REC'D 04 JAN 2005

WIPO

PCT

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2003年12月10日

出 願 番 号 Application Number:

特願2003-412074

[ST. 10/C]:

[JP2003-412074]

出 願 人
Applicant(s):

株式会社村田製作所

特許庁長官 Commissioner, Japan Patent Office

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

PRIORITY

2004年12月17日

1) 11

ページ: 1/E

【書類名】 特許願 【整理番号】 1032060 【提出日】 平成15年12月10日 【あて先】 特許庁長官殿 【国際特許分類】 G06F 17/00 G06F 17/12 【発明者】 【住所又は居所】 京都府長岡京市天神二丁目26番10号 株式会社村田製作所内 【氏名】 岡田 勉 【特許出願人】 【識別番号】 000006231 京都府長岡京市天神二丁目26番10号 【住所又は居所】 【氏名又は名称】 株式会社村田製作所 【代理人】 【識別番号】 100064746 【弁理士】 【氏名又は名称】 深見 久郎 【選任した代理人】 【識別番号】 100085132 【弁理士】 【氏名又は名称】 森田 俊雄 【選任した代理人】 【識別番号】 100083703 【弁理士】 【氏名又は名称】 仲村 義平 【選任した代理人】 【識別番号】 100096781 【弁理士】 【氏名又は名称】 堀井 豊 【選任した代理人】 【識別番号】 100098316 【弁理士】 【氏名又は名称】 野田 久登 【選任した代理人】 【識別番号】 100109162 【弁理士】 【氏名又は名称】 酒井 將行 【手数料の表示】 【予納台帳番号】 008693 【納付金額】 21,000円 【提出物件の目録】 【物件名】 特許請求の範囲 1 【物件名】 明細書 1 【物件名】 図面 1 【物件名】 要約書 1 【包括委任状番号】 0112071

【書類名】特許請求の範囲

【請求項1】

解析対象の形状データを粗い要素と細かな要素とに分割するための分割手段と、

前記分割手段によって分割された粗い要素の電磁界ベクトルと細かな要素の電磁界ベクトルとを関連付ける行列を作成するための作成手段と、

前記作成手段によって作成された行列を参照しながら、連立1次方程式の反復解法を適用して前記細かな要素の電磁界ベクトルの近似解を演算するための演算手段とを含む電磁 界解析装置。

【請求項2】

前記作成手段は、前記細かな要素の辺における電磁界ベクトルの要素を、前記粗い要素 における補間関数を用いて表すことによって前記行列を作成する、請求項1記載の電磁界 解析装置。

【請求項3】

前記細かな要素の辺1iの長さを-1i-1、前記細かな要素の辺1iの位置xにおける電磁界と前記粗い要素の辺yにおける電磁界との関係を示す補間関数を N_y C -1i-10 における電磁界との関係を示す補間関数を N_y C -1i-11 における電磁界との関係を示す補間関数を N_y C -1i-11 における電磁界を示す補間関数を N_y C -11 における電磁界を示す補間関数を N_y C -11 における電磁界を示す補間関数を N_y C -12 における電磁界を示す補間関数を N_y C -13 における電磁界を示すると、前記作成手段は次式によって前記行列 N_y C -14 における電磁界を示すると、前記作成手段は次式によって前記行列 N_y C -15 における電磁界を示すると、前記作成手段は次式によって前記行列 N_y C -15 における電磁界を示すると、前記解析を可能を示する。

【数1】

$$P_{ij} = \frac{1}{|l_i|} \int_{l_i} N_j^C(x) \cdot t_i dl \qquad \cdots (14)$$

【請求項4】

前記演算手段は、連立1次方程式の定常的な反復解法を適用して前記細かな要素の電磁界ベクトルの近似解に含まれる高周波成分を除去し、前記作成手段によって作成された行列を用いて前記細かな要素における残差を前記粗い要素における残差に写像し、連立1次方程式の直接法または非定常的な反復解法を適用して前記粗い要素に対する修正ベクトルを作成し、前記作成手段によって作成された行列を用いて前記粗い要素に対する修正ベクトルを前記細かな要素における修正ベクトルを求めることによって、前記細かな要素の近似解の精度を上げる、請求項1~3のいずれかに記載の電磁界解析装置。

【請求項5】

解析対象の電磁界を解析する電磁界解析方法をコンピュータに実行させるためのコンピュータ・プログラムであって、

前記コンピュータは、分割した要素を記憶する第1の記憶手段と、行列を記憶する第2 の記憶手段とを含み、

前記電磁界解析方法は、解析対象の形状データを粗い要素と細かな要素とに分割して前 記第1の記憶手段に記憶するステップと、

前記第1の記憶手段に記憶された粗い要素の電磁界ベクトルと細かな要素の電磁界ベクトルとを関連付ける行列を作成して前記第2の記憶部に記憶するステップと、

前記第2の記憶手段に記憶された行列を参照しながら、連立1次方程式の反復解法を適用して前記細かな要素の電磁界ベクトルの近似解を演算するステップとを含む、コンピュータ・プログラム。

【請求項6】

解析対象の電磁界を解析する電磁界解析方法をコンピュータに実行させるためのプログラムを記録したコンピュータで読取り可能な記録媒体であって、

前記コンピュータは、分割した要素を記憶する第1の記憶手段と、行列を記憶する第2 の記憶手段とを含み、

前記電磁界解析方法は、解析対象の形状データを粗い要素と細かな要素とに分割して前 記第1の記憶手段に記憶するステップと、

前記第1の記憶手段に記憶された粗い要素の電磁界ペクトルと細かな要素の電磁界ペク

トルとを関連付ける行列を作成して前記第2の記憶部に記憶するステップと、 前記第2の記憶手段に記憶された行列を参照しながら、連立1次方程式の反復解法を適 用して前記細かな要素の電磁界ベクトルの近似解を演算するステップとを含む、コンピュ ータで読取り可能な記録媒体。

【書類名】明細書

【発明の名称】電磁界解析装置、電磁界解析プログラムおよびそのプログラムを記録した 記録媒体

【技術分野】

[0001]

本発明は、多層商品、ギガフィルタ、EMI (Electro-Magnetic Interference) 除去フィルタなどの高周波商品の開発や設計に使用する電磁界シミュレーション技術に関し、特に、シミュレーション時間の短縮を可能にした電磁界解析装置、電磁界解析プログラムおよびそのプログラムを記録した記録媒体に関する。

【背景技術】

[0002]

近年、高周波商品の開発や設計が盛んに行なわれており、高周波商品の電磁界解析を行なうのに電磁界シミュレーションソフトが広く使用されるようになってきている。一般に、電磁界解析には有限要素法が利用される場合が多い。この有限要素法を用いた電磁界シミュレーションにおいては、連立1次方程式を解くのに長い時間がかかるため、高速な解法が望まれている。特に、電磁界解析の分野では、ガウスの消去法と呼ばれる直接法しか使えないため、計算時間が長くなるという問題は一層深刻である。

[0003]

ところが、1999年に発表されたHiptmairの論文 (R. Hiptmair, "Multigrid method for Maxwell's equations," SIAM Journal of Numerialc Analysis, vol. 36, no. 1, pp. 204-225, 1999) により、Multigridという解法が電磁界解析でも使えることが証明され、直接法に比べて劇的にスピードアップする解法として注目されている。

[0004]

Multigrid法は、解析対象を細かな要素と粗い要素との2種類に分割し、粗い要素の解を利用して細かな要素の解を求めるものである。

[0005]

ガウスの消去法を使用して連立 1 次方程式を計算する場合、一般に計算時間は行列の次元の 3 乗に比例する。次元の大きさは要素の数に相当するので、たとえば要素の数が 2 倍になれば計算時間は 8 倍、要素の数が 1 0 倍になれば計算時間が 1 0 0 0 倍となる。そこで、粗い要素に対してのみガウスの直接法を適用し、細かな要素に対しては粗い要素の解を利用して近似解を求め、ガウスの消去法を使用しないようにすれば細かな要素に対する計算時間を 1/8、 1/1 0 0 0 に短縮できる。実際には、付加的な計算時間が加算されるため、これほどの短縮にはならないものの、大幅に計算時間を短縮できることには間違いない。

[0006]

Multigrid法は、Nested Meshを使用する方法と、Non-Nested Meshを使用する方法とに 分類される。しかしながら、後述するようにProlongation行列が未完成のため、Nested Meshを使用せざるを得ない。

[0007]

図12は、Nested Meshによる要素の分割を説明するための図である。図12(a)は、2次元解析の場合のNested Meshによる要素の分割を示しており、粗い三角形要素を均等に分割して4つの細かな三角形要素を作成する。また、図12(b)は、3次元解析の場合のNested Meshによる要素の分割を示しており、粗い四面体要素を均等に分割して8つの細かな四面体要素を作成する。図12から分かるように、Nested Meshにおいては、粗い要素と細かな要素との間に幾何学的な制約がある。

【非特許文献 1】 R. Hiptmair, "Multigrid method for Maxwell's equations," SIAM Journal of Numerical Analysis, vol. 36, no. 1, pp. 204-225, 1999

【非特許文献 2】 D. Dibben and T. Yamada, "Non-nested multigrid and automatic mesh coarsening for high frequency electromagnetic problems," 電気学会研究会 資料. SA-02-34, pp. 71-75, 2002

【発明の開示】

【発明が解決しようとする課題】

[0008]

図13は、Nested Meshの第1の問題点を説明するための図である。図13(a)は、 円をNested Meshによって要素分割して、粗い要素を作成したところを示している。また 、図13(b)は、粗い要素をNested Meshによって細かな要素に分割したところを示し ている。図13(a)および図13(b)から分かるように、Nested Meshの幾何学的な 制約によって曲面を正確に表現することができない。

[0009]

また、図13 (c)は、円をNon-Nested Meshによって要素分割して、細かな要素を作 成したところを示している。図13(c)から分かるように、幾何学的な制約がないため 、曲面を正確に表現することができる。

[0010]

図14は、Nested Meshの第2の問題点を説明するための図である。図14(a)は、 正方形をNested Meshによって要素分割して、粗い要素を作成したところを示している。 また、図14(b)は、粗い要素をNested Meshによって細かな要素に分割したところを 示している。図14(a)および図14(b)から分かるように、Nested Meshの幾何学 的な制約によって部分的に細かくすることができない。

[0011]

また、図14(c)は、正方形をNon-Nested Meshによって要素分割して、細かな要素 を作成したところを示している。図14 (c) から分かるように、幾何学的な制約がない ため、部分的に細かくすることができる。

[0012]

工業製品のほとんどは円柱や球などの曲面があり、また部分的に細かなところも必ずあ る。したがって、Nested Meshを工業製品などに用いることは困難である。一方、Non-Nes ted Meshには幾何学的制約が一切ないため、細かな要素を自由に作成することができる。 しかしながら、位置関係に規則性がないため、粗い要素と細かな要素との間の電磁界の関 連付けが難しい。この粗い要素と細かな要素との関連付けを行なうのがProlongation行列 であるが、正確なProlongation行列は発見されていない。このことは、Mulitigrid法が実 用的に使用できないことを意味しており、電磁界解析においてはガウスの直接法という計 算時間のかかる方法を用いざるを得ない。

[0013]

本発明は、上記問題点を解決するためになされたものであり、その目的は、Non-nested Meshを使用したMultigrid法を用いて電磁界解析を行なうことが可能な電磁界解析装置、 電磁界解析プログラムおよびそのプログラムを記録した記録媒体を提供することである。

[0014]

他の目的は、電磁界解析に要する時間を大幅に短縮することが可能な電磁界解析装置、 電磁界解析プログラムおよびそのプログラムを記録した記録媒体を提供することである。 【課題を解決するための手段】

[0015]

本発明のある局面に従えば、電磁界解析装置は、解析対象の形状データを粗い要素と細 かな要素とに分割するための分割手段と、分割手段によって分割された粗い要素の電磁界 ベクトルと細かな要素の電磁界ベクトルとを関連付ける行列を作成するための作成手段と 、作成手段によって作成された行列を参照しながら、連立1次方程式の反復解法を適用し て細かな要素の電磁界ベクトルの近似解を演算するための演算手段とを含む。

[0016]

好ましくは、作成手段は、細かな要素の辺における電磁界ベクトルを、粗い要素におけ る補間関数を用いて表すことによって行列を作成する。

[0017]

さらに好ましくは、細かな要素の辺1;の長さを11;1、細かな要素の辺1;の位置

[0018]

さらに好ましくは、演算手段は、連立1次方程式の定常的な反復解法を適用して細かな 要素の電磁界ベクトルの近似解に含まれる高周波成分を除去し、作成手段によって作成された行列を用いて細かな要素における残差を粗い要素における残差に写像し、連立1次方程式の直接法または非定常的な反復解法を適用して粗い要素に対する修正ベクトルを作成し、作成手段によって作成された行列を用いて粗い要素に対する修正ベクトルを細かな要素における修正ベクトルを求めることによって、細かな要素の近似解の精度を上げる。

[0019]

本発明の別の局面に従えば、解析対象の電磁界を解析する電磁界解析方法をコンピュータに実行させるためのコンピュータ・プログラムであって、コンピュータは、分割した要素を記憶する第1の記憶手段と、行列を記憶する第2の記憶手段とを含み、電磁界解析方法は、解析対象の形状データを粗い要素と細かな要素とに分割して第1の記憶手段に記憶するステップと、第1の記憶手段に記憶された粗い要素の電磁界ベクトルと細かな要素の電磁界ベクトルとを関連付ける行列を作成して第2の記憶部に記憶するステップと、第2の記憶手段に記憶された行列を参照しながら、連立1次方程式の反復解法を適用して細かな要素の電磁界ベクトルの近似解を演算するステップとを含む。

[0020]

本発明のさらに別の局面に従えば、解析対象の電磁界を解析する電磁界解析方法をコンピュータに実行させるためのプログラムを記録したコンピュータで読取り可能な記録媒体であって、コンピュータは、分割した要素を記憶する第1の記憶手段と、行列を記憶する第2の記憶手段とを含み、電磁界解析方法は、解析対象の形状データを粗い要素と細かな要素とに分割して第1の記憶手段に記憶するステップと、第1の記憶手段に記憶された粗い要素の電磁界ベクトルと細かな要素の電磁界ベクトルとを関連付ける行列を作成して第2の記憶部に記憶するステップと、第2の記憶手段に記憶された行列を参照しながら、連立1次方程式の反復解法を適用して細かな要素の電磁界ベクトルの近似解を演算するステップとを含む。

【発明の効果】

[0021]

本発明のある局面によれば、作成手段が、分割手段によって分割された粗い要素の電磁界ベクトルと細かな要素の電磁界ベクトルとを関連付ける行列を作成するので、Non-nest ed Meshを使用したMultigrid法を用いて電磁界解析を行なうことが可能となった。また、演算手段が、作成手段によって作成された行列を参照しながら細かな要素の電磁界ベクトルの近似解を演算するので、細かな要素の電磁界ベクトルを直接法を用いて計算する必要がなくなり、電磁界解析に要する時間を大幅に短縮することが可能となった。

[0022]

また、作成手段が、細かな要素の辺における電磁界ベクトルの要素を、粗い要素における補間関数を用いて表すことによって行列を作成するので、行列を容易に作成することが可能となった。

[0023]

また、作成手段は、後述する式(14)によって行列Pijを作成するので、行列をさらに容易に作成することが可能となった。

[0024]

また、演算手段が、作成手段によって作成された行列を用いて細かな要素の電磁界ペクトルの近似解を修正するようにしたので、細かな要素の近似解の精度を上げる処理を高速に行なうことが可能となった。

【発明を実施するための最良の形態】

[0025]

図1は、本発明の実施の形態における電磁界解析装置の外観例を示す図である。この電磁界解析装置は、コンピュータ本体1、ディスプレイ装置2、FD (Flexible Disk) 4 が装着されるFDドライプ3、キーボード5、マウス6、CD-ROM (Compact Disc-Read Only Memory) 8が装着されるCD-ROM装置7、およびネットワーク通信装置9を含む。電磁界解析プログラムは、FD4またはCD-ROM8等の記録媒体によって供給される。電磁界解析プログラムがコンピュータ本体1によって実行されることによって、電磁界解析が行なわれる。また、電磁界解析プログラムは他のコンピュータよりネットワーク通信装置9を経由し、コンピュータ本体1に供給されてもよい。

[0026]

図2は、本発明の実施の形態における電磁界解析装置の構成例を示すブロック図である。図1に示すコンピュータ本体1は、CPU (Central Processing Unit) 10、ROM (Read Only Memory) 11、RAM (Random Access Memory) 12およびハードディスク13を含む。CPU10は、ディスプレイ装置2、FDドライブ3、キーボード5、マウス6、CD-ROM装置7、ネットワーク通信装置9、ROM11、RAM12またはハードディスク13との間でデータを入出力しながら処理を行う。FD4またはCD-ROM8に記録された電磁界解析プログラムは、CPU10によりFDドライブ3またはCD-ROM装置7を介してハードディスク13に格納される。CPU10は、ハードディスク13から適宜電磁界解析プログラムをRAM12にロードして実行することによって、電磁界解析が行なわれる。

[0027]

図3は、本発明の実施の形態における電磁界解析装置の機能的構成を示すプロック図である。電磁界解析装置は、解析対象の形状データを記憶する形状データ記憶部21と、形状データを要素の大きさを変えて分割する要素分割部22と、要素分割部22によって分割された要素を記憶する要素記憶部23と、連立1次方程式におけるベクトルおよび行列を作成するベクトル・行列作成部24と、Prolongation行列を作成するProlongation行列作成部25と、ベクトル・行列作成部24によって作成されたベクトルおよび行列を記憶するベクトル・行列記憶部26と、Prolongation行列作成部25によって作成されたProlongation行列を記憶するProlongation行列に協部27と、電磁界ベクトルの近似値を演算する近似値演算部28と、近似値演算部28によって演算された近似解を修正する近似解修正部29と、近似解修正部29によって修正された後の近似解を電磁界ベクトルとして記憶する電磁界ベクトル記憶部30とを含む。

[0028]

なお、形状データ記憶部21、要素記憶部23、ベクトル・行列記憶部26、Prolonga tion行列記憶部27および電磁界ベクトル記憶部30は、図2のRAM12またはハードディスク13内の所定領域に設けられる。また、要素分割部22、ベクトル・行列作成部24、Prolongation行列作成部25、近似値演算部28および近似解修正部29のそれぞれの機能は、図2に示すCPU10がRAM12にロードされた電磁界解析プログラムを実行することによって実現される。

[0029]

図4は、本発明の実施の形態における電磁界解析装置の処理手順を説明するためのフローチャートである。まず、要素分割部22は、形状データ記憶部21に記憶される解析対象の形状データを読取り、形状データを要素に分割し、分割した後の要素を要素記憶部23に保存する(S11)。要素分割部22は、2次元解析の場合には形状データを三角形または四角形の要素に分割し、3次元解析の場合には形状データを四面体、三角柱または四角柱に分割する。

[0030]

要素分割部 2 2 は、形状データを要素の大きさを変えて分割する。ここでは説明を簡単にするために、 2 種類の大きさの要素を作成するものとし、大きい方の(粗い)要素の集合を $\Omega^{\rm C}$ とし、小さい方の(細かな)要素の集合を $\Omega^{\rm F}$ とする。なお、添え字C はC oarseを表し、F はF ineを表している。

[0031]

 Ω^{C} と Ω^{F} とを独立に作成してもよいが、まず Ω^{C} を作成し、それを細分化して Ω^{F} を作成した方が処理時間を短縮できる。細分化の方法には、体積の大きな要素を再分割する方法と、 Ω^{C} を用いて解析を行ない、誤差の大きい要素を再分割する方法とがある。いずれを使用してもよいが、誤差を評価する方法の方が計算精度は良い。なお、誤差を評価する方法は、文献(神谷紀生他、"コンピュートロール、特集/ソフトウェアの誤差評価とアダプティブ要素,"No. 42,コロナ社,1993)を参照されたい。

[0032]

図5は、マイクロストリップラインにおける要素分割の一例を示す図である。図5 (a) は、マイクロストリップラインを大きい要素に分割したところを示している。また、図5 (b) は、図5 (a) に示す大きい要素で解析を行ない、誤差を評価して細分化したところを示している。電極の端に電磁界が集中するため、その部分が細かく再分割されている。

[0033]

次に、ベクトル・行列作成部 24 は、要素記憶部 23 に記憶される要素 Ω^{C} と Ω^{F} とを 読込み、Maxwell方程式に有限要素法を適用してそれらを要素で離散化し、連立 1 次方程式における行列および列ベクトルを作成する(S 12)。ここで、対象にしているMaxwel 1 方程式は次式によって表される。

【0034】 【数1】

$$\nabla \times H = (\hat{\sigma} + j\omega\hat{\varepsilon})E \qquad \cdots (1)$$

$$\nabla \times E = -j\omega\hat{\mu}H \qquad \cdots (2)$$

ここで、E:電界、H:磁界、 $\hat{\epsilon}$:誘電率、 $\hat{\mu}$:透磁率、 $\hat{\sigma}$:導電率、 ω :角間波数、 ∇ は微分演算子 $(\partial/\partial x,\partial/\partial y,\partial/\partial z)$ 、 \times は外積、jは虚数を意味する。

【0035】 これらの式から、次の微分方程式が得られる。 【0036】 【数2】

$$\nabla \times \hat{p} \nabla \times u - \omega^2 \hat{q} u = 0 \qquad \cdots (3)$$

u は電界、磁界、ベクトルポテンシャルなどを表わし、 \hat{p} と \hat{q} は誘電率や透磁率の物性値を表わす。たとえば、式(2)を式(1)に代入してH を削除して式(3)を作成した場合は、u は電界、 \hat{p} は透磁率の逆数、 \hat{q} は誘電率になる。

[0037]

以上の前工程で作成した要素 V k に対して有限要素法を適用すると次式が得られる。 【0038】

【数3】

$$\int_{V_k} (\nabla \times N_{ki}) \hat{p}(\nabla \times u) dV - \omega^2 \int_{V_k} N_{ki} \hat{q} u dV = \int_{\partial V_k} (N_{ki} \times \hat{q} \nabla \times u) \cdot n dS$$
 ... (4)

[0039]

ここで、 ∂V_k は V_k の表面であり、n はその外向き単位法線ベクトルである。 N_{k-i} は補間関数(形状関数、内挿関数、基底関数などとも呼ばれる。)である。四面体要素で 1 次式を使用した場合、補間関数は次式によって与えられる。

[0040]

【数4】

$$N_{k1} = |l_1|(L_2\nabla L_3 - L_3\nabla L_2)$$

$$N_{k2} = |l_2|(L_3\nabla L_1 - L_1\nabla L_3)$$

$$N_{k3} = |l_3|(L_1\nabla L_2 - L_2\nabla L_1)$$

$$N_{k4} = |l_4|(L_1\nabla L_4 - L_4\nabla L_1)$$

$$N_{k5} = |l_5|(L_2\nabla L_4 - L_4\nabla L_2)$$

$$N_{k6} = |l_6|(L_3\nabla L_4 - L_4\nabla L_3)$$

[0041]

ここで、 $L_1 \sim L_4$ は体積座標系、 $|l_1| \sim |l_6|$ は辺 l_i の長さである。なお、体積座標系の詳細については、文献 2 (T. Itoh, G. Pelosi and P. P. silvester, "Finite E lement Software for Microwave Engineering," John Wiley & Sons, pp101–125, 1996) を参照されたい。

[0042]

【0043】 【数5】

$$u(x) = \sum_{i=1}^{6} N_{ki}(x) u_{ki} \qquad \cdots (6)$$

[0044]

式 (6) を式 (4) に代入し、 Ω^F の全ての要素に適用すると次の連立 1 次方程式が得られる。

【0045】 【数6】

$$A^F u^F = b^F \qquad \cdots (7)$$

[0046]

ここで、 \mathbf{u}^{F} は辺に配置した電磁界を並べたベクトルであり、その次元はおよそ辺の数に等しい。行列 \mathbf{A}^{F} の成分は、次式によって作成する。

【0047】 【数7】

$$\sum_{k=1}^{N^F} \sum_{i=1}^{6} \sum_{l=1}^{6} \left[\int_{V_k} (\nabla \times N_{ki}) \hat{p}(\nabla \times N_{kj}) dV - \omega^2 \int_{V_k} N_{ki} \hat{q} N_{kj} dV \right] \qquad \cdots (8)$$

【0048】 また、ベクトルb^F は、次式によって作成する。

[0049]

【数8】

$$\sum_{k=1}^{N^F} \sum_{i=1}^{6} \sum_{j=1}^{6} \int_{\partial V_k} (N_{ki} \times \hat{q} \nabla \times N_{kj}) \cdot ndS \qquad \cdots (9)$$

[0050]

ここで、 N^F は Ω^F にある要素の数である。

[0051]

ベクトル・行列作成部 24 は、同様の手順で Ω^c に対する行列 A^c も作成し、 A^F , b F および A^c をベクトル・行列記憶部 26 に保存する。式(7)の連立 1 次方程式を計算して u^F を求めれば、式(6)により電磁界分布を計算でき、式(1)、(2)のMaxwel 1 方程式が解けたことになる。

[0052]

次に、Prolongation行列作成部 25 は、前工程で作成した要素 Ω^F と Ω^C とを要素記憶部 23 から読込み、その幾何学情報を元に、 Ω^F における電磁界ベクトル u^F と、 Ω^C における電磁界ベクトル u^C とを関連付けるProlongation行列 P を作成する(S 13)。 このProlongation行列によって、次式に示すように一方のベクトルから他方のベクトルを求めることができる。

【0053】 【数9】

$$u^{F} = Pu^{C} \qquad \cdots (10)$$

$$u^{C} = P^{I}u^{F} \qquad \cdots (11)$$

[0054]

ここで、 t は転置行列を意味する。

[0055]

図7は、 Ω^F における電磁界ベクトル u^F と Ω^C における電磁界ベクトル u^C との関係を示す図である。列ベクトル u^C の j 成分 u_j^C は、 Ω^C の要素の辺に配置されており、 Ω^F における位置 x での電磁界 u (x) は、 Ω^C における補間関数 N^C を用いて次式で表すことができる。

【0056】 【数10】

$$u(x) = \sum_{j} N_{j}^{C}(x)u_{j}^{C} \qquad \cdots (12)$$

[0057]

 \mathbf{u}^F の \mathbf{i} 成分 \mathbf{u} \mathbf{i}^F は、それが配置された辺 \mathbf{l} \mathbf{i} における電磁界の平均値とする。すなわち、 \mathbf{u}^F の \mathbf{i} 成分 \mathbf{u} \mathbf{i}^F は次式によって表される。

【0058】 【数11】

$$u_i^F = \frac{1}{|l_i|} \int_{l_i} u(x) \cdot t_i dl \qquad \cdots (13)$$

[0059]

ここで、ti は辺li の単位接線ベクトルである。式(12)を式(13)に代入し、式(10)と比較すると、Prolongation行列Pのij成分Pi j は次式で与えられる。【0060】

【数12】

$$P_{ij} = \frac{1}{\left|l_i\right|} \int_{l_i} N_j^C(x) \cdot t_i dl \qquad \cdots (14)$$

[0061]

Prolongation行列作成部 2 5 は、式(1 4)を用いてProlongation行列を作成してProlongation行列記憶部 2 7 に保存する。

[0062]

次に、近似値演算部 28 は、マルチグリッド法による連立 1 次方程式を用いて電磁界ベクトル u^F を計算するために、 u^F に対する適当な初期値 ν^F を設定する(S14)。この初期値 ν^F は、0 であってもよい。なお、マルチグリッド法による連立 1 次方程式の計算の詳細は、文献 3 (W. Briggs, V. Henson and S. McCormick, "A Multigrid Tutorial," S IAM) を参照されたい。

[0063]

次に、近似値演算部 28 は、式(7)にJacobi法、Gauss-Seidel法またはSOR法などの連立 1 次方程式の定常的な反復解法を適用して、 ν^F に含まれる誤差の高周波成分を除去する(S 15)。なお、この反復解法の詳細については、文献 4 (長谷川里美、長谷川秀彦、藤野清次訳、"反復法Templates,"朝倉書店,1996)を参照されたい。

[0064]

次に、近似値演算部 28 は、低周波成分を除去するために、次式を用いて Ω^F における残差 r^F を Ω^C の残差 r^C に写像する(S16)。

【0065】 【数13】

$$r^{F} = b^{F} - A^{F} v^{F} \qquad \cdots (15)$$

$$r^{C} = P^{I} r^{F} \qquad \cdots (16)$$

[0066]

次に、近似値演算部 2 8 は、次式 (1 7) の連立 1 次方程式を解き、修正ベクトル e c を計算する (S 1 7)。

【0067】 【数14】

[0068]

この式(17)は、Gaussの消去法による直接法、CG法、GMRES法など非定常的な反復解法が使用されるが、式(7)に比べて小さな行列なので短時間で計算することができる。なお、この反復解法の詳細については、上記文献4を参照されたい。

[0069]

次に、近似解修正部 29 は、次式(18)、(19)を用いて Ω^c の修正ベクトルを Ω^F の修正ベクトルに戻し、近似解の精度を上げる(S18)。

【0070】 【数15】

$$e^{F} = Pe^{C} \qquad \cdots (18)$$

$$v^{F} = v^{F} + e^{F} \qquad \cdots (19)$$

[0071]

近似解修正部29は、再度ステップS15に示すSmoothingを数回適用して高周波成分 を減衰させる(S19)。

[0072]

以上のステップS15~S19の処理がマルチグリッド法の基本的なアルゴリズムであ るが、収束が遅い場合があるので、必要に応じて連立1次方程式の別の反復解法を併用し て収束を早める(S20)。具体的には、以上の処理をCG法、GMRES法、GCR法 などの非定常解法の前処理として使用するか、または残差切除法などにより加速する。な お、残差切除法の詳細については、文献5 (菊池他、日本機械学会論文集、62-604, B編 , pp4076-,1996-12) を参照されたい。

[0073]

次に、近似解修正部29は、式(15)の残差を評価する(S21)。残差が大きな値 であれば(S21, No)、電磁界ベクトルが収束していないとして、ステップS15に 戻って以降の処理を繰返す。また、残差が十分小さな値であれば(S 2 1 , Y e s)、電 磁界ベクトルが収束しているとして、近似解ッ^F を電磁界ベクトル記憶部30に保存して (S22)、処理を終了する。

[0074]

図8は、本発明の実施の形態における電磁界解析装置の解析対象である方形導波管の一 例を示す図である。この方形導波管の寸法は図8に示す通りであり、内部は空気によって 満たされている。この方形導波管の電磁界解析は、四面体1次要素を使用して行なわれる

[0075]

図9は、図8に示す方形導波管を2.45GHzのTE10モードで駆動したときの要 素数に対する計算時間を、従来の直接法を用いた場合と本発明を用いた場合とで比較する ための図である。図9から分かるように、要素数が多くなるにしたがって、本実施の形態 における電磁界解析装置を用いた場合の効果が顕著となり、要素数が206,266の場 合には従来の直接法に比べて約17倍の速度となっている。

[0076]

図10は、本発明の実施の形態における電磁界解析装置の解析対象である方形導波管の 他の一例を示す図である。このバッチアンテナの寸法は図10に示す通りであり、内部は 空気によって満たされている。このバッチアンテナの電磁界解析は、四面体1次要素を使 用して行なわれる。

[0077]

図11は、図10に示すバッチアンテナを7.0GHzで駆動したときの要素数に対す る計算時間を、従来の直接法を用いた場合と本発明を用いた場合とで比較するための図で ある。図11から分かるように、要素数が多くなるにしたがって、本実施の形態における 電磁界解析装置を用いた場合の効果が顕著となり、要素数が88.445の場合には従来 の直接法に比べて約15倍の速度となっている。

[0078]

以上説明したように、本実施の形態における電磁界解析装置によれば、 Ω^F における電 磁界ベクトル u^F と、 Ω^C における電磁界ベクトル u^C とを関連付けるProlongation行列 Pを作成し、このProlongation行列を用いて電磁界ベクトルを計算するようにしたので、 Non-nested Meshを使用したMultigrid法を用いて電磁界解析を行なうことが可能となった

[0079]

また、Non-Nested Meshを使用したMultigrid法を用いて電磁界解析ができるようになっ たことにより、直接法を用いた電磁界解析と比較して、解析に要する時間を大幅に短縮す ることが可能となった。

[0080]

今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考え られるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示さ れ、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。

【図面の簡単な説明】

[0081]

- 【図1】本発明の実施の形態における電磁界解析装置の外観例を示す図である。
- 【図2】本発明の実施の形態における電磁界解析装置の構成例を示すプロック図である。
- 【図3】本発明の実施の形態における電磁界解析装置の機能的構成を示すプロック図である。
- 【図4】本発明の実施の形態における電磁界解析装置の処理手順を説明するためのフローチャートである。
- 【図5】マイクロストリップラインにおける要素分割の一例を示す図である。
- 【図6】四面体における電磁界uの辺に接する成分を示す図である。
- 【図7】 Ω^F における電磁界ベクトル u^F と Ω^C における電磁界ベクトル u^C との関係を示す図である。
- 【図8】本発明の実施の形態における電磁界解析装置の解析対象である方形導波管の 一例を示す図である。
- 【図9】図8に示す方形導波管を2.45GHzのTE10モードで駆動したときの要素数に対する計算時間を、従来の直接法を用いた場合と本発明を用いた場合とで比較するための図である。
- 【図10】本発明の実施の形態における電磁界解析装置の解析対象である方形導波管の他の一例を示す図である。
- 【図11】図10に示すバッチアンテナを7.0GHzで駆動したときの要素数に対する計算時間を、従来の直接法を用いた場合と本発明を用いた場合とで比較するための図である。
- 【図12】Nested Meshによる要素の分割を説明するための図である。
- 【図13】Nested Meshの第1の問題点を説明するための図である。
- 【図14】Nested Meshの第2の問題点を説明するための図である。

【符号の説明】

[0082]

1コンピュータ本体、2ディスプレイ装置、3FDドライブ、4FD、5キーボード、6マウス、7CD-ROM装置、8CD-ROM、9ネットワーク通信装置、10CPU、11ROM、12RAM、13ハードディスク、21形状データ記憶部、22要素分割部、23要素記憶部、24ベクトル・行列作成部、25Prolongation行列作成部、26ベクトル・行列記憶部、27Prolongation行列記憶部、27Prolongation行列記憶部、28

【図6】

【図7】

【図8】

【図9】

No	要素数	直接法の時間	本発明の時間	比率
1	18,790	56秒	25秒	2.2
2	41,357	225秒	76秒	3.0
3	92,813	1,532秒	167秒	9.2
4	206,266	9,356秒	562秒	16.7

【図10】

【図11】

No	要素数	直接法の時間	本発明の時間	比率
1	19,595	641秒	170秒	3.8
2	41,369	2,223秒	255秒	8.7
3	88,445	8,161秒	541秒	15.0

【図12】

【図13】

(c)

【図14】

(a)

(b)

(c)

【要約】

【課題】 Non-nested Meshを使用したMultigrid法を用いて電磁界解析を高速に行なうことが可能な電磁界解析装置、電磁界解析プログラムおよびそのプログラムを記録した記録媒体を提供すること。

【解決手段】 要素分割部22は、解析対象の形状データを粗い要素と細かな要素とに分割する。Prolongation行列作成部25は、要素分割部22によって分割された粗い要素の電磁界ベクトルと細かな要素の電磁界ベクトルとを関連付けるProlongation行列を作成する。そして、近似値演算部28および近似解修正部29は、Prolongation行列を参照しながら、連立1次方程式の反復解法を適用して細かな要素の電磁界ベクトルの近似解を演算する。したがって、Non-nested Meshを使用したMultigrid法を用いて電磁界解析を高速に行なうことが可能となる。

【選択図】

図 3

特願2003-412074

出願人履歴情報

識別番号

[000006231]

1. 変更年月日

1990年 8月28日

[変更理由]

新規登録

住 所

京都府長岡京市天神二丁目26番10号

氏 名

株式会社村田製作所

2. 変更年月日 [変更理由]

2004年10月12日

由] 住所変更

住 所

京都府長岡京市東神足1丁目10番1号

氏 名

株式会社村田製作所