轻舟机器人 ROS 端与上位机调度软件 socket 通信协议

AI 航团队

上位机系统与轻舟机器人 ROS 之间,采用 TCP\IP 协议通信,无线传输。上位机为 server 端,轻舟机器人 ROS 端为 client。

上位机系统将下一个目标地点发送给轻舟机器人,若轻舟机器人行驶过程中调度系统检测到可能发生碰撞,则需要单独向小车发送通行/禁行指令。轻舟机器人应该能够实时上报自身位姿信息和状态信息,频率为20HZ。

上位机示例界面可参考如下:

1. 通信内容制定

(1) 上位机读取轻舟机器人 ROS 端数据参数和下发指令:

描述	读写状态
小车编码(0001、0002)	读
小车当前位置坐标 X	读
小车当前位置坐标 Y	读
小车当前位置坐标θ	读
角速度	读
线速度	读
车辆状态: 0-开机初始化; 1-到达停车的; 2-自动导航进行中;	读
3-开机等待。	φ.
导航状态: 0-初始化; 1-交通灯; 2-升降杆(保留); 3-S 路; 4-自主导航。	读
通行指令: 1-开始导航 2-禁行(随时停止)	写
重新启动,恢复初始状态	写
初始等待区 (x,y,θ) (目标位置和角度)	写
货物接货区 (x,y,θ) (目标位置和角度)	写

货物停靠区 (x,y,θ) (目标位置和角度)	写
回到初始等待区 (x,y,θ) (目标位置和角度)	写
连接 IP1、IP2,连接不同小车	写

(2) 轻舟机器人 ROS 端上传和接收数据

字段名称	字段意义说明					
小车编码	编码 int 类型					
小车	小车当前位置坐标 X(map 坐标系下)	上传				
当前位置 当前位置	小车当前位置坐标 Y(map 坐标系下)	上传				
当 則 1 丛 直。	小车当前位置坐标θ(map 坐标系下)	上传				
角速度	当前车辆的角速度(订阅 odom 话题获得)	上传				
线速度	当前车辆的线速度(订阅 odom 话题获得)	上次				
车辆状态	0-开机初始化; 1-到达停车点; 2-自动导航进行中; 3-开机等待。	上传				
导航状态	0-初始化; 1-交通灯; 2-升降杆(保留); 3-S 路; 4-自主导航。	上传				
通行指令	1-开始导航 2-禁行(随时停止)	读/写				
重新启动	恢复初始状态	读/写				

2. 具体通信协议

(1) 上位机发送给轻舟机器人 ROS 端数据

起始符	长度	命令码	命令参数	异或校验	和校验	结束符
4Byte	4Byte	1Byte	0-N 个 Byte	1Byte	1Byte	4Byte

参考结构其如下:

```
struct frame t {
```

char frame_header[4]; //起始符;固定为 0x02,0x20,0x02,0x20;

int frame_len; //长度
char command; //命令码
char comm_para[256]; //命令参数
char sum; //和校验

char end[4]; //结束符 固定为 0x03,0x30,0x03,0x30;

}

帧起始符: 固定为 0x02,0x20,0x02,0x20;

帧长度值:是从下一字节开始,到整个帧结束符的字节数。

帧结束符: 固定为 0x03,0x30,0x03,0x30;

校验的范围从长度字段开始,到命令参数字段结束。使用一个字节的和校验。

命令码说明:

1) 继续行驶

命令码: 0x10, 无参数,如下:

4Byte 4Byte 1Byte	1Byte	1Byte	4Byte
-------------------	-------	-------	-------

2) 停车,暂停

命令码: 0x20, 无参数,如下:

起始符	长度	命令码	异或校验	和校验	结束符
4Byte	4Byte	1Byte	1Byte	1Byte	4Byte

3) 上位机发送初始等待区(x,y)(目标位置)

命令码: 0x30,参数为4个字节的X,4个字节的Y,如下:

起始符	长度	命令码	命令参数	异或校验	和校验	结束符
4Byte	4Byte	1Byte	8Byte	1Byte	1Byte	4Byte

4) 上位机发送货物接货区(x,y)(目标位置)

命令码: 0x40,参数为4个字节的X,4个字节的Y,如下:

起始符	长度	命令码	命令参数	异或校验	和校验	结束符
4Byte	4Byte	1Byte	8Byte	1Byte	1Byte	4Byte

5) 上位机发送货物停靠区(x,y)(目标位置)

命令码: 0x50,参数为4个字节的X,4个字节的Y,如下:

起始符	长度	命令码	命令参数	异或校验	和校验	结束符
4Byte	4Byte	1Byte	8Byte	1Byte	1Byte	4Byte

(2) 轻舟机器人 ROS 端发送给上位机数据

轻舟机器人发送给上位机车辆位置与状态,以 20hz 持续发送

起始符	长度	命令码	命令参数	异或校验	和校验	结束符
4Byte	4Byte	1Byte	N Byte	1Byte	1Byte	4Byte

命令参数说明:

字段名称	字节	类型	字段意义说明	
小车编码	4byte	int	int 类型	上传

小车	4byte	Float	小车当前位置坐标 X	上传	
当前位置	4byte	Float 小车当前位置坐标 Y		上传	
	4byte	Float	小车当前位置坐标θ(四元数转化的yaw)	上传	
角速度	4byte	Float	当前车辆角速度	上传	
线速度	1byte	Float	当前车辆线速度	上传	
车辆状态	1byte	Char	0-开机初始化; 1-到达停车点; 2-自动导	上传	
			航进行中; 3-开机等待。		
		Char	0-初始化;1-交通灯;2-升降杆(保留);	上传	
导航状态 lbyte			3-S 路; 4-自主导航。	工作	

(3) 心跳包:

Client 端: 在有数据发送给过程中,客户端不发送心跳包;

在无数据收发下,每三秒发送一帧心跳包,格式如下:

命令码: 0x77, 无参数,

起始符	长度	命令码	异或校验	和校验	结束符
4Byte	4Byte	1 Byte	1Byte	1Byte	4Byte

客户端在三秒内会接受 server 端任何反馈,格式如下:

命令码: 0x72, 无参数,

起始符	长度	命令码	异或校验	和校验	结束符
4Byte	4Byte	1 Byte	1Byte	1Byte	4Byte

如果没有接收到任何其他协议数据,则客户端再次发送心跳包,如果连续三次都灭有接受到反馈,认为服务器端断开 socket,会重新 connect。

Server 端:

在接受到客户端发送过来的心跳包后,三秒钟内需回复以上协议,如果在 3 次(3*3 秒)都未收到客户端任何数据,则认为客户端断了,重新 accept。