תורת ההסתברות

תרגיל בית מס' 4

תרגיל 1.

Y=h(X) : נגדיר: $-3 \le x \le 3$ עבור $f_X(x)=1/6$ דהיעו $X \sim U(-3,3)$ איהי הפונקציה h(x) נתונה על ידי

$$h(x) = \begin{cases} 2x & \text{if } x \le -1, \\ x & \text{if } -1 < x \le 1, \\ 4x & \text{if } x > 1. \end{cases}$$

.EY -ו $f_Y(y)$ את

<u>תרגיל 2.</u>

 $0 \le x,y \le 1$ מפולג באופן אחיד על התחום (X,Y) מפולג מפולג באופן

- $P(XY \le 1/4) \le P(X + Y \ge 1/4)$ הוכיחו כי
- $P(X+Y \ge 1/4|X+Y \le 1/4)$ מצאו את ההסתברות המותנת

תרגיל 3.

עבור פרמטר $x\geq 1$, $f_X(x)=c_\lambda\cdot x^{-1-\lambda}$ עבור פרמטר $\lambda>0$ יהא $\lambda>0$ יהא $\lambda>0$ עבור פרמטר פרמטר $\alpha>0$ משתנה אקראי חדש $\alpha>0$ עבור פרמטר פרמטר

- $.c_{\lambda}$ מצאו את הקבוע (א)
- (\mathbf{z}) מהי פונקצית ההתפלגות של
 - X מצאו את הצפיפות של מ"א Y
- תישבו את EY עבור פרמטר α כלשהו.

תרגיל 4.

 $X=\exp\{\lambda X\},\;\lambda>0$ מצאו את הצפיפות של מ"א $X\sim N(0,\overline{1).}$ יהא

תרגיל 5.

יהי (Ω, \mathcal{A}, P) מרחב הסתברות. הוכיחו כי קיים לכל היותר מספר בר מנייה של נקודות $\omega \in \Omega$ עבורם מתקיים $\omega \in \Omega$

תרגיל 6. אני מ"א המוגדרים באותו מרחב הסתברות. הוכיחו כי X,Y שני מ"א המוגדרים באותו $P(Y \le x) \le P(X \le x), \; \forall x \in \mathbb{R}$ גורר $P(\omega: X < Y) = 1$

<u>תרגיל 7</u>.

תנו דוגמה למרחב הסתברות סופי ושלושה מאורעות בלתי תלוים בו.