Activité 1 : Ordre de grandeur

1 – Notation scientifique

Document 1 – Les puissances de 10

- Écrire le nombre 10^n (avec $n=0,1,2,3,\ldots$), revient à écrire "1" suivi de $n=0,1,2,3,\ldots$ zéros.
- Écrire le nombre 10^{-n} (avec $n=1,2,3,\ldots$), revient à écrire "0," suivi de $n=1,2,3,\ldots$ zéro et d'un 1.
- $10^n \times 10^b = 10^{a+b}$
- $\frac{1}{10^n} = \frac{10^{-n}}{10^{-n}} \times \frac{1}{10^n} = \frac{10^{-n}}{10^0} = 10^{-n}$

Document 2 – La notation scientifique

La notation scientifique d'une quantité se présente de la façon suivante :

chiffre différent de zéro

autres chiffres

puissance de dix

unité

1 - Écrire les quantités suivantes en notation scientifique :

 $288 \text{ h} = \dots 0,1 = \dots 0$

 $1 \text{ m} = \dots 0,9997 \text{ g/mL} = \dots$

 $756\,864\,000 \text{ s} = \dots 0,436 \text{ s} = \dots 0$

2 – Les ordres de grandeurs

Document 3 – Définitions

L'ordre de grandeur d'un nombre est la puissance de 10 la plus proche de ce nombre.

2 - Donner l'ordre de grandeur des quantités suivantes :

 $3,00 \cdot 10^8 \text{ m.s}^{-1} = \dots 9,11 \cdot 10^{-31} \text{ kg} = \dots$

 $1.67 \cdot 10^{-27} \text{ kg} = \dots 53 \cdot 10^{-12} \text{ m} = \dots 53 \cdot 10^{-12} \text{ m}$

3 – Le système international de mesure

A – Le système international

Pour comparer des grandeurs entre elles, il faut les exprimer avec les **mêmes unités de mesures**.

Pour pouvoir communiquer facilement d'un pays à un autre, le système international (SI) a été développé par la Conférence Générale des Poids et Mesures (CGPM).

Le système international est composé de **sept unités de base**, que l'on retrouve quotidiennement. Une part importante de nos technologies modernes dépendent de la précision avec laquelle ces unités sont définies.

Grandeur	Unité	Symbole de l'unité		
Masse	kilogramme	kg		
Temps	seconde	S		
Longueur	mètre	m		
Température	kelvin	K		
Quantité de matière	mole	mol		
Intensité électrique	ampère	A		
Intensité lumineuse	candela	cd		

B - De l'échelle microscopique à l'échelle astronomique

3 – Compléter le tableau en associant à chaque objet sa longueur, puis l'ordre de grandeur de cette longueur. Pour ça, utilisez six de ces huit longueurs (attention aux unités!) :

 10^{16} m 6400 km 10^{20} m 0.1 nm 60 μm 6 mm 1000 km 10^{12} m

Objet	Épaisseur cheveux	Rayon Voie Lactée	Rayon système solaire	France métropo- litaine	Fourmi	Atome
Image						
Taille						
Ordre de grandeur						