UM 204 (WINTER 2024) - WEEK 10

In general, convergence of $\sum_{n\in\mathbb{N}} a_n$ and $\sum_{n\in\mathbb{N}} b_n$ does not suffice to grant the convergence of the Cauchy product.

Example. Let $a_n = b_n = (-1)^n / n$, $n \in \mathbb{N}_+$. Then, the product is

$$\sum_{n \in \mathbb{N}_{+}} \sum_{k=1}^{n} \frac{(-1)^{n+1}}{\sqrt{(n+1-k)(k)}}.$$

Now, note that

$$\left| \sum_{k=1}^{n} \frac{(-1)^{n+1}}{\sqrt{(n+1-k)(k)}} \right| \ge \frac{n}{\sqrt{(n+1)(n)}} \to 1 \ne 0.$$

Thus, by the divergence test the product series does not converge.

Definition 0.1. A series $\sum_{n \in \mathbb{N}} a_n$ of complex numbers is said to be absolutely convergent if $\sum_{n \in \mathbb{N}} |a_n|$ is convergent. The series is conditionally convergent if it is convergent but not absolutely convergent.

We recall, from UM 101, that if a series converges absolutely, then it converges.

Theorem 0.2 (Mertens). Suppose

- (1) $\sum_{n\in\mathbb{N}} a_n$ is absolutely convergent,
- (2) $\sum_{n\in\mathbb{N}} a_n = A$,
- (3) $\sum_{n\in\mathbb{N}} b_n = B$.

Then the product series

$$\sum_{n \in \mathbb{N}} \left(\sum_{j=0}^{n} a_j b_{n-j} \right)$$

converges to AB.

Proof. Let $\{A_n\}_{n\in\mathbb{N}}$, $\{B_n\}_{n\in\mathbb{N}}$ and $\{C_n\}_{n\in\mathbb{N}}$ be the sops of the three series, respectively. Note that

$$C_n = a_0 b_0 + (a_0 b_1 + a_1 b_0) + \dots + (a_0 b_n + \dots + a_n b_0)$$

$$= a_0 B_n + a_1 B_{n-1} + \dots + a_n B_0$$

$$= a_0 (B + B_n - B) + \dots + a_n (B + B_0 - B)$$

$$= A_n B + a_0 \beta_n + \dots + a_n \beta_0,$$

where $\beta_n = B_n - B$ for all $n \in \mathbb{N}$. Since, $\lim_{n \to \infty} A_n B = AB$, it suffcies to show that $\lim_{n \to \infty} (a_0 \beta_n + \cdots + a_n \beta_0) = 0$. This is similar to a problem we have faced before, where the number of summands is increasing as n increases. We use a similar trick of truncating the sum as before.

Let $\alpha = \sum_{n \in \mathbb{N}} |a_n|$. Since $\lim_{n \to \infty} \beta_n = 0$, given $\varepsilon > 0$, there is an $m \in \mathbb{N}$ such that $|\beta_n| < \varepsilon$ for all $n \ge m$. Now, for $n \ge m$,

$$|a_0\beta_n + \cdots + a_n\beta_0| \le |\beta_0a_n + \beta_1a_{n-1} + \cdots + \beta_ma_{n-m}| + \varepsilon\alpha.$$

Now, for a fixed m, let $n \to \infty$. Then, $a_n, ..., a_{n-m} \to 0$, so we obtain that for $n \ge m$,

$$|a_0\beta_n + \cdots + a_n\beta_0| \le \varepsilon\alpha$$

Since $\varepsilon > 0$ was arbitrary, we are done.

Theorem 0.3 (Abel). *If* $\sum_{n \in \mathbb{N}} a_n$, $\sum_{n \in \mathbb{N}} b_n$ and the product series converge to A, B and C, respectively, then C = AB.

0.1. **Rearrangements.** Conditionally convergent series have a surprising feature. The series can be "rearranged" to obtain any sum!

Example. Consider

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$$

Let s denotes its sum. It is clear that

$$s < 1 - \frac{1}{2} + \frac{1}{3} = \frac{5}{6}$$
.

Now, consider the rearrangement

$$1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \cdots$$

We claim that it converges. Exercise. Say the limit is ℓ . Let $\{S_n\}_{n\in\mathbb{N}}$ denote its sops. Then,

$$S_{3k} = \frac{1}{4k-3} + \frac{1}{4k-1} - \frac{1}{2k} > 0.$$

Thus, $\{S_{3k}\}_{k\in\mathbb{N}_+}$ is strictly increasing sequence. Thus, $\ell=\lim_{k\to\infty}S_{3k}>S_3=\frac{5}{6}=s$.

This cannot happen with the following series

$$1 - \frac{1}{4} + \frac{1}{9} - \frac{1}{16} + \cdots$$

Definition 0.4. Let $\{a_n\}_{n\in\mathbb{N}}\subset\mathbb{C}$. Let $f:\mathbb{N}\to\mathbb{N}$ be a bijective function. Let $b_n=a_{f(n)}$ for every $n\in\mathbb{N}$. Then, $\sum_{n\in\mathbb{N}}b_n$ is a rearrangement of $\sum_{n\in\mathbb{N}}a_n$.

Theorem 0.5. Let $\sum_{n \in \mathbb{N}} a_n$ be an absolutely convergent series with limit L. Then, every rearrangement converges to L.

Proof. Let $\{A_n\}_{n\in\mathbb{N}}$ denote the sops of the given series. Fix a bijective function $f:\mathbb{N}\to\mathbb{N}$. Let $\{B_n\}$ denote the sops of the rearrangement $\sum_{n\in\mathbb{N}}a_{f(n)}$.

Let $\varepsilon > 0$. By absolute convergence, there is an N_1 such that

(0.1)
$$\sum_{j=p}^{q} |a_j| < \varepsilon/2 \quad \forall p, q \ge N_1.$$

Now choose $N_2 = \max\{f^{-1}(0),...,f^{-1}(N_1)\}$, so that $0,1,...,N_1$ are all contained in $\{f(0),...,f(N_2)\}$. Now, for any $p \ge N_2$, the terms $a_0,...,a_{N_1}$ will cancel from the difference $B_p - A_p$, and the difference will be a sum of $a_j's$, where each j is some integer greater than N_1 . Thus, by 0.1 and the triangle inequality,

$$|B_{v}-A_{v}|<\varepsilon$$
.

Since $\varepsilon > 0$ was arbitrary, the two sops must converge to the same sum.

We will state, but not prove, the remarkable theorem of Riemann alluded to at the beginning of this section.

Theorem 0.6. Let $\sum_{n\in\mathbb{N}} a_n$ be a conditionally convergent series. Given $\alpha \leq \beta$ in $\overline{\mathbb{R}}$, there is a rearrangement $\sum_{n\in\mathbb{N}} b_n$ of the given series such that

$$\liminf_{n\to\infty} B_n = \alpha \qquad \limsup_{n\to\infty} B_n = \beta.$$

where $\{B_n\}_{n\in\mathbb{N}}$ denotes the sops of the rearrangement.

END OF LECTURE 22

1. FUNCTIONAL LIMITS AND CONTINUITY

1.1. **Definitions.** We define what it means for a function have a limit as it approaches a limit point of its domain.

Definition 1.1. Let *X* and *Y* be metric space. Let $E \subset X$, $f : E \to Y$, and *p* be a limit point of *E*. We say that

$$\lim_{x \to p} f(x) = q$$

if there is some $q \in Y$ satisfying: for every $\varepsilon > 0$, there is some $\delta > 0$ such that

$$d_Y(f(x), q) < \varepsilon$$

whenever

$$0 < d_X(x, p) < \delta$$
.

Remarks. (1) f need not be defined at p.

(2) Even if f is defined at p, q need not coincide with f(p).

It is often useful to work with the following characterization.

Theorem 1.2. Let X, Y, E, p and f be as above. Then,

$$\lim_{x \to p} f(x) = q$$

if and only if, for every sequence $\{p_n\}_{n\in\mathbb{N}}\subset E$ such that $\lim_{n\to\infty}p_n=p$ and $p_n\neq p$ for all $n\in\mathbb{N}$, we have that

$$\lim_{n\to\infty}f(p_n)=q.$$

Proof. Suppose $\lim_{x\to p} f(x) = q$. Let $\{p_n\}_{\mathbb{N}} \subset E \setminus \{p\}$ be a sequence such that $\lim_{n\to\infty} p_n = p$. We will show that

$$\lim_{n\to\infty} f(p_n) = q.$$

Let $\varepsilon > 0$. Then, by definition, there is a $\delta > 0$ such that

(1.1) if
$$x \in B_X(p; \delta) \cap (E \setminus \{p\})$$
, then $f(x) \in B_Y(q; \varepsilon)$.

By the definition of sequential limits, there is an $N \in \mathbb{N}$ such that for all $n \ge N$, $p_n \in B_x(p; \delta)$. Moreover, by assumption, $p_n \subset E \setminus \{p\}$ for all $n \in \mathbb{N}$. Thus, by (1.1), for all $n \ge N$, $f(x_n) \in B_y(q; \varepsilon)$. Since eps > 0 was arbitrary, the claim holds.

Conversely, suppose for every sequence $\{p_n\}_{n\in\mathbb{N}}\subset E$ such that $\lim_{n\to\infty}p_n=p$ and $p_n\neq p$ for all $n\in\mathbb{N}$, we have that

$$\lim_{n\to\infty}f(p_n)=q.$$

Suppose the limit of f as x approaches p is not q. Then, there is an $\varepsilon > 0$ such that for every $\delta > 0$, there is an $q_{\delta} \in E \setminus \{p\}$ such that $f(q_{\delta}) \notin B_Y(q; \varepsilon)$. Let $p_n = q_{1/n}$ for all $n \in \mathbb{N}_+$. Then,

$$0 < d_X(p_n, p) < 1/n$$
 but $d_Y(f(p_n), q) \ge \varepsilon$.

This contradicts the assumptions.

The sequential characterization now grants uniqueness of functional limits and all the algebraic laws of limits: see Definition 4.3 and Theorem 4.4 in Rudin's book (Exercise).

Definition 1.3. Let *X* and *Y* be metric spaces. Let $E \subset X$, $f : E \to Y$, and $p \in E$. We say that *f* is continuous at *p* if, for every $\varepsilon > 0$, there is a $\delta > 0$ such that

if
$$x \in B_X(p; \delta) \cap E$$
, then $f(x) \in B_Y(f(p); \varepsilon)$,

or equivalently,

$$f(B_X(p;\delta) \cap E) \subseteq B_Y(f(p);\varepsilon).$$

We say that f is continuous on E if f continuous at every $p \in E$.

Theorem 1.4. Let X and Y be metric spaces. Let $E \subset X$, $f: E \to Y$, and $p \in E$. Then, f is continuous at p if and only if, for every sequence $\{p_n\} \subset E$ such that $\lim_{n \to \infty} p_n = p$, we have that $\lim_{n \to \infty} f(p_n) = f(p)$.

Remark. Note that a function is always continuous at isolated points of its domain.

(Exercise) Theorems 4.7, 4.9 and 4.10, and the examples in 4.11 are now simple consequences.

END OF LECTURE 23

1.2. **Continuity and topology.** To define the notion of continuity, one does not really need a notion of metric, but rather an appropriate notion of open (or closed) sets.

Recall that for a function $f: A \rightarrow B$ and $E \subset B$, the pre-image of E under f is

$$f^{-1}(E) = \{ x \in A : f(x) \in E \}.$$

Theorem 1.5. Let $f: X \to Y$ be a function between two metric spaces. The following are equivalent.

- (1) f is continuous on X.
- (2) For every open set $U \subseteq Y$, $f^{-1}(U)$ is open in X,
- (3) For every closed set $C \subseteq Y$, $f^{-1}(C)$ is closed in X.

Proof. We first show that (2) and (3) are equivalent. Suppose (2) holds. Let $C \subseteq Y$ be a closed subset. Let $U = Y \setminus C$. Since U is open, $f^{-1}(U)$ is open in X. But,

$$f^{-1}(C) = f^{-1}(Y \setminus U) = X \setminus f^{-1}(U).$$

Thus, $f^{-1}(C)$ is closed in X. The converse holds by a similar argument.

We now show the equivalence of (1) and (2). Suppose f is continuous on X. Let $U \subseteq Y$ be an open set. we show that $f^-(U)$ is open in X. Let $p \in f^{-1}(U)$. Since $f(p) \in U$, there is an $\varepsilon > 0$ such that

$$B_Y(f(p);\varepsilon)\subseteq U$$
.

By continuity of f at p, there is a $\delta > 0$ such that

$$f(B_X(p;\delta)) \subseteq B_Y(f(p);\varepsilon)$$

Thus, using that $A \subseteq f^{-1}(f(A))$ and $f^{-1}(A) \subseteq f^{-1}(B)$ whenever $A \subseteq B$,

$$B_X(p;\delta) \subseteq f^{-1}(f(B_X(p;\delta))) \subseteq f^{-1}(B_Y(f(p);\varepsilon)) \subseteq f^{-1}(U).$$

Since $p \in f^{-1}(U)$ was arbitrary, $f^{-}(U)$ is open.

Conversely, let $p \in X$. Let $\varepsilon > 0$. Consider the open set $U = B_Y(f(p), \varepsilon)$ in Y. Thus, $f^{-1}(B_Y(f(p), \varepsilon))$ is open in X. But $p \in f^{-1}(B_Y(f(p), \varepsilon))$. Thus, there is a $\delta > 0$ such that

$$B_X(p;\delta) \subseteq f^{-1}(B_Y(f(p),\varepsilon)).$$

Thus, using the fact that $f(f^{-1}(A)) \subseteq A$,

$$f(B_X(p;\delta)) \subseteq f(f^{-1}(B_Y(f(p),\varepsilon))) \subseteq B_Y(f(p);\varepsilon).$$

Since $p \in X$ was arbitrary, f is continuous on X.

Examples. (1) Continuous functions need not map open sets to open sets. Even if we assume that the function is surjective. For example, consider $f : \mathbb{R} \to \mathbb{R}$ given by f(x) = x(x-1)(x-2). Then, $f((0,1)) = (0,2/2\sqrt{3}]$.

(2) Continuous functions need not map closed sets to closed sets. For example, consider $f : \mathbb{R} \to (-\infty, 1/e]$ given by $f(x) = xe^{-x}$. Then, $f([1,\infty)) = (0, 1/e]$.

Theorem 1.6. Let f be a continuous function on a compact metric space X. Then, f(X) is compact.

Examples. (1) Continuous functions need not pull back compact sets to compact sets.

(2) Discontinuous maps may map compact sets to compact sets.

END OF LECTURE 24