Problem 1.1:

From the question we have, for every $a \in A$, $b \in B$ and $c \in C$

- a) $a \subseteq \gamma_1(b)$ iff $\alpha_1(a) \le b$
- b) $b \subseteq \gamma_2(c)$ iff $\alpha_2(b) \le c$

We have to prove, $a \subseteq \gamma_1 \gamma_2(c)$ iff $\alpha_2 \alpha_1(a) \le c$

From the contractive property we get,

 $\alpha_2 \gamma_2(c) \leq c$

 $\alpha_2(b) \le c$ [As $b \subseteq \gamma_2(c)$] $\alpha_2\alpha_1(a) \le c$ [As $\alpha_1(a) \le b$]

And from the expansive property we get,

 $a \subseteq \gamma_1 \alpha_1(a)$

 $a \subseteq \gamma_1(b) \qquad [As \ \alpha_1(a) \le b]$ $a \subseteq \gamma_1\gamma_2(c) \qquad [As \ b \subseteq \gamma_2(c)]$

So, $\alpha_2\alpha_1$ and $\gamma_1\gamma_2$ form a Galois connection

Problem 1.2:

From Galois connection property we know, for every $a \in A$ and every $c \in C$ $c \subseteq \gamma(a)$ iff $\alpha(c) \le a$

To prove α is monotone, we need to prove that for any c1, c2 if c1 \subseteq c2 then α (c1) \leq α (c2).

From the expansive property we get,

 $c2 \subseteq \gamma(\alpha(c2))$

So, $c1 \subseteq \gamma(\alpha(c2))$ [As $c1 \subseteq c2$]

So, $\alpha(c1) \le \alpha(c2)$ [From Galois connection property]

Problem 1.3:

From Galois connection property we know, for every $a \in A$ and every $c \in C$

```
c \subseteq \gamma(a) iff \alpha(c) \leq a
```

To prove γ is monotone, we need to prove that for any a1, a2 if a1 \leq a2 then γ (a1) \subseteq γ (a2).

From the contractive property we get,

```
\alpha(\gamma(a1)) \le a1
So, \alpha(\gamma(a1)) \le a2 [As a1 \le a2]
So, \gamma(a1) \subseteq \gamma(a2) [From Galois connection property]
```

Problem 2.2:

```
(\lambda x.\lambda y.x)(\lambda z.(\lambda x.\lambda y.x) z ((\lambda x.z x)(\lambda x.z x)))
```

Normal Order:

- $\rightarrow \lambda y.(\lambda z.(\lambda x.\lambda y.x) z ((\lambda x.z x)(\lambda x.z x))$
- $\rightarrow \lambda y.((\lambda x.\lambda y.x)((\lambda x.z x)(\lambda x.z x)))$

Apllicative Order:

- $\rightarrow (\lambda x.\lambda y.x)((\lambda x.\lambda y.x) ((\lambda x.z x)(\lambda x.z x)))$
- $\rightarrow (\lambda x.\lambda y.x)((\lambda x.\lambda y.x) (z (\lambda x.z x)))$

Problem 2.3:

```
interpret(x) = x
interpret(\lambda x.E1) = let E2 = interpret(E1)
ln case E2 of
x = \lambda x.E2
_ = interpret(E2)
interpret(E1 E2) = let E3 = interpret(E1)
ln case E3 of
\lambda x.E4 = interpret(E4[E2/x])
x = E3 interpret(E2)
= interpret(E3 E2)
```