Algoritmos y Estructuras de Datos Colas de prioridad

Segundo trimestre de 2025

Maestría en Inteligencia Artificial

Universidad de San Andrés

Colas de prioridad con heaps

Colas de prioridad sobre arreglos

Algoritmos Heapify y Heapsort

Descripción del problema

Queremos implementar un tipo de datos (cola de prioridad) con las siguientes operaciones:

- Crear una nueva cola de prioridad.
- Insertar un elemento, indicando un nivel de prioridad.
- Buscar el elemento de mayor prioridad.
 (O alguno de ellos si hay empates).
- ▶ Eliminar el elemento de mayor prioridad.

¿Qué complejidades obtendríamos con las siguientes estructuras?

	Inserción	Búsqueda	Eliminación
Lista	O(1)	O(n)	O(n)
Lista ordenada	O(n)	O(1)	O(1)

Árboles izquierdistas

Un árbol binario es izquierdista si:

- Es balanceado y completo, excepto quizá por el último nivel.
 (El último nivel puede estar completo o incompleto).
- ► Cada vez que hay un nodo en el último nivel, están también todos los nodos a su izquierda.

Ejemplo — árboles izquierdistas de *n* nodos

Observación

La altura de un árbol izquierdista de n nodos es $O(\log n)$.

Heaps

Un **heap** es un árbol binario con el siguiente invariante:

- 1. El árbol es izquierdista.
- 2. En todos los subárboles, el elemento de la raíz es máximo. (Más precisamente, es de *máxima prioridad*).

Ejemplos

Inserción en un heap

Algoritmo para insertar un elemento x en un heap:

- ▶ Ubicar x en la próxima posición libre del árbol izquierdista. Es decir, en el último nivel a la derecha.
- Aplicar el siguiente procedimiento de ajuste hacia arriba. Mientras el elemento tenga mayor prioridad que su padre:
 - Intercambiar el elemento con su padre.

Complejidad temporal en peor caso: $O(\log n)$.

Inserción en un heap

Ejemplo

Insertemos: 4, 1, 3, 6, 5, 4, 7.

Eliminación del máximo de un heap

Algoritmo para eliminar el máximo elemento de un heap:

- Reemplazar la raíz por el elemento en la última posición.
- Aplicar el siguiente procedimiento de ajuste hacia abajo. Mientras el elemento sea menor que alguno de sus hijos:
 - Intercambiarlo con el hijo de mayor prioridad.

Complejidad temporal en peor caso: $O(\log n)$.

Eliminación del máximo de un heap

Colas de prioridad con heaps

Colas de prioridad sobre arreglos

Algoritmos Heapify y Heapsort

Árboles izquierdistas

Los algoritmos de inserción y eliminación en un heap de tamaño n requieren encontrar la posición del n-ésimo elemento del árbol.

¿Cómo encontramos el n-ésimo nodo en un árbol izquierdista?

La codificación binaria de *n* indica el camino hacia el nodo:

Árboles izquierdistas sobre arreglos

Los árboles izquierdistas se pueden representar como arreglos.

Ejemplo

El árbol izquierdista con 12 nodos enumerados de 0 a 11:

se puede representar con el siguiente arreglo de largo 12:

$$\left[x_0, x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}\right]$$

Árboles izquierdistas sobre arreglos

Dado un índice $0 \le i < n$ de un árbol izquierdista:

- 1. El hijo izquierdo se encuentra en el índice 2i + 1.
- 2. El hijo derecho se encuentra en el índice 2i + 2.
- 3. El padre se encuentra en el índice $\lfloor \frac{i-1}{2} \rfloor$.

Ejemplo

$$9 = 2 \cdot 4 + 1$$

$$9 = 2 \cdot 4 + 1$$
 $10 = 2 \cdot 4 + 2$ $2 = \lfloor \frac{5-1}{2} \rfloor$ $2 = \lfloor \frac{6-1}{2} \rfloor$

$$2 = |\frac{5-1}{2}|$$

$$2 = \lfloor \frac{6-1}{2} \rfloor$$

Operaciones auxiliares

```
def esRaiz(i):
    return i == 0
def enRango(heap, i):
    return 0 <= i < len(heap)</pre>
def hijoIzq(i):
    return 2 * i + 1
def hijoDer(i):
    return 2 * i + 2
def padre(i):
    return (i - 1) // 2
```

Algoritmo de inserción

```
def insertar(heap, x):
    heap.append(x)
    ajustarHaciaArriba(heap, len(heap) - 1)

def ajustarHaciaArriba(heap, i):
    while not esRaiz(i) and heap[i] > heap[padre(i)]:
        heap[i], heap[padre(i)] = heap[padre(i)], heap[i]
        i = padre(i)
```

Algoritmo de eliminación del máximo

```
def eliminarMaximo(heap):
    ultimo = heap.pop()
    if len(heap) == 0:
        return
    heap[0] = ultimo
    ajustarHaciaAbajo(heap, 0)
def ajustarHaciaAbajo(heap, i):
    while tieneHijoMayor(heap, i):
        j = indiceDelHijoMayor(heap, i)
        heap[i], heap[j] = heap[j], heap[i]
        i = i
```

Algoritmo de eliminación del máximo — operaciones auxiliares

```
def tieneHijoMayor(heap, i):
    izq = hijoIzq(i)
    der = hijoDer(i)
    return (enRango(heap, izq) and heap[izq] > heap[i]) \
        or (enRango(heap, der) and heap[der] > heap[i])
def indiceDelHijoMayor(heap, i):
    # Precondición: tieneHijoMayor(heap, i)
    izq = hijoIzq(i)
    der = hijoDer(i)
    if enRango(heap, der) and heap[der] > heap[izq]:
        return der
    else:
        return izq
```

Colas de prioridad con heaps

Colas de prioridad sobre arreglos

Algoritmos Heapify y Heapsort

Heapify de Floyd

Supongamos que tenemos un arreglo de n elementos. ¿Cuál es el costo de construir un heap con dichos elementos?

Si hacemos n inserciones, el costo es $O(n \log n)$.

Se puede hacer de manera más eficiente con el algoritmo HEAPIFY.

Heapify de Floyd

Entrada: un arreglo A de n elementos.

Salida: un heap que contiene a los elementos de A.

Método.

- Para cada índice i desde n-1 hasta 0: (descendentemente)
 - Aplicar el algoritmo de **ajuste hacia abajo** a partir de *i*.

El método es in-place.

Ejemplo

La complejidad temporal es O(n) en peor caso. (*Cf.* Sec. 6.3 del Cormen *et al.*).

Heapsort

La estructura de datos nos da un nuevo algoritmo de ordenamiento.

Algoritmo HEAPSORT

Entrada: un arreglo A.

Salida: una permutación ordenada de A.

Método.

- \blacktriangleright Heapify(A)
- ► Repetir |*A*| veces:
 - Producir el máximo elemento de A en la salida.
 - Eliminar el máximo elemento de A.

La complejidad temporal en peor caso es $O(n \log n)$. Se puede hacer *in-place*.