Arithmétique de l'ordinateur : Représentation des entiers.

Le matériel

- Synthèse du professeur.
- Site Web: https://www.prodafor.com/informatique
 - >> Section Arithmétique ordinateur

Introduction

Ce qu'il faut savoir...

Les ordinateurs possède certaines limites.

Ex:

- ▶ 97!=9619275968248211985332842594956369871234381391917297615810447731933374561 248187549880587917558907265126128418967967816764706783232000000000000000000 00
- ightharpoonup Sqrt(2) = 1.414213562...
- π =3.141592654...
- La plupart des applications ne font pas appel à de très grands nombres ni ne requièrent une très grande précision dans les calculs.

On a donc choisi de représenter les nombres entiers et réels suivant des formats standardisés nécessitant relativement peu d'espace mémoire.

« Binaire normalisé »

« Mot de même grandeur. Même nombre de bits »

- **But**: Optimiser l'efficacité et la rapidité des calculs en tenant compte de la mémoire et du processeur de l'ordinateur.
- Attention! Les formats choisis auront toujours un impact sur la précision ou même la faisabilité de certains calculs.

Représentation des nombres entiers

- Il existe deux types d'entiers:
 - Les entiers non signés (positifs)
 - Et les entiers signés (positifs ou négatifs)
- Problème: Comment indiquer à la machine qu'un nombre est négatif ou positif?
- Il existe 4 méthodes pour représenter les nombres négatifs:
 - Signe et module
 - Complément à 1
 - Complément à 2
 - Par excès

Pour simplifier l'exposé, on utilisera une représentation sur 8 bits.

Représentation des entiers non signés.

- Entiers non signés (unsigned int) sur un octet:
 - Plus petit:

Plus grand:

Plus grand: 2ⁿ-1

Trouvez quel sera le sous-ensemble de **N** si votre ordinateur utilise des mots de 16 bits, de 32 bits ou de 64 bits?

Entiers signés (integer)

- Représentation signe-module sur un octet
 - Le bit le plus à gauche sera réservé au signe.
 - « + » sera représenté par un 0
 - « » sera représenté par un 1
 - Il reste 7 bits pour écrire le module
 - Sous-ensemble de Z: $-2^{n-1}+1 \le M \le +2^{n-1}-1$
 - Il y a deux zéros: 00000000 et 10000000

- Représentation en excès
 - Ce n'est qu'un décalage.
 - Habituellement, on décale de R=2ⁿ⁻¹ ou de R=2ⁿ⁻¹-1.

Excès de 128

-128	00000000
-127	00000001
-126	00000010
•••	•••
126	11111110
127	11111111

Excès de 127

-127	0000000
-126	00000001
-125	00000010
•••	•••
127	11111110
128	11111111

- Sous-ensemble de Z: $-2^{n-1} \le M \le +2^{n-1} 1$
- Il y a un seul zéro.

Exemples en excès

Écrire les nombres suivant en nombres binaires en utilisant la méthode en excès de 127:

- a) -54
- b) 123
- c) -92

- Représentation en complément à 2
 - Le calcul de (10000000-M) revient à complémenter à 2 tous les bits du nombre.
 - Règle générale:
 - À partir de la droite, on conserve les premiers zéros jusqu'au premier
 1 qui est également conservé.
 - Les chiffres suivants sont inversés, c-a-d qu'un 0 devient un 1 et un 1 devient un 0.

-Sous-ensemble de Z: $-2^{n-1} \le M \le +2^{n-1} - 1$

Exemples en complément à 2

Écrire les nombres suivant en nombres binaires en utilisant la méthode de complément à 2 :

- a) -54
- b) 123
- c) -92

- Représentation en complément à 1
 - Le calcul de (11111111-M) revient à complémenter à 1 tous les bits du nombre
 - Règle générale:
 - Inverser tous les bits.

Remarque: On peut se servir du nombre complémenté à 1 pour trouver son complément à 2.

Addition et soustraction d'entiers

- On s'assure que les nombres négatifs sont représentés par leur complément à 2.
- S'il s'agit d'une soustraction, on complémente à 2 la représentation du deuxième nombre.
- On additionne les deux représentations résultantes.
- Attention! Il peut y avoir un débordement «Overflow» si les deux nombres sont de même signe.

Exemple de soustraction

Résoudre la soustraction suivante en utilisant une addition grâce au complément à 2.

Exemple d'addition de deux négatifs

Résoudre l'opération suivante en utilisant le complément à 2.

Exemple avec un débordement

Résoudre l'opération suivante en utilisant le complément à 2.

Devoir

Faire les exercices du fichier (sur Omnivox):

Exercices arithmétique ordinateur entiers

- Écouter, si nécessaire, les capsules vidéo suivantes (sur prodafor.com):
 - **■** ArithOrdi01
 - **■** ArithOrdi07
 - ArithOrdi02
 - ArithOrdi03
 - ArithOrdi04