Objective 3 - Evaluating Limits

Interpret the notation for limits.

Link to section in online textbook.

Video for evaluating a limit.

Now that we have learned about left- and right-hand limits, we can evaluate the limit of a function at a point.

Theorem 1. Evaluating the limit of a function at a point x = a:

$$\begin{split} \lim_{x \to a} (f(x)) &= L \\ &\quad if \ and \ only \ if \\ \lim_{x \to a^-} (f(x)) &= L = \lim_{x \to a^+} (f(x)) \end{split}$$

Note: The limit exists if L is a Real number. The limit can be equal to ∞ or $-\infty$, but we would not say that it exists. If the left- and right-hand limits do not agree, we say the limit does not exist (or DNE for short).

This objective will allow you to practice evaluating the left- and right-hand limits to determine if the limit at a point exists. This would be where you want to practice before the exam.

Answers are either a Real number, ∞ , $-\infty$, or DNE.

Question 1
$$\lim_{x \to -\infty} f(x) = \boxed{??}$$

$$\lim_{x \to -1} g(x) = \boxed{3}$$

$$\lim_{x \to \infty} f(x) = \boxed{??}$$

Question 2
$$\lim_{x \to -\infty} f(x) = \boxed{??}$$

$$\lim_{x \to -2} f(x) = \boxed{3}$$

$$\lim_{x \to 1} f(x) = \boxed{DNE}$$

$$\lim_{x \to 3} f(x) = \boxed{??}$$

Learning outcomes:

Author(s): Darryl Chamberlain Jr.

Figure 1: Function with a hole at x = -1.

Figure 2: Piecewise function to evaluate.

Figure 3: Piecewise function to evaluate.

$$\lim_{x \to \infty} f(x) = \boxed{??}$$

Question 3
$$\lim_{x \to -\infty} f(x) = \boxed{??}$$

$$\lim_{x \to -2} f(x) = \boxed{DNE}$$

$$\lim_{x \to 0} f(x) = \boxed{0}$$

$$\lim_{x \to 2} f(x) = \boxed{DNE}$$

$$\lim_{x \to \infty} f(x) = \boxed{??}$$

Question 4 $\lim_{x \to -\infty} f(x) = \boxed{??}$

$$\lim_{x \to -8} f(x) = \boxed{-6}$$

$$\lim_{x \to -2} f(x) = \boxed{DNE}$$

$$\lim_{x \to 6} f(x) = \boxed{DNE}$$

$$\lim_{x \to 10} f(x) = \boxed{0}$$

Figure 4: Piecewise function to evaluate.

$$\lim_{x \to \infty} f(x) = \boxed{??}$$

Question 5 $f(x) = \frac{??}{??}$

$$\lim_{x \to -\infty} f(x) = \boxed{??}$$

$$\lim_{x \to ??} f(x) = \boxed{??}$$

$$\lim_{x \to ??} f(x) = \boxed{??}$$

$$\lim_{x \to \infty} f(x) = \boxed{??}$$

Question 6 $f(x) = \frac{??}{??}$

$$\lim_{x \to -\infty} f(x) = \boxed{??}$$

$$\lim_{x \to ??} f(x) = \boxed{DNE}$$

$$\lim_{x \to ??} f(x) = \boxed{??}$$

$$\lim_{x \to \infty} f(x) = \boxed{??}$$

Question 7 $\lim_{x\to??}$?? = ??

Hint: We can't plug in the exact value, so we will need to plug in values very near ??.

Question 8 $\lim_{x\to??} \frac{\sqrt{x-??}-??}{x-??} = \boxed{??}$

Hint: We can't plug in the exact value, so we will need to plug in values very near ??.