

Cryptanalysis of AES

Lorenzo Grassi, IAIK, TU Graz (Austria)

November, 2019

Table of Contents

- 1 Background: Symmetric Cryptography
- 2 AES Design
 - Truncated Differential Distinguishers for 2-/3-/4-round AES
- 3 New 5-round Distinguishers for AES:
 - Multiple-of-8 Property
 - Mixture Differential Cryptanalysis
 - Truncated Differential Distinguisher for 5-round AES
- 4 AES with a single Secret S-Box
- 5 Open Problems for Future Work

Part I

Background: Symmetric Cryptography

Symmetric Cryptography

Cryptography is communication in the presence of an adversary (Ron Rivest)

Reprinted from https://www.cosic.esat.kuleuven.be/summer_school_sardinia_2015/slides/LRKnudsen.pdf by Lars R. Knudsen

Design of SPN Round Function

Secure Ciphers - Symmetric Encryption

How can you tell if a cipher is secure?

Definition (Kerckhoffs' Principle)

The security of a cryptosystem must lie in the choice of its keys only. Everything else (including the algorithm itself) should be considered public knowledge.

A cipher is secure if there is no attack better than brute force: a solid cipher must resist all known attacks!

Secure Ciphers - Symmetric Encryption

How can you tell if a cipher is secure?

Definition (Kerckhoffs' Principle)

The security of a cryptosystem must lie in the choice of its keys only. Everything else (including the algorithm itself) should be considered public knowledge.

A cipher is secure if there is no attack better than brute force: a solid cipher must resist all known attacks!

Key-Recovery Attack

Any attempt of the adversary to find the secret key.

A possible (but not only) way to set up a key-recovery attack is to exploit *secret-key distinguishers* - which are independent of the secret key - as starting points.

Given a set of chosen/known plaintexts, assume a *non-random* property which is independent of the secret key is known after s-round encryption:

plaintexts
$$\xrightarrow{R^s(\cdot)} \text{"property} \xleftarrow{R^{-r}(\cdot)} \text{key guessing}$$
 ciphertexts

Key-Recovery Attack

Any attempt of the adversary to find the secret key.

A possible (but not only) way to set up a key-recovery attack is to exploit *secret-key distinguishers* - which are independent of the secret key - as starting points.

Given a set of chosen/known plaintexts, assume a *non-random* property which is independent of the secret key is known after s-round encryption:

Secret-Key Distinguisher

Setting: Two Oracles:

- one simulates the block cipher for which the cryptography key has been chosen at random;
- the other simulates a truly random permutation.

Goal: distinguish the two oracles, i.e. decide which oracle is the cipher.

Part II

AES

AES

High-level description of AES:

- block cipher based on a design principle known as substitution-permutation network;
- block size of 128 bits = 16 bytes, organized in a 4 × 4 matrix;
- key size of 128/192/256 bits;
- 10/12/14 rounds:

$$R^{i}(x) = k^{i} \oplus MC \circ SR \circ S\text{-Box}(x).$$

AES Round

Source-code of the Figure — by Jérémy Jean — copied from https://www.iacr.org/authors/tikz/

Distinguishers for AES

(State of the Art) Distinguishers for up to 4-round of AES which are *independent of the secret key*:

Rounds	Data (CP/CC)	Complexity	Property
1 - 2	2	2 XOR	Truncated Diff.
3	$20 \simeq 2^{4.3}$	2 ^{7.6} M	Truncated Diff.
3	2 ⁸	2 ⁸ XOR	Integral
4	2 ^{16.25}	2 ^{31.5} M	Impossible Diff.
4	2 ³²	2 ³² XOR	Integral

Differential Cryptanalysis

- One of the best attack methods in cryptanalysis:
 Introduced by Biham and Shamir to attack DES (1993)
- Deduce information about the secret key by tracing differences between pairs of plaintexts during the encryption (and decryption)
- R-rounds characteristic:

$$\Delta_0 \rightarrow \Delta_1 \rightarrow \Delta_2 \rightarrow ... \rightarrow \Delta_R$$

R-rounds differential:

$$\Delta_0 \rightarrow ? \rightarrow ? \rightarrow ... \rightarrow \Delta_R$$

Basic Approach of a Differential Attack

1 Find "good" differential characteristic

$$\Delta_0 o \Delta_1 o \Delta_2 o \Delta_3$$

- 2 Guess final key K'_4 and compute backward through the S-Boxes to determine Δ'_2
- 3 The right key satisfies $\Delta_3' = \Delta_3$ with prob. $Pr(\Delta_0 \to \Delta_3)$, while a wrong key satisfies $\Delta_3' = \Delta_3$ with prob. $1/|\mathcal{P}|$.
- 4 Necessary condition for the attack: $Pr(\Delta_0 \to \Delta_3) \gg 1/|\mathcal{P}|$.

Truncated Differential Cryptanalysis

- First published by Knudsen in 1994
- Generalization of differential cryptanalysis
 - the main idea is to leave parts of the difference unspecified
 - by ignoring some bits we allow more differences which increases the probability
 - example truncated differential: ?0??0000 →?0??0000
- Powerful against word/byte oriented ciphers

Diagonal of a Matrix - Definition

Diagonals

- 1-st (first) diagonal
- 2-nd (second) diagonal
- 3-rd (third) diagonal
- 4-th (fourth) diagonal

of a 4 × 4 matrix are

$$\begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p \end{bmatrix}$$

Anti-Diagonal of a Matrix - Definition

Anti-Diagonals

- 1-st (first) anti-diagonal
- 2-nd (second) anti-diagonal
- 3-rd (third) anti-diagonal
- 4-th (fourth) anti-diagonal

of a 4 × 4 matrix are

$$\begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p \end{bmatrix}$$

A 2-round AES Truncated Differential (1/2)

where

- final MixColumns is omitted for simplicity;
- white box □ denotes a byte for which the difference of the two texts is zero;
- black box denotes a byte active byte for which the difference of the two texts is non-zero (note: ■ can take 255 possible values);
- S-Box is bijective & Branch number of MC matrix is 5.

A 2-round AES Truncated Differential (2/2)

$$\begin{aligned} \textit{Prob}[\textit{R}^2(\textit{p}^1) \oplus \textit{R}^2(\textit{p}^2) \in \mathcal{ID}_0 \, | \, \textit{p}^1 \oplus \textit{p}^2 \in \mathcal{D}_0] &= 1 \\ \textit{Prob}[\Pi(\textit{p}^1) \oplus \Pi(\textit{p}^2) \in \mathcal{ID}_0 \, | \, \textit{p}^1 \oplus \textit{p}^2 \in \mathcal{D}_0] &= 2^{-96} \end{aligned}$$

A 3-round AES Truncated Differential

A *gray box* ■ denotes a byte for which the difference of the two texts is unknown.

$$Prob[R^{3}(p^{1}) \oplus R^{3}(p^{2}) \in \mathcal{ID}_{0,1,2} | p^{1} \oplus p^{2} \in \mathcal{D}_{0}] = 2^{-8}$$

 $Prob[\Pi(p^{1}) \oplus \Pi(p^{2}) \in \mathcal{ID}_{0,1,2} | p^{1} \oplus p^{2} \in \mathcal{D}_{0}] = 2^{-32}$

A 3-round AES Truncated Differential

A *gray box* ■ denotes a byte for which the difference of the two texts is unknown.

$$Prob[R^{3}(p^{1}) \oplus R^{3}(p^{2}) \in \mathcal{ID}_{0,1,2} | p^{1} \oplus p^{2} \in \mathcal{D}_{0}] = 2^{-8}$$

 $Prob[\Pi(p^{1}) \oplus \Pi(p^{2}) \in \mathcal{ID}_{0,1,2} | p^{1} \oplus p^{2} \in \mathcal{D}_{0}] = 2^{-32}$

Impossible Differential on 4-round AES

$$\begin{split} \textit{Prob}[R^4(p^1) \oplus R^4(p^2) \in \mathcal{ID}_{0,1,2} \, | \, p^1 \oplus p^2 \in \mathcal{D}_0] &= 0 \\ \textit{Prob}[\Pi(p^1) \oplus \Pi(p^2) \in \mathcal{ID}_{0,1,2} \, | \, p^1 \oplus p^2 \in \mathcal{D}_0] &= 2^{-32} \end{split}$$

Our New Distinguishers for AES

In bold, our new distinguishers for up to 5-round AES: they are all independent of the secret key!

Rounds	Data (CP/CC)	Complexity	Property
4	2 ^{16.25}	2 ^{31.5} M	Impossible Diff.
4	2 ¹⁷	$2^{23.1}~{ m M} pprox 2^{16.75}~{ m E}$	Mixture Diff. [♦]
4	2 ³²	2 ³² XOR	Integral [DLR97]
5	2 ^{25.8} ACC	2 ^{24.8} XOR	Yoyo [RBH17]
5	2 ³²	$\mathbf{2^{35.6}}\ \mathbf{M} pprox \mathbf{2^{29}}\ \mathbf{E}$	Multiple-of-8*
5	2 ³⁸	$2^{41.6}~\text{M} pprox 2^{35}~\text{E}$	Variance - Trunc. Diff.
5	2 ^{47.4}	$\mathbf{2^{51}}\ \mathbf{M} pprox \mathbf{2^{44.3}}\ \mathbf{E}$	Mean - Trunc. Diff.

[♦] ToSC/FSE 2019

^{*} Eurocrypt 2017

Part III

New Distinguishers for 5-round AES:

Multiple-of-8 Property

Mixture Differential Cryptanalysis

Multiple-of-8 Property for 5-round AES (EC'17)

Assume 5-round AES without the final MixColumns operation. Consider a set of 2³² chosen plaintexts with one active diagonal

$$\begin{bmatrix} A & C & C & C \\ C & A & C & C \\ C & C & A & C \\ C & C & C & A \end{bmatrix}$$

The number of *different* pairs of ciphertexts which are equal in one (fixed) anti-diagonal

is a multiple of 8 with probability 1 independent of the secret key, of the details of S-Box and of MixColumns matrix.

From Multiple-of-8 to Mixture Diff. Cryptanalysis

Remember:

$$R(\underbrace{\begin{bmatrix} x_0 & 0 & 0 & 0 \\ 0 & x_1 & 0 & 0 \\ 0 & 0 & x_2 & 0 \\ 0 & 0 & 0 & x_3 \end{bmatrix}}_{\equiv \mathcal{D}_I} \oplus a) = \underbrace{\begin{bmatrix} y_0 & 0 & 0 & 0 \\ y_1 & 0 & 0 & 0 \\ y_2 & 0 & 0 & 0 \\ y_3 & 0 & 0 & 0 \end{bmatrix}}_{\equiv \mathcal{C}_I} \oplus b$$

and

$$R(\underbrace{\begin{bmatrix} y_0 & 0 & 0 & 0 \\ y_1 & 0 & 0 & 0 \\ y_2 & 0 & 0 & 0 \\ y_3 & 0 & 0 & 0 \end{bmatrix}}_{\equiv C_I} \oplus b) = MC \times \begin{bmatrix} z_0 & 0 & 0 & 0 \\ 0 & 0 & 0 & z_1 \\ 0 & 0 & z_2 & 0 \\ 0 & z_3 & 0 & 0 \end{bmatrix} \oplus c$$

From Multiple-of-8 to Mixture Diff. Cryptanalysis

Since

$$\mathcal{D}_I \oplus a \xrightarrow[\text{prob. 1}]{R(\cdot)} \mathcal{C}_I \oplus b \xrightarrow[]{R^2(\cdot)} \mathcal{D}_J \oplus a' \xrightarrow[\text{prob. 1}]{R^2(\cdot)} \mathcal{M}_J \oplus b',$$

we can focus only on the middle round, and prove an equivalent result!

In the following, we prove a stronger result that holds on the last four rounds, called

Mixture Differential Cryptanalysis (ToSC/FSE 2019)

From Multiple-of-8 to Mixture Diff. Cryptanalysis

Since

$$\mathcal{D}_I \oplus a \xrightarrow[\text{prob. 1}]{R(\cdot)} \mathcal{C}_I \oplus b \xrightarrow[]{R^2(\cdot)} \mathcal{D}_J \oplus a' \xrightarrow[\text{prob. 1}]{R^2(\cdot)} \mathcal{M}_J \oplus b',$$

we can focus only on the middle round, and prove an equivalent result!

In the following, we prove a stronger result that holds on the last four rounds, called

Mixture Differential Cryptanalysis (ToSC/FSE 2019)

Mixture Diff. Cryptanalysis – 1st Case (1/2)

Consider $p^1, p^2 \in \mathcal{C}_0 \oplus a$:

$$p^{1} = a \oplus \begin{bmatrix} x^{1} & 0 & 0 & 0 \\ y^{1} & 0 & 0 & 0 \\ z^{1} & 0 & 0 & 0 \\ w^{1} & 0 & 0 & 0 \end{bmatrix}, \qquad p^{2} = a \oplus \begin{bmatrix} x^{2} & 0 & 0 & 0 \\ y^{2} & 0 & 0 & 0 \\ z^{2} & 0 & 0 & 0 \\ w^{2} & 0 & 0 & 0 \end{bmatrix}$$

where $x^1 \neq x^2$, $y^1 \neq y^2$, $z^1 \neq z^2$ and $w^1 \neq w^2$.

For the follow-up:

$$p^1 \equiv (x^1, y^1, z^1, w^1)$$
 and $p^2 \equiv (x^2, y^2, z^2, w^2)$.

Mixture Diff. Cryptanalysis – 1st Case (2/2)

Given $p^1, p^2 \in \mathcal{C}_0 \oplus a$ as before:

$$p^1 \equiv (x^1, y^1, z^1, w^1)$$
 and $p^2 \equiv (x^2, y^2, z^2, w^2)$

it follows that

 $R^4(p^1) \oplus R^4(p^2) \in \mathcal{M}_J$ if and only if $R^4(\hat{p}^1) \oplus R^4(\hat{p}^2) \in \mathcal{M}_J$ where

$$\begin{split} \hat{\rho}^1 &\equiv (x^2, y^1, z^1, w^1), \qquad \hat{\rho}^2 \equiv (x^1, y^2, z^2, w^2); \\ \hat{\rho}^1 &\equiv (x^1, y^2, z^1, w^1), \qquad \hat{\rho}^2 \equiv (x^2, y^1, z^2, w^2); \\ \hat{\rho}^1 &\equiv (x^1, y^1, z^2, w^1), \qquad \hat{\rho}^2 \equiv (x^2, y^2, z^1, w^2); \\ \hat{\rho}^1 &\equiv (x^1, y^1, z^1, w^2), \qquad \hat{\rho}^2 \equiv (x^2, y^2, z^2, w^1); \\ \hat{\rho}^1 &\equiv (x^1, y^1, z^2, w^2), \qquad \hat{\rho}^2 \equiv (x^2, y^2, z^1, w^1); \\ \hat{\rho}^1 &\equiv (x^1, y^2, z^1, w^2), \qquad \hat{\rho}^2 \equiv (x^2, y^1, z^2, w^1); \\ \hat{\rho}^1 &\equiv (x^1, y^2, z^2, w^1), \qquad \hat{\rho}^2 \equiv (x^2, y^1, z^1, w^2). \end{split}$$

Mixture Diff. Cryptanalysis – 2nd Case

Given $p^1, p^2 \in \mathcal{C}_0 \oplus a$ as before:

$$p^1 \equiv (x^1, y^1, z^1, w)$$
 and $p^2 \equiv (x^2, y^2, z^2, w)$

it follows that

$$R^4(p^1) \oplus R^4(p^2) \in \mathcal{M}_J$$
 if and only if $R^4(\hat{p}^1) \oplus R^4(\hat{p}^2) \in \mathcal{M}_J$

where

$$\hat{p}^{1} \equiv (x^{1}, y^{1}, z^{2}, \Omega), \qquad \hat{p}^{2} \equiv (x^{2}, y^{2}, z^{2}, \Omega);
\hat{p}^{1} \equiv (x^{2}, y^{1}, z^{1}, \Omega), \qquad \hat{p}^{2} \equiv (x^{1}, y^{2}, z^{2}, \Omega);
\hat{p}^{1} \equiv (x^{1}, y^{2}, z^{1}, \Omega), \qquad \hat{p}^{2} \equiv (x^{2}, y^{1}, z^{2}, \Omega);
\hat{p}^{1} \equiv (x^{1}, y^{1}, z^{2}, \Omega), \qquad \hat{p}^{2} \equiv (x^{2}, y^{2}, z^{1}, \Omega);$$

where Ω can take any value in \mathbb{F}_{2^8} .

Mixture Diff. Cryptanalysis – 3rd Case

Given $p^1, p^2 \in C_0 \oplus a$ as before:

$$p^1 \equiv (x^1, y^1, z, w)$$
 and $p^2 \equiv (x^2, y^2, z, w)$

it follows that

$$R^4(p^1) \oplus R^4(p^2) \in \mathcal{M}_J \quad \text{ if and only if } \quad R^4(\hat{p}^1) \oplus R^4(\hat{p}^2) \in \mathcal{M}_J$$

where

$$\hat{p}^1 \equiv (\mathbf{x}^1, \mathbf{y}^1, \mathcal{Z}, \Omega), \qquad \hat{p}^2 \equiv (\mathbf{x}^2, \mathbf{y}^2, \mathcal{Z}, \Omega);$$

 $\hat{p}^1 \equiv (\mathbf{x}^2, \mathbf{y}^1, \mathcal{Z}, \Omega), \qquad \hat{p}^2 \equiv (\mathbf{x}^1, \mathbf{y}^2, \mathcal{Z}, \Omega);$

where \mathcal{Z} and Ω can take any value in \mathbb{F}_{2^8} .

Reduction to 2 Rounds AES

Since

$$Prob(R^2(x) \oplus R^2(y) \in \mathcal{M}_J \mid x \oplus y \in \mathcal{D}_J) = 1$$

we can focus only on the two initial rounds:

$$\mathcal{C}_I \oplus b \xrightarrow{R^2(\cdot)} \mathcal{D}_J \oplus a' \xrightarrow{R^2(\cdot)} \mathcal{M}_J \oplus b'$$

Consider $p^1, p^2 \in \mathcal{C}_I \oplus a$. We are going to prove that $R^2(p^1) \oplus R^2(p^2) \in \mathcal{D}_J$

if and only if

$$R^2(\hat{p}^1) \oplus R^2(\hat{p}^2) \in \mathcal{D}_J$$

where $\hat{p}^1, \hat{p}^2 \in C_I \oplus a$ are defined as before.

Reduction to 2 Rounds AES

Since

$$Prob(R^2(x) \oplus R^2(y) \in \mathcal{M}_J \mid x \oplus y \in \mathcal{D}_J) = 1$$

we can focus only on the two initial rounds:

$$\mathcal{C}_I \oplus b \xrightarrow{R^2(\cdot)} \mathcal{D}_J \oplus a' \xrightarrow{R^2(\cdot)} \mathcal{M}_J \oplus b'$$

Consider $p^1, p^2 \in C_I \oplus a$. We are going to prove that $R^2(p^1) \oplus R^2(p^2) \in \mathcal{D}_I$

if and only if

$$R^2(\hat{p}^1) \oplus R^2(\hat{p}^2) \in \mathcal{D}_J,$$

where $\hat{p}^1, \hat{p}^2 \in C_I \oplus a$ are defined as before.

Idea of the Proof

Given p^1 , p^2 and \hat{p}^1 , \hat{p}^2 in $C_0 \oplus a$ as before, if

$$R^2(p^1) \oplus R^2(p^2) = R^2(\hat{p}^1) \oplus R^2(\hat{p}^2)$$

then the previous result

$$R^2(\rho^1) \oplus R^2(\rho^2) \in \mathcal{D}_J \quad \text{iff} \quad R^2(\hat{\rho}^1) \oplus R^2(\hat{\rho}^2) \in \mathcal{D}_J$$

follows immediately!

Super-Box Notation (1/2)

Let *super-SB*(\cdot) be defined as

$$super-SB(\cdot) = S-Box \circ ARK \circ MC \circ S-Box(\cdot).$$

2-round AES can be rewritten as

$$R^2(\cdot) = ARK \circ MC \circ SR \circ super-SB \circ SR(\cdot)$$

Super-Box Notation (2/2)

By simple computation,

$$R^2(p^1) \oplus R^2(p^2) = R^2(\hat{p}^1) \oplus R^2(\hat{p}^2)$$

is equivalent to

$$\textit{super-SB}(\textit{P}^{1}) \oplus \textit{super-SB}(\textit{P}^{2}) = \textit{super-SB}(\hat{\textit{P}}^{1}) \oplus \textit{super-SB}(\hat{\textit{P}}^{2}),$$

where

$$P^i \equiv SR(p^i), \hat{P}^i \equiv SR(\hat{p}^i) \in SR(\mathcal{C}_I) \oplus a' \equiv \mathcal{ID}_I \oplus a'$$
 for $i = 1, 2$.

Sketch of the Proof (1/2)

Given
$$P^1 = SR(p^1), P^2 = SR(p^2) \in \mathcal{ID}_0 \oplus a'$$
, note that

$$P^{1} = a' \oplus \begin{bmatrix} x^{1} & 0 & 0 & 0 \\ 0 & 0 & 0 & y^{1} \\ 0 & 0 & z^{1} & 0 \\ 0 & w^{1} & 0 & 0 \end{bmatrix}, \qquad P^{2} = a' \oplus \begin{bmatrix} x^{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & y^{2} \\ 0 & 0 & z^{2} & 0 \\ 0 & w^{2} & 0 & 0 \end{bmatrix}$$

Sketch of the Proof

Since

- each column depends on different and independent variables;
- the super-SB works independently on each column;
- the XOR-sum is commutative:

then

$$super-SB(P^1) \oplus super-SB(\hat{P}^2) = super-SB(\hat{P}^1) \oplus super-SB(\hat{P}^2)$$

for each \hat{P}^1 and \hat{P}^2 obtained by mixing/swapping the columns of P^1 and P^2 , e.g.

$$\hat{P}^1 = a' \oplus \begin{bmatrix} x^2 & 0 & 0 & 0 \\ 0 & 0 & 0 & y^1 \\ 0 & 0 & z^1 & 0 \\ 0 & w^1 & 0 & 0 \end{bmatrix}, \qquad \hat{P}^2 = a' \oplus \begin{bmatrix} x^1 & 0 & 0 & 0 \\ 0 & 0 & 0 & y^2 \\ 0 & 0 & z^2 & 0 \\ 0 & w^2 & 0 & 0 \end{bmatrix}$$

Mixture Diff. Distinguisher on 4-round AES

Consider
$$p^1 \equiv (x^1, y^1, z^1, w^1), p^2 \equiv (x^2, y^2, z^2, w^2) \in C_0 \oplus a \text{ s.t.}$$

$$c^1 \oplus c^2 \equiv R^4(p^1) \oplus R^4(p^2) \in \mathcal{M}_J,$$

i.e. c^1 and c^2 are equal in 4 - J anti-diagonals.

Given $\hat{p}^1, \hat{p}^2 \in \mathcal{C}_0 \oplus$ a obtained my mixing/swapping the generating variables of p^1, p^2 , then:

- 4-round AES: the event $R^4(\hat{p}^1) \oplus R^4(\hat{p}^2) \in \mathcal{M}_J$ occurs with prob. 1;
- Random Perm.: the event $\Pi(\hat{p}^1) \oplus \Pi(\hat{p}^2) \in \mathcal{M}_J$ occurs with prob. $2^{-32\cdot(4-|J|)}$;

independently of the secret-key.

Mixture Diff. Distinguisher + Key-Recovery Attack

Since

$$a \oplus \begin{bmatrix} x & 0 & 0 & 0 \\ 0 & y & 0 & 0 \\ 0 & 0 & z & 0 \\ 0 & 0 & 0 & w \end{bmatrix} \xrightarrow{R(\cdot)} b \oplus MC \times \begin{bmatrix} S\text{-Box}(x \oplus k_{0,0}) & 0 & 0 & 0 \\ S\text{-Box}(y \oplus k_{1,1}) & 0 & 0 & 0 \\ S\text{-Box}(z \oplus k_{2,2}) & 0 & 0 & 0 \\ S\text{-Box}(w \oplus k_{3,3}) & 0 & 0 & 0 \end{bmatrix},$$

the relations among the generating variables of $R(p^1)$, $R(p^2)$ and of $R(\hat{p}^1)$, $R(\hat{p}^2)$ depend on the key.

Idea of the attack:

$$\mathcal{D}_0 \oplus a \xrightarrow{R(\cdot)} \mathcal{C}_0 \oplus b \xrightarrow{R^4(\cdot)} \textit{Mixture Diff. Property}$$

where the mixture differential property holds only for the secret-key!

Mixture Diff. Distinguisher + Key-Recovery Attack

Since

$$a \oplus \begin{bmatrix} x & 0 & 0 & 0 \\ 0 & y & 0 & 0 \\ 0 & 0 & z & 0 \\ 0 & 0 & 0 & w \end{bmatrix} \xrightarrow{R(\cdot)} b \oplus MC \times \begin{bmatrix} \text{S-Box}(x \oplus k_{0,0}) & 0 & 0 & 0 \\ \text{S-Box}(y \oplus k_{1,1}) & 0 & 0 & 0 \\ \text{S-Box}(z \oplus k_{2,2}) & 0 & 0 & 0 \\ \text{S-Box}(w \oplus k_{3,3}) & 0 & 0 & 0 \end{bmatrix},$$

the relations among the generating variables of $R(p^1)$, $R(p^2)$ and of $R(\hat{p}^1)$, $R(\hat{p}^2)$ depend on the key.

Idea of the attack:

$$\mathcal{D}_0 \oplus a \xrightarrow{R(\cdot)} \mathcal{C}_0 \oplus b \xrightarrow{R^4(\cdot)} \textit{Mixture Diff. Property}$$

where the mixture differential property holds only for the secret-key!

Mixture Diff. Key-Recovery Attack (1/2)

Consider 2^{32} chosen plaintexts with one active diagonal, that is $p^i \in \mathcal{D}_0 \oplus a$ for $i = 1, ..., 2^{32}$.

Find a pair of plaintexts (p,p') s.t. the corresponding ciphertexts after 5-round $(c=R^5(p),c'=R^5(p'))$ satisfy the property

$$c \oplus c' = R^5(p) \oplus R^5(p') \in \mathcal{M}_J$$

for a certain J, i.e. c and c' are equal in 4 - |J| anti-diagonal(s).

Mixture Diff. Key-Recovery Attack (2/2)

For each guessed value of $(k_{0,0}, k_{1,1}, k_{2,2}, k_{3,3})$:

- partially compute 1-round encryption of R(p), R(p') w.r.t. the **guessed-key**;
- let q, q' be two texts obtained by swapping the generating variables of R(p), R(p');
- partially compute 1-round decryption of $\hat{q} \equiv R^{-1}(q), \hat{q}' \equiv R^{-1}(q')$ w.r.t. the guessed-key;
- if

$$R^5(\hat{q}) \oplus R^5(\hat{q}') \notin \mathcal{M}_J$$

then the guessed key is wrong (where $R^5(\cdot)$ is computed under the **secret-key**).

Key-Recovery Attacks on 5-round AES-128

Property	Data (CP/CC)	Cost (E)	Memory
MitM [Der13]	8	2 ⁶⁴	2 ⁵⁶
Imp. Polytopic [Tie16]	15	2 ⁷⁰	2 ⁴¹
Partial Sum [Tun12]	2 ⁸	2 ³⁸	small
Integral (EE) [DR02]	2 ¹¹	2 ^{45.7}	small
Mixture Diff.* [BDK+18]	2 ^{22.25}	2 ^{22.25}	2 ²⁰
Imp. Differential [BK01]	2 ^{31.5}	$2^{33} (+2^{38})$	2 ³⁸
Integral (EB) [DR02]	2 ³³	2 ^{37.7}	2 ³²
Mixture Diff.	2 ^{33.6}	2 ^{33.3}	2 ³⁴

^{* ≡} follow-up work

At Crypto 2018, Bar-On et al. [BDK+18] present the best (mixture-differential) attacks on 7-round AES-192 which use practical amounts of data and memory.

Key-Recovery Attacks on 5-round AES-128

Property	Data (CP/CC)	Cost (E)	Memory
MitM [Der13]	8	2 ⁶⁴	2 ⁵⁶
Imp. Polytopic [Tie16]	15	2 ⁷⁰	2 ⁴¹
Partial Sum [Tun12]	2 ⁸	2 ³⁸	small
Integral (EE) [DR02]	2 ¹¹	2 ^{45.7}	small
Mixture Diff.* [BDK+18]	2 ^{22.25}	2 ^{22.25}	2 ²⁰
Imp. Differential [BK01]	2 ^{31.5}	$2^{33} (+2^{38})$	2 ³⁸
Integral (EB) [DR02]	2 ³³	2 ^{37.7}	2 ³²
Mixture Diff.	2 ^{33.6}	2 ^{33.3}	2 ³⁴

^{* ≡} follow-up work

At Crypto 2018, Bar-On et al. [BDK+18] present the best (mixture-differential) attacks on 7-round AES-192 which use practical amounts of data and memory.

Part IV

New Distinguishers for 5-round AES:
Truncated Differential
Distinguishers

Truncated Differential - 5-round AES

Consider all the 2^{32} plaintexts with one active diagonal (i.e. a coset of a diagonal space \mathcal{D}_l) and the corresponding ciphertexts after 5 rounds, i.e. $(p^i, c^i \equiv R^5(p^i))$.

The average number of different pairs of ciphertexts (c^i, c^j) with i < j that are equal in one fixed anti-diagonal (assuming the final MC is omitted) is approximately equal to

$$2\,147\,484\,685.6 \simeq 2^{31} + 2^{10.1}$$

while for a random permutation it is approximately equal to

$$2\,147\,483\,647.5 \simeq 2^{31}-2^{-1}$$

(difference of \approx 1038.1 collisions).

Truncated Differential – Assumption on the S-Box

The previous result is **independent of the secret key**, but **it depends on the details of S-Box.**

In more detail, consider the following equation:

$$S\text{-Box}(x \oplus \Delta_{IN}) \oplus S\text{-Box}(x) = \Delta_{OUT}.$$

The previous result holds if the solutions (in particular, the number of solutions) of the previous equation are ("almost") uniformly distributed for each $(\Delta_{IN}, \Delta_{OUT}) \neq (0,0)$.

This is close to be satisfied if the S-Box is APN, or if the SBox is "close" to be APN (like the AES S-Box).

Variance distinguisher - 5-round AES

Consider all the 2^{32} plaintexts with one active diagonal (i.e. a coset of a diagonal space \mathcal{D}_l) and the corresponding ciphertexts after 5 rounds, i.e. $(p^i, c^i \equiv R^5(p^i))$.

Consider the variance of the distribution of the number of different pairs of ciphertexts (c^i, c^j) with i < j that are equal in one fixed anti-diagonal (assuming the final MC is omitted). For 5-round AES, it is approximately equal to

2^{36.154}

independent of the secret key, of the details of S-Box and of MixColumns matrix, while for a random permutation it is approximately equal to

 2^{31}

(difference of factor \approx 35.6).

Probabilistic Distribution - AES vs Random

Probabilistic Distribution - 5-round AES vs Random:

Skew Distinguisher - 5-round (small-scale) AES

Note: do not confuse the mean and the mode!

Open Problem: theoretically compute the skew

Part V

Cryptanalysis of AES with a single Secret S-Box

Consider AES with a single secret S-Box: the size of the secret information increases from 128-256 bits to

$$128 + \log_2 2^8! = 1812$$

 $256 + \log_2 2^8! = 1940$

How does the security of the AES change when the S-Box is replaced by a secret S-Box, about which the adversary has no knowledge?

For all the attacks in literature

- 1 determine the secret S-Box up to additive constants, i.e. S-Box($a \oplus x$) $\oplus b$;
- 2 exploit this knowledge to find the key.

Consider AES with a single secret S-Box: the size of the secret information increases from 128-256 bits to

$$128 + \log_2 2^8! = 1812$$

 $256 + \log_2 2^8! = 1940$

How does the security of the AES change when the S-Box is replaced by a secret S-Box, about which the adversary has no knowledge?

For all the attacks in literature:

- 1 determine the secret S-Box up to additive constants, i.e. S-Box($a \oplus x$) $\oplus b$;
- 2 exploit this knowledge to find the key.

Is it possible to find directly the key, i.e. without finding or exploiting any information of S-Box?

Yes: exploit the fact that each row of the MixColumns matrix

$$MC \equiv \begin{bmatrix} 0x02 & 0x03 & 0x01 & 0x01 \\ 0x01 & 0x02 & 0x03 & 0x01 \\ 0x01 & 0x01 & 0x02 & 0x03 \\ 0x03 & 0x01 & 0x01 & 0x02 \end{bmatrix}$$

has two identical elements or that the XOR-sum of "some" elements is equal to zero.

Is it possible to find directly the key, i.e. without finding or exploiting any information of S-Box?

Yes: exploit the fact that each row of the MixColumns matrix

$$MC \equiv \begin{bmatrix} 0x02 & 0x03 & 0x01 & 0x01 \\ 0x01 & 0x02 & 0x03 & 0x01 \\ 0x01 & 0x01 & 0x02 & 0x03 \\ 0x03 & 0x01 & 0x01 & 0x02 \end{bmatrix}$$

has two identical elements or that the XOR-sum of "some" elements is equal to zero.

Multiple-of-n Property - 5-round AES

Guess one byte of the key δ and consider the set of 2^{40} plaintexts \textit{V}_{δ}

$$V_{\delta} \equiv \left\{ a \oplus \begin{bmatrix} x_0 & y & 0 & 0 \\ 0 & x_1 & y \oplus \delta & 0 \\ 0 & 0 & x_2 & 0 \\ 0 & 0 & 0 & x_3 \end{bmatrix} \mid \forall x_0, ..., x_3, y \in \mathbb{F}_{2^8} \right\}$$

Let N the number of different pairs of ciphertexts (c^1, c^2) that are equal in one fixed anti-diagonal, e.g.

$$c^{1} \oplus c^{2} = \begin{bmatrix} ? & ? & ? & 0 \\ ? & ? & 0 & ? \\ ? & 0 & ? & ? \\ 0 & ? & ? & ? \end{bmatrix}$$

(final MC omitted for simplicity)

Multiple-of-n Property - 5-round AES

Guess one byte of the key δ and consider the set of 2⁴⁰ plaintexts V_{δ}

$$V_{\delta} \equiv \left\{ a \oplus egin{bmatrix} x_0 & y & 0 & 0 \ 0 & x_1 & y \oplus \delta & 0 \ 0 & 0 & x_2 & 0 \ 0 & 0 & 0 & x_3 \end{bmatrix} \mid \forall x_0, ..., x_3, y \in \mathbb{F}_{2^8} \right\}$$

Let N the number of different pairs of ciphertexts (c^1, c^2) that are equal in one fixed anti-diagonal, e.g.

$$c^{1} \oplus c^{2} = \begin{bmatrix} ? & ? & ? & 0 \\ ? & ? & 0 & ? \\ ? & 0 & ? & ? \\ 0 & ? & ? & ? \end{bmatrix}$$

(final MC omitted for simplicity)

Multiple-of-n Property - 5-round AES

Let N the number of different pairs of ciphertexts (c^1, c^2) that are equal in one fixed anti-diagonal (final MC omitted for simplicity).

Since $MC_{3,0} = MC_{3,1}$:

- If $\delta = k_{0,1} \oplus k_{1,2}$, N is a multiple of 2 i.e. $N = 2 \cdot N'$ with prob. 1;
- If $\delta \neq k_{0,1} \oplus k_{1,2}$, N is a multiple of 2 with prob. 50% (same probability to be even or odd).

Part VI

Open Problems for Future Works

Recap and Future Works

- Open Problem (for the last 20 years) Solved:
 we have found new properties for 5-round AES which are independent of the secret key
- As a main result, cryptanalysis of AES is not "finished": we have proposed new directions of research for AES-like ciphers that can lead to new distinguishers/attacks (e.g. new truncated differentials for 6-round AES have been proposed recently)

Recap and Future Works

Open Problems:

- how the details of the S-Box influence the truncated differentials for 5-/6-round AES?
- what about other distinguishers based on the variance/skewness?
- what about a truncated differential for 7-round AES?
- what about new key-recovery attacks?
- what about new boomerang distinguisher/attack based on multiple-of-8 property?
- is it possible to improve the attacks in the case of a secret S-Box(es)?
- ...

Thanks for your attention!

Questions?

Comments?

Sketch of the Proof - Reduction to a Single Round

Since

$$\mathcal{D}_{I} \oplus a \xrightarrow[\text{prob. 1}]{R^{2}(\cdot)} \mathcal{M}_{I} \oplus b \xrightarrow[]{R(\cdot)} \mathcal{D}_{J} \oplus a' \xrightarrow[\text{prob. 1}]{R^{2}(\cdot)} \mathcal{M}_{J} \oplus b',$$

we can focus only on the middle round!

For simplicity, we limit to conside

$$(\mathcal{C}_{0,1}\cap\mathcal{M}_0)\oplus b\xrightarrow{R(\cdot)}\mathcal{D}_{1,2,3}\oplus a$$

where

$$C_{0,1} \cap \mathcal{M}_0 \equiv \begin{bmatrix} 2 \cdot x & y & 0 & 0 \\ 3 \cdot x & 2 \cdot y & 0 & 0 \\ x & 3 \cdot y & 0 & 0 \\ x & y & 0 & 0 \end{bmatrix}$$

Sketch of the Proof - Reduction to a Single Round

Since

$$\mathcal{D}_I \oplus a \xrightarrow{R^2(\cdot)} \mathcal{M}_I \oplus b \xrightarrow{R(\cdot)} \mathcal{D}_J \oplus a' \xrightarrow{R^2(\cdot)} \mathcal{M}_J \oplus b',$$

we can focus only on the middle round!

For simplicity, we limit to consider

$$(\mathcal{C}_{0,1}\cap\mathcal{M}_0)\oplus b\xrightarrow{R(\cdot)}\mathcal{D}_{1,2,3}\oplus a'$$

where

$$C_{0,1} \cap \mathcal{M}_0 \equiv \begin{bmatrix} 2 \cdot x & y & 0 & 0 \\ 3 \cdot x & 2 \cdot y & 0 & 0 \\ x & 3 \cdot y & 0 & 0 \\ x & y & 0 & 0 \end{bmatrix}$$

Idea of the Proof

Given
$$p^1, p^2 \in (\mathcal{C}_{0,1} \cap \mathcal{M}_0) \oplus b$$
 where $p^1 \equiv (x^1, y^1)$, $p^2 \equiv (x^2, y^2)$ (where $x^1 \neq x^2$ and $y^1 \neq y^2$), they satisfy $R(p^1) \oplus R(p^2) \in \mathcal{D}_{1,2,3}$ if and only if $(R(p^1) \oplus R(p^2))_{0,0} = 2 \cdot (S \cdot Box(2 \cdot x^1 \oplus a_{0,0}) \oplus S \cdot Box(2 \cdot x^2 \oplus a_{0,0})) \oplus \oplus 3 \cdot (S \cdot Box(y^1 \oplus a_{1,1}) \oplus S \cdot Box(y^2 \oplus a_{1,1})) = 0$, $(R(p^1) \oplus R(p^2))_{1,1} = S \cdot Box(3 \cdot x^1 \oplus a_{3,0}) \oplus S \cdot Box(3 \cdot x^2 \oplus a_{3,0}) \oplus \oplus S \cdot Box(y^1 \oplus a_{0,1}) \oplus S \cdot Box(y^2 \oplus a_{0,1}) = 0$, $(R(p^1) \oplus R(p^2))_{2,2} = 2 \cdot (S \cdot Box(x^1 \oplus a_{2,0}) \oplus S \cdot Box(x^2 \oplus a_{2,0})) \oplus \oplus 3 \cdot (S \cdot Box(2 \cdot y^1 \oplus a_{3,1}) \oplus S \cdot Box(2 \cdot y^2 \oplus a_{3,1})) = 0$, $(R(p^1) \oplus R(p^2))_{3,3} = S \cdot Box(x^1 \oplus a_{1,0}) \oplus S \cdot Box(x^2 \oplus a_{1,0}) \oplus \oplus S \cdot Box(3 \cdot y^1 \oplus a_{2,1}) \oplus S \cdot Box(3 \cdot y^2 \oplus a_{2,1}) = 0$.

Working on a single Equation

This means that four equations of the form

$$A \cdot \left[S - Box(B \cdot x^1 \oplus a) \oplus S - Box(B \cdot x^2 \oplus a) \right] \oplus$$
$$\oplus C \cdot \left[S - Box(D \cdot y^1 \oplus c) \oplus S - Box(D \cdot y^2 \oplus c) \right] = 0$$

must be satisfied, where A, B, C, D depend only on the MixColumns matrix, while a, c depend on the secret key and on the initial constant that defines the coset.

Equivalently:

S-Box
$$(\hat{x} \oplus \Delta_I) \oplus$$
 S-Box $(\hat{x}) = \Delta_C$
S-Box $(\hat{y} \oplus \Delta_I') \oplus$ S-Box $(\hat{y}) = \Delta_C'$
$$\Delta_O' = C^{-1} \cdot A \cdot \Delta_O$$

Working on a single Equation

This means that four equations of the form

$$A \cdot \left[S - Box(B \cdot x^1 \oplus a) \oplus S - Box(B \cdot x^2 \oplus a) \right] \oplus$$
$$\oplus C \cdot \left[S - Box(D \cdot y^1 \oplus c) \oplus S - Box(D \cdot y^2 \oplus c) \right] = 0$$

must be satisfied, where *A*, *B*, *C*, *D* depend only on the MixColumns matrix, while *a*, *c* depend on the secret key and on the initial constant that defines the coset.

Equivalently:

S-Box
$$(\hat{x} \oplus \Delta_I) \oplus$$
 S-Box $(\hat{x}) = \Delta_O$
S-Box $(\hat{y} \oplus \Delta_I') \oplus$ S-Box $(\hat{y}) = \Delta_O'$
$$\Delta_O' = C^{-1} \cdot A \cdot \Delta_O$$

Working on a single Equation

Note that for each $\Delta_O \neq 0$, the equation

$$S\text{-Box}(x \oplus \Delta_I) \oplus S\text{-Box}(x) = \Delta_O$$

admits 256 different solutions (x, Δ_I) , where $\Delta_I \neq 0$.

As a result, there are

values of
$$\Delta_O \neq 0$$
 \times $\frac{1}{2} \cdot 256^2 = 255 \cdot 2^{15}$ different solutions $(\hat{x}, \Delta_I), (\hat{y}, \Delta_I')$

different solutions $(x^1, y^1), (x^2, y^2)$ of

$$A \cdot \left[S - Box(B \cdot x^{1} \oplus a) \oplus S - Box(B \cdot x^{2} \oplus a) \right] \oplus$$
$$\oplus C \cdot \left[S - Box(D \cdot y^{1} \oplus c) \oplus S - Box(D \cdot y^{2} \oplus c) \right] = 0$$

Working on a single Equation

Note that for each $\Delta_O \neq 0$, the equation

$$S\text{-Box}(x \oplus \Delta_I) \oplus S\text{-Box}(x) = \Delta_O$$

admits 256 different solutions (x, Δ_I) , where $\Delta_I \neq 0$.

As a result, there are

$$\underbrace{255}_{\text{values of }\Delta_O \neq 0} \times \underbrace{\frac{1}{2} \cdot 256^2}_{\text{different solutions}(\hat{x}, \Delta_I), (\hat{y}, \Delta_I')} = 255 \cdot 2^{15}$$

different solutions $(x^1, y^1), (x^2, y^2)$ of

$$A \cdot \left[S - Box(B \cdot x^1 \oplus a) \oplus S - Box(B \cdot x^2 \oplus a) \right] \oplus$$
$$\oplus C \cdot \left[S - Box(D \cdot y^1 \oplus c) \oplus S - Box(D \cdot y^2 \oplus c) \right] = 0.$$

A system of four Equations

What is the probability that the two equations of the system admit a common solution $(x^1, y^1), (x^2, y^2)$?

Since (1st) $x^1 \neq x^2$ by assumption and since (2nd) $[(x^1,y^1),(x^2,y^2)]$ and $[(x^2,y^2),(x^1,y^1)]$ are equivalent solutions (e.g. a solution is "valid" if $y^2 < y^1$), this probability is equal to

$$\underbrace{(256 \cdot 255)^{-1}}_{\text{condition on } x^1, x^2} \times \underbrace{(255 \cdot 128)^{-1}}_{\text{condition on } y^1, y^2} = 2^{-15} \times 255^{-2}$$

Assumption: the solutions x of S-Box $(x \oplus \Delta_I) \oplus$ S-Box $(x) = \Delta_O$ are **uniform distributed** for each $(\Delta_I, \Delta_O) \neq (0, 0)!$ Otherwise the previous probability is in general **not** correct!

A system of four Equations

What is the probability that the two equations of the system admit a common solution $(x^1, y^1), (x^2, y^2)$?

Since (1st) $x^1 \neq x^2$ by assumption and since (2nd) $[(x^1,y^1),(x^2,y^2)]$ and $[(x^2,y^2),(x^1,y^1)]$ are equivalent solutions (e.g. a solution is "valid" if $y^2 < y^1$), this probability is equal to

$$\underbrace{(256 \cdot 255)^{-1}}_{\text{condition on } x^1, x^2} \times \underbrace{(255 \cdot 128)^{-1}}_{\text{condition on } y^1, y^2} = 2^{-15} \times 255^{-2}$$

Assumption: the solutions x of S-Box $(x \oplus \Delta_I) \oplus$ S-Box $(x) = \Delta_O$ are **uniform distributed** for each $(\Delta_I, \Delta_O) \neq (0, 0)!$ Otherwise the previous probability is in general **not** correct!

Conclusion

The number of texts $p^1, p^2 \in (\mathcal{C}_{0,1} \cap \mathcal{M}_0) \oplus b$ that satisfy $R(p^1) \oplus R(p^2) \in \mathcal{D}_{1,2,3}$ is

$$\left(255 \cdot 2^{15}\right)^4 \cdot \left(2^{-15} \cdot 255^{-2}\right)^3 = \frac{2^{15}}{255^2} = \frac{1}{2} + \underbrace{\frac{511}{2 \cdot 255^2}}_{\approx 2^{-8}}.$$

For a random permutation, the number of collisions is given by

$$\binom{2^{16}}{2} \cdot 2^{-32} = \frac{2^{16} - 1}{2^{17}} = \frac{1}{2} - \frac{1}{2^{17}}$$

Using the same strategy, it is possible to prove the results or 5-round AES!

Conclusion

The number of texts $p^1, p^2 \in (\mathcal{C}_{0,1} \cap \mathcal{M}_0) \oplus b$ that satisfy $R(p^1) \oplus R(p^2) \in \mathcal{D}_{1,2,3}$ is

$$\left(255 \cdot 2^{15}\right)^4 \cdot \left(2^{-15} \cdot 255^{-2}\right)^3 = \frac{2^{15}}{255^2} = \frac{1}{2} + \underbrace{\frac{511}{2 \cdot 255^2}}_{\approx 2^{-8}}.$$

For a random permutation, the number of collisions is given by

$$\binom{2^{16}}{2} \cdot 2^{-32} = \frac{2^{16} - 1}{2^{17}} = \frac{1}{2} - \frac{1}{2^{17}}.$$

Using the same strategy, it is possible to prove the results or 5-round AES!

Conclusion

The number of texts $p^1, p^2 \in (\mathcal{C}_{0,1} \cap \mathcal{M}_0) \oplus b$ that satisfy $R(p^1) \oplus R(p^2) \in \mathcal{D}_{1,2,3}$ is

$$\left(255 \cdot 2^{15}\right)^4 \cdot \left(2^{-15} \cdot 255^{-2}\right)^3 = \frac{2^{15}}{255^2} = \frac{1}{2} + \underbrace{\frac{511}{2 \cdot 255^2}}_{\approx 2^{-8}}.$$

For a random permutation, the number of collisions is given by

$$\binom{2^{16}}{2} \cdot 2^{-32} = \frac{2^{16} - 1}{2^{17}} = \frac{1}{2} - \frac{1}{2^{17}}.$$

Using the same strategy, it is possible to prove the results on 5-round AES!

Variance - Idea of the Proof

The previous result is (almost) independent of the secret key, of the details of S-Box and of MixColumns matrix.

To theoretically derive the previous result:

- use the fact that the number of collisions is a multiple of 8;
- given a random variable X, remember that

$$Var(A \cdot X) = A^2 \cdot Var(X)$$

for any scalar A.

Variance - Sketch of the Proof (1/2)

Given 2^{32} texts in $\mathcal{D}_I \oplus a$, the corresponding pairs of texts are **not** independent! It is possible to divide such pairs in

- sets of cardinality 8 (different generating variables);
- sets of cardinality 2¹⁰ (one equal generating variable);
- sets of cardinality 2¹⁷ (two equal generating variables);

such that

- 1 pairs of texts of different sets are independent;
- 2 pairs of texts in the same set have the same property.

Variance - Sketch of the Proof (2/2)

If *Y* is the probabilistic distribution of the number of collisions, then

$$Y = 2^3 \times X_3 + 2^{10} \times X_{10} + 2^{17} \times X_{17}$$

where X_3, X_{10}, X_{17} is the probabilistic distribution of *independent/unrelated* pairs of texts.

The result follows from

$$Var(Y) = Var(2^{3} \times X_{3} + 2^{10} \times X_{10} + 2^{17} \times X_{17}) =$$

$$= Var(2^{3} \times X_{3}) + Var(2^{10} \times X_{10}) + Var(2^{17} \times X_{17}) =$$

$$= 2^{6} \times Var(X_{3}) + 2^{20} \times Var(X_{10}) + 2^{34} \times Var(X_{17})$$

References I

Z. Bao, J Guo and E. List,

Extended Expectation Cryptanalysis on Round-reduced

AES

ePrint 2019/622

References II

- E. Biham and N. Keller

 Cryptanalysis of Reduced Variants of Rijndael

 Unpublished 2000, http://csrc.nist.gov/archive/
 aes/round2/conf3/papers/35-ebiham.pdf
- N.G. Bardeh and S. Rønjom, The Exchange Attack: How to Distinguish 6 Rounds of AES with 2^{88.2} chosen plaintexts ASIACRYPT 2019
- A. Biryukov and A. Shamir Structural Cryptanalysis of SASAS EUROCRYPT 2001

References III

- A. Biryukov and D. Khovratovich

 Two New Techniques of Side-Channel Cryptanalysis

 CHES 2007
- J. Daemen, L. Knudsen and V. Rijmen The block cipher Square FSE 1997
- J. Daemen and V. Rijmen The Design of Rijndael AES - The Advanced Encryption Standard

References IV

MixColumns Properties and Attacks on (Round-Reduced) AES with a Single Secret S-Box CT-RSA 2018

🔋 L. Grassi

Mixture Differential Cryptanalysis: a New Approach to Distinguishers and Attacks on round-reduced AES. FSE/ToSC 2019

L. Grassi and C. Rechberger

New Rigorous Analysis of Truncated Differentials for
5-round AES

In Submission - ePrint 2018/182

References V

- L. Grassi, C. Rechberger and S. Rønjom

 Subspace Trail Cryptanalysis and its Applications to AES

 IACR Transactions on Symmetric Cryptology 2017
- L. Grassi, C.Rechberger and S. Rønjom

 A New Structural-Differential Property of 5-Round AES

 EUROCRYPT 2017
- S. Rønjom, N.G. Bardeh and T. Helleseth Yoyo Tricks with AES ASIACRYPT 2017

References VI

- B. Sun and M. Liu and J.Gou and L. Qu and V. Rijmen New Insights on AES-Like SPN Ciphers CRYPTO 2016
- T. Tiessen, L.R. Knudsen, S. Kölbl and M.M. Lauridsen Security of the AES with a Secret S-Box FSE 2015