

Микропроцессорные устройства обработки сигналов

Лекция L13 «Приборный интерфейс»

http://vykhovanets.ru/course67/

Состав микропроцессора

Интерфейс I2С

I²C – Inter-Integrated Circuit (межмикросхемный интерфейс)

Master – ведущее устройство

Slave – ведомое устройство

SDA – Serial Data (последовательные данные)

SCL – Serial Clock (последовательные тактовые сигналы)

GND – Ground (общий проводник)

Vcc – Voltage Common Collector (напряжение питания)

Физический уровень

Канальный уровень

Состояния линии

Синхронизация

- Устройство, удерживающее низкий уровень тактового сигнала в линии, перекрывает такое удержание от всех других устройств.
- Если ведомое устройство удерживает низкий уровень тактового сигнала, остальные устройства переходят в состояние ожидания.
- Медленные ведомые устройства притормаживают быстрые ведущие устройства на время удержания тактового сигнала, достаточное для приема и сохранения данных (подготовки и передачи данных).

- Устройство, передающее данные с меньшим значением имеет больший приоритет на интерфейсе.
- Если несколько устройств передают похожие данные, то арбитраж наступает тогда, когда данные становятся различными.

Протоколы І2С

• Режимы работы:

- ведомый приемник (slave-receiver mode);
- ведомый передатчик (slave-transmitter mode);
- ведущий приемник (master-receiver mode);
- ведущий передатчик (master-transmitter mode).

Организация контроллера

Тактовое питание

PCGCR1 (1C02h) - Peripheral Clock Gating Configuration Register 1

7 6 5 4 3 2 1 0 MMCSD1CG I2CCG Reserved MMCSD0CG DMA0CG UARTCG SPICG I2S3CG

Регистры I²C

Адрес	Обозначение	Описание			
1A00h	ICOAR	Own Address Register (регистр собственных адресов)			
1A04h	ICIMR	Interrupt Mask Register (регистр маски прерываний)			
1A08h	ICSTR	Interrupt Status Register (регистр статуса прерываний)			
1A0Ch	ICCLKL	oc <mark>k L</mark> ow-Time Divider Register (регистр делителя частоты			
1A10h	ICCLKH	Clock High-Time Divider Register (регистр делителя частоты)			
1A14h	ICCNT	Data Count (счетчик данных)			
1A18h	ICDRR	Data Receive Register (регистр принятых данных)			
1A1Ch	ICSAR	Slave Address Register (регистр подчиненного адреса)			
1A20h	ICDXR	ita Transmit Register (регистр передаваемых данных)			
1A24h	ICMDR	Mode Register(регистр режима)			
1A28h	ICIVR	Interrupt Vector Register (регистр вектора прерываний)			
1A2Ch	ICEMDR	Extended Mode Register (регистр расширенного режима)			
1A30h	ICPSC	Prescaler Register (регистр прескалера)			
1A34h	ICPID1	Peripheral Identification Register 1 (регистр идентификации 1)			
1A38h	ICPID2	Peripheral Identification Register 2 (регистр идентификации 2)			

Вектор прерываний

Вект	ор	Прерывание	Приоритет	Адрес
00	RESET	Сброса и инициализации	00	IVPD:00h
01	NMI	Внутреннее немаскируемое	01	IVPD:08h
02	INT0	Внешнее по входу INT0	03	IVPD:10h
03	INT1	Внешнее по входу INT1	05	IVPD:18h
04	TINT	Агрегированное таймера	06	IVPD:20h
		•••		
80	DMA	Прямого доступа к памяти	11	IVPD:40h
13	SAR	Агрегированное АЦП	18	IVPD:68h
		•••		
18	RTC	Часов реального времени	12	IVPH:90h
21	GPIO	Портов ввода-вывода	20	IVPH:A8h
00		16.	0.4	
23	I2C	Контроллера I2C	24	IVPH:B8h
		***	• • •	

Регистры адреса и масок

ICOAR (1A00h) – I2C Own Address Register (регистр собственного адреса)

ICIMR (1A04h) – I2C Interrupt Mask Register (регистр маски перываний)

15							8
			Res	erved			
7	6	5	4	3	2	1	0
Reserved	AAS	SCD	ICXRDY	ICRRDY	ARDY	NACK	AL

- OADDR Own slave address (собственный адрес)
- AAS Address-as-slave (обнаружение нулевого или своего адрес)
- SCD Stop condition detected (обнаружение условия STOP)
- ICXRDY Transmit-data-ready(готовность передатчика)
- ICRRDY Receive-data-ready (готовность приемника)
- ARDY Register-access-ready (готовность доступа к регистру)
- NACK No-acknowledgment (нет подтверждения)
- AL Arbitration-lost (потеря арбитража)

Регистр статуса

ICSTR (1A08h) – I2C Interrupt Status Register (регистр состояния прерываний)

15	14	13	12	11	10	9	8
Reserved	SDIR	NACKSNT	BB	RSFULL	XSMT	AAS	AD0
7	6	5	4	3	2	1	0
Rese	erved	SCD	ICXRDY	ICRRDY	ARDY	NACK	AL

- SDIR Slave direction (ведомое направление: 0 ведомый приемник, 1 ведомый передатчик)
- NACKSNT No-acknowledgment sent (отправлено подтверждение)
- BB Bus busy (занятость шины)
- RSFULL Receive shift full (переполнение регистра сдвига приемника)
- XSMT Transmit shift empty (пустота регистра сдвига передатчика)
- AAS Addressed-as-slave (получен собственный адрес)
- AD0 Address 0 (получен нулевой адрес)
- SCD Stop condition detected (обнаружено состояние STOP)
- ICXRDY Transmit-data-ready (готовность передатчика)
- ICRRDY Receive-data-ready (готовность приемника)
- ARDY Register-access-ready (готовность доступа к регистру)
- NACK No-acknowledgment (нет подтверждения)
- AL Arbitration-lost (потеря арбитража)

Регистры приема-передачи

ICCLKL (1A0Ch) – I2C Clock Low-Time Divider Register (регистр делителя 1) 0 **ICCL** ICCLKH (1A10h) – I2C Clock High-Time Divider Register (регистр делителя 2) **ICCH** ICCNT (1A14h) – I2C Data Count Register (регистр счетчика данных) ICDC ICDRR (1A18h) – I2C Data Receive Register (регистр принятых данных) 15 0 Reserved D ICSAR (1A1Ch) – I2C Slave Address Register (регистр подчиненного адреса) 0 Reserved SADDR ICDXR (1A20h) – I2C Data Transmit Register (регистр передаваемых данных)

- ICCL Clock low-time divide-down (подчиненное направление)
- ICCH Clock high-time divide-down (отправка подтверждения)
- ICDC Data count (счетчик данных)

Reserved

• SADDR – Slave address (подчиненный адрес)

Регистр режима

ICMDR (1A24h) – I2C Mode Register (регистр режима)

15	14	13	12	11	10	9	8
NACKMOD	FREE	STT	Reserved	STP	MST	TRX	XA
7	6	5	4	3	2		0
RM	DLB	IRS	STB	FDF		ВС	

- NACKMOD No-acknowledge (NACK) mode (режим без подтверждения)
- FREE Free emulation mode (работа в точке останова эмулятора)
- STT START condition (генерация или обнаружение START)
- STP STOP condition (генерация или обнаружение STOP)
- MST Master mode (режим ведущего устройства)
- TRX Transmitter mode (режим передачи)
- XA Expanded address (режим расширенного адреса)
- RM Repeat mode (режим повторения, число повторений в ICCNT)
- DLB Digital loopback mode (режим цифровой петли)
- IRS I2C ignore reset (разрешение работы контроллера I²C)
- STB START byte mode (режим удлиненного стартового состояния)
- FDF Free data format mode (режим свободных данных)
- BC Bit count (число бит: 0 8 бит, 2 2 бита, ..., 7 7 бит)

Режим цифровой петли

Другие регистры

ICIVR (1A28h) – I2C Interrupt Vector Register (регистр вектора прерываний) INTCODE Reserved ICEMDR (1A2Ch) – I2C Extended Mode Register (регистр расширенного режима) Reserved **IGNACK** BCM ICPSC (1A30h) – I2C Prescaler Register (регистр прескалера) 0 Reserved **IPSC** • INTCODE – Interrupt code (код прерывания: 0 – нет прерывания; 1 – потеря арбитража (AL); 2 – нет подтверждения (NACK); 3 – готовность доступа к регистру (ARDY); 4 – готовность приемника (ICRRDY); 5 – готовность передатчика (ICXRDY); 6 – состояние STOP (SCD); 7 – адрес как у ведомого (AAS)) • IGNACK – Ignore NACK (игнорировать отсутствие подтверждения) **BCM** – Backward compatibility (обратная совместимость – прерывание готовности передатчика генерируются при копировании ICDXR в

• IPSC – I2C prescaler divide-down (делитель прескалера)

ICXSR)

Регистры идентификации

ICPID1 (1A34h) – I2C Peripheral Identification Register 1

15 8 7 0

Class Revision

ICPID2 (1A38h) – I2C Peripheral Identification Register 2

15 Reserved TYPE

- Class Класс устройства (01h)
- Revision Версия (06h)
- **TYPE** Тип (05h)

Аппаратурный сброс

PRCR (1C05h) – Peripheral Reset Control Register (регистр управления сбросом)

7	6	5	4	3	2	1	0
PG4_RST	Reserved	PG3_RST	DMA_RST	USB_RST	SAR_RST	PG1_RST	I2C_RST

Запись нуля без эффекта, запись единицы запускает сброс, чтение единицы сигнализирует о состоянии сброса, чтение нуля сигнализирует об окончание сброса.

Подключение I²C

```
// Подключение I2C
uint16 I2C open()
   PCGCR1 &= ~PCGCR1 I2CCG;
                                      // Тактирование приборного интерфейса
                                      // Ожидание завершения
   C5515_wait( 100 );
   ICMDR = ICMDR MST;
                                      // Режим ведущего и состояние сброса
   ICPSC = 20;
                                      // Делитель прескалера 12 МГц
                                      // Делитель частоты 1 20kHz
   ICCLKL = 20;
                                      // Делитель частоты 2 20kHz
   ICCLKH = 20;
   ICMDR = ICMDR_MST
                                      // Ведущее устройство, 7-бит адреса
      | ICMDR IRS;
                                      // Разрешение работы, 8 бит в посылке
   return 0;
// Отключение I2C
uint16 I2C_close()
   ICMDR = 0;
                                      // Сброс и очистка I2С
   C5515_wait( 100 );
                                      // Ожидание завершения
   PCGCR1 |= PCGCR1 I2CCG;
                                      // Снять тактирование
   return 0;
void C5515_wait( Uint16 delay )
  volatile Uint16 i;
  for (i = 0; i < delay; i++);
```

Передача данных I²C

```
uint16 I2C_write( uint16 i2c_addr, uint8* data, uint16 len )
   // Локальные данные
   int16 i = 0;
   // Инициализация передачи
   ICIER = 0;
                                   // Запрет прерываний от I2С
   ICCNT = len;
                                   // Задание длины данных в посылках
   ICSAR = i2c addr;
                                   // Задать адрес ведомого
   ICMDR = IC\overline{M}DR STT
                                   // Генерация состояния START
       ICMDR TRX
                                   // Передатчик
       ICMDR MST
                                   // Ведущее устройство
       ICMDR IRS
                                   // Разрешить работу
       ICMDR FREE;
                                   // Работа совместно с эмулятором
   c5515 wait(\overline{10});
                                   // Задержка перед передачей
   // Выдача данных
   for (i = 0; i < len; i++)
      ICDXR = data[i];
                                   // Запись байта в регистр передатчика
      do i = ICSTR & ICSTR_XRDY; // Получить состояние передачи
      while (i == 0);
                                   // Ожидать пока не передано
   ICMDR |= ICMDR_STP;
                                   // Генерация STOP
   c5515 wait(800);
                                   // Перерыв в линии
   return 0;
```

Примем данных I²C

```
uint16 I2C_read( uint16 i2c_addr, uint8* data, uint16 len )
   // Локальные данные
   int16 i = 0;
  // Инициализация передачи
   ICCNT = len;
                                   // Задание длины данных в посылках
   ICSAR = i2c addr;
                                   // Задать адрес ведомого
   ICMDR = IC\overline{M}DR STT
                                   // Генерация START
       ICMDR MST
                                   // Ведущее устройство
       ICMDR IRS
                                   // Разрешить работу
      ICMDR RM;
                                   // Работа в повторном режиме
   c5515 wait(10);
                                   // Задержка перед приемом
   // Прием данных
   for (i = 0; i < len; i++)
      do i = ICSTR & STR_RRDY;
                                   // Получить состояние приемника
      while (i == 0);
                                   // Ожидание приема данных
      data[i] = ICDRR;
                                   // Получить принятые данные
   ICMDR |= ICMDR_STP;
                                   // Генерация STOP
   c5515_wait(10);
                                   // Перерыв в линии
   return 0;
```

Устройства I2C

Элемент Адрес		Устройство		
TLV320AIC3204	0x18	Аудио-кодек		
INA219	0x40	Контроль питания ядра VDDC, U3		
INA219	0x42	Контроль питания EMIF DC_VDD_IO2, U7		
INA219	0x43	Контроль питания USB_USB_VDD_IN, U21		
INA219	0x44	Контроль питания платы DC_VDD_IO1, U20		
INA219	0x45	Контроль питания 3,3 B, U27		
INA219	0x46	Контроль питания 1,8B, U23		
INA219	0x47	Контроль питания 5 B, U24		
TPS62023	0x48	PMIC - не используется		
CAT24WC256X 0x50 I ² C EEPROM		I ² C EEPROM		

ППЗУ CAT24WC256

A₁₅-A₈

 $A_7 - A_0$

SLAVE

ADDRESS

CO

KP

DATA

SLAVE

ADDRESS

Vss

NC

Земля

Нет соединения

Согласование уровней

