Enunciado:

https://docs.google.com/document/d/1zhlTbfgtojD6XqrFrqk5SPdd2NDFzDNMZAduw0jlj5M/edit

rubrica:

https://docs.google.com/spreadsheets/d/1C_NV7rlemvfb1_tuywoN4cZSab5RCb1o7ERHs9Srz Wk/edit#gid=1014352675

Entregables

- 1. Desarrollo completo del Método de la Ingeniería. (Ejemplo)
 - **a.** La fase 1 debe incluir la especificación de requerimientos.

Requerimientos

Cliente	A recognized airline		
Usuario	Tripulation and the airline team		
Requerimientos funcionales	R1: Load passenger info R2: Search a passenger info R3: Register the arrival to the gate R4: Show boarding order R5: Show unboarding order		
Requerimientos no funcionales	Efficiency in the passenger search Use of correct data structures for handling passengers and their order of entry and exit from the plane. Easy to use for the crew member in charge of the system. Security in handling passenger information.		
Contexto del problema	Una reconocida aerolínea quiere desarrollar un programa para realizar una primera versión de un sistema cuyo objetivo principal es mejorar el orden en el proceso de ingreso y salida del avión. A recognized airline wants to develop a program to carry out a first version of a system whose main objective is to improve the order in the boarding and unboarding process of the plain		

Nombre o identificador	R1: Load passenger info				
Resumen	given an airline fli information for tha	•	nust allow the loading of passenger in text document		
Entradas	Nombre de entrada Tipo de Dato Condición de selección o repetición				
	data	data TXT			
Actividades generales necesarias para obtener los resultados	1. Enter the System 2. Choose one option 3. input file				
Resultado o Postcondición	A confirmation message when the data is uploaded.				
Salidas	Nombre salida	Tipo de dato	Condición de selección o repetición		
	msg String				

Nombre o identificador	R2: Search a passenger info			
Resumen	When a passenger arrives at the boarding gate to wait for their flight, their complete information must be searched in the most efficient way possible (since the amount of data will be significantly large in the future).			
Entradas	Nombre de entrada	Tipo de Dato	Condición de selección o repetición	
	passengerName	String		

Actividades generales necesarias para obtener los resultados	The system has to search for a passenger in the database with the same name and if found, return all the information for that passenger				
Resultado o Postcondición	if found, the System will return the info corresponding to the searched Passenger. Else, an error message.				
Salidas	Nombre salida Tipo de dato Condición de selección o repetición				
	passenger	String			

Nombre o	R3: Register the arrival to the gate			
identificador				
Resumen	Once a passenger arrives at the corresponding boarding gate to wait for their flight, after searching for their information, they must register their arrival at the gate			
Entradas	Nombre de entrada	Tipo de Dato	Condición de selección o repetición	
	passengerName	String	the search method must find the passenger	
Actividades generales necesarias para obtener los resultados	The System search for the passenger in the list, if the passenger is in the list, the system will register the arrival to the gate			
Resultado o Postcondición	The passenger is given a value based on the arrival order, and a confirmation or error message is printed			
Salidas	Nombre salida	Tipo de dato	Condición de selección o repetición	
	msg			

Nombre o identificador	R4: Show boarding order				
Resumen	Once the aircraft doors are opened, the system must allow the crew member in charge to be shown in which order the passengers should board.				
			, taking into account the order of attention required, elderly, traveling		
	The other passengers enter the plane in the order of arrival but starting with those furthest from the entrance door to the one closest to it.				
Entradas	Nombre de entrada Tipo de Dato Condición de selección o repetición				
Actividades generales necesarias para obtener los resultados	When the passengers are registered and the user selects the option in the menu to start boarding the plane, the system has to calculate and compare the priorities and other factors to shows the boarding order.				
Resultado o Postcondición	The system prints the names of the passengers to show the boarding order				
Salidas	Nombre salida	Tipo de dato	Condición de selección o repetición		
	boardingOrder	String			

Nombre o identificador	R5: Show unboard	R5: Show unboarding order			
Resumen	which order the pa	The flight crew person in charge of the system will be able to see in which order the passengers should exit. Those who leave first are the ones in the first rows and for each row the order is established by proximity to the aisle or order of arrival as the last instance.			
Entradas	Nombre de entrada	Tipo de Dato	Condición de selección o repetición		

	-	-		
Actividades generales necesarias para obtener los resultados	The system will ca conditions.	alculate the unboa	arding order, based on the given	
Resultado o Postcondición	The system will show the name of the passengers in order to get out of the plane			
Salidas	Nombre salida	Tipo de dato	Condición de selección o repetición	
	unboardingorder	String		

FASE 1: IDENTIFICACIÓN DEL PROBLEMA

A recognized Airline needs a program to help them in some tasks inside the passengers management, inside those requirements we've got to load the passengers info by a TXT file, also the program will be able to search a Passenger's info by typing it's name.

The program should be able to register a passenger's arrival to the gate, and show the boarding and unboarding order according to the priority calculated.

FASE 2: RECOPILACIÓN DE LA INFORMACIÓN NECESARIA

- 1. Algorithm for loading passenger information from a plain text file.
- 2. Efficient information search algorithm for a passenger.
- 3. Algorithm for registering the arrival of a passenger at the boarding gate.
- 4. Passenger ordering algorithm to show the order of entry to the plane.
- 5. Passenger ordering algorithm to show the order of departure of the plane.
- 6. Analysis of temporal and spatial complexity of at least two of the implemented algorithms.

<u>Hash Tables:</u> Hash tables in Java are data structures that allow efficient access and search of elements in a collection using a unique key associated with each element. They are based on the use of a hash function that takes the element's key and converts it into an index in the hash table.

```
package hashtables;

public interface IHashTable<K,V> {
   public void insert(K key, V value) throws Exception;
   public V search(K key);
   public void delete(K key);
}
```

```
package hashtables;
public class HNode<K,V> {
    private V value;
    private K key;

private HNode<K,V> next;
private HNode<K,V> previous;

public HNode(K key, V value) {
    this.value = value;
    this.key = key;
    next = null;
    previous = null;
}
```

```
package hashtables;
import java.util.ArrayList;
public class OpenHashTable<K,V> implements IHashTable<K,V> {
   private ArrayList<HNode<K,V>> table;
   private HNode<K,V> deleted;
```

```
¿Cómo se especifica un TAD de manera formal?

TAD ⟨nombre⟩
⟨objeto abstracto⟩
{ inv: ⟨Invariante del TAD⟩ }

Operaciones Primitivas:

• ⟨Operación 1⟩ : ⟨Entradas⟩ → ⟨Salida⟩
• ...
• ⟨Operación n⟩ : ⟨Entradas⟩ → ⟨Salida⟩
```

FASE 3: BÚSQUEDA DE SOLUCIONES CREATIVAS

lluvia de ideas:

- compare the priority of the passengers to make the boarding list
- separate the plane by sections/rows
- give a priority score where the first class passengers always have 1 more than the normal passengers
- put all the passengers in a single stack already organized ready to unboard
- make different queues for every row of the plane
- make different txt documents for the passenger registry and the passenger and plane info
- make one txt doc with all the data

FASE 4: TRANSICIÓN DE LA FORMULACIÓN DE IDEAS A LOS DISEÑOS PRELIMINARES

- compare the priority of the passengers to make the boarding list

This idea may have too many unnecesary comparisons because a passenger from the row 10 will never go before the passenger in the row 12 when boarding, and a first class will always go before the regular class.

- give a priority score where the first class passengers always have 1 more than the normal passengers

The regular class passengers dont need a priority, they just go based on their row and arrival order.

- put all the passengers in a single stack already organized ready to unboard separating stacks will be easier and faster

FASE 5: EVALUACIÓN Y SELECCIÓN DE LA MEJOR SOLUCIÓN

make one txt doc with all the data

making one document with all the necesary information divided in well specified sections will be a better solution to avoid reading different documents and an easier way of writting the data

separate the plane by sections/rows

this will make the process easier and will make the process of making the boarding and unboarding order faster

FASE 6: PREPARACIÓN DE INFORMES Y ESPECIFICACIONES

FASE 7: IMPLEMENTACIÓN DEL DISEÑO

- 2. Análisis.
 - **a.** <u>Análisis de complejidad tempora</u>l de al menos dos de los algoritmos implementados.
 - b. Análisis de complejidad espacial de al menos dos de los algoritmos implementados.

Análisis de complejidad del algoritmo implementado para hacer push a la cola de prioridad (PriorityQ):

```
class Node<V> {
    V data;
    double priority;
    int order;
    Node next; // el siguiente con menor prioridad
    public Node(V d, int o) {
       data = d;
       order = o;
       next = null;
    public Node(V d, double p, int o) {
       data = d;
       priority = p;
       order = o;
       next = null;
   public V getData() {
        return data;
```

```
public void push(V d, int o) {
    Node<V> temp = new Node(d, o);
    if(head == null) {
        head = temp;
    } else {
        Node<V> start = head;
        Node <V> prev = null;

        while (start != null && start.order > o) {
            prev = start;
            start = start.next;

        }
        if(prev == null) {
            head = temp;
        } else {
            prev.next = temp;
        }
        temp.next = start;
}
```

Temporal:

The algorithm implements the push method of a priority queue in ascending order using linked lists, assuming that the priority queue has N elements, the analysis of the temporal complexity in the worst case is carried out as follows:

- From lines 3 to 25 (class implemented to represent elements as nodes of the linked list) and 40 to 45, we can see that they are declarations, assignments, or comparisons, therefore the complexity of these fragments is O(1).
- From lines 47 to 49, the search for the element with priority lower than or equal to the node to be added is performed, in the worst case all elements in the queue have higher priority than the node to be added, therefore, it will have to traverse the N elements in the linked list to conclude that it goes to the end of the list and add it. It can be deduced that the complexity is O(N).
- From lines 51 to 56, we can see that they are assignments or comparisons, therefore the complexity of these fragments is O(1).

It can be deduced that the temporal complexity in the worst case of the implemented algorithm to push elements into a priority queue in ascending order using linked lists is O(N).

Spatial:

As mentioned in the temporal analysis, a linked list is used to store the nodes of the priority queue, then the analysis of the spatial complexity in the worst case is as follows:

- Building each node requires a constant amount of parameters (lines 3 to 25), therefore the spatial complexity is O(1).
- As each node is stored independently in the linked list, N elements in the linked list are required to store N nodes, therefore the temporal complexity is O(N).

It can be deduced that the spatial complexity in the worst case of the implemented algorithm to push elements into a priority queue in ascending order using linked lists is O(N).

Análisis de complejidad del algoritmo implementado para hacer insert al hastable (HashTable):

```
public class HashTable<K extends Comparable,V> {
                                            public ArrayList<Pair<K, V>>[] map;
                                            private int size = 100;
                                            public HashTable() {
                                                map = new ArrayList[size];
                                                for(int i = 0; i<size ; i++){</pre>
                                                    map[i] = new ArrayList();
:lass Pair<K, V> {
  private K key;
  private V value;
                                            public int hash(K key){
                                                return key.hashCode() % size;
  public Pair(K key, V value) {
      this.key = key;
      this.value = value;
                                           public void insert(K key, V value) throws Exception{
                                                if (search(key) == null){
  public K getKey() {
                                                    Pair nv = new Pair(key, value);
      return key;
                                                    map[hash(key)].add(nv);
                                                else {
  public V getValue() {
                                                    throw new Exception("Id ya existente!");
      return value;
```

Temporal:

The shown algorithm implements the insert method of a hash table using ArrayLists, assuming the hash table has N elements, the analysis of the temporal complexity in the worst case is as follows:

- From lines 5 to 21 (class implemented to represent elements as pairs of elements) and 39 to 40, we can see that they are declarations, assignments, or comparisons, therefore the complexity of these fragments is O(1).
- In line 41, the hash function (implemented in lines 34 to 36) is used to calculate the index in the ArrayList array of the element to be added, this operation has temporal complexity O(1) since only the hashCode method call and the modulo operator are used. On the other hand, to insert the element to the found ArrayList, the add function is used, which has an amortized complexity of O(1), given that in most of the executions adding an element using the add function that receives only one parameter will have complexity O(1), but rarely will have complexity O(N) because in the implementation used, operations of reallocation of all elements will have to be made to make space for the new one. Therefore, the complexity of line 41 is O(1) amortized.
- From lines 42 to 46, we can see that they are assignments or comparisons, therefore the complexity of these fragments is O(1).

It is deduced that the temporal complexity in the worst case of the implemented algorithm to insert into the hash table is O(1) amortized.

Espacial:

As mentioned in the temporal analysis, an array (of constant length) is used to store the ArrayLists containing key-value pairs of the hash table, so the analysis of spatial complexity in the worst case is as follows:

- Constructing each element of the ArrayList (the key-value pairs of the Pair class) requires a constant number of parameters (lines 5 to 21), so the spatial complexity is O(1).
- Since each ArrayList, in the worst case, contains all the elements added to the hash table, which would be the case if they all have the same hash, the spatial complexity would be O(N).
- Since the array of ArrayLists is a structure with a fixed number of elements, the spatial complexity would be O(1).

It follows that the spatial complexity in the worst case of the implemented algorithm for inserting into the hash table using ArrayLists is O(N).

3. Diseño.

a. Diseño del TAD de las estructuras de datos utilizadas.

TAD HashTable

HashTable : { ArrayList<Pair<K, V>>}

{ inv: size }

Primitive Operations:

HashTable: size → Hashmap

• hash: key → hashvalue

insert: TablaHash x key x value → Void

■ search: TablaHash x Key → value

HashTable()

```
"Creates the hashmap"
{ pre: map → null}
{ post: map → true }
```

hash()

"converts a key into a hashcode"

```
{ pre: key }
{ post: hashcode }
```

```
insert()
"adds a passenger to the hashmap"
{ pre: map → true ∧ passenger ∉ map}
{ post: map → true ∧ passenger ∈ map}
```

```
search()
"searches for a passenger in the hashmap given a key"
{ pre: map → true ∧ key }
{ post: passenger V null }
```

TAD PriorityQ

```
PriorityQ: { N1<V>, N2<V>...}
```

{ inv: head.priority ≥ head.next.priority }

Primitive Operations:

• push: Value x Order \rightarrow Void

• push: Value x Priority xOrder → Void

■ isEmpty: head → boolean

■ pop: head → Value

```
push()
"Adds a passenger to the queue"
{ pre: PriorityQ → true ∧ passenger ∉ PriorityQ}
{ post: PriorityQ → passenger ∧ passenger ∈ PriorityQ }
```

```
isEmpty()
"Checks if the queue is empty"
{ pre: PriorityQ→ true }
{ post: true or false }
```

```
pop()
```

```
"removes the top passenger from the queue"
{ pre: PriorityQ → passenger}
{ post: passenger}
```

b. Diseño completo del diagrama de clases usando generics, incluyendo, las estructuras de datos, el paquete del modelo, de la interfaz de usuario y pruebas.

c. Diseño de casos de prueba, incluyendo los escenarios, para las estructuras y el sistema.

Formato de escenarios y casos de uso

Configuración de los Escenarios

Nombre	Clase	Escenario		
setupStage 1	Passenger Test	A non initialized object Passenger		
setupStage 2	Passenger Test	An object of the class Passenger is created with name="Lucas", id="1193", row=2, column="A", miles=200, older=false, specialNeeds=true, travelsWithBaby=false		
setupStage 3	Passenger Test	An object of the class Passenger with name="Julian", id="2143", row=5, column="A"		
setupStage 1	FlleReaderTest	An object of the class FileReader with pathName="Data.txt"		
setupStage 1	HashTableTest	An object of the class HashTable with 3 pairs of K,V: where V is an object of the class Passenger 1. key= 1193, y value con name="Lucas", id="1193", row=2, column="A", miles=200, older=false, specialNeeds=true, travelsWithBaby=false 2. key= 2143, value con name="Julian", id="2143", row=5, column="A" 3. key=5493, value con con name="Rodrigo", id="5493", row=16, column="C"		
setupStage 1	PriorityQTest	An object of the class PriorityQ		
setupStage 2	PriorityQTest	An object of the class PriorityQ with 1 node: 1. d=-3 p= an object passenger with: name="Lucas", id="1193", row=2, column="A", miles=200, older=false, specialNeeds=true, travelsWithBaby=false		
setupStage 3	PriorityQTest	An object of the class PriorityQ with 2 nodes: 2. d=-3 p= an object passenger with: name="Lucas", id="1193", row=2, column="A", miles=200, older=false, specialNeeds=true, travelsWithBaby=false 3. d=-5 p= an object passenger with: name="Julian", id="2143", row=2, column="B", miles=300, older=false, specialNeeds=true, travelsWithBaby=false		

Objetivo de	Objetivo de la Prueba: Verify that the methods from the class Pasenger are effective				
Clase	Método	Escenario	Valores de Entrada	Resultado esperado	
Passenge r	Passenger	row=2, column="A",	miles=200, older=false, specialNeeds=true,	A new Passenger created with the given parameters.	
Passenge r	getPriority	setupStage2	_	returns the priority of the passenger priority=3	
Passenge r	getPriority	setupStage3	_	returns priority=0 because the passenger is not first class so it doesn't have priority	

Objetivo (Objetivo de la Prueba: Verify that the methods in FileReader class work correctly					
Clase	Método	Escenario	Valores de Entrada	Resultado esperado		
FileRead er	showPlaneSpe cifications	setupStage 1	the first 4 lines of the Data.txt document must be: /**** Plane definition section ****/ 4 // Rows in the plane: D // Columns on the plane 2 // First Class which indicates the specifications of the plane	A String="Plane rows: 4 Plane columns: 4 Plane first class: 2"		
FileRead er	get1Arrival	setupStage 1	arrvNumber=1 The arrival section in the Data.txt document must be: /**** Arrival ****/ 010 016 011	returns the id of the passenger to arrive first= 010		
FileRead er	getReadLine	setupStage 1	i=6	Returns the line 6 in the Data.txt file "/**** model.Passenger Database ****/"		

Objetivo de la Prueba: Verify that the insert and search methods from the class HashTable work fine				
Clase	Método	Escenario	Valores de Entrada	Resultado esperado

HashTab le	insert	setupStage 1	key="1193" value=Passenger obj with: name="Jimmy", id="1193", row=4, column="B", miles=100, older=true, specialNeeds=true, travelsWithBaby=false	throws an Exception with the message "Id ya existente!"
HashTab le	search	setupStage 1	key=1193	Returns the object Passenger with the id "1193"
HashTab le	insert	setupStage 1	key="2340" value=Passenger obj with: name="Jimmy", id="2340", row=4, column="B", miles=100, older=true, specialNeeds=true, travelsWithBaby=false	inserts a pair of a key and a passenger in the hashmap

Objetivo de la Prueba: Verify that the methods from the class PriorityQ work fine						
Clase	Método	Escenario	Valores de Entrada	Resultado esperado		
PriorityQ	push	setupStage 1	d=1 p= an object passenger with: name="Julian", id="2143", row=2, column="B", miles=200, older=false, specialNeeds=true, travelsWithBaby=false	the priorityQ has 1 node, the head is not null. The next of the head is null head data is an object passenger with: name="Julian", id="2143", row=2, column="B", miles=200, older=false, specialNeeds=true, travelsWithBaby=false		
PriorityQ	push	setupStage 2	d=1 p= an object passenger with: name="Julian", id="2143", row=2, column="B", miles=200, older=false, specialNeeds=true, travelsWithBaby=false	the priorityQ has 2 nodes, the new head is the object passenger pushed: name="Julian", id="2143", row=2, column="B", miles=200, older=false, specialNeeds=true, travelsWithBaby=false		
PriorityQ	pop	setupStage 3		returns the head of the queue which is an obj Passenger: name="Julian", id="2143", row=2, column="B", miles=300, older=false, specialNeeds=true, travelsWithBaby=false		

- 4. Implementación en Java.
 - a. Implementación completa de las estructuras de datos y sus pruebas.
 - **b.** Implementación completa y correcta del modelo, la UI y las pruebas (contexto del problema).

link de github:

https://github.com/felipevelasco7/APO-2/tree/master/TI1 CyED