Lisa Peltzer, Angelo Brade

A1 A2 A3 A4 A5 A6 A7 Σ . 3/3 3/3 1/2 0/5 4/4 1/4 3/4 18/22

1	fyf	Λ	(a)	alb	^	alc	コ	al	(b·c)												
			alb	es b.	a·x	b .																
			alc	G> C 6	a· X																	
			al(b.	() (=)	p.c	< a.>	ъ.	a:x														
						ar.x	, x															
																		. /				
			Deil	a.x,	× le	ilba i	st du	ich o	a , gr	14	dre	te	Ibas	kert	saus	sage	,	$\sqrt{}$				
			Deil	a.x	×c te	ilba i	st du	ich a	â, gi	14	dre	. te	1bas	kert	scus	scye	, '	/				
										14	dre	. te	Ibas	kent	·scus	ssge	, '	/				
										1+	dre	. te	Ibar									
			Ь) (al(b·c) ⇒	all		1 0	ilc		dre	. te	(lbar			scye , c						
		2.	Ь) (al(b·c) ⇒	all		1 0	ilc	1+	dre	te.	(Ibar									
		Z:	Ь) (В. 4	al(b·c 1(z·z)) ⇒	al ¹	. V	1 0	11c					. 0	2,6	, C						
		z:	Ь) (В. 4	al(b·c 1(z·z)) ⇒	al ¹	. V	1 0	11c					. 0	2,6	, C						
		Z:	Ь) (В. 4	al(b·c) ⇒	al ¹	. V	1 0	11c					. 0	2,6	, C						
		Z:	b) (В. 4	al(b·c 1(z·z) a a h) ⇒ a in Ten	alt 412 lls von	, V	1 0 4	ilc 12 gibt	es	hier	he		. 0	2,6	, C						
		2:	b) (В. 4	al(b·c 1(z·z)) ⇒ a in Ten	alt 412 lls von	, V	1 0 4	ilc 12 gibt	es	hier	he		. 0	2,6	, C						
		Auf	Auf 1	alb alc al(b·	alber b. alcer c. al(b.c) (=)	albes b.a.x, alces c.a.x, al(b.c) => b.c	alber b.a.xb alcer c.a.xc al(b.c) => b.c.a.x	alber b.a.xb alcer c.a.xc al(b.c) => b.c.a.xb.	alber b.a.xb alcer c.a.xc al(b.c) => b.c. a.x. a.x	alber b.a.xb alcer c.a.xe al(b.c) => b.c.a.xe axe	alc & c · a · x · a · x · a · x · a · x · a · x · a · x · a · x · x	alber b.a.xb alcercea.xe al(b.c) => b.c.a.xe alxb.xe	alber b.a.xb alcer c.a.xc al(b.c) => b.c.a.xc a.x.x.xc	alber b.a.xb alcer c.a.xc al(b.c) => b.c. a.xb.a.xc	alber b.a.xb alcer c.a.xe al(b.c) => b.c.a.xe ax	alber b.a.xb alcer c.a.xe al(b.c) => b.c. a.xe a.xe	alber b.a.xb alcer c.a.xc al(b.c) => b.c.a.xc a.x.a.xc	alber b.a.xb alcer c.a.xc al(b.c) => b.c.a.xc a.x.a.xc	alc & c · a · x · a · x · a · x · a · x · a · x · x	alc & c · a · x · a · x · a · x · a · x · a · x · x	alc & c · a · x · a · x · a · x · a · x · a · x · x	alc & c.a.xe al(b.c) & b.c. a.xe al(b.c) & b.c. a.xe

c)
$$a/b$$
: $b = a \cdot k_b$ $c = a \cdot k_b \cdot k_c = a \cdot k_b$
 b/c : $c = b \cdot k_c$ $c = a \cdot k_b \cdot k_c = a \cdot k_b$
 a/c : $c = a/c$

Die Terberleitsamssage gridt. \Box

3/3

n16-b) Auf Z a=b mod n Reflexivited $a = a \mod n \Rightarrow \frac{a - a}{n} =$ Wes 1st durch O talbar also ist due Reflexivitat iborprift V Symmetrie wenn a=b mod n => a-b dan b=a mod = = b-a a-6 / (-1) -(a-b) . b-a Die neglecke Zahl (a-b) ist innunah avel n tilbar, weil siel an du Teilbarkent nielts andert. Transivitict Wer a=b mod n nd b=c mod n $\frac{a-b}{h}$, $\frac{b-c}{h}$ => $\frac{a-b}{n}$, $\frac{b-c}{n}$ \Rightarrow $\frac{a-c}{n}$ \Leftrightarrow $\frac{a-b}{n}$ + $\frac{b-c}{n}$ = $\frac{a-c}{n}$ of (a-b)=n-y (b-c)=n-z

Af 3 a)
$$x,y \in \mathbb{K}$$

$$|xy| < |x||y|$$

$$|xy| < \sqrt{x^2}y^2$$

$$|x| < \sqrt{x^2}$$

$$|y| < \sqrt{x^2}\sqrt{x^2} = \sqrt{x^2}\sqrt{y^2}$$

$$|x| < \sqrt{x^2}\sqrt{x^2} = \sqrt{x^2}\sqrt{y^2}$$

$$|x| < \sqrt{x^2}\sqrt{x^2}$$
Wo? Weil hier gab es eine explizite
$$Beschränkung was ihr nutzen dürft$$

x ≠0 => (x>0=> x2=xxx0) V(x40=>x2=C-x)·(-x)70) => x2>0

Denn x wided Nall ist, mus as große oder blever sein als Nall.

Venn x größer als Null ist, wird das brodukt vom x und x obenhalter größer des Mall sein.

Ven x bleiner als Null ist.

$$(-x)^2 = (-x)(-x) = (-4\cdot x) \cdot (-4\cdot x) = (-4\cdot 4) \cdot x \cdot x = (-4\cdot 4) \cdot x \cdot x = -(-4\cdot 4) \cdot$$

1/2

```
a) (x, y \in Q 1 n, m, q. 5, c, d \in Z): x = \frac{a_{11}}{b_{11}}, y = \frac{a_{12}}{d_{12}}: n und m werden benötigt, da do Bruel auch ungdwiret sein han.
       2.2: X & y (=) ad 4 c.d
       X Ca y (3) 6. n (3) 6. -
 Oxfor (=) an (bin) G com (din)
                                                   Multiplikative Inverse
                                                    sind bzgl <_Z nicht
 = x 6 y (=) (a.n) (d.m) {2 (c.m).(b.n)
                                                       definiert!
 coxlog co and m <2 cm.b.
 € 164 € ad 62 c.b 0
 b) Dass die Stratter (Q, Co) en löspe und eine linear Ordnung ist, wird geerbt, da die Menge Q ein lösper ist und durch die Relation Co linear angeordnet wird
     Zu zeigen sei, das (Q, E) die Sione (All und (All Z) offillt.
                                                                                                   ok, aber nicht vererbt, sondern wissen wir bereits, zweiteres aus der a)
    AUL1:
    x, y, z EQ Naby colof t Z: x= a / y= a / z= a
                                                                      2.2. x>0 / y>0 => x.y>0
                                                                     ( X.X.) 0 X / Y. g. >0. y. => X. y. X. y. >0
 2.2. x ( y => x+2 cy+2
                                                                             170 1 170 =) 1.170
     x+z < y+z
€ € + € < 5 + €
(=> = ( =+ f+(- f)
                            Welches kleiner und warum kannst du das einfach tun?
(c) = (=+(==))
                            W.3: x+(-x)=0: Ein Element additiv vehnüpt
                            mit dem cotspredaden invera Elenat
( X < Y
                            ergibt dos additive neutrale Element.
                            U3 gilt, da Q ein Wörper ist.
                                                              U
(5) Z=3+1 Z=1+21
     Z1-Z2: 3+1-1+Z1=2-11
     21 72 3+1.1+21=1+17 V
     Z1 - Z2 3+1 - (1+21)= (3+1) - (1+21) = (+1) (5-1=)
                                    Das ist leider sehr schlecht bis gar nicht zu lesen
                  (3+1)-1 = 3 +1 1
                       Lösung nicht nachvollziehbar
6
   a) Z= (4+1)6 = (0+12) = (-4+10) (0+12) = 0-18 06
       z = 16 / /w(16) = 0
         => 6=cas 1 (16)=0
         z = 16 · ei
         Z6 = 460 e'(++21)6 = 2e'
        r= 114602
        r= 12
       l_{2n}(1-i) = -1 < 0 \Rightarrow 2\pi - cos^{-1}(\frac{R_{\delta}(z)}{r}) = 2\pi - cos^{-1}(\frac{1}{fE}) = 2\pi - \frac{1}{4\pi} = \frac{2}{4\pi}
   => Z= Tei = T
```

$$(12^{3}-1):(2-1)=12^{2}+12^{3}+12^{6}=2^{2}+2+1$$

 $(2^{3}-2^{6})$
 $(2^{3}-2^{6})$
 $(2^{3}-2^{6})$
 $(2^{3}-2^{6})$
 $(2^{3}-2^{6})$
 $(2^{3}-2^{6})$

Nullstellen:
$$x_1 = -1$$
 $x_2 = -\frac{1}{2} + \sqrt{-\frac{3}{4}}$ $\begin{cases} x_1 = -\frac{1}{2} - \sqrt{-\frac{3}{4}} \end{cases}$ and $\begin{cases} x_2 = -\frac{1}{2} - \sqrt{-\frac{3}{4}} \end{cases}$ and $\begin{cases} x_1 = -\frac{1}{2} - \sqrt{-\frac{3}{4}} \end{cases}$ and $\begin{cases} x_1 = -\frac{1}{2} - \sqrt{-\frac{3}{4}} \end{cases}$

$$\begin{cases} \frac{3}{4} - \frac{2}{2} - \sqrt{-\frac{3}{4}} \end{cases}$$
 and real und?

$$\rho(z)=2$$

3

Der Radius ist zwisden 1 und 2

Do lies muss um 1-i

verdaben weden.

Die Verte auf den Union

sind ansgerchlossen.

Warum ist es ein Kreis?

12-11 (12-11

(a-1)+; b | < |a+; (6-1)|

€> a- 2a+1+b' (a+b-2b+1

- 2a < -2b

arb V Die Vote auf der Unic

sid asgerthese.

