

ECCryptolocker

Montréhack 2015/10/19
Catalin Patulea
http://github.com/cpatulea

http://tinyurl.com/montrehack-20151019

< 5 minutes de calcul

masterlock.cc

main()

encrypt.cc

- char g banner[1024]
- initbanner()
- encryptall()

ping.cc

- ping()

secret.cc

- char g_rawsecret[16]
- BIGNUM* g secret
- EC_POINT* g_client_public
- BIGNUM* g_shared_secret
- BIGNUM* g_wrapped_key
- char g_bitcoin_address[35]

server_public.cc

- char g_server_public_bin[33]

g_wrapped_key

```
g_secret * g_shared_secret = g_wrapped_key
128 bits * 256 bits
                                   = 384 bits
          * b
                                   = 0 \times 0636...61BC
a
p_0 p_1 p_2 p_3 \dots
                                   = n
ex. a = p_0 p_2 p_3 b = p_1 p_4 p_5 p_6
```

Factorisation

Techniques

Pollard's rho (ρ): < 2^{64} (38 chiffres)

Lenstra elliptic curve factorization (ECM): < 80 chiffres

Quadratic sieve (MPQS): < 100 chiffres

General number field sieve (GNFS):

> 100 chiffres

Outils

GNU factor (ρ)

Python primefac (ρ, ECM, MPQS)

pyecm (ECM)

msieve (MPQS, GNFS)

ggnfs (GNFS)