Congratulations! You passed!

Grade received 90% To pass 80% or higher

Go to next item

Neural Network Basics

Latest Submission Grade 90%

1. What does a neuron compute?

1/1 point

- A neuron computes a linear function (z = Wx + b) followed by an activation function
- A neuron computes an activation function followed by a linear function (z = Wx + b)
- A neuron computes the mean of all features before applying the output to an activation function
- A neuron computes a function g that scales the input x linearly (Wx + b)
- Correct

Correct, we generally say that the output of a neuron is a = g(Wx + b) where g is the activation function (sigmoid, tanh, ReLU, ...).

2. Which of these is the "Logistic Loss"?

1/1 point

- $\mathcal{L}^{(i)}(\hat{y}^{(i)}, y^{(i)}) = max(0, y^{(i)} \hat{y}^{(i)})$
- $\bigcirc \ \, \mathcal{L}^{(i)}(\hat{y}^{(i)},y^{(i)}) = \mid y^{(i)} \hat{y}^{(i)} \mid$
- $\bigcirc \ \mathcal{L}^{(i)}(\hat{y}^{(i)}, y^{(i)}) = \mid y^{(i)} \hat{y}^{(i)} \mid^2$
- Correct

Correct, this is the logistic loss you've seen in lecture!

3.	Suppose img is a $(32,32,3)$ array, representing a 32×32 image with 3 color channels red, green and blue. How do you reshape this into a column vector?	1/1 point
	x = img.reshape((3,32*32))	
	x = img.reshape((32*32,3))	
	x = img.reshape((1,32*32,*3))	
	• $x = img.reshape((32*32*3,1))$	
	⊘ Correct	
4.	Consider the two following random arrays $oldsymbol{a}$ and $oldsymbol{b}$:	1/1 point
	a = np.random.randn(2,3) # a.shape = (2,3)	
	b = np.random.randn(2,1) #b.shape = (2,1)	
	c = a + b	
	What will be the shape of c?	
	The computation cannot happen because the sizes don't match. It's going to be "Error"!	
	Cishape = (2, 1)	
	C.shape = (3, 2)	
	c.shape = (2, 3)	
	 Correct Yes! This is broadcasting, b (column vector) is copied 3 times so that it can be summed to each column of a. 	

5.	Consider the two following random arrays $oldsymbol{a}$ and $oldsymbol{b}$:	0/1 point
	a = np.random.randn(4,3) # a.shape = (4,3)	
	b = np.random.randn(3,2) # b.shape = (3,2)	
	c = a * b	
	What will be the shape of c?	
	• c.shape = (4,2)	
	C.shape = (4, 3)	
	The computation cannot happen because the sizes don't match. It's going to be "Error"!	
	C.shape = (3, 3)	
	No! In numpy the "*" operator indicates element-wise multiplication. It is different from "np.dot()". If you would try "c = np.dot(a,b)" you would get c.shape = (4, 2). Also, the broadcasting cannot happen because of the shape of b. b should have been something like (4, 1) or (1, 3) to broadcast properly. So a*b leads to an error!	
6.	Suppose you have n_x input features per example. Recall that $X=[x^{(1)}x^{(2)}x^{(m)}].$ What is the dimension of X?	1/1 point
	\bigcirc (n_x, m)	
	\bigcirc (m, n_x)	
	\bigcirc $(m,1)$	
	\bigcirc $(1,m)$	
	⊘ Correct	

Consider the two following random arrays a and b:

$$a = np.random.randn(12288, 150) # a.shape = (12288, 150)$$

$$b = np.random.randn(150, 45) # b.shape = (150, 45)$$$$

$$c = np.dot(a, b)$$

What is the shape of c?

- c.shape = (12288, 45)
- O The computation cannot happen because the sizes don't match. It's going to be "Error"!
- C.shape = (12288, 150)
- O c.shape = (150,150)

Correct

Correct, remember that a np.dot(a, b) has shape (number of rows of a, number of columns of b). The sizes match because :

"number of columns of a = 150 = number of rows of b"

$$\# a.shape = (3,4)$$

$$\#b.shape = (4,1)$$

for i in range(3):

for j in range(4):
$$c[i][j] = a[i][j] + b[j]$$

How do you vectorize this?

- \bigcirc c = a.T + b.T
- O c=a.T+b
- O c = a + b
- c=a+b.T
 - Correct

- a = np.random.randn(3, 3)
- b = np.random.randn(3, 1)
- c = a * b

What will be c? (If you're not sure, feel free to run this in python to find out).

- This will invoke broadcasting, so b is copied three times to become (3,3), and * is an element-wise product so
 c.shape will be (3, 3)
- This will multiply a 3x3 matrix a with a 3x1 vector, thus resulting in a 3x1 vector. That is, c.shape = (3,1).
- It will lead to an error since you cannot use "*" to operate on these two matrices. You need to instead use np.dot(a,b)
- This will invoke broadcasting, so b is copied three times to become (3, 3), and * invokes a matrix multiplication operation of two 3x3 matrices so c.shape will be (3, 3)
- **⊘** Correct

What is the output J?

- $\int J = (b-1)*(c+a)$
- J = (a 1) * (b + c)
- O J=a*b+b*c+a*c
- O J = (c-1)*(b+a)
 - Correct
 Yes. J = u + v w = a*b + a*c (b + c) = a * (b + c) (b + c) = (a 1) * (b + c).