KUDY VODA TEČE

CÍL: Seznámit žáky s problematikou úpravy pitné vody. Žáci si uvědomí, že cesta vody do kohoutku

i z něj je velmi komplikovaná.

OBORY: Člověk a jeho svět (rozmanitost přírody)

PT: Environmentální výchova

V celé historii lidí byla voda považována za vzácný zdroj a lidé (se zajímali o to, zda je jí dostatek, dá se použít při zavlažování nebo zda nehrozí její vylití z břehů. Postupem času nás začaly zajímat i ukazatele, které vyjadřují její jakost. Aby voda, kterou označujeme jako pitnou dosáhla požadovaných atributů, je třeba

surovou vodu odebranou ze zdroje upravit. Úpravárenský proces je poměrně složitý a zahrnuje sled procesů od sedimentace, koagulace, filtrace až po dezinfekci.

Termín jakost se používá pro souhrn všech atributů vody. Tradičnější pojem kvalita se zužuje na její fyzikální a chemické ukazatele.

ZDROJE VODY

Čas: 5 min

ŘEŠENÍ

Močál, mokřad, rybník, půdní voda, voda v horninách, slepé rameno řeky, voda v organismech.

Kvalita vody se vyjadřuje nejčastěji v těchto ukazatelích: mikrobiologické (výskyt Escherichia coli); chemické (dusičnany, tvrdost, pH, železo), fyzikální (zákal)

Vodu z těchto zdrojů nelze využívat z důvodu špatné dostupnosti nebo nedostatečné kapacity (voda v organismech, horninách, půdě, rybník), možného ohrožení ekologických funkcí v krajině (mokřad, močál, slepé rameno) – zadržování vody při povodni, udržení mikroklimatu, stanoviště mnoha organismů apod. Dalším důvodem může být nižší kvalita vody, která by vyžadovala finančně velmi nákladnou úpravu.

CESTA DO KOHOUTKU

Čas: 15 min

ŘEŠENÍ

odběr vody ze zdroje \rightarrow česle zbavují hrubých nečistot \rightarrow předčištění vody v čiřičích síranem železitým \rightarrow úprava pH vápennou vodou \rightarrow zachycení nečistot pískovými filtry \rightarrow hygienické zabezpečení chlórem \rightarrow akumulace ve vodojemu \rightarrow kontrola kvality \rightarrow domácnost

Kroky úpravy vody se mohou odlišovat podle místních podmínek. Záleží především na zdroji vody, ze kterého je voda pro úpravu čerpána. Obecně platí, že voda z podzemních zdrojů má vyšší kvalitu a potřebuje méně úprav než voda z povrchových zdrojů.

ČISTÁ NEBO ŠPINAVÁ

Čas: 20 min

		3.							
		СН			6.				
1.		Е		5.	0	7.	8.	9.	_
G	2.	М	4.	Č	С	Č	Н	Р	10.
Е	В	I	M	I	Е	0	N	0	Н
J	A	K	0	S	T	٧	0	D	Y
Z	K	Á	K	Т			J	Z	D
ĺ	Т	L	Ř	ĺ			I	Е	R
R	Е	I	Α	R			V	М	0
	R	Е	D	N			Α	N	L
	I			Α				ĺ	0
	Е				-				G
		-							I
									Е

NÁPADY PRO OMEZENÍ ZNEČIŠTĚNÍ VODY

- používání šetrných mycích a čistících prostředků
- omezení používání chemikálií na minimum
- náhrada chemických prostředků přírodními čističi (např. octem)
- vyloučení drastických chemikálií (např. Savo)
- oddělené uchovávání nebezpečných látek (např. chemikálie z laboratorních prací)
- používání uměřených dávek čistících prostředků (např. pracího prášku)

Šetrné prostředky jsou např. výrobky firmy Missiva, Ecover, Sodasan nebo výrobky se značkou Ekologicky šetrný výrobek.

KUDY VODA TEČE

CÍL: Seznámit žáky s problematikou čištění odpadní vody. Žáci si uvědomí, že cesta vody zpět je

poměrně komplikovaná. Jsou schopni navrhnout, jakými opatřeními lze ovlivnit kvalitu vody

vypouštěné do kanalizace.

OBORY: Člověk a příroda (Chemie)
PT: Environmentální výchova

Voda, kterou označujeme jako odpadní, prochází podobně složitou cestou jako voda pitná – tzv. čistírenským procesem. Ten zahrnuje mechanické odstranění hrubých nečistot na česlích, lapácích tuku a písku a v primárních usazovacích nádržích. Poté je takto předčištěná voda smíchána s kulturou bakterií nazývanou aktivovaný kal. Bakterie z vody odstraní organické látky, kterými se živí, a amoniakální dusík převedou na plynný dusík, který přejde do atmosféry. Takto vyčištěná voda se od aktivního kalu oddělí v usazovacích nádržích a koncentrovaný oddělený kal je znovu vrácen na začátek biologického čisticího procesu.

CESTA ZPĚT

Čas: 15 min

Voda z domácností, obchodů i firem odtéká do kanalizace. Např. v Praze tvoří kanalizace složitou síť, která byla vystavěna koncem 19. a začátkem 20. století. Pokud bychom se podívali do nitra stok, zjistili bychom, že jsou obvykle stavěné z kamenných nebo betonových trub, starší také z cihel. Kanalizace ústí do čistírny odpadních vod, které jsou nejčastěji stavěny na okrajích obcí nebo až za nimi. Po přečerpání vody do čistírny se nejdříve odstraní hrubé nečistoty a štěrk. Po zachycení písku pokračuje voda do usazovacích nádrží, kde se usazuje kal. Dále putuje do aktivačních nádrží, kde bakterie likvidují biologické znečištění. V dalších usazovacích nádržích vznikne tzv. primární kal, který putuje do vyhnívacích nádrží. Tam z něj uniká bioplyn, který se zachycuje a využívá k výrobě tepla a elektrické energie.

Doporučujeme se žáky navštívit čistírnu odpadních vod v obci, kde se mohou podrobněji seznámit s průběhem čištění odpadních vod. Poté mohou žáci sestavit ve skupinách kreslený komiks, který bude popisovat proces čištění vody. Zkomiksů pak uspořádejte výstavu ve škole a případně hlasováním se žáky vyhodnoťte nejlepší dílka.

