KRYTERIA ZBIEŻNOŚCI CAŁEK NIEWŁAŚCIWYCH

Niech $b = \infty$ lub $b \in \mathbb{R}$ i a < b

- 1. Twierdzenie 1.1: Niech $f,g:< a,b) \to \mathbb{R}$ będą całkowalne w sensie Riemanna na $< a,\beta>$ dla każdego $a<\beta< b$ i $\forall_{x\in < a,b},0 \le f(x) \le g(x)$. Wtedy:
 - (a) Jeśli $\int_a^b g(x)dx$ jest zbieżna, to $\int_a^b f(x)dx$ też jest zbieżna.
 - (b) Jeśli $\int_a^b f(x)dx$ jest rozbieżna, to $\int_a^b g(x)dx$ też jest rozbieżna
- 2. Twierdzenie 1.2: Jeśli $f: \langle a,b \rangle \to \mathbb{R}$ jest całkowalna w sensie Riemanna na $\langle a,\beta \rangle$ dla każdego $a < \beta < b$ i $\int_a^b |f(x)| dx$ jest zbieżna, to $\int_a^b f(x) dx$ też jest zbieżna. W przypadku zbieżności mamy $|\int_a^b f(x) dx| \leq \int_a^b |f(x)| dx$ Analogiczne twierdzenia są prawdziwe także dla funkcji $f,g: (a,b) \to \mathbb{R}$ gdzie $a=-\infty$ lub $a \in \mathbb{R}$ i a < b

3.

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx \text{ jest zbieżna } \iff p > 1$$

$$\int_{0}^{1} \frac{1}{x^{p}} dx \text{ jest zbieżna } \iff p < 1$$

Z czego $\int_0^\infty \frac{1}{x^p}$ jest rozbieżna

- 4. Przykłady:
 - (a) $\int_1^\infty \frac{dx}{\sqrt[4]{5x^5+1}}$ jest zbieżna, bo $\int_1^\infty \frac{dx}{x^{5/4}}$ jest zbieżna (bo $p=\frac{5}{4}>1$) z twierdzenia 1.1(a)
 - (b) $\int_0^1 \frac{e^{2x}}{\sqrt{x^3}} dx$ jest rozbieżna, bo $\int_0^1 \frac{1}{x^{3/2}}$ jest rozbieżna (bo $p = \frac{3}{2} \le 1$) z twierdzenia 1.1(b)
 - (c) $\int_{2}^{\infty} \frac{x \cdot \sin x}{(x^2 + 4)^2} dx : \forall_{x \in \langle 2, \infty \rangle} |\frac{x \cdot \sin x}{(x^2 + 4)^2}| = \frac{x \cdot |\sin x|}{(x^2 + 4)^2} \le \frac{x}{(x^2 + 4)^2} \le \frac{x}{x^4} = \frac{1}{x^3}$