ECE 500-02	NAME:	
ELECTRIC MACHINES AND DRIVES		

FINAL EXAM

DUE: BLACKBOARD FOR DUE DATE AND TIME.

Show all your work in a neat and clear manner to get maximum points.

Use only the front side of each sheet of paper.

Write your name on each page, and number your pages.

I,	(PRINT) HAVE COMPLETED THE FOLLOWING	
TASKS ON MY OWN, WITH	OUT THE ASSISTANCE OR GUIDANCE OF ANYONE ELSE	Ε,
EITHER IN OR OUTSIDE OF	MY CLASS.	
SIGNATURE:	, DATE:	

PROBLEMS

1.) Worth 50 Points

A PMAC motor has the following specifications: 2 pole; Balanced 3 phase; $K_t = K_e = 0.75$ in MKS units; Ls = 25 [mH]; $R_s = 0.25 \Omega$; $J_m = 0.03$ [kg*m²].

This motor is driving a load of inertia $J_L = 0.05$ [kg*m²], and a load torque $T_L = 2$ [Nm] to bring the system from rest to a speed of 2,000 [RPM] in t_1 [sec.]; assume $T_{em} = 7$ [NM].

- Calculate (by hand) and plot (using matlab or equivalent) the speed $\omega_m(t)$ and position $\theta_{is}(t)$ as functions of time during this interval of $0 < t < t_1$ [sec.].
- Calculate (by hand) and plot (using matlab or equivalent) the voltage v_a(t) and current i_a(t) as functions of time during this interval of 0 < t < t₁ [sec.].

2.) Worth 40 Points

A permanent-magnet dc motor is to be started under a loaded condition. The load-torque T_L is linearly proportional to the speed and equals 3 [Nm] at a speed of 2850 [RPM] and J_L = 0.05 [kg*m²]. We can neglecting L_a and friction. The motor current must not exceed ±12.5 [A]. Calculate and plot the voltage $v_a(t)$, which is to be applied such the motor follow the following speed profile.

Motor Specifications: $J_m = 0.03$ [kg*m²]; $K_t = K_e = 0.35$ in MKS units; $R_a = 0.25$ [Ω];

- Interval #1: From rest to 2850 [RPM] as quickly as possible, 0 < t ≤ t₁.
- Interval #2: Maintain the 2850 [RPM] for 5 seconds, t₁ < t ≤ t₁+5 [sec.].

Interval #3: From2850 [RPM] back to rest as quickly as possible, t₁+5 < t ≤ t₂ [sec.]. You
do not need to consider t> t₂.

3.) WORTH 10 POINTS

Validate your results for Problem 2 using Matlab/Simulink, or an equivalent simulation tool. Provide narrative explaining how your results validate your analysis. Include the "code," and plot. Remember that the scopes in Simulink have a history tab, in that tab you should uncheck that box that limits the data to the last 5000 elements.