

Programação 1

Técnico em Informática Integrado ao Ensino Médio Prof. Paulo César Rodacki Gomes

Lista de exercícios - 04

Exercícios: Encapsulamento de atributos em Python - parte 2

- Estes exercícios devem ser entregues no Google Classroom.
- Para cada um dos exercícios, crie um arquivo fonte Python com o respectivo nome de acordo com a seguinte regra: SUASINICIAIS-P1-XX-Ex-YY.py, onde XX e YY são o número da lista e o número do exercício, respectivamente. Por exemplo, se o professor resolvesse o exercício número 2, o nome do arquivo seria PCRG-P1-04-Ex-02.py.
- em cada exercício, escreva o código para testar/demonstrar o funcionamento da(s) classe(s) implementada(s)
- Se você achar conveniente, pode criar outros métodos além dos métodos que estão sendo pedidos nas questões

Questões:

1. Classe Paralelepipedo. Crie uma classe chamada Paralelepipedo conforme o diagrama de classes apresentado abaixo. Os atributos devem ser privados e devem ser acessados via propriedades (@property e @atributo.setter). Repare no sinal negativo na frente dos atributos. Isto significa que eles são privados.

Paralelepipedo
- altura: int
- largura: int
- profundidade: int
+ Paralelepipedo(alt, larg, prof: int)
+ calculaArea(): int
+ calculaVolume(): int

No seu programa principal, instancie paralelepípedos com as medidas da tabela abaixo e imprima as respectivas áreas de superfície e os volumes.

Altura	Largura	Profundidade
2	2	2
4	2	6
10	3	7
8	10	5
20	30	50

2. Classe Cilindro. Crie uma classe chamada Paralelepipedo conforme o diagrama de classes apresentado abaixo. Os atributos devem ser privados e devem ser acessados via propriedades (@property e @atributo.setter). Repare no sinal negativo na frente dos atributos. Isto significa que eles são privados.

Cilindro	
- raio: float - altura: float	
+ Cilindro(raio, altura: float) + calcularVolume(): float + calcularAreaBase(): float + calcularAreaLateral(): float	
+ calcularAreaTotal(): float	_

Crie objetos da classe Cilindro com os seguintes dados para testar o comportamento:

Raio	Altura
2	2
2	4
3	10
10	8
7	12

- 3. **Classe Aluno**. Crie uma classe Aluno com os atributos: nome, cpf, nota1, nota2 e nota3, conforme o diagrama de classes abaixo. Todos os atributos são privados, e você deve criar propriedades para acessá-los.
 - Os valores para as notas não podem ser negativos e nem maiores que 10. Caso seja informado um valor negativo, a classe deve ter mecanismos para que seja considerado 0 ou 10 caso o valor informado seja negativo ou maior que 10 respectivamente.
 - O construtor da classe deve receber somente o nome e o cpf. As notas devem ser atribuídas na sequência.
 - A classe deve ter um método calcularMedia() para calcular a média aritmética das três notas do aluno.
 - O método chamado aprovado deve retornar True caso a média do aluno seja maior ou igual a 6.0, e False caso contrário.
 - Crie um programa que cria vários objetos da classe Aluno, solicitando do teclado os dados necessários, até que seja informado "" para o nome do aluno (tecla enter).
 - Em seguida, imprima:
 - os dados (nome, cpf, notas e média) de todos os alunos aprovados
 - · os dados (nome, cpf, notas e média) de todos os alunos reprovados
 - · a média geral de todas as médias da turma.

Aluno
- nome: string - cpf: string - nota1: float - nota2: float - nota3: float
+ Aluno(nome, cpf: string) + calcularMedia(): float + aprovado(): bool