BEZ - BI-SPOL-7

Symetrické šifry blokové a proudové (AES, 3DES, RC4) základní parametry, operační módy blokových šifer (ECB, CBC, CFB, OFB, CTR, MAC), jejich základní popis a slabiny.

1 Symetrické šifry

K šifrování i dešifrování se používá stejný (nebo jednoduše převoditelný) klíč.

1.1 Proudové

- Zpracováváno po jednotlivých znacích abecedy.
- Každý znak šifrován jinou transformací.
- Obvykle pracují nad binární abecedou $A = \{0, 1\}$
- Vygeneruje se posloupnost h_1, h_2, \dots, h_n (keystream) z klíče K.
- Proud hesla je postupně slučován s jednotlivými bity proudu OT \Rightarrow ŠT.
- Zobrazení E,D jsou typicky operace XOR.

Pokud proud hesla nezávisí na OT ani ŠT /Rightarrow synchronní proudové šifry /Rightarrow příjemce a odesílatel přesně synchronizován.

1.1.1 RC4

- Šifra RC4 generuje pseudonáhodný proud bajtů (keystream).
- Jedna z nejpoužívanejších šifer na internetu.
- Nevyužívá IV (inicializační vektor) \Rightarrow na každé spojení generuje náhodně nový tajný klíč.
- Šifrovací klíč se používá k vygenerování tajné permutace S.
- Keystream je pak generován za pomocí permutace S.

Šifra používá tajný vnitřní stav, který se skládá z:

- permutace S 256 bytů
- dvou pointerů j, i

Pseudokód RC4:

```
# inicializace permutace S
j = 0
S = range(256)
for i in range(256):
    j = (j + S[i] + k[i % n]) % 256
    swap(S[i], S[j])
# tvorba hesla
i = 0
```

```
j = 0
for index in range(0, n):
    i = (i + 1) % 256
    j = (j + S[i]) % 256
```

```
swap(S[i], S[j])
h[index] = S[(S[i] + S[j]) % 256]
```


Obrázek 1: RC4

1.2 Blokové

- Bloková šifra je šifrovací systém (M, C, K, E, D), kde E a D jsou zobrazení, definující pro každé $k \in K$ transformaci zašifrování E_k a dešifrování D_k tak, že:
 - zašifrování bloků OT $M=\{m_1,m_2,\dots m_n\}$ probíhá podle vztahu $c_i=E_k(m_i)$ pro každé $i\in N$
 - dešifrování probíhá podle vztahu $m_i = D_k(c_i)$ pro každé $i \in N$.
- Všechny bloky šifrovány stejnou transformací.
- Zpracováváno po blocích o t znacích abecedy.
- Blokové šifry využívají principy algoritmů Feistelova typu (použití více zakodování pro posílení šifry).
- Nejznámější blokové šifry používaly a používají blok o délce 64b: DES, 3DES, ...
- V současné době se přechází na blok 128 bitů, který používá standard AES.

1.2.1 DES

- Používá 16 rund (iterací) a 64b bloky OT a ŠT.
- Šifrovací klíč k má délku 56b (protože každý 8 bit je paritní).
- Po počáteční permutaci je blok rozdělen na dvě 32b poloviny (L_0, R_0) . Každá ze 16 rund transformuje (L_i, R_i) na novou hodnotu $(L_{i+1}, R_{i+1}) = (R_i, L_i \oplus f(R_i, k_{i+1}))$, liší se jen použitím jiného rundovního klíče k_i .
- Ve funkci probíhají operace expanze, permutace a substituce.

1.2.2 3DES

- 3DES prodlužuje originální DES tím, že používá DES jako stavební prvek celkem 3 krát.
- Používá dva (112b) nebo tři (168b) různé klíče.
- Kompatibilní s DES $(k_1 = k_2 = k_3)$.
- Varianta EDE Encrypt (k_1) , Decrypt (k_2) , Encrypt (k_3) decrypt je akorát v opačném pořadí a prohodí se E za D (DED).

Obrázek 2: DES

1.2.3 AES

- Náhrada za DES
- Délka bloku 128 bitů
- Tři délky klíče: 128, 192 a 256 bitů
- Není Feistelova typu
- SubBytes, ShiftRows, MixColumns, AddRoundKey \dots

2 Operační módy blokových šifer

Operační módy blokových šifer jsou způsoby použití blokových šifer v daném kryptosystému, kde OT není jen 1 blok blokové šifry, ale obecně posloupnost znaků dané abecedy.

Obrázek 3: ECB - Electronic Code Book

Obrázek 4: CBC - Cipher Block Chaining

Obrázek 5: CFB - Cipher FeedBack

- Převádí blokovou šifru na proudovou.
- Každý blok šifrován zvlášť.
- Stejné bloky mají stejný šifrovaný obraz.

Obrázek 6: OFB - Output FeedBack

- Každý blok OT se modifikuje předchozím blokem (nebo IV) a až pak se šifruje.
- Nejpoužívanější mód blokových šifer.
- Proces odšifrování je schopen se zotavit a produkovat správný OT už při 2 za sebou jdoucích správných blocích ŠT.

Obrázek 7: CTR - Counter

- převádí blokovou šifru na asynchronní proudovou šifru
- smyslem je zaručit maximální periodu hesla (pomocí čítače)
- výhoda: heslo může být vypočítání jen na základě pozice otevřeného textu a IV, nezávisle na ostaním,

Obrázek 8: MAC - Message Authentication Code