ECE/CS/ME 539 - Fall 2024 — Homework 1

1. Exercises from D2L:

• (3 points total): In D2L section 2.3.13 Exercises, do problems 4, 5, and 6.

2. Matrix and Vector Operations:

- (4 points total)
 - (a) (1 point): Let $a = [1, -2, 3, 2]^T$ and $b = [2, -3, 1, -1]^T$ be two column vectors. Write a Python program to compute:

$$c = ab^T$$
 and $d = a^Tb$

and provide their corresponding dimensions.

- (b) (1 point): Given matrices:
 - * $A = [a_{ij}]$ is a 3×2 matrix,
 - * $D = [d_{ij}]$ is a 2×2 diagonal matrix,
 - * $B = [b_{ij}]$ is a 2×4 matrix.
 - *E = ADB

Show that

$$E = \sum_{i=1}^{2} d_{ii} a_i b_i^T,$$

where a_i is the *i*-th column of matrix A, and b_i^T is the *i*-th row of matrix B.

- (c) (1 point): Let a = [0, 1, 2, ..., 19] be a 1×20 row vector. Write a Python program to reshape this vector into a 5×4 matrix A.
- (d) (1 point): Using matrix A from part (c), write a Python program to compute the Hadamard product $C = A \odot A$.

3. Tensor Operations:

- (3 points total)
 - (a) (1 point): Given a row vector b = [0, 1, 2, ..., 23], write a Python program to reshape it into a $2 \times 3 \times 4$ tensor, denoted as B.
 - (b) (1 point): Use Python to compute the sum of all elements in the tensor B from part (a).
 - (c) (1 point): Since B is a $2 \times 3 \times 4$ tensor, it consists of two 3×4 matrices C and D. Write a Python program to find matrices C and D.

4. Matrix properties:

Consider a matrix A as shown below. Write a program to answer the problems.

$$A = \begin{pmatrix} 1 & 2 \\ -2 & 1 \\ 3 & -1 \end{pmatrix}$$

- (3 points total) Write a code to evaluate:
 - (a) (1 point): The rank of A.
 - (b) (1 point): The singular value decomposition of A such that $A = U\Sigma V^T$. Find the value of K, and corresponding $\{\sigma_i, u_i, v_i; 1 \leq i \leq K\}$. What are the dimensions of matrices U, Σ , and V?
 - (c) (1 point): Now compute $B = AA^T$, and the eigenvalue decomposition of $\mathbf{B} = \mathbf{W}\Lambda\mathbf{W}^T = \sum_{i=1}^{M} \lambda_i \mathbf{w}_i \mathbf{w}_i^T$. Find M, $\{\lambda_i, w_i; 1 \leq i \leq M\}$.