$\rm BECA$ / Dr. Huson / Geometry 03 Parallels and transversals

3.9 Exit Note Quiz: External angle theorem

- 1. Do Not Solve. Circle the appropriate equation, cite a justification:
 - "vertical \angle s are \cong "
 - "definition of bisector"
 - \bullet "linear pairs sum to 180° "
 - "triangle external angle theorem"
- "corresponding \angle s of \parallel lines are \cong "
- "alternate interior \angle s are \cong "
- "same-side interior ∠s are supplementary"

(a) Given two parallel lines intersect a transversal, as shown.

$$\angle 2 \cong \angle 6$$
 $m\angle 2 + m\angle 6 = 180$

(b) Given $\overrightarrow{BA} \perp \overrightarrow{BC}$, with \overrightarrow{BD} bisecting $\angle ABC$.

$$\angle ABD \cong \angle DBC \qquad m \angle ABD + m \angle DBC = 180$$

(c) \overrightarrow{RPU} with ray \overrightarrow{PS} .

$$\angle RPS \cong \angle SPU \quad m \angle RPS + m \angle SPU = 180^{\circ}$$

(d) Given $\triangle EFG$, with side extended as \overrightarrow{EGH} .

$$\angle E \cong \angle F$$
 $m\angle E + m\angle F = m\angle FGH$

(e) Given $m \angle 1 = 4x + 6$, $m \angle 2 = 6x - 32$. Find $m \angle 1$.

$$\angle 1 \cong \angle 2$$
 $m\angle 1 + m\angle 2 = 180$

2. Given $\triangle ABC$ with side \overline{AC} extended through D as shown. Find x if $m \angle A = 31$, $m \angle B = 5x$, and $m \angle BCD = 131$.

3. The measures in degrees of the three angles of a triangle are 2x, $\frac{7}{6}x$, and $\frac{4}{3}x$. Find the measures of the triangle's angles.

4. Given isosceles $\triangle JKL$ with $\overline{JL}\cong \overline{KL}$, and $m\angle J=5x-12$ and $m\angle K=3x+16$.

- (a) Mark the congruent sides and angles of the triangle
- (b) Find $m \angle L$

