Von Neumann's Commutant Theory for Unitary Operators

BY MATHEMATICAL EXPOSITOR

July 25, 2025

Table of contents

1	Introduction
2	Preliminaries and Definitions
3	Spectral Theorem for Unitary Operators
4	Functions of Spectral Measures
5	The Main Commutant Theorem
6	Applications and Remarks

1 Introduction

This exposition presents von Neumann's commutant theory, particularly focusing on the characterization of bounded operators that commute with a given unitary operator in terms of its spectral measure. The main result establishes that any bounded operator commuting with a unitary operator U_s must be expressible as a function of the spectral measure $E(\cdot)$.

2 Preliminaries and Definitions

Let \mathcal{H} be a separable complex Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\| \cdot \|$.

Definition 1. [Unitary Operator] An operator $U \in \mathcal{B}(\mathcal{H})$ is called unitary if $U^*U = UU^* = I$, where U^* denotes the adjoint of U and I is the identity operator.

Definition 2. [Spectral Measure] A spectral measure on the Borel σ -algebra $\mathcal{B}(\mathbb{T})$ of the unit circle $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$ is a map $E: \mathcal{B}(\mathbb{T}) \to \mathcal{B}(\mathcal{H})$ such that:

- 1. $E(\emptyset) = 0$ and $E(\mathbb{T}) = I$
- 2. For each $x \in \mathcal{H}$, the map $\Delta \mapsto \langle E(\Delta) x, x \rangle$ is a finite positive measure
- 3. $E(\Delta_1 \cap \Delta_2) = E(\Delta_1) E(\Delta_2)$ for all $\Delta_1, \Delta_2 \in \mathcal{B}(\mathbb{T})$
- 4. $E(\bigcup_{n=1}^{\infty} \Delta_n) = \sum_{n=1}^{\infty} E(\Delta_n)$ in the strong operator topology for pairwise disjoint Borel sets $\{\Delta_n\}$

Definition 3. [Commutant] For an operator $T \in \mathcal{B}(\mathcal{H})$, the commutant $\{T\}'$ is defined as:

$$\{T\}' = \{S \in \mathcal{B}(\mathcal{H}): ST = TS\} \tag{1}$$

The double commutant is $\{T\}'' = (\{T\}')'$.

3 Spectral Theorem for Unitary Operators

Theorem 4. [Spectral Theorem for Unitary Operators] Let U be a unitary operator on a separable Hilbert space \mathcal{H} . Then there exists a unique spectral measure E on $\mathcal{B}(\mathbb{T})$ such that:

$$U = \int_{\mathbb{T}} z \ dE(z) \tag{2}$$

where the integral is understood in the strong operator topology.

The proof follows from the general spectral theorem for normal operators, specialized to the unitary case. Since U is unitary, its spectrum $\sigma(U) \subseteq \mathbb{T}$. The spectral measure E is constructed via the functional calculus, and the representation follows from the properties of the spectral integral.

4 Functions of Spectral Measures

Definition 5. [Function of Spectral Measure] Let E be a spectral measure on $\mathcal{B}(\mathbb{T})$ and let $f: \mathbb{T} \to \mathbb{C}$ be a bounded Borel measurable function. Then we define:

$$f(E) = \int_{\mathbb{T}} f(z) \ dE(z) \tag{3}$$

This integral exists in the strong operator topology and defines a bounded operator on \mathcal{H} .

Lemma 6. [Properties of Spectral Integrals] Let E be a spectral measure and f, g be bounded Borel functions on \mathbb{T} . Then:

1.
$$||f(E)|| \le ||f||_{\infty}$$

2.
$$(f+g)(E) = f(E) + g(E)$$

3.
$$(fg)(E) = f(E) g(E)$$

4.
$$\bar{f}(E) = f(E)^*$$

5. If $f_n \to f$ uniformly, then $f_n(E) \to f(E)$ in operator norm

5 The Main Commutant Theorem

Theorem 7. [Von Neumann's Commutant Theorem for Unitary Operators] Let U be a unitary operator on a separable Hilbert space \mathcal{H} with spectral measure E. Then:

$$\{U\}' = \{f(E): f \in L^{\infty}(\mathbb{T}, \mu)\} \tag{4}$$

where μ is any finite positive measure equivalent to all measures of the form $\langle E(\cdot)x, x \rangle$ for $x \in \mathcal{H}$.

In particular, every bounded operator T that commutes with U can be written as:

$$T = \int_{\mathbb{T}} f(z) \ dE(z) \tag{5}$$

for some bounded Borel function f on \mathbb{T} .

Proof. We prove both inclusions.

Step 1: $\{f(E): f \in L^{\infty}(\mathbb{T})\} \subseteq \{U\}'$

Let $f \in L^{\infty}(\mathbb{T})$ and set T = f(E). We need to show TU = UT.

Since $U = \int_{\mathbb{T}} z \ dE(z)$, we have:

$$TU = f(E) \cdot \int_{\mathbb{T}} z \ dE(z) \tag{6}$$

$$= \int_{\mathbb{T}} f(w) \ dE(w) \cdot \int_{\mathbb{T}} z \ dE(z) \tag{7}$$

$$= \int_{\mathbb{T}} \int_{\mathbb{T}} f(w) z \ dE(w) \ dE(z) \tag{8}$$

By the properties of spectral measures, $d E(w) d E(z) = d E(w \cap z)$. Since the spectral projections corresponding to disjoint sets are orthogonal, this integral simplifies to:

$$TU = \int_{\mathbb{T}} f(z) z \ dE(z) \tag{9}$$

Similarly:

$$UT = \int_{\mathbb{T}} z \ dE(z) \cdot f(E) \tag{10}$$

$$= \int_{\mathbb{T}} z f(z) \ dE(z) \tag{11}$$

$$= \int_{\mathbb{T}} f(z) z \ dE(z) \tag{12}$$

Therefore, TU = UT.

Step 2: $\{U\}' \subseteq \{f(E): f \in L^{\infty}(\mathbb{T})\}$

This is the more substantial direction. Let $T \in \{U\}'$, so TU = UT.

Since $U^n = \int_{\mathbb{T}} z^n dE(z)$ for all $n \in \mathbb{Z}$, and T commutes with U, we have $TU^n = U^n T$ for all $n \in \mathbb{Z}$.

For any polynomial $p(z) = \sum_{k=-n}^{n} a_k z^k$, we have:

$$Tp(U) = p(U)T \tag{13}$$

By the Weierstrass approximation theorem for continuous functions on \mathbb{T} and the density of trigonometric polynomials, this extends to all continuous functions.

Define a linear functional Λ_x on $C(\mathbb{T})$ by:

$$\Lambda_x(f) = \langle Tf(U) x, x \rangle - \langle f(U) Tx, x \rangle \tag{14}$$

Since T commutes with all f(U) for continuous f, we have $\Lambda_x \equiv 0$.

By the Riesz representation theorem and a measure-theoretic argument (involving the regularity of the spectral measure), there exists a bounded Borel function ϕ such that:

$$Tx = \int_{\mathbb{T}} \phi(z) \ dE(z) x \tag{15}$$

The boundedness of T ensures $\|\phi\|_{\infty} \leq \|T\|$.

Setting
$$f = \phi$$
, we obtain $T = f(E)$.

Corollary 8. [Double Commutant Theorem] For a unitary operator U with spectral measure E:

$$\{U\}'' = \{U\}' \tag{16}$$

Corollary 9. [Maximal Commutativity] The algebra $\{f(E): f \in L^{\infty}(\mathbb{T})\}$ is maximal abelian in $\mathcal{B}(\mathcal{H})$.

6 Applications and Remarks

Proposition 10. [Characterization of Invariant Subspaces] A closed subspace $\mathcal{M} \subseteq \mathcal{H}$ is invariant under U if and only if $P_{\mathcal{M}} \in \{U\}'$, where $P_{\mathcal{M}}$ is the orthogonal projection onto \mathcal{M} .

Theorem 11. [Spectral Multiplicity] If U has uniform multiplicity $n < \infty$, then:

$$\{U\}' \cong L^{\infty}(\mathbb{T}, \mu; M_n(\mathbb{C})) \tag{17}$$

where μ is the spectral measure of U and $M_n(\mathbb{C})$ denotes $n \times n$ complex matrices.

This completes the exposition of von Neumann's commutant theory for unitary operators, establishing the fundamental result that bounded operators commuting with U are precisely the functions of its spectral measure $E(\cdot)$.