Logistic Regression

CS 584: Data Mining

Prof. Sanmay Das (Adapted from notes of Prof. Malik Magdon-Ismail)

Recap + Setting

- Linear regression: Find a weight vector \mathbf{w} that minimizes $E_{\text{in}}(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{w} \cdot \mathbf{x}_i f(\mathbf{x}_i))^2$
- $h(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x}$
- Classification problem: Will someone have a heart attack over the next year?

age	62 years
gender	male
blood sugar	120 mg/dL40,000
HDL	50
LDL	120
Mass	190 lbs
Height	5' 10"

The Supervised Learning Problem

- Unknown target function $f: \mathcal{X} \to \mathcal{Y}$
 - ► Classification is when \mathcal{Y} is categorical (e.g. binary)
- Training data $\mathcal{D}: (\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots (\mathbf{x}_n, y_n)$ where $y_i = f(\mathbf{x}_i)$ (possibly noisy).
- Want to learn h "close to" f.
- Two central questions:
 - ► How do we learn *h*?
 - ★ Key algorithmic question!
 - ► What can we say about how close *h* is to *f*?
 - ★ Why is this hard?

Sanmay Das (GMU)

Classification: Basics

5/11

• Logistic regression: Predict probability of a heart attack. $y \in [0,1]$

•
$$h(\mathbf{x}) = \sigma(\mathbf{w} \cdot \mathbf{x})$$
 where $\sigma(z) = \frac{1}{1 + e^{-z}}$

Figure 4.19. Plot of sigmoid (logistic) function, $\sigma(z)$.

Understanding the Setting

- The data is still binary. $y \in \{-1,1\}$
- We never see the *probability* $f(\mathbf{x}) = \Pr[y = 1 \mid \mathbf{x}]$ of someone having a heart attack
 - Just whether they did or not
 - Ways to think about this:
 - Each individual has a risk state or subjective probability, and whether the outcome happens is based on a biased coin flip
 - Each individual has a true state $\in \{-1, +1\}$ and then the data is generated from a *noisy* target function $\Pr[y=1 \mid \mathbf{x}] = f(\mathbf{x})$

Finding a Good Hypothesis

- Our hypothesis is basically just a vector \mathbf{w} the logistic transformation is pre-specified.
- Two notes:
 - I will use the convention of just using **w** rather than *b* and **w** separately. The simplest way to think about this is just of augmenting the **x** vector with a first element that always has the value 1 for any *i*.
 - We are using labels -1 and +1. The book uses 0, 1 for logistic regression. This leads to minor differences in formulas.
- What does it mean to find a "good" w in this setting?
- Two ways to see it:
 - Minimizing an error measure (conventional ML view)
 - Maximizing the probability of seeing the actual y values we saw

Probabilistic Interpretation

- $\mathcal{L}(\mathbf{w}) = \prod_{i=1}^n \Pr(y_i | \mathbf{x}_i, \mathbf{w})$
- We want to pick the w that maximizes this. Let's walk through this:
 - Same as maximizing: $\ln \mathcal{L}(\mathbf{w}) = \sum_{i=1}^{n} \ln \Pr(y_i | \mathbf{x}_i, \mathbf{w})$
 - Or, minimizing: $-\ln \mathcal{L}(\mathbf{w})$.
 - Which is the same as minimizing: $-\frac{1}{n}\sum_{i=1}^{n}\ln\Pr(y_i\,|\,\mathbf{x}_i,\mathbf{w}).$
 - I can write this minimization as: $\min \frac{1}{n} \sum_{i=1}^{n} \ln \frac{1}{\Pr(y_i \mid \mathbf{x}_i, \mathbf{w})}$

Minimizing the log likelihood

- When y = +1, $Pr(y | \mathbf{x}, \mathbf{w}) = \sigma(\mathbf{w} \cdot \mathbf{x}) = \sigma(y_i \mathbf{w} \cdot \mathbf{x})$
- When y = -1, $\Pr(y \mid \mathbf{x}, \mathbf{w}) = 1 \sigma(\mathbf{w} \cdot \mathbf{x}) = \sigma(-\mathbf{w} \cdot \mathbf{x}) = \sigma(y_i \mathbf{w} \cdot \mathbf{x})$
- So we want to minimize $\frac{1}{n} \sum_{i=1}^{n} \ln \frac{1}{\sigma(y_i \mathbf{w} \cdot \mathbf{x}_i)} = \frac{1}{n} \sum_{i=1}^{n} \ln(1 + e^{-y_i \mathbf{w} \cdot \mathbf{x}_i})$
- This is also known as the cross entropy error
 - Exercises:
 - Error if you "predict" 0.9 on a +1 example? -1 example? ≈ 0.10
 - What if you "predict" 0.7 on a +1 example? -1 example? ≈ 0.3

Low when y_i has the same sign as w.x_i and is large

 $\approx 0.105, 2.303$

 $\approx 0.357, 1.204$

Minimizing Cross-Entropy Error

- Turns out to be a convex function, therefore has a unique minimum.
- Can use conventional optimization methods (e.g. Newton-Raphson).
- Later today we'll talk about how to do this using gradient descent, a key technique in modern ML and DM.