Curso de Variable Compleja

Cristo Daniel Alvarado

11 de junio de 2024

Índice general

1. Introducción															2																						
	1.1.	Fundamentos																																			2

Capítulo 1

Introducción

1.1. Fundamentos

El objetivo principal de la teoría de las funciones analíticas es el análisis de funciones que localmente pueden ser descritas en términos de una serie de potencias convergente, dispuesta como:

$$f(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots + a_n(x - x_0)^n + \dots$$

$$= \sum_{k=0}^{\infty} a_k(x - x_0)^k, \quad \forall x \in]x_0 - \delta, x_0 + \delta[$$
(1.1)

siendo $f: I \to \mathbb{R}$ con I un intervalo, $x_0 \in I$ y $\delta > 0$ tal que $]x_0 - \delta, x_0 + \delta[\subseteq]a, b[$. Cuando una funcion de este tipo puede ser descrita de la forma anterior para algún par x_0 y δ , decimos en este caso que f es analítica en x_0 .

En el caso que I sea un intervalo abierto y f sea analítica en x_0 para todo $x_0 \in I$, decimos que f es analítica en I.

Ejemplo 1.1.1

Las funciones $x \mapsto P(x), x \mapsto e^x, x \mapsto \sin x \ y \ x \mapsto \cos x \ \text{son analíticas en } \mathbb{R}$