Curso: Pós-Graduação em Redes e sistemas de Telecomunicações

RT008 – Padrões de comunicações móveis

Aluno: Antonio Carlos Ferreira de Almeida

Matricula:10599

Propostas de trabalho para disciplina RT008

1. Proposta 01 - Arquitetura LTE/SAE

A arquitetura LTE/SAE conecta e integra diversos componentes de rede por meio de uma vasta gama de interfaces. Este trabalho explora o papel de cada uma dessas interfaces e revela suas principais funções na estrutura da rede.

2. Proposta 02 - Arquiteturas 3GPP

As arquiteturas 3GPP trazem modos de operação e funções variadas para a rede. Este estudo desvenda as diferentes estruturas e funcionalidades que dão suporte a um ambiente de comunicação moderno e eficiente.

Data: 01/12/2024

Sumário

1 - Introdução e Objetivo	3
2 – Comparativo arquitetural	3
3 – Descrição da proposta de Trabalho 1	3
4 – Plano Usuário e Plano Controle	4
5 – Plano Controle	11
6 – Plano Usuário	16
7– Descrição da proposta de Trabalho 2	18
8 – Release 6	19
9 – Release 7 – Direct Tunnel	19
10 – Release 7 – Direct Tunnel and RNC in NodeB	20
11 – Release 8 – SAE & LTE	22
12 – Conclusões	23
Referência Bibliográficas	23
The LTE/SAE Deployment Handbook By Jyrki T. J. Penttinen	23
An Introduction to LTE: LTE, LTE-Advanced, SAE, VoLTE and 4G Mobile Communications, 2nd Edition By Christopher Cox	24
LTE, LTE-Advanced and WiMAX: Towards IMT-Advanced Networks By Abd- Elhamid M. Taha, Hossam S. Hassanein, Najah Abu Ali	24
LTE Advanced: 3GPP Solution for IMT-Advanced By Harri Holma and Antti Toskala	24
Evolved Packet System (EPS): The LTE and SAE Evolution of 3G UMTS By Pierre Lescuyer, Thierry Lucidarme	25
Índice de figuras	
Figura 1: Arquitetura de rede LTE/SAE.	4
Figura 2: User plane - Control plane	10
Figura 3: Evolução das arquiteturas de rede até o Release 8	18
Índice de Tabelas	
Tabela 1: Comparação entre as arquiteturas de redes.	3

1 - Introdução e Objetivo

A evolução das redes móveis tem sido impulsionada pela crescente demanda por comunicação mais rápida, confiável e integrada. Nesse contexto, as arquiteturas LTE/SAE (Long-Term Evolution/System Architecture Evolution) e 3GPP (3rd Generation Partnership Project) desempenham papéis cruciais na construção de ambientes de comunicação modernos e eficientes. Ambas as tecnologias representam marcos significativos na conectividade, com estruturas que integram diversos componentes e modos de operação, proporcionando suporte a uma ampla gama de aplicações e serviços.

A arquitetura LTE/SAE, por exemplo, conecta e integra diferentes elementos de rede por meio de um conjunto abrangente de interfaces. Essas interfaces não apenas facilitam a comunicação entre componentes, mas também desempenham funções fundamentais para o desempenho e a eficiência da rede como um todo. Já as arquiteturas 3GPP oferecem uma abordagem ampla e flexível para o design de redes, permitindo modos de operação variados e funcionalidades que suportam a evolução tecnológica e a expansão das demandas dos usuários.

Diante desse panorama, este trabalho tem como objetivo explorar as principais características dessas arquiteturas, destacando o papel das interfaces no LTE/SAE e as funcionalidades diversificadas das arquiteturas 3GPP. Por meio desta análise, busca-se fornecer uma compreensão abrangente das estruturas que sustentam a conectividade moderna, abordando tanto os aspectos técnicos quanto as contribuições dessas arquiteturas para a eficiência das redes móveis.

2 - Comparativo arquitetural

Tabela 1: Comparação entre as arquiteturas de redes.

Aspecto	LTE/SAE	Arquiteturas 3GPP
Interface Principal	S1 (entre eNodeB e EPC); X2 (entre eNodeBs).	Variável: Gn, Gi, Uu, S1, etc.
Base Tecnológica	Totalmente IP.	Suporte a IP e protocolos legados.
Escalabilidade	Alta, com foco em serviços de dados.	Suporte abrangente, mas com mais complexidade.

3 – Descrição da proposta de Trabalho 1

Proposta 1: de acordo com a figura abaixo, a arquitetura LTE/SAE possui uma gama de interfaces entre seus componentes de rede. O trabalho consiste em definir a funcionalidade de cada uma destas interfaces, e suas principais funções.

Figura 1: Arquitetura de rede LTE/SAE.

4 - Plano Usuário e Plano Controle

A interface *Uu* (Plano Usuário/Controle) conecta o **User Equipment (UE)** ao **eNodeB**. É essencialmente o enlace de rádio entre o dispositivo do usuário e a estação base, sendo responsável por toda a comunicação via rádio. Suas principais funcionalidades incluem:

1. Gerenciamento de Recursos de Rádio (RRM)

- Controla e aloca recursos do espectro para a comunicação do UE.
- Lida com controle de potência, admissão de usuários e agendamento dinâmico de recursos para uplink e downlink.

2. Transporte de Dados do Usuário

 Permite o envio e recepção de dados do usuário entre o UE e o eNodeB usando bearers.

3. Segurança

 Encripta os dados trafegados para garantir a confidencialidade e proteger contra interceptações.

4. Mobilidade

 Suporta mecanismos de handover, permitindo que o UE mude de uma célula para outra sem interrupções na conexão.

5. Protocolo de Sinalização (AS Protocols)

 Inclui a troca de mensagens para controle de sessão, configuração de bearers, autenticação e gerenciamento de conexões. A interface **X2** (Usuário/Controle) conecta **eNodeBs** diretamente e é usada principalmente para coordenação e troca de informações entre eles. Suas funcionalidades incluem:

1. Handover

- Facilita o handover entre eNodeBs adjacentes.
- Transfere o contexto do UE (informações sobre a sessão e dados em buffer) para o eNodeB de destino, garantindo continuidade de serviço.

2. Gerenciamento de Interferência

 Coordena as alocações de recursos entre eNodeBs para minimizar interferências em áreas de fronteira de células.

3. Transferência de Dados em Buffer

 Durante um handover, os dados armazenados no buffer do eNodeB de origem podem ser transferidos para o eNodeB de destino para evitar perda de pacotes.

4. Coordenação de Carga

 Compartilha informações de carga entre eNodeBs, permitindo balanceamento de carga e otimização de recursos.

5. Gerenciamento de Mobilidade

 Coordena o handover de maneira eficiente, sem a necessidade de passar diretamente pelo núcleo da rede (EPC), reduzindo a latência.

A interface S5 (Plano Usuário/Controle) conecta o SGW (Serving Gateway) ao PGW (Packet Data Network Gateway) dentro do núcleo da rede EPC (Evolved Packet Core) do LTE. Sua principal função é permitir o transporte de dados do usuário e sinalização entre esses dois elementos da rede, estabelecendo uma ponte entre a rede de acesso e a rede de dados externas, como a Internet.

1. Transporte de Dados de Usuário

- Utiliza o protocolo GTP-U (GPRS Tunneling Protocol User Plane) para encapsular e transportar pacotes de dados do usuário.
- Faz a interligação entre:
 - o O SGW, que gerencia a conexão de dados na região do usuário.
 - o **PGW**, que fornece acesso às redes externas, como a internet.

2. Controle e Gerenciamento de Sessões

- Utiliza o protocolo GTP-C (GPRS Tunneling Protocol Control Plane) para sinalização de controle, incluindo:
 - Estabelecimento, modificação e liberação de túneis para dados do usuário.
 - Troca de informações sobre a configuração de QoS (Qualidade de Serviço).

3. Suporte à Mobilidade

- Permite que o SGW mantenha a continuidade da conexão enquanto o usuário muda de local (handover), transferindo os dados do túnel para o PGW sem interrupções.
- Facilita o gerenciamento de conexões quando o assinante se desloca entre áreas servidas por diferentes eNodeBs ou SGWs.

4. QoS (Qualidade de Serviço)

 Garante que os parâmetros de QoS definidos para o assinante sejam aplicados no tráfego entre o SGW e o PGW, assegurando a qualidade ideal para serviços como VoIP, streaming e aplicações críticas.

5. Configuração de Endereço IP

 Auxilia no transporte das informações de configuração do endereço IP atribuído ao dispositivo do usuário, conforme estabelecido pelo PGW.

A interface **SGi** (Plano Usuário/Controle) conecta o **PGW** (Packet Gateway) do EPC (Evolved Packet Core) a redes externas, como:

- Redes IP públicas (Internet).
- Redes privadas de operadoras (intranets corporativas).
- Redes IMS (IP Multimedia Subsystem).

Essa interface é fundamental para estabelecer a conectividade entre a rede central móvel (EPC) e outros **PDNs (Packet Data Networks)**, permitindo que os dispositivos móveis acessem serviços e aplicativos externos.

1. Conexão com Redes Externas

- Permite a comunicação entre o EPC e:
 - A Internet para acesso a serviços públicos (e.g., navegação na web, streaming de vídeo).
 - Redes privadas, como intranets corporativas, para acesso seguro a dados empresariais.
 - O IMS, utilizando um APN específico para serviços multimídia como chamadas VoLTE e mensagens RCS.

2. Suporte a Múltiplos APNs

- A SGi permite que o PGW conecte diferentes APNs (Access Point Names) a redes externas apropriadas.
- Cada APN representa uma rede externa distinta (e.g., um APN para Internet pública e outro para IMS).

3. Alocação de Endereços IP

- Facilita a atribuição de endereços IP aos dispositivos móveis:
 - Um endereço IP é fornecido para cada portador padrão estabelecido.

 Esses endereços IP permitem que o dispositivo se conecte à rede externa específica associada ao APN.

4. Encaminhamento de Dados

- Garante o transporte de dados entre o PGW e as redes externas por meio de roteamento eficiente.
- É responsável por encaminhar pacotes IP entre o dispositivo móvel e servidores externos (e.g., websites ou serviços IMS).

5. Aplicação de Políticas de QoS

- Implementa políticas de Qualidade de Serviço (QoS) definidas no EPC para garantir que os requisitos de serviço sejam atendidos:
 - Exemplo: Prioridade para serviços em tempo real como VoLTE (voz sobre LTE).

6. Suporte a Serviços IMS

- Estabelece conectividade com o **IMS** para serviços de voz e multimídia:
 - Requer um APN específico para acesso ao IMS.
 - Permite o registro SIP (Session Initiation Protocol) do dispositivo móvel no IMS.

A interface **Gi** (Plano Usuário/Controle) conecta o **GGSN** (**Gateway GPRS Support Node**) ao **PDN** (**Packet Data Network**) externo, como:

- Internet pública.
- Intranets corporativas.
- Outros serviços baseados em IP.

Essa interface desempenha um papel crucial no fornecimento de conectividade de dados para os dispositivos móveis em redes GPRS (General Packet Radio Service) e UMTS (Universal Mobile Telecommunications System).

1. Conexão com Redes Externas

- Interligação do GPRS/UMTS ao PDN externo:
 - Permite que dispositivos móveis acessem a Internet, redes privadas ou outros serviços baseados em IP.
 - Viabiliza o transporte de dados entre dispositivos móveis e servidores externos.

2. Encaminhamento de Dados

- Responsável pelo roteamento de pacotes IP entre o GGSN e a rede externa.
- Garante que os dados originados de dispositivos móveis cheguem ao destino apropriado na Internet ou intranet e vice-versa.

3. Alocação de Endereço IP

- O GGSN, por meio da interface Gi, atribui um endereço IP público ou privado ao dispositivo móvel:
 - Endereço IP público para acesso à Internet.
 - Endereço IP privado para acesso a redes corporativas.

4. Implementação de Políticas de QoS

- Aplica políticas de Qualidade de Serviço (QoS) para atender às exigências de diferentes tipos de tráfego, como:
 - o Dados em tempo real (e.g., chamadas VoIP).
 - o Dados não prioritários (e.g., navegação na web).

5. Tradução de Endereços e Segurança

- NAT (Network Address Translation):
 - Converte endereços IP privados em públicos, garantindo compatibilidade com redes externas.
- **Firewall:** Implementa barreiras de segurança para proteger a rede e os dispositivos conectados contra ameaças externas.

A interface **Go** (Plano Usuário/Controle) é utilizada para conectar o **GGSN** (**Gateway GPRS Support Node**) ao **IMS** (**IP Multimedia Subsystem**) por meio do **PCRF** (**Policy and Charging Rules Function**). Sua funcionalidade principal nesse contexto é:

- 1. Gestão de Políticas de Qualidade de Serviço (QoS):
 - O Go permite que o GGSN receba as regras de QoS definidas pelo PCRF, garantindo que os requisitos de qualidade para os serviços IMS sejam atendidos. Isso é essencial para aplicações como chamadas VoIP, vídeo e outros serviços multimídia do IMS.

2. Controle de Tarifação em Tempo Real:

 A interface Go também ajuda a aplicar políticas de cobrança específicas para os serviços fornecidos pelo IMS. Isso garante que o uso de serviços como chamadas de vídeo e mensagens seja tarifado corretamente conforme as regras da operadora.

3. Coordenação entre o Núcleo de Dados e IMS:

 Permite que o IMS interaja com o núcleo de dados (através do GGSN) para fornecer conectividade IP aos dispositivos que estão acessando serviços IMS.

A interface lu-PS (Plano Usuário/Controle) conecta a RNC (Radio Network Controller) ao SGSN (Serving GPRS Support Node) dentro da arquitetura de redes móveis 3G, no domínio de pacotes. Sua principal função é habilitar o transporte de dados e sinalização entre a rede de acesso rádio (UTRAN) e o núcleo da rede (CN - Core Network) para serviços baseados em pacotes, como navegação na internet e transmissão de dados.

1. Transporte de Dados de Usuário

- Utiliza o **GTP-U (GPRS Tunneling Protocol User Plane)** para encapsular e transportar dados de usuário, como pacotes IP.
- Garante a continuidade do tráfego de pacotes entre o RNC e o SGSN, incluindo:
 - o Dados móveis.
 - o Serviços de internet.
 - Aplicativos de transmissão de dados.

2. Sinalização e Controle

- Suporte ao RANAP (Radio Access Network Application Protocol) para troca de mensagens de controle entre o SGSN e o RNC:
 - Configuração e gerenciamento de sessões.
 - Handover (transferência de conexões entre células).
 - Estabelecimento de túneis GTP para tráfego de dados.

3. Mobilidade e Gerenciamento de Sessões

- Facilita o handover suave para usuários móveis, permitindo a continuidade do serviço ao trocar dados e contexto entre células ou RNCs diferentes.
- Garante o suporte à mobilidade, sincronizando informações do usuário e da sessão.

4. Suporte ao Encapsulamento com GTP-U

- Criação de túneis GTP-U segmentados:
 - Entre SGSN e RNC: Principal caminho para o tráfego de dados do usuário.
 - Possibilidade de túnel direto entre o GGSN e o RNC (em implementações mais recentes do 3GPP, para reduzir a latência e carga no SGSN, mas limitado à mesma operadora).

5. QoS (Qualidade de Serviço)

- Garante que os requisitos de QoS definidos no núcleo da rede sejam respeitados na transmissão de dados através da interface.
- Ajusta parâmetros de tráfego para assegurar desempenho ideal em serviços como VoIP ou streaming de vídeo.

A interface **Gn** (Plano Usuário/Controle) é um elemento fundamental na arquitetura do núcleo de redes 2G/3G, conectando o **SGSN** (**Serving GPRS Support Node**) ao **GGSN** (**Gateway GPRS Support Node**) dentro do mesmo PLMN (**Public Land Mobile Network**). Ela desempenha funções essenciais relacionadas ao transporte de dados de usuários e à sinalização entre os nós da rede de pacotes.

1. Transporte de Dados do Usuário

• Utiliza o **protocolo GTP-U (GPRS Tunneling Protocol - User Plane)** para encapsular e transferir pacotes de dados entre o SGSN e o GGSN.

• É responsável por gerenciar o tráfego de dados do usuário dentro da mesma rede operadora (PLMN).

2. Sinalização de Controle

- Opera com o protocolo GTP-C (GPRS Tunneling Protocol Control Plane)
 para a troca de mensagens de controle entre o SGSN e o GGSN, incluindo:
 - o Configuração de sessões PDP (Packet Data Protocol).
 - Modificação de parâmetros de sessão, como QoS (Qualidade de Serviço).
 - Liberação de sessões PDP.

3. Suporte à Mobilidade

- Garante a continuidade das conexões de dados enquanto o usuário se desloca entre células ou regiões servidas por diferentes SGSNs dentro do mesmo PLMN.
- A interface facilita a transferência de contexto do assinante e de túneis entre SGSNs.

4. Gerenciamento de QoS (Qualidade de Serviço)

 Garante que os requisitos de QoS definidos no perfil do usuário sejam aplicados no transporte de dados, oferecendo suporte a diferentes classes de serviço, como transmissão de dados em tempo real ou tráfego de melhor esforço.

5. Encaminhamento de Dados

- O GGSN usa a interface Gn para receber pacotes do SGSN, encapsulá-los e encaminhá-los para redes externas (via interface Gi).
- No sentido inverso, o GGSN recebe pacotes das redes externas e os encaminha para o SGSN pelo túnel estabelecido na interface Gn.

Figura 2: User plane - Control plane

fonte: https://devopedia.org/control-and-user-plane-separation

5 - Plano Controle

O **S1-MME** (Plano controle) é uma interface fundamental na arquitetura LTE que conecta o **eNodeB** (estação base) ao **MME** (Mobility Management Entity) e desempenha as seguintes funções principais:

1. Gerenciamento de Conexões de Controle (Control Plane):

- Estabelece, gerencia e libera conexões entre os dispositivos do usuário (UE) e a rede LTE.
- Controla a configuração inicial do transporte de rede (TNL) e negocia fluxos SCTP entre o eNodeB e o MME.

2. Gerenciamento de Sessões e Bearers:

- Permite a criação, modificação e liberação de bearers, que são os canais lógicos de comunicação associados a diferentes níveis de Qualidade de Serviço (QoS).
- Garante que os parâmetros do QoS sejam respeitados para cada tipo de tráfego, como chamadas VoIP ou navegação na web.

3. Gerenciamento de Contexto de Usuário (UE Context):

- Cria e mantém o contexto de cada UE no MME e no eNodeB durante a sessão ativa.
- Garante que informações de rastreamento e configuração sejam compartilhadas para a continuidade do serviço.

4. Paginação e Mobilidade:

- Coordena a paginação (notificação) para localizar UEs em modo ocioso.
- Gerencia a mobilidade intra-LTE, incluindo handovers via S1, para garantir a continuidade da sessão quando o usuário se move entre áreas de cobertura.

5. Configuração Automática (Self-Configuration):

- Automatiza a troca de dados de configuração entre o eNodeB e o MME, como identidades de áreas de rastreamento (Tracking Areas) e listas de PLMNs.
- o Reduz esforços manuais e minimiza erros de configuração na rede.

6. Flexibilidade e Resiliência:

 Suporta o recurso de S1-Flex, que permite que um eNodeB se conecte a múltiplos MMEs em uma área de pool, melhorando a resiliência e o balanceamento de carga na rede.

A *interface S11* (Plano controle) é utilizada na arquitetura LTE para conectar o **MME** (Mobility Management Entity) ao Serving Gateway (S-GW). Sua funcionalidade é

essencial para o gerenciamento do plano de controle, especialmente no contexto de mobilidade e configuração de bearers.

1. Gerenciamento de Sessões

- A interface S11 permite a criação, modificação e exclusão de sessões de usuário.
- Durante o estabelecimento de uma sessão, o MME utiliza a S11 para comunicar ao S-GW informações sobre os parâmetros de QoS, endereços de IP e tunelamento necessário para o tráfego de dados do usuário.

2. Suporte a Mobilidade (Handover)

- No caso de handover entre áreas de cobertura, a S11 é usada para coordenar a transferência do contexto do UE entre os S-GWs (handover inter-SGW).
- Permite que o MME informe ao novo S-GW sobre a localização e os requisitos de dados do UE, garantindo a continuidade do serviço durante a mobilidade.

3. Criação e Gerenciamento de Bearers

- É responsável por configurar os **bearers** (canais de comunicação) no S-GW com os parâmetros adequados para o tipo de tráfego, como navegação na web, VoIP ou transmissão de vídeo.
- Permite que o MME informe ao S-GW a configuração do túnel GTP-U
 (Plano de Usuário) e o mapeamento do tráfego de dados.

4. Mensagens e Procedimentos

A interface S11 utiliza o protocolo **GTP-C (GPRS Tunneling Protocol - Control Plane)** para troca de mensagens, incluindo:

- Create Session Request/Response: Configuração inicial da sessão do UE.
- Modify Bearer Request/Response: Modificação de parâmetros de QoS ou atualização de um bearer existente.
- Delete Session Request/Response: Finalização da sessão do usuário e liberação de recursos associados.
- Forward Relocation Request/Response: Utilizado durante handovers inter-SGW para transferir informações do contexto do UE.

5. Suporte a Políticas e Regras

✓ A S11 trabalha em conjunto com o PCRF (Policy and Charging Rules Function) para implementar políticas de QoS e tarifação, garantindo que as regras estabelecidas pelo operador de rede sejam aplicadas corretamente.

A interface **S6a** (Plano controle) conecta o **MME** (**Mobility Management Entity**) ao **HLR/HSS** (**Home Subscriber Server**) no núcleo da rede LTE. Sua principal função é gerenciar as informações relacionadas à autenticação, autorização e mobilidade dos usuários. As funcionalidades específicas incluem:

1. Autenticação do Usuário

 Transfere as credenciais de autenticação do HSS para o MME, garantindo que apenas usuários autorizados possam acessar a rede.

2. Gestão de Assinaturas

- Permite ao MME consultar e obter informações de assinatura (perfil de usuário), como:
 - Tipo de serviço permitido.
 - Políticas de QoS (Quality of Service).
 - Parâmetros de mobilidade.

3. Atualização de Localização

 O MME informa ao HSS a localização atual do usuário para permitir a entrega de serviços (ex.: chamadas ou mensagens).

4. Configuração de Sessões

 Auxilia na configuração de sessões de dados com base no perfil do usuário armazenado no HSS.

5. Controle de Políticas

o Coordena informações de políticas de acesso e uso de recursos.

A interface **\$10** (Plano controle) conecta dois **MMEs** e é usada para facilitar a mobilidade de usuários entre diferentes MMEs dentro da mesma rede. Suas funcionalidades incluem:

1. Transferência de Contexto do UE

 Durante um handover entre áreas servidas por diferentes MMEs, o contexto do UE (incluindo informações sobre a sessão ativa e o estado de mobilidade) é transferido de um MME de origem para um MME de destino.

2. Suporte à Mobilidade

 Permite que o UE mantenha a continuidade da conexão durante mudanças de MME sem a necessidade de reestabelecer sessões.

3. Sincronização de Informações

 Garante que informações críticas, como parâmetros de sessão e status de conexão, estejam alinhadas entre os MMEs.

4. Gerenciamento de Falhas

 Em caso de falha ou desconexão inesperada, o S10 ajuda a redistribuir a carga e reiniciar processos de mobilidade.

A interface **\$3** (Plano controle) desempenha um papel importante na interoperabilidade entre o núcleo de pacote de redes LTE/EPC e redes legadas 2G/3G. Sua principal funcionalidade é:

1. Troca de Informações de Controle para Handover:

- A S3 permite a troca de informações de plano de controle entre o MME (Mobility Management Entity), que faz parte do núcleo LTE/EPC, e o SGSN (Serving GPRS Support Node) de redes 2G/3G.
- Essa troca de informações é essencial para suportar a continuidade do serviço durante transferências (handover) entre redes LTE e 2G/3G.

2. Transferência de Contexto do Usuário:

 Durante um handover, a S3 transporta informações como identidade do assinante, contexto de sessão, parâmetros de qualidade de serviço (QoS) e outros dados necessários para que o SGSN configure os recursos apropriados na rede legada.

3. Suporte a Roaming entre Tecnologias:

 A interface \$3\$ também facilita a interoperabilidade para usuários que estão em roaming entre redes de diferentes gerações (LTE e 2G/3G), garantindo a continuidade de serviços como acesso a dados e chamadas de voz.

A interface **Gr** (Plano controle) que conecta o **SGSN** (Serving GPRS Support Node) ao **HSS** (Home Subscriber Server), desempenha as seguintes funcionalidades principais:

1. Autenticação do Usuário:

- A interface **Gr** é usada para autenticar o assinante na rede GPRS/UMTS.
- O SGSN solicita informações de autenticação do HSS, como chaves e tokens de autenticação, para validar a identidade do usuário.

2. Gestão de Dados de Assinantes:

- O HSS armazena informações de perfil do assinante, como APNs (Access Point Names), parâmetros de qualidade de serviço (QoS) e permissões de roaming.
- A Gr permite que o SGSN recupere essas informações para configurar corretamente os serviços e acessos do assinante.

3. Ativação e Gerenciamento de Sessão:

 Durante o processo de anexação (attach) ou estabelecimento de sessões de dados (PDP context), o SGSN utiliza a interface **Gr** para consultar o HSS e obter dados necessários para ativar os serviços de dados para o usuário.

4. Roaming e Mobilidade:

 A interface **Gr** facilita o suporte a mobilidade e roaming ao permitir que o SGSN obtenha informações do assinante mesmo quando o usuário se conecta a uma rede fora de sua área de registro original.

5. Uso do Protocolo MAP:

 A interface Gr utiliza o Mobile Application Part (MAP) do protocolo SS7 para comunicação, possibilitando a troca de mensagens estruturadas entre o SGSN e o HSS.

A interface **S7** (Plano controle) conecta o **PGW** (Packet Data Network Gateway) ao **PCRF** (Policy and Charging Rules Function) no EPC (Evolved Packet Core) e desempenha um papel crítico no gerenciamento de políticas e cobrança. Sua funcionalidade inclui:

1. Controle de Políticas de QoS (Qualidade de Serviço):

- O PGW consulta o PCRF pela interface S7 para obter regras de QoS e políticas de acesso para cada sessão do usuário.
- O PCRF fornece informações sobre como gerenciar os fluxos de tráfego de dados, como priorização ou restrições de largura de banda.

2. Gestão de Políticas de Rede:

 A interface S7 permite que o PCRF instrua o PGW a aplicar políticas específicas com base em critérios como tipo de serviço, localização do usuário ou perfil do assinante.

3. Cobrança Dinâmica:

 O PCRF comunica políticas relacionadas à tarifação em tempo real, permitindo que o PGW implemente diferentes modelos de cobrança, como tarifação baseada em uso ou pacotes premium.

4. Ativação e Modificação de Sessões:

 Durante a ativação ou modificação de uma sessão de dados, o PGW usa a interface \$7 para consultar o PCRF e obter atualizações de políticas em tempo real.

5. Utilização do Protocolo Gx:

 A interface S7 utiliza o protocolo Gx, que é baseado no Diameter, para comunicação entre o PGW e o PCRF.

A interface Rx+ (Plano controle) conecta o PCRF (Policy and Charging Rules Function) à Internet e ao IMS (IP Multimedia Subsystem) no plano de usuário. Sua funcionalidade está relacionada ao controle de políticas e qualidade de serviço (QoS) para serviços multimídia e aplicações baseadas em IP.

1. Troca de Informações sobre Aplicações:

A interface Rx+ permite que o PCRF receba informações de aplicações hospedadas na Internet ou IMS. Essas informações ajudam na aplicação de políticas específicas para serviços, como chamadas VoIP, streaming de vídeo ou jogos online.

2. Gestão Dinâmica de Políticas:

 Através da Rx+, o PCRF comunica-se com o IMS ou servidores de aplicações para configurar ou ajustar políticas de QoS para serviços específicos. Por exemplo, para uma chamada de vídeo, o IMS notifica o PCRF sobre os requisitos de largura de banda e prioridade.

3. Controle de Qualidade de Serviço (QoS):

- O PCRF utiliza a interface Rx+ para garantir que os requisitos de QoS para aplicações sensíveis à latência, como voz ou vídeo, sejam atendidos.
- Ele coordena essas políticas com a rede de acesso (via SGW/PGW) para alocar os recursos necessários.

4. Cobrança Baseada em Aplicações:

 Para serviços premium, a Rx+ permite que o PCRF implemente políticas de cobrança diferenciadas, como cobrança extra por streaming de alta qualidade ou por aplicativos específicos.

5. Integração com IMS e Internet:

- No IMS: A interface Rx+ é usada para coordenar sessões SIP e garantir que as políticas para comunicação multimídia sejam implementadas corretamente.
- Na Internet: Permite a aplicação de políticas para serviços hospedados fora do IMS, como aplicações OTT (Over-the-Top), incluindo serviços de streaming e redes sociais.

6. Protocolo Usado:

 A comunicação na interface Rx+ é baseada no protocolo Diameter, que fornece robustez e escalabilidade para o controle de políticas.

6 – Plano Usuário

A interface S1-U (Plano usuário) é parte do sistema Evolved Packet Core (EPC) e desempenha um papel crucial na transmissão de dados do plano de usuário entre o eNB (evolved NodeB) e o SGW (Serving Gateway) no contexto de redes 4G/LTE.

1. Transmissão de Dados do Plano de Usuário:

- A interface S1-U é usada para transportar o tráfego de dados do plano de usuário, ou seja, os dados efetivos de comunicação, como voz, vídeo e pacotes de dados de internet, entre o eNB (que é o ponto de acesso de rádio na rede) e o SGW (que é o gateway de acesso à rede central).
- O eNB é responsável pela comunicação com os dispositivos móveis (usuários), enquanto o SGW gerencia a entrega de dados na rede core, incluindo a conectividade com o PGW (Packet Gateway).

2. Estabelecimento de Túnel de Dados:

 O SGW gerencia esses túneis, possibilitando que os pacotes de dados sejam direcionados corretamente entre o eNB e o SGW, bem como entre o SGW e outros elementos da rede, como o PGW.

3. Gerenciamento de Dados:

 A interface S1-U é responsável pela transferência de pacotes IP do plano de usuário, permitindo a comunicação entre os dispositivos móveis e os PDNs (Redes de Dados Externas), como a Internet ou redes privadas.

4. Desempenho e Escalabilidade:

- S1-U oferece alta largura de banda e baixa latência para garantir a entrega eficiente e em tempo real dos dados do plano de usuário.
- A comunicação entre eNB e SGW através de S1-U é otimizada para suportar grandes volumes de tráfego de dados, como streaming de vídeo ou chamadas VoLTE (Voice over LTE).

5. Separação entre Plano de Controle e Plano de Usuário:

 A interface S1-MME é usada para controlar a sessão e autenticar o usuário, enquanto a S1-U cuida da transmissão real dos dados do usuário. Ou seja, S1-MME lida com as mensagens de controle e S1-U lida com os pacotes de dados efetivos.

6. Funciona com o GTP-U:

 O tráfego do plano de usuário entre o eNB e o SGW é transportado pelo GTP-U (GPRS Tunneling Protocol - User Plane), que cria túneis dedicados para a comunicação eficiente dos dados.

A interface S4 (Plano usuário) é uma interface definida para permitir a interoperabilidade entre o SGW (Serving Gateway) e o SGSN (Serving GPRS Support Node) em redes que combinam elementos do núcleo de pacotes 2G/3G e o Evolved Packet Core (EPC) da rede 4G/LTE. Ela é essencial para garantir a comunicação e transferência de dados entre essas duas gerações de rede (2G/3G e 4G) e garantir a continuidade dos serviços de dados em dispositivos que estão usando redes legadas enquanto interagem com a infraestrutura mais recente da LTE.

Interoperabilidade entre 2G/3G e 4G/LTE:

A interface S4 conecta o SGW no EPC (Evolved Packet Core) a um SGSN em redes 2G/3G. Isso permite que os pacotes de dados fluam entre as redes 4G e as redes legadas, garantindo que dispositivos móveis que estejam em uma área de cobertura 4G ou LTE possam se comunicar com dispositivos em redes 2G ou 3G, ou vice-versa.

Troca de Informações de Plano de Controle:

 A interface S4 permite a troca de informações de plano de controle entre o SGSN e o SGW. Isso inclui mensagens de controle relacionadas à mobilidade e gerenciamento de sessão, como o controle de conexão de dados e a autenticação entre dispositivos móveis e a rede.

Transferência de Dados entre Redes Diferentes:

 Embora a S4 seja usada principalmente para o controle de sessão, ela também facilita o encaminhamento de dados entre o SGW e o SGSN, garantindo que os dados de plano de usuário possam ser transferidos de maneira eficiente, mesmo quando o tráfego passa por diferentes gerações de redes móveis (2G/3G para 4G/LTE).

Gerenciamento de Mobilidade:

 Quando um usuário móvel se move entre diferentes tipos de redes (como de 2G/3G para 4G), a interface S4 é usada para manter a continuidade dos serviços e garantir que as sessões de dados não sejam interrompidas.

Suporte à Mobilidade Inter-RAT (Inter-Radio Access Technology):

 A interface S4 é especialmente útil para a mobilidade entre diferentes tecnologias de acesso de rádio (RAT), como entre 2G/3G e 4G/LTE, garantindo que os usuários possam manter uma sessão de dados ativa mesmo quando mudam de uma rede para outra.

• Troca de Informações de Sessão de Dados:

 A interface também permite a troca de informações de sessão de dados, como a atribuição de endereços IP e gerenciamento de pacotes de dados, entre o SGSN e o SGW, garantindo que o tráfego de dados possa ser adequadamente roteado entre essas redes.

A interface S12 (Plano usuário) é usada apenas para comunicação entre o SGSN (Serving GPRS Support Node) e o RNC (Radio Network Controller) no contexto de UTRAN, e sua principal função é gerenciar a mobilidade e a transferência de dados entre o SGSN e o RNC em redes UMTS (Universal Mobile Telecommunications System).

 A interface S12 está relacionada a controle de plano e mobilidade dentro do domínio de acesso rádio.

7- Descrição da proposta de Trabalho 2

Proposta 2: de acordo com a figura abaixo, defina cada bloco nas diferentes arquiteturas, como modo de operação e função na rede. Posteriormente, relacione e descreva as principais vantagens de cada arquitetura com relação a sua antecessora.

Figura 3: Evolução das arquiteturas de rede até o Release 8.

8 - Release 6

GGSN (Gateway GPRS Support Node): O GGSN atua como a interface principal entre a rede de pacotes da operadora móvel e redes externas, como a internet ou outras redes de dados. Ele é responsável pelo roteamento de pacotes de dados para e a partir dos dispositivos móveis. Além disso, o GGSN gerencia a alocação de endereços IP e realiza a tradução de endereços quando necessário. Ele também assegura o controle de políticas e QoS (Qualidade de Serviço) para as sessões de dados. Em resumo, o GGSN é o ponto de saída/entrada da rede móvel para redes de pacotes externas.

SGSN (Serving GPRS Support Node): O SGSN é o nó que gerencia a conexão com o dispositivo móvel em uma área específica. Ele rastreia a localização do dispositivo e gerencia o tráfego de dados e a segurança entre a rede de acesso e o GGSN. O SGSN é responsável por processos como autenticação, controle de mobilidade (para manter o dispositivo conectado ao mudar de local), e controle de pacotes de dados entre o dispositivo e a rede. O SGSN funciona em conjunto com o GGSN para manter a conectividade do usuário em movimento e garantir a continuidade do serviço.

RNC (Radio Network Controller): O RNC gerencia os recursos de rádio da rede e é responsável pelo controle de um conjunto de NodeBs (as estações base). Em redes 3G (UMTS), ele desempenha funções essenciais como controle de potência, handover (troca de célula para manter a conexão), e gerenciamento de recursos de rádio. O RNC éresponsável por realizar a coordenação entre os NodeBs, mantendo a conexão do usuário ao longo da rede, mesmo quando o dispositivo móvel está em movimento. Ele também controla a qualidade do link de rádio e distribui os recursos de acordo com a demanda.

NodeB: O NodeB é a estação de rádio em uma rede 3G, análoga ao BTS (Base Transceiver Station) em redes 2G. Ele transmite e recebe sinais derádio dos dispositivos móveis, permitindo a comunicação entre o usuário e a rede. NodeBs são conectados ao RNC e têm a função de estabelecer e manter a conexão física com os dispositivos móveis na área de cobertura, transmitindo e recebendo dados por meio de frequências de rádio. Em uma rede UMTS, o NodeB gerencia o processamento de sinais de rádio e coordena com o RNC para manter a comunicação contínua dos usuários

9 - Release 7 - Direct Tunnel

No **Release 7** do 3GPP, foi introduzido o conceito de **Direct Tunnel**, uma otimização arquitetural no fluxo de dados da rede móvel. Essa funcionalidade separa de forma mais eficiente o **plano de controle** do **plano de usuário**, permitindo que o tráfego de dados seja encaminhado diretamente do RNC para o GGSN, sem passar pelo SGSN no plano de usuário. Essa mudança reduziu a complexidade e melhorou o desempenho das redes UMTS.

Estrutura e Funcionamento

- Plano de Controle: O SGSN continua sendo um elemento central no gerenciamento das sessões. Ele é responsável por tarefas como autenticação, controle de mobilidade, configuração de sessões e gerenciamento da Qualidade de Serviço (QoS). Os principais blocos no plano de controle incluem:
 - SGSN: Gerencia o controle de sinalização e a troca de informações de mobilidade e QoS com o RNC.

- RNC (Radio Network Controller): Coordena as funções de rádio e implementa os comandos recebidos do SGSN para gerenciar as conexões.
- NodeB: Atua como a estação de rádio que mantém a comunicação física com o dispositivo móvel.
- Plano de Usuário: O plano de usuário foi otimizado para permitir que os dados trafeguem diretamente entre o GGSN e o RNC, eliminando a necessidade de processamento intermediário pelo SGSN. O fluxo ocorre da seguinte forma:
 - GGSN (Gateway GPRS Support Node): Responsável pelo roteamento do tráfego de dados para e da rede externa, como a internet. Ele atua como ponto de terminação IP para o dispositivo móvel.
 - RNC: Estabelece o túnel direto com o GGSN para transportar o tráfego de dados do usuário.
 - NodeB: Realiza a transmissão do tráfego do plano de usuário para os dispositivos móveis, através do canal de rádio.

Benefícios do Direct Tunnel

- 1. **Redução na Latência**: Como o tráfego de dados não passa mais pelo SGSN no plano de usuário, há uma redução significativa na latência.
- 2. **Eficiência Operacional**: A carga no SGSN é reduzida, liberando recursos para o processamento do plano de controle e escalando melhor a rede.
- 3. **Melhoria no Desempenho**: O tráfego mais direto entre o GGSN e o RNC garante maior eficiência no transporte de dados e potencializa a QoS (Qualidade de Serviço).
- 4. **Simplificação da Arquitetura**: A separação entre o plano de controle e o plano de usuário torna a arquitetura mais limpa e modular.

A introdução do **Direct Tunnel** no Release 7 foi um avanço crucial na eficiência da arquitetura UMTS. Ele preparou a rede para os desafios de tráfego crescente e demandas por menor latência, tornando-se um marco na evolução para tecnologias futuras, como LTE.

10 - Release 7 - Direct Tunnel and RNC in NodeB

O **Release 7** do 3GPP trouxe diversas inovações para redes UMTS, entre elas o conceito de **Direct Tunnel**, que otimizou o transporte de dados ao separar de forma mais eficiente os planos de controle e de usuário. Além disso, houve discussões e evoluções no sentido de integrar algumas funcionalidades do **RNC** (**Radio Network Controller**) diretamente no **NodeB**, simplificando a arquitetura da rede e aumentando o desempenho.

Direct Tunnel

No modelo tradicional das redes UMTS, tanto o plano de controle quanto o plano de usuário passavam pelo SGSN, o que resultava em maior latência e carga de processamento. O **Direct Tunnel** foi uma solução introduzida para melhorar essa configuração.

Funcionamento do Direct Tunnel

- Plano de Controle: O SGSN continua gerenciando a sinalização e as sessões dos usuários, além de ser responsável por autenticação, mobilidade e QoS.
 - SGSN: Realiza o controle de mobilidade e sinalização.
 - RNC: Coordena os recursos de rádio e gerencia a conexão com o dispositivo móvel.
 - NodeB: Atua como a estação de rádio, garantindo a comunicação física com os dispositivos móveis.
- Plano de Usuário: Os dados trafegam diretamente entre o GGSN e o RNC, sem passar pelo SGSN. Essa mudança melhora o desempenho, reduz a latência e libera recursos do SGSN para focar no plano de controle.
 - o **GGSN**: Faz o roteamento do tráfego para redes externas.
 - o RNC: Estabelece o túnel direto para o GGSN.
 - NodeB: Garante a transmissão do tráfego de dados via canal de rádio.

Vantagens do Direct Tunnel

- 1. **Menor Latência**: A comunicação direta reduz o tempo de transporte de dados.
- Desempenho Melhorado: Menor carga no SGSN, otimizando o uso de recursos.
- 3. Eficiência de Rede: Simplificação no encaminhamento de dados do usuário.

RNC in NodeB

Com a evolução das redes UMTS, foi considerado integrar algumas funções do **RNC** (Radio Network Controller) diretamente no NodeB. Essa abordagem visava reduzir a quantidade de elementos de rede, simplificando a arquitetura e melhorando a escalabilidade.

Impactos da Integração RNC-NodeB

- Redução de Latência: Elimina a necessidade de troca de informações entre o RNC e o NodeB, pois ambas as funções estão em um único elemento.
- Simplificação Arquitetural: Com menos elementos, a manutenção da rede é mais eficiente e menos complexa.
- Melhor Desempenho de Rádio: Processos como controle de potência e handovers podem ser realizados diretamente no NodeB, resultando em respostas mais rápidas.

A combinação do **Direct Tunnel** e a integração do **RNC no NodeB** representam avanços significativos no Release 7 do 3GPP. Essas mudanças trouxeram melhorias na eficiência da rede, menor latência e simplificação da arquitetura, alinhando as redes UMTS às crescentes demandas de tráfego e qualidade de serviço. Além disso, essas inovações pavimentaram o caminho para a transição natural ao LTE, onde a integração e otimização de funções se tornaram ainda mais essenciais.

O SAE-GW (System Architecture Evolution Gateway) é uma entidade central do núcleo da rede 4G LTE, parte do EPC (Evolved Packet Core). Ele é responsável por gerenciar o tráfego de dados entre a rede LTE e outras redes, como a internet ou redes de pacotes internas, desempenhando um papel essencial na estrutura da arquitetura IP do 4G.

O SAE-GW combina duas funções principais:

SGW (Serving Gateway): O SGW é o ponto de ancoragem de dados de um dispositivo móvel enquanto ele se move entre diferentes eNodeBs (estações base de LTE). Ele mantém o tráfego de dados fluindo, independentemente da mobilidade do usuário. Além disso, o SGW gerencia a interligação com redes 3G e 2G, permitindo uma continuidade de sessão, essencial para a comunicação de dados mesmo ao alternar entre redes.

PGW (Packet Gateway): O PGW conecta a rede LTE a redes externas, como a internet ou redes de pacotes privadas, sendo o ponto de saída/entrada para o tráfego de dados de usuário fora da rede LTE. Ele também gerencia aspectos relacionados à política de QoS (Qualidade de Serviço), controle de carga e endereçamento IP dos dispositivos. O PGW pode aplicar regras de gerenciamento de tráfego e garantir que os recursos de rede sejam alocados de acordo com as necessidades do serviço.

O MME (Mobility Management Entity): é um componente essencial da rede LTE, localizado no núcleo do EPC (Evolved Packet Core). Ele gerencia a mobilidade dos usuários e controla as conexões dos dispositivos à rede.

Suas principais funções incluem:

Autenticação e Segurança: Garante que os usuários sejam autenticados e autorizados na rede.

Gestão de Sessões: Coordena a criação, modificação e liberação de sessões de dados, trabalhando com o SGW (Serving Gateway) e o PGW (Packet Gateway).

Controle de Mobilidade: Monitora e mantém a conexão dos dispositivos à medida que se movementre áreas de cobertura (handover).

Paging e Gestão de Conectividade: Gerencia o despertar de dispositivos em modo de economia de energia para receber dados ou chamadas.

Essencial para a eficiência e segurança da rede LTE, o MME coordena o acesso e a continuidade das conexões dos usuários na rede 4G.

O eNodeB (Evolved Node B): é a estação base de redes LTE, responsável por fornecer conexão de rádio entre os dispositivos móveis e o núcleo da rede. Ele transmite e recebe sinais de rádio para realizar a comunicação com os usuários e gerencia aspectos de controle, como alocação de recursos e controle de potência.

Além disso, o eNodeB é responsável por funções que antes eram distribuídas entre o RNC (Radio Network Controller) e o NodeB nas redes 3G, como a coordenação de handover (transferência de conexão) e a implementação de políticas de Qualidade de

Serviço (QoS). Em resumo, o eNodeB é fundamental para gerenciar o link de rádio e garantir a conectividade e qualidade da comunicação em redes 4G

12 - Conclusões

A pesquisa realizada sobre as interfaces em redes móveis destacou a complexidade e a interconexão de diversos elementos que compõem o núcleo da infraestrutura de telecomunicações modernas. Cada interface desempenha um papel crucial no suporte à mobilidade, interoperabilidade e qualidade de serviço, garantindo que dispositivos móveis possam se comunicar eficientemente, mesmo em cenários desafiadores.

As interfaces estudadas, evidenciam a evolução das redes de comunicação desde o GPRS até o LTE/4G. Por exemplo, a interface **S1-U** mostrou-se fundamental para o transporte de dados entre eNBs e o núcleo da rede EPC, enquanto a **S4** e a **S12** destacaram-se na interoperabilidade com redes 2G/3G, garantindo continuidade e transição suave durante mudanças de tecnologia.

Além disso, interfaces como **Gi** e **SGi** reforçam o papel de gateways na conexão das redes móveis com redes externas, como a Internet, possibilitando o acesso a serviços globais. Por outro lado, interfaces como **Go**, **Rx**, e **S7** ilustram o gerenciamento de políticas e controle de qualidade, que são essenciais para a personalização da experiência do usuário e para a eficiência da rede.

Conclui-se que a compreensão detalhada dessas interfaces não apenas é essencial para o desenvolvimento e operação das redes, mas também fornece a base para futuras evoluções tecnológicas, como a transição para redes 5G. A pesquisa reafirma a importância da padronização definida pelo 3GPP para garantir a interoperabilidade entre diferentes tecnologias e fornecedores, contribuindo para um ecossistema de telecomunicações global mais conectado e eficiente.

Referência Bibliográficas

The LTE/SAE Deployment Handbook

By Jyrki T. J. Penttinen

https://learning.oreilly.com/library/view/the-lte-sae-deployment/9780470977262/

An Introduction to LTE: LTE, LTE-Advanced, SAE, VoLTE and 4G Mobile Communications, 2nd Edition

By Christopher Cox

https://learning.oreilly.com/library/view/an-introduction-to/9781118818015/

LTE, LTE-Advanced and WiMAX: Towards IMT-Advanced Networks By Abd-Elhamid M. Taha, Hossam S. Hassanein, Najah Abu Ali

 $\underline{\text{https://learning.oreilly.com/}} \\ \underline{\text{library/view/lte-lte-advanced-and/9781119970453/}}$

LTE Advanced: 3GPP Solution for IMT-Advanced By Harri Holma and Antti Toskala

https://learning.oreilly.com/library/view/lte-advanced-3gpp/9781118399422/

Evolved Packet System (EPS): The LTE and SAE Evolution of 3G UMTS

By Pierre Lescuyer, Thierry Lucidarme

https://learning.oreilly.com/library/view/evolved-packet-system/9780470723661/