Línuleg algebra A

Verkefnablað vegna umræðutíma 2

Ásgrímur Ari Einarsson, Katrín Fríður Gunnarsdóttir, Torfi Þorgrímsson

Skilverkefni fyrir 29.09.21: Þessi verkefni eru einstaklingsverkefni. Lausnum verkefnanna á að skila miðvikudaginn 29. september í gegnum Canvaskerfið.

- 1. Látum A, B og C vera mengi.
- (a) Sannið eða afsannið: Ef $A \setminus C \subseteq B \setminus C$ þá er $A \subseteq B$.
- (b) Sannið eða afsannið: Ef $A \subseteq B$ þá er $A \setminus C \subseteq B \setminus C$.
 - 2. Verkefni 4.3.3 á bls. 65

Let $A \subseteq \mathbb{R}$, and let $x \in \mathbb{R}$. We say that the point x is far away from the set A if and only if:

 $\exists d > 0$: No element of A belongs to the set [x - d, x].

Equivalently, $A \cap [x - d, x] = \emptyset$. if this does not happen, we say that x is *close* to A

- (a) Draw a picture of a set A and an element x such that x is $far\ away$ from A.
- (b) Draw a picture of a set A and an element x such that x is close to A.
- (c) Compute the definition of "x is close to A". [So negate "x is far away from A".]
- (d) Let $A = \{1, 2, 3\}$. Show that x = 4 is far away from A by using definitions.
- (e) Let $A = \{1, 2, 3\}$. Show that x = 1 is close to A by using definitions.
- (f) Show that if $x \in A$, then x is close to A.
- (g) Let A be the open interval (a, b). Is the end-point a far away from A? What about the end point b
 - **3.** Sannið formlega að ef A, B og C er mengi þá er $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.
 - **4.** Verkefni 6.2.4 og 6.2.5 á bls. 104–105.

Here are three incorrect proofs of Theorem 6.5. Explain why each fails.

- (a) Let $x = \mathcal{P}(A)$. Then $x \in A$. Since $A \subseteq B$, we have $x \in B$. Therefore $x \in \mathcal{P}(B)$, and so $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.
- (b) Let $A = \{1, 2\}$ and $B = \{1, 2, 3\}$. Then $\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, A\}$, and $\mathcal{P}(B) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, B\}$. Thus $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.
- (c) Let $x \in A$. Since $A \subseteq B$, we have $x \in B$. Since $x \in A$ and $x \in B$, we have $\{x\} \in \mathcal{P}(A)$, and $\{x\} \in \mathcal{P}(B)$.