Geometric modular representation theory

William Hardesty

Department of Mathematics Louisiana State University

Outline

1 The representation theory of algebraic groups

2 The nilpotent cone and restricted cohomology

3 Tilting modules and coherent Springer theory

Outline

1 The representation theory of algebraic groups

The nilpotent cone and restricted cohomology

3 Tilting modules and coherent Springer theory

Examples of algebraic groups

• The general linear group $GL_N(\mathbb{k})$ is the group of all invertible $N \times N$ matrices.

Examples of algebraic groups

- The general linear group $GL_N(\mathbb{k})$ is the group of all invertible $N \times N$ matrices.
- The special linear group $SL_N(\mathbb{k})$ is the group of $N \times N$ matrices of determinant 1.

Examples of algebraic groups

- The general linear group GL_N(k) is the group of all invertible N × N matrices.
 The special linear group SL_N(k) is the group of N × N matrices of
- determinant 1.
- The torus $(\mathbb{G}_{\mathrm{m}})^N := (\mathbb{k}^*)^N$ is the group of $N \times N$ diagonal matrices.

Examples of algebraic groups

- The general linear group GL_N(k) is the group of all invertible N × N matrices.
 The special linear group SL_N(k) is the group of N × N matrices of
- determinant 1.
- The torus $(\mathbb{G}_{\mathrm{m}})^N := (\mathbb{k}^*)^N$ is the group of $N \times N$ diagonal matrices.
- $O_N(\mathbb{k})$, $SO_N(\mathbb{k})$, $Sp_{2N}(\mathbb{k})$ are the orthogonal, special orthogonal and symplectic groups.

Examples of algebraic groups

- The general linear group GL_N(k) is the group of all invertible N × N matrices.
 The special linear group SL_N(k) is the group of N × N matrices of
- determinant 1.
- The torus $(\mathbb{G}_{\mathrm{m}})^N := (\mathbb{k}^*)^N$ is the group of $N \times N$ diagonal matrices.
- $O_N(\mathbb{k})$, $SO_N(\mathbb{k})$, $Sp_{2N}(\mathbb{k})$ are the orthogonal, special orthogonal and symplectic groups.

Definition

• A (linear) algebraic group is a matrix group which is also the zero locus of a system of polynomial equations.

Examples of algebraic groups

- The general linear group GL_N(k) is the group of all invertible N × N matrices.
 The special linear group SL_N(k) is the group of N × N matrices of
- determinant 1.
- The torus $(\mathbb{G}_{\mathrm{m}})^N := (\mathbb{k}^*)^N$ is the group of $N \times N$ diagonal matrices.
- $O_N(\mathbb{k})$, $SO_N(\mathbb{k})$, $Sp_{2N}(\mathbb{k})$ are the orthogonal, special orthogonal and symplectic groups.

Definition

- A (linear) algebraic group is a matrix group which is also the zero locus of a system of polynomial equations.
- A reductive algebraic group is an important type of algebraic group whose representation theory is well-behaved.

- A rational representation (or rational G-module) is a vector space M where G acts by linear transformations.
- The vector space is always defined over the same field as G.

- A rational representation (or rational G-module) is a vector space M where G acts by linear transformations.
- The vector space is always defined over the same field as G.
- Irreducible representations are indexed by the set of dominant weights, denoted \mathbf{X}^+ (e.g. for $SL_N(\mathbb{k})$, $\mathbf{X}^+ = \mathbb{Z}_{>0}^{N-1}$).

- A rational representation (or rational G-module) is a vector space M where G acts by linear transformations.
- The vector space is always defined over the same field as G.
- Irreducible representations are indexed by the set of dominant weights, denoted \mathbf{X}^+ (e.g. for $SL_N(\mathbb{k})$, $\mathbf{X}^+ = \mathbb{Z}_{>0}^{N-1}$).
- The **character** of a representation is a Laurent polynomial encoding the eigenspace dimensions of the diagonal matrices in *G*.

- A rational representation (or rational G-module) is a vector space M where G acts by linear transformations.
- The vector space is always defined over the same field as G.
- Irreducible representations are indexed by the set of dominant weights, denoted \mathbf{X}^+ (e.g. for $SL_N(\mathbb{k})$, $\mathbf{X}^+ = \mathbb{Z}_{>0}^{N-1}$).
- The **character** of a representation is a Laurent polynomial encoding the eigenspace dimensions of the diagonal matrices in *G*.

Theorem (Weyl 1920s)

Let G be reductive and $\mathbb{k} = \mathbb{C}$.

- A rational representation (or rational G-module) is a vector space M where G acts by linear transformations.
- The vector space is always defined over the same field as G.
- Irreducible representations are indexed by the set of dominant weights, denoted \mathbf{X}^+ (e.g. for $SL_N(\mathbb{k})$, $\mathbf{X}^+ = \mathbb{Z}_{>0}^{N-1}$).
- The **character** of a representation is a Laurent polynomial encoding the eigenspace dimensions of the diagonal matrices in *G*.

Theorem (Weyl 1920s)

Let G be reductive and $\mathbb{k} = \mathbb{C}$.

• Every representation of G decomposes into a direct sum of irreducible representations ("complete reducibility").

- A rational representation (or rational G-module) is a vector space M where G acts by linear transformations.
- The vector space is always defined over the same field as G.
- Irreducible representations are indexed by the set of dominant weights, denoted \mathbf{X}^+ (e.g. for $SL_N(\mathbb{k})$, $\mathbf{X}^+ = \mathbb{Z}_{>0}^{N-1}$).
- The **character** of a representation is a Laurent polynomial encoding the eigenspace dimensions of the diagonal matrices in *G*.

Theorem (Weyl 1920s)

Let G be reductive and $\mathbb{k} = \mathbb{C}$.

- Every representation of G decomposes into a direct sum of irreducible representations ("complete reducibility").
- Irreducible characters are given by Weyl's character formula.

• Let
$$G = SL_2(\mathbb{k}) = \left\{ \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \middle| \alpha\delta - \beta\gamma = 1 \right\}.$$

- Let $G = SL_2(\mathbb{k}) = \left\{ \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \middle| \alpha\delta \beta\gamma = 1 \right\}.$
- G acts on k[x, y] via

$$g \cdot f(x, y) = f(\alpha x + \gamma y, \beta x + \delta y).$$

- Let $G = SL_2(\mathbb{k}) = \left\{ \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \middle| \alpha \delta \beta \gamma = 1 \right\}.$
- G acts on k[x, y] via

$$g \cdot f(x, y) = f(\alpha x + \gamma y, \beta x + \delta y).$$

• $M_d := \{ \text{degree } d \text{ homogeneous polynomials} \} \subset \mathbb{k}[x,y] \text{ for } d \geq 0.$

- Let $G = SL_2(\mathbb{k}) = \left\{ \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \middle| \alpha \delta \beta \gamma = 1 \right\}.$
- G acts on k[x, y] via

$$g \cdot f(x, y) = f(\alpha x + \gamma y, \beta x + \delta y).$$

- $M_d := \{ \text{degree } d \text{ homogeneous polynomials} \} \subset \mathbb{k}[x,y] \text{ for } d \geq 0.$
- ch $M_d = t^{-d} + t^{-d+2} + \dots + t^{d-2} + t^d \in \mathbb{Z}[t, t^{-1}].$

- Let $G = SL_2(\mathbb{k}) = \left\{ \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \middle| \alpha \delta \beta \gamma = 1 \right\}.$
- G acts on k[x, y] via

$$g \cdot f(x, y) = f(\alpha x + \gamma y, \beta x + \delta y).$$

- $M_d := \{ \text{degree } d \text{ homogeneous polynomials} \} \subset \mathbb{k}[x,y] \text{ for } d \geq 0.$
- ch $M_d = t^{-d} + t^{-d+2} + \dots + t^{d-2} + t^d \in \mathbb{Z}[t, t^{-1}].$
- If $\mathbb{k} = \mathbb{C}$, the M_d are irreducible representations for all $d \geq 0$.

- Let $G = SL_2(\mathbb{k}) = \left\{ \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \middle| \alpha \delta \beta \gamma = 1 \right\}.$
- G acts on k[x, y] via

$$g \cdot f(x, y) = f(\alpha x + \gamma y, \beta x + \delta y).$$

- $M_d := \{ \text{degree } d \text{ homogeneous polynomials} \} \subset \mathbb{k}[x,y] \text{ for } d \geq 0.$
- ch $M_d = t^{-d} + t^{-d+2} + \dots + t^{d-2} + t^d \in \mathbb{Z}[t, t^{-1}].$
- If $\mathbb{k} = \mathbb{C}$, the M_d are irreducible representations for all $d \geq 0$.
- If $\mathbb{k} = \overline{\mathbb{F}_p}$, the M_d are irreducible for $0 \le d \le p-1$, but generally not irreducible for $d \ge p$.

- Let $G = SL_2(\mathbb{k}) = \left\{ \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \middle| \alpha \delta \beta \gamma = 1 \right\}.$
- G acts on k[x, y] via

$$g \cdot f(x, y) = f(\alpha x + \gamma y, \beta x + \delta y).$$

- $M_d := \{ \text{degree } d \text{ homogeneous polynomials} \} \subset \mathbb{k}[x,y] \text{ for } d \geq 0.$
- ch $M_d = t^{-d} + t^{-d+2} + \dots + t^{d-2} + t^d \in \mathbb{Z}[t, t^{-1}].$
- If $\mathbb{k} = \mathbb{C}$, the M_d are irreducible representations for all $d \geq 0$.
- If $\mathbb{k} = \overline{\mathbb{F}_p}$, the M_d are irreducible for $0 \le d \le p-1$, but generally *not* irreducible for $d \ge p$.

Example

The subspace $\mathbb{k} x^p \oplus \mathbb{k} y^p \subsetneq M_p$ is a proper G-submodule.

Definition

Definition

M is indecomposable if $M \neq M_1 \oplus M_2$ non-trivially.

• **Complete reducibility** holds *precisely* when irreducibility and indecomposability are equivalent conditions.

Definition

- **Complete reducibility** holds *precisely* when irreducibility and indecomposability are equivalent conditions.
- This almost never holds (e.g. for $SL_2(\overline{\mathbb{F}_p})$, M_p is indecomposable but not irreducible).

Definition

- Complete reducibility holds precisely when irreducibility and indecomposability are equivalent conditions.
- This almost never holds (e.g. for $SL_2(\overline{\mathbb{F}_p})$, M_p is indecomposable but not irreducible).
- Classifying all indecomposable representations in this case is actually impossible! ("wild representation type").

Definition

- Complete reducibility holds precisely when irreducibility and indecomposability are equivalent conditions.
- This almost never holds (e.g. for $SL_2(\overline{\mathbb{F}_p})$, M_p is indecomposable but not irreducible).
- Classifying all indecomposable representations in this case is actually impossible! ("wild representation type").
- The characters of the irreducibles are extremely difficult to compute.

• If $G = SL_N(\mathbb{k})$ and $V = \mathbb{k}^N$, then a module is **tilting** if all of its indecomposable summands are summands of $V^{\otimes r}$ for various $r \geq 0$.

- If $G = SL_N(\mathbb{k})$ and $V = \mathbb{k}^N$, then a module is **tilting** if all of its indecomposable summands are summands of $V^{\otimes r}$ for various $r \geq 0$.
- (Ringel) Can be defined for any **connected** reductive group. The indecomposable tilting modules are indexed by \mathbf{X}^+ (denote by $\mathcal{T}(\lambda)$).

- If $G = SL_N(\mathbb{k})$ and $V = \mathbb{k}^N$, then a module is **tilting** if all of its indecomposable summands are summands of $V^{\otimes r}$ for various $r \geq 0$.
- (Ringel) Can be defined for any **connected** reductive group. The indecomposable tilting modules are indexed by \mathbf{X}^+ (denote by $T(\lambda)$).
- If $k = \mathbb{C}$, then every module is tilting! (Can easily verify for $SL_N(\mathbb{C})$.)

• If $G = SL_N(\mathbb{k})$ and $V = \mathbb{k}^N$, then a module is **tilting** if all of its indecomposable summands are summands of $V^{\otimes r}$ for various $r \geq 0$.

• (Ringel) Can be defined for any **connected** reductive group. The

- indecomposable tilting modules are indexed by \mathbf{X}^+ (denote by $T(\lambda)$).
- If $\Bbbk = \mathbb{C}$, then every module is tilting! (Can easily verify for $SL_N(\mathbb{C})$.)
- Tilting modules are uniquely determined by their characters.

• If $G = SL_N(\mathbb{k})$ and $V = \mathbb{k}^N$, then a module is **tilting** if all of its indecomposable summands are summands of $V^{\otimes r}$ for various $r \geq 0$.

• (Ringel) Can be defined for any **connected** reductive group. The

- indecomposable tilting modules are indexed by \mathbf{X}^+ (denote by $T(\lambda)$).
- If $\Bbbk = \mathbb{C}$, then every module is tilting! (Can easily verify for $SL_N(\mathbb{C})$.)
- Tilting modules are uniquely determined by their characters.
- (Mathieu) If M_1 , M_2 are tilting, then $M_1 \otimes M_2$ is tilting.

• If $G = SL_N(\mathbb{k})$ and $V = \mathbb{k}^N$, then a module is **tilting** if all of its indecomposable summands are summands of $V^{\otimes r}$ for various $r \geq 0$.

• (Ringel) Can be defined for any **connected** reductive group. The

- indecomposable tilting modules are indexed by \mathbf{X}^+ (denote by $T(\lambda)$).
- If $\mathbb{k} = \mathbb{C}$, then every module is tilting! (Can easily verify for $SL_N(\mathbb{C})$.)
- Tilting modules are uniquely determined by their characters.
- (Mathieu) If M_1 , M_2 are tilting, then $M_1 \otimes M_2$ is tilting.
- (Achar–**H.**–Riche 2018) Extension to **disconnected** reductive groups.

• If $G = SL_N(\mathbb{k})$ and $V = \mathbb{k}^N$, then a module is **tilting** if all of its indecomposable summands are summands of $V^{\otimes r}$ for various $r \geq 0$.

• (Ringel) Can be defined for any **connected** reductive group. The

- indecomposable tilting modules are indexed by \mathbf{X}^+ (denote by $T(\lambda)$).
- If $\mathbb{k} = \mathbb{C}$, then every module is tilting! (Can easily verify for $SL_N(\mathbb{C})$.)
- Tilting modules are uniquely determined by their characters.
- (Mathieu) If M_1 , M_2 are tilting, then $M_1 \otimes M_2$ is tilting.
- (Achar–**H.**–Riche 2018) Extension to **disconnected** reductive groups.

Ideals of tilting modules

• Think of the category Tilt(G) as a commutative ring with a distinguished basis given by the $T(\lambda)$.

• If $G = SL_N(\mathbb{k})$ and $V = \mathbb{k}^N$, then a module is **tilting** if all of its indecomposable summands are summands of $V^{\otimes r}$ for various $r \geq 0$.

• (Ringel) Can be defined for any **connected** reductive group. The

- indecomposable tilting modules are indexed by \mathbf{X}^+ (denote by $T(\lambda)$).
- If $\Bbbk = \mathbb{C}$, then every module is tilting! (Can easily verify for $SL_N(\mathbb{C})$.)
- Tilting modules are uniquely determined by their characters.
- (Mathieu) If M_1 , M_2 are tilting, then $M_1 \otimes M_2$ is tilting.
- (Achar–**H.**–Riche 2018) Extension to **disconnected** reductive groups.

Ideals of tilting modules

- Think of the category Tilt(G) as a commutative ring with a distinguished basis given by the $T(\lambda)$.
- "Homogenous" ideals for this basis are called thick tensor ideals.

Why are tilting modules important?

 (Donkin, Sobaje) The characters of the indecomposable tilting modules determine the characters of the irreducible representations.

- (Donkin, Sobaje) The characters of the indecomposable tilting modules determine the characters of the irreducible representations.
- (Erdmann) Related to modular representation theory of symmetric groups through Schur-Weyl duality.

- (Donkin, Sobaje) The characters of the indecomposable tilting modules determine the characters of the irreducible representations.
- (Erdmann) Related to modular representation theory of symmetric groups through Schur-Weyl duality.
- (Juteau-Mautner-Williamson) Similar notions arise in "modular intersection cohomology" on stratified topological spaces via the theory of parity sheaves.

- (Donkin, Sobaje) The characters of the indecomposable tilting modules determine the characters of the irreducible representations.
- (Erdmann) Related to modular representation theory of symmetric groups through Schur-Weyl duality.
- (Juteau-Mautner-Williamson) Similar notions arise in "modular intersection cohomology" on stratified topological spaces via the theory of parity sheaves.
- (Elias-Williamson) Deep connections with knot theory.

- (Donkin, Sobaje) The characters of the indecomposable tilting modules determine the characters of the irreducible representations.
- (Erdmann) Related to modular representation theory of symmetric groups through Schur-Weyl duality.
- (Juteau-Mautner-Williamson) Similar notions arise in "modular intersection cohomology" on stratified topological spaces via the theory of parity sheaves.
- (Elias–Williamson) Deep connections with knot theory.
- (Soergel, Kazhdan–Lusztig) Connected to the representation theory of quantum groups and affine Lie algebras in characteristic 0.

• (Erdmann 1995) Tilting module characters for $SL_2(\overline{\mathbb{F}_p})$.

- (Erdmann 1995) Tilting module characters for $SL_2(\overline{\mathbb{F}_p})$.
- (Soergel 2000) Characters of tilting modules for quantum groups.

- (Erdmann 1995) Tilting module characters for $SL_2(\overline{\mathbb{F}_p})$.
- (Soergel 2000) Characters of tilting modules for quantum groups.
- (Ostrik 2000) Classified the thick tensor ideals for quantum groups.

- (Erdmann 1995) Tilting module characters for $SL_2(\overline{\mathbb{F}_p})$.
- (Soergel 2000) Characters of tilting modules for quantum groups.
- (Ostrik 2000) Classified the thick tensor ideals for quantum groups.
- (Bezrukavnikov 2005) Computed the **support varieties** of tilting modules for quantum groups.

- (Erdmann 1995) Tilting module characters for $SL_2(\overline{\mathbb{F}_p})$.
- (Soergel 2000) Characters of tilting modules for quantum groups.
- (Ostrik 2000) Classified the thick tensor ideals for quantum groups.
- (Bezrukavnikov 2005) Computed the support varieties of tilting modules for quantum groups.
- (Achar–Makisumi–Riche–Williamson 2017) Characters of tilting modules for algebraic groups given by the light leaves basis.

- (Erdmann 1995) Tilting module characters for $SL_2(\overline{\mathbb{F}_p})$.
- (Soergel 2000) Characters of tilting modules for quantum groups.
- (Ostrik 2000) Classified the thick tensor ideals for quantum groups.
- (Bezrukavnikov 2005) Computed the support varieties of tilting modules for quantum groups.
- (Achar–Makisumi–Riche–Williamson 2017) Characters of tilting modules for algebraic groups given by the light leaves basis.
- (**H.** 2016, Achar–**H.**–Riche 2017) Computed the support varieties of tilting modules for algebraic groups.

- (Erdmann 1995) Tilting module characters for $SL_2(\overline{\mathbb{F}_p})$.
- (Soergel 2000) Characters of tilting modules for quantum groups.
- (Ostrik 2000) Classified the thick tensor ideals for quantum groups.
- (Bezrukavnikov 2005) Computed the support varieties of tilting modules for quantum groups.
- (Achar–Makisumi–Riche–Williamson 2017) Characters of tilting modules for algebraic groups given by the light leaves basis.
- (**H.** 2016, Achar–**H.**–Riche 2017) Computed the support varieties of tilting modules for algebraic groups.
- (Lusztig–Williamson 2018) **Billiards conjecture** for characters of tilting modules for $SL_3(\overline{\mathbb{F}_p})$.

- (Erdmann 1995) Tilting module characters for $SL_2(\mathbb{F}_p)$.
- (Soergel 2000) Characters of tilting modules for quantum groups.
- (Ostrik 2000) Classified the thick tensor ideals for quantum groups.
- (Bezrukavnikov 2005) Computed the support varieties of tilting modules for quantum groups.
- (Achar–Makisumi–Riche–Williamson 2017) Characters of tilting modules for algebraic groups given by the light leaves basis.
- (**H.** 2016, Achar–**H.**–Riche 2017) Computed the support varieties of tilting modules for algebraic groups.
- (Lusztig–Williamson 2018) **Billiards conjecture** for characters of tilting modules for $SL_3(\overline{\mathbb{F}_p})$.
- (Achar-H.-Riche 2018) Conjectural classification of thick tensor ideals of tilting modules for algebraic groups.

Outline

1) The representation theory of algebraic groups

2 The nilpotent cone and restricted cohomology

3 Tilting modules and coherent Springer theory

• Let \mathfrak{g} be the Lie algebra of G.

- Let \mathfrak{g} be the Lie algebra of G.
- The **nilpotent cone** is the set of all nilpotent matrices $\mathcal{N} := \{X \in \mathfrak{g} \mid X^n = 0 \text{ for some } n \geq 1\}.$

- Let \mathfrak{g} be the Lie algebra of G.
- The **nilpotent cone** is the set of all nilpotent matrices $\mathcal{N} := \{X \in \mathfrak{g} \mid X^n = 0 \text{ for some } n \geq 1\}.$
- The adjoint action of G on \mathfrak{g} stabilizes \mathcal{N} .

- Let \mathfrak{g} be the Lie algebra of G.
- The **nilpotent cone** is the set of all nilpotent matrices $\mathcal{N} := \{X \in \mathfrak{g} \mid X^n = 0 \text{ for some } n \geq 1\}.$
- The adjoint action of G on $\mathfrak g$ stabilizes $\mathcal N$.
- ullet $\mathcal N$ has only finitely many G-orbits under this action.

- Let \mathfrak{g} be the Lie algebra of G.
- The **nilpotent cone** is the set of all nilpotent matrices $\mathcal{N} := \{X \in \mathfrak{g} \mid X^n = 0 \text{ for some } n \geq 1\}.$
- The adjoint action of G on $\mathfrak g$ stabilizes $\mathcal N$.
- ullet ${\cal N}$ has only finitely many ${\it G}$ -orbits under this action.

Nilpotent orbits for $SL_N(\mathbb{k})$

• There is a natural bijection: $\{G\text{-orbits of }\mathcal{N}\}\leftrightarrow \{\text{partitions }\pi\vdash N\}.$

- Let \mathfrak{g} be the Lie algebra of G.
- The **nilpotent cone** is the set of all nilpotent matrices $\mathcal{N} := \{X \in \mathfrak{g} \mid X^n = 0 \text{ for some } n \geq 1\}.$
- The adjoint action of G on $\mathfrak g$ stabilizes $\mathcal N$.
- ullet ${\cal N}$ has only finitely many ${\it G}$ -orbits under this action.

Nilpotent orbits for $SL_N(\mathbb{k})$

- There is a natural bijection: $\{G\text{-orbits of }\mathcal{N}\}\leftrightarrow \{\text{partitions }\pi\vdash N\}.$
- The orbit of a matrix is determined by its Jordan normal form.

- Let \mathfrak{g} be the Lie algebra of G.
- The **nilpotent cone** is the set of all nilpotent matrices $\mathcal{N} := \{X \in \mathfrak{g} \mid X^n = 0 \text{ for some } n \geq 1\}.$
- The adjoint action of G on $\mathfrak g$ stabilizes $\mathcal N$.
- ullet $\mathcal N$ has only finitely many G-orbits under this action.

Nilpotent orbits for $SL_N(\mathbb{k})$

- There is a natural bijection: $\{G\text{-orbits of }\mathcal{N}\}\leftrightarrow \{\text{partitions }\pi\vdash N\}.$
- The orbit of a matrix is determined by its Jordan normal form.
- $\mathcal N$ is Gorenstein and has rational singularities.

- Let \mathfrak{g} be the Lie algebra of G.
- The **nilpotent cone** is the set of all nilpotent matrices $\mathcal{N} := \{X \in \mathfrak{g} \mid X^n = 0 \text{ for some } n \geq 1\}.$
- The adjoint action of G on $\mathfrak g$ stabilizes $\mathcal N$.
- ullet ${\cal N}$ has only finitely many ${\it G}$ -orbits under this action.

Nilpotent orbits for $SL_N(\mathbb{k})$

- There is a natural bijection: $\{G\text{-orbits of }\mathcal{N}\}\leftrightarrow \{\text{partitions }\pi\vdash N\}.$
- The orbit of a matrix is determined by its Jordan normal form.
- $\mathcal N$ is **Gorenstein** and has **rational singularities**.
- There is a symplectic resolution $\pi: T^*\mathcal{B} \to \mathcal{N}$, where \mathcal{B} denotes the flag variety. This is called the **Springer resolution**.

•
$$\mathcal{N} = \left\{ \begin{pmatrix} x & y \\ z & -x \end{pmatrix} \middle| x^2 - yz = 0 \right\}, \quad \mathcal{B} = \mathbb{P}^1.$$

- $\mathcal{N} = \left\{ \begin{pmatrix} x & y \\ z & -x \end{pmatrix} \middle| x^2 yz = 0 \right\}, \quad \mathcal{B} = \mathbb{P}^1.$
- $\mathbb{k}[\mathcal{N}] \cong \mathbb{k}[u^2, uv, v^2] \subset \mathbb{k}[u, v]$ (this gives a grading on $\mathbb{k}[\mathcal{N}]$).

- $\mathcal{N} = \left\{ \begin{pmatrix} x & y \\ z & -x \end{pmatrix} \middle| x^2 yz = 0 \right\}, \quad \mathcal{B} = \mathbb{P}^1.$
- $\mathbb{k}[\mathcal{N}] \cong \mathbb{k}[u^2, uv, v^2] \subset \mathbb{k}[u, v]$ (this gives a grading on $\mathbb{k}[\mathcal{N}]$).
- ullet $\mathcal N$ has precisely two G-orbits: $\mathcal O_{\mathrm{reg}}$ and $\{0\}$.

- $\mathcal{N} = \left\{ \begin{pmatrix} x & y \\ z & -x \end{pmatrix} \middle| x^2 yz = 0 \right\}, \quad \mathcal{B} = \mathbb{P}^1.$
- $\mathbb{k}[\mathcal{N}] \cong \mathbb{k}[u^2, uv, v^2] \subset \mathbb{k}[u, v]$ (this gives a grading on $\mathbb{k}[\mathcal{N}]$).
- ullet $\mathcal N$ has precisely two G-orbits: $\mathcal O_{\mathrm{reg}}$ and $\{0\}$.

• In characteristic p > 0, ordinary Lie algebra cohomology is often replaced with **restricted Lie algebra cohomology** $H_{res}^*(\mathfrak{g}, M)$.

- In characteristic p > 0, ordinary Lie algebra cohomology is often replaced with **restricted Lie algebra cohomology** $H_{res}^*(\mathfrak{g}, M)$.
- It is the cohomology of a certain Hochschild complex

$$C^0_{\mathrm{res}}(\mathfrak{g},M) \xrightarrow{d^0} C^1_{\mathrm{res}}(\mathfrak{g},M) \xrightarrow{d^1} C^2_{\mathrm{res}}(\mathfrak{g},M) \xrightarrow{d^2} C^3_{\mathrm{res}}(\mathfrak{g},M) \xrightarrow{d^3} \cdots.$$

- In characteristic p > 0, ordinary Lie algebra cohomology is often replaced with **restricted Lie algebra cohomology** $H_{res}^*(\mathfrak{g}, M)$.
- It is the cohomology of a certain Hochschild complex

$$C^0_{\mathrm{res}}(\mathfrak{g},M) \xrightarrow{d^0} C^1_{\mathrm{res}}(\mathfrak{g},M) \xrightarrow{d^1} C^2_{\mathrm{res}}(\mathfrak{g},M) \xrightarrow{d^2} C^3_{\mathrm{res}}(\mathfrak{g},M) \xrightarrow{d^3} \cdots.$$

• $H^*_{res}(\mathfrak{g}, \mathbb{k})$ is a graded-commutative ring by the cup product: \smile .

- In characteristic p > 0, ordinary Lie algebra cohomology is often replaced with **restricted Lie algebra cohomology** $H_{res}^*(\mathfrak{g}, M)$.
- It is the cohomology of a certain Hochschild complex

$$C^0_{\mathrm{res}}(\mathfrak{g},M) \xrightarrow{d^0} C^1_{\mathrm{res}}(\mathfrak{g},M) \xrightarrow{d^1} C^2_{\mathrm{res}}(\mathfrak{g},M) \xrightarrow{d^2} C^3_{\mathrm{res}}(\mathfrak{g},M) \xrightarrow{d^3} \cdots$$

- $H^*_{\mathrm{res}}(\mathfrak{g}, \mathbb{k})$ is a graded-commutative ring by the cup product: \smile .
- $H^*_{res}(\mathfrak{g}, M)$ is a graded $H^*_{res}(\mathfrak{g}, \mathbb{k})$ -module for any \mathfrak{g} -module M.

- In characteristic p > 0, ordinary Lie algebra cohomology is often replaced with **restricted Lie algebra cohomology** $H_{res}^*(\mathfrak{g}, M)$.
- It is the cohomology of a certain Hochschild complex

$$C^0_{\mathrm{res}}(\mathfrak{g},M) \xrightarrow{d^0} C^1_{\mathrm{res}}(\mathfrak{g},M) \xrightarrow{d^1} C^2_{\mathrm{res}}(\mathfrak{g},M) \xrightarrow{d^2} C^3_{\mathrm{res}}(\mathfrak{g},M) \xrightarrow{d^3} \cdots$$

- $H^*_{res}(\mathfrak{g}, \mathbb{k})$ is a graded-commutative ring by the cup product: \smile .
- $H^*_{res}(\mathfrak{g}, M)$ is a graded $H^*_{res}(\mathfrak{g}, \mathbb{k})$ -module for any \mathfrak{g} -module M.

Theorem (Andersen–Jantzen, Friedlander–Parshall)

• If p > h where h is the Coxeter number (e.g. h = N for $SL_N(\mathbb{k})$), then $H^*_{res}(\mathfrak{g}, \mathbb{k}) \cong \mathbb{k}[\mathcal{N}]$.

- In characteristic p > 0, ordinary Lie algebra cohomology is often replaced with **restricted Lie algebra cohomology** $H_{res}^*(\mathfrak{g}, M)$.
- It is the cohomology of a certain Hochschild complex

$$C^0_{\mathrm{res}}(\mathfrak{g},M) \xrightarrow{d^0} C^1_{\mathrm{res}}(\mathfrak{g},M) \xrightarrow{d^1} C^2_{\mathrm{res}}(\mathfrak{g},M) \xrightarrow{d^2} C^3_{\mathrm{res}}(\mathfrak{g},M) \xrightarrow{d^3} \cdots$$

- $H^*_{res}(\mathfrak{g}, \mathbb{k})$ is a graded-commutative ring by the cup product: \smile .
- $H^*_{res}(\mathfrak{g}, M)$ is a graded $H^*_{res}(\mathfrak{g}, \mathbb{k})$ -module for any \mathfrak{g} -module M.

Theorem (Andersen-Jantzen, Friedlander-Parshall)

- If p > h where h is the Coxeter number (e.g. h = N for $SL_N(\mathbb{k})$), then $H^*_{res}(\mathfrak{g}, \mathbb{k}) \cong \mathbb{k}[\mathcal{N}]$.
- The support variety of an \mathfrak{g} -module M is the subvariety $V_{\mathfrak{g}}(M) := \operatorname{supp} H^*_{\operatorname{res}}(\mathfrak{g}, M \otimes M^*) \subseteq \mathcal{N}$.

Outline

1 The representation theory of algebraic groups

2 The nilpotent cone and restricted cohomology

3 Tilting modules and coherent Springer theory

The Humphreys conjecture on support varieties

• \mathbf{X}^+ admits a preorder \leq_{cell} , whose associated equivalence classes $\mathbf{c} \subset \mathbf{X}^+$ are the **weight-cells** of \mathbf{X}^+ .

The Humphreys conjecture on support varieties

- X^+ admits a preorder \leq_{cell} , whose associated equivalence classes $c \subset X^+$ are the **weight-cells** of X^+ .
- (Lusztig, Bezrukavnikov) There is an isomorphisms of posets

$$\{G\text{-orbits }\mathcal{O}\subset\mathcal{N}\}\xrightarrow{\sim}\{\text{weight cells }\mathbf{c}\subset\mathbf{X}^+\}$$

with $\mathcal{O} \mapsto \mathbf{c}_{\mathcal{O}}$, called the **Lusztig bijection**.

The Humphreys conjecture on support varieties

- \mathbf{X}^+ admits a preorder \leq_{cell} , whose associated equivalence classes $\mathbf{c} \subset \mathbf{X}^+$ are the **weight-cells** of \mathbf{X}^+ .
- (Lusztig, Bezrukavnikov) There is an isomorphisms of posets

$$\{G\text{-orbits }\mathcal{O}\subset\mathcal{N}\}\xrightarrow{\sim}\{\text{weight cells }\mathbf{c}\subset\mathbf{X}^+\}$$

with $\mathcal{O} \mapsto \mathbf{c}_{\mathcal{O}}$, called the **Lusztig bijection**.

Conjecture (Humphreys 1995)

If G is a reductive algebraic group over \Bbbk with p>h, then for any $\lambda\in \mathbf{X}^+$, $V_{\mathfrak{g}}(\mathsf{T}(\lambda))=\overline{\mathcal{O}}$, where $\mathbf{c}_{\mathcal{O}}$ is the unique weight cell containing λ .

Rephrasing the Humphreys conjecture

Rephrasing the Humphreys conjecture

• The Humphreys conjecture connects the representation theory of G, the geometry of \mathcal{N} , and the **alcove combinatorics** for \mathbf{X}^+ .

Rephrasing the Humphreys conjecture

- The Humphreys conjecture connects the representation theory of G, the geometry of \mathcal{N} , and the **alcove combinatorics** for \mathbf{X}^+ .
- Related to a number of other results and conjectures.

Illustration for $SL_2(\mathbb{k})$

Illustration for $SL_3(\mathbb{k})$

Illustration for $Sp_4(\mathbb{k})$

Illustration for $G_2(\mathbb{k})$

Theorems

• (**H.** 2016) The conjecture holds for $SL_N(\mathbb{k})$ (or $GL_N(\mathbb{k})$).

Theorems

- (**H.** 2016) The conjecture holds for $SL_N(\mathbb{k})$ (or $GL_N(\mathbb{k})$).
- (Achar–H.–Riche 2017) For any reductive group G, and "sufficiently large" p, the conjecture holds.

Theorems

- (**H.** 2016) The conjecture holds for $SL_N(\mathbb{k})$ (or $GL_N(\mathbb{k})$).
- (Achar-H.-Riche 2017) For any reductive group G, and "sufficiently large" p, the conjecture holds.
- My original proof of the conjecture for $SL_N(\mathbb{k})$ uses the explicit description of the Lusztig bijection due to J.Y. Shi.

Theorems

- (**H.** 2016) The conjecture holds for $SL_N(\mathbb{k})$ (or $GL_N(\mathbb{k})$).
- (Achar–H.–Riche 2017) For any reductive group G, and "sufficiently large" p, the conjecture holds.
- My original proof of the conjecture for $SL_N(\mathbb{k})$ uses the explicit description of the Lusztig bijection due to J.Y. Shi.
- We obtained the more general result by reformulating the conjecture into the language of **coherent Springer theory**. (This refers to the study of equivariant coherent sheaves on $T^*\mathcal{B}$ and \mathcal{N} .)

• (Achar–Riche) There are compatible equivalences involving sheaves on the **affine Grassmannian** and the **affine flag variety**.

- (Achar–Riche) There are compatible equivalences involving sheaves on the **affine Grassmannian** and the **affine flag variety**.
- Restricted cohomology of tilting modules should produce intrinsically interesting $G \times \mathbb{G}_m$ -equivariant sheaves on \mathcal{N} .

- (Achar–Riche) There are compatible equivalences involving sheaves on the **affine Grassmannian** and the **affine flag variety**.
- Restricted cohomology of tilting modules should produce intrinsically interesting $G \times \mathbb{G}_m$ -equivariant sheaves on \mathcal{N} .

Theorem (Achar-H. 2019)

 $D^b \operatorname{Coh}^{\dot{G} \times \mathbb{G}_{\mathrm{m}}}(\mathcal{N})$ admits a **co-t-structure**, where every indecomposable sheaf in its **co-heart** is of the form $H^*_{\mathrm{res}}(\mathfrak{g}, T)$ for an indecomposable T.

Theorem (Achar-H.-Riche 2018)

• There exists a notion of G-equivariant tilting sheaves on \mathcal{O} , which are indexed by a set $\Lambda_{\mathcal{O}}$.

Theorem (Achar-H.-Riche 2018)

- There exists a notion of G-equivariant tilting sheaves on \mathcal{O} , which are indexed by a set $\Lambda_{\mathcal{O}}$.
- The Lusztig–Vogan bijection, which gives a bijection between X^+ and $\{(\mathcal{O}, \lambda) \mid \mathcal{O} \subset \mathcal{N}, \lambda \in \Lambda_{\mathcal{O}}\}$, is "independent of \mathbb{k} ".

Theorem (Achar-H.-Riche 2018)

- There exists a notion of G-equivariant tilting sheaves on \mathcal{O} , which are indexed by a set $\Lambda_{\mathcal{O}}$.
- The Lusztig-Vogan bijection, which gives a bijection between X^+ and $\{(\mathcal{O}, \lambda) \mid \mathcal{O} \subset \mathcal{N}, \lambda \in \Lambda_{\mathcal{O}}\}$, is "independent of \mathbb{k} ".

Conjecture (Achar-H.)

• Let T be an indecomposable tilting module, and let $\mathcal{F} = H^*_{res}(\mathfrak{g}, T)$.

Theorem (Achar-**H.**-Riche 2018)

- There exists a notion of G-equivariant tilting sheaves on \mathcal{O} , which are indexed by a set $\Lambda_{\mathcal{O}}$.
- The Lusztig-Vogan bijection, which gives a bijection between X^+ and $\{(\mathcal{O}, \lambda) \mid \mathcal{O} \subset \mathcal{N}, \lambda \in \Lambda_{\mathcal{O}}\}$, is "independent of \mathbb{k} ".

Conjecture (Achar-H.)

- Let T be an indecomposable tilting module, and let $\mathcal{F} = H^*_{res}(\mathfrak{g}, T)$.
- If supp $\mathcal{F} = \overline{\mathcal{O}}$, then $\mathcal{F}|_{\mathcal{O}} = \mathscr{T}_{\lambda}$, where \mathscr{T}_{λ} is an indecomposable tilting sheaf and $\lambda \in \Lambda_{\mathcal{O}}$ is determined by the LV-bijection.

Theorem (Achar-**H.**-Riche 2018)

- There exists a notion of G-equivariant tilting sheaves on \mathcal{O} , which are indexed by a set $\Lambda_{\mathcal{O}}$.
- The Lusztig–Vogan bijection, which gives a bijection between X^+ and $\{(\mathcal{O}, \lambda) \mid \mathcal{O} \subset \mathcal{N}, \lambda \in \Lambda_{\mathcal{O}}\}$, is "independent of \mathbb{k} ".

Conjecture (Achar-H.)

- Let T be an indecomposable tilting module, and let $\mathcal{F} = H^*_{res}(\mathfrak{g}, T)$.
- If supp $\mathcal{F} = \overline{\mathcal{O}}$, then $\mathcal{F}|_{\mathcal{O}} = \mathscr{T}_{\lambda}$, where \mathscr{T}_{λ} is an indecomposable tilting sheaf and $\lambda \in \Lambda_{\mathcal{O}}$ is determined by the LV-bijection.
- Leads to conjecture that thick tensor ideals of *G* are recursively determined by thick tensor ideals of smaller groups.