Task 6 – Password Strength Evaluation Report

Objective

To understand what makes a password strong by creating multiple passwords of varying complexity, testing them using online tools, and interpreting how structure affects strength and security.

Methodology

- 1. Created five passwords with different complexity levels.
- 2. Tested each on three password strength checkers:
 - o https://bitwarden.com/password-strength/
 - o https://passwordmeter.com/
 - o https://www.security.org/how-secure-is-my-password/
- 3. Compared scores and crack time estimates.
- 4. Derived best practices for strong password creation.

Passwords Tested

No.	Password	Туре	Bitwarden Rating	Pasword Meter Rating	Estimated Crack Time (Security.org)	Observation
1	sunshine12	Weak	Very Weak (2 secs)	Weak (37%)	<1 day	Common word + short length + no symbols
2	SkyBlue2025	Moderate	Weak (2 days)	Strong (91%)	41 years	Includes mixed case + digits but still predictable
3	S!ky_Blue2025	Strong	Good (2 Years)	Very Strong (100%)	2 million years	Added symbol + underscore increased entropy
4	T!ger\$Run_47#Fast	Very Strong	Strong (Centuries)	Very Strong (100%)	93 trillion years	Long, mixed, random pattern
5	!9AqX\$7rZ&vLp#T2nK	Random Strong	Strong (Centuries)	Very Strong (100%)	7 quadrillion years	High entropy randomly generated string

Findings

- Length matters: every extra character exponentially increases crack time.
- Character diversity (uppercase, lowercase, numbers, symbols) improves entropy.
- Avoid dictionary words they make passwords vulnerable to dictionary attacks.
- Randomness offers the highest security but reduces memorability.
- Passphrases (e.g., Coffee\$Mountain!River_2025) balance strength and ease of recall.

Common Password Attacks

Attack Type	Description	Example
Brute Force	Tries all possible combinations until correct.	aaaa→zzzz
Dictionary Attack	Uses common word lists or phrases.	password, qwerty
Phishing	Tricks users into revealing credentials.	Fake login emails
Credential Stuffing	Reuses stolen credentials from other sites.	Leaked user/password reuse

Best Practices for Strong Passwords

- 1. Use at least 12–16 characters.
- 2. Combine uppercase, lowercase, numbers, and symbols.
- 3. Avoid personal information (names, dates).
- 4. Use unique passwords for each account.
- 5. Prefer **passphrases** that mix unrelated words.
- 6. Enable multi-factor authentication (MFA) wherever possible.
- 7. Store securely in a **password manager** like Bitwarden or 1Password.

Conclusion

The evaluation proves that password strength depends primarily on length, complexity, and randomness.

Short or predictable passwords fail instantly under brute-force tests, while well-constructed random passwords can resist cracking for millennia.

Implementing strong password habits and multi-factor authentication is essential for robust digital security.