In [2]: import pandas as pd

In [3]: data=pd.read_csv("/home/placement/Downloads/Titanic Dataset.csv")

In [4]: data.describe()

Out[4]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

In [5]: data.head(10)

Out[5]:

	Passengerld	Survived	Pclass	Name		Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
5	6	0	3	Moran, Mr. James	male	NaN	0	0	330877	8.4583	NaN	Q
6	7	0	1	McCarthy, Mr. Timothy J	male	54.0	0	0	17463	51.8625	E46	S
7	8	0	3	Palsson, Master. Gosta Leonard	male	2.0	3	1	349909	21.0750	NaN	S
8	9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27.0	0	2	347742	11.1333	NaN	S
9	10	1	2	Nasser, Mrs. Nicholas (Adele Achem)	female	14.0	1	0	237736	30.0708	NaN	С

2/20

```
In [6]: data.isna().sum()
Out[6]: PassengerId
                        0
        Survived
                        0
        Pclass
        Name
        Sex
                      177
        Age
        SibSp
                        0
        Parch
        Ticket
        Fare
                        0
                      687
        Cabin
        Embarked
                        2
        dtype: int64
In [7]: data['Survived'].unique()
Out[7]: array([0, 1])
In [8]: data['Age'].unique()
Out[8]: array([22. , 38. , 26.
                                , 35. ,
                                           nan, 54.
                                                    , 2.
                                                           , 27. , 14. ,
                         , 20.
                                , 39. , 55. , 31.
                                                    , 34.
                                , 66. , 42. , 21.
                                                    , 18.
                                                           , 3.
                         , 40.
                         , 65. , 28.5 , 5.
                                             , 11.
                                                    , 45.
                                                           , 17.
              16. , 25.
                         , 0.83, 30.
                                      , 33.
                                            , 23.
                                                    , 24.
              71. , 37. , 47. , 14.5 , 70.5 , 32.5 , 12.
              51. , 55.5 , 40.5 , 44. , 1. , 61. , 56.
              45.5 , 20.5 , 62. , 41. , 52. , 63. , 23.5 , 0.92, 43. ,
              60. , 10. , 64. , 13. , 48. , 0.75, 53. , 57. , 80. ,
              70. , 24.5 , 6. , 0.67, 30.5 , 0.42, 34.5 , 74. ])
In [9]: data['SibSp'].unique()
Out[9]: array([1, 0, 3, 4, 2, 5, 8])
```

```
In [10]: data['Parch'].unique()
Out[10]: array([0, 1, 2, 5, 3, 4, 6])
```

```
In [11]: data['Fare'].unique()
Out[11]: array([
                   7.25
                             71.2833,
                                        7.925 ,
                                                  53.1
                                                              8.05
                                                                         8.4583.
                  51.8625.
                             21.075 .
                                        11.1333.
                                                  30.0708,
                                                             16.7
                                                                        26.55
                              7.8542.
                                                             13.
                  31.275 .
                                        16.
                                                   29.125 .
                                                                        18.
                   7.225 ,
                                         8.0292,
                                                  35.5
                                                             31.3875,
                             26.
                                                                       263.
                   7.8792,
                              7.8958,
                                       27.7208, 146.5208,
                                                              7.75
                  82.1708.
                             52.
                                         7.2292,
                                                              9.475 .
                                                                        21.
                                                  11.2417,
                  41.5792,
                             15.5
                                       21.6792,
                                                  17.8
                                                             39.6875,
                                                                         7.8
                  76.7292,
                                                  46.9
                                                             80.
                                                                        83.475 ,
                             61.9792,
                                        27.75 ,
                                         8.1583,
                                                   8.6625,
                  27.9
                             15.2458.
                                                             73.5
                                                                        14.4542,
                              7.65
                                                              9.
                  56.4958,
                                        29.
                                                  12.475 ,
                                                                         9.5
                                       15.85
                                                  34.375 ,
                                                             61.175
                   7.7875,
                             47.1
                                                                        20.575 ,
                                       23.
                                                  77.2875,
                                                              8.6542,
                  34.6542,
                             63.3583,
                                                                         7.775 ,
                              9.825 ,
                                       14.4583, 247.5208,
                  24.15
                                                              7.1417,
                                                                        22.3583,
                   6.975 ,
                                       14.5
                              7.05
                                                  15.0458,
                                                             26.2833,
                                                                         9.2167,
                                    ,
                  79.2
                              6.75
                                       11.5
                                                  36.75
                                                              7.7958,
                                                                        12.525 ,
                  66.6
                              7.3125,
                                       61.3792,
                                                   7.7333,
                                                             69.55
                                                                        16.1
                  15.75
                             20.525 ,
                                       55.
                                                  25.925 ,
                                                             33.5
                                                                        30.6958,
                                                             39.
                                         0.
                  25.4667,
                             28.7125,
                                                   15.05
                                                                        22.025 ,
                  50.
                              8.4042,
                                         6.4958,
                                                  10.4625,
                                                             18.7875,
                                                                        31.
                             27.
                                        76.2917,
                                                  90.
                                                              9.35
                 113.275 ,
                                                                        13.5
                             26.25
                                       12.275 ,
                                                   7.125 ,
                                                             52.5542,
                   7.55
                                                                        20.2125,
                  86.5
                          , 512.3292,
                                        79.65
                                              , 153.4625, 135.6333,
                                                                        19.5
                  29.7
                            77.9583,
                                        20.25
                                                  78.85
                                                             91.0792,
                                                                        12.875 ,
                   8.85
                          , 151.55
                                        30.5
                                                  23.25
                                                             12.35
                                                                    , 110.8833,
                                        56.9292,
                                                  83.1583, 262.375 ,
                 108.9
                             24.
                                                                        14.
                 164.8667, 134.5
                                         6.2375,
                                                             28.5
                                                  57.9792,
                                                                     , 133.65
                  15.9
                              9.225 ,
                                        35.
                                                  75.25
                                                             69.3
                                                                        55.4417,
                              4.0125, 227.525 ,
                                                  15.7417,
                 211.5
                                                              7.7292,
                                                                        12.
                 120.
                             12.65
                                        18.75
                                                   6.8583,
                                                             32.5
                                                                         7.875 ,
                             55.9
                                         8.1125,
                                                  81.8583,
                                                             19.2583,
                  14.4
                                                                        19.9667,
                             38.5
                                         7.725 ,
                                                  13.7917,
                                                              9.8375,
                  89.1042,
                                                                         7.0458,
                                         9.5875,
                   7.5208,
                             12.2875,
                                                  49.5042,
                                                             78.2667,
                                                                        15.1
                   7.6292,
                             22.525 ,
                                       26.2875,
                                                              7.4958,
                                                   59.4
                                                                        34.0208,
                          , 221.7792, 106.425 ,
                  93.5
                                                  49.5
                                                             71.
                                                                        13.8625,
                   7.8292,
                             39.6
                                                  51.4792,
                                                             26.3875,
                                       17.4
                                                                        30.
                              8.7125,
                                       15.
                                                  33.
                                                             42.4
                                                                        15.55 ,
                  40.125 .
                             32.3208.
                                         7.0542,
                                                   8.4333,
                                                             25.5875,
                  65.
                                                                         9.8417.
                   8.1375,
                             10.1708, 211.3375,
                                                  57.
                                                             13.4167,
                                                                         7.7417,
                                        8.3625,
                                                  23.45
                   9.4833,
                              7.7375,
                                                             25.9292,
                                                                         8.6833,
```

27/06/2023

```
8.5167.
                            7.8875. 37.0042.
                                                 6.45
                                                           6.95
                                  , 14.1083, 13.8583,
                  6.4375.
                            39.4
                                                          50.4958.
                  9.8458. 10.51671)
In [12]: data['Cabin'].unique()
Out[12]: array([nan, 'C85', 'C123', 'E46', 'G6', 'C103', 'D56', 'A6',
                 'C23 C25 C27', 'B78', 'D33', 'B30', 'C52', 'B28', 'C83', 'F33',
                'F G73', 'E31', 'A5', 'D10 D12', 'D26', 'C110', 'B58 B60', 'E101'
                 'F E69', 'D47', 'B86', 'F2', 'C2', 'E33', 'B19', 'A7', 'C49', 'F4',
                 'A32', 'B4', 'B80', 'A31', 'D36', 'D15', 'C93', 'C78', 'D35',
                 'C87', 'B77', 'E67', 'B94', 'C125', 'C99', 'C118', 'D7', 'A19',
                 'B49', 'D', 'C22 C26', 'C106', 'C65', 'E36', 'C54',
                'B57 B59 B63 B66', 'C7', 'E34', 'C32', 'B18', 'C124', 'C91', 'E40',
                 'T', 'C128', 'D37', 'B35', 'E50', 'C82', 'B96 B98', 'E10', 'E44',
                'A34', 'C104', 'C111', 'C92', 'E38', 'D21', 'E12', 'E63', 'A14',
                 'B37'. 'C30'.
                              'D20', 'B79', 'E25', 'D46', 'B73', 'C95', 'B38',
                 'B39', 'B22', 'C86', 'C70', 'A16', 'C101', 'C68', 'A10', 'E68',
                              'D19', 'D50', 'D9', 'A23', 'B50', 'A26', 'D48',
                 'B41'. 'A20'.
                 'E58', 'C126', 'B71', 'B51 B53 B55', 'D49', 'B5', 'B20', 'F G63',
                 'C62 C64', 'E24', 'C90', 'C45', 'E8', 'B101', 'D45', 'C46', 'D30',
                 'E121', 'D11', 'E77', 'F38', 'B3', 'D6', 'B82 B84', 'D17', 'A36',
                 'B102', 'B69', 'E49', 'C47', 'D28', 'E17', 'A24', 'C50', 'B42',
                 'C148'l, dtype=object)
In [13]: datal=data.drop(['PassengerId','Name','Ticket','Cabin','SibSp','Parch'],axis=1)
```

In [14]: data1

Out[14]:

	Survived	Pclass	Sex	Age	Fare	Embarked
0	0	3	male	22.0	7.2500	S
1	1	1	female	38.0	71.2833	С
2	1	3	female	26.0	7.9250	S
3	1	1	female	35.0	53.1000	S
4	0	3	male	35.0	8.0500	S
886	0	2	male	27.0	13.0000	S
887	1	1	female	19.0	30.0000	S
888	0	3	female	NaN	23.4500	S
889	1	1	male	26.0	30.0000	С
890	0	3	male	32.0	7.7500	Q

891 rows × 6 columns

In [15]: data1.fillna(35,inplace=True)

In [16]: data1

Out[16]:

	Survived	Pclass	Sex	Age	Fare	Embarked
0	0	3	male	22.0	7.2500	S
1	1	1	female	38.0	71.2833	С
2	1	3	female	26.0	7.9250	S
3	1	1	female	35.0	53.1000	S
4	0	3	male	35.0	8.0500	S
886	0	2	male	27.0	13.0000	S
887	1	1	female	19.0	30.0000	S
888	0	3	female	35.0	23.4500	S
889	1	1	male	26.0	30.0000	С
890	0	3	male	32.0	7.7500	Q

891 rows × 6 columns

In [17]: data.head(10)

Out[17]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
5	6	0	3	Moran, Mr. James	male	NaN	0	0	330877	8.4583	NaN	Q
6	7	0	1	McCarthy, Mr. Timothy J	male	54.0	0	0	17463	51.8625	E46	S
7	8	0	3	Palsson, Master. Gosta Leonard	male	2.0	3	1	349909	21.0750	NaN	S
8	9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27.0	0	2	347742	11.1333	NaN	S
9	10	1	2	Nasser, Mrs. Nicholas (Adele Achem)	female	14.0	1	0	237736	30.0708	NaN	С

Out[18]: <Axes: >


```
In [19]: #plt.hist(data1['age'])
         plt.hist(data1['Age'])
Out[19]: (array([ 54., 46., 177., 169., 295., 70., 45., 24., 9.,
          array([ 0.42 , 8.378, 16.336, 24.294, 32.252, 40.21 , 48.168, 56.126,
                64.084, 72.042, 80. ]),
          <BarContainer object of 10 artists>)
          300
          250
          200
          150
          100
           50
                      10
                             20
                                   30
                                          40
                                                50
                                                              70
                                                                    80
                0
                                                       60
```



```
In [21]: data1.isna().sum()
Out[21]: Survived
                       0
          Pclass
                       0
          Sex
          Age
          Fare
          Embarked
          dtype: int64
          data1.describe()
In [22]:
Out[22]:
                   Survived
                              Pclass
                                          Age
                                                    Fare
           count 891.000000 891.000000
                                     891.000000
                                               891.000000
                   0.383838
                             2.308642
                                      30.752155
                                                32.204208
           mean
             std
                   0.486592
                             0.836071
                                      13.173100
                                                49.693429
             min
                   0.000000
                             1.000000
                                       0.420000
                                                0.000000
            25%
                   0.000000
                             2.000000
                                      22.000000
                                                7.910400
            50%
                             3.000000
                   0.000000
                                      32.000000
                                                14.454200
            75%
                   1.000000
                             3.000000
                                      35.000000
                                                31.000000
                   1.000000
                             3.000000
                                      80.000000 512.329200
            max
In [23]: data1['Age'].unique()
Out[23]: array([22.
                       , 38.
                              , 26.
                                       , 35.
                                               , 54.
                                                      , 2.
                                                              , 27.
                                                                      , 14.
                               , 39.
                                       , 55.
                                               , 31.
                                                      , 34.
                                                              , 15.
                  58.
                               , 66.
                                       , 42.
                                               , 21.
                                                      , 18.
                                                              , 3.
                       , 40.
                               , 28.5 , 5.
                                              , 11.
                                                      , 45.
                                                              , 17.
                       , 0.83, 30.
                                       , 33.
                                               , 23.
                                                      , 24.
                                                              , 46.
                                                                      , 59.
                  37. , 47. , 14.5 , 70.5 , 32.5 , 12.
                                                              , 9.
                                                                      , 36.5
                  55.5 . 40.5 . 44.
                                      . 1.
                                              , 61.
                                                     , 56.
                                                                50.
                              , 41. , 52. , 63.
                                                     , 23.5 , 0.92, 43.
                  20.5 , 62.
                              , 13. , 48. , 0.75, 53.
                                                             , 57.
                  24.5 , 6. , 0.67 , 30.5 ,
                                                 0.42, 34.5, 74. ])
```

```
In [24]: data1.groupby(['Age']).count()
Out[24]:
                Survived Pclass Sex Fare Embarked
            Age
            0.42
                      1
                             1
                                               1
            0.67
                      1
                             1
                                               1
                      2
                                      2
            0.75
                             2
                                 2
                                               2
            0.83
                      2
                             2
                                 2
                                      2
                                               2
            0.92
                      1
                             1
                                      1
                                               1
           70.00
                                 2
                                      2
                                               2
           70.50
                                               1
           71.00
                                 2
                                      2
                                               2
           74.00
                                               1
                                      1
           80.00
                      1
                             1
                                 1
                                      1
                                               1
          88 rows × 5 columns
In [25]: data1['Pclass']=data1['Pclass'].map({1: 'F',2: 'S',3: 'Third'})
In [26]: data1.isna().sum()
Out[26]: Survived
                       0
          Pclass
                       0
          Sex
          Age
          Fare
          Embarked
          dtype: int64
In [27]: data1=pd.get_dummies(data1)
```

In [28]: data1.shape

Out[28]: (891, 12)

In [29]: data1.head(500)

Out[29]:

'	Survived	Age	Fare	Pclass_F	Pclass_S	Pclass_Third	Sex_female	Sex_male	Embarked_35	Embarked_C	Embarked_Q	Embarked_S
0	0	22.0	7.2500	0	0	1	0	1	0	0	0	1
1	1	38.0	71.2833	1	0	0	1	0	0	1	0	0
2	1	26.0	7.9250	0	0	1	1	0	0	0	0	1
3	1	35.0	53.1000	1	0	0	1	0	0	0	0	1
4	0	35.0	8.0500	0	0	1	0	1	0	0	0	1
						•••					***	
495	0	35.0	14.4583	0	0	1	0	1	0	1	0	0
496	1	54.0	78.2667	1	0	0	1	0	0	1	0	0
497	0	35.0	15.1000	0	0	1	0	1	0	0	0	1
498	0	25.0	151.5500	1	0	0	1	0	0	0	0	1
499	0	24.0	7.7958	0	0	1	0	1	0	0	0	1

500 rows × 12 columns

In [30]: cor_mat=data1.corr()
 cor_mat

Out[30]:

	Survived	Age	Fare	Pclass_F	Pclass_S	Pclass_Third	Sex_female	Sex_male	Embarked_35	Embarked_C	Embarked_
Survived	1.000000	-0.083713	0.257307	0.285904	0.093349	-0.322308	0.543351	-0.543351	0.060095	0.168240	0.00365
Age	-0.083713	1.000000	0.074199	0.302149	-0.022021	-0.242412	-0.091930	0.091930	0.069343	0.036953	0.04052
Fare	0.257307	0.074199	1.000000	0.591711	-0.118557	-0.413333	0.182333	-0.182333	0.045646	0.269335	-0.11721
Pclass_F	0.285904	0.302149	0.591711	1.000000	-0.288585	-0.626738	0.098013	-0.098013	0.083847	0.296423	-0.15534
Pclass_S	0.093349	-0.022021	-0.118557	-0.288585	1.000000	-0.565210	0.064746	-0.064746	-0.024197	-0.125416	-0.12730
Pclass_Third	-0.322308	-0.242412	-0.413333	-0.626738	-0.565210	1.000000	-0.137143	0.137143	-0.052550	-0.153329	0.23744
Sex_female	0.543351	-0.091930	0.182333	0.098013	0.064746	-0.137143	1.000000	-1.000000	0.064296	0.082853	0.07411
Sex_male	-0.543351	0.091930	-0.182333	-0.098013	-0.064746	0.137143	-1.000000	1.000000	-0.064296	-0.082853	-0.07411
Embarked_35	0.060095	0.069343	0.045646	0.083847	-0.024197	-0.052550	0.064296	-0.064296	1.000000	-0.022864	-0.01458
Embarked_C	0.168240	0.036953	0.269335	0.296423	-0.125416	-0.153329	0.082853	-0.082853	-0.022864	1.000000	-0.14825
Embarked_Q	0.003650	0.040528	-0.117216	-0.155342	-0.127301	0.237449	0.074115	-0.074115	-0.014588	-0.148258	1.00000
Embarked_S	-0.155660	-0.065062	-0.166603	-0.170379	0.192061	-0.009511	-0.125722	0.125722	-0.076588	-0.778359	-0.49662


```
In [32]: data.groupby('Survived').count()
Out[32]:
                  Passengerld Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
           Survived
                                                                           68
                0
                         549
                               549
                                     549 549 424
                                                    549
                                                          549
                                                                549
                                                                    549
                                                                                   549
                1
                         342
                               342
                                     342 342
                                              290
                                                    342
                                                                          136
                                                                                    340
                                                          342
                                                                342
                                                                    342
In [33]: y=data1['Survived']
          x=data1.drop('Survived',axis=1)
In [34]: from sklearn.model_selection import train_test_split
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.33,random_state=42)
```

```
In [35]: from sklearn.linear model import LogisticRegression
         classifier=LogisticRegression()
         classifier.fit(x train,y train)
         /home/placement/anaconda3/lib/python3.10/site-packages/sklearn/linear model/ logistic.py:458: ConvergenceWa
         rning: lbfqs failed to converge (status=1):
         STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
         Increase the number of iterations (max iter) or scale the data as shown in:
             https://scikit-learn.org/stable/modules/preprocessing.html (https://scikit-learn.org/stable/modules/pre
         processing.html)
         Please also refer to the documentation for alternative solver options:
             https://scikit-learn.org/stable/modules/linear model.html#logistic-regression (https://scikit-learn.or
         g/stable/modules/linear model.html#logistic-regression)
           n iter i = check optimize result(
Out[35]:
         ▼ LogisticRegression
         LogisticRegression()
In [36]: y pred=classifier.predict(x test)
         y_pred
Out[36]: array([0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0,
               1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,
               1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1,
               0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1,
               0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
               1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0,
               0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1,
               0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0,
               0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0,
               1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0,
               0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1,
               0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0,
               1, 0, 0, 0, 0, 0, 1, 1, 0])
```