一、选择题

- (1)设 $f(t) = \delta(t t_0)$,则L [f(t)] = (
 - (A) 1 (B) $e^{t_0 s}$ (C) $e^{-t_0 s}$ (D) 2π
- (2) L $[\cos(t-\frac{\pi}{4})] = ($
- (A) $\frac{\sqrt{2}}{2} \frac{s+1}{s^2+1}$ (B) $\frac{\sqrt{2}}{2} \frac{s-1}{s^2+1}$ (C) $\frac{\sqrt{2}}{2} \frac{s+1}{s^2+1} e^{-\frac{\pi}{4}s}$ (D) $\frac{\sqrt{2}}{2} \frac{s-1}{s^2+1} e^{-\frac{\pi}{4}s}$
- (3) $L \left[\int_0^t e^{-3t} \sin t \, dt \right] = ($
 - (A) $\frac{1}{s} \frac{1}{(s-3)^2 + 1}$ (B) $\frac{1}{s} \frac{1}{(s+3)^2 + 1}$
 - (C) $-\frac{1}{s} \frac{1}{(s+3)^2 + 1}$ (D) $-\frac{1}{s} \frac{1}{(s-3)^2 + 1}$
- (4) $L[t\int_0^t e^{-3t} \sin t \, dt] = ($
- (A) $-\frac{1}{s^2} \frac{3s^2 + 12s + 10}{(s-3)^2 + 1}$ (B) $\frac{1}{s^2} \frac{3s^2 + 12s + 10}{(s-3)^2 + 1}$
- (C) $-\frac{1}{s^2} \frac{3s^2 + 12s + 10}{(s+3)^2 + 1}$ (D) $\frac{1}{s^2} \frac{3s^2 + 12s + 10}{(s+3)^2 + 1}$
- (5) 函数 $\frac{s^2}{(s+1)^2+1}$ 的拉普拉斯逆变换为()
 - (A) $\delta(t) 2e^{-t}\cos t$ (B) $\delta(t) 2\cos t 2\sin t$
- (C) $\delta(t) 2e^{-t} \sin t$ (D) $\frac{i-1}{2}e^{it}$
- (6) 函数 $\frac{s}{s+1}e^{-s}$ 的拉普拉斯逆变换为(

(A)
$$\delta(t-1)-e^{-t}$$

(B)
$$\delta(t-1)u(t-1)-e^{-t}$$

(C)
$$e^{-(t-1)}u(t-1)$$

(D)
$$\delta(t-1)u(t-1)-e^{-(t-1)}u(t-1)$$

(7)积分 $\int_0^{+\infty} te^{-2t} \cos t dt$ 的值为()

- (A) 0 (B) $\frac{3}{25}$ (C) $-\frac{3}{25}$ (D) $\frac{4}{25}$

(8) 积分
$$\int_0^{+\infty} \left[\int_0^{\tau} e^{-\tau} \cos \tau d\tau \right] e^t dt$$
 的值为()

- (A) 0 (B) 1 (C) -1 (D) 不存在

(9)
$$t < a$$
 时 $u(t-a) * f(t)$ 的值为 (

- (A) 0 (B) 1 (C) -1 (D) 不存在

二、填空题

(1) 设L
$$[f(t)] = F(s)$$
, $a > 0$,则L $[e^{-\frac{t}{a}}f(\frac{t}{a})] =$ ______

(2) L
$$[t^2u(1-e^{-t})] =$$

$$(3) L \left[e^{-(t+\alpha)} \cos \beta t \right] = \underline{\hspace{1cm}}$$

(4) L
$$[\sin(t-2)u(t-2)] =$$

(5) L
$$^{-1}\left[\frac{e^{-5s+1}}{s}\right] =$$

(6) L
$$^{-1}\left[\frac{1}{s^3(s-a)}\right] = \underline{\hspace{1cm}}$$

(7) L
$$^{-1}[\ln \frac{s^2+1}{s(s+1)}] =$$

$$\int_0^{+\infty} \frac{\sin t}{t} dt = \underline{\hspace{1cm}}$$

$$(9) \delta(t-a)*f(t) = \underline{\hspace{1cm}}$$

三、 计算下列函数的拉普拉斯变换.

(1)
$$f(t) = \begin{cases} 3, & 0 \le t < 0 \\ -1, & 2 \le t < 4 \end{cases}$$
 (2)
$$f(t) = \sin 2t - 3\cos 2t - 8e^{-2t} + 2$$
 0,
$$t > 4$$

(3)
$$f(t) = t \cos at$$
 (4) $\int_0^t \frac{e^t - \cos 2t}{t} dt$

四、 计算下列函数的拉普拉斯逆变换。

(1)
$$\frac{s+1}{s^2+4s+4}$$
 (2) $\frac{1}{s^3+3s^2+2s}$ (3) $\frac{s^2}{(s+2)^2+4}$ (4) $\frac{2s^2e^{-s}-(s+1)e^{-2s}}{s^3}$

五、计算下列积分。

(1)
$$\int_0^{+\infty} t^2 e^{-2t} \cos at dt$$
 (2) $\int_0^{+\infty} \frac{\sin^2 t}{t^2} dt$ (3) $\int_0^{+\infty} \sin(t-2)u(t-2)e^{-t} dt$

六、利用拉普拉斯变换求解下列微分方程或方程组。

1.
$$f'' - 5f' + 6f = 0$$
, $f(0) = 1$, $f'(0) = 2$

2.
$$f'' + 2f' + f = \sin t, t \ge 0, f(0) = 1, f'(0) = 0.$$

3.
$$ty'' + y' + 4ty = 0$$
, $y(0) = 3$, $y'(0) = 0$

4.
$$ty'' + (1 - n - t)y' + nty = t - 1 (n = 2, 3, \dots), y(0) = 0$$

5.
$$ty'' + 2(t-1)y' + (t-2)y = 0$$
, $y(0) = 0$

6.
$$\begin{cases} x'' - x - 2y' = e^t \\ x' - y'' - 2y = t^2 \end{cases}, \quad x(0) = -\frac{3}{2}, \ x'(0) = \frac{1}{2}, \ y(0) = 1, \ y'(0) = -\frac{1}{2} \end{cases}$$