From Qubits to Algorithms

Introduction to Quantum Computing

Lloyd Seo & William Widjaja

Check-in Code

for —

From Qubits to Gates: Introduction t...

qntm

ACM at UCSD

members.acmucsd.com

Icebreaker

Introduce yourself to the people around you!

- 1. Name
- 2. Pronouns
- 3. Year
- 4. College

Q. What do you think quantum computing is?

Q. Quantum computers can solve and not solve a problem simultaneously

ACM at UCSD

Q. Quantum computers can solve and not solve a problem simultaneously

True 🗸

Q. Quantum computers need to be kept colder than outer space to work

ACM at UCSD

Q. Quantum computers need to be kept colder than outer space to work

True **V**

Q. We can use a particle on Earth to figure out the state of a particle in the Andromeda Galaxy

Q. We can use a particle on Earth to figure out the state of a particle in the Andromeda Galaxy

True **V**

Q. Quantum computing is real?!

ACM at UCSD

Q. Quantum computing is real?!

True 🔽

Agenda

- Basics of Quantum Computing

 Quantum vs classical computing
- 2 Superposition & Decoherence Fundamental quantum mechanics
- 3 Entanglement & Interference Exploring quantum mechanics
- 4 Applications
 Where can we use quantum computing?
- 5 The Future What's next?

Agenda

- Basics of Quantum Computing

 Quantum vs classical computing
- 2 Superposition & Decoherence Fundamental quantum mechanics
- 3 Entanglement & Interference Exploring quantum mechanics
- 4 Applications
 Where can we use quantum computing?
- 5 The Future What's next?

What we're familiar with: Classical Computing

- Computer chips (ex. CPU)
 - Modules (ex. addition, multiplication)
 - Logic gates (ex. AND, OR, XOR)
 - Transistors
 - Bits

0

1

ACM at UCSD

Replacing bits with qubits

Qubit (quantum bit): Can represent 0 and 1 simultaneously

0

1

ACM at UCSD

Quantum Mechanics

The field of physics that explains the motion and interaction of **subatomic particles**

 "Quantum": Referring to the smallest discrete amount of something

Quantum Computing

Multidisciplinary field comprising aspects of computer science, physics, and mathematics that utilizes quantum mechanics to solve complex problems faster than on classical computers.

Breakdown of Quantum Computer

- Quantum processor (QPU)
 - Quantum circuits
 - Quantum gates
 - Quantum systems
 - Qubits

Key Principles of Quantum Mechanics

- 1. Superposition
- 2. Entanglement
- 3. Decoherence
- 4. Interference

Agenda

- Basics of Quantum Computing

 Quantum vs classical computing
- 2 Superposition & Decoherence Fundamental quantum mechanics
- 3 Entanglement & Interference Exploring quantum mechanics
- 4 Applications
 Where can we use quantum computing?
- 5 The Future What's next?

Superposition

Superposition: State where a qubit represents multiple configurations at once

Chances of Heads (0): 50%

Chances of Tails (1): 50%

Decoherence

Hadamard Gate

Measurement

Quantum Circuit-Superposition

acmurl.com/superposition-circuit

Agenda

- Basics of Quantum Computing

 Quantum vs classical computing
- 2 Superposition & Decoherence Fundamental quantum mechanics
- 3 Entanglement & Interference Exploring quantum mechanics
- 4 Applications
 Where can we use quantum computing?
- 5 The Future What's next?

Entanglement

Entanglement: If two qubits are entangled, measuring one qubit collapses the states of both qubits

Wave-Particle Duality

Quantum objects, like qubits, do not have a definite state and exhibit both wave-like and particle-like behaviors until they are measured.

Interference

Interference: Phenomenon where entangled qubits affect the probabilities of outcome for one another

- Constructive interference: Amplifying the correct solution
- Destructive interference: Canceling out wrong solutions

Pauli-X Gate

Controlled-NOT (CNOT) Gate

ACM at UCSD

Quantum Circuit-Entanglement

acmurl.com/entanglement-circuit

Agenda

- Basics of Quantum Computing

 Quantum vs classical computing
- 2 Superposition & Decoherence Fundamental quantum mechanics
- 3 Entanglement & Interference Exploring quantum mechanics
- 4 Applications
 Where can we use quantum computing?
- 5 The Future What's next?

Optimization

- Grover's algorithm: Find entry in an unstructured database in O(√N), whereas classical search requires O(N) steps
- Used to find optimal path/schedule/allocation in optimization

Cryptanalysis

- Many encryption algorithms (RSA, Elliptic Curve Cryptography, Diffie-Hellman, etc.) rely on the difficulty of factoring large numbers
- Shor's algorithm: Solves encryption problems in O(n^k), whereas classical algorithms take O(2ⁿ)

Machine Learning

- Machine learning algorithms often rely on computationally expensive linear algebra operations
- HHL algorithm: Solves systems of linear equations (Ax=b) exponentially faster than classical algorithms

Agenda

- Basics of Quantum Computing

 Quantum vs classical computing
- 2 Superposition & Decoherence Fundamental quantum mechanics
- 3 Entanglement & Interference Exploring quantum mechanics
- 4 Applications
 Where can we use quantum computing?
- 5 The Future What's next?

Why is Quantum Computing Not Widely Used?

- 1. Quantum components are extremely susceptible to environmental factors
- 2. Difficult to run large quantum programs long enough to solve practical problems
- 3. Current classical computing hardware is much more advanced than its quantum counterparts

Advancements in Quantum Computing

 Google and NVIDIA are working together to develop quantum processing units using GPU-accelerated quantum simulations

Advancements in Quantum Computing

 Microsoft and Quantinuum created logical qubits with an error rate 800x better than physical qubits

Advancements in Quantum Computing

Intel developed a
 cryogenic control chip,
 Horse Ridge II, which can
 operate at absolute zero
 and directly control qubits

Drug Metabolism

Can allow us to resolve the chemistry of an enzyme called cytochrome P450 responsible for metabolizing ~70% of human drugs

CO2 Sequestration

studies suggest that quantum computers should be able to model CO2 reactions with various catalysts more accurately

Fusion Reactions

we would be able to simulate one of the first inertial fusion reactions that produces more energy than was put directly into it (more information on the resources slide)

And More!

QUANTUM FOR REAL-WORLD IMPACT

Prize Purse

XPRIZE Quantum Applications is a 3-year, \$5M global competition designed to generate quantum computing (QC) algorithms that can be put into practice to help solve real-world challenges.

Resources for Further Learning

IBM Quantum Composer Tutorial

CSE 190 w/ Daniel Grier

Quantum Hardware:

https://medium.com/swlh/the-physical-side-of-quantum-e69b5c5c30ae

Entanglement and "Spooky Action":

https://www.quantamagazine.org/how-bells-theorem-proved-spooky-action-at-a-distance-is-real-20210720/

Decoherence and Interference:

https://plato.stanford.edu/entries/gm-decoherence/

Thank You

Do you have any questions?

- contact@acmucsd.org
- acmurl.com/discord
- acmurl.com/instagram
- acmurl.com/youtube

