Name:	
J#:	Dr. Clontz
Date:	

MASTERY QUIZ DAY 18

Math 237 – Linear Algebra Fall 2017

Version 4 Fall 2017 Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standard S1. Determine if the set of vectors $\left\{ \begin{bmatrix} -3 \\ -8 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 3 \end{bmatrix} \right\}$ is linearly dependent or linearly independent

Solution:

RREF
$$\left(\begin{bmatrix} -3 & 1 & 0 \\ -8 & 2 & -1 \\ 0 & 2 & 3 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & 0 \end{bmatrix}$$

This has a non pivot column, therefore the set is linearly dependent.

Standard S3.

$$\begin{bmatrix}
1 & 3 & 3 & 3 \\
-1 & 3 & -1 \\
3 & -3 & 1
\end{bmatrix}, \begin{bmatrix} 2 & 3 & 1 \\
0 & 1 & 4 \\
1 & -2 & -7 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\
1 & 1 \\
1 & -7 \end{bmatrix}.$$
Find a basis of W .

Solution:

$$RREF \left(\begin{bmatrix} 1 & 2 & 3 & 1 \\ -1 & 0 & -1 & 1 \\ 3 & 1 & 4 & 1 \\ -3 & 1 & -2 & -7 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Then
$$\left\{ \begin{bmatrix} 1\\-1\\3\\-3 \end{bmatrix}, \begin{bmatrix} 3\\-1\\4\\-2 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\-7 \end{bmatrix} \right\}$$
 is a basis for W .

Let
$$W = \operatorname{span}\left(\left\{\begin{bmatrix}1\\1\\2\\1\end{bmatrix},\begin{bmatrix}3\\3\\6\\3\end{bmatrix},\begin{bmatrix}3\\-1\\3\\-2\end{bmatrix},\begin{bmatrix}7\\-1\\8\\-3\end{bmatrix}\right\}\right)$$
. Find the dimension of W .

Solution:

$$\operatorname{RREF}\left(\begin{bmatrix} 1 & 3 & 3 & 7 \\ 1 & 3 & -1 & -1 \\ 2 & 6 & 3 & 8 \\ 1 & 3 & -2 & -3 \end{bmatrix}\right) = \begin{bmatrix} 1 & 3 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

This has two pivot columns, so W has dimension 2.

Standard A1. Mark:

Let $T: \mathbb{R}^3 \to \mathbb{R}^4$ be the linear transformation given by

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} -3x + y \\ -8x + 2y - z \\ 2y + 3z \\ 0 \end{bmatrix}$$

. Write the matrix for T with respect to the standard bases of \mathbb{R}^3 and $\mathbb{R}^4.$

Solution:

$$\begin{bmatrix} 3 & 1 & 0 \\ -8 & 2 & -1 \\ 0 & 2 & 3 \\ 0 & 0 & 0 \end{bmatrix}$$

Standard A2.

Mark:

Determine if $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by $T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} e^x \\ e^y \end{bmatrix}$ is a linear transformation.

Solution: It is not linear. For example,

$$\begin{bmatrix} e^2 \\ 1 \end{bmatrix} = T \left(\begin{bmatrix} 2 \\ 0 \end{bmatrix} \right) \neq 2T \left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) = \begin{bmatrix} 2e \\ 1 \end{bmatrix}$$