Tutorial sobre Data Lake e Data Mesh

Jonas Ferreira da Silva - 01063866

Guilherme Kauã Diniz Cabral - 01549420

Bruno Belarmino da Silva - 24010424

Eduarda Martins do Nascimento - 01525081

José Darlan de Lima Carvalho -0146685

1. Conceitos de Data Lake e Data Mesh

Data Lake

O Data Lake é um repositório centralizado que armazena grandes volumes de dados em seu formato bruto, sem necessidade de um esquema pré-definido. Ele acomoda dados estruturados, semiestruturados e não estruturados, oferecendo flexibilidade para análises futuras. Essa abordagem é ideal para armazenar dados diversos que podem ser usados para diferentes propósitos no futuro.

Exemplo prático: Uma empresa de e-commerce utiliza um Data Lake para armazenar logs de navegação, cliques dos usuários, imagens de produtos e dados financeiros em um único local. Ferramentas como <u>Amazon S3</u> ou <u>Azure Data Lake</u> ajudam a consolidar esses dados para análises avançadas, como prever o comportamento do cliente ou detectar fraudes.

Desafios e Aspectos a considerar:

- **Gerenciamento de dados**: A ausência de um esquema pré-definido pode tornar os dados difíceis de organizar e acessar.
- Qualidade dos dados: Sem governança adequada, o Data Lake pode se tornar um "Data Swamp" (pântano de dados), com informações desorganizadas e de baixa qualidade.

Data Mesh

O Data Mesh é uma abordagem descentralizada para gestão de dados. Em vez de centralizar tudo em um único repositório, promove a autonomia das equipes, que tratam seus dados como produtos. Baseia-se nos princípios de domínio, colaboração e automação para garantir qualidade, acessibilidade e governança.

Mencionando a Democratização dos Dados e "Self-Serve Data Infrastructure": O Data Mesh promove a democratização dos dados, permitindo que as equipes de domínio tenham acesso direto e gestão sobre seus próprios dados, tornando as operações de dados mais acessíveis e eficientes. Com o conceito de "self-serve data infrastructure", as equipes podem consumir e produzir dados de maneira autônoma, sem depender de um time central de dados, o que aumenta a agilidade e a inovação.

Exemplo prático: Uma empresa de tecnologia com várias equipes de produtos adota Data Mesh para descentralizar a gestão de dados. Cada equipe (ex.: marketing, vendas, suporte) gerencia seus próprios dados como produtos, usando pipelines específicos e padrões compartilhados. Isso permite maior autonomia e aceleração do desenvolvimento de soluções personalizadas.

Desafios Aspectos a considerar:

- **Coordenação**: Requer alinhamento entre equipes para garantir consistência em padrões e acessibilidade.
- **Complexidade**: Implementar Data Mesh pode ser complexo e exigir mudanças culturais e tecnológicas.

2. Comparação: Data Warehouse x Data Lake x Data Mesh

Comparação entre Data Warehouse, Data Lake e Data Mesh

Característica	Data Warehouse	Data Lake	Data Mesh
Estrutura de Dados	Estruturado e esquematizado	Não estruturado	Variado, depende do domínio
Flexibilidade	Baixa (esquemas fixos)	Alta (flexível)	Alta (domínios autônomos)
Governança	Centralizada	Variável	Descentralizada
Desempenho	Otimizado para consultas	Pode ser lento	Otimizado para o domínio
Acesso	Controlado	Amplo e flexível	Baseado em equipes
Casos de Uso	BI e relatórios	IIAnaliede avancadae	Desenvolvimento ágil de produtos
Ferramentas Comuns	Amazon Redshift, Google BigQuery, Snowflake	,	Ferramentas de self- serve, pipelines de dados automatizados
Estudo de Caso	Empresa de varejo consolidando vendas para relatórios de desempenho	Armazenamento de dados de sensores IoT	Análises rápidas e decisões descentralizadas entre marketing e logística

3. Diferenças entre ETL e ELT

ETL (Extract, Transform, Load)

No processo de ETL, os dados são extraídos das fontes, transformados (limpeza, normalização, etc.) e, finalmente, carregados no repositório de dados, como um Data Warehouse.

Ideal para: Empresas que trabalham com dados estruturados e precisam de dados limpos e organizados antes de armazená-los.

ELT (Extract, Load, Transform)

No ELT, os dados são extraídos e carregados diretamente no repositório de dados (geralmente um Data Lake) e, posteriormente, transformados dentro do repositório, quando necessário.

Ideal para: Organizações que lidam com grandes volumes de dados e não estruturados, onde a transformação dos dados pode ser realizada depois do carregamento.

Comparação

Característica	ETL	ELT	
Processo		Extração → Carregamento → Transformação	
Armazenamento	Dados transformados antes do repositório	Dados brutos são armazenados	
Flexibilidade	Baixa (transformação prévia)	Alta (transformação posterior)	
HIDSOMNONNO	Limitada por transformações iniciais	Mais rápido com uso de tecnologia em nuvem	
Desafios	elevados para	Requer infraestrutura avançada, como computação em nuvem, para processamento eficiente	

Exemplo prático:

- ETL: Uma organização tradicional transforma dados de vendas em relatórios antes de armazená-los em um Data Warehouse.
- **ELT**: Um startup carrega dados brutos em um Data Lake e os transforma para alimentar um modelo de aprendizado de máquina.

4. Aplicação das Arquiteturas no Mercado

Data Lake

Utilizado para armazenar grandes volumes de dados não estruturados, como logs, redes sociais e sensores.

Ferramentas Comuns:

• Apache Hadoop: Apache Hadoop

• Amazon S3: Amazon S3

Exemplo de uso: Um banco usa Data Lake para armazenar logs de transações e detectar atividades fraudulentas em tempo real.

Data Mesh

Implementado por organizações que desejam descentralizar a gestão de dados.

Ferramentas Comuns:

- APIs internas
- Pipelines automatizados: Utilização de ferramentas como <u>Apache Kafka</u> e Kubernetes

Exemplo de uso: Uma fintech usa Data Mesh para permitir que equipes de produtos gerenciem dados financeiros específicos, como taxas de juros e perfis de clientes, facilitando a personalização de ofertas.

Conclusão

As arquiteturas de Data Lake e Data Mesh representam mudanças significativas na gestão de dados. Enquanto o Data Lake foca em armazenamento flexível, o Data Mesh promove a descentralização e a colaboração. A escolha entre essas abordagens depende dos objetivos e da maturidade da organização em relação ao gerenciamento de dados.

Referências

- Data Governance Institute. <u>Data Lakes: The Next Generation of Data</u> Management and Analytics. 2017.
- Dehghani, Zhamak. <u>Data Mesh: Delivering Data-Driven Value at Scale</u>. ThoughtWorks, 2020.
- Talend. "Data Warehouse vs. Data Lake: What's the Difference?". 2021.
- Talend. "ETL vs ELT: What's the Difference?". 2021.
- Netflix Tech Blog. "How Netflix Applies the Data Mesh for Decentralized Data Management.". 2020.