Flows in Networks: Bipartite Matching

Daniel Kane

Department of Computer Science and Engineering University of California, San Diego

Advanced Algorithms and Complexity Data Structures and Algorithms

Learning Objectives

- Discuss some problems that can be solved with bipartite matching.
- Understand the correspondence between bipartite matching problems and flow problems.
- Understand obstacles to finding large matchings.

Matching

You are trying to coordinate housing in a college dormitory.

Matching

- Have *n* students and *m* rooms.
- Each student has a list of acceptable rooms.
- Want to place as many students as possible in an acceptable room.
- Cannot place more than one student in the same room.

Organizing Data

Bipartite Graph

Definition

A bipartite graph is a graph G whose vertex set is partitioned into two subsets, U and V, so that there all edges are between a vertex of U and a vertex of V.

Example

Matchings

Definition

Given a graph G, a matching on G is a collection of edges of G, no two of which share an endpoint.

Example

Bipartite Matching

Bipartite Matching

Input: Bipartite graph G.

Output: A matching on G consisting of as

many edges of possible (ideally

pairing up all the vertices).

Problem

What is the size of the largest matching?

Solution

Best is 3.

Applications

Bipartite matching has a number of applications.

Matchmaking

[Though if there are gay people, it becomes computationally much more complicated.]

Scheduling

Connection to Flows

- Need to connect nodes on left to nodes on right without putting too many connections through any given node.
- Have source connect to left nodes.
- Have right nodes connect to sink.

Start with bipartite graph.

Direct edges left to right.

Add source and sink.

Connect source/sink to vertices.

All capacities are 1.

Correspondence

To every matching

Correspondence

To every matching we have a flow

Formally

Lemma

Let G be a bipartite graph and G' the corresponding network. There is a 1-1 correspondence between matchings of G and integer-valued flows of G'.

Matching to Flow

- Run flow through each edge of the matching.
- Run flow from s to each utilized vertex of U.
- Run flow to t from each utilized vertex of V.

Flow to Matching

- Use middle edges with flow in them.
- Cannot have two with same vertex in U (not enough flow in).
- Cannot have two with same vertex in V (not enough flow out).

Algorithm

BipartiteMatching(G)

Construct corresponding network G' Compute Maxflow(G')
Find corresponding matching, M return M

Maxflow-Mincut

We can also apply the Maxflow-Mincut theorem to the corresponding flow. This will tell us something useful about when we can find large matchings.

Mincut

- Let $X = \mathcal{C} \cap U$, $Y = \mathcal{C} \cap V$.
- \blacksquare Elements of V connecting to X in Y.

Cut Size

Size = $|U\backslash X| + |Y|$.

Another Viewpoint

- All edges of G connect to either Y or $U \setminus X$.
- Can bound matching size by finding such a set of vertices.

Kőnig's Theorem

Theorem

For G a bipartite graph, if k is the size of the maximal matching, there is a set S of k vertices so all edges of G are adjacent to S.

Kőnig's Theorem

Theorem

For G a bipartite graph, if k is the size of the maximal matching, there is a set S of k vertices so all edges of G are adjacent to S.

Note that if you can find such an S, the maximal matching has size at most |S|.

Example

The Marriage Lemma

Theorem

Let G be a bipartite graph with n vertices on either side. Then there is a perfect pairing on G (a matching using all vertices) unless there is some set, S of m vertices of U, such that the total number vertices adjacent to a vertex in S is less than m.

Summary

- Solve maximum matching problems by reducing to flow problems.
- Maxflow-Mincut gives characterization of maximum matching.