Multiscale Analysis of Non-Linear Dislocation Models

T D Swinburne^{1,2}, S L Dudarev² and A P Sutton¹

¹CDT in Theory and Simulation of Materials, Imperial College London ²Culham Center for Fusion Energy (CCFE/JET)

July 30, 2014

Funding:

| Imperial College | London |

Motivation

 In many materials, dislocations move through a kink mechanism between periodic minima

- ▶ Many theories for an effective mobility law, but little rigorous analysis
- We want to understand the rôle of Free Energy Barriers and kink-kink interactions

A kink-bearing model

▶ For a line of nodes $\mathbf{x} = \{\mathbf{x}_i\}$

$$V(\mathbf{x}) - b\sigma \sum_{i} \mathbf{x}_{i} = \underbrace{\frac{\kappa}{2} \sum_{ij} \mathbf{x}_{i} \mathbf{K}_{ij} \mathbf{x}_{j}}_{\text{Node Interaction}} + \underbrace{\mathbf{V}_{1D} \sum_{i} \sin^{2} \left(\frac{\pi}{a} \mathbf{x}_{i}\right)}_{\text{Peierls Barrier}} \underbrace{-b\sigma \sum_{i} \mathbf{x}_{i}}_{\text{Applied Stress}}$$

▶ Integrate with Langevin dynamics

$$\gamma \dot{\mathbf{x}}_i = -\nabla_i V(\mathbf{x}) + b\sigma + \sqrt{2\mathbf{k}_B T \gamma} \eta_i(t)$$
 $(\eta = \text{White Noise})$

▶ TDS et al. PRB Feb 2013, TDS PRE June 2013

Scaling and system size

- ▶ Natural quantity of interest: **center of mass** $\bar{\mathbf{x}} = \sum_i \mathbf{x}_i / N$
- κ, γ, V_{1D} from MD \Rightarrow quantitative agreement with experiment

▶ Drift velocity highly non-linear in σ , k_BT but linear in length L

Transport in periodic environments

- ▶ We want to understand the transport properties of \bar{x} , averaging out all other DOF.
- \blacktriangleright We have investigated the Fokker-Planck equation and renormalised to reach $t\to\infty$
- ▶ System periodic so $\rho(\bar{x})$ (n.b. $F(\bar{x}) = -k_B T \ln \rho(\bar{x})$)

$$\rho(\bar{x}) = \rho(\bar{x} + a) = Z^{-1} \int \delta\left(\sum_{i} x_i / N - \bar{x}\right) e^{-\beta(V(\mathbf{x}) - bL\sigma\bar{x})} d\mathbf{x}.$$

▶ This implies $\bar{x} \in [0, a]$ for $\int \rho < \infty$; but need $\bar{x} \in \mathbb{R}$ for drift / diffusion!

Multiscale Analysis

▶ To solve this we consider the Fokker-Planck equation of the original system with $\bar{x} \in [0, a]$ and in addition the coarse-grained coordinate

$$\chi \equiv \epsilon \bar{x} \qquad \epsilon \ll 1$$

whilst rescaling time as

$$t \to \frac{t}{\epsilon}$$
 (Drift) , $\frac{t}{\epsilon^2}$ (Diffusion)

▶ As $\epsilon \to 0$ we rigorously show the Fokker-Planck equation is solved by

$$\Phi_{\epsilon}(\chi, \mathbf{x}, t) = \Phi_{0}(\chi, t) + \epsilon \Phi_{1}(\mathbf{x}, t) + \epsilon^{2} \Phi_{2}(\mathbf{x}, t) + \dots$$

▶ We obtain a FP equation for Φ_0 which gives **analytical** bounds on the transport properties (TDS, PRE June 2013)

Multiscale Analysis

- In general, we find free energy landscapes overestimate mobilities
- ▶ Namely, with $F(\bar{x}) \equiv -k_B T \ln \rho(\bar{x}, \sigma = 0)$ we find

$$D < \frac{\mathrm{k_BT/N\gamma}}{\int_0^a e^{\beta F(\bar{x})} \mathrm{d}\bar{x} \int_0^a e^{-\beta F(\bar{y})} \mathrm{d}\bar{y}} \quad \beta \to \infty \quad \underbrace{\frac{\omega_{\mathrm{MIN}} \omega_{\mathrm{DK}}}{\sqrt{\beta} \gamma} \prod_i \frac{\omega_{\mathrm{MIN}}^i}{\omega_{\mathrm{DK}}^i} e^{-\beta F_{\mathrm{DK}}}}_{\mathrm{Kramers\ TST}}$$

• We also find for the drift velocity $\mu(\sigma,\beta)L$ that

$$\mu(\sigma, \mathbf{T}) < \frac{k_{\mathrm{B}} \mathbf{T} (1 - e^{-\beta b L a \sigma}) / N \gamma}{\int_{0}^{a} e^{\beta (F(\bar{x}) - b L \sigma \bar{x})} \mathrm{d}\bar{x} \int_{\bar{x}}^{\bar{x} + a} e^{-\beta (F(\bar{y}) - b L \sigma \bar{x})} \mathrm{d}\bar{y}}$$

▶ Non-linear but **not** phenomenological (c.f. Kocks-Argon)

Free energy barriers are under estimates

- ▶ Free energy assumes $0(\epsilon)$ dynamics are only in \bar{x} $(\Phi_1(\mathbf{x}) = \Phi_1(\bar{x}))$
- \blacktriangleright Not surprising as entropic maximum pathway neglects correlations
- ▶ But as $\rho(\bar{x}) = Z^{-1}e^{-\beta F(\bar{x})}$ solves steady state must at least have

$$\frac{\partial}{\partial t}\rho(\bar{x},t) = \frac{\partial}{\partial \bar{x}} \left(\frac{1}{\gamma(\bar{x})} \left(\frac{\partial F(\bar{x})}{\partial \bar{x}} \rho(\bar{x},t) + k_{\rm B} T \frac{\partial}{\partial \bar{x}} \rho(\bar{x},t) \right) \right)$$

or non-Markovian dynamics (ongoing work).

▶ But are these bounds useful?

Testing free energy barriers

▶ We have tested these bounds using FK chain and a chain with long range kink interactions

$$\sum_{ij} x_i K_{ij} x_j = \underbrace{\sum_i (x_{i+1} - x_i)^2}_{\text{Frenkel Kontorova}} \rightarrow \underbrace{\sum_{ij} \frac{(x_{i+1} - x_i)(x_{j+1} - x_j)}{\sqrt{1 + (i-j)^2/\alpha^2}}}_{\text{Elastic Interaction}}$$

Gives elastic kink-kink interaction of 1/d.

Free energy barriers are good under estimates

▶ We have calculated $F(\bar{x})$ through a histogram method for both chains-

 Against standard assumptions, kink-kink interaction has negligable effect on critical stress.

Conclusions

- Multiscale analysis allows rigorous understanding of otherwise intractable problems
- ▶ Even under purely diffusive dynamics the free energy underestimates work (c.f. Crook's relation).
- ► However, the bounds are good estimates and offer non-linear mobility laws which are **not phenomenological**
- ▶ Please see T D Swinburne PRE June 2013 for more detail.
- Realistic kink-kink interactions do not affect the critical shear stress.
 Instead (in preparation)

Thank you for listening

tds110@ic.ac.uk www.cmth.ph.ic.ac.uk/people/t.swinburne