

«Московский государственный технический университет имени Н.Э. Баумана» (национальный исследовательский университет) (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ФУНДАМЕНТАЛЬНЫЕ НАУКИ

КАФЕДРА ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА И МАТЕМАТИЧЕСКАЯ ФИЗИКА (ФН11)

НАПРАВЛЕНИЕ ПОДГОТОВКИ МАТЕМАТИКА И КОМПЬЮТЕРНЫЕ НАУКИ (02.03.01)

Отчет

по домашней работе № 1-2

Вариант № 9

Дисциплина:

Теория автоматов и алгоритмические языки

Студент группы ФН11-52Б		<u>Очкин н.в.</u>
	(Подпись, дата)	(И.О. Фамилия)
Преподаватель		Кутыркин В.А.
	(Подпись, дата)	(И.О. Фамилия)

Содержание

1	Зад	ача I			1
	1.1	СДН	Ď		2
		1.1.1	Часть 1	. Метод Квайна — Мак-Класки	2
			1.1.1.1	Шаг 1: находим основные импликанты	2
			1.1.1.2	Шаг 2: таблица простых импликант	4
		1.1.2	Часть 2	. Метод Петрика	4
		1.1.3	Провери	Ka	5
		1.1.4	Ответ		5
	1.2	CKHq			6
		1.2.1	Нахожд	ение тупиковых и минимальных КНФ	6
			1.2.1.1	Найти СДНФ заданной функции f	6
			1.2.1.2	Записать СДН Φ функции \bar{f}	6
			1.2.1.3	Представить функцию \bar{f} в виде сокращен-	
				ной ДНФ	7
			1.2.1.4	Методом Петрика найти все тупиковые	
				формы для ДН Φ функции \bar{f}	8
			1.2.1.5	Все тупиковые форму проинвертировать	
				по теореме де Моргана.	9
			1.2.1.6	Выбрать из тупиковых форм все мини-	
				мальные по числу вхождений аргументов.	10
		1.2.2	Провери	Ka	10
		1.2.3			10
	1.3	Полин		алкина	11
		1.3.1	Метод т	греугольника	11
		1.3.2	Метод I	$ar{S} \Pi \Phi$	12
		1.3.3		ка	12
_	~				
2		ача II			13
	2.1		,		13
					13
	0.0		–	анализа контактной схемы	14
	2.2		/		15
		2.2.1	Догичес	ская схема из функциональных элементов	15

1 Задача I

Найти СДНФ, СКНФ и полином Жегалкина булевой функции f от четырёх переменных, заданной таблицей:

#	A	В	C	D	f
0	0	0	0	0	1
1	0	0	0	1	0
2	0	0	1	0	0
3	0	0	1	1	0
4	0	1	0	0	0
5	0	1	0	1	0
6	0	1	1	0	1
7	0	1	1	1	1
8	1	0	0	0	0
9	1	0	0	1	1
10	1	0	1	0	0
11	1	0	1	1	1
12	1	1	0	0	1
13	1	1	0	1	1
14	1	1	1	0	0
15	1	1	1	1	1

Если возможно, сократить запись совершенных нормальных форм и сделать проверку, используя таблицу истинности, в том числе и для полинома Жегалкина.

1.1 СДНФ

1.1.1 Часть 1. Метод Квайна — Мак-Класки

1.1.1.1 Шаг 1: находим основные импликанты

Можно легко записать СДН Φ , просто просуммировав минтермы, где функция принимает значение 1.

$$f = \bar{\mathbf{A}} \, \bar{\mathbf{B}} \, \bar{\mathbf{C}} \, \bar{\mathbf{D}} + \bar{\mathbf{A}} \, \bar{\mathbf{B}} \, \bar{\mathbf{C}} \, \bar{\mathbf{D}} +$$

$$f = (0, 6, 7, 9, 11, 12, 13, 15)$$

Для оптимизации запишем минтермы, включая те, которые соответствуют равнодушным состояниям, в следующую таблицу:

Количество "1"	Минтерм	Двоичное представление
 0	m0	0000*
	m6	0110
2	m9	1001
 	m12	1100
	m7	0111
3	m11	1011
 	m13	1101
 4	m15	1111

Теперь можно начинать комбинировать между собой минтермы, то есть проводить операцию склеивания. Если два минтерма отличаются лишь символом, который сто-ит в одной и той же позиции в обоих, заменяем этот символ на «-», это означает, что данный символ для нас не имеет значения. Термы, не поддающиеся дальнейшему комбинированию, обозначаются «*». При переходе к импликантам второго ранга, трактуем «-» как третье значение. Например: -110 и -100 или -11- могут быть скомбинированы, но не -110 и 011-.

Импликанты 1-го уровня

	Количество "1"	Минтерм	Двоичное представление
		m(6, 7)	011-*
	2	m(9, 11)	10-1
	2	m(9, 13)	1-01
		m(12, 13)	110-*
		m(7, 15)	-111
3	3	m(11, 15)	1-11
		m(13, 15)	11-1

Импликанты 2-го уровня

Количество "1"	Минтерм	Двоичное представление	
2	m(9, 11, 13, 15) m(9, 13, 11, 15)	1–1* 1–1	

Таким образом, мы получили следующую **сокращенную дизъюнктивную нормальную форму** заданной функции:

$$f = \bar{\mathbf{A}}\,\bar{\mathbf{B}}\,\bar{\mathbf{C}}\,\bar{\mathbf{D}}\, + \bar{\mathbf{A}}\,\mathbf{B}\,\mathbf{C}\, + \mathbf{A}\,\mathbf{B}\,\bar{\mathbf{C}}\, + \mathbf{A}\,\mathbf{D}$$

1.1.1.2 Шаг 2: таблица простых импликант

	0	6	7	9	11	12	13	15	
m0	1								ĀĒCD
m(6, 7)		1	1						ĀBC
m(12, 13)						1	1		$AB\bar{C}$
m(9, 11, 13, 15)				1	1		1	1	AD
	☆	☆	☆	☆	☆	☆	☆	☆	

1.1.2 Часть 2. Метод Петрика

Поскольку сокращенная форма функции очень часто не является минимальной, воспользуемся методом Петрика для нахождения всех возможных минимальных форм на основе сокращенных.

Рассмотрим таблицу простых импликант, полученную в методе Квайна — Мак-Класки. В колонках находится различное число единиц. Например, в колонке 0 записана одна единица, это значит, что минтерм m0 останется в функции, если ипликанта $\bar{A}\,\bar{B}\,\bar{C}\,\bar{D}$ не будет удалена. Следовательно, импликанту $\bar{A}\,\bar{B}\,\bar{C}\,\bar{D}$ удалять нельзя. Точно так же нельзя удалять и импликанту $\bar{A}\,\bar{D}\,\bar{C}\,\bar{D}$, и т.д. На этом основании импликантную матрицу можно упростить.

Поскольку простые испликанты $\bar{A}\bar{B}\bar{C}\bar{D}$, AD, и т.д. являются обязательными для всех вариантов тупиковых форм, то их из матрицы можно удалить. Вместе с ними можно удалить и образующие их минтермы, так как в функции они уже содержатся за счет импликант $\bar{A}\bar{B}\bar{C}\bar{D}$, AD, и т.д. В таблице эти минтермы отмечены звездочками (под колонками).

После всех удалений матрица простых импликант уничтожается, что означает, что найденная скоращенная форма является минимальной.

1.1.3 Проверка

#	A	В	C	D	ĀĒCD	ĀBC	АВĈ	AD	f
0	0	0	0	0	1	0	0	0	1
1	0	0	0	1	0	0	0	0	0
2	0	0	1	0	0	0	0	0	0
3	0	0	1	1	0	0	0	0	0
4	0	1	0	0	0	0	0	0	0
5	0	1	0	1	0	0	0	0	0
6	0	1	1	0	0	1	0	0	1
7	0	1	1	1	0	2	0	0	1
8	1	0	0	0	0	0	0	0	0
9	1	0	0	1	0	0	0	1	1
10	1	0	1	0	0	0	0	0	0
11	1	0	1	1	0	0	0	1	1
12	1	1	0	0	0	0	1	0	1
13	1	1	0	1	0	0	1	1	1
14	1	1	1	0	0	0	0	0	0
15	1	1	1	1	0	0	0	1	1

Провекра сошлась.

1.1.4 Ответ

Единственная минимальная дизъюнктивная нормальная форма исходной функции:

$$f = \bar{\mathbf{A}}\,\bar{\mathbf{B}}\,\bar{\mathbf{C}}\,\bar{\mathbf{D}}\, + \bar{\mathbf{A}}\,\mathbf{B}\,\mathbf{C}\, + \mathbf{A}\,\mathbf{B}\,\bar{\mathbf{C}}\, + \mathbf{A}\,\mathbf{D}$$

1.2 CKH Φ

При нахождении тупиковых и минимальных КНФ булевых функций необходимо действовать в той же последовательности, что и в предыдщем подразделе, но с учетом того, что для инверсии заданной функции требуется найти все тупиковые формы. В общем случае последовательность действий, представленная в данном подразделе состоит в следующем:

- а) найти СДНФ заданной функции f;
- b) записать СДНФ функции \bar{f} ;
- с) представить функцию \bar{f} в виде сокращенной ДНФ;
- d) методом Петрика найти все тупиковые формы для ДНФ функции \bar{f} ;
- е) все тупиковые форму проинвертировать по теореме де Моргана. Получим список тупиковых КНФ заданной функции f:
- f) выбрать из тупиковых форм все минимальные по числу вхождений аргументов.

1.2.1 Нахождение тупиковых и минимальных КНФ

1.2.1.1 Найти СДНФ заданной функции f

$$f = \bar{A} \, \bar{B} \, \bar{C} \, \bar{D} + \bar{A} \, \bar{C} \, \bar{D} + \bar{A$$

$$f = (0, 6, 7, 9, 11, 12, 13, 15)$$

1.2.1.2 Записать СДН Φ функции \bar{f}

$$\bar{f} = \bar{A} \, \bar{B} \, \bar{C} \, D + \bar{A} \, \bar{B} \, \bar{C} \, \bar{D} + \bar{A} \, \bar{B} \, \bar{C} \, D + \bar{A} \, \bar{B} \, \bar{C} \, D + \bar{A} \, \bar{B} \, \bar{C} \, \bar{D} + \bar{A} \, \bar{C} \, \bar{D} + \bar{C} \, \bar{C} \, \bar{C} \, \bar{C} \, \bar{C} + \bar{C} \, \bar{C} \, \bar{C} \, \bar{C} \, \bar{C} \, \bar{$$

$$\bar{f} = (1, 2, 3, 4, 5, 8, 10, 14)$$

1.2.1.3 Представить функцию \bar{f} в виде сокращенной ДНФ

Количество "1"	Минтерм	Двоичное представление
]	m1	0001
1	m2	0010
	m4	0100
1	m8	1000
1	m3	0011
2	m5	0101
]	m10	1010
3	m14	1110

Импликанты 1-го уровня

Количество "1"	Минтерм	Двоичное представление	
	m(1, 3)	00-1*	
	m(1, 5)	0-01*	
1	m(2, 3)	001-*	
1	m(2, 10)	-010*	
	m(4, 5)	010-*	
	m(8, 10)	10-0*	
2	m(10, 14)	1-10*	

Таким образом, мы получили следующую **сокращенную дизъюнктивную нор- мальную форму** инверсии заданной функции:

$$\bar{f} = \bar{A} \bar{B} D + \bar{A} \bar{C} D + \bar{A} \bar{B} C + \bar{B} C \bar{D} + \bar{A} B \bar{C} + A \bar{B} \bar{D} + A C \bar{D}$$

	1	2	3	4	5	8	10	14	
m(1, 3)	1		1						ĀBD
m(1, 5)	1				1				ĀŪD
m(2, 3)		1	1						ĀĒC
m(2, 10)		1					1		$\bar{\mathrm{B}}\mathrm{C}\bar{\mathrm{D}}$
m(4, 5)				1	1				ĀBĒ
m(8, 10)						1	1		$Aar{B}ar{D}$
m(10, 14)							1	1	$AC\bar{D}$
				☆	☆	☆	☆	☆	

1.2.1.4 Методом Петрика найти все тупиковые формы для ДНФ функции \bar{f}

После всех удалений получим упрощенную матрицу:

	1	2	3		
m(1, 3)	1		1	ĀBD	φ_1
m(1, 5)	1			ĀŪD	φ_2
m(2, 3)		1	1	ĀĒC	φ_3
m(2, 10)		1		ВСD	φ_4
m(4, 5)				ĀBĒ	$arphi_5$
m(8, 10)				$A\bar{B}\bar{D}$	φ_6
m(10, 14)				$AC\bar{D}$	φ_7

Введем логические переменные $\varphi_1, \varphi_2, ..., \varphi_6$ (они записаны в дополнительной колонке в правой части таблицы). Будем считать, что $\varphi_1=1$, если простая импликанта $\bar{A}\ \bar{B}\ D$ входит в функцию, и $\varphi_1=0$, если не входит. Аналогично и для других простых импликант. Тогда если

$$\varphi_1 + \varphi_3 = 1,$$

то минтерм m_3 входит в функцию; если $\varphi_3+\varphi_4=1$, то m_2 входит в функцию и т.д.

Условие, при котором все минтермы останутся в функции, запишется в виде

$$(\varphi_1 + \varphi_2)(\varphi_3 + \varphi_4)(\varphi_1 + \varphi_3) = 1.$$

Раскроем скобки и выполним все операции согласно теореме поглощения. В конечном итоге получим

Таким образом, мы нашли ответ на поставленную задачу, правда, пока этот ответ представлен в зашифрованном виде. Расшифруем его. Каждая конъюнкция в полученном уравнении может быть равной единице. Если $\varphi_1\varphi_3=1$, то это значит, что в функцию должны войти простые импликанты $\bar{A}\,\bar{B}\,D$ и $\bar{A}\,\bar{B}\,C$. Следовательно, получили первый вариант тупиковой формы:

$$\widehat{\mathbf{I}}: \quad \overline{f}_1 = \overline{\mathbf{A}} \, \mathbf{B} \, \overline{\mathbf{C}} + \mathbf{A} \, \overline{\mathbf{B}} \, \overline{\mathbf{D}} + \mathbf{A} \, \mathbf{C} \, \overline{\mathbf{D}} + \overline{\mathbf{A}} \, \overline{\mathbf{B}} \, \mathbf{D} + \overline{\mathbf{A}} \, \overline{\mathbf{B}} \, \mathbf{C},$$

содержащий 12 вхождений аргументов.

Аналогично находим еще две тупиковые формы:

②:
$$\bar{f}_2 = \bar{A} B \bar{C} + A \bar{B} \bar{D} + A C \bar{D} + \bar{A} \bar{B} D + \bar{B} C \bar{D};$$

$$(3): \quad \bar{f}_3 = \bar{A} B \bar{C} + A \bar{B} \bar{D} + A C \bar{D} + \bar{A} \bar{C} D + \bar{A} \bar{B} C.$$

Таким образом, инверсия заданной функции имеет три тупиковые дизъюнктивные нормальные формы.

1.2.1.5 Все тупиковые форму проинвертировать по теореме де Моргана.

$$f = \left(\mathbf{A} + \overline{\mathbf{B}} + \mathbf{C}\right) \left(\overline{\mathbf{A}} + \mathbf{B} + \mathbf{D}\right) \left(\overline{\mathbf{A}} + \overline{\mathbf{C}} + \mathbf{D}\right) \left(\mathbf{A} + \mathbf{B} + \overline{\mathbf{D}}\right) \left(\mathbf{A} + \mathbf{B} + \overline{\mathbf{C}}\right)$$

$$f = \left(\mathbf{A} + \overline{\mathbf{B}} + \mathbf{C}\right) \left(\overline{\mathbf{A}} + \mathbf{B} + \mathbf{D}\right) \left(\overline{\mathbf{A}} + \overline{\mathbf{C}} + \mathbf{D}\right) \left(\mathbf{A} + \mathbf{B} + \overline{\mathbf{D}}\right) \left(\mathbf{B} + \overline{\mathbf{C}} + \mathbf{D}\right)$$

$$f = \left(\mathbf{A} + \overline{\mathbf{B}} + \mathbf{C}\right) \left(\overline{\mathbf{A}} + \mathbf{B} + \mathbf{D}\right) \left(\overline{\mathbf{A}} + \overline{\mathbf{C}} + \mathbf{D}\right) \left(\mathbf{A} + \mathbf{C} + \overline{\mathbf{D}}\right) \left(\mathbf{A} + \mathbf{B} + \overline{\mathbf{C}}\right)$$

1.2.1.6 Выбрать из тупиковых форм все минимальные по числу вхождений аргументов.

Во всех трех тупиковых формах оказалось по 15 вхождений переменных, а значит они все являются и минимальными.

1.2.2 Проверка

Проверим первую из трех минимальных форм.

#	A	В	C	D	$A + \bar{B} + C$	$\bar{A} + B + D$	$\bar{A} + \bar{C} + D$	$A + B + \bar{D}$	$A + B + \bar{C}$	f
0	0	0	0	0	1	1	1	0	1	1
1	0	0	0	1	1	1	1	0	1	0
2	0	0	1	0	1	1	1	1	0	0
3	0	0	1	1	1	1	1	0	0	0
4	0	1	0	0	0	1	1	1	1	0
5	0	1	0	1	0	1	1	1	1	0
6	0	1	1	0	1	1	1	1	1	1
7	0	1	1	1	1	1	1	1	1	1
8	1	0	0	0	1	0	1	1	1	0
9	1	0	0	1	1	1	1	1	1	1
10	1	0	1	0	1	0	0	1	1	0
11	1	0	1	1	1	1	1	1	1	1
12	1	1	0	0	1	1	1	1	1	1
13	1	1	0	1	1	1	1	1	1	1
14	1	1	1	0	1	1	0	1	1	0
15	1	1	1	1	1	1	1	1	1	1

Провекра сошлась.

1.2.3 Ответ

Три минимальные конъюктивные нормальные формы исходной функции:

$$f = \left(\mathbf{A} + \overline{\mathbf{B}} + \mathbf{C}\right) \left(\overline{\mathbf{A}} + \mathbf{B} + \mathbf{D}\right) \left(\overline{\mathbf{A}} + \overline{\mathbf{C}} + \mathbf{D}\right) \left(\mathbf{A} + \mathbf{B} + \overline{\mathbf{D}}\right) \left(\mathbf{A} + \mathbf{B} + \overline{\mathbf{C}}\right)$$

$$f = \left(\mathbf{A} + \overline{\mathbf{B}} + \mathbf{C}\right) \left(\overline{\mathbf{A}} + \mathbf{B} + \mathbf{D}\right) \left(\overline{\mathbf{A}} + \overline{\mathbf{C}} + \mathbf{D}\right) \left(\mathbf{A} + \mathbf{B} + \overline{\mathbf{D}}\right) \left(\mathbf{B} + \overline{\mathbf{C}} + \mathbf{D}\right)$$

$$f = \left(\mathbf{A} + \overline{\mathbf{B}} + \mathbf{C}\right) \left(\overline{\mathbf{A}} + \mathbf{B} + \mathbf{D}\right) \left(\overline{\mathbf{A}} + \overline{\mathbf{C}} + \mathbf{D}\right) \left(\mathbf{A} + \mathbf{C} + \overline{\mathbf{D}}\right) \left(\mathbf{A} + \mathbf{B} + \overline{\mathbf{C}}\right)$$

1.3 Полином Жегалкина

1.3.1 Метод треугольника

Метод треугольника (часто называемый методом треугольника Паскаля) позволяет преобразовать таблицу истинности в полином Жегалкина путём построения вспомогательной треугольной таблицы в соответствии со следующими правилами:

- Строится полная таблица истинности, в которой строки идут в порядке возрастания двоичных кодов от 000...00 до 111...11.
- Строится вспомогательная треугольная таблица, в которой первый столбец совпадает со столбцом значений функции в таблице истинности.
- Ячейка в каждом последующем столбце получается путём суммирования по модулю 2 двух ячеек предыдущего столбца стоящей в той же строке и строкой ниже.
- Столбцы вспомогательной таблицы нумеруются двоичными кодами в том же порядке, что и строки таблицы истинности.
- Каждому двоичному коду ставится в соответствие один из членов полинома Жегалкина в зависимости от позиций кода, в которых стоят единицы. Например, ячейке 111 соответствует член ABC, ячейке 101 член AC, ячейке 010 член B, ячейке 000 член 1 и т. д.
- Если в верхней строке какого-либо столбца стоит единица, то соответствующий член присутствует в полиноме Жегалкина.

#	A	В	C	D	f	1	D	С	CD	В	BD	ВС	BCD	A	AD	AC	ACD	AB	ABD	ABC	ABCD
0	0	0	0	0	1	1	1	1	1	1	1	0	1	1	0	1	1	0	0	1	0
1	0	0	0	1	0	0	0	0	0	0	1	1	0	1	1	0	1	0	1	1	
2	0	0	1	0	0	0	0	0	0	1	0	1	1	0	1	1	1	1	0		
3	0	0	1	1	0	0	0	0	1	1	1	0	1	1	0	0	0	1			
4	0	1	0	0	0	0	0	1	0	0	1	1	0	1	0	0	1		-		
5	0	1	0	1	0	0	1	1	0	1	0	1	1	1	0	1					
6	0	1	1	0	1	1	0	1	1	1	1	0	0	1	1						
7	0	1	1	1	1	1	1	0	0	0	1	0	1	0							
8	1	0	0	0	0	0	1	0	0	1	1	1	1		-						
9	1	0	0	1	1	1	1	0	1	0	0	0									
10	1	0	1	0	0	0	1	1	1	0	0										
11	1	0	1	1	1	1	0	0	1	0											
12	1	1	0	0	1	1	0	1	1												
13	1	1	0	1	1	1	1	0		-											
14	1	1	1	0	0	0	1														
15	1	1	1	1	1	1															

 $f(A, B, C, D) = 1 \oplus D \oplus C \oplus CD \oplus B \oplus BD \oplus BCD \oplus A \oplus AC \oplus ACD \oplus ABC$

В качестве проверки посчитаем полином еще раз другим способом.

1.3.2 Метод БПФ

Наиболее экономным с точки зрения объёма вычислений и целесообразным для построения полинома Жегалкина вручную является метод быстрого преобразования Фурье (БПФ).

Строим таблицу, состоящую из 2N столбцов и N+1 строк, где N- количество переменных в функции. В верхней строке таблицы размещаем вектор значений функции, то есть последний столбец таблицы истинности.

Каждую строку полученной таблицы разбиваем на блоки (черные линии на рисунке). В первой строке блок занимает одну клетку, во второй строке — две, в третьей — четыре, в четвёртой — восемь и т. д. Каждому блоку в некоторой строке, который мы будем называть «нижний блок», всегда соответствует ровно два блока в предыдущей строке. Будем называть их «левый верхний блок» и «правый верхний блок».

Построение начинается со второй строки. Содержимое левых верхних блоков без изменения переносится в соответствующие клетки нижнего блока. Затем над правым верхним и левым верхним блоками побитно производится операция «сложение по модулю два», и полученный результат переносится в соответствующие клетки правой части нижнего блока. Эта операция проводится со всеми строками сверху вниз и со всеми блоками в каждой строке. После окончания построения в нижней строке оказывается строка чисел, которая является коэффициентами полинома Жегалкина, записанными в той же последовательности, что и в описанном выше методе треугольника.

1	0	0	0	0	0	1	1	0	1	0	1	1	1	0	1
1	1	0	0	0	0	1	0	0	1	0	1	1	0	0	1
1	1	1	1	0	0	1	0	0	1	0	0	1	0	1	1
1	1	1	1	1	1	0	1	0	1	0	0	1	1	1	1
1	1	1	1	1	1	0	1	1	0	1	1	0	0	1	0
1	D	C	CD	В	BD	BC	BCD	A	AD	AC	ACD	AB	ABD	ABC	ABCD

 $f(A, B, C, D) = 1 \oplus D \oplus C \oplus CD \oplus B \oplus BD \oplus BCD \oplus A \oplus AC \oplus ACD \oplus ABC$

1.3.3 Проверка

Результаты в методах треугольника и БПФ совпали.

2 Задача II

Для булевой функции из задачи I:

- а) используя метод каскадов, построить контактную схему, проанализировав и проверив правильность её построения с помощью дерева анализа;
- б) положив $X_{(N \mod 4)+1} = 0$, построить логическую схему из функциональных элементов (инвертора, дизьюнктора, коньюнктора и дублятора).

2.1 Часть а)

2.1.1 Синтез контактной схемы методом каскадов

 $f(A, B, C, D) = 1 \oplus D \oplus C \oplus CD \oplus B \oplus BD \oplus BCD \oplus A \oplus AC \oplus ACD \oplus ABC$

$$f(1, B, C, D) = D \oplus B \oplus BD \oplus BCD \oplus BC$$

$$f(0, B, C, D) = 1 \oplus D \oplus C \oplus CD \oplus B \oplus BD \oplus BCD$$

$$f(1, 1, C, D) = 1 \oplus C \oplus CD$$

$$f(1, 0, C, D) = D$$

$$f(0, 1, C, D) = C$$

$$f(0, 0, C, D) = 1 \oplus D \oplus C \oplus CD$$

$$f(0, 0, D, D) = 1 \oplus D$$

2.1.2 Дерево анализа контактной схемы

$$\pi_1 = \left(q \xrightarrow{\text{A}} v_1, v_1 \xrightarrow{\text{D}} e\right)$$

$$\pi_2 = \left(q \xrightarrow{A} v_1, v_1 \xrightarrow{B} v_3, v_3 \xrightarrow{C} e\right)$$

$$\pi_3 = \left(q \xrightarrow{\stackrel{-}{A}} v_2, v_2 \xrightarrow{B} v_5, v_5 \xrightarrow{C} e\right)$$

$$\pi_4 = \left(q \xrightarrow{\stackrel{-}{A}} v_2, v_2 \xrightarrow{\stackrel{-}{B}} v_6, v_6 \xrightarrow{\stackrel{-}{C}} v_7, v_7 \xrightarrow{\stackrel{-}{D}} e \right)$$

$$f = \bar{\mathbf{A}} \, \bar{\mathbf{B}} \, \bar{\mathbf{C}} \, \bar{\mathbf{D}} + \bar{\mathbf{A}} \, \mathbf{B} \, \mathbf{C} + \mathbf{A} \, \mathbf{B} \, \bar{\mathbf{C}} + \mathbf{A} \, \mathbf{D}$$

2.2 Часть б)

2.2.1 Логическая схема из функциональных элементов

$$X_{(9 \bmod 4)+1} = X_2 = 0 \Longrightarrow \mathbf{B} = 0$$

$$f = \bar{\mathbf{A}} \, \bar{\mathbf{C}} \, \bar{\mathbf{D}} + \mathbf{A} \, \mathbf{D}$$

