

Agrupación: DBSCAN y K-Medoids

Minería de Datos Zavala Roman Irvin Eduardo 1270771

K-Medoids

Es un derivado de KMeans, se basa en medoides que se definen como objetos representativos de un conjunto de datos donde la diferencia con los datos es mínima. Se caracteriza por ser más robusto al ruido y outliers que el KMeans.

```
class sklearn_extra.cluster.KMedoids(n_clusters=8, metric='euclidean', method='alternate', init='heuristic', max_iter=300, random_state=None) [source]
```

```
n_clusters : int, optional, default: 8
metric : string, or callable, optional, default: 'euclidean'
method : {'alternate', 'pam'}, default: 'alternate'
init : {'random', 'heuristic', 'k-medoids++', 'build'}, optional, default: 'build'
max_iter : int, optional, default : 300
random_state : int, RandomState instance or None, optional
```

Descripción del algoritmo

Alternado

- Seleccionar número de clusters
- Asignar cada elemento del dataset al medoide más cercano
- Dentro de los cluster se identifican nuevos medoides
- Repetir mientras los medoides cambien o hasta que se alcance max_iter

PAM (Partitioning Around Medoids)

- Seleccionar puntos donde la suma de las distancias a este de otros puntos sea la menor
- Repetir paso anterior hasta obtener n clusters
- Asignar datos al medoide más cercano
- Calcular qué pasa si se cambian los mediodes por datos que no lo son, si los valores son mejores cambiar de medoide
- Repetir el paso anterior hasta que no haya cambios o se alcance max iter

$$c = \sum_{Ci} \sum_{Pi \in Ci} |Pi - Ci|$$

Representacion de selección de medoides PAM

Build se refiere a la inicialización de los medoides y SWAP se refiere a la busca de mejores medoides.

Ejemplo 1 - Dataset agrupación

```
dataset = pd.read csv("customers agr.csv", on bad lines='skip')
x = dataset.loc[:, ['Age',
                 'Annual Income (k$)',
                  'Spending Score (1-100)'
                 11.values
scaler = StandardScaler().fit(x)
x scaled = scaler.transform(x)
#elbow method
elbow = []
for i in range (1,11):
    kmedoids = KMedoids(n clusters=i).fit(x scaled)
    elbow.append(kmedoids.inertia )
#plot elbow curve
plt.plot(np.arange(1,11),elbow)
plt.xlabel('Clusters')
plt.ylabel(inertia )
plt.show()
kmedoids opt = KMedoids(n clusters=5).fit(x scaled)
y = kmedoids opt.fit predict(x scaled)
dataset['cluster'] = y
graficar clusters(10, dataset)
```


Resumen evaluaciones

Extrínsecos

homogeneity_score: Que tantos datos de un cluster están en una clase

completeness_score: Que tantos datos de una clase están en el mismo cluster

v_measure_score: Promedio armónico entre los 2 anteriores

Intrínsecos

calinski_harabasz_score: Radio de la suma de la dispersión entre el cluster y dentro del cluster

silhouette_score: Relaciona la distancias dentro del cluster y la distancia entre clusters

davies_bouldin_score: Evalúa similaridad entre cada cluster con el más cercano, menos es mejor

Ejemplo 1 - Evaluación grupos (Intrínsecos)

```
n clusters=6
```

```
#----EVALUACION INSTRINSECA-----
#Mayor es mejor
calinski = calinski harabasz score(x, y)
print("calinski harabasz score:", calinski)
\#De -1 \ a \ 1, donde 1 es mejor
silhouette = silhouette score(x, y)
print("silhouette score:", silhouette)
#Menor es mejor
davies = davies bouldin score(x, y)
print("davies bouldin score:", davies)
```

calinski_harabasz_score: 105.49282013314067
silhouette_score: 0.3336335244519738
davies_bouldin_score: 1.2955718895697725

n_clusters=2

calinski_harabasz_score: 71.97231767882107
silhouette_score: 0.2617714484946135
davies_bouldin_score: 1.5102716888579146

n_clusters=3

calinski_harabasz_score: 91.01480895688285
silhouette_score: 0.314362951448644
davies bouldin score: 1.133734424788158

n clusters=4

calinski_harabasz_score: 62.06152707912174
silhouette_score: 0.24891141946332937
davies bouldin score: 1.5004566838051132

n_clusters=5

calinski_harabasz_score: 93.46975286926086
silhouette_score: 0.3216891024612686
davies_bouldin_score: 1.4725309074051822

n_clusters=7

calinski_harabasz_score: 145.84516557449282
silhouette_score: 0.40456714699477453
davies_bouldin_score: 1.022579064765511

Ejemplo 2 - Dataset clasificación

1	A	В	С	D	E	F	G	Н	1	J	K	L
1	fixed acidity	volatile acid	citric acid	residual suga	chlorides	free sulfur d	total sulfur o	density	рН	sulphates	alcohol	quality
2	7.4	0.7	0	1.9	0.076	11	34	0.9978	3.51	0.56	9.4	bad
3	7.8	0.88	0	2.6	0.098	25	67	0.9968	3.2	0.68	9.8	bad
4	7.8	0.76	0.04	2.3	0.092	15	54	0.997	3.26	0.65	9.8	bad
5	11.2	0.28	0.56	1.9	0.075	17	60	0.998	3.16	0.58	9.8	good
6	7.4	0.7	0	1.9	0.076	11	34	0.9978	3.51	0.56	9.4	bad

```
dataset = pd.read csv("wine new.csv", on bad lines='skip')
labels = dataset.columns[0:11]
x = dataset.loc[:,labels].values
true labels = dataset[['quality']].apply(lambda x: pd.factorize(x)[0])
scaler = StandardScaler().fit(x)
x scaled = scaler.transform(x)
#elbow method
elbow = []
for i in range (1,11):
    kmedoids = KMedoids(n clusters=i).fit(x scaled)
    elbow.append(kmedoids.inertia)
kn = KneeLocator(
    list (np.arange(1,11)),
    elbow,
    curve='convex',
    direction='decreasing',
    interp method='polynomial',
plt.figure()
plt.plot(list(np.arange(1,11)), elbow)
plt.vlines(kn.knee, plt.ylim()[0], plt.ylim()[1], linestyles='dashed')
plt.plot(np.arange(1,11),elbow)
plt.xlabel('Clusters')
plt.ylabel('inertia ')
plt.show()
```

kmedoids opt = KMedoids(method = 'pam', n clusters=5).fit(x scaled)

y = kmedoids opt.fit predict(x scaled)

Clases

Ejemplo 1 - Evaluación grupos (Extrínsecos)

```
#-----EVALUACION EXTRINSECA-----
#0 a 1, mas alto mejor
homogeneo = metrics.homogeneity_score(true_labels, y)
print("homogeneity_score:",homogeneo)

#0 a 1, mas alto mejor
completeness = metrics.completeness score(true_labels, y)
print("completeness_score:",completeness)

#0 a 1, mas alto mejor
vmeasure = metrics.v_measure_score(true_labels, y)
print("v_measure_score:",vmeasure)
```

n_clusters=2

homogeneity_score: 0.029166604117270286 completeness_score: 0.030521737145528065 v_measure_score: 0.02982878751398107

n_clusters=3

homogeneity_score: 0.06798594537423473 completeness_score: 0.044445027861616825 v measure score: 0.05375097536543772

n_clusters=4

homogeneity_score: 0.13511783165078026 completeness_score: 0.0706550991583821 v_measure_score: 0.09278930669656744

n_clusters=5

homogeneity_score: 0.1370335599315124 completeness_score: 0.06097214379930036 v_measure_score: 0.08439383072351381

DBSCAN (Density-Based Spatial Clustering of Applications with Noise)

Es uno de los métodos de densidad, por lo que una característica principal es la capacidad de agrupar sin importar la forma. Se puede definir densidad como la cantidad de datos en un área.

```
class \ sklearn.cluster. \textbf{DBSCAN} (eps=0.5, *, min\_samples=5, metric='euclidean', metric\_params=None, algorithm='auto', leaf\_size=30, p=None, n\_jobs=None) \texttt{1}
```

```
eps : float, default=0.5
min_samples : int, default=5
metric : str, or callable, default='euclidean'
metric_params : dict, default=None
algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, default='auto'
leaf_size : int, default=30
p : float, default=None
n_jobs : int, default=None
```

Descripción del algoritmo

- 1. Para cada dato, encontrar los datos en la "vecindad" dentro de la distancia eps para definir "núcleos" con min_samples vecinos
- 2. Definir grupos con "núcleos" conectados
- 3. Para los datos que no son "núcleos" al cluster más cercano si lo puede alcanzar, sino es un outlier

Notas:

- eps es el parámetro más importante ya que define las "vecindades"
- min_samples debe ser el adecuado para tener buenos "nucleos"
- En ningún momento se define la cantidad de clusters
- No se usa el método del codo, se grafican la distancia entre puntos

Ejemplo 1 - Dataset agrupación

```
dataset = pd.read csv('customers agr.csv', on bad lines='skip')
labels = dataset.columns
x = dataset.loc[:, ['Age','Annual Income (k$)','Spending Score (1-100)']].values
neighb = NearestNeighbors(n neighbors\(\frac{2}{2}\))
nbrs=neighb.fit(x)
distances, indices=nbrs.kneighbors(x)
distances = np.sort(distances, axis =0)
distances = distances[:, 1]
kn = KneeLocator(
    np.arange(len(distances)),
    distances,
    curve='convex',
    direction='increasing',
    interp method='polynomial',
plt.figure()
print(plt.ylim()[1])
plt.plot(np.arange(len(distances)), distances)
plt.hlines(distances[kn.knee], plt.xlim()[], plt.xlim()[], linestyles='dashed')
plt.xlabel("distance")
plt.ylabel("eps")
plt.show()
dbscan = DBSCAN(eps = 9, min samples = 6).fit(x)
y = dbscan.fit predict(x)
dataset['cluster'] = y
graficar clusters (1, dataset)
```


Ejemplo 1 - Evaluación grupos (Intrínsecos)

eps=8

INSTRINSECO

calinski_harabasz_score: 14.584352520329494
silhouette_score: 0.01373675522866092
davies_bouldin_score: 1.715981081149743

eps=20

INSTRINSECO

calinski_harabasz_score: 7.7703804490152555
silhouette_score: 0.3588158894405232
davies bouldin score: 0.5864956418906484

Ejemplo 2 - Dataset clasificación

Ejemplo 1 - Evaluación grupos (Extrínsecos)

eps=2

homogeneity_score: 0.018725065113929757 completeness_score: 0.010999053873914462 v_measure_score: 0.013857971707413557

eps=25

homogeneity_score: 0.0017026464333215587 completeness_score: 0.08613437089428044 v_measure_score: 0.0033392841389995012

Prueba DBSCAN en dataset de 2 dimensiones

Bibliografia

- 2. Clustering with KMedoids and Common-nearest-neighbors scikit-learn-extra 0.2.0 documentation. (s/f). https://scikit-learn-extra.readthedocs.io/en/stable/modules/cluster.html
- 2.3. Clustering. (s/f). Scikit-Learn. https://scikit-learn.org/stable/modules/clustering.html
- API reference. (s/f). Scikit-Learn. https://scikit-learn.org/stable/modules/classes.html
- Awan, A. A. (s/f). *Implementing DBSCAN in python*. KDnuggets. https://www.kdnuggets.com/2022/08/implementing-dbscan-python.html
- Mullin, T. (2020). DBSCAN parameter estimation using python. Medium. https://medium.com/@tarammullin/dbscan-parameter-estimation-ff8330e3a3bd
- Scikit Learn Clustering Performance Evaluation. (s/f). Tutorialspoint.com. https://www.tutorialspoint.com/scikit_learn/scikit_learn_clustering_performance_evaluation.htm