Corrigé - Colle 9 (Sujet 1)

MPSI2 Année 2021-2022

30 novembre 2021

Question de cours . Soit A une partie de \mathbb{R} ayant une borne supérieure. Montrer qu'il existe une suite d'éléments de A qui tend vers $\sup(A)$.

Exercice 1. On considère la fonction $f: x \mapsto \sqrt{x^2 + x - 2}$.

- 1. Déterminer l'ensemble de définition \mathcal{D}_f de f.
- 2. Déterminer l'image de f, i.e. $f(\mathcal{D}_f)$.
- 3. L'application f est-elle injective de \mathcal{D}_f dans \mathbb{R} ?
- Solution de l'exercice 1. 1. L'ensemble de définition de f est l'ensemble des points x tels que $x^2 + x 2 \ge 0$. Or, $x^2 + x 2$ est un trinôme dont le discriminant est $\Delta = 9$ et dont les racines sont donc $x_1 = -2$ et $x_2 = 1$. De plus, $x^2 + x 2$ est positif sauf entre les racines $x_1 = -2$ et $x_2 = 1$. L'ensemble de définition de f est donc $\mathcal{D}_f =]-\infty, -2] \cup [1, +\infty[$.
 - 2. L'image de f est donnée par $f(\mathcal{D}_f) = [0, +\infty[$ (car le trinôme s'annule en -2 et en $1, x^2 + x 2 \to +\infty$ lorsque $x \to +\infty$ et la fonction racine est continue sur \mathbb{R}^+).
 - 3. Non, l'application f n'est pas injective de \mathcal{D}_f dans \mathbb{R} . En effet, f(-2) = f(1) = 0.

Exercice 2. Soit $f: X \to Y$. Montrer que les conditions suivantes sont équivalentes :

- 1. f est injective.
- 2. Pour toutes parties A, B de X, on a $f(A \cap B) = f(A) \cap f(B)$.
- Solution de l'exercice 2. Montrons que $1 \Rightarrow 2$. D'abord, une inclusion est toujours vérifiée : prenons en effet $y \in f(A \cap B)$. Alors il existe $x \in A \cap B$ tel que y = f(x). Mais alors, $y \in f(A)$ puisque y = f(x) avec $x \in A$. De même, $y \in f(B)$. On en déduit que $y \in f(A) \cap f(B)$. Réciproquement, si $y \in f(A) \cap f(B)$, alors il existe $a \in A$ tel que y = f(a) et $b \in B$ tel que y = f(b). Mais puisque f est injective et que f(a) = f(b), on a f(a) = f(b) et donc f(a) = f(b) en déduit que f(a) = f(b) et donc f(a) = f(b) en déduit que f(a) = f(b) et donc f(a) = f(b) et donc f(a) = f(b) en déduit que f(a) = f(b) et donc f(a
 - Montrons que $2 \Rightarrow 1$. Soient a et b tels que f(a) = f(b) = y. Prenons $A = \{a\}$ et $B = \{b\}$. Remarquons que $f(A) = f(B) = \{y\}$. Alors, on a $f(A \cap B) = \{y\}$. En particulier, $A \cap B \neq \emptyset$, et donc a = b.

Exercice 3. On considère la fonction $h: x \mapsto \frac{x^2+1}{2x-1}$.

- 1. Déterminer l'ensemble de définition \mathcal{D}_h de h.
- 2. Déterminer l'image de h, i.e. $h(\mathcal{D}_h)$.
- 3. L'application h est-elle injective de \mathcal{D}_h dans \mathbb{R} ? Surjective? Bijective?

Solution de l'exercice 3. 1. L'ensemble de définition de h est $\mathcal{D}_h = \mathbb{R} \setminus \left\{ \frac{1}{2} \right\}$.

2. L'image de h n'est pas si évidente à trouver. Soit $y \in \mathbb{R}$. Supposons qu'il existe x tel que h(x) = y. Alors,

$$\frac{x^2 + 1}{2x - 1} = y \quad \Leftrightarrow \quad x^2 + 1 = y(2x - 1) \quad \Leftrightarrow \quad x^2 - 2yx + 1 + y = 0.$$

On obtient donc un trinôme en x. Pour déterminer si ce trinôme possède des racines (et donc si y possède un antécédent), on calcule son discriminant. On a

$$\Delta = 4y^2 - 4(1+y) = 4y^2 - 4y - 4.$$

Ce discriminant est à nouveau un trinôme. Pour déterminer son signe, nous devons à présent calculer le discriminant de ce dernier trinôme. On obtient

$$\Delta' = 16 + 64 = 80 > 0.$$

Le trinôme $4y^2 - 4y - 4$ possède donc deux racines réelles distinctes

$$y_1 = \frac{4 - \sqrt{80}}{8} = \frac{1 - \sqrt{5}}{2}$$
 et $y_2 = \frac{4 + 4\sqrt{80}}{8} = \frac{1 + \sqrt{5}}{2}$.

Ainsi, on a deux situations possibles:

- Si $y \in \left] \frac{1-\sqrt{5}}{2}, \frac{1+\sqrt{5}}{2} \right[$ alors Δ est strictement négatif (car il est du signe de a=4 sauf entre les racines). Dans ce cas, l'équation $x^2-2yx+1+y=0$ ne possède pas de solution et y n'a donc pas d'antécédent.
- Si $y \notin \left[\frac{1-\sqrt{5}}{2}, \frac{1+\sqrt{5}}{2}\right]$ alors $\Delta \geqslant 0$ et dans ce cas, l'équation $x^2 2yx + 1 + y = 0$ possède une (si $y = y_1$ ou $y = y_2$ et donc $\Delta = 0$) ou deux solutions et y a donc bien d'antécédent.

En conclusion, on a

$$\operatorname{Im}(h) = \left[-\infty, \frac{1-\sqrt{5}}{2} \right] \cup \left[\frac{1+\sqrt{5}}{2}, +\infty \right[.$$

3. h n'est pas injective de Dh dans ℝ car h(1) = 2 = h(3). On pourrait utiliser le fait que l'image de h n'est pas ℝ pour conclure immédiatement que h n'est pas surjective de Dh dans ℝ. Néanmoins, pour montrer que l'application h n'est pas surjective de Dh dans ℝ il n'est pas utile de connaître son image. En effet, 0 n'a pas d'antécédent par h car h(x) = 0 équivaut à x² + 1 = 0 qui n'a pas de solution réelle. h n'est pas bijective car non surjective.

Exercice 4. Soit $f: E \to F$ et $A \subset F$. Montrer que $f^{-1}(f(A)) \subset A$. Trouver un contre-exemple pour l'autre inclusion. Que peut-on dire si f est de plus surjective?

Solution de l'exercice 4. 1. Si $y \in f(f^{-1}(A))$ alors il existe $x \in f^{-1}(A)$ tel que y = f(x). $x \in f^{-1}(A)$ donc $f(x) \in A$ d'où $y \in A$ donc on a bien $f(f^{-1}(A)) \subset A$.

- 2. Donnons un contre-exemple lorsque f n'est pas surjective. On peut choisir $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = \cos(x)$. Pour $A = [1, +\infty[$ on a $f^{-1}(A) = \{2k\pi, \ k \in \mathbb{Z}\}$ et $f(f^{-1}(A)) = \{1\}$. Donc A n'est pas inclu dans $f(f^{-1}(A))$.
- 3. Supposons que f est surjective. Soit $y \in A$. Alors, comme $y \in F$, il existe $x \in E$ tel que y = f(x) par surjectivité de f. Pour montrer que $y \in f(f^{-1}(A))$ il reste à prouver que $x \in f^{-1}(A)$ c'est-à-dire que $f(x) \in A$. Or $f(x) = y \in A$ donc on a bien $A \subset f(f^{-1}(A))$. Ainsi, lorsque f est surjective on a donc $f(f^{-1}(A)) = A$.

Exercice 5. Soient E et F deux ensembles, et $f: E \to F$. On définit deux applications g et h par :

$$g: \mathcal{P}(E) \to \mathcal{P}(F)$$
 tel que $g(A) = f(A)$

et

$$h: \mathcal{P}(F) \to \mathcal{P}(E)$$
 tel que $h(A) = f^{-1}(A)$

Démontrer que

- 1. g est injective si et seulement si f est injective.
- 2. h est injective si et seulement si f est surjective.
- Solution de l'exercice 5. 1. Supposons d'abord que g est injective, et prouvons que f l'est. Soient $x, y \in E$ avec f(x) = f(y). Posons $A = \{x\}$ et $B = \{y\}$. Alors $g(A) = g(B) = \{f(x)\}$. Ainsi, par injectivité de g, A = B et donc x = y. f est injective.

Réciproquement supposons que f est injective, et prouvons que g l'est aussi. Soient $A, B \in \mathcal{P}(E)$ tels que g(A) = g(B). Prenons ensuite $x \in A$ et montrons que $x \in B$. On a $f(x) \in f(A) = f(B)$, donc il existe $y \in B$ tel que f(x) = f(y). Maintenant, puisque f est injective, ceci entraı̂ne que x = y. Ainsi, $x \in B$ et on a prouvé que $A \subset B$. Bien entendu, par symétrie du rôle joué par A et B, on a A = B et B et B et B est injective.

2. Supposons d'abord que h est injective, et prouvons que f est surjective. Soit $y \in F$. Puisque $h(\emptyset) = \emptyset$, on a $h(\{y\}) \neq \emptyset$, et donc il existe $x \in h(\{y\}) = f^{-1}(\{y\})$. Ainsi, y = f(x) et f est surjective.

Supposons maintenant que f est surjective, et prouvons que h est injective. Soient $A, B \in \mathcal{P}(F)$ tels que h(A) = h(B). Considérons $y \in A$. Alors, puisque f est surjective, il existe $x \in E$ tel que y = f(x). Mais $x \in f^{-1}(A)$ et donc $x \in f^{-1}(B)$ ce qui signifie que $f(x) \in B$. Mais y = f(x), et donc $y \in B$. On a donc prouvé que $A \subset B$, et, toujours par symétrie du rôle joué par A et B, on en déduit que A = B, c'est-à-dire que h est injective.