Álgebra Matricial

Maestría en Análisis Estadístico y Computación

CIMAT -INEGI

Espacios vectoriales

Definición

Sea A un conjunto. Una operación en A es una función $f: A \times A \rightarrow A$.

Definición

Sea V un conjunto. Se dice que V es un espacio vectorial sobre K $(K = \mathbb{R} \ \delta \ \mathbb{C})$ si existe una operación + en V tal que

- i) $v_1 + (v_2 + v_3) = (v_1 + v_2) + v_3$ para cualesquiera $v_1, v_2, v_3 \in V$
- ii) Existe un elemento 0 en V tal que 0 + v = v + 0 = v para todo $v \in V$
- iii) Dado $v \in V$ existe un $u \in V$ tal que v + u = u + v = 0
- iv) $v_1 + v_2 = v_2 + v_1$, $\forall v_1, v_2 \in V$.

(cont.) Existe además una función $\cdot: K \times V \to V$ tal que

- i) $\alpha \cdot (v_1 + v_2) = \alpha \cdot v_1 + \alpha \cdot v_2$ para cualesquiera $\alpha \in K$, $v_1, v_2 \in V$
- ii) $(\alpha_1 + \alpha_2) \cdot v = \alpha_1 \cdot v + \alpha_2 \cdot v$ para cualesquiera $\alpha_1, \alpha_2 \in K$, $v \in V$
- iii) $\alpha_1 \cdot (\alpha_2 \cdot v) = (\alpha_1 \alpha_2) \cdot v$, para cualesquiera $\alpha_1, \alpha_2 \in K$, $v \in V$
- iv) $1 \cdot v = v$, $\forall v \in V$.

Ejemplo

 $V = \mathbb{R}^n$.

Ejemplo

El espacio trivial $V = \{0\}$.

Ejemplo

 $V=M_{m\times n}(\mathbb{R}).$

Sea V un espacio vectorial sobre K. $W \subset V$ es un subespacio de W si W es un espacio vectorial con las operaciones inducidas por V.

Proposición

Sea V un espacio vectorial sobre K, $W \subset V$, $W \neq \emptyset$. W es un subespacio de V si

- i) Si w_1 , $w_2 \in W$ entonces $w_1 + w_2 \in W$
- ii) Si $w \in W$, $\alpha \in K$ entonces $\alpha w \in W$

Ejemplo

El subespacio trivial $W = \{0\}$ de un espacio V.

Ejemplo

Lineas en \mathbb{R}^2

Ejemplo

Hiperplanos en \mathbb{R}^n

Sea V un espacio vectorial. Si W_1 , W_2 son subespacios de V entonces $W_1 \cap W_2$ es subespacio de V.

La unión de subespacios no es en general un subespacio.

Definición

Sea V un espacio vectorial, W_1 , W_2 subespacios de V. La suma de W_1 y W_2 es

$$W_1+W_2=\{v\in V\mid v=w_1+w_2,w_1\in W_1,w_2\in W_2\}$$

Sea V un espacio vectorial, W, U subespacios de V. Se dice que V es suma directa de W y U si V = W + U y $W \cap U = \{0\}$. en cuyo caso se escribe $V = W \oplus U$.

Proposición

 $V = W \oplus U$ si y solo si todo $v \in V$ se escribe de manera única como v = w + u con $w \in W$ y $u \in U$.

Definición

Sea V un espacio vectorial, W_i , $i=1,\ldots,r$ subespacios de V. Se dice que V es suma directa de los subespacios W_i si todo $v \in V$ se escribe de manero única como $v=w_1+\cdots+w_r$ con $w_i \in W_i$, lo cual se escribe como $V=W_1\oplus\cdots\oplus W_r$.

Sea V un espacio vectorial, W_1 , W_2 subespacios de V. Entonces W_1+W_2 es un subespacio de V. De hecho, es el espacio más pequeño de V que contiene a $W_1\cup W_2$.

Sea V un espacio vectorial y v_1 , ..., v_n vectores en V. Si α_1 , ..., α_n son escalares, el vector

$$\alpha_1 \mathbf{v}_1 + \cdots + \alpha_n \mathbf{v}_n$$

es una combinación lineal de v_1, \ldots, v_n .

Definición

Sea V un espacio vectorial y $S \subset V$. El espacio generado por S es el conjunto

$$gen(S) = \{ v \in V \mid v = \alpha_1 v_1 + \dots + \alpha_n v_n, a_i \in S, \alpha_i \in K \}$$

Sea V un espacio vectorial $y \ S \subset V$, $S \neq \emptyset$. gen(S) es un subespacio de V. Más aún, es el subespacio más pequeño que contiene a S.

.

Sea V un espacio vectorial. Sea $S = \{v_1, \dots, v_n\} \subset V$. S es linealmente independiente si

$$\alpha_1 \mathbf{v}_1 + \cdots + \alpha_n \mathbf{v}_n = \mathbf{0}$$

implica que $\alpha_1 = \ldots = \alpha_n = 0$. Si el conjunto no es linealmente independiente se dice que es linealmente dependiente.

Proposición

Sea V un espacio vectorial. Si $S = \{v_1, \ldots, v_n\} \subset V$ y v_j , $1 \leq j \leq n$ se puede escribir como una combinación lineal de los otros elementos de S entonces $gen(S \setminus \{v_j\}) = gen(S)$.

Sea V un espacio vectorial y sea $S = \{v_1, \ldots, v_n\} \subset V$. Si S contiene un subconjunto linealmente dependiente, entonces S es linealmente dependiente.

Proposición

Sea V un espacio vectorial y sea $S = \{v_1, \ldots, v_n\} \subset V$. Si S es linealmente independiente, entonces cualquier subconjunto de S también es linealmente independiente.

{0} es siempre linealmente dependiente, por lo que un conjunto linealmente independiente no puede contener a 0.

Sea V un espacio vectorial y sea $S = \{v_1, \ldots, v_n\} \subset V$.

- 1. Si S es linealmente independiente y $v \in V$, entonces $S \cup \{v\}$ es linealmente independiente si y solo si $v \notin \text{gen}(S)$.
- 2. Si $a_1 \neq 0$, S es linealmente dependiente si y solo si $v_j \in \text{gen}\{v_1, \dots, v_{j-1}\}$ para algún $2 \leq j \leq n$.

Proposición

Sea $S = \{v_1, \ldots, v_n\} \subset \mathbb{R}^m$. Si n > m entonces S es linealmente dependiente.

Sea V un espacio vectorial, $W \subset V$ un subespacio. Una base de W es un subconjunto de W linealmente independiente que genera W.

Proposición

Sea V un espacio vectorial y sea $S = \{v_1, \ldots, v_n\} \subset V$ un subconjunto linealmente independiente. Si $v \in \text{gen}(S)$ y $v = \alpha_1 v_1 + \cdots + \alpha_n v_n = \beta_1 v_1 + \cdots + \beta_n v_n$, entonces $\alpha_i = \beta_i$, $i = 1, \ldots, n$, es decir la expresión lineal de v como combinación lineal de los vectores en S es única.

Sea V un espacio vectorial y sea $\mathcal{B} = \{v_1, \ldots, v_n\} \subset V$ una base. Si $v \in V$, las coordenadas de v respecto a \mathcal{B} son los escalares α_i , $i = 1, \ldots, n$, que aparecen en

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \dots + \alpha_n \mathbf{v}_n$$

Proposición

Sean V un espacio vectorial, W un subespacio de V, $S = \{v_1, \ldots, v_r\}$ un subconjunto de W linealmente independiente $y \ W = \text{gen}\{w_1, \ldots, w_s\}$. Entonces $s \ge r$.

Si \mathcal{B}_1 , \mathcal{B}_2 son dos bases del mismo espacio V, entonces $\#(\mathcal{B}_1) = \#(\mathcal{B}_2)$.

Definición

Sea V un espacio vectorial. La dimensión de V es el número de vectores en cualquier base de V.

Observemos que a una base no se le pueden quitar vectores que generen el espacio ni agregar vectores para mantener los vectores linealmente independientes.

Sea V un espacio vectorial. La dimensión de V, dimV, es el número de vectores en una base, y por lo tanto cualquiera, de V.

Sea V un espacio vectorial. La dimensión de V, dimV, es el número de vectores en una base, y por lo tanto cualquiera, de V.

Proposición

Sea V un espacio vectorial, dimV = r, $S \subset V$. Si V = gen(S), entonces existe un $\mathcal{B} \subset S$ tal que \mathcal{B} es base de V.

Proposición

Sea V un espacio vectorial, dimV = r, $S \subset V$. Si S es linealmente independiente, entonces existe $\mathcal{B} \supset S$ tal que \mathcal{B} es base de V.

Sea V un espacio vectorial y $W \subset V$ un subespacio. Entonces $dimW \leq dimV$.

Proposición

Sea V un espacio vectorial y $W \subset V$ un subespacio. Si dimW = dimV, entonces V = W.

Si un espacio vectorial V es de dimensión finita n y $\mathcal{B}_1 = \{v_1, \ldots, v_n\}$, $\mathcal{B}_2 = \{u_1, \ldots, u_n\}$ son dos bases distintas, entonces un vector $v \in V$ tendrá distintas coordenadas dependiendo de la base usada. Es decir

$$v = \sum_{i=1}^{n} \alpha_i v_i = \sum_{i=1}^{n} \beta_i u_i$$

Es posible encontrar una relación entre ambas coordenadas.

 $Si\ (v_i)_{\mathcal{B}_2}$ es el vector (en \mathbb{R}^n) de coordenadas de v_i con respecto a la base \mathcal{B}_2 , $v_{\mathcal{B}_1}$ es el vector de coordenadas de v con respecto a la base \mathcal{B}_1 y $v_{\mathcal{B}_2}$ es el vector de coordenadas de v con respecto a la base \mathcal{B}_2 , entonces existe una matrix invertible A dada por $A = ((v_1)_{\mathcal{B}_2} \cdots (v_2)_{\mathcal{B}_2})$ (es decir, tiene los vectores de coordenadas como columnas) tal que

$$v_{\mathcal{B}_2} = Av_{\mathcal{B}_1}$$

A es la matriz de cambio de coordenadas de la base \mathcal{B}_1 a la base \mathcal{B}_2 .

$$A_{\mathcal{B}_1 \to \mathcal{B}_2}$$

Proposición

Si A es la matriz de cambio de coordenadas de la base \mathcal{B}_1 a la base \mathcal{B}_2 entonces A^{-1} es la matriz de cambio de coordenadas de la base \mathcal{B}_2 a la base \mathcal{B}_1 .

$$A_{\mathcal{B}_2 \to \mathcal{B}_1} = (A_{\mathcal{B}_1 \to \mathcal{B}_2})^{-1}$$

Matrices

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}_{m \times n}$$
$$a_{ij} \in F, \ i = 1, \cdots, m, \ j = 1, \cdots, n, \ F = \mathbb{R}, \ \mathbb{C}$$
$$(a_{ij})_{1 \leq i \leq m, 1 \leq j \leq n}$$

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}_{m \times n} = \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \dots & b_{mn} \end{pmatrix}_{p \times q}$$

si y solo si
$$m = p$$
, $n = q$ y $a_{ij} = b_{ij}$, $\forall i, j$.

Suma de matrices

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} + \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \dots & b_{mn} \end{pmatrix}$$

$$= \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \dots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \dots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + a_{m1} & a_{m2} + b_{m2} & \dots & a_{mn} + b_{mn} \end{pmatrix}$$

$$(c_{ij}), \quad c_{ij} = a_{ij} + b_{ij}$$

La matriz cero es

$$0_{m \times n} = \begin{pmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix}$$

$$Si\ A=(a_{ij}),$$

$$-A = \begin{pmatrix} -a_{11} & -a_{12} & \dots & -a_{1n} \\ -a_{21} & -a_{22} & \dots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{m1} & -a_{m2} & \dots & -a_{mn} \end{pmatrix}$$

Sean A, B, C matrices del mismo tamaño. Entonces

i)
$$A + B = B + A$$

ii)
$$A + (B + C) = (A + B) + C$$

iii)
$$A + 0 = 0 + A = A$$

iv)
$$A + (-A) = (-A) + A = 0$$

$$A - B := A + (-B)$$

$$A = (a_{ij})$$
 $r \in \mathbb{R}$

$$rA = \begin{pmatrix} ra_{11} & ra_{12} & \dots & ra_{1n} \\ ra_{21} & ra_{22} & \dots & ra_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ ra_{m1} & ra_{m2} & \dots & ra_{mn} \end{pmatrix}$$

Sean
$$A=(a_{ij}),\ r,s\in\mathbb{R}$$

i)
$$r(A+B) = rA + rB$$

ii)
$$(r+s)A = rA + sA$$

iii)
$$r(sA) = (rs)A$$

Multiplicación de matrices

Definición

Sea $A=(a_{ij})$ una matriz de tamaño $m\times n$ y $B=(b_{ij})$ una matriz de tamaño $n\times p$. El producto de A y B es la matriz de de tamaño $m\times p$

$$AB := (c_{ij})$$

donde

$$c_{ij} = \sum_{r=1}^{n} a_{ir} b_{rj}$$

La matriz identidad $n \times n$ es

$$I_{n\times n} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

Sean A, B y C matrices para las cuales las operaciones abajo están bien definidas.

- i) A(BC) = (AB)C
- ii) IA = AI
- iii) A(B+C) = AB + AC
- iv) (A+B)C = AC + BC

Para una matriz cuadrada A, la potencia k-ésima de A es $A^k = AA \cdots A$ (k veces)

Transpuesta de una matriz

Definición

Sea $A = (a_{ij})$ una matriz de $m \times n$. La transpuesta de A es la matriz de $n \times m$ dada por

$$A^t := (b_{ij})$$

donde $b_{ij} = a_{ji}$.

Sean A y B matrices para las cuales las operaciones abajo están bien definidas.

- i) $(AB)^t = B^t A^t$
- ii) $(A^t)^t = A$
- iii) $(A + B)^t = A^t + B^t$
- iv) $(rA)^t = rA^t$, $\forall r \in \mathbb{R}$

Determinantes

Definición

Sea A una matriz cuadrada $n \times n$, $A = (a_{ij})$. El determinante de A se define como

$$|A| = \sum_{(i_1,...,i_n)} a_{i_1 1} \cdots a_{i_n n} (-1)^{\rho(i_1,...,i_n))}$$

donde (i_1, \ldots, i_n) es una permutación de $1, \ldots, n$, $y \rho()$ es la paridad de la permutación (0 si el número de transposiciones requeridas para llevar la permutación dada al orden natural, y 1 si el número de transposiciones es impar).

$$\left|\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right| = a_{11}a_{22} - a_{21}a_{12}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{31}a_{12}a_{23} + a_{21}a_{32}a_{13} \\ -a_{31}a_{22}a_{13} - a_{11}a_{32}a_{23} - a_{21}a_{12}a_{33}$$

Desarrollo por los menores del renglón i

$$|A| = a_{i1}A_{i1} + \cdots + a_{in}A_{in}$$

donde el **cofactor** $A_{ij} = (-1)^{i+j} M_{ij}$ y M_{ij} es el determinante de orden n-1 que se obtiene de |A| eliminando el renglón i y la columna j

Propiedades de los determinantes

- 1. $|I_n| = 1$
- 2. $|A^T| = |A|$
- 3. $|A^{-1}| = |A|^{-1}$
- 4. |AB| = |A||B|
- 5. $|cA| = c^n |A|$
- 6. Si A es triangular, $A = \prod_i a_{ii}$
- 7. Si A tiene un renglón o columna de 0's, |A| = 0
- 8. Si intercambiamos dos renglones o columnas, el determinante cambia de signo
- 9. Si A tiene dos columnas iguales, |A| = 0
- 10. Si A tiene columnas que son combinaciones lineales de otras columnas, |A|=0
- 11. Si a un renglón dde A le agregamos otro renglón de A, multiplicado por una constante, el determinante no se altera

Definición

Sea A una matriz de tamaño m \times n. Se dice que A es una matriz particionada o por bloques si se puede escribir como una matriz

$$A = \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1q} \\ A_{21} & A_{22} & \dots & A_{2q} \\ \vdots & \vdots & \ddots & \vdots \\ A_{p1} & A_{p2} & \dots & A_{pq} \end{pmatrix}_{m \times n}$$

donde cada una de las entradas A_{ij} es a su vez una matriz de tamaño $m_i \times n_j$ y $\sum_{i=1}^p m_i = m$, $\sum_{j=1}^q n_j = n$.

Proposición

$$A^{t} = \begin{pmatrix} A_{11}^{t} & A_{21}^{t} & \dots & A_{p1}^{t} \\ A_{12}^{t} & A_{22}^{t} & \dots & A_{p2}^{t} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1q}^{t} & A_{2q}^{t} & \dots & A_{pq}^{t} \end{pmatrix}_{n \times m}$$

Sumar y multiplicar matrices por bloques para que los bloques sean tratados como si fueran elementos requiere condiciones adicionales a las que ya se tienen.

Ejemplo

$$A = \begin{pmatrix} 1 & 0 & -3 & 0 \\ 0 & 1 & 4 & 0 \end{pmatrix}_{n \times m}$$

$$A = \begin{pmatrix} 4 & -1 & 6 \\ 3 & 8 & 3 \\ 0 & 0 & 0 \\ 4 & 3 & -5 \end{pmatrix}$$

Sea A una matriz cuadrada de tamaño $m \times n$ y x un vector $n \times 1$. Si A está dada por bloques columna por

$$A=\begin{pmatrix} a_1 & a_2 & \cdots & a_n \end{pmatrix},$$

es decir a_i es un vector columna $m \times 1$ y

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix},$$

entonces

$$Ax = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
$$= x_1 a_1 + x_2 a_2 + \dots + x_n a_n$$

Una combinación lineal de matrices es una suma del tipo

$$\alpha_1 A_1 + \alpha_2 A_2 + \ldots + \alpha_k A_k$$

donde las A_i son matrices y los α_1 números reales.

Ax es una combinación lineal de las columnas de A

Análogamente sea A una matriz cuadrada de tamaño $m \times n$ y y un vector horizontal $1 \times m$. Si A está dada por bloques renglón por

$$A = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_m \end{pmatrix},$$

es decir b_i es un vector renglón $1 \times n$ y

$$y = \begin{pmatrix} y_1 & y_2 & \cdots & y_m \end{pmatrix},$$

entonces

$$yA = \begin{pmatrix} y_1 & y_2 & \cdots & y_m \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_m \end{pmatrix}$$
$$= y_1 u_1 + y_2 u_2 + \dots + y_m u_m$$

Luego, yA es una combinación lineal de los renglones de A. En general, un producto matricial puede escribirse como

$$AB = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_m \end{pmatrix} \begin{pmatrix} b_1 & b_2 & \cdots & b_p \end{pmatrix} = \begin{pmatrix} u_1b_1 & u_1b_2 & \cdots & u_1b_p \\ u_2b_1 & u_2b_2 & \cdots & u_2b_p \\ \vdots & \vdots & \vdots & \vdots \end{pmatrix}$$

donde A tiene bloques de vectores renglón y B tiene bloques de vectores columna.

Si ahora A tiene bloques de vectores columna y B tiene bloques de vectores renglón, entonces el producto está dado por la suma de matrices dadas por el producto exterior

$$AB = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} = \sum a_i v_i$$

Definición

Sea $A = (a_{ij})$ una matriz cuadrada de tamaño n. La traza de A es

$$\operatorname{tr}(A) := \sum_{i=1}^n a_{ii}$$

Proposición

Sean A, B matrices cuadradas de tamaño n, $\alpha \in \mathbb{R}$.

- i) $tr(A) = tr(A^t)$
- ii) $tr(\alpha A) = \alpha tr(A)$
- iii) tr(A+B) = tr(A) + tr(B)

Proposición

Sean $A_{m \times n}$, $B_{n \times m}$ matrices. Entonces tr(AB) = tr(BA),

Proposición

Sean u, v vectores $m \times 1$. Entonces $tr(uv^t) = u^t v = v^t u$.

$$tr(ABC) = tr(CAB) = tr(BCA)$$

Ejemplo

Sea A una matriz cuadrada. Encuentre una matriz cuadrada X tal que AX-XA=I

Definición

P es una matriz de permutación de tamaño n si se obtiene de permutar las columnas o renglones de la matriz identidad I_n .

Equivalentemente:

Definición

Una matriz de permutación de tamaño n es una matriz cuadrada tal que cada columna cada renglón contiene exactamente un 1 y 0 en los demás lados.

Si e_i es el vector canónico y

$$A_{m\times n} = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_m \end{pmatrix} = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \end{pmatrix}$$

por bloques renglón y columna respectivamente y P es una matriz de permutación, entonces

$$PA = \begin{pmatrix} e_{i1}^t \\ e_{i2}^t \\ \vdots \\ e_{im}^t \end{pmatrix} A = \begin{pmatrix} Ae_{i1}^t \\ Ae_{i2}^t \\ \vdots \\ Ae_{im}^t \end{pmatrix} = \begin{pmatrix} u_{i1} \\ u_{i2} \\ \vdots \\ u_{im} \end{pmatrix}$$

$$AQ = A \begin{pmatrix} e_{j1} & e_{j2} & \cdots & e_{jn} \end{pmatrix} = \begin{pmatrix} Ae_{j1} & Ae_{j2} & \cdots & Ae_{jn} \end{pmatrix}$$

= $\begin{pmatrix} a_{j1} & a_{j2} & \cdots & a_{jn} \end{pmatrix}$

Definición

Una matriz cuadrada $A = (a_{ij})$ es triangular superior si $a_{ij} = 0$, i > j. A es triangular inferior si $a_{ij} = 0$, j > i. A es triangular si es triangular inferior o superior

Proposición

Sean A, B matrices cuadradas de tamaño n.

- i) Si A es triangular superior (inferior) entonces A^t es triangular inferior(superior).
- ii) Si A y B son triangulares superiores (inferiores) entonces AB es triangular superior(inferior).

Definición

Sea A una matriz cuadrada. Si existe un entero positivo k tal que $A^k = 0$, se dice que A es nilpotente.

Proposición

Sean $A_{n\times n}$ una matriz triangular con entradas diagonales cero. Entonces A es nilpotente. De hecho, $A^n=0$.

Tarea 1

1. Si

$$A = \begin{bmatrix} 1 & -3 \\ -3 & 5 \end{bmatrix} \qquad \text{y} \qquad AB = \begin{bmatrix} -3 & -11 \\ 1 & 17 \end{bmatrix}$$

¿Quién es B?.

- 2. Sea A una matriz $n \times n$ y x un vector $n \times 1$. ¿Cuántas multiplicaciones se requieren para calcular A^2x ?. Hágalo primero considerando (AA)x y luego considerando A(Ax), ¿Cuál forma es más eficiente?.
- 3. Muestre que la matriz en bloques

$$\left[\begin{array}{cc}I&O\\A&I\end{array}\right]$$

es invertible y encuentre su inversa.

4. Sean

$$v_1 = \begin{bmatrix} 1 \\ 3 \\ -4 \end{bmatrix}, \quad v_2 = \begin{bmatrix} -2 \\ -3 \\ 7 \end{bmatrix} \quad y \quad w = \begin{bmatrix} -3 \\ -3 \\ 10 \end{bmatrix}$$

Determine si w esta en el subespacio de \mathbb{R}^3 generado por v_1 y v_2 .

5. Sean

$$b_1 = \begin{bmatrix} -3 \\ 2 \\ -4 \end{bmatrix}, \quad b_2 = \begin{bmatrix} 7 \\ -3 \\ 5 \end{bmatrix} \quad \text{y} \quad x = \begin{bmatrix} 5 \\ 0 \\ -2 \end{bmatrix}$$

x esta en un subespacio H, y $\{b_1, b_2\}$ forman una base de H. Encuentre las coordenadas de x con respecto a esa base.

6. Sean

$$A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \quad \text{y} \quad B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Muestre que $A^2 = I$, $B^2 = I$ y AB = -BA (esto es A y B anticonmutan).

- 7. Mediante la simulación, en R, de matrices A y B adecuadas, justifique la validez o falsedad de las igualdades |AB| = |A||B| y |A + B| = |A| + |B|.
- 8. Sea W el conjunto de todos los vectores de la forma

$$\begin{bmatrix} 2s + 4t \\ 2s \\ 2s - 3t \\ 5t \end{bmatrix}$$

Muestre que W es un subespacio de \mathbb{R}^4 , ¿Qué dimensión tiene?, ¿Cuál es una base de W?

Sistema de ecuaciones lineales

Un sistema de ecuaciones lineales de m ecuaciones y n variables es un sistema del tipo

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$
 $\vdots = \vdots$
 $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$

Los a_{ij} son escalares fijos llamados coeficientes y las x_i son las variables. Si m=n el sistema se llama cuadrado y rectangular de otra manera.

Una solución es una n-eada (s_1, \dots, s_n) que hace que las ecuaciones sean ciertas al mismo tiempo.

Representación matricial de un sistema lineal

Todo sistema se puede representar por una ecuación matricial del tipo Ax = b.

La matriz de coeficientes del sistema A está dada por

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}_{m \times n}$$

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}_{n \times 1} \qquad b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}_{m \times 1}$$

En representación matricial, una solución es un vector

$$s = \begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ s_m \end{pmatrix}$$

que satisface

$$As = b$$

Un sistema Ax = b puede tener

- i) Solución única
- ii) Un número infinito de soluciones
- iii) No solución

Proposición

Si un sistema Ax = b tiene más de una solución entonces tiene un número infinito de soluciones.

Definición

Un sistema Ax = b es consistente si tiene al menos una solución e inconsistente si no.

Definición

Dada una matriz, una operación elemental por renglones es una de las siguientes:

- i) Tipo I: intercambiar dos renglones de la matriz
- ii) Tipo II: multiplicar un renglón por un escalar distinto de cero.
- iii) Tipo III: reemplazar un renglón por la suma de ese renglón con el múltiplo escalar otro renglón

Proposición

Si se aplica las mismas operaciones por renglón a A y b en el sistema Ax = b, la solución del sistema sigue siendo la misma.

La matriz de coeficientes aumentada del sistema está dada por

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_m \end{pmatrix}_{m \times n}$$

De esta forma aplicar operaciones por renglones a la matriz aumentada (A|b) es equivalente a aplicarlas en ambos lados de la ecuación Ax = b.

Sea U la matriz dada por bloques renglón o columna

$$U = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_m \end{pmatrix} = (v_1, v_2, \dots, v_n)$$

Una matriz U tiene forma escalonada por renglones si se cumple:

- Si el primer elemento no cero en un renglón u_i está en la posición j, entonces todas las entradas abajo de la posición i en las columnas v_1, \ldots, v_j son cero.
- Si el renglón ui es cero, entonces todos los renglones abajo de él son vectores de ceros.

Los pivotes son las primeras entradas no cero en cada renglón.

El método de Gauss o de eliminación Gaussiana consiste en llevar una matriz aumentada correspondiente a un sistema Ax = b a una forma escalonada por renglones.

En una matriz cuadrada $A_{n \times n}$, correspondiente al sistema Ax = b, obtenemos un nuevo sistema Ux = b' con matriz aumentada

$$\begin{pmatrix} u_{11} & u_{12} & \dots & u_{1n} & b'_{1} \\ 0 & 0 & \dots & u_{2n} & b'_{2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & u_{nn} & b'_{n} \end{pmatrix}_{m \times n}$$

Las soluciones del sistema cuadrado están dadas entonces por: 1. $x_n = b'_n/u_{nn}$.

2. Recursivamente:

$$x_i = \frac{1}{u_{ii}} \left(b_i - \sum_{j=i+1}^n u_{ij} x_j \right)$$

para
$$i = n, n - 1, \dots, 2, 1$$
.

Si el sistema es rectangular n>m, el sistema reducido tendrá mas incógnitas que ecuaciones por lo que se deben seleccionar algunas variables que se llamaran básicas y las restantes serán libres. Usualmente se escogen los pivotes como básicas y las restantes como libres. Una vez seleccionadas se hace sustitución hacia atrás y se encuentra una solución general.

Por medio de eliminación Gaussiana podemos saber si un sistema es inconsistente o no: Un sistema es inconsistente si y solo si al reducirlo se encuentra un renglón (en la matriz aumentada) del tipo $(0\dots0,\alpha)$

Teorema

Sea A una matriz y sean U_1 , U_2 dos formas escalonadas por renglones de A distintas (i.e. se emplearon dos sucesiones distintas de operaciones elementales). Entonces el número de pivotes de U_1 y U_2 es el mismo.

De esta manera, no importa que sucesión de operaciones elementales usemos, el número de pivotes permanece constante, y en consecuencia en las mismas posiciones. Por lo tanto el número de pivotes es un invariante de *A*.

El número de pivotes cuenta el número de variables básicas por lo que estás son siempre el mismo número y similarmente para las libres.

Sea U cualquier matriz en forma reducida por renglones obtenida de A, entonces:

Número de pivotes de A = Número de pivotes de U

= Número de renglones no cero de U

= Número de columnas básicas de U

Definición

El rango de A es el número de pivotes de A.

Una matriz E tiene forma escalonada reducida por renglones si se cumple:

- E Está en forma escalonada por renglones
- El primer elemento no cero en cada renglón es 1.
- ► Todas las entradas arriba de cada pivote son 0.

El método de Gauss-Jordan o de eliminación Gauss-Jordan consiste en llevar una matriz aumentada correspondiente a un sistema Ax = b a una forma escalonada por renglones.

Las columnas básicas de $E_{m \times n}$ son r vectores canónicos en R^m .

Siempre podemos encontrar una matriz de permutación P tal que

$$EP = \begin{pmatrix} I_r & J \\ 0 & 0 \end{pmatrix}$$

Proposición

Sea A una matriz $m \times n$. Hacer una operación elemental por renglones en A es lo mismo que multiplicar A por la izquierda por la correspondiente matriz elemental.

Sistemas lineales homogéneos

Definición

Un sistema lineal Ax = 0 se llama un sistema lineal homogéneo

Siempre tiene la solución trivial x = 0 por lo que es consistente.

Dados $v_1, v_2, ..., v_n$ vectores, una combinación lineal es una expresión del tipo

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_n \mathbf{v}_n$$

donde los α_i son escalares.

La solución general de un sistema homogéneo es una combinación lineal de las soluciones particulares que se obtienen al hacer una variable libre igual a 1 y 0 en las demás, tomando las variables libres como coeficientes.

Proposición

Si A es $m \times n$ y n > m, entonces Ax = 0 tiene soluciones no triviales.

En general, si A es $m \times n$ la solución general del sistema homogéno es

$$x = x_{f_1}h_1 + x_{f_2}h_2 + \ldots + x_{f_{n-r}}h_{n-r}$$

Para el sistema Ax = b, la solución general es del tipo

$$x = x_p + x_h$$

donde x_h es la solución general del sistema homogéneo asociado y x_p es una solución particular que se obtiene haciendo todas las variables libres igual a cero.

Definición

Sea A una matriz cuadrada $n \times n$. Se dice que A es invertible o no singular si existe una matriz B tal que $AB = I_n$, $BA = I_n$. B es una inversa de A.

Si A no es invertible se le llama singular.

Proposición

Si A es invertible, la matriz inversa es única.

La inversa de A se denota por A^{-1} .

Si una matriz es invertible, entonces la solución del sistema Ax = b esta dada por $x = A^{-1}b$.

El sistema se llama sistema no singular cuando A es no singular.

Proposición

Sen A, B matrices $n \times n$. Entonces AB = I si y solo si BA = I.

Si A es una matriz $m \times n$, una inversa izquierda de A es una matriz C, $n \times m$ tal que $CA = I_n$. Una inversa derecha es una matriz B, $m \times n$ tal que $AB = I_m$.

Una matriz rectangular puede tener inversa por un lado, pero no del otro y no tienen por que coincidir.

Sean A una matriz $n \times n$. Entonces

i)
$$(AB)^{-1} = B^{-1}A^{-1}$$

ii)
$$(A^{-1})^{-1} = A$$

iii)
$$(A^{-1})^t = (A^t)^{-1}$$

Para encontrar A^{-1} , tenemos la ecuación AX = I que puede verse como un conjunto de sistemas de ecuaciones $Ax_i = e_i$ donde x_i son las columnas de X.

Luego con el método de Gauss, si es posible resolver cada uno de estos sistemas con solución x_i , encontramos la inversa de A dada por $X = (x_1 \dots x_n)$. Usando Gauss Jordan

$$L(A|I) = (LA|LI) = (I|L)$$

implica que $L = A^{-1}$

A es invertible si y solo si el sistema homogéneo asociado solo tiene la solución x=0.

Sea $A \neq 0$ una matriz $m \times n$. Entonces:

- i) Existe una matriz invertible G tal que GA = U, donde U está en forma escalonada por renglones.
- ii) Existe una matriz invertible H tal que HA = E, donde E está en forma escalonada reducida por renglones.

Proposición

A es no singular si y solo si el el producto de matrices elementales de tipo I, II, ó III.

Proposition

Si $A_{n\times n}$ es triangular inferior (superior) con todas sus entradas diagonales distintas de cero, entonces es invertible y su inversa es triangular inferior (superior). Más aún, cada elemento de la diagonal de la matriz inversa es el recíproco del elemento correspondiente de A.

Proposition

El producto de dos matrices de permutación es una matriz de permutación.

Proposition

Una matriz de permutación es invertible y su inversa es su transpuesta.

Sea A una matriz $n \times n$. Se dice que A tiene una descomposición LU si se puede factorizar como A = LU donde

- i) $L = (l_{ij})$ es una matriz triangular inferior tal que $l_{ii} = 1$, i = 1, ..., n
- ii) $U = (u_{ij})$ es una matriz triangular superior tal que $u_{ii} \neq 0$, i = 1, ..., n

L es el factor inferior y U es el factor superior.

Si A es una matriz y U es la matriz que se obtiene usando eliminación Gaussiana y no se necesitaron intercambios de renglones (i.e. no aparecieron pivotes cero) entonces A tiene una descomposición LU, dada por A = LU.

Los elementos de la diagonal de U son los pivotes de A.

Para resolver el sistema lineal Ax = b cuando A = LU se resuelven dos sistemas triangulares Ly = b y Ux = y.

Primero se usa sustitución hacia adelante en Ly = b:

$$\begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ I_{21} & 1 & 0 & \cdots & 0 \\ I_{31} & I_{32} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ I_{n1} & I_{n2} & I_{n3} & \cdots & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_n \end{pmatrix}$$

$$y_1 = b_1$$

$$y_i = b_i - \sum_{i=1}^{i-1} I_{ij} y_i$$

Luego se resuelve el sistema Ux = y usando sustitución hacia atras:

$$\begin{pmatrix} u_{11} & u_{12} & u_{13} & \cdots & u_{1n} \\ 0 & u_{22} & u_{23} & \cdots & u_{2n} \\ 0 & 0 & u_{33} & \cdots & u_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & u_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{pmatrix} \equiv \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_n \end{pmatrix}$$

$$x_n = y_n/u_{nn}$$

$$x_{i} = b_{i} - \sum_{j=1}^{i-1} I_{ij} y_{i}$$
 $x_{i} = \frac{1}{u_{ii}} \left(y_{i} - \sum_{j=i+1}^{n} u_{ij} x_{j} \right)$

Ejemplo

$$A = \begin{pmatrix} 2 & 3 & 0 & 0 \\ 4 & 7 & 2 & 0 \\ -6 & -10 & 0 & 1 \\ 4 & 6 & 4 & 5 \end{pmatrix}$$
$$x = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 0 \end{pmatrix}$$

Una submatriz de una matriz A es una matriz que se obtiene al eliminar renglones y columnas de A.

Si A es de tamaño $m \times n$, $I_r \subset \{1, \ldots, m\}$, $I_c \subset \{1, \ldots, n\}$, se denota por $A_{Ir,\cdot}$ a la matriz que se forma al dejar solo los renglones indexados por I_c y $A_{\cdot,Ic}$ a la matriz que se forma al dejar solo las columnas indexadas por I_c .

Si A es $n \times n$, una una submatriz principal si se obtiene de A eliminando los mismos renglones y columnas, i.e. $I_c = I_r$. Una submatriz principal lider se obtiene cuando es principal y $I_c = I_r = \{1, 2, \cdots, k\}, \ k < n$.

Sea A una matriz no singular. A tiene una factorización LU si y solo si todas sus submatrices principales líderes son no singulares.

Sea A una matriz no singular. A tiene una factorización LU si y solo si todas sus submatrices principales líderes son no singulares.

Proposición

Si A una matriz no singular y A = LU es una factorización LU de A, entonces L y U son únicas.

No todas la matrices no singulares tienen una descomposición LU, por ejemplo

$$\begin{pmatrix} 0 & 1 \\ 1 & a \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ l & 1 \end{pmatrix} \begin{pmatrix} u_{11} & u_{12} \\ 0 & u_{22} \end{pmatrix}$$

Sin embargo

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & a \end{pmatrix} = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$$

Es decir, podemos multiplicar una matriz A por una matriz de permutación P de tal manera que PA = LU.

En general esto es cierto, siempre podemos encontrar una matriz de permutación P tal que PA tiene una descomposición LU.

Si A es no singular, entonces existe una matriz de permutación P tal que PA tiene una descomposición LU

$$PA = LU$$

donde L es triangular inferior con unos en la diagonal y U es triangular superior.

Sa A no singular de tamaño $n \times n$. Entonces PA = LDU donde P es una matriz de permutación $n \times n$, L es $n \times n$ es una matriz triangular inferior con unos en la diagonal, D es $n \times n$ diagonal con elementos diagonales no cero y U es $n \times n$ es una matriz triangular superior con unos en la diagonal.

Los elementos de D son distintos de cero pues son los pivotes de A. L y U son únicas.

Lema

Sea A una matriz simétrica de tamaño $n \times n$ tal que A = LDU donde L es triangular inferior con unos en la diagonal, U es triangular superior con con unos en la diagonal, D es diagonal con elementos diagonales no cero. Entonces $U = L^t$ y $A = LDL^t$.

Sea A una matriz simétrica de tamaño $n \times n$ que tiene una descomposición LU con pivotes estrictamente positivos. Entonces existe una matriz triangular inferior T tal que $A = TT^t$ y los elementos diagonales de T son positivos.

Definición

Sea A una matriz simétrica de tamaño $n \times n$. Se dice que A es positiva definida si todos sus pivotes son estrictamente positivos.

La descomposición $A = TT^t$ de una matriz positiva definida se llama la descomposición de Cholesky.

Ejemplos.

- 1. Inversa de matrices particionadas.
- 2. Descomposición LDU de matrices particionadas

Sea A una matriz de tamaño $m \times n$. El espacio columna de A es

$$C(A) = \{ y \in \mathbb{R}^m \mid y = Ax \text{ para algún } x \in \mathbb{R}^n \}$$

Dicho de otra manera $\mathcal{C}(A)$ es el espacio generado por las columnas de A de donde automáticamente obtenemos que $\mathcal{C}(A)$ es subespacio de \mathbb{R}^m .

Sea A una matriz de tamaño $m \times n$. El espacio renglón de A es

$$\mathcal{R}(A) = \{ y \in \mathbb{R}^n \mid y = A^t x \text{ para algún } x \in \mathbb{R}^m \}$$

 $\mathcal{R}(A) = \mathcal{C}(A^t)$ por lo que es subespacio de \mathbb{R}^n .

Sea A una matriz de tamaño m x n. El espacio nulo de A es

$$\mathcal{N}(A) = \{ x \in \mathbb{R}^n \mid Ax = 0 \}$$

$$\ker(A) = \mathcal{N}(A)$$

Proposición

Sean A una matriz $m \times n$. $\mathcal{N}(A)$ es subespacio de \mathbb{R}^n .

En general, dados vectores $v_1,...,v_n$, en \mathbb{R}^m , estos pueden acomodarse para formar las columnas de una matriz A de tamaño $m \times n$. Luego, un vector b estará en gen $\{v_1,...,v_n\}$ si y solo si Ax = b es consistente

Proposición

Sea $S = \{a_1, \ldots, a_n\} \subset \mathbb{R}^m$. S es linealmente independiente si y solo si la matriz formada con los a_i como columnas tiene $\ker A = \{0\}$

Corolario

Sea $S = \{a_1, \ldots, a_n\} \subset \mathbb{R}^n$. S es linealmente independiente si y solo si la matriz formada con los a_i como columnas es invertible.

Corolario

Sea A una matriz $m \times n$. Un subconjunto de columnas de A es linealmente independiente si y solo si las columnas correspondientes en las mismas posiciónes de la matriz escalonada por renglones de A son linealmente independientes.

Las columnas donde están los pivotes son linealmente independientes y son las columnas básicas.

Sea A una matriz $m \times n$. El número de renglones linealmente independientes de A es igual al número de sus columnas linealmente independientes.

Sea A una matriz $m \times n$. El número de renglones linealmente independientes de A es igual al número de sus columnas linealmente independientes.

Definición

Sea A una matriz $m \times n$. El rango de A es el número (máximo) de renglones linealmente independientes de A.

Proposición

Sea A una matriz $m \times n$ con r columnas linealmente independientes. Entonces existe un conjunto de n-r vectores linealmente independientes que son solución del sistema homogéneo dado por A y cualquier otra solución se puede expresar como una combinación lineal de esas n-r soluciones linealmente independientes.

El rango de una matriz A es la dimensión del espacio columna de A.

 $\rho(A)$

Definición

La nulidad de una matriz A es la dimensión del espacio nulo (o kernel) de A.

 $\nu(A)$

Ejemplo

 $\rho(A) = 0$ si y solo si A = 0.

Ejemplo

T una matriz triangular

Ejemplo

 I_n

 $\rho(A) = n$ úmero de renglones linealmente independientes de A.

Corolario

Si A es cuadrada, $\rho(A) = \rho(A^t)$

Corolario

Si A es de tamaño $m \times n$, $\rho(A) \leq \min\{m, n\}$

Teorema

Sea A un matriz de tamaño $m \times n$. Entonces

$$\rho(A) + \nu(A) = n$$

Sea A de tamaño n \times n. A es invertible si y solo si $\rho(A) = n$.

Sea A una matriz $n \times n$. un vector $x \in \mathbb{R}^n$, $x \neq 0$ es un vector propio de A si $Ax = \lambda x$ para algún escalar λ , que en tal caso es llamado un valor propio.

Ejemplos.

 λ es un valor propio de A si y solo si la ecuación

$$(A - \lambda I)x = 0$$

tiene una solución no trivial.

Definición

El espacio propio de A correspondiente a λ es

$$E_{\lambda} := \mathcal{N}(A - \lambda I)$$

Si A es triangular, sus valores propios son las entradas de su diagonal principal.

Proposición

0 es un valor propio de A si y solo si A es no invertible.

Proposición

Sea A una matriz $n \times n$. Si el valor propio λ_i corresponde al vector propio v_i , $i=1,\ldots,r$ y $\lambda \neq \lambda$, $i \neq j$, entonces el conjuntto $\{v_1,\ldots,v_r\}$ es linealmente independiente.

Sea A una matriz $n \times n$. La ecuación característica de A es

$$\det(A - \lambda I) = 0$$

Proposición

 λ es un valor propio de A si y solo si λ satisface la ecuación característica.

Proposición

Sea A una matriz $n \times n$. $p(\lambda) := det(A - \lambda I)$ es un polinomio de grado n, llamado el polinomio característico de A.

Sean A y B matrices $n \times n$. Se dice que A es similar a B si existe una matriz invertible P tal que $A = PBP^{-1}$.

Si A es similar a B entonces B es similar a A, por lo que simplemente decimos que A y B son similares.

De hecho. similaridad es una relación de equivalencia.

Si A y B son similares entonces tienen el mismo polinomio característico y por tanto tienen los mismos valores propios

Definición

Una matriz es diagonalizable si es similar a una matriz diagonal D.

Sea A una matriz $n \times n$. Entonces A es diagonalizable si y solo si A tiene n vectores propios linealmente independientes. De hecho, $A = PDP^{-1}$ si y solo si las columnas de P son los n vectores propios de A linealmente independientes y las entradas de la matriz diagonal D son los valores propios correspondientes a los vectores propios.

Sea A una matriz $n \times n$. Si A tiene n valores propios distintos, entonces A es diagonalizable.

Sea A una matriz $n \times n$ y λ_0 un valor propio de A. La multiplicidad algebraica de λ_0 es el número m de veces que aparece como raíz del polinomio característico, $p(\lambda) = (\lambda - \lambda_0)^m q(\lambda)$. La multiplicidad geométrica de λ_0 es dim $E_{\lambda_0} = \dim \mathcal{N}(A - \lambda_0 I)$.

Proposición

La multiplicidad geométrica de un valor propio es menor o igual que su multiplicidad algebraica.

Sea A una matriz $n \times n$. A es diagonalizable si y solo si la multiplicidad geométrica de cada valor propio es igual a su multiplicidad algebraica; es decir si la suma de las dimesiones de los espacios propios es igual a n.

Teoremas Espectrales

Proposición

Sea A una matriz diagonalizable $n \times n$ de rango r. Entonces existe una matriz no singular V tal que

$$A = V \begin{pmatrix} \Lambda_1 & 0 \\ 0 & 0 \end{pmatrix} V^{-1}$$

donde Λ_1 es diagonal de tamaño $r \times r$ con elementos distintos de cero en la diagonal.

Sea A una matriz diagonalizable $n \times n$ de rango r. Entonces existen escalares $\lambda_1, \ldots, \lambda_r$ tales que

$$A = \lambda_1 v_1 w_1^t + \lambda_2 v_2 w_2^t + \dots + \lambda_r v_r w_r^t$$

donde los v_i , w_j son vectores en \mathbb{C}^n tales que $w_i^t v_i = 1$, $w_i^t v_j = 0$, $i \neq j$, i, $j = 1, \ldots, r$.

Proposición

Sea A una matriz diagonalizable $n \times n$ de rango r. Entonces existen una matriz S de tamaño $n \times r$, una matriz W de tamaño $r \times n$ y una matriz diagonal Λ_1 , $r \times r$ tales que

$$A = S\Lambda_1 W$$

donde $WS = I_r$.

Sea X un espacio vectorial sobre K. Un producto interno sobre X es una función $\langle , \rangle : X \times X \to K$ que cumple que:

i)
$$\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$$

ii)
$$\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$$

iii)
$$\langle x, y \rangle = \overline{\langle y, x \rangle}$$

iv)
$$\langle x, x \rangle \geq 0$$
 y $\langle x, x \rangle = 0 \Leftrightarrow x = 0$

para todo x, y, $z \in X$, $\alpha \in K$ y donde $\langle x, y \rangle := \langle , \rangle (x, y)$.

Sea X un espacio vectorial sobre K. Un producto interno sobre X es una función $\langle , \rangle : X \times X \to K$ que cumple que:

i)
$$\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$$

ii)
$$\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$$

iii)
$$\langle x, y \rangle = \overline{\langle y, x \rangle}$$

iv)
$$\langle x, x \rangle \ge 0$$
 y $\langle x, x \rangle = 0 \Leftrightarrow x = 0$

para todo x, y, $z \in X$, $\alpha \in K$ y donde $\langle x, y \rangle := \langle , \rangle (x, y)$.

Definición

Sea X un espacio vectorial. X es un espacio con producto interno si tiene un producto interno definido sobre X.

Todo producto interno define una función

$$||x|| = \sqrt{\langle x, x \rangle}.$$

llamada la norma de x.

Un vector es unitario si ||x|| = 1

Todo producto interno define una función

$$||x|| = \sqrt{\langle x, x \rangle}.$$

llamada la norma de x.

Un vector es unitario si ||x|| = 1

Proposition (desigualdad de Schwarz)

Sea X un espacio con producto interno. Entonces

$$|\langle x, y \rangle| \le ||x|| ||y||$$

para cualesquiera x, $y \in X$. La igualdad se cumple si y solo si x y y son linealmente independientes.

Corolario (La desigualdad del triángulo)

Sea X un espacio con producto interno. Entonces

$$||x + y|| \le ||x|| + ||y||$$

para cualesquiera x, $y \in X$. La igualdad se cumple si y solo si x y y son linealmente independientes.

La distancia entre dos vectores está definida por

$$d(x,y) = ||x - y|| = \sqrt{\langle x - y, x - y \rangle}.$$

Sea X un espacio con producto interno. $x, y \in X$ son ortogonales si $\langle x, y \rangle = 0$. Dos conjuntos son ortogonales si todos los elementos de uno son ortogonales con todos los elementos del otro.

$$x \perp y$$
, $x \perp A$, $A \perp B$.

Proposición (Ley del paralelogramo)

x y y son ortogonales si y solo si

$$||x + y||^2 = ||x||^2 + ||y||^2$$

En \mathbb{R}^n , un producto interno está definido por

$$\langle x, y \rangle = \sum_{j=1}^{n} x_j y_j$$

donde $x = (x_1, \dots, x_n)$, $x = (y_1, \dots, y_n)$. interpretando x, y como vectores

$$\langle x, y \rangle = x \cdot y = x^t y$$

Sea V un espacio con producto interno y $W \subset V$ un subespacio. El complemento ortogonal de W es

$$W^{\perp} = \{ v \in V \mid \langle v, w \rangle = 0 \quad \forall w \in W \}$$

Sea V un espacio con producto interno y $W \subset V$ un subespacio. El complemento ortogonal de W es

$$W^{\perp} = \{ v \in V \mid \langle v, w \rangle = 0 \quad \forall w \in W \}$$

Proposición

 W^{\perp} es un subespacio de V.

Sea V un espacio con producto interno y sea $S = \{u_1, \ldots, u_p\}$ un conjunto ortogonal de vectores en V distintos de cero. Entonces S es linealmente independiente.

Sea V un espacio con producto interno y sea $S = \{u_1, \ldots, u_p\}$ un conjunto ortogonal de vectores en V distintos de cero. Entonces S es linealmente independiente.

Proposición

Sea V un espacio con producto interno y $W = \text{gen}\{u_1, \ldots, u_p\}$. donde los u_j forman un conjunto ortogonal de vectores en V distintos de cero. Entonces $y \in W$ es de la forma

$$y = \alpha_1 u_1 + \dots + \alpha_p u_p$$

donde

$$\alpha_j = \frac{\langle y, u_j \rangle}{\langle u_j, u_j \rangle}$$

Teorema

Sea V un espacio con producto interno y $W \subset V$ un subespacio. Entonces cualquier $y \in V$ se puede escribir de manera única como

$$y = w + z$$

donde $w \in W$ y $z \in W^{\perp}$. Es decir, $V = W \oplus W^{\perp}$. Mas aún, si $\{u_1, \ldots, u_p\}$ es una base ortogonal de W, entonces

$$w = \frac{y \cdot u_1}{u_1 \cdot u_1} u_1 + \cdots + \frac{y \cdot u_p}{u_p \cdot u_p} u_p$$

$$y z = y - w$$
.

En la descomposición y = w + z, al vector w se le llama la proyección ortogonal de y sobre W, $w = \text{proy}_W y$.

Proposición

- i) $proy_W(proy_W y) = proy_W y$
- ii) Si $y \in W$, $proy_W y = y$.

Sea V un espacio con producto interno, $W \subset V$ un subespacio, $y \in V$ y $u = proy_W y$. Entonces u es el vector en W más cercano a y, en el sentido que

$$||y-u||<||y-w||$$

para todo $w \in W$, $w \neq u$.

u es la mejor aproximación a y por elementos de W.

Para encontrar bases ortogonales dada una base ortogonal cualesquiera, es necesario usar el proceso de ortogonalización de Gram-Schmid.

Para normalizar vectores, basta dividirlos entre su norma.

Una matriz U cuadrada es ortogonal si $U^{-1} = U^{t}$.

Proposición

Una matriz cuadrada es ortogonal si y solo si tiene columnas ortonormales.

El teorema es cierto también para los renglones de U.

Las columnas (renglones) de una matriz ortogonal forman una base ortonormal de \mathbb{R}^n si U es de tamaño $n \times n$

Sea V un espacio con producto interno y $W \subset V$ un subespacio. Si $\{u_1,\ldots,u_p\}$ es una base ortonormal de W, entonces dado $y \in V$

$$proy_W y = (y \cdot u_1)u_1 + \cdots (y \cdot u_p)u_p$$

У

$$proy_W y = UU^t y$$

donde
$$U = (u_1 \cdots u_p)$$
.

Si el sistema Ax = b no tiene solución, i.e. es inconsistente, podríamos tratar de encontrar x tal que Ax este tan cercano a b como sea posible, la mejor aproximación a la solución.

El problema general de mínimos cuadrados es encontrar x de tal manera que la distancia $\|b-Ax\|$ sea tan pequeña como sea posible.

Definición

Sea A una matriz $m \times n$ y $b \in \mathbb{R}^m$. Una solución de mínimos cuadrados del sistema Ax = b es un $\hat{x} \in \mathbb{R}^n$ tal que

$$||b - A\hat{x}|| \le ||b - Ax||$$

para todo $x \in \mathbb{R}^n$.

El vector Ax está en C(A). El vector en C(A) más cercano a b está dado por la proyección ortogonal de b sobre C(A), \hat{b} .

Si $A\hat{x} = \hat{b}$, entonces \hat{x} satisface

$$A^t A x = A^t b$$

Definición

El sistema $A^tAx = A^tb$ se llama el sistema de ecuaciones normales de Ax = b.

Proposición

El conjunto de soluciones de mínimos cuadrados del sistema Ax = b es el conjunto de soluciones del sistema de ecuaciones normales $A^tAx = A^tb$.

Son equivalentes

- 1. La solución de mínimos cuadrados de Ax = b es única
- 2. Las columnas de A son linealmente independientes
- 3. A^tA es invertible.

En cualquier caso de los anteriores

$$\hat{x} = (A^t A)^{-1} A^t b$$

En general $||b - A\hat{x}||$ es llamado el error de mínimos cuadrados.

Proposición

Sea A una matriz $m \times n$ con columnas linealmente independientes y A = QR su factorización QR. Entonces dado $b \in \mathbb{R}^m$, la solución de mínimos cuadrados de Ax = b está dada por

$$\hat{x} = R^{-1}Q^tb$$

Si A es simétrica real, todos sus valores propios son reales.

Proposición

Si A es simétrica real, λ_1 , λ_2 son valores propios distintos y $x_1 \in E_{\lambda_1}$, $x_2 \in E_{\lambda_2}$, entonces x_1 y x_2 son ortogonales.

Si A es diagonalizable, $A = PDP^{-1}$ con P ortogonal, entonces $A = PDP^t$. En tal caso diremos que A es diagonalizable ortogonalmente.

Si A es diagonalizable ortogonalmente, entonces A es simétrica

Proposición

Si A es simétrica entonces existe una matriz ortogonal P y una matriz diagonal D tal que $A = PDP^{t}$.

En el caso de una matriz simétrica, la descomposición espectral toma la forma

$$A = \lambda_1 u_1 u_1^t + \lambda_2 u_2 u_2^t + \cdots + \lambda_n u_n u_n^t$$

donde los u_i son los vectores de P en la descomposición $A = PDP^t$ de A.

En una matriz simétríca la multiplicad algebraica es la misma que la multiplicidad geométrica.

Una forma cuadrática es una función $Q:\mathbb{R}^n o \mathbb{R}$ de la forma

$$Q(x) = x^t B x$$

donde B es una matriz $n \times n$ y x es el vector correspondiente al valor de \mathbb{R}^n .

Proposición

Dada una forma cuadrática $Q(x) = x^t Bx$, siempre se puede encontrar una matriz simétrica A tal que $Q(x) = x^t Ax$ para todo $x \in \mathbb{R}^n$.

Una forma cuadrática es una función $Q:\mathbb{R}^n o \mathbb{R}$ de la forma

$$Q(x) = x^t A x$$

donde A es una matriz simétrica $n \times n$ y x es el vector correspondiente al valor de \mathbb{R}^n .

Proposición

Si A es simétrica, entonces $x^t A x = 0$, $\forall x \in \mathbb{R}^n$ si y solo si A = 0.

Una forma cuadrática es una función $Q:\mathbb{R}^n o \mathbb{R}$ de la forma

$$Q(x) = x^t A x$$

donde A es una matriz simétrica $n \times n$ y x es el vector correspondiente al valor de \mathbb{R}^n .

Proposición

Si A es simétrica, entonces $x^t A x = 0$, $\forall x \in \mathbb{R}^n$ si y solo si A = 0.

Proposición

Si $Q(x) = x^t Ax$ es una forma cuadrática, con A simétrica, entonces existe una matriz ortogonal P tal que $A = PDP^t$, haciendo el cambio de variable $y = P^{-1}x$, $y^t Dy$ toma los mismos valors que Q sin tener productos cruzados.

Una forma cuadrática Q es

- i) positiva definida si Q(x) > 0, $\forall x \neq 0$
- ii) no negativa definida si $Q(x) \ge 0$, $\forall x \ne 0$
- iii) negativa definida si Q(x) < 0, $\forall x \neq 0$
- iv) no positiva definida si $Q(x) \le 0$, $\forall x \ne 0$
- v) indefinida si asume ambos valores, i.e. no es n.n.d ni n.p.d

Definición

Una matriz simétrica A es positiva definida, no negativa definida, negativa definida o indefinida si su correspondiente forma cuadrática lo es.

Sea A una matriz simétrica, Q su correspondiente forma simétrica. Entonces A (o la forma Q) es:

- i) positiva definida si y solo si todos sus valores propios son positivos
- ii) no negativa definida si y solo si todos sus valores propios son no negativos
- iii) negativa definida si y solo si todos sus valores propios son negativos
- iv) no positiva definida si y solo si todos sus valores propios son no positivos
- v) indefinida ssi y solo si sus valores propios son negativos y positivos

Sea A una matriz $m \times n$. Observemos que:

- 1. A^tA es simétrica
- 2. Los valores propios de A^tA son no negativos.

$$\lambda_1 \ge \lambda_2 \ge \cdots \lambda_n \ge 0$$

Definición

Sea A una matriz $m \times n$. Los valores singulares de A son $\sigma_i = \sqrt{\lambda_i}$, i = 1, ..., n.

Observación: Los valores singulares son las longitudes de los vectores Av_i para $\{v_i\}$ los vectores propios correspondientes.

Sean $\{v_i\}$ una base ortonormal de \mathbb{R}^n de los vectores propios correspondientes a los valores propios $\lambda_1 \geq \lambda_2 \geq \cdots \lambda_n$ de A^tA . Si A tiene r valores singulares diferentes de cero, entonces $\{Av_1, \ldots, Av_r\}$ es una base ortogonal de $\mathcal{C}(A)$ y $\rho(A) = r$.

Teorema (La descomposición en valores singulares)

Sea A una matriz $m \times n$ de rango r. Entonces existe una matriz Σ de tamaño $m \times n$ de la forma

$$\Sigma = \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix}$$

donde D es una matriz diagonal $r \times r$ que tiene como entradas los primeros r valores singulares de A, $\sigma_1 \geq \sigma_2 \geq \cdots \sigma_r > 0$ (en ese orden), y existen una matriz ortogonal U, $m \times m$ y una matriz ortogonal V, $n \times n$ tal que

$$A = U\Sigma V^t$$

La descomposición en valores singulares de una matriz no es única.

Si
$$r = \rho(A)$$
 y $A = U\Sigma V^t$,

$$U = \begin{pmatrix} U_r & U_{m-r} \end{pmatrix}$$

donde $U_r = (u_1 \cdots u_r)$, $m \times r$, está formada por las primeras r columnas,

$$V = \begin{pmatrix} V_r & V_{n-r} \end{pmatrix}$$

donde $V_r = (v_1 \cdots v_r)$, $n \times r$, entonces

$$A = \begin{pmatrix} U_r & U_{m-r} \end{pmatrix} \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} V_r^t \\ V_{n-r}^t \end{pmatrix} = U_r D V_r^t$$

Esta es la descomposición en valores singulares reducida de A.

Sea A una matriz $m \times n$. La seudoinversa, o inversa de Moore-Penrose) de A está dada por

$$A^{\dagger} = V_r D^{-1} U_r^t$$

donde $A = U_r D V_r^t$ es una descomposición en valores singulares reducida de A.

Considerando de nuevo el sistema Ax = b, sea $\hat{x} = A^{\dagger}b$.

Entonces

$$A\hat{x} = U_r U_r^t b$$

de donde $U_r U_r^t b$ es la proyección ortogonal de b sobre C(A). Por lo tanto \hat{x} es una solución de mínimos cuadrados de Ax = b.

Proposición

 $\hat{x} = A^{\dagger}b$ es la solución de mínimos cuadrados de Ax = b de norma mínima entre todas las soluciones de mínimos cuadrados.

