\boxed{1}$: $\int_{x_n^{i_n}}^b f(x) dx \leqslant \frac{2}{\sqrt{n}}$.

On conclut que les quantités $\boxed{1}$, $\boxed{2}$ et $\boxed{3}$ tendent vers zéro lorsque n tend vers l'infini, d'où le résultat. \Box