FACULTY OF ENGINEERING	Project				Job Ref.	
Learning Tool for	Section				Sheet no./rev.	
<u> </u>	~		~11.11			_
Reinforced Concrete	Calc.by	Date	Chk'd by	Date	App'd by	Date
Design						

DEFLECTION CALCULATION (EC2)

Reference	Calculations	Remarks
	N N d N As	
	$f_{ck} = f_{yk} = E_s = E_s = A_s = E_s $	
Note 1	STEP 1 Calculate the curvature for uncracked section. $\left(\frac{1}{r}\right)_{uc} = \frac{M}{E_{c,eff}I_{uc}}$	$\left(\frac{1}{r}\right)_{uc} =$
	STEP 2 Calculate the neutral axis depth of the cracked section $x = \frac{-\alpha_e A_s \pm \sqrt{(\alpha_e A_s)^2 + 2b\alpha_e A_s d}}{b}$	x =

FACULTY OF ENGINEERING	Project				Job Ref.	
Learning Tool for	Section				Sheet no./rev.	
Reinforced Concrete	Calc.by	Date	Chk'd by	Date	Ann'd by	Date
Design	Calc.by	Date	Clik d by	Date	App'd by	Date

Reference	Calculations	Remarks
	Calculate curvature for cracked section $\left(\frac{1}{r}\right)_{cr} = \frac{M}{E_{c,eff}I_{cr}}$	$\left(\frac{1}{r}\right)_{uc} =$
Note 2	$\frac{\text{STEP 3}}{M_{cr} = f_{ctm}} \times \left(\frac{b_w h^2}{6}\right)$	$M_{cr} =$
Clauses 7.4.3(3) Eq. 7.19 Note 3	$\xi = 1 - \beta \left(\frac{M_{cr}}{M} \right)^2$	ξ_
Clauses 7.4.3(3) Eq. 7.18	$\frac{1}{r} = \frac{\xi}{r} \left(\frac{1}{r}\right)_{cr} + \left(1 - \frac{\xi}{r}\right) \left(\frac{1}{r}\right)_{uc}$	$\frac{1}{r}$ =
Note 4	STEP 4 Calculate the Deflection $a = Kl^2 \frac{1}{r}$	<i>a</i> =

Notes of calculations

- 1. The contribution of the reinforcement to I_{uc} is here ignored, but can be accommodated using the modular ratio.
- 2. M_{cr} is the moment that causes the first cracking in the concrete section.
- 3. σ_{sr}/σ_{s} can be replaced by M_{cr}/M for flexure according to clauses 7.4.3(3).
- 4. Figure 6 of the concrete society publication (Deflection calculations) gives K values for different loading and support condition.