Subset problem	(Similar to Knapsa	ck).
Hems: 1,2,, n	Find a sulese	t of maximal weight,
Weights: w,, w2,, wn	under W.	
(Assume weights are inte	aeu) k	
CAssume weights are inter We want a subset $\{i_1,$	$.,i_k$ $\}$ s.t $\leq \omega_{i_j}$	$\leq W$ and $\leq W_{i_j}$ is
	w	assimised and mareimal.
Fither item 1 is a part	of Optimal subset	Opt.
G Opt ([2,n], 1	W-w,)	Jeff E.'s book.
ver mol-		6 2 parameter
or not Opt([2,n], h) .	DP.
Menioisation:	01	W
Standard of	2	Space complexity
perolelem: Opt ([in] w)		
	•	: 0 (W*n).
perolelem: Opt([i,n], w) Non-negative		hookups per entry = 2
Subset sum puoblem.		
Is there a contiguous su	leset that sums uy	to A?
i		Sliding window.
· Array partitioning pero	blem: (Sundar V.	ishwanathan's notes. IITB) Also lectrode.
Array A.	1	n

Imput is the penalty matrix (n x n). -> P Each partition involves a rost c. Task: Divide the array into parts steach part has contignous elements and total partition east is minimized.

(s) Sum of penalties of the parts and cost of partitioning - If there is only one part, penalty is P(1,n). Total cost = P(1,i) + c + p(i+1,n). No . ob partitions $i_1, i_2, \dots, i_k \rightarrow c.N + p(i,i_l) + p(i_{l+1}, i_2) + \dots + p(i_{k}, +1, n).$ Have to minimise this. One of the soln: $cost([1,n]) = min \{ min \{ cost([1,k]) + c + cost([k+1,n]) \}, p[1,n] \}$ (32D DP. Space comp. = $O(n^2)$ Time comp. = $O(n^2 \cdot n)^3 \frac{n^3}{leguet no}$. MinCost ([1,n]): min $\{P[1,k]+c+MinCost([k+1,n])\}$, P[1,n]Space: O(n) G 1D DP Time: 0(n2). Sulperolelem: Minlost ([i,n]) = min { { P[i,k] + c + MinCost ([k+1,n]) | i < k < n} U { P[1,n]}}

Peroof of correctours for 2nd approach. Say there is an i* in opt. partition S.E [1,i*] is a partition. This partition is considered in the second approach as is. So nee're not missing any cases. ist approach: and approach. [1,n][n,n]Z i i [1, i] [i+1,n] [1,i] [i+1,n]. CT CT

[1,i] [i+1,n].

[i+1,i'] [i'+1,n]

Doesn't fire as one partition:

Considerity threas one partition:

Internal Scheduling:

Jolis/Regs. J_1 , J_2 ,..., J_n Stark S_1 , S_2 , S_n Finish S_1 , S_2 , S_n

Approved: Take a job or not take it.

-sSort jobs/eng. in increasing order of start time.

Max. no. of jobs that can

be scheduled without overlaps.

Want: The duration of scheduling

to be meximised as

well.

DP: Jeff E \$ A

 J_1, J_2, \ldots, J_n .

9 First non-overlapping job

If we take Ji, then |Ji| + Opt (Fierst[1], n). If we don't, then Opt (2.n).

over finish time

4 start time

 $\begin{array}{c} \text{Opt } (1,n) : near \\ \\ |f_{1}-s_{1}| + \text{Opt } (\text{First } [1],n) \\ \\ \text{Opt } (i,n) : near \\ \\ \\ |f_{i}-s_{i}| + \text{Opt } (\text{First } [i],n) \\ \\ \\ \text{If } i - s_{i}| + \text{Opt } (\text{First } [i],n) \\ \\ \end{array}$