Math 214 – Foundations of Mathematics Homework 2/11 Sam Harrington

(Due Tuesday, February 25)

COMPLETED Proposition 2.23: Let $m, n \in \mathbb{N}$. If n is divisible by m, then $m \leq n$.

Proof. Let $m, n \in \mathbb{N}$. And suppose n is divisible by m Then,

$$n=m*j$$
 definition of divisibility $j\in\mathbb{N}$ Prop 2.11 $j>=1$ Prop 2.20 $j=1$ or $j>1$ def. of divisibility

Case 1: j = 1

$$n = m * 1$$
$$n = m$$

Case 2: j > 1

$$j-1\in\mathbb{N}$$
 def. of ξ
$$m(j-1)\in\mathbb{N}$$
 Ax 2.1 (ii)
$$n-m\in\mathbb{N}$$

$$n>m\in\mathbb{N}$$
 def of ξ def of ξ

Proposition 2.33: Let A be a nonempty subset of \mathbb{Z} and $b \in \mathbb{Z}$, such that for each $a \in A$, $b \leq a$. Then, A has a smallest element.

Proof. Let $b \in \mathbb{Z}, A \in \mathbb{Z}, a \in A, b \leq a$ and let b be fixed Then we have two cases: When for some a, b = a and therefore $b \in A$

Since
$$b \leq a$$
 for each $a \in A$

Secondly: for $a \in A, b < a$ Let $B := \{a_i - b : a_i \in A\}$

 $B \subseteq \mathbb{N}$ def. of <

By THM 2.32 the set B has a least element.

Since, b is fixed, by the def. of smallest element: $\min(B) = a_j - b \le a_n - b$

$$min(B) = a_j - b \le a_n - b$$

= $a_j - b + b \le a_n - b + b$ Prop 2.7(i)
= $a_j \le a_n$

Since a_n is the of A, by definition of smallest element the min(A) is existing being a_j In both cases, A has a smallest element