Quantum Cryptography

Nick Papanikolaou

Introduction

- Quantum cryptography is the single most successful application of Quantum Computing/Information Theory.
- For the first time in history, we can hope to use the forces of nature to implement perfectly secure cryptosystems.
- Quantum cryptography works in practice!

State of the Art

- Classical Cryptosystems such as RSA relies on the complexity of factoring integers.
- Quantum Computers can use Shor's Algorithm to efficiently break today's cryptosystems.
- We need a new kind of cryptography!

Today's Talk

- Basic Ideas in Cryptography
- Ideas from the Quantum World
- Quantum Key Distribution (QKD)
- BB84 without eavesdropping

- BB84 with eavesdropping
- WorkingPrototypes
- Research here at Warwick
- Conclusion

Basic Ideas in Cryptography

- Cryptography: "the coding and decoding of secret messages." [Merriam-Webster]
- Cryptography < κρυπτός + γραφή.
- The basic idea is to modify a message so as to make it unintelligible to anyone but the intended recipient.
- For message (plaintext) M,
 e(M, K) encryption ciphertext
 d[e(M, K), K] = M decryption

Keys and Key Distribution

- K is called the key.
- The key is known only to sender and receiver: it is secret.
- **Anyone** who knows the key can decrypt the message.
- Key distribution is the problem of exchanging the key between sender and receiver.

Perfect Secrecy and the OTP

- There exist perfect cryptosystems.
- Example: One-Time Pad (OTP)
- The problem of distributing the keys in the first place remains.

Enter QKD ...

- QKD: Quantum Key Distribution
- Using quantum effects, we can distribute keys in perfect secrecy!
- The Result: The Perfect Cryptosystem,

$$QC = QKD + OTP$$

Ideas from the Quantum World

Measurement

- Observing, or measuring, a quantum system will alter its state.
- Example: the Qubit

$$|\psi\rangle = a \cdot |0\rangle + b \cdot |1\rangle$$

 When observed, the state of a qubit will collapse to either a=0 or b=0.

Photons

Physical qubits

- Any subatomic particle can be used to represent a qubit, e.g. an electron.
- A photon is a convenient choice.
- A photon is an electromagnetic wave.

Polarization

- A photon has a property called polarization, which is the plane in which the electric field oscillates.
- We can use photons of different polarizations to represent quantum states:

$$\theta = 0^{\circ} \Rightarrow \text{state} |0\rangle$$

$$\theta' = 90^{\circ} \Rightarrow \text{state} |1\rangle$$

Polarizers and Bases

- A device called a polarizer allows us to place a photon in a particular polarization. A Pockels Cell can be used too.
- The polarization basis is the mapping we decide to use for a particular state.

Rectilinear:

$$\theta = 0^{\circ} \Rightarrow \text{state} |0\rangle$$

$$\theta' = 90^{\circ} \Rightarrow \text{state} | 1 \rangle$$

Diagonal:

$$\theta = 45^{\circ} \Rightarrow \text{state} |0\rangle$$

$$\theta' = 135^{\circ} \Rightarrow \text{state} | 1 \rangle$$

Measuring Photons

A calcite crystal can be used to recover the bits encoded into a stream of photons.

Uncertainty Principle

What if the crystal has the wrong orientation?

Meet Alice and Bob

Alan J. Learner, Quantum Cryptographer We have to prevent Eve from eavesdropping on communications between Alice and Bob.

Quantum Key Distribution

- Quantum Key Distribution exploits the effects discussed in order to thwart eavesdropping.
- If an eavesdropper uses the wrong polarization basis to measure the channel, the result of the measurement will be random.

QKD Protocols

- A protocol is a set of rules governing the exchange of messages over a channel.
- A security protocol is a special protocol designed to ensure security properties are met during communications.
- There are three main security protocols for QKD: BB84, B92, and Entanglement-Based QKD.
- We will only discuss BB84 here.

BB84 ...

- BB84 was the first security protocol implementing Quantum Key Distribution.
- It uses the idea of photon polarization.
- The key consists of bits that will be transmitted as photons.
- Each bit is encoded with a random polarization basis!

BB84 with no eavesdropping

- Alice is going to send Bob a key.
- She begins with a random sequence of bits.
- Bits are encoded with a random basis, and then sent to Bob:

Bit	0	1	0	1	1
Basis	+	×	×	+	×
Photon	$\overline{}$		Ø	1	

BB84 with no eavesdropping (2)

Bob receives the photons and must decode them using a random basis.

Photon	\rightarrow				
Basis?	+	+	×	+	×
Bit?	0	0	0	1	1

Some of his measurements are correct.

BB84 with no eavesdropping (3)

- Alice and Bob talk on the telephone:
 - Alice chooses a subset of the bits (the test bits) and reveals which basis she used to encode them to Bob.
 - Bob tells Alice which basis he used to decode the same bits.
 - Where the same basis was used, Alice tells Bob what bits he ought to have got.

Comparing measurements

Alice's Bit	0	1	0	1	1
Alice's Basis	+	×	×	+	×
Photon	(1	
Bob's Basis	+	+	×	+	×
Bob's Bit	0	0	0	1	1

The test bits allow Alice and Bob to test whether the channel is secure.

Test bits

The Trick

- As long as no errors and/or eavesdropping have occurred, the test bits should agree.
- Alice and Bob have now made sure that **the channel** is secure. The test bits are removed.
- Alice tells Bob the basis she used for the other bits, and they both have a common set of bits: the final key!

Getting the Final Key

Alice's Bit	0	1	0	1/	1
Alice's Basis	+	×	×	+	×
Photon	Θ		\bigcirc		
Bob's Basis	+	+	*	+	×
Bob's Bit	0	0	0	1	1

Test bits discarded

Final Key = 01

In the presence of eavesdropping

- If an eavesdropper Eve tries to tap the channel, this will automatically show up in Bob's measurements.
- In those cases where Alice and Bob have used the same basis, Bob is likely to obtain an incorrect measurement: Eve's measurements are bound to affect the states of the photons.

Working Prototypes

Quantum cryptography has been tried experimentally over fibre-optic cables and, more recently, open air (23km).

Left: The first prototype implementation of quantum cryptography (IBM, 1989)

Invited

Research at Warwick

RN and NP are working on Specification and Verification of Quantum Protocols.

 Specifying a system formally removes ambiguities from descriptions.

Verification allows us to prove that a protocol is indeed secure and operates correctly under certain input conditions.

Conclusion

- Quantum cryptography is a major achievement in security engineering.
- As it gets implemented, it will allow perfectly secure bank transactions, secret discussions for government officials, and well-guarded trade secrets for industry!