

ETUDE ET REALISATION D'UN MICROPROCESSEURS RISC

Vicheka PHOR

Master 2 Professionnel
INFORMATIQUE
CAMSI

Conception d'Architecture de Machine et Systèmes Informatiques

PLAN DE LA PRESENTATION

- I. Introduction au sujet de projet
 - I.1 Objectif du projet
 - I.2 Travail demandé
- II. Conception de processeur RISC
 - II.1 Chemin de données pipeline
 - II.2 Unité de contrôle
 - II.3 Aléas dans les pipelines
- III. Réalisation et simulation
 - III.1 Mise en œuvre de processeur RISC en VHDL
 - III.2 Compilateur
 - III.3 Résultats de simulation
- IV. Synthèse
- V. Conclusion

I. Introduction au sujet de projet

- I.1 Objectif du projet
- Mise en ouvre d'une architecture de processeur RISC
- I.2 Travail demandé
- Conception
- Simulation
- Synthèse

II. Conception de processeur RISC

- II.1 Chemins de données pipeline
- II.2 Unité de contrôle
- II.3 Aléas dans le pipeline

II.1 Chemin de données pipeline (1)

II.1 Chemin de données pipeline (2)

II.2 Unité de contrôle (1)

II.2 Unité de contrôle (2)

				Étage DI			Étage EX							
OPCODE		FCODE	rt / B	Lignes de contrôle			Lignes de contrôle							
				хт						MUX	MUX	MUX		
				SIGNED_EXT				0	ALU_SIGNED	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	SRCB	ᅜ		
				E				^LU_OP	$reve{\omega}$	יין אַל אַל		ZEG_DST		_
				GN		ja		\exists	3		ALU.	E S	J. jr	J_jalr
					J. L	٦'	H		•				٦'	7
		ADD ADDU		0	-	-	Н	ALU_ADD ALU ADD	0	REGS_QA REGS QA	REGS_QB	REG_RD REG RD	-	-
		SUB		0	-	-	Н	ALU_ADD	1		REGS_QB	REG_RD		-
		SUBU		0	-	-		ALU_SUB	0		REGS_QB	REG_RD		
		iAND		0	-	-		ALU_SOB	0			REG_RD		
		iOR		0	_	-		ALU OR	0		REGS_QB	REG_RD	_	_
TYPI	E R	iNOR		0	-	-		ALU NOR	0	REGS QA	REGS QB	REG RD	_	
	"000000"			0	-	-		ALU XOR	0	REGS_QA		REG_RD	_	-
		iXOR SLT		0	-	-		ALU SLT	1	REGS QA		REG RD	_	_
		SLTU		0	-	-		ALU_SLT	0		REGS_QB	REG_RD	-	-
				0	-	-		ALU_LSL	0	REGS_QB	VAL_DEC	REG_RD	-	-
		LSR		0	-	-		ALU_LSR	0	REGS_QB	VAL_DEC	REG_RD	-	-
				0	-	-	П	-	-	REGS_QA	REGS_QB	REG_RD	1	-
				0	-	-		-	-	REGS_QA	REGS_QB	REG_RD	-	1
TVD			BLTZ	1	-	-		ALU_SUB	1	REGS_QA	VAL_0	-	-	-
	TYPE_B		BGEZ	1	-	-		ALU_SUB	1	REGS_QA	VAL_0	-	-	-
"000001"			BLTZAL	1	-	-		ALU_SUB	1	REGS_QA	VAL_0	R31	-	-
			BGEZAL	1	-		L	ALU_SUB	1	REGS_QA	VAL_0	R31	-	-
TYPE J	J			0	1	-		-	-	-	-	-	-	-
TTPE_3	JAL			0	-	1	1	-	-	-	-	R31	-	-
	ADDI			1	-	-		ALU_ADD	1	REGS_QA	IMMD	REG_RT	-	-
	ADDIU			1	-	-		ALU_ADD	0	REGS_QA	IMMD	REG_RT	-	-
	SLTI			1	-	-		ALU_SLT	1	REGS_QA	IMMD	REG_RT	-	-
	SLTIU			1	-	-		ALU_SLT	0	REGS_QA	IMMD	REG_RT	-	-
	ANDI			0	-	-		ALU_AND	0	REGS_QA	IMMD	REG_RT	-	-
	ORI			0	-	-		ALU_OR	0	REGS_QA	IMMD	REG_RT	-	-
	XORI			0	-	-		ALU_XOR	0	REGS_QA	IMMD	REG_RT	-	-
	LUI			0	-	-		ALU_LSL	1	IMMD	VAL_16	REG_RT	-	-
	LB			1	-	-		ALU_ADD	1	REGS_QA	IMMD	REG_RT	-	-
TYPE_I	LH			1	-	-		ALU_ADD	1	REGS_QA	IMMD	REG_RT	-	-
	LW			1	-	-		ALU_ADD	1	REGS_QA	IMMD	REG_RT	-	-
	LBU LHU			1	-	-		ALU_ADD ALU ADD	<u>1</u> 1	REGS_QA REGS QA	IMMD IMMD	REG_RT	-	-
	SB			1	-	-		ALU_ADD	1 1	REGS_QA	IMMD	REG_RT	-	-
	SH			1	-	-		ALU_ADD	1	REGS_QA	IMMD	-	-	-
	SW			1		-	H	ALU_ADD	1 1	REGS_QA	IMMD			-
	BEQ			1	-	-		ALU_ADD	<u>'</u> 1	REGS_QA	REGS QB	<u> </u>		
	BNE			1	-	-		ALU_SUB	1					
	BLEZ			1	-	-		ALU SUB	<u>'</u>		REGS QB	-	_	-
	BGTZ			1	_	-		ALU SUB	<u>'</u>		REGS_QB	-	_	
	1 2012			<u>'</u>			1	, LEG_00B		<u></u>				

II.2 Unité de contrôle (3)

				Étage MEM						Étage ER				
OPCODE				Ш	Lignes de contrôle						Lignes de contrôle			
						1	•	1	MUX		MUX			
		FCODE	rt / B	DC_AS	C_SIGNED	<u> </u>	DC_RW	BRANCH	B_type	REGS_W*	RG 300			
		ADD		0	-	-	-	0	-	0	ALU_S			
		ADDU		0	-	-	-	0	-	0	ALU_S			
		SUB		0	-	-	-	0	-	0	ALU_S			
		SUBU		0	-	-	-	0	-	0	ALU_S			
		iAND		0		-	-	0	-	0	ALU_S			
TVD		iOR		0	-	-	-	0	-	0	ALU_S			
TYPI "0000		iNOR iXOR		0	-	-	-	0	-	0 0	ALU_S ALU_S			
0000	,00	SLT		0	-	-		0	_	0	ALU_S			
		SLTU		0	-	_	_	0	_	0	ALU_S			
				0	-	-	_	0	_	0	ALU S			
		LSL LSR		0	-	-	-	0	-	0	ALU_S			
				0	-	-	-	0	-	1	-			
		JALR		0	-	-	-	0	-	0	NextPC			
TYPI	- D		BLTZ	0	-	-	-	1	B_bltz	1	_			
"0000			BGEZ	0	-	-	-	1	B_bgez	1	-			
0000	,		BLTZAL	0	-	-	-	1	B_bltz	0	NextPC			
			BGEZAL	0	-	-	-	1	B_bgez	О	NextPC			
TYPE_J	J			0	-	-	-	0	-	1	-			
111 =_0	JAL			0	-	-	-	0	-	0	NextPC			
	ADDI			0	-	-	-	0	-	0	ALU_S			
	ADDIU			0	-	-	-	0	-	0	ALU_S			
	SLTI			0	-	-	-	0	-	0	ALU_S			
	SLTIU			0	-	-	-	0	-	0	ALU_S			
	ANDI ORI			0	-	-	-	0	-	0	ALU_S ALU_S			
	XORI			0		-		0	_	0	ALU_S			
	LUI			0		_	- -	0	_	0	ALU S			
	LB			1	1	MEM_8	1	0	_	0	MEM_Q			
	LH			1	1	MEM_16	1	0	-	0	MEM_Q			
TYPE_I	LW			1	1	MEM_32	1	0	-	0	MEM_Q			
	LBU			1	0	MEM_8	1	0	-	0	MEM_Q			
	LHU			1	0	MEM_16	1	0	-	0	MEM_Q			
	SB			1	1	MEM_8	0	0	-	1	-			
	SH			1	1	MEM_16	0	0	-	1	-			
	SW			1	1	MEM_32	0	0		1				
	BEQ			0	-	-	-	1	B_beq	1	-			
	BNE			0	-	-	-	1	B_bne	1	-			
	BLEZ BGTZ			0	-	-		1	B_blez	1	-			
	DG IZ			U	_	-			B_bgtz					

II.3 Aléas dans les pipelines

II.3.1 Aléas de données

II.3.2 Aléas de branchement

II.3.1 Aléas de données (1)

II.3.1 Aléas de données (2)

II.3.1 Aléas de données (3)

II.3.1 Aléas de données (4)

II.3.1 Aléas de données (5)

IV. Synthèse

V. Conclusion

II.3.2 Aléas de branchement (1)

II.3.2 Aléas de branchement (2)

III. Réalisation et simulation

- III.1 Mise en œuvre de processeur RISC en VHDL
- III.2 Compilateur
- III.3 Résultats de simulation

III.1 Mise en œuvre de processeur RISC en VHDL

- registres.1.vhd
- memory.1.correction.vhd
- cpu_package.2_1.vhd
- V5cpu_package.2.vhd et V5risc.0.vhd
- V6cpu_package.2.vhd et V6risc.0.vhd
- logique.i.0.txt
- logique.d.0.txt

III.2 Compilateur

• r3kasm2.c et r3kasm2.h

IV. Synthèse

Fichier de synthèse	Période d'horloge T _{CLK} [ns]	Fréquence de l'horloge [MHz]	Chemin critique [ns]	Voltage [V]	Puissance dynamique [mW]	Puissance statique [uW]	Nombre de cellules
V5risc.0.vhd	10	100	9,85	3,30	54,5345	1,4224	14185
	9	111,11	8,85	3,30	60,7387	1,4325	14322
	8	125	7,85	3,30	68,3236	1,4376	14383
	7	142,86	7,68	3,30	78,2718	1,4425	14415
V6risc.0.vhd	8	125	7,96	3,30	68,7665	1,4603	14583
	7	142,86	7,79	3,30	78,4423	1,4596	14603

V. Conclusion

Important

- Aider à comprendre les concepts abordés dans le cours
- Maitriser les logiciels: ModelSim, Cadence, AutoCAD, Synopsis

Difficultés

- Prendre beaucoup de temps
- Bloqué parfois
- Sans logiciel Synopsis sur mon PC pour faire la synthèse

REFERENCES BIBLIOGRAPHIQUES

- [1] Computer Organization & Design. David A. Patterson and John L. Hennessy, ISBN 1-55860-428-6, p 476-501, 525-256.
- [2] University of California at Davis Computer Science Museum, http://www.csif.cs.ucdavis.edu/~csclub/museum/cpu.html, October 1999.
- [3] Advanced Microprocessors, Daniel Tabak, ISBN 0-07-062843-2, p 79-99.
- [4] The Practical XILINX Designer Lab Book, Dave Van den Bout, ISBN 0-13-095502-7, p 30-31.
- [5] XILINX datasheet library, http://www.xilinx.com/partinfo/4000.pdf, November 1999.
- [6] Evaluation of a reconfigurable computing engine for digital communication applications, Jonas Thor, ISSN 1402-1617, p 12-17.
- [7] « Architecture des ordinateurs : une approche quantitative » John L. Hennessy, David A. Patterson Vuibert (3ème édition)
- [8] « Conception des circuits en VHDL » Dominique Houzet –Cepadues

Merci pour votre attention.

II.1 Chemin de données pipeline (2)

II.2 Unité de contrôle (1)

II.3.1 Aléas de données (2)

II.3.1 Aléas de données (4)

II.3.1 Aléas de données (5)

II.3.2 Aléas de branchement (2)

II.3.2 Aléas de branchement (3)

IV. Synthèse

V. Conclusion

II.3.1 Aléas de données (1)

II.3.1 Aléas de données (3)

