Bandits on stochastic block-model graphs

Arthur Mensch, Michaël Weiss

January 14, 2015

Problem definition

N arms, T steps.

- The environment chooses losses for every arm noted $l_{t,i}$ for the arm i at the step t.
- 2 Following the algorithm we hope would minimize as much as possible the regret the player draws an arm I_t .
- **3** The player receives the loss I_{t,l_t} .
- We define $(O_t)_{i \in [N]}$ as the indicative function of observed loss at step t. We have:

$$O_{t,I_t} = 1$$
 $\forall i \neq I_t, O_{t,i} \sim B(r)$

- $(O_t)_{i \in [N]}$ corresponds to the value of the logic expression i is neighbor of I_t in the Erdös-Rényi random graph drawn at step t.
- **5** For all i such that $O_{t,i} = 1$ the player can observe the loss $I_{t,i}$.

Duplex tricks

Definition geometrical random variables

$$M_t^* = \min\{1 \le i < N : O'_{t-1,i} = 1\} \cup \{N\}$$

 $G_{t,i} = \min(K_{t,i}, M_t)$

Independence

$$p_{t+2,i} \propto w_{t+2,i} = \frac{1}{N} \exp\left(-\eta_{t+2} \hat{L}_{t,i}\right)$$

Generalizing

ESTIMATE_R gives a safe lower bounding on r.

If
$$\underline{r}=0,$$
 we run vanilla Exp3. If $\underline{r}\geq \frac{\log\,T}{N},$ we run vanilla Duplex.

If
$$0 < r < \frac{\log T}{\log T}$$
 $\Delta = \left[\frac{\log T}{\log T}\right]$ and run Dupley grouping Δ steps

If
$$0 < \underline{r} < \frac{\log T}{N}$$
, $A = \left\lceil \frac{\log T}{N\underline{r}} \right\rceil$ and run DUPLEX grouping A steps.

Random graph with Stochastic Block-Model

ZE figure!

Probability of side information

n clusters. We know in which cluster is every vertex.

 $R = (r_{ij})_{1 \le i,j \le n}$ the matrix representing the probability of having side information.

 r_{ij} represents the probability that a vertex of the cluster j reveals his loss to a given vertex of the cluster i

Adapt M_t sampling

Lower bounding R

Heavily unbalanced graph

Figure: Outperformance of our algorithm

Graph 'close' to Erdös-Rényi

Figure: Orginal algorithm outperforms our algorithm