Image-based Visual Servoing

Solving for Twist Given Pixel Velocities

k - number of features tracking m - dimension of camera velocity vector $L \in \mathbb{R}^{2k \times m}$

2k < m - system is underconstrained

$$\xi = L^{+}\dot{s} + (I_{m} - L^{+}L)b$$

where L^+ is the pseudoinverse for L and is defined as:

$$L^+ = L^T (LL^T)^{-1}$$

Solving for Twist Given Pixel Velocities

k - number of features tracking m - dimension of camera velocity vector $L \in {\rm I\!R}^{2k \times m}$

2k = m - system has unique solution

$$\xi = L^{-1}\dot{s}$$

2k > m - system is overconstrained

$$\xi = L^+ \dot{s}$$

where L^+ is the pseudoinverse for L and is defined as:

$$L^+ = (L^T L)^{-1} L^T$$

But how do we pick \dot{s} ?

$$\xi = L^+ \dot{s}$$

let our error in pixel space be defined as (order is backwards from book)

$$e(t) = s_d - s(t)$$

if we want the error to decrease in a way similar to what we've done before, we can pretend that we are using a spring force (or proportional controller) on error

$$\xi = L^+ \lambda e(t)$$