(1. (1)
$$-1$$
; (2) $(-1) + c(\frac{1}{2})$, $c \in \mathbb{R}$; (3) $\pm i (\stackrel{\land}{}_{2} = 1)$
(4) $I + (e^{t} - 1)P$ (5) $\{0\}$.

(3)
$$\mathbb{R}^{+}$$
; \mathbb{R}^{+} ; \mathbb{R}^{+} $\mathbb{R$

(4) 笔首; 例
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 $B = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ $C(A) = C(B) = \mathbb{R}^2$ $C(A^T)$ $C(B^T)$ $C(A^T) = N(B^T)$.

(5) 对,
$$Ax=b有解《r(A;b)=r(A)=n》(A;b)奇异$$
 反之,(A;b)奇异,A的列形关》 $b \in C(A)$.

$$\begin{pmatrix}
1 & 0 & 1 & | & 2 & -3 & -4 \\
0 & 1 & 0 & | & -1 & 2 & 2 \\
0 & 0 & -1 & | & 0 & 0 & 1
\end{pmatrix}$$

$$\frac{1}{0} = \frac{1}{0} = \frac{2}{0} = \frac{3}{0} = \frac{-3}{0} = \frac{-3}{$$

$$\Rightarrow A^{-1}P = \begin{pmatrix} 2 & -3 & -3 \\ -1 & 2 & 2 \\ 0 & 0 & -1 \end{pmatrix} \Rightarrow A^{-1} = \begin{pmatrix} 2 & -3 & -3 \\ -1 & 2 & 2 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} = \begin{pmatrix} -3 & 2 & -3 \\ 2 & -1 & 2 \\ 0 & 0 & -1 \end{pmatrix}$$

4. A 行变换
$$\begin{pmatrix} a & a & a & a \\ o & b-a & b-a & b-a \\ o & o & c-b & c-b \\ o & o & d-c \end{pmatrix}$$
 $\Rightarrow a \neq 0, b \neq a, c \neq b, d \neq c.$

$$A = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} a & a & a & a \\ 0 & b-a & b-a \\ 0 & 0 & c-b & c-b \\ 0 & 0 & 0 & d-c \end{pmatrix}$$

5.
$$A = I_s + \binom{1}{1}(11 \dots 1)$$
 $\binom{1}{1}(11 \dots 1)$
 $\binom{1}{1}(11 \dots 1)$

$$(c)$$
 U_0 在 S 上投影为 U_1 ,在 S^1 上投影为 U_2 则 $U(t) = U_1 e^{-t} + U_2$ $\lim_{t \to \infty} U(t) = U_2$

投影
$$p = B(B^TB)^TB^Tb = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
.

(2)
$$\hat{\chi} = (B^TB)^TB^Tb = \begin{pmatrix} 0\\1 \end{pmatrix}$$