The University of Texas at El Paso

Senior Design Review: Acoustic Feature Analyzer

Eric M. Alonzo | Naval Surface Warfare Center - Carderock Division

Product Diagram

Model/Structure	Type	Accuracy	Interpretability	Training Time	Suitability for Audio	Key Strengths	Key Weaknesses
Autoencoder (AE)	Unsupervised	High	Low	Moderate	Great	- Learns compressed representations - Good for anomaly detection - Can denoise audio	- May learn irrelevant patterns - Hard to interpret latent space
Variational Autoencoder (VAE)	Unsupervised	High	Low	Long	Great	 Captures complex distributions Can generate synthetic audio Regularizes latent space 	- Latent features are abstract - More sensitive to tuning
Convolutional Autoencoder (CAE)	Unsupervised	High	Moderate	Long	Excellent	Capturesfrequency/spatialpatternsWorks well withspectrogramsCan handlenoise	- Needs large data for good features - May blur fine details
Gaussian Mixture Model (GMM)	Unsupervised	Moderate	High	Moderate	Good	- Good for modeling sound distributions - Can separate mixed audio sources - Handles uncertainty well	- Assumes Gaussian distributions - Prone to overfitting with high- dimensional data
UEP					Con	npetitive Ar	nalysis

Model can be trained on time series data (Determined by model structure).

Chosen model must be <u>unsupervised</u>.

- No Labeling Row/Column
- Purely Numerical Array

Rows of Time Samples "N"

1 1600 1 2	00x8 double 1 -0.0153 -0.0145	2 -0.0193	3					
	-0.0153		3					
		0.0102		4	5	6	7	8
2	-0.0145	-0.0193	-0.0126	-0.0077	-0.0063	-0.0082	-0.0123	-0.0125
_		-0.0099	-0.0061	-0.0075	-0.0155	-0.0106	-0.0076	-0.0112
3	-0.0093	-0.0094	-0.0077	-0.0138	-0.0120	-0.0106	-0.0062	-0.0099
4	-0.0116	-0.0070	-0.0132	-0.0170	-0.0171	-0.0094	-0.0110	-0.0076
5	-0.0037	-6.1035e-05	-0.0079	-0.0144	-0.0146	-0.0132	-0.0090	-0.0098
6	0.0087	0.0070	-2.7466e-04	-0.0051	-0.0099	-0.0135	-0.0084	-0.0051
7	0.0028	0.0142	0.0166	0.0031	-0.0072	-0.0048	-0.0121	-0.0018
8	-0.0073	0.0103	0.0097	0.0118	0.0040	-0.0127	-0.0097	-0.0121
9	-0.0111	-0.0171	-0.0134	-0.0078	-8.5449e-04	-0.0127	-0.0181	-0.0204
10	-0.0126	-0.0203	-0.0221	-0.0203	-0.0176	-0.0051	-0.0082	-0.0032
11	-0.0047	-0.0172	-0.0236	-0.0185	-0.0176	-0.0105	0.0027	0.0020
12	-0.0107	-0.0111	-0.0171	-0.0200	-0.0095	-0.0126	-8.8501e-04	-0.0026
13	-0.0017	-0.0049	-0.0140	-0.0154	-0.0179	-0.0093	-0.0077	-0.0031
14	-0.0063	-0.0084	-0.0090	-0.0201	-0.0184	-0.0162	-0.0101	-0.0028
15	-0.0111	-0.0069	-0.0022	-0.0076	-0.0113	-0.0110	-0.0074	-0.0101
16	-0.0128	-0.0011	-0.0023	-7.3242e-04	-5.7983e-04	-0.0067	-0.0039	-0.0040
17	-0.0109	-9.4604e-04	0.0077	0.0043	0.0050	-3.0518e-04	0.0034	-0.0063
18	-0.0031	0.0076	0.0186	0.0138	0.0086	0.0035	2.7466e-04	-0.0037
19	0.0066	0.0148	0.0117	0.0163	0.0144	0.0066	-5.7983e-04	0.0031
20	0.0091	0.0091	0.0099	0.0156	0.0203	0.0085	0.0079	0.0098
21	0.0028	7.6294e-04	-0.0013	0.0093	0.0169	0.0058	0.0077	0.0055
22	-0.0043	-0.0106	-0.0139	-0.0137	-0.0020	5.4932e-04	0.0010	2.1362e-04
23	-0.0172	-0.0145	-0.0199	-0.0255	-0.0074	0.0026	0.0031	-0.0055
24	-0.0210	-0.0234	-0.0251	-0.0208	-0.0089	0.0014	4.8828e-04	-0.0060
25	-0.0295	-0.0294	-0.0215	-0.0211	-0.0056	-0.0060	-0.0033	-0.0146
26	-0.0176	-0.0194	-0.0163	-0.0190	-0.0148	-0.0089	-0.0095	-0.0186
27	-0.0117	-0.0091	-0.0240	-0.0212	-0.0147	-0.0133	-0.0127	-0.0121
28	-0.0094	-0.0188	-0.0220	-0.0226	-0.0123	-0.0178	-0.0113	-0.0084
29	-0.0094	-0.0069	-0.0089	-0.0170	-0.0117	-0.0208	-0.0189	-0.0071

Columns of Waveforms "x(t)"

Chosen unsupervised model must work with "relatively" small data sets.

- 200 >= Number of Sound Files in Data Set >= 50000
- Visuals provided use 200 total samples of audio files with 160000 points, a sampling rate (Hz) of 16000 Hz, 7 Channel Audio, and a total time length of 10 seconds.
- Shown tests take on the 1 second chunks of each sound sample.

Most Importantly: Chosen Model must categorize sounds into specified categories.

Confusion Matrix

	Actually Positive (1)	Actually Negative (0)
Predicted Positive (1)	True Positives (TPs)	False Positives (FPs)
Predicted Negative (0)	False Negatives (FNs)	True Negatives (TNs)

Function Model

Most Importantly: Chosen Model must categorize sounds into specified categories.

Confusion Matrix

	Actually Positive (1)	Actually Negative (0)
Predicted Positive (1)	True Positives (TPs)	False Positives (FPs)
Predicted Negative (0)	False Negatives (FNs)	True Negatives (TNs)

