Fundamentos de Arquitetura de Computadores

Tiago Alves

Faculdade UnB Gama Universidade de Brasília

Representação em Ponto Fixo: Comparativo (4 bits)

	Complemento	Complemento	Signed	Excess
Decimal	$de\ 2$	de 1	Representation	B = 8
-8	1000	-	-	0000
-7	1001	1000	1111	0001
-6	1010	1001	1110	0010
-5	1011	1010	1101	0011
-4	1100	1011	1100	0100
-3	1101	1100	1011	0101
-2	1110	1101	1010	0110
-1	1111	1110	1001	0111
0	0000	1111 ou 0000	1000 ou 0000	1000
1	0001	0001	0001	1001
2	0010	0010	0010	1010
3	0011	0011	0011	1011
4	0100	0100	0100	1100
5	0101	0101	0101	1101
6	0110	0110	0110	1110
7	0111	0111	0111	1111

Faixa dinâmica: +7 a -7 (-8) Casas decimais: Q0

Representação de casas decimais em complemento de 2 (8 bits)

Q3:
$$-1 \times 2^4 2^3 2^2 2^1 2^0, 2^{-1} 2^{-2} 2^{-3}$$

- Menor valor: $10000,000 = -2^4 = -16$
- $\bullet \ \, \mathsf{Maior \ valor:} \ \, 01111,111 = 2^3 + 2^2 + 2^1 + 2^0 + 2^{-1} + 2^{-2} + 2^{-3} = 15,875$

Q1:
$$-1 \times 2^6 2^5 2^4 2^3 2^2 2^1 2^0, 2^{-1}$$

- Menor valor: $1000000, 0 = -2^6 = -64$
- $\bullet \ \, \mathsf{Maior \, valor} \colon 0111111, 1 = 2^5 + 2^4 + 2^3 + 2^2 + 2^1 + 2^0 + 2^{-1} = 63, 5$

Q7:
$$-1 \times 2^0, 2^{-1}2^{-2}2^{-3}2^{-4}2^{-5}2^{-6}2^{-7}$$

- Menor valor: $1,0000000 = -1 \times 2^0 = -1$
- Maior valor: $0,11111111 = 2^{-1} + 2^{-2} + 2^{-3} + 2^{-4} + 2^{-5} + 2^{-6} = 0,9921875$

Ponto Fixo

Operações Matemáticas: da mesma forma que inteiros usando mesmo Q.

- Soma
- Subtração
- Multiplicação
- Divisão (ex.: 5/8)

	Q0	Q2	Q7
01010001	81	20.25	0.6328125
+ <u>10111001</u>	-71	<u>-17.75</u>	-0.5546875
00001010	10	2.50	0.0781250
00000110	6	1.5	0.046875
x <u>00001010</u>	x 10	x2.5	x0.078125
00000000 00111100	60	3.75	0.003662109375

Ponto Fixo

Problemas:

- Pequena Faixa Dinâmica
- Precisão depende da faixa dinâmica

Vantagens:

Aritmética simples e rápida!

Ponto Flutuante

Sistemas computacionais necessitam de uma maneira de representar grande faixa dinâmica:

- números muito pequenos: 0,0000000000001182721226716
- números muito grandes: 16728387635120000000000000000

Notação Científica (base 10): Mantissa ou Significando / Característica ou Expoente

- Ex.: $1.182721226716 \times 10^{-15}$ e $1.672838763512 \times 10^{29}$
- Sempre normalizado, isto é, apenas 1 dígito não decimal (diferente de zero).

Notação de Engenharia (expoente múltiplo de 3, prefixo YZPTGMk $_m\mu$ npfazy) :

- Ex.: $0.00015 = 1.5 \times 10^{-4} = 150 \times 10^{-6} = 150 \mu$
- Ex.: $15000 = 1.5 \times 10^4 = 15 \times 10^3 = 15k$

Notação Científica (base 2):

• Ex.: $1.010_2 \times 2^{-2} = 0.01010_2 = (1 + 0.25) \times 2^{-2}$

Representação em Ponto Flutuante

A notação mais usada para representar números fracionários é a notação em ponto flutuante padrão IEEE 754.

$$v = -1^s \cdot m \cdot b^e$$

Onde:

- ullet s representa o sinal (0 para positivo, 1 para negativo)
- m representa a mantissa (significand)
- ullet representa a base. No padrão IEEE 754 a base pode ser 10 ou 2, mas em sistemas computacionais utiliza-se sempre a base 2 (por que?)
- ullet e representa o expoente. Usaremos notação em excesso; dessa forma $e=(\exp_{
 m cod}-{
 m bias})$

Representação em Ponto Flutuante

S	expoente	mantissa
---	----------	----------

Existem dois tipos principais de números:

	Single Precision (float)	Double Precision (double)
Sinal	1 bit	1 bit
Expoente	8 bits	11 bits
Mantissa	23 bits	52 bits
Total	32 bits	64 bits

Representação em Ponto Flutuante: IEEE 754

- O bit 1 inicial do significando está implícito (aumenta a precisão)
- O expoente possui um offset para facilitar a ordenação
 - Offset de 127 para precisão simples e de 1023 para precisão dupla.
- Formato:

$$-1^{\mathsf{sinal}} \times (1 + \mathsf{fra} \mathsf{ç} \mathsf{ão}) \times 2^{(\mathsf{exp_cod} - \mathsf{offset})}$$

Exemplo:

- decimal: -0.75
 - ponto fixo (sinal e magnitude): $-0.11_2 = -1.1_2 \times 2^{-1}$ em notação científica
 - ponto flutuante:

exp_cod
$$-127 = -1 \implies \exp_{-} \text{cod} = 126 = 01111110$$
 (é o código em precisão simples para representar o

expoente -1)

Representação em Ponto Flutuante: IEEE 754

- O bit 1 inicial do significando está implícito (aumenta a precisão)
- O expoente possui um offset para facilitar a ordenação
 - Offset de 127 para precisão simples e de 1023 para precisão dupla.
- Formato:

$$-1^{\sf sinal} \times (1 + \mathsf{fra} \mathsf{\~{q}} \mathsf{\~{a}}) \times 2^{(\mathsf{exp_cod_offset})}$$

Exemplo:

- decimal: 5.0
- ponto fixo (sinal e magnitude): $0101.0_2 = 1.01_2 \times 2^2$ em notação científica
- ponto flutuante:

```
exp\_cod - 127 = 2 \Longrightarrow exp\_cod = 129 = 10000001 (precisão simples)
```

exp_cod = 1025 = 1000000001 (precisão dupla)

Representação em Ponto Flutuante: IEEE 754

Fazendo o caminho em sentido reverso....

Dado o número em FP IEEE754: 0xC1100000 qual o número decimal representado?

- $\exp \text{-cod} 127 = 130 127 = 3 \Longrightarrow 2^{130 127} = 2^3$
- Mantissa = 1.001_2
- Logo: $(-1)^1 \times 1.001_2 \times 2^3 = (-1001.0)_2 = -9$

Representação em Ponto Flutuante: IEEE 754

Como representar o 0 ?

Single precision		Double precision		Object represented
Exponent	Fraction	Exponent	Fraction	
0	0	0	0	0
0	Nonzero	0	Nonzero	± denormalized number
1–254	Anything	1–2046	Anything	± floating-point number
255	0	2047	0	± infinity
255	Nonzero	2047	Nonzero	NaN (Not a Number)

Operações em Ponto Flutuante

Adição e Subtração:

Em notação científica decimal com limite de representação de 4 dígitos (significando) e 2 dígitos (expoente):

- $9,999 \times 10^2 + 1,61 \times 10^{-1} = 9,999 \times 10^2 + 0,00161 \times 10^2 =$
- $\bullet = 9,999 \times 10^2 + 0,0016 \times 10^2 = 10,015 \times 10^2 = 1,0015 \times 10^3 = 10^$
- $\bullet = 1.002 \times 10^3$

Em notação científica binária com 4 bits de precisão: 0,5+(-0.4375)

- \bullet 0.5 = 0.1₂ = 1.0₂ × 2⁻¹
- $-0.4375 = -0.0111_2 = -1.11_2 \times 2^{-2} = -0.111_2 \times 2^{-1}$
- $1.0_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = (1.000 0.111)_2 \times 2^{-1} = 0.001_2 \times 2^{-1} = 1.0_2 \times 2^{-4} = 0.0625$

Adição em Ponto Flutuante

Multiplicação em Ponto Flutuante

Decimal

- $3.23 \times 10^2 \times 3.415 \times 10^{-1} = 11.03045 \times 10^1$
- (4 dígitos) = 1.103×10^2

Binário

- $0.5 \times (-0.4375)$
- $1.000_2 \times 2^{-1} \times (-1.110_2 \times 2^{-2}) = -1.110000_2 \times 2^{-3}$
- (4 bits) = $-1.110_2 \times 2^3$

Obs.: IEEE 754 Expoentes com offset, logo é necessário diminuir 1 offset da soma dos expoentes.

Ponto Flutuante: Arredondamento

O IEEE754 permite 4 tipos de arredondamentos:

- Sempre para $+\infty$ (cima, ceil): $2.11 \Longrightarrow 2.2$ e $2.15 \Longrightarrow 2.2$ e $2.19 \Longrightarrow 2.2$
- Sempre para $-\infty$ (baixo, floor): $2.11 \Longrightarrow 2.1$ e $2.15 \Longrightarrow 2.1$ e $2.19 \Longrightarrow 2.1$
- ullet Truncamento: Despreza os bits menos significativos (trunc) $+1.01101_2=1.40625\Longrightarrow +1.011_2=1.375$
- Ao mais próximo (round): $2.11 \Longrightarrow 2.1$ e $2.19 \Longrightarrow 2.2$ e $2.15 \Longrightarrow ? \uparrow \Downarrow ?$

Estatisticamente coerente: Ao dígito par: $2.15 \Longrightarrow 2.2$ e $2.25 \Longrightarrow 2.2$

Obs.: Em precisão limitada $(x + y) + z \neq x + (y + z)$

$$x + (y + z) = -1,5 \times 10^{38} + (1,5 \times 10^{38} + 1,0) = 0,0$$

$$(x+y) + z = (-1, 5 \times 10^{38} + 1, 5 \times 10^{38}) + 1, 0 = 1, 0$$

Ponto Flutuante no MIPS: Coprocessador 1

- 32 Registradores de ponto flutuante: \$f0, \$f1, ..., \$f30 e \$f31 ou
- 16 Registradores de precisão dupla: \$f0, \$f2, \$f4, ..., \$f30

Permite operações com precisão simples e dupla:

- Adição: add.s e add.d____# add.s \$f0,\$f1,\$f2
- Subtração: sub.s e sub.d.___# sub.d \$f0,\$f2,\$f4
- Multiplicação: mul.s e mul.d__# mul.s \$f0,\$f1,\$f2
- Divisão: div.s e div.d___# div.d \$f0,\$f4,\$f8
- Comparação: c.x.s e c.x.d.___# c.eq.s 0,\$f1,\$f2 onde x pode ser: eq, neq, lt, le, gt, ge
 Seta um bit do byte de flag como V ou F
- Desvio se flag V (bc1t) desvio se F (bc1f) # bc1t 0,LABEL
- Load e Store: lwc1 e swc1, ldc1 e sdc1_# lwc1 \$f0, Imm(\$s2)
- Move: mfc1, mtc1____# mfc1 \$t0, \$f0
- cvt.x.y converte de y para x (s,d,w) # cvt.s.w \$f2,\$f4

Conversor de Temperatura

```
float f2c(float fahr)
  return ((5.0/9.0)*(fahr-32.0)):
Considerando que o argumento de entrada em $f12 e saída em $f0.
                                              #constantes segmento de dados
                                               .data
                                              const5: .float 5.0
#constantes na memória ($gp+off)
                                               const9: .float 9.0
fahr:
                                              const32: .float 32.0
  lwc1 $f16, const5($gp)
                                               .text
  lwc1 $f18, const9($gp)
                                              fahr:
  div.s $f16,$f16,$f18
                                                1.s $f16, const5
  lwc1 $f18, const32($gp)
                                                1.s $f18, const9
  sub.s $f18, $f12, $f18
                                                div.s $f16,$f16,$f18
  mul.s $f0, $f16, $f18
                                                1.s $f18, const32
  jr $ra
                                                 sub.s $f18, $f12, $f18
                                                 mul.s $f0, $f16, $f18
                                                 jr $ra
```

Complexidade em operações com Ponto Flutuante

As operações aritméticas são mais complexas

Além do overflow podemos ter underflow

A precisão pode ser um grande problema:

- O IEEE 754 mantém dois bits extras, guarda e arredondamento
- quatro modos de arredondamento
- positivo dividido por zero produz infinito
- zero dividido por zero produz um não-número (NaN)
- outras complexidades...

Implementar o padrão pode ser arriscado

Não usar o padrão pode ser ainda pior

• 80x86 e o bug do Pentium! (07, 09, 11, 12 de 1994)

Resumo

- A aritmética de computador é restrita por uma precisão limitada Os padrões de bit não têm um significado inerente mas existem padrões
 - o complemento de dois
 - ponto flutuante IEEE 754
- As instruções de computador determinam o "significado" dos padrões de bit
- O desempenho e a precisão são importantes; portanto, existem muitas complexidades nas máquinas reais
- A escolha do algoritmo é importante e pode levar a otimizações de hardware para espaço e tempo (por exemplo, multiplicação)

