

NASA TECHNICAL MEMORANDUM

NASA TM 78150

EFFECT OF SHELF AGING ON O-RING MATERIALS

By T. E. Wood and W. P. Stone
Materials and Processes Laboratory

REPORT NUMBER A
Approved for public release
Distribution Unlimited

January 1978

NASA

DEPARTMENT OF DEFENSE
PLASTICS TECHNICAL EVALUATION CENTER
ARRADCOM, DOVER, N. J. 07801

George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama

19960223 124

DTIC QUALITY INSPECTED

TESTED
3/23/

TECHNICAL REPORT STANDARD TITLE PAGE

1. REPORT NO. NASA TM 78150	2. GOVERNMENT ACCESSION NO.	3. RECIPIENT'S CATALOG NO.	
4. TITLE AND SUBTITLE Effect of Shelf Aging on O-Ring Materials		5. REPORT DATE January 1978	
7. AUTHOR(S) T. E. Wood and W. P. Stone		6. PERFORMING ORGANIZATION CODE	
9. PERFORMING ORGANIZATION NAME AND ADDRESS George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama 35812		8. PERFORMING ORGANIZATION REPORT #	
12. SPONSORING AGENCY NAME AND ADDRESS National Aeronautics and Space Administration Washington, D.C. 20546		10. WORK UNIT NO.	
		11. CONTRACT OR GRANT NO.	
		13. TYPE OF REPORT & PERIOD COVERED Technical Memorandum	
		14. SPONSORING AGENCY CODE	
15. SUPPLEMENTARY NOTES Prepared by Materials and Processes Laboratory, Science and Engineering			
16. ABSTRACT Commercial O-rings made from 13 different rubber compounds were tested for physical properties when they were received from the manufacturer and after 7 and 12 years of shelf aging. No gross changes were observed in tensile strength, elongation, or compression deflection characteristics.			
17. KEY WORDS Commercial O-rings Shelf aging Tensile change Hardness change Compression change	18. DISTRIBUTION STATEMENT Unclassified — Unlimited		
19. SECURITY CLASSIF. (of this report) Unclassified	20. SECURITY CLASSIF. (of this page) Unclassified	21. NO. OF PAGES 21	22. PRICE NTIS

LIST OF ILLUSTRATIONS

Figure	Title	Page
1.	Buna-N PS-1-30-5	4
2.	Buna-N N-304-7	5
3.	Buna-N 1011-10	6
4.	Buna-N 47-071	7
5.	Buna-N 109-7	8
6.	Butyl B-278-7	9
7.	Butyl B-318-7	10
8.	Neoprene C-147-7	11
9.	Silicone S-417-7	12
10.	Silicone S-451-7	13
11.	Viton 77-545	14
12.	Viton V-495-7	15
13.	Viton V-274-9	16

TECHNICAL MEMORANDUM 78150

EFFECT OF SHELF AGING ON O-RING MATERIALS

SUMMARY

The physical properties of 13 commercial O-ring compounds after 7 and 12 years of shelf aging were compared with the original properties. No gross property changes were detected. All O-rings tested are considered suitable for use after 12 years of shelf aging.

INTRODUCTION

The complexity, cost, and the possible disastrous consequence of the failure of any single component of a space vehicle have resulted in extreme reliability requirements for all components used in these vehicles. Because elastomeric materials are considered to be relatively perishable, much time and effort have been expended in developing specific, conclusive information on the effect of age on these materials. Described here are the results to date of one such effort.

EXPERIMENTAL

In 1962, 300 O-rings made from each of 13 different compounds in size 2-220 were purchased from Parker Seal Company for use in compatibility studies. All O-rings were individually packaged in sealed envelopes. All O-rings of a given compound were made from the same batch of mixed stock. All O-rings were cured in the fourth quarter of 1962. In the first quarter of 1963, 10 O-rings of each compound were randomly selected for test. The cross section of each O-ring was measured in 10 places around the circumference of the O-ring with the average of the 100 measurements made on O-rings from each compound being used as a standard dimension for all O-rings of that batch.

Tensile strength and elongation were measured on these O-rings for use as baseline data in future studies. The remaining O-rings were stored in their original packages in an internal store room. The temperature varied over the range of 15° to 32°C (60° to 90°F), depending upon the season.

In the third quarter of 1969 and 1974, 7 and 12 years after the original physical property measurements were made, 20 O-rings for each test period were randomly selected from each compound. Ten of these were used for tensile strength and elongation measurements. The remaining 10 were used for hardness and compression deflection measurements. These last two parameters were not measured in the original tests but were measured in 1969 and 1974. The tensile, elongation, and hardness data are shown in the Table. The compression deflection data are shown in Figures 1 through 13.

CONCLUSIONS

Based upon the results of this study and upon a visual examination of the O-rings tested, it is concluded that all the O-ring compounds tested are suitable for use after 12 years of shelf aging under the conditions described. Even though there are some changes in elongation with age, this property is of no real significance in O-rings, and applicable O-ring material specifications do not include elongation as a requirement. The differences in compression deflection characteristics are no greater than those normally found between different lots of O-rings made from the same compound.

TABLE. PHYSICAL PROPERTIES OF THIRTEEN O-RING COMPOUNDS

Compound Identity	Elastomer Type	Tensile Strength								Elongation				
		Shore A Hardness				1963 (kg/cm ²)				1969 (kg/cm ²)		Percent Change from 1963		
		Nominal	1969	1974	(psi)	1969	1974	(psi)	(kg/cm ²)	1969	1974	(%)	(%)	
PSI-30-5	NBR	70 ± 5	80	80	1505	1585	1653	106	112	+ 5.3	+ 9.8	216	193	
N304-7	NBR	70 ± 5	80	80	1648	1723	1772	116	121	+ 4.6	+ 7.5	178	168	
1011-10	NBR	60 ± 5	70	70	1487	1567	1631	105	110	+ 5.4	+ 8.8	351	289	
47-671	NBR	70 ± 5	75	75	1460	1442	1471	103	104	- 1.2	+ 0.75	271	248	
109-7	NBR	70 ± 5	75	75	2610	2796	2583	184	197	+ 7.1	- 0.84	323	317	
B278-7	IIR	70 ± 5	80	80	1397	1463	1492	93	103	+ 4.7	+ 6.8	198	189	
B318-7	IIR	70 ± 5	75	75	1503	1536	1601	106	108	+ 2.1	+ 6.5	247	234	
C147-7	CR	70 ± 5	70	70	2193	2183	2144	155	151	- 0.5	- 2.2	303	245	
S417-7	Si	70 ± 5	60	60	970	869	916	61	65	- 10.4	- 5.5	255	210	
S451-7	Si	70 ± 5	75	75	1152	1091	1032	81	77	- 5.3	- 8.6	85	71	
77-545	FPM	70 ± 5	75	75	1892	1694	1735	133	119	122	- 10.4	- 8.2	173	165
V495-7	FPM	70 ± 5	75	75	1858	1783	1910	133	126	- 5.6	+ 1.1	182	175	
V274-9	FPM	90 ± 5	90	85	1622	1680	1904	114	118	+ 3.5	+ 17.3	99	103	

Notes: NBR — Nitrile-Butadiene Rubber.

IIR — Isobutylene-Isoprene Rubber (Butyl)

CR — Chloroprene Rubber (Neoprene)

Si — Silicone Rubber

FPM — Fluorocarbon Rubber (Viton or Fluorel)

Figure 1. Buna-N PS-1-30-5.

Figure 2. Buna-N N-304-7.

Figure 3. Buna-N 1011-10.

Figure 4. Buna-N 47-071.

Figure 5. Buna-N 109-7.

Figure 6. Butyl B-278-7.

Figure 7. Butyl B-318-7.

Figure 8. Neoprene C-147-7.

Figure 9. Silicone S-417-7.

Figure 10. Silicone S-451-7.

Figure 11. Viton 77-545.

Figure 12. Viton V-495-7.

Figure 13. Viton V-274-9.

APPROVAL

EFFECT OF SHELF AGING ON O-RING MATERIALS

By T. E. Wood and W. P. Stone

The information in this report has been reviewed for security classification. Review of any information concerning Department of Defense or nuclear energy programs or activities has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified.

J. T. Schell
Chief, Polymers and Composites Branch

J. E. Curry
Chief, Non-Metallic Materials Division

R. J. Schwinghamer
Director
Materials and Processes Laboratory