Devoir 3 MCMC

Aminata Ndiaye

September 2022

1 Exercice 7.2

Voir fichier R

Simulations avec algo MH et loi normale

Monitoring MH loi normale

Simulations avec algo MH et loi de student

Monitoring MH avec loi de student

2 Exercice 6.12

2.1 a)

Nous cherchons à montrer que

$$\mathbb{P}(Z_{n+1} = z_{n+1}|Z_1, \cdots, Z_n) = \mathbb{P}(Z_{n+1} = z_{n+1}|Z_n)$$

Remarquons que

$$Z_0 = Y_0, Z_1 = Y_0 + Y_1, \cdots, Z_n = Y_0 + \cdots + Y_n$$

Comme les Y_0, \dots, Y_n sont indépendants de Y_{n+1} , les z_0, \dots, z_n étant des sommes (transformations mesurables) de variables aléatoires indépendantes de Y_{n+1} , ils sont également indépendants de Y_{n+1} . Donc :

$$\mathbb{P}(Z_{n+1} = z_{n+1}|Z_1, \cdots, Z_n) = \mathbb{p}(Z_n + Y_{n+1} = z_{n+1}|Z_1, \cdots, Z_n)$$
$$= \mathbb{P}(Z_n + Y_{n+1} = z_{n+1}|Z_n)$$
$$= \mathbb{P}(Z_{n+1} = z_{n+1}|Z_1)$$

 $(Zn)_{n\in N_+}$ vérifie la propriété de Markov.

2.2**b**)

Workfolds que :
$$V_{n+1}^+ = \begin{cases} V_n^+ - 1 & \text{si } V_n^+ > 1 \\ Y_i & \text{sinon.} \end{cases}$$
 Supposons que $V_n^+ = k$ avec $k > 1$.
Posons $m_1 \in \mathbb{N}_+$ tel que, $V_n^+ = \sum_{i=0}^{m_1} Y_i - n = k$. On a que :

$$V_n^+ - 1 = \sum_{i=0}^{m_1} Y_i - n - 1 = k - 1$$

Montrons que $V_{n+1}^+ = V_n^+ - 1$ si $V_n^+ > 1$ Supposons qu'il existe m_2 tel que :

$$0 < \sum_{i=0}^{m_2} Y_i - n - 1 < k - 1$$
$$1 < \sum_{i=0}^{m_2} Y_i - n < k$$

Cela veut dire qu'il existe m_2 tel que :

$$1 < \sum_{i=0}^{m_2} Y_i - n < V_n^+$$

Ce qui est est contraire à la définition de V_n^+ . Donc on a bien que $V_{n+1}^+ = V_n^+ - 1$ si $V_n^+ > 1$.

Maintenant montrons que $V_{n+1}^+ = Y_i$ si $V_n^+ = 1$

Posons \tilde{m} tel que :

$$V_n^+ = Z\tilde{m} - n = 1$$

Donc $Z\tilde{m}-n-1=0$. Par définition de $V_n^+,\,V_{n+1}^+$ ne peut pas être égale à $Z\tilde{m}-n-1=0$. De plus comme (Z_n) est croissante, le m tel que $V_{n+1}^+ = Zm - n - 1$ est strictement plus grand que \tilde{m} .

De plus comme $Y_i \in \mathbb{N}_+$, m est égale à $\tilde{m} + 1$. Donc :

$$V_{n+1}^{+} = \sum_{i=0}^{m+1} Y_i - n - 1$$
$$= Y_{m+1} + V_n^{+} - 1$$
$$= Y_{m+1} \sim Y_i$$

2.3 c)

Nous avons montré que :

$$V_{n+1}^{+} = \begin{cases} V_n^{+} - 1 & \text{si } V_n^{+} > 1 \\ Y_i & \text{sinon.} \end{cases}$$

Ainsi V_{n+1}^+ ne dépend que de V_n^+ et de Y_i indépendant des V_n^+ . V_n^+ est donc une chaine de Markov.

Exercice 6.2 3

Soit (X_n) une chaine de Markov homogène en temps :

$$\exists P \ E \times E \longrightarrow [0,1] \ \text{tel que} \ \forall n \in \mathbb{N}, \forall (x,y) \in E \times E$$

$$P(x,y) = \mathbb{P}(X_{n+1} = y | X_n = x)$$

Soit K la noyau de transition de la chaine de markov, $A\subset E$:

$$\mathbb{P}\big(X_{n+1}\in A|X_n=x\big)=K(x,A)$$

$$=\sum_{y\in A}P(x,y) \text{ (qui ne dépend pas de n)}$$

Dans le cas d'un ensemble E fini, la matrice de transition Q est une matrice carré de coefficient $q_{i,j} = P(e_i, e_j)$, avec les (e_n) les éléments de E. Cette matrice est donc constante.