ОДЕСЬКИЙ НАЦІОНАЛЬНИЙ ПОЛІТЕХНІЧНИЙ УНІВЕРСИТЕТ ІНСТИТУТ КОМП'ЮТЕРНИХ СИСТЕМ КАФЕДРА «ІНФОРМАЦІЙНИХ СИСТЕМ»

Лабораторна робота № 9 з дисципліни «Операційні системи»

Тема «Керування процесами-транзакціями в базах даних. Частина 1»

Виконав:

Студент групи AI-202 Лобко Данііл Віталійович **Мета роботи:** дослідити поведінку процесів-транзакцій в базах даних та засоби керуванням ними через механізм блокування з використанням сучасних систем керування базами даних.

Перелік завдань:

Завдання 1 Проектування транзакцій

Нехай задані три транзакції, приклади яких представлено в таблиці 15.

У відповідності з вашим варіантом виконайте наступні теоретичні завдання.

1.1 Створіть історії квазіпаралельного виконання транзакцій для протоколу 1-го

ступеня блокування з описом таблиці блокування транзакцій.

- 1.2 Повторіть попереднє завдання з використанням протоколу 2-го ступеня блокування.
- 1.3 Для створених історій у 1-му та 2-му пунктів завдань визначте наявність тупика

транзакції, створивши граф очікування транзакцій.

Таблиця 15 – Варіанти завдань з прикладами транзакцій

№	No	Приклади транзакцій	
команди	учасника		
1	1	T1= R[A] R[B] W[A] C1 T2= W[D] R[B] W[B] C2 T3= R[D] W[D] C3	
1	2	T1= W[A] R[B] W[B] C1 T2= R[D] R[B] W[D] C2 T3= R[A] W[A] C3	
2	1	T1= R[A] W[A] C1 T2= R[D] R[B] W[D] C2 T3= W[A] R[B] W[A] C3	
2	2	T1= W[A] W[D] C1 T2= R[D] R[B] W[D] C2 T3= W[A] R[B] W[D] C3	
3	1	T1= W[A] W[B] C1 T2= R[D] R[A] W[D] C2 T3= W[A] R[B] W[D] C3	
3	2	T1= W[D] W[A] C1 T2= R[D] R[A] W[D] C2 T3= W[A] R[B] W[D] C3	
4	1	T1= W[D] W[A] C1 T2= R[D] R[A] W[D] C2 T3= W[B] R[A] W[D] C3	
4	2	T1= W[D] R[B] W[B] C1 T2= R[A] R[B] W[A] C2 T3= R[D] W[D] C3	

Таблиця 15 – Продовження таблиці

Таблиця 15 – Продовження таблиці				
№ команди	№ учасника	Приклади транзакцій		
5	1	T1= R[D] R[B] W[D] C1 T2= W[A] R[B] W[B] C2 T3= R[A] W[A] C3		
5	2	T1= R[D] R[B] W[D] C1 T2= R[A] W[A] C2 T3= W[A] R[B] W[A] C3		
6	1	T1= R[D] R[B] W[D] C1 T2= W[A] W[D] C2 T3= W[A] R[B] W[D] C3		
6	2	T1= R[D] R[A] W[D] C1 T2= W[A] W[B] C2 T3= W[A] R[B] W[D] C3		
7	1	TI= R[D] R[A] W[D] C1 T2= W[D] W[A] C2 T3= W[A] R[B] W[D] C3		
7	2	T1= R[D] R[A] W[D] C1 T2= W[D] W[A] C2 T3= W[B] R[A] W[D] C3		
8	1	T1= R[D] W[D] C1 T2= R[A] R[B] W[A] C2 T3= W[D] R[B] W[B] C3		
8	2	T1= R[A] W[A] C1 T2= W[A] R[B] W[B] C2 T3= R[D] R[B] W[D] C3		
9	1	T1= W[A] R[B] W[A] C1 T2= R[A] W[A] C2 T3= R[D] R[B] W[D] C3		
9	2	T1= W[A] R[B] W[D] C1 T2= W[A] W[D] C2 T3= R[D] R[B] W[D] C3		
10	1	T1= W[A] R[B] W[D] C1 T2= W[A] W[B] C2 T3= R[D] R[A] W[D] C3		
10	2	T1= W[A] R[B] W[D] C1 T2= W[D] W[A] C2 T3= R[D] R[A] W[D] C3		

Завдання 2 Налаштування бази даних

Нехай існує база даних, назва якої співпадає з іменем вашого користувача в OC

Linux.

Приклад команди створення реляційної таблиці в базі даних наведено в таблиці 16.

Також в таблиці 1 наведено приклад команди внесення одного рядка в реляційну

таблицю бази даних.

- 1.1 Встановіть з'єднання з вашою базою даних.
- 1.2 У відповідності із варіантом з таблиці 1 створіть реляційну таблицю в базі

даних.

1.3 У відповідності із варіантом з таблиці 1 додайте рядок в реляційну таблицю,

створену у попередньому пункті завдання.

1.4 Створіть ще одну операцію внесення рядка в таблицю, який буде відрізнятися

значеннями всіх змінних від прикладу з варіанту.

Таблиця 16 - Варіанти завдань з командами створення бази даних та внесення

даних

Amiria.		1	
№ коман ди	№ учасни ка	Операція створення реляційної таблиці в базі даних	Операції внесення даних в реляційну таблицю в базі даних
1	1	Create table person (p_id integer, name char(20), bd date);	Insert into person values (1, 'Ivanov', '01/04/2000');
1	2	Create table student (s_id integer, name char(20), kurs integer);	Insert into student values (1, 'Petrov', 4);
2	1	Create table teacher (t_id integer, name char(20), post char(20));	Insert into teacher values (1, 'Ivanov', 'docent');
2	2	Create table department (d_id integer, name char(20), faculty char(20));	Insert into department values (1, 'SPO', 'IKS');
3	1	Create table airplane (a_id integer, model char(20), year integer);	Insert into airplane values (1, 'TU-107', 1960);
3	2	Create table university (u_id integer, name char(20), year integer);	Insert into university values (1, 'ONPU', 1918);
4	1	Create table auto (a_id integer, name char(20), year integer);	Insert into auto values (1, 'BMW 5', 2003);
4	2	Create table employer (e_id integer, name char(20), salary integer);	Insert into employer values (1, 'Ivanov', 200);

Таблиця 16 - продовження

№ коман ди	№ учасни ка	Операція створення таблиці в базі даних	Операції внесення даних в базі даних	
5	1	Create table worker (p_id integer, name char(20), bd date);	Insert into worker values (1, 'Ivanov', '01/04/2000');	
5	2	Create table person (p_id integer, name char(20), bd date);	Insert into person values (1, 'Ivanov', '01/04/2000');	
6	1	Create table student (s_id integer, name char(20), kurs integer);	Insert into student values (1, 'Petrov', 4);	
6	2	Create table teacher (t_id integer, name char(20), post char(20));	Insert into teacher values (1, 'Ivanov', 'docent');	
7	1	Create table department (d_id integer, name char(20), faculty char(20));	Insert into department values (1, 'SPO', 'IKS');	
7	2	Create table airplane (a_id integer, model char(20), year integer);	Insert into airplane values (1, 'TU- 107', 1960);	
8	1	Create table university (u_id integer, name char(20), year integer);	Insert into university values (1, 'ONPU', 1918);	
8	2	Create table auto (a_id integer, name char(20), year integer);	Insert into auto values (1, 'BMW 5', 2003);	
9	1	Create table employer (e_id integer, name char(20), salary integer);	Insert into employer values (1, 'Ivanov', 200);	
9	2	Create table worker (p_id integer, name char(20), bd date);	Insert into worker values (1, 'Ivanov', '01/04/2000');	
10	1	Create table person (p_id integer, name char(20), bd date);	Insert into person values (1, 'Ivanov', '01/04/2000');	
10	2	Create table student (s_id integer, name char(20), kurs integer);	Insert into student values (1, 'Petrov', 4);	

Завдання 3. Керування квазіпаралельним виконанням транзакцій з

використанням команд блокування

- 1 Створіть дві транзакції, кожна з яких повинна включати такі операції:
- операція читання першого рядку таблиці;
- операція зміни однієї із змінних таблиці в першому рядку;
- повтор на операція читання першого рядку таблиці;
- операція фіксації всіх змін.
- 2 При створенні транзакцій включіть відповідні операції блокування для протоколу
- 1-го ступеня блокування.
- 3 У двох терміналах виконайте операції транзакцій при їх квазіпаралельному режимі роботи за умови, що одна з транзакція стартує першою.
- 4 Повторіть роботу транзакцій, але в першій транзакції замість операції фіксації

виконайте операцію відміни.

5 Повторіть пункти 3 та 4 але з використанням протоколу 2-го ступеня блокування.

Хід роботи

Завдання 1 Проектування транзакцій

Нехай задані три транзакції, приклади яких представлено в таблиці 15.

У відповідності з вашим варіантом виконайте наступні теоретичні завдання.

1.1 Створіть історії квазіпаралельного виконання транзакцій для протоколу 1-го

ступеня блокування з описом таблиці блокування транзакцій.

- 1.2 Повторіть попереднє завдання з використанням протоколу 2-го ступеня блокування.
- 1.3 Для створених історій у 1-му та 2-му пунктів завдань визначте наявність тупика транзакції, створивши граф очікування транзакцій.

4	T1= W[D] R[B] W[B] C1 T2= R[A] R[B] W[A] C2 T3= R[D] W[D] C3

1) $\mathbf{H}_{\mathbf{T}1\mathbf{T}2\mathbf{T}3}$ \mathbf{I} ступеня блокування =

X1[D] W1[D] R[A] R[D]

R1[B] R2[B] X3[D] - wait A1 X3[D] W3[D]

X1[B]W1[B]X2[A]W2[A]C3

C1 C2

Назва змінної	Перелік встановлених	Перелік запитів на
	блокувань	блокування
A	X2	-
В	X1	-
D	X1	X3

2) $\mathbf{H}_{T1T2T3}\mathbf{H}$ ступеня блокування =

X1[D] W1[D] S2[A] R2[A] S3[D]-wait A1 U1 S3[D] R3[D] S1[B] R1[B] S2[B] R2[B] X3[D] W3[D] X1[B]-wait A2 U2 X1[B] W1[B] X2[A] W2[A] C3 C1 C2

Назва змінної	Перелік встановлених	Перелік запитів на
	блокувань	блокування
A	X2S2	-
В	X1S1S2	X1
D	X1X3S3	S3

Завдання 2 Налаштування бази даних

Нехай існує база даних, назва якої співпадає з іменем вашого користувача в OC

Linux.

Приклад команди створення реляційної таблиці в базі даних наведено в таблиці 16.

Також в таблиці 1 наведено приклад команди внесення одного рядка в реляційну

таблицю бази даних.

- 1.1 Встановіть з'єднання з вашою базою даних.
- 1.2 У відповідності із варіантом з таблиці 1 створіть реляційну таблицю в базі

даних.

1.3 У відповідності із варіантом з таблиці 1 додайте рядок в реляційну таблицю,

створену у попередньому пункті завдання.

1.4 Створіть ще одну операцію внесення рядка в таблицю, який буде відрізнятися

значеннями всіх змінних від прикладу з варіанту.

```
psql (9.5.25)
Type "help" for help.

//
lobko_daniil=> CREATE TABLE employer (e_id integer, name char(20), salary inte
CREATE TABLE
lobko_daniil=> INSERT INTO employer VALUES (1,'Ivanov',200);
INSERT 0 1
lobko_daniil=> INSERT INTO employer VALUES (2,'NotIvanov',400);
INSERT 0 1
```

	4	2	Create table employer (e_id integer, name char(20), salary integer);	Insert into employer values (1, 'Ivanov', 200);
1			micger/	

Завдання 3. Керування квазіпаралельним виконанням транзакцій з використанням команд блокування

- 1 Створіть дві транзакції, кожна з яких повинна включати такі операції:
- операція читання першого рядку таблиці;
- операція зміни однієї із змінних таблиці в першому рядку;
- повторна операція читання першого рядку таблиці;
- операція фіксації всіх змін.

2 При створенні транзакцій включіть відповідні операції блокування для протоколу

1-го ступеня блокування.

3 У двох терміналах виконайте операції транзакцій при їх квазіпаралельному режимі роботи за умови, що одна з транзакція стартує першою.

У другому (правому) термінали ми потрапили в тупик через квазіпаралельне виконання блокування (робота терміналу відновилася через commit у першому терміналі).

4 Повторіть роботу транзакцій, але в першій транзакції замість операції фіксації виконайте операцію відміни.

5 Повторіть пункти 3 та 4 але з використанням протоколу 2-го ступеня блокування.

Як ми можемо бачити, ми отримали так званий "deadlock". (перший термінал під час заблокування X mode потрапив у очікування).

Commit:

```
| X | EF lobko.danut@vpsjsteQ-
ROLLBACK | lobko_daniil=> START TRANSACTION;
START TRANSACTION | lobko_daniil=> LOCK TABLE employer IN SHARE MODE;
LOCK TABLE | lobko_daniil=> SELECT * FROM employer WHERE e_id=1;
e_id | name | salary | sal
    🧬 lobko_daniil@vpsj3leQ:∼
      OLLBACK
obko_daniil=> START TRANSACTION;
TART TRANSACTION
obko_daniil=> LOCK TABLE employer IN SHARE MODE;
 lobko daniil=> SELECT * FROM employer WHERE e_id=1;
e_id | name | salary
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            1 | Ivanov
(1 row)
                                                                                                                                                              2003
 1 | Ivanov
(1 row)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             lobko_daniil=> LOCK TABLE employer IN EXCLUSIVE MODE;
ERROR: deadlock detected
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ERROR: deadlock detected

DETAIL: Process 15099 waits for ExclusiveLock on relation 16714 of database 16440; b
 lobko_daniil=> LOCK TABLE employer IN EXCLUSIVE MODE;
LOCK TABLE
lobko_daniil=> UFDATE employer SET salary=2003441 WHERE e_id=1;
UFDATE 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             locked by process 15095.
Process 15095 waits for ExclusiveLock on relation 16714 of database 16440; blocked by
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            process 15099.

HINT: See server log for query details.

Lobko damili=> UPDATE employer SET salary=2003442 WHERE e id=1;

ERROR: current transaction is aborted, commands ignored until end of transaction blo
TORMON CONTROL OF TABLE employer IN SHARE MODE;
LOCK TABLE
LOCK TA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            ck
lobko_daniil=> LOCK TABLE employer IN SHARE MODE;
ERROR: current transaction is aborted, commands ignored until end of transaction blo
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          ck
lobko_daniil=> SELECT * FROM employer WHERE e_id=1;
ERROR: current transaction is aborted, commands ignored until end of transaction blo
   lobko_daniil=> commit;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       lobko_daniil=> SELECT * FROM employer WHERE e_id=1;
```

Rollback:

Висновки: Виконуючи цю лабораторну роботи ми закріпили навички роботи з керування процесами-транзакціями в базах даних

Найскладнішим було завдання 1.