Одномерные Методы Оптимизации. Лабораторная работа №1

Раков Николай, Булкина Милена

1 Постановка задания

Реализовать и протестировать следующие алгоритмы одномерной минимизации функции:

- Метод Дихотомии
- Метод Золотого Сечения
- Метод Фибоначчи
- Метод Парабол
- Комбинированный Метод Брента

2 Исследование функции

Вариант 8. Исходная функция

$$f(x) = -3x\sin(0.75x) + e^{-2x}$$

Найдём производную и приравняем нулю

$$\frac{d}{dx} \left(-3x \sin(0.75x) + e^{-2x} \right) = -2e^{-2x} - 3\sin(0.75x) - 2.25x \cos(0.75x)$$

Найденный минимум при помощи WolframAlpha

$$\min \left\{ -3\,x\,\sin(0.75\,x) + e^{-2\,x} \,\middle|\, 0 \le x \le 2\,\pi \right\} \approx -7.27436 \ \, \text{at} \ \, x \approx 2.70648$$

Рассмотрим график функции

3 Результаты исследований

При $\varepsilon = 0.001$

3.1 Метод Дихотомии

	Левая	Значение	Правая	Значение	Соотношение
Итерация	точка	левой точки	точка	правой точки	длин
0	0.00000	1.00000	6.28319	18.84956	1.00000
1	0.00000	1.00000	3.14184	-6.66174	1.99984
2	1.57067	-4.30994	3.14184	-6.66174	1.99968
3	2.35601	-6.92342	3.14184	-6.66174	1.99936
4	2.35601	-6.92342	2.74917	-7.26875	1.99873
5	2.55234	-7.20375	2.74917	-7.26875	1.99746
6	2.65051	-7.26488	2.74917	-7.26875	1.99493
7	2.69959	-7.27421	2.74917	-7.26875	1.98992
8	2.69959	-7.27421	2.72463	-7.27335	1.98003
9	2.69959	-7.27421	2.71236	-7.27425	1.96085
10	2.70573	-7.27436	2.71236	-7.27425	1.92465
11	2.70573	-7.27436	2.70929	-7.27433	1.85985
12	2.70573	-7.27436	2.70776	-7.27435	1.75416
13	2.70573	-7.27436	2.70699	-7.27436	1.60535
14	2.70611	-7.27436	2.70699	-7.27436	1.43405

3.2 Метод Золотого Сечения

	Левая	Значение	Правая	Значение	Соотношение
Итерация	точка	левой точки	точка	правой точки	длин
0	0.00000	1.00000	6.28319	18.84956	1.00000
1	0.00000	1.00000	3.88322	-2.64609	1.61803
2	1.48326	-3.93900	3.88322	-2.64609	1.61803
3	2.39996	-7.00341	3.88322	-2.64609	1.61803
4	2.39996	-7.00341	3.31667	-6.05265	1.61803
5	2.39996	-7.00341	2.96652	-7.06004	1.61803
6	2.61637	-7.24994	2.96652	-7.06004	1.61803
7	2.61637	-7.24994	2.83277	-7.22470	1.61803
8	2.61637	-7.24994	2.75011	-7.26850	1.61803
9	2.66745	-7.26974	2.75011	-7.26850	1.61803
10	2.66745	-7.26974	2.71854	-7.27391	1.61803
11	2.68697	-7.27320	2.71854	-7.27391	1.61803
12	2.69903	-7.27419	2.71854	-7.27391	1.61803
13	2.69903	-7.27419	2.71109	-7.27429	1.61803
14	2.70363	-7.27433	2.71109	-7.27429	1.61803
15	2.70363	-7.27433	2.70824	-7.27435	1.61803
16	2.70539	-7.27435	2.70824	-7.27435	1.61803
17	2.70539	-7.27435	2.70715	-7.27436	1.61803
18	2.70606	-7.27436	2.70715	-7.27436	1.61803
19	2.70606	-7.27436	2.70674	-7.27436	1.61803

3.3 Метод Фибоначчи

	Левая	Значение	Правая	Значение	Соотношение
Итерация	точка	левой точки	точка	правой точки	длин
0	0.00000	1.00000	6.28319	18.84956	1.00000
1	0.00000	1.00000	3.88322	-2.64609	1.61803
2	1.48326	-3.93900	3.88322	-2.64609	1.61803
3	2.39996	-7.00341	3.88322	-2.64609	1.61803
4	2.39996	-7.00341	3.31667	-6.05265	1.61803
5	2.39996	-7.00341	2.96652	-7.06004	1.61803
6	2.61637	-7.24995	2.96652	-7.06004	1.61804
7	2.61637	-7.24995	2.83277	-7.22470	1.61803
8	2.61637	-7.24995	2.75011	-7.26850	1.61806
9	2.66745	-7.26974	2.75011	-7.26850	1.61798
10	2.66745	-7.26974	2.71853	-7.27391	1.61818
11	2.68696	-7.27320	2.71853	-7.27391	1.61765
12	2.69903	-7.27419	2.71853	-7.27391	1.61905
13	2.69903	-7.27419	2.71110	-7.27429	1.61538
14	2.70367	-7.27433	2.71110	-7.27429	1.62500
15	2.70367	-7.27433	2.70832	-7.27435	1.60000
16	2.70553	-7.27436	2.70832	-7.27435	1.66667
17	2.70553	-7.27436	2.70739	-7.27436	1.50000

3.4 Метод Парабол

	Левая	Правая	Соотношение	Минимум	Значение
Итерация	точка	точка	длин	параболы	минимума
0	0.00000	6.28319	1.00000	0.00000	0.00000
1	0.00000	3.14159	2.00000	2.29642	-6.80021
2	2.29642	3.14159	3.71712	2.64708	-7.26369
3	2.64708	3.14159	1.70910	2.69186	-7.27371
4	2.69186	3.14159	1.09958	2.70440	-7.27434
5	2.70440	3.14159	1.02868	2.70601	-7.27436
6	2.70601	3.14159	1.00369	2.70641	-7.27436
7	2.70641	3.14159	1.00091	2.70646	-7.27436
8	2.70646	3.14159	1.00013	2.70647	-7.27436
9	2.70647	3.14159	1.00003	2.70648	-7.27436
10	2.70648	3.14159	1.00000	2.70648	-7.27436
11	2.70648	3.14159	1.00000	2.70648	-7.27436
12	2.70648	3.14159	1.00000	2.70648	-7.27436
13	2.70648	2.70648	25997625.25108	2.70648	-7.27436

3.5 Комбинированный Метод Брента

	Левая	Правая	Соотношение	Текущий	Значение
Итерация	точка	точка	длин	минимум	минимума
0	0.00000	6.28319	1.00000	0.00000	0.00000
1	0.00000	6.28319	1.00000	3.88322	-2.64609
2	0.00000	3.88322	1.61803	2.39996	-7.00341
3	2.19396	3.88322	2.29877	2.19396	-6.55111
4	2.39996	3.88322	1.13889	2.65823	-7.26731
5	2.65823	3.88322	1.21083	2.73117	-7.27249
6	2.65823	2.73117	16.79257	2.70707	-7.27436
7	2.70436	2.73117	2.72077	2.70436	-7.27434
8	2.70436	2.70978	4.95218	2.70978	-7.27432

4 Сравнение методов

Сравним методы по количеству вычислений минимизируемой функции

		Метод			
	Метод	Золотого	Метод	Метод	Метод
log(ε)	Дихотомии	Сечения	Фибоначчи	Парабол	Брента
3	28	21	19	16	9
4	34	25	24	16	10
5	40	30	29	16	11
6	48	35	34	16	11
7	54	40	38	16	12
8	60	45	43	17	12
9	68	49	48	22	14
10	74	54	53	25	18
11	80	59	58	29	24
12	88	64	62	32	29
13	94	69	67	37	34
14	100	73	72	40	39
15	108	77	77	43	43

Из проведённых экспериментов следует, что на исследумой функции наиболее эффективными методами минимизации являются метод Брен-

та и метод парабол. Метод дихотомии является самым неэффективным, так как не использует предыдущие значения функции. У методов золотого сечения и Фибоначчи количество вычислений функции примерно одинаково.

Рассмотрим более подробно каждый метод

- Метод Дихотомии самый простой в реализации, на каждой итерации интервал неопределённости сокращается примерно в два раза, однако вычисляет исследуемую функцию по два раза за итерацию, что может оказаться критично.
- Метод Золотого Сечения является улучшением метода дихотомии, на каждой итерации достаточно пересчитывать одно значение функции, но теперь интервал неопределенности сокращается в 1.618 раз.
- Метод Фибоначчи является улучшением метода золотого сечения, теперь отрезок сокращается в непостоянное количество раз.
- Метод Парабол аппроксимирует исходную функцию при помощи квадратичной. Высокая скорость сходимости гарантируется только в малой окрестности точки минимума.
- Комбинированный Метод Брента является комбинацией метода парабол и метода золотого сечения.

5 Тестирование алгоритмов для задач минимизации многомодальных функций

5.1 $x\sin(x)$ на [-10, 10]

	Точка Минимума	Количество вычислений минимизируемой функции
Метод Дихотомии	-4.913185	78
Метод Золотого		
Сечения	4.913180	57
Метод Фибоначчи	4.913180	55
Метод Парабол	0	6
Метод Брента	10.000000	25

5.2
$$6x^4 - 15x^3 - 2x^2 + 13x + 10$$
 на $[-2, 2]$

	Точка Минимума	Количество вычислений минимизируемой функции
Метод Дихотомии	-0.512497	72
Метод Золотого		
Сечения	-0.512497	53
Метод Фибоначчи	-0.512497	52
Метод Парабол	-0.512497	83
Метод Брента	1.800475	18

5.3 Вывод

Для каждого из алгоритмов важна унимодальность функции, если же фунция является многомодальной, поиск глобального минимума будет некорректным.

6 Выводы

В ходе лабораторной работы были исследованы пять методов одномерной оптимизации. На унимодальных функциях лучше всего себя проявили метод Брента и метод парабол, метод дихотомии потребовал больше

всего вычислений исходной функции. Эти методы оказались непременимы для минимизации многомодальных функций.