LESSON 2

Drive Trains

THE PURPOSE OF DRIVE TRAINS

PROVIDES MOBILITY FOR THE ROBOT

If you can't drive, you can't play the game

- Push + pull objects and robots
- Move around the field
- Move over/around obstacles
- Enhances or aids in the abilities of speed, agility, and pushing force

DIFFERENT TYPES OF WHEELS

- "Traction" Wheels
 - Standard wheels with varying amounts of traction, strength and weight
 - Kit of Parts (KOP)
 - AndyMark (AM) or VEX Pro
 - Pneumatic
 - air filled tire
 - super defense
 - really big and really strong
 - Slick
 - Custom

Pneumatic

DIFFERENT TYPES OF WHEELS

• Omni

- rollers are attached around the wheel
 - perpendicular to axis of rotation
- o can move in both x and y axis

Mecanum

- o rollers are attached at an angle
 - but attach on a 45 degree angle
- allows robot to strafe

DIFFERENT TYPES OF DRIVE TRAIN

- Tank Drive
 - o 4-wheel
 - o 6-wheel
 - o 8-wheel
- Slide
- Mecanum
- Swerve
- Slide
- Crab
- *Nona (variant of Slide)
- *Butterfly (<u>http://www.teamneutrino.org/seasons/ultimate-ascent/robot/butterfly/</u>)

TANK DRIVE (4-WHEEL)

- Simple construction
- 2 wheels on each side of chassis
 - connected to gearbox
 - left and right sides are driven independently
- Pros
 - easy to build
 - o potential for high speed
- Cons
 - hard to maneuver
 - greater maneuverability if there are 2 omni wheels in front or back

TANK DRIVE (6-WHEEL)

- Similar to 4-wheel
- 3 wheels on each side
- May have a dropped center wheel
 - o reduces turn radius and friction
- PROS
 - o potential for full pushing force
 - o easier to turn
- CONS
 - heavy
 - may lead to problems when climbing obstacles

TANK DRIVE (8-WHEEL)

- Made for climbing
- 4 wheels on each side
- Usually uses traction wheels
- Pros
 - able to travel across objects and field elements
 - high pushing capability
- Cons
 - very heavy
 - longer to build

SLIDE

- Similar to tank drive
 - an extra wheel(s) perpendicular to the rest
- *MUST use omni wheels
- Pros
 - easy/cheap to build + design
 - o agile
- Cons
 - o no potential for high pushing force
 - extra wheel(s), motor(s), and gearbox(es)are necessary for robot to move sideways

MECANUM

- Each wheel must be driven independently
- Must use 4 mecanum wheels
- Strengths:
 - o Fairly easy to design and build
 - Agile
- Weaknesses:
 - No potential for high pushing force
 - Challenging to program and learn to drive well
 - Requires extra gearboxes
 - Wheels are \$\$\$

SWERVE

- Wheels modules rotate on the vertical axis to control direction
- Typically 4 traction wheels
- Strengths:
 - Potential for high speed and/or pushing force
 - o Agile
- Weaknesses:
 - Very complex and expensive to design, build and program
 - o Extra motors required to be able to rotate robot frame
- Different Steering:
 - Four modules steered together = crab drive
 - Front modules steered together, back modules steered together
 - Right modules steered together, left modules steered together

SOURCES

- http://www.simbotics.org/resources/mobility/drivetrainselection
- http://www.simbotics.
 org/resources/mobility/omnidirectional-drive
- http://curriculum.vexrobotics.com/curriculum/drivetraindesign/drivetrain-terminology