Tutorial 3 Basic Optimization

Yifan WANG

School of Data Science

2022.9.27

Self Introduction

name: Yifan WANG

email: 119010317@link.cuhk.edu.cn

major: statistics

▶ office hour: Thu. 10:00-11:00, by appointment

Introduction

- ▶ Definition of convex optimization
- How to solve convex optimization problem
- Exercise: convex optimization in machine learning

Goal

Solve some basic optimization problem in machine learning. If you are interested in optimization, you can take MAT3007 for more advanced knowledge.

Recap

line: through x_1 , x_2 : all points satisfy:

$$x = \theta x_1 + (1 - \theta)x_2$$
 $\theta \in \mathbb{R}$

line segment: between x_1 , x_2 : all points satisfy:

$$x = \theta x_1 + (1 - \theta)x_2 \quad \theta \in [0, 1]$$

$$\theta = 1.2 \quad x_1$$

$$\theta = 1$$

$$\theta = 0.6$$

$$\theta = 0.2$$

Recap

affine set: contains the line through any two distinct points in set

Example: solution set of linear equations $\{x|Ax=b\}$

convex set: contains line segment between any two points in set

Example:

Recap

convex function: f: $R^n \to R$ is convex if **dom** f is a convex set and

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

for all $x, y \in \text{dom f}$, $0 \le \theta \le 1$

- ightharpoonup f is convex if -f is convex
- f is strictly convex if dom f is convex and

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)$$

FOC and SOC

FOC: differentiable *f* with convex domain is convex iff

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$
 for all $x, y \in \text{dom } f$

SOC: for twice differentiable *f* with convex domain

f is convex if and only if

$$\nabla^2 f(x) \succeq 0$$
 for all $x \in \operatorname{dom} f$

▶ if $\nabla^2 f(x) \succ 0$ for all $x \in \text{dom } f$, then f is strictly convex

Positive definite: for $A \in R^{M \times M}$, if $A = A^T$, and for any $X \in R^{M \times 1} \neq \mathbf{0}$, $X^T A X > 0$, then A is called a positive definite matrix

Exercise 1

Logistic Regression(I₂ loss)

The l_2 loss for logistic regression is

$$J(w) = \frac{1}{2m} \sum_{i}^{m} (g(w^{T}x_{i}) - y_{i})^{2}$$

show that it's not convex, where $g(w^Tx) = \frac{1}{1 + exp(-w^Tx)}$. For convenience, you can take $J(w) = (g(w^Tx) - y)^2$.

Hint: consider the special case

Standard Form

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$
 $h_i(x) = 0, \quad i = 1, \dots, p$

Convex Optimization

- $ightharpoonup f_0, f_1, ..., f_m$ are convex functions
- $h_i(x) = 0$ are affine constrains

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $Ax = b$

 For convex optimization, any local optimum is also a global optimum

Unconstrained problem

minimize $f_0(x)$

optimal condition: $\nabla f(x^*) = 0$

- ▶ 1. take the derivative
- ▶ 2. gradient descent method $x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x^{(k)}$ with $f(x^{(k+1)}) < f(x^{(k)})$

Exercise 2

Ridge Regression(Shrinkage estimator)

The ridge regression uses the penalty form $R(\beta) = \lambda ||\beta||_2^2$ and to minimize

$$min_{\beta}(Y - X\beta)^{T}(Y - X\beta) + \lambda ||\beta||_{2}^{2}$$

show that $\beta = (X^TX + \lambda I)^{-1}X^TY$ with the fact that $||\beta||_2^2 = \beta^T\beta$ Hint: $\frac{\nabla X^TX}{\nabla X} = 2X$, $\frac{\nabla X^Tw}{\nabla w} = X$

Constrained problem

minimize
$$f_0(x)$$

subject to $h_i(x) \leq 0, \quad i = 1, \dots, m$
 $l_j(x) = 0, \quad j = 1, \dots, r$

Lagrange function

$$L(w, u, v) = f(w) + \sum_{i=1}^{m} u_i h_i(w) + \sum_{j=1}^{r} v_j l_j(w)$$

▶ KKT conditions stationarity: $0 \in \partial f(w) + \sum_{i=1}^m u_i \partial h_i(w) + \sum_{j=1}^r v_j \partial l_j(w)$ complementary slackness: $u_i \cdot h_i(w) = 0$ for all i primal feasibility: $h_i(w) \leq 0$, $l_j(w) = 0$ for all i, j dual feasibility: $u_i \geq 0$ for all i

Exercise 3

Support vector machine(hard-margin)

The objective function of support vector machine is

$$\min_{w,b} \frac{1}{2} ||w||^2$$

s.t. $1 - y_i(w^T x_i + b) \le 0, \forall i$

write the Lagrange function and KKT conditions of it.

Solution 1-1

$$J(w) = (g(w^{T}x_{i}) - y_{i})^{2}$$

$$\frac{\nabla g(w^{T}x)}{\nabla w} = \frac{x \cdot exp(-w^{T}x))}{(1 + exp(-w^{T}x))^{2}} = x \cdot g(w^{T}x)(1 - g(w^{T}x))$$

$$\frac{\nabla J(w)}{\nabla w} = \frac{\nabla J(w)}{\nabla g(w^{T}x)} \cdot \frac{\nabla g(w^{T}x)}{\nabla w}$$

$$= 2x(g(w^{T}x) - y)g(w^{T}x)(1 - g(w^{T}x))$$

$$= 2x(-g(w^{T}x)^{3} + (y + 1)g(w^{T}x)^{2} - yg(w^{T}x))$$

$$\frac{\nabla^{2}J(w)}{\nabla w^{2}} = \frac{\nabla^{2}J(w)}{\nabla g(w^{T}x)} \cdot \frac{\nabla g(w^{T}x)}{\nabla w}$$

$$= 2xx^{T}g(w^{T}x)(1 - g(w^{T}x)(-3g(w^{T}x)^{2} + 2(y + 1)g(w^{T}x) - y)$$

Solution 1-2

Special case: take y=-1

$$2xx^{T}g(w^{T}x)(1-g(w^{T}x)(-3g(w^{T}x)^{2}+2(y+1)g(w^{T}x)-y)$$

$$=2xx^{T}g(w^{T}x)(1-g(w^{T}x)(-3g(w^{T}x)^{2}+1)$$

When $g(w^Tx) \in (-\frac{\sqrt{3}}{3}, 0) \cup (\frac{\sqrt{3}}{3}, 1)$, this expression is smaller than 0, so it's not convex

Solution 2

$$\min_{\beta} (Y - X\beta)^{T} (Y - X\beta) + \lambda ||\beta||_{2}^{2}$$

$$\frac{\nabla f(x)}{\nabla \beta} = 2X^{T} (X\beta - Y) + 2\lambda \beta = 0$$

$$2(X^{T}X + \lambda I)\beta = 2X^{T}Y$$

$$\beta = (X^{T}X + \lambda I)^{-1}X^{T}Y$$

Solution 3

Lagrange function:
$$L(w, b, \alpha) = \frac{1}{2}||w||^2 + \sum \alpha_i(1 - y_i(w^Tx_i + b))$$

KKT conditions:

$$stationary: \frac{\partial L}{\partial w} = 0 \rightarrow w = \sum \alpha_i y_i x_i$$

$$\frac{\partial L}{\partial b} = 0 \rightarrow \sum \alpha_i y_i = 0$$

$$primal: \alpha_i \geq 0, \quad 1 - y_i (w^T x_i + b) \leq 0, \forall i$$

$$complementary: \alpha_i (1 - y_i (w^T x_i + b)) = 0, \forall i$$

$$dualfeasibility: \alpha_i \geq 0, \forall i$$