MA 141 Geometria Analítica e Vetores

Primeiro Semestre de 2012

Segunda Prova

31 de Maio de 2012

Nome:	RA:
1 (dille)	1011.

Questões	Pontos
Questão 1	
Questão 2	
Questão 3	
Questão 4	
Questão 5	
Total	

Questão 1. (2.0 Pontos)

Sejam \vec{u} , \vec{v} e \vec{w} vetores linearmente independentes em \mathbb{R}^3 . Dado um vetor \vec{r} em \mathbb{R}^3 , sabemos que existem constantes a, b e c tais que

$$\vec{r} = a\vec{u} + b\vec{v} + c\vec{w} .$$

Prove que os vetores $\vec{u} + \vec{r}$, $\vec{v} + \vec{r}$ e $\vec{w} + \vec{r}$ são linearmente independentes se, e somente se, $a + b + c + 1 \neq 0$.

Questão 2. (2.0 Pontos)

Escreva o vetor $\vec{w} = (1,0,3)$ como uma combinação linear de dois vetores \vec{u} e \vec{v} que satisfazem simultaneamente as seguintes condições:

- os vetores \vec{u} , $\vec{r} = (1, 1, 1)$ e $\vec{s} = (-1, 1, 2)$ são linearmente dependentes.
- o vetor \vec{v} é ortogonal aos vetores \vec{r} e \vec{s} .

Faça uma interpretação geométrica do problema descrito acima.

Questão 3. (3.0 Pontos)

Considere o plano π dada pela equação vetorial

$$\pi: X = (1, -1, 1) + \alpha(0, 1, 2) + \beta(1, -1, 0) , \alpha, \beta \in \mathbb{R},$$

e o ponto $P = (2, 0, 1) \notin \pi$.

- (a) Determine a equação vetorial da reta $\,r\,$ que passa pelo ponto $\,P\,$ que é perpendicular ao plano $\,\pi.$
- (b) Determine o ponto $Q \in \pi$ que está mais próximo do ponto P.
- (c) Determine o ponto P' que seja simétrico ao ponto P em relação ao plano π .

Questão 4. (2.0 Pontos)

Determine o valor do parâmetro a de modo que as retas r e s dadas pelas equações

$$r: X = (1,0,2) + \lambda(2,1,3) , \lambda \in \mathbb{R}$$

$$s: X = (0,1,-1) + \alpha(1,a,2a) , \alpha \in \mathbb{R}$$

sejam coplanares, e nesse caso faça o estudo da posição relativa das retas.

Questão 5. (3.0 Pontos)

Considere a reta r dada pela equação vetorial

$$r: X = (1,1,5) + \lambda(-3,2,-2) , \lambda \in \mathbb{R},$$

e o plano $\,\pi\,$ dado pela seguinte equação vetorial

$$\pi: X = (1, -1, 1) + \alpha(0, 1, 2) + \beta(1, -1, 0)$$
, $\alpha, \beta \in \mathbb{R}$.

- (a) Estude a posição relativa da reta r e do plano π .
- (b) Sejam \vec{u} o vetor diretor da reta r e \vec{n} o vetor normal ao plano π . Determine uma base ortogonal para \mathbb{R}^3 contendo os vetores \vec{u} e \vec{n} .
- (c) Determine a equação geral de um plano que é perpendicular ao plano π passando pelo ponto P=(1,1,1).