²H(³⁶S, ³He) **2020Sa44**

2020Sa44: $E(^{36}S)=15.3$ MeV/nucleon was provided by the Argonne Tandem Linear Accelerator System. Targets were 81, 127, $529-\mu g/cm^2$ deuterated plastic. The reaction was studied in inverse kinematics with the HELical Orbit Spectrometer (HELIOS). The 3 He ions spiralled in a 2.85-T magnetic field and were detected by a position-sensitive silicon array. The heavy-ion products were measured with a $65-\mu m$ thick silicon detector installed between the target and the silicon array. Measured $\sigma(E(^3He),\theta)$. Deduced relative spectroscopic factors for 6 levels from the PTOLEMY-DWBA analysis of the angular distributions. A potential $1/2^+$ neutron 2p2h excitation bandhead in 2.5-3.6 MeV was searched, and an upper limit for the transfer reaction cross section to populate such an intruder configuration was deduced.

35P Levels

2020Sa44 states that the measurement of the beam current was not made with sufficient accuracy to calculate absolute spectroscopic factors. The C²S values are relative spectroscopic factors normalized such that the ground-state value is 2.

E(level) [†]	$J^{\pi \ddagger}$	$C^2S^{\#}$
0 1	1/2+	2.0
2388 13	3/2+	0.33 9
3860 2	$5/2^{+}$	2.9 10
4666 9	$5/2^{+}$	0.71 34
5202 8	$5/2^{+}$	1.1 6
5706 <i>38</i>	$(1/2^{-})$	0.23 5

[†] From 2020Sa44.

[‡] Assumed by 2020Sa44 for deducing C²S.

[#] Uncertainties are dominated by systematic components.