Concentration of Measure

Sudeep Kamath

CIRM workshop, 25 Jan 2016

What is concentration?

"A random variable that depends in a smooth way on many independent random variables (but not too much on any of them) is essentially constant."

- M. Talagrand, 1996.

What is concentration?

"A random variable that depends in a smooth way on many independent random variables (but not too much on any of them) is essentially constant."

- M. Talagrand, 1996.

If Z is a function of many independent variables $X_1, X_2, \ldots, X_n,$ how large are typical deviations of Z?

What is concentration?

"A random variable that depends in a smooth way on many independent random variables (but not too much on any of them) is essentially constant."

- M. Talagrand, 1996.

If Z is a function of many independent variables $X_1, X_2, \ldots, X_n,$ how large are typical deviations of Z?

Goal: Quantify by bounding for t > 0,

$$\mathbb{P}\left[|Z - \mathbb{E}Z| \ge t\right]$$

Applications

Concentration of measure has far-reaching consequences in

- Pure and applied probability,
- High-dimensional statistics,
- Functional analysis,
- Computer science,
- Machine learning,
- Statistical physics,
- Complex graphs and networks,
- Information theory, communication and coding theory.

Approaches for Proving Concentration

- The martingale approach: Hoeffding (1963), Azuma (1967), Milman and Schechtman (1986), Shamir and Spencer (1987) and McDiarmid (1989, 1998), Sipser and Spielman (1996), Richardson and Urbanke (2001)
- Talagrand's inequalities for product measures: Talagrand (1996).
- Entropy method and log-Sobolev inequalities: Ledoux (1996),
 Massart (1998), Lugosi et al. (1999, 2001)
- Transportation method: Ahlswede, Gács and Körner (1976), Marton (1986, 1996, 1997), Dembo (1997), Villani (2003, 2008)
- Stein's method of exchangeable pairs: Chatterjee (2007),
 Chatterjee and Dey (2010), Goldstein et al. (2011, 2014)

Approaches for Proving Concentration

- The martingale approach: Hoeffding (1963), Azuma (1967), Milman and Schechtman (1986), Shamir and Spencer (1987) and McDiarmid (1989, 1998), Sipser and Spielman (1996), Richardson and Urbanke (2001)
- Talagrand's inequalities for product measures: Talagrand (1996).
- Entropy method and log-Sobolev inequalities: Ledoux (1996), Massart (1998), Lugosi et al. (1999, 2001)
- Transportation method: Ahlswede, Gács and Körner (1976), Marton (1986, 1996, 1997), Dembo (1997), Villani (2003, 2008)
- Stein's method of exchangeable pairs: Chatterjee (2007),
 Chatterjee and Dey (2010), Goldstein et al. (2011, 2014)

We will focus on the entropy method and transportation method where information theoretic methods shine.

Undergraduate ("informal")	
(311111)	

Undergraduate	Graduate
("informal")	(formal probability)

Undergraduate	Graduate
("informal")	(formal probability)
Probability density,	Radon-Nikodym derivative,

Undergraduate	Graduate
("informal")	(formal probability)
Probability density,	Radon-Nikodym derivative,
Riemann integral	Lebesgue integral

Undergraduate	Graduate
("informal")	(formal probability)
Probability density,	Radon-Nikodym derivative,
Riemann integral	Lebesgue integral
Conditional	Regular conditional
probability	probability

Undergraduate	Graduate
("informal")	(formal probability)
Probability density,	Radon-Nikodym derivative,
Riemann integral	Lebesgue integral
Conditional	Regular conditional
probability	probability
$\mathbb{E}[X Y]$ conditioning	$\mathbb{E}[X \sigma(Y)]$ conditioning
on random variables	on σ -fields

Undergraduate	Graduate
("informal")	(formal probability)
Probability density,	Radon-Nikodym derivative,
Riemann integral	Lebesgue integral
Conditional	Regular conditional
probability	probability
$\mathbb{E}[X Y]$ conditioning	$\mathbb{E}[X \sigma(Y)]$ conditioning
on random variables	on σ -fields
Convergence	Also: almost sure,
in distribution	in $L^1,$ in probability

Undergraduate	Graduate
("informal")	(formal probability)
Probability density,	Radon-Nikodym derivative,
Riemann integral	Lebesgue integral
Conditional	Regular conditional
probability	probability
$\mathbb{E}[X Y]$ conditioning	$\mathbb{E}[X \sigma(Y)]$ conditioning
on random variables	on σ -fields
Convergence	Also: almost sure,
in distribution	in L^1 , in probability
None	Monotone and dominated
	convergence theorem

Undergraduate	Graduate
("informal")	(formal probability)
Probability density,	Radon-Nikodym derivative,
Riemann integral	Lebesgue integral
Conditional	Regular conditional
probability	probability
$\mathbb{E}[X Y]$ conditioning	$\mathbb{E}[X \sigma(Y)]$ conditioning
on random variables	on σ -fields
Convergence	Also: almost sure,
in distribution	in L^1 , in probability
None	Monotone and dominated
	convergence theorem
None	Non-measurable
	subsets of $\mathbb R$

• Many results easy to appreciate from the undergraduate view

- Many results easy to appreciate from the undergraduate view
- Non-asymptotic results: easy to use

- Many results easy to appreciate from the undergraduate view
- Non-asymptotic results: easy to use
- Use basic information-theoretic ideas

- Many results easy to appreciate from the undergraduate view
- Non-asymptotic results: easy to use
- Use basic information-theoretic ideas

Role of information theory

"The emphasis put on information theoretic methods is one main feature of the exposition and there is considerable benefit in this approach for a number of fundamental results [...]"

- M. Ledoux, foreword to 'Concentration Inequalities' by Boucheron, Lugosi, Massart.

Monday: Variance bounds

Monday: Variance bounds

• Tuesday: Information inequalities

Monday: Variance bounds

• Tuesday: Information inequalities

• Thursday: Entropy method and log-Sobolev inequalities

Monday: Variance bounds

• Tuesday: Information inequalities

• Thursday: Entropy method and log-Sobolev inequalities

• Friday: Transportation method

Monday: Variance bounds

• Tuesday: Information inequalities

• Thursday: Entropy method and log-Sobolev inequalities

Friday: Transportation method

Thanks to Ramon van Handel, Igal Sason, Max Raginsky

Monday: Variance bounds

• Tuesday: Information inequalities

• Thursday: Entropy method and log-Sobolev inequalities

• Friday: Transportation method

Thanks to Ramon van Handel, Igal Sason, Max Raginsky

Reference: 'Concentration Inequalities' by Boucheron, Lugosi, Massart

Monday: Variance bounds

Tuesday: Information inequalities

• Thursday: Entropy method and log-Sobolev inequalities

• Friday: Transportation method

Thanks to Ramon van Handel, Igal Sason, Max Raginsky

Reference: 'Concentration Inequalities' by Boucheron, Lugosi, Massart

Slides available on my homepage: http://www.princeton.edu/~sukamath/concentration.pdf

Say Z is a function of independent random variables X_1, X_2, \ldots, X_n . An upper bound on $\mathrm{Var}(Z)$ gives tail bounds as:

$$\mathbb{P}[|Z - \mathbb{E}Z| \ge t] \le \frac{\mathrm{Var}(Z)}{t^2}$$

Say Z is a function of independent random variables $X_1,X_2,\ldots,X_n.$ An upper bound on ${\rm Var}(Z)$ gives tail bounds as:

$$\mathbb{P}[|Z - \mathbb{E}Z| \ge t] \le \frac{\operatorname{Var}(Z)}{t^2}$$

Probability of Z being within 10 standard deviations, i.e. $t=10\sqrt{\mathrm{Var}(Z)}$ of $\mathbb{E}Z$ is at least 99%

Say Z is a function of independent random variables X_1, X_2, \ldots, X_n . An upper bound on $\mathrm{Var}(Z)$ gives tail bounds as:

$$\mathbb{P}[|Z - \mathbb{E}Z| \ge t] \le \frac{\operatorname{Var}(Z)}{t^2}$$

Probability of Z being within 10 standard deviations, i.e. $t=10\sqrt{\mathrm{Var}(Z)}$ of $\mathbb{E}Z$ is at least 99%

Trivial example

Let $Z = X_1 + X_2 + \ldots + X_n$ where $\{X_i\}_{i=1}^n$ are independent and identically distributed (i.i.d.) with finite variance. Then,

$$\mathbb{E}Z = n\mathbb{E}X_1$$
 $\operatorname{Var}(Z) = n\operatorname{Var}(X_1)$

Say Z is a function of independent random variables X_1, X_2, \ldots, X_n . An upper bound on Var(Z) gives tail bounds as:

$$\mathbb{P}[|Z - \mathbb{E}Z| \ge t] \le \frac{\operatorname{Var}(Z)}{t^2}$$

Probability of Z being within 10 standard deviations, i.e. $t=10\sqrt{\mathrm{Var}(Z)}$ of $\mathbb{E}Z$ is at least 99%

Trivial example

Let $Z = X_1 + X_2 + \ldots + X_n$ where $\{X_i\}_{i=1}^n$ are independent and identically distributed (i.i.d.) with finite variance. Then,

$$\mathbb{E}Z = n\mathbb{E}X_1$$
 $\operatorname{Var}(Z) = n\operatorname{Var}(X_1)$

Mean =
$$\Theta(n)$$
, Standard Deviation = $O(\sqrt{n})$.

Variance bounds: sharper truths

Spectral norm of a random matrix

Populate an $m \times n$ matrix A by independent entries, each taking values in [0,1]. The random variable $Z=\|A\|$ satisfies

Spectral norm of a random matrix

Populate an $m \times n$ matrix A by independent entries, each taking values in [0,1]. The random variable $Z=\|A\|$ satisfies

$$Var(Z) \le 1$$

Spectral norm of a random matrix

Populate an $m \times n$ matrix A by independent entries, each taking values in [0,1]. The random variable $Z=\|A\|$ satisfies

$$Var(Z) \le 1$$

Plug-in entropy estimation

Let Z be the estimate of entropy of an unknown distribution defined by the entropy of the empirical distribution from drawing n independent samples.

Spectral norm of a random matrix

Populate an $m \times n$ matrix A by independent entries, each taking values in [0,1]. The random variable $Z=\|A\|$ satisfies

$$Var(Z) \le 1$$

Plug-in entropy estimation

Let Z be the estimate of entropy of an unknown distribution defined by the entropy of the empirical distribution from drawing n independent samples.

$$\operatorname{Var}(Z) \le \frac{\log^2 n}{n}$$

$High\mbox{-}level\ idea$

• Obtain a bound for a function of many random variables by bounds for functions of each individual random variable

- Obtain a bound for a function of many random variables by bounds for functions of each individual random variable
- Not obvious this is possible

- Obtain a bound for a function of many random variables by bounds for functions of each individual random variable
- Not obvious this is possible
- When it is, we say the quantity tensorizes

- Obtain a bound for a function of many random variables by bounds for functions of each individual random variable
- Not obvious this is possible
- When it is, we say the quantity tensorizes
- Quantities that tensorize behave well in high dimension

- Obtain a bound for a function of many random variables by bounds for functions of each individual random variable
- Not obvious this is possible
- When it is, we say the quantity tensorizes
- Quantities that tensorize behave well in high dimension
- Variance is such a quantity!

$$X^{(i)} := (X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_n)$$

$$X^{(i)} := (X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_n), \qquad \mathbb{E}^{(i)}[\cdot] := \mathbb{E}[\cdot | X^{(i)}]$$

$$X^{(i)} := (X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_n), \qquad \mathbb{E}^{(i)}[\cdot] := \mathbb{E}[\cdot | X^{(i)}]$$

$$\operatorname{Var}^{(i)}(Z) := \operatorname{Var}(Z | X^{(i)})$$

$$X^{(i)} := (X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_n), \qquad \mathbb{E}^{(i)}[\cdot] := \mathbb{E}[\cdot | X^{(i)}]$$

$$\operatorname{Var}^{(i)}(Z) := \operatorname{Var}(Z | X^{(i)})$$

$$q_i(x^{(i)}) = \operatorname{Var}(f(x_1, \dots, X_i, \dots, x_n))$$

$$X^{(i)} := (X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_n), \qquad \mathbb{E}^{(i)}[\cdot] := \mathbb{E}[\cdot | X^{(i)}]$$

$$\operatorname{Var}^{(i)}(Z) := \operatorname{Var}(Z | X^{(i)})$$

$$g_i(x^{(i)}) = Var(f(x_1, ..., X_i, ..., x_n)) \implies Var^{(i)}(Z) = g_i(X^{(i)})$$

Let $Z = f(X_1, X_2, \dots, X_n)$ where X_1, X_2, \dots, X_n are independent random variables.

$$X^{(i)} := (X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_n), \qquad \mathbb{E}^{(i)}[\cdot] := \mathbb{E}[\cdot | X^{(i)}]$$

$$\operatorname{Var}^{(i)}(Z) := \operatorname{Var}(Z | X^{(i)})$$

$$g_i(x^{(i)}) = Var(f(x_1, \dots, X_i, \dots, x_n)) \implies Var^{(i)}(Z) = g_i(X^{(i)})$$

Tensorization of variance (Efron-Stein-Steele inequality)

$$\operatorname{Var}(Z) \leq \sum_{i=1}^{n} \mathbb{E}[\operatorname{Var}^{(i)}(Z)]$$

Let $Z = f(X_1, X_2, \dots, X_n)$ where X_1, X_2, \dots, X_n are independent random variables.

$$X^{(i)} := (X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_n), \qquad \mathbb{E}^{(i)}[\cdot] := \mathbb{E}[\cdot | X^{(i)}]$$

$$\operatorname{Var}^{(i)}(Z) := \operatorname{Var}(Z | X^{(i)})$$

$$g_i(x^{(i)}) = Var(f(x_1, \dots, X_i, \dots, x_n)) \implies Var^{(i)}(Z) = g_i(X^{(i)})$$

Tensorization of variance (Efron-Stein-Steele inequality)

$$\operatorname{Var}(Z) \le \sum_{i=1}^{n} \mathbb{E}[\operatorname{Var}^{(i)}(Z)] = \sum_{i=1}^{n} \mathbb{E}[(Z - \mathbb{E}^{(i)}Z)^{2}]$$

Recall: if $Y \in [a, b]$, then $Var(Y) \le$

Recall: if $Y \in [a,b]$, then $\operatorname{Var}(Y) \leq \inf_u \mathbb{E}[(Y-u)^2]$

Recall: if $Y \in [a, b]$, then $\operatorname{Var}(Y) \leq \inf_{u} \mathbb{E}[(Y - u)^2] \leq \frac{(b - a)^2}{4}$

from
$$u = \frac{1}{2}(a+b)$$
.

Recall: if
$$Y \in [a, b]$$
, then $\operatorname{Var}(Y) \leq \inf_{u} \mathbb{E}[(Y - u)^2] \leq \frac{(b - a)^2}{4}$

from
$$u = \frac{1}{2}(a+b)$$
.

Simplest application: Bounded differences inequality

$$|f(x_1,\ldots,x_i,\ldots,x_n)-f(x_1,\ldots,x_i',\ldots,x_n)|\leq c_i.$$

Recall: if
$$Y \in [a, b]$$
, then $\operatorname{Var}(Y) \leq \inf_{u} \mathbb{E}[(Y - u)^2] \leq \frac{(b - a)^2}{4}$

from
$$u = \frac{1}{2}(a+b)$$
.

Simplest application: Bounded differences inequality

$$|f(x_1,\ldots,x_i,\ldots,x_n)-f(x_1,\ldots,x_i',\ldots,x_n)|\leq c_i.$$

Then,
$$\operatorname{Var}(f(X)) \leq \sum_{i=1}^{n} \mathbb{E}[\operatorname{Var}^{(i)}(Z)] \leq \frac{1}{4} \sum_{i=1}^{n} c_i^2$$

Recall: if $Y \in [a, b]$, then $Var(Y) \le \inf_{u} \mathbb{E}[(Y - u)^2] \le \frac{(b - a)^2}{4}$

from
$$u = \frac{1}{2}(a+b)$$
.

Simplest application: Bounded differences inequality

$$|f(x_1,\ldots,x_i,\ldots,x_n)-f(x_1,\ldots,x_i',\ldots,x_n)|\leq c_i.$$

Then,
$$\operatorname{Var}(f(X)) \leq \sum_{i=1}^n \mathbb{E}[\operatorname{Var}^{(i)}(Z)] \leq \frac{1}{4} \sum_{i=1}^n c_i^2$$

Tight if
$$f(X) = \sum_{i=1}^{n} X_i$$
 with X_i equiprobable on $\{-1, +1\}$

Let $X_1, X_2, \dots, X_n \in [0, 1]$ be i.i.d.

Let $X_1, X_2, \dots, X_n \in [0, 1]$ be i.i.d.

Let Z be the minimum number of bins in to which they can be packed so that each bin adds to at most 1.

Let $X_1, X_2, \dots, X_n \in [0, 1]$ be i.i.d.

Let Z be the minimum number of bins in to which they can be packed so that each bin adds to at most 1.

Changing one X_i changes Z = f(X) by at most $c_i = 1$

Let $X_1, X_2, \dots, X_n \in [0, 1]$ be i.i.d.

Let Z be the minimum number of bins in to which they can be packed so that each bin adds to at most 1.

Changing one X_i changes Z = f(X) by at most $c_i = 1$

Therefore,
$$\operatorname{Var}(Z) \leq \frac{1}{4} \sum_{i=1}^{n} c_i^2 = \frac{n}{4}$$
.

Let $X_1, X_2, \dots, X_n \in [0, 1]$ be i.i.d.

Let Z be the minimum number of bins in to which they can be packed so that each bin adds to at most 1.

Changing one X_i changes Z = f(X) by at most $c_i = 1$

Therefore,
$$\operatorname{Var}(Z) \leq \frac{1}{4} \sum_{i=1}^{n} c_i^2 = \frac{n}{4}$$
.

However,
$$\mathbb{E}Z \geq \mathbb{E}\left[\left|\sum_{i=1}^{n}X_{i}\right|\right] = n\mathbb{E}X_{1}.$$

Let $X_1, X_2, \dots, X_n \in [0, 1]$ be i.i.d.

Let Z be the minimum number of bins in to which they can be packed so that each bin adds to at most 1.

Changing one X_i changes Z = f(X) by at most $c_i = 1$

Therefore,
$$\operatorname{Var}(Z) \leq \frac{1}{4} \sum_{i=1}^{n} c_i^2 = \frac{n}{4}$$
.

However,
$$\mathbb{E}Z \geq \mathbb{E}\left[\sum_{i=1}^{n}X_{i}\right] = n\mathbb{E}X_{1}.$$

Standard deviation = $O(\sqrt{n})$, Mean = $\Theta(n)$.

Plug-in entropy estimation

Entropy of a distribution $p = (p_1, p_2, \dots, p_k)$ is defined as

$$H(p) = \sum_{r=1}^{k} p_r \log \frac{1}{p_r}$$

Plug-in entropy estimation

Entropy of a distribution $p = (p_1, p_2, \dots, p_k)$ is defined as

$$H(p) = \sum_{r=1}^{k} p_r \log \frac{1}{p_r}$$

Let X_1, X_2, \dots, X_n be independent samples from p

Entropy of a distribution $p = (p_1, p_2, \dots, p_k)$ is defined as

$$H(p) = \sum_{r=1}^{k} p_r \log \frac{1}{p_r}$$

Let X_1, X_2, \dots, X_n be independent samples from p

Let
$$\hat{p}_r = \frac{1}{n} |\{i : X_i = r\}|$$

Entropy of a distribution $p = (p_1, p_2, \dots, p_k)$ is defined as

$$H(p) = \sum_{r=1}^{k} p_r \log \frac{1}{p_r}$$

Let X_1, X_2, \ldots, X_n be independent samples from p

Let
$$\hat{p}_r = \frac{1}{n} |\{i : X_i = r\}|, \qquad Z = \sum_{r=1}^k \hat{p}_r \log \frac{1}{\hat{p}_r}$$

Entropy of a distribution $p = (p_1, p_2, \dots, p_k)$ is defined as

$$H(p) = \sum_{r=1}^{\kappa} p_r \log \frac{1}{p_r}$$

Let X_1, X_2, \dots, X_n be independent samples from p

Let
$$\hat{p}_r = \frac{1}{n} |\{i : X_i = r\}|, \qquad Z = \sum_{r=1}^k \hat{p}_r \log \frac{1}{\hat{p}_r}$$

A change in any one co-ordinate X_i affects two of the \hat{p}_r 's.

Entropy of a distribution $p = (p_1, p_2, \dots, p_k)$ is defined as

$$H(p) = \sum_{r=1}^{n} p_r \log \frac{1}{p_r}$$

Let X_1, X_2, \dots, X_n be independent samples from p

Let
$$\hat{p}_r = \frac{1}{n} |\{i : X_i = r\}|, \qquad Z = \sum_{r=1}^k \hat{p}_r \log \frac{1}{\hat{p}_r}$$

A change in any one co-ordinate X_i affects two of the \hat{p}_r 's.

$$\left| a \log \frac{1}{a} - b \log \frac{1}{b} \right| \le \frac{\log n}{n} \text{ if } |a - b| = \frac{1}{n}.$$

Entropy of a distribution $p = (p_1, p_2, \dots, p_k)$ is defined as

$$H(p) = \sum_{r=1}^{n} p_r \log \frac{1}{p_r}$$

Let X_1, X_2, \dots, X_n be independent samples from p

Let
$$\hat{p}_r = \frac{1}{n} |\{i : X_i = r\}|, \qquad Z = \sum_{r=1}^k \hat{p}_r \log \frac{1}{\hat{p}_r}$$

A change in any one co-ordinate X_i affects two of the \hat{p}_r 's.

$$\left| a \log \frac{1}{a} - b \log \frac{1}{b} \right| \le \frac{\log n}{n} \text{ if } |a - b| = \frac{1}{n}.$$

Thus,
$$\operatorname{Var}(Z) \leq \sum_{i=1}^{n} c_i^2/4 = (\log^2 n)/n$$

Entropy of a distribution $p = (p_1, p_2, \dots, p_k)$ is defined as

$$H(p) = \sum_{r=1}^{\kappa} p_r \log \frac{1}{p_r}$$

Let X_1, X_2, \dots, X_n be independent samples from p

Let
$$\hat{p}_r = \frac{1}{n} |\{i : X_i = r\}|, \qquad Z = \sum_{r=1}^k \hat{p}_r \log \frac{1}{\hat{p}_r}$$

A change in any one co-ordinate X_i affects two of the \hat{p}_r 's.

$$\left| a \log \frac{1}{a} - b \log \frac{1}{b} \right| \le \frac{\log n}{n} \text{ if } |a - b| = \frac{1}{n}.$$

Thus,
$$\operatorname{Var}(Z) \leq \sum_{i=1}^{n} c_i^2/4 = (\log^2 n)/n$$

But Z is not really concentrated at H(p) unless $n \gtrsim k$.

Entropy of a distribution $p = (p_1, p_2, \dots, p_k)$ is defined as

$$H(p) = \sum_{r=1}^{n} p_r \log \frac{1}{p_r}$$

Let X_1, X_2, \dots, X_n be independent samples from p

Let
$$\hat{p}_r = \frac{1}{n} |\{i : X_i = r\}|, \qquad Z = \sum_{i=1}^{k} \hat{p}_r \log \frac{1}{\hat{p}_r}$$

A change in any one co-ordinate X_i affects two of the \hat{p}_r 's.

$$\left| a \log \frac{1}{a} - b \log \frac{1}{b} \right| \le \frac{\log n}{n} \text{ if } |a - b| = \frac{1}{n}.$$

Thus,
$$\operatorname{Var}(Z) \leq \sum_{i=1}^{N} c_i^2/4 = (\log^2 n)/n$$

But Z is not really concentrated at H(p) unless $n\gtrsim k.$

For n << k, Z is concentrated but somewhere else!

ullet We have shown bounds on deviation of Z from $\mathbb{E} Z$

- ullet We have shown bounds on deviation of Z from $\mathbb{E} Z$
- ullet But say nothing about $\mathbb{E} Z$ itself!!

- ullet We have shown bounds on deviation of Z from $\mathbb{E} Z$
- But say nothing about $\mathbb{E} Z$ itself!!
- Estimating magnitude and fluctuations are two quite distinct problems

- ullet We have shown bounds on deviation of Z from $\mathbb{E} Z$
- But say nothing about $\mathbb{E}Z$ itself!!
- Estimating magnitude and fluctuations are two quite distinct problems
- We have a general theorem for bounding fluctuations and elementary ideas can often bound sensitivity to coordinates, even if the function itself is complicated

- ullet We have shown bounds on deviation of Z from $\mathbb{E} Z$
- But say nothing about $\mathbb{E}Z$ itself!!
- Estimating magnitude and fluctuations are two quite distinct problems
- We have a general theorem for bounding fluctuations and elementary ideas can often bound sensitivity to coordinates, even if the function itself is complicated
- ullet No such general principle for estimating $\mathbb{E} Z$

- ullet We have shown bounds on deviation of Z from $\mathbb{E} Z$
- But say nothing about $\mathbb{E}Z$ itself!!
- Estimating magnitude and fluctuations are two quite distinct problems
- We have a general theorem for bounding fluctuations and elementary ideas can often bound sensitivity to coordinates, even if the function itself is complicated
- ullet No such general principle for estimating $\mathbb{E} Z$
- ullet Can estimate $\mathbb{E} Z$ from Monte Carlo methods if Z is concentrated

Recall that $\operatorname{Var}(Z) = \inf_u \mathbb{E}[(Z-u)^2]$

Recall that
$$\operatorname{Var}(Z) = \inf_{u} \mathbb{E}[(Z-u)^2]$$

So,
$$\operatorname{Var}^{(i)}(Z) = \inf_{f_i(x^{(i)})} \mathbb{E}^{(i)}[(Z - f_i(X^{(i)}))^2]$$

Recall that
$$Var(Z) = \inf_{z} \mathbb{E}[(Z - u)^2]$$

So,
$$\operatorname{Var}^{(i)}(Z) = \inf_{f_i(x^{(i)})} \mathbb{E}^{(i)}[(Z - f_i(X^{(i)}))^2]$$

Let
$$Z_i = f_i(X^{(i)})$$
 for any function f_i .

Recall that
$$Var(Z) = \inf_{u} \mathbb{E}[(Z - u)^2]$$

So,
$$\operatorname{Var}^{(i)}(Z) = \inf_{f_i(x^{(i)})} \mathbb{E}^{(i)}[(Z - f_i(X^{(i)}))^2]$$

Let
$$Z_i = f_i(X^{(i)})$$
 for any function f_i .

Then,
$$\operatorname{Var}^{(i)}(Z) \leq \mathbb{E}^{(i)}[(Z - Z_i)^2]$$

Recall that
$$Var(Z) = \inf_{u} \mathbb{E}[(Z-u)^2]$$

So,
$$\operatorname{Var}^{(i)}(Z) = \inf_{f_i(x^{(i)})} \mathbb{E}^{(i)}[(Z - f_i(X^{(i)}))^2]$$

Let $Z_i = f_i(X^{(i)})$ for any function f_i .

Then,
$$\operatorname{Var}^{(i)}(Z) \leq \mathbb{E}^{(i)}[(Z - Z_i)^2]$$

Variant: "guess functions"

$$\operatorname{Var}(Z) \le \sum_{i=1}^{n} \mathbb{E}[\operatorname{Var}^{(i)}(Z)] \le \sum_{i=1}^{n} \mathbb{E}[(Z - Z_i)^2]$$

Suppose $f:[a,b]^n\mapsto\mathbb{R}$ is convex, differentiable and L-Lipschitz, i.e. $|f(x)-f(y)|\leq L\|x-y\|_2\ \forall\ x,y.$

Suppose $f:[a,b]^n\mapsto\mathbb{R}$ is convex, differentiable and L-Lipschitz, i.e. $|f(x)-f(y)|\leq L\|x-y\|_2\ \forall\ x,y.$

Choose $Z_i = \inf_{x_i} f(X_1, X_2, \dots, x_i, \dots, X_n)$ with \inf attained at X_i'

Suppose $f:[a,b]^n\mapsto\mathbb{R}$ is convex, differentiable and L-Lipschitz, i.e. $|f(x)-f(y)|\leq L\|x-y\|_2\ \forall\ x,y.$

Choose
$$Z_i = \inf_{x_i} f(X_1, X_2, \dots, x_i, \dots, X_n)$$
 with \inf attained at X_i'

$$Z_i \ge Z + \frac{\partial f}{\partial x_i}(X)(X_i' - X_i)$$

Suppose $f:[a,b]^n\mapsto\mathbb{R}$ is convex, differentiable and L-Lipschitz, i.e. $|f(x)-f(y)|\leq L\|x-y\|_2\ \forall\ x,y.$

Choose $Z_i = \inf_{x_i} f(X_1, X_2, \dots, x_i, \dots, X_n)$ with inf attained at X_i'

$$Z_i \ge Z + \frac{\partial f}{\partial x_i}(X)(X_i' - X_i)$$
 $0 \le Z - Z_i \le -\frac{\partial f}{\partial x_i}(X)(X_i' - X_i)$

Suppose $f:[a,b]^n\mapsto\mathbb{R}$ is convex, differentiable and L-Lipschitz, i.e. $|f(x)-f(y)|\leq L\|x-y\|_2\ \forall\ x,y.$

Choose $Z_i = \inf_{x_i} f(X_1, X_2, \dots, x_i, \dots, X_n)$ with \inf attained at X_i'

$$Z_{i} \geq Z + \frac{\partial f}{\partial x_{i}}(X)(X'_{i} - X_{i}) \qquad 0 \leq Z - Z_{i} \leq -\frac{\partial f}{\partial x_{i}}(X)(X'_{i} - X_{i})$$
$$0 \leq (Z - Z_{i})^{2} \leq \left|\frac{\partial f}{\partial x_{i}}(X)\right|^{2} (b - a)^{2}$$

Suppose $f:[a,b]^n\mapsto\mathbb{R}$ is convex, differentiable and L-Lipschitz, i.e. $|f(x)-f(y)|\leq L\|x-y\|_2\ \forall\ x,y.$

Choose $Z_i = \inf_{x_i} f(X_1, X_2, \dots, x_i, \dots, X_n)$ with \inf attained at X_i'

$$Z_{i} \geq Z + \frac{\partial f}{\partial x_{i}}(X)(X'_{i} - X_{i}) \qquad 0 \leq Z - Z_{i} \leq -\frac{\partial f}{\partial x_{i}}(X)(X'_{i} - X_{i})$$

$$0 \leq (Z - Z_{i})^{2} \leq \left|\frac{\partial f}{\partial x_{i}}(X)\right|^{2} (b - a)^{2}$$

$$\operatorname{Var}(Z) \leq \sum_{i=1}^{n} \mathbb{E}[(Z - Z_{i})^{2}] \leq L^{2}(b - a)^{2}$$

Suppose $f:[a,b]^n\mapsto\mathbb{R}$ is convex, differentiable and L-Lipschitz, i.e. $|f(x)-f(y)|\leq L\|x-y\|_2\;\forall\;x,y.$

Choose $Z_i = \inf_{x_i} f(X_1, X_2, \dots, x_i, \dots, X_n)$ with \inf attained at X_i'

$$Z_i \ge Z + \frac{\partial f}{\partial x_i}(X)(X_i' - X_i)$$
 $0 \le Z - Z_i \le -\frac{\partial f}{\partial x_i}(X)(X_i' - X_i)$

$$0 \le (Z - Z_i)^2 \le \left| \frac{\partial f}{\partial x_i} (X) \right|^2 (b - a)^2$$

$$Var(Z) \le \sum_{i=1}^{n} \mathbb{E}[(Z - Z_i)^2] \le L^2(b - a)^2$$

Differentiability assumption unnecessary: convolve f with a smooth kernel.

Populate an $m \times n$ matrix A by independent entries, each taking values in [0,1].

Populate an $m \times n$ matrix A by independent entries, each taking values in [0,1].

The function $f:[0,1]^{m\times n}\mapsto\mathbb{R}$, given by

$$Z = f(A) = ||A|| = \sup_{\|v\|_2 = 1} ||Av||_2$$

Populate an $m \times n$ matrix A by independent entries, each taking values in [0,1].

The function $f:[0,1]^{m\times n}\mapsto\mathbb{R}$, given by

$$Z = f(A) = ||A|| = \sup_{\|v\|_2 = 1} ||Av||_2$$

is convex and 1-Lipschitz

Populate an $m \times n$ matrix A by independent entries, each taking values in [0,1].

The function $f:[0,1]^{m\times n}\mapsto\mathbb{R},$ given by

$$Z = f(A) = ||A|| = \sup_{\|v\|_2 = 1} ||Av||_2$$

is convex and 1-Lipschitz (hint: spectral norm ≤ Frobenius norm)

Populate an $m \times n$ matrix A by independent entries, each taking values in [0,1].

The function $f:[0,1]^{m\times n}\mapsto\mathbb{R},$ given by

$$Z = f(A) = ||A|| = \sup_{\|v\|_2 = 1} ||Av||_2$$

is convex and 1-Lipschitz (hint: spectral norm ≤ Frobenius norm)

With a=0,b=1,L=1 in previous result, we get

$$Var(Z) \leq 1$$
.