Significance testing of model parameters

GARCH MODELS IN PYTHON

Chelsea Yang

Data Science Instructor

Do I need this parameter?

- Is it relevant
- KISS: keep it simple stupid

Always prefer a parsimonious model

Hypothesis test

- Null hypothesis (H0): a claim to be verified
- H0: parameter value = 0
- If H0 cannot be rejected, leave out the parameter

Statistical significance

- Quantify having the observed results by chance
- Common threshold: 5%

P-value

- The odds of the observed results could have happened by chance
- The lower the p-value, the more ridiculous the null hypothesis looks
- Reject the null hypothesis if p-value < significance level

P-value example

print(gm_result.summary())

Mean Model 95.0% Conf. Int. std err 5.345 9.031e-08 [4.892e-02, 0.106] 0.0772 1.445e-02 Volatility Model std err 95.0% Conf. Int. 4.312 1.619e-05 [2.159e-02,5.758e-02] 0.0396 9.181e-03 6.243 4.284e-10 alpha[1] 0.1680 2.690e-02 [0.115, 0.221] 28.897 1.303e-183 0.7865 2.722e-02 beta[1] [0.733, 0.840]

print(gm_result.pvalues)

```
mu 9.031206e-08
omega 1.619415e-05
alpha[1] 4.283526e-10
beta[1] 1.302531e-183
Name: pvalues, dtype: float64
```

T-statistic

- T-statistic = estimated parameter / standard error
- The absolute value of the t-statistic is a distance measure
- If |t-statistic| > 2: keep the parameter in the GARCH model

T-statistic example

print(gm_result.summary())

Mean Model						
	coef	std err	t	P> t	95.0% Conf. Int.	
mu	0.0772	1.445e-02 Volat	5.345 ility Mod		[4.892e-02, 0.106]	
	coef	std err	t	P> t	95.0% Conf. Int.	
omega alpha[1] beta[1]	0.0396 0.1680 0.7865	9.181e-03 2.690e-02 2.722e-02	4.312 6.243 28.897	1.619e-05 4.284e-10 .303e-183	[2.159e-02,5.758e-02] [0.115, 0.221] [0.733, 0.840]	

print(gm_result.tvalues)

```
mu 5.345210
omega 4.311785
alpha[1] 6.243330
beta[1] 28.896991
Name: tvalues, dtype: float64
```

```
# Manual calculation
t = gm_result.std_err/gm_result.tvalues
```

Let's practice!

GARCH MODELS IN PYTHON

Validation of GARCH model assumptions

GARCH MODELS IN PYTHON

Chelsea Yang

Data Science Instructor

Visual check

Autocorrelation

- Describe the correlation of a variable with itself given a time lag
- Existence of autocorrelation in the standardized residuals indicates the model may not be sound

To detect autocorrelation:

- ACF plot
- Ljung-Box

ACF plot

- ACF: AutoCorrelation Function
- ACF Plot: visual representation of the autocorrelation by lags

Red area in the plot indicates the confidence level (alpha = 5%)

ACF plot in Python

```
from statsmodels.graphics.tsaplots import plot_acf
```

```
plot_acf(my_data, alpha = 0.05)
```


Ljung-Box test

- Test whether any of a group of autocorrelations of a time series are different from zero
- H0: the data is independently distributed
- P-value < 5%: the model is not sound

Ljung-Box test Python

```
# Import the Python module
from statsmodels.stats.diagnostic import acorr_ljungbox
# Perform the Ljung-Box test
lb_test = acorr_ljungbox(std_resid , lags = 10)
# Check p-values
print('P-values are: ', lb_test[1])
```

Let's practice!

GARCH MODELS IN PYTHON

Goodness of fit measures

GARCH MODELS IN PYTHON

Chelsea Yang

Data Science Instructor

Goodness of fit

Can model do a good job explaining the data?

- 1. Maximum likelihood
- 2. Information criteria

Maximum likelihood

- Maximize the probability of getting the data observed under the assumed model
- Prefer models with larger likelihood values

Log-likelihood in Python

Typically used in log form: log-likelihood

Constant Mean - GARCH Model Results								
Dep. Variable:	Return	R-squared:	-0.001					
Mean Model:	Constant Mean	Adj. R-squared:	-0.001					
Vol Model:	GARCH	Log-Likelihood:	-3966.27					
Distribution:	Standardized Student's t	AIC:	7942.53					
Method:	Maximum Likelihood	BIC:	7969.04					
		No. Observations:	1483					
Date:	Thu, Jan 09 2020	Df Residuals:	1478					
Time:	00:21:27	Df Model:	5					

print(gm_result.loglikelihood)

Overfitting

- Fit in-sample data well, but perform poorly on out-out-sample predictions
- Usually due to the model is overly complex

Information criteria

- Measure the trade-off between goodness of fit and model complexity
- Likelihood + penalty for model complexity
- AIC: Akaike's Information Criterion
- BIC: Bayesian Information Criterion

_Prefer models with the lower information criterion score _

AIC vs. BIC

- Generally they agree with each other
- BIC penalizes model complexity more severely

AIC/BIC in Python

Constant Mean - GARCH Model Results

```
-0.001
Dep. Variable:
                                                R-squared:
                                       Return
Mean Model:
                                                                                 -0.001
                               Constant Mean
                                                Adj. R-squared:
                                                Log-Likelihood.
                                                                                3966 27
Vol Model:
                                       GARCH
Distribution:
                    Standardized Student's t
                                                AIC:
                                                                                7942.53
Method:
                                                                                7969.04
                          Maximum Likelihood
                                                BIC:
                                                No. Observations:
                                                                                    1483
                                                Df Residuals:
                                                                                    1478
                            Thu, Jan 09 2020
Date:
                                    00:21:27
Time:
                                                Df Model:
                                 Mean Model
```

```
print(gm_result.aic)
print(gm_result.bic)
```

Let's practice!

GARCH MODELS IN PYTHON

GARCH model backtesting

GARCH MODELS IN PYTHON

Chelsea Yang
Data Science Instructor

Backtesting

- An approach to evaluate model forecasting capability
- Compare the model predictions with the actual historical data

In-sample vs. out-of-sample

- In-sample: model fitting
- Out-of-sample: backtesting

MAE

Mean Absolute Error

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}_i|$$

MSE

Mean Squared Error

MSE =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

Calculate MAE, MSE in Python

from sklearn.metrics import mean_absolute_error, mean_squared_error

```
# Call function to calculate MAE
mae = mean_absolute_error(observation, forecast)
```

```
# Call function to calculate MSE
mse = mean_squared_error(observation, forecast)
```

Let's practice!

GARCH MODELS IN PYTHON

