

Dans ce chapitre, $(E, \|\cdot\|_E)$ et $(F, \|\cdot\|_F)$ sont deux \mathbb{K} -espaces vectoriels normés, d_E et d_F les distances associées, respectivement aux normes $\|\cdot\|_E$ et $\|\cdot\|_F$. Dans ce qui suit, nous considérons :

- une partie X de E et un point a adhérent à X,
- une application $f: X \to F$ de $X \subset E$ dans F.

2.1 Limites et continuité

2.1.1 Limites

Définition 2.1 On dit que l'application f tend (ou converge) vers l'élément $l \in F$ en $a \in \overline{X}$ si :

$$\forall \varepsilon > 0, \exists \eta > 0 : \forall x \in X, d_E(x, a) \leqslant \eta \implies d_F(f(x), l) \leqslant \varepsilon.$$

Ce qu'on peut traduire en utilisant la notion de voisinages par :

$$\forall W \in \mathcal{V}_F(l), \exists V \in \mathcal{V}_E(a) : \forall x \in X \cap V, f(x) \in W.$$

Notation. Les relations précédentes se notent $f \xrightarrow[x \to a]{} l$ ou $f \xrightarrow[a]{} l$ ou encore $f \xrightarrow[x \in X \to a]{} l$.

 $a \in \overline{X}$ est nécessaire pour s'assurer que $X \cap V \neq \emptyset$, sinon cette définition serai triviale.

Remarque. On peut généraliser cette définition au cas de l'infini :

• Si $f:[a,+\infty[\subset \mathbb{R}\to F]$, on dit que f admet $l\in F$ pour limite en $+\infty$ si et seulement si :

$$\forall \varepsilon > 0, \exists A > 0 : \forall x \in [a, +\infty[, x \geqslant A \implies d_F(f(x), l) \leqslant \varepsilon.$$

• Si $f: E \to F$, on dit que f admet $l \in F$ pour limite quand $||x||_E \to +\infty$ si et seulement si :

$$\forall \varepsilon > 0, \exists A > 0 : \forall x \in E, ||x||_E \geqslant A \Longrightarrow d_F(f(x), l) \leqslant \varepsilon.$$

• Si $f: X \to \mathbb{R}$, on dit que f admet $+\infty$ pour limite en $a \in \overline{X}$ si et seulement si :

$$\forall A > 0, \exists \eta > 0 : \forall x \in X, d_E(x, a) \leqslant \eta \implies f(x) \geqslant A.$$

• Si $f: X \to \mathbb{R}$, on dit que f admet $-\infty$ pour limite en $a \in \overline{X}$ si et seulement si :

$$\forall A > 0, \exists \eta > 0 : \forall x \in X, d_E(x, a) \leqslant \eta \implies f(x) \leqslant -A.$$

Proposition 2.1 L'application $f: X \subset E \to F$ tend en $a \in \overline{X}$, vers au plus un élément de F.

Preuve Si f tend vers deux limites $l \neq l'$ en a, alors il existe $W \in \mathcal{V}_F(l)$ et $W' \in \mathcal{V}_F(l')$ tels que

$$W \cap W' = \emptyset$$
.

D'autre part, il existe $V \in \mathcal{V}_E(a)$ et $V' \in \mathcal{V}_E(a)$ tels que

$$\forall x \in X \cap V, \ f(x) \in W \quad et \quad \forall x \in X \cap V', \ f(x) \in W'.$$

Puisque $V \cap V' \in \mathscr{V}_E(a)$ et $a \in \overline{X}$, il existe $x_0 \in X$ tel que $x_0 \in V \cap V'$, et donc

$$f(x_0) \in W \cap W'$$
,

ce qu'est absurde.

Proposition 2.2 Si f a une limite finie en $a \in \overline{X}$, alors f est bornée au voisinage de a, c-à-dire

$$\exists V \in \mathcal{V}_E(a), \exists C \in \mathbb{R}_+ : \forall x \in X \cap V, \|f(x)\|_F \leqslant C.$$

Preuve Notons l la limite de f en a. Puisque, $B(l,1) \in \mathcal{V}_F(l)$, alors il existe $V \in \mathcal{V}_E(a)$ tel que

$$f(X \cap V) \subset B(l,1)$$
.

Par suite, pour tout $x \in X \cap V$, on a $d_F(f(x), l) \leq 1$, et donc

$$||f(x)||_F \leq ||l||_F + 1.$$

Pour la limite de la restriction de f à une partie Y de X avec $a \in Y$, on a la définition :

Définition 2.2 — Limite suivant une partie. Soit Y une partie de X telles que $a \in \overline{Y}$. On dit que $f: X \to F$ tend vers l en a suivant Y, si la restriction $f_{|_Y}$ tend vers l en a, et on note

$$f \xrightarrow[x \in Y]{} l.$$

Ce qui revient à écrire

$$\forall W \in \mathscr{V}_F(l), \exists V \in \mathscr{V}_E(a) : f(V \cap Y) \subset W,$$

ou encore

$$\forall \varepsilon > 0, \exists \eta > 0 : \forall x \in Y, d_E(x, a) \leqslant \eta \implies d_F(f(x), l) \leqslant \varepsilon.$$

Exemple La notion de limite selon une partie, permet d'exprimer les notions classiques suivantes :

- $\lim_{\substack{x \to a \\ x \neq a}} f(x) = l$ désigne, lorsque a est adhérent à $X \setminus \{a\}$, la limite en a selon $X \setminus \{a\}$.
- lorsque $X \subset \mathbb{R}$, on a
 - $\lim_{\substack{x \to a \\ x > a}} f(x) = l$ désigne, quand a est adhérent à $X \cap]a, +\infty[$, la limite en a selon $X \cap]a, +\infty[$.
 - $\lim_{\substack{x \to a \\ x \geqslant a}} f(x) = l$ denote, quand a est adhérent à $X \cap [a, +\infty[$, la limite en a selon $X \cap [a, +\infty[$.

Proposition 2.3 — Caractérisation par les suites. Pour que $f: X \to F$ admette l pour limite en $a \in \overline{X}$, il faut et il suffit que pour toute suite $(u_n)_n$ d'éléments de X, convergente vers a, on ait

$$f(u_n) \xrightarrow[n+\infty]{} l$$
.

Preuve (\Rightarrow) Supposons $f(x) \underset{x \to a}{\longrightarrow} l$ et soit $(u_n)_n$ une suite d'éléments de X convergente vers a. Si $W \in \mathscr{V}_F(l)$, alors il existe $V \in \mathscr{V}_E(a)$ tel que $f(X \cap V) \subset W$, c'est-à-dire

$$\forall x \in X \cap V, f(x) \in W$$

De plus, il existe $N \in \mathbb{N}$ tel que pour tout $n \in \mathbb{N}$, on a $n \ge N \implies u_n \in V$, et alors on a

$$\forall n \in \mathbb{N} : n > N \Longrightarrow u_n \in X \cap V \Longrightarrow f(u_n) \in W.$$

On en déduit donc que $f(u_n) \xrightarrow[n+\infty]{} l$.

 (\Leftarrow) Par contraposition, supposons f n'admet pas l pour limite en a, c'est-a-dire

$$\exists W \in \mathscr{V}_F(l), \forall V \in \mathscr{V}_F(a), \exists x \in X; x \in V \text{ et } f(x) \notin W.$$

Pour tout $n \in \mathbb{N}^*$, notons $V_n = B_E(a, 1/n) \in \mathscr{V}_E(a)$, alors

$$\forall n \in \mathbb{N}^*, \exists u_n \in X; \quad u_n \in V_n \ et \ f(u_n) \notin W.$$

La suite (u_n) ainsi construite, satisfait $u_n \xrightarrow[n+\infty]{} a$ et $f(u_n) \not\longrightarrow_{n+\infty} l$.

Théorème 2.1 — Théorème d'encadrement. Soient $f, g, h : X \subset E \to \mathbb{R}$ et $a \in \overline{X}$. Si f et h convergent vers $l \in \mathbb{R}$ en a telles que

$$\exists V \in \mathscr{V}_E(a) : \forall x \in X \cap V, f(x) \leq g(x) \leq h(x).$$

alors g admet l pour limite en a.

Preuve Soit $\varepsilon > 0$, alors il existe V_1 , $V_2 \in \mathscr{V}_E(a)$ tels que :

$$\forall x \in X \cap V_1$$
, $|f(x) - l| \leq \varepsilon$ et $\forall x \in X \cap V_2$, $|h(x) - l| \leq \varepsilon$.

Considérons $V_3 = V \cap V_1 \cap V_2 \in \mathscr{V}_E(a)$, alors

$$\forall x \in X \cap V_3, \ l - \varepsilon \leqslant f(x) \leqslant g(x) \leqslant h(x) \leqslant l + \varepsilon.$$

Ce qui montre que g admet l pour limite en a.

Proposition 2.4 — Composition. Soit E, F et G trois \mathbb{K} -evn, $f: X \subset E \to F$ et $g: Y \subset F \to G$ telles que $f(X) \subset Y$ et $l \in G$. Si f tend vers g en $g \in \overline{X}$ (alors g est adhérent à g et donc à g) et si g converge vers g en $g \in \overline{Y}$, alors $g \circ f$ admet g pour limite en g.

Preuve Soit $W \in \mathcal{V}_G(l)$, il existe $V \in \mathcal{V}_F(b)$ tels que

$$\forall y \in Y \cap V, \ g(y) \in W.$$

Puis, il existe $U \in \mathcal{V}_E(a)$ tels que $\forall x \in X \cap U, f(x) \in V$, et comme $f(x) \in f(X) \subset Y$, il vient

$$\forall x \in X \cap U, \ g(f(x)) \in W.$$

Ce qui montre que $g \circ f$ admet l pour limite en a.

Proposition 2.5 Soient $f, g: X \subset E \to F, \lambda: X \to \mathbb{K}$ et $a \in \overline{X}$, alors on a:

1.
$$f(x) \xrightarrow[x \to a]{} l \in F \implies ||f(x)||_F \xrightarrow[x \to a]{} ||l||$$
.

2.
$$f(x) \xrightarrow[x \to a]{} 0_F \iff ||f(x)||_F \xrightarrow[x \to a]{} 0.$$

3.
$$\begin{cases} f \xrightarrow[x \to a]{} l \in F \\ g \xrightarrow[x \to a]{} l' \in F \end{cases} \implies f + g \xrightarrow[x \to a]{} l + l' \in F.$$

4.
$$\begin{cases} \lambda \underset{x \to a}{\longrightarrow} 0 \\ g \text{ bornée au voisinage de } a \end{cases} \implies \lambda g \underset{x \to a}{\longrightarrow} 0_F.$$

5.
$$\begin{cases} \lambda \text{ born\'ee au voisinage de } a \\ g \underset{x \to a}{\longrightarrow} 0 \end{cases} \implies \lambda g \underset{x \to a}{\longrightarrow} 0_F.$$

6.
$$\begin{cases} \lambda \underset{x \to a}{\longrightarrow} \alpha \in \mathbb{K} \\ g \underset{x \to a}{\longrightarrow} l' \in F \end{cases} \implies \lambda g \underset{x \to a}{\longrightarrow} \alpha l' \in F.$$

Preuve À vérifier en exercice.

Proposition 2.6 — Limite de fonctions à valeurs dans un espace produit. Soit F_1, \dots, F_n une famille finie de \mathbb{K} -ev normés, $f: X \to F = \prod_{k=1}^n F_k$ et $a \in \overline{X}$, alors on a :

$$f \underset{x \to a}{\longrightarrow} l = (l_1, \dots, l_n) \in F \iff \forall k \in \{1, \dots, n\}, \ f_k = pr_k \circ f \underset{x \to a}{\longrightarrow} l_k,$$

où l'application $pr_k : \prod_{k=1}^n F_k \to F_k$, $(y_1, \dots, y_n) \mapsto y_k$ est la $k^{\text{ème}}$ projection de F.

Preuve À faire en exercice (on rappelle que l'espace produit $\prod_{k=1}^{n} F_k$ est muni de la norme produit $v_{\infty}(x_1,\ldots,x_n) = \max_{1 \leq k \leq n} N_k(x_k)$ où les N_k sont respectivement les normes des \mathbb{K} -evn F_k).

Exercice 2.1 Étudier l'existence et la valeur éventuelle de la limite en (0,0) pour les fonctions

a)
$$f(x,y) = \frac{x^3 + y^3}{x^2 + y^4}$$

b)
$$f(x,y) = \frac{x^3 y^2}{x^6 + y^4}$$

c)
$$f(x,y) = \frac{x^4 y^3}{x^6 + y^8}$$

d)
$$f(x,y) = \frac{(x^2 - y)(y^2 - x)}{x + y}$$

a)
$$f(x,y) = \frac{x^3 + y^3}{x^2 + y^4}$$
 b) $f(x,y) = \frac{x^3 y^2}{x^6 + y^4}$ c) $f(x,y) = \frac{x^4 y^3}{x^6 + y^8}$
d) $f(x,y) = \frac{(x^2 - y)(y^2 - x)}{x + y}$ e) $f(x,y) = \frac{\sqrt{x^2 + y^2}}{|x|\sqrt{|y|} + |y|\sqrt{|x|}}$ f) $f(x,y) = \frac{1 - \cos(\sqrt{|xy|})}{|y|}$.

$$f) f(x,y) = \frac{1 - \cos(\sqrt{|xy|})}{|y|}$$

Exercice 2.2 la fonction $f:(x,y,u,v) \to \frac{x^3+y^3-u^3-v^3}{x^2+v^2-u^2-v^2}$ a-t-elle une limite en (0,0,0,0)?

2.1.2 Continuité

Définition 2.3 On dit que $f: X \subset E \to F$ est continue en $a \in X$ si elle tend vers f(a) en a, c'est-à-dire si

$$\forall \varepsilon > 0, \exists \eta > 0 : \forall x \in X, d_E(x, a) \leqslant \eta \implies d_F(f(x), f(a)) \leqslant \varepsilon.$$

Ce qui revient à dire

$$\forall W \in \mathcal{V}_F(f(a)), \exists V \in \mathcal{V}_E(a) : \forall x \in X \cap V, f(x) \in W.$$

Et on dit que f est continue sur X lorsque elle est continue en tout point de X.

Remarque. La fonction f est dite discontinue en a si et seulement si f n'est pas continue en a.

Proposition 2.7 Si f est continue en a, alors f est bornée au voisinage de a.

Preuve Puisque f est continue en a, alors f converge vers une limite finie en a, et par suite, f est bornée au voisinage de a.

Proposition 2.8 — Caractérisation par les suites. Pour que $f: X \to F$ soit continue en $a \in X$, il faut et il suffit que, pour toute suite $(u_n)_n$ d'éléments de X convergente vers a, on ait

$$f(u_n) \xrightarrow[n+\infty]{} f(a).$$

Preuve À faire en exercice.

Proposition 2.9 Si $f: X \subset E \to F$ est continue en $a \in A \subset X$, alors sa restriction $f_{|_A}: A \to F$ est continue en a.

Preuve À faire en exercice.

Proposition 2.10 Soit E_1, \dots, E_n une famille finie de \mathbb{K} -evn, alors pour tout $k \in \{1, \dots, n\}$, la $k^{\text{ème}}$ projection $pr_k: \prod_{k=1}^n E_k \to E_k, (x_1, \dots, x_n) \mapsto x_k$ est une application continue.

Preuve À faire en exercice.

Proposition 2.11 Soient F_1, \dots, F_n une famille de \mathbb{K} -evn et $f: X \subset E \to \prod_{k=1}^n F_k$. Pour tout $k \in \{1, \dots, n\}$, notons $f_k = pr_k \circ f$ où $pr_k : \prod_{k=1}^n F_k \to F_k$ est la $k^{\text{ème}}$ projection, alors on a f est continue en $a \in X \iff \forall k \in \{1, \dots, n\}, f_k$ est continue en $a \in X$.

Preuve À faire en exercice.

Proposition 2.12 Soient $f, g: X \subset E \to F$ et A une partie de X, alors on a :

$$\begin{cases} f \text{ et } g \text{ sont continues sur } X \\ A \text{ est dense dans } X & \Longrightarrow f = g. \\ \forall a \in A, \ f(a) = g(a) \end{cases}$$

Preuve Posons h = f - g, comme $\{0_F\}$ est un fermé de F et h est continue sur X, alors $h^{-1}(0_F)$ est un fermé de X. En outre $A \subset h^{-1}(0_F)$ puisque f = g sur A. Par conséquent

$$X = \overline{A} \subset \overline{h^{-1}(0_F)} = h^{-1}(0_F).$$

Donc $h = 0_F$ et finalement f = g.

Remarque. Soient f et g deux fonctions continues sur \mathbb{R} . Il découle de la densité de \mathbb{Q} dans \mathbb{R} que

$$\forall x \in \mathbb{Q}, \ f(x) = g(x) \implies f = g \ sur \ \mathbb{R}.$$

La définition ponctuelle de la continuité, possède la caractérisation ensembliste suivante.

Théorème 2.2 Soit $f: X \subset E \to F$, les assertions suivantes sont équivalentes :

- (i) f est continue,
- (ii) l'image réciproque par f de tout fermé de F, est un fermé relatif de X,
- (iii) l'image réciproque par f de tout ouvert de F, est un ouvert relatif de X.

Preuve (i) \Longrightarrow (ii): Supposons que f est continue. Si B est un fermé de F, notons A l'adhérence de $f^{-1}(B)$ dans E. Il est clair que $f^{-1}(B) \subset X \cap A$. Soit maintenant, $a \in X \cap A \subset A = \overline{f^{-1}(B)}$, alors il existe une suite (a_n) d'éléments de $f^{-1}(B)$ qui converge vers a. Par continuité de f en $a \in X$, la suite $(f(a_n))$ d'éléments de B converge vers f(a). La limite f(a) appartient au fermé B, d'où $a \in f^{-1}(B)$ et donc $X \cap A \subset f^{-1}(B)$. Finalement, il vient

$$f^{-1}(B) = X \cap A.$$

Comme A est un fermé de E, alors l'image réciproque du fermé B de F est un fermé relatif de X.

(ii) \implies (iii): Supposons que l'image réciproque de tout fermé de F, est un fermé relatif de X. Si U est un ouvert de F, alors $B = \mathbb{C}_F U$ est un fermé dans F et son image réciproque $f^{-1}(B)$ est un fermé relatif de X, c'est-à-dire, il existe A un fermé de E tel que

$$f^{-1}(B) = X \cap A.$$

Par suite, la relation suivante

$$f^{-1}(U) = f^{-1}(\mathbb{C}_F B) = \mathbb{C}_X(f^{-1}(B)) = \mathbb{C}_X(X \cap A) = X \cap \mathbb{C}_E(A).$$

Comme $C_E(A)$ est un ouvert de E, alors $f^{-1}(U)$ est un ouvert relatif de X.

(iii) \Longrightarrow (i): Supposons que l'image réciproque de tout ouvert de F, est un ouvert relatif de X. Soit $a \in X$, pour tout $\varepsilon > 0$, la boule $B(f(a), \varepsilon)$ est un ouvert de F, alors son image réciproque par l'application f, est un ouvert relatif de X, c'est-à-dire, il existe U un ouvert de E tel que

$$f^{-1}(B(f(a),\varepsilon)) = X \cap U.$$

Comme $a \in U$ ouvert de E, il existe $\eta > 0$ tel que $B(a, \eta) \subset U$, et par suit on a

$$f(B(a,\eta)\cap X)\subset f(U\cap X)\subset B(f(a),\varepsilon).$$

Donc, f est continue en a, un point quelconque de X, alors l'application f est continue.

Corollaire 2.1 Une application $f: E \to F$ est continue, si et seulement si, l'image réciproque par f de tout ouvert (resp. fermé) de F, est un ouvert (resp. fermé) de E.

Preuve À vérifier en exercice.

Exemple L'intérieur de l'hyperbole d'équation xy = 1 défini comme étant l'ensemble

$$I = \{(x, y) \in \mathbb{R}^2 ; xy > 1\},$$

est un ouvert de \mathbb{R}^2 , car c'est l'image réciproque de $]1,+\infty[$ par l'application continue

$$f: \mathbb{R}^2 \to \mathbb{R},$$
$$(x,y) \mapsto xy.$$

Exercice 2.3 Soient $(E, \|\cdot\|)$ un **evn** et $f: E \to E$, $x \mapsto f(x) = \frac{x}{1 + \|x\|^2}$ une application. Montrer que f est continue et que $f(E) = \overline{B}(0, 1/2)$.

Exercice 2.4 Soient E, F et G trois evn, $A \neq \emptyset \in \mathscr{P}(E)$, $B \neq \emptyset \in \mathscr{P}(F)$ et $f : A \rightarrow G$, $g : B \rightarrow G$ deux applications. Montrer que $\varphi : A \times B \rightarrow G$, $(x,y) \mapsto f(x) + g(y)$ est continue si et seulement si les deux fonctions f et g sont continues.

Exercice 2.5 Soient E, F deux **evn**, $f: E \to F$ une application et $(U_i)_{i \in I}$ un recouvrement ouvert de E (c'est-à-dire une famille $(U_i)_{i \in I}$ d'ouverts de E satisfaisant $\bigcup_{i \in I} U_i = E$). Supposons que, pour tout $i \in I$, la restriction $f_{|U_i|}$ de f à U_i est continue, montrer que f est aussi continue.

Exercice 2.6 Étudier la continuité des applications $f : \mathbb{R}^2 \to \mathbb{R}$ suivantes :

a)
$$f(x,y) = \begin{cases} x\sin(1/y) + y\sin(1/x) & si \quad xy \neq 0 \\ 0 & si \quad xy \neq 0. \end{cases}$$

$$b) f(x,y) = \begin{cases} x^2 & si \quad |x| \le |y| \\ y^2 & si \quad |x| > |y|. \end{cases}$$

c)
$$f(x,y) = \begin{cases} \frac{(x^4 - y^2)^2}{x^6} & si \ |y| < x^2 \\ 0 & si \ |y| \ge x^2. \end{cases}$$

2.2 Continuité uniforme

Définition 2.4 On dit que $f: X \subset E \to F$ est uniformément continue si et seulement si :

$$\forall \varepsilon > 0, \exists \eta > 0 : \forall (x', x'') \in X^2, d_E(x', x'') \leqslant \eta \implies d_F(f(x'), f(x'')) \leqslant \varepsilon.$$

Proposition 2.13 Si f est uniformément continue sur X, alors f est continue sur X.

La réciproque de ce résultat est fausse, f peut être continue sur X sans être uc sur X, par exemple,

$$\forall x \in \mathbb{R}, \ f(x) = x^2.$$

Cependant, si $f: X \to F$ est continue et X compact alors f est **uc** sur X (Théorème de Heine).

Proposition 2.14 Soient $f: X \subset E \to F$ et $g: Y \subset F \to G$ telles que $f(X) \subset Y$, alors on a :

$$\begin{cases} f: X \to F \text{ est } \mathbf{uc} \text{ sur } X \\ g: Y \to G \text{ est } \mathbf{uc} \text{ sur } Y \end{cases} \implies f \circ g \text{ est } \mathbf{uc} \text{ sur } X.$$

Preuve Soit $\varepsilon > 0$, puisque g est uc sur Y, il existe $\eta > 0$ tels que :

$$\forall (y', y'') \in Y^2, \ d_F(y', y'') \leqslant \eta \implies d_G(g(y'), g(y'')) \leqslant \varepsilon.$$

Puis, puisque f est **uc** sur X, il existe $\alpha > 0$ tels que :

$$\forall (x',x'') \in X^2, \ d_E(x',x'') \leqslant \alpha \implies d_F(f(x'),f(x'')) \leqslant \eta.$$

On en déduit que :

$$\forall (x',x'') \in X^2, \ d_E(x',x'') \leqslant \alpha \implies d_G(g(f(x')),g(f(x''))) \leqslant \varepsilon.$$

Finalement, l'application composée $g \circ f$ est **uc** sur X.

Définition 2.5 Soit $k \in \mathbb{R}_+$, on dit que $f: X \subset E \to F$ est k-lipschitzienne si

$$\forall (x_1, x_2) \in X^2, d_F(f(x_1), f(x_2)) \leq k d_E(x_1, x_2).$$

Exemple 1. L'application norme $\|\cdot\|_E : E \to \mathbb{R}$ est 1-lipschitzienne, puisque

$$|||y||_E - ||x||_E| \le ||y - x||.$$

2. Soit $E = \prod_{k=1}^{n} E_k$ muni de la norme produit $v_{\infty}(x_1, \dots, x_n) = \max_{1 \le k \le n} N_k(x_k)$ où les N_k sont les normes des E_k , alors les projections $pr_k : E \to E_k$, $(x_1, \dots, x_n) \mapsto x_k$ sont 1-lipschitziennes, puisque

$$\forall k \in \{1, \dots, n\}, \forall x = (x_k)_k, y = (y_k)_k \in E;$$

$$N_k \Big(p_k(\mathbf{y}) - p_k(\mathbf{x}) \Big) \leqslant \max_{1 < k < n} N_k (\mathbf{y}_k - \mathbf{x}_k) = \mathbf{v}_\infty(\mathbf{y} - \mathbf{x}),$$

Proposition 2.15

$$\begin{cases} f: X \to F \text{ est } k\text{-lipschitzienne} \\ g: X \to F \text{ est } k'\text{-lipschitzienne} \end{cases} \implies f+g \text{ est } k+k'\text{-lipschitzienne}.$$

$$\begin{cases} f: X \to F \text{ est } k\text{-lipschitzienne} \\ \lambda \in \mathbb{K} \end{cases} \implies \lambda f \text{ est } |\lambda| k\text{-lipschitzienne}.$$

$$\begin{cases} f: X \to F \text{ est } k\text{-lipschitzienne} \\ g: Y \to G \text{ est } k'\text{-lipschitzienne} \end{cases} \implies g \circ f \text{ est } kk'\text{-lipschitzienne}.$$

$$f(X) \subset Y$$

Remarque. Le produit de deux fonctions lipschitziennes, peut ne pas être lipschitzien. Par exemple

$$f, g: \mathbb{R} \to \mathbb{R}, x \mapsto x$$
.

Proposition 2.16 Toute application lipschitzienne est uniformément continue.

Preuve Soit $\varepsilon > 0$ quelconque. En posant $\eta = \frac{\varepsilon}{k+1}$, il découle de la k-lipschitzianité de f que

$$\forall (x_1,x_2) \in X^2, \quad d_E(x_1,x_2) \leqslant \eta \implies d_F(f(x_1),f(x_2)) \leqslant k \, d_E(x_1,x_2) \leqslant k \, \eta \leqslant \varepsilon.$$

Par conséquent, l'application f est uniformément continue sur X.

La réciproque est fausse, une application peut être uc sans être lipschitzienne. Par exemple,

$$f:[0,1]\to\mathbb{R},\ x\mapsto\sqrt{x}.$$

Remarque. Soit I un intervalle de \mathbb{R} et $f: I \to \mathbb{R}$ une application dérivable sur I. D'après le théorème des accroissement finis, f est lipschitzienne si et seulement si sa dérivé f' est bornée.

Exercice 2.7 Soient $(\mathbb{R}^2, \|\cdot\|_1)$, $(a,b) \in \mathbb{R}^2_+$ et $f : \mathbb{R}^2 \to \mathbb{R}^2$, $(x_1,x_2) \mapsto (ax_2,bx_1)$. Montrer que f est uniformément continue.

Soient X et Y deux parties de E et F respectivement. Une application $f: X \to Y$ continue bijective dont la réciproque $f^{-1}: Y \to X$ est continue est dite un homéomorphisme, et dans ce cas, on dit que X est homéomorphe à Y.

Exercice 2.8 Montrer que les parties suivantes de $\mathbb C$ sont homéomorphes :

$$E_1 = \mathbb{C}^*, \ E_2 = \{z \in \mathbb{C}, \ |z| > 1\}, \ E_3 = \{z \in \mathbb{C}, \ 0 < |z| < 1\}, \ E_4 = \{z \in \mathbb{C}, \ 1 < |z| < 2\}.$$

2.3 Continuité des applications linéaires

Soient E, F et G des espaces vectoriels normés, on rappelle qu'une application $f: E \to F$ est dite linéaire ou \mathbb{K} -linéaire si et seulement si :

$$\forall \lambda \in \mathbb{K}, \forall (x, y) \in E^2, f(x + \lambda y) = f(x) + \lambda f(y).$$

On note $\mathcal{L}(E,F)$ (resp. $\mathcal{L}(E)$) l'ensemble des applications linéaires de E dans F (resp. de E dans E). Cet ensemble est un \mathbb{K} -ev et on a :

$$\forall f \in \mathcal{L}(E,F), \forall g \in \mathcal{L}(F,G), g \circ f \in \mathcal{L}(E,G).$$

Le théorème très utile suivant caractérise les applications linéaires continues.

Théorème 2.3 Si $f \in \mathcal{L}(E,F)$, alors les deux assertions suivantes sont équivalentes :

- 1. f est continue sur E.
- 2. $\exists M \in \mathbb{R}_+$ tel que $\forall x \in E$, $||f(x)||_F \leq M ||x||_E$.

Preuve Supposons que f est continue sur E, elle l'est donc en particulier, en 0 et alors

$$\exists \eta > 0, \forall x \in E, \|x\|_E \leqslant \eta \implies \|f(x)\|_F \leqslant \varepsilon = 1.$$

Soit $x \in E \setminus \{0_E\}$, puisque on a $\left\|\frac{\eta}{\|x\|_E}x\right\|_E = \eta$, il vient alors que

$$\left\| f\left(\frac{\eta}{\|x\|_F} x\right) \right\|_F \leqslant 1 \quad et \quad \|f(x)\|_F \leq \frac{1}{\eta} \|x\|_E.$$

Finalement, on trouve l'inégalité suivant qui est également valable pour $x = 0_E$.

$$\forall x \in E, \ \|f(x)\|_F \leqslant \frac{1}{\eta} \|x\|_E.$$

Inversement, si il existe $M \in \mathbb{R}_+$ tel que $\forall x \in E, \|f(x)\|_F \leq M \|x\|_E$, alors

$$\forall (x_1, x_2) \in E^2, \|f(x_1) - f(x_2)\|_F = \|f(x_1 - x_2)\|_F \leqslant M \|x_1 - x_2\|_E.$$

Donc, l'application f est continue sur E puisqu'elle est M-lipschitzienne.

Remarque. D'après le théorème 2.3, si $f \in \mathcal{L}(E,F)$, les propriétés suivantes sont équivalentes :

- 1. f est continue en 0.
- 2. f est continue sur E.
- 3. f est uniformément continue sur E.

- 4. f est lipschitzienne.
- 5. $\exists M \in \mathbb{R}_+, \forall x \in E, \|f(x)\|_F \leq M \|x\|_E$.
- 6. f est bornée sur la boule unité fermée de E, c'est-à-dire :

$$\exists M_1 \in \mathbb{R}_+, \forall x \in E, \|x\|_E \le 1 \implies \|f(x)\|_F \le M_1.$$

7. f est bornée sur la sphère unité, c'est-à-dire:

$$\exists M_2 \in \mathbb{R}_+, \forall x \in E, \|x\|_E = 1 \implies \|f(x)\|_E \leq M_2.$$

Notation. On dénote l'ensemble des applications linéaires continues de E dans F par

$$\mathcal{LC}(E,F)$$
 (et $\mathcal{LC}(E)$ si $E=F$).

L'ensemble $\mathcal{LC}(E,\mathbb{K})$ est dit le dual topologique de E et on le note E'.

2.4 Norme subordonnée d'une application linéaire continue

L'ensemble $\mathcal{LC}(E,F)$ est un espace vectoriel. Si $E \neq \{0_E\}$ et $f \in \mathcal{LC}(E,F)$, on appelle norme subordonnée aux normes de E et F de l'application f, la borne supérieure suivante :

$$||f||_{\mathcal{LC}(E,F)} = \sup_{x \in E \setminus \{0_E\}} \frac{||f(x)||_F}{||x||_E}.$$

Cette borne existe, puisque $\left\{\frac{\|f(x)\|_F}{\|x\|_E}, x \in E \setminus \{0_E\}\right\}$ est non vide majorée de \mathbb{R} , et de plus, on a

$$||f||_{\mathcal{LC}(E,F)} = \sup_{||x|| \le 1} ||f(x)||_F = \sup_{||x|| = 1} ||f(x)||_F.$$

Proposition 2.17

1.
$$\forall f \in \mathcal{LC}(E,F), \forall x \in E, \quad ||f(x)||_F \leq ||f||_{\mathcal{LC}(E,F)} ||x||_E.$$

2. $\forall f, g \in \mathcal{LC}(E,F), \quad \begin{cases} f+g \in \mathcal{LC}(E,F), \\ ||f+g||_{\mathcal{LC}(E,F)} \leq ||f||_{\mathcal{LC}(E,F)} + ||g||_{\mathcal{LC}(E,F)}. \end{cases}$

3. $\forall \lambda \in \mathbb{K}, \forall f \in \mathcal{LC}(E,F), \quad \lambda f \in \mathcal{LC}(E,F) \text{ et } ||\lambda f||_{\mathcal{LC}(E,F)} = |\lambda| ||f||_{\mathcal{LC}(E,F)}.$

- 4. $\forall f \in \mathcal{LC}(E,F), g \in \mathcal{LC}(F,G),$ $\begin{cases} g \circ f \in \mathcal{LC}(E,G), \\ \|g \circ f\|_{\mathcal{LC}(E,G)} \leqslant \|g\|_{\mathcal{LC}(F,G)} \|f\|_{\mathcal{LC}(E,F)}. \end{cases}$

Preuve À vérifier en exercice.

Il découle de la proposition 2.17 que $f \mapsto ||f||_{\mathcal{LC}(E,F)}$ est une norme sur $\mathcal{LC}(E,F)$.

Proposition 2.18 — Caractérisation de l'équivalence des normes. Soient N et N' deux normes de E et \mathscr{O} (resp. \mathscr{O}') l'ensemble des ouverts de (E,N) (resp. (E,N')). Les trois propriétés suivantes sont deux à deux équivalentes :

- 1. N et N' sont équivalentes.
- 2. $Id_E: (E,N) \to (E,N')$ et $Id_E: (E,N') \to (E,N)$ sont continues.
- 3. $\mathcal{O} = \mathcal{O}'$.

Preuve À vérifier en exercice.

Proposition 2.19 — Continuité d'une application bilinéaire. Une application bilinéaire $\mathcal{B}: E \times F \to G$ de l'espace $E \times F$ muni de la norme produit v_{∞} vers G, est continue s'il existe $k \in \mathbb{R}_+$ tel que

$$\forall x, y \in E \times F$$
, $||B(x, y)||_G \le k ||x||_E ||y||_F$.

Preuve (\Rightarrow) : Si \mathcal{B} et continue, alors elle est continue en (0,0) et donc il existe $\eta > 0$ tel

$$\mathcal{B}(B((0,0),\eta)) \subset B(0,1) \quad (\varepsilon=1).$$

Pour tout $(x,y) \in E \times F$ non nul, on a $\left\| \mathcal{B}\left(\frac{\eta}{\|x\|_E}x, \frac{\eta}{\|x\|_F}y\right) \right\|_G \leqslant 1$, et donc

$$\|\mathcal{B}(x,y)\|_{G} \leqslant \frac{1}{\eta^{2}} \|x\|_{E} \|x\|_{F}.$$

On termine alors en remarquant que la relation ci-dessus est vraie également pour (0,0).

 (\Leftarrow) : Si la suite (x_n, y_n) de $E \times F$ converge vers (a,b), alors (x_n) converge vers a et (y_n) converge vers b. On a $\mathcal{B}(x_n, y_n) - \mathcal{B}(a,b) = \mathcal{B}(x_n - a, y_n) - \mathcal{B}(a, y_n - b)$ et donc la relation

$$\|\mathcal{B}(x_n, y_n) - \mathcal{B}(a, b)\|_G \leq \|\mathcal{B}(x_n - a, y_n)\|_G + \|\mathcal{B}(a, y_n - b)\|_G$$

$$\leq k \|x_n - a\|_E \|y_n\|_F + k \|a\|_E \|y_n - b\|_F \xrightarrow[n \to \infty]{} 0$$

montre que $\mathcal{B}(x_n, y_n)$ converge vers $\mathcal{B}(a, b)$ et donc l'application \mathcal{B} est continue en (a, b).

Exemple $\mathbb{K} \times E \to E$, $(\lambda, x) \mapsto \lambda x$ et $\mathcal{LC}(E)^2 \to \mathcal{LC}(E)$, $(f, g) \mapsto g \circ f$ sont continues.

Proposition 2.20 — Continuité en dimension finie. Soient E et F deux \mathbb{K} -evn, si E est de dimension finie, alors toute application linéaire $f: E \to F$ est une application continue.

Cette proposition affirme que pour E de dimension finie, on a :

$$\mathcal{LC}(E,F) = \mathcal{L}(E,F).$$

Preuve Soit N la norme de E, $B = (e_1, ..., e_n)$ une base de E, on considère l'application

$$N_{\infty}$$
: $E \rightarrow \mathbb{R}$
 $x = \sum_{i=1}^{n} x_i e_i \mapsto N_{\infty}(x) = \max_{1 \leq i \leq n} |x_i|.$

D'après le théorème 1.1, il existe $M \in \mathbb{R}_+$ tel que :

$$\forall x \in E, \ N_{\infty}(x) \leq MN(x).$$

Par conséquent, pour tout $x = \sum_{i=1}^{n} x_i e_i \in E$, on a:

$$||f(x)||_{F} = ||\sum_{i=1}^{n} x_{i} f(e_{i})||_{F} \leqslant \sum_{i=1}^{n} |x_{i}| ||f(e_{i})||_{F}$$

$$\leqslant \left(\sum_{i=1}^{n} ||f(e_{i})||_{F}\right) N_{\infty}(x)$$

$$\leqslant CN(x) \quad avec \quad C = M \sum_{i=1}^{n} ||f(e_{i})||_{F}.$$

Enfin, on applique le théorème 2.3 pour conclure que f est continue.

Exercice 2.9 Soit $E = C([0,1];\mathbb{R})$ muni de la norme $\|\cdot\|_1$ définie par :

$$\forall f \in E, \ \|f\|_1 = \int_0^1 |f(t)| dt$$

 $\forall f \in E, \ \|f\|_1 = \int_0^1 |f(t)| \, dt.$ Soit $\psi : E \to \mathbb{R}$, $\psi(f) = \int_0^1 f(t) \, dt$, montrer que $\psi \in \mathcal{LC}(E,\mathbb{R})$ et calculer sa norme $\|\psi\|_{\mathcal{LC}(E,\mathbb{R})}$.

Continuité et compacité

Proposition 2.21 Soit $f: X \subset E \to F$ une application, alors on a :

$$\begin{cases} X \text{ compacte} \\ f \text{ continue} \end{cases} \implies f(X) \text{ compacte}$$

Preuve Soit $(y_n)_n$ une suite dans f(X), alors pour tout $n \in \mathbb{N}$, il existe $x_n \in X$ tel que $y_n = f(x_n)$. Puisque X ext compact, il existe une extractrice σ et un élément $x \in X$ tels que

$$\lim_{n\to\infty}x_{\sigma(n)}=x.$$

Or f est continue, alors $\lim_{n\to\infty} y_{\sigma(n)} = \lim_{n\to\infty} f(x_{\sigma(n)}) = f(x)$ et ainsi la suite $(y_n)_n$ admet $f(x) \in f(X)$ pour valeur d'adhérence. Finalement, f(X) est compacte.

Remarque. L'image réciproque d'un compact par une application continue peut ne pas être compacte. Par exemple, la fonction nulle $f: \mathbb{R} \to \mathbb{R}$ est continue, le singleton $\{0\}$ est compact, mais la partie $f^{-1}(\{0\}) = \mathbb{R}$ n'est pas compacte puisqu'elle n'est pas bornée.

La notion de compacité est une notion topologique, c'est-à-dire invariante par homéomorphisme :

$$\begin{cases} X \text{ homéomorphe à } Y \\ X \text{ est un compact} \end{cases} \implies Y \text{ est un compact}$$

Par contraposition, si X est compact et Y est non compact, alors X et Y ne peuvent pas être homéomorphes. Par exemple, dans \mathbb{R} usuel, I = [0, 1] et J = [0, 1[ne sont pas homéomorphe.

Corollaire 2.2 Soient X une partie non vide de E et $f: X \to \mathbb{R}$ une application, alors si X est compacte et f continue, alors f est bornée et atteint ses bornes.

Preuve f(X) est une partie compacte, alors elle est fermée bornée de \mathbb{R} .

Corollaire 2.3 Si $X \neq \emptyset$ est un compact de E et si $f: X \rightarrow F$ est une application continue, alors

$$||f||: X \to \mathbb{R}$$
$$x \mapsto ||f(x)||_F$$

est bornée et elle atteint ses bornes.

Preuve Appliquer le corollaire 2.2 à l'application ||f|| qui est continue sur le compact X.

Théorème 2.4 — **Théorème de Heine**. Toute application $f: X \subset E \to F$ continue sur un compact X, est uniformément continue.

Preuve À montrer en exercice.

Exercice 2.10 Soient E, F deux evn et $f: A \subset E \to F$ une application telle que f(A) est compact. Montrer que si le graphe $G_f = \{(x, f(x)), x \in A\}$ de f est un fermé de $A \times F$, alors f est une application continue.

Exercice 2.11 Soient E, F deux evn tels que E soit de dimension finie et $f: E \to F$ continue telle que, pour tout borné B de F, $f^{-1}(B)$ est un borné de E.

- 1. Montrer que pour tout fermé G de E, f(G) est un fermé de F.
- 2. Montrer que pour tout $P \in \mathbb{K}[X]$ et tout fermé G de \mathbb{K} , P(G) est fermée.

2.6 Continuité et connexité par arcs

On appelle arc continu (ou chemin continu) du \mathbb{K} -evn E, toute application continue $\gamma: I \to E$ où I est un intervalle fermé borné de \mathbb{R} non vide et non réduit à un point. Puisque un tel intervalle est homéomorphe à [0,1], on peut prendre I=[0,1]

Définition 2.6 Une partie A de E est dite connexe par arcs (en abrégé **cpa**) si et seulement si, pour tout $(x,y) \in A^2$, il existe un arc continu $\gamma : [a,b] \to E$ tel que :

$$\begin{cases} \gamma(a) = x \text{ et } \gamma(b) = y \\ \forall t \in [a, b], \ \gamma(t) \in A. \end{cases}$$

On dit que γ est un arc continu joignant x et y dans A.

Exemples 1. Pour toute arc continu $\gamma:[a,b]\to E$, la courbe $\gamma([a,b])$ est une partie **cpa** de E.

2. $\mathbb{U} = \{z \in \mathbb{C}, |z| = 1\}$ est une partie **cpa** de \mathbb{C} , puisque $\mathbb{U} = \gamma([0,1])$ où γ est donné par

$$egin{array}{lll} \gamma : & [0,1] &
ightarrow & \mathbb{C} \ & t & \mapsto & e^{2i\pi t} \end{array}$$

Proposition 2.22 Toute partie convexe de *E* est connexe par arcs.

Preuve Soit A une partie convexe de E, alors pour tout $(x, y) \in A^2$ et tout $t \in [0, 1]$, on a :

$$tx + (1-t)y \in A$$
.

Il s'en suit alors que $\gamma:[0,1] \to A$, $t \mapsto tx + (1-t)y$ est un arc continu joignant x et y dans A.

Théorème 2.5 Les parties connexes par arcs de \mathbb{R} sont les intervalles.

Preuve Les intervalles de \mathbb{R} sont des convexes de \mathbb{R} , alors ils sont **cpa**. Réciproquement, soit A une partie **cpa** de \mathbb{R} , alors pour tout $(x,y) \in A^2$, il existe un arc continu $\gamma : [0,1] \to A$ joignant x et y. Appliquons le théorème des valeurs intermédiaires, $\gamma([0,1])$ est un intervalle de \mathbb{R} et comme x, $y \in \gamma([0,1])$, alors $[x,y] \subset \gamma([0,1]) \subset A$. Alors, A est une partie convexe de \mathbb{R} et donc un intervalle.

Proposition 2.23 Soit $A \subset X$, F un **evn** de dimension finie et $f: X \subset E \to F$, alors :

$$\begin{cases} A \text{ est } \mathbf{cpa} \\ f \text{ continue} \end{cases} \implies f(A) \text{ est } \mathbf{cpa}.$$

Preuve Soit $(u, v) \in f(A)^2$, il existe $(x, y) \in A^2$ tel que u = f(x) et v = f(y). Comme A est **cpa**, il existe un arc continu $\gamma : [0, 1] \to A$ tel que $\gamma(0) = x$ et $\gamma(1) = y$. Par suite, $f \circ \gamma : [0, 1] \to f(A)$ est un arc continu joignant u et v dans f(A) puisque f, γ sont continues, $u = f \circ \gamma(0)$ et $v = f \circ \gamma(1)$. Finalement, la partie f(A) est **cpa**.

Exemple Pour tout intervalle I de \mathbb{R} et toute application continue $f: I \to E$, la courbe f(I) est une partie **cpa** de E. Par exemple, la parabole $\{(x,y) \in \mathbb{R}^2, \ y^2 = x\}$ est une partie **cpa** de \mathbb{R}^2 car c'est l'image de \mathbb{R} (qui est **cpa**) par l'application continue $f: \mathbb{R} \to \mathbb{R}^2, x \mapsto (x^2, x)$.

Remarque. L'image réciproque d'une partie **cpa**, par une application continue peut ne pas être **cpa**. Par exemple, pour $f : \mathbb{R} \to \mathbb{R}^2$, $x \mapsto (x^2, x)$ et $B = [1, +\infty[\times \mathbb{R}, \text{ on a B est cpa } \text{ car convexe } \text{ de } \mathbb{R}^2, \text{ mais } f^{-1}(B) =] - \infty, -1] \bigcup [1, +\infty[\text{ n'est pas } \text{ cpa } \text{ (ce n'est pas } \text{ un intervalle } \text{ de } \mathbb{R}).$

Théorème 2.6 — Théorème des valeurs intermédiaires. Soit $f: A \subset E \to \mathbb{R}$, si A est connexe par arcs et f est continue, alors f atteint tout réel entre deux réels qu'elle atteint déjà.

Preuve A est **cpa** et f continue, alors f(A) est **cpa** de \mathbb{R} et donc f(A) est un intervalle de \mathbb{R} .

Proposition 2.24 Si A est cpa de E et $P \subset A$ non vide, à la fois ouverte et fermée dans A, alors

$$P = A$$
.

Preuve Par l'absurde, supposons que $P \neq A$. Il existe alors $x \in P$ et $y \in \mathbb{C}_A(P)$. Comme, A est une partie **cpa**, il existe un arc continu $\gamma : [0,1] \to A$ tel que $y = \gamma(0)$ et $x = \gamma(1)$. Soit $\chi_P : A \to \mathbb{R}$ la fonction caractéristique de P, alors pour tout ouvert Ω de \mathbb{R} , $\chi^{-1}(\Omega)$ est un ouvert de A car :

$$\chi^{-1}(\Omega) = \chi^{-1}(\{0,1\}) = A \quad ou \quad \chi^{-1}(\Omega) = \chi^{-1}(\{1\}) = P,$$

ou

$$\chi^{-1}(\Omega) = \chi^{-1}(\{0\}) = C_A(P) \text{ ou } \chi^{-1}(\Omega) = \chi^{-1}(\emptyset) = \emptyset.$$

Il en résulte que χ_P est continue et donc $\chi_P \circ \gamma$: $[0,1] \to \mathbb{R}$ est continue. Mais, $\chi_P \circ \gamma$ est à valeurs dans $\{0,1\}$ avec $\chi_P \circ \gamma(0) = 0$ et $\chi_P \circ \gamma(1) = 1$ et ceci contredit le théorème des valeurs intermédiaires. Finalement, on obtient P = A.

Exercice 2.12 Soient A et B deux parties cpa d'un evn E. Montrer que A + B est cpa.

Exercice 2.13 Soient A (resp. B) est une partie cpa d'un evn E (resp. F).

- 1. Montrer que si A et B sont **cpa**, alors $A \times B$ est connexe par arcs.
- 2. Montrer que si $A \times B$ est **cpa** et A, B non vides, alors A et B sont **cpa**.

Exercice 2.14 Soit A cpa d'un evn de dimension finie E et $f: A \to \{0,1\}$ une application continue. Montrer que f est constante. $(\{0,1\}$ est muni de la distance induite par celle de \mathbb{R}).