#### Liquid Crystals and the Origin of Life

Michi Nakata

Giuliano Zanchetta

Tommaso Bellini

Noel Clark

Chenhui Zhu

Department of Physics University of Colorado, Boulder





#### **DNA & RNA**



3'-CGCGA **CGCG-5** 3'-CGCGAAAA TTCGCG-5'

selfcomplementary 16-mer palindromes



Y. Fang, J. Phys. Chem B (1997)



Why are life's information carrying molecules linear polymers?

#### timeline



Altman, Cech



## "cluttered path to RNA"

| 3',5' | Phosphate      |  |
|-------|----------------|--|
| 2',5' | Pyrophosphate  |  |
| 2',2' | Polyphosphate  |  |
| 3',3' | Alkylphosphate |  |
| 5',5' |                |  |

| β  | D | Ribo                   | furanose      |
|----|---|------------------------|---------------|
| αL | L | Lyxo<br>Xylo<br>Arabin | pyranose<br>o |
|    |   | Tetroses<br>Hexoses    |               |
|    |   | Branched sugars        |               |



#### Adenine, guanine

Diaminopurine
Hypoxanthine
Xanthine
Isoguanine
N6-substituted purines
C8-substituted purines

#### Cytosine, uracil

Diaminopyrimidine Dihydrouracil Orotic acid C5-substituted pyrimidines



## possible RNA precursors



## templated replication of RNA





## "cluttered path to RNA"

energy aromatic hydrocarbons





#### selection and replication of RNA

# Singularities

Landmarks on the Pathways of Life

CHRISTIAN de DUVE

Wanter of the Nobel Print in Physiology or Medicine



"How RNA could possibly have emerged from the clutter without a "guiding hand" would baffle any chemist.

It seems possible only by selection, a process that presupposes replication"

"The need seems inescapable for some autocatalytic process such that each lengthening step favors subsequent lengthening.

Only in this way could the enormous kinetic obstacle to chain elongation be surmounted."



#### RNA: what is the organizing principle?

"...any invoked catalytic mechanism must accommodate the participation of a template, for there can have been no emergence of true RNA molecules without replication"

Christian de Duve





A-RNA 35mer



## liquid crystals and DNA







Wilkins Franklin





hydrated (photo 51)



no interchain correlations: a DNA liquid crystal!



dehydrated

## DNA liquid crystals: chiral nematic phase (N = 146 bp)



 $L = 50 \text{ nm} \sim \Lambda_p$ 

shape: L/D ~ 25/1



#### DNA liquid crystals: columnar phase (N = 146 bp)

146 bp, L = 50 nm, L/D = 25:1











#### The highly concentrated liquidcrystalline phase of DNA is columnar hexagonal

F. Livolant\*, A. M. Levelut†, J. Doucet‡† & J. P. Benoit‡

Nature (1989)





low n

#### model: hard rods



Bolhuis, Frenkel, JCP (1997)









## DNA phase diagram



Merchant, Rill, Biophysical Journal (1997)



#### role of rigidity (rods too flexible - no nematic)



Selinger, Bruinsma, PRA (1991)



Hentschke, Herzfeld, PRA (1991)

nematic order requires P/D > 10 or P > 60 bp

#### 20th century wisdom

Because life's information carriers are linear semiflexible polymers they form liquid crystal phases.



## fluid smectic phases



#### first tries



10bp: 5'-CGCAATTGCG-3'

12bp: 5'-CGCGAATTCGCG-3'

"Drew-Dickerson dodecamer"





12bp10T: 5'-CGCGAATTCGCGTTTTTTTT-3'



## Drew-Dickerson dodecamer (DDd)

#### 12bp > 5'-CGCGAATTCGCG-3'





T<sub>melting</sub> ~ 55°C

Crystal structure analysis of a complete turn of B-DNA

Richard Wing\*, Horace Drew, Tsunehiro Takano, Chris Broka, Shoji Tanaka, Keiichi Itakura† & Richard E. Dickerson

Nature 1980

(~750 papers on this molecule)



#### nanoDNA liquid crystal textures (N=10)

10bp: 5'-CGCAATTGCG-3' (~34.0A)



oily-streak texture (N\*)

developable domain texture (C<sub>u</sub>)

mosaic texture (C<sub>2</sub>)

high density (crystal?, glass?)



incresing density



## gradient cells

10bp: 5'-CGCAATTGCG-3' (~34.0A)





## contact (dual gradient) cell





#### liquid crystals of nanoDNA



## structure of the Cu phase

#### x-ray microbeam diffraction patterns in the C<sub>u</sub> phase of 16bp (APS)

(Ron Pindak, Brandon Chapman, Julie Cross, Chris Jones)









#### nanoDNA (c-N) phase diagram @ T = 25°C





## nanoDNA (c-N-T) phase diagram





#### effect of DNA oligomer termination

12bp

OH-CGCGAAAATTTTCGCG-OH

OH-CGCGAAAATTTTCGCG-PO4

PO4-CGCGAAAATTTTCGCG-PO4

N\*, CU, C2 LC phases

No LC phases

12bp-T, 12bp-TT

C1 and C2 phase
No nematic phase

3'-17-88884444WJJE8888-5'-18





10bp-TTTTTTTTT

3'-TTTTTTTTCGCGAAAATTTTCGCG-5'

No LC phases

- termination matters
- tails destabilize LC phases!!



# 18bp and 2 x 9bp - columnar phase





#### the end of DNA







ε~2kT/10Å2



#### end-to-end adhesion





#### sticky ends → nematic & columnar phases





## self-complementary pairs





## equimolar complementary pairs











## liquid crystal condensation of complementary strands





#### flexible and rigid won't mix





#### condensation mechanisms







## liquid crystal condensation of complementary strands



#### liquid crystal autocatalysis

#### Wickepedia:

 A chemical reaction is autocatalytic if the reaction product is itself the catalyst for that reaction...

...leads to the notion of

liquid crystal autocatalysis / autotemplating



the catalyst establishes the structural paradigm...

and, in this case,

the liquid crystal is the catalyst, and the template

selection - three cascaded stages of self assembly

# What is the purpose of life?

...to make liquid crystals.



#### 20th century wisdom

Because life's information carriers are linear semiflexible polymers they form liquid crystal phases.



#### We would suggest...

Because they form liquid crystal phases

life's information carriers

are linear semiflexible polymers.

