هوش مصنوعي

بهار ۱۴۰۲

استاد: محمدمهدی سمیعی

مهلت ارسال: ۲۰ خرداد

گردآورندگان: سلاله محمدی، امیرحسین رازلیقی

دانشگاه صنعتی شریف دانشكدهي مهندسي كامپيوتر

شبكههاى عصبى عميق

تمرين هشت

- - مهلت ارسال پاسخ تا ساعت ۲۳:۵۹ روز مشخص شده است.
- در طول ترم امکان ارسال با تاخیر وجود ندارد و پاسخهایی که بعد از زمان تعیین شده ارسال شوند، پذیرفته نخواهند شد.
- همکاری و همفکری شما در انجام تمرین مانعی ندارد اما پاسخ ارسالی هر کس حتما باید توسط خود او نوشته شده باشد.
- در صورت همفکری و یا استفاده از هر منابع خارج درسی، نام همفکران و آدرس منابع مورد استفاده برای حل سوال مورد نظر را ذکر کنید.
 - لطفا تصویری واضح از پاسخ سوالات نظری بارگذاری کنید. در غیر این صورت پاسخ شما تصحیح نخواهد شد.

سوالات نظری (۱۰۰ + ۵ نمره)

- ۱. (۲۵ نمره) به سوالات زیر پاسخ دهید.
- (آ) اگر برای آموزش یک مدل logistic regression همه پارامترها را با مقدار ۰ مقداردهی اولیه کنیم ، كار مناسبي انجام دادهايم؟ توضيح دهيد.
- (ب) اگر از روش full batch gradient descent بر روی تمام دادههای آموزشی استفاده کنیم، آیا shuffle
- (ج) میخواهیم یک classifier برای دستهبندی تصاویر سگ و گربه ارائه کنیم. برای این منظور از روش minibatch gradient descent استفاده كردهايم. داده ها را به سه دسته dev و test تقسيم بندی کردهایم. متوجه می شویم که در داده های train ترتیب تصاویر به این صورت است که ابتدا تمام تصاویر سگها و سپس تمام تصاویر گربهها آمده است. آیا shuffle کردن دادههای آموزش لازم است؟
- (د) در تصویر زیر سه نمودار training loss نشان داده شدهاند. تعیین کنید هر کدام از آنها احتمالاً مربوط به کدام روش stochastic gra- ،mini batch gradient descent ،batch gradient descent dient descent هستند.

۲. (۲۵ نمره) یک شبکه عصبی دو لایه طراحی کنید که تساوی دو ورودی باینری x و y را خروجی دهد (خروجی ۲ وقتی هر دو ورودی ۰ یا ۱ هستند بزرگتر از threshold است). سپس آن را طوری تغییر دهید که برای هر ترکیبی از دو ورودی عدد صحیح، تساوی را تشخیص دهد.

 $^{\circ}$. (۳۰ نمره) میخواهیم برای بهبود ماشین هوشمند یک شبکه عصبی طراحی کنیم. دادههایی که در دسترس داریم تصاویر سیاه سفید با سایز ۶۴ * ۶۴ هستند. همچنین برچسبهای (label) دادهها، زاویه فرمان راننده بر حسب درجه و سرعت راننده است. شبکه ما از یک لایه ورودی به سایز ۴۰۹ = ۶۴ * ۶۴ ، یک hidden حسب درجه و سرعت راننده است. شبکه ما از یک لایه ورودی به سایز ۱۸۴۸ و یک لایه خروجی با اندازه ۲ تشکیل شده است (یکی برای زاویه فرمان، یکی برای سرعت). تنها برای لایه نهان از تابع فعالسازی Relu استفاده میکنیم. و برای لایه ورودی و خروجی از تابع فعالسازی استفاده نمیکنیم.

از نوتیشن زیر کمک بگیرید.

- یک بردار ورودی است، y یک بردار برچسب ورودی و z بردار خروجی است. همه بردارها ستونی هستند.
 - است. Relu تابع فعال سازی $r(\gamma)$
- g بردار مقادیر Mیه نهان قبل از اعمال توابع فعال سازی ReLU است و $m \in ReL$ بردار مقادیر $m \in ReL$ بردار مقادیر مقاد
 - g=Vx ماتریس وزنی است که لایه ورودی را به لایه نهان نگاشت می کند. V
 - z=Wh ماتریس وزنی است که لایه پنهان را به لایه خروجی نگاشت می کند. Wullet
 - (آ) تعداد پارامترها (وزنها) در این شبکه را محاسبه کنید.
 - $J=rac{1}{3}(-1)$ اگر از تابع هزینه y-zy-z استفاده کنیم، $\partial J/\partial W_{ij}$ را محاسبه کنید.
 - را محاسبه کنید. $\partial J/\partial V_{ij}$ (ج)
 - ۴. (۲۰ نمره) در هر کدام از موارد زیر صحیح و یا غلط بودن را ذکر دلیل شرح دهید.
- (آ) Batch normalization پردازش یک Batch را سریعتر میکند و زمان آموزش را کاهش میدهد و در عین حال تعداد به روز رسانیها را ثابت نگه میدارد.
 - (ب) Batch normalization تاثير مقداردهي اوليه ضعيف وزنها را كاهش مي دهد.
 - ۵. (۵ نمره) (امتيازي) در رابطه با CNN ها به سوالات زير پاسخ دهيد .
 - ($\overline{1}$) علت استفاده از کانولوشن 1×1 چیست؟
- (ب) برای این که سایز ورودی لایه کانولوشن با خروجی آن برابر باشد از padding با چه سایزی باید استفاده شود؟
- (ج) average pooling و max pooling چه تفاوتهایی دارند و استفاده از هر کدام در چه مواردی بهتر است؟

سوالات عملي (۴۰ نمره)

۱. (۴۰ نمره) برای حل سوالات عملی به دفترچه سوالات عملی مراجعه کنید.