A Design Study Approach to Classical Control

Randal W. Beard Timothy W. McLain Brigham Young University

Updated: December 28, 2020

Homework D.14

- (a) Modify your solution from HW D.13 so that the uncertainty parameter is $\alpha = 0.2$, representing 20% inaccuracy in the knowledge of the system parameters, and so that the input disturbance is 0.25. Also, add noise to the output channels z_m and θ_m with standard deviation of 0.001.
- (b) Add a disturbance observer to the controller, and verify that the steady state error in the estimator has been removed. Tune the system to get good response.

Solution

Python code used to design the observer based controller is shown below:

```
1  # Single link mass Parameter File
2  import numpy as np
3  import control as cnt
4  import sys
5  sys.path.append('..')  # add parent directory
6  import massParam as P
7
8  Ts = P.Ts  # sample rate of the controller
9  beta = P.beta  # dirty derivative gain
10  F_max = P.F_max  # limit on control signal
11
12  # tuning parameters
```

```
13 \text{ tr} = 2.5
14 \text{ zeta} = 0.707
integrator_pole = np.array([-10.0])
16 tr_obs = tr/10.0 # rise time for observer
17 zeta_obs = 0.707 # damping ratio for observer
18 dist_obsv_pole = np.array([-1.0]) # pole for disturbance observer
20 # State Space Equations
21 \# xdot = A*x + B*u
22 \# y = C \star x
A = np.array([[0.0, 1.0],
                   [-P.k/P.m, -P.b/P.m]
B = np.array([[0.0],
                   [1.0/P.m]])
27
^{29} C = ^{np.array([[1.0, 0.0]])}
30
31 # form augmented system
32 A1 = np.array([[0.0, 1.0, 0.0],
                   [-P.k/P.m, -P.b/P.m, 0.0],
                   [-1.0, 0.0, 0.0]
34
36 B1 = np.array([[0.0],
37
                   [1.0/P.m],
                   [0.0]]
38
40 # gain calculation
41 \text{ wn} = 2.2/\text{tr} + \text{natural frequency}
42 des_char_poly = np.convolve(
       [1, 2*zeta*wn, wn**2],
43
       np.poly(integrator_pole))
45 des_poles = np.roots(des_char_poly)
47 # Compute the gains if the system is controllable
48 if np.linalg.matrix_rank(cnt.ctrb(A1, B1)) != 3:
49
       print("The system is not controllable")
50 else:
      K1 = cnt.acker(A1, B1, des_poles)
51
       K = np.array([K1.item(0), K1.item(1)])
      ki = K1.item(2)
53
55 # observer design
56 # Augmented Matrices
57 A2 = np.concatenate((
```

```
np.concatenate((A, B), axis=1),
           np.zeros((1, 3))),
           axis=0)
60
61 C2 = np.concatenate((C, np.zeros((1, 1))), axis=1)
62
wn_obs = 2.2/tr_obs
64 des_obsv_char_poly = np.convolve(
       [1, 2*zeta*wn_obs, wn_obs**2],
      np.poly(dist_obsv_pole))
67 des_obsv_poles = np.roots(des_obsv_char_poly)
69 # Compute the gains if the system is controllable
70 if np.linalg.matrix_rank(cnt.ctrb(A2.T, C2.T)) != 3:
      print("The system is not observerable")
71
72 else:
73
      L2 = cnt.acker(A2.T, C2.T, des_obsv_poles).T
      L = L2[0:2,0]
74
      Ld = L2[2,0]
75
77 print('K: ', K)
78 print('ki: ', ki)
79 print('L^T: ', L.T)
80 print('Ld: ', Ld)
```

Python code for the observer based control is shown below:

```
1 import numpy as np
2 import massParamHW14 as P
4 class massController:
       def __init__(self):
5
           self.observer_state = np.array([
               [0.0],
7
               [0.0],
                       # initial estimate for disturbance
               [0.0],
9
           ])
10
           self.force_d1 = 0.0
                                         # control, delayed by one sample
1.1
           self.integrator = 0.0
                                         # integrator
           self.error_d1 = 0.0
                                         # error signal delayed by 1 sample
13
           self.K = P.K
                                         # state feedback gain
14
           self.ki = P.ki
                                         # Input gain
15
                                          # observer gain
16
           self.L = P.L2
17
           self.A = P.A2
                                          # system model
18
           self.B = P.B1
```

```
self.C = P.C2
19
           self.limit = P.F_max
                                          # Maxiumum force
20
           self.Ts = P.Ts
                                          # sample rate of controller
21
       def update(self, z_r, y_m):
23
           # update the observer and extract z_hat
24
           x_hat, d_hat = self.update_observer(y_m)
25
           z_hat = x_hat.item(0)
26
27
           # integrate error
28
           error = z_r - z_hat
29
           self.integrateError(error)
30
31
           # Compute the state feedback controller
32
           force_tilde = -self.K @ x_hat \
33
                          - self.ki * self.integrator \
34
                          - d_hat
35
36
           # compute total torque
37
           force = self.saturate(force_tilde.item(0))
38
           self.force_d1 = force
39
           return force, x_hat
40
41
       def update_observer(self, y_m):
42
           # update the observer using RK4 integration
43
           F1 = self.observer_f(self.observer_state, y_m)
44
           F2 = self.observer_f(self.observer_state + self.Ts / 2 * F1, y_m)
           F3 = self.observer_f(self.observer_state + self.Ts / 2 * F2, y_m)
46
           F4 = self.observer_f(self.observer_state + self.Ts * F3, y_m)
47
           self.observer_state += self.Ts / 6 * (F1 + 2 * F2 + 2 * F3 + F4)
48
           x_hat = np.array([[self.observer_state.item(0)],
49
                              [self.observer_state.item(1)],
50
51
           d_hat = self.observer_state.item(2)
52
           return x_hat, d_hat
53
54
       def observer_f(self, x_hat, y_m):
55
           \# xhatdot = A*xhat + B*(u-ue) + L(y-C*xhat)
           xhat_dot = self.A @ x_hat \
57
                       + self.B * self.force_d1 \
58
                       + self.L @ (y_m - self.C @ x_hat)
59
           return xhat_dot
61
       def integrateError(self, error):
62
           self.integrator = self.integrator + (self.Ts/2.0)*(error + self.error_d1)
63
```

See the wiki for the complete solution.