Chaque colle comporte une question de cours ainsi qu'un ou plusieurs exercices.

1 Questions de cours.

- Toute définition, tout résultat dans l'ensemble des notions abordées doit être parfaitement su et peut être ajouté aux items suivants.
- Caractérisation de la partie entière par encadrement. Énoncé et démonstration.
- Continuité du sinus et du cosinus en 0, puis sur \mathbb{R} . Énoncé et démonstration.
- \bullet Inégalité triangulaire dans $\mathbb C$ et son cas d'égalité. Énoncé et démonstration.
- Factorisations de $e^{ip} \pm e^{iq}$ par l'arc moitié, application à la trigonométrie réelle. Énoncé et démonstration.
- Description et cardinal des racines *n*-ièmes de l'unité. Énoncé et démonstration.

2 Exercices.

Ils peuvent porter sur le chapitre 2 : révisions et compléments d'analyse et le chapitre 3 : complexes.

3 Chapitre 2 : révisions et compléments d'analyse

Relation d'ordre \leq sur \mathbb{R}

Axiomes d'une relation d'ordre totale, compatibilité avec l'addition par un réel quelconque et avec la multiplication par un réel positif dans \mathbb{R} . Multiplication par un réel négatif, Signe d'un inverse, décroissance de la fonction inverse sur \mathbb{R}_+^* , et sur \mathbb{R}_+^* . Fonction (strictement)(dé)croissante, (strictement) monotone. Lorsque f est strictement croissante sur A, $\forall (x,y) \in A^2$, $(x \leq y \iff f(x) \leq f(y))$. Valeur abolue, multiplicativité, lien avec la racine carrée, encadrement par majoration de la valeur absolue. Inégalité triangulaire et son cas d'égalité. Inégalité triangulaire inverse. Encadrement de fractions. Intervalles de \mathbb{R} , parties majorées, minorées, bornées. Majorants, minorants, maximum, minimum. Unicité du maximum (resp. minimum) en cas d'existence. Partie entière d'un réel (existence admise). Caractérisation par encadrement. Croissance de $x \mapsto |x|$.

Trigonométrie réelle

Définition géométrique du cosinus et du sinus. Valeurs remarquables, formules d'addition, de duplication, de factorisation, de linéarisation. Fonction tangente. Addition et duplication. Expressions de $\cos(a)$ et $\sin(a)$ en fonction de $t = \tan(a/2)$. Continuité du sinus et du cosinus sur \mathbb{R} . Dérivabilité du sinus et du cosinus sur \mathbb{R} , expressions des dérivées, variations. Dérivabilité de la tangente, expression de la tangente, variations. Inégalité $\forall x \in \mathbb{R}, |\sin(x)| \leq |x|$.

4 Chapitre 3: complexes

Opérations dans $\mathbb C$

Construction de $\mathbb C$ admise, parties réelle et imaginaire, $\mathbb R$ -linéarité. Conjugaison, multiplicativité, additivité. Module, multiplicativité. Inverse d'un complexe non nul, règle du produit nul dans $\mathbb C$. Inégalités $|\mathfrak R\mathfrak C(z)| \le |z|$, $|\mathrm{Im}(z)| \le |z|$ et cas d'égalité. Inégalité triangulaire et cas d'égalité. Inégalité triangulaire inverse.

Exponentielle

Pour tout réel t, e^{it} est défini par $\cos(t) + i\sin(t)$. Périodicité, module, conjugué, inverse de $t \mapsto e^{it}$. Surjectivité de $\mathbb{R} \to \mathbb{U}, t \mapsto e^{it}$ admise. Formules d'Euler, de Moivre. Arguments d'un nombre complexe non nul. Ils sont manipulés uniquement à l'aide de congruences. Arguments d'un produit, d'un quotient, d'un conjugué. Factorisation $\forall t \in \mathbb{R}, a\cos(t) + b\sin(t) = |a+ib|\cos(t-\arg(a+ib))$ pour $(a,b) \in \mathbb{R}^2 \setminus \{(0,0)\}$. Pour tout $z \in \mathbb{C}$, e^z est défini par $e^{\Re c(z)}e^{i \operatorname{Im}(z)}$. Propriétés algébriques, module, arguments, résolution de $e^z = a$.

Équations polynomiales dans ${\mathbb C}$

Théorème de D'Alembert-Gauss admis. Extraction de racines carrées dans \mathbb{C} . Racines de trinômes dans $\mathbb{C}[X]$, relations coefficients-racines. Description et cardinal des racines n-ièmes de l'unité. Racines n-ièmes d'un complexe non nul.

Géométrie

Notion d'affixe complexe. Interprétation du module et des arguments de (c-a)/(b-a). Traduction complexe de relations d'alignement ou de perpendicularité. Transformations $z\mapsto az,\ z\mapsto z+b$ et $z\mapsto \overline{z}$ du point de vue géométrique.

* * * * *