实验 5: 随机模拟实验 实验

目 录

1	随机模拟实验	1
	1.1 基础训练	1
	1.2 综合训练	

1 随机模拟实验

1.1 基础训练

1. 假设学生到达图书馆的间隔时间服从在区间[0, 5](单位: 秒)上的均匀分布,请编程产生 100 个学生的到达时刻。

解:

```
arrival(1)=5*rand;
for i=2:100
    arrival(i)=arrival(i-1)+5*rand;
end
arrival
```

运行结果:

列 1 至 15

208. 3106 212. 1892 214. 6232 216. 8025 219. 0364 220. 5681 223. 1107 225. 6645 229. 7527 233. 7268

2. 假设在某 30 分钟内学生到达图书馆的间隔时间服从在区间[0,5](单位: 秒)上均匀分布,请编程产生 30 分钟内所有到达图书馆的学生的到达时刻,并输出到达人数.

```
解:
```

```
arrival(1)=5*rand;
i=1;
while arrival(i)<=30*60
    i=i+1;
    arrival(i)=arrival(i-1)+5*rand;
end
arrival(i)=[];
n=length(arrival)
arrival</pre>
```

运行结果:

>> file_2

n =

720.00

arrival =

列	1至11										
	0. 32	2. 45	4. 47	6. 47	7. 03	9. 15	12. 22	17. 16	18. 26	20. 03	21. 36
列	12 至 22										
	22. 82	23. 76	23. 87	26. 12	27. 34	31. 68	34. 33	38. 90	43. 77	46. 69	47. 29
列	23 至 33										
	51. 92	54. 89	59. 31	61. 43	64. 46	64. 82	69. 44	72. 65	73. 18	76. 68	78. 66
列	34 至 44										
	79. 08	80. 15	81. 40	82. 53	86. 04	89. 82	92. 55	95. 32	98. 47	103. 40	106. 57
列	45 至 55										

(中间部分由于数据过多,截图省略,此处直接给出最后部分的截图)

3	列 661 至 671										
	1638. 73	1639. 11	1643. 62	1647. 85	1649. 83	1650. 68	1652. 83	1654. 91	1658. 55	1660. 58	1665. 34
2	列 672 至 682										
	1669. 90	1674.66	1676. 39	1677. 84	1682. 28	1683. 33	1683. 98	1686. 58	1691. 11	1693. 12	1694. 20
3	列 683 至 693										
	1694.60	1699. 26	1702. 27	1704. 16	1707. 49	1711. 45	1713. 12	1716. 58	1717. 60	1722. 39	1725. 95
3	列 694 至 704										
	1726. 78	1729. 00	1732. 16	1736. 81	1739. 46	1742. 59	1746.00	1750. 61	1751. 38	1753. 41	1754. 97
3	列 705 至 715										
	1758. 44	1762. 89	1765. 34	1769. 37	1771. 01	1773. 75	1775. 70	1780. 18	1783. 56	1787. 71	1788. 26
2	列 716 至 720										
	1789. 65	1793. 49	1794. 57	1794. 74	1796. 92						

1.2 综合训练

一. 实验任务

请用蒙特卡罗法求解下列优化模型。

min
$$f(x) = 2(x_1 - 1)^2 + 3(x_2 - 4)^2 + x_1x_2 + (2x_3 - 5)^2$$

$$\begin{cases} 3x_1 + 2x_2 + 6x_3 \le 20, \\ 4x_1 + 5x_2 + 2x_3 \le 21, \\ 0 \le x_1 \le 15 \\ 0 \le x_2 \le 9 \\ 0 \le x_3 \le 25 \, \text{l.} x_3 \to 25 \, \text{l.} x_$$

二. 实验目的

熟悉蒙特卡罗法求解优化问题的原理。

三. 实验过程

```
function opt
n=1000000;
goodvalue=inf;
for i=1:n
   x(1) = 15*rand;
   x(2) = 9 * rand;
   x(3) = fix(26*rand);
   temp=fun(x);
   if temp<goodvalue & cons(x) \leq 0
       goodx=x;
       goodvalue=temp;
   end
end
goodx
goodvalue
end
function r=fun(x)
r=2.*(x(1)-1).^2+3.*(x(2)-4).^2+x(1).*x(2)+(2.*x(3)-5).^2;
end
function c=cons(x)
c=zeros(1,2);
c(1) = 3.*x(1) + 2.*x(2) + 6.*x(3) - 20;
c(2) = 4.*x(1) + 5.*x(2) + 2.*x(3) - 21;
end
```

运行结果:

>> file_3

goodx =

0.10 3.31 2.00

goodvalue =

4.37

四. 实验自评与改进方向

本实验用时较少,在写第二题时,老师用 for 循环完成,我发现了 while 循环可以避免估算数值个数,用 while 循环完成,可见,每一道题能用不同思路解答。

五. 实验体会, 收获及建议

基础实验和综合实验总体都不是很难,做题时发现对一道题可能想出多种解题思路,要选取自己熟悉和简单易懂的方法写程序。