Proving Markov's Inequality

Markov's inequality: for any nonnegative random variable X, and for any t > 0,

$$\mathbf{Pr}[X \ge t] \le \frac{\mathbf{E}[X]}{t}.$$

Let's say that X can take values $x_1 < x_2 < \ldots < x_j = t < \ldots < x_n$. First, prove the inequality.

Proof:

$$\mathbf{E}[X] = \sum_{i=1}^{n} x_i * \mathbf{Pr}[X = x_i] \ge \sum_{i=j}^{n} x_i * \mathbf{Pr}[X = x_i] \ge \sum_{i=j}^{n} t * \mathbf{Pr}[X = x_i]$$

Then, show the equivalence to the sometimes more useful form, for s > 0.

$$\Pr[X \ge s \cdot \mathbf{E}[X]] \le \frac{1}{s}.$$

Proof: let $t = s\mathbf{E}[X]$.

Finally, invent a random variable and a distribution such that,

$$\mathbf{Pr}[X \ge 10 \cdot \mathbf{E}[X]] = \frac{1}{10}.$$

Answer: Consider Bernoulli(1, 1/10). So, getting 1 w.p 1/10 and 0 w.p 9/10. This importantly shows that Markov's inequality is tight, because we could replace 10 with t and use Bernoulli(1, 1/t), at least with $t \ge 1$.

Proving the Chebyshev Inequality.

1. For any random variable X and scalars $t, a \in \mathbb{R}$ with t > 0, convince yourself that

$$\Pr[|X - a| \ge t] = \Pr[(X - a)^2 \ge t^2]$$

2. Use the second form of Markov's inequality and (1) to prove *Chebyshev's Inequality*: for any random variable X with $\mathbf{E}[X] = \mu$ and $\text{var}(X) = c^2$, and any scalar t > 0,

$$\mathbf{Pr}[|X - \mu| \ge tc] \le \frac{1}{t^2}.$$

(*Hint*: To use Markov, don't forget the definition of variance... $var(X) = \mathbf{E}[(X - \mu)^2]$.)