Министерство науки и высшего образования Российской Федерации

Калужский филиал
федерального государственного бюджетного

образовательного учреждения высшего образования «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	ФАКУЛЬТЕТ ИУК «Информатика и управление»		
КАФЕДРА	ИУК4 «Программное обеспечение ЭВМ,		
информационные технологии»			
	ДОМАШНЯ	ЯЯ РАБОТА .	№1
«Применение байесовского подхода принятия решений»			
ДИСЦИПЛИНА	\: «Программные информации»	системы распо	знавания и обработки
Выполнил: студ	ент гр. ИУК4-31М	(подпись)	(Сафронов Н.С, (Ф.И.О.)
Проверил:		(подпись)	(<u>Гагарин Ю.Е.</u>) (Ф.И.О.)
Дата сдачи (защ	иты):		
Результаты сдач	и (защиты):		
	- Балльная	і оценка:	

Калуга, 2025

- Оценка:

Цель:

Формирование практических навыков использования байесовского подхода принятия решений в случае классификации двух классов, условные плотности вероятностей которых соответствуют одномерному и двумерному нормальному закону распределения.

Задачи:

- 1. Определение границы разделения классов;
- 2. Построение графиков условных плотностей вероятностей и границ разделения классов;
- 3. Использование формулы Байеса для определения апостериорных вероятностей;
 - 4. Определение вероятности ошибки классификации.

Задание

1. Использование байесовского классификатора для двух классов.

Для первого класса ω_1 , из определенного диапазона, задать случайным образом 50 значений признака x.

Для второго класса ω_2 , из определенного диапазона, задать случайным образом 70 значений признака x.

Предполагая, что условные плотности вероятности $P(x|\omega_1)$ и $P(x|\omega_2)$ соответствуют нормальному закону распределения $P(x|\omega) = \frac{1}{\sqrt{w\pi\,\sigma}} \exp{\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]},$

определить значения параметров (μ . σ) для двух классов.

Найти границу разделения классов.

Построить графики условных плотностей вероятностей и границы разделения классов.

Задать значение признака X и предполагая, что априорные вероятности равны $P(\omega_1) = P(\omega_2) = \frac{1}{2}$, определить апостериорные вероятности по формуле Байеса

$$P(\omega_1|x) = \frac{P(X|\omega_1)P(\omega_1)}{\sum_{j=1}^2 P(X|w_j)P(\omega_j)}.$$

Определить к какому классу относится значение признака X.

Рассчитать вероятность ошибки классификации.

2. Классификация двух классов по двум признакам.

Для первого класса ω_1 , из определенного диапазона, задать случайным образом 50 значений признаков (x_1, x_2) .

Для второго класса ω_2 , из определенного диапазона, задать случайным образом 70 значений признаков (x_1, x_2) .

Предполагая, что условные плотности вероятности $P(x|\omega_1)$ и $P(x|\omega_2)$ соответствуют двумерному нормальному закону распределения

$$P(x|\omega) = \frac{1}{(2\pi)^{\frac{d}{2}}|\Sigma|^{\frac{d}{2}}} \exp\left[-\frac{1}{2}(x-\mu)^{t}\Sigma^{-1}(x-\mu)\right]$$

и для случая, когда $\Sigma_i = \sigma^2 I$ определить значения параметров $\,\mu$, σ для двух классов.

Определить границу разделения классов.

Построить графики условных плотностей вероятностей и границы разделения классов.

Задать значения признаков (X_1,X_2) и предполагая, что априорные вероятности равны $P(\omega_1)=P(\omega_2)=\frac{1}{2}$, определить апостериорные вероятности по формуле Байеса

$$P(\omega_1|x) = \frac{P(X|\omega_1)P(\omega_1)}{\sum_{j=1}^2 P(X|w_j)P(\omega_j)}.$$

Определить к какому классу относится значение признака (X_1, X_2) .

Результаты выполнения работы

Рисунок 1 – Условные плотности вероятностей и граница разделения для классов

```
Класс ω1: μ = 4.459, σ = 2.860

Класс ω2: μ = 9.994, σ = 3.020

Граница разделения классов: х = 7.235

Анализ точки X = 7.5

Апостериорная вероятность P(ω1|X) = 0.4576

Апостериорная вероятность P(ω2|X) = 0.5424

Точка X = 7.5 относится к классу ω2

Вероятность ошибки классификации P(error) = 0.1732
```

Рисунок 2 – Значения (μ , σ) классов, граница распределения, вероятности для точки X и ошибка классификации

Рисунок 3 – Условные плотности вероятностей и граница разделения для классов

```
Класс ω1: μ = [4.459, 4.944], σ = 2.950

Класс ω2: μ = [9.794, 9.956], σ = 2.879

Анализ точки X = (7.5, 7.5)

Апостериорная вероятность P(ω1|X) = 0.4319

Апостериорная вероятность P(ω2|X) = 0.5681

Точка X = (7.5, 7.5) относится к классу ω2
```

Рисунок 4 – Значения (μ , σ) классов, граница распределения, вероятности для точки X_1, X_2 и ошибка классификации

Вывод: в результате выполнения домашней работы были сформированы практические навыки использования байесовского подхода принятия решений в случае классификации двух классов, условные плотности вероятностей которых соответствуют одномерному и двумерному нормальному закону распределения.

Листинг программы

Задание 1

```
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm
np.random.seed(42)
x1 = np.random.uniform(0, 10, 50)
x2 = np.random.uniform(5, 15, 70)
mu1, sigma1 = np.mean(x1), np.std(x1)
mu2, sigma2 = np.mean(x2), np.std(x2)
print(f"K\piacc \omega1: \mu = {mu1:.3f}, \sigma = {sigma1:.3f}")
print(f"K\piacc \omega2: \mu = \{mu2:.3f\}, \sigma = \{sigma2:.3f\}")
def find boundary (mul: float, sigmal: float, mu2: float, sigma2: float,
search range: tuple[float, float]) -> float:
    ** ** **
    Нахождение границы разделения классов.
    При равных априорных вероятностях P(\omega 1) = P(\omega 2) = 0.5:
    Граница - это точка, где P(x|\omega 1) * P(\omega 1) = P(x|\omega 2) * P(\omega 2), т.е. P(x|\omega 1) =
P(x|\omega 2)
    11 11 11
    x vals = np.linspace(search range[0], search range[1], 1000)
    pdf1 = norm.pdf(x vals, mu1, sigma1)
    pdf2 = norm.pdf(x vals, mu2, sigma2)
    diff = pdf1 - pdf2
    idx = np.argmin(np.abs(diff))
    return x_vals[idx]
search start = min(mu1, mu2) - 2*max(sigma1, sigma2)
search_end = max(mu1, mu2) + 2*max(sigma1, sigma2)
boundary = find_boundary(mu1, sigma1, mu2, sigma2, (search_start, search_end))
print(f"Граница разделения классов: x = \{boundary:.3f\}")
x plot = np.linspace(search start, search end, 500)
pdf1 plot = norm.pdf(x plot, mu1, sigma1)
```

```
pdf2 plot = norm.pdf(x plot, mu2, sigma2)
plt.figure(figsize=(10, 6))
plt.plot(x plot, pdf1 plot, label=f'P(x|\omega1), \mu={mu1:.2f}, \sigma={sigma1:.2f}',
color='blue')
plt.plot(x plot, pdf2 plot, label=f'P(x|\omega2), \mu={mu2:.2f}, \sigma={sigma2:.2f}',
color='red')
plt.axvline(x=boundary, color='green', linestyle='--', label=f'Граница:
x={boundary:.2f}')
plt.scatter(x1, [0]*len(x1), alpha=0.6, color='blue', s=20, marker='|')
plt.scatter(x2, [0]*len(x2), alpha=0.6, color='red', s=20, marker='|')
plt.title('Условные плотности вероятностей и граница разделения (1D)')
plt.xlabel('Значение признака х')
plt.ylabel('Плотность вероятности P(x|\omega)')
plt.legend()
plt.grid(True, alpha=0.3)
plt.show()
X = 7.5
print(f"\nAнализ точки X = \{X\}")
P w1 = 0.5
P w2 = 0.5
P X w1 = norm.pdf(X, mu1, sigma1)
P \times w2 = norm.pdf(X, mu2, sigma2)
P_X = P_X_w1 * P_w1 + P_X_w2 * P_w2
P w1 X = (P X w1 * P w1) / P X
P_w2_X = (P_X_w2 * P_w2) / P_X
print(f"Aпостериорная вероятность P(\omega 1 | X) = \{P \ w1 \ X:.4f\}")
print(f"Anocтeриорная вероятность P(\omega 2 | X) = \{P \ w2 \ X:.4f\}")
predicted class = "\omega1" if P w1 X > P w2 X else "\omega2"
print(f"Toчка X = {X} относится к классу {predicted class}")
P error w1 = 1 - norm.cdf(boundary, mu1, sigma1)
P error w2 = norm.cdf(boundary, mu2, sigma2)
```

```
P_error = P_w1 * P_error_w1 + P_w2 * P_error_w2

print(f"\nBeposthoctb ошибки классификации P(error) = {P error:.4f}")
```

Задание 2

```
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import multivariate normal
np.random.seed(42)
x1 class1 = np.random.uniform(0, 10, 50)
x2 class1 = np.random.uniform(0, 10, 50)
data class1 = np.column stack((x1 class1, x2 class1))
x1_{class2} = np.random.uniform(5, 15, 70)
x2 class2 = np.random.uniform(5, 15, 70)
data_class2 = np.column_stack((x1_class2, x2_class2))
mu1 2d = np.mean(data class1, axis=0)
mu2 2d = np.mean(data class2, axis=0)
sigma1 2d = np.sqrt(np.mean(np.var(data class1, axis=0)))
sigma2 2d = np.sqrt(np.mean(np.var(data class2, axis=0)))
cov1 = np.array([[sigma1 2d**2, 0],
                 [0, sigma1 2d**2]])
cov2 = np.array([[sigma2 2d**2, 0],
                  [0, sigma2 2d**2]])
print(f"K\piacc \omega1: \mu = [\{mu1\_2d[0]:.3f\}, \{mu1\_2d[1]:.3f\}], \sigma = \{sigma1\_2d:.3f\}"\}
print(f"K\piacc \omega2: \mu = [{mu2 2d[0]:.3f}, {mu2 2d[1]:.3f}], \sigma = {sigma2 2d:.3f}")
                            min(mu1 2d[0]-3*sigma1 2d,
                                                           mu2 2d[0]-3*sigma2 2d),
x min,
           x max
max(mu1 2d[0]+3*sigma1 2d, mu2 2d[0]+3*sigma2 2d)
```

```
= \min(\text{mul } 2d[1]-3*\text{sigmal } 2d,
                                                           mu2 2d[1]-3*sigma2 2d),
y_min,
           y max
\max(\text{mu1}_2\text{d[1]} + 3*\text{sigma1}_2\text{d}, \text{mu2}_2\text{d[1]} + 3*\text{sigma2}_2\text{d})
xx, yy = np.meshgrid(np.linspace(x min, x max, 200),
                      np.linspace(y min, y max, 200))
pos = np.dstack((xx, yy))
rv1 = multivariate normal(mu1 2d, cov1)
rv2 = multivariate normal(mu2 2d, cov2)
pdf1 2d = rv1.pdf(pos)
pdf2 2d = rv2.pdf(pos)
fig, ax = plt.subplots(1, 1, figsize=(10, 8))
levels = np.linspace(0, max(np.max(pdf1 2d), np.max(pdf2 2d)), 10)
cs1 = ax.contour(xx, yy, pdf1 2d, levels=levels, cmap='Blues', alpha=0.5)
cs2 = ax.contour(xx, yy, pdf2 2d, levels=levels, cmap='Reds', alpha=0.5)
diff = pdf1 2d - pdf2 2d
boundary contour = ax.contour(xx, yy, diff, levels=[0], colors='green',
linewidths=2, linestyles='--')
plt.clabel(boundary contour, inline=True, fontsize=10, fmt='Граница')
ax.scatter(data class1[:, 0], data class1[:, 1], c='blue', s=20, alpha=0.6,
label='Kπacc ω1 (50 точек)')
ax.scatter(data class2[:, 0], data class2[:, 1], c='red', s=20, alpha=0.6,
label='Kπacc ω2 (70 точек)')
ах.set title('Условные плотности вероятностей и граница разделения (2D)')
ax.set xlabel('Признак x1')
ax.set ylabel('Признак x2')
ax.legend()
ax.grid(True, alpha=0.3)
ax.set aspect('equal', 'box')
plt.show()
X 2d = np.array([7.5, 7.5])
print(f"\nAHaлиз точки X = ({X 2d[0]}, {X 2d[1]})")
```

```
P_w1 = 0.5
P_w2 = 0.5

P_X_w1 = rv1.pdf(X_2d)
P_X_w2 = rv2.pdf(X_2d)

P_X = P_X_w1 * P_w1 + P_X_w2 * P_w2

P_w1_X = (P_X_w1 * P_w1) / P_X
P_w2_X = (P_X_w2 * P_w2) / P_X

print(f"Апостериорная вероятность P(ω1|X) = {P_w1_X:.4f}")

print(f"Апостериорная вероятность P(ω2|X) = {P_w2_X:.4f}")

predicted_class_2d = "ω1" if P_w1_X > P_w2_X else "ω2"

print(f"Tочка X = ({X_2d[0]}, {X_2d[1]}) относится к классу {predicted_class_2d}")
```