Package ConfidenceQuant: a vignette

10 June 2018

Figure 1: Package Framework

0. Assign number of cores for computing

cores<-15

We used doParallel and foreach to parallelize the computation.

When using the package, please make the last column of the data frame input as response.

1. Read in the data set

For demonstration purposes, we use a data set which contains two covariates and one response for 50,000 observations.

Also, cell is a cell indicator. This data set contains **two** cells.

Use help(Vignette_data) to know more about the data set.

```
library(ConfidenceQuant)
data(Vignette_data)

library(dplyr) #To return rows with matching conditions
control<-filter(Vignette_data, cell==1)[,-1]
treatment<-filter(Vignette_data, cell==2)[,-1]</pre>
```

Now we have two data sets that have 3 variables, with the last column being the response.

2. One Dependent Variable

We use 2-dim data frame as input.

```
control_1dim<-control[,c(1,3)]
treatment_1dim<-treatment[,c(1,3)]</pre>
```

2.1 One Cell (Without Comparison)

A. Get the confidence bands

We can use BLB_rqss or BLB_Discretize to get the confidence bands.

 \triangle The optimum smoothing parameter λ can be selected **automatically**.

```
result<-BLB_rqss(cores = cores, data = control_1dim, alpha = 0.05, tau = 0.5, Search = TRUE)
result_D<-BLB_Discretize(cores = cores, data = control_1dim, alpha = 0.05, tau = 0.5, Search = TRUE)
```

 \triangle Or the user can **specify** some λ values to choose from.

B. Plot the results

We use FitPlot_1dim to visualize the results.

Confidence Bands

plot_D

If the user is interested in how the optimum λ is selected, they can plot the MCV values from cross-validation in the following way:

lambda Search

2.2 Two Cells (With Comparison)

A. Get the confidence bands

We can use CompExperiment_1dim or CompExperiment_1dim_D to get the confidence bands for two data sets.

 \triangle The optimum smoothing parameter λ can be selected **automatically**.

 \triangle Or the user can **specify** some λ values to choose from.

B. Plot the results

We use CompPlot_1dim to visualize the results.

If the user is interested in how the optimum λ is selected, they can plot the MCV values from cross-validation in the following way:

3. Two Dependent Variables

We use 3-dim data frame as input.

```
str(control)
str(treatment)
```

2.1 One Cell (Without Comparison)

A. Get the confidence bands

We can use BLB_rqss_2dim or BLB_Discretize_2dim to get the confidence bands.

 \triangle The optimum smoothing parameter λ can be selected **automatically**.

```
result<-BLB_rqss_2dim(cores = cores, data = control, alpha = 0.05, tau = 0.5, Search = TRUE)
result_D<-BLB_Discretize_2dim(cores = cores, data = control, alpha = 0.05, tau = 0.5, Search = TRUE)</pre>
```

 \triangle Or the user can **specify** some λ values to choose from.

```
result<-BLB_rqss_2dim(cores = cores, data = control, alpha = 0.05, tau = 0.5, c(10,120,1000))
result_D<-BLB_Discretize_2dim(cores = cores, data = control, alpha = 0.05, tau = 0.5, c(10,120,1000))
```

B. Plot the results

We use FitPlot_2dim to visualize the results.

If the user is interested in how the optimum λ is selected, they can plot the MCV values from cross-validation in the following way:

2.2 Two Cells (With Comparison)

A. Get the confidence bands

We can use CompExperiment_2dim or CompExperiment_2dim_D to get the confidence bands for **two** data sets.

 \triangle The optimum smoothing parameter λ can be selected **automatically**.

 \triangle Or the user can **specify** some λ values to choose from.

B. Plot the results

We use CompPlot_2dim to visualize the results.

If the user is interested in how the optimum λ is selected, they can plot the MCV values from cross-validation in the following way: