

Globale Navigations-Satelliten-Systeme (GNSS) Einführung Übung 1

Berechnung einer absoluten Positionierung mit Code-Messungen, Teil 1

Übungsmodus

- 3 Übungen:
 - 1. Code Positionierung 1
 - 2. Code Positionierung 2
 - 3. Phase Positionierung
- Übungen sind Optionale Lernelemente:
 - zwei Übungsberichte oder eine Präsentation zu einem ausgewählten Thema ----> Endnote kann um bis zu 0.25 Notenpunkte verbessert werden (Bonus).
- Material (Folien, Daten, Code) auf polybox
- Einführungssitzung, Selbstarbeit, Support (per Mail), Abgabe (nach ca. 2-3 Wochen, freiwillig)
 und Diskussion

Code-Messungen

- L1-Frequenz (1575.42 MHz):
 - C/A-Code (Coarse/Acquisition) für die zivile Nutzung, C1
 - P/Y-Code (Precision/encrypted) für die militärische Nutzung, P1
- L2-Frequenz (1227.60 MHz):
 - P/Y-Code, P2 (Wahlweise C/A-Code, C2)
- L5-Frequenz (1176.45 MHz):
 - In neuen Generationen (GPS Block IIF: G25, G01, G24, . . .)

Code-Beobachtungsgleichung

- Geometrie (Stationskoordinaten, Satellitenpositionen)
- Troposphärische Verzögerung
- Ionosphärische Verzögerung
- Empfängeruhrfehler
- Satellitenuhrfehler
- Relativistischer Effekt

$$\begin{aligned} P_{1k}^j &= & \rho_k^j + \Delta T_k^j + \Delta I_k^j + c \times (\Delta t_k - \Delta t^j) + \Delta \mathrm{rel}_k^j \\ P_{2k}^j &= & \rho_k^j + \Delta T_k^j + \frac{f_1^2}{f_2^2} \Delta I_k^j + c \times (\Delta t_k - \Delta t^j) + \Delta \mathrm{rel}_k^j \end{aligned}$$

Satellitenpositionen: SP3-File

- Standard Product 3 Orbit File (sp3-File)
- Satellitenbahnen (+ Satellitengeschwindigkeiten)
- Gegeben im erdfesten System (..., IGS08, IGS2014)
- Öffentlich verfügbar auf dem ftp-server vom International GNSS Service (IGS)/Center for Orbit Determination in Europe (CODE)
 - Ultra-Rapid (um 03, 09, 15, 21 UTC; ~ 3 cm)
 - Rapid (um 17 UTC; ~ 2.5 cm)
 - Final (am jeden Donnerstag; ~ 2.5 cm)
- Für die Übungen: G3_11032.PRE

Satellitenpositionen: SP3-File

Bodenspur Satellit

- Gegeben: X-, Y- und Z-Koordinaten im erdfesten System
- Gesucht: Breite und Länge

$$X = R_E \cdot \cos(B) \cdot \cos(L)$$

$$Y = R_E \cdot \cos(B) \cdot \sin(L)$$

$$Z = R_E \cdot \sin(B)$$

$$L = \operatorname{atan}\left(\frac{Y}{X}\right)$$

$$B = \operatorname{atan}\left(\frac{Z}{\sqrt{X^2 + Y^2}}\right)$$

Bodenspur: Plot von L und B

RINEX Format

- Beobachtungstypen
 - Phasen (L1, L2, . . .)
 - Code (C1, P1, P2, . . .)
- Stationsname (Markername, Marker, ...)
- Empfängertyp
- Antennentyp
- Nährungskoordinaten des Empfängers
- Datum und Zeitsystem
- Beobachtungen
 - Empfängerzeit in GPST
 - GPS (+Glonass) Satelliten
 - Unterschiedliche Arten der Beobachtungen

RINEX Format

Ionosphäre-freie Linearkombination (L3)

Code-Beobachtungen auf L1 und L2:

$$P_{1k}^{j} = \rho_k^{j} + \Delta T_k^{j} + \Delta I_k^{j} + c \times (\Delta t_k - \Delta t^{j}) + \Delta \operatorname{rel}_k^{j}$$

$$P_{2k}^{j} = \rho_k^{j} + \Delta T_k^{j} + \frac{f_1^2}{f_2^2} \Delta I_k^{j} + c \times (\Delta t_k - \Delta t^{j}) + \Delta \operatorname{rel}_k^{j}$$

 Mittels der ionosphärenfreien Linearkombination (L3) wird die ionosphärische Verzögerung (1. Ordnung, 99%) eliminiert:

$$P_{3k}^{j} = \frac{f_{1}^{2}P_{1k}^{j} - f_{2}^{2}P_{2k}^{j}}{f_{1}^{2} - f_{2}^{2}} = \rho_{k}^{j} + \Delta T_{k}^{j} + c \times (\Delta t_{k} - \Delta t^{j}) + \Delta \text{rel}_{k}^{j}$$

Satellitenposition zur Sendezeit des Signals

- Empfängerzeit: t_i
- Satellitenposition und Satellitengeschwindigkeit zur Empfängerzeit im SP3-File:

$$\overrightarrow{X}^{j}(t_i), \overrightarrow{V}^{j}(t_i)$$

- Signallaufzeit: au_k^j
- Signallaufzeit für ionosphärenfreie Linearkombination: $\tau_k^j \approx \frac{P_{3k}^j}{c}$
- Satellitenposition zur Sendezeit des Signals:

$$\overrightarrow{X}^{j}(t_{i}-\tau_{k}^{j}(t_{i}))=\overrightarrow{X}^{j}(t_{i})-(\overrightarrow{V}^{j}(t_{i})+\omega_{E}\cdot[-y^{j}(t_{i})\;x^{j}(t_{i})\;0])\cdot\tau_{k}^{j}(t_{i})$$

Transformation der Satellitenpositionen vom erdfesten System in topozentrische System

Gegeben: A priori

Stationskoordinaten (X_0, Y_0, Z_0)

Gerechnet: Breite und Länge der Station (B_0 , L_0)

Satellitenpositionen zur Sendezeit des Signals (X_s , Y_s , Z_s);

Gesucht: Topozentrische Koordinaten des Satelliten (N,E,U)

$$\begin{bmatrix} -N \\ E \\ U \end{bmatrix} = R_2 \left(\frac{\pi}{2} - B_0 \right) \cdot R_3 \left(L_0 \right) \cdot (\overrightarrow{X}^s - \overrightarrow{X}_0)$$

Zenitwinkel

Gerechnet: N, E, U-Koordinaten des Satelliten zum Station

Gesucht: Zenitwinkel des Satelliten

$$Zn = \operatorname{atan}\left(\frac{\sqrt{N^2 + E^2}}{U}\right)$$

Troposphärische Laufzeitverzögerung

- Bis ca. 20 km über Erdoberfläche
- Abhängig von: Temperatur, Luftdruck, Luftfeuchtigkeit
- Unabhängig von der Frequenz
- Starke Korrelation mit den Uhrenparametern und der Stationshöhe

$$\Delta trop = f(Z_n) \times \Delta trop^0$$

 $\Delta trop^0 \approx 2.4$ m (Troposphärische Verzögerung in Zenit Richtung)

- Mapping-Function: $f(Z_n) = \frac{1}{\cos(Z_n)}$
- In der Übung:

$$\Delta trop_k^j(t_i) pprox rac{2.4 \ m}{cos(Zn_k^j(t_i))}$$

Relativistischer Effekt

- Bewegte Uhr läuft langsamer als statische Uhr: Die Uhr am Satelliten läuft langsamer als die Empfängeruhr
- In der Übung:

$$\Delta \textit{rel}_k^j(t_i) pprox rac{2 \cdot \overrightarrow{X}^j(t_i - au_k^j(t_i)) \cdot \overrightarrow{V}^j(t_i)}{c}$$

Abgabe

- Input Daten (auf polybox):
 - G3_11032.PRE (sp3)
 - ONSA0320.110 (RINEX)
- Nützliche (Python) Tipps: siehe nächste Folie
- Deadline (falls Feedback gewünscht): 01.11.2022
- Abgabe (am besten als pdf) sollte enthalten:
 - Schritte, Formeln, Ergebnissen (Einheiten und signifikante Stellen)
 - Interpretation
 - Code
- Abgabe per Mail an <u>maichinger@ethz.ch</u>
- Besprechung/Diskussion: 03.11.2022 14:45 15:30

Python

- Empfohlen:
 - Anaconda Environment: https://www.anaconda.com/products/individual
 - Open-source
 - Leichte Installation von gewünschten Packages/Modulen
 - Mitgelieferter Editor: Spyder (Matlab-ähnlich)
- Nützliche Packages:
 - Numpy (Standard Package für numerisches Rechnen, bei Anaconda vorinstalliert)
 - Georinex (RINEX/sp3/nav Parser): https://pypi.org/project/georinex/
- Hilfe:
 - Dokumentation
 - Stackoverflow (https://stackoverflow.com/)