Erasmus School of Economics

Generalising Invariant Coordinate Selection to a non-linear dimensionality reduction method

Master Thesis Defence for Econometrics and Management Science Business Analytics & Quantitative Marketing By Christopher Claassen

Contents

- Dimensions and orthogonality
- > Dimensionality reduction methods
- Non-linear extensions via kernels
- Empirical applications of kernelised Invariant Coordinate Selection (ICS)
- Challenges and directions for future works

Setting the stage: what are dimensions?

- Dimensions are that what is required for describing everything residing in a space
 - -> For example, the three physical dimensions (forwards, sideways and upwards) determine our position in this room

- Hyperspaces also exist and contain higher dimensional objects
 - -> Finding a good representation in lower dimensions is challenging

From measurements

data matrices

to

Each type of measurement becomes a column, the number of columns gives the dimensionality

Sepal length •	Sepal width ♦	Petal length •	Petal width •
5.1	3.5	1.4	0.2
4.9	3.0	1.4	0.2
4.7	3.2	1.3	0.2
4.6	3.1	1.5	0.2
5.0	3.6	1.4	0.3
5.4	3.9	1.7	0.4
4.6	3.4	1.4	0.3
5.0	3.4	1.5	0.2
4.4	2.9	1.4	0.2
4.9	3.1	1.5	0.1

Ideal dimensions versus reality

- Ideally, we would like for dimensions to be orthogonal
 - -> This means we can move along one dimension without changing another
- In practice, measurements are often correlated and thus not orthogonal
 - -> For the same flower species, observing a taller petal corresponds to a wider petal
- Nevertheless, we can often reorient the data such that it becomes orthogonal
 - -> This turns out to be very useful for dimensionality reduction

- Dimensionality reduction entails using less dimensions than observed
- Possible advantages:
 - -> Quicker computations
 - -> Can reduce noise in the data
- Possible disadvantages:
 - -> Requires additional computations
 - -> Loss of relevant information
- Often done as a preprocessing step for subsequent statistical analysis

- Dimensionality reduction entails using less dimensions than observed
- Possible advantages:
 - -> Quicker computations
 - -> Can reduce noise in the data
- Possible disadvantages:
 - -> Requires additional computations
 - -> Loss of relevant information
- Often done as a preprocessing step for a subsequent statistical method

Trade-off

Principal Component Analysis (PCA)

- PCA is a method that reorients the data such that it becomes orthogonal
 - -> In practice, this means rotating and stretching the data
- PCA achieves this by exploiting the variance-covariance structure of the data
 - -> Variance: measures the spread of a dimension
 - -> Covariance: measures the joint variation of two dimensions
- Dimensionality reduction is achieved by discarding dimensions with little variance
 - -> A dimension that varies little is often uninteresting in practice

Dimensionality reduction via PCA

Dimensionality reduction via PCA

From covariances to scatters

Invariant Coordinate Selection (ICS)

- ICS generalises PCA, as it uses 2 different scatters rather than 1
 The two scatters cannot be the same, there must be some form of contrast
- The two scatters jointly determine the type of structure uncovered
 -> For example, using covariance versus robust covariance can reveal outliers
- The structure ICS finds is often on a low-dimensional subspace
- The challenge for using ICS is finding the appropriate scatters

A quick detour: non-linearity

Example of non-linearly seperable data: Circles (1000 observations in 2 dimensions over 3 groups)

Quick detour: non-linearity

Example of non-linearly seperable data: Circles (1000 observations in 2 dimensions over 3 groups)

Addressing non-linearity via kernels

- Non-linearity cannot be tackled via rotating and stretching the data
- Kernels capture a certain 'core' of non-linearity of the data
 - -> Kernels can replace the role of scatters in ICS
- We focus on two types of kernels: reproducing kernels and smoothing kernels
- Reproducing kernels capture non-linear functions of the data
- Smoothing kernels capture the interaction between a point and its close neighbours

Example of non-linearly seperable data: Circles (1000 observations in 2 dimensions over 3 groups)

Example of non-linearly seperable data: Circles (1000 observations in 2 dimensions over 3 groups) [kPCA: Gaussian Kernel with scale = 0.01]

Example of non-linearly seperable data: Circles (1000 observations in 2 dimensions over 3 groups) [kPCA: Gaussian Kernel with scale = 0.52]

Example of non-linearly seperable data: N-Spheres (1000 observations in 10 dimensions over 6 groups)

Example of non-linearly seperable data: N-Spheres (1000 observations in 10 dimensions over 6 groups) [kPCA: Gaussian Kernel with scale = 0.01]

Example of non-linearly seperable data: N-Spheres (1000 observations in 10 dimensions over 6 groups) [kPCA: Gaussian Kernel with scale = 0.21]

Example of outlier data: Ball & Sparse Circle (1000 observations in 2 dimensions)

Example of outlier data: Ball & Sparse Circle (1000 observations in 2 dimensions)
[Kernel Smoothing: Parabolic kernel with NN = 120]

Example of outlier data: Ball & Sparse Circle (1000 observations in 2 dimensions)
[Kernel Smoothing: Parabolic kernel with NN = 500]

Example of outlier data: Ball & Sparse Circle (1000 observations in 2 dimensions)
[Kernel Smoothing: Parabolic kernel with NN = 500]

Empirical applications of kernelised ICS

- Dimension reduction via kernelised ICS is able to uncover specific types of structure
 - -> In particular, specific types of non-linear structure
- There are many possible subsequent statistical applications, such as:
 - -> Data visualisation
 - -> Detecting data anomalies
 - -> Finding clusters of similar observations in the data
- Using non-linear methods directly for these applications is costlier

- The dataset consists of wine samples originating from different cultivars
- There are 129 samples with 13 chemical measurements each
 - -> Examples of measurements are alcohol contents, sweetness and hue
- The goal is to distinguish between two different cultivars using only few dimensions
 - -> For the dimensionality reduction step, we do not use the labels
- Other applications that can use this methodology include:
 - -> Detecting counterfeit objects
 - -> Finding defective machine parts

Example of PCA

Logistic Classifier on Result of $\{Cov_2,I\}$ Pair (Accuracy = 1.0)

Example of ICS

Logistic Classifier on Result of $\{Cov_2, MCD_{50}\}\$ Pair (Accuracy = 1.0)

Example of PCA

Logistic Classifier on Result of $\{Cov_2,I\}$ Pair (Accuracy = 1.0)

Example of ICS

Logistic Classifier on Result of $\{Cov_2,MCD_{50}\}\$ Pair (Accuracy = 1.0)

Example of kernel ICS

Logistic Classifier on Result of {ALCov₉₅,Cov₄} Pair (Accuracy = 1.0)

Example of rotated kernel ICS

Logistic Classifier on Result of {ALCov₉₅,Cov₄} Pair (Accuracy = 1.0)

Example of kernel ICS

Logistic Classifier on Result of {ALCov₉₅,Cov₄} Pair (Accuracy = 1.0)

Example of rotated kernel ICS

Logistic Classifier on Result of {ALCov₉₅,Cov₄} Pair (Accuracy = 1.0)

- The dataset consists of word embedding created by machine learning models
- There are 11 classes spread over 601 words with 300 dimensions each
 - -> The dimensions do not have a direct interpretation
- The goal is to visualise the different word clusters by transfering the information of only a few dimensions to a different method called t-SNE
 - -> For the dimensionality reduction step, we do not use the class labels
- Other applications of this type of data include:
 - -> Processing written costumer reviews
 - -> Creating AI chatbots like ChatGPT

Challenges and directions for future works

- We have seen that ICS with kernels can be successfully applied as a dimensionality reduction method for a variety of applications, but this was not without challenges:
 - -> Creating a computer package that effectively performs kernelised ICS
 - -> Determining which kernel pairs to use
 - -> Accounting for numerical instability caused by using kernels
- There is also still potential for improvement of ICS with kernels:
 - -> Studying theoretical aspects
 - -> Component selection
 - -> Kernel hyperparameter optimisation

Thank you for your attention!