Applications of Integration

Part 2 of the Fundamental Theorem says that if *f* is continuous on [*a*, *b*], then

$$\int_a^b f(x) \, dx = F(b) - F(a)$$

where F is any antiderivative of f. This means that F' = f, so the equation can be rewritten as

$$\int_a^b F'(x) \, dx = F(b) - F(a)$$

- If V(t) is the volume of water in a reservoir at time t, then its derivative V'(t) is the rate at which water flows into the reservoir at time t.
- •If [C](t) is the concentration of the product of a chemical reaction at time t, then the rate of reaction is the derivative d[C]/dt.
- If the mass of a rod measured from the left end to a point x is m(x), then the linear density is $\rho(x) = m'(x)$. So

$$\int_a^b \rho(x) \, dx = m(b) - m(a)$$

is the mass of the segment of the rod that lies between x = a and x = b.

• If the rate of growth of a population is *dn/dt*, then

$$\int_{t_1}^{t_2} \frac{dn}{dt} dt = n(t_2) - n(t_1)$$

is the net change in population during the time period from t_1 to t_2 .

(The population increases when births happen and decreases when deaths occur. The net change takes into account both births and deaths.)

• If an object moves along a straight line with position function s(t), then its velocity is v(t) = s'(t), so

$$\int_{t_1}^{t_2} v(t) dt = s(t_2) - s(t_1)$$

is the net change of position, or *displacement*, of the particle during the time period from t_1 to t_2 .

• If we want to calculate the distance the object travels during the time interval, we have to consider the intervals when $v(t) \ge 0$ (the particle moves to the right) and also the intervals when $v(t) \le 0$ (the particle moves to the left).

In both cases the distance is computed by integrating |v(t)|, the speed. Therefore

$$\int_{t_1}^{t_2} |v(t)| dt = \text{total distance traveled}$$

Figure 3 shows how both displacement and distance traveled can be interpreted in terms of areas under a velocity curve.

Figure 3

Example

A particle moves along a line so that its velocity at time t is $v(t) = t^2 - t - 6$ (measured in meters per second).

- (a) Find the displacement of the particle during the time period $1 \le t \le 4$.
- (b) Find the distance traveled during this time period.

The Substitution Rule

Observe that if F' = f, then

$$\int F'(g(x)) g'(x) dx = F(g(x)) + C$$

because, by the Chain Rule,

$$\frac{d}{dx} [F(g(x))] = F'(g(x))g'(x)$$

If we make the "change of variable" or "substitution" u = g(x), then from Equation 3 we have

$$\int F'(g(x))g'(x) dx = F(g(x)) + C = F(u) + C = \int F(u) du$$

or, writing P = f, we get

$$\int f(g(x)) g'(x) dx = \int f(u) du$$

The Substitution Rule

Thus we have proved the following rule.

4 The Substitution Rule If u = g(x) is a differentiable function whose range is an interval I and f is continuous on I, then

$$\int f(g(x)) g'(x) dx = \int f(u) du$$

Notice that the Substitution Rule for integration was proved using the Chain Rule for differentiation.

Notice also that if u = g(x), then du = g'(x) dx, so a way to remember the Substitution Rule is to think of dx and du in (4) as differentials.

Example

Find $\int x^3 \cos(x^4 + 2) dx$.