

Protein folding with QAOA

Hanna Linn, PhD student | Applied Quantum Physics Laboratory and WACQT

Overview

- Protein folding
- Gate based quantum computer: Quantum Approximate Optimisation Algorithm (QAOA)
- Initial parameters in QAOA inspired by quantum annealing
- What kind of quantum computers would be needed to challenge classical computers in folding proteins?

Protein folding simulations

- From DNA to amino acid sequence.
- Amino acid sequence folds to functioning protein.
- Course-graining models for simplifications.
- Hydrophobic-Polar model on a lattice.

CHALMERS

2023-10-25

QAOA

2023-10-25

QAOA

Steps

Energy landscape p=1

Success of measuring best solution $\approx 38\%$

Initial parameters p>1

Where to start?

- Annealing parameters [Sack et al. arXiv:2101.05742 [quant-ph]]
 - Linear
 - Cosine (from seeing what it trained to)
- Annealing time t becomes a hyperparameter

Initial parameters p>1

Where to start?

- Train for 100 steps with Adam optimiser (gradient descent).
- Finds same minima.
- Gives a suggestion of what the best annealing schedule could be.

Initial parameters p>1

Larger lattices needs more qubits and thereby harder to optimise.

From current proofs of principle to future practical implementations

Resources in a quantum computer

- Resources:
 - Number of qubits
 - Connectivity of the qubits
 - Number of gates
- Protein models:
 - Side-chain conformation-based model
 - HP-Lattice model
 - Turn-based
 - Coordinate-based
- Bit strings encodings:
 - One-Hot
 - Binary
 - BUBinary

Decimal	One-hot	Binary	$\mathbf{BUBinary}_{g=3}$
0	10000	000	00 01
1	01000	001	00 10
2	00100	010	00 11
3	00010	011	01 00
4	00001	111	10 00

2023-10-25

Resources in a quantum computer

- Resources:
 - Number of qubits
 - Connectivity of the qubits
 - Number of gates
- Protein models:
 - Side-chain conformation-based model
 - HP-Lattice model
 - Turn-based
 - Coordinate-based
- Bit strings encodings:
 - One-Hot
 - Binary
 - BUBinary

Summary

2023-10-25

Summary

18 2023-10-25

Summary

19 2023-10-25

CHALMERS

Protein folding simulations

Rotamer model

Comparison with quantum annealing: Soft suppression

