

Event Extraction Template

Sentence-level Event Extraction

Motivation

- Pipeline models suffer from the error propagation problem and disallow interactions among components.
- Existing neural models do not explicitly model cross-subtask and cross-instance interactions among knowledge elements.

Russia's foreign **minister** expressed outrage at suggestions from a top **Washington official** last week...

→ A single joint neural model for Information Extraction.

• Our OneIE framework extracts the information graph from a given sentence in four steps: encoding, identification, classification, and decoding

• Encoding: We use a BERT encoder to obtain the contextualized embedding of each token

- Identification: We use CRF taggers to identify entity mentions and event triggers
- We define the identification loss as $\mathcal{L}^{\mathrm{I}} = -\log p(\boldsymbol{z}|\boldsymbol{X})$

- Classification: We use task-specific feed-forward networks to calculate label scores for each node or edge
- We define the classification loss as $\mathcal{L}^{\mathrm{t}} = -\frac{1}{N^t} \sum_{i=1}^{N^t} \boldsymbol{y}_i^t \log \boldsymbol{\hat{y}}_i^t$

• **Decoding**: In the test phase, we use a beam search decoder to find the information graph with the highest global score

Incorporating Global Features

- We design a set of *global feature templates* (e.g., event_type₁ role₁ role₂ event_type₂: an entity acts a role₁ argument for an event_type₁ event and a role₂ argument for an event_type₂ event in the same sentence)
- The model learns the weight of each feature during training

Life:Die – victim – target – Conflict:Attack

Positive weight

Life:Die – victim – attacker – Conflict:Attack

Negative weight

Incorporating Global Features

• Given a graph G, we generate its global feature vector as $\mathbf{f}_G = \{f_{1(G)}, \dots, f_M(G)\}$, where $f_i(\cdot)$ is a function that evaluates a certain feature and returns a scalar. For example,

$$f_i(G) = \begin{cases} 1, & G \text{ has multiple ATTACK events} \\ 0, & \text{otherwise.} \end{cases}$$

- Next, we learn a weight vector $u \in \mathbb{R}^M$ and calculate the global feature score of G as the dot production of f_G and g.
- Global score of a graph: local graph score + global feature score:

$$s(G) = s'(G) + \boldsymbol{uf}_G$$

 We assume that the gold-standard graph for a sentence should achieve the highest global score and minimize the following loss function:

$$\mathcal{L}^{G} = s(\hat{G}) - s(G)$$

-11

Global Features

Categary	Description				
Role	1. The number of entities that act as <role<sub>i > and <role<sub>j > arguments at the same time.</role<sub></role<sub>				
	2. The number of <event_type<sub>i> events with <number> <role<sub>j> arguments.</role<sub></number></event_type<sub>				
	3. The number of occurrences of <event_type<sub>i>, <role<sub>j>, and <entity_type<sub>k> combination.</entity_type<sub></role<sub></event_type<sub>				
	4. The number of events that have multiple <role<sub>i> arguments.</role<sub>				
	5. The number of entities that act as a <role<sub>i> argument of an <event_type<sub>j> event and a <role<sub>k> argument of an <event_type<sub>1> event at the same time.</event_type<sub></role<sub></event_type<sub></role<sub>				
Relation	6. The number of occurrences of <entity_type;>, <entity_type;>, and <relation_typek> combination.</relation_typek></entity_type;></entity_type;>				
	7. The number of occurrences of <entity_type<sub>i> and <relation_type<sub>j> combination.</relation_type<sub></entity_type<sub>				
	8. The number of occurrences of a <relation_type<sub>i> relation between a <role<sub>j> argument and a <role<sub>k> argument of the same event.</role<sub></role<sub></relation_type<sub>				
	9. The number of entities that have a <relation_type<sub>i > relation with multiple entities.</relation_type<sub>				
	10. The number of entities involving in <relation_type<sub>i> and <relation_type<sub>j> relations simultaneously.</relation_type<sub></relation_type<sub>				
Trigger	11. Whether a graph contains more than one <event_type<sub>i> event.</event_type<sub>				

Decoding

- We use beam search to decode the information graph
- **Example**: He also brought a check from Campbell to pay the fines and fees.

Experiment: Datasets

- We conduct our experiments on four datasets derived from ACE (Automatic Content Extraction) 2005 and two datasets derived from ERE (Entities, Relations and Events).
- Existing datasets developed by Wadden et al. (2019):
 - ACE05-R: named entity and relation annotations.
 - ACE05-E: entity, relation, and event annotations.
- We created the following datasets:
 - ACE05-CN: Chinese entity, relation, and event annotations.
 - ACEO5-E+ follows the split of ACEO5-E and has richer annotations.
 - ERE-EN is derived from LDC205E29, LDC2015E68, and LDC2015E78.
 - ERE-ES: Spanish entity, relation, and event annotations.

Experiment: Results

• We compare our model to DyGIE++, the state-of-the-art end-to-end IE model, on ACE05-R and ACE05-E.

	ACE05-R		ACE05-E				
Model	Entity	Relation	Entity	Trigger Identification	Trigger Classification	Argument Identification	Argument Classification
DyGIE++	88.6	63.4	89.7	-	69.7	53.0	48.8
DyGIE++*	-	-	90.7	76.5	73.6	55.4	52.5
OneIE	88.8	67.5	90.2	78.2	74.7	59.2	56.8
OnelE*	-	-	90.3	78.6	75.2	60.7	58.6

- DyGIE++* and OneIE* use a four-model ensemble optimized for trigger detection.
- We hold the opinion that single-model scores better reflect the actual performance of OneIE and should be used for future comparison

Experiment: Example

- Example: Prime Minister Abdullah Gul **resigned** earlier Tuesday to make way for Erdogan, who **won** a parliamentary seat in by-elections Sunday.
- The local argument role classifier predicts a redundant Person edge between "won" and "Abdullah Gul".

- An Elect event usually has only one
 Person argument
- 2. An entity is unlike to act as a **Person** argument for **End-Position** and **Elect** events at the same time

New Benchmark Results

• In order to reinstate some important elements absent from ACE05-R and ACE05-E, we construct two new benchmark datasets, ACE05-E+ and ERE-EN by adding back:

Entity: pronouns

Relation: directions

• Event: multi-token triggers

Dataset	Entity	Trigger Identification	Trigger Classification	Argument Identification	Argument Classification	Relation
ACE05-E ⁺	89.6	75.6	72.8	57.3	54.8	58.6
ERE-EN	87.0	68.4	57.0	50.1	46.5	53.2

Porting to Another Language

- We evaluate our proposed framework on ACE05-CN (Chinese) and ERE-ES (Spanish).
- OneIE works well on Chinese and Spanish data without any special design for the new language.
- We observe that adding English training data can improve the performance on Chinese and Spanish.

Dataset	Training	Entity	Trigger Classification	Argument Classification	Relation
ACEOE CN	CN	88.5	65.6	52.0	62.4
ACE05-CN	CN+EN	89.8	67.7	53.2	62.9
EDE EC	ES	81.3	56.8	40.3	48.1
ERE-ES	ES+EN	81.8	59.1	42.3	52.9

• For ACE05-CN, EN refers to ACE05-E+. For ERE-ES, EN refers to ERE-EN.

Salient Global Features

- Salient positive and negative global features learned by the model
- Our global features are explainable

	Features	Weight
1	A Transport event has only one Destination argument	2.61
2	An Attack event has only one Place argument	2.31
3	A PER-SOC relation exists between two PER entities	1.51
4	A Beneficiary argument is a PER entity	0.93
5	An entity has an ORG-AFF relation with multiple entities	-3.21
6	An event has two Place arguments	-2.47
7	A Transport event has multiple Destination argument	-2.25
8	An entity has a GEN-AFF relation with multiple entities	-2.02

Remaining Errors

• We have analyzed 75 of the remaining errors. In this figure, we present the distribution of various error types which need more features and knowledge acquisition to address in the future.

