Jegyzőkönyv

а

hangfrekvenciás mechanikai rezgések vizsgálatáról (2)

Készítette: Tüzes Dániel

Mérés ideje: 2008-11-19, szerda 14-18 óra

Jegyzőkönyv elkészülte: 2008-11-26

A mérés célja

A feladat két anyag Young modulusának és csillapítási tényezőjének meghatározása, melyet a minták sajátfrekvenciájából és rezonanciagörbéjéből számolunk ki. Feladat továbbá a rezgési modusok és a felharmonikusok vizsgálata.

Elvi alapok

A mérés során két mintát fogunk kényszerrezgésre késztetni, különböző rezgési modusok mellett. Ha ismerjük a minta geometriai adatait és ismerjük a tömegét, akkor az egyes rezgési modusokhoz tartozó frekvenciákból kiszámítható a Young modulus: $\omega_i = \frac{k_i^2}{I^2} \sqrt{\frac{E\ I}{\rho\ q}}$, ahol ω_i az egyes rezgési

modusokhoz tartozó sajátfrekvencia, I a minta szabadon rezgő hossza, E a Young modulus, I a másodrendű felületi nyomaték, q a minta keresztmetszetének felülete, k_i pedig egy szorzótényező, melynek értékeit elméleti levezetés útján kaphatunk. Ennek segítségével nemcsak a különböző rezgési modusokhoz tartozó sajátfrekvenciák mérésével meghatározhatjuk a Young modulust, hanem adott rezgési modus mellett hossz változtatásával kimérhetjük a sajátfrekvenciákat is, melyből szintén megadható E értéke.

A rezgési amplitúdó függ a gerjesztető kényszertől, annak nagyságától és frekvenciájától is. A rezonancia görbe mérésénél a minta amplitúdó függését mérjük ki a gerjesztő erő frekvenciájának függvényében, mikor a gerjesztő frekvenciája közel esik az egyik sajátfrekvenciához. A rezonanciagörbe félérték szélességéből meghatározhatjuk a csillapítási tényezőt: $\kappa = \pi \Delta f$, ahol Δf a félérték szélesség.

A mérési módszer ismertetése

A mérés során használt egyik minta egy téglatest, a másik egy olyan alapjában téglatest szerű test, melynek vége vastagított, hogy a befogást megkönnyítse, és ezáltal tisztábbak rezgések. A mérési elrendezés ismertetéséhez tekintsük a jobbra levő ábrát! A befogó fej egy jól illeszkedő satupofa, mely satu egy nagy fémtányérra van rögzítve, mely fémtányér alátámasztása gondosan kivitelezett, hogy az asztal rezgései ne terjedjenek tovább a mintára. M

A minták fémből voltak, így adott a lehetőség egy elektromágneses elveken nyugvó gerjesztőre, mely rezgésbe hozza a mintánkat. Mérésünk során a mágneses teret fogjuk változtatni a minta szabad végénél. Megfontolandó, hogy a mintát akkor is rezgésre tudjuk késztetni ezzel a módszerrel, ha az nem kellőképp mágnesezhető. Ennek tárgyalását a melléklet műben találjuk. Ugyanígy tudhatjuk, hogy ezzel az elrendezéssel egy rezgési modust kétszer állíthatunk elő, egyik esetben, mikor a generátor frekvenciája megegyezik a rezgési modushoz tartozó sajátfrekvenciával, másik esetben mikor a generátor frekvenciája annak fele.

A kitérést a minta befogáshoz közeli részén vizsgáljuk, hogy a modustól függetlenül mindig tapasztaljunk kitérést. Ezt a szempontot a rezgő téglatest befogástól távolabbi vége is teljesíti, azonban a befogáshoz közeli vég esetén a detektor kevésbé torzítja a rezgést, az általa kifejtett állandó erő kisebb mértékben módosítja a lemezre ható harmonikus gerjesztő erőt. A detektor egy bakelitlemez-lejátszóból kiszuperált olvasófej, melyben piezoelektromos

kristály található. Ezt a mintára helyezve, a kristályon megjelenő feszültséget voltmérőre kötve mérhető a kitérések nagysága.

Első mérési feladatként állandó hossz mellett keressük meg a rezgési modusokhoz tartozó frekvenciát. A generátor frekvenciáját változtatva keressünk lokális amplitúdó maximumokat. Minden talált frekvenciához – az elvi alapokban tárgyaltak szerint – tartozik egy másik is, melyek ugyanazt a rezgési modust állítják elő, és frekvenciáik aránya közel 2.

Második mérési feladatként az alap modus környezetében vizsgáljuk az amplitúdó frekvencia függését. Megkeresve az amplitúdó maximális értékét igyekszünk informatív amplitúdó-frekvencia párokat mérni, vagyis nagyjából azonos amplitúdó-változásonként jegyezzük le a frekvenciát.

Harmadik mérési feladatként a másik, nem bunkós végű minta esetében mértük az alap harmonikushoz tartozó frekvenciát változó hossz mellett. Azt, hogy valóban az alap harmonikust találtam meg azzal igazolom, hogy megmérem a következő rezgési modus frekvenciáját, és ha a két mért frekvencia aránya – az elvi alapokban található formulából következően – a releváns k szorzótényezők aránya, akkor valóban az alap modust mértem ki.

Mérési eredmények, hibaszámítás

a minták geometriai adatai

A mérés során a 14-es réz és *A* jelzésű – feltehetően – alumínium mintákat vizsgáltam. A mérés során az alábbi eredményeket kaptam:

es	vastagság (<i>mm</i>)	3,01	3,02	3,05	3,05	3,06
<u>†</u>	szélesség (<i>mm</i>)	15,11	15,06	15,00	14,93	14,87
1 1 2	hosszúság (<i>mm</i>)	100,1	100,05	-	-	-
77	vastagság (<i>mm</i>)	2,02	2,04	2,03	2,02	2,00
A lint	szélesség (<i>mm</i>)	15,05	15,06	15,05	15,05	15,06
=	hosszúság (<i>mm</i>)	82,5	81,0	80,5	81,0	81,0

A tömegmérés során azt kaptam, hogy $m_{14}=40,1771g$ illetve $m_A=14,6436g$, valamint az A minta további adataiból $V_A=5,572cm^3$. Ezekből meghatározható a minták sűrűségei: $\rho_A=(2628\pm5)\,kg\,/\,m^3$ és $\rho_{14}=(8822\pm5)\,kg\,/\,m^3$. A mérés hibáját a hossz mérés hibájából és az elméletileg fellépő tömegmérés hibájából számolhatjuk. A 14-es minta hosszúságmérésén kívül az adatokat a táblázatban csavarmikrométerrel mértem, ezáltal pontosságuk $\pm 0,005mm$, a 14-es minta hosszúságának hibája $\pm 0,025mm$.

adott hossz mellett különböző rezgési modusok frekvenciái

A szélesített végű *A* mintát rögzítve a pofák közé az alábbi gerjesztéseket kaptam:

rezgési módus	feles gerjesztés (<i>Hz</i>)	egészes gerjesztés (<i>Hz</i>)	várt érték* (<i>Hz</i>)	eltérés
alap modus	127,36	254,52	-	-
1. felharmonikus	798,92	1633,8	1595	2,4%
2. felharmonikus	2255,3	4521,5	4466	1,2%
3. felharmonikus	4394,7	8806,0	8836	0,3%

^{*:} az elvi alapokban tárgyaltak szerint, ha ismerjük az alap modushoz tartozó frekvenciát, akkor annak ismeretében az elméleti levezésből következő k értékek alapján kiszámolhatjuk a következő rezgési modus várt frekvenciáját.

rezonanciagörbe

A szélesített végű, A jelzésű minta amplitúdó-frekvenciafüggéseit az alábbi táblázat mutatja:

feszültség (<i>mV</i>)	frekvencia (<i>Hz</i>)	feszültség (<i>mV</i>)	frekvencia (<i>Hz</i>)
67	254,23	67	254,25
61	254,16	64	254,29
56	254,13	58	254,32
51	254,10	53	254,35
45	254,06	40	254,44
40	254,02	47	254,40
35	253,98	36	254,48
33	253,96	31	254,53
31	253,92	25	254,61
27	253,87	21	254,7
23	253,80	15	245,89
19	253,72	11	255,12
15	253,56	7	255,51
12	253,37	4	256,17
9	253,11		
4	252,19		

korrelációs együttható értéke csaknem 1, ezzel igazoltuk a Steiner tételt. A mérés során az egyes tárcsák tömegeinek értékei 196,3106g és 194,6501g voltak. A tárcsák átmérői 45,00m volt mindkét esetben, mely értékeket a tolómérővel mértem, így hibájuk $\pm 0,03m$. A fémhuzal hossza 592 $\pm 1m$ volt (m léptékű mérőszalaggal mérve), vastagsága pedig 3 helyen mérve csavarmikrométerrel 0,51m-nek adódott. A mért eredmények alapján a torzió modulus értéke $G=8,79\cdot10^{10}\,\frac{N}{m^2}$. A mérés hibáját számolhatjuk az egyenes-illesztés hibájából ami $\Delta a=0,5\%$. Legnagyobb hibát azonban láthatóan a torziós szál vastagsága jelenti, mert a csavarmikrométer pontossága $\pm 0,01mm$, így $\Delta d=1,96\%$. Mivel ez G képletében 4-ik hatványon van, az okozott hiba egy mérésnél közel 8%-os, e mellet szemmel láthatóan eltörpül a tömegmérés és a szál hosszának hibája. Vagyis a torzió modulus értéke $G=(8,7\pm0,7)\cdot10^{10}\,\frac{N}{m^2}$. A többszöri mérés csökkentheti valamelyest a hiba mértékét, azonban a szórás mértéke egybevethető a csavarmikrométer pontosságával, így nem érvényes az általános képlet, mely szerint a mérések számának növelésével a hiba mértéke gyökösen csökkenthető.

Az 5-ik helyzetben 3 további, kisebb kitérésre is elvégeztem a periódusidő mérést, ennek értéke 80,845*s* , 80,703*s* és 80,646*s* volt.

Melléklet

Havancsák Károly: Mérések a klasszikus fizika laboratóriumban, ELTE Eötvös Kiadó, Budapest, 2003.