151 Sous-espaces stables par un endomorphisme ou une famille d'endomorphismes d'un espace vectoriel de dimension finie. Applications.

Soit E un espace vectoriel sur un corps \mathbb{K} de dimension finie n. Soit $u \in \mathcal{L}(E)$ un endomorphisme de E.

I - Stabilité

1. Définitions, endomorphismes induits

Définition 1. Soit F un sous-espace vectoriel de E. On dit que F est **stable** par u si $u(F) \subseteq F$.

[**BMP**] p. 158

Exemple 2. Le noyau et l'image de u sont stables par u.

Proposition 3. Si $\mathbb{K} = \mathbb{R}$, alors *u* admet au moins une droite ou un plan stable.

Proposition 4. Soit F un sous-espace de E stable par u. Alors u induit deux endomorphismes :

- $u_{|F}: F \to F$ la restriction de u à F.
- $\overline{u}: E/F \to E/F$ obtenu par passage au quotient.

Définition 5. Soit A la matrice de l'endomorphisme u dans une base quelconque de E. On définit le **polynôme caractéristique** de u par $\chi_u = \det(XI_n - A)$.

p. 163

p. 158

Proposition 6. Soit F un sous-espace de E stable par u de dimension r. Soit $\mathscr{B} = (e_1, \dots, e_n)$ une base de E telle que les r premiers vecteurs forment une base \mathscr{B}_F de F. Alors :

(i) La matrice de u dans la base \mathcal{B} est de la forme

$$Mat(u, \mathcal{B}) = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$$

- (ii) $\mathscr{B}_{E/F} = \pi_F(\mathscr{B} \setminus \mathscr{B}_F)$ est une base de E/F où $\pi_F : E \to E/F$ désigne la projection canonique sur le quotient.
- (iii) $A = \operatorname{Mat}(u_{|F}, \mathscr{B}_F)$ et $B = \operatorname{Mat}(\overline{u}, \mathscr{B}_{E/F})$.
- (iv) $\chi_u = \chi_{u_{|F}} \chi_{\overline{u}}$.

2. Sous-espaces stables et polynôme minimal

Proposition 7. Il existe un polynôme qui engendre l'idéal $\{P \in \mathbb{K}[X] \mid P(u) = 0\}$. Il s'agit du **polynôme minimal** de u noté π_u .

p. 161

Théorème 8 (Cayley-Hamilton).

$$\pi_u \mid \chi_u$$

Proposition 9. Soit F un sous-espace de E stable par u. Alors $\pi_{u_{|F}} \mid \pi_u$.

Proposition 10. Si $E = F_1 \oplus F_2$ avec F_1 et F_2 deux sous-espaces stables par u, alors $\pi_u = \operatorname{ppcm}(\pi_{u_{|F_1}}, \pi_{u_{|F_2}})$.

Proposition 11. Soient P et Q deux polynômes unitaires tels que $\pi_u = PQ$. On note F = Ker(P(u)). Alors $\pi_{u_{|F}} = P$.

3. Recherche de sous-espaces stables

Définition 12. On suppose que le polynôme caractéristique de u est scindé sur \mathbb{K} :

[GOU21] p. 201

$$\chi_u = \prod_{i=1}^p (X - \lambda_i)^{\alpha_i}$$
 où les λ_i sont distincts deux-à-deux

Pour tout $i \in [1, p]$, le sous-espace vectoriel $N_i = \text{Ker}(f - \lambda_i \operatorname{id}_E)^{\alpha_i}$ s'appelle le **sous-espace** caractéristique de f associé à λ_i .

Proposition 13 (Lemme des noyaux). Soient $P_1, \dots, P_r \in \mathbb{K}[X]$ premiers entre eux. Alors

p. 185

$$\bigoplus_{i=1}^{r} \operatorname{Ker}(P_{i}(u)) = \operatorname{Ker}\left(\left(\prod_{i=1}^{r} P_{i}\right)(u)\right)$$

p. 202

Proposition 14. On suppose que le polynôme caractéristique de u est scindé sur \mathbb{K} . On note N_1, \ldots, N_p les sous-espaces caractéristiques de u.

- $\forall i \in [1, p], N_i$ est stable par u.
- $--E=N_1\oplus\cdots\oplus N_p.$
- $\forall i \in [1, p]$, $\dim N_i = \alpha_i$ où α_i est la multiplicité de λ_i dans χ_u .

[**BMP**] p. 159

Remarque 15. Plus généralement, $\forall \lambda \in \mathbb{K}$, $\forall i \in \mathbb{N}$, $\operatorname{Ker}(u - \lambda \operatorname{id}_E)^i$ est stable par u. C'est en fait un corollaire de la proposition suivante.

Proposition 16. Soient $u, v \in \mathcal{L}(E)$ tels que uv = vu (pour la composition). Alors le noyau et l'image de v sont stables par u (et réciproquement).

Proposition 17. On suppose que le polynôme caractéristique de u est scindé sur \mathbb{K} .

[GOU21] p. 202

$$\chi_u = \prod_{i=1}^p (X - \lambda_i)^{\alpha_i}$$
 où les λ_i sont distincts deux-à-deux

Alors:

(i) π_u est de la forme :

$$\pi_u = \prod_{i=1}^p (X - \lambda_i)^{r_i}$$
 où les λ_i sont distincts deux-à-deux

- (ii) $\forall i \in [1, p], N_i = \text{Ker}(f \lambda_i \text{id}_E)^{r_i}$.
- (iii) $\forall i \in [1, p]$, r_i est l'indice de nilpotence de l'endomorphisme $f_{|N_i} \lambda_i \operatorname{id}_{N_i}$.

4. Utilisation de la dualité

Définition 18. On appelle **forme linéaire** de E toute application linéaire de E dans \mathbb{K} et on note E^* appelé **dual** de E l'ensemble des formes linéaires de E.

p. 132

Proposition 19. E^* est un espace vectoriel sur \mathbb{K} de dimension n.

Définition 20. Si $A \subset E$, on note $A^{\perp} = \{ \varphi \in E^* \mid \forall x \in A, \varphi(x) = 0 \}$ l'**orthogonal** (au sens de la dualité) de A qui est un sous-espace vectoriel de E^* .

Proposition 21. Si F est un sous-espace vectoriel de E, on a dim F + dim F^{\perp} = dim E.

Définition 22. On définit ${}^tu:E^*\to E^*$ l'application transposée de u par

$$\forall \varphi \in E^*, \, {}^tu(\varphi) = \varphi \circ u$$

Proposition 23. Un sous-espace vectoriel F de E est stable par u si et seulement si F^{\perp} est stable par u.

Remarque 24. C'est un résultat qui peut s'avérer utile dans les démonstrations par récurrence s'appuyant sur la dimension d'un sous-espace stable (cf. Théorème 31).

II - Application à la réduction d'endomorphismes

1. Diagonalisation et trigonalisation

Définition 25. On dit que $\lambda \in \mathbb{K}$ est **valeur propre** de u s'il existe $x \neq 0$ tel que $u(x) = \lambda x$. x est alors un **vecteur propre** de u associé à λ . Le sous-espace

$$E_{\lambda} = \{x \in E \mid u(x) = \lambda x\} = \text{Ker}(u - \lambda \text{Id})$$

est le **sous-espace propre** associé à λ .

Définition 26. On dit que u est **diagonalisable** (resp. **trigonalisable**) s'il existe une base \mathcal{B} de E telle que $Mat(u, \mathcal{B})$ soit diagonale (resp. triangulaire supérieure).

Théorème 27. Les assertions suivantes sont équivalentes :

[**BMP**] p. 165

p. 171

- (i) *u* est diagonalisable.
- (ii) π_u est scindé à racines simples.
- (iii) χ_u est scindé et, pour toute valeur propre λ , la dimension du sous-espace propre E_λ est égale à la multiplicité de λ dans χ_u .
- (iv) E est somme directe des sous-espaces propres de u.

Exemple 28. — Soit $p \in \mathcal{L}(E)$ tel que $p^2 = p$. Alors p est annulé par $X^2 - X$ donc est diagonalisable et à valeurs propres dans $\{0, 1\}$.

— Soit $s \in \mathcal{L}(E)$ tel que $s^2 = \mathrm{id}_E$. Alors si $\mathrm{car}(\mathbb{K}) \neq 2$, s est annulé par $X^2 - 1$ donc est diagonalisable et à valeurs propres dans $\{\pm 1\}$.

Théorème 29. Les assertions suivantes sont équivalentes :

- (i) *u* est trigonalisable.
- (ii) π_u est scindé.
- (iii) χ_u est scindé.

Exemple 30. Si \mathbb{K} est algébriquement clos, tout endomorphisme de E est trigonalisable.

Théorème 31. Soit $(u_i)_{i \in I}$ une famille d'endomorphismes telle que $\forall i, j \in I$, $u_i u_j = u_j u_i$. Si tous les u_i sont trigonalisables (resp. diagonalisables), on peut co-trigonaliser (resp. co-diagonaliser) la famille $(u_i)_{i \in I}$.

Remarque 32. Dans le cas de la diagonalisabilité, cette condition est à la fois nécessaire et suffisante.

Proposition 33. On suppose que u est diagonalisable. Soit F un sous-espace de E stable par u. Alors $u_{|F}$ est diagonalisable.

[**GOU21**] p. 174

[BMP]

p. 170

Application 34. Les assertions suivantes sont équivalentes :

- (i) u est trigonalisable avec des zéros sur la diagonale.
- (ii) u est nilpotent (ie. $\exists m \in \mathbb{N}$ tel que $u^m = 0$).
- (iii) $\chi_u = X^n$.
- (iv) $\pi_u = X^p$ où p est l'indice de nilpotence de u.

[GOU21]

p. 203

2. Décomposition de Dunford

[DEV]

Théorème 35 (Décomposition de Dunford). On suppose que π_u est scindé sur \mathbb{K} . Alors il existe un unique couple d'endomorphismes (d,n) tels que :

- *d* est diagonalisable et *n* est nilpotent.
- u = d + n.
- -dn = nd.

Corollaire 36. Si u vérifie les hypothèse précédentes, pour tout $k \in \mathbb{N}$, $u^k = (d+n)^k = \sum_{i=0}^m \binom{k}{i} d^i n^{k-i}$, avec $m = \min(k, l)$ où l désigne l'indice de nilpotence de n.

Remarque 37. — Un autre intérêt est le calcul d'exponentielles de matrices.

— On peut montrer de plus que d et n sont des polynômes en u.

3. Réduction de Jordan

Définition 38. Un **bloc de Jordan** de taille m associé à $\lambda \in \mathbb{K}$ désigne la matrice $J_m(\lambda)$ suivante :

[**BMP**] p. 171

$$J_m(\lambda) = \begin{pmatrix} \lambda & 1 & & \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ & & & \lambda \end{pmatrix} \in \mathcal{M}_m(\mathbb{K})$$

Proposition 39. Les assertions suivantes sont équivalentes :

- (i) Il existe une base de E telle que la matrice de u est $J_n(0)$.
- (ii) *u* est nilpotent et cyclique (voir Définition 43).
- (iii) u est nilpotent d'indice de nilpotence n.

Théorème 40 (Réduction de Jordan d'un endomorphisme nilpotent). On suppose que u est nilpotent. Alors il existe des entiers $n_1 \ge \cdots \ge n_p$ et une base $\mathcal B$ de E tels que :

$$Mat(u, \mathcal{B}) = \begin{pmatrix} J_{n_1}(0) & & \\ & \ddots & \\ & & J_{n_n}(0) \end{pmatrix}$$

De plus, on a unicité dans cette décomposition.

Remarque 41. Comme l'indice de nilpotence d'un bloc de Jordan est égal à sa taille, l'indice de nilpotence de u est la plus grande des tailles des blocs de Jordan de la réduite.

Théorème 42 (Réduction de Jordan d'un endomorphisme). On suppose que le polynôme caractéristique de u est scindé sur $\mathbb K$:

[**GOU21**] p. 209

$$\chi_u = \prod_{i=1}^p (X - \lambda_i)^{\alpha_i}$$
 où les λ_i sont distincts deux-à-deux

Alors il existe des entiers $n_1 \ge \cdots \ge n_p$ et une base \mathscr{B} de E tels que :

$$Mat(u, \mathcal{B}) = \begin{pmatrix} J_{n_1}(\lambda_1) & & \\ & \ddots & \\ & & J_{n_p}(\lambda_p) \end{pmatrix}$$

De plus, on a unicité dans cette décomposition.

4. Réduction de Frobenius

Définition 43. On dit que u est **cyclique** s'il existe $x \in E$ tel que $\{P(u)(x) \mid P \in \mathbb{K}[X]\} = E$.

p. 397

Proposition 44. u est cyclique si et seulement si $deg(\pi_u) = n$.

Définition 45. Soit $P=X^p+a_{p-1}X^{p-1}+\cdots+a_0\in\mathbb{K}[X]$. On appelle **matrice compagnon** de P la matrice

$$\mathscr{C}(P) = \begin{pmatrix} 0 & \dots & \dots & 0 & -a_0 \\ 1 & 0 & \ddots & \vdots & -a_1 \\ 0 & 1 & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & -a_{p-2} \\ 0 & \dots & 0 & 1 & -a_{p-1} \end{pmatrix}$$

Proposition 46. u est cyclique si et seulement s'il existe une base \mathscr{B} de E telle que $\mathrm{Mat}(u,\mathscr{B})=\mathscr{C}(\pi_u).$

Théorème 47. Il existe F_1, \ldots, F_r des sous-espaces vectoriels de E tous stables par u tels que :

- $--E = F_1 \oplus \cdots \oplus F_r$.
- $u_i = u_{|F_i}$ est cyclique pour tout i.
- Si $P_i = \pi_{u_i}$, on a $P_{i+1} \mid P_i$ pour tout i.

La famille de polynômes P_1, \dots, P_r ne dépend que de u et non du choix de la décomposition. On l'appelle **suite des invariants de similitude** de u.

Théorème 48 (Réduction de Frobenius). Si P_1, \ldots, P_r désigne la suite des invariants de u, alors il existe une base \mathcal{B} de E telle que :

$$Mat(u, \mathcal{B}) = \begin{pmatrix} \mathcal{C}(P_1) & & \\ & \ddots & \\ & & \mathcal{C}(P_r) \end{pmatrix}$$

On a d'ailleurs $P_1 = \pi_u$ et $P_1 \dots P_r = \chi_u$.

Corollaire 49. Deux endomorphismes de *E* sont semblables si et seulement s'ils ont la même suite d'invariants de similitude.

Application 50. Toute matrice est semblable à sa transposée.

III - Endomorphismes remarquables

1. Endomorphismes normaux

Soit E un espace vectoriel sur \mathbb{C} de dimension finie n. On munit E d'un produit scalaire $\langle .,. \rangle$, qui en fait un espace hermitien.

Notation 51. On note u^* **l'adjoint** de u.

[**GRI**] p. 286

Définition 52. Un endomorphisme $u \in \mathcal{L}(E)$ est dit **normal** s'il est tel que $u \circ u^* = u^* \circ u$.

Proposition 53. On suppose u normal. Soit $\lambda \in \mathbb{C}$ une valeur propre de u. Alors :

- (i) $E_{\lambda}^{\perp} = \{x \in E^{\lambda} \mid \forall y \in E^{\lambda}, \langle x, y \rangle = 0\}$ est stable par u.
- (ii) $u_{|E_{\lambda}^{\perp}}$ est normal.

Corollaire 54. On suppose u normal. Alors u est diagonalisable dans une base orthonormée.

2. Sous-représentations

Soit *G* un groupe d'ordre fini.

[ULM21] p. 144

- **Définition 55.** Une **représentation linéaire** ρ est un morphisme de G dans GL(V) où V désigne un espace-vectoriel de dimension finie n sur \mathbb{C} .
 - On dit que n est le **degré** de ρ .
 - On dit que ρ est **irréductible** si $V \neq \{0\}$ et si aucun sous-espace vectoriel de V n'est stable par $\rho(g)$ pour tout $g \in G$, hormis $\{0\}$ et V.

Exemple 56. Soit $\varphi : G \to S_n$ le morphisme structurel d'une action de G sur un ensemble de cardinal n. On obtient une représentation de G sur $\mathbb{C}^n = \{e_1, \dots, e_n\}$ en posant

$$\rho(g)(e_i) = e_{\varphi(g)(i)}$$

c'est la représentation par permutations de *G* associé à l'action. Elle est de degré *n*.

Définition 57. La représentation par permutations de G associée à l'action par translation à gauche de G sur lui-même est la **représentation régulière** de G, on la note ρ_G .

Définition 58. Soit $\rho: G \to \operatorname{GL}(V)$ une représentation linéaire de G. On suppose $V = W \oplus W_0$ avec W et W_0 stables par $\rho(g)$ pour tout $g \in G$. On dit alors que ρ est **somme directe** de ρ_W et de ρ_{W_0} .

Théorème 59 (Maschke). Toute représentation linéaire de G est somme directe de représentations irréductibles.

Annexes

$$\begin{array}{c|cccc}
F & \longrightarrow E & \longrightarrow E/F \\
u_{|F} & u & \overline{u} & \overline{u} \\
F & \longrightarrow E & \longrightarrow E/F
\end{array}$$

[**BMP**] p. 158

Figure 1 – Endomorphismes induits par u sur un sous-espace stable F.

p. 157

u	Diagonalisable	Trigonalisable	Quelconque
Décomposition	de <i>E</i> suivant les vecteurs propres	de Dunford	de Frobenius
Sous-espace stable F	espace propre	espace caractéris- tique	engendré par un élé- ment
$u_{ F}$	homothétie	homothétie + nil- potent	cyclique

FIGURE 2 – Réduction d'un endomorphisme en fonction de ses propriétés.

Bibliographie

Objectif agrégation [BMP]

Vincent BECK, Jérôme Malick et Gabriel Peyré. *Objectif agrégation*. 2^e éd. H&K, 22 août 2005. https://objectifagregation.github.io.

Les maths en tête [GOU21]

Xavier Gourdon. Les maths en tête. Algèbre et probabilités. 3e éd. Ellipses, 13 juill. 2021.

 $\verb|https://www.editions-ellipses.fr/accueil/13722-25266-les-maths-en-tete-algebre-et-probabilites-3e-edition-9782340056763.html.|$

Algèbre Linéaire [GRI]

Joseph Grifone. Algèbre Linéaire. 6e éd. Cépaduès, 9 jan. 2019.

https://www.cepadues.com/livres/algebre-lineaire-edition-9782364936737.html.

Théorie des groupes [ULM21]

Felix Ulmer. Théorie des groupes. Cours et exercices. 2e éd. Ellipses, 3 août 2021.

https://www.editions-ellipses.fr/accueil/13760-25304-theorie-des-groupes-2e-edition-9782340057241.html.