CSE221

Lecture 19: Directed Graphs and Graph Algorithms

Outline

- Directed graphs
 - –Digraph properties
 - -Reachability
 - -Topological sorting
- Shortest path algorithms

Digraphs

- A digraph is a graph whose edges are all directed
 - -Short for "directed graph"
- Applications
 - -flights
 - one-way streets
 - work decompositions

Digraph Properties

- A graph G=(V,E) such that
 - Each edge goes in one direction
 - Edge (a,b) goes from a to b, but not bto a
- If G is simple, *m* < *n* (*n* 1)
- If we keep in-edges and out-edges in separate adjacency lists
 - We can perform listing of incoming edges and outgoing edges in time proportional to their size

Directed DFS

- DFS traversing edges only along directions in digraphs
- A directed DFS starting at a vertex s determines the vertices reachable from s

Directed DFS

 In the directed DFS algorithm, we have four types of edges

- discovery edges
 - Tree edges
- back edges
 - which connect a vertex to an ancestor in the DFS tree
- –forward edges
 - which connect a vertex to a descendent in the DFS tree
- cross edges
 - which connect a vertex to a vertex that is neither its ancestor nor its descendent

Reachability

 DFS tree rooted at v: vertices reachable from v via directed paths

Strong Connectivity

- Each vertex can reach all other vertices
 - –Run directed DFS for every vertex : O(n(n+m))

Strong Connectivity Algorithm

- Pick any vertex v in G
- Perform a DFS from v in G
 - If there's a w not visited, print "no"
- Let G' be G with edges reversed
- Perform a DFS from v in G'
 - If there's a w not visited, print "no"
 - Else, print "yes"
 - Each of the vertices visited can reach v
- Running time: O(n+m)
 - Requires only two directed DFS
 - If every node can be reached from a vertex v, and every node can reach v, then the graph is strongly connected.

DAGs and Topological Ordering

- Decompose work into tasks that can be executed
- Conceptualize tasks and ordering as task dependency DAG (directed acyclic graph)
 - -vertex = task
 - -edge = control dependency
- Scheduling: edge (a,b) means task a must be completed before b can be started

DAGs and Topological Ordering

- A directed acyclic graph (DAG) is a digraph that has no directed cycles
- A topological ordering of a digraph is a numbering

$$V_1, ..., V_n$$

of the vertices such that for every edge (v_i, v_i) , we have i < j

 In a task scheduling digraph, a topological ordering is a task sequence that satisfies the control dependency across all tasks

Theorem

A digraph admits a topological ordering if and only if it is a DAG

Q: is topological sorting unique?

Algorithm for Topological Sorting

```
Algorithm TopologicalSort(G)

H \leftarrow G // Temporary copy of G

n \leftarrow G.numVertices()

while H is not empty do

Let v be a vertex with no outgoing edges

Label v \leftarrow n

n \leftarrow n - 1

Remove v from H
```


Implementation with DFS

- Simulate the algorithm by using depth-first search
- O(n+m) time

```
Algorithm topologicalDFS(G)
Input dag G
Output topological ordering of G

n ← G.numVertices()
for all u in G.vertices()
u.setLabel(UNEXPLORED)
for all v in G.vertices()
if v.getLabel() = UNEXPLORED
topologicalDFS(G, v)
```

```
Algorithm topologicalDFS(G, v)
  Input graph G and a start vertex v of G
  Output labeling of the vertices of G
     in the connected component of v
  v.setLabel(VISITED)
  for all e in v.outEdges()
     { outgoing edges }
     w \leftarrow e.opposite(v)
     if w.getLabel() = UNEXPLORED
       { e is a discovery edge }
       topologicalDFS(G, w)
     else
       { e is a forward or cross edge }
  Label v with topological number n
   n \leftarrow n-1
```