NoSQL & NewSQL

Secondo Progetto Big Data

Gaetano Bonofiglio, Veronica Iovinella

Contesto

- È impossibile avere Consistency, Availability e Partitioning allo stesso tempo ("CAP theorem")
- I database relazionali non offrono la scalabilità necessaria per gestire i Big Data
- I database NoSQL non offrono consistenza e transazioni ACID
- Il movimento NewSQL si propone di colmare il divario tra i 2 approcci con un nuovo tipo di database relazionale scalabile, o un framework per rendere scalabili i DBMS SQL esistenti

	Old SQL	NoSQL	NewSQL
Relational	Yes	No	Yes
SQL	Yes	No	Yes
ACID transactions	Yes	No	Yes
Horizontal scalability	No	Yes	Yes
Performance / big volume	No	Yes	Yes
Schema-less	No	Yes	No

Punti trattati

- Confronto sperimentale tra i vari sistemi NoSQL
 - Test su dati reali (use cases) e sintetici di:
 - Query al secondo
 - ▶ Join (dove possibile)
 - Aggregazioni (dove possibile)
- Confronto sperimentale tra i vari sistemi NewSQL
 - ► Test su dati reali (use cases) e sintetici di:
 - Query al secondo
 - ▶ Join (dove possibile)
 - Aggregazioni (dove possibile)

Punti trattati

- NewSQL vs SQL
 - ► Test in locale e su cluster (tramite un framework per sistemi SQL che li rende di fatto NewSQL) con le stesse modalità descritte nella slide precedente
- NewSQL vs NoSQL
 - ▶ Test in locale e su cluster con le stesse modalià descritte nella slide precedente.

Tecnologie utilizzate

Orient DB°

Grazie per l'attenzione