

ROBOSTEM Project

Agreement no: 2019-1-RO01-KA202-063965

Plan lekcji - Fizyka

Temat: Prosty oscylator harmoniczny

Grupa docelowa: 10th Klasa

Cele:

Cel 1. Modernizacja nauczania fizyki w szkole średniej.

Cel 2. Zwiększenie efektywności dydaktycznej w nauczaniu fizyki.

Cel 3. Rozwijanie zainteresowań uczniów fizyką.

Cel 4. Zrozumienie podstawowych zasad działania oscylatora harmonicznego, badanie kinematyki i dynamiki układu.

Cel 5. Przewidywanie wartości wielkości fizycznych oraz ich zmian w czasie z wykorzystaniem podejścia teoretycznego (matematycznego).

Cel 6. Przedstaw graficznie zależność przemieszczenia obiektu od czasu oraz wyodrębnij wartości takich wielkości, jak okres, częstotliwość i amplituda.

Zastosowane podejście/metodologia: Uczniowie przyczepiają różne przedmioty do pionowej sprężyny i wprawiają ją w drgania, wysuwając ją tuż nad czujnik zbliżeniowy. Czujnik przesyła dane do Arduino, które przedstawia je w komputerze, tworząc wykres w czasie rzeczywistym.

Środki/narzędzia/technologia edukacyjna

Obiekty o różnych masach Sprężyna przedłużająca Komputer z systemem Windows i zainstalowanym pakietem Office (Excel) Arduino UNO Płyta robocza Kable Czujnik naddźwiękowy

Plan pracy

Czas	Działania	Metody/środki
10 min.	Teoretyczne podejście do problemu.	Projektor, tablica
5 min.	Montaż zestawu doświadczalnego.	Sprężyna, waga, podstawka,
		Arduino, czujnik naddźwiękowy

ROBOSTEM Project

Agreement no: 2019-1-RO01-KA202-063965

10 min.	Przedstawienie położenia jako funkcji czasu i	Excel
	porównanie ich z funkcją sinusoidalną.	
5 min.	Obliczenie częstotliwości, okresu i częstotliwości	Oprogramowanie
	kątowej na podstawie danych doświadczalnych.	analityczne
10 min.	Porównanie danych doświadczalnych z wartościami	Blackboard
	teoretycznymi.	
5 min.	Wyjaśnij różnice i przedyskutuj je z uczniami.	Dyskusja w klasie

Ocena/informacje zwrotne:

Nauczyciele i uczniowie, którzy uczestniczyli w programie, rozwijali się osobiście i zdobywali nową wiedzę. Uczniowie odnowili swoje zainteresowanie fizyką, głównie dzięki ćwiczeniom laboratoryjnym, a w drugiej kolejności dzięki pracom syntetycznym. Dzięki praktycznemu ćwiczeniu laboratoryjnych technik STEM uczniowie nabrali pewności siebie, co zwiększyło współpracę między nimi i wzmocniło ich umiejętność pracy zespołowej, a także poprawiło komunikację między nauczycielem a uczniami.

Bibliografia:

Hugh D. Young, Roger A. Freedman. University Physics with Modern Physics with Mastering Physics: