Nome: Dhruv Babani (22110019-1)

Algoritmos e Estruturas de Dados I – T.10

Trabalho 1 – Análise de Algoritmos

Introdução

Neste trabalho, analisou-se o comportamento de crescimento de 5 algoritmos, a fim de definir, aproximadamente, o custo operacional de cada algoritmo e o tipo de função com a qual seu comportamento assemelha-se. Para adquirir os dados para a análise, executou-se os algoritmos em VSCode, com valor inicial igual a 0 e final igual a 100 com incremento de 5 unidades por repetição (exceção do Algoritmo 4,com apenas até o n = 55), e construiu-se suas respectivas tabelas e gráficos em Excel.

A análise dos algoritmos

☐ Algoritmo 1:

Após a execução do algoritmo e a construção da tabela com seus dados de execução, construiu-se o gráfico a seguir:

Mesmo com a formação de um gráfico , o que indica a possibilidade de o comportar-se como uma função cúbica, realizaram-se testes para definir seu tipo de função característica com maior precisão

Primeiramente, foi feita a transformação do eixo "f(n)" para a escala logarítmica, e então construiu--se o seguinte gráfico de eixos (n, log(f(n))) para determinar se o Algoritmo 1 comporta-se, ou não, como uma função exponencial $(a * b^n)$:

Como o gráfico formado não representa uma reta, confirmou-se que o Algoritmo 1 consome operações seguindo uma função polinomial. Então, foram escolhidos 2 valores obtidos com o algoritmo para calcular o valor do expoente "b" de sua função:

$$f_1(10) = 1369$$

$$f_1(100) = 6809401$$

Para o cálculo, foram usados os logaritmos dos valores de " f_I " e dos valores de "n" associados a eles, obteve-se:

$$B = \log 6809401 - \log 1369 / \log 100 - \log 10 = 3.69$$

Portanto, sugere-se que a função do Algoritmo 1 cresce como uma função polinomial do grau 3: $f_1(n) \approx 4$

Algoritmo 2:

Após a execução do algoritmo e a construção da tabela com seus dados de execução, construiu-se o gráfico a seguir:

Em razão do alto crescimento do gráfico e de sua representação em reta, realizou-se a análise de seus dados para determinar se o Algoritmo 2 comporta-se como uma função exponencial $(a * b^n)$. Então, converteu-se o eixo "f(n)" para a escala logarítmica e construiu-se o seguinte gráfico:

Como o gráfico formado representa uma reta, nota-se que o Algoritmo 2 consome operações seguindo uma função polinomial. Então, foram escolhidos 2 valores obtidos com o algoritmo para determinar o valor do expoente "b" de sua função:

$$f_2(10) = 9$$

$$f_2(100) = 99$$

Tomando logaritmos dos valores de " f_2 " e dos valores de "n" associados a eles, obteve-se:

$$B = \log 99 - \log 9/\log 100 - \log 10 = 1.04$$

Portanto, sugere-se que a função do Algoritmo 2 cresce como uma função polinomial do 1 grau: $f_2(n) \approx 1$

☐ Algoritmo 3:

Após a execução do algoritmo e a construção da tabela com seus dados de execução, construiu o gráfico a seguir:

Devido ao crescimento do gráfico ter representação em forma de curva, converteu-se seu eixo "f(n)" para a escala logarítmica para analisar se o Algoritmo 3 comporta-se como uma função exponencial ($a * b^n$). Então, e construiu-se o seguinte gráfico:

Como o gráfico formado representa uma reta, confirmou-se que o Algoritmo 3 consome operações seguindo uma função polinomial. Então, foram escolhidos 2 valores obtidos com o algoritmo para calcular o valor do expoente "b" de sua função:

$$f_3(10) = 191$$

$$f_3(100) = 15662$$

Para o cálculo, foram usados os logaritmos dos valores de " f_3 " e dos valores de "n" associados a eles, obtevese:

$$B = log 15662 - log 192 / log 100 - log 10 = 1.91$$

Portanto, sugere-se que a função do Algoritmo 3 cresce como uma função polinomial do 2º grau: $f_3(n) \approx 2$

☐ Algoritmo 4:

Após a execução do algoritmo e a construção da tabela com seus dados de execução, construiu o gráfico a seguir:

Em razão do altíssimo crescimento do gráfico e de sua representação em curva, realizou-se a análise de seus dados para determinar se o Algoritmo 4 comporta-se como uma função exponencial $(a * b^n)$. Então, converteu-se o eixo "f(n)" para a escala logarítmica e construiu-se o seguinte gráfico:

Como o gráfico formado representa uma reta, confirmou-se que o Algoritmo 4 consome operações seguindo uma função polinomial. Então, foram escolhidos 2 valores obtidos com o algoritmo para calcular o valor do expoente "b" de sua função:

$$f_4(10) = 57960$$

$$f_4(50) = 958180300$$

Para o cálculo, foram usados os logaritmos dos valores de " f_4 " e dos valores de "n" associados a eles, obtevese:

$$B = \log 958180300 - \log 57960 / \log 50 - \log 10 = 6.0350$$

Portanto, sugere-se que a função do Algoritmo 4 cresce como uma função polinomial do 6º grau: $f_4(n) \approx 6$

☐ Algoritmo 5:

Após a execução do algoritmo e a construção da tabela com seus dados de execução, construiu o gráfico a seguir:

n	f(n)	n	f(n)
0	0	65	4468657
5	187	70	6009456
10	2631	75	7918158
15	12963	80	10249100
20	40550	85	13060447
25	98527	90	16414031
30	203756	95	20375523
35	376878	100	25014250
40	642250		
45	1028017		
50	1566031		
55	2291943		
60	32545100		

Devido ao altíssimo crescimento do gráfico e de sua representação em forma de curva, converte-se eixo "f(n)" para a escala logarítmica para analisar se o Algoritmo 5 comporta-se como uma função exponencial ($a * b^n$). Então, e construiu-se o seguinte gráfico:

Como o gráfico formado representa uma reta, concluiu-se que o Algoritmo 5 consome operações seguindo uma função polinomial. Então, foram escolhidos 2 valores obtidos com o algoritmo para calcular o valor do expoente "b" de sua função:

$$f_5(10) = 2631$$

$$f_5(100) = 25014250$$

Para o cálculo, foram usados os logaritmos dos valores de " f_4 " e dos valores de "n" associados a eles, obtevese:

$$B = \log 25014250 - \log 2631/\log 100 - \log 10 = 3,97$$

Portanto, por aproximação, sugere-se que a função do Algoritmo 5 cresce como uma função polinomial do 2º grau:

$$f_5(n) \approx 4$$

Conclusão

Algoritmos podem demandar uma grande capacidade de processamento de um computador para executar tarefas, mesmo que seus valores de entrada não sejam tão altos, e seus requerimentos podem tornar-se maiores ou menores mesmo com pequenas mudanças no desenvolvimento do código do algoritmo. Assim, a análise de algoritmos e a busca por sua otimização mostram-se de grande importância na construção de um código com execução rápida e de menor custo.

Implementação

Algoritmo 1

Algoritmo 2

Algoritmo 3

```
public static int f3( int n ) {
int i, j, k, res = 0;
int cont_op = 0;
for(i = 1;i <= n*n; i+= 2){</li>
for(j= i/2;j <= 2*i; j+= i/2+1){</li>
for(k = j+1;k<= n+j;k += k/2+1){</li>
res = res + Math.abs(j-i);
cont_op++;
}
return cont_op;
```

Algoritmo 4

Algoritmo 5

```
public static int f5( int n ) {
int i, j, k, res = 0;
int cont_op = 0;
for(i = 1; i <= n*n; i += 1) {</li>
for(j = 1; j <= i; j += 2) {</li>
for(k = n+1; k <= 2*i; k += i*j) {</li>
res = res + k+1;
cont_op++;
}
return cont_op;
return cont_op;
```