Московский Физико-Технический Институт

Отчет о проделанной работе

Решение задачи динамического хеджирования короткой позиции по американским опционам

Автор: Новиков Владимир , М05-311б

Вступление

В мире финансовых инструментов и деривативов одним из наиболее сложных и актуальных направлений является управление рисками, связанными с опционными контрактами. Опционы, как производные финансовые инструменты, предоставляют их держателям право, но не обязательство, купить или продать базовый актив по заранее установленной цене в определенный момент времени. В этом контексте американские опционы представляют особый интерес, поскольку они могут быть исполнены в любой момент до истечения срока их действия. Это свойство добавляет дополнительные сложности в процесс хеджирования и оценки стоимости опционов.

Динамическое хеджирование представляет собой стратегию управления рисками, при которой портфель пересчитывается и ребалансируется на регулярной основе для минимизации риска, связанного с изменениями цен базового актива. В случае короткой позиции по американским опционам, задача хеджирования становится еще более сложной из-за возможности досрочного исполнения опциона. Это требует применения более сложных моделей и методов для эффективного управления рисками.

Описание выполненных действий в процессе работы

- Подсчет Implied Volatility криптовалютных опционов на основе модели Блека-Шоулза
- Оценка американского пут опциона на основе модели LongStaffSchwartza (прошлый семестр)
- Реалзиация динамического дельта-хеджирование данного опциона до даты экспира-
- Сравнение результатов хеджирования по итогу

Подсчет Implied Volatility криптовалютных опционов на основе модели Блека-Шоулза

Implied Volatility (IV) представляет собой волатильность, подразумеваемую текущей рыночной ценой опциона, и играет ключевую роль в оценке и торговле опционами. Подсчет implied volatility для криптовалютных опционов на основе модели Блека-Шоулза включает несколько шагов:

- Данные: данные были собраны за меня другими студентами
- Модель Блека-Шоулза: Используя модель Блека-Шоулза, вычислить теоретическую цену опциона на основе заданной волатильности.
- Обратное вычисление волатильности: Используя метод двоичного поиска, найти такое значение волатильности, при котором теоретическая цена, рассчитанная по модели Блека-Шоулза, совпадет с рыночной ценой опциона. Это значение и будет implied volatility.

Оценка волатильности производится через метод бинарного поиска сдвигая границы цен каждую итерацию в сторону реальной цены опциона

Оценка американского пут опциона на основе модели Longstaff-Schwartz (прошлый семестр)

Модель Longstaff-Schwartz предназначена для оценки американских опционов, учитывая возможность досрочного исполнения. Она основывается на методе Монте-Карло и аппроксимации условного математического ожидания. Основные этапы оценки американского пут опциона включают:

• Генерация сценариев: Используя метод Монте-Карло, сгенерировать множество возможных траекторий цен базового актива до даты истечения опциона.

- <u>MIPT</u>
 - Регрессия и аппроксимация: На каждом шаге времени, используя регрессионный анализ, оценить условное математическое ожидание будущих выплат, чтобы определить оптимальную стратегию исполнения опциона.
 - Обратная индукция: Применить метод обратной индукции для оценки стоимости опциона, начиная с даты истечения и двигаясь назад ко времени t=0, принимая во внимание возможность досрочного исполнения.

Stock price paths						
Path	t = 0	t = 1	t = 2	t = 3		
1	1.00	1.09	1.08	1.34		
2	1.00	1.16	1.26	1.54		
3	1.00	1.22	1.07	1.03		
4	1.00	.93	.97	.92		
5	1.00	1.11	1.56	1.52		
6	1.00	.76	.77	.90		
7	1.00	.92	.84	1.01		
8	1.00	.88	1.22	1.34		

Path	Y	X
1	.00 × .94176	1.08
2	_	_
3	$.07 \times .94176$	1.07
4	$.18 \times .94176$.97
5	_	_
6	$.20 \times .94176$.77
7	$.09 \times .94176$.84
8	-	_

Regression at time 2

Path Exercise		Continuation	
1	.02	.0369	
2		_	
3	.03	.0461	
4	.13	.1176	
5	_	_	
6	.33	.1520	
7	.26	.1565	
8	_	_	

Option cash flow matrix						
Path	t = 1	t = 2	t = 3			
1	.00	.00	.00			
2	.00	.00	.00			
3	.00	.00	.07			
4	.17	.00	.00			
5	.00	.00	.00			
6	.34	.00	.00			
7	.18	.00	.00			
8	.22	.00	.00			

Реализация динамического дельта-хеджирования данного опциона до даты экспирации

Динамическое хеджирование американского пут опциона включает в себя регулярное пересчитывание и ребалансировку позиций, чтобы минимизировать риск изменений сто-имости базового актива. Основные шаги включают:

- Рассчет дельты: На регулярной основе вычислять дельту опциона, которая показывает, как изменяется стоимость опциона при изменении стоимости базового актива.
- Ребалансировка портфеля: В зависимости от изменения дельты, корректировать позиции в базовом активе, чтобы поддерживать нейтральность портфеля по отношению к изменениям цены базового актива.

$$MK$$
 — Монте-Карло симуляции, матрица размерности (N,M) N - кол-во симуляций, M - дней до экспирации

 $LSS-\Phi$ ункция алгоритма LongStaffSchwartza

S — Цена базового актива

$$\delta_i = \frac{LSS_i(MK \cdot \frac{S_i + \epsilon}{S_i}) - LSS_i(MK \cdot \frac{S_i - \epsilon}{S_i})}{2\epsilon}$$

$$H -$$
Хедж

 δ — Дельта подсчитанная на основе американского пута

$$S$$
 — Цена базового актива
$$r$$
 — Безрисковая процентная ставка
$$H_0-American_put_price$$

$$H_i=\delta_{i-1}\cdot S_i+(H_{i-1}-\delta_{i-1}\cdot S_{i-1})\cdot e^{r/365}$$

Результаты

- Исправлен алгоритма прайсинга американских опционов
- Внедрен расчет подразумеваемой волатильности по модели Блека-Шоулза позволило лучше понять текущие рыночные условия и ожидания участников рынка относительно будущих цен на опционы
- Внедрено динамическое дельта-хеджирования, позволившее минимизировать риск, связанный с возможными колебаниями цен на базовый актив

Рис. 1: Значения ошибок хеджирования $\max((\overline{K}_0 - S_i) - H_i, 0)$