/* 데이터 구조 및 알고리즘 */

신현규 강사, 화/목 20:00

스택, 큐

목차

01 대표적인 자료구조

02 스택

03 큐

지난시간요약

이번 과정의 목표

목적 달성을 위한 연산 횟수를 줄이는 자료구조 디자인

연산 횟수를 줄이면 장땡인가?

반드시 그런 것은 아니지만, 적어도 이번 과정에서는 Yes

리스트와 링크드 리스트

리스트

링크드 리스트

장점	i번째 원소의 값 접근이 빠름 연속된 값 읽기가 빠름	원소의 삽입 / 삭제가 빠름
단점	원소의 삽입 / 삭제가 느림	i번째 원소의 값 접근이 느림 연속된 값 읽기가 느림

주문 처리 시스템

리스트

링크드 리스트

addOrder

removeOrder

getOrder

주문 처리 시스템

리스트

링크드 리스트

addOrder

끝에 하나 추가

removeOrder myList.remove(orderId)

getOrder

몇 번째인지 반환

주문 처리 시스템

리스트

링크드 리스트

addOrder

끝에 하나 추가

끝에 하나 추가

removeOrder

myList.remove(orderId)

따라가면서 찾아 지운다?

getOrder

몇 번째인지 반환

몇 번째인지 반환

Dictionary를 사용하면 order ID로 원소를 바로 알 수 있음

Dictionary를 사용하면 order ID로 원소를 바로 알 수 있음

Dictionary를 사용하면 order ID로 원소를 바로 알 수 있음

Dictionary를 사용하면 order ID로 원소를 바로 알 수 있음

Dictionary를 사용하면 order ID로 원소를 바로 알 수 있음

성능비교

리스트

Testcase 12: accept (5 points, 445.613 ms), Testcase 13: accept (5 points, 601.689 ms), Testcase 14: accept (5 points, 693.773 ms), Testcase 15: accept (5 points, 934.603 ms), --- 주문 조회가 별로 없을 경우 테스트 --- Testc Testcase 17: accept (5 points, 1249.445 ms), Testcase 18: accept (5 points, 2187.972 ms), Testcase 19: accept (5 points, 3384.084 ms), Testcase 20: accept (5 points, 4902.619 ms),

링크드 리스트

```
--- 주문 조회가 매우 많을 경우 테스트 --- Testorestcase 12: accept (5 points, 782.010 ms), Testcase 13: accept (5 points, 989.530 ms), Testcase 14: accept (5 points, 1180.183 ms), Testcase 15: accept (5 points, 1525.306 ms), --- 주문 조회가 별로 없을 경우 테스트 --- Testorestcase 17: accept (5 points, 202.781 ms), Testcase 18: accept (5 points, 306.003 ms), Testcase 19: accept (5 points, 483.448 ms), Testcase 20: accept (5 points, 660.719 ms),
```

이 문제에서의 메시지

알고리즘이 같아도 데이터에 따라 성능이 다르다

기업이 고객의 데이터를 분석하는 주된 이유

중요한 것

답안을 보는 것은 편법이 절대 아님

대부분의 경우에는 조교의 답이 내 답보다 깔끔하다

다른 사람의 코드를 보는 것은 코딩 실력 향상의 확실한 지름길

주차별 커리큘럼

1주차 과정 소개, 배열, 연결리스트, 클래스

2주차 스택, 큐, 해싱

3주차 시간복잡도

4주차 트리, 트리순회, 재귀호출

5주차 힙

6주차 그래프 소개, DFS

7주차 그래프 심화, BFS

8주차 강의 요약, 알고리즘 과정 소개

대표적인자료구조

스택 (Stack)

Last In First Out

큐 (Queue)

First In First Out

트리 (Tree) 그래프 (Graph)

스택, 큐

1 2 3 4

Stack

Last In First Out

Queue

First In First Out

스택, 큐끝

그럼 얘는 왜 유명하지 않은가?

스태큐: 신현규(26, 강사) 씨가 발명

그럼 얘는 왜 유명하지 않은가?

어디다가 써야할지 모르겠으니까

그럼 얘는 왜 유명하지 않은가?

어디다가 써야할지 모르겠으니까

그러면 스택, 큐는 어디다가 쓰는가?

흔히 하는 착각

특정 자료구조가 뭔지 아는 것은 중요하지 않음

이 자료구조를 내 의도에 맞게 쓸 줄 아는 능력이 중요

디자인을 많이 해봐야 실력이 향상됨

[문제 1] 스택 구현하기

괄호쌍이 주어질 때, 올바른 괄호인지 판단

스택의 대표적인 활용

((())())

Last In First Out

Last In First Out

Last In First Out

스택의 대표적인 활용

Stack

Last In First Out

스택의 대표적인 활용

Last In First Out

Last In First Out

Last In First Out

Last In First Out

스택의 대표적인 활용

Last In First Out

스택의 대표적인 활용

Last In First Out

스택의 대표적인 활용

스택의 대표적인 활용

Last In First Out

스택의 대표적인 활용

올바르지 않은 경우에는 어떻게 되는가?

((())

Last In First Out

올바르지 않은 경우에는 어떻게 되는가?

(()())()

Last In First Out

스택은 자료구조

스택은 자료구조

무슨자료를 저장하는가?

스택은 자료구조

무슨 자료를 저장하는가?

상태 (Status)

- 1. 미역
- 2. 국간장
- 3. 후추
- 4. 고기
- 5. 냄비

- 1. 미역
- 2. 국간장
- 3. 후추
- 4. 고기
- 5. 냄비

- 1. 미역
- 2. 국간장
- 3. 후추
- 4. 고기
- 5. 냄비

- 1. 문 열기
- 2. 서랍 열기
- 3. 카드 꺼내기
- 4. 집 나오기

- 1. 미역
- 2. 국간장
- 3. 후추
- 4. 고기
- 5. 냄비

- 1. 문 열기
- 2. 서랍 열기
- 3. 카드 꺼내기
- 4. 집 나오기

- 1. 미역
- 2. 국간장
- 3. 후추
- 4. 고기
- 5. 냄비

- 1. 문 열기
- 2. 서랍 열기
- 3. 카드 꺼내기
- 4. 집 나오기

- 1. 미역
- 2. 국간장
- 3. 후추
- 4. 고기
- 5. 냄비

- 1. 문 열기
- 2. 서랍 열기
- 3. 카드 꺼내기
- 4. 집 나오기

- 1. 미역
- 2. 국간장
- 3. 후추
- 4. 고기
- 5. 냄비

- 1. 문 열기
- 2. 서랍 열기
- 3. 카드 꺼내기
- 4. 집 나오기

- 1. 미역
- 2. 국간장
- 3. 후추
- 4. 고기
- 5. 냄비

- 1. 문 열기
- 2. 서랍 열기
- 3. 카드 꺼내기
- 4. 집 나오기

- 1. 미역
- 2. 국간장
- 3. 후추
- 4. 고기
- 5. 냄비

- 1. 문 열기
- 2. 서랍 열기
- 3. 카드 꺼내기
- 4. 집 나오기

- 1. 미역
- 2. 국간장
- 3. 후추
- 4. 고기
- 5. 냄비

- 1. 문 열기
- 2. 서랍 열기
- 3. 카드 꺼내기
- 4. 집 나오기

- 1. 미역
- 2. 국간장
- 3. 후추
- 4. 고기
- 5. 냄비

- 1. 문 열기
- 2. 서랍 열기
- 3. 카드 꺼내기
- 4. 집 나오기

- 1. 미역
- 2. 국간장
- 3. 후추
- 4. 고기
- 5. 냄비

- 1. 열쇠 찾기
- 1. 문열기
- 2. 서랍 열기
- 3. 카드 꺼내기
- 4. 집 나오기

- 1. 미역
- 2. 국간장
- 3. 후추
- 4. 고기
- 5. 냄비

- 1. 열쇠 찾기
- 1. 문열기
- 2. 서랍 열기
- 3. 카드 꺼내기
- 4. 집 나오기

미역국 끓이기

- 1. 미역
- 2. 국간장
- 3. 후추
- 4. 고기
- 5. 냄비

- 1. 열쇠 찾기
- 1. 문열기
- 2. 서랍 열기
- 3. 카드 꺼내기
- 4. 집 나오기

마트. (4) 미역국 끓이기

- 1. 미역
- 2. 국간장
- 3. 후추
- 4. 고기
- 5. 냄비

- 1. 열쇠 찾기
- 1. 문 열기
- 2. 서랍 열기
- 3. 카드 꺼내기
- 4. 집 나오기

- 1. 미역
- 2. 국간장
- 3. 후추
- 4. 고기
- 5. 냄비

- 1. 열쇠 찾기
- 1. 문 열기
- 2. 서랍 열기
- 3. 카드 꺼내기
- 4. 집 나오기

- 1. 미역
- 2. 국간장
- 3. 후추
- 4. 고기
- 5. 냄비

- 1. 열쇠 찾기
- 1. 문열기
- 2. 서랍 열기
- 3. 카드 꺼내기
- 4. 집 나오기

마트. (4) 미역국 끓이기

- 1. 미역
- 2. 국간장
- 3. 후추
- 4. 고기
- 5. 냄비

- 1. 열쇠 찾기
- 1. 문열기
- 2. 서랍 열기
- 3. 카드 꺼내기
- 4. 집 나오기

미역국 끓이기

- 1. 미역
- 2. 국간장
- 3. 후추
- 4. 고기
- 5. 냄비

- 1. 열쇠 찾기
- 1. 문 열기
- 2. 서랍 열기
- 3. 카드 꺼내기
- 4. 집 나오기

"상태"의 의존상태가 생길 때

A라는 일을 마치기 위해서 B라는 일을 먼저 끝내야 할 때

"상태"의 의존상태가 생길 때

A라는 일을 마치기 위해서 B라는 일을 먼저 끝내야 할 때

재귀호출

Computational Thinking

실생활의 예 (2)

실생활의 예 (2)

- 1. 미역
- 2. 국간장
- 3. 후추
- 4. 고기
- 5. 냄비

- 1. 미역
- 2. 국간장
- 3. 후추
- 4. 고기
- 5. 냄비

- 1. 미역
- 2. 국간장
- 3. 후추
- 4. 고기
- 5. 냄비

1. 옷 찾기

- 1. 미역
- 2. 국간장
- 3. 후추
- 4. 고기
- 5. 냄비

1. 옷 찾기

- 1. 미역
- 2. 국간장
- 3. 후추
- 4. 고기
- 5. 냄비

1. 옷 찾기

- 1. 미역
- 2. 국간장
- 3. 후추
- 4. 고기
- 5. 냄비

1. 옷 찾기

- 1. 미역
- 2. 국간장
- 3. 후추
- 4. 고기
- 5. 냄비

1. 옷 찾기

- 1. 미역
- 2. 국간장
- 3. 후추
- 4. 고기
- 5. 냄비

1. 옷 찾기

- 1. 미역
- 2. 국간장
- 3. 후추
- 4. 고기
- 5. 냄비

1. 옷 찾기

- 1. 미역
- 2. 국간장
- 3. 후추
- 4. 고기
- 5. 냄비

1. 옷 찾기

1. 방세 입금하기

- 1. 미역
- 2. 국간장
- 3. 후추
- 4. 고기
- 5. 냄비

미역국 끓이기

- 1. 미역
- 2. 국간장
- 3. 후추
- 4. 고기
- 5. 냄비

미역국 끓이기

- 1. 미역
- 2. 국간장
- 3. 후추
- 4. 고기
- 5. 냄비

미역국 옷 끓이기 찾기

- 1. 미역
- 2. 국간장
- 3. 후추
- 4. 고기
- 5. 냄비

1. 옷 찾기

미역국 옷 끓이기 찾기

- 1. 미역
- 2. 국간장
- 3. 후추
- 4. 고기
- 5. 냄비

1. 옷 찾기

- 미역
- 국간장
- 후추 3.
- 고기
- 냄비

- 1. 옷 찾기 1. 월세 입금하기

- 미역
- 국간장 2.
- 후추 3.
- 고기
- 냄비

- 1. 옷 찾기 1. 월세 입금하기

- 미역
- 2. 국간장
- 후추 3.
- 고기
- 놲비

- 1. 옷 찾기 1. 월세 입금하기

- 미역
- 2. 국간장
- 후추 3.
- 고기
- 냂비

- 1. 옷 찾기 1. 월세 입금하기

- 미역
- 2. 국간장
- 후추 3.
- 고기
- 5. 냄비

- 1. 옷 찾기 1. 월세 입금하기

- 미역
- 2. 국간장
- 후추 3.
- 고기
- 5. 냄비

- 1. <u>옷 찾기</u> 1. <u>월세 입금하기</u>

- 미역
- 2. 국간장
- 후추 3.
- 고기
- 5. 냄비

1. <u>옷 찾기</u> 1. <u>월세 입금하기</u>

그래서 큐는 언제 쓰나요?

"상태"의 의존상태가 없을 때

A와 B가 서로 관련이 없지만 모두 하긴 해야할 때

스케쥴링, 병렬화

스택의 대표적인 활용

((())())

스택의 대표적인 활용

스택의 대표적인 활용

Stack

스택의 대표적인 활용

Last In First Out

스택의 대표적인 활용

요약

선형 자료구조가 제일 어렵다

→ 목적이 모호하기 때문

요약

선형 자료구조가 제일 어렵다

→ 목적이 모호하기 때문

스택과 큐에는 많은 경우 "상태"를 저장한다

요약

선형 자료구조가 제일 어렵다

→ 목적이 모호하기 때문

스택과 큐에는 많은 경우 "상태"를 저장한다

스택과 큐는 그 용도가 다르다

- → 스택은 "상태"의 의존상태가 있을 때 (재귀호출)
- → 큐는 "상태"의 의존상태가 없을 때 (스케쥴링, 병렬화)

감사합니다!

신현규

E-mail: hyungyu.sh@kaist.ac.kr

Kakao: yougatup

/* elice */

문의 및 연락처

academy.elice.io
contact@elice.io
facebook.com/elice.io
blog.naver.com/elicer