Text Retrieval and Search Engines

Vector Space Retrieval Model: Simplest Instantiation

ChengXiang "Cheng" Zhai
Department of Computer Science
University of Illinois at Urbana-Champaign

Course Schedule

What VSM Doesn't Say

Dimension Instantiation: Bag of Words (BOW)

Vector Placement: Bit Vector

Similarity Instantiation: Dot Product

$$Sim(q,d)=q.d=x_1y_1+...+x_Ny_N=\sum_{i=1}^N x_i y_i$$

Simplest VSM= Bit-Vector + Dot-Product + BOW

$$\mathbf{q} = (x_1, \dots x_N) \qquad x_i, y_i \in \{0, 1\}$$

$$\mathbf{d} = (y_1, \dots y_N) \qquad \mathbf{1}: \text{ word } W_i \text{ is present}$$

$$\mathbf{0}: \text{ word } W_i \text{ is absent}$$

$$Sim(q,d)=q.d=x_1y_1+...+x_Ny_N=\sum_{i=1}^N x_iy_i$$

What does this ranking function intuitively capture? Is this a good ranking function?

An Example: How Would You Rank These Documents?

Ideal Ranking? Query = "news about presidential campaign" d1... news about ... d2 ... **news about** organic food **campaign**... d3 ... news of presidential campaign news of presidential campaign ... d4... **presidential** candidate **news** of organic food **campaign**... d5 campaign...campaign...campaign...

Ranking Using the Simplest VSM

Query = "news about presidential campaign"

```
d1 ... news about ...
```

d3 ... news of presidential campaign ...

Is the Simplest VSM Effective?

Query = "news about presidential campaign"

d1	news about	f(q,d1)=2
d2	news about organic food campaign	f(q,d2)=3
d3	news of presidential campaign	f(q,d3)=3
d4	news of presidential campaign presidential candidate	f(q,d4)=3
d5	news of organic food campaign campaigncampaign	f(q,d5)=2

Summary

VSM instantiation: dimension, vector placement, similarity

- Simplest VSM
 - Dimension = word
 - Vector = 0-1 bit vector (word presence/absence)
 - Similarity = dot product
 - f(q,d) = number of**distinct**query words matched in d