Problem 1:

Let $f_n \to f$ in measure, with an integrable function g such that $|f_n| \leq g$ for all n.

We proceed by proving the fact if the domain of each f_n is [0,1]; this fact can be extended to all of \mathbb{R} by applying the $\epsilon 2^{-n}$ method.

Let $\epsilon > 0$.

Because $f_n \to f$ in measure, there's an $N \in \mathbb{N}$ such that for all $n \geq N$, $m(x:|f_n(x)-f(x)| \ge \epsilon/2) < \epsilon/2.$

Problem 2:

Let f be continuous on [a, b], with one of its derivates everywhere nonnegative on (a, b).

If this derivate is D_+ , then for all $x \in [a, b]$, $\liminf_{h \to 0^+} \frac{f(x+h) - f(x)}{h} \ge 0$. If this derivate is D_- , then for all $x \in [a, b]$, $\liminf_{h \to 0^+} \frac{f(x) - f(x+h)}{h} \ge 0$. If this derivate is D^+ , then for all $x \in [a, b]$, $\limsup_{h \to 0^+} \frac{f(x) - f(x+h)}{h} \ge 0$.

If this derivate is D^- , then for all $x \in [a, b]$, $\limsup_{h \to 0^+} \frac{f(x) - f(x+h)}{h} \ge 0$.

So in all cases, f is nondecreasing.

Problem 3:

Suppose that $f_n(x) \to f(x)$ at each $x \in [a, b]$.

Problem 4:

Suppose that $f \in BV([a,b])$. Then f' exists, by a theorem in class.

Problem 5:

Let g be an absolutely continuous monotone function on [0,1], and E be a set of measure 0.

We know that g is the antiderivative of some function, f. That is, $g(x) = \int_{0}^{x} f(t)dt + g(0)$. for some f.

Problem 6:

Let f be a nonnegative measurable function on [0, 1].

We know that \ln is a concave function on [0,1] (if this is not clear, it's the inverse of a convex function).

So $-\ln$ is a convex function on [0, 1].

So Jensen's inequality applies:

$$-\ln \int f \le -\int \ln f$$
$$\ln \int f \ge \int \ln f$$

This satisfies the problem.