R12521504 吳玉文

Problem 1

1. Describe the implementation details of your SSL method for pre-training the ResNet50 backbone. (including but not limited to the name of the SSL method & data augmentation techniques you used, learning rate schedule, optimizer, and batch size setting for this pre-training phase)

採用助教所提供的 BYOL 方法,架構如下:

對輸入圖像 x 進行 data augmentation,得到 t 以及 t'

- > 將 t 輸入到 online 網路經過 f_{θ} 進行特徵提取得到 y_{θ} ; t'輸入到 target 網路經過 f_{ξ} 進行特徵提取得到 y'_{ξ}
- > 將 y_{θ} 經過 MLP 網路 g_{θ} 處理得到 z_{θ} ; y'_{ξ} 經過 MLP 網路 g_{ξ} 處理得到 z'_{ξ}
- > z_{θ} 再經過 MLP 網路 q_{θ} 得到 $q_{\theta}(z_{\theta})$,並與 z'_{ξ} 進行比較以計算 loss
- > Loss function:

$$\mathcal{L}_{\theta,\xi} \triangleq \left\| \overline{q_{\theta}}(z_{\theta}) - \overline{z}_{\xi}' \right\|_{2}^{2} = 2 - 2 \cdot \frac{\langle q_{\theta}(z_{\theta}), z_{\xi}' \rangle}{\left\| q_{\theta}(z_{\theta}) \right\|_{2} \cdot \left\| z_{\xi}' \right\|_{2}} \cdot$$

SSL 訓練細節描述:

> Method: BYOL

> Batch Size: 32

> Optimizer: Adam

> Learning Rate: 1e-2

> Learning Rates Scheduler: CosineAnnealingWarmRestarts

> Num of Epochs: 50+50 (train 完 50 個 epochs 後的權重再 train 50 次)

> Data Augmentation:

```
transform_train = transforms.Compose([
    transforms.Resize(128, interpolation=transforms.InterpolationMode.BICUBIC),
    transforms.CenterCrop(128),
    transforms.TrivialAugmentWide(),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
```

2. Please conduct the Image classification on Office-Home dataset as the downstream task. Also, please complete the following Table, which contains different image classification setting, and discuss/analyze the results.

訓練細節描述:

> Batch Size: 32

> Optimizer: Adam

> Learning Rate: 1e-3

> Learning Rates Scheduler: CosineAnnealingWarmRestarts

> Num of Epochs: 100

> Data Augmentation:

```
transform_train = transforms.Compose([
    transforms.Resize(128, interpolation=transforms.InterpolationMode.BICUBIC),
    transforms.CenterCrop(128),
    transforms.TrivialAugmentWide(),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
```

> Results:

Setting	Validation Accuracy
А	52.22%
В	53.20%
С	42.86%
D	34.73%
Е	28.57%

> Discussion:

有載入助教 pre-train weight 的模型(Setting B)結果比起沒有 pre-train weight 的(Setting A)更為準確,而且不用訓練到太多的 epochs 其實就可以

得到良好的結果了,顯示出在有良好的 pre-train weight 下,模型會有比較好的結果。但我自己訓練出的 pre-train weight(Setting C),在 fine tune 的部分表現並沒有比較好,有可能是因為 pre-train 不夠久,導致 loss 還沒有完全收斂的緣故。但因為比起 Setting A,training accuracy 跟 validation accuracy 在 Setting C 的 training 過程中差距並沒有那麼大,所以雖然validation accuracy 並沒有上升,但 pre-train weight 有讓整個模型較為robust,防止在 training set 上 overfitting。而 Setting D/E 與 Setting B/C 進行比較的結果可以看出,固定 backbone 會使得模型沒辦法完整接收不一樣 training data 的資訊,使得準確率降低。

- 3. Visualize the learned visual representation of setting C on the train set by implementing t-SNE (t-distributed Stochastic Neighbor Embedding) on the output of the second last layer. Depict your visualization from both the first and the last epochs. Briefly explain the results.
- > First and Last Epoch:

> Discussion:

雖然不同顏色的點還沒有辨識的很明顯·但不同類別的距離可以明顯看出有被拉開·顯示出模型能夠透過訓練逐漸理解不同 label 的圖片之間的差異。

Problem 2

1. Draw the network architecture of your VGG16-FCN32s model (model A).


```
def __init__(self, num_classes):
    super(VGG16_FCN32s, self).__init__()
    vgg = models.vgg16(weights='DEFAULT')
    self.features = vgg.features

self.classifier = nn.Sequential(
        nn.Conv2d(512, 1024, kernel_size=7),
        nn.ReLU(inplace=True),
        nn.Dropout2d(),
        nn.Conv2d(1024, num_classes, kernel_size=1),
        nn.ReLU(inplace=True)
)

self.upscore = nn.ConvTranspose2d(
        num_classes,
        num_classes,
        kernel_size=44,
        stride=52,
        padding=0,
        bias=False
)
```

2. Draw the network architecture of the improved model (model B) and explain it differs from your VGG16-FCN32s model.

我使用 segmentation_models_pytorch 的 timm-mobilenetv3_large_100 進行 model B 的訓練。與 model A 相比也同樣是 Encoder (如下圖所示)加上 Decoder 的架構,但 mobilenetv3 在處理 Layer 時的做法更加進步,使用了 Inverted Residual、Squeeze-and-Excitation 模塊,並結合了Hardswish 激活函數。這些改進讓 model B 在保持高效的同時,能夠更好地捕捉和表達複雜的特徵。此外,model B 還透過更輕量化的卷積操作和優化的網路設計提高了性能,使其能在計算資源受限的設備上表現尤佳。

3. Report mloUs of two models on the validation set.

Model A	Model B
39.5%	72.6%

4. Show the predicted segmentation mask of validation/0013_sat.jpg, validation/0062_sat.jpg, validation/0104_sat.jpg during the early, middle, and the final stage during the training process of the improved model.

validation/0013_sat.jpg		
Epoch 1	Epoch 75	
Epoch 150	Label	

validation/0062_sat.jpg		
Epoch 1	Epoch 75	
Epoch 150	Label	

5. Use segment anything model (SAM) to segment three of the images in the validation dataset, report the result images and the method you use.

我選擇 0050_sat.jpg、0130_sat.jpg、0256_sat.jpg 進行 segment,model 使用 vit_h,呈現出的結果如下:

