Calculs d'espérance : un jeu d'enfants

- 1. (CC 2012) Trois bébés jouent à un jeu d'éveil constitué d'une boîte munie d'une serrure et d'un trousseau de quatre clés dont une seule ouvre la boîte.
 - Camille est la plus petite : à chaque tentative elle essaye une clé au hasard
 - Arthur est le plus concentré : il procède avec méthode, en éliminant successivement les clés qui ne marchent pas
 - Sonia, un peu étourdie, ne tient compte à chaque essai que de l'échec immédiatement précédent
 - a) Déterminer la loi de X (respectivement Y, Z), le nombre d'essais nécessaires à Camille (respectivement Arthur, Sonia) pour ouvrir la boîte.
 - b) Quel est le nombre moyen d'essais effectués par chacun?
- **2.** Variables continues Soit X une variable aléatoire. Déterminer pour quelles valeurs de $\lambda \in \mathbb{R}$ la variable $e^{\lambda X}$ est intégrable et calculer $\mathbb{E}[e^{\lambda X}]$ dans chacun des cas suivants :
 - a) X suit la loi uniforme sur un intervalle [a, b],
 - b) X suit la loi exponentielle de paramètre $\theta > 0$,
 - c) X suit la loi normale $\mathcal{N}(0,1)$.
- **3.** Variables discrètes (Examen 2012) Soit X et Y deux variables indépendantes à valeur dans \mathbb{N} de lois respectives Poisson de paramètre $\lambda > 0$ et Poisson de paramètre $\mu > 0$.
 - a) Rappeler l'expression de $\mathbb{P}(X=k), k=0,1,\ldots$
 - b) Rappeler l'expression de la fonction génératrice de la loi de Poisson, i.e. $g_X(s) := \mathbb{E}(s^X), s \in [0,1].$
 - c) Donner la loi de X + Y. Justifier votre réponse.
 - d) Soit N une variable de loi géométrique de paramètre p. Rappeler sa distribution et sa fonction génératrice.
 - e) Donner la fonction génératrice de $Z := \sum_{i=1}^{N} X_i$ pù les X_i sont des variables indépendantes et identiquement distribuées de loi de Poisson de paramètre $\lambda > 0$.