Causal inference is not just a statistics problem 2023-04-12 (updated: 2023-08-22)

Lucy D'Agostino McGowan
Wake Forest University

Causal Inference is not a statistics problem

Causal Inference is not just a statistics problem

The problem

We have measured variables, what should we adjust for?

. . .

exposure	outcome	covariate
0.49	1.71	2.24
0.07	0.68	0.92
0.40	-1.60	-0.10
•	•	•
•	•	•
•	•	•
	<u> </u>	<u> </u>

A bit more info

One unit increase in the exposure yields an average increase in the outcome of 1

```
1 cor(exposure, covariate)
[1] 0.7
```

The exposure and measured factor are positively correlated

To adjust or not adjust? That is the question.

Causal Quartet

collider

confounder

Mediator

M-bias

quartets

Your turn

- Install the quartets package: install.packages("quartets")
- For each of the following 4 datasets, look at the correlation between exposure and covariate: causal_collider, causal_confounding, causal_mediator, causal_m_bias
- For each of the above 4 datasets, create a scatterplot looking at the relationship between exposure and outcome
- For each of the above 4 datasets, fit a linear model to examine the relationship between the **exposure** and the **outcome**

10:00

Relationship between exposure and outcome

Relationship between exposure and covariate

Correct effects

Table 1: Correct causal models and causal effects for each data-generating mechanism. The notation X; Z implies that we should adjust for Z when estimating the causal effect. In other words, for the confounder data generating mechanism and direct effect mediator model, the potential outcomes are independent of exposure given the observed factor Z.

Data generating mechanism	Correct causal model	Correct causal effect
(1) Collider	$Y \sim X$	1
(2) Confounder	$Y \sim X ; Z$	0.5
(3) Mediator	Direct effect: $Y \sim X$; Z	Direct effect: 0
	Total Effect: $Y \sim X$	Total effect: 1
(4) M-Bias	$Y \sim X$	1

D'Agostino McGowan L, Gerke T, Barrett M (2023). Causal inference is not a statistical problem. Preprint arXiv:2304.02683v1.

Observed effects

Table 2: Coefficients for the exposure under each data generating mechanism depending on the model fit as well as the correlation between X and Z.

Data generating mechanism	ATE not adjusting for Z	ATE adjusting for Z	Correlation of X and Z
(1) Collider	1	0.55	0.7
(2) Confounder	1	0.50	0.7
(3) Mediator	1	0.00	0.7
(4) M-Bias	1	0.88	0.7

D'Agostino McGowan L, Gerke T, Barrett M (2023). Causal inference is not a statistical problem. Preprint arXiv:2304.02683v1.

The solution

The partial solution

```
# A tibble: 100 × 6
   exposure baseline outcome baseline covariate baseline exposure followup
                                                 <dbl>
              <dbl>
                              <dbl>
                                                                  <dbl>
           -1.43
                             0.287
                                               -0.0963
                                                               -1.53
            0.0593
                            -0.978
                                               -1.11
                                                               -0.278
            0.370
                            0.348
                                               0.647
                                                               -0.00464
 3
            0.00471
                            0.851
                                               0.755
                                                               -0.806
           0.340
                             1.94
                                               1.19
                                                               -0.276
           -3.61
                            -0.235
                                               -0.588
                                                               -5.29
           1.44
                           -0.827
                                               -1.13
                                                               1.52
           1.02
                          -0.0410
                                              0.689
                                                               1.12
           -2.43
                            -2.10
                                               -1.49
                                                               -3.94
10
           -1.26
                            -2.41
                                               -2.78
                                                               -0.442
# i 90 more rows
# i 2 more variables: outcome followup <dbl>, covariate followup <dbl>
```

Time-varying data

Time-varying DAG

True causal effect: 1 Estimated causal effect: 0.55

Time-varying DAG

True causal effect: 1 Estimated causal effect: 1

The partial solution

Table 3: Coefficients for the exposure under each data generating mechanism depending on the model fit as well as the correlation between X and Z.

Data generating mechanism	ATE not adjusting for pre-exposure Z	ATE adjusting for pre-exposure Z	Correct causal effect
(1) Collider	1	1.00	1.0
(2) Confounder	1	0.50	0.5
(3) Mediator	1	1.00	1.0
(4) M-Bias	1	0.88	1.0

D'Agostino McGowan L, Gerke T, Barrett M (2023). Causal inference is not a statistical problem. Preprint arXiv:2304.02683v1.

On M-Bias

- The relationship between Z and the unmeasured confounders needs to be really large (Liu et al 2012)
- "To obsess about the possibility of [M-bias] generates bad practical advice in all but the most unusual circumstances" (Rubin 2009)
- There are (almost) no true zeros (Gelman 2011)
- Asymptotic theory shows that induction of M-bias is quite sensitive to various deviations from the exact M-Structure (Ding and Miratrix 2014)

Your turn

 For each of the following 4 datasets, fit a linear linear model examining the relationship between outcome_followup and exposure_baseline adjusting for covariate_baseline: causal collider time, causal_confounding_time, causal mediator time, causal_m_bias_time

10:00