Econ201 Course Notes

mzx!

July 10, 2019

Contents

1	Tecl	nnology	2
	1.1	Inputs and Outputs	2
	1.2	Technology Constraints (Single Input)	3
	1.3	Technology Constraints (Multiple Inputs)	3
	1.4	Example of Technology	4
		1.4.1 Fixed Proportion	4
		1.4.2 Perfect Substitutes	5
		1.4.3 Cobb Douglas	5
	1.5	Properties of Technology	6
	1.6	Marginal Product	6
	1.7	Technical Rate of Substitution	7
	1.8	Diminishing Marginal Product	7
	1.9	Long Run and Short Run	8
	1.10		8
2	Pro	fit Maximization	0
	2.1	Profits	10
	2.2	Short-Run Profit Maximization	11
		2.2.1 Tangency Condition	12
	2.3		13
	2.4		14

Chapter 1

Technology

1.1 Inputs and Outputs

Definition 1.1.1 Inputs to production are called Factors of production Physical Capitals

- Land
- Labor
- Capital
 - Physical Capital
 - * Tractor
 - $* \ \ Buildings$
 - * Computers
 - * Machines of one sort
 - Financial Capital
 - * Money
 - * Stocks
 - * Bonds
- Raw Materials

1.2 Technology Constraints (Single Input)

Definition 1.2.1

Production Set All combinations of inputs and outputs that are technologically feasible

Definition 1.2.2

Production Function A function describining the **Boundary of Production Set**

$$y = f(x)$$

x = amount of inputs

y = amount of output

Two production functions do not represent the same technology even if one is a **Monotone Transformation** of the other

1.3 Technology Constraints (Multiple Inputs)

We consider the case of **Two Inputs**, the production function $f(x_1, x_2)$ would measure the maximum amount of output y that we could get if we had x_1 units of input 1. and x_2 units of input 2

Isoquant In the two-input case, there is a convenient way to depict production relations known as the isoquant

1.4 Example of Technology

1.4.1 Fixed Proportion

 $f(x_1, x_2) = \min(x_1, x_2)$

Perfect Substitutes 1.4.2

 $f(x_1, x_2) = x_1 + x_2$

Cobb Douglas 1.4.3

 $q = f(x_1, x_2) = Ax_1^a x_2^b$

A: Scale of Production (how much output we would get if we sued on unit of each input)

a.b: The amount of output responds to changes in the inputs

1.5 Properties of Technology

Definition 1.5.1

- Technology is monotonic
- Technology is convex

Monotonic If you increase the amount of at least one of the inputs, it should be possible to produce at least as much output as you were producing originally

Convex If you have two ways to produce y units of output, (x_1, x_2) and (z_1, z_2) , then their weighted average will produce at least y units of output

1.6 Marginal Product

Definition 1.6.1

Marginal Product of Factor 1

$$MP_1(x_1, x_2) = \frac{\Delta y}{\Delta x_1} = \frac{f(x_1 + \Delta x_1, x_2) - f(x_1, x_2)}{\Delta x_1}$$

or

$$MP_1 = \frac{\partial y(x_1, x_2)}{\partial x_1}$$

 ∂ : Partial Derivative. If ∂x_1 , then treat x_2 as constant value $f(x_1,x_2)=2x_1x_2$, then we have $MP_1=\frac{\partial y(x_1,x_2)}{\partial x_1}=2x_2$

1.7 Technical Rate of Substitution

Suppose that we are operating at $f(x_1, x_2) = y$, at some input level x_1, x_2 and output level y. We want to adjust x_1, x_0 (ie,add x_1 , less x_2), to get the same output level y.

Definition 1.7.1

$$TRS(x_1, x_2) = \frac{\Delta x_2}{\Delta x_1} = \frac{-MP_1(x_1, x_2)}{MP_2(x_1, x_2)}$$

1.8 Diminishing Marginal Product

Law of Diminishing Marginal Product As long as we have a monotonic technology, we know that the total output will go up As we increase the amount of factor 1

But we expect that it will go up at a Decreasing Level

1.9 Long Run and Short Run

Definition 1.9.1

Short Run Some Factors are fixed Long Run All factors can be varying

1.10 Returns to scale

Scale the amount of all inputs up by some constant factor This is called the case of **constant returns to scales**

Definition 1.10.1

constant return to scale

$$tf(x_1, x_2) = f(tx_1, tx_2)$$

for some constant t

Definition 1.10.2

Increasing return to scale

$$tf(x_1, x_2) < f(tx_1, tx_2)$$

for some constant t

Definition 1.10.3

Decreasing return to scale

$$tf(x_1, x_2) > f(tx_1, tx_2)$$

for some constant t

Generalization $f(x_1, x_2) = Ax_1^a x_2^b$, then

- $a + b = 1 \rightarrow \text{constant R.S}$
- $a + b > 1 \rightarrow \text{Increasing R.S}$
- $a + b < 1 \rightarrow$ Decreasing R.S

```
y = f(x_{1}, x_{2}) = 2 \cdot x_{1}^{0,3} \cdot x_{2}^{0,5}
f(tx_{1}, tx_{2}) = 2(tx_{1})^{0,3} \cdot (tx_{2})^{0,5}
= 2 \cdot t^{0,3} x_{1}^{0,3} \cdot t^{0,5} \cdot x_{1}^{0,5}
= t^{0,8} \cdot 2 \cdot x_{1}^{0,3} \cdot x_{2}^{0,5} = t^{0,8} \cdot x_{1}^{0,5}
= t^{0,8} \cdot 2 \cdot x_{1}^{0,3} \cdot x_{2}^{0,5} = t^{0,8} \cdot x_{1}^{0,5}
= t^{0,8} \cdot 2 \cdot x_{1}^{0,3} \cdot x_{2}^{0,5} = t^{0,8} \cdot x_{1}^{0,5}
= t^{0,8} \cdot 2 \cdot x_{1}^{0,3} \cdot x_{2}^{0,5} = t^{0,8} \cdot x_{1}^{0,5}
= t^{0,8} \cdot 2 \cdot x_{1}^{0,5} \cdot x_{2}^{0,5} = t^{0,8} \cdot x_{2}^{0,5}
= t^{0,8} \cdot 2 \cdot x_{1}^{0,5} \cdot x_{2}^{0,5} = t^{0,8} \cdot x_{2}^{0,5}
= t^{0,8} \cdot 2 \cdot x_{1}^{0,5} \cdot x_{2}^{0,5} = t^{0,8} \cdot x_{2}^{0,5}
= t^{0,8} \cdot 2 \cdot x_{1}^{0,5} \cdot x_{2}^{0,5} = t^{0,8} \cdot x_{2}^{0,5}
= t^{0,8} \cdot 2 \cdot x_{1}^{0,5} \cdot x_{2}^{0,5} = t^{0,8} \cdot x_{2}^{0,5}
= t^{0,8} \cdot 2 \cdot x_{1}^{0,5} \cdot x_{2}^{0,5} = t^{0,8} \cdot x_{2}^{0,5}
= t^{0,8} \cdot 2 \cdot x_{1}^{0,5} \cdot x_{2}^{0,5} = t^{0,8} \cdot x_{2}^{0,5}
= t^{0,8} \cdot 2 \cdot x_{1}^{0,5} \cdot x_{2}^{0,5} = t^{0,8} \cdot x_{2}^{0,5}
= t^{0,8} \cdot 2 \cdot x_{1}^{0,5} \cdot x_{2}^{0,5} = t^{0,8} \cdot x_{2}^{0,5}
= t^{0,8} \cdot 2 \cdot x_{1}^{0,5} \cdot x_{2}^{0,5} = t^{0,8} \cdot x_{2}^{0,5}
= t^{0,8} \cdot 2 \cdot x_{1}^{0,5} \cdot x_{2}^{0,5} = t^{0,8} \cdot x_{2}^{0,5}
= t^{0,8} \cdot 2 \cdot x_{1}^{0,5} \cdot x_{2}^{0,5} = t^{0,8} \cdot x_{2}^{0,5}
= t^{0,8} \cdot 2 \cdot x_{1}^{0,5} \cdot x_{2}^{0,5} = t^{0,8} \cdot x_{2}^{0,5}
= t^{0,8} \cdot 2 \cdot x_{1}^{0,5} \cdot x_{2}^{0,5} = t^{0,8} \cdot x_{2}^{0,5}
= t^{0,8} \cdot 2 \cdot x_{1}^{0,5} \cdot x_{2}^{0,5} = t^{0,8} \cdot x_{2}^{0,5}
= t^{0,8} \cdot 2 \cdot x_{1}^{0,5} \cdot x_{2}^{0,5} = t^{0,8} \cdot x_{2}^{0,5} = t^{0,8} \cdot x_{2}^{0,5}
= t^{0,8} \cdot 2 \cdot x_{1}^{0,5} \cdot x_{2}^{0,5} = t^{0,8} \cdot x_{2}^{0,5} = t^{0,8} \cdot x_{2}^{0,5} = t^{0,8} \cdot x_{2}^{0,5}
= t^{0,8} \cdot 2 \cdot x_{1}^{0,5} \cdot x_{2}^{0,5} = t^{0,8} \cdot x_{2}^{0,5} = t^{
```

$$y = f(x_1, x_2) = \min_{x_1, x_2} f(x_1, x_2) = \min_{x_1, x_2} f(x_1, x_2) = \min_{x_1, x_2} f(x_1, x_2) = 2.$$

(ST Returns to Scale.)

 $f(x_1, x_2) = y$

Chapter 2

Profit Maximization

2.1 Profits

Definition 2.1.1

Profits are defined as Revenues minus Cost

$$\pi = p \times q - w_1 x_1 - w_2 x_2$$

- p = price of output
- q = output
- $w_1 = \text{price of input } 1$
- w_2 = price of input 2

$$\pi = \sum_{i=1}^{n} p_{i}y_{i} - \sum_{i=1}^{m} w_{i}x_{i}$$

$$T = p_{i}y_{i} + p_{i}y_{i} + p_{i}y_{i} - \sum_{i=1}^{m} w_{i}x_{i}$$

$$T = \sum_{i=1}^{n} p_{i}y_{i} - \sum_{i=1}^{m} w_{i}x_{i}$$

$$T = p_{i}y_{i} - \sum_{i=1}^{$$

2.2 Short-Run Profit Maximization

Definition 2.2.1

$$pMP_1(x_1^*, x_2) = w_1$$

- p = Output Price
- $MP_1 = \text{Marginal Product of factor } 1$
- x_1^* = the profit_maximizing choice for factor 1
- w_1 = the price of factor 1

Recall

Generalized

- $pMP_1 > w_1 \rightarrow \text{Should Increase } x_1$
- $pMP_1 = w_1 \rightarrow \text{Keep } x_1$
- $pMP_1 < w_1 \rightarrow \text{Should Decrease } x_1$

2.2.1 Tangency Condition

The slope of the production function should equal the slope the isoprofit line

$$MP_1 = \frac{w_1}{p}$$

or

$$pMP_1 = w_1$$

2.3 Long-Run Profit Maximization

In the Long-Run, we are free to choose Level of All Inputs

Definition 2.3.1

Long-Run Profit-Maximization

$$\max_{x_1, x_2} pf(x_1, x_2) - w_1 x_1 - w_2 x_2$$

Generalize

- $pMP_1(x_1^*, x_2^*) = w_1$
- $pMP_2(x_1^*, x_2^*) = w_2$

In Long Run Additional Revenue from $x_i = Additional$ Cost of x_i

2.4 Inverse Factor Demand Curves

Factor Demand Curves measures the relationship between the price of a factor and the profit-maximizing choice of that factor