Centre National de l'Evaluation et des Examens

Examen de Debtention du Brevet de Technicien Supérieur Session Mai 2013

Filière:	DSI - MCW 6 SRI	Durée:	2 Heures
Épreuve:	MATHEMATIQUES	Coefficient:	15

5 points Exercice 1:

On considère la fonction numérique g de la variable réelle x définie sur

Considérons $\left(\mathscr{C}_{g}\right)$ la courbe représentative de la fonction g dans un repère orthonormé $\left(O\ ,\ \overrightarrow{i}\ ,\ \overrightarrow{j}\right)$.

1,5 | 1. Donner le développement limité à løordre 2 en 0 de la fonction :

$$h: t \mapsto e^t + \sqrt{1+t}$$

0,5 2. Vérifier que pour tout $x \in \left[0,+\infty\right[$, on a :

$$g(x) = x \left(e^{\frac{1}{x}} + \sqrt{1 + \frac{1}{x}} \right)$$

- 3. Donner le développement limité généralisé en $\frac{1}{x}$ de la fonction g au voisinage de $+\infty$ de la forme : $g(x) = ax + b + \frac{c}{x} + \frac{1}{x} \mathcal{E}(x)$ et $\lim_{x \to +\infty} \mathcal{E}(x) = 0$ avec a, b et c des nombres réels à déterminer. (on peut poser $t = \frac{1}{x}$ et utiliser les résultats des questions 1. et 2.)
- 1 4. a- Donner løéquation de løasymptote (Δ) à la courbe (\mathcal{C}_g) au voisinage de $+\infty$.
- 0,5 b- Déterminer la position relative de la courbe (\mathscr{C}_g) par rapport à son asymptote (Δ) au voisinage de $+\infty$.

Épreuve:

Exercice 2: 3 points

Étudier la nature de chacune des séries suivantes

1.
$$\sum_{n\geq 1} \frac{1}{\sqrt{n(n+1)}}$$

2.
$$\sum_{n>0} \frac{n^2}{n!}$$

3.
$$\sum_{n\geq 1} \left(1-\frac{1}{n}\right)^{n^2}$$

3 points

Exercice 3:

1. a- Montrer que l'antégrale $\int_{1}^{+\infty} e^{-x} dx$ est convergente et calculer sa valeur.

2. Montrer que chacune des deux intégrales suivantes est convergente et

- **b-** En déduire que $\int_{1}^{+\infty} e^{-x^2} dx$ est convergente
- calculer sa valeur $\mathbf{a} \cdot I = \int_0^1 \ln x \ dx.$

b-
$$J = \int_0^1 \frac{x^2}{\sqrt{1-x^2}} dx$$
; (On peut poser $x = \sin t$ avec $t \in \left[0, \frac{\pi}{2}\right]$).

9 points Exercice 4:

Løspace vectoriel \mathbb{R}^3 est muni de sa base canonique $B=(e_1,e_2,e_3)$ avec :

$$e_1 = (1,0,0)$$
 , $e_2 = (0,1,0)$ et $e_3 = (0,0,1)$

Considérons løapplication:

$$f: \mathbb{R}^3 \to \mathbb{R}^3$$

$$(x,y,z) \to (x+y, 2y, -2x+2y+3z)$$

- 0,5
- 1. Montrer que f est une application linéaire.
- 0,5
- 2. Justifier que la matrice A de léapplication linéaire f relativement à la base

1

1

Épreuve:

	1	1	0	
canonique \mathscr{B} de \mathbb{R}^3 est : $A=$	0	2	0	
	-2	2	3	
	(

- 0,5 3 .a- Vérifier que le polynôme caractéristique de la matrice A est donné par : $P(\lambda) = (2-\lambda)(1-\lambda)(3-\lambda).$
- 0,5 b- Déterminer les valeurs propres λ_1 , λ_2 et λ_3 de la matrice A telles que $\lambda_1 < \lambda_2 < \lambda_3$ et en déduire que la matrice A est diagonalisable.
- 1,5 c- Déterminer les vecteurs propres u_1 , u_2 et u_3 associés respectivement aux valeurs propres λ_1 , λ_2 et λ_3 tels que :

$$u_1 = (1, ..., 1)$$
 , $u_2 = (..., 1, ..)$ et $u_3 = (..., 1)$

- 0,5 d- Établir que $\mathcal{B}' = (u_1, u_2, u_3)$ est une base de \mathbb{R}^3 .
- 4. a- Déterminer une matrice diagonale D et une matrice inversible P telles que : $P^{-1}AP = D$.
- 0,5 b- En déduire A en fonction de P, D et P^{-1} .
- 0,5 c-Exprimer D^n en fonction de n, pour tout entier naturel n.
 - d- En déduire A^n en fonction de n , pour tout entier naturel n .
 - 5. On considère les suites numériques $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}$ et $(z_n)_{n\in\mathbb{N}}$ définies pour tout, $n\in\mathbb{N}$, par : les formules récurrentes :

$$\begin{cases} x_{n+1} = x_n + y_n \\ y_{n+1} = 2y_n \\ z_{n+1} = -2x_n + 2y_n + 3z_n \end{cases}$$
 et
$$\begin{cases} x_0 = 1 \\ y_0 = -1 \\ z_0 = 2 \end{cases}$$

pour tout
$$n \in \mathbb{N}$$
 , on pose $X_n = \begin{pmatrix} x_n \\ y_n \\ z_n \end{pmatrix}$.

- 0,5 a- Vérifier que : $X_{n+1} = AX_n$ pour tout $n \in \mathbb{N}$.
- 0,5 b- Montrer par récurrence que pour tout $n \in \mathbb{N}$, $X_n = A^n X_0$.

(Pour tout $n \in \mathbb{N}$, $A^{n+1} = A^n \times A$ et par convention $A^0 = I$)

c-Donner x_n , y_n et z_n en fonction de n, pour tout $n \in \mathbb{N}$.