A Book of Abstract Algebra (2nd Edition)

Chapter 23, Problem 9EC

Bookmark

Show all steps: (

ON

Problem

Prove the following for all integers a, b, c, d and all positive integers m and n:

If $a \equiv b \pmod{n}$, then $a \equiv b \pmod{m}$ for any m which is a factor of n.

Step-by-step solution

Step 1 of 2

Consider the congruence equation

$$a \equiv b \pmod{n}$$

The object of the problem is to prove that if $a \equiv b \pmod{n}$ then $a \equiv b \pmod{m}$

for any m which is a factor of n

Use the definition, $a \equiv b \pmod{n}$ iff n divides a - b to prove the given result.

By the definition, n divides a-b

This implies that there is an integer q such that

$$a-b=nq$$

Comment

Step 2 of 2

Let m be factor of n then for any integer r, n = mr

Then,

$$a-b=mrq$$
 $a-b=mq'$ take $rq=q'$ This implies that m divides $a-b$.

By the definition of congruence equation, $a\equiv b \pmod m$, m is factor of n

Therefore, if $a \equiv b \pmod{n}$ then $a \equiv b \pmod{m}$ for any m which is a factor of n

Comment