| 1 | (a) | The kilogram, metre and second are | SI base units.   |  |  |  |  |  |  |  |
|---|-----|------------------------------------|------------------|--|--|--|--|--|--|--|
|   |     | State two other base units.  1     |                  |  |  |  |  |  |  |  |
|   |     |                                    |                  |  |  |  |  |  |  |  |
|   |     | 2                                  | [2]              |  |  |  |  |  |  |  |
|   | (b) | Determine the SI base units of     |                  |  |  |  |  |  |  |  |
|   |     | (i) stress,                        |                  |  |  |  |  |  |  |  |
|   |     | (ii) the Young modulus.            | SI base units[2] |  |  |  |  |  |  |  |
|   |     |                                    | SI base units[1] |  |  |  |  |  |  |  |

2 A microphone detects a musical note of frequency *f*. The microphone is connected to a cathoderay oscilloscope (c.r.o.). The signal from the microphone is observed on the c.r.o. as illustrated in Fig. 2.1.



Fig. 2.1

The time-base setting of the c.r.o. is 0.50 ms cm<sup>-1</sup>. The Y-plate setting is 2.5 mV cm<sup>-1</sup>.

- (a) Fig. 2.1 to determine
  - (i) the amplitude of the signal,

(ii) the frequency f,

(iii) the actual uncertainty in f caused by reading the scale on the c.r.o.

**(b)** State *f* with its actual uncertainty.

3 (a) ce is a vector quantity. State three other vector quantities.

1. .....

2 ......

**(b)** Three coplanar forces *X*, *Y* and *Z* act on an object, as shown in Fig. 3.1.



Fig. 3.1

The force Z is vertical and X is horizontal. The force Y is at an angle  $\theta$  to the horizontal. The force Z is kept constant at 70 N.

In an experiment, the magnitude of force X is varied. The magnitude and direction of force Y are adjusted so that the object remains in equilibrium.





Fig. 3.2

|     | (i)              |        | Fig         | . 3.2        | to es  | stima         | te the | magn           | itude of     | Y for      | <i>X</i> = | 0.    |      |       |       |       |       |        |         |
|-----|------------------|--------|-------------|--------------|--------|---------------|--------|----------------|--------------|------------|------------|-------|------|-------|-------|-------|-------|--------|---------|
|     |                  |        |             |              |        |               |        |                |              | Υ=         | ·          |       |      |       |       |       |       |        | N [1]   |
|     | (ii)             | Sta    | te ar       | nd ex        | plain  | the           | value  | of $\theta$ fo | or $X = 0$ . |            |            |       |      |       |       |       |       |        |         |
|     |                  |        |             |              |        |               |        |                |              |            |            |       |      |       |       |       |       |        |         |
|     |                  |        |             |              |        |               |        |                |              |            |            |       |      |       |       |       |       |        |         |
|     |                  |        |             |              |        |               |        |                |              |            |            |       |      |       |       |       |       |        | [2]     |
|     | (iii)            | The of | ma          | gnitu        | ide o  | f <i>X</i> is | incre  | ased t         | o 160 N      |            | resc       | lutio | n of | force | s to  | calcı | ulate | the v  | value   |
|     |                  | 1.     | ang         | gle $\theta$ | ,      |               |        |                |              |            |            |       |      |       |       |       |       |        |         |
|     |                  |        |             |              |        |               |        |                |              |            |            |       |      |       |       |       |       |        |         |
|     |                  |        |             |              |        |               |        |                |              |            |            |       |      |       |       |       |       |        |         |
|     |                  |        |             |              |        |               |        |                |              |            |            |       |      |       |       |       |       |        |         |
|     |                  |        |             |              |        |               |        |                |              |            |            |       |      |       |       |       |       |        |         |
|     |                  |        |             |              |        |               |        |                |              |            |            |       |      |       |       |       |       |        |         |
|     |                  |        |             |              |        |               |        |                |              | $\theta$ = | =          |       |      |       |       |       |       |        | . ° [2] |
|     |                  | 2.     | the         | mag          | gnitud | de of         | force  | Υ.             |              |            |            |       |      |       |       |       |       |        |         |
|     |                  |        |             |              |        |               |        |                |              |            |            |       |      |       |       |       |       |        |         |
|     |                  |        |             |              |        |               |        |                |              |            |            |       |      |       |       |       |       |        |         |
|     |                  |        |             |              |        |               |        |                |              |            |            |       |      |       |       |       |       |        |         |
|     |                  |        |             |              |        |               |        |                |              |            |            |       |      |       |       |       |       |        |         |
|     |                  |        |             |              |        |               |        |                |              |            |            |       |      |       |       |       |       |        |         |
|     |                  |        |             |              |        |               |        |                |              |            |            |       |      |       |       |       |       |        |         |
|     |                  |        |             |              |        |               |        |                |              |            |            |       |      |       |       |       |       |        |         |
|     |                  |        |             |              |        |               |        |                |              | Y=         | =          |       |      |       |       |       |       |        | N [2]   |
| (c) | The $\theta = 0$ |        | le $\theta$ | dec          | rease  | es as         | X inc  | crease         | s. Expla     | ain wh     | ny th      | e ob  | ject | cann  | ot be | e in  | equil | ibriuı | m foi   |
|     |                  |        |             |              |        |               |        |                |              |            |            |       |      |       |       |       |       |        |         |
|     |                  |        |             |              |        |               |        |                |              |            |            |       |      |       |       |       |       |        |         |
|     |                  |        |             |              |        |               |        |                |              |            |            |       |      |       |       |       |       |        |         |

| (a) | State the principle of conservation of momentum.                                                                                                                            |                                      |              |                    |                 |                        |         |           |                    |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------|--------------------|-----------------|------------------------|---------|-----------|--------------------|
|     |                                                                                                                                                                             |                                      |              |                    |                 |                        |         |           |                    |
|     |                                                                                                                                                                             |                                      |              |                    |                 |                        |         |           | [2]                |
| (b) |                                                                                                                                                                             | and a ball Y ard<br>Fig. 4.1.        | e travelling | along the          | same sti        | aight line in t        | he same | direction | , as               |
|     | X                                                                                                                                                                           |                                      | Y            |                    |                 |                        |         |           |                    |
|     | 400 g                                                                                                                                                                       | 0.65 m s <sup>-1</sup>               | 600 g        | <b>→</b><br>0.45 m | s <sup>-1</sup> |                        |         |           |                    |
|     |                                                                                                                                                                             |                                      |              | Fig. 4.1           |                 |                        |         |           |                    |
|     |                                                                                                                                                                             | as mass 400 g an<br>as mass 600 g an |              |                    |                 |                        |         |           |                    |
|     | Ball X catches up and collides with ball Y. After the collision, X has horizontal velocity 0.41 m s <sup>-1</sup> and Y has horizontal velocity $v$ , as shown in Fig. 4.2. |                                      |              |                    |                 |                        |         |           |                    |
|     |                                                                                                                                                                             |                                      |              |                    | X               |                        |         | Y         |                    |
|     |                                                                                                                                                                             |                                      |              |                    | 400 g           | 0.41 m s <sup>-1</sup> |         | 600 g     | V                  |
|     |                                                                                                                                                                             |                                      |              | Fig. 4.2           |                 |                        |         | -         |                    |
|     | Calculat                                                                                                                                                                    | e                                    |              |                    |                 |                        |         |           |                    |
|     | (i) the                                                                                                                                                                     | total initial mome                   | entum of the | two balls,         |                 |                        |         |           |                    |
|     |                                                                                                                                                                             |                                      |              |                    |                 |                        |         |           |                    |
|     |                                                                                                                                                                             |                                      |              |                    |                 |                        |         |           |                    |
|     |                                                                                                                                                                             |                                      |              |                    |                 |                        |         |           |                    |
|     |                                                                                                                                                                             |                                      |              | momont             | ım –            |                        |         | NI.       | . [2]              |
|     | (!!) the                                                                                                                                                                    | valasitu v                           |              | moment             | uiii =          |                        |         | IN 3      | <b>၁</b> [၁]       |
|     | (ii) the                                                                                                                                                                    | velocity v,                          |              |                    |                 |                        |         |           |                    |
|     |                                                                                                                                                                             |                                      |              |                    |                 |                        |         |           |                    |
|     |                                                                                                                                                                             |                                      |              |                    |                 |                        |         |           |                    |
|     |                                                                                                                                                                             |                                      |              |                    |                 |                        |         |           |                    |
|     |                                                                                                                                                                             |                                      |              |                    | v <del>-</del>  |                        |         | m c-      | 1 [2] <sup>1</sup> |
|     |                                                                                                                                                                             |                                      |              |                    | V =             |                        |         | ms        | . [2]              |

|     | kinetic energy = J [3]                                                                                                                          |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------|
| (c) | Explain how you would check whether the collision is elastic.                                                                                   |
|     |                                                                                                                                                 |
|     | [1]                                                                                                                                             |
| (d) | Newton's third law to explain why, during the collision, the change in momentum of $X$ is equal and opposite to the change in momentum of $Y$ . |
|     |                                                                                                                                                 |
|     |                                                                                                                                                 |
|     |                                                                                                                                                 |
|     | [2]                                                                                                                                             |
|     |                                                                                                                                                 |
|     |                                                                                                                                                 |
|     |                                                                                                                                                 |
|     |                                                                                                                                                 |

(iii) the total initial kinetic energy of the two balls.

| 5 | Distinguish between evaporation and boiling. |     |
|---|----------------------------------------------|-----|
|   | evaporation:                                 |     |
|   |                                              |     |
|   |                                              |     |
|   | boiling:                                     |     |
|   |                                              |     |
|   |                                              | [4] |

| 6 | (a) | A wire               | has      | length | 100 cm | and | diameter | 0.38 mm. | The | metal | of | the | wire | has | resistivity |
|---|-----|----------------------|----------|--------|--------|-----|----------|----------|-----|-------|----|-----|------|-----|-------------|
|   |     | $4.5 \times 10^{-1}$ | $0^{-7}$ | m      |        |     |          |          |     |       |    |     |      |     |             |

Show that the resistance of the wire is  $4.0 \Omega$ .

[3]

(b) The ends B and D of the wire in (a) are connected to a cell X, as shown in Fig. 6.1.



The cell X has electromotive force (e.m.f.) 2.0V and internal resistance  $1.0\,\Omega$ .

A cell Y of e.m.f. 1.5V and internal resistance 0.50  $\Omega$  is connected to the wire at points B and C, as shown in Fig. 6.1.

The point C is distance *l* from point B. The current in cell Y is zero.

Calculate

(i) the current in cell X,

|     | (ii)  | the potential difference (p.d.) across the wi                       | re BD,                                          |
|-----|-------|---------------------------------------------------------------------|-------------------------------------------------|
|     | (iii) | the distance <i>l</i> .                                             | .d. = V [1]                                     |
|     |       |                                                                     | <i>l</i> = cm [2]                               |
| (c) |       | e connection at C is moved so that $l$ is increan its terminal p.d. | eased. Explain why the e.m.f. of cell Y is less |
|     |       |                                                                     |                                                 |
|     |       |                                                                     |                                                 |
|     |       |                                                                     | [2]                                             |
|     |       |                                                                     |                                                 |
|     |       |                                                                     |                                                 |

| 7 | (a) | (i)        | Explain what is meant by a <i>progressive transverse</i> wave.  progressive:                                               |
|---|-----|------------|----------------------------------------------------------------------------------------------------------------------------|
|   |     |            | progressive.                                                                                                               |
|   |     |            | transverse:                                                                                                                |
|   |     |            | [2]                                                                                                                        |
|   |     | (ii)       | Define frequency.                                                                                                          |
|   |     |            | [1]                                                                                                                        |
|   | (b) | The        | variation with distance $x$ of displacement $y$ for a transverse wave is shown in Fig. 7.1.                                |
|   |     | <i>y</i> / | 2.0<br>1.0<br>0<br>0<br>0<br>0<br>-1.0<br>1.2<br>1.2<br>1.6<br>2.0<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2 |
|   |     |            | Fig. 7.1                                                                                                                   |
|   |     | On         | Fig. 7.1, five points are labelled.                                                                                        |
|   |     |            | Fig. 7.1 to state any two points having a phase difference of                                                              |
|   |     | (i)        | zero,[1]                                                                                                                   |
|   |     | (ii)       | 270°.                                                                                                                      |
|   |     |            | [1]                                                                                                                        |
|   | (c) | The        | frequency of the wave in <b>(b)</b> is 15 Hz.                                                                              |
|   |     | Cal        | culate the speed of the wave in <b>(b)</b> .                                                                               |
|   |     |            |                                                                                                                            |

| (d) | Two waves of the sam | ne frequency have amplitudes 1.4cm and 2.1cm.                               |
|-----|----------------------|-----------------------------------------------------------------------------|
|     | Calculate the ratio  |                                                                             |
|     |                      | intensity of wave of amplitude 1.4 cm intensity of wave of amplitude 2.1 cm |
|     |                      |                                                                             |
|     |                      |                                                                             |
|     |                      |                                                                             |
|     |                      |                                                                             |
|     |                      |                                                                             |
|     |                      | ratio =[2]                                                                  |
|     |                      |                                                                             |
|     |                      |                                                                             |
|     |                      |                                                                             |
|     |                      |                                                                             |
|     |                      |                                                                             |
|     |                      |                                                                             |
|     |                      |                                                                             |
|     |                      |                                                                             |
|     |                      |                                                                             |
|     |                      |                                                                             |
|     |                      |                                                                             |