Smaller Discs to Cover the Unit Circle

Will Entriken

March 29, 2003

Abstract

Using a simple geometric arrangement, it is possible to find solutions r(n) for Zahn's disk-covering problem that are better than the previously published best solutions.

Background

In 1962, Zahn stated the following problem: "Given a unit disk, find the smallest radius r(n) required for n equal disks to completely cover the unit disk." He calculated a set or values for r(n) for $1 \le n \le 10$. This paper presents a class of solutions to this problem which are better than the previously published best solutions r(n), for two values f(n). (For more details on the problem, see [1].)

Method

The arrangement of discs is a simple pattern with one disc placed at the origin and the remaining discs "petals" placed around the center disc such that they intersect twice, with an arc of θ . This pattern exhibits radial symmetry, as shown in Figure 1 with:

$$\theta = \frac{2\pi}{n-1}$$

We choose r such that the intersection of adjecent petals covers exactly from r to 1 units from the origin. Because of the radial symmetry and the fact that all circular segments are non-negative, this arrangement covers the unit circle.

Construction

The distance from the origin to each petal's radius is:

$$2r\cos\frac{\theta}{2}$$

Figure 1: Disc arrangement

The distance between the centers of adjacent petals is given by the chord of the circle of radius $2r\cos\frac{\theta}{2}$:

$$2r\cos\frac{\theta}{2}2\sin\frac{\theta}{2}$$

The chord of the intersection of adjaent petals is, by design:

$$1-r$$

Since the chord of adjacent petals is perpendicular to the distance between their centers, we can use a distance equation for the patel's radius as shown in Figure 2:

Figure 2: Adjacent petals

$$r^2 = (\frac{1-r}{2})^2 + (\frac{2\sin\frac{\theta}{2}2r\cos\frac{\theta}{2}}{2})^2$$

This simplifies nicely:

$$r^{2} = \left(\frac{1-r}{2}\right)^{2} + (r\sin\theta)^{2}$$

$$r^{2} - r^{2}\sin^{2}\theta = \left(\frac{1-r}{2}\right)^{2}$$

$$2r\cos\theta = 1 - r$$

$$r = \frac{1}{2\cos\theta + 1}$$

$$r = \frac{1}{2\cos\frac{2\pi}{n-1} + 1}.$$
(1)

Results

By plugging values of n into our equation (1), we find two values that are better than the previously published best values.

Values of n	Zahn's $r(n)$	Our $r(n)$
1	1	n/a
2	1	n/a
3	$\frac{1}{2}\sqrt{3}$	n/a
4	$\frac{1}{2}\sqrt{2}$	n/a
5	0.609382864	1
6	0.555	$0.61803 \left(\frac{\sqrt{5}-1}{2}\right)$
7	$\frac{1}{2}$	$\frac{1}{2}$
8	0.437	0.44504
9	0.422	0.41421 $(\sqrt{2}-1)$
10	0.398	0.38196

Acknowledgements

I would like to thank Dr. Robert Styer, for bringing this problem to my attention and Kevin Penderghest, for introducing the graphical representation that this solution is based on.

References

[1] Weisstein, Eric W. "Disk Covering Problem." From MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/DiskCoveringProblem.html