```
Survival Analysis with competing Events. 10/21.
   (Not required).
 Competing events (risks): mutually exchasive.
                         X: predictors.
 Data structure:
                       { t: time to event. 
 f: event type.
 Eg. Patient with cancer and diabetes.
cancer L 5 yr.
     t: 5 d: cancer
 Suppose we have I competing events, and
   latent survival times under each event, say
    ti, ti, ti, ... tj.

\begin{cases}
t = \min_{j=1:j} t_j \\
y = \operatorname{argmin}_j t_j
\end{cases}
```

1. Cause - specific PH model
Cancer 5 yr.
Prabete 2 7 yr.
A ex Cox model for cancer.
t=5. $C=1$. (exact event time)
Another Cox mode for diabetes.
t=5 $C=0$ (right censored).
Suppose we have I competing events, we run I cox models each of which for an event j.
1. So Canter \longrightarrow 5 yr Cox for D rabetes \longrightarrow 7 yr. $t=5$, $C=0$.
2. S cancer $t=5$. $C=$ O vabetes: O censored at 5 / O
Certsoren at 5

Cause-specific Survival models violate Independent & non-informative censoring assumption Joint analysis of all J events. Exponential race. If to a Exp(N), into Exp(Ng).

to to Exp(Ng). min $t_j \sim Exp(J_j)$ Exponential race for competing events. $t_i \sim Exp(\lambda_i)$ $\lambda_i = e^{x'\beta_i}$ $t_j' \sim Exp(N_j)$ $N_j = e^{\chi'\beta_j}$ We observe $st = min_{j}t_{j} \sim Exp(\Sigma_{j})$ $y = argmin_{j}t_{j} \sim Categorical(\frac{1}{2}\frac{\lambda_{1}}{\Sigma\lambda_{j}}, \frac{\lambda_{2}}{\Sigma\lambda_{j}}, \frac{\lambda_{3}}{\Sigma\lambda_{j}})$

hazard function
$$h(t) = \frac{f(t)}{5(t)} = \frac{(\frac{7}{3}\lambda_{j})e^{-(\frac{7}{3}\lambda_{j})t}}{e^{-(\frac{7}{3}\lambda_{j})t}}$$

$$= \frac{7}{3}\lambda_{j}$$

$$= \frac{7}{3}e^{x\beta_{j}}$$

constant hazard.

Weibull race.

Weibull (shape = a, "rate" = λ)

With $f(w) = a \lambda w^{a-1} e^{-\lambda w^a}$ $F(w) = 1 - e^{-\lambda w^a}$ $f(w) = f(w)/1 - F(w) = a \lambda w^{a-1}$ Property: t_j ind Weibull (a, λ_j) mint $_j \sim weibull (a, \lambda_j)$ argmin $t_j \sim weibull (a, \lambda_j)$ $x_j \sim x_j \sim x_j$

Weibull race for competing events: $\lambda_j = e^{x'\beta_j}$