YOLO v3 改进

• backbone 由YOLO v2的Darknet-19进化至Darknet-53,加深了网络层数,并采用了差残网络。

,	Туре	Filters	Size	Output
	Convolutional	32	3×3	256×256
	Convolutional	64	$3 \times 3 / 2$	128 × 128
	Convolutional	32	1 × 1	
1×	Convolutional	64	3×3	
	Residual			128 × 128
	Convolutional	128	$3 \times 3 / 2$	64 × 64
	Convolutional	64	1 × 1	
2×	Convolutional	128	3×3	
	Residual			64 × 64
	Convolutional	256	$3 \times 3 / 2$	32×32
	Convolutional	128	1 × 1	
8×	Convolutional	256	3×3	
	Residual			32×32
	Convolutional	512	$3 \times 3 / 2$	16 × 16
	Convolutional	256	1 × 1	
8×	Convolutional	512	3×3	
	Residual			16 × 16
	Convolutional	1024	$3 \times 3 / 2$	8 × 8
	Convolutional	512	1×1	
4×	Convolutional	1024	3×3	
	Residual			8 × 8
	Avgpool		Global	
	Connected		1000	
	Softmax			知乎 @Algernon

- 只有卷积层,通过调节卷积步长控制输出特征图尺寸
- YOLO v3 继续保留v2的每个anchor box独享一个类别置信度。特征图输出尺寸为 $N \times N \times (3 \times (4+1+80)), \ N \times N$ 为输出特征图分辨率,每个cell三个anchor boxes,外加

- Yolov3总共输出3个特征图,第一个特征图下采样32倍,第二个特征图下采样16倍,第三个下采样8倍。输入图像经过Darknet-53(无全连接层),再经过Yoloblock生成的特征图被当作两用,第一用为经过33卷积层、11卷积之后生成特征图一,第二用为经过1*1卷积层加上采样层,与Darnet-53网络的中间层输出结果进行拼接,产生特征图二。同样的循环之后产生特征图三。
- concat操作与加和操作的区别:加和操作来源于ResNet思想,将输入的特征图,与输出特征图对应维度进行相加,即y=f(x)+x;而concat操作源于DenseNet网络的设计思路,将特征图按照通道维度直接进行拼接,例如 $8\times8\times16$ 的特征图与 $8\times8\times16$ 的特征图拼接后生成 $8\times8\times32$ 的特征图。

reference

论文解读】Yolo三部曲解读——Yolov3

https://zhuanlan.zhihu.com/p/76802514