Project 2 highlights

Project 2 highlights

- Jared Duncan
- Nathaniel Glaser
- Anh Thai
- Yuhui Zhao
- Jiaye Liu
- seunghwan lee
- yinglin li

Deep Learning 1 Neural Net Basics

Computer Vision
James Hays

Outline

- Neural Networks
- Convolutional Neural Networks
- Variants
 - Detection
 - Segmentation
 - Siamese Networks
- Visualization of Deep Networks

Supervised Learning

 $\{(\boldsymbol{x}^i, \boldsymbol{y}^i), i=1...P\}$ training dataset i-th input training example i-th target label number of training examples

Goal: predict the target label of unseen inputs.

Supervised Learning: Examples

Classification

Denoising

OCR

structured prediction

Supervised Deep Learning

Classification

Denoising

Outline

- Supervised Neural Networks
- Convolutional Neural Networks
- Examples
- Tips

Neural Networks

Assumptions (for the next few slides):

- The input image is vectorized (disregard the spatial layout of pixels)
- The target label is discrete (classification)

Question: what class of functions shall we consider to map the input into the output?

Answer: composition of simpler functions.

Follow-up questions: Why not a linear combination? What are the "simpler" functions? What is the interpretation?

Answer: later...

Neural Networks: example

- input
- h^1 1-st layer hidden units
- h^2 2-nd layer hidden units
- output

Example of a 2 hidden layer neural network (or 4 layer network, counting also input and output).

Def.: Forward propagation is the process of computing the output of the network given its input.

$$\boldsymbol{x} \in R^D \quad W^1 \in R^{N_1 \times D} \quad \boldsymbol{b}^1 \in R^{N_1} \quad \boldsymbol{h}^1 \in R^{N_1}$$

$$\boldsymbol{h}^1 = max(0, W^1 \boldsymbol{x} + \boldsymbol{b}^1)$$

 W^1 1-st layer weight matrix or weights

 b^1 1-st layer biases

The non-linearity u = max(0, v) is called **ReLU** in the DL literature. Each output hidden unit takes as input all the units at the previous layer: each such layer is called "**fully connected**".

Ranzato

$$h^1 \in R^{N_1} \quad W^2 \in R^{N_2 \times N_1} \quad b^2 \in R^{N_2} \quad h^2 \in R^{N_2}$$

$$\boldsymbol{h^2} = max(0, W^2 \boldsymbol{h^1} + \boldsymbol{b^2})$$

 W^2 2-nd layer weight matrix or weights h^2 2-nd layer biases

$$h^2 \in R^{N_2} \ W^3 \in R^{N_3 \times N_2} \ b^3 \in R^{N_3} \ o \in R^{N_3}$$

$$\boldsymbol{o} = max(0, W^3 \boldsymbol{h}^2 + \boldsymbol{b}^3)$$

 W^3 3-rd layer weight matrix or weights b^3 3-rd layer biases

Alternative Graphical Representation

Question: Why can't the mapping between layers be linear?

Answer: Because composition of linear functions is a linear function.

Neural network would reduce to (1 layer) logistic regression.

Question: What do ReLU layers accomplish?

Answer: Piece-wise linear tiling: mapping is locally linear.

Question: Why do we need many layers?

Answer: When input has hierarchical structure, the use of a hierarchical architecture is potentially more efficient because intermediate computations can be re-used. DL architectures are efficient also because they use **distributed representations** which are shared across classes.

[0 0 1 0 0 0 0 1 0 0 1 1 0 0 1 0 ...] truck feature

Exponentially more efficient than a 1-of-N representation (a la k-means)

prediction of class high-level parts

mid-level parts

low level parts

Input image

- distributed representations
- feature sharing
- compositionality

Question: What does a hidden unit do?

Answer: It can be thought of as a classifier or feature detector.

Question: How many layers? How many hidden units?

Answer: Cross-validation or hyper-parameter search methods are the answer. In general, the wider and the deeper the network the more complicated the mapping.

Question: How do I set the weight matrices?

Answer: Weight matrices and biases are learned.

First, we need to define a measure of quality of the current mapping.

Then, we need to define a procedure to adjust the parameters.

How Good is a Network?

Probability of class k given input (softmax):

$$p(c_k=1|\mathbf{x}) = \frac{e^{o_k}}{\sum_{i=1}^{C} e^{o_i}}$$

(Per-sample) **Loss**; e.g., negative log-likelihood (good for classification of small number of classes):

$$L(\boldsymbol{x}, y; \boldsymbol{\theta}) = -\sum_{i} y_{i} \log p(c_{i}|\boldsymbol{x})$$

Training

Learning consists of minimizing the loss (plus some regularization term) w.r.t. parameters over the whole training set.

$$\boldsymbol{\theta}^* = arg min_{\boldsymbol{\theta}} \sum_{n=1}^{P} L(\boldsymbol{x}^n, y^n; \boldsymbol{\theta})$$

Question: How to minimize a complicated function of the parameters?

Answer: Chain rule, a.k.a. **Backpropagation!** That is the procedure to compute gradients of the loss w.r.t. parameters in a multi-layer neural network.

Key Idea: Wiggle To Decrease Loss

Let's say we want to decrease the loss by adjusting $W_{i,j}^1$. We could consider a very small $\epsilon = 1\text{e-}6$ and compute:

$$L(\boldsymbol{x}, y; \boldsymbol{\theta})$$

$$L(\boldsymbol{x}, y; \boldsymbol{\theta} \setminus W_{i,j}^1, W_{i,j}^1 + \epsilon)$$

Then, update:

$$W_{i,j}^{1} \leftarrow W_{i,j}^{1} + \epsilon \, sgn(L(\boldsymbol{x}, \boldsymbol{y}; \boldsymbol{\theta}) - L(\boldsymbol{x}, \boldsymbol{y}; \boldsymbol{\theta} \setminus W_{i,j}^{1}, W_{i,j}^{1} + \epsilon))$$
Ranzato

Derivative w.r.t. Input of Softmax

$$p(c_k=1|\mathbf{x}) = \frac{e^{o_k}}{\sum_{j} e^{o_j}}$$

$$L(\mathbf{x}, y; \boldsymbol{\theta}) = -\sum_{j} y_{j} \log p(c_{j}|\mathbf{x})$$
 $\mathbf{y} = [0.010.010.0]$

By substituting the fist formula in the second, and taking the derivative w.r.t. o we get:

$$\frac{\partial L}{\partial \rho} = p(c|\mathbf{x}) - \mathbf{y}$$

Given $\partial L/\partial o$ and assuming we can easily compute the Jacobian of each module, we have:

$$\frac{\partial L}{\partial W^3} = \frac{\partial L}{\partial \boldsymbol{o}} \frac{\partial \boldsymbol{o}}{\partial W^3}$$

$$\frac{\partial L}{\partial \boldsymbol{h}^2} = \frac{\partial L}{\partial \boldsymbol{o}} \frac{\partial \boldsymbol{o}}{\partial \boldsymbol{h}^2}$$

Given $\partial L/\partial \mathbf{o}$ and assuming we can easily compute the Jacobian of each module, we have:

$$\frac{\partial L}{\partial W^{3}} = \frac{\partial L}{\partial \boldsymbol{o}} \frac{\partial \boldsymbol{o}}{\partial W^{3}} \qquad \frac{\partial L}{\partial \boldsymbol{h}^{2}} = \frac{\partial L}{\partial \boldsymbol{o}} \frac{\partial \boldsymbol{o}}{\partial \boldsymbol{h}^{2}}$$

$$\frac{\partial L}{\partial W^{3}} = (p(c|\boldsymbol{x}) - \boldsymbol{y}) \boldsymbol{h}^{2T} \qquad \frac{\partial L}{\partial \boldsymbol{h}^{2}} = W^{3T} (p(c|\boldsymbol{x}) - \boldsymbol{y})_{23}$$

Given $\frac{\partial L}{\partial L^2}$ we can compute now:

$$\frac{\partial L}{\partial W^2} = \frac{\partial L}{\partial \boldsymbol{h}^2} \frac{\partial \boldsymbol{h}^2}{\partial W^2} \qquad \frac{\partial L}{\partial \boldsymbol{h}^1} = \frac{\partial L}{\partial \boldsymbol{h}^2} \frac{\partial \boldsymbol{h}^2}{\partial \boldsymbol{h}^1}$$

Given $\frac{\partial L}{\partial \mathbf{h}^1}$ we can compute now:

$$\frac{\partial L}{\partial W^1} = \frac{\partial L}{\partial \boldsymbol{h}^1} \frac{\partial \boldsymbol{h}^1}{\partial W^1}$$

Question: Does BPROP work with ReLU layers only?

Answer: Nope, any a.e. differentiable transformation works.

Question: What's the computational cost of BPROP?

Answer: About twice FPROP (need to compute gradients w.r.t. input and parameters at every layer).

Note: FPROP and BPROP are dual of each other. E.g.,:

Optimization

Stochastic Gradient Descent (on mini-batches):

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \eta \frac{\partial L}{\partial \boldsymbol{\theta}}, \eta \in (0, 1)$$

Stochastic Gradient Descent with Momentum:

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \eta \boldsymbol{\Delta}$$

$$\Delta \leftarrow 0.9 \Delta + \frac{\partial L}{\partial \theta}$$

Note: there are many other variants...

Outline

- Supervised Neural Networks
- Convolutional Neural Networks
- Examples
- Tips