Software Information

- Please check, whether your inputs, the equations applied and the charactersitics are displayed correctly.
- You are welcome to send your feedback via https://github.com/oemof/tespy/issues.
- \bullet LATEX packages required are:
 - graphicx
 - float
 - hyperref
 - booktabs
 - amsmath
 - units
 - cleveref
- To supress these messages, call the model documentation with the keyword draft=False.

TESPy Version: 0.4.0 - dev

Commit: d918f10d@feature/self_documenting_models

CoolProp version: 6.4.0

Python version: 3.8.0 (default, Oct 28 2019, 16:14:01) [GCC 8.3.0]

1 Connections in offdesign mode

1.1 Specified connection parameters

label	p in bar (1)	T in °C (2)
ambient air:out1_compressor:in1	1.000	20.000
combustion:out1_gas turbine:in1	-	1200.000
waste heat recovery:out1_chimney:in1	1.000	-
district heating backflow:out1_condenser:in2	5.000	60.000
waste heat recovery:out2_district heating feedflow:in1	-	90.000

Table 1: Specified connection parameters

1.2 Equations applied

$$0 = p - p_{\text{spec}} \tag{1}$$

$$0 = T(p,h) - T_{\text{spec}} \tag{2}$$

1.3 Specified fluids

label	Ar (3)	CH4 (4)	CO2 (5)	H2O (6)	N2 (7)	O2 (8)
ambient air:out1_compressor:in1	0.013	0.000	0.000	0.000	0.755	0.231
fuel source:out1_combustion:in2	0.000	0.960	0.040	0.000	0.000	0.000
superheater:out2_ls cycle closer:in1	0.000	0.000	0.000	1.000	0.000	0.000
district heating backflow:out1_condenser:in2	0.000	0.000	0.000	1.000	0.000	0.000

Table 2: Specified fluids

1.4 Equations applied

$$0 = x_{\rm Ar} - x_{\rm Ar,spec} \tag{3}$$

$$0 = x_{\text{CH4}} - x_{\text{CH4,spec}} \tag{4}$$

$$0 = x_{\text{CO2}} - x_{\text{CO2,spec}} \tag{5}$$

$$0 = x_{\text{H2O}} - x_{\text{H2O,spec}} \tag{6}$$

$$0 = x_{\rm N2} - x_{\rm N2,spec} \tag{7}$$

$$0 = x_{O2} - x_{O2,\text{spec}} \tag{8}$$

1.5 Referenced values for mass flow

label	reference	factor in -	delta in kg/s
evaporator:out2_drum:in2	drum:out2_superheater:in2	4	0

Table 3: Referenced values for mass flow

1.6 Equation applied

$$0 = value - value_{ref} \cdot factor + delta$$
 (9)

1.7 Referenced values for temperature

label	reference	factor in -	delta in °C
fuel source:out1_combustion:in2	ambient air:out1_compressor:in1	1	0

Table 4: Referenced values for temperature

1.8 Equation applied

$$0 = value - value_{ref} \cdot factor + delta$$
 (10)

2 Components in offdesign mode

2.1 Components of type Compressor

2.1.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},i} - \dot{m}_{\text{out},i} \ \forall i \in [1]$$

$$\tag{11}$$

$$0 = x_{fl,\text{in},i} - x_{fl,\text{out},i} \ \forall fl \in \text{network fluids}, \ \forall i \in [1]$$
(12)

2.1.2 Inputs specified

label	eta_s_char $(??)$
compressor	True

Table 5: Parameters of components of type Compressor

2.1.3 Equations applied

$$0 = (h_{\text{out}} - h_{\text{in}}) \cdot \eta_{\text{s,design}} \cdot f(X) - (h_{out,s} - h_{in})$$
(13)

Figure 1: Characteristics of compressor (eq. ??)

2.2 Components of type CombustionChamber

2.2.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},1} + \dot{m}_{\text{in},2} - \dot{m}_{\text{out},1} \tag{14}$$

$$0 = p_{\text{in},1} - p_{\text{out},1}
0 = p_{\text{in},1} - p_{\text{in},2}$$
(15)

$$\Delta \dot{m}_{\text{fluid}} = \dot{m}_{\text{in},1} \cdot x_{\text{fluid},\text{in},1} + \dot{m}_{\text{in},2} \cdot x_{\text{fluid},\text{in},2} - \dot{m}_{\text{out},1} \cdot x_{\text{fluid},\text{out},1}
\dot{m}_{\text{fluid},\text{m}} = \frac{\dot{m}_{\text{in},1} \cdot x_{\text{fluid},\text{in},1} + \dot{m}_{\text{in},2} \cdot x_{\text{fluid},\text{in},2}}{M_{\text{fluid}}}
\dot{m}_{\text{H,m}} = \dot{m}_{\text{CH4,m}} \cdot 4
\dot{m}_{\text{C,m}} = \dot{m}_{\text{CH4,m}} \cdot 1
\dot{m}_{\text{O2,m,stoich}} = \frac{\dot{m}_{\text{H,m}}}{4} + \dot{m}_{\text{C,m}}$$
(16)

$$0 = \Delta \dot{m}_{\rm Ar} \tag{17}$$

$$0 = \Delta \dot{m}_{\text{CH4}} - \dot{m}_{\text{CH4,m}} \cdot M_{\text{CH4}} \tag{18}$$

$$0 = \Delta \dot{m}_{\rm CO2} + \dot{m}_{\rm C,m} \cdot M_{\rm CO2} \tag{19}$$

$$0 = \Delta \dot{m}_{\rm H2O} + \frac{\dot{m}_{\rm H,m}}{2} \cdot M_{\rm H2O} \tag{20}$$

$$0 = \Delta \dot{m}_{\rm N2} \tag{21}$$

$$0 = \Delta \dot{m}_{\rm O2} - \dot{m}_{\rm O2,m,stoich} \cdot M_{\rm O2} \tag{22}$$

$$0 = \sum_{i} \dot{m}_{\text{in},i} \cdot (h_{\text{in},i} - h_{\text{in},i,\text{ref}}) - \dot{m}_{\text{out},1} \cdot (h_{\text{out},1} - h_{\text{out},1,\text{ref}})$$

$$+ LHV_{fuel} \cdot \left(\sum_{i} \dot{m}_{\text{in},i} \cdot x_{fuel,\text{in},i} - \dot{m}_{\text{out},1} \cdot x_{fuel,\text{out},1} \right)$$

$$\forall i \in \text{inlets}$$

$$T_{\text{ref}} = 298.15 \,\text{K} \, p_{\text{ref}} = 10^5 \,\text{Pa}$$

$$(23)$$

2.3 Components of type Turbine

2.3.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},i} - \dot{m}_{\text{out},i} \ \forall i \in [1]$$

$$0 = x_{fl,\text{in},i} - x_{fl,\text{out},i} \,\forall fl \in \text{network fluids}, \,\forall i \in [1]$$
(25)

2.3.2 Inputs specified

label	eta_s_char (26)	cone (27)
gas turbine	True	True
steam turbine	True	True

Table 6: Parameters of components of type Turbine

2.3.3 Equations applied

$$0 = -(h_{\text{out}} - h_{\text{in}}) + \eta_{\text{s,design}} \cdot f(X) \cdot (h_{\text{out,s}} - h_{\text{in}})$$
(26)

$$0 = \frac{\dot{m}_{\text{in,design}} \cdot p_{\text{in}}}{p_{\text{in,design}}} \cdot \sqrt{\frac{p_{\text{in,design}} \cdot v_{\text{in}}}{p_{\text{in}} \cdot v_{\text{in,design}}} \cdot \frac{1 - \left(\frac{p_{\text{out}}}{p_{\text{in}}}\right)^2}{1 - \left(\frac{p_{\text{out,design}}}{p_{\text{in,design}}}\right)^2} - \dot{m}_{\text{in}}}$$
(27)

Figure 2: Characteristics of gas turbine (eq. 26) Figure 3: Characteristics of steam turbine (eq. 26)

2.4 Components of type HeatExchanger

2.4.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},i} - \dot{m}_{\text{out},i} \ \forall i \in [1,2]$$

$$0 = x_{fl,\text{in},i} - x_{fl,\text{out},i} \,\forall fl \in \text{network fluids}, \,\forall i \in [1,2]$$
(29)

$$0 = \dot{m}_{\text{in},1} \cdot (h_{\text{out},1} - h_{\text{in},1}) + \dot{m}_{\text{in},2} \cdot (h_{\text{out},2} - h_{\text{in},2})$$
(30)

2.4.2 Inputs specified

label	zeta1 (31)	zeta2 (32)	kA_char (33)
superheater	0.008	113727.177	True
evaporator	0.010	-	True
economizer	0.011	0.000	True
waste heat recovery	0.014	13.703	True

Table 7: Parameters of components of type HeatExchanger

2.4.3 Equations applied

$$0 = \begin{cases} p_{\text{in},1} - p_{\text{out},1} & |\dot{m}_{\text{in},1}| < 0.0001 \,\text{kg/s} \\ \frac{\zeta}{D^4} - \frac{(p_{\text{in},1} - p_{\text{out},1}) \cdot \pi^2}{8 \cdot \dot{m}_{\text{in},1} \cdot |\dot{m}_{\text{in},1}| \cdot \frac{v_{\text{in},1} + v_{\text{out},1}}{2}}{2} & |\dot{m}_{\text{in},1}| \ge 0.0001 \,\text{kg/s} \end{cases}$$
(31)

$$0 = \begin{cases} p_{\text{in},2} - p_{\text{out},2} & |\dot{m}_{\text{in},2}| < 0.0001 \,\text{kg/s} \\ \frac{\zeta}{D^4} - \frac{(p_{\text{in},2} - p_{\text{out},2}) \cdot \pi^2}{8 \cdot \dot{m}_{\text{in},2} \cdot |\dot{m}_{\text{in},2}| \cdot \frac{v_{\text{in},2} + v_{\text{out},2}}{2}}{8 \cdot \dot{m}_{\text{in},2} \cdot |\dot{m}_{\text{in},2}|} & |\dot{m}_{\text{in},2}| \ge 0.0001 \,\text{kg/s} \end{cases}$$
(32)

$$0 = \dot{m}_{\text{in},1} \cdot (h_{\text{out},1} - h_{\text{in},1}) + kA_{\text{design}} \cdot f_{\text{kA}} \cdot \frac{T_{\text{out},1} - T_{\text{in},2} - T_{\text{in},1} + T_{\text{out},2}}{\ln \frac{T_{\text{out},1} - T_{\text{in},2}}{T_{\text{in},1} - T_{\text{out},2}}}$$

$$f_{\text{kA}} = \frac{2}{\frac{1}{f(X_1)} + \frac{1}{f(X_2)}}$$
(33)

Figure 4: Characteristics of superheater (eq. 33) Figure 5: Characteristics of superheater (eq. 33)

Figure 6: Characteristics of evaporator (eq. 33)

Figure 7: Characteristics of evaporator (eq. 33)

Figure 8: Characteristics of economizer (eq. 33)

Figure 9: Characteristics of economizer (eq. 33)

Figure 10: Characteristics of waste heat recovery Figure 11: Characteristics of waste heat recovery (eq. 33)

2.5 Components of type Drum

2.5.1 Mandatory constraints

$$0 = \sum \dot{m}_{\text{in},i} - \sum \dot{m}_{\text{out},j} \ \forall i \in \text{inlets}, \forall j \in \text{outlets}$$
(34)

$$0 = x_{fl,\text{in},1} - x_{fl,\text{out},j} \ \forall fl \in \text{network fluids}, \ \forall j \in \text{outlets}$$
 (35)

$$0 = \sum_{i} (\dot{m}_{\text{in},i} \cdot h_{\text{in},i}) - \sum_{j} (\dot{m}_{\text{out},j} \cdot h_{\text{out},j}) \ \forall i \in \text{inlets} \ \forall j \in \text{outlets}$$
 (36)

$$0 = p_{\text{in},1} - p_{\text{in},i} \ \forall i \in \text{inlets} \setminus \{1\}$$

$$0 = p_{\text{in},1} - p_{\text{out},j} \ \forall j \in \text{outlets}$$
(37)

$$0 = h_{\text{out},1} - h (p_{\text{out},1}, x = 0)$$

$$0 = h_{\text{out},2} - h (p_{\text{out},2}, x = 1)$$
(38)

2.6 Components of type CycleCloser

2.6.1 Mandatory constraints

$$0 = p_{\text{in},i} - p_{\text{out},i} \ \forall i \in [1] \tag{39}$$

$$0 = h_{\text{in},i} - h_{\text{out},i} \ \forall i \in [1]$$

$$\tag{40}$$

2.7 Components of type Condenser

2.7.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},i} - \dot{m}_{\text{out},i} \ \forall i \in [1,2] \tag{41}$$

$$0 = x_{fl,\text{in},i} - x_{fl,\text{out},i} \,\forall fl \in \text{network fluids}, \,\forall i \in [1,2]$$
(42)

$$0 = \dot{m}_{\text{in},1} \cdot (h_{\text{out},1} - h_{\text{in},1}) + \dot{m}_{\text{in},2} \cdot (h_{\text{out},2} - h_{\text{in},2})$$
(43)

2.7.2 Inputs specified

label	pr1 (44)	zeta2 (45)	kA_char (46)	subcooling (47)
condenser	0.990	14.111	True	True

Table 8: Parameters of components of type Condenser

2.7.3 Equations applied

$$0 = p_{\text{in},1} \cdot pr1 - p_{\text{out},1} \tag{44}$$

$$0 = \begin{cases} p_{\text{in},2} - p_{\text{out},2} & |\dot{m}_{\text{in},2}| < 0.0001 \,\text{kg/s} \\ \frac{\zeta}{D^4} - \frac{(p_{\text{in},2} - p_{\text{out},2}) \cdot \pi^2}{8 \cdot \dot{m}_{\text{in},2} \cdot |\dot{m}_{\text{in},2}| \cdot \frac{v_{\text{in},2} + v_{\text{out},2}}{2}} & |\dot{m}_{\text{in},2}| \ge 0.0001 \,\text{kg/s} \end{cases}$$

$$(45)$$

$$0 = \dot{m}_{\text{in},1} \cdot (h_{\text{out},1} - h_{\text{in},1}) + kA_{\text{design}} \cdot f_{\text{kA}} \cdot \frac{T_{\text{out},1} - T_{\text{in},2} - T_{\text{sat}}(p_{\text{in},1}) + T_{\text{out},2}}{\ln \frac{T_{\text{out},1} - T_{\text{in},2}}{T_{\text{sat}}(p_{\text{in},1}) - T_{\text{out},2}}}$$

$$f_{\text{kA}} = \frac{2}{\frac{1}{f(X_2)} + \frac{1}{f(X_2)}}$$
(46)

$$0 = h_{\text{out},1} - h\left(p_{\text{out},1}, x = 0\right) \tag{47}$$

Figure 12: Characteristics of condenser (eq. 46) Figure 13: Characteristics of condenser (eq. 46)

2.8 Components of type Pump

2.8.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},i} - \dot{m}_{\text{out},i} \ \forall i \in [1]$$

$$\tag{48}$$

$$0 = x_{fl,\text{in},i} - x_{fl,\text{out},i} \ \forall fl \in \text{network fluids}, \ \forall i \in [1]$$

$$\tag{49}$$

2.8.2 Inputs specified

label	eta_s_char (50)
feed water pump	True

Table 9: Parameters of components of type Pump

2.8.3 Equations applied

$$0 = (h_{\text{out}} - h_{\text{in}}) \cdot \eta_{\text{s,design}} \cdot f(X) - (h_{out,s} - h_{in})$$
(50)

Figure 14: Characteristics of feed water pump (eq. 50)

3 Busses in offdesign mode

3.1 Bus "power output"

Specified total value of energy flow: $\dot{E}_{\rm bus} = -111560045.018\,{\rm W}$

$$0 = \dot{E}_{\text{bus}} - \sum_{i} \dot{E}_{\text{bus},i} \tag{51}$$

label	$\dot{E}_{ m comp}$	$\dot{E}_{ m bus}$	η
gas turbine	$\dot{m}_{ m in} \cdot (h_{ m out} - h_{ m in})$	$\dot{E}_{\mathrm{comp}} \cdot \eta$	1.000
compressor	$\dot{m}_{ m in} \cdot (h_{ m out} - h_{ m in})$	$\dot{E}_{\mathrm{comp}} \cdot \eta$	1.000
steam turbine	$\dot{m}_{ m in} \cdot (h_{ m out} - h_{ m in})$	$\dot{E}_{\mathrm{comp}} \cdot \eta$	1.000
feed water pump	$\dot{m}_{\rm in} \cdot (h_{\rm out} - h_{\rm in})$	$\dot{E}_{\mathrm{comp}} \cdot \eta$	1.000

Table 10: power output

3.2 Bus "heat output"

This bus is used for postprocessing only.

label	$\dot{E}_{ m comp}$	$\dot{E}_{ m bus}$	η
condenser	$\dot{m}_{\mathrm{in},1} \cdot (h_{\mathrm{out},1} - h_{\mathrm{in},1})$	$\dot{E}_{\mathrm{comp}} \cdot \eta$	1.000
waste heat recovery	$\dot{m}_{\mathrm{in},1} \cdot (h_{\mathrm{out},1} - h_{\mathrm{in},1})$	$\dot{E}_{\mathrm{comp}} \cdot \eta$	1.000

Table 11: heat output

3.3 Bus "heat input"

This bus is used for postprocessing only.

label	$\dot{E}_{ m comp}$	$\dot{E}_{ m bus}$	η
combustion	$LHV_{\mathrm{fuel}} \cdot \left[\sum_{i} \left(\dot{m}_{\mathrm{in},i} \cdot x_{\mathrm{fuel,in},i}\right) - \dot{m}_{\mathrm{out,1}} \cdot x_{\mathrm{fuel,out,1}}\right]$	$\dot{E}_{\mathrm{comp}} \cdot \eta$	1.000

Table 12: heat input