Matemática Financiera

Autor: José M. Martín Senmache Sarmiento

Capítulo 8: Planes de Pago

Solución de Ejercicio Nº3

e-financebook

3. **COMIN S.A.** desea adquirir una maquinaria industrial a través de un crédito hipotecario otorgado por el Banco de los Emprendedores en las siguientes condiciones:

✓ Precio de venta de la maquinaria : US\$ 100,000.00

✓ Cuota inicial a pagar : 20% del precio de venta

✓ Periodicidad en el pago : Semestral

✓ Método de pago : Francés (cuotas iguales)

✓ Número de años a pagar : 4 años

✓ Tasa efectiva anual : 9% constante

Se pide:

a) ¿Cuál es el valor de la cuota semestral vencida que deberá pagar para cancelar el crédito?

b) Si el pago se hiciera de manera adelantada y no vencida, ¿cuál sería su valor en estas condiciones?

c) Construya el cronograma de pagos del crédito

Respuestas: a) 12,080.78 b) 11,571.29 c) Ver cuadro.

DATOS						
Nombre	Descripcion	Valor				
PV	Precio de venta del bien	100,000.00				
%CI	Porcentaje de cuota inicial	20%				
f	Frecuencia o Perioricidad en el pago	o Perioricidad en el pago Semestral				
t	Tiempo	4 años				
TE	Tasa de Interés Efectiva Anual (TEA)	9%				

FÓRMULAS						
Número	Fórmula					
19	$TEP_2 = (1 + TEP_1)^{\left(\frac{N^{\circ} diasTEP2}{N^{\circ} diasTEP1}\right)} - 1$					
49	$R = C * \left(\frac{TEP * (1+TEP)^{n}}{(1+TEP)^{n}-1}\right)$					

SOLUCIÓN

a) Calendario ordinario:

$$C = PV - CI$$

$$C = PV - \%CI*PV$$

$$C = 100,000.00 - 20\% * 100,000.00$$

$$C = 80,000.00$$

$$TES = (1 + TEA) \begin{bmatrix} \frac{N^{o} \, diasTES}{N^{o} \, diasTEA} \end{bmatrix} - 1$$

$$TES = (1 + 9\%) \begin{bmatrix} \frac{180}{360} \end{bmatrix} - 1$$

$$TES = 0.04403065089$$

$$TES = 4.403065089\%$$

$$R = C * \left(\frac{(1 + TES)^n - 1}{TES} \right)$$

$$R = C * \left(\frac{(1 + TES)^{n} - 1}{TES} \right)$$

$$R = 80,000.00 * \left(\frac{(1 + 4.403065089\%)^{8} - 1}{4.403065089\%} \right)$$

$$R = 12,080.78$$

b) Cuota adelantada:

$$Ra = \frac{R}{1 + TES}$$

$$Ra = \frac{12,080.78}{1 + 4.403065089\%}$$

$$Ra = 11,571.29$$

c) Plan de pagos por método Francés:

Cuota Nº1:

Saldo Inicial₁ = C = 80,000.00

 $TES_1 = 4.403065089\%$

Interés₁ = TES₁ * Saldo Inicial₁

Interés₁ = 4.403065089% * 80,000.00

Interés₁ = 3,522.45

Cuota₁ = R = 12,080.78

Amortización₁ = Cuota₁ - Interés₁

Amortización₁ = 12,080.78 - 3,522.45

Amortización₁ = 8,558.33

Saldo Final₁ = Saldo Inicial₁ – Amortización₁

Saldo Final₁ = 80,000.00 - 8,558.33

Saldo Final, = 71,441.67

Cuota Nº2:

Saldo Inicial₂ = Saldo Final₁

Saldo Inicial₂ = 71,441.67

 $TES_2 = 4.403065089\%$

Interes₂ = TES₂ * Saldo Inicial₂

 $Interes_2 = 4.403065089\% * 71,441.67$

Interes₂ = 3,145.62

 $Cuota_2 = R = 12,080.78$

Amortización₂ = Cuota₂ - Interés₂

Amortización₂ = 12,080.78 - 3,145.62

Amortización₂ = 8,935.16

Saldo Final₂ = Saldo Inicial₂ – Amortización₂

Saldo $Final_2 = 71,441.67 - 8,935.16$

Saldo $Final_2 = 62,506.51$

Cuota Nº3:

Saldo Inicial₃ = Saldo Final₂

Saldo Inicial₃ = 62,506.51

 $TES_3 = 4.403065089\%$

Interés₃ = TES₃ * Saldo Inicial₃

Interés₃ = 4.403065089% * 62,506.51

Interés $_3 = 2,752.20$

Cuota₃ = R = 12,080.78

Amortización₃ = Cuota₃ - Interés₃

Amortización₃ = 12,080.78 - 2,752.20

Amortización₃ = 9,328.58

Saldo Final₃ = Saldo Inicial₃ - Amortización₃

Saldo Final₃ = 62,506.51 - 9,328.58

Saldo Final₃ = 53,177.93

Cuota Nº4:

Saldo Inicial₄ = Saldo Final₃

Saldo Inicial₄ = 53,177.93

 $TES_4 = 4.403065089\%$

Interés₄ = TES₄ * Saldo Inicial₄

 $Interés_4 = 4.403065089\% * 53,177.93$

Interés₄ = 2,341.46

Cuota₄ = R = 12,080.78

Amortización₄ = Cuota₄ - Interés₄

Amortización₄ = 12,080.78 - 2,341.46

Amortización₄ = 9,739.33

Saldo Final₄ = Saldo Inicial₄ - Amortización₄

Saldo Final₄ = 53,177.93 - 9,739.33

Saldo Final₄ = 43,438.60

Cuota Nº5:

Saldo Inicial₅ = Saldo Final₄

Saldo Inicial₅ = 43,438.60

 $TES_5 = 4.403065089\%$

Interés₅ = TES₅ * Saldo Inicial₅

Interés₅ = 4.403065089% * 43,438.60

Interés₅ = 1,912.63

 $Cuota_5 = R = 12,080.78$

 $Amortización_5 = Cuota_5 - Interés_5$

Amortización₅ = 12,080.78 - 1,912.63

Amortización₅ = 10,168.15

Saldo Final₅ = Saldo Inicial₅ – Amortización₅

Saldo Final₅ = 43,438.60 - 10,168.15

Saldo Final₅ = 33,270.45

Cuota Nº6:

Saldo Inicial₆ = Saldo Final₅

Saldo Inicial₆ = 33,270.45

 $TES_6 = 4.403065089\%$

Interés₆ = TES₆ * Saldo Inicial₆

 $Inter\'es_6 = 4.403065089\%*33,270.45$

Interés₆ = 1,464.92

Cuota₆ = R = 12,080.78

Amortización₆ = Cuota₆ - Interés₆

Amortización₆ = 12,080.78 - 1,464.92

Amortización $_6 = 10,615.86$

Saldo Final₆ = Saldo Inicial₆ - Amortización₆

Saldo Final₆ = 33,270.45 - 10,615.86

Saldo Final₆ = 22,654.58

Cuota Nº7:

Saldo Inicial₇ = Saldo Final₆

Saldo Inicial, = 22,654.58

 $TES_7 = 4.403065089\%$

Interés₇ = TES₇ * Saldo Inicial₇

Interés₇ = 4.403065089 % * 22,654.58

Interés₇ = 997.50

Cuota₇ = R = 12,080.78

Amortización, = Cuota, - Interés,

Amortización₇ = 12,080.78 - 997.50

Amortización, = 11,083.29

Saldo Final₇ = Saldo Inicial₇ - Amortización₇

Saldo Final₇ = 22,654.58 - 11,083.29

Saldo Final, = 11,571.29

Cuota Nº8:

Saldo Inicial₈ = Saldo Final₇

Saldo Inicial₈ = 11,571.29

 $TES_8 = 4.403065089\%$

Interés₈ = TES₈ * Saldo Inicial₈

Interés₈ = 4.403065089% * 11,571.29

Interés₈ = 509.49

Cuota $_8 = R = 12,080.78$

Amortización₈ = Cuota₈ - Interés₈

Amortización₈ = 12,080.78 - 509.49

 $Amortizaci\'on_8 = 11,541.29$

Saldo Final₈ = Saldo Inicial₈ - Amortización₈

Saldo Final₈ = 11,541.29 - 11,541.29

Saldo $Final_8 = 0.00$

No	Saldo Inicial	Interes	Cuota	Amortizac.	Saldo Final
1	80,000.00	(3,522.45)	(12,080.78)	(8,558.33)	71,441.67
2	71,441.67	(3,145.62)	(12,080.78)	(8,935.16)	62,506.51
3	62,506.51	(2,752.20)	(12,080.78)	(9,328.58)	53,177.93
4	53,177.93	(2,341.46)	(12,080.78)	(9,739.33)	43,438.60
5	43,438.60	(1,912.63)	(12,080.78)	(10,168.15)	33,270.45
6	33,270.45	(1,464.92)	(12,080.78)	(10,615.86)	22,654.58
7	22,654.58	(997.50)	(12,080.78)	(11,083.29)	11,571.29
8	11,571.29	(509.49)	(12,080.78)	(11,571.29)	0.00