

. | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1

(43) Internationales Veröffentlichungsdatum 7. November 2002 (07.11.2002)

PCT

(10) Internationale Veröffentlichungsnummer WO 02/088126 A1

(51) Internationale Patentklassifikation7: C07D 487/04, A01N 43/90

(21) Internationales Aktenzeichen: PCT/EP02/04287

(22) Internationales Anmeldedatum:

18. April 2002 (18.04.2002)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität: 101 21 162.7 30. April 2001 (30.04.2001) DE

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): BAYER AKTIENGESELLSCHAFT [DE/DE]; 51368 Leverkusen (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (mur für US): GEBAUER, Olaf [DE/DE]; Jesuitengasse 111, 50737 Köln (DE). GREUL, Jörg, Nico [DE/DE]; Am Sandberg 30a, 42799 Leichlingen (DE). HEINEMANN, Ulrich [DE/DE]; Am Sonnenhang 1, 42799 Leichlingen (DE). ELBE, Hans, Ludwig [DE/DE]; Dasnöckel 59, 42329 Wuppertal (DE). KRÜGER, Bernd, Wieland [DE/DE]; Am Vorend 52, 51467 Bergisch Gladbach (DE). MAURER, Fritz [DE/DE]; Brahmstr. 36, 40789 Monheim (DE). DUNKEL, Ralf [DE/DE]; Krischerstr. 22, 40789 Monheim (DE). VOERSTE, Arnd [DE/DE]; Salierring 33, 50677 Köln (DE). EBBERT, Ronald [DE/DE]; Hitdorfer Str. 305,

51371 Leverkusen (DE). WACHENDORFF-NEU-MANN, Ulrike [DE/DE]; Oberer Markenweg 85, 56566 Neuwied (DE). KITAGAWA, Yoshinori [JP/JP]; P.O. Box 157, Tokyo, Tokyo 103-91 (JP). MAULER-MACHNIK, Astrid [DE/DE]; Neuenkamper Weg 48, 42799 Leichlingen (DE). KUCK, Karl, Heinz [DE/DE]; Pastor-Löh-Str. 30a, 40764 Langenfeld (DE).

(74) Gemeinsamer Vertreter: BAYER AKTIENGE-SELLSCHAFT; 51368 Leverkusen (DE).

- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI-Patent (BF, BJ, CF, CG, Cl, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Erklärung gemäß Regel 4.17:

— hinsichtlich der Berechtigung des Anmelders, ein Patent zu beantragen und zu erhalten (Regel 4.17 Ziffer ii) für die folgenden Bestimmungsstaaten AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,

[Fortsetzung auf der nächsten Seite]

(54) Title: TRIAZOLOPYRIMIDINES

(54) Bezeichnung: TRIAZOLOPYRIMIDINE

(1)

m

(57) Abstract: The invention relates to novel triazolopyrimidines of formula (I), wherein R¹, R², R³, R⁴ and X have the meanings as cited in the description. The invention also relates to a plurality of methods for producing said novel substances and the uses thereof for combating undesired micro-organisms, novel intermediate products of formulae (II), (V) and a method for the production thereof, as well as novel amines and carbamates which have the formula as cited in the description and a method for the production thereof.

(57) Zusammenfassung: Neue Triazolopyrimidine der Formel (I), in welcher R¹, R², R³, R⁴ und X die in der Beschreibung ange-

(57) Zusammenfassung: Neue Triazolopyrimidine der Formel (I), in welcher R¹, R², R³, R⁴ und X die in der Beschreibung angegebenen Bedeutungen haben, mehrere Verfahren zur Herstellung dieser neuen Stoffe und deren Verwendung zur Bekämpfung von unerwünschten Mikroorganismen. Neue Zwischenprodukte der Formeln (II), (V) sowie Verfahren zu deren Herstellung. Außerdem auch neue Amine und Carbamate der in der Beschreibung angegebenen Formeln sowie Verfahren zu deren Herstellung.

WO 02/088126 A1

CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW, ZW, ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)

Veröffentlicht:

- mit internationalem Recherchenbericht
- vor Ablauf der f\u00fcr \u00e4nderungen der Anspr\u00fcche geltenden Frist; Ver\u00f6ffentlichung wird wiederholt, falls \u00e4nderungen eintreffen

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

10

Triazolopyrimidine

Die vorliegende Erfindung betrifft neue Triazolopyrimidine, mehrere Verfahren zu deren Herstellung und deren Verwendung zur Bekämpfung von unerwünschten Mikroorganismen. Die Erfindung betrifft außerdem neue Zwischenprodukte sowie Verfahren zu deren Herstellung.

Es ist bereits bekannt geworden, dass bestimmte Triazolopyrimidine fungizide Eigenschaften besitzen (vgl. EP-A 0 550 113, WO 94-20 501, EP-A 0 613 900, US-A 5 612 345, EP-A 0 834 513, WO 98-46 607 und WO 98-46 608). Die Wirksamkeit dieser Stoffe ist gut, lässt aber bei niedrigen Aufwandmengen in manchen Fällen zu wünschen übrig.

15 Es wurden nun neue Triazolopyrimidine der Formel

in welcher

20 R¹ für Amino, Hydroxy, für gegebenenfalls substituiertes Alkyl, gegebenenfalls substituiertes Alkenyl, gegebenenfalls substituiertes Alkinyl, gegebenenfalls substituiertes Alkoxy, gegebenenfalls substituiertes Alkoxy, gegebenenfalls substituiertes Alkinyloxy, gegebenenfalls substituiertes Alkinyloxy, gegebenenfalls substituiertes Cycloalkyloxy, gegebenenfalls substituiertes Alkylamino, gegebenenfalls substituiertes Dialkylamino, gegebenenfalls substituiertes Alkinylamino, gegebenenfalls substituiertes Alkinylamino, gegebenenfalls substituiertes N-

PCT/EP02/04287 WO 02/088126

-2-

Cycloalkyl-N-alkyl-amino, gegebenenfalls substituiertes Alkylidenamino, gegebenenfalls substituiertes Phenyl, gegebenenfalls substituiertes Heterocyclyl oder für einen Rest der Formel -S-R⁵ steht, worin

- für gegebenenfalls substituiertes Alkyl, gegebenenfalls substituiertes Alkenyl, gegebenenfalls substituiertes Alkinyl oder gegebenenfalls substituiertes Cycloalkyl steht,
- für Wasserstoff, gegebenenfalls substituiertes Alkyl, gegebenenfalls substituiertes Alkenyl, gegebenenfalls substituiertes Alkinyl oder gegebenenfalls substituiertes Cycloalkyl steht,

oder

- 15 R¹ und R² gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, für einen gegebenenfalls substituierten heterocyclischen Ring stehen,
 - R³ für gegebenenfalls einfach bis vierfach substituiertes Aryl steht,
- 20 R⁴ für gegebenenfalls substituiertes Alkyl oder für gegebenenfalls substituiertes Cycloalkyl steht und
 - X für Halogen steht,
- 25 sowie Säure-Additionssalze von denjenigen Verbindungen der Formel (I), in denen
 - R1 für Amino steht,

gefunden.

10

20

25

Die erfindungsgemäßen Verbindungen können je nach Substitutionsmuster gegebenenfalls als Mischungen verschiedener möglicher isomerer Formen, insbesondere von Stereoisomeren, wie z.B. E- und Z-, threo- und erythro-, sowie optischen Isomeren, gegebenenfalls aber auch von Tautomeren vorliegen. Ist R³ an beiden Atomen, die der Bindungsstelle benachbart sind, ungleich substituiert, können die betreffenden Verbindungen in einer besonderen Form der Stereoisometrie, als Atropisomere, vorliegen.

Weiterhin wurde gefunden, dass sich Triazolopyrimidine der Formel (I) herstellen lassen, indem man

a) Dihalogen-triazolopyrimidine der Formel

$$R^3$$
 N
 N
 R^4
(II)

in welcher

R³, R⁴ und X die oben angegebenen Bedeutungen haben und

Y¹ für Halogen steht,

mit Aminen der Formel

$$R^1 \longrightarrow R^2$$
 (III)

in welcher

R¹ und R² die oben angegebenen Bedeutungen haben,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säureakzeptors umsetzt,

5 oder

b) Triazolopyrimidine der Formel

in welcher

R², R³, R⁴ und X die oben angegebenen Bedeutungen haben,

mit Sulfensäurehalogeniden der Formel

15

$$Y^{2}-S-R^{5}$$
 (IV),

in welcher

R⁵ die oben angegebenen Bedeutungen hat und

20

y2 für Halogen steht,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säureakzeptors umsetzt,

25

und gegebenenfalls an die so erhaltenen Verbindungen der Formel (I), in denen

WO 02/088126

PCT/EP02/04287

- 5 -

R¹ für Amino steht,

eine Säure addiert.

5

Schließlich wurde gefunden, dass sich die neuen Triazolopyrimidine der Formel (I) bzw. deren Säureadditions-Salze sehr gut zur Bekämpfung von unerwünschten Mikroorganismen eignen. Sie zeigen vor allem eine starke fungizide Wirksamkeit und lassen sich sowohl im Pflanzenschutz als auch im Materialschutz verwenden.

10

Überraschenderweise besitzen die erfindungsgemäßen Triazolopyrimidine der Formel (I) eine wesentlich bessere mikrobizide Wirksamkeit als die konstitutionell ähnlichsten, vorbekannten Stoffe gleicher Wirkungsrichtung.

15

 R^1

steht bevorzugt für Hydroxy, Amino, für gegebenenfalls durch Halogen, Cyano, Hydroxy, Amino, Phenyl, Heterocyclyl, Alkoxy mit 1 bis 4 Kohlenstoffatomen, Alkoxycarbonyl mit 1 bis 4 Kohlenstoffatomen, Alkylamino mit 1 bis 4 Kohlenstoffatomen, Dialkylamino mit 2 bis 8 Kohlenstoffatomen, Cycloalkyl mit 3 bis 6 Kohlenstoffatomen, Halogencycloalkyl mit 3 bis 6 Kohlenstoffatomen und 1 bis 5 Halogenatomen, Alkylthio mit 1 bis 4 Kohlenstoffatomen, Oxo, Hydroxyimino und/oder Alkoximino mit 1 bis 4 Kohlenstoffatomen substituiertes Alkyl mit 1 bis 6 Kohlenstoffatomen,

20

für gegebenenfalls durch Halogen, Cycloalkyl, Cyano, Phenyl und/oder Heterocyclyl substituiertes Alkenyl mit 2 bis 6 Kohlenstoffatomen,

25

für gegebenenfalls durch Halogen, Cycloalkyl, Cyano, Phenyl und/oder Heterocyclyl substituiertes Alkinyl mit 2 bis 6 Kohlenstoffatomen,

15

20

25

für gegebenenfalls durch Halogen, Cycloalkyl, Cyano, Halogenalkyl mit 1 bis 2 Kohlenstoffatomen und 1 bis 5 Halogenatomen, Phenyl und/oder Heterocyclyl substituiertes Cycloalkyl mit 3 bis 7 Kohlenstoffatomen,

für gegebenenfalls durch Halogen, Cycloalkyl, Cyano, Phenyl und/oder Heterocyclyl substituiertes Alkoxy mit 1 bis 7 Kohlenstoffatomen,

für gegebenenfalls durch Halogen, Cycloalkyl, Cyano, Phenyl und/oder Heterocyclyl substituiertes Alkenyloxy mit 2 bis 6 Kohlenstoffatomen,

für gegebenenfalls durch Halogen, Cycloalkyl, Cyano, Phenyl und/oder Heterocyclyl substituiertes Alkinyloxy mit 2 bis 6 Kohlenstoffatomen,

für gegebenenfalls durch Halogen, Cycloalkyl, Cyano, Phenyl und/oder Heterocyclyl substituiertes Cycloalkyloxy mit 3 bis 7 Kohlenstoffatomen,

für gegebenenfalls durch Halogen, Cycloalkyl, Cyano, Phenyl und/oder Heterocyclyl substituiertes Alkylamino mit 1 bis 7 Kohlenstoffatomen,

für gegebenenfalls durch Halogen, Cycloalkyl, Cyano, Phenyl und/oder Heterocyclyl substituiertes Dialkylamino mit 1 bis 7 Kohlenstoffatomen in jedem der Alkylreste,

für gegebenenfalls durch Halogen, Cycloalkyl, Cyano, Phenyl und/oder Heterocyclyl substituiertes Alkenylamino mit 2 bis 6 Kohlenstoffatomen,

für gegebenenfalls durch Halogen, Cycloalkyl, Cyano, Phenyl und/oder Heterocyclyl substituiertes Alkinylamino mit 2 bis 6 Kohlenstoffatomen,

jî,

10

15

20

25

für gegebenenfalls durch Halogen, Cyano, Phenyl und/oder Heterocyclyl substituiertes N-Alkyl-N-Alkenylamino mit 1 bis 6 Kohlenstoffatomen im Alkylteil und 2 bis 6 Kohlenstoffatomen im Alkenylteil,

für gegebenenfalls durch Halogen, Cycloalkyl, Cyano, Phenyl und/oder Heterocyclyl substituiertes Cycloalkylamino mit 3 bis 7 Kohlenstoffatomen,

für gegebenenfalls durch Halogen, Cycloalkyl, Cyano, Phenyl und/oder Heterocyclyl substituiertes N-Cycloalkyl-N-alkyl-amino mit 3 bis 7 Kohlenstoffatomen im Cycloalkylteil und 1 bis 7 Kohlenstoffatomen in Alkylteil,

für gegebenenfalls durch Halogen, Cycloalkyl, Cyano, Phenyl und/oder Heterocyclyl substituiertes Alkylidenamino mit 2 bis 6 Kohlenstoffatomen,

für gegebenenfalls durch Halogen, Cycloalkyl, Cyano, Phenyl und/oder Heterocyclyl substituiertes Phenyl,

für gegebenenfalls durch Halogen, Alkyl, Cycloalkyl, Cyano, Phenyl und/oder Heterocyclyl substituiertes Heterocyclyl mit 5 oder 6 Ringgliedern,

für gegebenenfalls durch Halogen, Alkyl, Cycloalkyl, Cyano, Phenyl und/oder Heterocyclyl substituiertes Heterocyclyloxy mit 5 oder 6 Ringgliedern,

für -SR⁵, worin

R⁵ für gegebenenfalls durch Halogen, Cycloalkyl, Cyano, Phenyl und/oder Heterocyclyl substituiertes Alkyl mit 1 bis 6 Kohlenstoffatomen,

-8-

für gegebenenfalls durch Halogen, Cycloalkyl, Cyano, Phenyl und/oder Heterocyclyl substituiertes Alkenyl mit 2 bis 6 Kohlenstoffatomen,

5

für gegebenenfalls durch Halogen, Cycloalkyl, Cyano, Phenyl und/oder Heterocyclyl substituiertes Alkinyl mit 2 bis 6 Kohlenstoff-atomen oder

10

für gegebenenfalls durch Halogen, Cycloalkyl, Cyano, Phenyl und/oder Heterocyclyl substituiertes Cycloalkyl mit 3 bis 7 Kohlenstoffatomen steht,

wobei die zuvor genannten Heterocyclyl-Reste einfach bis dreifach, gleichartig oder verschieden substituiert sein können durch

15

Halogen, Hydroxy, Phenyl, 1,2-Dioxyethylen, Alkyl mit 1 bis 4 Kohlenstoffatomen, Halogenalkyl mit 1 oder 2 Kohlenstoffatomen und 1 bis 5 Halogenatomen, Alkoxy mit 1 bis 4 Kohlenstoffatomen, Alkylthio mit 1 bis 4 Kohlenstoffatomen, Halogenalkoxy mit 1 oder 2 Kohlenstoffatomen und 1 bis 5 Halogenatomen, Halogenalkylthio mit 1 oder 2 Kohlenstoffatomen und 1 bis 5 Halogenatomen und wobei die zuvor genannten Heterocyclylreste gesättigt oder teilweise ungesättigt sind,

20

25

und wobei die zuvor genannten Phenyl-Reste einfach bis dreifach, gleichartig oder verschieden substituiert sein können durch

Halogen, Cyano, Nitro, Amino, Hydroxy, Formyl, Carboxy, Carbamoyl, Thiocarbamoyl;

WO 02/088126

jeweils geradkettiges oder verzweigtes Alkyl, Alkoxy, Alkylthio, Alkylsulfinyl oder Alkylsulfonyl mit jeweils 1 bis 6 Kohlenstoffatomen;

5

jeweils geradkettiges oder verzweigtes Alkenyl oder Alkenyloxy mit jeweils 2 bis 6 Kohlenstoffatomen;

10

jeweils geradkettiges oder verzweigtes Halogenalkyl, Halogenalkoxy, Halogenalkylthio, Halogenalkylsulfinyl oder Halogenalkylsulfonyl mit jeweils 1 bis 6 Kohlenstoffatomen und 1 bis 13 gleichen oder verschiedenen Halogenatomen;

15

jeweils geradkettiges oder verzweigtes Halogenalkenyl oder Halogenalkenyloxy mit jeweils 2 bis 6 Kohlenstoffatomen und 1 bis 13 gleichen oder verschiedenen Halogenatomen;

20

jeweils geradkettiges oder verzweigtes Alkylamino, Dialkylamino, Alkylcarbonyl, Alkylcarbonyloxy, Alkoxycarbonyl, Alkylsulfonyloxy, Hydroximinoalkyl oder Alkoximinoalkyl mit jeweils 1 bis 6 Kohlenstoffatomen in den einzelnen Alkylteilen;

Cycloalkyl mit 3 bis 6 Kohlenstoffatomen,

25

in 2,3-Position verknüpftes 1,3-Propandiyl, 1,4-Butandiyl, Methylendioxy (-O-CH₂-O-), 1,2-Ethylendioxy (-O-CH₂-CH₂-O-), wobei diese Reste einfach oder mehrfach, gleichartig oder verschieden substituiert sein können durch Halogen, Alkyl mit 1 bis 4 Kohlenstoffatomen und/oder Halogenalkyl mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen.

R² steht bevorzugt für Wasserstoff,

5

10

15

20

25

30

für gegebenenfalls durch Halogen, Cycloalkyl mit 3 bis 6 Kohlenstoffatomen Alkoxy mit 1 bis 4 Kohlenstoffatomen, Alkylthio mit 1 bis 4 Kohlenstoffatomen, Oxo, Hydroximino und/oder Alkoximino mit 1 bis 4 Kohlenstoffatomen substituiertes Alkyl mit 1 bis 4 Kohlenstoffatomen.

für gegebenenfalls durch Halogen und/oder Cycloalkyl mit 3 bis 6 Kohlenstoffatomen substituiertes Alkenyl mit 2 bis 4 Kohlenstoffatomen,

für gegebenenfalls durch Halogen und/oder Cycloalkyl mit 3 bis 6 Kohlenstoffatomen substituiertes Alkinyl mit 2 bis 4 Kohlenstoffatomen oder

für gegebenenfalls durch Halogen und/oder Cycloalkyl mit 3 bis 6 Kohlenstoffatomen substituiertes Cycloalkyl mit 3 bis 6 Kohlenstoffatomen.

R¹ und R² stehen bevorzugt gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, für einen 3- bis 6-gliedrigen heterocyclischen Ring, der gesättigt oder teilweise gesättigt ist, der neben dem bereits erwähnten Stickstoffatom noch ein weiteres Heteroatom aus der Reihe Stickstoff, Sauerstoff und Schwefel enthalten kann und der einfach bis dreifach, gleichartig oder verschieden substituiert sein kann durch

Halogen, Hydroxy, Cyano, Morpholinyl, Amino, einen annelierten Phenylring, eine Methylen- oder Ethylenbrücke,

Alkyl mit 1 bis 4 Kohlenstoffatomen,

Halogenalkyl mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen;

Alkylcarbonalamino mit 1 bis 4 Kohlenstoffatomen,

Dialkylamino mit 2 bis 8 Kohlenstoffatomen,

Alkoxycarbonylamino mit 1 bis 4 Kohlenstoffatomen,

WO 02/088126

Di(alkoxycarbonyl)amino mit 2 bis 8 Kohlenstoffatomen, Hydroxyalkyl mit 1 bis 4 Kohlenstoffatomen, Alkoxycarbonyl mit 1 bis 4 Kohlenstoffatomen und/oder Alkylcarbonyl mit 1 bis 4 Kohlenstoffatomen.

5

10

15

20

25

30

R³ steht bevorzugt für Phenyl, das einfach bis vierfach, gleichartig oder verschieden substituiert sein kann durch

Halogen, Cyano, Nitro, Amino, Hydroxy, Formyl, Carboxy, Carbamoyl, Thio-carbamoyl;

jeweils geradkettiges oder verzweigtes Alkyl, Alkoxy, Alkylthio, Alkylsulfinyl oder Alkylsulfonyl mit jeweils 1 bis 6 Kohlenstoffatomen;

jeweils geradkettiges oder verzweigtes Alkenyl oder Alkenyloxy mit jeweils 2 bis 6 Kohlenstoffatomen;

jeweils geradkettiges oder verzweigtes Halogenalkyl, Halogenalkoxy, Halogenalkylthio, Halogenalkylsulfinyl oder Halogenalkylsulfonyl mit jeweils 1 bis 6 Kohlenstoffatomen und 1 bis 13 gleichen oder verschiedenen Halogenatomen;

jeweils geradkettiges oder verzweigtes Halogenalkenyl oder Halogenalkenyloxy mit jeweils 2 bis 6 Kohlenstoffatomen und 1 bis 11 gleichen oder verschiedenen Halogenatomen;

jeweils geradkettiges oder verzweigtes Alkylamino, Dialkylamino, Alkylcarbonyl, Alkylcarbonyloxy, Alkoxycarbonyl, Alkylsulfonyloxy, Hydroximinoalkyl oder Alkoximinoalkyl mit jeweils 1 bis 6 Kohlenstoffatomen in den einzelnen Alkylteilen;

Cycloalkyl mit 3 bis 6 Kohlenstoffatomen,

in 2,3-Position verknüpftes 1,3-Propandiyl, 1,4-Butandiyl, Methylendioxy (-O-CH₂-O-), 1,2-Ethylendioxy (-O-CH₂-CH₂-O-), wobei diese Reste einfach oder mehrfach, gleichartig oder verschieden substituiert sein können durch Halogen, Alkyl mit 1 bis 4 Kohlenstoffatomen und/oder Halogenalkyl mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen.

10

20

25

30

5

- R⁴ steht bevorzugt für gegebenenfalls durch 1 bis 9 Halogenatome substituiertes Alkyl mit 1 bis 4 Kohlenstoffatomen oder für gegebenenfalls durch 1 bis 9 Halogenatome substituiertes Cycloalkyl mit 3 bis 6 Kohlenstoffatomen.
- 15 X steht bevorzugt für Fluor, Chlor oder Brom.
 - R1 steht besonders bevorzugt für Hydroxy, Amino, für Methyl, Ethyl, n-Propyl, i-Propyl, n-, i-, s- oder t-Butyl, Methoxymethyl, 2-Methoxy-ethyl, Methylthiomethyl, 2-Methylthio-ethyl, Hydroximinomethyl, Methoximinomethyl, Acetylmethyl, 2-Hydroximino-propyl, 2-Methoximino-propyl, Allyl, 2-Methylprop-2-enyl, Propargyl, 2,2,2-Trifluorethyl, 1-(Trifluormethyl)-ethyl, 3,3,3-Trifluorpropyl, Cyclopentyl, Cyclohexyl,
 - Cyclopropyloxy, Cyclobutyloxy, Cyclopentyloxy, Cyclohexyloxy, Difluor-methoxy, Trifluormethoxy, Difluorchlormethoxy, Trifluorethoxy,

Methylamino, Ethylamino, n- oder i-Propylamino, n-, i-, s- oder t-Butylamino, Dimethylamino, Diethylamino, Trifluorethylamino, Cyclohexylmethylamino, 2-Cyanethylamino, Allylamino, 1-Cyclopropylethylamino, Cyclopropylamino, Cyclobutylamino, Cyclopentylamino, Cyclohexylamino, 1-Me-

- 13 -

thylethylidenamino, Phenyl, Benzyloxy, Piperidinyl, Morpholinyl, Pyridylmethoxy, Thiazolylmethoxy, oder für –S-R⁵, worin

R⁵ für Methyl, Ethyl, n- oder i-Propyl, Difluormethyl, Difluorchlormethyl, Dichlorfluormethyl oder Trifluormethyl steht,

oder

ď.

5

 R^1 steht für (2,2-Dichlorcyclopropyl)methyl, (2-Furyl)methyl, (2-Tetrahydrofuryl)methyl, (2-Tetrahydropyranyl)methyl, 1,2-Dimethylpropyl, 1,3-Dioxo-10 lan-2-vlmethyl, 1-Cyclopropylethyl, 1-Cyclopropylethylamino, 1-Methylethylidenamino, 2,2,2-Trifluor-1-methylethyl, 2,4-Dichlorbenzyloxy, 2,6-Dichlorbenzyloxy, 2-Butyl, 2-Chlorbenzyloxy, 2-Fluorcyclopropyl, 2-Hexahydropyranyloxy, 2-Methoxyethyl, 2-Thienylmethyl, 2-Tolyl, 2-Trifluormethylcyclohexyl, 3-(Dimethylamino)-propyl, 3,5-bis-Trifluormethylcyclo-15 hexyl, 3,5-Dichlorbenzyloxy, 3-Aminopropyl, 3-Chlorbenzyloxy, 3-Tolyl, 3-Trifluormethylbenzyloxy, 3-Trifluormethylcyclohexyl, 3,5-(Bis-trifluormethyl)-cyclohexyl, 2-Trifluormethyl-cyclohexyl, 4-Trifluormethyl-cyclohexyl, 4-Chlorbenzyloxy, 4-Fluorbenzyloxy, 4-Fluorphenyl, 4-Tolyl, 4-Trifluormethylbenzyloxy, 4-Trifluormethylcyclohexyl, Allyl, Allylamino, Allyloxy, 20 Benzyloxy, -C(CH₃)₂-CF₃, -C(CH₃)₂-CH₂-COCH₃, -C₂H₅, -CH(CH₂OH)--CH(CH₃)-C(CH₃)₃-, -CH(CH₃)-CH(O-CH₃)₂-, COOCH₃, -CH(CH₃)-CH=CH₂-, -CH(CH₃)-CH₂-CH(CH₃)₂-, -CH(CH₃)-CH₂-O-CH₃-, -CH(CH₃)-CH₂-OH, -CH(CH₃)-COOCH₃, -CH(CH₃)-COO-t-butyl, -CH₂-C(CH₃)=CH₂, -CH₂-C(CH₃)₃, -CH₂-CF₃, -CH₂-CH(OCH₃)₂,-CH₂-CH₂-25 CF₃, -CH₂-CH₂-Cl, -CH₂-CH₂-CN, -CH₂-CH₂-N(CH₃)₂, -CH₂-CH₂- $N(CH_3)_2$, $-CH_2-CH_2-NH_2$, $-CH_2-CHF_2$, $-CH_2-CN$, $-CH_2-COOC_2H_5$, $-CH_2-COOC_2H_5$ COOC₂H₅, -CH₂-COOCH₃, -CH₃, Cyclohexyl, Cyclopentyl, Cyclopropyl, Cyclopropylmethyl, Dimethylamino, i-Butoxy, i-Butyl, i-Propylamino, n-Butoxy, n-Butyl, n-Butylamino, -NH2, -NH-CH2-CF2-CHF2, -NH-CH2-30

10

15

CF₃, -NH-CH₂-CH(CH₃)₂, -O-C₂H₅, -O-CH(CH₃)-CH₂-CH₃, -O-CH₃, -OH, O-i-Propyl, Propargyl, t-Butoxy, t-Butyl, t-Butylamino, oder für eine Gruppierung

(* markiert jeweils die Bindungsstelle)

wobei die zuvor genannten Thiazolyl- und Pyridyl-Reste im Falle von Thiazolyl einfach oder zweifach und im Falle von Pyridyl einfach bis dreifach, jeweils gleichartig oder verschieden substituiert sein können durch Fluor, Chlor Brom, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, Methoxy, Ethoxy, n- oder i-Propoxy, n-, i-, s- oder t-Butoxy, Methylthio, Ethylthio, n- oder i-Propylthio, Difluormethoxy, Trifluormethoxy, Difluorchlormethoxy, Trifluorethoxy, Difluormethylthio, Dichlorfluormethylthio, Trifluormethylthio und/oder Phenyl,

und wobei die zuvor genannten Phenyl- und Benzyloxy-Reste im Phenylteil einfach bis dreifach, gleichartig oder verschieden substituiert sein können durch

5

e,

Fluor, Chlor, Brom, Cyano, Nitro, Amino, Hydroxy, Formyl, Carboxy, Carbamoyl, Thiocarbamoyl, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, Methoxy, Ethoxy, n- oder i-Propoxy, Methylthio, Ethylthio, n- oder i-Propylthio, Methylsulfinyl, Ethylsulfinyl, Methylsulfonyl oder Ethylsulfonyl, Trifluormethyl, Trifluormethyl, Difluormethoxy, Trifluormethoxy, Difluormethylthio, Difluorchlormethylthio, Trifluormethylsulfinyl, Trifluormethylsulfonyl, Methylamino, Ethylamino, n- oder i-Propylamino, Dimethylamino, Diethylamino, Acetyl, Propionyl, Acetyloxy, Methoxycarbonyl, Ethoxycarbonyl, Methylsulfonyloxy, Ethylsulfonyloxy, Hydroximinomethyl, Hydroximinoethyl, Methoximinomethyl, Ethoximinomethyl, Ethoximinoethyl, Ethoximinoethyl, Cyclopropyl, Cyclobutyl, Cyclopentyl oder Cyclohexyl,

15

10

in 2,3-Position verknüpftes 1,3-Propandiyl, Methylendioxy (-O-CH₂-O-), 1,2-Ethylendioxy (-O-CH₂-CH₂-O-), wobei diese Reste einfach oder mehrfach, gleichartig oder verschieden substituiert sein können durch Fluor, Chlor, Methyl, Ethyl, n-Propyl, i-Propyl und/oder Trifluormethyl.

20

25

R² steht besonders bevorzugt für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, Methoxymethyl, 2-Methoxy-ethyl, Methylthiomethyl, 2-Methylthio-ethyl, Hydroximinomethyl, Methoximinomethyl, Acetylmethyl, 2-Hydroxyimino-propyl, 2-Methoxyimino-propyl, Allyl, Propargyl, 2,2,2-Trifluorethyl, 1-(1,1,1-Trifluormethyl)ethyl, Cyclopropylmethyl, Cyclobutylmethyl, Cyclopentylmethyl oder Cyclohexylmethyl.

R¹ und R² stehen besonders bevorzugt gemeinsam mit dem Stickstoffatom, an welches sie gebunden sind, für 1-Pyrrolinyl, 3-Pyrrolinyl, Pyrrolidinyl, Dihydropyridinyl, Piperidinyl, Pyrazolinyl, Pyrazolidinyl, Imidazolinyl, Imidazolinyl, Imidazolinyl, Inidazolinyl, Isoxazolidinyl, Piperazinyl, Oxazolinyl, Oxazolidinyl, Isoxazolyl, Isoxazolidinyl, Dihydrooxazinyl, Morpholinyl, Thiazolinyl, Thiazolidinyl, Thiomorpholinyl, wobei die genannten Heterocyclen substituiert sein können durch

5

10

15

20

30

Fluor, Chlor, Brom, Cyano, Nitro, Amino, Hydroxy, Formyl, Carboxy, Carbamoyl, Thiocarbamoyl, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, Methoxy, Ethoxy, n- oder i-Propoxy, Methylthio, Ethylthio, n- oder i-Propylthio, Methylsulfinyl, Ethylsulfinyl, Methylsulfonyl oder Ethylsulf-Trifluormethoxy, Trifluorethyl, Difluormethoxy, onyl, Trifluormethyl, Difluorchlor-Difluormethylthio, Trifluorethoxy, Difluorchlormethoxy, methylthio, Trifluormethylthio, Trifluormethylsulfinyl, Trifluormethylsulfonyl, Methylamino, Ethylamino, n- oder i-Propylamino, Dimethylamino, Diethylamino, Acetyl, Propionyl, Acetyloxa, Methoxycarbonyl, Ethoxycarbonyl, Methylsulfonyloxy, Ethylsulfonyloxy, Hydroximinomethyl, Hydroximinoethyl, Methoximinomethyl, Ethoximinomethyl, Methoximinoethyl, Ethoximinoethyl, Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, durch einen annelierten Phenylring oder durch eine Methandiyl- oder Ethandiyl-Brücke.

steht besonders bevorzugt für Phenyl, das einfach bis dreifach, gleichartig
oder verschieden substituiert sein kann durch

Fluor, Chlor, Brom, Cyano, Nitro, Formyl, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, Allyl, Propargyl, Methoxy, Ethoxy, n- oder i-Propoxy, Methylthio, Ethylthio, n- oder i-Propylthio, Methylsulfinyl, Ethylsulfinyl, Methylsulfonyl, Ethylsulfonyl, Allyloxy, Propargyloxy, Trifluormethyl,

Trifluorethyl, Difluormethoxy, Trifluormethoxy, Difluorchlormethoxy, Trifluorethoxy, Difluormethylthio, Difluorchlormethylthio, Trifluormethylthio, Trifluormethylsulfinyl, Trifluormethylsulfonyl, Trichlorethinyloxy, Trifluorethinyloxy, Chlorallyloxy, Iodpropargyloxy, Methylamino, Ethylamino, n- oder i-Propylamino, Dimethylamino, Diethylamino, Acetyl, Propionyl, Acetyloxy, Methoxycarbonyl, Ethoxycarbonyl, Hydroximinomethyl, Hydroximinomethyl, Methoximinomethyl, Ethoximinomethyl, Methoximinoethyl, Cyclopropyl, Cyclobutyl, Cyclopentyl oder Cyclohexyl,

10

5

in 2,3-Position verknüpftes 1,3-Propandiyl, Methylendioxy (-O-CH₂-O-), 1,2-Ethylendioxy (-O-CH₂-CH₂-O-), wobei diese Reste einfach oder mehrfach, gleichartig oder verschieden substituiert sein können durch Fluor, Chlor, Methyl, Ethyl, n-Propyl, i-Propyl und/oder Trifluormethyl.

15

- R⁴ steht besonders bevorzugt für Methyl, Ethyl, n-Propyl, i-Propyl, n-, i-, s- oder t-Butyl, Trifluormethyl, Trifluorethyl oder Cyclopropyl.
- X steht besonders bevorzugt für Fluor oder Chlor.

20

25

- R¹ und R² stehen ganz besonders bevorzugt gemeinsam für eine der folgenden Gruppierungen
 - $\text{CH}(\text{CF}_3) \text{CH}_2 \text{CH}$
 - -CH(CH₃)-CH=CH-CH(CH₃)-, -CH(CH₃)-CH₂-CH₂-O-,
 - -CH(COOCH₃)-, -CH₂-CH(CH₃)-CH₂-CH(CH₃)-CH₂-,
 - -CH2-CH(CH3)-O-CH(CH3)-CH2-, -CH2-CH(NH2)-CH2-CH2-
 - CH₂-C-CH₂-CH(OH)-CH₂-CH₂-, -CH₂-CH(OH)-CH₂-CH₂-CH₂-
 - $-\text{CH}_2\text{-CH} = \text{C}(\text{C}_2\text{H}_5) \text{CH}_2\text{-CH}_2\text{-}, -\text{CH}_2\text{-CH}_2\text{-C}(\text{CH}_3)_2\text{-CH}_2\text{-CH}_2\text{-}$
 - -CH2-CH2-CH2-, -CH2-CH2-CH(CF3)-CH2-CH2-

- 18 -

 $\hbox{-CH$_2$-CH$_$

 $\hbox{-CH$_2$-CH$_$

-CH₂-CH₂-CH(NH-COCH₃)-CH₂-CH₂-, -CH₂-CH₂-CH(OH)-CH₂-CH₂-

-CH₂-CH₂-CH=C(CH₃)-CH₂-, -CH₂-CH₂-CH=CH-CH₂-

5 -CH₂-CH₂-CH₂-CH(CH₃)-, -CH₂-CH₂-CH₂-CH(CH₃)-CH₂-

 $\hbox{-CH$_2$-CH$_$

-CH₂

 $\hbox{-CH$_2$-CH$_$

- CH_2 - CH_2 - O - CH_2 - CH_2 -, - CH_2 - CH_2 -S- CH_2 -CH $_2$ -

10 -CH₂-S-CH₂-CH₂-, -NH-CH₂-CH₂-CH₂-CH₂-

 $\hbox{-O-CH$_2$-CH$

oder für eine der folgenden Gruppierungen, in denen X_2 für das Stickstoffatom steht, an welches die Reste R^1 , R^2 gebunden sind

15

10

15

(* markiert jeweils die Bindungsstelle)

- R² steht ganz besonders bevorzugt für Wasserstoff, Methyl, Ethyl, n-, i-Propyl, n-, i-, s- oder t-Butyl.
 - R³ steht ganz besonders bevorzugt für Phenyl, welches einfach bis dreifach, gleich oder verschieden durch Fluor und/oder Chlor in den Positionen 2, 4 und 6 substituiert ist.

X steht ganz besonders bevorzugt für Chlor.

- 20 -

Ganz besonders bevorzugt sind weiterhin diejenigen Verbindungen der Formel (I), in denen

R1, R2, R4 und X die zuvor genannten bevorzugten Bedeutungen haben und

R³ für 2,4-disubstituiertes, 2,6-disubstituiertes oder 2,4,6-trisubstituiertes Phenyl steht.

Ganz besonders bevorzugt sind weiterhin diejenigen Verbindungen der Formel (I), in denen

R¹, R², R⁴ und X die zuvor genannten Bedeutungen haben und

10 R³ für 2-Chlor-4-fluorphenyl, 2-Chlor-6-fluorphenyl oder 2-Chlor-4,6-difluorphenyl steht.

Ganz besonders bevorzugt sind weiterhin diejenigen Verbindungen der Formel (I), in denen

15 R¹, R², R³ und X die zuvor genannten Bedeutungen haben und R⁴ für Cyclopropyl steht.

Ganz besonders bevorzugt sind weiterhin diejenigen Verbindungen der Formel (I), in denen

20 X, R³ und R⁴ die zuvor genannten Bedeutungen haben und

R1 für Wasserstoff und

R² für -CH(CH₃)CF₃ steht.

Eine weitere ganz besonders bevorzugte Gruppe von Verbindungen sind diejenigen
Triazolopyrimidine der Formel (I), in denen

R4 für Cyclopropyl steht und

R1, R2, R3 und X die zuvor als bevorzugt genannten Bedeutungen haben.

5

10

15

Die zuvor genannten Reste-Definitionen können untereinander in beliebiger Weise kombiniert werden. Außerdem können auch einzelne Bedeutungen entfallen.

Bevorzugte erfindungsgemäße Verbindungen sind auch Additionsprodukte aus Säuren und denjenigen Triazolopyrimidinen der Formel (I), in denen

R1 für Amino steht und

R², R³, R⁴ und X diejenigen Bedeutungen haben, die für diese Reste als bevorzugt genannt wurden.

Zu den Säuren, die addiert werden können, gehören vorzugsweise Halogenwasserstoffsäuren, wie z.B. die Chlorwasserstoffsäure und die Bromwasserstoffsäure, insbesondere die Chlorwasserstoffsäure, ferner Phosphorsäure, Salpetersäure, monound bifunktionelle Carbonsäuren und Hydroxycarbonsäuren, wie z.B. Essigsäure, Maleinsäure, Bernsteinsäure, Fumarsäure, Weinsäure, Zitronensäure, Salicylsäure, Sorbinsäure und Milchsäure, sowie Sulfonsäuren, wie z.B. p-Toluolsulfonsäure, 1,5-Naphthalindisulfonsäure, Saccharin und Thiosaccharin.

Verwendet man 5,7-Dichlor-2-(trifluormethyl)-6-(2,4,6-trifluorphenyl)-[1,2,4]-triazolo[1,5-a]-pyrimidin und 4-Trifluormethylpiperidin als Ausgangsstoffe, so kann der Verlauf des erfindungsgemäßen Verfahrens (a) durch das folgende Formelschema veranschaulicht werden.

Verwendet man 5-Chlor-2-(trifluormethyl)-N-[(1S)-2,2,2-trifluor-1-methyl-ethyl]-6-(2,4,6-trifluorphenyl)-[1,2,4]-triazolo-[1,5-a]pyrimidin-7-amin und Dichlorfluormethan-sulfenylchlorid als Ausgangsstoffe, so kann der Verlauf des erfindungsgemäßen Verfahrens (b) durch das folgende Formelschema veranschaulicht werden.

5

$$F \xrightarrow{CH} CF_3 + CI - S - CCI_2F$$

$$F \xrightarrow{CI} N \xrightarrow{N} CF_3$$

$$F \xrightarrow{CI} CH_3$$

$$F \xrightarrow{CH} CF_3$$

$$F \xrightarrow{CH} CF_3$$

$$F \xrightarrow{CH} CF_3$$

$$F \xrightarrow{CH} CF_3$$

Die bei der Durchführung des erfindungsgemäßen Verfahrens (a) als Ausgangsstoffe benötigten Dihalogen-triazolo-pyrimidine sind durch die Formel (II) allgemein defi-

niert. In dieser Formel haben R³, R⁴ und X vorzugsweise diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Stoffe der Formel (I) für diese Reste als bevorzugt genannt wurden. Y¹ steht vorzugsweise für Fluor, Chlor oder Brom, besonders bevorzugt für Fluor oder Chlor.

5

Die Dihalogen-triazolopyrimidine der Formel (II) sind neu. Auch diese Stoffe eignen sich zur Bekämpfung von unerwünschten Mikroorganismen.

Die Dihalogen-triazolopyrimidine lassen sich herstellen, indem man

10

c) Dihydroxy-triazolo-pyrimidine der Formel

$$R^3$$
 N
 N
 R^4
 (V)

in welcher

15

R³ und R⁴ die oben angegebenen Bedeutungen haben,

mit Halogenierungsmitteln, gegebenenfalls in Gegenwart eines Verdünnungsmittels umsetzt.

20

Die bei der Durchführung des Verfahrens (c) als Ausgangsstoffe benötigten Dihydroxy-triazolopyrimidine sind durch die Formel (V) allgemein definiert. In dieser Formel haben R³ und R⁴ vorzugsweise diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Stoffe der Formel (I) für diese Reste als bevorzugt genannt wurden.

25

Auch die Dihydroxy-triazolopyrimidine der Formel (V) sind bisher noch nicht bekannt. Sie lassen sich herstellen, indem man

- 24 -

d) Arylmalonester der Formel

$$R^3$$
 $COOR^6$
 (VI)

5 in welcher

R³ die oben angegebenen Bedeutungen hat und

R6 für Alkyl mit 1 bis 4 Kohenstoffatomen steht,

mit Aminotriazolen der Formel

$$H_2N$$
 N
 R^4
(VII)

in welcher

15

10

R⁴ die oben angegebenen Bedeutungen hat,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt.

20

Die bei der Durchführung des Verfahrens (d) als Ausgangsstoffe benötigten Arylmalonester sind durch die Formel (VI) allgemein definiert. In dieser Formel hat R³ vorzugsweise diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Stoffe der Formel (I) für diesen Rest als bevorzugt genannt wurden. R⁶ steht vorzugsweise für Methyl oder Ethyl.

25

15

20

30

Die Arylmalonester der Formel (VI) sind bekannt oder lassen sich nach bekannten Methoden herstellen (vgl. US-A 6 156 925).

Die bei der Durchführung des Verfahrens (d) weiterhin als Ausgangsstoffe benötigten Aminotriazole sind durch die Formel (VII) allgemein definiert. In dieser Formel hat R⁴ vorzugsweise diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Stoffe der Formel (I) für diesen Rest als bevorzugt genannt wurden.

Die Aminotriazole der Formel (VII) sind bekannt oder können nach bekannten Methoden hergestellt werden (vergl. J. Org. Chem. (1974), 39(11), Khim. Geterotsikl. Soedin. (1989), (2), 278 oder Zh. Obshch. Khim. (1969), 39(11)).

Als Verdünnungsmittel kommen bei der Durchführung des Verfahrens (d) alle für derartige Umsetzungen üblichen, inerten organischen Solventien in Frage. Vorzugsweise verwendbar sind Alkohole, wie Methanol, Ethanol, n-Propanol, i-Propanol, n-Butanol und tert.-Butanol.

Als Säurebindemittel kommen bei der Durchführung des Verfahrens (d) alle für derartige Umsetzungen üblichen anorganischen und organischen Basen in Betracht. Vorzugsweise verwendbar sind tertiäre Amine, wie Tributylamin oder Pyridin. Im Überschuss eingesetztes Amin kann auch als Verdünnungsmittel fungieren.

Die Temperaturen können bei der Durchführung des Verfahrens (d) in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen 20°C und 200°C, vorzugsweise zwischen 50°C und 180°C.

Bei der Durchführung des Verfahrens (d) arbeitet man im allgemeinen unter Atmosphärendruck. Es ist allerdings auch möglich, unter erhöhtem oder vermindertem Druck zu arbeiten.

- 26 -

Bei der Durchführung des Verfahrens (d) setzt man Arylmalonester der Formel (VI) und Aminotriazol der Formel (VII) im allgemeinen in äquivalenten Mengen um. Es ist aber auch möglich, die eine oder andere Komponente in einem Überschuss zu verwenden. Die Aufarbeitung erfolgt nach üblichen Methoden.

Als Halogenierungsmittel kommen bei der Durchführung des Verfahrens (c) alle für den Ersatz von Hydroxygruppen durch Halogen üblichen Komponenten in Betracht. Vorzugsweise verwendbar sind Phosphortrichlorid, Phosphortribromid, Phosphoroxychlorid, Thionylchlorid, Thionylbromid oder deren Gemische. Die entsprechenden Fluor-Verbindungen der Formel (II) lassen sich aus den Chlor- oder Brom-Verbindungen durch Umsetzung mit Kaliumfluorid herstellen.

Als Verdünnungsmittel kommen bei der Durchführung des Verfahrens (c) alle für derartige Halogenierungen üblichen Solventien in Frage. Vorzugsweise verwendbar sind halogenierte aliphatische oder aromatische Kohlenwasserstoffe, wie Chlorbenzol. Als Verdünnungsmittel kann aber auch das Halogenierungsmittel selbst, z.B. Phosphoroxychlorid oder ein Gemisch von Halogenierungsmitteln fungieren.

Die Temperaturen können auch bei der Durchführung des Verfahrens (c) in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen 0°C und 150°C, vorzugsweise zwischen 10°C und 120°C.

Bei der Durchführung des Verfahrens (c) arbeitet man im allgemeinen unter Atmosphärendruck. Es ist aber auch möglich, unter erhöhtem Druck zu arbeiten.

Bei der Durchführung des Verfahrens (d) setzt man Dihydroxy-triazolpyrimidin der Formel (V) im allgemeinen mit einem Überschuss an Halogenierunngsmittel um. Die Aufarbeitung erfolgt nach üblichen Methoden.

25

5

10

15

Die weiterhin zur Durchführung des erfindungsgemäßen Verfahrens (a) als Ausgangsstoffe benötigten Amine sind durch die Formel (III) allgemein definiert. In dieser Formel haben R^1 und R^2 vorzugsweise diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) für R^1 und R^2 als bevorzugt angegeben wurden.

Die Amine der Formel (III) sind teilweise bekannt.

Neu sind Amine der Formel (IIIa),

10

5

in welcher

$$--CH_2$$
 $--CH_2$ $--CH_2$ $--CH_2$ $--CH_2$ $--CH_3$ steht.

15

Die Amine der Formel (IIIa) lassen sich herstellen, indem man

e) in einer ersten Stufe N-Methoxycarbaminsäure-ethylester der Formel (VIII)

20

mit Halogenverbindungen der Formel (IX),

$$R^7 - X^1$$
 (IX)

25

in welcher

- R⁷ die oben angegebenen Bedeutungen hat und
- X1 für Brom oder Iod steht,

in Gegenwart einer Base und in Gegenwart eines Verdünnungsmittels umsetzt und die entstehenden Carbamate der Formel (X),

$$R^{7}-N = \begin{pmatrix} O \\ I \\ C - OC_{2}H_{5} \\ OCH_{3} \end{pmatrix}$$
 (X)

in welcher

R⁷ die oben angegebenen Bedeutungen hat,

in einer zweiten Stufe mit Kaliumhydroxid in Gegenwart von Ethanol und Wasser umsetzt.

Neu sind auch Amine der Formel (IIIb),

$$HN \stackrel{\mathsf{OR}^7}{\underset{\mathsf{CH}_3}{\longleftarrow}} (IIIb)$$

20 in welcher

R⁷ die oben angegebenen Bedeutungen hat.

Die Amine der Formel (IIIb) lassen sich herstellen, indem man

f) in einer ersten Stufe N-Hydroxy-N-methyl-carbaminsäure-ethylester der Formel (XI),

$$C + OC_2H_5$$
 $CH_3 - N$
 OH
 CH_5
 CH_5

5 mit Halogenverbindungen der Formel (IX),

$$R^7$$
— X^1 (IX)

in welcher

10

R⁷ und X¹ die oben angegebenen Bedeutungen haben,

in Gegenwart einer Base und in Gegenwart eines Verdünnungsmittels umsetzt und die entstehenden Carbamate der Formel (XII),

15

$$CH_{3}-N$$

$$C=OC_{2}H_{5}$$

$$OR^{7}$$
(XII)

in welcher

R⁷ die oben angegebenen Bedeutungen hat,

20

in einer zweiten Stufe mit Kaliumhydroxid in Gegenwart von Ethanol und Wasser umsetzt.

Neu sind auch Trifluorisopropylamine der Formel (IIIc),

25

- 30 -

$$CF_3$$
 CH NH R^8 (IIIc)

in welcher

R8 für Methyl, Ethyl oder Propyl steht.

5

Die Trifluorisopropylamine der Formel (IIIc) lassen sich herstellen, indem man

g) in einer ersten Stufe N-Trifluorisopropyl-carbaminsäure-ethylester der Formel (XIII),

10

$$\begin{array}{c} O \\ | \\ | \\ CH_3 \end{array} - \begin{array}{c} CH - NH - C - OC_2H_5 \\ CH_3 \end{array} \qquad (XIII)$$

mit Halogenverbindungen der Formel (XIV),

$$R^8 - X^1$$
 (XIV)

15

in welcher

R⁸ und X¹ die oben angegebenen Bedeutungen haben,

in Gegenwart einer Base und in Gegenwart eines Verdünnungsmittels umsetzt und die entstehenden Carbamate der Formel (XV),

$$\begin{array}{c} O \\ II \\ C - OC_2H_5 \\ CH_3 \\ R^8 \end{array} (XV)$$

in welcher

R8 die oben angegebenen Bedeutungen hat,

in einer zweiten Stufe mit Kaliumhydroxid in Gegenwart von Ethanol und Wasser umsetzt.

Neu ist schließlich auch das 3-Trifluor-methyl-3-amino-propen der Formel (III-4)

$$\begin{array}{c} \text{H}_2\text{C} = \text{CH} - \text{CH} - \text{NH}_2 \\ \mid \\ \text{CF}_3 \end{array} \tag{III-4}$$

10

5

Das 3-Trifluormethyl-3-amino-propen der Formel (IIId) lässt sich herstellen, indem man

h) das Carbamat der Formel (XVI)

15

$$CH_{2} CH - CH - NH - C - O - CH_{2}$$

$$CF_{3}$$

$$(XVI)$$

mit wässriger Salzsäure umsetzt.

20

Die bei der Durchführung der erfindungsgemäßen Verfahren (e)-(g) als Ausgangsstoffe benötigten Verbindungen der Formeln (VIII), (IX), (XII), (XIV) und (XVI) sind bekannt oder lassen sich nach bekannten Methoden herstellen.

25

Bei der Durchführung der ersten Stufe der erfindungsgemäßen Verfahren (e), (f) und (g) kommen jeweils alle für derartige Umsetzungen üblichen anorganischen und organischen Säureakzeptoren in Frage.

Vorzugsweise verwendbar sind Erdalkalimetall- oder Alkalimetallhydride, -hydroxide, -amide, -alkoholate, -acetate, -carbonate oder -hydrogencarbonate, wie beispielsweise Natriumhydrid, Natriumamid, Natrium-methylat, Natrium-ethylat, Kalium-tert.-butylat, Natriumhydroxid, Kaliumhydroxid, Natriumacetat, Kaliumacetat, Calciumacetat, Natriumcarbonat, Kaliumcarbonat, Kaliumhydrogencarbonat und Natriumhydrogencarbonat, und außerdem Ammonium-Verbindungen, wie Ammoniumhydroxid, Ammoniumacetat und Ammoniumcarbonat. Als organische Basen seien genannt: tertiäre Amine, wie Trimethylamin, Triethylamin, Tributylamin, N,N-Dimethylamin, N,N-Dimethylamin, Pyridin, N-Methylpiperidin, N-Methylmorpholin, N,N-Dimethylaminopyridin, Diazabicyclooctan (DABCO), Diazabicyclononen (DBN) oder Diazabicycloundecen (DBU).

5

10

15

20

25

30

Als Verdünnungsmittel kommen bei der Durchführung der ersten Stufe der erfindungsgemäßen Verfahren (e), (f) und (g) jeweils alle üblichen inerten organischen Solventien in Betracht. Vorzugsweise verwendbar sind Ether, wie Diethylether, Dioxan, Tetrahydrofuran, 1,2-Dimethoxyethan, 1,2-Diethoxyethan oder Anisol; Amide, wie N,N-Dimethylformamid, N,N-Dimethylacetamid, N-Methylformanilid oder N-Methylpyrrolidon; Sulfone, wie Sulfolan; Alkohole wie Methanol, Ethanol, Isopropanol, tert.Butanol, n-Butanol.

Die Reaktionstemperaturen können bei der Durchführung der ersten Stufe der erfindungsgemäßen Verfahren (e) (f), und (g) jeweils innerhalb eines größeren Bereiches variiert werden. Im Allgemeinen arbeitet man bei Temperaturen zwischen 0°C und 150°C, vorzugsweise zwischen 10°C und 100°C.

Bei der Durchführung der ersten Stufe der erfindungsgemäßen Verfahren (e), (f) und (g) arbeitet man im allgemeinen jeweils unter Atmosphärendruck. Es ist jedoch auch möglich, unter erhöhtem Druck oder, sofern keine niedrig siedenden Komponenten an der Umsetzung beteiligt sind, unter vermindertem Druck zu arbeiten.

- 33 -

Bei der Durchführung der ersten Stufe der erfindungsgemäßen Verfahren (e), (f) und (g) setzt man

- auf 1 mol an N-Methoxy-carbaminsäure-ethylester der Formel (VIII) im Allgemeinen 0,5 bis 1,5 mol, vorzugsweise 1 bis 5 mol an Halogenverbindung der Formel (IX) ein, bzw.
- auf 1 mol an N-Hydroxy-N-methyl-carbaminsäure-ethylester der Formel (XI) im
 Allgemeinen 0,5 bis 15 mol, vorzugsweise 1 bis 5 mol an Halogenverbindung der Formel (IX) ein, bzw.
 - auf 1 mol an N-Trifluorisopropyl-carbaminsäure-ethylester der Formel (XIII) im Allgemeinen 0,5 bis 15 mol, vorzugsweise 1 bis 5 mol an Halogenverbindung der Formel (XIV) ein.

Die Aufarbeitung erfolgt jeweils nach üblichen Methoden, beispielsweise durch Extraktion und anschließende Trocknung oder durch Fällung mit anschließender Filtration und Trocknung. Gegebenenfalls noch vorhandene Verunreinigungen können nach üblichen Methoden entfernt werden.

Die bei der Durchführung der ersten Stufe der erfindungsgemäßen Verfahren (e), (t) und (g) als Zwischenprodukte erhaltenen Verbindungen der Formeln (X), (XII) und (XV) sind neu.

25

15

20

Auch bei der Durchführung der zweiten Stufe der erfindungsgemäßen Verfahren (e), (f) und (g) können die Reaktionstemperaturen jeweils innerhalb eines größeren Bereiches variiert werden. Im Allgemeinen arbeitet man bei Temperaturen zwischen 0°C und 100°C, vorzugsweise zwischen 10°C und 80°C.

Auch bei der Durchführung der zweiten Stufe der erfindungsgemäßen Verfahren (e), (f) und (g) arbeitet man im Allgemeinen jeweils unter Atmosphärendruck. Es ist jedoch wiederum möglich, jeweils auch unter erhöhtem Druck oder, sofern die zu isolierenden Produkte keine sehr niedrigen Siedepunkte aufweisen, unter vermindertem Druck zu arbeiten.

5

10

15

25

30

Bei der Durchführung der zweiten Stufe der erfindungsgemäßen Verfahren (e), (f) und (g) setzt man auf 1 mol an einer Verbindung der Formel (X), (XII) der (XV) jeweils bis zu 10 mol an Kaliumhydroxid ein. Die Aufarbeitung erfolgt nach üblichen Methoden. Dabei werden die Amine zweckmäßigerweise im Allgemeinen durch Hinzufügen von Säure, vorzugsweise wässriger Salzsäure, in Form ihrer Salze isoliert.

Bei der Durchführung des erfindungsgemäßen Verfahrens (h) können die Reaktionstemperaturen ebenfalls in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen 10°C und 150°C, vorzugsweise bei Rückflusstemperatur.

Im Allgemeinen arbeitet man bei der Durchführung des erfindungsgemäßen Verfahrens (h) unter Atmosphärendruck. Es ist aber auch möglich, unter erhöhtem Druck zu arbeiten.

Bei der Durchführung des erfindungsgemäßen Verfahrens (h) setzt man auf 1 mol an Carbamat der Formel (XVI) einem Überschuss, vorzugsweise bis zu 10 mol an wässriger Salzsäure ein. Die Aufarbeitung erfolgt wiederum nach üblichen Methoden.

Die bei der Durchführung des erfindungsgemäßen Verfahrens (b) als Ausgangsstoffe benötigten Triazolopyrimidine sind durch die Formel (Ia) allgemein definiert. In dieser Formel haben R², R³, R⁴ und X vorzugsweise diejenigen Bedeutungen, die

WO 02/088126

5

10

20

25

bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Stoffe der Formel (I) für diese Reste als bevorzugt genannt wurden.

Bei den Triazolopyrimidinen der Formel (Ia) handelt es sich um erfindungsgemäße Stoffe. Sie lassen sich nach dem erfindungsgemäßen Verfahren (a) herstellen.

Die weiterhin zur Durchführung des erfindungsgemäßen Verfahrens (b) als Ausgangsstoffe benötigten Sulfensäurehalogenide sind durch die Formel (IV) allgemein definiert. In dieser Formel hat R⁵ vorzugsweise diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) für diesen Rest als bevorzugt genannt wurden.

Y² steht vorzugsweise für Fluor, Chlor oder Brom, besonders bevorzugt für Chlor.

Die Sulfensäurehalogenide der Formel (IV) sind bekannt oder lassen sich nach bekannten Methoden herstellen.

Als Verdünnungsmittel kommen bei der Durchführung des erfindungsgemäßen Verfahrens (a) alle üblichen, inerten organischen Solventien in Betracht. Vorzugsweise verwendbar sind aliphatische, alicyclische oder aromatische Kohlenwasserstoffe, wie Petrolether, Hexan, Heptan, Cyclohexan, Methylcyclohexan, Benzol, Toluol, Xylol oder Decalin; halogenierte Kohlenwasserstoffe, wie Chlorbenzol, Dichlorbenzol, Dichlormethan, Chloroform, Tetrachlormethan, Dichlorethan oder Trichlorethan; Ether, wie Diethylether, Diisopropylether, Methyl-t-butylether, Dioxan, Tetrahydrofuran, 1,2- Dimethoxyethan oder 1,2-Diethoxyethan; Amide, wie N,N-Dimethylformamid, N,N-Dimethylacetamid oder N-Methylpyrrolidon; Ester wie Essigsäuremethylester oder Essigsäureethylester; Sulfoxide, wie Dimethylsulfoxid; Sulfone, wie Sulfolan.

WO 02/088126

5

10

15

20

25

30

- 36 -

PCT/EP02/04287

Als Säureakzeptoren kommen bei der Durchführung des erfindungsgemäßen Verfahrens (a) alle für derartige Umsetzungen üblichen Säurebindemittel in Frage. Vorzugsweise verwendbar sind tertiäre Amine, wie Trimethylamin, Triethylamin, Tributylamin, N,N-Dimethylanilin, N,N-Dimethyl-benzylamin, Pyridin, N-Methylpiperidin, N-Methylmorpholin, N,N-Dimethylaminopyridin, Diazabicyclooctan (DABCO), Diazabicyclononen (DBN) oder Diazabicycloundecen (DBU).

Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens (a) in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen 0°C und 150°C, vorzugsweise bei Temperaturen zwischen 0°C und 80°C.

Sowohl bei der Durchführung des erfindungsgemäßen Verfahrens (a) als auch des Verfahrens (b) arbeitet man im allgemeinen unter Atmosphärendruck. Es ist aber auch möglich, unter erhöhtem oder vermindertem Druck, im allgemeinen zwischen 0,1 und 10 bar, zu arbeiten.

Bei der Durchführung des erfindungsgemäßen Verfahrens (a) setzt man auf 1 mol an Dihalogen-triazolo-pyrimidin der Formel (II) im allgemeinen 0,5 bis 10 mol, vorzugsweise 0,8 bis 2 mol an Amin der Formel (III) ein. Die Aufarbeitung erfolgt nach üblichen Methoden.

Zur Herstellung von Säureadditions-Salzen von Triazolopyrimidinen der Formel (I) kommen vorzugsweise diejenigen Säuren in Frage, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Säureadditions-Salze als bevorzugte Säuren genannt wurden.

Die Säureadditions-Salze der Verbindungen der Formel (I) können in einfacher Weise nach üblichen Salzbildungsmethoden, z.B. durch Lösen einer Verbindung der Formel (I) in einem geeigneten inerten Lösungsmittel und Hinzufügen der Säure, z.B.

15

25

Chlorwasserstoffsäure, erhalten werden und in bekannter Weise, z.B. durch Abfiltrieren, isoliert und gegebenenfalls durch Waschen mit einem inerten organischen Lösungsmittel gereinigt werden.

- Die erfindungsgemäßen Stoffe weisen eine starke mikrobizide Wirkung auf und können zur Bekämpfung von unerwünschten Mikroorganismen, wie Fungi und Bakterien, im Pflanzenschutz und im Materialschutz eingesetzt werden.
- Fungizide lassen sich Pflanzenschutz zur Bekämpfung von Plasmodiophoromycetes,

 Oomycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes und
 Deuteromycetes einsetzen.
 - Bakterizide lassen sich im Pflanzenschutz zur Bekämpfung von Pseudomonadaceae, Rhizobiaceae, Enterobacteriaceae, Corynebacteriaceae und Streptomycetaceae einsetzen.
 - Beispielhaft aber nicht begrenzend seien einige Erreger von pilzlichen und bakteriellen Erkrankungen, die unter die oben aufgezählten Oberbegriffe fallen, genannt:
- 20 Xanthomonas-Arten, wie beispielsweise Xanthomonas campestris pv. oryzae;
 - Pseudomonas-Arten, wie beispielsweise Pseudomonas syringae pv. lachrymans;
 - Erwinia-Arten, wie beispielsweise Erwinia amylovora;

Pythium-Arten, wie beispielsweise Pythium ultimum;

- Phytophthora-Arten, wie beispielsweise Phytophthora infestans;
- 30 Pseudoperonospora-Arten, wie beispielsweise Pseudoperonospora humuli oder

- 38 -

Pseudo	peronospora	cubensis;

Plasmopara-Arten, wie beispielsweise Plasmopara viticola;

5 Bremia-Arten, wie beispielsweise Bremia lactucae;

Peronospora-Arten, wie beispielsweise Peronospora pisi oder P. brassicae;

Erysiphe-Arten, wie beispielsweise Erysiphe graminis;

10

Sphaerotheca-Arten, wie beispielsweise Sphaerotheca fuliginea;

Podosphaera-Arten, wie beispielsweise Podosphaera leucotricha;

Venturia-Arten, wie beispielsweise Venturia inaequalis;

Pyrenophora-Arten, wie beispielsweise Pyrenophora teres oder P. graminea

(Konidienform: Drechslera, Syn: Helminthosporium);

20 Cochliobolus-Arten, wie beispielsweise Cochliobolus sativus

(Konidienform: Drechslera, Syn: Helminthosporium);

Uromyces-Arten, wie beispielsweise Uromyces appendiculatus;

25 Puccinia-Arten, wie beispielsweise Puccinia recondita;

Sclerotinia-Arten, wie beispielsweise Sclerotinia sclerotiorum;

Tilletia-Arten, wie beispielsweise Tilletia caries;

Ustilago-Arten, wie beispielsweise Ustilago nuda oder Ustilago avenae;

Pellicularia-Arten, wie beispielsweise Pellicularia sasakii;

5 Pyricularia-Arten, wie beispielsweise Pyricularia oryzae;

Fusarium-Arten, wie beispielsweise Fusarium culmorum;

Botrytis-Arten, wie beispielsweise Botrytis cinerea;

10

Septoria-Arten, wie beispielsweise Septoria nodorum;

Leptosphaeria-Arten, wie beispielsweise Leptosphaeria nodorum;

15 Cercospora-Arten, wie beispielsweise Cercospora canescens;

Alternaria-Arten, wie beispielsweise Alternaria brassicae;

Pseudocercosporella-Arten, wie beispielsweise Pseudocercosporella herpotrichoides.

20

Die erfindungsgemäßen Wirkstoffe weisen auch eine sehr gute stärkende Wirkung in Pflanzen auf. Sie eignen sich daher zur Mobilisierung pflanzeneigener Abwehrkräfte gegen Befall durch unerwünschte Mikroorganismen.

Unter pflanzenstärkenden (resistenzinduzierenden) Stoffen sind im vorliegenden Zusammenhang solche Substanzen zu verstehen, die in der Lage sind, das Abwehrsystem von Pflanzen so zu stimulieren, dass die behandelten Pflanzen bei nachfolgender Inokolation mit unerwünschten Mikroorgansimen weitgehende Resistenz gegen diese Mirkroorganismen entfalten.

Unter unerwünschten Mikroorganismen sind im vorliegenden Fall phytopathogene Pilze, Bakterien und Viren zu verstehen. Die erfindungsgemäßen Stoffe können also eingesetzt werden, um Pflanzen innerhalb eines gewissen Zeitraumes nach der Behandlung gegen den Befall durch die genannten Schaderreger zu schützen. Der Zeitraum, innerhalb dessen Schutz herbeigeführt wird, erstreckt sich im allgemeinen von 1 bis 10 Tage, vorzugsweise 1 bis 7 Tage nach der Behandlung der Pflanzen mit den Wirkstoffen.

Die gute Pflanzenverträglichkeit der Wirkstoffe in den zur Bekämpfung von Pflanzenkrankheiten notwendigen Konzentrationen erlaubt eine Behandlung von oberirdischen Pflanzenteilen, von Pflanz- und Saatgut, und des Bodens.

Die erfindungsgemäßen Wirkstoffe eignen sich auch zur Steigerung des Ernteertrages. Sie sind außerdem mindertoxisch und weisen eine gute Pflanzenverträglichkeit auf.

15

5

Die erfindungsgemäßen Wirkstoffe können in bestimmten Konzentrationen und Aufwandmengen auch als Herbizide, zur Beeinflussung des Pflanzenwachstums, sowie zur Bekämpfung von tierischen Schädlingen verwendet werden. Sie lassen sich auch als Zwischen- und Vorprodukte für die Synthese weiterer Wirkstoffe einsetzen.

20

25

30

Mit den erfindungsgemäßen Wirkstoffen können Pflanzen und Pflanzenteile behandelt werden. Unter Pflanzen werden hierbei alle Pflanzen und Pflanzenpopulationen verstanden, wie erwünschte und unerwünschte Wildpflanzen oder Kulturpflanzen (einschließlich natürlich vorkommender Kulturpflanzen). Kulturpflanzen können Pflanzen sein, die durch konventionelle Züchtungs- und Optimierungsmethoden oder durch biotechnologische und gentechnologische Methoden oder Kombinationen dieser Methoden erhalten werden können, einschließlich der transgenen Pflanzen und einschließlich der durch Sortenschutzrechte schützbaren oder nicht schützbaren Pflanzensorten. Unter Pflanzenteilen sollen alle oberirdischen und unterirdischen Teile und Organe der Pflanzen, wie Spross, Blatt, Blüte und Wurzel verstanden wer-

den, wobei beispielhaft Blätter, Nadeln, Stengel, Stämme, Blüten, Fruchtkörper, Früchte und Samen sowie Wurzeln, Knollen und Rhizome aufgeführt werden. Zu den Pflanzenteilen gehört auch Erntegut sowie vegetatives und generatives Vermehrungsmaterial, beispielsweise Stecklinge, Knollen, Rhizome, Ableger und Samen.

5

Die Behandlung der Pflanzen und Pflanzenteile mit den erfindungsgemäßen Wirkstoffen erfolgt direkt oder durch Einwirkung auf deren Umgebung, Lebensraum oder Lagerraum nach den üblichen Behandlungsmethoden, z.B. durch Tauchen, Sprühen, Verdampfen, Vernebeln, Streuen, Aufstreichen und bei Vermehrungsmaterial, insbesondere bei Samen, weiterhin durch ein- oder mehrschichtiges Umhüllen.

10

Im Materialschutz lassen sich die erfindungsgemäßen Stoffe zum Schutz von technischen Materialien gegen Befall und Zerstörung durch unerwünschte Mikroorganismen einsetzen.

15

20

25

Unter technischen Materialien sind im vorliegenden Zusammenhang nichtlebende Materialien zu verstehen, die für die Verwendung in der Technik zubereitet worden sind. Beispielsweise können technische Materialien, die durch erfindungsgemäße Wirkstoffe vor mikrobieller Veränderung oder Zerstörung geschützt werden sollen, Klebstoffe, Leime, Papier und Karton, Textilien, Leder, Holz, Anstrichmittel und Kunststoffartikel, Kühlschmierstoffe und andere Materialien sein, die von Mikroorganismen befallen oder zersetzt werden können. Im Rahmen der zu schützenden Materialien seien auch Teile von Produktionsanlagen, beispielsweise Kühlwasserkreisläufe, genannt, die durch Vermehrung von Mikroorganismen beeinträchtigt werden können. Im Rahmen der vorliegenden Erfindung seien als technische Materialien vorzugsweise Klebstoffe, Leime, Papiere und Kartone, Leder, Holz, Anstrichmittel, Kühlschmiermittel und Wärmeübertragungsflüssigkeiten genannt, besonders bevorzugt Holz.

- 42 -

Als Mikroorganismen, die einen Abbau oder eine Veränderung der technischen Materialien bewirken können, seien beispielsweise Bakterien, Pilze, Hefen, Algen und Schleimorganismen genannt. Vorzugsweise wirken die erfindungsgemäßen Wirkstoffe gegen Pilze, insbesondere Schimmelpilze, holzverfärbende und holzzerstörende Pilze (Basidiomyceten) sowie gegen Schleimorganismen und Algen.

Es seien beispielsweise Mikroorganismen der folgenden Gattungen genannt:

Alternaria, wie Alternaria tenuis,

10

5

Aspergillus, wie Aspergillus niger,

Chaetomium, wie Chaetomium globosum,

Coniophora, wie Coniophora puetana,

Lentinus, wie Lentinus tigrinus,

Penicillium, wie Penicillium glaucum,

20

Polyporus, wie Polyporus versicolor,

Aureobasidium, wie Aureobasidium pullulans,

25 Sclerophoma, wie Sclerophoma pityophila,

Trichoderma, wie Trichoderma viride,

Escherichia, wie Escherichia coli,

30

- 43 -

Pseudomonas, wie Pseudomonas aeruginosa,

Staphylococcus, wie Staphylococcus aureus.

Die Wirkstoffe können in Abhängigkeit von ihren jeweiligen physikalischen und/oder chemischen Eigenschaften in die üblichen Formulierungen überführt werden, wie Lösungen, Emulsionen, Suspensionen, Pulver, Schäume, Pasten, Granulate, Aerosole, Feinstverkapselungen in polymeren Stoffen und in Hüllmassen für Saatgut, sowie ULV-Kalt- und Warmnebel-Formulierungen.

10

ţ

15

20

25

30

Diese Formulierungen werden in bekannter Weise hergestellt, z.B. durch Vermischen der Wirkstoffe mit Streckmitteln, also flüssigen Lösungsmitteln, unter Druck stehenden verflüssigten Gasen und/oder festen Trägerstoffen, gegebenenfalls unter Verwendung von oberflächenaktiven Mitteln, also Emulgiermitteln und/oder Dispergiermitteln und/oder schaumerzeugenden Mitteln. Im Falle der Benutzung von Wasser als Streckmittel können z.B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im wesentlichen in Frage: Aromaten, wie Xylol, Toluol oder Alkylnaphthaline, chlorierte Aromaten oder chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylene oder Methylenchlorid, aliphatische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfraktionen, Alkohole, wie Butanol oder Glycol sowie deren Ether und Ester, Ketone, wie Aceton, Methylethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel, wie Dimethylformamid und Dimethylsulfoxid, sowie Wasser. Mit verflüssigten gasförmigen Streckmitteln oder Trägerstoffen sind solche Flüssigkeiten gemeint, welche bei normaler Temperatur und unter Normaldruck gasförmig sind, z.B. Aerosol-Treibgase, wie Halogenkohlenwasserstoffe sowie Butan, Propan, Stickstoff und Kohlendioxid. Als feste Trägerstoffe kommen in Frage: z.B. natürliche Gesteinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate. Als feste Trägerstoffe für Granulate kommen in Frage: z.B.

- 44 -

gebrochene und fraktionierte natürliche Gesteine wie Calcit, Marmor, Bims, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokosnussschalen, Maiskolben und Tabakstengel. Als Emulgier und/oder schaumerzeugende Mittel kommen in Frage: z.B. nichtionogene und anionische Emulgatoren, wie Polyoxyethylen-Fettsäureester, Polyoxyethylen-Fettalkoholether, z.B. Alkylarylpolyglycolether, Alkylsulfonate, Alkylsulfate, Arylsulfonate sowie Eiweißhydrolysate. Als Dispergiermittel kommen in Frage: z.B. Lignin-Sulfitablaugen und Methylcellulose.

Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulverige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabicum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine, und synthetische Phospholipide. Weitere Additive können mineralische und vegetabile Öle sein.

15

5

Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyanin-farbstoffe und Spurennährstoffe, wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.

20

Die Formulierungen enthalten im allgemeinen zwischen 0,1 und 95 Gewichtsprozent Wirkstoff, vorzugsweise zwischen 0,5 und 90 %.

Die erfindungsgemäßen Wirkstoffe können als solche oder in ihren Formulierungen auch in Mischung mit bekannten Fungiziden, Bakteriziden, Akariziden, Nematiziden oder Insektiziden verwendet werden, um so z.B. das Wirkungsspektrum zu verbreitern oder Resistenzentwicklungen vorzubeugen. In vielen Fällen erhält man dabei synergistische Effekte, d.h. die Wirksamkeit der Mischung ist größer als die Wirksamkeit der Einzelkomponenten.

Als Mischpartner kommen zum Beispiel folgende Verbindungen in Frage:

Fungizide:

Aldimorph, Ampropylfos, Ampropylfos-Kalium, Andoprim, Anilazin, Azaconazol, Azoxystrobin,

Benalaxyl, Benodanil, Benomyl, Benzamacril, Benzamacryl-isobutyl, Bialaphos, Binapacryl, Biphenyl, Bitertanol, Blasticidin-S, Bromuconazol, Bupirimat, Buthiobat,

10

Calciumpolysulfid, Capsimycin, Captafol, Captan, Carbendazim, Carboxin, Carvon, Chinomethionat (Quinomethionat), Chlobenthiazon, Chlorfenazol, Chloroneb, Chloropicrin, Chlorothalonil, Chlozolinat, Clozylacon, Cufraneb, Cymoxanil, Cyproconazol, Cyprodinil, Cyprofuram, Carpropamid,

15

Debacarb, Dichlorophen, Diclobutrazol, Diclofluanid, Diclomezin, Dicloran, Diethofencarb, Difenoconazol, Dimethirimol, Dimethomorph, Diniconazol, Diniconazol-M, Dinocap, Diphenylamin, Dipyrithione, Ditalimfos, Dithianon, Dodemorph, Dodine, Drazoxolon,

20

Ediphenphos, Epoxiconazol, Etaconazol, Ethirimol, Etridiazol,

Famoxadon, Fenapanil, Fenarimol, Fenbuconazol, Fenfuram, Fenitropan, Fenpiclonil, Fenpropidin, Fenpropimorph, Fentinacetat, Fentinhydroxyd, Ferbam, Ferimzon, Fluazinam, Flumetover, Fluoromid, Fluquinconazol, Flurprimidol, Flusilazol, Flusulfamid, Flutolanil, Flutriafol, Folpet, Fosetyl-Alminium, Fosetyl-Natrium, Fthalid, Fuberidazol, Furalaxyl, Furametpyr, Furcarbonil, Furconazol, Furconazol-cis, Furmecyclox, Fenhexamid,

30 Guazatin,

10

15

Hexachlorobenzol, Hexaconazol, Hymexazol,

Imazalil, Imibenconazol, Iminoctadin, Iminoctadinealbesilat, Iminoctadinetriacetat,

Iodocarb, Ipconazol, Iprobenfos (IBP), Iprodione, Irumamycin, Isoprothiolan,

Isovaledione, Iprovalicarb,

Kasugamycin, Kresoxim-methyl, Kupfer-Zubereitungen, wie: Kupferhydroxid, Kupfernaphthenat, Kupferoxychlorid, Kupfersulfat, Kupferoxid, Oxin-Kupfer und Bordeaux-Mischung,

Mancopper, Mancozeb, Maneb, Meferimzone, Mepanipyrim, Mepronil, Metalaxyl, Metconazol, Methasulfocarb, Methfuroxam, Metiram, Metomeclam, Metsulfovax, Mildiomycin, Myclobutanil, Myclozolin,

Nickel-dimethyldithiocarbamat, Nitrothal-isopropyl, Nuarimol,

Ofurace, Oxadixyl, Oxamocarb, Oxolinicacid, Oxycarboxim, Oxyfenthiin,

- Paclobutrazol, Pefurazoat, Penconazol, Pencycuron, Phosdiphen, Picoxystrobin, Pimaricin, Piperalin, Polyoxin, Polyoxorim, Probenazol, Prochloraz, Procymidon, Propamocarb, Propanosine-Natrium, Propiconazol, Propineb, Pyraclostrobin, Pyrazophos, Pyrifenox, Pyrimethanil, Pyroquilon, Pyroxyfur,
- 25 Quinconazol, Quintozen (PCNB), Quinoxyfen,

Schwefel und Schwefel-Zubereitungen, Spiroxamine,

Tebuconazol, Tecloftalam, Tecnazen, Tetcyclacis, Tetraconazol, Thiabendazol, Thicyofen, Thifluzamide, Thiophanate-methyl, Thiram, Tioxymid, Tolclofos-methyl,

Tolylfluanid, Triadimefon, Triadimenol, Triazbutil, Triazoxid, Trichlamid, Tricyclazol, Tridemorph, Trifloxystrobin, Triflumizol, Triforin, Triticonazol,

Uniconazol,

5

Validamycin A, Vinclozolin, Viniconazol,

Zarilamid, Zineb, Ziram sowie

10 Dagger G,

OK-8705,

OK-8801,

15

- α -(1,1-Dimethylethyl)- β -(2-phenoxyethyl)-1H-1,2,4-triazol-1-ethanol,
- α-(2,4-Dichlorphenyl)-β-fluor-b-propyl-1H-1,2,4-triazol-1-ethanol,
- α -(2,4-Dichlorphenyl)- β -methoxy-a-methyl-1H-1,2,4-triazol-1-ethanol,
- α-(5-Methyl-1,3-dioxan-5-yl)-β-[[4-(trifluormethyl)-phenyl]-methylen]-1H-1,2,4-
- 20 triazol-1-ethanol,
 - (5RS,6RS)-6-Hydroxy-2,2,7,7-tetramethyl-5-(1H-1,2,4-triazol-1-yl)-3-octanon,
 - (E)-a-(Methoxyimino)-N-methyl-2-phenoxy-phenylacetamid,
 - 1-(2,4-Dichlorphenyl)-2-(1H-1,2,4-triazol-1-yl)-ethanon-O-(phenylmethyl)-oxim,
 - 1-(2-Methyl-1-naphthalenyl)-1H-pyrrol-2,5-dion,
- 25 1-(3,5-Dichlorphenyl)-3-(2-propenyl)-2,5-pyrrolidindion,
 - 1-[(Diiodmethyl)-sulfonyl]-4-methyl-benzol,
 - 1-[[2-(2,4-Dichlorphenyl)-1,3-dioxolan-2-yl]-methyl]-1H-imidazol,
 - 1-[[2-(4-Chlorphenyl)-3-phenyloxiranyl]-methyl]-1H-1,2,4-triazol,
 - 1-[1-[2-[(2,4-Dichlorphenyl)-methoxy]-phenyl]-ethenyl]-1H-imidazol,
- 30 1-Methyl-5-nonyl-2-(phenylmethyl)-3-pyrrolidinol,

PCT/EP02/04287 WO 02/088126

- 48 -

- 2',6'-Dibrom-2-methyl-4'-trifluormethoxy-4'-trifluor-methyl-1,3-thiazol-5-carboxanilid,
- 2,6-Dichlor-5-(methylthio)-4-pyrimidinyl-thiocyanat,
- 2,6-Dichlor-N-(4-trifluormethylbenzyl)-benzamid,
- 2,6-Dichlor-N-[[4-(trifluormethyl)-phenyl]-methyl]-benzamid,
- 2-(2,3,3-Triiod-2-propenyl)-2H-tetrazol, 5
 - 2-[(1-Methylethyl)-sulfonyl]-5-(trichlormethyl)-1,3,4-thiadiazol,
 - 2-[[6-Deoxy-4-O-(4-O-methyl-ß-D-glycopyranosyl)-a-D-glucopyranosyl]-amino]-4methoxy-1H-pyrrolo[2,3-d]pyrimidin-5-carbonitril,
 - 2-Aminobutan,
- 2-Brom-2-(brommethyl)-pentandinitril, 10
 - 2-Chlor-N-(2,3-dihydro-1,1,3-trimethyl-1H-inden-4-yl)-3-pyridincarboxamid,
 - 2-Chlor-N-(2,6-dimethylphenyl)-N-(isothiocyanatomethyl)-acetamid,
 - 2-Phenylphenol(OPP),
 - 3,4-Dichlor-1-[4-(difluormethoxy)-phenyl]-1H-pyrrol-2,5-dion,
- 3,5-Dichlor-N-[cyan[(1-methyl-2-propynyl)-oxy]-methyl]-benzamid, 15
 - 3-(1,1-Dimethylpropyl-1-oxo-1H-inden-2-carbonitril,
 - 3-[2-(4-Chlorphenyl)-5-ethoxy-3-isoxazolidinyl]-pyridin,
 - 4-Chlor-2-cyan-N,N-dimethyl-5-(4-methylphenyl)-1H-imidazol-1-sulfonamid,
 - 4-Methyl-tetrazolo[1,5-a]quinazolin-5(4H)-on,
- 8-Hydroxychinolinsulfat, 20
 - 9H-Xanthen-9-carbonsäure-2-[(phenylamino)-carbonyl]-hydrazid,
 - bis-(1-Methylethyl)-3-methyl-4-[(3-methylbenzoyl)-oxy]-2,5-thiophendicarboxylat,
 - cis-1-(4-Chlorphenyl)-2-(1H-1,2,4-triazol-1-yl)-cycloheptanol,
 - cis-4-[3-[4-(1,1-Dimethylpropyl)-phenyl-2-methylpropyl]-2,6-dimethyl-morpholin-
- hydrochlorid, 25
 - Ethyl-[(4-chlorphenyl)-azo]-cyanoacetat,
 - Kaliumhydrogencarbonat,
 - Methantetrathiol-Natriumsalz,
 - Methyl-1-(2,3-dihydro-2,2-dimethyl-1H-inden-1-yl)-1H-imidazol-5-carboxylat,
- Methyl-N-(2,6-dimethylphenyl)-N-(5-isoxazolylcarbonyl)-DL-alaninat, 30

- 49 -

Methyl-N-(chloracetyl)-N-(2,6-dimethylphenyl)-DL-alaninat,
N-(2,6-Dimethylphenyl)-2-methoxy-N-(tetrahydro-2-oxo-3-furanyl)-acetamid,
N-(2,6-Dimethylphenyl)-2-methoxy-N-(tetrahydro-2-oxo-3-thienyl)-acetamid,
N-(2-Chlor-4-nitrophenyl)-4-methyl-3-nitro-benzolsulfonamid,
N-(4-Cyclohexylphenyl)-1,4,5,6-tetrahydro-2-pyrimidinamin,
N-(4-Hexylphenyl)-1,4,5,6-tetrahydro-2-pyrimidinamin,
N-(5-Chlor-2-methylphenyl)-2-methoxy-N-(2-oxo-3-oxazolidinyl)-acetamid,
N-(6-Methoxy)-3-pyridinyl)-cyclopropancarboxamid,
N-[2,2,2-Trichlor-1-[(chloracetyl)-amino]-ethyl]-benzamid,
N-[3-Chlor-4,5-bis-(2-propinyloxy)-phenyl]-N'-methoxy-methanimidamid,
N-Formyl-N-hydroxy-DL-alanin -Natriumsalz,
O,O-Diethyl-[2-(dipropylamino)-2-oxoethyl]-ethylphosphoramidothioat,
O-Methyl-S-phenyl-phenylpropylphosphoramidothioate,
S-Methyl-1,2,3-benzothiadiazol-7-carbothioat,

spiro[2H]-1-Benzopyran-2,1'(3'H)-isobenzofuran]-3'-on,

4-[3,4-Dimethoxyphenyl)-3-(4-fluorphenyl)-acryloyl]-morpholin

Bakterizide:

20 Bronopol, Dichlorophen, Nitrapyrin, Nickel-dimethyldithiocarbamat, Kasugamycin, Octhilinon, Furancarbonsäure, Oxytetracyclin, Probenazol, Streptomycin, Tecloftalam, Kupfersulfat und andere Kupfer-Zubereitungen.

Insektizide / Akarizide / Nematizide:

25

5

10

15

Abamectin, Acephate, Acetamiprid, Acrinathrin, Alanycarb, Aldicarb, Aldoxycarb, Alpha-cypermethrin, Alphamethrin, Amitraz, Avermectin, AZ 60541, Azadirachtin, Azamethiphos, Azinphos A, Azinphos M, Azocyclotin,

Bacillus popilliae, Bacillus sphaericus, Bacillus subtilis, Bacillus thuringiensis, Baculoviren, Beauveria bassiana, Beauveria tenella, Bendiocarb, Benfuracarb, Bensultap, Benzoximate, Betacyfluthrin, Bifenazate, Bifenthrin, Bioethanomethrin, Biopermethrin, Bistrifluron, BPMC, Bromophos A, Bufencarb, Buprofezin, Butathiofos, Butocarboxim, Butylpyridaben,

Cadusafos, Carbaryl, Carbofuran, Carbophenothion, Carbosulfan, Cartap, Chloethocarb, Chlorethoxyfos, Chlorfenapyr, Chlorfenvinphos, Chlorfluazuron, Chlormephos, Chlorpyrifos, Chlorpyrifos M, Chlovaporthrin, Chromafenozide, Cis-Resmethrin, Cispermethrin, Clocythrin, Cloethocarb, Clofentezine, Clothianidine, Cyanophos, Cycloprene, Cycloprothrin, Cyfluthrin, Cyhalothrin, Cyhexatin, Cypermethrin, Cyromazine,

Deltamethrin, Demeton M, Demeton S, Demeton-S-methyl, Diafenthiuron, Diazinon,
Dichlorvos, Dicofol, Diflubenzuron, Dimethoat, Dimethylvinphos, Diofenolan,
Disulfoton, Docusat-sodium, Dofenapyn,

Eflusilanate, Emamectin, Empenthrin, Endosulfan, Entomopfthora spp., Esfenvalerate, Ethiofencarb, Ethion, Ethoprophos, Etofenprox, Etoxazole, Etrimfos,

Fenamiphos, Fenazaquin, Fenbutatin oxide, Fenitrothion, Fenothiocarb, Fenoxacrim, Fenoxycarb, Fenpropathrin, Fenpyrad, Fenpyrithrin, Fenpyroximate, Fenvalerate, Fipronil, Fluazuron, Flubrocythrinate, Flucycloxuron, Flucythrinate, Flufenoxuron, Flumethrin, Flutenzine, Fluvalinate, Fonophos, Fosmethilan, Fosthiazate, Fubfenprox, Furathiocarb,

Granuloseviren

Halofenozide, HCH, Heptenophos, Hexaflumuron, Hexythiazox, Hydroprene,

25

5

10

20

- 51 -

Imidacloprid, Indoxacarb, Isazofos, Isofenphos, Isoxathion, Ivermectin,

Kernpolyederviren

5 Lambda-cyhalothrin, Lufenuron

Malathion, Mecarbam, Metaldehyd, Methamidophos, Metharhizium anisopliae, Metharhizium flavoviride, Methidathion, Methiocarb, Methoprene, Methomyl, Methoxyfenozide, Metolcarb, Metoxadiazone, Mevinphos, Milbemectin, Milbemycin, Monocrotophos,

Naled, Nitenpyram, Nithiazine, Novaluron

Omethoat, Oxamyl, Oxydemethon M

15

10

Paecilomyces fumosoroseus, Parathion A, Parathion M, Permethrin, Phenthoat, Phorat, Phosalone, Phosmet, Phosphamidon, Phoxim, Pirimicarb, Pirimiphos A, Pirimiphos M, Profenofos, Promecarb, Propargite, Propoxur, Prothiofos, Prothoat, Pymetrozine, Pyraclofos, Pyresmethrin, Pyrethrum, Pyridaben, Pyridathion, Pyrimidifen, Pyriproxyfen,

Quinalphos,

Ribavirin

25

30

20

Salithion, Sebufos, Silafluofen, Spinosad, Spirodiclofen, Sulfotep, Sulprofos,

Tau-fluvalinate, Tebufenozide, Tebufenpyrad, Tebupirimiphos, Teflubenzuron, Tefluthrin, Temephos, Temivinphos, Terbufos, Tetrachlorvinphos, Tetradifon, Thetacypermethrin, Thiacloprid, Thiamethoxam, Thiapronil, Thiatriphos, Thiocyclam

hydrogen oxalate, Thiodicarb, Thiofanox, Thuringiensin, Tralocythrin, Tralomethrin, Triarathene, Triazamate, Triazophos, Triazuron, Trichlophenidine, Trichlorfon, Triflumuron, Trimethacarb,

Vamidothion, Vaniliprole, Verticillium lecanii 5

YI 5302

Zeta-cypermethrin, Zolaprofos

10

(1R-cis)-[5-(Phenylmethyl)-3-furanyl]-methyl-3-[(dihydro-2-oxo-3(2H)-furanyliden)methyl]-2,2-dimethylcyclopropancarboxylat

(3-Phenoxyphenyl)-methyl-2,2,3,3-tetramethylcyclopropanecarboxylat

1-[(2-Chlor-5-thiazolyl)methyl]tetrahydro-3,5-dimethyl-N-nitro-1,3,5-triazin-2(1H)-

15 imin

 $\hbox{$2$-(2-Chlor-6-fluorphenyl)-4-[4-(1,1-dimethylethyl)phenyl]-4,5-dihydro-oxazol}$

2-(Acetlyoxy)-3-dodecyl-1,4-naphthalindion

2-Chlor-N-[[[4-(1-phenylethoxy)-phenyl]-amino]-carbonyl]-benzamid

2-Chlor-N-[[[4-(2,2-dichlor-1,1-difluorethoxy)-phenyl]-amino]-carbonyl]-benzamid

3-Methylphenyl-propylcarbamat 20

4-[4-(4-Ethoxyphenyl)-4-methylpentyl]-1-fluor-2-phenoxy-benzol

4-Chlor-2-(1,1-dimethylethyl)-5-[[2-(2,6-dimethyl-4-phenoxyphenoxy)ethyl]thio]-3(2H)-pyridazinon

4-Chlor-2-(2-chlor-2-methylpropyl)-5-[(6-iod-3-pyridinyl)methoxy]-3(2H)-pyrida-

zinon 25

4-Chlor-5-[(6-chlor-3-pyridinyl)methoxy]-2-(3,4-dichlorphenyl)-3(2H)-pyridazinon Bacillus thuringiensis strain EG-2348

Benzoesäure [2-benzoyl-1-(1,1-dimethylethyl)-hydrazid

Butansäure 2,2-dimethyl-3-(2,4-dichlorphenyl)-2-oxo-1-oxaspiro[4.5]dec-3-en-4-yl-

ester 30

- 53 -

[3-[(6-Chlor-3-pyridinyl)methyl]-2-thiazolidinyliden]-cyanamid
Dihydro-2-(nitromethylen)-2H-1,3-thiazine-3(4H)-carboxaldehyd
Ethyl-[2-[[1,6-dihydro-6-oxo-1-(phenylmethyl)-4-pyridazinyl]oxy]ethyl]-carbamat
N-(3,4,4-Trifluor-1-oxo-3-butenyl)-glycin

- 5 N-(4-Chlorphenyl)-3-[4-(difluormethoxy)phenyl]-4,5-dihydro-4-phenyl-1H-pyrazol-1-carboxamid
 - N-[(2-Chlor-5-thiazolyl)methyl]-N'-methyl-N"-nitro-guanidin N-Methyl-N'-(1-methyl-2-propenyl)-1,2-hydrazindicarbothioamid N-Methyl-N'-2-propenyl-1,2-hydrazindicarbothioamid
- O,O-Diethyl-[2-(dipropylamino)-2-oxoethyl]-ethylphosphoramidothioat
 N-Cyanomethyl-4-trifluormethyl-nicotinamid
 3,5-Dichlor-1-(3,3-dichlor-2-propenyloxy)-4-[3-(5-trifluormethylpyridin-2-yloxy)-propoxy]-benzol
- Auch eine Mischung mit anderen bekannten Wirkstoffen, wie Herbiziden oder mit Düngemitteln und Wachstumsregulatoren ist möglich.

20

25

30

Darüber hinaus weisen die erfindungsgemäßen Verbindungen der Formel (I) auch sehr gute antimykotische Wirkungen auf. Sie besitzen ein sehr breites antimykotisches Wirkungsspektrum, insbesondere gegen Dermatophyten und Sprosspilze, Schimmel und diphasische Pilze (z.B. gegen Candida-Spezies wie Candida albicans, Candida glabrata) sowie Epidermophyton floccosum, Aspergillus-Spezies wie Aspergillus niger und Aspergillus fumigatus, Trichophyton-Spezies wie Trichophyton mentagrophytes, Microsporon-Spezies wie Microsporon canis und audouinii. Die Aufzählung dieser Pilze stellt keinesfalls eine Beschränkung des erfassbaren mykotischen Spektrums dar, sondern hat nur erläuternden Charakter.

Die Wirkstoffe können als solche, in Form ihrer Formulierungen oder den daraus bereiteten Anwendungsformen, wie gebrauchsfertige Lösungen, Suspensionen, Spritzpulver, Pasten, lösliche Pulver, Stäubemittel und Granulate angewendet werden. Die

- 54 -

Anwendung geschieht in üblicher Weise, z.B. durch Gießen, Verspritzen, Versprühen, Verstreuen, Verstäuben, Verschäumen, Bestreichen usw. Es ist ferner möglich, die Wirkstoffe nach dem Ultra-Low-Volume-Verfahren auszubringen oder die Wirkstoffzubereitung oder den Wirkstoff selbst in den Boden zu injizieren. Es kann auch das Saatgut der Pflanzen behandelt werden.

5

10

15

20

25

Beim Einsatz der erfindungsgemäßen Wirkstoffe als Fungizide können die Aufwandmengen je nach Applikationsart innerhalb eines größeren Bereiches variiert werden. Bei der Behandlung von Pflanzenteilen liegen die Aufwandmengen an Wirkstoff im allgemeinen zwischen 0,1 und 10.000 g/ha, vorzugsweise zwischen 10 und 1.000 g/ha. Bei der Saatgutbehandlung liegen die Aufwandmengen an Wirkstoff im allgemeinen zwischen 0,001 und 50 g pro Kilogramm Saatgut, vorzugsweise zwischen 0,01 und 10 g pro Kilogramm Saatgut. Bei der Behandlung des Bodens liegen die Aufwandmengen an Wirkstoff im allgemeinen zwischen 0,1 und 10.000 g/ha, vorzugsweise zwischen 1 und 5.000 g/ha.

Wie bereits oben erwähnt, können mit erfindungsgemäßen Wirkstoffen alle Pflanzen und deren Teile behandelt werden. In einer bevorzugten Ausführungsform werden wild vorkommende oder durch konventionelle biologische Zuchtmethoden, wie Kreuzung oder Protoplastenfusion erhaltenen Pflanzenarten und Pflanzensorten sowie deren Teile behandelt. In einer weiteren bevorzugten Ausführungsform werden transgene Pflanzen und Pflanzensorten, die durch gentechnologische Methoden gegebenenfalls in Kombination mit konventionellen Methoden erhalten wurden (Genetic Modified Organisms) und deren Teile behandelt. Der Begriff "Teile" bzw. "Teile von Pflanzen" oder "Pflanzenteile" wurde oben erläutert.

Besonders bevorzugt werden erfindungsgemäß Pflanzen der jeweils handelsüblichen oder in Gebrauch befindlichen Pflanzensorten behandelt. Unter Pflanzensorten versteht man Pflanzen mit neuen Eigenschaften ("Traits"), die sowohl durch konventio-

nelle Züchtung, durch Mutagenese oder durch rekombinante DNA-Techniken gezüchtet worden sind. Dies können Sorten, Rassen, Bio- und Genotypen sein.

5

10

15

20

25

30

Je nach Pflanzenarten bzw. Pflanzensorten, deren Standort und Wachstumsbedingungen (Böden, Klima, Vegetationsperiode, Ernährung) können durch die erfindungsgemäße Behandlung auch überadditive ("synergistische") Effekte auftreten. So sind beispielsweise erniedrigte Aufwandmengen und/oder Erweiterungen des Wirkungsspektrums und/oder eine Verstärkung der Wirkung der erfindungsgemäß verwendbaren Stoffe und Mittel, besseres Pflanzenwachstum, erhöhte Toleranz gegenüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegen Trockenheit oder gegen Wasser- bzw. Bodensalzgehalt, erhöhte Blühleistung, erleichterte Ernte, Beschleunigung der Reife, höhere Ernteerträge, höhere Qualität und/oder höherer Ernährungswert der Ernteprodukte, höhere Lagerfähigkeit und/oder Bearbeitbarkeit der Ernteprodukte möglich, die über die eigentlich zu erwartenden Effekte hinausgehen.

Zu den bevorzugten erfindungsgemäß zu behandelnden transgenen (gentechnologisch erhaltenen) Pflanzen bzw. Pflanzensorten gehören alle Pflanzen, die durch die gentechnologische Modifikation genetisches Material erhielten, welches diesen Pflanzen besondere vorteilhafte wertvolle Eigenschaften ("Traits") verleiht. Beispiele für solche Eigenschaften sind besseres Pflanzenwachstum, erhöhte Toleranz gegen- über hohen oder niedrigen Temperaturen, erhöhte Toleranz gegen Trockenheit oder gegen Wasser- bzw. Bodensalzgehalt, erhöhte Blühleistung, erleichterte Ernte, Beschleunigung der Reife, höhere Ernteerträge, höhere Qualität und/oder höherer Ernährungswert der Ernteprodukte, höhere Lagerfähigkeit und/oder Bearbeitbarkeit der Ernteprodukte. Weitere und besonders hervorgehobene Beispiele für solche Eigenschaften sind eine erhöhte Abwehr der Pflanzen gegen tierische und mikrobielle Schädlinge, wie gegenüber Insekten, Milben, pflanzenpathogenen Pilzen, Bakterien und/oder Viren sowie eine erhöhte Toleranz der Pflanzen gegen bestimmte herbizide Wirkstoffe. Als Beispiele transgener Pflanzen werden die wichtigen Kul-

5

10

15

20

25

30

PCT/EP02/04287

turpflanzen, wie Getreide (Weizen, Reis), Mais, Soja, Kartoffel, Baumwolle, Raps sowie Obstpflanzen (mit den Früchten Äpfel, Birnen, Zitrusfrüchten und Weintrauben) erwähnt, wobei Mais, Soja, Kartoffel, Baumwolle und Raps besonders hervorgehoben werden. Als Eigenschaften ("Traits") werden besonders hervorgehoben die erhöhte Abwehr der Pflanzen gegen Insekten durch in den Pflanzen entstehende Toxine, insbesondere solche, die durch das genetische Material aus Bacillus Thuringiensis (z.B. durch die Gene CryIA(a), CryIA(b), CryIA(c), CryIIA, CryIIIA, CryIIIB2, Cry9c Cry2Ab, Cry3Bb und CryIF sowie deren Kombinationen) in den Pflanzen erzeugt werden (im folgenden "Bt Pflanzen"). Als Eigenschaften ("Traits") werden auch besonders hervorgehoben die erhöhte Abwehr von Pflanzen gegen Pilze, Bakterien und Viren durch Systemische Akquirierte Resistenz (SAR), Systemin, Phytoalexine, Elicitoren sowie Resistenzgene und entsprechend exprimierte Proteine und Toxine. Als Eigenschaften ("Traits") werden weiterhin besonders hervorgehoben die erhöhte Toleranz der Pflanzen gegenüber bestimmten herbiziden Wirkstoffen, beispielsweise Imidazolinonen, Sulfonylharnstoffen, Glyphosate oder Phosphinotricin (z.B. "PAT"-Gen). Die jeweils die gewünschten Eigenschaften ("Traits") verleihenden Gene können auch in Kombinationen miteinander in den transgenen Pflanzen vorkommen. Als Beispiele für "Bt Pflanzen" seien Maissorten, Baumwollsorten, Sojasorten und Kartoffelsorten genannt, die unter den Handelsbezeichnungen YIELD GARD® (z.B. Mais, Baumwolle, Soja), KnockOut® (z.B. Mais), StarLink® (z.B. Mais), Bollgard® (Baumwolle), Nucoton® (Baumwolle) und NewLeaf® (Kartoffel) vertrieben werden. Als Beispiele für Herbizid tolerante Pflanzen seien Maissorten, Baumwollsorten und Sojasorten genannt, die unter den Handelsbezeichnungen Roundup Ready® (Toleranz gegen Glyphosate z.B. Mais, Baumwolle, Soja), Liberty Link® (Toleranz gegen Phosphinotricin, z.B. Raps), IMI® (Toleranz gegen Imidazolinone) und STS® (Toleranz gegen Sulfonylharnstoffe z.B. Mais) vertrieben werden. Als Herbizid resistente (konventionell auf Herbizid-Toleranz gezüchtete) Pflanzen seien auch die unter der Bezeichnung Clearfield® vertriebenen Sorten (z.B. Mais) erwähnt. Selbstverständlich gelten diese Aussagen auch für in der Zukunft entwickelte bzw. zukünftig auf den Markt kommende

- 57 -

Pflanzensorten mit diesen oder zukünftig entwickelten genetischen Eigenschaften ("Traits").

Die aufgeführten Pflanzen können besonders vorteilhaft mit den erfindungsgemäßen Verbindungen der Formel (I) behandelt werden. Die bei den Wirkstoffen oben angegebenen Vorzugsbereiche gelten auch für die Behandlung dieser Pflanzen. Besonders hervorgehoben sei die Pflanzenbehandlung mit den im vorliegenden Text speziell aufgeführten Verbindungen.

Die Erfindung wird durch die folgenden Beispiele veranschaulicht.

<u>Herstellungsbeispiele</u>

Beispiel 1

Verfahren (a)

5

10

15

In eine Lösung von 0,7 g (181 mMol) 5,7-Dichlor-2-(trifluormethyl)-6-(2,4,6-trifluorphenyl)[1,2,4]triazolo[1,5-a]pyrimidin und 0,28 g (1,81 mMol) 4-Trifluormethylpiperidin in 20 ml Dichlormethan werden 0,18 g Triethylamin gegeben. Das Gemisch wird 18 Stunden bei Raumtemperatur gerührt. Danach wird das Reaktionsgemisch mit soviel 1N Salzsäure versetzt und gerührt, dass der pH-Wert der Mischung bei 1 - 2 liegt (ca. 50 ml). Die organische Phase wird abgetrennt, über Natriumsulfat getrocknet und unter vermindertem Druck eingeengt. Der Rückstand wird mit Petrolether verrührt und abgesaugt. Man erhält 0,3 g (30,3 % der Theorie) 5-Chlor-2-(trifluormethyl)-7-[4-trifluormethyl)-1-piperidinyl]-6-(2,4,6-trifluorphenyl)[1,2,4]-triazolo[1,5-a]pyrimidin.

20 HPLC: logP = 4,43

Nach den zuvor angegebenen Methoden werden auch die in der nachstehenden Tabelle 1 aufgeführten Verbindungen der Formel (I) erhalten.

Tabelle 1

Bsp.	R ¹	R ²	R ³	R ⁴	X	Iso- mer	logP	Fp.: (°C)
1	-CH ₂ -CH ₂ -CH(CF ₃)-CH ₂ -	СН ₂ -	2,4,6- Trifluorphenyl	-CF ₃	CI		4,43	
2	-CH ₂ -CH ₂ -CH(CF ₃)-CH ₂ -	-CH ₂ -CH ₂ -CH(CF ₃)-CH ₂ -CH ₂ -		-C ₂ H ₅	CI		3,99	
3	2,2,2-Trifluor-1-methylethyl	-Н	2,4,6- Trifluorphenyl	-CF ₃	CI		3,94	
4	2,2,2-Trifluor-1-methylethyl	-Н	2,4,6- Trifluorphenyl	-С ₂ Н ₅	CI		3,39	
5	-CH ₂ -CF ₃	-Н	2,4,6- Trifluorphenyl	-C ₂ H ₅	СІ		3,06	
6	-CH ₂ -CH ₂ -CF ₃	-Н	2,4,6- Trifluorphenyl	-C ₂ H ₅	СІ		3,18	
7	-CH ₂ -CH ₂ -CF ₃	-Н	2,4,6- Trifluorphenyl	-CF ₃	CI		3,76	
8	-CH ₂ -CF ₃	-H	2,4,6- Trifluorphenyl	-CF ₃	CI		3,64	
9	2,2,2-Trifluor-1-methylethyl	-н	2,4,6- Trifluorphenyl	t-Butyl	CI		4,24	
10	-CH ₂ -C(CH ₃)=CH ₂	-С ₂ Н ₅	2,4,6- Trifluorphenyl	-CF ₃	CI		4,73	
11	-i-Propyl ·	-H	2,4,6- Trifluorphenyl	-CF ₃	CI		3,8	

Bsp.	R ¹	R ²	R ³	R ⁴	х	Iso- mer	1	ogP	Fp.: (°C)
12	2,2,2-Trifluor-1-methylethyl	-Н	2,4,6- Trifluorphenyl	-CH ₃	Cl		3	3,01	
13	-CH ₂ -CF ₃	-H	2,4,6- Trifluorphenyl	-CH ₃	CI] :	2,69	
14	-CH ₂ -C(CH ₃)=CH ₂	-C ₂ H ₅	2,4,6- Trifluorphenyl	-CH ₃	CI			3,83	
15	-CH ₂ -C(CH ₃)=CH ₂	-C ₂ H ₅	2,4,6- Trifluorphenyl	-С ₂ Н ₅	CI	_		4,34	
16	-CH ₂ -C(CH ₃)=CH ₂	-Н	2,4,6- Trifluorphenyl	-СН3	C			2,76	
17	-i-Propyl	-Н	2-Chlorphenyl	Cyclo- propyl	С	ı		3,39	
18	-CH ₂ -CN	-Н	2,4,6- Trifluorphenyl	-CH ₃	c	1		2,02	
19	2,2,2-Trifluor-1-methylethyl	-H	2-Chlorphenyl	Cyclo- propy	}	21 /	AS	3,59	
20	2,2,2-Trifluor-1-methylethyl	-н	2-Chlorpheny	l Cyclo		01 1	BS	3,61	
21	-CH ₂ -C(CH ₃)=CH ₂	-Н	2,4,6- Trifluorpheny	-C ₂ н	5	CI		3,15	
22	-CH ₂ -C(CH ₃)=CH ₂	-н	2,4,6- Trifluorphen	-CF	3	CI		3,82	
2	3 -CH ₂ -CN	-Н	2,4,6- Trifluorphen	yl -C ₂ I	ł ₅	СІ		2,27	,
2	4 -CH ₂ -CN	-н	2,4,6- Trifluorphen	-CF	3	СІ		2,9	1
	2,2,2-Trifluor-1-methylethy	1 -H	2,4,6- Trifluorpher	-Ci	⁷ 3	Br		3,9	9

Bsp. Nr.	RI	R ²	R ³	R ⁴	х	Iso- mer	logP	Fp.: (°C)
26	-i-Propyl	-Н	2,4,6- Trifluorphenyl	-CH ₃	CI		2,71	
27	-NH ₂	-i-Propyl	2,4,6- Trifluorphenyl	-СН ₃	СІ		2,77	
28	i-Propylamino	-H	2,4,6- Trifluorphenyl	-CH ₃	CI		2,7	
29	2-Methoxyethyl	-С ₂ Н ₅	2,4,6- Trifluorphenyl	-CH ₃	CI		2,93	
30	2-Methoxyethyl	-С ₂ Н ₅	2,4,6- Trifluorphenyl	-C ₂ H ₅	CI		3,37	
31	2-Methoxyethyl	-С ₂ Н ₅	2,4,6- Trifluorphenyl	-CF ₃	CI		4,04	
32	Cyclopentyl	-H	2,4,6- Trifluorphenyl	-CF ₃	CI		\4 , 25	
33	-С ₂ Н ₅	-C ₂ H ₅	2,4,6- Trifluorphenyl	-CF ₃	CI		4,25	
34	-СН ₂ -СН ₂ -О-СН ₂ -СН	2-	2,4,6- Trifluorphenyl	-CF ₃	CI		3,22	
35	Cyclopropyl	-Н	2,4,6- Trifluorphenyl	-CF ₃	CI		3,53	
36	-СН ₃	-СН3	2-Chlorphenyl	Cyclo- propyl	Cı		3,13	
37	-С ₂ Н ₅	-H	2-Chlorphenyl	Cyclo- propyl	CI			
38	-СН ₂ -СН ₂ -СН ₂ -СН ₂	•	2-Chlorphenyl	Cyclo- propyl	СІ			
39	-CH ₂ -CN	-Н	2-Chlorphenyl	Cyclo- propyl	Ci			

3sp.		R ¹	R ²		R ³	R	4	х	Iso-	lo	ogP	Fp.: (°C)
Nr. 40		Cyclopentyl	-Н	2-0	Chlorphenyl		clo- opyl	CI				
41		-C ₂ H ₅	-C ₂ H ₅	2-	Chlorphenyl		yclo- copyl	Cl				
42		-СН ₂ -СН ₂ -О-СН ₂ -СН ₂	2-	2-	Chlorphenyl	1	yclo- ropyl	CI				
43		2-Methoxyethyl	· -H	2	-Chlorphenyl	1	Cyclo- propyl	CI		-		
44		-CH ₃	-H	2	-Chlorphenyl	1	Cyclo- propyl	c	1			1-
45		-CH ₂ -CH ₂ -S-CH ₂ -C	·1 ₂ -	7	2-Chlorphenyl	1	Cyclo- propyl	c	1	1		
46		-СН ₂ -СН ₂ -СН(СН ₃)-СН	I ₂ -СН ₂ -		2-Chlorpheny	1	Cyclo- propyl	1		-		_
47	7	Cyclohexyl	-H		2-Chlorpheny	1	Cyclo- propy		CI			
4	8	Cyclopropylmethyl	-Н		2-Chlorphen	yi	Cyclo propy	- {	CI			
4	19	i-Propylamino	-н		2,4,6- Trifluorphen	ıyl	-С ₂ н	5	Cl		3,0	5
	50	1-Cyclopropylethylamino	-H	İ	2-Chlorpher	ıyl	Cycle	1	СІ			
-	51	n-Butylamino	-1	ł	2-Chlorphe	nyi	Cycl prop		Cl			
	52	-NH-CH ₂ -CF ₂ -CHF ₂	-1	Н	2-Chlorphe	nyl	Cyc		CI		-	
	53	-NH-CH ₂ -CH(CH ₃) ₂	-	Н	2-Chlorph	enyl	1	lo- pyl	CI			

Bsp.	R ¹	R ²	R ³	R ⁴	х	Iso- mer	logP	Fp.: (°C)
54	Allylamino	-H	2-Chlorphenyl	Cyclo- propyl	CI			
55	-NH-CH ₂ -CF ₃	-H	2-Chlorphenyl	Cyclo- propyl	Cl			
56	i-Propylamino	-H	2-Chlorphenyl	Cyclo- propyl	СІ			
57	t-Butylamino	-H	2-Chlorphenyl	Cyclo- propyl	CI			
58	-СН ₂ -СН(СН ₃)-О-СН(СН ₃	-CH ₂ -CH(CH ₃)-O-CH(CH ₃)-CH ₂ -		-CH₃	CI		3	
59	-СН ₂ -СН ₂ -СН ₂ -СН ₂ -		2,4,6- Trifluorphenyl	-CH ₃	CI		2,86	
60	-CH ₂ -CH ₂ -CH ₂ -CH ₂ -Cl	H ₂ -	2,4,6- Trifluorphenyl	-СН ₃	СІ		3,43	
61	n-Propyl	-Н	2,4,6- Trifluorphenyl	-СН3	CI		2,75	
62	Cyclopentyl	-H	2,4,6- Trifluorphenyl	-СН3	Cı		3,23	
63	-С ₂ Н ₅	-C ₂ H ₅	2,4,6- Trifluorphenyl	-СН3	CI		3,23	
64	2-Methoxyethyl	-Н	2,4,6- Trifluorphenyl	-СН3	CI		2,34	
65	Cyclopropyl	-H	2,4,6- Trifluorphenyl	-СН3	CI		2,51	
66	-CH ₂ -CH ₂ -S-CH ₂ -CH	2-	2,4,6- Trifluorphenyl	-CH ₃	CI		3,09	
67	-CH ₂ -CH ₂ -CH(CF ₃)-CH ₂ -	-СН ₂ -	2,4,6- Trifluorphenyl	-CH ₃	СІ		3,6	

Bsp.	R ¹	R ²		R ³	R	4	х	Iso- mer	logF	PF	p.: (°C)
68	Cyclopropylmethyl	-Н	Tr	2,4,6-	-C	СН3	Cl		2,8	6	
69	2,2,2-Trifluor-1-methylethyl	-H		2,4,6- rifluorphenyl	-(СН3	Cl		3,0)4	
70	-CH ₂ -CH ₂ -CF ₃	-Н	т	2,4,6- rifluorphenyl	-(сн3	CI		2,8	85	·
71	-CH ₂ -CH(CH ₃)-О-CH(CH ₃)-CH ₂ -	1	2,4,6- Frifluorphenyl	٠.(С ₂ Н ₅	Cl		3,	57	
72	-CH ₂ -CH ₂ -CH ₂ -CH	2-	1	2,4,6- Trifluorphenyl	1	С ₂ Н ₅	С	1	3,	,29	
73	-CH ₂	CH ₂ -		2,4,6- Trifluorphenyl	1	.С ₂ Н ₅	c		3	,94	
74	n-Propyl	-Н		2,4,6- Trifluorpheny	ı	-C ₂ H ₅		en	3	3,14	
75	Cyclopentyl	-H		2,4,6- Trifluorpheny		-С ₂ Н ₅	(CI	3	3,66	-
76	-i-Propyl	-н		2,4,6- Trifluorpheny	yi	-С ₂ Н ₅		СІ		3,15	
77	-C ₂ H ₅	-C ₂ I	ł ₅	2,4,6- Trifluorphen	yi	-С ₂ Н	5	Cl		3,71	
78	2-Methoxyethyl	-1		2,4,6- Trifluorphen	ıyl	-С ₂ н	5	CI		2,68	
79	9 Cyclopropyl	-1	ł	2,4,6- Trifluorphe	nyl	-C ₂ H	15	CI		2,85	
8	O -CH ₂ -CH ₂ -S-CH ₂	-CH ₂ -CH ₂ -S-CH ₂ -CH ₂ -		2,4,6- Trifluorphe	nyl	-C ₂ 1	15	Cl		3,53	
8	Cyclopropylmethyl	-	H	2,4,6- Trifluorpho	enyl	-C ₂ 1	H ₅	Cl		3,23	,

- 65 -

Bsp.	R1	R ²	R ³	R ⁴	x	Iso- mer	logP	Fp.: (°C)
82	-i-Propyl	-н	3-Chlor-4- fluorphenyl	-CH ₃	Cl		3,01	
83	-CH ₂ -CH ₂ -CH≔CH-CH ₂ -		2,4,6- Trifluorphenyl	-СН3	CI		3,2	
84	i-Propylamino	-Н	2,4,6- Trifluorphenyl	-CF ₃	CI		3,68	
85	-CH ₂ -CH ₂ -CH=C(CH ₃)-C	CH ₂ -	2,4,6- Trifluorphenyl	-СН ₃	.CI		3,57	
86	-CH ₃	-СН ₃	2,4,6- Trifluorphenyl	-СН ₃	CI		2,49	
87	-C ₂ H ₅	-H	2,4,6- Trifluorphenyl	-CH ₃	Cl		2,44	
88	-C(CH ₃) ₂ -CF ₃	-н	2,4,6- Trifluorphenyl	-CH ₃	CI		3,7	
89	-СН ₂ -СН ₂ -О-СН ₂ -СН	2-	2,4,6- Trifluorphenyl	-CH ₃	CI		2,43	
90	-CH ₃	-H	2,4,6- Trifluorphenyl	-СН ₃	CI		2,12	
91	-С ₂ н ₅	-H	2,4,6- Trifluorphenyl	-С ₂ Н ₅	СІ		2,78	
92	-СН ₂ -СН ₂ -О-СН ₂ -СН	2-	2,4,6- Trifluorphenyl	-С ₂ Н ₅	CI		2,8	
93	-CH ₃	-Н	2,4,6- Trifluorphenyl	-C ₂ H ₅	CI		2,44	
94	-CH(CF ₃)-CH ₂ -CH ₂ -CH ₂	-CH ₂ -	2,4,6- Trifluorphenyl	-С ₂ Н ₅	CI		4,27	
95	-CH ₂ -C(CH ₃)=CH ₂	-C ₂ H ₅	2,4- Difluorphenyl	-CF ₃	CI		4,69	123-25

Bsp.	R ¹	R ²		R ³	R ⁴	,	х	Iso- mer	log	gΡ	Fp.: (°C)
96	-CH ₂ -C(CH ₃)=CH ₂	-C ₂ H ₅	1	2,4- orphenyl	-Cl	H ₃	CI		3,	73	100-02
97	2,2,2-Trifluor-1-methylethyl	-H	1	Chlor-4- orphenyl	-C	Н3	Cl		3,	,32	
98	-CH ₂ -CH(OH)-CH ₂ -Cl	H ₂ -	1	2,4,6- uorphenyl	-C	:H ₃	CI		1	,85	
99	-CH ₂ -CH(OH)-CH ₂ -CH ₂	-CH ₂ -	1	2,4,6- luorphenyl	-(СН3	CI		2	2,15	-
100	-CH ₃	-CH ₃	Tri	2,4,6- fluorphenyl	1	CF ₃	С		-	3,6	-
101	-CH ₂ -CH(CH ₃)-О-CH(C	H ₃)-CH ₂ -	Tri	2,4,6-	1	.CF3	C	:1		4,18	_
102	-C ₂ H ₅	-н	Tr	2,4,6- ifluorpheny	1	-CF ₃	10	C1		3,5	
103	-CH ₂ -CH ₂ -CH ₂ -C	H ₂ -	Т	2,4,6- rifluorpheny	-	-CF ₃	1	СІ		3,92	
104	-CH ₂ -CH ₂ -CH ₂ -CH	₂ -CH ₂ -	Т	2,4,6- rifluorphen	yl	-CF ₃		CI	_	4,46	
105	-C(CH ₃) ₂ -CF ₃	-H	- 1	2,4,6- Trifluorphen	ıyl	-CF ₃	,	СІ		4,3	7
100	6 n-Propyl	-I	- 1	2,4,6- Trifluorpher	nyl	-CF	3	Cl		3,8	2
10	7 2-Methoxyethyl	-	Н	2,4,6- Trifluorphe	nyl	-CF	3	Cl		3,3	38
108	-CH ₃	-	н	2,4,6- Trifluorphe	enyl	-CI	² 3	CI		3,	17
1	09 -CH(CF ₃)-CH ₂ -CH ₂	-CH ₂ -CH ₂	-	2,4,6- Trifluorph		-c	F ₃	CI		4	,76

—								
Bsp.	R ¹	R ²	R ³	R ⁴	х	Iso- mer	logP	Fp.: (°C)
110	-СН ₂ -СН ₂ -S-СН ₂ -СН ₂	2-	2,4,6- Trifluorphenyl	-CF ₃	CI		4,09	
111	Cyclopropylmethyl	-Н	2,4,6- Trifluorphenyl	-CF ₃	CI		3,89	
112	-CH ₂ -S-CH ₂ -CH ₂ -		2,4,6- Trifluorphenyl	-CH ₃	CI		2,84	
113	2,2,2-Trifluor-1-methylethyl	-Н	2,4- Difluorphenyl	-CH ₃	CI		3,03	
114	-CH ₂ -C(CH ₃)=CH ₂	-C ₂ H ₅	2-Chlor-6- Fluorphenyl	-СН ₃	СІ		3,91	
115	-СН(СН ₂ ОН)-СООСН ₃	-Н	2,4,6- Trifluorphenyl	-СН3	CI		1,93	
116	-СН(СН ₃)-СН ₂ -О-СН ₃	-Н	2,4,6- Trifluorphenyl	-СН ₃	CI		2,64	
117	-CH(CH ₃)-CH=CH-CH(C	CH ₃)-	2,4,6- Trifluorphenyl	-СН3	Cl		3,52	
118	AB3	-н	2,4,6- Trifluorphenyl	-CH ₃	СІ		3,11	
119	AB4		2,4,6- Trifluorphenyl	-СН3	CI		2,65	
120	AB5	-H	2,4,6- Trifluorphenyl	-CH ₃	CI		3,47	
121	AB6		2,4,6- Trifluorphenyl	-СН3	Cı		2,13	
122	-СН(СН ₃)-СН ₂ -ОН	-Н	2,4,6- Trifluorphenyl	-СН3	СІ		1,93	
123	-СН(СН ₃)-СН(О-СН ₃) ₂	-н	2,4,6- Trifluorphenyl	-CH ₃	CI		2,74	

Bsp.	R ¹	R ²	R ³	R ⁴	х	Iso-	logP	Fp.: (°C)
Nr. 124	-CH(CH ₃)-СООСН ₃	-Н	2,4,6- Trifluorphenyl	-CH ₃	CI		2,45	
125	-CH ₂ -COOCH ₃	-Н	2,4,6- Trifluorphenyl	-CH ₃	CI		2,13	
126	-CH(CH ₃)-COO-t-butyl	-H	2,4,6- Trifluorphenyl	-CH ₃	Cl		3,44	
127	-NH ₂	i-Butyl	2,4,6- Trifluorphenyl	-C ₂ H ₅	CI		3,47	176-78
128	2-Methoxyethyl	-C ₂ H ₅	2,4- Difluorphenyl	-CН ₃	CI		2,84	
129	-NH ₂	i-Butyl	2,4,6- Trifluorphenyl	-CH ₃	C		3,06	Paste
130	-NH ₂	i-Butyl	2-Chlor-6- Fluorphenyl	-CH ₃	c	1	3,12	157-8
131	-NH ₂	i-Butyl	3-Chlor-4- fluorphenyl	-СН3	C	:1	3,31	155-8
132	2,2,2-Trifluor-1-methylethyl	-H	2-Chlor-6- Fluorphenyi	-CH ₃	0	21	3,01	
133	-CH ₂ -C(CH ₃)=CH ₂	-C ₂ H ₅	2-Chlorpheny	-CH ₃	1	CI	3,9	
134		-H	2,4,6- Trifluorpheny	-СН ₃	,	CI	3,37	
13:	i-Butoxy	-Н	2,6- Difluorpheny	-CH	3	С1	2,88	
13	-O-C ₂ H ₅	-Н	2,6- Difluorpheny	-CH	3	Cl	2,22	2
13	7 3-Chlorbenzyloxy	-Н	2,6-	-CH	3	CI	3,2	1

			,					
Bsp.	R ¹	R ²	R ³	R ⁴	Х	Iso-	logP	Fp.: (°C)
Nr.						mer		
138	4-Chlorbenzyloxy	-H	2,6-	-CH ₃	CI		3,23	
			Difluorphenyl	·				
139	-O-CH(CH ₃)-CH ₂ -CH ₃	-н	2,6-	-CH ₃	CI		2,78	
	, J. 2		Difluorphenyl					
140	Allyloxy	-H	2,6-	-CH ₃	Cl		2,38	
			Difluorphenyl					
141	t-Butoxy	-Н	2,6-	-CH ₃	CI		2,68	
			Diffuorphenyl	,			ĺ	
142	2-Hexahydropyranyloxy	-H	2,6-	-CH ₃	CI		2,54	
142	2-recally dropyrally loxy		Difluorphenyl	03			2,5 (
143	O CU-	-CH ₃	2,6-	-CH ₃	Cl		2,54	
143	-О-СН ₃	-013	Difluorphenyl	-013	"		2,54	
1,,,	O: Dd		2,6-	CU	CI		2,46	
144	O-i-Propyl	-Н	Difluorphenyl	-CH ₃	(,		2,40	
		.		CII	61		2.14	
145	i-Butyl	-H	2,4,6- Trifluorphenyl	-CH ₃	CI		3,14	
		 						
146	-CH ₂ -C(CH ₃) ₃	-H	2,4,6- Trifluorphenyl	-CH ₃	CI		3,5	
			 		 	 		-
147	2-Butyl	-H	2,4,6-	-CH ₃	CI		3,1	
-		<u> </u>	Trifluorphenyl	-	 	1-		
148	-CH ₂ -CH ₂ -N(CH ₃) ₂	-CH ₃	2,4,6-	-CH ₃	CI		1,5	
		 	Trifluorphenyl		+	-		
149	Propargyl	-CH ₃	2,4,6-	-СH ₃	CI		2,77	
		<u> </u>	Trifluorphenyl		\vdash	┼		
150	-CH ₂ -COOC ₂ H ₅	-CH ₃	2,4,6-	-CH ₃	CI		2,8	
		 	Trifluorphenyl	ļ	_	-	ļ	
151	1,3-Dioxolan-2-ylmethyl	-СН3	2,4,6-	-CH ₃	CI		2,67	
<u></u>		1	Trifluorphenyl					<u></u>

PCT/EP02/04287

Bsp.	R ¹	R ²	R ³	R ⁴	x	Iso- mer	logP	Fp.: (°C)
Nr.	Aliyi	-CH ₃	2,4,6- Trifluorphenyl	-СН3	CI		3,18	
153	(2-Furyl)methyl	-СН3	2,4,6- Trifluorphenyl	-CH ₃	Cı		3,22	
154	i-Butyl	-СН ₃	2,4,6- Trifluorphenyl	-CH ₃	CI		3,63	
155	-CH ₂ -C(CH ₃)=CH ₂	-CH ₃	2,4,6- Trifluorphenyl	-CH ₃	C		3,55	
156	-CH ₂ -CH ₂ -N(CH ₃) ₂	-C ₂ H ₅	2,4,6- Trifluorphenyl	-CH ₃	c	1	1,59	
157	Allyl	-C ₂ H ₅	2,4,6- Trifluorphenyl	-CH ₃	C		3,5	
158	(2-Furyl)methyl	-C ₂ H ₅	2,4,6- Trifluorpheny	-СН ₃	, (21	3,55	
159	(2-Tetrahydrofuryl)methyl	-C ₂ H ₅	2,4,6- Trifluorpheny	-CH	3	CI	3,26	
160	-CH ₂ -COOC ₂ H ₅	-C ₂ H ₅	2,4,6-	-CH	3	CI	3,14	
161	n-Butyl	-C ₂ H	5 2,4,6- Trifluorphen	-Cl	13	СІ	4,0	В
162	2 Cyclopropylmethyl	n-Prop	yi 2,4,6- Trifluorpher	-Ci	-i3	CI	4,0	8
16	3 (2-Tetrahydrofuryi)methyl	n-Pro	pyl 2,4,6- Trifluorphe	i i	CH ₃ CI		3,68	
16	-CH ₂	CH(CH ₃)-	2,4,6- Trifluorphe	1	Н3	Cl	3,	81
10	-CH ₂ -CH ₂ -CH ₂ -CH(CH ₃)-Cl		2,4,6- Trifluorpho	- 1	-CH ₃		3,9	

Bsp.	R ¹	R ²	R ³	R ⁴	х	Iso- mer	logP	Fp.: (°C)
166	-СН ₂ -СН ₂ -СН(СН ₃)-СН ₂ -	-СН ₂ -СН ₂ -СН(СН ₃)-СН ₂ -СН ₂ -		-СН3	CI		3,9	
167	-CH ₂ -CH ₂ -CHF-CH ₂ -CH	1 ₂ -	2,4,6- Trifluorphenyl	-CH ₃	CI		3,03	
168	AB7	i	2,4,6- Trifluorphenyl	-CH ₃	Cl		3,73	
169	-СН ₂ -СН(СН ₃)-О-СН(СН ₃))-CH ₂ -	2,6- Difluorphenyl	-CH ₃	Cl		2,84	
170	-СН ₂ -СН ₂ -СН ₂ -СН ₂	-	2,6- Difluorphenyl	-СН ₃	CI		2,61	
171	-CH ₂ -CH ₂ -CH ₂ -CH ₂ -C	H ₂ -	2,6- Difluorphenyl	-СН ₃	CI		.3,17	
172	n-Propyl	-н	2,6- Difluorphenyl	-CH ₃	СІ		2,52	
173	Cyclopentyl	-H	2,6- Difluorphenyl	-СН ₃	CI		2,97 ·	
174	-i-Propyl	-Н	2,6- Difluorphenyl	-СН ₃	СІ		2,52	
175	-C ₂ H ₅	-C ₂ H ₅	2,6- Difluorphenyl	-СН ₃	CI		2,98	
176	-СН ₂ -СН ₂ -О-СН ₂ -СН	2-	2,6- Difluorphenyl	-СН3	CI		2,2	
177	2-Methoxyethyl	-Н	2,6- Difluorphenyl	-СН3	CI		2,12	
178	Cyclopropyl	-Н	2,6- Difluorphenyl	-СН3	СІ		2,28	
179	-СН ₂ -СН ₂ -S-СН ₂ -СН	2-	2,6- Difluorphenyl	-СН ₃	CI		2,84	

WO 02/088126

Bsp.	RI	R ²	R ³	R ⁴	х	Iso- mer	logP	Fp.: (°C)
180	-CH ₂ -CH ₂ -CH(CF ₃)-CH ₂ -Cl	H ₂ -	2,6- Difluorphenyl	-СН3	Cl		3,36	
181	Cyclopropylmethyl	-Н	2,6- Difluorphenyl	-CH ₃	CI		2,62	
182	2,2,2-Trifluor-1-methylethyl	-Н	2,6- Difluorphenyl	-CH ₃	CI		2,78	
183	-CH ₂ -C(CH ₃)=CH ₂	-Н	2,6- Difluorphenyl	-СН3	CI		2,56	
184	-CH ₂ -CH ₂ -CF ₃	-Н	2,6- Difluorphenyl	-СН ₃	CI		2,63	
185	1-Cyclohexylethyl	-H	2,6- Difluorphenyl	-CH ₃	C		4	
186	Cyclohexyl	-Н	2,6- Difluorphenyl	-CH ₃	С	1	3,28	
187	2-Butyl	-H	2,6- Difluorphenyl	-CH ₃	C	1	2,82	
188	3-Trifluormethylcyclohexyl	-Н	2,6- Difluorphenyl	-CH ₃		21	3,37	
189	3,5-bis-Trifluormethylcyclohexy	1 -Н	2,6- Difluorpheny	-CH ₃	. (CI	3,62	
190	4-Trifluormethylcyclohexyl	-Н	2,6- Difluorpheny	-СН ₃	,	CI	3,39	
191	i-Butyl	-Н	2,4- Difluorpheny	-CH	3	СІ	3	
192	n-Butyl	-Н	2,4- Difluorphen	-CH	3	CI	3,0	4
. 193	-CH ₂ -C(CH ₃) ₃	-Н	2,4- Difluorphen	-CH	l ₃	СІ	3,4	•

Bsp.	RI	R ²	R ³	R ⁴	х	Iso-	logP	Fp.: (°C)
194	2-Butyl	-H	2,4- Difluorphenyl	-CH ₃	Cl		3,01	
195	-CH ₂ -CH ₂ -CF ₃	-Н	2,4- Difluorphenyl	-CH ₃	CI		2,76	
196	-i-Propyl	-H	2,4- Difluorphenyl	-СН3	CI		2,69	
197	Cyclohexyl	-H	2,4- Difluorphenyl	-CH ₃	CI		3,46	
198	1-Cyclohexylethyl	-H	2,4- Difluorphenyl	-СН3	CI		4,24	
199	Cyclopropyl	-Н	2,4- Difluorphenyl	-СН ₃	Cl		2,45	
200	Cyclopropylmethyl	-H	2,4- Difluorphenyl	-CH ₃	CI		2,77	
201	-CH ₂ -C(CH ₃)=CH ₂	-Н	2,4- Difluorphenyl	-СН ₃	Cl		2,72	
202	1,3-Dioxolan-2-ylmethyl	-СН3	2,4- Difluorphenyl	-СН ₃	CI		2,56	
203	Allyl	-СН3	2,4- Difluorphenyl	-CH ₃	Cl		3,06	
204	(2-Furyl)methyl	-CH ₃	2,4- Difluorphenyl	-СН ₃	CI		3,1	
205	i-Butyl	-СН3	2,4- Difluorphenyl	-СН ₃	CI		3,49	
206	-CH ₂ -C(CH ₃)=CH ₂	-CH ₃	2,4- Difluorphenyl	-СН ₃	СІ		3,41	
207	Allyl	-C ₂ H ₅	2,4- Difluorphenyl	-CH ₃	Cı		3,35	

Bsp.	R ¹	R ²	R ³	F	₹4	x	Iso- mer	logP	Fp.: (°C)
Nr. 208	(2-Tetrahydrofuryl)methyl	-C ₂ H ₅	2,4- Difluorphenyl	-(СН3	CI		3,18	
209	2-Methoxyethyl	n-Propyl	2,4- Difluorphenyl	-(СН3	Cı		3,26	
210	i-Butyl	-Н	2-Chlorphenyl	_	СН3	CI	_	3,1	
211	-CH ₂ -C(CH ₃) ₃	-H	2-Chlorphenyl	_	СН3	CI	_	3,57	<u> </u>
212	2-Butyl	-H	2-Chlorphenyl	<u> </u>	-СН3	CI	_	3,09	
213	Cyclopentyl	-H	2-Chlorphenyl		-CH ₃	CI	1	3,28	-
214	-i-Propyl	-H	2-Chlorphenyl		-CH ₃	c	1	2,75	_
215	Cyclopropyl	-H	2-Chlorpheny	1	-CH ₃	C	1	2,54	
216	Cyclopropylmethyl	-H	2-Chlorpheny	1	-CH ₃	c	:1	2,85	
217	7/21/ > 6//	-Н	2-Chlorpheny	1	-СН ₃		21	2,83	
218	CITION)	-H	2-Chlorpheny	/1	-CH ₃		21	3,84	
219		-CH ₃	2-Chlorphen	yl	-CH ₃	10	21	2,62	
220		-CH ₃	2-Chlorphen	yl	-CH ₃		CI	3,19	
22		-CH ₃	2-Chlorphen	yl	-CH ₃		CI	3,65	
22		-CH ₃	2-Chlorphen	ıyl	-CH	3	CI	2,64	<u> </u>
22	C/C/L)=C/L	-CH	2-Chlorpher	nyl	-CH	3	CI	3,5	7
22		-C ₂ H	2-Chlorpher	nyi	-CH	3	CI	3,5	<u>;</u>
22		-C ₂ H	2-Chlorphe	nyl	-CH	13	Cl	2,9	4
	26 -CH ₂ -CH ₂ -CH ₂ -CH	(CH ₃)-	2-Chlorphe	nyl	-CH	13	CI	3,2	27
	27 -CH ₂ -CH ₂ -CH ₂ -C		2-Chlorphe	nyl	-Ci	13	Cl	0,	75
	-CH ₂ -CH ₂ -CH=CH		2-Chlorpho	enyl	-CI	13	CI	0,	75
	-CH ₂ -CH ₂ -CH ₂ -CH(C		2-Chlorph	enyl	-CI	Н3	CI	3,	92

Bsp.	R ^I	R ²	R ³	R ⁴	х	Iso- mer	logP	Fp.: (°C)
230	-CH ₂ -CH ₂ -CH(CH ₃)-CH ₂ -	-CH ₂ -CH ₂ -CH(CH ₃)-CH ₂ -CH ₂ -		-СН ₃	Cl		3,94	
231	-CH ₂ -CH ₂ -CH=C(CH ₃)-C	-CH ₂ -CH ₂ -CH=C(CH ₃)-CH ₂ -		-СН ₃	CI		3,7	
232	-CH ₂ -CH ₂ -CH(CF ₃)-CH ₂ -	СН ₂ -	2-Chlorphenyl	-CH ₃	CI		3,63	
233	-СН ₂ -СН ₂ -СН ₂ -СН ₂ -С	I ₂ -	2-Chlorphenyl	-CH ₃	CI		3,48	
234	-СН ₂ -СН ₂ -О-СН ₂ -СН	2-	2-Chlorphenyl	-CH ₃	CI		2,38	
235	-CH ₂ -CH ₂ -S-CH ₂ -CH ₂	2-	2-Chlorphenyl	-СН ₃	Cl		3,09	
236	2-Methoxyethyl	-Н	2-Chlorphenyl	-СН ₃	CI		2,3	
237	Propargyl	-CH ₃	2-Chlorphenyl	-СН ₃	Cl		2,75	
238	(2-Furyl)methyl	-СН ₃	2-Chlorphenyl	-CH ₃	CI		3,2	
239	(2-Tetrahydrofuryl)methyl	-С ₂ Н ₅	2-Chlorphenyl	-СН ₃	Cl		3,23	
240	-CH ₂ -COOC ₂ H ₅	-С ₂ Н ₅	2-Chlorphenyl	-CH ₃	Cl		3,11	
241	n-Butyl	-C ₂ H ₅	2-Chlorphenyl	-СН ₃	Cl		4,1	
242	-С ₂ Н ₅	-С ₂ Н ₅	2-Chlorphenyl	-CH ₃	CI		3,24	
243	Cyclopropylmethyl	n-Propyl	2-Chlorphenyl	-CH ₃	CI		4,07	
244	(2-Tetrahydrofuryl)methyl	n-Propyl	2-Chlorphenyl	-СН ₃	CI		3,7	
245	-СН ₂ -СН(ОН)-СН ₂ -СН	I ₂ -	2-Chlorphenyl	-СН ₃	CI		0,75	
246	-СН ₂ -СН ₂ -О-СН ₂ -СН	2-	2-Chlor-6- Fluorphenyl	-СН ₃	CI		2,48	
247	n-Butyl	-C ₂ H ₅	2-Chlor-6- Fluorphenyl	-CH ₃	CI		4,18	
248	i-Butyl	-Н	2-Chlor-6- Fluorphenyl	-CH ₃	СІ		3,14	
249	-СН ₂ -С(СН ₃) ₃	-Н	2-Chlor-6- Fluorphenyl	-CH ₃	СІ		3,59	

Bsp.	R ¹	R ²	R ³	R ⁴	х	Iso-	logP	Fp.: (°C)
Nr. 250	-CH ₂ -C(CH ₃)=CH ₂	-H	2-Chlor-6- Fluorphenyl	-CH ₃	CI		2,8	
251	-CH ₂ -CH ₂ -CH ₂ -CH ₂		2-Chlor-6- Fluorphenyl	-CH ₃	CI		2,95	
252	-C ₂ H ₅	-C ₂ H ₅	2-Chlor-6- Fluorphenyl	-CH ₃	CI		3,33	
253	-CH ₂ -CN	-Н	2-Chlor-6- Fluorphenyl	-CH ₃	Cı		2,11	
254	-CH ₂ -CH ₂ -CH ₂ -CH ₂ -C	CH ₂ -	2-Chlor-6- Fluorphenyl	-CH ₃	CI		3,55	
255	Cyclopentyl	-H	2-Chlor-6- Fluorphenyl	-CH ₃	c		3,29	
256	-i-Propyl	-Н	2-Chlor-6- Fluorphenyl	-CH ₃	c	1	2,77	
257	2-Methoxyethyl	-Н	2-Chlor-6- Fluorphenyl	-СН3	C	:1	2,42	
258	Cyclopropyl	-H	2-Chlor-6- Fluorphenyl	-CH ₃	0	CI	2,77	
259	-CH ₂ -CH ₂ -S-CH ₂ -C	CH ₂ -	2-Chlor-6- Fluorphenyl	-СН ₃		CI	3,18	
260	-CH ₂ -CF ₃	-н	2-Chlor-6- Fluorphenyl	-CH	,	CI	2,77	
261	-CH ₂ -CH ₂ -CH(CF ₃)-C	H ₂ -CH ₂ -	2-Chlor-6- Fluorphenyl	-CH	3	CI	3,72	2
262	-CH ₂ -CH ₂ -CH(CH ₃)-C	H ₂ -CH ₂ -	2-Chlor-6- Fluorpheny		3	CI	3,99	,
263	3 Cyclopropylmethyl	-н	2-Chlor-6- Fluorpheny	1	13	CI	2,9	5

Bsp. Nr.	R ^J	R ²	R ³	R ⁴	х	Iso- mer	logP	Fp.: (°C)
264	2-Butyl ·	-Н	2-Chlor-6- Fluorphenyl	-CH ₃	CI		3,14	
265	-CH ₂ -CH ₂ -CH≃CH-CH	2-	2-Chlor-6- Fluorphenyl	-CH ₃	CI		3,33	-
266	-CH ₂ -CH ₂ -CHF-CH ₂ -CI	H ₂ -	2-Chlor-6- Fluorphenyl	-СН ₃	CI		3,07	
267	Allyl	-С ₂ н ₅	2-Chlor-6- Fluorphenyl	-CH ₃	CI		3,59	
268	(2-Tetrahydrofuryl)methyl	-С ₂ н ₅	2-Chlor-6- Fluorphenyl	-СН ₃	CI		3,29	
269	2-Methoxyethyl	-С ₂ Н ₅	2-Chlor-6- Fluorphenyl	-СН ₃	CI		3,03	
270	-сн ₂ -соос ₂ н ₅	-С ₂ Н ₅	2-Chlor-6- Fluorphenyl	-СН ₃	CI		3,14	
271	Propargyl	-CH ₃	2-Chlor-6- Fluorphenyl	-CH ₃	Cl		2,77	
272	-сн ₂ -соос ₂ н ₅	-СН3	2-Chlor-6- Fluorphenyl	-CH ₃	СІ		2,48	
273	Allyl	-СН3	2-Chlor-6- Fluorphenyl	-CH ₃	СІ		3,26	
274	(2-Furyl)methyl	-CH ₃	2-Chlor-6- Fluorphenyl	-СН3	СІ		3,26	
275	-CH ₂ -C(CH ₃)=CH ₂	-СН3	2-Chlor-6- Fluorphenyl	-СН3	CI		3,63	
276	i-Butyl	-СН3	2-Chlor-6- Fluorphenyl	-СН3	CI		3,68	
277	(2-Tetrahydrofuryl)methyl	n-Propyl	2-Chlor-6- Fluorphenyl	-СН3	CI		3,72	

Bsp.	R ¹	R ²	R ³	R ⁴	x	Iso-	logP	Fp.: (°C)
Nr. 278	-СН ₂ -СН(ОН)-СН ₂ -СН	-CH ₂ -CH(OH)-CH ₂ -CH ₂ -		-СН ₃	CI		2,02	
279	1,3-Dioxolan-2-ylmethyl	1,3-Dioxolan-2-ylmethyl -CH ₃		-CH ₃	CI	_		
280	-CH ₂ -CH ₂ -CH ₂ -CH(CI	H ₃)-	2,4- Difluorphenyl	-CH ₃	CI	-	3,14	
281	-CH ₂ -CH ₂ -CH ₂ -CH	2-	2,4- Difluorphenyl	-CH ₃	c	1	2,74	
282	-CH ₂ -CH ₂ -CH(OH)-CH ₂	₂ -CH ₂ -	2,4- Difluorphenyl	-CH	3 C	1	1,9	
283	-CH ₂ -CH ₂ -CH=CH-C	-CH ₂ -CH ₂ -CH=CH-CH ₂ -		-CH	3 0	21	3,11	
284	AB10		2,4- Difluorphenyl	-CH	13	CI	2,68	3
285	-CH ₂ -CH ₂ -CH ₂ -CH ₂ -C	н(СН ₃)-	2,4- Difluorphenyl	-CI	13	CI	3,7	'
286	-CH ₂ -CH ₂ -CH ₂ -CH(CH	н ₃)-СН ₂ -	2,4- Difluorpheny	-CI	Н3	CI	3,7	4
28	-CH ₂ -CH ₂ -CH(CH ₃)-C	H ₂ -CH ₂ -	2,4- Difluorpheny		Н3	СІ	3,7	75
28	8 -CH ₂ -CH ₂ -C(CH ₃) ₂ -C	CH ₂ -CH ₂ -	2,4- Difluorpheny	- (:Н3	CI	4,	01
28	-CH ₂ -CH ₂ -CH(COCH ₃)	-CH ₂ -CH ₂ -	2,4- Difluorphen	ŀ	ж3	СІ	2	,5
25	-CH ₂ -CH=C(C ₂ H ₅)-C	CH ₂ -CH ₂ -	2,4- Difluorphen	Ì	СН3	СІ	3	,94
2	91 -CH ₂ -CH ₂ -CH=C(C	H ₃)-CH ₂ -	2,4- Difluorpher	1	СН3	Cı	3	,49

Bsp.	R ¹	R ²	R ³	R ⁴	х	Iso-	logP	Fp.: (°C)
292	-CH ₂ -CH ₂ -CH(СООСН ₃)-СН	Н ₂ -СН(СООСН ₃)-СН ₂ -СН ₂ -		-CH ₃	CI		2,78	
293	-CH ₂ -CH ₂ -CH(CF ₃)-CH ₂ -	СН ₂ -	2,4- Difluorphenyl	-CH ₃	CI		3,49	
294	-CH ₂ -CH ₂ -CH(NH-COCH ₃)-C	H ₂ -CH ₂ -	2,4- Difluorphenyl	-CH ₃	CI		1,85	
295	-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH	···	2,4- Difluorphenyl	-CH ₃	CI		3,32	
296	-СН ₂ -СН ₂ -О-СН ₂ -СН	2-	2,4- Difluorphenyl	-CH ₃	CI		2,3	
297	-CH ₂ -CH ₂ -S-CH ₂ -CH ₂	2 ⁻	2,4- Difluorphenyl	-CH ₃	CI		2,97	
298	4-Tolyl	-Н	2,4- Difluorphenyl	-СН3	CI		3,05	
299	4-Fluorphenyl	-Н	2,4- Difluorphenyl	-CH ₃	Cl ·		2,7	
300	AB13		2,4- Difluorphenyl	-СН3	Cı		3,28	
301	-CH(CH ₃)-CH ₂ -CH(CH ₃) ₂	-н	2,4- Difluorphenyl	-CH ₃	CI		3,7	
302	-CH ₂ -CH ₂ -CH ₂ -CH(CH ₃)	-CH ₂ -	2-Chlor-6- Fluorphenyl	-CH3	Ċı		3,99	
303	-СН ₂ -СН(ОН)-СН ₂ -СН	l ₂ -	2,6- Difluorphenyl	-СН3	CI		1,73	
304	-СН ₂ -СН ₂ -СН ₂ -СН(СН	(3)-	2,6- Difluorphenyl	-СН3	CI		3,02	
305	AB8		2,6- Difluorphenyl	-СН ₃	CI		1,64	

Bsp.		R ¹	R ²	R ³	R	4	х	Iso- mer	logP	Fp.: (°C)
Nr. 306		AB9		2,6- Difluorphenyl	-0	сн3	Cl		1,18	
307		-CH ₂ -CH ₂ -CH(OH)-CH ₂	.сн ₂ -	2,6- Difluorphenyl	-(СН3	CI		1,83	
308		-CH ₂ -CH ₂ -CH=CH-C	H ₂ -	2,6- Difluorphenyl	1	СН3	CI		3,01	
309		AB10		2,6- Difluorpheny	1	CH ₃	CI		2,6	
310	-0	CH ₂ -CH(CH ₃)-CH ₂ -CH(C	:H ₃)-CH ₂ -	2,6- Difluorpheny	ı	-CH ₃	CI		4,0	8
311		-CH ₂ -CH ₂ -CH ₂ -CH ₂ -C	H(CH ₃)-	2,6- Difluorphen	- 1	-CH ₃	С	1	3,5	7
312		-CH ₂ -CH ₂ -CH ₂ -CH(CH	1 ₃)-CH ₂ -	2,6- Difluorphen	ıyl	-СН3		3 .	3,6	53
313	3	-CH ₂ -CH ₂ -CH(CH ₃)-C	:H ₂ -CH ₂ -	2,6- Difluorpher	nyl	-CH ₃	10	C1	3,	64
314	4	-CH ₂ -CH(OH)-CH ₂ -C	:H ₂ -CH ₂ -	2,6- Difluorphe	nyl	-CH ₃		СІ	2	,03
31	15	-CH ₂ -CH ₂ -C(CH ₃) ₂ -	CH ₂ -CH ₂ -	2,6- Difluorphe	enyl	-CH	3	CI	3	,91
31	16	-CH ₂ -CH=C(C ₂ H ₅)-	CH ₂ -CH ₂ -	2,6- Difluorph	enyl	-CH	3	Cl	:	3,84
3	17	-CH ₂ -CH ₂ -CH=C(C	:H ₃)-СН ₂ -	2,6- Difluorph		-CI	13	Cl		3,39
3	318	-CH ₂ -CH ₂ -CH(COOCI	н ₃)-СН ₂ -СН	2,6- Difluorp		-CI	Н3	CI		2,69
	319	-CH ₂ -CH ₂ -CHBr-	CH ₂ -CH ₂ -	2,6 Difluor		1	Н3	CI		3,33

Bsp.	R ¹	R ²	R ³	R ⁴	х	Iso- mer	logP	Fp.: (°C)
320	-CH(СООСН ₃)-CH ₂ -CH ₂ -CH	I ₂ -CH ₂ -	2,6- Difluorphenyl	-CH ₃	CI		3,04	
321	AB12	AB12		-CH ₃	CI		3,15	
322	AB11		2-Fluorphenyl	-СH ₃	CI		1,26	
323	-CH ₂ -CH ₂ -CH(NH-COCH ₃)-C	H ₂ -CH ₂ -	2,6- Difluorphenyl	-СН ₃	Cl		1,78	
324	-CH ₂ -CH ₂ -N(CH ₃)-CH ₂ -0	CH ₂ -	2,6- Difluorphenyl	-Сӊ ₃	CI		1,12	
325	AB14		2,6- Difluorphenyl	-СН3	Ci		3,56	
326	3-Tolyl	-H	2,6- Difluorphenyl	-СН ₃	CI		2,89	
327	AB13		2,6- Difluorphenyl	-СН3	CI		3,22	
328	i-Butyl	-H	2,6- Difluorphenyl	-CH ₃	CI		2,85	
329	-CH ₂ -C(CH ₃) ₃	-H	2,6- Difluorphenyl	-CH ₃	CI		3,27	
330	-CH(CH ₃)-CH ₂ -CH(CH ₃) ₂	-Н	2,6- Difluorphenyl	-CH ₃	CI		3,55	
331	Propargyl ·	-CH ₃	2,6- Difluorphenyl	-CH ₃	CI		2,54	
332	1,3-Dioxolan-2-ylmethyl	-CH ₃	2,6- Difluorphenyl	-CH ₃	CI		2,43	
333	Allyi	-CH ₃	2,6- Difluorphenyl	-CH ₃	CI		2,95	

						_		F (90)
Bsp.	R1	R ²	R ³	R ⁴	Х	Iso- mer	logP	Fp.: (°C)
334	-CH ₂ -CH(OCH ₃) ₂	-CH ₃	2,6- Difluorphenyl	-CH ₃	CI		2,55	
335	i-Butyl	-СН3	2,6- Difluorphenyl	-CH ₃	СІ		3,37	
336	2-Methoxyethyl	-CH ₃	2,6- Difluorphenyl	-CH ₃	CI		2,45	
337	-CH ₂ -C(CH ₃)=CH ₂	-CH ₃	2,6- Difluorphenyl	-CH ₃	Cı		3,3	
338	n-Butyl	-CH ₃	2,6- Difluorphenyl	-СН ₃	C		3,46	
339	-CH ₂ -C(CH ₃)=CH ₂	-C ₂ H ₅	2,6- Difluorphenyl	-CH ₃	С	1	3,65	
340	(2-Furyl)methyl	-C ₂ H ₅	2,6- Difluorphenyl	-CH ₃	C	1	3,28	
341	(2-Tetrahydrofuryl)methyl	-C ₂ H ₅	2,6- Difluorphenyl	-CH ₃		21	3	
342	2-Methoxyethyl	-C ₂ H ₅	2,6- Difluorphenyl	-CH ₃	, ,	21	2,74	
343	-CH ₂ -COOC ₂ H ₅	-C ₂ H ₅	2,6- Difluorpheny	-СН ₃	3	Cı	2,85	
344	n-Butyl	-C ₂ H ₅	2,6- Difluorpheny	-CH	3	СІ	3,82	2
34:	5 Cyclopropylmethyl	n-Propy	2,6-	-CH	3	CI	3,8	3
34	6 (2-Tetrahydropyranyl)methyl	n-Propy	2,6-	-CH	13	CI	3,9	5
34	7 (2-Tetrahydrofuryl)methyl	n-Propy	d 2,6- Difluorphen	-CI	13	CI	3,3	9

Bsp.	R ^I	R ²	R ³	R ⁴	х	Iso- mer	logP	Fp.: (°C)
Nr. 348	2-Methoxyethyl	п-Propyl	2,6- Difluorphenyl	-СН ₃	CI		3,12	
349	3-Trifluormethylcyclohexyl	-Н	2,4- Difluorphenyl	-СН ₃	CI		3,52	,
350	-CH ₂ -CH ₂ -N(CH ₃) ₂	-CH ₃	2,4- Difluorphenyl	-CH ₃	Cl		1,23	
351	Propargyl	-CH ₃	2,4- Difluorphenyl	-CH ₃	CI		2,67	
352	2-Methoxyethyl	-CH ₃	2,4- Difluorphenyl	-CH ₃	Cl		2,58	
353	-CH ₂ -CH ₂ -N(CH ₃) ₂	-C ₂ H ₅	2,4- Difluorphenyl	-CH ₃	CI		1,37	
354	(2-Furyl)methyl	-C ₂ H ₅	2,4- Difluorphenyl	-СН ₃	CI		3,39	
355	-СН ₂ -СООС ₂ Н ₅	-C ₂ H ₅	2,4- Difluorphenyl	-CH ₃	Cl		3,04	
356	Cyclopropylmethyl	n-Propyl	2,4- Difluorphenyl	-CH ₃	Cl		3,91	
357	(2-Tetrahydrofuryl)methyl	n-Propyl	2,4- Difluorphenyl	-СН3	Cl		3,6	
358	2,2,2-Trifluor-1-methylethyl	-Н	2,4- Difluorphenyl	-CF ₃	Cl		3,89	
359	2,2,2-Trifluor-1-methylethyl	-H	2,4- Difluorphenyl	-СН3	Cl	AS	2,95	
360	2,2,2-Trifluor-1-methylethyl	-н	2,4- Difluorphenyl	-CH ₃	CI	BS	2,96	
361	i-Butoxy	-H	2-Fluorphenyl	-CH ₃	CI		2,98	

Bsp.	R ¹	R ²	R ³	R ⁴	х	Iso- mer	logP	Fp.: (°C)
Nr.	-O-C ₂ H ₅	-H	2-Fluorphenyl	-CH ₃	Cl		2,28	
363	Benzyloxy	-H	2-Fluorphenyl	-CH ₃	CI		2,93	
364	3,5-Dichlorbenzyloxy	-H	2-Fluorphenyl	-СН ₃	CI	_	3,76	
365	4-Trifluormethylbenzyloxy	-H	2-Fluorphenyl	-CH ₃	Cı		3,43	
366	2-Chlorbenzyloxy	-Н	2-Fluorphenyl	-CH ₃	CI	<u> </u>	3,21	
367	3-Chlorbenzyloxy	-Н	2-Fluorphenyl	-CH ₃	СІ	-	3,28	
368	4-Chlorbenzyloxy	-Н	2-Fluorphenyl	-СН ₃	CI	_	3,3	
369	4-Fluorbenzyloxy	-Н	2-Fluorphenyl	-CH ₃	CI		2,98	<u> </u>
370	-O-CH(CH ₃)-CH ₂ -CH ₃	-H	2-Fluorphenyl	-CH ₃	С	1	2,87	
371	3-Trifluormethylbenzyloxy	-H	2-Fluorphenyl	-CH ₃	C	1	3,38	-
372	-n-Butoxy	-H	2-Fluorphenyl	-CH ₃	C	1	2,98	-
373	Aliyloxy	-H	2-Fluorphenyl	-CH ₃	C		2,42	
374	t-Butoxy	-Н	2-Fluorphenyl	-CH ₃		21	2,75	
375		-H	2-Fluorphenyl	-CH ₃		21	2,59	
376	-O-CH ₃	-Н	2-Fluorphenyl	-CH ₃	1	CI	2,03	
377	- 011	-CH ₃	2-Fluorpheny	-CH ₃		CI	2,5	
378	0.17	-H	2-Fluorpheny	1 -CH		СІ	2,54	
379		-Н	2,4,6- Trifluorpheny	-CH	3	Cl	3,09	·
38	O -CH ₂ -CF ₃	-С2Н	5 2,4,6- Trifluorphen	-CH	3	CI	3,4	2
38	-CH ₃	-CH			3	CI	2,3	4
38	211/OIX) O OII/(2-Fluorphen	yl -CI	13	Cl	2,	8
	32 -C112-C1(C113) + C1(C113) + C1(C113)	-н			13	Cl	2,	3

Bsp. Nr.	R ¹	R ²	R ³	R ⁴	х	Iso- mer	logP	Fp.: (°C)
384	-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH	2	2-Fluorphenyl	-СН3	Cl		3,19	
385	Cyclopentyl	-Н	2-Fluorphenyl	-СН3	Cl		3,11	
386	-i-Propyl	-H	2-Fluorphenyl	-СН ₃	Cl		2,63	
387	-C ₂ H ₅	-C ₂ H ₅	2-Fluorphenyl	-СН ₃	CI		2,95	
388	-СН ₂ -СН ₂ -О-СН ₂ -СН ₂	-	2-Fluorphenyl	-СН ₃	CI		2,16	
389	-СН ₃	-H	2-Fluorphenyl	-СН ₃	CI		2,02	
390	Cyclopropyl	-H	2-Fluorphenyl	-СН ₃	CI		2,41	ļ
391	-CH ₂ -CF ₃	-Н	2-Fluorphenyl	-CH ₃	CI		2,53	<u> </u>
392	-CH ₂ -CH ₂ -CH(CF ₃)-CH ₂ -	CH ₂ -	2-Fluorphenyl	-СН ₃	CI		3,37	
393	Cyclopropylmethyl	-H	2-Fluorphenyl	-CH ₃	CI		2,72	ļ
394	-CH ₂ -C(CH ₃)=CH ₂	-H	2-Fluorphenyl	-СН ₃	СІ		2,68	
395	-CH ₂ -CH ₂ -CF ₃	-Н	2-Fluorphenyl	-CH ₃	CI	<u> </u>	2,7	ļ
396	1-Cyclohexylethyl	-H	2-Fluorphenyl	-СН3	CI	<u> </u>	4,16	
397	Cyclohexyl	-H	2-Fluorphenyl	-CH ₃	Ci	<u> </u>	3,43	
398	2-Trifluormethylcyclohexyl	-H	2-Fluorphenyl	-CH ₃	CI	_	3,49	
399	3,5-bis-Trifluormethylcyclohexyl	-H	2-Fluorphenyl	-CH ₃	CI		3,73	
400	4-Trifluormethylcyclohexyl	-H	2-Fluorphenyl	-CH ₃	СІ	<u> </u>	3,48	
401	-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₍	CH ₃)-	2-Chlorphenyl	-CH ₃	CI		3,91	<u> </u>
402	-CH ₂ -CH ₂ -CHF-CH ₂ -Cl	H ₂ -	2-Chlorphenyl	-СH ₃	СІ	_	3,05	<u> </u>
403	-CH ₂ -CN	-Н	2-Chlorphenyl	-сн ₃	CI	_	2,03	<u> </u>
404	(2-Furyl)methyl	-C ₂ H ₅	2-Chlorphenyl	-СН ₃	CI	_	3,56	ļ
405	Cyclopentyl	-Н	2,4- Difluorphenyl	-CH ₃	CI		3,24	

3sp.		R ¹	R ²		R ³	R	4	x	Iso-	1	logP	Fp.: (°C)	
Nr. 406		-CH ₂ -CF ₃	-H	Di	2,4- fluorphenyl	-C	сн3	Cl		-	2,68		
407		-C(CH ₃) ₂ -CH ₂ -COCH ₃	-Н	Di	2,4- ifluorphenyl	-(СН3	Cl	<u> </u>	1	2,53		
408	2.	-Trifluormethylcyclohexyl	-H	D	2,4- ifluorphenyl	-0	СН3	Cl			3,56	-	
409	4	-Trifluormethylcyclohexyl	-Н	E	2,4- Difluorphenyl	-	CH ₃	CI	-		3,56	-	
410		-CH ₂ -COOC ₂ H ₅	-CH ₃	I	2,4- Difluorphenyl	1	-CH ₃	c	1		2,8		
411	+-	-CH ₂ -CH ₂ -CN	-CH ₃		2,4- Difluorphenyl	1	-CH ₃		21		2,34	-	
412		-CH ₂ -CN	-CH ₃	- 1	2,4- Difluorpheny	1	-CH ₃	1			2,34		
413	3	-CH ₂ -CH ₂ -CN	-C ₂ H	5	2,4- Difluorpheny	,i	-CH ₃		CI		2,58		
41	4	-CH ₂ -COOC ₂ H ₅	Cyclop	гор	2,4- Difluorphen	yl	-CH ₃		Cl		3,29	,	
41	15	-СН ₂ -СН(ОН)-СН ₂	-CH ₂ -		2,4- Difluorphen	ıyl	-CH	,	Cl		1,9	5	
-	16	2-Methoxyethyl	n-Pro	pyl	2-Chlorpher	nyl	-CH	3	Cl		3,3	36	
	17	-CH(CH ₃)-CH=CH ₂	-I	ł	2,4,6- Trifluorphe	nyl	-CH	3	CI	-	2,8	85	
4	418	-CH3	-C	Н3	2,6-	nyl	-CI	I ₃	CI		2,	37	_
-	419	-C ₂ H ₅		Н	2,6-	enyl	-CI	Н3	С		2	,31	

Bsp.	RI	R ²	R ³	R ⁴	х	Iso-	logP	Fp.: (°C)
420	-CH ₂ -CN	-H	2,6- Difluorphenyl	-СН ₃	CI		1,91	
421	-С(СН ₃) ₂ -СF ₃	-Н	2,6- Difluorphenyl	-СН ₃	Ci		3,34	
422	-CH ₃	-Н	2,6- Difluorphenyl	-CH ₃	Cl		2,03	
423	-CH(CF ₃)-CH ₂ -CH ₂ -CH ₂ -	СН ₂ -	2,6- Difluorphenyl	-CH ₃	CI		3,33	
424	-CH ₂ -CF ₃	-H	2,6- Difluorphenyl	-CH ₃	CI		2,56	
425	2-Trifluormethylcyclohexyl	-Н	2,6- Difluorphenyl	-CH ₃	Cl		3,52	
426	-ОН	-i-Propyl	2,6- Difluorphenyl	-СН ₃	CI		2,52	
427	Benzyloxy	-н	2,6- Difluorphenyl	-СН ₃	Cl		2,93	
428	3,5-Dichlorbenzyloxy	-н	2,6- Difluorphenyl	-СН3	CI		3,75	
429	2,4-Dichlorbenzyloxy	-Н	2,6- Difluorphenyl	-СН3	Cl		3,69	
430	4-Trifluormethylbenzyloxy	-Н	2,6- Difluorphenyl	-CH ₃	Cl		3,44	
431	2-Chlorbenzyloxy	-H	2,6- Difluorphenyl	-CH ₃	Cı		3,13	
432	4-Fluorbenzyloxy	-H	2,6- Difluorphenyl	-CH ₃	CI		2,9	
433	3-Trifluormethylbenzyloxy	-Н	2,6- Difluorphenyl	-СН3	Cı		3,41	

Bsp.	R ¹	R ²	R ³	R ⁴	x	Iso- mer	1	Fp.: (°C)
Nr. 434	-n-Butoxy	-Н	2,6- Difluorphenyl	-CH ₃	CI		2,96	
435	2,6-Dichlorbenzyloxy	-H	2,6- Difluorphenyl	-CH ₃	C		3,31	
436	-O-CH ₃	-Н	2,6- Difluorphenyl	-CH	3 C	1	2,07	
437	2,2,2-Trifluor-1-methylethyl	-H	2-Chlorphenyl	-CH	3 (21	3,1	
438	2,2,2-Trifluor-1-methylethyl	-Н	2-Chlorphenyl	-СН	13	F	2,97	
439	2-Fluorcyclopropyl	-Н	2,4,6- Trifluorphenyl	-CH	13	CI .	2,3	
440	-CH ₂ -COOC ₂ H ₅	Cyclopro	- 2,6- Difluorphenyl	-CI	13	CI	3	
441	-CH ₂ -CH(NH ₂)-CH ₂ -		2,6- Difluorpheny	-Ci	Н3	Cl	1,1	9
442	-CH ₂ -CH ₂ -CH(COCH ₃)-C	СН ₂ -СН ₂ -	2,6- Difluorpheny	-c	Н3	Cl	2,4	19
443	-CH ₂ -CH ₂ -CHF-CH ₂	-CH ₂ -	2,6- Difluorphen	- 1	СН3	СІ	2,	85
44	4 4-Tolyl	-H	2,6- Difluorphen	- 1	CH ₃	Cl	3,	01
44	5 4-Fluorphenyl	-H	2,6- Difluorpher	1	СН ₃	CI	2	,71
44	46 AB28		2,6- Difluorphe	ì	-СН3	CI	3	3,34
4	-CH ₂ -C(CH ₃)=CH ₂	-C ₂ I	H ₅ 2-Chlorpho	1	Cyclo- propyl	CI		4,59

Bsp.	R ¹	R ²	R ³	R ⁴	х	Iso-	logP	Fp.: (°C)
Nr.						mer	_	
448	-СН ₂ -С(СН ₃)=СН ₂	-C ₂ H ₅	2,4,6- Trifluorphenyl	Cyclo- propyl	CI		4,49	
449	-CH ₂ -C(CH ₃)=CH ₂	-C ₂ H ₅	2-Chlor-6- Fluorphenyl	Cyclo- propyl	CI		4,61	
450	AB8		2,4- Difluorphenyl	-СН ₃	СІ		1,73	
451	-СН ₂ -СН(СН ₃)-СН ₂ -СН(СН	3)-CH ₂ -	2,4- Difluorphenyl	-СН3	Cl		4,16	
452	-СН ₂ -СН(ОН)-СН ₂ -СН ₂ -	CH ₂ -	2,4- Difluorphenyl	-СН ₃	CI		2,2	
453	-CH(COOCH ₃)-CH ₂ -CH ₂ -CH	H ₂ -CH ₂ -	2,4- Difluorphenyl	-СН ₃	CI		3,36	
454	-CH ₂ -CH ₂ -CHF-CH ₂ -Cl	H ₂ -	2,4- Difluorphenyl	-CH ₃	СІ		2,96	
455	-СН ₂ -СН(СН ₃)-О-СН(СН ₃)-CH ₂ -	2,4- Difluorphenyl	-CH ₃	CI		2,94	
456	3-Tolyl	-Н	2,4- Difluorphenyl	-CH ₃	CI		3	
457	2,2,2-Trifluor-I-methylethyl	-H	2-Chlor-6- Fluorphenyl	Cyclo- propyl	CI		3,59	
458	2,2,2-Trifluor-1-methylethyl	-H	2,4,6- Trifluorphenyl	Cyclo- propyl	Cì		3,58	
459	-NH-CH ₂ -CH ₂ -CH ₂ -C	H ₂ -	2-Chlor-6- Fluorphenyl	Cyclo- propyl	CI		3,46	
460	i-Butyl	-H	2,4,6- Trifluorphenyl	Cyclo- propyl	CI		3,69	
461	-СН ₂ -С(СН ₃) ₃	-Н	2,4,6- Trifluorphenyl	Cyclo- propyl	CI		4,19	

sp.	R ¹	R ²	R ³	R	4	x	Iso- mer	1	ogP	Fp.: (°C)
Nr. 462	2-Butyl	-Н	2,4,6- Trifluorphenyl		clo- opyl	Cl			3,69	
463	Cyclopentyl	-Н	2,4,6- Trifluorphenyl		yclo- opyl	Cl			3,9	
464	-i-Propyl	-H	2,4,6- Trifluorphenyl		yclo- ropyl	CI			3,35	
465	Cyclopropylmethyl	-Н	2,4,6- Trifluorphenyl	1	yclo- ropyl	CI			3,43	
466	-CH ₂ -C(CH ₃)=CH ₂	-H	2,4,6- Trifluorphenyl	1	Cyclo- propyl	С			3,34	
467	i-Butyl	-CH ₃	2,4,6- Trifluorphenyl		Cyclo- propyl	c	1		4,36	
468	2-Methoxyethyl	-CH ₃	2,4,6- Trifluorpheny	ı	Cyclo- propyl		21		3,29	
469	-CH ₂ -C(CH ₃)=CH ₂	-CH ₃	2,4,6- Trifluorpheny	-	Cyclo- propyl		CI		4,27	
470	2-Methoxyethyl	-C ₂ H ₅	2,4,6-	yl	Cyclo- propy	. 1	CI		3,64	
471	-CH ₂ -CH ₂ -CH ₂ -CH(CH ₃)-	2,4,6- Trifluorphen	yl	Cyclo		Cl		3,9	
472	-CH ₂ -CH ₂ -CH ₂ -C	Н ₂ -	2,4,6- Trifluorpher	ıyl	Cyclo	- 1	Cl		3,5	2
473	-CH ₂ -CH ₂ -CH(CH ₃)-C	:H ₂ -CH ₂ -	2,4,6- Trifluorphe	nyl	Cycle	- 1	C1		4,6	66
474	-CH ₂ -CH ₂ -CH ₂ -CH	₂ -CH ₂ -	2,4,6- Trifluorphe	nyl	Cycl prop		CI		4,	22
47:	-CH ₂ -CH ₂ -O-CH ₂	-СН ₂ -	2,4,6-	envl	Cyc		Cı		3,	02

Bsp.	R ¹	R ²	R ³	R ⁴	х	Iso-	logP	Fp.: (°C)
Nr.						mer		
476	i-Butyl	-H	2-Chlor-6- Fluorphenyl	Cyclo- propyl	CI		3,64	
477	-CH ₂ -C(CH ₃) ₃	-Н	2-Chlor-6- Fluorphenyl	Cyclo- propyl	CI		4,08	
478	2-Butyl	-Н	2-Chlor-6- Fluorphenyl	Cyclo- propyl	CI		3,66	
479	Cyclopentyl	-Н	2-Chlor-6- Fluorphenyl	Cyclo- propyl	CI		3,83	
480	-i-Propyl	-Н	2-Chlor-6- Fluorphenyl	Cyclo- propyl	Cl		3,33	
481	-CH ₂ -CF ₃	-Н	2-Chlor-6- Fluorphenyl	Cyclo- propyl	CI		3,19	
482	Cyclopropylmethyl	-Н	2-Chlor-6- Fluorphenyl	Cyclo- propyl	CI		3,4	
483	-CH ₂ -C(CH ₃)=CH ₂	-H	2-Chlor-6- Fluorphenyl	Cyclo- propyl	CI		3,31	
484	-о-сн ₂ -сн ₂ -сн ₂ -сн	2-	2-Chlorphenyl	Cyclo- propyl	Cl		3,71	
485	-O-СН ₂ -СН ₂ -СН ₂ -СН	2-	2,4,6- Trifluorphenyl	Cyclo- propyl	CI		3,74	
486	-O-СН ₂ -СН ₂ -СН ₂ -СН	2-	2-Chlor-6- Fluorphenyl	Cyclo- propyl	Ci		3,74	
487	-NH-CH ₂ -CH ₂ -CH ₂ -CH	4 ₂ -	2,4,6- Trifluorphenyl	Cyclo- propyl	CI		3,42	
488	-NH-CH ₂ -CH ₂ -CH ₂ -CH	I ₂ -	2-Chlorphenyl	Cyclo- propyl	Cl		3,39	
489	2,2,2-Trifluor-1-methylethyl	-н	2,4- Difluorphenyl	Cyclo- propyl	Cl	AS	3,51	

sp.		Rl	R ²		R ³	F	4	x	lso- mer	log	Р	Fp.: (°C)
Nr. 490	2,2,	2-Trifluor-1-methylethyl	-Н	1	2,4- Difluorphenyl		/clo- opyl	CI	BS	3,5	52		
491	-	-CH ₂ -C(CH ₃)=CH ₂	-C ₂ I		2,4- Difluorphenyl	1	yclo- ropyl	CI		4,	37	96-98	}
492		i-Butyl	-1	1	2-Chlorphenyl	1	Cyclo- oropyl	CI		3	,76		
493	3	-CH ₂ -CH ₂ -CH ₂ -CH ₂ -C	CH ₂ -		2-Chlorphenyl	1	Cyclo- propyl	CI		- 4	1,27		
49	4	2-Butyl	1	Н	2-Chlorpheny	- 1	Cyclo- propyl	С			3,76		
49	95	-CH ₂ -C(CH ₃)=CH ₂		-H	2-Chlorphen	yl	Cyclo- propyl	- 1	1		3,41	_	_
4	96	-CH ₂ -C(CH ₃)=CH ₂	-	СН3	2-Chlorphen	yl	Cyclo- propy	- 1	21		4,32		
4	197	i-Butyl		-CH ₃	2-Chlorpher	nyl	Cyclo		CI		4,41	1	_
+	498	-CH ₂ -CH ₂ -CH ₂ -CH	(CH ₃)-		2-Chlorphe	nyl	Cycle	- 1	CI		3,9	9	
-	499	-СН ₂ -СН ₂ -СН ₂ -СН ₂ -СН	СН(СН	I ₃)-	2-Chlorpho	enyl	Cycl prop	- 1	Cl		4,6	51	
	500	-CH ₂ -CF ₃		-Н	2-Chlorph	enyl	Cyc		Cl		3,2	22	
	501	-CH(CF ₃)-CH ₂ -C	H ₂ -CH ₂	2-	2-Chlorpl	henyl	1	clo- opyl	CI		4,	,41	_
1	502	(2,2-Dichlorcyclopropyl)	nethyl	-CH	2,4,6 Trifluor		. 1	CH ₃	CI		3	,68	_
	503	-i-Propyl		-F	1 2-Chlo		1	yclo- ropyl	CI			3,5	

Bsp.	R ¹	R ²	R ³	R ⁴	х	Iso-	logP	Fp.: (°C)
Nr.						mer		
504	NA CAL CAL CAL		2-Chlor-4-	Cyclo-	Cl		2.50	
304	-NH-CH ₂ -CH ₂ -CH ₂ -CH	2-	fluorphenyl	propyl			3,58	
			Hadiphenyi	propyr				
505	2,2,2-Trifluor-1-methylethyl	-H	2-Chlor-4-	Cyclo-	CI	AS+	3,75	
			fluorphenyl	propyl		BS		
506	1,2-Dimethylpropyl	-H	2,4,6-	-CH ₃	CI		3,35	
			Trifluorphenyl					
507	(2,2-Dichlorcyclopropyl)methyl	-CH ₃	2,4-	Cyclo-	CI		4,18	133-36
į		,	Difluorphenyl	propyl				
500	(2.2 Pi-11 1) 1	CII	2 Chlamband		C.		4.20	
508	(2,2-Dichlorcyclopropyl)methyl	-CH ₃	2-Chlorphenyl	Cyclo-	CI		4,29	
				propyl	-			<u> </u>
509	(2,2-Dichlorcyclopropyl)methyl	-CH ₃	2,4,6-	Cyclo-	Cl		4,26	
-	:		Trifluorphenyl	propyl				
510	(2,2-Dichlorcyclopropyl)methyl	-CH ₃	2-Chlor-6-	Cyclo-	СІ		4,37	
			Fluorphenyl	propyl				
511	-CH ₂ -CH=C(C ₂ H ₅)-CH ₂ -	CH ₂ -	2,4-	Cyclo-	CI		4,59	
	2 - 2 - 3, - 2	2	Difluorphenyl	propyl			•	
513	OH OH OH OKUL				6		414	
512	-CH ₂ -CH ₂ -CH=C(CH ₃)-C	.н2-	2,4-	Cyclo-	CI		4,14	
			Difluorphenyl	propyl				
513	-CH ₂ -CH ₂ -CHF-CH ₂ -Cl	H ₂ -	2,4-	Cyclo-	CI		3,45	
		·	Difluorphenyl	propyl	_			
514	AB12		2,4-	Cyclo-	СІ		3,78	
			Difluorphenyl	propyl				
515	-CH ₂ -CH ₂ -CH(CF ₃)-CH ₂ -	CH ₂ -	2,4-	Cyclo-	CI		4,07	
		-	Difluorphenyl	propyl				
516	-CH ₂ -CH ₂ -CH(NH-COCH ₃)-C	На-СНа-	2,4-	Cyclo-	CI		2,2	
""	ong-ong-on(mi-coon3)-c		Difluorphenyl	propyl	~		معوسه	
					-			
517	-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CI	H ₂ -	2,4-	Cyclo-	Cl		4,03	
			Difluorphenyl	propyl	<u> </u>			<u> </u>

WO 02/088126 PCT/EP02/04287

Bsp.	R ¹	R ²	R ³	R ⁴	х	Iso- mer	logP	Fp.: (°C)
Nr.	-CH ₂ -CH ₂ -O-CH ₂ -CH ₂ -		2,4- Difluorphenyl	Cyclo- propyl	Cl		2,85	
519	-CH ₂ -CH ₂ -S-CH ₂ -CH ₂ -		2,4- Difluorphenyl	Cyclo- propyl	CI		3,58	
520	AB14		2,4- Difluorphenyl	Cyclo- propyl	CI		4,25	
521	4-Tolyl	-H	2,4- Difluorphenyl	Cyclo- propyl	CI		3,6	-
522	AB13		2,4- Difluorphenyl	Cyclo- propyl	Cı		3,87	
523	1,2-Dimethylpropyl	-H	2,4,6- Trifluorphenyl	-CH ₃	C	1	3,38	
524	-O-CH ₂ -CH ₂ -CH ₂ -CH	2-	2,6- Difluorphenyl	-CH ₃	С	1	2,84	
525	i-Butyl	-H	2,4- Difluorphenyl	-CF ₃	C		4,03	
526	n-Butyl	-Н	2,4- Difluorphenyl	-CF ₃		CI	4,07	
527	-CH ₂ -C(CH ₃) ₃	-Н	2,4- Difluorpheny	-CF ₃	•	CI	4,4	
528	2-Butyl	-H	2,4- Difluorpheny	-CF	,	CI	4,03	
529	-CH ₂ -CH ₂ -CF ₃	-Н	2,4- Difluorpheny	-CF	3	CI	3,7	
530	Cyclopentyl	-H	2,4- Difluorphen	-CF	3	CI	4,2	1
531	Cyclopropyl	-Н	2,4- Difluorphen	-CF	3	CI	3,4	9

Bsp.	R ¹	R ²	R ³	R ⁴	х	Iso-	logP	Fp.: (°C)
Nr.		!				mer		
532	-CH ₂ -CF ₃	-Н	2,4- Difluorphenyl	-CF ₃	CI		3,58	
533	Cyclopropylmethyl	-н	2,4- Difluorphenyl	-CF ₃	CI		3,8	
534	-CH ₂ -C(CH ₃)=CH ₂	-Н	2,4- Difluorphenyl	-CF ₃	Cì		3,75	
535	t-Butyl	-н	2,4- Difluorphenyl	-CF ₃	CI		4,19	
536	3-Trifluormethylcyclohexyl	-H	2,4- Difluorphenyl	-CF ₃	CI		4,44	
537	4-Trifluormethylcyclohexyl	-H	2,4- Difluorphenyl	-CF ₃	Cl		4,43	·
538	-CH ₂ -CH ₂ -N(CH ₃) ₂	-СН ₃	2,4- Difluorphenyl	-CF ₃	Cl		1,77	
539	Propargyl	-СН ₃	2,4- Difluorphenyl	-CF ₃	CI		3,65	
540	1,3-Dioxolan-2-ylmethyl	-CH ₃	2,4- Difluorphenyl	-CF ₃	CI		3,62	
541	Allyl	-СН ₃	2,4- Difluorphenyl	-CF ₃	CI		4,09	
542	-CH ₂ -CH ₂ -CN	-CH ₃	2,4- Difluorphenyl	-CF ₃	CI		3,19	
543	(2-Furyl)methyl	-СН3	2,4- Difluorphenyl	-CF ₃	CI		4,11	
544	i-Butyl	-СН3	2,4- Difluorphenyl	-CF ₃	CI		4,54	
545	2-Methoxyethyl	-СН3	2,4- Difluorphenyl	-CF ₃	CI		3,73	

Bsp.	R ¹	R ²	R ³	R'	4	х	Iso- mer	logP	Fp.: (°C)
Nr. 546	-CH ₂ -C(CH ₃)=CH ₂	-CH ₃	2,4- Difluorphenyl	-C	F ₃	Cl		4,44	
547	-CH ₂ -CH ₂ -N(CH ₃) ₂	-C ₂ H ₅	2,4- Difluorphenyl	-c	CF3	Cl		1,91	
548	Allyl	-C ₂ H ₅	2,4- Difluorphenyl	j	CF ₃	Cl		4,4	
549	(2-Furyl)methyl	-C ₂ H ₅	2,4- Difluorphenyl	1	CF3	CI		4,42	
550	-CH ₂ -CH ₂ -CN	-C ₂ H ₅	2,4- Difluorpheny	1	CF ₃	CI		3,46	
551	-CH ₂ -COOC ₂ H ₅	-C ₂ H ₅	2,4- Difluorpheny	1	-CF ₃	С		4,05	5
552	(2-Tetrahydrofuryl)methyl	n-Propy	2,4- Difluorpheny	- 1	-CF ₃	C	1	4,7'	7
553	2-Methoxyethyl	n-Propy	2,4- Difluorphen		-CF ₃		21	4,3	9
554	-CH ₂ -COOC ₂ H ₅	Cyclopr	o- 2,4- Difluorpher	ıyl	-CF ₃	1	CI	4,2	28
555	-CH ₂ -CH(OH)-CH ₂ -	CH ₂ -	2,4- Difluorpher	nyl	-CF ₃		cı	2,	76
556	6 Cyclohexyl	-H	2,4- Difluorphe	nyl	-CF ₃	,	CI	4,	.47
55	7 I-Cyclohexylethyl	-Н	2,4- Difluorphe	enyl	-CF	3	Cl	5	,12
55	8 2-Methoxyethyl	-C ₂ I	H ₅ 2,4-	enyl	-CF	3	Cl	4	1,03
55	59 AB30	-F	I 2,4,6-	1	-Cl	ł ₃	Cl	3	3,71

PCT/EP02/04287

								
Bsp.	Rl	R ²	R ³	R ⁴	x	Iso- mer	logP	Fp.: (°C)
560	n-Butyl	-Н	2,6- Difluorphenyl	-CH ₃	Cl		2,89	·
561	-CH ₂ -CH ₂ -N(CH ₃) ₂	-СН3	2,6- Difluorphenyl	-СН ₃	CI		1,28	
562	-СН ₂ -СООС ₂ Н ₅	-СН ₃	2,6- Difluorphenyl	-CH ₃	Cl		2,62	
563	-CH ₂ -CH ₂ -CN	-СН ₃	2,6- Difluorphenyl	-CH ₃	CI		2,17	
564	-CH ₂ -CN	-CH ₃	2,6- Difluorphenyl	-CH ₃	CI		2,18	
565	-СН ₂ -СООСН ₃	-CH ₃	2,6- Difluorphenyl	-CH ₃	CI		2,32	
5 66	(2-Furyl)methyl	-СН ₃	2,6- Difluorphenyl	-CH ₃	CI		2,97	
567	-CH ₂ -CH ₂ -N(CH ₃) ₂	-C ₂ H ₅	2,6- Difluorphenyl	-CH ₃	CI		1,46	
568	Aliyi	-C ₂ H ₅	2,6- Difluorphenyl	-СН3	CI		3,3	
569	-CH ₂ -CH ₂ -CN	-C ₂ H ₅	2,6- Difluorphenyl	-СН3	CI		2,41	
570	2-Thienylmethyl	n-Propyl	2,6- Difluorphenyl	-СН3	CI		3,96	
571	-CH ₂ -CH ₂ -NH ₂	-i-Propyl	2,6- Difluorphenyl	-СН3	CI		1,28	
572	AB31		2,6- Difluorphenyl	-CH ₃	CI		2,66	
573	AB31		2,4,6- Trifluorphenyl	-СН3	СІ		2,9	

3sp.	R ¹		R ²	R ³	R	4	х	Iso- mer	10	gP	Fp.: (°C)
Nr. 574	-O-CH ₂ -CH ₂ -Cl	H ₂ -CH ₂ -		2,4,6- Trifluorphenyl	-0	СН3	Cl		3	,07	
575	AB31			2,4- Difluorphenyl		СН3	CI		2	2,74	
576	-O-CH ₂ -CH ₂ -C	CH ₂ -CH ₂ -		2,4- Difluorphenyl	-1	СН3	CI		2	2,95	
577	1,2-Dimethylprop	yl	-Н	2,4- Difluorphenyl	1	СН ₃	CI				
578	-СН(СН3)-СН	₂ -CH ₂ -O-		2,6- Difluorphenyl	1	-СН3	CI		-	2,61	
579	1,2-Dimethylprop	oyl	-Н	2-Chlorpheny	- 1	Cyclo- propyl	c	1	-	4,14	1-
580	-CH(CH ₃)-CH=	CH-CH(CI	H ₃)-	2-Chlorpheny	- 1	Cyclo- propyl	C	:1		4,19	
58	1 1,2-Dimethylpro	pyl	-H	2,4,6- Trifluorphen	yl	Cyclo- propyl	- 1	21	_	4,03	
58	-CH(CH ₃)-CH=	-CH-CH(C	H ₃)-	2,4,6- Trifluorpher	ıyl	Cyclo- propy		CI		4,17	
58	83 1,2-Dimethylpr	opyl	-H	2-Chlor-6	- 1	Cyclo propy	l	CI		4,12	!
5.	84 -СН(СН3)-СН	=CH-CH(CH ₃)-	2-Chlor-6	- 1	Cyclo	- 1	CI		4,1:	5
5	-CH(CH ₃)-	CH ₂ -CH ₂	-0-	2,4,6- Trifluorphe	enyl	-СН	3	CI		2,9	3
:	586 1,2-Dimethylp	oropyl	-Н	I 2-Chlor-fluorphe		Cycl		Cl	AS + BR	4,2	25

T	 	<u> </u>						
Bsp.	RI	R ²	R ³	R ⁴	х	Iso-	logP	Fp.: (°C)
Nr.	:					mer		
587	1,2-Dimethylpropyl	-H	2-Chlor-4-	Cyclo-	CI	AR	4,25	
	i, z z minny propy		fluorphenyl	propyl		+	,,	
1			. ,			BS		
588	1.2 Disaskalasasal	***	2-Chlor-4-	CII	CI		2.6	
388	1,2-Dimethylpropyl	-Н	fluorphenyl	-CH ₃	u		3,6	
		<u> </u>	пиогрненуг				<u> </u>	
589	-O-CH ₂ -CH ₂ -CH ₂ -CH	2-	2-Chlor-4-	-CH ₃	Cl		3,23	
		-	fluorphenyl					
590	AB31		2-Chlor-4-	-CH3	CI		2,99	
			fluorphenyl		<u> </u>			
591	Aliyi	-C ₂ H ₅	2,4-	Cyclo-	Cl		3,96	
	·	2 3	Difluorphenyl	propyl				
592	(2-Furyl)methyl	C-U-	2,4-	Cyclo-	CI		3,97	
372	(2-1 dryf)menryf	-С ₂ Н ₅	Difluorphenyl	propyl	0,		3,77	
593	(2-Tetrahydrofuryl)methyl	-C ₂ H ₅	2,4-	Cyclo-	Cı		3,78	
 			Difluorphenyl	propyl				
594	2-Methoxyethyl	-С ₂ Н ₅	2,4-	Cyclo-	Ci		3,46	
			Difluorphenyl	propyl				
595	-CH ₂ -COOC ₂ H ₅	-C ₂ H ₅	2,4-	Cyclo-	СІ		3,54	
	_ 		Difluorphenyl	propyl				
596	n-Butyl	-C ₂ H ₅	2,4-	Cyclo-	CI		4,52	
	n-Dutyi	-02115	Difluorphenyl	propyl	Ĭ,		4,52	
597	-C ₂ H ₅	-C ₂ H ₅	2,4-	Cyclo-	CI		3,73	
 			Difluorphenyl	propyl				
598	Cyclopropylmethyl	n-Propyl	2,4-	Cyclo-	CI		4,53	
			Difluorphenyl	propyl	_			ļ
599	(2-Tetrahydropyranyl)methyl	n-Propyl	2,4-	Cyclo-	CI		4,71	
			Difluorphenyl	propyl				

Bsp.	R ¹	R ²	R ³	R	4	х	Iso- mer	logP	Fp.: (°C)
Nr. 600	(2-Tetrahydrofuryl)methyl	n-Propyi	2,4- Difluorphenyl	Cyc	. 1	CI		4,22	
601	2-Thienylmethyl	n-Propyl	2,4- Difluorphenyl	l	clo- opyl	Cl		4,64	
602	2-Methoxyethyl	n-Propyl	2,4- Difluorphenyl		clo- opyl	Cl		3,84	
603	-CH ₂ -CH(OH)-CH ₂ -Cl	H ₂ -	2,4- Difluorphenyl	1	clo- opyl	CI		2,2	
604	-CH ₂ -CH ₂ -CH ₂ -CH(C	H ₃)-	2,4- Difluorphenyl		yclo- ropyl	CI		3,76	
605	AB9		2,4- Difluorphenyl	1	yclo- ropyl	C	1	1,46	
606	-CH ₂ -CH ₂ -CH ₂ -CH	I ₂ -	2,4- Difluorpheny	-	Cyclo- oropyl	C	:1	3,36	
607	-CH ₂ -CH ₂ -CH(OH)-CH	₂ -CH ₂ -	2,4- Difluorpheny	- [Cyclo- propyl		21	2,29	
608	-CH ₂ -CH ₂ -CH=CH-	CH ₂ -	2,4- Difluorpheny	- [Cyclo- propy		CI	3,72	
609	AB10		2,4- Difluorphen		Cyclo propy	. [Cl	3,22	2
610	-CH ₂ -CH(CH ₃)-CH ₂ -CH((CH ₃)-CH ₂ -	2,4-	ıyl	Cyclo	- 1	CI	4,7	2
61	-CH ₂	СН(СН3)-	2,4- Difluorpher	ıyl	Cycle	- 1	СІ	4,	3
61	2 -CH ₂ -CH ₂ -CH ₂ -CH(C	:H ₃)-CH ₂ -	2,4- Difluorphe	nyl	Cycl	ı	Cl	4,;	37
61	3 -CH ₂ -CH ₂ -CH(CH ₃)-	CH ₂ -CH ₂ -	2,4- Difluorphe	nyl	Cycl	1	CI	4,	41

Bsp.	R ¹	R ²	R ³	R ⁴	х	Iso- mer	logP	Fp.: (°C)
614	-СН ₂ -СН(ОН)-СН ₂ -СН ₂ -С	CH ₂ -	2,4- Difluorphenyl	Cyclo- propyl	CI		2,57	
615	-CH ₂ -CH ₂ -C(CH ₃) ₂ -CH ₂ -	CH ₂ -	2,4- Difluorphenyl	Cyclo- propyl	CI		4,67	
616	2-Methoxyethyl	-Н	2-Chlor-4- fluorphenyl	Cyclo- propyl	CI		3,07	
617	-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₍ (CH ₃)-	2-Chlor-4- fluorphenyl	Cyclo- propyl	CI		4,72	
618	-СН ₂ -СН ₂ -СН(СН ₃)-СН ₂ -	CH ₂ -	2-Chlor-4- fluorphenyl	Cyclo- propyl	Cı		4,82	
619	Dimethylamino	-H	2-Chlor-4- fluorphenyl	Cyclo- propyl	CI		3,29	
620	1-Cyclopropylethylamino	-н	2-Chlor-4- fluorphenyl	Cyclo- propyl	CI		3,81	
621	i-Butyl	-Н	2-Chlor-4- fluorphenyl	Cyclo- propyl	Cı		3,9	
622	-СН ₂ -С(СН ₃) ₃	-Н	2-Chlor-4- fluorphenyl	Cyclo- propyl	CI		4,37	
623	2-Butyl	-H	2-Chlor-4- fluorphenyl	Cyclo- propyl	CI		3,9	
624	Cyclopentyl	-H	2-Chlor-4- fluorphenyl	Cyclo- propyl	CI		4,13	
625	Cyclopropylmethyl	-H	2-Chlor-4- fluorphenyl	Cyclo- propyl	Ci		3,63	
626	-CH ₂ -C(CH ₃)=CH ₂	-Н	2-Chlor-4- fluorphenyl	Cyclo- propyl	CI		3,59	
627	i-Butyl	-CH ₃	2-Chlor-4- fluorphenyl	Cyclo- propyl	CI		4,51	

Bsp.	R ¹	R ²		R ³	R ⁴	x	Iso	ł	ogP	Fp.: (°C)
Nr. 628	2-Methoxyethyl	-CH ₃	- 1	2-Chlor-4- fluorphenyl	Cyclo- propyl	Cl		3	3,46	
629	-CH ₂ -C(CH ₃)=CH ₂	-CH ₃	'	2-Chlor-4- fluorphenyl	Cyclo- propyl	ì			4,41	
630	-CH ₂ -C(CH ₃)=CH ₂	-C ₂ H	5	2-Chlor-4- fluorphenyl	Cyclo- propy		1		4,77	
631	2-Methoxyethyl	-C ₂ H	15	2-Chlor-4- fluorphenyl	Cyclo propy	.	21		3,81	
632	-C ₂ H ₅	-C ₂ l	· I ₅	2-Chlor-4- fluorphenyl	Cycle		CI		4,13	
633	-CH ₂ -CH ₂ -CH ₂ -CH(CH ₃)-		2-Chlor-4- fluorphenyl	Çycle		CI		4,08	
634	-CH ₂ -CH ₂ -CH ₂ -C	Н2-		2-Chlor-4- fluorphenyl	Cycl		CI		3,72	
635	-CH ₂ -CH ₂ -CH ₂ -CH	₂ -CH ₂ -		2-Chlor-4- fluorphenyl	Cyc	.	CI		4,37	
63	6 -CH ₂ -CH ₂ -O-CH ₂	-CH ₂ -		2-Chlor-4- fluorphenyl	Cyc		Cl		3,18	
63	-CH(CH ₃)-CH ₂ -CH(CH ₃)2	H	2-Chlor-4- fluorphenyl		olo- opyl	Cl		4,61	
63	-CH ₂ -CF ₃			2-Chlor-4-fluorpheny	ì	clo- opyl	Cl		3,37	,
6	-CH(CF ₃)-CH ₂ -CH	I ₂ -CH ₂ -		2-Chlor-4-		clo- opyl	CI		4,2:	3
6	2,2,2-Trifluor-1-methylet	hyl	-Н	2-Chlor-4	- 1	CH ₃	CI	AS + BS	3,1	9

						<u> </u>		
Bsp.	R ¹	R ²	R ³	R ⁴	x	Iso- mer	logP	Fp.: (°C)
Nr.								
641	2,2,2-Trifluor-1-methylethyl	-Н	2-Chlor-4- fluorphenyl	-СН ₃	Cl	AS	3,2	
642	2,2,2-Trifluor-1-methylethyl	-Н	2-Chlor-4- fluorphenyl	-СН3	Cl	BS	. 3,17	
643	-CH ₂ -C(CH ₃)=CH ₂	-C ₂ H ₅	2-Chlor-4- fluorphenyl	-СН ₃	CI		4,06	
644	i-Butyl	-Н	2,4- Difluorphenyl	Cyclo- propyl	Cl		3,38	
645	n-Butyl	-H	2,4- Difluorphenyl	Cyclo- propyl	CI		3,6	
646	-CH ₂ -C(CH ₃) ₃	-н	2,4- Difluorphenyl	Cyclo- propyl	Cı		4	
647	2-Butyl	-н	2,4- Difluorphenyl	Cyclo- propyl	CI		3,57	
648	-CH ₂ -CH ₂ -CF ₃	-H	2,4- Difluorphenyl	Cyclo- propyl	CI		3,25	
649	n-Propyl	-H	2,4- Difluorphenyl	Cyclo- propyl	CI		3,2	
650	Cyclopentyl	-н	2,4- Difluorphenyl	Cyclo- propyl	Ci		3,76	
651	-i-Propyl	-Н	2,4- Difluorphenyl	Cyclo- propyl	Cl		3,2	
652	Cyclohexyl	-Н	2,4- Difluorphenyl	Cyclo- propyl	CI		4,02	
653	1-Cyclohexylethyl	-н	2,4- Difluorphenyl	Cyclo- propyl	CI		4,84	
654	2-Methoxyethyl	-Н	2,4- Difluorphenyl	Cyclo- propyl	CI		2,75	

Bsp.	R ¹	R ²	R ³	R ⁴	х	Iso- mer	logP	Fp.: (°C)
Nr. 655	Cyclopropyl	-H	2,4- Difluorphenyl	Cyclo- propyl	CI		2,95	
656	Cyclopropylmethyl	-H	2,4- Difluorphenyl	Cyclo- propyl	CI		3,26	
657	-CH ₂ -C(CH ₃)=CH ₂	-Н	2,4- Difluorphenyl	Cyclo- propyl	1		3,22	
658	3-Trifluormethylcyclohexyl	-H	2,4- Difluorphenyl	Cyclo- propyl	- 1		3,98	
659	4-Trifluormethylcyclohexyl	-H	2,4- Difluorphenyl	Cyclo	- 1	1	3,93	
660	-CH(CH ₃)-CH ₂ -CH(CH ₃) ₂	-H	2,4- Difluorpheny	Cyclo	1	:1	4,24	-
661	-CH ₂ -CH ₂ -N(CH ₃) ₂	-CH ₃	2,4- Difluorpheny	Cycle l prop	.	21	1,56	
662	Propargyi	-CH ₃	2,4- Difluorpheny	Cycl prop		CI	3,21	
663	1,3-Dioxolan-2-ylmethyl	-CH ₃	2,4- Difluorphen	Cyclor yl yl		CI	3,1	
664	Allyl	-CH ₃	2,4- Difluorphen	Cyc	- 1	CI	3,61	
66	5 3-(Dimethylamino)-propyl	-CH ₂	2,4- Difluorpher	Cyc	i	CI	1,61	
66	6 -CH ₂ -CH(OCH ₃) ₂	-CH	3 2,4- Difluorphe	1	clo- opyl	Cl	3,2	4
66	(2-Furyl)methyl	-CH	3 2,4- Difluorphe	1	clo- opyl	Cl	3,6	3
60	58 i-Butyl	-CH	I ₃ 2,4-	}	/clo- opyl	Cl	4,0)7

Bsp.	R1	R ²	R ³	R ⁴	х	Iso- mer	logP	Fp.: (°C)
669	2-Methoxyethyl	-CH ₃	2,4- Difluorphenyl	Cyclo- propyl	Cı		3,16	
670	-CH ₂ -C(CH ₃)=CH ₂	-СН ₃	2,4- Difluorphenyl	Cyclo- propyl	CI		4,05	
671	n-Butyl	-CH ₃	2,4- Difluorphenyl	Cyclo- propyl	CI		4,21	
672	-CH ₂ -CF ₃	-Н	2,4,6- Trifluorphenyl	Cyclo- propyl	СІ		3,25	
673	-CH(CF ₃)-CH ₂ -CH ₂ -CF	¹ 2-	2,4,6- Trifluorphenyl	Cyclo- propyl	Cı		4,08	
674	-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH(CH ₃)-	2,4,6- Trifluorphenyl	Cyclo- propyl	CI		4,6	
675	-CH ₂ -CH ₂ -CHF-CH ₂ -C	H ₂ -	2,4,6- Trifluorphenyl	Cyclo- propyl	CI		3,68	
676	i-Butyl .	-CH ₃	2,6- Difluorphenyl	Cyclo- propyl	CI		4,08	
677	-CH ₂ -C(CH ₃)=CH ₂	-CH ₃	2,6- Difluorphenyl	Cyclo- propyl	CI		3,98	
678	-СН ₂ -СН ₂ -СН ₂ -СН(СН	I ₃)-	2,6- Difluorphenyl	Cyclo- propyl	Cl		3,68	
679	-CH ₂ -CH ₂ -CH ₂ -CH ₂		2,6- Difluorphenyl	Cyclo- propyl	CI		3,25	
680	-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH(CH ₃ }-	2,6- Difluorphenyl	Cyclo- propyl	CI		3,17	
681	-СН ₂ -СН ₂ -СН(СН ₃)-СН ₂	-СН ₂ -	2,6- Difluorphenyl	Cyclo- propyl	CI		4,34	

ssp.	R ¹	R ²		R ³	R	4	х	Iso- mer	10	ogP	Fp.: (°C)
Nr. 682	-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH	I ₂ -	Di	2,6- fluorphenyl		clo- opyl	Cl			3,9	
683	-СН ₂ -СН ₂ -О-СН ₂ -СН	2-	D	2,6- ifluorphenyl		opyl	Cl			2,78	
684	1,2-Dimethylpropyl	-Н	1	2,6- pifluorphenyl	-(СН3	CI			3,18	
685	-CH(CH ₃)-C(CH ₃) ₃	-Н	- 1	2,6- Difluorphenyl	_	CH ₃	CI			3,56	
686	-O-CH ₂ -CH ₂ -CH ₂ -CH(CH ₃)-	7	2,4,6- Trifluorphenyl		-СН3	C			3,42	
687	-C ₂ H ₅	-1	Н	2,4- Difluorphenyl		-CH ₃	C	1		3,08	
688	1,2-Dimethylpropyl	-	Н	2-Chlor-6- Fluorphenyl		-CH ₃	(n l		3,43	
689	AB31	1		2,4- Difluorpheny	- 1	Cyclo- propyl		CI		3,32	
690	-O-CH ₂ -CH ₂ -CH ₂ -	CH ₂ -		2,4- Difluorpheny	/i	Cyclo- propy	- 1	CI		3,5	6
691	-NH-CH ₂ -CH ₂ -CH ₂	-CH ₂ -		2-Chlor-4-		-CH ₃		Cl		2,9	4
692	-NH-CH ₂ -CH ₂ -CH	 ₂ -CH ₂ -		2,4,6- Trifluorpher	ıyl	-CH ₃	3	Cl		2,8	33
69	3 -O-CH ₂ -CH ₂ -CH ₂ -C	H(CH ₃))-	2,4- Difluorpher	nyl	-СН	3	Cl		3	,3
69	-CH ₂ -CHF ₂		-Н	2,4,6- Trifluorphe	nyl	-CH	3	CI		2,	,41
6	95 -CH(CH ₃)-CH ₂ -C	CH ₂ -O-		2,4-	enyl	-CF	I3	CI		2	,79

WO 02/088126

- 107 -

PCT/EP02/04287

,								1 7
Bsp.	R ¹	R ²	R ³	R ⁴	х	Iso-	logP	Fp.: (°C)
Nr.					ļ			
696	1,2-Dimethylpropyl	-Н	2-Chlorphenyl	-СН ₃	CI		3,46	
697	-CH ₂ -CHF ₂	-CH ₂ -CHF ₂ -H		-СН ₃	Ci		2,54	
698	i-Butyl	i-Butyl -CH ₃		Cyclo- propyl	CI		4,32	
699	2-Methoxyethyl	2-Methoxyethyl -CH ₃		Cyclo- propyl	Cl		3,3	
700	-CH ₂ -C(CH ₃)=CH ₂	-CH ₃	2-Chlor-6- Fluorphenyl	Cyclo- propyl	CI		4,21	
701	2-Methoxyethyl -C ₂ H ₅		2-Chlor-6- Fluorphenyl	Cyclo- propyl	СІ		3,66	
702	-СН ₂ -СН ₂ -СН ₂ -СН(СН	-CH ₂ -CH ₂ -CH ₂ -CH(CH ₃)-			CI		3,94	
703	-CH(CF ₃)-CH ₂ -CH ₂ -CI	f ₂ -	2-Chlor-6- Fluorphenyl	Cyclo- propyl	CI		4,1	
704	-СН ₂ -СН ₂ -СН ₂ -СН ₂	-	2-Chlor-6- Fluorphenyl	Cyclo- propyl	CI		3,55	
705	-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH(CH ₃)-	2-Chlor-6- Fluorphenyl	Cyclo- propyl	Cl		4,54	
706	-СН ₂ -СН ₂ -СН(СН ₃)-СН ₂	-CH ₂ -CH ₂ -CH(CH ₃)-CH ₂ -CH ₂ -			CI		4,59	
707	-CH ₂ -CH ₂ -CHF-CH ₂ -C	2-Chlor-6- Fluorphenyl	Cyclo- propyl	CI		3,63		
708	-CH ₂ -CH ₂ -CH ₂ -CH ₂ -C	2-Chlor-6- Fluorphenyl	Cyclo- propyl	Cì		4,19		
709	-СН ₂ -СН ₂ -О-СН ₂ -СН	2-	2-Chlor-6- Fluorphenyl	Cyclo- propyl	Cl		3,05	

sp.	RI	R ²	R ³	F	24	х	Iso- mer	logP	Fp.: (°C)
710	2,2,2-Trifluor-1-methylethyl	-H	2,4- Dichlorphenyl	1	yclo- opyl	Cl	AS	4,12	
711	2,2,2-Trifluor-1-methylethyl	-Н	2,4- Dichlorphenyl	1	yclo- ropyl	Cl	BS	4,19	
712	-C ₂ H ₅	-H	2,4- Difluorphenyl	1	Cyclo- oropył	Cl		2,97	-
713	-CH ₂ -CN	-H	2,4- Difluorpheny	1 1	Cyclo- propyl	CI		2,42	
714	-CH ₂ -CF ₃	-H	2,4- Difluorpheny	1	Cyclo- propyl	CI		3,17	-
715	2-Trifluormethylcyclohexyl	-H	2,4- Difluorpheny	/l	Cyclo- propyl	C		4,31	
716	3,5-bis-Trifluormethylcyclohex		2,4- Difluorphen	yl	Cyclo- propyl Cyclo-	1		3,28	
717		-CH ₃	2,4- Difluorphen 2,4-	1	propyl Cyclo-		21	2,79	
718		-CH ₃	Difluorphen	nyl	propyl Cyclo-		CI	2,79	
719		-CH ₃	Difluorpher	nyl	propyl Cyclo		CI	2,9	5
72		-CH ₃	Difluorphe	nyl	propy	1	CI	3,5	
72		-CH	Difluorphe	nyl	propy	1	CI	3,0	6
72		-CH	Difluorphe	enyl	propy	/1	Cl	1,0	55
	23 -CH ₂ -CH ₂ -N(CH ₃) ₂	-C ₂ F	Difluorph	enyl	prop	yl	Cl	1,	47
7:	24 -CH ₂ -CH ₂ -NH ₂	-C ₂ I	Difluorph		prop	yl	Cl	3,	07
	-CH ₂ -CH ₂ -CN	-C ₂ 1	Difluorph	nenyl	prop	yl	Cl	1	,61
7	726 3-Aminopropyl	n-Pro	Difluorpl						

WO 02/088126

Bsp.	R ¹	R ²	R ³	R ⁴	х	Iso-	logP	Fp.: (°C)
Nr.						mer		
727	-CH ₂ -COOC ₂ H ₅	Cycloprop	2,4-	Cyclo-	Cl		3,84	
	yl		Difluorphenyl	propyl				
728	AB8	2,4-	Cyclo-	CI		2,17		
		:	Difluorphenyl	propyl				
729	-CH(CF ₃)-CH ₂ -CH ₂ -CH	2,4-	Cyclo-	Cl		4,14		
	-	Difluorphenyl	propyl					
730	-CH ₂ -CH ₂ -CH(COCH ₃)-CH	2,4-	Cyclo-	Cl		3,07		
	_	Difluorphenyl	propyl					
731	-CH ₂ -CH ₂ -CH(COOCH ₃)-CH	H ₂ -CH ₂ -	2,4-	Cyclo-	CI		3,38	
732	-CH ₂ -CH ₂ -CHBr-CH ₂ -C	:H ₂ -	2,4-	Cyçlo-	CI		4,08	
			Difluorphenyl	propyl				<u> </u>
733	-CH(COOCH ₃)-CH ₂ -CH ₂ -Cl	H ₂ -CH ₂ -	2,4-	Cyclo-	Cl		3,92	
		Difluorphenyl	propyl					
734	AB11	2,4-	Cyclo-	Cl		1,55		
		Difluorphenyl	propyl					
735	-CH ₂ -CH ₂ -N(CH ₃)-CH ₂ -	2,4-	Cyclo-	CI		1,43		
			Difluorphenyl	propyl	<u> </u>			<u> </u>
736	-CH ₂ -CH(CH ₃)-O-CH(CH ₃)-CH ₂ -	2,4-	Cyclo-	CI		3,63	
			Difluorphenyl	propyl				<u> </u>
737	3-Tolyl	-H	2,4-	Cyclo-	CI		3,61	
			Difluorphenyl	propyl				
738	4-Fluorphenyl	-H	2,4-	Cyclo-	CI		3,27	
1			Difluorphenyl	propyl				
739	-i-Propyl	-H	2,6-	Cyclo-	Cl		3,14	
			Difluorphenyl	propyl				
740	Cyclopentyl	-H	2,6-	Cyclo-	CI		3,66	ŀ
			Difluorphenyl	propyl				
741	-CH ₂ -CHF ₂	-H	2,4-	Cyclo-	CI		3,42	
			Dichlorphenyl	propyl				
742	-CH ₂ -CF ₃	-H	2,4-	Cyclo-	CI		3,72	1
			Dichlorphenyl	propyl			<u></u>	
743	AB31		2,6-	Cyclo-	CI		3,23	
1			Difluorphenyl	propyl	<u>\</u>		<u> </u>	
744	i-Butyl	-H	2,6-	Cyclo-	CI		3,44	
			Difluorphenyl	propyl	<u> </u>			<u> </u>

Bsp.		R ¹	R ²	R ³	F	ξ4	х	Iso- mer	1	ogP	Fp.: (°	C)
Nr.		i Narathari	-H	2-Chlorphenyl	C	clo-	Cl			3,78		-
745	(2,2-1	Dichlorcyclopropyl)methyl	-11	, ,	pr	opyl						
		at Labor	-H	2-Chlor-4-	C	yclo-	Cl	AS	+BS			
746	2,2	2-Trifluor-1-methylethyl	-11	fluorphenyl	pr	ropyl		+ 4	R+	•		1
				}				1	3R		_	
		- 1 1-1k-1	-H	2-Chlor-4-	10	yclo-	CI	AS	3	3,73	T	
747	2,2	,2-Trifluor-1-methylethyl	-11	fluorphenyl	p	ropyl		+			1	- 1
								BI	2			
		3 1 4 4	-H	2-Chlor-4-	1	Cyclo-	CI	A	R	3,77		
748	2,3	2,2-Trifluor-1-methylethyl		fluorphenyl		oropyl		-	-		1	
								В	s			
		10 Di . d .dd	-H	2,4-	+	Cyclo-	c	1	\top	4,72		٦
749	'	1,2-Dimethylpropyl	-**	Dichlorpheny	/l	propyl						
		NU	i-Butyl			Cyclo-	10	ī	7	4,36		
750)	-NH ₂		Dichlorphen	yl	propyl			1			
_		1,2-Dimethylpropyl	-H	2,6-	+	Cyclo-	10	1		3,82	-	
75	1	1,2-Dimethylpropyr		Difluorphen	yl	propyl			١			
_		-CH ₂ -C(CH ₃)=CH ₂	-C ₂ H	2,6-	_	Cyclo	. 10	1		4,31		
75	2	-CH2-C(CH3)-CH2	-2	Difluorphen	ıyl	propy	١	- [
L		-O-CH ₂ -CH ₂ -CH ₂ -C	CHar	2,6-		Cyclo	- 1	CI		3,47	Ì	
75	53	-0-CH2-CH2-CH2	J Z	Difluorpher	ıyl	propy	1	- }				
		-NH ₂	i-But	yl 2,6-	_	Cyclo	-	CI		3,47		
75	54	-141.7		Difluorphe	nyi	propy	1	- 1				
		-NH-CH ₂ -CH ₂ -CH ₂	-CH2-	2,4-	一	Cycle	5-	CI		4,02	2 3	208-9
7	55	-Nn-Cn2-Cn2 Cn2	,2	Dichlorphe	nyl	prop	yl					
L		1,2-Dimethylpropyl	-н	2,4-		Cycl	0-	Cl	AR	4,7	2	
7	56	1,2-Dimenil .b	}	Dichlorpho	enyl	prop	yl				\perp	
<u>_</u>	-	1,2-Dimethylpropyl	-F	2,4-		Cycl	0-	Cl	BR	4,7	2	
1	157	1,2-21	1	Dichlorph	enyl	prop	yl			1		
<u> </u>	750	1,2-Dimethylpropyl	-F	i 2,4-		Сус	lo-	Cl	AS	4,7	2	
	758	1,2-Dimeni, -bb)		Dichlorph	enyl	pro	pyl		L	1_		
	750	1,2-Dimethylpropyl		2,4-		Cyc	lo-	Cl	BS	4,	72	
- 1	759	1,2-Dimon, -FFJ-		Dichlorph	nenyl	pro	pyl	_	1_			
-	760	-CH ₂ -C(CH ₃)=CH ₂		H 2,6-		Cyc	clo-	CI		3,	28	
- [760	-0112-0(01-3) 33-2	ŀ	Difluorpl	henyl	pro	pyl		1			
-	761	2-Butyl		H 2,6-		Су	clo-	Ci		3,	44	
1	761	<u></u>		Difluorp	henyl	pro	pyl					<u>L_</u>

Bsp.	RI	R ²	R ³	R ⁴	х	Iso-	logP	Fp.: (°C)
Nr.						mer		
762	-CH ₂ -C(CH ₃) ₃	-H	2,6-	Cyclo-	Cl		3,9	
			Difluorphenyl	propyl				
763	-CH ₂ -CHF ₂	-H	2,6-	Cyclo-	CI		2,72	
	; 		Difluorphenyl	propyl				
764	2,2,2-Trifluor-1-methylethyl	-H	2,6-	Cyclo-	Cl		3,98	
			Difluorphenyl	propyl				
765	-CH(CH ₃)-CH ₂ -CH ₂ -C)-	2,6-	Cyclo-	CI		3,26	ŀ
			Difluorphenyl	propyl				<u> </u>
766	-CH ₂ -CF ₃	-H	2-Chlor-4-	-CH ₃	Cl		2,8	
			fluorphenyl					
767	2,2,2-Trifluor-1-methylethyl	-H	2-Chlor-4-	Cyclo-	Cl	AS	3,73	
			fluorphenyl	propyl				
768	2,2,2-Trifluor-1-methylethyl	-H	2-Chlor-4-	Cyclo-	CI	BS	3,77	
		[fluorphenyl	propyl				
769	-CH ₂ -C(CH ₃)=CH ₂	-C ₂ H ₅	2,4-	Cyclo-	CI		5,25	
			Dichlorphenyl	propyl				
770	AB32		2,6-	Cyclo-l	Cl		3,32	
ļ			Difluorphenyl					
771	-CH ₂ -CF ₃	-H	2,6-	Cyclo-	CI		3,04	
			Difluorphenyl	propyl				
772	-NH-CH ₂ -CH ₂ -CH ₂ -CH	H ₂ -	2,6-	Cyclo-	Cl		3,19	
			Difluorphenyl	propyl	1			
773	-NH ₂	i-Butyl	2,4,6-	Cyclo-	Cl		3,65	186-8
]			Trifluorphenyl	propyl				
774	AB33	-H	2,4-	Cyclo-	CI		2,7	
		j	Dichlorphenyl	propyl				
775	1,2-Dimethylpropyl	-H	2-Chlor-4-	Cyclo-	CI	AR	4,23	
			fluorphenyl	propyl		+		
1		j]		BR		
776	1,2-Dimethylpropyl	-H	2-Chlor-4-	Cyclo-	CI	BR	4,25	
			fluorphenyl	propyl				
777	1,2-Dimethylpropyl	-Н	2-Chlor-4-	Cyclo-	Cl	AR	4,23	
1		1	fluorphenyl	propyl				
778	1,2-Dimethylpropyl	-H	2-Chlor-4-	Cyclo-	CI	AS	4,23	
		1	fluorphenyl	propyl				

Bsp.	R ¹	R ²	R ³	R ⁴	х	Iso- mer	logP	Fp.: (°C)
Nr.	1,2-Dimethylpropyl	H	2-Chlor-4-	Cyclo-	Cl	BS	4,23	
779	1,2-Dimentylpropyr		fluorphenyl	propyl				
	AB31		2,4-	-CH ₃	Cl		3,41	
780	AD31		Dichlorphenyl					
701	2,2,2-Trifluor-1-methylethyl	-H	2,4-	-CH ₃	Cl	AS	3,55	210-1
781	2,2,2-1 Hillion-1-monty-cary		Dichlorphenyl					
782	2,2,2-Trifluor-1-methylethyl	-H	2,4-	-СH ₃	CI	BS	3,58	216-7
/62	2,2,2-11111001 1 33003		Dichlorphenyl					
783	-CH ₂ -C(CH ₃)=CH ₂	-C ₂ H ₅	2,4-	-CH ₃	Cl		4,56	
/83	-city o(oxis)z		Dichlorphenyl				ļ	
784	-NH-CH ₂ -CH ₂ -CH ₂ -Cl	H2-	2,4-	-CH ₃	CI		3,35	
/84	throng ong ong	-2	Dichlorphenyl				Ì	
785	-O-CH ₂ -CH ₂ -CH ₂ -CH	I ₂ -	2-Chlor-4-	Cyclo-	CI		3,87	
105		2	fluorphenyi	propyl				
786	AB32		2,4,6-	Cyclo-	CI		3,56	
700			Trifluorphenyl	propyl			l	
787	1-Methylethylidenamino	i-Butyl	2,6-	Cyclo-	CI	T	4,21	
,0.		1	Difluorphenyl	propyl				
788	1,2-Dimethylpropyl	-H	2,4-	-CH ₃	CI		4,06	132-35
700			Dichlorphenyl					
789	i-Butyl	-Н	2,4-	-CH ₃	C		3,68	
100			Dichlorphenyl	1			<u> </u>	
790	i-Butyl	-Н	2,4-	Cyclo-	C	l	4,3	
''			Dichlorphenyl	propyl				
1								
791	-NH ₂	i-Butyl	2-Chlor-6-	Cyclo-	. 0	1	3,74	175-6
"	~		Fluorphenyl	propyl				
792	-CH ₂ -CH ₂ -CH ₂ -CH ₍ CH ₂ -CH ₁ -CH ₁ -CH ₂ -CH ₂ -CH ₁ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₁ -CH ₂ -	CH ₃)-	2,4-	-CF ₃	(21	4,27	
		-	Difluorphenyl	·				
793	AB8		2,4-	-CF ₃	T	21	2,56	
			Difluorpheny					
794	-CH(CF ₃)-CH ₂ -CH ₂ -	-CH ₂ -	2,4-	-CF ₃	T	CI	4,44	.
			Difluorpheny					
795	AB9		2,4-	-CF ₃		CI	1,67	
'			Difluorpheny	1 {				

- 113 -

PCT/EP02/04287

					Γ	1		
Bsp.	R ¹	R ²	R ³	R^4	х	Iso-	logP	Fp.: (°C)
Nr.						mer]]
796	AB10		2,4-	-CF ₃	Cl		3,8	
			Difluorphenyl	,			·	
797	-CH ₂ -CH(CH ₃)-CH ₂ -CH(CH	3)-CH ₂ -	2,4-	-CF ₃	Cl		5,18	
			Difluorphenyl					
798	-CH ₂ -CH ₂ -CH(CH ₃)-CH ₂ -	2,4-	-CF ₃	CI		4,8		
		Difluorphenyl						
799	-CH ₂ -CH(OH)-CH ₂ -CH ₂ -	2,4-	-CF ₃	CI		3,07		
		Difluorphenyl						
800	-CH ₂ -CH ₂ -C(CH ₃) ₂ -CH ₂ -	CH ₂ -	2,4-	-CF ₃	CI		5,03	
			Difluorphenyl		,			
801	-CH ₂ -CH=C(C ₂ H ₅)-CH ₂ -	CH ₂ -	2,4-	-CF ₃	CI		4,95	
			Difluorphenyl					
802	-CH ₂ -CH ₂ -CH=C(CH ₃)-C	CH ₂ -	2,4-	-CF ₃	CI		4,55	
		Difluorphenyl						
803	-CH ₂ -CH ₂ -CH(СООСН ₃)-С	2,4-	-CF ₃	CI		3,81		
		Difluorphenyl						
804	-CH(COOCH ₃)-CH ₂ -CH ₂ -CH	I ₂ -СН ₂ -	2,4-	-CF ₃	CI		4,32	
			Difluorphenyl					
805	-CH ₂ -CH ₂ -CH(CF ₃)-CH ₂ -	СН ₂ -	2,4-	-CF ₃	CI		4,43	
			Difluorphenyl					
806	-CH ₂ -CH ₂ -CH(NH-COCH ₃)-C	:H ₂ -CH ₂ -	2,4-	-CF ₃	CI		2,71	
			Difluorphenyl					
807	-CH ₂ -CH ₂ -N(CH ₃)-CH ₂ -	CH ₂ -	2,4-	-CF ₃	CI		1,65	
			Difluorphenyl					
808	-CH ₂ -CH(CH ₃)-О-CH(CH ₃)-CH ₂ -	2,4-	-CF ₃	CI		4,1	
			Difluorphenyl			<u> </u>		
809	-CH ₂ -CH ₂ -CH ₂ -CH ₂ -C	H ₂ -	2,4-	-CF ₃	CI		4,45)
			Difluorphenyl		<u> </u>	<u> </u>		
810	-CH ₂ -CH ₂ -S-CH ₂ -CH	2-	2,4-	-CF ₃	CI	1	4,04	
		· · · · · · · · · · · · · · · · · · ·	Difluorphenyl			<u> </u>		
811	2-Tolyl	-Н	2,4-	-CF ₃	Cl		3,99	
			Difluorphenyl		<u> </u>			
812	3-Tolyl	-H	2,4-	-CF ₃	CI		4,04	
			Difluorphenyl		<u> </u>	1		ļ
813	4-Tolyl	-Н	2,4-	-CF ₃	CI		4,08	
L			Difluorphenyl					<u> </u>

Bsp.	R ¹	R ²	R ³	R ⁴	х	Iso- mer	logP	Fp.: (°C)
Nr.	4-Fluorphenyl	-Н	2,4-	-CF ₃	CI		3,69	
815	AB13		Difluorphenyl 2,4-	-CF ₃	CI	-	4,35	-
	-NH ₂	i-Butyl	Difluorphenyl 2,4-	-CH ₃	Cl	-	3,71	
816			Dichlorphenyl 2,4-	-CH ₃	CI	-	3,67	-
817	-O-CH ₂ -CH ₂ -CH ₂ -CH	2-	Dichlorphenyl		CI		4,73	-
818	-CH(CH ₃)-CH ₂ -CH(CH ₃) ₂	-Н	2,4- Difluorphenyl	-CF ₃			1,,,,,	

Die Bestimmung der logP-Werte erfolgte gemäß EEC-Directive 79/831 Annex V. A8 durch HPLC (Gradientenmethode, Acetonitril/0,1 % wässrige Phosphorsäure)

*) bedeutet, dass R¹ und R² gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen heterocyclischen Ring bilden.

10

15

**) Die Produkte wurden teilweise als Stereoisomere isoliert. "S", bzw. "R" bedeutet S- bzw. R-Konfiguration am Chiralitätszentrum; "AS" bedeutet eine eindeutige aber unbekannte Konfiguration am Atropiezentrum und S-Konfiguration am Chiralitätszentrum. BS bedeutet die jeweils andere eindeutige aber unbekannte Konfiguration am Atropiezentrum und S-Konfiguration am Chiralitätszentrum. "AR" und "BR" bedeuten wiederum die jeweiligen komplementären Konfigurationen am Atropiezentrum gepaart mit der R-Konfiguration am Chiralitätszentrum. Demnach sind bei gleichen Substituenten "AR" und "BS", sowie "AS" und "BR" jeweils Enantiomerenpaare.

AB10	*\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
ABII	_z_0
AB12	HN O CH ₃ CH ₃
AB14	
AB8	O=CH₃ NH
AB9	H ₃ C N-CH ₃
AB28	
AB3	O CH ₃ CH ₃

AB30		H H			
AB31		A.º			
AB32					
AB33		H ₃ C O			
AB4		H ₃ ¢			
AB	5	H ₃ C CH ₃ H ₃ CO O CH ₃			
AB	66	√ он			
AI	37	*-0			

^{*} markiert jeweils die Bindungsstelle

- 117 -

Herstellung von Ausgangsstoffen

Beispiel 819

$$\begin{array}{c|c} F & CI \\ \hline & N & N \\ \hline & CF_3 \end{array} \qquad \text{(II-1)}$$

5

10

15

2,6 g (7,43 mMol) 2-Trifluormethyl-6-(2,4,6-trifluorphenyl)-[1,2,4]triazolo[1,5-a]-pyrimidin-5,7-diol werden bei Raumtemperatur in 20 ml Phosphoroxychlorid gelöst, portionsweise mit 1,2 g Phosphorpentachlorid versetzt und anschließend 6 Stunden unter Rückfluss erhitzt. Flüchtige Bestandteile der Reaktionsmischung werden unter vermindertem Druck abdestilliert. Der Rückstand wird mit 20 ml Wasser versetzt und mit 20 ml Dichlormethan extrahiert. Die organische Phase wird über Natriumsulfat getrocknet und an Kieselgel mit Dichlormethan chromatografiert. Man erhält 1,2 g (37,6 % der Theorie) 5,7-Dichlor-2-(trifluormethyl)-6-(2,4,6-trifluorphenyl)-[1,2,4]triazolo[1,5-a]pyrimidin.

HPLC: logP = 3,71

Beispiel 820

20

Verfahren (e), erste Stufe:

$$H_3C$$
 O
 O
 CH_3
 $(X-1)$

1 000 mg N-Methoxy-carbaminsäureethylester werden in 10,0 ml Dimethylformamid vorgelegt und portionsweise mit 403 mg Natriumhydrid versetzt, wobei die Temperatur durch Kühlung auf 30°C eingestellt wurde. Die Reaktionsmischung wird für 2 Stunden bei 30°C gerührt und anschließend mit 3 500 mg 2-Bromethyl-methylether versetzt. Die Reaktionsmischung wird für 18 Stunden bei 20°C bis 25°C gerührt und anschließend in 20 ml Wasser eingerührt. Die erhaltene Reaktionsmischung wird unter vermindertem Druck zur Trockne eingeengt und viermal mit je 30 ml Dichlormethan extrahiert. Die organischen Extrakte werden über Natriumsulfat getrocknet, filtriert und unter vermindertem Druck zur Trockne eingeengt.

10

5

Man erhält 1 200 mg (N-Methoxy-N-methoxyethyl)carbaminsäure-ethylester (Reinheit 77,6 %, Ausbeute 62,6 %).

Verfahren (e), zweite Stufe:

15

$$H_3C$$
 O
 CH_3
 $(III-1)$

200 mg (N-Methoxy-N-methoxyethyl)-carbaminsäureethylester werden in 4,0 ml wässrigem Ethanol (59 %ig) vorgelegt, mit 240,6 mg Kaliumhydroxid versetzt und für 18 Stunden bei 40°C gerührt. Die Reaktionsmischung wird dann in 50 ml Wasser eingerührt, dreimal mit je 20 ml Diethylether und dreimal mit je 20 ml Dichlormethan extrahiert. Die vereinigten organischen Phasen werden zweimal mit je 20 ml Wasser gewaschen, getrocknet und bei 20°C unter vermindertem Druck auf ein Volumen von 20 ml eingeengt.

25

20

Die erhaltene Lösung wird unter Eiskühlung mit 2 ml Salzsäure versetzt, 1 Stunde bei Raumtemperatur gerührt und bei 20°C unter vermindertem Druck zur Trockne eingeengt.

- 119 -

Das erhaltene Produkt wird dreimal mit je 15 ml Methanol digeriert und anschließend bei 20°C unter vermindertem Druck zur Trockne eingeengt.

Man erhält 140 mg N-Methoxy-N-methoxyethylamin-hydrochlorid (Ausbeute 87,6 %).

Beispiel 821

Verfahren (f), erste Stufe:

10

15

20

25

5

$$\begin{array}{c} O \\ II \\ C-OC_2H_5 \end{array} (XII-1) \\ CH_3-N \\ O-CH_2-CH_2-O-CH_3 \end{array}$$

Ein Gemisch aus 1000 mg N-Hydroxy-N-methyl-carbaminsäure-ethylester, 1166 mg 2-Bromethyl-methylether und Rühren auf Rückflusstemperatur erhitzt und dann tropfenweise mit einer Lösung von 493 mg Kaliumhydroxid in 5 ml Ethanol versetzt Man kocht das Reaktionsgemisch 10 Stunden unter Rückfluss und arbeitet dann auf, indem man das Reaktionsgemisch filtriert und das Filtrat unter vermindertem Druck einengt. Der verbleibende Rückstand wird mit einem Gemisch aus Wasser und Essigsäureethylester versetzt. Die organische Phase wird abgetrennt, mit gesättigter, wässriger Ammoniumchlorid-Lösung und dann mit Wasser gewaschen. Anschließend wird die organische Phase über Natriumsulfat getrocknet und unter vermindertem Druck eingeengt. Man erhält auf diese Weise 0,7 g eines Produktes, das gemäß Gaschromatogramm zu 83 % aus (N-Methyl-N-methoxyethoxy)-carbaminsäure-ethylester besteht. Die Ausbeute errechnet sich danach zu 39 % der Theorie.

Verfahren (f), zweite Stufe:

- 120 -

$$\begin{array}{c} \text{O-CH}_{\overline{2}}\text{--CH}_{\overline{2}}\text{--OCH}_{3}\\ \text{H--N}\\ \text{CH}_{3} \end{array} \tag{III-2}$$

Ein Gemisch aus 200 mg (N-Methyl-N-methoxyethoxy)-carbaminsäure-ethylester, 4 ml Ethanol und 4 ml Wasser wird mit 240,6 mg pulverisiertem Kaliumhydroxid versetzt und 2 Stunden bei 40°C gerührt. Das Reaktionsgemisch wird danach in 50 ml Wasser eingerührt, dann dreimal mit je 20 ml Diethylether und anschließend dreimal mit je 20 ml Methylenchlorid extrahiert. Die vereinigten organischen Phasen werden zweimal mit je 20 ml Wasser gewaschen, über Natriumsulfat getrocknet und bei Raumtemperatur unter vermindertem Druck auf ein Volumen von 20 ml eingeengt. Die erhaltene Lösung wird unter Eiskühlung mit 1 ml etherischer Salzsäure versetzt. Die sich abscheidenden Kristalle werden abfiltriert und getrocknet. Man erhält auf diese Weise 190 mg an N-Methyl-N-methoxyethoxy-amin-hydrochlorid.

Beispiel 822

15

20

25

5

10

Verfahren (g), erste Stufe:

$$\begin{array}{c} O \\ II \\ C-OC_2H_5 \\ CH_3 \\ CH_3 \\ CH_3 \end{array} \qquad (XV-1)$$

Ein Gemisch aus 2000 mg N-(2,2,2-Trifluor-1-methyl-ethyl)-carbaminsäure-ethylester und 20 ml Tetrahydrofuran wird bei Raumtemperatur unter Rühren mit 475 mg Natriumhydrid versetzt. Danach wird unter Rühren bei Raumtemperatur eine Lösung von 4600 mg Iodmethan in 10 ml Tetrahydrofuran hinzugetropft. Das Reaktionsgemisch wird 16 Stunden bei 50°C gerührt und dann mit Wasser versetzt. Man extrahiert dreimal mit je 20 ml Methylenchlorid, trocknet die vereinigten organischen

- 121 -

Phasen über Natriumsulfat und engt unter vermindertem Druck ein. Man erhält 1000 mg eines Produktes, das gemäß Gaschromatogramm zu 75 % aus N-(2,2,2-Trifluor-1-methyl-ethyl)-N-methyl-carbaminsäure-ethylester besteht. Die Ausbeute errechnet sich danach zu 34,86 %.

5

Verfahren (g), zweite Stufe:

10

15

Ein Gemisch aus 1000 mg N-(2,2,2-Trifluor-1-methyl-ethyl)-N-methyl-carbamin-säure-ethylester, 20 ml Ethanol und 20 ml Wasser wird mit 1070 mg pulverisiertem Kaliumhydroxid versetzt und 66 Stunden bei 40°C gerührt. Danach wird das Reaktionsgemisch mit Wasser verdünnt und dreimal mit je 20 ml eines Gemisches extrahiert, das zu gleichen Teilen aus Methylenchlorid und Diethylether besteht. Die vereinigten organischen Phasen werden über Natriumsulfat getrocknet und dann bei Raumtemperatur unter leicht vermindertem Druck eingeengt. Die erhaltene Lösung wird unter Eiskühlung mit etherischer Salzsäure versetzt und 60 Stunden bei Raumtemperatur gerührt. Nach dem Einengen unter vermindertem Druck erhält man 280 mg an N-(2,2,2-Trifluor-1-methyl-ethyl)-N-methylamin-hydrochlorid. Die Ausbeute errechnet sich danach zu 34 % der Theorie.

20

Beispiel 823

Verfahren (h):

25

600 mg N(1-Trifluormethyl-2-propen)-carbaminsäurebenzylester werden in 8,0 ml 16 %iger Salzsäure für 1,5 Stunden unter Rückfluss erhitzt. Nach dem Abkühlen auf 20°C wird zweimal mit je 20 ml Diethylether extrahiert.

Die verbleibende wässrige Phase wird unter vermindertem Druck zur Trockne eingeengt und dreimal mit je 10 ml Methanol versetzt. Nach Entfernen des Methanols unter vermindertem Druck werden 310 mg an (1-Trifluormethyl-prop-2-en)-amin-hydrochlorid isoliert. Die Ausbeute errechnet sich danach zu 82,9 % der Theorie.

10

Nach den zuvor angegebenen Methoden lassen sich auch die in den folgenden Tabellen angegebenen Carbamate herstellen.

Tabelle 2

15

$$R^7$$
— N
 C — OC_2H_5
 OCH_3
 (X)

Beispiel-Nr.	Verb	R ⁷	logP
	Nr.		
824	X-2	CH ₃ -CH-CH ₂ -CH ₃	2,38
825	X-3	CH2-C-CH2-CH3	2,06

- 123 -

Tabelle 3

$$CH_3$$
 OC_2H_5 $CXII)$

Beispiel-Nr.	Verb	R ⁷	Physikalische Konst.
	Nr.		
826	XII-2	CH ₂ —C—CH ₂ — CH ₃	

5

Tabelle 4

$$CF_{3}-CH-N < C-OC_{2}H_{5}$$

$$CH_{3}$$

$$(XV)$$

Beispiel-Nr.	VerbNr.	R ⁸	Physikalische Konst.
827	XV-2	-C ₂ H ₅	¹ H-NMR (400 MHz, CD ₃ CN):
ļ			δ (ppm) = 1,13 (t, <u>CH</u> ₃ CH ₂ N), 1,21
			(t, <u>CH</u> ₃ CHCF ₃), 1,23 (t, <u>CH</u> ₃ CH ₂ O),
			3,20 (m, <u>CH</u> ₂ N, C <u>H</u> CF ₃), 4,1 (q,
			CH ₃ <u>CH</u> ₂ O).

10

Nach den zuvor angegebenen Methoden lassen sich auch die in der folgenden Tabelle aufgeführten Amine herstellen.

Tabelle 5

$$R^1$$
 (III)

Beispiel-	Verb	R ¹	R ²	Physikal. Konst.
Nr.	Nr.			Transport (400 MHz, CD-CN):
828	III-5	CH ₃ —CH—CH ₂ —CH ₃		¹ H-NMR (400 MHz, CD ₃ CN): δ (ppm) = 1,03 (d, <u>CH₃</u>) ₂ CH), 3,06 (d, <u>CH₂</u>), 3,28 (b, (CH ₃) ₂ <u>CH</u>), 4,01 (s, OCH ₃)
829	III-6	CH ₂ =C−CH ₂ — CH ₃	-OCH ₃	δ (ppm) = 1,76 (s, $CH_3(CCH_2)CH_2$), 3,29 (b, NH $CH_3(CCH_2)CH_2$, OCH ₃), 7,89 5,02 (2 s, CH ₃ (CC <u>H</u> ₂)CH ₂).
830	III-7	CH ₂ -C-CH ₂ -CH ₃		DMGO
831	III-8	CF ₃ —CH— I CH ₃	-C ₂ H ₅	$^{1}\text{H-NMR}$ (400 MHz, DMSO) δ (ppm) = 1,06 (m, <u>CH</u> ₃ CH ₂ N) $\frac{\text{CH}_{3}\text{CHCF}_{3}}{\text{CH}_{2}\text{CH}_{2}\text{CF}_{3}}$, 3,20 (m, <u>CH</u> ₂ N) 4,1 (m, C <u>H</u> CF ₃).

Die in den Beispielen 828 bis 831 aufgeführten Amine wurden jeweils in Form ihrer 5 Hydrochloride isoliert und charakterisiert.

- 125 -

Beispiel 832

$$F \longrightarrow F \longrightarrow CF_3 \qquad (V-1)$$

10,1 g (38,5 mmol) 2-(2,4,6-trifluor-phenyl)malonsäuredimethylester und 5,85 g (38,5 mmol) 5-Trifluormethyl-1H-[1,2,4]triazol-3-ylamin werden in 10,1 ml Tri-n-Butylamin 6 Stunden auf 180°C erhitzt, wobei entstehendes Methanol abdestilliert wird. Das Tri-n-Butylamin wird unter stark vermindertem Druck abdestilliert. Man erhält 17,8 g rohes 2-Trifluormethyl-6-(2,4,6-trifluor-phenyl)-[1,2,4]triazolo[1,5-a]-pyrimidin-5,7-diol, das ohne Reinigung weiter umgesetzt wird.

HPLC: logP = 0.81

- 126 -

Beispiel A

Puccinia-Test (Weizen) / protektiv

5 Lösungsmittel:

10

15

20

25

25 Gewichtsteile N,N-Dimethylacetamid

Emulgator:

0,6 Gewichtsteile Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer Konidiensuspension von Puccinia recondita besprüht. Die Pflanzen verbleiben 48 Stunden bei 20°C und 100 % relativer Luftfeuchtigkeit in einer Inkubationskabine.

Die Pflanzen werden dann in einem Gewächshaus bei einer Temperatur von ca. 20°C und einer relativen Luftfeuchtigkeit von 80 % aufgestellt, um die Entwicklung von Rostpusteln zu begünstigen.

10 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.

Wirkstoffe, Aufwandmengen und Versuchsergebnisse gehen aus der folgenden Tabelle hervor.

- 127 -

Tabelle A

Puccinia-Test (Weizen) / protektiv

Wirkstoff	Aufwandmenge an	Wirkungsgrad
	Wirkstoff in g/ha	in %
Erfindungsgemäß		
Chiral		
F F F F F F (3)	500	100

- 128 -

Beispiel B

Podosphaera-Test (Apfel) / protektiv

5 Lösungsmittel:

15

24,5 Gewichtsteile Aceton

24,5 Gewichtsteile Dimethylacetamid

Emulgator:

1 Gewichtsteil Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1

Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer wässrigen Sporensuspension des Apfelmehltauerreegers Podosphaera leucotricha inokuliert. Die Pflanzen werden dann im Gewächshaus bei ca. 23°C und einer relativen Luftfeuchtigkeit von ca. 70 % aufgestellt.

20 10 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.

Wirkstoffe, Aufwandmengen und Versuchsergebnisse gehen aus der folgenden 25 Tabelle hervor.

- 129 -

Tabelle B
Podosphaera-Test (Apfel) / protektiv

Wirkstoff	Aufwandmenge an	Wirkungsgrad
	Wirkstoff in g/ha	in %
Erfindungsgemäß		
F HN CF ₃		·
$F \longrightarrow N \longrightarrow CF_3 $ (7)	100	100
F HN CF ₃ N N F F (8)	100	100

- 130 -

Beispiel C

Spaerotheca-Test (Gurke) / protektiv

5 Lösungsmittel:

10

15

20

49 Gewichtsteile N,N-Dimethylformamid

Emulgator:

1 Gewichtsteil Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Zur Prüfung auf protektive Wirksamkeit bespritzt man junge Gurkenpflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge. 1 Tag nach der Behandlung werden die Pflanzen mit einer Sporensuspension von Sphaerotheca fuliginea inokuliert. Anschließend werden die Pflanzen in einem Gewächshaus bei 70 % relativer Luftfeuchtigkeit und einer Temperatur von 23°C aufgestellt.

7 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.

Wirkstoffe, Aufwandmengen und Versuchsergebnisse gehen aus der folgenden Tabelle hervor.

WO 02/088126

Tabelle C

Spaerotheca-Test (Gurke) / protektiv

Wirkstoff	Aufwandmenge an	Wirkungsgrad
	Wirkstoff in g/ha	in %
Erfindungsgemäß:		
Chiral F F F HN CH ₃ F CI N N F F (3)	750	93
Chiral CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ (4)	750	93
$F \longrightarrow F \longrightarrow CF_3$ $F \longrightarrow N \longrightarrow CF_3$ $F \longrightarrow N \longrightarrow CF_3$ (7)	750	100

Wirkstoff	Aufwandmenge an	Wirkungsgrad
	Wirkstoff in g/ha	in %
F HN CF ₃ N N F F (8)	750	100

- 133 -

Patentansprüche

1. Triazolopyrimidine der Formel

in welcher

5

10

15

20

 R^1 für Amino, Hydroxy, für gegebenenfalls substituiertes Alkyl, gegebenenfalls substituiertes Alkenyl, gegebenenfalls substituiertes Alkinyl, gegebenenfalls substituiertes Cycloalkyl, gegebenenfalls substituiertes Alkoxy, gegebenenfalls substituiertes Alkenyloxy, gegebenenfalls substituiertes Alkinyloxy, gegebenenfalls substituiertes Cycloalkyloxy, gegebenenfalls substituiertes Alkylamino, gegebenenfalls substituiertes Dialkylamino, gegebenenfalls substituiertes Alkenylamino, gegebenenfalls substituiertes Alkinylamino, gegegegebenenfalls benenfalls substituiertes Cycloalkylamino, substituiertes N-Cycloalkyl-N-alkyl-amino, gegebenenfalls substituiertes Alkylidenamino, gegebenenfalls substituiertes Phenyl, gegebenenfalls substituiertes Heterocyclyl oder für einen Rest der Formel -S-R⁵ steht, worin

R⁵ für gegebenenfalls substituiertes Alkyl, gegebenenfalls substituiertes Alkenyl, gegebenenfalls substituiertes Alkinyl oder gegebenenfalls substituiertes Cycloalkyl steht,

R² für Wasserstoff, gegebenenfalls substituiertes Alkyl, gegebenenfalls substituiertes Alkenyl, gegebenenfalls substituiertes Alkinyl oder gegebenenfalls substituiertes Cycloalkyl steht,

5 oder

R¹ und R² gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, für einen gegebenenfalls substituierten heterocyclischen Ring stehen,

- 10 R³ für gegebenenfalls einfach bis vierfach substituiertes Aryl steht,
 - R⁴ für gegebenenfalls substituiertes Alkyl oder für gegebenenfalls substituiertes Cycloalkyl steht und
- 15 X für Halogen steht,

sowie Säure-Additionssalze von denjenigen Verbindungen der Formel (I), in denen

- 20 R1 für Amino steht.
 - Verfahren zur Herstellung von Triazolopyrimidinen der Formel (I) gemäß
 Anspruch 1, dadurch gekennzeichnet, dass man
- 25 a) Dihalogen-triazolopyrimidine der Formel

$$R^3$$
 N
 N
 R^4
(II)

WO 02/088126

- 135 -

in welcher

R³, R⁴ und X die oben angegebenen Bedeutungen haben und

5 Y¹ für Halogen steht,

mit Aminen der Formel

$$R^1$$
 R^2 (III)

in welcher

 $R^1 \ \mathrm{und} \ R^2$ die oben angegebenen Bedeutungen haben,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säureakzeptors umsetzt,

oder

b) Triazolopyrimidine der Formel

20

$$R^3$$
 N
 N
 R^4
(Ia)

in welcher

R², R³, R⁴ und X die oben angegebenen Bedeutungen haben,

15

- 136 -

mit Sulfensäurehalogeniden der Formel

 Y^2-S-R^5 (IV),

in welcher

5

- R⁵ die oben angegebenen Bedeutungen hat und
- y2 für Halogen steht,
- 10 gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säureakzeptors umsetzt,

und gegebenenfalls an die so erhaltenen Verbindungen der Formel (I), in denen

15

R1 für Amino steht,

eine Säure addiert.

- Mittel zur Bekämpfung von unerwünschten Mikroorganismen, gekennzeichnet durch einen Gehalt an mindestens einem Triazolopyrimidin der Formel (I) gemäß Anspruch 1 bzw. an einem Säureadditions-Salz davon neben Streckmitteln und/oder oberflächenaktiven Stoffen.
- Verwendung von Triazolopyrimidinen der Formel (I) gemäß Anspruch 1 bzw.
 von deren Säureadditions-Salzen zur Bekämpfung von unerwünschten Mikroorganismen.
- Verfahren zur Bekämpfung von unerwünschten Mikroorganismen, dadurch
 gekennzeichnet, dass man Triazolopyrimidine der Formel (I) gemäß Anspruch

1 bzw. deren Säureadditions-Salze auf die unerwünschten Mikroorganismen und/oder deren Lebensraum ausbringt.

- 6. Verfahren zur Herstellung von Mitteln zur Bekämpfung von unerwünschten Mikroorganismen, dadurch gekennzeichnet, dass man Triazolopyrimidine der Formel (I) gemäß Anspruch 1 bzw. deren Säureadditions-Salze mit Streckmitteln und/oder oberflächenaktiven Stoffen vermischt.
 - 7. Dihalogen-triazolopyrimidine der Formel

$$R^3$$
 N
 N
 R^4
(II)

10

5

in welcher

- \mathbb{R}^3 , \mathbb{R}^4 und \mathbb{X} die oben angegebenen Bedeutungen haben und
- 15 Y¹ für Halogen steht.
 - 8. Verfahren zur Herstellung von Dihalogen-triazolopyrimidinen der Formel (II) gemäß Anspruch 7, dadurch gekennzeichnet, dass man
- 20 (c) Dihydroxy-triazolopyrimidine der Formel

$$R^3$$
 N
 N
 R^4
 (V)

in welcher

 ${\rm R}^3$ und ${\rm R}^4$ die oben angegebenen Bedeutungen haben,

5

15

mit Halogenierungsmitteln, gegebenenfalls in Gegenwart eines Verdünnungsmittels umsetzt.

9. Dihydroxy-triazolopyrimidine der Formel

$$R^3$$
 N
 N
 R^4
 (V)

in welcher

 ${\rm R}^3$ und ${\rm R}^4$ die oben angegebenen Bedeutungen haben.

- 10. Verfahren zur Herstellung von Dihydroxy-triazolopyrimidinen der Formel (V) gemäß Anspruch 9, dadurch gekennzeichnet, dass man
 - d) Arylmalonester der Formel

$$R^3$$
 $COOR^6$
 (VI)

20 in welcher

WO 02/088126

- 139 -

R³ die oben angegebenen Bedeutungen hat und

R⁶ für Alkyl mit 1 bis 4 Kohlenstoffatomen steht,

5 mit Aminotriazolen der Formel

$$H_2N$$
 N
 R^4
(VII)

in welcher

10 R⁴ die oben angegebenen Bedeutungen hat,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt.

15 11. Amine der Formel (IIIa),

in welcher

 $--CH_2$ $--CH_2$ $--CH_2$ 20 $--CH_3$ für Isobutyl, 2-Methoxyethyl oder für $--CH_3$ steht.

12. Verfahren zur Herstellung von Aminen der Formel (IIIa) gemäß Anspruch 11, dadurch gekennzeichnet, dass man

e) in einer ersten Stufe N-Methoxycarbaminsäure-ethylester der Formel (VIII)

$$\begin{array}{c} O \\ || \\ C - OC_2H_5 \end{array} \qquad (VIII) \\ OCH_3 \end{array}$$

5 mit Halogenverbindungen der Formel (IX),

$$R^7 - X^1$$
 (IX)

in welcher

10

R⁷ die oben angegebenen Bedeutungen hat und

X1 für Brom oder Iod steht,

15

in Gegenwart einer Base und in Gegenwart eines Verdünnungsmittels umsetzt und die entstehenden Carbamate der Formel (X),

$$\begin{array}{c}
O \\
C \\
C \\
OCH_3
\end{array}$$
(X)

in welcher

20

R⁷ die oben angegebenen Bedeutungen hat,

in einer zweiten Stufe mit Kaliumhydroxid in Gegenwart von Ethanol und Wasser umsetzt.

- 141 -

13. Amine der Formel (IIIb),

$$HN \stackrel{\mathsf{OR}^7}{\underset{\mathsf{CH}_3}{\longleftarrow}}$$
 (IIIb)

5 in welcher

$$R^7$$
 für Isobutyl, 2-Methoxyethyl oder für CH_2 CH_3 steht

- Verfahren zur Herstellung von Aminen der Formel (IIIb) gemäß Anspruch 13, dadurch gekennzeichnet, dass man
- f) in einer ersten Stufe N-Hydroxy-N-methyl-carbaminsäure-ethylester der Formel (XI)

$$CH_3$$
 CH_3 CH_3

mit Halogenverbindungen der Formel (IX),

$$R^7$$
— X^1 (IX)

in welcher

R⁷ und X¹ die oben angegebenen Bedeutungen haben,

in Gegenwart einer Base und in Gegenwart eines Verdünnungsmittels umsetzt und die entstehenden Carbamate der Formel (XII),

20

10

- 142 -

$$CH_3-N$$
 $C-OC_2H_5$
 CR^7
(XII)

in welcher

R7 die oben angegebenen Bedeutungen hat,

5

in einer zweiten Stufe mit Kaliumhydroxid in Gegenwart von Ethanol und Wasser umsetzt.

15. Trifluorisopropylamine der Formel (IIIc),

10

$$CF_3$$
— CH — NH — R^8 (IIIc)

in welcher

R8 für Methyl, Ethyl oder Propyl steht.

15

- 16. Verfahren zur Herstellung von Trifluorisopropylaminen der Formel (IIIc) gemäß Anspruch 15, dadurch gekennzeichnet, dass man
- g) in einer ersten Stufe N-Trifluorisopropyl-carbaminsäure-ethylester der
 Formel (XIII)

$$\begin{array}{c} \text{CF}_{3} \text{ --CH--NH--C--OC}_{2}\text{H}_{5} \\ \text{CH}_{3} \end{array} \tag{XIII}$$

mit Halogenverbindungen der Formel (XIV),

WO 02/088126

PCT/EP02/04287

- 143 -

$$R^8 - X^1$$
 (XIV)

in welcher

5 R⁸ und X¹ die oben angegebenen Bedeutungen haben,

in Gegenwart einer Base und in Gegenwart eines Verdünnungsmittels umsetzt und die entstehenden Carbamate der Formel (XV),

$$\begin{array}{c} O \\ II \\ C-OC_2H_5 \\ CH_3 \\ R^8 \end{array} \tag{XV}$$

10

in welcher

R8 die oben angegebenen Bedeutungen hat,

15

in einer zweiten Stufe mit Kaliumhydroxid in Gegenwart von Ethanol und Wasser umsetzt.

17. 3-Trifluor-methyl-3-amino-propen der Formel (III-4)

$$H_2C = CH - CH - NH_2$$
 CF_3
(III-4).

20

Verfahren zur Herstellung von 3-Trifluormethyl-3-amino-propen der Formel
 (III-4) gemäß Anspruch 17, dadurch gekennzeichnet, dass man

25

h) das Carbamat der Formel (XVI)

PCT/EP02/04287

- 144 -

$$\begin{array}{c} \text{CH}_{2}\text{--CH}-\text{CH}-\text{NH}-\text{C}-\text{O}-\text{CH}_{2} \end{array} \hspace{0.5cm} (XVI)$$

mit wässriger Salzsäure umsetzt.

WO 02/088126

- 145 -

19. Carbamate der Formel (X),

$$\begin{array}{c}
O \\
II \\
C - OC_2H_5
\end{array}$$
 OCH_3
 (X)

in welcher

5

 R^7 für Isobutyl, 2-Methoxyethyl oder für $--CH_2$ CH_2 CH_3 steht.

20. Carbamate der Formel (XII),

$$CH_3-N$$
 $C-OC_2H_5$
 CR^7
(XII)

10

in welcher

 R^7 für Isobutyl, 2-Methoxyethyl oder für $--CH_2$ CH_2 CH_3 steht.

15 21. Carbamate der Formel (XIII),

$$CF_{3}-CH-N$$

$$CH_{3}$$

$$R^{8}$$
(XIII)

in welcher

20 R⁸ für Methyl, Ethyl oder Propyl steht.

International Application No PCT/EP 02/04287

	•					
. CLASSIFIC	CATION OF SUBJECT MATTER CO7D487/04 A01N43/90					
occording to 1	nternational Patent Classification (IPC) or to both national classification	and IPC				
SIELDS E	EVBCRED					
Minimum doca IPC 7	umentation searched (classification system followed by classification s ${\tt CO7D-A01N}$	_				
	on searched other than minimum documentation to the extent that such	_				
Electronic da	ta base consulted during the international search (name of data base	and, where practical, search terms us	sed)			
	ernal, WPI Data					
C. DOCUME	ENTS CONSIDERED TO BE RELEVANT		Relevant to claim No.			
Category °	Citation of document, with indication, where appropriate, of the relevant	ant passages				
Х	EP 0 834 513 A (AMERICAN CYANAMID 8 April 1998 (1998-04-08) claim 1	CO)	1-21			
Y	WERMUTH ET AL: "The Practise of N Chemistry", PRACTICE OF MEDICINAL CHEMISTRY, XX, XX, PAGE(S) 203-23 XP002190259 the whole document	ledicinal ,	1-21			
Υ _		EP 0 550 113 A (SHELL INT RESEARCH) 7 July 1993 (1993-07-07)				
Υ	EP 0 613 900 A (SHELL INT RESEARC 7 September 1994 (1994-09-07) claim 1	н)	1-21			
}	-	/				
1						
X Fu	rther documents are listed in the continuation of box C.	X Patent family members are	listed in annex.			
° Special	categories of cited documents :	"T" later document published after th	ne international filling date			
A docum	ment defining the general state of the art which is not sidered to be of particular relevance or document but published on or after the international	or priority date and not in conflicted to understand the principle invention "X" document of particular relevance	e or theory underlying me			
"L" docui	g date ment which may throw doubts on priority claim(s) or the priority to establish the publication date of another	cannot be considered novel or involve an inventive step when "Y" document of particular relevance cannot be considered to involve	the document is taken alone			
"O" docu	tion or other special reason (as specifica) iment referring to an oral disclosure, use, exhibition or er means	document is combined with one ments, such combination being in the art.	g obvious to a person skilled			
P docu	ment published prior to the international filing date but In than the priority date claimed	"&" document member of the same				
	ne actual completion of the international search	Date of mailing of the internation	onal search report			
	27 August 2002	03/09/2002 Authorized officer				
Name ar	nd mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Baston, E				

International Application No
PCT/EP 02/04287

C (O1)		PC1/EP 02/0428/
Category °	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	FR 2 784 991 A (AMERICAN CYANAMID CO)	1-21
	28 April 2000 (2000-04-28) claim 1	
Υ	FR 2 765 875 A (AMERICAN CYANAMID CO) 15 January 1999 (1999-01-15) claim 1	1-21
Υ	GB 2 355 261 A (AMERICAN CYANAMID CO) 18 April 2001 (2001-04-18) claim 1	1-21
Y	WO 98 46607 A (AMERICAN CYANAMID CO) 22 October 1998 (1998-10-22) claim 1	1-21
Υ	WO 98 46608 A (AMERICAN CYANAMID CO) 22 October 1998 (1998–10–22) claim 1	1-21
A	US 5 612 345 A (BECHER HEINZ-MANFRED ET AL) 18 March 1997 (1997-03-18) claim 1	7,8
A	US 5 854 252 A (PEES KLAUS-JURGEN ET AL) 29 December 1998 (1998-12-29) claim 1	7,8
A	WO 00 09508 A (BAYER AGROCHEM KK ;SAWADA HARUKO (JP); ISHIKAWA KOICHI (JP); KINBA) 24 February 2000 (2000-02-24) claim 1	7,8
ļ		

ţ

Information on patent family members

International Application No
PCT/EP 02/04287

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
EP 0834513		08-04-1998	US	5817663 A	06-10-1998
FI 0034313	Λ.	00 0 1 2000	AT	221069 T	15-08-2002
			EP	0834513 A2	08-04-1998
			JP	10152489 A	09-06-1998
			US	5965561 A	12-10-1999
EP 0550113	Α	07-07-1993	EP	0550113 A2	07-07-1993
2. 020111			EP	0782997 A2	09-07-1997
			GR	3033916 T3	30-11-2000 15-11-1997
			AT	159256 T	15-05-2000
			AT	192154 T 667204 B2	14-03-1996
			AU AU	3043592 A	01-07-1993
			BR	9205172 A	06-07-1993
			CA	2086404 A1	01-07-1993
			CN	1075144 A ,B	11-08-1993
			CN	1141119 A ,B	29-01-1997
			DE	69222746 D1	20-11-1997
			DE	69222746 T2	12-02-1998
			DE	69230977 D1	31-05-2000
			DE	69230977 T2	09-11-2000
			DK	550113 T3	09-02-1998
			DK	782997 T3	07-08-2000 01-01-1998
			ES	2108727 T3	01-01-1998
			ES	2147411 T3 3025920 T3	30-04-1998
			GR HK	1010105 A1	23-06-2000
			HU	217349 B	28-01-2000
			IL	104244 A	13-07-1997
			JP	5271234 A	19-10-1993
			NZ	245581 A	26-07-1995
			PL	297160 A1	06-09-1993
			PL	171579 B1	30-05-1997
			PT	782997 T	29-09-2000 10-09-1997
			RU	2089552 C1	17-04-1998
			SG	47563 A1	14-01-1997
			US ZA	5593996 A 9210043 A	28-07-1993
EP 0613900	Α	07-09-1994	EP	0613900 A1	07-09-1994
			AT	153025 T	15-05-1997 26-09-1996
			AU	672267 B2 5633294 A	08-09-1994
			AU BG	61647 B1	27-02-1998
			BG BG	98637 A	31-01-1995
			BR	9400808 A	01-11-1994
			CA	2116946 A1	05-09-1994
			CN	1094407 A	02-11-1994
			DE	69403119 D1	19-06-1997
			DE	69403119 T2	28-08-1997
			. DK	613900 T3	23-06-1997
			ES	2101429 T3	01-07-1997
			GR	3023587 T3	29-08-1997 22-05-1998
			HK	1001054 A1	22-05-1998 29-05-1995
			HU	68050 A2 108731 A	18-03-1997
			IL JP	7002861 A	06-01-1995
			. 15	I UUZOUI A	00 02 ===0
			VI		27-04-1995

Information on patent family members

Inversational Application No PCT/EP 02/04287

						EF UZ/U4Z0/
	ent document in search report		Publication date		Patent family member(s)	Publication date
EP (0613900	A		OA	9891 A	15-09-1994
		••		RO	112869 B1	30-01-1998
				RU	2126408 C1	20-02-1999
				SG	48897 A1	18-05-1998
				US	5756509 A	26-05-1998
				ZA 	9401484 A	10-11-1994
FR 2	2784991 	A 	28-04-2000	FR	2784991 A1	28-04-2000
FR 2	2765875	Α	15-01-1999	FR	2765875 A1	15-01-1999
				JP	11035581 A	09-02-1999
GB 2	2355261	Α	18-04-2001	NONE		
WO 9	9846607	Α	22-10-1998	AT	202779 T	15-07-2001
- •	-			ΑÜ	6576898 A	11-11-1998
				DE	69801048 D1	09-08-2001
				DE	69801048 T2	14-03-2002
				DK	975634 T3	24-09-2001
				EP	0975634 A1	
						02-02-2000
				ES	2160408 T3	01-11-2001
				PT	975634 T	28-12-2001
				WO	9846607 A1	22-10-1998
				ZA	9803055 A	11-10-1999
WO 9	9846608	Α	22-10-1998	AU	735730 B2	12-07-2001
				ΑU	6867198 A	11-11-1998
				BG	103805 A	30-06-2000
				BR	9808531 A	23-05-2000
				CN	1257502 T	21-06-2000
				EE	9900486 A	15-06-2000
				ĒΡ	0975635 A1	02-02-2000
				ΗU	0001993 A2	28-10-2000
				JP	2001520650 T	30-10-2001
				NO	994973 A	13-10-1999
				NZ	500143 A	29-06-2001
				PL	336164 A1	05-06-2000
				SK		
					141499 A3	11-09-2001
				TR	9902552 T2	22-05-2000
				TW	460476 B	21-10-2001
				WO Za	9846608 A1 9803054 A	22-10-1998 11-10-1999
	 5612345		 18-03-1997	NONE	7000004 M	
US 5	5854252	Α	29-12-1998	AT	159722 T	15-11-1997
				ΑU	690899 B2	07-05-1998
				ΑU	6258094 A	26-09-1994
				BR	9405988 A	26-12-1995
				CA	2157293 A1	15-09-1994
				CN	1119015 A ,	
				CZ	9502233 A3	17-01-1996
				DΕ	69406538 D1	04-12-1997
				DK	699200 T3	20-07-1998
				WO	9420501 A1	15-09-1994
				ĒΡ	0699200 A1	06-03-1996
				HK	1004332 A1	20-11-1998
				HK HU	1004332 A1 73163 A2	20-11-1998 28-06-1996

Information on patent family members

International Application No PCT/EP 02/04287

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
US 5854252	A		IL JP NZ PL RU SG SK ZA	108747 8507505 262729 310467 2130459 48860 106895 9401485	T A A1 C1 A1 A3	12-03-1999 13-08-1996 26-01-1996 11-12-1995 20-05-1999 18-05-1998 05-06-1996 10-11-1994
WO 0009508	Α	24-02-2000	JP AU WO	2000119274 5061099 0009508	Α	25-04-2000 06-03-2000 24-02-2000

Internationales Aktenzeichen PCT/EP 02/04287

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES I PK 7 C07D487/04 A01N43/90 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK B. RECHERCHIERTE GEBIETE Recherchlerter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) CO7D A01N IPK 7 Recherchlerte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchlerten Geblete fallen Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe) EPO-Internal, WPI Data C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Kategorie® Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Telle Betr. Anspruch Nr. X EP 0 834 513 A (AMERICAN CYANAMID CO) 1-21 8. April 1998 (1998-04-08) Anspruch 1 WERMUTH ET AL: "The Practise of Medicinal Υ 1-21 Chemistry", PRACTICE OF MEDICINAL CHEMISTRY, XX, XX, PAGE(S) 203-237 XP002190259 das ganze Dokument Y EP 0 550 113 A (SHELL INT RESEARCH) 1 - 217. Juli 1993 (1993-07-07) Anspruch 1 Υ EP 0 613 900 A (SHELL INT RESEARCH) 1 - 217. September 1994 (1994-09-07) Anspruch 1 -/--Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu Siehe Anhang Patentfamilie X entnehmen *T Spätere Veröffentlichung, die nach dem Internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeltegenden Prinzips oder der ihr zugrundeltegenden Theorie angegeben ist Besondere Kategorien von angegebenen Veröffentlichungen "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist "E" ätteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist "X" Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer T\u00e4tigkeit beruhend betrachtet werden "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist ausgeführt)

"O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

"P" Veröffentlichung, die vor dem internationalen Anmetdedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist *& Veröffentlichung, die Mitglied derselben Patentfamilie ist Datum des Abschlusses der Internationalen Recherche Absendedatum des internationalen Recherchenberichts 27. August 2002 03/09/2002 Bevollmächtigter Bediensteter Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentiaan 2 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Baston, E

Internationales Aktenzeichen
PCT/EP 02/04287

	P	
(Fortsetz	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommende	n Teile Betr. Anspruch Nr.
······································	FR 2 784 991 A (AMERICAN CYANAMID CO)	1-21
	28. April 2000 (2000-04-28) Anspruch 1	1 01
1	FR 2 765 875 A (AMERICAN CYANAMID CO) 15. Januar 1999 (1999-01-15) Anspruch 1	1-21
ľ	GB 2 355 261 A (AMERICAN CYANAMID CO) 18. April 2001 (2001-04-18) Anspruch 1	1-21
Y	WO 98 46607 A (AMERICAN CYANAMID CO) 22. Oktober 1998 (1998-10-22) Anspruch 1	1–21
Υ	WO 98 46608 A (AMERICAN CYANAMID CO) 22. Oktober 1998 (1998-10-22) Anspruch 1	1-21
A	US 5 612 345 A (BECHER HEINZ-MANFRED ET AL) 18. März 1997 (1997-03-18) Anspruch 1	7,8
A	US 5 854 252 A (PEES KLAUS-JURGEN ET AL) 29. Dezember 1998 (1998-12-29) Anspruch 1	7,8
A	WO 00 09508 A (BAYER AGROCHEM KK ;SAWADA HARUKO (JP); ISHIKAWA KOICHI (JP); KINBA) 24. Februar 2000 (2000-02-24) Anspruch 1	7,8

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen
PCT/EP 02/04287

						12/ 04207
angefüh	echerchenbericht rtes Patentdokument		Datum der /eröffentlichung		Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
EP	0834513	Α	08-04-1998	US	5817663 A	06-10-1998
				AT	221069 T	15-08-2002
				EP	0834513 A2	08-04-1998
				JP US	10152489 A 5965561 A	09-06-1998 12-10-1999
					5905501 A	12-10-1999
EP	0550113	Α	07-07-1993	EP	0550113 A2	07-07-1993
				EP GR	0782997 A2 3033916 T3	09-07-1997
				AT	159256 T	30-11-2000 15-11-1997
				ΑŤ	192154 T	15-05-2000
				AU	667204 B2	14-03-1996
				AU	3043592 A	01-07-1993
				BR	9205172 A	06-07-1993
				CA	2086404 A1	01-07-1993
				CN	1075144 A ,B	11-08-1993
				CN DE	1141119 A ,B 69222746 D1	29-01-1997 20-11-1997
				DE	69222746 T2	12-02-1998
				DE	69230977 D1	31-05-2000
				DE	69230977 T2	09-11-2000
				DK	550113 T3	09-02-1998
				DK	782997 T3	07-08-2000
				ES	2108727 T3	01-01-1998
				ES GR	2147411 T3 3025920 T3	01-09-2000
				HK	1010105 A1	30-04-1998 23-06-2000
				ΗÙ	217349 B	28-01-2000
				IL	104244 A	13-07-1997
				JP	5271234 A	19-10-1993
				NZ	245581 A	26-07-1995
				PL PL	297160 A1 171579 B1	06-09-1993 30-05-1997
				PT	782997 T	29-09-2000
				RÚ	2089552 C1	10-09-1997
				SG	47563 A1	17-04-1998
				US	5593996 A	14-01-1997
				ZA	9210043 A	28-07-1993
EP	0613900	Α	07-09-1994	EP	0613900 A1	07-09-1994
				AT	153025 T	15-05-1997
				AU	672267 B2	26-09-1996
				AU	5633294 A 61647 B1	08-09-1994
				BG BG	98637 A	27-02-1998 31-01-1995
				BR	9400808 A	01-11-1994
				CA	2116946 A1	05-09-1994
				CN	1094407 A	02-11-1994
				DE	69403119 D1	19-06-1997
				DE	69403119 T2	28-08-1997
				DK Es	613900 T3 2101429 T3	23-06-1997 01-07-1997
				GR	3023587 T3	29-08-1997
				HK	1001054 A1	22-05-1998
				HU	68050 A2	29-05-1995
				IL	108731 A	18-03-1997
				JP NZ	7002861 A	06-01-1995
				NZ	250955 A	27-04-1995
ombiati PCT/ISA	/210 (Anhang Patentlamille)(J	vii 1002)				

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen
PCT/EP 02/04287

lm Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung	. !	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
EP 0613900	A		OA RO RU SG	9891 A 112869 B1 2126408 C1 48897 A1	15-09-1994 30-01-1998 20-02-1999 18-05-1998
			US Za	5756509 A 9401484 A	26-05-1998 10-11-1994
FR 2784991	A	28-04-2000	FR	2784991 A1	28-04-2000
FR 2765875	Α	15-01-1999	FR JP	2765875 A1 11035581 A	15-01-1999 09-02-1999
GB 2355261	A	18-04-2001	KEINE		
WO 9846607	A	22-10-1998	AT AU DE DK EP ES PT WO	202779 T 6576898 A 69801048 D1 69801048 T2 975634 T3 0975634 A1 2160408 T3 975634 T 9846607 A1	15-07-2001 11-11-1998 09-08-2001 14-03-2002 24-09-2001 02-02-2000 01-11-2001 28-12-2001 22-10-1998
WO 9846608	Α	22-10-1998	ZA AU AU BG	9803055 A 735730 B2 6867198 A 103805 A	11-10-1999
			BR CN EE EP HU JP NO NZ PL	9808531 A 1257502 T 9900486 A 0975635 A1 0001993 A2 2001520650 T 994973 A 500143 A 336164 A1	21-06-2000 15-06-2000 02-02-2000 28-10-2000 30-10-2001 13-10-1999 29-06-2001 05-06-2000 11-09-2001
			SK TR TW WO ZA	141499 A3 9902552 T2 460476 B 9846608 A1 9803054 A	22-05-2001 21-10-2001 22-10-1998 11-10-1999
US 5612345	A	18-03-1997 	KEIN		
US 5854252	A	29-12-1998	AT AU AU BR CA CN CZ DE DK WO EP HK	159722 T 690899 B2 6258094 A 9405988 A 2157293 A1 1119015 A ,E 9502233 A3 69406538 D1 699200 T3 9420501 A1 0699200 A1 1004332 A1 73163 A2	15-11-1997 07-05-1998 26-09-1994 26-12-1995 15-09-1994 3 20-03-1996 17-01-1996 04-12-1997 20-07-1998 15-09-1994 06-03-1996 20-11-1998 28-06-1996

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aklenzeichen
PCT/EP 02/04287

lm Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
US 5854252	A		IL	108747 A	12-03-1999
			JP	8507505 1	13-08-1996
			NZ	262729 A	26-01-1996
			PL	310467 A	11-12-1995
			RU	2130459 0	20-05-1999
			SG	48860 A	18-05-1998
			SK	106895 A	3 05-06-1996
			ZA	9401485 A	10-11-1994
WO 0009508	A	24-02-2000	JP	2000119274 A	25-04-2000
		-	AU	5061099 A	
			WO	0009508 A	

