离散数学第一次作业

Xiaoma

2022年10月24日

题目 1.

解答. 1. 已知集合 G 非空,且 $ac \neq 0$, $ad + b \in \mathbb{R}$,则封闭性成立。

由 $(a,b) \times_G (c,d) \times_G (e,f) = (a,b) \times_G ((c,d) \times_G (e,f))$, 可知满足结合律。 对于 (1,0) 对 $\forall (a,b) \in G, (a,b) \times_G (1,0) = (a,b), (1,0) \times_G (a,b) = (a,b)$,可知其存在单位元。

对于 G 中的每个元素 (a,b),都存在 $(a^{-1},b^{-1})=(\frac{1}{a},-\frac{b}{a})$ 使得 $(a,b)\times_G$ $(a^{-1},b^{-1})=(1,0)$,可知每个元素都存在一一对应的逆元。 可知 (G,\times_G) 构成一个群。

2. 对于 G 中的每个元素 (a,b), $(c,d) \times_G (1,b) \times_G (c^{-1},d^{-1}) = (cc^{-1},cd^{-1}+bc+d)$,由 1. 可知, $cc^{-1}=1$, $cd^{-1}+d=0$,则原式变为 $(1,bc) \in K$,则 K为 G 的正规子群。

题目 2.

解答. 1. 有理数加法群和非零有理数群为 $\{Q, +\}, \{Q^*, \times\}$ 。 设 $\{Q, +\}, \{Q^*, \times\}$ 同构。 则存在 $\{Q, +\} \rightarrow \{Q^*, \times\}$ 的双射

使得 $f(x+y) = f(x) \times f(y)$,

则 $f(x) = f^2(\frac{x}{2})$,

显然结论不成立,则有理数加法群和非零有理数乘法群不同构。

2. 实数加法群和正实数乘法群为 $\{\mathbb{R}, +\}, \{\mathbb{R}^+, \times\}$ 。

设 $\{\mathbb{R},+\},\{\mathbb{R}^+,\times\}$ 同构。

则存在 $\{\mathbb{R}, +\} \rightarrow \{\mathbb{R}^+, \times\}$ 的双射

使得 $f(x+y) = f(x) \times f(y)$,

设 $f(x) = e^x$, 根据图像可知, 两群元素一一对应。

则实数加法群和正实数乘法群同构。

题目 3.

解答. 设 G 为 6 阶群,根据拉格朗日定理可知,其子群的阶必为 6 的因数,则 G 有三阶子群。

若 G 有多个三阶子群,则 G 至少有 4 个两两不同的三阶元素,由此产生的新元素超过 6 个,故其最多有一个三阶子群。

则 G 有且仅有一个 3 阶子群。

题目 4.

解答. 对于群中的每个元素都有逆元,对于阶数大于 2 的元素,其逆元与其同阶,可一一配对,有偶数个。

而对于阶等于 2 的元素,需要考虑 1 与其逆元相同,故在偶数阶群 G 中, 阶数为 2 的元素有奇数个。

题目 5.

解答. 假设 m 是使 a^m 包含于非平凡子群 H 的最小整数。如果 H 中包含 a^n ,且 n 不是 m 的倍数,则 $a^{(m,n)}$ 也包含于 H,且 (m,n) < m 与假设矛

盾,所以 H 由 a^m 生成,H 一定是无限的,所以无限循环群的极大子群也为无限循环群。

题目 6.

解答. 1. 己知 $Z(G) = \{g \in G : \forall x \in G, xg = gx\}$,

则 $\forall x \in G, xgx^{-1} = gxx^{-1} = g$,则 Z(G) 是 G 的正规子群。

2. 设 $xH, yH \in G$, 且 $xH = a^s * H, y = a^t * H$, 则 $\exists p, q \in H$ 使得 $x = a^s * p, y = a^t * q$, 已知 Z(G) 为交换群,则 xy = yx,则 G 是交换群。