CHAPTER TWO

Diodes

Digital flectronics.

Introduction

Types of diodes:

PN-junction (p-type & n-type)

Schottky (metal & n-type)

($MN \ diodes$) (but not all metals) $_{D11}$

Zener (P+N+-junction)

ZENER

- Applications of diodes:
 - Variable capacitors
 - DC voltage level-shifting (faster switching speed)

Diode Modelling

Schockly's current-voltage characteristics:

$$I_D = I_S \left(\exp \left\{ \frac{V_D}{\phi_D} \right\} - 1 \right)$$

=25.9mV @ 300K

Thermal voltage : $\phi_T = kT$ Temerature [K] = 25.9mV @ 300K Flementary charge=1.6x10⁻¹⁹ [C]

Boltzmann's constant=1.38x10⁻²³ [J/K]

Example
Using Schockly's expression, determine the diode current for $V_D = 0.1, 0.2, 0.5, 0.7, 0.8, 1, 1.1$; assuming $I_S = 10^{-14} \text{ A}$.

Solution

$$I_D(V_D=0.1)=465 \text{ fA}$$

$$I_D(V_D=0.5)=2.42 \mu A$$

$$I_D(V_D=1.1)=27.9 \text{ kA}$$

$$I_D(V_D=0.2)=22.6 \text{ pA}$$

$$I_D(V_D=0.7) \neq 5.47$$
mA

$$I_D(V_D=0.8) = 260 \text{/mA}$$

Diode Modelling

Schockly's current-voltage characteristics:

$$I_D = I_S \left(\exp \left\{ \frac{V_D}{\phi_T} \right\} - 1 \right)$$

Example

Using Schockly's expression, determine the diode current for $V_D = -0.1$, -0.2, -0.5, -0.8, -1, assuming $I_S = 10^{-14}$ A.

Solution

$$I_D(V_D = -0.1) = -0.979 I_S$$

$$I_D(V_D = -0.2) = -0.99956 I_S$$

$$I_D(V_D \ge 0.1) \approx I_S\left(e^{\frac{V_D}{\phi_T}}\right)$$

$$I_D(V_D \le -0.1) \approx -I_S$$

Diode Modelling

- Piecewise linear model:
 - Cutoff: $I_D = 0$ for $V_D < V_{D(on)}$
 - Conducting: $V_D = V_{D(on)}$ for $I_D > 0$

$$V_{D(on)} = 0.7 V$$

$$V_{D(on)} = 0.3 V$$

$$V_{D(on)} = 0.3 V$$

$$V_{D(on)} = 0.3 V$$

$$V_{D(on)} = 0.3 V$$

© Dr. Anas

Skip sections <u>2.3 & 2.4</u>

- Consists only of diodes and resistors
- Performs AND and OR logic functions
- Diode AND gate

For
$$V_{in(1,2)} > V_{DC} - V_{D(ON)} \Rightarrow D_{(1,2)}$$
 is "OFF"

$$V_{in(1\&2)}$$
: $High$ "1" \Rightarrow $V_{Out} = V_{DC}$: $High$ "1"

 $I_{R} = \begin{cases} 0; \\ \text{when } \underline{\text{both}} \ D_{1} \ \text{and} \ D_{2} \ \text{are} \ OFF \\ & \begin{array}{c} V_{1} & V_{2} & V_{0} \\ \hline U_{1} & U_{2} & U_{0} \\ \hline U_{2} & U_{2} & U_{2} & U_{2} \\ \hline U_{2} & U_{2} & U_{2} & U_{2} \\ \hline U_{3} & U_{2} & U_{3} & U_{3} \\ \hline U_{4} & U_{4} & U_{4} & U_{4} \\ \hline U_{5} & U_{5} & U_{5} & U_{5} \\ \hline U_{5} & U_{5} & U_{5} \\ \hline U_{5} & U_{5} & U_{5} & U_{5} \\ \hline U_{5} & U_{5} & U_{5} & U_{5} \\ \hline U_{5} & U_{5} & U_{5} & U_{5} \\ \hline U_{5} & U_{5} & U_{5} & U_{5} \\ \hline U_{5} & U_{5} & U_{5} & U_{5} \\ \hline U_{5} & U_{5} & U_{5} & U_{5} \\ \hline U_{5} & U_{5} & U_{5} & U_{5} \\ \hline U_{5} & U_{5} & U_{5} & U_{5} \\ \hline U_{5} & U_{5} & U_{5} & U_{5} \\ \hline U_{5} & U_{5} & U_{5} & U_{5} \\ \hline U_{5} & U_{5} & U_{5} & U_{5} \\ \hline U_{5} & U_{5} & U_{5} & U_{5} \\ \hline U_{5} & U_{5} & U_{5} &$

1. Diode AND gate

© Dr. Anas

 V_{In2} is high V_{In2} is low = 0V

Example

Show that if $V_{\mathit{In1}} \geq V_{\mathit{In2}} + 1$, then D_1 is cutoff

Solution

$$V_{Out1} = V_{D1} + V_{In1}$$

$$\geq V_{D1} + V_{In2} + 1$$

$$V_{Out2} = V_{D2} + V_{In2}$$

$$V_{Out2} = V_{Out1}$$

$$V_{D2} + V_{In2} \ge V_{D1} + V_{In2} + 1$$

$$|V_{D2}| \ge V_{D1} + 1$$

Max. Of V_{D1} and V_{D2} is $V_{D(on)}$ is 0.7V.

VDC +V

If
$$V_{D1} = V_{D(on)} \rightarrow V_{D2} \ge 1.7V$$

V_{D1} has to be -0.3V \leq V_{D(on)}

Diode OR gate

For
$$V_{in(1,2)} > V_{D(ON)} \Rightarrow D_{(1,2)}$$
 is "ON"

$$V_{in(1\&2)}: Low"0" \Rightarrow V_{Out} = 0: Low"0"$$

when both D_1 and D_2 are OFF

$$\begin{pmatrix} V_{In} - V_{D_{ON}} \end{pmatrix} / R_1;$$

$$\begin{pmatrix} V_{In} - V_$$

0V

2. Diode OR gate

$$V_{In2}$$
 is low

Level Shifted AND Gate

Level Shifted AND Gate

Level Shifted OR Gate

Clamping Diodes (other applications)

 Some gates may get damaged when their input voltages are negative

 The diodes prevent the inputs from falling below -V_{D(ON)}

V_{In2}
Input stage

When the input voltages are positives, those diodes are open circuits

Level Shifting Diodes (other applications)

Easy, and also stated before

HW #2:Solve Problems: 2.6, 2.8, 2.12, 2.18, 2.20, 2.21