

Fig. 1

Fig. 1

In Vivo IFN- γ production
during tuberculosis infection

Fig. 2

In vitro response of spleen
lymphocytes

Fig. 3

4/15

Fig. 4

Fig. 5

Fig. 6

Physical map of recombinant lambda phages expressing products reactive with Mabs recognizing low M.W. components

Fig. 7

8/15

Fig. 8

9/15

1 GGCAGCCGGT ACCTATGTC CGGCCGATGC TGCGGNCGCG TGCACCTATA CGGGTTCTG											
-35 region											
-10 region											
61	ATCGAACCTCT	GCTGACCGAG	AGGACTTG	TG	ATG	TGG	CAA	AAC	ATG	TAC	CCC
	Shine Delgarno	CAC	GCG	GAT	A ^{r3}	GCA	TAT	GCC	GCG	AGC	CTG
121	ATG	TTC	GCT	CAC	G	D	I	A	G	T	L
M	L	G	H	A	G	G	Y	A	G	Q	S
181	CAG	ATC	GCC	GTC	GAG	GCG	GCG	ATG	GCG	ATC	AG
E	I	A	V	E	Q	A	N	L	Q	G	D
241	TAT	CAG	GCG	TGG	CAG	GCA	CAG	GCG	GTA	TAT	CAT
Y	Q	A	W	Q	A	Q	W	N	Q	A	M
301	GCG	ATG	TCC	AGC	ACC	CAT	GAA	GTC	ACC	ATG	GCC
A	M	S	S	T	H	E	A	N	T	M	A
361	GCC	AAA	TGG	GCG	GCG	TGG					
	A	A	K	W	G	G					

Fig. 9

Fig. 10

1	GGGTAGCCGG ACCACCCCTG GCGAAAGATG TGCAGGCCGC CATCAAGGGCG GTCAAGGGCG	60
	-35 region	
61	GGCACGGGT CATAAACCTT GACGGCACCT TGTGCCCCGG CCCCGGGGTG CTGACGGCCG	120
	-10 region	
121	ACGAGTACA A CTCCCCCCTG GTG GCC GAC CCG GAG TCC ACC GCG GCG Shine Delgarno V A D P E S T A A	170
171	TG C CC GAC GGC GGC AGG CTG GTC GTT CTG GAT GGC ACC GTC ACT GCC GAA CTC GAA GCC L P D G A G L V V L D G T V T A E L E A	230
231	GAG GGC TGG GCC AAA GAT CGC ATC CGC GAA CTG CAA GAG CTG CGT AAG TCG ACC GGG CTG E G W A K D R I R E L Q E L R K S T G L	290
291	GAC GTT TCC GAC CGC ATC CGG GTG GTG ATG TCG GTG CCT GCG GAA GAC TGG GCG D V S D R I R V V M S V P A E R E D W A	350
351	GGC ACC CAT CGC GAC CTC ATT GCC GGA GAA ATC TTG CCT ACC GAC TTC GAA <u>TTC</u> <u>GGC</u> <u>GAC</u> R T H R D L I A G E I L A T D F E F A D	410
411	CTC <u>GGC</u> <u>GAT</u> <u>GCT</u> <u>GTG</u> <u>GCC</u> <u>ATC</u> <u>GGC</u> <u>GAC</u> <u>GTC</u> <u>GGG</u> <u>GTA</u> <u>AGC</u> <u>ATC</u> <u>GAA</u> <u>AAG</u> <u>ACC</u> <u>TGA</u>	467
	L A D G V A I G D G V R V S I E K T *	

1	GAATTGCCGGGTGCACACAGCCTAACAGACGGAGGTGGACACATGAAG	50
	M K	
51	GGTCGGTCGGCGCTGCTGCCGGCGCTCTGGATTGCCGCACTGTCATTGG	100
	G R S A L L R A L W I A A L S F G	
101	GTTGGGCGGTGTCCGGTAGCCGCGGAACCCACCGCCAAGGCCGCCCCAT	150
	L G G V A V A A E P T A K A A P	
151	ACGAGAACCTGATGGTGCCGCTGCCCTCGATGGGCCGGACATCCCGTG	200
	Y E N L M V P S P S M G R D I P V	
201	GCCTTCCTAGCCGGTGGGCCGACCGGGTGTATCTGCTGGACGCCCTCAA	250
	A F L A G G P H A V Y L L D A F N	
251	CGCCGGCCCGGATGTCAGTAACGGTCACCGCGGGTAACGCGATGAACA	300
	A G P D V S N W V T A G N A M N	
301	CGTTGGCGGGCAAGGGGATTCTGGTGGTGGCACCGGCCGGTGGTGCCTAC	350
	T L A G K G I S V V A P A G G A Y	
351	AGCATGTACACCAACTGGGAGCAGGATGGCAGCAAGCAGTGGGACACCTT	400
	S M Y T N W E Q D G S K Q W D T F	
401	CTTGTCCGCTGAGCTGCCGACTGGCTGCCGCTAACCGGGGCTTGGCCC	450
	L S A E L P D W L A A N R G L A	
451	CCGGTGGCCATGCCGGCTTGGCGCCGCTCAGGGCGGTTACGGGGCGATG	500
	P G G H A A V G A A Q G G Y G A M	
501	GCGCTGGCGGCCTCCACCCCGACCGCTTCGGCTCGCTGGCTCGATGTC	550
	A L A A F H P D R F G F A G S M S	
551	GGGCTTTTGTACCCGTCGAACACCACCAACGGTGCATGCCGGCGG	600
	G F L Y P S N T T T N G A I A A	
601	GCATGCAGCAATTGGCGGTGTGGACACCAACGGAATGTGGGGAGCACCA	650
	G M Q Q F G G V D T N G M W G A P	
651	CAGCTGGGTGGTGGAAAGTGGCACGACCCGTGGGTGCATGCCAGCCTGCT	700
	Q L G R W K W H D P W V H A S L L	
701	GGCGCAAAACAACACCCGGGTGTGGGTGTGGAGCCCACCAACCCGGGAG	750
	A I Q N N E R V W V W S P T N P G	
751	CCAGCGATCCGCCATGATGCCAAACCGCCAGGGCGATGGTAAC	800
	A S D P A A M I G Q T A E A M G N	
801	AGCCGCATGTTCTACAACCAAGTATGCCAGCGTCGGCGGGCACACGGACA	850
	S R M F Y N Q Y R S V G G H N G H	
851	CTTCGACTTCCCAGCCAGCGGTGACAACGGCTGGGCTCGTGGCGCCCC	900
	F D F P A S G D N G W G S W A P	
901	AGCTGGCGCTATGTCGGCGATATCGTCGGTGCATCCGCTAACCGAAT	950
	Q L G A M S G D I V G A I R .	
951	TC	952

Fig. 11

12/15

2-DE reference map of ST-CF

Fig. 12

TB10.4 MSQIMNYPAMLGHAGDMAGYAGTLQSLGAEIAVEQAALOSAMQCDTIGTYQAWQAWNQAMEDLVRAYHAMSSTHEANTMAMMARDTAEEAKWGG
TB10.4-P1 MSQIMNYPAMLGHAGDM
TB10.4-P2 MLGHAGDMAGYAGTLQSL
TB10.4-P3 YAGTLQSLGAEIAVEQAA
TB10.4-P4 SIAVEQAALOSAMQCDTG
TB10.4-P5 SAWQCDTIGTYQAWQAWN
TB10.4-P6 YQAWQAWNQAMEDLVR
TB10.4-P7 AMSTHEANTMAMMARDT
TB10.4-P8 MAMMARDTAEEAKWGG
TB10.4-P9

Fig. 13

Fig. 14

TB10.3 MSQIMNYPAMMAHAGDMAGYAGTLQSILGADIASEQAVLSSAWQDTGITYTGSWOTQWNQALEDLVRAYOSMSGTHESENTMAMLARDGAEAAKNGG
 TB10.3-P1 MSQIMNYPAMMAHAGDMAG
 TB10.3-P2 MNAHAGDMAGYAGTLQSILGA
 TB10.3-P3 YAGTLQSILGADIASEQAVLS
 TB10.3-P4 DIFSEQAVLSSAWQDTGIT
 TB10.3-P5 SAWQDTGITYQGWOTWNQ
 TB10.3-P6 YQGWOTWNQOBLEDLYRAYO
 TB10.3-P7 ALEDLYRAYOSMSGTHESENT
 TB10.3-P8 SMSCTHESNTMAMLARDGAE
 TB10.3-P9 MAMLARDGAEAAKNGG

TB12.9	MSQSMYSYPA <u>MANTANGDMAGYTGTQS</u> IADIASERTAPS <u>RACQGDLGM</u> SHQDWQAOQWNOAMEALARAYR <u>CCR</u> RALRQIGYLERPVGDDSSDCGTIRVGSFRGRWLDPRHAGPATAADAGD
TB12.9-P1	MSQSMYSYPA <u>MANTANGDMAG</u>
TB12.9-P2	<u>M</u> TAN <u>G</u> DMAGYTGTQS <u>LG</u> A
TB12.9-P3	YTGTQS <u>I</u> ADIASER <u>TAPS</u>
TB12.9-P4	<u>D</u> IASER <u>TAP</u> RACQGDL <u>GMS</u>
TB12.9-P5	<u>R</u> ACQGD <u>LGM</u> SHQDWQAOQWNO
TB12.9-P6	<u>H</u> QDWQAOQWNOAMEALARAYR
TB12.9-P7	<u>A</u> MEALARAYR <u>CCR</u> RALRQIG
TB12.9-P8	<u>E</u> CR <u>RA</u> L <u>QI</u> GYLERPVGDS
TB12.9-P9	VLERPVGDS <u>SSDCGT</u> IRVGSE
TB12.9-P10	<u>DC</u> GTIRVGSFRGRWLDPRH
TB12.9-P11	<u>R</u> GRWLDPRHAGPATAADAGD

Fig. 15