Math 300: Midterm 3 Review

Pranav Tikkawar

April 24, 2024

Question 1

Let $A = \{1, 2, 3\}$. Give a relation on A that is For all these relations, consider that $R \subset A \times A$.

\mathbf{a}

Reflexive, symmetric, and transitive.

Solution:

Let
$$R = \{(1,1), (2,2), (3,3), (1,2), (2,1), (2,3), (3,2), (1,3), (3,1)\}.$$

b

Reflexive, symmetric, but not transitive.

Solution:

Let
$$R = \{(1,1), (2,2), (3,3), (1,2), (2,1), (2,3), (3,2)\}.$$

\mathbf{c}

Reflexive, not symmetric, and transitive.

Solution:

Let
$$R = \{(1,1), (2,2), (3,3), (1,2)\}.$$

\mathbf{d}

Reflexive, not symmetric, and not transitive.

Solution:

Let
$$R = \{(1,1), (2,2), (3,3), (1,2), (2,3)\}.$$

ϵ

Not reflexive, symmetric, and transitive.

Solution:

Let
$$R = \emptyset$$
.

\mathbf{f}

Not reflexive, symmetric, and not transitive.

Solution:

Let
$$R = \{(1, 2), (2, 1)\}.$$

\mathbf{g}

Not reflexive, not symmetric, and transitive.

Solution:

Let
$$R = \{(1,2), (2,3), (1,3)\}.$$

h

Not reflexive, not symmetric, and not transitive.

Solution:

Let
$$R = \{(1,2), (2,3)\}.$$

Question 2

a

Let $A = \{1, 2\}$. All the relations on A which are symmetric and transitive, but not reflexive **Solution**:

$$R = \emptyset, \{(1,1)\}\{(2,2)\}$$

b

Let $A = \{1, 2, 3, 4, 5\}$. How many relations which are both symmetric and antisymmetric

Solution:

There are 32 such relations. If we consider the powerset of A then see that every single subset of A can be a relation that is symetric and antisymmetric if the relation is the identy relation. So there are $2^5 = 32$ such relations.

Question 3

Let $A = \{1, 2, 3\}$ For each of the following relations on A, determine whether it is reflexive, symmetric, antisymmetric, and/or transitive.

a

$$R = \{(1,2)\}$$

Solution:

Reflexive: No. (1,1) is not in R. Symmetric: No. (2,1) is not in R.

```
Antisymmetric: Yes. Transitive: Yes.
```

b

 $S = \{(1,2), (1,3)\}$ Solution: Reflexive: No. (1,1) is not in S. Symmetric: No. (2,1) is not in S.

Antisymmetric: Yes. Transitive: Yes.

\mathbf{c}

 $T = \{(1,2), (2,1), (1,1)\}$ Solution:

Reflexive: No. (2,2) is not in T.

Symmetric: Yes Antisymmetric: No. (1,2) and (2,1) are in T but $1 \neq 2$.

Transitive: No. (1,2) and (2,1) are in T but (2,2) is not in T.

Question 4

Let $A = \{1, 2, 3\}$. Size of relations:

- Min Reflexive: $\{(1,1),(2,2),(3,3)\}$
- \bullet Min symmetric: \emptyset
- Min antisymmetric: Ø
- \bullet Min transitive: \emptyset
- Min equivalence: $\{(1,1),(2,2),(3,3)\}$
- Min partial order: $\{(1,1),(2,2),(3,3)\}$
- Max symmetric: $\{(1,1),(2,2),(3,3),(1,2),(1,3),(2,1),(2,3),(3,1),(3,2)\}$
- Max antisymmetric: $\{(1,1),(2,2),(3,3),(1,2),(1,3),(2,3)\}$
- Max equivalence: $A \times A$
- Max partial: $\{(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)\}$

Question 5

Let S be the relation on \mathbb{R} defined by xSy: x < y + 1. Determine whether S is reflexive, symmetric, antisymmetric, transitive.

Reflexive:

Need xSx : x < x + 1. This is true for all $x \in \mathbb{R}$. So S is reflexive.

Symmetric:

Need $xSy \Rightarrow ySx$ Counterexample: x = 1, y = 100. 1 < 100 + 1 but 100 < 1 + 1. So S is not symmetric.

Antisymmetric:

Need $xSy \wedge ySx \Rightarrow x = y$ Counterexample: x = 1, y = 1.5 1 < 1.5 + 1 and 1.5 < 1 + 1 but $1 \neq 1.5$. So S is not antisymmetric.

Transitive:

Need $xSy \land ySz \Rightarrow xSz$ Counterexample: x = 5, y = 4.3, and z = 3.5. 5 < 4.3+1 and 4.3 < 3.5+1 but $5 \not < 3.5+1$. So S is not transitive.

Question 6

Let $E \subset \mathbb{N} \times \mathbb{N}$ be the relation defined as $xEy : xy \leq x + y$. Determine whether E is reflexive, symmetric, antisymmetric, transitive.

Reflexive:

 $xEx: x \cdot x \leq x + x$. This is not true for values of 3 or greater. So E is not reflexive.

Symmetric:

if $xEy: xy \le x+y$ then $yEx: yx \le y+x$. This is true as multiplication and addition is commutative. So E is symmetric.

Antisymmetric:

if $xEy: xy \le x+y$ and $yEx: yx \le y+x$ then x=y. This is not true as x=2 and y=3 is a counterexample. So E is not antisymmetric.

Transitive:

if $xEy: xy \le x+y$ and $yEz: yz \le y+z$ then xEz would be $xz \le x+z$. This is not true for x=2, y=1, and z=3. So E is not transitive.

Problem 7

Let D be the relation on \mathbb{N} defined as: xDy iff $x^2|y$. Determine whether D is reflexive, symmetric, antisymmetric, and transitive.

Reflexive

Need: xDx

 $x^2|x$

Counter: 2. 2^2 does not divide 2. So D is not reflexive.

Symmetric

Need: $xDy \Rightarrow yDx$ $x^2|y \Rightarrow y^2|x$

This is not true in general. For example, $2^2|4$ but $4^2/2$. So D is not symmetric.

Antisymmetric

Need: $xDy \wedge yDx \Rightarrow x = y$ $x^2|y \wedge y^2|x \Rightarrow x = y$ $y = kx^2$ and $x = qy^2$ for some $k, q \in \mathbb{N}$. Substitute $y = kx^2$ into $x = qy^2$ to get $x = q(kx^2)^2 = qk^2x^4$. Divide by x (as it is $\neq 0$) to get $1 = qk^2x^3$. This is only true if x = 1 and q = k = 1. So x = y and D is antisymmetric

Transitive

Need: $xDy \wedge yDz \Rightarrow xDz$ $x^2|y \wedge y^2|z \Rightarrow x^2|z$ Suppose $k,q \in \mathbb{N}$ such that $y=kx^2 \wedge z=qy^2$ Then $z=q(kx^2)^2=qk^2x^4$. Since $k,q,x \in \mathbb{N},\ qk^2x^2 \in \mathbb{N}$. We can call this r. Thus $z=rx^2$ and $x^2|z$. So D is transitive.

Problem 8

Let S be the relation on \mathbb{N} defined as: xSy iff $x|y^2$ Determine whether S is reflexive, symmetric, antisymmetric, and transitive.

Reflexive

Need: xSx $x|x^2$ $(\exists q \in \mathbb{N})x^2 = qx$

This is true for all $x \in \mathbb{N}$. as the "q" will be x to satisfy the equation So S is reflexive.

Symmetric

Need: $xSy \Rightarrow ySx$ $x|y^2 \Rightarrow y|x^2$ $(\exists k, q \in \mathbb{N})y^2 = kx \Rightarrow x^2 = qy$

This is not true in general. For example, x = 3 and y = 6. 3|36 but 6/9. So S is not symmetric.

Antisymmetric

```
Need: xSy \wedge ySx \Rightarrow x = y

x|y^2 \wedge y|x^2 \Rightarrow x = y

(\exists k, q \in \mathbb{N})y^2 = kx \wedge x^2 = qy \rightarrow x = y

Counter: x = 2 and y = 4. 2|16 and 4|4 but 2 \neq 4. So S is not antisymmetric
```

Transitive

```
Need: xSy \wedge ySz \Rightarrow xSz x|y^2 \wedge y|z^2 \Rightarrow x|z^2 (\exists k,q,r\in\mathbb{N})y^2=kx\wedge z^2=qy \rightarrow z^2=rx Counter example is x=8,\ y=4, and z=2.\ 8|16 and 4|4 but 8/4. So S is not transitive.
```

Problem 9

Let $S = \mathbb{R} \times \mathbb{R}$ be define as follows: for $(x_1, y_1) \in S$ and $(x_2, y_2) \in S$. We have $(x_1, y_1)P(x_2, y_2)$ iff $x_1 \leq x_2$ and $y_1 > y_2$. Determine whether P is reflexive, symmetric, antisymmetric, and transitive.

Reflexive

```
Need: (x,y)P(x,y)
 x \le x and y > y
 This is not true for all (x,y) \in S. So P is not reflexive. Counter: (1,2)
```

Symmetric

```
Need: (x_1, y_1)P(x_2, y_2) \Rightarrow (x_2, y_2)P(x_1, y_1)

x_1 \leq x_2 and y_1 > y_2 \Rightarrow x_2 \leq x_1 and y_2 > y_1

This is not true in general. For example, (1, 2)P(2, 1) but (2, 1)\cancel{P}(1, 2). So P is not symmetric.
```

Antisymmetric

```
Need: (x_1,y_1)P(x_2,y_2) \wedge (x_2,y_2)P(x_1,y_1) \Rightarrow (x_1,y_1) = (x_2,y_2)

x_1 \leq x_2 and y_1 > y_2 \wedge x_2 \leq x_1 and y_2 > y_1 \Rightarrow (x_1,y_1) = (x_2,y_2)

This is vacuously true as there is no (x_1,y_1)and(x_2,y_2) that satisfy the conditions. So P is antisymmetric
```

Transitive

```
Need: (x_1, y_1)P(x_2, y_2) \land (x_2, y_2)P(x_3, y_3) \Rightarrow (x_1, y_1)P(x_3, y_3)
x_1 \leq x_2 and y_1 > y_2 \land x_2 \leq x_3 and y_2 > y_3 \Rightarrow x_1 \leq x_3 and y_1 > y_3
This is true due to the transitive property of the inequalities. So P is transitive.
```

Problem 10

The properties of reflexivity, symmetry, antisymmetry, and transitivity are related to the identity relation and the operations of inversion and composition. Let $R \subset A \times A$ Prove:

a

R is reflexive iff $I_A \subset R$

Proof

Forward

Suppose $x \in A$. Assume R is reflexive. Need $I_A \subseteq R$. Since R is reflexive, $\forall x \in A, xRx$. This means $(x, x) \in R$. Since $I_A = \{(x, x) | x \in A\}$, $I_A \subseteq R$.

Backward

Suppose $x \in A$ Assume $I_A \subseteq R$. Need R is reflexive. Since $I_A \subseteq R$, $\forall x \in A, (x, x) \in R$. This means that $\forall x \in A, xRx$. So R is reflexive.

b

R is symmetric iff $R = \overleftarrow{R}$

Proof

Forward

Suppose $a,b \in A$. Assume R is symmetric. Need $R = \overline{R}$. In other words, $\{(a,b)|a,b \in A \land aRb\} = \{(b,a)|a,b \in A \land aRb\}$. Since R is symmetric, $\forall a,b \in A,aRb \Rightarrow bRa$. This means that $(a,b) \in R \Rightarrow (b,a) \in R$. So $R \subseteq \overline{R}$. Also since R is symmetric $\forall a,b \in A,bRa \Rightarrow aRb$. This means that $(b,a) \in R \Rightarrow (a,b) \in R$. So $\overline{R} \subseteq R$. So $R = \overline{R}$.

Backward

Suppose $R = \overleftarrow{R}$. Then $\forall x, y \in A, (x, y) \in R \Rightarrow (y, x) \in R$. This means that $\forall x, y \in A, xRy \Rightarrow yRx$. So R is symmetric.,

\mathbf{c}

R is antisymmetric iff $R \cap \overleftarrow{R} \subset I_A$

Proof

Forward

Suppose R is antisymmetric. Then $\forall x, y \in A, xRy \land yRx \Rightarrow x = y$. This means that $(x, y) \in R \land (y, x) \in R \Rightarrow x = y$. Since $(x, y) \in R$ means xRy, $(y, x) \in R$ means xRy and x = y means $(x, y) \in I_A$. Thus $R \cap R \subset I_A$.

Backward

Suppose $R \cap \stackrel{\longleftarrow}{R} \subset I_A$. Then $\forall x, y \in A, (x, y) \in R \land (y, x) \in R \Rightarrow (x, y) \in I_A$. This means that $\forall x, y \in A, xRy \land yRx \Rightarrow x = y$. Which is the definition of antisymmetry, so R is antisymmetric.

\mathbf{d}

R is transitive iff $R \circ R \subset R$

Proof

Forward

Suppose $x, z \in A$. Assume R is transitive. Need $R \circ R \subset R$. Let $(x, z) \in R \circ R$ then $\exists y \in A$ such that $xRy \wedge yRz$. Since R is transitive and xRz. So $(x, z) \in R$. So $R \circ R \subseteq R$.

Backward

Suppose $R \circ R \subset R$. Then $\forall x, y, z \in A, (x, y) \in R \land (y, z) \in R \Rightarrow (x, z) \in R$. This means that $\forall x, y, z \in A, xRy \land yRz \Rightarrow xRz$. Which is the definition of transitivity, so R is transitive.

Problem 11

A relation V on \mathbb{R} is given by xVy iff x = y or xy = 1.

ล

Prove that V is an equivalence relation.

Reflexive

Need: xVx

 $x = x \text{ or } x \cdot x = 1$

This is true for all $x \in \mathbb{R}$. So V is reflexive.

Symmetric

```
Need: xVy \Rightarrow yVx
 x=y or xy=1 \Rightarrow y=x or yx=1
This is true for all x,y \in \mathbb{R}. So V is symmetric
```

Transitive

```
Need: xVy \wedge yVz \Rightarrow xVz

x=y or xy=1 \wedge y=z or yz=1 \Rightarrow x=z or xz=1

Case 1: x=y and y=z

Then x=z and xVz. So V is transitive.

Case 2: x=y and yz=1

Then xz=1 and xVz. So V is transitive.

Case 3: xy=1 and y=z

Then xz=1 and xVz. So V is transitive.

Case 4: xy=1 and yz=1

Then 1/x=1/z and x=z and xVz. So V is transitive.

Thus V is an equivalence relation.
```

b

```
Describe the equivalence classes of 3, -2/3, and 0. The equivalence class of 3 is \{3, 1/3\} The equivalence class of -2/3 is \{-2/3, -3/2\} The equivalence class of 0 is \{0\}
```

Problem 12

Let T be the relation on \mathbb{Z} defined as: aTb iff there exists nonzero integers r and s such that $ar^2 = bs^2$. Prove that T is an equivalence relation.

Reflexive

```
Need: aTa
There exists r=s=1 such that a=a. So T is reflexive.
```

Symmetric

```
Need: aTb \Rightarrow bTa
Suppose aTb. Then there exists r, s \neq 0 such that ar^2 = bs^2. This means that bs^2 = ar^2. So bTa. So T is symmetric
```

Transitive

Need: $aTb \wedge bTc \Rightarrow aTc$

Suppose aTb and bTc. Then there exists $r, s, t, u \neq 0$ such that $ar^2 = bs^2$ and $bt^2 = cu^2$. This means that $ar^2/s^2 = cu^2/t^2$. $ar^2t^2 = bs^2u^2$. So aTc. So T is transitive.

Problem 13

Let R be the relation on \mathbb{N} defined as: aRb iff there exists odd integers k and l such that ak = bl.

\mathbf{a}

20R12 is in this relation as k = 3, l = 5. to make 20 * 3 = 60 = 12 * 5.

b

7R10 is not in this relation as there are no odd integers k to multiply to 7 to make an even number.

\mathbf{c}

20R10 is not in the relation as there are no odd integers k to multiply to 20 to make an "odd" multiple of 10.

\mathbf{d}

Reflexive

Need aRa

There exists k = l = 1 such that ak = al. So R is reflexive.

Symmetric

Need $aRb \Rightarrow bRa$

Suppose aRb. Then there exists k, l such that ak = bl. This means that bl = ak. So bRa. So R is symmetric

Transitive

Need $aRb \wedge bRc \Rightarrow aRc$

Suppose aRb and bRc. Then there exists k, l, m, n such that ak = bl and bm = cn. This means that akm = bln. Since 2 odd integers multiplied is also odd then aRc. So R is transitive.

\mathbf{e}

Describe the equivalence claseses:

The equivalence class of 2^0 is $\{2n+1: n \in \mathbb{N}\}$

The equivalence class of 2^1 is $\{2(2n+1): n \in \mathbb{N}\}$

The equivalence class of 2^2 is $\{2^2(2n+1): n \in \mathbb{N}\}$

The equivalence class of $2^k \ \forall k \geq 0$ is $\{2^k(2n+1) : n \in \mathbb{N}\}$

In other words, The equiliances classes are represented as 2^k where $k \in \mathbb{Z}$ and $k \geq 0$. And all the elements of the equivalence class is all the numbers $x \in \mathbb{N}$ which have the same power of 2 in thier prime factorization.

Problem 14

On \mathbb{N} a relation P is given by aPb iff the prime factorization of a and b have the same power of 2.

\mathbf{a}

Reflexive

Need aPa

The prime factorization of a is the same as the prime factorization of a. So P is reflexive.

Symmetric

Need $aPb \Rightarrow bPa$

Suppose aPb. Then the prime factorization of a and b have the same power of 2. This means that the prime factorization of b and a have the same power of 2. So P is symmetric

Transitive

Need $aPb \wedge bPc \Rightarrow aPc$

Suppose aPb and bPc. Then the prime factorization of a and b have the same power of 2 and the prime factorization of b and c have the same power of 2. This means that the prime factorization of a and c have the same power

b

```
1/P: \{1,3,5\}

4/P: \{4,12,20\}

72/P: \{8,24,60\}
```

Problem 15

\mathbf{a}

Let P and Q be equivalence relations on a set A. Prove that $R:=P\cap Q$ is an equivalence relation on A.

Reflexive

Suppose $a \in A$. Need aRa

Since P and Q are equivalence relations, aPa and aQa. This means that $(a, a) \in P$ and $(a, a) \in Q$. So $a \in P \cap Q$. So aRa.

Symmetric

Suppose $a, b \in A$ Assume aRb. Need bRa

Since aRb, $(a,a) \in P \cap q$ so $(a,b) \in P$ and $(a,b) \in Q$ Since P and Q are both equivalence relations they are symmetric. So $(b,a) \in P$ and $(b,a) \in Q$. So bRa. So R is symmetric.

Transitive

Suppose $a, b, c \in A$ Assume aRb and bRc. Need aRc

Since aRb and bRc, $(a,b) \in P \cap Q$ and $(b,c) \in P \cap Q$. This means that $(a,b) \in P$ and $(a,b) \in Q$ and $(b,c) \in P$ and $(b,c) \in Q$. Since P and Q are equivalence relations, they are transitive. So $(a,c) \in P$ and $(a,c) \in Q$. So aRc. So R is transitive.

b

Give an exaple of two equivalence relations P and Q on $A = \{1, 2, 3\}$ such that $T := P \cup Q$ is not an equivalence relation on A.

Solution:

```
Let A = \{1, 2, 3\}, P = \{(1, 1), (2, 2), (3, 3), (1, 3), (3, 1)\}, Q = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)\}. Then T = P \cup Q = \{(1, 1), (2, 2), (3, 3), (1, 3), (3, 1), (1, 2), (2, 1)\}. T is not an equivalence relation as it is not transitive. For example, (3, 1) \in T
```

and $(1,2) \in T$ but $(3,2) \not\in T$.

Problem 16

Let P be the relation on \mathbb{N} defined as: aPb iff $b=2^ka$ for some integers $k\geq 0$. Prove that P is a partial order.

Reflexive

Need: aPa $a = 2^0a$. So aPa.

Antisymmetric

Need: $aPb \wedge bPa \Rightarrow a = b$ Suppose aPb and bPa. Then $b = 2^k a$ and $a = 2^l b$ for some $k, l \geq 0$. This means that $b = 2^k 2^l b$. So $b = 2^{k+l} b$. This means k + l = 0 and k = l = 0. So a = b

Transitive

Need: $aPb \wedge bPc \Rightarrow aPc$ Suppose aPb and bPc. Then $b=2^ka$ and $c=2^lb$ for some $k,l \geq 0$. This means that $c=2^k2^la$. So $c=2^{k+l}a$. So aPc.

Problem 17

Let A an arbitrary nonempty set, and let P be a partial order on A. Define a new relation < on A as follows x < y iff xPy and $x \neq y$.

 \mathbf{a}

Prove that there are no $x,y \in A$ such that x < y and y < x. Suppose there exists $x,y \in A$ such that x < y and y < x. Then xPy and yPx. Due to P being Partial Order and thus antisymmetric, x = y. This is a contradiction. So there are no $x,y \in A$ such that x < y and y < x.

\mathbf{b}

Prove that < is transitive.

Assume that < is not transitive. Then there exists $x, y, z \in A$ such that x < y and y < z but $x \not< z$. If x < y then xPy and if y < z then yPz. Since P is

a partial order, it is transitive. So xPz. But $x \not\ll z$ is a contradiction. So < is transitive.

Problem 18

Let A be a nonempty set with partial order P. for each $t \in A$ define $S_t := \{x \in A : xPt\}$

Let $\mathscr{F} = \{S_t : t \in A\}$ then \mathscr{F} is a subset of $\mathscr{P}(A)$ [since for every $t \in A$, $S_t \subset A$]. and thus can be partially orded by \subseteq . Let $a, v \in A$ be arbitrary.

i

Prove that if aPb then $S_a \subseteq S_b$ Suppose aPb. Let $x \in S_a$. Then xPa. Since aPb, xPb. So $x \in S_b$. So $S_a \subseteq S_b$.

Suppose $a, b \in A$. Assume aPb. Need $S_a \subseteq S_b$. Let $x \in S_a$. Then xPa. Since aPb, xPb by the transitivity of P. So $x \in S_b$. So $S_a \subseteq S_b$.

ii

Prove that if $S_a \subseteq S_b$ then aPb

Suppose $a, b \in A$. Assume $S_a \subseteq S_b$. Need aPb. Let $x \in S_a$. Then xPa. Since $S_a \subseteq S_b$, $x \in S_b$. Since we know that P is a partial order, it is also Reflexive, so a is in the set S_a . So there is an element $x \in S_b$ where x = a so aPb.

Problem 19

a

Let P and Q be partial orders on the same nonempty set A. Prove that $P \cap Q$ is a partial order on A.

For sake of ease: Let $R := P \cap Q$

Reflexive

Suppose $a \in A$. Need aRa

Since P and Q are partial orders and thus reflexive, aPa and aQa. This means that $(a, a) \in P$ and $(a, a) \in Q$. So $(a, a) \in P \cap Q$. So aRa.

Antisymmetric

Suppose $a, b \in A$ Assume aRb and bRa. Need: a = b Since aRb and bRa, $(a, b) \in P \cap Q$ and $(b, a) \in P \cap Q$. This means that $(a, b) \in P$ and $(a, b) \in Q$ and $(b, a) \in P$ and $(b, a) \in Q$. Since P and Q are partial orders and antisymmetric, aPb and aQb and aCb and

Transitive

Suppose $a, b, c \in A$. Assume aRb and bRc. Need aRcSince aRb and bRc, $(a, b) \in P \cap Q$ and $(b, c) \in P \cap Q$. This means that $(a, b) \in P$ and $(a, b) \in Q$ and $(b, c) \in P$ and $(b, c) \in Q$. Thus aPb and aQb and bPc and bQc. Since P and Q are partial order and transitive, aPc and aQc. Since aPc and aQc, $a \in P \cap Q$. So aRc. So R is transitive.

b

Give an example of two partial orders P and Q on $A\{1,2,3\}$ such that $P \cup Q$ is not a partial order on A.

Solution

```
Let A = \{1, 2, 3\}

Let P = \{(1, 1), (2, 2), (3, 3), (1, 3)\}

Let Q = \{(1, 1), (2, 2), (3, 3), (3, 1)\}

Then P \cup Q = \{(1, 1), (2, 2), (3, 3), (1, 3), (3, 1)\}

Which is not antisymmetric, thus not a partial order.
```

Problem 20

\mathbf{a}

Let \leq_1 and \leq_2 be total orders on the same nonempty set A. Let P be the relation on A defined by aPb iff $a \leq_1 b$ and $a \leq_2 b$. Prove that P is a partial order on A.

Reflexive

```
Suppose a \in A. Need: aPa
Since \leq_1 and \leq_2 are total orders, a \leq_1 a and a \leq_2 a. So aPa.
```

Antisymmetric

Suppose $a, b \in A$. Assume aPb and bPa. Need: a = bSince aPb and bPa, $a \leq_1 b$ and $a \leq_2 b$ and $b \leq_1 a$ and $b \leq_2 a$. Since $a \leq_1 a$ are total orders and antisymmetric, a = b as desired

Transitive

Suppose $a,b,c \in A$. Assume aPb and bPc. Need aPcSince aPb and bPc, $a \leq_1 b$ and $a \leq_2 b$ and $b \leq_1 c$ and $b \leq_2 c$. Since \leq_1 and \leq_2 are total orders and transitive, $a \leq_1 c$ and $a \leq_2 c$. So aPc. So P is transitive.

b

Give an example of 2 total orders on the same set A such that the relation P is not a total order on A. aPb iff $a \leq_3 b$ and $a \leq_4 b$

Solution

```
Let A = \{1, 2, 3\}

Let \leq_3 := \leq Let \leq_4 := \geq

\leq_3 = \{(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)\}

\leq_4 = \{(1, 1), (2, 1), (3, 1), (2, 2), (3, 2), (3, 3)\}

P = \{(1, 1), (2, 2), (3, 3)\}

Counter to Total order: 1\cancel{P}2 and 2\cancel{P}1

I_A \subseteq P
```

Problem 21

Let P be a partial order on a set A, and let $B \subseteq A$. Prove that if B contains one of its upper bounds s then s is the least upper bound of B.

Proof

Suppose A, B are sets and P is a partial order on A where $B \subseteq A$ Assume $s \in B$ and s is an upper bound of B.

Need: s is the least upper bound of B. In other words $\forall t$ that are upper bounds sPt

Let t be an upper bound of B. Since s is an upper bound of B that is also in B, there does not exist another upperbound in B that is less than s since the definition of an upper bound is $\{s: \forall a \in B, aPs\}$. So every upperbound of B other than s must related to s by P. In other words sPt thus s is the least upper bound of B.

Problem 22

Let $S \subseteq \mathbb{R}$ be a bounded set and let T be an non-empty subset of S. Prove that

$$inf(s) \le inf(T) \le sup(T) \le sup(S)$$

Proof

Proof of existence Suppose S is a bounded set and T is a non-empty subset of S.

Since S is bounded, inf(S) and sup(S) exist. Since T is a non-empty subset of S, T is also bounded. So inf(T) and sup(T) exist.

Proof of $inf(s) \leq inf(T)$

Let $i_s = inf(S)$ and $i_t = inf(T)$.

Since T is a subset of S, inf(S) is a lower bound of T. So by the definition of infimum $inf(S) \leq inf(T)$.

Proof of $inf(T) \leq sup(T)$

Let $i_t = inf(T)$ and $s_t = sup(T)$.

Since T is a bounded set and is non empty $inf(T) \leq sup(T)$.

Proof of $sup(T) \leq sup(S)$

Let $s_t = \sup(T)$ and $s_s = \sup(S)$.

Since T is a subset of S, sup(S) is an upper bound of T. So by the definition of supremum $sup(T) \leq sup(S)$.

Problem 23

Let B and C be non-empty sets of real numbers such that $b \leq c$ for all $b \in B$ and $c \in C$. Prove that $sup(B) \leq inf(C)$. **Proof** Suppose B and C are non-empty sets of real numbers such that $b \leq c$ for all $b \in B$ and $c \in C$.

Need: $sup(B) \leq inf(C)$.

Since B is a non-empty set of real numbers, sup(B) exists. Since C is a non-empty set of real numbers, inf(C) exists due to the axiom of completeness. Let $c \in C$. Since $(\forall b \in B)b \leq c$, c is an upper bound of B. So by definition of supremum $sup(B) \leq c$. Since c is an arbitrary element of C and $sup(B) \leq c$,

supremum $sup(B) \le c$. Since c is an arbitrary element of C and $sup(B) \le c$ sup(B) is a lower bound of C. So by definition of infimum $sup(B) \le inf(C)$.

Problem 24

Let A be an arbitrary nonempty set and let

Problem 25

Let A be the set of all closed subintervals of [0,1] with positive length. A is a partially ordered by set inclusion. A set $B \subseteq A$ is a collection of intervals, also note $[0,1] \in A$.

i

Does every nonempty subset B of A have an upper bound? Yes as for every set B in A, [0,1] will be an element such that $1 \in A$ and $\forall x \in B, x \subseteq [0,1]$. So [0,1] is an upper bound for B.

ii

Does every nonempty subset B of A have a least upper bound?

Yes, as since there exists an upper bound for every nonempty subset B of A, the least upper bound will be the interval s such that all of the upperbounds of B contain s. In other words $sup(B) := s \in A$ such that $\forall x$ that are upper bounds of $B, s \subseteq x$.

Since B is bounded then it has a maximum which is in B. This maximum is an upper bound of B and is a subset of all other upper bounds of B. So the maximum is the least upper bound of B.

Review for Later

iii

Does every nonempty subset B of A have a maximum?

iv

 \mathbf{v}

vi

Problem 26

Problem 27

Definitions

Power Set

Let A be a set. The power set of A is the set of all subsets of A. $\mathscr{P}(A):=\{X:X\subseteq A\}$

Cartesian Product

Let A and B be sets. The Cartesian product of A and B is the set of all ordered pairs (a,b) where $a \in A$ and $b \in B$.

```
A \times B := \{(a, b) : a \in A, b \in B\}
```

Set Partition

Let A be a set. A set partition of A is a collection of nonempty subsets of A such that every element of A is in exactly one of the subsets.

```
P = \{A_1, A_2, \dots, A_n\} \text{ is a partition of } A \text{ if:}
\forall x \in A : \exists i \in \{1, 2, \dots, n\} : x \in A_i
\forall i, j \in \{1, 2, \dots, n\} : i \neq j \Rightarrow A_i \cap A_j = \emptyset
```

Identity Relation

Let A be a set. The identity relation on A is the relation that relates every element of A to itself.

```
I_A := \{(a, a) : a \in A\}
```

Composition

Let P and Q be relations. $P: A \to B$ and $Q: B \to C$. The composition of P and Q is the relation that relates a to c if there exists b such that aPb and bQc. $P \circ Q := \{(a,c): \exists b \in B: aPb \land bQc\}$

Inverse

Let P be a relation from A to B. The inverse of P is the relation that relates b to a if aPb.

```
\overline{P} := \{(b, a) : a \in A, b \in B, aPb\}
```

Dom

Let P be a relation from A to B. The domain of P is the set of all elements of A that are related to some element of B.

```
dom(P) := \{ a \in A : \exists b \in B : aPb \}
```

Range

Let P be a relation from A to B. The range of P is the set of all elements of B that are related to some element of A.

```
ran(P) := \{b \in B : \exists a \in A : aPb\}
```

title