Chapitre 15

Equations différentielles linéaires

1. Equations différentielles linéaires scalaires du 1^{ier} ordre

(rappels et compléments)

1.1. Equation résolue

a) Définitions et notations

Définitions 1:

- \clubsuit équation différentielle linéaire (E.D.L.) scalaire résolue du $1^{\rm ier}$ ordre :
 - ... toute équation du type : x' = a(t)x + b(t) (E)
 - $\Rightarrow\;$ Dans le cadre du programme $\;\;a,b\;\in\mathcal{C}\;I,\mathbb{K}^{^{2}},\;I\;\mathrm{est}$ un <u>intervalle</u>
- lacktriangledown solution de (\mathbf{E}) : toute fonction $\varphi: I \to \mathbb{K}$ qui vérifie:

$$\forall t \in I : \varphi'(t) = a \ t \ \varphi \ t + b \ t$$

- ightharpoonup courbe intégrale de (\mathbf{E}) :
 - ... toute courbe \mathcal{C}_{φ} représentive d'une solution φ de (\mathbf{E}) .
- lacktriangle l'équation homogène associée à (\mathbf{E}) : X' = a(t)X (\mathbf{E}^*)
- \clubsuit un problème de Cauchy : $\begin{cases} x'=a(t)x+b(t)\\ x\ t_0\ =x_0 \end{cases}$ où $t_0,x_0\ \in I\times \mathbb{K}$
- \clubsuit on notera \mathcal{S} (resp. \mathcal{S}^*) l'ensemble des solutions de (\mathbf{E}) (resp. (\mathbf{E}^*))

b) Solutions de l'équation homogène

Théorème 1 : Soit A une primitive (fixée) de a sur I

Les solutions de l'équation différentielle homogène X'=a(t)X s'écrivent

$$egin{bmatrix} I o \mathbb{K} \ t o C.e^{A(t)} \end{bmatrix}$$
 où $C \in \mathbb{K}$.

Ainsi \mathcal{S}^* est un \mathbb{K} -espace vectoriel de dimension $1: \mathcal{S}^* = Vect(e^A)$

- On notera qu'une primitive A existe toujours puisque $a \in \mathcal{C}$ I, \mathbb{K} .
- © On notera aussi que si une connaît une solution évidente \hat{x} non nulle, on les connaît immédiatement toutes puisqu'alors $\mathcal{S}^* = Vect(\hat{x})$
- Exemple $\underline{1}$: $y' = -y \tan(x)$

c) Solutions de l'équation générale

- On démontre que $S = \tilde{x} + S^*$ où \tilde{x} : une solution particulière de E.
- \mathcal{S} est ainsi un espace affine de direction \mathcal{S}^* , de dimension 1.
- Les solutions de (\mathbf{E}) s'écrivent donc $\begin{cases} I \to \mathbb{K} \\ t \to \tilde{x}(t) + C.e^{A(t)} \end{cases}$
- Théoriquement : 1 . une solution particulière est définie par $\tilde{x}(t)=e^{A(t)}\int_t^t b(u)e^{-A(u)}du$

* Exemple 2:
$$1 + t^2 x' + tx = \sqrt{1 + t^2}$$

- Néanmoins, dans certains cas, on connaît directement la forme de $\tilde{x}(t)$, souvent du même "type" que le second membre b(t).
 - * Exemple 3 $x' = kx + P(t)e^{mt}$ où $k, m \in \mathbb{K}^2$ et $P \in \mathbb{K}$ X

		Bon à retenir : la solution particulière est	
	si $m \neq k$	du type $Q(t)e^{mt}$ avec $Q \in \mathbb{K}$ X et d° $Q = d$ ° P	
si $m=k$ égale à $Q(t)e^{mt}$ où $Q=\operatorname{Prim}_0(P)$		égale à $Q(t)e^{mt}$ où $Q=\operatorname{Prim}_0(P)$	

d) Problème de Cauchy, courbes intégrales

... car la condition initiale $x t_0 = x_0$ fixe la constante C.

• Il existe en fait une écriture (de peu d'intérêt!) de cette unique solution

$$x t = x_0 e^{A(t) - A(t_0)} + e^{A(t)} \int_{t_0}^t b(u) e^{-A(u)} du$$

Interprétation géométrique	Courbes intégrales de l'exemple 1 $C \in -10{,}10 \ , \ t \in -4{,}4$
\Rightarrow Par tout point t_0, x_0 de la bande $I \times \mathbb{K}$ passe une courbe intégrale et une seule. \Rightarrow Les courbes intégrales forment ainsi une "partition" de la bande $I \times \mathbb{K}$	5

e) Propriété de régularité:

Propriété 1 : caractère \mathcal{C}^1 des solutions d'une équation différentielle

Sous la condition $a,b \in \mathcal{C}$ I,\mathbb{K}^2 (resp. \mathcal{C}^k I,\mathbb{K}^2 , resp. \mathcal{C}^{∞} I,\mathbb{K}^2), toute solution de l'équation différentielle x' = a(t).x + b(t) (**E**) est de classe \mathcal{C}^1 (resp. \mathcal{C}^{k+1} , resp. \mathcal{C}^{∞})

- Exemple 4: $y' = y + x \cos(x)$ $I = \mathbb{R}$
- f) Changement de corps

Propriété 2 : caractère \mathcal{C}^1 des solutions d'une équation différentielle

Soient les équations différentielles x' = a(t).x + b(t) (E)

et
$$x' = a(t).x + \tilde{b}(t)$$
 ($\tilde{\mathbf{E}}$)

où $a \in \mathcal{C}$ I, \mathbb{R} , $b \in \mathcal{C}$ I, \mathbb{C} et $\tilde{b}(t) = \operatorname{Re}\ b(t)$ (resp. $\tilde{b}(t) = \operatorname{Im}\ b(t)$).

Si x est solution de (\mathbf{E}) , alors Re x (resp. Im x) est solution de $(\tilde{\mathbf{E}})$.

1.2. Equation non résolue

a) <u>Définition</u>

$\underline{\text{D\'efinition 2}}$:

lacktriangle équation différentielle (non résolue) du 1 ier ordre :

... toute équation du type : a(t)x' + b(t)x = c(t) (E)

- \Rightarrow Dans le cadre du programme : $a,b,c \in \mathcal{C}$ I,\mathbb{K}^3 , I est un <u>intervalle</u>
- b) Résolution pratique
 - \Rightarrow On "découpe" I en intervalles où la fonction \boldsymbol{a} ne s'annulle pas.
 - \Rightarrow Sur chacun de ces intervalles, en divisant dans (**E**) par $a\ t$, on a l'équivalence avec une E.D.L. <u>résolue</u> qu'on sait donc résoudre.
 - $\, \Rightarrow \, \,$ On effectue alors si c'est possible un raccordement en 3 $\,$ temps :
 - ① Prolongement par continuité au point de raccordement
 - ② Vérification de la dérivabilité d'un tel prolongement
 - $\ensuremath{\mathfrak{I}}$ Vérification au point de raccord de l'équation différentielle.
 - Es propriétés des équations résolues ne sont plus vérifiées :

 \Rightarrow $\mathcal S$ peut être \varnothing ou un espace affine de dimension quelconque.

⇒ le problème de Cauchy n'a plus forcément de solution ou peut aussi en avoir une, plusieurs, voire une infinité.

- c) Exemples
- 3

• Exemple 5:
$$xy' - y = 0$$
 $I = \mathbb{R}$ $\Rightarrow \dim \mathcal{S} = 1$

 \Rightarrow p
b Cauchy : aucune solution ou une infinité

Exemple 6:
$$xy' - 2y = 0$$

$$I = \mathbb{R}$$

$$\Rightarrow$$
 dim $\mathcal{S} = 2$

⇒ Cauchy : aucune solution ou une infinité

• Exemple 7:
$$xy' + 2y = \frac{x^2}{1+x^2}$$

$$I = \mathbb{R}$$

- $\Rightarrow S$ est un singleton
- ⇒ Cauchy: aucune solution ou une seule solution

• Exemple 6:
$$y' \sin x + y \cos(x) = 1$$

$$I = -\pi, \pi$$

- $\Rightarrow S$ est un singleton
- ⇒ Cauchy : aucune solution ou une seule solution

2. Equations différentielles linéaires du 1^{ier} ordre

2.1. Notations et définitions

<u>Notations</u>:

- \bot F: espace vectoriel de dimension finie
- + I: intervalle de \mathbb{R}
- \blacksquare Pour $u \in \mathcal{L}$ F et $x \in F$: on écrira u.x au lieu de u(x) on pourra lire u.x : u appliqué à x

à mettre en parallèle avec la notation $\mathit{M.X}$ lorsque $\mathit{M} = \mathit{M}_{\scriptscriptstyle\mathcal{B}} \;\; \mathit{u}$

- lacktriangledown On considérera une application : $a: I \to \mathcal{L}$ F
- \blacktriangleright Pour une application $\varphi: I \to F$, on notera alors $a \varphi$ l'application :

$$a.\varphi:\begin{cases} I \to F \\ t \to a(t).\varphi \ t \end{cases}$$

<u>Définitions 1</u>:

 \clubsuit équation différentielle linéaire (E.D.L.) résolue du 1^{ier} ordre :

... toute équation du type : x' = a(t).x + b(t) (E)

- $\Rightarrow \text{ Ici } a \in \mathcal{C} \ I, \mathcal{L} \ F \quad \text{et} \quad b \in \mathcal{C} \ I, F$
- \clubsuit solution de (**E**) : toute fonction $\varphi: I \to F$ qui vérifie :

 $\forall t \in I : \varphi'(t) = a \ t \ \varphi \ t + b \ t$

- \clubsuit un problème de Cauchy : $\begin{cases} x' = a(t).x + b(t) \\ x \ t_0 = v \end{cases}$ où $t_0, v \ \in I \times F$
- lacktriangledown on notera \mathcal{S} (resp. \mathcal{S}^*) l'ensemble des solutions de (\mathbf{E}) (resp. (\mathbf{E}^*))
- Remarque : on retrouve les équations différentielles scalaires si $F = \mathbb{R}$.

C'est donc ici une généralisation

• Exemple : si $E=\mathbb{R}^3$, on peut identifier $\mathcal{L} \ \mathbb{R}^3$ avec $\mathcal{M}_3 \ \mathbb{R}$.

(E) s'écrit alors :
$$X' = A(t).X + B(t)$$

où $A(t) \in \mathcal{M}_3$ K et X(t) et B(t) des vecteurs colonnes de taille 3.

$$\text{soit}: \begin{bmatrix} x_1' = a_{1,1} \ t \ x_1 + a_{1,2} \ t \ x_2 + a_{1,3} \ t \ x_3 \\ x_2' = a_{2,1} \ t \ x_1 + a_{2,2} \ t \ x_2 + a_{2,3} \ t \ x_3 \\ x_3' = a_{3,1} \ t \ x_1 + a_{3,2} \ t \ x_2 + a_{3,3} \ t \ x_3 \end{bmatrix}$$

On obtient un "système différentiel linéaire" du $1^{\rm ier}$ ordre

• Exemple

2.2. Propriétés

Propriété 1: caractère \mathcal{C}^1 des solutions d'une équation différentielle

Toute solution de x' = a(t).x + b(t) (**E**) est de classe C^1

• Démonstration :

Propriété 2 : structures algébriques des espaces de solutions

Soit x' = a(t).x + b(t) (**E**) et l'équation homogène associée x' = a(t).x (**E***)

+ S^* est un sous-espace vectoriel de C^1 I, F

 \clubsuit S est un sous-espace affine de C^1 I, F de direction S^*

• Autrement dit : $S = \tilde{x} + S^*$

• Démonstration : 7

 $\underline{\text{Propriété 3}}: \textbf{principe de superposition des solutions}$

Soient n équations différentielles $x' = a(t).x + b_i(t)$ ($\mathbf{E_i}$) (où $i \in [1, n]$).

Soit l'équation différentielle x' = a(t).x + b(t) (**E**)

où
$$b(t) = \sum_{i=1}^{n} \alpha_i b_i$$
 avec $\alpha_{i=i} \in \mathbb{K}^n$

Si pour tout $i\in\ 1,n$, x_i est une solution particulière de $(\mathbf{E_i}),$

alors $\tilde{x} = \sum_{i=1}^{n} \alpha_i x_i$ est une solution particulière de (\mathbf{E}) .

• Démonstration : 8

2.3. Le théorème de Cauchy linéaire

Théorème de Cauchy linéaire

Soit l'équation différentielle x' = a(t).x + b(t) (**E**)

où
$$a \in \mathcal{C}$$
 I, \mathcal{L} F et $b \in \mathcal{C}$ I, \mathbb{K}

Le problème de Cauchy :
$$\begin{cases} x' = a(t).x + b(t) \\ x \ t_0 = v \end{cases}$$
 où $t_0, v \in I \times F$

admet une et une seule solution.

9

2.4. L'espace des solutions de l'équation homogène

a) Dimension de l'espace des solutions

<u>Théorème fondamental</u>: dim $S^* = \dim F$

• Démonstration 10 . On utilise le fait essentiel que

b) Application : recherche d'une base de \mathcal{S}^*

Théorème d'évaluation:

Soit $\varphi_1, \varphi_2, ..., \varphi_n$ une famille de n solutions de (\mathbf{E}^*) et \mathcal{B} une base de F.

Les trois affirmations suivantes sont équivalentes :

- \bigcirc $\varphi_1, \varphi_2, ..., \varphi_n$ est une base de \mathcal{S}^*

- Démonstration 11

2.5. Méthode de variation des constantes pour l'équation complète

Principe:

- $\begin{tabular}{ll} \hline \square On suppose avoir résolu l'équation homogène ($\bf E^*$) donc avoir trouvé une base de solutions $\varphi_1,\varphi_2,...,\varphi_n$ de $\mathcal S^*$. }$
- $\hfill \Box$ Les solutions de l'équation (E) s'écrivent donc $\tilde{x} + \sum_{i=1}^n C_i \varphi_i$

où $\ C_{i-i} \in \mathbb{K}^n$: les C_i sont donc des constantes.

 $\mbox{$\square$}$ On cherche alors \tilde{x} sous la forme \tilde{x} t $= \sum_{i=1}^n C_i \ t \ \varphi_i \ t$

où $C_{i_i} \in \mathcal{C}^1$ I, \mathbb{K}^n : les C_i sont maintenant des fonctions.

- $\ensuremath{ \bigodot}$ on dit qu'on a fait "varier les constantes" C_i
- Justification

3. Systèmes différentiels linéaires à coefficients constants

Objet d'étude 3.1.

On étudie ici le cas où a est constante i.e. l'équation

(E)
$$x' = a.x + b(t)$$
 avec $a \in \mathcal{L}$ F et $b \in \mathcal{C}$ I, \mathbb{K} .

Matriciellement (**E**) s'écrit X' = a.X + B(t) ce qui donne le

Système différentiel linéaire à coefficients constants :

$$\begin{bmatrix} x_1' = a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n + b_1(t) \\ x_2' = a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,n}x_n + b_2(t) \\ & \dots \\ x_n' = a_{n,1}x_1 + a_{n,2}x_2 + \dots + a_{n,n}x_n + b_n(t) \end{bmatrix}$$

$$\Rightarrow \text{ Ici } A = \text{ } a_{i,j} \text{ } \in \mathcal{M}_n \text{ } \mathbb{K} \text{ } \text{ et } \forall i \in \text{ } 1, n \text{ } : b_i \in \mathcal{C} \text{ } I, \mathbb{K}$$

3.2. Sur l'exponentielle d'un endomorphisme, d'une matrice

a) Rappel et extension des résultats du Chapitre 6

Dans l'espace vectoriel normé $E=\mathcal{M}_n\ \mathbb{K}$, pour $M\in\mathcal{M}_n\ \mathbb{K}$:

- \Rightarrow la série exponentielle $\sum \frac{M^n}{n!}$ converge (quelle que soit la norme choisie).
- \Rightarrow sa somme est la matrice notée $\exp(M)$ ou e^M
- \Rightarrow \forall M,N $\in \mathcal{M}_{_{\! n}}$ \mathbbm{K} 2 : si M et N commutent, alors $e^{M+N}=e^M imes e^N$
- $\Rightarrow \ \text{exp} \ \textit{diag} \ \lambda_{\!\scriptscriptstyle 1}, \lambda_{\!\scriptscriptstyle 2}, ..., \lambda_{\!\scriptscriptstyle n} \ \ = \textit{diag} \ e^{\lambda_{\!\scriptscriptstyle 1}}, e^{\lambda_{\!\scriptscriptstyle 2}}, ..., e^{\lambda_{\!\scriptscriptstyle n}}$
- \Rightarrow si N est nilpotente d''ordre p: exp $N = \sum_{i=0}^{p-1} N^i$
 - 13 . (autres points → Chapitre 6) • Démonstration du point 3
- De même (par isomorphisme):

Dans l'espace vectoriel normé \mathcal{L} F , pour $u \in \mathcal{L}$ F :

- \Rightarrow la série exponentielle $\sum \frac{u^n}{n!}$ converge (quelle que soit la norme choisie).
- \Rightarrow sa somme est l'endomorphisme de F noté $\exp(u)$ ou e^u
- $\Rightarrow \forall u, v \in \mathcal{L} \ F^2 : \text{si } u \text{ et } v \text{ commutent, alors } e^{u+v} = e^u \circ e^v$ $\Rightarrow \boxed{\exp 0_{\mathcal{L}E} = Id_E} \boxed{\exp tId_E = e^tId_E}$
- - Démonstration 15.

Soit
$$t \in \mathbb{R}$$
 et $J = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $\exp(tJ) = \begin{pmatrix} 1 & t & t^2/2 & t^3/6 \\ 0 & 1 & t & t^2/2 \\ 0 & 0 & 1 & t \\ 0 & 0 & 0 & 1 \end{pmatrix}$

c) Méthode pour l'exponentielle d'une matrice diagonalisable ou trigonalisable

Propriété : Si $M = P \, \Delta P^{-1}$ alors $\exp(M) = P \, \exp(\Delta) \, P^{-1}$

• Démonstration

d) <u>Dérivation de $t \mapsto e^{tA}$ et de $t \mapsto e^{ta}$ </u> Propriété : Soient $u \in \mathcal{L}$ F et $A \in \mathcal{M}_n$ K. Les applications $\varphi:t\to e^{tA}$ et $\psi:t\to e^{ta}$ sont dérivables sur $\mathbb R$ et ont pour dérivées respectives $t \to \underline{A} \times \varphi(t) = \underline{A} \times e^{tA}$ et $t \to a \circ \psi(t) = a \circ e^{ta}$.

• Démonstration difficile

3.3. Systèmes différentiels homogènes à coefficients constants

a) Trois théorèmes pour les résoudre

Théorème 1 : écriture de la solution du problème de Cauchy homogène

Soit le problème de Cauchy $\begin{cases} x'=a.x \\ x \ t_0 \ = v \end{cases} \quad \text{où} \ t_0, v \ \in I \times F \,.$

L'unique solution est la fonction $\varphi: t \to \exp t - t_0$ a .v

• Démonstration

Théorème 2 : base de solutions de l'équation homogène

Soit $v_1, v_2, ..., v_n$ n vecteurs de F (où $n = \dim(F)$).

Soient les n fonctions $\varphi_i:t\to \exp^-t-t_0$ $a.v_i$ définies sur $\mathbb R$. Alors $\varphi_1, \varphi_2, ..., \varphi_n$ est une base de l'ensemble \mathcal{S}^* des solutions de x' = a.x v_1, v_2, \dots, v_n est une base de F. si et seulement si

• Démonstration

20

Lemme : effet sur un vecteur propre

Si v est vecteur propre de a associé à λ , alors $e^{{\it t} a}.v=e^{\lambda {\it t}}v$.

<u>Traduction martricielle</u>: si $Av = \lambda v$, alors $e^{tA} \cdot v = e^{\lambda t} v$.

Démonstration

\bigcirc Faire le lien avec $P(u).v = P(\lambda)v$ (cf. chapitre 4)

Théorème 3: écriture des solutions si a est diagonalisable

Soit $a \in \mathcal{L}$ E un endomoprphisme diagonalisable.

Soit donc $v_1, v_2, ..., v_n$ une base de vecteurs propres de a.

Soit pour tout $j \in [1, n]$, λ_j la valeur propre associée à v_j ($\lambda_j \in \mathbb{K}$).

Les solutions de l'équation différentielle homogène x' = a.x sont les

fonctions définies sur \mathbb{R} par $t \to \sum_{j=1}^n \alpha_j e^{\lambda_j t}.v_j$ où $\forall j \in 1, n \quad \alpha_j \in \mathbb{K}$.

• Démonstration

b) Quatre méthodes pour les résoudre

- \square Si A est diagonalisable (cas simple qui tombe le plus souvent ! 9)
 - Méthode 1 : ici on a tout intérêt à utiliser le théorème 3
 - Exemple 1 : cas où A est \mathbb{R} -diagonalisable 22

$$\begin{cases} x' = x + 3y + (t - 4) \\ y' = 3x + y + (3t - 1) \end{cases}$$

- Exemple 2 : cas où A est \mathbb{C} -diagonalisable $\begin{cases} x' = x - y + e^t \\ y' = x + y \end{cases}$
- \square Si A est trigonalisable avec une seule valeur propre
 - ŏ Méthode 2 : ici on a tout intérêt à utiliser le théorème 1

$$\Rightarrow \ \text{Les solutions s'écrivent} : \boxed{e^{tA}. \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix}} \ \ (\text{avec} \ t_0 = 0 \ \text{et} \ v = \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix}).$$

- \Rightarrow Ici, μ_A est scindé avec une seule racine.
- \Rightarrow Donc $A = \lambda I + N$ avec N nilpotente (Chapitre 4)
- \Rightarrow ... et e^{tA} est facile à calculer.
- Exemple 3 : cas A trigonalisable et Card $Sp\ A = 1$.

$$\begin{cases} x' = 3x + y - z \\ y' = 2y \\ z' = x + y + z \end{cases}$$

\square Autres cas pour n=3

- Seul cas restant à traiter : A non diagonalisable et Card Sp A = 2.
- Ici, on a le choix entre 2 méthodes:

Méthode 3 : utiliser le théorème 2

Avec la base u,v,w dans laquelle A est trigonalisable et $t_0=0$, les solutions s'écrivent : $t\to \alpha\,e^{tA}.u+\beta\,e^{tA}.v+\gamma\,e^{tA}.w$

Méthode 4 : utiliser un changement de fonctions inconnues

- \Rightarrow ① Ecrire $A = PTP^{-1}$, ② changer de fonctions inconnues dans le système, ③ résoudre le nouveau système triangulaire (plus facile) avant de ④ revenir aux fonctions inconnues initiales
- © Cette méthode s'applique bien aussi au cas " A diagonalisable
- Exemple 4 : cas où A est trigonalisable avec deux valeurs propres. 25

$$\begin{cases} x' = \frac{3}{2}x + \frac{1}{2}y - \frac{1}{2}z \\ y' = -\frac{1}{2}x + \frac{3}{2}y + \frac{1}{2}z \\ z' = y + z \end{cases}$$

- c) Un exemple avec des coefficients non constants
 - <u>Exemple 5</u> : **26**

$$\begin{cases} x' = \frac{1 + t^4 \quad x - 2t^2y}{t \quad t^4 - 1} \\ y' = \frac{1 + t^4 \quad y - 2t^2x}{t \quad t^4 - 1} \end{cases} \xrightarrow{\text{Indication}} : \left(t \to \frac{1}{t}, t \to t\right) \text{ est solution...}$$

4. Equations scalaires d'ordre n

4.1. Définitions et principes généraux

<u>Définition</u>:

- équation différentielle linéaire (E.D.L.) scalaire résolue d'ordre n:
 ... toute équation $x^n + a_{n-1}(t)x^{n-1} + ... + a_1(t)x' + a_0(t)x = b(t)$ (E)
 - \Rightarrow Au programme MP : $~a_{i}~_{i}\in\mathcal{C}~I,\mathbb{K}~^{n},~b\in\mathcal{C}~I,\mathbb{K}~$ I est un <code>intervalle</code>
- ♣ l'équation homogène associée à (E) :

$$X^{n} + a_{n-1}(t)X^{n-1} + ... + a_{1}(t)X' + a_{0}(t)X = 0$$
 (E*)

↓ un problème de Cauchy :

$$\begin{cases} x^{n} + a_{n-1}(t)x^{n-1} + \ldots + a_{1}(t)x' + a_{0}(t)x = b(t) \\ \forall i \in \ 0, n-1 \ : x^{i} \ t_{0} \ = x_{i} \end{cases} \quad \text{où} \quad t_{0}, \ x_{i-i} \ \in I \times \mathbb{K}^{n}$$

• Propriété immédiate : toute solution est de classe C^n

Représentation par un système différentiel linéaire 4.2.

Proposition: Soit l'équation différentielle scalaire d'ordre n (\mathbf{E}) ci-dessus.

On pose
$$\forall t \in I : A(t) = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & 1 \\ -a_0(t) & -a_1(t) & \cdots & \cdots & -a_{n-1}(t) \end{pmatrix}$$
 et $B(t) = \begin{pmatrix} 0 \\ \vdots \\ \vdots \\ 0 \\ b(t) \end{pmatrix}$

Alors x est solution de $x^n + a_{n-1}(t)x^{n-1} + ... + a_1(t)x' + a_0(t)x = b(t)$ si et seulement si $X = x, x', ..., x^{n-1}$ est solution de X' = A(t).X + B(t)

27 . Noter l'analogie avec la matrice compagnon! • Démonstration

4.3. Théorème de Cauchy

Théorème de Cauchy

 $\begin{array}{ll} \text{Soit} & a_{i-i} \in \mathcal{C} \ I, \mathbb{K}^{\ n}, \ b \in \mathcal{C} \ I, \mathbb{K} \quad \text{et} \quad t_0, \ x_{i-i} \ \in I \times \mathbb{K}^n \\ \\ \text{Le problème de Cauchy} & \begin{cases} x^{\ n} \ + a_{n-1}(t)x^{\ n-1} \ + \ldots + a_1(t)x' + a_0(t)x = b(t) \\ \\ \forall i \in \ 0, n-1 \ : x^{\ i} \quad t_0 \ = x_i \end{cases} \end{array}$

admet une et une seule solution.

• Démonstration

29

4.4. Structure et dimension des espaces de solutions

Théorème fondamental:

Soit \mathcal{S} (resp. \mathcal{S}^*) l'ensemble des solutions de l'équation (**E**) (resp. (**E***)).

- * \mathcal{S}^* est un sous--espace vectoriel de \mathcal{C}^n I,\mathbb{K} et dim $\mathcal{S}^*=n$.
- * \mathcal{S} est un sous-espace affine de direction \mathcal{S}^* donc de même dimension n.
- <u>Démonstration</u> **30**.
- On utilise le fait essentiel que

$$\Phi_{t_0}: \left\{ egin{array}{ll} \mathcal{S}^*
ightarrow \ \mathbb{K}^n \ arphi
ight.
ight. \end{array}
ight. ext{ est un isomorphisme.}$$

5. Equation différentielle linéaires scalaires d'ordre 2

5.1. Système fondamental de solutions (S.F.S.), wronskien

Définitions:

- ♣ On appelle système fondamental de solutions de l'équation différentielle linéaire scalaire homogène du 2^{nd} ordre x'' + a t x' + b(t)x = 0 (**E***) toute base φ_1, φ_2 de son espace des solutions \mathcal{S}^* .
- lacksquare On appelle wronskien d'un couple $\ arphi,\psi\ \in \mathcal{C}^2\ I,\mathbb{K}^2$ la fonction

$$W_{\varphi,\psi}:I o\mathbb{K}$$
 définie par $\forall t\in I\;:\;W_{\varphi,\psi}\;\;t\;=egin{bmatrix} arphi(t) & \psi(t) \ arphi'(t) & \psi'(t) \ \end{pmatrix}$

5.2. Détermination d'un S.F.S par le wronskien

Théorème :

Soit φ, ψ un couple de solutions de $x'' + a \ t \ x' + b(t)x = 0$ (**E***).

Les trois affirmations suivantes sont équivalentes :

- ① φ, ψ est un système fondamental de solutions de (**E***).

- <u>Démonstration</u> 31

5.3. <u>Méthodes pratiques de résolution de (E*)</u>

Principe général

 \square On recherche deux solutions φ et ψ (**E***) (diverses méthodes $|\Psi|$)

 \Box On conclut : $S^* = Vect \varphi, \psi$

Diverses méthodes pour trouver φ et ψ (à faire dans l'ordre)

- On pense d'abord à voir s'il n'y a pas de solution évidente.
- ① On peut rechercher une solution polynomiale
 - lacktriangle Ce peut être le cas si les fonctions a et b sont polynomiales.
 - On a intérêt à raisonner sur le degré possible de cette solution
- ② On cherche une solution développable en série entière.
 - Cette méthode est très prisée!
- 3 En désespoir, on utilise la méthode dite de variation de <u>la</u> constante
 - Il faut pour cela connaître une solution φ (par \mathbb{Q},\mathbb{O} ou \mathbb{Q})
 - On pose alors $x = \varphi \times z$, on substitue dans (\mathbf{E}^*) et on résout l'équation différentielle vérifiée par z.

• © Pourquoi ça marche?

Cette dernière équation vérifiée par z ne contient pas de termes en z, donc en posant Z = z', on tombe sur du 1^{ier} ordre! \longrightarrow 32.

- Exemples
 - * Exemple 1 : recherche d'une solution polynomiale $t^2 2 x'' + t^2 2t 2 x' 2t x = 0$
 - * Exemple 2 : recherche de solutions D.S.E. x'' + tx' + x = 0
 - * Exemple 3: méthode de variation de la constante $\boxed{t+1 \ x''-x'-t \ x=0}$

5.4. Méthodes pratiques pour résoudre (E)

• On résout ici (**E**) $x'' + a \ t \ x' + b(t)x = c(t)$ où $a,b,c \in \mathcal{C} \ I,\mathbb{K}^3$

Méthode standard : variation des deux constantes

On a résolu (**E***) x'' + a t x' + b(t)x = 0 et trouvé un S.F.S. φ, ψ .

Les solutions de (**E***) s'écrivent donc $\lambda \varphi + \mu \psi$ avec λ et μ constantes.

- ① On recherche une solution particulière de (\mathbf{E}) sous la forme : $\tilde{x} = \lambda \varphi + \mu \psi \quad \text{où } \lambda \text{ et } \mu \text{ sont maintenant des fonctions.}$
- ② On résout alors le système suivant : $\begin{cases} \lambda'\varphi + \mu'\psi = 0 \\ \lambda'\varphi' + \mu'\psi' = c(t) \end{cases}$ où les inconnues sont λ' et μ' .
 - \odot Le système est facile à retenir car son déterminant est le wronskien φ,ψ : il n'y a plus qu'à retenir le second membre.
- ③ Ayant résolu le système précédent et trouvé les valeurs de λ' et μ' , on en déduit par primitivation λ et μ donc \tilde{x} (on prend comme constantes de primitivation 0 car on veut <u>une</u> solution particulière).
- ③ On conclut: les solutions s'écrivent $\tilde{x} + \lambda \varphi + \mu \psi$ où $\lambda, \mu \in \mathbb{K}^2$.
- <u>Justification</u> **36**
 - * Exemple 4: utilisation de la variation des deux constantes 37

$$x-1 y'' - xy' + y = e^{2x} x - 1^2$$

Autre méthode : variation de la constante

Si (à l'issue des étapes @@@ de résolution de (\mathbf{E}^*) on n'a qu'une solution φ pour (\mathbf{E}^*) et qu'on veut lui appliquer comme dans l'exemple 3 la variation de la constante, autant l'appliquer directement à (\mathbf{E}) .

❖ <u>Exemple 3-bis</u> : utilisation de la variation de la constante

$$t+1 \ x''-x'-t \ x=e^{-t}$$

- ❖ Exercice : Soit l'équation différentielle x'' + a t x' + b(t)x = 0
 - 1. Montrer que si φ et ψ sont deux solutions, le wronskien $W_{\varphi,\psi}$ est solution de l'équation différentielle x'+a t x=0.
 - 2. Montrer que le wronskien $W_{\varphi,\psi}$ de deux solutions φ et ψ de l'équation différentielle x''+q(t)x=0 est constant.
- 5.5. <u>Cas de l'équation à coefficients constants</u> (rappels de *M.P.S.I.* revisités)
 - a) Cas homogène
 - On résout ici : (\mathbf{E}^*) x'' + ax' + bx = 0 où $a, b \in \mathbb{K}^2$ et $c \in \mathcal{C}$ I, \mathbb{K}
 - L'équation caractéristique est : (E) $X^2 + aX + b = 0$.
 - On obtient alors pour système fondamental de solutions de l'équation homogène, en fonction de la valeur de Δ :

		Solutions de (E)	S.F.S. de (E*)
$\mathbb{K}=\mathbb{C}$	$\Delta \neq 0$	λ,μ où $\lambda,\mu\in\mathbb{C}^2$	$t o e^{\lambda t}, t o e^{\mu t}$
	$\Delta = 0$	λ où $\lambda \in \mathbb{R}$	$t \to t e^{\lambda t}, t \to e^{\lambda t}$
	$\Delta > 0$	λ, μ où $\lambda, \mu \in \mathbb{R}^2$	$t o e^{\lambda t}, t o e^{\mu t}$
$\mathbb{K} = \mathbb{R}$	$\Delta = 0$	λ où $\lambda \in \mathbb{R}$	$t o t e^{\lambda t}, t o e^{\lambda t}$
	A 10	Deux racines complexes conjuguées :	$t \to e^{at} \cos(bt), t \to e^{at} \sin(bt)$
	$\Delta < 0$	$\lambda, \overline{\lambda}$ avec $\lambda = a + ib$	

- b) <u>Cas général</u>
 - On résout ici : $x'' + ax' + bx = P(t)e^{mt}$ où $m \in \mathbb{K}$ et $P \in \mathbb{K}$ X.
 - La solution particulière est alors donnée par le tableau suivant :

	Bon à retenir : la solution particulière est	
Si m non solution de (E)	$\tilde{x}(t)$ du type $Q(t)e^{mt}$ où $Q \in \mathbb{R}$ X et d° $Q = d$ ° P	
Si m racine simple de (E)	$\tilde{x}(t)$ du type $tQ(t)e^{mt}$ où $Q \in \mathbb{R}$ X et d° $Q = d$ ° P	
Si m racine double de (E)	$ ilde{x}(t) = Q(t)e^{mt}$ où $Q = \operatorname{Prim}_0 \operatorname{Prim}_0(P)$	

