Contents

- Data Objects and Attribute Types
- Basic Statistical Descriptions of Data
- Data Visualization
- Measuring Data Similarity and Dissimilarity

Similarity and Dissimilarity

- Similarity (유사도)
 - Numerical measure of how alike two data objects are
 - Value is higher when objects are more alike
 - Often falls in the range [0,1]
- Dissimilarity (e.g., distance, 거리)
 - Numerical measure of how different two data objects are
 - Lower when objects are more alike
 - Minimum dissimilarity is often 0
 - Upper limit varies
- Proximity refers to a similarity or dissimilarity

Data Matrix and Dissimilarity Matrix

Data matrix

• n data points with p dimensions

$$\begin{bmatrix} x_{11} & \dots & x_{1f} & \dots & x_{1p} \\ \dots & \dots & \dots & \dots \\ x_{i1} & \dots & x_{if} & \dots & x_{ip} \\ \dots & \dots & \dots & \dots \\ x_{n1} & \dots & x_{nf} & \dots & x_{np} \end{bmatrix}$$

Dissimilarity matrix

- n data points, but registers only the distance
- A triangular matrix

$$\begin{bmatrix} 0 \\ d(2,1) & 0 \\ d(3,1) & d(3,2) & 0 \\ \vdots & \vdots & \vdots \\ d(n,1) & d(n,2) & \dots & \dots & 0 \end{bmatrix}$$

Proximity Measure for Nominal Attributes

Nominal attributes can take 2 or more states,
 e.g., red, yellow, blue (generalization of a binary attribute)

Method 1: Simple matching

• m: # of matches, p: total # of variables

$$d(i,j) = \frac{p-m}{p}$$

Method 2: Use a large number of binary attributes

creating a new binary attribute for each of the M nominal states

Color	Color_red	Color_yellow	Color_blue
red	1	0	0
yellow	0	1	0
blue	0	0	1
yellow	0	1	0

Proximity Measure for Binary Attributes

A contingency table (분할표) for binary data

• Distance measure for **symmetric** binary attributes:

$$d(i,j) = \frac{r+s}{q+r+s+t}$$

• Distance measure for **asymmetric** binary attributes:

$$d(i,j) = \frac{r+s}{q+r+s}$$

• Jaccard coefficient (similarity measure for asymmetric binary variables):

$$sim_{Jaccard}(i, j) = \frac{q}{q + r + s}$$

Dissimilarity between Binary Variables

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

- Gender is a symmetric attribute, and the remaining attributes are asymmetric binary
- Let's calculate dissimilarity for the asymmetric binary attributes
- Let the values Y and P be 1, and the value N 0

$$d(jack, mary) = \frac{0+1}{2+0+1} = 0.33$$

$$d(jack, jim) = \frac{1+1}{1+1+1} = 0.67$$

$$d(jim, mary) = \frac{1+2}{1+1+2} = 0.75$$

Dissimilarity on Numeric Data

• Euclidean distance (유클리드 거리)

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + ... + |x_{ip} - x_{jp}|^2)}$$

Dissimilarity on Numeric Data

• Manhattan distance (맨하탄 거리)

$$d(i,j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + ... + |x_{i_p} - x_{j_p}|$$

Distance on Numeric Data

• Minkowski distance: a general form of distance measure for numeric data

$$d(i,j) = \sqrt[h]{|x_{i1} - x_{j1}|^h + |x_{i2} - x_{j2}|^h + \dots + |x_{ip} - x_{jp}|^h}$$

where $i=(x_{i1},x_{i2},\cdots,x_{ip})$ and $j=(x_{j1},x_{j2},\cdots,x_{jp})$ are two p-dimensional data objects, and h is the order (the distance so defined is also called L_h norm)

- Properties
 - d(i,j) > 0 if $i \neq j$, and d(i,i) = 0 (Positive definiteness)
 - d(i,j) = d(j,i) (Symmetry)
 - $d(i,j) \le d(i,k) + d(k,j)$ (Triangle Inequality)
- A distance that satisfies these properties is a <u>metric</u>

Special Cases of Minkowski Distance

- h = 1; Manhattan (city block, L_1 norm) distance
 - E.g., the Hamming distance: the number of bits that are different between two binary vectors

$$d(i,j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + ... + |x_{i_p} - x_{j_p}|$$

• h = 2; (L_2 norm) Euclidean distance

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + ... + |x_{ip} - x_{jp}|^2)}$$

- $h \to \infty$; "supremum" (L_{max} norm, L_{∞} norm) distance.
 - This is the maximum difference between any component (attribute) of the vectors

$$d(i,j) = \lim_{h \to \infty} \left(\sum_{f=1}^{p} |x_{if} - x_{jf}|^h \right)^{\frac{1}{h}} = \max_{f} |x_{if} - x_{jf}|$$

Example: Data Matrix and Dissimilarity Matrix

Data Matrix

point	attribute1	attribute2
<i>x1</i>	1	2
<i>x</i> 2	3	5
<i>x3</i>	2	0
<i>x4</i>	4	5

Dissimilarity Matrix

(with Euclidean Distance)

	<i>x1</i>	<i>x</i> 2	<i>x3</i>	<i>x4</i>
<i>x1</i>	0			
<i>x</i> 2	3.61	0		
<i>x</i> 3	5.1	5.1	0	
<i>x4</i>	4.24	1	5.39	0

Example: Minkowski Distance

point	attribute 1	attribute 2
x1	1	2
x2	3	5
x 3	2	0
x4	4	5

Manhattan (L_1)

L	x1	x2	x 3	x4
x1	0			
x2	5	0		
x 3	3	6	0	
x4	6	1	7	0

Euclidean (L_2)

L2	x1	x2	х3	x4
x1	0			
x2	3.61	0		
x3	2.24	5.1	0	
x4	4.24	1	5.39	0

Supremum

L_{∞}	x1	x2	х3	x4
x1	0			
x2	3	0		
x 3	2	5	0	
x4	3	1	5	0

Numeric Data normalization

- Z-score (standardization) $z = \frac{x \mu}{\sigma}$
 - X: raw score to be standardized, μ : mean of the population, σ : standard deviation
 - negative when the raw score is below the mean, "+" when above
- Min-max normalization $x_{scaled} = rac{x x_{min}}{x_{max} x_{min}}$
- Recommended to normalize (standardize) numeric attributes for measuring distance using multiple attributes

Distance on Ordinal Variables

- An ordinal variable can be discrete or continuous
- Since rank is important, ordinal variables can be treated like interval-scaled attributes
 - replace x_{if} by their rank r_{if}
 - map the range of each variable onto [0, 1] by replacing i-th object in the f-th variable by

$$z_{if} = \frac{r_{if} - 1}{M_f - 1}$$

compute the dissimilarity using methods for interval-scaled variables

Ξx.	Low	1
	Medium	0.5
	Medium	0.5
	High	0

 $r_{if} \in \{1, ..., M_f\}$

Attributes of Mixed Type

- A dataset may contain all attribute types
 - Nominal, symmetric binary, asymmetric binary, numeric, ordinal
- We use the (weighted) mean to measure dissimilarity based on mixed attributes
 - f is binary or nominal: $d_{ij}^{(f)}=0$ if $x_{if}=x_{jf}$, or $d_{ij}^{(f)}=1$ otherwise
 - f is numeric: $d_{ij}^{(f)} = \frac{|x_{if} x_{jf}|}{max_h x_{hf} min_h x_{hf}}$, where h runs over all non-missing objects for attribute f
 - f is ordinal: compute ranks r_{if} and treat z_{if} as interval-scaled

$$d(i,j) = \frac{\sum_{f=1}^{p} d_{ij}^{(f)}}{p} \qquad d(i,j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}}$$

An example of multi-attribute distance

Object ID	Attribute 1	Attribute 2	Attribute 3	Attribute 4
X1	1	2	М	Low
X2	3	5	F	Medium
Х3	2	0	F	Medium
X4	4	5	М	High

$$d(i,j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}}$$

if
$$\delta^{(1)} = \delta^{(2)}$$

= $\delta^{(3)} = \delta^{(4)}$

$d^{(1)}$	X1	X2	Х3	X4
X1	0			
X2	0.67	0		
Х3	0.33	0.34	0	
X4	1	0.33	0.67	0
$d^{(2)}$	X1	X2	Х3	X4
X1	0			
X2	0.6	0		
Х3	0.4	1	0	
X4	0.6	0	1	0
$d^{(3)}$	X1	X2	Х3	X4
X1	0			
X2	1	0		
Х3	1	0	0	
X4	0	1	1	0
$d^{(4)}$	X1	X2	Х3	X4
X1	0			
X2	0.5	0		
Х3	0.5	0	0	
X4	1	0.5	0.5	0
$d^{(4)}$	X1	X2	Х3	X4

d ⁽⁴⁾	X1	X2	Х3	X4
X1	0			
X2	0.69	0		
Х3	0.56	0.34	0	
X4	0.65	0.46	0.79	0

Summary

- A dataset consists of data objects, which are described by attributes
 - Data attribute types: nominal, binary, ordinal, interval-scaled, ratio-scaled
- Gain insight into the data by
 - Basic statistical description: central tendency, dispersion, graphical displays
 - Data visualization
 - Measure data similarity
- The above steps help know the data better, allowing for effective knowledge discovery in the later KD process

