МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н. Г. ЧЕРНЫШЕВСКОГО»

ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ И СХЕМЫ

ОТЧЕТ

студента 3 курса 331 группы	
специальности 10.05.01 — Компьютерная безопасн	ОСТЬ
факультета КНиИТ	
Бородина Артёма Горовича	
Проверил	
аспирант	А. А. Мартышкин

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	3
ВВЕДЕНИЕ	3
Задание 1	4
Задание 2	
Тестовые задания	7
ЗАКЛЮЧЕНИЕ	9

введение

Целью данной лабораторной работы служит ознакомление с основными характеристиками логических элементов и основами синтеза логических схем, изучение простейших комбинационных логических устройств, реализующих логические функции сложения, умножения и отрицания.

Задание 1.

Запустить лабораторный комплекс Labworks и среду MS10. Открыть файл **29.2.ms10**, размещенный в папке **Circuit Design Suite 10.0** среды MS10, или собрать на рабочем поле среды MS10 схему для испытания *основных и базовых логических элементов* и установить в диалоговых окнах компонентов их параметры или режимы работы. Скопировать схему в отчет.

Рисунок 1 – Схема с основными и базовыми логическими элементами.

Оперируя ключами $1, 2, \ldots, 9$, сформировать все возможные комбинации аргументов x_1 и x_2 (00, 10, 01 и 11) на входе дизъюнктора (**OR**), конъюнктора (**AND**), штриха Шеффера (**NAND**) и стрелки Пирса (**NOR**) и записать значения выходных логических функций y_k (0 или 1) в таблицу.

[OR]			[AND]			[NOT]		[NAND]			[NOR]		
x_1	x_2	y	x_1	x_2	y	x	y	x_1	x_2	y	x_1	x_2	y
0	0	0	0	0	0	0	1	0	0	1	0	0	1
0	1	1	0	1	0	0	1	0	1	1	0	1	0
1	0	1	1	0	0	1	0	1	0	1	1	0	0
1	1	1	1	1	1	1	0	1	1	0	1	1	0

Таблица 1 – Таблица истинности основных и базовых логических операций.

Задание 2.

Собрать схему для реализации логической функции y с тремя аргументами a,b и c. Скопировать собранную логическую схему в отчет. Функция y имеет вид: $y=(a+b+\neg c)(\neg a+\neg bc)(a+\neg b+\neg c)$ (вариант №2).

Рисунок 2 – Схема заданной логической функции.

y_1 :	= a	+ b +	$\neg c$	y_2	= ¬	$a + \frac{1}{2}$	$\neg bc$	$y_3 = a + \neg b + \neg c$			$+ \neg c$	$y = y_1 \wedge y_2 \wedge y_3$
a	b	c	y_1	a	b	c	y_2	a	b	c	y_3	y
0	0	0	1	0	0	0	1	0	0	0	1	1
0	0	1	0	0	0	1	1	0	0	1	1	0
0	1	0	1	0	1	0	1	0	1	0	1	1
0	1	1	1	0	1	1	1	0	1	1	0	0
1	0	0	1	1	0	0	0	1	0	0	1	0
1	0	1	1	1	0	1	1	1	0	1	1	1
1	1	0	1	1	1	0	0	1	1	0	1	0
1	1	1	1	1	1	1	0	1	1	1	1	0

Таблица 2 – Таблица истинности заданной логической функции.

Тестовые задания.

- \square входные и выходные сигналы логических элементов могут принимать только два значения: логическую 1 и логический 0: верно.
- □ операция логического сложения совпадает с операцией обычного сложения. **неверно.** Равенство выполняется только в том случае, когда либо оба операнда равны нулю, либо один равен нулю, а второй единице.
- 2. Укажите **выражение** логической функции двух переменных x_1 и x_2 , реализуемой элементом «стрелка Пирса»: $y = \overline{x_1 + x_2}$
- 3. Укажите **выражение** логической функции двух переменных x_1 и x_2 , реализуемой элементом «штрих Шеффера»: $y = \overline{x_1 x_2}$
- 4. Укажите **выражение** логической функции трех переменных a,b и c, записанной в совершенной дизъюнктивной нормальной форме (СДНФ): $y(a,b,c) = \bar{a}bc + a\bar{b}c + ab\bar{c} + abc$.
 - 5. Укажите элемент ИЛИ-НЕ:
 - 6. Укажите элемент И:

Рисунок 3 – Элемент ИЛИ-НЕ.

Рисунок 4 – Элемент ИЛИ-НЕ.

7. Укажите значение **функции** $y=(ab+\bar{c})(\bar{a}+\bar{b}),$ если a=b=c=1: **0**.

ЗАКЛЮЧЕНИЕ

В ходе лабораторной работы мы ознакомились с основными характеристиками логических элементов и основами синтеза логических схем на примере построения простейшей электросхемы и составления для неё таблицы истинности. Также нами были рассмотрены и изучены простейшие комбинационные логические устройства, реализующие логические функции сложения, умножения и отрицания.