Schriftliche Abgabe bis 08.02.2021

Aufgabe 1 (1 Punkt)

Erläutern Sie konkret, warum der erweiterte Kalmanfilter (EKF) im Gegensatz zum ursprünglichen Kalmanfilter (KF) kein optimaler Schätzer ist, bzw. keine Schätzung nach kleinsten Quadraten liefert.

Aufgabe 2 (9 Punkte)

In dieser Aufgabe soll eine Epoche $n-1 \to n$ eines UKF berechnet werden.

Es gibt mit folgenden Zustandsvektor $x_{n-1|n-1}$ mit Initialwerten und zugehöriger Kovarianzmatrix $P_{n-1|n-1}$ zur Epoche n-1:

$$m{x}_{n-1|n-1} = egin{bmatrix} 2.0 \ 3.0 \end{bmatrix}, \quad m{P}_{n-1|n-1} = egin{bmatrix} 1.0 & 0.7 \ 0.7 & 4.0 \end{bmatrix}$$

Die Prädiktionsfunktion lautet:

$$x_{n|n-1}(1) = x_{n-1|n-1}(1) \cdot \sin(x_{n-1|n-1}(1)) \cdot \Delta t$$

$$x_{n|n-1}(2) = x_{n-1|n-1}(2) \cdot \cos(x_{n-1|n-1}(2)) \cdot \Delta t$$

mit $\Delta t = 1$. Die Kovarianzmatrix des Prozessrauschens lautet:

$$\boldsymbol{Q} = \begin{bmatrix} 0.10 & 0.05 \\ 0.05 & 0.20 \end{bmatrix} \cdot \Delta t$$

Es liegt eine Beobachtung z_n vor, die folgenden funktionalen Zusammenhang aufweist:

$$z_n = x_n(1) \cdot x_n(2) + x_n^2(1) = 15.4$$

Das Varianz der Messungenauigkeit liegt bei $\sigma_r^2 = 0.4$.

Verwenden Sie weiterhin folgende Werte: $\alpha=0.9,\,\beta=2,\,\mathrm{und}\ \kappa=0.$

Berechnen Sie das Update für Zustandsvektor $x_{n|n}$ und zugehörige Kovarianzmatrix $P_{n|n}$. Geben Sie Ihre (verständlich kommentierte) Berechnung ebenfalls ab.