Controlling an ARM-like data path

Instructor: Dr. Vinicius Prado da Fonseca (vpradodafons@online.mun.ca)

- This data path contains:
- 16-bit word 8 registers file with two read ports and one write port
 - reg16_t R[7:0]; // registers
- ALU with inputs a and b that supports
 - add
 - subtract
 - o bitwise-or
 - bitwise-and
 - bitwise-xor
 - pass-b (output = operator b)
 - negate-b (invert signal)
 - o invert-b (flip all bits)

 $typedef\ enum\ logic\ [2:0]\ \{OP_ADD,OP_SUB,OP_ORR,OP_AND,OP_EOR,OP_B_NEG,OP_B_INV,OP_B_PAS\}\ alu_ctl_t$

- The shifter performs arithmetic right shift and logical left shift
 - signed [4:0] shift_amt_t

The block diagram is:

• The data types for this data path are:

- armish_dp.v
- "shifter" module implements the combinational block that does right and left shift operations
- "arm_alu" implements the ALU
- The register file is implemented with reg_file
- The modules are combined to create the data path with the "armish_datapath" module

The ports of the armish_datapath provide:

- outputs:
 - out Output from the ALU (reg16_t)
 - o cn N (negative)
 - o cz Z (zero)
 - o cc C (carry out)
 - o cv V (overflow)
 - o all operations set the flags
 - check the notes

The ports of the armish_datapath provide:

- inputs:
 - op specifies one of the operations (alu_ctl_t)
 - sh (signed) controls the shift amount (shift_amt_t)
 - positive for left shifts
 - negative for arithmetic right shifts
 - d selects the destination register that is updated (reg_sel_t)
 - o n, m register reading location
 - o dw, clk, reset
 - dw enables register file updates. dw is 1, the output of the ALU is stored
 - clk is the clock signal for the positive edge flip-flops
 - reset clears all the flip-flops to zero.

 The behaviour of this data path can be analysed at the register transfer level

dw	d	n	m	sh	ор	RTL
1	х	æ	z	0	pass_b	$R[x] \leftarrow R[z]$
1	x	_	z	0	invert_b	R[x] <= ~R[z]
1	x	-	z	0	negate_b	$R[x] \leftarrow -R[z]$
1	х	у	z	0	or	$R[x] \leftarrow R[y] \mid R[z]$
1	х	у	z	0	eor	$R[x] \leftarrow R[y] ^ R[z]$
1	х	у	z	0	and	$R[x] \leftarrow R[y] \& R[z]$
1	х	у	z	0	add	$R[x] \iff R[y] + R[z]$
1	х	у	z	0	sub	$R[x] \leftarrow R[y] - R[z]$
0	-	у	z	0	sub	R[y] - R[z] for compare
1	x	у	z	sh	op	R[x] <= R[y] op (R[z] << sh) sh is positive
1	x	у	z	sh	ор	$R[x] \leftarrow R[y] \text{ op } (R[z] >>> -sh)$ sh is negative

 The behaviour of this data path can be analysed at the register transfer level

dw	d	n	m	sh	ор	RTL
1	х	æ	z	0	pass_b	$R[x] \leftarrow R[z]$
1	x	<u>-</u>	z	0	invert_b	R[x] <= ~R[z]
1	x	-	z	0	negate_b	$R[x] \leftarrow -R[z]$
1	х	у	z	0	or	$R[x] \leftarrow R[y] \mid R[z]$
1	х	у	z	0	eor	$R[x] \leftarrow R[y] ^ R[z]$
1	x	у	z	0	and	$R[x] \leftarrow R[y] \& R[z]$
1	x	у	z	0	add	$R[x] \iff R[y] + R[z]$
1	x	у	z	0	sub	$R[x] \leftarrow R[y] - R[z]$
0	-	у	z	0	sub	R[y] - R[z] for compare
1	x	у	z	sh	ор	R[x] <= R[y] op (R[z] << sh) sh is positive
1	x	у	Z	sh	op	$R[x] \leftarrow R[y]$ op $(R[z] >>> -sh)$ sh is negative

sh and alu in the same clock?
 R[1] <= R[2] + R[5] << 1
 R1 = R2 + R5*2

dw	d	n	m	sh	ор	RTL
1	х	æ	z	0	pass_b	$R[x] \leftarrow R[z]$
1	x	_	z	0	invert_b	$R[x] \leftarrow R[z]$
1	x	-	z	0	negate_b	$R[x] \leftarrow -R[z]$
1	х	у	z	0	or	$R[x] \leftarrow R[y] \mid R[z]$
1	х	у	z	0	eor	$R[x] \leftarrow R[y] ^ R[z]$
1	x	у	z	0	and	$R[x] \leftarrow R[y] \& R[z]$
1	x	у	z	0	add	$R[x] \leftarrow R[y] + R[z]$
1	x	у	z	0	sub	$R[x] \leftarrow R[y] - R[z]$
0	-	у	z	0	sub	R[y] - R[z] for compare
1	х	у	z	sh	op	$R[x] \leftarrow R[y]$ op $(R[z] \leftarrow sh)$ sh is positive
1	x	у	Z	sh	ор	$R[x] \leftarrow R[y]$ op $(R[z] >>> -sh)$ sh is negative

Only shifting?
 R[1] <= R[5] << 1 (operand b, m)
 R1 = R5*2

dw=1; d=1; n=x; m=5; sh=1; op=OP_PASS_B

dw	d	n	m	sh	ор	RTL
1	х	-	z	0	pass_b	$R[x] \leftarrow R[z]$
1	x	_	z	0	invert_b	$R[x] \leftarrow R[z]$
1	x	-	z	0	negate_b	$R[x] \leftarrow -R[z]$
1	х	у	z	0	or	$R[x] \leftarrow R[y] \mid R[z]$
1	х	у	z	0	eor	$R[x] \leftarrow R[y] ^ R[z]$
1	x	у	z	0	and	$R[x] \leftarrow R[y] \& R[z]$
1	x	у	z	0	add	$R[x] \leftarrow R[y] + R[z]$
1	x	у	z	0	sub	$R[x] \leftarrow R[y] - R[z]$
0	-	у	z	0	sub	R[y] - R[z] for compare
1	х	у	z	sh	op	$R[x] \leftarrow R[y]$ op $(R[z] \leftarrow sh)$ sh is positive
1	x	у	Z	sh	ор	$R[x] \leftarrow R[y]$ op $(R[z] >>> -sh)$ sh is negative

- The behaviour of this data path can be analysed at the register transfer level
- sh and alu in the same clock

How to set register 3 to 0?

dw	d	n	m	sh	ор	RTL
1	х	æ	z	0	pass_b	$R[x] \leftarrow R[z]$
1	x	_	z	0	invert_b	R[x] <= ~R[z]
1	x	-	z	0	negate_b	$R[x] \leftarrow -R[z]$
1	х	у	z	0	or	$R[x] \leftarrow R[y] \mid R[z]$
1	х	у	z	0	eor	$R[x] \leftarrow R[y] ^ R[z]$
1	х	у	z	0	and	$R[x] \leftarrow R[y] \& R[z]$
1	х	у	z	0	add	$R[x] \iff R[y] + R[z]$
1	х	у	z	0	sub	$R[x] \leftarrow R[y] - R[z]$
0	-	у	z	0	sub	R[y] - R[z] for compare
1	x	у	z	sh	op	R[x] <= R[y] op (R[z] << sh) sh is positive
1	x	у	z	sh	ор	$R[x] \leftarrow R[y] \text{ op } (R[z] >>> -sh)$ sh is negative

$$S0: R[3] \le R[3] ^ R[3]$$

op=OP_EOR,
$$sh=0$$
, $d=3$, $n=3$, $m=3$, $dw=1$

- S1 is used to output R[3] through the ALU
- Transitions similar to mini datapath

dw	d	n	m	sh	ор	RTL
1	х	æ	z	0	pass_b	$R[x] \leftarrow R[z]$
1	x	<u>-</u>	z	0	invert_b	R[x] <= ~R[z]
1	x	-	z	0	negate_b	$R[x] \leftarrow -R[z]$
1	х	у	z	0	or	$R[x] \leftarrow R[y] \mid R[z]$
1	х	у	z	0	eor	$R[x] \leftarrow R[y] ^ R[z]$
1	x	у	z	0	and	$R[x] \leftarrow R[y] \& R[z]$
1	x	у	z	0	add	$R[x] \iff R[y] + R[z]$
1	x	у	z	0	sub	$R[x] \leftarrow R[y] - R[z]$
0	-	у	z	0	sub	R[y] - R[z] for compare
1	х	у	z	sh	ор	R[x] <= R[y] op (R[z] << sh) sh is positive
1	x	у	Z	sh	op	R[x] <= R[y] op (R[z] >>> -sh) sh is negative

S0:
$$R[6] \le R[6] ^ R[6] // R[6] = 0000 0000 0000 0000$$


```
S0: R[6] \le R[6] ^ R[6]  // R[6] = 0000 0000 0000 0000
```

S1:
$$R[6] \leftarrow R[6]$$
 // $R[6] = 1111 1111 1111 1111$


```
S0: R[6] <= R[6] ^ R[6] // R[6] = 0000 0000 0000 0000 

S1: R[6] <= ~R[6] // R[6] = 1111 1111 1111 1111 

S2: R[6] <= R[6] << 1 // R[6] = 1111 1111 1111 1110 (sh = 00001)
```



```
S0: R[6] <= R[6] ^ R[6] // R[6] = 0000 0000 0000 0000

S1: R[6] <= ~R[6] // R[6] = 1111 1111 1111 1111

S2: R[6] <= R[6] << 1 // R[6] = 1111 1111 1111 1110 (sh = 00001)

S3: R[6] <= ~R[6] // R[6] = 0000 0000 0000 0001

S4: pass b(R[6])
```


Controller for R[4] <= 32 (hint: shifting)


```
S0: R[4] \leftarrow R[4] ^ R[4]  // R[4] = 0000 0000 0000 0000
```



```
S0: R[4] \leftarrow R[4] ^ R[4]  // R[4] = 0000 0000 0000 0000
```

S1:
$$R[4] \leftarrow R[4]$$
 // $R[4] = 1111 1111 1111 1111$


```
S0: R[4] \leftarrow R[4] ^ R[4]  // R[4] = 0000 0000 0000 0000
```

S1:
$$R[4] \leftarrow R[4]$$
 // $R[4] = 1111 1111 1111 1111$

S2:
$$R[4] \le R[4] \le 1$$
 // $R[4] = 1111 1111 1111 1110 (sh=00001)$


```
    50
    51

    52
    53

    54
    55
```

```
S0: R[4] <= R[4] ^ R[4] // R[4] = 0000 0000 0000 0000 

S1: R[4] <= ~R[4] // R[4] = 1111 1111 1111 1111 

S2: R[4] <= R[4] << 1 // R[4] = 1111 1111 1111 1110 (sh=00001) 

S3: R[4] <= ~R[4] // R[4] = 0000 0000 0000 0001
```


R[4] can be initialized to 32 with:

```
S0: R[4] <= R[4] ^ R[4] // R[4] = 0000 0000 0000 0000

S1: R[4] <= ~R[4] // R[4] = 1111 1111 1111 1111

S2: R[4] <= R[4] << 1 // R[4] = 1111 1111 1111 1110 (sh=00001)

S3: R[4] <= ~R[4] // R[4] = 0000 0000 0000 0001

S4: R[4] <= R[4] << 5 // R[4] = 0000 0000 0010 0000 (sh=00101)
```

The first four states are, almost identical R[6] = 1

Controller for maximum of R[0], R[1], R[2]

A Python script that finds the maximum of r0, r1, and r2 is:

```
def max( r0, r1, r2):
    if ( r0 < r1 ):
        r0 = r1
    if ( r0 < r2 ):
        r0 = r2
    return r0</pre>
```


Controller for maximum of R[0], R[1], R[2]

• A RTL description for finding maximum is:

Transitions use cn (Negative) to skip states and perform the operation correctly

Controller for maximum of R[0], R[1], R[2]

```
case( st )
    S0: st <= cn ? S1 : S2;
    S1: st <= S2;
    S2: st <= cn ? S3 : S4;
    S3: st <= S4;
    S4: st <= S4;</pre>
```

endcase

Controller for summing n numbers

This controller is equivalent to the following Python script. Add numbers from n to zero.

Controller for summing n numbers

Controller for summing n numbers

SO and S2 go to the final state S3, if the data path's zero condition is true (cz = 1)

```
S0: st <= cz ? S3 : S1;
S1: st <= S2;
S2: st <= cz ? S3 : S1;
S3: st <= S3;</pre>
```


Transitions use cz (Zero) to loop back to state S1 while RU!= U

Controller for Euclid's algorithm

Euclid's algorithm is used to calculate the greatest common divisor

$$a=12, b=4$$

$$a = 12 - 4, a = 8$$

$$a = 8 - 4, a = 4$$

$$a == b$$
, return 4

```
A Python's version is
```

if
$$a > b$$
:

$$a = a-b$$

$$b = b-a$$

return a

Controller for Euclid's algorithm

R[3] = a, and R[4] = b, an RTL implementation for Euclid's algorithm is:


```
Python:

def gcd( a, b) :

    while a != b :

    if a > b :

        a = a-b

    else :

        b = b-a
```

return a

Controller for Euclid's algorithm

```
S0: st <= cz ? S4 : S1; // a==b?
S1: st <= cn ? S3 : S2; // a<b?
S2: st <= S0;
S3: st <= S0;
```


S4: st <= S4;

Next steps

Examples in the notes

Run and modify the examples

