

North South University

Department of Electrical & Computer Engineering

LAB REPORT

Course Code: EEE362 L

Course Title: Power system

Course Instructor: Mohammed Shafayet Hossain

Experiment Number:05

Experiment Name:

Phase Angle and voltage Drop between Sender and Receiver

Date of Experiment:07/09/2020

Date of Submission: 21/09/2020

Section:02

Group Number:

Sub	omitted By: Mohammad Mahmudur	Score	
	Student Name	ID	
1.	Md: Redwan	1512863643	
2.	Mohammed Mahmudur Rahman (W)	1520386043	
3.	Md: Mynul hasan	1521629043	
4.	Zahirul Hasan Zim	1411822043	
5.	Md:Mamun alam	1620299643	

- i) To regulate the receiver end voltage.
- ii) To observe the phase angle lectures the voltages at the reading and the receiving end of the transmission line.

line.

iii) 70 observe the line voltage drop when the sending and receiving end voltages have some magnitude

Theory:

If there is a voltage drop at the end of a transmission line, this would be harmful in practical conditions. As, motors, relays & lot other equipments work properly under a suitable voltage, thus, to keep the receiving end voltage at a constant value we need the to regulate the voltage at receiving eng.

Voltage regulation im regulated power supplies. refers de maintain voltage at a desired level.

Voltage Regulation can be defined as following equation:

percentage VR = \frac{1V nd - 1V_{fl}}{1V_{fl}} \times 1000.

Required Equipments!

- 1 Resiptive load (model 8311)
- 1 Three Phase transmission line (model 8329)
- (1) lapacitive load (model 8331)
- @ AC Voltmeter (model 8426)
- @ Three phase Nattoneters/Varmeter (medel 8446)
- @ Phase meter (model 845)
- Vir Power Supply (model 882)
- Connection leads (model 9128)

Circuit Diagram:

Figure: Circuit Diagram

	Vo	ltage	Regu	lation	. with	L Resir	Resintive load.		
R	×	E.	Pr	12,	Ez	P2	Q2	Angle	
2	æ	V	W	Var	- V	w'	var	0	
∞		350	0	0	350	0	0	0	
4800		350	12	0	330	0	0	0	
2400	C m	350	25	0	303	20	0	0	
1600		380	30	б	300	25	0	0	
1200		350	80	10	300	75	0	15	
960	001	350	0,0	20	305	80	0	15	
800		350	98	30	290	95	0	16	
686		350	100	30	280	92	9	16	

	7	1	1	-	-	No Con) = 1	
	Vo	Heige	Regul	ation.	with	Resint	eve l	oad.
R	×c.	E,	P	@,	E2	PZ	Q ₂	Angle
Ω	Ω	V	W	Var	V	W	Var	0
2	0	350						
4800	0	350	28	0	320	18	0	
2400	685.71	350	28	0	310	20	0	36°
1600	685,71	350	100	-100	350	80	-255	240
1200	342.9	350	180	-150	350	180	-190	330
960	1200	350	110	0	340	100	-50	20°
800	1200	350	130	10	340	110	-60	20°
686	600	350	150	0		135	-	

Calculations!

Reactive Power,

$$Q_{C} = \frac{E_{1}E_{2}\cos\delta}{2c} - \frac{E_{2}^{2}}{2c}$$

Now, P= Er Ezaino W V S O

C. \$ Cop 30 = 0.867.

1. Q0 = 100x100x0.87x108 1002x106 100 -- 13.4 × 106 = - 13.4 MW.

B) Again,

Reactive Power at sender end.

@ EIB

E 1/3 1 = 3= voltage drop per phane = 2/3 E, rin 2 028 West 0001 2 29.89 KV drag

@ Phase angle between sender & seceiver voltage.

© Apparent Power supply by sender.

S, =
$$\sqrt{P_1^2 + Q_2^2}$$
= $\sqrt{(50)^2 + (13.4)^2 + 100} = 51.8$ MVA

Answer to question NO:32 Yer, it in possible to raise the receiver end voltage by using static capacitors. As the transmission line in purely resistive, Thus, Reactive power abnorbed by transmission line in zero. 95 a static capaciton is added 8 at the receiving end of the transmission line, this capacitor supplies reactive power to the transmission and the standard of the shiestives, the has successfully able to Receiving end voltage 2 Un, |Vn, | = |Vs| - |X| a. [x = reacta nee | Vs = rendin end voltage > IVP, 1 = IVS - 1x1 (Qabo - PGren - PSh.coxp) => VP, = (VS) - - 1x1 (- Open-Panicano) [Pabs =0] > |Vp, | = |Vs | + W/ (Qgen + Qgh. cap) Peren - Reagetive power supplied by generator

Dincursion: pure in purchy: noisonment of

The experiment was based on practically observing the regulation of receiver end voltage, & observing the phase angle lectured the voltages of the rending and the receiving end. Due to pandomic from video lesson, tutorials & data sheet we we can be complete we have understand, the objectives. We have successfully able to calculate the values of sender and receiving end voltages & also calculated the phase angle between them.

[0=200] (anside -1000 -

ano. dopt more