LECTURE 2 – SIMPLICIAL SETS

NOTES ANOTATED BY ROGER MURRAY

1. Notation

Categories will typically be sans serif (i.e. Top, sSet, etc.). If \mathcal{C} is an arbitrary category then we denote the the set of \mathcal{C} -morphisms from objects $A, B \in \mathcal{C}$ by $\mathcal{C}(A, B)$.

2. Garbage

Recall the definition of the standard topological n-simplex as the set

$$\Delta_{\mathsf{Top}}^n := \left\{ (t_0, \dots, t_n) \in \mathbb{R}^{n+1} \,\middle|\, \sum t_i = 1 \text{ and } t_i \ge 0 \text{ for all } i \right\}$$

Alternatively we may think of Δ_{Top}^n as the convex hull of vertices $v_i = (0, \dots, 1, \dots, 0)$. We then have maps codegeneracy maps $s^i : \Delta_{\mathsf{Top}}^{n+1} \to \Delta_{\mathsf{Top}}^n$, and coface maps $d^i : \Delta_{\mathsf{Top}}^{n-1} \to \Delta_{\mathsf{Top}}^n$ defined by

$$s^{i}(t_{0}, \dots, t_{n+1}) = (t_{0}, \dots, t_{i} + t_{i+1}, \dots, t_{n+1})$$
$$d^{i}(t_{0}, \dots, t_{n-1}) = (t_{0}, \dots, t_{i}, 0, t_{i+1}, \dots, t_{n})$$

Clearly d^i is just the map embedding $\Delta_{\mathsf{Top}}^{n-1}$ as the i^{th} face of Δ_{Top}^n , and s^i is a retration of $\Delta_{\mathsf{Top}}^{n+1}$ minus the i^{th} vertice v_i onto the face opposite v_i .

Given any topological space $X \in \mathsf{Top}$ we define the singular n-simplices of X to be the maps

$$\operatorname{Sing}(X)_n := \operatorname{\mathsf{Top}}(\Delta^n_{\operatorname{\mathsf{Top}}}, X)$$

This turns out to be an important example of something called a simplicial object. Before we can define what a simplicial object is, we must first define the *simplex category* Δ . The objects of Δ are the ordered sets $[n] = \{0, 1, \ldots, n\}$, and the morphisms $f : [m] \to [n]$ are the weakly-order-preserving (i.e. non-decreasing) functions. Similarly to above we have maps $s^i : [n+1] \to [n]$ and $d^i : [n-1] \to [n]$ given by repeating the i, and skipping i respectively. The following lemma says that these maps are the only maps we care about.

Lemma 2.0.1. Any map f in Δ is the composition of a series of d^i and s^j .

Proof sketch. If you have a map $f:[m] \to [n]$ then you have the inequality $f(0) \le f(1) \le \cdots \le f(m)$. We get unique elements of the form $g_0 < \cdots < g_k$ for $k \le \min\{m, n\}$. By composing d^0 with itself g_0 times we get a map that sends [m] to $[g_0, g_0 + 1, \ldots, g_0 + m]$. We repeat g_0 with s^0 as many times as it occurs in the sequence of f(i)s. We then simply repeat this process inductively on the g_i for $0 < i \le k$.

Definition 2.0.2. Let \mathcal{C} be a category. A *simplicial object in* \mathcal{C} is a functor $X:\Delta^{\mathrm{op}}\to\mathcal{C}$. Similarly a cosimplicial object in \mathcal{C} is a functor $Y:\Delta\to\mathcal{C}$.

We write X_n and Y^n for X([n]) and Y([n]) respectively, and hence we will often use the notation X_{\bullet} and Y^{\bullet} for X and Y respectively. Similarly we write d_i, s_i and d^i, s^i for the obvious maps in \mathcal{C} .

Example 2.0.3. The standard simplices $\Delta_{\mathsf{Top}}^{\bullet}$ is a cosimplicial space.

Example 2.0.4. Given any space $X \in \mathsf{Top}$ we therefore have that $\mathsf{Sing}(X)_{\bullet}$ is a simplicial set acting on objects by $[n] \mapsto \mathsf{Top}(\Delta^n_{\mathsf{Top}}, X)$, and on morphisms by $(f : [m] \to [n]) \mapsto f_*$ where f_* is precomposition with f.

Date: November 26, 2019.

Properties 2.0.5. The degeneracy, and face maps satisfy the simplicial properties:

- (1) $d_i \circ d_j = d_{j-1} \circ d_i$ for i < j
- (2) $s_i \circ s_j = s_{j+1} \circ s_i \text{ for } i \leq j$
- (3) Lastly,

$$d_i \circ s_j = \begin{cases} s_{j-1} \circ d_i & \text{if } i < j \\ \text{id} & \text{if } i = j, j+1 \\ s_j \circ d_{i-1} & \text{if } i > j+1 \end{cases}$$

A dual statement holds for cosimplicial objects. These (dual) properties are obvious in the case of Δ . We next construct a functor which is adjoint to Sing(-) $_{\bullet}$.

Let X be a simplicial object in a category \mathcal{C} .

Definition 2.0.6. An *n*-simplex $x \in X_n$ is degenerate if there exists some $y \in X_{n-1}$ such that $x = s_i(y)$ for some $0 \le i \le n-1$.

Definition 2.0.7. The geometric realisation of X is the space given by

$$|X_{\bullet}| = \coprod_{n>0} X_n \times \Delta^n / \sim$$

where the equivalence relation is given by identifying $(f^*x, u) \sim (y, f_*u)$ for any $f \in \Delta([m], [n])$, and $x \in X_n$, and $u \in \Delta^m$.

It turns out that it is enough to consider when f is a degeneracy, or face map. This is an obvious result from 2.0.1 and the following lemma,

Lemma 2.0.8. Every object $x \in X_n$ may be written uniquely as $s_{i_1} \circ s_{i_2} \circ \cdots \circ s_{i_l}(y)$ such that $i_1 > \cdots > i_n$ and $y \in X_{\bullet}$ is non-degenerate.

Proof. By (2) of 2.0.5 it is easy to see that we can find an increasing sequence i_j . Furthermore this sequence must terminate since $x \in X_n$ and each degeneracy map increases degree by 1. Thus we obtain a y such that $x = s_{i_1} \circ \cdots \circ s_{i_n}(y)$. All that is left to check is that these are unique. This is immediate by starting at x and working backwards.

Corollary 2.0.9. Given a simplicial object X in C then its geometric realisation |X| is a CW-complex with an n-cell for every non-degenerate n-simplex $x \in X_n$.

For a proof of this see page 56 of [1].

Proposition 2.0.10. The functors |-|: sSet \longleftrightarrow Top: Sing are adjoint.

Proof. We wish to show that, given any $X_{\bullet} \in \mathsf{sSet}$ and any $Y \in \mathsf{Top}$, the sets $\mathsf{sSet}(X_{\bullet}, \mathsf{Sing}(Y)_{\bullet})$ and $\mathsf{Top}(|X_{\bullet}|, Y)$ are in bijection. This proof relies on the fact that any map $f_n \in \mathsf{sSet}(X_n, \mathsf{Sing}(Y)_n)$ corresponds to a map $\widehat{f_n} : X_n \times \Delta^n_{\mathsf{Top}} \to Y$ where $\widehat{f_n}(x, u) = f_n(x)(u)$. If we now consider any map $g \in \Delta([m], [n])$ then we get the following commutative diagram by definition

$$\begin{array}{c} X_n \xrightarrow{f_n} \mathsf{sSet}\big(\Delta^\mathsf{n}_\mathsf{Top}, \mathsf{Y}\big) \\ \downarrow^{X(g)} & & & & & & & & & \\ X_m \xrightarrow{f_m} \mathsf{sSet}\big(\Delta^\mathsf{m}_\mathsf{Top}, \mathsf{Y}\big) \end{array}$$

By the existence of $\widetilde{f_n}$ in relation to f_n this gives us the following commutative diagram

$$\begin{split} X_n \times \Delta_{Top}^m & \xrightarrow{\operatorname{id} \times \Delta_{\mathsf{Top}}^{\bullet}(g)} X_n \times \Delta_{\mathsf{Top}}^n \\ & \downarrow^{X(g) \times \operatorname{id}} & \downarrow^{\widetilde{f_n}} \\ X_m \times \Delta_{\mathsf{Top}}^m & \xrightarrow{\widetilde{f_m}} \operatorname{sSet}(\Delta_{\mathsf{Top}}^m, \mathsf{Y}) \end{split}$$

Taking g to be (a composition of the) s^i gives us that $\widetilde{f_n}$ respects the equivalence relation defining $|X_{\bullet}|$ and hence is a map $\widetilde{f_n} \in \mathsf{Top}(|X_{\bullet}|, Y)$. We can go backwards in a similar fashion.

References

[1] Jon Peter May, Simplicial Objects in Algebraic Topology, University of Chicago Press, 1982