Predicting Earnings after Graduation

Jenna Kutz, Percy Musiiwa, Matt Jackson

March 12, 2024

Problem Statement

Education is the cornerstone of a successful career. In a fast-moving society, the vast majority of potential employers seek to hire individuals with postsecondary degrees and certificates.

According to the Association of Public & Land-Grant Universities,

"The evidence that a college degree significantly improves one's employment prospects and earnings potential is overwhelming... On an annual basis, median earnings for bachelor's degree holders are \$36,000 or 84 percent higher than those whose highest degree is a high school diploma."

As a cohort that is soon to complete a six-month certificate, we (at least intuitively) understand the value of education. But how can a potential student be more deliberate if the goal is to maximize income over the course of a career?

Project Overview

Goals:

- Provide insights on post-graduate earnings from the <u>data.gov college scorecard</u>
- Create a multiple linear regression model that will provide insight into the universities and features that correlate to higher earnings
- Utilize tools from previous modules to complete the analysis:
 - o PySpark / SQL
 - O Data cleansing, standardization tools (Standard Scaler)
 - Linear regression libraries (sklearn)
 - O General data analysis tools (Python, Pandas, etc.)

Data Exploration and Familiarization

- Dataset contained ~6500 rows and ~2900 columns
- A data dictionary was included (very helpful!)
- Data categorized into broad categories:
 - Academics
 - Admissions
 - o Aid
 - Completion
 - o Cost
 - o Earnings
 - O Repayment
 - o School
 - Student

For our analysis, we tried to build as much familiarity with the cost, earnings, school and student domains.

Data Prep and Ingestion

The data.gov College Scorecard was broken into multiple files, each ~250MB to prep the data for ingestion we took these steps:

- Created a zip file (~24MB) of the most recent cohort that can be loaded to our GitHub repo
- Aligned on the use of Google Colab as our notebook environment
- Aligned on using Spark to ingest and perform the initial rendering of the data
- Collectively selected ~80 fields that would serve as our starting point for feature

Data Cleanup & Feature Selection

At this point, we decided that we would focus on creating a multiple linear regression model. To prep the data for this type of analysis, we'd need to remove string and null values from the

Target variable:

Median earnings of independent students working and not enrolled 6 years after entry

Model Training and Optimization

- After converting the Spark dataframe to a Pandas dataframe, we ran the .corr() method on the remaining features to gather a baseline for relatedness to our target variable.
- After importing the sklearn modules, we ran the initial data.
- At first, our model was only performing in the 55-65% range. We had to find more feature variables that were better correlated to the target.
- Optimizing the model took approximately 10-15 attempts but we were able to get it above 80%

Correlation to Target

```
model_fields.corr()['MD_EARN_WNE_INDEP1_P6']
HIGHDEG
                               0.524405
AGE ENTRY
                              -0.231888
NOTFIRSTGEN_DEBT_MDN
                              0.559862
FIRSTGEN DEBT MDN
                               0.571523
MALE_DEBT_MDN
                               0.601051
FEMALE DEBT MDN
                               0.549165
IND DEBT MDN
                               0.500618
DEP DEBT MDN
                               0.592892
HI INC DEBT MDN
                               0.557926
MD INC DEBT MDN
                              0.552280
LO INC DEBT MDN
                               0.544745
WDRAW_DEBT_MDN
                               0.421478
GRAD DEBT MDN
                               0.376582
MD_INC_YR6_N
                               0.002820
MALE YR4 N
                               0.007979
FEMALE YR4 N
                              -0.010155
IND YR4 N
                              -0.071919
DEP_YR4_N
                               0.094483
HI INC YR4 N
                               0.301812
MD INC YR4 N
                              0.057178
LO_INC_YR4_N
                              -0.150689
NOT1STGEN COMP ORIG YR4 RT
                               0.595411
FIRSTGEN_COMP_ORIG_YR4_RT
                               0.624209
MALE COMP ORIG YR4 RT
                               0.621164
FEMALE COMP ORIG YR4 RT
                               0.620534
IND COMP ORIG YR4 RT
                               0.622742
DEP_COMP_ORIG_YR4_RT
                               0.589223
HI INC COMP ORIG YR4 RT
                               0.503009
MD INC COMP ORIG YR4 RT
                               0.544615
LO INC COMP ORIG YR4 RT
                               0.640177
COUNT NWNE 1YR
                              0.036239
COUNT_NWNE_3YR
                              -0.058764
CCSIZSET
                               0.512436
UGDS
                               0.152350
COSTT4 A
                               0.549476
PCT90_EARN_WNE_P10
                               0.733801
GT 28K P10
                               0.803089
GT THRESHOLD P6 SUPP
                               0.874590
MD EARN WNE INDEP1 P6
                               1.000000
Name: MD EARN WNE INDEP1 P6, dtype: float64
```

Output and Conclusions

```
score = model.score(X, y, sample_weight=None)
mse = mean_squared_error(y_test, predictions)
rmse = np.sqrt(mse)
r2 = r2_score(y_test, predictions)
print(f"The score is {score}.")
print(f"The mean squared error is {mse}.")
print(f"The root mean squared error is {rmse}.")
print(f"The r2 score is {r2}.")
# print(f"The standard deviation is {std}.")
The score is -719897458.3919673.
The mean squared error is 24271349.987317916.
The root mean squared error is 4926.5961867518545.
The r2 score is 0.8330727452894079.
```