#### ЛАБОРАТОРНА РОБОТА № 1

# ПОПЕРЕДНЯ ОБРОБКА ТА КОНТРОЛЬОВАНА КЛАСИФІКАЦІЯ ДАНИХ

*Mema*: використовуючи спеціалізовані бібліотеки та мову програмування Руthon дослідити попередню обробку та класифікацію даних.

# Хід роботи:

# Нормалізація даних:

```
# Нормалізація даних
data_normalized_l1 = preprocessing.normalize(input_data, norm='l1')
data_normalized_l2 = preprocessing.normalize(input_data, norm='l2')
print("\nl1 normalized data:\n", data_normalized_l1)
print("\nl2 normalized data:\n", data_normalized_l2)

l1 normalized data:
    [[ 0.45132743 -0.25663717  0.2920354 ]
    [-0.0794702  0.51655629 -0.40397351]
    [ 0.609375   0.0625   0.328125 ]
    [ 0.33640553 -0.4562212 -0.20737327]]

l2 normalized data:
    [[ 0.75765788 -0.43082507  0.49024922]
    [-0.12030718  0.78199664 -0.61156148]
    [ 0.87690281  0.08993875  0.47217844]
    [ 0.55734935 -0.75585734 -0.34357152]]
```

Рис.1. Результат нормалізації даних.

L1-нормалізація та L2-нормалізація - це два різних методи нормалізації даних, які використовуються для перетворення вхідних даних так, щоб вони мали одиничну норму (довжину) вектора.

<u>L1-нормалізація (також відома як " манхеттенська нормалізація"):</u>

Обчислює суму абсолютних значень кожного рядка в матриці даних, потім кожне значення в рядку ділиться на цю суму.

L2-нормалізація (також відома як " Евклідова нормалізація"):

Обчислює Евклідову норму (квадратний корінь з суми квадратів значень)

|       |             |              |        |      | ДУ «Житомирська політехніка».22.122.4.000 — Лр1 |                    |      |                       |
|-------|-------------|--------------|--------|------|-------------------------------------------------|--------------------|------|-----------------------|
| 3мн.  | Арк.        | № докум.     | Підпис | Дата |                                                 |                    |      | •                     |
| Розр  | <b>0</b> б. | Дяченко В.В. |        |      |                                                 | Літ.               | Арк. | Аркушів               |
| Пере  | евір.       | Голенко М.Ю. |        |      | Звіт з                                          |                    | 1    |                       |
| Кері  | зник        |              |        |      |                                                 | ΦΙΚΤ Γp. KH-20-1(1 |      |                       |
| Н. кс | нтр.        |              |        |      | лабораторної роботи                             |                    |      | <del>1</del> -20-1(1) |
| Зав.  | каф.        |              |        |      |                                                 |                    | -    |                       |

кожного рядка в матриці даних, потім кожне значення в рядку ділиться на цю норму. Через що ми отримуємо різний результат при однакових вхідних даних. В нашому випадку абсолютні значення при L2-нормалізації — більші.

```
[ ] import numpy as np
    from sklearn import preprocessing

[ ] # Надания позначок ихідних даних
    Input_labels = ['red', 'black', 'red', 'green', 'black', 'yellow', 'white']

[ ] # Створення кодувальника та встановлення відповідності
    # між мітками та числами
    encoder = preprocessing.LabelEncoder()
    encoder.fit(Input_labels)

* LabelEncoder
LabelEncoder()
```

Рис.2. Результат створення кодувальника.

```
# Виведення відображення
    print("\nLabel mapping:")
    for i, item in enumerate(encoder.classes ):
      print(item, '-->', i)
₽
    Label mapping:
    black --> 0
    green --> 1
    red --> 2
    white --> 3
    yellow --> 4
    black --> 5
[] # перетворення міток за допомогою кодувальника
    test_labels = ['green', 'red', 'black']
    encoded values = encoder.transform(test labels)
    print("\nLabels =", test_labels )
    print("Encoded values =", list (encoded_values ) )
    Labels = ['green', 'red', 'black']
    Encoded values = [1, 2, 0]
```

Рис.3. Результат відображення та перетворення міток.

|      |      | Дяченко В.В. |        |      |
|------|------|--------------|--------|------|
|      |      | Голенко М.Ю. |        |      |
| Змн. | Арк. | № докум.     | Підпис | Дата |

```
# Декодування набору чисел за допомогою декодера encoded_values = [3, 0, 4, 1] decoded_list = encoder.inverse_transform(encoded_values) print("\nEncoded values =", encoded_values) print("Decoded labels =", list (decoded_list ))

Encoded values = [3, 0, 4, 1] Decoded labels = ['white', 'black', 'yellow', 'green']
```

Рис.4. Результат декодування.

Рис. 5. Результат зміни початкових даних та їх бінаризації.

|      |      | Дяченко В.В. |        |      |
|------|------|--------------|--------|------|
|      |      | Голенко М.Ю. |        |      |
| Змн. | Арк. | № докум.     | Підпис | Дата |

```
[10] # Виведення середнього значення та стандартного відхилення
    print("\nBEFORE: ")
    print("Mean =", input_data.mean(axis=0))
    print("Std deviation =", input_data.std(axis=0))
    BEFORE:
    Mean = [ 0.725 -2.
                         0.4 ]
    Std deviation = [3.49454933 4.97543968 3.72491611]
   #Виключення середнього
    data_scaled = preprocessing.scale(input_data)
    print("\nAFTER: ")
    print("Mean =", data_scaled.mean(axis=0))
    print("Std deviation =", data_scaled.std(axis=0))
₽
    AFTER:
    Mean = [-2.77555756e-17 -2.42861287e-17 0.000000000e+00]
    Std deviation = [1. 1. 1.]
```

Рис. 6. Результат виключення середнього.

```
# Масштабування MinMax
data scaler minmax = preprocessing.MinMaxScaler(feature range=(0, 1))
data scaled minmax = data scaler minmax.fit transform(input data)
print("\nMin max scaled data:\n", data_scaled_minmax)
Min max scaled data:
[[0. 0. 0.75
[0.97619048 1. 0.
[1. 0.43571429 0.01190476]
[0.89285714 0.53571429 1.
# Нормалізація даних
data_normalized_l1 = preprocessing.normalize(input_data, norm='l1')
data_normalized_12 = preprocessing.normalize(input_data, norm='12')
print("\nl1 normalized data:\n", data_normalized_l1)
print("\nl2 normalized data:\n", data_normalized_l2)
l1 normalized data:
[[-0.30813953 -0.51744186 0.1744186 ]
[ 0.25287356 -0.16091954 0.5862069 ]]
12 normalized data:
[[-0.49145755 -0.82527777 0.27818352]
  0.43082507 0.75765788 -0.49024922]
0.58911518 -0.53210404 -0.6081189 ]
  0.38407812 -0.24441335 0.89036291
```

Рис. 7. Результат масштабування та нормалізації даних.

|      |      | <i>Пяченко В.В.</i> |        |      |                                                 |
|------|------|---------------------|--------|------|-------------------------------------------------|
|      |      | Голенко М.Ю.        |        |      | ДУ «Житомирська політехніка».22.122.4.000 – Лр1 |
| Змн. | Арк. | № докум.            | Підпис | Дата |                                                 |

```
[5] import numpy as np
     from sklearn import linear model
     import matplotlib.pyplot as plt
    from utilities import visualize_classifier
[6] # Визначення зразка вхідних даних
    X = \text{np.array}([[3.1, 7.2], [4, 6.7], [2.9, 8], [5.1, 4.5],
                   [6, 5], [5.6, 5], [3.3, 0.4],
                   [3.9, 0.9], [2.8, 1],
                   [0.5, 3.4], [1, 4], [0.6, 4.9]])
    y = np.array([0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3])
[7] # Створення логістичного класифікатора
    classifier = linear model.LogisticRegression(solver='liblinear',C=1)
[8] # Тренування класифікатора
    classifier.fit(X, y)
                  LogisticRegression
     LogisticRegression(C=1, solver='liblinear')
```

Рис. 8. Результат створення та тренування логістичного класифікатора.



Рис. 9. Візуалізація результата роботи класифікатора.

|      |      | Дяченко В.В. |        |      |
|------|------|--------------|--------|------|
|      |      | Голенко М.Ю. |        |      |
| Змн. | Арк. | № докум.     | Підпис | Дата |

```
[1] import numpy as np import matplotlib.pyplot as plt from sklearn.maive_bayes import GaussianNB from sklearn.model_selection import train_test_split from utilities import visualize_classifier

    # Вхідний файл, який містить дані input_file = 'data_multivar_nb.txt'

[3] # Завантаження даних із ахідного файлу data = np.loadtxt(input_file, delimiter=',') x, y = data[:, :-1], data[:, -1]
[4] # Створення наївного байєсовського класифікатора classifier = GaussianNB()
[5] # Тренування класифікатора classifier.fit(X, y)
GaussianNB
GaussianNB()
```

Рис.10. Створення та тренування класифікатора.



Рис.11. Прогнозування значень, обчислення якості та візуалізація результатів роботи створеного класифікатора.

|      |      | Дяченко В.В. |        |      |
|------|------|--------------|--------|------|
|      |      | Голенко М.Ю. |        |      |
| Змн. | Арк. | № докум.     | Підпис | Дата |



Рис.12. Результат розбивки набору даних, обчислення якості та візуалізація результатів роботи створеного класифікатора.



Рис.13. Результат роботи класифікатора при повторному прогоні.

Арк.

Лр1

|      |              | Дяченко В.В. |        |      |                                            |
|------|--------------|--------------|--------|------|--------------------------------------------|
|      |              | Голенко М.Ю. |        |      | ДУ «Житомирська політехніка».22.122.4.000— |
| Змн. | $Ap\kappa$ . | № докум.     | Підпис | Дата |                                            |

При повторному прогоні коду ми отримуємо тей самий результат. Так відбувається через використання випадкового розподілу даних на навчальний та тестовий набори за допомогою функції train\_test\_split з фіксованим значенням random\_state (3). Цей параметр встановлює початковий стан генератора випадкових чисел, і якщо він залишається незмінним між кількома запусками, то поділ даних буде однаковим, відповідно модель буде навчатися та тестуватися на одних і тих самих наборах даних.



Рис.14. Завантаження набору даних та визначення граничного значення.

|      |      | Дяченко <i>В.В.</i> |        |      |
|------|------|---------------------|--------|------|
|      |      | Голенко М.Ю.        |        |      |
| Змн. | Арк. | № докум.            | Підпис | Дата |

```
[7] dof find_TP(y_true, y_pred):
    # Niapaxxeys sinskirs true positives (y_true = 1, y_pred = 1)
    return sum((y_true, y_pred):
    # Niapaxxeys sinskirs false negatives (y_true = 1, y_pred = 0)
    return sum((y_true = 1) & (y_pred == 0))

def find_FP(y_true, y_pred):
    # Niapaxxeys sinskirs false positives (y_true = 0, y_pred = 1)
    return sum((y_true == 0) & (y_pred == 1))

def find_TN(y_true, y_pred):
    # Niapaxxeys sinskirs true negatives (y_true = 0, y_pred = 0)

return sum((y_true == 0) & (y_pred == 0))

• print('TP:',find_TP(df.actual_label.values, df.predicted_RF.values))
    print('FR:',find_FP(df.actual_label.values, df.predicted_RF.values))
    print('TN:',find_TN(df.actual_label.values, df.predicted_RF.values))
    print('TN:',find_TN(df.actual_label.values, df.predicted_RF.values))

C. TP: 5047
    FN: 2832
    FP: 2360
    TN: 5519
```

Рис.15. Результат визначення власних функцій для перевірки confusion\_matrix.

Рис.16. Результат написання функції diachenko\_confusion\_matrix та перевірка роботи створеної функції.

```
from sklearn.metrics Import accuracy_score
accuracy_score(df.actual_label.values, df.predicted_RF.values)

0.6785165630156111

def diachenko_accuracy_score(y_true, y_pred):
    TN, FP, FN, TP = confusion_matrix(y_true, y_pred).ravel()
    accuracy = (TP + TN) / (TP + TN + FP + FN)

    return accuracy
assert_diachenko_accuracy_score(df.actual_label.values, df.predicted_LR.values) == accuracy_score(df.actual_print('Accuracy_UR: %.3f'%(diachenko_accuracy_score(df.actual_label.values, df.predicted_RF.values)))

print('Accuracy_UR: %.3f'%(diachenko_accuracy_score(df.actual_label.values, df.predicted_LR.values)))

Accuracy_RF: 0.671
Accuracy_LR: 0.616
```

Рис.17. Результат визначення власної ф-ції ассигаncy\_score.

 $Ap\kappa$ .

9

|      |      | Дяченко В.В. |        |      |                                                 |
|------|------|--------------|--------|------|-------------------------------------------------|
|      |      | Голенко М.Ю. |        |      | ДУ «Житомирська політехніка».22.122.4.000 – Лр1 |
| Змн. | Арк. | № докум.     | Підпис | Дата |                                                 |

```
from sklearn.metrics import recall_score
recall_score(df.actual_label.values, df.predicted_RF.values)
def diachenko_recall_score(y_true, y_pred):
   TP,FN,FP,TN - find conf_matrix_values(y_true,y_pred)
   accuracy = (TP) / (TP + FN)
   return accuracy
assert diachenko_recall_score(df.actual_label.values, df.predicted_tR.values) = recall_score(df.actual_
print('Mecall RF: %.3f'%(diachenko_recall_score(df.actual_label.values, df.predicted_RF.values)))
print('Recall LR: %.3f'%(diachenko recall_score(df.actual_label.values, df.predicted_LR.values)))
Recall RF: 0.641
Recall LR: 0.543
                                                                             + Код — + Текст
from sklearn.metrics import precision_score
precision_score(df.actual_label.values, df.predicted_RF.values)
0.681382476036182
def diachenko_precision_score(y_true, y_pred):
   TP,FN,FP,TN = find_conf_matrix_values(y_true,y_pred)
   accuracy = accuracy = (TP) / (TP + FP)
   return accuracy
assert diachenko_precision_score(df.actual_label.values, df.predicted_tR.values) — precision_score(df.a
print('Precision RF: %.3f'%(diachenko_precision_score(df.actual_label.values, df.predicted_RF.values)))
print('Precision LR: %.3f'%(diachenko precision score(df.actual label.values, df.predicted LR.values)))
```

Рис.18. Результат визначення власної ф-ції recall\_score та precision\_score.

```
from sklearn.metrics import f1_score
f1_score(df.actual_label.values, df.predicted_RF.values)

0.660342797330891

def diachenko_f1_score(y_true, y_pred):
    recall = diachenko_recall_score(y_true,y_pred)
    precision = diachenko_precision_score(y_true,y_pred)
    f1 = 2 * (precision * recall) / (precision + recall)
    return f1

assert diachenko_f1_score(df.actual_label.values, df.predicted_LR.values) == f1_score(df.print('F1_RF: %.3f'%(diachenko_f1_score(df.actual_label.values, df.predicted_LR.values)))

print('F1_LR: %.3f'%(diachenko_f1_score(df.actual_label.values, df.predicted_LR.values)))

F1_RF: 0.660
F1_LR: 0.586
```

Рис.19. Результат визначення власної ф-ції f1\_score.

|      |      | Дяченко В.В. |        |      |
|------|------|--------------|--------|------|
|      |      | Голенко М.Ю. |        |      |
| Змн. | Арк. | № докум.     | Підпис | Дата |

```
print('scores with threshold = 0.3')
print('Accuracy NF: %.3f'%(diachenko accuracy score(df.actual_label.values, df.predicted_RF.values)))
print('mocall NF: %.3f'%(diachenko precision_score(df.actual_label.values, df.predicted_RF.values)))
print('Precision_NF: %.3f'%(diachenko precision_score(df.actual_label.values, df.predicted_RF.values)))
print('J)
print('J)
print('Stores with threshold = 0.25')
print('Stores with threshold = 0.25')
print('Scores with threshold = 0.25')
print('Scores with threshold = 0.25')
print('Scores with threshold = 0.25')
print('Recall_NF: %.3f'%(diachenko accuracy score(df.actual_label.values, (df.model_NF >= 0.25).astype('int').values)))
print('Precision_NF: %.3f'%(diachenko precision_score(df.actual_label.values, (df.model_NF >= 0.25).astype('int').values)))
print('Fi_NF: %.3f'%(diachenko_fi_score(df.actual_label.values, (df.model_NF >= 0.25).astype('int').values)))

scores with threshold = 0.5
Accuracy_NF: 0.601
Fi_NF: 0.601
Frecision_NF: 0.601
Frecision_NF: 0.601
Frecision_NF: 0.601
Frecision_NF: 0.502
Recall_NF: 0.600

scores_with threshold = 0.25
Accuracy_NF: 0.503
Recall_NF: 0.600
Frecision_NF: 0.501
Frecision
```

Рис.20. Результати при різних порогах.

Зниження порогу до 0.25 призвело до збільшення полності (Recall), але зменшило точність (Precision) з 0.681 до 0.501. Це означає, що модель розпізнала всі позитивні приклади, але також зробила багато помилкових позитивних класифікацій. Поріг 0.5 в свою чергу має вищу точність та дає більш збалансований F1-показник.



Рис.21. Результат побудови ROC кривої для кожної моделі.

|      |      | Дяченко <i>В.В.</i> |        |      |
|------|------|---------------------|--------|------|
|      |      | Голенко М.Ю.        |        |      |
| Змн. | Арк. | № докум.            | Підпис | Дата |

```
from sklearn.metrics import roc_auc_score
auc_RF = roc_auc_score(df.actual_label.values, df.model_RF.values)
auc_LR = roc_auc_score(df.actual_label.values, df.model_LR.values)
print('AUC RF:%.3f'% auc_RF)
print('AUC LR:%.3f'% auc_LR)

AUC RF:0.738
AUC LR:0.666
```

Рис.22. Метрика площі під кривою для аналізу продуктивності.



Рис.21. Результат побудови ROC кривої для кожної моделі з AUC у легенді.

Зазвичай, більше значення AUC вказує на кращу якість класифікатора. Таким чином, у нашому випадку модель випадковий ліс (RF) має кращу продуктивність, оскільки значення AUC більше. Також при порозі 0.5, модель RF має кращу точність, полнотніть та F1-показник порівняно з моделлю логістичної регресії (LR).

|      |      | Дяченко <i>В.В.</i> |        |      |
|------|------|---------------------|--------|------|
|      |      | Голенко М.Ю.        |        |      |
| Змн. | Арк. | № докум.            | Підпис | Дата |

```
# Розбиття на навчальний та тестовий набори
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=3)

# Ініціалізуємо модель SVM
svm_model = SVC(kernel='linear') # Використовуємо лінійне ядро для спрощення прикладу

# Тренуємо модель на навчальних даних
svm_model.fit(X_train, y_train)

# Проводимо класифікацію на тестових даних
y_pred = svm_model.predict(X_test)

classification_rep = classification_report(y_test, y_pred)

# Обчислення якості класифікатора
accuracy = 100.0 * (y_test == y_pred).sum() / X_test.shape[0]
print("Accuracy of the new classifier =", round(accuracy, 2), "%")

# Виводимо результати
print("Classification Report:\n", classification_rep)

# Візуалізація роботи класифікатора
visualize_classifier(classifier_new, X_test, y_test)
```

Рис.22. Класифікація даних в файлі за допомогою SVM.



Рис.23. Результат роботи.

|      |      | Дяченко В.В. |        |      |
|------|------|--------------|--------|------|
|      |      | Голенко М.Ю. |        | ·    |
| Змн. | Арк. | № докум.     | Підпис | Дата |

На основі наданих результатів, обидві моделі, баєсівський класифікатор і метод опорних векторів (SVM), досягли ідеальної точності (Ассигасу = 100%) при класифікації того самого набору даних. Взагалі слід враховувати, що байєсівський класифікатор (Gaussian Naive Bayes) вважається простішим та менш обчислювально витратним методом, а метод опорних векторів (SVM) робить більш складні обчислення і може працювати краще, коли дані мають складну структуру.

У нашому ж випадку обидві моделі класифікації гарно виконують поставлену задачу за короткий проміжок часу і подальший вибір буде залежати від поставленої задачі.

|      |      | Дяченко <i>В.В.</i> |        |      |
|------|------|---------------------|--------|------|
|      |      | Голенко М.Ю.        |        |      |
| Змн. | Арк. | № докум.            | Підпис | Дата |