有穷状态自动机

有穷自动机(Finite Automaton,FA)可以分为确定型的有穷自动机(DFA)和非确定型的有穷自动机(NFA)两种

确定的有穷自动机

有穷自动机抽象装置

- 一个输入带、一个读头、一个有穷控制器
- 控制器根据读入的字符和当前状态,进行状态转移,然后读头进行下一个字符的读取

形式化定义

 $DFA\ A = (Q, \Sigma, \delta, q_0, F)$

- Q: 有穷状态集
- Σ: 有穷输入符号集
- δ : $Q \times \Sigma \to Q$, 状态转移函数
- q₀ ∈ Q: 初始状态
 F ⊆ Q: 终结状态集

状态转移的表示

状态转移图

- 每个状态q对应一个节点,用圆圈表示
- 状态转移 $\delta(q,a)=p$ 为一条从q到p且标记为输入字符a的有向边
- 开始状态 q_0 用一个标有start的箭头表示
- 接受状态的节点,用**双圆圈**表示

状态转移表

	0	1
$\rightarrow q_0$	q_1	q_0
q_1	q_1	q_2
*q ₂	q_2	q_2

- 每个状态q对应一行,每个输入字符对应一列
- 若有 $\delta(q,a)=p$, 用第q行第a列中填入的p表示
- **开始状态**q0前,标记箭头用 \rightarrow 表示
- 接受状态 $q \in F$ 前,标记星号*表示

扩展状态转移函数

使用递归定义,是状态转移函数的扩展,接受的范围从字符扩大到了字符串

$$\hat{\delta}(q,w) = \left\{egin{array}{ll} q, & w = arepsilon \ \delta(\hat{\delta}(q,x),a), & w = xa \end{array}
ight.$$

其中, a是字符, w和x是字符串

它的操作过程是,对于每个字符串w,将其分解成xa,对于当前的状态,先将x作为输入进行处理,最后再处理a,重复上述的过程,可以将字符串分解,最内层是 ε ,第二层是字符串的第一个字符,……,最外层是最后一个字符,计算的时候从内到外计算即可

对于字符串 $w = a_0 a_1 a_2 \dots a_n$, 我们有:

$$egin{aligned} \hat{\delta}(q,w) = & \delta(\hat{\delta}(q,a_0a_1\dots a_{n-1}),a_n) \ = \dots \ & = & \delta(\delta(\dots\delta(\hat{\delta}(q,arepsilon),a_0)\dots),a_{n-1}),a_n) \end{aligned}$$

DFA的语言

定义DFA $D=(Q,\Sigma,\delta,q_0,F)$,则D识别的语言是

$$L(D) = \{w \in \Sigma^* | \hat{\delta}(q_0, w) \in F\}$$

首先 Σ^* 代表 Σ 上的所有句子, $\hat{\delta}(q_0,w)\in F$ 的意思是,对于字符串w,可以通过状态转移最终进入结束状态

• 如果语言L是某个DFAD识别的语言,则称其为**正则语言**

特殊的DFA

 \emptyset 和 $\{\varepsilon\}$ 都是正则语言

识别 Ø的DFA

• 不设置接受状态即可

Ø的DFA: 无接受状态,即该DFA 不接受任何符号串(包括空串)。

识别 $\{arepsilon\}$ 的DFA

• 一开始就是接受状态,接受了字符则不再是接受状态

非确定有穷自动机

形式化定义

 $NFA\ A=(Q,\Sigma,\delta,q_0,F)$

- Q:有穷状态集
- Σ: 有穷输入符号集
- $\delta\colon Q imes \Sigma o 2^Q$,状态转移函数
- $q_0 \in Q$: 初始状态 • $F \subseteq Q$: 终结状态集

状态转移的表示

• 例:接受全部以01结尾的串的NFA

状态转移图

状态转移表

$$\begin{array}{c|cccc} & 0 & 1 \\ \hline \to q_0 & \{q_0, q_1\} & \{q_0\} \\ q_1 & \emptyset & \{q_2\} \\ *q_2 & \emptyset & \emptyset \\ \end{array}$$

扩展状态转移函数

与DFA类似,扩展 δ 到字符串,定义状态扩展转移函数 $\hat{\delta}:Q imes\Sigma^* o 2^Q$ 为

$$\hat{\delta}(q,w) = \left\{egin{array}{ll} \{q\}, & w = arepsilon \ igcup_{p \in \hat{\delta}(q,x)} \delta(p,a), & w = xa \end{array}
ight.$$

如果输入字符为abc, 初始状态是q0, 经过a可以到达q1,q2, 那么我们有:

$$\hat{\delta}(q_0,arepsilon) = \{q_0\} \ \hat{\delta}(q_0,a) = igcup_{p \in \hat{\delta}(q_0,arepsilon)} \delta(p,a) = \{q1,q2\}$$

然后依次递推即可

DFA与NFA对比

虽然有种种区别,但是DFA和NFA表示语言的能力是等价的

区别	DFA	NFA
状态转移	状态的转移是确定的 一次状态转移只会转移到一个确定的状态	状态的转移是非确定的 一次状态转移可能转移到多个状态,产生 多条转移路径
符号处理	对于每一个状态,都需要明确定义对于各个 可能的输入符号的状态转移	不需要明确地定义所有的状态转移 (未定义会进入dead state)
设 计 难 度	有时设计较复杂	通常比DFA更为容易设计
接受状态	最后所处的状态在接受状态集F中时才接受符号串	最后所处的状态集中有某个状态在接受状态集F中时,才接受符号串

NFA的语言

定义NFA $N=(Q,\Sigma,\delta,q_0,F)$,则N识别的语言是

$$L(D) = \{w \in \Sigma^* | \hat{\delta}(q_0,w) \cap F
eq \varnothing \}$$

NFA与DFA的等价性

• 定理:如果语言L能被NFA接受,当且仅当L被DFA接受

构造方法: 子集构造法

子集构造法解决的是 $NFA \Rightarrow DFA$ 的问题

来源: NFA $N = (Q_N, \Sigma, \delta_N, q_0, F_N)$

目标: DFA $D = (Q_D, \Sigma, \delta_D, q_0, F_D)$

• 构造方法

$$Q_D=2^{Q_N}$$

$$egin{aligned} F_D &= \{S | S \subset Q_N, S \cap F_N
eq arnothing \} \ \ orall S \subset Q_N, orall a \in \Sigma, \delta_D(S,a) = igcup_{n \in S} \delta_N(p,a) \end{aligned}$$

上述构造方法的解释为:

DFA的状态集是NFA状态集的幂集

DFA的接受状态集是NFA状态集的子集,其与 F_N 交集不为空

假设DFA的某个状态是 $\{q_1,q_2,q_3\}$,输入符号a,那么 $\delta_D(\{q_1,q_2,q_3\},a)$ 是 $\delta_N(q_i,a)$ 的并集(i=1,2,3)

• 在构造出来的DFA中, $\{q_1,q_2,q_3\}$ 表示的是一个**状态**,而不是一个**集合**

实际操作的注意点

每次只需要考虑新的状态集即可,不需要把所有的状态都列出,否则当NFA状态多的时候,DFA的状态 将指数级增长

带空转移的非确定有穷自动机

$\varepsilon-NFA$ 的定义

- 简化NFA的构造
- 明确地定义了至少一个空转移
- 状态表中多了ε的一列
- 与NFA的定义只差了 $\delta\colon \delta\colon Q imes (\Sigma\cuparepsilon) o 2^Q$,这正好对应了上一条

除非特别申明,不再明确区分arepsilon - NFA和NFA,而是都称为NFA

• 示例:接受倒数三个字符至少有一个是1的NFA和 $\varepsilon-NFA$ 的状态转移图表:

上面的NFA的构造思路是,每接受一个字符, q_0 根据当前字符的类型进入到两个状态:

- \circ 这个字符不是倒数三个字符,返回 q_0 进行继续处理
- 。 这个字符是倒数的字符, 进入到处理对应情况的状态中

状态的 ε -闭包

闭包的函数是ECLOSE()

状态闭包的递归定义

- $q \in ECLOSE(q)$, 即包含该状态本身
- $\forall p \in ECLOSE(q), \ \exists r \in \delta(p, \varepsilon), \ \ yr \in ECLOSE(q)$

可以理解为,以一个点为起点的所有空转移路径所经过点组成的集合

状态集闭包的定义

• $ECLOSE(S) = \bigcup_{q \in S} ECLOSE(q)$

即一个状态集S的 ε -闭包为S里面每个状态的 ε -闭包的并集

闭包示例

	0	1	ε	Eclose(⊔)
$\rightarrow q_0$	$\{q_0\}$	$\{q_0,q_1\}$	Ø	$\{q_0\}$
	$\{q_2\}$	$\{q_2\}$	$\{q_2\}$	$\{q_1,q_2,q_3\}$
q_2	$\{q_3\}$	$\{q_3\}$	$\{q_3\}$	$\{q_2,q_3\}$
$*q_3$	Ø	Ø	Ø	$\{q_3\}$

扩展转移函数

与NFA类似,扩展 δ 到字符串,定义状态扩展转移函数 $\hat{\delta}:Q imes\Sigma^* o 2^Q$ 为

$$\hat{\delta}(q,w) = \left\{egin{array}{ll} ECLOSE(q), & w = arepsilon \ ECLOSE(igcup_{p \in \hat{\delta}(q,x)} \delta(p,a)), & w = xa \end{array}
ight.$$

其和NFA的没有什么区别,只是在NFA的状态转移函数每一步求解之后进行了一次闭包运算

接受的语言

定义 $\varepsilon-NFA$ $E=(Q,\Sigma,\delta,q_0,F)$,则E识别的语言是

$$L(E) = \{w \in \Sigma^* | \hat{\delta}(q_0, w) \cap F
eq \varnothing \}$$

和NFA定义一模一样

$\varepsilon-NFA$ 和DFA的等价性

• 如果语言L被 $\varepsilon - NFA$ 接受,当且仅当L被DFA接受

子集构造法

这次的子集构造法解决的是 $\varepsilon-NFA\Rightarrow DFA$ 的问题

来源: $\varepsilon - NFA$ $E = (Q_E, \Sigma, \delta_E, q_E, F_E)$

目标: DFA $D = (Q_D, \Sigma, \delta_D, q_0, F_D)$

• 构造方法

$$Q_D=2^{Q_E}$$

$$q_D = ECLOSE(q_E)$$

$$F_D = \{S | S \subseteq Q_E, S \cap F_E
eq \varnothing \}$$

$$orall S \subset Q_E, orall a \in \Sigma, \delta_D(S,a) =$$

$$ECLOSE(igcup_{p \in S} \delta_E(p,a))$$

和NFA到DFA的子集构造法不同的是:

- 初始状态是一个空闭包
- 对DFA某个状态集中的所有状态,找出他们通过字符a可达的状态组成的集合后,要对这个集合使用**空闭包**

改进的子集构造法

每次只需要考虑新的状态集即可,不需要把所有的状态都列出

子集构造法示例

$$\operatorname{start} \xrightarrow{Q_0} \xrightarrow{1} \underbrace{q_1} \xrightarrow{0,1,\varepsilon} \underbrace{q_2} \xrightarrow{0,1,\varepsilon} \underbrace{q_3}$$

	0	1	ε	ECLOSE()
$ ightarrow q_0$	$\{q_0\}$	$\{q_0,q_1\}$	Ø	$\{q_0\}$
q_1	$\{q_2\}$	$\{q_2\}$	$\{q_2\}$	$\{q_1,q_2,q_3\}$
q_2	$\{q_3\}$	$\{q_3\}$	$\{q_3\}$	$\{q_2, q_3\}$
* q ₃	Ø	Ø	Ø	$\{q_3\}$

	0	1
$ ightarrow q_0$	$\{q_0\}$	$\{q_0,q_1,q_2,q_3\}$
q_1	$\{q_2,q_3\}$	$\{q_2\}$
q_2	$\{q_3\}$	$\{q_3\}$
* q3	Ø	Ø
$\{q_0, q_1\}$	$\{q_0, q_2, q_3\}$	$\{q_0, q_1, q_2, q_3\}$
$\{q_0, q_2\}$	$\{q_{0},q_{3}\}$	$\{q_0, q_1, q_2, q_3\}$
* $\{q_0, q_3\}$	$\{q_0\}$	$\{q_0,q_1,q_2,q_3\}$
$\{q_{1},q_{2}\}$	$\{q_2,q_3\}$	$\{q_2,q_3\}$

	0	1
$*{q_1, q_3}$	$\{q_2,q_3\}$	$\{q_2, q_3\}$
$*{q_2, q_3}$	$\{q_3\}$	$\{q_3\}$
$\{q_0,q_1,q_2\}$	$\{q_0, q_2, q_3\}$	$\{q_0, q_1, q_2, q_3\}$
$*\{q_0,q_1,q_3\}$	$\{q_0,q_2,q_3\}$	$\{q_0, q_1, q_2, q_3\}$
$*\{q_0, q_2, q_3\}$	$\{q_0,q_3\}$	$\{q_0,q_1,q_2,q_3\}$
$*\{q_1, q_2, q_3\}$	$\{q_2,q_3\}$	$\{q_2,q_3\}$
$*\{q_0, q_1, q_2, q_3\}$	$\{q_0, q_2, q_3\}$	$\{q_0,q_1,q_2,q_3\}$
_Ø	Ø	Ø

无论是先计算可达状态的闭包,还是求出可达状态的集合然后取闭包,结果是一样的