One Tissue Compartment Model for Radioligand Kinetics

Zeyu Zhou (zeyu.zhou@emory.edu)

September 7, 2023

Contents

1	Model setup	1
2	Solution	2
3	Volume of distribution	2

1 Model setup

Figure 1: One-tissue compartment model. P: plasma (including free plus protein bound). T: tissue (including free, specific bound, and non-specific bound.)

This document is based on [2] Appendix B.

The differential equation for the radioligand kinetics is

$$\frac{\mathrm{d}C_T(t)}{\mathrm{d}t} = K_1 C_P(t) - k_2 C_T(t), \qquad (1)$$

where

- C_P : metabolite-corrected plasma concentration (kBq/ml).
- C_T : concentration of radioligand in the tissue (i.e. free plus specifically bound plus non-specifically bound) (kBq/ml).
- K_1 : rate constant for transfer from arterial plasma to tissue (ml·ml⁻¹·min⁻¹).
- k_2 : rate constant for transfer from ND compartment to plasma compartment (min⁻¹).

2 Solution

Take Laplace transform on both side, along with the initial conditions $C_T(0) = 0$, we get

$$s\bar{C}_T(s) = K_1\bar{C}_P(s) - k_2\bar{C}_T(s).$$

That give us

$$\bar{C}_T(s) = \frac{K_1}{s + k_2} \bar{C}_P(s) .$$

The solution is

$$C_T(t) = K_1 C_P(t) \otimes e^{-k_2 t}.$$

3 Volume of distribution

The volume of distribution V_D of the tracer can be calculated as

$$V_D = \frac{K_1}{k_2} \,.$$

If we are more interested in estimating V_D instead of k_2 , we can replace k_2 by K_1/V_D , the solution then becomes

$$C_T(t) = K_1 C_P(t) \otimes e^{-(K_1/V_D)t}.$$

Then we do curve fitting with respect to K_1 and V_D .

References

- [1] Robert B Innis, Vincent J Cunningham, Jacques Delforge, Masahiro Fujita, Albert Gjedde, Roger N Gunn, James Holden, Sylvain Houle, Sung-Cheng Huang, Masanori Ichise, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. *Journal of Cerebral Blood Flow & Metabolism*, 27(9):1533–1539, 2007.
- [2] AA Lammertsma, CJ Bench, SP Hume, S Osman, K Gunn, DJ Brooks, and RSJ Frackowiak. Comparison of methods for analysis of clinical [11c] raclopride studies. *Journal of Cerebral Blood Flow & Metabolism*, 16(1):42–52, 1996.