Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

Projektowanie układów w sterowania (projekt grupowy)

Sprawozdanie z projektu i ćwiczenia laboratoryjnego nr 1, zadanie nr 1

Hubert Kozubek, Przemysław Michalczewski

1.	Cele pi	rojektu	i lab	ora	tori	iów	V														 		 			1
	Przebieg laboratorium																									
	2.1.	Zad 1																			 		 			3
	2.2.	Zad 2																			 		 			3
	2.3.	Zad 3																			 		 			3
	2.4.	Zad 4																			 		 			6
	2.5	Zad 5																								(

1. Cele projektu i laboratoriów

Celem niniejszego laboratorium oraz projektu było zaprojektowanie, implementacja, weryfikacja poprawności działania oraz dobór parametrów algorytmów regulacji jednowymiarowego procesu na grzewczym stanowisku laboratoryjnym przedstawionym na rys 1.

2. Przebieg laboratorium

Rozpoczynając pracę na stanowisku laboratoryjnym należało ustawić moc wentylatora W1 na 50%. Wentylator ten był traktowany jako cecha otoczenia. Dodatkowo sprawiał on, że temperatura grzałki opadała szybciej, co było szczególnie przydatne pomiędzy doświadczeniami.

W ramach laboratorium należało wykonać 5 zadań.

- 1. Odczytać wartośc pomiaru termometru T1 dla mocy 26 grzałki G1%.
- 2. Wyznaczyć odpowiedź skokową procesu dla 3 różych wartości G1%.

Rys. 1. Stanowisko grzejąco-chłodzące, używane w trakcie laboratoriów

Rys. 2. Schemat stanowiska grzejąco-chłodzącego

3. Wybrać jedną z dopowiedźi skokowych, przekształcić ją i wykorzystać w algorytmie DMC.

- 4. Zaimplementować algorytm PID i DMC, od regulacji procesu stanowiska, w języku MATLAB.
- 5. Dobrać nastawy algorytmu PID oraz parametry algorytmu DMC metodą eksperymentalną.

2.1. Zad 1

W pierwszej kolejności należało sprawdzić możliwość sterowania i pomiaru w komunikacji ze stanowiskiem. Następnie odczytać wartość temperatury termometru T1 w wyznaczonym punkcie pracy G1=26%. Po ustawieniu mocy grzałki i odczekaniu, aż temperatura T1 ustabilizuje się, odczytana wartość termometru T1 wynosiła 31,12 °C. Wykres temperatury na termometrze T1 został przedstawiony na rys. 3

2.2. Zad 2

W tej czści laboratorium należało przeprowadzić eksperyment dla 3 rónych wartości mocy grzałki G1. Rozpoczynając eksperyment z punktu pracy G1=26%, wyznaczono odpowiedzi skokowe procesu. Eksperyment był wykokany dla trzech różnych zmian sygnału sterującego, G1=36%, G1=46% oraz G1=56%. Wykresy przedstawiające zmiany temperatury przedstawiono na rys. 4

2.3. Zad 3

Wykonanie tego zadania polegało na przekształceniu jedną z odpowiedzi skokowych, tak aby otrzymać odpowiedź skokową używaną w algorymie DMC. W tym celu wybrano drugą odpowiedź skokową, tj. skok G1 z mocy 26% do mocy 46%. Do przekształcenia zebranej

Rys. 3. Ustalanie się temperatury dla punktu pracy

Rys. 4. Odpowiedź skokowa procesu

odpowiedzi skokowej, na taką nadającą się do algorytmu DMC wykorzystano program TO-DO:"SkokDMC.m". Program ten wylicza potrzebną odpowiedź skokową przy użyciu prostego wzoru.

$$S(i) = \frac{Y(i) - Y_{\rm pp}}{U_{\rm skok} - U_{\rm pp}} \tag{1}$$

gdzie:

- -S(i) odpowiedź skokowa potrzebna do algorytmu DMC,
- Y(i) odpowiedź skokowa przed przekształceniem,
- Y_{pp} wartość wyjścia w chwili k=0 (tutaj $Y_{pp} = 31,12$),
- U_{skok} wartość sterowanie w chwili k=0 i później (tutaj $U_{\text{skok}} = 46$),
- $U_{\rm pp}$ wartośc sterowania przed chwilą k=0 (tutaj $U_{\rm pp}=26$)

W ten sposób przekształcona odpowiedź skokowa została zapisana do pliku TODO: "dane1.mat" i wykorzystana w dalszych częściach laboratorów.

Poza przekształceniem odpowiedzi skokowej należało ją jeszcze przybliżyć używając w tym celu członu inercyjnego drugiego rzędu z opóźnieniem.

$$G(s) = \frac{K}{(sT_1 + 1)(sT_2 + 1)}e^{-T_{d}s}$$
(2)

Po dyskretyzacji danej transmitancji otrzymujemy

$$G(z) = \frac{b_1 z^{-1} + b_2 z^{-2}}{1 + a_1 z^{-1} + a_2 z^{-2}} z^{-T_{\rm d}}$$
(3)

gdzie

$$a_{1} = -\alpha_{1} - \alpha_{2}$$

$$a_{2} = \alpha_{1}\alpha_{2}$$

$$\alpha_{1} = e^{-\frac{1}{T_{1}}}$$

$$\alpha_{2} = e^{-\frac{1}{T_{2}}}$$

$$b_{1} = \frac{K}{T_{1} - T_{2}} [T_{1}(1 - \alpha_{1}) - T_{2}(1 - \alpha_{2})]$$

$$b_{2} = \frac{K}{T_{1} - T_{2}} [\alpha_{1}T_{2}(1 - \alpha_{2}) - \alpha_{2}T_{1}(1 - \alpha_{1})]$$

$$(4)$$

Z wykresu odpowiedzi skokowej procesu zostało odczytane opóźnienie. W naszym przypadku $T_{\rm d}=9$. Aby wyznaczyć wartości pozostałych współczynników użyto dostępnej w matlabie funkcji ga, która minimalizuje wartość zadanej funkcji z wykorzystaniem algorytmu generycznego. Funkcja minimalizowana, to funkcja wyliczająca sumę kwadratów błędów pomiędzy odpowiedzią skokową, a transmitancją przybliżającą.

```
% aproksymacja odpowiedzi skokowej

function ERR = AproksSkokDMC(X)

data = load('dane1.mat');
S = data.S;
time = data.time;

T1 = X(1);
```

```
T2 = X(2);
   K = X(3);
   Td = 9;
    y(1:time) = 0;
    alpha1 = exp(-1/T1);
    alpha2 = exp(-1/T2);
    a1 = -alpha1 - alpha2;
    a2 = alpha1*alpha2;
    b1 = K*(T1*(1 - alpha1) - T2*(1 - alpha2))/(T1-T2);
    b2 = K*(alpha1*T2*(1-alpha2)-alpha2*T1*(1-alpha1))/(T1-T2);
    for k = Td+3: time
        y(k) = b1 + b2 - a1*y(k-1) - a2*y(k-2);
    end
    e = S - y';
   ERR = (norm(e))^2;
end
```

Następnie używając skryptu TODO:"Optymalizacja.m" zostały wyznaczone pozostałe parametry transmitancji przybliżającej odpowiedź skokową. Ostateczne wartości parametrów to

$$K = 0.330938$$
 $T_1 = 0.000907$
 $T_2 = 82.104622$
 $T_d = 9$
(5)

Wykres zarówno odpowiedzi skokowej, jak i transmitancji ją przybliżającej został zamieszczony na rys. $5\,$

2.4. Zad 4

Kolejnym podpunktem zadań laboratoryjnych było zaimplementowanie algorytmu regulacji PID oraz DMC w języku MATLAB.

Regulator PID

```
% implementacja PID

function U = PID(e)

persistent Upop
   persistent e0
   persistent e2
   persistent K
   persistent Ti
   persistent Td
   persistent Tp
   persistent r2
   persistent r1
```

```
persistent r0
     % Ograniczenia sterowania
    Gmax = 100;
    Gmin = 0;
      Upp = 26;
%
      Ypp = 31.12;
    if isempty (e0)
        Upop = 0;
                           % sterowanie w punkcie pracy
        e0 = 0;
        e1 = 0;
        e2 = 0;
        % Nastawy regulatora
        K = 0.5 * 43 * 1.5; \% K = 43, T = 36
        Ti = 0.5 * 36*2;\% * 4; \%inf;
                                        10
        Td = 0.125 * 36;\% * 0.6;\%
        Tp = 1;
        r2 = K*Td/Tp;
        r1 = K*(Tp/(2*Ti)-2*Td/Tp - 1);
        r0 = K*(1+Tp/(2*Ti) + Td/Tp);
    end
    % przesunięcie uchybĂłw
    e2 = e1;
    e1 = e0;
    e0 = e;
    U = r2*e2 + r1*e1 + r0*e0 + Upop;
    if U > Gmax
        U = Gmax;
    end
    if U < Gmin
        U = Gmin;
    end
    Upop = U;
end
```

Regulator DMC

```
function U = DMC(yzad, y, D, N, Nu, lambda)
    persistent init
    persistent S
```

```
persistent M
persistent Mp
persistent K
persistent dUP
persistent Upop
if isempty (init)
    % Wczytanie macierzy S z pliku danel.mat
    data = load ('dane1.mat');
    S = data.S;
    % OdpowiedĹą skokowa aproksymowana
    % data = load('Sapro.mat');
    \% S = data.Sapro;
    % przedluĹĽenie wektora S
    for i = D+1:D+N
        S(i) = S(D);
    end
    % Inicjalizacja macierzy
    M = zeros(N, Nu);
    for i = 1:Nu
        M(i:N, i)=S(1:N-i+1);
    end
    Mp = zeros(N, D-1);
    for i = 1:(D-1)
        Mp(1:N, i) = S(i+1:N+i) - S(i);
    end
    I = eye(Nu);
    K = ((M'*M + lambda*I)^{(-1)})*M';
    dUP = zeros(D-1,1);
    Upop = 26;
    init = 1;
end
% Ograniczenia sterowania
Gmax = 100;
Gmin = 0;
Y0 = zeros(N,1);
dU = zeros(Nu,1);
% liczone online
Yzad = yzad*ones(N,1);
Y = y*ones(N,1);
```

```
Y0 = Y + Mp*dUP;
    dU = K*(Yzad - Y0);
    du = dU(1);
    for n=D-1:-1:2
      dUP(n) = dUP(n-1);
    \operatorname{end}
    dUP(1) = du;
    U = Upop + du;
    if U > Gmax
        U = Gmax;
    end
    i\,f\ U\,<\,Gmin
        U = Gmin;
    end
    Upop = U;
end
```

2.5. Zad 5

Ostatnim zadaniem był dobór nastawów obu algorytmów regulacji.

Rys. 5. Odpowiedź skokowa procesu, oraz transmitancja ją aproksumująca