## 25070 - Construção de Algoritmos e Programação Aula 1 - 18/03/2019

Joice Otsuka

Apresentação da Disciplina e Fundamentos da Computação

## Parte 1 - Apresentação da disciplina

# O que vamos aprender nesta disciplina?

# Algoritmos, Programação ... Solucionar problemas!!

Construir algoritmos e programar são formas de aprender a solucionar problemas!!

## Solução de problemas [Wentworth et al, 2012]

- Entender o problema, formular questões
- Pensar criativamente sobre soluções possíveis
- Expressar uma solução de forma clara e precisa

Construção de algoritmos e programação são excelentes exercícios para solução de problemas

## Vídeo no YouTube:

Por que todos deveriam aprender a programar? <a href="https://youtu.be/mHW1Hsqlp6A">https://youtu.be/mHW1Hsqlp6A</a>

## Construção de algoritmos e programação

- Entendimento do problema
  - Identificação das condições, as restrições, os requisitos
  - Avaliação do estado inicial e do estado final
- Construção de algoritmos para solucionar o problema
  - Definição dos passos de uma solução
- Programação
  - Codificação da solução em uma linguagem de programação

## Objetivos da disciplina

- Entender problemas: aprender a abordar um problema, identificar seus requisitos, condições
- Propor soluções para o problema na forma de algoritmos
  - Definição dos passos claros e precisos de uma solução
- Codificação de um programa que implemente a solução proposta
- Primar pela qualidade e organização dos algoritmos e programas

## Conteúdo da disciplina

- Construção de algoritmos
  - Solução de problemas por refinamentos sucessivos
  - Soluções estruturadas
  - Estruturação de dados
- Programação
  - Codificação em linguagem C
  - Documentação do código

## Planejamento da disciplina

Cronograma

https://ava.ead.ufscar.br/mod/resource/view.php?id=704152

Plano de ensino

https://ava.ead.ufscar.br/mod/resource/view.php?id=704159

## Avaliação

- Componentes de avaliação
  - 4 Provas escritas (70%)
    - P1 e P3: 14%
    - P2 e P4: 21%
  - Trabalhos práticos (15%)
  - 1 Projeto final (15%)
- Todas avaliações receberão notas de 0,0 a 10,0.

## **Datas previstas**

- Prova 1: 10 de abril;
- Prova 2: 29 de abril;
- Prova 3: 15 de maio;
- Prova 4: 24 de junho;
- Trabalhos ao longo da disciplina: AVA, URI, REMAR...
- Projeto final: 3 de julho.

## Ambientes de apoio

- Ambiente Virtual de Aprendizagem (AVA) da UFSCar
  - https://ava.ead.ufscar.br/

- URI online Judge
  - https://www.urionlinejudge.com.br/

## Reflexão e auto-avaliação contínua

- Estou fazendo a minha parte? O que posso fazer para melhorar?
- Estou aprendendo?
- Consigo aplicar o que estou aprendendo?
- Como posso ajudar meus colegas?
  - Criem grupos de estudos!!! □
  - Discutam soluções, tirem dúvidas, ensinem, compartilhem descobertas...
  - NÃO copiem, NÃO permitam cópias ... isso não ajuda!

## Reflexão e auto-avaliação contínua

- APRENDER requer participação ATIVA, dedicação, organização, maturidade!
- Aproveitem bem o curso, aproveitem bem esse período de formação para APRENDER A APRENDER, para CRESCER!
- SUA FORMAÇÃO DEPENDE DE VOCÊ!!!
- Aproveite cada oportunidade de APRENDER!!!
- Algumas ferramentas:
  - Diário de bordo
  - Pesquisas de expectativas, experiência...

## Parte 2 - Fundamentos da Computação

## O que é computação?

- São computadores?
- São programas?
- São dados?
- Tudo isso e muito mais....



**Teoria:** computabilidade, complexidade, autômatos..

Hardware: organização, comunicação

**Dados:** abstração, representação, organização e banco de dados

**Software:** sistemas operacionais, algoritmos, programação, engenharia de software, IHC..

**Aplicações:** Inteligência artificial, segurança, nuvem, mobilidade, big data...



### Foco da disciplina CAP:

- Algoritmos
- Programação
- Representação de dados

20

[Moreira, 2018]



## Algoritmos

## Algoritmo

- Um procedimento passo a passo para a solução de um problema
   [Medina 2005]
- Sequência de passos que visam atingir um objetivo bem definido [Forbellone 2005]
- É um acontecimento que, a partir de um **estado inicial**, após um período de **tempo finito**, produz um **estado final previsível e bem definido** [Farrer, H. et. al., 1989]



#### Exemplo: Receita de bolo de chocolate

#### Ingredientes:

- 3 ovos inteiros
- 1/2 xícara de óleo
- 2 xícaras de leite
- 1 e 1/2 xícara de açúcar
- 1 xícara de nescau
- 3 xícaras de trigo
- 1 colher sopa fermento para bolo

#### Preparo:

- 1. Coloque no liquidificador todos os ingredientes líquidos e bata-os bem.
- 2. Em seguida, acrescente o restante dos ingredientes e bata.
- 3. Coloque numa forma untada e enfarinhada.
- 4. Leve para assar em forno a 180°C, por 30 a 40 minutos, aproximadamente.



## Exemplo: Origami

- Estado inicial: folha aberta
- Estado final: origami pronto
- Algoritmo: sequência de dobraduras



Figura por deviantart.com, de Won Park

## Algoritmos informais

Como vir à aula? Escreva um algoritmo informal para orientar uma pessoa a vir à aula de CAP.

## Algoritmos computacionais

- Quais as diferenças entre estes algoritmos?
- Todos atingem o objetivo?
- Qualquer um poderia executar qualquer dos algoritmos?

## Algoritmos informais

• Escreva um algoritmo informal para orientar uma pessoa a ir do DC até o RU, fazendo uma rota a pé.

Quando terminar, mostre para o/a colega ao lado e verifique se ele/a compreende todos os passos e se os considera adequados

## Algoritmos

- Podem haver vários algoritmos para resolver um mesmo problema
- Quem for executar um algoritmo precisa entender todos os passos
- O ideal são algoritmos que resolvam o problema com o menor custo e esforço

## Algoritmos computacionais

- Seria possível elaborar algoritmos para computadores utilizando linguagem natural?
  - Pouca rigidez sintática e semântica
  - Problemas de ambiguidade
- E utilizando linguagem de programação?
  - Sim, mas pode ser complexo
- Há uma solução intermediária?
  - Fluxogramas
  - Pseudocódigo

Vídeo YouTube

Seu cérebro pode resolver algoritmos - David J. Malan

https://youtu.be/6hfOvs8pY1k

## Programação

## Programação

- Tradução de um algoritmo para um programa de computador
- Programa é uma sequência de instruções que especifica como executar uma tarefa [Wentworth et al, 2012] e que pode ser executada por computador

## Programa de computador

- Quase todos os programas possuem o seguinte conjunto de instruções:
  - ENTRAR: Pegar dados do teclado, de um arquivo ou de algum outro dispositivo de entrada.
  - SAIR: Mostrar dados na tela ou enviar dados para um arquivo ou outro dispositivo de saída.
  - CALCULAR: Executar operações básicas.
  - **EXECUTAR CONDICIONALMENTE:** Checar certas condições e executar a sequência apropriada de instruções.
  - REPETIR: Executar alguma ação repetidamente, normalmente com alguma variação.

## O que é um programa de computador?

- Um programa utiliza uma linguagem de programação para especificar sequências de instruções para um computador
- Linguagens de programação são linguagens formais que foram desenvolvidas para expressar como realizar comandos para computadores [Wentworth et al, 2012].

## Linguagens formais

- Linguagens que foram projetadas para aplicações específicas
  - Ex: notação matemática, notação química, linguagens de programação
- Rigidez na sintaxe
  - Conjunto bem limitado de símbolos e estrutura
  - Exige construções muito bem definidas
- Rigidez semântica
  - Não permite ambiguidades na interpretação
  - Cada expressão deve ter uma única interpretação

## Linguagens formais

- Regras de sintaxe
  - Relacionadas aos símbolos (quais símbolos são válidos)
  - Relacionadas à estrutura (como os símbolos são organizados)
- Regras semânticas
  - Relacionadas à interpretação dos símbolos de uma linguagem

## Linguagens naturais x formais

- Exemplo 1 (linguagem natural):
  - Você vai ao churrasco?
  - o Tu vais ao churrasco?
  - o Vc vai ...?
  - o Cê vai ...
- Exemplo 2(linguagem natural):
  - Ouvi o barulho da porta
- Exemplo 2 (linguagem formal Matemática):
  - $\circ$  3 + 3 = 6
  - o 3=+6\$

#### Resumindo

- Linguagens naturais são sintaticamente e semanticamente flexíveis
- Linguagens de programação são linguagens formais
  - Sintaticamente rígidas, ou seja, possuem símbolos e estruturas bem definidas
  - Semanticamente rígidas, ou seja, permitem apenas uma interpretação (não admitem ambiguidades)



Mas como um programa é compreendido e executado por um computador?

#### Como funciona um computador?



Arquitetura simplificada [SEVERANCE, 2016]

- CPU: processamento das instruções de um programa
- Dispositivos de entrada: Teclado, mouse, tela sensível ao toque.
- Dispositivos de saída: Monitor, alto-falante, impressora, gravador de DVD
- Memória principal: Rápido, pequena e volátil
- Memória secundária: Lenta, grande e permanente - dura até ser removido - Ex: HD, pen drive..

# Como os computadores compreendem uma linguagem de programação?

- Linguagem de máquina/linguagem de baixo nível
  - Linguagem que o computador compreende
  - Pequeno conjunto de instruções da máquina
  - Cada tipo de processador contém um conjunto diferente de instruções
    - Baixa portabilidade

# Como os computadores compreendem uma linguagem de programação?

- Linguagem de programação de alto nível
  - Maior portabilidade, independente de processador
  - Menos complexa de programar, mais produtiva
  - Traduzida para a linguagem de máquina por meio de um compilador ou interpretador





#### **Dados**

- Os programas manipulam dados
- Dados, assim como as instruções, são armazenados na memória
- Tipos de dados
  - o **Básicos:** inteiros, reais, caracteres, lógicos
  - Estruturados/compostos: vetores e registros

- Representação básica: bits
- 1 byte = agrupamento de 8 bits
- Agrupamentos de bytes:
  - $\circ$  1 quilobibyte = 1024 bytes =  $2^{10}$ bytes
  - $\circ$  1 megabibyte = 1024 quilobytes =  $2^{10}2^{10}$
  - 1 gigabibyte = 1024 megabytes =  $2^{10}2^{10}2^{10}$
  - 1 terabibyte = 1024 gigabytes ...

|                       | М       | últiplos d      | lo byte       |         | y∙d∙e            |
|-----------------------|---------|-----------------|---------------|---------|------------------|
| Prefixo binário (IEC) |         |                 | Prefixo do SI |         |                  |
| Nome                  | Símbolo | Múltiplo        | Nome          | Símbolo | Múltiplo         |
| byte                  | В       | 20              | byte          | В       | 10 <sup>0</sup>  |
| kibibyte              | KiB     | 210             | kilobyte      | kB      | 10 <sup>3</sup>  |
| mebibyte              | MiB     | 220             | megabyte      | MB      | 10 <sup>6</sup>  |
| gibibyte              | GiB     | 230             | gigabyte      | GB      | 10 <sup>9</sup>  |
| tebibyte              | TiB     | 2 <sup>40</sup> | terabyte      | ТВ      | 10 <sup>12</sup> |
| pebibyte              | PiB     | 250             | petabyte      | РВ      | 10 <sup>15</sup> |
| exbibyte              | EiB     | 260             | exabyte       | EB      | 10 <sup>18</sup> |
| zebibyte              | ZiB     | 270             | zettabyte     | ZB      | 10 <sup>21</sup> |
| yobibyte              | YiB     | 280             | yottabyte     | YB      | 1024             |
| unbibyte              | UiB     | 2110            | undecabyte    | UB      | 10 <sup>33</sup> |

- Todos os dados e instruções são representados em binário
- Exemplo: Conversão de caracteres para binário
  - Tabela ASCII: <u>https://www.ime.usp.br/~pf/algoritmos/apend/ascii.html</u>
  - Ex: "CAP!" em ASCII: 01000011 01000001 01010000 00100001

• Exemplo: Valor real -3,53125, formato IEEE-754:

11000000 01100010 00000000 00000000

• Instrução INC AL (processador 8086):

11111110 10100000

Vídeo YouTube

Dentro do seu computador - Bettina Bair

<a href="https://www.youtube.com/watch?v=AkFi90IZmXA">https://www.youtube.com/watch?v=AkFi90IZmXA</a>

# Quiz online!

Acesse: kahoot.it

- Leitura recomendada:
   <a href="https://panda.ime.usp.br/pensepy/static/pensepy/01-Introducao/introducao.html">https://panda.ime.usp.br/pensepy/static/pensepy/01-Introducao/introducao.html</a>
- Vídeo: Discovery Channel: Entenda o seu Mundo {Volume 6} Entendendo o Computador
   <a href="https://youtu.be/wTBOhNe8kIM">https://youtu.be/wTBOhNe8kIM</a>

#### Referências

FORBELLONE, André; EBERSPÄCHER, Henri. Lógica de Programação - A construção de algoritmos e estruturas de dados. 3ª Edição. Editora Pearson Prentice Hall, 2005 (disponível na biblioteca).

MEDINA, Marco; FERTIG, Cristina. Algoritmos e Programação - Teoria e Prática. 3ª Edição. Editora Novatec, 2005. (disponível na biblioteca).

ASCENCIO, Ana Fernanda Gomes; CAMPOS, Edilene Aparecida Veneruchi de. Fundamentos da Programação de Computadores. 2ª edição. Editora Pearson Prentice Hall, 2007 (disponível na biblioteca).

MILLER, B.;RANUM, D.; ELKNER, J.; WENTWORTH, P.; ELKNER, J.; DOWNEY, A.; MEYERS, C. Como pensar como um Cientista da Computação:Disponível em: https://panda.ime.usp.br/pensepy/static/pensepy/