Prediction of Best Airlines

TABLE OF CONTENTS

OI Topic for the Project

02 | Source of Dataset

03

04

Tools for the Project

Data Exploration and Analysis

"The World is one big data problem."

— Andrew McAfee, co-director of the MIT Initiative

OI Our Topic

Our project's goal is:

- Classification of each airline that traffics through San Francisco International Airport(SFO)
- Prediction of each airline's accuracy based on their performances
- Provide potential future customers with precise information of each airline's quality and how to choose one for their own benefit

We chose this because

We plan to achieve our goal by

Popularity

A lot of people in the world travel for business, vacation, reunion, etc.

San Francisco International Airport(SFO) is the point of intersection and the major gateway to the rest of the world

Machine Learning Model

Build a machine learning model to predict which airline has better quality so more potential customers in the future can have better experience

SFO Air Traffic Passenger and Landings Statistics

https://www.kaggle.com/sanfrancisco/sf-air-traffic-passen ger-and-landings-statistics?s elect=air-traffic-landings-stati stics.csv

Top 100 Airline Fleets

https://www.kaggle.com/trac eyvanp/airlinefleet

Airline Performance

airline_performance.csv

includes information of each airline's traffic details such as

- Passenger count
- Landing Count
- Number of Airplanes
- Total Cost
- Average Fleet Age
- Each Published Airlines

Our initial **ERD**

03

Tools for the Project

Which tools did we use on the project?

Pandas for

- Encoding
- Trimming out unnecessary values
- Merging different frames together
- Tables in Postgres
- Further analysis

Tableau for

- Visualization
- Storytelling
- Presentation

Machine Learning Model

- Logistic Regression
- Support Vector Machine(SVM)
- Python
- Scikit Library

04 Data Exploration and Analysis

Three different datasets were analyzed and prepared for execution in the ML model

Using Python-pandas: cleaned data frames and further analysis was done

Dropped columns that were not useful and merged into one to prepare for the ML model

Continued Analysis

Scikit Library will be used for our ML model for classification. We plan to deploy two different models; that are Logistic Regression and Support Vector Machine

Dashbaord

We plan to use Tableau for our Dashboad which will be great for presentation including analysis and visualized datasets

Interactive Elements

Accuracy
Tables
Charts
Features
Priorities
Preferences
Scale(Best to worst)

