N76-18823

Unclas G3/61 18568

NASA TM X-56038

A FORTRAN PROGRAM FOR THE ANALYSIS OF LINEAR CONTINUOUS AND SAMPLED-DATA SYSTEMS

John W. Edwards

January 1976

NASA high-number Technical Memorandums are issued to provide rapid transmittal of technical information from the researcher to the user. As such, they are not subject to the usual NASA review process.

NASA Dryden Flight Research Center Edwards, California 93523

REPRODUCED BY
NATIONAL TECHNICAL
INFORMATION SERVICE
U.S. DEPARTMENT OF COMMERCE
SPRINGFIELD, VA. 22161

. •• Y. 1

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED
FROM THE BEST COPY FURNISHED US BY
THE SPONSORING AGENCY. ALTHOUGH IT
IS RECOGNIZED THAT CERTAIN PORTIONS
ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE
AS MUCH INFORMATION AS POSSIBLE.

1. Report No. TM X-56038	2. Government Accession No.	3. Recipient's Catalog No.
4. Title and Subtitle		5. Report Date
A FORTRAN PROGRAM FOR CONTINUOUS AND SAMPLE	R THE ANALYSIS OF LINEAR ED-DATA SYSTEMS	January 1976 6. Performing Organization Code
7. Author(s)		8. Performing Organization Report No
John W. Edwards		
9. Performing Organization Name and	Address	10. Work Unit No. 505-06-91
NASA Dryden Flight Resear P. O. Box 273	rch Center	11. Contract or Grant No.
Edwards, California 93523		13. Type of Report and Period Covered
2. Sponsoring Agency Name and Add	Technical Memorandum	
National Aeronautics and S Washington, D. C. 20546	14. Sponsoring Agency Code	
5. Supplementary Notes		
analysis of technique systems. transfer for spectra, flexible do frepres	RTRAN digital computer program who of linearized control systems is descress are used to analyze continuous, di Analysis options include the calcula functions, root loci, root contours, frand transient responses for open-andata input format allows the user to desentations. Data may be entered by in or matrices constructed in user-writinsfer function block diagrams, or by thods.	ribed. State variable screte, and sampled-data tion of system eigenvalues, equency responses, power d closed-loop systems. A efine systems in a variety aputting explicit data ten subroutines, by speci-
analysis of technique systems. transfer if spectra, flexible do frepres matrices fying trai	of linearized control systems is descress are used to analyze continuous, di Analysis options include the calcula functions, root loci, root contours, from transient responses for open-and tata input format allows the user to desentations. Data may be entered by in or matrices constructed in user-writinsfer function block diagrams, or by thods.	ribed. State variable screte, and sampled-data tion of system eigenvalues, equency responses, power d closed-loop systems. A efine systems in a variety aputting explicit data ten subroutines, by speci-
analysis technique systems. transfer for spectra, flexible dof representatives fying transfer from these metals.	of linearized control systems is descress are used to analyze continuous, di Analysis options include the calcula functions, root loci, root contours, from the calculation of the calcu	ribed. State variable screte, and sampled-data tion of system eigenvalues, equency responses, power d closed-loop systems. A efine systems in a variety aputting explicit data ten subroutines, by speci-
analysis technique systems. transfer is spectra, flexible of representatives fying transfer these met. ORIGINAL OF POOR	of linearized control systems is descress are used to analyze continuous, di Analysis options include the calcula functions, root loci, root contours, frand transient responses for open- and italian input format allows the user to detentations. Data may be entered by it or matrices constructed in user-writinsfer function block diagrams, or by thods. FPAGE IS QUALITY (8) 18. Distribution program	ribed. State variable screte, and sampled-data tion of system eigenvalues, equency responses, power d closed-loop systems. A effine systems in a variety aputting explicit data ten subroutines, by speciusing a combination of
analysis technique systems. transfer is spectra, flexible do frepres matrices fying traithese met. ORIGINAL OF POOR 17. Key Words (Suggested by Author) FORTRAN linear analysis Continuous and sampled do	of linearized control systems is descress are used to analyze continuous, di Analysis options include the calcula functions, root loci, root contours, frand transient responses for open- and italian input format allows the user to detentations. Data may be entered by it or matrices constructed in user-writinsfer function block diagrams, or by thods. FPAGE IS QUALITY (8) 18. Distribution program	ribed. State variable screte, and sampled-data tion of system eigenvalues, requency responses, power d closed-loop systems. A refine systems in a variety aputting explicit data ten subroutines, by speciusing a combination of

		•

CONTENTS

	Page
INTRODUCTION	1
SYMBOLS	1
PROGRAM DESCRIPTION	3
CONTINUOUS SYSTEM MODELS	7
Open Loop	7
Closed Loop	7
Root Loci	8
MIXED Systems	10
DATA DECK FORMAT	11
DATA INPUT OPTIONS	12
CHANGE	13
LOAD	13
MATRIX	14
CLASS	14
MIXED INPUT OPTION (CONTINUOUS SYSTEMS)	27
DISCRETE SYSTEM MODELS	40
SAMPLED-DATA SYSTEM MODELS	41
SAMPLED-DATA SYSTEM ANALYSIS USING THE MIXED OPTION	58
COMPUTATIONAL DELAY AND MODIFIED z-TRANSFORMS	64
METHOD OF ANALYSIS	68
Frequency Response and Power Spectra	68
Eigenvalues	70
Transfer Function Numerators	70
Transient Response and Discretization of Sampled-Data Systems	70 31an K

	Page
Digital Filtering	72
Model Following	74
Similarity Transformation	74
PROGRAM SIZE AND TIMING	75
EXAMPLE PROBLEM	77
CONCLUDING REMARKS	79
REFERENCES	80
APPENDIX 1: FORTRAN LISTING OF CONTROL PROGRAM	81
APPENDIX 2: NAMELIST CODE	188
APPENDIX 3: INPUT AND OUTPUT LISTINGS FOR EXAMPLE	192
TABLE I: CONTROL PROGRAM ANALYSIS OPTIONS	211
TABLE II: CONTROL PROGRAM JOB CONTROL LANGUAGE AS OF 11-1-74	212
TABLE III: CONTROL: SYSTEM MODELS	216
TABLE IV: CONTROL PROGRAM DATA DECK FORMAT	218
TABLE V: DATA REQUIRED BY CONDITION CODES	219
TABLE VI: TRANSFER FUNCTION STANDARD FORMS (NIT = 1)	220
TABLE VII: DISCRETIZED PLANT MODELS FOR VARIOUS INPUT AND OUTPUT DEFINITIONS	222
TABLE VIII: VECTOR ORDERING AND SYSTEM CONNECTION CONVENTIONS FOR SAMPLED-DATA SYSTEMS	223
FIGURES	224

A FORTRAN PROGRAM FOR THE ANALYSIS OF LINEAR CONTINUOUS AND SAMPLED-DATA SYSTEMS

John W. Edwards Dryden Flight Research Center

INTRODUCTION

A FORTRAN digital computer program is described which analyzes linear continuous or sampled-data systems using state variable techniques. Open- and closed-loop systems may be analyzed using frequency response or transient response techniques. Root locus and root contour options are also available. Systems may be defined by inputting explicit data matrices, by constructing matrices in user written subroutines, or by specifying transfer function block diagrams. The program also allows the user to define a system using a combination of the above methods. For instance, the plant may be described as a set of coupled differential equations and its control system described by a block diagram. The program allows the user to analyze such a system without converting the subsystems into a common representation.

SYMBOLS

A,B,C,H,G,F,

K1,K2,K3,K4,D

models

G(·)

transfer function

identity matrix

fractional computational time delay

for sampled-data systems

NX, NY, NU	dimensions of state, output, and
	input vectors
R,S	matrices used to define system inter-
•	connections for MIXED option
s, 3, w	Laplace, 3 -, and w - transform vari-
•	ables
3 , ⁵	output and input vectors for block
σ.	diagram portions of MIXED systems
x,y,u	state, output, and input vectors
t	time-sec.
Τ	sampled-data system sample period-sec.
€	incremental time period-sec.
$\phi(t)$	state transition matrix
6 (t)	integral of $\phi(a)$
Subscripts:	
COM	command signal
EXT	external signal
n	time index for sampled-data systems
Superscripts:	
c	designates continuous subsystem of
	sampled-data system
d	designates discrete subsystem of
	sampled-data system
τ	transpose of a matrix

PROGRAM DESCRIPTION

CONTROL is a FORTRAN digital program capable of performing general analysis of linearized control systems problems. It utilizes state variable matrix operations to find system eigenvalues, transfer functions, root contours, root loci, frequency responses, power spectra, and transient responses. Continuous, discrete, and sampled-data system analyses may be accomplished. The data input format is quite flexible, allowing data to be entered in matrix form, block diagram form, general parameter input form, or a combination of these forms. The analysis options available are listed in Table I.

The basic systems which CONTROL analyses are

$$\dot{x} = Ax + Bu$$
 (plant equation) (la)

$$y = Hx + Fu$$
 (output equation) (1b)

$$u = K1 \times + Dv_{com} \qquad (control law) \qquad (1c)$$

for continuous systems and

$$x_{n+1} = A x_n + B u_n$$
 (plant equation) (2a)

$$y_n = H x_n + F x_n$$
 (output equation) (2b)

$$u_n = K1x_n + Du_{com_n}$$
 (control law) (2c)

for discrete systems. The state vector, x, is NX dimensional; the output vector, y, is NY dimensional; and the input vector, u, is NU dimensional.

To allow user flexibility, additional matrix equations are used in the program for definition of feedback control laws, etc., and will be discussed later. In all cases, the

system equations are reduced to the form of systems (1) or (2) before being analyzed.

CONTROL program analysis is performed in the CNTRLR subroutine which is diagrammed in figure 1. The use of each subroutine is briefly described below.

- CARD reads data cards which specify program options chosen LOAD, MATRIX, CHANGE, CLASS data input subroutines
- LOAD reads data input matrices
- MATRIX a user written subprogram which constructs system matrices from basic data
- CHANGE a user written subprogram which changes data already in the program. Used for parameter variation studies
- CLASS constructs system matrices from data describing a block diagram of transfer functions
- SETUP reduces input data matrices to the system equations
 (1) or (2)
- EIGEN determines system eigenvalues from the A matrix using QR-algorithm
- ROOT performs root loci analysis as a function of two independently incremented feedback gains
- NMRATR determines numerator zeroes of transfer functions defined by the NU inputs, u, and NY outputs, y.
- FRQRSP computes a frequency response at discrete frequencies for each transfer function determined by NMRATR
- PSD computes a power spectrum of the transfer functions determined by NMRATR assuming unity variance white noise excitation

THIST - computes a transient response of the system at discrete time points

INPUT - a user written subroutine which constructs the input vector to the transient response

The CONTROL program is on disc in the CDC CYBER 70 system and is called by the user with appropriate control cards. To utilize the full flexibility of CONTROL, the user may write several of the subroutines to perform data preparation for his specific problem. These subroutines are:

MAIN

MATRIX

CHANGE

INPUT

These subroutines may be compiled in SOURCE language.

Note that they are not required. These subroutines are

defined in the program on disc and are overridden by the

user's source subroutines. If a specific output format is

desired, any of the CONTROL subroutines may be modified by

the user and compiled to override the disc versions. A brief

description of the use of these routines is given below:

MAIN - Provides variable dimensioning capability. The size of all arrays used in CONTROL is declared here and passed through COMMON to all other subroutines.

Thus the size of the system matrixes may be quickly and easily changed. The disc program is provided with:

MX = 15 = n + 1; n = dimension of maximum state MY = 15 = dimension of maximum output vector MY = 10 = dimension of maximum input vector

- MATRIX A user written subroutine which constructs the system matrices. For instance, MATRIX may read the nondimensional aircraft stability derivatives, perform axes transformations, dimensionalize the derivatives, and insert the proper numbers into the system matrixes. General MATRIX routines are available for the standard lateral-directional and longitudinal linearized equations of motion which are generally used at FRC.
- CHANGE A user written subroutine which changes specified elements in the system matrices (which are already constructed through MATRIX, LOAD, or CLASS). This routine allows the capability of doing parameter variation studies on a basic system configuration without having to reload the problem data for each variation.
- INPUT This user written routine constructs the input vector for a time history calculation. Thus the user may generate step, impulse, ramp, sinusoidal, random inputs as desired. A basic routine which simply reads 1 card for the input vector <u>u</u> is provided.

All of these routines have specified calling sequences which are given in Appendix 1. Each routine has specific COMMON

and DIMENSION statements which are required and which the user will not change. The structure of the CONTROL deck is shown in figure 2. The job control language for CONTROL is given in Table II. All figures, tables and information required to set up data for the CONTROL program are gathered at the end of this document for easy reference by the user.

CONTINUOUS SYSTEM MODELS

The basic continuous system model which CONTROL analyzes is given by (1) and is repeated here:

CONTROL analyzes three configurations of continuous system models: open loop, closed loop, and root loci. These three configurations are under the control of SYSTEM. For ease in problem setup, the additional matrices D, K1, K2, K3, K4, C, and G are defined.

Open Loop (SYSTEM = 1)

$$C\dot{x} = Ax + Bu$$
 (3a)

$$y = Hx + G\dot{x} + Fu \tag{3b}$$

Closed Loop (SYSTEM = 2)

$$C\dot{x} = Ax + B\omega$$
 (4a)

$$u = K1x + K2\dot{x} + Du_{com}$$
 (4b)

$$y = Hx + 6\dot{x} + FN \qquad (4c)$$

Subscript COM indicates a "command" signal. Note that the

inclusion of the C matrix allows inertial cross-coupling between states. K2 and G allow for state derivative feedback and output. D allows for controller interconnections and feedforward gains.

CONTROL reduces the systems (3) and (4) with the substitutions

to the system,

$$\dot{x} = Ax + Bu_{com}$$
 (5a)

$$y = Hx + Fucon$$
 (5b)

Note that (5) is identical to the basic system (1) with u replaced by u_{COM} . Obviously, for the open-loop system D = I, K1 = K2 = 0, and u = u_{COM} .

Root Loci (SYSTEM = 3)

$$C\dot{x} = Ax + Bh$$
 (6a)
 $u = k_1(K1x + K2\dot{x}) + k_2(K3x + K4\dot{x})$ (6b)

This root loci model allows root loci as a function of two independent feedback variables. The first feedback variable is defined by the matrices Kl and K2 (e.g., normal acceleration = $\frac{V}{g}(^{\bullet}a - q)$). K3 and K4 define the second feedback variable (commonly K3 = K4 = 0). The condition codes N1, N2, GAIN1, and GAIN2 determine the locus gain and number of locus points as follows:

$$k_{1} = r * GAIN1 \qquad r = \begin{cases} 0, 1, 2, 3, ..., N1; & N1 > 0 \\ 0, 1, 2, 4, ..., 2^{||w||-2}); & N1 < 0 \end{cases}$$

$$k_{3} = t * GAIN2 \qquad t = \begin{cases} 0, 1, 2, 3, ..., N2; & N1 > 0 \\ 0, 1, 2, 4, ..., 2^{(||N2|-2)}; & N1 < 0 \end{cases}$$

CONTROL computes the closed-loop system matrix as:

$$\dot{x} = Ax$$

where

$$A \leftarrow A' + B' (I - k_1 K' - k_3 K^2)^{1} (k_1 K^3 + k_3 K^4)$$

$$A' \leftarrow C^{1}A$$

$$B' \leftarrow C^{1}B$$

$$K' \leftarrow K2B'$$

$$K^2 \leftarrow K4B'$$

$$K^3 \leftarrow K1 + K2A'$$

$$K^4 \leftarrow K3 + K4A'$$

The eigenvalues of A are then determined to find the system root locus. The zeroes corresponding to the first feedback variable are determined by forming the observation equation:

where

$$H = \begin{bmatrix} K1 + K2A' \\ K3 + K4A' \end{bmatrix}$$
$$F = \begin{bmatrix} K2B' \\ K4B' \end{bmatrix}$$

A subsequent call to NMRATR then determines the zeroes.

NMRATR determines the zeroes of the transfer function specified by the first nonzero row of these derived H and F matrices. If PLOT \$0, an additional data card is required for each root locus specifying the maximum and minimum axis coordinates desired for the plot (see Table II).

The continuous system models given above are summarized in Table III(a).

MIXED Systems

This problem formulation can be used to model a system which is described by a combination of differential equations and Laplace transform blocks. An example of such a system is an aircraft-control system. The aircraft equations of motion are usually known as differential equations while the control system is often given in block diagram form. The MIXED option gives the user the capability of easily modeling such a system. This option, which is a great convenience in analyzing continuous systems, becomes indispensable in the analysis of sampled-data systems. There it is used to correctly connect the continuous and discrete subsystems and to discretize to the continuous subsystem at the proper times.

The MIXED option involves a two-step data input stream. In the first step, the plant equations of motion are loaded as an open-loop system. The second step loads the block diagram control system data (CIASS subroutine) and augments the open-loop plant matrices with the control system dynamics.

Finally, the two subsystems are coupled together. The openloop, closed-loop, and root locus options are available with the MIXED option.

The CLASS subroutine may be used by itself to construct state space formulations of systems described entirely by block diagrams. The input format for the MIXED option will be given after the CLASS loading option has been discussed.

DATA DECK FORMAT

CONTROL problem definition is accomplished in CARD. Condition codes defining the analysis options chosen, data input mode, and data handling procedures are read in a namelist format (CODE). Each pass through CNTRLR (figure 1) defines a case.

The CONTROL program data deck structure is shown in figure 3. The title card, namelist CODE, output label card, input label card, system data, and transient response input data formats are given in Table IV.

The format for entering data using namelist is illustrated in figure 4. Column 1 of each card must be blank. Column 2 of card 1 begins the name of the namelist (CODE) which is followed by a blank. Variable names in the namelist must be right justified with respect to the "=" sign, variable values must be right justified with respect to the "," sign and be of the proper type (real, integer). The namelist data entry is closed by the code ",&END."

The analysis options chosen, data input format, and system structure are defined in the namelist, CODE. The variables which are defined by the namelist are:

Integer variables

READ, SYSTEM, OUTPUT, MIXED, DIGITL, FRPS, NUMERS, TRESP, NX, NY, NU, NXC, NUC, ZOH, N1, N2, CONTUR, MULTRT, MODEL, NSCALE, CMAT, NK2, FORM, IPT, IGO, SAV, IFLAG, READ3

Real variables

DELT, FINALT, IFREQ, FFREQ, DELFRQ, GAIN1, GAIN2, M

These variables are described in Appendix 2. All variables are initialized to zero at the start of each case

(unless SAV = 1) and only nonzero variables need be defined in the namelist.

For root locus cases in which plots are requested, one card is required for each root locus by the plotter program to define the $j\boldsymbol{\omega}$ scale on the plot. This card(s) follows the PLOT CARDS card.

Figure 1 indicates that CONTROL will return to the top of the program and look for more data at the end of each case. Thus data decks may be stacked together to analyze many cases on a single computer run.

DATA INPUT OPTIONS

The system data may be input in four different methods.

The control loading option is determined by the condition code

READ:

CHANGE (READ = 3) The CHANGE option is meant to be used on cases following an initial case. For instance, on case 1, the system matrices are loaded or constructed in LOAD, MATRIX, or CLASS. These "original" system matrices (as defined at point (a) on case 1) may be saved and made available at point (b) in case 2. If CHANGE is utilized in case 2, the "original" system matrices may be altered as desired. Thus a parameter variation study may be accomplished using a simple CHANGE subroutine.

The remaining three options--LOAD, MATRIX, and CLASS--will now be described.

LOAD (READ = 1) The subroutine LOAD reads explicit data matrices under the control of the condition codes. Each data matrix (e.g., A) is read row by row with an (8F10.4) format. Each data matrix must be preceded by a dimension card (2I10) giving the number of rows and columns in the matrix. For example, a 5 x 5 matrix would require 6 data cards (1 dimension card, 1 card per row) while an 8 x 9 matrix would require 19 data cards (1 dimension card, 2 cards per row). The matrices required are listed in STEP 1 of Table V.

MATRIX (READ = 2) MATRIX is a user written subroutine which constructs the system matrices required by the condition codes. These matrices are the same as those given in STEF 1 of Table V. Data defined in MATRIX are not destroyed by CONTROL. Thus the user may input data to the MATRIX subroutine for case 1 and reuse the data on subsequent cases. CLASS (READ = 4) If READ = 4 the system matrices are constructed in CLASS from block diagram input data. If MIXED = 1, the control system dynamics, in block diagram form, are added on to the plant dynamics by the CLASS subroutine. Thus the CLASS subroutine has a dual function in CONTROL. In both cases, the data format describing the block diagram is the same. The data format is given as STEP 2 of Table V. Two options of inputting the block diagram information are provided. The first option describes the block diagram by inputting the transfer function polynomial coefficients explicitly for general fourth-order transfer functions. The second option allows the user to pick standard form constant, first-order, or second-order blocks to describe the system. These blocks are defined by a small number of parameters and are given in Table VI. The first option is used only if a particular transfer function form cannot be found in Table VI. The first option will not be described. A description of the second option begins on page 21.

The data required to describe a system given entirely by block diagrams are summarized below. The additional data required if MIXED = 1 will be described later.

NBLOCK = No. of blocks in block diagram

GRAPH = Integer matrix describing interconnection of blocks

BLOCK = Integer matrix describing dimension of numerator and denominator polynomials of each block

NUMER = Matrix of polynomial coefficients of numerators of each block (ordered from $s^{\circ} \longrightarrow s^{m}$)

DENOM = Matrix of polynomial coefficients of denominators $\text{ of each block (ordered from s}^{\circ} \longrightarrow \text{ s}^{n})$

GAIN = Vector of gains of each block

ITHINY = Integer vector describing which block outputs are
 to be saved in final H matrix

Allowable forms of blocks:

Restrictions:

- a.) Inputs into a type 3.) block must be outputs of a type 1.) block.
- b.) n € 4
- c.) Number of blocks \leqslant 20

Interconnection of blocks:

The interconnection of blocks may be described with the concept of internal and external inputs to a block:

Internal input - an input which is an output of a block in the system.

External input - any input other than internal inputs, designated by ${\bf v}$. The input to any block may be the sum of three or less internal inputs and one external input.

The ± indicates that either sign may be used on any of the inputs. Whenever an external input is defined, a summing junction is implied at the input to the block.

Problem formulation

- 1. Label the outputs of the blocks consecutively 32, i = 1,2,3,....
- 2. Label the external inputs consecutively v_i , j = 1,2,3,...
- 3. Construct the GRAPH Matrix (dimension NBLOCK x 5) where NBLOCK = number of blocks in the diagram:

A simple example will illustrate the method:

Note that negative inputs to summing junctions are indicated by the negative sign attached to the input label.

The following input data describe the internal composition of each block:

BLOCK - Describes the number of coefficients of the numerator and denominator polynomials which will be loaded (dimension NBLOCK x 3). The first column contains the block number (the sequence must correspond to the sequence of the first column of GRAPH). The second column contains the number of numerator coefficients to be loaded. The third column contains the number of denominator coefficients to be loaded.

BLOCK =
$$\begin{bmatrix} 1 & 3 & 5 \\ 2 & 1 & 2 \\ 3 & 1 & 1 \\ 4 & 2 & 1 \\ 5 & 2 & 2 \\ 6 & 2 & 2 \end{bmatrix}$$

Note that a constant block K is treated as $K_{\overline{1}}^{\underline{1}}$.

$$\left[K e \right] = \left[\frac{1}{K(s+o)} \right]$$

NUMER (NBLOCK x 5)

NUMER contains the numerator coefficients.

For the above example:

DENOM (NBLOCK x 5)

Denom contains the denominator coefficients.

For the above example:

DENOM =
$$\begin{bmatrix} 10. & -3. & 0 & 2. & 1. \\ 25. & 1. & 0 & 0 & 0 \\ 1. & 0 & 0 & 0 & 0 \\ 1. & 0 & 0 & 0 & 0 \\ 20. & 1. & 0 & 0 & 0 \\ 4. & 1. & 0 & 0 & 0 \end{bmatrix}$$

GAIN (NBLOCK)

Gain is a vector containing the gain constants of the blocks. For the above example:

$$GAIN = \begin{bmatrix} 5 & 1 & K_1 & K_2 & 3 & 1 \end{bmatrix}$$

In constructing the system matrices, CLASS constructs the output equation

$$y = Hx + Fu$$

where y is an NBLOCK vector. That is, the output of each block is defined as a component of the y vector. Ordinarily, the user will want to study only a few of these outputs. The ITHINY vector "thins" out the y vector. For the above example if;

ITHINY =
$$\begin{bmatrix} 1 & 3 & 4 \end{bmatrix}$$

then $y^{t} = (z_{1}, z_{3}, z_{4})^{t}$

The second option of defining a block diagram will now be described. This option allows the user to pick standard form transfer functions given in Table VI to describe the block diagram. Only one data card per block is required to describe the system. The option is chosen by setting NIT = 1 on the first card of STEP 2. The data required to specify each block are NUM, TYPE, CONNEC, MOD, PARAM where

NUM is the block number.

TYPE is the type of transfer function from Table VI.

CONNEC specifies the connections between blocks and the external inputs. (This is the last four columns of GRAPH.)

MOD specifies whether the transfer function is an $\mathbf{6}, \mathbf{3},$ or \mathbf{w} -transform.

PARAM gives the parameters defining the block as indicated in Table VI.

Following the cards giving the above data for each block, one card for ITHINY is read.

example: set up the input data required to describe the system

The data required are

- 5 1 1 1 0 0 0 1 0
- 2 5 1 4 5 0 0 4. 10. 2.

3.

- 3 8 **2** 0 0 0 0 1. **25.** .7
- 4 **2** 3 0 0 0 **-2.**
- 5 4 3 0 0 0 0 -5. .1
- 1 **2** 3 4 5

CLASS constructs a state space representation of each individual block using the phase variable canonical form. For example, the first block of the previous example:

$$G(s) = \frac{5(s^2 + 3s - 1)}{s^4 + 2s^3 - 3s + 10}$$

is modeled as

$$\dot{x} = Ax + Bx$$
 $\dot{y} = Hx + Fx$

where

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -10 & 3 & 0 & -2 \end{bmatrix} \qquad B = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

$$H = \begin{bmatrix} -5 & 15 & 5 & 0 \end{bmatrix} \qquad F = \begin{bmatrix} 0 \end{bmatrix}$$

CLASS constructs the state space representation of the entire block diagram in the following manner:

1. Write the output vector of the collection of blocks as

$$C_3 = Hx + Fr$$
$$3 = C'Hx + C'Fr$$

2. Write the state equation describing the internal structure of each block (in phase variables) ignoring all connections between blocks and defining the "internal" input

vector, <u>u</u>

3. Define the connection matrix, G, as

where

G(
$$\lambda$$
, GRAPH(λ , \dot{j}) = 1 if GRAPH($\dot{\lambda}$, \dot{j}) \neq 0 \dot{j} = 2,3,4 = 0 otherwise

4. Couple the blocks together as

$$\dot{x} = (A + BGC'H)x + (BGC'F)v$$

 $\dot{y} = (C'H)x + (C'F)v$

The process of constructing the state variable representation is illustrated in the following example.

example: The operations described above will be performed for the system in the diagram.

$$GRAPH = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 2 & 1 & -3 & 5 & 0 \\ 3 & 2 & 0 & 0 & 0 \\ 4 & 2 & 0 & 0 & 0 \\ 5 & 4 & 0 & 0 & 0 \end{bmatrix}$$

1. Write the output equation.

2. Write the state equation of the uncoupled blocks.

$$\dot{x} = A x + Bu$$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ -c & -b & 0 \\ 0 & 0 & -e \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix}$$

3. Write the connection matrix.

4. Couple the blocks together.

$$\dot{x} = (A + BGC'H)x + (BGC'F)U$$

$$\dot{x} = \begin{bmatrix} 0 & 1 & 0 \\ -c & -(a+b) & d \\ aK_2 & 0 & -e \end{bmatrix} \times + \begin{bmatrix} 0 \\ K_1 \\ 0 \end{bmatrix} \cup$$

MIXED INPUT OPTION (CONTINUOUS SYSTEMS)

Mixed systems are characterized by having a portion of the system described by a set of differential equations and the remainder of the system described in block diagram form. The MIXED input option allows these systems to be analyzed without requiring the user to convert the system into a common representation. Typically the plant equations of motion are given and the control system is represented in block diagram form. The MIXED option constructs the state space representation of the system in a two-step process, the first step defining the plant and the second step augmenting the system with the control system block diagram data.

The input-output pairs for the plant and control system are designated $(\underline{u}, \underline{y})$ and $(\underline{v}, \underline{z})$, respectively. The state of the plant is \underline{x}_1 , and the state of the control system is \underline{x}_2 . The blocks YTOV, ZTOU, and YZTOK in the above diagram are additional connection data required by CLASS. They are used to connect the plant and controller. YZTOK defines a

feedback gain matrix to allow a conventional root locus to be performed while connections specified by YTOV and ZTOU are incorporated directly into the total system A matrix. Table V indicates the input data required for the MIXED option.

STEP 1 The plant is modeled as an open-loop system regardless of the value of SYSTEM. (In this case, SYSTEM refers to the total, augmented system).

$$C_1 \dot{x}_1 = A_1 \dot{x}_1 + B_1 u_1$$

 $u_1 = H_1 x_1 + G_1 \dot{x}_1 + F_1 u_1$

The quantities NX, NY, NU in the namelist must refer to this step. Additional dimensions required in step 2 are added by the program.

STEP 2 The control system is modeled by CIASS in the same manner described in the previous section. The required data are:

NBLOCK, GRAPH, BLOCK, NUMER, DENOM, GAIN, ITHINY, ITHINU, NYTOV, NZTOU, NYZTOK, YTOV, ZTOU, YZTOK.

The first seven quantities were defined in the last section while the remaining quantities specify how the system is connected.

THINY - Integer vector numbering, in sequence, those components of the augmented output vector $(y^T, y^T)^T$ to be saved for analysis.

ents of the augmented input vector (u, v) to be saved for analysis.

NYTOV - Number of connections from $oldsymbol{y}$ to $oldsymbol{\sigma}$.

NZTOU - " " 3 to w.

- NYZTOK Number of feedback paths defined (with root locus option, the first connection specifies Kl and the second connection specifies K3.).
- YTOV Integer matrix of dimension (NYTOV) x 2. Each row of the matrix describes a connection from y to v. The first element of a row specifies the component of y to be connected to the element of v specified by the second element.
- ZTOU Integer matrix of dimension (NZTOU) x 2 specifying connections between z and u in the same fashion as YTOV.
- YZTOK Integer matrix of dimension (NYZTOK) x 2 specifying a feedback gain matrix. The first number of a row specifies which element of the augmented output $(y^1, y^1)^T$ is to be fed back to the element of the augmented input $(u^1, v^1)^T$ specified by the second number of the row.

Note that numbers in YTOV and ZTOU refer to indexing in the individual vectors $\omega, v, \gamma, \gamma$ while numbers in YZTOK refer to indexing in the augmented vectors $(\omega, v^{\tau})^{\tau}$ and $(\gamma^{\tau}, \gamma^{\tau})^{\tau}$. In all cases, the indexing is specified

before any thinning of the output or input has occurred.

The CLASS subroutine constructs the state space representation of the control system with the above data. The system is:

$$\dot{x}_2 = A_2 x_2 + B_2 U$$

 $\dot{x}_2 = H_2 x_2 + F_2 U$

The total system, at this point, is in the form of uncoupled diagonal blocks:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} A_1 \mid O \\ O \mid A_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} B_1 \mid O \\ O \mid B_2 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$
 (7a)

$$\begin{bmatrix} \frac{4}{3} \\ \frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{H_1}{1} & 0 \\ 0 & H_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} \frac{F_1}{1} & 0 \\ 0 & F_2 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$
 (7b)

where the dimensions are

$$\begin{bmatrix} x_1 \\ -\frac{1}{x_2} \end{bmatrix} - NXT = NX + NXI$$

$$\begin{bmatrix} \frac{1}{2} \\ \frac{1}{3} \end{bmatrix} - NYT = NY + NYI$$

$$\begin{bmatrix} u \\ --- \\ v \end{bmatrix} - NUT = NU + NU1$$

The last three vectors above are the augmented state, augmented output, and augmented input vectors, respectively.

The system is now coupled together using YTOV, ZTOU, and YZTOK. The connections between the augmented input, state, and output vectors may be diagramed as follows.

$$\begin{bmatrix} u \\ -\frac{1}{3} \end{bmatrix} = \begin{bmatrix} 0 & 1 & R_1 \\ -\frac{1}{3} & -\frac{1}{3} \end{bmatrix} + 5 \begin{bmatrix} u_{com} \\ v_{com} \end{bmatrix}$$
(8)

where subscript "com" designates an external "command" input. The dimensions of R_1 , R_2 , and S are

$$R_1 - NU \times NY1$$
 $R_2 - NU1 \times NY$
 $S - NU1 \times (# of elements in ITHINU)$

 R_1 , R_2 , and S are constructed according to the rules:

$$V_{L_{ij}} = \begin{cases} 1.0 & \text{if } \ ZTON(k,1) = j \text{ and } \ ZTON(k,2) = i \text{ ; } \ k=1,2,..., \ NZTON \\ 0 & \text{otherwise} \end{cases}$$

$$Y_{2ij} = \begin{cases} 1.0 & \text{if } YTOV(k,1) = j \text{ and } YTOV(k,2) = i; k = 1,2,..., NYTOV \\ 0 & \text{otherwise} \end{cases}$$

Sij =
$$\begin{cases} 1.0 & \text{if } i = 11 \text{HINU(j)}; j = 1,2,..., \\ 0 & \text{otherwise} \end{cases}$$

The submatrices R_1 and R_2 will be used to couple A_1 and A_2 while S is used to thin out the augmented input vector of unnecessary inputs. Unwanted outputs are thinned out at the very end by simply deleting rows of the final H and F output matrices (ITHINY).

The six partitioned matrices in (7) and (8) are defined to be A, B, H, F, R, and S and the system of equations is

reduced to the basic system (1) with the substitutions

$$A \leftarrow A + BR(I-FR)^{-1}H$$

$$B \leftarrow BR(I-FR)^{-1}FS + BS$$

$$H \leftarrow (I-FR)^{-1}H$$

$$F \leftarrow (I-FR)^{-1}FS$$

Now YZTOK is utilized to construct a feedback gain matrix if a root locus is desired. The feedback control law is

The feedback gain matrices, Kl and K2, are constructed by the rule:

then the jth rows of Kl and K2 are copied from the ith row of the output matrices H and F. Thus feedback is defined from the ith output to the jth input.

If SYSTEM = 3 (root locus) a second row of YZTOK (if any) would be used to construct a second feedback variable into K3 and K4, which would define the second feedback of a two-dimensional root locus.

If a root locus is desired in which feedback is defined to the jth input, then the jth input cannot be thinned out of the system (i.e., j must appear in ITHINU).

If SYSTEM = 2 (closed loop) any number of feedback paths may be defined in YZTOK.

example: Set up the system indicated below using the MIXED option |------

The plant is described by a first order differential equation (STEP 1) and the control system is described by its block diagram representation. Redrawing the diagram:

GRAPH =
$$\begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 2 & 1 & -3 & 0 & 0 \\ 3 & 0 & 0 & 0 & 2 \end{bmatrix}$$

a. If a closed-loop analysis is desired

$$y = \begin{bmatrix} 1 & 2 \end{bmatrix}$$

$$z = \begin{bmatrix} 2 & 1 \end{bmatrix}$$

will connect the system correctly.

b. If a root locus is desired

$$y = [1 \ 2]$$

 $y = [3 \ 1]$

will provide the required feedback matrix (alternatively ZTOU = $\begin{bmatrix} 2 & 1 \end{bmatrix}$, YZTOK = $\begin{bmatrix} 1 & 3 \end{bmatrix}$ will also give the desired locus, defining the feedback at a different point of the system).

Returning to the closed-loop system of a., the resulting closed-loop system will be:

Notice that the connections defined by YTOV and ZTOU create summing junctions. Following the connection of the system the input label (e.g., V2) refers to the "external input" to the summing junction and not to the "error signal" (output of the summing junction). In many cases these external inputs are not of interest and will be thinned out with ITHINU. Similar thinning will usually be done on the output vector. For instance

$$ITHINY = [1]$$

results in the system

example: set up the system of the previous example to do a root locus

The above system can be put into the standard root locus form by defining

where K_1 is the root locus gain. For this system V_1 and V_2 may be thinned out but $\underline{\mathbf{u}}_1$ cannot be thinned out since a feedback variable has been defined to it. No output equation is defined for a root locus case, but the open-loop zeroes of λ_2 due to an input at $\underline{\mathbf{u}}_1$ will be determined.

example: Suppose that STEP 1 of the MIXED option has defined a model of the lateral-directional dynamics of an airplane (A_1, B_1, H_1, F_1) with the plant input and output vectors:

$$u = \begin{bmatrix} \delta u \\ \delta r \end{bmatrix} \qquad y = \begin{bmatrix} \rho \\ r \\ \beta \\ \alpha y \end{bmatrix}$$

It is desired to add a control system with actuator dynamics, roll rate, yaw rate, and sideforce feedbacks, and an aileron-to-rudder interconnect. Finally, a root locus of the roll rate feedback is desired with the yaw rate and sideforce feedback loops closed. The block diagram is:

(The internal dynamics of the blocks are not considered in this example since we are concerned with the method of connecting the system together.) The augmented input and output vectors are

The pertinent input data are

GRAPH =
$$\begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 2 & 4 & 5 & 6 & 5 \\ 3 & 0 & 0 & 0 & 3 \\ 4 & 0 & 0 & 0 & 2 \\ 5 & 1 & 0 & 0 & 0 \\ 6 & 0 & 0 & 0 & 4 \end{bmatrix}$$

$$YTOV = \begin{bmatrix} 1 & 3 \\ 2 & 4 \\ 5 & 5 \end{bmatrix}$$

$$ZTOU = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$$

$$YZTOK = \begin{bmatrix} 8 & 3 \end{bmatrix}$$

The loading options which have been described above are summarized in Table V.

- If READ = 1,2,3 and MIXED = 0, use STEP 1 of Table V.
 The required matrices must be defined via LOAD, MATRIX, or CHANGE.
- 2. If READ = 4 and MIXED = 0, use only STEP 2 of Table V.

 The required matrices will be constructed in CLASS from the block diagram data (GRAPH, etc.).
- 3. If MIXED = 1, the open-loop plant is defined by STEP 1 of Table V and the control system block diagram added as STEP 2 of Table V. In STEP 1, define the open-loop

plant as if SYSTEM = 1 regardless of the actual value of SYSTEM. SYSTEM, in this case, refers to the augmented system.

DISCRETE SYSTEM MODELS

If a system is known in a completely discrete form, then the system can be described by a combination of the vector difference equations,

$$x_{n+1} = A x_n + B u_n \qquad (10a)$$

$$u_n = K1 x_n + D u_{com_n} \qquad (10b)$$

$$y_n = H x_n + F u_n \qquad (10c)$$

The matrices G, C, K2, and K4 are not defined for discrete systems. This model is algebraically equivalent to the continuous system models (3), (4), and (6) and allows open-loop, closed-loop, and root locus models to be defined. The same computer algorithms which were used to generate eigenvalues for continuous systems can then be used for the discrete system. The resulting transfer functions are Z-transform transfer functions. The vector output sequence, yn, corresponds to the continuous system transient response and may be generated directly from equations (10). The namelist parameters are defined in the same fashion as for continuous systems and all of the analysis options are available. To specify completely discrete system analysis, set DIGITL = 2 and DELT = T where T is the sample period. The completely discrete system models are given in Table IIIb. Frequency

responses are generated in the w-plane by means of the bilinear transformation

$$3 = \frac{1 - w}{1 + w}$$

SAMPLED-DATA SYSTEM MODELS

Sampled-data systems are composed of a continuous dynamical subsystem and a discrete subsystem. The continuous subsystem is called the plant and the discrete subsystem is called the digital controller. Usually, but not always, the digital controller will be a dynamical system. To analyze a sampled-data system, the continuous plant must be discretized so that the two subsystems have a common representation. Careful attention must be given to the structure of the system in this discretizing process and the interconnection of the two subsystems. The MIXED option assumes a central role in the sampled-data analysis with the YTOV, ZTOU, and YZTOU options used to define the connections between the subsystem.

The sampled-data system is block diagramed in figure 5 in which D(3) is the digital controller described by the triple (u^4, x^4, y^4) and G(s) is the continuous plant described by the triple (u^c, x^c, y^c) . The plant and digital controller dynamics are given by

$$\dot{x}^c = A_c x^c + B_c x^c$$
 (11a)

$$y^c = H_c x^c + F_c x^c$$
 (11b)

$$x_{n+1}^d = A_d x_n^d + B_d u_n^d$$
 (12a)

$$y_n^d = H_d x_n^d + F_d u_n^d$$
 (12b)

The dimension of \mathbf{x}^c is NXC and the dimension of \mathbf{u}^c is NUC. (The $\mathbf{G}\mathbf{\hat{x}}$ term in the output equation for \mathbf{y}^c is allowed and has already been eliminated in equation (11)b. These two systems are combined in the partitioned matrix

form,
$$\begin{bmatrix} \dot{x}^{c} \\ \dot{x}^{d} \\ \dot{x}^{d} \end{bmatrix} = \begin{bmatrix} A_{c} & O \\ O & A_{d} \end{bmatrix} \begin{bmatrix} x^{c} \\ x^{d} \\ x^{d} \end{bmatrix} + \begin{bmatrix} B_{o} & O \\ O & B_{d} \end{bmatrix} \begin{bmatrix} u^{c} \\ u^{d} \\ u^{d} \end{bmatrix} (13a)$$

$$\begin{bmatrix} \dot{y}^{c} \\ \dot{y}^{d} \\ \end{bmatrix} = \begin{bmatrix} H_{c} & O \\ O & H_{d} \end{bmatrix} \begin{bmatrix} x^{c} \\ x^{d} \\ \end{bmatrix} + \begin{bmatrix} F_{c} & O \\ O & F_{d} \end{bmatrix} \begin{bmatrix} u^{c} \\ u^{d} \\ \end{bmatrix} (13b)$$

Thus the order of the augmented state and output vectors is

- (a) plant states (outputs)
- (b) digital controller states (outputs)
 CONTROL discretizes the upper left hand (NXC) x (NXC) submatrix of the augmented system A matrix.

The plant is generally assumed to be an open-loop system but analog feedback loops may be defined within the plant.

Any such analog feedback must be defined explicitly in the plant A matrix, in YTOV, or ZTOU. Analog actuator dynamics and sensor dynamics are included in the plant. Actuators and sensors may be modeled in block diagram form using the MIXED option. The digital controller will usually be comprised

of a summing junction and digital filters. External inputs to the plant and digital controller may be defined. External inputs to the digital controller are considered to be sequences of numbers, α_{ext} , separated in time by the sample period, T. External inputs to the plant, α_{ext} , are considered as sampled continuous inputs. The inputs to the plant are comprised of the outputs of the digital controller and the sampled external inputs. These inputs may be applied to the plant as

- (a) outputs of samplers (pulse trains)
- (b) outputs of zero-order-hold elements,

The sampled-data block diagram of figure 5 is capable of representing a wide range of sampled-data systems. Figure 6 shows several of the possible configurations. Figure 6(a) shows an open-loop plant with a sampled (pulse train) input, figure 6(b) shows a closed-loop plant with a sampled error signal, figure 6(c) shows a closed-loop plant with digital compensation in the feedback path, and figure 6(d) shows a closed-loop plant with digital compensation in the forward path. Questions arising in the analysis of these systems involves the stability of the closed-loop system, the system transient response, and the synthesis of (digital) control systems. The CONTROL program allows these questions to be studied using the 3-plane root locus, the w-plane frequency response (both standard and modified 3-transforms), and the system transient response.

In order to perform this analysis, it is necessary to discretize the plant to obtain a discrete system model of the entire sampled-data system.

The form of the input function determines the proper discretization of the plant. CONTROL treats the first ZOH elements of \mathbf{u}^c as inputs from zero-order-hold elements and the remaining (NUC - ZOH) elements of \mathbf{u}^c as sampled inputs. Thus the ordering of the augmented input vector is

- (a) zero-order-hold inputs to plant
- (b) sampled inputs to plant
- (c) discrete inputs to digital controller

CONTROL discretizes the upper left hand (NXC) x (NUC) submatrix of the augmented system B matrix. The first ZOH columns of the submatrix are discretized to account for the zero-order-hold effect and the remaining (NUC-ZOH) columns are discretized to account for the sampling effect.

The system which results from the discretization of the plant is block diagramed in figure 7. All of the sequences x_n^d , x_n^c , y_n^c , etc., are defined at the same instants of time

However, since the system actually contains a continuous subsystem which has a continuous state trajectory it is necessary to define the exact meaning of sequences such as \sqrt{n} . For instance, \sqrt{n} has the two interpretations

$$y_n^{c^{\dagger}} \equiv \lim_{\epsilon_2 \to 0} y^{\epsilon} (nT + \epsilon_2)$$
 $\epsilon_2 > 0$ (14a)
 $y_n^{c^{-}} \equiv y^{\epsilon} (nT - \epsilon_1)$ $\epsilon_1 > 0$ (14b)

Which of these two definitions is used has an important bearing on the resulting discretized system. The CONTROL program assumes

$$x_n^c \equiv \lim_{\epsilon \to 0} x^{\epsilon} (nT - \epsilon)$$
 $\epsilon > 0$

$$u_n^c \equiv u^{\epsilon} (nT)$$

The interpretation of these definitions is that; the state, $\mathbf{x_n^c}$, is defined at time $\mathbf{t=nT}$ prior to the application of the input, $\mathbf{u_n^c}$. The updated input, $\mathbf{u_n^c}$, is applied to the system at the sampling instant, $\mathbf{t=nT}$. Thus all events are timed with respect to $\mathbf{u_n^c}$ as occurring before or after the application of $\mathbf{u_n^c}$.

Figure 8(a) shows the time sequence of events in the complete sampled-data system. At $t = nT - \epsilon$, , the plant is sampled to provide y_n^{ϵ} and y_{ext}^{ϵ} is input to the digital controller. Following the computational delay, ϵ , the digital controller output, y_n^{ϵ} , is updated (using y_n^{ϵ} and y_{ext}^{ϵ}), the plant input, y_n^{ϵ} , is defined (using y_n^{ϵ} and y_{ext}^{ϵ}) and applied to the plant. At $t = nT + \epsilon_2$ the plant output is y_n^{ϵ} . The time delay ϵ_2 may be regarded as

an infinitesimal (i.e., the limit goes to zero in eq. (14(a)) since the plant responds instantaneously to $\frac{1}{4}$. The time delay e, cannot be regarded as an infinitesimal since the digital controller requires a finite time to compute the update. However, if e, <<7 it is customary to assume e, $\rightarrow 0$.

Figure 8(b) shows the idealized time sequence for the sampled-data system. In this idealized model, events occur only at the sample instants and they occur instantaneously.

The state equation of the plant driven by the inputer train is $\frac{1}{2} = -4 \times +4$

$$u = u^{*} = u(t) \delta(t-nT)$$
 $n=0,1,2,...$

The solution of the state equation for $O \leq t \leq T$ is

$$x(t) = \phi(t) \times_{0} + \int_{0}^{t} \phi(t-\tau) u^{*}(\tau) d\tau$$

$$= e^{-\alpha t} \times_{0} + \int_{0}^{t} e^{\alpha(t-\tau)} \delta(\tau) u(\tau) d\tau$$

and in general

$$X_{n+1} = X[(n+1)T] = e^{-aT} X_n + e^{-aT} X_n$$
 (15a)

The output equation depends upon the choice of output; y_n or y_n^{\dagger} .

At $t = nT - \epsilon \ (\epsilon \neq 0)$ $u^{\dagger} = 0$ and

$$y_n = x_n$$
 (15b)

At $t=nT+\epsilon$ the impulse at t=nT will have changed the state x_n to

tate
$$x_n$$
 to
$$x_n^+ = x(nT+e) = \lim_{\epsilon \to 0^+} \left[\phi(\epsilon) x_n + \int_{nT}^{nT+e} \phi(nT+e-r) u^*(r) dr \right]$$

$$= \lim_{\epsilon \to 0^+} \left[\phi(\epsilon) x_n + \phi(\epsilon) u_n \right]$$

since $\phi(0) = 1$ and $u^*(\tau) = u_n \delta(\tau - n\tau)$ The output y_n^{\dagger} is then

$$y_n^{\dagger} = x_n + w_n$$
 (15c)

since $w(nT+\epsilon)=0$.

The discretized system is given by equations (15a) and (15b) if is chosen as the output, or by (15a) and (15c) if is chosen as the output. The corresponding 3-transfer functions are

$$G(3) = \frac{e^{-aT}}{3 - e^{-aT}} \quad \text{if} \quad y_n = y_n^{-} \quad (16a)$$

$$G(3) = \frac{3}{3 - e^{-aT}} \quad \text{if} \quad y_n = y_n^{-} \quad (16b)$$

$$G(3) = \frac{3}{3 - e^{-aT}}$$
 if $y_n = y_n^{\dagger}$ (16b)

An interesting result of this example is that (16b) is the standard 3-transfer function (pulse transfer function) of . Thus to generate standard 3-transfer functions for the plant (11) the following convention should be used:

$$y_n = y_n^{\dagger} = y(nT + \epsilon)$$
 (17a)

$$x_n = x_n^- = x(nT - \epsilon)$$
 (17b)

Although this convention will generate correct pulse transfer functions, it is not the convention required for analyzing closed-loop sampled-data systems. This is evident from the following example.

This system is replaced by the equivalent discrete system:

whose state equation is (assuming $y_n = y_n^+$) $x_{n+1} = e^{-x_n^-} x_n + e^{-x_n^-} x_n$ $y_n = x_n + x_n$

The control law is $u_n = r_n - y_n = r_n - x_n - u_n$

This control law is nonphysical since it requires the digital controller to compute, at $t=nT-\epsilon$, a control law requiring data not available until t=nT (see fig. 8). Thus for a closed-loop sampled data system the convention $y_n \equiv y_n^+$ can lead to a nonphysical realization of the system. The correct convention for closed-loop sampled-data systems is

$$y_n = y_n^- = y(nT - \epsilon)$$
 $\epsilon > \epsilon$

since this equation represents the measurements (observations) available to the digital controller at the time at which it must compute the control law.

Table VII lists the correctly discretized plant models for the various input and output definitions. Table VII(a) gives the models for the output convention $y_n \equiv y_n$ and Table VII(b) gives the models for the output convention $y_n \equiv y_n$ In Table VII(a) F = 0. This is required for the pulsed input since a continuous system with $F \neq 0$ cannot be driven by a pulse train. The ZOH input system (Table VII(a)) cannot have $F \neq 0$ since this would make y_n dependent on $y_n \equiv y_n$ and the analysis options of CONTROL are not applicable to such a system.

The only differences in Table VII(a) and (b) are in the direct feedforward term of the output equations. It is interesting to note that these terms in Table VII(b) (HBu_n for pulsed inputs and Fu_n for ZOH inputs) will be zero if

- a. all input-output transfer paths have at least 2 more poles than zeroes for the pulsed input system
- b. all input-output transfer paths have at least 1 more pole than zeroes for the ZOH system.

Inputs from digital controllers to continuous mechanical plants are almost always applied through zero-order-hold elements whose outputs drive actuators. If actuator dynamics are included in the plant then there will always be at least 1 more pole than zeroes for all transfer paths and there will be no difference in the two ZOH input cases of Table VII(a) and (b).

From Table VI the operations required to discretize the continuous plant are now apparent. CONTROL replaces the augmented system model of equations (13) with

$$\begin{bmatrix} x_{n+1}^{c} \\ x_{n+1}^{d} \end{bmatrix} = \begin{bmatrix} \phi & 0 \\ 0 & A_{d} \end{bmatrix} \begin{bmatrix} x_{n}^{c} \\ x_{n}^{d} \end{bmatrix} + \begin{bmatrix} \Theta B_{c} \end{bmatrix} \begin{bmatrix} \Phi B_$$

The partitioned submatrices $([\mathfrak{B}B], [\mathfrak{b}B], [\mathfrak{F}_c], [\mathfrak{H}_c \mathcal{S}_c])$ are interpreted as follows: The first NXC rows and ZOH columns of \mathfrak{B} are copied into the corresponding location of the B matrix, etc. At this point the sampled-data system is completely discretized and is given by

$$x_{n+1} = A x_n + B u_n \tag{19a}$$

$$y_n = Hx_n + Fu_n \qquad (19b)$$

where the augmented vectors and matrices are:

$$A = \begin{bmatrix} x'_{n} \\ x'_{n} \end{bmatrix} \qquad u_{n} = \begin{bmatrix} u'_{n} \\ u'_{n} \end{bmatrix} \qquad y_{n} = \begin{bmatrix} y'_{n} \\ y'_{n} \end{bmatrix}$$

$$A = \begin{bmatrix} \phi(\tau) & 0 \\ 0 & A_{d} \end{bmatrix} \qquad B = \begin{bmatrix} B_{d} & B_{d} & 0 \\ 0 & B_{d} \end{bmatrix}$$

$$A = \begin{bmatrix} H_{c} & 0 \\ 0 & H_{d} \end{bmatrix} \qquad F = \begin{bmatrix} F_{c} & H_{c} & B_{c} & 0 \\ 0 & O & F_{d} \end{bmatrix}$$

In light of the preceding discussion concerning the possibility of defining nonphysical feedback control laws, the submatrices $[F_c]$ and $[H_cR_c]$ must be interpreted carefully. CONTROL does not use $[F_c]$ or $[H_cS_c]$ to

define connections from the plant to the discrete subsystem or to define sampled-data feedback laws. This amounts to using $f = f(m-\epsilon)$ instead of $f = f(m+\epsilon)$ for these connections. These submatrices are used in computing 3-transfer functions, frequency responses, and transient responses. Thus pulse transfer functions such as that of the above example can be computed. This completes the discussion concerning the discretization of the plant dynamics.

The sampled-data system has been reduced to a set of uncoupled matrix difference equations (19). The remaining step in the definition of the system is the method of connecting the digital controller and the discretized plant.

These connections are best illustrated by the following examples. The examples illustrate the various possible combinations of continuous and discrete subsystems. Each example contains two systems. The appropriate uncoupled state and output equations are written for each example followed by the equation giving the connection between the two systems. The state equations are discretized, the connection equation incorporated at the appropriate time, and the final coupled discretized system is given.

example: Determine the properly discretized and connected equations for the following systems.

a.)

1. Original system.

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -\alpha & 0 \\ 0 & -b \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$
$$\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

2. Connection equation.

$$u_2 = y_1 = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

3. Coupled system.

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -\alpha & 0 \\ 1 & -b \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u_1$$

4. Final system.

$$\begin{bmatrix} x_{1n+1} \\ x_{2n+1} \end{bmatrix} = \begin{bmatrix} e^{-\alpha T} & 0 \\ e^{-\alpha T} e^{-\beta T} & e^{-\beta T} \end{bmatrix} \begin{bmatrix} x_{1n} \\ x_{2n} \end{bmatrix} + \begin{bmatrix} e^{-\alpha T} \\ 0 \end{bmatrix} \begin{bmatrix} u_{1n} \end{bmatrix}$$

$$\begin{bmatrix} y_{1n} \\ y_{2n} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_{1n} \\ x_{2n} \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} u_{1n} \\ x_{2n} \end{bmatrix}$$

1. Original system.

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -\alpha & 0 \\ 0 & -b \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$
$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

2. Discretized system.

$$\begin{bmatrix} x_{ln+1} \\ x_{2n+1} \end{bmatrix} = \begin{bmatrix} e^{-aT} & 0 \\ 0 & e^{-bT} \end{bmatrix} \begin{bmatrix} x_{ln} \\ x_{2n} \end{bmatrix} + \begin{bmatrix} e^{-aT} & 0 \\ 0 & e^{-bT} \end{bmatrix} \begin{bmatrix} u_{ln} \\ u_{2n} \end{bmatrix}$$
$$\begin{bmatrix} y_{1n}^{*} \\ y_{2n}^{*} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_{ln} \\ x_{2n} \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} u_{ln} \\ u_{2n} \end{bmatrix}$$

3. Connection equation.

$$u_{2n} = y_{1n}^{-} = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_{1n} \\ x_{2n} \end{bmatrix}$$

4. Final system.

$$\begin{bmatrix} x_{1n+1} \\ x_{2n+1} \end{bmatrix} = \begin{bmatrix} e^{-aT} & 0 \\ -bT & e^{-bT} \end{bmatrix} \begin{vmatrix} x_{1n} \\ x_{2n} \end{vmatrix} + \begin{bmatrix} e^{-aT} \\ 0 \end{bmatrix} u_{1n}$$

$$\begin{bmatrix} y_{1n}^{\dagger} \\ y_{2n}^{\dagger} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_{1n} \\ x_{2n} \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u_{1n}$$

1. Original system.

$$\begin{bmatrix} \dot{x}_1 \\ x_{2n+1} \end{bmatrix} = \begin{bmatrix} -\alpha & 0 \\ 0 & -c \end{bmatrix} \begin{bmatrix} x_1 \\ x_{2n} \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_{2n} \end{bmatrix}$$
$$\begin{bmatrix} \dot{y}_1^{\dagger} \\ \dot{y}_{2n} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & (b-c) \end{bmatrix} \begin{bmatrix} x_1 \\ x_{2n} \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_{2n} \end{bmatrix}$$

2. Discretized system.

$$\begin{bmatrix} x_{in+1} \\ x_{2n+1} \end{bmatrix} = \begin{bmatrix} \bar{e}^{-aT} & 0 \\ 0 & -c \end{bmatrix} \begin{bmatrix} x_{in} \\ x_{2n} \end{bmatrix} + \begin{bmatrix} \bar{e}^{-aT} & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} u_{in} \\ u_{2n} \end{bmatrix}$$

3. Connection equation.

$$u_{2n} = y_{1n} = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_{1n} \\ x_{2n} \end{bmatrix}$$

4. Final system.

$$\begin{bmatrix} x_{1n+1} \\ x_{2n+1} \end{bmatrix} = \begin{bmatrix} e^{-\alpha T} & 0 \\ 1 & -c \end{bmatrix} \begin{bmatrix} x_{1n} \\ x_{2n} \end{bmatrix} + \begin{bmatrix} e^{-\alpha T} \\ 0 \end{bmatrix} u_{1n}$$

$$\begin{bmatrix} y_{1n}^{\dagger} \\ y_{2n}^{\dagger} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & (b-c) \end{bmatrix} \begin{bmatrix} x_{1n} \\ x_{2n} \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u_{1n}$$

55

d.)

1. Original system.

$$\begin{bmatrix} \dot{x}_{2} \\ \dot{x}_{1n+1} \end{bmatrix} = \begin{bmatrix} -\alpha & 0 \\ 0 & -c \end{bmatrix} \begin{bmatrix} x_{2} \\ x_{1n} \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} u_{2} \\ u_{1n} \end{bmatrix}$$

$$\begin{bmatrix} \dot{y}_{2} \\ \dot{y}_{1} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & (b-c) \end{bmatrix} \begin{bmatrix} x_{2} \\ x_{1n} \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} u_{2} \\ u_{1n} \end{bmatrix}$$

2. Discretized system.

$$\begin{bmatrix} x_{2n+1} \\ x_{1n+1} \end{bmatrix} = \begin{bmatrix} e^{-\alpha T} & 0 \\ 0 & -c \end{bmatrix} \begin{bmatrix} x_{2n} \\ x_{1n} \end{bmatrix} + \begin{bmatrix} e^{-\alpha T} & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} u_{2n} \\ u_{1n} \end{bmatrix}$$
$$\begin{bmatrix} y_{2n}^{\dagger} \\ y_{1n}^{\dagger} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & (b-c) \end{bmatrix} \begin{bmatrix} x_{2n} \\ x_{1n} \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} u_{2n} \\ u_{1n} \end{bmatrix}$$

3. Connection equation.

$$u_{2n} = y_{1n} = \left[0 \left(b-c\right)\right] \begin{bmatrix} x_{2n} \\ x_{1n} \end{bmatrix} + \left[0 \quad 1\right] \begin{bmatrix} u_{2n} \\ u_{1n} \end{bmatrix}$$

4. Final system.

$$\begin{bmatrix} x_{2m1} \\ x_{1m1} \end{bmatrix} = \begin{bmatrix} e^{-aT} (b-c)e^{-aT} \\ 0 & -c \end{bmatrix} \begin{bmatrix} x_{2m} \\ x_{1m} \end{bmatrix} + \begin{bmatrix} e^{aT} \\ 1 \end{bmatrix} \begin{bmatrix} u_{1m} \end{bmatrix}$$
$$\begin{bmatrix} u_{2m} \\ v_{1m} \end{bmatrix} = \begin{bmatrix} 1 & (b-c) \\ 0 & (b-c) \end{bmatrix} \begin{bmatrix} x_{2m} \\ x_{1m} \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} u_{1m} \end{bmatrix}$$

e.)

1. Original system.

$$\begin{bmatrix} x_{1n+1} \\ x_{2n+1} \end{bmatrix} = \begin{bmatrix} -c & o \\ o & -e \end{bmatrix} \begin{bmatrix} x_{1n} \\ x_{2n} \end{bmatrix} + \begin{bmatrix} 1 & o \\ o & 1 \end{bmatrix} \begin{bmatrix} u_{1n} \\ u_{2n} \end{bmatrix}$$
$$\begin{bmatrix} y_{1n} \\ y_{2n} \end{bmatrix} = \begin{bmatrix} (b-c) & o \\ o & (d-e) \end{bmatrix} \begin{bmatrix} x_{1n} \\ x_{2n} \end{bmatrix} + \begin{bmatrix} 1 & o \\ o & 1 \end{bmatrix} \begin{bmatrix} u_{4n} \\ u_{2n} \end{bmatrix}$$

2. Connection equation.

$$u_{2n} = y_{1n} = \left[(b-c) \quad O \right] \begin{bmatrix} x_{1n} \\ x_{2n} \end{bmatrix} + \left[1 \quad O \right] \begin{bmatrix} u_{1n} \\ u_{2n} \end{bmatrix}$$

3. Final system.

$$\begin{bmatrix} x_{1m+1} \\ x_{2m+1} \end{bmatrix} = \begin{bmatrix} -c & 0 \\ b-c & -e \end{bmatrix} \begin{bmatrix} x_{1m} \\ x_{2n} \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} [u_{1m}]$$

$$\begin{bmatrix} y_{1m} \\ y_{2m} \end{bmatrix} = \begin{bmatrix} b-c & 0 \\ b-c & d-e \end{bmatrix} \begin{bmatrix} x_{1m} \\ x_{2m} \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} [u_{1m}]$$

A close study of these examples reveals that:

- i.) Connections between two continuous systems must be made before they are discretized (a).
- ii.) Connections to a continuous system from a sampler, zero-order-hold, or digital system must be made after the continuous system is discretized (b and d). Such a continuous system must have an input defined and the connection to the input is specified in a "feedback" gain matrix.
- iii.) Connections to a digital system from a continuous system may be made either before or after the system is discretized (c). The discretization has no effect on the connection equation.
 - iv.) Connections between discrete systems may be made at any time since the discretization does not affect these systems (e).

SAMPLED-DATA SYSTEM ANALYSIS USING THE MIXED OPTION

The use of the MIXED option of the CONTROL program to model sampled-data systems may be described now. The MIXED option involves a two-step process in which a set of linear differential equations are augmented with a block diagram control system.

Sampled-data systems involve a continuous subsystem, the plant, and a discrete subsystem, the digital controller.

The CONTROL program constructs the sampled-data system model

by defining the plant in STEP 1 and the digital controller in STEP 2 of the MIXED option. It is not required that the plant correspond completely with STEP 1 of the MIXED option. For example, the block diagram control system (STEP 2) may contain a mixture of Laplace transformed blocks (actuator and sensor dynamics) and \mathfrak{z} -transformed blocks (the digital filters of the digital controller). The Laplace transform blocks are thus part of the plant. Conversely, difference equations defining digital filters may be written explicitly in the A matrix in STEP 1. The required ordering of inputs, outputs, and states is given in Table VIII(a). This ordering produces a preliminary sampled-data system which is a composite of the system of equations (7) and (13). (Due to the possibility of defining part of the plant in STEP 2, the correspondence between vectors (e.g., \mathbf{x} , in eq. (7) and $\mathbf{x}^{\mathbf{t}}$ in eq. (13)) is not exact.)

This preliminary system is connected together by connections specified in YTOV, ZTOU, and YZTOK. In light of the results of the examples given above, provision must be made for making some connections before the plant is discretized and the remainder after the discretization. To achieve this, the following sequence of operations is performed:

- i.) YTOV and ZTOU connections completed
- ii.) plant discretized
- iii.) YZTOK defines feedback gain matrix, Kl
- iv.) feedback gain matrix, Kl, incorporated into total

system A matrix (closed-loop analysis) or used to perform a root locus

Thus connections which must be completed before the system is discretized are defined in YTOV, ZTOU, GRAPH, or the ${\rm A}_{1}$ matrix of STEP 1. Connections from discrete systems to the plant (which must be made after the plant is discretized) must be defined in YZTOK. Table VIII(b) summarized the types of connections allowed and how they must be defined. D(3) represent continuous and discrete subsystems, respectively. The sampled-data system model and its construction are given in Table III(c). The step indicated in Table III(c)(4) is the critical step in constructing the sampled-data system model. This step connects the digital controller to the plant in the correct manner. If a root locus is desired, this step defines the appropriate feedback gain matrix. If a root locus is called for, then the first connection specified by YZTOK will generate the feedback gain matrix, Kl, and the second element of YZTOK (if any) will generate a second feedback gain matrix, K3. The control law is then

and K1, K3 would generate a root locus grid.

The formulation of the sampled-data system is illustrated in the following examples.

example: A lateral-directional aircraft plant with a roll rate feedback to a digital controller is to be modeled. The

block diagram of the system is:

The block diagram is comprised of a pilot input gain, a digital filter, a zero-order-hold, and the aileron actuator transfer function. The aircraft state vector and output vector is $\mathbf{y} = \mathbf{x} = (\mathbf{p} \ \mathbf{r} \ \mathbf{\beta} \ \mathbf{\phi})^\mathsf{T}$ and the aircraft equations of motion are input to CONTROL in STEP 1. The system is set up as:

STEP 1 defines the aircraft with $\omega = (\delta \omega \, \delta_{\,Y})^{\!T}$. In STEP 2 the actuator block input and output must be numbered first since it is part of the plant. The appropriate data for STEP 2 is:

NBLOCK 3

The pertinent namelist parameters are

(Other parameters are required to specify STEP 1 and the analysis options chosen.) CONTROL sets the system up as

The connection from 72 to the summing junction before the zero-order-hold is constructed as a feedback control law

If SYSTEM = 2, this "feedback" connection is completed and closed-loop 3-transfer functions, w-plane frequency responses, or transient responses may be obtained. If SYSTEM = 3, the feedback gain matrix is used to calculate the 3-plane root locus.

The ITHINU vector in the above example specifies that only the 3rd and 4th elements of the augmented input vector will be retained. The 3rd element (\mathbf{v}_i) must be retained if SYSTEM = 3 since a feedback is defined to this input. If \mathbf{v}_i is not retained the root locus could not be obtained.

COMPUTATIONAL DELAY AND MODIFIED 3 TRANSFORMS

The digital controller requires a finite time, ϵ_i , to compute the updated command signals to the plant (fig. 8(a)). The preceding analysis has assumed that $\epsilon_i << T$. If this condition is not met the computational delay may be critical to the system stability. The modified 3-transform allows this case to be analyzed using open-loop frequency response techniques. A linear analysis of a sampled-data system requires that all events pertinent to the system (state, input, output) be defined at one instant in time, the sampling instant. But if $\epsilon > T$, the digital filter computes commands based on the system output at time $nT - \epsilon_i$, while the plant state is defined only at time nT. The situation is shown in figure 9. At t = (n+m-1)T, the digital controller samples the plant output, $\gamma_{r_i}^{\epsilon_i}(m)$, and inputs

 u_n^d . The digital controller then computes the updated plant input u_n^c . This requires (I-m)T seconds where $0 \le m \le 1$. If m=1 there is no delay and if m=0 there is a one sample period delay.

The output $\psi_n(m)$ is dependent upon the state of the plant at t=(n-1)T and the form of the input $\psi_n(m)$ from t=(n-1)T to t=(n+m-1)T. If the input to the plant is from a sampler then

$$y_{n}^{c}(m) = H x^{c}[(n+m-1)T]$$

$$= H[\Phi(mT) x_{m1}^{c} + \Phi(mT)Bu_{m1}^{c}] \qquad (20a)$$

where

$$\phi(mT) = \int_{0}^{mT} e^{-A(mT-T)} d\tau$$

If the input to the plant is from a zero-order-hold then

$$y_n^c(m) = H\phi(m\tau)x_{n-1}^c + \left[H\Theta(m\tau)B + F\right]u_{n-1}^c$$
 (20b)

where

$$\bigoplus(mT) = \int_{0}^{mT} \phi(mT-\tau) d\tau$$

In either case, $y_n(m)$ is described by (20a) or (20b) as a linear combination of x_{n-1} and x_{n-1} . Modified 3-transform analysis is performed by idealizing the time sequence model of figure 9 and considering $y_n(m)$ and the digital controller update that it generates to occur instantaneously

with the plant update at t=nT . The resulting system model for sampled inputs is

$$x_{n+1}^{c} = \phi(\tau) x_{n}^{c} + \phi(\tau) B w_{n}^{c} \qquad (21a)$$

$$y_{n}^{\epsilon}(m) = H \phi(mT) x_{n-1} + H \phi(mT) u_{n-1}^{\epsilon}$$
 (21b)

The 3-transform of (21) yields the transfer function matrix G(3,m) where

$$Y_{m(3)} \equiv G(3,m) U(3)$$

= $\frac{1}{3} \left\{ H \phi(mT) \left[(3I - \phi(T))^{T} \phi(T) B + B \right] \right\} U(3)$

Thus the model of equations (21) will generate modified }-transfer functions with the identifications

A
$$\leftarrow$$
 $\phi(T)$
B \leftarrow $\phi(T)$ B
H \leftarrow H $\phi(mT)$
F \leftarrow H $\phi(mT)$ B

A similar transfer matrix may be derived for zero-order-hold inputs.

The resulting 3-transfer functions which the CONTROL program generates must be multiplied by 3' to account for the sample period delay in the output equation (21b).

example: find
$$G(3,m)$$
 for $G(s) = \frac{1}{s+a}$

The plant equations are

then
$$\phi(\tau) = e^{-\alpha \tau}$$
, $\phi(m\tau) = e^{-\alpha m\tau}$ and

 $x_{n+1} = e^{-\alpha \tau}$, $\phi(m\tau) = e^{-\alpha m\tau}$
 $y_n(m) = e^{-\alpha m\tau}$
 $y_m(3) = \frac{1}{3} \left\{ e^{-\alpha m\tau} - \frac{e^{-\alpha \tau}}{3 - e^{-\alpha \tau}} + e^{-\alpha m\tau} \right\} u(3)$
 $= \frac{1}{3} \frac{3e^{-\alpha m\tau}}{3 - e^{-\alpha \tau}} u(3)$

or
$$G(3,m) = \frac{e^{-\alpha mT}}{3 - e^{-\alpha T}}$$

To obtain modified 3-transforms of open-loop sampled-data systems the parameter m must be specified in the namelist. If m=1, the standard 3-transform will result if m=1. Numerical errors limit m=1, and m>1. All other namelist parameters required for sampled-data system analysis are unchanged. Only open-loop analysis can be accomplished with $m\neq 0$. Digital filters may be cascaded with the "open loop" plant using the MIXED option as described above. If the digital filter output drives the plant, recall that a quasi "closed-loop" system is set up with YZTOK defining a "feed-back" law and SYSTEM must be set to 2. Table VII(c) lists the modified 3-transform models.

METHOD OF ANALYSIS

The methods of analysis used by the CONTROL program are summarized in this section.

Frequency Response and Power Spectra

The basic system equations ((1.) or (2.)) may be transformed to yield

$$\rho X(p) = A X(p) + 8U_{cam}(p)$$
 (22a)

$$Y(p) = HX(p) + FU_{com}(p)$$
 (22b)

where p = s or $rac{1}{3}$ depending on the type of system. Equation (22) is rewritten to display the system transfer matrix,

$$Y(p) = G(p) U_{com}(p)$$
 (23)

where

$$G(p) = H(pI-A)^TB+F$$

The transfer matrix, G(p), is an NY*NU matrix of transfer functions. If transfer functions and/or frequency responses are requested, CONTROL computes these (NY)·(NU) functions. Frequency responses are generated at discrete frequencies in the following manner:

- 1. Continuous systems G(p) = G(s) . The frequency response of the ith output due to the ith input is generated by setting s=jw in 3;(s) and allowing w to take on discrete values as specified in Appendix 2.
- 2. Discrete and sampled-data systems $G(\rho) = G(3)$ Frequency responses of 3 -transformed functions are

accomplished either in the w-plane or the z-plane under the control of FRPS. If FRPS = 1, G(z) is transformed to a w-plane transfer matrix, G(w), by the transformation

The frequency response is accomplished by the substitution $\mathbf{w} = \mathbf{j} \mathbf{v}$ at discrete points along the positive imaginary axis in the \mathbf{w} -plane.

If FRPS = -1, the frequency response is accomplished by the substitution 3 = cos w1 + j sin w1 at discrete points along the upper unit semicircle in the 3 -plane. The advantage of the w -plane frequency response is that asymptotic Bode plot methods may be used. (This is due to the frequency response being a polynomial function of the frequency.)

3. Continuous power spectra - G(p)=G(J)
Power spectra are computed for continuous systems from the relation

$$S_{ui}(\omega) = |g_{ij}(\omega)|^2 S_{uj}(\omega)$$

where $S_{ij}(\omega)$ and $S_{ij}(\omega)$ are the power spectra of the λ th output and jth input, respectively, and jth is the corresponding transfer function. CONTROL assumes that

$$S_{u_{\lambda}}(\omega) = 1$$

i.e., the input is unity variance white noise. Thus, to compute power spectra, a "shaping filter" will usually be added to the system dynamics and driven by the white noise input. The output of the filter then drives the system with the desired spectral content.

Eigenvalues

CONTROL uses the QR algorithm to determine the system eigenvalues. HESSEN transforms the matrix to upper Hessenburg form. QREIG then determines the eigenvalues via calls to QRT. The subroutines QREIG, HESSEN, and QRT are contained in the IBM Share Program No. 3006.01 written by P. Imiad Fawzi and J. E. VanNess, Northwestern University. The QR algorithm is discussed in reference 1.

Transfer Function Numerators

CONTROL determines the transfer function numerators as the eigenvalues of a matrix derived from the A, B, H, and F matrices. Details may be found in reference 2.

Transient Responses and Discretization of Sampled-Data Systems

To compute transient responses of continuous systems and to discretize sampled-data systems, the transition matrix and its integral are required. They are computed in the EAT subroutine by summing the partial series

$$\phi(t) = e^{At} = I + At + \frac{1}{2!} A^2 t^2 + \frac{1}{3!} A^3 t^3 + \dots + \frac{1}{n!} A^n t^n$$

$$\Theta(t) = \int_0^t e^{A(t-\tau)} d\tau = It + \frac{1}{2!} At^2 + \frac{1}{3!} A^2 t^3 + \dots + \frac{1}{n!} A^{(n-1)} t^n$$

The series are terminated when the last terms in both series cause changes to each element of both series less than 10^{-3} times the respective element or when the series has not converged in 24 terms.

In the computation of ϕ for sampled-data systems, it is common to have eigenvalues whose magnitudes are comparable to the half-sample frequency resulting in slow convergence of the series. In this case, the user does not have the flexibility of using a smaller integration step size since the sample period is fixed. To help alleviate this problem, CONTROL computes $\phi(7/8)$ and $\theta(7/8)$ and then finds

$$\phi(\tau) \text{ and } \Theta(\tau) \text{ as}$$

$$\phi(\tau) = \left[\phi(\tau/8)\right]^{8}$$

$$\Theta(\tau) = \Theta(\tau/8)\left[\sum_{k=0}^{7} \phi(\lambda \tau/8)\right]$$

Details may be found in reference 3.

Transient responses for continuous systems are calculated using $\varphi(\tau)$ and $\varphi(\tau)$ as

$$x[(n+1)T] = \phi(T)x(nT) + \phi(T)Bu(nT)$$

 $y(nT) = Hx(nT) + Fu(nT)$

where $\omega(\pi)$ is defined in the INPUT subroutine. The input, $\omega(\pi)$, is held constant between sample periods.

Transient responses for discrete and sampled-data systems are computed in a similar manner from the difference equations

given in Table VII.

For sampled-data systems, the MULTRT option allows the user to compute the intersample response of the system. The system is then described by:

$$x_{n+1} = Ax_n + Bu_n$$
 $y_n = Hx_n + Fu_n$
 $u_n = K1x_n + Du_{com_n}$

where A and B are obtained by discretizing the plant for the time period, T/MULTRT and $\mathbf{w}_{\mathbf{n}}$ is updated every T seconds. That is, the plant is discretized as though the sample period was T/MULTRT but $\mathbf{w}_{\mathbf{n}}$ is held constant over T seconds. Thus, MULTRT intersample transient response points will be computed. Only transient responses are allowed with this option.

Digital Filtering

In synthesizing sampled-data systems, much time and effort can go into the computation of digital filter coefficients to give desired filtering to a signal. The CONTROL program allows the user to choose from a table of standard filters (Table VI) the filtering action he desires. The filter may be specified in the s, 3, or w-plane. The transformation of s- and w-plane filters to 3-plane filters can be carried out automatically by the program, allowing the user to draw upon experience in analog filtering techniques. The transformation of a w-plane filter to a 3-plane filter is accomplished by replacing w by

$$w = \frac{3-1}{3+1}$$

The transformation of an s -plane filter to a w -plane filter is

$$u = \tanh\left(\frac{\alpha T}{2}\right)$$

where α is the s -plane first order pole or zero and u is the corresponding w -plane pole or zero. For complex poles and zeroes

$$\left(1+\frac{24}{\omega}s+\frac{s^2}{\omega^2}\right)$$

the transformation is

$$(1 + \frac{24}{\omega_{w}} w + \frac{w^{2}}{\omega_{w}^{2}})$$

where
$$\omega_{w} = \sqrt{u^{2} + v^{2}}$$

$$\beta_{w} = -u/\omega_{w}$$

$$u = \frac{\sinh(\omega T)}{\cosh(\omega T) + \cos(\beta T)}$$

$$v = \frac{\sin(\omega T)}{\cosh(\omega T) + \cos(\beta T)}$$
with
$$\omega^{2} = \omega^{2} + \beta^{2}$$

a = - 3w

Digital filters derived from this two-step process (called the bilinear transformation with frequency prewarping)

maintain a close resemblance of the original **s** -plane filters over a wide range of the half-sample frequency. References 4 and 5 give discussions of digital filters.

<u>Model Following</u> - If MODEL = 1, CONTROL computes frequency responses appropriate to the evaluation of model following systems. Let \mathbf{v}_1 be the model output, \mathbf{v}_2 be the model follower output, and let the model have inputs \mathbf{v}_1 , and \mathbf{v}_2 . The CONTROL program will compute the frequency responses (with FRPS set appropriately)

1
$$\frac{y_1}{u_1}(j\omega)$$

2 $\frac{y_2}{u_1}(j\omega)$; $\frac{y_2/u_1}{y_1/u_1}(j\omega)$
3 $\frac{y_1}{u_2}(j\omega)$; $\frac{y_2/u_2}{y_1/u_2}(j\omega)$
4 $\frac{y_2}{u_2}(j\omega)$; $\frac{y_2/u_2}{y_1/u_2}(j\omega)$

Thus, with MODEL set, CONTROL will provide the frequency responses

$$\frac{42i+1/u_1}{42i/u_2}$$
 (jw)
 $\begin{cases} i=1,2,...,Ny/2\\ l=1,2,...,Nu \end{cases}$

in addition to the standard frequency responses.

Similarity Transformation - Numerical problems in calculating eigenvalues can sometimes be traced to the eigenvalues of a matrix being small compared to its norm. In this event, diagonal similarity transformations may aid in eigenvalue computation. For the autonomous system

$$\dot{\mathbf{x}} = \mathbf{A} \, \mathbf{x} \tag{24}$$

a similarity transformation is defined as the change of variables

for ? nonsingular. The system (24) becomes

with $A = PAP^{-1}$. The matrix A' has the same eigenvalues as A and if P is chosen properly, A' will have a smaller norm than A.

The CONTROL program includes an option (NSCALE) which the user may select if numerical problems are suspected in eigenvalue computations. In order to maintain the same input-output relationship, the program performs the following operations when the A matrix is scaled.

$$K3b_1 \longrightarrow K3$$

 $Hb_1 \longrightarrow H$
 $Hb_1 \longrightarrow H$

The scaling technique is described in references 6 and 7.

PROGRAM SIZE AND TIMING

The CONTROL program requires 131 K_8 words of computer memory. It has operated on a CDC CYBER 70 computer utilizing a segmented structure which reduced the memory requirement to 72 K_8 , words. Included in these size requirements is memory allocated to data matrices for maximum state, output, and input

vector dimensions of 15, 15, and 10, respectively. The data matrix storage requirements are a function of the system dimensions.

The example program of the next section was executed on the CDC CYBER 70 and required 17 sec. of CPU execution time to generate the problem setup and calculate ten transfer functions, ten frequency responses, and a transient response.

EXAMPLE PROBLEM

An example problem is given to illustrate the problem formulation, data deck, and output listing. The input and output listings are given in Appendix 3. The problem involves a lateral-directional airplane model with a control system consisting of aileron and rudder actuators, a roll rate feedback to &a, and yaw rate and side force feedback to &r through a washout and lead-lag filter, respectively. The system is shown in the block diagram.

The airplane equations of motion are

the control system is described using the MIXED option and frequency responses and transient responses are obtained for roll rate and yaw rate.

CONCLUDING REMARKS

A FORTRAN digital computer program for the analysis of linear continuous and sampled-data systems has been described. The program features a flexible input format allowing the program user to define systems in a variety of representations. All systems are analyzed using state variable techniques. Analysis options of the program are: transfer functions, frequency responses, power spectra, root loci, root contours, and transient responses.

Dryden Flight Research Center

National Aeronautics and Space Administration

Edwards, Calif., January 12, 1976

REFERENCES

- Parlett, B. N.: The LU and QR Algorithms. Mathematical Methods for Digital Computers, Volume II,
 Anthony Ralston and Herbert S. Wilf, eds.,
 John Wiley & Sons, Inc., c.1967, pp. 116-130.
- 2. Sandberg, Irwin W.; and So, Hing C.: A Two-Sets-of-Eigenvalues Approach to the Computer Analysis of Linear Systems. IEEE Trans. Circuit Theory, vol. CT-16, no. 4, Nov. 1969, pp. 509-517.
- 3. Johnson, J. C.; and Phillips, C. L.: An Algorithm for the Computation of the Integral of the State Transition Matrix. IEEE Trans. Automatic Control, vol. AC-16, no. 2, Apr. 1971, pp. 204-205.
- 4. Kaiser, J. F.: Digital Filters. System Analysis by Digital Computer, Franklin F. Kuo and James F. Kaiser, eds., John Wiley & Sons, Inc., c.1966, pp. 218-285.
- 5. IEEE Trans. Audio and Electroacoustics. Vol. AU-16, no. 3, Sept. 1968.
- 6. Osborne, E. E.: On Pre-Conditioning of Matrices. J. Assn. for Computing Machinery, vol. 7, c.1960, pp. 338-345.
- 7. Harary, Frank: A Graph Theoretic Method for the Complete Reduction of a Matrix With a View Toward Finding Its Eigenvalues. J. Math. Phys., vol. 38, 1959, pp. 104-111.

APPENDIX 1

FORTRAN LISTING OF CONTROL

A brief description of the various subroutines of CONTROL follows:

CONTROL - is the MATN subroutine as described on page 5.

ADD - performs matrix addition.

ASCALE - scales the A matrix with a diagonal similarity transformation.

CARD - is described on page 4.

CHANGE - is described on page 6.

CLASS - is described on page 4.

CNTRLR - serves as the executive routine for CONTROL.

CPMT - computes complex roots.

EAT - computes the transition matrix and its integral.

EIGEN - is described on page 4

FRQRSP - is described on page 4.

HESSEN - transforms a matrix to the upper Hessenburg form.

INPUTY - is the INPUT subroutine described on page 6.

INVR - determines the inverse of a matrix.

LOAD - is described on page 4.

LOAD1 - is used in conjunction with LOAD to load the system matrices.

MAKE - makes two matrices equivalent.

MATRIX - is described on page 4.

MULT - performs matrix multiplication.

NMRATR - is described on page 4.

PSP - is described on page 4.

OREIG - determines the system eigenvalues.

QRT - is used in conjunction with OREIG.

RDISC - reads input matrices from the disc storage units.

RDISC1 - is used in conjunction with RDISC.

REDUCE - determines the irreducible submatrices of a matrix (used with ASCALE).

ROOT - is described on page 4.

SETUP - is described on page 4.

SPIT - outputs matrices on the printer.

SPIT1 - is used in conjunction with SPIT.

THIST - is described on page 5. (starts at label SPIT1 16)

SWZ - transforms s-and w-plane filters to z-plane filters.

TANG - computes complex arc tangents.

WDISC - writes input matrices on to disc storage.

WDISC1 - is used in conjunction with WDISC.

ZOT - initializes the system matrices to zero.

ZOT1 - is used in conjunction with ZOT.

 $\ensuremath{\text{ZTOW}}$ - converts z-plane transfer functions to w-plane transfer functions.

COPO - plots data on CALCOMP plotter.

READO - plots zeros for a root locus.

CSTAR - contains envelope curves for the C* options.

SUBSCL - computes the scaling factor for root locus plots.

	PENGRAM CONTROL (INPUT: + N. OUTPUT= 65, TAPE1= INPUT, TAP(3=00 TPUT, TAP- 5	CONTROL	2
	1=0 . (APE 6=65. TAPE 7=65. TAPE 9=65.)	CONTROL	3
	Pral Kickfokike	CONTPCL	ů.
	OIMS WS TON WILLS, 15) . W2 (15, 15) . W3(15, 15) . ROOTR (15) . WOOTI (15) .	CONTROL	Ė
r,	19079(11), ROTI(15), SAV1(200), SAV2(200), U(15), V(15)	CONTROL	F
	CIMPASION A(15,15),B(17,10),G(15,15),H(15,15),G(15,1).F(11,10).		7
	181(10.15).82(10.15).83(10.15).84(10.15).0(10.10)	CONTROL	В
	CCMMONISUAWRITY ISU NAM	CONTRCL	Ÿ
	OATA ISURNAMINI	CONTRCL	10
1.0	A CONTRACTOR OF THE CONTRACTOR	CONTROL	11
10	C CONTROL MAIN PROGRAM. AGSOLUTE DIMENSIONS FOR ALL ARRAYS ARE	CONTROL	12
	DECLARS NOT AND DESCENT THROUGHOUT THE SPOCKER THE THE HOTH	CONTROL	13
	COMMON RECORD TO CHANGE DIMENSIONS OF ARRAYS REQUIRES CHANGES ONL	-	14
	G IN THES ROUTINE. MX MUSE HE SET FOUNT TO NNX"1" WHERE MX IS THE	CONTRIL	15
		CONTRCL	16
15	MAXIMUM DIMENSION OF THE STATE VECTOR.		
	6	CONTROL	17
	JF (ISUANAM .GF. 2) WRIT? (3,990)	CONTROL	15
	990 FORMAT(1x, *MAIN*)	CONTROL	19
	MX=15	CONTROL	20
.20	MY=1.2	CONTROL	21
	MU= 10	CONTRCL	22
	MS= 200	CONTRCL	23
	CALL CNTRLR (A.B.C.H.G.F.K1.K2.K3.K4.Q.W1.W2.W3.RQOTM.PDDTI.		24
	19079,8071,5AV1,5AV2,U,V,	CONTROL	25
) (?MX,MY,MU,MS,MAT1,MAT?,MAT3,MAT4,MAT5,MAT6}	CONTRCL	26
	SIDE	ON TROL	27
	r NO	CONTRCL	26

21146 Oth LIVe	400	77/74	CPT=1	FTN 4.2475J60	W1/U9//5	1191.
		SHOROHITME 1°	19 (Y.A.Y.B.C.N.M.		100	2
			14 T1 . M4 T2 . MA T3 . MA T4	.MATS.MAT6)	400	3
				, MAT41 . C(MAT5 . MAT6)	A D D	4
		COMMENZALBURI		•••	4.0 ∂	5
r			.2) WRITE (3,990)		A 0 h	6
	990	FORMAT (LK. *A			4 DB	7
	, ,	00 13 1=1.0			O.C.A	8
		00 11 J=1.M			4.00	9
		CITATY=(L.ITC	(L.T) **Y+1(L.		A 00	10
10	10	CONTINUE			4.00	11
• •		PETURN			4 DD	17
		END			4 D D	1.3

ORIGINAL PAGE IS OF POOR QUALITY

			_
	SUBROUTINE ASCALE (N.J. M. HM.P.A. H.C. DI FAR.	ASCALE	2 3
	1 MX, MY, MU, MS, MAT1, MAT2, MAT4, MAT4, MAT5, MAT6)	ASCALE ASCALE	4
	C C C C C C C C C C C C C C C C C C C	4 SCALE	5
_	THIS SUBROUTINE SCALES THE MATRIX A LOF DIMENSION NI WITH A DIAGONAL SIMILARITY TRANSFORMATION, SUBROUTINE REDUCT IS	ASCALE	6
5	C A DIAGONAL SIMILARITY TRANSFORMATION. SUBROUTINE REDUCT IS CALLED TO DETERMINE THE IFRECUCIBLE SUBMATRICES OF A.	ASCALE	7
	C CARRED TO DETERMINE THE TENTOOTHER SUSHKINIDES OF AS	ASCALE	8
	C J- NUMBER OF TRREDUCTBLE SUPPATRICES	ASCALE	9
	C MH(1)- TIMENSICH OF THE ITH SUMMATRIX	ASCALE	10
1 ^	M - MATRIX WHOSE ITH ROW SENTAINS THE ORIGINAL ROW AND COLUMN	ASCALE	11
1	C NUMBERS OF THE ITH SUPMATRIX	ASCALE	12
	C TRANSFORMATION MATPIX	ASCALE	13
	C P - VECTOR CONTAINING THE CIAGONAL FLEMENTS OF THE	ASCALE	14
	c	4 SCAL C	15
15	C THE ROUTINE PRODUCES THE SCALED A MATRIX	ASCALS	16
	COMMON/COND/READ.SYSTEM.OUTPUT.NX.NY.NYU.NXC.NUC.N1.N2.DIGITL.	ASCALE	17
	1CCNTUP, NUMERS, FRPS, TRESP, MODEL, NSCALE, SAV, CMAT, NK2, I FLAG,	SCALF	18
	2 IGC. FORM, IPT. READS, MIXEC, MULTRY, SCAPLY, ZOM, KOUNT	ASCALE	19
	INTEGER READ.SYSTEM.OUTPUT.FCRM.CCNTUR.SAV.CMAT.READ3. FRPS.TRESP	ASCALF	20
20	INTEGER DIGITE, SCAPET, 70H	ASCALE	21 22
	DIM-NSION DIBAR (MX)	ASCALE ASCALE	23
	LIMEDEION BENX HAS HER CHX HAX HOLD CHX HAX	ASCALE	24
	DIMENSION M(10,20), MM(20), P(20)	ASCALE	25
	CCMMCN/SUBWRIT/ ISUBNAM	ASCALE	26
25	IF(ISURNAM.GE.2) WRITE(3,490) 990 FORMAT(1Y.*SCALE*)	ASCALE	27
	NSC4LE # 0	SCALE	28
	11621=0	ASCALE	29
	CALL REDUCE (N. J. MM. M. A. M. C. ITEST.	ASCALE	30
7.1	1MX, MY, MU, MS, MAT1, MAT2, MAT3, MAT4, MAT5, MAT6)	SCALE	31
7 .3	IF (TYFST-EQ.01 SO TO 110	ASCALE	32
	90 iii I=i,N	ASCALE	13
	P(I)=1.0	SCALE	34
	111 CONTINUE	ASCALE	35
75	MRITS (3,112)	ASCALE	36
	112 FORMAT (/* SIMILARITY TRANSFORMATION MATRIX SET EQUAL TO IDENTI		37
	114-71	ASCALE	3.8
	RE TU⊇N	ASCALS	39
	110 CONTINUE	ASCALE	40
40	00 75 T=1•N	SCALE	→1
	P(1) = 0 ⋅ 0	ASCALE	42
	75 COMTINUE	A SCALE A SCALE	43 74
	STOP=1.0	ASCALE	45
	00 100 T=1.J	ASCALE	46
45	NI=MM(I)	ASCALE	47
	IF (NI.NE.1) GO TO 70	ASCALE	48
	P(M(I,1))=1.0 GC TC 160	ASCALE	49
	71 CONTINUS	ASCALE	50
5.0	DO 50 II=1.NI	ASCALE	51
2.0	00 51 JJ=1,NI	ASCALE	د 5
	((LL,1)M,(II,1)M)A=(LL,1I)B	ASCALE	5.3
	51 CONTINUE	ASCALE	54
	DIGAP(II)=3.C	ASCALE	٠5
5.5	P(M(I,II))=1.0	ASCALE	56
	50 GENTINUS	ASCALE	57
	TCTCC=0	ASCALE	5.5

30Hb	OUTTNE ASCALE	/1/74 OPT=1 FT	4 4.2+75060 01	1/09/76	13.59.45.
	K:	•^		ASCALE	F9
		13 II=1.NI		ASCALE	f D
FO		APT = 0 • 0		SCALE	61
		MIP = 0, 1		ASCAL	62
		20 IP=1.NI		ASCALE	€3
		F (II.EQ.IP)GC TO 20		ASCALE	€ 4
		AIP=2AIP+9(II,IP)**2		A SC AL S	6.5
£ 5		API=SAPI+8(IP.II)**2		ASCALE	€6
	20 00	ONT INUS		ASCALE	€7
	01	[TTY=SORT(SAPI/RAIP)		4 SCALE	£8
	0 1	IRAR(II)=SQRT(DITTY)		ASCALE	59
	01	[8ARI=1.0/0IBAR(II)		ASCALE	70
70	ρ	(M(I,II))=P(M(I,II))*OI9AR(II)		ASCALE	71
	DO	0 30 L=1.NI		ASCALE	72
	Ą	(TI.L)=B(II.L)+OIBAR(II)		ASCALE	73
	30 CC	CNTINUE		ASCALE	74
	0.0) 4) L=1.N[ASCALE	75
7.5	R	(L.II)=8(L.II)*DIBARI		ASCALE	76
	40 CC	ONT INUF		ASCALE	77
		=K + 1		A SCAL ?	78
		F ((DIBAR(II)).LE.(1.+STOP))ICTCO=ICTCO+1		ASCALE	79
		(()IRAR(II)).GT.(1.+STOP))ICTCC=0		ASCALE	80
A O	16	F (TCTCO.EQ.NI) GO TO 3		ASCALE	A 1
		ONT INUE		ASCALE	₹2
		F (K.LT.40) GO TO 4		ASCALE	6.3
	3 CI	CNTINUF		ASCALS	84
		ONT INUE		ASCALE	85
A5	D.	C 60 T=1 N		ASCALE	86
		0 60 L=1.N		ASCALE	87
		(T,L)=P(I)*A(I,L)/P(L)		ASCALE	88
		ONT INUE		ASCALE	A9
		F (IPT.LT.1) GO TO 200		ASCALE	90
30		RITE (3,201) (P(I),I=1,N)		ASCALE	91
		ORMAT (/18x, * THE DIAGONAL TRANSFORMATION MATRI	X [2+140X*(E50*8))	ASCALE	92
		CNTINUE		ASCALS	93
		FTURN		ASCALF	94 95
	£1	ND .		ASCALE	מב

ORIGINAL PAGE IS OF POOR QUALITY

Saution Tre	(ART) /32/9 OP (=1		
		CARD	2
	SUBROUTINE CARD	CARD	3
	COMMON/COND/PEAD.SYSTEM.OUTPUT.NX.NY.NU.NXC.NUC.NI.NZ.DIGITL.	CARD	4
	1 CONTUR, NUMERS, FRESP, MOCEL, NSCALE, SAV, CHAT, NKZ, IFLAG.	CARD	5
_	1 IGO. FORM. IPT, READS. MIXEO. MULTRI. SCAPLT, ZOH. KOUNT INTEGER READ, SYSTEM, OUTPUT, FORM, CONTUR, SAY, CMAT, READS. FRPS. TRESP	CARD	6
5		CARD	7
	INTEGER DIGITL, SCAPLI, 70H	CARD	8
	COMMON/ACOND/DELT.FINALT.IFRFG.FFREG.DELFRG. GAIN1.GAIN2.M	CARD	ğ
	CCMMCN/LAREL/INPI,OUTPT,TITLF	CARD	10
	COMMON/SURNRIT/ ISUBNAM	CARD	11
10	REAL INPT(10), OUTPT(20), TITLE(8)	CARD	12
	REAL IFREQ.M NAMELIST/CODE/READ.SYSTEM.DUTPUT.NX.NY.NU.NXC.NUC.N1.NZ.DIGITL.	CARD	13
	1 CONTUR, NUMERS, FRES, TRESP, MODEL, NSCALF, SAV, CHAT, NKZ, IFLAG, IGO,	CARD	14
	2FORM, IPT, READ3, KOUNT, DELT, FINALT, IFREQ, FFREQ, DELFRQ, GAINI, GAINZ,	CARD	15
		CARD	16
15	SMIXID, MULTRI, SCAPLI,	ÇARD	17
	47 OH, M. TSUBNAM	CARD	18
	IF(ICURNAM.SE.2) WRITE(3.990) DATA PST/10HROCO /.PLOT/10HPLOT /	CARD	19
		CARD	è é
	990 FCRMAT(1X, *CARD*)	CARD	21
20	1 FORMAT (8810)	CARD	22
	2 FCPMAT (4012)	SARO	23
	IF (KOUNT.NE.1) GO TO 10	CARD	24
	HRITE (3-11) 11 FORMAT (/-" CONTROL PROGRAP PERMANENT FILE JNELIB.GYPLE 13. J		25
		CARD	26
25	1NUARY 1.1976 *,/)	CARD	27
	13 CONTINUE	CARD	28
	IF (CONTUR.EQ.1.AVO.KOUNT.GT.1) GC TO 5	CARD	29
	READ (1,1) TITLE	CARD	30
	IF (TITLE(1).EQ.PLOT) GO TO 300	CARD	31
30	IF (EOF(1).NE.O) STOP	CARD	32
	HPITE (3.3) TITLE	SARD	33
	3 FORMAT (1H1, BA10)	CARD	34
	IF (IFLAG .EO.1.AND.KOUNT.GT.1) RETURN	CARD	35
	READ (1,CODE)	CARD	36
35	140 FORMAT (10x, *CONTINUOUS SYSTEM*)	CARD	37
	141 FORMAT (10X, *SAMPLED-DATA SYSTEM*)	SARD	38
	142 FORMAT (10K, *DISCRETE SYSTEM*)	CARO	39
	243 FORMAT (10%, *MIXED OPTION*)	CARD	40
	143 FORMAT (10X,*OPEN LOOP*)	CARD	41
40	144 FORMAT (10X, *CLOSED LOOP*)	CARO	42
	145 FCRMAT (10X, *RCOT LOCUS*)	CARD	43
	245 FORMAT (10X,*POOT CONTOUR*)	CARD	44
	146 FORMAT (10%, *LOAD ROUTINE INPUT*)	CARD	45
	147 FORMAT (10X, *MATRIX ROUTING INFUT*)	CARD	46
45	148 FORMAT (10x, +CHANGE ROUTINE INFUT+)	CARD	47
	149 FORMAT (10X, *CLASS ROUTINE INFLY*)	CARD	48
	151 FORMAT (10X, *TRANSFER FUNCTIONS*)	CARD	49
	152 FORMAT (10X,*EIGENVALUES*)	CARD	50
	153 FORMAT (10x, *FREQUENCY RESPONSES*)	CARD	51
50	154 FORMAT (10x. PONER SPECTRA*)	CARO	52
	155 FORMAT (10X.*TRANSIENT RESPONSES*)	CARD	53
	IS=DIGITL+1	CARD	54
	GC TO (170,171,172), IS	CARD	55
	170 HRITE (3,140)	CARD	56
ș ș	GO TO 200	CARD	5 7
	171 WRITE (3-141)	CARD	58
	60 TO 200	DANG	,,,

SUBFBUTIKE	0420	73/74	OPT=1	FTN 4.2+7506C	01/09/76	13.59.49.
		WRITE (3,142)			CARO Card	5 9 E 0
	236	TE (MIXED .ED			CARD	£1
E C	177	GO TO (173,17 WRITE (3,143)	4,1/5/,5	17 3 I 5 M	CARD	62
	17.7	GC TO 701			SARD	63
	176	WFITE (3,144)			CARD	ě4
		GO TO 221			CARD	65
£\$	175	WRITE (3,145)			CARD	€6
• •		GC TG (176,17	7,178,17	9) READ	CARD	€7
	175	WRITE (3,146)			CARO	€8
		GO TO 302			CARO	69
	177	HRIT∈ (3,147)			SARO	70
70		GC TO 202			CARD	71
	174	WEITE (3,148)			CARO	72
		CO TO 505			CARO	73 74
		WRITE (3.149)			CARD	75
	202			YSTEM, NE. 3. AND. CONTUR. EQ. C) WRITE (3.151)	CARD	76
75		IF INUMERS .E			CARD	77
		IF (CONTUR .E		(116 (3,245) FRPS .FD1) WRITE (3,153)	SARD	78
		IF (FRPS .EQ.			CARD	79
		IF (TRESP .NE			CARD	80
8.0				TRESP, CHAT. DELT, NY, SYSTEM, FRPS, NK2, FINALT.	CARD	51
6.0		1 NIL MIXED - NUME	PS. TFLA	IFREG. NXC.OLTPUT.FORM. IGC. DELFRG. NUC. DIGIT		82
				H. IPT. HULTRT, SAV. GAIN1. H1 . KOUNT, MODEL . N SCAL		P3
		RGAIN2.NZ.H			CARD	84
	150		.*NX = 4	1,14,11 X. *REAC = #, 14.8X, *TRESP = *,14.8X,	CARD	85
85	•			T =*.F7.3/10x.*NY =*.I4.11x.*SYSTEM =*.	CARD	36
		214,9X,*FRPS		X, *NK2 =* ,14,8%, *FINALT =*, F7.3/16%,	CARD	87
		3*NU =*. [4.11	X. *HIXE	= +, 14, 8x, + NUMFRS = +, 14, 8x, + 1FLAG = +, 14.	CARD	9.8
]X,	. CARD	49
				3x, *DELFRG =*, F7.3/10 x, *NUC =*, I+, 11 X,	SARD	a ŋ
प ्				ITUR =+,14,8X,*RFAD3 =+,14,8X,*FFRE0 =+,	CARD	91
		7F 7. 3/10x .* ZOH	=* , I4 , 1	1x, + IPT = +, I4, 8 x, + MULTRT = +, I4, 8 x,	CARD	92 93
		R#SAV =#,I4	, 8 X, *GA]	N1 = +, F7. 3/10 x, *N1 = +, T4, 11 x, *KOUNT = +	CARD	94
				XX, *NSCALE =* .14.8X, *GAIN? =* .F 7. 3/10 %.	C ARD C ARD	94
		1*N2 =*, 14,71) ARD	9.5
95		TF (MULTRIGT			CAPO	97
		IF (NY.E0.0)		7. LT. 8) GO TO 58	CARD	98
		READ (1.1)(OU			CARD	99
		IF (EOF(1).NS			CARS	100
100		GO TO 51			CARD	101
1.70	k1.6	READ (1.1) (00	TPTITE	(= 1 . A)	CARD	102
		IF (EOF(1).NE			CARO	103
	5.1	IF (NU.EQ.0)			CARD	104
				J.LT.8) GO TO 52	SARO	1 י5
105		PEAD (1,1) (1	NET(I),	I=1,NU)	CARD	1 6 €
		IF CODE(1).NE	. 01 STO		CARD	107
		GC TO 53			CARD	106
	5.3	READIL.11(IMF			CARD	1(9
		IF (EOF(1).NE	. 0) STO		CARD	110
110	53	CONTINUE			CARD	111
		RETUPN			CARD	112
	300	CALL COPO			CARD	113 114
	_	STOP	71.5		CARD Card	115
		READ (1.1) TI	ILE		, M.N. ()	**>

ORIGINAL PAGE IS OF POOR QUALITY

SUBFOU	TINE CARE	73/74	OPT=1	FTN 4.2+75050	01/19/75	13.59.49.
115	IF	(FOF (1) .NF	0) GO TO 94		2480	116
		ITE (3.8) 1			CARO	117
	A FC	RMAT (/RA1	3/1		CARD	118
	RE	TURN			SARD	119
	98 IF	(FORM.ED.)) 60 TO 99		CARD	1 20
120	NO:	± 3			CARD	121
	X Y	x = +1 .			CARD	122
	MP	IT" (7) ND.	XYX. X Y X. XYX		CART	123
	99 31	O.P.			CARD	124
	E N	n			1490	1.25

		SUPROUTINE CHANGE {4.B.C.H.G.F.K1.K2.K3.K4.D.W1.W2.W3.	CHANSE	2	
		14×.44, MV, MU, MS, MAT1, MAT2, MAT3, MAT4, MAT5, MAT5)	CHANGE	3	
		CIMUNSION W1 (MX, MX), WZ (MX, MX) W 3 (MX, MX)	CHANGE	4	
		COMMON/CONT/READ, SYSTEM, OUTPUT, NX, NY, NU, NXC, NUC, N1.N2.DIGITL.	CHANGE	5	
Ŧ.	1	LCONTUR, NUMERS, FRRS, TRESP, MODEL, NS CALE, SAV, CMAT, NK2, I FLAG,	CHANGE	6	
	1	LIGC.FORM.IPT.REAC3.MIXEC.MULTRT.SCAPLT.ZOH.KOUNT	SHANSE	7	
		INTEGER PEAD, SYSTEM, OUTPUT, FORM, CONTUR, SAV, CMAT, PEADS, FRPS, TRESP	SHANGE	8	
		INTEGER DIGITL. SCAPLT. 70H	CHANSE	9	
		COMMON/ACCHD/DELT.FI NALT, IFREC.FFREQ.DELFREQ.GAIN1,GAIN2,M	CHANGE	10	
10		REAL K1. K2. K3. K4. IFRED.M	CHANGE	11	
		CIMENSION A(MX.MX).3 (MX.MU).C (MX.MX).H (MY.MX).G (MY.MX).F (MY.MU).	CHANGE	12	
		1K1(MI), MX), K2(MU, MX), K3(MU, MX), K4(PU, MX), D(MU, MU)	CHANGE	13	
		COMMON/BLKDAT/NUMER, DENOM, GAIN, GRAPH, PLDCK, STATE, YTOV, ZTOU, Y7TOK,	CHANGE	14	
		1 ITHINY , ITHINU, KELOCK, NYTOV, NZTOU, KXYL, NYZTOK, NXT, NYT, NUT, NY1, NU1	CHANGE	15	
15		REAL NUMER	CHANGE	16	
• •		INTIGER GRAPH. BLOCK. STATE. YTOV. ZTCU. YZTOK	CHANGE	17	
		OTHENSION GRAPH(20.5). BLOCK(20.3). NUMBER(20.5). CENOM(20.5).	CHANGE	18	
	,	XGAIN(201.STATE(20,41,ITHINY(30),ITHINU(20).YTOV(20,2),	CHANCE	19	
		X 7TOU(23.2).NXYU(8).Y7TOK(20.2)	CHANGE	20	
26	C,		CHANGE	21	
	С	USER WRITTEN SUBROUTING TO CHANGE SYSTEM PARAMETERS SET UP IN	SHANGE	2 P	
	Ċ	OREVIOUS CASE	CHANSE	23	
	С		CHANGE	24	
		COMMON/SUBWRITY ISUBNAM	3 HA NGE	25	
25		IF(TSUPNAM.G5.2) WPITE(3.990)	CHANG	26	
. ,	390	FORMAT (1x. *CHANGF *)	CHANGE	27	
	,,	PETHEN	CHANGE	28	
		TNO	CHANGE	29	
		•••			

afeedii,	TINE GLACS	73/7+	CP1=1		FTN 4.2+75056	01/39/75	13.59.50.
	,	10 92 J±1,N9L	-cck			CLASS	59
		READ (1,1) C	-F CCk ([']) ')=	1,3)		CLASS	€0
⊢. 0		IF COPELLAND	.01 STOP			CLASS	f 1
		CONTINUC				CLASS	6.7 6.3
		00 33 I=1.NBL				CLASS	64
			1UMER (I . J) . J=	1,5)		3LASS	65
		CF (EOF(1) N	. O 2105			CLASS	F 6
15		CNTINU	0.04			CLASS	€7
		00 94 E=1,NAC		. 1 61		GLASS	6.8
		IF (:0F(1).NE	7FNCM([,J),J=	.11.31		CLASS	€9
		CONTINUE				CLASS	7.9
70			SAIN([) . [=1. N	(B) (BCK)		CL ASS	71
76		IF ()F(1).N				SLASS	7.2
		CONTINUE				CLASS	~3
		00 5 I=1.NBL	nck			CLASS	74
		ng 5 J=1.4				CLASS	75
75		STATE (I.J)=	0.6			CLASS	76
	5	CONTINUE				CLASS	? ? 78
		N X = 0				CLASS CLASS	79
		na za I=1•N9i				CLASS	80
		STATE(I.1)=G	PAPH(I,1)		0 TO 21	CLASS	P 1
80		IF (OLCOK(I)	2).EQ.1.ANU.	3LOCK(I,3),E0.1) (30 10 71	2LASS	۶,۶
		TE CHEOLKII	/) . GT . M L U C K ()	(,3)1 GO TO 22 (,3)1 GO TO 23		CLASS	83
		1F ("LCCKII; STAT ([,3)=1	23 4 E (14 SE 30 K 1)	(4.17) 60 10 73		SLASS	84
		5141. (1431-1 GO TO 24				SLASS	45
85		STATE(1,3)=2				CLASS	۷6
n:		STAT. (1.2)=N	x + 1			CLASS	P.7
		STATE (I, 4) =9				CLASS	88
		NX=NX+PLOCK (CLASS	#9
		GC TO 20				CLASS	90
⊣ 0	21	ST4T= (I.3)=4				CLASS	91 92
		60 TO 20				CLASS	93
		STATE([],3)=3				CLASS	ç.
		CONT INUF				CLASS	95
		NU= 1				CLASS	c €
95		00 2: K=1,N0	LULK Duly ell et i	NU) NU=IAES (GRAPH	(K.51)	CLASS	97
		CCHTINUF				CLASS	9.8
		NXT=NX+NX1				SLASS	çq
		NYT= NBLOCK+N	Y1			CLASS	100
100		NUT = NU+NU1	•			CL ASS	101
1			.ANT.KOUNT.G	T.1) GO TO 271		CLASS	102
			ITHINY(I),I=			CLASS	103
		IF (OF (1).N				CLASS	104 105
	47	FOFMAT (/19X				CLASS	106
195				.Eq.3) GO TO 232		CLASS	167
			.1) GO TO 24			CLASS	108
	2.12		THINU(I).I=1	17011		CLASS	109
	270	IF (50F(1).N	ITTOV NZTOU N	YZTOK		CLASS	110
440	₹5 0	IF (CF(1). N		11.04		CL ASS	111
110			.0) GO TO 23	1		CLASS	117
		00 712 I=1.N		-		CLASS	113
			TOV(I.J).J=1	,21		CLASS	114
		TE (FOF (1).N				CLASS	115

204 6 C01	THE CLASS	73/74 OPT=1	FTN 4.2+75060	01/09/75	13.59.5%
115	212 (CONTINUE		CLASS	116
	271 1	IF (N/TOU.E0.0) GO TO 211		CLASS	117
	ŗ	70 213 I=1.N7TOU		CLASS	118
		PEAO (1,1)(/TOU(T,J),J=1,2)		CLASS	119
		IF (COFIL).No.0) STOP		CLASS	120
122		CCNTINUE		CLASS	121
		IF (NYZTOK.EQ.0) GO TO 243		CLASS	122
		00 219 I=1.NY7TOK		SLASS	123
		READ (1.1) (YZTOK(I.J).J=1.2)		CLASS	124
		IF (EGF(1).NE.O) STOP		GLASS	125
125		CONTINUE		SLASS	126
		IF (SYCTEM.FQ.1) SYSTEM=2		CLASS	127
		CONTINUE		CLASS	128
		IF (N3LOCK.EQ. 2) 60 TO 241		CLASS CLASS	129
		FORMAT (VIDX. * ITHINU*/)			1 30
1 30		FORMAT (/10X,*YTOV*/)		DLASS Slass	131 132
		FCFM1T (/10Y,*ZTOU*/)			133
		FCRMAT (/10 X. * YZTOK*/)		CLASS CLASS	134
		90 10 272		CLASS	135
		CONTINUE		CLASS	136
135		N X 1 = N Y V V (1)		CLASS	137
		NA1 = NX A(1(S)		CLASS	138
		NU1 =NXYU (3)		CLASS	139
		N X L = N X A11 (P)		CLASS	140
		NYT=NXY((5)		CLASS	141
140		NUT = NX YII (6)		CLASS	1-2
		N X=N XYU(7)		CLASS	143
		NU=NXYU(2) GO TO 273		CLASS	144
		NXYU(1)=NX1		CLASS	145
414		NXYU {2}=NY1		CLASS	146
145		NXYU(3)=NU1		CLASS	147
		NXYU(4)=NXT		CLASS	148
		NXYU(=)=NYT		SLASS	149
		NXYU (5)= MUT		CLASS	1 = 0
150		NXYU(7)=NX		CLASS	151
¥ .2 . 17		UYYU (8) = 11U		CLASS	152
		CONTINU		CLASS	153
		IF (MIT .EQ. 1) GO TO 340		CLASS	154
		WETT- (3.95)		CLASS	155
1 =		FORMAT (//* BLCCK DIAGRAP INPUT PARAMETERS	ARE 4//)	CLASS	156
•		WPTT- (3.96)		CLASS	157
	3.,	FORMAT (10X, # GRAPH#/)		CLASS	1.58
		00 37 T=1.NBLOCK		CLASS	159
		WRITE (3,1) (GPAPH(I,J),J=1,5)		CLASS	160
160		CONTINUE		CL ASS	161
		HRITS (3,98)		SLASS	1 t 7
	39	FCRMAT (/10x, * PLOCK*/)		CLASS	163
		no ag Imi, NGLOCK		CLASS	164
		WRIT= (3.1) (PLOCK(I,J),J=1.3)		CLASS	165
165		CCALIAO		CLASS	166
		MPTT- (3,81)		CLASS	1 6 7
	81	FORMAT (/19X, FNUMER*/)		SLASS	1 (8
		00 82 I=1,NBLOCK		CLASS	1 6 9
		WRITE (3,2) (NUMER(1,J),J=1,5)		CLASS	170
170		CCNTINUE		CLASS	171
		WRIT: (1,87)		CLASS	172

<u>JUPPOUTINE</u>	CL ASS	73/74 CPT=1 FTN 4, 2+75060	01/09/76	13, 59, 55,
	AT	FORMAT (/10%,*CEHOM */)	CLASS	173
		DO H4 I=1,NALCCK	CLASS	174
		WRIT: (3,2) (DENDM(I.J).J=1.5)	CLASS	175
17:		CONTINUE	CLASS	176
• •		WRITE (3,85)	CL AS 3	177
		FORMAT (/10x, *GAIN*/)	3 LASS	178
		WRITE (3.2) (GAIN(I),I=1,NBLOCK)	CLASS	179
		WRITE (3,87)	CLASS	180
1 H C		HRITE (3.1) (ITHINY(I), I=1,NYT)	CLASS	181
•		IF (READ. EQ. 4. ANT. SYSTEM. EQ. 3) GO TO 341	CLASS	1.82
		IF (MIXED.NE.1) GO TO 242	CLASS	183
		WRITE (3,214)	CLASS	164
		WRITE (3.1) (ITHINU(I), I=1.NUT)	CLASS	185
180		IF (NYTOV.EO. 0) GO TO 249	CLASS	186
1 ')		WRITE (3,215)	CLASS	187
		00 216 I=1,NYTOV	CLASS	198
		WRITE (3,1)(YTCV(I,J),J=1,2)	CLASS	169
	216	CONTINUE	CLASS	198
199		TE (47TCU.EQ.0) GO TO 241	CLASS	191
1 * 1	-	WRIT: (3,217)	CLASS	192
		OC 218 I=1.NZTCU	CLASS	193
		WRITE (3,1)(3700(I, J), J≈1, 2)	CLASS	194
	24.6	CONTINUE	CLASS	195
* *:		IF (NY7TNK.EO.S) GO TO 242	CLASS	196
14.	- 41	WRITE (3,220)	CLASS	197
		DC 221 T=1,NY7TOK	CLASS	198
			CLASS	199
	224	WRITE (3,1) (Y7TOK(I,J),J=1,2)	CLASS	200
		CONTINUE	CLASS	201
201	24.7	CONTINUE	CLASS	212
		IF (NALOCK, EQ. C) RETURN	CL ASS	203
		00 440 I=1, NALCCK	SLASS	264
		IF (DENOM(1, RLOCK(1, 3)), EQ. 1.) GO TO 440	CLASS	205
		N9= nLCCK(I,3)	CLASS	206
205		XX=25NOM(I,N9)	CLASS	207
		IF (XX.NF. 0.0) GO TO 442	CLASS	2 0 8
		WRITE (3,441) I		209
	44,3	FCHMAT (/10x. + LEADING COEFFICIENT OF NO. + . 15. + PLOCK IS ZERO +/1	CLASS	213
		60 10 440	CLASS	211
210	142	CONTINUE	CLASS	212
		00 441 J=1.N9	CLASS	213
		BENGM(I, J)= DENOM(I, J)/XX	SLASS	214
	++ 1	CONTINUE	CLASS	215
		GAIN(I)= GAIN(I)/XX	CLASS	216
215	٠4٠(CONTINUE	CLASS	217
		DO 30 I=1+NREOCK	CLASS	219
		IF (STATE(I,3).NE.4) GO TO 40	CLASS	219
		00 31 J=1,NIN	CLASS	220
		IF (GRAPH(I, J+1).EQ.Q) GO TO 31	CLASS	221
220		C(I+NY1, TA9S(GRAPH(I, J+1))+NY1)=-ISIGN(1, GRAPH(I, J+1))+GAIN(I)	CLASS	222
		*NUMER (I+1) / DENOM (I+1)	CLASS	223
	31	CONTINUE		224
		IF (GR APH(I,5).EQ.0) GO TO 30	CLASS	225
		F(I+AY1,IA9S(GRAPH(I,5))+NU1)=ISIGN(1,GRAPH(I,5))+GAIN(I)	CLASS	236
225	1	L*NUHER(I,1)/DENOM(I,1)	CLASS	
		GC TC 30	CLASS	227
	40	IF (STATE(1.3).EQ.3) GO TO 50	CLASS	278 229
		NOSTESTATE(I,4)+1	CLASS	(()

ORIGINAL PAGE IS OF POOR QUALITY

	SURFOUTINE CLASS	73/74 OPT=1	FTN 4.2+75160 0	1/09/76	13.59.55.
	NOS T	=NOST1-1		CLASS	230
230		NOST.NE.01 GO TO 45		SLASS	231
r .) (E (3,46)		CLASS	2 3 2
		AT (/13x.* INCONSISTEN	T DATA IN CLASSED	CLASS	233
		0 30		CLASS	234
		2 J=1,NOST		CLASS	2 3 5
235			11=SAIN(I) *(NUMER(I,J) =DENOM(I,J) *NUMER	CLASS	236
		(CST(1)	••••••••••	CLASS	2 3 7
	42 CONT			CLASS	858
		(STATE (1, 1).EQ. 1) GO T	0.41	CLASS	239
		GRAPH(I.5).EQ.3) GC T		CLASS	240
240			NULL) = ISIGN (1. GRAPH (I. 5)) GAIN (I) NUMER	SLASS	241
7 44 6		SLOCK (I,2))		CLASS	242
	43 CONT			CLASS	243
		4 J=1,NIN		CLASS	244
		(GR APH(I, J+1).E0.0) GC	1 70 44	CLASS	245
249)+NY1)=-ISIGN(1.GRAPH(I.J+1))+GAIN(I)	CLASS	246
£ •		FR (I . BLOCK (I .2))		CLASS	247
	44 CCN1			CLASS	248
	44 CCN1			CLASS	249
		10 30		CLASS	250
200				CLASS	251
250		11NU2 50 J=1.NIN		CLASS	252
		(GR #PH(I.J+1).EQ.0) GC	1 TO 60	CLASS	253
		T=STATE(IABS(GRAPH(I,.		CLASS	254
		(NOST.GE.2) GO TO 47	1, 11, 14,	CLASS	255
				CLASS	256
259		TE (3,48)	ITOR INPUT NOT ALLOWED ?)	CLASS	257
			IN THE I WOL WEED AGE	CLASS	258
		TO 60		CLASS	259
		72 L=2.NOST	7 1.41 \ 21 11 -4 ANY 4 1- H 17 ANY 4 CTATE / T ARC	CLASS	2 60
		, wild 2 Wir (1 W) 2 G Zwen	I,J+1)},2}+L-1+NK1}=H{I+NY},STATE{IABS }+ISIGN{1,GRAFH{I,J+1}}#GAIN{I}#GAIN{IAB		261
260			BS(GRAPH(I, J+1)).L-1) -NUMER(I ABS(GRAPH	CLASS	262
		J+1)),NOST) *DENOM(IABS		CLASS	263
	72 CON		TOWN THO TENTE TO	CLASS	264
			111,21+1.LT.BLOCK(IABS(GRAPH(I,J+11),3)	CLASS	265
			11111/1411/11/11/11/11/11/11/11/11/11/11	CLASS	266
3.4		TO 60	(I.J+1)), 2)+NX1)=H(I+NY1.STATE (IABS(GRAPH		267
			GAINTIABS(GRAFH(I,J+1))) FISIGN(1,GRAPH	CLASS	268
			GGRAPH (I.J+1)) . NOST) * CENOM (IABS (GRAPH	CLASS	269
			STURBERT LATER STATE OF THE STA	CLASS	270
		J+1)).1)	E. CC O. CO TO 73	CLASS	271
27			11),5).EG.O) GO TO 73		272
			GRAPH(I,J+11),5))+NU1)=ISIGN(1,GRAPH(IABS	CLASS	273
	1 (GN	APH([.J+1]),>))*GAIN([]*GAIN(IABS(GRAPH(I.J+1)))*NUMER(IABS		274
			GGRAFH(I,J+1)),2)-1)*ISIGN(1,GRAPH(I,J+1	CLASS	275
_			5 (GR APF (I +J+11) + 5)) + NU 1)	CLASS	276
27	F 73 DO	74 L=1.NIN			277
	CIL	+NY1, LAUS (GRAPH LAUS (GRAPH(I,J+1)),L+1))+NY1)=C(I+NY1,IABS(GRA	CLASS	278
			11+NY1)-ISIGN(1, GRAPH(IA8S(G PAPH(I, J+1)),	CLASS	279
			L)) *GAIN(I) *GAIN(IABS(GRAPH(I,J+1)))		280
_	74 CON			CLASS	281
213					262
	30 CON.			CLASS	283
		=NY1+1		SLASS	
		= NALOCK+NY1		CLASS	284 285
		AOII=II1.II2		CLASS	28 6
58	5 6(1)	I.[I]=C(II.II)+1.9		CLASS	1.00

OFFITTO POPE	LACS 73/74 OPT=1 F	FTN 4.2+75J60	01/09/75	13,69,55.
	80 CONTINUE		CLASS	2*7
	CALL THUR (C.WI.NYT.I.		CLASS	288
	1 MX. MY. MU. MS. MAT1. MAT2. MAT3. MAT4. MAT5. MAT6)		CLASS	289
	MAT 1 = MX		CLASS	290
2.6	MATTEMX		CLASS	291
	MATRIMY		CLAST	292
	MAT-+=MX		ZLASS	203
	HATS #MX		CLASS	294
	4AT6=MX		CLASS	295
295	CALL MULT (H1.H.H2.NYT.NYT.NXT.		SLASS	296
	1 HX, HY, HU, HS, HATE, MA TZ, MATZ, MAT4, MAT5, MAT6)		CLASS	297
	YM=17AM		CLASS	298
	MATROMX		CLASS	299
	CALL MAKE (H. WZ. NYT. NXT.		CLASS	300
300	1H X. MY, MU. MS. MAT1. MAT2, MAT3. MAT4. MAT5. MAT5)		CLASS	301
•	MATITMY		CLASS	302
	MAT3=MY		CLASS	203
	MATGEMU		CLASS	304
	CALL HULT (W1.F.W2.NYT.NYT.NUT.		CLASS	305
105	1MX, MY, MU, MS, MAT1, MAT2, MAT3, MAT4, MAT5, MAT6)		SLASS	306
	MAT1=MY		CLASS	317
	MAT 2=HU		CLASS	368
	MA T 3 = M X		CLASS	3 9 9
	MAT4=MX		CLASS	310
310	CALL MAKE (F. WZ. NYT, NUT,		CLASS	311
	1 MX. MY. MU. MS. MATI, MATP, MATS, MAT4, MAT5, MAT6)		CLASS	312
	DC 200 I=1.N9LCCK		CLASS	313
	NCST=STATE(T.4)		CLASS	314
	IF (NOST.EQ.0) GO TO 200		CL ASS	315
315	DO 201 J=1,NOST		CLASS	316
	A (STATE (1,2)+NCST-1+NX1, STATE(1,2)+J-1+NX1)=-D(ENOM(I.J)	CLASS	317
	IF (J.EQ.NOST) GO TO 201		CLASS	318
	4 (STATE (I, 2) = 1 + J + N × 1 , STATE (T, 2) + J + N × 1) = 1 + 0		SLASS	319
	201 CCNTINUE		CLASS	320
120	IF ([APS(GPAPH(I.5)).EQ.0) GO TO 110		CLASS	321
	P(STATE(1,2)+NOST-1+NX1, IARS(GFAPH(1,5))+NU1)=	ISIGN(1.GR&PH(I.5)1	SLASS	355
	117 CONTINUE		CLASS	323
	00 120 J=1,NIN		CLASS	324
	IF (GRAPH(I,J+1).EQ.0) GO TO 120		CLASS	3 2 5
325	DO 121 K=1.NX		CLASS	326
	A (STATE (I + 2) + NOST-1+NX 1+K+NX1) * A (STATE (I+2) + NC	ST-1+NX1,K+NX1)	3 L A 3 S	327
	1+H([A95(GRAPH(I,J+1))+NY1,K+NX1)*ISIGN(1,GRAPH	(I,J+1))	CLASS	328
	121 GCHTINUF		CLASS	379
	00 122 K=1.NU		CLASS	330
1 40	IF (F(1.K).NE.O.O) OUTPUT=3		CLASS	331
	P(STATE(I,2)+NCST-1+NX1,K+NU1)=B(STATE(I,2)+NO		CLASS	332
	1+F(IABS(GRAPH(I,J+1))+NY1,K+NU1)*ISIGN(1+GRAPH	(I,J+1})	CLASS	3?3
	122 CONTINUE		CLASS	334
	12G CONTINUE		SLASS	375
3 45	200 CONTINUE		SLASS	336
	10 240 I=1.NX		CLAST	337
	70 231 J=1.NX		CLASS	336
	$C(1+h\times1, J+h\times1)=0.0$		GLASS	379
	281 CONTINUE		SLASS	340
340	C(I+AX1,I+NX1)=1.0		CLASS	341
	280 CCHTINUF		CLASS	342
	no au I=1•Nn1		20 A 30	373

-t)#Pt1	UTIN- PEAC	S 74774 (RPT=1	FTN 4.2+75000	01/09/25	11.59
		00 191 J=1.NHT		DEASS	344
		0.0-1.0		CLASS	345
Cit. 1	191	CONTINU		CLATS	546
		0 (1 .1) -1 . 0		CLASS	347
	90	CONTINU		CLASS	348
		DO 322 T#1.NYT		CLA IS	349
		DO 1-22 J-1.NUT		CLATS	750
₹r. (IF (F(T.J). 1.0.0) GC TO 522		SLASS	351
		OUTPUT: 3		SLASS	₹52
		ec tu		CLASS	353
	522	CONTINUE		CLASS	354
		COLORES		CLASS	355
1 = 5	123	CONTINUE.		CLASS	356
		NU=NIIT		CLASS	357
		MA= MA1		GLASS	356
		N Y=11 Y T		CLASS	359
		RE TU?N	N.C	CLASS	360
100		f NO	'	DLASS	361

		ELECTRONITIES CHARLE IN C. C. C. C. C. M. V. M. M. M. M. M. M. M. M. B. M.	2 47 21 2	2
	r	SURROUTING CATELR (4.8.C.H.G.F.K1.K2.K3,K4.0,M1,M2.M3,RCCTF,ROOTI,		3
	'	1ROT9.ROTI.SAV1.SAV2.U.V.	CNTRLE	
		1 ROTR, ROTI, 7, 77, U, V,	CNTRLR	4
_	_	?MX,MY,MD,MS,MAT1,MAT2,MAT3,MAT4,MAT3,MAT61	SHTRLR	r.
5	c		CHTRLE	5
	C	THIS SUPROUTINE SERVES AS THE EXECUTIVE ROUTINE FOR THE	; NTRLR	7
	Ć	CONTROL PROCRAM. THE CONTROL PROGRAM IS CAPABLE OF PERFORMING	CHTRLP	8
	C	FOR LINEAR SYSTEMS, THE FOLLOWING CREMATIONS	SMTRLR	9
	Ç		CNTRLP	10
10	٠,	1. POCT LCCII AS A FUNCTION OF THE FEADRACK GAINS	CNTRLR	11
	r		CHTRLR	12
	C	2. DETERMINATION OF SYSTEM EIGENVALUES FOR OPEN AND	CNTPLP	1.3
	^	CLOSED-LOOP SYSTEMS	CHTRLR	14
	Ċ		CHTRLR	15
15	€	3. DETERMINATION OF SYSTEM TRANSFER FUNCTIONS FOR	CNTRLP	16
	Ċ	ARRITRARY INPUT-OUTPUT VARIABLES	SHIPLR	17
	č		CHTRLR	1.8
	č	4. CALCULATION OF TABULATED FREQUENCY RESPONSES	CHTPLR	19
	č	THE STEED FOR STEED THE ST	CHTRLR	50
20	Č	5. CALCULATION OF TARULATED FOWER SPECTRAL PENSITY	CHTRLR	ž 1
· (Č	FUNCTIONS.	CNTPLF	22
	ç	FORM TICAL.	CNTRLP	2.3
		C TANK ATER THE HISTORY OFFICIES		
	C	5. TABULATED TIME HISTORY RESPONSE	SMIRLR	24
	č		CHTPLP	25
25	r.	COMPUTATIONS ARE PERFORMED USING STATE VARIABLE MATRIX	SMIRLS	26
	c	NOTATION.	CHTRLR	27
	C		CNTRLR	28
	C.	CORRECTION MADE BY G. NORRIS JULY 5 73	CNTRLR	29
	C	7 AND SAVI, ZZ AND SAV? ARE SAME MATRIX	SNIRLR	3.0
30	^		SMIRLA	31
		COMMCN/COND/READ, SYSTEM, OUTPUT, NX, NY, NU, NXC, NUC, N1, N2, BIGITL,	CHTPLR	32
		1CONTUR, NUMERS, FRRS, FRESP, MODEL, NSCALE, SAV, CMAT, NK2, IFLAG,	SHIPLR	7.3
		1 IGC, FCRM, IPT, REAC3, MIXEC, MULTRT, SCAPLT, ZOH, KOUNT	CHIPLR	34
		INTEGER PEAD, SYSTEM, OUTPUT, FORM, CONTUR, SAV, CMAT, READS, FPPS, TRESP	CNTRL 9	35
35		INTEGER DIGITE, SCAPET, ZOH	CNTPLR	36
		CCHMCN/ACOND/ CELT.FINALT.IFREC.FFREG.DELFRG.GAIN1.GAIN2.MM	CNTRLP	3.7
		PEAL INPT(10). OUTPT(20).TITLE(6)	SHIFTER	.7 A
		CCMMCN/LA BELZINPT, OUTPT, TITLE	CNTRLP	19
		REAL IFPEO.K1.K2.K3,K4.HN	SNTRLR	40
→ 0		CIMENSION A(MX,MX),3(MX,MU),C(MX,MX),H(MY,MX),E(MY,MX),F(MY,MU),	SMTRLP	~1
		1 K1 (HU, MX) -K2 (HU, MX) -K3 (HU, MX) -K4 (HU, MX) -D (MU, MU) -	CNTPLP	42
		2W1(HX, MX), W2(HX, MX), W3(MX, MX), RCOTR(MX), ROOTI(MX), 40 TR(MX),	SHTPLP	43
		3ROTI (MX) . U(MX) . V (MX) . Z (MS) . ZZ (MS)	SHIPLR	44
	٢	DIMENSION 4 (15,15), 8 (15,10), C (15,15), H (15,15), G (15,15),	CHIRLR	45
4-3	r.	1 F(15,10), K1(10,15), K2(10,15), K3(10,15), K4(10,15), D(10,10)	SHIRLS	46
4	Ċ		SATRLE	47
	Ċ	DIMENSION W1(15,15), W2(15,15), W3(15,15), ROOTR(15), ROCTJ(15),	CALATA	→8
	,	1 ROTE(15), POTI(15), U(15), V(15), Z(200), ZZ(200)	CHIRLR	49
		OIMENSION H(10,20), MM(20), P(20), ICCND(29), JCON((29), RCCND(8)		
		EQUIVALENCE (READ, ICOND(1)), (DELT, ACOND(1))	CNTRLR	5.0
50		COMMON/ALKOAT/NUMER, DENOM, GAIN, GRAPH, BLOCK, STATE, YTOV, ZTOU, Y7TOK,	CNTRLP	51
		1 I THI KY. I THI NU. NBLOCK. NY TOV. NZ TOU. KXYU. KY ZTOK. NXT. NY T. NUT. NY 1. NUL	CHTRLR	: 2
		CIMENSION GRAPH (20.5), 9LOCK (20.3), NUMER (20.5), DENOM (20.5).	CHIRLR	53
		XGAIN(20),STATE(20,4),ITHINY(30),ITHINU(20),YTCV(20,2),	CNTRLS	54
		x 710U(23,2),NXYU(8),Y7TQK(27,2)	CNTRLP	7.5
3		INTEGER GRAPH, BLOCK, STATE, YTOV, 7TCU, YZTOK	CNTRLA	56
		REAL NUMER	SMTRLP	5.7
		CCMMCN/SUBWRIT/ ISUBNAM	CHTRLR	9.8

115	IF (CONTUR-EQ.1.AND.KOUNT.GT.1) GC TO 69	CHTRLR	116
•••	CALL GOTT (A.A.C. H.G. F.KI.K2.K3.K4.D.	CNTRL	117
	1 MY . MY . MI . MS . MAT1 . MAT2 . MAT3 . MAT4 . MAT5 . MAT6)	CHTRLR	118
	5º IF (544.60.0) 60 TO 70	CNTRLR	119
	CALL WOISC (A.R.C. H. C. F. K1. K2. K3. K4. B.	CNTRLP	120
120	1 MX. MY. MU. MS. MA T1. MU T2. MAT3. MAT4. M AT5. HAT6)	CNTRLR	121
2	JCONT(14)=0	CNTRLP	122
		SHTRLR	
	71 CONTINUE		123
	CALL STUP (J, M, MM, P, A, R, C, H, G, F, K1, K2, K2, K4, P, M1, M2, M3,	CNTRLR	124
125	1 RIDIR.	SNTRLR	125
1/5	CATAM, ATAM, ETAM, ETAM, ETAM, 27, UH, YM, YM, SYM, SYM, SYM, SYM, SYM, SYM,	CHTRLP	126
	F (TRTSP.GT.0) NPLOT=1	SHTRLR	127
	IF (IRESP.GT.O) NPLOT=TRESP	SNIRLR	126
	IF (FRPS.NE.D) NPLOT=NY*NU	SHIRLA	129
	IF (FPES.GT.O.AND.TRESP.GT.O) NPLCT=NY*NU+1	CNTPLR	130
1 *0	IF (FRPS.NE.J.AND.TRESP.GT.O)	CHIRLP	131
	IF (SYSTSM.FQ.3) NPLOT=1	CNTPLR	1 32
	IF (FDRM.GT.O.AND.GONTUR.EQ.O) WRITE (7) NPLOT	CNTPLR	133
	IF (MULTRY-NE-0) GO TO 101	CNTRLP	1 74
	IF (SYSTEM.NE.3) GO TO BP	CHTRLR	135
1 4 5	GALL ROOT (A.P.C.H.G.F.K1.K2.K3.K4.D.W1.W2.W3.FOCTR.RCOTI.U.V.	CNTRLR	136
	1 MX. MY. MU.MS, MAT1, MAT2, MAT3, MAT4, MAT5, MAT6;	CNTRLR	1 37
	60 10 93	CHTRLP	138
	8C CENTINUE	INTRLP	139
	WRIT! (3.81)	CHTRLR	140
140	81 FORMAT (//10x, THE EIGEN VALUES OF THE SYSTEM ARE *//20x,	CHTRLR	141
• • •	1 FR AL FAFT . 15x . * IMAGINARY PART*/)	CNTPLR	142
	CALL FIGEN (NX, W1, W2, W3, ROOTR, FCOTI, U, V,	CNTRLR	143
	1MX, MY, MU, MS, MAT1, MAT2, MAT3, MAT4, MAT5, MAT6)	SMIRLR	144
	IF (IFLAG. FO. D. ANC. CONTUR. FO. 1) GC TO 499	CHTRLR	145
1 • 5	IF (CONTURISO.1) GO TO 501	2 NTRL P	146
. ~	60 TO 512	CHTRLP	147
	499 IF (FORM, EQ. 0) GC TO 500	CHIRLR	148
	NC=1	CHTRLR	149
	X Y X = -1 . r	CNTPLP	150
1 30	HRITE(7)ND,XYX,XYX	CHTRLR	151
150			
	GC TO FOO	SATRLP	152 153
	FOR CONTINUE	CNTRLR	
	CALL CPMY (7, POOTR, ROOTI, NX,	CHTRLP	1 5 4
	1 MX, MY, MU, MS, MAT1, MAT2, MAT3, MAT4, MAT5, MAT6)	CNTRLR	155
155	WRITE (3,82)	CHTRLR	106
	AS FERMAT (7/10x, THE SOEFFICTENTS OF THE CHAPACTERISTIC EQUATION		1 27
	LURED FROM THE LOWEST POWER OF SMAN	CNT FLR	158
	N X 1 = N X + 1	CHTRER	159
	WPITE (3,83) (2(1),1=1,NX1)	SNTRLR	160
160	83 FORMAT (E20.8)	SHTRLQ	1.51
	90 CONTINUE	CNTRLR	152
	IF (NUMERS.EQ.1) GO TO 100	CNTRLP	163
	NN=N X	CNTRLR	164
	C CALL NMRATE (NN,A,B,C,F,D,ROOTE,ROOTI,ROTE,ROTI,7,V,	CNTPLR	1.65
165	CALL NMRATR (NN, 4, B, C, H, G, F, D, RC (TR, RCOTI, POTP, RCTI, U, V,	CNTRLR	1€€
	C 1H1, 42, H3, SAV1, SAV2,	CNTRLR	1 5 7
	141,42,43,7,77,	CNTRLR	168
	2MX.MY.MU.MS.MAT1.HAT2.MAT3.MAT4.MAT5.HAT6)	CHTRLR	169
	100 CONTINUE	CHTRLR	170
179	IF(TRESP.EQ.0) GO TO 507	SHTRLR	171
	101 CONTINUE	SHIRLR	172

	PRESONALIVE CHAFTS	73/74 OP	=1 FTN	4. 2+75)6t	01/09/76	14.(2.90.
	CALL	14151	(A.R.C.H.F.W1.H2.W3.ROOTR, ROCTI.U	J. K 1, D. 7, V.	CNTRLR	173
	CALL	THEST	(A.B.C.H.F.W1, W2.W3.ROOTR.ROOTI.L	J.K1.C.ROTE.ROTE	. INTRLP	174
	1 2 7 7	. PU. MS. MATI	MATR.MATR.MATA.MATS.MATE)		CHTRLR	175
17	5 507 IF (5)	CAPLT.E0.2)	JCOND (28) = 1		CHTPLR	176
	IF (I	FLAG.EQ.D1 (O TO 190		CNTRLP	1 77
	60 TU	501			CNTPLR	178
	END				CNTRLR	179

SUMFOUTINE	CP4T	73/74	CP #=1		FTN 4. 2+ 75060	01/09/76	14.02.41.
			PMT(C,ROOTR,R			; PHT	2
•	,			T.MAT4,MATF,MAT6)		CPMT	3
		COMPLEX A-0.0				CPMY	4
		DIMENSION AC	25),8(25),0(4	X),PO(TR(MX),ROOTI	(MX),0(2)),E(25)	3 PH f	5
r		OCMMONZSUBMP:				SPHT	6
			.2) WPITE (3.	990)		SPHT	7
	330	FORMAT (1 X+ *C) PHT	8
		IF (N. GT, 1)				CPHT	9
		0 (1) =+R00TR (1)) PMT	10
10		C(?)=1.J				CPMT	11
		RETURN				C PH T	12
	10	COMI IND				CPMT	1.3
		4(1)=CMPLX(-	POOTR(1).ROOT	I(1))		SPMT	14
		A (2) = CMPL X (1)	.0.0.0)			3 PM T	15
15		N X= 2				CPHT	1 6
		0C 4 II=2.N				3 PMT	17
		N A = N X + J				CPMT	1.0
		00 1 I=1.NY				CPMT	19
		D(I)=CMPLX(0.	.0.0.0)			2 PM T	20
20	1	CONT INUE				CPMT	21
			00TP(II), ROO'	TI(II))		3 PM T	22
		1) (?) =C PP L X (1 .	.0,0.0)			CPMT	23
		00 3 I=1.2				CPHT	2.4
		110 3 J=1,NX) PM T	25
25		K= [+ J-1				CPMT	26
		C (K) = A (J) * B (I)+D(K)			C PH T	27
	7	CONTINUE				C PMT	28
		N X = N X + 1				CPHT	29
		10 5 JJ=1.NX				SPHT	3.0
.30		(fr)U=(fr) v				CPMT	71
		CONTINUE				2 PH T	3.5
	-	CONT INUE				SPHT	₹ ₹
		00 7 I=1.NX				SPMT	34
		(I) = D(I)				2 PHT	35
35	7	CONTINUE				CPMT	*6
		OC F I=1.NX				CPHT	37
		C(I)=REAL(D()	[]]			CPMT	38
	6	CONTINUE				CPMT	19
		⊋ f TURN				CPHT	~ 0
~ 0		F N 7				CPMT	41

	SURROUTINE FAT (T.A.M1.M2.M3.C.N.	E AT	?
	1 MX , MY , MI) , MS , MAT 1 , MAT 2 , MAT 3 , MAT 4 , MAT 5 , MAT 6)	E AT	4
	C TATECOAL	EAT	5
	THIS SUBROUTINE COMPUTES THE TRANSITION MATRIX AND ITAS INTEGRAL.		6
Ę	THE SERIES IS TRUNCATED WHEN THE LARGEST ELEMENT OF THE LAST TERM	EAT	7
	THE SERIES IS LESS THAN 1.5-93 TIMES THE SMALLEST ELEMENT OF THE S	EAT	é
	C SERIES. WRITTEN BY R. MAINE #/17/71	EAT	9
	C		-
	DIMENSION BEHX HAS FREE CHX HAS FREE CHX HAS FREE CHX HAS FREE CHX HAS	EAT	10
10	CCMMON/COND/READ.SYSTEM.OUTPUT.NX.NY.NU.NXC.NUC.NI.NZ.DIGITL.	EAT	11
	1 CONTUR, NUMERS, FRPS, TRESP, MODEL, NSCALE, SAV, CM AT, NK2, I FLAG.	EAT	12
	1IGO, FORM, IPT, READ3, MIXED, MULTRI, SCAPLI, ZOM, KCUNT	EAT	13
	INTEGER READ, SYSTEM, OUTPUT, FORM, CONTUR, SAV, CHAT, READ 3, FRPS, TRESP	EAT	14
	INTEGER DIGITL	EAT	15
15	COMMCN/SUBWRIT/ ISUBNAM	EAT	16
• -	IF(ISU3NAM.GE.2) WRITE(3.990)	EAT	17
	THE FORMAT (1X. FEAT *)	EAT	18
	MAT1 = MX	EAT	19
	MBT Z=MX	EAT	? O
20	MAT7=MX	EAT	7 t
	MAT 4 = M X	EAT	22
	MAT 5 = M X	EAT	23
	MA T 6 = MX	EAT	24
	NT= 24	EAT	75
25	CALL 7CT1(M1,N,N,	EAT	26
CP.	1 MY, MY, MU, MS, MAT1, MAT2, MAT4, MAT5, MAT6)	EAT	27
	CALL MAKE (M2. M1. N. N.	EAT	28
	1 MX, MY, MU, MS, MAT1, MAT2, MAT3, MAT4, MAT5, MAT6)	EAT	29
		EAT	₹0
	DC 1 I=1,N	EAT	31
30	W1(I,I)=1.0	AT	32
	1 CONTINUE	EAT	33
	CALL MAKE (M3, H1, N.N.	EAT	74
	1 MX, MY, MU, MS, MAT1, MAT2, MAT3, MAT4, MAT5, MAT6)	EAT	35
	5=1+0	FAT	36
45	H3MAY= 1.F+50	FAT	17
	T= T/A.	ĀT	36
	00 7 I=1.NT	EAT	39
	กด≠ I	EAT	40
	G=G*1/89	EAT	41
40	W1MTN= 1.E+50	EAT	42
	W2MIN= 1.645A	EAT	42
	00 30 J=1.NX	EAT	44
	DC 30 K=1,NX	-	45
	IF (HICH, KI.NE. D. G. AND. ABSCHICH, KID. LT. WIMIN) WIMIN#ABS(WICH, KI)	EAT	-
45	IF (M2(J,K).NE.O.O.AND.A95(H2(J,K)).LT. M2MIN) M2MIN=A B5(M2(J,K))	EAT	46
	30 CONTINUE	EAT	47
	₩₹MΔX1= ₩₹MΔX+T78B	EAT	48
	CALL ADD (1.0 + M2 + G+ M3 + M2 + N+ N+	EAT	49
	1 MX. MY. MU. MS. MAT1. MAT2. MAT3. MAT4. MAT5. MAT5.	EAT	50
50	CALL MULT (A.W3.C.N.N.A.	EAT	51
•	1MX,MY, PU,MS,MAT1,MAT2,MAT3,MAT4,MAT5,MAT61	EAT	52
	CALL MAKE (M3.C.N.N.	EAT	53
	14X, 4Y, MU, MS, MATT , MATZ, MATZ, MATS, MATS	EAT	54
	H3MAX = 2.0	EAT	5.5
± 5	7C 4C J=1.NX	E AT	ĒĒ
	OO 40 KELNX	FAT	57
	TE (ARS(MR(1,K)).GT. WRMAX) MRMAX= (ABS(WR(J,K)))	EAT	5.8

2011	OUTINE : 41 73/74 OPT=1		FTN 4.2+75±61	01/09/7	14.62.44.
	40 CONTINUE			CAT	rq
	WIMAX= WIMAX#G			AT	60
e c	CALL AND 11.0. W1.	G. M3. M1. N. N.		- AT	51
		T2. MAT3. MAT9. MAT5. MAT61		FAT	62
		* 1.0F-03 . AND. W3MAX.LT. W1	MIN* 1.7-031 60 TO	70 FAT	63
	7 CCNT [NU			EAT	64
	WRIT: (3.1003) WIMI	W. WYMAX. WZMIP. WZMAXI		FAT	ę r.
f =	1000 FCPMATC* ERROR IN 2	AT*,5x,*W1MTN =*,-15.6.5X,	*WTMAY =* ,F15,6,/*	·, :AT	66
	117x, *W *M[N = * , £15.6	.5x . *# 344x1 =* .E15. 6)		AT	157
	71 CONTINU			EAT	6.8
	00 90 K:1.3			EAT	69
	CALL MAKE (MT. H1.	N. N.		EAT	70
70	1 HY . HY . HU . HS . HA T1 . MA	TZ.MATT.MAT4.MATE.MAT6)		EAT	/1
	CALL HULT IN1. WS.	C. N. N. N.		EAT	72
	1HX, HY, MU, MS, HAT1, MA	TP, MAT 3, MAT4, MATS, MATS1		EAT	73
	CALL MAY: (W1. C. N	l. N.		EAT	74
	1 M X, M Y, MII. MS, MAT1. MA	T?. MATS. MAT4. MATS. MATEL		EAT	75
74	DO +3 J=1.N			E AT	76
	W3(J, J): W3(J, J)+1.			FAT	77
	80 CONTINUE			FAT	7.6
	CALL MULT (W2, W3,	C. N. N. N.		EAT	79
	14 X, MY, FU, MS. MAT1, MA	T2, MAT3, MAT4, MAT5, MAT5)		EAT	60
B.P.	GALL MAKE (WZ. C. N	. N.		F A T	81
	1 MX . MY . MU . MS . MA T1 . MA	T2, MATT, MAT4, MAT5, MATH1		E AT	82
	90 CONTINU-			FAT	8.3
	T= T+1.			I AT	54
	WRIT 13,511 I			EAT	Ŗ E
85	51 FORMAT (Z# THE T	RANSITION MATRIX *. 15.* T	ERMS*/)	EAT	86
	CALL SPITE INT.NX.N	x .		EAT	A 7
	1MX, MY, MU, MS, MAT1, MA	T", MATS, MATG, MATS, MATS)		EAT	H B
	⇔t LiloM			FAY	49
	€ ND			EAT	30

	JUNE DUTTING CIG. N. Z3/74 CPT=1	FTN →. 2+7506C	01/39//5	14.02.51.
	* IF(F0+H,50.3) CO TO 5		FIGEN	9
	13=0		E I G: N	£ 0
6 N	DO 414 Ja=1.N5		EIGEN	F 1
.,	IF (POIT (J4), LT. 0.) GO TO 414		ETGEN	٠, ۶
	J3=J3+1		E 1664	٠ ٦
	KC(J3)=14		FIGEN	+ £
	-1 P CONTINUE		£ IG: N	5
1.5	WRITE(?) U3, (ROTR(KD(K)), PCTI(KC(K)), K=1,	, J3)	FIGEN	٠ 6
	[F(FCRM.FQ.2) GO TO 7		E TO TN	٠7
	<pre>' WRITE (3,300) (RCTR(II),ROTI(TI),II=1,N</pre>	5)	E IGEN	FA
	7 CONTINUE		EIGEN	€ つ
	100 FORMAT (/(2530.8))		EIGEN	7.0
7.0	00 120 K=1.N5		EIGEN	71
	ROOTR (KPINT+K) = RCTR (K)		FIGEN	72
	PODT[(KCUNT+K)=RCT[(K)		EIGIN	7.3
	128 CONTINUS		EIGEN	74
	KRUNT= KPUNT+M5		EIGEN	75
7.,	70U CONTINUE		EIGEN	/6
	PETURN		EIGEN	'7
	END		EIGEN	7 R

WRITE (3,51) FRED, OMFGA, CR, PHI
11 CONTINUE

110

FRORSE

FRORSP FRORSP FRORSP

FRORSE

111

114

าบก	RPOUTINE FRORS	P 73/74	CP T=1	F1	TN 4.2+75060	01/09/76	14.02.55.
115		TERECOM. EQ. C:) Ga TO 60			FROPSE	116
	۴	WRITE (7) FRE	O,ge,PHI			FRORSP	117
	121	CONTINUE				: KO5 cb	1 18
		GC TO 50				FROPSP	119
	40	(L) I VA 2-1 C=A				FRORSP	120
120		ILISVA? - IH9=F)			FRORSP	121
		IF(FORM. FQ. 2)	1 GO TO 7			FROPSP	122
		IF COLCUTE.NO	E. O .AND. FPPS	.NF11 GO TO 12		FROKSP	123
		WRITE (3,50)	FREO.OH.PHI.A.B			= RQ + SP	124
		GO TO 13				FRORSP	125
125	15	WFITE (3,51)	FREG, DMF GA, OR, PHI	,Δ,Β		FRORSD	126
	13	CONT INUF				FRORSP	127
		IFIFCRM. EQ. 0) GO TO 60			FRORSE	128
	7	WRITE(7) FREC	9,08,PHI,A,9			FRORSP	129
	131	CCNTINUE				FRORSP	130
1.50	50	FCRMAT (Ftf.	4,4820.31			FRORSP	1 31
	51	FORMAT (2F10)	.4,4E20.5)			₹ R 13 9 SP	132
	66	J=J+1				FRORSP	1.33
		IF (FREQ.LE.)	FFREQ) GC TO 100			FRORSP	1 34
	10	CONTINUE				# RQRSP	1.35
135		IFIFORP. FQ. 0	I GO TO 8			F 2005b	1 36
		JO=99				FRORSP	1 37
		IF(1400,FQ.21	E WRITE(7)JD,DR,₽H	I,A,B		F 808 3 P	1.36
		IFIIHOD. NE. 2	N WRITE (7)JC,ON,PH	I		FRORSP	139
	H	CONTINUE				E 404 C P	140
140		RETURN				FRORSP	141
		CNO				500050	4 / 2

FTN 4.2+751	060 01/09/75	14.05.01.
	HESSEN	, ,

PAITIO PRU	H-STEN	73/74	OPT=t
Chennistee	14 - 3 - N	/ 1 / / 4	, 110, 1 = F

	SUBPOUTING HESSEN (A.M.B.	HESSEN	2
	14X.MY.MU.MS.MAT1.MAT2.MAT3.MAT4.MAT5.MAT6)	1 ESSEN	3
	PIMINSTON BICHXE, A (MX, MX)	HESSEN	4
	COMMONZSUBWRITZ ISUBNAM	HESSEN	5
5	IF(ISURNAM.GE.2) WRITE(3.930)	HESSEN	6
	49 FORMAT(1 X. *HESSEN*)	HESSEN	7
	IF (M-2) 30,30,32	4.553.5N	8
	32 00 40 LC = 3.M	HESSEN	9
	N = M - LC + 3	HESSEN	10
10	N1 = N + 1	HESSEN	11
	N2 = N - 2	HESSEN	12
	NI = N1	HESSEN	13
	DIV= APS (A(N.N-1))	HESSEN	14
	00 2 J = 1∙N?	HESSEN	15
15	IF(APS(A(N,J))-DIV) 2,2,1	HESSEN	16
	1 NI = .)	HESSEN	17
)IV= ARS(A(N, J))	HESSEN	18
	2 CONTINUE	4 ESSEN	19
	IF(DIV) 3,40.3	HE SSE N	50
50	3 IF(NI - N1) 4, 7.4	HESSEN	21
	4 90 5 J = 1.4	HESSEN	22
	$UIA = V(I^*WL)$	HESSEN	23
	A(J,NI) = A(J,NI)	HESSEN	24 25
	4(J, N1) = 1)TV	HESSEN	
25	5 CONTINUE	HESSEN	26 27
	00 6 J = 1.M	HESSEN HESSEN	28
	TIV = A(NI,J)	HESSEN	29
	A(NI,J) = A(N1,J)	HESSEN	30
	A(N1,J) = NIV	4 E2 25 4	31
30	A CONTINUE	HESSEN	32
	7 DO 26 K = 1, N1	4:55EN	33
	$B(K) = A(N_1K)/A(N_1N-1)$	HESSEN	34
	26 DONT INUT	HESSEN	35
**	00 45 J = 1, M	HESSEN	36
35	SUM = 1.1 IF (1 - N1) 46.43.43	HESSEN	37
	45 IF(A(J)) 41,43,41	HESSEN	38
	41 A(N.J) = 0.0	↑ESSEN	39
	00 -2 K = 1.M1	48S5N	+ 0
→ C	$V(K^* \cap K) = V(K^* \cap K) - V(K^* \cap K) + V(K)$	HESSEN	41
→ 6	SUM = SUM + A (K.J)*9(K)	HESSEN	42
	→2 CONTINUE	HESSEN	<u>3</u>
	60 TO 45	HESSEN	44
	43 DC 44 K = 1.N1	HESSEN	45
45	SON = 30N + V(K*A)*8(K)	HESSEN	46
72	44 CONTINUE	HESSEN	47
	45 A(M1.J) = SUM	4 ESSEN	4.6
	40 CONTINUE	HESSEN	49
	31 SETUPN	HESSEN	5.0
50	FND	HESTEN	° 1
, ,			

7.065001114	ו אייטד	V 73/74	CPT=1	FTN 4. 2+ 75360	01/09/75	14. 73.64
		SUBROUTINE I	VENT V(DELT .T	٠, ٥, ١	[NPUTY	2
	1	MX,MY,MU,MS,I	MA T1 , MA T2 , MA	AT3,MAT4,MAT5,MAT6)	INPUTY	7
		COMMONACONDA	PEAD.SYSTEM.	OUTPUT .NX .NY . NU. NYC .NUC .N1 . M ? . DIGITL .	INPUTV	4
	1	CONTUP, MUMER'	S,FRES,TRESE	P.MODEL, MSCALE, SAV. CMAT. NK2, IFLAG.	INPUTV	5
r		IGO, FORM. IPT.	, READS ON THE	CHMULTRT, SCAPLT, ZOH, KOUNT	INPUTY	6
		INTEGER READ	.SYSTEM.OUT	PUT.FORK.CONTUR.SAV.CMA1.READ3. FRP1.TRESP	LNBOLA	7
		INTEGER DIGI	TL,SCAPLT,/C	1H	[NPUTY	•
		DIMENSION UP	муј		INPUTV	9
					INPUTV	10
10	r	USER HRITTEN	SUPPOUTING	CONSTRUCTING INPUT VECTOR FOR TRANSLENT	[NPHT V	11
		PESPINSE.			[NPUTV	12
	c				INPUTV	13
		COMMON/SUBWR	IT/ ISH3NAH		INPUTV	14
		IF (I TURNAM. G	E.2) WRITE(3,990)	INPUT	15
1 s.	3.30	FORMAT(1x, +I	HPUTY*)		INPUTY	16
		[F (T.GT.0.3) RETURN		I NPUTV	17
		READ (1.1) (U(I),I=1,N91	1	INPUTV	1.5
		IF (10F(1) .N	e. () STOP		INPUTY	19
	1	FCRMAT (4F10.	. 41		INPUTV	20
20		RETURN			INPUTV	21
		ann			INPUTV	22

	SUPPOURTIE SALTHOUS	INAb	?
	1MX+MY+MU+MS+MAT1+MAT2+MAT3+MAT4+MAT5+MAT6}	IMAN	3
	C PROGRAM AUTHORS R.E. FUNDERIC AND R.G. EDWARDS.	INAB	4
	COMPUTING TECHNOLOGY CENTER, UNION CARBIDE CORP., NUCLEAR DIV.,	INAS	5
r	O DAK RIOGE. TENN.	INAG	6
	ϵ	INVR	7
	C DIC DRD PROGRAM NO. 9067.1	INVR	9
	UINTUSION A (MX + MX) + B (MX + MX)	INVR	9
	COMMON MONDINEAD, SYS TEM, OUTPUT, NX, NY, NU, NX C, NUC, NI, NZ, CIGITL,	INVR	10
10	1 CCNTUR, NUM RESERPS, TRESP, MODEL INSCALE, SAVICHAT, NKZ, I FLAG.	INVR	11
	1IGO,FOWH.IPT.READ3,HIXEO,HULTRT,SCAPLT,ZOH,KOUNT	INVR	12
	INTEGER READ. SYSTEM. OUTPUT, FORM, CONTUR. SAV. CHAT. READT. FRPF. TRESP	INVP	1.3
	INTEGEP DIGITE, SCAPET, 70H	INVR	14 15
	COMMON/SUBHRIT/ ISUS NAM	INVR	
15	IF(ISURNAM.GF.2) HPITE(3.990)	INVR INVR	16 17
	990 FORMAT (1X,*INVR*)	INVP	18
	MAT1:MX	INVR	19
	MATZ=MX	INVP	20
	IF (IPT.LT.1) GO TO 70	INVP	21
20	HRIT: (3,71) 71 FORMAT (/* MATRIX ENTERING INVR AND ITS INVERSE*/)	INVR	22
	CALL SPITE (A, JJJ, JJJ).	INVE	23
	1 HX. MY. MU. MS. MAT1. MAT2. MAT3. MAT4. MAT5. MAT6)	INVR	24
	70 CONTINUE	[NV+	25
25	IF (JJJ.NE.1) GO TO 50	INVR	26
7.2	H(1,1)=1./A(1,1)	INVR	27
	PETURN	LHVR	24
	EN CONTINUE	INVR	79
	LLL, I = 1 . 15 . 00	INVR	3.0
46	nc 20 J= 1.JJJ	INVR	31
	0.0=(1.1)=0.0	INVR	32
	20 CONTINUE	[NVR	33
	9 (T.I)=1.Q	INVR	34
	21 CONTINUE	INVR	35
*¢	κκ= 111	INVR	36
	LCL=VM	INVR	37
	n∈1.	INVR	38
	IF (JJJ.LT.010≖0.	INVR	39
	KKM = KK − 1	[NVP	40
→ 0	∩0 9 I=1,KKM	INVP	41
	S = G . 0	I NVR I NVP	+2 +3
	OC 1 J=1.KK	INVR	46
	R= ARS(A(J,T))	INVR	45
	IF (P.LT.S) GO IO 1	INVR.	46
·• !.	ς= 2	INVR	47
	L=J 1 CCNTINUH	INVR	48
	IF (L.FQ. I) GO TO F	INVR	49
	(10 2 J=[,KK	INVR	50
0	S=A(I+,)	INVR	51
~ O	A ([, J) : A (L, J)	INVR	5.2
	A (L, J) = S	E NVP	5.3
	S CENTINE	INVR	- 4
	IF(NV.LF.0)50 TO 4	INVR	- 5
95	no 3 J=1,NV	INVR	56
	5=0(T, J)	INVR	· 7
	0 (T+J) =0 (L+J)	[NVR	5.8

JANKOUTIME I MA	77/74 OPT=1	FTN 4.2+7506C	01/09/76	14.93.06.
	8 (L , J) = 0		[NVP	59
	CONTINUE		I NVR	€ 0
40	n=-n		INVR	61
	IF(A(I,I).EQ.0.)GO TO 9		INVP	t 2
	I FO = I + 1		INV	F.3
	00 A 7=160.KK		INVR	f 4 f 5
	IF (A(J.I).E0.0.) GO TO 8		I NVR I NVR	66
F; *	S=4(J,1)/A(I,1)		INVR	67
	A(J,I)=0.0 BC 6 K=IPO.KK		INVR	68
	A (J,K)=A (J,K)-A (I,K)+S		INVR	69
	CONTINUE		I NVR	70
70	IF INV.LF.O) GC TO 3		INVR	71
. 0	70 7 K=1.NV		[NVR	72
	A(J,K)=3(J,K)-A(I,K)*S		F VM I	73
	CONTINUE		INVR	74
	I CONTINUE		INVR	75
75	COMT INUE		INVR	76
	00 10 I=1.KK		INVR	77
	D=7+A(I, I)		INVR Invr	78 79
11	CONTINUE		INVP	79 80
	IF(NV.LE.DIGO TO 13		I NVR	81
38	KM0=KK-1		INVR	82
	DC 12 K=1,NV R{KK,K}=A{KK,K}/A(KK,KK)		INVP	83
	DO 12 T=1.KMO		ENVR	84
	N=KK-I		INVR	85
ą c,	00 11 J=N.KMO		ENVR	86
• •	8 (N , K) =8 (N, K) +4 (N, J+1) *8 (J+1, K)		INVR	87
1:	L CONTINUE		INVR	8.8
	9 (N,K)=9 (N,K1/A (N,N)		INVR	89
1	2 CONTINUE		I NAS	90
an 1	3 GMATEQ=D	•	INVR	91
	IF (IPT.LT.1) GO TO 72		I NVP	92
	CALL SPITE (9. JJJ.JJJ.		I NVR I NVR	93 94
_	1HX, MY, NU, MS, MAT1, MAT2, MAT3, MAT4, PAT5, MAT61		INAK	95
	? CONTINUT		INVR	96
95	IF (IT.EQ.0) RETURN		INVR	97
	00 % I=1,JJJ 00 % J=1,JJJ		INVR	98
	IF (A)5(B(I,J)).LT.1.E-51B(I,J)=0.		INVR	çğ
7	O CONTINUE		INVP	100
160	RETURN		INVP	101
4 h v	END		I NVR	102

	THE MITTER LOAD	73/74	CP 1=1	FIN 4.2+75(6)	01/09/76	14.03.39.
		SUBROUTINE LO	A [(A,R,C,H,G,	F, K1, K2, K3, K4, D,	LOAC	2
FIRST SIMMONITINE LOADS ALL MATRICES ACCORDING TO THE	1	MX, MY, MU, MS, M	AT1, MAT2, MAT3, MA1	4.MAT5.MAT63	LOAD	3
	1				LOAD	4
COMMON/COMPUTE A0.SYSTEM, OUTPUT, NX.NY.NU, NXC, NUC.YI, N2.OIT.II,		THIS SHARON	TING LOADS ALL HA	TRICES ACCORDING TO THE	LOAD	5
	e t	DAGAMETERS.	SYSTEM AND DUTPL	T. USING THE SUBROUTINE LOADS	LOAD	6
100M	~				LOAD	7
1160, C70% 107, P2A03, MIXEC, MULTET, SCAPLT, ZOH, KOUNT		COMMONACONBAR	E 40.SYSTEM.OUTPUT	, NX, NY, NU, NXC, NUC, 41, N2, DIGITL,	_ OAT	
100	1	CONTUP, HUMERS	.FRPS.TRESP.MODEL	INSCALE ISAV CHAT INKZ ITFLAG.	LOAD	9
	1	IGO, FORM, IPT.	PEANS, MIXED, MULTR	T, SCAPLT, ZOH, KOUNT	LOAD	10
	10	INTEGER READ.	SYSTEM.OUTPUT.FC	M.CONTUR ,SAV , CMAT, READY, FRRESP	LOAT	11
10197001001 A(MX,MX), 0(MX,MX), F(MY,MX), F(MY,MX), F(MY,MU), DA0						12
		REAL KI, KZ, KI	, K4			
15 CCMMCMMCHAPITY ISUINAM LOAN 16 FITTUDDMAM.ED.2) MITTETS,9901 LOAD 17 190 FORMATICY,*LOAD*) LOAD 19 19 19 19 19 19 19 1		DIMENSION AIM	X,MX),B (MX,MU),C	MX. MX3.H (HY. MX), G (MY. MX).F (MY. MU),	LOAD	
TETTSUDMAM,		K1(HU,HX),K2(4U.4X),K3(MU.4X),	K4(FU, MX). D(HU, HU)	LOAD	15
194 F.P.MAT.(IY,*LOAGY) LOAD 18 MATTEMY LOAD 19 MATTEMY LOAD 20 MATTEMY LOAD 21 CALL LOAD (A,N,NY,IMAT, LOAD 22 I.MY,MY,PIJ,*S,MATI,*MATZ,MATS,MATG,MATS,MATG) LOAD 22 I.MY,MY,PIJ,*S,MATI,*MATZ,MATS,MATG,MATS,MATG) LOAD 23 MATTEMY LOAD CALL CALL CALL CALL CALL CALL CALL CA	15	COMMONZS LAWRI	T/ ISUINAM		LOAT	16
MATT-MX		IF(ISUPNAM.BC	. 21 HRITE(3,990)		-040	17
### ### ##############################	990	FORMAT (1 x . TLO.	4 C * 1		LOAD	16
20		MAT1:MX			LOAD	19
CALL LOAD! (C.N.Y.N.Y.)MAT.		MAT2:MX			LOAD	20
1 MX, WY, PU, PG, MATI, MATE, MATE, MATE, MATE, MATE, MATE MA	20	NMAT =0			LOAD	21
NAT 2 NU		CALL LOADS (A.	NX.NY, NMAT,		LOAD	7.2
CALL LCANI (0,NX,MU,NAT, LOAD 25	1	MX.MY, HU, MS. MI	AT1,MAT2,MAT3,MA1	4.MAT5.MAT6)	LOAD	23
25		4AT 2 = 4U			_OAD	24
LF (CMAT,FO,0) GO TO 20		CALL LCADI (P.	, NX, NU, NMAT,		LOAD	25
MAT1:HX	25 1	MX.MY.MU.MS.M	AT1,HAT2,HAT3,HA1	4,MAT5,MAT6)	LOAD	26
HAT2 = MX		LF ICMAT.FO.3) GO TO 20		LOAD	27
CALL LCGGG		MAT1=MX			LOAD	28
10		MAT2:MX			_040	29
GO TC 4C CO		CALL ECA 01 (C.	.NX.NX.NMAT.		LOAD	3.0
28 MAT2=MX	10 1	MX. MY. MI. MS. M.	AT1, MAT2, MAT3, MA1	4 . MA T5 . MA T6)	_ O A 7	31
CALL 7 CT1 (C, NX, NX, 1					LOAD	32
IMX, MY, MU, MS, MAT1, MAT2, MAT3, MAT4, MAT5, MAT6)	21)	MAT2=MX			LOAD	3 3
35		CALL ZCTICC, N	x, N.x.		LOAD	34
21 C(I,I)=1.0		. M X , M Y , M U , M S , M .	AT1,MAT2,MAT3,MA1	4, MATS, MATS)	LOAD	35
47 CONTINUE	35	DC 21 I=1.NY				.76
TF (MIXFO.EQ.1) GO TO 50					LOAD	37
GO TO (50,50,60),SYSTEM LOAD 40 #00 #01 #01 #01 #01 #02 #03 #01 #02 #03 #03 #03 #03 #03 #03 #03 #03 #03 #03	45				L OA O	38
### ### ##############################		IF (MIXED.EQ.)	1 I GO TO 51		LOAD	39
MAT ?= MX			,60),SYSTEM		LOAG	4 0
GALL LCAD1 (K1,NU,NX,NMAT, 1	40 60					
1 MX, MY, MU, MS, MAII, MAT2, HAT3, MAT4, MAT5, MAT6)						
IF (NK2.F0.0) GO TO 62						
## CALL LCADI [K2,NL,NX,N4AT, LOAD 46				4.MATS,MAT6)		
1MX, MY, MI, MS, MATL, MAT2, MAT3, MAT4, MAT5, MAT5)						
62 CONTINUE IF (N2.00.0) GC TO 64 CALL LOAD) (K3,NU,NX,NMAT, 1 (NX,MY,MU,MS,MAT1,MAT2,MAT3,MAT4,MAT5,MAT6) IF (NX2.00.0) GO TO 64 CALL LCAD1 (K4,NU,NX,NMAT, 1MX,MY,MU,MS,MAT1,MAT2,MAT3,MAT4,MAT5,MAT6) 64 CONTINUE 55 GO TO 200 66 TO MATLEMY LOAD 57						
TF (N2.20.0) GC TO 64			AT1,MAT2,HAT3,HA1	4.MATS.MATS)	-	
CALL LOAD: 1 (K3,NU,NX,NMAT, LOAD 50	62					
1 MX, MY, MU, MS, MAT1, MAT2, MAT3, MAT4, NAT5, MAT6 LOAD 51 LOAD E2 LOAD E2 LOAD E2 LOAD E3 LOAD E4 LOAD E4 LOAD E4 LOAD E4 LOAD E4 LOAD E5 LOAD						•
IF (NY2,EQ.0) GO TO 64						
CALL LCAD1 (K4-NU,NX-NMAT, LOAD 53 1MX,MY,MU,MS,MAT1,MAT2,MAT3,MAT4,MBT5,MAT5) LOAD 54 54 CONTINUE 55 GO TO 200 LOAD 56 56 MAT1=MY LOAD 57				4+MAID+MAT6)		
1 MX, MY, MU, MS, MAT1, MAT2, HAT3, MAT4, MET5, MAT5) LOAD 54 54 CONTINUE LOAD 55 55 GO TO 200 LOAD 56 56 HATL-MY LOAD 57					-	
54 CONTINUE LOAD 55 55 GO TO 200 LOAD 56 57 MAILEMY LOAD 57						
55 GO TO 200 LOAD 56 50 HAT1=HY LOAD 57			A 11 , MAT2 , MAT3 , MA1	4. PST5. MAT5)		
50 MAT1=MY LOAD 57						
maicamx LOAD 18	50					
		MAICEMA			LUAU	` 6

	SURFOUTING LOAD	73/74	CP 1=1		FTN 4. 7+7596(01/39/76	14.03.39.
		CALL LOAD1 (H,NY,NX,NMAT,			1040	r g
	1	MX, MY, MU, MS,	TAM, ETAM, STAM, 11AM	4, MATS, MATEL		LOAD	€ 0
6	2	GC TOLING. SE	,57,5A), QUTPUT			LOAD	€1
	56	SALL LOADS (G,NY,NX,NMAT.			LOAG	F.2
	1	MX,MY, MU, MS.	MAT1.HAT2.HAT3,HAT	4,MAT5,MAT61		LOAD	6.3
		GO TO 100				L 040	F 4
	5.7	MAT?=MU				LOAD	4.5
٠,٠	5	CALL LEADS (F, NY, NU, NMAT,			LOAD	£6
	1	, 2M, UH, YP, XH	MATI,MAT?,MAT3,MAT	+,MAT5,MAT6)		LOAD	6.7
		GC TO 100				LOAD	68
	วิช	CALL LCAD1 (S.NY, NX, NMAT,			LOAD	€9
	1	HX, YY, MU, MS.	MAT1.MAT?,MAT3.MAT	4,MAT5,MAT6}		. OA O	70
70		MAT2 = MIJ				LOAD	71
		CALL LOADS (F, NY, NU, NHAT,			_ 0 AO	12
	1	.4X,4Y,HU,HS,	MAT1,MAT2,MAT3,MAT	4.MAT5.MAT6)		LOAD	73
	100	IF (MIXED .E	Q. 1) GO TO 200			LOAD	74
		SO TO (200.1	10,200),SYSTCH			LOAD	75
7	110	MAT1=MU				LOAC	76
		MAT2=MX				LOAD	7 7
			K1,NU,NX,NMAT,			LOAD	78
			MAT1.MAT2, MAT3.MAT	4.MAT5,MAT6)		LOAG	79
		IF INK 2. EQ. 0) GO TO 66			LOAD	9.0
# (K2.NU.NX.NHAT,			LOAD	81
	1	.MX.MY.MU.MS.	MAT1, MAT2, MAT3, MAT	4, PATS, MAT61		L O AD	87
	66	CONTINUE				LOAD	8.3
		MAT?=MU				LOAD	84
			D, NU, NU, NMAT,			_OAD	85
35	5 1	MX. MY. MU. MS.	MAT1,MAT2,MAT3,MAT	4.MAT5.MAT6)		LOAD	86
	200	RETURN				LOAD	# 7
		£N9				_ OAO	88

0.98000 LINE LOAD	11 /1//4 CP1=1 FIN 4.	r* /5050	11114111	14.111.4.
	TU IN OUTTINE LOADS (A.N.M.NMAT.		LOADI	,
	1 MX. MY. MU. MS. MATT. MATZ. MATS. MAT4. MATS. MAT6)		LOAD1	*
	DIM"NGION ACMATE, MATEL		CADI	4
	CIMMICNISURHRITI ISURNAM		L 0A D1	ς.
	IF(ISUMNAM.G=.2) WPITE(3.990)		LOADI	6
945	FORMAT(14.*LOAP1*)		LOADI	7
	NMAT=NMAT+1		LOADI	8
11	FO244T (2110)		LOAD1	9
	READ (1.10) N1.N2		LOADI	1.9
10	IF (ENECL). NE. 4) STOP		_ 0 AD 1	11
	IF (N1.EQ.N.ANO.N2.EQ.H) GO TO 20		LOADI	12
	WEITE (3,100) NMAT, N. M., N1, N2		LOAD1	1 3
10'	FORMAT (///.10x.* WARNING DIMENSION OF NUMBER *. 12.4	MATRIX SHOU	LD _ DAD1	14
	1 8 *, 15, * 8Y*, 12, * BUT IS*, 15, * BY*, 12, //1		L 0A 71	15
15 25	1 00 30 I=1,N		LOADL	16
	PEAD (1,200) (A(1,J),J=1,M)		_ OAD 1	17
	IF (FOF(1).NS.A) STOP		L 04 D1	1.8
31	CONTINUE		L 0A01	19
2 0 1	1 FORMAT (AF10.4)		LOAD!	20
20	PETURN		L 0A0 1	21
	CND		LOADI	2.2

\$U##:01	STENE MAKE	73/74	OPT = 1		FTN 4.2+7506L	01/09//6	14.12.48.
	St	JAROUTTNE M	AKE (A.3.N.M.			MAKE	2
			HAT1. MAT2. MATE. MAT4	, MATS , MATEL		HAKE	3
	ָ מ	MENSION AL	MAT1. MAT2) , R (MAT3, M	AT 4)		MAKE	4
			IT/ ISU3NAM			MAKE	5
r,	I F	CESURNAM.6	F.21 HPITE(1.970)			MAKE	6
	190 F	246T{1X.*M	A K.F. *)			MAKE	7
	าเ	16 I=1.N				MAKE	8
		10 J=1.4				MAKE	9
		(1.J)=B(I.J	3			MAKE	10
1 1		NTINUE				MAKE	11
• .		TURN				MAKE	12
						MAK-	13

	SURPOUTINE MATRIX (A.B.C.M.G.F.K1.K2.K3.K4.0.W1.W2.W7.	MATRIX	2
	1 MX, MY, MU, MS, MAT1, MAT2, MAT3, MAT4, MAT5, MAT61	MATRIX	3
	. TISTO SATENDAN DAN SAN THAILD HE HE SALCHON SAN SALCHON SAN SALCHON	MATRIX	4
	1004TUR , HUMERS, FRES, TRESPENDEL, NSCALE, SAV. CHAT. NKZ. IFLAS.	MATOIX	Ę
E	1 TGC. FORM, TPT. FEA 03. MIXEC. HULTRT. SCAPLT. 79H. KOUNT	MATRIX	6
-	INTEGER READ. SYSTEM, OUTPUT, FORM, CONTUR, SAV, OMA T, FRPS, TRESP, READS	*IFTAP	7
	INTEGER BIGITL, SCAPLT, ZOY	MATRIX	A
	CCMMCN/ACCND/ CCLT.FINALT. TERED. FFRED. DELFED. GATH1. SAINZ. M	MATRIX	9
	REAL KI.KZ.KT.K4. IFREQ.H	MATRIX	10
1.0	DIMENSION A (MX.MX).3 (MX.MU).C (MX.MX).H (MY.MX).G (MY.MX).F (MY.MU).	MATRIX	11
1.11	1K1(HU, MY), K2 (HU, MX), K3 (HU, MX), K4 (HU, MX), D(HU, HL),	MATRIY	12
	241(4X, PX), H2(HX, HX), H3(HX, MX)	MATRIY	13
	DIMENSION GRAPH(20,5), RLOCK(20,3), NUMER(20,5). DENOM(20,5).	MATRIX	14
	xGaIn(20), STATF(20,4), ITHINY(30), ITHINU(20), YTOV(20,2),	MATRIX	15
15	x 7TCU(20,21,NXYU(3),YZTOK(20,2)	MATRIX	16
1.7	REAL NUMER	MATRIX	17
	INTEGER GRAPH, BLOCK, STATE, YTOV, ZTCU, YZTOK	MATRIX	16
	COMMON / RIKDAT/ NUMER, DENOM, GAIN, GRAPH, BLOCK, STATE, YTOV,	MATSIX	19
	X 71 CU.Y 7 TOK, ITHINY, ITHINU. NALCCK, NY TCV, NZ TOU, NX YU, N YZ TOK,	MATRIY	20
2.0	Y NXT-NYT-NYT-NU1	MATRIY	2 1
£16	C	MATRIX	22
	C USER MRITTEN SUBPOUTING TO CONSTRUCT SYSTEM MATRICES UNDER CONTOOL	MATRIX	23
	of condition codes	MATRIX	24
	0.0000000000000000000000000000000000000	MATRIX	25
>r;	COMMON/SUBMPIT/ ISUBNAM	MATRIX	2€
	TECTSUPNAM.GE.21 MPITE(3,990)	MATRIX	27
	990 FORMAT(1X.*MATRIX SUB 2*)	MATRIX	2.8
	SAG POWER (17) WHILLY 200 F	MATRIX	29
	END	MATRIX	30
	C 1917		

ORIGINAL PAGE IS OF POOR QUALITY

Mire Iti	ITTE MULT	7 57 74	Ch1=1	F TN 4.2475060	01/09/75	14.12.55.
		SUPROUTINE MU	ULT KAIRICINIMIKI		MULT	2
		IMX, MY, MU. MS. I	4AT1.MAT2,MAT3,MAT4	, MATS , MATS)	HULT	3
		DIMPNSION A FR	AT1.MAT?), B (MAT T.	AT 41.CEMATS.MATE)	MULT	4
		COMMON/SUBME	ITZ ISUBNAM		MULT	5
r		IFCICUPNAM. GE	.2) WRITE (3,990)		HULT	6
	39.1	FORMAT (1 X . # MI	IL T+1		MUL T	7
		20 17 [-1.N			MULT	8
		00 18 L=1.K			MULT	9
		XX=0.0			HULT	10
10		DO 11 J=1.H			HUL T	11
		XX=XX+A(I.J)	*A (J.L)		MULT	12
	1.1	CONT INUT			MULT	13
		C (1 . L) = X X			M UL T	14
	1.7	CONTINUE			HULT	15
1.	=	RETURN			HULT	16
		CNO			M III T	17

	CORRECTIVE REPRINCIONAL REPRINCIPARE CONTRAROCTE ARCTE	N MRATIO	7
	TMX, MY, MO, MS, AA, PZ, AA, PS, TAH, PATON, PA, ON, ON, ON, ON, ON, ON, ON, ON, ON, ON	NMRAT -	4
		MMRATE	5
	THE CHARDUTTEE OF TERMINES THE NUMERATORS OF TRANSFER	NMPAT-	6
	FUNCTIONS BY FINDING THE METAIN WHOSE FIGENVALUES APE	NHRATE	7
	THE O DIFFE A ROIS. DUBROUTING FIGEN IS CALLED TO FIND	NMRAT -	
	Compared the transfer of the t	NMRATE	9
	C COMMITTION MADE BY G. NOTRIS JULY 5 73	NMRA TH	10
1.0	V AND POTE, AND Z AND POTE ARE SAME MATRIX	NMPATR	1.1
	t.	UHRAT #	1.2
	COMMENSCONDS ~ FAB. SYSTEM. DUTPUT. NX.NY.NU. NXC.NUC.NI. N2. EIGITL.	MHRATR	1 3
	1CONTUR,NUMER", FRES, TRESP, MODIL, NSCALE, SAV, CMAT, NK2, I FLAG,	NMRATR	1 4
	TIGO, FORM, IPT, WEADS, MIXED, MULTRI, SCAPLI, ZOH, KCUNI	NMRATA	15
1'-	INTEGER READ. SYCTEM, DUTRUT, FORM, CONTUR, SAV, CHAT, READS,	NHRATR	16
	1 (98), 1350	NMRATO	17
	INTEGER DIGITE, SCAPET, 70H	NMRATR	16
	CCMMCN/ACOND/ CELT, FINALT, TERFC, FEREQ, DELFRQ, GAIN1, CAIN2, MN	WMRATE	13
	WEAL INPT(10), OUTPT(20), TITLE(8)	NMRA TH	20
. 0	COMMON A AREL AT NPT OUTPT . TITLE	NHRATE	21
	REAL IFR Q. MN	NACATO	22
	OTMORISTON ACKREMENTS OF COMPLEX MARKET OF COMPLEX MARKET WAS ACTION OF COMPLEX MARKET OF COMPLEX MARK	NMRATE	23
	[1) {M() , M()) ,	NMR AT W	. 4
	"HICMX, MX), H2 (HX, MX), H3 (MX, MX), FOCTR (MX), ROOTT (FX), FOTR (MX),	MMRATE	25
25	FORT (MY). V(MX). V (MX).SAV1 (MS).SAV2 (MS)	N MPA TE	⁷ 6
	C DIMENSION A(15.15). 0(15.15). C(15.15). H(15.15). G(15.15).	NHRATH	. 7
	C 1 F(15,10), 0(10,10)	MMRATE	28
	C CIMENSTON W1 (15,16), W2(15,16), W3(15,15)	NARATR	? q
	C DIMPASION MOOTH (15), RCCTIC(5), RCTP(15), RCTI(15)	NMRATR	3.0
3.5	C CIMENSION SAVI (200), SAV2(200)	NHRATE	₹1
	C DIMENSION V (15), 7(15)	NMPATE	12
	COMMONIZURNRITZ ISUBWAM	NMRATR	* *
	INTEGE ON	NMRATR	14
	DATA ON: /1/.DUMY/0.3/	NMRATE	⊁ € 5
4.6	TECTOURNAM, GF. 2) WETTECS, 940)	MMPATP	36
	390 FORMAT (1 x . *NMRATE*)	NMPATR	17
	00 300 11=1.40	MMRATR	7.8
	I ▶on=0	NMRATR	19
	00 100 I-1.NY	NHRATR	4.0
4.0	N = NN	NHPATO	4 1
	DC 500 [¥=;,NX	WMRATH	42
	IF (HCI, IX) NF.O.D) GO TO GOT	NMPATR	4.3
	0.9 CONTINUE	WHRATP	:- 4
	WRIT((3,502)1	MMRATH	45
, r	SOF FORMAT (7/10%, FROM F.12, F OF H MATRIX IS NULL F//)	MMR 4 TP	46
	HRITE (7) ONE, DUMY, DUMY	NMRATR	.7
	60.10.400	MMPATO	4.6
	OI CONTINU	NMRATE	49
	TF (F(I,JJ). "0.0.0) GO TO 419	NMPATE	~ C
: 1,	NNUP=NN	NHRATO	5.1
•	GD TO 431	N MR AT R	12
	410 00 426 K=1,NN	NHRATR	F 3
	≎0.1 ∧ {k} = 1 •	NYPATE	4
	IF CHCI,K),NF.O.DROTR(K)=1.	MMRATR	
1.5	SZD CONTINUS	NHRATE	1 F.
	00 648 LE=1,NN	NMRATR	7
	100 4.24 M-1 MN	WHOATP	r p

FTN 4.2+75060

01/09/76 14.12.5F.

HRATR

SUMPOUTING AMPAIR 73/74 CPT=1

111	W3(<,L)=W3(<,L)+W2(<+1,L+1)	NHRATR	116
	2- CONTINUE	NMRATP	117
	30 CCNTINUF	NMRATR	118
	IF (M-2) 32,42,32	MMRATR	119
	32 00 40 K=1,N	NMRATO	120
126	STOR(= W3 (1, K)	NMRATR	121
	W3(1,K)=W3(M-1,K)	NMRATR	122
	W3(M+1,K)=STOR-	NMRATR	123
	43 CCNTINUF	NMRATE	124
	47 NO 50 K=1,N	NMRATR	125
175	G1=0.0	WHRATR	126
	00 45 t-1.N	NMRATR	177
	G1=W3(K,L)*(W2(L+1,1)/7([[))+G1	HMRATR	128
	4. CONTINUS	PTASMY	129
	H3(K.H-1)=G1	NMRATR	1 30
1 30	50 CCNTINUF	NMRATR	1 71
	IF (M-2) 52.62.52	N MRATR	132
	52 00 60 K=1.N	NMRATR	133
	STORE=#3(K,1)	NHRATR	134
	H3 (K,1)=H3(K,H=1)	NUPATR	135
1 15	WR(K,M-1)=STORE	N MRAT P	136
	60 CONTINUE	N MR A TR	1.37
	62 G1=0.0	NMRATR	138
	00 71 KKK=1+N	STAGNE	139
	61=-W2(1;KKK+1)*W2(KKK+1;1)+G1	NMRATR	1 4 0
146	71 CONTINUE	NHRATE	1 4 1
	00 70 K=1.N	NHRATR	142
	∩C 70 L=1.N	NHRATP	143
	H2(K,L)=H3(K,L)	N MR ATP	1 4 4
	70 CONTINU	NHRATR	145
1 45	W2(1.1)=G1/Z(II)	MANALE	146
	N = N + 1	HARATA	147
	MM=N+1	NHRATR	1 →8
	IF ([PT.LT.2) GO TO 180	NMRATO	149
	CALL SPITE (M2, MM, MM,	NMRATR	1.0
1 0	1 MX MY MU NES MATE MATE MATE MATE MATE MATE	NHRATR	151
	183 CONTINUT	NMRATR	152
	181 CONTINUE	MARATR	154
	O FOLLOWING STATEMENT ADDED SEPT 1972 DUF TO CDC IRM NO LOOP	NMRA TR	156
	C INDEX DIFFERENCE	NMRATR	156
1 77	IF(IL. NF. 0) II=II-t	N MRATS N MRATS	157
	C IN THE FORMAN	NMRATE	158
	G ON 183 II=1,LL WHERF LL=1	NHRATE	159
	C II TERMINAL VALUE IS 2 ON COC	NHPATE	160
	C II TEPMINAL VALUE IS 1 ON IAM	NMRATE	161
1 6 0	IF (N.EQ.0) GO TO 197	NMPATE	152
	OC 190 K=1.N OO 185 L=1.N	MMRATR	163
	H7(K,L)=-H7(<+1,L+1)+ ((H2(K+1,1)*H2(1,L+1))/H2(1,1))	NMRATO	1 6 4
	185 CONTINUE	NMRATE	165
1 4 5	130 CONTINUE	MMR AT P	166
165	137 DE= M2(1,1)	NMRAT-	167
	I'4/ DE= M2(1-1) IF (III) 193,196,193	NMPATR	1 : 8
	193 NO 195 KJ=1.II	MMRATR	149
	06=05+5(KT) (AP in 1AP + 2=1+11	NMRATR	170
120	195 CONTINUE	NHRATE	171
170	196 CONTINUE	NACATO	172
	£ 77 - 7500 - 1545	• • • • • •	•

FTN 4.2+7506C 01/09/76 14.12.55.

TUPPOUTTE: MMRATH 73/74 OPT=1

SUPPOUTTE	NHPATP	/3/74	CPT=1		FTN 4. 2+ 75968	01/09/76	14.12.56.
	ĪFR	*=FRPS+1				NHRATR	230
5 10	SC	TO (311,3)	10,3201 IFR			MMRATR	2 31
	310 IF	(MODEL.EQ.	.0) GO TO 301			MMRATR	232
	IF	(S. I) nom)	1.E9.11 GO TO 3	02		N MP 4 TR	233
	[F	(IMCD.ED.	21 GO TO 392			NMRATR	234
	I M) i) = 2				WMPATP	2.35
2.45	6.0	TC 301				NMRATA	236
	302 IMC) D = 1				NMGATO	237
	301 CAL	L FRORSP	(N.NN.DE.IMOD.P	OOTR .ROOTI . ROTE	ROTI,SAV1,SAV2,	NHRATR	2 36
	t [1.1 •				HARATR	239
	1 M X :	, MY, MU, MS.	MATI, MAT?, MAT3,	MAT4, MAT5, MAT6)		NMRATP	2 - 0
2.40	50	TO 311				NMRATR	241
	32E CAL	L PSO (N.	NN.DE.ROOTR.ROO	TI.ROTE, ROTI, SA	, LL . I . SV4 2 . LV	NMRATR	242
	1 M X ,	MY, MU, MS.	MATI,MATP,MATS,	MAT4, MAT5, MAT6)		N MR A TR	2 4 3
	6.0	TO 311				NMRATR	244
	200 WR1	ITS (3,211	l JJ			NMRATR	245
2+5	211 FOF	PMAT (//10	X, *COLUMN *, I2.	* CF THE B MAT	RIX IS NULL#/)	NMRATR	2 46
	311 TF	(MN.50.81	GC TO 300			NMRATR	247
	ŊX:	= N SA V				NMRATR	2 48
	NN:	NSAV				NMRATE	249
	300 000	FINUE				NMRA TR	250
2 ≈ n	EN	1				NMRATO	251

	SUBROUTING PSD (NNUM-NN. GAIN. ROOTR, ROCTI, ROTR, ROTI, SAVI, SAVI,	P S O	2
	1 INV. TNU.	PSO	3
	1MX, MY, MI, MS, MAT1, MAT2, MAT3, MAT5, MAT5	≥ S D	4
	3	PS0	5
5	THIS SUBROUTING COMPUTES THE POWER SPECTPUM CORRESPONDING	PSD	6
-	TO THE TRANSFER FUNCTION WHOSE POLES ARE (ROCTR. POOTI) AND	>50	7
	HHOSE ZERGES ARE (ROTRIRATI). IT IS ASSUMED THAT THE INPUT	P SO	8
	G TO THE TRANSFER FUNCTION IS A WHITE NOISE PROCESS OF UNITY	⇒ SD	9
	VARIANCE AND HENCE THE POD IS GIVEN BY THE SQUARE OF THE	PSD	10
10	MCGULUS OF THE TRANSFER FUNCTION. THIS ANY CORRELATION	PSD	11
16	DESTRED IN THE RANDOM PROCESS EXCITING THE SYSTEM SHOULD	PSO	1.2
	C 9" INCLUDED AS A SHAPING FILTER IN THE "A" MATRIX WHICH	PSD	13
	C IS EXCITED BY WHITE NOISE. NOTE THAT ONLY EXPONENTIALLY	PSO	14
	CORRELATED PROCESSES MAY RE SO STRUCTURED.	PSD	15
1 10	3	P S 0	16
1	DIMENSION ROOTP(MX), ROOTI(MX), ROTR(MX), ROTI(MX), SAV1 (MS), SAV2 (MS)	> 50	17
	COMPLEX RN1. FN2. PD1. RD2	PSD	16
	CCMMCN/COND/PEAC, SYSTEM, OUTPUT, NY, NY, NY, NY, NUC, NIC, NIC, NIC, NIC, NIC, NIC, NIC, NI	PSD	19
	1 CONTUR . NUMERS . FRPS, TRESP , MODEL , NSCALE , SAV . CMAT . NK2 . I FL AG.	> SD	20
. פי	ZIGC. FORM . IPT . READY, MIXED, MILTPT . SCAPLT . 70M . KOUNT	PSD	21
	THITTGE PEAC, SYSTEM, OUTPUT, FOR > CONTUR, SAV CMAT, READ 3. FREST TRESP	₽ S0	2 2
	COMMON/ACOND / DELT, FINALT, IFREQ, FFPED, DELFRQ, GAIN1, GAIN2, M	PSD	23
	INTEGER CIGITL. SCAPLT, ZOM	PSD	24
	REAL TEREGOM	P 50	25
25	REAL PST	P S O	26
(3	COMMON/LAMEL/INPT.OUTPT.TITLE	> 50	27
	REAL INPT(10), OUTPT(20), TITLE(8)	PSO	26
	CCMMCN/SUBMRITY ISUSNAM	PSD	29
	TATA PST/19HSPEC /	>SD	30
30	IF(TGURNAH.GE.2) HPITE(3.990)	PSD	31
	998 FORMAT (1X, FP 30*)	P 50	35
	IF (FCRH. GT.O) WRITE (7) PST.TITLE, SYSTEM, MODEL, DIGITL, SCAPLT	PSD	33
	VAP=0.0	PSD	34
	x=0.0	PSD	35
35	J=1	PSD	36
12	IF(FORM.GT.O) WRITE(7) OUTPT(INY), INPT(INU)	⇒ \$0	37
	WRITE (100) OUTE T (INY) THE T (INV)	PSO	18
	BE FORMAT [/10x, A10, */*A10, * POWER SPECTRAL DENSITY*/10x, *FREDUENCY, R	P 50	39
	1AD/S=G*4X,*PSD MAGNITUDE*/)	3 S O	40
4 0	FREQ=IFREQ	PSO	41
40	IF (IF950.N5.0.) GO TO 70	₽ \$0	42
	FREQ. 1	PSD	43
	FFRF0=150.	PSO	44
	ZO CONTINUS	PSO	45
45	LOC CENTINGE	PSD	46
47	IF (IFREQ.NE.O.) GO TO 71	> 50	47
	FREC=1.15*FREQ	PSD	4.9
	GG 10 72	P 30	49
	71 FREQ = 05LFRQ*FREQ	PSD	5.0
= 0	72 CONTINE	PSD	51
5 D	RN1=CMPLX (1.0.0.0)	P S 0	₹ 2
	PC1 = CMPLK (1.0,0.0)	PSD	5 %
	70 24 I=1, NN	> 50	54
	IF (I.GT., NUM) 60 TO 5	PSD	5 5
55	RAZ=SMPLX (-ROTR(I), FREQ -ROTI(I))	> 3D	-6
. 5	PN1=PN1*RN2	₽ 50	5.7
	PN2=C4PLX (-POTR(I),-FPEG -ROTI(I))	P 50	5.8
	HE IN EN MINISTER DE MINISTER DE MINISTER DE MINISTER DE LA CONTRACTOR DE		

r Leich	OTINE OF O	43774 CP7=1	FTN 9.2+7596(01/19/76	14.13.07.
		9N1-3N1*PN2		> () ()	ę q
		PD2#6MFL (1-RCCTR(I) FREQ -FOOTI(I))		P 5.9	€ 0
r li		PN1=RN1+RN2		P30	€ 1
- 0		# CZ=CMPL X (+POOTR([]), +FREO -ROOTI([])		PÇN	£ ?
		₩[1-#n1#2D2		PSJ	6.3
	20	CONTINU:		3 €U	f 4
	- 4	3AV1 (1)=GAIN**2*RN1/RD1		₽ \$ ∩	+5
⊳, 5		VADEVAR+SAV1(J)*(FRED -Y)		52 0	f 6
		TF (FDAM. EQ. 2) 60 TO 6		PSI	€ 7
		WRIT: (3,50) FREQ ,SAV1(J)		P 30	F B
		IF(FCRM. EQ. 0) GO TO 40		P S D	<i>F</i> 9
		WPITE (7) FREQ SAVI(J)		b ≥0	7.0
73		CONT INU		B S û	71
1.0		FORMAT (14X.F8.4.12X.E12.4)		P 50	12
		X=FREQ		PS0	7.3
		J= J+ 1		3 20	74
		IF (FREG.LE.FFREG) GO TO 100		P 50	*5
75	11	CONTINUE		> 30	76
		HRITE (3,30) VAR		P \$ 0	77
	3.5	FORMAT (10X, +THE VARIANCE IS+E12.4)		PSO	7 R
		Jn=99		P 50	79
		WPIT (7) JD.SAVI(I)		PSD	3.0
n 0		PETILON		• SU	61
		FND		P 50	P 2

ORIGINAL PAGE IS OF POOR QUALITY

59-4 900 (INE 345 [6	73/74 CPT=1	FTN 4.2+7F36f	01/19/7	19.13.17.
		7=x/2,0		18610	; a
		14:		ORFIG	f D
۲. ق		4=-F		18615	f 1
	2 →	[F(JJ) 28,70,70		3 of IL	62
	7.0	1=1.19-10*(APS(G)+F)		9 8 F I S	€3
		IF(A95(A(N-1, N-2)), GT. D) 50 TO 26		34810	€4
	24	IF(IFRNT) 84,85,84		QPEIG	- 5
+ ½	Aد	WRITE (3,100)E.F.ITER		2 RE 15	€-E
		HFTT (3,105)6,H		3 42 13	<i>f</i> 7
	Ąr	POCTA(N) = E) PEIG	5.8
		RCOTI(N) = F		0 PE 16	. 9
		₽01° ≥ (N+1) = G		AREIG	7.0
₹3		2 COTE (N-1) = H		05613	71
		N= % = ?		34510	72
		IF(JJ) 1.177.177		38E16	7 \$
		IF(195(4(N.N-1)) .GT. 1.05+10* 485(A	(EN, N))) GC TO FG	3 BE IU	- 4
		[F(TFRNT)		AREIG	75
,· c.		WRITE (3,175)A(N,N), ZERO, ITER		2 8 E I G	76
	87	POOTP(N) = A(N,N)		3 45 I C	2.7
		egg(1) = 0.0) KEIC	78
		N=1-1		3 9E IG	79
		50 To 177		93516	80
80		IE(AHR(AHR(XNN/A(N,N-1))-1.0)-1.0E-		19216 29216	41 42
		IFC MSC ABS(XN2/A(N-1,N-2))-1.0)-1.0	15-61 63,63,700	DREIG	* 3
	6.5	VO= APC(4(N,N-1)) - ARS(4(N-1,N-2))		3 4E 16	# 4 ₄
		IF (IT=0-15) 53,164,64		0 5 4 1 1 2	де
		IF(VO) 165,165,166		91396	26
85	15*	$P = A(N-1,N-2)^{\frac{4}{2}}$		3 4E I G	9.7
		SIG = 2.3*4(N-1.N+2) SO TO FO		D > E I G	e A
	166	P = A(N,N-1)**2		0.45.10	9.9
	100	SIG = 2.0*A(N,N-1)		3 85 10	cŋ
up.		GO 70 60		OREIG	91
***	ét.	IF(V0) 67,67,66		3 RF 1 G	92
		IF(IPRNT) A8.85.88		3 RF 15	0.1
		WRIT (3,107)A (N+1,N-2)		28616	94
		GO TO 84		3 RE I G	35
3€	5.7	IF(IPPNT) 89.87.89		0 RE15	c.f.
		WRITE (3,107)A(N,N=1)		1 RF 16	² 7
		GC TO PE		3 ₹E I G	SA
	7g L	IF(11E4 .GT. 50) GO TO 63		QREIG	c 9
		IFITER .GT. 5) GO TO 53		1 8E I G	100
100	731	FT=5*E+F*F		3 K5 I G	1 C 1
		IF (ET) 702,601,702		DREIG	112
	70.2	GT = S*G+H*H		≥ ₹815	103
		IF (GT) 703,601,703		D⇒EIG	104
	76 3	CONTINUE		DIRE IG	105
1.35		71= ((E-AA)**2+(F-3)**2)/(E*)	+F*F1) REIG	106
		72: ((G-C)**2+(H-DD)**2)/(G* C+ H	'н)	OREIG	107
		IF(71-0.25) 51.51.52		O RE IG	138
		IF (7 2-0, 25) 53,53,54		REIS	179
	5 4	÷÷f*G=F*H		OREIG	110
113		\$16=F+G		3 RE 16	111
		GC TC E0		3 46 1 0	112
	94	D: F*5		9 RE T G	113
		SICHEFFE		DREIG	114
		GC TO FI		3 45 1 6	115

SUBFO	UTINE 19:1. /4/74 OPT=1 FTM	4.2475050	01/09/76	14.13.10.
115	52 IF(77-0.75) 55.50.60t		GREIG	115
	新り - ○ 美((●))		18EIG	117
	↑II = 5 • G		Q RE IG	118
	60 77 +0		GREIG	119
	FOI WE SHARE		2 REIS	120
129	3.15 · · · 3.5		DREIG	121
	50 XN1-4(N+N=1)		QREIG	122
	XN.2 = 4 (N= 1 , N= 2)		1 8E I G	123
	CALL GET CH. ?. SIG.D.A.		DREIG	124
	1 MX. MY. MU. MS. MAT1. HAT2. MAT3. MAT4. MAT5. MAT6)		QREIG	125
125	4 A =		QREIG	126
	9±€		DREIG	127
	C = G		3 REIG	176
	ეr=H		QREIG	129
	60 10 12		OREIG	1.30
1.50	134 FCRMAT (////1x. 9HREAL PART 6% 14HIMAGINARY PART	F. 29X	OPEIG	121
	1 13HTAK N AD ZERO SK 4HITTR //1		QREIG	132
	105 FORMAT (tx.815.8.3X.215.8. 42X 13)		Q RE IG	123
	107 FORMAT ("4X. E15.8)		1 REIG	134
	€ur		QRFIG	135

THEBUILLE.	7 7 ¥	74/75 OP1	=1	FTN 4.2+75060	01/09/*5	14.13.16.
		A) TPO BUTTUCQUU	I,-R,-9 I 9, D,-4,		ब र T	?
			MAT2, MAT3, MAT4, MAT5, MAT6)	O RT	3
		DIMENSTON ACHX. MX	1,051(2),6(3)) > f	4
		I NIJAMBUSNADHMBS			Q Q T	5
r,		IFITSURNAM.GF.21	MPITE(3,940)		21 ₩ 1	6
	300	FORMAT (1x,+3RT+1			3 R T	7
		N1 = N - 1			301	6
		[A = N - 2			ORT	9
		IF = IA			3 9 1	10
1.0		IF(N-3) 101,10,60			००४ ७२४	11
	ьt	00 12 J = 3.81 J1 = N - J			381	12 13
		IF(APS(A()1+1.)1	11-01 10 10 11		ORT	14
)*(A(J1+1,J1+1)+SIG)+A(J	141. 11421781 2142. 1141 14		15
12		IF(0. N) 51,12,61	(ACSIVITATE 1) - 310) + AC	111,51177 -15177 4517111	2.81	16
• '	6.1)*A(J1+2, J1+1)*(ARS(A()	1 +1 - 11 +13 +4 (11 +2 - 11 +2)	3RT	17
			.J1+2}}}/7EN}-D} 10.10.1		391	18
		IP= J1	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•	3 - 1	19
		00 14 J=1, IP) = T	20
20	_	J1=TF-J+1			3 -> ₹	71
		IF (APS (A(J1+1,J	1))-0) 13,13,14		2 4 7	? ?
	1 4	IQ= 11			J ₽ F	23
	1.3	90 103 I=TF.N1			3 % (24
		IF(I-IP) 16.15			3 2 1	25
25	1 5		IIP, TP) = SIG) +A (IP, IP +1) *A		3 51	26
			A(IP, TP)+4(TP+1, TP+1)-SI	G1	387	27
		G(3)=4(TP+1, IP)*A	(1P+2,1P+1)		351	28
		A(TP+2, IP)=0.0			3 8 7	79
10		60 70 19			0 ~ f g ⊃ f	₹0 51
7.0	1 +.	6(1)=A([,[-1) 6(2)=A([+1,[-1)			3 41	3.5
		IF(I-IA) 17.17.	10		381	33
	1 7	G(3)=A([+2, [-1])	10		9.81	34
	1,	60 (0 19			3 ° T	35
(F	1 9	6(3)=9.3			3 R T	36
			((1)**2+G(2)**2+G(3)**2),	G(1))	3 P T	37
		IF(YK) 23,24,23			3 47	38
	23	AL=G111/(K+1.0			3.≥1	₹9
		PSI (1) =G12)/(E(1)	+X<)		3 P T	4 C
+¢		PSI(?)=G(3)/(G(1)	+×<1		3 5 t	4 1
		GC TO 25			3 P T	42
	24	AL=7.0			ORT	43
		PSI(1)=0.D			121	44
		PSI(2)=0.0			3 ≥ 1	45
→ 1		IF(I-IQ) 26,27,			अस्य अस्य	→6 47
		[f([+]P) 29.28			10.0	48
	28	A(I,I-1)=-A(I,I-1 SO TO 27	1) er	49
	24	4(I+I+1) =-XK			201	-0
ι, <u>η</u>		00 30 J=I+N			3 R T	£1
* 4:	٠,	[F([-IA) 31,31,3	12		Q √ T	= 2
	31	C=PSI(2) *A(I+2.J)			381	5 3
	-1	60 TO 33			वरो	54
	32	0=0.3			181	65
r r		129+(L,I1/1)+JA=2	1) *A (I+1,J)+C)		2 - T	₹6
		A([,J)=A([,J)=F			281	5.7
		A (T+1. J) = A(T+1. J)	-P31(1)*F		3 € 1	5.8

ORIGINAL PAGE IS OF POOR QUALITY

;U·te	DUTINE DAT	73/7+ OPT=1	FTN 4.2+75060	01/09/76	14.13.16.
		IF(I-IA) 36.34.30		QRT	· q
	f	A([+2, J) = A([+2, J) - PST(2) *F		3 8T	60
50		CONTINUE		QR T	ι 1
••	**	IF(I-IA) 35,35,36		QRT	+ ?
	3.	L=[+?		2RT	€3
		GC TC 37		QRT	1.4
	₹7	L=N		QRT	€5
, F.	5.7	00 40 J=19+L		3 R T	€6
		IF(1-14) 38,38,39		QRT	€ 7
	3.0	C=FS[(?)*A(J,T+2)		0 P T	€ 8
		GC TO 41		2 R T	59
	39	C = 0 + 0		DRT	70
70	41	E=4L*(A(J,I)+PSI(1)*A(J,I+1)+C)		3 R T	71
		A(J, I) = A(J, I) - E		3 €1	7.2
		A(J,I+1)=A(J,I+1)-PSI(1)*E		QRT	73
		IF(I-IA) 42,42,40		3 R T	74
	42	A(J,[+2]=A(J,[+2]+PSI(?]*?		QRT	75
≯ 5	40	CONT INUS		2RT	7€
		TF(I-N+3) 43.43.100		3 RT	77
	4.3	=aL *PSI(2) *A(1+3,1+2)		QRT	7.8
		4 ([+3, I) ==E		Q R T	79
		A(I+3, I+1) =- PSI(1) *E		3 8 1	en
A.C		A(1+3,1+2)=A(1+3,1+2)=PSI(2)*E		99.1	81
•	100	CONTINUE		Q RT	82
	101	RETURN		3 RT	FA
		ENTI		QRT	8 4

ROISC

RDISC

B GAIMBR

RETURN

504£ 00	TIME POICE	73/74	CP1=1	FTN 4, 2+ 75060	01/09/7	14.13.53.
	Seco	POUTENE RE	DISC: (A.N.M.		₹01501	2
	1 MX.	MY. MU. MS,	MA T1. MA T2. MA T3. MA T4	,MAT5,MAT6)	ROISC1	3
	MI (;	ENSTON AU	HAT1.MAT21		201501	4
	U EM	MCN/SURWR	IT/ ISUBNAM		RDISC1	5
e .	[f(ISUANAH.G	:.21 WRITE(3,940)		RDISC1	6
	990 F0P	44111X . +R	01501*1		102 10 5	7
	าก	10 1=1.N			ROISCI	
	4 F A	1 (8) (AC	I,J),J=1,M)		ROISC1	9
	IF	EOF (A) NE.	.01 STOP1		₹71501	10
10	10 CCN	FINUT			POISC1	11
	RETI	J₽N			ROISCI	12
	- N ∩				3 0 I SC 1	13

	SUBROUTINE REDUCE (N.J.MM.M.A.A.A.C.ITEST.	₹⊺BUC≟	2
	1 MY, MY, MU, MS, MAT1, MAT2, MAT4, MAT4, MAT5, MAT6)	5 - BAU -	*
		REDUCE	4
	O THIS SUBPOUTINE DETERMINES THE IRREDUCIBLE SUBMATRICES OF	₹ = DUC =	5
F	O THE MATRIX A WITH DIMENSION N.	\$: DUC:	ŧ.
	0	\$ -000E	7
	C J- NUMBER OF IRREDUCIBL' SUBMATRICES (1-5)	3:000 E	R
	C MMED - DIMENSION OF THE ITH SUPMATRIX	3 - DNC-	9
		₹ - D n C E	10
10	C NUMBERS OF THE LIH SUBHATRIX	4 - DUCE	11
	•	₹≘ถ⊎≎ฅ	1?
	CCMMCN/COND/PEAO.SYSTEM.OUTPUT.NX.NY.NU.NXC.NUC.N1.H2.CIGITL.	REDUC-	13
	1CONTUR, NUMERS, FRPS, TRESP, MODEL, NSCALE, SAV, CMAT, NK2, I FL 4G,	そそりいひて	14
	ZIGO, FORM, IPT, READ3, MIXED, MULTRT, SCAPLT, ZOH, KOUNT	RETUCE	15
1 =	INTEGER READ.SYSTEM.OUTPUT.FORM.CONTUR.SAV.CMAT.FEADE. FRRESP	REDUCE	16
	INTIGER DIGITE, SCAPET, 704	REDUCE	17
	DIMINGEM A MAJER (XM.XM) A NOTONIA	₹:000€	1 A
	INTEGER SCAN	そうりひたら	19
	OIMTNSION M(10,20), MM(20), SCAN(20)	REGUCE	2 C
2.0	COMMON/SUBWRIT/ ISUBNAM	REDUCE	ĉ 1
	IF(ISUPNAM.GE.2) WRITE(3.990)	REDUCE	27
	990 FORMAT(1X, *REDUCF*)	REDUCE	23
	nc 60 I=1,20	REDUCE	24
	DC 61 J= 1,10	PEDUCE	25
25	M(J, I)=0	REDUCE	26
	61 CCNTINUE	9 6 D U G 6	27
	MM (T) = 0	REDUCE	28
	6F CONTINUE	REDUCE	2 9
	00 19 I÷1•N	REDUCE	30
₹0	90 11 J=1•N	REDUCE	31
	0.9=(L,1) =	PEDUCE	17
	C(1,1)=0.0	२ इत्तरावर	33
	IF $(4(I,J).NE.0.0)$ $9(I,J)=1.0$	s = ü ∩C ∈	34
	11 CONTINUE	REDUCE	35
10	9([,1)=1.0	3 50 UC 5	36
	10 GONTINUE	REDUCE	7.7
	KRUN T=1	REDUCE	38
	22 CONTINUE	REDUCE	39
	PO 23 I=1.N	そ そのいじ そ	40
40	no 23 J=1.N	₹ E DUCE	4 1
	90 21 K=1+N	REDUCE	42
	IF (9(I,K).EQ.0.0.09.B(K,J).EQ.0.0) 50 TO 21	₹ ₹₽ り0 €	43
	C(T,J)=1.0	REDUCE	4
	SC TO 29	REDUCE	45
45	21 CONTINUE	REDUCE	46
	20 CONT INUE	₹ EDUÇE	47
	KRUNT=2*KRUNT	REDUCE	48
	IF (KRUNT.GE.N-1) GO TO 23	REDUCE	49
	DO ?4 I=1.4N	REDUCE	= 0
50	00 24 J=1+N	REDUCE	51
	9(1,J)=((1,J)	ระบบดูล	5.2
	24 CONTINUE	REDUCE	.3
	GC TC 2?	REDUCE	54
	23 CONTINUE	REDUCE	3.5
1.2	70 Tf I=1.N	REDUCE	56
	SCAN(I)=I	REDUCE	5.7
	30 CONTINUE	REDUCE	e B

01/09/76 14.13.54.

FTN 4.2+75060

	JOBERUTINE POOT	73/74	CP*=1		FTN 4. 2+75060	01/09/76	14.13.59.
		55 TO 11 TO					
	1.4	GN TO 142 RR=2.*PP				₹007	59
66		[[=?*[T				ROOT 2001	60
*10		IF (1.60.1) I	T - O			₹001 ₹007	f 1 62
		IF ([.EQ.2)]				9001	63
		IF ([.60.1)				ROOT	64
		IF ([.50.218				ROOT	F 5
45	142	CONTINUE				₹007	56
		00 40 J=1.N14	1			9001	67
		IF (N1.LT.O)				₹00Т	6.8
		JJ= J-1				ROOT	69
		TT= (J-1) * (GAIN1			1009	70
7.0		GC TO 42				9 007	71
	41	TT=2. + TT				7007	72
		11=54 11				2001	73
		IF (J.FQ.1) .				9007	74
		IF (J.EQ.2)				R OOT	75
15		IF (J.E0.1)				₹001	76
		IF (J.EQ.2)	TT=GAIN1			R 00T	77
	47	CONTINUE				ROOT	78
	430	GO TO (101.1)	UU1 + NK5			₹ 00 ₹	79
- C	196	MAT?=MX				ROOT	80
- 6		MATTEMU				₹00† ₹00†	81
		MAT4=MX				2007	82 83
		CALL ADD CTT	. ¥ 2 . DD . ¥ 6 . L	F.NH.NI.		ROOT	84
				ATT , MAT4 , MAT5 , MAT6)		ROOT	65
H.S		MATTEMX				₹001	86
		MATSEMX				ROOT	87
		DO 43 IA=1,80	1			1007	9.8
		OC 44 JA=1.N				ROOT	89
		H1([A, JA)=-W1				ROOT	90
90	4.4	CONTINUE				₹ 00 ₹	91
		W1 ([4, [4]=1.	0 + W1 ([A , [A)			ROOT	65
	4.3	CONTINUE				R 00 T	93
		CALL INVR (H				ROOT	94
			MAT1, MAT2, M	AT3, MAT4, PAT5, MAT6)		R 0.01	95
95		MAT1 =MU				1 00 T	96
		MAT3 = MU				9 00 7	97
		CALL ADD (TT		ATB.MAT4.MAT5.MAT6)		₹001	98
		MAT1=MX	-H 1444 294	10 14m4 C 14m4+ 14m41. 14		7 OC 5 7 OO 9	99 100
190		MAT T=MX				₹007	101
130		CALL MULT (H	2 . M1 . M3 . NII .	NII. NY.		ROOT	102
				AT3, MAT4, MAT5, MAT6)		₹007	103
		SC TO 102				ROOT	104
	101	MAT L=MIJ				3001	105
101		MAT2=4X				₹ 00 ₹	106
		PAT3 = 40				ROOT	107
		MAT 4 = M X				T005	105
		CALL ADD (TT				ROOT	109
			MAT1, MATZ, M	AT3.MAT4.MAT5,MAT5)		ROOT	110
110	192	CONTINUE				₹001	111
		IF (J. E7. 2. A)				ROOT	112
		IF (J.50.1.4)	NU.I.EQ.21	GD TO 201		400T	113
	3.44	GC TO 202				R 001	114
	207	00 203 TX=1.	10			₹ 00 Т	115

SUPPOUTINE	° 00 T	73/74 CPT=1 FTN 2+75360	01/09/76	113.59.
115		OC 205 JX=1.NX	₹00.5	116
• • •		IF (NK2, EQ. 1) GO TO 209	₹00₹	117
		H(KK,JX) = W3(IX,JX)/TT	ROOT	116
		GC TO 205	ROOT	119
	209	H{KK,JX]=H{(IX,JX)YTT	7007	120
120		CONTINUE	R 00 T	121
		IF (NK2. E0. 1) GO TO 203	ROOT	172
		00 207 JX=1,NU	₹00₹	123
		F (KK , JX) = K2 (TX, JX)	₽001	124
	207	CONTINUE	₹00₹	125
125	203	KK=KK+1	9.00₹	126
		MY= MU	ROOT	127
		60 10 202	₹ 00 Т	126
	70 1	CC 214 IX=1.NU	R 00 T	129
		0C 236 JX=1.NX	R 00T	130
1 30		IF (NK2.EQ.1) GO TO 210	R 007	131
		H(KK,JX)=N3(IX,JX)/TT	R 00T	132
		60 70 206	₹001	133 134
		4 (KK, JX) = W1 (TX, JX) /RP	₹00T ₹00T	135
	20€	CONTINUE	ROOT	136
1.35		IF (NK2.FQ.0) GO TO 204	2001	137
		0C 208 JX=1.NU	₹001	138
	240	F(KK,JX)=K4([Y,JX)	ROOT	139
		CONTINUE	₹001	140
	204	KK=KK+1 NY=2*NU	9 00 T	141
1 ~ C	202		₹301	142
	742	CONTINUE MATI=MX	₹001	143
		MAT2=MU	ROOT	1 44
		MAT 32MX	700F	145
1→5		MATGEMY	2 00 T	1 46
145		CALL MULT (B. H3, M2, NX, NU, NX,	₹00₹	147
		MATA, BTAM, BTAM, ETAM, ETAM, ETAM, ITAM, MATE	R 00T	148
		MAT2=MX	R 00 T	1 4 9
		CALL ADD (1.0, A, 1.0, W2, W1, NX, NX,	2001	150
150		1 MX. MY. MU. MS. MAT1 . MAT2. MAT3. MAT4. MAT5. MAT6)	₽ cat	1 5 1
1.3		IF (N2.NE.D) GC TO 220	R OOT	152
		WRITE (3,221) J. TT	₹00 Т	153
	221	FORMAT (//,10x,*NO. *,15,* ITERATION. 1ST GAIN =*,E12.4/	R 001	1 - 4
		120X.* REAL PART*,15X,*IMAGINARY FART*/)	ROOT	1
155		60 10 222	₹001	156
		WRITE (3.7) J. TT. I. RR	२०० र	157
	7	FORMAT (//,10x,*NO. *, 15, * ITFRATION, 1ST GAIN =*, £12, 4,10	X . *NO. * 2001	158
		1,15.# ITERATION, 2ND GAIN =+,E12.4/20X.*REAL PART*,15X.	₹00 Т	159
		2 # IMAGINARY PART+/)	R 00T	150
160	222	CONTINUS	₹00₹	161
		CALL EIGEN (NX, H1, H2, H3, ROOTR, ROCTI, U, V.	7001	167
		1 MX, MY, MU, MS, MAT1, MAT2, MAT3, MAT4, MAT5, MAT6)	ROCT	163
	45	CONTINUE	7 0 0 T	164 165
		NO 74 I=1.NU	9 00 T 9 00 T	166
1.65		DC 74 U=1,NU		167
	_	D(I,J)=0.0	T005	168
	74	CCNTINUE	7 00 T	169
		OUTPUT=3	100F	170
		IF (NK2.EQ.0) OUTPUT=1	₹ 00 ₹ 7 00 T	171
170		FRP5=3	300T	172
		NUM= RS=0	1001	1.0

ORIGINAL PAGE IS

	SUMPOUTINE ROOT	73/74	OPT = 1	FTN 4.7475050 0:	1/09/76	113. ***.
		OUTPI(1)=ALA)	v K		ROOT	173
		INPT(1)=PLAN	(ROOT	174
		NLU=NU*?			₹ 00T	175
1.75	5	00 53 I=1, NU	1		₹007	176
		00 51 J=1.4X			₹001	177
		IF (H(I,J),E/	3.0.01 GO TO 5	1	ROOT	1 78
		GO TO 52			₹00₹	1 79
	51	CONTINUE			₹00₹	180
18	56	CONTINUS			ROOT	181
	52	IF (I.EQ.1)	GO TO 54		ROOT	182
		IF ([.GT.NU)	I = NL U+ NI!		ROOT	1 * 3
		00 - 3 J=1.NX			₹001	184
		H(1,J)=H(1,J)	1		9001	185
18	٠,	B(J,1)=B(J,I)		R 007	1 86
	53	CONTINUE			1005	137
		DO 56 J=1.NU			ROOT	1 98
		F(1,J) =F(1,	J1		₹00₹	189
	56	CONTINUE			1005	190
19	g 54	NY=1			ROOT	1 61
		N U= 1			10CF	192
		WRITE (3.55)			ROOT	193
				OPTION COMPUTES THE ZEROES OF THE FIRST		1 5 4
		1 NON FERD RO	W# /10X, #OF K1	OR K3 RESPECTIVELY DUE TO INCICATED	ROOT	1 00
1 - 1	5,	? INPUT #/1			ROOT	196
-		RETURN			1005	197
		ENO			ROCT	198

ริยคลาม	#TINE SETUP 73774 OPT≍1	FTN 4.2+75060	01/09/76	14.14.08.
	MAT4=MX		SETUP	59
	CALL MAKE (P.W1.FX.NU.		SETUP	6.0
6.0	1 MX, MY, MU, MS, MAT1, MAT2, MAT3, MAT4, MAT5, MAT6)		SETUP	£1
- 0	CWAT=0		SETUP	Ē2
	5 SC TC (FO.10.10).SYSTEM		SETUP	63
	10 IF (NK2.EQ.01 GO TO 40		SETUP	64
	10 14 (445, 5014) 80 10 40		SETUP	65
٠	C ELIMINATE KONKA MATRICES		SETUP	66
	C C C C C C C C C C C C C C C C C C C		SETUP	67
	IF (SYSTEM.EQ. 3. AND. MIXED. NE. 1) GO TO 660		SETUP	68
	MAT1=MU		SETUP	69
	MAT?=MX		SETUP	70
70	MAT4=MU		SETUP	71
, ,	CALL MULTIKE, R. WI . NU . NY . NU .		SETUP	7.2
	1 MX, HY, PU.MS.MAT1.MAT2.MAT3.MAT4.MAT5.MAT6)		SETUP	73
	00 12 T=1.NU		SETUP	74
	00 13 J=1.NU		SETUP	75
75	W2(I,J)=+H1(I,J)		SETUP	76
	13 CONTINUE		SETUP	77
	W2(I.I)=1.0+W2(I.I)		SETUP	78
	12 CONTINUE		SETUP	79
	IF (DICITE .NE. 1) GO TO 838		SETUP	8.0
A C	DC 9*3 T=1.NU		SETUP	61
	DO 439 J=1.NUC		SETUP	82
	W2(I,J)= 0.0		SETUP	8.3
	IF (I .5Q. J) W2(I,I)= 1.0		SETUP	84
	339 CONTINUE		SETUP	85
P 5	838 CALL INVR (M2.M1.MU.D.		SETUP	86
	1MX.MY.MU.MS.MAT1.MAT2.MAT3.MAT4.MAT5.MAT6)		SETUP	87
	MAT1 =MU		SETUP	88
	MAT 4 = M X		SETUP	89
	CALL MULT (K2.A.H2.NU.NX.NX.		SETUP	90
90	1 MX, MY, MU, MS, MAT1, MAT2, MAT3, MAT4, MAT5, MAT6)		SETUP	91
	CALL 400 (1.0,K1.1.0,W2.W3,NU.NX,		SETUP	92
	1 MX, MY, MU, MS, MAT1, MAT2, MAT3, MAT4, MAT5, MAT6)		SETUP	93
	MAT1=MX		SETUP	94
	CALL MULT (W1. W3. W2. NU. NU. NY.		SETUP	95
95	1 PX, MY, MU, MS, MAT1, MAT2, MAT3, MAT4, MAT5, MAT6)		SETUP	96 97
	MAT 3=MU		SETUP	
	MAT→=MU		SETUP SETUP	98 99
	CALL MULT (M1.D.W3.NU.NU.NU.			100
	1MX, MY, MU, MS, MAT1, MAT2, MAT3, MAT4, MAT5, MAT6)		SETUP SETUP	101
100	MAT1=MU			102
	MAT 2=M()		SETUP SETUP	103
	MAT3=MX		SETUP	104
	MAT4=MX		SETUP	105
	CALL MAKE (D.W3.NU.NU.		SETUP	106
105	1 MX, MY, MU, MS, MAT1, MAT2, MAT3, MAT4, MAT5, MATE)		SETUP	107
	MATZEMX		SETUP	108
	CALL MAKE (KI, WZ, NU, NX,		3ETUP	109
	1M X, 4Y, MJ, MS, MAT1, MAT2, MAT3, MAT4, MAT5, MAT5)		SETUP	110
440	NK2=)		SETUP	111
119	50 TO 40 360 MAT1≃MU		SETUP	112
			SETUP	113
	M∆T?=MX Call Mult {K2+A+H1+NU+NX+NX+		SETUP	114
	14X.4Y.MI.MS.MAT1.MAT2.MAT3.MAT4.MAT5.MAT6)		SETUP	115

115	CALL MULT (K4,A,H2,NU,NX,NX,	SETUP	115
**	1MX, MY, MU, MS, MAT1, MAT7, MAT4, MAT4, MAT5, MAT6)	SETUP	117
	CALL ADD (1.0 .K1 .1.0 .W 1 .W 3 .NU .NX .	SETUP	118
	14X.MY.MU.MS.MAT1.MAT2.MAT3.MAT4.MAT5,MAT6)	SFTUP	119
	CALL 400 (1.0.K3.1.0.W2.W1.NU.WX.	SETUP	120
1 20	1 HX. HY. MU. MS. MA T1 . MA T2 . MA T3 . MAT4 . MAT5 . MAT5)	SETUP	171
• •	CALL MAKE (K1. M3. NU. MX.	SETUP	122
	1 M X, M Y, MU, MS, MAT1, MAT2, MAT4, MAT4, MAT5, MAT6)	SFTUP	123
	CALL MAKE (K3, W1, NU, NX,	SITUP	124
	1 MX, MY, MU, MS, MAT1, MAT2, MAT3, MAT4, MAT5, MAT6)	SITUP	125
105	₩ AT 4= MU	SETUP	126
	CALL MULT (K2,P.W1.NU,NX,NU,	SETUP	127
	1 MX. MY. MU. MS. MA T1. MA T2. PAT3. MAT4. MAT5. MAT6)	SETUP	178
	CALL MULT (K4.8.W2.NU.NX.NU.	SETUP	129
	1MX,MY,MIJ,MS,MAT1,MAT2,MAT3,MAT4,MAT5,MAT6)	SETUP	130
1.30	MAT 4= MX	SETUP	131
_	CALL MAKE (K2,W1,NU,NU,	SETUP	132
	1HX,4Y,MU,MS,MAT1,MAT2,4AT3,MAT4,MAT5,MAT5)	SETUP	1 33
	CALL MAKÉ (K4,N2,NU,NU,	3 TUP	1 34
	1 MX, MY, MU, MS, MAT1, MAT2, MAT3, MAT4, MAT5, MAT6)	3 _TUP	135
1 35	40 CONTINUE	SETUP	1 36
	50 IF (CUIPUT.ED.1.OR.QUIPUT.FQ.3) GC TO 51	SETUP	1 37
	c	SETUP	138
	C ELIMINATE G MATRIX	SETUR	139
	C	SETUP	140
140	MAT(=MY	SETUP	1 -1
	MAT2=MX	3 £ T U P	142
	ΥΜΞΣΤΔΜ	SETUP	1.43
	MAT 4≔MU	SELILB	1 44
	CALL MULT (G.P.Wi.NY.NX.NU.	SETUP	145
145	1M X, M Y, MU, MS, MAT1, MAT2, MAT3, MAT4, MAT5, MAT6)	3 ETUP	146
	MATC=MU	SETUP	147
	мат 4= мх	SETUP	1 48
	MAT 3≐MX	SETUP	149
	CALL ADD (1.0,F,1.0,H1,H2,NY,NU,	SETUP	100
1=0	1 MX, MY, MU, MS, MA T1, MA T2, MA T3, MA T4, MA T5, MA T61	SETUP	1 1
	CALL MAKE (F.W2.NY.NU.	SETUP	1 7 2
	1 MX. MY. MU. MS. MAT1. MAT2. MAT3. MAT4. MAT5. MAT6)	SETUP	1 5 3
	MAT?=MX	SETUP	1 - 4
	CALL MULT (G.A.H1.NY.NX.NX.	SETUP	155
1 ^r	1 MX, MY, MU, MS, MAT1, MAT2, MAT3, MAT4, MAT5, MAT6)	3 ETUP	1 6
	CALL ADD [1.0, H, 1.0, H1, H2, NY+NX+	SETUP	157
	1 M X, M Y, FU , MS , MA T1 , MA T2 , MA T3 , MA T4 , MAT5 , MAT6 }	SETUP	158
	CALL MAKE (H.M2.NY.NX.	3 ETUP	159
	1 M X, M Y, MU, MS, MAT1, MAT2, MAT3, MAT4, MAT5, MAT6)	SETUP	1 0
1 າ በ	IF (CUIPUT.EQ.2) OUTPUT=3	SETUO	161 162
	IF (OUTPUT.EQ.4) OUTPUT=3	SETUP SETUP	163
	31 TF (MIXED.NE.1.0P.PEAD.EQ.→) GC TO 210	SETUP	164
	C THE CLASS	\$_TUP	165
	C AUGMENT SYSTEM WITH CONTPOL SYSTEM HODELED IN CLASS	3_10P	165
165	C	SETUP	167
	MAT1=MX	SETUP	158
	MATZ=MX	2 5 1 1 1 b	169
	GALL FOT1 (C.Mx,Mx,	SETUP	170
	1 Mx, MY, MU, MS, MAT1, MAT2, MAT3, MAT4, MAT5, MAT6)	SETUP	171
170	00 211 T=1.NY	3:105	172
	((I,I)=1.0	3:19"	1

FTN 4.2+750EI 01/09/76 14,14.08.

ORIGINAL PAGE IS OF POOR QUALITY

TOPS OUTTINE SETUP 75/74 CPT=1

SURPOUTER: S-TUP

77/74 OPT=1

FTN 4.2+75360

01/09/75 14.14.08.

; t.	OROHITIKS SETUP 73/74 OPT=1 FTV 4.2+75855	31/09/76	14.14.74.
	MAT 1 SMY	SETUP	230
,> e ₁₅	CALL HULT TH. H2, W3. NY. NXC. NXC.	SETHP	2 31
	1 PX, MY, MU, MS, MATE, MATE, MATE, MATE, MATE	3 F T U D	232
	MAT4=MI	SETUP	233
	MAT1 = MX	SETUP	234
	CALL MULT (W3.P.C.NY.NXC.NUC.	SETUP	2 3 5
> 40	1 MX.MY.MU.MS.MAT1.MAT2.MAT3.MAT4.MAT5.MAT6}	SETUP	236
	MATI=MY	SETUP	237
	M & T .3 =M Y	SETUP	238
	MAT-, =MU	SETUP	239 240
	MAT 5 = M Y	SETUP	241
240	MAT6:MU	SETUP	241 242
	CALL ADD (1.,C,1.,F,F,NY,NUC,	3 E T U P 3 E T U P	243
	IMX, MY, MU. MS, MAT1, MAT2, MAT3, MAT4, MAT5, MAT6)	SETUP	244
	459 MAT1=MY	SETUP	245
	MAT 3= MX	SETUP	246
2.45	MAT4=MX	SETUP	247
	MATSONY	SETUP	248
	MATE HAND THE HAND NAC MAC.	SETUP	249
	CALL MULT (H, W1, W3, NY, NXC, NXC,) 1MX, MY, MU, MS, MAT1, MAT2, MAT3, M4T4, MAT5, MAT5)	3 ETUP	250
2 0	CALL MAKE (H. W3.NY-NXC.	SETUP	251
2 - 3	1 MX, MY, MU, MS, MAT1, MAT2, MAT3, MAT4, MAT5, MAT6)	SETUP	2 3 2
	IF (70H. FO. NUC) GO TO 455	SETUP	253
	NN1=70H+1	SETUP	254
	00 460 I=1.NY	SETUP	255
255	00 468 J=KN1.NLC	SETUP	256
650	IF (F(I, J).NE. E) GO TO 461	SETUP	257
	460 CONTINUE	SETUP	258
	GO TO 462	SETUP	259
	461 WRITE (3,448)	SETUP	260
240	462 70 463 I=1.NY	SETUP	261
	0.0 463 J=NN1+NUC	3 ETUP	2 f 2
	x x = 0 • 0	SETUP	263
	DO 464 K=1, NYC	SETUP	2 € 4
	(L,K) B* (X,I) H+XX ±XX	SETUP	2 6 5
245	464 CONTINUE	SETUP	266
	F (T, J)=XX	SETUP	267
	463 CONTINUS	SETUP	268 269
	OUTPUT =3	SETUP	270
	455 CONTINUE	SETUP	271
270	CALL EAT COELT.A.HI.H2.H3.G.NXC.	SETUP	272
	1HX, HY, HU, MS, MAT 1, MAT 2, MAT 3, MAT 4, MAT 5, MAT 5	SETUP SETUP	273
	NA1 = 7 OH+1	SETUP	274
	00 7 I=1.NXC	SETUP	275
	90 7 J=1.NXC	SETUP	276
275.	A(I,J) = W1(I,J)	SETUP	277
	7 CCNTINUE	SETUP	278
	IF (70H,ED.0) GO TO 441	SETUP	279
	MAT1=MX	SETUP	280
2.00	MATG=MU Call Mult (42. A. Mt. NYC. NYC. 70H.	SETUP	281
940	CALL HULT (H2, B, W3, NXC, NXC, ZOH, [my,my,mu,ms,mat1,mat2,mat3,mat4,mat5,mat6}	SETUP	282
		SETUP	283
	ΗΔΥ2=ΜU ΜαΥ4=ΜX	SETUP	284
	MATHEMX COLL MAKE (B.W3.NXC.ZOH.	SETUP	285
2 95	1 MX MY MU MS MATI MAT 2 MAT 3 MAT 4 MAT 5 MAT 6)	S : TUP	2 9 6
6.75	1 1 4 - 1 4 - 1 0		

SUBP	OUTTNE SETU	73/74 CPT=1	FTN 4.2+7506(01/09/76	14.14.08.
	1	IF (ZOH.FQ.NUC) 60 TO 44?		SETUP	287
	***	IF (70H.LT.NIC) 50 TO 443		SETUP	268
		WRITE (3,444)		SETUP	289
	-, 4, 4,	FORMAT (/,* 70H GREATER THAN NUC*/)		SETUP	290
290	443	00 445 I=1,NY		SETUP	791
		70 445 J=NN1.NUC		SETUP	29 2
		IF (F(I,J).N5.0.) GO TO 445		SETUP	29 3 2 94
	445	CONTINUE		SETUP SETUP	295
		GC TO 447		3 ETUP	296
295		WRITE (3,448)		SETUP	297
		FORMAT (/* F MATRIX NOT NULL *) DO 449 I=1.NXC		SETUP	298
	447	00 449 J=NN1+NUC		SETUP	299
		XX=3.0		SETUP	300
300		00 450 K=1.NXC		SETUP	301
Sing		XX=XX+H1(I+K)*B(K+J)		SETUP	302
	_ca	CONTINUE		SETUP	363
	7.0	H3(I,J)= XX		SETUP	364
		CONTINUE		SETUP	3 05
305	77.	IF (MMM.NE.0.0) GO TO 470		SETUP	306
		30 +C2 I=1.NY		SETUP	3 3 7
		00 457 J=NN1, NLC		SETUP	378
		XY= 0.0		SETUP	399
		DO 453 K=1.NXC		SETUP	310
310		XX= XX+H([,K] + P(K,J)		SETUP	311
	45₹	CCNTINUF		SETUP	312
		F(I,J) = XX		SETUP	313
	452	CONTINUE		SETUP	314
	.70	00 401 I=1.NXC		SETUP	315
315		00 451 J=NN1, NUC		SETUP	316 317
		$H(I \cdot J) = H3(I \cdot J)$		SETUP Setup	317 318
	+51	CONTINUE		SETUP	319
		OUTPUT = 3		SETUP	320
		CCNTINUF		SETUP	321
327	1 =	IF (IPT.LT.1) GO TO 80		SETUP	322
		WRIT: (3,111) FORMAT (1H1,10X,* THE DESCRETIZED SYSTE	M T C41	SETUP	323
	111	CALL SPIT (A, 3, C. H. G. F. Ki. NZ. Ki		SETUP	324
		1 MX, MY, MU, MS, MAT1, MAT2, MAT3, MAT4, MAT5, M		SETUP	325
116		CONT INUE		SETUP	326
325	71	IF (MIXED.NE.1) GO TO 500		SETUP	327
		IF (IMIX.EQ.2) GO TO 500		SETUP	328
	c	I TE TATE HET OU IS SEE		SETUP	329
	ř	SURCYSTEMS DESCRIPED IN STEP1 AND STEPS	OF MIXED LOADING OPTION	SETUP	330
7 10	r	ARE COUPLED USING YTOV AND 71CL		SETUP	331
				SETUP	332
		IF (N3LOCK.EO.0) GO TO 300		SETUP	333
		MAT1=MX		SETUP	334
		MATP =MY		SETUP	3.35
335		MAT (=M x		SETUP	336
		*AT4 =4 ¥		SETUP	337
		CALL 7CT1 (W1 , NUT , NYT ,		SETUP	316
		1MX, MY, MU, MS, MAT1, MAT2, MAT3, MAT4, MAT5, MI	AT5)	SETUP	339 340
		IF (N770U.ED.0) GO TO 300		SETUP	341
340		00 331 T=1,N7TCU		SETUP	342
		W1(7TOU(I,2),ZTOU(I,1)+NY1)=1.0		SETUP	343
	101	LOH LIN A.		3610	373

SUPERUTIE	E SETUP	73/74	OPT=1		FTN 4. 2+75060	01/09/76	14.14.05.
	300 IF	INYTOV.EG	.0) 60 10 302			SETUP	344
	ָרָהָ יִי	303 I=1.N	YTCV			SETUP	345
र≒स्			+NU1,YTQV([,1))=1.0			SCTUP	346
	303 CON					SETUP	347
		I = MY				\$ F T J P	3 4 6
		2 = M()				SETUP	349
*** 0			, W1, W3, NYT, NUT, NYT,			SETUP	550 351
31.0			MAT1,MAT2,MAT3,MAT4	IAPAIS AMAISI		SETUP	352
		306 I=1,N 307 J=1.N				SETUP	355
		, o / 3~1, 4 1, J) = -W3(Situe	3+4
	307 CON		1,5,			SETUP	3 > 5
355		[.]1=1.n+	¥3(I,I)			SETUP	356
	105 CON					SETUP	357
	CAL	L INVRING	. C . NYT. 1 .			STTUP	3 (8
	1 M X .	4Y, MU, MS,	HAT1.MAT2.MAT3.HAT	PATS . MATS)		SETUP	á∗ d
		1 = M X				SETUP	360
360		2=4×				SETUP	3 f 1
		3 = 4 Y				SETUP	32
			, H, W 1, NY T, NY T, NX T,			SETUP	363 364
		47.MU.MS, 1=MY	44 T1, 44 T2, 44 T3, 44 T4	1. MAID. MAIDI		SETUP SETUP	365
37.5		3 = M Y 3 = M Y				SETUP	₹66
31.10			, W3, NYT, NXT,			SFTUP	357
			MAT1.MAT2.MAT3.MAT4	MATS.MATS)		SETUP	368
) CO TO 312			SETUP	369
		31 7 I = 1 . N				SETUP	370
₹7 D	0.0	313 J=1.N	x			SETUP	371
	HCI	L. II H= { L.	1/P(J)			SETUP	372
	313 CON					SETUP	373
	312 CON					SZTUP	3.74
		1 = H X				SETUP	3.75
171		?=M.Y				SFTUP	376
		₹= M Y				SETUP	377 378
		4= MU	.F.W3.NYT.NYT.NUT.			SETUP	379
			MATI, MATE, MATE, MATE	MATE . MATAL		SETUP	3.60
3 6 0		#	MR II PORTE PROTECTION CO	******		SETUP	381
		7 = MU				SETUP	382
		3=4x				SETUP	383
		4 =4 X				SETUP	304
	CAL	L MAKE (F.	WT.NYT.NUT.			3 E T U P	3 8 5
38 5	1 MX.	MY,4U,MS.	TAM.FTAM, STAM, LTAP	. MATS . MATEL		SETUP	386
		1 = 4 X				SETUP	387
		2 = 41)				SETUP	3 / 6
			.WI,H3.NXT,NUT,NYT			SETUP SETUP	389 390
			MAT1.MAT2.MAT3.MAT	4,M#15,M#15)		SETUP	₹91
390		2=MX ₹=M Y				SETUP	392
			3,H,W1,NXT,NYT,NXT.	_		SETUP	393
			MAT1,MAT2,MAT3,MAT4			SETUP	394
		чтумо (на.) (З=МЖ	TELL FRANCE GOVERNMENT OF THE	******		SETUP	39 5
395			0.4,1.0,W1,A.NKT.N	(T.		SETUP	396
			TAM, ETAM, STAM, ITAM			SETUP	397
		₹ = 4¥				SETUP	308
	нат	.=4U				SETUP	399
	CAL	L MULT (H	T,F,H1,NXT,NYT,NUT	•		SETUP	400

ORIGINAL PAGE IS OF POOR QUALITY

FTN 4. 2+75060

01/09/76 14.14.08.

u09.69011.ks	3- THP 73/74 CPT=1	FTN 4.2+75068	01/09/76	14.14.08.
	MAT1=MU		3 E T 110	458
	MATTEMU		SETUP	459
	TF (K +51 - 2) 50 TO 731		3 E T UP	460
4+0	CALL MAKE (KI.HI.NUT.NY.		21110	461
4.1.	THY, MY, MI, MS, MATI, MATZ, MATT, MATG, MATG, MATG)		SETUP	462
	CALL MAKE CK2. HP. NUT. NUT.		SETUP	4 f 3
	1MX, MY, MU, MS. MAT1. MAT2. PAT3, MAT4. PAT5. MAT61		SETUP	4 f 4
	IF (NY710K . EQ. 1) GO TO 737		SETUP	465
415	K = 2		3 ETUP	466
•	(a)) 1) 716		SETUP	467
	731 FALL MAKE IKS, WI. NUT. NX.		SETUP	458
	14x, MY, MU, MS, MAT1, MAT2, MAT5, MAT4, MAT5, MAT6)		SETUP	469
	CALL MAKE (K4.W2.NUT.NUT.		SETUP	470 471
476	1 MY, MY, MU, MS, MAT1. MAT2. MAT3. MAT4, MAT5. MAT6)		SETUP SETUP	472
	IF (NYTTOK ,GT. 2) WRITE (3,722)		SETUP	473
	722 FORMAT (/*ONLY 2 LOOPS ALLOHEC*)		SETUP	474
	732 00 733 L=1.NUT		SETUP	475
	OC 733 J=1.NUT		SETUP	476
475	IF (X2(L,J) .NE. 0.0) GO TO 734		SETUP	477
	IF (K4(L.J) .NF. 0.0) 60 TO 734		SETUP	4.7B
	733 CONTINUE		SETUP	479
	50 TO 720		SETUP	480
	734 NK 1=1 GC TO 720		SETUP	4 ^a 1
480	730 IF (I .LE. NY7TOK) GO TO 713		SETUP	4 º 2
	DC 736 J=1.NUT		SETUP	4.83
	00 737 L=1.NUT		SETUP	484
	W2 (1,L1=-W2 (J,L)		SETUP	4.85
4 * 5	737 CONTINUS		SETUP	4 4 5
• /	W2(J, I) = 1.0+H2(J,J)		SETUP	487
	736 CCNTINUT		SETUP	4 A A
	4111=Hx		3 ETUP	4.89
	ዓልን ^ማ ተ		SETUP	490 491
→ 11€	CALL THUP (W2. W3. NUT.1.		SETUP SETUP	492
	1 MX, MY, MU, MS, MAT1, MAT2, MAT3, MAT4, MAT5, MAT6)		SETUP	472
	MAT1 =MU		SETUP	464
	4 A T 2 = MIJ		SETUP	495
	MAT3=MY		3 ETUP	496
40:	MAT4 TMX		SETUP	497
	CALL MAKE (D. H3. NUT. NUT.		SETUP	4.98
	1 M X. M Y. HU, MS, MAT1, MAT2, MAT3, MAT4, MAT5, MAT6)		SETUP	499
	HAT 1 TAN		SETUP	500
c 0.0	MAT2=MX CALL MULT (W3+W1+W2+NUT+NUT+NX+		SETUP	501
536	1MX.MY. MU.MS.MAT1.MAT2.MAT4.MAT4.MAT5.MAT63		SETUP	502
	MAT1=MU		SETUP	503
	CALL MAKE (K1. M2. NUT. NX.		S ∈ T ∪ P	5 C 4
	1 MX. MY. MII. MS. MA TE. MATP. MATS, MAT4, MAT5, MAT6)		SETUP	505
505	720 CENTINUT		SETUP	505
	IF (DIGITL .NE. 1) GO TO 6		SETUP	507
	90 437 I=1.NU		SETUP	5 Q 8
	00 837 J=1,NUC		SETUP	509 510
	K2{[,J]=1.0		SETUP SETUP	511
510	K4(I,J)=0.0		5 - TUP	512
	837 CONTINUE		SFTUP	513
	6 CONTINUE		SETUP	514
	IF (MULTOT .NE. 1) GO TO 727		52.0	-

THEP	CHITTINE SETUR 73/74 OPIET FIN 4.	2+75060 01/09/76	14.14.08.
	IF (SYSTEM .NE. 2) GO TO 727	SETUP	515
915	6	SETUP	516
. •	FOR CLOSED LOOP ANALYSIS, INCOPPORATE FEEDRACK HATRX		517
	C AND FEEDFORWARD MATRIX.C	SETUP	5 1 0
	C	SETHO	519
	MAT1:MX	SETUP	520
520	MAT2=MU	SETUP	521
,	MAT REMU	SETUP	522
	MAT4=MY	SETUP	523
	CALL MULT (3,K1,W1,NX,NU,NX,	SETUP	524
	1 MX, MY, MU, MS, MAT1, MAT2, MAT3, MAT4, MAT5, MAT6)	SETUP	525
525	MATZ=HX	SETUP	525
	M A T 3 = M X	SETUP	527
	CALL ADD (1.7.A.1.G.WI.W?.NX.NY.	SETUP	528
	LMX.MY.MU.MS.MAT1.MAT2.MAT3.MAT4.MAT5.MAT6)	SETUP	529
	CALL MAKE CA. MZ.NX.NX.	SETUP	530
- 30	1 MX. MU. MY, MS. MAT1. MAT2, MAT3. MAT4. MAT5. MAT6)	\$ 2 TUP	531
	MAT 2=MU	SETUP	532
	MAT3=MU	SETUP	5 3 3
	MAT 4= MU	SETUP	534
	CALL MULT (9.0.W1.NX.NU.NU.	SETUP	535
5.35	1MX, MY, MU, MS, MAT1, MAT2, MAT3, MAT4, MAT5, MAT6)	SETUP	536
	м д т ч = м х	9 E T U P	537
	MAT4 = MX	3 E T UP	5.38
	CALL MAKE (B. H1. NX. NU.	SETUP	539
	1MX.AU.MY.MY.MAT1.MAT2.MAT3.MAT4.MAT5.MAT6}	SETUP	540
540	MAT1 = MY	SETUP	541
	MAT 2= MU	SETUP	542
	' υ Μ = ₹ Τ Δ Ι ν	SETUP	543
	CALL MULT (F, K1. H1. NY. NU. NX.	SETUP	544
	1HX. YY.MU.MS.MAT1.MAT2.MAT3.MAT4.MAT5.MAT6}	SETUP	545
545	м∆т?≃мх	SETUP	546
	MAT 3=MX	SETUP	547
	CALL ADD (1.0.H.1.9.W1.W2.NY.NX.	SETUP	548
	1MX, MY, MJ, MS, MAT1, MAT2, MAT3, MAT4, MAT5, MAT6)	3 ET UP	549
	CALL MAKE (H. HZ.NY.NX.	SETUP	550
500	1 M X, M Y, MU, MS, MA T1, MA T2, MA T3, MA T4, MAT5, MAT6)	SETUP	35 1
	MAT?=MU	S ETUP	552
	MATR=MU	SETUP	553
	MAT 4= MU	3 ETUP	554
	SAEL MULT (F.D.W1.NY.NU.NU.	SETUP	555
eri	1 M X, M Y, MU, MS, MAT1, NAT2, MAT3, MAT4, MAT5, MAT6)	SETUP	556
	M AT ₹=M X	SETUP	557
	MAT4 =MX	SETUP	538
	CALL MAKE (F. M1. NY. NU.	SETUP	559
	1MX,MY,MU,MS,MAT1,MAT2,MAT3,MAT4,MAT5,MAT5)	SETUP	5€0
5€0	SYST#M=1	SETUP	5 5.1
	727 CONTINUS	3 ETUP	5 E 2
	IF (PEAD.ED.4.AND.SYSTEM.ED.3) GO TO 828	SETUP	563
	IF (MIXED.NE.1) GO TO 721	SETUP	564
	929 IF (N9LOCK.EG.D) GO TO 520	SETUP	565
€ €	r.	SETUP	566
	 C THIN THE INPUT VECTOR (MIXED LEADING OPTION) 	SETUP	567
	C	SETUP	568
	00 304 [=1,10	S ETUP	5€9
	00 321 J=1,NX	SETUP	570
5.73	4 (I) UNIHTI . L) P	SETUP	571

		FTN 4.2+75/16(01/09/75	14.14.08.
206690	HINE STILL	73/74 OPT=1		
			3 ETUP	572
	321 0	ONT INDE	SETUP	573
		C 323 J=1, VY	SETUP	574
	F	(), [) = F (J, [T + [NU([])]	SETUP	575
		# * # * * * * * * * * * * * * * * * * *	SETUP	576
5.75	, , ,	E (SASTEM "SC" 3 "OS" MATLES "NE" 3) CO 10 355	SETUP	577
5.4.9		0. 10. 305	25.100	578
	322	0 325 J=1.NX	3 ETUP	579
	1	1(T,J)=K1(ITHINU(I)+J)	SETUP	580
	,	(3([,J)=K3(THINU(I),J)	SETUP	581
L-BC	325 (CONTINUE	SETUP	582
		0 326 J=1.NUT	SETUP	543
	1	((I) UNITTINU(I))	SETUP	5 84
		CNTINUE	SETUP	585
		on 727 J=1,NUT	SETUP	5 86
5 85		([,J)=B([THTNU([),J)	SETUP	5.47
262	327	CONTINUS	SETUP	5 9 8
	105	(F (THINU(I+1) .EQ. 0) GO TO 320	SETUP	589
		CHT INUF	SETUP	590
		(F (I.LT.NUT) NU=I	3 TUP	591
140			SETUP	592
0	,	TENTINGP TE (READ.ED.4.OR.MIXID.EQ.1.OR.READ.EQ.3) GO TC 729	SETUP	593
		C TU 520	SETUP	504
	72 5	CONTINUE	SETUP	5 95
	С		SETUP	596
g M.S.	Ċ	THIN THE OUTPUT VECTOR (MIXED LOADING OPTION)	SETUP	F G 7
* *	Ċ		SETUP	598
		no rui T=1,30	SETUP	599
		00 "02 J=1,NXT	SETUP	500
		(L, (I) YMIHTI) H= (L, 1) H	SETUP	€01
600	532	CONTINUE	SETUP	602
3.73		00 703 J=1,NUT	SETUP	603
		f([,])=f([THINY([),])	SETUP	€04
	50 5	CONT INUF	S-TUP	605
		IF (ITHINY(I+1) .EQ. 0) GO TO 521	SETUP	606
605		CONT INUF	STUP	507
	21	IF (I.LT.NY) NY=I	SETUP	508
		IF (IMIX.NE.1) GO TO 520	SETUP	€09
		INLX=5	SETUP	610
		GC TO 465	SETUP	611
F 1 0	520	MAT1=MX	SETUP	€12
		MAT2±MX	SETUP	613
		MAT3=MX	S E T U P	614
		MATA=MX	SETUP	615
		CALL MAKE (M1, A, NX, NX,	SETUP	616
615		HAY, MY, MU, MS, MAT1, MAT2, MAT3, MAT4, MAT5, MAT51	SETUP	617
		[P { M XC () + C () + C () }	3 = TUP	618
		IF (IPT.LT.1) GO TO 200	SETUP	619
	102	FORMAT (141.10X.* THE FINAL REDUCED SYSTEM IS*//)	SETUP	620
	100	FORMATICIALITY THE FINAL REDUCED STOLET	SETUP	621
629		CALL SPIT (A.R.C.H.G.F.K1.K2.K3.K4.D.	SETUP	622
		14Y, HY, MU, MS, MAT1, MAT2, MAT3, MAT4, MAT5, MAT6)	SETUP	623
	306	CONTINUE	SETUP	624
		ENU		

ORIGINAL PAGE IS OF POOR QUALITY

1 MX, MY, MU, MS, MAII, MAIY, MAIS, MAIG, MAIP, MAIP,

62 CONTINUT

1F (N2, E0, C) SO TO 6+

MAIT! (3, 14)

14 FOOMAT (// 10X, *THC K3 MATRIX IS*/)

CALL SPIT1 (KX, NU, NX,

1MX, MY, MI, MS, MAII, MAIZ, MAI3, MAI4, MAIS, MAI6)

IF (NK2, E0, D) GO TO 64

MRII' (3, 15)

E SOOMAT (// 12X, *THE K4 MAIRIX IS*/)

15 FOCMOT (N. 13%, *THE K4 MATRIX IS*/)
CALL SPIT1 (K4.NU.NX.
1M.MY.*U.MS.MATI.MATS.MATS.MATA.MATS.MATS)

5.0

SPIT

SPIT

SPIT SPIT SPIT SPIT

SPIT SPIT SPIT SPIT

SPIT

50 51

52 53 54

56 57

C A

	(meouties seli	73/74 CP T=1	FTN +. 2+ 75060	01/19/75	14.15
	ħ.,	CONTINUE		SPIT	FQ
	-	TE (MIXED.EQ.1) GO TO SO		SPIT	೯೧
٠,		60 10 200		SPIT	6.1
	51	WRITE (3.16)		SPIT	62
		FORMAT (// 10x. THE H HATRIX 15#/)		SPIT	6.3
		FORMAT (// 10X. THE G MATRIX IST/)		SPIT	F 4
		FORMAT (//10x. THE E MATRIX IST/)		SPIT	6.5
- 5	19	FORMAT (//10x. THE D MATRIX IST/)		SPIT	F.G.
		MAI1=MY		SPIT	£ 7
		CALL SFIT1 (H.NY.NX.		SPIT	€8
		1MX.MY.MU.MS.MAT1.MAT2.MAT3.MAT4.MAT5.MAT61		SPIT	£9
		GC TO (100,56,57,58),QUTPUT		1192	70
7.0	5 6	WRITE (3,17)		SPIT	71
		CALL SPITE (G.NY.NX.		SPIT	72
		1 MX. MY, MU, MS. MAT1, MAT2, MAT3, MAT4, MAT5, MAT6)		2611	7.3
		GO TO 109		5 P I T	74
	5.3	WRIT1 (3.18)		SPIT	75
73		MAT2=MU		SPIT	76
		CALL SPIT1 (F,NY.NU,		SPIT	77
		1 MX. MY. MU. MS. MATE, MATE, MATE, MATE, MATE, MATE		SPIT	7 R
		60 TO 100		2611	79
		HRITT (1,17)		2 b I 4	нņ
40		CALL SPIT1 (G, NY, NY,		SPIT	P 1
		IMX, MY, MU, MS, MATI, MATZ, MAT3, MAT4, MAT5, MAT6)		SPIT	8.2
		WRITE (3,18)		1192	A 3
		MAT ?=MU		2011	84
		CALL SPITI (F.NY,NU,		SPLT	∿5
6.5		1 MX. MY. MIJ. MS. MAT1. MAT2. MAT3. MAT4. MAT5. MAT6)		SPIT	46
		GO TO (200,110,200), SYSTEM		SPIT	÷ 7
	110	WPJT= (3,12)		SPIT	8.8
		MAT t= MU		SPIT	+9
		MAT?=MX		SPIT	90
90		CALL SETTI (K1.NU.NX.		SPIT	c 1
		1MX, MY, MU, MS, MAT1, MAT2, MAT3, MAT4, MAT5, MAT6)		SPIT	c 2
		IF (NK2.E0.0) GO TO 66		SPIT	43
		HRIT (3,13)		SPIT	64 45
		CALL SPIT1 (KZ, NU, NX,		5P[T 52]T	96
3 t		1 MX, MY, MU, MS, MAT1, MAT2, MAT3, MAT4, MAT5, MAT6)		3211	97
	b*	CONTINUE WRITE (3.19)		SPIT	97 98
				SPIT	- 1n - q
		MAT 2= MU CALL SETTA (O. MU NII)		SPIT	1 (0
		CALL SPITE (O.NU.NU.		7192	101
100		1 MX, MY, MU, MS, MAT1, MAT2, MAT3, MAT4, MAT5, MAT6)		1192	102
	7 (1)	CONTINUE RETURN		5011	102
		CAN DEM		2511	100

SUBERNITINE	SPETI	73/74	CPT=1	FTN 4.2+75060	01/09/76	14.15.49.
		SUPPOUTINE SE	5774 4A.N.M.		SPI T1	,
			4A T1. MAT2, MAT3, MAT4.	ATS.HATS)	SPITI	3
		DIMENSION AC			SPITI	4
		CCMMEN /SUBNET			SPITI	5
			2) WRITE(3.940)		SPIT1	6
5		FCPMAT (1X. #SF			SPITI	7
	,	WEIT: (3.10)			SPIT1	A
		FORMAT (2110)			SPI T1	9
		00 23 T=1.N	•		SPITI	t C
			(M.1=L.(L.T)A)		SPIT1	11
1 u		CONTINUE	(4(1,3),3-114)		SPI T1	12
		FORMAT (10512	2 4.1		50111	13
		RETURN			SPITI	14
		ENO			SPITI	15

CIMPADUTINE THIST (A.P.C.H.F.WI.AZ.MI.GOTE.ROOTI.U.KI.P.Z.W. SPITI 17 1				
IMX, ww., wu.m., walt., walt		CHRODITTHE THIST IN B C.H.E.HI.HZ.HZ.ROOTR.ROOTT.HLKI.P.Z.V.	SPITT	1.6
18			SPITI	1.7
THIS SURGOUTINE COMPUTES A TABULATED TIME HISTORY DESPONSE SPITE 19				
STATE SYSTEP, IMPULTO THE SYSTEM IS UNNER USES COMPOCE SPIT 20		THIS SUBPOUTING COMPUTES A TABULATED TIME HISTORY RESPONSE	SPITI	
THORDING A CALL TO SUBROUTIEF INFUT (CELTIT,U) MYSC DELT IS SITI 71	c		SPITI	20
C			SPIT1	21
C OF DIMENSION MM, THE RESPONSE IS COMPUTED USING THE STATE SPIII 27			SPITI	27
TRANSITION MATELX THE TRANSITION MATELX IS COMPUTED BY THE SPITE 26 15 16 17 17 17 17 17 17 17			SPITI	23
10			SPI T1	24
OF THE SCRIES ARE USEG. SPIT1 26	1.0	C SUBTOUTTO EAT USING THE SERTES EXPANSION TECHNIQUES TEN TEPHS	SPITI	25
C				26
CCMMCN/COND/MFAG, SYSTEM, OUTPUT, NX, NY, NU, NXC, NUC, NIL, NZ, CIGITL, SPIT1			SPIT1	27
1			SPIT1	2 R
15		CCHHCN/COND/READ.SYSTEM.OUTPUT.NX.NY.NU.NXC.NUC.N1.NZ.CIGITL.	SPITI	29
21GC,FOSH,IPT,READ3,MIXEC,MULTRT,SCAPLT,ZOH,KCLNT SPIT1 32) =		SPIT1	3.0
CCMMCNACONOZ FELT.FINALT.IFREG.FFREG.GELERG.GATNI.GAINZ.H 32 1815GEF 960, SYSTEM, OUTPUT.FORP.CCNTUR.SAV.CMAT.RFAD3.FRESS 5911 33 33 35 35 35 35 35			SPIT1	31
INTEGER ORAN, YSTEM, OUTPUT, FORP, CCNTUR, SAY, CNAT, READ3, FROS, TRESD 3PIT1 34 37 37 37 37 37 37 37			SPIT1	32
INTEGER INTEGER SPITE 14 15 15 15 15 15 15 15		TATEGER READ. SYSTEM. OUTPUT, FORM, CONTUR, SAY, CHAT, READ3, FRPS, TRESP	SPIT1	3.4
Paral Ki, IFREG, M SPIII SC SPIII SPIII SC			SPIT1	14
COMMON/LAREL/INPT_OUIPT_ITITEE SPIII 16 POPAL TIPT[(0)) OUIPT (20.TITLE[P) SPIII 17 SPIII 18 SPIII 18 SPIII 18 SPIII 18 SPIII 19 SPIII 19	⊃n.		SPIT1	35
	•		SPIT1	
141(-M, MX), MZ (MX, MX), MX (MX, MX), ROOTE (MX), ROOTE (MX), U(MX), SPIT1			SPIT1	
14 (14%,14%),10%(14%,4%),80(11(14%),200T1(14%),20(11(14%),20(11) 140		JIMTNSION A(MX, MX), B(MX, MU), C(MX, MX), H(MY, MX), F(MY, MU),	SPIT1	
26		121 (MX, MX), WZ (MX, MX), W3 (MX, MX), FOOT (MX), ROOTI (MX), U(MX),	SPIT1	-
C	20		SPIT1	→ 0
C		0 0[MENSION A(15,10), 9(15,10), C(15,15), H(15,15)	SPIT1	⊶1
C		O DIMENSION F(15,10),K1(10,15), D(10,10), 7(15), V(17), U(15)		
TC C C C C C C C C C C C C C C C C C C				
COMMON/SUBMRITY SUBNAM SPITE 46				
REAL PST GOMMON/SUBMRIT/ ISUBNAM SPIT1 47	36	C DIMENSION K2(10,15), K3(10,15), K4(10,15)		
Part	-	REAL PST		
TELESUNAM.GE.2 WPITE(3,990) SPITE H9		COMMON/SUBWRIT/ ISUBNAM		
1		DATA PST/10HTIME		
TF (CICITA.NT.0) GO TO 60 TF (PULTPT.GT.0) GO TO 60 SPITI 52 CALL FAT (DELT,A.HI.H2.H3.G.NX. SPITI 53 1 MX.MY.HU.MS.MATI.HAT2.HAT3.HAT4.HAT5.MAT6) MAT1=MX MAT2=MX MAT3=MX MAT3=MX MAT4=MX SPITI 56 HAT5=MX SPITI 57 CALL MAKF (A.HI.NX.NX. SPITI 59 HAT5=MX CALL MAKF (A.HI.NX.NX. SPITI 61 1 MX.MY.HU.MS.MAT1.MAT2.HAT3.MAT4.HAT5.MAT6) MAT4=MILT (M2.8.H3.NX.NX.NI). SPITI 62 MAT4=MILT (M2.8.H3.NX.NI). SPITI 63 MAT2=MU MAT2=MU MAT2=MU MAT2=MU MAT2=MU MAT3=MX SPITI 64 SPITI 65 SPITI 65 SPITI 65 SPITI 65 SPITI 66 SPITI 66 SPITI 66 SPITI 66 SPITI 67 SPITI 67 SPITI 68		IF(ISUBNAM.GE.2) WRITE(3.990)		
TF [PULTPT,GT.B] GO TO 60 SPIT1 12	₹ <u>1</u>	930 FC-MAT (1x, *THIST*)		
CALL EAT (DELT,ALMI,M2,H3,G.NX) SPIT1 53		IF (DIGITL.NF.O) GO TO 60		
1 MX, MY, MU, MS, MAT1, MAT2, MAT3, MAT4, MAT5, MAT6 SPIT1 54		IF (MULTRT.GT.B) GO TO 60		
### SPIT1 55 ##################################		CALL FAT (DELT,A.H1.H2,H3.G.HX.		
### ##################################		1 M X, M Y, M U, M S, M A T 1, M A T 2, M A T 3, M A T 4, M A T 5, M A T 6}		
SPIT1 F7 MAT 1 = MX SPIT1 F7 MAT 1 = MX SPIT1 F7 MAT 1 = MX SPIT1 F7 SPIT1 SPIT1 F7 SPIT1 SPIT1 F7 SPIT1 SPIT1 F7 SPIT1 SPI	~ 0	MAT 1 = MX		
### ### ### ### #### #### ############		MAT2=MX		
## ## ## ## ## ## ## ## ## ## ## ## ##		MAT3=MX		
## 19-14		MAT 4=MX		
CALL MAKE (A, M1, NX, NX, NX)		MATS=MX		
TAX.MY.HU.HS.MAT1.MAT2.MAT3.MAT6.MAT5.MAT6) SPIT1 62 HAT4=411 SPIT1 63 CALL MULT (M2.8.M3.NY.NY.NU. SPIT1 64 IMY.MY.MU.HS.MAT1.MAT2.MAT3.MAT6.MAT6.MAT6. SPIT1 65 MAT2=MU	45	MAT6=MX		
MATG-MI SPIT1 63 CALL MULT (M2,8,M3,NY,NY,NI), SPIT1 64 SPIT1 64 SPIT1 64 SPIT1 64 SPIT1 65 SPIT1 67 SPIT1 67 SPIT1 67 SPIT1 67 SPIT1 68 SPIT1 68 SPIT1 68 SPIT1 68 SPIT1 69 SPIT1 67 SP				
CALL MULT (M2,8,M3,NY,NY,N), CALL MULT (M2,8,M3,NY,NY,N), SPIT1 64 MAT2=MU MAT2=MX CALL MAKE (9,M3,NX,NU, INX,MY,MU,MS,MAT1,MAT2,MAT3,MAT4,MAT5,MAT6) FO GO CONTINUE OC 400 IS=1,TRESP		1 MX. MY. HU. MS. MAT1. HAT2. MAT3. MAT4. MAT5. MAT6		
FO IMX, MY, MU, MS, MAT1, MAT2, MAT3, MAT6, MAT5, MAT6) SPIT1 65 MAT2=MU SPIT1 67 CALL MAKE (9, M3, NX, NU, SPIT1 68 1MX, MY, MU, MS, MAT1, MAT2, MAT3, MAT4, MAT5, MAT6) FO 60 CONTINUE SPIT1 70 OC 400 IS=1, TRESP				
SPIT1 66 MATCHIN SPIT1 67 SPIT1 68 SPIT1 69 SPIT1				
#ATI-SHX SPIT1 67 CALL MAKE (9, WT, NX, NU, SPIT1 68 1 HX, MY, MU, MS, MAT1, MAT2, MAT3, MAT4, MAT5, MAT5) SPIT1 69 F5 60 CONTINUE SPIT1 70 DC 400 IS=1, TRESP SPIT1 71	÷. ∩			
CALL MAKE (9, W3, NX, NU, CALL MAKE (9, W3, NX, NU, 1 MX, MY, MU, MS, MAT1, MAT2, MAT3, MAT4, MAT5, MAT5) F5 60 CONTINUE OC 400 IS=1, TRESP SPIT 71				
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
F5 60 CONTINUE SPIT1 70 10 400 IS=1.TRESP SPIT1 71				
00 400 IS=1,TRESP SPITE 71				
70 407 1 7-14 (K13F	5.5			
1=).7				
		1=3.0	3-111	•

SURFOUTINE	THIST	73/74	OP =1	FTN 4.2+75060	01/09/75	1 4. 15.51.
	90	1 I=1.NX			SPITI	73
	RC	01#(I)=0.0			SPIT1	74
ć O		0.0=(I)IFO			SPIT1	75
		[]=1.0			SPIT1	76
		[[1:7.0			SPIT1	77
		(I-1)=0.0			SPITI	78 79
65		I			SPIT1 SPIT1	80
7.7		(X = V.X.C + I Nu (I.M.C)			SPITI	81
		IU = NUC + 1			SPITI	82
			WRITE(7) PST.I	ITLE.SYSTEM.MODEL.DIGITL.SCAPLT	SPITI	83
		III= NY +tiù	***************************************	1.00,000.00,000.00,000.00	SPIT1	84
70	I F	(MULTRI, EQ	. 1) NYU=NY+NUC		SPITI	85
				CUTPT(I), I=1, NY), (INPT(J), J=1, NU)	SPITI	86
	яĸ	IT (3,13)	(OU 1P T(I) . I=1	,KY),(INP T(J),J=1,KU)	SPITI	87
	1 7 FO	4/1) TAPP	TIM= #(13	(2X,A10))//)	SPIT1	8.8
			• C1 GD TO 98		SPITI	89
75		NT INUE			SPIT1	90
		LL INPUTVED			SPITI	91
			IATI,MAT2,MAT3,	MA 14 .MATS .MAT6)	SPIT1	65 93
)]; [=1,NY			SPIT1 SPIT1	93
но		0.0=111172 VM.1=1 07			SPIT1	95
n u			I(I)+H(I,J)*RO	CTC (I)	SPIT1	96
		NTINUC	1117441111	C. F (3)	SPITI	97
		31 T=1.NY			SPIT1	98
		11 J=1.NU			SPIT1	9
N.S	RC	OTI(I) = POO*	I(I) +F(T,J)*U(11	SPIT1	100
	31 00	NT INU"			SPIT1	101
		(FORM. EQ. 2)			SPI T1	102
				(U/, 1=L, (L) U) , (Y/, 1	SPIT1	103
		(FORM. EQ. 0)			SPITE	1 6 4
90			OTI(I), [=1,NY)	• (U (J) •J=1•NU)	SPIT1	105
		NT INUE			SPITI	106 107
		RMAT (11E12 2 40 T=1.NX	. 51		SPIT1 Spit1	108
		(T.1)=1.0x			SPITI	109
٩j		0 40 J=1.NX			S P I T 1	110
,			1)+A(I, J) *ROOT	R(.1)	SPIT1	111
		NTINU			SPIT1	112
	ספ	41 I=1.NX			SPIT1	113
	DO	1 J=1,NU			SPIT1	114
100	W 1	(T.1)=W1(T.	11+8([,J)*((J)		SPIT1	115
		NTINUE			SPIT1	116
		4? I=1.NX			SPITE	117
		COTRUITEMA (I	.1)		SPIT1	118
		MIINUE			SPITI	119
135		T+DELT	. T CO TO 30		SPIT1	120 121
		. 11.LE.FINA) 10 96	FL1 20 10 50		SPIT1 SPIT1	122
	98 KC				SPITI	123
		K=0			SPITI	124
113	. 150 CC				SPITI	125
		(ICK. FQ. 1)	GO TO 78		SPIT1	126
		LL INPUTVID			SPITI	127
				MAT4.MAT5.MAT5)	SPIT1	128
	0.0	75 I=1.NXC			SPIT1	129

ากคลุม	JTENE THEOT	73/74	0PT=1		FTN -	→. 2 • 75 95€	01/09/76	14.15.51.
115	,	V(T)=RCOFR(I)					SPIT1	1.30
	75 (CONTINUS					3PIT1	131
	•	TC T1 I=1.NU					SPITI	1.32
		xx=?.					SPITE	133
		00 72 J=1.NU					SPITI	1.34
120		(X=4.4+U([*7)*	U(1)				SPIT1	135
		CONTINUE					SPITI	1.36
		7(T)=XY					1119 <i>2</i>	137 138
	-	CONTINUE CO 73 I=1.NU					SPITI	1.39
1.25		X X = 0 *					SPITI	140
1. /		nc 74 J=1.NX					SPITI	141
		x x = x x + k1 (I)}	*R00T9 (.1)				SPITI	142
		CONTINUE					SPITI	143
		7 (T)=7 (T)+XX					SPITI	1 -4
1 70	73 (CONT INUS					SPIT1	145
	:	IGK=1					SPIT1	146
		CONT INUE					SPITI	1 47
		YALLET DE OF					3PIT1	148
		x x=3.					50111	149
1 36		00 A1 J=1.NKC					3PIT1 5PIT1	151
		XX=XX+H{I.J). COTINUS	46014631				SPITI	152
		00011(1)=XX					SPITI	153
		CONTINU					SPITI	104
1 -0		10 H2 I=1.NY					SPITT	155
		X Y = N .					SPITI	1 ° 6
	,	OG AT J=1.NUC					20111	1 5 7
		*(L,I)34XY=XX	7 (J)				3 P I T 1	138
		CONTINUE					SPIT1 Spit1	159 160
145		RCCTI(I)=RGOT Continue	I (I)+xx				SPIT1	161
		JENTINUE IF (FORM.ED.2	1 CO TO 16				SPITI	162
				, I=1, kY}, (7(J),J=1,	NEC)		SPITI	163
		IF (FORM.EG.O		, , ,			SPITI	164
150				1,NY), (Z(J),J=1,N	UC)		SPIT1	165
-	17	CONTINUE					SPITI	166
	(00 85 I±1,0XC					SPIT1	1 57
		x x = 0 .					SPIT1	168
		00 85 J=1,NXC					SPITI	169 170
1'5		* (L.I) A +XX =XX	REGIREA				3 P I T 1 5 P I T 1	171
		CONTINUE W1(I.1)=XX					SPIT1	177
		CONTINUE					SPITI	173
		DC 87 I=1.4XC	:				SPITI	174
160		xx=0.					SPIT1	175
-		00 88 J=1,NUC	;				SPI T1	176
		* (L. [] 8+x x =x x	7 (J)				SPITI	177
		CONTINUF					SPI * 1	178
		W1(I,1)=W1(I,	11+XX				SPIT1 SPIT1	1 79 1 80
165		CONTINUE					3PIT1	181
		00 89 I=1,NXC ROOTR(I)=W1(I					27171	197
		CONTINUE					SPITI	183
		T=T+DELT					SPITI	184
170		KCT=KGT+1					SPIT1	165
		IF (T.GT.FINA	LT1 60 TO 9	6			SPITI	186

	COMPOUTING THIST	73/74	Of 1=1	FTN 4.2+75060	01/09/76	14.15.51.
	,	TE IKOT.IE.MU	ULTRI) GO TO 120		50111	1 57
		KCT = 1			SPITE	186
		ICK=0			SPITE	1 *9
1.7		IF THER. CT. NX	() GO TO 128		SPITI	190
		DO TO TENEXAN			SPITE	191
		(X = i) .			3P T 1	197
		00 91 JENXX.N	¥		SPITI	1 73
		* (L.T)A+YX=YX			\$P111	1 94
1 4	91.6	CONTINUS			39111	195
•	-	W1 (I - 1) = YX			SPITI	196
	90.0	CONTINUE			SPITI	197
		DO 92 I=NXX.N	1 ×		SPITI	198
		ΥX= 3.			SPIT1	199
14		00 93 J=1.NKC	•		SPI T1	200
		*(L. I) A + x x = x x	(L) V		SPIT1	201
	93 (CONT INUC			SPITE	20 2
	1	W1(I,11=W1(I,	11+XX		SPITI	203
	92 (CONT INUE			SPIT1	204
19	٥	IF (NUI).GT.NI	I) GO TO 130		SPIT1	205
	_	00 94 I=NXX.N	i X		S P I T 1	5 0 6
		XX=n.			SPIT1	207
		DC 45 J=NUU.N	1U		SPITI	208
		* [L ,]] D + Y X = X X	7 (J)		SPIT1	209
19	5. 95 1	CONT INUE			SPIT1	210
_		RCOTR(I) = W1 (I	[, 1) + XX		SPIT1	211
	9.4	CONT INUF			SPITI	212
		50 TO 120			SPITI	213
	130	DG 131 [=NXX.	NX		SPITI	214
2.3		ROOTR(I)=#1()			SPIV1	215
	1 31	CONTINUE			SPITI	216
		GC TO 120			SPIT1	217
	giv	T T = - 1 . 0			SPIT1	218
		IF (FORM. GT.O)	HRITE(7)TT.TT.T	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	SPIT1	219
.20	5 X	TT, TT, TT, TT, T	, , , , , , , , , , , , , , , , , , ,		SPIT1	220
		CCNT INUF			SPITI	221
		TNO			SPITI	222

SUPFOUTINE	347	73/74 CPT=1	ETN 4.2475060	01/09/76	14.15.59.
		GC TO 100		SWZ	59 F 0
	10.5	IF (NIP(I,7).EQ.1) GO TO 120		SWZ	-
F 0		IF (NIP(1,7),EG.2) GO TO 121		SHZ SHZ	61 62
		BLOCKIL,?]=1		SHZ	f3
		BLOCK (L, 3)=2		SWZ	ė4
		NUMER(L.1)=1.		3 M Z	6 5
		DENOM(L.1)=0.		3 MZ 3 M Z	66
# f,		0FH04(L,?)=1.		SWZ	57
		GO TO 199 GAIN(L)=GAIN(L)*.5*DELT		SWZ	6.8
		·		SWZ	69
	1/1	ALOCK(L, 2)=2 BLOCK(L, 3)=2		S W 2	70
70		NUMEP(L+1)=1.		S W 7	71
70		NUMER(L, 2)=1.		SWZ	72
		05NOM(L.1)=-1.		3 W Z	73
		9ENOM(L,2)=1.		SWZ	74
		60 TO 100		5 W 7	75
75	100	IF (NIP(I,7), EQ. 1) SO TO 1+1		3 H7	76
7 -	104	IF (NIP(I.7).EQ.2) GO TO 14?		SH7	77
		BLOCK(L.2)=1		SWZ	78
		9LOCK(L, 3)=?		S 117	79
		NUMER(L.1)=1.		SWZ	80
9.0		DEMOM(L, 1)=1.		SWZ	ē1
70		DENOM(L,2)=1./FARAM(I,2)		S W7	82
		50 TC 100		SWZ	83
	141	PARAM(I, 2)=TANH(.5*PARAM(I, 2)*DELT)		SHZ	84
		XNU=PARAM(I,2)		S 47	A 5
Ŋ.c.	•	BLOCK(L, Z)=2		3 W Z	86
•		0L0CK(L,3)=2		SHZ	87
		NUMER([,1]=XNU/(1.+XNU)		SWZ	88
		NUMER(L, 2)=NUMER(L, 1)		S H7	89
		DFNOM(L,2)=1.		S WZ	90
an		CENOM(L.1)= (XNU-1.)/ (XNU+1.)		S W 7	91
•		GO TO 100		SWZ	92
	105	BLOCK(L,2)=2		SWZ	93
		3L0CK(L, 3)=2		3 W Z	94
		IF (NIP(1.7).EQ.1) GO TO 151		S WZ	95
QF.		IF (NIF(I,7).EQ.2) GO TO 152		SWZ	96
•		NUME = (1,1)=1.		SWZ	97
		NUMER(L, 2)=1./PARAM(I, 3)		SWZ	98
		DENOM(L.1)=1.		SMZ	ç g
		DENOM(L, 2)=1./PARAM(I, 2)		SW7	100
150		GO TO 100		S WZ	101
	151	PARAM(I,2)=TANH(.5*PARAM(I,2)*CELT)		\$ W 7	102
		PARAM(I, 3)=TANH(.5*PARAM(I, 3)*DELT)		SWZ	103
	152	XNU= PARAH(I,?)		S WZ	104
		XN=PARAM(I,3)		S M 7	105
105		DENOM(L, 1) = (*NU-1.) / (XNU+1.)		S 47	106
		OFMOM(L.2)=1.		SHZ	107
		NUM=R(L, 1)=(XNU=(XN-1.))/(XN*(XNU+1.))		SWZ	108
		hUMEF(L,2)=(XNU+(XN+1.))/(XN+(XNU+1.))		S #7	109
		50 TO 100		3 M Z	110
110	19€	9L00K(L, 2)=2		SWZ	111
		PLOCK(L,3)*2		S H Z	112
		IF (NIP(1,7).EQ.1) GO TO 161		SMZ	113
		IF (NIP(I,7).EQ.2) GO TO 162		SWZ	114
		NUMER (L , 1) = 0 .		SW7	115

SUMPOUTING SW	73/74 OPT=1	FTN +. 2+ 7506(31/39/76	14.15.59.
115	NUMFF (L. 2)=1.		S # 7	116
	DENOMIL.1 PRPARAMIT. 21		S 47	117
	DENOM(L,?)=1.		347	116
	60 TO 100		S W 7	1 19
	1 PARAMIT, 21= TANH (.5+PARAMIT, 21+0FLT)		S W7	123
121 1	5.2 XN=PARAM (1, 2)		3 H 7	121
	NUMER(L, 1)=-1./(1.+XN) NUMER(L, 2)=-NUMER(L, 1)		S W 7 S W 7	122 123
	OFNOM(E, 1) = (*N+1,)/(*N+1,)		S W 7	124
	DENOM(L.2)=1.		SHZ	125
12t.	60 10 100		S H7	126
	7 IF (NIP(1,7).EQ.1) GO TO 171		SH7	1 27
	IF (NIP(I,7),EQ.2) GO TO 172		5 W7	126
	3L0CK(L,2)=1		S # 7	1 29
	3LOCK(L, 3)=3		3 W 7	1 30
1 30	NUMER(L,1)=1.		5 HZ	1.31
	15NOM(L, 3)=1./(PARAM(I, 2)*PARA*(I.3))		SW7	1 32
	DEMOM(L.2)=1./PARAM(I.2)+1./ PARAM(I.	3)	SHZ	1 **
	OFNOM(L.1)=1.		5 H7	1 74
	GO TO 100		SHI	1 35
1 45 17	1 PAPAM(I,2)=TANH(.5+PARAM(I,2)+DELT)		5 HZ 5 H Z	136 137
	PARAM(I, 3)=TANH(.5*PARAM(I, 3)*CELT)		5 H / 5 H 7	137
1	/? XNU=PARAM(I,2) XN=PARAM(I,3)		5 H 7	139
	GATH (L) = GAIN (L) ** XN* XNU/ ((XN+1.) *(XNU+)	1.11	S W 7	140
1 40	9LOCK(L, 2)=3		SHZ	141
. 40	PLOCK(1,3)=3		5 HZ	142
	NUMER(L, 1)=1.		SW7	143
	NUMERCL, 2)=2.		3 47	144
	NUMER(L.3)=1.		S #7	145
1 🕶	DENOMIL.1 }= { { x x -1 . } + (x x U - 1 . }) / ({ x x + 1 . }	*(NNU+1.1)	3 H 7	1 46
	DENOM(L,2)={XN-1.1/{XN+1.1+{KNU-1.1/{	(NU+1.)	3 H7	1 47
	DEND4(L, ₹)±1.		SHZ	1 48
	GC TO 100		3 W 7	149
	14 IF (NIF(I.7).EC.1) GO TO 181		3 H 7	150
1 ° C	IF (NIP(I.7).EG.2) GO TO 182		SH 7 SH7	151 152
	3L0CK(L.2)=1		5 H 7	153
	PLOCK(1.3)=3 NUMFP(1.1)=1.		S47	154
	OENOY(L, 3)=1./(PARAM(I,2)++2)		3 W Z	195
1 - 5	DENOM(L.2)=2. *PARAM(T.3)/PARAM(I.2)		3 W 7	156
. ,	DENOM(L.1)=1.		SWZ	1 - 7
	GC TO 109		S MZ	1 5 8
1	S1 ALFA = -PARAM(T, 2) PARAM(T. 3)		SWZ	159
	ACTA=SCRT(PARAP(T,2) **2-ALFA**2)		S WZ	160
1 5 0	A=ALFA+DFLT		S WZ	161
	B±RETA#D∂LT		SW7	162
	C=(FXP(A) *COS(B) +1.) ** 2+SIN(B) ** 2*EXP		3 WZ	163
	()=(FXP(7, *A) -1.)/	D	SWZ	164 165
	V=2,+SIN(9)*EXP(A)/0		SW 7	166
1 - 1	H=09RT(U **2+V**2) OMEGA=PA PAM(L . 2)		SHZ SH7	167
	76TA=PAPAM(L.3)		5 M Z	168
	PARAM(1,2)=W		3 HZ	169
	PARAMIT, C - W PARAMIT, T = - U/W		5 W 7	170
179 1	12 DLOCK(L.2)=3		SHZ	171
•	nuncktu. 3)=3		SWZ	172

		XN=PARAM(I,2)	5 W 7	173
		DENOM(L, 1)={1,-2,*PARAM(I, 5)*XN+XN**?)/(1,+2,*PARAM(I,3)*XN+XN**?)		1 74
		DENOM(L,2)=2.4 (XN**2-1.)/(1.+2.*PARAM(T,3)*XN+XN**?)	S W7	1.75
175		9ENOM(L, 3)=1.	SHZ	176
		GAIN(L)=GAIN(L)*XN**?/(1.+2.*FARAP(I,3)*YN+XN**2)	SWZ	177
	109	IF (NIP(I,7).NE.0) GO TO 110	SWZ	178
		II=NIP(!,2)-7	SWZ	179
		GO TO (100,271,222,273),II	SWZ	160
1.50	.723	9LOCK(L,2)=3	SWZ	181
		NUMFO(L, 3)=1./PARAM(I, 4) **?	SWZ	1 62
		NUMER (L.2)=2.*PARAM(I,5)/PARAM(I,4)	SW7	183 184
		NUMER(L.1)=1. 60 TO 100	SWZ	185
185	222	00 10 100 010CK(L, 2)=?	SWZ	1 1 6
105		NUMER(L, 2)=1./FARAM(I, 4)	5 W Z	187
		NUMER(L, 1)=1.	SWZ	188
		GC TO 100	SWZ	1 49
	223	PLOCK(L, 2)=2	SHZ	190
140		NUMER(L.1)=0.	SWZ	191
• "		NUMF ? (L. 2)=1.	SHZ	192
		90 TO 100	SWZ	193
	110	II=NIF(I,?)-'	SHZ	1 94
		60 TG (230,232,231,230), II	SWZ	195
195	231	IF (NIP(1,7).FG.2) GO TO 230	SWZ	196
-		PAPAM(I,4)=TANH(.5*PARAM(I,4)*CELT)	SWZ	197
		GC TC 230	SWZ	198
	717	IF (NIP(1,7).FC.2) GO TO 230	S # 7	199
		ALFA:-PARAM(I.4)* PARAM(I.5)	SWZ	200
200		GETA=SQRT(PARAM(I,4)**2-ALFA**2)	SW7	2 9 1
		A=ALFA+DELT	S MZ	202
		9=9CT4+9ELT	SWZ	203
		0= (CXP(A)*COS(9)+1.) **2+SIN(9)**2*EXP(2.*A)	SWZ	204
		U=(FXP(2. +4) -1.)/0	S WZ	205
205		V=2. +SIN (B) + EXP (4) /D	SWZ	206
		W=SORT(U*#2+V*#2)	S # 7	207
		PARAM(I,4)=W	3 H7	208
		PARAM(I, 5)=-U/W	SWZ	209
		60 fo (240,241,242,243),II	S WZ	210
210	240	NUMER(L.1)=1.	SHZ	211
		NUM TR (L. 2) = 2.	SHZ	212
		NUMERIL, 31=1.	SWZ	213
		GO TO 100	SWZ	214
	?41	YN=PAGAM(I,4)	SWZ	215
215		NUMER(L,2)=2.+(YN**2-1.)/(1.+2.*PARAP(1.5)*YN+YN**2)	SWZ	216
		NUMER(L, 1)=(12.*PARAM(I,5)*Y++Y+**2)/(1.+2.*FARAM(I,5)*Y++Y+**2)	SWZ	217 218
		NUME #(L, 3) #1. GAIN (L) = GAIN (L) + (1. +2. + PARAM (I, 5) + YN+ YN+ YN+ P2) / YN+ P2	SWZ	219
		GC TO 100	SWZ	220
220	31.3		SWZ	221
550	. 47	YN=PARAM(I,4) NUME°(L,1)*(YN-1,)/(YN+1,)	SWZ	222
		NUMER(L.2)=2.+YN/(YN+1.)	SWZ	223
		NUME (L.3)=1.	3 WZ	224
		GAIN (L)=GAIN (L)* (1.+YN)/YN	SWZ	225
225		GC TO 103	SHZ	226
	243	NIMER (L, 1)=-1.	SWZ	227
	4.3	NUMER(L,2)=0.	SW7	228
		NUMEF(L,3)=1.	SWZ	229

After off LIVe	147 73/7	'→ CPT=1	FTN 2+7506C	01/09/76	14.15.59.
	IF (NIP(I,	71.EQ. 2) GO TO 130		SW7	2 4 6
2.30	GAIN(L) = GA	IN(L) *(1.+2.*PARAM(I,3) *XN+XN** 2) /XN** 7	SWZ	231
	GAIN(L)=GA	\IN(L)*(1.+^ENCH(L.1)+D	FNOM (L, 21)	SWZ	232
	17 (2.*NEL T)	1		SHZ	233
	189 CONTINUE			S W 7	234
	RETURN			SHZ	235
2.35	FND			SHZ	236

	FUNCTION TANG	73/74	CPT=1	FTN 4.2+75060	01/09/76	14.19.0F.
		FUNCTION TANK	; (A)		T ANG	2
		CCMPL-X A.C	• •••		r ang	3
		EQUI VALENCE	(C.B (1))		TANG	4
		DIMENSION 342			TANG	5
5		C=A			F AN G	6
		PHI = ATAN? (B)	21.4(1))*57.3		TANG	7
		IF (3(2), GT.	1.0.4ND. R(1).LT.0.0) GO TO	10	f ANG	8
		TANG=PHT			TANG	9
		GO TO 20			TANG	10
10	16	TANG=PHI - 160			TANG	11
	20	PETURN			FANG	12
		ENO			TANG	1 3

NOISC

-9 50 -1

RENIND 8

SUPPOUTING	401501	73/74	CPT=1	FTN 2+75360	01/09/7E	14.19.11.
		LHROUTINE WA	ISC1 (A.N.H.		W 01 SC1	2
	1+	1X,4Y,MU,MS,4	AT1.MAT2, MAT3, MAT6, MAT5	, MATS)	#DISC1	3
		IMENSION ACH	AT1, MAT?)		WOISC1	4
	,	CMMCN/SUBMRI	T/ TSUBKAM		WOISCI	5
5	1	F(ISUPNAM.GE	.2) WRITE (3,990)		WDISC1	6
	490 F	OPHAT (1 X . + WD	ISC1*)		#DISC1	7
	C	C 10 I=1.N			WDISC1	
	٧	RITE (B) (A)	I, J), J=1, M)		4 DI SC 1	9
	10 0	CNTINUE			WDISC1	10
10	5	ETURN			MDISC1	11
	- 6	NO.			WOISC 1	12

SUBPOUTIN	E 70	T 73/74	CPT=1	FTN 4,2+7506C	01/09/76	14.19.13.
		SUBROUTINE 70	T (4.8.C.H.G.	F,K1,K2,K3,K4,D,	707	?
		14%, MY, MU, MS, M	AT1,MAT2,MAT3	, MAT4, PAT5, MAT6)	701	3
		C CHM CN /C OND / F	FAO, SYSTEM . OU	TPUT,NX,NY,NU,NXC,NUC.N1,N?,GIGITL.		4
				ODEL.NSCALE.SAV.CMAT.NK2.IFLAG.	7 07	r
₹,				ULTRT,SCAPLT,ZOH,KCUNT	7.07	ř.
			L.SCAPLT.ZOH		7.01	7
		INTEGER READ:	SYSTEM, OUTPUT	, FORM, CONTUR, SAV, CMAT, READS, FRES, 1	707 707	# 9
					701	10
		REAL KI, KZ, K),C(PX,PX),P(MY,MX),C(PY,MX),F(M),		11
10				**************************************	207	12
	c	[] [MC • Mr] • Nz	(BC) HX) X 3 (HO)	THE PART OF THE PA	701	13
	Ċ	INTO SUBDO	TTNE THITTELT	TES THE SYSTEM MATRICES TO ZERO	7.17	14
	Ć.	USING 70T1	//1// 141/14C1	ACS THE STREET HATMACE THE ECONO	707	15
15	Ď	03144 1011			7.01	16
*	ć				707	17
		COMMON/SUBHRI	T/ ISUBNAM		7 J T	18
			.2) WRITE(3,9	90)	707	19
	q	90 FCRMAT (1X+*/	1*)		7 0 7	> 0
20		MAT1=MX			101	2 1
		MAT?=MX			7 C 1	5.5
		GALL ZCT1 (A.			7.01	23
				, MAT4 , MAT5 , MAT6)	701	24
		CALL ZCT1 (C.			ž 0.1	25
'n.			1AT1,MAT2,MAT3	, MAT4, MAT5, MATF)	207	2 F. 2 7
		MATI=MY			7 O T	28
		CALL ZCT1 (H		MATE MATE MATEL	737	29
				, MAT4.MAT5.MAT6)	, , , , , , , , , , , , , , , , , , ,	10
		CALL ZCT1 (G		,MAT4,MAT5,MAT6)	701	*1
₹0		1 MX + MY + MU + M2 + (TAIL O MAIS	**************************************	701	12
		CALL ZCT1 (F	. H V . H II.		701	33
				.MAT4.MAT5.HAT6)	707	34
		MAT1=MX		***************************************	701	35
15		CALL ZCT1 (9	MX.MU.		£ 0 T	36
				, MAT4, MAT5, MAT61	707	37
		MAT1=MU			2 0 T	38
		HAT?=MX			Z 0 T	39
		CALL ZOT1 (K	L, MU, MX,		201	40
÷6		1 MX, HY, MU, MS,	HAT1, MAT2, MAT3	, HAT4 , MAT5 , MAT5)	ZOT	41
		CALL ZOT1 (K.			707	42
				, MAT4, MAT5, MAT6)	707	43
		CALL ZOTI (K.			Z 0T	4 4 6 5
				, MAT4, MAT5, MAT61	705 705	46
4.C		CALL 7CT1 (K)		MATE MATE MATEL	701	47
			MAIL MATZ MATS	, MA 14 , MA 15 , MA 16)	701	48
		MAT2=MU	MIL MIL		Z 0 T	49
		CALL 70T1 (0		,MAT4,MAT5,MAT5)	701	ēņ.
rg		RETURN	HAIL SHAIL SHAID	granternalD grands	701	F 1
- 0					707	- 2
j		END			707	~ 2

4170098U2	E 2011	73/74	i)PT={	FTN +. 2+75060	01/09/76	14.19.18.
	511	SROUTINE 7	OT1 (A.N.M.		Z 0 T 1	2
			MAT1, MAT2, MAT3, MAT	4 . HAT5 .MAT6)	7011	3
			HAT1.MAT21	• • • • • • • • • • • • • • • • • • • •	7071	4
			PAREUZI VII		2 OT 1	5
r			E.2) WPITE(3,990)		Z 0T1	6
	-	244T (1 X . * 7			7011	7
	10	10 I=1+N			2011	8
		10 J=1.M			Z 0 T 1	9
		1.11=6.0			7011	10
1.0	11 00	NTINUC			7 OT 1	11
•	RE	TURN			Z 0 T 1	12
	EN	r			7071	13

ETN 4. 2+ /5051

01/39/75 14.22.41.

CLUS OUTING Z TOW

73/74 CPT=1

SUF	REDUTING 710W	73/74 GPT=1	FTN +. 2+75050	01/09/76	14.22.41.
		K = K + 1		7 TO W	5.9
		60 TO 19		ZTOW	60
F- 0	1.5	A=POTR(K) ++2		7 T O W	61
		P=POTI(K)**2		ZTOM	6.2
		G=(1.+ROTR(K))**2		7 TOW 7 TOW	63 64
		DE=DE*(G+8)		7 TOW	65
65		RCTR(K)=(A+N-1+1/(G+N) ROTR(K+1)=ROTR(K)		\$10W	66
* 5		ROTI(K)=(2.*ROTI(K))/(G+9)		2 TOW	67
		ROT [(K + 1) = - ROT [(K)		2 T OW	68
		K=K+2		ZTON	69
	• 5	IF (K.LE.N) 60 TO 13		2 TOW	70
70	1.7	LMN=NN-N		7 TOW	71
, u		DE=05*(-1.) **LMN		Z TOW	72
		II=1		ZTOW	73
		00 70 I=1.N		ZTON	74
		IF (ROTP(II).NE1000.) GO TO 22		ZTON	75
75		K=II		2 T O H	7.5
, ,		DO 21 L=K.N		Z TOH	7 7
		ROTR(L)=ROTR(L+1)		RTOH	7.8
		ROTI(L)=ROTI(L+1)		7 T O H	79
	21	CONTINUE		ZTOH	30
9.0		60 TO 20		2 T O W	r1
	27	I I = 1 I + 1		Z TOM	82
	20	CONTINUE		7104	#3
		N =N +N S AV		7 TOH	44
		IF (N.FQ.NN)RETURN		ZTOW	45
P 5		N1=N+1		ZTOW	86
		N=NN-NSAV		Z TOW	87
		IF (N.LE.NL) RETURN		7 T OW	8.8
		00 17 I=N1+N		RDIS	49
		POTR ([)= 1.5		z tow	39
đú		PCT [([)=0.		ZTOW	41
	17	CONTINUE		ZTOW	0.5
		PETUPN		RO12	9.3
		END		ZTOH	Ģ 4

```
30P0
                          SUBPOUTINE COPO
                                                                                                                               OPO
                                        SUBPOUTINE C O P O PLOTS DATA GENERATED BY THE C O N PROGRAM. THE FOLLOWING TYPES OF PLOTS ARE AVAILABLE.

1. TIME HISTORY
2. TIME HISTORY WITH CSTAR ENVELOPE
3. FPE GUNNOY RESPONSE
4. PONER SPECTRAL DENSITY
5. PONER SPECTRAL DENSITY
                                                                                                                             COPO
                                                                                                                             30P0
00P0
                                                                                                                              COPO
                                                                                                                              COPO
                                                                                                                              COPO
                                                                                                                              3 0P0
                                                  F. ROOT LOCUS

6. 7-PLANE ROCT LCCUS
                                                                                                                              CAPA
10
                                                                                                                              3 0 P O
                                                                                                                              COPO
                                                  7. ROOT CONTOUR
                                        THE PAXIBUM NUMBER OF POINTS FOR ANY ONE PLOT IS 998. TH COPO MAXIBUM NUMBER OF TIME PISTORY PLOTS IS 25. AN AUTOMATIC COPO PLOT REQUEST IS GENERATED AT THE ENC OF TH. JOH. 20PO COPO
                 ſ.....
                                                                                                                              3 OPO
                          EXTERNAL CSTAR
DOUBLE PRECISION SNAME
                                                                                                                              COPO
20
                          COMMENZESTARGZETHL.CTMU.CENVL.CENVUZCSTARPZETHL.FTMU.FF.K.VL.PENVU
                                                                                                                              COPO
                                                                                                                                               23
24
25
                        ARRAYS IN FOLLOWING DIMENSION STATEMENT DEFINE THE POWER AND CUPYED 20PD
                 C
                         APPROACH CSTAR CPTION ENVELOPES FOR TIME HISTORY PLOTS.
                                                                                                                              COPO
                                                                                                                                               26
27
28
                 C
                          DIMENSION CTML (20). CTMU (20). CENVL (20). CENVU (20).
                                                                                                                               : npo
                         x PTHL(12),PTHU(23),PENVL(12),PENVU(23)
REAL UNCLE(1024), VP(1000), TM,FR,VP(1000),
X9IG(10),VLOG(4,9),LOG(9),NOTA,PTITLE(8),COMMENT(12),
X PS,RL,TIME(1000),V(25),S10(1000),S20(1000)
                                                                                                                              00P0
                                                                                                                              C 0P0
20P0
                                                                                                                                               31
30
                           INTEGER ORDER(10),LOW,HIGH,LOWY,HIGHY
                                                                                                                              COPO
                                                                                                                              SOPO
                                                                                                                                               14
                           INTEGER TWO. FOUR. SYSTEM
                           INTEGER INGFOCES STATE

COUIVALENCE (FREQ, IFRE)

INTEGER PEHUS, TITLE (B), LAP(4), CNE, NAME (25), ENV, CSCRUV, CSPOA
                                                                                                                              COPO
                                                                                                                              COPO
                           BATA ORDEP/1,0,2,5,10,14,12,11,3,7/,
                                                                                                                               : 000
                                                                                                                               COPO
                                                                                                                                               38
39
                          XCSCRUV/10HCSTARC /.
XCSPJA/10HCSTARP /
                                                                                                                              COPO
                          X CSP JA/10 HCSTARP
                                                                                                                               3 OPO
                           DATA TWO/2/.FOUR/4/.REMUS/1024/.
                          XPC/10HPOCO
                                                                                                                              COPO
                                                                                                                                               41
                                               1:
40
                                                                                                                              SOPO
                                                                                                                                               42
                         XER/10HERT9
XPS/10HSPEC
                                                                                                                               2 0P0
                                                                                                                               COPO
                                                                                                                                               -4
45
                          KINZSCHILME
                                                  /:
                         COPO
                          XPL/1 CHPOLO
                                                                                                                               COPO
                                                                                                                               COPO
                                                                                                                               COPO
                                                                                                                              COPO
                                                                                                                               3 0P0
3 0P0
                                                                                                                                               50
51
 ٠ و
                                                                                                                                               52
53
                                                                                                                               COPO
                                                                                                                               SOPO
                                                                                                                              3 0P0
3 0P0
                                                                                                                                               54
                                                                                                                              COPO
                                                                                                                               COPO
                                                                                                                                               5 A
```


	XLAREL/10H MAG-OB /,LABEL1/10HPHI-DEG /,LABEL2/10H DUE TO /	COPO	9
	$oldsymbol{c}$	COPO	€ 0
*: D	C SET UP PLOT FACTORS AND PEAD DATA FOR AUTO PLOT REQUEST	3 0 P O	f 1
	S	COPO	5.2
	HALF-2./2.54	2000	€3
	CM=10.725.4	3 OPO	4
	CALL PLOTS (UNCLE, PEMUS, 6)	COPO	65
	CALL FACTOP (1.)	2 0 0 0	f 6
	G READ (1,504) SNAME, SUSTASK	COPO	67
	READ(1,504) IVSN, SNAME, SUNTASK	COPO	F 8
	C 304 FORMAT (15x, 2A10, 5x, 14)	COPO	69
	304 FCPMAT (14,11x,2410,5x,14)	COPO	7.0
78	HRIT (3, 406)	3 0P0	71
, 0	COS FORMAT ("1",10x," PLOTTING HAS REGUN")	COPO	72
	2	2 OPO	7.3
	DATA SET ? CONTAINS PLOT DATA MRITTEN BY C O N T R O L PROGRAM	COPO	74
	C FOR TACH CASE RUN IN THE CONTROL PROGRAM THE FOLLOWING IS MEITTEN O		5
75	G RECORD ONE NPLOTENO, OF PLOTS	2 OPO	76
. 7	RECORD TWO TYPE=TYPE OF PLOT (MUST BE TIME+FREQ.SPEC.ROL		77
	TITLE=80 CHARACTER PLOT TITLE	20P0	78
		3 OPO	79
		COPO	60
	C MCDEL=NOT USED	COPO	81
4.0	C IDIG=1 INDICATES Z-PLANE FOCT LOCUS	COPO	F 2
	SCAPLT=NCT USED	COPO	A 3
	· · · · · · · · · · · · · · · · · · ·		84
	YEP=0	COPO	
	KLP = 0	COPO	85
٠.,	NCKP=9	COPO	86
	NOKP=0	COPO	A7
	NNKP=0	COPO	6.6
	SIDS CONTINUE	3 OPO	A 9
	NCKP=NOKP+1	COPU	90
a (IF ((YFP.NE.1),AND.(NOKP.ED.21) GC TO 99	2 0P0	5 1
	IF (NOKP.EG.2) REWIND 9	COPO	92
	IF (NOKP.EQ.2) 60 TO 113	COPO	c 3
	IF(NCKF.EQ.3) GD TO 99	COPO	94
	PEWIND 7	COPO	95
95	11 CONTINUE	3 OPO	∘6
	E=CDN	COPO	97
	996 IF(NCO.NE.O) GC TO 18	COPO	ć 8
	IF (NOKP.NE.2) GO TO 1115	3 OPO	9 9
	FEAD(9) NPLOT	COPO	100
100	IF (FOF(9).NE.O) GO TO 99	30P0	101
	IF (NOKP.FG.2) GO TO 114	COPO	1 7 2
	1115 CONTINUE	COPO	103
	PEAR(7)NPLOT	COPO	104
	IF (20F(7) .NE. 0) GO TO 8061	30P0	105
105	114 CONTINUE	3 OPO	106
	IF (NOKP-FQ-2) NCKP=1	COPO	107
	TE (NOKP.EQ. 2) NNKP=KLP	20P0	108
	IF (NOKP.EG.1) KLP=KLP+1	3 OPO	109
	15 NCT=NGO+1	COPO	110
113	IFINCO.EQ.NPLOT) NCO=Q	20P0	111
	IF (NCKP.NE.Z) GO TO 111	COPO	112
	READ (9) TYPE, TITLE, SYSTEM, MODEL, IDIG, SCAPLT	COPO	113
	IF (FCF(9).NF.4) GO TO 99	COPO	114
	IF (NCKP.FQ.2) GO TO 116	COPO	115
	IT CONTROLLED OF TO ALC	50.0	•••

1 * 5	111 PEAD (TITYPE, TITLE, 345 TEH, MODEL, IDTE, SCAPLE	090	115
	IF (FOF(7) .NE. 0) 50 10 99	COPO	117
	TECCTYPE, EQ. PLI.ANG. (IDIG. FQ. 11) WRITE(9) NPLOT	COPO	118
	TETTYPE.ED. OLD. AND. CIDIG. ED. 11) HETTE (9) TYPE.TITLE, SYSTEM, MODEL.	3 OPO	119
	1 1015.564 PLT	2000	120
120	11F CONTINUE	2000	121
	IF ((TYFE.ED.TM).OP. (TYFE.ED.FR).OR. (TYPE.ED.PS).OR. (TYPE.FQ.RL).OR	C CPO	122
	x. (Tyer.rg.PC)) GC TJ 1	COPO	127
	WRIT- (1,905)	2 0 P O	124
	905 FORMAT (10x, "TYPE FIELE DOES NOT CONTAIN VALLE OPTIONMILL CONTIN	COPO	1 25
1.75	XUF SEARCHING FOR RECORD WITH VALID TYPE FIELD")	COPO	126
	6C TC 999	3 0 0 0	1 27
	1 CONTINUS	COPO	128
	IF({NCO.50.01.OR.(NCO.EQ.1)) WFITE(3,500)TITLE	COPQ	129
	500 FCRMAT (/5%-8A10)	COPO	130
130	C	COPO	131
	C IS THIS A TIM. PISTORY PLOT?	COPO	132
	IF(TYPF.NE.TM) GC TO 2	3 OPO	133
	PARROLLER TIME HISTORY PLOT SECTION **************	COPO	1 34
	READ(7)NYU.(NAME(J).J=1.NYU)	COPO	135
135	M≈ 1	COPO	176
	4 READ (FITIME (M), (V(K), K=1.NYU)	COPO	1.37
	IF(TIME(M).LT.O.) GO TO 3	3 O P O	138
	r	3 OPO	139
	C - NATA SET 5 IS A TEMPORARY TIME HISTORY DATA STORAGE	COPO	140
140	r	COPO	141
	WRIT((5) (V(K).K=1,NYU)	COPO	142
	M=H+[3 OPO	143
	GO TO 4	COPO	1 44
	3 MmH-1	3 OPO	145
1.45	REMINO 5	3 OPO	1 4 6
	CALL SCALE (TIME+6.5.M.1)	2063	147
	TCM=TIME (M+2)	COPO	148
	c	COPO	149
	<u></u>	3 0 2 0	150
1 . 0	C NO LOOP 90 WILL PLOT NYU TIME HISTORY PLOTS	COPU	151
	ON 30 KK=1•NYU	3 OPO	152
	ENV = ^	3 0P0	1.53
	00 10 KC=1,M	COPO	154
	READ(5) (V(K),K=1,NYU)	COPO	155
11.5	10 VF(KC)=V(KK)	3 OPO	156
	C	COPO	157
	CHECK FOR A CSTAR TYPE TIME HISTORY	3 OPO	158 159
	C	COPO	
	[F((NAME(KK).NE.CSCRUY).AND.(NAME(KK).NE.CSPDA)) ENV=1	COPO	160
180	IF(ENV.EQ.1) GO TO 9	COPO	161 162
	C	COPO	
	C OF CSTAR OPTION, NORMALIZE DATA BY DIVIDING BY LAST DATA VALUE.	3 OPO	163 164
	C	COPO	165
	00 25 KC=1.M	30P0	166
165	25 VP(KC)=VP(KC)/VP(M)	3 0 0 0	167
	9 PEN IND 5	C 0P0	1 f f
	IF(MOD(KK,4),NE,1)_GO TO 31	3020	169
	IF(KK.ED.1) GO TO 32	3 0P0	170
	C	COPO	171
1 70	C SPACE TO NEXT PLOT PAGE	COPO	172
	CALL PLOT(28.4950*CM,-2.*CM,-3)	UPU	Y , C

SUPPORTIN	r dapa	73/74	CPT=1	FTN 4.2+75060	01/09/76	14.72.47.
	12	CALL PLOT 12.	*CM,2,*OM,=3)		3 090	173
		CALL FACTORIE			COPO	174
				SECONDS",-22,8.5,0.,TIM= (M+1).	2 OPO	175
175		XTCM)			COPO	176
		CALL FACTORES	1.)		COPO	177
			TIME (M+2)= TIME (M+2)	1*1.27	COPO	178
		Y0=-29.			3 0P0	179
		YN=1 1.			COPO	1 90
180			(.5*CH,23,2*CH,,20*	'CM, TITLE, J., 80)	0.000	181
		GO TO 33			3 OPO	192
	31	YN= - b.			COPO	1.83
		YD=YA+6.			3 aPa	184
	33	CALL PLOT ().	.,YN*CM,-31		COPO	1.85
185		CALL SCALE (COPO	186
	C				COPO	147
	, .	IF ONV NOT COL	HAL TO ONE, GENERA'	TE APPROFRIATE CSTAR ENVELOPE	COPO	168
	.;				3 OPO	1 8 9
		IF(FNV.FQ.1)	GO TO 29		COPO	190
190		IF ((NAME (KK) .	.EG.CSGRUVI.ANN.(VF	*(M+2).LT8))	COPO	191
		IF ((NAME (KK),	.EQ.CSPOA).AND.(VP	(M+2).LT.1.))	3 OPO	192
	29	CCHTINUF			COPO	1 93
		CALL FACTOR!			COPO	194
				.5,90.,VP(M+1),VP(M+2))	3 OPO	195
195		VP(M+2)=VP(M			COPO	1 96
		CALL FACTOR(i.)		2000	197
	С				3 OPO	199
		IE ENV NOT EU	JAL TO ONE. GENERA'	TE APPPOPRIATE CSTAR ENVELOPE	COPO	199
	C				COPO	200
200		IFCERV.FO.11			COPO	201
			NE.CSCRUVI GO TO 28	1	COPO	202
		CTML (2C) = TIM			COPO	203
		CENVL(19)=VP			COPO	204
201		CENVL (20) = VP			3 OPO	205
205			TML,CENVL,18,1,0,0		C 0P0	206 20 7
		CTMU (2 C) = CTMI			COP0 2 0 P O	208
		CENVULTO1 =CE				209
		CENVIL(SO)=CEI		•	COPO COPO	210
210		GC TO 26	TMU.CENVU.18,1,0,01		3 OPO	211
/10	2.0	. PTML (12)=TIM	- 4 M + 2 1		COPO	212
	٠,٠	PENVL(11) = VP			COPO	213
		PENVL (12)=VP			COPO	214
			ML.PFNVL.10.1.0.0)		COPO	215
215		PTMU(23) = PTM			COPO	216
615		PENVU(22)=PE			COPO	217
		PFNVL (23) =PF			3 0PO	218
			TMU, PENVU. 21,1,0,0	1	COPO	219
	26	CONTINUE			3 O P O	220
220			IHE. VP.M.1.0.0)		2000	221
	ç				COPO	555
	d	NOFLOIS KEFPS	TRACK OF NUMBER CI	FPLOTS	3 OPO	223
		NCPLCT S= NOPL			COPO	274
		WRITE(3,502)			COPO	225
225	F.0.2		A10," TIME HISTOR	PLOT COMPLETER®)	COPO	2.56
4.1		CONTINUE	1277 12770 112710		COPO	227
	`		FND OF DO	C L(OP 90		228
	,		2.30 07 01	• •••	COPO	229

DETERMINE X AXIS MINIMUM AND INCREMENT

17 NO 20 J=1+11 IF(TIME(1)+LT.FLOAT(6-J))LOW=FLOAT(5-J)

01/09/76 14.77.47.

2000

COPO

COPO COPO

COPO

282

284 285 286

FTN 4.2+7530C

c-

SUPROUTIN	COPO	73/74	CPT=1	FTN 4.2+75060	01/09/76	14.22.47.
		TECTIME(K).GT	.FLOAT(J-81)	HIGH=FLOAT (J-7)	COPO	287
	20	CONTINUE			COPO	258
		S=LOW			COPO	289
		00 30 J=1.5			3 OPO	290
290		L=J			COPO	251
		5=5+1			C OPO	292
		IF (S.EQ.HIGH)	GO TO A		COPO	293
		CONTINUE			3 OPO	294
	8	XLFN=17.			3 OPO	295
295		IF(TYPE, EQ. PS			COPO	2 96
		XUIZL= (XFENN			2000	297
		TIME (K+t)=LOW			3 OPO	298
		LIME (K+5)=1.	XEIST		COPO	299
	_	NUDI = 1			3 0P0	300
300	C				COPO	301
		00 LOOP 131 W	ILL PLUI GNE	PSD CR TWO FREG. RESECNSE PLOTS	COPO	302 303
	C.	20 424 1111-4 2			3 OPO	304
	うた	00 101 KK=1.2			3 OPO	305
		X=2.*GM			COPO	316
₹85		Y=13.*C*			30P0	307
		IF(KK.80.1) (0 10 221		3 0 P O	368
		Y=-13. *CH			COPO	309
		IF (TYPE.NE.PS	1 60 TO 221		3 OP 0	310
310		X=0.0	1 00 10 261		COPO	311
314		Y=1 3.+CM			COPO	312
	221	IFIKK.NE.21	n to 703		COPO	313
	76.1	CALL PLOT (X.			SOPO	314
		GO TO 11	11-31		3 0P0	315
315	C	00 10 11			COPO	316
., .		GENERATE X AXI	S (LOG) FOR	PSD OR FREQUENCY RESPONSE	COPO	317
	é	J. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.			COPO	318
	703	IF (TYPF, EQ. F	E) GO TO 700		COPO	319
		CALL PLOTICH			COPO	328
120				M20 CM .TITLE, 080}	COPO	321
		GO TO 701			3 OPO	322
	730	CALL PLOTIX.	(,=3)		COPO	323
				CM20*CM,TITLE.080)	3 O P O	324
	/0 1	X N = 0 .			3 OPO	325
325		YN=O.			COPO	326
		IF (TYPE, EQ. F	R1YN=-13.#CH		3 O P O	327
		LK=L+1			COPO	328
		PL= 1.			COPO	329
		00 40 J=1.LK			\$ 0P 0	330
3.10		CALL SYMBOL		M,13,0.,-1)	COPO	331
		IF(J.EG.LK)	SO TO 40		COPO	332
		00 50 J1=1,6			COPO	333
		XP = XN+ XN IST *			COPO	334
		CALL SYMBOL	(XP • 4N • • S • CH	,13,0,,-1)	3 OPO	335
335		PL=PL+1.			COPO	3.36
		XP0= XP+. 05+C		4540N DI & 43	3 OPO	337
				CM,.15*CM,PL,0.,-1)	3 OPO	338 339
	50	CALL PLOT (X	4 TN+ 31		2 OPO	348
	_	PL=1.			20P0 C 0P0	340 341
340	40	XN=XN+XDTST	v		COPO	341
		CALL PLOT (0	. , TN, Z)		2020	343
		XPM=2*CM			,000	343

CONTROUTINE CO	73/74 OPT=1	FTN2+75060	01/09/7E	14.22.47.
426	nc 50 J=1,18		COPO	401
• •	(Y = J		COPO	402
	7=2+1		COPO	403
	IF(3, ~G, HIGHY) 60 TO 21		COPO	404
,	3 CONTINUE		3 OPO	405
401	': YDIST= (?5./LY)*CM		COPO	406
	IN0=25./LY		COPO	407
	VP(<+1)=LOWY		3 apc	438
	VP(K+7)#1./YOIST		2 OPO	409
	∀ N = 3 .		2 0 0 0	410
→1 0	FKA= F4+1		COPO	411
	PL=1.		COPO	412
	OC 143 J=1.LKY		C 0 P O	413 414
	CALL SYMBOL (0YN3* CN.13.901)		3 090	415
	IF13.E0.LKY) 60 TO 140		COPO	415
415	nc 100 J1=1.9		2 O P O	417
	IF(INO.LT.4) GO TO 76		2000	418
	IF(INO.LT.6) GO TO 77		COPO	419
	IF(INO.LE.8) GC TO 78		3 OPO	420
	TF(ING.LE.12) GO TO 79		COPO	421
420	IFEJ1.GT.51 GC TO 73		3 OPO	422
	00 110 J?=1,4		COPO	423
	YG=YN+YTIST*YLCG(J2,J1) 10 CALL SYMBOL (0.,YG,.2*CM,13,90.,-1)		COPO	424
1	60 TO 76		3 OPO	4 25
421	77 IF(JL.61.3) GO TO 76		COPO	426
Mart .	60 TO 79		30P0	427
	74 IF(U1,GT.6) GC TO 76		2 0 0 0	428
	79 00 123 J2=1,2		C 0P0	429
	Y0=YN+Y01ST*YL0G(J2,J1)		3 OPO	4.30
430 1	20 CALL SYMBOL (0., YQ,, 2*CM, 13,90.,-1)		COPO	431
	76 IF(J1.60.9) 60 TO 100		COPO	432
	YG=YN+YDIST+LOG(J1)		COPO	433
	CALL SYMBOL (0., YQ., 3*CM, 13, 90.,-1)		COPO	434
	IF (INO .L T. 4) 60 TO 100		3 OPO	4.75
4 5 5	Pt=Pt+1.		COPO	436
	CALL NUMBER (+.25*CM.YQ15*CM.PL.D1)		COPO	4.77
1	00 CONTINUE		3 OPO	438
	PL=1.		COPO	439
1	TZICY+MY=MY N#.		2 OPO	440
440	CALL FLOT (0.,0.,2)		COPO	441
	YN0 = L1 WY		COPO	442
	₹ ₽₩=+¼ ₹ ₽₩		COPO	443
	¥BM=2*CM		COPO	445
	00 137 J=1+LKY		2 OPO C OPO	4-6
4.45	CALL NUMBER (5+CM, YBH3+CM, 10.,90.,-1)		3 OPO	447
	CALL NUMBER (8*CM, YEM, .2*CM, YNC, 90.,-1)		3 0 0 0	448
	YN0=YY0+1.		COPO	449
	YRM= YRM+ YDISI		3 OP0	450
	33 YEM=YEM+YOIST		COPO	451
450	LAG(1)=NAME(1)		COPO	452
	LAR(2)=LARCL2		2 0 0 0	453
	[AR(3)=NAME(2)	i	3 OPO	4 5 4
	CALL TYMBOL (-1.3*CM,10.3*CM,.3*CM,LAB,9030)	1	3 090	455
	60 TO 22		COPO	456
455 C	GENERATE SECOND FREQUENCY RESPONSE Y AXIS AND P	PLOT DATA LINE	3 0 P O	457
1	HENDERSON SECURIO ENERGY ING THE SECONDS, THE SECONDS	20		

	SUPPOUTINE SOPO	73/74 0	PT=1 F	TN → , 2+75 % C 0	1/09/74	14.72.47.
	11	VP2(K+1)=-278.			C OPO C OPO	4 ⁽ . 8 4 ^{(.} 9
	• `	VP2 (K+2)=60.*1.	27		COPO	469
42.	.3	LATELT -LARELT			COPO	461
		LAPISI =LABEL?			3 OPO	462
		J=2			COPO	463
		IFINUDIE.EQ. 11	J= J− ?		30P0	464
		LABIET SHAME (1+1			2 OP0	465
4.5	-	LAP (4)=NAME(J+2	•		COPO	4 6 6
		CALL FACTORIHAL			CADC	467
			.,L4B,40,6.,90270.,60.)		COPO	468
		CALL FACTOR(1.)			COPO	469
		NCPLCTS=NOPLOTS			COPO	470
47		CALL LINE STIFE	.VP2 .K ,1 .0 .0)		3 0 P O	471
	g				3 0P0	472
		SPACE TO NEXT PL			COPO	4.73
	1:		L PLOT (28.4950*C++03)		3.050	474
, 7:	-	IF(KK.E0.1) GO	TO 101		COPO	→ 75
4	, ,	GC TO 101			COPO	476
		0107 000 0474 14	A price		COPO	477
	Ç	PLOT PSO DATA LI	Nt.		COPO	478
		GALL LINE (TIME	MD < 4 0 04		3 OPO	479
<u>,</u> a :	1	NOPLOTS=NOPLOTS			S 0 P O	4.80
•		TF(TF95.EQ.99)			0 0 P O	441
		PEAD (7) FRED, VAL			C 0P0 C 3P0	4 P 3
		GC TO 42	O: 114CO:		0 0PO	484
	36	CONTINUE			COPO	465
4 4		0.0 240.			3 OP0	485
		SPACT TO NEXT PE	OT PAGE		COPO	487
		CALL PLOT 129.4			3 0P0	488
		WRITE(3,1113)			COPO	4 4 9
	1113		S D PLOTS COMPLETED"/)		COPO	4 4 6
31		GC TO 98			COPO	461
		CONTINUE			3 0P0	472
	۲				COPO	493
	0		END OF CC LCOF 101		COPO	494
	Ç				3 OPO	495
49		WRITE(3,1112)			COPO	4 6
		FORMAT (/11%, "F	REQUENCY RESPONSE FLOTS COMPLETE	D\)	COPO	497
	ſ				COPO	4 9 R
		CHECK FOR MORE T	HAN TWO FREQUENCY RESPONSE PLOTS		COPO	499
	_				COPO	500
500	B.	IF(TYPE, CO.PS)			3 0PO	501
		IF (NUDE, EQ. THC)			CCPO	502
		IF(NUTIE.ED.2)	GO TO 999		2050	503
		NUNI E= 2			; OPO	564
< gr	•	DO 230 JKS=1,K VP(JKS)=310(JKS	,		COPO	5 0 5
. , , .		Abs (1K2) = 250 (1K			3 OPO	506
	247	90 TO 56	31		COPO COPO	507
	ć.				COPO	5 (8 5 0 9
	(,	• • • • • • • • • • • • • • • •				510
5.10			ROOT CONTOUR SECTION*******		10P0	511
- • •	ć	C3.101 MND	COST COMPONE SECTION		090	512
	ř				0 OP0	513
		IS THIS & ROOT L	OCUS PLOT?		3 OPO	514

ORIGINAL PAGE IS OF POOR QUALITY

11	ct.hb	CUTTING COPC 7 1/74 OPT=1 FTN 4.2+75060	01/09/75	14.22.47.
COPD 517 1000 1		23 IFETYPH, CO. RED READEZDN, M	COPO	515
CHECK FOR A 7-PLAMI ROOT (DOUGS (1016=1)	. 1 -	M=TAR5 (M)	COPO	¹-16
		r	COPO	517
F(HUNDE, -0.2) GO TO 1991 3000 520 1510[G, H.1.] GO TO 701 3000 527 3200 527 3200 527 3200 527 3200 527 3200 527 3200 527 3200 527 3200 527 3200 527 3200 527 3200 527 3200 527 3200 527 3200 527 3200 527 3200 527 3200 527 3200 3200 327 3200 3200 327 3200 320		THEOR FOR A Z-PLANT ROOT LOCUS (IDIG=1)	3 OPO	518
TETITION (•	COPO	419
### ### ### ### #### #### #### #### ####		[F(HOKP0.2) GO TO 1901	30P0	520
Composite Comp	6.26	IF(IDIS.N(.1) 60 TO 201	0.000	.21
C		YEP- t	COPO	5.22
			COPO	523
		C	- COPO	F 24
CALL PLOT (17,*CM,2,*CM,-3)		?***** 7-PLANE WOOT LOCUS SECTION*********	3 OPO	5.25
CALL PLOT (17, **CM, 2, **CM, -3) CALL PLOT (0, **Z**, **CM, -3) CALL PLOT (0, **Z**, **CM, -3) CALL PLOT (0, **Z**, **CM, -3) 721 0000 529 721 0000 521 0000 531 0000 531 0000 531 0000 532 0000 533 0000 533 0000 533 0000 533 0000 533 0000 533 0000 534 0000 535 0000 535 0000 535 0000 535 0000 535 0000 535 0000 536 0000 537 0000 538	525	C GENERATE HALF CIRCLE AND FACH AXES	COPO	526
CALL MECT (0., 20.*GH,2)		c	20P0	527
7=1,		CALL PLOT (17. FCM, 2. FCM, -3)	3 aPo	528
100		CALL PLOT (0.,20.+GM,2)	COPO	529
00 707 J=1,1 CALL SYMBOL (0,1,1,2*CM,13,0*1,-1) CALL SYMBOL (1,1,1,2*CM,13,0*1,-1) CALL SYMBOL (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,		7=1.	3 OPO	530
CALL SYMODI (0.,Y,.)*COM.11,011) CALL MANDER (.E*CN,Y-, 7*CM,.25*CM,7,901) CALL MANDER (.E*CN,Y-, 7*CM,.25*CM,7,901) CALL SYMODI (2.*CM,6.*CM,.7*CM,77 - PLANE ROOT LOCUS (.1 UNIT/CM COPO 57% X)*, i0., 15) V=1"CM CALL PLOT (0.,Y,7) CALL PLOT (0.,Y,7) CALL PLOT (0.,Y,7) CALL PLOT (1.,Y,7) CALL NUMBER (1.,Y,15*CM,125*CM,125*CM,11) CALL NUMBER (1.,Y,15*CM,125*CM,125*CM,11) CALL SYMODI (1.,Y,15*CM,125*CM,11) CALL SYMODI (1.,Y,15*CM,125*CM,11) CALL SYMODI (-15.0*CM,.5*CM,.24*CM,TITLE(1),90.,80) CALL SYMO	530	A=50*±C4	3 OPO	931
CALL NUMBER (.F*CN,Y%CH,.25*CH,7.90.+1) 727-5 535 292 Y=Y-1.5CM CALL CYMOL (2.*CM,6.*CM,.3*CM,"7 - PLANE ROOT LOCUS (.1 UNITY) CALL PLOT (0.,Y,3) CALL SYMOU (0.,Y,3) CALL SYMOU (0.,Y,3) CALL PLOT (0.,Y,3) CALL SYMOU (0.,Y,3		00 107 J=1.6	COPO	5 12
CALL NUMBER (.F*CN,Y%CH,.25*CH,7.90.+1) 727-5 535 292 Y=Y-1.5CM CALL CYMOL (2.*CM,6.*CM,.3*CM,"7 - PLANE ROOT LOCUS (.1 UNITY) CALL PLOT (0.,Y,3) CALL SYMOU (0.,Y,3) CALL SYMOU (0.,Y,3) CALL PLOT (0.,Y,3) CALL SYMOU (0.,Y,3		CALL SYMPOL (0.,Y,,2*CH,13,90.,-1)	COPO	533
777-35 COPO 535 292			COPO	5.24
CALL SYMBOL (2, *CM, 6, *CM, .3*CM, **7 - PLANE FOOT LOCUS (.1 UNIT/ZH COPO 537 X) **1, **1, **1, **1, **1, **1, **1, **1			COPO	5.35
X Y H H H H H H H H H	5.85	792 Y=Y-r, *CM	COPO	5 36
X Y H H H H H H H H H		CALL SYMPOL (2. *CM,6. *CM,.3 *CM,"7 - PLANE FOOT LOCUS (.1 UNIT/	M COPO	537
CALL PLOT (0., v, 3) X=-12, **CH CALL PLOT (X, v, 2) CALL PLOT (X, v, 3) CALL PLOT (X, v, 2) CALL SYMBOL (X, v, v, 2*CM, 17, 0, -1) CALL NUM95W (X, v, v, 2*CM, 17, 0, -1) CALL NUM95W (X, v, v, 15*CM, 125*CM, 2, 90, 1) CALL PLOT (X, v, v, 15*CM, 125*CM, 2, 90, 1) CALL SYMBOL (-15, 0*CM, 0*CM, 24*CM, TITLE(1), 90, 80) CALL SYMBOL (-15, 0*CM, 0*CM, 24*CM, TITLE(1), 90, 80) CALL SYMBOL (-15, 0*CM, 0*CM, 24*CM, TITLE(1), 90, 80) CALL SYMBOL (-15, 0*CM,				5 3 6
Second		Y = 1 } *CM	3 OP0	5 39
Second		CALL PLOT (0., Y, 3)	COPO	5 4 0
7=1.2	940		2000	541
7=1.2		CALL PLOT (X,Y.2)	2 0 P O	542
CALL PLOT (X,Y,3) CALL PLOT (X,Y,3) CALL SYMBOL (X,Y,2) CALL SYMBOL (X,Y,2)**CH,13,0,-1) CALL NUMBER (X,Y,15*CH,125*CF,2,90,1) CALL PLOT (X,Y,15*CH,125*CF,2,90,1) CALL PLOT (X,Y,15*CH,3) CALL SYMBOL (-15.0*GM,5*CM,24*CM,TITLE(1),90,40) CALL SYMBOL (-15.0*GM,3*CM,24*CM,TGAIN INCREMENT GROER", 20P0 555 X90,23) Y=9,1*CM X=-1*,15*CM CALL SYMBOL (X,Y,AIG(J)*CM*1,2,ORCER(J),0,-1) CALL SYMBOL (X,Y,Y,AIG(J)*CM*1,2,ORCER(J),0,-1) CALL SYMBOL (X,Y,AIG(J)*CM*1,2,ORCER(J),0,-1) CALL SYMBOL (X,Y,AIG(J)*CM*1,2,ORCER(J			COPO	543
CALL PLOT (X,Y,2) CALL SYMBOL (X,Y,15*CH,17:0,-1) CALL NUMBER (X,Y+.15*CH,2:400.1) CALL PLOT (X,Y+.15*CH,3) T=74 CALL PLOT (X,Y+.15*CH,3) T=74 CALL SYMBOL (-16.0*CM,5*CH,24*CM,TITLE(1).90.80) CALL SYMBOL (-16.0*CM,5*CH,24*CM,TITLE(1).90.80) CALL SYMBOL (-16.0*CM,5*CH,24*CM,TITLE(1).90.80) CALL SYMBOL (-16.0*CM,5*CH,24*CM,TITLE(1).90.80) CALL SYMBOL (-15.0*CM,5*CH,24*CM,TITLE(1).90.80) CALL SYMBOL (-15.0*CM,5*CM,24*CM,TITLE(1).90.80) CALL SYMBOL (-15.0*CM,3*CM,24*CM,TITLE(1).90.80) CALL SYMBOL (-15.0*CM,3*CM,24*CM,TGAIN INCREMENT ORDER", 10P0 556 X 90.73) Y=9.1*CM X=-1*.15*CM CALL SYMBOL (X,Y,RIG(J)*CM*1,2,ORCER(J).0.,-1)		0C 203 J=1.3	COPO	544
CALL SYMBOL (X,Y,.2*CM,17,0,-1) CALL NUMMER (X,Y+.15*CM,.125*CP,Z,90,.1) CALL PLOT (X,Y+.15*CM,.3) 7=7-4 COPO 550 703 X=X+4.*CM CALL SYMBOL (-16.0*CM,.5*CM,.24*CM,TITLE(1).90.,80) CALL SYMBOL (-16.0*CM,.5*CM,.24*CM,TITLE(1).90.,80) CALL SYMBOL (-15.0*CM,.5*CM,.24*CM,TITLE(1).90.,80) COPO 553 C FOR **COT LOCUS EACH GAIN INCREMENT HAS A DIFFERENT SYMBOL PLOTTED COPO 555 CALL SYMBOL (-15.*CM,3.*CM,.24*CM,"GAIN INCREMENT ORDER", 20PO 556 X90.*23) Y=9.1*CM X=-1*.15*CM COPO 557 X=9.1*CM X=-1*.15*CM COPO 558 X=-1*.15*CM COPO 560 CALL SYMBOL (X,Y,RIG(J)*CM*1.2,ORDER(J).0.,-1) CALL SYMBOL (X,Y,RIG(J)*CM*1.2,ORDER(J).0.,-1) COPO 561 70-4 Y=Y+A,0*CM S1=1.31 COPO 562 S1=1.31 COPO 564 S1=5101 COPO 565 S10(11)=-1.7		CALL PLOT (X,Y,3)	COPO	9.45
CALL NUMBER (X,Y+,15*CM,125*CP,Z,90,,1) CALL PLOT (X,Y+,15*CM,3) CALL PLOT (X,Y+,15*CM,3) COPO 550 203 X=X+u,*CM CALL SYMBOL (-16.0*CM,.5*CM,.24*CM,*TITLE(1).9080) CALL SYMBOL (-16.0*CM,.5*CM,.24*CM,*TITLE(1).9080) COPO 553 CALL SYMBOL (-15.0*CM,.24*CM,*TITLE(1).9080) COPO 555 CALL SYMBOL (-15.0*CM,.24*CM,*TITLE(1).9080) COPO 556 X 9023) Y=9.1*CM X=-1*.15*CM COPO 557 Y=9.1*CM COPO 558 X=-1*.15*CM COPO 560 CALL SYMBOL (X,Y,RIG(J)*CM*1.2,ORCER(J),01) COPO 561 COPO 562 S1=1.01 COPO 563 COPO 564 S1=S101 COPO 565 S1=S101 COPO 566 S1=S101 COPO 565 S1=S101 COPO 566 COPO 566 S1=S101 COPO 566 COP	C4.	CALL PLOT (X,Y,?)	3 OPO	546
CALL PLOT (X,Y*,16*GM,3) 7=7-,4 7=7-,4 COPO 550 201		GALL SYMBOL (X,Y,.2 *CM,13,3.,-1)	COPO	547
7=7-,4 7:00 550 703 X=X+4.*CH CALL SYMOOL (-16.0*CM,.5*CM,.24*CM,TITLE(1).90.,80) C0P0 551 CALL SYMOOL (-16.0*CM,.5*CM,.24*CM,TITLE(1).90.,80) C0P0 553 C FOR **COT LOCUS EACH GAIN INCREMENT HAS A DIFFERENT SYMBOL PLOTTO C0P0 554 C0P0 555 CALL SYMOOL (-15.*CM,3.*CM,.24*CM,"GAIN INCREMENT ORDER", 20P0 556 X90.*23) C0P0 557 Y=9.1*CM 20P0 558 X=-1*.15*CM 20P0 559 D0 204 J=1.11 CALL SYMOOL (X,Y,RIG(J)*CM*1.2,ORDER(J)*,11) 20P0 560 CALL SYMOOL (X,Y,RIG(J)*CM*1.2,ORDER(J)*,11) 20P0 562 S1=1.31 D0 275 J=1.100 20P0 564 S1=S101 20P0 565 S10(11)=-1.7 S10(11)=-1.7 S10(11)=-1.7 C0P0 567 S10(11)=-1.7 S10(11)=-1.7 S10(11)=-1.7 S10(11)=-1.7		CALL NUMMER (X,Y+.15*CM125*CM.Z.9011	2 0P 0	548
20.5 X=X+4,*CM CALL SYMODL (-16.0*GM*,5*CM*,24*CM*,TITLE(1)*90.*80) COPO 552 COPO 553 COPO 553 COPO 553 COPO 554 COPO 555 COPO 555 COPO 555 COPO 555 COPO 555 COPO 556 COPO 556 COPO 556 COPO 557 COPO 558 COPO		CALL PLOT (X.Y15*CM.3)	3 OPO	549
CALL SYMMOL (-16.0*GM*.5*CM*.24*CM*TITLE(1)*90.*80) COPO 553 COPO 553 COPO 553 COPO 554 COPO 555 CALL SYMMOL (-15.*04.3.*CM*.24*CM*"GAIN INCREMENT GROER". COPO 556 X90.*23) Y=9.1*CM X=-1*.15*CM COPO 556 X=-1*.15*CM COPO 556 X=-1*.15*CM COPO 556 CALL SYMMOL (x,y,RIG(J)*CM*1,2,GRDER(J)*0.*-1) COPO 561 COPO 562 S1=11.31 COPO 562 S1=11.31 COPO 564 S1=S1+.01 COPO 565 COPO 565 COPO 565 COPO 565 COPO 566 COPO 567 COPO 566 COPO 567 COPO 566 COPO 566 COPO 566 COPO 566 COPO 566 COPO 566 COPO 567		7=74	COPO	550
COPO 553	558	?0 \$ X=X+4.*CЧ	30P0	551
FOR POOT LOCUS EACH GAIN INCREMENT HAS A DIFFERENT SYMBOL PLOTTED COPO 556 COPO 556 COPO 556 COPO 556 COPO 556 COPO 556 COPO 557 COPO 557 COPO 557 COPO 558 COPO 560 COPO 560 COPO 560 COPO 560 COPO 560 COPO 561 COPO 562 COPO 562 COPO 562 COPO 563 COPO 563 COPO 563 COPO 564 COPO 565 COPO 566 COPO 566 COPO 566 COPO 566 COPO 567 COPO 566 COPO COPO 566 COPO COPO 566 COPO COPO 566 COPO C		CALL 5YM90L (-16.0+0M,.5+0M,.24+0M,TITLE(11,90.,80)	COPO	552
COPO 555 CALL SYM OL (-15,*04,3.*CH24*CH."GAIN INCREMENT ORDER", 20P0 556 X9023) COPO 557 Y=9.1*CH X=-1*.15*CH COPO 558 X=-1*.15*CH COPO 559 OCALL SYMROL (x,y,RIG(J)*CH*1,2,ORDER(J),0.,-1) 20P0 561 ***O***Y=Y**,85*CH COPO 562 S1=1.31 COPO 562 S1=1.31 COPO 564 S1=S1+.01 COPO 565 310(J)=S1 COPO 565 310(J)=S1 COPO 565 310(J)=S1 COPO 565 S10(111)=-1.3 COPO 566 **O***TIM**CJ)=-SOPT((I=S1)(J)**?) COPO 567 S10(111)=-1.3 COPO 568 S10(102)=.254 COPO 570			COPO	553
CALL SYMBOL (-15.*04,3.*CM24*CM.**GAIN INCREMENT ORDER**.		C FOR POOT LOCUS EACH GAIN INCREMENT HAS A DIFFERENT SYMBOL PLOTTED	COPO	
X90.423) X90.423) Y=9.140H X=-11.1540H X=-11.1540H X=-11.1540H X=-11.1540H X=-11.1540H X=-1.131 X=1.131 X=1.13		i	COPU	555
Y=9.1*CH	4 C 43	CALL SYMMOL (-15.*CH.3.*CH24*CH."GAIN INCREMENT DROEF".	3 OPO	5 5 6
X=-1*.15*CM 10 PP 599 10 204 J=1.11 10 PP 560 560 10 204 J=1.11 10 PP 560		x 90 23)	COPO	
10		Y=9.1*CM	COPO	554
CALL SYMBOL (x,v,RIG(J)*CM*1,2,ORCER(J),0,,-1) 70		X=-15.15 *CM	: 0P0	5.9

\$1=1.01 00 295 J=1.100 \$1=5101 510(J)=51 510(J)=51 510(J)=51 510(J)=51 510(J)=51 510(J)=-1.0 510(J)=-254 510(J)=-254 510(J)=-1.2 510(J)=-1.2 510(J)=-1.2	- 0			
100 205 J=1.100				
S1=S101				
10(J) = 51				
70 T T M= (J)= - SQPT(L-S1)(J) **2)				
\$10(11)==1.7	. • 5 = 5			
\$10(102)=.254				
TTMF (1011=-1.2 COPO 570				
70 TIME (102)=, 254 30P0 571				
	9 7 ()	1 IMt (197)±, 754	COPO	571

EUBEOUTEKE	2 500	74/74 OP1=1	FTN 4.2+75060	01/09/75	14.22.47.
		CALL PLOT (-12. *C M. D 3)		COPO	572
		CALL LINE (TIME, \$13.100.1.0.0)		0 0 P 2	573
		31 7-1.01		COPO	574
		70 776 J=1,100		0.000	575
• 4		91= 11+.11		3 OPO	576
	,31	510 ()1 = 51		2 OPO	577
		CALL LINE (TIME, \$10.100.1.3.8)		3 0P0	57A 579
		X [] = . [* 2 , E 4		COPO	
		ACE: A= 145. 14		090	580
5.80		XMTN=1,3		C 0P0	581 582
		X MAX = 1		0 0P0 3 0P0	5 A T
		AWINED.		COPO	584
		YMAX=1.7		2000	585
		60 TO 707		3 OPO	586
	J.				507
	r:		•	2 DPO	5 HA
		FOLLOUTUS SECTION THROUNES BOLL LOCUS OF POO	IT CONTOUR	0.000	5 8 9
	::•••• c	FOLLOWING SECTION INVOLVES ROOT LOCUS OR ROO	II CONTOOK	3 000	590
		PEAD MAXIMUM AND MINIMUM VALUES FOR Y AXIS AND	V AVIS GENERATION	CUPO	591
144	0	S. B.) SEX (W.) W. B.M. W. W. W. M. A. M. C. S. C.		2 OP0	592
		DELD 14 OCCUMENT VINAV		2.090	593
		PEAD (1,900)YMIN,YMAX FORMAT (2F10.0)		COPO	504
	400	IF (ECF(1) .NE. D) GO TO 998		COPO	595
¥4.		MOITE (3. 40 SIAMIN' AND A		COPO	556
		FO=MAT (10x, "YMIN=", F6. 1, FX, "YMAX=", F6. 1)		2 OPO	597
	13.	PHOTOLOGY PRINT PROPERTY COLLEGE		2090	598
	c	GENERATE X AYIS		COPO	5 9 9
	d	GEREMATE & MILS		COPO	€00
201		CALL SURSCLIVMAX, YMIN, 25.0.1., 10., YCREY)		COPO	501
2.0		YOT = YORFY		COPO	607
		XMIN=-14.*XDT		3 OPO	603
		MMAX=4. TXDT		COPO	604
		CALL FACTORIHALES		3 OPO	6.05
€04-		TELTYPE.EQ.RL) CALL AXIS (00., "ROOT LOCUS"	10 -9DXMIH-	COPO	506
		XXCT#2.}		20P0	6:7
		IF(TYPE.NE.RL) CALL AXIS (00., "ROOT CONTOUR	₹",-12,9.,0.,XMIN,	COPO	608
		1,2*T0xx		COPO	€09
		CALL FACTOR(1.)		2 0 P O	610
€10		CALL PLOT (14. *CM,0.,3)		COPO	611
		CALL PLOT (14. *CM,25. *C4.2)		3 OPO	612
		CALL SYMBOL (CM.25.2 *CM 20 *CM, TITLE(1) . 0 . , 8(91	COPO	613
	0			3 OPO	£14
	0	IS THIS A ROOT CONTOUR PLCT		COPO	615
€19		IFITYPE.NE.RL1 GO TO 61		2020	E16
	C.			COPO	617
	۲,	FOR ROUT LOCUS EACH GAIN INCREMENT HAS A DIFF	EKENT SAMBOL PLOTTED	COPO	619
	f.			3 0P0	619 620
		CALL SYMBOL (CM. 26.) *CM 24 *CM. *GAIN INCREME	NT UPD:R10.,231	0 0P0 0 0P0	621
£,10		K N = 7.10 T CM			627
		YN=25.15*CH		3 0P0	627
		DC 170 J=1,10		COPO	624
		CALL SYMBOL (XN.YN 24+CM, DRDER(J).0., -1)		3 0 P O	62F
		XN= XN+.85*CM		5 0 P O	626
t 25	61	CONTINUE		3 0PO	627
		XN=18.3 CM		2000	628
		YN= P5. #CM		, UFU	0.20

FTN 4- 2+ 75050

01/09/76 14.22.47.

SUBROUT INF COPC

73/74 CPT=1

	SUPPOUTINE	COPO	73/74	PT=1	FTN 2+75060 0:	1/09/76	14.22.47.
589	ς.		VP (L +1) = -1.			3 000	686
94.	,		VFIL+2 1= YCREY			COPO	5 57
			TIMF (L+1) =-1.2			3 0 P O	688
			TIME (L+2)=XDT			2 DP0	689
			IF (NOKP NE 21	50 TO 211		COPO	690
59	n		VP(L+1)=.92	30 10 211		3 OPO	691
9-			TIME (L +1) =0.0			COPO	692
			GO TO 211			COPO	663
		219	VP(L+1)=YMIN			COPO	294
			VP (L+2)=YCREY			3 0 P O	695
60			TIME (L +1) = XMIN			3 OPO	6 + 6
	•		TIME (L+2) = XOT			COPO	697
		211	KO=K			2000	698
		- 1 1	IF (K.GT.10) KD	: K= 10		3 OPO	599
				.VP.L.1,-1,0RDER (KC))		COPO	750
7.0	c	197	CONTINUE	***************************************		COPC	701
,			CONTINUE			COPO	702
		1 /01	IFITDIG.NE.1)	O TO 1900		3 OPO	703
			IF (KLF. NE. NNK			COPO	7 04
			IF (NOKP.EQ.1)			2020	705
76	n.		CALL PLOT (17			3 OPO	7 06
7 4	9		CALL FACTOR(.7			COPO	. 707
				.16HZ-PLANE EXPANCED16,10.	90 92 011	2 OPO	708
				.9HIMAG AXIS,-9.618 U0		3 OPO	7.09
				5.0.,.14, TITLE(1),90.,80)		COPO	710
71	0		CALL CAMBOL 1-	7514. GAIN INCREMENT OR	DER40241	2000	711
, ,	9		YY=4.55	THE PROPERTY OF THE PROPERTY OF	7	COPO	712
			DO 2044 J=1,15			COPO	713
				7.1,YY,.14,ORDER(J),0.,-1)		COPO	714
		204	YY= YY+.425	111111111111111111111111111111111111111		3 OPO	715
		C D 44 4	CALL FACTOR(1.	11		COPO	716
71	5		XMIN=.91	J #		30P0	717
			XMA X=1.03			3 0P0	718
			YMIN=0.			COPO	719
			YMAX=,07			COPO	720
72			XE 7= .0127			3 0PO	721
//	·		YCP EY= .0127			COPO	727
						COPO	723
			KLP=KLP+1			COPO	724
			WRITE (3,1111)	PANDED ROOT LOCUS COMPLETED"	•	3 OPO	725
		1111	50 TO 207	PANDED ROUT LOCUS DUMPLETED	•	COPO	726
72	۵.		CONTINUE			3 OPO	727
			CONTINUE			3 0P0	728
		0 0				COPO	729
		C				3 020	730
7,	• •	r.	CALL CLOSOUTT	E TO PLOT ZERDES		COPO	731
7 3	10	6	THEE SCHROOTE	E TO PEUT ZEROES		3 OPO	732
		5)	CALL DEADOLYM	x, ymin, xma x, xmin, xdt, ycr ey, i	DIG TIME VP.NOKE	COPO	733
			IF([)IG.NE.1)		013 (11) 11) 140A	2 OPO	734
			IF ([) I G. NE. 1)			3 OPO	735
,,,		1117		PLANE ROOT LOCUS PLOT COMPL	FT FD "1	COPO	736
7.7	. 5		FILTERS SCURS	PEANE KOOT LOCKS PEUT COMPL	C120 /	3 OP0	737
		Ç	CD405 TO MEST	07.04.05		COPO	738
		r;	SPACE TO NEXT I			2 GPG	739
				CALL PLOT (30.4950*CM.0.,-3)	**	COPO	740
_	_			CALL PLOT (25.4950*CM.=2.*CM	, = a ,	COPO	741
74	• 1)		NOPLOTS = NOPLO			3000	742
			16 (MOKP.EQ.2)	CALL PLOT (-12.*CM,0.,-3)		20-0	. 4

ORIGINAL PACE IS
OF POOR OUALITY

	SUPPOUTINE PEADOLYMAX, YMIN, XMAX, XFIN, YCREX, YCREY, IDIG, TIME W P. NOK P		?
	\mathbf{O}	READO	3
	· · · · · · · · · · · · · · · · · · ·	READO	4
		READO	5
•	C. THIS SUBPOUTING READS AND PLOTS THE PERDES OF THE TRANSFER.	READO	6
	FUNCTION FOR A ROOT LOGUS	READC	7
	r		a
		READO	9
	OIMENSION TIME (1), VP(1)	R = 400	10
10	IF ((NOKP.NE.2) .OR.(ID IG.NE. 1)) GO TO 1234	COABS	11
	PEAD (9) I,(TIME(L), VP(L),L=1,I)	READO	12
	IF(50F(9).NE.0) GO TO 161	READO	1.3
	IF((NOKP.EG.2).AND.(IDIG.EQ.1)) GC TO 11	READO	14
	1234 CONTINUE	READO	15
15	PEAN(7) I, (TIME(L), VP(L), L=1, I)	R EA DO	1.6
	<pre>IF (IDIG.EQ.1) HRITF (9) I,(TIME(L),VP(L),L=1.I)</pre>	READO	17
	11 CONTINUS	READO	1 A
	00 160 L=1,I	R EA DO	19
	IF((VP(L).GT.YMAX).OR.(VP(L).LT.YMIN).OR.(TIME(L).GT.XMAX).OR.(TIM	READO	20
20	+5(L).LT.YMIN)) GO TO 160	READO	21
	XN=(TIME(L)-XMIN)/YCREX039	READO	22
	YN= (VP(L) - YHIN) /YCPEY 049	READC	23
	IF (IDIG. NE. 1) GO TO 159	READO	24
	xn=(1,2-yP(L))/YGREX-,039	READO	25
.25	YN= (1,+TIME(L))/YCREY-,049	READO	26
	<pre>IF (YCPFY.ED0127) YN=-VP(L)/YCREY039</pre>	READO	27
	IF (YCREY.EQ01?7) YN=(16.+(TIMF(L)-1.)/.005)/2.54049	READO	28
	159 CALL SYMBOL(XN.YN140 .54.01)	OCABS	29
	160 CENTINUS	READO	3.0
ŧυ	161 CONTINUE	READC	71
	PETURN	READO	32
	รหว	READO	3.3

XPENVL/P.D.

25

0.00.

.55.

.89,

XPTMU/0.0, .01, .06, .10, .16, .20, .30, .42, .50, X .50, .70, .80, .90, 1.00, 1.20, 1.33, 1.50, 2.00, X 2.50, 3.00, 3.50, 2.00, 0.00/, XPENVU/0.0, .50, 1.00, 1.26, 1.50, 1.62, 1.84, 2.00, 2.08, X 2.16, 2.21, 2.23, 2.24, 2.21, 2.08, 2.00, 1.92, 1.71, X 1.55, 1.39, 1.17, 0.00, 0.00/

. 89,

. 76,

CST AR

CSTAR STAR

CSTAR

STAR

STAR

.59.

.69.

1.20, 1.33, 1.50, 2.00,

26 27 28

29

31

SUBSCL

OF FOOR OU ALTER

CLEROUTING SURFICE 23/74 CRT#1

APPENDIX 2

NAMELIST CODE

THE CONDITION CODES AND INPUT DATA ARE CONTAINED IN THE NAMELIST CODE AND ARE LISTED BELOW. ALL OF THE CODES AND DATA ARE INITIALIZED TO ZERO AT THE START OF EACH CASE UNLESS THE SAV OPTION IS SET

CONDITION_CODES (INTEGER VARIABLES) READ, SYSTEM, OUTPUT, MIXED, DIGITL, FRPS, NUMERS, TRESP, NX, NY, NU, NXC, NUC, ZOH, N1, N2, CONTUR, MULTRT, MODEL, NS CALE, C MAT, NK2, FORM, IPT, IGO, SAV, IF LAG, READ 3

(REAL VARIABLES) INPUI DAIA DELT, FINALT, IFREC, FFREQ, DELFRQ, M, GAIN1, GAIN2

CONDITION_CODE_DESCRIPTION (INTEGER VARIABLES)

DATA MATRICES INPUT THROUGH LOAD SUBROUTINE READ 1

DATA MATRICES CONSTRUCTED IN USER WRITTEN MATRIX SUBROUTINE

DATA FROM PREVIOUS CASE ALTERED IN USER WRITTEN CHANGE 3 SUBROUT INE

DATA MATRICES CONSTRUCTED FROM BLOCK DIAGRAM INFORMATION IN CLASS SUBPOUTINE

SYSTEM UPEN LOCP SYSTEM ANALYSIS 1

CLOSED LOOP SYSTEM ANALYSIS 2

ROOT LOCUS ANALYSIS

TURTUC

y = Hx + Gx y = Hx + Fu 2

3

y= Hx + Gx + Fu

NO ACTION **MIXED** 0

MIXED SYSTEM ANALYSIS (SEE TABLE V.) SYSTEM MATRICES ARE CONSTRUCTED IN A TWO-STEP PROCESS,

SPECIFIES OPEN LOOP PLANT (I.E. SPECIFY A.B. STEP 1 C,H,G,F REGARDLESS OF VALUE OF SYSTEM).

AUGMENTS PLANT WITH CONTROL SYSTEM DESCRIBED STEP 2 BY BLOCK DIAGRAM USING CLASS.

SYSTEM SPECIFIES THE TYPE OF ANALYSIS FOR THE AUGMENTED SYSTEM.

CONTINUOUS SYSTEM ANALYSIS DIGITL 0

- SAMPLED-DATA SYSTEM ANALYSIS ı
- DISCRETE SYSTEM ANALYSIS

IF DIGITL ≠ 0, DELT SPECIFIES THE SAMPLE PERIOD OF THE DISCRETE OR SAMPLED-DATA SYSTEM.

FRPS O NCT APPLICABLE

1 FREQUENCY RESPONSE CALCULATED FOR EACH TRANSFER FUNTION S-PLANE IF DIGITL = 0

W-PLANE IF DIGITL = 1,2 (DELT REQUIRED)

- -1 S-PLANE FREQUENCY RESPONSES CALCULATED FROM Z-TPANSFER FUNCTIONS WITH DIGITL = 1.2 (DELT REQUIRED)
 - 2 S-PLANE POWER SPECTRA CALCULATED (DIGITL= 0)
- NUMERS O NUMERATOR ZERGES OF S OR Z-TRANSFER FUNCTIONS CALCULATED

 NUMERATOR ZERGES NOT CALCULATED

CONTROL WILL COMPUTE TRANSFER FUNCTION NUMERATOR ZEROES FOR ALL INPUT-OUTPUT PAIRS DEFINED BY THE INPUT AND OUTPUT VECTORS. FOR MIXED SYSTEM ANALYSIS, THE ITHINU AND ITHINY OPTIONS ALLOW UNWANTED TRANSFER FUNCTIONS TO BE ELIMINATED.

TRESP O NO ACTION

CONTUR

N TRANSIENT RESPONSES CALCULATED. *DELT SPECIFIES INTEGRA-TION STEP SIZE. IF DISC INPUT ROUTINE IS USEC, THERE MUST BE N INPUT CARDS AT THE END OF THE DATA CASE GIVING THE INPUT STEP FUNCTION.

NX,NY,NU

DIMENSIONS OF X, Y, AND U VECTORS. IF MIXED = 1, NX, NY, AND
NU SPECIFY DIMENSIONS OF THE OPEN LOOP PLANT (STEP 1).

STATES ADDED IN STEP 2 OF THE MIXED OPTION AUTOMATICALLY INCREMENT NX, NY, AND NU.

NXC, NUC DIMENSIONS OF STATE AND INPUT VECTORS CORRESPONDING TO THE CONTINUOUS SUBSYSTEM (PLANT) OF A SAMPLED-DATA SYSTEM. THE PLANT MUST BE PARTITIONED IN THE UPPER LEFT POSITION OF THE SYSTEM MATRICES (A,B,H,F,ETC.) NXC \(\leq \text{NX} \), NUC \(\leq \text{NU} \)

ZIDH FOR SAMPLED-DATA SYSTEMS, THE NUMBER OF INPUTS TO THE PLANT WHICH ARE OUTPUTS OF ZERC-CRDER-HOLD CEVICES. THESE MUST BE THE FIRST ZCH COMPONENTS OF THE INPUT VECTOR, U.

THE ROOT LOCUS CPTION ALLOWS TWO FEEDBACK CAINSITO BE SPECIFIED. NI IS THE NUMBER OF ITERATIONS OF THE FIRST VARIABLE (K1, K2) AND N2 IS THE NUMBER OF ITERATIONS OF THE SECOND VARIABLE (K3, K4). (COMMONLY, N2 = 0).

IF N1 > 0, GAIN INCREMENTS ARE ARITHMETIC (0,1,2,3,..)
IF N1 < 0, GAIN INCREMENTS ARE GEOMETRIC (0,1,2,4,8,.)
Gain increments of second variable are the same as the first;

NOT APPLICABLE

NOT CONTOUR OPTION FOR PARAMETER VARIATION STUDIES

CONTROL DETERMINES ONLY SYSTEM EIGENVALUES AND RETURNS

TO TOP OF PROGRAM FOR NEXT VARIATION. CONTINUES UNTIL CONTUR

SET TO ZERO. (USED WITH IFLAG, READ3, SAV, AND CHANGE)

MULTRT FCR SAMFLED-DATA SYSTEMS, CCMPUTES MULTRT TRANSIENT RESPONSE POINTS FOR EACH SAMPLE PERIOD SO THAT INTERSAMPLE RESPONSE MAY BE INVESTIGATED. ONLY TRANSIENT RESPONSES ARE CALCULATED IF MULTRT IS SET.

MODEL O NOT APPLICABLE

1 MODEL ECLLOWING ON CONSECUTIVE FREQUENCY RESPONSES

NSCALE O NOT APPLICABLE

STATE VECTOR TRANSFORMED TO IMPROVE NUMERICAL CONDITIONING IN DETERMINATION OF EIGENVALUES. A MATRIX SCALED BY A DIAGONAL SIMILARITY TRANSFORMATION.

CMAT O C MATRIX IS THE IDENTITY MATRIX (C NOT REQUIRED)

1 C ≠ I (C REQUIRED)

NK2 0 K2 = 0 , K4 = 0 (K2, K4 NOT REQUIRED)

1 K2 ≠0 OR K4 ≠ 0 (K2, K4 REQUIRED)

FORM O PRINT CALY FOR OUTPUT

1 PRINT AND PLOT OUTPUT

PLOT ONLY FOR OUTFUT
THE CONTROL PLOTTER PROGRAM AUTOMATICALLY SCALES ALL PLOTS
EXCEPT ROCT LOCUS PLOTS (WHICH REQUIRE AN EXTRA
DATA CARD).

IPT CCDE FOR EXTRA PRINTOUT FOR DEBUGGING

O NO EXTRA PRINTING

1,2 EXTRA PRINTING

IGO CODE FOR CATA REQUIRED BY CLASS SUBROUTINE

O INPUT DATA REQUIRED BY CLASS (TABLE V. STEP 2)

1 CLASS USES DATA FROM PREVIOUS CASE

SAV O DATA MATRICES NOT SAVED

DATA MATRICES SAVED FOR SUBSEQUENT CASES. IF MIXED = 1, CONTROL SAVES MATRICES DEFINED IN STEP 1 (CLASS INPUT DATA, STEP 2, IS NOT DESTROYED AND IS AVAILABLE FOR SUBSEQUENT CASES).

IFLAG O ON SUBSEQUENT CASE THE CONDITTON CODES AND INPUT DATA ARE ZEROED BEFORE THE CALL TO CARD. CARD REACS TITLE, NAMELIST,

OLTPUT LABEL, AND INPUT LABEL CARDS

ON SUBSEQUENT CASES THE CONDITION CODES AND INPUT DATA OF THE PRESENT CASE WILL BE USED. CARD READS ONLY A TITLE CARD FOR ALL SUBSEQUENT CASES. (THE OPTION MAY BE CANCELED BY SETTING IFLAG = 0 OR BY END OF DATA DECK).

READ3 0 NO ACTION

ON SUBSEQUENT CASES, READ DEFAULTS TO 3 TO FORCE PROGRAM TO THE CHANGE SUBROUTINE. THE CPTION IS USED WITH IFLAGED PARAMETER VARIATION STUDIES.

INPUT DATA DESCRIPTION (REAL VARIABLES)

DELT TIME INCREMENT FOR TRANSIENT RESPONSES AND/OR SAMPLE PERIOD FOR SAMPLED-DATA SYSTEMS, SECONDS

FINALT FINAL TIME FOR TRANSIENT RESPONSES, SECONDS

IFREQ, FFREQ, DELFRQ

INITIAL, FINAL, AND INCREMENTAL FREQUENCIES FCR FREQUENCY RESPONSES OR POWER SPECTRA. DELFRQ = 1.1 IS GOOD FOR MCST APPLICATIONS. FREQUENCIES MUST BE SPECIFIED IN (DELFRQ CANNOT EQUAL 1.0) RADIANS/SEC. (S-PLANE) EVEN FOR DISCRETE AND SAMPLED-DATA SYSTEMS. IF IFREQ = 0., PROGRAM CEFAULTS TO AN INTERNAL SET OF FREQUENCY POINTS SPACED BETWEEN .1 AND 150. RAD/SEC. FOR SAMPLED-DATA FREQUENCY RESPONSES CONTROL CEFAULTS IN THE FOLLOWING MANNER,

IF DIGITL #0 AND FRPS #-1 AND IFREQ=0
IFREQ = TAN (.1*DELT*.5)
FFREQ = TAN (.9*3.14*.5)
IF DIGITL #0 AND FRPS #-1 AND IFREQ#0
IFREQ= TAN (IFREQ*DELT*.5)

FFREQ = TAN (FFREQ*DELT*.5)

CODE FOR MODIFIED Z-TRANSFER FUNCTION COMPUTATION FOR SAMPLED-DATA SYSTEMS. M IS THE FRACTIONAL SAMPLE PERIOD DELAY AND IS IN THE RANGE O.S M S. 1. M = 1.01VES THE STANDARD Z-TRANSFORM IF THE SIGNAL HAS NO JUMP DISCONTINUITY AT THE SAMPLE INSTANT. M = 0. GIVES THE Z-TRANSFORM WITH A CNE SAMPLE PERIOD DELAY. HOWEVER, NUMERICAL ERRORS LIMIT M TO M 2.2. THEREFORE, IF M=0., THE PROGRAM DEFAULTS TO STANDARD Z-TRANSFORM ANALYSIS. ONLY OPEN LOOP CALCULATIONS (MODIFIED Z-TRANSFER FUNCTIONS AND FREQUENCY RESPONSES) MAY BE PERFORMED WITH THIS OPTION.

GAIN1, GAIN2 ROOT LOCUS GAIN INCREMENTS FOR THE TWO FEEDBACK GAIN VARIABLES ALLOWED WITH THE ROOT LOCUS OPTION. IF NOT SET, PROGRAM DEFAULTS TO GAIN1= 1.0, GAIN2= 1.0.

APPENDIX 3

INPUT AND OUTPUT LISTINGS OF EXAMPLE PROBLEM

```
A. INPUT LISTING
                       LATERAL-DIRECTIONAL AIRPLANE & CONTROL SYSTEM
   EXAMPLE PROBLEM
$CODE READ= 1, MIXED= 1, SYSTEM=1, OUTPUT=2, NX=4, NY=5, NU=2, NSCALE=0, SAV=0,
CMAT=1, IPT=0, FRPS=1, IFLAG=0, RFAD3=0, DELT=.05, FINALT=3.,
TRESP= 1, FOR M= C, IFREQ=.1, FFREQ=20., DELFRQ=1.11, $END
                                 PHI
                      BETA
ROLLRATE YAWRATE
DEL TAAC DEL TARC
                       -15.
-5.9
           1.7
-.4
                       10.
           -1.
                       -.25
                                   .11
-.004
           -1.
l.
                      2
           3.
14.
           -6.
-.6
           .07
                      4
           -. C2
l.
-.02
           l.
                       1.
                                   1.
          5
                      4
1.
           1.
                        l.
                                    1.
 - 0348
            8.7
                                    -1.
          5
                       8.7
          1
                                    -2.
    1
                            3
 1
                                                 25.
                            1
 2
                                    1.
    4
                                                              .7
                                                 25.
 3
    8
          4
                5
                            2
                                    1.
                            4
                                     1.
                                                 1.
    6
                            5
5
                                                            2.
                                                10.
                                    -.1
    5
          2
                3
    1
    3
          4
          2
                 1
     3
     1
          3
          4
     2
          5
     5
     2
          1
     3
           2
           3
```

6

1.

```
B. OUTPUT LISTING
    EXAMPLE PROBLEM LATERAL - CIPECTIONAL AIRPLANE AND CONTROL SYSTEM
                  CONTINUOUS SYSTEM
                  MIXED OPTION
                  OPEN LOOP
LOAN POUTINT INPUT
                  TRANSFER FUNCTIONS
FREQUENCY RESPONSES
                  TRANSIENT RESPONSES
                 NX = 6
NY = 5
NYC = 0
NUC = 0
70H = 0
R1 = 0
                                                                                                                                                                             PELT = .050
FINALT = 3.000
IFPEQ = .100
DELTRO = 1.110
FRIQ = 20.000
GAIN1 = 0.000
SAIN2 = 0.000
M = 0.000
                                                                                               TRESP = 1
FRPS = 1
NUMFRS = 0
FORM = 0
GONTUP = 0
HULTRT = 0
MODEL = 0
                                                        PEAD = 1
SYSTEM = 1
MIXED = 1
OUTPUT = 2
                                                                                                TRESP =
                                                                                                                                       CMAT = 1
NK2 = 0
                                                                                                                                        IFLAG =
                                                        MIXED = 1
OUTPUT = 2
DIGITL = 0
IPT = 0
KOUNT = 1
                                                                                                                                       IGC =
READ3 =
                                                                                                                                                             0
                                                                                                                                        NSCALE =
                 THE A MATRIX IS
  -.43007+01 .1790Z+01 -.1530E+02 -0.

-.43007+00 -.10007+31 .1000E+02 -0.

-.40007+02 -.10007+01 -.2500E+00 .1100E+00

-10307+01 -0. -0.
                THE R MATRIX IS
.1409:+02 .70099+01
-.60099+00 -.60095+01
-0. .70099-01
-0. -0.
               THE C MATRIX IS
.106cF+11 -.2000F-11 -0. -0.

-.2000E-C1 .1000F+01 -0. -0.

-0. -0. .1200E+01 -0.

-0. -0. -0.
                                                          -0.
-0.
                                                                         .1000F+01
                 THE F MATRIX IS
.1000F+01 -0. -0. -0.

-0. .1000F+01 -0. -0.

-0. -0. .1000E+01 -0.

-0. -1. .1000E+01 -0.

-7490F-01 .8703F+31 -0. -.1
                                                           -0.
                                                          .1000E+01
-.1000E+01
```

ORIGINAL PAGE IS OF POOR QUALITY

```
THE G MATPLY IS
                                                           -0.
+0.
-6.
-0.
.8700F+01
                   -0.
-0.
-0.
-0.
                                       -0.
-0.
-3.
-9.
-0.
-1.
-1.
BLCCK CTAGRAM INPUT PARAMETERS
                                                                               PARAM
NO. TYPE
                        CONN: C
                                           MOD
                                                                             -0.9030
25.0000
25.0000
1.0000
                                                                                              -C.000C
-0.000C
.7000
-0.0000
                                                                                                               -0.0000
-0.0000
-0.0000
                                                                                                                               -0.0000
-0.0000
-0.0000
-0.0000
                                                    -0
-0
-0
-0
-0
                   -0
-0
-0
-0
                            - 0
- 0
- 0
                                   -0
-0
-0
-0
                                                             -2.0000
                                                              1.0000
1.0000
1.0000
                                              1245
                                                             -1.0000
                                                                              13.0000
                                                                                                2.0000
                                                                                                               -0.0000
                                                                                                                                -0.0000
              ITHINY
                                                  - 0
                                                           -0 -0
                                                                            - 0
             2 3
                                     5
                                          - 0
               ITHINU
                                           - 0
                                                  - 0
    3
                            - 0
                                     -0
               YTOV
              7 TOU
               YZTOK
```

```
THE A MATRIX IS
--5910F+01 .1681F+31 --1441F+02 0. .3498F+03

--5187F+30 --9664+00 -9704F+31 0. -8003F+01

--4000F-02 --1000F+01 --2500E+00 0. 0.

-1000F+01 0. 0. 0. 0. 0. -2500E+02
```

0.

-.10 COE+01 0.

.7498F+03 .1801E+04 0. -.8007E+01 -.7714E+04 0. 0. .4375E+02 0.

0.

0. 0. 0. 0. Э. -.1370E+01 .-000F+02 -.1000F+01 7. 0. -.1000E+02

THE R MATRIX IS

q î. 0. 3. 0. 0. 0. 0. 0. 100000+n1 0. 0. 0. .1000F+01 0. G.

THE H MATRIX IS

5

0. 0. 0.

0. 0. 0.

0.

THE E MATRIX IS

2 Ę 3. 3. ٥. 3.

THE FIGER VALUES OF THE SYSTEM APP

REAL PART	IMAGINARY PART
385104385+02	34711706E+02
385104385+02 148604875+02	.3471170EE+02 36751121F+02
144634975+62	.36751121E+02
.31861414E+02 13418070F+01	9 • 0 •
169017375+01	0.
22354784E+01	0.
.9209 4333E=02	ۥ

THE COEFFICIENTS OF THE CHARACTERISTIC EQUATION OFBERED FROM THE LOWEST POWER OF S

.62837635E+06 -64570633E+08 -39345278F+09 -44325784E+09 -144167525E+09 -21935520F+07 .2715E306E+04 .33936257F+04 .78126751E+02

THE POLL PATE / RELTA AC NUMERATOR GAIN IS .34986+03

THE JEROES OF THE TRANSFER FUNCTION ARE

IMAGINARY PART
48392089E+02
.48392099E+02
0.
0.
0.
0.
0.

THE COEFFICIENTS OF THE NUMERATOR POLYNOMIAL ORDERED FROM THE LOWEST POWER OF S

-.841652[RE-07 .15745192F+05 -.30416208E+06 -.33931655E+06 -.14722F65E+06 .10837#23E+04 .47177048F+02 .10000000F+01

POLL PATE / DELTA AC FREQUENCY RESPONSE S-PLANE

AMELITIME PATTO	PHASE ANGLE
n a	CEFREES
15460E+02	.86549E+02
148EBE+02	.82507E+02
1 42 83 E + 02	.78420E+02
13710E+02	.74304E+02
13156F+02	.70173E+02
	15460E+02 148FAF+02 142F8E+02 13710E+02

```
. 1545
                                       .660475+82
                -. 12629E+32
  .1870
                -.12131E+02
                                       · 61946 F+ 02
  .207€
                -.116685+02
                                       .5789+E+02
  .2305
.2558
                 -.11243E+02
                                       .539155+02
                -.108575+02
                                       .50038E+02
                -.10510F+02
                                       .46285F+02
  .3152
                -.102025+02
                                       .42581E+02
  . 349A
                -. 993115+01
                                       .39244F+02
  3947
                                       .35983F+82
                -. 9 E946F+C1
  .4317
                +.34893F+C1
                                       .32925E+02
  •→785
                -.9 3118 E+01
                                       .30057E+02
  .5311
.5835
                -.91586E+C1
                                       .27384E+02
                -.30264F+C1
                                       .24902E+02
                -.89120E+P1
                                       .22603E+02
  .7263
                -.88124F+01
                                       .204745+02
  3162
                -.87254F+01
                                       .18504E+02
                -. 36488F+01
                                       .16679E+02
  .9934
                 -.85811E+C1
                                       .14982E+02
 1.1026
                -.85211E+01
                                       .13401E+02
 1.2239
                -.84677E+01
                                       · 11 921 E+02
 1.3585
                -.84205F+01
                                       .10531E+02
 1.5090
                 -.53768E+01
                                       .92195F+01
 1.6739
                -.834225+01
                                       .79763E+01
 1.8500
                -.83104F+01
                                       .67930E+01
 2.7524
                                       .56612E+01
 2.2892
                -.82590E+01
                                       .45732E+01
 2.5419
                -.82383E+01
                                       .35210E+01
 2.8206
                -.82203E+01
                                       .24961F+01
 3.1308
                                       .14899E+81
 3.4732
                -. 81896E +01
                                       .49275E+00
                -. 11757E+01
                                      - . 50 52 6E+00
 4.2818
                -.81619E+01
                                      -.15151E+01
 4.7528
                -.81477E+01
 5.2756
                -.91324E+C1
                                      -.36183E+01
 5.3559
                -.81157E+01
                                      -.47387F+01
                 -.30955E+01
 6.5001
 7.2151
                -.80722E+01
                                      -.71969E+D1
                -. A C443E+01
                                      -.85739E+01
 8.8897
                -.9 (105E+C1
                                      -. 10081E+02
 9.9676
                 -.79691E+01
10.9530
                 -.791825+01
                                      -.13616E+02
12.1579
                 -. 78556F+01
                                      -.15726F+02
13.4952
                 -. 777135+01
                                      -.181395+02
14.9797
                 -.76832E+01
                                      -.20932F+02
16.6275
                 -. 75667E+01
                                      -.24207F+02
                 -.74255E+01
                                      -.28099E+02
28.4867
                -.725895+01
                                      -.32793E+02
```

THE YAW RATE / DELTA AC NUMERATOR GAIN IS -. 8003E+01

IMAGINARY PART

THE TERMES OF THE TRANSFER FUNCTION ARE

REAL PART

`11898556E+03	16589470E+03
1189 6556E+03	.16589430E+C3
.16616361E+03	0.
10000000E+C1	0.
19927576E+01	0.
61133543E-02	65198013E-01
611	.65198013E-C1

ORIGINAL PAGE IS OF POOR QUALITY

- -.09179647E+05 -.3F779641E+0F -.14083768E+08 -.7086513E+08 -.5418814E+07 -.3F41571C+04 -.74412502E+02 .10000009E+01

YAH RATE / DELTA AC FREQUENCY RESPONSE S-PLANE

FREQUENCY	AMPLITUCE RATIO	PHASE ANGLE
RADISEC	ŋe	CEFREES
• 1000	-,21300E+02	13061E+03
.1110	19472E+0?	12982E+03
.1232	17959E+02	12999E+03
. 1368	16E74E+02	13650E+03
.1618	+.15566E+02	13205E+03
.1685	145005+02	13364E+03
.1870	13754E+02	13548E+03
.2076	1 3010E+02	13749E+03
.2305	12357E+02	13963E+03
.2558	117835+02	14183E+03
2839	11281E+02	14405E+03
. 3152	10842E+02	-,14626E+03
. 3498	19458E+02	14841E+03
. 3 883	10121E+02	15050E+03
• →310	9 32 52 F + 01	15249E+03
785	35655E+01	154385+03
. 311	93335E+01	156165+03
. 895	912E0E+01	15785E+03
. 5544	89360 E+01	15944E+03
7253	87630E+01	1 6095E+03
.80F.2	86039E+01	16240E+03
9949	84573E+01	16380E+03
1934	832285+01	16516E+ 03
1.1026	82006E+01	16649E+03
1,2239	40913E+01	16780E+03
1. ₹585	79956E+01	16908 E+03
1 - 0 0 0	73139E+01	17034E+03
1.6739	78463E+01	17156E+03
1.8580	-,779235+01	17274E+03
2.1624	775105+01	17388E+03
2.2892	772095+01	17497E+03
2.5410	77004E+01	17601E+03
2.320f	768765+01	17700E+03
3.1778	76808E+C1	17795E+03
3.4752	76785E+01	17886E+03
3.8575	767955+01	17975E+03
3.5575 2818	76826£+01	+.18059E+03
₩.7528	76873E+01	18147E+03
	76929E+01	18236E+03
0.2756		18328E+03
9.8559	76991E+01	18425E+03
6.0001	-,7705AE+01	
7.2151	77129E+01	165305+03
8.1388	772025+01	18643E+03
8.8897	-,772785+01	18770E+03
9.4676	77355E+01	18912E+03
10.9530	77433E+01	19074E+03
12.1579	775095+01	+.19262E+03
13.4952	77580E+01	19484E+03
14.9797	77640E+01	19750E+03

16.6275	776895+01	20070E+03
1 * • • 565	77730F+01	20465E+D3
20.4867	77790E+01	20955E+03

THE BETA / BELTA AC NUMERATOR GAIN IS .6604E+C1

THE 7 ROES OF THE TRANSFER FUNCTION ARE

REAL PART	IMAGINARY PART
30601356E+03	0.
.31081002 E+03	0.
880702295+02 97-663355+00	0.
20056076F+01	0.
.84657968E-02	C •
* 5455 (400E = 0.0	U•

THE COFFFICIENTS OF THE NUMERATOR POLYNOMIAL ORDERED FROM THE LOWEST POWER OF S

- .13896621F+06 -.15160948E+08 -.25077612E+08 -.86662900F+07

- -.35285104E+05 .86245561E+02 .10000000E+01

BETA / DELTA AC FREQUENCY RESPONSE S-PLANE

FREQUENCY	AMPLITUDE FATIO	PHASE ANGLE
RAD/SEC	<u> </u>	DEFREES
. 1000	.32188E+01	23476E+02
.1110	.37589E+01	25631E+02
• 1232	.28696E+01	27927E+02
•13FB	.25474F+01	30356E+02
.1518	.238895+01	32901E+02
.1695	.20911£+01	35542E+02
1870	+1 7515E+01	38253E+02
•2076	.13684F+01	41006E+02
· 2305	.940985+00	43769E+02
.2538	.469645+00	46510E+02
.2839	442576-81	4 <198 E+02
.3152	5 98335+00	51805E+02
.3498	11894E+01	54308E+02
.3883	1 A1355+01	566485+02
.4310	246E6E+01	58936E+02
. 4785	31443E+01	61046E+02
.5311	38426E+01	63021E+02
.5895	455785+01	64869E+02
. 6544	52868E+01	66601E+02
. 7263	6 C275E+C1	68235E+02
.8052	577 855+81	69785E+02
.8949	75392E+C1	71269E+02
. 9934	83099E+01	72701E+02
1.1026	-,9J915E+01	74091E+02
1.2239	98851E+01	75443E+02
1.3585	10692F+02	76758E+02
1.5090	115135+02	78032E+02
1.6739	123485+02	79257E+02
1.8580	13197F+02	80425E+02

```
2.9624
2.2992
                   -.14059F+02
                                            -.815275+02
                   -.14933E+02
-.15816E+02
                                           -. 82555E+02
 2.5410
2.5216
                                            -.83515E+02
                   -.16703E+02
                                            -.84397E+02
 3.1306
                                            -.8F 208 E+02
                   -. 1850AC+02
 1.4732
                                            -.85954E+02
 3.-E75
4.0818
4.7528
4.2736
                  -.194147+02
-.203215+02
-.212305+02
                                            -.86643E+92
                                            -. 87286E+02
                                            -.87893E+02
                   -. 22139E+02
                                            -.88476E+02
 5.8559
5.8011
7.2151
                  -.230445+02
                  -.23957E+02
                                            -.89624E+02
                  -.24865E+02
                                            -.90221E+02
 8.0038
                   -.25772E+0?
                                            -.90857E+02
                  -.26678F+02
-.27532E+02
-.28484E+02
 8.8837
                                            -. 91558E+02
 9.8675
                                           -.92353E+02
10.9530
                                            -.93281E+02
12.1579
                   -,2938 3F+02
                                            -. 94392E+02
                   -. 30277E+02
13.4952
                                            -.957535+02
14.4797
                   -. 311 E7E+02
                                            -. 97454F+02
16.6275
                   -.320505+02
                                            -.99615E+02
18.4535
                   -.32925E+02
                                            -.10240F+03
                   -.33796E+02
20.4867
                                            -.10603E+03
```

THE PHI / DELTA AC NUMERATOR GAIN IS .3498E+03

THE TIRDES OF THE TRANSFER FUNCTION ARE

PEAL PART

```
-.40937930E+02 -.46392099E+02

-.40937930E+02 ..48392099E+02

-.12398563E+01 0.

-.17499393E+01 0.

-.17499393E+01 0.
```

THE COEFFICIENTS OF THE NUMERATOR POLYNOMIAL ORCERED FROM THE LOWEST POWER OF S

IMAGINARY PART

- .157451976+05 -.304102105+06 -.439631665+06 -.147225655+06 .10*776235+04 .471779385+02
- / DELTA AC FREQUENCY RESPONSE S-PLANE PHI FREQUENCY AMPLITUCE RATIO PHASE ANGLE RAD/SEC DEFREES .1000 .45403E+01 -.34575E+01 .42252E+01 -.74998E+01 .1110 .39043F+01 •1232 •1368 -.11586E+02 -. 1570 3E+02 .35707E+01 -.19833E+02 .1585 .28393F+01 -.23960E+02 .1870 .24304E+01 -.28 061F+02 .2076 .19868E+01 -. 3211 3E+02 . 2395 .15057E+01 -.36091E+02

```
. 255h
                   . 99576F+01
                                         -.39968E+02
  .2839
                  .42551E+00
-.173093+00
                                         -.43721F+02
  .3152
  . 3459
                  -. 80864E+93
                                         -.507625+02
  3883
                  -.14785E+01
                                         -.54018F+02
  . 4310
                  -.21797E+01
                                         -.57082F+02
  .4785
.3311
                  -.29087E+01
                                         -.50950F+0?
                  +. 36620F+01
                                         -.62622E+02
                  -.44362E+01
                                         - . 65104E+02
  .5544
.7263
                  -.52282E+01
                                         -. 67404E+02
                  +.603526+01
                                         -.69532E+02
  .3062
                  -.53545E+C1
                                         -.71502E+02
-.73328F+02
  . - 949
                  -.758458+01
                  -.85232E+01
-.93595E+01
                                         -.75024E+02
  . 3934
 1.1026
                                         -.76606E+02
 1.2239
                  -.10223E+02
                                         -. 780855+02
 1.3585
                  -.11082E+02
                                         -.79475 E+02
 1.5880
                  -.11947E+02
                                         -.80787E+02
                  -.12817F+02
                                         - . 82030F+02
 1.8580
                  -.136915+02
                                         -.83214E+02
 2.1624
                  -,145705+02
                                         -.84345E+02
                  -. 154535+12
                                         -.85433F+02
 2.5410
                  -.153395+02
                                         -. 8F486E+02
 2.820€3
                  -.17227E+02
                                         -.87510E+02
 3.1308
                  -.18117E+02
-.19009E+02
                                         -.88517E+02
 3.4752
                                         -.89514E+02
 3.4575
                  -.19902E+02
                                         -.90512E+02
 4.7528
                  -.20794E+02
-.21697E+02
                                         -.91522E+02
                                         -.92555E+02
 5.27=6
                  -.22578E+C2
                                         -. 93625E+02
 5.8559
                  -. 234675+02
                                         -.94745E+02
 6.5001
                  -.24354E+02
-.25237E+02
                                         -. 95 932 E+02
                                         -.97204E+02
 8.0088
                  -.26116E+02
                                         -.98580E+C2
 8.8897
                  -.25988E+8?
                                         -.10009E+03
 9. 8576
                  -.278535+02
                                         -.10176E+03
-.10362E+03
10.9530
                  -. 2 47 D9E+ 02
12.1579
                  -.295536+02
                                         -. 1057 3E+ 03
13.4952
                  -.30382E+02
                                         -.10815F+03
14.9797
                  -.311935+02
                                         -. 11094F+03
16.527F
                  -.31983E+02
                                         -.11421E+03
14 ++ 555
                  -.327495+02
                                         -.11811E+03
25.4857
                  +. 37487F+02
                                         -.12280E+03
```

THE AY / DELTA AC NUMERATOR GAIN IS .2962F+04

THE ZERCES OF THE TRANSFER FUNCTION ARE

REAL PART

120232716+02	15019465E+C2
12023271E+02	.15019465E+02
10952181E+02	0.
70471725E+00	97429378E+00
70+71725F+01	.97429378E+(0
.798546925-02	0.
10000000 F +02	0.

THE COFFFICIENTS OF THE NUMERATOR POLYNOMIAL ORCERED FROM THE LCHEST POWER OF S

IMAGINARY PART

-.46 8546235+03

ORIGINAL PAGE IS OF POOR QUALITY

```
.71766408F+05
.667547986+05
.11838388+05
.104834525+04
.46410172F+02
.10300000F+01
```

1 V	/ DELTA	AC EDECITE NOY	PESPENSE	S-PLANE

a v	A HETTA AC ENEMBENCA	REPACASE 2-ACAM
E0 =0.1171 0V	* "C T TURE CATTO	PHASE ANGLE
FREQUENCY	AMPLITUDE GATIC	DEFREES
RADITEC	114	DEFREES
	2064.05.04	205155.07
.1000	.72610E+01	20545E+03
.1110	.7G846E+01	20775E+03
.1232	.68748E+01	-,21022E+03
•1358	.65273E+01	21283E+03
.1518	.53376E+01	21558E+03
•16H5	.600135+61	21844E+03
.1870	.551455+01	22138 E+03
.2075	.51737E+01	22437F+03
.2305	.46758E+01	22738E+03
. 2558	.41187E+01	-,23036E+03
. 2839	.3 3098E+01	23327E+03
. 3152	.28210E+01	23606E+03
. 3498	.20790E+01	23868E+03
.3983	.12745E+01	24108E+03
• ÷310	.46787E+00	2431.9E+03
• + 785	51997E+0N	24496E+03
.7311	15070E+01	24629E+03
•5 R J 5	25488E+01	24708E+03
. E 544	36373E+01	24722E+03
.7263	47574 E+01	24658E+03
• ዶባ፥?	5 8846E+01	24502E+03
. 4949	69 81 65+01	24244E+03
. 3934	8 3000 5+91	23886E+03
1.1026	9 E874E+01	23442E+03
1.2239	96040E+C1	22947E+03
1.3545	10140E+02	22444E+03
1.70 30	1 05 20 E + 02	21976E+03
1 739	10792E+02	215665+03
1.9540	11012E+02	21222E+03
2.0624	11222E+02	20934E+03
2.2842	11454E+P2	20687E+03
2.5410	11723E+02	20461E+03
2.4206	12035E+02	20238E+03
3.1308	123875+02	20002E+03
3. 4752	12772E+02	19740E+03
3.9575	1 318 2E+ G2	19442E+03
4.2818	13603E+02	19098E+03
4.7528	140236+02	18703E+03
5.2756	14430E+02	18251E+03
5.8559	14810E+02	17742E+03
6.5001	151505+02	17168E+03
7.2151	15436E+02	16529E+03
8.0088	15656E+02	158275+03
8. 4897	15795E+92	15059E+03
9.2676	15838E+02	14227E+03
10.3530	15765E+02	13331E+03
12.1579	155525+02	12375 E+03
13.4952	1 5169 E+02	11365E+93
14.9797	14577E+02	103175+03
16.5275	13734E+02	92 59 8E+02
18.4565	1?605E+02	82409E+02
20.4867	11175E+C2	7324DE+02

THE ROLL SATE/DELTA RC NUMERATOR GAIN IS .1801E+04

THE 7_POES OF THE TRANSFER FUNCTION ARE

PFAL PART	IMAGINARY PART
1000000E+C1	0.
25001000F+C2	0.
•61123953E+01	0.
1000000E+02	0.
3502 6731E+01	0.
14030275E-13	0.

THE COSEFFICIENTS OF THE NUMERATOR POLYNOMIAL OPERFOR FROM THE LOWEST POWER OF 3

- -.75096080E-09 -.535243C6E+04 -.57542014E+04 -.125452C95+94 .16964328F+03 .33390278F+02
- .10000000E+01
- POLL RATE/DELTA RC FREQUENCY RESPONSE SHPLANE

EREQUENCY	AMPLITUDE RATIO	PHASE ANGLE
RADIZSEC	n q	DEFREES
• 1 73 G	17819E+02	29895E+02
.1110	1 7975E+D2	31742E+02
•1232	131625+02	33797E+02
.1368	19383F+02	36047E+02
1518	186425+02	38473F+02
.1685	1 8941£+02	41056E+02
1870	19284F+02	43767E+02
.2076	1 9672 E +02	46577E+02
2305	201055+02	49456E+02
• 6 1 JU • 2 5 5 8		
	20585E+02	52371E+02
• 2 A 3 9	21109E+02	55293F+02
.3152	21676E+C2	58193E+02
. 3498	2?283E+02	61051E+02
•38A3	2 2927E+02	63849E+02
• → 31 ਜ	23603F+02	66577E+02
.4785	24310E+02	69232E+02
.5311	25042F+C2	71816E+02
.5895	257985+82	74337E+82
• 5544	26574E+02	76B05E+02
.7263	27371E+02	79232E+02
.4 062	23187E+C2	81631E+02
. 8 94 q	29022E+02	84010E+92
. 9934	-,29 876 E+02	-,86374E+02
1.102€	-,30752E+02	88719E+02
1. 2239	316495+02	91035E+02
1.3585	325E8F+C2	93302E+02
1.5080	-,33507E+D2	95432E+02
1.6739	344635+02	97574E+02
1.4580	35431E+02	99511E+02
2.1624	364045+02	10127E+03
2.2892	373735+02	10282E+03
2.5410	38327E+0?	1041 3E+03
2.3206	39253E+02	10520E+03
	- · · · · · -	

ORIGINAL' PAGE IS OF POOR QUALITY

```
-.10609E+03
-.10653E+03
-.10680E+03
  3.1368
                              -. + 11 40 F+C?
 3.4752
3.8575
                             -.+09745+02
-.417425+02
-.424335+02
  4.2818
                                                                    -.10682E+83
 4.752A
5.2766
5.3509
6.3001
7.2151
8.1088
                                                                    -.10658F+03
                              -.430365402
                             -.+354?5+0?
-.+394?E+02
                                                                    -.10611E+03
                                                                   -.10541E+03
                           -, 43942E+02
-, 44232E+02
-, 44407E+02
-, 44407E+02
-, 44407E+02
-, 4217F+02
-, 4315F+02
-, 43498E+02
                                                                    -.10337E+03
                                                                    -.10208E+03
  8.8897
9.8676
10.4530
12.1579
                                                                   -.99091E+02
-.97508E+02
                                                                    -.95952E+02
                           -- 43498E+02
-- +2966F+02
-- 42324F+02
-- 41575F+02
-- 40725F+02
13.4902
                                                                    -.94555E+02
                                                                   -.93413E+02
-.92700E+02
14.9797
16.6275
18.4565
                                                                     -.926245+02
                               -.397805+02
                                                                    -.93459F+02
```

THE YAM RATE JOELTA RC NUMERATOR GAIN IS -. 3714E+04

THE ZEROET OF THE TRANSFER FUNCTION ARE

SEAL PART	IMAGINARY PART
10000000E+01	0.
15581129E+02	24557545E+02
15581129E+02	.2455754FF+02
155000005+02	0.
57523717E-01	16816906E+00
57523717E-01	.16816906F+00

THE COEFFICIENTS OF THE NUMERATOR POLYNOMIAL ORDERED FROM THE LOWEST POWER OF S

- .277777785+03
 .145868085+04
 .379641415+04
 .077917005+04
 .120435625+04
 .120435625+04
- YAW RATE ADELTA PC FREQUENCY RESPONSE S-PLANF

FPEOU! NOY	AMPLITUCE RATIC	PHASE ANGLE
RADINEC) 9	DEFREES
.1000	190855+02	90021E+02
.1110	205245+02	86391E+02
.1272	22021E+02	81386E+02
•13FA	23517E+02	74458E+02
.1518	248885+02	65099E+02
.16.05	259205+02	53317E+02
• 1 a7 C	25397E+C2	40252E+02
2 3 7 F	26274E+02	27954E+02
2 305	25723E+02	18026E+02
.23FA	24978E+02	10859E+02
2839	242057+02	60623E+01
3152	?3485E+0?	30594E+01
3498	228485+02	13528E+01

```
. 7 887
                  -,223025+02
                                           -.574445+00
  +431°
                  -.21457#+02
                                           -.46687E+91
                                          -.85425E+00
  . 311
                   -.211406+02
                                          -.16181E+01
                 -.21140F482
-.21883F402
-.21840E402
-.21826E402
-.20418E402
-.20356E402
-.20341E402
  995
                                           -.39895 -+01
  .7263
                                          -.55104E+01
  .8052
                                           -.72233E+01
  . 8949
                                           -.91100E+01
  4.13
                                           -.11153E+02
 1.1026
                  -. 28374E+32
                                           -. 13372E+02
 1.2239
                  -.204575+02
                                           -.15620E+02
                  -,2059FF+02
                                           -.179925+02
                 -.20788E+02
 1.5040
                                           -. 203775+02
 1.6739
                  -.213395+62
                                           -.22753E+02
                 -.21347E+n2
                                           -.25057E+02
 1.8580
 2.0524
                  -.21717E+C2
                                           -.27234E+02
                  -.22170E+02
-.22597E+02
 2.2892
                                           -.292285+02
 2.5410
                                           -.30986E+02
                 -.23108E+62
-.23657F+02
 2.8216
3.1308
                                           -.32463E+02
                                           -.33620E+02
 3.4752
                  -. 242375+C2
                                           -.34423E+02
                 -.248395+02
-.2548395+02
-.254835+02
-.260835+02
 3.3575
                                           -.34851E+02
 4.2818
4.7528
                                           -.34885E+02
                                           -. 3451 8E+02
 5.7756
5.4559
                 -.27331E+02
-.279415+02
-.285335+02
                                           -.32580E+02
 €.50?1
                                           -.31025E+02
 7.2151
                                           -.29099E+02
 8.9088
                   -.29104E+02
                 -. 29649#+02
 8. 9947
                                           -.24217E+02
                 -. 301 EBE+02
 9.2676
                                          -.21307E+02
-.18114E+02
10.9530
                   -.306575+02
12.1579
                  -.31115F+02
                                           -.14655E+02
13.49=2
                  -.31540E+02
                                           -.10941F+02
14.9797
                  -. 31927F+02
                                           -.69774E+01
16.6275
18.4565
                  -.322 E5E+02
                                           -.27709E+01
                  -.32535F+02
                                            .16525E+01
20 . 4847
                  -. 32705E+02
                                            . 62035E+01
```

THE DETA MELTA PO NUMERATOR GAIN IS .4375E+02

THE ZEROES OF THE TRANSFER FUNCTION ARE

REAL PART

1C000000E+01	0.
8527 F345 E+0?	0.
15664379E+02	24652880E+02
15664379E+02	.24652880E+02
10000000E+C2	0.
.388940555-02	0.

THE COEFFICIENTS OF THE NUMERATOR POLYNOMIAL ORCERED FROM THE LOWEST POMER OF S

IMAGINARY PART

-.282970335+04 .724291575+96 .835105185+06 .112674296+06 .481698775+04 .127603216+03

₽₽ T Δ	ZOFLIA RO FREQUENCY	BESBONSE S+DF WE
ESEQUENCY	AMPLITUDE PATIO	PHASE ANGLE
RADIZSEC	na .	DEFRESS
.1001	744185+01	20833E+03
.111C .1232	75992F+01 77884F+01	21044E+03 21278E+03
•1358	90119E+01	21529E+03
.1518	327345+01	21798E+03
1645	857585+01	220 81 E+0 3
.1870	8 92 20 5+01	223786+03
.2076	93139F+01	22684E+03
. 2305	375265+01	-,22997E+03
• 2558	10238E+92	23314E+03
.2833	107785+02	236335+03
•3152 •3498	11346 5+02	-,23951E+03
.3490	11964E+02 12622E+02	24265E+03 24576E+03
-310	133155+02	24882E+03
4755	14042E+02	25182E+03
5311	147995+02	254785+03
.5895	15586E+C2	-,25770E+03
· c 5 +4	164C1E+02	26061E+03
.7263	17243E+02	26350E+03
• #0F2	181165+02	26640E+03
• R 9 + 9	19920E+92	26932E+03
.9934	199595+32	.87744E+ 82
1.1076 1.2239	20938E+02 219605+02	.84785E+02 .81819E+02
1.3545	230296+02	.788715+02
1 - 3 - 0	241505+02	.75973E+02
1.6779	-,25323E+02	.73167E+02
1.4540	265525+02	.70502E+02
2.9624	-,278345+02	.64025E+02
2.2392	291E7F+N2	.657965+02
2.5410	30547E+02	.63855E+02
2.8204	31979E+02	.62250E+02
3.1308	334295+02	.610175+02
3.4 7 52 3.8575	34917E+02 36428E+r2	.60183E+02 .59786E+02
4.2818	-, 17952F+02	.59827E+02
4.7529	394847+82	.60 321 E+02
5.2756	+1016E+02	.612705+02
5.8559	425415+02	.62671E+02
6.5001	+4053F+0?	. £451 6E+02
7.2151	45545E+02	.66791E+02
8.0038	470175+02	. 69479E+02
8.8837	43460E+92	.72562E+C2
9.4676	-,43874E+02	.76020E+02
19.9530	51256E+02 52604E+02	.79836E+B2 .83999E+B2
12.1579 13.4352	539155+B2	.88504E+02
19797	551835+02	26665E+03
16.6275	563988+02	26146E+03
18.4565	-,575385+02	25595E+03
20867	585735+02	25020F+03

THE PHI /MELTA RC NUMERATOR GAIN IS .1801E+04

THE ZEROES OF THE TRANSFER FUNCTION ARE

TEAL PAPT	IMAGINARY PART
100000000-+01	c.
•611239535+01	0.
250000005+12	0.
35026731E+01	0.
100000007+32	0.

THE COEFFICIENTS OF THE NUMERATOR POLYNOMIAL ORDERED FROM THE LOWEST POWER OF S

- -.575247060+04 -.67542014F+04 -.126452086+04 .16964028E+03 .33390278F+02
- .10000000E+01

энI	ZOFLTA R	C FREQUEN	CY RESPONSE	S-PLANF
FREQUENCY	ANDITT	UDE RATIO	PAUG	E ANGLE
RADISEC	n3	000 14110	CEFRE	-
•				
.1000	.71	805E+01	1199	3E+03
.1119	.11	181E+01	1217	5E+03
•1232		909E-01	1236	
1368		026E+01	1260	
•1518 46:5		677E+01	-,1284	
•1655 •1870		7365+01 2265+01	1310 1337	
• 1070 • 2075		167F+01	1365	
2305		568E+01	1394	
2554		4275+01	1423	
2830		1735+02	1453	0E+03
. 1152	11	647E+02	1482	06+03
. 3498	13	160E+03	1510	6E+03
. 3883	14	711E+02	1535	6E+03
.4310		294E+0?	1569	
• 4785		905E+02	1592	
.5311		545E+02	1618	
.599F		2076+02	1643	
•(544 •7253		8912+02 5942+02	1668 1692	
• 5 062		316F+02	1716	
. 8949		057E+02	1740	
1934		8196+32	1763	
1.1025		601E+92	1787	
1.2239	33	484E+82	1810	12E+03
1.3585	35	230E+02	1838	SE+03
1.5080		0755+02	1854	-
1.6779		9386+02	1 879	
1.4590		812E+02	1894	
2,7624		692E+0?	1917	
2.2892 2.5410		567E+02 427E+02	1926 1941	
2.6706		2606+02	- 1951	
3.1338		053E+02	1959	
3.4752		7935+02	1969	-
3.4575		4685+32	1967	8E+03
4.2318		065E+02	196	
4.7528		575E+02	196	
F.2756		9.75 + 0.2	1960	
ୟ • ଅନୁକୃତ୍ୟ		2945+02	195	
6.7001	67	4915+02	1944	rE+03


```
7.2151
                 -.615715+02
                                        -.19335E+83
                                        -.19205E+03
-.19061E+03
8.6038
8.8897
                 -.52534E+02
-.633775+02
 9.8576
                 -.541015+02
                                        -.1 907E+03
19.9530
                 -.647065+02
                                        -.18749E+03
12.1379
                 -.6-1955+02
                                        -.18594E+03
13.49-2
                 -.655705+02
                                        -.19453E+03
16.3797
                 -.65834F+02
                                        -.1 F339E+83
                                        -.18268E+03
                 -. 6 E048E+02
18.4565
                                        -.18260E+03
                  -.550095+02
                                        -.18344E+83
```

THE AY INTELTA RC NUMERATOR GAIN IS -. 1671E+05

THE ZEROES OF THE TRANSFER FUNCTION ARE

A SAL PART	IMAGINARY PART
1029090E+01 19:53147E+02 19:53147E+02 42251286E+00 -54473431E-02	0. 36396151E+02 .36396151E+02 0.
100338305+02	0.

THE COEFFICIENTS OF THE NUMERATOR POLYNOMIAL OPDERED FROM THE LOWEST POWER OF S

-.39 E67357F+02 .70 90 4524E+04 .25 11 E682E+05 .20 111111E+05 .71 742719E+04 .50 7233 20 E+02 .10 00 00 00 5+01

. 6544

.7263

. 4 36 2

- /DELTA FO FREQUENCY RESPONSE S-PLANE FREQUENCY AFFLITUCE RATIO PHASE ANGLE RADISTO CEFREES 3.3 .1000 .438555+01 -.14732E+02 .42731E+01 -.15074E+02 -.15968E+02 .1110 .+1576F+01 . 1232 .1368 .40075E+01 -.16899E+02 . 38400 E+01 • 1518 • 1685 -.17846E+02 -.18785E+02
 - 35508F+01 .1878 .34403E+01 -.19692E+02 . 207€ .32102E+31 -.20542E+02 .2305 .2508 .29630E+01 -. 21310E+ 02 -.21978E+02 .2839 .24328E+01 -.22533E+02 . 3152 .21593E+01 -.22969E+02 -. 23293E+82 . 343A . 3483 .19873E+01 .152155+01 -.23520E+02 . -310 .136675+01 -.23674E+02 4785 .11258E+01 -.23787E+02 · F 311 . 30055E+00 -.23899E+32 . 5895 .59117E+09 -. 24049E+02

. + 9611E+00

.312115+00

.13440E+00

-.24280E+02

-. 246295+02

-. 25128E+02

```
-. - 3125E-01
   . 8949
                                          -.25802F+02
                   -.22755E+0D
                                          -.26665F+02
                   -. 42652E+00
                                          -.27717E+02
  1.1026
                   -.647735+80
  1.2230
                                          -.299475+02
  1.3585
                   -. 3 3843E+30
                                          -.30331F+02
  1.3380
                   -.11848E+01
                                          -. 31 830F+02
  1.5739
                   -.151185+01
                                          -.33400E+02
  1.8580
                   -. 14422F+01
                                          -. 34 986F+02
  2.0624
                   -.229725 +01
  2.2892
                                          -. 379AZE+02
                   -.27561E+01
  2.5410
                   -.325F1 F+01
                                          -. 39281F+02
  2.+215
                   -.37332E+f1
                                          -. 40383E+02
  3.1398
                   -. - 3521E+01
                                          -. 41246F+02
  3.4752
                   -.49566E+01
-.5E699E+01
                                          -. 41838 E+02
  3.4375
                                          -. 42134F+02
                   -.519515+n1
  4.2418
                                          -.421195+02
  4.7528
                   -.68750F+01
                                          -.41787E+02
  5.2756
                                          -- 41140F+02
  5.4559
                                          -. 40187E+02
  6.5001
                   -.36761E+01
                                          -. 3 4947E+02
  7.2151
                   -. 32694F+01
                                          -. 37447E+02
                   -.982055+01
                                          -.35721F+02
  H . 0 0 H H
  8.8897
                   -. 173535+02
  9.8676
                   -.108575+02
                                          -.31762E+02
                   -.113325+02
 19,9530
                                          -. 29631F+B2
                   -.1177A5+02
 12.1579
                                          -.27475E+02
 13.4953
                                          -.25362E+02
                   -.12194F+0?
 14.9797
                   -.125965+02
                                          -.23361F+92
                   -.129755+.2
 16.6275
                                          -.21552F+02
                   -- 1 33407+02
 18.4545
                                          -.20031E+02
 20.4857
                   -.136973+02
                                          -.189145+02
  THE TEANSITION MATRIX 11 TERMS
        a
                   С
                                                                                    .1036E+01 -.2057E-01
                                         .9217E-01
                                                                                                               .7287E+00
-.35858+00 -.2306F+00 -.4430E+00
                                                        .3458E+01
                                                                      .6557E+02
                                                                                                .5190E-01
-.1306E-02
             .7963:+"1
-.1990"-01
                                                                                                               -.1947E+01
                                                       .6289E+C1
-.1452F+00
                                                                    -.2055E+03
.7171E+01
                                                                                   -.2887E+01
.1734"+31
                           .37375+80
                                         -.2360E+00
                                                                                   .8679E-01
                                                                                                               .4717E-01
                            -5730E+00
-.45165-01
                                         .1148E-01
                                                                                    .20 86E-01
                                                                                                -.2898E-03
                                                                                                                .1055E-01
 -24287-01
             -.3584 - 02
                                          .1001E+01
                                                        .20466+[[
                           -.1-12E-01
                                                                                                               -.1638E-01
              1528 - 01
                           .1868F-01
                                         -.2052E-02
                                                        .364 3E-01
                                                                     -.2376E+C1
                                                                                   -.3029E-01
                                                                                                 .4516E-03
-.19421-01
                                          . 1461E - 02
                                                                                    .2902E-01
                            -1553F+02
                                                       -.11725+00
-.4957E+01
                                                                     .1706F+01
-.2322r-01
             --23601-31
                                                                                    .6899E+00
                                                                                                              .8943E+00
-.2501E-01
-.6350F+00 -.1014F+61
.2423E-01 .7467F-01
                           .5518F-01 .1186E+00
.1069F-01 -.3172E-02
-.2312F-01 -.5424F-01
                                                                                                -.2824F-01
                                                                      .5005E+02
                                                                                                 .9519E+00
                                                        .5630E-01
                                                                     -.4648E+01
                                                                                  -.5180E-01
                                                                    -. 2226E+02
                                                                                   -.2441E+00
                                                                                                 .3191E-02
 .33+ 9F+00
               .4729F+80
                                                        .1974E+01
                                                                                    DEL TA AC
                                                                                                DELTA RE
                            YAW RATE
                                           RETA
                                                        PHI
                                                                      AY
  TIME
               ROLL PATE
                                                                                                  .100E+01
                                                                      0.
                            0.
-.525E-01
                                          0.
.132E-02
                                                        0.
.293E-03
                                                                                   -0.
               0.
.2095-01
                                                                      -.276E+00
                                                                                                   .100E+01
  .5006-01
                                                         .3465-02
.1916-01
  .130F+90
.130F+00
                .129:+ 17
                             -.415E+00
                                            .150E-C1
                                                                      -.250E+01
-.137E+02
                                                                                  -0.
                                                                                                   .100E+01
                                                                                   -0.
                                                                                                   .100E+01
                .6195+00
                             -.?19E+01
                                            .901E-01
                                                                                                   .100E+01
  .250:+00
.250:+00
                .3035+01
                                                                      -.692 E+02
                                                                                   -0.
                                                         .950F-01
                             -. 1105+02
                                            .458F+00
                140-+02
                            -.5425+02
                                            .234E+71
                                                         .466E+08
                                                                      -.343E+83
                                                                                   -0.
                                                                                                   .100E+01
                .733F+ 12
                                            ·115E+02
                                                                                                   .100F+01
                             -. 267F+ L3
                                                         .230E+01
                                                                      -.169E+04
                                                                                   -0.
                                                                      -.830E+04
-.408E+05
                                                                                   -0.
  .3:0=+0C
                .3615+83
.177=+0+
                            -.1 315+04
-.545E+04
                                            .568E+02
                                                          .113E+02
                                                          .557E+02
                                                                                   -0.
                                                                                                   . 100F+01
  . 40 05 + 00
                                            .280E+03
                                            .137E+04
                                                                                                   .100E+01
  .4595+00
                .8735+04
                             -. 3175+05
                                                          .2748+03
                                                                      -.201E+06
                                                                                   -0.
                                                                                                   .100F+01
                .429=+05
                                                          .135E+04
                                                                                   -0.
                                                                      -.988E+06
  .500F+00
                             -.1568+06
                                            .676E+04
                                                                      -.486E+07
                                                                                                   . 10 0F+ 01
                .2115+06
                             -. 7F8F+06
                                            .333E+95
                                                          . 653E +0 4
  .5505+00
                                                                                                   . 100E+01
                .1045+07
                             -.378E+07
                                            .164F+06
                                                          .326E+05
                                                                      -.239E+0A
                                                                                   -0.
  . 60 DE + DO
                . : 11 - + 07
                             -. 1 45E+08
                                                          .160E+06
                                                                                  -0.
                                                                                                   .100E+01
  .6505+00
                                            .835E+06
                                                                      -.118E+09
                                                                      -.578E+09
                                                                                   -0.
                                                                                                   .100E+01
  .730r+19
.7505+20
                .251E+98
                                                          .789E+06
                             -.314F+38
                                            .396E+87
                                                                                                   .100E+01
                             -.450F+39
                                            .195E+08
                                                          .388E+07
                                                                      -.284E+10 -0.
                                                          .191E+08
                                                                      -.140E+11
                                                                                                   .100F+01
  .800f +00
                .F085+09
                             -. 2815+10
                                            .958E+08
                                                                                  -0.
                                                                                                   .100E+01
                                                                      -.688E+11 -0.
  .8501+98
                .2095+10
                             -.1095+11
                                            .471E+09
                                                          .939F+08
```

.900F+60	+147E+11	5755+11	.2325+10	.452F+09	339E+12	-0.	.180E+81
• 9F 35 + 6 C	. 7245+11	2635+12	.1145+11	.227E+10	167E+13	-0.	.100E+01
.130F+01	• 3 F 6 F + 12	1295+13	.561E+11	.112E+11	819E+13	-0.	•100E+01
.105F+01	• 1 755 + 13	5375+13	.276E+12	.550F+11	403E+14	-0.	.190E+01
• 1105+01	.9617+13	313E+14	.136E+13	.270E+12	198E+15	-0.	.100E+01
• 11 5F+ C1	. 4245+14	154E+15	.667E+13	.133E+13	975E+15	-0.	.100E+01
.120E+C1	.208E+15	758E+15	.328E+14	.654E+13	480E+16	-0.	.100E+01
.1255+91	.1025+16	373E+16	.1615+15	. 322E+14	236E+17	-0.	.100E+01
.1305+81	• 50 45 +15	1835+17	.794E+15	.158E+15	116E+18	-0.	.1005+01
•135F+01	.2485+17	9C2F+17	.391E+16	.778E+15	571E+18	-0.	.100E+01
.140F+C1	•122c+18	4445+18	.1925+17	.383E+16	281E+19	-0.	.100E+01
.1→5E+01	• F 005 • 18	218E+19	.945E+17	.188E+17	138E+20	-0.	.100E+01
.150E+31	.2955+19	107E+20	.4655+18	.926E+17	679E+20	-0.	.100E+01
.155E+61	•145°+20	5286+20	.229E+19	.456E+18	334E+21	-0.	.100E+31
.140E+01	.714F+20	260E+21	.112E+20	.224E+19	164E+22	-0.	.100E+01
.1 oFE+01	.3512+21	128E+22	.5 53E+20	.110E+20	808E+22	-0.	.100E+01
.17 OF + 01	• 173-+ 22	6285+22	. 27 2E + 21	.542E+20	398E+23	-0.	.100E+01
.175F+01	.85J-+2 2	3096+23	.134F+22	.257E+21	196E+24	-e.	.10CF+01
• 18 CE + C 1	418-+23	1525+24	.559E+22	.131E+22	962E+24	-0.	.100E+01
•195F+01	.20EF+24	748E+24	.374F+23	.645E+22	473E+25	-0.	.100E+01
.190E+01	•101E+25	TABE+75	.159E+24	.317E+23	233E+26	-0.	.100E+01
·1955+01	.497:+25	191E+76	.784F+24	. 15EE+24	114E+27	-0.	.100E+01
.200E+11	.2455+26	830F+26	. 38 5E+25	.768E+24	563E+27	-0.	.100E+01
.205E+01	•12N-+27	438F+27	.190E+26	. <78E+25	277 E+28	-0.	.100E+01
.210F+01	•592°+2 7	2155+28	.913E+26	.18EE+26	136E+29	-0.	.100E+01
.215E+01	.291 29	115:+29	.4595+27	.914E+26	670E+29	-0.	.100E+01
.2?0F+31	*147r+79	521E+29	.236E+28	.450E+27	330E+30	-0.	.100E+01
• 225E+31	.7057+29	+.256F+30	•111E+29	.221E+26	162E+31	-0.	.100E+ 0 1
.230E+01	. 347-+30	126E+31	.546E+29	.109E+29	798E+31	-0.	.100E+01
.2355+01	• 1 79° + 31	+.620E+31	.269E+30	.535E+29	392E+32	-0.	.1005+01
.24C5+01	• # 39r + 31	-, 3055+ 32	+1 72E+31	.263E+30	193E+33	-0.	.100E+01
.2455+61	.4125+32	1505+33	•65 0E+31	.129E+31	949E+33	-0.	.100E+01
. 2505+01	• 20 35 + 33	738E+33	.320E+32	.637E+31	467E+34	-0.	.100E+01
.255F+01	.9986+33	3635+34	• 157E+ 33	.313E+32	230E+35	-0.	.100E+01
• 26 mE + 31	.4C1E+34	179E+35	•773E+33	.154E+33	113E+36	-0.	.100E+01
.2655+31	.2416+35	878F+35	.380E+34	.758E+33	556E+36	-0.	.10GE+01
.2707+01	1195+36	4 32E+36	• 18 7E + 35	.373E+34	273E+37	-0.	.100E+01
.2755+01	. E 84€+ 36	213F+ 37	. 9 20E + 35	.183E+35	134E+38	-0.	+100E+01
.200E+51	.287°+37	105E+38	•45 3 E+36	.902E+35	661E+38	-0.	.100E+01
.285E+01	• 1 41F + 38	14 - 38	.223E+37	.444E+3E	325E+39	-0.	.100E+01
.290E+01	695+38	253E+39	·110E+38	.218E+37	160E+40	-0.	.100E+01
.2955+01	.342E+39	124E+40	.5395+38	.107E+38	787E+40	-0.	.130E+01
.3005+01	 1687+40 	6125+40	.265E+39	.528E+38	387E+41	-0.	.100E+01

TABLE I. CONTROL PROGRAM ANALYSIS CPTIONS

CONTINUOUS SYSTEMS OPEN AND CLOSED LOOP SYSTEMS TRANSFER FUNCTIONS (S-PLANE) FREQUENCY RESPONSES (S-PLANE) (S-PLANE) POWER SPECTRA TRANSIENT RESPONSES (S-PLANE) ROOT LOCUS DISCRETE SYSTEMS OPEN AND CLOSED LOOP SYSTEMS . (Z- OR W-PLANE) TRANSFER FUNCTIONS FREQUENCY RESPONSES (W- CR S-PLANE) TRANSIENT RESPONSES (Z-PLANE) RUOT LOCUS SAMPLED-DATA SYSTEMS OPEN LOOP SYSTEMS STANDARD OR MODIFIED Z-TRANSFER FUNCTIONS (Z- CR W-PLANE) FREQUENCY RESPONSES (W- OR S-PLANE) TRANSIENT RESPONSES OPEN AND CLOSED-LOOP SYSTEMS STANDARD Z-TRANSFER FUNCTIONS (Z- OR W-PLANE) FREQUENCY RESPONSES (W- OR S-PLANE) TRANSIENT RESPONSES

(Z-PLANE)

SYSTEMS MAY BE DEFINED BY.

ROOT LOCUS

1. MATRICES
2. PARAMETERS
3. BLOCK DIAGRAM
4. COMBINATION OF (1.,2.) AND (3.) (MIXED)

ORIGINAL PAGE IS OF POOR QUALITY

```
JOB CONTROL CARDS FOR
  STANDARD CONTROL RUN
  WITHOUT SOURCE DECK
  WITHOUT PLOT TAPE
JOBN, CM72000, T4777.
ATTACH (JWELIS, ID= JWE, PW = ADDY, MR= 1)
ATTACH(OVRLY, ID=JWE)
SEGLOAD (I=OVRLY)
LOAD(JWELIB)
EXECUTE.
789 PUNCH
   DATA
6789 PUNCH
             (YELLOW CARD)
JOB CONTROL CARDS FOR
  STANDARD CONTROL RUN
  WITH SOURCE DECK
  WITHOUT PLOT TAPE
JOBN, CM722GC, T4777.
ATTACH (JWELIB, ID=JWE, PW=ADDY, MR=1)
FIN(LR=OUTPUT)
REWIND (LGO)
COPYL (JWELIB, LGO, JWE)
ATTACH(OVRLY, ID=JWE)
SEGLOAD (I=OVRLY)
LOAD (JWE)
EXECUTE.
789 PUNCH
   SOURCE DECKS
789 PUNCH
   DATA
6789 PUNCH
              (YELLOW CARD)
```

```
JOB CONTROL CARDS FOR
  STANDARD CONTROL RUN
  WITHOUT SOURCE DECK
  WITH PLOT TAPE
JOBN, CM72000, T4777, NT1.
ATTACH(JWELIB, ID=JWE, PW=ADDY, MR=1)
LABEL (CARD) SEE DESCRIPTION
ATTACH(OVRLY.ID=JWE)
SEGLOAD (I=OVPLY)
LOAD (JWELIB)
EXECUTE.
EXIT.
BKSP(INPUT)
ATTACH(PLOTEC, ID=JWE, PW=ADDY, MR=1)
LOAD (PLOTRC)
REDUCE.
EXECUTE.
789 PUNCH
   DATA
PLOT CARDS
               (SEE DESCRIPTION )
6789 PUNCH
               (YELLOW CARD)
JOB CONTROL CARDS FOR
  STANDARD CONTROL RUN
  WITH SOURCE DECK
  WITH PLOT TAPE
JOBN, CM72000, T4777, NT1.
ATT ACH (JWELIB, ID= JWE, PW= ADDY, MR=1)
LABEL (CARD) SEE DESCRIPTION
FIN(LR=QUIPUT)
REWIND(LGO)
COPYL (JWELIB, LGO, JWE)
ATTACH (OVRLY, ID=JWE)
SEGLOAD (I=OVRLY)
LOAD (JWE)
EXECUTE.
EXIT.
BKSP(INPUT)
ATTACH(PLOTEC, ID= JWE, PW=ADDY, MR=1)
LOAD (PLOTRC)
REDUCE.
EXECUTE.
789 PUNCH
   SOURCE DECKS
789 PUNCH
   DATA
PLOT CARDS
               (SEE DESCRIPTION )
6789 PUNCH
               (YELLOW CARD)
```

```
JOB CONTROL CARDS USING UPDATE FILE
  WITHOUT PLOT TAPE
JOBN. CM72000.T4777.
ATTACH (CONUPF, ID=JWE, PW=ADDY, MR=1)
ATTACH(OVRLY, ID=JWE, MR=1)
UPDATE (P=CONUPF)
FTN(A, I=COMPILE, LR=8)
SEGLOAD (I=OVRLY)
LOAD (LGO)
EXECUTE.
789 PUNCH
*IDENT NAME
   UPDATES
*COMPILE CONTROL.SUBSCL
*END
789 PUNCH
   DATA
6789 PUNCH
               (YELLOW CARD)
JOB CONTROL CARDS USING UPDATE FILE
  WITH PLOT TAPE
JCBN, CM728CC, T4777,NT1.
ATT ACH (CONUPF, ID=JWE, PW=ADDY, MR=1)
ATTACH(OVRLY, ID=JWE, MR=1)
LABEL (CARD) SEE DESCRIFTION
UPDATE (P=CONUPF)
FTN(A, I=COMPILE, LR=U)
SEGLOAD (I=OVRLY)
LOAD(LGO)
EXECUTE.
EXIT.
BKSP(INPUT)
ATTACH(PLOTEC, ID=JWE, PW=ADDY, MR=1)
LOAD (PLOTRO)
REDUCE.
EXECUTE.
789 PUNCH
*IDENT NAME
   UPDATES
*COMPILE CONTROL.SUBSCL
*END
789 PUNCH
   DATA
PLOT CARDS
               (SEE DESCRIPTION )
6789 PUNCH
               (YELLOW CARD)
```

THE UPDATE FILE CAN BE USED TO MODIFY SOURCE ROUTINES IN THE CONTROL PROGRAM. UPDATES ARE USED TO INSERT OR DELETE CARDS OF A SPECIFIED SUBROUTINE. EXAMPLES OF THE UPDATE DIRECTIVES CAN BE FOUND IN THE UPDATE PEFERENCE MANUAL. THE SOURCE LISTING FOR THE CONTROL PROGRAM IS CONTAINED IN ROCM 2115.

DESCRIPTION OF LABEL CARD

CC1

LABEL(TAPE6,W,D=HD,L=XXXXXXXXXX,VSN=YYYY)*RING IN*ZZZ***

XXXXXXXXX=YOUR LABEL

YYYY=VOLUME NO. OBTAINED FROM COMPUTER ROOM

ZZZ=YOUR PAYROLL NUMBER

DESCRIPTION OF PLOT CARDS PLOT CARDS CARD ONE CC1 PLOT CARD TWO CC1-4 CC 26-35 CC 41-44 TC BMAN NNNN SUBTASK (4 DIGIT NUMBER) SUBMITTER CARD THREE-N CC1-10 CC11-20 MINIMUM MAXIMUM (FLOATING POINT)

(ROCT LOCUS OR ROOT CONTOUR ONLY)

NNNN-VSN NUMBER

TABLE III. CONTROL: SYSTEM MODELS

A. CONTINUOUS SYSTEM MODELS

1. OPEN LOOP

$$C\dot{x} = Ax + Bu$$

 $y = Hx + G\dot{x} + Fu$

2. CLOSED LOGO

$$C\dot{x} = Ax + Bu$$

$$u = K1x + K2\dot{x} + Du_{com}$$

$$y = Hx + G\dot{x} + Fu$$

3. ROOT LOCUS

$$C\dot{x} = Ax + Bu$$

$$u = (K1x + K2\dot{x}) + (K3x + K4\dot{x})$$

B. DISCHETE SYSTEM MODELS

1. OPEN LOOP

$$x_{n+1} = Ax_n + Bu_n$$

 $y_n = Hx_n + Fu_n$

2. CLOSED LEGGE

3. POOT LOCKS

$$x_{n+1} = Ax_n + Bu_n$$
 $u_n = (K1x_n) + (K3x_n)$

$$\begin{bmatrix} \dot{x}^c \\ \dot{x}^d \\ \dot{x}^d \\ \dot{y}^d \\ \dot{y}^d \\ \end{bmatrix} = \begin{bmatrix} A_c \mid O \\ O^* \mid A_d \end{bmatrix} \begin{bmatrix} x^c \\ \dot{x}^d \\ \dot{x}^d \\ \end{bmatrix} + \begin{bmatrix} B_c \mid O \\ O \mid B_d \end{bmatrix} \begin{bmatrix} u^c \\ u^d \\ u^d \end{bmatrix}$$

$$\begin{bmatrix} \dot{y}^c \\ \dot{y}^d \\ \dot{y}^d \\ \end{bmatrix} = \begin{bmatrix} H_c \mid O \\ O^* \mid H_d \end{bmatrix} \begin{bmatrix} \dot{x}^c \\ \dot{x}^d \\ \end{bmatrix} + \begin{bmatrix} F_c \mid O \\ O \mid F_d \end{bmatrix} \begin{bmatrix} u^c \\ u^d \\ \end{bmatrix}$$

2. CONNECTIONS PRIOR TO DISCRETIZATION

$$\begin{bmatrix} u' \\ u' \\ u' \\ \end{bmatrix} = \begin{bmatrix} C \end{bmatrix} \begin{bmatrix} y' \\ y' \\ \end{bmatrix}$$

WHERE C IS DEFINED BY YOUR AND ZTOU AND DEFINES CONNECTIONS MADE BEFORE THE PLANT IS DISCRETIZED (SEE TABLE VII B.)

3. DISCRETIZED SYSTEM

$$\begin{bmatrix} x'_{n+1} \\ x'_{n+1} \end{bmatrix} = \begin{bmatrix} \phi(\tau) \mid 0 \\ O^{*} \mid A_{d} \end{bmatrix} \begin{bmatrix} x'_{n} \\ x'_{n} \end{bmatrix} + \begin{bmatrix} (\phi(\tau)B_{c}) \mid (\phi(\tau)B_{c}) \mid 0 \\ O \mid B_{d} \end{bmatrix} \begin{bmatrix} u'_{n} \\ u'_{n} \end{bmatrix}$$

$$\begin{bmatrix} u'_{n} \\ u'_{n} \end{bmatrix} = \begin{bmatrix} H_{c} \mid O \\ O^{*} \mid H_{d} \end{bmatrix} \begin{bmatrix} x'_{n} \\ x'_{n} \end{bmatrix} + \begin{bmatrix} (F_{c}) \mid [H_{c}R_{c}] \mid O \\ O \mid F_{d} \end{bmatrix} \begin{bmatrix} u'_{n} \\ u'_{n} \end{bmatrix}$$

4 CONNECTIONS AFTER DISCRETIZATION

$$\begin{bmatrix} u_n^c \\ u_n^d \end{bmatrix} = \begin{bmatrix} R \end{bmatrix} \begin{bmatrix} y_n^c \\ y_n^d \end{bmatrix} = \begin{bmatrix} K1 \end{bmatrix} \begin{bmatrix} x_n^c \\ x_n^d \end{bmatrix}$$

WHERE R IS DEFINED BY YZTOK AND DEFINES CONNECTIONS MADE AFTER THE PLANT IS DISCRETIZED (SEE TABLE VII B.). FOR REGT LOCUS. THE SECOND CONMECTION SPECIFIED BY YZTOK (IF ANY) WILL GENERATE K3 (SIMILAR TO K1) DEFINING A SECOND FEEDBACK VARIABLE.

5. FINAL SAMPLED-DATA SYSTEM

$$x_{nH} = Ax_n + Bu_n$$
 $y_n = Hx_n + Fu_n$
 $u_n = K1x_n + Du_{com_n}$

FROM 4. (D=1)

* THESE SUBMATRICES MAY CONTAIN NON-ZERO ELEMENTS.

TABLE IV CONTROL PROGRAM DATA DECK FORMAT

- CARD 1 TITLE CARD FORMAT (10A8)
 ANY LITERAL DATA DESIRED TO LABEL ALL PRINTOUTS AND PLOTS
- CARD(S) 2 TO N NAMELIST CODE (SEE APPENDIX 2)
 INTEGER VARIABLES
 READ, SYSTEM, CUTPUT, MIXED, DIGITL, FRPS, NUMERS, TRESP, NX, NY, NU, NXC, NUC, ZOH, N1, N2, CCNTUR, MULTRT, MODEL, NSCALE, CMAT, NK2, FCRM, IPT, IGO, SAV, IFLAG, READ3
 - REAL VARIABLES
 DELT, FINALT, IFREQ, FFREQ, DELF RQ, GAIN1, GAIN2, M
- CARD N+1 OUTPUT LABELS F(RMAT (8A10)

 LITERAL OUTPUT VARIABLE LABELS USED TO LABEL PRINTOUTS AND PLOTS.

 ORDERED IN SEQUENCE CORRESPONDING TO NY OUTPUTS, Y. LEAVE BLANK IF SYSTEM = 3. Will read the greater of 8 or NY outputs.
- CARD N+2 INPUT LABELS FCRMAT (8A10)
 LITERAL INPUT VARIABLE LABELS USED TO LABEL PRINTOUTS AND PLOTS.
 URDERED IN SEQUENCE CORRESPONDING TO NU INPUTS, U. LEAVE BLANK IF
 SYSTEM = 3. Will read the greater of 8 or NU inputs
- CARD(S) (N+3) TO (M) SYSTEM DATA (SEE TABLE V AND APPENDIX 2)
 SYSTEM DATA AS SPECIFIED BY LOAD, MATRIX, CHANGE, OR CLASS. IF READ =1,
 EACH DATA MATRIX IS READ ROW-WISE WITH FORMAT (8F10.4) AND EACH
 MATRIX MUST BE PRECEDED BY A DIMENSION CARD (FORMAT (2110)) GIVING
 THE NUMBER OF ROWS AND COLUMNS OF THE MATRIX.
- CARD M+1 TRANSIENT RESPONSE INPUT DATA
 INPUT IS CALLED BY THIST TO GENERATE THE TRANSIENT RESPONSE INPUT
 VECTOR. THE INPUT SUBROUTINE ON THE DISC READS ONE DATA CARD FOR
 EACH RESPONSE DEFINING A STEP INPUT ON THE NU COMPONENTS OF THE
 augmented and thinned input vector, u. (format(7F10.4))
- THE ABOVE CARDS DEFINE ONE CASE. AS MANY CASES AS DESIRED MAY BE STACKED TOGETHER FOR A SINGLE COMPUTER PUN.
- IF A PLOT IS REQUESTED THE PLOT CARDS AS DESCRIBED IN TABLE II ARE REQUIRED

TABLE V. DATA REQUIRED BY CONDITION CODES

 $\underline{SIEP_1}$ READ = 1,2,3

SYSTEM REQUIRED MATRICES

1 OPEN LOOP A,B,C,H,G,F

IF MIXED =1, THIS IS STEP 1 OF THE MIXED LOADING OPTION

2 CLOSED LOOP A,B,C,H,G,F,K1,K2,D 3 RCOT LOCUS A,B,C,K1,K2,K3,K4

MATRIX NOT REQUIRED IF CMAT = 0 K2, K4 MATRIX NOT REQUIRED IF NK2 = 0 IF OUTPUT = 1MATRIX NOT REQUIRED G •F MATRIX NCT REQUIRED IF OUTPUT = 2F IF OUTPUT = 3MATRIX NET REQUIRED K3,K4 MATRIX NOT REQUIRED TF N2=0

SIEP 2 READ = 4; OR,
IF MIXED =1, THIS IS STEP 2 OF THE MIXEC LOADING OPTION

CARD 1 NBLOCK, NIT FORMAT (215)
IF NIT = 0 GO TO (*)

CARDS 2-(NBLOCK+1) ONE CARD PER BLOCK FORMAT (I2, I3, 515, 5F10.4)

NUM, TYPE, (CCNNEC(I), I=1,4), MOD, (PARAM(I), I=1,5)

NUM = BLOCK NUMBER

TYPE = BLOCK TYPE (1-10) SFE TABLE VI

CONNEC = SPECIFIES INPUTS TO BLOCK. FIRST THREE ELEMENTS MAY SPECIFY CONNECTIONS FROM OTHER BLOCKS (±). FOURTH ELEMENT MAY SPECIFY EXTERNAL INPUT (±). Table VI

MOD = SPECIFIES THAT G(P) IS S-,Z-, OR W- TRANSFORM As specified in A PARAM = PARAMETERS DEFINING BLOCKS AS SPECIFIED IN TABLE VI GO TO (**)

	NAME	IYPE	DIMENSICN -	ECRMAT
(*)	GRAPH	INTEGER	NBLOCK X 5	5 I 5
	BLOCK	INTEGER	NBLOCK X 3	3[5
	NUMER	REAL	NBLOCK X 5	5F10.4
	DENOM	REAL	NBLOCK X 5	5F10.4
	GAIN	REAL	NBLCCK	8F10.4
(**)	ITHINY	INTEGER	≤ # OF OUTPUTS	1615

STOP IF MIXED =0 UNLESS READ=4 and SYSTEM =3

I THINU NYTOV,NZ TOU,NYZTOK	INTEGER INTEGER	∠ # CF INPUTS	1615 315
YTOV	INTEGER	NYTOV X 2	215
z TOU	INTEGER	NZT CU X 2	215
YZTOK	INTEGER	NYZTOK X 2	215

ORIGINAL PAGE IS OF POOR QUALITY

TABLE VI TRANSFER FUNCTION STANDARD FORMS (NIT = 1)

FOR READ = 4 OR MIXED =1 STEP 2, THE CLASS SUBROUTINE ACCEPTS BLOCK DIAGRAM TRANSFER FUNCTIONS OF THE FOLLOWING FORMS. (SEE TABLE V. STEP2)

TYPE	G(P)	PARAM(I)				
		I = 1	2	3	4	5
1	K	K				
2	Kρ	K				
3	K	K				
4	<u>K</u> (1+ P/a)	K	a			
5	K(1+ P/b) (1+ P/a)	K	م	Ь		
6	<u>Kp</u> (p+a)	K	a			
7	K (1+p/a)(1+p/b)	K	a	Ь		
8	1 + 23p + P2/62	K	w	ક		
9	$\frac{K(1+\frac{23}{\omega_{a}}p+\frac{\rho^{2}/\omega_{a}^{2}}{(1+\frac{23}{\omega_{a}}p+\frac{\rho^{2}/\omega_{a}}p+\frac{\rho^{2}/\omega_{a}^{2}}}{(1+\frac{23}{\omega_{a}}p+\frac{\rho^{2}/\omega_{a}^{2}}}{(1+23$	K	ω,	P,	ω_2	\mathcal{S}_{2}
10	K(1+ρ/a) (1+25p+ρ2/2)	K	ω	J	a	
11	Κρ * 1 + 2 ½ ρ + β ² ω ²	K	w	3		

^{*}Can consist of two real roots

TABLE VI (CONT.)

THE STANDARD FORM, G(P), IS INTERPRETED AS AN S-, W-, OR Z-PLANE TRANSFER FUNCTION AS SPECIFIED BELOW

мор	C	1	2
DIGITE			
С	G(S)		
1	G(S),G(Z)	G(S)	G(W)
2	G(Z)	G(S)	G(W)

IF MOD = 0 THE TRANSFER FUNCTION COEFFICIENTS ARE NOT MCCIFIED

IF MOD = 1 THE TRANSFER FUNCTION CRITICAL FREQUENCIES ARE PREWARPED TO APPROXIMATE THE S-PLANE FILTER IN THE W+ PLANE AND THEN TRANSFORMED TO THE Z-PLANE AS DESCRIBED BELOW. FIRST CROER POLES AND ZEPOES ARE WARPED AS

$$a = \tanh\left(\frac{aT}{2}\right)$$

COMPLEX POLES AND ZEROES ARE WARPED AS

$$\omega_{w} = \sqrt{u_{w}^{2} + v_{w}^{2}}$$

$$\beta_{w} = -\frac{u_{w}}{\omega_{w}}$$
where
$$u_{w} = \frac{sinh(\varphi T)}{\cosh(\varphi T) + \cos(\beta T)}$$

$$\gamma_{w} = \frac{sin(\beta T)}{\cosh(\varphi T) + \cos(\beta T)}$$
with
$$\omega_{s}^{2} = \omega_{s}^{2} + \beta^{2}$$

$$\beta_{s} = -\frac{\omega_{s}}{\omega_{s}}$$

IF MOD = 2 THE TRANSFER FUNCTION IS REGARDED AS A W-PLANE TRANSFER FUNCTION AND TRANSFERMED TO THE Z-PLANE BY THE BILINEAR TRANSFORMATION

$$h = (Z-1)/(Z+1)$$

IF DIGITE = 1 AND MOD ≠ 0 THE TRANSFER FUNCTION CANNOT BE PART OF THE CONTINUOUS PLANT (I.E. THE INPUT TO THE FILTER MUST BE NUMBERED HIGHER THAN NUC AND THE FILTER STATES NUST BE NUMBERED HIGHER THAN NXC)

IF DIGITL = 1 AND MOD = 0 THE TRANSFER FUNCTION CCEFFICIENTS ARE NOT MODIFIED. THE FUNCTION IS INTERPRETED AS AN S- OR Z- PLANF FUNCTION DEPENDING ON THE RELATION OF THE FILTER STATES TO NXC. IF THE FILTER STATES ARE NUMBERED LESS THEN NXC, THEN THE FILTER IS TREATED AS PART OF THE CONTINUOUS PLANT. IF THE FILTER STATES ARE NUMBERED GREATER THAN NXC THEN THE FILTER IS TREATED AS PART OF DIGITAL CONTROLLER.

ORIGINAL PAGE 18 221
OF POOR QUALITY

TABLE VII DISCRETIZED PLANT MCDELS FOR VARIOUS INPUT AND OUTPUT DEFINITIONS

	A. (*) yn= yn= y (nT-E)	B. (**) y= y= y (n7+e)
CONTINUOUS MODEL	x= Ax+ y= Hx+	,
SAMPLED INPUT	xn+1 = φ(T) xn+ φ(T) Bun yn = Hxn	$x_{n+1} = \phi(\tau)x_n + \phi(\tau)\beta u_n$ $y_n = Hx_n + HBu_n (F = 0)$
ZOH INPUT	xn+1= \$(T) xn+ @(T) Bun y = Hxn	xn+1= Φ(T) xn+ Φ(T) Bun yn = Hxn+ Fun

	C. (***) TIME DELAY Ynlm) = y[(n+m-1)] 0 < M ≤ 1
CONTINUOUS	X = Ax + Bu
MODEL	y = Hx + Fu
SAMPLED	$x_{n+1} = \phi(T) x_n + \phi(T) B u_n$
INPUT (F= 0)	$y_n(m) = H \phi(mT) x_{n-1} + H \phi(mT) B u_{n-1}$
ZOH INPUT	xn+1 = Φ(T) xn + Φ(T) Bun yn(m)= HΦ(mT) xn-1 + [HΦ(mT) B+F]un-1

 $\phi(t) = \int_{\epsilon}^{t} e^{-A(t-r)} dr ; \quad \omega(t) = \int_{\epsilon}^{t} \phi(t-r) dr ; \quad x_n = x_n = x(n\pi - \epsilon)$

^(*) CONTROL ASSUMES WAT FOR ANY CONNECTIONS FROM THE PLANT TO THE DIGITAL CONTROLLER (I.E. PLANT FEECBACK).

^(**) CONTROL ASSUMES TOR FINAL SYSTEM OUTPUT CALCU-LATIONS (TRANSIENT RESPONSES, TRANSFER FUNCTIONS).

^(***) MODIFIED Z-TRANSFORM ANALYSIS CAN ONLY BE USED WITH OPEN LOOP SAMPLED-DATA SYSTEMS.

TABLE VIII VECTOR ORDERING AND SYSTEM CONNECTION CONVENTIONS FOR SAMPLED-DATA SYSTEMS

A. VECTOR ORDERING CONVENTION

THE COMPONENTS OF THE AUGMENTED VECTORS U, X, AND Y MUST BE ORDERED IN THE FOLLOWING SEQUENCES, (IN STEP 2 OF THE MIXED OPTION, NUMBER THE EXTERNAL INPUTS AND BLOCK OUTPUTS IN THE INDICATED ORDER)

INPUT VECTOR, U

- 1. INPUTS TO PLANT FROM ZERO-ORDER-HOLD ELEMENTS (ZOH)
- 2. INPUTS TO PLANT FROM SAMPLERS (NUC-ZOH)
- 3. INPUTS TO DIGITAL CONTROLLER (NU-NUC)

STATE VECTOR, X

- 1. CONTINUOUS STATES (PLANT, NXC)
- 2. DISCRETE STATES (DIGITAL CONTROLLER, NX-NXC)

DUTPUT VECTOR, Y

- 1. PLANT OUTPUTS
- 2. DIGITAL CONTROLLER OUTPUTS

B. SYSTEM CONNECTION CONVENTION

CCNNEC ILCN	DEEINED_IN
G(s) G(s)	YTCV,ZTOU,GRAPH,A
D(3)	. "
$G(s) \longrightarrow D(3)$	
D(3) G(s)	ΥΖΤΩΚ
$G(s) \longrightarrow G(s)$	"

FIGURE 1 FLCW CHART OF CNTRER SUBROUTINE

*OTHER SUBROUTINES AS DESIRED

FIGURE 2. STRUCTURE OF CONTROL DECK

FIGURE 3. CONTROL PORGRAM DATA DECK STRUCTURE

FIGURE 4 EXAMPLE OF DATA ENTRY USING A NAMELIST FORMAT

Figure 5.- Sampled-data system block diagram.

Figure α .- Typical sampled-data systems analyzed by CONTROL.

Figure 7.- Discretized sampled-data system block diagram.

a.) Time sequence of digital controller and plant.

b. Idealized time sequence.

Figure ".- "ime sequence models for sampled-data syst us.

Figure 9.- Time sequence model for sampled-data systems with computational time delay.

		~
		<u> </u>
)

• :