

DET

Department of Electronics and Telecommunications

Cenni di Fisica dei Dispositivi Elettronici a Semiconduttore (transistori MOS)

Concetti base

- Fabbricazione dei circuiti integrati
 - Fotolitografia
 - Leggi di Moore

Dispositivi Elettronici

 Il funzionamento dei sistemi elettronici si basa sulle caratteristiche dei dispositivi elettronici a semiconduttore, fabbricabili in larghissima scala mediante la tecnologia dei circuiti integrati (Integrated Circuits, IC)

Dimensioni dispositivi: ordine di 12nm

Dispositivi in un IC: >109

Frequenza di clock: >10 GHz (dig. clk)

Circuiti integrati

I circuiti integrati sono principalmente realizzati su wafer di silicio

INTEL Core i7

Moore's Law 10G 15 Core 16 Core SPARC T3 SPARC 64X 6 Core i7 8 core POWER 7 The number of integrated 1G - 8 core Xeon Ne. components per IC doubles Core i7 Core 2 Duo every 1.5/2 years 100M AMD K8 Pentium 4 Atom AMD K7 Si ottiene mediante lo 10M POWER 1 • scalamento delle **Transistors** Pentium I AMD K5 dimensioni dei singoli PowerPC 601 80486 • • 1M dispositivi: 70% ogni 2/3 80386. anni (Mac II) 68020. (PC AT) 80286 100k ARM2 (Mac) 68000° 1000 8088 (IBM PC) 10k -• Z80 (TRS80) 100 •6502 (C64) 4004 1k TTL . CMOS 100 10

100

node (nm)

1

1980

20

1990

Year

10

1965

1970

40

2010

50

2015

30

2000

Limiti fisici: la fine della legge di Moore?

Lo scalamento da solo non basta: le dimensioni raggiunte (10 nm) rendono necessario considerare la creazione di nuovi dispositivi, anche sfruttando effetti di natura quantistica (tunnelling, spin, entanglement)

Litografia

Il circuito integrato è una successione di "regioni" del wafer di silicio (dispositivi) interconnesse tra loro con piste metalliche e/o isolate tra loro con ossidi.

Le dimensioni nanometriche si ottengono utilizzando luce collimata

La successione di chiari e scuri permette di deporre/scavare il materiale in maniera selettiva

Il processo viene ripetuto per ottenere nelle posizioni volute:

- piste metalliche
- strati di ossido
- zone di silicio con proprietà fisiche diverse

Concetti base

Semiconduttore

- Meccanismi di conduzione
 - Elettroni e lacune
 - Banda di conduzione e di valenza
- Semiconduttori drogati
 - Drogaggio di tipo n e p

Transistore MOS

- Struttura Metallo-Ossido-Semiconduttore
 - Regione di inversione e canale
- Transistore MOS
 - Contatti di *drain* e di *source*
 - Formazione del canale e tensione di soglia
 - Controllo della conduzione tra drain e source attraverso il gate attraverso la tensione tra gate e source

Semiconduttori

Semiconduttori: materiali (tipicamente solidi cristallini) con caratteristiche di conduzione (resistività ρ , conducibilità $\sigma=1/\rho$) intermedie tra **isolanti** o **dielettrici** (= che non conducono corrente elettrica) **e conduttori** (= che conducono corrente in modo significativo)

Semiconduttori

Silicio (IV gruppo): quattro elettroni esterni

Nel reticolo cristallino del Si, gli elettroni esterni a energia minore sono impegnati a formare legami (banda di valenza, BV)

Gli elettroni con energia maggiore sono liberi di muoversi (banda di conduzione, BC)

I limiti inferiori/superiori di BC e BV sono distinti e non sono consentiti livelli intermedi (banda proibita)

Semiconduttori

Nei semiconduttori la conduzione è legata a due meccanismi distinti:

- spostamento di elettroni liberi in banda di conduzione (cariche negative)
- spostamento di lacune (=mancanza di elettroni nei legami covalenti) in banda di valenza (equivalgono a cariche positive mobili)

Modello dell'autorimessa

No conduzione

Modello dell'autorimessa

Sia gli elettroni sia le lacune, spostandosi danno luogo ad una corrente

Semiconduttori: Drogaggio

L'importanza dei semiconduttori risiede nella possibilità di cambiarne la conducibilità elettrica di diversi ordini di grandezza grazie all'introduzione di opportuni atomi droganti

Silicio drogato n

atomi donatori (esempio: As o P per Si), 1 elettrone in più di Si nel guscio più esterno → semiconduttore *drogato n*

per ogni atomo di drogante ionizzato:

1 carica negativa (elettrone) mobile

1 carica positiva fissa

Silicio drogato p

atomi accettatori (esempio: B per Si)

1 elettrone in meno di Si nel guscio più esterno

→ semiconduttore *drogato p*

per ogni atomo di drogante ionizzato:

1 carica positiva (lacuna) mobile

1 carica negativa fissa

Struttura Metallo-Ossido-Semiconduttore

Condensatore a facce piane parallele Metallo-Ossido-Semiconduttore (MOS):

- un'armatura è in metallo (oppure di Si policristallino)
- il dielettrico è ossido di silicio SiO₂
- la seconda armatura è di semiconduttore (assumiamo Si drogato p)

Idea base: cambiare le caratteristiche di conduzione **nel semiconduttore** applicando una *tensione di controllo* alle armature del condensatore MOS

Struttura Metallo-Ossido-Semiconduttore

Che cosa succede applicando una tensione $\mathbf{v_G}$?

Accumulo di lacune

La carica **positiva** sull'armatura di Si è **mobile**, è costituita da lacune (=portatori maggioritari nel *p*-Si)

Svuotamento di lacune

La carica *negativa* sull'armatura di Si è *fissa*, è costituita dai droganti accettatori ionizzati (carica fissa)

Inversione

Aumentando ancora v_G la carica degli accettatori non basta... si genera sull'armatura di Si anche un sottile strato (*canale*) di carica *negativa mobile: elettroni*

Transistore MOS a quattro terminali

Aumentando ancora v_G oltre la **Tensione di Soglia** V_{TH} si aggiunge sull'armatura di Si anche uno strato (*canale*) di carica *negativa mobile: elettroni*

 $v_{\rm G} >> 0$

IDEA: sfruttare la carica mobile (=elettroni) del canale in inversione (che è controllata da v_G) per **controllare** la conduzione del semiconduttore in direzione parallela al *gate*

Transistore MOS a quattro terminali

Si introducono regioni drogate *n*+ (=molto drogate *n*, quindi molto conduttive) per contattare il canale sui due lati (*source e drain*)

Queste regioni drogate *n*+ formano con il substrato delle giunzioni *pn*+ (diodi)

Se il potenziale del *drain* e del *source* è maggiore di quello del substrato, le giunzioni pn+ sono polarizzate inversamente \rightarrow le lacune non possono passare dal substrato p ai terminali di drain/source

Gli elettroni del canale in inversione possono passare ai terminali di drain/source dando luogo a passaggio di corrente nel circuito esterno per $v_{DS} \neq 0$ V

IDEA: sfruttare la carica del canale in inversione (che è controllata da v_G) per **controllare** la conduzione del semiconduttore nella direzione parallela al *gate*

