LISTA DE EXERCÍCIOS

2.9 Considere uma parede plana com 100 mm de espessura e condutividade térmica de 100 W/m·K. Supondo a manutenção de condições de regime estacionário, com T₁ = 400 K e T₂ = 600 K, determine o fluxo térmico q"_x e o gradiente de temperatura dT/dx para os sistemas de coordenadas mostrados.

2.20 Em um dado instante do tempo, a distribuição de temperatura no interior de um corpo homogêneo infinito é dada pela função

$$T(x, y, z) = x^2 - 2y^2 + z^2 - xy + 2yz$$

Considerando propriedades constantes e nenhuma geração de calor no interior do corpo, determine as regiões onde a temperatura varia ao longo do tempo.

- 2.22 Observa-se que a distribuição de temperatura, em estado estacionário, no interior de uma parede unidimensional com condutividade térmica de 50 W/m·K e espessura de 50 mm tem a forma $T(^{\circ}C) = a + bx^{2}$, onde $a = 200^{\circ}C$, $b = -2.000^{\circ}C/m^{2}$ e x está em metros.
 - (a) Qual a taxa de geração de calor \dot{q} na parede?
 - (b) Determine os fluxos de calor nas duas faces da parede. De que forma esses fluxos de calor estão relacionados com a taxa de geração de calor?
- 2.23 Em um dado instante do tempo, a distribuição de temperatura em uma parede com 0,3 m de espessura é $T(x) = a + bx + cx^2$, onde T está em graus Celsius e x em metros, $a = 200^{\circ}$ C, $b = -200^{\circ}$ C/m, e $c = 30^{\circ}$ C/m². A parede possui uma condutividade térmica de 1 W/m·K.
 - (a) Com base em uma superfície de área unitária, determine a taxa de transferência de calor para dentro e para fora da parede, bem como a taxa de variação da energia acumulada no interior da parede.
 - (b) Se a superfície fria está exposta a um fluido a 100°C, qual o coeficiente de transferência de calor por convecção entre esta superfície e o fluido?
- **2.26** A distribuição de temperatura, em regime estacionário, ao longo de uma parede unidimensional com condutividade térmica k e espessura L tem a forma $T\infty = ax^3 + bx^2 + cx + d$. Desenvolva expressões para a taxa de geração de calor por unidade de volume na parede, e para os fluxos térmicos nas duas superfícies (x = 0, L).

Uma parede plana, com propriedades termofísicas constantes, não possui geração interna de calor e está inicialmente a uma temperatura uniforme T. De repente, a superfície em x = L é aquecida pelo contato com um fluido à temperatura T_{∞} e um coeficiente de transferência de calor por convecção h. No mesmo instante, o aquecedor elétrico é energizado, fornecendo um fluxo térmico constante q''_{0} em x = 0.

- (a) Em um sistema de coordenadas T-x, esboce as distribuições de temperatura para as seguintes condições: condição inicial ($t \le 0$), condição de regime estacionário ($t \to \infty$), e dois instantes de tempo intermediários.
- (b) Em um sistema de coordenadas q",-x, plote o fluxo térmico correspondente às quatro distribuições de temperatura do item anterior.
- Em um sistema de coordenadas q''_x -t, esboce o fluxo térmico nas posições x = 0 e x = L. Ou seja, mostre qualitativamente como $q''_x(0,t)$ e $q''_x(L,t)$ variam em função do tempo.
- (d) Desenvolva uma expressão para a temperatura da superfície da parede em contato com o aquecedor no regime estacionário, $T(0,\infty)$, em termos das variáveis $q^{"}_{a}$, T_{x} , k, h e L.