E1 213 Pattern Recognition and Neural networks

Problem Sheet 5

- 1. Given two sets of points in \Re^d , show that they are linearly separable if and only if their convex hulls do not intersect. (Given a set of points, x_1, \dots, x_n , their convex hull is the set of all points z which can be written as $z = \sum_{j=1}^n \lambda_j x_j$ where $\lambda_j \geq 0$ and $\sum_j \lambda_j = 1$).
- 2. Consider the joint density of X, Y given by

$$f_{XY}(x,y) = \frac{1}{2\pi\sigma^2\sqrt{1-\rho^2}} \exp\left(\frac{-1}{2\sigma^2(1-\rho^2)}(x^2+y^2-2\rho xy)\right), -\infty < x, y < \infty$$

Here X, Y are jointly Gaussian with mean zero, variance σ^2 and correlation coefficient ρ . From the above, find the marginal density of X and show that it is Gaussian with mean zero and variance σ^2 . Now show that the conditional density $f_{Y|X}$ is also Gaussian. From this, show that $E[Y \mid X]$ is a linear function of X.

- 3. Suppose we have $y = \mathbf{a}^T X + \xi$ where ξ is a zero-mean random variable with variance σ^2 . Under this model we have calculated in the class the variance of the least squares solution, W^* . Calculate the expected value of the least squares solution.
- 4. We can pose the problem of learning a linear classifier as minimizing

$$J(W) = \sum_{i=1}^{n} L(W^{T}X_{i}, y_{i})$$

where L is a loss function. For least squares criterion, we take $L(a,b) = (a-b)^2$. If, instead we want to minimize absolute value of error, we can take L(a,b) = |a-b|. Show that logistic regression (in the 2-class case) can also be put in this framework with $L(W^TX,y) = \ln(1 + \exp(-yW^TX))$, where we assume that the class labels are +1 and -1. What would be the loss function corresponding to mult-class logistic regression?

5. Consider a classification problem with K classes: C_1, \dots, C_K . We say that the training set is linearly separable if there are K functions: $g_j(X) = W_j^T X + w_{j0}, \ j = 1, \dots, K$, such that we have $g_i(X) \geq$

- $g_j(X), \forall j$, whenever $X \in C_i$. We say that a set of examples is totally linearly separable if given any C_i , there is a hyperplane that separates examples of C_i from the set of examples of all other classes. Show that totally linearly separable implies linearly separable but the converse need not be true.
- 6. Let $\mathcal{X} = \Re^2$, $\mathcal{Y} = \{0, 1\}$. Let c^r denote the circle (or circular disc) of radius r with center at origin. That is $c^r = \{(x, y) \in \Re^2 : x^2 + y^2 \le r^2\}$. Let \mathcal{C} be family of such concentric circles with centre at origin. Show that this concept class is PAC learnable.