Final Term Project Presentation

Skeleton-based Gait Recognition via Robust Frame-level Matching

Md Bakhtiar Hasan

 $\begin{array}{c} {\rm STUDENT\ ID:\ 181041013} \\ {\rm Department\ of\ Computer\ Science\ and\ Engineering} \\ {\rm Islamic\ University\ of\ Technology} \end{array}$

July 5, 2019

Terminology

- Gait How a person walks
- Gait Recognition
 Biometric identification method
- Skeleton-Based
 Skeleton joints extracted by 3D motion capture tool
- Frame-Level Matching Matching based on the quality of the frame

Figure: Extracted Skeleton Joints

Research Challenges

- Development of view and scale-invariant feature descriptor
- Effective representation of human gait
- Ensuring low computational cost
- Minimize the influence of noise and other covariate conditions

Existing Works

- Appearance-based methods [1], [2]
 - Silhouette information obtained from background subtraction
 - Average aligned silhouettes through statistical analysis also known as Gait Energy Image
 - Low computational cost
 - Sensitive to changes in observation view

- Model-based methods[3], [4], [5], [6], [7]
 - Analyze the kinematics of human body parts in 3D space
 - Use sensors or motion capturing devices for constructing 3D skeleton
 - Inaccurate skeleton estimation as noisy frames and characteristic frames are equally treated

Overall Framework

Centroid-based Skeleton Alignment

- Translation vector to move the centers of all skeletons to the origin
 - using centroid of joint position of torso
- Scale vector to make all skeletons equal in size
 using centroids of the joints of upper torso
 and lower torso
- Rotation matrix to rotate all skeletons in the same direction
 - using position difference of the centroid to detect moving direction
 - position of centroid taken in variable time interval

Original

Spatial Modeling of Gait Pattern

- Combination of position vectors from centroid
 - Left Elbow
 - Right Elbow Right
- Other vectors
 - Left Elbow \rightarrow Left Wrist
 - Right Elbow \rightarrow Right Wrist

- Left Knee
- Right Knee
- Left Knee \rightarrow Left Ankle
- Right Knee \rightarrow Right Ankle
- Contains information about both distance and angles
- Invariant to view and scale due to skeleton alignment
- 8 position vectors to form a 24-dimensional feature vector

Temporal Segmentation of Gait Cycle

- Divide recurrent gait cycle into 4 gait phases based on the movement of feet
- Estimate label of each gait phase based on which foot is in front
- Polynomial fitting to the raw step length to reduce irregularities in step length measurement
- Use Random Forest classifier to estimate labels

Two-stage Linear Matching

Preprocessing

- Pairwise distance between two vectors Manhattan distance
- Measure quality of skeleton based on symmetry of human body using arm and leg symmetry
- The more assymmetric the length of the arm or leg, the lower the skeleton quality
- Create cost matrix using distance of test frame and stored frame, and quality
- Compute cost matrix for phases of stored frame that are identical to phases of test frame to reduce computational cost

Two-stage Linear Matching

Stage 1

- Linear assignment problem Combinatorial optimization to find minimum weight matching given a cost matrix
 Solution: Hungarian Algorithm
- Solve linear assignment problem with cost matrix to find the person having the most similar pattern from stored frames

Stage 2

- Again solve linear assignment problem with second-most similar pattern
- To prevent matching with same person give infinite cost penalty to the first matched person

Weighted Majority Voting

- Using quality of the input frame, assign weight to each of the matched phases
- Calculate similarity of each pattern using inverse of distance from stored pattern
- Calculate margin between two matched patterns using ratio of their distance from the matched frame
- Calculate frame-level matching score using the combination of these three
- Vote the user with the most matching score

Implementation

Referenced Paper

Choi, S., Kim, J., Kim, W., & Kim, C. (2019). Skeleton-based Gait Recognition via Robust Frame-level Matching. *IEEE Transactions on Information Forensics and Security*.

Tools Used

MATLAB

Dataset

- UPCVgait
- CILgait
 - CIL-S (Stops Walking)
 - CIL-SC (S+Calling Pose)
 - CIL-SV (S+Looking at phone)
- UPCVgaitK2 (Not Freely Available)
- SDUgait (Not Freely Available)

Result Analysis

Accuracy

Method	UPCV1	CIL-S	CIL-SC	CIL-SV
Implementation	99.07	87.50	75.00	83.33
Ball et al. [3]	58.09	8.33	4.17	0.00
Preis et al. [4]	81.58	20.83	20.83	16.67
Kastaniotis et al. [5]	70.22	33.33	16.67	33.33
Ahmed et al.[6]	82.13	20.83	12.50	12.50
Kastaniotis et al. [7]	94.11	58.33	41.67	54.17

Runtime on UPCV1 dataset

Method	Runtime (seconds)	
Implementation	3.05	
Ahmed et al. [6]	8.07	
Kastaniotis et al. [7]	61.58	

Future Scope

- Reducing frame-by-frame comparison by finding representative patterns
- Use other image based 3D pose estimation techniques instead of Kinect

References

- Han, J., & Bhanu, B. (2005). Individual recognition using gait energy image. IEEE transactions on pattern analysis and machine intelligence, 28(2), 316-322.
- Makihara, Y., Sagawa, R., Mukaigawa, Y., Echigo, T., & Yagi, Y. (2006, May). Gait recognition using a view transformation model in the frequency domain. In european conference on computer vision (pp. 151-163). Springer, Berlin, Heidelberg.
- Ball, A., Rye, D., Ramos, F., & Velonaki, M. (2012, March). Unsupervised clustering of people from 'skeleton'data. In 2012 7th ACM/IEEE International Conference on Human-Robot Interaction (HRI) (pp. 225-226). IEEE.
- Preis, J., Kessel, M., Werner, M., & Linnhoff-Popien, C. (2012, June). Gait recognition with kinect. In 1st international workshop on kinect in pervasive computing (pp. 1-4). New Castle, UK.
- Kastaniotis, D., Theodorakopoulos, I., Economou, G., & Fotopoulos, S. (2013, July). Gait-based gender recognition using pose information for real time applications. In 2013 18th International Conference on Digital Signal Processing (DSP) (pp. 1-6). IEEE.
- Ahmed, F., Paul, P. P., & Gavrilova, M. L. (2015). DTW-based kernel and rank-level fusion for 3D gait recognition using Kinect. The Visual Computer, 31(6-8), 915-924.
- Wastaniotis, D., Theodorakopoulos, I., Theoharatos, C., Economou, G., & Fotopoulos, S. (2015). A framework for gait-based recognition using Kinect. Pattern Recognition Letters, 68, 327-335.

THANK YOU

