

Deep Graph Infomax

Domain	Graph
i tag	Graph structure Mutual information Unsupervised learning
© Conference / Journal	ICLR
≡ Publish year	2019
■ 정리 날짜	@2024년 1월 30일
≡ AI summary	"Deep Graph Infomax (DGI)"라는 새로운 그래프 기반 비지도 학습 방법을 소개합니다. 이 방법은 그래프 구조화된 데이터에서 노드의 표현을 학습하는데, 특히 그래프 컨볼루셔널 네트워크를 사용하여 노드의 로컬한 정보와 그래프의 글로벌한 요약 사이의 상호 정보를 최대화하는 방식으로 작동합니다. 이를 통해 각 노드의 표현이 그래프의 전반적인 구조적 속성을 반영할 수 있도록 합니다.
≡ Al key info	Deep Graph Infomax, Graph, ICLR, 2019, unsupervised learning, mutual information, encoder, decoder, Deep Infomax, CNN, graph convolution network, local-global mutual information maximization, discriminator, negative sampling, loss function, patch representation, global information, readout function, corruption function, objective function

Summary

Graph structured data를 학습하는 새로운 unsupervised learning 방법 제시

• Mutual information maximize해 global structure 정보를 가진 embedding 생성함

- Graph convoluation architecture통해 patch representation만들어 mutual info 구함
- Transudctive, inductive classification task에 모두 활용 가능

Background & Motivation

Graph ML의 challenge: Generalizing NN to graph-structured input

- Supervised-learning에서는 graph convolution network가 성공적이었음
 - 。 large-scale graph에서 구조를 파악하는 task등에서 unsupervised 필요함
- Unsupervised: Random-walk based
 - 노드들이 어떻게 연결되어있는지의 인접성 정보만으로 재구성하는 것으로 너무 단순화됨
 - 구조 정보를 희생해 노드의 인접성 정보를 과대평가함
 - encoder가 인접 노드를 similar representation으로 만들고자 해 실제 구조 파악 떨어짐
 - 인접 노드가 다른 특성 가질 수 있음
 - 초기 hyperparameter 선택에 따라 성능이 너무 달라짐

GNN에서 encoder와 decoder의 역할

- encoder
 - 각 노드의 특성을 representation space에 숫자 벡터인 embedding으로 변환
 - 노드들의 복잡한 관계와 속성을 잘 표현하는 embedding 만들어야
 - 인접한 노드가 유사한 특성을 가진다고 가정
 - 가까울수록 representation space 내에서 비슷한 숫자 값을 갖게 만듬
- decoder
 - embedding 사용해 원래 그래프 정보 재구성 혹은 예측

Deep graph infomax: unsupervised learning based on mutual information

• Random walk 방식이 아니라, mutual information 기반

- Deep Infomax: mutual information 사용하는 MINE모델 발전시킴
 - MINE: statistic network를 2개 변수의 joint distribution에 classifier로 사용
- CNN기반으로 이미지 처리에 사용되던 Deep Infomax를 그래프에 적용해보자!
 - 흠 이게 GCN이랑 머가다름 그럼?

Methodology

Graph-based Unsupervised learning

- $oldsymbol{\cdot}$ Encoder $\mathcal{E}(\mathbf{X},\mathbf{A})=\mathbf{H}=\{ec{h}_1,...,ec{h}_N\}$ 학습이 목표
 - \circ Graph convolution encoder가 local 이웃에 aggregation 반복해 node representation H 만듬
 - \circ $ec{h}_i \in R^{F'}$ 는 각 node i의 high-level representation
 - 노드 자체가 아니라 노드 중심 그래프 일부분: patch를 summarize함
- ullet node feature $X=\{ec{x}_1,...,ec{x}_N\}$ 와 adjacency matrix $A\in R^{N imes N}$ input으로 받음
 - o graph는 unweighted라고 가정해 adjacency 1 or 0 구성

Local-Global mutual information maximization

- Learning enoder: maximizing local-global mutual information alignment
 - ∘ node representation이 global information을 갖도록 하는 것
 - \circ Graph-level summary vector $ec{s} = \mathcal{R}(\mathcal{E}(X,A))$
 - ullet Readout function \mathcal{R} 으로 patch representation을 summarize해서 global-level로 나타냄
 - \circ Discriminator $\mathcal{D}(ec{h}_i,ec{s})$: local, global representation이 얼마나 잘 일치하는가
 - \circ Negative sample for $\mathcal{D}(ec{ ilde{h}}_i,ec{s})$: 부정적인 사례 $(ilde{X}, ilde{A})$ 를 학습하도록 함
 - \vec{s} 와 상관없는 patch를 가져와 비교하도록 함
 - single graph의 경우, 비교할 arbitrary alternative가 없으니 corruption function으로 만듬

- Corruption function: 원래 그래프로부터 negative example을 만드는 함
- Loss function

$$\mathcal{L} = \frac{1}{N+M} \left(\sum_{i=1}^{N} \mathbb{E}_{(\mathbf{X}, \mathbf{A})} \left[\log \mathcal{D} \left(\vec{h}_{i}, \vec{s} \right) \right] + \sum_{j=1}^{M} \mathbb{E}_{(\widetilde{\mathbf{X}}, \widetilde{\mathbf{A}})} \left[\log \left(1 - \mathcal{D} \left(\widetilde{\tilde{h}}_{j}, \vec{s} \right) \right) \right] \right)$$

- Deep InfoMax에서 사용한 방식대로 binary cross-entropy loss 사용
 - noise-contrastive type objectivee를 적용
 - positive example과 negative example의 loss를 구함
- \circ $ec{s}$ 와 $ec{h}_i$ 간의 mutual information을 최대화
- patch level의 similarity를 discover, preserve할 수 있음
 - 。 비슷한 patches간의 link를 만드는 것이 목표, not summary가 모든 similarities 저 장

DGI procedure

- 1. Corruption function으로 negative sampling
- 2. Encoder에 그래프 넣어 patch representation $ec{h}_i$ 만들기 $H=\mathcal{E}(X,A)$
- 3. Encoder에 negative examplee 넣어 patch representation $ec{ ilde{h}}_i$ 만들기 $ilde{H}=\mathcal{E}(ilde{X}, ilde{A})$
- 4. Readout function으로 $ec{h}_i$ s summarize 함 $ec{s}=\mathcal{R}(H)$
- 5. $\mathcal D$ 통해 loss 구해서 gradient descent로 parameter $\mathcal E,\mathcal R,\mathcal D$ 업데이트

Questions

- loss function 부분이 이해가 잘 안됨
 - Discrimminator가 probability score을 0부터 1까지의 값으로 가지는거임? 이거를 loss function인지 헷갈렸는데 그럼 이게 objective function인거지? (negative, 0)

의 값밖에 안나와서

- 。 발표는 loss function이라고 하심
 - Objective가 맞는듯?, -붙여서 loss로 사용