ИНТЕРПОЛЯЦИОННЫЕ РАЦИОНАЛЬНЫЕ ТРИГОНОМЕТРИЧЕСКИЕ ПРОЦЕССЫ ЛАГРАНЖА И ЭРМИТА-ФЕЙЕРА

И. А. Козак

УО «Гродненский государственный университет имени Янки Купалы», факультет математики и информатики, специальность «Математика (научно-педагогическая деятельность)», кафедра фундаментальной и прикладной математики

Научный руководитель - Е. А. Ровба, доктор физико-математических наук, профессор, заведующий кафедрой фундаментальной и прикладной математики, Гродненский государственный университет имени Янки Купалы

Тригонометрическое интерполирование является хорошо разработанной областью полиномиальных приближений. В настоящей работе рассмотрены вопросы рационального тригонометрического интерполирования.

работы: построить и исследовать свойства интерполяционных рациональных Цель тригонометрических процессов Лагранжа и Эрмита-Фейера.

Во введении рассматриваются общие понятия и сведения, необходимые для исследований по данной теме.

В основной части рассмотрены интерполяционные рациональные тригонометрические процессы Лагранжа и Эрмита-Фейера, а также получены и доказаны свойства данных процессов.

В заключении излагаются краткие результаты данной работы.

Данный материал может быть использован в качестве дополнительного образовательного материала по дисциплинам фундаментальной и прикладной математики.

Ключевые слова: рациональная тригонометрическая дробь, интерполяционная функция, узлы интерполирования.

Введение. Пусть задано 2n+1 различных точек $\theta_0,\theta_1,\dots,\theta_{2n}$ ($0 \le Re\theta_k < 2\pi; k=0,1,\dots,2n$). Точки $\theta_0,\theta_1,\dots,\theta_{2n}$ будем называть узлами интерполирования. Полиномы вида $t_k(\theta) = A\sin\frac{\theta-\theta_0}{2}...\sin\frac{\theta-\theta_{k-1}}{2}\sin\frac{\theta-\theta_{k+1}}{2}...\sin\frac{\theta-\theta_{2n}}{2},$ где A — некоторая постоянная, называются фундаментальными полиномами тригонометрического

интерполирования. Полином вида

$$g_n(\theta) = \sum_{k=0}^{2n} y_k t_k(\theta)$$

называется формулой Лагранжа тригонометрического интерполирования. Тригонометрический полином принимает в узлах интерполирования заданные значения y_0, y_1, \dots, y_{2n} :

$$g_n(\theta_i) = y_i, i = 0, 1, ..., 2n.$$

При этом данное условие определяет тригонометрический полином порядка не выше n единственным образом [1,с.18,124].

Основная часть.

1. ТРИГОНОМЕТРИЧЕСКИЕ ИНТЕРПОЛЯЦИОННЫЕ РАЦИОНАЛЬНЫЕ ПРОЦЕССЫ ЛАГРАНЖА Пусть заданы произвольные числа $\alpha_1, \alpha_2, \dots$, $\alpha_n \in \mathbb{C}, |\alpha_k| < 1, k = 1, 2, \dots$, n. Рассмотрим функцию $S_n(x) = \sin \int_0^x \lambda_n(u) du$, (1.1)

$$S_n(x) = \sin \int_0^x \lambda_n(u) du, \tag{1.1}$$

где

$$\lambda_n(u) = \frac{1}{2} + \sum_{k=1}^n \frac{1 - |\alpha_k|^2}{1 - 2|\alpha_k|\cos(u - \theta_k) + |\alpha_k|^2},$$

$$\theta_k = \arg \alpha_{k}, k = 1, 2, \dots, n.$$
(1.2)

$$\theta_k = arg\alpha_k, k = 1, 2, \dots, n.$$
 Лемма 1.1. Функция $S_n(x)$ является рациональной тригонометрической дробью вида
$$G_n(x) = \frac{q_{n+\frac{1}{2}}(x)}{\prod_{k=1}^n (1-2|\alpha_k|\cos(x-\theta_k)+|\alpha_k|^2)},$$

где $q_{n+\frac{1}{2}}(x)$ — некоторый тригонометрический полином полуцелого порядка $n+\frac{1}{2}[1,c.18]$.

 $\stackrel{\scriptscriptstyle 2}{\mathcal{L}}\!_{\scriptscriptstyle O}$ казательство. Применим к функции $S_n(x)$ некоторые алгебраические и тригонометрические преобразования

$$S_{n}(x) = \sin \int_{0}^{x} \left(\frac{1}{2} + \sum_{k=1}^{n} \frac{1 - |\alpha_{k}|^{2}}{1 - 2|\alpha_{k}|\cos(u - \theta_{k}) + |\alpha_{k}|^{2}} \right) du =$$

$$= \sin \left(\int_{0}^{x} \frac{1}{2} du + \int_{0}^{x} \sum_{k=1}^{n} \frac{1 - |\alpha_{k}|^{2}}{1 - 2|\alpha_{k}|\cos(u - \theta_{k}) + |\alpha_{k}|^{2}} du \right) =$$

$$= \sin \frac{x}{2} \cdot \cos \int_{0}^{x} \sum_{k=1}^{n} \frac{1 - |\alpha_{k}|^{2}}{1 - 2|\alpha_{k}|\cos(u - \theta_{k}) + |\alpha_{k}|^{2}} du + \cos \frac{x}{2} \cdot \sin \int_{0}^{x} \sum_{k=1}^{n} \frac{1 - |\alpha_{k}|^{2}}{1 - 2|\alpha_{k}|\cos(u - \theta_{k}) + |\alpha_{k}|^{2}} du.$$

Воспользуемся формулами Эйлера для функций
$$\sin x$$
 и $\cos x$:
$$\sin x = \frac{e^{ix} - e^{-ix}}{2i}, \cos x = \frac{e^{ix} + e^{-ix}}{2}$$

Будем иметь:

$$S_{n}(x) = \sin\frac{x}{2} \cdot \cos\int_{0}^{x} \sum_{k=1}^{n} \frac{1 - |\alpha_{k}|^{2}}{1 - 2|\alpha_{k}|\cos(u - \theta_{k}) + |\alpha_{k}|^{2}} du +$$

$$+ \cos\frac{x}{2} \cdot \sin\int_{0}^{x} \sum_{k=1}^{n} \frac{1 - |\alpha_{k}|^{2}}{1 - 2|\alpha_{k}|\cos(u - \theta_{k}) + |\alpha_{k}|^{2}} du =$$

$$= \sin\frac{x}{2} \cdot \frac{e^{i\int_{0}^{x} \sum_{k=1}^{n} \frac{1 - |\alpha_{k}|^{2}}{1 - 2|\alpha_{k}|\cos(u - \theta_{k}) + |\alpha_{k}|^{2}} du} + e^{-i\int_{0}^{x} \sum_{k=1}^{n} \frac{1 - |\alpha_{k}|^{2}}{1 - 2|\alpha_{k}|\cos(u - \theta_{k}) + |\alpha_{k}|^{2}} du} +$$

$$+ \cos\frac{x}{2} \cdot \frac{e^{i\int_{0}^{x} \sum_{k=1}^{n} \frac{1 - |\alpha_{k}|^{2}}{1 - 2|\alpha_{k}|\cos(u - \theta_{k}) + |\alpha_{k}|^{2}} du} - e^{-i\int_{0}^{x} \sum_{k=1}^{n} \frac{1 - |\alpha_{k}|^{2}}{1 - 2|\alpha_{k}|\cos(u - \theta_{k}) + |\alpha_{k}|^{2}} du} -$$

$$+ \cos\frac{x}{2} \cdot \frac{e^{i\int_{0}^{x} \sum_{k=1}^{n} \frac{1 - |\alpha_{k}|^{2}}{1 - 2|\alpha_{k}|\cos(u - \theta_{k}) + |\alpha_{k}|^{2}} du} - e^{-i\int_{0}^{x} \sum_{k=1}^{n} \frac{1 - |\alpha_{k}|^{2}}{1 - 2|\alpha_{k}|\cos(u - \theta_{k}) + |\alpha_{k}|^{2}} du} - e^{-i\int_{0}^{x} \sum_{k=1}^{n} \frac{1 - |\alpha_{k}|^{2}}{1 - 2|\alpha_{k}|\cos(u - \theta_{k}) + |\alpha_{k}|^{2}} du} - e^{-i\int_{0}^{x} \sum_{k=1}^{n} \frac{1 - |\alpha_{k}|^{2}}{1 - 2|\alpha_{k}|\cos(u - \theta_{k}) + |\alpha_{k}|^{2}} du} - e^{-i\int_{0}^{x} \sum_{k=1}^{n} \frac{1 - |\alpha_{k}|^{2}}{1 - 2|\alpha_{k}|\cos(u - \theta_{k}) + |\alpha_{k}|^{2}} du} - e^{-i\int_{0}^{x} \sum_{k=1}^{n} \frac{1 - |\alpha_{k}|^{2}}{1 - 2|\alpha_{k}|\cos(u - \theta_{k}) + |\alpha_{k}|^{2}} du} - e^{-i\int_{0}^{x} \sum_{k=1}^{n} \frac{1 - |\alpha_{k}|^{2}}{1 - 2|\alpha_{k}|\cos(u - \theta_{k}) + |\alpha_{k}|^{2}} du} - e^{-i\int_{0}^{x} \sum_{k=1}^{n} \frac{1 - |\alpha_{k}|^{2}}{1 - 2|\alpha_{k}|\cos(u - \theta_{k}) + |\alpha_{k}|^{2}} du} - e^{-i\int_{0}^{x} \sum_{k=1}^{n} \frac{1 - |\alpha_{k}|^{2}}{1 - 2|\alpha_{k}|\cos(u - \theta_{k}) + |\alpha_{k}|^{2}} du} - e^{-i\int_{0}^{x} \sum_{k=1}^{n} \frac{1 - |\alpha_{k}|^{2}}{1 - 2|\alpha_{k}|\cos(u - \theta_{k}) + |\alpha_{k}|^{2}} du} - e^{-i\int_{0}^{x} \sum_{k=1}^{n} \frac{1 - |\alpha_{k}|^{2}}{1 - 2|\alpha_{k}|\cos(u - \theta_{k}) + |\alpha_{k}|^{2}} du} - e^{-i\int_{0}^{x} \sum_{k=1}^{n} \frac{1 - |\alpha_{k}|^{2}}{1 - 2|\alpha_{k}|\cos(u - \theta_{k}) + |\alpha_{k}|^{2}} du} - e^{-i\int_{0}^{x} \sum_{k=1}^{n} \frac{1 - |\alpha_{k}|^{2}}{1 - 2|\alpha_{k}|\cos(u - \theta_{k}) + |\alpha_{k}|^{2}} du} - e^{-i\int_{0}^{x} \sum_{k=1}^{n} \frac{1 - |\alpha_{k}|^{2}}{1 - 2|\alpha_{k}|\cos(u - \theta_{k}) + |\alpha_{k}|^{2}} du} - e^{-i\int_{0}^{x} \sum_{k=1}^{n} \frac{1 - |\alpha_{k}|^{2}}{1 - 2|\alpha_{k}|\cos(u - \theta_{k}) + |\alpha_{k}|^{2}} du} - e^{-i\int_{0}^{x} \sum_{k=1}^{n} \frac{1 -$$

Введем следующие обозначения

$$u_n(x) = e^{i\int_0^x \sum_{k=1}^n \frac{1 - |\alpha_k|^2}{1 - 2|\alpha_k|\cos(u - \theta_k) + |\alpha_k|^2} du},$$

$$u_n^{-1}(x) = e^{-i\int_0^x \sum_{k=1}^n \frac{1 - |\alpha_k|^2}{1 - 2|\alpha_k|\cos(u - \theta_k) + |\alpha_k|^2} du}.$$

Тогда $S_n(x)$ будет представимо в виде

$$S_n(x) = \sin\frac{x}{2} \cdot \frac{u_n(x) + u_n^{-1}(x)}{2} + \cos\frac{x}{2} \cdot \frac{u_n(x) - u_n^{-1}(x)}{2i}.$$

Домножим и разделим второе слагаемое на i, тогда функция $S_n(x)$ будет иметь вид

$$\begin{split} S_n(x) &= \sin\frac{x}{2} \cdot \frac{u_n(x) + u_n^{-1}(x)}{2} + i\cos\frac{x}{2} \cdot \frac{u_n(x) - u_n^{-1}(x)}{2} = \\ &= \frac{1}{2} \left(\sin\frac{x}{2} - i \cdot \cos\frac{x}{2} \right) \cdot u_n(x) + \frac{1}{2} \left(\sin\frac{x}{2} + i \cdot \cos\frac{x}{2} \right) \cdot u_n^{-1}(x). \end{split}$$

$$u_n(x) = e^{i\int_0^x \sum_{k=1}^n \frac{1-|\alpha_k|^2}{1-2|\alpha_k|\cos(u-\theta_k)+|\alpha_k|^2}du} = = \prod_{k=1}^n \frac{e^{i\cdot 0}-\alpha_k}{1-\overline{\alpha_k}e^{i\cdot 0}} \cdot \frac{1-\overline{\alpha_k}e^{ix}}{e^{ix}-\alpha_k} = \prod_{k=1}^n \frac{1-\alpha_k}{1-\overline{\alpha_k}} \cdot \frac{1-\overline{\alpha_k}e^{ix}}{e^{ix}-\alpha_k};$$

Тогда получим следующее выражение:

$$\begin{split} S_n(x) &= \frac{1}{2} \left(\sin \frac{x}{2} - i \cos \frac{x}{2} \right) \prod_{k=1}^n \frac{1 - \alpha_k}{1 - \overline{\alpha_k}} \cdot \frac{1 - \overline{\alpha_k} e^{ix}}{e^{ix} - \alpha_k} + \\ &\quad + \frac{1}{2} \left(\sin \frac{x}{2} + i \cos \frac{x}{2} \right) \prod_{k=1}^n \frac{1 - \overline{\alpha_k}}{1 - \alpha_k} \cdot \frac{e^{ix} - \alpha_k}{1 - \overline{\alpha_k} e^{ix}} = \\ &= \frac{1}{2} \cdot \frac{\left(\sin \frac{x}{2} - i \cos \frac{x}{2} \right) \prod_{k=1}^n (1 - \alpha_k)^2 (1 - \overline{\alpha_k} e^{ix})^2}{\prod_{k=1}^n (1 - \overline{\alpha_k}) (1 - \overline{\alpha_k}) (1 - \overline{\alpha_k} e^{ix})} + \end{split}$$

$$+\frac{1}{2} \cdot \frac{\left(\sin\frac{x}{2} + i\cos\frac{x}{2}\right) \prod_{k=1}^{n} (1 - \overline{\alpha_k})^2 (e^{ix} - \alpha_k)^2}{\prod_{k=1}^{n} (1 - \overline{\alpha_k})(1 - \alpha_k)(e^{ix} - \alpha_k)(1 - \overline{\alpha_k}e^{ix})}$$

 $+\frac{1}{2} \cdot \frac{\left(\sin\frac{x}{2} + i\cos\frac{x}{2}\right) \prod_{k=1}^{n} (1 - \overline{\alpha_k})^2 (e^{ix} - \alpha_k)^2}{\prod_{k=1}^{n} (1 - \overline{\alpha_k})(1 - \alpha_k)(e^{ix} - \alpha_k) \left(1 - \overline{\alpha_k}e^{ix}\right)}.$ В правой части полученного выше равенства представим выражение $(1 - \overline{\alpha_k}e^{ix})^2$ в виде произведения и вынесем множитель e^{ix} за скобки одного из множителей:

$$\begin{split} S_n(x) &= \frac{1}{2} \cdot \frac{\left(\sin\frac{x}{2} - i\cos\frac{x}{2}\right) \prod_{k=1}^n (1 - \alpha_k)^2 \left(1 - \overline{\alpha_k} e^{ix}\right) (e^{-ix} - \overline{\alpha_k}) e^{ix}}{\prod_{k=1}^n (1 - |\alpha_k|^2) (e^{-ix} - \overline{\alpha_k}) \left(e^{ix} - \alpha_k\right) e^{ix}} + \\ &+ \frac{1}{2} \cdot \frac{\left(\sin\frac{x}{2} + i\cos\frac{x}{2}\right) \prod_{k=1}^n (1 - \overline{\alpha_k})^2 \left(1 - \alpha_k e^{-ix}\right) (e^{ix} - \alpha_k) e^{ix}}{\prod_{k=1}^n (1 - |\alpha_k|^2) (e^{-ix} - \overline{\alpha_k}) \left(e^{ix} - \alpha_k\right) e^{ix}} = \\ &= \frac{1}{2} \cdot \frac{\left(\sin\frac{x}{2} - i\cos\frac{x}{2}\right) \prod_{k=1}^n (1 - \alpha_k)^2 \left(1 - \overline{\alpha_k} e^{ix}\right) (e^{-ix} - \overline{\alpha_k})}{\prod_{k=1}^n (1 - |\alpha_k|^2) (e^{-ix} - \overline{\alpha_k}) \left(e^{ix} - \alpha_k\right)} + \\ &+ \frac{1}{2} \cdot \frac{\left(\sin\frac{x}{2} + i\cos\frac{x}{2}\right) \prod_{k=1}^n (1 - \overline{\alpha_k})^2 \left(1 - \alpha_k e^{-ix}\right) (e^{ix} - \alpha_k)}{\prod_{k=1}^n (1 - |\alpha_k|^2) (e^{-ix} - \overline{\alpha_k}) \left(e^{ix} - \alpha_k\right)}. \end{split}$$

Раскроем скобки и получим:

$$\begin{split} S_n(x) &= \frac{\left(\sin\frac{x}{2} - i\cos\frac{x}{2}\right)\prod_{k=1}^n(1-\alpha_k)^2\left(e^{-ix} - \overline{\alpha_k} - \overline{\alpha_k} - \overline{\alpha_k}^2 e^{ix}\right)}{2\prod_{k=1}^n(1-|\alpha_k|^2)(1-\alpha_k e^{-ix} - \overline{\alpha_k} e^{ix} - \overline{\alpha_k} \cdot \alpha_k)} + \\ &+ \frac{\left(\sin\frac{x}{2} + i\cos\frac{x}{2}\right)\prod_{k=1}^n(1-\overline{\alpha_k})^2\left(e^{ix} - \alpha_k - \alpha_k - \alpha_k^2 e^{-ix}\right)}{2\prod_{k=1}^n(1-|\alpha_k|^2)(1-\alpha_k e^{-ix} - \overline{\alpha_k} e^{ix} - \overline{\alpha_k} \cdot \alpha_k)}. \end{split}$$

Обозначим

$$t_n(x) = \frac{1}{2} \prod_{k=1}^n \frac{(1 - \alpha_k)^2}{(1 - |\alpha_k|^2)} (e^{ix} - 2\alpha_k - {\alpha_k}^2 e^{-ix}),$$

$$\overline{t_n(x)} = \frac{1}{2} \prod_{k=1}^n \frac{(1 - \alpha_k)^2}{(1 - |\alpha_k|^2)} (e^{-ix} - 2\overline{\alpha_k} - \overline{\alpha_k}^2 e^{ix}),$$

где $t_n(x)$, $\overline{t_n(x)}$ – некоторые тригонометрические полиномы порядка не выше n. Тогда функция $S_n(x)$ примет

$$S_n(x) = \frac{\left(\sin\frac{x}{2} - i\cos\frac{x}{2}\right)\overline{t_n(x)} + \left(\sin\frac{x}{2} + i\cos\frac{x}{2}\right)t_n(x)}{w_n(x)},$$
 где $w_n(x) = \prod_{k=1}^n (1 - 2|\alpha_k|\cos(x - \theta_k) + |\alpha_k|^2).$ (1.3)

Представим полиномы $t_n(x)$, $\overline{t_n(x)}$ в виде:

$$t_n(x) = p_n^{(1)}(x) + iq_n^{(1)}(x),$$

$$\overline{t_n(x)} = p_n^{(1)}(x) - iq_n^{(1)}(x),$$

так как $t_n(x)$, $\overline{t_n(x)}$ - комплексно-сопряженные. Здесь под $p_n^{(1)}(x)$ и $q_n^{(1)}(x)$ будем понимать некоторые действительные тригонометрические полиномы порядка не выше n. Тогда (1.3) перепишем в виде:

$$\begin{split} S_n(x) &= \frac{\left(\sin\frac{x}{2} - i\cos\frac{x}{2}\right)\overline{t_n(x)} + \left(\sin\frac{x}{2} + i\cos\frac{x}{2}\right)t_n(x)}{w_n(x)} = \\ &= \frac{\left(\sin\frac{x}{2} - i\cos\frac{x}{2}\right)\left(p_n^{(1)}(x) - iq_n^{(1)}(x)\right)}{w_n(x)} + \\ &+ \frac{\left(\sin\frac{x}{2} + i\cos\frac{x}{2}\right)\left(p_n^{(1)}(x) + iq_n^{(1)}(x)\right)}{w_n(x)}. \end{split}$$

Раскроем скобки и приведем подобные слагаемые:

$$\begin{split} S_n(x) &= \frac{p_n^{(1)}(x) \sin\frac{x}{2} - i \, p_n^{(1)}(x) \cos\frac{x}{2} - i q_n^{(1)}(x) \sin\frac{x}{2} - q_n^{(1)}(x) \cos\frac{x}{2}}{w_n(x)} + \\ &+ \frac{p_n^{(1)}(x) \sin\frac{x}{2} + i \, p_n^{(1)}(x) \cos\frac{x}{2} + i \, q_n^{(1)}(x) \sin\frac{x}{2} - q_n^{(1)}(x) \cos\frac{x}{2}}{w_n(x)} = \\ &= \frac{2 \left(p_n^{(1)}(x) \sin\frac{x}{2} - q_n^{(1)}(x) \cos\frac{x}{2} \right)}{w_n(x)}. \end{split}$$

Таким образом, функция $S_n(x)$ является рациональной тригонометрической дробью полуцелого порядка $n + \frac{1}{2}[1]$.

Лемма 1.1 доказана.

Лемма 1.2. Функция $S_n(x)$ имеет 2n+1 различный нуль x_0, x_1, x_2, \dots , x_{2n} на полуинтервале $[0, 2\pi)$. Доказательство. Для нахождения нулей тригонометрической функции $S_n(x) = \sin \int_0^x \lambda_n(u) du$ введем обозначение

$$\varphi_n(x) = \int_0^x \lambda_n(u) du.$$

Легко найти, что

$$\varphi'_n(x) = \lambda_n(x) > 0, x \in [0, 2\pi).$$

Значит, функция $\varphi(x)$ возрастает на промежутке $[0,2\pi]$, так как ее производная положительна. Тогда найдем значения функции $\varphi(x)$, которые она принимает на границах отрезка $[0,2\pi]$.

$$\varphi_{n}(0) = 0,$$

$$\varphi_{n}(2\pi) = \int_{0}^{2\pi} \left(\frac{1}{2} + \sum_{k=1}^{n} \frac{1 - |\alpha_{k}|^{2}}{1 - 2|\alpha_{k}|\cos(u - \theta_{k}) + |\alpha_{k}|^{2}}\right) du = \frac{1}{2} \cdot 2\pi + \sum_{k=1}^{n} \int_{0}^{\pi} \frac{1 - |\alpha_{k}|^{2}}{1 - 2|\alpha_{k}|\cos(u - \theta_{k}) + |\alpha_{k}|^{2}} du = \pi + \sum_{k=1}^{n} (1 - |\alpha_{k}|^{2}) \int_{0}^{2\pi} \frac{du}{1 - 2|\alpha_{k}|\cos(u - \theta_{k}) + |\alpha_{k}|^{2}}.$$

$$(1.4)$$

Вычислим значение интеграла. Для этого выполним соответствующую замену $u-\theta_k=v$, du=dv. $\int\limits_{-\theta_k}^{\pi=1} \frac{dv}{1-2|\alpha_k|\cos v+|\alpha_k|^2}.$

$$\int_{-\theta_k}^{2\pi-\theta_k} \frac{dv}{1-2|\alpha_k|\cos v + |\alpha_k|^2}$$

Так как подынтегральное выражение является 2π -периодической функцией, то значение интеграла на сдвинутом отрезке длины 2π равны. Тогда последний интеграл перепишем в виде

$$\int_{0}^{2\pi} \frac{dv}{1 - 2|\alpha_k|\cos v + |\alpha_k|^2}.$$

Вычислим этот интеграл с помощью теории вычетов. Для этого выполним замену:

$$\cos v = \frac{e^{iv} + e^{-iv}}{2} = \frac{1}{2} \left(z + \frac{1}{z} \right),$$
$$dv = \frac{dz}{iz}.$$

Получим

$$\int_{0}^{2\pi} \frac{dv}{1 - 2|\alpha_{k}|\cos v + |\alpha_{k}|^{2}} = \int_{|z| = 1} \frac{dz}{iz\left(1 - 2 \cdot |\alpha_{k}| \cdot \frac{1}{2}\left(z + \frac{1}{z}\right) + |\alpha_{k}|^{2}\right)} =$$

$$= \frac{1}{i} \int_{|z| = 1} \frac{dz}{z - |\alpha_{k}|z^{2} - |\alpha_{k}| + |\alpha_{k}|^{2}z} = \frac{1}{i} \int_{|z| = 1} \frac{dz}{-|\alpha_{k}|z^{2} + (1 + |\alpha_{k}|^{2})z - |\alpha_{k}|}.$$

$$\begin{aligned} -|\alpha_k|z^2 + (1+|\alpha_k|^2)z - |\alpha_k| &= 0, \\ D &= (1+|\alpha_k|^2)^2 - 4|\alpha_k|^2 &= 1+2|\alpha_k|^2 + |\alpha_k|^4 - 4|\alpha_k|^2 = 0 \end{aligned}$$

$$z_{1} = \frac{-(1 + |\alpha_{k}|^{2} + + |\alpha_{k}|^{4} = (1 - |\alpha_{k}|^{2})^{2} > 0,}{-(1 + |\alpha_{k}|^{2}) + (1 - |\alpha_{k}|^{2})} = \frac{-2|\alpha_{k}|^{2}}{-2|\alpha_{k}|} = |\alpha_{k}|,$$

$$z_{2} = \frac{-(1 + |\alpha_{k}|^{2}) - (1 - |\alpha_{k}|^{2})}{-2|\alpha_{k}|} = \frac{-2}{-2|\alpha_{k}|} = \frac{1}{|\alpha_{k}|}.$$

Нули многочлена являются полюсами 1-ого порядка, при этом, полюс z_1 принадлежит единичной окружности, z_2 – не принадлежит. Значит, значение интеграла будет равно вычету подынтегрального выражения в точке z_1 . Тогда решим данный интеграл с помощью вычетов:

$$\frac{1}{i}\int\limits_{|z|<1}\frac{dz}{-|\alpha_k|z^2+(1+|\alpha_k|^2)z-|\alpha_k|}=$$

$$=\frac{1}{i}\sup\limits_{z\to z_1}\frac{1}{-|\alpha_k|z^2+(1+|\alpha_k|^2)z-|\alpha_k|}\cdot 2\pi i=$$

$$=\frac{1}{i}\sup\limits_{z\to z_1}\frac{1}{-|\alpha_k|(z-|\alpha_k|)\left(z-\frac{1}{|\alpha_k|}\right)}\cdot 2\pi i=$$

$$=\frac{1}{i}\lim\limits_{z\to z_1}\frac{(z-|\alpha_k|)}{-|\alpha_k|(z-|\alpha_k|)\left(z-\frac{1}{|\alpha_k|}\right)}\cdot 2\pi i=$$

$$=\frac{1}{i}\lim\limits_{z\to z_1}\frac{1}{-|\alpha_k|\left(z-\frac{1}{|\alpha_k|}\right)}\cdot 2\pi i=\frac{1}{i}\cdot \frac{1}{-|\alpha_k|\left(|\alpha_k|-\frac{1}{|\alpha_k|}\right)}\cdot 2\pi i=$$

$$=\frac{1}{i}\lim\limits_{z\to z_1}\frac{1}{-|\alpha_k|\left(z-\frac{1}{|\alpha_k|}\right)}\cdot 2\pi i=\frac{1}{i}\cdot \frac{1}{-|\alpha_k|\left(|\alpha_k|-\frac{1}{|\alpha_k|}\right)}\cdot 2\pi i=$$

$$==\frac{1}{i}\cdot \frac{1}{1-|\alpha_k|^2}\cdot 2\pi i=\frac{2\pi}{1-|\alpha_k|^2}.$$
Искомый интеграл равен $\frac{2\pi}{1-|\alpha_k|^2}$.

$$\varphi_n(2\pi) = \pi + \sum_{k=1}^n (1 - |\alpha_k|^2) \cdot \frac{2\pi}{(1 - |\alpha_k|^2)} = \pi + 2\pi n = (2n + 1)\pi.$$

По теореме Больца-Вейерштрасса о промежуточных значениях непрерывной функции каждое из

$$\varphi_n(x) = \pi k, k = 0, 1, ..., 2n$$

$$\varphi_n(x) = \pi k, k = 0,1,...,2n$$
 будет иметь единственное решение $x = x_k$ на $[0,2\pi)$, то есть $sin\varphi_n(x_k) = 0, k = 0,1,...,2n,$ $0 = x_0 < x_1 < x_2 < \cdots < x_{2n} < 2\pi.$

Что и требовалось доказать. І

Теорема 1.1. Интерполяционная рациональная функция $r_n(x)$ с узлами x_0, x_1, x_2, \dots , x_{2n} может быть представлена в виде

$$L_n(x) = \sum_{k=0}^{2n} y_k t_k(x),$$
(1.5)

где

$$t_k(x) = \frac{S_n(x)}{2\sin\frac{x - x_k}{2}S'_n(x_k)}, k = 0, 1, 2, \dots, 2n,$$
(1.6)

 $y_0,...,y_{2n} \in \mathbb{R}$.

Причем она является тригонометрической рациональной функцией порядка не выше n следующего

$$L_n(x) = \frac{q_n(x)}{w_n(x)},\tag{1.7}$$

где $q_n(x)$ – некоторый тригонометрический полином порядка не выше n, $w_n(x) = \prod_{k=1}^n (1-x)^k$ $-2|\alpha_k|\cos(x-\theta_k)+|\alpha_k|^2$.

Доказательство. 1. Покажем, что $L_n(x)=y_n, k=\overline{0,2n}$, то есть, что $t_k(x_m)=\begin{cases} 0, m\neq k; \\ 1, m=k, m, k=0,1,...,2n. \end{cases}$

Пусть $m \neq k$. Тогда получим

$$t_k(x_m) = \frac{S_n(x_k)}{2\sin\frac{x_m - x_k}{2}S'_n(x_k)} = 0,$$

так как
$$x_0, x_1, x_2, \dots, x_{2n}$$
 — нули функции $S_n(x)$. Пусть теперь $m=k$. Тогда перейдем к пределу при $x\to x_k$.
$$t_k(x_k)=\lim_{x\to x_k}t_k(x)=\lim_{x\to x_k}\frac{S_n(x)}{2\sin\frac{x_m-x_k}{2}S_n'(x_k)}=$$

$$=\frac{1}{2\cdot S_n'(x_k)}\lim_{x\to x_k}\frac{S_n(x)}{\sin\frac{x-x_k}{2}}.$$
 Пои знаком пределя есть неопределенность выза $\frac{s_n(x)}{s_n(x)}$.

Под знаком предела есть неопределенность вида $\frac{0}{n}$. Воспользуемся правилом Лопиталя:

$$t_{k}(x_{k}) = \frac{1}{2 \cdot S'_{n}(x_{k})} \lim_{x \to x_{k}} \frac{S_{n}(x)}{\sin \frac{x - x_{k}}{2}} = \frac{1}{2 \cdot S'_{n}(x_{k})} \lim_{x \to x_{k}} \frac{S'_{n}(x)}{\frac{1}{2} \cos \frac{x - x_{k}}{2}} = \frac{1}{2 \cdot S'_{n}(x_{k})} \cdot \frac{2 \cdot S'_{n}(x_{k})}{\cos \frac{x_{k} - x_{k}}{2}} = 1.$$

2. Покажем, что $r_n(x)$ является тригонометрической рациональной функцией порядка не выше n вида (1.7).

Заметим, что в соответствии с леммой 1.1

$$S_n(x) = \frac{q_{n+\frac{1}{2}}(x)}{w_n(x)},$$

где $q_{n+\frac{1}{2}}(x)$ — некоторый тригонометрический полином порядка $n+\frac{1}{2}$, причем

$$q_{n+\frac{1}{2}}(x) = A \prod_{m=0}^{2n} \sin \frac{x - x_m}{2},$$
(1.8)

где A — некоторая константа [1, c.18].

Тогда получим

$$L_n(x) = \sum_{k=0}^{2n} y_n t_k(x) = \sum_{k=0}^{2n} y_n \frac{S_n(x)}{2 \sin \frac{x - x_k}{2} S'_n(x_k)} = \sum_{k=0}^{2n} y_n \frac{q_{n+\frac{1}{2}}(x)}{2 \sin \frac{x - x_k}{2} S'_n(x_k) w_n(x)}.$$

Воспользуемся представлением (1.8) и по

$$\frac{q_{n+\frac{1}{2}}(x)}{\sin\frac{x-x_k}{2}} = A \prod_{m=0}^{2n} \sin\frac{x-x_m}{2},$$

причем произведение справа является тригонометрическим полиномом порядка п. Следовательно,

$$L_n(x) = \sum_{k=0}^{2n} C \frac{q_n(x)}{w_n(x)},$$

где $C = \frac{Ay_n}{2S_n'(x_k)}$, $q_n(x)$ — некоторый тригонометрический полином порядка не выше n и является тригонометрической рациональной функцией указанного вида.

Лемма 1.2 доказана.

Лемма 1.3. Интерполяционная рациональная тригонометрическая функция $L_n(x)$ (1.6) является точной для функции f(x) = 1, а также для всякой тригонометрической рациональной функции вида:

$$f(x) = \frac{q_n(x)}{w_n(x)},$$
 где $q_n(x)$ — некоторый тригонометрический полином порядка не выше n . (1.9)

Доказательство.

1. Покажем, что интерполяционная рациональная тригонометрическая функция $L_n(x)$ (1.5) является точной для функции f(x) = 1, то есть, что она удовлетворяет условию

$$L_n(x,f) = L_n(x,1) = 1.$$

Пусть f(x) = 1. Тогда

$$L_n(x,f) = L_n(x,1) = \sum_{k=0}^{2n} y_k t_k(x) = \sum_{k=0}^{2n} t_k(x),$$
(1.10)

где $t_k(x) = \frac{q_n^{(1)}(x)}{w_n(x)}$, $q_n^{(1)}(x)$ — произвольный тригонометрический полином порядка не выше n.

Поэтому (2.1.10) примет вид:

$$L_n(x,1) = \sum_{k=0}^{2n} t_k(x) = \sum_{k=0}^{2n} \frac{q_n^{(1)}(x)}{w_n(x)} = \frac{q_n^{(2)}(x)}{w_n(x)},$$
(1.11)

где $q_n^{(2)}(x)$ — некоторый тригонометрический полином порядка не выше n. Исходя из теоремы 1.1 будем

$$L_n(x_k, 1) = \frac{q_n^{(2)}(x_k)}{w_n(x_k)} = 1, k = 0, 1, ..., 2n.$$

Следовательно, тригонометрический полином порядка не выше $n \ q_n^{(2)}(x) - w_n(x)$ имеет 2n+1 различный нуль. В соответствии с теоремой о нуляхтригонометрических полиномов он может иметь не более 2n нулей. Таким образом, $q_n^{(2)}(x) \equiv w_n(x)$ и $L_n(x,1) \equiv 1$.

2. Второе утверждение леммы доказывается аналогично.

2. ТРИГОНОМЕТРИЧЕСКИЕ ИНТЕРПОЛЯЦИОННЫЕ РАЦИОНАЛЬНЫЕ ПРОЦЕССЫ ЭРМИТА-ФЕЙЕРА

Пусть заданы произвольные числа $\alpha_1, \alpha_2, \dots$, $\alpha_n \in \mathbb{C}$, $|\alpha_k| < 1$, $k=1,2,\dots$, n. Рассмотрим функцию

$$\lambda_n(u) = 1 + \sum_{k=1}^{n-1} \frac{1 - |\alpha_k|^2}{1 - 2|\alpha_k|\cos(u - \theta_k) + |\alpha_k|^2},$$

$$\theta_k = \arg \alpha_k, k = 1, 2, \dots, n.$$
(2.1)

Лемма 2.1. Функция

$$S_n(x) = \sin\frac{1}{2} \int_{0}^{x} \lambda_n(u) du,$$

имеет на полуинтервале $[0,2\pi)$ n нулей.

Лемма 2.1 доказывается аналогично лемме 1.2.

Введем в рассмотрение функции:

$$t_k(x) = \frac{1}{\lambda_n(x)\lambda_n(x_k)} \left(\frac{\sin\frac{1}{2} \int_0^x \lambda_n(u) du}{\sin\frac{x - x_k}{2}} \right)^2, \tag{2.2}$$

$$h_k(x) = t_k(x)\sin(x - x_k), k = 1, 2, ..., n.$$
 (2.3)

Заметим, что в соответствии с (2.1)

$$\lambda_n(x) = \frac{q_n(x)}{w_n(x)},\tag{2.4}$$

где $q_n(x)$ – тригонометрический полином порядка n, не имеющий действительных корней.

 \mathbf{J} емма **2.2.** Функция $t_k(x)$ является рациональной тригонометрической дробью вида

$$t_k(x) = \frac{q_{n-1}^{(1)}(x)}{w_n(x)},$$

 $t_k(x) = \frac{q_{n-1}^{(1)}(x)}{w_n(x)}\,,$ где $q_{n-1}(x)$ — некоторый тригонометрический полином порядка n-1. Причем

$$t_k(x_i) = \begin{cases} 0, i \neq k, \\ 1, i = k; \end{cases}$$

$$t_k'(x_i) = 0, i = 1, 2, ..., n$$

Доказательство.

получим

$$\sin^2 \frac{1}{2} \int_0^x \lambda_n(u) du = \frac{1}{2} \left(1 + \cos \int_0^x \lambda_n(u) du \right).$$

Поступая аналогично, как в доказательстве леммы 1.1, нетрудно показать, что функция $\cos \int_0^x \lambda_n(u) du$ является тригонометрической рациональной функцией вида

$$\frac{q_n^{(2)}(x)}{w_n(x)},$$

где $q_n^{(2)}(x) \in \mathbb{T}_n$, \mathbb{T}_n — множество тригонометрических полиномов порядка не выше n. Причем очевидно, что точки $x_k, k=1,2,...,n$ являются простыми нулями числителя. Так как они являются и нулями тригонометрического полинома $\sin^2\frac{x-x_k}{2}$, то функция

$$\left(\frac{\sin\frac{1}{2}\int_0^x \lambda_n(u)du}{\sin\frac{x-x_k}{2}}\right)^2$$

является тригонометрической рациональной функцией вида

$$\frac{q_{n-1}^{(3)}(x)}{w_n(x)},$$

где $q_{n-1}^{(3)}(x) \in \mathbb{T}_{n-1}$.

$$t_k(x) = \frac{1}{\lambda_n(x)\lambda_n(x_k)} \left(\frac{\sin\frac{1}{2} \int_0^x \lambda_n(u) du}{\sin\frac{x - x_k}{2}} \right)^2 = \frac{w_n(x)}{q_n(x)} \cdot \frac{q_{n-1}^{(3)}(x)}{w_n(x)} = \frac{q_{n-1}^{(3)}(x)}{q_n(x)}.$$

Первое утверждение леммы доказано.

2. Докажем, что функция $t_k(x)$ обладает следующими свойствами:

$$t_k(x_i) = \begin{cases} 0, i \neq k, \\ 1, i = k; \\ t'_k(x_i) = 0, i = 1, 2, ..., n \end{cases}$$

Пусть $i \neq k$. Тогда получим

$$t_k(x_i) = \frac{1}{\lambda_n(x_i)\lambda_n(x_k)} \left(\frac{\sin\frac{1}{2} \int_0^{x_i} \lambda_n(u) du}{\sin\frac{x_i - x_k}{2}} \right)^2 = 0,$$

так как x_1, x_2, \dots, x_n — нули $S_n(\mathbf{x}) = \sin \frac{1}{2} \int_0^{x_i} \lambda_n(u) du$.

Пусть теперь i=k. Тогда перейдем к пределу и получим:

$$\lim_{x \to x_k} t_k(x_k) = \lim_{x \to x_k} \frac{1}{\lambda_n(x)\lambda_n(x_k)} \left(\frac{\sin\frac{1}{2} \int_0^x \lambda_n(u) du}{\sin\frac{x - x_k}{2}} \right)^2.$$

Разобьем предел произведения на произведение пределов:

$$\lim_{x \to x_k} t_k(x_k) = \lim_{x \to x_k} \frac{1}{\lambda_n(x)\lambda_n(x_k)} \cdot \lim_{x \to x_k} \left(\frac{\sin \frac{1}{2} \int_0^x \lambda_n(u) du}{\sin \frac{x - x_k}{2}} \right)^2;$$

внесем знак предела в скобки, используем правило Лопиталя и получим:

$$\lim_{x \to x_k} t_k(x_k) = \lim_{x \to x_k} \frac{1}{\lambda_n(x)\lambda_n(x_k)} \cdot \left(\lim_{x \to x_k} \frac{\sin\frac{1}{2} \int_0^x \lambda_n(u) du}{\sin\frac{x - x_k}{2}} \right)^2 =$$

$$= \lim_{x \to x_k} \frac{1}{\lambda_n(x)\lambda_n(x_k)} \cdot \left(\lim_{x \to x_k} \frac{\cos\frac{1}{2} \int_0^x \lambda_n(u) du \cdot \frac{1}{2} \lambda_n(x)}{\frac{1}{2} \cos\frac{x - x_k}{2}} \right)^2 =$$

$$= \frac{1}{\lambda_n^2(x_k)} \cdot \lambda_n^2(x) = 1.$$

Что и требовалось показать.

Найдем производную функции $t_k(x)$.

$$t_k'(x) = -\frac{\lambda_n'(x)}{\lambda_n^2(x)\lambda_n(x_k)} \left(\frac{\sin\frac{1}{2} \int_0^x \lambda_n(u) du}{\sin\frac{x - x_k}{2}} \right)^2 + \frac{1}{\lambda_n(x)\lambda_n(x_k)} \times \left(\frac{2S_n(x) \cdot \cos\frac{1}{2} \int_0^x \lambda_n(u) du \cdot \frac{1}{2} \lambda_n(x) \left(\sin\frac{x - x_k}{2}\right)^2}{\left(\sin\frac{x - x_k}{2}\right)^4} - \frac{2\sin\frac{x - x_k}{2} \cdot \frac{1}{2}\cos\frac{x - x_k}{2} \cdot \left(\sin\frac{1}{2} \int_0^x \lambda_n(u) du\right)^2}{\left(\sin\frac{x - x_k}{2}\right)^4} \right).$$

$$(2.5)$$

Упростим выражение (2.5), приведя подобные, и введем обозначение $C_n(x) = \cos \frac{1}{2} \int_0^x \lambda_n(u) du$. Получим

$$t_k'(x) = -\frac{\lambda_n'(x)}{\lambda_n^2(x)\lambda_n(x_k)} \left(\frac{S_n(x)}{\sin\frac{x - x_k}{2}}\right)^2 + \frac{1}{\lambda_n(x)\lambda_n(x_k)} \times \frac{S_n(x)C_n(x)\lambda_n(x)\sin\frac{x - x_k}{2} - \cos\frac{x - x_k}{2} \left(S_n(x)\right)^2}{\left(\sin\frac{x - x_k}{2}\right)^3}.$$
(2.6)

Пусть $i \neq k$. Тогда получим

$$t'_{k}(x_{i}) = -\frac{\lambda'_{n}(x_{i})}{\lambda_{n}^{2}(x_{i})\lambda_{n}(x_{k})} \left(\frac{S_{n}(x_{i})}{\sin\frac{x_{i}-x_{k}}{2}}\right)^{2} + \frac{1}{\lambda_{n}(x_{i})\lambda_{n}(x_{k})} \times \frac{S_{n}(x_{i})C_{n}(x_{i})\lambda_{n}(x_{i})\sin\frac{x_{i}-x_{k}}{2} - \cos\frac{x_{i}-x_{k}}{2} \left(S_{n}(x_{i})\right)^{2}}{\left(\sin\frac{x_{i}-x_{k}}{2}\right)^{3}} = 0,$$

так как x_1, x_2, \dots, x_n — нули $S_n(\mathbf{x}) = \sin \frac{1}{2} \int_0^{x_i} \lambda_i^2 dx$

Пусть теперь i = k. Тогда перейдем к пределу и получим:

$$\lim_{x \to x_k} t_k'(x_k) = -\frac{\lambda_n'(x_k)}{\lambda_n^2(x_k)\lambda_n(x_k)} \lim_{x \to x_k} \left(\frac{S_n(x)}{\sin \frac{x - x_k}{2}}\right)^2 + \frac{1}{\lambda_n(x_k)\lambda_n(x_k)} \times \lim_{x \to x_k} \frac{S_n(x)C_n(x)\lambda_n(x)\sin \frac{x - x_k}{2} - \cos \frac{x - x_k}{2} \left(S_n(x)\right)^2}{\left(\sin \frac{x - x_k}{2}\right)^3}.$$
(2.7)

Вычислим каждый из пределов.

Для вычисления первого предела поднесем знак предела в скобки и воспользуемся правиюм Лопиталя:

$$\lim_{x \to x_k} \left(\frac{S_n(x)}{\sin \frac{x - x_k}{2}} \right)^2 = \left(\lim_{x \to x_k} \frac{\sin \frac{1}{2} \int_0^x \lambda_n(u) du}{\sin \frac{x - x_k}{2}} \right)^2 =$$

$$= \left(\lim_{x \to x_k} \frac{\cos \frac{1}{2} \int_0^x \lambda_n(u) du \cdot \frac{1}{2} \lambda_n(x)}{\frac{1}{2} \cos \frac{x - x_k}{2}} \right)^2 = \lambda_n^2(x_k).$$
(2.8)

Для вычисления второго предела трижды воспользуемся правилом Лопиталя. Для удобства введем следующие обозначения:

$$l_1(x) = S_n(x)C_n(x)\lambda_n(x)\sin\frac{x - x_k}{2};$$

$$l_2(x) = \cos\frac{x - x_k}{2} \left(S_n(x)\right)^2;$$

$$l_1(x) = \left(\sin\frac{x - x_k}{2}\right)^3.$$

Вычислим первую производную для функ

Вычислим первую производную для функции
$$l_1(x)$$
:
$$l_1^{(1)}(x) = \frac{1}{2} C_n^2(x) \lambda_n^2(x) \sin \frac{x - x_k}{2} - \frac{1}{2} S_n^2(x) \lambda_n^2(x) \sin \frac{x - x_k}{2} + \\ + S_n(x) C_n(x) \lambda_n'(x) \sin \frac{x - x_k}{2} + \frac{1}{2} S_n(x) C_n(x) \lambda_n(x) \cos \frac{x - x_k}{2} = \\ = \frac{1}{2} \lambda_n^2(x) \sin \frac{x - x_k}{2} \left[C_n^2(x) - S_n^2(x) \right] + \\ + S_n(x) C_n(x) \left[\lambda_n'(x) \sin \frac{x - x_k}{2} + \frac{1}{2} \lambda_n(x) \cos \frac{x - x_k}{2} \right].$$
 Вычислим вторую производную для функции $l_1(x)$:

$$l_{1}^{(2)}(x) = \frac{1}{2} \cdot 2\lambda_{n}(x)\lambda'_{n}(x)\sin\frac{x - x_{k}}{2} \left[C_{n}^{2}(x) - S_{n}^{2}(x)\right] + \frac{1}{4}\lambda_{n}^{2}(x)\cos\frac{x - x_{k}}{2} \times \left[C_{n}^{2}(x) - S_{n}^{2}(x)\right] + \frac{1}{2}\lambda_{n}^{2}(x)\sin\frac{x - x_{k}}{2} \left(-2S_{n}(x)C_{n}(x)\lambda_{n}(x)\right) + \frac{1}{2}C_{n}^{2}(x)\lambda_{n}(x)\left[\lambda'_{n}(x)\sin\frac{x - x_{k}}{2} + \frac{1}{2}\lambda_{n}(x)\cos\frac{x - x_{k}}{2}\right] -$$

$$-\frac{1}{2}S_n^2(x)\lambda_n(x)\left[\lambda_n'(x)\sin\frac{x-x_k}{2}+\frac{1}{2}\lambda_n(x)\cos\frac{x-x_k}{2}\right]+\\+S_n(x)C_n(x)\left[\lambda_n''(x)\sin\frac{x-x_k}{2}+\frac{1}{2}\lambda_n'(x)\cos\frac{x-x_k}{2}+\frac{1}{2}\lambda_n'(x)\cos\frac{x-x_k}{2}-\\-\frac{1}{4}\lambda_n(x)\sin\frac{x-x_k}{2}\right].$$

Приведем подобные и окончательно пол

$$l_1^{(2)}(x) = [C_n^2(x) - S_n^2(x)] \left(\frac{3}{2}\lambda_n(x)\lambda_n'(x)\sin\frac{x-x_k}{2} + \frac{1}{2}\lambda_n^2(x)\cos\frac{x-x_k}{2}\right) - \\ -S_n(x)C_n(x)\lambda_n^3(x)\sin\frac{x-x_k}{2} + S_n(x)C_n(x)\left[\lambda_n''(x)\sin\frac{x-x_k}{2} + \\ +\lambda_n'(x)\cos\frac{x-x_k}{2} - \frac{1}{4}\lambda_n(x)\sin\frac{x-x_k}{2}\right].$$
 Вычислим третью производную для функции $l_1(x)$, приведем подобные и получим:
$$l_1^{(3)}(x) = \frac{1}{2}\lambda_n^4(x)\sin\frac{x-x_k}{2}[S_n^2(x) - C_n^2(x)] - \\ \frac{1}{2}\lambda_n^2(x)\cos$$

$$l_{1}^{(3)}(x) = \frac{1}{2}\lambda_{n}^{4}(x)\sin\frac{x-x_{k}}{2}[S_{n}^{2}(x)-C_{n}^{2}(x)] - \frac{1}{2}S_{n}(x)C_{n}(x)\lambda_{n}^{3}(x)\cos\frac{x-x_{k}}{2} - \frac{1}{2}S_{n}(x)C_{n}(x)\lambda_{n}^{2}(x)\lambda_{n}'(x)\sin\frac{x-x_{k}}{2} - \frac{3}{2}\left(\lambda_{n}'(x)\right)^{2}\sin\frac{x-x_{k}}{2} \times \\ \times \left[C_{n}^{2}(x)-S_{n}^{2}(x)\right] - \left[C_{n}^{2}(x)-S_{n}^{2}(x)\right]\lambda_{n}(x)\lambda_{n}''(x)\sin\frac{x-x_{k}}{2} + \\ + \frac{9}{4}\left[C_{n}^{2}(x)-S_{n}^{2}(x)\right]\lambda_{n}(x)\lambda_{n}'(x)\cos\frac{x-x_{k}}{2} + \frac{1}{8}\left[C_{n}^{2}(x)-S_{n}^{2}(x)\right] \times \\ \times \lambda_{n}^{2}(x)\sin\frac{x-x_{k}}{2} + S_{n}(x)C_{n}(x)\left[\lambda_{n}'''(x)\sin\frac{x-x_{k}}{2} + \frac{3}{2}\lambda_{n}''(x)\cos\frac{x-x_{k}}{2} - \frac{1}{8}\lambda_{n}(x)\cos\frac{x-x_{k}}{2} \right].$$
 При $x \to x_{k}$ предел функции $l_{1}^{(3)}(x)$ будет равен:

$$\lim_{x\to x_k} l_1^{(3)}(x) = \frac{9}{4} \lambda_n(x_k) \lambda_n'(x_k).$$
 Вычислим первую производную для функции $l_2(x)$:

$$l_2^{(1)}(x) = -\frac{1}{2}S_n^2(x)\sin\frac{x - x_k}{2} + 2\cdot\frac{1}{2}S_n(x)C_n(x)\lambda_n(x)\cos\frac{x - x_k}{2} =$$

$$= -\frac{1}{2}S_n^2(x)\sin\frac{x - x_k}{2} + S_n(x)C_n(x)\lambda_n(x)\cos\frac{x - x_k}{2}.$$

Вычислим вторую производную для функции l

$$\begin{split} l_2^{(2)}(x) &= -\frac{1}{2} \cdot 2S_n(x)C_n(x)\lambda_n(x)\sin\frac{x - x_k}{2} - \frac{1}{2} \cdot \frac{1}{2}S_n^2(x)\cos\frac{x - x_k}{2} + \\ &+ \frac{1}{2}C_n^2(x)\lambda_n^2(x)\cos\frac{x - x_k}{2} - \frac{1}{2}S_n^2(x)\lambda_n^2(x)\cos\frac{x - x_k}{2} + \\ &+ S_n(x)C_n(x)\lambda_n'(x)\cos\frac{x - x_k}{2} - \frac{1}{2}S_n(x)C_n(x)\lambda_n(x)\sin\frac{x - x_k}{2}. \end{split}$$

Приведем подобные и окончательно получим

$$l_{2}^{(2)}(x) = \frac{1}{2}\lambda_{n}^{2}(x)\cos\frac{x - x_{k}}{2}[C_{n}^{2}(x) - S_{n}^{2}(x)] - S_{n}(x)C_{n}(x)\lambda_{n}(x)\sin\frac{x - x_{k}}{2} - \frac{1}{4}S_{n}^{2}(x)\cos\frac{x - x_{k}}{2} + S_{n}(x)C_{n}(x)\lambda'_{n}(x)\cos\frac{x - x_{k}}{2}.$$

Вычислим третью производную для функции
$$l_2(x)$$
, приведем подобные и получим:
$$l_2^{(3)}(x) = -\frac{3}{4}\lambda_n^2(x)\sin\frac{x-x_k}{2}[C_n^2(x)-S_n^2(x)] - \lambda_n^3(x)\cos\frac{x-x_k}{2} \times \\ \times S_n(x)C_n(x) + \frac{3}{2}\lambda_n(x)\lambda_n'(x)\cos\frac{x-x_k}{2}[C_n^2(x)-S_n^2(x)] + \\ + S_n(x)C_n(x)\cos\frac{x-x_k}{2}\Big[\lambda_n''(x)-\frac{3}{4}\lambda_n(x)\Big] - \frac{3}{2}S_n(x)C_n(x) \times \\ \times \lambda_n'(x)\sin\frac{x-x_k}{2} + \frac{1}{8}S_n^2(x)\sin\frac{x-x_k}{2}.$$

При
$$x \to x_k$$
 предел функции $l_2^{(3)}(x)$ будет равен:
$$\lim_{x \to x_k} l_2^{(3)}(x) = \frac{3}{2} \lambda_n(x_k) \lambda_n'(x_k).$$
 Вычислим первую производную для функции $l_3(x)$:

$$l_3^{(1)}(x) = \frac{3}{2} \left(\sin \frac{x - x_k}{2} \right)^2 \cos \frac{x - x_k}{2} = \frac{3}{4} \sin \frac{x - x_k}{2} \sin(x - x_k).$$

Вычислим вторую производную для функции
$$l_3(x)$$
:
$$l_3^{(2)}(x) = \frac{3}{4} cos \frac{x-x_k}{2} \cdot \frac{1}{2} sin(x-x_k) + \frac{3}{4} sin \frac{x-x_k}{2} cos(x-x_k) = \frac{3}{8} cos \frac{x-x_k}{2} sin(x-x_k) + \frac{3}{4} sin \frac{x-x_k}{2} cos(x-x_k).$$
 Вычислим третью производную для функции $l_3(x)$:

Вычислим третью производную для функции
$$l_3(x)$$
:
$$l_3^{(3)}(x) = -\frac{3}{16}\sin\frac{x-x_k}{2}\sin(x-x_k) + \frac{3}{8}\cos\frac{x-x_k}{2}\cos(x-x_k) + \frac{3}{8}\cos\frac{x-x_k}{2}\cos(x-x_k) + \frac{3}{8}\cos\frac{x-x_k}{2}\cos(x-x_k) - \frac{3}{4}\sin\frac{x-x_k}{2}\sin(x-x_k) = \frac{15}{16}\sin\frac{x-x_k}{2}\sin(x-x_k) + \frac{3}{4}\cos\frac{x-x_k}{2}\cos(x-x_k).$$

При $x \to x_k$ предел функции $l_3^{(3)}(x)$ будет равен:

$$\lim_{x \to x_k} l_2^{(3)}(x) = \frac{3}{4}.$$
 (2.11)

Подставим найденные пределы (2.8)-(2.11) в (2.7) и окончательно получим:
$$\lim_{x \to x_k} t_k'(x_k) = -\frac{\lambda_n'(x_k)}{\lambda_n^2(x_k)\lambda_n(x_k)} \cdot \lambda_n^2(x_k) + \frac{1}{\lambda_n(x_k)\lambda_n(x_k)} \times \frac{\frac{9}{4}\lambda_n(x_k)\lambda_n'(x_k) - \frac{3}{2}\lambda_n(x_k)\lambda_n'(x_k)}{\frac{3}{4}} = -\frac{\lambda_n'(x_k)}{\lambda_n(x_k)} + \frac{1}{\lambda_n(x_k)\lambda_n(x_k)} \times \frac{\frac{3}{4}\lambda_n(x_k)\lambda_n'(x_k)}{\frac{3}{4}} = -\frac{\lambda_n'(x_k)}{\lambda_n(x_k)} + \frac{\lambda_n'(x_k)}{\lambda_n(x_k)} = 0.$$

Лемма 2.2 доказана полностью.

Лемма 2.3. Функция $h_k(x)$ (2.3) является тригонометрической рациональной функцией порядка nследующего вида

$$h_k(x) = \frac{q_n^{(4)}(x)}{w_n(x)},$$

где $q_n^{(4)}(x)$ - \mathbb{T}_n , и обладает следующими свойствами

$$h_k(x_i) = 0, i = 1, 2, ..., n;$$
 (2.12)
 $(0, i \neq k, ..., 1, 2, ...,$

$$h_k(x_i) = 0, i = 1, 2, ..., n;$$

$$h'_k(x_i) = \begin{cases} 0, i \neq k, \\ 1, i = k; \end{cases} i, k = 1, 2, ..., n.$$

$$(2.12)$$

Доказательство. Первое утверждение леммы непосредственно следует из леммы 2.2. Докажем справедливость свойства (2.12).

Пусть $i \neq k$. Тогда получим

$$h_k(x_i) = t_k(x_i)\sin(x_i - x_k) = \frac{1}{\lambda_n(x_i)\lambda_n(x_k)} \left(\frac{\sin\frac{1}{2}\int_0^{x_i} \lambda_n(u)du}{\sin\frac{x_i - x_k}{2}}\right)^2 \times$$

$$\times \sin(x_i - x_k) = 0$$

 $\times \sin(x_i-x_k)=0,$ так как x_1,x_2,\dots,x_n — нули $S_n(\mathbf{x})=\sin\frac{1}{2}\int_0^{x_i}\lambda_n(u)du.$ Пусть теперь i=b

Пусть теперь
$$i=k$$
. Тогда перейдем к пределу и получим:
$$\lim_{x\to x_k} h_k(x_k) = \lim_{x\to x_k} (t_k(x)\cdot\sin(x-x_k)).$$

Разобьем предел произведения на произведение преде

$$\lim_{x \to x_k} h_k(x_k) = \lim_{x \to x_k} \frac{1}{\lambda_n(x)\lambda_n(x_k)} \left(\frac{\sin\frac{1}{2} \int_0^x \lambda_n(u) du}{\sin\frac{x - x_k}{2}} \right)^2 \cdot \lim_{x \to x_k} \sin(x - x_k).$$

Вычислим первый предел, используя правило Л

$$\lim_{x \to x_k} t_k(x_k) = \lim_{x \to x_k} \frac{1}{\lambda_n(x)\lambda_n(x_k)} \cdot \left(\lim_{x \to x_k} \frac{\sin\frac{1}{2} \int_0^x \lambda_n(u) du}{\sin\frac{x - x_k}{2}} \right)^2 =$$

$$= \lim_{x \to x_k} \frac{1}{\lambda_n(x)\lambda_n(x_k)} \cdot \left(\lim_{x \to x_k} \frac{\cos\frac{1}{2} \int_0^x \lambda_n(u) du \cdot \frac{1}{2} \lambda_n(x)}{\frac{1}{2} \cos\frac{x - x_k}{2}} \right)^2 =$$

$$= \frac{1}{\lambda_n^2(x_k)} \cdot \lambda_n^2(x) = 1.$$

Тогда окончательно получим

$$\lim_{x \to x_k} h_k(x_k) = 1 \cdot 0 = 0.$$

 $\lim_{x \to x_k} h_k(x_k) = 1 \cdot 0 = 0.$ Докажем справедливость свойства (2.13). Для это найдем производную функции $h_k(x)$:

$$h'_k(x) = t'_k(x)\sin(x - x_k) + t_k(x)\cos(x - x_k).$$

Пусть $i \neq k$. Тогда, согласно лемме 2.2, получим

$$h'_k(x_i) = t'_k(x_i)\sin(x_i - x_k) + t_k(x_i)\cos(x_i - x_k) = 0.$$

Пусть i = k. Используя результаты леммы 2.2, нетрудно показать, что

$$h'_k(x_k) = 1.$$

Что и требовалось показать. ■

Теорема 2.1. Функция

$$H_n(x,f) = \sum_{k=1}^n f(x_k) t_k(x) + \sum_{k=1}^n y_k h_k(x),$$
 (2.14)

где f – некоторая функция, определенная на [-1;1], y_k , k=1,2,...,n - заданные числа, является рациональной тригонометрической функцией порядка не выше n и удовлетворяет следующим условиям:

$$H_n(x_k, f) = f(x_k), H'_n(x_k) = y_k,$$

 $k = 1, 2, ..., n.$ (2.15)

Доказательство. Так как функции $t_k(x)$ и $h_k(x)$, k=1,2,...,n, являются тригонометрическими рациональными функциями порядка n-1 и n соответственно и имеют один и тот же знаменатель, то функция $H_n(x,f)$ является тригонометрической рациональной функцией порядка не выше n с тем же знаменателем, равным $q_n(x)$.

Покажем, что выполняется условие $H_n(x_i, f) = f(x_i), i = 1, 2, ..., n$. Действительно,

$$H_n(x_i, f) = \sum_{k=1}^n f(x_k) t_k(x_i) + \sum_{k=1}^n y_k h_k(x_i).$$

На основании леммы 2.2 и леммы 2.3 заключаем, что $h_k(x_i) = 0, k = 1, 2, ..., n, t_k(x_i) = 0, k \neq i,$ и $t_i(x_i) = 1$. Следовательно,

$$H_n(x_i, f) = f(x_i), i = 1, 2, ..., n.$$

Покажем, что выполняется условие $H'_n(x_k,f) = y_k$, k = 1,2,...,n. Для этого найдем производную функции $H_n(x, f)$.

$$H'_n(x,f) = \sum_{k=1}^n f(x_k) t'_k(x) + \sum_{k=1}^n y_k h'_k(x).$$

Рассмотрим

$$H'_n(x_i, f) = \sum_{k=1}^n f(x_k) t'_k(x_i) + \sum_{k=1}^n y_k h'_k(x_i).$$

 $H_n'(x_i,f) = \sum_{k=1}^n f(x_k) \, t_k'(x_i) + \sum_{k=1}^n y_k \, h_k'(x_i).$ Также основываясь на леммах 2.2. и 2.3, заключаем, что

$$t'_k(x_i) = 0, i = 1, 2, ..., n,$$

 $h'_k(x_i) = 0, k \neq i,$
 $h'_i(x_i) = 1.$

Значит,

$$H'_n(x_i, f) = y_i, i = 1, 2, ..., n.$$

Доказано. ■

Заключение. Сделаем выводы.

- 1. Построены и изучены интерполяционные рациональные тригонометрические процессы Лагранжа и Эрмита-Фейера, а также их свойства.
- 2. Доказано, что данные процессы точны для функций f(x) = 1 и $f(x) = \frac{q_n(x)}{w_n(x)}$, где $q_n(x)$ некоторый тригонометрический полином порядка не выше $n, w_n(x) = \prod_{k=1}^n (1-2|\alpha_k|\cos(x-\theta_k)+|\alpha_k|^2)$.

Список литературы

- 1. Турецкий А.Х. Теория интерполирования в задачах: в 2 ч./ А. Х. Турецкий; Мн., «Высшая школа». Минск, 1968.-с. 12-30, 51-52.
- 2. Джрбашян М.М. К теории рядов Фурье по рациональным функциям//Изв. АН. Арм. ССР. Сер. физ. -мат. наук, 1956. - T.9.№7. - c.3-28.