UNIVERSITY OF TORONTO DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING

FINAL EXAMINATION - DECEMBER 2001

Second Year - Programs 7,9 **ECE212F - CIRCUIT THEORY**

EXAMINERS - R. Iravani, L.A. de Windt and B. Wang

NAME (Please print):				
	Family Name	Given Name		
STUDENT NUMBER:				

EXAMINATION TYPE: Type A; Papers for which no data are permitted other than the information

printed on the examination paper.

CALCULATORS: DURATION:

Non-programmable scientific type permitted.

2.5 hours.

INSTRUCTIONS:

- DO NOT UNSTAPLE THIS EXAM BOOK.
- Answer all six (6) questions.
- Answer each question neatly and concisely. Write the final answer in the box
- Answers to all questions must be supported by calculations.
- The back side of each adjacent page may also be used for your answer.
- One extra sheet can be found at the back of this booklet for the continuation of answers

	of answers.		
QUESTION	SHEET NUMBER	VALUE	MARKS
11	Page 2	20 marks	
2	Page 3	20 marks	<u> </u>
3	Page 4	20 marks	
4	Page 5	20 marks	<u></u>
5	Page 6	20 marks	
6	Pages 7-8	20 marks	<u> </u>
	TOTAL:	120	1

Question 1 (20 marks)

For the circuit shown in Figure 1, determine:

(5 marks)

i) the voltage gain v_0/v_s

(5 marks)

ii) the current gain i_0/i_s

(5 marks)

iii) the input resistance R_{in} seen by the voltage

source v₅

(5 marks)

iv) the power absorbed or supplied by the dependent voltage source when v_s =100mV

Answers:

i) $v_0/v_s =$ _____

ii) $i_0/i_s =$ _____

iii) $R_{in} =$ _____

iv) $P_{DV} =$ ______

absorbed or supplied

Question 2 (20 marks)

For the circuit shown in Figure 2,

(10 marks) i) Find

Find the Thevenin equivalent circuit with respect to terminals a and b.

(5 marks)

ii) What is the maximum power absorbed by R_L ?

(5 marks)

iii) The circuit in Figure 2 has been analyzed, and it is reported that the current through R_L is 4mA. Is this value correct? If so, what is the value of R_L ? If not, justify your answer.

Answers:		-	
i) $V_T =$			
R _T =			
iii) P _{max} =	_ _		
iv) value correct \square , $R_L = _$.

Question 3 (20 marks)

For the RLC circuit of Figure 3, determine:

i) The energy stored in the capacitor and in the inductor before opening the switch.

Energy in cap.= Energy in ind.=

ii)	The characteristic equation for the circuit f	for t>0.
,,,	The characteristic equation for the cheart	

iii) v(t) for t>0.

i(t) for t>0. iv)

Question 4 (20 marks)

A 1000 W electric motor is connected to a sinusoidal source of 120 V_{rms} at 60 Hz, Figure 4, which results in a lagging power factor (PF) of 0.75.

i) Calculate the current (rms value) drawn from the source.

ii) The PF is now increased to 0.9 lagging by placing a capacitor in parallel with the motor, Figure 5. Calculate the new current (rms value) drawn from the source.

iii) Determine the value of the capacitor required to make this correction.

•		
!		
1		
C =		
10-		
1		
1		

Question 5 (20 marks)

The network function T(s), input X(s) and output Y(s) of a linear circuit in S-domain are shown in Figure 6.

Figure 6

(8 marks) i) In time-domain, the output of the circuit y(t) when the input is an impulse $\delta(t)$, is

$$y(t) = \left(A_1 e^{-\alpha_1 t} + A_2 e^{-\alpha_2 t}\right) u(t), \ \alpha_1 \& \alpha_2 > 0$$
Calculate the network function T(s).

(12 marks) ii) Calculate steady-state output y(t), if the input signal is

Question 6 (20 marks)

(7 marks) i) Find the voltage transfer function for the system of Figure 7.

Figure 7

$T_{v}(S) =$			
1			

(7 marks) ii) If $R_0C_0=0.01$, $R_2=R_3=50k\Omega$ and $R_1/L_1=2000$, construct a plot of the straight-line approximation to the gain response of the circuit (20 log |T| versus frequency).

(6 marks) iii) The circuit application requires that the upper cut-off frequency to be reduced to half of the value that can be determined in Section ii). If only one of the parameters C₀, R₃, R₂ and L₁ can be changed to achieve the application requirement, which one do you suggest to change, how (increase or decrease), and why?

•

-

•

•

•

•

•