1. Проблема собственных значений. Устойчивость

Проблема собственных значений

Полная проблема

Нахождение всех собственных значений и собственных векторов некоторой матрицы Частичная проблема собственных значений

Нахождение нескольких собственных значений и соответствующих им векторов

Устойчивость

Устойчивость это то, насколько сильно меняются собственные значения и собственные векторы при небольших изменениях в исходной матрице.

А. к. а. Число обусловленности

2. Вариационное описание собственных значений симметрической матрицы

Условия

Пусть $\lambda_i(A)>0$ и $\lambda_1(A)\leq \lambda_2(A)\leq \ldots \leq \lambda_n(A)$

Пусть $y = U^T x$

$$rac{(Ax,x)}{(x,x)} = rac{\left(UDU^Tx,x
ight)}{(x,x)} = rac{\left(DU^Tx,U^Tx
ight)}{\left(U^Tx,U^Tx
ight)} = rac{\left(Dy,y
ight)}{(y,y)}$$

В силу невырожденности U:

$$\min_{x
eq 0} rac{(Ax,x)}{(x,x)} = \min_{y
eq 0} rac{(Dy,y)}{(y,y)}$$

U - ортогональная матрица, где $u^{(i)}$ - собственный вектор

D - диагональная матрица, где $d^{(i)} = \lambda_i(A)$

Вариационное описание

Отношение Рэлея

$$R(A,x) = rac{(Ax,x)}{(x,x)} = rac{x^TAx}{x^Tx}$$

Вариационное описание

Доказательство

Покажем, что
$$\min_{y \neq 0} \frac{(Dy,y)}{(y,y)} = \lambda_1(A)$$
, где $\lambda_1 - \min$ $\frac{(Dy,y)}{(y,y)} = \frac{\sum\limits_{i=1}^n \lambda_i\left(A\right)y_i^2}{\sum\limits_{i=1}^n y_i^2} \geq \frac{\sum\limits_{i=1}^n \lambda_1\left(A\right)y_i^2}{\sum\limits_{i=1}^n y_i^2} = \lambda_1(A)$

Тогда

$$y=e_1=egin{pmatrix}1\0\dots\0\end{pmatrix}\ rac{(De_1,e_1)}{(e_1,e_1)}=rac{\lambda_1(A)}{1}$$

Очевидно, что минимальное значение отношения Рэлея достигается при $x=Ue_1$

Добавим условие
$$\left(x,u^{(1)}\right)=0$$
 $\min_{x
eq 0} \ \dfrac{(Ax,x)}{(x,x)} = \min_{y
eq 0} \ \dfrac{(Dy,y)}{(y,y)}$ $(y,e_1=0)$

Получим, что $y_1=0.$ Поэтому для всех y, где $y \neq 0$ и $(y,e_1)=0$

$$rac{(De_1,e_1)}{(e_1,e_1)} = rac{\sum\limits_{i=2}^k \lambda_i(A)y_i^2}{\sum\limits_{i=2}^k y_i^2} \geq \lambda_2(A)$$

И если взять
$$y=e_2=egin{pmatrix}0\\1\\\vdots\\0\end{pmatrix}$$
, то получим: $\min_{x\neq 0} \ \dfrac{(Ax,x)}{(x,x)}=\min_{y\neq 0} \dfrac{(Dy,y)}{(y,y)}=\lambda_2 \ (x,u^{(1)}=0) \ \end{array}$

3. Вариационный принцип Куранта-Фишера

Вариационный принцип Куранта-Фишера

$$\max_{R_{n-i+1}} \min_{\substack{x
eq 0 \ x \in R_{n-i+1}}} rac{(Ax,x)}{(x,x)} = \lambda_i(A) \quad i=1,2,\ldots,n$$

Доказательство

Покажем, что если S_i - подпространство, порождённое собственными векторами $u^{(1)},\dots,u^{(i)}$, то для всех $x \neq 0 \in S_i$:

$$rac{(Ax,x)}{(x,x)} \leq \lambda_i(A)$$

Т. к.
$$x \in S_i$$
, то $x = \sum\limits_{j=1}^i c_j u^{(j)}$

$$(x,x)=\sum\limits_{i=1}^{i}c_{j}^{2}\quad (Ax,x)=\sum\limits_{i=1}^{i}\lambda_{j}(A)c_{j}^{2}$$

$$rac{(Ax,x)}{(x,x)} = rac{\sum\limits_{j=1}^i \lambda_j(A) c_j^2}{\sum\limits_{j=1}^i c_j^2} \leq \lambda_i(A)$$

Пусть R_{n-i+1} - подпространство размерности n-i+1.

Сумма размерностей R_{n-i+1} и S_i равна n+1, т. е. превышает размерность n рассматриваемого пространства.

Следовательно, существует вектор $x_0
eq 0 \in R_{n-i+1}, S_i$

Следовательно,
$$\dfrac{\left(Ax_{0},x_{0}
ight)}{\left(x_{0},x_{0}
ight)}\leq\lambda_{i}\left(A
ight)$$

Поскольку
$$x_{0}\in R_{n-i+1}$$
, то $\min_{\substack{x
eq 0\x\in R_{n-i+1}}}rac{\left(Ax,x
ight)}{\left(x,x
ight)}\leq\lambda_{i}\left(A
ight)$

Соответственно, для того, чтобы наше неравенство стало равенством, нужно, чтобы наше подпространство состояло из векторов, ортогональных собственным векторам $u^{(1)},\dots,u^{(i-1)}$.

Итого:

$$\max_{R_{n-i+1}} \min_{\substack{x
eq 0 \ x \in R_{n-i+1}}} rac{(Ax,x)}{(x,x)} = \lambda_i(A)$$

4. Два следствия из вариационного принципа Куранта-Фишера

Следствие 1

Пусть
$$A = A^T$$
, $B = B^T$

$$\lambda_1(A) \leq \lambda_2(A) \leq \ldots \leq \lambda_n(A)$$

$$\lambda_1(B) \le \lambda_2(B) \le \ldots \le \lambda_n(B)$$

И пусть для всех x выполняется:

$$(Ax,x) \leq (Bx,x)$$

Тогда:

$$\lambda_i(A) \leq \lambda_i(B)$$

Доказательство следствия 1

Для всех
$$x
eq 0$$
 выполняется: $\dfrac{(Ax,x)}{(x,x)} \leq \dfrac{(Bx,x)}{(x,x)}$

Следовательно, для любого R_{n-i+1} :

$$\min_{\substack{x
eq 0 \ x \in R_{n-i+1}}} rac{(Ax,x)}{(x,x)} \leq \min_{\substack{x
eq 0 \ x \in R_{n-i+1}}} rac{(Bx,x)}{(x,x)}$$

Очевидно, что:

$$\max_{R_{n-i+1}} \min_{x
eq 0 top x \in R_{n-i+1}} rac{(Ax,x)}{(x,x)} \le \max_{R_{n-i+1}} \min_{x
eq 0 top x \in R_{n-i+1}} rac{(Bx,x)}{(x,x)}$$

И согласно принципу Куранта-Фишера, это может быть записано в виде:

$$\lambda_i(A) \leq \lambda_i(B)$$

Следствие 2

Пусть
$$A = A^T$$
, $B = B^T$

$$\lambda_1(A) \leq \lambda_2(A) \leq \ldots \leq \lambda_n(A)$$

$$\lambda_1(B) \leq \lambda_2(B) \leq \ldots \leq \lambda_n(B)$$

Тогда

$$|\lambda_i(B) - \lambda_i(A)| \leq ||B - A||_2$$

Доказательство следствия 2

$$C = B - A$$

$$(Bx,x)=((A+C)x,x)=(Ax,x)+(Cx,x)$$

Оценим |(Cx,x)|

$$|(Cx,x)| \leq ||Cx||_2 \cdot ||x||_2 \leq ||C||_2 \cdot ||x||_2^2 = (||C||_2 Ex, x)$$

Отсюда:

$$(-||C||_2 Ex, x) \leq (Cx, x) \leq (||C||_2 Ex, x)$$

Следовательно,

$$((A-||C||_2E)x,x) \leq (Bx,x) \leq ((A+||C||_2E)x,x)$$

Согласно следствию 1:

$$\lambda_i (A - ||C||_2 E) \le \lambda_i (B) \le \lambda_i (A + ||C||_2 E)$$

$$|\lambda_i\left(A
ight) - ||C||_2 \le \lambda_i(B) \le \lambda_i\left(A
ight) + ||C||_2$$

5. Метод вращения решения проблем собственных значений. Типичный шаг метода

Для всякой симметрической матрицы A существует такая ортогональная матрица U, что $U^TAU=\Lambda$

, где Λ - диагональная матрица. При этом диагональные элементы матрицы Λ являются собственными значениями, а столбцы матрицы U - собственными векторами матрицы A. Метод вращений состоит в построении таких ортогональных матриц U_k , что последовательность $A_{k+1} = U_k^T A U_k$ при $k \to \infty$ стремится к диагональной матрице Λ . Каждая U_k в этом методе представляет собой произведение k матриц вращений, имеющих вид:

$$C_{lm} = egin{pmatrix} 1 & 0 & & & & & 0 \ 0 & \dots & & & & 0 \ & c & \dots & -s & & \ & \vdots & 1 & & \vdots & & \ & & \dots & & & \ & \vdots & 1 & \vdots & & \ & & \dots & & & \ & \vdots & & 1 & \vdots & & \ & & s & \dots & c & & \ & 0 & & & \dots & 0 \ 0 & & & & 0 & 1 \end{pmatrix}$$
 m -ая строка

Параметры c,s, определяющие матрицу C_{ij} , называются опорными элементами и удовлетворяют равенству $s^2+c^2=1$.

Из этого свойства опорные элементы можно интерпретировать как синус и косинус от определённого угла ϕ : $s=\sin\phi, c=\cos\phi$.

Матрица C_{lm} является ортогональной, так как $C_{lm}^T C_{lm} = C_{lm} C_{lm}^T = E.$

Типичный шаг метода вращений

Находим максимальный по модулю элемент матрицы A вне главной диагонали и зафиксируем его индексы $l, m \ (l \neq m)$:

$$|a_{lm}|=\max_{i
eq j}|a_{ij}|$$

Построим матрицу вращений, пока не определяя конкретные значения опорных элементов.

Положим $B=C_{lm}^TAC_{lm}$, причём данная матрица будет являться симметричной: $B^T=(C_{lm}^TAC_{lm})^T=C_{lm}^TA^T(C_{lm}^T)^T=C_{lm}^TAC_{lm}=B$

Получим формулы для опорных элементов. Для этого достаточно рассмотреть только верхнюю или нижнюю половину элементов от главной диагонали (т. к. матрица B симметричная).

Обозначим $D = AC_{lm}$.

Тогда $B = C_{lm}^T D$.

Так как у матрицы $C_l m$ отличаются только l-ый и m-ый столбцы от столбцов соответствующей единичной матрицы, то l-ый и m-ый столбцы будут отличатся у матрицы D от столбцов матрицы A.

$$egin{aligned} d_{il} &= ca_{il} + sa_{im} \ d_{im} &= -sa_{il} + ca_{im} \end{aligned} \quad i = \overline{1,n}$$

Так как у матрицы C_{lm}^T только l-ая и m-ая строки отличаются от соответствующих строк единичной матрицы, то у матрицы B будут отличатся только l-ая и m-ая строки от соответствующих строк матрицы D:

$$egin{aligned} b_{li} &= cd_{li} + sd_{mi} \ b_{mi} &= -sd_{li} + cd_{mi} \end{aligned} \quad i = \overline{1,n}$$

При
$$i
eq l$$
 и $i
eq m$ $d_{li} = a_{li}, d_{mi} = a_{mi}$, следовательно $b_{li} = ca_{li} + sa_{mi}$ $i = \overline{1,n}, i
eq l, i
eq m$

При i=l и учитывая, что $a_{lm}=a_{ml}$ получаем:

$$b_{ll} = cd_{ll} + sd_{ml} = c(ca_{ll} + sa_{lm}) + s(ca_{ml} + sa_{mm}) = c^2a_{ll} + 2sca_{lm} + s^2a_{mm}$$

При i=m имеем:

$$b_{lm} = cd_{lm} + sd_{mm} = c(-sa_{ll} + ca_{lm}) + s(-sa_{ml} + ca_{mm}) = sc(a_{mm} - a_{ll} + (c^2 - s^2)a_{lm}) \ b_{mm} = -sd_{lm} + cd_{mm} = -s(-sa_{ll} + ca_{lm}) + c(-sa_{ml} + ca_{mm}) = s^2a_{ll} + -2sca_{lm} + c^2a_{mm}$$

Ввиду симметричности B формулы выше полностью определяют эту матрицу.

Зададим опорные элементы так, чтобы $b_{lm}=0$. Тогда

$$sc(a_{mm}-a_{ll})+(c^2-s^2)a_{lm}=0$$

Подставив $c = \cos \phi, s = \sin \phi$ получим

$$\sin\phi\cos\phi(a_{mm}-a_{ll})=-(\cos^2\phi-\sin^2\phi)a_{lm}$$

$$rac{1}{2}(a_{ll}-a_{mm})\sin2\phi=a_{lm}\cos2\phi$$

$$an 2\phi = rac{2a_{lm}}{a_{ll} - a_{mm}} \implies \phi = rac{1}{2} \mathrm{arctan} \left(rac{2a_{lm}}{a_{ll} - a_{mm}}
ight)$$

Для определённости будем считать $-\frac{\pi}{2}<2\phi\leq\frac{\pi}{2}\implies -\frac{\pi}{4}<\phi\leq\frac{\pi}{4}$ (и $\phi=\frac{\pi}{4}$ при $a_{ll}=a_{mm}$).

6. Метод вращения решения проблемы собственных значений. Доказательство сходимости метода

Для доказательства сходимости метода потребуется следующее утверждение:

$$\sum_{i \neq j} b_{ij}^2 \le \left(1 - \frac{2}{n(n-1)}\right) \sum_{i \neq j} a_{ij}^2 \tag{1}$$

При умножении на ортогональную матрицу её евклидова норма не меняется, т. е.

$$||B||_E = ||C_{lm}^T A C_{lm}||_E = ||A||_E \implies \sum_{i=1}^n \sum_{j=1}^n b_{ij}^2 = \sum_{i=1}^n \sum_{j=1}^n a_{ij}^2$$

Перепишем это равенство в виде:

$$egin{aligned} \sum_{i
eq j} b_{ij}^2 + \sum_{i=1}^n b_{ii}^2 &= \sum_{i
eq j} a_{ij}^2 + \sum_{i=1}^n a_{ii}^2 \ \sum_{i
eq j} b_{ij}^2 - \sum_{i
eq j} a_{ij}^2 &= \sum_{i=1}^n a_{ii}^2 - \sum_{i=1}^n b_{ii}^2 \end{aligned}$$

Так как все диагональные элементы, кроме b_{ll}, b_{mm} , совпадают с элементами матрицы A,

$$\sum_{i
eq j} b_{ij}^2 - \sum_{i
eq j} a_{ij}^2 = a_{ll}^2 + a_{mm}^2 - b_{ll}^2 - b_{mm}^2 \qquad (2)$$

Введём в рассмотрение матрицы

$$\overline{A} = egin{pmatrix} a_{ll} & a_{lm} \ a_{ml} & a_{mm} \end{pmatrix}, \overline{C} = egin{pmatrix} c & -s \ s & c \end{pmatrix}, \overline{B} = egin{pmatrix} b_{ll} & 0 \ 0 & b_{mm} \end{pmatrix}$$

учитывая формулы для b_{ll},b_{mm} и $b_{lm}=b_{ml}=0.$ Тогда нетрудно проверить, что $\overline{B}=\overline{C}^T\overline{AC}.$ Так как \overline{C} ортогональна, то

$$||\overline{B}||_E = ||\overline{A}||_E \implies a_{ll}^2 + 2a_{lm}^2 + a_{mm}^2 = b_{ll}^2 + b_{mm}^2$$

Теперь формула (2) приобретает вид:

$$\sum_{i
eq j} b_{ij}^2 - \sum_{i
eq j} a_{ij}^2 = -2a_{lm}^2 \qquad (3)$$

Так как $|a_{lm}|=\max_{i
eq j}|a_{ij}|$, то получаем оценку:

$$\sum\limits_{i
eq j} a_{ij}^2 \leq \sum\limits_{i
eq j} a_{lm}^2 = n(n-1)a_{lm}^2$$

Отсюда
$$-2a_{lm}^2 \leq rac{2}{n(n-1)} \sum\limits_{i
eq i} a_{ij}.$$

Из
$$(3)$$
 следует: $\sum\limits_{i
eq j} b_{ij}^2 \leq \left(1 - rac{2}{n(n-1)}
ight) \sum\limits_{i
eq j} a_{ij}^2.$

Ч. Т. Д.

Рассмотрим метод вращений в целом.

На первом шаге находим индексы l_1,m_1 максимального по модулю наддиагонального элемента A, строим матрицу вращения $C_1=C_{l_1m_1}$ с определёнными выше опорными элементами, и вычисляем матрицу $A_1=C_1^TAC_1$ (4).

Пусть в результате выполнения k-1 шагов мы получили матрицу A_{k-1} .

Находим наибольший по модулю наддиагональный элемент матрицы A_{k-1} с индексами l_k,m_k , строим матрицу вращения $C_k=C_{l_km_k}$ и вычисляем $A_k=C_k^TA_{k-1}C_k$.

Выразим A_k через A:

$$A_k = C_k^T A_{k-1} C_k = C_k^T C_{k-1}^T A_{k-2} C_{k-1} C_k = \ldots = (C_1 \ldots C_k)^T A(C_1 \ldots C_k)$$

Произведение $U_k = C_1 \dots C_k$ ортогональных матриц ортогонально, потому A_k подобна A, следовательно их собственные значения совпадают. Покажем, что при $k \to \infty$ A_k стремится к диагональной матрице.

Согласно (1) и (4) имеем;

$$\sum_{i
eq j} (a_{ij}^{(k)})^2 \leq \left(1 - rac{2}{n(n-1)}
ight) \sum_{i
eq j} (a_{ij}^{(k-1)})^2 \leq \ldots \leq \left(1 - rac{2}{n(n-1)}
ight)^k \sum_{i
eq j} a_{ij}^2$$

В силу того, что
$$\left(1-rac{2}{n(n-1)}
ight) < 1$$
 следует $\sum\limits_{i
eq j} (a_{ij}^{(k)})^2 \stackrel{}{\underset{k o \infty}{\longrightarrow}} 0$

Также это означает, что A_k стремится к диагональной матрице, которую обозначим через Λ . Так как A_k подобна A, то и Λ подобна A, т. е. на диагонали Λ стоят собственные значения A.

7. Метод вращения решения проблемы собственных значений. Оценка точности приближений

Через Λ_k обозначим матрицу из диагональных элементов A_k (все остальные элементы равны нулю), а через ϵ_k обозначим $\epsilon_k = A_k - \Lambda_k$.

Пусть собственные значения матриц A_k и Λ_k пронумерованы в порядке неубывания.

Тогда согласно следствию 2 из вариационного принципа Куранта-Фишера (Следствие 2) имеют место оценки:

$$|\lambda_i(A_k) - \lambda_i(\Lambda_k)| \leq ||\epsilon_k||_2 \leq ||\epsilon_k||_E, \quad i = \overline{1,n}$$

Но
$$\lambda_i(A_k)=\lambda_i(A),\lambda_i(\Lambda_k)=a_{ii}^{(k)}$$
. Следовательно, $|\lambda_i(A)-a_{ii}^{(k)}|\leq ||\epsilon_k||_E=\sqrt{\sum\limits_{i\neq j}(a_{ij}^{(k)})^2}$

Отсюда следует, что для определения собственных значений с точностью ϵ процесс следует продолжать, пока при некотором k не выполнится неравенство:

$$\sum_{i
eq j} (a_{ij}^{(k)})^2 \le \epsilon^2.$$

Так как $U_k^T A U_k = A_k \approx \Lambda_k$, то собственные векторы A приближённо равны столбцам матрицы $U_k = C_1 \dots C_k$. Поэтому для нахождения собственных векторов следует последовательно перемножать матрицы $C_i, i = \overline{1,k}$.

8. Метод вращения решения проблемы собственных значений. Определение опорных элементов

В вопросе 5 опорные элементы определялись как синус и косинус от угла ϕ :

$$an2\phi=rac{2a_{lm}}{a_{ll}-a_{mm}},\quad -rac{\pi}{4}<\phi\leqrac{\pi}{4}.$$

На практике такой метод не применяется (из-за вычисления тригонометрических функций через ряд Тейлора, что требует значительных затрат времени). Потому определим c,s так, чтобы не было необходимости вычислять значений таких функций.

Обозначим
$$x=2a_{lm},y=a_{ll}-a_{mm}.$$
 Тогда $\tan2\phi=\frac{x}{y},\quad -\frac{\pi}{4}<\phi\leq\frac{\pi}{4}.$ Если $y=0$, то $\tan2\phi=\infty$ и, следовательно, $2\phi=\frac{\pi}{2}.$ Поэтому положим $c=\cos\frac{\pi}{4}=\frac{\sqrt{2}}{2},s=\sin\frac{\pi}{4}=\frac{\sqrt{2}}{2}.$

Пусть $y \neq 0$. Представим $\tan 2\phi$ в виде

$$\tan 2\pi = \frac{x}{y} = \frac{\frac{sign(xy)|x|}{\sqrt{\overline{x^2 + y^2}}}}{\frac{|y|}{\sqrt{x^2 + y^2}}} = \frac{\overline{s}}{\overline{c}}$$

$$(1)$$

где
$$\overline{s}=rac{sign(xy)|x|}{\sqrt{x^2+y^2}}, \overline{c}=rac{|y|}{\sqrt{x^2+y^2}}$$

Поскольку $\overline{c}^2+\overline{s}^2=1$, то \overline{c} и \overline{s} также можно рассматривать как синус и косинус некоторого угла: $\overline{c}=\cos\psi, \overline{s}=\sin\psi$.

Из (1) следует, что $an 2\phi = an \psi.$ Откуда $\psi = 2\phi + k\pi, k = 0, 1, \dots$ (2)

Так как $-\frac{\pi}{2}<2\phi\leq\frac{\pi}{2}$, то $\cos2\phi\leq0$. Поскольку $\cos\psi\leq0$, то в формуле (2) следует оставить только ЧЕТЫРЕ значения k. Таким образом, $\psi=2\psi+2\pi k, k=0,1,\ldots$ а, следовательно $\cos\psi=\cos2\phi,\sin\psi=\sin2\phi$

Так как $\cos 2\phi = 2\cos^2\phi - 1 = 2c^2 - 1, \sin 2\phi = 2\sin\phi\cos\phi = 2sc$, то мы получим два уравнения:

$$2c^2-1=rac{|y|}{\sqrt{x^2+y^2}}, 2sc=rac{sign(xy)|x|}{\sqrt{x^2+y^2}}$$

Из первого из них получаем
$$c=\sqrt{rac{1}{2}igg(1+rac{|y|}{\sqrt{x^2+y^2}}igg)},$$
 и второго $s=rac{sign(xy)|x|}{2c\sqrt{x^2+y^2}}.$

9. QR - алгоритм решения проблемы собственных значений. Формулировка теоремы о сходимости

Пусть матрица A невырожденная, тогда её можно представить в виде $A=QR,\,Q$ - ортогональная, R - верхнетреугольная (невырожденная).

QR-алгоритм состоит из построения последовательности матриц A_k по правилу:

$$A = Q_1 R_1 \quad , \quad A_1 = R_1 Q_1, \ A_1 = Q_2 R_2 \quad , \quad A_2 = R_2 Q_2, \ \dots \quad \dots \quad (1) \ A_{k-1} = Q_k R_k \quad , \quad A_k = R_k Q_k,$$

, где все Q_i ортогональны, а R_i невырожденные верхнетреугольные матрицы.

Для всякой матрицы A существует такая невырожденная матрица T, что матрица $\Lambda = T^{-1}AT$ (2)

имеет нормальную жорданову форму, т. е. Λ является блочно-диагональной матрицей:

$$\Lambda = egin{pmatrix} \mathcal{J}_1 & & & 0 \ & \mathcal{J}_2 & & \ & & \dots & \ 0 & & & \mathcal{J}_m \end{pmatrix}$$

, где каждый диагональный блок \mathcal{J}_i является двухдиагональной матрицей:

$$\mathcal{J}_i = egin{pmatrix} \lambda_i(A) & 1 & & 0 & 0 \ & \lambda_i(A) & 1 & & 0 \ & & \dots & & \ 0 & & & \lambda_i(A) & 1 \ 0 & 0 & & & \lambda_i(A) \end{pmatrix}$$

причём её диагональные элементы равны одному из собственных значений матрицы A.

Представим матрицу A_k в клеточном виде:

$$A_k = egin{pmatrix} A_{11}^{(k)} & A_{12}^{(k)} & \dots & A_{1m}^{(k)} \ A_{21}^{(k)} & A_{22}^{(k)} & \dots & A_{2m}^{(k)} \ & \ddots & \ddots & \ddots \ A_{m1}^{(k)} & A_{m2}^{(k)} & \dots & A_{mm}^{(k)} \end{pmatrix}$$

где диагональные клетки $A_{ii}^{(k)}$ квадратные и имеют те же размеры, что и соответствующие диагональные блоки \mathcal{J}_i матрицы Λ .

Утверждение (без доказательства)

При $k \to \infty$ все элементы поддиагональных клеток стремятся к нулю, а элементы всех остальных клеток остаются ограниченными.

Пусть все собственные значения матрицы A вещественные и различны по модулю. Предположим, что они занумерованы в порядке убывания:

$$|\lambda_i(A)| > |\lambda_2(A)| > \ldots > |\lambda_n(A)| > 0$$

Нормальная жорданова форма форма матрицы, все собственные значения которой различны, является диагональной матрицей. Поэтому матрица Λ - диагональная. Предположим, что её диагональные элементы также упорядочены в порядке убывания их модулей, т. е. Λ имеет вид:

$$\Lambda = egin{pmatrix} \lambda_1(A) & & & 0 \ & \lambda_2(A) & & \ & & \dots & \ 0 & & & \lambda_n(A) \end{pmatrix}$$

Теорема

Пусть все собственные значения невырожденной матрицы A вещественны и различны по модулю, и пусть все главные миноры матрицы T^{-1} из равенства (2) отличны от нуля. Тогда последовательность матриц A_k , определённых по правилу (1), сходится к верхнетреугольной матрице.

(Без доказательства)

Матрицы вида:

$$H = egin{pmatrix} h_{11} & h_{12} & \dots & h_{1,n-1} & h_{1n} \ h_{21} & h_{22} & \dots & h_{2,n-1} & h_{2n} \ & h_{32} & \dots & h_{3,n-1} & h_{3n} \ 0 & & \dots & dots & dots \ 0 & 0 & & h_{n,n-1} & h_{nn} \end{pmatrix}$$

Называются верхними почти треугольными или верхними матрицами Хессенберга. Всякую квадратную матрицу можно привести к подобной ей верхней форме Хессенберга.

QR-алгоритм применяют, как правило, к матрице, предварительно приведённой к верхней форме Хессенберга. Связано это с многократным вычислением QR-разложения для матриц. Но QR-разложение матрицы Хессенберга осуществляется за $O(n^2)$ арифметических действий, причём форма Хессенберга инвариантна по отношению к преобразованиям QR-алгоритма (т. е. если A - матрица Хессенберга, то и A_k - матрица Хессенберга).

10. Решение частичной проблемы собственных значений. Метод прямых итераций. Метод обратных итераций

Пусть у вещественной матрицы A все собственные значения вещественны и различны по модулю. Пусть $|\lambda_1(A)|$ - наибольшее по модулю C3.

Прямая итерация

Метод

$$egin{split} x^{(k)} &= rac{Ax^{(k-1)}}{lpha_{k-1}} \ \lambda_1(A) &= rac{ig(Ax^{(k)},x^{(k)}ig)}{ig(x^{(k)},x^{(k)}ig)} = rac{ig(x^{(k)}ig)^TA^{(k)}}{ig(x^{(k)}ig)^Tx^{(k)}} \end{split}$$

Доказательство

Выберем произвольный вектор $x^{(0)}$ и построим последовательность векторов так, что $x^{(k)} = Ax^{(k-1)}$

Очевидно, что $x^{(k)} = A^k x^{(0)}$.

Представим:

$$x^{(0)} = \sum_{i=1}^n c_i u^{(i)}$$

Тогда:

$$x^{(k)} = A^k x^{(0)} = A^k \sum_{i=1}^n c_i u^{(i)} = \sum_{i=1}^n c_i A^k u^{(i)} = \sum_{i=1}^n c_i \lambda_i^k(A) u^{(i)} =$$
 $= \lambda_1^k(A) \left[c_1 u^{(1)} + \sum_{i=2}^n c_i u^{(i)} \left(rac{\lambda_i(A)}{\lambda_1(A)}
ight)^k
ight] = \lambda_1^k(A) \cdot v^{(k)}$ Так как $\left| rac{\lambda_i(A)}{\lambda_1(A)}
ight| < 1$, $\lim_{k o \infty} v^{(k)} = c_1 u^{(1)}$

Пусть $c_1 \neq 0$.

Тогда вектор $c_1u^{(1)}$ отличается от $u^{(1)}$ только константой и будет собственным вектором, отвечающим наибольшему по модулю собственному значению λ_1 .

Вектор $x^{(k)}$ отличается от $v^{(k)}$ лишь множителем $\lambda_k(A)$, тогда $x^{(k)} o \kappa$ собственному вектору при $k o \infty$

Проблемы возникают из-за переполнений при вычислении вектора $x^{(k)}$.

Для этого будем нормировать вектор:

$$lpha_k = \max_{1 \leq i \leq n} \left| x_i^{(k)}
ight| \ x^{(k)} = A rac{x^{(k-1)}}{lpha_{k-1}}$$

Это не нарушит сходимость последовательности к СВ, и более того, так как

$$\max_{1\leq i\leq n}\left|rac{x_i^{(k)}}{lpha_k}
ight|=1$$
, то $\left|rac{x_i^{(k)}}{lpha_k}
ight| o$ к СВ, имеющему наибольшую по модулю компоненту, равную 1

Таким СВ будет является
$$\dfrac{u^{(1)}}{lpha}$$
, где $lpha = \max_{1 \leq i \leq n} \left| u_i^{(1)} \right|$

Следовательно:

$$\begin{split} &\left|\frac{x^{(k)}}{\alpha_k}\right| \to \frac{u^{(1)}}{\alpha} \text{ и } \frac{x_i^{(k-1)}}{\alpha_{k-1}} \to \frac{u^{(1)}}{\alpha} \\ &\text{ Ho } A\frac{x^{(k-1)}}{\alpha_{k-1}} \to A\frac{u^{(1)}}{\alpha} = \frac{\lambda_k(A)u^{(1)}}{\alpha} \\ &\text{ Ho так как } \frac{Ax^{(k-1)}}{\alpha_{k-1}} = x^{(k)} \text{, тогда } x^{(k)} \to \lambda(A)\frac{u^{(1)}}{\alpha} \end{split}$$

Следовательно α_k стремится к наибольшей по модулю компоненте вектора $\lambda_1(A)\frac{u^{(1)}}{\alpha}$, равной $\lambda_1(A)$.

Следовательно, $lpha_k o \lambda_1(A)$

Обратная итерация

Метод

$$x^{(k)} = A^{-1} rac{x^{(k-1)}}{lpha_{k-1}} \ Ax^{(k)} = rac{x^{(k-1)}}{lpha_{k-1}}$$

Доказательство

Поскольку СЗ обратной матрицы обратны собственным значениям исходной матрицы, а собственные вектора совпадают с собственными векторами исходной матрицы, то последовательной $x^{(k)}$ будет сходиться к СВ исходной матрицы A, отвечающему её

наименьшему по модулю значению, при этом $lpha_k o rac{1}{\lambda_n(A)}\implies rac{1}{lpha_k} o \lambda_k(A).$

Следовательно, метод обратных итераций позволяет вычислить наименьшее по модулю СЗ исходной матрицы, и отвечающий ему СВ.