## 2020 Fall EECS205002 Linear Algebra

## 2020/12/30 Quiz 4

- 1. (30%) True or False. For each item, if your answer is False, indicate which part of the statement is incorrect.
  - (a) Two subspaces X and Y of  $\mathbb{R}^n$  are said to be orthogonal complement if for all  $x \in X$  and for all  $y \in Y$  that  $x^T y = 0$ . Moreover,  $\dim(X) + \dim(Y) = n$ .

False. add  $X \oplus Y = \mathbb{R}^n$ .

(b) For a matrix A, the orthogonal complement of A's null space is A's row space.

True.

(c) The direction sum  $W = U \oplus V$  means that every  $w \in W$  can be expressed as w = u + v for  $u \in U$  and  $v \in V$ .

False. add uniquely.

(d) A vector norm  $\|\cdot\|$  needs to satisfy the following conditions: For all x and y in a vector space

I  $||x|| \ge 0$  and ||x|| = 0 if and only if x = 0.

II  $\|\alpha x\| = \alpha \|x\|$ .

III  $||x + y|| \le ||x|| + ||y||$ 

False. II.  $\|\alpha x\| = |\alpha| \|x\|$ 

(e) A set of vectors  $\{v_1, v_2, \dots, v_k\}$  are linearly independent if  $\langle v_i, v_j \rangle = 0$  for any  $i \neq j$  and  $\langle v_i, v_i \rangle = 1$  for all i.

True.

(f) An  $n \times n$  matrix  $Q = [q_1, q_2, \dots, q_n]$  is called an orthogonal matrix if  $\{q_1, q_2, \dots, q_n\}$  is an orthogonal set.

False. should be an orthonormal set.

(g) If x is an eigenvector of an  $n \times n$  matrix A,  $\alpha x$  is also an eigenvector of A for all  $\alpha \in \mathbb{R}$ .

False.  $\alpha \neq 0$ .

(h) If an  $n \times n$  matrix A has a zero eigenvalue, A is singular.

True.

- (i) An  $n \times n$  matrix A is diagonalizable if and only if A has n distinct eigenvalues.
  - False. If A has n distinct eigenvalues, A is diagonalizable. But the inverse is incorrect.
- (j) The eigenvalues of a symmetric matrix are all real, and their corresponding eigenvectors must be orthogonal.

False. The eigenvector can be chosen to be orthogonal, but not necessary.

2. (10%) Find a basis for the orthogonal complement of the following subspace.

$$\operatorname{span}\left(\begin{bmatrix}1\\2\\3\\4\end{bmatrix},\begin{bmatrix}5\\6\\7\\8\end{bmatrix}\right)$$

Let

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{bmatrix}.$$

The null space of A is the orthogonal complement of the subspace. The reduced row-echelon form of A is

$$A \to \begin{bmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 2 & 3 \end{bmatrix}.$$

whose leading variable is  $x_1, x_2$  and free variables are  $x_3, x_4$ . Let  $x_3 = \alpha, x_4 = \beta$ . The null space has the form

$$N(A) = \begin{bmatrix} \alpha + 2\beta \\ -2\alpha - 3\beta \\ \alpha \\ \beta \end{bmatrix} = \alpha \begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} 2 \\ -3 \\ 0 \\ 1 \end{bmatrix}$$

- 3. (10%) For a matrix A, show that  $N(A^TA) = N(A)$ .
  - (a) If  $x \in N(A)$ , Ax = 0. Then  $A^TAx = A^T0 = 0$ , which shows  $x \in N(A^TA)$ . This means  $N(A) \subseteq N(A^TA)$ .
  - (b) If  $x \in N(A^T A)$ ,  $A^T A x = 0$ . Then  $x^T A^T A x = (Ax)^T A x = ||Ax||^2 = 0$ , which shows Ax = 0 and therefore  $x \in N(A)$ . This means  $N(A^T A) \subseteq N(A)$ .
  - (c) Based on (a) and (b),  $N(A^TA) = N(A)$ .

4. (10%) Given 
$$A = \begin{bmatrix} 4 & -5 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & -1 \end{bmatrix}$$
. Find all the eigenvalues of  $A$  and the eigenvalue (No read to normalize it)

eigenvector belonging to the largest eigenvalue. (No need to normalize it.)

The characteristic polynomial  $p(\lambda) = \det(A - \lambda I) = \lambda(\lambda^2 - 3\lambda + 2)$ , whose roots are 0, 1, 2. To find the eigenvector of  $\lambda = 2$ , we need to compute

the null space of  $A - 2I = \begin{bmatrix} 2 & -5 & 1 \\ 1 & -2 & -1 \\ 0 & 1 & -3 \end{bmatrix}$ , which is span([7 3 1]<sup>T</sup>). So the eigenvector belonging to  $\lambda = 2$  is

$$x = \begin{bmatrix} 7 \\ 3 \\ 1 \end{bmatrix}$$

5. (10%) Let  $p(x) = \alpha \det(A - xI) = 5x^3 - 6x^2 + 7x + 8$ , and  $\lambda_1, \lambda_2, \lambda_3$  be the eigenvalues of A. What are  $\alpha$ ,  $\lambda_1 \lambda_2 \lambda_3$  and  $\lambda_1 + \lambda_2 + \lambda_3$ ?

The leading term of p(x) should be  $(-1)^3 = -1$ . So  $\alpha = -5$ .

The original  $p(x) = -x^3 + (6/5)x^2 - (7/5)x - 8/5$ .

So  $\lambda_1 \lambda_2 \lambda_3 = -8/5$  and  $\lambda_1 + \lambda_2 + \lambda_3 = 6/5$ .

- 6. (10%) Let Q be an orthogonal matrix.
  - (a) Show that if  $\lambda$  is an eigenvalue of Q, then  $|\lambda| = 1$ .
  - (b) Show that  $|\det(Q)| = 1$ .

For (a), the eigenvalue/eigenvector of Q satisfies  $Qx = \lambda x$ . Since Q is orthogonal,  $||Qx|| = ||x|| = ||\lambda x|| = |\lambda|||x||$ , and  $||x|| \neq 0$ , we have  $|\lambda| = 1$ .

For (b), suppose Q is an  $n \times n$  matrix, and it has eigenvalues  $\lambda_1, \lambda_2, \dots, \lambda_n$ Since  $\det(Q) = \lambda_1 \lambda_2 \cdots \lambda_n$ ,

$$|\det(Q)| = |\lambda_1 \lambda_2 \cdots \lambda_n| = |\lambda_1| \times |\lambda_2| \times \cdots \times |\lambda_n| = 1 \times 1 \times \cdots \times 1 = 1.$$

7. (10%) Find ALL possible values of the scalar  $\alpha$  that can make A defective

$$A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 2 & -1 & \alpha \end{bmatrix}.$$

Solving the characteristic polynomial  $p(\lambda) = \det(A - \lambda I) = (\alpha - \lambda)(\lambda + 1)(\lambda - 3) = 0$ , we have  $\lambda = -1, 3, \alpha$ . To make A defective,  $\alpha$  must be -1 or 3. If  $\alpha = -1$ , A only has one linearly independent eigenvector belonging to -1,  $[0\ 0\ 1]^T$ , so A is defective. If  $\alpha = 3$ , A also has one linearly independent eigenvector belonging to -1,  $[1\ 3\ 1]^T$ , so A is defective. So both  $\alpha = -1$  and  $\alpha = 3$  can make A defective.

- 8. (10%) The unit circle is the set of points whose "distance" to (0,0) is 1. Different norms give different shapes of unit circles. For example, the unit circle of 2-norm,  $||[x,y]||_2 = \sqrt{x^2 + y^2} = 1$ , is shown in Figure 1.
  - (a) Draw the unit circle of 1-norm,  $||[x, y]||_1 = |x| + |y| = 1$ .
  - (b) Draw the unit circle of  $\infty$ -norm  $||[x,y]||_{\infty} = \max(|x|,|y|) = 1$ .



Figure 1: The unit circle of 2-norm



(a) The unit circle of 1-norm (b) The unit circle of  $\infty$ -norm.