TECNOLOGÍA ELECTRÓNICA DE COMPUTADORES

2º Curso – GRADO EN INGENIERÍA INFORMÁTICA EN TECNOLOGÍAS DE LA INFORMACIÓN

Tema 6. Circuitos electrónicos combinacionales. Puertas y bloques MSI combinacionales

Lección 10. Circuitos combinacionales MSI

Lección 10. Circuitos digitales combinacionales

- 10.1 Decodificadores, codificadores y convertidores de código
- 10.2 Multiplexores y demultiplexores
- 10.3 Síntesis de circuitos combinacionales con decodificadores
- 10.4 Síntesis de circuitos combinacionales con multiplexores
- 10.5 Aplicaciones de los circuitos combinacionales MSI

Bibliografía de la lección

Lectura clave:

Thomas L.Floyd. Fundamentos de sistemas digitales.

Ed. Prentice Hall - Pearson Education.

Tema 6. Funciones de la logica combinacional. Apartados 6.5. a 6.10.

Otros:

Enlaces a características de circuitos integrados digitales de vendedores o fabricantes

Ejemplos:

- Serie 74xxx http://www.futurlec.com/IC74Series.shtml
- Serie 40xxx http://www.futurlec.com/IC4000Series.shtml
- NXP Serie 74HC/T: http://ics.nxp.com/products/hc/all/

CIRCUITOS COMBINACIONALES

Definición: Son circuitos en los que la salida solo depende en cada momento del valor que toman las variables de entrada

Clasificación

SSI: 1 a 12 puertas lógicas

MSI: 13 a 99 puertas lógicas

LSI: 100 transistores/mm²

VLSI: 1000 transistores/mm²

Existen funciones que se repiten de forma habitual: CIRCUITOS SSI y MSI

10.1 Decodificadores, codificadores y convertidores de código

CS= Chip Select

Entrada adicional que habilita/deshabilita el dispositivo

<u>Decodificadores</u>

Circuitos con "n" entradas y "2n" salidas

Función: Al introducir una combinación en la entrada se activa únicamente la salida cuyo número se corresponde con dicha combinación.

Aplicaciones: Selección de dispositivos, realización de circuitos combinacionales, utilización conjunta con codificadores...

LAS ENTRADAS Y SALIDAS PUEDEN SER ACTIVAS A NIVEL ALTO O BAJO

Ejemplo:

Decodificador 2÷4 con entradas y salidas activas a nivel alto, y con entrada de selección activa a nivel bajo

cs	ВА	S ₀	S ₁	S_2	S ₃
	0 0	1	0	0	0
	0 1	0	1	0	0
0	1 0	0	0	1 0	0
0	1 1	0	0	0	1
1	ХХ	0	0	0	0

Ejercicio:

¿Cómo sería la tabla de verdad de un decodificador 3÷8 con entradas y salidas activas a nivel bajo, y con entrada de selección activa a nivel alto?

Obtención de decodificadores de orden superior

¿Cómo se construiría un decodificador 3÷8 a partir de decodificadores 2÷4 con entrada de habilitación?

La entrada de mayor peso permite seleccionar la salida del decodificador adecuado.

	$E_2E_1E_0$			S_0	S ₁	S_2	S_3	S ₄	S_5	S ₆	S ₇	
	0	0	0	1	0	0	0	0	0	0	0	
	0	0	1	0	1	0	0	0	0	0	0	
	0	1	0	0	0	1	0	0	0	0	0	
•••	0	.1	1	0	0	0	1	0	0	0	0	••••
	1	0	0	0	0	0	0	1	0	0	0	•
	1	0	1	0	0	0	0	0	1	0	0	
	1	1	0	0	0	0	0	0	0	1	0	
	1	1	1	0	0	0	0	0	0	0	1	
	•	•			J	J			J	J	•	

Ejemplo:

Obtención de un decodificador 4÷16 a partir de dos decodificadores 3÷8.

Codificadores

Circuito con "2" entradas y "n" salidas

Función: En las salidas se muestra el código binario del número de la entrada activada

Aplicaciones: Detección de niveles, transmisión de datos (en conjunción con un decodificador), etc.

Puede haber alguna, ninguna, o más de una entrada activa:

- ¿ Que ocurre si hay más de una entrada activada?
- a) Los codificadores suelen ser prioritarios (tiene prioridad la entrada de mayor número)
- b) Existen señales adicionales de validación de salidas para saber si hay alguna entrada activa

Ejemplo de aplicación:

Reducción del número de cables

10.2 Multiplexores y demultiplexores

Multiplexores (MPX)

"n" entradas de selección

Circuito con 2ⁿ entradas (canales), una salida y "n" líneas de selección.

La salida toma el valor del canal de entrada seleccionado mediante las "n" líneas de selección.

Aplicaciones: Como conmutador de líneas, en conjunción con el demultiplexor, realización de funciones lógicas, etc

Demultiplexores (DMPX)

"n" entradas de selección

Circuito con una entrada, 2ⁿ salidas y "n" líneas de selección.

El valor de la entrada se transmite a la salida seleccionada por las líneas de selección.

Aplicaciones: Como conmutador de líneas, en conjunción con el MPX, etc

Obtención de multiplexores de mayor orden

Aplicaciones de los DMPX y MPX

10.3 Síntesis de circuitos combinacionales con decodificadores

Aplicación: realización de funciones lógicas con decodificadores

- Salidas activas a nivel alto: se suman las salidas que aparecen en la primera forma canónica: cualquier uno en la tabla de verdad hace que f=1.

Aplicación: realización de funciones lógicas con decodificadores

- Salidas activas a nivel bajo: habría que complementar las salidas antes de sumar.

Por de Morgan: $A+B+C=A \cdot B \cdot C=A \cdot B \cdot C$

10.4 Síntesis de circuitos combinacionales con multiplexadores

Puede utilizarse un MPX menor (con menor número de canales de entrada)

- Separamos una variable (que se utilizará para las entradas, junto al 0 y el 1)
- Usamos las demás para seleccionar: en la entrada correspondiente, habrá que introducir la variable apartada, su negada, un uno o un cero lógico, según la tabla de verdad deseada

10.5 Aplicaciones de los circuitos combinacionales MSI

Uso de Displays de 7 segmentos

Display de Ánodo Común

Anodo Común (A.C.)

Display de Cátodo Común

<u>Uso de displays de 7 segmentos</u>

Características de los circuitos con displays:

- a) Número de conexiones elevado (cada display tiene una línea común más 7 u 8 líneas correspondientes a cada diodo)
- Típicamente hay varios displays en un circuito, ya que se representan varios dígitos
- c) El control de cuándo debe lucir cada LED procede de las salidas de circuitos digitales
- d) Es usual que las salidas de los circuitos no proporcionen directamente suficiente corriente para hacer lucir los LED, por lo que hay que amplificar la corriente
- e) Diferentes soluciones permiten reducir el número de salidas a utilizar

¿Cómo conseguir hacer lucir un LED de un display?

Display de Ánodo Común

 (R_{LIM})

¿Cómo conseguir hacer lucir un LED de un display?

Display de Cátodo Común

C.C.

Una resistencia limita la corriente por cada LED (R_{LIM})

Si aplicamos tensión positiva al ánodo (+Vcc o "1" lógico) el LED luce

Si aplicamos tensión cero (0V o "0" lógico o lo dejamos al aire el LED no luce

Aplicamos tensión cero al cátodo (0V o "0" lógico)

El display está "seleccionado" para lucir

Problemas asociados al control de displays desde circuitos digitales

Problema 1: Reducir el número de líneas de control para los displays. Soluciones:

- Convertidores de código BCD-7segmentos
- Barrido de displays (uso de decodificadores para la activación)

Problema 2: Limitación en las corrientes de salida de los circuitos digitales.

Soluciones:

- Uso de "drivers": circuitos amplificadores de corriente específicos. Sólo válido para aumentos moderados de corriente
- Uso de transistores: válido para cualquier valor de corriente

Convertidores de código BCD a 7 segmentos

ATENCION A LOS NIVELES ACTIVOS DE LA SALIDA

Activo a nivel alto

1=LED encendido 0=LED apagado

Activo a nivel bajo

0=LED encendido 1=LED apagado

Barrido secuencial (Displays de cátodo común)

Barrido secuencial:

- En cada instante, hay un solo display activado (que puede lucir)
- El código de ese display es el que sale por las líneas comunes
- Si el proceso se realiza a frecuencia elevada, parece que lucen todos

Barrido secuencial (Displays de ánodo común)

Barrido secuencial:

- En cada instante, hay un solo display activado (que puede lucir)
- El código de ese display es el que sale por las líneas comunes
- Si el proceso se realiza a frecuencia elevada, parece que lucen todos

Universidad de Oviedo - Escuela Politécnica de Ingeniería de Gijón

Barrido secuencial (Displays de ánodo común)

Barrido secuencial:

- En cada instante, hay un solo display activado (que puede lucir)
- El código de ese display es el que sale por las líneas comunes
- Si el proceso se realiza a frecuencia elevada, parece que lucen todos

Se debe realizar un barrido completo (con sus tiempos muertos, cuya duración es despreciable) a una frecuencia superior a 50 Hz, para que no se advierta parpadeo

El uso del barrido hace que aumenten las exigencias de corriente proporcionada por los circuitos.

Cálculo de las corrientes en displays

- Premisa: se debe garantizar, para que el LED luzca bien, que la corriente MEDIA por cada LED del display sea la recomendada por el fabricante
- El valor típico de corriente media por un LED es de 10 mA

Casos:

- Un solo display
- Varios displays con barrido

Corrientes para el caso de un solo display

- Por las patillas no comunes circula I_{LED} (tipico: 10 mA) cuando luce
- Por la patilla común circula la suma de todos los LEDs. En el peor caso, es el valor anterior multiplicado por el número de LEDs (siete para un display típico, u ocho si incluye punto decimal):

k*I_{LED} siendo k=número de LEDs del display

C.C

Cálculo de las corrientes en displays Corrientes para el caso de varios displays (barrido)

- Si tenemos n displays, cada display sólo luce una fracción n del periodo de barrido.

- Por las patillas no comunes circula (si el LED luce) $n*I_{MLED}$ (tipico: n*10 mA), siendo I_{MLED} = Corriente media por el LED
- Por la patilla común circulará, en el peor caso, este valor multiplicado por el número de LEDs: n*k*l_{MI FD} siendo

k=número de LEDs del display (típico 7 u 8)

n=número de displays

Amplificación de la corriente de salida

- Usualmente los circuitos digitales no permiten alimentar directamente los displays, salvo en casos muy particulares.
- Ejemplos:
- 1) Salida TTL

A nivel alto: corriente de 400 µA: no puede alimentar ni un LED

A nivel bajo: corriente de 16 mA: puede conectarse a un solo LED (sólo del lado no común

2) Salida CMOS

A nivel alto y bajo: corriente de unos 2 mA (depende de la serie): no puede alimentar ni un LED

Soluciones:

- Uso de "drivers": circuitos amplificadores de corriente específicos. Sólo válido para aumentos moderados de corriente (Típico hasta 1A)
- Uso de transistores: válido para cualquier valor de corriente

Amplificación de la corriente de salida: uso de transistores

Ejemplo: Display de Cátodo Común

El display está "seleccionado" para lucir

Amplificación de la corriente de salida

El problema se reduce a:

Amplificación de la corriente de salida Conexión hacia el cátodo (parte inferior)

Posibilidades:

a) Si el circuito digital proporciona suficiente corriente a nivel bajo, se puede conectar directamente

b) Si el circuito digital no puede conducir suficiente corriente a nivel bajo, hay que introducir un transistor, que trabaje entre corte (interruptor abierto) y saturación (interruptor cerrado).

Es recomendable el uso de un NPN, ya que facilita el cálculo (sigue).

Amplificación de la corriente de salida Conexión hacia el cátodo (parte inferior)

b) Uso de un NPN como interruptor:

Requiere cambiar la lógica:

Amplificación de la corriente de salida Conexión hacia el ánodo (parte superior)

Posibilidades:

a) Si el circuito digital proporciona suficiente corriente a nivel alto, se puede conectar directamente

b) Si el circuito digital no proporciona suficiente corriente a nivel alto, hay que introducir un transistor, que trabaje entre corte (interruptor abierto) y saturación (interruptor cerrado).

Es recomendable el uso de un PNP, ya que facilita el cálculo (sigue).

Amplificación de la corriente de salida Conexión hacia el ánodo (parte superior)

b) Uso de un PNP como interruptor:

Requiere cambiar la lógica:

Amplificación de la corriente de salida

Cálculo del circuito con NPN

Parte1: Cálculo de la resistencia limitadora R_{I IM}:

- Se calcula como:

- La corriente de colector es conocida a partir del montaje.

Amplificación de la corriente de salida Cálculo del circuito con NPN

Uso de un NPN como interruptor:

Circuito digital

Activación:

"1" activa

"0" desactiva

R_{LIM}

R_{LIM}

OV

Corriente de colector

- Sin barrido:

Del lado no común I_{I FD}=10 mA, o dato del fabricante del diodo

Del lado común k*I_{I FD}, siendo k=nº LEDs por display

- Con barrido:

Del lado no común: $n*I_{MLED}$, con $I_{MLED}=10$ mA, o dato del fabricante, y $n=n^o$ de displays barridos

Del lado común: n*k*l_{MLED}, siendo n=nº de displays barridos y k=nº LEDs por display

Amplificación de la corriente de salida

Cálculo del circuito con NPN

Uso de un NPN como interruptor:

Parte2: Cálculo de la corriente de base:

- Hay que garantizar que el transistor se satura, es decir:

- Se calcula como: Corriente de base

- Se calcula como.

Condición de saturación: $\beta \cdot I_B \ge I_C$

Corriente de base:

(suponiendo que la salida es

+Vcc cuando está a "1")

$$I_B = \frac{V_{CC}}{R_B}$$

Amplificación de la corriente de salida Cálculo del circuito con PNP

Uso de un PNP como interruptor:

Parte1: Cálculo de la resistencia limitadora R_{I IM}:

- Se calcula como:

- La corriente de colector es conocida a partir del montaje.

Amplificación de la corriente de salida Cálculo del circuito con PNP

Uso de un PNP como interruptor:

Corriente de colector

- Sin barrido:

Del lado no común l_{I FD}=10 mA, o dato del fabricante del diodo

Del lado común k*I_{LED}, siendo k=nº LEDs por display

- Con barrido:

Del lado no común: $n*I_{MLED}$, con $I_{MLED}=10$ mA, o dato del fabricante, y $n=n^o$ de displays barridos

Del lado común: n*k*l_{MLED}, siendo n=nº de displays barridos y k=nº LEDs por display

Amplificación de la corriente de salida Cálculo del circuito con PNP

Uso de un PNP como interruptor:

Parte2: Cálculo de la corriente de base:

- Hay que garantizar que el transistor se satura, es decir:

- Se calcula como: Corriente de base

Condición de saturación: $\beta \cdot I_B \ge I$

Corriente de base:

(suponiendo que la salida es 0V cuando está a "0")

$$_{B} = \frac{V_{CC}}{R_{B}}$$

$$\Rightarrow I_{B} \ge \frac{I_{C}}{\beta}$$

$$\Rightarrow R_{B} \le \frac{V_{CC} \cdot \beta}{I_{C}}$$

