

Facultad de Ingeniería

Carrera de Ingeniería Electrónica Carrera de Telecomunicaciones y Redes Carrera de Ingeniería Mecatrónica

CURSO

Señales y Sistemas

TEMA

Múltiples variables aleatorias
Operaciones con múltiples variables aleatorias

PROFESOR

Ing. Christian del Carpio Damián

MÚLTIPLES VARIABLES ALEATÓRIAS

Función de distribución conjunta

La función de distribución conjunta se define como

$$F_{XY}(x, y) = P(X \le x, Y \le y)$$

Para el caso discreto, se tiene:

$$F_{XY}(x, y) = \sum_{i=1}^{N} \sum_{j=1}^{M} P(x_i, y_j) u(x - x_i) u(y - y_j)$$

Ejemplo 1

Supongamos que el espacio muestra conjunto solo tiene tres elementos posibles: (1,1), (2,1) y (3,3). Las probabilidades de estos elementos son P(1,1)=0.2; P(2,1)=0.3 y P(3,3)=0.5. Hallar $F_{XY}(x,y)$

Propiedades de la función de distribución conjunta

(1)
$$F_{xy}(-\infty, -\infty) = 0$$
 $F_{xy}(-\infty, y) = 0$ $F_{xy}(x, -\infty) = 0$

- (2) $F_{xy}(\infty,\infty) = 1$
- (3) $0 \le F_{xy}(x, y) \le 1$
- (4) $F_{xy}(x, y)$ es una función no decreciente según x e y

(5)
$$F_{XY}(x_2, y_2) + F_{XY}(x_1, y_1) - F_{XY}(x_1, y_2) - F_{XY}(x_2, y_1)$$

= $P\{x_1 < X \le x_2, y_1 < Y \le y_2\} \ge 0$

(6)
$$F_{XY}(x,\infty) = F_X(x)$$
 $F_{XY}(\infty, y) = F_Y(y)$

Ejemplo 2

Sea

$$F_{xy}(x, y) = 0.2u(x-1)u(y-1) + 0.3u(x-2)u(y-1) + 0.5u(x-3)u(y-3)$$

Determinar $F_X(x)$ y $F_Y(y)$

Función de densidad de probabilidad conjunta

La función de densidad conjunta se define como

$$f_{XY}(x, y) = \frac{\partial^2 F_{XY}(x, y)}{\partial x \partial y}$$

Para el caso discreto, se tiene:

$$f_{XY}(x, y) = \sum_{i=1}^{N} \sum_{j=1}^{M} P(x_i, y_j) \delta(x - x_i) \delta(y - y_j)$$

Propiedades de la función de densidad conjunta

(1)
$$0 \le f_{xy}(x, y)$$

(2)
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{XY}(x, y) dx dy = 1$$

(3)
$$F_{XY}(x, y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f_{XY}(p, s) dp ds$$

(4)
$$P(x_1 < X \le X_2, y_1 < Y \le y_2) = \int_{y_1}^{y_2} \int_{x_1}^{x_2} f_{XY}(x, y) dx dy$$

(5)
$$F_X(x) = \int_{-\infty}^{\infty} \int_{-\infty}^{x} f_{XY}(p, y) dp dy$$

(6)
$$F_{Y}(y) = \int_{-\infty}^{y} \int_{-\infty}^{\infty} f_{XY}(x,s) dx ds$$

Propiedades de la función de densidad conjunta

(7)
$$f_X(x) = \int_{-\infty}^{\infty} f_{XY}(x, y) dy$$

(8)
$$f_Y(y) = \int_{-\infty}^{\infty} f_{XY}(x, y) dx$$

Ejemplo 3

En el desarrollo de un nuevo receptor para la transmisión de información digital, cada bit recibido se clasifica como aceptable, dudoso o inaceptable dependiendo de la calidad de la señal recibida, con probabilidades 0.9, 0.08 y 0.02, respectivamente. Suponga que la clasificación de cada bit es independiente.

En los primeros cuatro bits transmitidos, sea que X denote el número de bits aceptables y Y el número de bits dudosos.

Graficar la función de densidad conjunta de "X" e "Y"

Dos variables aleatorias son independientes si se cumple:

$$f_{XY}(x, y) = f_X(x)f_Y(y)$$

$$F_{XY}(x, y) = F_X(x)F_Y(y)$$

Ejemplo 4

Sea la función de densidad conjunta

$$f_{XY}(x, y) = \frac{1}{12}u(x)u(y)e^{-(x/4)-(y/3)}$$

Determinar

- a. P{2<X ≤ 4, -1<Y≤5}
- b. si son independientes

Ejemplo 5

Una función de densidad de probabilidad conjunta es dada por

Determinar

- a. F_{XY}(xy)
- b. si son independientes

SUMA DE DOS VARIABLES ALEATORIAS

Se define "X" e "Y" dos variables aleatorias independientes

$$W = X + Y$$

La función de distribución seria

$$F_{W}(w) = P\{W \le w\} = P\{X + Y \le w\}$$

Así mismo:

$$F_{W}(w) = \int_{-\infty}^{\infty} \int_{x=-\infty}^{w-y} f_{XY}(x, y) dxdy$$

Debido a que "X" y "Y" son independientes se tiene:

$$F_{W}(w) = \int_{-\infty}^{\infty} f_{Y}(y) \int_{x=-\infty}^{w-y} f_{X}(x) dx dy$$

La función de densidad sería

$$f_{W}(w) = \int_{-\infty}^{\infty} f_{Y}(y) f_{X}(w - y) dy$$

Ejemplo 6

Hallar la función de densidad de W = X + Y, donde las funciones de densidad de X e Y son

$$f_X(x) = \frac{1}{a} [u(x) - u(x - a)]$$

$$f_Y(y) = \frac{1}{b} [u(y) - u(y - b)]$$

A demás se sabe que 0 < a < b

TEOREMA DE LÍMITE CENTRAL

Sean "N" variables aleatorias independientes:

$$X_1, X_2, X_n$$

Se define

$$W = X_1 + X_2 + \dots + X_n$$

Luego se tiene que

$$f_W(w) = f_{X_1}(x_1) * f_{X_2}(x_2) * \dots * f_{X_N}(x_N)$$

Si $N \to \infty$ entonces $f_w(w)$ es Gaussiana

OPERACIONES CON MÚLTIPLES VARIABLES ALEATÓRIAS

CORRELACIÓN

Sean 2 variables aleatorias "X" e "Y", entonces

$$R_{XY} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f_{XY}(x, y) dx dy = E[XY]$$

Si la correlación es

$$R_{XY} = E[X]E[Y]$$

entonces se dice que "X" e "Y" son no correlacionados.

Dos variables aleatorias independientes son correlacionadas.

CORRELACIÓN

Dos variables aleatorias no correlacionadas no necesariamente son independientes (excepción Gaussiana)

Para el caso discreto la correlación es

$$R_{XY} = E[XY] = \sum_{i=0}^{M} \sum_{j=0}^{N} x_i y_j f_{XY}(x_i, y_i)$$

CORRELACIÓN

Si para dos variables aleatorias "X" e "Y"

$$R_{XY} = 0$$

Se dice que son ortogonales

Ejemplo 7

Sea X una variable aleatoria que tiene $\overline{X} = 3$ y $\sigma_x^2 = 2$

Se define "Y" como Y = -6X + 22

Determinar R_{xy}

COVARIANZA

Si para dos variables aleatorias "X" e "Y"

$$C_{XY} = E\left[\left(X - \overline{X}\right)\left(Y - \overline{Y}\right)\right] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - \overline{x})(y - \overline{y})f_{XY}(x, y)dxdy$$

Así mismo se tiene que

$$C_{XY} = R_{XY} - E[X]E[Y]$$

COEFICIENTE DE CORRELACIÓN

$$\rho_{XY} = \frac{C_{XY}}{\sigma_x \sigma_y}, \qquad -1 \le \rho_{XY} \le 1$$

VARIABLES ALEATORIAS CONJUNTAMENTE GAUSSIANAS

Se dice que dos variables aleatorias "X" e "Y" son conjuntamente gaussianas si su función de densidad conjunta tiene la forma

$$f_{XY}(x,y) = \frac{1}{2\pi\sigma_X \sigma_Y \sqrt{1 - \rho_{XY}^2}} e^{\frac{-1}{2(1 - \rho_{XY}^2)} \left[\frac{(x - \overline{X})^2}{\sigma_X^2} - \frac{2\rho_{XY}(x - \overline{X})(y - \overline{Y})}{\sigma_X \sigma_Y} + \frac{(y - \overline{Y})^2}{\sigma_Y^2} \right]}$$

VARIABLES ALEATORIAS CONJUNTAMENTE GAUSSIANAS

Sean 2 variables aleatorias "X" e "Y" Gaussianas con coeficiente de correlación P_{XY} .

Se definen las siguientes variables obtenidas por rotación de "X" e "Y"

$$Y_1 = X \cos(\theta) + Y \sin(\theta)$$
$$Y_2 = -X \sin(\theta) + Y \cos(\theta)$$

$$\theta = \frac{1}{2} t g^{-1} \left(\frac{2\rho_{XY} \sigma_X \sigma_Y}{\sigma_X^2 - \sigma_Y^2} \right)$$

son no correlacionadas Entonces "Y1" e "Y2" independientes

$$Y_1 = a_{11}X_1 + a_{12}X_2 + \dots + a_{1N}X_N$$

$$Y_2 = a_{21}X_1 + a_{22}X_2 + \dots + a_{2N}X_N$$

$$Y_N = a_{N1}X_1 + a_{N2}X_2 + \dots + a_{NN}X_N$$

 a_{ij} , i y j = 1, 2, ..., Nson números reales

Se definen las siguientes matrices

$$\begin{bmatrix} Y \end{bmatrix} = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_N \end{bmatrix} \qquad \begin{bmatrix} \overline{Y} \end{bmatrix} = \begin{bmatrix} \overline{Y}_1 \\ \overline{Y}_2 \\ \vdots \\ \overline{Y}_N \end{bmatrix} \qquad \begin{bmatrix} X \end{bmatrix} = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_N \end{bmatrix} \qquad \begin{bmatrix} \overline{X} \end{bmatrix} = \begin{bmatrix} \overline{X}_1 \\ \overline{X}_2 \\ \vdots \\ \overline{X}_N \end{bmatrix}$$

$$X = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_N \end{bmatrix} \qquad \begin{bmatrix} \overline{X} \end{bmatrix} = \begin{bmatrix} X_1 \\ \overline{X}_2 \\ \vdots \\ \overline{X}_N \end{bmatrix}$$

$$[T] = \begin{bmatrix} a_{11} & a_{12} & a_{1N} \\ a_{21} & a_{22} & \\ a_{N1} & a_{N2} & a_{NN} \end{bmatrix}$$

Se cumple que:

$$[Y] = [T][X]$$

$$[X] = [T]^{-1}[Y]$$

$$[Y - \overline{Y}] = [T][X - \overline{X}]$$

$$[X - \overline{X}] = [T]^{-1}[Y - \overline{Y}]$$

Se define la matriz de covarianza como:

$$\begin{bmatrix} C_X \end{bmatrix} = \begin{bmatrix} \sigma_{X_1}^2 & C_{X_1 X_2} & C_{X_1 X_N} \\ C_{X_2 X_1} & \sigma_{X_2}^2 \\ C_{X_N X_1} & C_{X_N X_2} & \sigma_{X_N}^2 \end{bmatrix}$$

 $C_{X_iX_j}$: covarianza entre X_i y X_j

$$C_{X_iX_j} = \overline{\left(X_i - \overline{X}_i\right)\left(X_j - \overline{X}_j\right)}$$

Se define la matriz de covarianza como:

$$\begin{bmatrix} C_{Y_1} \end{bmatrix} = \begin{bmatrix} \sigma_{Y_1}^2 & C_{Y_1Y_2} & C_{Y_1Y_N} \\ C_{Y_2Y_1} & \sigma_{Y_2}^2 \\ C_{Y_NY_1} & C_{Y_NY_2} & \sigma_{Y_N}^2 \end{bmatrix}$$

 $C_{Y_iY_i}$: covarianza entre Y_i y Y_j

$$C_{Y_iY_j} = \overline{\left(Y_i - \overline{Y}_i\right)\left(Y_j - \overline{Y}_j\right)}$$

FUNCIÓN DE DENSIDAD GAUSSIANA CONJUNTA DE N-ESIMO ORDEN

$$f_{X_1, X_2, \dots, X_N}(x_1, x_2, \dots, x_N) = \frac{\left| \left[C_X \right]^{-1} \right|^{1/2}}{(2\pi)^{N/2}} e^{-\left[\frac{\left(X - \overline{X} \right)^T (C_X)^{-1} (X - \overline{X})}{2} \right]}$$

$$[X] \longrightarrow [T] \longrightarrow [Y]$$

FUNCIÓN DE DENSIDAD GAUSSIANA CONJUNTA DE N-ESIMO ORDEN

$$f_{Y_1,Y_2,...,Y_N}(y_1, y_2,..., y_N) = \frac{\left| \left[C_Y \right]^{-1} \right|^{1/2}}{(2\pi)^{N/2}} e^{-\left[\frac{\left(Y - \overline{Y} \right)^T (C_Y)^{-1} (Y - \overline{Y})}{2} \right]}$$

$$[C_Y] = [T][C_X][T]^T$$

$$\left[\overline{Y}\right] = \left[T\right] \left[\overline{X}\right]$$

FUNCIÓN DE DENSIDAD GAUSSIANA CONJUNTA DE N-ESIMO ORDEN

Ejemplo 8

Dos variables aleatorias X_1 y X_2 tienen media cero y varianzas 4 y 9 respectivamente. Su covarianza es 3. Si X_1 y X_2 son linealmente transformadas a nuevas variables Y_1 e Y_2 de acuerdo a:

$$Y_1 = X_1 - 2X_2$$
$$Y_2 = 3X_1 + 4X_2$$

Determinar la matriz de covarianza $[C_y]$

FUENTE:

PEYTON Z. PEEBLES, Jr. "Principios de probabilidad, variables aleatorias y señales aleatorias" McGraw-Hill/INTERAMERICANA DE ESPAÑA, 4ª ed., 2006