Introduction to Numerical Analysis HW2

Yu Cang 018370210001

June 4, 2018

1 CONNECTED SPACE

1. *Proof.* a) (i) \Rightarrow (ii)

Suppose (ii) is not true, which means $X = U_1 \cup U_2$, $U_1 \cap U_2 = \emptyset$, $U_1 \neq \emptyset$, $U_2 \neq \emptyset$, and both U_1 and U_2 are open.

Thus, U_1 and U_2 are closed as $U_1 = U_2^{\complement}$ and $U_2 = U_1^{\complement}$.

So, U_1 and U_2 are both open and closed in X, which is contradictory to (i).

Thus the assumption fails and (ii) is true when (i) is true.

b) $(ii) \Rightarrow (i)$

Suppose (i) is not true, which means there exists U s.t. $U \subset X$, $U \neq \emptyset$ and U is both open and closed in X.

Thus, U^{\complement} is open as U is closed.

As $X = U \cup U^{\complement}$, then X can be written as the union of two disjoint, non-empty open subsets, which is contradictory to (ii).

Thus the assumption fails and (i) holds true when (ii) is true.

c) (i)⇒(iii)

Suppose (iii) is not true, which means $X = U_1 \cup U_2$, $U_1 \cap U_2 = \emptyset$, $U_1 \neq \emptyset$, $U_2 \neq \emptyset$ and both U_1 and U_2 are closed.

Thus, U_1 and U_2 are open as $U_1 = U_2^{\complement}$ and $U_2 = U_1^{\complement}$.

So, U_1 and U_2 are both open and closed in X, which is contradictory to (i).

Thus the assumption fails and (iii) is true when (i) is true.

d) $(iii) \Rightarrow (i)$

Suppose (i) is not true, which means there exists U s.t. $U \subset X$, $U \neq \emptyset$ and U is both open and closed in X.

Thus, U^{\complement} is closed as U is open.

As $X = U \cup U^{\complement}$, then X can be written as the union of two disjoint, non-empty closed subsets, which is contradictory to (iii).

Thus the assumption fails and (i) holds true when (iii) is true.

2. *Proof.* If (iv) is false, then there exists a continuous, surjective application from X into $[0,1] \subset U$, which can be denoted as f.

[0,1] can be written as $[0, a) \cup [a, 1] \triangleq V_1 \cup V_2$, where 0 < a < 1, V_1 and V_2 are closed. Denote $U_1 = f^{-1}(V_1)$ and $U_2 = f^{-1}(V_2)$.

As f is surjective, it follows that $U_1 \neq \emptyset$, $U_2 \neq \emptyset$ and $U_1 \cap U_2 = \emptyset$.

As f is continous, it follows that U_1 and U_2 are also closed, $U_1 \cap U_2 = X$.

Thus, it is contradictory to (iii) as X can be written as the union of two disjoint, non-empty closed subsets.

So, if (iv) is not true then (iii) is also false.

3. *Proof.* If (iii) is false, then $X = U_1 \cup U_2$, where U_1 and U_2 are two disjoint, non-empty closed subsets.

(haven't figured out yet...)

2 Intermediate value theorem

- 1. *Proof.* Suppose $f(A) = V_1 \cup V_2$, where V_1 and V_2 are two disjoint, non-empty open subsets. Denote $U_1 = f^{-1}(V_1)$, $U_2 = f^{-1}(V_2)$. $A = U_1 \cup U_2$ as each element in A is mapped to either V_1 or V_2 . Further, U_1 and U_2 are open as f is a continous map. Thus A can be written as the union of two disjoint, non-empty open subsets, which is contradictory to the fact that A is a connected space. Therefore, f(A) is connected.
- 2. *Proof.* a) It's clear that \emptyset is connected as X is itself.

For *A* containing only 1 element, it is connected as it can no be written as the union of two disjoint non-empty closed subsets.

- b) If *A* is not an interval and the corner cases in a) are excluded, then it can be written as union of non-empty, disjoint closed subsets. Thus *A* is not connected.
- c) i. The continuous bijection mapping f can be given as

$$f(x) = \frac{x - I_{min}}{I_{max} - I_{min}} (J_{max} - Jmin)$$
(2.1)

where I_{min} , I_{max} , J_{max} , J_{min} are the limits of corresponding interval.

The inverse continuous bijection can be constructed in the same way, which can be given as

$$f^{-1}(y) = \frac{y - J_{min}}{J_{max} - J_{min}} (I_{max} - I_{min})$$
 (2.2)

2

- ii. Consider open interval X=(0,1), it is clear that X is connected. As there exists a continous bijection mapping which maps X to \mathbb{R} , thus $f(A)=\mathbb{R}$ is connected as well.
- iii. If U is both open and closed, then U^{\complement} is also both open and closed. As there must exist a minimum for a closed and non-empty set, $R = U \cup U^{\complement}$ is then bounded, which is false. Thus, the only subsets that are both open and closed in \mathbb{R} are \mathbb{R} and \emptyset , which is equivalent to say \mathbb{R} is connected.

3. *Proof.* For any connected set A, as is indicated above, f(A) is also connected, where f is a continuous function.

And the connected subsets of \mathbb{R} are all intervals.

Then f(X) is an interval of \mathbb{R} , which contains both f(a) and f(b).

Thus, f(X) contains both f(a) and f(b).

3 ROLLE'S THEOREM

Proof. 1. For n=1, if f(x) has 2 distinct roots in [a,b], then there exists the maximum M and minimum m between [a,b] according to the extream value theorem. If M=m, then f(x) is constant, and it's obvious that for any $c \in [a,b]$, f'(c)=0; If $M \neq m$, then $\exists \xi \in (a,b)$, s.t. $f(\xi)$ reaches its extream, and equals to 0.

- 2. As induction hypothesis, assume the statement is true for n = k.
- 3. For n = k + 1, where f(x) has k + 2 distinct roots denoted as $c_0 < c_1 < ... < c_k < c_{k+1}$, applying the results for n = 1 on each gap $[c_i, c_{i+1}]$ (i = 0, 1, ..., k), then $g(x) \triangleq f'(x)$ has k + 1 roots in $[c_0, c_{k+1}]$. By induction hypothesis, there exists $c \in [c_0, c_{k+1}]$ s.t. $g^{(k)}(c) = f^{(k+1)}(c) = f^{(n)}(c) = 0$. Thus the statement holds true for n = k + 1.

4 Extreme value theorem

1. *Proof.* □

- 2. *Proof.* a) Given an open covering $\mathscr U$ of A, an open covering of X by throwing in the open subset $U_0 = X/A$. Since X is compact, there exists finitely many sets $U_1, U_2, U_3, ..., U_n \in \mathscr U$ s.t. $X = U_0 \cup U_1 \cup ... \cup U_n$. Then $A \subseteq U_1 \cup ... \cup U_n$, proving that A is compact.
 - b) (haven't figured out yet...)

3. *Proof.* □

5 CONTINUITY

Proof. (i)⇒(ii): For each y ∈ B(f(a), ξ), there exists U_x ⊂ X, U_x ≠ Ø s.t. y = f(U_x). Thus, d(f(x), f(a)) < ξ is valid for any x ∈ U ≜ ∪ U_x. As indicated by (i), there exists η s.t. B(a, η) ⊂ U. Thus, η is valid, and d(a, x) for x ∈ B(a, η) is less than η. (ii)⇒(i): As X and Y are two metrix spaces, then the set containing all the elements in d(x, a) < η is equivalent to the ball B(a, η) ⊂ X. It suffices to show that the η in (i) exists. □
 Proof. Given ξ where B(f(a), ξ) ⊂ V, then it is indicated by (i) that there exists η where f(B(a, η)) ∈ B(f(a), ξ). Denote U = B(a, η), then f(U) ⊂ B(f(a), ξ) ⊂ V. □
 Proof. As indicated by (iii), U is a neighborhood of a and f(U) ⊂ V. Since U ⊂ f⁻¹(V), thus, by observation, f⁻¹(V) is a neighborhood of a. □
 Proof. For any ξ ∈ R₊, take the neighborhood V of f(a) s.t. V ⊂ B(f(a), ξ). Then, by (iv), f⁻¹(V) is a neighborhood of a. Thus, there exists η ∈ R₊ s.t. B(a, η) ⊂ f⁻¹(V), and it is obvious that f(B(a, η)) ⊂ B(f(a), ξ).