Introduction to SQL

Useful Things to Do

- Teach/Analyze an online class (6/18)
- SQL test (6/20)

- Attend AWS
 Summit Online
- Analyze job search
- Test photos

- Write a cover letter
- Review resume

- Capstone MOU
- Capstone initial meeting

SQL Test

- •50 questions
- •60 min
- Opened twice 8am/8pm
- June 30th

https://github.com/la-processand-theory/sql-db-setup

Data Science Workflow

DB Taxonomy

Relational (RDDBMS)

Old School

MySQL

Oracle

PostgreSQL

New School

Amazon Aurora

MySQL Cluster

Maria

Object-Oriented

Smalltalk

Non-Relational

NoSQL

Key-Value

Membrane

Document

MongoDB

Graph

InfiniteGraph

Distributed

Blockchain

Relational DBs

Row/

Record

student Table

student_id	username	email
1	AAA	emailA
2	BBB	emailB
3	CCC	emailC
4	DDD	emailD

Unique Key/ Primary key*

Column/ Field

id	student_id		
Z	1		
Z	2		
Z	3		
Z	4		

Foreign key

lesson

game

id	lesson_id	level
1A	Z	1
1A	Z	2
1A	Z	1
1B	Z	1

DB Popularity

Rank					Score		
Oct 2019	Sep 2019	Oct 2018	DBMS	Database Model	Oct 2019	Sep 2019	Oct 2018
1.	1.	1.	Oracle 🔡	Relational, Multi-model 🚺	1355.88	+9.22	+36.61
2.	2.	2.	MySQL 🔠	Relational, Multi-model 🚺	1283.06	+3.99	+104.94
3.	3.	3.	Microsoft SQL Server	Relational, Multi-model 🚺	1094.72	+9.66	+36.39
4.	4.	4.	PostgreSQL	Relational, Multi-model 🚺	483.91	+1.66	+64.52
5.	5.	5.	MongoDB 🔠	Document, Multi-model 🔟	412.09	+2.03	+48.90
6.	6.	6.	IBM Db2 🚻	Relational, Multi-model 🚺	170.77	-0.79	-8.91
7.	7.	1 8.	Elasticsearch 🔠	Search engine, Multi-model 🚺	150.17	+0.90	+7.85
8.	8.	4 7.	Redis 🔠	Key-value, Multi-model 🔃	142.91	+1.01	-2.38
9.	9.	9.	Microsoft Access	Relational	131.18	-1.53	-5.62
10.	10.	10.	Cassandra 🖽	Wide column	123.22	-0.18	-0.17

https://db-engines.com/en/ranking

Create a MySQL DB

- Log into your <u>AWS Management Console</u>
- Locate RDS under the Databases heading
- Within Amazon RDS click Create database
- Under Choose a database creation method click Standard Create
- Under Engine options choose MySQL
- Under Templates choose Free tier
- Under Settings name your DB instance identifier as sqltest
- Under Credential settings create a username and password combination and write it down (you will need it later)
- Under Connectivity expand Additional connectivity configuration to show additional menu items and make sure that Publicly accessible is checked Yes
- Expand the Additional configuration menu
- Under Initial database name write testdb
- Uncheck Automatic backups
- Click Create database

Structured Query Language (SQL)

- Developed SEQUEL at IBM ~1970
- Domain-specific language for querying relational DBs
- Based on relational algebra
- Works with structured data
- Main benefit: don't need to specify how to reach a given record (no file path, index number)
- Is loosely standardized across products

Donald Chamberlin

Todd Codd

Ray Boyce

DB Fundamental Functions

- Create
- Read
- Update
- Delete

Basic Statement

^{*}Capitalization of SQL keywords is not required but is useful

DB Fundamental Functions

- Create: INSERT Add rows
- Read: SELECT Get data
- Update: UPDATE Change data
- Delete: DELETE Remove rows

Create a MySQL DB

- Once your DB has been created
- Under Security groups rules click the hyperlink
- Click Inbound and then Edit
- Do not delete any rules!
- Add the rule SQL/Aurora on Port 3306 with the Connection of MyIP

OU LA Data Set

Joins

Moving Forward

- SoloLearn
- LeetCode.com
- Test
- Projects