Dummit & Foote Ch. 1.4: Matrix Groups

Scott Donaldson

Mar. 2023

1. (3/16/23)

Prove that $|GL_2(\mathbb{F}_2)| = 6$.

Proof. Matrices in $GL_2(\mathbb{F}_2)$ have the form $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, where $a, b, c, d \in \{0, 1\}$. There are 16 possible matrices of this form (2 options for each entry over 4 entries, $2^4 = 16$).

From the definition of GL_2 , we discount matrices with determinant 0. A 2×2 matrix has determinant 0 when ad - bc = 0, that is, ad = bc. This happens only when ad = bc = 1 or ad = bc = 0. There is only one matrix where ad = bc = 1, $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$. Matrices with determinant 0 have one of a, d and b, c equal to 0. They are the matrices with all zero entries (1), with three zero entries (4), and with two zero entries (a and b, or a and c, or b and d, or c and d) (4).

This leaves us with 16-1-1-4-4=6 matrices with nonzero determinants, so the order of $GL_2(\mathbb{F}_2)=6$.

2. (3/16/23)

Write out all the elements of $GL_2(\mathbb{F}_2)$ and compute the order of each element.

- $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$: 1 (identity)
- $\bullet \ \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} : 2$
- $\bullet \ \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} : 2$
- $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$: 3

•
$$\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$
: 3

$$\bullet \ \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} : 2$$

3. (3/16/23)

Show that $GL_2(\mathbb{F}_2)$ is non-abelian.

Proof. To prove that $GL_2(\mathbb{F}_2)$ is non-abelian, we need only show that it contains two non-commuting elements.

two non-commuting elements.
$$\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \times \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}.$$
 However,
$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \times \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$
 These products are not equal, so $GL_2(\mathbb{F}_2)$ is non-abelian. \square

4. (3/18/23)

Show that if n is not prime then $\mathbb{Z}/n\mathbb{Z}$ is not a field.

Proof. Let n be a composite positive integer and let a divide n with a > 1. We will show that a does not have a multiplicative inverse in $\mathbb{Z}/n\mathbb{Z}$, and therefore $\mathbb{Z}/n\mathbb{Z}$ is not a field.

We will show that there is no integer c such that $ac = 1 \mod n$. Since a divides n, let $ab = n = 0 \mod n$. So $a(b+1) = ab + a = n + a = a \mod n$. That is, for the pair of consecutive integers b and b+1, we have ab = 0 < 1 and a(b+1) = a > 1. Then there is no integer c strictly between b and b+1 such that $ac = 1 \mod n$. For any larger integers, we note that $abk = nk = 0 \mod n$, and $a(bk+1) = abk + a = nk + a = a \mod n$, and therefore there is no integer c among all of \mathbb{Z}^+ with ac = 1. Therefore, since a has no multiplicative inverse, $\mathbb{Z}/n\mathbb{Z}$ is not a field.

5. (3/18/23)

Show that $GL_n(F)$ is a finite group if and only if F has a finite number of elements.

Proof. Let F be a field with $m < \infty$ elements and, for some n > 1, let $GL_n(F)$ be the general linear group of degree n on F. The total possible number of $n \times n$ matrices with entries from F is m^{n^2} . Since the number of elements in $GL_n(F)$ is at most this value, it is a finite group (in 6. we will show that it is strictly less than).

To prove the converse, we will show that, if F is an infinite field, then $GL_n(F)$ must not be a finite group. Let F be an infinite field. For every $x \in F$

(excluding x = 0), we can construct an $n \times n$ matrix whose diagonal entries are x and all other entries are 0. By definition, the determinant of such a matrix is the product of the diagonal entries, $x^n \neq 0$. Therefore such a matrix belongs to $GL_n(F)$. This is a bijection between F and $GL_n(F)$, and so they have the same cardinality, that is, $GL_n(F)$ must not be a finite group.

Thus, $GL_n(F)$ is a finite group if and only if F has a finite number of elements.

6. (3/19/23)

If |F| = q is finite prove that $|GL_n(F)| < q^{n^2}$.

Proof. An element of $GL_n(F)$ is an invertible $n \times n$ matrix whose entries come from F. For each entry, there are q possibilities, and there are n^2 total entries, so there are q^{n^2} possible such matrices (before discounting those with determinant = 0). It is guaranteed that some number of $n \times n$ matrices have determinant 0; for example, the matrix whose entries are all 0 obviously has determinant 0. So the number of elements of $GL_n(F)$ is always strictly less than q^{n^2} .

7. (3/19/23)

Let p be a prime. Prove that the order of $GL_2(\mathbb{F}_p)$ is $p^4 - p^3 - p^2 + p$.

Proof. From 5. and 6., there are $p^{2^2} = p^4$ possible 2×2 matrices, and the order of $GL_2(\mathbb{F}_p)$ is strictly less than this number. Let us count the ways in which an element of $GL_2(\mathbb{F}_p)$ might have a determinant equal to 0.

A 2×2 matrix in $GL_2(\mathbb{F}_p)$ has the form $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, with $a, b, c, d \in F_p$. The determinant of a 2×2 matrix is ad - bc. First, consider the cases in which $a, b, c, d \neq 0$. Setting the determinant equal to 0, we can see that d must equal bc/a. So there are p-1 choices for a, b, c, and d is fixed based on the other entries. Then there are $(p-1)^3$ matrices with 4 nonzero entries with determinant equal to 0.

Next, consider 2×2 matrices with one entry equal to 0, for example, $\begin{pmatrix} a & b \\ c & 0 \end{pmatrix}$. The determinant of this matrix is $a \cdot 0 - bc = bc$. In order for this to equal 0, at least one of either b or c must equal zero. Then there are no matrices with exactly 1 zero entry with determinant equal to 0.

Now consider 2×2 matrices with two entries equal to 0. Such matrices have the form $\begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} a & 0 \\ c & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ c & d \end{pmatrix}$, or $\begin{pmatrix} 0 & b \\ 0 & d \end{pmatrix}$. There are p-1 possible choices for both of the nonzero entries, so there are $4(p-1)^2$ matrices with exactly 2 nonzero entries with determinant equal to 0.

Matrices with three entries equal to 0 have the form $\begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix}$,

$$\begin{pmatrix} 0 & 0 \\ c & 0 \end{pmatrix}$$
, or $\begin{pmatrix} 0 & 0 \\ 0 & d \end{pmatrix}$. There are $4(p-1)$ such matrices.

Finally, there is the single matrix with all 0 entries, $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. So, the total number of elements of $GL_2(\mathbb{F}_p)$ is:

$$p^{4} - (p-1)^{3} - 4(p-1)^{2} - 4(p-1) - 1 =$$

$$p^{4} - (p^{3} - 3p^{2} + 3p - 1) - (4p^{2} - 8p + 4) - (4p - 4) - 1 =$$

$$p^{4} - p^{3} + 3p^{2} - 3p + 1 - 4p^{2} + 8p - 4 - 4p + 4 - 1 =$$

$$p^{4} - p^{3} + (3 - 4)p^{2} + (-3 + 8 - 4)p + (1 - 4 + 4 - 1) =$$

$$p^{4} - p^{3} - p^{2} + p$$

as desired. \Box

8. (3/21/23)

Show that $GL_n(F)$ is non-abelian for any $n \geq 2$ and F.

Proof. To show that $GL_n(F)$ is non-abelian, we need to show that it contains two elements that are noncommutative. By definition of general linear groups, $GL_n(F)$ consists of invertible $n \times n$ matrices whose entries come from the field F. Further, by definition of fields, F contains an additive identity 0 and a multiplicative identity 1. Therefore, if we consider only matrices in $GL_n(F)$ whose entries are 0 or 1 and whose product's entries are 0 or 1 (in \mathbb{Z}), these are elements of every $GL_n(F)$ regardless of which F we choose.

Let A be the transpose of the identity matrix and let B be equal to the identity matrix with the final two columns swapped:

$$A = \begin{pmatrix} 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & \cdots & 1 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 1 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & \cdots & 1 & 0 \end{pmatrix}.$$

The upper-right entry of AB is the dot product of the first row of A with the last column of B: $0 \cdot 0 + 0 \cdot 0 + \dots + 0 \cdot 1 + 1 \cdot 0 = 0$.

The upper-right entry of BA is the dot product of the first row of B with the last column of A: $1 \cdot 1 + 0 \cdot 0 + \ldots + 0 \cdot 0 + 0 \cdot 0 = 1$.

Because AB and BA do not contain exactly the same entries, they are not equal matrices. Therefore, A and B do not commute. Further, because for every $n \geq 2$ and every field F, $GL_n(F)$ contains the elements A and B, $GL_n(F)$ is non-abelian.

9. (3/21/23)

Prove that the binary operation of multiplication of 2×2 matrices is associative.

Proof. Let
$$A = \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix}$$
, $B = \begin{pmatrix} b_1 & b_2 \\ b_3 & b_4 \end{pmatrix}$, $C = \begin{pmatrix} c_1 & c_2 \\ c_3 & c_4 \end{pmatrix}$.

$$\begin{split} A(BC) &= \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} b_1 & b_2 \\ b_3 & b_4 \end{pmatrix} \begin{pmatrix} c_1 & c_2 \\ c_3 & c_4 \end{pmatrix} \end{pmatrix} = \\ & \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix} \begin{pmatrix} b_1c_1 + b_2c_3 & b_1c_2 + b_2c_4 \\ b_3c_1 + b_4c_3 & b_3c_2 + b_4c_4 \end{pmatrix} = \\ & \begin{pmatrix} a_1(b_1c_1 + b_2c_3) + a_2(b_3c_1 + b_4c_3) & a_1(b_1c_2 + b_2c_4) + a_2(b_3c_2 + b_4c_4) \\ a_3(b_1c_1 + b_2c_3) + a_4(b_3c_1 + b_4c_3) & a_3(b_1c_2 + b_2c_4) + a_4(b_3c_2 + b_4c_4) \end{pmatrix} = \\ & \begin{pmatrix} (a_1b_1 + a_2b_3)c_1 + (a_1b_2 + a_2b_4)c_3 & (a_1b_1 + a_2b_3)c_2 + (a_1b_2 + a_2b_4)c_4 \\ (a_3b_1 + a_4b_3)c_1 + (a_3b_2 + a_4b_4)c_3 & (a_3b_1 + a_4b_3)c_2 + (a_3b_2 + a_4b_4)c_4 \end{pmatrix} = \\ & \begin{pmatrix} a_1b_1 + a_2b_3 & a_1b_2 + a_2b_4 \\ a_3b_1 + a_4b_3 & a_3b_2 + a_4b_4 \end{pmatrix} \begin{pmatrix} c_1 & c_2 \\ c_3 & c_4 \end{pmatrix} = \\ & \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix} \begin{pmatrix} b_1 & b_2 \\ b_3 & b_4 \end{pmatrix} \begin{pmatrix} c_1 & c_2 \\ c_3 & c_4 \end{pmatrix} = (AB)C. \end{split}$$

10. (3/22/23)

Let $G = \{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mid a, b, c \in \mathbb{R}, a \neq 0, c \neq 0 \}.$

(a) Compute the product of $\begin{pmatrix} a_1 & b_1 \\ 0 & c_1 \end{pmatrix}$ and $\begin{pmatrix} a_2 & b_2 \\ 0 & c_2 \end{pmatrix}$ to show that G is closed under matrix multiplication.

 $\begin{pmatrix} a_1 & b_1 \\ 0 & c_1 \end{pmatrix} \begin{pmatrix} a_2 & b_2 \\ 0 & c_2 \end{pmatrix} = \begin{pmatrix} a_1 a_2 & a_1 b_2 + b_1 c_2 \\ 0 & c_1 c_2 \end{pmatrix}. \ \mathbb{R} \ \text{is closed under addition}$ and multiplication, so the entries of the matrix product are all in \mathbb{R} , and so the product is an element of G.

(b) Find the matrix inverse of $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$ and deduce that G is closed under inverses.

The inverse of $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$ is the 2×2 matrix $\begin{pmatrix} d & e \\ f & g \end{pmatrix}$ such that $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \begin{pmatrix} d & e \\ f & g \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

Looking at lower-left entry first, we have $0 \cdot d + cf = 0$. We know that c is nonzero, so f = 0.

Next, looking at the upper-left entry, we have $ad + b \cdot 0 = 1 \Rightarrow ad = 1$. So d = 1/a. Similarly for the lower-right entry, $cg = 1 \Rightarrow g = 1/c$.

Finally, looking at the upper-right entry, we have ae + bg = ae + b/c = 0. So e = -b/ac. Therefore the inverse matrix is $\begin{pmatrix} 1/a & -b/ac \\ 0 & 1/c \end{pmatrix}$.

(c) Deduce that G is a subgroup of $GL_2(\mathbb{R})$.

From 9., matrix multiplication is associative for 2×2 matrices. As shown in a), G is closed under the operation of matrix multiplication, and in b), inverses of elements in G are also in G. Thus G is a subgroup of $GL_2(\mathbb{R})$.

(d) Prove that the set of elements of G whose diagonal entries are equal (i.e. a=c) is also a subgroup of $GL_2(\mathbb{R})$.

Now let H be the set of elements of G whose diagonal entries are equal; that is, matrices of the form $\begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$, $a \neq 0$.

 ${\cal H}$ is closed under matrix multiplication:

$$\begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \begin{pmatrix} c & d \\ 0 & c \end{pmatrix} = \begin{pmatrix} ac & ad + bc \\ 0 & ac \end{pmatrix}.$$

From b), the inverse of $\begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$ is $\begin{pmatrix} 1/a & -b/a^2 \\ 0 & 1/a \end{pmatrix}$, which is also in H.

Thus this set is also a subgroup of $GL_2(\mathbb{R})$.

11. (3/23/23)

Let $H(F) = \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \mid a,b,c \in F \right\}$ — called the *Heisenberg group* over F.

Let
$$X = \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}$$
 and $Y = \begin{pmatrix} 1 & d & e \\ 0 & 1 & f \\ 0 & 0 & 1 \end{pmatrix}$ be elements of $H(F)$.

(a) Compute the matrix product XY and deduce that H(F) is closed under matrix multiplication. Exhibit explicit matrices such that $XY \neq YX$ (so that H(F) is always non-abelian).

$$XY = \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & d & e \\ 0 & 1 & f \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & a+d & b+e+af \\ 0 & 1 & c+f \\ 0 & 0 & 1 \end{pmatrix}.$$

Given this product, the only entry that has a different value when the order of multiplication is reversed is the upper-right, which is b+e+af for XY and b+e+cd for YX. So we need to find $af \neq cd$. Let a=f=1 and c=d=0.

Then

$$XY = \begin{pmatrix} 1 & 1 & b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & e \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & b+e+1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \text{ and }$$

$$YX = \begin{pmatrix} 1 & 0 & e \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & b+e \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

For no $b, e \in F$ is it possible for b + e to equal b + e + 1. Thus H(F) is non-abelian.

(b) Find an explicit formula for the matrix inverse X^{-1} and deduce that H(F) is closed under inverses.

Suppose $D = \begin{pmatrix} d_{11} & d_{12} & d_{13} \\ d_{21} & d_{22} & d_{23} \\ d_{31} & d_{32} & d_{33} \end{pmatrix}$ such that $XD = I_3$. Carrying out the

multiplication, we obtain the following set of equations:

$$\bullet$$
 $d_{11} + ad_{21} + bd_{31} = 1$

$$\bullet \ d_{12} + ad_{22} + bd_{32} = 0$$

$$\bullet$$
 $d_{13} + ad_{23} + bd_{33} = 0$

$$d_{21} + cd_{31} = 0$$

$$d_{22} + cd_{32} = 1$$

•
$$d_{23} + cd_{33} = 1$$

•
$$d_{31} = 0$$

•
$$d_{32} = 0$$

•
$$d_{33} = 1$$

Substituting $d_{31} = d_{32} = 0$, $d_{33} = 1$ into the first equations, we obtain the following:

•
$$d_{11} + ad_{21} = 1$$

$$d_{12} + ad_{22} = 0$$

$$d_{13} + ad_{23} + b = 0$$

•
$$d_{21} = 0$$

•
$$d_{22} = 1$$

•
$$d_{23} + c = 1$$

So we have $d_{23} = -c$, and substituting that, as well as $d_{21} = 0$, $d_{22} = 1$ into the above, we obtain:

•
$$d_{11} = 1$$

•
$$d_{12} + a = 0$$

•
$$d_{13} - ac + b = 0$$

Then
$$D = \begin{pmatrix} 1 & -a & ac - b \\ 0 & 1 & -c \\ 0 & 0 & 1 \end{pmatrix}$$
. Since $XD = I_3, D = X^{-1}$, and we see that $H(F)$ is closed under inverses.

(c) Prove the associative law for H(F) and deduce that H(F) is a group of order $|F|^3$.

Since H(F) is closed under matrix multiplication, we can ignore all but the upper-triangular entries (upper-middle, upper-right, and middle-right), since they will always be either 0 or 1.

From a), the upper-middle and middle-right entries of XY are a + d and c+f, respectively. If we multiply their product by a third matrix, these entries will be the sum of the respective entries of the three entries, which is associative.

The upper-right entry of XY is b + e + af. Let Z be a matrix with upper-triangular entries g, h, i. Then (XY)Z has the upper-right entry (b+e+af)+h+(a+d)i=b+e+h+af+ai+di. The upper-right entry of X(YZ) is (e + h + di) + b + a(f + i) = b + e + h + af + ai + di. Thus, (XY)Z = X(YZ), and so H(F) is associative.

Since H(F) is closed under matrix multiplication, inverses, and is associative, it is a group. In choosing elements of H(F), we can freely choose from three elements $a, b, c \in F$. Therefore $|H(F)| = |F|^3$.

- (d) Find the order of each element of the finite group $H(\mathbb{Z}/2\mathbb{Z})$.
 - $\bullet \ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} : 1$
 - $\bullet \ \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} : 2$
 - $\bullet \ \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} : 2$
 - $\bullet \ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} : 2$
 - $\bullet \ \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} : 2$

$$\bullet \ \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} : 2$$

$$\bullet \ \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} : 3$$

(e) Prove that every nonidentity element of the group $H(\mathbb{R})$ has infinite order.

Proof. Let $X = \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \in H(\mathbb{R})$. We will show by induction that the

upper-middle, upper-right, and middle-right entries of X^n are na, (n(n-1)/2)ac + nb, and nc, respectively.

For the base case, $X^1 = X$ has the upper-middle, upper-right, and middleright entries $a = 1 \cdot a, b = 0 \cdot ac + 1 \cdot b, c = 1 \cdot c$.

For the induction step, suppose for X^n , the relevant entries are na, (n(n-1)/2)ac + nb, and nc. Then

$$X^{n+1} = X^n X = \begin{pmatrix} 1 & na & (n(n-1)/2)ac + nb \\ 0 & 1 & nc \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} = 0$$

$$X^{n+1} = X^n X = \begin{pmatrix} 1 & na & (n(n-1)/2)ac + nb \\ 0 & 1 & nc \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & (n+1)a & b + nac + (n(n-1)/2)ac + nb \\ 0 & 1 & (n+1)c \\ 0 & 0 & 1 \end{pmatrix}.$$
 The upper-middle and

middle-right entries satisfy the induction hypothesis, and the upper-right entry is:

$$b + nac + (n(n-1)/2)ac + nb = (n + n(n-1)/2)ac + (n+1)b =$$

$$((2n + n^2 - n)/2)ac + (n+1)b = ((n^2 + n)/2)ac + (n+1)b =$$

$$(n(n+1)/2)ac + (n+1)b.$$

Thus, X^{n+1} satisfies the induction hypothesis.

Now if $|X| < \infty$, then for some $n, X^n = I_3$. So we need:

na = (n(n-1)/2)ac + nb = nc = 0. For na and nc, since n > 0, we need a=c=0. Then nb=0, so b=0. Therefore the identity matrix is the only element of $H(\mathbb{R})$ with finite order.