Задача

Пусть B(n) - число булевых функций от n переменных, C(n) - число базисов булевых функций, состоящих из одной функции от n переменных. Найти предел $\lim_{n \to \infty} \frac{C(n)}{B(n)}$

Решение

 $B(n)=2^{2^n}$, т.к. у нас может быть 2^n различных строк, и ещё у каждой строки может быть результат либо 0, либо 1.

Базис из одной функции от n переменных будет такая функция, которая не входит ни в один из классов T_0, T_1, M, S, L .

Исключим принадлежность функции к T_0, T_1 : зафиксируем $f(0, \dots, 0) = 1$ и $f(1, \dots, 1) = 0$. Сразу же из-за этого ломается монотонность:

$$(0,\ldots,0) \le (1,\ldots,1) \Rightarrow f(0,\ldots,0) \le f(1,\ldots,1)$$

Нам осталось исключить L и S, сейчас у нас $C(n)=2^{2^n-2}$

Избавимся от самодвойственных функций:

Функция самодвойственная тогда, когда $f(x)=f(\overline{x})$

Значит, нам достаточно вычесть $2^{2^{n-1}-1}$. Таким образом, $C(n)=2^{2^n-2}-2^{2^{n-1}-1}$

Осталось исключить L:

Функция линейна, когда функцию можно представить как $f(x) = a_0 + a_1 x_1 + \dots + a_n x_n$. Тогда, у нас 2^{n+1} комбинаций. Вычитаем.

Учтём, что мы могли вычесть одно и то же больше одного раза. Их количество будет o(B(n)). Напишем предел:

$$\lim_{n \to \infty} \frac{C(n)}{B(n)} = \lim_{n \to \infty} \frac{2^{2^n-2} - 2^{2^{n-1}-1} - 2^{n+1} + o(B(n))}{2^{2^n}} = \lim_{n \to \infty} \frac{2^{2^n-2} + o(B(n))}{2^{2^n}} = \frac{1}{4}$$