

STATS507 PROJECT

Predict the default probability For Online Microlending platforms

Member: Yifeng He, Wang Xiang, Yanze Liu

CONTENTS

PART 01 Project Overview

PART 02 Dataset Description

PART 03 Statistical Methods

PART 04 Conclusion

PART 01

Project Overview

Current Situation

Time-consuming and high cost

Standard is not clear

Misclassification

Using programming and statistical methods, based on the user's past financial records

PART 02

Dataset Description

Dataset details

Auth_Info											
Loan ID			ID_C	ID_Card		ed Time for I	_oan		Authorized Phone		
Credit_Info)										
Loan ID			Cred	Credit Score		Quota			Overdraft		
Receive_ac	ddr_ir	nfo									
Loan ID Address I		Receive		egion	Receiver Phone		Rec	Receiver Fixed Phone			
Backcard_i	info										
Loan ID		Bank Name		Card Type		Bind Phone Number					
Order_info)										
Loan ID		Order Amount		Type Pay		Order Status		Uni	Unit Price		
User_info											
Loan ID	Sex	Birthday	Hobby	Marriage	Income	Degree	QQ accou	nt We	chat account	Account Level	
Target							•	***************************************			
Loan ID				Loan A	pplication	Submission Time		Target	Target		

PART 03

Statistical Methods

Data cleaning & Feature Preprocessing

Understand the features

Several Spikes

Model Training and Result Evaluation

Accuracy score:

89.62%

Recall:

32.72%

Precision:

10.07%

לל

Valid AUC Score:

0.620

imbalance in

data

Model Training and Result Evaluation

Model Training and Result Evaluation

Feature Selection

Select 20 most important variables

The results obtained by the two methods are similar

PART 04 Conclusion

Conclusion

XGBoost

Comparison

Random Forest

Light GBM

Knowledge Sharing

Light GBM

Light GBM is a fast, distributed, high-performance gradient boosting framework based on decision tree algorithm [1]

What different from other boosting algorithms

For most boosting algorithms:

For light GBM:

Reference

1. Mandot, P. (2018, December 1). What is LightGBM, How to implement it? How to fine tune the parameters? Retrieved from https://medium.com/@pushkarmandot/https-medium-com-pushkarmandot-what-is-lightgbm-how-to-implement-it-how-to-fine-tune-the-parameters-60347819b7fc

THANK YOU

