Bölüm 3 Atama ve Girdi/Çıktı Komutları

Atama Komutu

Operatörler

İsim Sabitleri

Veri Tipi Dönüşümü

Çıktı Fonksiyonu - printf()

Girdi Fonksiyonu - scanf()

Matematik Kütüphanesi

Değişkenlerin yani bellek hücrelerinin içine veri saklamak için kullanılan yöntemlerden birisi atama komutudur.

$$de\check{g}işken = ifade;$$

Komut Bellek Görüntüsü int x; ? x=5;

Tanımlama Komutu

Bellek Görüntüsü

```
double y; ? ? ?
```

Atama Komutu

Bellek Görüntüsü

int k;
double z;

Atama komutu	<u>Değişken değeri</u>
k=14;	k tamsayı değişkenidir, atama operatörünün sağ tarafındaki
	14 tamsayı sabiti, k'ya atanır.
k=3.7;	k tamsayı değişkenidir, ancak atama operatörünün sağ
	tarafında 3.7 reel sayı sabiti vardır. Bu durumda 3.7
	değerinin ondalık kısmı otomatik olarak atanır ve 3 tamsayı
	değeri, k'ya atanır.
z=10.8;	z reel sayı değişkenidir, atama operatörünün sağ tarafındaki
	10.8 reel sayı sabiti, z'ye atanır.
z=5;	z reel değişkenidir, ancak atama operatörünün sağ tarafında 5
	tamsayı sabiti vardır. Bu durumda 5 tamsayısı otomatik
	olarak reel sayıya dönüştürülür ve 5.0 değeri, z'ye atanır.

Değişkenlere İlk Değer Ataması

Tanımlama ve Atama Ayrı Komut Olarak:

Tanımlama ve Atama Tek Komut Olarak:

Aritmetik Operatörler

Tekli (unary) eksi (-): Sayıyı negatif hale getirir: -3 -9

Tekli (unary) artı (+): Sayıyı pozitif hale getirir: +5 +7.8

Çıkarma Operatörü (–): İki değerin birbirinden çıkarılmasını sağlar, $13-1 \rightarrow 12$ $7-9 \rightarrow -2$ $2.9-0.3 \rightarrow 2.6$

Toplama Operatörü (+): İki değerin toplanmasını sağlar,

$$3+1 \rightarrow 4$$

$$5+2 \rightarrow -3$$

$$3+1 \rightarrow 4$$
 $5+2 \rightarrow -3$ $1.1+0.3 \rightarrow 1.4$

Bölme Operatörü (/): Bir değerin diğer bir değere bölünmesini sağlar,

$$5/2 \rightarrow 2$$
 $-3.0/2 \rightarrow -1.5$ $6/2 \rightarrow 3$

Aritmetik Operatörler

Mod Operatörü (%): İki tamsayı değerinin birbirine bölünmesinden kalan değeri verir. Sadece tamsayı değerleri için tanımlıdır.

$$10 \stackrel{\circ}{\circ} 3 \stackrel{\bullet}{\rightarrow} 1 \qquad 4 \stackrel{\circ}{\circ} 2 \stackrel{\bullet}{\rightarrow} 0$$

Aritmetik Operatör Kuralları

- ➤ İki operatör yan yana kullanılamaz. (2+/3) geçersiz
- \triangleright İki tamsayı işleminin sonucu tamsayıdır. 2+3 \rightarrow 5 5/2 \rightarrow 2
- Sayılardan birisi reel ise sonuç reel sayıdır. $2.0+3 \rightarrow 5.0$ $5/2.0 \rightarrow 2.5$
- ➤ İşlem sırası parantez kullanılarak belirtilebilir.
- > Parantez kullanıldığı durumlarda, işlem içten dışa doğru ilerler.
- > Parantezlerin olmadığı durumda öncelik tablosu geçerlidir

Aritmetik Operatörlerin Öncelik Sırası

Öncelik sırası	Operatör	Özellik
En yüksek	()	İçten dışa
	- +	Tekli operatör (sağdan sola)
+	* / %	İkili operatör (soldan sağa)
En düşük	+ -	İkili operatör (soldan sağa)

Aritmetik Operatörlerin Öncelik Sırası

9/2*4.2+5/2-1.1 işleminin sonucunu bulalım.

$$9 / 2 * 4.2 + 5 / 2 -1.1$$
 \downarrow
 $4 * 4.2 + 5 / 2 -1.1$
 \downarrow
 $16.8 + 5 / 2 -1.1$
 \downarrow
 $16.8 + 2 -1.1$
 \downarrow
 $18.8 - 1.1$
 \downarrow
 17.7

İsim Sabitleri

#define sabit_adı değer

Örnek:

Pi sayısını isim sabiti olarak tanımlayan komutu yazalım.

#define PI 3.1415

Veri Tipi Dönüşümü

Değişkenlerin değerlerinin veya sabitlerin veri tiplerinin başka veri tiplerine dönüştürülmesi veri tipi dönüşümü olarak adlandırılır.

Otomatik Veri Tipi Dönüşümü

```
double r=0.5, p=5.2, s; int i=15, q=10, w; char ch;
```

Veri Tipi Dönüşümü

Tanımlanan Veri Tipi Dönüşümü

(istenilen_ veri_tipi) değişken_ismi

Sikti Fonksiyonu - printf()

printf() fonksiyonu program sonuçlarının ekranda gösterilmesini sağlayan bir kütüphane fonksiyonudur.

```
printf("format dizgisi");
```

```
Örnek: printf("Bu bir ciktidir.");
```

Cıktı: Bu bir ciktidir.

```
Örnek: #include <stdio.h>
    int main(void)
    { printf("gecen ogrenci sayisi");
        printf("=30,");
        printf(" kalan ogrenci sayisi=");
        printf("10");
        return(0);
}
```

Çıktı:

gecen ogrenci sayisi=30, kalan ogrenci sayisi=10

Çıktıların ayrı satırlarda gösterilmek isteniyorsa yeni satır karakteri '\n' kullanılmalıdır.

Örnek:

```
printf("Bu 1. satır. \nBu 2. satir.");
```

```
Cıktı: Bu 1. satir. Bu 2. satir.
```

printf() değişkenlerin veya ifadelerin değerlerinin ekranda gösterilmesini sağlar.

```
printf("format dizgisi", çıktı listesi);
```

Örnek:

```
int x = 75;
printf("%d", x);
```

Çıktı: 75

Yer belirleyici	Veri tipi
ಕ <u>ೆ</u> ಆ	Karakter
%d	Tamsayı
%e	Bilimsel gösterim (scientific notation)
%f %lf	Reel sayı (decimal, floating point)
%g	%e ve %f'den hangisi daha kısa ise onu kullanır
%s	Dizgi (string)
%u	İşaretsiz ondalık (Unsigned decimal)
%x	Hexadecimal

Formatlı Çıktı

```
Örnek
                                       Çıktı
                                        \Box\Box33
%nd
      printf("%4d", 33);
                                       \Box\Box M
%nc
      printf("%3c", 'M');
                                       %ns
      printf("%10s", "Merhaba");
%n.mf printf("%f", 12.236);
                                        12.236000
%n.me printf("%10.3e", -0.0536);
                                       -5.350e-02
```

Ters Eğik Çizgi Karakter Sabitleri (\)

Kod	Açıklam a
\b	Geriye doğru boşluk (backspace)
\f	Form besleme (form feed)
\ n	Yeni satır
۱r	Satır başı (carriage return)
\t	Sekme (horizontal tab)
\'	Tek tırnak karakteri
\0	Boş (null)

Ters Eğik Çizgi Karakter Sabitleri (\)

```
printf ("%s()b%s", "Merhaba", "Nasilsin?");

Geriye doğru bir boşluk ver Çıktı: MerhabNasilsin?
```

```
printf ("%s (t\t\t\s", "Merhaba", "Nasilsin?");
```

Üç sekme kadar ilerle

Çıktı: Merhaba

Nasilsin

Girdi Fonksiyonu - scanf()

scanf () fonksiyonu kullanıcı tarafından veri girişinin yapılmasını ve bu verilerin girdi listesinde belirtilen değişkenlerde saklanmasını sağlayan bir fonksiyondur.

```
scanf("format_dizgisi", girdi_listesi);
```

```
int a,b;
...
scanf("%d%d", &a,&b);

Girdi: 3 5
3 5
```

Matematik Kütüphanesi

Tablo 3.4 Bazı Matematik Kütüphane Fonksiyonları

Fonksiyon	<u>Açıklaması</u>
cos(x)	x parametresi ve fonksiyonun sonucu double veri tipindedir.
	Verilen x değerinin kosünüs karşılığını hesaplar.
log(x)	x parametresi ve fonksiyonun sonucu double veri tipindedir.
	Verilen x değerinin logaritma karşılığını hesaplar.
pow(x,y)	x, y parametreleri ve fonksiyonun sonucu double veri
	tipindedir. Verilen x değerinin x ^y değerini hesaplar.
sqrt(x)	ж ve fonksiyonun sonucu double veri tipindedir. Verilen ж
	değerinin kara kökünü hesaplar.

Örnek: sqrt(a*b-c/6.0);
pow(p*q, 5.0)