h e g

Haute école de gestion de Genève
Geneva School of Business Administration

Estimations ponctuelles Distribution de la moyenne

Dr. Sacha Varone

- Rappels
- Estimation ponctuelle
- Estimateurs
- Distribution \bar{x}

- Comprendre et maîtriser l'estimation ponctuelle
- Connaître la distribution d'une moyenne

ი ი

Rappels

Estimation ponctuelle

Estimateurs

Distribution \bar{x}

Rappels

Rappels

Estimation ponctuelle

Estimateurs

Distribution \bar{x}

La distribution de Student \mathcal{T}_n

- Ligne nombre de degrés de liberté *n*
- Colonne une erreur de première espèce α .
- Intersection ligne/colonne $t_{\alpha,n}$

$$P(\mathcal{T}_n \ge t_{\alpha,n}) = \alpha$$

La relation entre p et α est $p = 1 - \alpha$.

Rappels

Estimation ponctuelle

Estimateurs

Distribution \bar{x}

Soit un échantillon aléatoire de taille n, de moyenne \bar{x} et de variance s^2 , issu d'une loi normale $\mathcal{N}(\mu, \sigma^2)$. Alors

$$\frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}} \sim \mathcal{T}_{n-1}$$

Utilité : inférence sur la moyenne d'une population suivant une loi normale de moyenne μ et de variance σ^2 inconnue.

Rappel

Rappels

Estimation ponctuelle

Estimateurs

Distribution \bar{x}

Loi du
$$\chi^2$$

Soit $Q_n \sim \chi_n^2$
 $p = P(Q_n \leq q_{\alpha,n})$
 $\alpha = P(Q_n > q_{\alpha,n})$ avec $p = 1 - \alpha$

Rappels

Estimation ponctuelle

Estimateurs

Distribution \bar{x}

La statistique χ^2 à n-1 degrés de liberté vaut

$$\chi^2 = \frac{(n-1)s^2}{\sigma^2}$$

 $\begin{array}{ccc} \text{où} & & & \\ \chi^2 & = & \text{variable chi-2 standard} \\ s^2 & = & \text{variance de l'échantillon} \end{array}$

 $\overset{\circ}{\sigma^2} \quad = \quad {\rm variance\ de\ la\ population}$

taille de l'échantillon

Utilité : inférence sur la variance d'une population

ტ ტ

Rappels

Estimation ponctuelle

Définition

Estimateur

Propriétés

Estimateurs

Distribution \bar{x}

Estimation ponctuelle

Rappels

Estimation ponctuelle

Définition

Estimateur Propriétés

Estimateurs

Distribution \bar{x}

Une estimation ponctuelle, ou point d'estimation, est une valeur calculée à partir d'un échantillon pour estimer un paramètre d'une population.

Objectif : attribuer une valeur à un paramètre

Comment : échantillon

Rappels

Estimation ponctuelle

Définition

Estimateur Propriétés

Estimateurs

Distribution \bar{x}

X ou Y= Taille des ménages (nombre de personnes composant un ménage)

échantillon
$$X$$
 x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 1 3 2 4 4 1 2 6

échantillon
$$Y$$
 y_1 y_2 y_3 y_4 y_5 2 2 1 1 3

Échantillon $X: \bar{x} = \frac{23}{8}$ Échantillon $Y: \bar{y} = \frac{9}{5}$

$$\bar{x} pprox \mu \text{ et } \bar{y} pprox \mu$$

 $\mu = paramètre$

Rappels

Estimation ponctuelle

Définition

Estimateur

Propriétés

Estimateurs

Distribution \bar{x}

Une distribution d'échantillonnage d'une estimateur $\hat{\Theta}$ est la distribution des valeurs possible d'une statistique pour un échantillon de taille fixée, sélectionné à partir d'une population.

comportement moyen :

$$\mathrm{E}(\hat{\Theta})$$

■ dispersion :

$$Var(\hat{\Theta})$$

ာ Propriétés

Rappels

Estimation ponctuelle

Définition

Estimateur

Propriétés

Estimateurs

Distribution \bar{x}

7	7
•	

Φ

_

Rappels

Estimation ponctuelle

Définition Estimateur

Propriétés

Estimateurs

Distribution \bar{x}

Propriétés

Le biais :
$$E(\hat{\Theta} - \theta) = E(\hat{\Theta}) - \theta$$

Estimateur non-biaisé lorsque son espérance est égale à la vraie valeur du paramètre estimé, i.e. $E(\hat{\Theta}) = \theta$

Estimateur convergent si, lorsque la taille n de l'échantillon devient grande

- 1. le biais disparaît : $\lim_{n\to\infty} \operatorname{Biais}(\hat{\Theta}) = 0$
- 2. la variance devient nulle : $\lim_{n\to\infty} Var(\hat{\Theta}) = 0$

Un estimateur sans biais et convergent est dit absolument correct.

ь С

Rappels

Estimation ponctuelle

Estimateurs

Moyenne Variance

Distribution \bar{x}

Estimateurs

Rappels

Estimation ponctuelle

Estimateurs

Moyenne

Variance

Distribution \bar{x}

$$\hat{\mu} = \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

est un estimateur absolument correct de la moyenne μ

Remarque:

La moyenne tronquée, le mode et la médiane calculés à partir d'un échantillon sont aussi des estimateurs absolument corrects pour respectivement la moyenne tronquée, le mode et la médiane de la population.

Rappels

Estimation ponctuelle

Estimateurs

Moyenne

Variance

Distribution \bar{x}

Première idée :

$$S^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

 S^2 estimateur biaisé, mais convergent.

Meilleur estimateur

$$\hat{\sigma}^2 = s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$$

 s^2 estimateur absolument correct.

Distribution \bar{x}

Rappels

Estimation ponctuelle

Estimateurs

Moyenne

Variance

Distribution \bar{x}

Population 1, 2, 6

■ Moyenne et variance?

$$\mu = \frac{1+2+6}{3} = 3$$
 et $\sigma^2 = \frac{(1-3)^2 + (2-3)^2 + (6-3)^2}{3} = \frac{14}{3}$

■ Échantillons possibles de taille 2, avec remise?

Rappels

Estimation ponctuelle

Estimateurs

Moyenne

Variance

Distribution \bar{x}

Population 1, 2, 6

■ Moyenne et variance ? $\mu = \frac{1+2+6}{3} = 3 \text{ et } \sigma^2 = \frac{(1-3)^2+(2-3)^2+(6-3)^2}{3} = \frac{14}{3}$

- Échantillons possibles de taille 2, avec remise? (1,1) (1,2) (1,6) (2,1) (2,2) (2,6) (6,1) (6,2) (6,6)
- Moyenne et variance de ces couples (en tant que populations)?

Rappels

Estimation ponctuelle

Estimateurs

Moyenne

Variance

Distribution \bar{x}

Population 1, 2, 6

■ Moyenne et variance? $\mu = \frac{1+2+6}{3} = 3 \text{ et } \sigma^2 = \frac{(1-3)^2+(2-3)^2+(6-3)^2}{3} = \frac{14}{3}$

■ Moyenne et variance de ces couples (en tant que populations)?

moyennes :
$$1, \frac{3}{2}, \frac{7}{2}, \frac{3}{2}, 2, 4, \frac{7}{2}, 4, 6$$

variances : $0, \frac{1}{4}, \frac{25}{4}, \frac{1}{4}, 0, 4, \frac{25}{4}, 4, 0$

■ Moyenne de ces variances?

Rappels

Estimation ponctuelle

Estimateurs

Moyenne

Variance

Distribution \bar{x}

Population 1, 2, 6

■ Moyenne et variance? $(1-3)^2$

$$\mu = \frac{1+2+6}{3} = 3$$
 et $\sigma^2 = \frac{(1-3)^2 + (2-3)^2 + (6-3)^2}{3} = \frac{14}{3}$

- Échantillons possibles de taille 2, avec remise? (1,1) (1,2) (1,6) (2,1) (2,2) (2,6) (6,1) (6,2) (6,6)
- Moyenne et variance de ces couples (en tant que populations)?

moyennes : $1, \frac{3}{2}, \frac{7}{2}, \frac{3}{2}, 2, 4, \frac{7}{2}, 4, 6$ variances : $0, \frac{1}{4}, \frac{25}{4}, \frac{1}{4}, 0, 4, \frac{25}{4}, 4, 0$

■ Moyenne de ces variances? $\frac{7}{3} \neq \frac{14}{3}$

mais

$$\frac{n}{n-1} \cdot \frac{7}{3} = \frac{2}{2-1} \cdot \frac{7}{3} = \frac{14}{3}$$

Rappels

Estimation ponctuelle

Estimateurs

Moyenne

Distribution \bar{x}

Calculatrices : variance par défaut s^2 .

$$s^2 = \frac{n}{n-1}S^2$$

$$s^2 = \frac{n}{n-1}S^2 S^2 = \frac{n-1}{n}s^2$$

h g

Rappels

Estimation ponctuelle

Estimateurs

Distribution \bar{x}

Pop. normale Erreur standard

Correction

TCL

Distribution \bar{x}

Rappels

Estimation ponctuelle

Estimateurs

Distribution \bar{x}

Pop. normale

Erreur standard

Z

Correction TCL

Si une population est normalement distribuée, de moyenne μ et d'écart type σ , alors la distribution d'échantillonnage de la moyenne \bar{x} est

$$\bar{X} \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$$

Remarque

La distribution d'échantillonnage de la moyenne est composée de toutes les moyennes possibles sur tous les échantillons de même taille.

 \Box

Rappels

Estimation ponctuelle

Estimateurs

Distribution \bar{x}

Pop. normale

Erreur standard

Z

Correction

TCL

L'écart type de la distribution d'échantillonnage de la moyenne, aussi appelée *erreur standard de la moyenne*, est le terme

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$$

Remarque:

$$\sigma_{\bar{x}} \leq \sigma$$

_

Rappels

Estimation ponctuelle

Estimateurs

Distribution \bar{x}

Pop. normale Erreur standard

Z

Correction

TCL

La variable centrée réduite associée à la moyenne d'échantillonnage est la variable

$$z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$$

 \bar{x} = moyenne de l'échantillon

 μ = moyenne de la population

 σ = écart type de la population

n = taille de l'échantillon

Rappels

Estimation ponctuelle

Estimateurs

Distribution \bar{x}

Pop. normale Erreur standard

Correction

TCL

 $\mathcal{N}(500, 100^2)$ en grammes.

Echantillon : 25 plats achetés pour vérifier la quantité de poisson.

Résultats : moyenne de 490 g par plat.

Question: Y a-t-il tromperie du consommateur?

Étiquette : poids en poisson d'un plat surgelé de 1 kg :

1. La moyenne pour cet échantillon :

Rappels

Estimation ponctuelle

Estimateurs

Distribution \bar{x}

Pop. normale Erreur standard

6

Correction TCL

Étiquette : poids en poisson d'un plat surgelé de 1 kg :

 $\mathcal{N}(500, 100^2)$ en grammes.

Échantillon : 25 plats achetés pour vérifier la quantité de poisson.

Résultats : moyenne de 490 g par plat.

Question: Y a-t-il tromperie du consommateur?

- 1. La moyenne pour cet échantillon : $\bar{x} = 490$
- 2. La distribution d'échantillonnage de la moyenne :

Rappels

Estimation ponctuelle

Estimateurs

Distribution \bar{x}

Pop. normale Erreur standard

Correction

TCL

 $\mathcal{N}(500, 100^2)$ en grammes.

Échantillon : 25 plats achetés pour vérifier la quantité de poisson.

Résultats : moyenne de 490 g par plat.

Question: Y a-t-il tromperie du consommateur?

1. La moyenne pour cet échantillon : $\bar{x} = 490$

Étiquette : poids en poisson d'un plat surgelé de 1 kg :

- 2. La distribution d'échantillonnage de la moyenne : $\mathcal{N}(500, \frac{100^2}{25} = 400)$
- 3. L'événement d'intérêt :

Rappels

Estimation ponctuelle

Estimateurs

Distribution \bar{x}

Pop. normale Erreur standard

Z

Correction TCL

Étiquette : poids en poisson d'un plat surgelé de 1 kg :

 $\mathcal{N}(500, 100^2)$ en grammes.

Échantillon : 25 plats achetés pour vérifier la quantité de poisson.

Résultats : moyenne de 490 g par plat.

Question: Y a-t-il tromperie du consommateur?

- 1. La moyenne pour cet échantillon : $\bar{x} = 490$
- 2. La distribution d'échantillonnage de la moyenne : $\mathcal{N}(500, \frac{100^2}{25} = 400)$
- 3. L'événement d'intérêt :

$$P(\bar{x} \le 490) = ?$$

4. Conversion en une valeur centrée réduite z

Rappels

Estimation ponctuelle

Estimateurs

Distribution \bar{x}

Pop. normale Erreur standard

Z

Correction TCL

Étiquette : poids en poisson d'un plat surgelé de 1 kg :

 $\mathcal{N}(500, 100^2)$ en grammes.

Échantillon : 25 plats achetés pour vérifier la quantité de poisson.

Résultats : moyenne de 490 g par plat.

Question: Y a-t-il tromperie du consommateur?

- 1. La moyenne pour cet échantillon : $\bar{x} = 490$
- 2. La distribution d'échantillonnage de la moyenne : $\mathcal{N}(500, \frac{100^2}{25} = 400)$
- 3. L'événement d'intérêt :

$$P(\bar{x} \le 490) = ?$$

4. Conversion en une valeur centrée réduite z

$$z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{490 - 500}{\frac{100}{\sqrt{25}}} = -0.5$$

5. Probabilité désirée

Rappels

Estimation ponctuelle

Estimateurs

Distribution \bar{x}

Pop. normale Erreur standard

Z

Correction TCL

Étiquette : poids en poisson d'un plat surgelé de 1 kg :

 $\mathcal{N}(500, 100^2)$ en grammes.

Échantillon : 25 plats achetés pour vérifier la quantité de poisson.

Résultats : moyenne de 490 g par plat.

Question: Y a-t-il tromperie du consommateur?

- 1. La moyenne pour cet échantillon : $\bar{x} = 490$
- 2. La distribution d'échantillonnage de la moyenne : $\mathcal{N}(500, \frac{100^2}{25} = 400)$
- 3. L'événement d'intérêt :

$$P(\bar{x} \le 490) = ?$$

4. Conversion en une valeur centrée réduite z

$$z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{490 - 500}{\frac{100}{\sqrt{25}}} = -0.5$$

5. Probabilité désirée

$$P(z \le -0.5) = 0.3085$$

Rappels

Estimation ponctuelle

Estimateurs

Distribution \bar{x}

Pop. normale

Erreur standard

Z

Correction

TCL

Si la taille de l'échantillon est *plus du 5%* de la taille de la population, et que l'échantillon tiré est fait *sans remise* ⇒ facteur de correction sur l'écart type

$$\sqrt{\frac{N-n}{N-1}}$$

οù

N =taille de la population

n = taille de l'échantillon

Rappels

Estimation ponctuelle

Estimateurs

Distribution \bar{x}

Pop. normale

Erreur standard

Z

Correction

TCL

Rappels

Estimation ponctuelle

Estimateurs

Distribution \bar{x}

Pop. normale Erreur standard

Z

Correction

TCL

Soit une suite (X_1, X_2, \ldots, X_n) de n variables aléatoires identiquement et indépendamment distribuées (μ, σ^2) . Lorsque $n \to \infty$, la distribution de

$$\overline{X} = \frac{1}{n} \sum_{i} X_{i}$$

tend vers la loi $N(\mu, \frac{\sigma^2}{n})$

Remarque

Plus la taille de l'échantillon augmente, meilleure est l'approximation par la loi normale.

Importance du TCL

Rappels

Estimation ponctuelle

Estimateurs

Distribution \bar{x}

Pop. normale Erreur standard

Z

Correction

TCL

Hypothèse de nombreuses méthodes statistiques : loi normale. En pratique : pas toujours vérifié.

Mais, grâce au **théorème central limite**, même si la population ne satisfait pas à la normalité, la moyenne d'un échantillon de grande taille issu de celle-ci est distribuée de façon normale

Donc : ok pour employer la plupart des outils statistiques.

Rappels

Estimation ponctuelle

Estimateurs

Distribution \bar{x}

Pop. normale Erreur standard z

Correction TCL

source: "The Cartoon Guide to Statistics", L. Gonick & W. Smith

Rappels

Estimation ponctuelle

Estimateurs

Distribution \bar{x}

Pop. normale Erreur standard

Z

Correction TCL

Chacun indique un budget pour ses soirées.

Budget moyen?

Les budgets sont triés par ordre croissant. Quel échantillon semble le plus représentatif?

- 1. Les 6 premiers budgets
- 2. Les 6 derniers budgets
- 3. les 6 valeurs centrales
- 4. 6 nombres pris au hasard