Métricas em Machine Learning

tosto parto ii	6 do ignoiro do 2023
 teste – parte II —————	——————————————————————————————————————

Não se esqueça de carregar (pelo menos) as bibliotecas

```
import numpy as np
import numpy.linalg as linalg
```

1. A matriz de dispersão S obtida de uma certa base de dados (standardizada e centrada na média 0) é

```
S = np.matrix( [[ 97.18075394 , 4.01869602 , 77.40991318],
  [ 4.01869602 ,108.87624652 , 8.93428697],
  [ 77.40991318 , 8.93428697 , 98.049557675 ]])
```

- (a) Calcule as componentes principais.
- (b) Indique as componentes principais que preservam cerca de 90% da informação. Calcule a projeção de

sobre o espaço gerado por estas componentes principais.

- 2. Os dados $\{(x_i, y_i, z_i)\}_{i=1}^N$ relativos a uma experiência forneceram a matriz de covariância amostral M do tipo 3×3 . Essa matriz tem vetores próprios v_1, v_2, v_3 , de norma 1, associados aos valores próprios $\lambda_1 = 3, \lambda_2 = 1, \lambda_3 = 0.2$, respetivamente.
 - (a) Calcule $M 3v_1v_1^T v_2v_2^T$.
 - (b) Mostre que a matriz $A = \begin{bmatrix} v_1 & v_2 \end{bmatrix}_{3\times 2}$ satisfaz a condição $MA = A \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix}$.
 - (c) Indique uma matriz B, 2×3 , tal que $BA = I_2$.
 - (d) Nas condições da alínea anterior, mostre que $I_3 \neq AB = (AB)^2$.