# 실습 2: 확률과 베이즈 정리

#### https://github.com/wcjang/hhi

→ Day 1 -> 실습자료

2024chapter2\_1.ipynb,

실습2\_1.PDF 파일 다운로드 loans\_income.csv 다운로드 Sp500\_data.csv.gz 다운로드.

## 랜덤이란?

- 동전 던지기 실험을 통해서 랜덤에 대해서 알아보자.
- 3명이 하나의 조를 만들어서 다음 실험을 진행한다.
- 한명은 동전을 100번 던진다. 이때 다른 한명은 앞면 (이순신이 나온 면)이 나오면 0, 뒷면이 나오면 1이라고 표기하고 결과를 10개의 줄로 정리하여라. 각줄에는 10개의 0과 1로 이루어진다.
- 마지막 한명은 동전던지기를 결과를 마음속으로 상상하여 100개의 0과 1을 생성한 후 같은방식으로 결과를 정리한다.
- 종이 뒷면에 작게 어느 것이 랜덤이고 어느것이 마음속으로 생각한것인지 자그맣게 적고,
- 옆 조와 결과지 를 교환하여, 무엇이 랜덤인지 맞추어보자.

# 랜덤이란?

• 둘 중 어느 것이 진짜 랜덤인지 맞추어 보자.

## 동전던지기 패턴 맞추기

- 왼쪽 그림은 100번의 동전 던지기를
   2000번 반복한 결과를 정리한 것이다.
- 앞면과 뒷면이 서로 전환되는 횟수가 50-60 정도 일어나는 경우가 제일 많고 또 같은 결과가 연달아 나오는 것도 최대 6-7회 정도 되는 경우가 빈번하다는 것을 알 수 있다.
- 100번 던질 경우 앞면이 연달아 6번 나올 경우 는 목격할 경우는 얼마나 될까?



## 죄수의 딜레마

- 3명의 사형수 A, B, C가 독방에 갇혀있다. 대통령이 이 중 한명을 임의로 선정해서 특별사면하기로 결정했다. 간수는 누가 사면이 될지 알고 있지만 누군인지 누설하면 안된다. A가 간수에게 B와 C중 누가 사형이 되는지 알려달라고 사정했다.
- A는 간수에게 "B가 사면대상자이면 C의 이름을 얘기하고 C가 사면대상자이면 B의 이름을 얘기하고 만약 내가 사면대상자라면 동전을 던져서 앞면이 나오면 B, 뒷면이 나오면 C라고 얘기해달라"라고 애원한다. 간수가 A에게 B가 처형될 것이라고 얘기해주었다.

## 죄수의 딜레마

- A는 이 사실은 안 후 본인이 사면될 확률이 1/3에서 1/2로 증가하였다고 믿는다. 사실인가?
- A는 이 사실을 우연히 만난 C에게 알려준다. 이 사실을 안 후 C가 사면될 확률은 얼마인가?

# Monty Hall과 죄수의 딜레마

- Monty Hall와 죄수의 딜레마의 유사점에 대해 생각해보자.
  - 자동차 = 사면
  - 염소 = 처형
  - 몬티 홀 = 간수
  - 염소가 뒤에 있다고 알려준 문 = 처형대상자의 이름
  - 처음 선택한 문 = 죄수 A
  - 문을 바꾸는 경우 = 죄수 C에게 정보를 알려준 경우

## 죄수의 딜레마

- A는 이 사실은 안 후 본인이 사면될 확률이 1/3에서 1/2로 증가하였다고 믿는다. 사실인가?
- 간수가 B가 처형대상자라고 얘기할 수 있는 경우는 (1) C가 사면대상자이거나 (2) A가 사면 대상자이지만 동전을 던져서 앞면이 나온 경우이다. 따라서

Pr(A가 사면될 사건 간수가 B가 처형대상자라고 얘기한 사건) 
$$= \frac{\frac{1}{3} \times \frac{1}{2}}{\frac{1}{3} + \frac{1}{3} \cdot \frac{1}{2}} = \frac{1}{3}$$

■ A는 이 사실을 우연히 만난 C에게 알려준다. 이 사실을 안 후 C가 사면될 확률은 얼마인가?

**Pr(C**가 사면될 사건 간수가 B가 처형대상자라고 A에게 얘기한 사건) = 
$$\frac{\frac{1}{3}}{\frac{1}{3} + \frac{1}{3} \cdot \frac{1}{2}} = \frac{2}{3}$$

● 베이즈 정리:

$$\Pr(A_k \mid B) = \frac{\Pr(B \mid A_k) \cdot \Pr(A_k)}{\sum_{i=1}^{n} \Pr(B \mid A_i) \cdot \Pr(A_i)}$$

Pr(A가 사면될 사건 | 간수가 B가 처형대상자라고 얘기한 사건) =

P(A가 사면대상자이고, 간수가 B가 처형대상자라고 얘기한 사건) % { P(간수가 B가 처형대상자라고 얘기한 사건 | A가 사면될 사건) X P(A가 사면될 사건)+ P(간수가 B가 처형대상자라고 얘기한 사건 | B가 사면될 사건) X P(B가 사면될 사건)+ P(간수가 B가 처형대상자라고 얘기한 사건 | C가 사면될 사건) X P(C가 사면될 사건) }

$$= \frac{\frac{1}{3} \times \frac{1}{2}}{\frac{1}{3} + \frac{1}{3} \cdot \frac{1}{2}} = \frac{1}{3}$$

Pr(C가 사면될 사건 | 간수가 B가 처형대상자라고 얘기한 사건) =

P(C가 사면대상자이고, 간수가 B가 처형대상자라고 얘기한 사건) %
{ P(간수가 B가 처형대상자라고 얘기한 사건 | A가 사면될 사건) X P(A가 사면될 사건)+
 P(간수가 B가 처형대상자라고 얘기한 사건 | B가 사면될 사건) X P(B가 사면될 사건)+
 P(간수가 B가 처형대상자라고 얘기한 사건 | C가 사면될 사건) X P(C가 사면될 사건) }

$$= \frac{\frac{1}{3}}{\frac{1}{3} + \frac{1}{3} \cdot \frac{1}{2}} = \frac{2}{3}$$

#### SIR model

- SIR model은 ordinary differential equation model로서 역학 (epidemiology)에서 질병 전파를 설명하는 가장 보편적인 모형이다.
- SIR은 질병 전파 3단계인 susceptible, infected, recovered의 앞글자를 따온 것이다.



https://en.wikipedia.org/wiki/Compartmental models in epidemiology

#### SIR model

- 신<del>종플</del>루 유행시<del>즌중</del> 60%의 인구가 susceptible, 10%는 infected, 30%는 recovered라고 가정하자.
- 신종플루 검사의 정확성은 다음과 같다.
- susceptible: 95% (음성 판정비율)
- infected: 99% (양성판정 비율)
- recovered: 65% (음성 판정비율)
- 만약 검사결과가 양성일 경우 실제로 신종플루에 감염되었을 확률을 구하여 보아라.

#### 연습문제: SIR model



$$Pr(\inf | +) = \frac{Pr(\inf \cap +)}{Pr(+)} = \frac{0.099}{0.03 + 0.099 + 0.105} \approx 0.423$$