

Instituto de Computação UNIVERSIDADE ESTADUAL DE CAMPINAS

Capacitação profissional em tecnologias de Inteligência Artificial

Machine Learning Overview

Prof. Edson Borin

https://www.ic.unicamp.br/~edson

Institute of Computing - UNICAMP

Common ML Algorithms

Supervised Learning Algorithms

Logistic Regression

Regression vs Classification recap

Regression

- The ML model predicts the output for the given input
- $f: \mathbb{R}^n \to \mathbb{R}$
- Ex: Estimate insurance premium or house price

Classification

- The ML model specify which of the k categories the given input belongs to
- $f: \mathbb{R}^n \to (1, 2, ..., k)$
- Ex: Classify pictures

Logistic regression is used to solve classification problems

• Ex: Classify whether an email is spam or not

Logistic regression is used to solve problems

Ex: Classify whether an email is s

Logistic Regression works by estimating probabilities!

Logistic regression is used to solve problems

Ex: Classify whether an email is s

Logistic Regression works by estimating probabilities!

Logistic regression is used to solve problems

Ex: Classify whether an email is s

Logistic Regression works by estimating probabilities!

Logistic regression model

- Log. R. model = linear regression model combined with the sigmoid function!
 - Linear regression model: $\hat{y} = \theta_0 + \theta_1 \cdot x_1 + \dots + \theta_n \cdot x_n$

Logistic regression model

- Log. R. model = linear regression model combined with the sigmoid function!
 - Linear regression model: $\hat{y} = \theta_0 + \theta_I \cdot x_I + \dots + \theta_n \cdot x_n$
 - Sigmoid function: $\sigma(z) = 1/(1+e^{-z})$

Logistic regression model

- Log. R. model = linear regression model combined with the sigmoid function!
 - Linear regression model: $\hat{y} = \theta_0 + \theta_1 \cdot x_1 + \dots + \theta_n \cdot x_n$
 - Sigmoid function: $\sigma(z) = 1/(1+e^{-z})$
- Logistic regression model: $\hat{y} = \sigma(\theta_0 + \theta_1 \cdot x_1 + ... + \theta_n \cdot x_n)$

$$\hat{y} = h_{\theta}(x) = \frac{1}{1 + e^{-(\theta_{\theta} + \theta_{I} \cdot x_{I} + \dots + \theta_{n} \cdot x_{n})}}$$

Logistic regression model

Logistic regression model

Examples

In our examples we will use threshold = 0.5 Consequently, if $\theta_0 + \theta_1 \cdot x_1 + ... + \theta_n \cdot x_n > 0.0$, then x belongs to the positive class, otherwise, it belongs to the negative class.

Logistic regression model

Logistic regression model

$$h_{\theta}(x) = \sigma(\theta_0 + \theta_1 \cdot x_1 + \theta_2 \cdot x_2)$$

Logistic regression model

Logistic regression model

Examples

Predict "y = I" if
$$-3+x_1+x_2 \ge 0$$

Decision boundary

$$x_1 + x_2 = 3$$

Logistic regression model

Examples

$$h_{\theta}(x) = \sigma(\theta_0 + \theta_1 \cdot x_1 + \theta_2 \cdot x_2)$$

Predict "y = I" if
$$-3+x_1+x_2 \ge 0$$

Decision boundary

$$x_1 + x_2 = 3$$

Logistic regression model

Logistic regression model

Logistic regression model

Logistic regression model

Training a logistic regression model

• Adjust the parameters θ to minimize the cost function $J(\theta)$

Training a logistic regress

- function $J(\theta)$
- Recap: Linear model

- Adjust the parameters θ to minimize the cost function $J(\theta)$
- MSE isn't convex for logistic regression!

- Adjust the parameters θ to minimize the cost function $J(\theta)$
- MSE isn't convex for logistic regression!

- Adjust the parameters θ to minimize the cost function $J(\theta)$
- For logistic regression we use the log loss function!

Training a logistic regression model

• Adjust the parameters θ to minimize the cost

function $J(\theta)$

Log Loss function intuition

Very high when ŷ disagrees with y

Training a logistic regression model

• Adjust the parameters θ to minimize the cost

Training a logistic regression model

- Adjust the parameters θ to minimize the cost function $J(\theta)$
- Log Loss function intuition

Low when ŷ agrees with y

- Adjust the parameters θ to minimize the cost function $J(\theta)$
- Log Loss function intuition

Training a logistic

• Adjust the param $c(\theta)$ function $J(\theta)$

$$c(\theta) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1 \\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Log Loss function intuits

- Adjust the parameters θ to minimize the cost function $J(\theta)$
- Log Loss function intuition

$$c(\theta) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1 \\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

$$c(\theta) = -\log(h_{\theta}(x)) \cdot y - \log(1 - h_{\theta}(x)) \cdot (1 - y)$$

- Adjust the parameters θ to minimize the cost function $J(\theta)$
- Log Loss function intuition

$$c(\theta) = \begin{cases} \frac{-\log(h_{\theta}(x))}{\log(1 - h_{\theta}(x))} & \text{if } y = 1 \\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

$$c(\theta) = -\log(h_{\theta}(x)) \cdot y - \log(1 + h_{\theta}(x)) \cdot (1 - y)$$

- Adjust the parameters θ to minimize the cost function $J(\theta)$
- Log Loss function intuition

$$c(\theta) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1 \\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

$$c(\theta) = -\log(h_{\theta}(x)) \cdot y - \log(1 - h_{\theta}(x)) \cdot (1 - y)$$

- Adjust the parameters θ to minimize the cost function $J(\theta)$
- Log Loss function intuition

$$c(\theta) = -\log(h_{\theta}(x)) \cdot y - \log(1 - h_{\theta}(x)) \cdot (1 - y)$$

Training a logistic regression model

- Adjust the parameters θ to minimize the cost function $J(\theta)$
- Log Loss function intuition

$$c(\theta) = -\log(h_{\theta}(x)) \cdot y - \log(1 - h_{\theta}(x)) \cdot (1 - y)$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \left[-\log(h_{\theta}(x^{(i)})) \cdot y^{(i)} - \log(1 - h_{\theta}(x^{(i)})) \cdot (1 - y^{(i)}) \right]$$

Log Loss

Training a logistic regression model

- Adjust the parameters θ to minimize the cost function $J(\theta)$
- Log Loss function intuition

$$c(\theta, x, y) = -\log(h_{\theta}(x)) \cdot y - \log(1 - h_{\theta}(x)) \cdot (1 - y)$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} c(\theta, x^{(i)}, y^{(i)}) + \alpha \cdot (\theta_1^2 + \theta_2^2 + \dots + \theta_n^2)$$

$$Log Loss$$

$$l_2 \text{ (Ridge) regularization}$$

Training a logistic regression model

- Adjust the parameters θ to minimize the cost function $J(\theta)$
- Log Loss function intuition

$$c(\theta, x, y) = -\log(h_{\theta}(x)) \cdot y - \log(1 - h_{\theta}(x)) \cdot (1 - y)$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} c(\theta, x^{(i)}, y^{(i)}) + \alpha \cdot (|\theta_{I}| + |\theta_{2}| + \dots + |\theta_{n}|)$$

$$Log Loss$$

$$l_{1} \text{ (Lasso) regularization}$$

Multiclass classification

Examples:

• Email tagging: Work, Friends, Family v = 1 v = 2 v = 3

HAR: Running, Walking, Jumping, ...

$$y=1$$
 $y=2$ $y=3$

Multiclass classification

Examples:

- Email tagging: Work, Friends, Family v = 1 v = 2 v = 3
- HAR: Running, Walking, Jumping, ... y = 1 y = 2 y = 3

Binary Classification

Multiclass Classification

Multiclass classification

Class 1:

Class 2:

Class 3:

Multiclass classification

OvO: One-vs-One

Class 1: ▲

Class 2:

Class 3: •

Supervised Learning Algorithms

Softmax Regression

Softmax Regression is a generalization of logistic regression that allows multiclass classification directly, without having to combine multiple binary classifiers

It is also known as Multinomial Logistic Regression

Score on Logistic Regression

Softmax regression model

s¹: Score for class I

Softmax regression model

Softmax regression model

s^k: Score for class k

Softmax regression model

Softmax regression mode

 $p^i = \text{Prob.} x$ belongs to class i

Softmax regression model

$$p^{i} = \text{Softmax}(s, i) = \frac{e^{s_{i}}}{\sum_{j=1}^{k} e^{s_{j}}}$$

Softmax regression model

$$p^{i} = \text{Softmax}(s, i) = \frac{e^{s_{i}}}{\sum_{j=1}^{k} e^{s_{j}}}$$

Softmax regression model

Example: k = 3

$$p^{i} = \text{Softmax}(s, i) = \frac{e^{S_{i}}}{\sum_{j=1}^{k} e^{S_{j}}}$$

Softmax regression cost function

Cross entropy cost function:

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \sum_{k=1}^{K} [y_k^{(i)} . \log(h_{\theta}(x^{(i)})_k)]$$

Softmax regres

 $y^{(i)}$ is a vector with k items

Cross entropy co

 $y_k^{(i)}$: Prob. that i^{th} instance belongs to class k (either I or 0)

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \sum_{k=1}^{K} [y_k^{(i)} . \log(h_{\theta}(x^{(i)})_k)]$$

Softmax regres

 $y^{(i)}$ is a vector with k items

Cross entropy co

 $y_k^{(i)}$: Prob. that i^{th} instance belongs to class k (either I or 0)

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \sum_{k=1}^{K} [y_k^{(i)} . \log(h_{\theta}(x^{(i)})_k)]$$

References

- Aurelien Geron. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems - 2019
 - Chapter 4
- Logistic Regression on the scikit-learn website:
 - https://scikit-learn.org/stable/modules/linear_mode
 l.html#logistic-regression

Instituto de Computação

UNIVERSIDADE ESTADUAL DE CAMPINAS

Capacitação profissional em tecnologias de Inteligência Artificial

Machine Learning Overview

Prof. Edson Borin

https://www.ic.unicamp.br/~edson

Institute of Computing - UNICAMP

Video Idex

Video lessons	Length	Start	Length	Subtopics	
class-4.2: Logistic and Softmax regression	0:43:04	0:00:00	0:00:40	Logistic regression	Introduction
		0:00:40	0:01:32		Regression vs Classification recap
		0:02:12	0:02:21		Logistic Regression overview
		0:04:33	0:02:22		Logistic Regression model (sigmoid)
		0:06:55	0:07:54		Examples and decision boundary
		0:14:49	0:02:51		Training: Convex vs non-convex cost functions
		0:17:40	0:06:45		Training: Log loss cost function
		0:24:25	0:00:44		Regularization
			0:01:42		Multiclass classification
		0:26:51	0:02:35		One-vs-All
		0:29:26	0:02:26		One-vs-One
		0:31:52	0:00:30	Softmax regression	Definition
		0:32:22	0:00:52		Scores on Logistic Regression
		0:33:14	0:04:46		Softmax regression model function
		0:38:00	0:05:04		Softmax regression cost function (cross entropy)
		0:43:04			