Universität Würzburg Institut für Mathematik Lehrstuhl für Komplexe Analysis

Prof. Dr. Oliver Roth Annika Moucha

Einführung in die Funktionentheorie

3. Übungsblatt, Abgabe bis 6. Mai 2024 um 10 Uhr

Hausaufgaben

H3.1 Konstante Funktion (1+1+3)

(a) Skizzieren Sie die Menge

$$Q = \{ w \in \mathbb{C} : |\operatorname{Re} w| + |\operatorname{Im} w| = 1 \}.$$

- (b) Es sei $g: \mathbb{R} \to \mathbb{R}$, g(x) = |x|. Zeigen Sie, dass g in $x_0 \in \mathbb{R} \setminus \{0\}$ differenzierbar ist und bestimmen Sie $g'(x_0)$.
- (c) Es sei G ein Gebiet in \mathbb{C} , $f:G\to\mathbb{C}$ holomorph, $u:=\operatorname{Re} f$ und $v:=\operatorname{Im} f$. Zeigen Sie: Falls |u(z)|+|v(z)|=1 für jedes $z\in G$, so ist f konstant auf G.

H3.2 Logarithmusfunktion (2+2)

(a) Es sei

$$g: \mathbb{C} \setminus \{-1\} \to \mathbb{R}, \qquad g(z) = \log\left(\frac{1}{|1+z|^2}\right).$$

Zeigen Sie, dass $f: \mathbb{D} \to \mathbb{C}$, $f(z) = \frac{\partial g}{\partial z}(z)$ eine auf \mathbb{D} holomorphe Funktion definiert.

(b) Es sei

$$g: \mathbb{C} \to \mathbb{R}, \qquad g(z) = \log\left(\frac{1}{1+|z|^2}\right).$$

Definiert auch in diesem Fall $f: \mathbb{D} \to \mathbb{C}$, $f(z) = \frac{\partial g}{\partial z}(z)$ eine auf \mathbb{D} holomorphe Funktion?

H3.3 Möbiustransformation in \mathbb{D} (4)

Gegeben sei $a \in \mathbb{D}$ und die Möbiustransformation

$$T_a: \mathbb{D} \to \mathbb{D}, \quad T_a(z) = \frac{a+z}{1+\overline{a}z}.$$

Ferner bezeichne $\mathbb{D}^+ := \{z \in \mathbb{D} : \operatorname{Im} z > 0\}$ die obere Einheitshalbkreisscheibe. Zeigen Sie, dass $T_a(\mathbb{D}^+) \subseteq \mathbb{D}^+$ genau dann gilt, wenn $\operatorname{Im} a \geq 0$.