Indian Statistical Institute

Analysis II (HW - 4) Date: March 18, 2022 Instructor: Jaydeb Sarkar

(1) Compute the pointwise limit of $\{f_n\}$, where

$$f_n(x) = \frac{x^n}{1+x^n}$$
 $(n \ge 1, x \ge 0).$

Also prove that $\{f_n\}$ converges uniformly on $[0, \epsilon]$ for all $0 < \epsilon < 1$, but not on [0, 1].

- (2) Prove that the sequence $\{\frac{nx}{1+n^3x^2}\}$ converges uniformly on [0,1].
- (3) Prove that the sequence $\{\frac{n^2x}{1+n^3x^2}\}$ is not uniformly convergent on [0,1].
- (4) Let $f_n(x) = \frac{1}{n} \sin nx$ for all $x \in \mathbb{R}$ and $n \ge 1$. Prove that $f_n \to 0$ uniformly on \mathbb{R} .
- (5) Let $f(x) = \frac{1}{x} \frac{x}{n}$, $x \in (0,1]$. Prove that $\{f_n\}$ converges uniformly on (0,1] to the limit function $f(x) = \frac{1}{x}$, $x \in (0,1]$.
- (6) Let p, q > 0, and let

$$f_n(x) = \frac{x^p}{n + x^q}$$
 $(n \ge 1, x \ge 0).$

Prove that $f_n \to 0$ uniformly on $[0, \infty)$ if and only if p < q.

- (7) Let $\{f_n\}$ and $\{g_n\}$ be sequences of functions on $S \subseteq \mathbb{R}$, and suppose $f_n \to f$ and $g_n \to g$ uniformly on S. Prove that $f_n \pm g_n \to f \pm g$ uniformly on S.
- (8) Let $\{f_n\}$ be a sequence of functions on $S \subseteq \mathbb{R}$, and suppose $f_n \to f$ uniformly on S. If $\{\frac{1}{f_n}\}$ is uniformly bounded on S, then prove that $\frac{1}{f_n} \to \frac{1}{f}$ uniformly on S.
- (9) Prove that the product of uniformly convergent sequences of functions may not converge uniformly.

[Hint: Consider $f_n(x) = x + \frac{1}{n}$, $n \ge 1$ and $x \in \mathbb{R}$. Then consider f_n^2 .]

(10) Prove that the sequence of functions defined by

$$f_n(x) = \frac{n+x}{4n+x}$$

converges uniformly on the interval [0, r] for any r > 0, but does not converge uniformly on $[0, \infty)$.

- (11) Let $\{f_n\}$ and $\{g_n\}$ be sequences of bounded functions on $S \subseteq \mathbb{R}$, and suppose $f_n \to f$ and $g_n \to g$ uniformly. Prove that $f_n g_n \to f g$ uniformly.
- (12) Prove that $\{\sin(x+\frac{1}{n})\}\$ converges uniformly to $\sin x$ on \mathbb{R} .
- (13) Let f be uniformly continuous on \mathbb{R} and let $\{r_n\}$ be a convergent sequence of real numbers. Suppose

$$f_n(x) = f(x + r_n)$$
 $(n \ge 1, x \in \mathbb{R}).$

Prove that $\{f_n\}$ converges uniformly on \mathbb{R} .