BLS - CEW - Example

Datasets

François Geerolf

Contents

Preamble	1
Introduction	1
Sources for CEX	1
Overall Budget	
Load Datasets	
Examples	3
Gasoline	3
Property Taxes	4
Food Away From Home	6
Shelter	7
Pensions	9
Estimated Rental Value of Owned Home	10
Vehicle Purchases	12
Household Furnishings	13
Income after taxes	15
Average Annual Expenditures	16
Saving Rate by Income according to CEX	18
Computing environment	22

Preamble

```
rm(list = ls())
pklist <- c("curl", "tidyverse", "rvest")
source("https://fgeerolf.github.io/datasets/load-packages.R")
options(tibble.print_max = 100)</pre>
```

Introduction

Sources for CEX

The data for the CEX is available here: https://www.bls.gov/cex/ The flat data files of the CEX are: https://download.bls.gov/pub/time.series/cx/

ltem		2013	2014	2015	Percent change	
					2013 - 2014	2014 - 2015
Average income before taxes		\$63,784	\$66,877	\$69,629	4.8	4.1
Average annual expenditures		51,100	53,495	55,978	4.7	4.6
Food		6,602	6,759	7,023	2.4	3.9
Food at home		3,977	3,971	4,015	-0.2	1.1
Food away from home		2,625	2,787	3,008	6.2	7.9
Housing		17,148	17,798	18,409	3.8	3.4
Shelter		10,080	10,491	10,742	4.1	2.4
Utilities		3,737	3,921	3,885	4.9	9
Household furnishings and equipment		1,542	1,581	1,818	2.5	15.0
Apparel and services		1,604	1,786	1,846	11.3	3.4
Transportation		9,004	9,073	9,503	0.8	4.7
Vehicle purchases		3,271	3,301	3,997	0.9	21.1
Gasoline and motor oil		2,611	2,468	2,090	-5.5	-15.3
Healthcare		3,631	4,290	4,342	n/a	1.2
Health insurance		2,229	2,868	2,977	n/a	3.8
Entertainment		2,482	2,728	2,842	9.9	4.2
Education		1,138	1,236	1,315	8.6	6.4
Cash contributions		1,834	1,788	1,819	-2.5	1.7
Personal insurance and pensions		5,528	5,726	6,349	3.6	10.9
Life and other personal insurance		319	327	333	2.5	1.8
Pensions and Social Security		5,209	5,399	6,016	3.6	11.4
All other expenditures		2,129	2,311	2,530	8.5	9.5

¹ Subcategories do not sum to 100%. n/a: Because of a questionnaire change, the 2013-14 change was not strictly comparable to previous years.

Figure 1: Overall Budget Shares

Overall Budget

Load Datasets

```
load("cx.series.RData")
load("cx.data.1.AllData.RData")
```

Examples

Gasoline

Gasoline was about \$2611 per year, which is about {r} =2600/51100*100 or 5% of consumption

These series appear to start only in 1984.

Gasoline, other fuels, and motor oil by Income Range: \$5,000 to \$9,999 before tax income Gasoline, other fuels, and motor oil by Income Quintiles: Lowest 20 percent income quintile Gasoline, other fuels, and motor oil by Census Region: Region of residence: northeast

Fro example, list Gasoline: item_code = "GASOIL"

by income range: $demographics_code = "LB02"$

```
## # A tibble: 25 x 2
##
      series_id
                              series_title
##
      <fct>
                              <fct>
                            ~ Gasoline, other fuels, and motor oil by Income~
##
   1 "CXUGASOILLB0201M
##
   2 "CXUGASOILLB0202M
                            ~ Gasoline, other fuels, and motor oil by Income~
##
   3 "CXUGASOILLB0203M
                            ~ Gasoline, other fuels, and motor oil by Income~
   4 "CXUGASOILLB0204M
                            ~ Gasoline, other fuels, and motor oil by Income~
                            ~ Gasoline, other fuels, and motor oil by Income~
##
  5 "CXUGASOILLB0205M
   6 "CXUGASOILLB0206M
                            ~ Gasoline, other fuels, and motor oil by Income~
##
##
  7 "CXUGASOILLB0207M
                            ~ Gasoline, other fuels, and motor oil by Income~
                            ~ Gasoline, other fuels, and motor oil by Income~
##
  8 "CXUGASOILLB0208M
## 9 "CXUGASOILLB0209M
                            ~ Gasoline, other fuels, and motor oil by Income~
## 10 "CXUGASOILLB0210M
                            ~ Gasoline, other fuels, and motor oil by Income~
## 11 "CXUGASOILLB0211M
                            ~ Gasoline, other fuels, and motor oil by Income~
                            ~ Gasoline, other fuels, and motor oil by Income~
## 12 "CXUGASOILLB0212M
## 13 "CXUGASOILLB0213M
                            ~ Gasoline, other fuels, and motor oil by Income~
## 14 "CXUGASOILLB0214M
                            ~ Gasoline, other fuels, and motor oil by Income~
## 15 "CXUGASOILLB0215M
                            ~ Gasoline, other fuels, and motor oil by Income~
                            ~ Gasoline, other fuels, and motor oil by Income~
## 16 "CXUGASOILLB0216M
## 17 "CXUGASOILLB0217M
                            ~ Gasoline, other fuels, and motor oil by Income~
                            ~ Gasoline, other fuels, and motor oil by Income~
## 18 "CXUGASOILLB0218M
## 19 "CXUGASOILLB0219M
                            ~ Gasoline, other fuels, and motor oil by Income~
## 20 "CXUGASOILLB0220M
                            ~ Gasoline, other fuels, and motor oil by Income~
## 21 "CXUGASOILLB0221M
                            ~ Gasoline, other fuels, and motor oil by Income~
                            ~ Gasoline, other fuels, and motor oil by Income~
## 22 "CXUGASOILLB0222M
```

```
## 23 "CXUGASOILLB0223M
                            ~ Gasoline, other fuels, and motor oil by Income~
## 24 "CXUGASOILLB02A1M
                            ~ Gasoline, other fuels, and motor oil by Income~
## 25 "CXUGASOILLB02A2M
                            ~ Gasoline, other fuels, and motor oil by Income~
data <- cx.data.1.AllData %>%
  select(series_id, year, value) %>%
  right_join(cx.series %>%
              filter(item_code == "GASOIL",
                     demographics code == "LB02") %>%
               select(series_id, series_title),
            by = "series id") %>%
  mutate(series_id = series_id %>% paste %>% gsub(" ", "", .)) %>%
  arrange(series_id, year) %>%
 as.tibble
```

Plot during the Oil Price Boom

- Gasoline, other fuels, and motor oil by Income Range: \$10,000 to \$14,999 before tax income
- ---- Gasoline, other fuels, and motor oil by Income Range: \$80,000 to \$99,999 before tax income(from 2
- -- Gasoline, other fuels, and motor oil by Income Range: Before tax income of \$70,000 and over

Property Taxes

```
## # A tibble: 25 x 2
```

```
##
      series_id
                              series_title
      <fct>
##
                              <fct>
## 1 "CXU220211LB0201M
                            ~ Property taxes by Income Range: All Consumer U~
## 2 "CXU220211LB0202M
                            ~ Property taxes by Income Range: Before tax inc~
   3 "CXU220211LB0203M
                            ~ Property taxes by Income Range: $5,000 to $9,9~
## 4 "CXU220211LB0204M
                            ~ Property taxes by Income Range: $10,000 to $14~
## 5 "CXU220211LB0205M
                            ~ Property taxes by Income Range: $15,000 to $19~
## 6 "CXU220211LB0206M
                            ~ Property taxes by Income Range: $20,000 to $29~
## 7 "CXU220211LB0207M
                            ~ Property taxes by Income Range: $30,000 to $39~
## 8 "CXU220211LB0208M
                            ~ Property taxes by Income Range: $40,000 to $49~
## 9 "CXU220211LB0209M
                            ~ Property taxes by Income Range: $50,000 to $69~
## 10 "CXU220211LB0210M
                            ~ Property taxes by Income Range: Before tax inc~
## 11 "CXU220211LB0211M
                            ~ Property taxes by Income Range: Before tax inc~
## 12 "CXU220211LB0212M
                            ~ Property taxes by Income Range: $70,000 to $79~
## 13 "CXU220211LB0213M
                            ~ Property taxes by Income Range: $80,000 to $99~
## 14 "CXU220211LB0214M
                            ~ Property taxes by Income Range: Before tax inc~
## 15 "CXU220211LB0215M
                            ~ Property taxes by Income Range: $100,000 to $1~
## 16 "CXU220211LB0216M
                            ~ Property taxes by Income Range: $120,000 to $1~
## 17 "CXU220211LB0217M
                            ~ Property taxes by Income Range: Before tax inc~
## 18 "CXU220211LB0218M
                            ~ Property taxes by Income Range: Less than $15,~
## 19 "CXU220211LB0219M
                            ~ Property taxes by Income Range: $15,000 to $29~
## 20 "CXU220211LB0220M
                            ~ Property taxes by Income Range: $70,000 to $99~
## 21 "CXU220211LB0221M
                            ~ Property taxes by Income Range: $100,000 to $1~
## 22 "CXU220211LB0222M
                            ~ Property taxes by Income Range: $150,000 to $1~
## 23 "CXU220211LB0223M
                            ~ Property taxes by Income Range: $200,000 and m~
## 24 "CXU220211LB02A1M
                            ~ Property taxes by Income Range: Before tax inc~
## 25 "CXU220211LB02A2M
                            ~ Property taxes by Income Range: Total complete~
Prepare Data
data <- cx.data.1.AllData %>%
  select(series_id, year, value) %>%
  right_join(cx.series %>%
              filter(item_code == "220211",
                     subcategory_code == "HOUSING",
                     demographics_code == "LB02") %>%
               select(series_id, series_title),
            by = "series_id") %>%
  mutate(series_id = series_id %>% paste %>% gsub(" ", "", .)) %>%
```

Plot of Property Taxes

arrange(series_id, year)

- Property taxes by Income Range: \$10,000 to \$14,999 before tax income
 ----Property taxes by Income Range: \$80,000 to \$99,999 before tax income(from 2003)
- -- Property taxes by Income Range: Before tax income of \$70,000 and over

Food Away From Home

```
## # A tibble: 25 x 2
##
      series id
                              series_title
##
      <fct>
                              <fct>
##
   1 "CXUFOODAWAYLBO201M
                            ~ Food away from home by Income Range: All Consu~
   2 "CXUFOODAWAYLB0202M
                            ~ Food away from home by Income Range: Before ta~
   3 "CXUFOODAWAYLB0203M
                            ~ Food away from home by Income Range: $5,000 to~
##
   4 "CXUFOODAWAYLB0204M
                            ~ Food away from home by Income Range: $10,000 t~
##
##
   5 "CXUFOODAWAYLBO205M
                            ~ Food away from home by Income Range: $15,000 t~
##
   6 "CXUFOODAWAYLB0206M
                            ~ Food away from home by Income Range: $20,000 t~
                            ~ Food away from home by Income Range: $30,000 t~
   7 "CXUFOODAWAYLBO207M
##
##
   8 "CXUFOODAWAYLBO208M
                            ~ Food away from home by Income Range: $40,000 t~
   9 "CXUFOODAWAYLBO209M
                            ~ Food away from home by Income Range: $50,000 t~
##
## 10 "CXUFOODAWAYLB0210M
                            ~ Food away from home by Income Range: Before ta~
## 11 "CXUFOODAWAYLBO211M
                            ~ Food away from home by Income Range: Before ta~
## 12 "CXUFOODAWAYLB0212M
                            ~ Food away from home by Income Range: $70,000 t~
## 13 "CXUFOODAWAYLBO213M
                            ~ Food away from home by Income Range: $80,000 t~
## 14 "CXUFOODAWAYLB0214M
                            ~ Food away from home by Income Range: Before ta~
## 15 "CXUFOODAWAYLBO215M
                            ~ Food away from home by Income Range: $100,000 ~
## 16 "CXUFOODAWAYLB0216M
                            ~ Food away from home by Income Range: $120,000 ~
## 17 "CXUFOODAWAYLBO217M
                            ~ Food away from home by Income Range: Before ta~
## 18 "CXUFOODAWAYLB0218M
                            ~ Food away from home by Income Range: Less than~
## 19 "CXUFOODAWAYLB0219M
                            ~ Food away from home by Income Range: $15,000 t~
## 20 "CXUFOODAWAYLB0220M
                            ~ Food away from home by Income Range: $70,000 t~
                            ~ Food away from home by Income Range: $100,000 ~
## 21 "CXUFOODAWAYLB0221M
## 22 "CXUFOODAWAYLB0222M
                            ~ Food away from home by Income Range: $150,000 ~
```

```
## 23 "CXUFOODAWAYLB0223M
                            ~ Food away from home by Income Range: $200,000 ~
## 24 "CXUFOODAWAYLBO2A1M
                            ~ Food away from home by Income Range: Before ta~
## 25 "CXUFOODAWAYLBO2A2M
                            ~ Food away from home by Income Range: Total com~
Prepare Data
data <- cx.data.1.AllData %>%
  select(series_id, year, value) %>%
  right_join(cx.series %>%
              filter(subcategory_code == "FOODTOTL",
                     item code == "FOODAWAY",
                     demographics_code == "LB02") %>%
               select(series_id, series_title),
            by = "series_id") %>%
  mutate(series_id = series_id %>% paste %>% gsub(" ", "", .)) %>%
  arrange(series_id, year)
```

Plot of Food Away

- Food away from home by Income Range: \$10,000 to \$14,999 before tax income
- --- Food away from home by Income Range: \$80,000 to \$99,999 before tax income(from 2003)
- -- Food away from home by Income Range: Before tax income of \$70,000 and over

Shelter

```
cx.series %>%
filter(subcategory_code == "HOUSING",
    item_code == "SHELTER",
    demographics_code == "LBO2") %>%
select(series_id, series_title) %>%
as.tibble
```

```
## # A tibble: 25 x 2
##
      series_id
                              series_title
      <fct>
##
                              <fct>
##
  1 "CXUSHELTERLB0201M
                            ~ Shelter by Income Range: All Consumer Units
##
   2 "CXUSHELTERLB0202M
                            ~ Shelter by Income Range: Before tax income of ~
## 3 "CXUSHELTERLB0203M
                            ~ Shelter by Income Range: $5,000 to $9,999 befo~
## 4 "CXUSHELTERLB0204M
                            ~ Shelter by Income Range: $10,000 to $14,999 be~
## 5 "CXUSHELTERLB0205M
                            ~ Shelter by Income Range: $15,000 to $19,999 be~
## 6 "CXUSHELTERLB0206M
                            ~ Shelter by Income Range: $20,000 to $29,999 be~
## 7 "CXUSHELTERLB0207M
                            ~ Shelter by Income Range: $30,000 to $39,999 be~
## 8 "CXUSHELTERLB0208M
                            ~ Shelter by Income Range: $40,000 to $49,999 be~
## 9 "CXUSHELTERLB0209M
                            ~ Shelter by Income Range: $50,000 to $69,999 be~
## 10 "CXUSHELTERLB0210M
                            ~ Shelter by Income Range: Before tax income of ~
## 11 "CXUSHELTERLB0211M
                            ~ Shelter by Income Range: Before tax income of ~
## 12 "CXUSHELTERLB0212M
                            ~ Shelter by Income Range: $70,000 to $79,999 be~
## 13 "CXUSHELTERLB0213M
                            ~ Shelter by Income Range: $80,000 to $99,999 be~
## 14 "CXUSHELTERLB0214M
                            ~ Shelter by Income Range: Before tax income of ~
## 15 "CXUSHELTERLB0215M
                            ~ Shelter by Income Range: $100,000 to $119,999 ~
## 16 "CXUSHELTERLB0216M
                            ~ Shelter by Income Range: $120,000 to $149,999 ~
## 17 "CXUSHELTERLB0217M
                            ~ Shelter by Income Range: Before tax income of ~
## 18 "CXUSHELTERLB0218M
                            ~ Shelter by Income Range: Less than $15,000
## 19 "CXUSHELTERLB0219M
                            ~ Shelter by Income Range: $15,000 to $29,999
## 20 "CXUSHELTERLB0220M
                            ~ Shelter by Income Range: $70,000 to $99,999
## 21 "CXUSHELTERLB0221M
                            ~ Shelter by Income Range: $100,000 to $149,999
## 22 "CXUSHELTERLB0222M
                            ~ Shelter by Income Range: $150,000 to $199,999
## 23 "CXUSHELTERLB0223M
                            ~ Shelter by Income Range: $200,000 and more
## 24 "CXUSHELTERLB02A1M
                            ~ Shelter by Income Range: Before tax income of ~
## 25 "CXUSHELTERLB02A2M
                            ~ Shelter by Income Range: Total complete income~
Prepare Data
data <- cx.data.1.AllData %>%
  select(series_id, year, value) %>%
  right_join(cx.series %>%
              filter(subcategory_code == "HOUSING",
                     item_code == "SHELTER",
                     demographics_code == "LB02") %>%
               select(series_id, series_title),
            by = "series id") %>%
  mutate(series_id = series_id %>% paste %>% gsub(" ", "", .)) %>%
  arrange(series_id, year)
Plot
data %>%
  filter(series_id %in% c("CXUSHELTERLB0204M", "CXUSHELTERLB0210M",
                          "CXUSHELTERLB0213M", "CXUSHELTERLB0213M",
                          "CXUSHELTERLB0222M")) %>%
  ggplot(aes(x = year, y = value, linetype = series_title)) +
  geom_line() + theme_bw() +
```

theme(legend.position = "bottom",

legend.title = element_blank(),

legend.key.height = unit(0.1, "line")) +

guides(linetype = guide_legend(nrow = 4)) + xlab("") + ylab("")


```
Shelter by Income Range: $10,000 to $14,999 before tax income
```

- --- Shelter by Income Range: \$150,000 to \$199,999
- --- Shelter by Income Range: \$80,000 to \$99,999 before tax income(from 2003) -- Shelter by Income Range: Before tax income of \$70,000 and over

Pensions

```
cx.series %>%
 filter(subcategory_code == "INSPENSN",
         item_code == "INSPENSN",
         demographics code == "LB02") %>%
 select(series id, series title) %>%
 as.tibble
```

```
## # A tibble: 25 x 2
##
      series_id
                              series_title
##
      <fct>
                              <fct>
##
    1 "CXUINSPENSNLB0201M
                            ~ Personal insurance and pensions by Income Rang~
    2 "CXUINSPENSNLB0202M
##
                            ~ Personal insurance and pensions by Income Rang~
    3 "CXUINSPENSNLB0203M
                            ~ Personal insurance and pensions by Income Rang~
##
##
   4 "CXUINSPENSNLB0204M
                            ~ Personal insurance and pensions by Income Rang~
##
   5 "CXUINSPENSNLB0205M
                            ~ Personal insurance and pensions by Income Rang~
   6 "CXUINSPENSNLB0206M
                            ~ Personal insurance and pensions by Income Rang~
##
   7 "CXUINSPENSNLB0207M
                            ~ Personal insurance and pensions by Income Rang~
##
   8 "CXUINSPENSNLB0208M
                            ~ Personal insurance and pensions by Income Rang~
##
   9 "CXUINSPENSNLB0209M
                            ~ Personal insurance and pensions by Income Rang~
## 10 "CXUINSPENSNLB0210M
                            ~ Personal insurance and pensions by Income Rang~
## 11 "CXUINSPENSNLB0211M
                            ~ Personal insurance and pensions by Income Rang~
## 12 "CXUINSPENSNLB0212M
                            ~ Personal insurance and pensions by Income Rang~
## 13 "CXUINSPENSNLB0213M
                            ~ Personal insurance and pensions by Income Rang~
## 14 "CXUINSPENSNLB0214M
                            ~ Personal insurance and pensions by Income Rang~
## 15 "CXUINSPENSNLB0215M
                            ~ Personal insurance and pensions by Income Rang~
  16 "CXUINSPENSNLB0216M
                            ~ Personal insurance and pensions by Income Rang~
      "CXUINSPENSNLB0217M
                            ~ Personal insurance and pensions by Income Rang~
  18 "CXUINSPENSNLB0218M
                            ~ Personal insurance and pensions by Income Rang~
  19 "CXUINSPENSNLB0219M
                            ~ Personal insurance and pensions by Income Rang~
## 20 "CXUINSPENSNLB0220M
                            ~ Personal insurance and pensions by Income Rang~
## 21 "CXUINSPENSNLB0221M
                            ~ Personal insurance and pensions by Income Rang~
## 22 "CXUINSPENSNLB0222M
                            ~ Personal insurance and pensions by Income Rang~
```

23 "CXUINSPENSNLB0223M

24 "CXUINSPENSNLB02A1M

```
~ Personal insurance and pensions by Income Rang~
                           ~ Personal insurance and pensions by Income Rang~
## 25 "CXUINSPENSNLB02A2M
Prepare Data:
data <- cx.data.1.AllData %>%
  select(series_id, year, value) %>%
  right_join(cx.series %>%
              filter(subcategory_code == "INSPENSN",
                     item code == "INSPENSN",
                     demographics_code == "LB02") %>%
               select(series_id, series_title),
            by = "series_id") %>%
  mutate(series_id = series_id %>% paste %>% gsub(" ", "", .)) %>%
  arrange(series_id, year)
```

~ Personal insurance and pensions by Income Rang~

Plot:

```
data %>%
  filter(series_id %in% c("CXUINSPENSNLB0204M", "CXUINSPENSNLB0210M", "CXUINSPENSNLB0213M")) %>%
  ggplot(aes(x = year, y = value, linetype = series_title)) +
  geom_line() + theme_bw() +
  theme(legend.position = "bottom",
        legend.title = element blank(),
        legend.key.height = unit(0.1, "line")) +
  guides(linetype = guide legend(nrow = 4)) + xlab("") + ylab("")
```


- Personal insurance and pensions by Income Range: \$10,000 to \$14,999 before tax income
- ---- Personal insurance and pensions by Income Range: \$80,000 to \$99,999 before tax income(from 2
- -- Personal insurance and pensions by Income Range: Before tax income of \$70,000 and over

Estimated Rental Value of Owned Home

```
cx.series %>%
   filter(category_code == "ADDENDA",
          subcategory code == "TITLEOFI",
          item code == "910050",
          demographics code == "LB02") %>%
```

```
select(series_id, series_title) %>%
  as.tibble
## # A tibble: 25 x 2
##
      series_id
                              series_title
##
      <fct>
                              <fct>
   1 "CXU910050LB0201M
##
                            ~ Est. monthly rental value of owned home by Inc~
##
   2 "CXU910050LB0202M
                            ~ Est. monthly rental value of owned home by Inc~
                            ~ Est. monthly rental value of owned home by Inc~
## 3 "CXU910050LB0203M
## 4 "CXU910050LB0204M
                            ~ Est. monthly rental value of owned home by Inc~
## 5 "CXU910050LB0205M
                            ~ Est. monthly rental value of owned home by Inc~
## 6 "CXU910050LB0206M
                            ~ Est. monthly rental value of owned home by Inc~
                            ~ Est. monthly rental value of owned home by Inc~
## 7 "CXU910050LB0207M
                            ~ Est. monthly rental value of owned home by Inc~
## 8 "CXU910050LB0208M
## 9 "CXU910050LB0209M
                            ~ Est. monthly rental value of owned home by Inc~
                            ~ Est. monthly rental value of owned home by Inc~
## 10 "CXU910050LB0210M
## 11 "CXU910050LB0211M
                            ~ Est. monthly rental value of owned home by Inc~
## 12 "CXU910050LB0212M
                            ~ Est. monthly rental value of owned home by Inc~
## 13 "CXU910050LB0213M
                            ~ Est. monthly rental value of owned home by Inc~
## 14 "CXU910050LB0214M
                            ~ Est. monthly rental value of owned home by Inc~
## 15 "CXU910050LB0215M
                            ~ Est. monthly rental value of owned home by Inc~
## 16 "CXU910050LB0216M
                            ~ Est. monthly rental value of owned home by Inc~
## 17 "CXU910050LB0217M
                            ~ Est. monthly rental value of owned home by Inc~
## 18 "CXU910050LB0218M
                            ~ Est. monthly rental value of owned home by Inc~
## 19 "CXU910050LB0219M
                            ~ Est. monthly rental value of owned home by Inc~
## 20 "CXU910050LB0220M
                            ~ Est. monthly rental value of owned home by Inc~
## 21 "CXU910050LB0221M
                            ~ Est. monthly rental value of owned home by Inc~
## 22 "CXU910050LB0222M
                            ~ Est. monthly rental value of owned home by Inc~
## 23 "CXU910050LB0223M
                            ~ Est. monthly rental value of owned home by Inc~
## 24 "CXU910050LB02A1M
                            ~ Est. monthly rental value of owned home by Inc~
## 25 "CXU910050LB02A2M
                            ~ Est. monthly rental value of owned home by Inc~
Prepare Data
data <- cx.data.1.AllData %>%
  select(series_id, year, value) %>%
  right_join(cx.series %>%
              filter(category_code == "ADDENDA",
                     subcategory_code == "TITLEOFI",
                     item_code == "910050",
                     demographics_code == "LB02") %>%
               select(series_id, series_title),
            by = "series id") %>%
  mutate(series_id = series_id %>% paste %>% gsub(" ", "", .)) %>%
  arrange(series id, year)
Plot
  filter(series_id %in% c("CXU910050LB0204M", "CXU910050LB0210M", "CXU910050LB0213M")) %>%
  ggplot(aes(x = year, y = value, linetype = series_title)) +
  geom line() + theme bw() +
  theme(legend.position = "bottom",
```

legend.title = element_blank(),

legend.key.height = unit(0.1, "line")) +

guides(linetype = guide_legend(nrow = 4)) + xlab("") + ylab("") 1200 800 400 1990 2000 2010

```
— Est. monthly rental value of owned home by Income Range: $10,000 to $14,999 before tax income ---- Est. monthly rental value of owned home by Income Range: $80,000 to $99,999 before tax income(fror --- Est. monthly rental value of owned home by Income Range: Before tax income of $70,000 and over
```

Vehicle Purchases

```
## # A tibble: 25 x 2
##
      series_id
                              series_title
##
      <fct>
                              <fct>
##
   1 "CXU500110LB0201M
                            ~ Vehicle insurance by Income Range: All Consume~
                            ~ Vehicle insurance by Income Range: Before tax ~
##
   2 "CXU500110LB0202M
   3 "CXU500110LB0203M
                            ~ Vehicle insurance by Income Range: $5,000 to $~
##
##
   4 "CXU500110LB0204M
                            ~ Vehicle insurance by Income Range: $10,000 to ~
   5 "CXU500110LB0205M
                            ~ Vehicle insurance by Income Range: $15,000 to ~
##
   6 "CXU500110LB0206M
                            ~ Vehicle insurance by Income Range: $20,000 to ~
##
##
   7 "CXU500110LB0207M
                            ~ Vehicle insurance by Income Range: $30,000 to ~
   8 "CXU500110LB0208M
                            ~ Vehicle insurance by Income Range: $40,000 to ~
##
                            ~ Vehicle insurance by Income Range: $50,000 to ~
##
   9 "CXU500110LB0209M
## 10 "CXU500110LB0210M
                            ~ Vehicle insurance by Income Range: Before tax ~
## 11 "CXU500110LB0211M
                            ~ Vehicle insurance by Income Range: Before tax ~
## 12 "CXU500110LB0212M
                            ~ Vehicle insurance by Income Range: $70,000 to ~
## 13 "CXU500110LB0213M
                            ~ Vehicle insurance by Income Range: $80,000 to ~
## 14 "CXU500110LB0214M
                            ~ Vehicle insurance by Income Range: Before tax ~
## 15 "CXU500110LB0215M
                            ~ Vehicle insurance by Income Range: $100,000 to~
## 16 "CXU500110LB0216M
                            ~ Vehicle insurance by Income Range: $120,000 to~
## 17 "CXU500110LB0217M
                            ~ Vehicle insurance by Income Range: Before tax ~
## 18 "CXU500110LB0218M
                            ~ Vehicle insurance by Income Range: Less than $~
## 19 "CXU500110LB0219M
                            ~ Vehicle insurance by Income Range: $15,000 to ~
```

```
## 20 "CXU500110LB0220M
                            ~ Vehicle insurance by Income Range: $70,000 to ~
## 21 "CXU500110LB0221M
                            ~ Vehicle insurance by Income Range: $100,000 to~
## 22 "CXU500110LB0222M
                            ~ Vehicle insurance by Income Range: $150,000 to~
## 23 "CXU500110LB0223M
                            ~ Vehicle insurance by Income Range: $200,000 an~
## 24 "CXU500110LB02A1M
                            ~ Vehicle insurance by Income Range: Before tax ~
## 25 "CXU500110LB02A2M
                            ~ Vehicle insurance by Income Range: Total compl~
Prepare Data
data <- cx.data.1.AllData %>%
  select(series_id, year, value) %>%
  right_join(cx.series %>%
              filter(category code == "EXPEND",
                     subcategory_code == "TRANS",
                     item_code == "500110",
                     demographics_code == "LB02") %>%
               select(series_id, series_title),
            by = "series_id") %>%
  mutate(series_id = series_id %>% paste %>% gsub(" ", "", .)) %>%
  arrange(series_id, year)
```

Plot


```
— Vehicle insurance by Income Range: $10,000 to $14,999 before tax income
```

--- Vehicle insurance by Income Range: Before tax income of \$70,000 and over

Household Furnishings

```
cx.series %>%
filter(category_code == "EXPEND",
```

⁻⁻⁻ Vehicle insurance by Income Range: \$80,000 to \$99,999 before tax income(from 2003)

```
subcategory_code == "HOUSING",
          item_code == "HHFURNSH",
          demographics code == "LB02") %>%
  select(series id, series title) %>%
  as.tibble
## # A tibble: 25 x 2
##
      series id
                              series_title
##
      <fct>
                              <fct>
   1 "CXUHHFURNSHLB0201M
##
                            ~ Household furnishings and equipment by Income ~
   2 "CXUHHFURNSHLB0202M
                            ~ Household furnishings and equipment by Income ~
   3 "CXUHHFURNSHLB0203M
                            ~ Household furnishings and equipment by Income ~
##
##
  4 "CXUHHFURNSHLB0204M
                            ~ Household furnishings and equipment by Income ~
## 5 "CXUHHFURNSHLB0205M
                            ~ Household furnishings and equipment by Income ~
## 6 "CXUHHFURNSHLB0206M
                            ~ Household furnishings and equipment by Income ~
## 7 "CXUHHFURNSHLB0207M
                            ~ Household furnishings and equipment by Income ~
## 8 "CXUHHFURNSHLB0208M
                            ~ Household furnishings and equipment by Income ~
## 9 "CXUHHFURNSHLB0209M
                            ~ Household furnishings and equipment by Income ~
## 10 "CXUHHFURNSHLB0210M
                            ~ Household furnishings and equipment by Income ~
## 11 "CXUHHFURNSHLB0211M
                            ~ Household furnishings and equipment by Income ~
## 12 "CXUHHFURNSHLB0212M
                            ~ Household furnishings and equipment by Income ~
## 13 "CXUHHFURNSHLB0213M
                            ~ Household furnishings and equipment by Income ~
                            ~ Household furnishings and equipment by Income ~
## 14 "CXUHHFURNSHLB0214M
## 15 "CXUHHFURNSHLB0215M
                            ~ Household furnishings and equipment by Income ~
## 16 "CXUHHFURNSHLB0216M
                            ~ Household furnishings and equipment by Income ~
## 17 "CXUHHFURNSHLB0217M
                            ~ Household furnishings and equipment by Income ~
## 18 "CXUHHFURNSHLB0218M
                            ~ Household furnishings and equipment by Income ~
                            ~ Household furnishings and equipment by Income ~
## 19 "CXUHHFURNSHLB0219M
## 20 "CXUHHFURNSHLB0220M
                            ~ Household furnishings and equipment by Income ~
## 21 "CXUHHFURNSHLB0221M
                            ~ Household furnishings and equipment by Income ~
## 22 "CXUHHFURNSHLB0222M
                            ~ Household furnishings and equipment by Income ~
## 23 "CXUHHFURNSHLB0223M
                            ~ Household furnishings and equipment by Income ~
## 24 "CXUHHFURNSHLB02A1M
                            ~ Household furnishings and equipment by Income ~
## 25 "CXUHHFURNSHLB02A2M
                            ~ Household furnishings and equipment by Income ~
Prepare Data
data <- cx.data.1.AllData %>%
  select(series id, year, value) %>%
  right_join(cx.series %>%
              filter(category_code == "EXPEND",
                     subcategory_code == "HOUSING",
                     item code == "HHFURNSH",
                     demographics_code == "LB02") %>%
               select(series id, series title),
            by = "series id") %>%
  mutate(series_id = series_id %>% paste %>% gsub(" ", "", .)) %>%
  arrange(series_id, year)
Plot
data %>%
  filter(series_id %in% c("CXUHHFURNSHLB0204M", "CXUHHFURNSHLB0210M", "CXUHHFURNSHLB0213M")) %>%
  ggplot(aes(x = year, y = value, linetype = series_title)) +
  geom_line() + theme_bw() +
 theme(legend.position = "bottom",
```

```
legend.title = element_blank(),
      legend.key.height = unit(0.1, "line")) +
guides(linetype = guide_legend(nrow = 4)) + xlab("") + ylab("")
```


- Household furnishings and equipment by Income Range: \$10,000 to \$14,999 before tax income ---- Household furnishings and equipment by Income Range: \$80,000 to \$99,999 before tax income (from
- -- Household furnishings and equipment by Income Range: Before tax income of \$70,000 and over

Income after taxes

```
cx.series %>%
   filter(category_code == "CUCHARS",
          subcategory_code == "TITLECU",
          item_code == "INCAFTAX",
          demographics_code == "LB02") %>%
  select(series id, series title) %>%
  as.tibble
```

```
## # A tibble: 25 x 2
##
      series id
                              series title
##
      <fct>
                              <fct>
##
    1 "CXUINCAFTAXLB0201M
                              Income after taxes by Income Range: All Consum~
##
   2 "CXUINCAFTAXLB0202M
                              Income after taxes by Income Range: Before tax~
   3 "CXUINCAFTAXLB0203M
                              Income after taxes by Income Range: $5,000 to ~
   4 "CXUINCAFTAXLB0204M
                              Income after taxes by Income Range: $10,000 to~
##
##
   5 "CXUINCAFTAXLB0205M
                              Income after taxes by Income Range: $15,000 to~
                              Income after taxes by Income Range: $20,000 to~
   6 "CXUINCAFTAXLB0206M
##
##
   7 "CXUINCAFTAXLB0207M
                            ~ Income after taxes by Income Range: $30,000 to~
##
   8 "CXUINCAFTAXLB0208M
                            ~ Income after taxes by Income Range: $40,000 to~
##
   9 "CXUINCAFTAXLB0209M
                            ~ Income after taxes by Income Range: $50,000 to~
## 10 "CXUINCAFTAXLB0210M
                            ~ Income after taxes by Income Range: Before tax~
## 11 "CXUINCAFTAXLB0211M
                            ~ Income after taxes by Income Range: Before tax~
## 12 "CXUINCAFTAXLB0212M
                            ~ Income after taxes by Income Range: $70,000 to~
## 13 "CXUINCAFTAXLB0213M
                            ~ Income after taxes by Income Range: $80,000 to~
## 14 "CXUINCAFTAXLB0214M
                            ~ Income after taxes by Income Range: Before tax~
## 15 "CXUINCAFTAXLB0215M
                            ~ Income after taxes by Income Range: $100,000 t~
## 16 "CXUINCAFTAXLB0216M
                            ~ Income after taxes by Income Range: $120,000 t~
## 17 "CXUINCAFTAXLB0217M
                            ~ Income after taxes by Income Range: Before tax~
```

18 "CXUINCAFTAXLB0218M

```
## 19 "CXUINCAFTAXLB0219M
                            ~ Income after taxes by Income Range: $15,000 to~
## 20 "CXUINCAFTAXLB0220M
                            ~ Income after taxes by Income Range: $70,000 to~
## 21 "CXUINCAFTAXLB0221M
                            ~ Income after taxes by Income Range: $100,000 t~
## 22 "CXUINCAFTAXLB0222M
                            ~ Income after taxes by Income Range: $150,000 t~
## 23 "CXUINCAFTAXLB0223M
                            ~ Income after taxes by Income Range: $200,000 a~
## 24 "CXUINCAFTAXLB02A1M
                            ~ Income after taxes by Income Range: Before tax~
                            ~ Income after taxes by Income Range: Total comp~
## 25 "CXUINCAFTAXLB02A2M
Prepare Data
data <- cx.data.1.AllData %>%
  select(series id, year, value) %>%
  right_join(cx.series %>%
              filter(category_code == "CUCHARS",
                     subcategory_code == "TITLECU",
                     item code == "INCAFTAX",
                     demographics_code == "LB02") %>%
               select(series_id, series_title),
            by = "series_id") %>%
  mutate(series_id = series_id %>% paste %>% gsub(" ", "", .)) %>%
  arrange(series id, year)
```

~ Income after taxes by Income Range: Less than ~

Plot

```
data %>%
  filter(series id %in% c("CXUINCAFTAXLB0204M", "CXUINCAFTAXLB0210M", "CXUINCAFTAXLB0213M")) %>%
  ggplot(aes(x = year, y = value, linetype = series_title)) +
  geom_line() + theme_bw() +
  theme(legend.position = "bottom",
        legend.title = element blank().
        legend.key.height = unit(0.1, "line")) +
  guides(linetype = guide_legend(nrow = 4)) + xlab("") + ylab("")
```


- Income after taxes by Income Range: \$10,000 to \$14,999 before tax income
- ---- Income after taxes by Income Range: \$80,000 to \$99,999 before tax income(from 2003) --- Income after taxes by Income Range: Before tax income of \$70,000 and over

Average Annual Expenditures

```
cx.series %>%
   filter(category_code == "EXPEND",
          subcategory_code == "TOTALEXP",
          item code == "TOTALEXP",
          demographics_code == "LB02") %>%
  select(series id, series title) %>%
  as.tibble
## # A tibble: 25 x 2
##
      series id
                              series_title
##
      <fct>
                              <fct>
   1 "CXUTOTALEXPLB0201M
                            ~ Total average annual expenditures by Income Ra~
##
##
  2 "CXUTOTALEXPLB0202M
                           ~ Total average annual expenditures by Income Ra~
  3 "CXUTOTALEXPLB0203M
                           ~ Total average annual expenditures by Income Ra~
## 4 "CXUTOTALEXPLB0204M
                            ~ Total average annual expenditures by Income Ra~
## 5 "CXUTOTALEXPLB0205M
                            ~ Total average annual expenditures by Income Ra~
## 6 "CXUTOTALEXPLB0206M
                           ~ Total average annual expenditures by Income Ra~
## 7 "CXUTOTALEXPLB0207M
                            ~ Total average annual expenditures by Income Ra~
## 8 "CXUTOTALEXPLB0208M
                            ~ Total average annual expenditures by Income Ra~
## 9 "CXUTOTALEXPLB0209M
                           ~ Total average annual expenditures by Income Ra~
## 10 "CXUTOTALEXPLB0210M
                           ~ Total average annual expenditures by Income Ra~
## 11 "CXUTOTALEXPLB0211M
                            ~ Total average annual expenditures by Income Ra~
## 12 "CXUTOTALEXPLB0212M
                            ~ Total average annual expenditures by Income Ra~
## 13 "CXUTOTALEXPLB0213M
                            ~ Total average annual expenditures by Income Ra~
## 14 "CXUTOTALEXPLB0214M
                            ~ Total average annual expenditures by Income Ra~
## 15 "CXUTOTALEXPLB0215M
                            ~ Total average annual expenditures by Income Ra~
## 16 "CXUTOTALEXPLB0216M
                           ~ Total average annual expenditures by Income Ra~
                           ~ Total average annual expenditures by Income Ra~
## 17 "CXUTOTALEXPLB0217M
## 18 "CXUTOTALEXPLB0218M
                           ~ Total average annual expenditures by Income Ra~
                            ~ Total average annual expenditures by Income Ra~
## 19 "CXUTOTALEXPLB0219M
## 20 "CXUTOTALEXPLB0220M
                            ~ Total average annual expenditures by Income Ra~
## 21 "CXUTOTALEXPLB0221M
                            ~ Total average annual expenditures by Income Ra~
## 22 "CXUTOTALEXPLB0222M
                           ~ Total average annual expenditures by Income Ra~
## 23 "CXUTOTALEXPLB0223M
                            ~ Total average annual expenditures by Income Ra~
## 24 "CXUTOTALEXPLB02A1M
                           ~ Total average annual expenditures by Income Ra~
## 25 "CXUTOTALEXPLB02A2M
                           ~ Total average annual expenditures by Income Ra~
Prepare Data
data <- cx.data.1.AllData %>%
  select(series_id, year, value) %>%
  right_join(cx.series %>%
              filter(category code == "EXPEND",
                     subcategory_code == "TOTALEXP",
                     item_code == "TOTALEXP",
                     demographics_code == "LB02") %>%
               select(series_id, series_title),
            by = "series_id") %>%
  mutate(series_id = series_id %>% paste %>% gsub(" ", "", .)) %>%
  arrange(series_id, year)
Plot
```

filter(series_id %in% c("CXUTOTALEXPLB0204M", "CXUTOTALEXPLB0210M", "CXUTOTALEXPLB0213M")) %>%

```
ggplot(aes(x = year, y = value, linetype = series_title)) +
geom line() + theme bw() +
theme(legend.position = "bottom",
     legend.title = element blank(),
      legend.key.height = unit(0.1, "line")) +
guides(linetype = guide_legend(nrow = 4)) + xlab("") + ylab("")
```



```
Total average annual expenditures by Income Range: $10,000 to $14,999 before tax income
--- Total average annual expenditures by Income Range: $80,000 to $99,999 before tax income(from 2 --- Total average annual expenditures by Income Range: Before tax income of $70,000 and over
```

Saving Rate by Income according to CEX

```
cx.series %>%
  filter(category_code == "EXPEND",
          subcategory_code == "TOTALEXP",
          item_code == "TOTALEXP",
          demographics code == "LB02") %>%
 select(series_id, series_title) %>%
 as.tibble
```

```
## # A tibble: 25 x 2
##
      series_id
                              series_title
##
      <fct>
   1 "CXUTOTALEXPLB0201M
                            ~ Total average annual expenditures by Income Ra~
##
##
   2 "CXUTOTALEXPLB0202M
                            ~ Total average annual expenditures by Income Ra~
   3 "CXUTOTALEXPLB0203M
                            ~ Total average annual expenditures by Income Ra~
##
##
   4 "CXUTOTALEXPLB0204M
                            ~ Total average annual expenditures by Income Ra~
##
   5 "CXUTOTALEXPLB0205M
                            ~ Total average annual expenditures by Income Ra~
##
   6 "CXUTOTALEXPLB0206M
                            ~ Total average annual expenditures by Income Ra~
   7 "CXUTOTALEXPLB0207M
                            ~ Total average annual expenditures by Income Ra~
##
   8 "CXUTOTALEXPLB0208M
                            ~ Total average annual expenditures by Income Ra~
   9 "CXUTOTALEXPLB0209M
                            ~ Total average annual expenditures by Income Ra~
## 10 "CXUTOTALEXPLB0210M
                            ~ Total average annual expenditures by Income Ra~
## 11 "CXUTOTALEXPLB0211M
                            ~ Total average annual expenditures by Income Ra~
## 12 "CXUTOTALEXPLB0212M
                            ~ Total average annual expenditures by Income Ra~
## 13 "CXUTOTALEXPLB0213M
                            ~ Total average annual expenditures by Income Ra~
## 14 "CXUTOTALEXPLB0214M
                            ~ Total average annual expenditures by Income Ra~
```

```
~ Total average annual expenditures by Income Ra~
## 15 "CXUTOTALEXPLB0215M
## 16 "CXUTOTALEXPLB0216M
                          ~ Total average annual expenditures by Income Ra~
## 17 "CXUTOTALEXPLB0217M ~ Total average annual expenditures by Income Ra~
## 18 "CXUTOTALEXPLB0218M ~ Total average annual expenditures by Income Ra~
## 19 "CXUTOTALEXPLB0219M
                          ~ Total average annual expenditures by Income Ra~
## 20 "CXUTOTALEXPLB0220M
                          ~ Total average annual expenditures by Income Ra~
## 21 "CXUTOTALEXPLB0221M ~ Total average annual expenditures by Income Ra~
## 22 "CXUTOTALEXPLB0222M ~ Total average annual expenditures by Income Ra~
## 23 "CXUTOTALEXPLB0223M
                           ~ Total average annual expenditures by Income Ra~
## 24 "CXUTOTALEXPLB02A1M
                           ~ Total average annual expenditures by Income Ra~
## 25 "CXUTOTALEXPLB02A2M
                          ~ Total average annual expenditures by Income Ra~
Prepare Data
data1 <- cx.data.1.AllData %>%
  select(series_id, year, value) %>%
  right_join(cx.series %>%
              filter(category_code == "EXPEND",
                     subcategory_code == "TOTALEXP",
                     item_code == "TOTALEXP",
                     demographics_code == "LB02") %>%
               select(series_id, series_title),
            by = "series id") %>%
  mutate(series_id = series_id %>% paste %>% gsub(" ", "", .)) %>%
  arrange(series_id, year) %>%
  select(-series_title) %>%
  mutate(series id = series id %>% substr(16, 17) %>% as.numeric) %>%
  rename(exp = value) %>%
 na.omit
## Warning in function_list[[k]](value): NAs introduced by coercion
data2 <- cx.data.1.AllData %>%
  select(series_id, year, value) %>%
  right_join(cx.series %>%
              filter(category_code == "CUCHARS",
                     subcategory_code == "TITLECU",
                     item_code == "INCAFTAX",
                     demographics_code == "LB02") %>%
               select(series_id, series_title),
            by = "series_id") %>%
  mutate(series_id = series_id %>% paste %>% gsub(" ", "", .)) %>%
  arrange(series_id, year) %>%
  mutate(series_id = series_id %>% substr(16, 17) %>% as.numeric) %>%
  rename(inc = value) %>%
  na.omit
## Warning in function_list[[k]](value): NAs introduced by coercion
data.merged <- data1 %>%
 full_join(data2, by = c("series_id", "year")) %>%
 mutate(saving = 100*(inc - exp)/exp)
Plot
data.merged %>%
 filter(series_id %in% c(4, 10, 13)) %>%
```

```
ggplot(aes(x = year, y = saving, linetype = series_title)) +
geom line() + theme bw() +
theme(legend.position = "bottom",
     legend.title = element blank(),
      legend.key.height = unit(0.1, "line")) +
guides(linetype = guide legend(nrow = 4)) + xlab("") + ylab("")
```



```
Income after taxes by Income Range: $10,000 to $14,999 before tax income
----Income after taxes by Income Range: $80,000 to $99,999 before tax income(from 2003) --- Income after taxes by Income Range: Before tax income of $70,000 and over
```

```
data.merged %>%
  filter(series_id %in% c(5, 6, 7, 8)) %>%
  ggplot(aes(x = year, y = saving, linetype = series_title)) +
  geom_line() + theme_bw() +
  theme(legend.position = "bottom",
        legend.title = element_blank(),
        legend.key.height = unit(0.1, "line")) +
  guides(linetype = guide_legend(nrow = 4)) + xlab("") + ylab("")
```



```
— Income after taxes by Income Range: $15,000 to $19,999 before tax income ---- Income after taxes by Income Range: $20,000 to $29,999 before tax income --- Income after taxes by Income Range: $30,000 to $39,999 before tax income
- - Income after taxes by Income Range: $40,000 to $49,999 before tax income
```

```
data.merged %>%
  filter(series_id %in% c(9, 10, 11, 12)) %>%
  ggplot(aes(x = year, y = saving, linetype = series_title)) +
```

```
geom_line() + theme_bw() +
theme(legend.position = "bottom",
    legend.title = element_blank(),
    legend.key.height = unit(0.1, "line")) +
guides(linetype = guide_legend(nrow = 4)) + xlab("") + ylab("")
```



```
— Income after taxes by Income Range: $50,000 to $69,999 before tax income
----Income after taxes by Income Range: $70,000 to $79,999 before tax income(from 2003)
---Income after taxes by Income Range: Before tax income of $70,000 and over
-- Income after taxes by Income Range: Before tax income of less than $70,000(from 2003)
```



```
— Income after taxes by Income Range: $100,000 to $119,999 before tax income(from 2003) ----Income after taxes by Income Range: $120,000 to $149,999 before tax income(from 2003) --- Income after taxes by Income Range: $80,000 to $99,999 before tax income(from 2003) -- Income after taxes by Income Range: Before tax income of $100,000 and over(from 2003)
```

```
data.merged %>%
  filter(series_id %in% c(17, 18, 19, 20)) %>%
  ggplot(aes(x = year, y = saving, linetype = series_title)) +
  geom_line() + theme_bw() +
```

```
theme(legend.position = "bottom",
    legend.title = element_blank(),
    legend.key.height = unit(0.1, "line")) +
guides(linetype = guide_legend(nrow = 4)) + xlab("") + ylab("")
```



```
— Income after taxes by Income Range: $15,000 to $29,999
---Income after taxes by Income Range: $70,000 to $99,999
--Income after taxes by Income Range: Before tax income of $150,000 and over(from 2003)
- Income after taxes by Income Range: Less than $15,000
```

Computing environment

```
Sys.time()
## [1] "2018-09-25 13:23:09 PDT"
sessionInfo()
## R version 3.5.1 (2018-07-02)
## Platform: x86_64-apple-darwin15.6.0 (64-bit)
## Running under: macOS High Sierra 10.13.6
##
## Matrix products: default
## BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
##
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## attached base packages:
## [1] stats
                 graphics grDevices utils
                                               datasets methods
                                                                   base
##
## other attached packages:
  [1] bindrcpp_0.2.2 rvest_0.3.2
                                        xml2_1.2.0
                                                        forcats_0.3.0
##
  [5] stringr_1.3.1
                       dplyr_0.7.6
                                       purrr_0.2.5
                                                        readr_1.1.1
## [9] tidyr 0.8.1
                        tibble 1.4.2
                                       ggplot2_3.0.0
                                                        tidyverse 1.2.1
## [13] curl_3.2
## loaded via a namespace (and not attached):
## [1] Rcpp_0.12.18
                        cellranger_1.1.0 pillar_1.3.0
                                                         compiler_3.5.1
```

##	[5]	plyr_1.8.4	bindr_0.1.1	tools_3.5.1	digest_0.6.15
##		lubridate_1.7.4	jsonlite_1.5	evaluate_0.11	nlme_3.1-137
##		gtable_0.2.0	lattice_0.20-35	pkgconfig_2.0.2	rlang_0.2.2
		cli_1.0.0	rstudioapi_0.7	yaml_2.2.0	haven_1.1.2
##	[21]	withr_2.1.2	httr_1.3.1	knitr_1.20	hms_0.4.2
##	[25]	rprojroot_1.3-2	grid_3.5.1	tidyselect_0.2.4	glue_1.3.0
##	[29]	R6_2.2.2	fansi_0.3.0	readxl_1.1.0	rmarkdown_1.10
##	[33]	modelr_0.1.2	magrittr_1.5	backports_1.1.2	scales_1.0.0
##	[37]	htmltools_0.3.6	assertthat_0.2.0	<pre>colorspace_1.3-2</pre>	labeling_0.3
##	[41]	utf8_1.1.4	stringi_1.2.4	lazyeval_0.2.1	munsell_0.5.0
##	[45]	broom_0.5.0	crayon_1.3.4		