Notas del teórico

Medida e Integración - Francisco Martinez Pería 2025

Bustos Jordi

Bustos Jordi jordibustos01@gmail.com

Contenido

6	Clase I - 06/03	
	1.1 Integral de Riemann 1.1.1 Desventajas de la integral de Riemann 1.2 Espacios Medibles	7
11	Clase II - 11/03	
	2.1 La σ-álgebra de Borel	
15	Clase III - 13/03	
	3.1 Funciones medibles	
21	Clase IV - 20/03	
	4.1 Parte negativa y positiva	
26	Clase V - 25/03	
	5.1 Medidas	26 26 27 27

	C	lase VI - 27/03 Contenido •	3
	6.1 6.2	Espacio de medida	
38	C	lase VII - 01/04	
	7.1 7.2	Generación de medida (continuación)	
42	Pa	arciales	
		District District Color	12
	8.1	Primer parcial - Primera fecha	
	8.2	Primer parcial - Segunda fecha	42
	-	•	42 42

Prefacio

"Considero a cada hombre como un deudor de su profesión, y ya que de ella recibe sustento y provecho, así debe procurar, mediante el estudio, servirle de ayuda y ornato."

Francis Bacon

Este libro recoge las notas tomadas durante el curso de Medida e Integración dictado por Francisco Martinez Pería en el primer cuatrimestre de 2025.

Estas notas se basan principalmente en la cursada del '99 brindada por Jorge Samur y material del libro *The elements of integration and Lebesgue Measure* de Robert G. Bartle.

Clase I - 06/03

1.1 Integral de Riemann

Sea $f:[a,b]\subseteq\mathbb{R}\to\mathbb{R}$ una función. Una partición P de [a,b] es un conjunto finito $\{x_0,x_1,\cdots,x_n\}$, con $a=x_0< x_1<\cdots< x_n=b$. A P le asignamos una norma $\|P\|=\max\{l(J_k)\}$. $J_k=[x_{k-1},x_k]$ y a cada P le podemos asignar una etiqueta, que es un vector $\xi=(\xi_1,\cdots,\xi_n)$ tal que $\xi_k\in J_k$. Una partición etiquetada es un par (P,ξ) ; y le podemos asignar su suma de Riemann

$$S(P, \xi) = \sum_{k=1}^{n} f(\xi_k) l(J_k)$$

Definición 1.1 (Integrable Riemann). Una función $f : [a, b] \to \mathbb{R}$ es integrable Riemann si

$$\exists I \in \mathbb{R} : \forall \epsilon > 0, \ \exists \delta > 0 : |S(P,\xi) - I| < \epsilon \ \mathrm{si} \ (P,\xi) \ \mathrm{es} \ \mathrm{tal} \ \mathrm{que} \ \|P\| \leq \delta$$

Ejercicio: Probar que si f es integrable Riemann entonces es acotada. Si f es acotada, dada una partición P del dominio de f, para cada $i \in 1, \dots, n$ definimos:

$$M_i = \sup\{f(x) : x \in J_i\} \text{ y } m_i = \inf\{f(x) : x \in J_i\}$$

Luego definimos la suma superior y la suma inferior asociada a P como:

$$S(f, P) = \sum_{k=1}^{n} M_k l(J_k) \text{ y } s(f, P) = \sum_{k=1}^{n} m_k l(J_k)$$

Entonces podemos definir suma superior e inferior de Riemann como

$$\begin{split} & \int_{a}^{b} f(x) \, \mathrm{d}x = \sup\{S(f,P) : P \text{ partición de } [a,b]\} \, \mathrm{y} \\ & \int_{a}^{b} f(x) \, \mathrm{d}x = \inf\{s(f,P) : P \text{ partición de } [a,b]\} \end{split}$$

Proposición 1.2. Dada una función $f : [a, b] \to \mathbb{R}$, f es integrable Riemann \iff es acotada y la suma superior es igual a la inferior.

Nota. f es integrable Riemann si:

- 1. f es continua.
- 2. f es continua salvo finitos puntos en los que existen los límites laterales.
- 3. f es monótona y acotada (en este caso pueden existir numerables discontinuidades).

1.1.1. Desventajas de la integral de Riemann

- Exige que la función oscile poco en intervalos pequeños.
- Hay funciones simples que no son integrables Riemann.
- No se comporta bien con respecto a la convergencia puntual.

Ejemplo. Sea $f:[0, 1] \to \mathbb{R}: f(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$ f no es integrable Riemann.

Demostración. Llamemos $A=[0,1]\cap \mathbb{Q}$. A es numerable entonces $\exists \sigma: \mathbb{N} \to A$ biyectiva. Para cada $n\in \mathbb{N}$, sea $A_n=\{\sigma(1),\ \cdots,\ \sigma(n)\},\ A_n\subset A_{n+1}\ y\bigcup_{n=1}^\infty A_n=A$. Ahora para cada $n\geq 1$ consideramos: $f_n:[0,1]\to \mathbb{R}$ dada por

$$f_n(x) = \begin{cases} 1 & x \in A_n \\ 0 & x \in [0, 1] \setminus A_n \end{cases}$$

 f_n es integrable Riemann (queda como ejercicio demostrarlo) ya que es continua salvo en los puntos de A_n y los límites laterales son siempre cero. Veamos ahora que $f_n \to f$. Sea $x \in [0,1]$

1. Si $x \in A$

$$\begin{aligned} &\Rightarrow x \in A_{n_0}, n_0 \in \mathbb{N} \\ &\Rightarrow (\forall n > n_0) \quad x \in A_n \\ &\Rightarrow (\forall n > n_0) \quad f_n(x) = 1 \\ &\Rightarrow f_n(x) \to f(x) = 1 \end{aligned}$$

2. Si $x \notin A \Rightarrow (\forall n \in \mathbb{N})$ $x \notin A_n \Rightarrow (\forall n \in \mathbb{N})$ $f_n(x) = 0 \Rightarrow f_n(x) \to f(x) = 0$.

 $f_n \to f$. Si conocieramos $\ell(A)$ y $\ell([0,1] \setminus A)$ podríamos definir $\int f = 1 \times \ell(A) + 0 \times \ell([0,1] \setminus A)$.

1.2 Espacios Medibles

Dado X un conjunto arbitrario no vacío. Sea $\mathcal{P}(X)$ el conjunto de partes de X.

Definición 1.3 (σ -álgebra). Una familia \mathfrak{X} es una σ -álgebra si verifica:

- 1. $\varnothing, X \in \mathfrak{X}$.
- 2. Si $A \in X \Rightarrow A^c \in \mathfrak{X}$.
- 3. Sea $(A_n)_{n\geq 1}$ una sucesión en $\mathfrak{X}\Rightarrow \bigcup_{n=1}^\infty A_n\in\mathfrak{X}.$

Definición 1.4 (Conjunto Medible). Si \mathfrak{X} es una σ -álgebra de subconjuntos de \mathfrak{X} el par (X, \mathfrak{X}) es un espacio medible. A cada $A \in \mathfrak{X}$ lo llamaremos conjunto \mathfrak{X} -medible.

Nota. Si $\mathfrak X$ es una σ -álgebra de X y $A_1, \, \cdots, \, A_n \in \mathfrak X$ entonces $\bigcup_{k=1}^n A_k \in \mathfrak X$. Idea de la demostración: Sea $(B_m)_{m \geq 1}$ la sucesión en $\mathfrak X$ definida por

$$B_{\mathfrak{m}} = \begin{cases} A_{\mathfrak{m}} & 1 \leq \mathfrak{m} \leq \mathfrak{n} \\ \varnothing & \mathfrak{m} > \mathfrak{n} \end{cases}$$

Nota. Si $(A_n)_{n\geq 1}$ es una sucesión de una σ -álgebra $\mathfrak X$ entonces $\bigcap_{n=1}^\infty A_n\in \mathfrak X$.

Demostración. $\bigcup_{n\geq 1}A_n^c\in\mathfrak{X}\Rightarrow (\bigcap_{n\geq 1}A_n^c)^c\in\mathfrak{X}\Rightarrow \bigcup_{n\geq 1}A_n\in\mathfrak{X}.$

Ejemplo (σ-álgebras). Dado X cualquiera no vacío.

- 1. $\mathfrak{X} = \{\emptyset, X\}$ es una σ -álgebra.
- 2. $\mathfrak{X} = \mathcal{P}(X)$ es una σ -álgebra.
- 3. Sea $A \neq \emptyset \subset X$. Luego $\mathfrak{X} = \{\emptyset, A, A^c, X\}$ es una σ -álgebra.
- 4. Supongamos que X no es numerable y sea

 $\mathfrak{X} = \{A \subset X : A \text{ es numerable ó } A^c \text{ es numerable}\}$

es una σ -álgebra. Demostración ejercicio y además $\mathfrak{X} \neq \mathcal{P}(X)$.

Lema 1.5. Dado un conjunto X, sean $\mathfrak{X}_1, \mathfrak{X}_2$ dos σ -álgebras de X. Entonces $\mathfrak{X}_1 \cap \mathfrak{X}_2$ es una σ -álgebra de X. Más aún si $(\mathfrak{X}_i)_{i \in I}$ es una familia de σ -álgebras de X entonces $\bigcap_{i \in I} \mathfrak{X}_i$ es una σ -álgebra de X.

Demostración. Queda como ejercicio.

Proposición 1.6 (σ -álgebra generada por A). Dado un conjunto X, sea $A \neq \emptyset \subseteq \mathcal{P}(X) \Rightarrow \exists \sigma$ -álgebra $\sigma(A)$ que verifica:

- 1. $A \subseteq \sigma(A)$.
- 2. \mathfrak{X} es σ -álgebra de X tal que $A \subseteq X \Rightarrow \sigma(A) \subseteq \mathfrak{X}$.
- 3. $\sigma(A)$ es la única que verifica ambas propiedades en simultáneo.

Demostración. Sea $\Delta = \{\mathcal{C} \subseteq \mathcal{P}(X) : \mathcal{C} \text{ es } \sigma\text{-\'algebra de } X \text{ y } A \subseteq \mathcal{C}\} \neq \emptyset$ pues $\mathcal{P}(X) \in \Delta$. Llamemos $\mathfrak{X} = \bigcap_{\mathcal{C} \in \Delta} \mathcal{C} = \{B \in \mathcal{P}(X) : B \in \mathcal{C}(\forall \mathcal{C} \in \Delta)\}$. Veamos que \mathfrak{X} es una σ -\'algebra de X.

- 1. \varnothing , $X \in \mathcal{C}(\forall \mathcal{C} \in \Delta) \Rightarrow \varnothing$, $X \in \mathfrak{X}$.
- 2. Sea $A \in \mathfrak{X} \Rightarrow (\forall \mathcal{C} \in \Delta) A \in \mathcal{C} \Rightarrow A^{c} \in \mathcal{C}(\forall \mathcal{C} \in \Delta) \Rightarrow A^{c} \in \mathfrak{X}$.
- 3. Sea $(A_n)_{n>1}$ una sucesión en \mathfrak{X} el argumento es análogo a los dos anteriores.

 $\therefore \mathfrak{X}$ es una σ -álgebra que verifica ambas condiciones. Supongamos que existe otra $\overline{\mathfrak{X}}$ σ -álgebra que verifica las dos condiciones, por la propiedad uno y dos podemos deducir que $\mathfrak{X} \subseteq \overline{\mathfrak{X}}$ y $\overline{\mathfrak{X}} \subseteq \mathfrak{X}$.

Ejemplo. Consideremos $X = \mathbb{R}$ y sea $A = \{(a, b) : a, b \in \mathbb{R}, a \leq b\}$. La σ -álgebra generada por A es la σ -álgebra de Borel \mathcal{B} . A los conjuntos de \mathcal{B} los llamaremos conjuntos Borelianos. Veamos que si $\overline{A} = \{(a, +\infty) : a \in \mathbb{R}\} \Rightarrow \sigma(\overline{A}) = \mathcal{B}$.

Demostración. • Dado $\alpha \in \mathbb{R}$, $(\alpha, +\infty) = \bigcup_{n \geq 1} (\alpha, \alpha + n) \in \mathcal{B} \Rightarrow \overline{A} \subseteq \mathcal{B}$. Luego $\sigma(\overline{A}) \subseteq \mathcal{B}$. Por ser $\sigma(\overline{A})$ la mínima σ -álgebra que contiene a \overline{A} .

■ Dado $a, b \in \mathbb{R}$, a < b. Sabemos que $(a, b] = (a, +\infty) \cap (b, +\infty)^c \in \sigma(\overline{A})$. Luego $(a, b) = \bigcup_{n \ge 1} (a, b - \frac{1}{n}] \in \sigma(\overline{A})$. Por lo que $A \subset \sigma(\overline{A})$. $B = \sigma(A) \subset \sigma(\overline{A})$. Por ser $\sigma(A)$ la mínima σ -álgebra que contiene a A.

10 • Espacios Medibles

Ejercicio demostrar que la σ -álgebra de Borel está generada también por las siguientes familias:

- 1. $\{(a,b]: a,b \in \mathbb{R}, a < b\}$.
- 2. $\{[a,b): a,b \in \mathbb{R}, a < b\}$.
- 3. $\{[a,b]: a,b \in \mathbb{R}, a < b\}$.
- 4. $\{[\alpha, +\infty) : \alpha \in \mathbb{R}\}.$
- 5. $\{(-\infty, \alpha) : \alpha \in \mathbb{R}\}.$
- 6. $\{(-\infty, \alpha] : \alpha \in \mathbb{R}\}.$

Luego, se puede ver que $\{\mathfrak{a}\}=\bigcap_{\mathfrak{n}\geq 1}[\mathfrak{a},\mathfrak{a}-\frac{1}{\mathfrak{n}})\in\mathcal{B}.$

Clase II - 11/03

2.1 La σ-álgebra de Borel

A \mathbb{R}^n lo pensamos dotado de la distancia euclídea. Si $\mathbf{x}=(x_1,\cdots,x_n)$ e $\mathbf{y}=(y_1,\cdots,y_n)$ son dos puntos de \mathbb{R}^n , la distancia entre ellos es

$$d(x,y) = ||x - y|| = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

Consideramos la topología usual de \mathbb{R}^n notada τ^n al conjunto de todos los abiertos de \mathbb{R}^n .

Definición 2.1. Dados $a=(a_1,\,\cdots,\,a_n),\;b=(b_1,\,\cdots,\,b_n)\in\mathbb{R}^n$ con $a_i< b_i(\forall i=1,\,\cdots,\,n)$ Definimos el intervalo abierto $(a,\,b)$ como

$$\begin{split} (a,b) &= \prod_{i=1}^{n} (a_{i}, b_{i}) \\ &= \{ x = (x_{1}, \ \cdots, \ x_{n}) \in \mathbb{R}^{n} : a_{i} < x_{i} < b_{i}, \ (\forall i = 1, \ \cdots, \ n) \} \end{split}$$

Definición 2.2 (ϵ -cubo). Dados $x=(x_1,\cdots,x_n)$ y $\epsilon>0$ el ϵ -cubo centrado en x es el conjunto definido por

$$C(x, \varepsilon) = \prod_{i=1}^{n} (x - \frac{\varepsilon}{2}, x + \frac{\varepsilon}{2})$$

Proposición 2.3. Sea $V \subseteq \mathbb{R}^n$ abierto e $y \in C(x, \epsilon)$ entonces

- $1. \ (\forall x \in V) \quad (\exists \epsilon > 0) : C(x,\, \epsilon) \subseteq V.$
- 2. $x \in C(y, \epsilon)$.
- 3. $C(x, \varepsilon) \subseteq C(y, 2 \cdot \varepsilon)$.

Definición 2.4 (σ -álgebra de Borel de \mathbb{R}^n). Es la σ -álgebra generada por:

$$A = \{(a, b) : a, b \in \mathbb{R}^n : a_i < b_i, i = 1, \dots, n\}$$

Lo notamos \mathcal{B}^n .

Queremos ver que efectivamente $\tau_n \subseteq \mathcal{B}^n$. Consideremos la clase $\beta_n = \{C(q, \frac{1}{m}) : q \in \mathbb{Q}^n, m \in \mathbb{N}\}$. β_n es numerable pues el conjunto de índices que enumera a β_n es

$$\underbrace{\mathbb{Q}^n \times \cdots \times \mathbb{Q}^n}_{n \text{ veces}} \times \mathbb{N}$$

que es numerable.

Proposición 2.5. Dado un abierto no vacío $V \subseteq \mathbb{R}^n$ existe una familia $\mathcal{A}_V \subseteq \mathcal{B}_n$ tal que $V = \bigcup_{B \in \mathcal{A}_V} B$.

Demostración. Sabemos que \mathbb{Q}^n es denso en \mathbb{R}^n . Como V es abierto y no vacío entonces $V \cap \mathbb{Q}^n \neq \varnothing$. Luego $B(x,\,\varepsilon) \subseteq V$ y $B(x,\,\varepsilon) \cap \mathbb{Q}^n \neq \varnothing$. Por lo tanto $B(x,\,\varepsilon) \subset V \cap \mathbb{Q}^n$. Para cada $q \in V \cap \mathbb{Q}^n$ defino $m_q = \min\{m \in \mathbb{N} : C(q,\frac{1}{m})\} \subseteq V$. Llamemos $\mathcal{A}_V = \{C(q,\frac{1}{m_q}) : q \in V \cap \mathbb{Q}^n\}$ la cual es una familia numerable.

- Veamos que $\bigcup_{q \in V \cap \mathbb{Q}^n} C(q, \frac{1}{m_q}) = V$.
 - \blacksquare \subseteq es trivial.
 - ⊇ Dado $x \in V$, $\exists m \in \mathbb{N} : C(x, \frac{1}{m}) \subseteq V$. Consideremos $C(x, \frac{1}{2m}) \subseteq C(x, \frac{1}{m}) \subseteq V$ que es un abierto no vacío.

Resulta que $C(x, \frac{1}{2m}) \cap \mathbb{Q}^n \neq \varnothing$. Sea $q \in C(x, \frac{1}{2m}) \subseteq V \cap \mathbb{Q}^n$

 $\Rightarrow x \in C(q, \tfrac{1}{2m}), \ \mathrm{en \ particular} \ m_q \leq 2m, \ \mathrm{pues \ como} \ x \in C(q, \tfrac{1}{2m}) \ \mathrm{implica \ que} \\ C(q, \tfrac{1}{2m}) \subseteq C(x, \tfrac{2}{2m}) \subseteq V.$

$$\Rightarrow x \in C(q, \tfrac{1}{2m}) \subseteq C(q, \tfrac{1}{m_q}) \mathrel{\dot{.}.} x \in \textstyle\bigcup_{q \in \mathcal{A}_{\nu}} C(q, \tfrac{1}{m_q}) = \textstyle\bigcup_{B \in \mathcal{A}_{\nu}} B \ .$$

Corolario 2.6. La σ -álgebra de Borel de \mathbb{R}^n coincide con la $\sigma(\tau_n)$. En particular:

- ullet Todo abierto de \mathbb{R}^n es un conjunto Boreliano.
- \bullet Todo conjunto cerrado de \mathbb{R}^n es un Boreliano por ser complemento de un abierto.
- Por último, todo subconjunto numerable de \mathbb{R}^n es un Boreliano. (Dado $x \in \mathbb{R}^n, \{x\} = \bigcap_{n>1} C(x, \frac{1}{n})$).

Proposición 2.7. Dado un espacio medible (X, \mathfrak{X}) y sea $X_0 \subseteq \mathfrak{X}$, entonces

- 1. $\mathfrak{X}_0 = \{A \subseteq X_0 : A = E \cap X_0 \text{ para algún } E \in \mathfrak{X}\}\$ es σ -álgebra de X_0 . En particular, si $X_0 \in \mathfrak{X} \Rightarrow \mathfrak{X}_0 = \{A \subseteq X_0 : A \in \mathfrak{X}\}\$, la demostración queda como ejercicio.
- 2. Si \mathcal{A} es una familia en partes de X tal que $\mathfrak{X} = \sigma(\mathcal{A})$ entonces $\mathfrak{X}_0 = \sigma(\mathcal{A}_0)$ donde $\mathcal{A}_0 = \{A_0 \subseteq X_0 : A_0 = A \cap X_0 \text{ para algún } A \in \mathcal{A}\}.$

Demostración. Veamos primero que $\mathcal{A}_0 \subseteq \mathfrak{X}_0$. Si $A_0 \in \mathcal{A}_0 \Rightarrow \exists A \in \mathcal{A} : A_0 = \mathcal{A} \cap X_0$. Como $A \in \mathcal{A} \subseteq \sigma(\mathcal{A}) = \mathfrak{X}$ resulta que $A_0 = A \cap X_0 \in \mathfrak{X}_0$. Entonces $\mathcal{A}_0 \subseteq \mathfrak{X}_0$. Por lo tanto $\sigma(\mathcal{A}_0) \subseteq \mathfrak{X}_0$.

Ahora veamos que $\mathfrak{X}_0 \subseteq \sigma(\mathcal{A}_0)$. Consideramos la clase $\mathcal{G} = \{ E \subseteq X : E \cap X_0 \in \sigma(\mathcal{A}_0) \}$ y veamos que $\mathfrak{X} \subseteq \mathcal{G}$. Alcanza con probar que $\mathcal{A} \subseteq \mathcal{G}$. Pues si $A \in \mathcal{A}$, $A \cap X_0 \in \mathcal{A}_0 \subseteq \sigma(\mathcal{A}_0) \Rightarrow A \in \mathcal{G}$. Si probamos que G es una G-álgebra, tendríamos que G y

Ejemplo. Si $\beta \in B_n$ entonces la σ -álgebra de Borel de β , $B_n(\beta) = \{A \subseteq \beta : A \in B_n\}$ está generado por la familia de conjuntos de la forma $(a,b) \cap \beta$ para $a,b \in \mathbb{R}^n$ con $a_i < b_i \ (\forall i = 1, \dots, n)$.

2.2 Recta real extendida

Definición 2.8 (Recta real extendida). Definimos $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$. Con las siguientes convenciones:

- 1. Dado $r \in \mathbb{R}$ tenemos que $-\infty < r < +\infty$.
- 2. $^{+}_{-}\infty + ^{+}_{-}\infty = ^{+}_{-}\infty$ y $^{+}_{-}\infty + ^{-}_{+}\infty$ no está definido.
- 3. $_{-\infty}^{+} \cdot _{-\infty}^{+} = +\infty$ y $_{-\infty}^{+} \cdot _{+\infty}^{-} = -\infty$ Si $r \in \mathbb{R}$ entonces $r \cdot +\infty = +\infty$ si r > 0 y $r \cdot +\infty = -\infty$. si r < 0.
- 4. $0 \cdot +\infty = 0 = +\infty \cdot 0$.
- 5. Tampoco definimos cocientes entre infinitos o de la forma $\frac{r}{+_{\infty}}$.

Nota. El producto no va a ser continuo en la recta real extendida. Si $a_n = +\infty \cdot \frac{1}{n} (\forall n \in \mathbb{N})$ entonces $\lim_{n \to +\infty} a_n = +\infty$. Pero $+\infty \cdot \lim_{n \to +\infty} \frac{1}{n} = +\infty \cdot 0 = 0$.

Notemos que si $A \subseteq \overline{\mathbb{R}} \Rightarrow \inf(A) \in \overline{\mathbb{R}}$ y $\sup(A) \in \overline{\mathbb{R}}$.

Dada una sucesión $(x_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$, sea $\varnothing\neq L=\{x\in\overline{\mathbb{R}}:\exists x_{n_k}\to x\}\subseteq\overline{\mathbb{R}}$.

 $\begin{array}{l} \textbf{Definición 2.9.} \ \text{l\'{i}} m \sup_{n \to \infty} x_n = \sup(L) \ y \ \text{l\'{i}} m \inf_{n \to \infty} x_n = \inf(L). \\ \text{Adem\'{a}} s, \ \text{si para cada} \ n \in \mathbb{N} \ \text{definimos} \ \alpha_m = \sup\{x_n : n \ge m\} \ \text{la sucesi\'{o}} n \ \alpha_m \ \text{es decreciente} \\ y \ \text{l\'{i}} m \sup_{n \to \infty} x_n = \inf\{\alpha_m\} = \inf_{m \ge 1} (\sup_{n \ge m} \{x_n\}). \\ \text{An\'{a}} \text{logamente } \text{l\'{i}} m \inf_{n \to \infty} x_n = \sup\{\alpha_m\} = \sup_{m > 1} (\inf_{n > m} \{x_n\}). \end{array}$

Proposición 2.10. Propiedades de límite superior e inferior:

- $\limsup_{n\to\infty} (-x_n) = -\liminf_{n\to\infty} x_n$
- $\liminf_{n\to\infty} (-x_n) = -\limsup_{n\to\infty} x_n$

Nota. Si $(x_n)_{n\in\mathbb{N}}$ es una sucesión en \mathbb{R} y $x\in\overline{\mathbb{R}}, x_n\to x\iff \limsup x_n=\liminf x_n=x.$

Veamos como extender \mathcal{B} a $\overline{\mathbb{R}}$.

Definición 2.11 (Borel extendida). Para cada $E \in \mathcal{B}$, sean $E_1 = E \cup \{+\infty\}$, $E_2 = E \cup \{-\infty\}$ y $E_3 = E \cup \{+\infty, -\infty\}$. Consideremos $\overline{\mathcal{B}} = \{E_1, E_2, E_3, E : E \in \mathcal{B}\} = \sigma(\{(\alpha, +\infty] : \alpha \in \mathbb{R}\})$. Probar que $\overline{\mathcal{B}}$ es σ -álgebra de $\overline{\mathbb{R}}$ se deja como ejercicio.

Clase III - 13/03

3.1 Funciones medibles

Proposición 3.1. Sea $f: \mathbb{R}^n \to \mathbb{R}$, f es continua si $f^{-1}(V)$ es abierto de \mathbb{R}^n ($\forall V$ abierto en τ_1).

En lo que sigue vamos a considerar un espacio medible fijo de la forma (X, \mathfrak{X}) . Notación: Dada una función $f: X \to \mathbb{R}$ para cada $\alpha \in \mathbb{R}$ definimos:

$$\{f > \alpha\} := \{x \in X : f(x) > \alpha\} = f^{-1}((\alpha, +\infty))$$

Definición 3.2 (Función medible). Una función $f: X \to \mathbb{R}$ es \mathfrak{X} -medible (σ -medible) si $\{f > \alpha\} \in \mathfrak{X} \quad (\forall \alpha \in \mathbb{R}).$

Lema 3.3. Dada $f: X \to \mathbb{R}$ una función, son equivalentes:

1. f es \mathfrak{X} -medible.

2. $\{f \geq \alpha\} \in \mathfrak{X} \quad (\forall \alpha \in \mathbb{R}).$

3. $\{f < \alpha\} \in \mathfrak{X} \quad (\forall \alpha \in \mathbb{R}).$

4. $\{f < \alpha\} \in \mathfrak{X} \quad (\forall \alpha \in \mathbb{R}).$

Demostración. Sea $\alpha, \gamma \in \mathbb{R}$.

• (1) \iff (3): $\{f \le \alpha\} = \{f > \alpha\}^c \in \mathfrak{X}$.

■ (2) ⇔ (4) Análogo.

■ (1) \iff (2): Supongamos que f es \mathfrak{X} -medible. Dado $\alpha \in \mathbb{R}$ quiero ver que $\{f \geq \alpha\} \in \mathfrak{X}$.

$$x \in \{f \ge \alpha\} \iff f(x) \ge \alpha > \alpha - \frac{1}{n} \quad (\forall n \in \mathbb{N})$$
$$x \in \{f > \alpha - \frac{1}{n}\} \quad (\forall n \in \mathbb{N})$$
$$\Rightarrow \{f \ge \alpha\} = \bigcap_{n \ge 1} \{f > \alpha - \frac{1}{n}\} \in \mathfrak{X}$$

Para la vuelta supongamos que vale (2). Quiero ver que $\{f>\gamma\}\in\mathfrak{X}.$ Notemos que

$$\{f>\gamma\}=\bigcup_{n>1}\{f\geq\gamma+\frac{1}{n}\}$$

$$x \in \{f > \gamma\} \iff f(x) > \gamma \iff \exists n_x \in \mathbb{N} : f(x) > \gamma + \frac{1}{n_x}$$

Luego $\bigcup_{n>1} \{f \ge \gamma + \frac{1}{n}\} \in \mathfrak{X}.$

Ejemplo. Toda función constante es medible. $f: X \to \mathbb{R} : f(x) = c \quad (\forall x \in X)$.

Demostración. Dado $\alpha \in \mathbb{R}$. Tenemos que

$$\{f > \alpha\} = \begin{cases} \varnothing & \alpha \ge c \\ X & \alpha < c \end{cases}$$

17

Ejemplo. Dado $E\subseteq X$ consideremos la función característica de E. Como $\chi_E:X\to\mathbb{R}$ dada por:

$$\chi_E(x) = \begin{cases} 1 & x \in E \\ 0 & x \notin E \end{cases}$$

Demostración. Consideremos E = [0, 1]. Dado $\alpha \in \mathbb{R}$. Tenemos que

$$\{\chi_E > \alpha\} = \begin{cases} \varnothing & \alpha \ge 1 \\ E & 0 \le \alpha < 1 \\ X & \alpha < 0 \end{cases}$$

Luego χ_E es medible \iff $E \in \mathfrak{X}$.

Ejemplo. Si $X = \mathbb{R}^n$, $\mathfrak{X} = \mathcal{B} \Rightarrow$ toda función continua es medible con respecto a la σ -álgebra de Borel.

Ejemplo. $X = \mathbb{R}, \mathfrak{X} = \mathcal{B}_n$ y $f : \mathbb{R} \to \mathbb{R}$ es monótona (creciente) entonces es \mathcal{B} -medible.

Ejercicio: $f: X \to \mathbb{R}$ es \mathfrak{X} -medible $\iff f^{-1}(B) \in \mathfrak{X} \quad (\forall B \in \mathcal{B}).$

Lema 3.4. Sean $f, g: X \to \mathbb{R}$ funciones medibles, $c \in \mathbb{R}$ entonces $c \cdot f$, f^2 , f + g, |f|, $f \cdot g$, son \mathfrak{X} -medibles. $f^2 = f(x) \cdot f(x)$.

Demostración. Veamos que f^2 es \mathfrak{X} -medible. Dado $\alpha \in \mathbb{R}$ quiero ver que

$$\{\mathsf{f}^2>\alpha\}\in\mathfrak{X}$$

Si
$$\alpha < 0 \Rightarrow \{f^2 > \alpha\} = X$$
.

Si $\alpha \geq 0 \Rightarrow$

$$\{f^2 > \alpha\} = \{x \in X : f(x) \cdot f(x) > \sqrt{\alpha} \cdot \sqrt{\alpha}\}$$
$$\{f > \sqrt{\alpha}\} \cup \{f > \sqrt{\alpha}\} \in \mathfrak{X}$$

 \therefore f² es \mathfrak{X} -medible.

Veamos ahora que f+g es $\mathfrak{X}\text{-medible}.$ Dado $\alpha\in\mathbb{R}$ quiero ver que

$$\{f+g>\alpha\}\in\mathfrak{X}$$

Para $x \in X$ tenemos que:

$$(f+g)(x)>\alpha\iff f(x)+g(x)>\alpha\iff f(x)>r\wedge g(x)>\alpha-r \ \mathrm{para\ alg\'un}\ r\in\mathbb{Q}$$

Entonces $\{f+g>\alpha\}=\bigcup_{r\in\mathbb{Q}}(\{f>r\}\cap\{g>\alpha-r\})\in\mathfrak{X}$ por ser unión numerable $\therefore f+g$ es \mathfrak{X} -medible.

Por último veamos que f \cdot g es \mathfrak{X} -medible. Dado $\alpha\in\mathbb{R}$ quiero ver que

$$\{f\cdot g>\alpha\}\in\mathfrak{X}$$

Sabemos que:

$$(f+q)^2$$
 es \mathfrak{X} -medible $\Rightarrow f^2 + 2 \cdot f \cdot q + q^2$ es \mathfrak{X} -medible

$$f \cdot g = \frac{1}{2} ((f + g)^2 - f^2 - g^2)$$
 es **X**-medible

3.2 Funciones medibles en la recta extendida

Definición 3.5. Dada $f: X \to \overline{R}$ diremos que f es \mathfrak{X} -medible si

$$f^{-1}((\alpha,+\infty]) = f^{-1}((\alpha,+\infty)) \cup f^{-1}(\{+\infty\}) = \{f>\alpha\} \in \mathfrak{X} \quad (\forall \alpha \in \mathbb{R})$$

A la clase de las funciones (a valores en la recta extendida) \mathfrak{X} -medibles la denotaremos por $M(X,\mathfrak{X})$.

Nota. Si $f: X \to \mathbb{R} \Rightarrow f \in M(X, \mathfrak{X})$.

Nota. Si

$$f\in M(X,\,\mathfrak{X})\Rightarrow \{f=+\infty\}=f^{-1}(\{+\infty\})=\bigcap_{n\geq 1}\{f>n\}\in\mathfrak{X}$$

Además,

$$\{f=-\infty\}=f^{-1}(\{-\infty\})=\bigcap_{n\geq 1}\{f<-n\}\in\mathfrak{X}$$

Lema 3.6. Dada una función $f: X \to \overline{\mathbb{R}}$ consideremos $A_f = \{f = +\infty\}, B_f = \{f = -\infty\}$ y

$$\hat{f} = \begin{cases} f & x \in X \setminus (A_f \cup B) \\ 0 & x \in A_f \\ 0 & x \in B_f \end{cases}$$

 $\Rightarrow f \in M(X,\,\mathfrak{X}) \iff A_f,B_f \in \mathfrak{X} \text{ y } \hat{f} \text{ es } \mathfrak{X}\text{-medible}.$

Demostración. Supongamos primero que $f \in M(X, \mathfrak{X})$. Dado $\alpha \in \mathbb{R}$, ya vimos que $A_f, B_f \in \mathfrak{X}$. Veamos que \hat{f} es \mathfrak{X} -medible.

Quiero ver que $\{\hat{f} > \alpha\} \in \mathfrak{X}$. Si $\alpha \geq 0$ entonces

$$\{\hat{f} > \alpha\} = \{f > \alpha\} - A_f = \{f > \alpha\} \cap A_f^C \in \mathfrak{X}$$

Si $\alpha < 0$ entonces

$$\{\hat{f}<\alpha\}=\{f>\alpha\}\cup\{\hat{f}=0\}=\{f>\alpha\}\cup(A_f\cup B_f)=\{f>\alpha\}\cup B_f\in\mathfrak{X}$$

Luego $\hat{f} \in \mathfrak{X}$. Supongamos ahora que $A_f, B_f \in \mathfrak{X}$ y \hat{f} es \mathfrak{X} -medible. Dado $\alpha \in \mathbb{R}$ tenemos que

$$\{f>\alpha\} = \{\hat{f}>\alpha\} \cup A_f \in \mathfrak{X}$$

Si $\alpha < 0$ entonces

$$\{f>\alpha\}=\{\hat{f}<\alpha\}\setminus B_f=\{\hat{f}<\alpha\}\cap B_f^c\in\mathfrak{X}$$

_

Corolario 3.7. Si f, $g \in M(X, \mathfrak{X})$ y $c \in \mathbb{R}$. Las funciones $c \cdot f$, f^2 , |f|, $f \cdot g \in M(X, \mathfrak{X})$.

Nota. Dados f, $g \in M(X, \mathfrak{X})$ consideremos los conjuntos

•
$$E_1 = \{f = +\infty\} \cap \{g = -\infty\} \in \mathfrak{X}.$$

$$\bullet \ E_2 = \{f = -\infty\} \cap \{g = +\infty\} \in \mathfrak{X}.$$

Notemos que no está definida la suma f+g en $E_1 \cup E_2$. Definimos

$$f+g = \begin{cases} f+g & x \in X \setminus (E_1 \cup E_2) \\ 0 & x \in E_1 \cup E_2 \end{cases}$$

La demostración de que $f+g\in M(X,\,\mathfrak{X})$ se deja como ejercicio.

Lema 3.8. Dada una sucesión de funciones $(f_n)_{n\geq 1}$ en $M(X,\mathfrak{X})$ sean f,f^*,F,F^* definidas por:

$$f(x) = \inf_{n \ge 1} f_n(x)$$
 $f^*(x) = \liminf_{n \to \infty} f_n(x)$

$$F(x) = \sup_{n \ge 1} f_n(x)$$
 $F^*(x) = \limsup_{n \to \infty} f_n(x)$

Entonces $f, f^*, F, F^* \in M(X, \mathfrak{X})$.

Demostración. Dado $\alpha \in \mathbb{R}$ tenemos que

$$\{F>\alpha\}=\bigcup_{n\geq 1}\{f_n>\alpha\}\in\mathfrak{X}$$

$$\{f>\alpha\}=\bigcap_{n\geq 1}\{f_n>\alpha\}\in\mathfrak{X}$$

Veamos $F^* \in M(X, \mathfrak{X})$. Para cada $n \in \mathbb{N}$ defino $h_n = \sup_{m \geq n} f_m \in \mathfrak{X}$. Por ser subsucesión de funciones medibles. Luego

$$F^*=inf_{n\geq 1}(sup_{m\geq n}f_m)\in \mathfrak{X}$$

Análogamente para f*.

Corolario 3.9. Dada $(f_n)_{n\geq 1}: f_n\in M(X,\mathfrak{X}) \ (\forall n\in\mathbb{N})$. Supongamos que la sucesión converge puntualmente a f entonces $f\in M(X,\mathfrak{X})$.

Demostración. Notemos que $f = \lim\inf f_n = \lim\sup f_n$ y aplicamos el lema anterior.

Clase IV - 20/03

4.1 Parte negativa y positiva

Definición 4.1 (Función truncada). Dada una función $f \in M(X, \mathfrak{X})$, para cada $n \geq 1$ definimos la función truncada a [-n, n] como la $f_n : X \to \mathbb{R}$ dada por

$$f_n(x) = \begin{cases} f(x) & \text{si } f(x) \in [-n, n] \\ n & \text{si } f(x) > n \\ -n & \text{si } f(x) < -n \end{cases}$$

Que converge puntualmente a f.

Notemos que f_n es medible para todo $n \ge 1$. Pues

$$\{f_n > \alpha\} = \begin{cases} X & \text{si } \alpha \leq -n \\ \{f < \alpha\} & \text{si } \alpha \in [-n, \, n] \\ \varnothing & \text{si } \alpha \geq n \end{cases}$$

Veamos una forma alternativa de probar el teorema de la clase anterior. Si $f, g \in M(X, \mathfrak{X})$ entonces $f+g: X \to \mathbb{R} \in M(X, \mathfrak{X})$

Para cada $n \ge 1$ consideramos las funciones truncadas f_n , $g_n : X \to \mathbb{R}$. Tenemos que $f_n + g_n : X \to \mathbb{R}$ es \mathfrak{X} -medible. Queremos ver que la convergencia es puntual $\forall x \in X$.

Si $x \in E_1 = \{f = +\infty, g = -\infty\}$. Para cada $n \ge 1$, $f_n(x) = n$ y $g_n(x) = -n$ entonces $(f_n + g_n)(x) = f_n(x) + g_n(x) = 0$ ($\forall n$). Luego $(f_n + g_n)(x) \to 0 = f(x)$ si $x \in E_1$. Para $x \in E_2$ el desarollo es análogo.

Si $x \in (E_1 \cup E_2)^c$ entonces

- 1. $f(x) \cdot g(x) \in \mathbb{R}$.
- 2. $f(x) \in \mathbb{R} \ y \ g(x) = +-\infty$.
- 3. $f(x) = +-\infty y g(x) \in \mathbb{R}$.
- 4. $f(x) = g(x) = +-\infty$.

 $\mathrm{Luego}\ (f_n+g_n)(x)\to (f+g)(x)\quad \forall x\in (E_1\cup E_2)^c.\ \mathrm{Pues}\ f_n(x)\to f(x)\ y\ g_n(x)\to g(x).$

Definición 4.2. Dada una función $f:X\to\overline{\mathbb{R}}$ definimos la parte positiva $f^+:X\to\overline{\mathbb{R}}$ y la parte negativa $f^-:X\to\overline{\mathbb{R}}$ como

$$f^{+}(x) = \begin{cases} f(x) & \text{si } f(x) \ge 0\\ 0 & \text{si } f(x) < 0 \end{cases}$$

$$f^{-}(x) = \begin{cases} -f(x) & \text{si } f(x) \le 0\\ 0 & \text{si } f(x) > 0 \end{cases}$$

Nota. $f = f^+ - f^- y |f| = f^+ + f^-$.

Nota. Si (X,\mathfrak{X}) es un espacio medible $f\in M(X,\mathfrak{X})\iff f^+,\,f^-\in M^+(X,\mathfrak{X})=\{f\in M(X,\mathfrak{X}):f\geq 0\}$ Notemos que $f^+=\sup(\{f,0\})$ y $f^-=\sup(\{-f,0\})$. Utilizando el teorema anterior vemos que si $f^+,\,f^-\in M(X,\mathfrak{X})$ entonces $f=f^++(-f^-)\in M(X,\mathfrak{X})$.

Nota. Si $B_f = \{f = +\infty\},\$

$$f^+ = \chi_{B_f^c} \cdot \frac{1}{2} \cdot (f + |f|)$$

$$f^- = \chi_{A_f^c} \cdot \frac{1}{2} \cdot (|f| - f)$$

Veamos el siguiente teorema.

Si $f\in M^+(X,\,\mathfrak{X})$ entonces $\exists (\varphi_{\mathfrak{n}})_{\mathfrak{n}\geq 1}\in M^+(X,\,\mathfrak{X})$ tal que

- $1. \ \varphi_n \leq \varphi_{n+1} \quad \forall n \geq 1.$
- $2. \ f(x) = \lim_{n \to \infty} \varphi_n(x) \quad \forall x \in X.$
- 3. Para cada $n\geq 1$ se tiene que $\varphi_n:X\to \mathbb{R}$ toma una cantidad finita de valores.

Luego fijado el $n \in \mathbb{N}$ tenemos los intervalos

$$[0,\frac{1}{2}),[\frac{1}{2^{n}},\frac{2}{2^{n}}),\cdots,[\frac{2^{n-1}}{2^{n}},\frac{2^{n}}{2^{n}}),[\frac{2^{n}}{2^{n}},\frac{2^{n}+1}{2^{n}}),\cdots,[\frac{n\cdot 2^{n}-1}{2^{n}},\frac{n\cdot 2^{n}}{2^{n}}),[n,+\infty]$$

Para cada $k=0,\cdots,n\cdot 2^n-1$ definimos el conjunto

$$\begin{split} E_{k,n} &= f^{-1}([\frac{k}{2^n}, \frac{k+1}{2^n})) \in \mathfrak{X} \\ &= \{x \in X : \frac{k}{2^n} \le f(x) < \frac{k+1}{2^n}\} \end{split}$$

Sea

$$E_{n\cdot 2^n,n} = f^{-1}([n,+\infty]) = \{x \in X : f(x) \ge n\} \in \mathfrak{X}$$

Notemos que $E_{k,n} \in \mathfrak{X} \quad \forall k, \ \bigcup_{k=0}^{n\cdot 2^n} E_{k,n} = f^{-1}([0,+\infty]) = X$ son disjuntos dos a dos. Luego definimos $\varphi_n(x) = \sum_{k=0}^{n\cdot 2^n} \frac{k}{2^n} \cdot \chi_{E_{n,k}} = \frac{k}{2^n}$ si $x \in E_{k,n}$, cada x pertenece a un único $E_{k,n}$ por construcción.

Entonces $\phi_n \in M^+(X, \mathfrak{X})$.

Veamos que $\phi_n \leq \phi_{n+1}$, dado $x \in X$ supongamos que f(x) < n entonces $\exists ! k = 0, \dots, n \cdot 2^n - 1$: $x \in E_{k,n}$ (pues en el nivel n, son disjuntos).

Queda como ejercicio probar que $E_{k,n} = E_{2k,n+1} \cup E_{2k+1,n+1}$.

Luego

$$\phi_n(x) = \frac{k}{2^n}$$

$$\varphi_{n+1}(x) = \begin{cases} \frac{2k}{2^{n+1}} = \frac{k}{2^n} & \text{si } x \in E_{2k,n+1} \\ \frac{2k+1}{2^{n+1}} = \frac{k}{2^n} + \frac{1}{2^{n+1}} & \text{si } x \in E_{2k+1,n+1} \end{cases}$$

 $\therefore \phi_n(x) \leq \phi_{n+1}(x).$

Por otro lado si $f(x) > n \Rightarrow x \in E_{n \cdot 2^n, n}$ entonces $\phi_n(x) = n$.

Como ahora descomponemos $[n, +\infty]$ en $[n, n+1] \cup [n+1, +\infty]$ para ϕ_{n+1} lo tenemos como

$$\bigcup_{k=0}^{2^{n+1}-1} \left[\frac{n \cdot 2^{n+1} + k}{2^{n+1}}, \frac{n \cdot 2^{n+1+k+1}}{2^{n+1}} \right) \cup [n+1, +\infty]$$

Si $x \in [n+1,+\infty]$ ya está pues $\varphi_{n+1}(x) = n+1 \geq n = \varphi_n(x).$

 $\mathrm{Luego} \ \exists ! k = 0, \cdots, n \cdot 2^{n+1} : x \in E_{n \cdot 2^{n+1} + k, n+1} \ y \ \mathrm{en} \ \mathrm{ese} \ \mathrm{caso} \ \varphi_{n+1}(x) = \frac{n \cdot 2^{n+1} + k}{2^{n+1}} = n + \frac{k}{2^{n+1}} \geq n + \frac{k}{2^{n+1}} = n + \frac{k}{2^{n+1}} \geq n + \frac{k}{2^{n+1}} = n + \frac{k}{2^{n+1}} = n + \frac{k}{2^{n+1}} \geq n + \frac{k}{2^{n+1}} = n + \frac{k}{2^{n+1}} = n + \frac{k}{2^{n+1}} \geq n + \frac{k}{2^{n+1}} = n + \frac{k}{2^{n+1}} \geq n + \frac{k}{2^{n+1}} = n + \frac{k}{2^{n+1}} = n + \frac{k}{2^{n+1}} \geq n + \frac{k}{2^{n+1}} = n + \frac{k}{2^{n+1}} \geq n + \frac{k}{2^{n+1}} = n + \frac{k}{2^{n+1}} = n + \frac{k}{2^{n+1}} \geq n + \frac{k}{2^{n+1}} = n + \frac{k}{2^{n+1}} \geq n + \frac{k}{2^{n+1}} = n + \frac{k}{2^{n+1}} \geq n + \frac{k}{2^{n+1}} = n + \frac{k}{2^{n+1}} = n + \frac{k}{2^{n+1}} \geq n + \frac{k}{2^{n+1}} = n + \frac{k}{2^{n+1}} =$ $n = \phi_n(x)$. Por lo tanto $\phi_n \leq \phi_{n+1}$.

 $\text{Por \'ulitmo veamos que } f(x) = \text{lim}_{n \to +\infty} \varphi_n(x) \quad \forall x \in X.$

- 1. $f(x) = +\infty$ luego $\forall n > 1$ $\phi_n(x) = n \to +\infty$.
- $\begin{array}{l} \text{2. } f(x) \in [0,+\infty). \text{ Consideremos } n_0 \in \mathbb{N}: f(x) < n_0 \text{ luego } \forall n \geq n_0 \quad \exists k = 0, \cdots, n \cdot 2^n 1: \\ x \in E_{k,n}. \text{ Entonces } \varphi_n(x) = \frac{k}{2^n} \leq f(x) \leq \frac{k+1}{2^n} \iff 0 \leq f(x) \varphi_n(x) \leq \frac{1}{2^n}. \end{array}$

 $\therefore \varphi_n(x) \to f(x).$

Nota. Si f está acotada (superiormente) entonces $\phi_n \rightrightarrows f$.

4.2 Funciones medibles entre espacios medibles

Definición 4.3. Dados espacios medibles (X, \mathfrak{X}) y (Y, \mathfrak{Y}) una función $f: X \to Y$ es $(\mathfrak{X}, \mathfrak{Y})$ -medible si $f^{-1}(E) \in \mathfrak{X} \quad \forall E \in \mathfrak{Y}$.

Ejemplo. Si (X, \mathfrak{X}) es un espacio medible:

- 1. $f: X \to \mathbb{R}$ es \mathfrak{X} -medible \iff f es $(\mathfrak{X}, \mathcal{B})$ -medible.
- 2. $f: X \to \overline{\mathbb{R}}$ es \mathfrak{X} -medible \iff f es $(\mathfrak{X}, \overline{\mathcal{B}})$ -medible.
- 3. $f: X \to \mathbb{R}^n$, sean $f_j: X \to \mathbb{R}$ las componentes de f entonces f es $(\mathfrak{X}, \mathcal{B})$ -medible si y sólo si f_j lo es $\forall j$.

Proposición 4.4. Dados un espacio medible (X, \mathfrak{X}) y un conjunto Y, sea $f: X \to Y$ una función. Si $\mathcal{A} \subseteq P(Y): f^{-1}(A) \in \mathfrak{X} \quad \forall A \in \mathcal{A} \text{ entonces } f \text{ es } (\mathfrak{X}, \sigma(\mathcal{A}))\text{-medible.}$

Demostración. Sea $Z = \{E \subseteq Y : f^{-1}(E) \in \mathfrak{X}\} \supseteq \mathcal{A}$. Es fácil ver que Z es σ -álgebra entonces $\sigma(\mathcal{A}) \subseteq Z$. Es decir que $f^{-1}(E) \in \mathfrak{X} \quad \forall E \in \sigma(\mathcal{A})$. Luego f es $(\mathfrak{X}, \sigma(\mathcal{A}))$ -medible.

Proposición 4.5. Sea (X, \mathfrak{X}) , (Y, \mathfrak{Y}) , (Z, \mathfrak{Z}) espacios medibles y $f: X \to Y$ y $g: Y \to Z$ funciones $(\mathfrak{X}, \mathfrak{Y})$ -medible y $(\mathfrak{Y}, \mathfrak{Z})$ -medible respectivamente. Entonces $g \circ f: X \to Z$ es $(\mathfrak{X}, \mathfrak{Z})$ -medible.

Demostración. Fijado $E \in \mathfrak{Z}$ tenemos que $(g \circ f)^{-1}(E) = f^{-1}(g^{-1}(E)) \in \mathfrak{X}$ pues f y g son medibles.

Clase V - 25/03

5.1 Medidas

5.1.1. Motivación

Sea $\phi: X \to [0, +\infty]$ con $Im(\phi) = \{y_1, \dots, y_m\}$. Si $\phi^{-1}(y_i) \in \mathfrak{X}$ y conocemos $\mu(\phi^{-1}(y_i)) \in [0, +\infty]$ (la medida de cada conjunto) podemos definir

$$\int \varphi \,\mathrm{d}\mu = \sum_{i=1}^m y_i \cdot \mu(\varphi^{-1}(y_i))$$

Si $f: X \to [0, +\infty]$ es \mathfrak{X} -medible, \exists una sucesión $(\varphi_n)_{n \geq 1}$ con funciones así tal que $\varphi_n \to f$. Entonces podremos definir

$$\int f \,\mathrm{d}\mu = \lim_{n\to\infty} \int \varphi_n \,\mathrm{d}\mu$$

Dado un espacio medible (X, \mathfrak{X}) , vamos a considerar ciertas funciones $\mu : \mathfrak{X} \to [0, +\infty]$: el valor $\mu(E)$ para cada $E \in \mathfrak{X}$ esté motivado por las nociones de longitud, área, volumen, probabilidad, masa, etc.

5.1.2. Series de términos no negativos

Proposición 5.1. Sea $(a_n)_{n\geq 1}\subset [0,+\infty]$ \Rightarrow la serie $\sum_{n=1}^\infty a_n$ converge en $[0,+\infty]$ y $\lim_{n\to\infty}\sum_{i=1}^n a_i=\sum_{i=1}^\infty a_i$ Además:

- 1. Si $(I_n)_{n\geq 1}$ es una sucesión creciente de subconjuntos finitos de \mathbb{N} $(I_n\subseteq I_{n+1}\quad \forall n\geq 1)$ entonces $\bigcup_{n\geq 1}I_n=\mathbb{N}\Rightarrow \sum_{n\geq 1}a_n=\sup\{\sum_{m\in I_n}a_m:n\geq 1\}.$
- 2. Si $\sigma: \mathbb{N} \to \mathbb{N}$ es una permutación de \mathbb{N} entonces $\sum_{n \geq 1} a_{\sigma(n)} = \sum_{n \geq 1} a_n$.
- 3. Dado un conjunto numerable I, sea $(a_i)_{i\in I}$ una sucesión en $[0,+\infty]$ y $f:\mathbb{N}\to I$ es una biyección, consideremos la sucesión $(b_n)_{n\geq 1}=(a_{f(n)})_{n\geq 1}$, entonces podemos definir a

$$\sum_{i \in I} \alpha_i = \sum_{n \geq 1} b_{f(n)}$$

Esto está bien definido pues si $g: \mathbb{N} \to I$ es otra biyección tal que $c_n = a_{g(n)}$

$$\begin{split} \sum_{n\geq 1} c_n &= \sum_{n\geq 1} \alpha_{g(n)} \\ \sum_{n\geq 1} \alpha_{\sigma(f(n))} &= \sum_{n\geq 1} b_{\sigma(n)} = \sum_{n\geq 1} b_n \end{split}$$

En particular si $I=\mathbb{N}\times\mathbb{N}$ y $(\mathfrak{a}_{n,m})_{n,m\in\mathbb{N}}$ es una sucesión en $[0,+\infty]$ podemos definir

$$\begin{split} \sum_{(n,m)\in\mathbb{N}\times\mathbb{N}} \alpha_{n,m} &= \sum_{n\geq 1} (\sum_{m\geq 1} \alpha_{n,m}) \\ &= \sum_{m\geq 1} (\sum_{n\geq 1} \alpha_{n,m}) \end{split}$$

5.1.3. Definición de medida

Definición 5.2 (Medida). Dado un espacio medible (X, \mathfrak{X}) , una medida en X es una función $\mu: \mathfrak{X} \to [0, +\infty]$ tal que:

- 1. $\mu(\varnothing) = 0$.
- 2. (σ -aditividad) Si $(E_n)_{n\geq 1}$ es una sucesión en \mathfrak{X} , dos a dos disjuntos \Rightarrow

$$\mu(\bigcup_{n>1}E_n)=\sum_{n>1}\mu(E_n)$$

Nota. Si $A_1, \dots A_n \in \mathfrak{X}$ son conjuntos dos a dos disjuntos entonces

$$\mu(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n \mu(A_i)$$

Esto se deduce de la propiedad de σ -aditividad, pues construimos la sucesión $(E_n)_{n\geq 1}$ como $A_1,\,A_2,\,\cdots,\,A_n,\,\varnothing,\,\varnothing,\,\cdots$.

Definición 5.3 (Medida finita). Una medida es finita si $\mu(E) < +\infty \quad \forall E \in \mathfrak{X}$.

Definición 5.4 (Medida σ -finita). Una medida es σ -finita si $\exists (E_n)_{n\geq 1}\subseteq \mathfrak{X}$ tal que: $X=\bigcup_{n>1}E_n\ y\ \mu(E_n)<+\infty\quad \forall n\geq 1.$

Ejemplo. Si $X \neq \emptyset$, $\mathfrak{X} = P(X)$ y tomamos $\mu : P(X) \to [0, +\infty]$ tal que $\mu(E) = 0 \quad \forall E \in P(X)$ y también es medida si la definimos como

$$\mu(E) = \begin{cases} 0 & \mathrm{si} \ E = \varnothing \\ +\infty & \mathrm{si} \ E \neq \varnothing \end{cases}$$

Luego no es finita, ni σ -finita.

Ejemplo. Sea (X, \mathfrak{X}) un espacio medible y fijemos $x_0 \in X \neq \emptyset$. Sea $\mu : \mathfrak{X} \to [0, +\infty]$ tal que

$$\mu(E) = \begin{cases} 0 & \text{si } x_0 \notin E \\ 1 & \text{si } x_0 \in E \end{cases}$$

Es la medida puntual con masa uno y la notamos δ_{x_0} (δ de Dirac). Es una medida finita y es σ -aditiva pues si construimos una sucesión E_n de conjuntos disjuntos dos a dos $\mu(\bigcup_{n\geq 1}E_n)=\sum_{n\geq 1}\mu(E_n)=1$. Pues un único conjunto E_n puede contener a x_0 .

Ejemplo. Sea $X = \mathbb{N}$, $\mathfrak{X} = P(\mathbb{N})$ y la medida de conteo $\mu : P(\mathbb{N}) \to [0, +\infty]$ tal que

$$\mu(E) = \begin{cases} +\infty & \text{si E es infinito} \\ \operatorname{card}(E) & \text{si $E = \{x_1, x_2, \cdots, x_n\}$} \end{cases}$$

Ejercicio, ver que es σ -aditiva. Es σ -finita, pero no es finita pues $\mathbb{N} = \bigcup_{n \geq 1} \{n\}$ y $\mu(\{n\}) = 1$.

Ejemplo. Sea (X,\mathfrak{X}) un espacio medible, X con infinitos elementos, sea $(x_n)_{n\geq 1}$ una sucesión en X con $x_n\neq x_m \quad \forall n\neq m \ y \ (a_n)_{n\geq 1}$ otra sucesión en $[0,+\infty]$. Definimos $\mu:\mathfrak{X}\to [0,+\infty]$ como

$$\mu(E) = \sum_{n \in \mathbb{N} : x_n \in E} \alpha_n$$
$$E \in \mathfrak{X}$$

Queda como ejercicio ver que es medida. Si $\mathfrak X$ contiene a los conjuntos unitarios $\{x_n\}$ con $n \in \mathbb N$ entonces μ es σ -finita pues $X = (\bigcup_{n \geq 1} \{x_n\}) \cup (X - \bigcup_{n \geq 1} \{x_n\})$ ambos medibles, luego $\mu(\{x_n\}) = \mathfrak a_n$ y $\mu(X - \bigcup_{n \geq 1} \{x_n\}) = 0$. Además es σ -finita $\iff \sum_{n \geq 1} \mathfrak a_n < +\infty$

Ejemplo (Medida de Lebesgue). Si $X=\mathbb{R}$ y $\mathfrak{X}=\mathcal{B}$, más adelante probaremos que $\exists !$ medida $\lambda:\mathcal{B}\to [0,+\infty]$ tal que: $\lambda((\mathfrak{a},\mathfrak{b}))=\mathfrak{b}-\mathfrak{a}$ con $\mathfrak{a},\mathfrak{b}\in\mathbb{R}$ y $\mathfrak{a}<\mathfrak{b}$. Es σ -finita pues $\mathbb{R}=\bigcup_{n\geq 1}(-n,n)$ y $\lambda((-n,n))=2n<+\infty$, pero no es finita pues $\lambda(\mathbb{R})=+\infty$. Notemos que λ puede extenderse a una σ -álgebra de \mathbb{R} más grande que \mathcal{B} , pero no puede extenderse a $P(\mathbb{R})$.

Ejemplo (Medida n-dimensional de Lebesgue). Sea $X=\mathbb{R}^n$ y $\mathfrak{X}=\mathcal{B}_n$, tenemos que $\exists!$ medida $\lambda:\mathcal{B}_n\to[0,+\infty]$ tal que:

$$\lambda_n(\prod_{i=1}^n(\alpha_i,b_i)) = \prod_{i=1}^n(b_i-\alpha_i) \quad \forall \alpha_i,b_i \in \mathbb{R} \ \mathrm{y} \ \alpha_i < b_i$$

Ejemplo (Medida de Borel - Stieltjes generada por f). Si $X=\mathbb{R},\,\mathfrak{X}=\mathcal{B},\,$ fijemos $f:\mathbb{R}\to\mathbb{R}$ monótona no decreciente y continua. Probaremos que existe una única medida $\lambda_f:\mathcal{B}\to[0,+\infty]$:

$$\lambda_f((a,b)) = f(b) - f(a) \quad \forall a, b \in \mathbb{R} \ y \ a < b$$

El ejemplo anterior es un caso particular de esta medida con f(x) = x.

Lema 5.5. Dado un espacio medible (X, \mathfrak{X}) y una medida $\mu: X \to [0, +\infty]$. Si $F, E \in \mathfrak{X}$ y $E \subseteq F \Rightarrow \mu(E) \le \mu(F)$. Si además $\mu(E) < +\infty \Rightarrow \mu(F-E) = \mu(F) - \mu(E)$.

Demostración. Como $E \subseteq F$ entonces $F = E \cup (F - E)$, además $F - E = F \cap E^c \in \mathfrak{X}$ y $E \cap (F - E) = \emptyset$. Entonces $\mu(F) = \mu(E) + \mu(F - E) \ge \mu(E)$. Si $\mu(E) < +\infty$ entonces $\mu(F)$, $\mu(F - E)$ son o ambos finitos o ambos infinitos, luego $\mu(F - E) = \mu(F) - \mu(E)$. \square

Corolario 5.6. μ es finito $\iff \mu(X) < +\infty$.

Lema 5.7. Si $(A_n)_{n\geq 1}$ es una sucesión cualquiera en $\mathfrak X$ entonces

$$\mu(\bigcup_{n>1}A_n)\leq \sum_{n>1}\mu(A_n)$$

Demostración. Definamos

$$\begin{aligned} F_1 &:= A_1 \\ F_2 &:= A_2 - A_1 \\ &\vdots \\ F_n &:= A_n - \bigcup_{i=1}^{n-1} A_i \quad \forall n \geq 2 \\ &= A_n - (\bigcup_{k=1}^{n-1} F_k) \end{aligned}$$

Resulta que es una sucesión en $\mathfrak X$ de conjuntos disjuntos dos a dos ya que si $\mathfrak n>\mathfrak m\Rightarrow F_\mathfrak m\cap F_\mathfrak n=(A_\mathfrak m-\bigcup_{k=1}^{\mathfrak n-1}F_k)\cap F_\mathfrak n=\varnothing.$ Luego,

$$\begin{split} \bigcup_{n\geq 1} A_n &= \bigcup_{n\geq 1} F_n, \ \mathrm{y} \\ \mu(\bigcup_{n\geq 1} A_n) &= \mu(\bigcup_{n\geq 1} F_n) \\ &= \sum_{n\geq 1} \mu(F_n) \leq \sum_{n\geq 1} \mu(A_n) \end{split}$$

•

Lema 5.8. Sea μ una medida sobre \mathfrak{X} :

- 1. Si $(E_n)_{n\geq 1}$ es una sucesión en $\mathfrak X$ creciente $\Rightarrow \mu(\bigcup_{n\geq 1} E_n) = \lim_{n\to\infty} \mu(E_n)$.
- 2. Si $(F_n)_{n\geq 1}$ es una sucesión decreciente y $\mu(F_1)<+\infty \Rightarrow$

$$\mu(\bigcap_{n>1}F_n)=\lim_{n\to\infty}\mu(F_n)$$

Ejemplo
$$\{x\}=\bigcap_{n\geq 1}(x-\frac{1}{n},x+\frac{1}{n})\ \mathrm{y}\ \mu(\{x\})=\frac{2}{n}\to 0\ \mathrm{si}\ \mu=\lambda.$$

Demostración. Veamos el primer caso.

 $\forall n\in\mathbb{N} \text{ sea } A_n=E_n-E_{n-1}, \text{ con } E_0=\varnothing \text{ y } (A_n)_{n\geq 1} \text{ es una sucesión en } \mathfrak{X} \text{ tal que } A_i\cap A_j=\varnothing \quad \text{si } i\neq j. \text{ Entonces}$

$$\bigcup_{i=1}^n A_i = E_n, \ \mathrm{y} \ \mathrm{adem\'{a}s} \ \bigcup_{n\geq 1} A_n = \bigcup_{n\geq 1} E_n$$

Por lo que

$$\begin{split} \mu(\bigcup_{n\geq 1} E_n) &= \mu(\bigcup_{n\geq 1} A_n) = \sum_{n\geq 1} \mu(A_n) \\ &= \lim_{n\to +\infty} \sum_{i=1}^n \mu(A_i) = \lim_{n\to +\infty} \mu(\bigcup_{i=1}^n A_i) = \lim_{n\to +\infty} \mu(E_n) \end{split}$$

Para el segundo caso si $\mu(F_1)<+\infty$ y $\forall n\in\mathbb{N}$ definimos $E_n=F_1-F_n\Rightarrow (E_n)_{n\geq 1}$ es una sucesión creciente en $\mathfrak X$ tal que

$$\bigcup_{n\geq 1} E_n = \bigcup_{n\geq 1} F_1 \cap F_n^c = F_1 \cap (\bigcup_{n\geq 1} F_n^c) = F_1 \cap (\bigcap_{n\geq 1} F_n)^c = F_1 - \bigcap_{n\geq 1} F_n$$

$$\begin{split} \mu(F_1) - \mu(\cap_{n \geq 1} F_n) &= \mu(F_1 - \cap_{n \geq 1} F_n) = \mu(\bigcup_{n \geq 1} E_n) =^* \lim_{n \to +\infty} \mu(F_1 - F_n) \\ &= \lim_{n \to +\infty} \mu(F_1) - \mu(F_n) = \mu(F_1) - \lim_{n \to +\infty} \mu(F_n) \end{split}$$

*Por el lema anterior ∴

$$\lim_{n \to +\infty} \mu(F_n) = \mu(\cap_{n \ge 1} F_n)$$

Notemos que en el segundo caso la condición $\mu(F_1)<+\infty$ se puede reemplazar por $\mu(F_{n_0})<+\infty$ para algún $n_0\geq 1$, pero no puede omitirse. Por ejemplo si $X=\mathbb{R}$ y $\mathfrak{X}=\mathcal{B}$ y $\mu=\lambda$ la medida de Lebesgue, entonces llamemos $F_n=(n,+\infty)$ en este caso $\mu(F_n)=+\infty$ y $\mu(\bigcap_{n\geq 1}F_n)=\varnothing$. Aplicando estas propiedades para la medida de Lebesgue λ podemos probar que si I es un intervalo de \mathbb{R} $(a,b):a,b\in\overline{\mathbb{R}}$ y a< b o [a,b],(a,b],[a,b).

$$\lambda(I) = \begin{cases} l(I) & \text{si I es acotado} \\ +\infty & \text{si I es no acotado} \end{cases}$$

Clase VI - 27/03

6.1 Espacio de medida

Definición 6.1 (Espacio de medida). Un espacio de medida es una terna (X, \mathfrak{X}, μ) , donde X es un conjunto, \mathfrak{X} es una σ -álgebra de subconjuntos de X y μ es una medida en \mathfrak{X} .

Un espacio de probabilidad es un espacio de medida tal que $\mu(X)=1$. En este caso a X se lo llama espacio muestral, a $\mathfrak X$ se lo llama colección de eventos y una función $f:X\to\mathbb R$, $\mathfrak X$ -medible se la llama variable aleatoria.

Definición 6.2. Dado un espacio de medida (X, \mathfrak{X}, μ) , sea P(x) una "propiedad" que se puede predicar de sobre los elementos $X \in \mathfrak{X}$. Diremos que P(x) vale μ -casi todo punto $(\mu$ -c.t.p) si $\exists N \in \mathfrak{X}$ con $\mu(N) = 0 : P(x)$ vale $\forall x \in N^c$.

Ejemplo. $f,g:X\to\mathbb{R}$ dos funciones diremos que f=g $\mu\text{-c.t.p}$ si $\exists N\in\mathfrak{X}$ con $\mu(N)=0:f(x)=g(x)$ $\forall x\in N^c.$ Por ejemplo si $(X,\mathfrak{X},\mu)=(\mathbb{R},\mathcal{B},\lambda),$ las funciones $f=X_\mathbb{Q},$ y g=0 son $\lambda\text{-c.t.p}$ iguales ya que f(x)=g(x)=0 $\forall x\in\mathbb{Q}^c$ y $\lambda(\mathbb{Q})=0$.

Ejemplo. Sea $(f_n)_{n\geq 1}$ una sucesión de funciones $f_n:X\to\mathbb{R}$ diremos que $f_n\to f$ $\mu\text{-c.t.p}$ si $\exists N\in\mathfrak{X}$ con $\mu(N)=0$ tal que $f_n(x)\to f(x)$ $\forall x\in N^c$.

Definición 6.3 (Carga). Dado un espacio medible (X, \mathfrak{X}, μ) , una carga en \mathfrak{X} es una función $\nabla : \mathfrak{X} \to \mathbb{R}$:

- 1. $\nabla(\varnothing) = 0$.
- 2. Si $(E_n)_{n\geq 1}$ es una sucesión en $\mathfrak X$ disjuntos dos a dos entonces $\nabla(\bigcup E_n)=\sum \nabla(E_n).$

Admitimos solo valores reales en la imagen para evitar situaciones del tipo $\infty + (-\infty)$. Luego $\sum_{n\geq 1} \nabla(E_n)$ converge pues si definimos $\sigma: \mathbb{N} \to \mathbb{N}$ una permutación de los naturales entonces

$$\begin{split} &\sum_{n\geq 1} \nabla(E_{\sigma(n)}) = \nabla(\bigcup_{n\geq 1} E_{\sigma(n)}) \\ &= \nabla(\bigcup_{n\geq 1} E_n) = \sum_{n\geq 1} \nabla(E_n) \end{split}$$

 \therefore converge incondicionalmente \rightarrow converge absolutamente.

6.2 Generación de medida

Motivación: ¿Cómo podemos construir una medida con ciertas propiedades cuando no sabemos como definirla sobre todos los conjuntos de la σ -álgebra?

Consideremos la clase $\mathfrak Y$ formada por los intervalos de la forma

- 1. (a, b] con $a, b \in \mathbb{R}$, a < b.
- 2. $(-\infty, b]$ con $b \in \mathbb{R}$.
- 3. (c, ∞) con $c \in \mathbb{R}$.
- 4. $(-\infty, \infty)$.
- $5. \varnothing.$

Luego definimos $\ell: \mathfrak{Y} \to [0, +\infty]$ dada por:

- 1. $\ell((a, b]) = b a$.
- 2. $\ell((-\infty, b]) = +\infty$.
- 3. $\ell((c,\infty)) = +\infty$.
- 4. $\ell((-\infty,\infty)) = +\infty$.
- 5. $\ell(\varnothing) = 0$.

Sabemos que $\sigma(\mathfrak{Y}) = \mathcal{B}$, la σ -álgebra de Borel de \mathbb{R} , pero no sabemos como extender la definición de ℓ a todos los conjuntos de \mathcal{B} .

La clase de 2) tiene estructura de semiálgebra.

Definición 6.4 (Semiálgebra). Una colección de subconjuntos $\mathcal A$ de X es una semiálgebra si:

- 1. \varnothing , $X \in \mathcal{A}$.
- 2. Si $A_1, \dots, A_n \in \mathcal{A} \Rightarrow \bigcap_{i=1}^n A_i \in \mathcal{A}$.
- 3. Si $A \in \mathcal{A} \Rightarrow A^c = \bigcup_{k=1}^n S_k$ para $S_1, \ \cdots, \ S_n \in \mathcal{A}$ dos a dos disjuntos.

Se deja como ejercicio verificar que efectivamente \mathfrak{Y} es una semiálgebra con la definición de semiálgebra de \mathbb{R} .

Lema 6.5. La función $\ell: \mathfrak{Y} \to [0, +\infty]$ es finitamente aditivia, i.e, si $I_1, \cdots, I_n \in \mathfrak{Y}$ son conjuntos dos a dos disjuntos y $\bigcup_{i=1}^n I_i \in \mathfrak{Y} \Rightarrow \ell(\bigcup_{i=1}^n I_n) = \sum_{i=1}^n \ell(I_i)$.

Demostración. Supongamos $I_1, \dots, I_n \in \mathfrak{Y}$, no vacíos, cuya unión también pertenece a \mathfrak{Y} . Si alguno es no acotado, la unión también y será $\ell(\bigcup_{i=1}^n I_i) = +\infty = \sum_{i=1}^n \ell(I_i)$. Supongamos ahora que cada $I_k = (\mathfrak{a}_k, \mathfrak{b}_k]$ con $\mathfrak{a}_k, \mathfrak{b}_k \in \mathbb{R}$, $\mathfrak{a}_k < \mathfrak{b}_k$. Luego $\bigcup_{i=1}^n I_i$ es de la forma $(\mathfrak{a}, \mathfrak{b}]$ con $\mathfrak{a} = \min(\mathfrak{a}_1, \dots, \mathfrak{a}_n)$ y $\mathfrak{b} = \max(\mathfrak{b}_1, \dots, \mathfrak{b}_n)$. Sin pérdida de generalidad supongamos que $\mathfrak{a}_1 < \mathfrak{a}_2 < \dots < \mathfrak{a}_n$, si no es así reordenamos los intervalos.

De esto se sigue que $a_1 = a < b_1 = a_2 < b_2 = a_3 < \cdots b_{n-1} = a_n < b_n = b$, pues no puede haber huecos, ya que dijimos que la unión pertenece a \mathfrak{Y} . Claramente $\ell(\bigcup_{i=1}^n I_i) = b - a = \ell((a, b])$ y, finalmente

$$\begin{split} \sum_{k=1}^{n} \ell(I_k) &= \sum_{k=1}^{n} (b_k - a_k) \\ &= (b_1 - a_1) + (b_2 - a_2) + \dots + (b_n - a_n) \\ &= -a_1 + (b_1 - a_2) + (b_2 - a_3) + \dots + (b_{n-1} - a_n) + b_n \\ &= b_n - a_1 = b - a \end{split}$$

$$\therefore \ell(\bigcup_{i=1}^n I_i) = \sum_{i=1}^n \ell(I_i).$$

De acuerdo con el lema anterior podríamos extender la función ℓ a una clase más grande de subconjuntos de \mathbb{R} .

Sea $\mathcal{F}=\{A\subseteq\mathbb{R}:A=\bigcup_{i=1}^nI_i,\ \mathrm{para\ ciertos\ }n\in\mathbb{N},\ I_1,\cdots,I_n\in\mathfrak{Y}\ \mathrm{dos\ }a\ \mathrm{dos\ }\mathrm{disjuntos}\},$ defimos $\ell:\mathcal{F}\to[0,+\infty]\ \mathrm{como\ }\ell(A)=\sum_{i=1}^n\ell(I_i)\ \mathrm{si\ }A=\bigcup_{i=1}^nI_i\ \mathrm{con\ }\mathrm{las\ }\mathrm{mismas\ }\mathrm{condiciones\ }\mathrm{que\ }\mathrm{pedimos.}$

Nota. Queda ver que ℓ está bien definida, i.e, no depende de la forma en que se escriba A como unión de intervalos.

Definición 6.6 (Álgebra). Dado un conjunto X, una clase $A \in P(X)$ es un álgebra si:

- 1. \varnothing , $X \in \mathcal{A}$.
- 2. Si $E \in \mathcal{A} \to E^c \in \mathcal{A}$.
- 3. Si $E_1, \dots, E_n \in \mathcal{A} \to \bigcup_{i=1}^n E_i \in \mathcal{A}$.

Lema 6.7. Dada una semiálgebra $\mathcal{S} \subseteq P(X)$ la clase $\mathcal{A} = \{A \subseteq X : A = \bigcup_{i=1}^n S_i, S_j \in \mathcal{S} \ \forall j=1, \cdots, n, \text{ dos a dos disjuntos}\}$ es un álgebra de subcojuntos de X. Además \mathcal{A} es la menor álgebra que contiene a \mathcal{S} y se la llama álgebra generada por \mathcal{S} .

Demostración. Veamos que \mathcal{A} es cerrada bajo la intersección finita. Sean $S_1, \, \cdots, \, S_n \in \mathcal{S}$ dos a dos disjuntos y $F_1, \, \cdots, \, F_m \in \mathcal{S}$ dos a dos disjuntos. Llamemos $S = \bigcup_{i=1}^n S_i \, \, y \, \, F = \bigcup_{j=1}^m F_j \in \mathcal{A}.$

$$S \cap F = \bigcup_{i=1}^{n} S_i \cap \bigcup_{j=1}^{m} F_j$$
$$= \bigcup_{i=1}^{n} (S_i \cap \bigcup_{j=1}^{m} F_j)$$
$$= \bigcup_{i=1}^{n} \bigcup_{j=1}^{m} (S_i \cap F_j)$$

Luego $\forall (i,j) \in \{1,\ \cdots,\ n\} \times \{1,\ \cdots,\ m\}$, sea $S_{ij} = S_i \cap F_j \in \mathcal{S}$. Además $S_{ij} \cap S_{kl} = \varnothing$ si $(i,j) \neq (k,l)$. Luego $S \cap F \in \mathcal{A}$ pues $S \cap F$ es unión finita de elementos de \mathcal{S} dos a dos disjuntos.

Ahora veamos que se cumplen las propiedades de álgebra:

- 1. Se cumple pues S es semiálgebra.
- 2. Dado $A \in \mathcal{A}$, sean $S_1, \dots, S_n \in \mathcal{S}$ tal que $A = \bigcup_{i=1}^n S_i$, dos a dos disjuntos. Entonces $A^c = \bigcap_{i=1}^n S_i^c \Rightarrow \forall i = 1, \dots, n$ como $S_i \in \mathcal{S}$ y \mathcal{S} es una semiálgebra $\exists B_1^i, B_2^i, \dots, B_n^i \in \mathcal{S}$ dos a dos disjuntos tal que $S_i^c = \bigcup_{j=1}^n B_j^i \in \mathcal{A} \Rightarrow \bigcap_{i=1}^n S_i^c \in \mathcal{A}$, pues ya probamos que la intersección finita es cerrada.
- 3. Queda como ejercicio.

Clase VII - 01/04

Generación de medida (continuación) 7.1

Habíamos visto que $\ell: \mathfrak{Y} \to [0, +\infty]$ es condicionalmente finitamente aditiva. Es decir que si $I_1, \dots, I_n \in \mathfrak{Y}$ son conjuntos dos a dos disjuntos tal que $\bigcup_{i=1}^n I_i \in \mathfrak{Y} \Rightarrow \ell(\bigcup_{k=1}^n I_k) = \sum_{k=1}^n \ell(I_k)$. Queda como ejercicio ver que:

- 1. Si I, $J \in \mathfrak{Y}$ y $I \subseteq J$ entonces $\ell(I) \leq \ell(J)$.
- 2. ℓ también es condicionalmente subaditiva i.e si $I_1, \dots, I_n \in \mathfrak{Y} : \bigcup_{i=1}^n I_k \in \mathfrak{Y}$ entonces $\ell(\bigcup_{k=1}^n I_k) \le \sum_{k=1}^n \ell(I_k)$

Veamos que $\ell: \mathfrak{Y} \to [0, +\infty]$ es condicionalmente σ -aditiva i.e si $(I_n)_{n>1} \subseteq \mathfrak{Y}$ es una sucesión de conjuntos dos a dos disjuntos tal que $\bigcup_{n\geq 1} I_n \in \mathfrak{Y}$ entonces $\ell(\bigcup_{n\geq 1} I_n) = \sum_{n\geq 1} \ell(I_n)$. Hay que considerar varios casos según la forma de $I := \bigcup_{n>1} I_n$.

El primer caso es cuando I = (a, b] con $a, b \in \mathbb{R}$ y a < b. Sin pérdida de generalidad $\mathrm{supongamos}\;\mathrm{que}\;I_n\neq\varnothing\quad\forall n\in\mathbb{N}\;\mathrm{y},\;\mathrm{como}\;I_n\subseteq I,\;I_n=(\alpha_n,b_n]\;\mathrm{con}\;\alpha\leq\alpha_n< b_n\leq b.$

Primero veamos que $\sum_{n\geq 1} \ell(I_n) \leq \ell(I)$, fijemos $m \in \mathbb{N}$ y supongamos que I_1, \dots, I_m son tales que $a_1 < a_2 < \cdots < a_m$, si no es así los reordenamos (son finitos).

Como son dos a dos disjuntos y son subconjuntos de I con

$$a \le a_1 < b_1 \le a_2 < b_2 \le a_3 < \cdots \le a_m < b_m \le b$$

Luego,

$$\begin{split} \sum_{n=1}^{m} \ell(I_n) &= \sum_{n=1}^{m} (b_n - \alpha_n) \\ &= -\alpha_1 + (b_1 - \alpha_2) + (b_2 - \alpha_3) + \dots + (b_{m-1} - \alpha_m) + b_m \\ &\leq b_n - \alpha_1 \leq b - \alpha = \ell(I) \end{split}$$

Pues cada $(b_1-a_2), (b_2-a_3), \cdots, (b_{m-1}-a_m)$ son negativos. Por lo tanto la suma parcial $\sum_{n=1}^m \ell(I_n) \leq \ell(I) \quad \forall m \in \mathbb{N}$. Entonces $\sum_{n\geq 1} \ell(I_n) \leq \ell(I)$. Veamos ahora que $b-a=\ell(I) \leq \sum_{n\geq 1} \ell(I_n)$. Basta probar que dado $a < a' < b \Rightarrow b-a' \leq a' \leq b$ $\sum_{n>1} I_n$.

Fijemos un $\mathfrak{a}' \in (\mathfrak{a}, \mathfrak{b}]$ y sea $\varepsilon > 0$, para cada $\mathfrak{j} \in \mathbb{N}$ sea $\varepsilon_{\mathfrak{j}} = \frac{\varepsilon}{2 \cdot \mathfrak{j}}$.

Definamos $U_j=(a_j,\,b_j+\epsilon_j)$ y notemos que $[a',\,b]\subseteq(a,\,b]=\bigcup_{n\geq 1}I_n\subseteq\bigcup_{n\geq 1}U_n$.

Por el Teorema de Heine Borel [a', b] es compacto y entonces $\exists m \geq 1 : [a', b] = \bigcup_{i=1}^{m} U_i$.

Consideremos $I_i' = (a_i, b_i + \varepsilon_i] \in \mathfrak{Y} \quad \forall i = 1, \dots, m.$

Luego $(a', b] \subseteq \bigcup_{j=1}^m I'_j \Rightarrow b - a' = \ell((a', b]) \le \ell(\bigcup_{j=1}^m I'_j)$

Si $I_j' \cap (\alpha', b] = \emptyset$ entonces lo podemos descartar para que $\bigcup_{j=1}^m I_j'$ sea conexa y, por lo tanto, pertenezca a \mathfrak{Y} .

Luego por ser condicionalmente subaditiva tenemos que

$$\begin{split} b - \alpha' &\leq \ell(\bigcup_{j=1}^m I_j') \leq \sum_{j=1}^m \ell(I_j') \\ &= \sum_{j=1}^m b_j + \epsilon_j - \alpha_j = \sum_{j=1}^m b_j - \alpha_j + \sum_{j=1}^m \epsilon_j \\ &\leq \sum_{n \geq 1} \ell(I_n) + \epsilon \cdot \sum_{j=1}^m \frac{1}{2 \cdot j} \\ &\leq \sum_{n \geq 1} \ell(I_n) + \epsilon \end{split}$$

Como $\epsilon>0$ era arbitrario resulta que $b-\alpha'\leq \sum_{n\geq 1}\ell(I_n).$

Si tomamos $a' = a + \frac{1}{n} \Rightarrow b - a = \lim_{n \to +\infty} b - (a + \frac{1}{n}) \le \sum_{n \ge 1} \ell(I_n)$

El caso dos es cuando $I = (-\infty, b]$ con $b \in \mathbb{R}$.

Sabemos que $\ell(I) = +\infty$. Veamos que $\sum_{n \geq 1} \ell(I_n) = +\infty$.

Si algún I_{n_0} tiene $\ell(I_{n_0}) = +\infty$ ya está.

 $\mathrm{Supongamos}\;\mathrm{que}\;\ell(\mathrm{I}_n)<+\infty\quad\forall n\geq 1,\,\mathrm{luego}\;\mathrm{I}_n=(\mathfrak{a}_n,\,\mathfrak{b}_n],\,\mathfrak{a}_n,\,\mathfrak{b}_n\in\mathbb{R},\,\mathfrak{a}_n<\mathfrak{b}_n\quad\forall n\in\mathbb{N}.$

Fijemos $k \in \mathbb{N} : b > -k$. Luego $[-k, b] \subseteq \bigcup_{n>1} I_n = I \subseteq \bigcup_{n>1} (a_n, b_n + \frac{1}{2^n})$.

Como [k,b] es compacto por Teorema de Heine-Borel tenemos que $\exists m \in \tilde{\mathbb{N}} : [-k,b] \subseteq \bigcup_{n=1}^m (a_n,b)$ $b_n + \frac{1}{2^n}) \in \mathfrak{Y}.$

Por el mismo argumento de antes (si hay más de una componente conexa se la descarta)

$$\begin{split} b - (-k) &= \ell([-k, \, b]) \\ &\leq \ell(\bigcup_{n=1}^m (\alpha_n, \, b_n + \frac{1}{2^n})) \\ &\leq \sum_{n=1}^m \ell((\alpha_n, \, b_n + \frac{1}{2^n})) \\ &= \sum_{n=1}^m (b_n + \frac{1}{2^n} - \alpha_n) \\ &= \sum_{n=1}^m (b_n - \alpha_n) + \sum_{n=1}^m \frac{1}{2^n} \\ &\leq \sum_{n>1} \ell(I_n) + 1 \end{split}$$

Luego $\sum_{n\geq 1}\ell(I_n)\geq b+k-1 \quad \forall k\in\mathbb{N}: b>-k$: tenemos que $\sum_{n\geq 1}\ell(I_n)=+\infty.$ El tercer caso es cuando $(a, +\infty)$ con $a \in \mathbb{R}$ y el cuarto es cuando $I = \mathbb{R}$, ambos quedan como ejercicio.

7.2Extensión de ℓ al álgebra

Recordemos que $\mathcal{F} = \{A \subseteq \mathbb{R} : A = \bigcup_{i=1}^m I_i \text{ con } I_1, \ \cdots, \ I_m \in \mathfrak{Y} \text{ dos a dos disjuntos} \}$ y extendamos la función ℓ a $\ell : \mathcal{F} \to [0, +\infty]$ como $\ell(A) = \sum_{n=1}^m \ell(I_n)$ si $A \in \mathcal{F}$.

Proposición 7.1. ℓ está bien definida.

Demostración. Supongamos que $A = \bigcup_{k=1}^{m_1} I_k^1 = \bigcup_{j=1}^{m_2} I_j^2$ con los I_k^1 , $I_j^2 \in \mathfrak{Y}$ dos a dos disjuntos. Fijado el $k=1, \cdots, m_1, \ I_k^1 = \bigcup_{j=1}^{m_2} I_k^1 \cap I_j^2$ con $I_k^1 \cap I_j^2 \in \mathfrak{Y}$ por ser \mathfrak{Y} semiálgebra y dos a dos disjuntos. Como ℓ es condicionalmente finita aditiva en \mathfrak{Y} se tiene que $\ell(I_k^1) = \sum_{j=1}^{m_2} \ell(I_k^1 \cap I_j^2)$.

Análogamente, fijado el $j=1,\cdots,\,m_2$ se tiene que $\ell(I_j^2)=\sum_{k=1}^{m_1}\ell(I_k^1\cap I_j^2)$. Luego

$$\begin{split} \sum_{k=1}^{m_1} \ell(I_k^1) &= \sum_{k=1}^{m_1} \sum_{j=1}^{m_2} \ell(I_k^1 \cap I_j^2) \\ &= \sum_{j=1}^{m_2} \sum_{k=1}^{m_1} \ell(I_k^1 \cap I_j^2) \\ &= \sum_{i=1}^{m_2} \ell(I_j^2) \end{split}$$

∴ está bien definida.

Definición 7.2. $\mathcal{A}\subseteq P(X)$ un álgebra. Una medida sobre \mathcal{A} es una función $\mu:\mathcal{A}\to [0,+\infty]$ tal que:

- 1. $\mu(\varnothing) = 0$.
- 2. Si $(E_n)_{n\geq 1}\subseteq \mathcal{A}$ es una sucesión de conjuntos dos a dos disjuntos tal que $\bigcup_{n\geq 1}E_n\in \mathcal{A}$ enotnces $\mu(\bigcup_{n\geq 1}E_n)=\sum_{n\geq 1}\mu(E_n)$.

Lema 7.3. La función $\ell: \mathcal{F} \to [0, +\infty]$ es una medida sobre el álgebra \mathcal{F} .

Demostración. Bosquejo de la demostración: $\ell(\emptyset) = 0$ es trivial. Para ver que ℓ es condicionalmente σ-aditiva en \mathcal{F} , podemos seguir la siguiente estrategia:

- 1. Probar que ℓ es finitamente aditiva en \mathcal{F} .
- 2. Probar que si $E, F \in \mathcal{F}$ y $E \subseteq F$ entonces $\ell(E) \le \ell(F)$.
- 3. Probar que ℓ es finitamente subaditiva.
- 4. Sea $(E_n)_{n\geq 1}\subseteq \mathcal{F}$ una sucesión de conjuntos dos a dos disjuntos tales que $E=\bigcup_{n\geq 1}E_n\in \mathfrak{Y}$. Veamos que $\ell(E)=\sum_{n\geq 1}\ell(E_n)$. Para cada $n\in \mathbb{N},\ E_n=\bigcup_{k=1}^{m_n}I_k^n$ con $I_k^n\in \mathfrak{Y}$ dos a dos disjuntos. Luego, $\{I_k^n:n\in \mathbb{N},\ k=1,\ \cdots,\ m_n\}$ es una colección en \mathfrak{Y} de conjuntos dos a dos disjuntos y además podemos enumerarlos en una sucesión tal que $E_i'=I_i^1$ si $i=1,\cdots,\ m_1,\ E_i'=I_{i-m_1}^2$ si $i=m_1+1,\cdots,\ m_1+m_2$ y así sucesivamente.

Luego $\bigcup_{n\geq 1}E'_n=\bigcup_{n\geq 1}\bigcup_{j=1}^{m_n}I^n_j=\bigcup_{n\geq 1}E_n=E\in\mathfrak{Y}$ como ℓ es condicionalmente σ -aditiva en \mathfrak{Y} resulta que

$$\begin{split} \ell(E) &= \sum_{n \geq 1} \ell(E_n') \\ &= \sum_{n \geq 1} \sum_{k=1}^{m_n} \ell(I_k^n) \\ &= \sum_{n \geq 1} \ell(E_n) \end{split}$$

5. Deducir la σ -aditividad condicional si $E = \bigcup_{n \geq 1} E_n \in \mathcal{F}$, con I_1, \dots, I_n dos a dos disjuntos y $m \geq 2$. De nuevo $E_n = \bigcup_{k=1}^{m_n} I_k^n$ con $I_k^n \in \mathfrak{Y}$ dos a dos disjuntos.

$$\begin{split} I_i &= I_i \cap E = I_i \cap \textstyle\bigcup_{n \geq 1} E_n = \textstyle\bigcup_{n \geq 1} (I_i \cap E_n) = \textstyle\bigcup_{n \geq 1} \textstyle\bigcup_{k = 1}^{m_n} I_i \cap I_k^n. \\ \text{Luego } \ell(I_i) &= \textstyle\sum_{n \geq 1} \textstyle\sum_{k = 1}^{m_n} \ell(I_i \cap I_k^n)... \end{split}$$

Parciales

- 8.1 Primer parcial Primera fecha
- 8.2 Primer parcial Segunda fecha
- 8.3 Segundo parcial Primera fecha
- 8.4 Segundo parcial Segunda fecha
- 8.5 Segundo parcial Tercera fecha

Bibliografía

[1] Robert G. Bartle. The elements of integration and Lebesgue. John Wiley and Sons, 1995.