import pandas as pd
from datetime import datetime
import numpy as np

dataset="/content/superstore_final_dataset (1).csv"

df=pd.read_csv(dataset,encoding="latin1")

df

→	Row_I	D	Order_ID	Order_Date	Ship_Date	Ship_Mode	Customer_ID	Customer_Name	Segment	Country	City	State	Postal_Code
C)	1	CA-2017- 152156	8/11/2017	11/11/2017	Second Class	CG-12520	Claire Gute	Consumer	United States	Henderson	Kentucky	42420.(
1	l	2	CA-2017- 152156	8/11/2017	11/11/2017	Second Class	CG-12520	Claire Gute	Consumer	United States	Henderson	Kentucky	42420.(
2	:	3	CA-2017- 138688	12/6/2017	16/06/2017	Second Class	DV-13045	Darrin Van Huff	Corporate	United States	Los Angeles	California	90036.(
3	3	4	US-2016- 108966	11/10/2016	18/10/2016	Standard Class	SO-20335	Sean O Donnel	Consumer	United States	Fort Lauderdale	Florida	33311.(
4	ı	5	US-2016- 108966	11/10/2016	18/10/2016	Standard Class	SO-20335	Sean O Donnel	Consumer	United States	Fort Lauderdale	Florida	33311.(
97	95 979	6	CA-2017- 125920	21/05/2017	28/05/2017	Standard Class	SH-19975	Sally Hughsby	Corporate	United States	Chicago	Illinois	60610.(
97	96 979	7	CA-2016- 128608	12/1/2016	17/01/2016	Standard Class	CS-12490	Cindy Schnelling	Corporate	United States	Toledo	Ohio	43615.(
97	97 979	8	CA-2016- 128608	12/1/2016	17/01/2016	Standard Class	CS-12490	Cindy Schnelling	Corporate	United States	Toledo	Ohio	43615.(
979	98 979	9	CA-2016- 128608	12/1/2016	17/01/2016	Standard Class	CS-12490	Cindy Schnelling	Corporate	United States	Toledo	Ohio	43615.(
97	99 980	0	CA-2016- 128608	12/1/2016	17/01/2016	Standard Class	CS-12490	Cindy Schnelling	Corporate	United States	Toledo	Ohio	43615.(
9800 rows × 18 columns													

df['Order_Date']=df['Order_Date'].fillna(method='ffill')

df['year']=df['Order_Date'].dt.year
df['month']=df['Order_Date'].dt.month
df['day']=df['Order_Date'].dt.day

df

₹		Row_ID	Order_ID	Order_Date	Ship_Date	Ship_Mode	Customer_ID	Customer_Name	Segment	Country	City	•••	Postal_Code	Re
	0	1	CA-2017- 152156	2017-08-11	11/11/2017	Second Class	CG-12520	Claire Gute	Consumer	United States	Henderson		42420.0	S
	1	2	CA-2017- 152156	2017-08-11	11/11/2017	Second Class	CG-12520	Claire Gute	Consumer	United States	Henderson		42420.0	S
	2	3	CA-2017- 138688	2017-12-06	16/06/2017	Second Class	DV-13045	Darrin Van Huff	Corporate	United States	Los Angeles		90036.0	١
	3	4	US-2016- 108966	2016-11-10	18/10/2016	Standard Class	SO-20335	Sean O Donnel	Consumer	United States	Fort Lauderdale		33311.0	S
	4	5	US-2016- 108966	2016-11-10	18/10/2016	Standard Class	SO-20335	Sean O Donnel	Consumer	United States	Fort Lauderdale		33311.0	S
9	9795	9796	CA-2017- 125920	2015-05-11	28/05/2017	Standard Class	SH-19975	Sally Hughsby	Corporate	United States	Chicago		60610.0	Се
ç	9796	9797	CA-2016- 128608	2016-12-01	17/01/2016	Standard Class	CS-12490	Cindy Schnelling	Corporate	United States	Toledo		43615.0	
ç	9797	9798	CA-2016- 128608	2016-12-01	17/01/2016	Standard Class	CS-12490	Cindy Schnelling	Corporate	United States	Toledo		43615.0	
ç	9798	9799	CA-2016- 128608	2016-12-01	17/01/2016	Standard Class	CS-12490	Cindy Schnelling	Corporate	United States	Toledo		43615.0	
9	9799	9800	CA-2016- 128608	2016-12-01	17/01/2016	Standard Class	CS-12490	Cindy Schnelling	Corporate	United States	Toledo		43615.0	

9800 rows × 21 columns

df.isnull().sum()

```
0
         Row_ID
                      0
        Order_ID
                      0
       Order_Date
                      0
        Ship_Date
                      0
       Ship_Mode
                      0
       Customer_ID
                      0
     Customer_Name
                      0
        Segment
                      0
                      0
         Country
          City
                      0
          State
                      0
       Postal_Code
                     11
                      0
         Region
       Product_ID
                      0
                      0
        Category
      Sub_Category
                      0
      Product_Name
                      0
          Sales
                      0
          year
                      0
         month
                      0
          day
                      0
       mai intel
```

import matplotlib.pyplot as plt

→

```
plt.figure(figsize=(8,5))
plt.scatter(df['year'],df['Sales'],color='violet')
plt.xlabel("year")
plt.ylabel("sales")
plt.title("Sales by year")
plt.show()
```



```
plt.figure(figsize=(8,5))
plt.plot(df['year'],df['Sales'],color='lightcoral',marker='x')
plt.xlabel("year")
plt.ylabel("sales")
plt.title("Sales by year")
plt.grid(True)
plt.show()
```



```
plt.figure(figsize=(8,5))
category=df["Category"].value_counts()
plt.pie(category,autopct='%1.1f%%',colors=['lightcoral','skyblue','lightgreen'])
plt.title("Category distribution")
plt.show()
```

_

Category distribution


```
products=df.groupby('Sub_Category')['Sales'].sum().sort_values(ascending=False)
products.plot(kind="bar",color='greenyellow')
plt.xlabel("product")
plt.ylabel("sales")
plt.title("sales over product")
plt.show()
```



```
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression

X = df[['year','month','day']]
Y = df['Sales']

X_train, X_test, y_train, y_test = train_test_split(X,Y,test_size=0.2,random_state=42)
model = LinearRegression()
model.fit(X_train,y_train)

The LinearRegression()

LinearRegression()
```

from sklearn.metrics import mean_absolute_error,mean_squared_error

y_pred = model.predict(X_test)

```
MAE = mean_absolute_error(y_test,y_pred)
MSE = mean_squared_error(y_test,y_pred)
RMSE = np.sqrt(MSE)
print(f'Mean Absolute Error : {MAE}')
print(f'Mean squared Error : {MSE}')
print(f'Root Mean squared Error : {RMSE}')
→ Mean Absolute Error : 303.36236440467957
     Mean squared Error : 670696.4220762155
     Root Mean squared Error : 818.9605741891459
print("choose prediction 1-yearly, 2-monthly, 3-daily ")
value=int(input("choose (1/2/3) :"))
dates= []
predictions= []
if value==1:
 years=int(input("enter your year for prediction(YYYY):"))
  newvalue=np.array([[years,1,1]])
  predictedsales=model.predict(newvalue)
 print(f"The Predicted Sales for {years} is : {predictedsales[0]}")
  dates.append(str(years))
  predictions.append(predictedsales[0])
elif value==2:
 years=int(input("enter your year for prediction(YYYY):"))
 months=int(input("enter your month for prection(1-12):"))
  newvalue=np.array([[years,months,1]])
```

```
sales_forecasting.ipynb - Colab
  predictedsales=model.predict(newvalue)
  print(f"The Predicted Sales for {years}-{months} is : {predictedsales[0]}")
  dates.append(str(years)+str(months))
  predictions.append(predictedsales[0])
elif value==3:
 years=int(input("enter your year for prediction(YYYY):"))
 months=int(input("enter your month for prection(1-12):"))
  days=int(input("enter your days for prediction(1-31):"))
  newvalue=np.array([[years,months,days]])
  predictedsales=model.predict(newvalue)
  print(f"The Predicted Sales for {years}-{months}-{days} is : {predictedsales[0]}")
  dates.append(str(years)+str(months)+str(days))
 predictions.append(predictedsales[0])
else:
  print("please enter a valid choice")
→ choose prediction 1-yearly, 2-monthly, 3-daily
     choose (1/2/3) :1
     enter your year for prediction(YYYY):2026
     The Predicted Sales for 2026 is : 222.17017648867113
     /usr/local/lib/python3.11/dist-packages/sklearn/utils/validation.py:2739: UserWarning: X does not have valid feature names, but LinearRe
       warnings.warn(
plt.figure(figsize=(5, 5))
plt.bar(dates, predictions, color='skyblue')
plt.xlabel("Date")
plt.ylabel("Predicted Sales")
plt.title("Predicted Sales Visualization")
plt.show()
Predicted Sales Visualization
         200
```

150 Predicted Sales 100 50 2026 Date

```
y_pred = model.predict(X_test)
plt.figure(figsize=(10, 5))
plt.plot(y_test.values, label="Actual Sales", marker='o', linestyle='dashed', color='blue')
plt.plot(y_pred, label="Predicted Sales", marker='s', linestyle='solid', color='red')
plt.xlabel("Data")
plt.ylabel("Sales")
plt.title("Actual vs Predicted Sales")
plt.legend()
plt.show()
```

