Data Modeling Using the Entity-Relationship (ER) Model

Outline

- Phases in Database Design
- Example Database Application (COMPANY)
- ER Model Concepts
 - Entities and Attributes
 - Entity Types, Value Sets, and Key Attributes
 - Relationships and Relationship Types
 - Weak Entity Types
 - Roles and Attributes in Relationship Types
- ER Diagrams Notation
- ER Diagram for COMPANY Schema

Example: COMPANY Database

- Requirements of the Company (oversimplified for illustrative purposes)
 - The company is organized into DEPARTMENTs. Each department has a name, number and an employee who *manages* the department. We keep track of the start date of the department manager.
 - Each department controls a number of PROJECTs. Each project has a name, number and is located at a single location.

Example COMPANY Database (Cont.)

- We store each EMPLOYEE's social security number, address, salary, sex, and birthdate. Each employee *works for* one department but may *work on* several projects. We keep track of the number of hours per week that an employee currently works on each project. We also keep track of the *direct supervisor* of each employee.
- Each employee may *have* a number of DEPENDENTs. For each dependent, we keep track of their name, sex, birthdate, and relationship to employee.

ER Model Concepts

Entities and Attributes

- Entities are specific objects or things in the mini-world that are represented in the database. For example the EMPLOYEE John Smith, the Research DEPARTMENT, the ProductX PROJECT
- Attributes are properties used to describe an entity. For example an EMPLOYEE entity may have a Name, SSN, Address, Sex, BirthDate
- A specific entity will have a value for each of its attributes.
 For example a specific employee entity may have
 Name='John Smith', SSN='123456789', Address ='731,
 Fondren, Houston, TX', Sex='M', BirthDate='09-JAN-55'
- Each attribute has a *value set* (or data type) associated with it e.g. integer, string, subrange, enumerated type, ...

Types of Attributes (1)

- Simple
 - Each entity has a single atomic value for the attribute. For example, SSN or Sex.
- Composite
 - The attribute may be composed of several components. For example, Address (Apt#, House#, Street, City, State, ZipCode, Country) or Name (FirstName, MiddleName, LastName). Composition may form a hierarchy where some components are themselves composite.
- Multi-valued
 - An entity may have multiple values for that attribute. For example, Color of a CAR or PreviousDegrees of a STUDENT. Denoted as {Color} or {PreviousDegrees}.

Types of Attributes (2)

Entity Types and Key Attributes

- Entities with the same basic attributes are grouped or typed into an entity type. For example, the EMPLOYEE entity type or the PROJECT entity type.
- An attribute of an entity type for which each entity must have a unique value is called a key attribute of the entity type. For example, SSN of EMPLOYEE.
- A key attribute may be composite. For example, VehicleTagNumber is a key of the CAR entity type with components (Number, State).
- An entity type may have more than one key. For example, the CAR entity type may have two keys:
 - VehicleIdentificationNumber (popularly called VIN) and
 - VehicleTagNumber (Number, State), also known as license plate number.

ENTITY SET corresponding to the ENTITY TYPE CAR

CAR

Registration(RegistrationNumber, State), VehicleID, Make, Model, Year, (Color)

car₁
((ABC 123, TEXAS), TK629, Ford Mustang, convertible, 1999, (red, black))
car₂
((ABC 123, NEW YORK), WP9872, Nissan 300ZX, 2-door, 2002, (blue))
car₃
((VSY 720, TEXAS), TD729, Buick LeSabre, 4-door, 2003, (white, blue))

_

Relationships and Relationship Types (1)

- A relationship relates two or more distinct entities with a specific meaning. For example, EMPLOYEE John Smith works on the ProductX PROJECT or EMPLOYEE Franklin Wong manages the Research DEPARTMENT.
- Relationships of the same type are grouped or typed into a relationship type. For example, the WORKS_ON relationship type in which EMPLOYEEs and PROJECTs participate, or the MANAGES relationship type in which EMPLOYEEs and DEPARTMENTs participate.
- The degree of a relationship type is the number of participating entity types. Both MANAGES and WORKS_ON are binary relationships.

Relationships and Relationship Types (2)

More than one relationship type can exist with the same participating entity types. For example, MANAGES and WORKS_FOR are distinct relationships between EMPLOYEE and DEPARTMENT, but with different meanings and different relationship instances.

Weak Entity Types

An entity that does not have a key attribute

- A weak entity must participate in an identifying relationship type with an owner or identifying entity type
- Entities are identified by the combination of:
 - A partial key of the weak entity type
 - The particular entity they are related to in the identifying entity type

Example:

Suppose that a DEPENDENT entity is identified by the dependent's first name and birthrate, and the specific EMPLOYEE that the dependent is related to. DEPENDENT is a weak entity type with EMPLOYEE as its identifying entity type via the identifying relationship type DEPENDENT_OF

Constraints on Relationships

Constraints on Relationship Types

Cardinality Ratio

Specifies the maximum number of relationship instances that an entity can participate in.

- One-to-one (1:1)
- One-to-many (1:N) or Many-to-one (N:1)
- Many-to-many

Participation

- Also called minimum cardinality constraint
- Specifies the minimum number of relationship instances that each entity can participate in.

Relationships and Relationship Types (3)

- 4
 - We can also have a recursive relationship type.
 - Both participations are same entity type in different roles.
 - For example, SUPERVISION relationships between EMPLOYEE (in role of supervisor or boss) and (another) EMPLOYEE (in role of subordinate or worker).
 - In the following figure, first role participation labeled with 1 and second role participation labeled with 2.
 - In ER diagram, need to display role names to distinguish participations.

Attributes of Relationship types

 A relationship type can have attributes; for example, HoursPerWeek of WORKS_ON; its value for each relationship instance describes the number of hours per week that an EMPLOYEE works on a PROJECT.

Structural Constraints – one way to express semantics of relationships

Structural constraints on relationships:

 Cardinality ratio (of a binary relationship): 1:1, 1:N, N:1, or M:N

SHOWN BY PLACING APPROPRIATE NUMBER ON THE LINK.

 Participation constraint (on each participating entity type): total (called existence dependency) or partial.

SHOWN BY DOUBLE LINING THE LINK

NOTE: These are easy to specify <u>for Binary Relationship</u> <u>Types</u>.

<u>Alternative (min, max) notation for</u> <u>relationship structural constraints:</u>

- Specified on each participation of an entity type E in a relationship type R
- Specifies that each entity e in E participates in at least min and at most max relationship instances in R
- Default(no constraint): min=0, max=n
- Must have min≤max, min≥0, max ≥1
- Derived from the knowledge of mini-world constraints

<u>Alternative (min, max) notation for relationship structural constraints:</u>

- A department has exactly one manager and an employee can manage at most one department.
 - Specify (0,1) for participation of EMPLOYEE in MANAGES
 - Specify (1,1) for participation of DEPARTMENT in MANAGES
- An employee can work for exactly one department but a department can have any number of employees.
 - Specify (1,1) for participation of EMPLOYEE in WORKS_FOR
 - Specify (0,n) for participation of DEPARTMENT in WORKS_FOR

Acknowledgement

Reference for this lecture is

 Ramez Elmasri and Shamkant B. Navathe, Fundamentals of Database Systems, Pearson Education.

The authors and the publishers are gratefully acknowledged.