STK1110 Høsten 2021

Mer om hypotesetesting og konfidensintervaller for to utvalg

Tilsvarer Avsnitt 10.3, 10.4 og 10.5

Ingrid Hobæk Haff Matematisk institutt Universitetet i Oslo

Hypotesetest for σ_1^2/σ_2^2

- Vi antar at $X_1, \ldots, X_m \stackrel{\textit{uif}}{\sim} N(\mu_1, \sigma_1^2)$ og $Y_1, \ldots, Y_n \stackrel{\textit{uif}}{\sim} N(\mu_2, \sigma_2^2)$, der μ_1, μ_2, σ_1 og σ_2 er ukjent.
- Vi vil teste hypotesene $H_0: \sigma_1^2 = \sigma_2^2 \mod H_a: \sigma_1^2 \neq \sigma_2^2$.
- Vi vet at $S_1^2 = \frac{1}{m-1} \sum_{i=1}^m (X_i \bar{X})^2$ og $S_2^2 = \frac{1}{n-1} \sum_{i=1}^n (Y_i \bar{Y})^2$ er forventningsrette estimatorer for σ_1^2 og σ_2^2 .
- Videre vet vi at $\frac{(m-1)S_1^2}{\sigma_1^2}\sim\chi_{m-1}^2$ og $\frac{(n-1)S_2^2}{\sigma_2^2}\sim\chi_{n-1}^2$ er uavhengige.
- Da vet vi fra Kap. 6.4 at $\frac{S_1^2/\sigma_1^2}{S_r^2/\sigma_r^2} \sim F_{m-1,n-1}$.
- Under H_0 er $\sigma_1^2 = \sigma_2^2$, og da er $F = \frac{S_1^2}{S_2^2} \sim F_{m-1,n-1}$.
- Da får vi en test med signifikansnivå α dersom vi forkaster H_0 når $F \leq F_{1-\alpha/2,m-1,n-1}$ eller $F \geq F_{\alpha/2,m-1,n-1}$.

Konfidensintervall for σ_1^2/σ_2^2

• For å lage et $100 \cdot (1-\alpha)\%$ konfidensintervall for σ_1^2/σ_2^2 bruker vi at

$$P\left(F_{1-\alpha/2,m-1,n-1} \le \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \le F_{\alpha/2,m-1,n-1}\right) = 1 - \alpha$$

som betyr at

$$P\left(\frac{S_1^2}{S_2^2}F_{1-\alpha/2,m-1,n-1} \le \frac{\sigma_1^2}{\sigma_2^2} \le \frac{S_1^2}{S_2^2}F_{\alpha/2,m-1,n-1}\right) = 1 - \alpha.$$

• Et $100 \cdot (1-\alpha)\%$ konfidensintervall for σ_1^2/σ_2^2 er dermed gitt ved

$$\left(\frac{s_1^2}{s_2^2}F_{1-\alpha/2,m-1,n-1},\frac{s_1^2}{s_2^2}F_{\alpha/2,m-1,n-1}\right)$$

 Metodene over er nokså følsomme overfor antakelsen om normalfordeling.

Eksempel

Vektøking for rotter.

Konfidensintervall for $p_1 - p_2$

- Vi antar at $X \sim Bin(m, p_1)$ og $Y \sim Bin(n, p_2)$ er uavhengige.
- Vi ønsker å lage et konfidensintervall for $p_1 p_2$.
- La $\hat{p}_1 = \frac{X}{m}$ og $\hat{p}_2 = \frac{Y}{n}$, som vi vet er forventningsrette for p_1 og p_2 .
- En naturlig estimator for $p_1 p_2$ er dermed $\hat{p}_1 \hat{p}_2$.
- Vi har:

$$\begin{split} \mathsf{E}(\hat{p}_1 - \hat{p}_2) = & \mathsf{E}(\hat{p}_1) - \mathsf{E}(\hat{p}_2) = p_1 - p_2 \\ \mathsf{V}(\hat{p}_1 - \hat{p}_2) & \stackrel{\textit{uavh.}}{=} \mathsf{V}(\hat{p}_1) + (-1)^2 \mathsf{V}(\hat{p}_2) = \frac{p_1(1 - p_1)}{m} + \frac{p_2(1 - p_2)}{n}. \end{split}$$

Konfidensintervall for $p_1 - p_2$ (forts.)

- Vi antar at m og n er store nok til at \hat{p}_1 og \hat{p}_2 tilnærmet normalfordelt.
- Da er også $\hat{p}_1 \hat{p}_2$ tilnærmet normalfordelt, slik at

$$\frac{\hat{p}_1 - \hat{p}_2 - (p_1 - p_2)}{\sqrt{\frac{p_1(1-p_1)}{m} + \frac{p_2(1-p_2)}{n}}} \stackrel{tiln.}{\sim} N(0,1).$$

Det betyr igjen at

$$\frac{\hat{p}_1 - \hat{p}_2 - (p_1 - p_2)}{\sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{m} + \frac{\hat{p}_2(1-\hat{p}_2)}{n}}} \stackrel{tiln.}{\sim} N(0,1).$$

Konfidensintervall for $p_1 - p_2$ (forts.)

Vi har

$$\mathsf{P}\left(-z_{\alpha/2} \leq \frac{\hat{p}_1 - \hat{p}_2 - (p_1 - p_2)}{\sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{m} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n}}} \leq z_{\alpha/2}\right) = 1 - \alpha.$$

• Et $100 \cdot (1 - \alpha)$ % konfidensintervall for $p_1 - p_2$ er dermed gitt ved

$$\left(\hat{
ho}_1 - \hat{
ho}_2 \pm z_{lpha/2} \sqrt{rac{\hat{
ho}_1(1-\hat{
ho}_1)}{m} + rac{\hat{
ho}_2(1-\hat{
ho}_2)}{n}}
ight).$$

Eksempel

 I august var det 1330 av 8208 spurte som ville ha stemt på Sp om det var stortingsvalg dagen etter.

11500

21/0 - 0/9

- I september var de tilsvarende tallene 985 av 8280.
- La p_1 og p_2 være oppslutningen om Sp i henholdsvis august og september.
- Vi vil lage et 95% konfidensintervall for p₁ − p₂.

Hypotesetest ang. p_1 og p_2

- Vi vil nå teste $H_0: p_1 \leq p_2 \mod H_a: p_1 > p_2$.
- Som vanlig holder det å beregne sannsynligheten for type I-feil i nullverdien, dvs. når $p_1 = p_2 = p$.
- En estimator for p er $\hat{p} = \frac{X+Y}{m+n} = \frac{m}{m+n}\hat{p}_1 + \frac{n}{m+n}\hat{p}_2$.
- Da er også $V(\hat{p}_1 \hat{p}_2) = \frac{p(1-p)}{m} + \frac{p(1-p)}{n} = p(1-p)(\frac{1}{m} + \frac{1}{n}).$
- Det betyr at

$$\frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{m} + \frac{1}{n}\right)}} \stackrel{tiln.}{\sim} N(0,1).$$

• Dermed får vi en test med tilnærmet signifikansnivå α hvis vi forkaster H_0 dersom

$$Z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{m} + \frac{1}{n}\right)}} \geq z_{\alpha}.$$

- For tester av $H_0: p_1 \geq p_2$ mot $H_a: p_1 < p_2$ får vi tilnærmet signifikansnivå α hvis vi forkaster H_0 dersom $Z \leq -z_{\alpha}$.
- For tester av $H_0: p_1=p_2$ mot $H_a: p_1\neq p_2$ får vi tilnærmet signifikansnivå α hvis vi forkaster H_0 dersom $Z\leq -z_{\alpha/2}$ eller $Z\geq z_{\alpha/2}.$

Eksempel

Meningsmåling.

- Vi vil nå finne styrkefunksjonen til tester for $H_0: p_1 \le p_2$ mot $H_a: p_1 > p_2$.
- La $\bar{p} = \frac{m}{m+n} p_1 + \frac{n}{m+n} p_2$ og $\sigma_{\hat{p}_1 \hat{p}_2} = \operatorname{sd}(\hat{p}_1 \hat{p}_2) = \sqrt{\frac{p_1(1-p_1)}{m} + \frac{p_2(1-p_2)}{n}}.$
- Styrkefunksjonen er da gitt ved:

$$\gamma(
ho_1,
ho_2)pprox 1-\Phi\left(rac{z_lpha\sqrt{ar
ho}(1-ar
ho)\left(rac{1}{m}+rac{1}{n}
ight)}-(
ho_1-
ho_2)}{\sigma_{\hat
ho_1-\hat
ho_2}}
ight).$$

• Vi vil bestemme utvalgsstørrelsene m og n, med m=n, slik at sannsynligheten for feil av type II blir høyst β for $p_1=p_1'$ og $p_2=p_2'$ med $p_1'>p_2'$.

• Sannsynligheten for feil av type II er da

$$eta(
ho_1',
ho_2') = 1 - \gamma(
ho_1',
ho_2') = \Phi\left(rac{z_lpha\sqrt{ar{p}(1-ar{p})rac{2}{n}-(
ho_1'-
ho_2')}}{\sigma_{\hat{
ho}_1-\hat{
ho}_2}}
ight)$$

• Vi løser for n når $\beta(p_1', p_2') \leq \beta$, og får

$$n \geq \left(\frac{z_{\alpha}\sqrt{(\rho_1' + \rho_2')\left(1 - \frac{\rho_1' + \rho_2'}{2}\right)} + z_{\beta}\sqrt{\rho_1'(1 - \rho_1') + \rho_2'(1 - \rho_2')}}{\rho_1' - \rho_2'}\right)^2$$

• For tester av $H_0: p_1 \ge p_2 \mod H_a: p_1 < p_2$ er styrkefunksjonen

$$\gamma(p_1,p_2)pprox \Phi\left(rac{-z_lpha\sqrt{ar
ho(1-ar
ho)\left(rac{1}{m}+rac{1}{n}
ight)}-(p_1-p_2)}{\sigma_{\hat
ho_1-\hat
ho_2}}
ight),$$

og den m=n som gir sannsynlighet for feil av type II høyst lik β for $p_1=p_1'$ og $p_2=p_2'$ med $p_1'< p_2'$ er gitt ved samme formel som over.

• For tester av $H_0: p_1 = p_2 \mod H_a: p_1 \neq p_2$ er styrkefunksjonen

$$egin{split} \gamma(p_1,p_2)pprox &1-\Phi\left(rac{z_{lpha/2}\sqrt{ar{p}(1-ar{p})\left(rac{1}{m}+rac{1}{n}
ight)}-(p_1-p_2)}{\sigma_{\hat{p}_1-\hat{p}_2}}
ight)\ &+\Phi\left(rac{-z_{lpha/2}\sqrt{ar{p}(1-ar{p})\left(rac{1}{m}+rac{1}{n}
ight)}-(p_1-p_2)}{\sigma_{\hat{p}_1-\hat{p}_2}}
ight). \end{split}$$

• Den m=n som gir sannsynlighet for feil av type II høyst lik β for $p_1=p_1'$ og $p_2=p_2'$ med $p_1'\neq p_2'$ er gitt ved

$$n \geq \left(\frac{z_{\alpha/2}\sqrt{(\rho_1' + \rho_2')\left(1 - \frac{\rho_1' + \rho_2'}{2}\right)} + z_{\beta}\sqrt{\rho_1'(1 - \rho_1') + \rho_2'(1 - \rho_2')}}{\rho_1' - \rho_2'}\right)^2$$

Eksempel

Eks. 10.12 i boka.

Parforsøk

- Så langt har vi antatt at X_i-ene og Y_i-ene i de to utvalgene er uavhengige.
- Det er naturlig dersom de er knyttet til to forskjellige populasjoner.
- I en del tilfeller gjelder imidlertid ikke denne antakelsen, f.eks. hvis X_i og Y_i er to målinger på samme person i et medisinsk forsøk.
- Da kan en i stedet organisere målingene parvis.

Parforsøk (forts.)

- Anta at vi har par av observasjoner $(X_1, Y_1), \ldots, (X_n, Y_n)$, med $\mathsf{E}(X_i) = \mu_1$ og $\mathsf{E}(Y_i) = \mu_2$.
- La $D_i = X_i Y_i$, i = 1, ..., n.
- Anta at $D_1 \dots, D_n \stackrel{uif}{\sim} N(\mu_D, \sigma_D^2)$, der $\mu_D = \mathsf{E}(D_i) = \mathsf{E}(X_i) \mathsf{E}(Y_i) = \mu_1 \mu_2 \text{ og } \sigma_D^2 = \mathsf{V}(D_i)$.
- Vi kan da bruke metodene for ett normalfordelt utvalg til å lage konfidensintervall (Kap. 8) og tester (Kap. 9) for $\mu_D = \mu_1 \mu_2$.

Eksempel

Eks. 10.9 i boka.

Parforsøk eller to uavhengige grupper?

- Når bør en bruke t-test for pardata og når er det bedre å bruke en t-test for to uavhengige, like store utvalg?
- Testobservator for parforsøk: $T = \frac{\bar{D}}{S_D/\sqrt{n}} = \frac{\bar{X}-\bar{Y}}{S_D/\sqrt{n}}$, der $S_D^2 = \frac{1}{n-1} \sum_{i=1}^n (D_i \bar{D})^2$ er en estimator for σ_D^2 .
- Testobservator for to uavhengige grupper: $T = \frac{\bar{X} \bar{Y}}{\sqrt{(S_1^2 + S_2^2)/n}}$, der $S_1^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2$ og $S_2^2 = \frac{1}{n-1} \sum_{i=1}^n (Y_i \bar{Y})^2$ er estimatorer for henholdvis $\sigma_1^2 = V(X_i)$ og $\sigma_2^2 = V(Y_i)$.
- Forskjellen på disse to er nevnerne.

Parforsøk eller to uavhengige grupper? (forts.)

For pardata har vi:

$$\sigma_D^2=\mathsf{V}(X_i-Y_i)=\sigma_1^2+\sigma_2^2-2\sigma_1\sigma_2\rho,$$
 der $\rho=\mathsf{Corr}(X_i,Y_i).$

• For uavhengige grupper har vi

$$V(X_i - Y_i) \stackrel{uavh.}{=} \sigma_1^2 + \sigma_2^2.$$

• Hvis ρ er positiv og stor, er dermed σ_D^2 mye mindre enn $\sigma_1^2 + \sigma_2^2$, og da er det best å bruke framgangsmåten for parforsøk, fordi det da er lettere å oppdage forskjeller mellom gruppene.