Universidad Industrial de Santander, Colombia Numerical Analysis, 2020-2 Henry Arguello November 18, 2020

Lab 3. Newton-Raphson Method

1 Instructions

- Make a **pdf** report including the solution to each point of the practice with name Lab3_name_lastname.pdf.
- Send the report and all created files in a rar or zip file with name Lab3_name_lastname.rar in the Moodle.
- You are allowed to use internet, notes, and .m files that you have created before.

2 Purposes

• To implement the Newton-Raphson method in Matlab.

3 Implementing

• (2.0 points) Create a Matlab function called $my_newton_function_name_lastname()$ to find the root of a function using the Newton-Raphson method. The arguments of the function must be: the function to be evaluated f(x) (as an inline function), the initial point $[p_0]$, the derivate of the function f'(x) (as an inline function), and the stopping criteria (the number of iterations or the error). Make a script called $run_2a_name_lastname.m$ in which you use the created function to find the three roots of the function $f(x) = x^3 + 13x^2 - 297.5x + 0.00000375e^x$. You have to choose a proper initial point for each root. For instance,

```
\begin{array}{l} \operatorname{fun} = @ \ XXXXXX; \\ \operatorname{der} = @ \ XXXXXX; \\ p_0 = XX; \\ \operatorname{Iter} = X; \\ \operatorname{root} = \operatorname{my\_newton\_function\_name\_lastname}(\operatorname{fun}, p_0, \operatorname{der}, \operatorname{Iter}); \end{array}
```

- (1.5 points) Modify the function in the previous item such that it prints the values:
 - -k: Number of current iteration
 - $-x_k$: Value of the root at iteration k
 - $-f(x_k)$: Value of the function evaluated in x_k
 - $f'(x_k)$: Value of the derivative evaluated in x_k
 - $-|x_k-x_{k-1}|$: Absolute error
- (1.5 points) Create a Matlab function called $my_visual_newton_function_name_lastname()$ to visualize the behaviour of the Newton method. The arguments of the function must be: the function to be evaluated f(x) (as an inline function), the initial point $[p_0]$, the derivate of the

function, fp(x), and the number of iterations. Make a script called $run_2b_name_lastname.m$ in which you use the created function to visualize the behavior of the Newton method when solving the exercise in 3 and conclude about the convergence of the method. For instance,

```
\begin{array}{l} \text{fun} = @\ XXXXXXX; \\ \text{der} = @\ XXXXXXX; \\ p_0 = XX; \\ \text{Iter} = XX \\ \text{root=my\_visual\_newton\_function\_name\_lastname}(\text{fun},p_0,\text{der},\text{Iter}); \end{array}
```