GIẢI ĐỀ 6 – THPT ĐOÀN KẾT HAI BÀ TRƯNG

BẢNG ĐÁP ÁN

1.B	2.C	3.A	4.D	5.A	6.B	7.B	8.D	9.A	10.D
11.A	12.B	13.C	14.C	15.A	16.B	17.D	18.A	19.D	20.D
21.C	22.A	23.B	24.C	25.D	26.C	27.B	28.C		

Câu 1: Xem chứng minh trong giải

Câu 2: a, $\arctan \sqrt{2}$ b, $\frac{a\sqrt{15}}{5}$

A-TRẮC NGHIỆM:

Câu 1:
$$+\lim_{x\to\sqrt{3}} \frac{x+3}{2x+\sqrt{3}} = \frac{\sqrt{3}+3}{2\sqrt{3}+\sqrt{3}} = \frac{1+\sqrt{3}}{3}$$
. Chọn B.

Câu 2: + Ta có:
$$\begin{cases} \lim_{x \to 3} f(x) = 3m^2 \\ f(3) = 3^2 - 2.3 = 3 \end{cases}$$
. Để hàm số liên tục tại $x = 3$ thì: $3 = 3m^2 \Leftrightarrow m = \pm 1$. Chọn C.

Câu 3: + Ta có:
$$\left[(3x-7)\sqrt{2x+1} \right]' = 3.\sqrt{2x+1} + \left(3x-7 \right). \frac{1}{\sqrt{2x+1}} = \frac{9x-4}{\sqrt{2x+1}} \Rightarrow m = 9; n = -4 \Rightarrow A = m+n = 5.$$

Chọn A.

Câu 4:

+ Tam giác ABC đều tâm O cạnh a nên:

$$CO = \frac{a\sqrt{3}}{3}.$$

$$\Rightarrow \tan(C'C; (ABC)) = \tan C'CO = \frac{OC'}{CO} = \sqrt{6}.$$

$$\Rightarrow (C'C; (ABC)) = \arctan \sqrt{6}.$$

Chọn D.

Câu 5: + Xét dãy số $u_n = 2^n + 5$: Ta có: $u_{n+1} - u_n = 2^{n+1} + 5 - 2^n - 5 = 2^n$. Do hiệu bên không là một hằng số nên dãy số này không phải là một cấp số cộng. **Chọn A**.

Câu 6: + Ta có:
$$\lim \left(\sqrt{n^2 + an + 2} - n \right) = \lim \frac{n^2 + an + 2 - n^2}{\sqrt{n^2 + an + 2} + n} = \lim \frac{an + 2}{\sqrt{n^2 + an + 2} + n} = \lim \frac{a + \frac{2}{n}}{\sqrt{1 + \frac{a}{n} + \frac{2}{n^2} + 1}} = \frac{a}{2}.$$

Chon B.

$$\lim_{x \to +\infty} \left(\sqrt{2x^2 - 3x + 4} - \sqrt{2}x \right) = \lim_{x \to +\infty} \frac{2x^2 - 3x + 4 - 2x^2}{\sqrt{2x^2 - 3x + 4} + \sqrt{2}x} = \lim_{x \to +\infty} \frac{-3x + 4}{\sqrt{2x^2 - 3x + 4} + \sqrt{2}x} = \lim_{x \to +\infty} \frac{-3 + \frac{4}{x}}{\sqrt{2x^2 - 3x + 4} + \sqrt{2}x} = \lim_{x \to +\infty} \frac{-3 + \frac{4}{x}}{\sqrt{2x^2 - 3x + 4} + \sqrt{2}x} = \lim_{x \to +\infty} \frac{-3 + \frac{4}{x}}{\sqrt{2x^2 - 3x + 4} + \sqrt{2}x} = \lim_{x \to +\infty} \frac{-3 + \frac{4}{x}}{\sqrt{2x^2 - 3x + 4} + \sqrt{2}x} = \lim_{x \to +\infty} \frac{-3 + \frac{4}{x}}{\sqrt{2x^2 - 3x + 4} + \sqrt{2}x} = \lim_{x \to +\infty} \frac{-3 + \frac{4}{x}}{\sqrt{2x^2 - 3x + 4} + \sqrt{2}x} = \lim_{x \to +\infty} \frac{-3 + \frac{4}{x}}{\sqrt{2x^2 - 3x + 4} + \sqrt{2}x} = \lim_{x \to +\infty} \frac{-3 + \frac{4}{x}}{\sqrt{2x^2 - 3x + 4} + \sqrt{2}x} = \lim_{x \to +\infty} \frac{-3 + \frac{4}{x}}{\sqrt{2x^2 - 3x + 4} + \sqrt{2}x} = \lim_{x \to +\infty} \frac{-3 + \frac{4}{x}}{\sqrt{2x^2 - 3x + 4} + \sqrt{2}x} = \lim_{x \to +\infty} \frac{-3 + \frac{4}{x}}{\sqrt{2x^2 - 3x + 4} + \sqrt{2}x} = \lim_{x \to +\infty} \frac{-3 + \frac{4}{x}}{\sqrt{2x^2 - 3x + 4} + \sqrt{2}x} = \lim_{x \to +\infty} \frac{-3 + \frac{4}{x}}{\sqrt{2x^2 - 3x + 4} + \sqrt{2}x} = \lim_{x \to +\infty} \frac{-3 + \frac{4}{x}}{\sqrt{2x^2 - 3x + 4} + \sqrt{2}x} = \lim_{x \to +\infty} \frac{-3 + \frac{4}{x}}{\sqrt{2x^2 - 3x + 4} + \sqrt{2}x} = \lim_{x \to +\infty} \frac{-3 + \frac{4}{x}}{\sqrt{2x^2 - 3x + 4} + \sqrt{2}x} = \lim_{x \to +\infty} \frac{-3 + \frac{4}{x}}{\sqrt{2x^2 - 3x + 4} + \sqrt{2}x} = \lim_{x \to +\infty} \frac{-3 + \frac{4}{x}}{\sqrt{2x^2 - 3x + 4} + \sqrt{2}x} = \lim_{x \to +\infty} \frac{-3 + \frac{4}{x}}{\sqrt{2x^2 - 3x + 4} + \sqrt{2}x} = \lim_{x \to +\infty} \frac{-3 + \frac{4}{x}}{\sqrt{2x^2 - 3x + 4} + \sqrt{2}x} = \lim_{x \to +\infty} \frac{-3 + \frac{4}{x}}{\sqrt{2x^2 - 3x + 4} + \sqrt{2}x} = \lim_{x \to +\infty} \frac{-3 + \frac{4}{x}}{\sqrt{2x^2 - 3x + 4} + \sqrt{2}x} = \lim_{x \to +\infty} \frac{-3 + \frac{4}{x}}{\sqrt{2x^2 - 3x + 4} + \sqrt{2}x} = \lim_{x \to +\infty} \frac{-3 + \frac{4}{x}}{\sqrt{2x^2 - 3x + 4} + \sqrt{2}x} = \lim_{x \to +\infty} \frac{-3 + \frac{4}{x}}{\sqrt{2x^2 - 3x + 4} + \sqrt{2}x} = \lim_{x \to +\infty} \frac{-3 + \frac{4}{x}}{\sqrt{2x^2 - 3x + 4} + \sqrt{2}x} = \lim_{x \to +\infty} \frac{-3 + \frac{4}{x}}{\sqrt{2x^2 - 3x + 4} + \sqrt{2}x} = \lim_{x \to +\infty} \frac{-3 + \frac{4}{x}}{\sqrt{2x^2 - 3x + 4} + \sqrt{2}x} = \lim_{x \to +\infty} \frac{-3 + \frac{4}{x}}{\sqrt{2x^2 - 3x + 4} + \sqrt{2}x} = \lim_{x \to +\infty} \frac{-3 + \frac{4}{x}}{\sqrt{2x^2 - 3x + 4} + \sqrt{2}x} = \lim_{x \to +\infty} \frac{-3 + \frac{4}{x}}{\sqrt{2x^2 - 3x + 4} + \sqrt{2}x} = \lim_{x \to +\infty} \frac{-3 + \frac{4}{x}}{\sqrt{2x^2 - 3x + 4} + \sqrt{2}x} = \lim_{x \to +\infty} \frac{-3 + \frac{4}{x}}{\sqrt{2x^2 - 3x + 4} + \sqrt{2}x} = \lim_{x \to +\infty} \frac{-3 + \frac{4}{x}}{\sqrt{2x^2 - 3x + 4} + \sqrt{2}x} = \lim_{x \to +\infty} \frac{-3 +$$

+ Khi đó ta suy ra:
$$\frac{a}{b\sqrt{2}} = \frac{-3}{2\sqrt{2}} \Rightarrow a.b = -3.2 = -6$$
. Chọn B.

x = 2. Chọn A.

Câu 8: + Ta có: $y' = -2x + 4 \Rightarrow y'(-1) = -2 - 1 + 4 = 6$. Vậy hệ số góc của tiếp tuyến cần tìm là 6. **Chọn D.**

Câu 9:
$$+\lim \frac{2an^3 - 4n^2 + 2an + 1}{bn^3 - 5bn + 3b - 1} = \lim \frac{2a - \frac{4}{n} + \frac{2a}{n^2} + \frac{1}{n^3}}{b - \frac{5b}{n^2} + \frac{3b - 1}{n^3}} = \frac{2a}{b}$$
. Chọn A.

Câu 10:
$$+\lim_{x\to\infty} \frac{8x^2 - 3x + 1}{14x^2 + 5x - 3} = \lim_{x\to\infty} \frac{8 - \frac{3}{x} + \frac{1}{x^2}}{14 + \frac{5}{x} - \frac{3}{x^2}} = \frac{8}{14} = \frac{4}{7}$$
. Chọn D.

Câu 11: + Ta có:Xét hàm số:
$$y = |x-2|$$
. Có:
$$\begin{cases} y(2) = 0 \\ \lim_{x \to 2} y = 0 \end{cases} \Rightarrow \lim_{x \to 2} y = y(2)$$
. Vậy hàm số $y = |x-2|$ liên tục tại

Câu 12: + Ta có:
$$y' = -\frac{(x^2 + 2x - 5)'}{(x^2 + 2x - 5)^2} = \frac{-2(x + 1)}{(x^2 + 2x - 5)^2}$$
.

+ Gọi k là hệ số góc của tiếp tuyến, x_0 là hoành độ tiếp điểm. Do tiếp tuyến song song với trục hoành nên:

$$k = 0 \Leftrightarrow y'(x_0) = 0 \Leftrightarrow \frac{-2(x_0 + 1)}{(x_0^2 + 2x_0 - 5)^2} = 0 \Leftrightarrow x_0 = -1.$$

+ Thử lại với $x_0 = -1$, phương trình tiếp tuyến thu được là: $y = \frac{-1}{6}$. (thỏa mãn). **Chọn B**.

Câu 13: + Ta có:
$$I = \lim_{x \to 0} \frac{\sqrt{x+1} - \sqrt[3]{x+1}}{x} = \lim_{x \to 0} \left(\frac{\sqrt{x+1} - 1}{x} + \frac{1 - \sqrt[3]{x+1}}{x} \right).$$

$$\lim_{x \to 0} \frac{\sqrt{x+1} - 1}{x} = \lim_{x \to 0} \frac{x+1-1}{x\left(\sqrt{x+1} + 1\right)} = \lim_{x \to 0} \frac{1}{\sqrt{x+1} + 1} = \frac{1}{2}$$
+ Ta có:
$$\lim_{x \to 0} \frac{1 - \sqrt[3]{x+1}}{x} = \lim_{x \to 0} \frac{1 - (x+1)}{x\left(1 + \sqrt[3]{x+1} + \sqrt[3]{(x+1)^2}\right)} = \lim_{x \to 0} \frac{-1}{\left(1 + \sqrt[3]{x+1} + \sqrt[3]{(x+1)^2}\right)} = -\frac{1}{3}$$

$$\Rightarrow I = \frac{1}{2} - \frac{1}{3} = \frac{1}{6}$$
. Chọn C.

Câu 14:

+ Do *ABC*D là hình chữ nhật nhưng không là hình vuông nên:

BD không vuông góc với AC khi đó BD không vuông góc với mặt phẳng (SAC).

Chọn <u>C.</u>

Câu 15: + Gọi k; x_0 lần lượt là hệ số góc và tiếp điểm của hàm số khi đó ta có:

$$k \cdot \frac{1}{2} = -1 \Leftrightarrow k = -2 \Leftrightarrow y'(x_0) = k = -2.$$

+ $y'(x_0) = -2 \Leftrightarrow 3x_0^2 - 3 = -2 \Leftrightarrow x_0 = \pm \sqrt{\frac{1}{3}}$. Vậy có tất cả 2 tiếp tuyến thỏa mãn. **Chọn** <u>A.</u>

Câu 16: C1: + Ta có:

$$\frac{1+3^2+3^4+\ldots+3^{2n}}{1+5+5^2+\ldots+5^n} = \frac{1+9^1+9^2+\ldots+9^n}{1+5+5^2+\ldots+5^n} = \frac{\frac{9^{n+1}-1}{9-1}}{\frac{5^{n+1}-1}{5-1}} = \frac{9^{n+1}-1}{2\left(5^{n+1}-1\right)} = \frac{1-\frac{1}{9^{n+1}}}{2\left[\left(\frac{5}{9}\right)^{n+1}-\frac{1}{9^{n+1}}\right]}.$$

$$\lim \frac{1+3^2+3^4+\ldots+3^{2n}}{1+5+5^2+\ldots+5^n} = \lim \frac{1-\frac{1}{9^{n+1}}}{2\left[\left(\frac{5}{9}\right)^{n+1}-\frac{1}{9^{n+1}}\right]} = +\infty.$$

C2: Dùng máy tính, bấm Shift + $\frac{1}{2}$, cho n=100

Tính tử

$$\sum_{X=1}^{100} (5^X)$$

9.860761315×10⁶⁹

Tính mẫu:

PreAns÷Ans 3.030351592×10²⁵

Vậy lấy Tử chia Mẫu ⇒

Chọn B.

Câu 17: + Chưa thể kết luận được vị trí tương đối giữa hai đường thẳng b,c. **Chọn** $\underline{\mathbf{D}}$.

Câu 18: + Ta có:
$$f(x) = 2x^3 - 3x^2 + 2$$

+ Xét trên khoảng (-1;0)

$$f(-1) = 2.(-1)^3 - 3.(-1)^2 + 2 = -3$$

$$f(0) = 2.0^3 - 3.0^2 + 2 = 2$$

Vì f(-1).f(0) = -6 < 0 nên phương trình $2x^3 - 3x^2 + 2 = 0$ có ít nhất một nghiệm thuộc khoảng (-1;0). Chọn <u>A.</u>

Câu 19: C1: Ta có:

$$\lim_{x \to 1} \frac{\sqrt{x+3}-2}{x^2+mx-x-m} = \lim_{x \to 1} \frac{x+3-4}{(x-1)(x+m)(\sqrt{x+3}+2)} = \lim_{x \to 1} \frac{1}{(x+m)(\sqrt{x+3}+2)} = \frac{1}{4(m+1)}.$$

C2: Cho m=1 rồi bấm máy

$$\frac{\sqrt{X+3}-2}{X^2-1}$$
 $\frac{1}{8}$
Math $\frac{1}{8}$

Chọn D.

Câu 20: + Ta có:
$$f'(x) = \frac{(x^2 - 1)'(x^2 + 1) - (x^2 + 1)'(x^2 - 1)}{(x^2 + 1)^2} = \frac{2x(x^2 + 1) - 2x(x^2 - 1)}{(x^2 + 1)^2} = \frac{4x}{(x^2 + 1)^2}$$
+ $f'(x) = 0 \Leftrightarrow \frac{4x}{(x^2 + 1)^2} = 0 \Leftrightarrow x = 0$. Chọn $\underline{\mathbf{D}}$.

Câu 21: + Gọi *q* là công sai của cấp số cộng, 3 là số hạng đầu tiên của cấp số, khi đó ta có 61 sẽ là số hạng thứ 17 của cấp số cộng này:

$$\Rightarrow$$
 61 = 3 + 16 $q \Rightarrow q = \frac{29}{8}$.

+ Tổng các số hạng của cấp số cộng này là:

$$u_1 + u_2 + \dots + u_{17} = 17.3 + (1 + 2 + \dots + 16)q = 17.3 + \frac{17.16}{2}q = 544$$
. Chọn C.

Câu 22: Định lý 3 trong SGK: Nếu hàm số f(x) liên tục trên [a;b] và f(a).f(b)<0 thì phương trình f(x)=0 có ít nhất một nghiệm trên (a;b). **Chọn** <u>A.</u>

Câu 23:
$$+ S = 1 - \frac{1}{3} + \frac{1}{9} - \frac{1}{27} + \dots = 1 + \left(\frac{-1}{3}\right)^1 + \left(\frac{-1}{3}\right)^2 + \dots + \left(\frac{-1}{3}\right)^n + \dots = \frac{1}{1 - \left(\frac{-1}{3}\right)} = \frac{3}{4}$$
. Chọn B.

Câu 24: + y' =
$$\left(\sqrt{4x^2+1}\right)' = \frac{\left(4x^2+1\right)'}{2\sqrt{4x^2+1}} = \frac{8x}{2\sqrt{4x^2+1}} = \frac{4x}{\sqrt{4x^2+1}}$$
. Chọn C.

Câu 25: + y' =
$$\left(\frac{3-4x}{2x-5}\right)' = \frac{(3-4x)'(2x-5)-(2x-5)'(3-4x)}{(2x-5)^2} = \frac{-4(2x-5)-2(3-4x)}{(2x-5)^2} = \frac{14}{(2x-5)^2}$$
.

Chọn D.

Câu 26: + Phương trình vận tốc theo thời gian là: v(t) = s'(t) = 3 - 10t.

+ Phương trình gia tốc theo thời gian là: $a(t) = v'(t) = -10(m/s^2)$.

Khi đó gia tốc của chất điểm luôn bằng $-10m/s^2$. **Chọn** <u>C.</u>

Câu 27: +Ta có:

$$(\cos 2x - \tan 3x)'$$

$$= \left(\cos 2x - \frac{\sin 3x}{\cos 3x}\right)'$$

$$= (\cos 2x)' - \left(\frac{\sin 3x}{\cos 3x}\right)'$$

$$= (\cos 2x)' - \frac{(\sin 3x)' \cdot \cos 3x - (\cos 3x)' \cdot \sin 3x}{\cos^2 3x}$$

$$= -2\sin 2x - \frac{3}{\cos^2 3x}$$

$$\Rightarrow a = -2; b = -3 \Rightarrow S = a - b = -2 - (-3) = 1. \text{ Chọn } \underline{B}.$$

$$f(1) = \lim_{x \to 1^-} f(x) = 3$$

Câu 28: + Ta có:

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \frac{x^2 - 3x + 2}{x - 1} = \lim_{x \to 1^+} (x - 2) = -1.$$

+ Do $\lim_{x\to 1^+} f(x) \neq \lim_{x\to 1^-} f(x)$ nên không tồn tại $\lim_{x\to 1} f(x)$, khi đó hàm số gián đoạn tại điểm x=1.

Chọn C.

B-TỰ LUẬN:

Câu 1:

TH1: $c \neq 0$.

+ Xét hàm số $f(x) = ax^2 + bx + c(a \neq 0; 3a + 4b + 6c = 0)$. Hàm số xác địch và liên tục với mọi $x \in \mathbb{R}$.

+ Ta có:
$$3a + 4b + 6c = 0 \Leftrightarrow 9a + 12b + 18c = 0 \Leftrightarrow 9a + 12b + 16c = -2c \Leftrightarrow \frac{9}{16}a + \frac{3}{4}b + c = -\frac{1}{8}c$$
.

+ Ta có:
$$f(0) = c$$
; $f(\frac{3}{4}) = \frac{9a}{16} + \frac{3}{4}b + c = -\frac{1}{8}c \Rightarrow f(0).f(\frac{3}{4}) = c. -\frac{1}{8}c = -\frac{c^2}{8} < 0$.

 \Rightarrow Phương trình f(x)=0 có ít nhất một nghiệm thuộc $\left(0;\frac{3}{4}\right)$ mà $\left(0;\frac{3}{4}\right)\subseteq\left(0;\frac{7}{8}\right)$ nên phương

trình f(x) = 0 có ít nhất một nghiệm thuộc $\left(0; \frac{7}{8}\right)$.

TH2:
$$c = 0 \Rightarrow \begin{cases} ax^2 + bx = 0 \\ 3a + 4b = 0 \end{cases} \Rightarrow \begin{cases} \begin{bmatrix} x = 0 \\ x = \frac{-b}{a} \Rightarrow \begin{bmatrix} x = 0 \\ x = \frac{3}{4} \end{cases} \end{cases}$$

+ Khi đó phương trình $ax^2 + bx + c = 0$, $(a \ne 0)$ có hai nghiệm là: x = 0; $x = \frac{3}{4}$ mà $0 < \frac{3}{4} < \frac{7}{8}$ nên phương trình có nghiệm thuộc khoảng $\left(0, \frac{7}{8}\right)$.

Vậy phương trình $ax^2 + bx + c = 0$, $(a \ne 0)$ luôn có nghiệm thuộc khoảng $(0, \frac{7}{8})$ với 3a + 4b + 6c = 0 (đpcm).

Câu 2:

a)
+ Góc giữa SC và (ABCD) chính là góc SCA (do $SA \perp (ABCD)$).
+ Ta có: $AC = \sqrt{AD^2 + DC^2} = \sqrt{a^2 + 2a^2} = a\sqrt{3}$. $\Rightarrow \tan SCA = \frac{SA}{AC} = \frac{a\sqrt{6}}{a\sqrt{3}} = \sqrt{2}$. $\Rightarrow \angle SCA = \arctan \sqrt{2}$.

b)
+ Kể $AH \perp BD = \{H\}; AK \perp SH = \{K\}, \text{ ta có:}$ $d\left(A/(SBD)\right) = AK = \frac{SA.AH}{\sqrt{SA^2 + AH^2}}.$ Ta có: $SA = a\sqrt{6}; AH = \frac{AB.AD}{\sqrt{AB^2 + AD^2}} = \frac{a\sqrt{6}}{3}$.

 $\Rightarrow d(A/(SBD)) = AK = \frac{a\sqrt{15}}{5}.$

