TEMA II.1 FLUJO EN CANALES ABIERTOS MOVIMIENTOS VARIADOS Y CARACTERIZACION DE PERFILES DE FLUJO

Elena Sánchez Badorrey

• Conceptos básicos:

- canales abiertos: naturales y artificiales.
- flujos en superficie libre.

Aproximación unidimensional

- Distribución de velocidades en canales abiertos
- Velocidad media

- Aproximación unidimensional
 - Ecuaciones de gobierno
 - Aproximación de pérdidas por fricción

- Clasificación del movimiento
 - Según la variación de la profundidad
 - Uniforme Y = Yn
 - Movimiento variable:
 - Lentamente variable (1D)
 - Rápidamente variable (3D)

a) Retardado

- Según el número de Froude
 - Movimiento subcrítico Fr < 1.0
 - Movimiento crítico Fr = 1.0
 - Movimiento supercrítico Fr > 1.0

b) Acelerado

$$F_{R} = \frac{V}{\sqrt{gY_{h}}}$$

Resalto hidráulico

$$\frac{h_2}{h_1} = \frac{1}{2} \left(\sqrt{1 + 8F_1^2} - 1 \right)$$

$$L \simeq 6(h_2 - h_1)$$

Fig. 10.9 Clasificación de los resaltos hidráulicos: (a) $Fr_1 = 1$ a 1,7: resalto ondular; (b) $Fr_1 = 1,7$ a 2,5: resalto débil; (c) $Fr_1 = 2,5$ a 4,5: resalto oscilante; (d) $Fr_1 = 4,5$ a 9: resalto estacionario; (e) $Fr_1 > 9$: resalto fuerte. (Adaptado de la referencia 11.)

Flujo en canales abiertos: movimiento lentamente variado

Flujo en canales abiertos: flujo crítico

- Profundidad crítica
- Pendiente crítica
- Velocidad crítica
- Profundidad normal

Canales abiertos: tipologías de perfil de flujo variado

$$\frac{dY}{dx} = \frac{S_o - S_f}{1 - F_R^2}$$

- $S_f > S_\theta$ corresponde a $Y < Y_n$ y $S_f < S_\theta$ corresponde a $Y > Y_n$.
- $F_R > 1$ corresponde a $Y < Y_c$ y $F_R < 1$ corresponde a $Y > Y_c$.

$$\frac{dY}{dx} = \frac{S_o - S_f}{1 - F_R^2}$$

Canales abiertos: tipologías de perfil de flujo variado

Por ejemplo para un canal de pendiente suave o subcrítica:

- Zona 1: $Y > Y_n > Y_c$; $S_0 > S_f$, $F_R < 1$; por tanto $\frac{dY}{dx} > 0$, se forma remanso, perfil M1.
- Zona 2: $Y_n > Y > Y_c$; $S_0 < S_f$, $F_R < 1$; por tanto $\frac{dY}{dx} < 0$, se forma caída, perfil M2.
- Zona 3: $Y_n > Y_c > Y$; $S_0 < S_f$, $F_R > 1$; por tanto $\frac{dY}{dx} > 0$, se forma remanso, perfil M3.

Canales abiertos: tipologías de perfil de flujo RESOLUCION NUMÉRICA: Integración directa

$$\frac{dY}{dx} = \frac{S_0 - S_f}{1 - F_R^2}$$

- Métodos de resolución (ver notas guía de la práctica Sesión 1):
 - Método tramo a tramo
 - Método de integración directa (o método gráfico)

Canales abiertos: tipologías de perfil de flujo RESOLUCION NUMÉRICA: Integración directa

$$\frac{dY}{dx} = \frac{S_0 - S_f}{1 - F_R^2}$$

- Métodos de resolución (ver notas guía de la práctica Sesión 1):
 - Método tramo a tramo
 - Método de integración directa (o método gráfico)

$Q(cm^3/s)$	<u> </u>	B (cm):	Y _n :
$q(cm^2/s)$:	$Y_c(cm)$:	Tipo de flujo :
Z_1 (cm)	:	Z_2 (cm):	S_0 :
L(cm)	:	$L(Y_n)$ (cm):	Tipo de perfil:

Da	tos				Cálculos	Método 1	Tramo a T	Tramo			
L (cm)	Y (cm)	A (cm²)	V(cm/s)	E(cm)	Y_m (cm)	A_m (cm ²)	$P_m(cm)$	R_m (cm)	S_f	Δx(cm)	L(cm)
$oxed{oxed}$											
\vdash											
<u> </u>											
└											
<u> </u>											
<u> </u>											
Ь—											
<u> </u>											
<u> </u>											
\vdash											

Canal de tierra limpio, de sección rectangular y muy ancho, pendiente So = 0.0048 con un caudal específico q = 50ft^2/s, rugosidad = 0.036576m, n=0.022 y altura de lámina de agua en xo=0m, yo = 0.9144m.

Caracterizar:

- ¿Profundidad crítica ?
- − ¿Tipo de flujo ?
- − ¿Perfil de flujo ?
- ¿A qué distancia L a lo largo del canal la profundidad aguas debajo de X0 la altura de la lámina de agua alcanza un valor de alcanza un valor de 1.219m?

1ft = 0.3048m

METODO TRAMO A TRAMO

Caracterizar:

¿Profundidad crítica ?
¿Tipo de flujo ?
¿Perfil de flujo ?
¿A qué distancia L a lo largo del canal la profundidad aguas abajo de Xo la altura de la lámina de agua alcanza un valor de alcanza un valor de 1.219m?

 $Y_c = 1.30m$

 $Y_n = 1.26m$

 $S_c = 0.00435$

 $S_0 = 0.0048$

Supercrítico

у	V = q/y	$E = y+V^2/2g$	S	Sav	dx	X	
0,9144	5,081016	2,2290024	0,01407			0	
0,97536	5,065776	2,1308568	0,01135	0,01271	12,40536	12,40536	
1,03632	4,483608	2,0598384	0,00927	0,01031	12,89304	25,2984	
1,09728	4,233672	2,010156	0,00766	0,00847	13,53312	38,83152	
1,15824	4,011168	1,9775424	0,0064	0,00703	14,6304	53,46192	
1,2192	3,81	1,9586448	0,00539	0,0059	17,19072	70,65264	

 $Y_c = 4,27ft$

 $Y_n = 4,14ft$

 $S_c = 0.00435$

 $S_0 = 0.0048$

Supercrítico

Perfil tipo – ??

У	V = q/y	$E = y + V^2/2g$	S	Sav	dx	X
3	16,67	7,313	0,01407			0
3,2	16,62	6,991	0,01135	0,01271	40,7	40,7
3,4	14,71	6,758	0,00927	0,01031	42,3	83
3,6	13,89	6,595	0,00766	0,00847	44,4	127,4
3,8	13,16	6,488	0,0064	0,00703	48	175,4
4	12,5	6,426	0,00539	0,0059	56,4	231,8

 $Y_c = 4,27ft$

Yn = 414ft

 $S_c = 0.00435$

 $S_0 = 0.0048$

Supercrítico

Perfil tipo – S3

у	V = q/y	$E = y + V^2/2g$	S	Sav	dx	X
3	16,67	7,313	0,01407			0
3,2	16,62	6,991	0,01135	0,01271	40,7	40,7
3,4	14,71	6,758	0,00927	0,01031	42,3	83
3,6	13,89	6,595	0,00766	0,00847	44,4	127,4
3,8	13,16	6,488	0,0064	0,00703	48	175,4
4	12,5	6,426	0,00539	0,0059	56,4	231,8