vv255: Introduction: coordinate systems and vectors. Surfaces in 3D. The dot product and the cross product. Lines and planes.

Dr.Olga Danilkina

UM-SJTU Joint Institute

May 17, 2019

Today 05-13-2013

- 1. 3D space.
- 2. Distance.
- 3. Surfaces: planes, cylinders, quadric surfaces. Cross sections.
- 4. Vectors: binary operations, coordinates

3D space

- We plot points (x, y) in an xy-plane. This is 2D space. For x, y real numbers we write \mathbb{R}^2 for the space.
- We plot (x, y, z) in an xyz-coordinate space. This is 3D space. For x, y, z real numbers we write \mathbb{R}^3 for the space.
- In 3D space: coordinate axes meet at the origin O(0,0,0). When sketching, place axis labels at the positive end of each axis.
- Axes are right-handed. Looking down the positive *z*-axis gives the standard view of the *xy*-plane.

3D Coordinate Systems

The **right-hand rule**:

- the x-axis, y-axis and z-axis intersect at O
- \blacktriangleright the x-axis, y-axis and z-axis are pairwise perpendicular
- ▶ if you curl the fingers of your right hand around the *z*-axis in the direction of a 90 degree anticlockwise rotation from the positive *x*-axis to the positive *y*-axis, then your thumb points in the positive direction of the *z*-axis

xy, yz, xz planes

The x, y and z axes determine three planes: xy-plane, yz-plane and xz-plane.

xy, yz, xz planes

These three planes partition space into 8 regions called **octants**.

The octant bounded by the positive x-, y- and z-axis is called the **first** octant.

Coordinates

Let A be a point in 3D space.

Then A can be *uniquely* specified by the 3D rectangular coordinates (a, b, c) where a, called the x-coordinate, is the directed distance from the yz-plane to A, b, called the y-coordinate, is the directed distance from the xz-plane to A, and c, called the z-coordinate, is the directed distance from the xy-plane to A.

Coordinates

Let A(1, 2, 3)

This gives a one-to-one correspondence between 3D space and the set

$$\mathbb{R}^3 = \{(x, y, z) \mid x, y, z \in \mathbb{R}\}\$$

and we will often just refer to 3D space as \mathbb{R}^3

Recall, that equations in the variables x and y represent curves in 2D. Similarly, equations in the variables x, y and z represent surfaces in \mathbb{R}^3 . Q: What is the surface described by x=5?

A: In \mathbb{R}^2 , x=5 is a line. In \mathbb{R}^3 , the equation x=5 describes all points $(5,y,z)\Rightarrow$ it is the plane.

The surfaces described by the equations x=k, y=k and z=k are the planes parallel to the yz-plane, xz-plane and xy-plane respectively. Example below: x=5, y=7, z=-3.

The surface y = x is the plane passing through the line y = x.

Q: What is the surface described by $x^2 + y^2 = 1$, z = 5?

A: The circle lying in the plane z=5

Q: What is the surface described by $x^2 + y^2 = 1$? A: The cylinder below.

Q: So, what is a cylinder?

A: A cylinder is a surface that is constructed of a set of parallel lines all passing through a curve. In the example above, the curve is the circle.

Q: What happens if the curve is an ellipse, a parabola or a hyperbola?

A: Passing parallel lines through an ellipse leads to an elliptical cylinder while passing parallel lines through a parabola leads to a parabolic cylinder and passing parallel lines through a hyperbola leads to a hyperbolic cylinder.

Quadric Surfaces

Definition: A quadric surface is the graph of a second-degree equation in three variables x, y, z. The most general such equation is

$$Ax^{2} + By^{2} + Cz^{2} + Dxy + Eyz + Fxz + Gx + Hy + Iz + J = 0$$

with constant coefficients.

How to plot a quadric surface?

A: 1. Complete squares and obtain an equation of the form

$$A'x^2 + B'y^2 + C'z^2 + J' = 0.$$

2. Use cross-sections with planes parallel to xy-, xz-, yz- planes to understand what curves (traces) a quadric surface make in intersection with those planes.

Quadric Surfaces: Example

Consider the quadric surface

$$x^2 + 2z^2 - 6x - y + 10 = 0$$

1. Complete the square

$$x^{2} - 2 \cdot 3x + 9 - 9 + 2z^{2} - y + 10 = 0 \Rightarrow (x - 3)^{2} + 2z^{2} = y - 1$$

2. Find the shape of the intersection of the surface with each of x = c, y = c, z = c, c = const:

$$x = c$$
: $y = 2z^2 + ((c-3)^2 + 1) \Rightarrow$ a parabola in yz – plane

$$y = c \neq 1$$
: $\frac{(x-3)^2}{y-1} + \frac{z^2}{(y-1)/2} = 1 \Rightarrow \text{ an ellipse in } xz - \text{plane}$

$$y = 1 \Rightarrow$$
 the point $(3, 1, 0)$

$$z = c$$
: $y = (x - 3)^2 + (1 + 2c^2) \Rightarrow$ a parabola in xy – plane

Quadric Surfaces: Example

an elliptic parabaloid

For Your Reference: Classification of Quadric Surfaces from J.Stewart

Surface	Equation	Surface	Equation
Ellipsoid	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ All traces are ellipses. If $a = b = c$, the ellipsoid is a sphere.	Cone	$\frac{z^2}{c^2} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ Horizontal traces are ellipses. Vertical traces in the planes $x = k$ and $y = k$ are hyperbolas if $k \neq 0$ but are pairs of lines if $k = 0$.
Elliptic Paraboloid	$\frac{z}{c} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ Horizontal traces are ellipses. Vertical traces are parabolas. The variable raised to the first power indicates the axis of the paraboloid.	Hyperboloid of One Sheet	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$ Horizontal traces are ellipses. Vertical traces are hyperbolas. The axis of symmetry corresponds to the variable whose coefficient is negative.
Hyperbolic Paraboloid	$\frac{z}{c} = \frac{x^2}{a^2} - \frac{y^2}{b^2}$ Horizontal traces are hyperbolas. Vertical traces are parabolas. The case where $c < 0$ is illustrated.	Hyperboloid of Two Sheets	$-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ Horizontal traces in $z = k$ are ellipses if $k > c$ or $k < -c$. Vertical traces are hyperbolas. The two minus signs indicate two sheets.

Distance

Let $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$ be two points.

Definition: The distance between P_1 and P_2 , denoted $|P_1P_2|$ is the length of the line segment connecting P_1 and P_2 .

Exercise: Show that

$$|P_1P_2| = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}$$

Example

Let $P(x_0, y_0, z_0)$. Consider a sphere centered at P, i.e. the set of all points whose distance from P is r:

$$(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2 = r^2$$

Regions

We can describe regions in 3D space using inequalities.

Example

► The region described by

$$1 \le x^2 + y^2 + z^2 \le 9$$

is the region of points that are inside a sphere centred at O with radius 3 but not inside a phere centred at O with radius 1

► The first octant is described by the inequalities

$$x \ge 0, y \ge 0$$
 and $z \ge 0$

► $x^2 + y^2 \le 4$ and z = -1

is the region of points within a circle of radius 2 drawn on the plane z=-1 and centred at (0,0,-1)

A **vector** is an object that captures a direction and a magnitude (length) in 2D/3D spaces. Geometrically, vectors are arrows in an arbitrary position in 2D/3D spaces.

The tip of the vector is the end with the arrow, while the tail is the end without it.

A vector drawn with its tail at the origin is called a position vector.

Vector addition and scalar multiplication

Definition

The vectors $\bar{\mathbf{e}}_1 = \bar{\mathbf{i}}$, $\bar{\mathbf{e}}_2 = \bar{\mathbf{j}}$, $\bar{\mathbf{e}}_3 = \bar{\mathbf{k}}$ are vectors of length one with direction pointing along positive the x-, y-, and z-axes respectively.

$$\Rightarrow \bar{e}_1 = \bar{i} = (1,0,0), \ \bar{e}_2 = \bar{j} = (0,1,0), \ \bar{e}_3 = \bar{k} = (0,0,1)$$

Definition

We say that we are resolving a vector into components when we write a vector in $\bar{\mathbf{v}} = \mathbf{v}_1 \bar{\mathbf{i}} + \mathbf{v}_2 \bar{\mathbf{j}} + \mathbf{v}_3 \bar{\mathbf{k}}$ form.

In this form, we are thinking about the vector as a sum of three components (along perpendicular directions).

As an alternative, we could also provide the magnitude of the vector and indicate the direction using angles.

For a vector that is resolved into components, its magnitude is given by

$$|\bar{v}| = \sqrt{v_1^2 + v_2^2 + v_3^2}$$

(this is coming from the distance formula).

If $A(x_0, y_0, z_0)$ and $B(x_1, y_1, z_1)$ are points, then the vector pointing from A to B with magnitude |AB| is given by

$$\overrightarrow{AB} = (x_1 - x_0)\overline{i} + (y_1 - y_0)\overline{j} + (z_1 - z_0)\overline{k}$$

Note that $\overrightarrow{AB} = \overrightarrow{OP}$ where $P(x_1 - x_0, y_1 - y_0, z_1 - z_0)$.

More generally, an n-dimensional vector is a direction coupled with a magnitude in n-dimensional space (\mathbb{R}^n). An n dimensional vector can be represented as a linear combination of n standard basis vectors. I.e.

$$\bar{v} = (v_1, \dots, v_n) \text{ where } v_1, \dots, v_n \in \mathbb{R}$$

The magnitude of an *n*-dimensional vector is given by:

$$|\bar{v}| = \sqrt{\sum_{k=1}^{n} v_k^2}$$

Properties of Vectors

Theorem

Let \bar{a} , \bar{b} and \bar{c} be n-dimensional vectors, and let α and β be real numbers (scalars). Then

- $1. \ \bar{a} + \bar{b} = \bar{b} + \bar{a}$
- 2. $\bar{a} + (\bar{b} + \bar{c}) = (\bar{a} + \bar{b}) + \bar{c}$
- 3. $\bar{a} + \bar{0} = \bar{a}$
- 4. $\bar{a} + (-\bar{a}) = \bar{0}$
- 5. $\alpha(\bar{a} + \bar{b}) = \alpha \bar{a} + \alpha \bar{b}$
- 6. $(\alpha\beta)\bar{a} = \alpha(\beta\bar{a})$
- 7. $(\alpha + \beta)\bar{a} = \alpha\bar{a} + \beta\bar{a}$
- 8. $1 \cdot \bar{a} = \bar{a}$

Unit vectors

Definition

We say that vectors \bar{a} and \bar{b} are parallel if there exists $c \in \mathbb{R}$ such that $\bar{a} = c\bar{b}$.

Definition

We say that \bar{u} is a unit vector if $|\bar{u}|=1$. Let \bar{a} be a vector with $\bar{a}\neq\bar{0}$. The unit vector of \bar{a} , written $\hat{\bar{a}}$, is the unit vector that points in the same direction as \bar{a} , i.e.

$$\hat{\bar{a}} = \frac{\bar{a}}{|\bar{a}|}$$

Relative Motion

Velocity, acceleration, and force are each quantities that have a magnitude and a direction \Rightarrow they are well represented by vectors. For a velocity vector, we refer to its magnitude as the speed. For acceleration and force vectors we don't have special words to denote the size of the acceleration/force. **Relative motion:** If an object is moving at velocity \bar{v} relative to a river, and the river is moving at velocity \bar{w} relative to the shore, then the object will be moving at velocity $\bar{v} + \bar{w}$ relative to the shore.

Relative Motion

Example: A person walks due west on the deck of a ship at 3 mi/h. The ship is moving north at a speed of 22 mi/h. Find the speed and direction of the person relative to the surface of the water.

Hint: Let north be the positive the positive *y*-direction.

$$ar{v} = (0,22) + (-3,0) = (-3,22) \Rightarrow |ar{v}| = \sqrt{493} \approx 22.2 \, \text{mi/h}$$

Matlab Examples

```
>> WFind the distance between the points (0, -3, 7) and (3, 2, 4).
  dist = sqrt((0-3)^2 + (-3-2)^2 + (7-4)^2)
  p1=[0,-3,7], p2=[3,2,4]
  dist = sort((p1(1)-p2(1))^2 + (p1(2)-p2(2))^2 + (p1(3)-p2(3))^2)
  % The distance is exactly
  agrt (43)
>> %Plot the graph of z = x^2-v^2.
svms x v
f = 0(x, y) x^2-y^2
fsurf(x, v, f(x,v))
xlabel('x'): vlabel('v'): zlabel('z')
title('surface: z = x^2 - y^2')
set(gca, 'FontSize', 14)
axis equal
axis([-3 3 -3 3 -5 51)
caxis([-5 51)
%Add a cross-section with x = 0
hold on
fplot3(sym(0),y,f(0,y),'LineWidth',3)
%Add a cross-section with y = x:
fplot3(x,x,f(x,x),'LineWidth',3)
```

```
>> % Magnitude of a vector;

vecv = [1,3, 2];

% Use a loop to do the addition

summag = 0;

for k = 13

summag = summag + vecv(k)^2;

end sqrr(summag) %sqrt to find the magnitude

norm(vecv) Moorm is a built-in command.
```

```
>> % cross sections of z=2x^*2. symm x y f=8(x,y),2^*x^*2; faurf(x,y,f(x,y),(-2 2-2 2]) hold on fplot3(x,sym(3),f(x,3),[-2,2], 'LineWidth',3) fplot3(sym(1),y,sym(f(1,y),1-2 2], 'LineWidth',3) % Flot the z=2 cross-section in the xy-plane famplicit(f=xym(2),f-2,2), 'LineWidth',3) xlabel('x')' ylabel('y')'; zlabel('x')' subscitcosi for section in the xy-plane famplicit(f=x')' ylabel('y')'; zlabel('x')' section in xi ylabel('x')' section in xi yl
```

Questions

- 1. Plot (1, 3, 4) in 3D space.
- 2. Find the distance between (1, 3, 4) and the xy-plane.
- 3. Find the distance between (1,3,4) and the plane x=7.
- 4. Find the distance from (1,3,4) to the z-axis.
- 5. Write an equation for the set of points distance 2 from the point (1,3,4).
- 6. Find the set of points in the intersection of the sphere of radius 3 centered around (0,0,4) and the plane z=2.
- 7. Sketch the surface $z=2x^2$: find the shape of the intersections of the surface with y=c, x=c, and z=c
- 8. Sketch the surface $z = x^2 + y^2 6$: find the shape of the intersection of the surface with each of x = c, y = c, z = c.

Next

- Scalar and vector projections.
- The dot product.
- Direction angles and direction cosines.
- The cross product.
- Matrices and determinants.

Today:05-15-2019

- 1. Review: 3D space, distance, surfaces, relative motion.
- 2. Scalar and vector projections.
- 3. The dot product.
- 4. Direction angles and direction cosines.
- 5. Matrices and determinants. Next class!
- 6. The cross product. Next class!
- 7. The triple product. Next class!

Exercises: surfaces

Match the equation with its graph:

$$A.x^2 - y + 2 = 0$$
, $B.y = x^2 - z^2$, $C.x = z^2 - y^2$, $D.2x^2 + y^2 + 6z^2 = 10$,

$$E.x^2 = 2y^2 + z^2$$
, $F.2x^2 + y^2 = z^2$, $G.2x^2 + y^2 = z^2 + 2$, $H.y^2 + 2z^2 = x^2 - 2$

Exercises: surfaces

Match the equation with its graph:

$$A.x^2 - y + 2 = 0$$
, $B.y = x^2 - z^2$, $C.x = z^2 - y^2$, $D.2x^2 + y^2 + 6z^2 = 10$,

$$E.x^2 = 2y^2 + z^2$$
, $F.2x^2 + y^2 = z^2$, $G.2x^2 + y^2 = z^2 + 2$, $H.y^2 + 2z^2 = x^2 - 2$

Exercises: surfaces

Match the equation with its graph:

$$A.x^2 - y + 2 = 0$$
, $B.y = x^2 - z^2$, $C.x = z^2 - y^2$, $D.2x^2 + y^2 + 6z^2 = 10$,

$$E.x^2 = 2y^2 + z^2$$
, $F.2x^2 + y^2 = z^2$, $G.2x^2 + y^2 = z^2 + 2$, $H.y^2 + 2z^2 = x^2 - 2$

$$A.x^2 - y + 2 = 0$$
, $B.y = x^2 - z^2$, $C.x = z^2 - y^2$, $D.2x^2 + y^2 + 6z^2 = 10$,

$$E.x^2 = 2y^2 + z^2$$
, $F.2x^2 + y^2 = z^2$, $G.2x^2 + y^2 = z^2 + 2$, $H.y^2 + 2z^2 = x^2 - 2$

$$A.x^2 - y + 2 = 0$$
, $B.y = x^2 - z^2$, $C.x = z^2 - y^2$, $D.2x^2 + y^2 + 6z^2 = 10$,

$$E.x^2 = 2y^2 + z^2$$
, $F.2x^2 + y^2 = z^2$, $G.2x^2 + y^2 = z^2 + 2$, $H.y^2 + 2z^2 = x^2 - 2$

$$A.x^2 - y + 2 = 0$$
, $B.y = x^2 - z^2$, $C.x = z^2 - y^2$, $D.2x^2 + y^2 + 6z^2 = 10$,

$$E.x^2 = 2y^2 + z^2$$
, $F.2x^2 + y^2 = z^2$, $G.2x^2 + y^2 = z^2 + 2$, $H.y^2 + 2z^2 = x^2 - 2$

$$A.x^2 - y + 2 = 0$$
, $B.y = x^2 - z^2$, $C.x = z^2 - y^2$, $D.2x^2 + y^2 + 6z^2 = 10$,

$$E.x^2 = 2y^2 + z^2$$
, $F.2x^2 + y^2 = z^2$, $G.2x^2 + y^2 = z^2 + 2$, $H.y^2 + 2z^2 = x^2 - 2$

$$A.x^2 - y + 2 = 0$$
, $B.y = x^2 - z^2$, $C.x = z^2 - y^2$, $D.2x^2 + y^2 + 6z^2 = 10$,

$$E.x^2 = 2y^2 + z^2$$
, $F.2x^2 + y^2 = z^2$, $G.2x^2 + y^2 = z^2 + 2$, $H.y^2 + 2z^2 = x^2 - 2$

The dot product

Definition

Algebraic Definition: Let $\bar{a} = (a_1, a_2, a_3), \ \bar{b} = (b_1, b_2, b_3).$

The dot product of the vectors \bar{a} , \bar{b} is

$$(\bar{a},\bar{b})=\bar{a}\cdot\bar{b}=a_1b_1+a_2b_2+a_3b_3$$

Definition

Geometric Definition:

$$(\bar{a},\bar{b}) = \bar{a}\cdot\bar{b} = |\bar{a}||\bar{b}|\cos(\bar{a},\bar{b})$$

Exercises

Let
$$\bar{v} = (3, -4, 5)$$
, $\bar{w} = (-2, 4, 2)$, $\bar{u} = (3, -2, 1)$.

- 1. Use the algebraic definition to compute $\bar{v} \cdot \bar{u}$, $\bar{w} \cdot \bar{u}$.
- 2. Convince yourself that $\bar{v} \cdot \bar{w} = \bar{w} \cdot \bar{v}$.

It is true in general that the dot product is commutative.

- 3. Show that $(\bar{v} + \bar{w}) \cdot \bar{u} = \bar{v} \cdot \bar{u} + \bar{w} \cdot \bar{u}$.
- It is true in general that the dot product distributes over addition.
- 4. Show that $(2\bar{v}) \cdot \bar{w} = \bar{v} \cdot (2\bar{w}) = 2(\bar{v} \cdot \bar{u})$.
- It is true in general that you can move scalars around this way.
- 5. Show that the algebraic and geometric definitions give the same answer for the dot product $\overline{i} \cdot \overline{j}$, and for the dot product $(1,1) \cdot (0,3)$.

Properties of the dot product

Theorem

Let \bar{a} , \bar{b} and \bar{c} be 3D vectors, and let α be a scalar. Then

- 1. $\bar{a} \cdot \bar{a} = |\bar{a}|^2$
- 2. $\bar{a} \cdot \bar{b} = \bar{b} \cdot \bar{a}$
- 3. $\bar{a} \cdot (\bar{b} + \bar{c}) = \bar{a} \cdot \bar{b} + \bar{a} \cdot \bar{c}$
- 4. $(\alpha \bar{a}) \cdot \bar{b} = \alpha (\bar{a} \cdot \bar{b}) = \bar{a} \cdot (\alpha \bar{b})$
- 5. $\overline{0} \cdot \overline{a} = 0$

Definition

Let $\bar{a} = x_0\bar{i} + y_0\bar{j} + z_0\bar{k}$ and $\bar{b} = x_1\bar{i} + y_1\bar{j} + z_1\bar{k}$ be vectors. The angle between \bar{a} and \bar{b} is defined to be the angle $\angle AOB$ where $A(x_0, y_0, z_0)$ and $B(x_1, y_1, z_1)$.

Angles between vectors

Theorem

Let \bar{a} and \bar{b} be 3D vectors. If θ is the angle between \bar{a} and \bar{b} , then

$$\bar{a} \cdot \bar{b} = |\bar{a}||\bar{b}|\cos\theta$$

Definition

We say that vectors $\bar{\mathbf{a}}$ and $\bar{\mathbf{b}}$ are perpendicular or orthogonal if the angle between $\bar{\mathbf{a}}$ and $\bar{\mathbf{b}}$ is $\frac{\pi}{2}$.

Corollary

Let \bar{a} and \bar{b} be 3D vectors. Then \bar{a} and \bar{b} are perpendicular if and only if $\bar{a} \cdot \bar{b} = 0$.

Direction angles

Definition

Let \bar{a} be a 3D vector. The direction angles of \bar{a} are the angles α , β and $\gamma \in [0,\pi]$ that \bar{a} makes with the positive x-, y- and z-axis.

Direction angles

Definition

The direction cosines of $\bar{a}=(a_1,a_2,a_3)$ are the cosines of the direction angles.

$$\cos\alpha = \frac{\bar{\mathbf{a}}\cdot\bar{\mathbf{i}}}{|\bar{\mathbf{a}}|\underbrace{|\bar{\mathbf{i}}|}} \Rightarrow \cos\alpha = \frac{\mathbf{a}_1}{|\bar{\mathbf{a}}|}, \, \cos\beta = \frac{\mathbf{a}_2}{|\bar{\mathbf{a}}|}, \, \cos\gamma = \frac{\mathbf{a}_3}{|\bar{\mathbf{a}}|}$$

Example

$$\bar{a} = \bar{i} - 2\bar{j} - 3\bar{k} \Rightarrow \bar{a} = (1, -2, -3) \Rightarrow |\bar{a}| = \sqrt{1^2 + (-2)^2 + (-3)^2} = \sqrt{14}$$

$$\cos \alpha = \frac{1}{\sqrt{14}}, \cos \beta = \frac{-2}{\sqrt{14}}, \cos \gamma = \frac{-3}{\sqrt{14}}$$

 $\alpha = \cos^{-1} \frac{1}{\sqrt{14}} \approx 74.49^{\circ}, \ \beta = \cos^{-1} \frac{-2}{\sqrt{14}} \approx 122.3^{\circ}, \ \gamma = \cos^{-1} \frac{-3}{\sqrt{14}} \approx 143$

Projections

Definition

Let a line $L \subset \mathbb{R}^2$ and $A \in \mathbb{R}^2$ be a point. Draw a line L_1 passing through the point A that makes $\pi/2$ with L. The point of intersection $O = L \cap L_1$ is called the orthogonal projection of the point A onto the line L.

In \mathbb{R}^3 , the orthogonal projection of the point A onto the line L is the point of intersection of the line L and a plane passing through A perpendicular to L.

Projections

Definition

The orthogonal projection of the vector \overline{AB} onto the line L is the vector whose end-points are the orthogonal projections of the end-points of \overline{AB} onto L.

$$proj_L \overline{AB} = \overline{O_A O_B}$$

The scalar component of the orthogonal projection of the vector \overline{AB} onto the vector \overline{I} , $\overline{I}||L$ is

$$\pm |\overline{O_A O_B}|$$

We shall call it the scalar (component) projection and denote $\operatorname{comp}_{\overline{l}}\overline{AB}$ Since $\operatorname{comp}_{\overline{a}}\overline{b} = |\overline{b}| \cos{(\overline{b},\overline{a})}$ for both cases $0 < \angle(\overline{b},\overline{a}) < \pi/2$ and $\pi/2 < \angle(\overline{b},\overline{a}) < \pi$, so

$$\bar{a} \cdot \bar{b} = |\bar{a}| \underbrace{|\bar{b}| \cos \bar{a}, \bar{b}}_{\text{comp}_{\bar{a}}\bar{b}} = |\bar{a}| \text{comp}_{\bar{a}}\bar{b}$$

Projections

Definition

The scalar (component) projection $comp_{\bar{a}}\bar{b}$ of \bar{b} onto \bar{a} is

$$\operatorname{comp}_{\bar{a}}\bar{b} = \frac{\bar{a} \cdot \bar{b}}{|\bar{a}|}$$

The vector projection $\operatorname{proj}_{\bar{a}}\bar{b}$ of \bar{b} onto \bar{a} , written is defined by

$$\operatorname{proj}_{\bar{a}}\bar{b} = \operatorname{comp}_{\bar{a}}\bar{b} \frac{\bar{a}}{|\bar{a}|} = \frac{\bar{a} \cdot \bar{b}}{|\bar{a}|^2}\bar{a}$$

Example

$$\bar{a} = (-1, 4, 8), \ \bar{b} = (12, 1, 2) \Rightarrow \operatorname{comp}_{\bar{a}} \bar{b} = \frac{-12 + 4 + 8 \cdot 2}{\sqrt{1 + 16 + 64}} = \frac{8}{9},$$

$$\operatorname{proj}_{\bar{a}} \bar{b} = \frac{-12 + 4 + 16}{9^2} (-1, 4, 8) = \left(\frac{-8}{81}, \frac{32}{81}, \frac{16}{81}\right)$$

Today: 05-17-2019

- 1. Review: 3D space and surfaces (We shall consider rotation surfaces), projections, the dot product.
- 2. Matrices and determinants.
- 3. The cross product.
- 4. The triple product.
- 5. Applications of the dot product and the cross product in physics.
- Equations of lines and planes in 3D.
- 7. Normal vectors.
- 8. Vector functions.

Definition

Let n and m be whole positive number. An $n \times m$ real (complex) matrix, A, is a rectangular array of real (complex) numbers a_{ij} for $1 \le i \le n$ and $1 \le j \le m$. We write

$$A = (a_{ij}) = \begin{pmatrix} a_{11} & \cdots & a_{1m} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nm} \end{pmatrix}$$

Definition

Let $A=(a_{ij})$ be an $n\times m$ matrix. For all $1\leq k\leq n$, the k^{th} row of A is the the $1\times m$ matrix

$$(a_{k1} \cdots a_{km})$$

Definition

Let $A = (a_{ij})$ be an $n \times m$ matrix. For all $1 \le k \le m$, the k^{th} column of A is the the $n \times 1$ matrix

$$\begin{pmatrix} a_{1k} \\ \vdots \\ a_{nk} \end{pmatrix}$$

Definition

The $n \times n$ identity matrix, written I_n , is defined by $I_n = (a_{ij})$ where

$$a_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

When the dimension is clear from the context or left unspecified, we just write I.

Definition

Let $A = (a_{ij})$ be an $n \times m$ matrix. The **transpose** of A, written A^T , is the $m \times n$ matrix entries a_{ij} . I.e. $A^T = (a_{ij})$

Definition

(Matrix Multiplication) If $A=(a_{ij})$ is an $n\times m$ matrix and $B=(b_{ij})$ is an $m\times p$ matrix, then AB is an $n\times p$ matrix defined by $AB=(c_{ij})$ where

$$c_{ij} = \sum_{k=1}^{m} a_{ik} b_{kj} \text{ for } 1 \leq i \leq n \text{ and } 1 \leq j \leq p$$

Definition

(Matrix Addition and Scalar Multiplication) If $A=(a_{ij})$ and $B=(b_{ij})$ are $n\times m$ matrices, and α is a scalar, then A+B is an $n\times m$ matrix defined by $A+B=(c_{ij})$ where $c_{ij}=a_{ij}+b_{ij}$ for $1\leq i\leq n$ and $1\leq j\leq m$, and αA is an $n\times m$ matrix defined by $\alpha A=(d_{ij})$ where $d_{ij}=\alpha a_{ij}$ for $1\leq i\leq n$ and $1\leq j\leq m$.

Theorem

If A, B and C have the right dimensions to make the left-hand side make sense, then the following equations hold:

- 1. A(BC) = (AB)C
- 2. A(B + C) = AB + AC
- 3. (B + C)A = BA + CA
- 4. AI = IA = A

Example

Note that it is NOT the case in general that if A is an $n \times n$ matrix and B is an $n \times n$ matrix, then AB = BA. Consider

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \Rightarrow AB = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \neq \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = BA$$

Determinants and inverses

Definition

Let $A = (a_{ij})$ be a 2×2 matrix. The **determinant** of A, written

$$\det(A) \ or \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$

is defined by

$$\det(A) = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{21}a_{12}$$

Theorem

If $A = (a_{ij})$ is a 2×2 matrix is such that $\mathbf{det}(A) \neq 0$, then the matrix

$$A^{-1} = rac{1}{\det(A)} egin{pmatrix} a_{22} & -a_{12} \ -a_{21} & a_{11} \end{pmatrix},$$

called the inverse of A, is such that $AA^{-1} = A^{-1}A = I_2$.

Determinants in general

We have defined the determinant of a 2×2 matrix. The determinant of an $n \times n$ matrix can now be defined recursively.

Definition

Let $A = (a_{ij})$ be a $n \times n$ matrix where n > 2. The **determinant** of A, written

$$\mathbf{det}(A) \ or \begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix}$$

is defined by

$$\det(A) = \sum_{k=1}^{n} (-1)^{k+1} a_{1k} \det(A_k)$$

where A_k is the $(n-1) \times (n-1)$ matrix obtained by deleting the first row and the k^{th} column of A.

Example

In particular, if $A = (a_{ij})$ is a 3×3 matrix, then

$$\mathbf{det}(A) = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

A vector $\bar{a} = x\bar{i} + y\bar{j} + z\bar{k}$ can be represented as a 3×1 matrix. I.e.

$$\bar{a} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

It should be clear from the context whether we are thinking of a vector as an ordered tuple or a matrix.

Cross product

Definition

Algebraic Definition: Let $\bar{a} = x_0 \bar{i} + y_0 \bar{j} + z_0 \bar{k}$ and $\bar{b} = x_1 \bar{i} + y_1 \bar{j} + z_1 \bar{k}$.

The cross product $\bar{a} \times \bar{b}$ is defined by

$$ar{a} imes ar{b} = egin{array}{ccc} ar{i} & ar{j} & ar{k} \\ x_0 & y_0 & z_0 \\ x_1 & y_1 & z_1 \end{array}$$

Example

Consider $\bar{a} = \bar{i} + 3\bar{j} - 2\bar{k}$ and $\bar{b} = -\bar{i} + 5\bar{k}$.

$$\bar{a} \times \bar{b} = \begin{vmatrix} i & j & k \\ 1 & 3 & -2 \\ -1 & 0 & 5 \end{vmatrix} = 15\bar{i} - 3\bar{j} + 3\bar{k}$$

Cross product

Theorem

If \bar{a} is a 3D vector, then $\bar{a} \times \bar{a} = \bar{0}$

Theorem

If \bar{a} and \bar{b} are 3D vectors, then $\bar{a} \times \bar{b}$ is perpendicular to both \bar{a} and \bar{b}

Theorem

Let \bar{a} and \bar{b} be 3D vectors. If $\theta \in [0,\pi]$ is the angle between \bar{a} and \bar{b} , then

$$|\bar{a} \times \bar{b}| = |\bar{a}||\bar{b}|\sin(\theta)$$

In particular, \bar{a} and \bar{b} are parallel if and only if $\bar{a} \times \bar{b} = \bar{0}$

Cross product

The geometric interpretation of $\bar{a} \times \bar{b}$ is:

- (Righ-hand rule) If the fingers of your right hand curl in the direction of rotation through an angle less than π from \bar{a} to \bar{b} , then the thumb of your right hand points in the direction of $\bar{a} \times \bar{b}$
- ▶ The magnitude of $\bar{a} \times \bar{b}$ is the area of the parallelogram with sides described by \bar{a} and \bar{b}

Definition

Geometric Definition: $\bar{a} \times \bar{b} = \begin{pmatrix} \text{the area of parallelogram} \\ \text{with edges } \bar{a}, \bar{b} \end{pmatrix} \bar{n},$ where \bar{n} is a unit vector perpendicular to the parallelogram with direction given by the right hand rule.

Exercises

- 1. Find $\bar{u} \cdot \bar{v}$, where $\bar{u} = 4\bar{i} 6\bar{k}$ and $\bar{v} = -\bar{i} + \bar{j} + \bar{k}$.
- 2. Find $\bar{u}\cdot\bar{v}$ where $\bar{u}=3\bar{i}+\bar{j}-\bar{k}$ is a vector of length 2 oriented at an angle of $\pi/4$ away from the direction of \bar{u} .
- 3. Using the geometric definition, what is $\bar{i} \times \bar{j}$ and $\bar{j} \times \bar{i}$?.
- 4. For $\bar{v}=3\bar{i}-2\bar{j}+4\bar{k},\ \bar{w}=\bar{i}+2\bar{j}-\bar{k},$ find $\bar{v}\times\bar{w}$ using the algebraic and geometric definitions.

Check your results in Matlab:

```
Command Window

>> vecu = [4,0,-6]; vecv = [-1,1,1];
dot(vecu,vecv) %exercise 1
vecu = [3,1,-1];
norm(vecu)*2*cos(pi/4) %exercise 2
cross([1,0,0],[0,1,0]) %exercise 3
cross([0,1,0],[1,0,0])
vecv = [3,-2,4]; vecw = [1,2,-1];
cross(vecv,vecw) %exercise 4
```

Properties of the cross product

Theorem

Let \bar{a} , \bar{b} and \bar{c} be 3D vectors, and let d be a scalar. Then

- 1. $\bar{a} \times \bar{b} = -\bar{b} \times \bar{a}$
- 2. $(d\bar{a}) \times \bar{b} = d(\bar{a} \times \bar{b}) = \bar{a} \times (d\bar{b})$
- 3. $\bar{a} \times (\bar{b} + \bar{c}) = \bar{a} \times \bar{b} + \bar{a} \times \bar{c}$
- 4. $(\bar{b} + \bar{c}) \times \bar{a} = \bar{b} \times \bar{a} + \bar{c} \times \bar{a}$
- 5. $\bar{a} \cdot (\bar{b} \times \bar{c}) = (\bar{a} \times \bar{b}) \cdot \bar{c}$
- 6. $\bar{a} \times (\bar{b} \times \bar{c}) = (\bar{a} \cdot \bar{c})\bar{b} (\bar{a} \cdot \bar{b})\bar{c}$

Note that the cross product is NOT associative. I.e. There exists 3D vectors \bar{a} , \bar{b} and \bar{c} such that

$$\bar{a} \times (\bar{b} \times \bar{c}) \neq (\bar{a} \times \bar{b}) \times \bar{c}$$

Applications of the cross product

Example

Consider the points P(1,3,2), Q(3,-1,6) and R(5,2,0). The cross product

$$\overrightarrow{PQ} \times \overrightarrow{PR}$$

is perpendicular to the plane that passes through $P,\ Q$ and R. The value

$$|\overrightarrow{PQ} \times \overrightarrow{PR}|$$

is the area of the parallelogram with adjacent sides \overline{PQ} and \overline{PR} . Therefore the area of the triangle $\triangle PQR$ is

$$\frac{1}{2}|\overrightarrow{PQ} \times \overrightarrow{PR}|$$

Vector triple product

Definition

Let \bar{a} , \bar{b} and \bar{c} be 3D vectors. The scalar triple product of \bar{a} , \bar{b} and \bar{c} is the value

$$\bar{a}\cdot(\bar{b}\times\bar{c})$$

The value $|\bar{a} \cdot (\bar{b} \times \bar{c})|$ is the volume of the parallelepiped determined by the vectors \bar{a} , \bar{b} and \bar{c} .

Exercise: Find the volume of the parallelepiped with sides parallel to $\bar{u}=(3,4,5),\ \bar{v}=(5,4,3),\ \bar{w}=(1,1,0)$

Examples from Physics

▶ The work done by the force that moves the object from P to Q pointing in the direction of the vector \overline{PA} is the product of the component of the force along the displacement vector \overline{PQ} and the distance moved:

$$W = \left(|\overline{PA}| \cos \left(\overline{PQ}, \overline{PA} \right) \right) |\overline{PQ}| = \overline{PA} \cdot \overline{PQ}$$

- Exercise: Let $\bar{v} = 3\bar{i} + 4\bar{j}$ and $\bar{F} = 4\bar{i} + \bar{j}$. Find the component of the force vector \bar{F} parallel to \bar{v} :
 - a. Find the unit vector $\hat{\mathbf{v}}$.
 - b. Find $\bar{F} \cdot \hat{v}$ the length of the component of \bar{F} parallel to \bar{v} .
 - c. Construct the vector $\bar{F}_{parallel}$.

Examples from Physics

Consider a force F acting on a rigid body at a point given by a position vector r. The torque $\bar{\tau}$ measures the tendency of the body to rotate about the origin. It is defined as the cross product of the position and force vectors

$$\bar{\tau} = \bar{r} \times \bar{F}$$

The direction of the torque vector indicates the axis of rotation.

► Example (Stewart): A bicycle pedal is pushed by a foot with a 60-N force as shown. The shaft of the pedal is 18 cm long. Find the magnitude of the torque about *P*.

Lines

Let L be a line in 3D space. Let P be a point on L and let \bar{v} be a vector that is parallel to L.

For all $t \in \mathbb{R}$,

$$\bar{r}(t) = \overrightarrow{OP} + t\bar{v}$$
(1)

is a vector that points from the origin (O) to a point on L. Equation (1) is called the vector equation of L.

Lines

Therefore if $P(x_0, y_0, z_0)$ and $\bar{v} = a\bar{i} + b\bar{j} + c\bar{k}$, then for all $t \in \mathbb{R}$, the point Q(x, y, z) where

$$x = x_0 + ta$$
 $y = y_0 + tb$ $z = z_0 + tc$ (2)

lies on L. (2) are called the parametric equations of L. Rearranging (2) we get

$$\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c} \tag{3}$$

These are called the **symmetric equations** of L.

Definition

We say two lines L_1 and L_2 is 3D space are skew if L_1 and L_2 are not parallel and don't intersect.

Planes

We want to find the equation of a plane perpendicular to the vector $\bar{n} = \bar{i} + \bar{j} - \bar{k}$ and passing through the point (0,0,-1).

- ▶ We are looking for points (x, y, z) that sit in the plane. Create a displacement vector, \bar{v} between a point (x, y, z) and the point (0, 0, -1).
- We want this displacement vector to be perpendicular to n̄, so we want v̄ · n̄ = 0: Plug your displacement vector and the information for n̄ into this dot product. Expand and simplify. You should get z = x + y − 1 for the displacement vector to be perpendicular to n̄.
- You have found an equation for a plane. Show that it passes through (0,0,-1).
- Is any vector parallel to this plane perpendicular to \bar{n} ? Choose two points on the plane and convince yourself that the vector between those points is perpendicular to \bar{n} . This can be shown to hold in general, but just choose enough pairs of points to convince yourself.

Planes: now we are to generalize the previous example

A plane \mathcal{P} in \mathbb{R}^3 is completely determined by a point P that lies on the plane and a vector \bar{n} , called a/the normal vector, that points in a direction which is perpendicular to \mathcal{P} . To see this, observe that for any point Q with $Q \neq P$ that lies on \mathcal{P} , the vector \overrightarrow{PQ} is perpendicular to \bar{n} . Therefore $\bar{n} \cdot \overrightarrow{PQ} = 0$. In other words, if \bar{r} is a vector that points from the origin (O) to a point on \mathcal{P} , then \bar{r} satisfies

$$\bar{n}\cdot(\bar{r}-\overrightarrow{OP})=0\tag{4}$$

(4) is called the vector equation of \mathcal{P} . If $P(x_0, y_0, z_0)$ and $\bar{n} = a\bar{i} + b\bar{j} + c\bar{k}$, then this yields

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$
 (5)

which is called the scalar equation of \mathcal{P} . Therefore a plane \mathcal{P} with normal vector $\bar{n}=a\bar{i}+b\bar{j}+c\bar{k}$ is described by the equation

$$ax + by + cz = d$$

where d can be determined by any point P on \mathcal{P}

Exercises

- 1. Let points (0,1,2), (2,-1,3) and (0,0,1) form a triangle that lies in a plane.
- a. Find a normal vector to the plane and construct an equation for the plane.
- b. Find the area of the triangle.
- 2. Find the point at which the line x = t 1, y = 1 2t, z = 3 t intersects the plane 3x y + 2z = 5

Planes

Definition

Two planes \mathcal{P}_1 and \mathcal{P}_2 are parallel if their normal vectors are parallel. If \mathcal{P}_1 and \mathcal{P}_2 are parallel planes, then the normal vector, \bar{n} , of either of these planes describes the direction of the shortest path between \mathcal{P}_1 and \mathcal{P}_2 . Therefore, if P lies on \mathcal{P}_1 and Q lies on \mathcal{P}_2 , then the shortest distance between \mathcal{P}_1 and \mathcal{P}_2 is given by

$$D = |\operatorname{comp}_{\overline{n}}(\overrightarrow{PQ})| = \frac{|\overline{PQ} \cdot \overline{n}|}{|\overline{n}|}$$

Planes

Similarly, if $\mathcal P$ is a plane with normal vector $\bar n$, P is a point on $\mathcal P$ and Q is a point that does not lie on $\mathcal P$, then the shortest distance between $\mathcal P$ and Q is given by

$$D = |\text{comp}_{\bar{n}}(\overrightarrow{PQ})|$$

Vector functions

Definition

A vector-valued function or vector function is a function whose domain is a subset of the reals and range is a set of vectors, i.e we say that \bar{r} is a vector function if $\bar{r}:A\longrightarrow \mathbb{R}^3$ where $A\subseteq \mathbb{R}$.

By interpreting vectors as arrows that point from the origin to a point in \mathbb{R}^3 , we can interpret vector functions as describing a curve in \mathbb{R}^3 . That is, if $\overline{r}(t) = f(t)\overline{i} + g(t)\overline{j} + h(t)\overline{k}$, then $\overline{r}(t)$ describes the curve in \mathbb{R}^3 with parametric equations

$$x = f(t)$$
 $y = g(t)$ $z = h(t)$

Example

We have already seen how to compute vector-valued functions that describe lines in \mathbb{R}^3 .

Vector functions

Example

The vector function

$$\bar{r}(t) = \cos(t)\bar{i} + \sin(t)\bar{j} + t\bar{k}$$

describes a spiral around the surface of an infinitely long cylinder of radius 1 centred around the z-axis. This curve is called a **helix**.

Next Week

- Vector functions: derivatives and integrals.
- Arc length and curvature.
- ▶ Motion in space. Kepler's laws of planetary motion.
- Functions of several variables.