remind CPS

Lorenzo Donatiello

Fenomeno casuale;

·

Esperimento casuale:

- evento: sottoinsieme di Ω

- Insieme dei possibili risultati di un esperimento casuale: Ω

Lancio di un dado: $\Omega = \{1,2,3,4,5,6\}$

Evento: esce un numero dispari $A = \{1,3,5\}$

Evento: esce un numero minore di 4; A ={1,2,3}

A ∩**B** ; **A**∪ **B**; **A**^C

Studio di un fenomeno casuale siamo in presenza di:

Un insieme Ω (insieme dei possibili risultati) Una famiglia A di sottoinsiemi di Ω tale che:

- se A, B \in A allora A \cup B \in A
- se A, B \in A allora A \cap B \in A
- se $A \in A$ allora $A^C \in A$

Una famiglia A di parti di un insieme Ω si dice una σ -algebra se:

- \emptyset , $\Omega \in A$;
- se $A \in A$ allora $A^C \in A$
- se A_1 , A_2 , ... A_i ... $A_n \in A$ allora:

$$\textstyle\bigcup_{n=1}^{\infty}\mathsf{A}_{\mathsf{n}}\in A$$

$$\bigcap_{n=1}^{\infty} A_n \in A$$

Sia Ω un insieme A una σ -algebra di parti di Ω .

una probabilità P è una applicazione $P: A \rightarrow R^+$ tale che:

$$P(\Omega) = 1;$$

$$P(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} P(A_n)$$

Fenomeno casuale;

Esperimento casuale;

indipendenza dei risultati di ogni esperimento: lancio di un dado;

Variabile Casuale: funzione che assegna un valore numerico al risultato di un esperimento casuale: dallo spazio Ω (ovvero dall'insieme delle parti A) a R^+

 $V.C: \Omega \rightarrow R^+$

Esempi:

- -) lancio di una coppia di dadi;
- -) numero di richieste effettuate dalle ore 10 alle ore 12 ad un Call Center;
- -) tempo impiegato per rispondere alla decima richiesta da parte di un call center

Variabile Casuale Discreta:

Se il numero di possibili valori che la VC può assumere è finito o numerabile. In genere (interessante per le noster applicazioni) i valori che può assumere sono interi.

X: V.C discreta

```
Prob(X=k) per k= 0,1,...
Prob(X=k) \geq 0
```

Variabile Casuale Discreta:

Se il numero di possibili valori che la VC può assumere è finito o numerabile. In genere (interessante per le noster applicazioni) i valori che può assumere sono interi.

X: V.C discreta

Prob(X=k) per k=0,1,...

 $Prob(X=k) \ge 0$

$$\sum_{k=0}^{\infty} \text{Prob}(X=k) = 1$$

Bernoulli -- Binomiale

V.C di Bernoulli: Prob(X=1) = p; P(X=2) = 1-p

V.C Binomiale:

Prob(X=i)= $\binom{n}{i}$ pⁱ(1-p)ⁿ⁻ⁱ, i= 0,1,2,...n

Binomiale

Geometrica

Prob(X=i)= $p(1-p)^i$, i= 0,1,2,...n

Poisson

Prob(X=k) = $(e^{-\lambda}\lambda^{\kappa})/k!$, k= 0,1,2,...

λ costante positiva

valore atteso

siano $t_{\scriptscriptstyle 1}$, $t_{\scriptscriptstyle 2}$,... $t_{\scriptscriptstyle K}$ i possibili valori che la V.C. X può assumere.

K può essere anche infinito

 $Prob(X = t_k)$ è la probabilità che la V.C X assuma il valore t_k

$$E[X] = \sum_{k=1}^{K} t_k \operatorname{Prob}(X = tk)$$

il valore E[X] è il valor medio (valore atteso) della V.C. X

valore atteso

g(X) è una funzione della V.C. X

$$E[g(X)] = \sum_{k=1}^{K} g(tk) \operatorname{Prob}(X = tk)$$

il valore E[X] è il valor medio (valore atteso) della V.C. g(X) Momenti

$$E[X^n] = \sum_{k=1}^{K} t_k^n Prob(X=tk)$$
 (momento iniziale di ordine n)

$$E[(X-E(x))^n] = \sum_{k=1}^{K} (t_k - E(x))^n Prob(X=tk)$$

(momento centrale di ordine n)

valore atteso

g(X) è una funzione della V.C. X

$$E[g(X)] = \sum_{k=1}^{K} g(tk) \operatorname{Prob}(X = tk)$$

Momenti

 $E[X^n] = \sum_{k=1}^{K} t_k^n Prob(X = tk)$ (momento iniziale di ordine n)

il valore E[X] è il valor medio (valore atteso) della V.C. g(X)

(momento centrale di ordine n)

 $E[(X-E(x))^n] = \sum_{k=1}^{K} (t_k - E(x))^n Prob(X=tk)$

Varianza: momento centrale di ordine 2

VAR (X) =E[(X-E(x))²]=
$$\sum_{k=1}^{K} (t_k - E(x))$$
2 Prob(X= tk)

Coefficiente di Variazione: $C(X) = (\sqrt{VAR(X)})/E(X)$

$$VAR(X) = E(X^2) - (E(X)^2)$$

Deviazione Standard:
$$\sigma = \sqrt{VAR(X)}$$

Diseguaglianza di Chebyshev:

Prob(
$$|X-E(X)| \ge b$$
) $\le (\sigma/b)^2$
Prob($|X-E(X)| \ge b \sigma$) $\le (1/b)^2$
 $b > 0$

V.C.	parametri	E(X)	VAR(X)	C(X)
Binomiale	n,p	np	np(1-p)	((1-p)/np) ^{1/2}
Geometrica	0< p <1	p/(1-p)	p/(1-p) ²	1/p ^{1/2}
Geometrica(1)	0< p <1	p/(1-p)	p/(1-p) ²	p ^{1/2}
Poisson	l>0	λ	λ	$1/(\lambda^{1/2})$

Funzioni di ripartizione

X: Variabile Casuale

 $Prob(X \le t)$ indichiamo la probabilità che la V.C X assuma un valore minore o uguale a t.

 $F_X(t)$ = Prob(X $\leq t$) è nota come Funzione di ripartizione della V.C. X

$$0 \le F_X(t) \le 1$$

$$F_X(-\infty) = 0$$

$$F_X(+\infty) = 1$$

$$\mathsf{t}_2 > \mathsf{t}_1 \xrightarrow{} \mathsf{F}_\mathsf{X}(\mathsf{t}_2) \geq \mathsf{F}_\mathsf{X}(\mathsf{t}_1)$$

Prob($t1 < X \le t2$) = $F_X(t_2)$ - $F_X(t_1)$ verificato che $t_2 > t_1$

Funzioni di ripartizione

Variabile Casuale Continua:

X è una V.C. continua se la sua funzione di ripartizione è continua e differenziabile.

(la funzione potrebbe essere non differenziabile su un insieme finito di punti)

la funzione è definita su un intervallo [a,b], a
b. $a=-\infty$, $b=+\infty$ sono consentiti.

funzione di densità di probabilità:

 $f_X(t) = d F_X(t)/dt$

Variabile Casuale Continua:

$$f_X(t) = d F_X(t)/dt$$

 $t_1 < t_2$

$$\int_{-\infty}^{+\infty} f_X(t) = 1$$

Prob($t_1 < X \le t_2$) = $\int_{t_1}^{t_2} f_X(t) dt$

Prob(X = 0) ???

 $f_x(t) \ge 0$

Prob(
$$X > t_3$$
) = $\int_{t_2}^{\infty} f_X(t) dt$

$$(X > t_3) = \int_{t_3} f_X(t) dt$$

Variabile Casuale Uniforme:

$$f_{X}(t) = \begin{cases} 0 & t < a \ o \ t > b \\ \frac{1}{b - a} & a < t < b \end{cases}$$

 $F_{X}(t) = \begin{cases} 0 & t < a \\ (t-a)/(b-a) & a \le t \le b \\ 1 & t > b \end{cases}$

Variabile Casuale Uniforme:

Variabile Casuale Esponenziale

$$f_{X}(t) = \begin{cases} 0, & t < 0 \\ \lambda e^{-\lambda t}, & t \ge 0 \end{cases}$$

 $F_{X}(t) = \begin{cases} 0, t < 0 \\ 1 - \lambda e^{-\lambda t} \ t \ge 0 \end{cases}$

Variabile Casuale Iperesponenziale

$$\mathsf{f}_{\mathsf{X}}(\mathsf{t}) = \begin{cases} 0, & t < 0 \\ \mathsf{p}\lambda_1 e^{-\lambda_1 t} + (1-p)\lambda_2 e^{-\lambda_2 t}, t \ge 0 \end{cases}$$

$$f_{X}(t) = \begin{cases} 0, & t < 0 \\ p\lambda_{1}e^{-\lambda_{1}t} + (1-p)\lambda_{2}e^{-\lambda_{2}t}, & t \ge 0 \end{cases}$$

 $F_{X}(t) = \begin{cases} 0, & t < 0 \\ 1 - pe^{-\lambda_{1}t} - (1 - p)e^{-\lambda_{2}t}t \ge 0 \end{cases}$

Gaussiana N(μ , σ^2) $f_x(t) = (1/2\pi\sigma^2)^{1/2} \exp(-(t-\mu)^2/2\sigma^2)$ definita per tutti i valori di t

$f_X(t) = (1/2\pi\sigma^2)^{1/2} \exp(-(t-\mu)^2/2\sigma^2)$ definita per tutti i valori di t

percentili X: V.C.

t_a(X) denota il più piccolo valore di t per cui vale:

$$F_X(t) \ge q$$

il valore t_q(X) è chiamato (100*q)-esimo percentile di X proprietà:

 $F_X(t) < q \text{ se } t < t_q(X)$ $F_X(t) \ge q \text{ se } t > t_q(X)$ indipendenza tra V.C.

 $X_1, X_2, X_3, \dots X_n$

se Prob $(X_1 \le t_1, X_2 \le t_2, X_3 \le t_3, ..., X_n \le t_n) =$ $Prob(X_1 \le t_1) Prob(X_2 \le t_2)...Prob(X_n \le t_n) -->$

le V.C sono statisticamente indipendenti

 $\mathsf{E}[\sum_{i=1}^{n} c_i X_i] = \sum_{i=1}^{n} c_i E[Xi]$

relazione vale anche se le variabili casuali NON sono indipendenti

Se X_1 , X_2 , X_3 ,.... X_n sono indipendenti

$$E[X_1 X_2 X_3.... X_n] = E[X_1] E[X_2] E[X_3].... E[X_n]$$

Cov[X,Y] = E[(X-E(X)(Y-E(Y))] = E[XY]-E[X]E[Y]

Cov[X,X] = Var[X]

 $Cor[X,Y] = Cov[X,Y] / (Var[X] Var[Y])^{1/2}$

se due V.C. sono indipendenti \rightarrow Cov[X,Y] = 0

Legge dei grandi numeri

 $X_1,\,X_2,\,X_3,....\,\,X_n$ variabili casuali indipendenti e aventi la stessa distribuzione di probabilità assumiamo media ${\bf m}$ e varianza ${\bf V}$

$$S_n = \sum_{i=1}^n (X_i)/n$$
 per $n \rightarrow \infty$
 $S_n \rightarrow \mathbf{m}$

Teorema del limite centrale

La V.C $Z_n = n^{1/2}(S_n-m)/V^{\frac{1}{2}} \rightarrow N(0,1)$