MATRICES Y SISTEMAS LINEALES

Matrices y Sistemas Lineales

En este tema se repasan conceptos básicos y se profundizan algunos aspectos

MATRICES

- se crearon para operar de acuerdo con ciertos criterios numéricos
- se usan en aplicaciones prácticas y desarrollos teóricos
- permiten expresar ecuaciones en forma reducida y ayudan a visualizar mejor los problemas.

SISTEMAS LINEALES

• gran variedad de aplicaciones en ciencias e ingenieras

Matrices y Sistemas Lineales

Figura : La aplicación práctica de la teoría es importante

Definición

Una matriz A es un conjunto de $m \times n$ números reales ordenados en m filas y n columnas:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

Se dice que A es una matriz de tamaño $m \times n$ y se escribe $A = [a_{ij}], i = 1, 2, \ldots, m; j = 1, 2, \ldots, n$. Esto es, a_{ij} representa el número que se encuentra en la fila i y en la columna j. A los elementos a_{ij} se les llama las componentes (entradas) de la matriz A.

Ejemplo

¿Qué puedes decir de la matriz A?

$$A = \begin{bmatrix} -2 & 3 & 5 \\ 4 & -1 & 1 \end{bmatrix}$$

Sólución: A es una matriz de tamaño 2×3 y $a_{11} = -2$; $a_{12} = 3$; $a_{13} = 5$; $a_{21} = 4$; $a_{22} = -1$; $a_{23} = 1$.

Observación

- Los paréntesis rectangulares de la notación matricial se pueden reemplazar por paréntesis circulares.
- En el caso particular de una matriz de tamaño 1×1 , identificamos la matriz [a] con el número real a.
- El conjunto de todas las matrices de números reales de tamaño $m \times n$ se denota por $\mathcal{M}_{m \times n}(\mathbb{R})$.
- En ocasiones las componentes de la matriz pueden ser números complejos, en este caso, el conjunto de todas las matrices de números complejos de tamaño $m \times n$ se denota por $\mathcal{M}_{m \times n}(\mathbb{C})$.

Definición

Dos matrices $A = [a_{ij}]$ y $B = [b_{ij}]$ son iguales, A = B, si y sólo si:

- A y B tienen el mismo tamaño y
- $\bullet \ a_{ij} = b_{ij} \ \forall i,j.$

Es decir, las matrices deben tener el mismo tamaño y los elementos situados en la misma posición deben ser iguales.

Ejemplo

Determinar el valor de a para que las matrices A y B sean iguales.

$$A = \begin{bmatrix} a & 1 \\ -1 & 2a \end{bmatrix} \qquad B = \begin{bmatrix} 2 & 1 \\ -1 & 4 \end{bmatrix}$$

Sólución: Ambas matrices tienen el mismo tamaño, serán iguales si y sólo si coinciden componente a componente. Esto sucede siempre que a=2 y 2a=4, esto es, para a=2.

Ejemplo

Determinar el valor de a para que las matrices A y B sean iguales.

$$A = \begin{bmatrix} a & 0 \\ 3 & 3a \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 0 \\ 3 & 4 \end{bmatrix}$$

Sólución: Para que ambas matrices sean iguales es necesario que a=1 y 3a=4. Es imposible que simultáneamente se satisfagan ambas igualdades. Por lo tanto, aunque las matrices tengan el mismo tamaño, $A \neq B$ para cualquier valor de a.

Matrices especiales

- La matriz fila es una matriz de orden $1 \times n$.
- La matriz columna es una matriz de orden $m \times 1$.
- La matriz cero (o matriz nula) tiene todas las componentes nulas, $\mathbb{O}_{m\times n}=[a_{ij}]$ donde $a_{ij}=0$, $\forall i,j$.
- Las matrices de tamaño $n \times n$ son matrices cuadradas de orden n. \mathcal{M}_n es el conjunto de todas las matrices cuadradas de orden n. Si $A = [a_{ij}] \in \mathcal{M}_n$, los elementos a_{ii} , $i = 1, 2, \ldots, n$ forman la diagonal de la matriz A.
- Una matriz cuadrada $A = [a_{ij}]$ es una matriz diagonal si todas las componentes fuera de su diagonal son nulas, $a_{ij} = 0$ para $i \neq j$.
- La matriz identidad (o matriz unidad) I_n es una matriz cuadrada que tiene unos en la diagonal y ceros en cualquier otra posición.

Matrices especiales

Definición

Una matriz cuadrada $A = [a_{ij}]$ de orden n es una matriz **triangular superior** si todas las componentes que están por debajo de la diagonal son nulas. Es decir, $a_{ij} = 0$ para i > j. La matriz es **triangular inferior** si las componentes que están por encima de la diagonal son todas iguales a cero. Es decir, $a_{ij} = 0$ para i < j.

Definición

Sea $A = [a_{ij}] \in \mathcal{M}_{m \times n}$, se define la **matriz traspuesta** de A como $A^t = [b_{ij}]$, donde $b_{ij} = a_{ji} \ \forall i, j$. La matriz traspuesta se obtiene intercambiando filas por columnas, manteniendo el orden.

Matrices especiales

Ejemplo

Halla A^t .

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{bmatrix}$$

Solución: Para encontrar A^t intercambiaremos filas por columnas.

$$A^t = \begin{bmatrix} 1 & 5 \\ 2 & 6 \\ 3 & 7 \\ 4 & 8 \end{bmatrix}$$

Operaciones con matrices: suma de matrices

Definición

Sean $A, B \in \mathcal{M}_{m \times n}$, $A = [a_{ij}]$, $B = [b_{ij}]$; se define la **matriz** suma de A con B como $A + B = [c_{ij}]$ donde $c_{ij} = a_{ij} + b_{ij}$, $\forall i, j$.

Propiedades. Sean $A, B, C, \mathbb{O} \in \mathcal{M}_{m \times n}$:

- Asociativa: (A + B) + C = A + (B + C).
- Conmutativa: A + B = B + A.
- Elemento neutro: $A + \mathbb{O} = \mathbb{O} + A = A$.
- Existencia de elemento opuesto: $\exists (-A) \in \mathcal{M}_{m \times n} \mid A + (-A) = \mathbb{O}$. De hecho, si $A = [a_{ij}]$, $(-A) = [-a_{ij}]$.

Operaciones con matrices: multiplicación por un escalar

Definición

Sean $\lambda \in \mathbb{R}$ y $A = [a_{ij}] \in \mathcal{M}_{m \times n}$, se define la **multiplicación** de un escalar con una matriz como la matriz $\lambda A = [c_{ij}]$ donde $c_{ij} = \lambda a_{ij}$, $\forall i, j$.

Propiedades. Sean $B, C \in \mathcal{M}_{m \times n}$ y $\lambda, \beta \in \mathbb{R}$:

- Existencia del escalar 1: $1 \cdot B = B$.
- Distributiva respecto de la suma de escalares: $(\lambda + \beta)B = \lambda B + \beta B$.
- Distributiva respecto de la suma de matrices: $\lambda(B+C) = \lambda B + \lambda C$.
- Asociativa: $(\lambda \cdot \beta)B = \lambda(\beta B)$.

Operaciones con matrices: producto

Definición

Sean $A = [a_{ij}] \in \mathcal{M}_{m \times n}$ y $B = [b_{ij}] \in \mathcal{M}_{n \times p}$; se define la **matriz producto** de A con B como $A \cdot B = [c_{ij}]$ donde $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$ para $i = 1, 2, \ldots, m$ y $j = 1, 2, \ldots, p$, se multiplica la fila i-ésima de A con la columna j-ésima de B. La matriz producto $A \cdot B \in \mathcal{M}_{m \times p}$

Propiedades. Sean $A \in \mathcal{M}_{m \times n}$, $B, D \in \mathcal{M}_{n \times p}$, $C \in \mathcal{M}_{p \times q}$ y $\lambda \in \mathbb{R}$:

- Asociativa: A(BC) = (AB)C.
- NO conmutativa: $AB \neq BA$.
- Distributiva respecto de la suma: A(B + D) = AB + AD.
- Asociativa: $\lambda(AB) = (\lambda A)B$.
- Elemento identidad: $AI_n = I_m A = A$.

Operaciones con matrices

Ejemplo

Calcula 2D, A + B, $A \cdot D$.

$$A = \begin{bmatrix} 1 & 2 & -3 \\ -2 & 0 & 1 \end{bmatrix} \quad B = \begin{bmatrix} 0 & -1 & 2 \\ 3 & 4 & 1 \end{bmatrix} \quad D = \begin{bmatrix} 1 & 0 & 3 \\ -1 & 2 & 1 \\ 4 & -2 & 0 \end{bmatrix}$$

Solución:

$$2D = \begin{bmatrix} 2 & 0 & 6 \\ -2 & 4 & 2 \\ 8 & -4 & 0 \end{bmatrix} A + B = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 4 & 2 \end{bmatrix} A \cdot D = \begin{bmatrix} -13 & 10 & 5 \\ 2 & -2 & -6 \end{bmatrix}$$

Operaciones con matrices

Ejemplo

Comprueba si son ciertas las siguientes igualdades: AB = BA, $(A+B)^2 = A^2 + 2AB + B^2$, $A^2 + BA = A(A+B)$.

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} 0 & -1 \\ 3 & 2 \end{bmatrix}$$

Solución:

$$AB \neq BA$$

 $(A+B)^2 \neq A^2 + 2AB + B^2$
 $A^2 + BA \neq A(A+B)$

Las igualdades anteriores no son ciertas debido a que el producto de matrices no es conmutativo.

Matrices simétricas y antisimétricas

Definición

Una matriz $A = [a_{ij}]$ es **simétrica** si $A = A^t$, es decir si $a_{ij} = a_{ji} \ \forall i, j$.

Definición

Una matriz $A = [a_{ij}]$ es antisimétrica si $A = -A^t$, es decir si $a_{ii} = -a_{ii} \ \forall i, j$.

Observación

- Las matrices simétricas y antisimétricas deben ser necesariamente cuadradas.
- La diagonal de una matriz antisimétrica está formada por ceros.

Matrices simétricas y antisimétricas

Ejemplo

Calcula: $A + A^t$, $B - B^t$.

$$A = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} 0 & -1 \\ 3 & 2 \end{bmatrix}$$

Solución:

$$A + A^{t} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

$$B - B^t = \begin{bmatrix} 0 & -1 \\ 3 & 2 \end{bmatrix} - \begin{bmatrix} 0 & 3 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 0 & -4 \\ 4 & 0 \end{bmatrix}$$

Matrices simétricas y antisimétricas

Teorema

Si B es una matriz cuadrada cualquiera entonces $S = B + B^t$ es simétrica.

Teorema

Si C es una matriz cuadrada cualquiera entonces $A = C - C^t$ es antisimétrica.

Teorema

Cualquier matriz cuadrada P puede expresarse como la suma de una matriz simétrica S y una antisimétrica A.

$$P = \frac{1}{2}(P + P^{t}) + \frac{1}{2}(P - P^{t}) = \frac{1}{2}S + \frac{1}{2}A$$

Matrices invertibles

Definición

Una matriz cuadrada A de orden n es **invertible** (no singular), si existe una matriz C del mismo tamaño tal que $AC = CA = I_n$.

Teorema

Si
$$A \in \mathcal{M}_n$$
 es invertible, y $C, B \in \mathcal{M}_n$ son tales que $AC = CA = I_n$ y $AB = BA = I_n$ entonces $C = B$.

Matriz inversa

Definición

Si $A \in \mathcal{M}_n$ es invertible, a la única matriz $C \in \mathcal{M}_n$ tal que $AC = CA = I_n$ se le llama **matriz inversa** de A y se representa por A^{-1} ; es decir, $AA^{-1} = A^{-1}A = I_n$

Propiedades. Sean $A, B \in \mathcal{M}_n$ dos matrices invertibles,

- Si $A, B \in \mathcal{M}_n$ son matrices invertibles, entonces la matriz AB es invertible y además $(AB)^{-1} = B^{-1}A^{-1}$.
- Si $A \in \mathcal{M}_n$ es invertible, entonces A^{-1} es también invertible y $(A^{-1})^{-1} = A$.

Definición

Sea $A \in \mathcal{M}_n$, se dice que A es una matriz ortogonal si $AA^t = I_n$; la matriz traspuesta de A es igual a su inversa.

Matrices equivalentes

Definición

Dada una matriz $A \in \mathcal{M}_{n \times m}$ con filas F_i , i = 1, 2, ... n definimos las siguientes operaciones elementales por filas:

- Intercambio de filas: $F_i \leftrightarrow F_j$; la fila i se intercambia con la fila j.
- ② Multiplicación por un escalar: $F_i \to \alpha F_i$ ($\alpha \neq 0$); la fila i se cambia por la misma fila multiplicada por α .
- Suma de filas: $F_i \to F_i + \beta F_j$; la fila i se cambia por la suma de la fila i con β veces la fila j.

Matrices equivalentes

Definición

Sean $A, B \in \mathcal{M}_{n \times m}$. Decimos que la matriz B es **equivalente por filas** a la matriz A, si B se puede obtener de la matriz A al aplicarle una sucesión finita de operaciones elementales por filas. Si B es equivalente a A escribiremos $B \sim A$.

Definición

Al primer elemento (de izquierda a derecha) distinto de cero de cada fila de una matriz se le llama **pivote**.

Matrices equivalentes

Ejemplo

a) Comprueba si A y B son matrices equivalentes por filas. b) Indica los pivotes de la matriz B.

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & -3 & -1 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -7 & -7 \end{bmatrix}$$

Solución:

a)

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & -3 & -1 \end{bmatrix} \quad {}^{F_2 \to F_2 - 2F_1} \quad \begin{bmatrix} 1 & 2 & 3 \\ 0 & -7 & -7 \end{bmatrix} = B$$

b) Los pivotes de B son: 1 y -7.

Cálculo de la matriz inversa

Teorema

Sea A una matriz cuadrada $A \in \mathcal{M}_n$, las siguientes condiciones son equivalentes:

- \bullet $\exists A^{-1}$, A es invertible.
- ② $A \sim I_n$, A es equivalente por filas a la matriz identidad.

Es decir, $\exists A^{-1} \Leftrightarrow A \sim I_n$.

Paso 1: Formar la matriz aumentada [A|I].

Paso 2: "Llevar" a A a la identidad aplicando operaciones elementales por filas a A y a I:

- a) De entre todas las filas elegir una que tenga el pivote lo más a la izda y colocarla como F_1 .
- b) Obtener ceros bajo el pivote.
- c) Repetir los pasos a) y b) con la submatriz hasta obtener una matriz triangular superior.
- d) Conseguir ceros por encima de la diagonal principal. Aplica el paso b) de abajo hacia arriba.
- e) Conviertir en unos todos los pivotes.

Paso 3: Una vez obtenida [I|B], $B = A^{-1}$.

Paso 4: Si A no se puede llevar a I, significa que A no tiene inversa.

Ejemplo

Halla, si existe, la inversa de la matriz A.

$$A = \left[\begin{array}{rrr} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{array} \right]$$

Solución: Aplicaremos el método Gauss-Jordan explicando los pasos en detalle.

Paso 1: Formamos la matriz aumentada,

$$[A|I] = \left[\begin{array}{ccc|ccc|c} 1 & 2 & 3 & 1 & 0 & 0 \\ 2 & 5 & 3 & 0 & 1 & 0 \\ 1 & 0 & 8 & 0 & 0 & 1 \end{array} \right]$$

Paso 2 a): Todas las filas tienen el pivote en la primera columna y no es necesario intercambiar filas.

Paso 2 b): Utilizaremos el pivote de la fila 1 para transformar en ceros los elementos que están por debajo de él mediante las operaciones elementales productos por un escalar y suma de filas.

$$[A|I] = \begin{bmatrix} \boxed{1} & 2 & 3 & 1 & 0 & 0 \\ 2 & 5 & 3 & 0 & 1 & 0 \\ 1 & 0 & 8 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{F_2 \to F_2 + (-2)F_1 F_3 \to F_3 + (-1)F_1}^{F_2 \to F_2 + (-2)F_1}$$

$$\sim \begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & -3 & -2 & 1 & 0 \\ 0 & -2 & 5 & -1 & 0 & 1 \end{bmatrix}$$

Paso 2 c): Ignoramos la fila 1 y trabajamos con la submatriz formada por las filas 2 y 3. Los pivotes están en la columna 2 y no es necesario intercambiar filas. Utilizamos el pivote de la segunda fila para transformar en ceros los elementos que están debajo de él.

$$[A|I] \sim \begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & \boxed{1} & -3 & -2 & 1 & 0 \\ 0 & -2 & 5 & -1 & 0 & 1 \end{bmatrix} \qquad F_{3} \rightarrow F_{3} + 2F_{2}$$

$$\sim \begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & -3 & -2 & 1 & 0 \\ 0 & 0 & -1 & -5 & 2 & 1 \end{bmatrix}$$

Hemos obtenido una matriz triangular superior.

Paso 2 d): Hay que conseguir ceros por encima de la diagonal empezando de abajo hacia arriba.

$$[A|I] \sim \begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & -3 & -2 & 1 & 0 \\ 0 & 0 & -1 & -5 & 2 & 1 \end{bmatrix} \xrightarrow{F_1 \to F_1 + 3F_3}_{F_2 \to F_2 + (-3)F_3}$$

$$\sim \begin{bmatrix} 1 & 2 & 0 & -14 & 6 & 3 \\ 0 & 1 & 0 & 13 & -5 & -3 \\ 0 & 0 & -1 & -5 & 2 & 1 \end{bmatrix} \xrightarrow{F_1 \to F_1 + (-2)F_2}_{\sim}$$

$$\sim \begin{bmatrix} 1 & 0 & 0 & -40 & 16 & 9 \\ 0 & 1 & 0 & 13 & -5 & -3 \\ 0 & 0 & -1 & -5 & 2 & 1 \end{bmatrix}$$

Hemos obtenido una matriz diagonal.

Paso 2 e): Tal sólo falta transformar todos los elementos de la diagonal en unos.

$$[A|I] \sim \begin{bmatrix} 1 & 0 & 0 & -40 & 16 & 9 \\ 0 & 1 & 0 & 13 & -5 & -3 \\ 0 & 0 & -1 & -5 & 2 & 1 \end{bmatrix} \qquad F_{3 \to (-1)F_{3}}$$

$$\sim \begin{bmatrix} 1 & 0 & 0 & -40 & 16 & 9 \\ 0 & 1 & 0 & 13 & -5 & -3 \\ 0 & 0 & 1 & 5 & -2 & -1 \end{bmatrix}$$

Paso 3: La matriz inversa es:

$$A^{-1} = \left[\begin{array}{rrr} -40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{array} \right]$$

Ejemplo

Halla, si existe, la inversa de la matriz M.

$$M = \left[\begin{array}{rrr} 1 & 1 & 1 \\ 2 & 1 & -3 \\ -1 & -2 & -6 \end{array} \right]$$

Solución: Paso 1:

$$[M|I] = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 2 & 1 & -3 & 0 & 1 & 0 \\ -1 & -2 & -6 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{F_2 \to F_2 + (-2)F_1}_{F_3 \to F_3 + F_1}$$

$$\sim \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & -1 & -5 & -2 & 1 & 0 \\ 0 & -1 & -5 & 1 & 0 & 1 \end{bmatrix}$$

Paso 2:

$$[M|I] \sim \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & -1 & -5 & -2 & 1 & 0 \\ 0 & -1 & -5 & 1 & 0 & 1 \end{bmatrix} \xrightarrow{F_3 \to F_3 + (-1)F_2}$$

$$\sim \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & -1 & -5 & -2 & 1 & 0 \\ 0 & 0 & 0 & 3 & -1 & 1 \end{bmatrix}$$

Hemos obtenido una fila de ceros, no se puede "llevar" a M a la identidad, esto significa que M no tiene inversa $\nexists M^{-1}$.

Ecuaciones matriciales

Una ecuación matricial es una ecuación donde la incógnita es una matriz. Se resuelven transformando la ecuación inicial en otra equivalente usando propiedades y definiciones. Para despejar la incógnita se hace uso de la matriz inversa.

$$XP=Q-R$$
 post-multiplicamos ambos lados por P^{-1} $XPP^{-1}=(Q-R)P^{-1}$ definición matriz inversa $AA^{-1}=A^{-1}A=I_n$ $XI_n=(Q-R)P^{-1}$ propiedad matriz identidad $AI_n=I_nA=A$ $X=(Q-R)P^{-1}$

Ecuaciones matriciales

Ejemplo

Resolver la ecuación matricial P+QX=RS-TX. ¿Qué condición debe cumplirse para despejar X?

Solución:

$$P + QX = RS - TX$$

restamos P a ambos lados; sumamos TX a ambos lados

$$(P-P) + QX + TX = RS - P + (TX - TX)$$

definición matriz opuesta $A + (-A) = \mathbb{O}$

$$\mathbb{O} + QX + TX = RS - P + \mathbb{O}$$

propiedad matriz cero $A + \mathbb{O} = \mathbb{O} + A = A$

$$QX + TX = RS - P$$

Ecuaciones matriciales

$$QX + TX = RS - P$$
propiedad distributiva $(A + B)X = AX + BX$
 $(Q + T)X = RS - P$
pre-multiplicamos ambos lados por $(Q + T)^{-1}$
 $(Q + T)^{-1}(Q + T)X = (Q + T)^{-1}(RS - P)$
definición matriz inversa $AA^{-1} = A^{-1}A = I_n$
 $I_nX = (Q + T)^{-1}(RS - P)$
propiedad matriz identidad $AI_n = I_nA = A$
 $X = (Q + T)^{-1}(RS - P)$

Para poder despejar X es necesario que la matriz (Q + T) tenga inversa.

Definición

Un sistema de m ecuaciones lineales con n incógnitas que tiene la forma

donde los $a_{ij}, b_i \in i = 1, 2, ..., m, j = 1, 2, ..., n$ son conocidos es un **sistema de ecuaciones lineales**. Una solución de este sistema es un conjunto de n números reales $\alpha_i, i = 1, 2, ..., n$ tales que al hacer las sustituciones $x_i = \alpha_i$ en cada una de las m ecuaciones las convierte en identidades.

Un sistema de ecuaciones lineales se puede escribir en forma matricial como AX = B, donde

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \qquad X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \qquad B = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

La matriz A es la matriz de coeficientes, la matriz B la de términos independientes y la matriz X la de incógnitas.

Definición

Sea el sistema AX = B, se define la **matriz ampliada** del sistema como [A|B].

Observación

• Si m = n el sistema de ecuaciones lineales se puede resolver facilmente:

$$AX = B$$
$$A^{-1}AX = A^{-1}B$$
$$X = A^{-1}B$$

Basta con hallar la matriz inversa, si existe, y multiplicar las matrices.

Definición

Un sistema de m ecuaciones lineales con n incógnitas AX = B es:

- Compatible: si tiene al menos una solución.
 - Determinado: si la solución es única.
 - Indeterminado: si tiene infinitas soluciones.
- Incompatible: si no tiene soluciones.

Definición

Dos sistemas lineales del mismo tamaño son **equivalentes** si tienen las mismas soluciones.

Ejemplo

Resuelve el sistema lineal

$$x_1 + x_2 + 2x_3 = 9$$
$$2x_1 + 4x_2 - 3x_3 = 1$$
$$3x_1 + 6x_2 - 5x_3 = 0$$

Solución: Vamos a escribir el SEL de una manera más sencilla. La primera ecuación queda igual y eliminaremos la variable x_1 de la segunda y tercera ecuación. A la segunda ecuación sumaremos la primera multiplicado por (-2); a la tercera ecuación sumaremos la primera multiplicado por (-3).

Obtenemos un SEL equivalente.

$$x_1 + x_2 + 2x_3 = 9$$

 $2x_2 - 7x_3 = -17$
 $3x_2 - 11x_3 = -27$

De forma análoga eliminamos la variable x_2 de la tercera ecuación, a la tercera ecuación le sumamos la segunda multiplicada por $\left(-\frac{3}{2}\right)$.

$$x_1 + x_2 + 2x_3 = 9$$
$$2x_2 - 7x_3 = -17$$
$$-\frac{1}{2}x_3 = -\frac{3}{2}$$

Este sistema se puede resolver comodamente: primero obtenemos x_3 de la tercera ecuación; luego sustituimos x_3 en la segunda ecuación y despejamos x_2 ; finalmente sustituimos x_3 y x_2 en la primera ecuación y obtenemos x_1 (sustitución regresiva).

$$x_3 = 3$$

$$x_2 = \frac{-17 + 7 \cdot 3}{2} = 2$$

$$x_1 = 9 - 2 - 2 \cdot 3 = 1$$

$$[A|B] = \begin{bmatrix} 1 & 1 & 2 & 9 \\ 2 & 4 & -3 & 1 \\ 3 & 6 & -5 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 2 & 9 \\ 0 & 2 & -7 & -17 \\ 0 & 0 & -\frac{1}{2} & -\frac{1}{2} \end{bmatrix}$$

Definición

La matriz $A \in \mathcal{M}_{m \times n}$ está en forma escalonada si se cumplen las siguientes condiciones:

- Las filas nulas (si existen) están por debajo de las no nulas.
- La entrada pivote de cada fila está a la derecha de la entrada pivote de la fila anterior.

Ejemplo

Indica si las matrices son escalonadas.

Solución: La matriz P está en forma escalonada pero Q no, el pivote de la fila 4 no está a la derecha del pivote de la fila 3.

Definición

Un sistema HX = C está escalonado si la matriz ampliada [H|C] es una matriz escalonada. A las variables que correspondan a pivotes se les llama variables ligadas y a las restantes variables libres.

Procedimiento para obtener un sistema equivalente en forma "escalonada" y resolver por sustitución regresiva. Este algoritmo "lleva" una matriz a una forma escalonada equivalente aplicando operaciones elementales por filas.

Paso 1: Entre todas las filas, elegir una de las que tenga la entrada pivote lo más a la izquierda posible y colocarla como primera fila.

Paso 2: : Con el pivote de F_1 , transformar en ceros los elementos que están por debajo de él.

Paso 3: Repetir los pasos 1 y 2 con la submatriz formada por todas las filas excluyendo la primera. La nueva matriz que obtengamos tendrá ceros por debajo del pivote de la fila 2.

Paso 4: Continuar el proceso hasta obtener una matriz escalonada.

Ejemplo

Halla una matriz escalonada equivalente a la matriz P.

$$P = \begin{bmatrix} 0 & -4 & -1 & 3 \\ 3 & 4 & 0 & 7 \\ 1 & 1 & 3 & 5 \end{bmatrix}$$

Solución:

Paso 1: F_2 y F_3 tiene el pivote en la primera columna y F_1 en la segunda. Intercambiamos F_1 y F_3 , resulta más fácil trabajar con el valor 1 como pivote.

$$P = \begin{bmatrix} 0 & -4 & -1 & 3 \\ 3 & 4 & 0 & 7 \\ 1 & 1 & 3 & 5 \end{bmatrix} \quad \begin{matrix} F_{1 \leftrightarrow F_{3}} \\ \sim \end{matrix} \quad \begin{bmatrix} 1 & 1 & 3 & 5 \\ 3 & 4 & 0 & 7 \\ 0 & -4 & -1 & 3 \end{bmatrix}$$

Paso 2: Utilizaremos el pivote de F_1 para transformar en ceros los elementos que están por debajo de él.

$$P \sim \begin{bmatrix} \boxed{1} & 1 & 3 & 5 \\ 3 & 4 & 0 & 7 \\ 0 & -4 & -1 & 3 \end{bmatrix} \quad {}^{F_2 \to F_2 + (-3)F_1}_{\sim} \quad \begin{bmatrix} 1 & 1 & 3 & 5 \\ 0 & 1 & -9 & -8 \\ 0 & -4 & -1 & 3 \end{bmatrix}$$

Paso 3: Repetimos los pasos anteriores, el pivote de la segunda fila es 1 y obtenemos ceros debejo de él.

$$P \sim \begin{bmatrix} 1 & 1 & 3 & 5 \\ 0 & \boxed{1} & -9 & -8 \\ 0 & -4 & -1 & 3 \end{bmatrix} \quad \stackrel{F_3 \to F_3 + 4F_2}{\sim} \quad \begin{bmatrix} 1 & 1 & 3 & 5 \\ 0 & 1 & -9 & -8 \\ 0 & 0 & -37 & -29 \end{bmatrix}$$

Paso 4: Podemos parar, la matriz es escalonada.

Se puede aplicar a la resolución de sistemas de ecuaciones lineales AX = B, escalonando la matriz ampliada y aplicando sustitución regresiva. Si la matriz escalonada tiene variables libres, se despejan las variables ligadas en función de las libres.

Ejemplo

Resolver los siguientes sistemas.

Solución: Aplicamos Gauss y hacemos sustitución regresiva a la matriz escalonada equivalente.

$$[A|B] = \begin{bmatrix} 1 & 1 & 0 & 3 \\ 0 & 1 & 1 & 5 \\ 1 & 0 & 1 & 4 \\ 5 & -1 & 1 & 6 \end{bmatrix} \xrightarrow{F_3 \to F_3 + (-1)F_1}_{F_4 \to F_4 + (-5)F_1} \begin{bmatrix} 1 & 1 & 0 & 3 \\ 0 & 1 & 1 & 5 \\ 0 & -1 & 1 & 1 \\ 0 & -6 & 1 & -9 \end{bmatrix} \sim$$

$$F_{3 \to F_3 + 1F_2}_{F_4 \to F_4 + 6F_2} \begin{bmatrix} 1 & 1 & 0 & 3 \\ 0 & 1 & 1 & 5 \\ 0 & 0 & 2 & 6 \\ 0 & 0 & 7 & 21 \end{bmatrix} \xrightarrow{F_4 \to F_4 + (-\frac{7}{2})F_3}_{\sim} \begin{bmatrix} 1 & 1 & 0 & 3 \\ 0 & 1 & 1 & 5 \\ 0 & 0 & 2 & 6 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

La matriz escalonada tiene 3 variables ligadas x_1 , x_2 y x_3 ya que tiene 3 pivotes.

Aplicando sustitución regresiva:

$$\begin{array}{lll}
x_3 & = \frac{6}{2} = 3 \\
x_2 & = 5 - x_3 = 5 - 3 = 2 \\
x_1 & = 3 - x_2 = 3 - 2 = 1
\end{array} \qquad X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$$

$$X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$$

$$[A|B] = \begin{bmatrix} 1 & -2 & 1 & -1 & | & 4 \\ 2 & -3 & 2 & -3 & | & -1 \\ 3 & -5 & 3 & -4 & | & 3 \\ -1 & 1 & -1 & 2 & | & 5 \end{bmatrix} \xrightarrow{F_2 \to F_2 + (-2)F_1}_{F_3 \to F_3 + (-3)F_1}$$

$$\sim \begin{bmatrix} 1 & -2 & 1 & -1 & | & 4 \\ 0 & 1 & 0 & -1 & | & -9 \\ 0 & 1 & 0 & -1 & | & -9 \\ 0 & -1 & 0 & 1 & | & 9 \end{bmatrix} \xrightarrow{F_3 \to F_3 + (-1)F_2}_{F_4 \to F_4 + F_2}$$

$$\sim \begin{bmatrix} 1 & -2 & 1 & -1 & | & 4 \\ 0 & 1 & 0 & -1 & | & -9 \\ 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

La matriz escalonada tiene 2 pivotes, x_1 y x_2 son variables ligadas; x_3 y x_4 son variables libres.

Despejamos las variables ligadas en función de las libres.

$$x_4 = x_4$$

 $x_3 = x_3$
 $x_2 = -9 + x_4$
 $x_1 = -14 - x_3 + 3x_4$

$$X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -14 \\ -9 \\ 0 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 3 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$