ChIP-Seq Data Analysis 1

Lauren Vanderlinden BIOS 6660 Spring 2019

Overview From Last Time

- Walked through RNA-seq pre-processing on yampa
- Many independent scripts
- Good to have a main document which shows which scripts you used

•

Chromosomes

- How DNA is stored in the cell
- >3 billion bases, need to fit in a small space
- DNA is wrapped around proteins called histones which coil into chromosomes
- Chromatin is the DNA and proteins making up the chromosomes

Source: National Cancer Institute

Nucleosome

- Basic unit of packaging
- Consists of DNA wrapped around a core of 8 histone proteins
- Compared to a spool
- Nucleosome positions in the genome are not random
- Determines the accessibility of the DNA to regulatory proteins

Source: Wikipedia

DNA-Protein Physical Interaction

- Many types of DNA-binding proteins
 - Transcription Factors
 - Regulate gene expression
 - Polymerases
 - Enzymes synthesizes long chains of polymers or nucleic acids
 - Nucleases
 - Enzyme which can cleave DNA
 - Histones
 - Chromosome packaging
- For ChIP-Seq we will be interested in transcription factors and histone binding

A histone is shown in blue and DNA in gold 3D structure is very complex

Chromatin Remodeling

- Dynamic modification of chromatin architecture to allow access of condensed genomic DNA
- Allows regulatory transcription machinery proteins to access DNA
 - regulates gene expression
- 2 main methods:
- Covalent histone modifications by specific enzymes
 - Histone acetyltransferases (HATs)
 - Deacetylases
 - Methyltransferases
 - Kinases
- 2. ATP-dependent chromatin remodeling complexes which either move, eject or restructure nucleosomes

Acetyl group:

Methyl group:

Kinases:

Source: Wikipedia

Histone Modifications

- mono-, di-, or trimethylation (M) at arginine or lysine residues
- acetylation (A) at lysine residues
- phosphorylation (P) at serine residues.
- Some amino acids, such as lysine 9 of histone H3, can be subject to either acetylation or methylation, but not both
- H3 trimethyl K4 is popular to look at

Source: Dressler et al, 2008

Transcription

- RNA Polymerase needs to attach to DNA
- But how does it know where to go and bind to?
- Promoter regions
 - ≈100–1,000 bp long right before the transcription start site (TSS)
 - TATA box
- Enhancer Regions
 - $\approx 50-1,500 \text{ bp long}$
 - Can be located up to 1 Mb away
 - always cis-acting

Source: Pearson Education

Transcription Factors

- Basal, or general, transcription factors are necessary for RNA polymerase to function at a site of transcription in eukaryotes
 - Considered the most basic set of proteins needed to activate gene transcription
- Bind to either enhancer or promoter regions of DNA adjacent to the genes that they regulate
- Can cause gene to be either up- or down- regulated
- Many mechanisms:
 - Stabilize or block the binding of RNA polymerase to DNA
 - Catalyze acetylation or deacetylation of histones
 - Recruit coactivator or corepressor proteins to the transcription factor DNA complex

Example of Basal TF

Source: wikipedia

Source: slideServe

ENCODE

https://www.encodeproject.org/

ChIP-Seq

- 1. Chromatin immunoprecipitation (ChIP)
- 2. DNA sequencing (Seq)

Source: Shen et al, 2017

• Goal: identify the binding sites of DNA-associated proteins.

Chromatin Immunoprecipitation (Steps 1&2)

1. Crosslink DNA to protein so stays stable OR Native Approach

- Crosslink using formaldehyde or UV light
- Use crosslinking when looking at TF
- Use native state when looking at histone modifications

2. Fragment

Sonication will shear chromatin

Source: Cell Signaling Technologies

Chromatin Immunoprecipitation (Steps 3&4)

3. Immunoprecipitation

Use an antibody to select protein of interest

Source: US Biology Life Sciences

4. Purify DNA

- Cross-link reversal
- Purify

Source: Cell Signaling Technologies

ChIP-Paired With Some **DNA Technology**

Source: Katerina Kechris

Source: Cell Signaling Technologies

Negative Controls

- Sensitivity and specificity of antibody
- Found large artifacts
 - Find peaks in control
- Biases:
 - Shearing of DNA
 - GC content
 - Regions of open chromatin
- Compare your true ChIP-Seq to a background
- Control sample "input" or "IgG"
 - Sonicated chromatin without immunoprecipitation
 - IgG: "unspecific" IP

Sequencing & Experimental Design

- Platform
 - Illumina
- Fragment Length
 - 25-35 bp common
- Depth
 - 40-50 Million
- R/CSSP
 - Power analysis for sequencing depth in ChIP-Seq analysis
- Use biological replicates
 - N=3 for cell lines
 - Usually use same control

ChIP-Seq Pre-Processing

Raw Reads

Trim Reads

Genome Alignment

Peak Calling

ENCODE Pipeline

- Raw reads in FASTQ format
- ENCODE recommends using BWA
 - Unspliced aligner (no gaps allowed)
 - Okay because we are dealing with DNA
- Take the aligned bam file to a peak calling algorithm

• QC

- Uniquely mapped reads, at most 2 mismatches
- >%50 total reads uniquely mappable
- >50% reads non-redundant
 - Non-Redundant Fraction (NRF)
 - Need NRF > 0.8 for 10M reads
- Wide distribution across genome, low GC bias, etc.

Peak Calling

- What area of the genome do we say is interacting/binding with protein?
- Since we have DNA, we have 2 strands
 - Sense
 - Antisense
- A) TF B) Histone

Histone vs TF Peaks

- Transcription factor peaks are sharper
- Transcription factor
 DNA binding sites are
 typically 10 nt long
- Histone peaks typically ~4x
 times length as TF peaks
- Use different peak calling algorithms based on type of ChIP you used

Read Shifting

- Offset in forward or reverse strand reads
- Majority ChIP-Seq single-end sequencing
- Reads align to either the sense/antisense strands and the 3' or 5' extremes of the DNA fragments pulled down.
- The reads are shifted and the data from both strands combined to determine the most likely bases involved in protein binding.
- How big a "shift" is determined by the fragment size generated in the ChIP-seq library preparation
 - Estimate from sequence data
 - Determine empirically

Cross-Correlation

- Pearson correlation
 between positive and
 negative strand profiles at
 different strand shift
 distances, k.
- Cross-correlation peaks at 2 places:
 - Read length (blue)
 - Average fragment length (red)

Bad data with NSC values < 1.05 and RSC values < 0.8

Source: Cornell University

Normalization

- Want to compare ChIP to control/input
- Total read counts between ChIP and control/input not the same
- Unfortunately the control/input does not have a uniform distribution of reads across genome
 - GC content, CNV, mappability
- Issue is ChIP really consists of 2 distributions (IP fragments + background) where the control/input just consists of 1 distribution (background)
- Estimate background reads ratio in ChIP reads
 - Scale by ChIP/control normalization factor
 - N₁ and N₂ total reads for ChIP and control
 - $\Pi_0 N_1$ background and $(1 \Pi_0) N_1$ enriched signal reads
 - r is the normalization factor

$$r = \frac{\Pi_0 * N_1}{N_2}$$

Peak Calling Programs

Within R:

BayesPeak, PICS, MOSAiCS, iSeq, ChIPseqR, CSAR, ChIP-Seq, SPP, NarrowPeaks

Command Line Tools:

CisGenome, **E-RANGE**, FindPeaks, F-Seq, GLITR, **MACS**, PeakSeq, QuEST, SICER, SiSSRs, spp, Useq, MUSIC, BCP

The options are endless!

Program	\Q_2	Selence Ve	sion	aphical wi	Ser into	de d	, kerned of Strington	dereited the state of the state	scoring sold sold sold sold sold sold sold sold	Conduction Conduction	ides for de la	endricus glastid	de didigité	A statistical flodes
CisGenome	28	1.1	X *	х				х	х		х		X	conditional binomial model
Minimal ChipSeq Peak Finder	16	2.0.1			Х			х				Х		
E-RANGE	27	3.1			Х			х				х	Х	chromsome scale Poisson dist.
MACS	13	1.3.5		Х				Х			Х		Х	local Poisson dist.
QuEST	14	2.3				Х		х			X**		X	chromsome scale Poisson dist.
HPeak	29	1.1		Х				Х					Х	Hidden Markov Model
Sole-Search	23	1	Х	Х				Х		Х			Х	One sample t-test
PeakSeq	21	1.01			х			х					X	conditional binomial model
SISSRS	32	1.4		Х			Х					Х		
spp package (wtd & mtc)	31	1.7		Х			Х		Х	X'	Х			
				Gene	eratin prof	g density iles		Peak ignment		ments w. rol data		Sig	gnificance control	relative to data

X* = Windows-only GUI or cross-platform command line interface

X** = optional if sufficient data is available to split control data

Source: Parker at al, 2009

X' = method exludes putative duplicated regions, no treatment of deletions

New Recommendations

- Poisson test to rank their candidate peaks are more powerful than those that use a Binomial test
- Best for TF:
 - BCP and MACS2
- Best for Histones:
 - BCP and MUSIC

Briefings in Bioinformatics, 18(3), 2017, 441-450

doi: 10.1093/bib/bbw035

Advance Access Publication Date: 11 May 2016

Pape

Features that define the best ChIP-seq peak calling algorithms

Reuben Thomas, Sean Thomas, Alisha K. Holloway and Katherine S. Pollard

MACS/MACS2

1. Removes redundant reads

- Detects read length automatically
- Filters duplicates
- Calculates max # duplicate reads in single positions warranted by sequencing depth, removes excess of this number

2. Accounts for read-shifting for the offset in forward or reverse strand reads

- Models distance between paired forward and reverse strand peaks
- Slides window across genome to find enriched regions (M-fold > background)
- Size bandwidth is 2x bandwidth parameter (can opt for a broad option for histones)
- Expected background # reads*length/mappable genome size

Peak Detection Phase

- Extends reads in 3' direction to the fragment length from modeling
- Scales samples linearly to same read number of control/input
- Scans genome again window size 2x fragment length
- P-value from dynamic Poisson distribution capture local biases and read background levels
- Benjamini-Hochberg FDR correction

MACS2 Code

Filter duplicates for each bam file

```
    i input file
    f format of input file
    g genome you aligned to
    --keep-dup number of duplicates to keep
    o output file
```

```
# Filter duplicates
# Write down the count of reads for each sample after duplicate removal

macs2 filterdup \
-i "-/Course_Materials/ChIPSeq/Preprocessed/Alignment_BWA/tp53_r2.fastq_trimmed.fastq_sorted.bam" \
-f BAM -g hs --keep-dup=1 --verbose=3 -o "tp53_r2.fastq_trimmed.fastq_sorted_filterdup.bed"

macs2 filterdup \
-i "-/Course_Materials/ChIPSeq/Preprocessed/Alignment_BWA/TAp73beta_r2.fastq_trimmed.fastq_sorted.bam" \
-f BAM -g hs --keep-dup=1 --verbose=3 -o "TAp73beta_r2.fastq_trimmed.fastq_sorted_filterdup.bed"

macs2 filterdup \
-i "-/Course_Materials/ChIPSeq/Preprocessed/Alignment_BWA/input.fastq_trimmed.fastq_sorted.bam" \
-f BAM -g hs --keep-dup=1 --verbose=3 -o "input.fastq_trimmed.fastq_sorted_filterdup.bed"
```

BED File Format

- Tab delimited file
- No Column Headers
- First 3 columns required

Column 1	Chromosome
Column 2	Start (bp)
Column 3	End (bp)
Column 4	Name
Column 5	Score
Column 6	Strand

		s_summits.bed 🔀			
1	chr1	12249141	12249142	sottnik_5_Peaks_peak_1	5.41996
2	chr1	12494463	12494464	sottnik 5 Peaks peak 2	7.79329
3	chr1	13946482	13946483	sottnik 5 Peaks peak 3	12.54663
4	chr1	17641376	17641377	sottnik 5 Peaks peak 4	11.24613
5	chr1	17943282	17943283	sottnik 5 Peaks peak 5	7.67633
6	chr1	17943395	17943396	sottnik 5 Peaks peak 6	5.57480
7	chr1	24311231	24311232	sottnik 5 Peaks peak 7	3.13063
8	chr1	27288485	27288486	sottnik 5 Peaks peak 8	11.08755
9	chr1	31261614	31261615	sottnik 5 Peaks peak 9	10.20604
LO	chr1	32967779	32967780	sottnik 5 Peaks peak 10	15.28615
1	chr1	34224392	34224393	sottnik 5 Peaks peak 11	3.00504
2	chr1	41824895	41824896	sottnik 5 Peaks peak 12	3.79357
3	chr1	43707344	43707345	sottnik 5 Peaks peak 13	10.21408
4	chr1	55340849	55340850	sottnik 5 Peaks peak 14	2.42241
5	chr1	56046665	56046666	sottnik 5 Peaks peak 15	10.91979
16	chr1	64508576	64508577	sottnik 5 Peaks peak 16	9.99441
17	chr1	66445080	66445081	sottnik 5 Peaks peak 17	
18	chr1	94019997	94019998	sottnik 5 Peaks peak 18	
19	chr1	95205433	95205434	sottnik 5 Peaks peak 19	
20	chr1	100333542	100333543	sottnik 5 Peaks peak 20	
1	chr1	109371345	109371346	sottnik 5 Peaks peak 21	
10	ab w1	100013533	100012522	ant+mile E Donles monle 22	

MACS2 Code

Predict Fragment Length

```
    i input file
    g genome you aligned to
    m M-FOLD Range to look at (default is 5 – 50)
    bw bandwidth of region used to compute fragment size (default 300)
```

```
# predict fragment length
# write down the fragment length for each sample

macs2 predictd -i tp53_r2.fastq_trimmed.fastq_sorted_filterdup.bed -g hs -m 5 20
macs2 predictd -i TAp73beta_r2.fastq_trimmed.fastq_sorted_filterdup.bed -g hs -m 5 20
macs2 predictd -i input.fastq_trimmed.fastq_sorted_filterdup.bed -g hs -m 5 20
```

MACS2 Code

- -t ChIP file
- -c control/input file
- -n names to generate output
- --broad look for broad peaks (histones)
- --bgd generate bedgraph files

```
# MACS2 callpeak options
macs2 callpeak -h

# -t sample -c control -g effective genome size needs to be empirically computed using
# a hg38.fa genome file for
# hg38 but for this practical use 'hs' which is = 2.6e9, the value for hg19
# -f filetype --bdg generate bedgraph

macs2 callpeak \
-t "-/Course_Materials/ChIPSeq/Preprocessed/Alignment_BWA/tp53_r2.fastq_trimmed.fastq_sorted.bam" \
-c "-/Course_Materials/ChIPSeq/Preprocessed/Alignment_BWA/input.fastq_trimmed.fastq_sorted.bam" \
-g hs -n tp53_r2.fastq_trimmed.fastq_sorted_standard -f BAM --keep-dup auto --bdg

macs2 callpeak \
-t "-/Course_Materials/ChIPSeq/Preprocessed/Alignment_BWA/TAp73beta_r2.fastq_trimmed.fastq_sorted.bam" \
-c "-/Course_Materials/ChIPSeq/Preprocessed/Alignment_BWA/input.fastq_trimmed.fastq_sorted.bam" \
-c "-/Course_Materials/ChIPSeq/Preprocessed/Alignment_BWA/input.fastq_trimmed.
```

Bedgraph & BigWig Files

For visualization specifically in the genome browser

deeptools samtools

Provide good options for going back and forth between file formats

remember that there are 2 deepTools for bam → bigWig conversion:

* bamCoverage: for individual files (like those shown here)

* bamCompare: to normalize two files to each other

MAC2 Output

	Α		В	C	D	E	F	G	Н		J	K	L	M	N	0	Р	Q	R	S	T
1	# This f	ile is ger	nerated l	by MACS v	ersion 2.1	1.0.2015073	1														
2	# Comr	mand lin	e: callpe	ak -t sott	nik_5.mar	kdup.Sample	e.bed -c co	ntrolSamp	ole.bed -f BEI	O -g hs -n	sottnik_5_l	Peaks outo	dir /data/ho	me/vander	II/Sottnik/d	data_proce	ssed/v1.alr	eadyAligne	d/sottnik_5	_peaks -B -	SPMR
3	# ARGU	IMENTS	LIST:																		
4	# name	= sottn	ik_5_Pea	aks																	
5	# form	at = BED																			
6	# ChIP-	seq file	= ['sottn	ik_5.mark	dup.Samp	ole.bed']															
7	# contr	ol file =	['contro	lSample.b	ed']																
8	# effec	tive gen	ome size	= 2.70e+	09																
9	# band	width =	300																		
10	# mode	el fold =	[5, 50]																		
11	# qvalu	e cutoff	= 5.00e	-02																	
12	# Large	r datase	t will be	scaled to	wards sm	aller dataset															
13	# Range	e for cal	culating	regional I	ambda is:	1000 bps an	d 10000 bp	os													
14	# Broad	d region	calling is	off																	
15	# MAC	will sav	e fragm	ent pileup	signal per	r million rea	ds														
16																					
17	# tag si	ze is det	ermined	as 49 bps	3																
18	# total	tags in t	reatmen	t: 243399	85																
19	# tags a	after filt	ering in t	reatment	: 2433998	5															
20	# maxii	num du	olicate ta	ags at the	same pos	ition in treat	tment = 1														
21	# Redu	ndant ra	te in tre	atment: 0	.00																
22	# total	tags in c	ontrol: 2	4339980																	
23	# tags a	after filt	ering in c	ontrol: 24	4339980																
24	# maxii	num du	olicate ta	ags at the	same pos	ition in cont	rol = 1														
25	# Redu	ndant ra	te in cor	trol: 0.00)																
26	# d = 49	9																			
27	# alterr	native fr	agment l	ength(s) r	may be 49	bps															

MACS2 Output

-log10(p-value) -log10(q-value)

	_	**	•	_	• •	
Absolute summit		F	old Enrich	ment		

		ative fragmen	100 mm	La constitución de la constituci	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		A CONTRACTOR OF THE STATE OF TH		A CONTRACTOR OF THE PARTY OF TH				
28	chr	start	end	length	abs_summ	pileup	-LOG10(pv	fold_enric	-LOG10(qv	name			
29	chr1	12249114	12249173	60	12249142	10	10.10805	7.53115	5.41996	sottnik_5	_Peaks_	_peak_	1
30	chr1	12494400	12494509	110	12494464	15	12.64637	8.08081	7.79329	sottnik_5	Peaks	_peak_	2
31	chr1	13946446	13946680	235	13946483	16	17.83532	11.04613	12.54663	sottnik_5	Peaks	_peak_	3
32	chr1	17641249	17641549	301	17641377	27	16.40858	7	11.24613	sottnik_5	Peaks	_peak_	4
33	chr1	17943202	17943304	103	17943283	15	12.52288	8	7.67633	sottnik_5	Peaks	peak	5
34	chr1	17943361	17943415	55	17943396	13	10.30259	7.07071	5.5748	sottnik_5	_Peaks_	_peak_	6
35	chr1	24311219	24311307	89	24311232	10	7.68112	6.00109	3.13063	sottnik_5	Peaks	_peak_	7
36	chr1	27288454	27288541	88	27288486	17	16.24134	9.81997	11.08755	sottnik_5	Peaks	peak	8
37	chr1	31261495	31261660	166	31261615	22	15.25735	7.66667	10.20604	sottnik_5	Peaks	peak	9
38	chr1	32967664	32967826	163	32967780	18	20.85935	12.34568	15.28615	sottnik_5	Peaks	peak	10
39	chr1	34224371	34224600	230	34224393	14	7.53305	5	3.00504	sottnik_5	Peaks	peak	11
40	chr1	41824872	41824930	59	41824896	13	8.38157	5.78273	3.79357	sottnik_5	Peaks	peak	12
41	chr1	43707163	43707459	297	43707345	15	15.26552	9.74481	10.21408	sottnik 5	Peaks	peak	13

Analyses with Peaks

Peak Annotation

- Is my peak in an gene?
- What about promoter region?
- Enhancer region?
- Could just look at the nearest gene and calculate distance from gene
- R/ChIPseeker helps annotate peaks

Source: Perreault et al, 2016

ChIPseeker Code

```
## loading packages
library(ChIPseeker)
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene
library(clusterProfiler)

##read in peak calls (bed file)
peak <- readPeakFile("/path/macs2_peaks.bed")</pre>
```

peak is a GRanges object, which is a type of S4 object

```
## GRanges object with 1331 ranges and 2 metadata columns:
            segnames
                                  ranges strand
               <Rle>
                               <IRanges> <Rle>
                                                        <factor> <numeric>
        [1]
                chr1
                           815093-817883
                                                     MACS peak 1
                                                                     295.76
        [2]
                chr1
                         1243288-1244338
                                                     MACS peak 2
                                                                      63.19
        [3]
                                                     MACS_peak_3
                                                                     100.16
                chr1
                         2979977-2981228
        [4]
                chr1
                         3566182-3567876
                                                     MACS peak 4
                                                                     558.89
        [5]
                chr1
                         3816546-3818111
                                                     MACS peak 5
                                                                      57.57
##
     [1327]
                chrX 135244783-135245821
                                              * | MACS peak 1327
                                                                      55.54
                                              * | MACS_peak_1328
     [1328]
                chrX 139171964-139173506
                                                                     270.19
     [1329]
                                                  MACS peak 1329
                                                                     918.73
                chrX 139583954-139586126
     [1330]
                                                  MACS peak 1330
                chrX 139592002-139593238
                                                                     210.88
     [1331]
                chrY 13845134-13845777
                                              * | MACS peak 1331
                                                                      58.39
     seginfo: 24 sequences from an unspecified genome; no seglengths
```

ChIPseeker Code – coverage plot

```
covplot(peak, weightCol="V5")
```


ChIPseeker Code – TSS Distance Code

#find what you consider promoter regions
promoter <- getPromoters(TxDb=txdb, upstream=3000, downstream=3000)
##find distance peaks are to defined promoter regions
tagMatrix <- getTagMatrix(peak, windows=promoter)</pre>

ChIPseeker Code – Peak Annotation

Summary

- Use chromatin immunoprecipitation to extract DNA fragments which bind to protein of interest
- Make peak calls
- Annotate peak calls

References

- Dressler GR, Epigenetics, Development, and the Kidney. JASN November 2008, 19 (11) 2060-2067
- Shen C, Ding Y, Tang J, Song J, Guo F. Identification of DNA-protein Binding Sites through Multi-Scale Local Average Blocks on Sequence Information. Molecules. 2017 Nov 28;22(12)
- Wilbanks EG, Facciotti MT. Evaluation of algorithm performance in ChIP-seq peak detection. PLoS One **2010**, vol. 5 pg. e11471
- Park PJ. ChIP—seq: advantages and challenges of a maturing technology. Nature Reviews Genetics **2009** volume 10, pages 669–680.
- Jung, Y. L. et al. Impact of sequencing depth in ChIP—seq experiments. *Nucleic Acids Res.* **42**, e74 (**2014**).
- T. Bailey, P. Krajewski, I. Ladunga, C. Lefebvre, Q. Li, T. Liu, P. Madrigal, C. Taslim, J. Zhang. *Practical guidelines for the comprehensive analysis of ChIP-seq data*. PLoS Comput. Biol., 9 (**2013**), p. e1003326

References Continued

- Xu H, Handoko L, Wei X, Ye C, Sheng J, Wei C, Lin F, Sung W: A signal—noise model for significance analysis of ChIP-seq with negative control. *Bioinformatics* **2010**, 26(9):1199–1204.
- Perreault AA, Venters BJ. *The ChIP-exo Method: Identifying Protein-DNA Interactions with Near Base Pair Precision*. J Vis Exp. **2016** Dec 23;(118). doi: 10.3791/55016.
- https://www.youtube.com/watch?v=nkWGmaYRues
- https://biohpc.cornell.edu/lab/doc/Chip-seq workshop lecture1.pdf
- https://bioinformatics-core-shared-training.github.io/cruk-autumn-school-2017/ChIP/Materials/Practicals/Prctical4 PeakCalling SS.pdf