Assignment – 3 Speech & NLP

Name: Prerit Gupta Roll No: 14EC35001

Approach:

The features in the 10^{th} column were taken together with the 5^{th} column and concatenated to form the 5^{th} column of the .conllu file with Morphological features. The corresponding files "train_sent_m.conllu" & "test_sent_m.conllu" were stored.

On the other hand, the features in the 5^{th} column of the .conllu file were replaced by '_' to form the .conllu file without Morphological features. The corresponding files "train_sent_nm.conllu" & "test_sent_nm.conllu" were stored.

The hyper-parameters of the classifier were tested with different sets of values. The parameter values which gave the least overfitting difference between training scores and testing scores, as well as higher testing accuracy were selected. Then Arc-Standard and Arc-Eager methods were run.

Results:

No. of training examples: 500

No. of valid projective examples: 477

No. of test examples: 100

When trained with Morphological Features:

(1) By Arc-Standard:

	Training Scores (%)		Testing Scores (%)	
Training Algorithm	LAS	UAS	LAS	UAS
SVM	98.486	93.322	91.308	83.296
Logistic Regression	95.529	89.052	86.697	76.720
MLP	98.586	93.538	86.621	77.022

(2) By Arc-Eager:

	Training Scores (%)		Testing Scores (%)	
Training Algorithm	LAS	UAS	LAS	UAS
SVM	98.558	93.480	90.854	82.540
Logistic Regression	96.106	90.004	90.249	80.272
MLP	98.687	93.581	85.034	75.888

When trained without Morphological Features:

(1) By Arc-Standard:

	Training Scores (%)		Testing Scores (%)	
Training Algorithm	LAS	UAS	LAS	UAS
SVM	97.937	92.629	84.732	76.266
Logistic Regression	91.086	81.898	79.289	68.178
MLP	98.183	92.889	79.063	68.707

(1) By Arc-Eager:

	Training Scores (%)		Testing Scores (%)	
Training Algorithm	LAS	UAS	LAS	UAS
SVM	98.096	92.788	87.075	77.324
Logistic Regression	92.471	83.874	84.354	72.789
MLP	98.413	93.091	83.296	71.353

Analysis:

The SVM classifier has following optimized parameters:

- kernel = 'poly'
- degree = 2
- coef0 = 0
- gamma = 0.2
- C=0.5

The Logistic Regression classifier has following optimized parameters:

- C = 0.5
- solver = 'lbfgs'

The MLP classifier has the following optimized parameters:

- hidden_layer_sizes=(100,50,)
- learning_rate = 'adaptive',
- max_iter=1000
- ➤ The training was extremely slow for MLP and SVM, especially in the case where morphological features were included. Though, accuracy for both labelled and unlabelled, was comparatively better. Arc-Eager gave better accuracy compared to Arc-Standard transitions.
- ➤ The SVM is giving the best score followed by the MLP & then Logistic Regression.
- ➤ The large difference in training and testing scores in some cases indicate overfitting of the model. Training parameters need to be specifically optimized for such cases.

A high overfitting occurs when models are trained with data without morphological features. Training scores are very high and testing scores are low. So, including morphological features give better result.

Conclusion:

The Arc Eager method should be used with SVM classifer with Morphological features to obtain the best result for Dependency Parsing.