#### UNCLASSIFIED

## AD NUMBER AD842402 **NEW LIMITATION CHANGE** TO Approved for public release, distribution unlimited **FROM** Distribution authorized to U.S. Gov't. agencies and their contractors; Critical Technology; OCT 1968. Other requests shall be referred to Air Force Weapons Lab, Attn: WLRT, Kirtland AFB, NM 87117. **AUTHORITY** Air Force Weapons Lab ltr dtd 30 Nov 1971

ATTENDED TO THE PERSON OF THE

COMPARISON BETWEEN A VON NEUMANNRICHTMYER HYDROCODE (AFWL'S PUFF) AND
A LAX-WENDROFF HYDROCODE

**Darrell Hicks** 

Robert Pelzi



October 1968

NOV 5 1966

AIR FORCE WEAPONS LABORATORY
Air Force Systems Command
Kirtland Air Force Base

New Mexico

This document is subject to special export 'controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of AFWL (WLRT) , Kirtland AFB, NM, 87117.

AIR FORCE WEAPONS LABORATORY Air Force Systems Command Kirtland Air Force Base New Mexico

When y. S. Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be-related thereto.

This report is made available for study with the understanding that proprietary interests in and relating thereto will not be impaired. In case of apparent conflict or any other questions between the Government's rights and those of others, notify the Judge Advocate, Air Force Systems Command, Andrews Air Force Base, Washington, D. C. 20331.

DO NOT RETURN THIS, COPY. RETAIN OR DESTROY.



### COMPARISON BETWEEN A VON NEUMANN-RICHTMYER HYDROCODE (AFWL'S PUFF) AND A LAX-WENDROFF HYDROCODE

Darrell Hicks Robert Pelzl

TECHNICAL REPORT NO. AFWL-TR-68-112

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of AFWL (WLRT), Kirtland AFB, NMex 87117. Distribution is limited because of the technology discussed in the report.

#### FOREWORD

This research was performed under Program Element 6.16.46.01.D, Project 5710, Subtask 15.018, and was funded by the Defense Atomic Support Agency (DASA).

Inclusive dates of research were August 1967 to August 1968. The report was submitted 20 August 1968 by the Air Force Weapons Laboratory Project Officer, Mr. Darrell Hicks (WLRT).

The authors wish to express their appreciation to Gail L. Houser for his help in preparing this report.

Information in this report is embargeed under the Department of State ITIARs. This report may be released to foreign governments by departments or agencies of the U. S. Government subject to approval of AFWL (WLRT).

This report has been reviewed and is approved.

Il Hicks

DARRELL HICKS Project Officer

TRUMAN L. FRANKLIN

Colonel, USAF

Chief, Theoretical Branch

CLAUDE K. STAMBAUGH

Colonel, USAF

Chief, Research Division

#### **ABSTRACT**

(Distribution Limitation Statement No. 2)

A comparison between two one-dimensional Lagrangian hydrocodes has been made. The two hydrocodes are a von Neumann-Richtmyer hydrocode (AFWL's PUFF) and a Lax-Wendroff hydrocode (the two-step version with artificial viscosity). The comparison was made by applying the hydrocode test problems as described in HYDROCODE TEST PROBLEMS, AFWL-TR-67-127, February 1968. The most apparent difference between the von Neumann-Richtmyer hydrocode and the Lax-Wendroff is the greater tendency of the Lax-Wendroff scheme to oscillate. In those flows in which there are no strong shocks or strong rarefactions or vacuums, the Lax-Wendroff scheme is more accurate. However, in those flows in which there are strong shocks or strong rarefactions or vacuums the von Neumann-Richtmyer scheme is more accurate. The Lax-Wendroff scheme cannot handle vacuums because of the use of the specific volume instead of the density as a fluid variable. It appears that it might be possible to combine the better features of the von Neumann-Richtmyer and the Lax-Wendroff schemes to produce a better hydrocode.

This page intentionally left blank.

#### CONTENTS

| 0       |                              |      |
|---------|------------------------------|------|
| Section |                              | Page |
| I       | INTRODUCTION                 | 1    |
|         | The PUFF Hydrocode           | 1    |
|         | The LAX-WENDROFF Method      | 4    |
|         | The Hydrocode Test Problems  | 6    |
| II      | COMPARISON OF THE HYDROCODES | 7    |
|         | Test Problem SCTP-I          | 8    |
|         | Test Problem SCTP-II         | 25   |
|         | Test Problem SCTP-III        | 57   |
|         | Test Problem SCTP-IV         | 74   |
|         | Test Problem SCTP-V          | 86   |
|         | Test Problem SCTP-VI         | 113  |
|         | Test Problem SCTP-VII        | 134  |
| III     | CONCLUSIONS                  | 146  |
|         | Distribution                 | 140  |
|         | nracringcioù                 | 147  |

#### ILLUSTRATIONS

| Figures |                 | Page |
|---------|-----------------|------|
| I-A     | PD-EXACT        | 13   |
|         | VE-EXACT        | 14   |
|         | PD-PUFF         | 15   |
|         | VE-PUFF         | 16   |
|         | PD-LAX-WENDROFF | 17   |
|         | VE-LAX-WENDROFF | 18   |
| I-B     | PD-EXACT        | 19   |
|         | VE-EXACT        | 20   |
|         | PD-PUFF         | 21   |
|         | VE-PUFF         | 22   |
|         | PD-LAX-WENDROFF | 23   |
|         | VE-LAX-WENDROFF | 24   |
| II-A    | PD-EXACT        | 33   |
|         | VE-EXACT        | 34   |
|         | PD-PUFF         | 35   |
|         | VE-PUFF         | 36   |
|         | PD-LAX-WENDROFF | 37   |
|         | VE-LAX-WENDROFF | 38   |
| II-B    | PD-EXACT        | 39   |
|         | VE-EXACT        | 40   |
|         | PD-PUFF         | 41   |
|         | VE-PUFF         | 42   |
|         | PD-LAX-WENDROFF | 43   |
|         | VE-LAX-WENDROFF | 44   |
| II-C    | PD-EXACT        | 45   |
|         | VE-EXACT        | 46   |
|         | PD-PUFF         | 47   |
|         | VE-PUFF         | 48   |
|         |                 |      |

#### ILLUSTRATIONS (cont'd)

| Figures |                 | Page |
|---------|-----------------|------|
| II-D    | PD-EXACT        | 49   |
|         | VE-EXACT        | 50   |
|         | PD-PUFF         | 51   |
|         | VE-PUFF         | 52   |
| II-E    | PD-EXACT        | 53   |
|         | VE-EXACT        | 54   |
|         | PD-PUFF         | 55   |
|         | VE-PUFF         | 56   |
| III-A   | PD-FXACT        | 62   |
|         | VE-EXACT        | 63   |
|         | PD-PUFF         | 64   |
|         | VE-PUFF         | 65   |
|         | PD-LAX-WENDROFF | 66   |
|         | VE-LAX-WENDROFF | 67   |
| III-B   | PD-EXACT        | 68   |
|         | VE-EXACT        | 69   |
|         | PD-PUFF         | 79   |
|         | VE-PUFF         | 71   |
|         | PD-LAX-WENDROFF | 72   |
|         | VE-LAX-WENDROFF | 73   |
| IV-A    | PD-EXACT        | 78   |
|         | VE-EXACT        | 79   |
|         | PD-PUFF         | 05   |
|         | VE-PUFF         | 81   |
| IV-B    | PD-EXACT        | 82   |
|         | VE-EXACT        | 83   |
|         | PD-PUFF         | 84   |
|         | VE-PUFF         | 85   |
| V-A     | PD-EXACT        | 95   |
|         | VE-EXACT        | 96   |
|         | PD-PUFF         | 97   |
|         | NE-DUZE         | 98   |

### ILLUSTRATIONS (cont'd)

| Figures |                 | _    |
|---------|-----------------|------|
| V-A     | PD-LAX-WENDROFF | Page |
|         | VE-LAX-WENDROFF | 99   |
| V-B     | PD-EXACT        | 100  |
|         | VE-EXACT        | 101  |
|         | PD-PUFF         | 102  |
|         | VE-PUFF         | 103  |
|         | PD-LAX-WENDROFF | 104  |
|         | VE-LAX-WENDROFF | 105  |
| V o     |                 | 106  |
| V-C     | PD-EXACT        | 107  |
|         | VE-EXACT        | 108  |
|         | PD-PUFF         | 109  |
|         | VE-PUFF         | 110  |
|         | PD-LAX-WENDROFF | 111  |
|         | VE-LAX-WENDROFF | 112  |
| VI-A    | PD-EXACT        |      |
|         | VE-EXACT        | 122  |
|         | PD-PUFF         | 123  |
|         | VE-PUFF         | 124  |
|         | PD-LAX-WENDROFF | 125  |
|         | VE-LAX-WENDROFF | 126  |
| VI-B    | FJ-EXACT        | 127  |
|         | VE-EXACT        | 128  |
|         | PD-PUFF         | 129  |
|         | VE-PUFF         | 130  |
|         | PD-LAX-WENDROFF | 131  |
|         | VE-LAX-WENDROFF | 132  |
| 17 T    |                 | 133  |
| VII     | PD-EXACT        | 140  |
|         | VE-EXACT        | 141  |
|         | PD-PUFF         | 142  |
|         | VE-PUFF         | 143  |
|         | PD-LAX-WENDROFF | 144  |
|         | VEAX-WENDROFF   | 145  |

#### TABLES

| <u>Tables</u> |                      | Page |
|---------------|----------------------|------|
| I-A           | Errors on SCTP-I-A   | 11   |
| I-B           | Errors on SCTP-I-B   | 12   |
| II-A          | Errors on SCTP-II-A  | 28   |
| II-B          | Errors on SCTP-II-B  | 29   |
| II-C          | Errors on SCTP-II-C  | 39   |
| II-D          | Errors on SCTP-II-D  | 31   |
| II-E          | Errors on SCTP-II-E  | 32   |
| III-A         | Errors on SCTP-III-A | 60   |
| III-B         | Errors on SCTP-III-B | 61   |
| IV-A          | Errors on SCTP-IV-A  | 76   |
| IV-B          | Errors on SCTP-IV-B  | 77   |
| V-A           | Errors on SCTP-V-A   | 92   |
| V-B           | Errors on SCTP-V-B   | 93   |
| V-C           | Errors on SCTP-V-C   | 94   |
| VI-A          | Errors on SCTP-VI-A  | 120  |
| VI-B          | Errors on SCTP-VI-B  | 121  |
| VII           | Errors on SCTP-VII   | 139  |

This page intentionally left blank.

#### SECTION I

#### INTRODUCTION

This report is the description of a comparison between AFWL's PUFF hydrocode and LAX-WENDROFF two-step method with viscosity. The basis for comparison is the solutions these hydrocodes produce to a series of hydrocode test problems. The problems involve shocks and rarefactions and interactions. The hydrocode test problem solutions are known exactly. Brief descriptions of these test problems will be given here. For more details see "Hydrocode Test Problems" AFWL-TR-67-127.

#### 1. THE PUFF HYDROCODE

Let the points of a rectangular network with spacings  $\Delta x$  and  $\Delta t$  be denoted by  $x_{\ell}$ ,  $t^n$ ,  $(\ell=0,1,2,\ldots,L; n=0,1,2,\ldots)$ . There will also be occasion to deal with intermediate points, having coordinates  $x_{\ell+\frac{1}{2}} = \frac{1}{2} (x_{\ell+1} + x_{\ell})$ ,  $t^{n+\frac{1}{2}} = \frac{1}{2} (t^{n+1} + t^n)$ . To facilitate the writing, introduce abbreviations such as  $V_{\ell+\frac{1}{2}}^n = V(x_{\ell+\frac{1}{2}}, t^n)$ , etc.

$$\frac{U_{\ell}^{n+\frac{1}{2}} - U_{\ell}^{n-\frac{1}{2}}}{\Delta t} = -\frac{P_{\ell+\frac{1}{2}}^{n} + q_{\ell+\frac{1}{2}}^{n-\frac{1}{2}} - P_{\ell-\frac{1}{2}}^{n} - q_{\ell-\frac{1}{2}}^{n-\frac{1}{2}}}{(ZM_{\ell+\frac{1}{2}} + ZM_{\ell-\frac{1}{2}})/2}$$
(1)

is PUFF's difference approximation to  $\rho_0$   $\frac{\partial U}{\partial t} = -\frac{\partial (P+q)}{\partial x}$ , where ZM is the zone mass, U is the fluid velocity, P is the fluid pressure and q is the artificial viscosity.

$$\frac{x_{\ell}^{n+1} - x_{\ell}^{n}}{\Delta t} = U_{\ell}^{n+\frac{1}{2}} \tag{2}$$

is PUFF's difference approximation to  $\frac{\partial X}{\partial t} = U$ , where X is fluid position.

$$\rho_{\ell-\frac{1}{2}}^{n+1} = \frac{Z^{M}_{\ell-\frac{1}{2}}}{X_{2}^{n+1} - X_{\ell-\frac{1}{2}}^{n+1}}$$
(3)

is PUFF's difference approximation to  $\frac{\rho_0}{\rho}=\frac{\partial X}{\partial x}$ , where  $\rho$  is the fluid density. Now let  $\Delta U=U_{\ell}^{n+\frac{1}{2}}-U_{\ell-1}^{n+\frac{1}{2}}$ .

Then PUFF's q is given by

$$q_{\ell-\frac{1}{2}}^{n+\frac{1}{2}} = \left(\Delta U \cdot C_0 - C_1 \cdot CS_{\ell-\frac{1}{2}}^{n-1}\right) \Delta U \cdot \frac{\left(\rho_{\ell-\frac{1}{2}}^{n+\frac{1}{2}} + c_{\ell-\frac{1}{2}}^{n}\right)}{2}$$
(4)

where

$$C_0 = 1.8$$

$$C_1 = .25$$

CS = isothermal sound speed

$$CS^2 = \frac{dP}{d\rho} \mid e const.$$

e is specific internal energy.

$$0 = \frac{e_{\ell-\frac{1}{2}}^{n+1} - e_{\ell-\frac{1}{2}}^{n}}{\Delta t} + \frac{\left(p_{\ell-\frac{1}{2}}^{n+1} + q_{\ell-\frac{1}{2}}^{n+\frac{1}{2}} + p_{\ell-\frac{1}{2}}^{n} + q_{\ell-\frac{1}{2}}^{n-\frac{1}{2}}\right)}{2} \cdot \frac{\Delta U}{2M_{\ell-\frac{1}{2}}}$$
(5)

is PUFF's difference approximation to

$$0 = \frac{\partial e}{\partial t} + (P+q) \frac{1}{\rho_0} \frac{\partial U}{\partial x}$$

which results from

$$0 = \frac{\partial e}{\partial t} + (P+q) \frac{\partial V}{\partial t} \text{ and } \frac{\partial V}{\partial t} = \frac{1}{\rho_0} \frac{\partial U}{\partial x}$$

where  $V = \frac{1}{\rho}$  is the specific volume.

Lastly, the equation of state:

$$P_{\ell-\frac{1}{2}}^{n+1} = P\left(e_{\ell-\frac{1}{2}}^{n+1}, \rho_{\ell-\frac{1}{2}}^{n+1}\right)$$
 (6)

PUFF's method of solution is this: Suppose all quantities are known for superscript n or  $n^{-\frac{1}{2}}$  (this is referred to as being at cycle n). Compute  $U_{\ell}^{n+\frac{1}{2}}$  for each  $\ell$  from (1), then compute  $X_{\ell}^{n+1}$  for each  $\ell$  from (2), then compute  $\rho_{\ell-\frac{1}{2}}^{n+1}$  for each  $\ell$  from (3), then compute  $q_{\ell-\frac{1}{2}}^{n+\frac{1}{2}}$  for each  $\ell$  from (4), then compute  $q_{\ell-\frac{1}{2}}^{n+\frac{1}{2}}$  for each  $\ell$  by simultaneously solving (13) and (14). At this point all variables have been advanced to cycle n+1. Next PUFF does its time-step computation.

$$\Delta t = .9 \min_{\ell} \frac{x_{\ell}^{n+1} - x_{\ell-1}^{n+1}}{CS_{\ell-1}^{n+1}(1+2\cdot C_1) - .4C_0^2 \Lambda U}$$
 (7)

where, as in the q calculation,

$$C_0 = 1.8, C_1 = .25$$

Remember

$$CS^2 = \frac{dP}{d\rho}$$
 e const

Therefore CS is the isothermal sound speed.

The isentropic sound speed is defined by

$$C^2 = \frac{dP}{d\rho}$$
 | S const.

where S is the entropy.

For a  $\gamma$  - law gas  $C^2$  =  $\gamma CS^2$ . Therefore for  $\Delta U$  very small

$$\Delta t \approx \frac{.9 \text{ y}}{(3/2)} \min_{\ell} \frac{x_{\ell}^{n+1} - x_{\ell-1}^{n+1}}{c_{\ell-\frac{1}{2}}^{n+1}}$$

If

$$\Delta t = \theta \frac{\min_{\ell} \frac{x_{\ell}^{n+1} - x_{\ell-1}^{n+1}}{c_{\ell-1}^{n+1}}$$

 $\theta$  is called the effective CFL number.

For further details about PUFF see AFWL-TR-66-48 and AFWL-TR-67-127.

#### 2. THE LAX-WENDROFF METHOD

The LAX-WENDROFF two-step method with viscosity uses

$$U_{j+l_{2}}^{n+l_{2}} = {}^{l_{2}} \left( U_{j+1}^{n} + U_{j}^{n} \right) - {}^{l_{2}} \left( \frac{\Delta t}{\Delta z} + q \right) \left( F_{j+1}^{n} - F_{j}^{n} \right)$$
 (8)

and

$$U_{j}^{n+1} = U_{j}^{n} - \frac{\Delta t}{\Delta z} \left( F_{j+\frac{1}{2}}^{n+\frac{1}{2}} - F_{j-\frac{1}{2}}^{n+\frac{1}{2}} \right)$$
 (9)

as the difference approximation to

$$\frac{\partial U}{\partial t} + \frac{\partial F(U)}{\partial z} = 0$$

$$q = \frac{b |d_{j+1}^{n} - d_{j}^{n}|}{\left(d_{j+\frac{1}{2}}^{n}\right)^{2}}$$
 (10)

where  $d = V_0 c/V$ , c is isentropic sound speed, V is specific volume and  $V_0$  is a constant with dimensions of specific volume defined by

$$z = V_0 \int \rho_0(x) dx$$

In our case  $V_0 = 1$  therefore, z is the Lagrangian mass variable. b is a dimensionless parameter which was chosen to be .5.

$$U = \begin{pmatrix} V \\ u \\ E \end{pmatrix}, F(U) = V_0 \begin{pmatrix} -u \\ P \\ Pu \end{pmatrix}$$

where  $E = e + \frac{1}{2}u^2$  and e is the fluid's specific internal energy, u is the fluid velocity, and P is the fluid pressure.

The time step restriction is

$$\Delta t \leq \left( \left( 1 + \frac{b^2}{4} \right)^{\frac{1}{2}} - \frac{b}{2} \right) \cdot \min \frac{X_j - X_{j-1}}{C_{j-\frac{1}{2}}}$$

where X is fluid position.

For

$$b = \frac{1}{2}, \left(1 + \frac{b^2}{4}\right)^{\frac{1}{2}} - \frac{b}{2} = .78$$

LAX-WENDROFF's method of solution:

Suppose all quantities are known for superscript n. Compute  $U_{j+\frac{1}{2}}^{n+\frac{1}{2}}$  for each j from (8) then compute  $U_{j}^{n+1}$  for each j from (9). Now all variables are advanced to cycle n+1. Next LAX-WENDROFF does its time step computation

$$\Delta t = \theta \min_{\ell} \frac{x_{\ell}^{n+1} - x_{\ell-1}^{n+1}}{C_{\ell-\frac{1}{2}}^{n+1}}$$

where  $\theta \leq .78$ .

For more details see Richtmyer and Morton: <u>Difference Methods for Initial Value Problems</u>, Interscience Publishers, a division of John Wiley and Sons, 1967.

#### 3. THE HYDROCODE TEST PROBLEMS

Since the geometry is one-dimensional slab, the problems may all be thought of as flows in a smooth pipe of constant cross section. There are seven problems. The first problem is the flow that results from a piston moving into the gas with a constant velocity. The second problem is the flow that results from pulling a piston away from the gas with a constant velocity. The third problem is the flow that results from a piston moving into the gas with a constant acceleration. The fourth problem is the flow that results from pulling the piston away from the gas with a constant acceleration. The fifth problem is the flow that results by removing a partition between two different states of the gas at rest. The sixth problem is the flow that results from the collision of two shock waves. The seventh problem is the flow that results when one shock overtakes another one. For more details see AFWL-TR-67-127.

#### SECTION II

#### COMPARISON OF THE HYDROCODES

For each test problem, the exact solution, the PUFF solution, and the LAX-WENDROFF solution will be described. In describing the PUFF and LAX-WENDROFF solutions an error table and graphs of their solutions will be used to compare with graphs of the exact solutions. In the error table the numbers presented are labeled Sum Abs. Error, Sum Sqr. Error, and Maximum Error. These numbers are now defined. Let  $P_{\rm p}({\rm J})$  be the PUFF pressure in zone J and let  $P_{\rm E}({\rm J})$  be the exact pressure in zone J. Let  $P_{\rm M}$  be the maximum of the  $P_{\rm E}({\rm J})$ .

Sum Abs. Error (for P) = 
$$\frac{\sum_{J} \frac{|P_{P}(J) - P_{E}(J)|}{P_{M}}$$

Sum Sqr. Error (for P) = 
$$\frac{\sum_{J} (P_{P}(J) - P_{E}(J))^{2}}{P_{M}^{2}}$$

$$\max_{P_{P}(J) - P_{E}(J)|$$
Maximum Error (for P) = 
$$\frac{J}{P_{M}} \operatorname{SGN}(P_{P}(J_{M}) - P_{E}(J_{M}))$$

 $J_{M}$  is the zone index of the maximum error and SGN is the sign function. The error functions are likewise defined for the velocity, density, and energy (specific internal).

Also in the error table are presented the sums of the internal energy, kinetic energy, and total energy of the exact solution, FUFF solution, and LAX-WENDROFF solution (the unit is ergs). In addition, the error table contains the problem time, computer time (CP time on the CDC 6600), cycle number, and the number of active zones.

The graphs are organized in this manner: pressure and density are plotted in the same graph as are velocity and energy (specific internal).

#### 1. TEST PROBLEM SCTP-I

#### a. The Exact Solution

In this problem a piston moves to the right into the gas at a constant velocity. The solution has a steady profile. The solution profile is two contant states separated by the shock discontinuity. That is, each fluid parameter (pressure, density, fluid velocity, etc.) is a constant from the piston face to the shock and each is another constant to the right of the shock. The symbols used to describe the problem further are

- $\mathbf{C}_{\varrho}$  sound speed to the left of the shock
- $C_{\mathbf{r}}$  sound speed to the right of the shock
- $\boldsymbol{P}_{o}$   $\;\;$  pressure to the left of the shock
- $P_r$  pressure to the right of the shock
- $\rho_{\varrho}$  density to the left of the shock
- $\rho_{_{{f r}}}$  density to the right of the shock
- $\mathbf{V}_{\underline{\mathbf{g}}}$  specific volume to the left of the shock
- V<sub>r</sub> specific volume to the right of the shock
- $\mathbf{v}_{\mathbf{g}}$  fluid velocity to the left of the shock
- v<sub>p</sub> piston velocity
- v<sub>r</sub> fluid velocity to the right of the shock
- v<sub>S</sub> shock velocity
- $X_p$  piston position
- $\mathbf{X}_Q$  quiet zone, a position far enough to the right so that the gas is still at rest; energy sums are taken out to  $\mathbf{X}_Q$
- $X_S$  shock position

There are two variations of SCTP-1 and these are denoted SCTP-I-A and SCTP-I-B. For SCTP-I-A the piston is started at 0, and the shock is started at 50 meters, with the fluid parameters on the right at

$$P_r = 10^4 \text{ dynes/cm}^2$$

$$\rho_r = 10^{-6} \text{ gm/cm}^3$$

$$v_r = 0$$
. cm/sec

 $X_0 = 300 \text{ meters}$ 

This yields

 $C_r = \sqrt{\gamma} \times 10^5$  cm/sec, which for  $\gamma=1.4$  yields

 $C_r \approx 1.18 \times 10^5 \text{ cm/sec}$ 

Then one sets

 $v_p = C_r \approx 1.18 \times 10^5$  cm/sec and this yields

 $v_c \approx 1.18 \times 10^5 \text{ cm/sec}$ 

 $v_S \approx 2.09 \times 10^5 \text{ cm/sec}$ 

 $P_{\gamma} = 3.47 \times 10^4 \text{ dynes/cm}^2$ 

 $V_{s} = 4.34 \times 10^{5} \text{ cm}^{3}/\text{gm}$ 

This problem is run for .1 second, with initial zones of 1 meter. For SCTP-I-B the shock is again started at 50 meters and with the fluid parameters on the right at

 $P_r = 10^4 \text{ dynes/cm}^2$ 

 $\rho_r = 10^{-6} \text{ gm/cm}^3$ 

 $v_r = 0$ . cm/sec

 $X_0 = 300 \text{ meters}$ 

This yields

 $C_r = 1.18 \times 10^5$  cm/sec

Then one sets

 $v_p = 100 C_r = 1.18 \times 10^7 \text{ cm/sec}$  and this yields

 $v_i \approx 1.18 \times 10^7 \text{ cm/sec}$ 

 $P_{f} \approx 1.68 \times 10^{8} \text{ dynes/cm}^2$ 

 $V_{\rm f} = 1.67 \times 10^5 \, {\rm cm}^3/{\rm gm}$ 

 $C_{r} = 6.26 \times 10^{6} \text{ cm/sec}$ 

 $v_S = 1.42 \times 10^7 \text{ cm/sec}$ 

This problem is run for  $10^{-3}$  seconds with initial zones of 1 meter.

#### b. The PUFF Solution

The regions where the largest errors occurred were the regions where the shock was initially and where the shock is currently. See Tables I-A and I-B and Figures I-A and I-B.

#### c. The LAX-WENDROFF Solution

SCTP-I-A was run with a viscosity factor of .5 and a time factor of .78. SCTP-I-B was run with a viscosity factor of .5 and a time factor of .25. In order to get SCTP-I-B to run it was necessary to start off with 10 time steps with zero viscosity factor and .025 time factor.

The regions where the largest errors occurred were the regions where the shock was initially and where the shock is currently. The main difference between the PUFF and LAX-WENDROFF solutions is the oscillations behind the shock front. The oscillations are much more pronounced in the LAX-WENDROFF code. See Figures I-A and I-B and Tables I-A and I-B.

Table I-A

ERRORS ON SCTP-I-A

| Problem time = .1 sec<br>Computer time = 67 sec | = .1 sec<br>= = 67 sec    | ANER                      |                           | Cycle = 1033<br>Number of Active Zones = 266 |
|-------------------------------------------------|---------------------------|---------------------------|---------------------------|----------------------------------------------|
|                                                 | Sum Abs. Error            | Sum Sqr. Error            | Maximum Error             | Position of Maximum Error                    |
| Pressure                                        | 626.                      | .407                      | + .335                    | Current shock position                       |
| Velocity                                        | 1.42                      | 989*                      | + .578                    | Current shock position                       |
| Density                                         | 966*                      | .370                      | + .289                    | Current shock position                       |
| Energy                                          | .680                      | .271                      | + .198                    | Current shock position                       |
|                                                 | Sum Int. Energy           | Sum Kin. Energy           | Sum Tot. Energy           |                                              |
| EXACT                                           | 1.32369 x 10 <sup>9</sup> | 2.26965 x 10 <sup>8</sup> | 1.55066 x 10 <sup>9</sup> |                                              |
| PUFF                                            | 1.32405 x 10 <sup>9</sup> | 2.26327 x 10 <sup>8</sup> | 1.55038 x 10 <sup>9</sup> |                                              |

## LAX-WENDROFF

| Problem time = .1 se.<br>Computer time = 186 sec | ≕ .1 se.<br>e : 186 sec   |                           |                           | Cycle = $458$<br>Number of Active Zones = $301$ |
|--------------------------------------------------|---------------------------|---------------------------|---------------------------|-------------------------------------------------|
|                                                  | Sum Abs. Error            | Sum Sqr. Error            | Maximum Error             | Position of Maximum Error                       |
| Pressure                                         | . 489                     | .313                      | 292                       | Current shock position                          |
| Velocity                                         | .551                      | .334                      | 295                       | Current shock position                          |
| Density                                          | . 555                     | .256                      | 218                       | Current shock position                          |
| Energy                                           | .362                      | .150                      | + .0988                   | Initial shock position                          |
|                                                  | Sum Int. Energy           | Sum Kin. Energy           | Sum Tot. Energy           |                                                 |
| EXACT                                            | 1.32369 x 10 <sup>9</sup> | 2.26965 x 10 <sup>8</sup> | 1.55066 x 10 <sup>9</sup> |                                                 |
| LAXWEN                                           | 1.32399 x 10 <sup>9</sup> | 2.26790 x 108             | 1.55078 x 10 <sup>9</sup> |                                                 |

Table I-B

ERRORS ON SCTP-I-B

| Problem time = 1, x 10 <sup>-</sup><br>Computer time = 74 sec | Problem time = 1. x $10^{-3}$ sec<br>Computer time = 74 sec | PUPP                       |                            | Cycle = 1463<br>Number of Active Zones = 197 |
|---------------------------------------------------------------|-------------------------------------------------------------|----------------------------|----------------------------|----------------------------------------------|
|                                                               | Sum Abs. Error                                              | Sum Sqr. Error             | Maximum Error              | Position of Maximum Error                    |
| Pressure                                                      | 1.06                                                        | .683                       | <del>779.</del> +          | Current shock position                       |
| Velocity                                                      | 1.86                                                        | 1.08                       | 4 .850                     | Current shock position                       |
| Density                                                       | 1.78                                                        | 664.                       | + .577                     | Current shock position                       |
| Energy                                                        | 2.76                                                        | 1.32                       | + .865                     | Current shock position                       |
|                                                               | Sum Int. Energy                                             | Sum Kin. Energy            | Sum Tot. Energy            |                                              |
| EXACT                                                         | 3.09498 x 10 <sup>12</sup>                                  | 3.09324 x 10 <sup>12</sup> | 6.18823 x 10 <sup>12</sup> |                                              |
| PUFF                                                          | 3.09791 x 10 <sup>12</sup>                                  | 3.08713 x 10 <sup>12</sup> | 6.18504 x 10 <sup>12</sup> |                                              |

# LAX-WENDROFF

|          | Sum Abs. Error             | Sum Sqr. Error             | Maximum Rrror              | Position of Maximum Error |
|----------|----------------------------|----------------------------|----------------------------|---------------------------|
| Pressure | 1.33                       | 669°                       | 663                        | Current shock position    |
| Velocity | .721                       | .396                       | 372                        | Current shock position    |
| Density  | 1.91                       | .636                       | 492                        | Current shock position    |
| Energy   | 1.67                       | .611                       | 677. +                     | Initial shock position    |
|          | Sum Int. Energy            | Sum Kin. Energy            | Sum Tot. Energy            |                           |
| EXACT    | 3.09498 x 10 <sup>12</sup> | 3.09324 x 10 <sup>12</sup> | 6.18823 x 10 <sup>12</sup> |                           |
| LAXWEN   | 3.09016 x 10 <sup>12</sup> | 3.08281 x 10 <sup>12</sup> | 6.17297 x 10 <sup>12</sup> |                           |

























### 2. TEST PROBLEM SCTP-II

### a. The Exact Solution

In this problem a piston pulls away with constant velocity from the gas at rest in a pipe. The piston moves to the left with constant velocity  $v_p < 0$  away from the gas on the right. This causes a rarefaction wave to move to the right. For a graphical description see the exact solution plots in Figures II. The exact solution for the velocity is piecewise linear as a function of X. Starting at the piston on the left at position  $X_p(t)$  the velocity is the constant  $v_p$  from  $X_p(t)$  to what is called the back of the rarefaction wave and denoted  $X_R(t)$ . From  $X_R(t)$  rightwards to  $X_C(t)$  the velocity rises from  $v_p$  linearly to zero.  $X_C(t)$  is the front of the rarefaction wave. To the right of  $X_C(t)$  the gas is at rest so the velocity is a constant zero.

$$X_{p}(t) = X_{p}(0) + v_{p}t$$

$$X_{R}(t) = X_{p}(0) + \left(c_{r} + \frac{\gamma+1}{2} v_{p}\right)t$$

$$X_{C}(t) = X_{p}(0) + C_{r}t$$

The rest of the variables are then determined by the simple wave formulas:

$$C(X,t) = C_r + \frac{\gamma-1}{2} v(X,t)$$

$$\rho(X,t) = \rho_r \left(\frac{C(X_2t)}{C_r}\right) \frac{2}{\gamma-1}$$

$$P(X,t) = P_r \left(\frac{C(X,t)}{C_r}\right) \frac{2\gamma}{\gamma-1}$$

There are five variations on this problem. This much is common to all of them:

$$P_r = 10^4 \text{ dynes/cm}^2$$

$$\rho_r = 10^{-6} \text{ gm/cm}^3$$

$$C_r^2 = \gamma P_r / o_r = 1.4 \times 10^{10} \text{ cm}^2 / \text{sec}^2$$
  
 $\Delta X = 100 \text{ cm}$   
 $X_p(0) = 160 \text{ meters}$ 

 $X_Q = 300 \text{ meters}$ 

and all variations are run out to .1 second. The variations are in the piston velocity.

SCTP-II-A 
$$|v_p| = C_r/(\gamma+1)$$
  
SCTP-II-B  $|v_p| = 2C_r/(\gamma+1)$   
SCTP-II-C  $|v_p| = 2C_r/(\gamma-1)$   
SCTP-II-D  $|v_p| = 4C_r/(\gamma-1)$ 

SCTP-II-E Free boundary condition on the left in place of withdrawing piston condition. That is, it is as if at time zero one removes a separator to the left of which is a vacuum.

These variations were introduced to investigate the codes response to the following situations: in A,  $X_R(t)$  moves to the right with velocity  $C_r/2$ ; in B,  $X_R(t)$  is stationary. In both A and B the picton is not pulled out too fast for the gas to follow; therefore the pressure and density are positive constants from  $X_P(t)$  to  $X_R(t)$ . However, in C, D, E,  $X_R(t)$  moves to the left with velocity  $-2C_r/(\gamma-1)$  and between  $X_P(t)$  and  $X_R(t)$  there is a vacuum. In C the piston is pulled out with exactly the escape velocity of the gas,  $-2C_r/(\gamma-1)$ , therefore,  $X_P(t) = X_R(t)$ . In D the piston is pulled out faster than the gas can follow and so  $X_P(t) < X_R(t)$ . In E the code is allowed to compute its own escape velocity.

### b. The PUFF solution

On A and B PUFF tended to underround at  $X_{\mathbb{C}}$  then overround at  $X_{\mathbb{R}}$  and undershoot just to the left of  $X_{\mathbb{R}}$ . See Tables and Figures II-A and II-B. In

C, D, E PUFF again tended to underround at X<sub>C</sub>. In E the gas front did not move as far to the left as it should. This is because of the finite mass in the left hand zone. If the zoning were made finer to the left so that the left hand zone had a smaller mass, then the left hand zone would move out more nearly at the rate at which the gas should escape. See Tables and Figures II-C, -D, -E.

### c. The LAX-WENDROFF Solution

Because the LAX-WENDROFF scheme uses specific volume instead of density it is able only to run SCTP-II-A and B. This is because of the vacuums in C, D, and E. In the vacuum the density is zero and the specific volume is infinite. If this scheme is to be used for problems in which there are vacuums or near vacuums the specific volume must be changed over to density. The time step factor used was .78 and the artificial viscosity factor used was .5.

In A and B the LAX-WENDROFF scheme tended to underround at  $X_C$ , then over-round at  $X_R$ , then undershoot to the left of  $X_R$ , and then dampingly oscillate toward the left.

Lastly, one zone to the right of the piston face there is a density dip. It is believed that the reason the LAX-WENDROFF scheme has larger errors on this problem is because it has a q-factor (artificial viscosity) in expansion. In the PUFF code q is not used in expansion—only in compression. It seems that for the LAX-WENDROFF scheme to compete with PUFF its q needs to be modified also for compression as noticed in SCTP-I. One other thing at this point: notice that the computer times for the LAX-WENDROFF scheme are longer. This is because PUFF is a production code and much time was spent making it run efficiently. On the other hand no time was spent trying to make the LAX-WENDROFF scheme coding efficient. The difference scheme was merely programmed to test its accuracy. So, if the LAX-WENDROFF scheme is to be used for production, then time should be spent in making the programming more efficient.

Table II-A

ERRORS ON SCTP-II-A

|                       | Cycle = 170 Number of Acting 7 | 75T = 50ues = 135 | Position of Mari | COTCACH OF MAXIMUM EFFOR | X        |        | ×       |        | ć.<br>X |              | AR.            |                 |                           |               |               |               |
|-----------------------|--------------------------------|-------------------|------------------|--------------------------|----------|--------|---------|--------|---------|--------------|----------------|-----------------|---------------------------|---------------|---------------|---------------|
|                       |                                |                   | Maximum Error    | - 013                    | 670.     | + .025 |         | 0095   |         | + .004       |                | Sum Tor Energy  |                           | 4.73188 x 108 |               | 4.73138 x 108 |
| PUFF                  |                                | Sum Sor Breeze    | 10112            | .037                     | - 200    | /80•   | 000     | 670.   | 710     | <b>570</b> : |                | Sum Kin. Energy | 1 112720 2 127            | 07 x 02/20:=  | 1.02533 + 107 | OT w 0000     |
| c au                  | e = 71 sec                     | Sum Abs. Error    | 22.2             | 767.                     | .539     |        | .184    |        | .088    |              | Sum Int Fretor | 19.             | 4.62916 x 10 <sup>8</sup> |               | 4.62885 x 108 |               |
| Problem time = .1 sac | Computer time = 71 sec         |                   | Pressura         |                          | Velocity |        | Density | Frores | riietky |              |                | F & A C #       | בעערו                     | PIIFF         |               |               |

## LAX-WENDROFF

Problem time = .1 sec Computer time = 128 sec

| Cycle = 160             | mander of Active Zones = 200 |                | Position of Maximum Frror | 70.1.0 | XR       |          | XX       |             | ×    |        | One zone to right of Xp |                  |                 |               |               |               |               |
|-------------------------|------------------------------|----------------|---------------------------|--------|----------|----------|----------|-------------|------|--------|-------------------------|------------------|-----------------|---------------|---------------|---------------|---------------|
|                         |                              | Maximum        | LOLIG MINITED             | 4.018  | 070      | + .052   |          | + .015      |      | + .011 |                         |                  | Sum Tot. Energy |               | 4.73188 x 108 |               | 4.73192 × 108 |
|                         |                              | Sum Sqr. Error |                           | .066   | 37.      | 797.     | 730      | <b>*CO.</b> | 330  | .028   |                         | Sum Kin, Fnerey  | 67              | 1 007:00      | 1107170 × 10. | 1 01838 167   | TOTOTO Y TO.  |
| e * 128 sec             | Sum Abe Design               | 10113 : E110L  | .455                      |        | 1.09     |          | .382     |             | .198 |        | Sum Tar E               | com till. Energy | 7:007           | 001 x 91670.4 |               | 4.63009 × 108 | T             |
| Computer time * 128 sec |                              |                | Pressure                  | 11-1-1 | velocity | Done tr. | Selistry | Fneron      |      |        |                         |                  | EXACT           |               | LAXMEN        |               |               |

Table II-B

EKRORS ON SCTP-II-B

| Problem time = .1 sec<br>Computer time = 79 sec | " .1 sec<br>e = 79 sec    | PUFF                      |                           | Cycle = 169<br>Number of Active Zones = 132 |
|-------------------------------------------------|---------------------------|---------------------------|---------------------------|---------------------------------------------|
|                                                 | Sum Abs. Error            | Sum Sqr. Error            | Maximum Error             | Position of Maximum Error                   |
| Pressure                                        | .262                      | .037                      | 014                       | °x                                          |
| Velocity                                        | .389                      | .056                      | 019                       | ~2½ zones left of Xp                        |
| Density                                         | .226                      | .031                      | 010                       | XC                                          |
| Energy                                          | .127                      | .018                      | 007                       | l zone right of Xp                          |
|                                                 | Sum Int. Energy           | Sum Kin. Energy           | Sum Tot. Energy           |                                             |
| EXACT                                           | 4.43248 x 10 <sup>8</sup> | 2.92345 x 10 <sup>7</sup> | 4.72482 x 10 <sup>8</sup> |                                             |
| PUFF                                            | 4.43133 x 10 <sup>3</sup> | 2.91977 × 10 <sup>7</sup> | 4.72331 x 10 <sup>8</sup> |                                             |
|                                                 |                           |                           |                           |                                             |

### LAX-WENDROFF

Problem time = .1 sec Computer time = 142 sec

| Problem time = .1 sec<br>Computer time = 142 sec | : = .1 sec<br> e = 142 sec |                           |                           | Cycle = 160<br>Number of Active Zones = 200 |
|--------------------------------------------------|----------------------------|---------------------------|---------------------------|---------------------------------------------|
|                                                  | Sum Abs. Error             | Sum Sqr. Error            | Maximum 3rror             | Position of Maximum Error                   |
| Pressure                                         | . 509                      | .065                      | 019                       | X                                           |
| Velocity                                         | 608.                       | .111                      | + .037                    | X                                           |
| Density                                          | .487                       | .063                      | 027                       | 1 zone right of Xp                          |
| Energy                                           | . 334                      | .062                      | + .049                    | l zone right of Xp                          |
|                                                  | Sum Int. Energy            | Sum Kin. Energy           | Sum Tot. Energy           |                                             |
| EXACT                                            | 4.43248 x 10 <sup>8</sup>  | 2.92345 x 10 <sup>7</sup> | 4.72482 x 10 <sup>8</sup> |                                             |
| LAXWEN                                           | 4.43411 x 10 <sup>8</sup>  | 2.89319 x 10 <sup>7</sup> | 4.72343 x 10 <sup>8</sup> |                                             |
|                                                  |                            |                           |                           |                                             |

ERRORS ON SCIP-II-C Table II-C

|                        | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PUFF              |                           | Cycle = 169 $\frac{1}{3}$ Cycle = 132 |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------|---------------------------------------|
| Computer time = 63 sec | 63 sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                           | מתשפבר כד ייירידי בייירי              |
|                        | C.m Abs. Frror                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sum Sqr. Error    | Maximum Error             | Position of maximum cities            |
|                        | and the same of th | 070               | 710 -                     | X <sub>C</sub>                        |
| Pressure               | .314                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 010.              |                           | X                                     |
| Velocity               | 890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.00.             | 002                       |                                       |
| VELUCALY               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 030               | 010                       | O <sub>V</sub> C                      |
| Density                | .255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 000               |                           | X                                     |
| Frarov                 | .125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .013              | 004                       |                                       |
| 100 miles 87           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | C. Tot Prefer             |                                       |
|                        | Sum Int. Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sum Kin. Energy   | Sur lot: success          |                                       |
|                        | 805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7 39510 × 107     | 5.00000 × 10 <sup>8</sup> |                                       |
| EXACT                  | 4.26049 × 10°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 w 0 x 6 ( 6 ) / | 80,                       |                                       |
| DIIPE                  | 4.24857 × 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.04407 × 10'     | 5.05297 × 10°             |                                       |
| 1303                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                           |                                       |

LAX-WENDROFF

Cycle = Number of Active Zones =

| Problem time = |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                      | Number of Active Zones = |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------|--------------------------|
| רסשטתרבי ריישב |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                      | Baratan of Marinin Error |
|                | Sum Abs. Error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sum Sqr. Error                              | Maximum Err.         | FOSILION OF TAXABLE      |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                      |                          |
| Pressure       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                      |                          |
| Velocity       | The LAX-WENDROFF sche                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | eme cannot run this problem because it uses | blem because it uses |                          |
| - Caracta      | . constant wolume instead of density.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ad of density.                              |                      |                          |
| Density        | specific volumes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |                      | •                        |
| Footov         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                      |                          |
| Lile 18.7      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                      |                          |
|                | S. Tat Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sum Kin. Energy                             | Sum Tot. Energy      |                          |
|                | , and a second s |                                             |                      |                          |
| EXACT          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                      |                          |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                      |                          |
| LAXMEN         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                      |                          |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                      |                          |

Table II-D

the bearing and the second control of the se

ERRORS ON SCTP-II-D

|                                                  |                           | PUFF                      |                           |                                              |
|--------------------------------------------------|---------------------------|---------------------------|---------------------------|----------------------------------------------|
| Problem time; = .1 sec<br>Computer time = 61 sec | := .1 sec<br>e = 61 sec   |                           |                           | Cycle = 176<br>Numb or of Active Zones = 134 |
|                                                  | Sum Abs. Error            | Sum Sqr. Error            | Maximum Error             | Position of Maximum Error                    |
| Pressure                                         | . 400                     | • 056                     | 019                       | $^{3}x$                                      |
| Velocity                                         | .078                      | 600*                      | 003                       | o <sub>x</sub>                               |
| Density                                          | .313                      | .041                      | 013                       | o <sub>x</sub>                               |
| Energy                                           | .210                      | .063                      | 090* +                    | l zone right of Xp                           |
|                                                  | Sum Int. Energy           | Sum Kin. Energy           | Sum Tot. Energy           |                                              |
| EXACT                                            | 3.64423 x 10 <sup>8</sup> | 1.35577 x 10 <sup>8</sup> | 5.00000 x 108             |                                              |
| PUFF                                             | 4.24743 x 10 <sup>9</sup> | 9.88835 x 10 <sup>7</sup> | 5.23626 x 10 <sup>8</sup> |                                              |
|                                                  |                           |                           |                           |                                              |

LAX-WENDROFF

Cycle = Number of Active Zones =

|        | Sum Abs. Error                      | Sum Sqr. Error                                            | Maximum Error        | Posttion of Ma |
|--------|-------------------------------------|-----------------------------------------------------------|----------------------|----------------|
| essure |                                     |                                                           |                      |                |
| locity | The LAX-WENDROFF sche               | X-WENDROFF scheme cannot run this problem because it uscs | blem because it uscs |                |
| nsity  | specific volume instead of density. | ad of density.                                            |                      |                |

|          | Sum Abs. Error        | Sum Sqr. Error                                                  | Maximum Error        | Posttion of Maximum Error |
|----------|-----------------------|-----------------------------------------------------------------|----------------------|---------------------------|
| Pressure |                       |                                                                 |                      |                           |
| Velocity | The LAX-WENDROFF sch  | The LAX-WENDROFF scheme cannot run this problem because it uscs | blem because it uscs |                           |
| Density  | specific volume inste | ead of density.                                                 |                      |                           |
| Energy   |                       |                                                                 |                      |                           |
|          | Sum Int. Energy       | Sum Kin. Energy                                                 | Sum Tot. Energy      |                           |
| EXACT    |                       |                                                                 |                      |                           |
| LAXWEN   |                       |                                                                 |                      |                           |

Problem time \*\* Computer time \*\*

Table II-E

# ERRORS ON SCIP-II-E

| Problem time = 1 and   | 5 a b                     | ANA                       |                 |                                                 |
|------------------------|---------------------------|---------------------------|-----------------|-------------------------------------------------|
| Computer time = 66 sec | a 66 sec                  |                           |                 | Cycle = $170$<br>Numter of Active Zones = $133$ |
|                        | Sum Abs. Error            | Sum Sqr. Error            | Maximum Error   | Position of Maximim Frror                       |
| Pressure               | .175                      | .029                      | 014             | ×                                               |
| Velocity               | .050                      | .007                      | 005             | Froe loft   condess.                            |
| Density                | .145                      | .022                      | 010             | Alemina Ter contract                            |
| Energy                 | .082                      | 010                       |                 | J <sub>v</sub>                                  |
|                        |                           | 7701                      | /00. +          | Free left boundary                              |
|                        | Sum Int. Energy           | Sum Kin. Energy           | Sum Tot. Energy |                                                 |
| EXACT                  | 3.64423 x 10 <sup>8</sup> | 1.35577 × 10 <sup>8</sup> | 5.00000 x 108   |                                                 |
| PUFF                   | 4.26052 x 10 <sup>8</sup> | 7.37375 x 10 <sup>7</sup> | 4.99790 x 108   |                                                 |

### LAX-WENDROFF

Problem time - Computer time -

| Computer time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 0                                 |                                                                 |                      | Cycle =<br>Number of Active Zones |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------|----------------------|-----------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sum Abs. Error                      | Sum Sor. Error                                                  | Monday               |                                   |
| Pressura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     |                                                                 | JOJIS MOMITYEII      | Position of Maximum Error         |
| Velucity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | The LAX-WENDROFF sch                | The LAX-WENDROFF scheme cannot run this problem because it uses | blem because it uses |                                   |
| Density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | specific volume instead of density. | end of density.                                                 |                      |                                   |
| Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     |                                                                 |                      |                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                                                                 |                      |                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sum Int. Energy                     | Sum Kin. Energy                                                 | Sum Tot. Faerov      |                                   |
| EXACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |                                                                 | (9)                  |                                   |
| LAXWEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     |                                                                 |                      |                                   |
| Designation of the last of the | A                                   |                                                                 |                      |                                   |

















THE PROPERTY AND PARTY AND PARTY OF THE PART















Liberatural Colonia de la colo













THE PARTY OF THE P





### 3. TEST PROBLEM SCTP-III

### a. The Exact Solution

In this problem, a piston proceeds with a constant acceleration into a gas initially at rest (by "gas initially at rest" is meant that the initial conditions are as follows: velocity is zero; density, pressure and all other fluid parameters are constant). This forms what is called a compression wave. At time  $t_S = 2C_r/a(\gamma+1)$ , a shock wave is formed ( $t_S = time$  of shock formation,  $C_r = sound$  speed of the gas at rest, a = acceleration of the piston). Until time  $t_S$ , the variables are continuous and the solution is easily found.\* Moreover, except for one point (the front of the compression wave), the variables are smooth prior to  $t_S$ . The compression wave front up to time  $t_S$  is  $X_C(t) = C_r t$ . After that time, the compression wave front is a shock, i.e., there is a discontinuity in pressure, density, velocity, etc.

The solution for the velocity is

$$v(X,t) = \frac{-\left(C_r - \frac{\gamma+1}{2} a t\right) + \sqrt{\left(C_r - \frac{\gamma+1}{2} a t\right)^2 + 2a\gamma\left(C_r t - X\right)}}{\gamma}$$

for  $X_p \leq X \leq X_C$ ,  $0 \leq t \leq t_S$ ,

$$X_{p} = \frac{1}{2} a t^{2}, X_{C} = C_{r}t$$

and

$$v(X,t) = 0 \text{ for } X > X_C$$

<sup>\*</sup> See K. O. Friedrick's paper in 1948 Communications Pure and Applied Mathematics, page 211, for an investigation of the solution after shock formation.

AFWL-TR-68-112

Then the simple wave formulas yield

$$C = C_r \left( 1 + \frac{\gamma - 1}{2} \quad \frac{v}{C_r} \right)$$

$$\rho = \rho \left(\frac{c}{c_r}\right)^{\frac{2}{\gamma-1}}$$

$$P = P_r \left(\frac{C}{C_r}\right)^{\frac{2\gamma}{\gamma-1}}$$

Notice that at time  $t_S = 2C_r/a(\gamma+1)$  and position  $X_S = C_r t_S$ , the

$$\lim \, v_X(X,t_S) = -\infty$$

X+Xs.

This indicates that a shock forms at  $(X_S, t_S)$ . For further details see Hydrocode Test Problems, AFWL-TR-67-127.

The necessary data for this problem are:

Initial values:  $P_r$ ,  $\rho_r$ ,  $v_r$ .

Boundary values: At the piston position  $X_p = \frac{1}{2} at^2$  the velocity is  $v_p = at$ .

There are two variations of this problem:

SCTP-III-A:

$$P_r = 10^4 \text{ dynes/cm}^2$$

$$\rho_r = 10^{-6} \text{ gm/cm}^3$$

$$v_r = 0$$

$$C_r^2 = \gamma P_r V_r = 1.4 \times 10^{10} \text{ cm}^2/\text{sec}^2$$

$$a = C_r/1 \sec$$

 $\Delta X = 10$  meters

 $X_0 = 1500 \text{ meters}$ 

This problem is run to 1 second. The shock forms at .833... second.

AFWL-TR-68-112

SCTP-III-B

We vary this from A by setting

 $a = 10 C_r/1 sec$ 

 $\Delta X = 1 \text{ meter}$ 

 $X_Q = 150 \text{ meters}$ 

This problem is run to .1 second. The shock forms at .08333 second.

b. The PUFF Solution

The main error made by PUFF is a slight overround at  $\mathbf{X}_{\mathbb{C}}$ . See Tables and Figures III.

c. The LAX-WENDROFF Sclution

The most noticeable error made by the LAX-WENDROFF scheme is the oscillation just left of  $X_{\mathbb{C}}$ . See Tables and Figures III. The time step factor used was .78, the artificial viscosity factor used was .5.

The state of the s

Table III-A

# ERRORS CM SCIP-III-A

|                                                   |                                                    | Purer                     |                 |                                          |
|---------------------------------------------------|----------------------------------------------------|---------------------------|-----------------|------------------------------------------|
| Problem time = .8333 se<br>Computer time = 22 sec | Problem time = .8333 sec<br>Computer time = 22 sec |                           |                 | Cycle = 244 Number of Acting 72222 = 110 |
|                                                   | Sum Abs. Error                                     | Sum Sqr. Error            | Maximum Error   | Position of weight                       |
| Pressure                                          | .235                                               | .054                      | + .038          | X                                        |
| Velocity                                          | .324                                               | .113                      | + .081          | ⊃:<br>×                                  |
| Density                                           | .246                                               | .052                      | + .036          | D.,                                      |
| Energy                                            | 660.                                               | .031                      | + 003           | ),<br>),                                 |
|                                                   |                                                    |                           | 630.            | υ <sub>Ψ</sub>                           |
|                                                   | Sum Int. Energy                                    | Sum Kin. Energy           | Sum Tot. Energy |                                          |
| EXACT                                             | 4.36800 x 10 <sup>9</sup>                          | 2.62864 x 10 <sup>8</sup> | 4.63087 × 109   |                                          |
| PUFF                                              | 4.36884 x 10 <sup>9</sup>                          | 2.62404 × 108             | 4.63124 × 109   |                                          |
|                                                   |                                                    |                           |                 |                                          |

### LAX-WENDROFF

Problem time = .8333 sec Computer time = 48 sec

| Pressure         Sum Abs. Error         Sum Sqr. Error         Maximum Error         Position of Maximum Fror           Velocity         .105         .035        021         2 zones left of X <sub>C</sub> Deusity         .098         .033        020         2 zones left of X <sub>C</sub> Energy         .058         .019        012         2 zones left of X <sub>C</sub> Exact         Sum Int. Energy         Sum Kin. Energy         Sum Tot. Energy         2 zones left of X <sub>C</sub> EXACT         4.36794 x 10 <sup>9</sup> 2.622827 x 10 <sup>8</sup> 4.63077 x 10 <sup>9</sup> 4.63077 x 10 <sup>9</sup> LAXWEN         4.63075 x 10 <sup>9</sup> 4.63075 x 10 <sup>9</sup> 4.63075 x 10 <sup>9</sup> | Computer time = 48 sec | Computer time = 48 sec                 |                 |                 | Cycle = 214 Number of Active Zones = 150 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------------|-----------------|-----------------|------------------------------------------|
| re       .105       .035      021         .y       .230       .078      047         , .098       .033      020         .058       .019      012         Sum Int. Energy       Sum Kin. Energy       Sum Tot. Energy         4.36794 x 109       2.62827 x 108       4.63077 x 109        36796 x 109       2.62788 x 108       4.63075 x 109                                                                                                                                                                                                                                                                                                                                                                                 |                        | Sum Abs. Error                         | Sum Sqr. Error  | Maximim Prese   |                                          |
| -y .230 .078047  ,098 .033047  .058 .019012  Sum Int. Energy Sum Kin. Energy Sum Tot. Energy 4.36794 x 10 <sup>9</sup> 2.62827 x 10 <sup>8</sup> 4.63077 x 10 <sup>9</sup> ;.36796 x 10 <sup>9</sup> 2.62788 x 10 <sup>8</sup> 4.63075 x 10 <sup>9</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pressure               | .105                                   | .035            | 021             | FOSICION OF Maximum Error                |
| .098       .033      020         .058       .019      012         Sum Int. Energy       Sum Kin. Energy       Sum Tot. Energy         4.36794 x 109       2.62827 x 108       4.63077 x 109         4.36796 x 109       2.62788 x 108       4.63075 x 109                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Velocity               | . 230                                  | 0.70            | 770.            | 2 zones left of X <sub>C</sub>           |
| .098       .033      020         .058       .019      012         Sum Int. Energy       Sum Kin. Energy       Sum Tot. Energy         4.36794 x 109       2.62827 x 108       4.63077 x 109         4.36796 x 109       2.62788 x 108       4.63075 x 109                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                                        | 9/01            | 047             | 2 zones left of X,                       |
| Sum Int. Energy       Sum Kin. Energy       Sum Tot. Energy         4.36794 x 10³       2.62827 x 10³       4.63077 x 10³         4.36796 x 10³       2.62788 x 10³       4.63075 x 10³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Decarty                | 860°                                   | .033            | 020             | 2 20mes 10ft of V                        |
| Sum Int. Energy       Sum Kin. Energy       Sum Tot. Energy         4.36794 x 10 <sup>9</sup> 2.62827 x 10 <sup>8</sup> 4.63077 x 10 <sup>9</sup> 4.36796 x 10 <sup>9</sup> 2.62788 x 10 <sup>8</sup> 4.63075 x 10 <sup>9</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Energy                 | .058                                   | 010             |                 | 3v 70 7137 5305 5                        |
| Sum Int. Energy         Sum Kin. Energy         Sum Tot. Energy           4.36794 x 10 <sup>9</sup> 2.62827 x 10 <sup>8</sup> 4.63077 x 10 <sup>9</sup> N         4.36796 x 10 <sup>9</sup> 2.62788 x 10 <sup>8</sup> 4.63075 x 10 <sup>9</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |                                        | 770.            | 012             | 2 zones left of X <sub>C</sub>           |
| N $4.36794 \times 10^9$ $2.62827 \times 10^8$ N $4.36796 \times 10^9$ $2.62788 \times 10^8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        | Sum Int. Energy                        | Sum Kin. Energy | Sum Tot France: |                                          |
| 4.36796 x 10 <sup>9</sup> 2.62788 x 10 <sup>8</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EXACT                  | 4.36794 × 10 <sup>9</sup>              | 2.62827 x 108   | 4.63077 × 109   |                                          |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LAXWEN                 | 36796 x 10 <sup>9</sup>                | 2.62788 x 108   | 4 63075 × 109   |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        | ************************************** |                 | TOTAL CHOCOSE   |                                          |

Table III-B

# ERRORS ON SCIP-III-B

|                                              |                                                     | PUPP                      |                           |                                             |
|----------------------------------------------|-----------------------------------------------------|---------------------------|---------------------------|---------------------------------------------|
| Problem time ~ .08333 Computer time ~ 22 sec | Problem time ~ .08333 sec<br>Computer time ~ 22 sec |                           |                           | Cycle = 244<br>Number of Active Zones = 118 |
|                                              | Sum Abs. Error                                      | Suz Sqr. Error            | Maximum Error             | Position of Maximum Error                   |
| Pressure.                                    | .235                                                | .054                      | + .038                    | X                                           |
| Velocity                                     | .224                                                | .113                      | + .081                    | X                                           |
| Density                                      | .246                                                | .052                      | + .036                    | X                                           |
| Energy                                       | 660*                                                | .031                      | + .023                    | X                                           |
|                                              | Sum Int. Energy                                     | Sum Kin. Energy           | Sum Tot. Energy           |                                             |
| FXACT                                        | 4.36800 x 10 <sup>8</sup>                           | 2.62864 x 10 <sup>7</sup> | 4.63087 × 10 <sup>8</sup> |                                             |
| PUFF                                         | 4.36884° x 108                                      | 2.62404 x 10 <sup>7</sup> | 4.63124 x 108             |                                             |

### LAX-WENDROFF

| Problem time = .08333<br>Computer time = 48 sec | = .08333<br>e = 48 sec    |                           |                           | Cycle = 214<br>Number of Active Zones = 150 |
|-------------------------------------------------|---------------------------|---------------------------|---------------------------|---------------------------------------------|
|                                                 | Sum Abs. Error            | Sum Sqr. Error            | Maximum Error             | Position of Maximum Error                   |
| Pressure                                        | .105                      | .035                      | 021                       | 2 zones left of Xo                          |
| Velocity                                        | .230                      | .078                      | 047                       | 2 zones left of X <sub>C</sub>              |
| Density                                         | 860.                      | .033                      | 020                       | 2 zones left of X <sub>C</sub>              |
| Energy                                          | .057                      | .019                      | 012                       | 2 zones left of X <sub>C</sub>              |
|                                                 |                           |                           |                           |                                             |
|                                                 | Sum Int. Energy           | Sum Kin. Energy           | Sum Tot. Energy           |                                             |
| EXACT                                           | 4.36794 x 10 <sup>8</sup> | 2.62827 x 10 <sup>7</sup> | 4.63077 x 10 <sup>8</sup> |                                             |
| LAXWEN                                          | 4.36796 x 10 <sup>8</sup> | 2.62788 x 10 <sup>7</sup> | 4.63075 x 108             |                                             |

























### 4. TEST PROBLEM SCTP-IV

### a. The Exact Solution

In this problem a piston has a constant acceleration, a, away from a gas at rest. The piston is traveling to the left. Eventually, the piston speed exceeds the speed with which the gas can follow. This speed is  $2C_r/(\gamma-1)$ , where  $C_r$  is the sound speed of the gas at rest. This speed is called the escape speed of the gas and when the piston exceeds this speed a vacuum occurs between the piston and the edge of the gas. The piston pulls away from the gas at time  $t_v = 2C_r/|a|(\gamma-1)$  and position  $X_p(t_v) = X_v = \frac{1}{2}at_v^2$ . The solution for the velocity is

$$v(X,t) = \frac{-\left(C_r - \frac{\gamma+1}{2} at\right) + \sqrt{\left(C_r - \frac{\gamma+1}{2} at\right)^2 + 2a\gamma\left(C_r t - X\right)}}{\gamma}$$

for  $X_p \le X \le X_C$ ,  $0 \le t \le t_v$ ,  $X_p = \frac{1}{2} at^2$ ,  $X_C = C_r t$ 

v(X,t) = 0 for  $X>X_C$  for all times.

For  $t \geq t_V$  there is a vacuum from  $X_P$  to the gas front. The gas front is at  $X_V = \frac{2C_T}{\gamma-1} \ (t-t_V).$  Therefore the velocity is really meaningless in this region. But the pressure, density, and sound speed are all zero in this region. From the gas front position on to  $X_C$  the above formula for the velocity holds. Once the velocity is known the simple wave formulas yield

$$C = C_r \left(1 + \frac{\gamma - 1}{2} \cdot \frac{v}{C_r}\right)$$

$$\rho = \rho_r \left(\frac{c}{c_r}\right)^{\frac{2}{\gamma-1}}$$

$$P = P_r \left(\frac{C}{C_r}\right)^{\frac{2\gamma}{\gamma-1}}$$

The necessary data for this problem are:

Initial values:  $P_r$ ,  $\rho_r$ ,  $v_r$ 

Boundary values: At the piston position  $X_p = \frac{1}{2}at^2$  the velocity is  $v_p = at$ 

There are two variations of this problem:

SCTP-IV-A:

$$P_r = 10^{14} \text{ dynes/cm}^2$$
 $\rho_r = 10^{-6} \text{ gm/cm}^3$ 
 $v_r = 0$ 
 $C_r^2 = \gamma P_r V_r = 1.4 \times 10^{10} \text{ cm}^2/\text{sec}^2$ 
 $a = -C_r/1 \text{ sec}$ 
 $\Delta X = 1) \text{ meters}$ 

This problem is run to 10 seconds; the vacuum forms at 5 seconds.

SCTP-IV-B:

Same as A but  $a = -10C_r/1$  sec, run the problem to 1 second and the vacuum occurs at .5 second.

### b. The PUFF solution

 $X_0 = 1500 \text{ meters}$ 

PUFF's main errors in this problem are at  $X_C$  and  $X_P$ . At  $X_C$  the error PUFF makes is an underround in pressure, density, velocity, and intermal energy. The error PUFF makes just to the right of  $X_P$  is due to the fact that PUFF is a Lagrangian code and the mass that was originally in a zone remains in the zone and therefore the density and pressure can never go to zero. See Tables and Figures IV.

### c. The LAX-WENDROFF Solution

Since a vacuum occurs in this problem and the LAX-WENDROFF code uses specific volume as a variable it cannot run this problem.

Table IV-A

## ERRORS ON SCTP-IV-A

| •                                               |                            | PUFF                      |                            |                                             |
|-------------------------------------------------|----------------------------|---------------------------|----------------------------|---------------------------------------------|
| Problem time = 10 sec<br>Computer time = 21 sec | = 10 sec<br>e = 21 sec     |                           |                            | Cycle = 169<br>Number of Active Zones = 132 |
|                                                 | Sum Abs. Error             | Sum Sqr. Error            | Maximum Error              | Position of Maximum Error                   |
| Pressure                                        | .067                       | .014                      | 600                        | X                                           |
| Velocity                                        | .020                       | 900.                      | 005                        | Xy                                          |
| Density                                         | .061                       | .011                      | 900                        | , x                                         |
| Energy                                          | .132                       | 060.                      | 680°+                      | XP                                          |
|                                                 | Sum Int. Energy            | Sum Kin. Energy           | Sum Tot. Energy            |                                             |
| EXACT                                           | 3.09266 x 10 <sup>10</sup> | 6.98426 x 10 <sup>9</sup> | 3.79108 x 10 <sup>10</sup> |                                             |
| PUFF                                            | 3.04767 x 10 <sup>10</sup> | 8.89789 x 10 <sup>9</sup> | 3.93746 x 10 <sup>10</sup> |                                             |

### LAX-WENDROFF

Cycle = Number of Active Zones = Problem time = Computer time =

|          | Sum Abs. Error          | Sum Sqr. Error                              | Maximum Error       | Position of Maximum Error |
|----------|-------------------------|---------------------------------------------|---------------------|---------------------------|
| Pressure |                         |                                             |                     |                           |
| Velocity | LAX-WENDROFF scheme won | won't run on this one because of the vacuum | cause of the vacuum |                           |
| Density  |                         |                                             |                     |                           |
| Energy   |                         |                                             |                     |                           |
|          |                         |                                             |                     |                           |
|          | Sum Int. Energy         | Sum Kin. Energy                             | Sum Tot. Energy     |                           |
| EXACT    |                         |                                             |                     |                           |
| LAXWEN   |                         |                                             |                     |                           |
|          |                         |                                             |                     |                           |

Table IV-B

ERRORS ON SCTP-IV-B

|                                                |                            | PUFF                      |                            |                                               |
|------------------------------------------------|----------------------------|---------------------------|----------------------------|-----------------------------------------------|
| Problem time = 1 sec<br>Computer time = 15 sec | = 1 sec<br>; = 15 sec      |                           |                            | Cycle = $19$<br>Number of Active Zones = $20$ |
|                                                | Sum Abs. Error             | Sum Sqr. Error            | Maxisum Error              | Position of Maximum Error                     |
| Pressure                                       | .140                       | .054                      | 070 -                      | 2 <sup>X</sup>                                |
| Velocity                                       | .023                       | 600.                      | 900* -                     | Xp                                            |
| Density                                        | .127                       | .045                      | 029                        | o <sub>x</sub>                                |
| Energy                                         | . 216                      | .161                      | + .160                     | ЧX                                            |
|                                                | Sum Int. Energy            | Sum Kin. Energy           | Sum Tot. Energy            |                                               |
| EXACT                                          | 3.68427 x 10 <sup>10</sup> | 6.98426 × 10 <sup>8</sup> | 3.75411 x 10 <sup>10</sup> |                                               |
| PUFF                                           | 3.67320 x 10 <sup>10</sup> | 2.82060 x 10 <sup>9</sup> | 3.95526 x 10 <sup>10</sup> |                                               |

### LAX-WENDROFF

|          | Sum Abs. Error        | Sum Sqr. Error                                                  | Maximum Error       | Position of Maximum Error |
|----------|-----------------------|-----------------------------------------------------------------|---------------------|---------------------------|
| Pressure |                       |                                                                 |                     |                           |
| Velocity | LAX-WENDROFF scheme w | LAX-WENDROFF scheme won't run on this one because of the vacuum | cause of the vacuum |                           |
| Density  |                       |                                                                 |                     |                           |
| Energy   |                       |                                                                 |                     |                           |
|          | Sum Int. Enerov       | Sum Kin Energy                                                  | Sum Tot Franco      |                           |
| EXACT    | (9)                   | 79-201                                                          | (9)                 |                           |
| LAXWEN   |                       |                                                                 |                     |                           |
|          | A                     | <u> </u>                                                        |                     |                           |







The way we come to

Figure IV-A. Pn-PUFF











### 5. TEST PROBLEM SCTP-V

### a. The Exact Solution

This is called the shock tube problem. It is an example of the more general Riemann problem. The Riemann problem is that of determining the flow after the conjunction of two states, left state and right state, with  $P_{\ell}$ ,  $\rho_{\ell}$ ,  $v_{\ell}$  the constant values of the left state and  $P_r$ ,  $\rho_r$ ,  $v_r$  the constant values of the right state. In the shock tube problem,  $v_r$  and  $v_{\ell}$  are no longer arbitrary but are set to zero. So the problem may be interpreted as the determination of the flow after removal of the membrane separating two constant states at rest. As a convention, take  $P_{\ell} \geq P_r \geq 0$ . Then in the code test problem the three poss.—bilities,  $\rho_{\ell} > \rho_r$ ,  $\rho_{\ell} = \rho_r$ , and  $\rho_{\ell} < \rho_r$  will be explored.

At time zero, the membrane is removed. The resultant action is a rarefaction wave traveling into the left state and a shock traveling into the right state. The velocity is  $\mathbf{v}_{\ell} = 0$  to the left of the rarefaction wave. From the left of the rarefaction wave to the right, the velocity rises linearly from 0 to  $\mathbf{v}_{m} > 0$ . The velocity is constant at  $\mathbf{v}_{m}$  from the right of the rarefaction wave rightward toward the shock. At the shock, the velocity jumps from  $\mathbf{v}_{m} > 0$  down to  $\mathbf{v}_{r} = 0$ . The pressure drops continuously across the rarefaction wave from  $\mathbf{P}_{\ell}$  to  $\mathbf{P}_{m}$ . The pressure has the value  $\mathbf{P}_{m}$  constantly from the right of the rarefaction wave to the shock. The pressure drops from  $\mathbf{P}_{m}$  to  $\mathbf{P}_{r}$  across the shock. The density drops continuously across the rarefaction wave from  $\rho_{\ell}$  to a value  $\rho_{m\ell}$ , which it maintains from the right of the rarefaction wave to the point in the fluid where the initial discontinuity was and there the density jumps up to  $\rho_{mr}$ .

From the initial discontinuity point to the shock, the density jumps down from  $\rho_{mr}$  to  $\rho_{r},$  which value is maintained all the way to the right.

The left side of the rarefaction wave is at  $X_C(t) = X_S(0) - C_{\ell}t$ , where  $X_S(0)$  is the position of the shock at time zero which is also the position of the initial discontinuity.

The right side of the shock is at

$$X_R(t) = X_S(0) - \left(C - \frac{\gamma+1}{2} v_m\right)t$$

The shock wave is at

$$X_S(t) = X_S(0) + v_S t$$

where  $\mathbf{v}_{S}$  is the velocity of the shock

$$v_S = v_r + \sqrt{V_r \left(\frac{\gamma+1}{2} P_m + \frac{\gamma-1}{2} P_r\right)}$$

The initial discontinuity point of the fluid is at  $X_0(t) = X_S(0) + v_m t$ . The middle values  $v_m$  and  $P_m$  are determined by simultaneously solving

$$v_{m} = v_{r} + (P_{m} - P_{r}) \sqrt{\frac{2V_{r}}{(\gamma+1) P_{m} + (\gamma-1) P_{r}}}$$

and

$$v_{m} = v_{\ell} + \frac{2\sqrt{\gamma}}{\gamma - 1} \left( \frac{P_{\ell}}{\rho_{\ell}^{\gamma}} \right)^{\frac{1}{2\gamma}} \left[ P_{\ell}^{\frac{\gamma - 1}{2\gamma}} - P_{m}^{\frac{\gamma - 1}{2\gamma}} \right]$$

Solution Summary:

REGION

For  $X \leq X_{C}(t)$ , the values are  $P_{\ell}$ ,  $\rho_{\ell}$ ,  $v_{\ell}$ 

For  $X_C(t) \le X \le X_R(t)$ , the values are

$$v(X,t) = \frac{X - X_C(t)}{X_R(t) - X_C(t)} v_m$$

RAREFACTION REGION

$$C = C_{\ell} \left( 1 - \frac{\gamma - 1}{2} \frac{v}{C_{\ell}} \right)$$

$$P = P_{\ell} \left( \frac{C}{C_{\ell}} \right)^{\frac{2\gamma}{\gamma - 1}}$$

$$P = P_{\ell} \left(\frac{C}{C_{\ell}}\right)^{\frac{2\gamma}{\gamma-1}}$$

$$\rho = \rho_{\ell} \left(\frac{C}{C_{\ell}}\right)^{\frac{2}{\gamma-1}}$$

For  $X_R(t) \le X < X_S(t)$ , the values are  $P_m$ ,  $v_m$ 

MIDDLE REGION

For  $X_R(t) \le X < X_D(t)$ , the density is  $\rho_{m\ell}$ 

For  $X_D(t) < X < X_S(t)$ , the density is  $\rho_{mr}$ 

RIGHT REGION For X >  $X_S(t)$ , the values are  $P_r$ ,  $\rho_r$ ,  $v_r$ 

The necessary data for this problem are

INITIAL VALUES:  $P_r$ ,  $\rho_r$ ,  $v_r$ ,  $P_\ell$ ,  $\rho_\ell$ ,  $v_\ell$ 

BOUNDARY VALUES: At X = 0, hold the values at  $P_{\xi}$ ,  $\rho_{\hat{\chi}}$ , and  $v_{\xi}$  at  $X_{Q}$ 

(the right boundary) hold the values at  $P_r$ ,  $r_r$ ,  $v_r$ .

There are three variations of this problem

SCTP-V-A:

 $X_S(0) = 100 \text{ meters}$ 

 $\Delta X = 1$  meter

 $P_{\varrho} = 10^8 \text{ dynes/cm}^2$ 

 $\rho_{\ell} = 10^{-5} \text{ gm/cm}^3$ 

 $v_{\varrho} = 0$ 

 $P_r = 10^4 \text{ dynes/cm}^2$ 

 $\rho_r = 10^{-6} \text{ gm/cm}^3$ 

 $v_r = 0$ 

 $X_0 = 250 \text{ meters}$ 

These values imply the following values:

 $P_{\rm m} = 1.888 \times 10^7 \, \rm dynes/cm^2$ 

 $v_m = 3.964 \times 10^6 \text{ cm/sec}$ 

 $\rho_{mg} \doteq 3.040 \times 10^{-6} \text{ gm/cm}^3$ 

 $\rho_{\rm mr} = 5.982 \times 10^{-6} \, {\rm gm/cm^3}$ 

 $v_S = 4.760 \times 10^6 \text{ cm/sec}$ 

This problem was run to  $2 \times 10^{-3}$  seconds.

SCTP-V-B:

This problem is the same as SCTP-V-A except

 $X_S(0) = 250 \text{ meters}$ 

 $\rho_{g} = 10^{-6} \text{ gm/cm}^{3}$ 

 $X_0 = 500 \text{ meters}$ 

These values imply the following values:

$$P_{\rm m} = 4.610 \times 10^7 \, \rm dynes/cm^2$$

$$v_{\rm m} = 6.196 \times 10^6 \, {\rm cm/sec}$$

$$\rho_{m\ell} = 5.751 \times 10^{-7} \text{ gm/cm}^3$$

$$\rho_{\rm mr} \doteq 5.992 \times 10^{-6} \, {\rm gm/cm^3}$$

$$v_S = 7.437 \times 10^6 \text{ cm/sec}$$

### SCTP-V-C:

This problem is the same as A except

$$X_S(0) = 250 \text{ meters}$$

$$\rho_0 = 10^{-6} \text{ gm/cm}^3$$

$$\rho_r = 10^{-5} \text{ gm/cm}^3$$

$$X_0 = 500 \text{ meters}$$

These values imply the following values:

$$P_m = 7.406 \times 10^7 \text{ dynes/cm}^2$$

$$v_m \approx 2.484 \times 10^6 \text{ cm/sec}$$

$$\rho_{\rm ml} = 8.070 \times 10^{-7} \, \rm gm/cm^3$$

$$\rho_{mr} = 5.995 \times 10^{-5} \text{ gm/cm}^3$$

$$v_S = 2.981 \times 10^6 \text{ cm/sec}$$

### b. The PUFF Solution

On SCTP-V-A, the most noticeable error was a smearing of the density discontinuity at  $\mathbf{X}_{D}$ . The only errors were the typical underrounds at overrounds at corners.

On SCTP-V-B, there was a bit of oscillation in the density in the compressed region and a little overshoot in velocity and an undershoot in pressure at  $\chi_R$ .

On SCTP-V-C, the dominant error was a slight undershoot in the pressure at  $X_{\rm R}$ . The other error was a slight undershoot in the pressure at  $X_{\rm R}$ .

For more details see Tables and Figures V.

### c. The LAX-WENDROFF Solution

In order to run this problem it was found necessary to cut the first time step and artificial viscosity factor down to one-twontieth the normal time step, cut the second time step and artificial viscosity down to two-twentieths of the normal time step, etc., until the twentieth step and thereafter allow the normal time step and artificial viscosity factor. The time factor used was .78 and the artificial viscosity factor used was .5.

The most noticeable difference between PUFF and LAX-WENDROFF in SCTP-V-A is the pronounced spikes at  $\rm X_D$  and  $\rm X_S$  in LAX-WENDROFF (see Figures V-A).

In SCTP-V-B the spikes are not so bad but there is quite an oscillation in the velocity just right of  $X_{\rm R}$  (see Figures V-B).

In SCTP-V-C the overshoot in the velocity at  $\mathbf{X}_{R}$  has grown more pronounced (see Figures V-C).

Table V-A

ERKORS ON SCTP-V-A

| Cycle = $976$<br>Number of Active Zones = $201$                           | or Position of Maximum Error | xS       | XS       | XS      | XS     | ergy            | 10 <sup>12</sup>           | 1012                       |
|---------------------------------------------------------------------------|------------------------------|----------|----------|---------|--------|-----------------|----------------------------|----------------------------|
|                                                                           | Maximum Error                | 054      | + .875   | + .172  | + .180 | Sum Tot. Energy | $2.50037 \times 10^{12}$   | $2.49983 \times 10^{12}$   |
| PUFF                                                                      | Sum Sqr. Error               | .087     | 1.13     | .385    | . 285  | Sum Kin, Energy | 3.23215 x 10 <sup>11</sup> | 3.21760 x 10 <sup>11</sup> |
| Problem time = $2 \times 10^{-3}$ seconds<br>Computer time = $61$ seconds | Sum Abs. Error               | .401     | 2.32     | 1.74    | 1.13   | Sum Int. Energy | 2.17716 x 10 <sup>12</sup> | 2.17807 x 10 <sup>12</sup> |
| Problem time<br>Computer time                                             |                              | Pressure | Velocity | Density | Energy |                 | EXACT                      | PUFF                       |

### LAX-WENDROFF

Problem time =  $2 \times 10^{-3}$  seconds Computer time = 122 seconds

Cycle = 363 Number of Active Zones = 251

|          | Sum Abs. Error             | Sum Sqr. Error             | Maximum Error              | Position of Maximum Error |
|----------|----------------------------|----------------------------|----------------------------|---------------------------|
| Pressure | .743                       | .118                       | 990° -                     | XS                        |
| Velocity | 1.39                       | .352                       | + .276                     | XS                        |
| Density  | 1.81                       | .327                       | 150                        | XS                        |
| Energy   | 1.11                       | . 203                      | + .087                     | $\chi_{\mathrm{D}}$       |
|          | C.m Int Enorgy             | Sum Kin Fretov             | Sum Tot Energy             |                           |
|          | عسر بالد، بالديق           | (9-5)                      | (9-pm; -pp; -mp;           |                           |
| EXACT    | $2.17716 \times 10^{12}$   | $3.23215 \times 10^{11}$   | $2.50037 \times 10^{12}$   |                           |
| LAXWEN   | 2.18008 x 10 <sup>12</sup> | 3.19915 x 10 <sup>11</sup> | 2.49999 x 10 <sup>12</sup> |                           |
|          |                            |                            |                            |                           |

Table V-B

## ERRORS ON SCTP-V-B

| Problem time = $2 \times 10^{-}$<br>Computer time = $167 \text{ sec}$ | Problem time = $2 \times 10^{-3}$ sec<br>Computer time = $167$ sec | PUFF                       |                          | Cycle = 1527<br>Number of Active Zones = 404 |
|-----------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------|--------------------------|----------------------------------------------|
|                                                                       | Sum Abs. Error                                                     | Sum Sqr. Error             | Maximum Error            | Position of Maximum Error                    |
| Pressure                                                              | . 762                                                              | .276                       | 263                      | XS                                           |
| Velocity                                                              | 2.24                                                               | 006                        | 4 .748                   | XS                                           |
| Density                                                               | 1.52                                                               | .616                       | 517                      | XS                                           |
| Energy                                                                | . 285                                                              | 090.                       | + .039                   | XD                                           |
|                                                                       | Sum Int. Energy                                                    | Sum Kin. Energy            | Sum Tot. Energy          |                                              |
| EXACT                                                                 | 5.66,04 x 10 <sup>12</sup>                                         | 5.82988 x 10 <sup>11</sup> | $6.25062 \times 10^{12}$ |                                              |
| PUFF                                                                  | 5.66880 x 10 <sup>12</sup>                                         | 5.81419 x 10 <sup>11</sup> | $6.25022 \times 10^{12}$ |                                              |

### LAX-WENDROFF

Problem time =  $2 \times 10^{-3}$  sec Computer time = 347 sec

Cycle = 535 Number of Active Zones = 501

|          | Sum Abs. Error             | Sum Sqr. Error             | Maximum Error              | Position of Maximum Error |
|----------|----------------------------|----------------------------|----------------------------|---------------------------|
| Pressure | .692                       | .141                       | + .122                     | S <sub>X</sub>            |
| Velocity | 2.17                       | 509.                       | + .580                     | XS                        |
| Density  | 1.11                       | .376                       | + .284                     | XS                        |
| Energy   | 3.63                       | 090.                       | + .045                     | XS                        |
|          | Sum Int. Energy            | Sum Kin. Energy            | Sum Tot. Energy            |                           |
| EXACT    | 5.66764 × 10 <sup>12</sup> | 5.82988 x 10 <sup>11</sup> | $6.25062 \times 10^{12}$   |                           |
| LAXMEN   | 5.66694 x 10 <sup>12</sup> | 5.81029 x 10 <sup>11</sup> | 6.24797 x 10 <sup>12</sup> |                           |

Table V-C

ERRORS ON SCTP-V-C

| Problem time           | Problem time = $2 \times 10^{-3}$ s. | PURE                       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------|--------------------------------------|----------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Computer time = 75 sec | ne = 75 sec                          |                            |                 | Cycle = 611<br>Number of Active Zones = 315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                        | Sum Abs. Error                       | Sum Sqr. Error             | Maximum Frrot   | Doctorial Control of the Control of |
| Pressure               | 1.22                                 | 100                        |                 | CONTITION OF MAXIMUM EFFOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                        |                                      | TOC:                       | 478             | ××                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Velocity               | 3.49                                 | 998.                       | + 701           | S X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Density                | 60 -                                 |                            |                 | Sw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                        | 1.33                                 | .639                       | 471             | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Energy                 | 105                                  |                            |                 | S.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                        | 651.                                 | .023                       | 900. +          | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                        | Court Tark Dane                      |                            |                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                        | Sum Int. Energy                      | Sum Kin. Energy            | Sum Tot. Energy |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| EXACT                  | $6.00501 \times 10^{12}$             | 2.45613 x 10 <sup>11</sup> | 6.25062 2.1012  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| PITE                   | 2132                                 |                            | OT Y 7007-0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                        | 0.00694 % 10 <sup>12</sup>           | 2.43446 x 10 <sup>11</sup> | 6.25038 x 1012  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                        |                                      |                            |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| بعثا |
|------|
| -    |
| 0    |
| ×    |
| ₽    |
| 23   |
| 5    |
| Ĩ.   |
| ×    |
| 5    |
| ~    |
|      |

Problem time =  $2 \times 10^{-3} \text{ sec}$ Computer time = 221 sec

Cycle = 337 Number of Active Zones = 501

|           | Sum Abs. Error             | Sum Sqr. Error                         | Maximum Frror   | Destrict                  |
|-----------|----------------------------|----------------------------------------|-----------------|---------------------------|
| Q.        |                            |                                        | 70777           | rosition of Maximum Error |
| riessure  | . 688                      | .194                                   | + .159          | ×                         |
| Velocity  | 2 80                       |                                        |                 | S                         |
| (STACES)  | 2.30                       | .614                                   | + .517          | X                         |
| Density   | 1 7.7                      | 27.0                                   |                 | S                         |
| 6         | /+                         | 978.                                   | - ,792          | ×                         |
| To rous   | 763                        |                                        |                 | ر.                        |
| riict 6y  | 000                        | .432                                   | 428             | X                         |
|           |                            |                                        | 071.            | £                         |
|           |                            |                                        |                 |                           |
|           | Sum int. Energy            | Sum Kin. Energy                        | Sum Tot. Energy |                           |
| FXACT     | 0,000                      |                                        | (9              |                           |
| TOUR!     | 0.002U x 10c00.0           | $2.45613 \times 10^{11}$               | 6 25062 2 1012  |                           |
| A 45 FF V |                            | ************************************** | -01 V 7000      |                           |
| LYAMEN    | 6.00238 x 10 <sup>12</sup> | 2.42686 x 1011                         | 6 24506 1012    |                           |
|           |                            |                                        | × 00C+7.0       |                           |















AND THE PROPERTY OF THE PROPER

101









Figure V-B. PD-LAX-WENDROFF















## 6. TEST PROBLEM SCTP-VI

### a. The Exact Sclution

This problem is the collision of two shock waves. It is another special case of the Riemann problem. Proceeding from left to right, the initial values are  $P_{\ell}$ ,  $\rho_{\ell}$ ,  $v_{\ell}$  connected by a right-facing shock to  $P_{0}$ ,  $\rho_{0}$ ,  $v_{0}$ , which in turn is connected by a left facing shock to  $P_{r}$ ,  $\rho_{r}$ ,  $v_{r}$ . As a convenient convention one takes  $P_{\ell} \geq P_{r} \geq P_{0}$ .

After collision a shock travels back to the left and shock travels on to the right from a middle region in which the velocity and vessure are constants  $\boldsymbol{v}_m$  and  $\boldsymbol{P}_m$ .

For a shock facing to the right

$$v_m = v_r + \phi_r(P_m)$$

and for a shock facing to the left

$$v_m = v_\ell - \varphi_\ell(P_m)$$

where

$$\phi_{\mathbf{a}}(\mathbf{P}) = \left(\mathbf{P} - \mathbf{P}_{\mathbf{a}}\right) \frac{2\mathbf{V}_{\mathbf{a}}}{(\gamma+1)^{2} + (\gamma-1)\mathbf{P}_{\mathbf{a}}}$$

From these two equations,  $P_{m}$  and  $v_{m}$  are determined.

The density profile proceeding from left to right is  $\rho_\ell$ , then it jumps up to  $\rho_{m\hat{\iota}}$  at the left-facing shock, then at the point of collision (in the Lagrangian coordinates) the density jumps to  $\rho_{mr}$ , then at the right-facing shock the density jumps down to  $\rho_r$ . The Rankine-Hugoniot relation determines  $\rho_{m\hat{\iota}}$  and  $\rho_{mr}$ . That is,

$$0 = e_2 - e_{m2} + \frac{P_{\ell} + P_{\Gamma}}{2} (V_{\ell} - V_{m\ell})$$

and

$$0 = e_{mr} - e_r + \frac{P_m + P_r}{2} \left( v_{mr} - v_r \right)$$

Where

ていただい あいかいしょう これをないには最高が代表していただけるのではない 全国などとしなる

$$e = \frac{PV}{\gamma - 1}$$

and, of course,

$$v_{m\ell} = \rho_{m\ell}^{-1}, v_{mr} = \rho_{mr}^{-1}$$

All of the short velocities may be computed by

$$v_{S} = \frac{1+\gamma}{4} v_{\ell} + \frac{3-\gamma}{4} v_{r} + \sqrt{\left(\frac{1+\gamma}{4} v_{\ell} + \frac{3-\gamma}{4} v_{r}\right)^{2} + c_{r}^{2}}$$

where + is taken for right-facing shocks and - is taken for left-facing shocks. For example, prior to collision (let t<sub>col</sub> be the time of collision) the velocity of the right-facing shock (i.e., the shock on the left) is

$$v_{SL} = \frac{1+\gamma}{4} v_{L} + \frac{3-\gamma}{4} v_{0} + \sqrt{\left(\frac{1+\gamma}{4} v_{L} + \frac{3-\gamma}{4} v_{0}\right)^{2} + c_{0}^{2}}$$

and the velocity of the left-facing shock (i.e., the shock on the right) is

$$v_{Sr} = \frac{1+\gamma}{4} v_0 + \frac{3-\gamma}{4} v_r - \sqrt{\left(\frac{1+\gamma}{4} v_0 + \frac{3-\gamma}{4} v_r\right)^2 + c_r^2}$$

After collision (for  $t > t_{col}$ ) the velocity of the left-facing shock (i.e., the shock on the left) is

$$v_{Sr}^* = \frac{1+\gamma}{4} v_{\ell} + \frac{3-\gamma}{4} v_{m} - \sqrt{\left(\frac{1+\gamma}{4} v_{\ell} + \frac{3-\gamma}{4} v_{m}\right)^2 + c_{m}^2}$$

and the velocity of the right-facing shock (i.e., the snock on the right) is

$$v_{Sr}^* = \frac{1+\gamma}{4} v_m + \frac{3-\gamma}{4} v_r + \sqrt{\left(\frac{1+\gamma}{4} v_m + \frac{3-\gamma}{4} v_r\right)^2 + C_r^2}$$

where as before C stands for the isentropic sound speed.

Solution Summary:

Prior to collision (t < t<sub>col</sub>)

LEFT  
REGION 
$$\begin{cases} \text{For } X < X_{S\ell}(t) = X_{S\ell}(0) + v_{S\ell}t, \text{ the values are } P_{\ell}, p_{\ell}, v_{\ell} \end{cases}$$

MIDDLE REGION 
$$\begin{cases} For X_{SL}(t) < X < X_{sr}(t) * X_{sr}(0) + v_{sr}t, \text{ the values are } P_0, \rho_0, v_0 \end{cases}$$

RIGHT
REGION 
$$\begin{cases}
For X > X_{sr}(t), \text{ the values are } P_r, \rho_r, v_r
\end{cases}$$

After collision (t > t<sub>col</sub>)

LEFT REGION 
$$\begin{cases} \text{For } X < X_{S\ell}^{\star}(t) = X_{col} + v_{Sl}^{\star}(t-t_{col}), \text{ the values are } P_{\ell}, \rho_{\ell}, v_{\ell} \end{cases}$$

FOR 
$$X_{S\ell}^{\bigstar}(t) < X < X_{Sr}^{\bigstar}(t) = X_{co\ell} + v_{sr}^{\hbar}(t - t_{co\ell})$$
,

THE REGION

The values are  $P_m$ ,  $v_m$  and  $\rho_{m\ell}$  for  $X < X_{co\ell} + v_m(t - t_{co\ell})$ 

and  $\rho_{mr}$  for  $X > X_{co\ell} + v_m(t - t_{co\ell})$ 

RIGHT  
REGION 
$$\begin{cases} \text{For } X > X_{sr}^{*}(t), \text{ the values are } P_{r}, \rho_{r}, v_{r} \end{cases}$$

The necessary data for this problem are:

INITIAL VALUES:  $P_{\ell}$ ,  $P_{0}$ ,  $\rho_{0}$ ,  $v_{0}$ ,  $P_{r}$ 

The second secon

From these all other initial values are determined.

BOUNDARY VALUES: At X = 0 (the left boundary) hold the values at  $P_{\ell}$ ,  $\rho_{\ell}$ ,  $v_{\ell}$ . At  $X_Q$  (the right boundary) hold the values at  $P_{r}$ ,  $\rho_{r}$ ,  $v_{r}$ .

There are two variations of this problem:

SCTP-VI-A:

 $\Delta X = 1 \text{ meter}$ 

 $X_{SQ}(0) = 75 \text{ meters}$ 

 $X_{Sr}(0) = 125 \text{ meters}$ 

 $X_{Q}(0) = 200 \text{ meters}$ 

 $P_0 = 10^4 \text{ dynes/cm}^2$ 

 $\rho_0 = 10^{-6} \text{ gm/cm}^3$ 

 $P_{\ell} = 10^8 \text{ dynes/cm}^2$ 

 $P_r = 10^7 \text{ dynes/cm}^2$ 

 $\mathbf{v}_0 = 0$ 

These values then determine the following values:

 $\rho_{\ell} = 5.997 \times 10^{-6} \text{ gm/cm}^3$ 

 $\rho_r = 5.97 \times 10^{-6} \text{ gm/cm}^3$ 

 $v_{\ell} = 9.13 \times 10^6 \text{ cm/sec}$ 

 $v_r = -2.88 \times 10^6 \text{ cm/sec}$ 

 $v_{SL} = 1.095 \times 10^7 \text{ cm/sec}$ 

 $v_{Sr} \doteq -3.46 \times 10^6 \text{ cm/sec}$ 

t<sub>col</sub> = 3.468 x 10<sup>-4</sup> sec

 $X_{col} = 1.13 \times 10^4 \text{ cm}$ 

 $P_m = 3.66 \times 10^8 \text{ dynes/cm}^2$ 

 $\rho_{m\ell} \doteq 1.43 \times 10^{-5} \text{ gm/cm}^3$ 

$$\rho_{mr} = 3.09 \times 10^{-5} \text{ gm/cm}^3$$
 $v_m = 1.96 \times 10^6 \text{ cm/sec}$ 
 $v_{SL}^* = 3.75 \times 10^5 \text{ cm/sec}$ 
 $v_{sr}^* = 5.72 \times 10^6 \text{ cm/sec}$ 

This problem was run to  $7 \times 10^{-4}$  sec.

# SCTP-VI-B:

This problem is the same as A, except  $P_{\ell} = P_{r} = 10^{8} \text{ dynes/cm}^{2}$ .

This yields the following values:

$$\rho_{\ell} = \rho_{r} = 5.997 \times 10^{-6} \text{ gm/cm}^{3}$$
 $v_{\ell} = -v_{r} = 9.13 \times 10^{6} \text{ cm/sec}$ 
 $v_{S\ell} = -v_{Sr} = 1.095 \times 10^{7} \text{ cm/sec}$ 
 $t_{co\ell} = 2.282 \times 10^{-4} \text{ sec}$ 
 $X_{co\ell} = 1.00 \times 10^{4} \text{ cm}$ 
 $P_{m} = 7.995 \times 10^{8} \text{ dynes/cm}^{2}$ 
 $v_{m} = 0$ 
 $\rho_{m\ell} = \rho_{mr} = 2.098 \times 10^{-5} \text{ gm/cm}^{3}$ 
 $-v_{S\ell}^{*} = v_{Sl}^{*} = 3.65 \times 10^{6} \text{ cm/sec}$ 

This problem was run to  $7 \times 10^{-4}$  sec.

# b. The PUFF Solution

The major errors in evidence were the spikes in the density and internal energy. Hot-thin spikes resulted from the initial discontinuities and a cold-thick spike resulted from the shock collision. For more details see Tables and Figures VI.

### c. The LAX-WENDROFF Solution

In addition to the spikes observed in the PUFF solution there is also, a considerable amount of oscillation in evidence in the LAX-WENDROFF Solution. The time factor used was .39 and the artificial viscosity factor used was .25; as in SCTP-V the time and viscosity factors were multipled by one-twentieth on the first

time step, two-twentieths on the second, etc., until the twentieth time step and thereafter when they were left at the values of .39 and .25 respectively. For more details see T.bros and of ores VI.

Table VI-A

# ERROPS ON SCTP-VI-A

| Computer time = 89 sec  Sum Abs. Error  Pressure 1.92  Velocity 1.77  Density 6.40  Exact 5.77  Sum Int. Energy  EXACT 3.104 x 10 <sup>12</sup> PUFF 3.126 x 10 <sup>12</sup> Problem time = 7 x 10 <sup>-4</sup> sec  Computer time = 433 sec  Sum Abs. Error | Error<br>Energy | Sum Sqr. Error<br>.556<br>.687<br>1.46<br>1.49<br>Sum Kin. Energy | Maximum Error<br>.352         | Cycle = 1283 Number of Active Zones * 200 Position of Maximum Error |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------------|
| iure iity lty Sy lem time = 7                                                                                                                                                                                                                                  | Error  Energy   | Sum Sqr. Error<br>.556<br>.687<br>1.46<br>1.49<br>Sum Kin. Energy | Maximum Error<br>.352<br>.514 | 1 1                                                                 |
| sure tity tity Sy lem time = 7                                                                                                                                                                                                                                 | Energy          | .556<br>.687<br>1.46<br>1.49<br>Sum Kin. Energy                   | .352                          | *>                                                                  |
| ity  Ity  Sy  lem time = 7  iter time = 7                                                                                                                                                                                                                      | Energy          | .687<br>1.46<br>1.49<br>Sum Kin. Energy                           | .514                          | 15v                                                                 |
| Sy.  r  lem time = 7  ster time = 7                                                                                                                                                                                                                            | Energy          | 1.46<br>1.49<br>Sum Kin. Energy                                   |                               | XX                                                                  |
| lem time = 7                                                                                                                                                                                                                                                   | Energy          | 1.49<br>Sum Kin. Energy                                           | 079*                          | The collision point in the fluid                                    |
| lem time = 7                                                                                                                                                                                                                                                   | Energy          | Sum Kin. Energy                                                   | .981                          | The fluid position x = XSg(0)                                       |
| lem time = 7                                                                                                                                                                                                                                                   | 1012            |                                                                   | Sum Tot. Energy               |                                                                     |
| len time = 7                                                                                                                                                                                                                                                   | -               | 1.375 x 10 <sup>12</sup>                                          | 4.480 x 10 <sup>12</sup>      |                                                                     |
| Problem time = 7 x 10 <sup>-4</sup> se<br>Computer time = 433 sec<br>Sum Abs. E                                                                                                                                                                                | 1012            | 1.657 x 10 <sup>12</sup>                                          | 4.782 x 10 <sup>12</sup>      |                                                                     |
| Problem time = 7 x 10 <sup>-4</sup> se<br>Computer time = 433 sec<br>Sum Abs. E                                                                                                                                                                                |                 | LAY -WENDROFF                                                     | WFF                           |                                                                     |
| Sum Abs. E                                                                                                                                                                                                                                                     | ၁               |                                                                   |                               | Cycle = 1719<br>Number of Active Zones = 200                        |
|                                                                                                                                                                                                                                                                | Error           | Sum Sqr. Error                                                    | Maximum Error                 | Position of Maximum Error                                           |
| Pressure 5.39                                                                                                                                                                                                                                                  |                 | 1.13                                                              | 563                           | X X S S                                                             |
| Velocity 2.41                                                                                                                                                                                                                                                  |                 | .546                                                              | + .367                        | *X<br>SS                                                            |
| Density 5.45                                                                                                                                                                                                                                                   |                 | 806.                                                              | + .370                        | gos<br>X                                                            |
| Energy 4.10                                                                                                                                                                                                                                                    |                 | .722                                                              | + .346                        | XX                                                                  |

Sum Tot. Energy  $4.480 \times 10^{12}$ 4.771 × 10<sup>12</sup>

Sum Kin. Energy 1.375 x 10<sup>12</sup>

Sum Int. Energy 3.104 x 10<sup>12</sup>

3.093 x 10<sup>12</sup>

LAXWEN

EXACT

1.678 × 10<sup>12</sup>

Table VI-B

ERRORS ON SCIP-VI-B

|                                         | Cycle = 1500            | Number of Active Zones = 200 | Post tion of Mand | TOTAL MAXIMUM EFFOR | ***      | **   | AST     | The fluid posterior | (0) XX W X INTERIOR XXX (0) | The fluid position x = Xc.(0) | 3,7,7           |                 |               |              |                          |
|-----------------------------------------|-------------------------|------------------------------|-------------------|---------------------|----------|------|---------|---------------------|-----------------------------|-------------------------------|-----------------|-----------------|---------------|--------------|--------------------------|
|                                         |                         |                              | Maximum Error     |                     | .332     | .603 | 700.    | 516                 |                             | 1.07                          |                 | oum Tot. Fnergy | 8.775 \$ 1012 | 04 4 55      | 8.776 x 10 <sup>12</sup> |
| PUFF                                    |                         |                              | Sum Sqr. Error    | 500                 | 700:     | .993 |         | 1.29                | 1 08                        | 06.1                          | Sum Kin France. | 18.30           | 9.430 × 1011  | (10. 070 0   | 0.940 × 1011             |
| Problem time = 7 x 10 <sup>-4</sup> sec | e = 101 sec             | Sum Abo Devos                | com most extor    | 1.55                | 0, 0     | 7.40 | 7.38    | 25.                 | 8.79                        |                               | Sum Inc. Energy | 7 020 7         | 7.032 X 10:5  | 7,882 x 1012 | 2                        |
| Problem time                            | Computer time = 101 sec |                              |                   | Pressure            | Velocity |      | Density |                     | chergy                      |                               |                 | EXACT           |               | PUFF         |                          |

LAX-WENDROFF

Problem time =  $7 \times 10^{-4}$  sec Computer time = 623 sec

Cycle = 2474
Number of Active Zones =

|          |                 |                            |                 | Number of Active Zones = 200           |
|----------|-----------------|----------------------------|-----------------|----------------------------------------|
|          | Sum Abs. Error  | Sun Sor Fryor              | 1               |                                        |
| Drocon   |                 | 4-1 4101                   | Haximum Error   | Position of Maximum grant              |
| ainecati | 6.12            | 1.30                       | 907             | יייי אייייי אייייי איייייי איייייייייי |
| Velocity | 3 60            |                            | 360.            | 1 t W                                  |
|          | 00.0            | .723                       | 306             | **                                     |
| Dens frv | 00 0            |                            | 000:            | Y. Y.                                  |
|          | 00.0            | 1,21                       | 202             |                                        |
| Energy   | 200             |                            | *00.            | × ×                                    |
| 6        | 5.3/            | .795                       | 316             | The Langrangian posteron               |
|          |                 |                            |                 | 104347772 11 10 CV X X X               |
|          | Sum Int. Footen |                            |                 | 1.28.107                               |
|          | (8, miles 8)    | Sum Kin. Energy            | Sum Tot Fronts: |                                        |
| EXACT    | 7.83203 2 1012  |                            | (8) 1111        |                                        |
|          | 01 x cozco.     | 9.42979 × 10 <sup>11</sup> | 8 77501 × 1012  |                                        |
| LAXKEN   | 210: 42019 7    |                            | OT X TOC//10    |                                        |
|          | 7:01 X /COTO:/  | 9.51231 x 1011             | 0 76190         |                                        |
|          |                 |                            | 7.07 × 0010/.0  |                                        |

























## 7. TEST PROBLEM SCTP-VII

### a. The Exact Solution

In this problem one shock wave overtakes another. This problem is another special case of the Riemann problem. Two shock waves are traveling in the same direction, which is taken to the right. When two shock waves are traveling in the same direction, the one behind will always overtake the one in front. After overtake time, a rarefaction travels back to the left (for  $\gamma \le 5/3$ ) and a stronger shock travels on to the right and there is a middle region in which the velocity and pressure are constants  $v_m$  and  $P_m$ .

Proceeding from left to right, the initial values are  $P_{\ell}$ ,  $v_{\ell}$  connected by a right-facing shock to  $P_{\ell r}$ ,  $\rho_{\ell r}$  which in turn is connected by a right-facing shock to  $P_{r}$ ,  $\rho_{r}$ ,  $v_{r}$ .

After overtake  $v_m = v_r + \phi_r(P_m)$  for the shock traveling to the right and  $v_m = v_\ell - \psi_\ell(P_m)$  for the rarefaction traveling to the left. Recall that

$$\phi_{\mathbf{r}}(\mathbf{P}_{\mathbf{m}}) = (\mathbf{P}_{\mathbf{m}} - \mathbf{P}_{\mathbf{r}}) \frac{2\mathbf{V}_{\mathbf{r}}}{(\gamma - 1) \mathbf{P}_{\mathbf{m}} + (\gamma - 1)\mathbf{P}_{\mathbf{r}}}$$

and

$$\psi_{\ell}\left(P_{m}\right) = \frac{2\sqrt{\gamma}}{\gamma-1} \left(\frac{P_{\ell}}{\rho_{0}^{\gamma}}\right)^{\frac{1}{2\gamma}} \left[P_{m}^{\frac{\gamma-1}{2\gamma}} - P_{\ell}^{\frac{\gamma-1}{2\gamma}}\right]$$

From the above relations  $\boldsymbol{v}_{m}$  and  $\boldsymbol{P}_{m}$  are determined.

In the middle region there will be two values for the density;  $\rho_{\chi m} = V_{\chi m}^{-1}$  to the left of the overtake point and  $\rho_{mr} = V_{mr}^{-1}$  to the right of the overtake point. The Rankine-Hugoniot relation determines  $V_{mr}$  by

$$0 = \frac{1}{Y-1} \left( P_{m} V_{mr} - P_{r} V_{r} \right) + \frac{P_{m} + P_{r}}{2} \left( V_{mr} - V_{r} \right)$$

and  $\rho_{\,\text{lm}}$  is determined from the fact that the entropy does not change through a rarefaction; therefore,

$$\frac{P_{\ell}}{P_{m}} = \left(\frac{\rho_{\ell}}{\rho_{\ell m}}\right)^{\gamma}$$

Let  $v_{SL}$ ,  $X_{SL}$  and  $v_{Sr}$ ,  $X_{Sr}$  be the velocities and positions of the left and right shocks prior to overtake;  $(X_0, t_0)$  be the point where overtake occurs;  $v_S$ ,  $X_S$  be the velocity and position of the shock after overtake;  $X_C$  be the left side of the rarefaction wave;  $X_r$  be the right side of the rarefaction wave and  $X_D$  be the position of the point in the fluid where overtake occurs.

Solution Summary:

Prior to overtake  $(t < t_0)$ 

LEFT REGION   
For 
$$X < X_{S\ell}(t)$$
, the values are  $P_{\ell}$ ,  $v_{\ell}$ ,  $\rho_{\ell}$ 

MIDDLE For  $X_{S\ell}(t) < X < X_{S\ell}(t)$ , the values are  $P_{\ell}$ 

MIDDLE REGION   
For 
$$X_{Sl}(t) < X < X_{Sr}(t)$$
, the values are  $P_{lr}$ ,  $v_{lr}$ ,  $p_{lr}$ 
RIGHT

For X >  $X_{Sr}(t)$ , the values are  $P_r$ ,  $v_r$ ,  $\rho_r$ REGION

After overtake  $(t > t_0)$ 

LEFT  
REGION 
$$\begin{cases}
\text{For } X < X_0 + (v_{\ell}^{-C})(t-t_0) = X_C(t), \text{ the values are } P_{\ell}, v_{\ell}, \rho_{\ell}
\end{cases}$$

For  $X_C(t) < X < X_0 + \left(-c_{\ell} + \frac{\gamma+1}{2} v_m + \frac{\gamma+1}{2} v_{\ell}\right) (t-t_0) = X_R(t)$ , the velocity goes linearly from  $v_{\ell}$  at  $X_{C}(t)$  up to  $v_{m}$  at

$$C = C_{\varrho} - \frac{\gamma - 1}{2} (v_{\varrho} - v)$$

MIDDLE REGION

$$\rho = \rho_{\ell} \left( \frac{c}{c_{\ell}} \right)^{\frac{2}{\gamma - 1}}$$

$$C = C_{\ell} - \frac{\gamma - 1}{2} (v_{\ell} - v)$$

$$\rho = \rho_{\ell} \left(\frac{C}{C_{\ell}}\right)^{\frac{2}{\gamma - 1}}$$

$$P_{\ell} = P_{\ell} \left(\frac{C}{C_{\ell}}\right)^{\frac{2\gamma}{\gamma - 1}}$$

For the region  $X_R(t) < X < X_0 + v_m(t-t_0) = X_D(t)$ , the values are  $P_m$ ,  $\rho_{\ell m}$ , and  $v_m$ . For the region  $X_D(t) < X < X_0 + v_S(t-t_0) = X_S(t)$ , the values are  $P_m$ ,  $\rho_{mr}$ ,  $v_m$ .

RIGHT For  $X > X_S(t)$ , the values sie  $P_r$ ,  $\rho_r$ ,  $v_r$ . REGION

The necessary data for this problem are:

INITIAL VALUES:  $P_{\hat{x}}$ ,  $P_{\hat{x}r}$ ,  $P_{r}$ ,  $\rho_{r}$ ,  $v_{r}$ 

From these values all other initial values are determined.

BOUNDARY VALUES: At X = 0 (the left boundary), hold the values at  $P_{\hat{L}}$ ,  $\rho_{\hat{L}}$ ,  $v_{\hat{L}}$  and at  $X_{\hat{Q}}$  (the right boundary) hold the values at  $P_{r}$ ,  $\rho_{r}$ ,  $v_{r}$ .

Now the specific numerical values are presented for SCTP-VII:

 $\Delta X = 1$  meter

 $X_{S_{\theta}}(0) = 25 \text{ metern}$ 

 $X_{Sr}(0) = 100 \text{ meters}$ 

 $P_r = 10^4 \text{ dynes/cm}^2$ 

 $\rho_{\rm r} = 10^{-6} \, {\rm gm/cm^3}$ 

 $v_r = 0$ 

 $P_{2r} = 10^8 \text{ dynes/cm}^2$ 

 $P_g = 10^{12} \text{ dynes/cm}^2$ 

X<sub>Q</sub> = 200 meters

These values yield

 $C_{*} = 1.97 \times 10^{8} \text{ cm/sec}$ 

v<sub>2</sub> = 3.82 x 10<sup>8</sup> cm/sec

 $\rho_{\rm f} = 3.60 \times 10^{-5} \, {\rm gm/cm}^3$ 

v<sub>S£</sub> = 4.56 x 10<sup>8</sup> cm/sec

 $v_{Sr} = 1.095 \times 10^7 \text{ cm/sec}$ 

 $t_0 = 1.683 \times 10^{-5} \text{ sec}$ 

 $X_0 = 1.018 \times 10^4 \text{ cm}$ 

 $P_{in} = 3.32 \times 10^{11} \text{ dynes/cm}^2$ 

 $v_{ir} = 9.13 \times 10^6 \text{ cm/sec}$ 

 $\rho_{ir} = 5.997 \times 10^{-6} \text{ gm/cm}^3$ 

 $v_{\rm m} = 5.26 \times 10^8 \, {\rm cm/sec}$ 

 $v_S = 6.31 : 10^8 \text{ cm/sec}$   $\rho_{ml} = 1.63 \times 10^{-5} \text{ gm/cm}^3$   $\rho_{mr} = 6.000 \times 10^{-6} \text{ gm/cm}^3$ 

This problem was run to  $3 \times 10^{-5}$  sec.

## b. The PUFF Solution

As in SCTP-VI, the major errors in evidence were the spikes in density and internal energy. Hot-thin spikes resulted from the initial shock discontinuities and a cold-thick spike resulted from the shock overtake. For more details, see Table and Figures VII.

## c. The LAX-WENDROFF Solution

In addition to the spikes observed in the PUFF solution, there is also more oscillation in the LAX-WENDROFF solution. The time factor used was .39, the artificial viscosity factor used was .25, and both factors were multiplied by one-twentieth on the first rime step, two-twentieths on the second, etc., until the twentieth time step and thereafter when they were left at the values of .39 and .25 For more details, see Table and Figures VII.

what we distributed he will be the second distributed with a distributed and the second with the second with the second second with the second second

Table VII

# ERRORS ON SCIP-VII

|                                     |                                         | PUFF                     |                        | 2751 - 2675                     |
|-------------------------------------|-----------------------------------------|--------------------------|------------------------|---------------------------------|
| Problem time = 3 x 10 <sup>-5</sup> | Problem time = 3 x 10 <sup>-5</sup> sec |                          |                        | Number of Active Zones = 200    |
|                                     | S Abo Frror                             | Sum Sqr. Error           | Maximum Error          | Position of Maximum Error       |
|                                     |                                         |                          | 701                    | XS                              |
| Pressure                            | .837                                    | .214                     | +OT: -                 | X                               |
| Wellest tw                          | 1 37                                    | .565                     | + .467                 | Sy                              |
| Velocity                            | 7:37                                    | 107                      | 786 -                  | The fluid point $x = X_{SL}(9)$ |
| Density                             | 1.60                                    | .44.                     |                        | The fluid noint X = X.          |
| Energy                              | 2.64                                    | .908                     | 581                    | חווה דידודה ליכונה              |
| 60                                  |                                         |                          | C. Tot Franco          |                                 |
|                                     | Sum Int. Energy                         | Sum Kin. Energy          | 2000 1000 1000         |                                 |
| #C 425                              | 9.374 × 10 <sup>15</sup>                | 1.489 x 10 <sup>16</sup> | $2.426 \times 10^{16}$ |                                 |
| EXACT                               | 5 0 2 0 0                               | 1 488 × 1016             | $2.425 \times 10^{16}$ |                                 |
| PUFF                                | 9.3/0 × 10                              | 2 w 031.1                |                        |                                 |
|                                     |                                         |                          |                        |                                 |

# LAX-WENDROFF

Problem time =  $3 \times 10^{-5} \text{ sec}$ 

Cycle = 2919 Number of Active Zones = 200

| Computer time = 734 sec | s = 734 sec   |                |               | ייייייי מייייייייייייייייייייייייייייי                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------|---------------|----------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| •                       |               |                |               | TOUR THE PARTY OF |
|                         | Sum Aha Error | Sum Sqr. Error | Maximum Error | Position of maximum filor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                         |               |                |               | Xc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                         | 75. 1         | .380           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Pressure                | FC - T        |                |               | Ϋ́                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                         | 1 //6         | .570           | - ,508        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Velocity                | 04.7          |                |               | The fluid point $x = X_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                         | 7, 23         | 2.20           | + 2.14        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Density                 | 67.4          |                |               | The fluid point $x = X_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                         | 3.22          | .961           | + .664        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                         |               |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

Sum Tot. Energy

Sum Kin. Energy 1.489 x 10<sup>16</sup> 1.481 x 10<sup>16</sup>

Sum Int. Energy 9.374 x 10<sup>15</sup> 9.370 x 10<sup>15</sup>

Energy

LAXWEN

EXACT

 $2.426 \times 10^{16}$  $2.418 \times 10^{16}$  CONTRACTOR OF THE PARTY OF THE PROPERTY OF THE













# SECTION III

## CONCLUSIONS

The most apparent difference between the PUFF and LAX-WENDROFF solutions is the greater tendency of the LAX-WENDROFF scheme to oscillate.

In those flows in which there are no strong shocks of strong rarefactions or vacuums, the LAX-WENDROFF scheme is more accurate than PUFF. However, in those flows in which there are strong shocks or strong rarefactions or vacuums the PUFF scheme is more accurate. The LAX-WENDROFF scheme cannot handle vacuums because of the use of the specific volume instead of the density as a fluid variable. It appears that the LAX-WENDROFF scheme could be improved by using an artificial viscosity of the type used in PUFF. And in general it appears that it might be possible to combine the better features of PUFF and LAX-WENDROFF to produce a superior hydrocode. This will be investigated and discussed in a forthcoming report.

## UNCLASSIFIED

| Securit | y Cl | 255 | ific# | tion |
|---------|------|-----|-------|------|
|         |      | _   | _     |      |

| DOCUMENT CONT                                                                                                                    |                  |                 |                                  |
|----------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------|----------------------------------|
| (Security classification of title, body of abstract and indexing a                                                               |                  |                 |                                  |
| 1 ORIGINATING ACTIVITY (Corporate author)                                                                                        |                  | (               | CURITY CLASSIFICATION            |
| Air Force Weapons Laboratory (WLRT)                                                                                              |                  | Unc             | lassified                        |
| Kirtland Air Force Base, New Mexico 87117                                                                                        |                  | 26. GROUP       |                                  |
| naregular introduce bases, new next to 0/11/                                                                                     |                  |                 |                                  |
| 3 REPORT TITLE                                                                                                                   |                  | <u></u>         |                                  |
| COMPARISON BETWEEN A VON NEUMANN-RICHTMYER<br>LAX-WENDROFF HYDROCODE                                                             | HYDROCODE (      | AFWL'S PUF      | F) AND A                         |
| 4 DESCRIPTIVE NOTES (Type of report and inclusive dates) August 1967 to August 1968                                              |                  |                 |                                  |
| 5 AUTHORISI (First name, middle initial, last name)                                                                              |                  |                 |                                  |
| Mr. Darrell Hicks, Mr. Robert Pelzl                                                                                              |                  |                 |                                  |
| 6 REPORT DATE                                                                                                                    | 78. TOTAL NO. OF | PAGES           | 76, NO OF REFS                   |
| October 1968                                                                                                                     | 162              |                 | i                                |
| SE, CONTRACT OR GRANT NO.                                                                                                        | Se. ORIGINATOR'S | REPORT NUME     | E R(\$)                          |
|                                                                                                                                  |                  |                 |                                  |
| b. PROJECT NO. 5710                                                                                                              | AFWL-TR-6        | 8-112           |                                  |
|                                                                                                                                  |                  |                 |                                  |
| <ul> <li>Subtask 15.018</li> </ul>                                                                                               | 9b. OTHER REPOR  | T NO(S) (Any of | her numbers that may be assigned |
|                                                                                                                                  | inia report)     |                 |                                  |
| d.                                                                                                                               |                  |                 |                                  |
| 10 DISTRIBUTION STATEMENT This document is subj                                                                                  | ect to speci     | al export       | controls and each                |
| transmittal to foreign governments or fore approval of AFWL (WLRT), Kirtland AFB, NMe of the technology discussed in the report. | ign national     | s may be m      | ade only with prior              |
| 11. SUPPLEMENTARY NOTES                                                                                                          | 12. SPONSORING A | ALITARY ACTIV   | VITY                             |
|                                                                                                                                  | AFWL (WLR        | T)              |                                  |
|                                                                                                                                  | Kirtland .       | AFB, NMex       | 87117                            |
| 13. ABSTRACT                                                                                                                     | L                | <del></del>     |                                  |
| (Distribution Limitation Stateme                                                                                                 | nt No. 2)        |                 |                                  |

A comparison between two one-dimensional Lagrangian hydrocodes has been made. The two hydrocodes are a von Neumann-Richtmyer hydrocode (AFWL's PUFF) and a Lax-Wendroff hydrocode (the two-step version with artificial viscosity). The comparison was made by applying the hydrocode test problems as described in HYDROCODE TEST PROBLEMS, AFWL-TR-67-127, February 1968. The most apparent difference between the von Neumann-Richtmyer hydrocode and the Lax-Wendroff is the greater tendency of the Lax-Wendroff scheme to oscillate. In those flows in which there are no strong shocks or strong rarefactions or vacuums, the Lax-Wendroff scheme is more accurate. However, in those flows in which there are strong shocks or strong rarefactions or vacuums the von Neumann-Richtmyer scheme is more accurate. The Lax-Wendroff scheme cannot handle vacuums because of the use of specific volume instead of the density as a fluid variable. It appears that it might be possible to combine the better features of the von Neumann-Richtmyer and the Lax-Wendroff schemes to produce a better hydrocode.

DD FORM .. 1473

UNCLASSIFIED

Security Classification

UNCLASSIFIED
Security Classification

| Security Classification         |      |          |      |     |          |            |
|---------------------------------|------|----------|------|-----|----------|------------|
| 14. KEY WORDS                   | LIN  | <b>Α</b> | LIN  | кв  | LINI     | <u> </u>   |
|                                 | ROLE | WT       | ROLE | wT  | ROLE     | <b>₩</b> T |
|                                 |      |          |      | - 1 | -        |            |
|                                 |      |          | 1    | - 1 | 1        |            |
| Hydrocode                       |      |          | Į    |     | - (      |            |
| Hydrocode testing               |      |          |      |     |          |            |
| Hydrocode comparisen            |      |          |      |     |          |            |
| von Neumann-Richtmyer Hydrocode | '    |          |      |     |          |            |
| Lax-Wendroff Hydrocode          | •    |          |      |     |          |            |
| PUFF Hydrocode                  | }    |          |      |     |          |            |
| iori nydrocode                  | Ì    |          |      |     |          |            |
|                                 | ľ    |          |      |     |          |            |
|                                 |      |          |      |     |          |            |
|                                 | 1    |          |      |     |          |            |
|                                 |      |          |      |     |          |            |
|                                 | l    |          |      |     |          |            |
|                                 | ł    |          |      |     |          |            |
|                                 | ]    |          |      |     |          |            |
|                                 | ]    |          |      |     |          |            |
|                                 | 1    |          |      |     |          | !<br>!     |
|                                 |      |          |      |     |          |            |
|                                 | 1    |          |      |     |          |            |
|                                 | 1    |          |      | ]   |          |            |
|                                 | ]    |          |      |     |          |            |
|                                 |      |          |      |     |          |            |
|                                 | İ    |          |      |     |          |            |
|                                 | ļ    |          |      |     |          |            |
|                                 |      |          |      |     |          |            |
|                                 | 1    |          |      |     |          |            |
|                                 |      |          |      |     |          |            |
|                                 |      |          |      |     |          | ŀ          |
|                                 | ļ    |          |      |     |          |            |
|                                 |      |          | ł    |     |          | i          |
|                                 |      |          |      |     |          |            |
|                                 | ]    | }        |      | ·   |          |            |
|                                 | i    | 1        | Ì    | 1   |          | i          |
|                                 | j    | 1        | Ì    |     |          |            |
|                                 | [    | ł        | Į.   | l   |          |            |
|                                 | 1    | Į.       | l    | l   | ļ        | l          |
|                                 | ĺ    |          |      | İ   | i :      |            |
|                                 |      | }        | Ì    | ł   | Ì        | 1          |
|                                 | 1    | 1        | İ    | 1   | }        |            |
|                                 | 1    | 1        | 1    | i   | <b>\</b> | 1          |
|                                 | ļ    | ł        | l    | 1   |          | l          |
|                                 | 1    | ļ        | l    | l   |          | l          |
|                                 | 1    | 1        | 1    | }   | •        | 1          |
| <u>'</u>                        | 1    | ]        | 1    | Ì   | <b>1</b> | 1          |
|                                 | ì    | Ì        | 1    | ]   | 1        |            |
|                                 | ļ    | <b>.</b> | 1    | l   | ł        |            |
|                                 | 1    |          | 1    | l   | !        | (          |
|                                 | 1    |          | 1    | ļ   | l        | [          |
|                                 |      | 1        | ]    |     | 1        | 1          |
|                                 | }    | ]        | 1    | j   | 1        | 1          |
|                                 | 1    | j        | 1    | Í   | 1        | }          |
|                                 | 1    | 1        | ł    | l   | 1        | i          |
|                                 | [    | 1        | 1    | 1   | 1        |            |
|                                 | 1    |          |      | 1   | 1        |            |
|                                 | 1    |          | 1    | į   |          |            |
|                                 | 1    | 1        |      | ì   |          |            |
|                                 |      |          | }    |     | <b>!</b> | <b>S</b>   |
|                                 | 1    |          | 1    | 1   |          | ĺ          |
|                                 |      |          |      |     |          | L          |

AFSC (KAFS HM)

UNCLASSIFIED

Security Classification