Geometric Modeling

Surface Meshes

Triangle Meshes

Representation of a triangle mesh in \mathbb{R}^3

- Vertices: a finite list $\{v_1, ..., v_n\}$ of points in \mathbb{R}^3
- Faces: a list of triples, e.g. {{2,34,7}, ..., {14,7,5}}

Surfaces

Surface: All points are locally disks (except boundaries)

Required by many algorithms

Examples: Non-manifold

Local Neighborhoods

Index of the triangle opposite to the vertex (with the same position in the array) is stored and -1 for boundaries

Topology

Topology

The face array contains information about the surface that is independent of the choice of vertex positions

Topological Classification

Genus (compact, orientable surfaces)

- Half the maximal number of closed paths that do not disconnect the surface
- Intuition: Number of holes (or handles)

What is the Genus of...

Euler Characteristic

For a triangle (or polygonal) mesh (without boundary) **Euler's formula**

$$V - E + F = 2(1 - g)$$

relates the number of vertices V, edges E, faces F, and the **genus** g

The term 2(1-g) is called the **Euler characteristic** X

Example: Genus 0

$$V - E + F = 2(1 - g)$$

$$4-6+4=2(1-0)$$

Example: Genus 1

$$V - E + F = 2(1 - g)$$

$$16 - 32 + 16 = 2(1 - 1)$$

Genus Builder

Average Valences

Valence of a vertex

Number of adjacent edges

Average valence (for large number of vertices)

Triangle meshes: 6

Quad meshes: 4

Average Valences

Why?

- For triangles: 3F = 2E (every traingle has 3 edges and every edge is in 2 triangles)
- Euler Formula

$$V + F - E = V + 2E/3 - E = 2 - 2g$$

Solving for E

$$E = 3(V - 2 + 2g)$$

• For large V and small g, we get

$$\frac{2E}{V} = \frac{6(V - 2 + 2g)}{V} \approx 6$$

Example: One-to-Four Refinement

All new vertices have valence 6

Orientable Surfaces

Orientable

- Surface has a consistent normal field
- "Can color the inside and outside with different colors"

Orientable Surfaces

Orientable

- Can be decided from the face array (vertex positions not needed)
 - Can all edges can be oriented consistently?

Non-Orientable Surfaces

Möbius Strip

- Dangerous, algorithms may crash
- Example: How do you compute vertex normals?

Non-Orientable Surfaces

Klein Bottle (Klein's surface)

• Euler characteristic: X = 0

Costa-Hoffman-Meeks Surface

Orientable?

