Metal Oxide Semiconductor Capacitor

An Al-gate n-channel MOS device is made on a p-type Si substrate with $N_A = 10^{17} / \text{cm}^3$. The SiO₂ thickness is 100 A° in the gate region, and the effective interface charge Q_i is $5 \times 10^{10} \text{q C/cm}^2$.

- (a) Find maximum depletion width, flat band voltage and threshold voltage.
- (b) Sketch the C-V curve for this device and give important numbers for the scale.

An Al-gate p-channel MOS device is made on an n-type Si substrate with $N_D = 10^{17} / \text{cm}^3$. The SiO₂ thickness is 100 A° in the gate region, and the effective interface charge Q_i is $5 \times 10^{10} \text{q C/cm}^2$.

- (a) Find maximum depletion width, flat band voltage and threshold voltage.
- (b) Sketch the C-V curve for this device and give important numbers for the scale.

Find the threshold voltage for a Si n-channel MOS transistor with $N_A = 10^{17}$ /cm³, $\Phi_{ms} = -0.95$ V, $Q_i = 10^{11} q$ C/cm², and an SiO₂ thickness d=200 A°.

(a) Find the voltage V_{FB} required to reduce to zero the negative charge induced at the semiconductor surface by a sheet of positive charge Q_{ox} located x' below the metal.

(b) In case of an arbitrary distribution of charge $\rho(x')$ in the oxide, show that

$$V_{FB} = \frac{-1}{C_{ox}} \int_{0}^{d} \rho(x') dx'$$

From the given C-V characteristics of a MOS capacitor, pick the correct statement below:

- (A) The substrate is n-type and the measurement is done at low frequency.
- (B) The substrate is p-type and the measurement is done at low frequency.
- (C) The substrate is n-type and the measurement is done at high frequency.
- (D) The substrate is p-type and the measurement is done at high frequency

For the given C-V characteristics of a MOS capacitor with an area of 1.5 mm². What is the maximum depletion layer width (W_{max}) in μ m?

In the given figure, if the area of the capacitor is 1 mm², (a) what is the gate oxide thickness (t_{xx})?

(b) what is the maximum depletion layer width (W_{max}) ?

If the area of a MOS capacitor is 1 mm² and the gate oxide thickness (t_{ox}) is 100nm,

- (a) what is C_{max}?
- (b) if $C_{min} = 0.5C_{max}$, what is the maximum depletion layer width (W_{max})?

A MOS capacitor has an area of 2 x 10⁻³ cm². The substrate doping concentration is 10¹⁶/cm³. If the maximum and minimum capacitances of the MOS capacitor are 350 pF and 200pF respectively, what is the maximum depletion width?

In a metal/SiO $_2$ /p-Si MOS capacitor, the SiO $_2$ layer thickness is t_{ox} and the doping concentration of the p-type substrate is N_A . The threshold voltage of the MOS capacitor will definitely increase if

- (A) t_{ox} is decreased and N_A is increased
- (B) t_{ox} is increased and N_A is decreased
- (C) both t_{α} and N_{Δ} are decreased
- (D) both t_{ox} and N_A are increased.