Отчет о выполнении лабораторной работы 5.5. "Компьютерная сцинтилляционная γ спектрометрия"

Калашников Михаил, Б03-202

1. Теоретические сведения

Основными процессами взаимодействия гамма-излучения с веществом являются, как было выше указано, фотоэффект, эффект Комптона и образование электрон-позитронных пар. Каждый из этих процессов вносит свой вклад в образование наблюдаемого спектра.

Фотоэффект — процесс взаимодействия гамма-кванта с электроном, связанным с атомом, при котором электрону передается вся энергия гамма-кванта. При этом электрону сообщается кинетическая энергия $T_e = E_{\gamma} - I_i$, где E_{γ} — энергия гамма-кванта, I_i — потенциал ионизации і-той оболочки атома. Фотоэффект особенно существенен для тяжелых веществ, где он идет с заметной вероятностью даже при высоких энергиях гамма-квантов. В легких веществах фотоэффект становится заметен лишь при относительно небольших энергиях гамма-квантов.

Эффект Комптона — упругое рассеяние фотона на свободном электроне, сопровождающееся изменением длины волны фотона (реально этот процесс происходит на слабо связанных с атомом внешних электронах). Максимальная энергия образующихся комптоновских электронов соответствует рассеянию гамма-квантов на 180° и равна

$$E_{max} = \frac{\hbar\omega}{1 + \frac{mc^2}{2\hbar\omega}}.$$

Процесс образования электрон-позитронных пар. При достаточно высокой энергии гамма-кванта наряду с фотоэффектом и эффектом Комптона может происходить третий вид взаимодействия гамма-квантов с веществом – образование электрон-позитронных пар. Процесс образования пар не может происходить в пустоте, так как в этом случае не выполняются совместно законы сохранения энергии и импульса. В присутствии ядра или электрона процесс образования пары гамма-квантом возможен, так как можно распределить энергию и импульс гамма-кванта между тремя частицами без противоречия с законами сохранения. При этом если процесс образования пары идет в кулоновском поле ядра, то энергия образующегося ядра отдачи оказывается весьма малой, так что пороговая энергия гамма-кванта $E_{\text{пор}}$, необходимая для образования пары, практически совпадает с удвоенной энергией покоя электрона $E_{\text{пор}} \approx 2mc^2 = 1.022 \text{ M}{\circ}\text{B}$.

2. Экспериментальная установка

Рис. 1: Принципиальная блок-схема спектрометра. $(1 - сцинтиллятор, 2 - \Phi ЭУ, 3 - предусилитель импульсов, 4 - высоковольтный блок питания для <math>\Phi ЭУ$, 5 - блок преобразования аналоговых импульсов с $\Phi ЭУ$ в цифровой код $(A \amalg \Pi)$, 6 - компьютер для сбора данных, их обработки и хранения).

 Φ ЭУ со сцинтиллятором и блоком питания установлены на отдельной подставке. В нашей работе на разных установках (стендах) в качестве сцинтиллятора используются кристаллы NaI(Tl) с размерами Ø 45×50 мм и Ø 20×25 мм.

3. Проведение эксперимента

Проведем последовательные измерения спектров каждого из предоставленных образцов. Будем накапливать измерения в течение 600 секунд. После этого аналогично проведем измерения фонового излучения.

Рис. 2: Спектр излучения образцов

Далее в работе будет приведено более подробное рассмотрение каждого из полученных спектров.

Рис. 3: Спектр фонового излучения

Как можно видеть, правая часть спектра фонового излучения является равномерной и не имеет резких скачков.

4. Обработка результатов

Приступим к определению положений фотопиков образцов.

4.1. ⁶⁰Co

Рис. 4: Спектр излучения ⁶⁰Co

В спектре кобальта-60 присутствуют два фотопика с энергиями $E_1=1.1732~{
m M}$ эВ и $E_2=1.3325~{
m M}$ эВ.

4.2. ²²Na

Рис. 5: Спектр излучения 22 Nа

В спектре натрия-22 присутствуют два фотопика с энергиями $E_1=1.274~{
m M}$ эВ и $E_2=0.511~{
m M}$ эВ.

4.3. ^{137}Cs

Рис. 6: Спектр излучения $^{137}\mathrm{Cs}$

В спектре цезия-137 присутствует фотопик с энергией $E=0.6617~{
m M}$ эВ.

4.4. Калибровка

После обработки всех элементов с известными положениями пиков проведем калибровку энергетической шкалы. Проведем прямую через полученные точки чтобы получить зависимость вида N=aE+b.

Рис. 7: Калибровочная прямая

4.5. 152 Eu

Рис. 8: Спектр излучения $^{152}{\rm Eu}$

В спектре европия-152 удалось выделить четыре пика.

4.6. ²⁴¹**Am**

Рис. 9: Спектр излучения ²⁴¹Am

В спектре америция-241 удалось выделить два пика.

4.7. Сводная таблица

Источник	N	ΔN	Е, МэВ	$\Delta E, M \ni B$	R
⁶⁰ Co	1580	127	1.17	0.10	0.082
⁶⁰ Co	1795	114	1.33	0.09	0.065
²² Na	1715	143	1.27	0.11	0.085
²² Na	712	73	0.511	0.05	0.11
$^{137}\mathrm{Cs}$	909	75	0.661	0.06	0.086
$^{152}\mathrm{Eu}$	491	70	0.344	0.05	0.15
$^{152}\mathrm{Eu}$	97	24	0.045	0.02	0.41
$^{152}\mathrm{Eu}$	208	34	0.129	0.03	0.20
$^{152}\mathrm{Eu}$	357	87	0.243	0.07	0.27
$^{241}\mathrm{Am}$	127	22	0.068	0.02	0.24
$^{241}\mathrm{Am}$	75	26	0.029	0.02	0.68

Спектры европия-152 и америция-241 можно найти в интернете и сравнить значения энергий фотопиков. У европия-152 действительно существуют пики на 40 кэВ, 344.2785 кэВ, 244.6975 кэВ, 121.7817 кэВ (https://www.gammaspectacular.com/blue/eu152-spectrum). У америция-241 существуют хорошо известные пики на 59.6 кэВ и 26.3 кэВ (https://www.gammaspectacular.com/blue/am241-spectrum).

4.8. Энергетическое разрешение

Проверим зависиость $R = \frac{C}{\sqrt{E}}$. Для этого отложим экспериментальные точки в осях R^2 от 1/E.

Рис. 10: График зависимости $R^2 = 1/E$

Проведем через точки прямую вида y=kx. Получим, что постоянная $C\approx (0.011\pm 0.01)~{\rm M}{\circ}{\rm B}^{-1/2}$

4.9. Наблюдения на осциллографе

Рис. 11: График зависимости $R^2=1/E$

4.10. Пик обратного рассеяния

Данный пик хорошо различим на спектрах только двух образцов: цезия и кобальта (если из спектров вычесть фон).

Рис. 12: Спектр излучения ⁶⁰Со без фона

Рис. 13: Спектр излучения $^{137}\mathrm{Cs}$ без фона

Получим энергии 0.235 МэВ и 0.210 МэВ соответственно.