Lista - Eficiência

Professor: Pedro M.A. Junior

23 de setembro de 2025

1. Sejam X_1, \ldots, X_n uma amostra aleatória de tamanho n da variável aleatória $X \sim \text{Binomial}(2, \theta)$, com função de probabilidade dada por

$$f(x \mid \theta) = \begin{pmatrix} 2 \\ x \end{pmatrix} \theta^x (1 - \theta)^{2-x}, \quad x = 0, 1, \dots,$$

- (a) Defina sua função de log-verossimilhança
- (b) Calcule a função escore
- (c) Encontre a informação de Fisher
- (d) Encontre o $LI(\theta)$
- (e) Verifique se $\frac{\bar{X}}{2}$ é um estimador eficiente para θ
- 2. Sejam X_1, \ldots, X_n uma amostra aleatória de tamanho n da variável aleatória $X \sim \text{Poisson}(\theta)$, com função de probabilidade dada por

$$f(x \mid \theta) = \frac{e^{-\theta}\theta^x}{x!}, \quad x = 0, 1, \dots,$$

- (a) Defina sua função de log-verossimilhança
- (b) Calcule a função escore
- (c) Encontre a informação de Fisher
- (d) Encontre o $LI(\theta)$
- (e) Verifique se \bar{X} é um estimador eficiente para θ
- 3. Sejam X_1, \ldots, X_n uma amostra aleatória da variável aleatória $X \sim N(\mu, \sigma^2)$, em que σ^2 é conhecido, com função densidade dada por

$$f(x \mid \mu) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < \infty,$$

- (a) Defina sua função de log-verossimilhança
- (b) Calcule a função escore
- (c) Encontre a informação de Fisher
- (d) Encontre o $LI(\theta)$
- (e) Verifique se o estimador \bar{X} é eficiente para μ .
- 4. Seja X_1, \ldots, X_n uma amostra aleatória de $X \sim \text{bernoulli}(p)$, com densidade dada por:

$$f(x,\theta) = p^x (1-p)^{1-x}, \quad x \in 0, 1$$

- (a) Defina sua função de log-verossimilhança
- (b) Calcule a função escore
- (c) Encontre a informação de Fisher
- (d) Encontre o $LI(\theta)$
- (e) Verifique se o estimador \bar{X} é eficiente para θ .
- 5. Seja X_1, \ldots, X_n uma amostra aleatória de $X \sim \exp(\theta)$, com densidade dada por:

$$f(x,\theta) = \frac{1}{\theta}e^{-\frac{1}{\theta}x}, \quad x > 0$$

- (a) Defina sua função de log-verossimilhança
- (b) Calcule a função escore
- (c) Encontre a informação de Fisher
- (d) Encontre o $LI(\theta)$
- (e) Verifique se o estimador \bar{X} é eficiente para θ .
- 6. Seja X_1, \ldots, X_n uma amostra aleatória de $X \sim N(0, \theta)$.
 - (a) Defina sua função de log-verossimilhança
 - (b) Calcule a função escore
 - (c) Encontre a informação de Fisher
 - (d) Encontre o $LI(\theta)$

- (e) Verifique se o estimador $\hat{\theta} = n^{-1} \sum_{i=1}^{n} X_i^2$ é eficiente para θ .
- 7. Seja X_1, \ldots, X_n uma amostra aleatória de X, variável aleatória com função de densidade dada por:

$$f(x, \theta) = \sigma x^{\sigma - 1}, \quad 0 < x < 1, \ \sigma > 0.$$

- (a) Defina sua função de log-verossimilhança
- (b) Calcule a função escore
- (c) Encontre a informação de Fisher
- (d) Encontre o $LI(\sigma)$
- (e) Verifique se o estimador \bar{X} é eficiente para $g(\sigma) = \frac{\sigma}{\sigma+1}$.
- 8. Seja X_1, \ldots, X_n uma amostra aleatória de X, variável aleatória com distribuição gama de parâmetros $\alpha > 0, \, \beta > 0$, tal que a densidade de X é

$$f(x,\theta) = \frac{1}{\beta^{\alpha}\Gamma(\alpha)}x^{\alpha-1}\exp{-\frac{1}{\beta}x}, \quad x > 0$$

admita que α é conhecido.

- (a) Defina sua função de log-verossimilhança
- (b) Calcule a função escore
- (c) Encontre a informação de Fisher
- (d) Encontre o $LI(\beta)$
- (e) Verifique se o estimador $\widehat{\beta} = \frac{\bar{X}}{\alpha}$ é eficiente para β .
- (f) Seja $g_1(\beta) = \alpha\beta$ e $g_2(\beta) = \alpha\beta^2$, verifique se $g_1(\widehat{\theta}) = \alpha \widehat{\beta}$ e $g_2(\widehat{\theta}) = \alpha \widehat{\beta}^2$ é um estimador eficiente para $g_1(\beta)$ e $g_2(\beta)$, respectivamente.