Quiz 02

Name:

Time: Complete and submit to the instructor

Evaluation:

• As described in the syllabus, the Quiz is 20% of the overall grade.

Exercise 1: select the correct answer.

Let consider a function

$$f(u) = 70 + 15 [u - 1]$$

 $0 \le u \le 13$

If u = 2.5. Find the value of f(u).

- 1. f(u) = 100
- 2. f(u) = 85
- 3. f(u) = 70
- Let consider the sequence

$$\mathbf{A_{i}} = \mathbf{1}/\mathbf{i} \qquad \qquad i \ge 1$$

Is A_{i} decreasing or increasing or nonincreasing ?

- 1. A_i is decreasing $(S_n > S_{n+1})$
- 2. A_i is nonincreasing $(S_n \ge S_{n+1})$
- 3. A_i is increasing $(S_n < S_{n+1})$

Consider the sequence A defined by

$$An = n^2 - 3n + 3$$

Find the product $\prod_{i=1}^2 A_i$:

- 1. $\prod_{i=1}^{2} A_i = 1$
- 2. $\prod_{i=1}^{2} A_i = 2$
- 3. $\prod_{i=1}^{2} A_i = 0$
- ❖ Let consider a function

$$f = \{(1,c),(2,a),(3,b)\}$$

We define the domain $X = \{1, 2, 3\}$ and the codomain $Y = \{a, b, c\}$.

Is the function f one-to-one, onto or a bijection?

- 1. This function is not one-to-one
- 2. This function is not onto
- 3. This function is called a bijection.
- **\Delta** Let consider the sequence

This sequence is a subsequence of the sequence $T_n.$ We define $1 \leq n \leq 5.$

Find the element of the sequence T_n :

1.
$$T_n = \{\ T_1 = a\ ,\ T_2 = a\ ,\ T_3 = b\ ,\ T_4 = c\ ,\ T_5 = d\ \}$$

2.
$$T_n = \{ T_1 = b, T_2 = b, T_3 = c, T_4 = a, T_5 = d \}$$

3.
$$T_n = \{ T_1 = c, T_2 = b, T_3 = a, T_4 = b, T_5 = d \}$$

❖ Let consider the function g and f

$$g = \{(1, a), (2, a), (3, c)\}$$

$$f = \{(a, y), (b, x), (c, z)\}$$

We define the function f from $X = \{1, 2, 3\}$ to $Y = \{a, b, c\}$, and the function g from $Y = \{a, b, c\}$ to $Z = \{x, y, z\}$.

Find the composition function from f to g.

- 1. fog = $\{(1, y), (2, y), (3, z)\}$
- 2. fog = $\{(1, y), (2, y), (2, x)\}$
- 3. fog = $\{(1, y), (1, z), (2, z)\}$
- Consider the sequence T defined by

$$T_n = 2n - 1$$

Find the sum $\sum_{i=1}^{3} T_i$.

- 1. $\sum_{i=1}^{3} T_i = 8$
- 2. $\sum_{i=1}^{3} T_i = 10$
- 3. $\sum_{i=1}^{3} T_i = 9$
- Let consider the function

$$f = \{(1, a), (2, c), (3, b)\}$$

We define the domain $X = \{1, 2, 3\}$ and the range $Y = \{a, b, c\}$.

Find the inverse of the function f.

- 1. $f^{-1} = \{(a, 1), (c, 2), (3, b)\}$
- 2. $f^{-1} = \{(a, 1), (c, 2), (b, 3)\}$
- 3. $f^{-1} = \{(a, 1), (2, c), (3, b)\}$

Exercise 2: Consider the matrix

1. Write the relation R, given by the matrix, as a set of ordered pairs. Determine the domain and the range of the relation R.

2. Find the matrix of the product R^2 .

3. Write the inverse of the relation R, given by the matrix, as a set of ordered pairs. Determine the domain and the range of the inverse of the relation R.

4. Find the matrix of the inverse of the relation R.

Exercise 3:

Let	the	re	lati	ons
$\perp \sim \iota$	u	10	ıuıı	ono

R1 = $\{(x,y)|x \ divides \ y\}$, R1 is from X to Y. R2 = $\{(y,z)|y>z\}$, R2 is from Y to Z, ordering of X and Y: 2, 3, 4, 5; ordering of Z: 1, 2, 3, 4

1. Find the matrix A1 of the relation R1

2. Find the matrix A2 of the relation R2

3. Find the matrix product A1 A2

- 4. Find the relation R2 o R1
- 5. Find the matrix of the relation R2 o R1

Exercise 4: Let each function is one-to-one on the specified domain X. If Y = range of f, we obtain a bijection from X to Y. Find each inverse function

$$f(x) = 4x + 2$$

x = set of real numbers

$$f(x) = 3^x$$

x = set of real numbers

$$f(x) = 3 + 1/x$$

x = set of nonzero real numbers

Exercise 5: Consider the relation R on the set $\{1, 2, 3, 4, 5\}$ defined by the rule $(x, y) \in R$ if 3 divides x - y

- 1. List the element of R
- 2. List the element of R⁻¹
- 3. Is the element of R is reflexive, symmetric, antisymmetric, transitive and/or partial order?

Exercise 6: Consider the sequence A defined by $An = n^2 - 3n + 3$

1. Find

$$\sum_{i=1}^{4} A_i$$

2. Find

$$\prod_{i=1}^{2} A_{i}$$

- 3. Is A increasing?
- 4. Is A decreasing
- 5. Is A nonincreasing?
- 6. Is A nondecreasing?

Formula

The Sequences

A *sequence* is a special type of function in which the domain consists of a set of consecutive integers.

Let **Sn** denoted the entire sequence:

We use the notation Sn to denote the single element of the sequence S at *index* n.

- ➤ A sequence S is **increasing** if Sn < Sn+1 for all n for which n and n+1 are in the domain of the sequence.
- \triangleright A sequence S is **decreasing** if Sn > Sn+1 for all n for which n and n+1 are in the domain of the sequence.
- ightharpoonup A sequence S is **nondecreasing** if Sn \leq Sn+1 for all n for which n and n+1 are in the domain of the sequence.
- A sequence S is **nonincreasing** if $Sn \ge Sn+1$ for all n for which n and n+1 are in the domain of the sequence.

$$\sum_{i=m}^{n} a_i = a_m + a_{m+1} + \dots + a_n$$

$$\prod_{i=m}^{n} a_i = a_m \times a_{m+1} \times \dots \times a_n$$