01204211 Discrete Mathematics Lecture 9b: Nonregular languages¹

Jittat Fakcharoenphol

August 26, 2024

DFA: Formal definitions

A finite-state machine or a deterministic finite-state automaton (DFA) has five components:

- \blacktriangleright the input alphabet Σ ,
- \triangleright a finite set of states Q,
- ▶ a transition function $\delta: Q \times \Sigma \longrightarrow Q$
- ightharpoonup a start state $s \in Q$, and
- ightharpoonup a subset $A \subseteq Q$ of accepting states.

Acceptance

One step move: from state q with input symbol a, the machine changes its state to $\delta(q,a)$.

Extension: from state q with input string w the machine changes its state to $\delta^*(q,w)$ defined as

$$\delta^*(q,w) = \begin{cases} q & \text{if } w = \varepsilon, \\ \delta^*(\delta(q,a),x) & \text{if } w = ax. \end{cases}$$

The signature of δ^* is $Q \times \Sigma^* \longrightarrow Q$.

$\mathsf{accepting}\ w$

For a finite-state machine with starting states and accepting states A, it accepts string w iff

$$\delta^*(s,w) \in A.$$

Language of a DFA

L(M)

For a DFA M let L(M) be the set of all strings that M accepts. More formally, for $M=(\Sigma,Q,\delta,s,A)$,

$$L(M) = \{ w \in \Sigma^* \mid \delta^*(s, w) \in A \}.$$

We refer to L(M) as the language of M.

Automatic languages²

Definition (for now)

A language L is "automatic" if there is a DFA M such that L(M) = L.

Lemma 1

If L_1 and L_2 are automatic languages over alphabet Σ , then

$$L_1 \cap L_2$$
,

$$ightharpoonup L_1 \cup L_2$$
, $ightharpoonup$

$$\swarrow$$
 $L_1 \setminus L_2$, and

$$\Sigma^* \setminus L_1$$
,

are also automatic.

The set of automatic languages is closed under these boolean operations.

²Taken directly from Erikson's lecture notes

Given two languages L_1 and L_2 , we can combine them in various ways using Boolean operations (i.e., \cap , \cup , etc.).

What else can we do?

Given two languages L_1 and L_2 , we can combine them in various ways using Boolean operations (i.e., \cap , \cup , etc.).

What else can we do?

ightharpoonup Concatenation: $L_1 \cdot L_2$, defined as

Given two languages L_1 and L_2 , we can combine them in various ways using Boolean operations (i.e., \cap , \cup , etc.).

What else can we do?

▶ Concatenation: $L_1 \cdot L_2$, defined as

$$\{x \cdot y \mid x \in L_1, y \in L_2\}$$

Given two languages L_1 and L_2 , we can combine them in various ways using Boolean operations (i.e., \cap , \cup , etc.).

What else can we do?

ightharpoonup Concatenation: $L_1 \cdot L_2$, defined as

$$\{x \cdot y \mid x \in L_1, y \in L_2\}$$

 \blacktriangleright Kleene closure: L_1^* .

Interesting questions

We know that the set of automatic languages is closed under Boolean operations.

Questions

- ▶ Is it closed under concatenation?
- Is it closed under taking Kleene closure?

Interesting questions

We know that the set of automatic languages is closed under Boolean operations.

Questions

- Is it closed under concatenation?
- Is it closed under taking Kleene closure?

Spoiler:

Interesting questions

We know that the set of automatic languages is closed under Boolean operations.

Questions

- Is it closed under concatenation?
- Is it closed under taking Kleene closure?

Spoiler: Yes, it is (for both operations). We will see the proof, after we learn a required new concept.

Closure

Lemma 2

Given two automatic languages L_1 and L_2 , the following languages are automatic:

- $ightharpoonup (L_1 \cup L_2)$
- $ightharpoonup (L_1 \cdot L_2)$ and
- $ightharpoonup (L_1^*)$

Closure

Lemma 2

Given two automatic languages L_1 and L_2 , the following languages are automatic:

- $ightharpoonup L_1 \cup L_2$,
- $ightharpoonup L_1 \cdot L_2$, and
- $ightharpoonup L_1^*$.

More over, \emptyset and a language containing a single string are also automatic.

Closure

More over, \emptyset and a language containing a single string are also automatic.

Lemma 2

These are automatic languages

- ► The empty set, <
- ► A language containing one string, ←
- $ightharpoonup L_1 \cup L_2$ for automatic languages L_1 and L_2 , extstyle extst
- $ightharpoonup L_1 ullet L_2$ for automatic languages L_1 and L_2 , and $ightharpoonup L_1$
- $ightharpoonup L^*$ for automatic languages(L) \longleftarrow

Doese this look familiar?

Regular languages

Definition: regular languages

A language L is regular if and only if it satisfies one of the following conditions:

- \longrightarrow L is empty;
- \longrightarrow L contains one string (can be the empty string ε);
 - L is a union of two regular languages;
 - L is the concatenation of two regular languages; or
 - lackbox L is the Kleene closure of a regular language. \sim

Thm! Language L is regular iff there exists a DFA M such that L(M)=L.

Big question:

Big question:

Is every automatic language regular?

Spoiler:

Big question:

Is every automatic language regular?

Spoiler: Yes, it is. We will see some idea on how to prove this.

Big question:

Is every automatic language regular?

Spoiler: Yes, it is. We will see some idea on how to prove this.

Theorem 3

A language L is regular if and only if there exists a DFA M such that L(M)=L.

Nonregular languages

Can you design a DFA that accepts strings from language

01 000111 0000001111111

$$\underbrace{\{\underline{\mathbf{0}_{n}}\mathbf{1}^{n}\mid\underline{n}\geq0\}}$$

Key idea

If you have finite states, you can't possibly distinguish between string in the language and strings not in the language.

State TUNO

Basic question

How can you show that you need at least two states?

Basic question

How can you show that you need at least two states? Let's see how a DFA works.

If string x and y reach the same state in a DFA, for any string z, both xz and yz must reach the same state.

> accept /reject

Another example

If string \underline{x} and \underline{y} reach the <u>same state</u> in a DFA, for any string \underline{z} , both $\underline{x}\underline{z}$ and $\underline{y}\underline{z}$ must reach the <u>same state</u>.

reach the <u>same state</u>. In other words, a DFA accepts (xz) iff it accepts (yz)

Contra position: and X & y A X & y TV Nous: state, Syn master he

Basic question

How can you show that you need at least two states?

$$\frac{1}{2} = \frac{1}{2} = \frac{1}$$

2= 1111 XZ= 0000 1111 EL(M) YZ= 000 1111 EL(IV) => XZ 8YZ 4:03-1/13 auto > +ak 9u M => X 8 y (Vir pungho L M.


```
Consider language L=\{0^n1^n\mid n\geq 0\}. Consider x=0 and y=00. Consider suffix z=\underline{11}. \chi Z=\operatorname{Oll} \chi Z=\operatorname{Oll}
```

Consider language $L=\{\mathbf{0}^n\mathbf{1}^n\mid n\geq 0\}.$ Consider $x=\mathbf{0}$ and $y=\mathbf{00}.$ Consider suffix $z=\mathbf{11}.$ We have that

$$xz = 011 \not\in L,$$

but

$$yz = 0011 \in L.$$

Consider language $L = \{ \mathbf{0}^n \mathbf{1}^n \mid n \geq 0 \}.$

Consider x = 0 and y = 00. Consider suffix z = 11.

We have that

$$xz = 011 \not\in L,$$

but

$$yz = 0011 \in L.$$

What can you say about a DFA M such that L(M) = L?

 $\{(\chi_1)(\chi_2), \chi_3, (\chi_{\psi}), ($

Consider language $L = \{0^n 1^n \mid n > 0\}.$ Consider x = 0 and y = 00. Consider suffix z = 11. We have that

but

$$yz = 0011 \in L.$$

 $xz = 011 \notin L$.

What can you say about a DFA M such that L(M) = L?

カフタフクロッ .

Definition

For strings (x) and (y) string z is a distinguishing suffix with respect to (L) if exactly one of xz and yz is in L.

Z?? (Z) IBU UPINJUL 2') AIN DFA M TOW L

M ISON I'MPUT X TO Y AINTO TVAD AUNISTATE.

Fooling sets

, any language.

A fooling set for a language L is set F of strings such that every pair of strings in F has a distinguishing suffix.

Example: The set $\{0,00,000\}$ is a fooling set for $L = \{0^n 1^n \mid n \ge 0\}$.

A large fooling set

Lemma 4

(E, U, 00, 000, 0000, }

The set $\{0^n \mid n \geq 0\}$ is a fooling set for $L = \{0^n 1^n \mid n \geq 0\}$.

Proof.

$$\Re x = \{0^n \mid n \ge 0\}$$
. Arvan $x = 0^i \in F$, but $y = 0^i \in F \log x^i = i \neq j$ and $\lim_{n \to \infty} i < j$ ($\ln \sqrt{\ln x} = 0$ and $\lim_{n \to \infty} i \neq j$

$$4\pi Z = 1^{i} 9:70^{i}$$

 $92 = 0^{i}1^{i} \in L$

กัวเช็น Z ล่าปืน distinguishing ruffix ro x 662: y. => F Nu fooling set

Observation

If language L has an infinite fooling set, L is not regular

Observation

If language L has an infinite fooling set, L is not regular

Lemma 5

Language $L = \{\mathbf{0}^n \mathbf{1}^n \mid n \geq 0\}$ is not regular.

Proof.

We previously establish that the set $F = \{0^n \mid n \ge 0\}$ is a fooling set for L.

Since F has infinite size, from the observation, we know that \underline{L} is not regular.

£ 0110, 00, 10111101 Lemma 6 reverse

For $\Sigma = \{0,1\}$, the language $L = \{ww^R \mid w \in \Sigma^*\}$ is not regular. Epalindrome.

Proof.

In F= {0" | n≥0} a=Aansin 1 Du fooling set qu L 9975m x = 0 = = 6w: y = 0 EF & 1 = j. มมมกำา 1 < j โดชไม่ เสีย ตาม เป็นหัวไป \$\$ 2= 110 9:10 in . XZ = 0 1110 € L ble ·yz= onoieL, Audor

 $\chi_{\nu} \chi_{2}, \dots$

distinguishing Suffix 21000 7,7 form he F A X + y => F 104

fooling set quan infinite => 2 2 4 6050077 L Zildus regular. bosonia toly sellarm infinite.

$$L = \{0^{2^n} \mid n \ge 0\}: \text{ Proof}(1) \qquad \{0,00,0000,00000,0^{16},0^{32},\dots$$

For $\Sigma = \{0\}$, the language $L = \{0^{2^n} \mid n \geq 0\}$ is not regular.

Proof.

$$2^{j}+2^{i}$$

$$7^{j}+2^{i}$$

$L = \{0^{2^n} \mid n \ge 0\}$: Proof 2

Lemma 8

For $\Sigma = \{0\}$, the language $L = \{0^{2^n} \mid n \geq 0\}$ is not regular.

 $\begin{cases} \sum_{k=1}^{k} \sum_{j=1}^{k} \sum_{j=1}^{k} \sum_{k=1}^{k} \sum_$

$$L = \{0^{2^n} \mid n \ge 0\}$$
: Proof 3

For $\Sigma = \{0\}$, the language $L = \{0^{2^n} \mid n \ge 0\}$ is not regular.

Proof.

The F-
$$\{0^m | m \ge 0\}$$
 and with f is f tooling set and f in any f is f in f in

1 P 4 DP P 4 E P 4 E P 9 Q C

$$L = \{0^p \mid p \text{ is prime}\}$$
: Proof 1

For $\Sigma = \{\mathbf{0}\}$, the language $L = \{0^p \mid p \text{ is prime}\}$ is not regular.

Proof.

$$L = \{0^p \mid p \text{ is prime}\}$$
: Proof 2

For $\Sigma = \{\mathbf{0}\}$, the language $L = \{0^p \mid p \text{ is prime}\}$ is not regular.

Proof.