Sistema Digital

Variá∨eis Booleanas □ X, Y e Z Sistema Seqüencial □ Entradas primárias Xi Saídas primárias Yi Variá∨eis secundárias Zi

- Sistema digital → composto por um ou dois tipos:
- a) Combinatório → Os valores das saídas somente dependem da combinação dos valores das entradas.
- b) Sequencial → Os valores das saídas dependem da combinação dos valores das entradas primárias e secundárias (eventos passados).

Sistema Combinatório

Especificação Formal:

- a) Tabela Verdade
- b) Diagrama de Temporização
- c) Linguagem de Descrição de Hardware por exemplo: VHDL e Verilog
- d) Funções Booleanas

Problema: Especificação informal → Sintetize um circuito combinatório que verifica se um número de 3 bits é impar (saída F=1) ou par (saída F=0).

Espec: Tabela Verdade

Problema: Especifique em uma tabela verdade (TV) um circuito combinatório que verifica se um número de 3 bits é impar (saída F=1) ou par (saída F=0).

A3 A2 A1	<u></u>
0 0 0	0 → Maxtermo
0 0 1	1
0 1 0	О
O 1 1	1 → Mintermo
1 0 0	О
1 0 1	1
1 1 0	0
1 1 1	1

A TV é de simples saída especificada completamente

Problema: Especifique em um Diagrama de Temporização (DT) um circuito combinatório que verifica se um número de 3 bits é impar (saída F=1) ou par (saída F=0).

Espec: Função Booleana

Problema: Especifique uma Função Booleana (**FB**) que verifica se um número de 3

Tabela Verdade bits é impar (saída F=1) ou par (saída F=0).

- a) Mintermo: Termo produto em que a variável aparece exatamente uma vez → A'₃ A'₂A₁ (variável de saída é 1). As entradas com valor zero são complementadas
- b) Maxtermo: Termo soma em que a variável aparece exatamente uma vez → A₃ + A₂ + A₁ (variável de saída é 0). As entradas com valor hum são complementadas

Espec: Função Booleana

Problema: Especifique uma **FB** que verifica se um número de 3 bits é impar (saída F=1) ou par (saída F=0).

Uma forma de descrever uma expressão Booleana:

a) *Função Canônica* soma de produto (SOP)

A3 A2 A1	F
0 0 0	$0 \to Maxtermo$ $F(A_3,A_2,A_1) = A'_3 A'_2 A_1 + A'_3 A_2 A_1 +$
0 0 1	$A_3A_2A_1 + A_3A_2A_1$
0 1 0	
0 1 1	0 → Mintermo b) <i>Função Canônica</i> produto da soma (POS)
1 0 0	b) I diigas saiisiisa pisaats da soiiia (i se)
1 0 1	$F(A_3,A_2,A_1) = (A_3 + A_2 + A_1) \cdot (A_3 + A_2 + A_1)$
1 1 0 1 1 1	
1 1 1	$(A'_3 + A_2 + A_1) \cdot (A'_3 + A'_2 + A_1)$

Função Canônica SOP -> contém o máximo número de termos produto e cada termo produto contém o máximo número de literais (envolve todas as variáveis da função)

Literal → é uma variável ou o seu complemento

Espec: Função Booleana

Especifique uma FB: Designação decimal

a) Função Canônica soma de produtos SOP)

a) Fullção Gallottica soma de productos SOF)	
A3 A2 A1	F
0 0 0	$F(A_3,A_2,A_1) = \sum (1,3,5,7)$
0 0 1	b) <i>Função Canônica</i> produto da somas (POS)
0 1 0	
0 1 1	1 \rightarrow Mintermo $F(A_3,A_2,A_1) = \prod (0,2,4,6)$
1 0 0	0
1 0 1	1
1 1 0	0
1 1 1	1

Espec: Linguagem de Descrição de

Hardware

Library ieee;

```
Especifique em uma LDH um circuito combinatório que verifica se um número de 3 bits é impar (saída F=1)ou par (saída F=0).
```

Por exemplo: VHDL

```
use ieee.std_logic_1164 all;
entity Impar is
port (A3, A2, A1 : in std_logic;
       F : out std logic
end Impar;
ARCHITECTURE Par of Impar is
Begin
  If A1='1' then F <= '1';
           else F <='0':
  end if;
end Par;
```