Are We Really Making Much Progress? A Worrying Analysis of Recent Neural Recommendation Approaches

Kuznetsov Dmitriy AMI171

Recomender systems

$$u \in U \quad i \in I$$

$$R = \{r_{ui}\}, r_{ui} \in \mathbb{R}$$

$$\forall u \in U \forall i \in I \ s.t. \ \overline{\exists} r_{ui} : \text{find } r_{ui}$$

SOTA Recommender Systems

* DL techniques have started to dominate in RS

* Some researchers noticed, that well-tuned heuristic outperform new NN-methods

Shed light on SOTA DL RS

Noticed problems

Target goals

- * weak baselines
- * establishment of weak methods as new baselines
- * difficulties in comparing or reproducing results

- * Real *reproducibility*
- * Real *progress*

Methodology

- * Scan DL top-n recommendation papers from scientific conferences (2015-2018; KDD, SIGIR, WWW, RecSys)
- * Split papers into Reproducible and Non-Reproducible
- * Reproducible:
 - working sources is available
 - At least one dataset is available

Conference	Rep. ratio	Reproducible
KDD	3/4 (75%)	[17], [23], [48]
RecSys	1/7 (14%)	[53]
SIGIR	1/3 (30%)	[10]
WWW	2/4 (50%)	[14], [24]
Total	7/18 (39%)	

Non-reproducible: KDD: [43], RecSys: [41], [6], [38], [44], [21], [45], SIGIR: [32], [7], WWW: [42], [11]

Evaluation Methodology. Naive

Evaluation Methodology

Baselines

Top-n popular

ItemKNN

$$s_{ij} = \frac{r_i^T r_j}{\|r_i\| \|r_j\| + h}$$

$$r_u,\,r_v\in\mathbb{R}^{|I|}$$
 ItemKNN-CBF

$$oldsymbol{arphi}_{T} oldsymbol{arphi}_{T}$$

UserKNN
$$s_{uv} = rac{r_u^T r_v}{\|r_u\| \|r_v\| + h}$$

$$rac{r_u^* r_v}{\|\|r_v\|+h}$$

$$s_{ij}$$
 =

$$s_{ij} = rac{f_i^T f_j}{\|f_i\| \|f_j\| + h}$$

$$||r_u||||r_u||$$

CBF
$$P^3\alpha$$

$$p_{ui} = (r_{ui}/N_u)^{\alpha}$$

$$\|J_i\|\|J_j\|+n$$

ItemKNN-CFCBF
$$\hat{r}_i = [r_i,\,\omega f_i]$$

$$p_{ui} = (r_{ui}/N_u)^{\alpha}$$
$$p_{iu} = (r_{ui}/N_i)^{\alpha}$$

$$\frac{s_{ij}}{\beta}sum(r_j \neq 0)^{\beta}$$

 $r_i, r_j \in \mathbb{R}^{|U|}$

 $f_i, f_j \in \mathbb{R}^{|F|}$

Original baselines:

- * ItemKNN
- * Matrix Factorization (s.t. SVD++)
- * Neural RS (s.t. NeuMF)
- * Hyperparams proposed (LOO by hit-rate and nDCG)
- * Experiments reproducable

Metapath based Context for RECommendation

Metapath based Context for RECommendation

Movie-Lens100k

	PREC@10	REC@10	NDCG@10	
TopPopular	0.1907	0.1180	0.1361	
UserKNN	0.2913	0.1802	0.2055	
ItemKNN	0.3327	0.2199	0.2603	
$P^3\alpha$	0.2137	0.1585	0.1838	
$RP^3\beta$	0.2357	0.1684	0.1923	
MCRec	0.3077	0.2061	0.2363	
			(10)	

^{*} train/test split provided only on MovieLens

- * baselines same as in previous one
- * Moreover, NeuMF optimized inappropriate (hypers from original paper)
- * hyper-opt on test set for their method (source is source code)

Collaborative Variational Autoencoder

Collaborative Variational Autoencoder

	220	270	220
	REC@50	REC@100	REC@300
TopPopular	0.0044	0.0081	0.0258
UserKNN	0.0683	0.1016	0.1685
ItemKNN	0.0788	0.1153	0.1823
$P^3\alpha$	0.0788	0.1151	0.1784
$RP^3\beta$	0.0811	0.1184	0.1799
ItemKNN-CFCBF	0.1837	0.2777	0.4486
CVAE	0.0772	0.1548	0.3602

 $[\]rightarrow recall(5)$

- * CiteULike (135k and 205k); (sparse and dense)
- * 5 times train/test split
- * Opt by val-recall (50 to 300)
- * Baselines: 3 SOTA DL models (in particular CDL)
- * CVAE outperform on most sets (100+ lists)

Collaborative Deep Learning

Collaborative Deep Learning

CiteULike-a dense

	REC@50	REC@100	REC@300
TopPopular	0.0038	0.0073	0.0258
UserKNN	0.0685	0.1028	0.1710
ItemKNN	0.0846	0.1213	0.1861
$P^3\alpha$	0.0718	0.1079	0.1777
$RP^3\beta$	0.0800	0.1167	0.1815
ItemKNN-CBF	0.2135	0.3038	0.4707
ItemKNN-CFCBF	0.1945	0.2896	0.4620
CDL	0.0543	0.1035	0.2627
	·-		

- * Opt by val-recall (50 to 300)
- * CDL outperform on 2/4 sets (100+ lists)

 $\rightarrow recall(5)$

Neural Collaborative Filtering

Neural Collaborative Filtering

	Pinterest				
	HR@5	NDCG@5	HR@10	NDCG@10	
TopPopular	0.1663	0.1065	0.2744	0.1412	
UserKNN	0.7001	0.5033	0.8610	0.5557	
ItemKNN	0.7100	0.5092	0.8744	0.5629	
$P^3\alpha$	0.7008	0.5018	0.8667	0.5559	
$RP^3\beta$	0.7105	0.5116	0.8740	0.5650	
NeuMF	0.7024	0.4983	0.8719	0.5536	

- * LOO; splits shared;
- * hyper-opt on val
- * n_epochs by test val

Neural Collaborative Filtering

	Movielens 1M				
	HR@5	NDCG@5	HR@10	NDCG@10	
TopPopular	0.3043	0.2062	0.4531	0.2542	
UserKNN	0.4916	0.3328	0.6705	0.3908	
ItemKNN	0.4829	0.3328	0.6596	0.3900	
$P^3\alpha$	0.4811	0.3331	0.6464	0.3867	
$RP^3\beta$	0.4922	0.3409	0.6715	0.3991	
NeuMF	0.5486	0.3840	0.7120	0.4369	
SLIM	0.5589	0.3961	0.7161	0.4470	

$$\min_{W} \frac{1}{2} ||A - AW||_{F}^{2} + \frac{\beta}{2} ||W||_{f}^{2} + \lambda ||W||_{1}$$

$$\begin{cases} W \ge 0 \\ diag(W) = 0 \end{cases}$$

Spectral Collaborative Filtering

HetRec, Amazon Instant Video

- * Train/test split is not provided
- * Provided only half of hyperparams (unknown half optimized on val by authors)
- * Evaluation procedure is not provided
- * All authors baselines outperform SpectralCF on all measures

Spectral Collaborative Filtering

MovieLens (1M)

random split

	Cutoff 20		Cutoff 60		Cutoff 100	
	REC	MAP	REC	MAP	REC	MAP
TopPopular	0.1853	0.0576	0.3335	0.0659	0.4244	0.0696
UserKNN CF	0.2881	0.1106	0.4780	0.1238	0.5790	0.1290
ItemKNN CF	0.2819	0.1059	0.4712	0.1190	0.5737	0.1243
$P^3\alpha$	0.2853	0.1051	0.4808	0.1195	0.5760	0.1248
$RP^3\beta$	0.2910	0.1088	0.4882	0.1233	0.5884	0.1288
SpectralCF	0.1843	0.0539	0.3274	0.0618	0.4254	0.0656

- * Train/test split provided
- * SpectralCF outperform all baselines with a huge margin

Recall@20 50% higher than authors best baseline

* But...

Spectral Collaborative Filtering

- * Gini index and Shannon entropy diverge largely from a random splits'
- * 0.92 gini vs 0.79 gini on random split

Summary and link

* Are We Really Making Much Progress? A Worrying Analysis of Recent Neural Recommendation Approaches Maurizio Ferrari Dacrema, Paolo Cremonesi, Dietmar Jannach

https://arxiv.org/pdf/1907.06902.pdf

Вопросы

- 1. Какие исходные бейзлайны рассматривались в статье? Опишите устройство ItemKNN-CFCBF
- 2. Опишите процесс воспроизведения авторами результатов SOTA-моделей и пайплайн проведения экспериментов.
- 3. Сформулируйте причины неутешительных результатов SOTA-моделей. Раскройте одну из причин чуть подробнее.