1. Proof:

Suppose there's a function g that there is no wff φ such that $g = f_{\varphi}$. Then for any wff φ , whenever g = T, $\Sigma(\varphi) = F$. But if $g = x_1$, $\varphi = P_1$ and $\Sigma(P_1) = x_1 = T$, this truth assignment will lead to $g = T = \Sigma_{P_1}$. This fact contradicts with our assumption.

As a result, for all function g there is a wff φ that $g = f_{\varphi}$.

2. **Proof:**

 \Rightarrow :

Since $f_{\varphi} = f_{\psi}$, any truth assignment Σ that either satisfies $(\varphi \wedge \psi)$ or does not satisfy $(\varphi \vee \psi)$. So by definition, Σ either satisfies both φ and satisfies ψ , or does not satisfies φ and does not satisfies ψ .

This means that for all truth assignment, there is $\Sigma(\varphi) = \Sigma(\psi)$, so $(\varphi \leftrightarrow \psi)$ is always true.

By definition, $(\varphi \leftrightarrow \psi)$ is a tautology.

(=:

Since $(\varphi \leftrightarrow \psi)$ is a tautology, then for any truth assignment Σ , there is $\Sigma(\varphi) = \Sigma(\psi)$, so that Σ that either satisfies $(\varphi \land \psi)$ or does not satisfy $(\varphi \lor \psi)$.

As a result, $f_{\varphi} = f_{\psi}$.

3. By counting the number of classes, we can calculate how many different mappings from $\{T, F\}^n$ to $\{T, F\}$.

From the knowledge from Analysis, we know the number is

$$|\{T,F\}|^{|\{T,F\}|^n} = 2^{2^n}$$