

ECE 621 Signaling & Synchronization Fall 2020

Topic 1
Introduction

Sameh A. Ibrahim
Ain Shams University
ICL

(Courtesy of S. Pamarti, UCLA)

Course Administration

Instructor: Dr. Sameh A. Ibrahim IC Lab, Third floor, Room 311

Office Hours: Online

e-mail address: sameh.ibrahim@eng.asu.edu.eg

Website:

LMS

- Time & Place: Sat. 10:00 AM 12:00 PM (Weekly), Rm. 316
- Reference Material:
 - Lecture Notes
 - Selected Papers
- Grading:

Design Project (Through Assignments)50%

• Final 50%

Course Topics (1)

- Introduction to Signaling and Synchronization
- I/O Channel Characteristics
 - Frequency-Dependent Loss ISI
 - Reflections
 - Cross-Talk
- TX Building Blocks
 - Voltage/Current Mode signaling
 - Line Drivers
 - Pre-Emphasis
 - Multiplexers

Course Topics (2)

RX Building Blocks

- Equalization techniques and architectures
- FFE and DFE circuits
- Slicers
- Demultiplexers

Clock and Data Recovery (CDR)

- PLL and DLL Basics
- Jitter Concepts: generation, transfer and tolerance
- Phase Detectors
- Charge Pumps
- Voltage-Controlled Oscillators (VCO)
- Frequency Dividers
- Advanced Signaling Techniques

The Road to SOCs

- A typical system-on-chip SOC consists of:
 - A microcontroller, microprocessor or DSP core(s)
 - Taught in a digital design course.
 - Memory blocks including a selection of ROM, RAM, EEPROM and flash memory
 - Taught in a digital design course.
 - Timing sources including oscillators and phase-locked loops.
 - Taught in an analog system design course
 - Taught in a serial-link design course.
 - External interfaces including industry standards such as USB, FireWire, Ethernet, USART, SPI
 - Taught in a serial-links design course.
 - Analog interfaces including ADCs and DACs
 - Taught in an analog system design course.
 - Voltage regulators and power management circuits
 - Taught in a power management course.

Tiger Lake Architecture

Introducing 11th Gen Intel® Core™ Processor

New Willow Cove Cores

Up to 4 Cores / 8 Threads Up to 4.8GHz

New Converged Chassis Fabric

High Bandwidth / Low Latency IP and Core Scalable

New Memory Controller

LP4/x-4266 4x32b up to 32GB DDR4-3200 2x64b up to 64GB

1st Integrated Thunderbolt[™] 4

Full 4x DP/USB/PCIe mux on-die Up to 40Gbps bi-directional per port

1st Integrated PCIe Gen 4 (CPU)

Low Latency, High Bandwidth
SSD or Discrete Graphics Direct CPU Attach

New Iris® Xe Graphics

Up to 96EU – Up to 2x Higher Performance Intel* Deep learning Boost: DP4A for AI

New 2x MEDIA Encoders

Up to 4K60 10b 4:4:4 Up to 8K30 10b 4:2:0

New 4 x Display Pipes

Up to 1 x 8K60 or 4 x 4K60 DP1.4 HBR3, BT.2020

New Image Processing Unit (IPU6)

Video up to 4K90 resolutions (initially 4K30) Still image up to 42 megapixels (initially 27MP)

New GNA 2.0

Enhanced Power Management

Autonomous DVFS

For more complete information about performance and benchmark results, visit www.intel.com/11thgen (configuration details in section 3).

intel

- 11th Generation Core Processor Released in October 2020 using 10nm++ (SuperFin) Tri-Gate 3D transistors.
- 146.10 mm² die size (~13.64 mm x ~10.71 mm) 4 Cores, 96 Eus up to 12 MiB Cache
- 5B transistors in its smallest version

Signal Integrity

- Signal Integrity refers to all the problems that arise in high-speed products due to the interconnects.
- Problems fall into one of three categories
 - Timing
 - Noise
 - Electromagnetic Interference (EMI)

How Important is SI?

Pre-1990

- 10 MHz Clock, 10 nsec rise and fall times
- SI addressed only after failure

1990-2000

- >100 MHz Clock, < 1nsec rise and fall times
- SI focused on channel models
- SI integrated in high-speed digital system design

2000-Present

- GHz range Clock
- Rise and fall times in psec
- SI drives architecture choice.
- SI models the entire link.

Why Now?

- From parallel to serial to multiple-channel serial
- Data rates beyond 10 Gb/s
- Lower voltage swings
- Get it right or it does not work

Serial Link Standards – Desktop

- HDMI
 - Audio/Video interface
 - 5, 10, 18 Gbps
- Ethernet
 - LAN 0.01, 0.1, 1, 10, 100 Gbps
- DDR
 - Memory 0.2, 1.066, 2.133, 3.2 Gbps

- PCIe (PCI Express)
 - Computer expansion bus
 - 2.5, 5, 8, 16 Gbps
- USB
 - Universal Serial Bus
 - For computer peripherals
 - 0.012, 0.48, 5, 10 Gbps
- SATA
 - Mass storage devices
 - 1.5, 3, 6, 16 Gbps
 - DMI
 - Connects controllers
 - 10, 20 Gbps
 - SPI
 - Short distance, single master

Introduction

Serial Link Standards – Mobile

• MIPI

- Low power
- Mobile applications
- 1.5, 3, 6, 12 Gbps

System Block Diagram

Topic 2: Channel Characteristics

Frequency-Dependent Loss

Topic 3: TX Circuitry (1)

Multiplexing

- Circuit design
- Clock distribution issues
- Power consumption issues

Topic 3: TX Circuitry (2)

Driver and Pre-Driver

- Voltage and current mode drivers
- Bandwidth issues
- Swing control
- Impedance control

Topic 3: TX Circuitry (3)

Termination Resistors

- On-chip or off-chip
- PVT variations

Topic 3: TX Circuitry (4)

Pre-Emphasis

- Power consumption concerns
- Coefficient choice
- Pre-emphasis vs. de-emphasis

Topic 4: RX Circuitry (1)

- **Input Termination**
 - On-chip or off-chip
 - **PVT** variations

Introduction

Topic 4: RX Circuitry (2)

- Variable Gain Amplifier
 - Large bandwidth required
 - Offset and noise limitations
 - Gain profile

Topic 4: RX Circuitry (3)

- reconver Equalizati
 - Linear vs. DFE
 - TX vs. RX equalization
- Analog vs. Digital

Introduction

Topic 4: RX Circuitry (4)

- Offset and noise considerations
- High speed requirements
- Sensitivity

Topic 4: RX Circuitry (5)

- **De-multiplexing**
 - Clock distribution
 - Power distribution

Topic 5: Clock and Data Recovery (CDR)

- PLLs and DLLs are used for clock generation and CDR
- PLL and DLL basics
- PLL and DLL Components
- Jitter and Noise analysis
- Linear and Non-linear clock recover systems

Topic 6: Advanced Signaling Techniques

- Signaling techniques for better channel utilization
 - 4-PAM signaling
 - Simultaneous bi-directional signaling
 - Mutli-tone signaling
 - Duo-binary signaling

