Calculating Oxidation States

GLUCOSE MOLECULE

- Individual C atoms have different oxidation states in glucose.
- However, the average C oxidation state in glucose molecule (C₆H₁₂O₆) is ZERO
- C atom has a +IV oxidation state in carbon dioxide.

Img Source: https://www.storyjumper.com/book/index/26677438/The-journey-of-Glycolysis-molecule
https://www.scientificamerican.com/sciam/cache/file/9B1E1977-3A5E-4A78-8E0CF9BB7B9B89BE.jpg?w=590&h=393&E03C4B9F-607B-4A0D-9A2409FCB7DC3D78

Pauling's Electronegativity Scale

Table 2.3 Electronegativities of Atoms According to the Scale Devised by Pauling (1960)

MED St						
Charge of Kernel:	+1	+4	+ 5	+6	+7	
	H					Increasing Size
	2.2					of Kernel
		С	N	0	F	
		2.5	3.0	3.5	4.0	
			P	S	Cl	
			2.2	2.5	3.0	
					Br	111
					2.8	
					T	1.00
					2.5	0.01-

Source: Environmental Organic Chemistry, Schwarzenbach et al., 2003

General Solubility Rules for Inorganic Compounds

Ion	Characteristic Solubility of Compounds Containing Ion					
Nitrate, NO ₃	All nitrates are soluble.					
Chloride, Cl	All chlorides are soluble except AgCl, PbCl ₂ , and Hg ₂ Cl ₂ .					
Sulfate, SO_4^{2-}	Sulfates are soluble, except BaSO ₄ and PbSO ₄ ; Ag ₂ SO ₄ , CaSO ₄ , and Hg ₂ SO ₄ are only slightly soluble.					
Carbonate, CO_3^- ; phosphate, PO_4^{3-} ; silicate, SiO_4^{4-}	Carbonates, phosphates, and silicates are insoluble, except those of sodium, potassium, and ammonium.					
Hydroxide, OH ⁻	Most hydroxides are insoluble. Exceptions include LiOH, NaOH, K and NH ₄ OH (soluble); Ba(OH) ₂ (moderately soluble); and Ca(OH and Sr(OH) ₂ (slightly soluble).					
Sulfide, S ²⁻	All sulfides are insoluble, with the exception of alkali metal sulfides (Na ₂ S, K ₂ S, etc.), (NH ₄) ₂ S, MgS, CaS, and BaS.					
Sodium, Na ⁺ ; potassium, K ⁺ ; ammonium, NH ₄ ⁺	All sodium, potassium, and ammonium compounds are soluble, with the exception of a few compounds that contain these ions along with a heavy metal (for example, K ₂ PtCl ₆).					

I Based on Dean, J. A., Lange's Handbook of Chemistry, 14th ed., McGraw-Hill, 1992.

Source: Table 1.2; Water Chemistry, Benjamin, 2002/ 2010