Loss function analysis and optimization for spinal segmentation in Magnetic Resonance Imaging

Manuel Hun

mhun@uni-koblenz.de

Institute for Computational Visualistics University of Koblenz and Landau

11. Mai 2021

Overview

Motivation

Loss functions

Methods

Datasets and Model

Experiments

Conclusion

Motivation

Motivation

- finding an appropriate loss function is non-trivial
- choice is based on the data analysis, however no general heuristics exist
- many specialized loss functions were proposed, generalization is missing

Research questions

Motivation

Primary research question:

With the given MRI data of cervical and lumbar vertebrae, which loss function with the UNet 3D architecture yields the best segmentation results?

Secondary research questions:

- Is it possible to directly learn a loss function for segmentation tasks only based on the provided data?
- Is it possible to optimize existing loss functions for segmentation tasks?

Definition

Motivation

Loss function

A loss function \mathcal{L} describes the mapping of the prediction set \hat{Y} , which is generated by the parameterized function h_{θ} , and the ground truth set Y onto a non negative real number.

$$\mathcal{L}: h_{\theta} \times Y \to \mathbb{R}_0^+. \tag{1}$$

Empirical Risk Minimization

To find the optimal function h_{θ} the expected loss over a random sample set of X is minimized, a paradigm known as the Empirical Risk Minimization (ERM) [Vap92].

$$\underset{\theta}{\operatorname{argmin}} \mathcal{L}(\hat{Y}, Y). \tag{2}$$

Categories of loss functions

Distribution:

- Cross Entropy, Weighted Cross Entropy
- TopK, Focal

Region:

Motivation

- Dice, Intersection over Union, Tversky
- Asymmetric, Effectiveness

Distance:

Hausdorff, Boundary

Compound:

Dice-Focal, Tversky-Focal, Cross Entropy + Dice

Distribution

Abbildung: Visualization of the impact of different γ values of the Focal loss on examples compared to the standard Cross Entropy (CE) [LGG⁺18].

Abbildung: Overview of the relationship between different regional loss functions.

Distance

- complementary information for distribution and regional losses
- boundary measure
- makes use of distance maps
- Hausdorff: double-sided, Boundary: one-sided

Abbildung: Visualization of the estimation of the Hausdorff distance.

Compound

Combine properties:

- Tversky-Focal
- Dice-Focal

Multi-loss functions:

- Cross Entropy + Dice
- Distance loss + Regional loss

M. Hun – Loss function analysis and optimization for spinal segmentation in Magnetic Resonance Imaging

Analysis - structure size

Abbildung: Behavior of the loss functions with different sizes of prediction.

Analysis - shape awareness

Abbildung: Behavior of the loss functions with different shapes of prediction.

Analysis - overfitting and underfitting

Abbildung: Behavior of the loss functions with predictions, that overfit and underfit.

Methods

Motivation

How to learn loss functions directly from data?

- genetic algorithms
- meta-learning

How to optimize existing loss functions?

- adjust learnable parameters of loss function during training
- calculate adaptive weightings of compound loss functions

- proposed by Gonzalez [GM20]
- only tested on 1-dimensional target domain (regression, classification)

Idea:

- represents loss functions as expression tree
- each tree consists of computational rules (primitives) and constant values (terminals)
- individuals get modified through genetic operations like mutation, crossover and selection
- loss function are learned before the actual training

Learn loss - genetic algorithm overview

Abbildung: Overview of the genetic algorithm approach.

Datasets and Model

Learn loss - meta learning

- proposed by Bechtle et al. (Facebook Research) [BMC+21]
- only tested on 1-dimensional target domain (regression, classification)

Idea:

- learns a loss function during training
- loss function is represented by another neural network

Learn loss - meta learning

Abbildung: Overview of the meta-learning approach.

Optimize loss - greedy approach

proposed by Seo [SBX20]

Idea:

- take discrete actions A at each training step
- each action operates on the learnable parameters p by reducing, increasing or leaving
- \triangleright cartesian product delivers all possible combinations (A^p)
- test all possible combinations A^p
- choose optimal A*, that provides minimal L²
- strongly explorative

Optimize loss - greedy approach

Abbildung: Overview of the approach with the greedy algorithm.

Optimize loss - adaptive weighting

Adaptive weighting

Adaptive weighting methods aim to change the weightings of each individual loss function of the multi loss function depending on a basic heuristic during the training process.

$$\mathcal{L}_{AW} = \sum_{i}^{M} \alpha_{i} \mathcal{L}_{i}. \tag{3}$$

Optimize loss - rebalance

Idea:

- increase α_t^i per training step with a constant value
- constant value is calculated over the maximum number of training steps
- only suitable for multi-loss functions consisting of 2 loss functions

Optimize loss - Soft Adapt

Idea:

- proposed by Hedari [HTM19]
- uses information of prior loss values
- \triangleright approximation of the forward finite difference s_t^i
- softmax operation normalizes all weights

$$\alpha_t^i = \frac{\mathbf{e}^{\beta s_t^i}}{\sum_{i}^n \mathbf{e}^{\beta s_t^i}}.$$
 (4)

Datasets and Model

Optimize loss - Coefficient of Variations

Idea:

- proposed by Groenendijk et al. [HTM19]
- instead of the direct loss values a ratio-scale ℓ_t is measured
- Welford algorithm [WW62] tracks σ_{ℓ_i} and μ_{ℓ_i}
- $ightharpoonup \alpha_t^i$ is determined via the relative standard deviation

$$\alpha_t^i = \frac{1}{z_t} c_{\ell_t^i} = \frac{1}{z_t} \frac{\sigma_{\ell_t^i}}{\mu_{\ell_t^i}}.$$
 (5)

Datasets

Motivation

Cervical:

- provided by VisSim research group
- 12 subjects, distribution between men and women unknown
- C1 to C7 cervical vertebral bodies
- Segmentation time per volume: 2:30h

Lumbar:

- provided by MyoSegmenTum database
- 51 subjects (37 female, 14 male)
- L1 to L5 lumbar vertebral bodies
- Segmentation time per volume: 2h

Datasets - voxel distribution

Abbildung: Voxel distribution between foreground and background in the cervical (a) and lumbar dataset (b).

00000

Datasets - visualization

Abbildung: 3D rotated sagittal view of the ground truth cervical vertebrae (C1-C7) (a) and lumbar vertebrae (L1-L5) (b) embedded in the normalized volume data.

Augmentation and Preprocessing

Augmentation:

- Affine transformations
- Gaussian noise
- Interpolate random element from batch with entire batch (MixUp¹)

Preprocessing:

- ► Percentile normalization (0.5,99.5)
- Z-Normalization, zero mean and variance of one

¹[ZCDLP18]

3D UNet

- Model architecture follows the generalization of UNet [RFB15] architecture for 3D [L+16]
- Batch normalization [IS15] replaced by Instance normalization [UVL17]
- ReLU replaced by Leaky ReLU
- Initiliasation method follows the proposal of Kaimin [HZRS15]

Training

- mixed-precision training and validation
- training is done in FP16, validation is done in FP32
- k-fold cross validation with predefined seed

K-fold cross validation

Abbildung: Example k-fold cross validation with k=4, where a blue rectangle indicates a training fold and a red rectangle a validation fold.

	Loss	Acc	Dice	F ₂	IoU	Precision	Recall	Hausdorff
٥	\mathcal{L}_{BC}	98.15 ± (0.17)	70.99 ± (3.17)	82.79 ± (1.37)	55.61 ± (3.70)	57.97 ± (4.44)	95.11 ± (1.92)	27.94 ± (8.12)
	\mathcal{L}_{F}	98.35 ± (0.28)	62.02 ± (1.77)	58.86 ± (4.06)	45.67 ± (2.03)	79.11 ± (1.46)	$57.24 \pm (5.42)$	29.59 ± (2.93)
	\mathcal{L}_{D}	99.00 ± (0.06)	80.55 ± (2.87)	84.39 ± (0.80)	67.80 ± (3.69)	77.65 ± (7.40)	89.30 ± (2.75)	24.65 ± (6.51)
۳	\mathcal{L}_T	99.03 ± (0.04)	79.69 ± (1.56)	79.34 ± (2.36)	66.59 ± (1.76)	83.62 ± (7.16)	79.91 ± (4.86)	31.40 ± (1.73)
1"	\mathcal{L}_{A}	98.79 ± (0.01)	78.50 ± (4.50)	86.46 ± (2.27)	65.08 ± (5.75)	69.24 ±(6.75)	$94.63 \pm (0.75)$	20.13 ± (4.30)
Sa	\mathcal{L}_{B}	98.96 ± (0.17)	77.95 ± (7.52)	78.48 ± (7.43)	64.84 ± (8.93)	82.04 ± (6.19)	79.30 ± (7.23)	19.02 ± (6.42)
	LHD	98.39 ± (0.16)	65.17 ± (3.93)	63.48 ± (5.43)	48.97 ± (4.11)	$75.66 \pm (5.85)$	$62.84 \pm (6.36)$	25.34 ± (1.27)
O	\mathcal{L}_{DCE}	98.93 ± (0.02)	$79.35 \pm (2.22)$	83.40 ± (2.26)	66.04 ± (2.72)	$75.82 \pm (5.97)$	87.74 ± (4.58)	22.06 ± (1.87)
	\mathcal{L}_{TF}	99.09 ± (0.01)	81.15 ± (2.53)	80.83 ± (1.45)	68.65 ± (3.16)	84.78 ± (6.21)	81.77 ± (3.44)	23.95 ± (5.73)
	\mathcal{L}_{DF}	98.99 ± (0.01)	80.53 ± (2.81)	84.72 ± (1.56)	67.83 ± (3.43)	$76.63 \pm (4.92)$	$89.27 \pm (1.85)$	27.51 ± (3.84)

Tabelle: Baseline table for the cervical dataset.

Results - cervical visualization

Abbildung: Example visualization of ground truth (a) and prediction of the model (b) with the Cross Entropy loss function.

Abbildung: Example visualization of ground truth (a) and prediction of the model (b) with the TverskyFocal loss function.

Results - lumbar baseline

	Loss	Acc	Dice	F ₂	IoU	Precision	Recall	Hausdorff
٥	\mathcal{L}_{BC}	98.09 ± (0.06)	83.27 ± (1.20)	89.16 ± (0.13)	72.09 ± (2.13)	75.80 ± (2.81)	95.36 ± (1.64)	19.01 ± (3.02)
	\mathcal{L}_F	98.34 ± (0.29)	$83.07 \pm (2.31)$	80.90 ± (4.18)	$71.82 \pm (3.57)$	90.55 ± (0.65)	$79.99 \pm (5.63)$	13.80 ± (1.70)
	\mathcal{L}_{D}	98.79 ± (0.23)	88.63 ± (1.08)	89.41 ± (1.35)	80.35 ± (0.73)	89.44 ± (1.45)	90.32 ± (2.04)	11.44 ± (1.74)
<u>س</u>	\mathcal{L}_T	98.79 ± (0.24)	88.04 ± (1.14)	85.88 ± (1.06)	$79.46 \pm (0.92)$	93.55 ± (2.15)	$84.65 \pm (1.06)$	10.89 ± (1.50)
1"	\mathcal{L}_{A}	98.63 ± (0.17)	$87.55 \pm (0.66)$	90.61 ± (1.22)	78.64 ± (0.32)	84.03 ± (1.75)	$94.03 \pm (2.03)$	12.65 ± (3.47)
DS	\mathcal{L}_{B}	98.64 ± (0.23)	86.79 ± (0.83)	86.42 ± (1.12)	77.40 ± (0.82)	90.43 ± (0.49)	86.26 ± (1.46)	12.78 ± (2.39)
	\mathcal{L}_{HD}	97.93 ± (0.31)	$78.64 \pm (2.72)$	75.72 ± (5.29)	65.48 ± (3.53)	87.46 ± (1.47)	74.11 ± (6.89)	15.57 ± (0.37)
O	\mathcal{L}_{DCE}	98.76 ± (0.26)	88.35 ± (1.24)	88.87 ± (1.41)	79.88 ± (1.34)	89.12 ± (1.36)	90.09 ± (1.72)	12.45 ± (1.76)
	$\mathcal{L}_{\mathit{TF}}$	98.79 ± (0.23)	$88.05 \pm (0.87)$	85.94 ± (0.59)	$79.43 \pm (0.48)$	93.56 ± (2.04)	$84.82 \pm (0.85)$	11.61 ± (0.70)
	\mathcal{L}_{DF}	98.78 ± (0.27)	$88.46 \pm (1.36)$	89.35 ± (1.15)	80.06 ± (1.19)	89.88 ± (1.80)	$90.95 \pm (1.45)$	12.57 ± (0.87)

Tabelle: Baseline table for the lumbar dataset.

Results - lumbar visualization

Abbildung: Example visualization of ground truth (a) and prediction of the model (b) with the Cross Entropy loss function.

Abbildung: Example visualization of ground truth (a) and prediction of the model (b) with the TverskyFocal loss function.

Genetic approach:

Motivation

- could not yield any competitive results
- Possible causes:
 - large search space
 - insufficient time given (5 days)
 - input data dimension too large compared to authors applied data (regression, classification)

Results - meta learning

Meta learning:

Motivation

- could not yield any competitive results
- Possible causes:
 - many sensitive decisions regarding the meta loss network:
 - model architecture
 - optimizer
 - learning rate
 - input data dimension too large compared to authors applied data (regression, classification)

Loss	Acc	Dice	F ₂	IoU	Precision	Recall	Hausdorff
	99.00 ± (0.06)						
\mathcal{L}_T	99.03 ± (0.04)	79.69 ± (1.56)	79.34 ± (2.36)	66.59 ± (1.76)	83.62 ± (7.16)	79.91 ± (4.86)	31.40 ± (1.73)
\mathcal{L}_{A}	98.79 ± (0.01)	78.50 ± (4.50)	86.46 ± (2.27)	65.08 ± (5.75)	69.24 ±(6.75)	94.63 ± (0.75)	20.13 ± (4.30)
\mathcal{L}_T/G	99.11 ± (0.05)	82.16 ± (1.96)	83.81 ± (0.82)	70.06 ± (2.47)	83.22 ± (3.85)	86.74 ± (1.86)	20.06 ± (0.37)
\mathcal{L}_{E}/G	99.07 ± (0.06)	81.36 ± (1.61)	84.28 ± (0.66)	68.97 ± (1.75)	81.78 ± (5.60)	88.39 ± (2.31)	22.29 ± (2.51)

Tabelle: Greedy algorithms results for the cervical dataset.

	Loss	Acc	Dice	F ₂	IoU	Precision	Recall	Hausdorff
Г	\mathcal{L}_{D}	98.79 ± (0.23)	88.63 ± (1.08)	89.41 ± (1.35)	80.35 ± (0.73)	89.44 ± (1.45)	90.32 ± (2.04)	11.44 ± (1.74)
	\mathcal{L}_T	98.79 ± (0.24)	88.04 ± (1.14)	85.88 ± (1.06)	79.46 ± (0.92)	93.55 ± (2.15)	84.65 ± (1.06)	10.89 ± (1.50)
	\mathcal{L}_{A}	98.63 ± (0.17)	87.55 ± (0.66)	90.61 ± (1.22)	78.64 ± (0.32)	84.03 ± (1.75)	94.03 ± (2.03)	12.65 ± (3.47)
1	C_T/G	98.82 ± (0.20)	88.74 ± (0.63)	89.11 ± (0.59)	80.65 ± (0.18)	91.32 ± (1.64)	89.47 ± (0.51)	11.39 ± (3.66)
1	C_E/G	98.80 ± (0.26)	88.54 ± (1.21)	88.99 ± (0.97)	80.16 ± (0.99)	91.89 ± (1.13)	90.60 ± (2.30)	11.94 ± (2.69)

Tabelle: Greedy algorithms results for the lumbar dataset.

Loss	Acc	Dice	F ₂	IoU	Precision	Recall	Hausdorff
\mathcal{L}_{B}	98.96 ± (0.17)	77.95 ± (7.52)	78.48 ± (7.43)	64.84 ± (8.93)	82.04 ± (6.19)	79.30 ± (7.23)	19.02 ± (6.42)
\mathcal{L}_B/R	98.97 ± (0.13)	80.45 ± (3.17)	84.59 ± (2.38)	67.83 ± (3.98)	76.69 ± (4.35)	89.68 ± (1.56)	29.37 ± (7.71)
\mathcal{L}_B/COV	$98.62 \pm (0.06)$	74.68 ± (2.02)	80.31 ± (0.62)	59.95 ± (2.19)	69.26 ± (3.48)	87.09 ± (3.28)	30.15 ± (1.47)
\mathcal{L}_{HD}	98.39 ± (0.16)	65.17 ± (3.93)	63.48 ± (5.43)	48.97 ± (4.11)	75.66 ± (5.85)	62.84 ± (6.36)	25.34 ± (1.27)
\mathcal{L}_{HD}/R	$98.40 \pm (0.33)$	69.29 ± (4.70)	74.47 ± (4.20)	53.95 ± (5.34)	67.19 ± (0.75)	79.67 ± (5.72)	28.67 ± (6.30)
\mathcal{L}_{HD}/COV	$98.15 \pm (0.15)$	64.98 ± (4.99)	68.97 ± (4.05)	48.71 ± (5.47)	64.10 ± (4.03)	72.79 ± (5.39)	33.22 ± (9.12)
\mathcal{L}_{DCE}	98.93 ± (0.02)	79.35 ± (2.22)	83.40 ± (2.26)	66.04 ± (2.72)	75.82 ± (5.97)	87.74 ± (4.58)	22.06 ± (1.87)
\mathcal{L}_{DCE}/S	$98.84 \pm (0.06)$	78.76 ± (2.09)	84.50 ± (2.73)	65.33 ± (2.13)	72.39 ± (3.30)	90.12 ± (4.06)	36.50 ± (10.70)

Tabelle: Adaptive weighting results for the cervical dataset.

	Loss	Acc	Dice	F ₂	IoU	Precision	Recall	Hausdorff
	$\mathcal{L}_{\mathcal{B}}$	98.64 ± (0.23)	86.79 ± (0.83)	86.42 ± (1.12)	77.40 ± (0.82)	90.43 ± (0.49)	86.26 ± (1.46)	12.78 ± (2.39)
	\mathcal{L}_B/R	98.53 ± (0.01)	87.26 ± (0.19)	87.29 ± (0.08)	79.27 ± (0.31)	88.57 ± (0.46)	87.73 ± (0.21)	9.56 ± (0.62)
	\mathcal{L}_B/COV	98.63 ± (0.19)	86.89 ± (0.91)	87.82 ± (0.93)	77.59 ± (0.92)	88.22 ± (2.24)	89.22 ± (1.75)	14.14 ± (2.30)
ı	\mathcal{L}_{HD}	97.93 ± (0.31)	78.64 ± (2.72)	75.72 ± (5.29)	65.48 ± (3.53)	87.46 ± (1.47)	74.11 ± (6.89)	15.57 ±(0.37)
	\mathcal{L}_{HD}/R	98.42 ± (0.17)	84.23 ± (0.71)	83.58 ± (2.06)	73.61 ± (0.35)	89.20 ± (3.04)	83.57 ± (3.18)	14.08 ± (1.01)
	\mathcal{L}_{HD}/COV	98.51 ± (0.23)	85.52 ± (1.03)	85.10 ± (1.46)	75.54 ± (1.69)	89.73 ± (1.94)	85.12 ± (1.99)	11.98 ± (1.24)
	\mathcal{L}_{DCE}	98.76 ± (0.26)	88.35 ± (1.24)	88.87 ± (1.41)	79.88 ± (1.34)	89.12 ± (1.36)	90.09 ± (1.72)	12.45 ± (1.76)
	\mathcal{L}_{DCE}/S	98.65 ± (0.17)	87.46 ± (0.34)	89.42 ± (1.28)	78.50 ± (0.98)	86.31 ± (0.79)	92.26 ± (1.93)	12.38 ± (4.15)

Tabelle: Adaptive weighting results for the lumbar dataset.

Summary

Motivation

- the primary research objectives of segmenting cervical and lumbar vertebrae from MRI data were met
- region based and compound loss functions showed superior results over distribution based and distance based loss functions
- learning a loss could not be verified by genetic algorithms as well as by meta-learning for the given data
- greedy approach led to a better performance compared to the corresponding baseline
- rebalance strategy achieved a steady improvement

Datasets and Model

Thank you for your attention!

- BECHTLE, Sarah; MOLCHANOV, Artem; CHEBOTAR, Yevgen; GREFENSTETTE, Edward; RIGHETTI, Ludovic; SUKHATME, Gaurav; MEIER, Franziska:

 Meta-Learning via Learned Loss.
 2021
- GONZALEZ, Santiago; MIIKKULAINEN, Risto:
 Improved Training Speed, Accuracy, and Data Utilization
 Through Loss Function Optimization.
 2020
- HEYDARI, A. A.; THOMPSON, Craig A.; MEHMOOD, Asif: SoftAdapt: Techniques for Adaptive Loss Weighting of Neural Networks with Multi-Part Loss Functions. 2019

Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. 2015

□ IOFFE, Sergey ; SZEGEDY, Christian: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. 2015

LIN, Tsung-Yi; GOYAL, Priya; GIRSHICK, Ross; HE, Kaiming; DOLLÁR, Piotr:

Focal Loss for Dense Object Detection.
2018

RONNEBERGER, Olaf; FISCHER, Philipp; BROX, Thomas: U-Net: Convolutional Networks for Biomedical Image Segmentation.

2015

SEO, Hyunseok; BASSENNE, Maxime; XING, Lei: Closing the Gap Between Deep Neural Network Modeling and Biomedical Decision Making Metrics in Segmentation via Adaptive Loss Functions.

In: IEEE Transactions on Medical Imaging PP (2020), 10, S. 1-1.

http://dx.doi.org/10.1109/TMI.2020.3031913.

DOI 10.1109/TMI.2020.3031913

ULYANOV, Dmitry; VEDALDI, Andrea; LEMPITSKY, Victor: Instance Normalization: The Missing Ingredient for Fast Stylization.
2017

VAPNIK, V.:

Principles of Risk Minimization for Learning Theory.

In: MOODY, J. (Hrsg.); HANSON, S. (Hrsg.); LIPPMANN, R. P. (Hrsg.): *Advances in Neural Information Processing Systems* Bd. 4, Morgan-Kaufmann, 1992

WELFORD, Author(s) B. P.; WELFORD, B. P.:
Note on a method for calculating corrected sums of squares and products.

In: Technometrics (1962), S. 419-420

ZHANG, Hongyi; CISSE, Moustapha; DAUPHIN, Yann N.; LOPEZ-PAZ, David: mixup: Beyond Empirical Risk Minimization. 2018

CIÇEK Özgün ; ABDULKADIR, Ahmed ; LIENKAMP, Soeren S.; BROX, Thomas; RONNEBERGER, Olaf: 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation.

2016