Weeks of 6/23 + 6/30Kit Levy

Threshold α values for each change in preferences:

	P1	P2	P2	P3	P3	1	P3	P3	P3	P4	P4	P5
	$\rightarrow \mathbf{acb}$	\rightarrow abc	$ ightarrow \mathbf{acb}$	\rightarrow bac	$_{\perp}^{\perp} \rightarrow ab$	oc¦.	\rightarrow cba	$\rightarrow cab$	$_{\perp}^{ } ightarrow \mathbf{acb}$	\rightarrow cab	$_{\scriptscriptstyle }^{\scriptscriptstyle } ightarrow { m acb}$	ightarrow acb
(1,0,0)	1	$\frac{1}{4}$	1	$\frac{1}{4}$	$\frac{1}{1}$ $\frac{2}{5}$	1 1	-	<u> </u>	1	$\frac{1}{4}$	$\frac{2}{5}$	$\frac{1}{4}$
$\left(\frac{2}{3},0,\frac{1}{3}\right)$	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{2}{3}$	-	-	1	-	-	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{2}{3}$	$\frac{1}{2}$
$\left(\frac{1}{2},0,\frac{1}{2}\right)$	$\frac{2}{5}$	$\frac{2}{5}$	$\frac{4}{7}$	_	-	1	$\frac{2}{5}$	$\frac{4}{7}$	1	$\frac{2}{5}$	1	1

Voters who rank a > c > b as a function of α :

$$\frac{w = (1,0,0):}{w = (\frac{2}{3},0,\frac{1}{3}):} P_{acb} = P6 + \mathbb{1}\{\alpha = 1\}(P1 + P2 + P3) + \mathbb{1}\{\alpha \ge \frac{2}{5}\}P4 + \mathbb{1}\{\alpha \ge \frac{1}{4}\}P5$$

$$\frac{w = (\frac{2}{3},0,\frac{1}{3}):}{w = (\frac{1}{2},0,\frac{1}{2}):} P_{acb} = P6 + \mathbb{1}\{\alpha \ge \frac{1}{2}\}(P1 + P3 + P5) + \mathbb{1}\{\alpha \ge \frac{2}{3}\}(P2 + P4)$$

$$\frac{w = (\frac{1}{2},0,\frac{1}{2}):}{w = (\frac{1}{2},0,\frac{1}{2}):} P_{acb} = P6 + \mathbb{1}\{\alpha \ge \frac{2}{5}\}P1 + \mathbb{1}\{\alpha \ge \frac{4}{7}\}P2 + \mathbb{1}\{\alpha = 1\}(P3 + P4 + P5)$$

Choosing w to achieve a > c > b based on known α (ignoring effects of IA):

α	Best w (highest P_{acb})
$\alpha < \frac{1}{4}$	None
$\frac{1}{4} \le \alpha < \frac{2}{5}$	(1,0,0)
$\frac{2}{5} \le \alpha < \frac{1}{2}$	(1,0,0) if $P4 + P5 > P1$
	$(\frac{1}{2}, 0, \frac{1}{2})$ if $P1 > P4 + P5$
$\frac{1}{2} \le \alpha < \frac{4}{7}$	(1,0,0) if $P4 > P1 + P3$
	$(\frac{2}{3}, 0, \frac{1}{3})$ if $P1 + P3 > P4$
$\frac{4}{7} \le \alpha < \frac{2}{3}$	(1,0,0) if $P4 > P1 + P3$ and $P4 + P5 > P1 + P2$
	$(\frac{2}{3}, 0, \frac{1}{3})$ if $P1 + P3 > P4$ and $P3 + P5 > P2$
	$(\frac{1}{2}, 0, \frac{1}{2})$ if $P1 + P2 > P4 + P5$ and $P2 > P3 + P5$
$\frac{2}{3} \le \alpha < 1$	$(\frac{2}{3},0,\frac{1}{3})$
$\alpha = 1$	Any

Movement into and out of IA according to α and w:

Voter	w	α for which voter is in IA	"Time" spent in IA		
P1	Any	None	0		
	(1,0,0)	$\frac{1}{4} \le \alpha < 1$	$\frac{3}{4}$		
P2	$(\frac{2}{3},0,\frac{1}{3})$	$\frac{1}{3} \le \alpha < \frac{2}{3}$	$\frac{1}{3}$		
	$\left(\frac{1}{2},0,\frac{1}{2}\right)$	$\frac{2}{5} \le \alpha < \frac{4}{7}$	$\frac{6}{35}$		
	(1,0,0)	$\frac{1}{4} \le \alpha < 1$	$\frac{3}{4}$		
P3	$(\frac{2}{3},0,\frac{1}{3})$	None	0		
	$\left(\frac{1}{2},0,\frac{1}{2}\right)$	$\frac{2}{5} \le \alpha < 1$	$\frac{3}{5}$		
	(1,0,0)	$\frac{1}{4} \le \alpha < \frac{2}{5}$	$\frac{3}{20}$		
P4	$(\frac{2}{3},0,\frac{1}{3})$	$\frac{1}{3} \le \alpha < \frac{2}{3}$	$\frac{1}{3}$		
	$\left(\frac{1}{2},0,\frac{1}{2}\right)$	$\frac{2}{5} \le \alpha < 1$	$\frac{1}{3}$ $\frac{3}{5}$		
P5	Any	None	0		

Plurality votes as a function of α :

$$w = (1, 0, 0)$$
:

$$\text{plurality}_a(\alpha) = P6 + P1 + \mathbbm{1}\{\alpha \geq \frac{1}{4}\}(P2 + P5) + \mathbbm{1}\{\alpha \geq \frac{2}{5}\}(P3 + P4)$$

$$\begin{aligned} & \text{plurality}_b(\alpha) = \mathbbm{1}\{\alpha < \frac{1}{4}\}P2 + \mathbbm{1}\{\alpha < \frac{2}{5}\}P3 \\ & \text{plurality}_c(\alpha) = \mathbbm{1}\{\alpha < \frac{2}{5}\}P4 + \mathbbm{1}\{\alpha < \frac{1}{4}\}P5 \end{aligned}$$

$$& w = \left(\frac{2}{3}, 0, \frac{1}{3}\right)\text{:} \\ & \text{plurality}_a(\alpha) = P1 + P6 + \mathbbm{1}\{\alpha \geq \frac{1}{3}\}P2 + \mathbbm{1}\{\alpha \geq \frac{1}{2}\}(P3 + P5) + \mathbbm{1}\{\alpha \geq \frac{2}{3}\}P4 \\ & \text{plurality}_b(\alpha) = \mathbbm{1}\{\alpha < \frac{1}{3}\}P2 + \mathbbm{1}\{\alpha < \frac{1}{2}\}P3 \\ & \text{plurality}_c(\alpha) = \mathbbm{1}\{\alpha < \frac{2}{3}\}P4 + \mathbbm{1}\{\alpha < \frac{1}{2}\}P5 \end{aligned}$$

$$& w = \left(\frac{1}{2}, 0, \frac{1}{2}\right)\text{:} \\ & \text{plurality}_a(\alpha) = P1 + P6 + \mathbbm{1}\{\alpha \geq \frac{2}{5}\}P2 + \mathbbm{1}\{\alpha = 1\}(P3 + P4 + P5) \\ & \text{plurality}_b(\alpha) = \mathbbm{1}\{\alpha < \frac{2}{5}\}(P2 + P3) \\ & \text{plurality}_c(\alpha) = \mathbbm{1}\{\frac{2}{5} \leq \alpha < 1\}P3 + \mathbbm{1}\{\alpha < 1\}(P4 + P5) \end{aligned}$$

Borda votes as a function of α :

$$w = (1, 0, 0)$$
:

$$borda_{a}(\alpha) = 2P1 + P2 + P5 + 2P6 + \mathbb{1}\{\alpha \ge \frac{1}{4}\}(P2 + P3 + P4 + P5) + \mathbb{1}\{\alpha \ge \frac{2}{5}\}(P3 + P4)$$

$$borda_{b}(\alpha) = \mathbb{1}\{\alpha < 1\}(P1 + P2 + P3) + \mathbb{1}\{\alpha < \frac{1}{4}\}(P2 + P4) + \mathbb{1}\{\alpha < \frac{2}{5}\}P3$$

$$borda_{c}(\alpha) = P4 + P5 + \mathbb{1}\{\alpha = 1\}(P1 + P2 + P3) + \mathbb{1}\{\alpha < \frac{1}{4}\}(P3 + P5) + \mathbb{1}\{\alpha < \frac{2}{5}\}P4$$

$$w = (\frac{2}{3}, 0, \frac{1}{3})$$
:

$$borda_{a}(\alpha) = 2P1 + P2 + P5 + 2P6 + \mathbb{1}\{\alpha \ge \frac{1}{3}\}(P2 + P4) + \mathbb{1}\{\alpha \ge \frac{1}{2}\}(2P3 + P5) + \mathbb{1}\{\alpha \ge \frac{2}{3}\}P4$$

$$borda_{b}(\alpha) = \mathbb{1}\{\alpha < \frac{1}{2}\}(P1 + 2P3) + \mathbb{1}\{\alpha < \frac{1}{3}\}(P2 + P4) + \mathbb{1}\{\alpha < \frac{2}{3}\}P2$$

$$borda_{c}(\alpha) = P3 + P4 + P5 + \mathbb{1}\{\alpha \ge \frac{1}{2}\}P1 + \mathbb{1}\{\alpha \ge \frac{2}{3}\}P2 + \mathbb{1}\{\alpha < \frac{2}{3}\}P4 + \mathbb{1}\{\alpha < \frac{1}{2}\}P5$$

$$w = (\frac{1}{2}, 0, \frac{1}{2})$$
:

$$borda_{a}(\alpha) = 2P1 + P2 + P5 + 2P6 + \mathbb{1}\{\alpha \ge \frac{2}{5}\}(P2 + P4) + \mathbb{1}\{\alpha \ge \frac{4}{7}\}P3 + \mathbb{1}\{\alpha = 1\}(P3 + P4 + P5)$$

$$borda_{b}(\alpha) = \mathbb{1}\{\alpha < \frac{2}{5}\}(P1 + P2 + P3 + P4) + \mathbb{1}\{\alpha < \frac{4}{7}\}(P2 + P3)$$

$$borda_{c}(\alpha) = P3 + P4 + P5 + \mathbb{1}\{\alpha \ge \frac{2}{5}\}P1 + \mathbb{1}\{\alpha \ge \frac{4}{7}\}P2 + \mathbb{1}\{\frac{2}{5} \le \alpha < 1\}P3 + \mathbb{1}\{\alpha < 1\}(P4 + P5)$$

Forced full preferences problem (IRV):

Conditions for z to win under partial prefs, c win under forced full prefs (assuming o eliminated in round 1):

$$\begin{split} z_{\text{first choice}} + oz_{\rightarrow ozc} + ozc_{\rightarrow ozc} &> c_{\text{first choice}} + oc_{\rightarrow ocz} + ocz_{\rightarrow ocz} \\ z_{\text{first choice}} + o_{\rightarrow ozc} + oz_{\rightarrow ozc} + ozc_{\rightarrow ozc} &< c_{\text{first choice}} + o_{\rightarrow ocz} + oc_{\rightarrow ocz} + ocz_{\rightarrow ocz} \\ \text{Key condition: } o_{\rightarrow ocz} - o_{\rightarrow ozc} &> z_{\text{partial}} - c_{\text{partial}} \end{split}$$

Example 1:

Initial vote distribution:

$$\begin{split} zo_{\to zoc} &= \frac{1}{2} - \epsilon, \ co_{\to coz} = \frac{1}{4} + 2\epsilon, \ o_{\to ocz} = \frac{1}{4} - \epsilon \\ \text{Round 2 (forced full ballots):} \\ z_{\text{total}} &= z_{\to zoc} = \frac{1}{2} - \epsilon, \ c_{\text{total}} = co_{\to coz} + o_{\to ocz} = \frac{1}{2} + \epsilon \\ \text{Round 2 (partial ballots):} \end{split}$$

$$z_{\text{total}} = z_{\rightarrow zoc} = \frac{1}{2} - \epsilon, \ c_{\text{total}} = co_{\rightarrow coz} = \frac{1}{4} + 2\epsilon$$

Exhausted votes = $\frac{1}{4} - \epsilon$

Example 2:

Initial vote distribution:

Round 2 (forced full ballots):
$$z_{\text{total}} = z_{\rightarrow zoc} = \frac{1}{3} + 2\epsilon, co_{\rightarrow coz} = \frac{1}{3}, o_{\rightarrow ocz} = \frac{1}{6} + \epsilon, ozc_{\rightarrow ozc} = \frac{1}{6} - 3\epsilon$$
Round 2 (forced full ballots):
$$z_{\text{total}} = z_{\rightarrow zoc} + ozc_{\rightarrow ozc} = \frac{1}{2} - \epsilon, c_{\text{total}} = co_{\rightarrow coz} + o_{\rightarrow ocz} = \frac{1}{2} + \epsilon$$
Round 2 (partial ballots):
$$z_{\text{total}} = z_{\rightarrow zoc} + ozc_{\rightarrow ozc} = \frac{1}{2} - \epsilon, c_{\text{total}} = co_{\rightarrow coz} = \frac{1}{3}$$
Exhausted votes = $\frac{1}{6} + \epsilon$

Example 3:

Initial vote distribution:

$$zo_{\rightarrow zoc} = \frac{2}{5}, co_{\rightarrow coz} = \frac{2}{5} - \epsilon, o_{\rightarrow ocz} = \frac{1}{10} + 2\epsilon, o_{\rightarrow ozc} = \frac{1}{10} + \epsilon$$