ИСР. Таблица интегралов и дифференциалов

Белорукова Елизавета, ИВТ, 3 курс, 1 подгруппа, Тема 9. $18~{\rm декабр} {\rm g}~2019~{\rm r}.$

Таблица интегралов и дифференциалов

Интегралы	Дифференциалы
$\int 0 \cdot dx = C$	d(c) = 0, c = const
$\int dx = \int 1 \cdot dx = x + C$	$d(x^n) = nx^{n-1}dx$
$\int x^n \cdot dx = \frac{x^{n+1}}{n+1} + C,$ $n \neq -1, x > 0$	$d(a^x) = a^x \cdot lnadx$
$\int \frac{dx}{x} = \ln x + C$	$d(e^x) = e^x dx$
$\int a^x dx = \frac{a^x}{\ln a} + C$	$d(log_a x) = \frac{dx}{xlna}$
$\int e^x dx = e^x + C$	$d(\ln x) = \frac{dx}{x}$
$\int sinx dx = -cosx + C$	d(sinx) = cosxdx
$\int cosxdx = sinx + C$	d(cosx) = -sinxdx
$\int \frac{dx}{\sin^2 x} = -ctgx + C$	$d(\sqrt{x}) = \frac{dx}{2\sqrt{x}}$
$\int \frac{dx}{\cos^2 x} = tgx + C$	$d(tgx) = \frac{dx}{\cos^2 x}$
$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin\frac{x}{a} + C, x < a $	$d(ctgx) = -\frac{dx}{\sin^2 x}$
$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \operatorname{arct} g \frac{x}{a} + C$	$d(arcsinx) = \frac{dx}{\sqrt{1-x^2}}$
$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \frac{a + x}{a - x} + C, x \neq a$	$d(arccosx) = -\frac{dx}{\sqrt{1-x^2}}$
$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln x + \sqrt{x^2 \pm a^2} + C$	$d(arctgx) = \frac{dx}{1+x^2}$
	d(shx) = chxdx
2	d(chx) = shxdx