

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA Primer Semestre de 2019

Tarea 4

Análisis Real — MAT 2515 Fecha de Entrega: 2019/06/19

${\bf \acute{I}ndice}$

Problema 1	2
Problema 2	2
Problema 3	3
Problema 4	4

Problema 1:

Sea X el espacio de funciones continuas en [0,1] a \mathbb{R} con la norma $||f|| = \left(\int_0^1 |f(x)|^2 dx\right)^{1/2}$. Demostrar que los polinomios son densos en X.

Solución problema 1: Se comenzará demostrando un pequeño lema:

Lema 1: Sea X un espacio métrico completo, y sea $g: X \to \mathbb{R}$ una función continua e inyectiva. Luego, el álgebra generada¹ < g > es densa en $C(X, \mathbb{R})^2$

Demostración. Por Stone-Weiestrass, X es un espacio métrico completo, $\langle g \rangle$ es un subálgebra de $C(X,\mathbb{R})$, y $\mathbb{R} \subset \langle g \rangle$, luego como g es inyectiva dado $x,y \in X$ se tiene que si $x \neq y$ entonces $g(x) \neq g(y)$. Por lo que $\langle g \rangle$ es denso en $C(X,\mathbb{R})$.

Se nota que los polinomios son el álgebra generada por la función identidad, y que la identidad es inyectiva. Además se recuerda que [0,1] es completo, por lo que los polinomios son densos en C[0,1]. Ahora, ya que todas las ℓ_p -normas son equivalentes, específicamente la norma del supremo es más fina que ℓ_2 -norma. Luego, sea $f \in C[0,1]$, ya que < x > es denso en C[0,1], existe una sucesión p_n tal que $p_n \to f$ bajo la norma del supremo, por definición de norma más fina p_n también converge bajo la ℓ_2 -norma, y además en ayudantia se vio que tiene que converger a lo mismo, por lo que $p_n \to f$ bajo la ℓ_2 -norma, como f era arbitrario se tiene que < x > es denso en X.

Problema 2:

Sea $g:[0,1]\to\mathbb{R}$ una función continua y estrictamente creciente. Demostrar que si $f:[0,1]\to\mathbb{R}$ es una función continua, tal que $\int_0^1 f(x) \,\mathrm{d} x = 0$ y $\int_0^1 f(x) g^n(x) \,\mathrm{d} x = 0$ para todo n natural, entonces $\int_0^1 f^2(x) \,\mathrm{d} x = 0$.

Solución problema 2: Se sabe que [0,1] es un espacio métrico completo, y que como g es estrictamente creciente es inyectiva. Luego el álgebra generado g es densa G[0,1] por lema 1. Se nota que todo elemento de g es puede escribir como un polinomio en g, de otra forma, para todo g existe g existe g existe g existe g estable g had ou polinomio en g estable g estable g estable g estable es

$$h(x) \mapsto \int_0^1 f(x)h(x) \, \mathrm{d}x$$

 $^{^{1}}$ Como anillo, donde se toman todas las sumas y multiplicaciones entre elementos del álgebra y elementos de \mathbb{R} .

²Se asume la norma del supremo.

Se nota que si F es continua, se tiene lo pedido, ya que al ser < g > denso en C[0,1] existe un sucesión p_n que converge a f, y esta cumple que $F(p_n) = 0 \quad \forall n \in \mathbb{N}$ por linealidad de la integral y porque $\int_0^1 f(x)g^n(x) dx = 0 \quad \forall n \in \mathbb{N}$. Luego para ver la continuidad de

$$|F(h)| = \left| \int_0^1 f(x)h(x) \, \mathrm{d}x \right|$$

$$\leq 1 \cdot ||f|| \cdot ||h||$$

Como ||f|| es una constante se tiene lo pedido.

Problema 3:

Sea X el espacio de las funciones diferenciables en (-1,1) con $||f|| = \sup_{x \in (-1,1)} |f(x)|$. Estudiar cuales de las siguientes funciones definidas en X es un funcional lineal acotado. En caso de serlo calcular su norma.

- (a) $T_1(f) = f(0)$
- (b) $T_2(f) = \int_{-1}^1 f(x) x^2 dx$
- (c) $T_3(f) = f'(0)$

Solución problema 3:

- (a) Sean $f, g \in X$ y $\lambda \in \mathbb{R}$, luego $T_1(\lambda f + g) = \lambda f(0) + g(0) = \lambda T_1(f) + T_1(g)$, por lo que es un funcional lineal. Luego se nota que $|f(0)| \leq ||f||$, por lo que T_1 esta acotado, luego sea f(x) = 1 la función constante, $|T_1(f)| = ||f|| = 1$, por lo que $||T_1|| = 1$.
- (b) Sean $f, g \in X$ y $\lambda \in \mathbb{R}$, luego $T_2(\lambda f + g) = \int_{-1}^1 (\lambda f(x) + g(x)) x^2 dx = \lambda \int_{-1}^1 f(x) x^2 dx + \int_{-1}^1 g(x) x^2 dx = \lambda T_2(f) + T_2(g)$, por lo que es un funcional lineal. Para ver si T_2 es acotado se nota lo siguiente:

$$\left| \int_{-1}^{1} f(x)x^{2} dx \right| \leq \int_{-1}^{1} |f(x)| x^{2} dx \leq \int_{-1}^{1} \sup_{x \in (-1,1)} |f(x)| x^{2} dx = ||f|| \cdot \frac{2}{3}$$

Con lo que se tiene que $||T_2(f)|| \le \frac{2}{3} ||f||$, tomando la función constante f(x) = 1, se tiene la igualdad, por lo que $||T_2|| = \frac{2}{3}$.

(c) Sean $f, g \in X$ y $\lambda \in \mathbb{R}$, luego $T_3(\lambda f + g) = \lambda f'(0) + g'(0) = \lambda T_3(f) + T_3(g)$, por lo que es un funcional lineal. Para revisar si es acotada es suficiente tomar la función $f(x) = \sin(nx)$, ya que ||f|| = 1, pero $||T_3(f)|| = n$, con lo que T_3 no es acotada.

Problema 4:

Sea X el espacio vectorial $X = \{\{a_n\} | a_n \in \mathbb{R} \text{ y } \sum_{n=1}^{\infty} |a_n| < \infty\}$ con la norma $\|\{a_n\}\| = \sum_{n=1}^{\infty} |a_n|$.

Si M es el subespacio $M=\{\{a_n\}\in X|a_n=0 \text{ si } n\geq 3\}$ definamos $T:M\to\mathbb{R}$ por $T(\{a_n\})=a_1+a_2$

- (a) Calcular ||T||.
- (b) Si $M_1 = \{\{a_n\} \in X | a_n = 0 \text{ si } n \geq 4\}$ describir TODAS las funciones lineales $T_1 : M_1 \to \mathbb{R}$ tales que $T_1(\{a_n\}) = T(\{a_n\})$ si $\{a_n\} \in M$ y $||T_1|| = ||T||$.

Solución problema 4:

- (a) Se nota que $||T(\{a_n\})|| = |a_1 + a_2| \le |a_1| + |a_2| = \sum_{n=1}^{\infty} |a_n| = ||\{a_n\}||$, y se nota que se llega a la igualdad con $a_1 = 0$ o con $a_2 = 0$, por lo que ||T|| = 1.
- (b) Por propiedad de transformaciones lineales, se nota que T_1 está caracterizada por como actúa sobre la base de M_1 , luego $M < M_1$ más específicamente $B = \{b_1, b_2\}$ es base de M donde b_i es 1 en la i-ésima coordenada, y extendiendo B con b_3 se tiene M_1 . Luego, $T_1 \mid_{M} = T$ por lo que $T_1(\{a_n\}) = a_1 + a_2 + \lambda a_3$. Ahora se necesita que $||T_1|| = ||T||$, por lo que se necesita que $|a_1 + a_2 + \lambda a_3| \le |a_1| + |a_2| + |a_3|$, más específicamente $|\lambda| \le 1$, dado esto, se nota que se tiene la igualdad con $a_3 = 0$, y con $a_2 = 0$ o $a_1 = 0$, por lo que se tiene que $||T_1|| = ||T||$. Dado esto $T_1(\{a_n\}) = a_1 + a_2 + \lambda a_3$ donde $|\lambda| \le 1$, cumple lo pedido, por lo que todas las T_1 que cumplen lo necesario son de esa forma.