This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:		(11) International Publication Number: WO 97/25424
C12N 15/12, 5/10, C07K 14/715, 16/28, C12Q 1/68, G01N 33/50, A61K 38/17, 48/00	A1	(43) International Publication Date: 17 July 1997 (17.07.97)
(21) International Application Number: PCT/US9	77/001:	(74) Agent: PESSIN, Karol, M.; Amgen Inc., Amgen Center, 1840 De Havilland Drive, Thousand Oaks, CA 91320-1789 (US).
(22) International Filing Date: 2 January 1997 (0	2.01.9	
(30) Priority Data: 08/582,825	5) Ü 25 (CI	
Filed on 4 January 1996 (0	14.01.9	b), Cr, Cd, Cl, CW, GA, GW, ML, MR, WE, SN, 1D, 10).
(71) Applicant (for all designated States except US): AMGEN INC. [US/US]; Amgen Center, 1840 De Havilland Drive, Thousand Oaks, CA 91320-1789 (US).		
(72) Inventors; and (75) Inventors/Applicants (for US only): CHANG, M. [US/US]; 736 Calle Las Colinas, Newbury Park, C. (US). WELCHER, Andrew, Avery [US/US]; 786 Street, Thousand Oaks, CA 91320 (US). FLETCHE erick, Addison [US/US]; 5031 Colony Drive, Called	A 913 Capit R, Fre	amendments. hi 20 an d-

- (54) Title: OB PROTEIN RECEPTOR AND RELATED COMPOSITIONS AND METHODS
- (57) Abstract

CA 93012 (US).

The present invention relates to a novel class of protein receptors, herein denominated "OB protein receptors" or "OB receptors", which are thought to selectively bind OB protein. As such, the novel OB protein receptor family is provided, as well as novel members of such family. Also provided are nucleic acids, vectors and host cells containing such nucleic acids, related antisense nucleic acids, molecules which selectively bind to the OB protein receptor, and related compositions of matter, such as OB receptor protein/OB protein complexes and pharmaceutical compositions. In other aspects, the present inventon relates to methods of using the above compositions, such as therapeutic and/or diagnostic methods, and methods for preparing OB receptor ligands.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	· GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia .	MX	Mexico
ΑÜ	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	· JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus .	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	ш	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
cz	Czech Republic	· LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	uz	Uzbekistan
GA	Gabon ,	MR	Mauritania	VN	Viet Nam

30

OB PROTEIN RECEPTOR AND RELATED COMPOSITIONS AND METHODS

FIELD OF THE INVENTION

The present invention relates to OB protein receptors, related compositions and methods of making and using such receptors and related compositions.

BACKGROUND

10 Although the molecular basis for obesity is largely unknown, the identification of the "OB gene" and protein encoded ("OB protein") has shed some light on mechanisms the body uses to regulate body fat deposition. Zhang et al., Nature 372: 425-432 (1994); see also, the Correction at Nature 374: 479 (1995). 15 protein is active in vivo in both ob/ob mutant mice (mice obese due to a defect in the production of the OB gene product) as well as in normal, wild type mice. biological activity manifests itself in, among other 20 things, weight loss. See generally, Barinaga, "Obese" Protein Slims Mice, Science 269: 475-476 (1995). See PCT International Publication Number WO 96/05309, "Modulators of Body Weight, Corresponding Nucleic Acids and Proteins, and Diagnostic and Therapeutic Uses 25 Thereof, " herein incorporated by reference.

The other biological effects of OB protein are not well characterized. It is known, for instance, that in ob/ob mutant mice, administration of OB protein results in a decrease in serum insulin levels, and serum glucose levels. It is also known that administration of OB protein results in a decrease in body fat. This was observed in both ob/ob mutant mice, as well as non-obese normal mice. Pelleymounter et al., Science 269: 540-543 (1995); Halaas et al., Science 269: 543-546 (1995). See

10

15

20

35

also, Campfield et al., Science 269: 546-549 (1995) (Peripheral and central administration of microgram doses of OB protein reduced food intake and body weight of ob/ob and diet-induced obese mice but not in db/db obese mice.) In none of these reports have toxicities been observed, even at the highest doses.

Despite the promise of clinical application of the OB protein, the mode of action of the OB protein in vivo is not clearly elucidated, in part due to the absence of information on the OB receptor. High affinity binding of the OB protein has been detected in the rat hypothalamus, reportedly indicating OB receptor location. Stephens et al., Nature 377: 530-532 (1995). db/db mouse displays the identical phenotype as the ob/ob mouse, i.e., extreme obesity and Type II diabetes; this phenotype is thought to be due to a defective OB receptor, particularly since db/db mice fail to respond to OB protein administration. See Stephens et al., supra.

Identification of the OB protein receptor is key in determining the pathway of signal transduction. Moreover, identification of the OB protein receptor would provide powerful application in diagnostic uses, for example, to determine if individuals would benefit from OB protein therapy. Furthermore, the OB receptor 25 could be a key component in an assay for determining additional molecules which bind to the receptor and result in desired biological activity. Further, such soluble receptor could enhance or alter the effectiveness of OB protein (or analog or derivative thereof). 30

SUMMARY OF THE INVENTION

The present invention relates to a novel class of protein receptors, herein denominated "OB protein receptors" or "OB receptors", which are thought to selectively bind OB protein. As such, the novel OB

10

receptor family is provided, as well as novel members of such family. Also provided are nucleic acids, vectors and host cells containing such nucleic acids, related antisense nucleic acids, molecules which selectively bind to the OB protein receptor, and related compositions of matter, such as OB receptor protein/OB protein complexes. In other aspects, the present invention relates to methods of using the above compositions, such as therapeutic and/or diagnostic methods, and methods for preparing OB receptor ligands.

DETAILED DESCRIPTION

A novel family of OB receptors is provided. This novel family resulted from identification of a PCR 15 fragment isolated from a human liver cell cDNA library. The original PCR fragment, from which primers were isolated, contained a "WSXWS" motif, common to cytokine receptors. As illustrated by the working examples below, using this fragment four members of this OB 20 protein receptor family have been identified. These members, herein designated as "A", "B", and "C", and "D" are indentical at amino acid position 1-891 (using the numbering of Seq. ID No. 1), but diverge at position 892 through the C-terminus. They vary in length at the 25 C-terminus beyond amino acid 891, and the different forms appear to have different tissue distribution. Using hydrophobicity analysis, the leader sequence is likely to comprise amino acids (Seq. ID. No. 1) 1-21, 1-22, or 1-28. The first amino acid of the 30 mature protein is likely to be 22 (F), 23 (N) or 29 (T). Most likely, based on analysis of eucaryotic cell expression (CHO cell expression see Example 8, infra), the first amino acid of the mature protein is 22(F). The beginning of the transmembrane domain appears to be 35 located at position 840 (A) or 842 (L). The end of the

transmembrane domain appears to be located at position

862 (I), 863 (S) or 864 (H). Thus, based on predictions from hydrophobicity analysis, for OB protein binding, at a minimum what is needed is the extracellular domain of the mature protein, amino acids 22, 23 or 29 through amino acids 839 (D) or 841 (G). Therefore, the present class of OB receptor proteins includes those having amino acids (according to Seq. ID No. 1):

- (a) 1-896; 22-896; (b) 23-896; 10 (c) (d) 29-896; 1-839; (e) 22-839; (f) 1-841; (h) 22-841; (i) 15 23-841; (j) (k) 29-841;
 - (1) 1-891; (m) 22-891;
- 20 (n) 23-891; (o) 29-891;
 - (p) the amino acids of subparts (1)
 through (o) having the C-terminal amino acids selected
 from among:
- 25 (i) OB receptor B (Seq. ID No. 3) positions 892-904;

(ii) OB receptor C (Seq. ID No. 5) positions 892- 958; and,

(iii) OB receptor D (Seq. ID No. 7)

30 positions 892-1165;

(q) amino acids of subparts b, c, d, f, g, i, j, k, m, n, o, and any of (p) lacking a leader sequence, which have an N-terminal methionyl residue.

Also provided herein is what is thought to be a human splice variant of a soluble OB receptor. This

WO 97/25424 PCT/US97/00128

- 5 -

splice variant includes the extracellular domain at least up to amino acid 798 (of Seq. ID No. 1, for example) and has a unique 6 amino acid C-terminus at positions 799-804: G K F T I L.

5

10

30

The functional domains of the OB receptor may be predicted using the information contained in Bazan et al., PNAS-USA <u>87</u>: 6934-6938 (1990) (incorporated herein by reference). For the present OB receptor, there are two hematopoietin domains, a random coil region, the transmembrane domain, and the intracellular domain. The overall geography may be illustrated as follows:

Using the information provided by Bazan, 15 supra, the domains may be predicted, with essentially an error of approximately plus or minus three base pairs (as applied to all amino acid location specified for purposes of identifying the Bazan predicted domains). The precise locations may be determined empirically by 20 methods known in the art, such as preparing and expressing modified recombinant DNAs. The structural characteristics are though to be important for maintaining the structural integrity of the molecule, and therefore, to the extent that such structure is 25 important for function, for functional characteristics as well.

The hematopoietin domains (H1 and H2) are thought to have two fibronectin type 3 repeats each, one set of paired cysteine residues each (thought to form a disulfide bridge), and one "WSXWS box" (referring to the

35

single letter amino acid abbreviation, with "X" being any amino acid). The fibrinectin type 3 domains may be identified by location of a double proline ("PP"), which marks the beginning of the second fibronectin type 3 repeat; the actual beginning of such second fibronectin type 3 repeat is likely to begin about 3 amino acids upstream of that double proline.

The first hematopoietin domain is likely to begin at amino acid 123 (using the numbering according to Seq. ID No. 1, for example), which is an isoleucine residue (I). The last amino acid of the hematopoietin domain is likely to be amino acid 339, which is a lysine (K) residue. The two fibronectin type 3 repeats are likely to be located at (about) amino acids 123 through 235 and 236 through 339. There is a single pair of cysteine residues which likely form a disulfide bridge, located at position 131 and position 142. The "WSXWS box" is located at position 319 through 323.

The second hematopoietin domain is likely to

20 begin at position 428, which is an isoleucine (I) and
end at position 642 which is a glycine (G). The paired
fibronectin type 3 repeats are located at about position
428 through position 535 and about position 536 through
about position 642. One pair of cysteines is located at
25 position 436 and position 447, and the second pair is
located at position 473 and 488. The "WSXWS box" is
located at position 622-626.

Between the first and the second hematopoietin domain (amino acids 339-428, approximately) is a region of unknown functional significance.

The random coil domain ("RC" between the H2 and the transmembrane domain, "TM") is likely to begin at the amino acid following the end of the second hematopoietin domain, and is likely to end at the beginning of the transmembrane domain. This is likely to be from about amino acid 642 through amino acid 839

30

35

or 841 (with the transmembrane domain beginning at position 840 (A) or 842 (L)). The intracellular domain ("IC") is likely to begin at position 861 (L), 862 (I), 863 (S) or 864 (H).

The intracellular domain ("IC") contains three 5 regions, or "boxes," thought to participate in signal transduction (two "JAK" boxes and a single "STAT" box, "Box 1", "Box 2", and "Box 3"). With respect to the numbering of the amino acid positions of the "D" form of the OB receptor (Seq. ID No.7, below), box 1 is located 10 at amino acid 871 (F) through 878 (P). Box 2 is located at approximately amino acid number 921 (I) through 931 (K). Box 3 on the "D" form is located at approximately position 1141 through 1144 (amino acids YMPQ, as the "STAT" box is typically a conserved region of "YXXQ" 15 wherein "X" designates any amino acid). The intracellular domain is thought to be responsible for signal transduction. One possible mode of action is via phosphorylation of various residues. See Ihle et al., 20 Cell <u>84</u>: 331-334 (1996) (Review article, herein incorporated by reference.)

One possible mode of action is that upon ligand binding (here, OB protein binding), the OB receptor dimerizes with another receptor. A kinase ("JAK") binds to box 1, and becomes phosphorylated. (The JAK may already be bound prior to dimerization.) Also, "STATS" bind to box 3 and become phosphorylated on a specific tyrosine. It is thought that this phosphorylation results, probably indirectly, in DNA binding protein production, which results in altered DNA transcription, and therefore altered expression. As seen below in Example 6, one measurement of the capability of an OB receptor to transduce signal is the degree of phosphorylation of JAK/STAT molecules.

The C-terminus region is intracellular (of cell-bound OB receptor). The differences in the C-

terminus among members of the present OB receptor family may result in differences in signal transduction among the species. Thus, the present OB receptors include at least the extracellular domain which is important for OB protein ligand binding. Nucleic acids encoding the present OB receptors, vectors, and host cells are also provided for herein.

The extracellular domain may be modified and still retain the function of ligand binding, particularly by one or more of the following 10 modifications: (a) the random coil domain (as indicated above, occuring downstream of the second hematopoietic domain through the beginning of the transmembrane domain) may be deleted (this may be approximately positions 642 through 839 or 841); (b) the "WSXWS" box 15 may be modified by (i) substitution of the first serine with another amino acid, particularly conserved in terms of hydrophobicity and/or charge, such as a glycine; (ii) the last serine may be substituted with another amino acid, such as a threonine; (iii) the first tryptophan 20 may be substituted with another amino acid, for example, a tyrosine.

Human genomic DNA encoding OB receptor protein is also provided herein. The genomic DNA has been localized to human chromosome 1P31, which is believed to correspond to mouse chromosome 4, the location of the mouse db locus.

Tissue distribution analysis demonstrates the presence of OB receptor nucleic acids is fairly

30 ubiquitous, and particularly noted in the liver. It is also observed in the ovary, and heart; and, to a lesser extent, in small intestine, lung, skeletal muscle, kidney, and, to an even lesser extent, spleen, thymus, prostate, testes, placenta and pancreas (Example 2, below). There may also be one or more forms of the OB receptor present in serum, such as soluble OB receptor,

which may be complexed to one or more forms of the OB protein.

Amino Acid Sequences and Compositions

5 According to the present invention, novel OB protein receptors and DNA sequences coding for all or part of such OB receptors are provided. The present invention provides purified and isolated polypeptide products having part or all of the primary structural conformation (i.e., continuous sequence of amino acid 10 residues) and one or more of the biological properties (e.g., immunological properties and in vitro biological activity) and physical properties (e.g., molecular weight) of naturally-occurring mammalian OB receptor 15 including allelic variants thereof. The term "purified and isolated" herein means substantially free of unwanted substances so that the present polypeptides are useful for an intended purpose. For example, one may have a recombinant human OB receptor substantially free 20 of human proteins or pathological agents. polypeptides are also characterized by being a product of mammalian cells, or the product of chemical synthetic procedures or of procaryotic or eucaryotic host expression (e.g., by bacterial, yeast, higher plant, 25 insect and mammalian cells in culture) of exogenous DNA sequences obtained by genomic or cDNA cloning or by gene synthesis. The products of expression in typical yeast (e.g., Saccharomyces cerevisiae), insect, or procaryote (e.g., E. coli) host cells are free of association with 30 any mammalian proteins. The products of expression in vertebrate (e.g., non-human mammalian (e.g. COS or CHO) and avian) cells are free of association with any human proteins. Depending upon the host employed, and other factors, polypeptides of the invention may be 35 glycosylated with mammalian or other eucaryotic carbohydrates or may be non-glycosylated. One may modify

the nucleic acid so that glycosylation sites are included in the resultant polypeptide. One may choose to partially or fully deglycosylate a glycosylated polypeptide. Polypeptides of the invention may also include an initial methionine amino acid residue (at position -1 with respect to the first amino acid residue of the mature polypeptide).

In addition to naturally-occurring allelic forms of OB receptor, the present invention also embraces other OB receptor products such as polypeptide 10 analogs of OB receptor and fragments of OB receptor. Following the procedures of the above noted published application by Alton et al. (WO 83/04053), one can readily design and manufacture genes coding for microbial expression of polypeptides having primary 15 conformations which differ from that herein specified for in terms of the identity or location of one or more residues (e.g., substitutions, terminal and intermediate additions and deletions). Alternately, modifications of cDNA and genomic genes may be readily accomplished by 20 well-known site-directed mutagenesis techniques and employed to generate analogs and derivatives of OB receptor. Such products would share at least one of the biological properties of mammalian OB receptor but may differ in others. As examples, projected products of 25 the invention include those which are foreshortened by e.g., deletions; or those which are more stable to hydrolysis (and, therefore, may have more pronounced or longer lasting effects than naturally-occurring); or which have been altered to delete one or more potential 30 sites for glycosylation (which may result in higher activities for yeast-produced products); or which have one or more cysteine residues deleted or replaced by, e.g., alanine or serine residues and are potentially more easily isolated in active form from microbial 35 systems; or which have one or more tyrosine residues

WO 97/25424 PCT/US97/00128

- 11 -

replaced by phenylalanine; or have an altered lysine composition (such as those prepared for purposes of derivatization). Included are those polypeptides with amino acid substitutions which are "conservative" according to acidity, charge, hydrophobicity, polarity, size or any other characteristic known to those skilled See generally, Creighton, Proteins, W.H. in the art. Freeman and Company, N.Y., (1984) 498 pp. plus index, passim. One may make changes in selected amino acids so 10 long as such changes preserve the overall folding or activity of the protein, (see Table 1, below). amino terminal extensions, such as an amino-terminal methionine residue, a small linker peptide of up to about 20-25 residues, or a small extension that facili-15 tates purification, such as a poly-histidine tract, an antigenic epitope or a binding domain, may also be present. See, in general Ford et al., Protein Expression and Purification 2: 95-107, 1991, which is herein incorporated by reference.

10

15

Table 1
Conservative Amino Acid Substitutions

· Basic:	arginine lysine histidine
Acidic:	glutamic acid aspartic acid
Polar:	glutamine asparagine
Hydrophobic:	leucine isoleucine valine
Aromatic:	phenylalanine tryptophan tyrosine
Small:	glycine alanine serine threonine methionine

Also comprehended are polypeptide fragments duplicating only a part of the continuous amino acid sequence or secondary conformations within OB receptor, which fragments may possess one activity of mammalian (particularly human) OB receptor (e.g., immunological activity) and not others (e.g., OB protein binding activity).

Of applicability to OB receptor fragments and polypeptide analogs of the invention are reports of the immunological activity of synthetic peptides which substantially duplicate the amino acid sequence extant in naturally-occurring proteins, glycoproteins and nucleoproteins. More specifically, relatively low

molecular weight polypeptides have been shown to participate in immune reactions which are similar in duration and extent to the immune reactions of physiologically significant proteins such as viral antigens, polypeptide hormones, and the like. Included among the immune reactions of such polypeptides is the provocation of the formation of specific antibodies in immunologically active animals. See, e.g., Lerner et al., Cell 23: 309-310 (1891); Ross et al., Nature 294: 654-656 (1891); Walter et al., PNAS-USA <u>77</u>: 5197-5200 10 (1980); Lerner et al., PNAS-USA, 78: 3403-3407 (1891); Walter et al., PNAS-USA <u>78</u>: 4882-4886 (1891); Wong et al., PNAS-USA 79: 5322-5326 (1982); Baron et al., Cell 28: 395-404 (1982); Dressman et al., Nature 295: 185-160 (1982); and Lerner, Scientific American 248: 66-74 (1983). <u>See</u>, <u>also</u>, Kaiser et al. Science <u>223</u>: 249-255 (1984) relating to biological and immunological activities of synthetic peptides which approximately share secondary structures of peptide hormones but may not share their primary structural conformation. The 20 present invention also includes that class of polypeptides coded for by portions of the DNA complementary to the protein-coding strand of the human cDNA or genomic DNA sequences of OB receptor i.e., "complementary 25 inverted proteins" as described by Tramontano et al. Nucleic Acid Res. 12: 5049-5059 (1984). Polypeptides or . analogs thereof may also contain one or more amino acid analogs, such as peptidomimetics.

Thus, the present class of OB receptor

30 proteins includes those having amino acids (according to Seq. ID No. 1):

- (a) 1-896;
 - (b) 22-896;
 - (c) 23-896;
 - (d) 29-896
 - (e) 1-839;

25

30

35

- (f) 22-839;
- (q) 29-839;
- (h) 1-841;
- (i) 22-841;
- (j) 23-841;
- (k) 29-841;
- (1) 1-891;
- (m) 22-891;
- (n) 23-891;
- 10 (o) 29-891;

(p) the amino acids of subparts (1) through (o) having the C-terminal amino acid sequence beginning at position 892 of OB receptor B (Seq. ID No. 3) or C (Seq. ID. No. 5);

15 (q) amino acids of subparts b, c, d, f, g, i, j, k, m, n, o, and any of (p) lacking a leader sequence, which have an N-terminal methionyl residue.

Also provided is a longer form of an OB receptor protein, herein denominated the "D" form, which has an amino acid sequence selected from among (according to Seq. ID No. 7):

- (a) amino acids 1-1165;
- (b) amino acids 22-1165;
- (c) amino acids 23-1165;
- (d) amino acids 29-1165;
 - (e) amino acids of subparts (b), (c) or
 - (d) having an N-terminal methionyl residue.

As set forth above, one may prepare soluble receptor by elimination of the transmembrane and intracellular regions. Examples of soluble receptors include those set forth in Seq. ID Nos. 10 and 13. What is thought to be a native, secreted form of a soluble human OB receptor is also provided herein. This form of OB receptor protein has an amino acid sequence selected from among (according to Seq. ID No. 13):

(a) amino acids 1-804;

- (b) amino acids 22-804;
- (c) amino acids 23-804;
- (d) amino acids 29-804; and,
- (e) amino acids of subparts (b), (c) or
- 5 (d) having an N-terminal methionyl residue.

In addition, since the C-terminus region of the above polyeptides diverges at position 892 (with respect to Seq. ID Nos. 1, 3, 5, 7 and 13) one may desire to prepare only the polypeptides which are

10 divergent:

- (a) those having only amino acids 892-896
- of Seq. ID No. 1;
 - (b) those having only amino acids 892-904
- of Seq. ID No. 3;
- 15 (c) those having only amino acids 892-958
 - of Seq. ID No. 5;
 - (d) those having only amino acids 892-1165 of Seq. ID No. 7; and,
 - (e) those having only amino acids 799-804
- 20 of Seq. ID No. 13.

The above polypeptides which have an extracellular domain may be modified, as indicated above, and still retain the function of ligand binding. Such modification may include one or more of the

25 following:

30

35

- (a) the random coil domain (as indicated above, occuring downstream of the second hematopoietic domain through the beginning of the transmembrane domain) may be deleted (this may be approximately positions 642 through 839 or 841);
- (b) the "WSXWS" box may be modified by
 (i) substitution of the first serine with another amino acid, particularly conserved in terms of hydrophobicity and/or charge, such as a glycine; (ii) the last serine may be substituted with another amino acid, such as a threonine; (iii) the first tryptophan may be

substituted with another amino acid, for example, a tyrosine.

Thus, the present polypeptides include (according to the numbering of Seq. ID No. 7):

5 (a) 1-896; (b) 22-896; (c) 23-896; (d) 29-896 (e) 1-839; 10 (f) 22-839; (g) 29-839; (h) 1-841; (i) 22-841; (j) 23-841; 15 (k) 29-841; (1) 1-891; (m) 22-891; (n) 23-891;

20 (p) the amino acids of subparts (1) through (o) having the C-terminal amino acids selected from the C-terminal amino acids of OB receptor B (Seq. ID No. 3), C (Seq. ID. No. 5) and D (Seq ID No. 7);

(o) 29-891;

(q) the amino acids (according to Seq. ID 25 No. 13) selected from the group consisting of 22-804; 23-804 and 29-804;

(r) amino acids of subparts b, c, d, f,
g, i, j, k, m, n, o, any of (p) lacking a leader
sequence, and (q) which have an N-terminal methionyl
residue; and

(s) amino acids of subparts (a) through
(r) which above having at least one of the following
modifications:

(i) for amino acids of subparts (a) 35 through (p) and those of subpart (r) which are not amino acids according to subpart (q), deletion of (or WO 97/25424 PCT/US97/00128

- 17 -

substitution of amino acid(s) or other modifications of) a random coil domain sequence selected from

(a) 640 through 839 (using the numbering according to Seq. ID No. 1);

(b) 641 through 839;

(c) 642 through 839;

(d) 640 through 841;

(e) 641 through 841; and

(f) 642 through 841;

10 (ii) for amino acids of subpart (q) and those of subpart (r) which contain the sequence of subpart (q), deletion of of (or substitution of amino acid(s) or other modifications of) a random coil domain sequence selected from among:

15 (a) 640 through 804;

(b) 641 through 804; and,

(c) 642 through 804;

and,

30

5

(iii) modification of a "WSXWS"

20 sequence which is

(a) substitution of the first serine with another amino acid, particularly conserved in terms of hydrophobicity and/or charge, such as a glycine;

25 (b) substition of the last serine with another amino acid, such as a threonine; and

(c) substitution of the first tryptophan with another amino acid, for example, a tyrosine.

One may modify the OB receptor to create a fusion molecule with other peptide sequence. For example, if one desired to "tag" the OB receptor with an immunogenic peptide, one could construct a DNA which would result in such fusion protein. The tag may be at the N-terminus. Also, since it is apparent that the

C-terminus is not necessary for ligand binding activity, one may chemically modify the C-terminus of, for example, a soluble OB receptor. One may desire, for example, a preparation whereby one or more polymer molecules such as polyethylene glycol molecules are attached. Thus, another aspect of the present invention is chemically modified OB receptor protein (also further described infra).

An example of such "tag" is provided herein using the C-terminus of a recombinant soluble OB 10 Seq. ID No. 12 provides a "FLAG-tag" version of such soluble OB receptor (the nucleic acid sequence is provided, which may be transcribed to prepare the polypeptide). Such "FLAG-tag" may also be attached to the N-terminus or other region of an OB receptor 15 protein. This type of "tagging" is useful to bind the protein using reagents, such as antibodies, which are selective for such tag. Such binding may be for detection of the location or amount of protein, or for protein capturing processes where, for example, an affinity column is used to bind the tag, and thus the desired protein. Other types of detectable labels, such as radioisotopes, light-emitting (e.g., fluorescent or phosporescent compounds), enzymatically cleavable, detectable antibody (or modification thereof), or other 25 substances may be used for such labelling of the present proteins. Detecting protein via use of the labels may be useful for identifying the presence or amount of OB receptor protein or a compound containing such protein (e.g., OB protein complexed to OB receptor). Moreover, 30 such labelled protein may be useful for distinguishing exogenous OB receptor protein from the endogenous form.

Nucleic Acids

Novel nucleic acid sequences of the invention include sequences useful in securing expression in procaryotic or eucaryotic host cells of polypeptide products having at least a part of the primary structural conformation and one or more of the biological properties of recombinant human OB receptor. nucleic acids may be purified and isolated, so that the desired coding region is useful to produce the present 10 polypeptides, for example, or for diagnostic purposes, as described more fully below. DNA sequences of the invention specifically comprise: (a) any of the DNA sequences set forth in Seq. ID No. 2, 4, 6, 8, 9, 11, 12, and 14 (and complementary strands); (b) a DNA 15 sequence which hybridizes (under hybridization conditions disclosed in the cDNA library screening section below, using the 300 bp PCR fragment as described to selectively hybridize to a cDNA encoding an OB receptor protein in a human liver cDNA library, or 20 equivalent conditions or more stringent conditions) to the DNA sequence in subpart (a) or to fragments thereof; and (c) a DNA sequence which, but for the degeneracy of the genetic code, would hybridize to the DNA sequence in subpart (a). Specifically comprehended in parts (b) and 25 (c) are genomic DNA sequences encoding allelic variant forms of human OB receptor and/or encoding OB receptor from other mammalian species, and manufactured DNA sequences encoding OB receptor, fragments of OB receptor, and analogs of OB receptor which DNA sequences 30 may incorporate codons facilitating transcription and translation of messenger RNA in microbial hosts. Such manufactured sequences may readily be constructed according to the methods of Alton et al., PCT published application WO 83/04053.

30

Genomic DNA, such as that of Seq. ID No. 9, encoding the present OB receptors may contain additional non-coding bases, or introns, and such genomic DNAs are obtainable by hybridizing all or part of the cDNA, illustrated in Seq. ID Nos. 2, 4, 6, 8, 11, and 14 to a genomic DNA source, such as a human genomic DNA library. Such genomic DNA will encode functional OB receptor polypeptide; however, use of the cDNAs may be more practicable in that, since only the coding region is involved, recombinant manipulation is facilitated. The intron/exon location of genomic DNA is set forth in Seq. ID No. 9, infra.

Nucleic acid sequences include the incorporation of codons which enhance expression by selected nonmammalian hosts; the provision of sites for cleavage by restriction endonuclease enzymes; and the provision of additional initial, terminal or intermediate DNA sequences which facilitate construction of cloning and/or expression vectors.

The present invention also provides DNA sequences coding for polypeptide analogs or derivatives of OB receptor which differ from naturally-occurring forms in terms as described above. The leader sequence DNA may be substituted with another leader sequence for ease in expression or for other purposes.

Also, one may prepare antisense nucleic acids against the present DNAs. Such antisense nucleic acids may be useful in modulating the effects of OB receptor protein in vivo. For example, one may prepare an antisense nucleic acid which effectively disables the ability of a cell to produce OB receptor by binding to the nucleic acid which encodes such OB receptor.

DNA sequences of the invention are also suitable materials for use as labeled probes in isolating human genomic DNA encoding OB receptor, as mentioned above, and related proteins as well as cDNA

20

25

30

35

and genomic DNA sequences of other mammalian species.

DNA sequences may also be useful in various alternative methods of protein synthesis (e.g., in insect cells) or, as described infra, in genetic therapy in humans and other mammals. DNA sequences of the invention are expected to be useful in developing transgenic mammalian species which may serve as eucaryotic "hosts" for production of OB receptor and OB receptor products in quantity. See, generally, Palmiter et al., Science 222:

Vectors and Host Cells

According to another aspect of the present invention, the DNA sequences described herein which encode OB receptor polypeptides are valuable for the information which they provide concerning the amino acid sequence of the mammalian protein which have heretofore been unavailable. Put another way, DNA sequences provided by the invention are useful in generating new and useful viral and circular plasmid DNA vectors, new and useful transformed and transfected procaryotic and eucaryotic host cells (including bacterial cells, yeast cells, insect cells, and mammalian cells grown in culture), and new and useful methods for cultured growth of such host cells capable of expression of OB receptor and its related products.

The DNA provided herein (or corresponding RNAs) may also be used for gene therapy for, example, treatment of conditions characterized by the overexpression of OB protein, such as anorexia or cachexia. Alternatively, gene therapy may be used in cases where increased sensitivity to OB protein is desired, such as in cases where an individual has a condition characterized by OB protein receptors defective in ability to bind or retain the binding of OB protein. Currently, vectors suitable for gene therapy

(such as retroviral or adenoviral vectors modified for gene therapy purposes and of purity and pharmaceutical acceptability) may be administered for delivery into the lung, for example. Such vectors may incorporate nucleic acid encoding the present polypeptides for expression in a desired location. Gene therapy may involve more than one gene for a desired protein or different desired proteins.

Alternatively, one may use no vector so as to facilitate relatively stable presence in the host. For example, homologous recombination of a DNA as provided herein or of a suitable transcription or translation control region may facilitate integration into or expression from a host genome. (This may be performed

- for production purposes as well, e.g., U.S. Patent
 No. 5,272,071 and WO 91/09955.) The nucleic acid may be
 placed within a pharmaceutically acceptable carrier to
 facilitate cellular uptake, such as a lipid solution
 carrier (e.g., a charged lipid), a liposome, or
- 20 polypeptide carrier (e.g., polylysine). A review article on gene therapy is Verma, Scientific American, November 1990, pages 68-84 which is herein incorporated by reference.

Thus, the present invention provides for a population of cells expressing an OB receptor of the 25 present OB receptor family. Such cells are suitable for transplantation or implantation into an individual for therapeutic purposes. For example, one may prepare a population of cells to overexpress OB receptor (such as one identified in the Sequence ID's or otherwise denoted 30 herein), or to express a desired form of OB receptor, such as one which is particularly sensitive to OB protein (i.e., a form which has a desired capacity for signal transduction). One may then implant such cells into an individual to increase that individual's 35 sensitivity to OB protein. Such cells may, for example,

25

30

35

be liver cells, bone marrow cells, or cells derived from umbillical cord. Alternatively, one may wish to use overexpressing circulating cells such as blood progenitor cells, T cells or other blood cells. For humans, human cells may be used. Cells may be in the form of tissue. Such cells may be cultured prior to transplantation or implantation. Such OB receptor overexpression, or expression of particularly sensitive forms of OB receptor may be accomplished by, for example, altering the regulatory mechanism for expression of OB receptor, such as using homologous recombination techniques as described supra. Thus, provided is a population of host cells modified so that expression of endogenous OB receptor DNA is enhanced.

The cells to be transferred to the recipient may be cultured using one or more factors affecting the growth or proliferation of such cells if appropriate.

Hematopoietic factors may be used in culturing hematopoietic cells. Such factors include G-CSF, EPO,

MGDF, SCF, Flt-3 ligand, interleukins (e.g., IL1-IL13),

GM-CSF, LIF, and analogs and derivatives thereof as

available to one skilled in the art.

Nerve cells, such as neurons or glia, may also
be used, and these may be cultured with neurotrophic
factors such as BDNF, CNTF, GDNF, NT3, or others.

There may be a co-gene therapy involving the transplantation of cells expressing more than one desired protein. For example, cells expressing OB receptor protein may be used in conjunction, simultaneously or in serriatim with cells expressing OB protein.

For gene therapy dosages, one will generally use between one copy and several thousand copies of the present nucleic acid per cell, depending on the vector, the expression system, the age, weight and condition of the recipient and other factors which will be apparent

to those skilled in the art. The cellular delivery of such protein may be designed to last for a selected period of time, such as a period of days, weeks, months or years. At the end of the effective time period, the recipient of such transformed cells may receive another "dose" (e.g., transplantation of cells). Cells may be selected for their lifespan, their time period of expression of the desired protein, or their ability to be reisolated from an individual (i.e., for blood cells, leukaphoresis may be used to retrieve transformed cells using markers present on the cell surface). Vectors may be similiarly designed using, for example, viruses which have a known period of expression of DNAs contained therein.

The desired cells or vectors may be stored using techniques, such as freezing, available to those in the art.

Thus, the present invention also contemplates a method for administering OB receptor protein to an individual, wherein the source of said OB receptor 20 protein is selected from (i) a population of cells expressing OB receptor protein and (ii) a population of vectors expressing OB receptor protein. receptor protein may be selected from among those 25 described herein. Said vectors may be virus vectors capable of infecting human cells. Said cells may be selected from among tissue or individual cells. Said individual cells may be selected from among adipocytes, fibroblasts, bone marrow cells, peripheral blood 30 progenitor cells, red blood cells, and white blood cells, including T cells and nerve cells. Said population of cells or vectors may be co-administered with a population of cells or vectors which express OB protein or another desired protein. Said cells or vectors may be stored for use in an individual. Storage 35 may be by freezing

Complexes

In addition to the OB receptor protein as described herein, one may prepare complexes of OB receptor protein and OB protein, analog or derivative.

The OB protein may be selected from those described in PCT publication WO 96/05309, above and hereby incorporated by reference in its entirety. Figure 3 of that publication (Seq. ID No. 4, as cited therein) depicts the full deduced amino acid sequence derived for the human OB gene. The amino acids are numbered from 1 to 167. A signal sequence cleavage site is located after amino acid 21 (Ala) so that the mature protein extends from amino acid 22 (Val) to amino acid 167 (Cys). For the present disclosure, a different numbering is used herein, where the amino acid position 1 is the Valine residue which is at the beginning of the mature protein.

Generally, the OB protein for use will be 20 capable of complexing to the OB protein receptor selected. Thus, one may empirically test the binding capability (to all or part of the extracellular domain of the OB receptor as indicated above) to determine which OB protein forms may be used. Generally, modifications generally applicable as indicated above 25 for OB receptor protein may also be applied here, and that disclosure is incorporated by reference here. As set forth in WO 96 05309, OB protein in its native form, or fragments (such as enzyme cleavage products) or other truncated forms, analogs, and derivatives all retain 30 biological activity. Such forms may be used so long as the form binds to at least a portion of the extracellular domain of the present OB receptor proteins.

35 An effective amount of an OB protein, analog or derivative thereof may be selected from among

25

30

according to the amino acid sequence as presented in PCT WO 96/05309, Figure 3 numbered so that the first amino acid of the mature protein is number 1:

- (a) the amino acid sequence 1-146, optionally lacking a glutaminyl residue at position 28, and further optionally having a methionyl residue at the N-terminus;
- (a) having a different amino acid substituted in one or more of the following positions: 4, 8, 32, 33, 35, 48, 50, 53, 60, 64, 66, 67, 68, 71, 74, 77, 78, 89, 97, 100, 102, 105, 106, 107, 108, 111, 112, 118, 136, 138, 142, and 145;
- (c) a truncated OB protein analog
 15 selected from among: (using the numbering of subpart (a)
 above):
 - (i) amino acids 98-146
 - (ii) amino acids 1-32
 - (iii) amino acids 1-35
 - (iv) amino acids 40-116
 - (v) amino acids 1-99 and 112-146
 - (vi) amino acids 1-99 and 112-146

having one or more of amino acids 100-111 sequentially placed between amino acids 99 and 112; and,

(vii) the truncated OB analog of subpart (i) having one or more of amino acids 100, 102, 105, 106, 107, 108, 111, 112, 118, 136, 138, 142, and 145 substituted with another amino acid;

(viii) the truncated analog of subpart (ii) having one or more of amino acids 4, 8 and 32 substituted with another amino acid;

(ix) the truncated analog of subpart (iv) having one or more of amino acids 50, 53, 60, 35 64, 66, 67, 68, 71, 74, 77, 78, 89, 97, 100, 102, WO 97/25424 PCT/US97/00128

- 27 -

105, 106, 107, 108, 111 and 112 replaced with another amino acid;

(x) the truncated analog of subpart (v) having one or more of amino acids 4, 8, 32, 33, 35, 48, 50, 53, 60, 64, 66, 67, 68, 71, 74, 77, 78, 89, 97, 112, 118, 136, 138, 142, and 145 replaced with another amino acid;

5

glycol;

- (xi) the truncated analog of subpart (vi) having one or more of amino acids 4, 8,32, 33, 35, 48, 50, 53, 60, 64, 66, 67, 68, 71, 74, 77, 78, 89, 97, 100, 102, 105, 106, 107, 108, 111, 112, 118, 136, 138, 142, and 145 replaced with another amino acid;
- (xii) the truncated analog of any of subparts (i)-(xi) having an N-terminal methionyl residue; and
 - (d) the OB protein or analog derivative of any of subparts (a) through (c) comprised of a chemical moiety connected to the protein moiety;
- 20 (e) a derivative of subpart (d) wherein said chemical moiety is a water soluble polymer moiety;

 (f) a derivative of subpart (e) wherein said water soluble polymer moiety is polyethylene
- 25 (g) A derivative of subpart (f) wherein said water soluble polymer moiety is a polyamino acid moiety;
- (h) a derivative of subpart (g) wherein said water soluble polymer moiety is attached at solely the N-terminus of said protein moiety;
 - (i) an OB protein, analog or derivative of any of subparts (a) through (h) in a pharmaceutically acceptable carrier.
- OB proteins, analogs and related molecules are also reported in the following publications; however, no

	representation is made with regard to the activity of					
	any composition reported:					
	U.S.Patent Nos. 5,521,283; 5,532,336;					
	5,552,522; 5,552,523; 5,552,524; 5,554,727;					
5	5,559,208; 5,563,243; 5,563,244; 5,563,245;					
	5,567,678; 5,567,803; 5,569,744; 5,569,743					
	(all assigned to Eli Lilly and Company);					
	PCT W096/23517; W096/23515; W096/23514;					
	W096/24670; W096/23513; W096/23516;					
10	WO96/23518; WO96/23519; WO96/23520;					
	W096/23815; W096/24670; W096/27385 (all					
	assigned to Eli Lilly and Company);					
	PCT W096/22308 (assigned to Zymogenetics);					
	PCT W096/29405 (assigned to Ligand					
15	Pharmaceuticals, Inc.);					
	PCT W096/31526 (assigned to Amyin					
	Pharmaceuticals, Inc.);					
	PCT W096/34885 (assigned to Smithkline Beecham					
	PLC);					
20	PCT W096/35787 (assigned to Chiron);					
	EP 0 725 079 (assigned to Eli Lilly and					
	Company);					
	EP 0 725 078 (assigned to Eli Lilly and					
	Company);					
25	EP 0 736 599 (assigned to Takeda);					
	EP 0 741 187 (assigned to F. Hoffman LaRoche).					

To the extent these references provide for useful OB proteins or analogs or derivatives thereof, or associated compositions or methods, such compositions and/or methods may be used in conjunction with the present OB receptor proteins, such as for coadministration (together or separately, in a selected dosage schedule) or by complexing compositions to the present OB protein receptors. With the above provisos, these publications are herein incorporated by reference.

Derivatives and Formulations

The present OB protein receptor and/or OB protein (herein the term "protein" is used to include "peptide" and OB protein or receptor analogs, such as 5 those recited infra, unless otherwise indicated) may also be derivatized by the attachment of one or more chemical moieties to the protein moiety. If the present pharmaceutical compositions contain as the active ingredient a complex of OB protein receptor and OB 10 protein, one or both of such proteins may be derivatized. The chemically modified derivatives may be further formulated for intraarterial, intraperitoneal, intramuscular, subcutaneous, intravenous, oral, nasal, pulmonary, topical or other routes of administration. 15 Chemical modification of biologically active proteins has been found to provide additional advantages under certain circumstances, such as increasing the stability and circulation time of the therapeutic protein and 20 decreasing immunogenicity. See U.S. Patent No. 4,179,337, Davis et al., issued December 18, 1979. For a review, <u>see</u> Abuchowski et al., <u>in</u> Enzymes as (J.S. Holcerberg and J. Roberts, eds. pp. 367-383 (1891)). A review article describing protein modification and fusion proteins is Francis, 25 Focus on Growth Factors 3: 4-10 (May 1992) (published by Mediscript, Mountview Court, Friern Barnet Lane, London N20, OLD, UK).

Preferably, for therapeutic use of the

end-product preparation, the chemical moiety for
derivatization will be pharmaceutically acceptable. A
polymer may be used. One skilled in the art will be
able to select the desired polymer based on such
considerations as whether the polymer/protein conjugate
will be used therapeutically, and if so, the desired
dosage, circulation time, resistance to proteolysis, and

30

35

other considerations. For the present proteins and peptides, the effectiveness of the derivatization may be ascertained by administering the derivative, in the desired form (i.e., by osmotic pump, or by injection or infusion, or, further formulated for oral, pulmonary or nasal delivery, for example), and observing biological effects as described herein.

The chemical moieties suitable for derivatization may be selected from among various water soluble polymers. The polymer selected should be water 10 soluble so that the protein to which it is attached so that it is miscible in an aqueous environment, such as a physiological environment. The water soluble polymer may be selected from the group consisting of, for example, polyethylene glycol, copolymers of ethylene 15 glycol/propylene glycol, carboxymethylcellulose, dextran, polyvinyl alcohol, polyvinyl pyrolidone, poly-1, 3-dioxolane, poly-1,3,6-trioxane, ethylene/maleic anhydride copolymer, polyaminoacids (either homopolymers or random or non-random copolymers 20 (see supra regarding fusion molecules), and dextran or poly(n-vinyl pyrolidone)polyethylene glycol, propylene glycol homopolymers, polypropylene oxide/ethylene oxide co-polymers, polyoxyethylated polyols, polystyrenemaleate and polyvinyl alcohol. Polyethylene 25 glycol propionaldenhyde may have advantages in

Fusion proteins may be prepared by attaching polyaminoacids to the OB protein receptor or OB protein (or analog or complex) moiety. For example, the polyamino acid may be a carrier protein which serves to increase the circulation half life of the protein. For the present therapeutic or cosmetic purposes, such polyamino acid should be those which do not create neutralizing antigenic response, or other adverse response. Such polyamino acid may be selected from the

35

group consisting of serum album (such as human serum albumin), an antibody or portion thereof (such as an antibody constant region, sometimes called " F_C ") or other polyamino acids. As indicated below, the location of attachment of the polyamino acid may be at the N-terminus of the OB protein moiety, or other place, and also may be connected by a chemical "linker" moiety to the OB protein.

The polymer may be of any molecular weight. 10 and may be branched or unbranched. For polyethylene glycol, the preferred molecular weight is between about 2 kDa and about 100 kDa (the term "about" indicating that in preparations of polyethylene glycol, some molecules will weigh more, some less, than the stated 15 molecular weight) for ease in handling and manufacturing. Other sizes may be used, depending on the desired therapeutic profile (e.g., the duration of sustained release desired, the effects, if any on biological activity, the ease in handling, the degree or 20 lack of antigenicity and other known effects of the polyethylene glycol to a therapeutic protein or analog). The number of polymer molecules so attached may vary, and one skilled in the art will be able to ascertain the effect on function. One may mono-25 derivatize, or may provide for a di-, tri-, tetra- or some combination of derivatization, with the same or different chemical moieties (e.g., polymers, such as different weights of polyethylene glycols). proportion of polymer molecules to protein (or peptide) 30 molecules will vary, as will their concentrations in the reaction mixture. In general, the optimum ratio (in terms of efficiency of reaction in that there is no excess unreacted protein or polymer) will be determined

by factors such as the desired degree of derivatization

(e.g., mono, di-, tri-, etc.), the molecular weight of

the polymer selected, whether the polymer is branched or unbranched, and the reaction conditions.

The chemical moieties should be attached to the protein with consideration of effects on functional or antigenic domains of the protein. There are a number 5 of attachment methods available to those skilled in the art. E.g., EP 0 401 384 herein incorporated by reference (coupling PEG to G-CSF), see also Malik et al., Exp. Hematol. 20: 1028-1035 (1992) (reporting pegylation of GM-CSF using tresyl chloride). For example, 10 polyethylene glycol may be covalently bound through amino acid residues via a reactive group, such as, a free amino or carboxyl group. Reactive groups are those to which an activated polyethylene glycol molecule (or other chemical moiety) may be bound. The amino acid 15 residues having a free amino group may include lysine residues and the N-terminal amino acid residue. having a free carboxyl group may include aspartic acid residues, glutamic acid residues, and the C-terminal amino acid residue. Sulfhydrl groups may also be used 20 as a reactive group for attaching the polyethylene glycol molecule(s) (or other chemical moiety). Preferred for therapeutic manufacturing purposes is attachment at an amino group, such as attachment at the N-terminus or lysine group. Attachment at residues 25 important for receptor binding should be avoided if receptor binding is desired.

One may specifically desire N-terminally chemically modified protein. Using polyethylene glycol as an illustration of the present compositions, one may select from a variety of polyethylene glycol molecules (by molecular weight, branching, etc.), the proportion of polyethylene glycol molecules to protein molecules in the reaction mix, the type of pegylation reaction to be performed, and the method of obtaining the selected N-terminally pegylated protein. The method of obtaining

10

35

the N-terminally pegylated preparation (i.e., separating this moiety from other monopegylated moieties if necessary) may be by purification of the N-terminally pegylated material from a population of pegylated protein molecules. Selective N-terminal chemical modification may be accomplished by reductive alkylation which exploits differential reactivity of different types of primary amino groups (lysine versus the N-terminal) available for derivatization in a particular protein. See PCT WO 96/11953, herein incorporated by reference. Under the appropriate reaction conditions, substantially selective derivatization of the protein at the N-terminus with a carbonyl group containing polymer is achieved. For example, one may selectively

N-terminally pegylate the protein by performing the reaction at a pH which allows one to take advantage of the pKa differences between the e-amino group of the lysine residues and that of the a-amino group of the N-terminal residue of the protein. By such selective

derivatization, attachment of a polymer to a protein is controlled: the conjugation with the polymer takes place predominantly at the N-terminus of the protein and no significant modification of other reactive groups, such as the lysine side chain amino groups, occurs.

Using reductive alkylation, the polymer may be of the type described above, and should have a single reactive aldehyde for coupling to the protein. Polyethylene glycol propionaldehyde, containing a single reactive aldehyde, may be used.

An N-terminally chemically modified derivative is preferred (over other forms of chemical modification) for ease in production of a therapeutic. N-terminal chemical modification ensures a homogenous product as characterization of the product is simplified relative to di-, tri- or other multi-derivatized products. The use of the above reductive alkylation process for

preparation of an N-terminally chemically modified product is preferred for ease in commercial manufacturing.

In yet another aspect of the present invention, provided are methods of using pharmaceutical 5 compositions of the proteins, and derivatives. pharmaceutical compositions may be for administration by injection, or for oral, pulmonary, nasal, transdermal or In general, comprehended other forms of administration. by the invention are pharmaceutical compositions 10 comprising effective amounts of protein or derivative products of the invention together with pharmaceutically acceptable diluents, preservatives, solubilizers, emulsifiers, adjuvants and/or carriers. compositions include diluents of various buffer content 15 (e.g., Tris-HCl, acetate, phosphate), pH and ionic strength; additives such as detergents and solubilizing agents (e.g., Tween 80, Polysorbate 80), anti-oxidants (e.g., ascorbic acid, sodium metabisulfite), preservatives (e.g., Thimersol, benzyl alcohol) and 20 bulking substances (e.g., lactose, mannitol); incorporation of the material into particulate preparations of polymeric compounds such as polylactic acid, polyglycolic acid, etc. or into liposomes. e.g., PCT W096/29989, Collins et al., "Stable protein: 25 phospholipid compositions and methods," published October 3, 1996, herein incorporated by reference. Hylauronic acid may also be used, and this may have the effect of promoting sustained duration in the circulation. Such compositions may influence the 30 physical state, stability, rate of in vivo release, and rate of in vivo clearance of the present proteins and derivatives. See, e.g., Remington's Pharmaceutical Sciences, 18th Ed. (1990, Mack Publishing Co., Easton,

PA 18042) pages 1435-1712 which are herein incorporated

by reference. The compositions may be prepared in

liquid form, or may be in dried powder, such as lyophilized form. Implantable sustained release formulations are also contemplated, as are transdermal formulations.

5 Specifically contemplated are oral dosage forms of the above derivatized proteins. Protein may be chemically modified so that oral delivery of the derivative is efficacious. Generally, the chemical modification contemplated is the attachment of at least one moiety to the protein (or peptide) molecule itself, where said moiety permits (a) inhibition of proteolysis; and (b) uptake into the blood stream from the stomach or intestine. Also desired is the increase in overall stability of the protein and increase in circulation

time in the body. See PCT W095/21629, Habberfield, "Oral Delivery of Chemically Modified Proteins" (published August 17, 1995) herein incorporated by reference, and U.S. Patent No. 5,574,018, Habberfield et al., "Conjugates of Vitamin B12 and Proteins," issued November 12, 1996, herein incorporated by reference.

Also contemplated herein is pulmonary delivery of the present protein, or derivative thereof. The protein (derivative) is delivered to the lungs of a mammal while inhaling and traverses across the lung epithelial lining to the blood stream. See, PCT WO94/20069, Niven et al., "Pulmonary administration of granulocyte colony stimulating factor," published September 15, 1994, herein incorporated by reference.

Nasal delivery of the protein (or analog or derivative) is also contemplated. Nasal delivery allows the passage of the protein to the blood stream directly after administering the therapeutic product to the nose, without the necessity for deposition of the product in the lung. Formulations for nasal delivery include those with absorption enhancing agents, such as dextran or

35

cyclodextran. Delivery via transport across other mucous membranes is also contemplated.

Dosages

One skilled in the art will be able to 5 ascertain effective dosages by administration and observing the desired therapeutic effect. Preferably, the formulation of the molecule or complex in a pharmaceutical composition will be such that between about .10 μ g/kg/day and 10 mg/kg/day will yield the 10 desired therapeutic effect. The effective dosages may be determined using diagnostic tools over time. example, a diagnostic for measuring the amount of OB protein or OB receptor protein in the blood (or plasma or serum) may first be used to determine endogenous 15 levels of OB protein (or receptor). Such diagnostic tool may be in the form of an antibody assay, such as an antibody sandwich assay. The amount of endogenous OB receptor protein (such as soluble receptor) is quantified initially, and a baseline is determined. 20 therapeutic dosages are determined as the quantification of endogenous and exogenous OB receptor protein (that is, protein, analog or derivative found within the body, either self-produced or administered) is continued over the course of therapy. The dosages may therefore vary . 25 over the course of therapy, with a relatively high dosage being used initially, until therapeutic benefit is seen, and lower dosages used to maintain the therapeutic benefits.

During an initial course of therapy of an obese person, dosages may be administered whereby weight loss and concomitant fat tissue decrease increase is achieved. Once sufficient weight loss is achieved, a dosage sufficient to prevent re-gaining weight, yet sufficient to maintain desired weight or fat mass may be administered. These dosages can be determined

empirically, as the effects of OB protein are reversible. E.g., Campfield et al., Science 269: 546-549 (1995) at 547. Thus, if a dosage resulting in weight loss is observed when weight loss is not desired, one would administer a lower dose, yet maintain the desired weight.

Therapeutic Compositions and Methods

The present OB receptor proteins, alone, or in combination with an OB protein, and nucleic acids may be 10 used for methods of treatment, or for methods of manufacturing medicaments for treatment. Such treatment includes conditions characterized by excessive production of OB protein, wherein the present OB receptors, particularly in soluble form, may be used to 15 complex to and therefore inactivate such excessive OB protein. Or, such OB receptor protein, particularly in soluble form, may act to protect the activity of OB protein. While not wishing to be bound by theory, one may postulate that OB protein receptor agonist activity 20 may be accomplished by a protective effect achieved when OB protein receptor (particularly soluble receptor) is complexed to OB protein. Such effect may prolong the serum half life of OB protein in vivo. Such treatments 25 may be accomplished by preparing soluble receptor (e.g., use of an extracellular domain as described supra) and administering such composition to an individual in need thereof or by preparation of a population of cells containing or expressing such OB receptor, and 30 transplanting such cells into the individual in need thereof.

The present OB receptors may also be used for treatment of those having defective OB receptors. For example, one may treat an individual having defective OB receptors by preparation of a population of cells containing such non-defective OB receptor, and

10

15

20

transplanting such cells into an individual. Or, an individual may have an inadequate number of OB receptors, and cells containing such receptors may be transplanted in order to increase the number of OB receptors available to an individual.

The present OB receptor proteins and related compositions such as OB receptor protein/OB protein complex, provide for weight loss, fat loss, increase in lean mass, increase in insulin sensitivity, increase in overall strength, increase in red blood cells (and oxygenation in the blood), decrease in bone resportion or osteoporosis, decreased or maintained serum cholesterol level, decreased or maintained triglyceride (LDL or VLDL) levels, prevention or reduction in arterial plaque formation, treatment of hypertension, and prevention or reduction of gall stone formation. body fat composition may be correlated with certain types of cancers, the present compositions may be useful for the prevention or amelioration of certain types of cancers. The present invention also includes methods for manufacture of a medicament for use in conjunction with the cosmetic/therapeutic conditions described herein, containing at least one of the presentcompositions.

25 The present compositions and methods may be used in conjunction with other medicaments, such as those useful for the treatment of diabetes (e.g., insulin or analogs thereof, thiazolidinediones or other antihyperglycemic agents, and possibly amylin or antagonists there of), cholesterol and blood pressure lowering medicaments (such as those which reduce blood lipid levels or other cardiovascular medicaments), and activity increasing medicaments (e.g., amphetamines). Appetite suppressants may also be used (such as serotonin modulators and neuropeptide Y antagonists).

Such administration may be simultaneous or may be in seriatim.

In addition, the present methods may be used in conjunction with surgical procedures, such as 5 cosmetic surgeries designed to alter the overall appearance of a body (e.g., liposuction or laser surgeries designed to reduce body mass, or implant surgeries designed to increase the appearance of body mass). The health benefits of cardiac surgeries, such 10 as bypass surgeries or other surgeries designed to relieve a deleterious condition caused by blockage of blood vessels by fatty deposits, such as arterial plaque, may be increased with concomitant use of the present compositions and methods. Methods to eliminate 15 gall stones, such as ultrasonic or laser methods, may also be used either prior to, during or after a course of the present therapeutic methods. Furthermore, the present methods may be used as an adjunct to surgeries or therapies for broken bones, damaged muscle, or other 20 therapies which would be improved by an increase in lean tissue mass.

In yet another aspect, the present invention provides for methods of manufacture of a medicament for the treatment of obesity, type II diabetes, excess blood lipid, or cholesterol levels, increasing sensitivity to insulin, increasing lean mass, and other conditions as set forth above. Also provided are solely cosmetic treatments for individuals wishing to improve appearance by weight loss, and more specifically, loss of fat deposits, even in the absence of any therapeutic benefit.

Diagnostic Compositions and Methods

As indicated <u>supra</u>, polypeptide products of 35 the invention may be "labeled" by association with a detectable marker substance (e.g., radiolabeled with

10

15

35

125_I, fluorescent, chemiluminescent, enzyme) to provide reagents useful in detection and quantification of OB receptor (or complexes) in solid tissue and fluid samples such as blood or urine. Nucleic acid products of the invention may also be labeled with detectable markers (such as radiolabels and non-isotopic labels such as biotin) and employed in hybridization processes to locate the human OB receptor gene position and/or the position of any related gene family in a chromosomal map. Nucleic acid sequences which selectively bind the human OB receptor gene are useful for this purpose. They may also be used for identifying human OB receptor gene disorders at the DNA level and used as gene markers for identifying neighboring genes and their disorders. Such nucleic acid sequences may be sued for detection or measurement of OB receptor mRNA level from a biological sample. Contemplated herein are kits containing such labelled materials.

The protein and/or nucleic acids provided herein may also be embodied as part of a kit or article 20 of manufacture. Contemplated is an article of manufacture comprising a packaging material and one or more preparations of the presently provided compositions. Such packaging material will comprise a label indicating that the protein or nucleic acid 25 preparation is useful for detecting and/or quantifying the amount of OB receptor in a biological sample, or OB receptor defects in a biological sample. As such, the kit may optionally include materials to carry out such testing, such as reagents useful for performing DNA or 30 RNA hybridization analysis, or PCR analysis on blood, urine, or tissue samples.

A further embodiment of the invention is selective binding molecules, such as monoclonal antibodies selectively binding OB receptor. The

hybridoma technique described originally by Kohler and Milstein Eur. J. Immunol. <u>6</u>, 511-519 (1976) has been widely applied to produce hybrid cell lines that secrete high levels of monoclonal antibodies against many specific antigens. Recombinant antibodies, (see Huse et 5 al., Science 246: 1275 (1989)) may also be prepared. Such recombinant antibodies may be further modified, such as by modification of complementarity determining regions to increase or alter affinity, or "humanizing" 10 such antibodies. Such antibodies may be incorporated into a kit for diagnostic purposes, for example. diagnostic kit may be employed to determine the location and/or amount or OB receptor of an individual. Diagnostic kits may also be used to determine if an 15 individual has receptors which bind OB protein, or those which, to varying degrees, have reduced binding capacity or ability. As stated infra, such antibodies may be prepared using immunogenic portions of an OB receptor Such selective binding molecules may 20 themselves be alternatives to OB protein, and may be formulated for pharmaceutical composition.

Such proteins and/or nucleic acids may be used for tissue distribution assays (for example, as provided in the working example below) or for other assays to determine the location of OB receptor.

25

30

35

The present OB receptor protein family may be used in methods to obtain OB protein analogs, mimetics or small molecules. One would simply prepare a desired OB receptor protein, particularly one with capability of binding to native OB protein, and assay the test molecule, which may be labelled with a detectable label substance, for ability to bind to such receptor. Other parameters, such as affinity, and location of binding, may also be ascertained by methods available to those skilled in the art. For example, one could use portions of the present OB receptors, particularly portions in

15

20

the extracellular domain which are necessary for ligand binding, to determine the location of such binding. One could prepare OB receptors which have various truncations or deletions of regions of the extracellular domain which could be used to determine the location of test molecule binding. One could use an OB receptor known to be defective in native OB binding, such as potentially one from an individual having such defective receptors, and use this as the basis for ascertaining OB protein which would be effective to result in desired biological activity (i.e., weight loss, reduction in blood dyslipidemias or lowering of cholesterol levels, reduction in incidence or severity of diabetes). Other uses include solely cosmetic uses for alteration of body appearance, particularly the removal of fat.

The present OB receptor protein or nucleic acids may also be useful to identify substances which "up-regulate" OB protein or receptor. For instance, the temporal expression of OB receptor in vivo may be useful to determine if an administered substance causes an increase or decrease in OB receptor. One may conclude that an increase in OB receptor expression results in modultion of weight or lipid metabolism.

The divergence in the C-terminus may represent

OB receptors with different signal transduction
abilities. Therefore the different receptor family
members may be used for different assays, depending on
the type of signal transduction observed. It is thought
that at least a portion of the intracellular domain is
necessary for signal transduction (see supra).

The following examples are offered to more fully illustrate the invention, but are not to be construed as limiting the scope thereof.

EXAMPLE 1: IDENTIFICATION OF HUMAN OB RECEPTOR PROTEIN

Human OB receptor protein DNA was identified

in a human liver cDNA library in two steps. The first
step used two primers in polymerase chain reaction (PCR)
to amplify a selected 300 base pair region from the
human liver cDNA library. The second step used the PCR
fragment as a probe to screen the human liver cDNA

library. Thirteen clones were obtained, but these were
incomplete at the 5' end. A procedure was performed to
complete the 5' end to make complete clones. Twelve
clones were sequenced. These twelve clones were
identified as either "A", "B" or "C" as denoted by the

C-terminus of the predicted amino acid sequence.

Polymerase Chain Reaction.

The original PCR primer was based on the 5' end and the 3' end of a 416 base pair sequence having 20 GenBank Database Accession No. T73849. This sequence was selected on the basis of a known motif present in cytokine receptors, "WSXWS".

The 5' primer had the sequence 73-96 of the 416 bp sequence. The 3' primer had the sequence 337-360 of the 416 bp sequence.

These primers were used to probe a human cDNA liver library (Stratagene). Standard methods were used.

This resulted in a PCR fragment having the sequence 73-360 of the 416 bp fragment.

Hybridization.

25

30

35

The 300 bp PCR fragment was used to probe a human liver cDNA library (Stratagene) using standard methods. This second hybridization resulted in 13 positive clones. These were partial clones, incomplete at the 5' end.

Completion of the 5' end.

Rapid Amplification of cDNA End ("RACE", kit, GIBCO/BRL) was used to obtain the full length clones.

5

10

15

20

25

30

35

Sequencing results.

Sequencing revealed the three types of OB receptor DNAs. Of the thirteen clones, 4 clones were the "A" type (Seq. ID Nos. 1 and 2); 1 clone was the "B" type (Seq. ID Nos. 3 and 4) and 4 clones were of the "C" type (Seq. ID Nos. 5 and 6).

As can be seen from the Sequence Identifications (below), OB receptor A is 896 amino acids long, "B" is 904 amino acids long, and "C" is 958 amino acids long. These different OB receptors are identical at amino acid positions 1-891, and diverge almost completely beginning at position 892. The leader sequence is postulated to be, by hydrophobicity analysis, amino acids 1-21(M-A), 1-22(M-F) or 1-28(M-I), with the mature protein beginning at positions 22(F), 23(N) or 29(T). Based on hydrophobicity analysis, the leader sequence is most likely to be at positions 1-21(M through A). Chinese Hamster Ovary Cell ("CHO") cell production of the secreted form of OB receptor protein also produced a protein having amino acid number 22 as the first amino acid of the mature protein. transmembrane region is likely to begin at either position 840 (A) or 842(L) through position 862(I), 863(S) or 864(H). For OB receptor type "A", the last amino acid is located at position 896 and is a lysine (L). For OB receptor type "B", the last amino acid is located at position 904 and is a glutamine (Q). For OB receptor type "C", the last amino acid is located at position 958 and is glutamic acid (E).

For OB receptor protein type "C", the C-terminal region possesses high homology to a known human

20

25

.30

35

transposable element. From nucleotide 2737 through 2947 of the present human OB receptor protein type "C", there is a 98.1% homology with a 211 base section of a human retrotransposable element described in Ono et al., Nucl. Acids Res. 15: 8725-8737 (1987) (bases 520 through 731, SINE-R11, GENBANK accession no. x07417).

EXAMPLE 2: TISSUE DISTRIBUTION

Tissue distribution was ascertained using two methods. The first method involved using the entire type "A" OB receptor. The second method involved using probes which are specific to the C-terminal region of the protein. Since these C terminal regions are divergent, the second method detected the tissue distribution of the different members of the OB receptor family.

The first method used a Northern Blot kit (Clontech), using the entire type A OB receptor DNA as a probe. The second method used PCR with primers specific to the nucleic acids encoding the divergent C terminus of the three types. Standard methods were used.

Table 2 shows the results for the Northern Blot and the PCR methods. The "+" indicates the investigator's subjective determination of the strength of signal. For the Northern Blot analysis, a triple "+++" indicates that a result (a dark "band" on the X-ray film) was seen upon overnight exposure of the film. A double "++" indicates that bands were seen at two weeks of exposure. A single "+" indicates that the bands were seen after three weeks of exposure. In addition, using this method, two molecular weights were observed, one at 4 Kb and one at 6.2 Kb. Although distribution was ubiquitous, the strongest signals were seen for ovary, heart and liver. For the PCR analysis, OB receptor "A" was seen in all tissue types tested (prostate, ovary, small intestine, heart, lung, liver

and skeletal muscle), type "B" was seen only in lung and liver, and type "C" was seen in ovary, heart, lung and liver.

Table 2
Tissue Distribution of the Novel OB Receptor

	Northe	rn Blot	PCR		
	4 Kb	6.2 Kb	A	В	С
Spleen	-	+			
Thymus	-	+			
Prostate	-	+	+		
Testis	-	+			
Ovary	•	+++	+		+
Small Intestine	-	++	+	-	
Colon	-	-			
Peripheral blood Leukocyte	-	-			·
Heart	- ·	+++	+	_	+
Brain	-	-			
Placenta		+			
Lung	+	++	+	+	+
Liver	+++	+++	+	+	+
Skeletal Muscle	-	++	+	-	-
Kidney	_	++			
Pancreas	-	+			

10

EXAMPLE 3: IDENTIFICATION OF HUMAN OB RECEPTOR GENOMIC DNA AND CHROMOSOME LOCALIZATION; IDENTIFICATION OF HUMAN OB RECEPTOR "D"

15

20

The full length human OB receptor genomic DNA was also prepared. OB receptor "A" cDNA, in its entirety, was used as a probe against a human genomic DNA library, using materials and methods from a commercially available kit (Genome Systems, using a human genomic library in a P1 vector). A single

positive clone was detected. There are introns located at (with respect to OB receptor "A" DNA) base pair number: 559, 1059, 1350, 1667, 1817, 1937, 2060, 2277, 2460, 2662, and 2738.

- The human OB receptor gene was localized to human chromosome 1P31 by FISH analysis (Genome Systems). Human chromosome 1 is thought to correspond to mouse chromosome 4C7, which is presumed to be the location of the db locus.
- A further chromosomal sequence was isolated. This chromosomal DNA sequence was isolated from a human genomic library as described above. This chromosomal sequence encodes what is here denominated human OB receptor "D", and the encoded amino acid sequence is set forth in SEQ. ID No. 7. A cDNA encoding this amino acid sequence is set forth in SEQ. ID No. 8. The chromosomal DNA intron/exon junction map is set forth as SEQ. ID No. 9.
- As with forms "A", "B", and "C", for the 20 present form "D" OB receptor protein, the first amino acid of the mature protein is likely (using hydrophobicity analysis) to begin at position 22 (F), 23 (N) or 29 (T). The last amino acid of the protein is at position 1165 and is a valine residue. As with the 25 other forms, the extracellular domain extends from position 22 (F), 23 (N) or 29 (T) to position 839 (D) or 841 (G). The transmembrane domain appears to begin at position 840 (A) or 842 (L). The end of the transmembrane domain appears to be located at position 30 862 (I), 863 (S) or 864 (H). The C-terminal region, beyond the transmembrane region, is likely to be involved in signal transduction, and is located at position 863 (S), 864 (H) or 865 (Q) through position 11.65 (V).
- The present OB receptor form "D" is identical to that published by Tartaglia et al, Cell 83: 1263-1271

20

(December 29, 1995) with the exception of a single amino acid change at amino acid position 976 (nucleotide codon begining at position 3022). The present type "D" amino acid at position 976 is aspartic acid, and the published amino acid corresponding to the same position is alanine. This is a non-conservative substitution, see infra, and since the location of the substitution is within a region thought important for signal transduction, this change could affect the function of the molecule.

EXAMPLE 4: PREPARATION OF SOLUBLE OB RECEPTOR

Three forms of soluble human OB receptor have 15 been prepared:

- 1. Leader + Extracellular Domain (Seq. ID Nos. 10 and 11): A recombinant form of the soluble human OB receptor was prepared. This form encompasses, in the immature protein, the leader sequence and the extracellular domain (amino acids 1-839). The mature protein would have the leader sequence deleted, and the first amino acid of the mature recombinant soluble human OB receptor would be 22 (F), 23 (N) or 29 (T). This protein was expressed as described below.
- 2. Leader + Extracellular Domain + Cterminal FLAG (Seq. ID No. 12): A second form of the
 recombinant soluble human OB receptor was also prepared.
 This form had a "FLAG" tag located at the "C" terminus
 of the protein. The "FLAG" peptide is a useful research
 tool as it allows one to follow the protein using an
 antibody which recognizes the "FLAG" peptide. Such
 reagents are commercially available (IBI, New Haven,
 CT). This protein was expressed as described below.

 3. Native Splice Variant (Seq. ID Nos.
- 35 13 and 14): This form is believed to the the recombinant form of a naturally occurring secreted,

soluble human OB receptor. This form has most of the amino acids found in the extracellular domain (amino acids 22-798), and a unique 6 amino acid sequence at the carboxyl terminus. Beginning at amino acid position 799 of Seq. ID No. 13, the amino acid sequence of this native splice variant human OB receptor protein is "G K F T I L."

EXAMPLE 5: PREPARATION OF EXPRESSION VECTORS

10

15

30

Recombinant human OB receptor expression vectors have been prepared for expression in mammalian cells. As indicated above, expression may also be in non-mammalian cells, such as bacterial cells. The type "A" cDNA (Seq. ID No. 2) was placed into a commercially available mammalian vector (pCEP4, Invitrogen) for expression in mammalian cells, including the commercially available human embryonic kidney cell line, "293".

Recombinant human OB receptor expression

vectors have been prepared for expression of recombinant soluble OB receptor, consisting of the leader sequence and the extracellular domain (Seq. ID Nos. 10 and 11), using the same system as above (the commercialy available mammalian vector pCEP4, and "293" cells).

25 This recombinant soluble human OB receptor was also expressed in CHO cells in a similar way.

The "FLAG-tagged" form (Seq. ID No. 12) of the recombinant soluble human OB receptor, and the "D" form (Seq. ID No. 7) were also expressed in "293" cells in a similar fashion as above.

Detection of desired protein was accomplished using BIACORE (Pharmacia) analysis. This analysis is analogous to that described in Bartley et al., Nature 368: 558-560 (1994).

Essentially, the BIACORE machine measures affinity interactions between two proteins. In this

case, the OB protein was immobilized on the machine, and conditioned media from cell lines expressing the OB receptor was added to the machine. Any receptor protein present in the conditioned media bound to the OB protein surface. The BIACORE machine gave a read-out indicating that receptor protein was being expressed. For recombinant soluble receptor (Seq. ID No. 10) expression in "293" cells, the read-out was 191.0 relative to a baseline readout of 0. For recombinant soluble receptor (SEq. ID No. 10) expression in CHO cells, the read-out was 150.9 relative to a baseline readout of 0. For recombinant soluble receptor with a C-terminal FLAG-tag (Seq. ID. No. 12), the read-out was 172.0 relative to a baseline of 0.

For expression in bacterial cells, one would typically eliminate that portion encoding the leader sequence (e.g., potentially amino acids 1-21, 1-22 or 1-28). One may add an additional methionyl at the N-terminus for bacterial expression. Additionally, one may substitute the native leader sequence with a different leader sequence, or other sequence for cleavage for ease of expression.

EXAMPLE 6: DEMONSTRATION OF SIGNAL TRANSDUCTION

25

30

35

20

10

15

This example demonstrates that the "D" form is active to produce a signal within a cell, whereas in the same cell type, the "A" form does not. The signal transduction assay was performed by the use of "293" cells transiently expressing either the "A" or the "D" form (see above for preparation of the "293" expression clones). Phosphorylation of molecules predicted to be involved in signal transduction within the cell was examined upon OB protein binding to the OB receptor protein tested. The results demonstrate that upon binding of OB protein to the extracellular domain, the

"D" form of the present OB protein receptor transduces a signal sufficient to initiate phosphorylation of signalling molecules.

5 Methods

- 1. OB receptor molecules. As indicated above, the "A" form (Seq. ID No. 1) and the "D" form (Seq. ID. No. 7) were studied.
- 2. Expression system. The pCEP 4 system (as described above) having inserted DNA encoding the "A" 10 form (Seq. ID No. 2) or the "D" form (Seq. ID No. 8) was used to transfect "293" cells. These cells did not allow for the pCEP4 vector to integrate into the genome, so such expression was transient. Non-recombinant
- (mock-transfected) cells were also prepared as controls. 15
- 3. Detection of phosphorylation. Mock transfected cells and cells expressing the "A" form or the "D" form were analyzed. Prior to treatment the cells were serum-starved by incubation in media with
- 20 0.5% serum for 16 hours prior to the treatments. cells were treated with the OB protein (10 mg/ml) for 15 minutes at 37°C , after which the cells were lysed in modified NP40 buffer (50 mM Tris, pH 8.0, 150 mM sodium chloride, 1% NP40, 10 mg/ml aprotinin, 5mM EDTA, 200 mM
- sodium orthovanadate). Phosphotyrosine containing 25 proteins were immunoprecipitated (Anti-phosphotyrosine antibody 4G10, UBI, Lake Placid, NY), and separated by SDS polyacrylamide gel electrophoresis. After electrophoresis and electroblotting to membranes the
- immunoprecipitates were probed with antibodies to 30 various signal transduction molecules. Antibodies to STATs, JAKs and ERKs were purchased from Santa Cruz Biotechnology Inc. Immune complexes were detected by horseradish peroxidase conjugated secondary reagents
- 35 using chemiluminescence as described by the manufacturer (ECL, Amersham). As a positive control, 32D cells were

treated with IL-3, which is known to activate by tyrosine phosphorylation most of the molecules being

Results are presented in Table analyzed. 3, below. As can be seen, only the "D" form was able to respond to either mouse or human OB protein as detected by phosphorylation of JAK and STAT molecules. A "+" designation indicates signal was detected, a "-" designation means that no signal was observed.

10

...

TABLE 3

			1112			
			1	293/A	293/A	32D
Signal	293	293/D	293/D mrOB**	hr0B#_	mrOB##	IL-3
/AB‡	Alone	hrOB*	MEOD		1	1
STAT1	<u> </u>	+	+	1-	<u> </u>	1+
STAT3	1	+	+	1		+
STAT5	<u> </u>	 +	+	Ī		+
JAK1	 	-+	+			++
JAK2	1	+				
JAK3			+			
TYK2		- +		1-	-	+
ERKS	-	-				
1,2			on target			ad wi

- 293 cells expressing receptor form "D", treated with ‡ Antibody detection target
- recombinant human OB 15
- ** 293 cells expressing receptor form "D" treated with recombinant murine OB
 - 293 cells expressing receptor form "A" treated with
 - ## 293 cells expressing receptor form "A" treated with recombinant human OB 20 recombinant murine OB

The "D" form is capable of initiating signalling through the JAK/STAT pathways in 293 cells, whereas the "A" form cannot.

EXAMPLE 7: USE OF SOLUBLE OB RECEPTOR AS A THERAPEUTIC

This example demonstrates that soluble OB

5 receptor protein acts to protect the activity of OB
protein. Below, soluble OB receptor and/or OB protein
was delivered to a mammal via "gene transplant" -- that
is, via bone marrow cells engineered to express the
desired DNAs. When soluble OB receptor combined with OB

10 protein was delivered, the animals lost more weight than
delivery of OB protein alone. This demonstrates the
protective activity of OB receptor protein.

While not wishing to be bound by theory, one explanation of the mode of action is that soluble OB

15 receptor protein acts to protect the OB protein in serum from agents or conditions which could diminish its activity. The protective action appears to increase circulating half-life of the protein. As such, the present example demonstrates that OB receptor either alone, or administered as a complex with OB protein (or analog or derivative thereof) could act as a therapeutic agent.

Materials and methods:

30

25 1. <u>Preparation of recombinant ob retroviral</u> vector Packaging Cells.

Use of murine ob cDNA. Full length wild-type murine ob cDNA was amplified by the PCR using synthetic oligonucleotides designed from the published sequence Zhang et al., Nature 372: 425-432 (1994).Linkers (An Eco RI linker and a Bgl II linker) were used to facilitate subcloning.

Use of soluble recombinant human OB receptor CDNA. Methods similar to those above were used. A construct containing the recombinant human soluble receptor of Seq. ID No. 10 was used, and modified with

.,2

10

15

30

linkers to facilitate cloning (i.e., the addition of a Bal II restriction endonuclease recognition site).

Placement of desired cDNA into vector. PCR products were digested with EcoRI and BglII and cloned into similarly-digested parental vector (pMSCV2.1) under the transcriptional control of the viral LTR promoter. The parental MSCV vector (supplied by R. Hawley, University of Toronto, Canada) was derived from MESV (murine embryonic stem cell virus) and contains a neomycin phosphotransferase resistance (neor) gene driven by an internal mouse phosphoglycerate kinase (PGK) promoter, as described. Hawley, et al, J. Exp. Med. 176: 1149 -1163 (1992). The parental plasmid pMSCV2.1 and pMSCV-OB were independently electroporated into the GP+E-86 packaging cell line (supplied by Dr. A. Bank, Columbia University, NY) Markowitz et al., J. Virol. 62:1120-1124 (1988). Transient supernatants were harvested from electroporated populations and used to infect tunicamycin treated parental GP+E-86 cells. Tunicamycin treatment relieves the block to superinfection of the parental packaging cells. G418 (0.78 mg/mL, 67% active, GIBCO Laboratories, Life Technologies, Inc., Grand Island, NY) resistant clones

20 were selected from each infected population and titered by infection of NIH3T3 cells. Clones with the highest 25

G418 resistant titer were expanded and frozen as aliquots. Each bone marrow infection and transplantation experiment used aliquots from the same passage of frozen viral packaging cells. Both the parental and ob packaging cell lines were tested for the

presence of, and found to be free from, replication competent virus using a sensitive marker rescue assay. Moore, et al., (1993) in: Gene Targeting: A Practical Approach, Joyner, Ed. (Oxford University Press, New

York, NY). 35

- 2. Production of Retroviral Supernatants.

 Recombinant virus-producing packaging cell lines were grown in 175cm² tissue culture flasks in Iscove's Modified Dulbecco's Medium (IMDM) (GIBCO), 10% (v/v)

 5 FBS, at 37°C. Sub-confluent (approximately 60%) monolayers of cells were fed with fresh medium 24h prior to harvest of virus-containing supernatants. Viral supernatants were removed from packaging cell lines by aspiration, sterile filtered (0.45mM) and added directly to bone marrow cultures. Fresh aliquots of frozen packaging cell lines were thawed for use in each experiment.
- 3. Bone Marrow Infection and Transplantation.
 Eight to 12-week old female C57BL/6J (+/+) or (ob/ob)

 15 mice were used as bone marrow donors and recipients.
 All mice were purchased from The Jackson Laboratory (Bar Harbor, ME) and housed under specific pathogen-free conditions in a vivarium in accordance with governmental regulations and institutional guidelines.
- 20 Bone marrow cells were harvested from femurs and tibias of donor mice 4 days post 5-fluorouracil (5-FU, Sigma Chemical Co., St. Louis, MO) treatment (150 mg/kg i.v.). Bone marrow cells (6 X 10⁵/mL) were incubated in 150mm tissue culture dishes (30mL/dish) containing fresh viral supernatant (as described above), 25 15% FBS, 6 mg/mL polybrene (Sigma), 0.1% bovine serum albumin (BSA, Fraction V, Sigma), 2.5 ng/mL recombinant mouse IL-3 *(rmIL-3), 100 ng/mL each of recombinant human IL-6 (rhIL-6), recombinant human IL-11 (rhIL-11), and 30 recombinant rat SCF (rrSCF). All growth factors were produced by Amgen, Inc. (Thousand Oaks, CA). Culture media were replaced daily for 3 days with fresh viruscontaining supernatant and growth factors.
 - At the end of the infection period, total non-35 adherent and adherent cells were washed and resuspended in 1% BSA-saline and transplanted into g-irradiated (12

Gy, Cs^{137}) mice. Each animal was transplanted with 2.5 \times 10⁶ syngeneic cells. There were approximately 10 animals per cohort.

4. Analysis of OB protein expression in transfected cells and transplanted animals. For 5 transfected bone marrow cells, Western analysis was performed. Vector packaging cell supernatant was resolved by SDS-PAGE (16% acrylamide), then transferred to Hybond-ECL (Amersham, Arlington Heights, IL). filter was incubated with affinity-purified rabbit a-10 mouse OB protein polyclonal antibody (1mg/mL) in T-TBS buffer (20mM Tris-chloride, pH7.6, 137mM NaCl, 0.1% Tween20) at room temperature for 45 min. Horseradish peroxidase (HRP)-conjugated donkey a-rabbit IgG (Amersham) was diluted in T-TBS (1:2500) and incubated 15 with the filter at room temperature for 45 min. Enhanced chemiluminescence (ECL, Amersham) detection was performed as recommended by the manufacturer.

For transplanted animals, serum was analyzed. were bled retroorbitally, under isofluorane

Animals were bled retroorbitally, under isofluorane anesthesia. Serum from transplanted ob/ob animals was resolved by SDS-PAGE (4-20% acrylamide) under non-reducing and reducing conditions, then transferred to Trans-Blot (Bio-Rad Laboratories, Hercules, CA)

membranes. The membranes were incubated for 2 hours at room temperature with HRP-conjugated rabbit a-mouse OB protein antibody (0.125mg/mL) in T-TBS buffer containing 5% fetal bovine serum and 1% bovine serum albumin.

Bound OB protein was detected by ECL (Amersham), performed as recommended by the manufacturer.

For quantitation of soluble OB protein levels, serum from transplanted animals was subjected to ELISA analysis. Briefly, affinity-purified rabbit a-OB protein polyclonal antibody was coated onto 96-well plates. Standards (purified recombinant OB protein

monomer, Pelleymounter et al., Science 269: 540-543 (1995) and experimental samples were added, and the plates were incubated at room temperature. The plates were washed twice and affinity-purified rabbit a-OB protein antibody conjugated to horseradish peroxidase was added. Following incubation at room temperature, the plates were washed four times with TNE-Tween20. TMB/peroxide substrate was added and the color reaction was read at 450nm in a Molecular Devices plate reader.

OB protein concentrations in sera were estimated by 10 comparison to a standard curve prepared from internal standards. OB protein levels were reliably measured in samples containing >160 pg/mL.

Body Weight and Food Intake. 5. 15 offered pelletized rodent chow (PMI Feeds, Inc., St. Louis, MO) ad libitum. The body weight of individual animals was measured daily for the first two months of analysis, and weekly thereafter. Food consumption was measured daily on selected groups of individually-housed 20 animals.

Results

25

35

Results are presented in Tables 4 and 5 below. Administration of OB protein receptor increased the effectiveness of OB protein. This may have been accomplished via an increased circulation time of OB protein in the presence of OB protein receptor.

As can be seen in the Table, animals administered a combination of OB protein and OB protein 30 receptor (via genetic therapy) had a greater weight loss after 28 days than either composition alone. The Table presents the results of two experiments (" $_{-}/_{-}$ "). can be seen, use of the OB protein alone at day 40 resulted in animals with 87.5% and 72.2% of the starting weight. Using OB receptor in combination with OB protein, however, resulted in animals with 68% and

53.6% of the starting weight. Use of the receptor alone appeared to have little effect, if any.

TABLE 4

15

20

Treatment	Weight(g) decrease at day 28 (ave)	% starting weight (ave) day 28	% starting weight (ave) day 40
OB alone*	6.3/12.7	87.9/75.3	87.5/72.2
Receptor**	[1.4]/[0.3]	103/100.6	104.2/101.7
OB + Receptor***	12.6/16.8	76.3/67.5	68/53.6

- * 50% bone marrow cells transfected with OB protein cDNA as described above, and 50% bone marrow cells without genetic alteration
- ** 50% bone marrow cells transfected with OB receptor
 10 protein cDNA as described above, and 50% bone marrow
 cells without genetic alteration
 - *** 50% bone marrow cells transfected with OB protein cDNA as described above, and 50% bone marrow cells transfected with OB receptor protein cDNA as described above.

Table 5, below, contains results of the OB levels found in the serum from animals administered OB protein alone, or administered OB protein in combination with OB protein receptor (via the "gene therapy" method of this example). The data reflect nanograms of OB protein per milliliter of serum, plus or minus the standard error of the mean.

TABLE 5

Treatment	Experiment #1‡	Experiment #2;
OB alone*	2.93 +/- 0.77	9.74 +/- 1.02
Receptor** alone	0.08 +/- 0.05	0.12 +/- 0.07
OB + Receptor***	12.11 +/- 1.90	15.18 +/- 2.52

- * 50% bone marrow cells transfected with OB protein
 5 cDNA as described above, and 50% bone marrow cells without genetic alteration
 - ** 50% bone marrow cells transfected with OB receptor protein cDNA as described above, and 50% bone marrow cells without genetic alteration
- 10 *** 50% bone marrow cells transfected with OB protein cDNA as described above, and 50% bone marrow cells transfected with OB receptor protein cDNA as described above.
- ‡ Experiment #1 was conducted as described above,

 with OB protein serum levels measured after 38 days.

 ‡‡ Experiment #2 was also conducted as described above, with OB protein serum levels measured after 24 days.
- The data demonstrate the protective effects of OB receptor. As can be seen, in the presence of OB receptor, OB protein has a higher accumulation in the serum. The degree of accumulation is observed to increase inversely with the levels of OB protein in the serum. In Experiment #1 (with a base OB protein level
- of about 2.93 ng/ml), the OB protein serum level increased about 400% with the addition of receptor, where in Experiment #2 (with a base of about 9.74), the OB protein serum level increased by about 25%.
- OB receptor administered either alone or in association with OB protein (or analogs or derivatives

ź.

15 mg

thereof) may serve to increase the circulation time of OB protein, and therefore enhance the therapeutic efficacy of either exogenous or endogenous OB protein.

EXAMPLE 8: PREPARATION OF SELECTIVE BINDING MOLECULES 5 Animals were immunized for the preparation of polyclonal antibodies using the following peptides (with respect to the numbering of the amino acids for OB receptor A, Seq. ID No. 1): 54-64; 91-100; 310-325; 397-406; 482-496; 874-885; and, with respect to amino 10 acids of OB receptor "C" (Seq. ID No. 5), 910-929. of the polyclonal antibodies prepared (in rabbits) were tested for ability to bind to recombinant human OB receptor protein. The polyclonal antibody prepared against amino acids 54-64 was found to have the highest 15 affinity for recombinant human OB receptor protein. polyclonal antibody prepared against amino acids 397-406 was also found to bind to recombinant human OB receptor The polyclonal antibody prepared against amino acids 91-100 was found to slightly bind to recombinant 20 human OB receptor protein. The polyclonal antibody prepared against amino acids 874-885 was found not to bind to recombinant human OB receptor protein.

An additional study was performed which

25 demonstrates the expression and purification of the
extracellular domain of the OB receptor protein in CHO
cells, and antibodies which recognize this OB protein
receptor extracellular domain.

The extracellular domain of the human OB

receptor protein was expressed as a secreted, soluble protein in CHO cells as previously described supra.

Individual cell lines were isolated and grown in increasing amounts of methotrexate to increase selection/expression of the recombinant receptor protein (100, 200 or 500 micrograms methotrexate per ml of media). Conditioned media from the CHO cell lines was

collected, and the proteins in the conditioned media were fractionated by SDS-PAGE. The OB receptor extracellular domain migrated as a broad band with an apparent size range of about 140 kDa to about 200 kDa.

The OB receptor protein extracellular domain was detected by Western Blot analysis using polyclonal antibodies prepared against a portion of the extracellular domain of the OB receptor protein. The unfolded, bacterially expressed protein was used as an antigen to generate antisera in rabbits. The identified OB receptor extracellular domain was purified by affinity chromatography. The purified protein was sequenced at

the amino terminus to confirm that it was the OB receptor and also to determine the start of the mature protein (after signal peptide cleavage) as expressed in CHO cells. It was found that amino acid no. 22 (according to the amino acid sequence numbering of Seq. ID No. 1, infra), was the first amino acid of the mature protein as expressed in CHO cells.

Other immunogenic peptides may be used.

Polyclonal, monospecific polyclonal, monoclonal,
antibody fragments, and recombinant antibodies may be
prepared using methods available to those skilled in the
art.

25 One may further use recombinant techniques or peptide synthesis methods to alter the character of such selective binding molecules. This may be accomplished by preparing recombinant antibodies having altered complementarity determining regions (sometimes referred to in the art as "CDR's") to, for example "humanize" the antibodies by using human Fc (constant) regions. Other types of recombinant antibodies, for example, those having CDR's altered to enhance affinity or selectivity to one or more members of the OB receptor family, may be prepared and used using methods available to those

10

25

30

35

skilled in the art. <u>See</u> Winter et al., Nature <u>349</u>: 293-299 (1991).

The present OB receptor protein may be used as an assay to screen for desired selective binding molecules. Such assay may be based on binding capability, or biological activity, or, other means of detecting signal transduction. For example, if one were to prepare a series of modified antibodies, one could test them for affinity (i.e, binding strength) against the target OB receptor.

The selective binding molecules may be useful for diagnostic purposes, such as tissue distribution analysis, or to diagnose the relative affinity of an individual's OB receptors for such selective binding molecule to determine the functionality of an individual's OB receptor during a course of therapy. Selective binding molecules may be alternative therapeutic or cosmetic products to OB protein.

20 EXAMPLE 9: GENE THERAPY

One may deliver the present OB receptor protein via gene therapy, as described <u>infra</u>.

One may envision, using materials and methods available to those skilled in the art and provided herein, using T-cells as an agent carrying DNA expressing OB receptor for gene therapy. An individual would have T-cells selected using CD34+ selection and a magnetic microparticles selection device. Such cells would be transfected with the desired DNA, or the regulation of the desired coding region may be altered using homologous recombination or other in situ techniques. The transduced cells could be selected empirically, using means to detect the desired protein, or a marker may be included which permits indirect detection (i.e., a selectable marker as is known in the

- art). Optionally, such cells could be expanded, for example, using one or more growth factors such as SCF or an interleukin, and such cells could be stored for future use. In such a way, the procedure would only have to be accomplished once or infrequently in an individual's lifetime, for later transfer into the individual. The cells would be re-planted into the individual, and the individual would be monitored for desired therapeutic effect, such as weight
- 10 loss/maintenance of weight, diabetes recurrence, blood lipid levels, or other conditions.

Illustrative Nucleic Acid and Amino Acid Sequences

The below amino acid and DNA sequences are
those to which reference has been made. An asterick("*")
indicates the position of a stop codon.

Human OB Receptor "A" Amino Acid Sequence (Seq. ID No. 1 (Amino Acid, single letter abbreviation):

_	1	MICQKFCVVL	LHWEFIYVIT	AFNLSYPITP	WRFKLSCMPP	NSTYDYFLLP
5	51	AGLSKNTSNS	NGHYETAVEP	KFNSSGTHFS	NLSKTTFHCC	FRSEQDRNCS
	101	LCADNIEGKT	FVSTVNSLVF	QQIDANWNIQ	CWLKGDLKLF	ICYVESLFKN
10	151	LFRNYNYKVH	LLYVLPEVLE	DSPLVPQKGS	FQMVHCNCSV	HECCECLVPV
	201	PTAKLNDTLL	MCLKITSGGV	IFQSPLMSVQ	PINMVKPDPP	LGLHMEITDD
	251	GNLKISWSSP	PLVPFPLQYQ	VKYSENSTTV	IREADKIVSA	TSLLVDSILP
15	301	GSSYEVQVRG	KRLDGPGIWS	DWSTPRVFTT	QDVIYFPPKI	LTSVGSNVSF
	351	HCIYKKENKI	VPSKEIVWWM	NLAEKIPQSQ	YDVVSDHVSK	VTFFNLNETK
20	401	PRGKFTYDAV	YCCNEHECHH	RYAELYVIDV	NINISCETDG	YLTKMTCRWS
•	451	TSTIQSLAES	TLQLRYHRSS	LYCSDIPSIH	PISEPKDCYL	QSDGFYECIF
0.5	501	QPIFLLSGYT	MWIRINHSLG	SLDSPPTCVL	PDSVVKPLPP	SSVKAEITIN
25	551	IGLLKISWEK	PVFPENNLQF	QIRYGLSGKE	VQWKMYEVYD	AKSKSVSLPV
	601	PDLCAVYAVQ	VRCKRLDGLG	YWSNWSNPAY	TVVMDIKVPM	RGPEFWRIIN
30	651	GDTMKKEKNV	TLLWKPLMKN	DSLCSVQRYV	INHHTSCNGT	WSEDVGNHTK
	701	FTFLWTEQAH	TVTVLAINSI	GASVANFNLT	FSWPMSKVNI	VQSLSAYPLN
2.5	751	SSCVIVSWIL	SPSDYKLMYF	IIEWKNLNED	GEIKWLRISS	SVKKYYIHDH
35	801	FIPIEKYQFS	LYPIFMEGVG	KPKIINSFTQ	DDIEKHQSDA	GLYVIVPVII
-	851	SSSILLLGTL	LISHQRMKKL	. FWEDVPNPKN	CSWAQGLNFQ	KRTDIL*SLI
40	901	MITTDEPNVP	TSQQSIEY*K	: IFTF*RRGAN	LKKIQLNF*E	LTYGGLC*FR
	951	T*NRCVNLGS	KCRFESSLDV	* *L		•

	HUI	an OB Receptor "A" DNA Sequence (Seq. ID No. 2 (DNA)):
	1	CCGCCGCCAT CTCTGCCTTC GGTCGAGTTG GACCCCCGGA TCAAGGTGT.
5	5 51	CTTCTCTGAA GTAAGATGAT TTGTCAAAAA TTCTGTGTGG TTTTGTTAC
	101	
	151	CTCCTTGGAG ATTTAAGTTG TCTTGCATGC CACCAAATTC AACCTATGAG
10	201	TACTTCCTTT TGCCTGCTGG ACTCTCAAAG AATACTTCAA ATTCGAATGG
	251	ACATTATGAG ACAGCTGTTG AACCTAAGTT TAATTCAAGT GGTACTCACT
15	301	TTTCTAACTT ATCCAAAACA ACTTTCCACT GTTGCTTTCG GAGTGAGCAA
	351	GATAGAAACT GCTCCTTATC TCCACACACACACACACACACACACACACA
	401	GATAGAAACT GCTCCTTATG TGCAGACAAC ATTGAAGGAA AGACATTTGT
20	451	TTCAACAGTA AATTCTTTAG TTTTTCAACA AATAGATGCA AACTGGAACA
	501	TACAGTGCTG GCTAAAAGGA GACTTAAAAT TATTCATCTG TTATGTGGAG
25	551	TCATTATTTA AGAATCTATT CAGGAATTAT AACTATAAGG TCCATCTTTT
	601	ATATGTTCTG CCTGAAGTGT TAGAAGATTC ACCTCTGGTT CCCCAAAAAG
	651	GCAGTTTTCA GATGGTTCAC TGCAATTGCA GTGTTCATGA ATGTTGTGAA
30	701	TGTCTTGTGC CTGTGCCAAC AGCCAAACTC AACGACACTC TCCTTATGTG
	751	TTTGAAAATC ACATCTGGTG GAGTAATTTT CCAGTCACCT CTAATGTCAG
25		TTCAGCCCAT AAATATGGTG AAGCCTGATC CACCATTAGG TTTGCATATG
35	801	GAAATCACAG ATGATGGTAA TTTAAAGATT TCTTGGTCCA GCCCACCATT
	851	GGTACCATTT CCACTTCAAT ATCAAGTGAA ATATTCAGAG AATTCTACAA
40	901	CAGTTATCAG AGAAGCTGAC AAGATTGTCT CAGCTACATC CCTGCTAGTA
	951	GACAGTATAC TTCCTGGGTC TTCGTATGAG GTTCAGGTGA GGGGCAAGAG
	1001	ACTGGATGGC CCAGGAATCT GGAGTGACTG GAGTACTCCT CGTGTCTTTA
45	1051	CCACACAAGA TGTCATATAC TTTCCACCTA AAATTCTGAC AAGTGTTGGG
	1101	TCTAATGTTT CTTTTCACTG CATCTATAAG AAGGAAAACA AGATTGTTCC
50	1151	CTCAAAAGAG ATTGTTTGGT GGATGAATTT AGCTGAGAAA ATTCCTCAAA
	1201	GCCAGTATGA TGTTGTGAGT GATCATGTTA GCAAAGTTAC TTTTTTCAAT
	1251	CTGAATGAAA CCAAACCTCG AGGAAAGTTT ACCTATGATG CAGTGTACTG
		+

	1301	CTGCAATGAA	CATGAATGCC	ATCATCGCTA	TGCTGAATTA	TATGTGATTG
5	1351	ATGTCAATAT	CAATATCTCA	TGTGAAACTG	ATGGGTACTT	AACTAAAATG
	1401	ACTTGCAGAT	GGTCAACCAG	TACAATCCAG	TCACTTGCGG	AAAGCACTTT
	1451	GCAATTGAGG	TATCATAGGA	GCAGCCTTTA	CTGTTCTGAT	ATTCCATCTA
10	1501	TTCATCCCAT	ATCTGAGCCC	AAAGATTGCT	ATTTGCAGAG	TGATGGTTTT
ia.	1551	TATGAATGCA	TTTTCCAGCC	AATCTTCCTA	TTATCTGGCT	ACACAATGTG
15	1601	GATTAGGATC	AATCACTCTC	TAGGTTCACT	TGACTCTCCA	CCAACATGTG
15	1651	TCCTTCCTGA	TTCTGTGGTG	AAGCCACTGC	CTCCATCCAG	TGTGAAAGCA
	1701	GAAATTACTA	TAAACATTGG	ATTATTGAAA	ATATCTTGGG	AAAAGCCAGT
20	1751	CTTTCCAGAG	AATAACCTTC	AATTCCAGAT	TCGCTATGGT	TTAAGTGGAA
	1801	AAGAAGTACA	ATGGAAGATG	TATGAGGTTT	ATGATGCAAA	ATCAAAATCT
25	1851	GTCAGTCTCC	CAGTTCCAGA	CTTGTGTGCA	GTCTATGCTG	TTCAGGTGCG
	1901	CTGTAAGAGG	CTAGATGGAC	TGGGATATTG	GAGTAATTGG	AGCAATCCAG
	1951	CCTACACAGT	TGTCATGGAT	ATAAAAGTTC	CTATGAGAGG	ACCTGAATTT
30	2001	TGGAGAATAA	TTAATGGAGA	TACTATGAAA	AAGGAGAAAA	ATGTCACTTT
	2051	ACTTTGGAAG	CCCCTGATGA	AAAATGACTC	ATTGTGCAGT	GTTCAGAGAT
	2101	ATGTGATAAA	CCATCATACT	TCCTGCAATG	GAACATGGTC	AGAAGATGTG
35	2151	GGAAATCACA	CGAAATTCAC	TTTCCTGTGG	ACAGAGCAAG	CACATACTGT
	2201	TACGGTTCTG	GCCATCAATT	CAATTGGTGC	TTCTGTTGCA	AATTTTAATT
40	2251	TAACCTTTTC	ATGGCCTATG	AGCAAAGTAA	ATATCGTGCA	GTCACTCAGT
	2301	GCTTATCCTT	TAAACAGCAG	TTGTGTGATT	GTTTCCTGGA	TACTATCACC
4.5	2351	CAGTGATTAC	AAGCTAATGT	ATTTTATTAT	TGAGTGGAAA	AATCTTAATG
45	2401	AAGATGGTGA	AATAAAATGG	CTTAGAATCT	CTTCATCTGT	TAAGAAGTAT
	245,1	TATATCCATG	ATCATTTAT	CCCCATTGAG	AAGTACCAGT	TCAGTCTTTA
50	2501	CCCAATATTT	ATGGAAGGAG	TGGGAAAACC	AAAGATAATT	AATAGTTTCA
	2551	CTCAAGATGA	TATTGAAAAA	CACCÁGAGTG	ATGCAGGTTT	ATATGTAATT

	2601	GTGCCAGTAA	TTATTTCCTC	TTCCATCTTA	TTGCTTGGAA	CATTATTAAT
	2651	ATCACACCAA	AGAATGAAAA	AGCTATTTTG	GGAAGATGTT	CCGAACCCCA
5	2701	AGAATTGTTC	CTGGGCACAA	GGACTTAATT	TTCAGAAGAG	AACGGACATI
	2751	CTTTGAAGTC	TAATCATGAT	CACTACAGAT	GAACCCAATG	TGCCAACTTC
10	2801	CCAACAGTCT	ATAGAGTATT	AGAAGATTTT	TACATTTTGA	AGAAGGGGAG
	2851	САААТСТААА	AAAAATTCAG	TTGAACTTCT	GAGAGTTAAC	ATATGGTGGA
	2901	TTATGTTGAT	TTAGAACTTA	AAATAGATGT	GTAAATTTGG	GTTCAAAATG
15	2951	TAGATTTGAG	TCCAGTTTGG	ATGTGTGATT	AATTTTCAAA	TCATCTAAAG
	3001	TTTAAAAGTA	GTATTCATGA	TTTCTGGCTT	TTGATTTGCC	ATATTCCTGG
20	3051	TCATAAAACA	TTAAGAAAAT	TATGGCTGTT	GCTGTCATTA	CATATCTATT
	3101	AAATGTCATC	AAATATGTAG	TAGACAATTT	TGTAATTAGG	TGAACTCTAA
	3151	AACTGCAACA	TCTGACAAAT	TGCTTTAAAA	ATACAATGAT	ТАТ

Human OB Receptor "B" Amino Acid Sequence (Seq. ID No. 3 (Amino Acid)):

MICOKFCVVL LHWEFIYVIT AFNLSYPITP WRFKLSCMPP NSTYDYFLLP 5 1 AGLSKNTSNS NGHYETAVEP KFNSSGTHFS NLSKTTFHCC FRSEQDRNCS 51 LCADNIEGKT FVSTVNSLVF QQIDANWNIQ CWLKGDLKLF ICYVESLFKN 101 10 LFRNYNYKVH LLYVLPEVLE DSPLVPQKGS FQMVHCNCSV HECCECLVPV 151 . . PTAKLNDTLL MCLKITSGGV IFOSPLMSVQ PINMVKPDPP LGLHMEITDD 201 15 251 GNLKISWSSP PLVPFPLQYQ VKYSENSTTV IREADKIVSA TSLLVDSILP 301 GSSYEVOVRG KRLDGPGIWS DWSTPRVFTT QDVIYFPPKI LTSVGSNVSF 351 HCIYKKENKI VPSKEIVWWM NLAEKIPOSO YDVVSDHVSK VTFFNLNETK 20 401 PRGKFTYDAV YCCNEHECHH RYAELYVIDV NINISCETDG YLTKMTCRWS 451 TSTIQSLAES TLQLRYHRSS LYCSDIPSIH PISEPKDCYL QSDGFYECIF 25 501 OPIFLLSGYT MWIRINHSLG SLDSPPTCVL PDSVVKPLPP SSVKAEITIN 551 IGLLKISWEK PVFPENNLOF QIRYGLSGKE VQWKMYEVYD AKSKSVSLPV 601 PDLCAVYAVQ VRCKRLDGLG YWSNWSNPAY TVVMDIKVPM RGPEFWRIIN 30 651 GDTMKKEKNV TLLWKPLMKN DSLCSVQRYV INHHTSCNGT WSEDVGNHTK 701 FTFLWTEOAH TVTVLAINSI GASVANFNLT FSWPMSKVNI VOSLSAYPLN 35 751 SSCVIVSWIL SPSDYKLMYF IIEWKNLNED GEIKWLRISS SVKKYYIHDH 801 FIPIEKYOFS LYPIFMEGVG KPKIINSFTO DDIEKHOSDA GLYVIVPVII 851 SSSILLLGTL LISHORMKKL FWEDVPNPKN CSWAQGLNFQ KKRLSIFLSS 40 901 IQHQ*HVVLF FWSLKQFQKI SVLIHHGKIK MR*CQQLWSL YFQQQILKRV 951 LFVLVTSSTV LTSLRLRVLR *PMRTKARDN PLLNTPR*SA TLNQVKLVK

Human OB Receptor "B" DNA Sequence (Seq. ID No. 4 (DNA)): CCGCCGCCAT CTCTGCCTTC GGTCGAGTTG GACCCCCGGA TCAAGGTGTA 1 5 CTTCTCTGAA GTAAGATGAT TTGTCAAAAA TTCTGTGTGG TTTTGTTACA 51 TTGGGAATTT ATTTATGTGA TAACTGCGTT TAACTTGTCA TATCCAATTA 101 151 CTCCTTGGAG ATTTAAGTTG TCTTGCATGC CACCAAATTC AACCTATGAC 10 TACTTCCTTT TGCCTGCTGG ACTCTCAAAG AATACTTCAA ATTCGAATGG 201 251 ACATTATGAG ACAGCTGTTG AACCTAAGTT TAATTCAAGT GGTACTCACT 15 TTTCTAACTT ATCCAAAACA ACTTTCCACT GTTGCTTTCG GAGTGAGCAA 301 351 GATAGAAACT GCTCCTTATG TGCAGACAAC ATTGAAGGAA AGACATTTGT 401 TTCAACAGTA AATTCTTTAG TTTTTCAACA AATAGATGCA AACTGGAACA 20 451 TACAGTGCTG GCTAAAAGGA GACTTAAAAT TATTCATCTG TTATGTGGAG 501 TCATTATTTA AGAATCTATT CAGGAATTAT AACTATAAGG TCCATCTTTT ATATGTTCTG CCTGAAGTGT TAGAAGATTC ACCTCTGGTT CCCCAAAAAG 25 551 GCAGTTTTCA GATGGTTCAC TGCAATTGCA GTGTTCATGA ATGTTGTGAA 601 TGTCTTGTGC CTGTGCCAAC AGCCAAACTC AACGACACTC TCCTTATGTG 651 30 701 TTTGAAAATC ACATCTGGTG GAGTAATTTT CCAGTCACCT CTAATGTCAG 751 TTCAGCCCAT AAATATGGTG AAGCCTGATC CACCATTAGG TTTGCATATG 35 801 GAAATCACAG ATGATGGTAA TTTAAAGATT TCTTGGTCCA GCCCACCATT 851 GGTACCATTT CCACTTCAAT ATCAAGTGAA ATATTCAGAG AATTCTACAA 901 CAGTTATCAG AGAAGCTGAC AAGATTGTCT CAGCTACATC CCTGCTAGTA 40 951 GACAGTATAC TTCCTGGGTC TTCGTATGAG GTTCAGGTGA GGGGCAAGAG ACTGGATGGC CCAGGAATCT GGAGTGACTG GAGTACTCCT CGTGTCTTTA 1001 45 CCACACAAGA TGTCATATAC TTTCCACCTA AAATTCTGAC AAGTGTTGGG 1051 1101 TCTAATGTTT CTTTTCACTG CATCTATAAG AAGGAAAACA AGATTGTTCC CTCAAAAGAG ATTGTTTGGT GGATGAATTT AGCTGAGAAA ATTCCTCAAA 1151 50 1201 GCCAGTATGA TGTTGTGAGT GATCATGTTA GCAAAGTTAC TTTTTTCAAT CTGAATGAAA CCAAACCTCG AGGAAAGTTT ACCTATGATG CAGTGTACTG 1251

	1301	CTGCAATGAA	CATGAATGCC	ATCATCGCTA	TGCTGAATTA	TATGTGATTG
_	1351	ATGTCAATAT	CAATATCTCA	TGTGAAACTG	ATGGGTACTT	AACTAAAATG
5	1401	ACTTGCAGAT	GGTCAACCAG	TACAATCCAG	TCACTTGCGG	AAAGCACTTT
	1451	GCAATTGAGG	TATCATAGGA	GCAGCCTTTA	CTGTTCTGAT	ATTCCATCTA
10	1501	TTCATCCCAT	ATCTGAGCCC	AAAGATTGCT	ATTTGCAGAG	TGATGGTTTT
	1551	TATGAATGCA	TTTTCCAGCC	AATCTTCCTA	TTATCTGGCT	ACACAATGTG
15	1601	GATTAGGATC	AATCACTCTC	TAGGTTCACT	TGACTCTCCA	CCAACATGTG
	1651	TCCTTCCTGA	TTCTGTGGTG	AAGCCACTGC	CTCCATCCAG	TGTGAAAGCA
	1701	GAAATTACTA	TAAACATTGG	ATTATTGAAA	ATATCTTGGG	AAAAGCCAGT
20	1751	CTTTCCAGAG	AATAACCTTC	AATTCCAGAT	TCGCTATGGT	TTAAGTGGAA
	1801	AAGAAGTACA	ATGGAAGATG	TATGAGGTTT	ATGATGCAA:A	ATCAAAATCT
25	1851	GTCAGTCTCC	CAGTTCCAGA	CTTGTGTGCA	GTCTATGCTG	TTCAGGTGCG
23	1901	CTGTAAGAGG	CTAGATGGAC	TGGGATATTG	GAGTAATTGG	AGCAATCCAG
	1951	CCTACACAGT	TGTCATGGAT	ATAAAAGTTC	CTATGAGAGG	ACCTGAATTT
30	2001	TGGAGAATAA	TTAATGGAGA	TACTATGAAA	AAGGAGAAAA	ATGTCACTTT
	2051	ACTTTGGAAG	CCCCTGATGA	AAAATGACTC	ATTGTGCAGT	GTTCAGAGAT
35	2101	ATGTGATAAA	CCATCATACT	TCCTGCAATG	GAACATGGTC	AGAAGATGTG
JJ	2151	GGAAATCACA	CGAAATTCAC	TTTCCTGTGG	ACAGAGCAAG	CACATACTGT
	2201	TACGGTTCTG	GCCATCAATT	CAATTGGTGC	TTCTGTTGCA	AATTTTAATT
40	2251	TAACCTTTTC	ATGGCCTATG	AGCAAAGTAA	ATATCGTGCA	GTCACTCAGT
	2301	GCTTATCCTT	TAAACAGCAG	TTGTGTGATT	GTTTCCTGGA	TACTATCACC
45	2351	CAGTGATTAC	AAGCTAATGT	ATTTTATTAT	TGAGTGGAAA	AATCTTAATG
43	.2401	AAGATGGTGA	AATAAAATGG	CTTAGAATCT	CTTCATCTGT	TAAGAAGTAT
	2451	TATATCCATG	ATCATTTAT	CCCCATTGAG	AAGTACCAGT	TCAGTCTTTA
50	2501	CCCAATATTT	ATGGAAGGAG	TGGGAAAACC	AAAGATAATT	AATAGTTTCA
	2551	CTCAAGATGA	TATTGAAAAA	CACCAGAGTG	ATGCAGGTTT	ATATGTAATT

PCT/US97/00128

	2601	GTGCCAGTAA	TTATTTCCTC	TTCCATCTTA	TTGCTTGGAA	CATTATTAAT
	2651	ATCACACCAA	AGAATGAAAA	AGCTATTTTG	GGAAGATGTT	CCGAACCCCA
5	2701	AGAATTGTTC	CTGGGCACAA	GGACTTAATT	TTCAGAAGAA	ACGTTTGAGC
	2751	ATCTTTTAT	CAAGCATACA	GCATCAGTGA	CATGTGGTCC	TCTTCTTTTG
10	2801	GAGCCTGAAA	CAATTTCAGA	AGATATCAGT	GTTGATACAT	CATGGAAAAA
10	2851	TAAAGATGAG	ATGATGCCAA	CAACTGTGGT	CTCTCTACTT	TCAACAACAG
	2901	ATCTTGAAAA	GGGTTCTGTT	TGTTTTAGTG	ACCAGTTCAA	CAGTGTTAAC
15	2951	TTCTCTGAGG	CTGAGGGTAC	TGAGGTAACC	TATGAGGACG	AAAGCCAGAG
	3001	ACAACCCTTT	GTTAAATACG	CCACGCTGAT	CAGCAACTCT	AAACCAAGTG
	3051	AAACTGGTGA	AGA			

Human OB Receptor "C" Amino Acid Sequence (Seq. ID No. 5 (Amino Acid)):

5	1	MICOKFCVVL	LHWEFIYVIT	AFNLSYPITP	WRFKLSCMPP	NSTYDYFLLP
	51	AGLSKNTSNS	NGHYETAVEP.	KFNSSGTHFS	NLSKTTFHCC	FRSEQDRNCS
10	101	LCADNIEGKT	FVSTVNSLVF	QQIDANWNIQ	CWLKGDLKLF	ICYVESLFKN
10	151	LFRNYNYKVH	LLYVLPEVLE	DSPLVPQKGS	FQMVHCNCSV	HECCECLVPV
	201	PTAKLNDTLL	MCLKITSGGV	IFQSPLMSVQ	PINMVKPDPP	LGLHMEITDD
15	251	GNLKISWSSP	PLVPFPLQYQ	VKYSENSTTV	IREADKIVSA	TSLLVDSILP
	301	GSSYEVQVRG	KRLDGPGIWS	DWSTPRVFTT	QDVIYFPPKI	LTSVGSNVSF
20	351	HCIYKKENKI	VPSKEIVWWM	NLAEKIPQSQ	YDVVSDHVSK	VTFFNLNETK
20	401	PRGKFTYDAV	YCCNEHECHH	RYAELYVIDV	NINISCETDG	YLTKMTCRWS
	451	TSTIQSLAES	TLQLRYHRSS	LYCSDIPSIH	PISEPKDCYL	QSDGFYECIF
25	501	QPIFLLSGYT	MWIRINHSLG	SLDSPPTCVL	PDSVVKPLPP	SSVKAEITIN
	551	IGLLKISWEK	PVFPENNLQF	QIRYGLSGKE	VQWKMYEVYD	AKSKSVSLPV
30	601	PDLCAVYAVQ	VRCKRLDGLG	YWSNWSNPAY	TVVMDIKVPM	RGPEFWRIIN
30	651	GDTMKKEKNV	TLLWKPLMKN	DSLCSVQRYV	INHHTSCNGT	WSEDVGNHTK
	701	FTFLWTEQAH	TVTVLAINSI	GASVANFNLT	FSWPMSKVNI	VQSLSAYPLN
35	751	SSCVIVSWIL	SPSDYKLMYF	IIEWKNLNED	GEIKWLRISS	SVKKYYIHDH
-	801	FIPIEKYQFS	LYPIFMEGVG	KPKIINSFTQ	DDIEKHQSDA	GLYVIVPVII
40	851	SSSILLLGTL	LISHQRMKKL	FWEDVPNPKN	CSWAQGLNFQ	KMLEGSMFVK
40	901	SHHHSLISST	QGHKHCGRPQ	GPLHRKTRDL	CSLVYLLTLP	PLLSYDPAKS
	951	PSVRNTQE*S	IKKKKKKLEG			,

- 73 -

Human OB Receptor "C" DNA Sequence (Seq. ID No. 6 (DNA)):

5	1	CCGCCGCCAT	CTCTGCCTTC	GGTCGAGTTG	GACCCCCGGA	TCAAGGTGTA
3	51	CTTCTCTGAA	GTAAGATGAT	TTGTCAAAAA	TTCTGTGTGG	TTTTGTTACA
	101	TTGGGAATTT	ATTTATGTGA	TAACTGCGTT	TAACTTGTCA	TATCCAATTA
10	151 .	CTCCTTGGAG	ATTTAAGTTG	TCTTGCATGC	CACCAAATTC	AACCTATGAC
	201	TACTTCCTTT	TGCCTGCTGG	ACTCTCAAAG	AATACTTCAA	ATTCGAATGG
15	251	ACATTATGAG	ACAGCTGTTG	AACCTAAGTT	TAATTCAAGT	GGTACTCACT
13	301	TTTCTAACTT	ATCCAAAACA	ACTTTCCACT	GTTGCTTTCG	GAGTGAGCAA
	351	GATAGAAACT	GCTCCTTATG	TGCAGACAAC	ATTGAAGGAA	AGACATTTGT
20	401	TTCAACAGTA	AATTCTTTAG	TTTTTCAACA	AATAGATGCA	AACTGGAACA
	451	TACAGTGCTG	GCTAAAAGGA	GACTTAAAAT	TATTCATCTG	TTATGTGGAG
25	501	TCATTATTTA	AGAATCTATT	CAGGAATTAT	AACTATAAGG	TCCATCTTTT
23	551	ATATGTTCTG	CCTGAAGTGT	TAGAAGATTC	ACCTCTGGTT	CCCCAAAAAG
	601	GCAGTTTTCA	GATGGTTCAC	TGCAATTGCA	GTGTTCATGA	ATGTTGTGAA
30	651	TGTCTTGTGC	CTGTGCCAAC	AGCCAAACTC	AACGACACTC	TCCTTATGTG
	701	TTTGAAAATC	ACATCTGGTG	GAGTAATTTT	CCAGTCACCT	CTAATGTCAG
35	751	TTCAGCCCAT	AAATATGGTG	AAGCCTGATC	CACCATTAGG	TTTGCATATG
33	801	GAAATCACAG	ATGATGGTAA	TTTAAAGATT	TCTTGGTCCA	GCCCACCATT
	851	GGTACCATTT	CCACTTCAAT	ATCAAGTGAA	ATATTCAGAG	AATTCTACAA
40	901	CAGTTATCAG	AGAAGCTGAC	AAGATTGTCT	CAGCTACATC	CCTGCTAGTA
	951	GACAGTATAC	TTCCTGGGTC	TTCGTATGAG	GTTCAGGTGA	GGGGCAAGAG
45	1001	ACTGGATGGC	CCAGGAATCT	GGAGTGACTG	GAGTACTCCT	CGTGTCTTTA
.10	1051	CCACACAAGA	TGTCATATAC	TTTCCACCTA	AAATTCTGAC	AAGTGTTGGG
	1101	TCTAATGTTT	CTTTTCACTG	CATCTATAAG	AAGGAAAACA	AGATTGTTCC
50	1151	CTCAAAAGAG	ATTGTTTGGT	GGATGAATTT	AGCTGAGAAA	ATTCCTCAAA
	1201	GCCAGTATGA	TGTTGTGAGT	GATCATGTTA	GCAAAGTTAC	TTTTTTCAAT

	1251	CTGAATGAAA	CCAAACCTCG	AGGAAAGTTT	ACCTATGATG	CAGTGTACTG
	1301	CTGCAATGAA	CATGAATGCC	ATCATCGCTA	TGCTGAATTA	TATGTGATTG
5	1351	ATGTCAATAT	CAATATCTCA	TGTGAAACTG	ATGGGTACTT	AACTAAAATG
	1401	ACTTGCAGAT	GGTCAACCAG	TACAATCCAG	TCACTTGCGG	AAAGCACTTT
10	1451	GCAATTGAGG	TATCATAGGA	GCAGCCTTTA	CTGTTCTGAT	ATTCCATCTA
10	1501	TTCATCCCAT	ATCTGAGCCC	AAAGATTGCT	ATTTGCAGAG	TGATGGTTTT
	1551	TATGAATGCA	TTTTCCAGCC	AATCTTCCTA	TTATCTGGCT	ACACAATGTG
15	1601	GATTAGGATC	AATCACTCTC	TAGGTTCACT	TGACTCTCCA	CCAACATGTG
	1651	TCCTTCCTGA	TTCTGTGGTG	AAGCCACTGC	CTCCATCCAG	TGTGAAAGCA
20	1701	GAAATTACTA	TAAACATTGG	ATTATTGAAA	ATATCTTGGG	AAAAGCCAGT
20	1751	CTTTCCAGAG	AATAACCTTC	AATTCCAGAT	TCGCTATGGT	TTAAGTGGAA
•	1801	AAGAAGTACA	ATGGAAGATG	TATGAGGTTT	ATGATGCAAA	ATCAAAATCT
25	1851	GTCAGTCTCC	CAGTTCCAGA	CTTGTGTGCA	GTCTATGCTG	TTCAGGTGCG
	1901	CTGTAAGAGG	CTAGATGGAC	TGGGATATTG	GAGTAATTGG	AGCAATCCAG
30	1951	CCTACACAGT	TGTCATGGAT	ATAAAAGTTC	CTATGAGAGG	ACCTGAATTT
20	2001	TGGAGAATAA	TTAATGGAGA	TACTATGAAA	AAGGAGAAAA	ATGTCACTTT
	2051	ACTTTGGAAG	CCCCTGATGA	AAAATGACTC	ATTGTGCAGT	GTTCAGAGAT
35	2101	ATGTGATAAA	CCATCATACT	TCCTGCAATG	GAACATGGTC	AGAAGATGTG
	2151	GGAAATCACA	CGAAATTCAC	TTTCCTGTGG	ACAGAGCAAG	CACATACTGT
40	2201	TACGGTTCTG	GCCATCAATT	CAATTGGTGC	TTCTGTTGCA	AATTTTAATT
40	2251	TAACCTTTTC	ATGGCCTATG	AGCAAAGTAA	ATATCGTGCA	GTCACTCAGT
	2301	GCTTATCCTT	TAAACAGCAG	TTGTGTGATT	GTTTCCTGGA	TACTATCACC
45	2351	CAGTGATTAC	AAGCTAATGT	ATTTTATTAT	TGAGTGGAAA	AATCTTAATG
	2401	AAGATGGTGA	AATAAAATGG	CTTAGAATCT	CTTCATCTGT	TAAGAAGTAT
50	2451	TATATCCATG	ATCATTTTAT	CCCCATTGAG	AAGTACCAGT	TCAGTCTTTA
50	2501	CCCAATATTT	ATGGAAGGAG	TGGGAAAACC	AAAGATAATT	AATAGTTTCA
	2551	CTCAAGATGA	TATTGAAAAA	CACCAGAGTG	ATGCAGGTTT	ATATGTAATT

		TTGCTTGGAA CATTATTAAT
		GTGCCAGTAA TTATTTCCTC TTCCATCTTA TTGCTTGGAA CATTATTAAT ATCACACCAA AGAATGAAAA AGCTATTTTG GGAAGATGTT CCGAACCCCA ATCACACCAA AGAATGAAAA AGCTATTTTTTCAGAAGAT GCTTGAAGGC
	2601	CACCAR AGAATGAAAA AGCTATTTTG GGAAGAT
	2651	ATCACACCAA AGAATGAAAA AGCTATIIIG GAAGAT GCTTGAAGGC AGAATTGTTC CTGGGCACAA GGACTTAATT TTCAGAAGAT GCTTGAAGGC AGAATTGTTC CTGGGCACAA GGACTTCC CTAATCTCAA GTACCCAGGG
5	2701	AGAATTGTTC CTGGGCACAA GGACTTAATT AGAATTGTTC CTGGGCACAA GGACTTAATT TOTAL CTGCATAGA GTACCCAGGG AGCATGTTCG TTAAGAGTCA TCACCACTCC TCTGCATAGG AAAACCAGAG
•	0751	AGCATGTTCG TTAAGAGTCA TCACCACTCO TCTGCATAGG AAAACCAGAG ACACAAACAC TGCGGAAGGC CACAGGGTCC TCCCTCCACT ATTGTCCTAT
	2751	TOTAL TICOGGAAGGC CACAGGGTCC TCTGCATTA
10	2801	ACACAAACAC TOTAT CTGCTGACCC TCCCTCCACT ATTGTCTTAT CTGCTGACCC TCCCTCCACT ATTGTCTTAT CTGCTGACCC
	2851	ACACAAACAC TGCGGAAGGC CACAGGGTCO TCCCTCCACT ATTGTCCTAT ACCTTTGTTC ACTTGTTTAT CTGCTGACCC TCCCTCCACT ATTGTCCTAT GACCCTGCCA AATCCCCCTC TGTGAGAAAC ACCCAAGAAT GATCAATAAA
		CACCCTGCCA AATCCCCCTC TGTGAGAT
15	2901	AAAAAAAAA AAAAAACTCG AGGGGG
13	2951	AAAAAAAAA

numan us keceptor "D" Amino Acid Sequence (Sequence ID No. 7)

		1 MICOVID	requence ID No.
	5	MICQKFCVVL LHWEFI	VIT AFM CO.
		AGLSKNTSNS NGHYETA	VIT AFNLSYPITP WRFKLSCMPP NSTYDYFLLP
•		01 LCADNIEGKT FYSTERIC	VEP KFNSSGTHFS NLSKTTFHCC FRSEQDRNCS
	10	51 LFRNYNYKVH LLVII D	LVF QQIDANWNIQ CWLKGDLKLF ICYVESLFKN
	W 0. \$	PTAKLNDTLL MCIVIE	TLE DSPLVPQKGS FQMVHCNCSV HECCECLVPV
	15	GNLKISWSSP PLIPPER	GV IFQSPLMSVQ PINMVKPDPP LGLHMEITDD
		1 GSSYEVOVEC	YQ VKYSENSTTV IREADKIVSA TSLLVDSILP
	. 3	L HCIVEVEN KRLDGPGI	WS DWSTPRVFTT QDVIYFPPKI LTSVGSNVSF
	20 4	MCIIKKENKI VPSKEIVW	M NLAEKIPQSQ YDVVSDHVSK VTFFNLNETK
	4.	PRGKFTYDAV YCCNEHECH	H RYAELYVIDV NINISCETDG YLTKMTCRWS
		TSTIQSLAES TLQLRYHRS	S LYCSDIBSIN TO RECEIVE YLTKMTCRWS
2	50 25	QPIFLLSGYT MWIRINHSLO	S LYCSDIPSIH PISEPKDCYL QSDGFYECIF
	55	IGLLKISWEK PVFPENNLOF	S SLDSPPTCVL PDSVVKPLPP SSVKAEITIN QIRYGLSGKE VQWKMYEVYD AKSKSVSLPV
	60	PDLCAVYAVQ VRCKRIDGIG	QIRYGLSGKE VQWKMYEVYD AKSKSVSLPV
3	0 651	GDTMKKEKNV TLIWEDGLG	YWSNWSNPAY TVVMDIKVPM RGPEFWRIIN
	701	FTFLWTEOAH TUTTE	DSLCSVQRYV INHHTSCNGT WSEDVGNHTK
35	751	SSCVIVSWIT SPEC	GASVANFNLT FSWPMSKVNI VQSLSAYPLN
35	801	FIPIEWS -	IIEWKNLNED GEIKWLRISS SVKKYYIHDH
••.	851	SSCIT-	KPKIINSFTQ DDIEKHQSDA GLYVIVPVII
40	901	SSSILLIGTL LISHQRMKKL E	WEDVPNPKN CSWAQGLNFQ KPETFEHLFI
		KHTASVTCGP LLLEPETISE D	ISVDTSWEN TO STATE OF THE STATE
	951	GSVCISDQFN SVNFSEAEGT E	ISVDTSWKN KDEMMPTTVV SLLSTTDLEK
45	1001	EQGLINSSVT KCFSSKNSPI V	OSFSNSSWE IEAQAFFILS DQHPNIISPH
	1051	LTFSEGLDEL LKLEGNEDER	SESNSSWE IEAQAFFILS DQHPNIISPH
	1101	SCPFPAPCLE TOIRING	DKKSIYYL GVTSIKKRES GVLLTDKSRV
50	1151	THKIMENKM CDITTE	FVENNINL GTSSKKTFAS YMPQFQTCST
	1201	NNCSK*KKK KKNSRPARPD	FVENNINL GTSSKKTFAS YMPQFQTCST DICVIMGN IKCNRL*LWV GERKETRVKF
		*** AKNSRPARPD	

Human OB Receptor "D" Nucleic Acid Sequence (Sequence ID No.8) GCGGCCGCCA GTGTGATGGA TATCTGCAGA ATTCGGCTTT CTCTGCCTTC GGTCGAGTTG GACCCCCGGA TCAAGGTGTA CTTCTCTGAA GTAAGATGAT 1 TTGTCAAAAA TTCTGTGGG TTTTGTTACA TTGGGAATTT ATTTATGTGA 51 5 TAACTGCGTT TAACTTGTCA TATCCAATTA CTCCTTGGAG ATTTAAGTTG 101 TCTTGCATGC CACCAAATTC AACCTATGAC TACTTCCTTT TGCCTGCTGG 151 10 GCTCTCAAAG AATACTTCAA ATTCGAATGG ACATTATGAG ACAGCTGTTG 201 AACCTAAGTT TAATTCAAGT GGTACTCACT TTTCTAACTT ATCCAAAACA 251 ACTITICACT GITGCTTTCG GAGTGAGCAA GATAGAAACT GCTCCTTATG 301 15 TGCAGACAAC ATTGAAGGAA AGACATTTGT TTCAACAGTA AATTCTTTAG 351 TTTTTCAACA AATAGATGCA AACTGGAACA TACAGTGCTG GCTAAAAGGA 401 20 GACTTAAAAT TATTCATCTG TTATGTGGAG TCATTATTTA AGAATCTATT 451 CAGGAATTAT AACTATAAGG TCCATCTTTT ATATGTTCTG CCTGAAGTGT 501 TAGAAGATTC ACCTCTGGTT CCCCAAAAAG GCAGTTTTCA GATGGTTCAC 551 25 TGCAATTGCA GTGTTCACGA ATGTTGTGAA TGTCTTGTGC CTGTGCCAAC 601 AGCCAAACTC AACGACACTC TCCTTATGTG TTTGAAAATC ACATCTGGTG 651 30 GAGTAATTTT CCAGTCACCT CTAATGTCAG TTCAGCCCAT AAATATGGTG 701 AAGCCTGATC CACCATTAGG TTTGCATATG GAAATCACAG ATGATGGTAA 751 TTTAAAGATT TCTTGGTCCA GCCCACCATT GGTACCATTT CCACTTCAAT 801 35 ATCAAGTGAA ATATTCAGAG AATTCTACAA CAGTTATCAG AGAAGCTGAC 851 AAGATTGTCT CAGCTACATC CCTGCTAGTA GACAGTATAC TTCCTGGGTC 901 40 TTCGTATGAG GTTCAGGTGA GGGGCAAGAG ACTGGATGGC CCAGGAATCT 951 GGAGTGACTG GAGTACTCCT CGTGTCTTTA CCACACAAGA TGTCATATAC 1001 TTTCCACCTA AAATTCTGAC AAGTGTTGGG TCTAATGTTT CTTTTCACTG 1051 45 CATCTATAAG AAGGAAAACA AGATTGTTCC CTCAAAAGAG ATTGTTTGGT 1101 GGATGAATTT AGCTGAGAAA ATTCCTCAAA GCCAGTATGA TGTTGTGAGT 1151 50 GATCATGTTA GCAAAGTTAC TTTTTTCAAT CTGAATGAAA CCAAACCTCG 1201 1251

AGGAAAGTTT ACCTATGATG CAGTGTACTG CTGCAATGAA CATGAATGCC 1301 ATCATCGCTA TGCTGAATTA TATGTGATTG ATGTCAATAT CAATATCTCA 1351 5 1401 TGTGAAACTG ATGGGTACTT AACTAAAATG ACTTGCAGAT GGTCAACCAG TACAATCCAG TCACTTGCGG AAAGCACTTT GCAATTGAGG TATCATAGGA 1451 GCAGCCTTTA CTGTTCTGAT ATTCCATCTA TTCATCCCAT ATCTGAGCCC 10 1501 AAAGATTGCT ATTTGCAGAG TGATGGTTTT TATGAATGCA TTTTCCAGCC 1551 AATCTTCCTA TTATCTGGCT ACACAATGTG GATTAGGATC AATCACTCTC 1601 15 TAGGTTCACT TGACTCTCCA CCAACATGTG TCCTTCCTGA TTCTGTGGTG 1651 1701 AAGCCACTGC CTCCATCCAG TGTGAAAGCA GAAATTACTA TAAACATTGG 20 ATTATTGAAA ATATCTTGGG AAAAGCCAGT CTTTCCAGAG AATAACCTTC 1751 AATTCCAGAT TCGCTATGGT TTAAGTGGAA AAGAAGTACA ATGGAAGATG 1801 TATGAGGTTT ATGATGCAAA ATCAAAATCT GTCAGTCTCC CAGTTCCAGA 1851 25 CTTGTGTGCA GTCTATGCTG TTCAGGTGCG CTGTAAGAGG CTAGATGGAC 1901 1951 TGGGATATTG GAGTAATTGG AGCAATCCAG CCTACACAGT TGTCATGGAT 30 ATAAAAGTTC CTATGAGAGG ACCTGAATTT TGGAGAATAA TTAATGGAGA 2001 2051 TACTATGAAA AAGGAGAAAA ATGTCACTTT ACTTTGGAAG CCCCTGATGA AAAATGACTC ATTGTGCAGT GTTCAGAGAT ATGTGATAAA CCATCATACT 2101 35 TCCTGCAATG GAACATGGTC AGAAGATGTG GGAAATCACA CGAAATTCAC 7 2151 TTTCCTGTGG ACAGAGCAAG CACATACTGT TACGGTTCTG GCCATCAATT .÷. 2201 40 CAATTGGTGC TTCTGTTGCA AATTTTAATT TAACCTTTTC ATGGCCTATG 2251 2301 AGCAAAGTAA ATATCGTGCA GTCACTCAGT GCTTATCCTT TAAACAGCAG TTGTGTGATT GTTTCCTGGA TACTATCACC CAGTGATTAC AAGCTAATGT 2351 45 2401 ATTTTATTAT TGAGTGGAAA AATCTTAATG AAGATGGTGA AATAAAATGG 2451 CTTAGAATCT CTTCATCTGT TAAGAAGTAT TATATCCATG ATCATTTTAT 50 2501 CCCCATTGAG AAGTACCAGT TCAGTCTTTA CCCAATATTT ATGGAAGGAG 2551 TGGGAAAACC AAAGATAATT AATAGTTTCA CTCAAGATGA TATTGAAAAA

	2601	CACCAGAGTG ATGCAGGTTT ATATGTAATT GIGCCAGTM
	2651	TTCCATCTTA TTGCTTGGAA CATTATTAAT ATCACACCAA AGAATGAAAA
_	2701	AGCTATTTTG GGAAGATGTT CCGAACCCCA AGAATTGTTC CTGGGCACAA
5		GGACTTAATT TTCAGAAGCC AGAAACGTTT GAGCATCTTT TTATCAAGCA
	2751	TACAGCATCA GTGACATGTG GTCCTCTTCT TTTGGAGCCT GAAACAATTT
LO	2801	CAGAAGATAT CAGTGTTGAT ACATCATGGA AAAATAAAGA TGAGATGATG
	2851	CCAACAACTG TGGTCTCTCT ACTTTCAACA ACAGATCTTG AAAAGGGTTC
	2901	TGTTTGTATT AGTGACCAGT TCAACAGTGT TAACTTCTCT GAGGCTGAGG
15	2951	GTACTGAGGT AACCTATGAG GACGAAAGCC AGAGACAACC CTTTGTTAAA
	3001	TACGCCACGC TGATCAGCAA CTCTAAACCA AGTGAAACTG GTGAAGAACA
20	3051	AGGGCTTATA AATAGTTCAG TCACCAAGTG CTTCTCTAGC AAAAATTCTC
	3101	AGGGCTTATA AATAGTICAG TONOGTOOD CGTTGAAGGA TTCTTTCTCT AATAGCTCAT GGGAGATAGA GGCCCAGGCA
	3151	CGTTGAAGGA TTCTTTCTCT AATAGGTOTOT TTTTTTATAT TATCGGATCA GCATCCCAAC ATAATTTCAC CACACCTCAC
25	3201	TTTTTTATAT TATCGGATCA GCATCCOMA TOTAL ATTTTTATAT TATCGGATCA GCATCCOMA ATTTCCCTG
	3251	ATTCTCAGAA GGATTGGATG AACIIIIGAA MITTAGGGGT CACCTCAATC
30	3301	AAGAAATAA TGATAAAAAG TCTATCTATT ATTTAGGGGT CACCTCAATC
30	3351	AAAAAGAGAG AGAGTGGTGT GCTTTTGACT GACAAGTCAA GGGTATCGTG
	3401	. CCCATTCCCA GCCCCCTGTT TATTCACGGA CATCAGAGTT CTCCAGGACA
35	3451	GTTGCTCACA CTTTGTAGAA AATAATATCA ACTTAGGAAC TTCTAGTAAG
	350	AAGACTTTTG CATCTTACAT GCCTCAATTC CAAACTTGTT CTACTCAGA
	255	TCATAAGATC ATGGAAAACA AGATGTGTGA CCTAACTGTG TAATCTAGA

- 80 -

Human OB Receptor Protein "D" Chromosomal DNA (Seg. ID No. 9)

5				•	Intron 1	taccttttccag	GTG	TAC	TTC
10	CAT His 12	TGG Trp 13	G Glu 14	gtaagttatttg	Intron 2	atatcctaacag	AA TIT	Ph	e Ile 16
15	GILI	ATA Ile 123	G Asp 124	gtaagcattagc	Intron 3	ttttaaattcag	A '	A.	A AAC la Asn 25 126
20		GTT Val 164	CT Leu 165	gtaagtaccaaa	Intron 4	ttttcaatatag	G	CCT Pro 166	Glu
25	Mali	ATG Met 234	AAT	gtaagttatgca	Intron 5	ttttttccttaag	TG	AAG Lys	
30	ATC Ile 281	n.y	GIU	gtaagtatattt	Intron 6	aatatttaacag	GCT Ala 284	GAC	AAG Lys 286
35	ACA Thr 330	Gln	G Asp 332	gtaggttatgta	Intron 7	ccctcattacag	AT	GTC Val 333	ATA Ile 334
40	GTG Val 427	Ile	Asp	gtaagaaaacag	Intron 8	tgtttcaaatag	AT	GTC Val 430	
45	TAT (Tyr) 466	His	Ara	gtacgtattatt	Intron 9	tatcttttaaag	G	AGC Ser 469	AGC Ser 470
50	TCT Ser 533	GTG Val 534	G Val 535	gtatgtcaagct	Intron 10.	daaaaatttctag	TG	AAG Lys 536	
55	CAA 2 Gln 2 582 5	[TP	Lys	gtaccttttact	Intron 11	cttattttacag	ATG Met 585	TAT Tyr 586	GAG Glu 587
60	ATA A Ile I 636 6	ys	Val	gtctgcagagat	Intron 12	gtcattttgcag	TT	CCT Pro 639	ATG Met

	- 81
	Intron 13tatitactacag CCC CTG ATG Pro Leu Met 666 667 668
CTT TGG ANG gtattcccaatt Leu Trp Lys 5 663 664 665	Intron 14ttttcccctcag TA AAT ATC Asn Ile 739 740
AGC AAA G gtaagaagaggt Ser Lys Val 10 736 737 738	His Phe 800 801
ATC CAT G gtaagtttacta Ile His Asp 797 798 799	terron 16tttctttttcag Asp 833
ACT CAA G gtaaaaattata Thr Gln Asp 839 830 831	A ATG AAA A ATG AAA Met Lys 867 868
CAC CAA AG gtattgtacttg. His Gln Arg 864 865 866	AGA ACG GAC AGA Thr Asp Asp Thr Asp 892 893 894
TTT CAG AAG gttgcttttc Phe Gln Lys 30 889 890 891	pro Glu IIII Pro Glu IIII 892 893 894
Exon A AAA TAT GAT gtacatttg	EXON B AAA CGT Leu Lys Arg Leu 892 893 894
40	Exon C ATG CTT GAA ATG CTT Glu Met Leu Glu 892 893 894
Exon D 45 GAA ACC AGA gtatco	

· **3**5

acid Receptor p
sequence (s. Protein, Pa
1 No. 10 No. 10
acid sequence (Seq. ID. No. 10): 1 MICQKFCVVL LHWEFIYVIT AFNLSYPITP WRFKLSCMPP NSTYDYFLLP 51 AGLSKNTSNS NGHYETAVEP KFNSSGTHFS NLSKTTENGE
LHWEFT IN THE RECEDEOR AND RECE
51 AGLSKNTSNS NGHYETAVEP KFNSSGTHFS NLSKTTFHCC FRSEQDRNCS 101 LCADNIEGKT FVSTVNSLVF QQIDANWNIQ CWLKGDLWI-
DESANTSNS NGHYDD
101 LCADNIEGKT FVSTVNSLVF QQIDANWNIQ CWLKGDLKLF ICYVESLFKN LFRNYNYKVH LLYVLPEVLE DSPLVPQKGS FQMVHCNGGY
ECADNIEGKT FIG.
10 151 FVSTVNSLVF COLDS
LFRNYNYKUW - QQIDANWNIO CI-
10 151 LFRNYNYKVH LLYVLPEVLE DSPLVPQKGS FQMVHCNCSV HECCECLVPV 201 PTAKLNDTLL MCLKITSGGV IFQSPLMSVQ PINMVKPDDD
PTAKINDEL ICYVESI.FVI
MCLKITSCO.
251 GNLKISWSCT IFQSPLMSVQ -
TOTALISWSSP PLUDED
201 PTAKLNDTLL MCLKITSGGV IFQSPLMSVQ PINMVKPDPP LGLHMEITDD 301 GSSYEVQVRG KRLDCDGT
SSSIEVQVRG KPIP
351 HCIVILL RRLDGPGIWS DWSTDT
251 GNLKISWSSP PLVPFPLQYQ VKYSENSTTV IREADKIVSA TSLLVDSILP 301 GSSYEVQVRG KRLDGPGIWS DWSTPRVFTT QDVIYERPRING 351 HCIYKKENKI VPSKEII
301 GSSYEVQVRG KRLDGPGIWS DWSTPRVFTT QDVIYFPPKI LTSVGSNVSF HCIYKKENKI VPSKEIVWWM NLAEKIPQSQ YDVVSDHVSK VTFFNLNETK PRGKFTYDAV YCCNEHECHH RYAELYVIDV NINISCETTER
401 PRGKFTYDAV YCCNEHECHH RYAELYVIDV NINISCETDG YLTKMTCRWS 501 QPIFLLSGYT MWIRINUS
451 YCCNEHECHH DUE
TSTIOSIAND VTFFNLNETY
501 OD-
25 OPIFILECUS LYCSDIPSTI
451 TSTIQSLAES TLQLRYHRSS LYCSDIPSIH PISEPKDCYL QSDGFYECIF 501 QPIFLLSGYT MWIRINHSLG SLDSPPTCVL PDSVVKPLPP SSVKAEITIN 601 PDLCAVYAVQ VRCKPLP
551 IGITE PAWIRINHSLG SLDSDS
LGLLKISWEK PUED - LGSPPTCVL PDSIARS
601 PD-
FDLCAVYAVO TO
551 IGLLKISWEK PVFPENNLQF QIRYGLSGKE VQWKMYEVYD AKSKSVSLPV 601 PDLCAVYAVQ VRCKRLDGLG YWSNWSNPAY TVVMDIKVPM RGPEFWRIIN 701 FTFLWTEQAH TVTVLATUR
651 GDTMKKEKNV TLLWKPLMKN DSLCSVQRYV INHHTSCNGT WSEDVGNHTK 751 SSCVIVSWIL SPSDYNING
701 FTTT
FTFLWTFOR
TOTAL
751 SSCVIVSWITE GASVANENT
TVSWIL SPEDVICE
801 FIDE- SPSDYKLMYF IJERRAN
701 FTFLWTEQAH TVTVLAINSI GASVANFNLT FSWPMSKVNI VQSLSAYPLN 801 FIPIEKYQFS LYPIFMEGE
751 SSCVIVSWIL SPSDYKLMYF IIEWKNLNED GEIKWLRISS SVKKYYIHDH 801 FIPIEKYQFS LYPIFMEGVG KPKIINSFTQ DDIEKHOSE
AFKLINSFTO DDT-
FIPIEKYQFS LYPIFMEGVG KPKIINSFTQ DDIEKHQSD

Human OB Receptor Protein, Recombinant Secreted Receptor DNA sequence (Seq. ID. No. 11):

GCGGCCGCCA GTGTGATGGA TATCTGCAGA ATTCGGCTTT CTCTGCCTTC GGTCGAGTTG GACCCCCGGA TCAAGGTGTA CTTCTCTGAA GTAAGATGAT 5 1 TTGTCAAAAA TTCTGTGGG TTTTGTTACA TTGGGAATTT ATTTATGTGA 51 TAACTGCGTT TAACTTGTCA TATCCAATTA CTCCTTGGAG ATTTAAGTTG 101 TCTTGCATGC CACCAAATTC AACCTATGAC TACTTCCTTT TGCCTGCTGG 10 151 GCTCTCAAAG AATACTTCAA ATTCGAATGG ACATTATGAG ACAGCTGTTG 201 AACCTAAGTT TAATTCAAGT GGTACTCACT TTTCTAACTT ATCCAAAACA 251 ACTITCCACT GTTGCTTTCG GAGTGAGCAA GATAGAAACT GCTCCTTATG 15 301 TGCAGACAAC ATTGAAGGAA AGACATTTGT TTCAACAGTA AATTCTTTAG 351 TTTTTCAACA AATAGATGCA AACTGGAACA TACAGTGCTG GCTAAAAGGA 20 401 GACTTAAAAT TATTCATCTG TTATGTGGAG TCATTATTTA AGAATCTATT 451 CAGGAATTAT AACTATAAGG TCCATCTTTT ATATGTTCTG CCTGAAGTGT 501 TAGAAGATTC ACCTCTGGTT CCCCAAAAAG GCAGTTTTCA GATGGTTCAC 25 551 TGCAATTGCA GTGTTCACGA ATGTTGTGAA TGTCTTGTGC CTGTGCCAAC 601 AGCCAAACTC AACGACACTC TCCTTATGTG TTTGAAAATC ACATCTGGTG 30 651 GAGTAATTTT CCAGTCACCT CTAATGTCAG TTCAGCCCAT AAATATGGTG 701 AAGCCTGATC CACCATTAGG TTTGCATATG GAAATCACAG ATGATGGTAA 751 TTTAAAGATT TCTTGGTCCA GCCCACCATT GGTACCATTT CCACTTCAAT 35 801 ATCAAGTGAA ATATTCAGAG AATTCTACAA CAGTTATCAG AGAAGCTGAC 851 AAGATTGTCT CAGCTACATC CCTGCTAGTA GACAGTATAC TTCCTGGGTC 40 901 TTCGTATGAG GTTCAGGTGA GGGGCAAGAG ACTGGATGGC CCAGGAATCT 951 GGAGTGACTG GAGTACTCCT CGTGTCTTTA CCACACAAGA TGTCATATAC 1001 TTTCCACCTA AAATTCTGAC AAGTGTTGGG TCTAATGTTT CTTTTCACTG 45 1051 CATCTATAAG AAGGAAAACA AGATTGTTCC CTCAAAAGAG ATTGTTTGGT 1101 GGATGAATTT AGCTGAGAAA ATTCCTCAAA GCCAGTATGA TGTTGTGAGT 50 1151 1201

1251 GATCATGTTA GCARAGE
1251 GATCATGTTA GCAAAGTTAC TTTTTTCAAT CTGAATGAAA CCAAACCTC
1301 AGGAAAGTTT ACCTATGATG CAGTGTACTG CTGCAATGAA CCAAACCTCC 1351 ATCATCGCTA TGCTGAATTA TATGTCATTA
1351 ATCATCGCTA TGCTGAATTA TATGTGATTG ATGTCAATAT CAATATCTCA 1401 TGTGAAACTG ATGGGTACTT AACTAAATTG
1401 TGTGAAACTG ATGGGTACTT AACTAAAATG ACTTGCAGAT GGTCAACCAG 10 1451 TACAATCCAG TCACTTGCGG AAACCAG
10 1451 TACAATCCAG TCACTTGCGG ANDRE
10 1451 TACAATCCAG TCACTTGCGG AAAGCACTTT GCAATTGAGG TATCATAGGA 1501 GCAGCCTTTA CTGTTCTGAT ATTCCATGGT
1501 GCAGCCTTTA CTGTTCTGAT ATTCCATCTA TTCATCCCAT ATCTGAGCCC 1551 AAAGATTGCT ATTTGCAGAG TGATCCTTTT
1551 AAAGATTGCT ATTTGCAGAG TGATGGTTTT TATGAATGCA TTTTCCAGCC 1601 AATCTTCCTA TTATCTGGCT ACACAATGCA
1601 AATCTTCCTA TTATCTGGCT ACACAATGTG GATTAGGATC AATCACTCTC 1651 TAGGTTCACT TGACTCTCCA CCAACATGTG
1651 TAGGTTCACT TGACTCTCCA CCAACATGTG GATTAGGATC AATCACTCTC 20 1701 AAGCCACTGC CTCCATCCAG TGTGAAAGG
20 1701 AAGCCACTGC CTCCATCCAG TGTGAAAGCA GAAATTACTA TAAACATTGG 1751 ATTATTGAAA ATATCTTGGG AAAACCGAGT
1751 ATTATTGAAA ATATCTTGGG AAAACATTACTA TAAACATTGG
1751 ATTATTGAAA ATATCTTGGG AAAAGCCAGT CTTTCCAGAG AATAACCTTC 1801 AATTCCAGAT TCGCTATGGT TTAACTCGAG
1801 AATTCCAGAT TCGCTATGGT TTAAGTGGAA AAGAAGTACA ATGGAAGATG 1851 TATGAGGTTT ATGATGCAAA ATCAAAATG
1851 TATGAGGTTT ATGATGCAAA ATCAAAATCT GTCAGTCTCC CAGTTCCAGA 1901 CTTGTGTGCA GTCTATGCTG TTCAGCTCCC
1901 CTTGTGTGCA GTCTATGCTG TTCAGGTGCG CTGTAAGAGG CTAGATGGAC 30 1951 TGGGATATTG GAGTAATTGG AGCAATGGAC
1951 TGGGATATTG GAGTAATTGG AGCAATCCAG CCTACACAGT TGTCATGGAT 2001 ATAAAAGTTC CTATGAGAGG ACCTGAATTTT
2001 ATAAAAGTTC CTATGAGAGG ACCTGAATTT TGGAGAATAA TTAATGGAGA 2051 TACTATGAAA AAGGAGAAAA ATGTCAGGAGA 35
2051 TACTATGAAA AAGGAGAAAA ATGTCAGTTT TGGAGAATAA TTAATGGAGA
2051 TACTATGAAA AAGGAGAAAA ATGTCACTTT ACTTTGGAAG CCCCTGATGA 2101 AAAATGACTC ATTGTGCAGT GTTCAGAGAT ATGTGATAAA CCATCATACT 2151 TCCTGCAATG GAACATGGTC AGAACATGTC
2151 TCCTGCAATG GAACATCCTC
2151 TCCTGCAATG GAACATGGTC AGAAGATGTG GGAAATCACA CGAAATTCAC 40 2201 TTTCCTGTGG ACAGAGCAAG CACATACTGT
2201 TTTCCTGTGG ACAGAGCAAG CACATACTGT TACGGTTCTG GCCATCAATT 2251 CAATTGGTGC TTCTGTTGCA AATTTTAATT
2251 CAATTGGTGC TTCTGTTGCA AATTTTAATT TAACCTTTTC ATGGCCTATG 2301 AGCAAAGTAA ATATCGTGCA GTCACTGAG
2301 AGCAAAGTAA ATATCGTGCA GTCACTCAGT GCTTATCCTT TAAACAGCAG 2351 TTGTGTGATT GTTTCCTGGA TACTATCAGA
2351 TTGTGTGATT GTTTCCTGGA TACTATCACC CAGTGATTAC AAGCTAATGT 2401 ATTTTATTAT TGAGTGGAAA AATCTTAATG
2401 ATTTTATTAT TGAGTGGAAA AMEGETA
2401 ATTTTATTAT TGAGTGGAAA AATCTTAATG AAGATGGTGA AATAAAATGG 50 2451 CTTAGAATCT CTTCATCTGT TAAGAACTAT
2451 CTTAGAATCT CTTCATCTGT TAAGAAGTAT TATATCCATG ATCATTTAT 2501 CCCCATTGAG AAGTACCAGT TCAGTCTTTT
2501 CCCCATTGAG AAGTACCAGT TCAGTCTTTA CCCAATATTT ATGGAAGGAG
AI GGAAGGAG

		AAAGATAATT	AATAGTTTCA	CTCAAGATGA	TATTGAAAAA
2551	TGGGAAAACC		> mCC		
2601	CACCAGAGTG	ATTGATAAGG	ATCC		

Human OB Receptor Protein, Recombinant Secreted Receptor DNA sequence with C-terminal FLAG (Seq. ID. No. 12):

CCATTGAAGT CAATGGGAGT TTGTTTTGGC ACCAAAATCA ACGGGGATTT 1 CCAAAATGTC GTAATAACCC CGCCCCGTTG ACGCAAATGG GCGGTAGGCG 51 10 101 TGTACGGTGG GAGGTCTATA TAAGCAGAGC TCGTTTAGTG AACCGTCAGA TCTCTAGAAG CTGGGTACCA GCTGCTAGCA AGCTTGCTAG CGGCCGCCAG 151 TGTGATGGAT ATCTGCAGAA TTCGGCTTTC TCTGCCTTCG GTCGAGTTGG 201 15 ACCCCCGGAT CAAGGTGTAC TTCTCTGAAG TAAGATGATT TGTCAAAAAT 251 TCTGTGTGGT TTTGTTACAT TGGGAATTTA TTTATGTGAT AACTGCGTTT 301 20 AACTTGTCAT ATCCAATTAC TCCTTGGAGA TTTAAGTTGT CTTGCATGCC 351 ACCAAATTCA ACCTATGACT ACTTCCTTTT GCCTGCTGGG CTCTCAAAGA 401 ATACTTCAAA TTCGAATGGA CATTATGAGA CAGCTGTTGA ACCTAAGTTT 451 25 AATTCAAGTG GTACTCACTT TTCTAACTTA TCCAAAACAA CTTTCCACTG 501 TTGCTTTCGG AGTGAGCAAG ATAGAAACTG CTCCTTATGT GCAGACAACA 551 30 TTGAAGGAAA GACATTTGTT TCAACAGTAA ATTCTTTAGT TTTTCAACAA 601 ATAGATGCAA ACTGGAACAT ACAGTGCTGG CTAAAAGGAG ACTTAAAATT 651 ATTCATCTGT TATGTGGAGT CATTATTTAA GAATCTATTC AGGAATTATA 701 35 751 ACTATAAGGT CCATCTTTTA TATGTTCTGC CTGAAGTGTT AGAAGATTCA CCTCTGGTTC CCCAAAAAGG CAGTTTTCAG ATGGTTCACT GCAATTGCAG 801 40 TGTTCACGAA TGTTGTGAAT GTCTTGTGCC TGTGCCAACA GCCAAACTCA 851 ACGACACTCT CCTTATGTGT TTGAAAATCA CATCTGGTGG AGTAATTTTC 901 CAGTCACCTC TAATGTCAGT TCAGCCCATA AATATGGTGA AGCCTGATCC 951 45 ACCATTAGGT TTGCATATGG AAATCACAGA TGATGGTAAT TTAAAGATTT 1001 CTTGGTCCAG CCCACCATTG GTACCATTTC CACTTCAATA TCAAGTGAAA 1051 50 TATTCAGAGA ATTCTACAAC AGTTATCAGA GAAGCTGACA AGATTGTCTC 1101 1151 AGCTACATCC CTGCTAGTAG ACAGTATACT TCCTGGGTCT TCGTATGAGG

CTGGATGGCC CAGGAATCTG GAGTGACTGC
1201 TTCAGGTGAG GGGCAAGAGA CTGGATGGCC CAGGAATCTG GAGTGACTGG 1251 AGTACTCCTC GTGTCTTTAC CACACAAGAT GTCATATACT TTCCACCTAA
1251 AGTACTCCTC GTGTCTTTAC CACACATATA 5 1301 AATTCTGACA AGTGTTGGGT CTAATGTTTC TTTTCACTGC ATCTATAAGA 5 1301 AATTCTGACA AGTGTTGGGT CTAATGTTTC TTTTCGTG GATGAATTTA
5 1301 AATTCTGACA AGTGTTGGGT CTAAIGITTO
1351 AGGAAAACAA GATTGTTCCC TCAAAAGAGA 1101 1401 GCTGAGAAAA TTCCTCAAAG CCAGTATGAT GTTGTGAGTG ATCATGTTAG
1401 GCTGAGAAAA TTCCTCAAAG CCAGTATGAT COAACCTCGA GGAAAGTTTA
1401 GCTGAGAAAA TTCCTCAAAG GGAAACCTCGA GGAAAGTTTA 10 1451 CAAAGTTACT TTTTTCAATC TGAATGAAAC CAAACCTCGA GGAAAGTTTA
1451 CAAAGTTACT TTTTTCAATC TECHNICATE ATGAATGCCA TCATCGCTAT 1501 CCTATGATGC AGTGTACTGC TGCAATGAAC ATGAATGCCA TCATCGCTAT
1501 CCTATGATGC AGTGTACTGC TOCALATATC AATATCTCAT GTGAAACTGA 15 1551 GCTGAATTAT ATGTGATTGA TGTCAATATC AATATCTCAT ACAATCCAGT
15 1551 GCTGAATTAT ATGTGATTGA TOTOLOGIA GTCAACCAGT ACAATCCAGT 1601 TGGGTACTTA ACTAAAATGA CTTGCAGATG GTCAACCAGT ACAATCCAGT
1601 TGGGTACTTA ACTAAARIGA OTTO 1651 CACTTGCGGA AAGCACTTTG CAATTGAGGT ATCATAGGAG CAGCCTTTAC 1651 CACTTGCGGA AAGCACTTTG CAATTGAGGT ATCATAGGAG CAGCCTTTAC
1651 CACTTGCGGA AAGCACTITG CLIPATOR TOTGAGCCCA AAGATTGCTA 20 1701 TGTTCTGATA TTCCATCTAT TCATCCCATA TCTGAGCCCA ATCTTCCTAT
1701 TGTTCTGATA TTCCATCTAT TCATOOT 1751 TTTGCAGAGT GATGGTTTTT ATGAATGCAT TTTCCAGCCA ATCTTCCTAT
1751 TTTGCAGAGT GATGGTTTTT ATCHER 25 1801 TATCTGGCTA CACAATGTGG ATTAGGATCA ATCACTCTCT AGGTTCACTT 25 1801 TATCTGGCTA CACAATGTGG ATTAGGATCA ATCACTCTCT AGGTTCACTTC
TO SAMOTOT COTTCCTGAT TOTAL
1851 GACTCTCCAC CAACATGIGT COTT 1901 TCCATCCAGT GTGAAAGCAG AAATTACTAT AAACATTGGA TTATTGAAAA 1901 TCCATCCAGT GTGAAAGCAG AAATTACTAT AAACATTGGA ATTCCAGATT
1901 TCCATCCAGT GTGAAAGCAG 72223 30 1951 TATCTTGGGA AAAGCCAGTC TTTCCAGAGA ATAACCTTCA ATTCCAGATT
AGAGTACAA TGGAAGATGT
TOTAL
TO COMOCOC TOTAGAGGO TAGATGOTO
TO DESCRICE CTACACAGTT GTCAIGGAIN
AO GCAGAATAAT TAATGGACH
CTTTGGAAGC CCCTGATGAT
TGTGATAAAC CAICAIMOT
TOTAL CANATCACAC GARALICACL
TO THE OFFICE ACCOUNT ACCOUNTS OF THE OFFICE ACCOUNTS
ACCTTTCA TGGCCIATOT
TOPOTO TOPOTOAGTG CTTATCCTTT AAACAGCAG
2501 TATCGTGCAG ICACIONAL

	2551	TTTCCTGGAT	ACTATCACCC	AGTGATTACA	AGCTAATGTA	ТТТТАТТАТТ
5	2601	GAGTGGAAAA	ATCTTAATGA	AGATGGTGAA	ATAAAATGGC	ТТАСАЗТОТО
J	2651	TTCATCTGTT	AAGAAGTATT	ATATCCATGA	TCATTTTATC	CCCATTCACA
	2701			ССААТАТТТА		
10	2751	AAGATAATTA				
	2801					
•	2851	TGCAGGTGAC				
15		AGATACATTG				
	2701	ATGCTTTATT	TGTGAAATTT	GTGATGCTAT	TGCTTTATTT	GTAACCAT

Recombinant Human OB Receptor Protein. Natural Splice Variant amino acid sequence (Seq. ID. No. 13)

MICQKFCVVL LHWEFIYVIT AFNLSYPITP WRFKLSCMPP NSTYDYFLLP AGLSKNTSNS NGHYETAVEP KFNSSGTHFS NLSKTTFHCC FRSEQDRNCS 5 LCADNIEGKT FVSTVNSLVF QQIDANWNIQ CWLKGDLKLF ICYVESLFKN 51 LFRNYNYKVH LLYVLPEVLE DSPLVPQKGS FQMVHCNCSV HECCECLVPV 101 PTAKLNDTLL MCLKITSGGV IFQSPLMSVQ PINMVKPDPP LGLHMEITDD 10 151 GNLKISWSSP PLVPFPLQYQ VKYSENSTTV IREADKIVSA TSLLVDSILP 201 GSSYEVQVRG KRLDGPGIWS DWSTPRVFTT QDVIYFPPKI LTSVGSNVSF 251 15 HCIYKKENKI VPSKEIVWWM NLAEKIPQSQ YDVVSDHVSK VTFFNLNETK 301 PRGKFTYDAV YCCNEHECHH RYAELYVIDV NINISCETDG YLTKMTCRWS 351 TSTIQSLAES TLQLRYHRSS LYCSDIPSIH PISEPKDCYL QSDGFYECIF 20 401 QPIFLLSGYT MWIRINHSLG SLDSPPTCVL PDSVVKPLPP SSVKAEITIN 451 IGLLKISWEK PVFPENNLQF QIRYGLSGKE VQWKMYEVYD AKSKSVSLPV 501 25 PDLCAVYAVQ VRCKRLDGLG YWSNWSNPAY TVVMDIKVPM RGPEFWRIIN 551 GDTMKKEKNV TLLWKPLMKN DSLCSVQRYV INHHTSCNGT WSEDVGNHTK 601 FTFLWTEQAH TVTVLAINSI GASVANFNLT FSWPMSKVNI VQSLSAYPLN 30 651 SSCVIVSWIL SPSDYKLMYF IIEWKNLNED GEIKWLRISS SVKKYYIHGK 701 751 35 FTIL 801

- 1 d.

Human OB Receptor Protein, Natural Splice Variant DNA (Seq. ID.

GCGGCCGCCA GTGTGATGGA TATCTGCAGA ATTCGGCTTT CTCTGCCTTC 5 GGTCGAGTTG GACCCCCGGA TCAAGGTGTA CTTCTCTGAA GTAAGATGAT 51 TTGTCAAAAA TTCTGTGGG TTTTGTTACA TTGGGAATTT ATTTATGTGA 101 10 TAACTGCGTT TAACTTGTCA TATCCAATTA CTCCTTGGAG ATTTAAGTTG 151 TCTTGCATGC CACCAAATTC AACCTATGAC TACTTCCTTT TGCCTGCTGG ······· . 201 GCTCTCAAAG AATACTTCAA ATTCGAATGG ACATTATGAG ACAGCTGTTG 251 AACCTAAGTT TAATTCAAGT GGTACTCACT TTTCTAACTT ATCCAAAACA 301 ACTTTCCACT GTTGCTTTCG GAGTGAGCAA GATAGAAACT GCTCCTTATG 351 20 TGCAGACAAC ATTGAAGGAA AGACATTTGT TTCAACAGTA AATTCTTTAG 401 TTTTTCAACA AATAGATGCA AACTGGAACA TACAGTGCTG GCTAAAAGGA 451 GACTTAAAAT TATTCATCTG TTATGTGGAG TCATTATTTA AGAATCTATT 501 25 CAGGAATTAT AACTATAAGG TCCATCTTTT ATATGTTCTG CCTGAAGTGT 551 TAGAAGATTC ACCTCTGGTT CCCCAAAAAG GCAGTTTTCA GATGGTTCAC 601 30 TGCAATTGCA GTGTTCACGA ATGTTGTGAA TGTCTTGTGC CTGTGCCAAC 651 AGCCAAACTC AACGACACTC TCCTTATGTG TTTGAAAATC ACATCTGGTG 701 751 GAGTAATTTT CCAGTCACCT CTAATGTCAG TTCAGCCCAT AAATATGGTG 35 AAGCCTGATC CACCATTAGG TTTGCATATG GAAATCACAG ATGATGGTAA 801 TTTAAAGATT TCTTGGTCCA GCCCACCATT GGTACCATTT CCACTTCAAT 851 40 ATCAAGTGAA ATATTCAGAG AATTCTACAA CAGTTATCAG AGAAGCTGAC 901 AAGATTGTCT CAGCTACATC CCTGCTAGTA GACAGTATAC TTCCTGGGTC 951 1001 TTCGTATGAG GTTCAGGTGA GGGGCAAGAG ACTGGATGGC CCAGGAATCT 45 1051 GGAGTGACTG GAGTACTCCT CGTGTCTTTA CCACACAAGA TGTCATATAC TTTCCACCTA AAATTCTGAC AAGTGTTGGG TCTAATGTTT CTTTTCACTG 1101 50 CATCTATAAG AAGGAAAACA AGATTGTTCC CTCAAAAGAG ATTGTTTGGT 1151 GGATGAATTT AGCTGAGAAA ATTCCTCAAA GCCAGTATGA TGTTGTGAGT 1201

	1251	GATCATGTTA	GCAAAGTTAC	TTTTTTCAAT	CTGAATGAAA	CCAAACCTCG
	1301	AGGAAAGTTT	ACCTATGATG	CAGTGTACTG	CTGCAATGAA	CATGAATGCC
5	1351	ATCATCGCTA	TGCTGAATTA	TATGTGATTG	ATGTCAATAT	CAATATCTCA
	1401	TGTGAAACTG	ATGGGTACTT	AACTAAAATG	ACTTGCAGAT	GGTCAACCAG
	1451	TACAATCCAG	TCACTTGCGG	AAAGCACTTT	GCAATTGAGG	TATCATAGGA
10	1501	GCAGCCTTTA	CTGTTCTGAT	ATTCCATCTA	TTCATCCCAT	ATCTGAGCCC
	1551	AAAGATTGCT	ATTTGCAGAG	TGATGGTTTT	TATGAATGCA	TTTTCCAGCC
15	1601	AATCTTCCTA	TTATCTGGCT	ACACAATGTG	GATTAGGATC	AATCACTCTC
	1651	TAGGTTCACT	TGACTCTCCA	CCAACATGTG	TCCTTCCTGA	TTCTGTGGTG
	1701	AAGCCACTGC	CTCCATCCAG	TGTGAAAGCA	GAAATTACTA	TAAACATTGG
20	1751	ATTATTGAAA	ATATCTTGGG	AAAAGCCAGT	.CTTTCCAGAG	AATAACCTTC
	1801	AATTCCAGAT	TCGCTATGGT	TTAAGTGGAA	AAGAAGTACA	ATGGAAGATG
25	1851	TATGAGGTTT	ATGATGCAAA	ATCAAAATCT	GTCAGTCTCC	CAGTTCCAGA
	1901	CTTGTGTGCA	GTCTATGCTG	TTCAGGTGCG	CTGTAAGAGG	CTAGATGGAC
30	1951	TGGGATATTG	GAGTAATTGG	AGCAATCCAG	CCTACACAGT	TGTCATGGAT
30	2001	ATAAAAGTTC	CTATGAGAGG	ACCTGAATTT	TGGAGAATAA	TTAATGGAGA
	2051	TACTATGAAA	AAGGAGAAAA	ATGTCACTTT	ACTTTGGAAG	CCCCTGATGA
35	2101	AAAATGACTC	ATTGTGCAGT	GTTCAGAGAT	ATGTGATAAA	CCATCATACT
	2151	TCCTGCAATG	GAACATGGTC	AGAAGATGTG	GGAAATCACA	CGAAATTCAC
40	2201	TTTCCTGTGG	ACAGAGCAAG	CACATACTGT	TACGGTTCTG	GCCATCAATT
40	2251	CAATTGGTGC	TTCTGTTGCA	AATTTTAATT	TAACCTTTTC	ATGGCCTATG
	2301	AGCAAAGTAA	ATATCGTGCA	GTCACTCAGT	GCTTATCCTT	TAAACAGCAG
45	2351	TTGTGTGATT	GTTTCCTGGA	TACTATCACC	CAGTGATTAC	AAGCTAATGT
	2401	ATTTTATTAT	TGAGTGGAAA	AATCTTAATG	AAGATGGTGA	AATAAAATGO
50	2451	CTTAGAATCT	CTTCATCTGT	TAAGAAGTAT	TATATCCATG	GTAAGTTTAC
50	2501	ТАТАСТТ				

While the present invention has been described in terms of preferred embodiments, it is understood that variations and modifications will occur to those skilled in the art. Therefore, it is intended that the appended claims cover all such equivalent variations which come within the scope of the invention as claimed.

WO 97/25424 PCT/US97/00128

- 93 -

SEQUENCE LISTING

50

5	(1) GENE	RAL INFORMATION:
10	(i)	APPLICANT: CHANG, MING-SHI WELCHER, ANDREW A. FLETCHER, FREDERICK A.
10	(ii)	TITLE OF INVENTION: OB PROTEIN RECEPTOR AND RELATED COMPOSITIONS AND METHODS
15	(iii)	NUMBER OF SEQUENCES: 33
	(iv)	CORRESPONDENCE ADDRESS: (A) ADDRESSEE: Amgen Inc. (B) STREET: 1840 Dehavilland Drive
20	·	(C) CITY: Thousand Oaks (D) STATE: California (E) COUNTRY: USA (F) ZIP: 91320
25	(v)	COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
30	(vi)	CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: (B) FILING DATE: (C) CLASSIFICATION:
35	(viii)	ATTORNEY/AGENT INFORMATION: (A) NAME: Pessin, Karol M. (C) REFERENCE/DOCKET NUMBER: A-382-A
40	(2) INFO	RMATION FOR SEQ ID NO:1:
1 5	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 965 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
	(ii)	MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1: Met Ile Cys Gln Lys Phe Cys Val Val Leu Leu His Trp Glu Phe Ile 5 Tyr Val Ile Thr Ala Phe Asn Leu Ser Tyr Pro Ile Thr Pro Trp Arg 10 Phe Lys Leu Ser Cys Met Pro Pro Asn Ser Thr Tyr Asp Tyr Phe Leu Leu Pro Ala Gly Leu Ser Lys Asn Thr Ser Asn Ser Asn Gly His Tyr 15 Glu Thr Ala Val Glu Pro Lys Phe Asn Ser Ser Gly Thr His Phe Ser Asn Leu Ser Lys Thr Thr Phe His Cys Cys Phe Arg Ser Glu Gln Asp 20 Arg Asn Cys Ser Leu Cys Ala Asp Asn Ile Glu Gly Lys Thr Phe Val 25 Ser Thr Val Asn Ser Leu Val Phe Gln Gln Ile Asp Ala Asn Trp Asn 120 Ile Gln Cys Trp Leu Lys Gly Asp Leu Lys Leu Phe Ile Cys Tyr Val 135 30 Glu Ser Leu Phe Lys Asn Leu Phe Arg Asn Tyr Asn Tyr Lys Val His Leu Leu Tyr Val Leu Pro Glu Val Leu Glu Asp Ser Pro Leu Val Pro 35 Gln Lys Gly Ser Phe Gln Met Val His Cys Asn Cys Ser Val His Glu 40 Cys Cys Glu Cys Leu Val Pro Val Pro Thr Ala Lys Leu Asn Asp Thr Leu Leu Met Cys Leu Lys Ile Thr Ser Gly Gly Val Ile Phe Gln Ser 215 45 Pro Leu Met Ser Val Gln Pro Ile Asn Met Val Lys Pro Asp Pro Pro 225 230 235 Leu Gly Leu His Met Glu Ile Thr Asp Asp Gly Asn Leu Lys Ile Ser 50 245 Trp Ser Ser Pro Pro Leu Val Pro Phe Pro Leu Gln Tyr Gln Val Lys 265

			_	. •				28	30				28	35		le Val
5					•		23	, ,				30	0			er Tyr
10		_				31	. 0				315	5				p Ser 320
	e.A	P T	p Se	er Th	r Pr 32	o Ar	g Va	l Ph	e Th	r Th 33	r Glr 0	a Asp	o Va	1 11	е Ту 33	r Phe 5
15	Pr	o Pr	O Ly	7S I1	e Le 0	u Th	r Se	r Va	1 G1 34	y Se: 5	r Asn	val	L Se	r Ph 35		s Cys
	11	е Ту	r Ly 35	s Ly 5	s Gl	u As:	n Ly	s Il	e Va. O	l Pro	Ser	Lys	Gl:		e Va	l Trp
20	Tr	9 Me 37	t As O	n Le	u Ala	a Gl	1 Ly:	s Ile 5	e Pro	o Glr	ser	Gln 380	ту	Ası	o Vai	l Val
25	Se:	r As _i	p Hi	s Va.	l Se	390	s Val	l Thi	Phe	Phe	Asn 395	Leu	Asr	Glu	Thi	Lys 400
	Pro	Arq	g Gl	y Ly:	s Phe 405	Thr	Туг	Asp	Ala	Val 410	Tyr	Cys	Суз	Asn	Glu 415	His
30	Glu	Cys	B His	3 His 420	s Arg	Туг	Ala	Glu	Leu 425	Tyr	Val	Ile	Asp	Val 430		Ile
	Asn	Ile	9 Sei 435	Cys	Glu	Thr	Asp	Gly 440	Туг	Leu	Thr	Lys	Met 445	Thr	Суз	Arg
35	Trp	Ser 450	Thr	Ser	Thr	Ile	Gln 455	Ser	Leu	Ala	Glu	Ser 460	Thr	Leu	Gln	Leu
40	Arg 465	Tyr	His	Arg	Ser	Ser 470	Leu	Tyr	Cys	Ser	Asp. 475	Ile	Pro	Ser	Ile	His 480
•	Pro	Ile	Ser	Glu	Pio 485	Lys	Asp	Cys	Tyr	Leu 490	Gln	Ser	Asp	Gly	Phe 495	Tyr
45	Glu	Cys	Ile	Phe 500	Gln	Pro	Ile	Phe	Leu 505	Leu	Ser	Gly	Tyr	Thr 510	Met	Trp
	Île	Arg	Ile 515	Asn	His	Ser	Leu	Gly 520	Ser	Leu	Asp :		Pro 525	Pro	Thr	Суз
50	Val	Leu 530	Pro	Asp	Ser	Val	Val 535	Lys	Pro	Leu	Pro I	Pro :	Ser	Ser	Val	Lys

	545						Asn 550						333						-	•
5						565	Asn					370								
				5	580		Gln				303									
10			5	95			Leu		Þ	00					·	•				
ar ar		61	0				Lys	61	.5					-	•					
15	625	5			,		Tyr 630	l					05.	•						
20						645						650	,							
					660		Lei				003	,					•			
25			•	675			Arq			680						•				
		6	90				ı As	6	95					•	••					
30	- 70	5					a Hi 71	0					,,							
35			_			72						, ,								
					74	0	1 G1				14	13						•		
40				755	5		r T			76	U									
			770						,,,	•										Lys
45	7	85					7	90						,,						His 800
50						8	05					C	10							Met
	C	Glu	Gly	Va	1 G:	ly L 20	ys P	ro	Ly	s 1	le I	le <i>P</i>	sn :	Ser	Phe	Th	r G 8	ln <i>F</i> 30	qe	qeA

	Ile	Glu	Lys 835	His	Gln	Ser	Asp	Ala 840	Gly	Leu	Tyr	Val	Ile 845	Val	Pro	Val	
.	Ile	Ile 850	Ser	Ser	Ser	Ile	Leu 855	Leu	Leu	Gly	Thr	Leu 860	Leu	Ile	Ser	His	
10	Gln 865	Arg	Met	Lys	Lys	Leu 870	Phe	Trp	Glu	Asp	Val 875	Pro	Asn	Pro	Lys	Asn 880	
	Cys	Ser	Trp	Ala	Gln 885	Gly	Leu	Asn	Phe	Gln 890	Lys	Arg	Thr	Asp	Ile 895	Leu	
15	Ser	Leu	Ile	Met 900	Ile	Thr	Thr	Asp	Glu 905	Pro	Asn	Val	Pro	Thr 910	Ser	Gln	
	Gln	Ser	Ile 915	Glu	Tyr	Lys	Ile	Phe 920	Thr	Phe	Arg	Arg	Gly 925	Ala	Asn	Leu	
20	Lys	Lys 930	Ile	Gln	Leu	Asn	Phe 935	Glu	Leu	Thr	Tyr	Gly 940	Gly	Leu	Суз	Phe	ų
25	Arg 945	Thr	Asn	Arg	Суз	Val 950	Asn	Leu	Gly	Ser	Lys 955	Суз	Arg	Phe	Glu	Ser 960	-
	Ser	Leu	Asp	Val	Leu 965												
30	(2) INFOR	ITAMS	ON E	OR S	EQ I	D NC	:2:										
	(i)	(A) (B)	LEN TYP	CHA IGTH: 'E: n 'ANDE	319 ucle	3 ba	se p	airs									
35		(D)	TOP	OLOG	Y: 1	inea		-									
٠	(ii)	MOLE	CULE	TYP	E: c	DNA						•					
40																	
	(xi)	SEQU	ENCE	DES	CRIP	TION	: SE	Q ID	NO:	2:							
45	CCGCCGCCA	T CT	CTGC	CTTC	GGT	CGAG	TTG	GACC	CCCG	GA T	CAAG	GTGT	A CT	TCTC	TGAA		60
	GTAAGATGA	T TT	GTCA	AAAA	TTC	TGTG	TGG '	TTTT	GTTA	CA T	TGGG.	AATT	T AT	TTAT	GTGA		120
	TAACTGCGT																180
50	CACCAAATT																240
	ATTCGAATG	G AC	ATTA	TGAG	ACA	GCTG	TTG 2	AACC'	raag:	TT T	AATT(CAAG	T GG	TACT	CACT		300

. . .

	TTTCTAACTT	ATCCAAAACA	ACTTTCCACT	GTTGCTTTCG	GAGTGAGCAA	GATAGAAACT	360
	GCTCCTTATG	TGCAGACAAC	ATTGAAGGAA	AGACATTTGT	TTCAACAGTA	AATTCTTTAG	420
5	TTTTTCAACA	AATAGATGCA	AACTGGAACA	TACAGTGCTG	GCTAAAAGGA	GACTTAAAAT	480
	TATTCATCTG	TTATGTGGAG	TCATTATTTA	AGAATCTATT	CAGGAATTAT	AACTATAAGG	540
	TCCATCTTTT	ATATGTTCTG	CCTGAAGTGT	TAGAAGATTC	ACCTCTGGTT	CCCCAAAAAG	600
LO	GCAGTTTTCA	GATGGTTCAC	TGCAATTGCA	GTGTTCATGA	ATGTTGTGAA	TGTCTTGTGC	660
+·×-	CTGTGCCAAC	AGCCAAACTC	AACGACACTC	TCCTTATGTG	TTTGAAAATC	ACATCTGGTG	720
15	GAGTAATTTT	CCAGTCACCT	CTAATGTCAG	TTCAGCCCAT	AAATATGGTG	AAGCCTGATC	780
~ ā·	CACCATTAGG	TTTGCATATG	GAAATCACAG	ATGATGGTAA	TTTAAAGATT	TCTTGGTCCA	840
	GCCCACCATT	GGTACCATTT	CCACTTCAAT	ATCAAGTGAA	ATATTCAGAG	AATTCTACAA	900
20	CAGTTATCAG	AGAAGCTGAC	AAGATTGTCT	CAGCTACATC	CCTGCTAGTA	GACAGTATAC	960
	TTCCTGGGTC	TTCGTATGAG	GTTCAGGTGA	GGGGCAAGAG	ACTGGATGGC	CCAGGAATCT	1020
25	GGAGTGACTG	GAGTACTCCT	CGTGTCTTTA	CCACACAAGA	TGTCATATAC	TTTCCACCTA	1080
	AAATTCTGAC	: AAGTGTTGGG	TCTAATGTTT	CTTTTCACTG	CATCTATAAG	AAGGAAAACA	1140
	AGATTGTTCC	CTCAAAAGAG	ATTGTTTGGT	GGATGAATTT	AGCTGAGAAA	ATTCCTCAAA	1200
30	GCCAGTATGA	TGTTGTGAGT	GATCATGTT	GCAAAGTTAC	TTTTTTCAAT	CTGAATGAAA	1260
	CCAAACCTCG	AGGAAAGTTT	ACCTATGATO	G CAGTGTACTG	CTGCAATGA	A CATGAATGCC	1320
35	ATCATCGCT#	A TGCTGAATTA	TATGTGATT	G ATGTCAATAT	CAATATCTC	A TGTGAAACTG	1380
**! *	ATGGGTACT	r aactaaaato	ACTTGCAGA	r GGTCAACCAG	TACAATCCA	G TCACTTGCGG	1440
•	AAAGCACTT	r GCAATTGAGG	TATCATAGG	A GCAGCCTTTA	CTGTTCTGA	r ATTCCATCTA	1500
40	TTCATCCCA	r atctgagcc	AAAGATTGC	T ATTTGCAGAG	G TGATGGTTT	T TATGAATGCA	1560
	TTTTCCAGC	C AATCTTCCT	A TTATCTGGC	T ACACAATGTO	GATTAGGAT	C AATCACTCTC	1620
45	TAGGTTCAC	T TGACTCTCC	A CCAACATGT	G TCCTTCCTG	A TTCTGTGGT	G AAGCCACTGC	168
	CTCCATCCA	G TGTGAAAGC	A GAAATTACT	A TAAACATTG	G ATTATTGAA	A ATATCTTGGG	174
	AAAAGCCAG	T CTTTCCAGA	G AATAACCTT	C AATTCCAGA	T TCGCTATGG	T TTAAGTGGAA	. 180
50	AAGAAGTAC	A ATGGAAGAT	G TATGAGGTT	T ATGATGCAA	A ATCAAAATC	T GTCAGTCTCC	186
	CAGTTCCAG	A CTTGTGTGC	A GTCTATGCT	G TTCAGGTGC	G CTGTAAGAG	G CTAGATGGAC	192

WO 97/25424 PCT/US97/00128

- 99 -

	TGGGATATTG	GAGTAATTGG	AGCAATCCAG	CCTACACAGT	TGTCATGGAT	ATAAAAGTTC	1980
5	CTATGAGAGG	ACCTGAATTT	TGGAGAATAA	TTAATGGAGA	TACTATGAAA	AAGGAGAAAA	2040
3	ATGTCACTTT	ACTTTGGAAG	CCCCTGATGA	AAAATGACTC	ATTGTGCAGT	GTTCAGAGAT	2100
	ATGTGATAAA	CCATCATACT	TCCTGCAATG	GAACATGGTC	AGAAGATGTG	GGAAATCACA	2160
10	CGAAATTCAC	TTTCCTGTGG	ACAGAGCAAG	CACATACTGT	TACGGTTCTG	GCCATCAATT	2220
	CAATTGGTGC	TTCTGTTGCA	AATTTTAATT	TAACCTTTTC	ATGGCCTATG	AGCAAAGTAA	2280
15	ATATCGTGCA	GTCACTCAGT	GCTTATCCTT	TAAACAGCAG	TTGTGTGATT	GTTTCCTGGA	2340
13	TACTATCACC	CAGTGATTAC	AAGCTAATGT	ATTTTATTAT	TGAGTGGAAA	AATCTTAATG	2400
	AAGATGGTGA	AATAAAATGG	CTTAGAATCT	CTTCATCTGT	TAAGAAGTAT	TATATCCATG	2460
20	ATCATTTAT	CCCCATTGAG	AAGTACCAGT	TCAGTCTTTA	CCCAATATTT	ATGGAAGGAG	2520
	TGGGAAAACC	AAAGATAATT	AATAGTTTCA	CTCAAGATGA	TATTGAAAAA	CACCAGAGTG	2580
25	ATGCAGGTTT	ATATGTAATT	GTGCCAGTAA	TTATTTCCTC	TTCCATCTTA	TTGCTTGGAA	2640
	CATTATTAAT	ATCACACCAA	AGAATGAAAA	AGCTATTTTG	GGAAGATGTT	CCGAACCCCA	2700
	AGAATTGTTC	CTGGGCACAA	GGACTTAATT	TTCAGAAGAG	AACGGACATT	CTTTGAAGTC	27,60
30	TAATCATGAT	CACTACAGAT	GAACCCAATG	TGCCAACTTC	CCAACAGTCT	ATAGAGTATT	2820
	AGAAGATTTT	TACATTTTGA	AGAAGGGGAG	САААТСТААА	AAAAATTCAG	TTGAACTTCT .	2880
35	GAGAGTTAAC	ATATGGTGGA	TTATGTTGAT	TTAGAACTTA	AAATAGATGT	GTAAATTTGG	2940
	GTTCAAAATG	TAGATTTGAG	TCCAGTTTGG	ATGTGTGATT	AATTTTCAAA	TCATCTAAAG	3000
	TTTAAAAGTA	GTATTCATGA	TTTCTGGCTT	TTGATTTGCC	ATATTCCTGG	TCATAAAACA	3060
40	TTAAGAAAAT	TATGGCTGTT	GCTGTCATTA	CATATCTATT	AAATGTCATC	AAATATGTAG	3120
	TAGACAATTT	TGTAATTAGG	TGAACTCTAA	AACTGCAACA	TCTGACAAAT	TGCTTTAAAA	3180
45	ATACAATGAT	TAT					3193

(2) INFORMATION FOR SEQ ID NO:3:

50

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 995 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

5	(xi)	SEQU	TENCE	E DES	CRIP	OIT	I: SE	o ir	NO:	:3:						
10	Met 1	Ile	Суз	Gln	Lys 5	Phe	Суз	Val	Val	Leu 10	Leu	His	Trp	Glu	Phe 15	Ile
	Tyr	Val	Ile	Thr 20	Ala	Phe	Asn	Leu	Ser 25	Tyr	Pro	Ile	Thr	Pro 30	Trp	Arg
15	Phe	Lys	Leu 35	Ser	Cys	Met	Pro	Pro 40	Asn	Ser	Thr	Tyr	Asp 45	Tyr	Phe	Leu
	Leu	Pro 50	Ala	Gly	Leu	Ser	Lys 55	Asn	Thr	Ser	Asn	Ser 60	Asn	Gly	His	Tyr
20	65	Thr	Ala	Val	Glu	Pro 70	Lys	Phe	Asn	Ser	Ser 75	Gly	Thr	His	Phe	Ser 80
25	Asn	Leu	Ser	Lys	Thr 85	Thr	Phe	His	Cys	Cys 90	Phe	Arg	Ser	Glu	Gln 95	Asp
2.5	Arg	Asn	Cys	Ser 100	Leu	Суз	Ala	Asp	Asn 105	Ile	Glu	Gly	Lys	Thr 110	Phe	Val
30	Ser	Thr	Val 115	Asn	Ser	Leu	Val	Phe 120	Gln	Gln	Ile '	Asp	Ala 125	Asn	Trp	Asn
	Ile	Gln 130	Cys	Trp	Leu	Lys	Gly 135	Asp	Leu	Lys	Leu	Phe 140	Ile	Суѕ	Tyr	Val
35	Glu 145		Leu	Phe	Lys	Asn 150	Leu	Phe	Arg	Asn	Туг 155	Asn	Tyr	Lys	Val	His 160
40	Leu	Leu	Tyr	Val	Leu 165	Pro	Glu	Val	Leu	Glu 170	Asp	Ser	Pro	Leu	Val 175	Pro
10	Gln	Lys	Gly	Ser 180	Phe	Gln	Met	Val	His 185		Asn	Суз	Ser	Val 190	His	Glu
45	Суз	Суз	Glu 195		Leu	Val	Pro	Val 200	Pro	Thr	Ala	Lys	Leu 205	Asn	Asp	Thr
	Leu	Leu 210		Суз	Leu	Lys	Ile 215	Thr	Ser	Gly	Gly	Val 220	Ile	Phe	Gln	Ser
50	Pro 225		Met	Ser	Val	Gln 230		Ile	Asn	Met	Val 235	Lys	Pro	Asp	Pro	Pro 240

- 101 -

	Leu	Gly	Leu	His	Met 245	Glu	Ile	Thr	Asp	Asp 250	Gly	Asn	Leu	Lys	11e 255	Ser
5	Trp	Ser	Ser	Pro 260	Pro	Leu	Val	Pro	Phe 265	Pro	Leu	Gln	Tyr	Gln 270	Val	Lys
	Tyr	Ser	Glu 275	Asn	Ser	Thr	Thr	Val 280	Ile	Arg	Glu	Ala	Asp 285	ГÀЗ	Ile	Val
10	Ser	Ala 290	Thr	Ser	Leu	Leu	Val 295	Asp	Ser	Ile	Leu	Pro 300	Gly	Ser	Ser	Tyr
15	Glu 305	Val	Gln	Val	Arg	Gly 310	Lys	Arg	Leu	Asp	Gly 315	Pro	Gly	Ile	Trp	Ser 320
	Asp	Trp	Ser	Thr	Pro 325	Arg	Val	Phe	Thr	Thr. 330	Gln	Asp	Val	Ile	Tyr 335	Phe
20	Pro	Pro	Lys	11e 340	Leu	Thr	Ser	Val	Gly 345	Ser	Asn	Val	Ser	Phe 350	His	Cys
	Ile	Tyr	Lys 355	Lys	Glu	Asn	Lys	11e 360	Val	Pro	Ser	Lys	Glu 365	Ile	Val	Trp
25	Trp	Met 370	Asn	Leu	Ala	Glu	Lys 375	Ile	Pro	Gln	Ser	Gln 380	Tyr	Asp	Val	Val
30	Ser 385	Asp	His	Val	Ser	Lys 390	Val	Thr	Phe	Phe	Asn 395	Leu	Asn	Glu	Thr	Lys 400
	Pro	Arg	Gly	Lys	Phe 405	Thr	Tyr	Asp	Ala	Val 410	Tyr	Cys	Суз	Asn	Glu 415	His
35	Glu	Суз	His	His 420	Arg	Tyr	Ala	Glu	Leu 425	Tyr	Val	Ile	Asp	Val 430	Asn	Ile
	Asn		Ser 435	_	Glu	Thr	Asp	Gly 440	Tyr	Leu	Thr	Lys	Met 445	Thr	Cys	Arg
40	Trp	Ser 450	Thr	Ser	Thr	Ile	Gln 455	Ser	Leu	Ala	Glu	Ser 460	Thr	Leu	Gln	Leu
45	Arg 465	Tyr	His	Arg	Ser	Ser 470	Leu	Tyr	Суз	Ser	Asp 475	Ile	Pro	Ser	Ile	His 480
	Pro	Ile	Ser	Glu	Pro 485	Lys	Asp	Суз	Tyr	Leu 490	Gln	Ser	Asp	Gly	Phe 495	Tyr
50	Glu	Cys	Ile	Phe 500	Gln	Pro	Ile	Phe	Leu 505	Leu	Ser	Gly	Tyr	Thr 510	Met	Trp
	Ile	Arg	Ile 515	Asn	His	Ser	Leu	Gly 520	Ser	Leu	Asp	Ser	Pro 525	Pro	Thr	Суз

	Val	Leu 530	Pro	Asp	Ser	Val	Val 535	Lys	Pro	Leu	Pro	Pro 540	Ser	Ser	Val	Lys
5	Ala 545	Glu	Ile	Thr	•	Asn 550	Ile	Gly	Leu	Leu	Lys 555	Ile	Ser	Trp	Glu	Lys 560
10	Pro	Val	Phe	Pro	Glu 565	Asn	Asn	Leu	Gln	Phe 570	Gln	Ile	Arg	Tyr	Gly 575	Leu
10	Ser	Gly	Lys	Glu 580	Val	Gln	Trp	Lys	Met 585	Tyr	Glu	Val	Tyr	Asp 590	Ala	Lys
15	Ser	Lys	Ser 595	Val	Ser	Leu	Pro	Val 600	Pro	Asp	Leu	Cys	Ala 605	Val	Tyr	Ala
		610	Val				615					620				
20	625		Asn		·	630	-				635					640
25			Pro		645					650					655	
	٠		Asn	660			٠		665					670		
30			675					680					685			Asn
		690					695					700				Leu
35	705					710					715					Ile 720
40					725					730					735	
	Lys	Val	Asn	11e 740		Gln	Ser	Leu	Ser 745		Tyr	Pro	Leu	Asn 750		Ser
45	Суз	Val	11e 755		Ser	Trp	Ile	Leu 760		Pro	Ser	Asp	Tyr 765		Leu	Met
	Tyr	770		Ile	Glu	Trp	Lys 775		Leu	Asn	Glu	Asp 780		Glu	Ile	Lys
50	Trp 785		Arg	Ile	Ser	Ser 790		Val	. Lys	Lys	795		Ile	His	Asp	His 800

- 103 -

		Phe	Ile	Pro	Ile	Glu 805	Lys	Tyr	Gln	Phe	Ser 810	Leu	Tyr	Pro	Ile	Phe 815	Met
5		Glu	Gly	Val	Gly 820	Lys	Pro	Lys	Ile	Ile 825	Asn	Ser	Phe	Thr	Gln 830	Asp	Asp
		Ile	Glu	Lys 835	His	Gln	Ser	Asp	Ala 840	Gly	Leu	Tyr	Val	Ile 845	Val	Pro	Val
10		Ile	Ile 850	Ser	Ser	Ser	Ile	Leu 855	Leu	Leu	Gly	Thr	Leu 860	Leu	Ile	Ser	His
15		Gln 865	Arg	Met	Lys		Leu 870	Phe	Trp	Glu	Asp	Val 875	Pro	Asn	Pro	Lys	A sn 880
	Cys	Ser	Trp	Ala	Gln 885	Gly	Leu	Asn	Phe	Gln 890	Lys	Lys	Arg	Leu	Ser 895	Ile	
20		Phe	Leu	Ser	Ser 900	Ile	Gln	His	Gln	His 905	Val	Val	Leu	Phe	Phe 910	Trp	Ser
-		Leu	Lys	Gln 915	Phe	Gln	Lys	Ile	Ser 920	Val	Leu	Ile	His	His 925	Gly	Lys	Ile
25		Lys	Met 930	Arg	Cys	Gln	Gln	Leu 935	Trp	Ser	Leu	Tyr	Phe 940	Gln	Gln	Gln	Ile
30	Leu 945	Lys	Arg	Val	Leu	Phe 950	Val	Leu	Val	Thr	Ser 955	Ser	Thr	Val	Leu	Thr 960	
	Ser	Leu	Arg	Leu	Arg 965	Val	Leu	Arg	Pro	Met 970	Arg	Thr	Lys	Ala	Arg 975	Asp	
35		Asn	Pro	Leu	Leu 980	As'n	Thr	Pró	Arg	Ser 985	Ala	Thr	Leu	Asn	Gln 990	Val	Lys
		Leu	Val	Lys 995													
10	(2)	INFOR	TAMS	ON E	OR S	EQ 1	D NC	:4:									•
		(i)	.(A)	LEN	CHA	30€	3 ba	se p		:							
15			(C)	STF	E: n CANDE	DNES	S: s	ingl	.e								

(ii) MOLECULE TYPE: cDNA

50

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4: CCGCCGCCAT CTCTGCCTTC GGTCGAGTTG GACCCCCGGA TCAAGGTGTA CTTCTCTGAA 60 GTAAGATGAT TTGTCAAAAA TTCTGTGTGG TTTTGTTACA TTGGGAATTT ATTTATGTGA 120 TAACTGCGTT TAACTTGTCA TATCCAATTA CTCCTTGGAG ATTTAAGTTG TCTTGCATGC 180 CACCAAATTC AACCTATGAC TACTTCCTTT TGCCTGCTGG ACTCTCAAAG AATACTTCAA 240 10 ATTCGAATGG ACATTATGAG ACAGCTGTTG AACCTAAGTT TAATTCAAGT GGTACTCACT 300 TTTCTAACTT ATCCAAAACA ACTTTCCACT GTTGCTTTCG GAGTGAGCAA GATAGAAACT 360 ------GCTCCTTATG TGCAGACAAC ATTGAAGGAA AGACATTTGT TTCAACAGTA AATTCTTTAG 420 15 TTTTTCAACA AATAGATGCA AACTGGAACA TACAGTGCTG GCTAAAAGGA GACTTAAAAT 480 TATTCATCTG TTATGTGGAG TCATTATTTA AGAATCTATT CAGGAATTAT AACTATAAGG 540 20 TCCATCTTTT ATATGTTCTG CCTGAAGTGT TAGAAGATTC ACCTCTGGTT CCCCAAAAAG 600 GCAGTTTTCA GATGGTTCAC TGCAATTGCA GTGTTCATGA ATGTTGTGAA TGTCTTGTGC 660 CTGTGCCAAC AGCCAAACTC AACGACACTC TCCTTATGTG TTTGAAAATC ACATCTGGTG 720 25 GAGTAATTTT CCAGTCACCT CTAATGTCAG TTCAGCCCAT AAATATGGTG AAGCCTGATC 780 CACCATTAGG TTTGCATATG GAAATCACAG ATGATGGTAA TTTAAAGATT TCTTGGTCCA 840 30 GCCCACCATT GGTACCATTT CCACTTCAAT ATCAAGTGAA ATATTCAGAG AATTCTACAA 900 CAGTTATCAG AGAAGCTGAC AAGATTGTCT CAGCTACATC CCTGCTAGTA GACAGTATAC 960 1020 TTCCTGGGTC TTCGTATGAG GTTCAGGTGA GGGGCAAGAG ACTGGATGGC CCAGGAATCT 35 GGAGTGACTG GAGTACTCCT CGTGTCTTTA CCACACAAGA TGTCATATAC TTTCCACCTA 1080 *.* . . 1140 ARATTCTGAC AAGTGTTGGG TCTAATGTTT CTTTTCACTG CATCTATAAG AAGGAAAACA 40 AGATTGTTCC CTCAAAAGAG ATTGTTTGGT GGATGAATTT AGCTGAGAAA ATTCCTCAAA 1200 GCCAGTATGA TGTTGTGAGT GATCATGTTA GCAAAGTTAC TTTTTTCAAT CTGAATGAAA 1260 CCAAACCTCG AGGAAAGTTT ACCTATGATG CAGTGTACTG CTGCAATGAA CATGAATGCC 1320 45 ATCATCGCTA TGCTGAATTA TATGTGATTG ATGTCAATAT CAATATCTCA TGTGAAACTG 1380 ATGGGTACTT AACTAAAATG ACTTGCAGAT GGTCAACCAG TACAATCCAG TCACTTGCGG 1440 50 1500 AAAGCACTTT GCAATTGAGG TATCATAGGA GCAGCCTTTA CTGTTCTGAT ATTCCATCTA TTCATCCCAT ATCTGAGCCC AAAGATTGCT ATTTGCAGAG TGATGGTTTT TATGAATGCA 1560

	TTTTCCAGCC AATCTTCCTA TO	
	TTTTCCAGCC AATCTTCCTA TTATCTGGCT ACACAATGTG GATTAGGATC AATCACTCTC	162
5		168
	CTCCATCCAG TGTGAAAGCA GAAATTACTA TAAACATTGG ATTATTGAAA ATATCTTGGG	174
10	AAAAGCCAGT CTTTCCAGAG AATAACCTTC AATTCCAGAT TCGCTATGGT TTAAGTGGAA	180
	AAGAAGTACA ATGGAAGATG TATGAGGTTT ATGATGCAAA ATCAAAATCT GTCAGTCTCC	1860
	CAGTTCCAGA CTTGTGTGCA GTCTATGCTG TTCAGGTGCG CTGTAAGAGG CTAGATGGAC	1920
15	TGGGATATTG GAGTAATTGG AGCAATCCAG CCMAGAGAGA	1980
	CTATGAGAGG ACCTGAATTT TGGAGAATAA TTAATGGAGA TACTATGAAA AAGGAGAAAA	
	ATGTCACTTT ACTTTGGAAG CCCCTGATGA AAAATGACTC ATTGTGCAGT GTTCAGAGAT	2040
20	ATGTGATAAA CCATCATACT TCCTGCAATG GAACATGGTC AGAAGATGTG GGAAATCACA	2100
	CGAAATTCAC TTTCCTGTGG ACAGAGCAAG CACATACTGT TACGGTTCTG GCCATCAATT	2160
	CAATTGGTGC TTCTGTTGCA AATTTTAATT TAACCTTTTC ATGGCCTATG AGCAAAGTAA	2220
25		2280
	ATATCGTGCA GTCACTCAGT GCTTATCCTT TAAACAGCAG TTGTGTGATT GTTTCCTGGA	2340
30	TACTATCACC CAGTGATTAC AAGCTAATGT ATTTTATTAT TGAGTGGAAA AATCTTAATG	2400
	AAGATGGTGA AATAAAATGG CTTAGAATCT CTTCATCTGT TAAGAAGTAT TATATCCATG	2460
	ATCATTTAT CCCCATTGAG AAGTACCAGT TCAGTCTTTA CCCAATATTT ATGGAAGGAG	2520
35	TGGGAAAACC AAAGATAATT AATAGTTTCA CTCAAGATGA TATTGAAAAA CACCAGAGTG	2580
	ATGCAGGTTT ATATGTAATT GTGCCAGTAA TTATTTCCTC TTCCATCTTA TTGCTTGGAA	2640
	CATTATTAAT ATCACACCAA AGAATGAAAA AGCTATTTTG GGAAGATGTT CCGAACCCCA	2700
40	AGAATTGTTC CTGGGCACAA GGACTTAATT TTCAGAAGAA ACGTTTGAGC ATCTTTTAT	2760
	CAAGCATACA GCATCAGTGA CATGTGGTCC TCTTCTTTTG GAGCCTGAAA CAATTTCAGA	2820
45	AGATATCAGT GTTGATACAT CATGGAAAAA TAAAGATGAG ATGATGCCAA CAACTGTGGT	2880
	CTCTCTACTT TCAACAACAG ATCTTGAAAA GGGTTCTGTT TGTTTTAGTG ACCAGTTCAA	
(CAGTGTTAAC TTCTCTGAGG CTGAGGGTAC TGAGGTAACC TATGAGGACG AAAGCCAGAG	2940
	ACAACCCTTT GTTAAATACG CCACGCTGAT CAGCAACTCT AAACCAAGTG AAACTGGTGA	3000
	AGA	3060
		3063

50

195

	(2)	INFOR	MATI	ON F	OR S	EQ II	ои с	:5:									
5		(i)	(A) (B) (C)	LENO TYP:	GTH: E: a: ANDE	969 mino DNES	ami aci S: s	no a d ingl	cids								
10		(ii)	MOLE	CULE	TYP	E: p	rote	in									
 15		(xi)	SEQU	ENCE	DES	CRIP	TION	: SE	Q ID) NO:	5:						
15		Met 1	Ile	Суз	Gln	Lys 5	Phe	Cys	Val	Val	Leu 10	Leu	His	Trp	Glu	Phe 15	Ile
20		Tyr	Val	Ile	Thr 20	Ala	Phe	Asn	Leu	Ser 25	Tyr	Pro	Ile	Thr	Pro 30	Trp	Arg
		Phe	Lys	Leu 35	Ser	Суз	Met	Pro	Pro 40	Asn	Ser	Thr	Tyr	Asp 45	Tyr	Phe	Leu
25		Leu	Pro 50	Ala	Gly	Leu	Ser	Lys 55	Asn	Thr	Ser	Asn	Ser 60	Asn	Gly	His	Tyr
		Glu 65	Thr	Ala	Val	Glu	Pro 70	Lys	Phe	Asn	Ser	Ser 75	Gly	Thr	His	Phe	Ser 80
30		Asn	Leu	Ser	Lys	Thr 85	Thr	Phe	His	Cys	Cys 90	Phe	Arg	Ser	Glu	Gln 95	Asp
35		Arg	Asn	Cys	Ser 100	Leu	Cys	Ala	Asp	Asn 105	Ile	Glu	Gly	Lys	Thr 110	Phe	Val
		Ser	Thr	Val 115		Ser	Leu	Val	Phe 120		Gln	Ile	Asp	Ala 125	Asn	Trp	Asn
40		Ile	Gln 130		Trp	Leu	Lys	Gly 135		Leu	Lys	Leu	Phe 140	Ile	Суз	Туг	Val
		Glu 145		Leu	Phe	Lys	Asn 150	Leu	Phe	Arg	Asn	Туг 155	Asn	Tyr	Lys	Val	His 160
45		Lev	. Leu	Tyr	val	Leu 165		Glu	val	Leu	Glu 170	Asp	Ser	Pro	Leu	Val 175	Pro
ΕO		Glr	ı Lys	Gly	Ser		Glr	n Met	. Val	His 185	Cys	Asn	Cys	Ser	Val	. His	Glu

Cys Cys Glu Cys Leu Val Pro Val Pro Thr Ala Lys Leu Asn Asp Thr

200

	ne	21	.0	e Cy	s Le	u Ly:	215	e Th	r Se	r Gl	y Gl	y Va. 22		e Ph	e Gl	n Se
5		-		t Se	,	23(J				235	5				24
10	Le	u Gl	y Le	u Hi	3 Met 245	Glu S	ı Ile	Th:	r Ası	250	9 Gl ₃	y Asr	1 Lei	ı Ly:	s Ile 25	
	Tr	p Se	r Se	260	Pro	Lev	ı Val	. Pro	265	e Pro) Lev	Glr	ту:	Glr 270		L Ly:
15			27.					280) .				285	5		
	Sea	290	a Thi	Ser	Leu	Leu	Val 295	Asp	Ser	Ile	: Leu	Pro 300		/ Ser	Ser	Ty
20	Glu 305	val	l Glr	Val	. Arg	Gly 310	Lys	Arg	Leu	Asp	Gly 315	Pro	Gly	Ile	Trp	Ser 320
25	•			Thr	325					330					335	
				11e 340					345					350		
30			333					360					365			
		0.0		Leu			3/5					380				
35	Ser 385	Asp	His	Val	Ser	Lys 390	Val	Thr	Phe	Phe	Asn 395	Leu	Asn	Glu	Thr	Lys 400
10	Pro	Arg	Gly	Lys	Phe 405	Thr	Tyr	Asp	Ala	Val 410	Tyr	Суз	Cys	Asn	Glu 415	His
	Glu	Суз	His	His 420	Arg	Tyr	Ála	Glu	Leu 425	Tyr	Val	Ile	Asp	Val 430	Asn	Ile
15	Asn	Ile	Ser 435	Cys	Glu	Thr	Asp	Gly 440	Tyr	Leu	Thr	Lys	Met 445	Thr	Суз	Arg
	Trp	Ser 450	Thr	Ser	Thr	Ile	Gln 455	Ser	Leu	Ala	Glu	Ser 460	Thr	Leu	Gln	Leu
0	Arg 465	Tyr	His	Arg	Ser	Ser 470	Leu '	Tyr	Cys	Ser	Asp 475	Ile :	Pro	Ser	Ile	His 480

	Pro	Ile	Ser	Glu	Pro 485		s A	sp (Cys	Tyr	Leu 490	Gln	Sei	: As	sp G	Sly	Phe 495	ту	r
5	Glu			500	٠					505					•	, 10			
		Arg	515						520					J.	23				
10		Leu 530					5	35					34	•			•		
. 15	545	Glu				5	50					55.	,						-
15		Val			56	5					570	,							
20		Gly		58	0					583	•								
		Lys	59	5					600						000				
25		Gl: 61	0					615					0.						
3.0	62					•	30					0.	, ,						
		g Gl			6	45					6.5						-	_	
35		u Ly		6	50					66	.5					•	-		
		u Cy	6.	75					68	U				•	000	,			
40			90					69	5					, , ,					
45	70)5					710					•	1.,						Ile 720 Ser
					7	725					•	30							Ser
50				7	40					7	45								Ser
	С	ys V		le \ 155	/al	Ser	Tr	, Il	.e L	eu S 60	er E	io :	er	ASP	76	5	,		Met

		Tyr	Phe 770	Ile	Ile	Glu	Trp	Lys 775	Asn	Leu	Asn	Glu	Asp 780	Gly	Glu	Ile	Lys
5		Trp 785	Leu	Arg	Ile	Ser	Ser 790	Ser	Val	Lys	Lys	Tyr 795	Tyr	Ile	His	Asp	His 800
		Phe	Ile	Pro	Ile	Glu 805	Lys	Tyr	Gln	Phe	Ser 810	Leu	Tyr	Pro	Ile	Phe 815	Met
10		Glu	Gly	Val	Gly 820	Lys	Pro	Lys	Ile	Ile 825	Asn	Ser	Phe	Thr	Gln 830	Asp	Asp
15		Ile	Glu	Lys 835	His	Gln	Ser	Asp	Ala 840	Gly	Leu	Tyr	Val	Ile 845	Val	Pro	Val
		Ile	Ile 850	Ser	Ser	Ser	Ile	Leu 855	Leu	Leu	Gly	Thr	Leu 860	Leu	Ile	Ser	His
20		Gln 865	Arg	Met	Lys	Lys	Leu 870	Phe	Trp	Glu	Asp	Val 875	Pro	Asn	Pro	Lys	Asn 880
25		Cys	Ser	Trp	Ala	Gln 885	Gly	Leu	Asn	Phe	Gln 890	Lys	Met	Leu	Glu	Gly 895	Ser
23		Met	Phe	Val	Lys 900	Ser	His	His	His	Ser 905	Leu	Ile	Ser	Ser	Thr 910	Gln	Gly
30		His	Lys	His 915	Cys	Gly	Arg		Gln 920	Gly	Pro	Leu	His	Arg 925	Lys	Thr	Arg
		Asp	Leu 930	_	Ser	Leu	Val	Tyr 935	Leu	Leu	Thr	Leu	Pro 940	Pro	Leu	Leu	Ser
35		Tyr 945		Pro	Ala	Lys	Ser 95 0	Pro	Ser	Val	Arg	Asn 955	Thr	Gln	Glu	Ser	11e 960
40		Lys	Lys	Lys	Lys	Lys 965	Lys	Leu	Glu	Gly			•				•
40	(2)	INFO	RMAT	ION 1	FOR	SEQ	ID N	0:6:									
45		(i)	(A		NGTH	: 96	9 am	STIC ino		s							
40			(C	-	RAND	EDNE	ss:	sing	le								
		(ii)	MOL	ECUL	E TY	PE:	prot	ein									

	(xi)	SEQU	ENCE	DES	CRIP	TION	: SE	Q IE	NO:	6:						
_	Met 1	Ile	Суз	Gln ,	Lys 5	Phe	Суз	Val	Val	Leu 10	Leu	His	Trp	Glu	Phe 15	Ile
5	Tyr	Val	Ile	Thr 20	Ala	Phe	Asn	Leu	Ser 25	Tyr	Pro	Ile	Thr	Pro 30	Trp	Arg
10	Phe	Lys	Leu 35	Ser	Суз	Met	Pro	Pro 40	Asn	Ser	Thr	Tyr	Asp 45	Tyr	Phe	Leu
· inte	Leu	Pro 50	Ala	Gly	Leu	Ser	Lys 55	Asn	Thr	Ser	Asn	Ser 60	Asn	Gly	His	Tyr
<u>.</u> 15	Glu 65	Thr	Ala	Val	Glu	Pro 70	Lys	Phe	Asn	Ser	Ser 75	Gly	Thr	His	Phe	Ser 80
20	Asn	Leu	Ser	Lys	Thr 85	Thr	Phe	His	Суз	90 90	Phe	Arg	Ser	Glu	Gln 95	Asp
20	Arg	Asn	Суз	Ser 100	Leu	Cys	Ala	Asp	Asn 105	Ile	Glu	Gly	Lys	Thr 110	Phe	Val
25	Ser	Thr	Val 115	Asn	Ser	Leu	Val	Phe 120	Gln	Gln	Ile	Asp	Ala 125	Asn	Trp	Asn
	Ile	Gln 130	_	Trp	Leu	Lys	Gly 135		Leu	Lys	Leu	Phe 140	Ile	Cys	Tyr	Val
30	Glu 145		Leu	Phe	Lys	Asn 150		Phe	Arg	Asn	Tyr 155	Asn	Tyr	Lys	Val	His 160
35	Leu	Leu	Tyr	Val	Leu 165	Pro	· Glu	Val	Leu	Glu 170		Ser	Pro	Leu	Val 175	Pro
33	Gln	Lys	Gly	Ser 180		Gln	Met	Val	His 185		Asn	Cys	Ser	Val 190	His	Glu
40	Суз	Cys	Glu 195		Leu	Val	Pro	Val 200		Thr	Ala	Lys	Leu 205		Asp	Thr
	Lev	Leu 210		. Cys	Leu	Lys	11e 215		Ser	Gly	Gly	Val 220		Phe	Gln	Ser
45	Pro 225		Met	. Ser	Val	Glr 230		Ile	Asn	Met	Val 235		Pro	Asp	Pro	Pro 240
E0	Lev	Gly	, Leu	ı His	Met 245		ılle	th:	Asp	250		Asr	Leu	Lys	255	s Ser
50	Trp	Sei	s Sei	260		Lev	ı Val	Pro	265		Leu	ı Glr	туг	Gl _r 270	n Val	Lys

- 111 -

	Tyr	Ser	Glu 275	Asn	Ser	Thr	Thr	Val 280	Ile	Arg	Glu	Ala	Asp 285	Lys	Ile	Val
5	Ser	Ala 290	Thr	Ser ,	Leu	Leu	Val 295	Asp	Ser	Ile	Leu	Pro 300	Gly	Ser	Ser	Tyr
	Glu 305	Val	Gln	Val	Arg	Gly 310	Lys	Arg	Leu	qeA	Gly 315	Pro	Gly	Ile	Trp	Ser 320
10	Asp	Trp	Ser	Thr	Pro 325	Arg	Val	Phe	Thr	Thr 330	Gln	Asp	Val	Ile	Tyr 335	Phe
15	Pro	Pro	Lys	Ile 340	Leu	Thr	Ser	Val	Gly 345	Ser	Asn	Val	Ser	Phe 350	His	Суз
·	Ile	Tyr	Lys 355	Lys	Glu	Asn	Lys	11e 360	Val	Pro	Ser	Lys	Glu 365	Ile	Val	Trp
20	Trp	Met 370	Asn	Leu	Ala	Glu	Lys 375	Ile	Pro	Gln	Ser	Gln 380	Tyr	Asp	Val	Val
	Ser 385	Asp	His	Val	Ser	Lys 390	Val	Thr	Phe	Phe	Asn 395	Leu	Asn	Glu	Thr	Lys 400
25	Pro	Arg	Gly	Lys	Phe 405	Thr	Tyr	Asp	Ala	Val 410	Tyr	Cys	Cys	Asn	Glu 415	His
30	Glu	Cys	His	His 420	Arg	Tyr	Ala	Glu	Leu 425	Tyr	Val	Ile	Asp	Val 430	Asn	Ile
	Asn	Ile	Ser 435	Суз	Glu	Thr	Asp	Gly 440	Tyr	Leu	Thr	Lys	Met 445	Thr	Суз	Arg
35	Trp	Ser 450	Thr	Ser	Thr	Ile	Gln 455	Ser	Leu	Ala	Glu	Ser 460	Thr	Leu	Gln	Leu
	465					470		_			475			-	•	His 480
40	Pro	Ile	Ser	Glu	Pro 485	Lys	Asp	Cys	Tyr	Leu 490	Gln	Ser	Asp	Gly	Phe 495	Tyr
45	Glu	Cys	Ile	Phe 500	Gln	Pro	Ile	Phe	Leu 505	Leu	Ser	Gly	Tyr	Thr 510	Met	Trp
	Ile	Arg	Ile 515	Asn	His	Ser	Leu	Gly 520	Ser	Leu	Asp	Ser	Pro 525	Pro	Thr	Cys
50	Val	Leu 530	Pro	Asp	Ser	Val	Val 535	Lys	Pro	Leu	Pro	Pro 540	Ser	Ser	Val	Lys
	Ala 545		Ile	Thr	Ile	Asn 550		Gly	Leu	Leu	Lys 5 55		Ser	Trp	Glu	Lys 560

ξ<u>ξ</u>΄.

	Pro	Val	Phe	Pro	Glu 565	Asn	Asn	Leu	Gln	Phe 570	Gln	Ile	Arg	Tyr	Gly 575	Leu
5	Ser	Gly ,	Lys	Glu - 580	Val	Gln	Trp	Lys	Met 585	Tyr	Glu	Val	Tyr	Asp 590	Ala	Lys
	Ser	ГАЗ	Ser 595	Val	Ser	Leu	Pro	Val 600	Pro	Asp	Leu	Суз	Ala 605	Val	Tyr	Ala
10	Val	Gln 610	Val	Arg	Суз	Lys	Arg 615	Leu	Asp	Gly	Leu	Gly 620	Tyr	Trp	Ser	Asn
15	Trp 625	Ser	Asn	Pro	Ala	Tyr 630	Thr	Val	Val	Met	Asp 635	Ile	Lys	Val	Pro	Met 640
	Arg	Gly	Pro	Glu	Phe 645	Trp	Arg	Ile	Ile	Asn 650	Gly	Asp	Thr	Met	Lys 655	Lys
20	Glu	Lys	Asn	Val 660	Thr	Leu	Leu	Trp	Lys 665	Pro	Leu	Met	Lys	Asn 670	Asp	Ser
25	Leu	Суз	Ser 675	Val	Gln	Arg	Tyr	Val 680	Ile	Asn	His	His	Thr 685	Ser	Cys	Asn
25	Gly	Thr 690		Ser	Glu	Asp	Val 695	Gly	Asn	His	Thr	Lys 700	Phe	Thr	Phe	Leu
30	Trp 705		Glu	Gln	Ala	His 710		Val	Thr	Val	Leu 715	Ala	Ile	Asn	Ser	Ile 720
	Gly	Ala	Ser	Val	Ala 725		Phe	Asn	Leu	730	Phe	Ser	Trp	Pro	Met 735	Ser
35	Lys	Val	Asn	740		Gln	Ser	Leu	Ser 745		Tyr	Pro	Leu	Asn 750	Ser	Ser
40	Cys	Val	. Ile 755		. Ser	Trp	Ile	760	Ser	Pro	Ser	Asp	765	Lys	Leu	Met
40	Туг	770		e Ile	e Glu	ı Trp	775		. Leu	ı Asr	n Glu	780	Gly	Glu	Ile	Lys
45	Trp 785		ı Arç	g Ile	e Se	r Sea 790		va:	L Lys	s Lys	795	Ty 1	r Il∈	e His	asp	800
	Phe	e Ile	e Pro	o Ile	e Gl:		s Ty	r Gl	n Phe	810	r Lei	ту:	r Pro	o Ile	815	Met
50	Gli	ı Gl	y Va	1 G1 82		s Pr	o Ly:	s Il	e Il 82	e Ası 5	n Se	r Ph	e Thi	830	n Ası	Asp

- 113 -

	Ile	Glu	Lys 835	His	Gln	Ser	Asp	Ala 840	Gly	Leu	Tyr	Val	Ile 845	Val	Pro	Val
5	Ile	Ile 850	Ser	Ser	Ser	Ile	Leu 855	Leu	Leu	Gly	Thr	Leu 860	Leu	Ile	Ser	His
	Gln 865	_	Met	Lys	Lys	Leu 870	Phe	Trp	Glu	Asp	Val 875	Pro	Asn	Pro	Lys	Asn 880
10	Cys	Ser	Trp	Ala	Gln 885	Gly	Leu	Asn	Phe	Gln 890	Lys	Met	Leu	Glu	Gly 895	Ser
15	Met	Phe	Val	Lys 900	Ser	His	His	His	Ser 905	Leu	Ile	Ser	Ser	Thr 910	Gln	Gly
	His	Lys	His 915	Cys	Gly	Arg	Pro	Gln 920	Gly	Pro	Leu	His	Arg 925	Lys	Thr	Arg
20	Asp	Leu 930	Cys	Ser	Leu	Val	Tyr 935	Leu	Leu	Thr	Leu	Pro 940	Pro	Leu	Leu	Ser
	Tyr 945	Asp	Pro	Ala	Lys	Ser 950	Pro	Ser	Val	Arg	Asn 955	Thr	Gln	Glu	Ser	11e 960
25	Lys	Lys	Lys	Lys	Lys 965	Lys	Leu	Glu	Gly							
	(2) INFO	RMAT:	ION I	FOR S	SEQ :	ID NO	0:7:									
30	(i)	(A (B (C	UENCI) LEI) TYI) STI) TOI	NGTH PE: 8	: 12: emino EDNE:	16 ar o ac: SS: s	mino id sing:	acio	is							
35	(ii)	MOL	ECULI	E TY	?E: 1	prote	∍in									
40	(xi)	SEQ	UENC	E DE:	SCRI	PTIO	N: S	EQ II	o NO	:7:						
45	Met 1	Ile	Cys	Gln	Lys 5	Phe	Cys	Val	Val	Leu 10	Leu	His	Trp	Glu	Phe 15	Ile
	Tyr	Val	Ile	Thr 20	Ala	Phe	Asn	Leu	Ser 25	Tyr	Pro	Ile	Thr	Pro 30	Trp	Arg
50	Phe	Lys /	Leu 35	Ser	Cys	Met	Pro	Pro 40	Asn	Ser	Thr	Tyr	Asp 45	Tyr	Phe	Leu
	Lev	Pro	Ala	Gly	Leu	Ser	ī.vs	Asn	Thr	Ser	Asn	Ser	Asn	Glv	His	ጥህም

	Glu 65	Thr	Ala	Val	Glu	Pro 70	Lys	Phe	Asn	Ser	Ser 75	Gly	Thr	His	Phe	Ser 80
5	Aşn	Leu	Ser	Lys.	Thr 85	Thr	Phe	His	Суз	90 Cys	Phe	Arg	Ser	Glu	Gln 95	Asp
	Arg	Asn	Cys	Ser 100	Leu	Суз	Ala	Asp	Asn 105	Ile	Glu	Gly	Lys	Thr 110	Phe	Val
10 	Ser	Thr	Val 115	Asn	Ser	Leu	Val	Phe 120	Gln	Gln	Ile	Asp	Ala 125	Asn	īrp	Asn
15	Ile	Gln 130	Cys	Trp	Leu	Lys	Gly 135	Asp	Leu	Lys	Leu	Phe 140	Ile	Cys	Tyr	Val
	Glu 145	Ser	Leu	Phe	Lys	Asn 150	Leu	Phe	Arg	Asn	Tyr 155	Asn	Tyr	Lys	Val	His 160
20	Leu	Leu	Tyr	Val	Leu 165	Pro	Glu	Val	Leu	Glu 170	Asp	Ser	Pro	Leu	Val 175	Pro
	Gln	Lys	Gly	Ser 180	Phe	Gln	Met	Val	His 185	Суз	Asn	Cys	Ser	Val 190	His	Glu
25	Cys	Суз	Glu 195		Leu	Val	Pro	Val 200		Thr	Ala	Lys	Leu 205	Asn	Asp	Thr
30	Leu	Leu 210		Cys	Leu	Lys	Ile 215		Ser	Gly	Gly	Val 220	Ile	Phe	Gln	Ser
	Pro 225		Met	Ser	Val	Gln 230		Ile	Asn	Met	Val 235	Lys	Pro	Asp	Pro	Pro 240
35	Leu	Gly	Leu	His	Met 245		İle	Thr	Asp	250	Gly	Asn	Leu	Lys	11e 255	Ser
40	Trp	Ser	Ser	Pro 260		Leu	Val	Pro	Phe 265		Leu	Gln	Tyr	Gln 270	Val	Lys
40	Tyr	Ser	Glu 275		Ser	Thr	Thr	Val 280		e Arg	Glu	Ala	Asp 285	Lys	Ile	Val
45	Sei	290		Ser	Leu	Let	val 295		Ser	: Ile	e Leu	300	Gl _y	, Ser	Ser	Tyr
	Gl:		L Glr	ı Val	L Arg	310		s Arq	j Let	ı Asp	Gly 315		Gly	/ Ile	e Trp	320
50	Ası	Tr	o Sea	Th:	2 Pro		y Vai	l Phe	€ Th	7 Th:		a Asp	va:	L Íle	335	Phe

- 115 -

	Pro	o Pro	Lys	340	Leu	Thr	Ser	Val	1 G1 ₃	y Ser 5	: Asr	ı Val	l Ser	350		з Су
5	Ile	Э Туг	355	Lys	Glu	Asn	Lys	360	e Val	l Pro	Ser	Lys	365		≥ Val	Tr
	Tr	370	. Asn	Leu	Ala	Glu	Lys 375	Ile	Pro	Gln	Ser	Gln 380		Asp	Va]	. Va
10	Ser 385	Asp	His	Val	Ser	Lys 390	Val	Thr	Phe	Phe	Asn 395		Asn	Glu	Thr	Lys 400
15	Pro	Arg	Gly	Lys	Phe 405	Thr	Tyr	Asp	Ala	Val 410	Tyr	Суз	Суз	Asn	Glu 415	
	Glu	Суз	His	His 420	Arg	Tyr	Ala	Glu	Leu 425	.Tyr	Val	Ile	Asp	Val 430		Ile
20	Asn	Ile	Ser 435	Cys	Glu	Thr	Asp	Gly 440	Tyr	Leu	Thr	Lys	Met 445	Thr	Cys	Arg
	Trp	Ser 450	Thr	Ser	Thr	Ile	Gln 455	Ser	Leu	Ala	Glu	Ser 460	Thr	Leu	Gln	Leu
25	Arg 465	Tyr	His	Arg	Ser	Ser 470	Leu	Tyr	Cys	Ser	Asp 475	Ile	Pro	Ser	Ile	His 480
30	Pro	Ile	Ser	Glu	Pro 485	Lуз	Asp	Cys	Tyr	Leu 490	Gln	Ser	Asp	Gly	Phe 495	Tyr
	Glu	Суз	Ile	Phe 500	Gln	Pro	Ile	Phe	Leu 505	Leu	Ser	Gly	Tyr	Thr 510	Met	Trp
35	Ile	Arg	Ile 515	Asn	His	Ser	Leu	Gly 520	Ser	Leu	Asp	Ser	Pro 525	Pro	Thr	Cys
	Val	Leu 530	Pro	Asp	Ser	Val	Val 535	Lys	Pro	Leu	Pro	Pro 540	Ser	Ser	Val	Lys
40	Ala 545	Glu	Ile	Thr	Ile	Asn 550	Ile	Gly	Leu		Lys 555	Ile	Ser	Trp	Glu	Lys 560
45	Pro	Val	Phe	Pro	Glu 565	Asn	Asn	Leu	Gln	Phe 570	Gln	Ile	Arg	Tyr	Gly 575	Leu
	Ser	Gly	Lys	Glu 580	Val·	Gln	Trp	Lys	Met 585	Tyr	Glu	Val		Asp 590	Ala	Lys
50	Ser	Lys	Ser 595	Val	Ser	Leu :	Pro	Val 600	Pro	Asp	Leu		Ala 605	Val	Tyr	Ala
	Val	Gln 610	Val.	Arg	Cys	Lys .	Arg 615	Leu	Asp	Ġly	Leu	Gly 620	Tyr	Trp	Ser	Asn

	Trp 625	Ser	Asn	Pro	Ala	Tyr 630	Thr	Val	Val	Met	Asp 635	Ile	Lys	Val	Pro	Met 640
5	Arg	Gly	Pro	Glu-	Phe 645	Trp	Arg	Ile	Ile	Asn 650	Gly	qeA	Thr	Met	Lys 655	Lys
	Glu	Lys	Asn	Val 660	Thr	Leu	Leu	Trp	Lys 665	Pro	Leu	Met	Lys	Asn 670	Asp	Ser
10	Leu	Cys	Ser 675	Val	Gln	Arg	Tyr	Val 680	Ile	Asn	His	His	Thr 685	Ser	Суз	Asn
15	Gly	Thr 690	Trp	Ser	Glu	Asp	Val 695	Gly	Asn	His	Thr	Lys 700	Phe	Thr	Phe	Leu
	Trp 705	Thr	Glu	Gln	Ala	His 710	Thr	Val	Thr	Val	Leu 715	Ala	Ile	Asn	Ser	Ile 720
20	Gly	Ala	Ser	Val	Ala 725	Asn	Phe	Asn	Leu	Thr 730	Phe	Ser	Trp	Pro	Met 735	Ser
25	Lys	Val	Asn	Ile 740	Val	Gln	Ser	Leu	Ser 745	Ala	Tyr	Pro	Leu	Asn 750	Ser	Ser
25	Cys	Val	Ile 755	Val	Ser	Trp	Ile	Leu 760	Ser	Pro	Ser	Asp	Tyr 765	Lys	Leú	Met
30	Tyr	Phe 770		Ile	Glu	Trp	Lys 775	Asn	Leu	Asn	Glu	Asp 780	Gly	Glu	Ile	Lys
	Trp 785		Arg	Ile	Ser	Ser 790	Ser	Val	Lys	Lys	Tyr 795	Tyr	Ile	His	Asp	His 800
3 5	Phe	Ile	Pro	Ile	Glu 805		Tyr	Gln	Phe	Ser 810		Tyr	Pro	Ile	Phe 815	Met
	Glu	Gly	Val	Gly 820		Pro	Lys	Ile	Ile 825		Ser	Phe	Thr	Gln 830	Asp	Asp
40	Ile	Glu	Lys 835		Gln	Ser	Asp	Ala 840		Leu	Tyr	Val	11e 845		Pro	Val
45	Ile	11e		: Ser	: Ser	Ile	Leu 855		Leu	Gly	Thr	Leu 860	Leu	Ile	Ser	His
	Glr 865		Met	Lys	Lys	E Leu		Trp	Glu	Asp	Val 875		Asn	Pro	Lys	Asn 880
50	Cys	s Sei	Trp	Ala	Glr 885		, Leu	Asr	Phe	Glr 890		Pro	Glu	Thr	Phe 895	Glu

- 117 -

	His	Leu	Phe	Ile 900	Lys	His	Thr	Ala	Ser 905	Val	Thr	Суз	Gly	Pro 910	Leu	Leu
5	Leu	Glu	Pro 915	Glu	Thr	Ile	Ser	Glu 920	Asp	Ile	Ser	Val	Asp 925	Thr	Ser	Trp
	Lys	Asn 930	Lys	Asp	Glu	Mét	Met 935	Pro	Thr	Thr	Val	Val 940	Ser	Leu	Leu	Ser
10	Thr 945	Thr	Asp	Leu	Glu	Lys 950	Gly	Ser	Val	Суз	Ile 955	Ser	Asp	Gln	Phe	Asn 960
15	Ser	Val	Asn	Phe	Ser 965	Glu	Ala	Glu	Gly	Thr 970	Glu	Val	Thr	Tyr	Glu 975	Asp
	Glu	Ser	Gln	Arg 980	Gln	Pro	Phe	Val	Lys 985	Tyr	Ala	Thr	Leu	11e 990	Ser	Asn
20	Ser	Lys	Pro 995	Ser	Glu	Thr	GlŸ	Glu 1000		Gln	Gly	Leu	Ile 1005		Ser	Ser
	Val	Thr 1010		Cys	Phe	Ser	Ser 1015		Asn	Ser	Pro	Leu 1020		Asp	Ser	Phe
25	Ser 102		Ser	Ser	Trp	Glu 1030		Glu	Ala	Gln	Ala 1035		Phe	Ile	Leu	Ser 1040
30	Asp	Gln	His	Pro	Asn 1045		Ile	Ser	Pro	His 1050		Thr	Phe	Ser	Glu 1055	_
J.0																
3 0	Leu	Asp	Glu	Leu 1060		Lys	Leu	Glu	Gly 1065		Phe	Pro	Glu	Glu 1070	Asn)	Asn
35			٠	1060 Ser)				1065	5				1070		
	Asp	Lys	Lys 1075 Gly	1060 Ser) Ile	Tyr	Tyr	Leu 1080	1065 Gly	Val	Thr	Ser	Ile 1085 Ser	1070 Lys)	Arg
	Asp	Lys Ser 1090	Lys 1075 Gly	Ser Val	Ile Leu	Tyr	Tyr Thr 1099	Leu 1080 Asp	Lys	Val Ser	Thr	Ser Val 1100	Ile 1085 Ser	Lys Cys	Lys Pro	Arg
35	Asp Glu Pro	Ser 1090 Ala	Lys 1075 Gly Pro	Ser Val Cys	Ile Leu Leu	Tyr Leu Phe 1110	Tyr Thr 1099	Leu 1080 Asp	Gly Cly Lys	Val Ser Arg	Thr Arg Val 1111	Val 1100 Leu	Ile 1085 Ser)	Lys Cys	Lys Pro	Arg Phe Cys 1120 Lys
35	Asp Glu Pro 110	Ser 1090 Ala His	Lys 1075 Gly Pro	Ser Val Cys	Leu Leu Glu 112:	Tyr Leu Phe 1110 Asn	Thr 1099 Thr O	Leu 1080 Asp Asp	Gly Lys Ile	Val Ser Arg Leu 1130	Thr Arg Val 1111	Val 1100 Leu Thr	Ile 1085 Ser Oln Ser	Lys Cys Asp	Lys Pro Ser Lys 113:	Arg Phe Cys 1120 Lys
35	Asp Glu Pro 110 Ser	Ser 1090 Ala 5 His	Lys 1075 Gly Pro Phe	Val Cys Val Ser 1140	Leu Leu Glu 112:	Tyr Leu Phe 1110 Asn 6	Thr 1099 Thr O Asn	Leu 1080 Asp Asp Ile	Gly Lys Ile Asn Phe 114:	Val Ser Arg Leu 1130	Thr Arg Val 1111	Val 1100 Leu Thr	Ile 1085 Ser Oln Ser	Lys Cys Asp Ser Thr 1150	Lys Pro Ser Lys 113:	Arg Phe Cys 1120 Lys

50

- 118 -

•	Leu Trp Val Gly Glu Arg Lys Glu Thr Arg Val Lys Phe Glu Asn Asn 1185 1190 1195 1200	
5	Cys Ser Lys Lys Lys Lys Lys Asn Ser Arg Pro Ala Arg Pro Asp 1205 1210 1215	
10	(2) INFORMATION FOR SEQ ID NO:8:	
 15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3599 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
· •	(ii) MOLECULE TYPE: cDNA	
20		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:	
25	GCGGCCGCCA GTGTGATGGA TATCTGCAGA ATTCGGCTTT CTCTGCCTTC GGTCGAGTTG	60
20	GACCCCCGGA TCAAGGTGTA CTTCTCTGAA GTAAGATGAT TTGTCAAAAA TTCTGTGTGG	120
	TTTTGTTACA TTGGGAATTT ATTTATGTGA TAACTGCGTT TAACTTGTCA TATCCAATTA	180
30	CTCCTTGGAG ATTTAAGTTG TCTTGCATGC CACCAAATTC AACCTATGAC TACTTCCTTT	240
	TGCCTGCTGG GCTCTCAAAG AATACTTCAA ATTCGAATGG ACATTATGAG ACAGCTGTTG	300
35	AACCTAAGTT TAATTCAAGT GGTACTCACT TTTCTAACTT ATCCAAAACA ACTTTCCACT	360
ķ.	GTTGCTTTCG GAGTGAGCAA GATAGAAACT GCTCCTTATG TGCAGACAAC ATTGAAGGAA	420
, ,-	AGACATTTGT TTCAACAGTA AATTCTTTAG TTTTTCAACA AATAGATGCA AACTGGAACA	480
40	TACAGTGCTG GCTAAAAGGA GACTTAAAAT TATTCATCTG TTATGTGGAG TCATTATTTA	540
	AGAATCTATT CAGGAATTAT AACTATAAGG TCCATCTTTT ATATGTTCTG CCTGAAGTGT	600
45	TAGAAGATTC ACCTCTGGTT CCCCAAAAAG GCAGTTTTCA GATGGTTCAC TGCAATTGCA	660
••	GTGTTCACGA ATGTTGTGAA TGTCTTGTGC CTGTGCCAAC AGCCAAACTC AACGACACTC	72
	TCCTTATGTG TTTGAAAATC ACATCTGGTG GAGTAATTTT CCAGTCACCT CTAATGTCAG	780

TTCAGCCCAT AAATATGGTG AAGCCTGATC CACCATTAGG TTTGCATATG GAAATCACAG

ATGATGGTAA TTTAAAGATT TCTTGGTCCA GCCCACCATT GGTACCATTT CCACTTCAAT

WO 97/25424 PCT/US97/00128

- 119 -

	ATCAAGTGAA	ATATTCAGAG	AATTCTACAA	CAGTTATCAG	AGAAGCTGAC	AAGATTGTCT	960
	CAGCTACATC	CCTGCTAGTA	GACAGTATAC	TTCCTGGGTC	TTCGTATGAG	GTTCAGGTGA	1020
5	GGGGCAAGAG	ACTGGATGGC	CCAGGAATCT	GGAGTGACTG	GAGTACTCCT	CGTGTCTTTA	1080
	CCACACAAGA	TGTCATATAC	TTTCCACCTA	AAATTCTGAC	AAGTGTTGGG	TCTAATGTTT	1140
10	CTTTTCACTG	CATCTATAAG	AAGGAAAACA	AGATTGTTCC	CTCAAAAGAG	ATTGTTTGGT	1200
10	GGATGAATTT	AGCTGAGAAA	ATTCCTCAAA	GCCAGTATGA	TGTTGTGAGT	GATCATGTTA	1260
	GCAAAGTTAC	TTTTTTCAAT	CTGAATGAAA	CCAAACCTCG	AGGAAAGTTT	ACCTATGATG	1320
15	CAGTGTACTG	CTGCAATGAA	CATGAATGCC	ATCATCGCTA	TGCTGAATTA	TATGTGATTG	1380
	ATGTCAATAT	CAATATCTCA	TGTGAAACTG	ATGGGTACTT	AACTAAAATG	ACTTGCAGAT	1440
20	GGTCAACCAG	TACAATCCAG	TCACTTGCGG	AAAGCACTTT	GCAATTGAGG	TATCATAGGA	1500
20	GCAGCCTTTA	CTGTTCTGAT	ATTCCATCTA	TTCATCCCAT	ATCTGAGCCC	AAAGATTGCT	1560
	ATTTGCAGAG	TGATGGTTTT	TATGAATGCA	TTTTCCAGCC	AATCTTCCTA	TTATCTGGCT	1620
25	ACACAATGTG	GATTAGGATC	AATCACTCTC	TAGGTTCACT	TGACTCTCCA	CCAACATGTG	1680
	TCCTTCCTGA	TTCTGTGGTG	AAGCCACTGC	CTCCATCCAG	TGTGAAAGCA	GAAATTACTA	1740
30	TAAACATTGG	ATTATTGAAA	ATATCTTGGG	AAAAGCCAGT	CTTTCCAGAG	AATAACCTTC	1800
	AATTCCAGAT	TCGCTATGGT	TTAAGTGGAA	AAGAAGTACA	ATGGAAGATG	TATGAGGTTT	1860
	ATGATGCAAA	ATCAAAATCT	GTCAGTCTCC	CAGTTCCAGA	CTTGTGTGCA	GTCTATGCTG	1920
35	TTCAGGTGCG	CTGTAAGAGG	CTAGATGGAC	TGGGATATTG	GAGTAATTGG	AGCAATCCAG	1980
	CCTACACAGT	TGTCATGGAT	ATAAAAGTTC	CTATGAGAGG	ACCTGAATTT	TGGAGAATAA	2040
40	TTAATGGAGA	TACTATGAAA	AAGGAGAAAA	ATGTCACTTT	ACTTTGGAAG	CCCCTGATGA	2100
- •	AAAATGACTC	ATTGTGCAGT	GTTCAGAGAT	ATGTGATAAA	CCATCATACT	TCCTGCAATG	2160
	GAACATGGTC	AGAAGATGTG	GGAAATCACA	CGAAATTCAC	TTTCCTGTGG	ACAGAGCAAG	2220
45	CACATACTGT	TACGGTTCTG	GCCATCAATT	CAATTGGTGC	TTCTGTTGCA	AATTTTAATT	. 2280
	TAACCTTTTC	ATGGCCTATG	AGCAAAGTAA	ATATCGTGCA	GTCACTCAGT	GCTTATCCTT	2340
50	TAAACAGCAG	TTGTGTGATT	GTTTCCTGGA	TACTATCACC	CAGTGATTAC	AAGCTAATGT	2400
50	ATTTTATTAT	TGAGTGGAAA	AATCTTAATĢ	AAGATGGTGA	AATAAAATGG	CTTAGAATCT	2460
	CTTCATCTGT	TAAGAAGTAT	TATATCCATG	ATCATTTTAT	CCCCATTGAG	AAGTACCAGT	2520

	TCAGTCTTTA	CCCAATATTT	ATGGAAGGAG	TGGGAAAACC	AAAGATAATT	AATAGTTTCA	2580
	CTCAAGATGA	TATTGAAAAA	CACCAGAGTG	ATGCAGGTTT	ATATGTAATT	GTGCCAGTAA	2640
5	TTATTTCCTC	TTCCATCTTA	TTGCTTGGAA	CATTATTAAT	ATCACACCAA	AGAATGAAAA	2700
	AGCTATTTTG	GGAAGATGTT	CCGAACCCCA	AGAATTGTTC	CTGGGCACAA	GGACTTAATT	2760
10	TTCAGAAGCC	AGAAACGTTT	GAGCATCTTT	TTATCAAGCA	TACAGCATCA	GTGACATGTG	2820
	GTCCTCTTCT	TTTGGAGCCT	GAAACAATTT	CAGAAGATAT	CAGTGTTGAT	ACATCATGGA	2880
1 =	AAAATAAAGA	TGAGATGATG	CCAACAACTG	TGGTCTCTCT	ACTTTCAACA	ACAGATCTTG	2940
15	AAAAGGGTTC	TGTTTGTATT	AGTGACCAGT	TCAACAGTGT	TAACTTCTCT	GAGGCTGAGG	3000
•	GTACTGAGGT	AACCTATGAG	GACGAAAGCC	AGAGACAACC	CTTTGTTAAA	TACGCCACGC	3060
20	TGATCAGCAA	CTCTAAACCA	AGTGAAACTG	GTGAAGAACA	AGGGCTTATA	AATAGTTCAG	3120
	TCACCAAGTG	CTTCTCTAGC	AAAAATTCTC	CGTTGAAGGA	TTCTTTCTCT	AATAGCTCAT	3180
25	GGGAGATAGA	GGCCCAGGCA	TTTTTTTATAT	TATCGGATCA	GCATCCCAAC	ATAATTTCAC	3240
25	CACACCTCAC	ATTCTCAGAA	GGATTGGATG	AACTTTTGAA	ATTGGAGGGA	AATTTCCCTG	. 3300
	AAGAAAATAA	TGATAAAAAG	TCTATCTATT	ATTTAGGGGT	CACCTCAATC	AAAAAGAGAG	3360
30	AGAGTGGTGT	GCTTTTGACT	GACAAGTCAA	GGGTATCGTG	CCCATTCCCA	GCCCCTGTT	3420
	TATTCACGGA	CATCAGAGTT	CTCCAGGACA	GTTGCTCACA	CTTTGTAGAA	AATAATATCA	3480
35	ACTTAGGAAC	TTCTAGTAAG	AAGACTTTTG	CATCTTACAT	GCCTCAATTC	CAAACTTGTT	3540
33	CTACTCAGAC	TCATAAGATC	ATGGAAAACA	AGATGTGTGA	CCTAACTGTG	TAATCTAGA	3599

(2) INFORMATION FOR SEQ ID NO:9:

40 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 17 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

WO 97/25424 PCT/US97/00128

17

- 121 -

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

	NNNNTACCT TTTCCAG																
5	(2)	INFO	RMAT	ION :	FOR :	SE <u>Q</u>	ID N	0:10	:								
10		(i)	(A (B (C) LE) TY) ST	E CHANGTH PE: 6 RANDI POLO	: 83 amin EDNE:	9 am. o ac. SS:	ino i id sing	acid	S							
		(ii)	MOL	ECUL	E TY	PE:]	prot	ein									
15																	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:																
20		Met 1	Ile	Cys	Gln	Lys 5	Phe	Cys	Val	Val	Leu 10	Leu	His	Trp	Glu	Phe 15	Ile
25	•	Tyr	Val	Ile	Thr 20	Ala	Phe	Asn	Leu	Ser 25	Tyr	Pro	Ile	Thr	Pro 30	Trp	Arg
23		Phe	Lys	Leu 35	Ser	Cys	Met	Pro	Pro 40	Asn	Ser	Thr	Tyr	Asp 45	Tyr	Phe	Leu
30		Leu	Pro 50	Ala	Gly	Leu	Ser	Lys 55	Asn	Thr	Ser	Asn	Ser 60	Asn	Gly	His	Tyr
		Glu 65	Thr	Ala	Val	Glu	Pro 70	Lys	Phe	Asn	Ser	Ser 75	Gly	Thr	His	Phe	Ser 80
35		Asn	Leu	Ser	Lys	Thr 85	Thr	Phe	His	Cys	Cys 90	Phe	Arg	Ser		Gln 95	Asp
40		Arg	Asn	Cys	Ser 100	Leu	Cys	Ala	Asp	Asn 105	Ile	Glu	Gly	Lys	Thr 110	Phe	Val
40		Ser	Thr	Val 115	Asn	Ser	Leu	Val	Phe 120	Gln	Gln	Ile	Asp	Ala 125	Asn	Trp	Asn
45		Ile	Gln 130	Cys	Trp	Leu	Lys	Gly 135	Asp	Leu	Lys		Phe 140	Ile	Cys	Tyr	Val
		Glu 145	Ser	Leu	Phe	Lys	Asn 150	Leu	Phe	Arg	Asn	Tyr 155	Asn	Tyr	Lys	Val	His 160

Leu Leu Tyr Val Leu Pro Glu Val Leu Glu Asp Ser Pro Leu Val Pro

170 175

165

	Gln	Lys	Gly	Ser 180	Phe	Gln	Met	Val	His 185	Суз	Asn	Cys	Ser	Val 190	His	Glu
5	Суз	Суз	Glu 195	Cys	Leu '	Val	Pro	Val 200	Pro	Thr	Ala	Lys	Leu 205	Asn	Asp	Thr
		210					215					220		Phe		
10	225					230		٠			235			Asp		240
15					245					250				Lys	255	
				260					265					Gln 270		-
20	_		275					280					285	Lys		
		290					295					300		Ser		
25	305					310					315			Ile		320
30					325					330				Ile	335	
				340					345					9he 350		
35			355	•				360)				365			Trp
		370)				375	i				380)		•	Val
40	385	5				390)				395					400
45					405	5				410)				415	
				420)				42	5				430)	lle
50			435	5				44	0				44	5		a Arg
	Tr	p Se 45		r Se	r Th	r Il	e Gl:		r Le	u Al	a Gl	3 Se:	r Th	r Leu	ı Glı	l Leu

	Arg 465	Tyr	His	Arg	Ser	Ser 470	Leu	Tyr	Суз	Ser	Asp 475	Ile	Pro	Ser	Ile	His 480
5	Pro	Ile	Ser	Glu	Pro 485	Lys	Asp	Суз	Tyr	Leu 490	Gln	Ser	qeA	Gly	Phe 495	Tyr
10	Glu	Суз	Ile	Phe 500	Gln	Pro	Ile	Phe	Leu 505	Leu	Ser	Gly	Tyr	Thr 510	Met	Trp
	Ile	Arg	Ile 515	Asn	His	Ser	Leu	Gly 520	Ser	Leu	Asp	Ser	Pro 525	Pro	Thr	Суз
15	Val	Leu 530	Pro	Asp	Ser	Val	Val 535	Lys	Pro	Leu	Pro	Pro 540	Ser	Ser	Val	Lys
	Ala 545	Glu	Ile	Thr	Ile	Asn 550	Ile	Gly	Leu	Leu	Lys 555	Ile	Ser	Trp	Glu	Lys 560
20	Pro	Val	Phe	Pro	Glu 565	Asn	Asn	Leu	Gln	Phe 570	Gln	Ile	Arg	Tyr	Gly 575	Leu
25	Ser	Gly	Lys	Glu 580	Val	Gln	Trp	Lys	Met 585	Tyr	Glu	Val	Tyr	Asp 590	Ala	Lys
20	Ser	Lys	Ser 595	Val	Ser	Leu	Pro	Vai 600	Pro	Asp	Leu	Суз	Ala 605	Val	Tyr	Ala
30	Val	Gln 610	Val	Arg	Cys	Lys	Arg 615	Leu	Asp	Gly	Leu	Gly 620	Tyr	Trp	Ser	Asn
,	Trp 625		Asn	Pro	Ala	Tyr 630	Thr	Val	Val	Met	Asp 635	Ile	Lys	Val	Pro	Met 640
35	Arg	Gly	Pro	Glu	Phe 645	Trp	Arg	Ile	Ile	Asn 650	Gly	Asp	Thr	Met	Lys 655	Lys
40	Glu	Lys	Asn	Val 660		Leu	Leu	Trp	Lys 665		Leu	Met	Lys	Asn 670	Asp	Ser
40	Leu	Cys	Ser 675		Gln	Arg	Tyr	Val 680		Asn	His	His	Thr 685	Ser	Суз	Asn
45	Gly	Thr 690		Ser	Glu	Asp	Val 695		Asn	His	Thr	Lys 700		Thr	Phe	Leu
	Trp 705		Glu	Gln	Ala	His 710		Val	Thr	• Val	Leu 715		Ile	Asn	Ser	Ile 720
50	Gly	Ala	Ser	. Val	. Ala	Asn	Phe	Asn	Leu	730		Ser	Trp	Pro	Met 735	

- 124 -

	Lys	Val	Asn	Ile 740	Val	Gln	Ser	Leu	Ser 745	Ala	Tyr	Pro	Leu	Asn 750	Ser	Ser	
5	Cys	Val	Ile 755	Val	Ser	Trp	Ile	Leu 760	Ser	Pro	Ser	Asp	Tyr 765	Lys	Leu	Met	
	туг	Phe 770	Ile	Ile	Glu	Trp	Lys 775	Asn	Leu	Asn	Glu	Asp 780	Gly	Glu	Ile	Lys	
10	Trp 785	Leu	Arg	Ile	Ser	Ser 790	Ser	Val	Lys	Lys	Tyr 795	Tyr	Ile	His	Asp	His 800	٠
ne sek	Phe	Ile	Pro	Ile	Glu 805	Lys	Tyr	Gln		Ser 810	Leu	Tyr	Pro	Ile	Phe 815	Met	
15	Glu	Gly	Val	Gly 820		Pro	Lys	Ile	Ile 825	Asn	Ser	Phe	Thr	Gln 830	Asp	Asp	
20	Ile	Glu	Lys 835	His	Gln	Ser	Asp										
	(2) INFO	RMAT	ION	FOR :	SEQ	ID N	0:11	:									
25	(i)	(B	LE TY S) TY	E CH NGTH PE: RAND	: 26 nucl EDNE	24 b eic SS:	ase acid sing	pair	s					·	. •		
30	(ii)	MOI	ECUL	E TY	PE:	cDNA											
_, 35	(xi)) SEQ	UENC	E DE	SCRI	PTIC	N: S	EQ I	D NC	:11:	:						
. ••g	GCGGCCG	CCA C	STGTC	ATGG	A T	TCTC	CAG	ATI	cGGC	TTT	CTCT	GCC1	TC C	GTC	SAGTI	rG	60
	GACCCCC	GGA I	CAAC	GTGT	A CI	TCTC	TGA	A GTA	AGAT	GAT	TTGT	CAA	AAA 3	TCTC	STGT	€G .	120
40	TTTTGTT	ACA :	rtgg	BAATI	T A	TTAT	rgtg!	A TAI	CTG	CGTT	TAAC	CTTG:	CA :	CATC	CAAT	ra	180
	CTCCTTG	GAG A	ATTT	AAGTI	G T	CTTGO	CATGO	CAC	CAA	ATTC	AAC	CTAT	GAC :	ract:	rcct:	ГT	240
45	TGCCTGC	TGG (GCTC:	rcaa <i>i</i>	AG A	ATAC	TCA	A ATT	rcgai	ATGG	ACA!	TAT	GAG A	ACAG	CTGT:	rg	300
	AACCTAA	GTT '	TAAT	rcaac	ST G	GTAC:	rcac'	r TT	CTA	ACTT	ATC	CAAA	ACA A	ACTT	rcca	CT	360
	GTTGCTT	TCG	GAGT	GAGC!	AA G	ATAG	AAAC'	T GC	rcct'	TATG	TGC	AGAC.	AAC .	ATTG.	AAGG:	AA	420
50	AGACATT	TGT	TTCA	ACAG:	TA A	ATTC'	TTTA	G TT	TTTC.	AAĊA	AAT.	AGAT	GCA .	AACT	GGAA	CA	480
	TACAGTO	CTG	GCTA	AAAG	GA G	ACTT.	AAAA	T TA	TTCÁ	TCTG	TTA	TGTG	GAG	TCAT	TATT	TA	540

	AGAATCTAT	T CAGGAATTA	T AACTATAAG	G TCCATCTTT	r atatgttct	G CCTGAAGTGT	60
5	TAGAAGATT	C ACCTCTGGT	r ccccaaaaa	G GCAGTTTTC	A GATGGTTCA	C TGCAATTGCA	66
	GTGTTCACG	A ATGTTGTGA	A TGTCTTGTG	C CTGTGCCAAC	AGCCAAACT	C AACGACACTC	72
	TCCTTATGT	G TTTGAAAAT(C ACATCTGGT	G GAGTAATTT	CCAGTCACC	CTAATGTCAG	78
10	TTCAGCCCA	r AAATATGGTO	AAGCCTGAT	CACCATTAGO	TTTGCATATO	GAAATCACAG	84
	ATGATGGTA	A TTTAAAGATT	TCTTGGTCC	A GCCCACCATT	GGTACCATT	CCACTTCAAT	90
15	ATCAAGTGAA	ATATTCAGAG	AATTCTACA!	A CAGTTATCAG	AGAAGCTGAC	AAGATTGTCT	96
	CAGCTACATO	CCTGCTAGTA	GACAGTATAC	TTCCTGGGTC	TTCGTATGAG	GTTCAGGTGA	1020
	GGGGCAAGAG	ACTGGATGGC	CCAGGAATCT	GGAGTGACTG	GAGTACTCCT	CGTGTCTTTA	1080
20	CCACACAAGA	TGTCATATAC	TTTCCACCTA	AAATTCTGAC	AAGTGTTGGG	TCTAATGTTT	1140
	CTTTTCACTG	CATCTATAAG	AAGGAAAACA	AGATTGTTCC	CTCAAAAGAG	ATTGTTTGGT	1200
25	GGATGAATTT	AGCTGAGAAA	ATTCCTCAAA	GCCAGTATGA	TGTTGTGAGT	GATCATGTTA	1260
	GCAAAGTTAC	TTTTTTCAAT	CTGAATGAAA	CCAAACCTCG	AGGAAAGTTT	ACCTATGATG	1320
	CAGTGTACTG	CTGCAATGAA	CATGAATGCC	ATCATCGCTA	TGCTGAATTA	TATGTGATTG	1380
30	ATGTCAATAT	CAATATCTCA	TGTGAAACTG	ATGGGTACTT	AACTAAAATG	ACTTGCAGAT	1440
	GGTCAACCAG	TACAATCCAG	TCACTTGCGG	AAAGCACTTT	GCAATTGAGG	TATCATAGGA	1500
35	GCAGCCTTTA	CTGTTCTGAT	ATTCCATCTA	TTCATCCCAT	ATCTGAGCCC	AAAGATTGCT	1560
	ATTTGCAGAG	TGATGGTTTT	TATGAATGCA	TTTTCCAGCC	AATCTTCCTA	TTATCTGGCT	1620
	ACACAATGTG	GATTAGGATC	AATCACTCTC	TAGGTTCACT	TGACTCTCCA	CCAACATGTG	1680
40	TCCTTCCTGA	TTCTGTGGTG	AAGCCACTGC	CTCCATCCAG	TGTGAAAGCA	GAAATTACTA	1740
	TAAACATTGG	ATTATTGAAA	ATATCTTGGG	AAAAGCCAGT	CTTTCCAGAG	AATAACCTTC	1800
15	AATTCCAGAT	TCGCTATGGT	TTAAGTGGAA	AAGAAGTACA	ATGGAAGATG	TATGAGGTTT	1860
	ATGATGCAAA	ATCAAAATCT	GTCAGTCTCC	CAGTTCCAGA	CTTGTGTGCA	GTCTATGCTG	1920
	TTCAGGTGCG	CTGTAAGAGG	CTAGATGGAC	TGGGATATTG	GAGTAATTGG	AGCAATCCAG	1980
0	CCTACACAGT	TGTCATGGAT	ATAAAAGTTC	CTATGAGAGG	ACCTGAATTT	TGGAGAATAA	2040
	TTAATGGAGA	TACTATGAAA	AAGGAGAAAA	ATGTCACTTT	ACTTTGGAAG	CCCCTGATGA	2100

600

- 126 -

	AAAATGACTC ATTGTGCAGT GTTCAGAGAT ATGTGATAAA CCATCATACT TCCTGCAATG	2160
	GAACATGGTC AGAAGATGTG GGAAATCACA CGAAATTCAC TTTCCTGTGG ACAGAGCAAG	2220
5	CACATACTGT TACGGTTCTG GCCATCAATT CAATTGGTGC TTCTGTTGCA AATTTTAATT	2280
	TAACCTTTTC ATGGCCTATG AGCAAAGTAA ATATCGTGCA GTCACTCAGT GCTTATCCTT	2340
	TAAACAGCAG TTGTGTGATT GTTTCCTGGA TACTATCACC CAGTGATTAC AAGCTAATGT	2400
LO	ATTTTATTAT TGAGTGGAAA AATCTTAATG AAGATGGTGA AATAAAATGG CTTAGAATCT	2460
- 1	CTTCATCTGT TAAGAAGTAT TATATCCATG ATCATTTAT CCCCATTGAG AAGTACCAGT	2520
15	TCAGTCTTTA CCCAATATTT ATGGAAGGAG TGGGAAAACC AAAGATAATT AATAGTTTCA	2580
•	CTCAAGATGA TATTGAAAAA CACCAGAGTG ATTGATAAGG ATCC	2624
20	(2) INFORMATION FOR SEQ ID NO:12:	
- · ·	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2948 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
25	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
30		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:	
. -	CCATTGAAGT CAATGGGAGT TTGTTTTGGC ACCAAAATCA ACGGGGATTT CCAAAATGTC	60
35 ;;	GTAATAACCC CGCCCCGTTG ACGCAAATGG GCGGTAGGCG TGTACGGTGG GAGGTCTATA	120
	TAAGCAGAGC TCGTTTAGTG AACCGTCAGA TCTCTAGAAG CTGGGTACCA GCTGCTAGCA	180
40	AGCTTGCTAG CGGCCGCCAG TGTGATGGAT ATCTGCAGAA TTCGGCTTTC TCTGCCTTCG	240
	GTCGAGTTGG ACCCCCGGAT CAAGGTGTAC TTCTCTGAAG TAAGATGATT TGTCAAAAAT	300
4 E	TCTGTGTGGT TTTGTTACAT TGGGAATTTA TTTATGTGAT AACTGCGTTT AACTTGTCAT	360
45	ATCCAATTAC TCCTTGGAGA TTTAAGTTGT CTTGCATGCC ACCAAATTCA ACCTATGACT	420
	ACTTCCTTTT GCCTGGGG CTCTCAAAGA ATACTTCAAA TTCGAATGGA CATTATGAGA	480
50	CAGCTGTTGA ACCTAAGTTT AATTCAAGTG GTACTCACTT TTCTAACTTA TCCAAAACAA	540

CTTTCCACTG TTGCTTTCGG AGTGAGCAAG ATAGAAACTG CTCCTTATGT GCAGACAACA

- 127 -

	TTGAAGGAAA	GACATTTGTT	TCAACAGTAA	ATTCTTTAGT	TTTTCAACAA	ATAGATGCAA	660
	ACTGGAACAT	ACAGTGCTGG	CTAAAAGGAG	ACTTAAAATT	ATTCATCTGT	TATGTGGAGT	720
5	CATTATTTAA	GAATCTATTÇ	AGGAATTATA	ACTATAAGGT	CCATCTTTTA	TATGTTCTGC	780
	CTGAAGTGTT	AGAAGATTCA	CCTCTGGTTC	CCCAAAAAGG	CAGTTTTCAG	ATGGTTCACT	840
10	GCAATTGCAG	TGTTCACGAA	TGTTGTGAAT	GTCTTGTGCC	TGTGCCAACA	GCCAAACTCA	900
	ACGACACTCT	CCTTATGTGT	TTGAAAATCA	CATCTGGTGG	AGTAATTTTC	CAGTCACCTC	960
	TAATGTCAGT	TCAGCCCATA	AATATGGTGA	AGCCTGATCC	ACCATTAGGT	TTGCATATGG	1020
15	AAATCACAGA	TGATGGTAAT	TTAAAGATTT	CTTGGTCCAG	CCCACCATTG	GTACCATTTC	1080
	CACTTCAATA	TCAAGTGAAA	TATTCAGAGA	ATTCTACAAC	AGTTATCAGA	GAAGCTGACA	1140
20	AGATTGTCTC	AGCTACATCC	CTGCTAGTAG	ACAGTATACT	TCCTGGGTCT	TCGTATGAGG	1200
-0	TTCAGGTGAG	GGGCAAGAGA	CTGGATGGCC	CAGGAATCTG	GAGTGACTGG	AGTACTCCTC	1260
	GTGTCTTTAC	CACACAAGAT	GTCATATACT	TTCCACCTAA	AATTCTGACA	AGTGTTGGGT	1320
25	CTAATGTTTC	TTTTCACTGC	ATCTATAAGA	AGGAAAACAA	GATTGTTCCC	TCAAAAGAGA	1380
	TTGTTTGGTG	GATGAATTTA	GCTGAGAAAA	TTCCTCAAAG	CCAGTATGAT	GTTGTGAGTG	1440
30	ATCATGTTAG	CAAAGTTACT	TTTTTCAATC	TGAATGAAAC	CAAACCTCGA	GGAAAGTTTA	1500
	CCTATGATGC	AGTGTACTGC	TGCAATGAAC	ATGAATGCCA	TCATCGCTAT	GCTGAATTAT	1560
	ATGTGATTGA	TGTCAATATC	AATATCTCAT	GTGAAACTGA	TGGGTACTTA	ACTAAAATGA	1620
35	CTTGCAGATG	GTCAACCAGT	ACAATCCAGT	CACTTGCGGA	AAGCACTTTG	CAATTGAGGT	1680
	ATCATAGGAG	CAGCCTTTAC	TGTTCTGATA	TTCCATCTAT	TCATCCCATA	TCTGAGCCCA	1740
10	AAGATTGCTA	TTTGCAGAGT	GATGGTTTTT	ATGAATGCAT	TTTCCAGCCA	ATCTTCCTAT	1800
	TATCTGGCTA	CACAATGTGG	ATTAGGATCA	ATCACTCTCT	AGGTTCACTT	GACTCTCCAC	1860
	CAACATGTGT	CCTTCCTGAT	TCTGTGGTGA	AGCCACTGCC	TCCATCCAGT	GTGAAAGCAG	1920
45	AAATTACTAT	AAACATTGGA	TTATTGAAAA	TATCTTGGGA	AAAGCCAGTC	TTTCCAGAGA	1980
	ATAACCTTCA	ATTCCAGATT	CGCTATGGTT	TAAGTGGAAA	AGAAGTACAA	TGGAAGATGT	2040
50	ATGAGGTTTA	TGATGCAAAA	TCAAAATCTG	TCAGTCTCCC	AGTTCCAGAC	TTGTGTGCAG	2100
	TCTATGCTGT	TCAGGTGCGC	TGTAAGAGGC	TAGATGGACT	GGGATATTGG	AGTAATTGGA	2160
	GCAATCCAGC	CTACACAGTT	GTCATGGATA	TAAAAGTTCC	TATGAGAGGA	CCTGAATTTT	2220

	GGAGAATAAT TAATGGAGAT ACTATGAAAA AGGAGAAAAA TGTCACTTTA CTTTGGAAGC	2280
_	CCCTGATGAA AAATGACTCA TTGTGCAGTG TTCAGAGATA TGTGATAAAC CATCATACTT	2340
5	CCTGCAATGG AACATGGTCA GAAGATGTGG GAAATCACAC GAAATTCACT TTCCTGTGGA	2400
	CAGAGCAAGC ACATACTGTT ACGGTTCTGG CCATCAATTC AATTGGTGCT TCTGTTGCAA	2460
10	ATTTTAATTT AACCTTTTCA TGGCCTATGA GCAAAGTAAA TATCGTGCAG TCACTCAGTG	2520
	CTTATCCTTT AAACAGCAGT TGTGTGATTG TTTCCTGGAT ACTATCACCC AGTGATTACA	2580
	AGCTAATGTA TTTTATTATT GAGTGGAAAA ATCTTAATGA AGATGGTGAA ATAAAATGGC	2640
15	TTAGAATCTC TTCATCTGTT AAGAAGTATT ATATCCATGA TCATTTTATC CCCATTGAGA	2700
	AGTACCAGTT CAGTCTTTAC CCAATATTTA TGGAAGGAGT GGGAAAACCA AAGATAATTA	2760
20	ATAGTTTCAC TCAAGATGAT ATTGAAAAAC ACCAGAGTGA TGCAGGTGAC TACAAGGACG	2820
	ACGATGACAA GTAGGGATCC AGACATGATA AGATACATTG ATGAGTTTGG ACAACCCACA	2880
0.5	ACTAGAATGC AGTGAAAAAA ATGCTTTATT TGTGAAATTT GTGATGCTAT TGCTTTATTT	2940
25	GTAACCAT	2948
	(2) INFORMATION FOR SEQ ID NO:13:	
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 804 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
35	(ii) MOLECULE TYPE: protein	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:	
45	Met Ile Cys Gln Lys Phe Cys Val Val Leu Leu His Trp Glu Phe Ile 1 5 10 15	
30	Tyr Val Ile Thr Ala Phe Asn Leu Ser Tyr Pro Ile Thr Pro Trp Arg 20 25 30	
50	Phe Lys Leu Ser Cys Met Pro Pro Asn Ser Thr Tyr Asp Tyr Phe Leu 35 40 45	
	Leu Pro Ala Gly Leu Ser Lys Asn Thr Ser Asn Ser Asn Gly His Tyr 50 55 60	

	Glu 65	Thr	Ala	Val	Glu	Pro 70	Lys	Phe	Asn	Ser	Ser 75	Gly	Thr	His	Phe	Ser 80
5	Asn	Leu	Ser	Lys	Thr 85	Thr	Phe	His	Суз	Суз 90	Phe	Arg	Ser	Glu	Gln 95	Asp
10	Arg	Asn	Суз	Ser 100	Leu	Суз	Ala	Asp	Asn 105	Ile	Glu	Gly	Lys	Thr 110	Phe	Val
10	Ser	Thr	Val 115	Asn	Ser	Leu	Val	Phe 120	Gln	Gln	Ile	Asp	Ala 125	Asn	Trp	Asn
15	Ile	Gln 130	Cys	Trp	Leu	Lys	Gly 135	Asp	Leu	Lys	Leu	Phe 140	Ile	Суз	Tyr	Val
	Glu 145	Ser	Leu	Phe	Lys	Asn 150	Leu	Phe	Arg	Asn	Tyr 155	Asn	Tyr	Lys	Val	His 160
20	Leu	Leu	Tyr	Val.	Leu 165	Pro	Glu	Val	Leu	Glu 170	Asp	Ser	Pro	Leu	Val 175	Pro
25	Gln	Lys	Gly	Ser 180	Phe	Gln	Met	Val	His 185	Cys	Asn	Суз	Ser	Val 190	His	Glu
	Cys	Суз	Glu 195	Cys	Leu	Val	Pro	Val 200	Pro	Thr	Ala	Lys	Leu 205	Asn	Asp	Thr
30.	Leu	Leu 210	Met	Cys	Leu	Lys	Ile 215	Thr	Ser	Gly	Gly	Val 220	Ile	Phe	Gln	Ser
	Pro 225	Leu	Met	Ser	Val	Gln 230	Pro	Ile	Asn	Met	Val 235	Lys	Pro	Asp	Pro	Pro 240
35	Leu	Gly	Leu	His	Met 245	Glu	Ile	Thr	Asp	Asp 250	Gly	Asn	Leu	Lys	11e 255	Ser
40	Trp	Ser	Ser	Pro 260	Pro	Leu	Val	Pro	Phe 265		Leu	Gln	Tyr	Gln 270	Val	Lys
	Туг	Ser	Glu 275		Ser	Thr	Thr	Val 280	Ile	Arg	Glu	Ala	Asp 285	Lys	Ile	Val
45	Ser	Ala 290		Ser	Leu	Leu	Val 295		Ser	Ile	Leu	Pro 300		Ser	Ser	Tyr
	Glu 305		Gln	Val	Arg	Gly 310	_	Arg	Leu	Asp	Gly 315		Gly	Ile	Trp	Ser 320
50	Asp	Trp	Ser	Thr	Pro 325		Val	Phe	Thr	Thr 330		Asp	Val	Ile	Tyr 335	Phe

- 130 -

	Pro	Pro	Lys	Ile 340	Leu	Thr	Ser	Val	Gly 345	Ser	Asn	Val	Ser	Phe 350	His	Cys
5	Ile	Tyr	Lys 355	Lys _,	Glu	Asn	Lys	Ile 360	Val	Pro	Ser	Lys	Glu 365	Ile	Val	Trp
	Trp	Met 370	Asn	Leu	Ala	Glu	Lys 375	Iļe	Pro	Gln	Ser	Gln 380	Tyr	Asp	Val	Val
10	Ser 385	Asp	His	Val	Ser	Lys 390	Val	Thr	Phe	Phe	Asn 395	Leu	Asn	Glu	Thr	Lys 400
15	Pro	Arg	Gly	Lys	Phe 405	Thr	Tyr	Asp	Ala	Val 410	Tyr	Cys	Суз	Asn	Glu 415	His
	-	_		420					425					430	Asn	
20			435					440					445		Суз	
		450					455					460			Gln	
25	465	_				470					475				Ile	480
30					485					490					Phe 495	
				500					505					510	•	Trp
35			515					520			-		525			Суѕ
		530					535					540				Lys
40	545					550					555					Lys 560
45					565	•				570	•				575	
				580)				585	5				590	ı	Lys
50			595	i				600)				605	i		Ala
	Va]	610		. Arg	g Cys	Lys	615		ı Asp	Gly	, Lev	620		Trp	Ser	Asn

- 131 -

	Trp 625	Ser	Asn	Pro	Ala	Tyr 630	Thr	Val	Val	Met	Азр 635	Ile	ГÀЗ	Val	Pro	Met 640
5	Arg	Gly	Pro	Glu	Phe 645	Trp	Arg	Ile	Ile	Asn 650	Gly	Asp	Thr	Met	Lys 655	Lys
10	Glu	Lys	Asn	Val 660	Thr	Leu	Leu	Trp	Lys 6 65	Pro	Leu	Met	Lys	Asn 670	Asp	Ser
10	Lev	Cys	Ser 675	Val	Gln	Arg	Tyr	Val 680	Ile	Asn	His	His	Thr 685	Ser	Суз	Asn
15	Gly	Thr 690	Trp	Ser	Glu	Asp	Val 695	Gly	Asn	His	Thr	Lys 700	Phe	Thr	Phe	Leu
	Trp 705	Thr	Glu	Gln	Ala	His 710	Thr	Val	Thr	Val	Leu 715	Ala	Ile	Asn	Ser	Ile 720
20	Gl	Ala	Ser	Val	Ala 725	Asn	Phe	Asn	Leu	Thr 730	Phe	Ser	Trp	Pro	Met 735	Ser
25	Lys	. Val	Asn	Ile 740	Val	Gln	Ser	Leu	Ser 745	Ala	Tyr	Pro	Leu	Asn 750	Ser	Ser
25 .	Cys	. Val	Ile 755	Val	Ser	Trp	Ile	Leu 760	Ser	Pro	Ser	Asp	Tyr 765	Lys	Leu	Met
30	Туз	770		Ile	Glu	Trp	Lys 775	Asn	Leu	Asn	Glu	Asp 780	Gly	Glu	Ile	Lys
	Tr ₁	Leu 5	Arg	Ile	Ser	Ser 790	Ser	Val	Lys	Lys	Tyr 795	Tyr	Ile	His	Gly	Lys 800
35	Phe	e Thr	Ile	Leu												
	(2) INF	ORMAT	ION	FOR :	SEQ	ID N	0:14	:				-				
40	(i)	(B) LE) TY) ST	NGTH PE: : RAND	ARAC : 25 nucl EDNE GY:	07 b eic SS:	ase ; acid sing	pair	S							
45	(ii	MOL	ECUL	E TY	PE:	cdna										

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

GCGGCCGCCA GTGTGATGGA TATCTGCAGA ATTCGGCTTT CTCTGCCTTC GGTCGAGTTG 60 GACCCCGGA TCAAGGTGTA CTTCTCTGAA GTAAGATGAT TTGTCAAAAA TTCTGTGTGG 120 5 TTTTGTTACA TTGGGAATTT ATTTATGTGA TAACTGCGTT TAACTTGTCA TATCCAATTA 180 CTCCTTGGAG ATTTAAGTTG TCTTGCATGC CACCAAATTC AACCTATGAC TACTTCCTTT 240 10 TGCCTGCTGG GCTCTCAAAG AATACTTCAA ATTCGAATGG ACATTATGAG ACAGCTGTTG 300 AACCTAAGTT TAATTCAAGT GGTACTCACT TTTCTAACTT ATCCAAAACA ACTTTCCACT 360 GTTGCTTTCG GAGTGAGCAA GATAGAAACT GCTCCTTATG TGCAGACAAC ATTGAAGGAA 420 ₩15 AGACATTIGI TICAACAGTA AATTCTTTAG TITTTCAACA AATAGATGCA AACTGGAACA 480 TACAGTGCTG GCTAAAAGGA GACTTAAAAT TATTCATCTG TTATGTGGAG TCATTATTTA 540 20 AGAATCTATT CAGGAATTAT AACTATAAGG TCCATCTTTT ATATGTTCTG CCTGAAGTGT 600 TAGAAGATTC ACCTCTGGTT CCCCAAAAAG GCAGTTTTCA GATGGTTCAC TGCAATTGCA 660 GTGTTCACGA ATGTTGTGAA TGTCTTGTGC CTGTGCCAAC AGCCAAACTC AACGACACTC 720 25 TCCTTATGTG TTTGAAAATC ACATCTGGTG GAGTAATTTT CCAGTCACCT CTAATGTCAG 780 TTCAGCCCAT AAATATGGTG AAGCCTGATC CACCATTAGG TTTGCATATG GAAATCACAG 840 30 ATGATGGTAA TITAAAGATT TCTTGGTCCA GCCCACCATT GGTACCATTT CCACTTCAAT 900 960 ATCAAGTGAA ATATTCAGAG AATTCTACAA CAGTTATCAG AGAAGCTGAC AAGATTGTCT CAGCTACATC CCTGCTAGTA GACAGTATAC TTCCTGGGTC TTCGTATGAG GTTCAGGTGA 1020 35 GGGGCAAGAG ACTGGATGGC CCAGGAATCT GGAGTGACTG GAGTACTCCT CGTGTCTTTA 1080 CCACACAGA TGTCATATAC TTTCCACCTA AAATTCTGAC AAGTGTTGGG TCTAATGTTT 1140 40 CTTTTCACTG CATCTATAAG AAGGAAAACA AGATTGTTCC CTCAAAAGAG ATTGTTTGGT 1200 GGATGAATTT AGCTGAGAAA ATTCCTCAAA GCCAGTATGA TGTTGTGAGT GATCATGTTA 1260 GCAAAGTTAC TTTTTCAAT CTGAATGAAA CCAAACCTCG AGGAAAGTTT ACCTATGATG 45 1320 1380 CAGTGTACTG CTGCAATGAA CATGAATGCC ATCATCGCTA TGCTGAATTA TATGTGATTG ATGTCAATAT CAATATCTCA TGTGAAACTG ATGGGTACTT AACTAAAATG ACTTGCAGAT 1440 50 1500 GGTCAACCAG TACAATCCAG TCACTTGCGG AAAGCACTTT GCAATTGAGG TATCATAGGA GCAGCCTTTA CTGTTCTGAT ATTCCATCTA TTCATCCCAT ATCTGAGCCC AAAGATTGCT 1560

	ATTTGCAGAG	TGATGGTTTT	TATGAATGCA	TTTTCCAGCC	AATCTTCCTA	TTATCTGGCT	1620
_	ACACAATGTG	GATTAGGATC	AATCACTCTC	TAGGTTCACT	TGACTCTCCA	CCAACATGTG	1680
5	TCCTTCCTGA	TTCTGTGGTG	ÄAGCCACTGC	CTCCATCCAG	TGTGAAAGCA	GAAATTACTA	1740
	TAAACATTGG	ATTATTGAAA	ATATCTTGGG	AAAAGCCAGT	CTTTCCAGAG	AATAACCTTC	1800
10	AATTCCAGAT	TCGCTATGGT	TTAAGTGGAA	AAGAAGTACA	ATGGAAGATG	TATGAGGTTT	1860
	ATGATGCAAA	ATCAAAATCT	GTCAGTCTCC	CAGTTCCAGA	CTTGTGTGCA	GTCTATGCTG	1920
	TTCAGGTGCG	CTGTAAGAGG	CTAGATGGAC	TGGGATATTG	GAGTAATTGG	AGCAATCCAG	1980
15	CCTACACAGT	TGTCATGGAT	ATAAAAGTTC	CTATGAGAGG	ACCTGAATTT	TGGAGAATAA	2040
	TTAATGGAGA	TACTATGAAA	AAGGAGAAAA	ATGTCACTTT	ACTTTGGAAG	CCCCTGATGA	2100
20	AAAATGACTC	ATTGTGCAGT	GTTCAGAGAT	ATGTGATAAA	CCATCATACT	TCCTGCAATG	2160
	GAACATGGTC	agaagatgtg	GGAAATCACA	CGAAATTCAC	TTTCCTGTGG	ACAGAGCAAG	2220
~ F	CACATACTGT	TACGGTTCTG	GCCATCAATT	CAATTGGTGC	TTCTGTTGCA	AATTTTAATT	2280
25	TAACCTTTTC	ATGGCCTATG	AGCAAAGTAA	ATATCGTGCA	GTCACTCAGT	GCTTATCCTT	2340
	TAAACAGCAG	TTGTGTGATT	GTTTCCTGGA	TACTATCACC	CAGTGATTAC	AAGCTAATGT	2400
30	ATTTTATTAT	TGAGTGGAAA	AATCTTAATG	AAGATGGTGA	AATAAAATGG	CTTAGAATCT	2460
	CTTCATCTGT	TAAGAAGTAT	TATATCCATG	GTAAGTTTAC	TATACTT		2507
25	(2) INFORM	ATION FOR S	EQ ID NO:15	:			
35	(i) S	(B) TYPE: n (C) STRANDE	29 base pa ucleic acid DNESS: sing	irs			
40		(D) TOPOLOG	Y: linear				

(ii) MOLECULE TYPE: cDNA

45

50

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

GTAAGTTATT TGNNNNNATA TCCTAACAG

	(2) INFORMATION FOR SEQ ID NO:16:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10	(ii) MOLECULE TYPE: cDNA	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:	29
	GTAAGCATTA GCNNNNTTT TAAATTCAG (2) INFORMATION FOR SEQ ID NO:17:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid	
25	(C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA	•
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:	
	GTAAGTACCA AANNNNTTT TCAATATAG	29
35	(2) INFORMATION FOR SEQ ID NO:18:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 29 base pairs(B) TYPE: nucleic acid	
40	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
45		
•	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:	
50	GTAAGTTATG CANNNNTTT TTCCTTAAG	29

	(2) INFORMATION FOR SEQ ID NO:19:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10	(ii) MOLECULE TYPE: cDNA	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:	
	GTAAGTATAT TTNNNNAATA TTTAACAG	28
	(2) INFORMATION FOR SEQ ID NO:20:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
25	(D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:	
	GTAGGTTATG TANNNNNCCC TCATTACAG	29
35	(2) INFORMATION FOR SEQ ID NO:21:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid	
40	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
45	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:	
50	GTAAGAAAC AGNNNNTGT TTCAAATAG	29

	(2) INFORMATION FOR SEQ ID NO:22:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10	(ii) MOLECULE TYPE: cDNA	
1.5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:	
15	GTACGTATTA TTNNNNTAT CTTTTAAAG	29
	(2) INFORMATION FOR SEQ ID NO:23:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
25	(ii) MOLECULE TYPE: cDNA	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:	
	GTATGTCAAG CTNNNNNAAA AATTTCTAG	29
35	(2) INFORMATION FOR SEQ ID NO:24:	
40	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	·
	(ii) MOLECULE TYPE: cDNA	
45		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:	· ·
		2

	(2) INFORMATION FOR SEQ ID NO:25:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
10	(ii) MOLECULE TYPE: cDNA	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:	
	GTCTGCAGAG ATNNNNNGTC ATTTTGCAG	29
	(2) INFORMATION FOR SEQ ID NO:26:	
20	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 29 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single	
25	(D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:	
	GTATTCCCAA TTNNNNNTAT TTACTACAG	29
35	(2) INFORMATION FOR SEQ ID NO:27:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 29 base pairs(B) TYPE: nucleic acid	
40	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
45	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:	
50	GTATTCCCAA TTNNNNNTAT TTACTACAG	29

	(2) INFORMATION FOR SEQ ID NO:28:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	·
10	(ii) MOLECULE TYPE: cDNA	
16	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:	
15	GTAAGTTTAC TANNNNNTTT TCTCCTCAG	29
•	(2) INFORMATION FOR SEQ ID NO:29:	
20	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 29 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single	
25	(D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA	·
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:	
	GTAAAAATTA TANNNNTTT CTTTTTCAG	29
35	(2) INFORMATION FOR SEQ ID NO:30:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 29 base pairs(B) TYPE: nucleic acid	
40	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
45		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:	
50	GTATTGTACT TGNNNNTAT CCTTTGTAG	29

	(2) INFORMATION FOR SEQ ID NO:31:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10	(ii) MOLECULE TYPE: cDNA	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:	
13	GTTGCTTTTT CANNNNTTA TCTAAACAG	29
	(2) INFORMATION FOR SEQ ID NO:32:	
20	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 29 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single	
2 5	(D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:	
•	GTACATTTGT CTNNNNNCTT TTCTTTTAG	29
35	(2) INFORMATION FOR SEQ ID NO:33:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
45		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:	
50	GTATCCAGTG TTNNNNNCTT TTTAAACAG	2

CLAIMS

- An OB receptor protein preparation
 containing an OB receptor protein, optionally in a pharmaceutically acceptable formulation, said OB receptor protein having part or all of the amino acid sequence according to Seq. ID No. 1 and one or more of the biological properties of naturally occurring OB receptor protein.
- An OB receptor protein preparation
 containing an OB receptor protein, optionally in a
 pharmaceutically acceptable formulation, wherein said OB
 receptor protein amino acid sequence is selected from
 among amino acid sequences (according to Seq. ID No. 1):
 - (a) 1-896;
 - (b) 22-896 optionally with an N-terminal methionyl residue;
- 20 (c) 23-896 optionally with an N-terminal methionyl residue;
 - (d) 29-896 optionally with an N-terminal methionyl residue;
 - (e) 1-839;
- 25 (f) 22-839 optionally with an N-terminal methionyl residue;
 - $$\left(g\right)$$ 29-839 optionally with an N-terminal methionyl residue;
 - (h) 1-841;
- 30 (i) 22-841 optionally with an N-terminal methionyl residue;
 - (j) 23-841 optionally with an N-terminal methionyl residue;
 - (k) 29-841 optionally with an N-terminal
- 35 methionyl residue;
 - (1) 1-891;

WO 97/25424 PCT/US97/00128

- 141 -

- (m) 22-891 optionally with an N-terminal methionyl residue;
- (n) 23-891 optionally with an N-terminal methionyl residue;
- 5 (o) 29-891 optionally with an N-terminal methionyl residue;
 - (p) of subparts (1) through (o) further having the C-terminal amino acids, beginning at position 892, of OB receptor B (Seq. ID No. 3) or C (Seq. ID. No. 5); and,
 - (q) a chemically modified derivative of any of subparts (a) through (p).
- 3. An OB receptor protein preparation of
 15 claim 2 wherein said OB receptor protein is further
 selected from among the OB receptor proteins of subparts
 (1) through (0) further having the C-terminal amino
 acids, beginning at position 892, of OB receptor protein
 D (Seq. ID No. 7).

20

- 4. An OB receptor protein preparation of claim 2 wherein said OB receptor protein is further selected from among the OB receptor proteins of subparts (1) through (0) further having substituted the C-
- 25 terminal amino acids, beginning at position 799, G K F T
 I L (Seq. ID No. 13).

- 5. An OB receptor protein preparation according to any of claims 1 through 4, wherein the extracellular domain of said OB receptor protein is modified, said modification selected from among:
- (a) deletion of all or part of the random coil domain;
- (b) modification of one or both "WSXWS" boxes by substition of the first serine with another amino acid;
 - (c) modification of one or both "WSXWS" boxes by substitution of the last serine with another amino acid; and
- (d) modification of one or both "WSXWS"
 15 boxes by substitution of the first tryptophan with another amino acid.
- 6. A DNA molecule encoding an OB receptor protein according to any of claims 1-5 selected from the 20 group consisting of:
 - (a) the DNA sequences set forth in Seq. ID nos. 2, 4, 6, 8, 11, 12, and 14;
 - (b) a DNA which selectively hybridizes to a DNA of subpart (a); and
- of the genetic code would hybridize to a DNA of subpart

 (a) or (b).
- A biologically functional viral or
 plasmid vector containing a DNA of claim 6.
 - 8. A procaryotic or eucaryotic host cell containing the vector of claim 7.
- 35 9. A host cell modified so that expression of endogenous OB receptor protein is enhanced.

- 10. A host cell of claim 9 which is an isolated human host cell.
- 5 11. A process for producing an OB receptor protein comprised of culturing, under suitable conditions, a host cell according to any of claims 8, 9 or 10, obtaining the OB receptor produced, and optionally preparing a pharmaceutical composition containing said OB receptor.
- 12. A method of treating an individual for a therapeutic disorder selected from among obesity, diabetes, high blood lipid levels, and high cholesterol levels comprised of administering a therapeutic amount of an OB receptor protein preparation containing an OB receptor protein according to any of claims 1-5, or produced by the process according to claim 11.
- 20 13. A method of treating an individual for weight loss or weight maintenance for solely cosmetic purposes comprised of administering an effective amount of an OB receptor preparation containing an OB receptor protein according to any of claims 1-5, or produced by the process according to claim 11.
- 14. Use of an OB receptor protein according to claims 1-5, or produced by the process of claim 11, for manufacturing a medicament for the treatment of obesity, diabetes, high blood lipid levels, or high cholesterol levels.

- 15. An OB protein/OB receptor protein complex preparation, containing an OB protein moiety and an OB receptor protein moiety, optionally in a pharmaceutically acceptable formulation, wherein:
- (a) said OB receptor protein is selected from among those set forth in any of claims 1 and 2;
 - (b) said OB protein moiety is selected
- 10 from among:

protein; and,

- (i) a naturally ocurring OB
- (ii) a non-naturally ocurring OB protein, analog or derivative thereof.

15

5

16. An OB protein/OB receptor protein complex preparation of claim 15 wherein said OB receptor protein is selected from among those set forth in any of claims 3, 4, and 5.

20

- 17. A method of treating an individual for a therapeutic disorder selected from among obesity, diabetes, high blood lipid levels, and high cholesterol levels comprised of administering a therapeutic amount of an OB protein/OB receptor protein complex preparation of claims 15 or 16.
- 18. A method of claim 17 wherein said OB protein/OB receptor protein complex preparation is formed in vivo by administering, into a patient, a first population of cells expressing an OB protein, and a second population of cells expressing an OB receptor protein.

WO 97/25424 PCT/US97/00128

- 145 -

19. A method of treating an individual for weight loss or weight maintenance for solely cosmetic purposes comprised of administering a therapeutic amount of an OB protein/OB receptor protein complex preparation containing an OB receptor protein moiety according to any of claims 1-5, or produced by the process according to claim 11.

20. Use of an OB protein/OB receptor protein complex preparation, according to claims 15 or 16, for manufacturing a medicament for the treatment of obesity, diabetes, high blood lipid levels, or high cholesterol levels.

Intr ional Application No PCI/US 97/00128

			.,	
A. CLASSI IPC 6	FICATION OF SUBJECT MATTER C12N15/12 C12N5/10 C07K14/ G01N33/50 A61K38/17 A61K48/	715 C07K16/28 C12 700	01/68	
According t	o International Patent Classification (IPC) or to both national clas	sification and IPC		
	SEARCHED			
Minimum d IPC 6	ocumentation searched (classification system followed by classific CO7K C12N A61K C12Q	ation symbols)		
Documenta	tion searched other than minimum documentation to the extent tha	it such documents are included in the fields	searched	
Electronic d	ata base consulted during the international search (name of data b	ease and, where practical, search terms used)	
C. DOCUM	IENTS CONSIDERED TO BE RELEVANT			
Category *	Citation of document, with undication, where appropriate, of the	relevant passages	Relevant to claim No.	
x	CELL, vol. 83, 29 December 1995, pages 1263-1271, XP000602068 TARTAGLIA,L.A., ET AL .: "IDE	NTIFICATION	1,3,6-8	
	AND EXPRESSION CLONING OF A LEPTRECEPTOR, OB-R" see the whole document & EMBL SEQUENCE DATA LIBRARY, 30 December 1995,			
	TARTAGLIA, L.A., ET AL .: "IDENTIFICATION AND EXPRESSION (A LEPTIN RECEPTOR, OB-R" ACCESSION No. U43168	CLONING OF		
P,X	WO 96 08510 A (PROGENITOR INC) 2 1996 see the whole document	21 March	1,2,6-11	
		-/		
X Fur	ther documents are listed in the continuation of box C.	X Patent family members are liste	d in annex.	
*Special categories of cited documents: The later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention filing date The carlier document but published on or after the international filing date The carlier document but published on or after the international filing date The carlier document published after the international date of understand the principle or theory underlying the invention cannot be considered to invention for the cannot be considered to invention and the principle or theory underlying the invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention involve an inventive step when the document of particular relevance; the claimed invention involve an inventive step when the document of particular relevance; the claimed invention involve an inventive step when the document of particular relevance; the claimed invention involve an inventive step when the document of particular relevance.				
'P' docum	nent referring to an oral disclosure, use, exhibition or means means prior to the international filing date but than the priority date claimed	ments, such combination being obtain the art. *& document member of the same pate	rious to a person skilled	
<u> </u>	e actual completion of the international search	Date of mailing of the international	search report	
2	28 April 1997	07. 05.	97	
Name and	mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2230 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,	Authorized officer Holtorf S		

Int rional Application No PCT/US 97/00128

		PCT/US 9//00128
C.(Continua	nion) DOCUMENTS CONSIDERED TO BE RELEVANT	- 458
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P,X	NATURE MEDICINE, vol. 2, no. 5, May 1996,	1,2,6-8
	pages 585-589, XP0002019361 CIOFFI, J.A., ET AL .: "NOVEL B219/OB RECEPTOR ISOFORMS: POSSIBLE ROLE OF LEPTIN IN HEMATOPOIESIS AND REPRODUCTION" see the whole document & EMBL SEQUENCE DATA LIBRARY, 26 April 1996, HEIDELBERG, GERMANY,	
	CIOFFI, J.A., ET AL .: "NOVEL B219/OB ISOFORMS: POSSIBLE ROLE OF LEPTIN IN HEMATOPOIESIS AND REPRODUCTION" ACCESSION No.s U52912, U52913; U52914	
? , X	CURRENT BIOLOGY, vol. 6, no. 9, 1 September 1996, pages 1170-1180, XP000673008 BENNETT, B.D., ET AL.: "A ROLE FOR LEPTIN AND ITS COGNATE RECEPTOR IN HEMATOPOIESIS" see the whole document & EMBL SEQUENCE DATA LIBRARY, 7 September 1996, HEIDELBERG, GERMANY, BENNETT, B.D., ET AL.: "A ROLE FOR LEPTIN AND ITS COGNATE RECEPTOR IN HEMATOPOIESIS" ACCESSION No. U66496	1-3,6-8
P,X	BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 224, no. 2, 16 July 1996, pages 597-604, XP002029745 IIDA, M., ET AL .: "SUBSTITUTION AT CODON 269 (GLUTAMINE - PROLIN) OF THE LEPTIN RECEPTOR (OB-R) cDNA IS THE ONLY MUTATION FOUND IN THE ZUCKER FATTY (fa/fa) RAT"	1,6-8
	see the whole document & EMBL SEQUENCE DATA LIBRARY, 12 June 1996, HEIDELBERG, GERMANY, IIDA, M., ET AL .: "PHENOTYPE-LINKED AMINO-ACID ALTERATION IN LEPTIN RECEPTOR CDNA FROM ZUCKER FATTY (fa/fa) RAT" ACCESSION No. D84125	·
	-/	·

In tional Application No PCT/US 97/00128

		PC1/03 97/00128
Category *	nion) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P,X	CELL, vol. 84, 9 February 1996, pages 491-495, XP002029746 CHEN, H., ET AL .: "EVIDENCE THAT THE DIABETES GENE ENCODES THE LEPTIN RECEPTOR: IDENTIFICATION OF A MUTATION IN THE LEPTIN RECEPTOR GENE IN db/db MICE" see the whole document & EMBL SEQUENCE DATA LIBRARY, 11 February 1996, HEIDELBERG, GERMANY, CHEN,H., ET AL .: "EVIDENCE THAT THE DIABETES GENE ENCODES THE LEPTIN RECEPTOR: IDENTIFICATION OF A MUTATION IN THE LEPTIN RECEPTOR GENE IN db/db MICE" ACCESSION NO. U46135	1,6-8

. . 2

Information on patent family members

In tional Application PCT/US 97/6

ited in search report	date	member(s)	date
NO 9608510 A	21-03-96	AU 3419495 A CA 2176463 A EP 0730606 A	29-63-96 21-03-96 11-09-96