Sprawozdanie z laboratorium: Problem szeregowania

zadań 1 $|r_j, q_j| C_{\text{max}}$

Mateusz Wojtaszek

Kwiecień 2025

1 Opis problemu

Dany jest zbiór $J = \{1, 2, ..., n\}$ zadań do wykonania na jednej maszynie. Każde zadanie $j \in J$ charakteryzuje się:

- r_i czasem dostępności zadania,
- p_i czasem przetwarzania,
- q_j czasem stygnięcia (czas po zakończeniu przetwarzania, który należy doliczyć do długości harmonogramu, ale nie blokuje maszyny).

Celem jest wyznaczenie takiego uporządkowania zadań (permutacji π), które minimalizuje C_{\max} , czyli maksymalny moment zakończenia wszystkich zadań:

$$C_{\max}(\pi) = \max_{j \in J} \{C_j(\pi) + q_j\}$$

gdzie $C_j(\pi)$ to moment zakończenia przetwarzania zadania j w permutacji π .

2 Opis zastosowanych algorytmów

W niniejszym opracowaniu zaimplementowano i przetestowano następujące algorytmy:

2.1 Sortowanie po r_j (rosnąco)

Prosta heurystyka polegająca na uszeregowaniu zadań w kolejności ich czasów dostępności r_j , od najmniejszego do największego. Zadania są następnie wykonywane w tej kolejności, z uwzględnieniem ich dostępności na maszynie.

2.2 Sortowanie po q_j (malejąco)

Heurystyka szeregująca zadania w kolejności malejących czasów stygnięcia q_j . Intuicja jest taka, aby zadania z długim czasem stygnięcia wykonać jak najwcześniej, by nie opóźniały znacząco końcowego C_{\max} .

2.3 Przegląd zupełny (brute force)

Algorytm dokładny, który polega na wygenerowaniu wszystkich n! możliwych permutacji zadań. Dla każdej permutacji obliczana jest wartość C_{max} , a następnie wybierana jest permutacja z minimalną wartością tego kryterium. Gwarantuje znalezienie rozwiązania optymalnego, ale jest wykonalny obliczeniowo tylko dla bardzo małych n.

2.4 Algorytm Schrage'a (klasyczny)

Klasyczny algorytm aproksymacyjny dla problemu $1|r_j, q_j|C_{\text{max}}$. Działa on iteracyjnie, utrzymując dwa zbiory zadań: N (zadania jeszcze nieprzetworzone i niedostępne) oraz G (zadania gotowe do wykonania). W każdym kroku:

- Aktualizowany jest czas t.
- Zadania z N, dla których $r_j \leq t$, są przenoszone do zbioru G.
- Jeśli zbiór G jest niepusty, wybierane jest z niego zadanie z największym czasem stygnięcia q_j . Zadanie to jest dodawane do harmonogramu, a czas t jest aktualizowany o jego czas przetwarzania p_j .
- Jeśli zbiór G jest pusty, czas t jest przesuwany do najwcześniejszego czasu dostępności r_i spośród zadań pozostałych w N.

Algorytm kończy działanie, gdy wszystkie zadania zostaną uszeregowane.

2.5 Algorytm Schrage'a z podziałem (preemption)

Modyfikacja klasycznego algorytmu Schrage'a, która pozwala na przerywanie (preempcję) aktualnie wykonywanego zadania. Główna idea:

- \bullet Podobnie jak w klasycznym Schrage'u, utrzymywane są zbiory N i G.
- Gdy w chwili t do zbioru G trafia nowe zadanie j, a na maszynie jest przetwarzane zadanie l, sprawdzany jest warunek $q_j > q_l$.
- Jeśli warunek jest spełniony, zadanie l jest przerywane (zapisywany jest pozostały
 czas przetwarzania), a zadanie j rozpoczyna swoje przetwarzanie. Przerwane zadanie
 l wraca do zbioru G.
- $\bullet\,$ JeśliGstaje się puste, czas jest przesuwany do najbliższego r_k z N.

Algorytm ten znajduje optymalne rozwiązanie dla problemu z podziałem zadań $(1|r_j, pmtn, q_j|C_{\text{max}})$ i jego wynik stanowi dolne ograniczenie dla problemu bez podziału.

2.6 Algorytm konstrukcyjny własnego autorstwa (Sortowanie po $r_j + q_j$)

Zaproponowana prosta heurystyka konstrukcyjna, oparta na sortowaniu zadań według sumy ich czasu dostępności r_j i czasu stygnięcia q_j , w kolejności rosnącej.

2.6.1 Opis idei

Intuicja polega na priorytetyzowaniu zadań, które są dostępne wcześnie i jednocześnie mają krótki czas stygnięcia. Ma to na celu szybkie "pozbycie się" zadań, które potencjalnie mogłyby w przyszłości blokować harmonogram z powodu długiego q_j , jednocześnie uwzględniając ich dostępność.

2.6.2 Pseudokod

- 1: Dane wejściowe: Zbiór zadań J z parametrami (r_j, p_j, q_j) dla $j \in J$.
- 2: Oblicz wartość $s_j = r_j + q_j$ dla każdego zadania $j \in J$.
- 3: Utwórz listę zadań L.
- 4: Posortuj zadania w liście L rosnąco według wartości s_j . W przypadku remisów, można zastosować dodatkowe kryterium (np. rosnące r_j lub malejące q_j) lub zachować dowolną stabilną kolejność.
- 5: Zwróć posortowaną listę L jako wynikową permutację π .
- 6: (Wykonanie harmonogramu i obliczenie C_{\max} następuje standardowo dla uzyskanej permutacji π .)

3 Ręczne obliczenia C_{max} dla instancji testowej

Do analizy i testów wykorzystano następującą instancję z 5 zadaniami:

ID	r_{j}	p_{j}	q_{j}
1	5	2	2
2	2	5	7
3	3	1	1
4	0	1	3
5	6	2	1

Poniżej przedstawiono ręczne obliczenia C_{max} dla każdego z algorytmów. Zmienna t oznacza aktualny czas zakończenia poprzedniego zadania na maszynie. C_j oznacza czas zakończenia zadania j powiększony o jego czas stygnięcia q_j .

3.1 Sortowanie po r_j (rosnąco)

Kolejność zadań: 4, 2, 3, 1, 5

- Zadanie 4: t = 0. start = $\max(0, r_4=0) = 0$, koniec = $0 + p_4=1$. $C_4 = 1 + q_4 = 1 + 3 = 4$.
- Zadanie 2: t = 1. start = $\max(1, r_2=2) = 2$, koniec = $2 + p_2=5 = 7$. $C_2 = 7 + q_2 = 7 + 7 = 14$.
- Zadanie 3: t = 7. start = $\max(7, r_3 = 3) = 7$, koniec = $7 + p_3 = 1 = 8$. $C_3 = 8 + q_3 = 8 + 1 = 9$.
- Zadanie 1: t = 8. start = $\max(8, r_1=5) = 8$, koniec = $8 + p_1=2 = 10$. $C_1 = 10 + q_1 = 10 + 2 = 12$.

• Zadanie 5: t = 10. start = $\max(10, r_5=6) = 10$, koniec = $10 + p_5=2 = 12$. $C_5 = 12 + q_5 = 12 + 1 = 13$.

$$C_{\text{max}} = \max\{4, 14, 9, 12, 13\} = \boxed{14}$$

3.2 Sortowanie po q_j (malejąco)

Kolejność zadań: 2, 4, 1, 5, 3

- Zadanie 2: t = 0. start = $\max(0, r_2=2) = 2$, koniec = $2 + p_2=5 = 7$. $C_2 = 7 + q_2 = 7 + 7 = 14$.
- Zadanie 4: t = 7. start = $\max(7, r_4=0) = 7$, koniec = $7 + p_4=1 = 8$. $C_4 = 8 + q_4 = 8 + 3 = 11$.
- Zadanie 1: t = 8. start = $\max(8, r_1=5) = 8$, koniec = $8 + p_1=2 = 10$. $C_1 = 10 + q_1 = 10 + 2 = 12$.
- Zadanie 5: t = 10. start = $\max(10, r_5=6) = 10$, koniec = $10 + p_5=2 = 12$. $C_5 = 12 + q_5 = 12 + 1 = 13$.
- Zadanie 3: t = 12. start = $\max(12, r_3=3) = 12$, koniec = $12 + p_3=1 = 13$. $C_3 = 13 + q_3 = 13 + 1 = 14$.

$$C_{\text{max}} = \max\{14, 11, 12, 13, 14\} = \boxed{14}$$

3.3 Przegląd zupełny (brute force)

Algorytm ten testuje wszystkie 5! = 120 permutacji. Jak pokazano w obliczeniach dla sortowania po q_j , permutacja 2-4-1-5-3 daje $C_{\text{max}} = 14$. Przykładowo, dla permutacji 1-2-3-4-5:

- Zadanie 1: start=max(0.5)=5, start=max(0.5)=5, start=max(0.5)=5
- Zadanie 2: start=max(7,2)=7, koniec=12, C2=12+7=19
- Zadanie 3: start=max(12,3)=12, koniec=13, C3=13+1=14
- Zadanie 4: start=max(13,0)=13, koniec=14, C4=14+3=17
- Zadanie 5: start=max(14,6)=14, koniec=16, C5=16+1=17

 $C_{\rm max}=19$. Po sprawdzeniu wszystkich permutacji (co zostało wykonane za pomocą kodu), znaleziono optymalną wartość. Najlepsza znaleziona permutacja to **2-1-3-4-5** (co można zweryfikować ręcznie):

- Zadanie 2: start=max(0,2)=2, start=max(0,2)=2, start=max(0,2)=2
- Zadanie 1: start=max(7,5)=7, start=max(7
- Zadanie 3: start=max(9,3)=9, koniec=10, C3=10+1=11
- Zadanie 4: start=max(10,0)=10, koniec=11, C4=11+3=14
- Zadanie 5: start=max(11,6)=11, koniec=13, C5=13+1=14

$$C_{\text{max}}^* = \max\{14, 11, 11, 14, 14\} = \boxed{14}$$

(Uwaga: Istnieje więcej niż jedna permutacja optymalna, np. 2-4-1-5-3 również daje Cmax=14).

3.4 Algorytm Schrage'a (klasyczny)

Przebieg algorytmu krok po kroku (N - zbiór niegotowych, G - zbiór gotowych):

- t = 0. $N = \{1, 2, 3, 4, 5\}$. $G = \{\}$.
- Zadanie 4 $(r_4 = 0)$ staje się dostępne. $N = \{1, 2, 3, 5\}, G = \{4\}.$
- $\bullet\,$ Wybierz zGzadanie z max q_j : zadanie 4 ($q_4=3).$ Wykonaj 4.
- $t = 0 + p_4 = 1$. Harmonogram: [4].
- t = 1. Brak nowych zadań w G. $G = \{\}$. Przesuń czas do najbliższego r_j z N, czyli $r_2 = 2$. t = 2.
- t=2. Zadanie 2 $(r_2=2)$ staje się dostępne. $N=\{1,3,5\},\,G=\{2\}.$
- Wybierz z G zadanie z max q_j : zadanie 2 ($q_2 = 7$). Wykonaj 2.
- $t = 2 + p_2 = 7$. Harmonogram: [4, 2].
- t = 7. Zadania 1 $(r_1 = 5)$, 3 $(r_3 = 3)$, 5 $(r_5 = 6)$ stają się dostępne. $N = \{\}$. $G = \{1, 3, 5\}$.
- Wybierz z G zadanie z max q_j : zadanie 1 $(q_1 = 2)$. Wykonaj 1.
- $t = 7 + p_1 = 9$. Harmonogram: [4, 2, 1]. $G = \{3, 5\}$.
- Wybierz z G zadanie z max q_j : zadanie 3 ($q_3 = 1$) i 5 ($q_5 = 1$) mają równe q_j . Wybierzmy np. 3 (lub 5, wynik Cmax będzie ten sam dla tej instancji). Wykonaj 3.
- $t = 9 + p_3 = 10$. Harmonogram: [4, 2, 1, 3]. $G = \{5\}$.
- Wybierz z G zadanie z max q_i : zadanie 5 ($q_5 = 1$). Wykonaj 5.
- $t = 10 + p_5 = 12$. Harmonogram: [4, 2, 1, 3, 5]. $G = \{\}$.

Kolejność: 4, 2, 1, 3, 5. Obliczenie C_{max} :

- Zadanie 4: start=0, koniec=1, C4=1+3=4
- Zadanie 2: start=max(1,2)=2, koniec=7, C2=7+7=14
- Zadanie 1: start=max(7,5)=7, start=max(7
- Zadanie 3: start=max(9,3)=9, start=max(9,3)=9, start=max(9,3)=9
- Zadanie 5: start=max(10,6)=10, koniec=12, C5=12+1=13

$$C_{\text{max}} = \max\{4, 14, 11, 11, 13\} = \boxed{14}$$

3.5 Algorytm Schrage'a z podziałem (preemption)

Algorytm ten jest bardziej złożony do ręcznego śledzenia z powodu potencjalnych przerwań. Jego działanie na tej instancji jest następujące (schematycznie):

- t = 0: Zadanie 4 (q = 3) dostępne, startuje.
- t=1: Zadanie 4 wykonane. Maszyna wolna.
- t = 2: Zadanie 2 (q = 7) dostępne, startuje.
- t = 3: Zadanie 3 (q = 1) dostępne. $q_3 < q_2$, zadanie 2 kontynuuje.
- t = 5: Zadanie 1 (q = 2) dostępne. $q_1 < q_2$, zadanie 2 kontynuuje.
- t = 6: Zadanie 5 (q = 1) dostępne. $q_5 < q_2$, zadanie 2 kontynuuje.
- t = 7: Zadanie 2 zakończone. Dostępne: 1, 3, 5. Max q ma zadanie 1 (q = 2), startuje.
- t = 9: Zadanie 1 zakończone. Dostępne: 3, 5. Max q mają oba (q = 1). Wybierz np. 3, startuje.
- t = 10: Zadanie 3 zakończone. Dostępne: 5. Startuje zadanie 5.
- t = 12: Zadanie 5 zakończone.

W tym przypadku nie doszło do żadnego podziału. Harmonogram jest taki sam jak w Schrage'u klasycznym [4, 2, 1, 3, 5], a C_{max} (które dla Schrage z podziałem jest liczone jako $LB = \max_j (r_j + p_j + q_j)$ nad krytycznymi zbiorami zadań lub przez symulację) wynosi również [14].

3.6 Algorytm konstrukcyjny (Sortowanie po $r_j + q_j$)

Obliczamy sumy $r_i + q_i$:

$$\begin{array}{c|c} \text{ID} & r_j + q_j \\ \hline 4 & 0 + 3 = 3 \\ 3 & 3 + 1 = 4 \\ 1 & 5 + 2 = 7 \\ 5 & 6 + 1 = 7 \\ 2 & 2 + 7 = 9 \\ \hline \end{array}$$

Sortowanie rosnąco po $r_j + q_j$. Dla zadań 1 i 5 mamy remis (7); ustalmy kolejność np. wg ID: 1 przed 5. Kolejność zadań: 4, 3, 1, 5, 2.

- Zadanie 4: t = 0. start = $\max(0, r_4=0) = 0$, koniec = $0 + p_4=1$. $C_4 = 1 + q_4 = 1 + 3 = 4$.
- Zadanie 3: t = 1. start = $\max(1, r_3 = 3) = 3$, koniec = $3 + p_3 = 1 = 4$. $C_3 = 4 + q_3 = 4 + 1 = 5$.
- Zadanie 1: t = 4. start = $\max(4, r_1=5) = 5$, koniec = $5 + p_1=2 = 7$. $C_1 = 7 + q_1 = 7 + 2 = 9$.

- Zadanie 5: t = 7. start = $\max(7, r_5 = 6) = 7$, koniec = $7 + p_5 = 2 = 9$. $C_5 = 9 + q_5 = 9 + 1 = 10$.
- Zadanie 2: t = 9. start = $\max(9, r_2=2) = 9$, koniec = $9 + p_2=5 = 14$. $C_2 = 14 + q_2 = 14 + 7 = 21$.

$$C_{\text{max}} = \max\{4, 5, 9, 10, 21\} = \boxed{21}$$

4 Weryfikacja wyników za pomocą kodu źródłowego

Poprawność ręcznych obliczeń oraz działanie algorytmów zweryfikowano za pomocą implementacji w języku C++. Wyniki dla przedstawionej instancji testowej są następujące:

4.1 Sortowanie po r_i i q_i

Kod testujący heurystyki sortowania (Rysunek 1) zwrócił wyniki zgodne z obliczeniami ręcznymi:

```
==== INSTANCJA TESTOWA ====

[Sort by R] Cmax: 14 | Time: 0s

[Sort by Q] Cmax: 14 | Time: 0s
```

Rysunek 1: Kod testujący działanie heurystyk Sort by r_i oraz Sort by q_i

4.2 Przegląd zupełny (brute force)

Implementacja przeglądu zupełnego (Rysunek 2) potwierdziła, że minimalna wartość C_{max} dla tej instancji wynosi 14 i znalazła jedną z optymalnych permutacji (2-1-3-4-5):

```
==== PRZEGLĄD ZUPEŁNY DLA INSTANCJI TESTOWEJ ====
Minimum Cmax: 14
Best permutation:
ID | Processing Time | Release Time | Cooling Time
                      1 2
                                      | 7
                      15
1
3
                      1 3
  | 1
                                      1
4
   | 1
                      1 0
                                      | 3
5
  | 2
                      | 6
                                      1 1
```

Czas działania algorytmu: 0 s

Rysunek 2: Kod i wynik działania algorytmu przeglądu zupełnego

4.3 Algorytm Schrage'a (klasyczny)

Kod implementujący algorytm Schrage'a (Rysunek 3) również uzyskał wynik $C_{\text{max}} = 14$, co jest zgodne z wartością optymalną dla tej instancji.

```
==== SCHRAGE DLA INSTANCJI TESTOWEJ ==== Cmax (Schrage): 14 | Czas działania: 0 s
```

4.4 Algorytm Schrage'a z podziałem (preemption)

Implementacja algorytmu Schrage'a z podziałem (Rysunek 4) dała wynik $C_{\text{max}} = 14$. Jak zauważono w obliczeniach ręcznych, dla tej instancji wynik ten jest taki sam jak dla wersji bez podziału i jest równy wartości optymalnej C_{max}^* .

```
==== SCHRAGE Z PODZIAŁEM DLA INSTANCJI TESTOWEJ ==== Cmax (Schrage z podziałem): 14 | Czas działania: 0 s
```

Rysunek 3: Kod i wynik działania algorytmu Schrage'a

Rysunek 4: Kod i wynik działania algorytmu Schrage z podziałem

4.5 Algorytm konstrukcyjny (Sortowanie po $r_j + q_j$)

Kod implementujący własną heurystykę (Rysunek 5) potwierdził wynik uzyskany ręcznie:

```
==== ALGORYTM KONSTRUKCYJNY: SORT R+Q ==== Cmax (R+Q): 21 | Czas działania: 0 s
```

Wynik $C_{\text{max}} = 21$ jest znacząco wyższy od optymalnego ($C_{\text{max}}^* = 14$), co pokazuje ograniczenia tej prostej heurystyki.

Jasne, dobrym pomysłem jest wyraźne pokazanie wartości referencyjnych, do których porównywane są wyniki algorytmów. Możesz dodać następującą sekcję (np. jako podsekcję przed tabelami z wynikami):

Fragment kodu

Rysunek 5: Kod i wynik działania konstrukcyjnego algorytmu sortującego po $r_i + q_i$

Tabela 1: Podsumowanie	wyników	dla insta	ncji testow	ej (n=5)
	TT 1	~	O 1 .	1 • []

Algorytm	Uzyskany C_{\max}	Czas działania [s]	Błąd względny $[\%]$
Przegląd zupełny (Optimum)	14	0	0.0
Sortowanie po r_j	14	0	0.0
Sortowanie po q_j	14	0	0.0
Algorytm Schrage'a	14	0	0.0
Algorytm Schrage'a (z podziałem)	14	0	0.0
Algorytm konstrukcyjny (Sort $r_j + q_j$)	21	0	50.0

4.6 Porównanie z wynikami algorytmu Carliera ($C_{\max}^{Carlier}$)

W celu oceny jakości rozwiązań generowanych przez zaimplementowane algorytmy heurystyczne (Sortowanie R, Sortowanie Q, Sortowanie R+Q, Schrage) oraz algorytm Schrage z podziałem (Schrage PMTN), wykorzystano jako wartości referencyjne wyniki uzyskane za pomocą algorytmu Carliera. Wartości te, oznaczone w tabeli jako $C_{\max}^{Carlier}$ i pochodzące ze strony prowadzącego zajęcia (lub innego odpowiedniego źródła), posłużyły jako punkt odniesienia do obliczenia błędów względnych przedstawionych w tabeli 3. Porównanie z wynikami Carliera pozwala na ocenę dokładności zaimplementowanych metod w kontekście znanych, wysokiej jakości rozwiązań dla problemu szeregowania zadań $1|r_i,q_i|C_{max}$.

Poniższa tabela 2 zestawia wartości referencyjne $C_{\max}^{Carlier}$ uzyskane za pomocą algorytmu Carliera dla użytych w eksperymentach instancji testowych.

Wartości $C_{\max}^{Carlier}$ przedstawione w Tabeli 2 posłużyły jako punkt odniesienia do obliczenia błędu względnego [%] dla wszystkich ocenianych algorytmów w tabeli zbiorczej wyników (Tabela 3).

Tabela 2: Referencyjne wartości o	$C_{\max}^{Carlier}$ dla	instancji	testowych.
-----------------------------------	--------------------------	-----------	------------

Instancja	Rozmiar (n)	$C_{\max}^{Carlier}$
1	6	32
2	10	641
3	20	1267
4	20	1386
5	50	3472
6	50	3617
7	100	6885
8	100	6904
9	1000	72852

Tabela 3: Wyniki algorytmów dla instancji testowych i porównanie z wartościami Carliera $(C_{\text{max}}^{Carlier})$

			Sortowanie R			Sortowanie Q		Sortowanie R+Q		Schrage			Schrage PMTN				
Inst.	n	$C_{\rm max}^{Carlier}$	C_{max}	Błąd [%]	Czas [ms]	C_{max}	Błąd $[\%]$	Czas [ms]	C_{max}	Błąd [%]	Czas [ms]	C_{max}	Błąd [%]	Czas [ms]	C_{max}	Błąd $[\%]$	Czas [ms]
1	6	32	34	6.3	0.001	32	0.0	0.016	42	31.3	0.015	32	0.0	0.022	32	0.0	0.019
2	10	641	746	16.4	0.000	764	19.2	0.001	824	28.6	0.000	687	7.2	0.014	641	0.0	0.022
3	20	1267	1594	25.8	0.001	1392	9.9	0.002	1874	47.9	0.001	1299	2.5	0.026	1257	-0.8	0.073
4	20	1386	1576	13.7	0.000	1597	15.2	0.001	1781	28.5	0.001	1399	0.9	0.024	1386	0.0	0.036
5	50	3472	4013	15.6	0.002	4164	19.9	0.004	5094	46.7	0.004	3487	0.4	0.054	3472	0.0	0.079
6	50	3617	4296	18.8	0.002	4206	16.3	0.004	5018	38.7	0.004	3659	1.2	0.055	3617	0.0	0.079
7	100	6885	7831	13.7	0.005	8135	18.2	0.009	10093	46.6	0.008	6918	0.5	0.105	6885	0.0	0.173
8	100	6904	7973	15.5	0.005	7773	12.6	0.008	9727	40.9	0.008	6936	0.5	0.108	6904	0.0	0.186
9	1000	72852	86648	18.9	0.069	86703	19.0	0.122	100880	38.5	0.111	72853	0.0	1.227	72852	0.0	2.082

Błąd względny [%] obliczono dla wszystkich algorytmów jako: $((C_{\rm max}-C_{\rm max}^{Carlier})/C_{\rm max}^{Carlier}) \times 100\%$. Czas podano w milisekundach [ms].

5 Wnioski

Na podstawie przeprowadzonych eksperymentów i analizy wyników dla problemu szeregowania zadań $1|r_j,q_j|C_{\max}$, porównanych z wartościami referencyjnymi uzyskanymi za pomocą algorytmu Carliera ($C_{\max}^{Carlier}$), można sformułować następujące wnioski:

- Jakość heurystyk sortujących: Proste heurystyki oparte na sortowaniu (Sortowanie R, Sortowanie Q, Sortowanie R+Q) generują rozwiązania bardzo szybko, jednak ich jakość, mierzona błędem względnym w stosunku do wyników Carliera (C^{Carlier}), jest niska i zmienna.
 - Heurystyki sortowania po r_j (Sort R) i q_j (Sort Q) osiągały błędy względne odpowiednio do około 26% (Sort R, instancja 3) i 20% (Sort Q, instancja 5). Żadna z nich nie dominowała jednoznacznie pod względem jakości dla wszystkich instancji, choć Sort Q uzyskał wynik referencyjny dla instancji 1.
 - Zaproponowana heurystyka konstrukcyjna (Sortowanie R+Q) okazała się najsłabsza pod względem uzyskiwanych wartości $C_{\rm max}$, generując największe błędy względne, sięgające blisko 48% (instancja 3, Tabela 3).
- Skuteczność algorytmu Schrage'a: Klasyczny algorytm Schrage'a, porównany z wynikami Carliera, nie zawsze znajdował rozwiązanie referencyjne. Wykazał się jednak bardzo dobrą jakością, ze stosunkowo niewielkimi błędami względnymi (maksymalnie 7.2% dla instancji 2), a w dwóch przypadkach (instancje 1 i 9) osiągnął wynik

zgodny z $C_{\max}^{Carlier}$ (błąd 0.0%). Potwierdza to jego wysoką wartość jako szybkiego algorytmu aproksymacyjnego dla problemu $1|r_j,q_j|C_{\max}$.

• Algorytm Schrage PMTN: Algorytm Schrage'a z podziałem (PMTN), który znajduje optymalne rozwiązanie dla problemu z przerwaniami $(1|r_j, pmtn, q_j|C_{\text{max}})$, uzyskał wyniki C_{max}^{PMTN} bardzo bliskie lub równe wartościom referencyjnym $C_{\text{max}}^{Carlier}$ (obliczonym dla problemu bez przerwań) we wszystkich instancjach poza jedną. Co ciekawe, dla instancji 3 algorytm PMTN uzyskał wynik lepszy ($C_{\text{max}} = 1257$) niż podana wartość referencyjna Carliera ($C_{\text{max}}^{Carlier} = 1267$), co daje błąd względny -0.8% (Tabela 3). Wyniki PMTN stanowią teoretyczne dolne ograniczenie dla problemu bez podziału ($C_{\text{max}}^{PMTN} \leq C_{\text{max}}^*$). Fakt, że są one tak bliskie (lub lepsze niż podane) wartościom $C_{\text{max}}^{Carlier}$ sugeruje, że dla tych instancji optymalne rozwiązanie z przerwaniami jest bardzo zbliżone do optymalnego (lub bardzo dobrego referencyjnego) rozwiązania bez przerwań.

• Czasy działania:

- Proste heurystyki sortujące charakteryzują się pomijalnie małymi czasami wykonania (< 0.1 ms nawet dla n=1000).
- Algorytmy Schrage i Schrage PMTN również działają bardzo szybko. Nawet dla 1000 zadań ich czas wykonania był rzędu pojedynczych milisekund (Schrage: 1.227 ms, Schrage PMTN: 2.082 ms), co jest znacząco lepsze niż czas potrzebny na przegląd zupełny.
- Porównując czasy Schrage i Schrage PMTN (Tabela 3), wersja z podziałem (PMTN) okazała się nieznacznie wolniejsza, co jest zgodne z oczekiwaniami ze względu na bardziej złożoną logikę algorytmu.
- Podsumowanie: Algorytm Schrage PMTN dostarczył wyników najbliższych referencyjnym wartościom Carliera, często im dorównując lub nawet je przewyższając (instancja 3), stanowiąc jednocześnie dolne ograniczenie dla problemu bez podziału. Klasyczny algorytm Schrage'a, choć nie zawsze osiągał wyniki Carliera, nadal oferuje bardzo dobre rozwiązania przy nieco krótszym czasie działania niż wersja PMTN. Proste heurystyki sortujące są zdecydowanie najszybsze, ale ich jakość jest znacznie niższa i niezalecana, gdy wymagana jest wysoka dokładność. Wybór między Schrage a Schrage PMTN może zależeć od priorytetu czy ważniejsza jest minimalnie lepsza jakość wyniku (potencjalnie PMTN) czy minimalnie krótszy czas (Schrage).

Uwaga: Pomiary czasów wykonania algorytmów przedstawione w sprawozdaniu zostały przeprowadzone na komputerze MacBook Pro wyposażonym w procesor M3 Pro oraz 20 GB zunifikowanej pamięci RAM, dnia 15 kwietnia 2025.