Theorem (3.2.14e). Let f be the function defined by $f(x) = x^3$, and let g be the function defined by $g(x) = 3^x$. f(x) is $\mathcal{O}(g(x))$.

Proof. If f(x) is $\mathcal{O}(g(x))$, then there exists constant witnesses C and k such that $x^3 \leq C \cdot 3^x$, for all x > k. If C = 1 and k = 1, x^3 is a decreasing function with respect to 3^x . Thus, f(x) is $\mathcal{O}(g(x))$.