$ \frac{\sigma_{1}^{\#1}}{k^{2}(2r_{3}+r_{5})} \qquad \frac{\sigma_{1}^{\#2}}{k^{2}(1+k^{2})(2r_{3}+r_{5})} \qquad \frac{r_{1}^{\#1}}{k^{2}(1+k^{2})(2r_{3}+r_{5})} \qquad \frac{\sigma_{1}^{\#1}}{k^{2}(1+k^{2})(2r_{3}+r_{5})} \qquad 0 $ $ \frac{\sqrt{2}}{k^{2}(1+k^{2})(2r_{3}+r_{5})} \qquad \frac{3k^{2}(2r_{3}+r_{5})+2t_{2}}{(k+k^{3})^{2}(2r_{3}+r_{5})t_{2}} \qquad 0 $ $ \frac{\sqrt{2}}{k^{2}(1+k^{2})(2r_{3}+r_{5})} \qquad \frac{3k^{2}(2r_{3}+r_{5})+2t_{2}}{(k+k^{3})^{2}(2r_{3}+r_{5})t_{2}} \qquad 0 $ $ \frac{i\sqrt{2}}{k(1+k^{2})(2r_{3}+r_{5})} \qquad \frac{i(3k^{2}(2r_{3}+r_{5})+2t_{2})}{k(1+k^{2})^{2}(2r_{3}+r_{5})t_{2}} \qquad 0 $ $ \frac{i\sqrt{2}}{k(1+k^{2})(2r_{3}+r_{5})} \qquad \frac{3k^{2}(2r_{3}+r_{5})t_{2}}{(1+k^{2})^{2}(2r_{3}+r_{5})t_{2}} \qquad 0 $ $ \frac{2}{k^{2}(r_{3}+2r_{5})} $ $ 0 \qquad 0 \qquad 0 \qquad 0 $ $ 0 \qquad 0 \qquad 0 $ $ 0 \qquad 0 \qquad 0 $	$\sigma_{1}^{\#2}{}_{\alpha} \ \tau_{1}^{\#1}{}_{\alpha} \ \tau_{1}^{\#2}{}_{\alpha}$	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
$ \frac{\sigma_{1+}^{\#2} \alpha_{\beta}}{\sqrt{2}} $ $ -\frac{\sqrt{2}}{k^{2} (1+k^{2}) (2r_{3}+r_{5})} $ $ \frac{3k^{2} (2r_{3}+r_{5})+2t_{2}}{(k+k^{3})^{2} (2r_{3}+r_{5})t_{2}} $ $ \frac{i(3k^{2} (2r_{3}+r_{5})+2t_{2})}{k(1+k^{2})^{2} (2r_{3}+r_{5})t_{2}} $ $ 0 $ $ 0 $	$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{2}{k^2 (r_3 + 2 r_5)}$	0	0	0
	$\tau_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	$\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0
$ \frac{\sigma_{1}^{\#1}}{\sigma_{1}^{1} + \alpha \beta} $ $ \frac{1}{k^{2}(2r_{3} + r_{5})} $ $ \frac{\sqrt{2}}{k^{2}(1 + k^{2})(2r_{3} + r_{5})} $ $ \frac{i \sqrt{2}}{k(1 + k^{2})(2r_{3} + r_{5})} $ $ 0 $ $ 0 $ $ 0 $	$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(k+k^3)^2(2r_3+r_5)t_2}$	$-\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{1}{k^2 (2 r_3 + r_5)}$	- _{k² (1-}		0	0	0	0

$f_{1}^{#2}$	0	0	0	0	0	0	0
$f_{1^-}^{\#1}$ α	0	0	0	0	0	0	0
$\omega_{1^{ ext{-}}}^{\#2}{}_{lpha}$	0	0	0	0	0	0	0
$\omega_{1^{-}}^{\#1}$	0	0	0	$\frac{1}{2}k^{2}(r_{3}+2r_{5})$	0	0	0
$f_{1}^{\#1}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<u>i kt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_1^{\#_+^2}$	$\frac{\sqrt{2} t_2}{3}$	1 t 2 3	$-rac{1}{3}$ \bar{l} kt_2	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$k^2 (2 r_3 + r_5) + \frac{2t_2}{3}$	$\frac{\sqrt{2}t_2}{3}$	$-rac{1}{3}$ i $\sqrt{2}$ kt ₂	0	0	0	0
	$\omega_1^{\#1} + \alpha^{eta}$	$\omega_1^{\#2} + \alpha^{\beta}$	$f_1^{#1} + \alpha^{\beta}$	$\omega_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\omega_1^{\#2} +^{\alpha}$	$f_{1}^{\#1} +^{\alpha}$	$f_1^{\#2} + \alpha$

Lagrangian density	
$\frac{2}{3}t_2\;\omega_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	
$r_5 \partial_i \omega^{\kappa \lambda}_{\ \kappa} \partial^i \omega_{\lambda}^{\ \alpha} + \tfrac{1}{2} r_3 \partial_\alpha \omega_{\lambda}^{\ \alpha}_{\ \beta} \partial_\kappa \omega^{\theta \kappa \lambda}_{\ \lambda} - r_5 \partial_\alpha \omega_{\lambda}^{\ \alpha}_{\ \beta} \partial_\kappa \omega^{\theta \kappa \lambda}_{\ \beta} - \tfrac{1}{2} r_3 \partial_\theta \omega_{\lambda}^{\ \alpha}_{\ \alpha} \partial_\kappa \omega^{\theta \kappa \lambda}_{\ \beta} +$	
$r_5\partial_\theta\omega_\lambda^{\ \alpha}\partial_\kappa\omega^{\theta\kappa\lambda}-\tfrac{1}{2}r_3\partial_\alpha\omega_\lambda^{\ \alpha}\partial_\kappa\omega^{\kappa\lambda\theta}-r_5\partial_\alpha\omega_\lambda^{\ \alpha}\partial_\kappa\omega^{\kappa\lambda\theta}+r_3\partial_\theta\omega_\lambda^{\ \alpha}\partial_\kappa\omega^{\kappa\lambda\theta}+$	
$2r_5\partial_\theta\omega_\lambda^{\ \alpha}\partial_\kappa\omega^{\kappa\lambda\theta} + \frac{1}{6}t_2\partial^\alpha f_{\theta\kappa}\partial^\kappa f_\alpha^{\ \theta} - \frac{1}{6}t_2\partial^\alpha f_{\kappa\theta}\partial^\kappa f_\alpha^{\ \theta} + \frac{1}{6}t_2\partial^\alpha f^\lambda_{\ \kappa}\partial^\kappa f_{\alpha\lambda} +$	
$\frac{1}{3}t_2 \; \omega_{i\theta \kappa} \; \partial^{\kappa} f^{i\theta} - \frac{2}{3}t_2 \; \omega_{i\kappa\theta} \; \partial^{\kappa} f^{i\theta} - \frac{1}{3}t_2 \; \omega_{\theta i\kappa} \; \partial^{\kappa} f^{i\theta} + \frac{2}{3}t_2 \; \omega_{\theta \kappa i} \; \partial^{\kappa} f^{i\theta} -$	
$\frac{1}{6}t_2\partial^\alpha f^\lambda_{\kappa}\partial^\kappa f_{\lambda\alpha} - \frac{1}{6}t_2\partial_\kappa f_{\beta}^{}\partial^\kappa f_{\beta}^{} + \frac{1}{6}t_2\partial_\kappa f^\lambda_{\theta}\partial^\kappa f_{\beta}^{} - 4r_3\partial^\beta \omega_{\lambda\alpha}^{\lambda\alpha}\partial_\lambda \omega_{\alpha\beta}^{\prime} -$	
$\frac{1}{2} r_3 \partial_\alpha \omega_\lambda^{\ \alpha}_{\ \ \beta} \partial^\lambda \omega^{\theta \kappa}_{\ \ \kappa} + r_5 \partial_\alpha \omega_\lambda^{\ \alpha}_{\ \ \beta} \partial^\lambda \omega^{\theta \kappa}_{\ \ \kappa} + \frac{1}{2} r_3 \partial_\theta \omega_\lambda^{\ \alpha}_{\ \ \alpha} \partial^\lambda \omega^{\theta \kappa}_{\ \ \kappa} - r_5 \partial_\theta \omega_\lambda^{\ \alpha}_{\ \ \alpha} \partial^\lambda \omega^{\theta \kappa}_{\ \ \kappa}$	

Source constraints

SO(3) irreps

 $\sigma_{0}^{\#1} == 0$

 $t_1^{\#2}\alpha == 0$

 $\tau_0^{\#2} == 0$

 $c_{0+}^{\#1} == 0$

 $\tau_{1}^{\#1}{}^{\alpha} == 0$

 $r_1^{\#1}\alpha\beta + ik \sigma_1^{\#2}\alpha\beta$

 $\sigma_{2^{-1}}^{\#1}\alpha\beta\chi==0$

 $\tau_{2+}^{\#1}\alpha\beta==0$

Total #:

(No massive particles)

Unitarity conditions

$$r_3 < 0 \&\& (r_5 < -\frac{r_3}{2} || r_5 > -2 r_3) || r_3 > 0 \&\& -2 r_3 < r_5 < -\frac{r_3}{2}$$