

Chap 04 데이터베이스_4.2 ERD와 정규화 과정

4.2 ERD와 정규화 과정

ERD란?

entity relationship diagram

DB를 구축할 때 가장 기초적인 뼈대 역할을 하며, 릴레이션 간의 관계들을 정의

4.2.1 ERD

V ERD 장단점

- ERD는 관계형 구조로 표현할 수 있는 데이터를 구성하는데 유용
- 비정형 데이터를 충분히 표현할 수 없음

✓ ERD 예제

승원 영업부서의 ERD

요구 사항

- 영업사원은 0 ~ n명의 고객을 관리한다.
- 고객은 0 ~ n개의 주문을 넣을 수 있다.
- 주문에는 1 ~ n개의 상품이 들어간다.

정답

▲ 그림 4-17 승원 영업부서의 ERD

무무오브레전드의 ERD

요구 사항

- 선수들은 1명의 챔피언을 고를 수 있다.
- 챔피언은 한 개 이상의 스킬을 갖는다.
- 스킬은 한 개 이상의 특성을 갖는다.

정답

▼ 정규화 과정

■정규화란?

데이터 중복을 제거하고 효율성을 향상시키며, 데이터 무결성을 보장하기 위해 데이터베이스 내의 데이터 구조를 조직화하고 최적화하는 과정

■정규화 과정

릴레이션 간의 잘못된 종속 관계로 인해 DB 이상 현상이 일어나 이를 해결하거나, 저장공간을 효율적으로 사용하기 위해 릴레이션을 여러개로 분리하는 과정

■이상 현상

- 1. 삭제 이상
- 2. 삽입 이상
- 3. 수정 이상

■제1 정규화(1NF)

DB의 각 칼럼(도메인)이 원자값(하나의 값; atomic value)을 가지도록 하는 과정

⇒ 칼럼은 하나의 데이터만 저장. 다중 값x

유저번	호 유자	IID	수강명	성취도
1	र्व	철	{C++코딩테스트, 뜨런트특강}	{90%, 10%}
7	벙	석	{코드포스특강, DS특강}	{1%, 8%}

유저번호	유서ID	수강명	성취도
1	홍철	C++코딩레스트	90%
1	홍철	또런트특강	10%
7	범석	코드포스특강	ኅ%
7	범석	DS특강	8%

▲ 그림 4-19 제1정규형

■제2 정규화(2NF)

릴레이션이 제1정규형이며 부분 함수의 종속성을 제거한 형태 부분 함수의 종속성 제거 = 기본키가 아닌 모든 속성이 기본키에 완전 함수 종속적인 것

유저번호	유저ID	수강명	성취도
1	홍철	C++코딩레스트	90%
1	홍철	<u></u> 프런트특강	10%
7	범석	코드포스특강	ኅ%
٦	범석	DS특강	8%

_		Ļ
1	V	

유저번호	유저ID
1	홍철
7	범석

유科ID	수강명	성취도
홍철	C++코딩레스트	90%
홍철	<u> </u> 또런트특강	10%
범석	코드포스특강	ኅ%
범석	DS특강	8%

▲ 그림 4-20 제2정규형

■제3 정규화(3NF)

제2정규형이고 기본키가 아닌 모든 속성이 이행적 함수종속(transitive FD)를 만족하지 않는 상태

▲ 그림 4-21 이행적 함수 종속

유科ID	등급	할인율
홍철	플래리넘	30%
범수	E40)0}	50%
가영	마스터	ኅ0%

유서ID	등급
홍철	플래리넘
범수	Et010}
가영	마스터

등급	할인율
플래리넘	30%
によりりり	50%
마스터	10%

▲ 그림 4-22 제3정규형

■보이스/코드 정규형

- 제3정규형
- 결정자가 후보키가 아닌 함수 종속 관계를 제거
- 릴레이션의 함수 종속 관계에서 모든 결정자가 후보키인 상태
- *결정자 : 함수 종속 관계 x→y 에서 x는 결정자, y는 종속자