Уравнения математической физики

Программа билетов к экзамену. Поток В.И. Зубова

7 июня 2021 г.19:40

Конспект подготовлен на основе лекций В.И. Зубова и подготовленных билетов Павла Останина и Михаила Христиченко. Делали:

- Иванычев Сергей, 376 группа
- Погодин Роман, 374 группа
- Нагайко Иван, 372 группа
- Рязанов Андрей, 374 группа
- Федоряка Дмитрий, 374 группа
- Багно Богдан, 376 группа
- Изутин Никита, 378 группа
- Ермолова Марина, 373 группа
- Хасянов Расул, 371 группа
- Михальченко Егор, 371 группа
- Шлёнский Владислав, 374 группа
- Цветкова Ольга, 374 группа
- Молибог Игорь, 374 группа
- Чигринский Виктор, 374 группа
- Леонтьев Семён, 377 группа
- Кильянов Александр, 372 группа
- Тернов Лёха, 228 группа

Содержание

1	Билет 1. Приведение к каноническому виду в точке дифференциальных уравнений в частных производных (ДУЧП) 2 порядка в \mathbb{R}^n с линейной старшей частью. Классификация уравнений. Приведение уравнений 2 порядка к каноническому виду на плоскости		
	1.1	Гиперболический случай	8
	1.2	Параболический случай	10
	1.3	Эллиптический случай	11
	1.4	Формальный вид уравнения характеристик	11
2	про	лет 2. Постановка задачи Коши для уравнения 2-го порядка с частными ризводными в \mathbb{R}^n с линейной старшей частью. Понятие о корректности ачи Коши. Пример Адамара некорректности задачи Коши для уравнения пласа.	12
3	бер	лет 3. Задача Коши для уравнения колебаний струны. Формула Далам- ра. Область зависимости решения от начальных данных. Существование динственность классического решения. Корректность постановки задачи	16
4	кре	лет 4. Смешанная задача для колебаний полубесконечной струны с за- спленным концом. Условия согласования начальных и граничного данных. ществование и единственность классического решения.	18
	4.1	Формулировка	18
	4.2	Общее решение	18
	4.3	Сшивка	19
	4.4	Окончательное решение задачи	20
5	ног	лет 5. Формула Пуассона-Кирхгофа решения задачи Коши для однородю волнового уравнения в \mathbb{R}^3 . Существование классического решения этой ачи.	22
6		лет 6. Формула Кирхгофа решения задачи Коши для неоднородного волюго уравнения в \mathbb{R}^3 . Метод Дюамеля. Принцип Гюйгенса	26
	6.1	Формулировка задачи	26
	6.2	Метод Дюамеля	26
	6.3	Запаздывающий потенциал	27
	6.4	Общая задача	28
	6.5	Принцип Гюйгенса	28

7	Билет 7. Формула Пуассона решения задачи Коши для волнового уравнения в \mathbb{R}^2 . Метод спуска. Диффузия волн	3 0
8	Билет 8. Теорема о единственности классического решения задачи Коши для волнового уравнения (на примере случая \mathbb{R}^2). Метод интеграла энергии.	32
9	Билет 9. Формула Пуассона решения задачи Коши для однородного уравнения теплопроводности в \mathbb{R}^1 Фундаментальное решение. Существование классического решения задачи Коши при непрерывной ограниченной начальной функции.	
10	Билет 10. Формула Пуассона решения задачи Коши для однородного и неоднородного уравнений теплопроводности в \mathbb{R}^n . Метод Дюамеля. Существование классического решения.	
11	Билет 11. Принцип максимума для уравнения теплопроводности. Теорема о единственности решения задачи Коши уравнения теплопроводности в классе $\mathbf{M_2}(\mathbf{T})$ (без доказательства)	
12	Билет 12. Решение методом Фурье смешанной задачи для однородного уравнения теплопроводности на отрезке с однородными краевыми условиями Дирихле. Существование и единственность классического решения.	
13	Билет 13. Метод Фурье решения смешанной задачи для уравнения коле- баний струны с закреплёнными концами. Обоснование метода для случая однородного уравнения.	
	13.1 Формулировка задачи	55
	13.2 Теорема единственности	55
	13.3 Обоснование метода	57
14	Билет 14. Формулы Грина для оператора Лапласа. Постановка краевых за- дач Дирихле и Неймана для уравнения Пуассона в ограниченной области. Единственность классического решения задачи Дирихле. Неединственность решения задачи Неймана и необходимое условие её разрешимости.	
	14.1 Формулы Грина	60
	14.1.1 Формулы Грина	60
	14.1.2 Первая формула Грина	61
	14.1.3 Вторая формула Грина	61
	14.2 Внутрення задача Дирихе для уравнения Пуассона	61

15	Билет 15. Симметричность и положительная определенность оператора $-\Delta$ при однородном граничном условии Дирихле. Положительность собственных значений и ортогональность собственных функций.	
16	Билет 16. Решение методом Фурье задачи Дирихле для уравнения Лапласа в круге. Представление решения в виде ряда по однородным гармоническим многочленам и в виде интеграла Пуассона. Существование классического решения при непрерывной граничной функции.	
	16.1 Решение методом Фурье задачи Дирихле для уравнения Лапласа в круге	65
	16.2 Представление решения в виде ряда по однородным гармоническим многочленам и в виде интеграла Пуассона. Существование классического решения при непрерывной граничной функции	66
17	Билет 17. Интегральное представление решений уравнений Лапласа и Пуассона в ограниченной области. Фундаментальное решение уравнения Лапласа.	
	17.1 Интегральное представление решений уравнений Лапласа и Пуассона в ограниченной области.	69
	17.2 Фундаментальное решение уравнения Лапласа	70
18	Билет 18. Свойства гармонических функций в \mathbb{R}^3 : бесконечная дифференцируемость, теорема о среднем. Обратная теорема о среднем.	73
19	Билет 19.Принцип максимума и минимума для гармонических функций. Единственность классического решения задачи Дирихле для уравнения Пуассона при непрерывной граничной функции	
	19.1 Теорема (принцип максимума)	75
	19.2 Новая постановка задачи Дирихле для уравнения Пуассона	77
	19.3 Теорема единственности	77
20	Билет 20. Функция Грина для задачи Дирихле (случай \mathbb{R}^3). Функция Грина для шара. Формула Пуассона решения задачи Дирихле для уравнения Лапласа в шаре	
	20.1 Функция Грина	78
	20.2 Функция Грина для шара	79
	20.3 Формула Пуассона в шаре	80
21	Билет 21. Теорема Лиувилля для гармонических функций (случай \mathbb{R}^3)	81
	21.1 Формулировка теоремы	81
	21.2 Доказательство при $\mu \geq 0$	81

	21.3 Доказательство при $\mu < 0$	82
22	Билет 22. Теорема об устранимой особой точке для гармонических функций (случай \mathbb{R}^3)	83
23	Билет 23. Преобразование Кельвина и его свойства. Регулярность поведения гармонических функций на бесконечности. Единственность решения внешних задач Неймана и Дирихле для уравнения Лапласа (случай \mathbb{R}^3).	
24	Билет 24. Интегральные операторы с непрерывными и полярными ядрами в ограниченной области, их непрерывность в пространстве $C(\bar{G})$. Приближение операторов с полярными ядрами операторами с непрерывными ядрами.	
25	Билет 25. Интегральное уравнение Фредгольма второго рода с малым по норме интегральным оператором K . Представление решения рядом Неймана. Ограниченность оператора $(I-\lambda K)^{-1}$.	
26	Билет 26. Интегральное уравнение Фредгольма второго рода с вырожденными ядрами. Сведение к системе линейных алгебраических уравнений. Теоремы Фредгольма в этом случае. 26.1 Разрешимость интегрального уравнения с вырожденным ядром	94 95
27	Билет 27. Интегральное уравнение Фредгольма второго рода с непрерывными и полярными ядрами. Теоремы Фредгольма. Дискретность множества характеристических чисел.	97
28	Билет 28. Объемный ньютонов потенциал и его свойства. Убывание на бесконечности. Результат действия оператора Лапласа на объемный потенциал.	
29	Билет 29. Понятие области с границей C^2 . Потенциал просто слоя. Его свойства. Непрерывность в \mathbb{R}^3	103
30	Билет 30. Потенциал двойного слоя. Интеграл Гаусса. Скачок потенциала двойного слоя при переходе через границу, на которой задаётся плотность	
31	Билет 31. Понятие правильной нормальной производной. Существование правильной нормальной производной у потенциала простого слоя с непрерывной плотностью Формула скачка для нормальной производной	
32	Билет 32. Сведение с помощью потенциалов внутренней задачи Дирихле и внешней задачи Неймана для уравнения Лапласа к интегральным уравнениям на границе. Существование и единственность решения этих задач	

32.1	Внешняя задача Неймана для уравнения Лапласа	116
32.2	Внутренняя задача Дирихле для уравнения Лапласа	117

1 Билет 1. Приведение к каноническому виду в точке дифференциальных уравнений в частных производных (ДУЧП) 2 порядка в \mathbb{R}^n с линейной старшей частью. Классификация уравнений. Приведение уравнений 2 порядка к каноническому виду на плоскости

Пусть $\Omega \subset \mathbb{R}^n$. ДУЧП 2 порядка с линейной старшей частью:

$$\sum_{i,j=1}^{n} a_{ij}(x) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} + F(x, u, \nabla u) = 0; \qquad u(x) \in C^{2}(\Omega); \quad a_{ij}(x) \in C(\Omega)$$

Считаем $a_{ij}(x) = a_{ji}(x)$, что не сужает класса, т.к. $u_{x_ix_j} = u_{x_jx_i}$. Хотим сделать замену так, чтобы все смешанные частные производные обратились в 0. В точке это сделать можно. Возьмём преобразование

$$y = y(x) = \begin{cases} y_1 = y_1(x_1, \dots, x_n) \\ \dots \\ y_n = y_n(x_1, \dots, x_n) \end{cases} \in C^2(U(x^0)), \quad y^0 = y(x^0); \quad U(x^0) \to V(y^0)$$

(диффеоморфизм класса C^2 окр. $U(x^0)$ на $V(y^0)$)

Будем предполагать \exists обратного: x=x(y) Наша функция: $u=u(x_1\dots x_n)$. Введём $\hat{u}(y)=u[x(y)]\in C^2(V(y^0))$ Производные:

$$\frac{\partial u}{\partial x_i} = \sum_{k=1}^n \frac{\partial \hat{u}}{\partial y_k} \frac{\partial y_k}{\partial x_i}; \qquad \frac{\partial^2 u}{\partial x_i \partial x_j} = \sum_{k,l=1}^n \frac{\partial^2 \hat{u}}{\partial y_k \partial y_l} \frac{\partial y_k}{\partial x_i} \frac{\partial y_l}{\partial x_j} + \sum_{k=1}^n \frac{\partial \hat{u}}{\partial y_k} \frac{\partial^2 y_k}{\partial x_i \partial x_j}$$

Подставляем:

$$\sum_{i,j=1}^{n} a_{ij}(x(y)) \sum_{k,l=1}^{n} \frac{\partial^{2} \hat{u}}{\partial y_{k} \partial y_{l}} \frac{\partial y_{k}}{\partial x_{i}} \frac{\partial y_{l}}{\partial x_{j}} + \hat{F}(y, \hat{u}, \nabla_{y} \hat{u}) = 0$$

$$\sum_{k,l=1}^{n} \left[\sum_{i,j=1}^{n} a_{ij}(x(y)) \frac{\partial y_{k}}{\partial x_{i}} \frac{\partial y_{l}}{\partial x_{j}} \right] \frac{\partial^{2} \hat{u}}{\partial y_{k} \partial y_{l}} + \hat{F}(y, \hat{u}, \nabla_{y} \hat{u}) = 0,$$

$$\sum_{i,j=1}^{n} a_{ij}(x(y)) \frac{\partial y_{k}}{\partial x_{i}} \frac{\partial y_{l}}{\partial x_{j}} = \hat{a}_{kl}(y)$$

Введём матрицы: $A(x^0) = \|a_{ij}(x^0)\|_{i,j=1}^n$; $\hat{A}(y^0) = \|\hat{a}_{ij}(y^0)\|_{i,j=1}^n$. $J(x^0) = \left\|\frac{\partial y_i}{\partial x_j}(x^0)\right\|_{i,j=1}^n$ - в малой $U(x^0)$ задаёт преобразование $\hat{A}(y^0) = J(x^0)A(x^0)J^T(x^0)$

 $A=A^T\Rightarrow \hat{A}^T=\hat{A}.$ Вопрос в выборе J, так что \hat{A} диагональна.

Пусть в \mathbb{R}^n заданы элемент h и квадратичная форма $\Phi(h)$. Введём 2 базиса: $\begin{pmatrix} (e_1 \dots e_n) \\ (e'_1 \dots e'_n) \end{pmatrix}$ В них $h \sim \begin{cases} \xi = (\xi_1 \dots \xi_n)^T \\ \eta = (\eta_1 \dots \eta_n)^T \end{cases}$; $\Phi \sim \frac{\|c_{ij}\|}{\|\hat{c}_{ij}\|}$; $\Phi(h) = \begin{cases} \xi^T c \xi \\ \eta^T \hat{c} \eta \end{cases}$ Пусть $\xi = S\eta$. Тогда $\Phi(h) = \eta^T S^T C S \eta = \eta^T \hat{C} \eta \to \hat{c} = S^T C S$. Существует такой базис, что $\hat{C} = diag(\underbrace{+1, +1 \cdots + 1}_{p \text{ intyk}}, \underbrace{-1, -1 \cdots - 1}_{q \text{ intyk}}, 0, 0 \dots 0)$ $\Phi(h) = \eta_1^2 + \cdots + \eta_p^2 - \eta_{p+1}^2 - \cdots - \eta_{p+q}^2$

$$\Phi(h) = \eta_1^2 + \dots + \eta_p^2 - \eta_{p+1}^2 - \dots - \eta_{p+q}^2$$

В равенстве $\hat{A}(y^0) = J(x^0)A(x^0)J^T(x^0)$ нужно взять $J(x^0) = S^T$

Такие преобразования существуют, их много. Например, $y = y^0 + S^T(x^0)(x - x^0)$

В этих переменных уравнение принимает вид:

$$\frac{\partial^2 \hat{u}}{\partial y_1^2} + \dots + \frac{\partial^2 \hat{u}}{\partial y_p^2} - \frac{\partial^2 \hat{u}}{\partial y_{p+1}^2} - \dots - \frac{\partial^2 \hat{u}}{\partial y_{p+q}^2} + \hat{F}(y, \hat{u}, \nabla_y \hat{u}) = 0.$$

Классификация уравнений:

- 1. Эллиптический тип: p = n или q = n
- 2. Ультрагиперболический тип: p + q = n
- 3. Гиперболический тип: p = 1, q = n 1
- 4. Ультрапараболический тип: p + q < n
- 5. Параболический тип: q = 0, p = n 1

Замечание. $\hat{A}(y^0) = J(x^0)A(x^0)J^T(x^0) \Rightarrow \operatorname{sign} \left|\hat{A}(y^0)\right| = \operatorname{sign} |A(x^0)|$

В случае n=2 тип уравнения в точке определяется по знаку определителя:

- 1. Эллиптический вид: $\hat{A}(y^0) = \begin{pmatrix} \pm 1 & 0 \\ 0 & \pm 1 \end{pmatrix} \rightarrow \left| \hat{A}(y^0) \right| = 1$
- 2. Гиперболический вид: $\hat{A}(y^0) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \rightarrow \left| \hat{A}(y^0) \right| = -1$
- 3. Параболический вид: $\left| \hat{A}(y^0) \right| = 0$.

Приведение уравнения 2 порядка к каноническому виду на плоскости:

Рассмотрим в \mathbb{R}^2 уравнение $a(x,y)u_{xx}+2b(x,y)u_{xy}+c(x,y)u_{yy}+F(x,y,u,\nabla u)=0$ Для определения в точке используем $d=\left|\begin{array}{cc}a&b\\b&c\end{array}\right|$

Введём преобразование $y=y(x)= \begin{cases} \xi=\xi(x,y) \\ \eta=\eta(x,y) \end{cases}$ — диффеоморфизм класса $C^2.$

В новых координатах $\hat{a}\left(\xi,\eta\right)\hat{u}_{\xi\xi}+2\hat{b}\left(\xi,\eta\right)\hat{u}_{\xi\eta}+\hat{c}\left(\xi,\eta\right)\hat{u}_{\eta\eta}+\hat{F}\left(\xi,\eta,\hat{u},\nabla_{\xi\eta}\hat{u}\right)=0$

$$\hat{A}\left(\xi,\eta\right) = \left(\begin{array}{cc} \hat{a} & \hat{b} \\ \hat{b} & \hat{c} \end{array}\right); \quad A = \left(\begin{array}{cc} a & b \\ b & c \end{array}\right); \quad \hat{A} = JAJ^T; \quad J = \left(\begin{array}{cc} \xi_x & \xi_y \\ \eta_x & \eta_y \end{array}\right)$$

Гиперболический случай 1.1

Выбираем $(x_0,y_0)\in\Omega$, пусть $d(x_0,y_0)=ac-b^2<0$. В силу непрерывности есть $U_{\varepsilon}(x_0,y_0)$, где d < 0.

Во всех точках этой окрестности тип-гиперболический.

Определение 1.1. Второй канонический тип: $\hat{u}_{\xi\eta} + \hat{F}(\xi, \eta, \hat{u}, \nabla \hat{u}) = 0$, то есть $\hat{a} \equiv \hat{c} \equiv 0 \ \forall \xi, \eta \in V(\xi^{\circ}, \eta^{\circ})$.

Запишем характеристическое уравнение:

$$a(x,y)w_x^2 + 2b(x,y)w_xw_y + c(x,y)w_y^2 = 0,$$

где w либо η , либо ξ ; от решений хотим grad $w \neq 0$, так как если $\nabla \eta = 0$ или $\nabla \xi = 0$, то J = 0.

Замечание. w(x) = 0 - характеристическая $\Rightarrow \tilde{w}(x) = w(x) - c = 0$ - также характеристическая: $\tilde{c} \in C^2, \ \nabla \tilde{w} \neq 0, \ \tilde{w}$ - удовлетворяет характеристическому уравнению.

Определение 1.2. Переменные ξ, η - xарактеристические; поверхности $\xi = C_1, \ \eta = C_2$ - xарактеристические.

а) Пусть $a(x^{\circ}, y^{\circ}) \neq 0$, для $c(x^{\circ}, y^{\circ}) \neq 0$ рассуждения такие же. В окрестности, где $a(x, y) \neq 0$ ($u_{\varepsilon}(x^{\circ}, y^{\circ})$), делим:

$$w_x^2 + \frac{2b}{a}w_x w_y + \frac{c}{a}w_y^2 = \left(w_x + \frac{b}{a}w_y\right)^2 - \frac{b^2 - ac}{a}w_y = \left[w_x + \lambda_+(x, y)w_y\right] \cdot \left[w_x + \lambda_-w_y\right] = 0,$$

где введены обозначения $\lambda_{\pm} = \frac{1}{a}(b \pm \sqrt{b^2 - ac})$, верно, что $\lambda_{-} \neq \lambda_{+} \ \forall (x,y) \in U_{\varepsilon}(x^{\circ}, y^{\circ})$, так как $d = ac - b^2 < 0$.

Рассмотрим ЛДУЧП 1-го порядка $w_x + \lambda(x,y)w_y = 0$.

Из теории: у однородного ДУЧП $a_1(x,y)w_x+a_2(x,y)w_y=0$ при условии $a_1^2+a_2^2>0$ решение есть:

$$\exists\, w(x,y)\in C^2(\Omega),\ \nabla w
eq 0$$
 и $\dfrac{dx}{a_1}=\dfrac{dy}{a_2}$ — первый интеграл

В нашем случае $\frac{dx}{1}=\frac{dy}{\lambda}\Leftrightarrow dy-\lambda dx=0$ - ПИ этого уравнения даёт решение исходного ДУЧП.

Значит, в обеих скобках есть по решению, причём $\nabla w \neq 0$.

Покажем невырожденность:

$$\begin{cases} \xi_x + \lambda_+ \xi_y = 0, \\ \eta_x + \lambda_- \eta_y = 0. \end{cases}$$

$$\left|J(x^{\circ},y^{\circ})\right| = \det\begin{pmatrix} \xi_{x} & \xi_{y} \\ \eta_{x} & \eta_{y} \end{pmatrix} = \det\begin{pmatrix} -\lambda_{+}\xi_{y} & \xi_{y} \\ -\lambda_{-}\eta_{y} & \eta_{y} \end{pmatrix} = \underbrace{(\lambda_{-} - \lambda_{+})}_{\neq 0 \text{ в силу гиперболичности}} \cdot \xi_{y}\eta_{y} \mid \text{если } \xi_{y} = 0 \Rightarrow \xi_{x} = 0 \Rightarrow \nabla \xi$$

Итак, $(\xi(x,y),\eta(x,y))$ - диффеорморфизм класса C^2 . Оно зануляет \hat{a} и \hat{c} . Получается уравнение второй канонической форме.

Замечание. От II канонической форме к I:

$$\begin{cases} \alpha = \xi + \eta, \\ \beta = \xi - \eta \end{cases} \Rightarrow \hat{u}(\xi, \eta) = \tilde{u}(\underbrace{\xi + \eta}_{\alpha}, \underbrace{\xi - \eta}_{\beta}), \ \hat{u}_{\xi} = \tilde{u}_{\alpha} + \tilde{u}_{\beta}, \ u_{\xi\eta} = \tilde{u}_{\alpha\alpha} - \tilde{u}_{\beta\beta} \end{cases}$$

Тогда наше уравнение:

$$\tilde{u}_{\alpha\alpha} - \tilde{u}_{\beta\beta} + \tilde{F}(\alpha, \beta, \tilde{u}, \nabla_{\alpha\beta}\tilde{u}) = 0 -$$
 I каноническая форма

- б) Если $a(x,y) \equiv c(x,y) \equiv 0 \ \forall \ (x,y) \in U(x^\circ,y^\circ), \ \text{то} \ b \neq 0, \ \text{иначе уравнение в нуле функции в не второго порядка.}$ Уравнение имеет II каноническую форму, преобразование в I выше.
- в) Если $a(x^0,y^0)=c(x^0,y^0)=0,$ но в любой окрестности $W(x^0,y^0)$ есть точки, где

$$|a(x^*, y^*)| + |c(x^*, y^*)| > 0,$$

то заменим $\xi = x + y, \eta = x - y,$ и получим случай а.

1.2 Параболический случай

Пусть в точке и некоторой ее окрестности тип параболический, то есть $d = ac - b^2 = 0$, причем $\forall (x,y) \in U(x^0,y^0), a^2 + c^2 \neq 0$. Уравнение характеристик:

$$a\omega_x^2 + 2b\omega_x\omega_y + c\omega_y^2 = 0 \Rightarrow (\omega_x + \lambda\omega_y)^2 = 0 \Rightarrow \lambda = \lambda_+ + \lambda_- = \frac{b}{a}$$

Находим решение $\omega = \eta(x,y) \in C^2(U(x^0,y^0)), \nabla \omega(x,y) \neq 0.$

 $\begin{cases} \xi = \xi(x,y) & \text{эту берем произвольно, чтобы был диффеоморфизм} \\ \eta = \eta(x,y) & \text{эту построили. Доказательство того, что всегда можно выбрать опущено} \end{cases}$

Мы взяли ξ , что $\hat{c}\equiv 0$. Покажем, что и $\hat{b}\equiv 0$:

$$\hat{A} = JAJ^{\mathsf{T}} \Rightarrow |\hat{A}| = |J|^2 \cdot |A| = |J|^2 (ac - b^2) = 0 = \hat{a}\hat{c} - \hat{b}^2 \Rightarrow \hat{b} = 0$$

Пришли к

$$\hat{a}(\xi,\eta)\hat{u}_{\xi\xi} + \hat{F}(\xi,\eta,\hat{u},\nabla_{\xi,\eta}\hat{u}) = 0$$

 $\hat{a}\not\equiv 0,$ иначе 1 порядок, а обратная замена дает второй порядок

1.3 Эллиптический случай

$$d(x,y) = ac - b^2 > 0 \ \forall \ (x,y) \in U(x^0, y^0)$$

Во всех точках окрестности $a \neq 0$ и $c \neq 0$, иначе было бы $d = -b^2 \leqslant 0$. Характеристическое уравнение:

$$[\omega_x + \lambda_+ \omega_y] [\omega_x + \lambda_- \omega_y] = 0$$

где $\lambda_{\pm}=\frac{b^2\pm\sqrt{b^2-ac}}{a}=\mu\pm i\nu, \mu, \nu\in C^2$. При этом для функций λ_+,λ_- известно $\lambda_+=\overline{\lambda_-}$. Два линейных ДУЧП первого порядка:

$$\omega_x \pm \lambda_{\pm}\omega_y = 0$$

Представим $\omega = \xi \pm i\eta \Rightarrow (\xi \pm i\eta)_x + (\mu + i\nu)(\xi \pm i\eta)_y = 0$

$$\begin{cases} \text{Re}: & \xi_x + \mu \xi_y - \nu \eta_y = 0 \\ \text{Im}: & \eta_x + \nu \xi_y + \mu \eta_y = 0 \end{cases}$$
 замена
$$\begin{cases} \xi = \xi(x,y) \\ \eta = \eta(x,y) \end{cases} \in C^2, \nabla \neq 0$$

Невырожденность:

$$J = \begin{vmatrix} \xi_x & \xi_y \\ \eta_x & \eta_y \end{vmatrix} = \begin{vmatrix} (-\mu \xi_y + \nu \eta_y) & \xi_y \\ (-\nu \xi_y - \mu \eta_y) & \eta_y \end{vmatrix} = \nu \underbrace{(\xi_y^2 + \eta_y^2)}_{\neq 0 \text{ т.к. } \nabla > 0} \neq 0 \text{ где } \nu \neq 0$$

$$a\omega_x^2 + 2b\omega_x\omega_y + c\omega_y^2 \Rightarrow \underbrace{\left(a\xi_x^2 + 2b\xi_x\xi_y + c\xi_y^2\right)}_{\hat{a}} - \underbrace{\left(a\eta_x^2 + 2b\eta_x\eta_y + c\eta_y^2\right)}_{\hat{c}} + \underbrace{2i(a\xi_x\xi_y + b(\xi_x\eta_y + \xi_y\eta_x) + c\xi_y\eta_y)}_{2\hat{b}} = 0$$

Откуда $\hat{a} = \hat{c}, \hat{b} = 0$, то есть получаем уравнение

$$\hat{u}_{\xi\xi} + \hat{u}_{\eta\eta} + \hat{F}(\xi, \eta, \hat{u}, \nabla_{\xi\eta}\hat{u}) = 0$$

1.4 Формальный вид уравнения характеристик

$$a dy dy - 2b dy dx + c dx dx = 0$$

Оно так выглядит из $(dy - \lambda_+ dx)(dy - \lambda_- dx) = 0$, то есть

$$(dy)^{2} - \underbrace{(\lambda_{+} + \lambda_{-})}_{2b/a} dx dy + \underbrace{\lambda_{+} \lambda_{-}}_{c/a} (dx)^{2} = 0$$

2 Билет 2. Постановка задачи Коши для уравнения 2-го порядка с частными производными в \mathbb{R}^n с линейной старшей частью. Понятие о корректности задачи Коши. Пример Адамара некорректности задачи Коши для уравнения Лапласа.

В области $\Omega \subset \mathbb{R}^n$ задано уравнение:

$$\sum_{i,j=1}^{n} a_{ij}(x) \frac{\partial^2 u}{\partial x_i \partial x_j} + F(x, u, \nabla u) = 0$$
(1)

и поверхность $S:\omega(x)=\omega(x_1,\ldots,x_n)=0,\ \omega\in C^2(\Omega),$ и на $\Omega\ \mathrm{grad}(\omega)\neq 0\ \ \forall\, x\in\Omega$ (нет особых точек).

На поверхности задано гладкое некасательное поле $\boldsymbol{\nu} = (\nu_1(x), \dots, \nu_n(x)) \; (\langle \nu, n \rangle \neq 0).$

Определение 2.1 (Задача Коши). В $U(x^0) \subset \Omega$, $x^0 \in S$, найти то решение уравнения (1), которое удовлетворяет двум условиям:

- 1. $u(x)|_{S\cap U(x^0)} = u_0(x)$

2. $\frac{\partial u}{\partial \boldsymbol{\nu}}|_{S\cap U(x^0)}=u_1(x)$ – выводящая производная Здесь введена производная по направлению: $\frac{\partial u}{\partial \boldsymbol{\nu}}=(\boldsymbol{\nu},\nabla u)=\sum_{k=1}^n \nu_k(x)\frac{\partial u}{\partial x_k}(x)$

Может не быть непрерывной зависимости от начальных данных.

Функции u_0, u_1 произвольно брать, вообще говоря, нельзя.

Далее определим характеристическую поверхность.

Пусть
$$S$$
 – гиперплоскость $x_n = 0$. Нормаль $\mathbf{n} = (0, 0, \dots, 0, 1)^T$, $u(x_1, \dots, x_{n-1}, 0) = u_0(x_1, \dots, x_{n-1}), \frac{\partial u}{\partial \mathbf{n}} = \frac{\partial u}{\partial x_n} = u_1(x_1, \dots, x_{n-1}).$

Мы знаем значения функции на гиперплоскости.

Знаем градиент:

$$\left\{
\frac{\partial u}{\partial x_1}(x_1, \dots, x_{n-1}, 0) = \frac{\partial u_0}{\partial x_1}(x_1, \dots, x_{n-1}) \\
\vdots \\
\frac{\partial u}{\partial x_{n-1}}(x_1, \dots, x_{n-1}, 0) = \frac{\partial u_0}{\partial x_{n-1}}(x_1, \dots, x_{n-1})
\right\} + \left\{\frac{\partial u}{\partial x_n}(x_1, \dots, x_{n-1}, 0)\right\} = u_1$$

Мы знаем и вторые производные: берём указанные сверху производные и дифференцируем вдоль поверхности, получим

$$\frac{\partial^2 u}{\partial x_i \partial x_j}(x_1, \dots, x_{n-1}, 0) = \frac{\partial^2 u_0}{\partial x_i \partial x_j}, \ 1 \le i, j \le n - 1$$

$$\frac{\partial^2 u}{\partial x_n \partial x_i}(x_1, \dots, x_{n-1}, 0) = \frac{\partial u_1}{\partial x_i}(x_1, \dots, x_{n-1}), \ 1 \le i \le n - 1$$

Не нашли только
$$\frac{\partial^2 u}{\partial x_n \partial x_n}$$
. До этого мы вообще еще не использовали уравнение:
$$\sum_{i,j=1}^{n-1} a_{ij} u_{x_i x_j} + \sum_{j=1}^{n-1} \left[a_{nj} u_{x_n x_j} + a_{jn} u_{x_j x_n} \right] + \underbrace{a_{nn} u_{x_n x_n}}_{\text{только это слагаемое еще не определено}} + F(x, u, \nabla u) = 0.$$

Если $a_{nn}(x) = 0$ на нашей гиперплоскости, то эту гиперплоскость назовём **характеристиче**ской. На характеристической гиперплоскости полученное уравнение задаёт функциональную связь u_0 и u_1 – эта связь называется **условием совместности**.

Теперь переходим к произвольной поверхности: заменим координаты так, чтобы локально поверхность была гиперплоскостью:

$$y = y(x) = \begin{cases} y_1 = y_1(x_1, \dots, x_n) \\ \vdots \\ y_{n-1} = y_{n-1}(x_1, \dots, x_n) \\ y_n = \omega(x_1, \dots, x_n) \end{cases}$$

 \Rightarrow после преобразования $\omega = 0 \Leftrightarrow y_n = 0$. Найдём это преобразование: возьмем $n = \nabla \omega$.

Дополним $m{n}$ до базиса – получим $\langle m{l_1},\dots,m{l_{n-1}},m{n}
angle$. Ортогонализуем – получим $\langle e_1, \dots, e_{n-1}, n \rangle$. Возьмем такое преобразование:

$$y = y(x) = \begin{cases} y_1(x_1, \dots, x_n) = \langle \mathbf{e_1}, \mathbf{x} - \mathbf{x^0} \rangle \\ \vdots \\ y_{n-1}(x_1, \dots, x_n) = \langle \mathbf{e_{n-1}}, \mathbf{x} - \mathbf{x^0} \rangle \\ y_n(x_1, \dots, x_n) = \omega(x) \end{cases}$$

Проверим
$$|J(x^0)| \neq 0$$
: $|J(x^0)| = \begin{vmatrix} \frac{\partial y_1}{\partial x_1}(x^0) & \cdots & \frac{\partial y_1}{\partial x_n}(x^0) \\ \cdots & \cdots & \cdots \\ \frac{\partial \omega}{\partial x_1}(x^0) & \cdots & \frac{\partial \omega}{\partial x_n}(x^0) \end{vmatrix}$. Строки матрицы – компоненты ОНБ $\Rightarrow |J| \neq 0$.

Значит, это диффеоморфизм класса C^2 .

В новых переменных: $\sum_{l=1}^{n} \hat{a}_{kl}(y) \frac{\partial^2 \hat{u}}{\partial y_k \partial y_l} + \hat{F}(y, \hat{u}, \nabla_y \hat{u}) = 0.$

Условие характеристичности поверхности: $\hat{a}_{nn} = \sum_{i=1}^{n} a_{ij}[x(y)] \frac{\partial y_n}{\partial x_i} \frac{\partial y_n}{\partial x_j} = 0.$

Определение 2.2 (Характеристическая поверхность). Гладкая поверхность S называется **характеристикой**, если в точках этой поверхности выполнено равенство $\sum_{i=1}^{n} a_{ij}\omega_{x_i}\omega_{x_j} = 0.$

Пример 2.1. $\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial u^2} = 0$. S – прямая x = y, $\mathbf{n} = \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$; $\frac{\partial u}{\partial \mathbf{n}} = -\frac{1}{\sqrt{2}}u_x + \frac{1}{\sqrt{2}}u_y = 0$

Производная $\frac{du_1}{d\boldsymbol{l}} = \left(\boldsymbol{l}, \nabla \frac{\partial u}{\partial \boldsymbol{n}}\right) = \frac{1}{\sqrt{2}} \frac{\partial}{\partial x} \left[-\frac{1}{\sqrt{2}} u_x + \frac{1}{\sqrt{2}} u_y \right] + \frac{1}{\sqrt{2}} \frac{\partial}{\partial y} \left[-\frac{1}{\sqrt{2}} u_x + \frac{1}{\sqrt{2}} u_y \right] = 0.$

Пример 2.2. $u_{tt} - a^2 \Delta_x u = f(t, x), \ x \in \mathbb{R}^3$ (волновое уравнение).

Характеристическое уравнение: $\left(\frac{\partial \omega}{\partial t}\right)^2 - a^2(\operatorname{grad}(\omega))^2 = 0$

Этому уравнению удовлетворяет $\omega(t,x)=\underbrace{a^2t^2-\boldsymbol{x}^2=0}_{\text{когис}}.$

Пример 2.3. $u_t - a^2 \Delta_x u = f(t,x)$ (уравнение теплопроводности). Характеристическое уравнение: $-a^2 [\omega_{x_1}^2 + \dots + \omega_{x_n}^2] = 0 \Rightarrow \omega_{x_i} = 0, \ i = \overline{1,n}$ Так как $\nabla \omega \neq 0$, мы требуем $\omega_t \neq 0 \Rightarrow \omega(t,x) = t-C=0$; <u>гиперплоскости t=C</u>.

Пример 2.4. $\Delta u(x) = f(x)$ (ур-е Пуассона), $x \in \mathbb{R}^n$; Характеристическое уравнение: $a^2[\omega_{x_1}^2 + \dots + \omega_{x_n}^2] = 0 \Rightarrow \omega_{x_i} = 0, \ i = \overline{1,n}$. А мы требовали $\nabla \omega \neq 0 \Rightarrow$ у уравнения эллиптического типа нет характеристик.

Offtop 2.1. Пусть $S: \omega(\boldsymbol{x}) = 0, \ \omega(\boldsymbol{x}) \in C^2(\Omega), \nabla \omega \neq 0 \ \forall \ \boldsymbol{x} \in (\mathit{гладкая} \ \mathit{поверхность}, \ \mathit{нормаль} \ \mathit{меняется} \ \mathit{непрерывно}).$ Будем называть точку $\boldsymbol{x^0}$ Ω

S характеристической, ecnu $\sum_{x_{i,j}=1} a_{ij}(x^{0})\omega_{x_{i}}(x^{0})\omega_{x_{j}}(x^{0}) = 0.$

Функция $u(\boldsymbol{x}) = u(x_1, \dots, x_n)$ называется **вещественно-аналитической** в $\boldsymbol{x^0}$, если в некоторой $U_{\varepsilon}(\boldsymbol{x^0})$ она представима в виде $u(\boldsymbol{x}) = \sum_{|\alpha|>0} u_{\alpha}(\boldsymbol{x}-\boldsymbol{x^0})^{\alpha}$, где α – мультииндекс, $u_{\alpha} \in$

$$\mathbb{R}, (\boldsymbol{x} - \boldsymbol{x}^0)^{\alpha} = (x_1 - x_1^0)^{\alpha_1} \cdot \dots \cdot (x - x_n^0)^{\alpha_n}$$

Теорема 2.1 (Ковалевской). Пусть в уравнении $\sum_{i,j=1}^n a_{ij}(\boldsymbol{x}) \frac{\partial^2 u}{\partial x_i \partial x_j} + F(\boldsymbol{x}, u, \nabla u) = 0$:

- ullet все $a_{ij}(oldsymbol{x})$ вещественно-аналитические в $oldsymbol{x^0}$
- $F(\boldsymbol{x}, u, \nabla u)$ -вещественное-аналитическая в $(\boldsymbol{x^0}, u_0(\boldsymbol{x_0}), \nabla u(\boldsymbol{x_0}))$ соответственно
- ullet $\omega(oldsymbol{x})$ вещественно-аналитическая в $oldsymbol{x^0}$
- ullet $oldsymbol{x^0}$ не характеристическая точка S
- u_0, u_1 вещественно-аналитические в $\boldsymbol{x^0}$.

Тогда:

- ullet $\exists U_{\varepsilon}(x^{0}):$ в ней \exists вещественно-аналитическое решение Задачи Коши (ЗК)
- оно единственно в классе вещественно-аналитических функций.

Рассмотрим абстрактную дифференциальную задачу:

$$\begin{cases}
L(\boldsymbol{x}, D)u(\boldsymbol{x}) = f(\boldsymbol{x}), & \boldsymbol{x} \in \Omega \subseteq \mathbb{R}^n \\
B_j(\boldsymbol{x}, D)u(\boldsymbol{x}) = g_j(\boldsymbol{x}), & \boldsymbol{x} \in \Gamma, & j \in \overline{1, m},
\end{cases}$$
(*)

L – линейный дифференциальный оператор порядка p B_j – конечное семейство линейных дифференциальных операторов в $\Gamma \subset \bar{\Omega}$.

Определение 2.3. Пусть:

- 1. $\exists \Pi \Pi F(\Omega)$ и $U(\Omega)$ функций на $\Omega (\Pi \Pi \Pi \Pi)$ линейные нормированные пространства)
- 2. $\exists \ \Pi \Pi G_1(\Gamma), \dots G_m(\Gamma)$ функций на Γ

такие, что $\forall f(\boldsymbol{x}) \in F(\Omega)$ и $\forall g_j(\boldsymbol{x}) \in G_j(\Gamma), \ j = \overline{1,m} \ \exists \,!$ решение $u(\boldsymbol{x}) \in U(\Omega)$ краевой задачи (*), причём для решения справедлива оценка: $\|u\|_{U(\Omega)} \leq C\|f\|_{F(\Omega)} + \sum_{j=1}^m c_j\|g_j\|_{G_j(\Gamma)}$. Тогда

задача корректна по отношению к выбранному набору пространств.

Пример 2.5 (Адамара). Рассмотрим ЗК для уравнения Лапласа:

$$\begin{cases} u_{xx} + u_{yy} = 0 \\ u|_{y=0} = u_0(x) = e^{-\sqrt{n}}\cos nx \Rightarrow 0 \text{ вместе со своими производными} \\ u_y|_{y=0} = u_1(x) \equiv 0 \end{cases}$$

При $u_0 = 0$: $u \equiv 0$. Если задача корректна, то при увеличении n решения должны $\to 0$. Функции $u_n = e^{-\sqrt{n}} \cos nx \cosh ny$ – решения. $u_n(0, y^*) = e^{-\sqrt{n}} \cosh ny^* > \frac{1}{2} e^{-\sqrt{n}} e^{ny^*} \to \infty$. Тогда неравенство, выделенное в определении рам-

кой, не выполнено.

3 Билет 3. Задача Коши для уравнения колебаний струны. Формула Даламбера. Область зависимости решения от начальных данных. Существование и единственность классического решения. Корректность постановки задачи

• Задача
$$\begin{cases} u_{tt} - a^2 u_{xx} = 0 \\ u(t,x)|_{t=0} = u_0(x) \\ u_t|_{t=0} = u_1(x) \end{cases} - l < x < l$$

Что понимать под решением задачи?

Определение 3.1 (Классическое решение). Классическое решение – функция класса C^2 , которая в точках указанной области удовлетворяет уравнению и заданным соотношениям.

• Характеристическое уравнение: $(dx)^2 - a^2(dt)^2 = 0$ $\begin{cases} \xi = x + at \\ \eta = x - at \end{cases} \Leftarrow \begin{cases} x + at = C_1 \\ x - at = C_2 \end{cases}$

В новых координатах $\hat{u}_{\xi\eta}(\xi,\eta) = 0 \Rightarrow \hat{u} = f(\xi) + g(\eta)$. Возвращаясь обратно, получим u(t,x) = f(x+at) + g(x-at).

• Решим ЗК (поверхности нигде не касаются характеристик – задача должна быть корректной):

$$u|_{t=0} = u(0,x) = f(x) + g(x) = u_0(x), \qquad -l < x < l$$

$$u_t|_{t=0} = af'(x) - ag'(x) = u_1(x), \qquad -l < x < l \quad \Rightarrow f(x) - g(x) = \frac{1}{a} \int_{-l}^{x} u_1(z)dz + C = \frac{1}{a}V_1(x)$$

$$\downarrow \downarrow$$

$$\begin{cases} f(x) = \frac{1}{2}u_0(x) + \frac{1}{2a}V_1(x) \\ g(x) = \frac{1}{2}u_0(x) - \frac{1}{2a}V_1(x) \end{cases} \qquad (-l < x < l) \end{cases}$$
 (*)
$$u(t,x) = \frac{1}{2}u_0(x+at) + \frac{1}{2a}V_1(x+at) + \frac{1}{2}u_0(x-at) - \frac{1}{2a}V_1(x-at) =$$
$$= \boxed{\frac{u_0(x+at) + u_0(x-at)}{2} + \frac{1}{2a}\int_{x-at}^{x+at}u_1(x)dx} - \mathbf{формула} \ \mathcal{L}$$
аламбера

Решение определяется единственным образом.

Если требуется определить максимальную область, где можно написать решение, то обратимся к формулам (*). Функции u_0 и V определены лишь на (-l;l) \Rightarrow искомая область:

$$\begin{cases} -l < x + at < l \\ -l < x - at < l \end{cases}$$
 – характеристический четырехугольник Q .

Нами доказана теорема:

Теорема 3.1. Пусть $\begin{cases} u_0(x) \in C^2(-l;l) \\ u_1(x) \in C^1(-l;l) \end{cases}$. Тогда 3K имеет в Q единственное решение $u(t,x) \in C^2(Q)$ – классическое. Оно дается формулой Даламбера.

- Корректность задачи для уравнения малых колебаний струны:
 - нами проверены существование и единственность классического решения.
 - покажем непрерывность решения по входным данным u_0 и u_1 . Берем две задачи:

$$\begin{cases} \overset{1}{u}_{tt} - a^2 \overset{1}{u}_{xx} = 0, & (t, x) \in Q \\ \overset{1}{u}\Big|_{t=0} = \overset{1}{u}_0(x), & |x| < l \\ \overset{1}{u}_t\Big|_{t=0} = \overset{1}{u}_1(x), & |x| < l \end{cases} \qquad \begin{cases} \overset{2}{u}_{tt} - a^2 \overset{2}{u}_{xx} = 0, & (t, x) \in Q \\ \overset{2}{u}\Big|_{t=0} = \overset{2}{u}_0(x), & |x| < l \\ \overset{2}{u}_t\Big|_{t=0} = \overset{2}{u}_1(x), & |x| < l \end{cases}$$

Пусть
$$\begin{vmatrix} 1 u_0 - u_0 \end{vmatrix} < \delta_0$$
, $\begin{vmatrix} 1 u_1 - u_1 \end{vmatrix} < \delta_1$ $\forall x: |x| < l$. Введем $\begin{cases} v_0 = u_0 - u_0 \\ v_1 = u_1 - u_1 \\ v = u - u \end{cases}$

Тогда задача для
$$v$$
:
$$\begin{cases} v_{tt} - a^2 v_{xx} = 0, & (t,x) \in Q \\ v|_{t=0} = v_0(x), & |x| < l, \ |v_0| < \delta_0 \\ v_t|_{t=0} = v_1(x), & |x| < l, \ |v_1| < \delta_1 \end{cases}.$$

Согласно формуле Даламбера, $|v(t,x)| = \left| \frac{v_0(x+at) + v_0(x-at)}{2} + \frac{1}{2a} \int_{x-at}^{x+at} v_1(y) dy \right| \le \delta_0 + \delta_1 t \quad \forall \, (t,x) \in Q.$

- Если l конечно, то $t \leq \frac{l}{a}$ из вида четырёхугольника Q. Устремляя $\delta_0, \delta_1 \to 0$, получим $|v| \to 0$.
- Если $l=\infty$: в любой конечной полосе $t\leq T<\infty$ требуемое верно. Так заметаем всю плоскость.

4 Билет 4. Смешанная задача для колебаний полубесконечной струны с закрепленным концом. Условия согласования начальных и граничного данных. Существование и единственность классического решения.

4.1 Формулировка

Задача (называется начально-краевой или смешанной)

$$\begin{cases} u_{tt} - a^2 u_{xx} &= 0, \ t > 0, x > 0 \\ u|_{t=0} &= u_0(x), \quad x \geq 0 \\ u_t|_{t=0} &= u_1(x), \quad x \geq 0 \\ u|_{x=0} &= 0, \ \text{по сравнению с задачей Коши это дополнительное граничное условие} \end{cases}$$

Замечание. Физический смысл: смотрим, как волна отражается от закрепленного конца

Предполагаем, что

$$\begin{cases} u_0(x) & \in C^2([0, +\infty)) \\ u_1(x) & \in C^1([0, +\infty)) \end{cases}$$

4.2 Общее решение

$$u(t,x) = f(x+at) + g(x-at)$$

$$\begin{cases} u|_{t=0} &= f(x) + g(x) = u_0(x), \ x \geqslant 0 \\ u_t|_{t=0} &= af'(x) - ag'(x) = u_1(x), \ x \geqslant 0 \end{cases}$$

Если ввести обозначение $v_1 = \int_0^x u_1(y) \ dy + C$, то при $x \geqslant 0$

$$f(x) = \frac{1}{2}u_0(x) + \frac{1}{2a}v_1(x)$$
$$g(x) = \frac{1}{2}u_0(x) - \frac{1}{2a}v_1(x)$$

Граничные условия нужны для определения u в $(x \ge 0) \cap (t \ge 0)$ (в смысле пересечения областей). Их не обязательно ставить на x = 0, можно на $x + \alpha t = 0$, $-a < \alpha < a$, то есть там, где известна только одна из функций, а не обе.

$$u|_{x=0} = f(at) + g(-at) = 0, \ t \geqslant 0$$

Введем $\xi=-at,\xi\leqslant 0$, тогда $g(\xi)=-f(-\xi)$ и суммарно:

$$g(\xi) = \begin{cases} \frac{1}{2}u_0(\xi) - \frac{1}{2a}v_1(\xi), & \xi \geqslant 0\\ -\frac{1}{2}u_0(-\xi) - \frac{1}{2a}v_1(-\xi), & \xi \leqslant 0 \end{cases}$$

Теперь g известна везде, решение найдено при x+at>0, то есть даже в большей области, чем мы хотели.

4.3 Сшивка

Чтобы $g(x) \in C^2(\mathbb{R})$, решения необходимо «сшить»

$$g(+0) = g(-0)$$

$$g'(+0) = g'(-0)$$

$$g''(+0) = g''(-0)$$

Распишем эти условия:

$$g(+0) = g(-0) \Leftrightarrow \frac{1}{2}u_0(0) - \frac{1}{2a}v_1(0) = -\frac{1}{2}u_0(0) - \frac{1}{2a}v_1(0) \Rightarrow u_0(0) = 0$$

$$g'(+0) = g'(-0) \Leftrightarrow \frac{1}{2}v_0'(0) - \frac{1}{2a}u_1(0) = \frac{1}{2}v_0'(0) + \frac{1}{2a}u_1(0) \Rightarrow u_1(0) = 0$$

$$g''(+0) = g''(-0) \Leftrightarrow \frac{1}{2}u_0''(0) - \frac{1}{2a}u_1'(0) = -\frac{1}{2}u_0''(0) - \frac{1}{2a}u_1'(0) \Rightarrow u_0''(0) = 0$$

Определение 4.1 (условия согласования). Эти условия называются условиями согласования (начальных и граничных условий)

При их выполнении решение будет классическим. Если $u_0(0) \neq 0$, то даже обобщенного решения не будет.

4.4 Окончательное решение задачи

$$u(t,x) = \begin{cases} \frac{u_0(x+at) + u_0(x-at)}{2} + \frac{1}{2a} \int_{x-at}^{x+at} u_1(y) \, dy, & \{x \ge -at, x \ge at\} \\ \frac{u_0(at+x) - u_0(at-x)}{2} + \frac{1}{2a} \int_{at-x}^{at+x} u_1(y) \, dy, & \{x \ge -at, x \le at\} \end{cases}$$
(3)

Теорема 4.1. Пусть в смешанной задаче 2 функции $u_0(x)$ и $u_1(x)$ таковы, что

- Выполнено условие гладкости: $u_0(x) \in \mathbb{C}^2[0,+\infty), \ u_1(x) \in \mathbb{C}^1[0,+\infty)$
- Выполнено условие согласования: $u_0(0) = u_1'(0) = u_0''(0) = 0$

Тогда задача 2 имеет единственное классическое решение $u \in \mathbb{C}^2 (t \ge 0, x \ge 0)$ представленное в 3

Доказательство. Используем метод продолжений. Для задачи

$$\begin{cases} u_{tt} - a^2 u_{xx} = 0 & t > 0, x > 0 \\ u|_{t=0} = u_0(x) & x \ge 0 \\ u_t|_{t=0} = u_1(x) & x \ge 0 \\ u|_{x=0} = 0 & t \ge 0 \end{cases}$$

Введем

$$\hat{u}_0(x) = \begin{cases} u_0(x) & x \ge 0 \\ -u_0(-x) & x < 0 \end{cases}, \quad \hat{u}_1(x) = \begin{cases} u_1(x) & x \ge 0 \\ -u_1(-x) & x < 0 \end{cases}$$

Тогда

$$\begin{cases} \hat{u}_{tt} - a^2 \hat{u}_{xx} = 0 & t > 0, x \in \mathbb{R}^1 \\ \hat{u}|_{t=0} = \hat{u}_0(x) & x \in \mathbb{R}^1 & \text{ свели к задаче Коши} \\ \hat{u}_t|_{t=0} = \hat{u}_1(x) & x \in \mathbb{R}^1 \end{cases}$$

Решение дается формулой Даламбера:

$$\hat{u}(t,x) = \frac{\hat{u}_0(x+at) + \hat{u}_0(x-at)}{2} + \frac{1}{2a} \int_{x-at}^{x+at} \hat{u}_1(y) \ dy$$

Покажем нечетность по x:

$$\hat{u}(t, -x) = \frac{\hat{u}_0(-x + at) + \hat{u}_0(-x - at)}{2} + \frac{1}{2a} \int_{-x - at}^{-x + at} \hat{u}_1(y) \ dy = \frac{\hat{u}_0(x - at) + \hat{u}_0(x + at)}{2} - \frac{1}{2a} \int_{x - at}^{x + at} \hat{u}_1(y) \ dy = \frac{\hat{u}_0(x - at) + \hat{u}_0(x + at)}{2} - \frac{1}{2a} \int_{x - at}^{x + at} \hat{u}_1(y) \ dy = \frac{\hat{u}_0(x - at) + \hat{u}_0(x + at)}{2} - \frac{1}{2a} \int_{x - at}^{x + at} \hat{u}_1(y) \ dy = \frac{\hat{u}_0(x - at) + \hat{u}_0(x + at)}{2} - \frac{1}{2a} \int_{x - at}^{x + at} \hat{u}_1(y) \ dy = \frac{\hat{u}_0(x - at) + \hat{u}_0(x + at)}{2} - \frac{1}{2a} \int_{x - at}^{x + at} \hat{u}_1(y) \ dy = \frac{\hat{u}_0(x - at) + \hat{u}_0(x + at)}{2} - \frac{1}{2a} \int_{x - at}^{x + at} \hat{u}_1(y) \ dy = \frac{\hat{u}_0(x - at) + \hat{u}_0(x + at)}{2} - \frac{1}{2a} \int_{x - at}^{x + at} \hat{u}_1(y) \ dy = \frac{\hat{u}_0(x - at) + \hat{u}_0(x + at)}{2} - \frac{1}{2a} \int_{x - at}^{x + at} \hat{u}_1(y) \ dy = \frac{\hat{u}_0(x - at) + \hat{u}_0(x + at)}{2} - \frac{1}{2a} \int_{x - at}^{x + at} \hat{u}_1(y) \ dy = \frac{\hat{u}_0(x - at) + \hat{u}_0(x + at)}{2} - \frac{1}{2a} \int_{x - at}^{x + at} \hat{u}_1(y) \ dy = \frac{\hat{u}_0(x - at) + \hat{u}_0(x + at)}{2} - \frac{1}{2a} \int_{x - at}^{x + at} \hat{u}_1(y) \ dy = \frac{\hat{u}_0(x - at) + \hat{u}_0(x + at)}{2} - \frac{1}{2a} \int_{x - at}^{x + at} \hat{u}_1(y) \ dy = \frac{\hat{u}_0(x - at) + \hat{u}_0(x + at)}{2} - \frac{1}{2a} \int_{x - at}^{x + at} \hat{u}_1(x) \ dx = \frac{\hat{u}_0(x - at) + \hat{u}_0(x + at)}{2} - \frac{1}{2a} \int_{x - at}^{x + at} \hat{u}_1(x) \ dx = \frac{\hat{u}_0(x - at) + \hat{u}_0(x + at)}{2} - \frac{\hat{u}_0(x - at) + \hat{u}_0(x + at)}{2} - \frac{\hat{u}_0(x - at) + \hat{u}_0(x + at)}{2} - \frac{\hat{u}_0(x - at) + \hat{u}_0(x - at)}{2} - \frac{\hat{u}_0(x - at)}{2}$$

$$= -\hat{u}(t, x)$$

$$\hat{u}(t,0) = \underbrace{\frac{\hat{u}_0(-at) + \hat{u}_0(at)}{2}}_{=0} + \frac{1}{2a} \int_{-at}^{+at} \hat{u}_1(y) \ dy = 0$$

5 Билет 5. Формула Пуассона-Кирхгофа решения задачи Коши для однородного волнового уравнения в \mathbb{R}^3 . Существование классического решения этой задачи.

Теорема 5.1 (Из курса мат. анализа). Пусть $\Omega_x \subset \mathbb{R}^n$, $\Omega_y \subset \mathbb{R}^m$ – ограниченные области, $f(x,y): \overline{\Omega}_x \times \overline{\Omega}_y \to \mathbb{R}, \ f \in C\left(\overline{\Omega}_x \times \overline{\Omega}_y\right)$. Тогда $J(y) = \int_{\Omega_x} f(x,y) dx \in C\left(\overline{\Omega}_y\right)$.

Если к тому же $\frac{\partial f}{\partial y_k} \in C\left(\overline{\Omega}_x \times \overline{\Omega}_y\right)$, то J(y) имеет непрерывную на $\overline{\Omega}_y$ частную производную $\frac{\partial J(y)}{\partial y_k} \in C\left(\overline{\Omega}_y\right)$, при этом $\frac{\partial J(y)}{\partial y_k} = \int\limits_{\Omega_x} \frac{\partial f}{\partial y_k}(x,y) dx$.

Обозначим (τ - вспомогательный параметр)

$$u_g(t, x, \tau) = \frac{1}{4\pi a^2 t} \iint_{|\xi - x| = at} g(\xi, \tau) dS_{\xi}, \ a > 0, \ t > 0, \ x \in \mathbb{R}^3, \ \tau \geqslant 0, \ \xi \in \mathbb{R}^3.$$

Лемма 5.2. Пусть $g(\xi,\tau)$ такая, что

- 1. $g \in C\{\xi \in \mathbb{R}^3, \tau \ge 0\}$
- 2. $D_{\xi}^{\alpha}g(\xi,\tau) \in C\{\xi \in \mathbb{R}^3, \tau \geqslant 0\} \ \forall \alpha : |\alpha| \leqslant p.$

Тогда

- 1. $D_{t,x}^{\alpha}u_{\alpha}(t,x,\tau) \in C\{\mathbf{t} \geqslant \mathbf{0}, x \in \mathbb{R}^3, \tau \geqslant 0\} \ \forall \alpha : |\alpha| \leqslant p$
- 2. $\lim_{t \to +0} u_g(t, x, \tau) = 0$
- 3. $\Pi pu \ p \geqslant 1 \lim_{t \to +0} \frac{\partial u_g}{\partial t} = g(x, \tau)$

Доказательство. Докажем отдельно все три утверждения.

1. Сведем интеграл к интегралу по единичной сфере с центром в нуле с помощью такой замены:

$$\eta = \frac{\xi - x}{at} \Rightarrow \xi = x + at\eta, \ |\eta| = 1.$$

В таком случае элемент площади $dS_{\xi}=(at)^2dS_{\eta}$. Во введенном выше интеграле получим

$$u_g(t, x, \tau) = \frac{(at)^2}{4\pi a^2 t} \iint_{|\eta|=1} g(x + at\eta, \tau) dS_{\eta} = t J_g(t, x, \tau),$$

где
$$J_g(t,x,\tau) = \frac{1}{4\pi} \iint_{|\eta|=1} g(x+at\eta,\tau) dS_{\eta}.$$

Теперь интеграл уже по фиксированному множеству. Все выкладки справедливы при t>0. Функция

$$\overline{g}(t, x, \eta, \tau) = g(x + at\eta, \tau) \in C\{t \geqslant 0, x \in \mathbb{R}^3, |\eta| = 1, \tau \geqslant 0\}.$$

Тогда по теореме из начала билета $J_g(t, x, \tau) \in C\{t \ge 0, x \in \mathbb{R}^3, \tau \ge 0\}.$

Аналогично будет для производных в силу второй части той же теоремы и наличия соответствующих производных у функции g.

2. $\lim_{t\to +0}U_g(t,x,\tau)=\lim_{t\to +0}tJ_g(t,x,\tau)=\lim_{t\to +0}t\cdot\lim_{t\to +0}\frac{\partial}{\partial t}J_g(t,x,\tau)=0$ (последний предел конечен в силу непрерывности).

Можно записать

$$U_g(t, x, \tau) = \begin{cases} u_g(t, x, \tau), & t > 0 \\ 0, & t = 0 \end{cases} \in C(\overline{\Omega}),$$

где последнее включение означает непрерывные в области и непрерывно продолжимые на границу функции.

3. При $p \ge 1$ запишем следующее:

$$\lim_{t \to +0} \frac{\partial}{\partial t} u_g(t, x, \tau) = \lim_{t \to +0} \frac{\partial}{\partial t} \left[t J_g(t, x, \tau) \right] = \lim_{t \to +0} J_g(t, x, \tau) + \lim_{t \to +0} \frac{\partial}{\partial t} J_g(t, x, \tau) =$$

$$= J_g(0, x, \tau) = \frac{1}{4\pi} \iint_{|\eta|=1} g(x + at\eta, \tau) dS_{\eta} \Big|_{t=0} = g(x, \tau) \frac{1}{4\pi} \iint_{|\eta|=1} dS_{\eta} = g(x, \tau).$$

Перейдем к решению задачи Коши

$$\begin{cases} u_{tt} - a^2 \Delta u = 0, \ t > 0, \ x \in \mathbb{R}^3 \\ u|_{t=0} = 0; \ u_t|_{t=0} = u_1(x) \end{cases}$$
 (4)

Теорема 5.3 (Формула Пуассона-Кирхгофа). Пусть $u_1(x) \in C^2(\mathbb{R}^3)$. Тогда

$$u(t,x) = \frac{1}{4\pi a^2 t} \iint_{|\xi - x| = at} u_1(\xi) dS_{\xi} \in C^2 \{ t \geqslant 0, x \in \mathbb{R}^3 \}$$

и является классическим решением задачи (4)

Доказательство. В силу леммы имеем $u|_{t=0} = 0; \ u_t|_{t=0} = u_1.$

Т.к. $u_1 \in C^2(\mathbb{R}^2), \ u \in C^2\{t \ge 0, x \in \mathbb{R}^3\}$, то сделаем замену переменной:

$$u(t,x) = \frac{t}{4\pi} \iint_{|\eta|=1} u_1(x + at\eta) dS_{\eta}.$$

Осталось только проверить, что u удовлетворяет уравнению

$$\Delta_x u(x,t) = \frac{t}{4\pi} \iint_{|\eta|=1} \Delta_{\xi} u_1(x + at\eta) dS_{\eta} = \frac{1}{4\pi a^2 t} \iint_{|\xi - x| = at} \Delta_{\xi} u_1(\xi) dS_{\xi}.$$

При
$$t>0$$
 (использовано $\boldsymbol{n}=\frac{\xi-x}{|\xi-x|}=\frac{\xi-x}{at}=\eta)$

$$u_{t}(x,t) = \frac{1}{4\pi} \iint_{|\eta|=1} u_{1}(x + at\eta) dS_{\eta} + \frac{ta}{4\pi} \iint_{|\eta|=1} \sum_{k=1}^{3} \frac{\partial u_{1}}{\partial \xi_{k}} (x + at\eta) \eta_{k} \cdot dS_{\eta} =$$

$$= \frac{u(x,t)}{t} + \frac{ta}{4\pi} \iint_{|\eta|=1} \sum_{k=1}^{3} \frac{\partial u_{1}}{\partial \xi_{k}} (\xi) n_{k}(\xi) \cdot dS_{\eta} = \frac{u(x,t)}{t} + \frac{1}{4\pi at} \iint_{|\xi-x|=\eta t} \frac{\partial u_{1}}{\partial \boldsymbol{n}} (\xi) \cdot dS_{\xi} = \frac{u(x,t)}{t} + \frac{1}{4\pi at} I.$$

Заметим, что

$$\iiint_{|\xi-x|< at} \Delta_{\xi} u_1(\xi) d\xi = \iiint_{|\xi-x|< at} \operatorname{div}(\nabla u_1(\xi)) d\xi = \iint_{|\xi-x|=at} (\nabla u_1(\xi), \, \boldsymbol{n}(\xi)) \, dS_{\xi} = \iint_{|\xi-x|=at} \frac{\partial u_1}{\partial \boldsymbol{n}} dS_{\xi} = I$$

Тогда получим

$$u_{t} = \frac{u(t,x)}{t} + \frac{1}{4\pi at} \iiint_{|\xi-x| < at} \Delta_{\xi} u_{1}(\xi) d\xi = \frac{u(t,x)}{t} + \frac{1}{4\pi at} \int_{0}^{at} \left[\iint_{|\xi-x| = \rho} \Delta_{\xi} u_{1}(\xi) dS_{\xi} \right] d\rho = \frac{u(t,x)}{t} + \frac{1}{4\pi at} \int_{0}^{at} \varphi(\rho) d\rho$$

$$u_{tt}(x,t) = \frac{\partial}{\partial t} \left[\frac{u}{t} + \frac{I}{4\pi at} \right] = \frac{u_{t}}{t} - \frac{u}{t^{2}} - \frac{I}{4\pi at^{2}} + \frac{I_{t}}{4\pi at} = \frac{u}{t \cdot t} + \frac{I}{4\pi at^{2}} - \frac{u}{t^{2}} - \frac{I}{4\pi at^{2}} + \frac{I_{t}}{4\pi at} =$$

$$= \frac{I_{t}}{4\pi at} = \frac{1}{4\pi at} \frac{\partial}{\partial t} \int_{0}^{at} \varphi(\rho) d\rho = \frac{1}{4\pi at} a\varphi(at) = \frac{1}{4\pi t} \iint_{|\xi-x| = at} \Delta_{\xi} u_{1}(\xi) dS_{\xi}.$$

Итак, u(x,t) - классическое решение.

Рассмотрим

$$\begin{cases} u_{tt} - a^2 \Delta u = 0, \ t > 0, \ x \in \mathbb{R}^3 \\ u|_{t=0} = u_0(x); \ u_t|_{t=0} = 0, \ u_0 \in C^3(\mathbb{R}^3) \end{cases}$$
 (5)

Введем v(t,x):

$$\begin{cases} v_{tt} - a^2 \Delta v = 0, \ t > 0, \ x \in \mathbb{R}^3 \\ v|_{t=0} = 0; \ v_t|_{t=0} = u_0(x) \end{cases}$$

Эту задачу мы уже решили. Так как $u_0 \in C^3(\mathbb{R}^3)$, имеем $v \in C^3\{t \ge 0, x \in \mathbb{R}^3\}$.

Утверждение 5.4. $u(x,t) \equiv v_t(x,t) \in C^2\{t \ge 0, x \in \mathbb{R}^3\}$ дает решение (5).

Доказательство.

1.
$$v_{tt} - a^2 \Delta v = 0 \Rightarrow v_{ttt} - a^2 (\Delta v)_t = 0 \Rightarrow (v_t)_{tt} - a^2 \Delta (v_t) = 0 \Rightarrow u_{tt} - a^2 \Delta u = 0$$

2.
$$u|_{t=0} = v_t|_{t=0} = u_0(x)$$

3.
$$u_t|_{t=0}=v_{tt}|_{t=0}=a^2(\Delta v)|_{t=0}=0$$
 (на гиперплоскости $t=0$ $v|_{t=0}=0$. Тогда на ней $(\Delta_x v)|_{t=0}=0$)

Мы доказали следующую теорему:

Теорема 5.5. Функция $u(t,x) = \frac{\partial}{\partial t} \left[\frac{1}{4\pi a^2 t} \iint_{|\xi-x|=at} u_0(\xi) dS_{\xi} \right], \ t \geqslant 0, x \in \mathbb{R}^3, \ \textit{где } u_0 \in C^3(\mathbb{R}^3),$ является классическим решением задачи (5).

6 Билет 6. Формула Кирхгофа решения задачи Коши для неоднородного волнового уравнения в \mathbb{R}^3 . Метод Дюамеля. Принцип Гюйгенса

6.1 Формулировка задачи

$$\begin{cases} u_{tt} - a^2 \Delta u = f(t, x) & t > 0, x \in \mathbb{R}^3 \\ u|_{t=0} = 0 & \text{считаем что } D_x^{\alpha} f(t, x) \in \mathbb{C}\{t \geqslant 0, x \in \mathbb{R}^3\} \ \forall \ \alpha : |\alpha| \leqslant 2 \\ u_t|_{t=0} = 0 & \end{cases}$$

$$(6)$$

6.2 Метод Дюамеля

Сведем задачу к задаче Коши для однородного волнового уравнения. Рассмотрим однопараметрическое семейство задач:

$$\begin{cases} w_{tt}(t, x, \tau) - a^2 \Delta_x w(t, x, \tau) = 0 & t > \tau, x \in \mathbb{R}^3 \\ w|_{t=\tau} = 0 & \tau \geqslant 0 \\ w_t|_{t=\tau} = f(\tau, x) \end{cases}$$

$$(7)$$

Решение получаем по формуле Пуассона-Кирхгофа:

$$w(t, x, \tau) = \frac{1}{4\pi a^{2}(t - \tau)} \iint_{|\xi - x| = a(t - \tau)} f(\tau, \xi) dS_{\xi} \in \mathbb{C}^{2} \{ t \geqslant \tau, x \in \mathbb{R}^{3} \}$$

Введем в рассмотрение функцию

$$\omega_f(t, x, \tau) = \frac{1}{4\pi a^2 t} \iint_{|\xi - x| = at} f(\tau, \xi) dS_{\xi}$$

Тогда $D_{t,x}^{\alpha}\omega_f(t,x,\tau)\in\mathbb{C}\{x\in\mathbb{R}^3,t\geqslant\tau,\tau\geqslant0\}\ \forall\ \alpha:|\alpha|\leqslant2.$

$$w(t,x,\tau) = \omega_f(t-\tau,x,\tau) \Rightarrow D_{t,x}^{\alpha} w(t,x,\tau) \in \mathbb{C}\{x \in \mathbb{R}^3, t \geqslant 0, \tau \geqslant 0\} \ \forall \ \alpha : |\alpha| \leqslant 2$$

Утверждение 6.1.

$$u(t,x) = \int_0^t w(t,x, au)d au$$
 — классическое решение задачи 6

Доказательство.

$$D_{t,x}^{\alpha}u(t,x) \in \mathbb{C}\{x \in \mathbb{R}^3, t \geqslant 0\} \ \forall \ \alpha : |\alpha| \leqslant 2$$

$$u|_{t=0}=0; \quad u_t|_{t=0}=\left.\left(\underbrace{w(t,x,t)}_{\text{ео из условий Коши в 7}}+\int_0^t\frac{\partial w}{\partial t}d\tau\right)\right|_{t=0}=\int_0^0\frac{\partial w}{\partial t}d\tau\right|_{t=0}=0$$

$$\Delta_x u = \int_0^t \Delta_x w(t, x, \tau) d\tau;$$

$$u_{tt} = \frac{\partial}{\partial t} \int_0^t \frac{\partial w}{\partial t} d\tau = w_t(t, x, t) + \int_0^t w_{tt}(t, x, \tau) d\tau = f(t, x) + a^2 \int_0^t \Delta_x w(t, x, \tau) d\tau =$$

$$= f(t, x) + a^2 \Delta_x u$$

Значит, рассматриваемая функция удовлетворяет уравнению.

Мы доказали следующую теорему:

Теорема 6.2. Пусть в 6 функция $f(t,x): D_x^{\alpha} f(t,x) \in \mathbb{C}\{t \ge 0, x \in \mathbb{R}^3\}$. Тогда функция

$$u(t,x) = \int_0^t \frac{1}{4\pi a^2(t-\tau)} \left[\iint_{|\xi-x|=a(t-\tau)} f(\tau,\xi) \, dS_{\xi} \right] d\tau \tag{8}$$

является классическим решением, причем

$$D_{t,x}^{\alpha} \in \mathbb{C}\{t \geqslant 0, x \in \mathbb{R}^3\}$$

Суть метода Дюамеля: f(t,x) — это начальные данные в каждый момент времени.

6.3 Запаздывающий потенциал

Преобразуем полученную формулу 8.

$$\int_{0}^{t} \frac{1}{4\pi a^{2}(t-\tau)} \left[\iint_{|\xi-x|=a(t-\tau)} f(\tau,\xi) \, dS_{\xi} \right] d\tau = \begin{bmatrix} a(t-\tau) = \rho \\ \tau = t - \rho/a \\ d\tau = -d\rho/a \end{bmatrix} = -\int_{at}^{0} \frac{1}{4\pi a\rho} \frac{d\rho}{a} \iint_{|\xi-x|=\rho} f(t-\rho/a,\xi) \, dS_{\xi} = \frac{1}{4\pi a^{2}} \int_{0}^{at} \left[\iint_{|\xi-x|=\rho} \frac{f(t-\frac{|\xi-x|}{a},\xi)}{|\xi-x|} \, dS_{\xi} \right] d\rho = \left[\frac{1}{4\pi a^{2}} \iint_{|\xi-x|$$

Последнее выражение называется запаздывающим потенциалом.

6.4 Общая задача

$$\begin{cases} u_{tt} - a^2 \Delta_x u = f(t, x) \\ u|_{t=0} = u_0(x) \\ u_t|_{t=0} = u_1(x) \end{cases}$$

Теорема 6.3. Пусть в общей задаче Коши имеем:

$$u_0 \in \mathbb{C}^3(\mathbb{R}), u_1 \in \mathbb{C}^2(\mathbb{R}), D_x^{\alpha} f(t, x) \in \mathbb{C}\{t \geqslant 0, x \in \mathbb{R}^3\} \ \forall \ \alpha : |\alpha| \leqslant 2$$

Tог ∂a

$$u(t,x) = \frac{\partial}{\partial t} \left[\frac{1}{4\pi a^2 t} \iint_{|\xi-x|=at} u_0(\xi) \ dS_{\xi} \right] + \frac{1}{4\pi a^2 t} \iint_{|\xi-x|=at} u_1(\xi) \ dS_{\xi} + \frac{1}{4\pi a^2} \iint_{|\xi-x|
(9)$$

является классическим решением общей задачи Коши. Формула 9 называется формулой Кирхгофа.

6.5 Принцип Гюйгенса

Пусть f = 0, то есть источников нет, а начальное возмущение локализовано в пространстве (носители функций u_0 и u_1 содержатся в некотором компакте M). Тогда в каждой точке воздействие будет локализовано во времени. У такого конечного возмущения есть передний и задний фронты.

Утверждение 6.4 (Принцип Гюйгенса). Возмущение, локализованное в пространстве, приводит к действию, локализованному во времени

Доказательство. Из формулы Кирхгофа видно, что в заданной точке $x_0 \in \mathbb{R}^3$ вне отрезка времени $[t_1;t_2]$ функция $u(x_0,t)$ тождественна нулю, где

$$t_1 = \frac{1}{a} \inf_{y \in M} |y - x_0|, \ t_2 = \frac{1}{a} \sup_{y \in M} |y - x_0|$$

7 Билет 7. Формула Пуассона решения задачи Коши для волнового уравнения в \mathbb{R}^2 . Метод спуска. Диффузия волн

Рассматривается задача

$$\begin{cases} u_{tt} - a^2(u_{x_1x_1} + u_{x_2x_2}) = f(t, x_1, x_2), \ t > 0, \ (x_1, x_2) \in \mathbb{R}^2 \\ u|_{t=0} = u_0(x_1, x_2); \ u_t|_{t=0} = u_1(x_1, x_2) \end{cases}$$
(10)

Используем **метод спуска**: перейдем в \mathbb{R}^3 :

$$\begin{cases} u_{tt} - a^2(u_{x_1x_1} + u_{x_2x_2} + u_{x_3x_3}) = f(t, x_1, x_2) \\ u|_{t=0} = u_0(x_1, x_2); \ u_t|_{t=0} = u_1(x_1, x_2) \end{cases}$$

Для этой задачи решение мы уже знаем. Покажем, что оно не зависит от третьей переменной.

$$u(t, x_1, x_2, x_3) = \frac{\partial}{\partial t} \left[\frac{1}{4\pi a^2 t} \iint_{|\xi - x| = at} u_0(\xi_1, \xi_2) dS_{\xi} \right] + \underbrace{\frac{1}{4\pi a^2 t}}_{V(t, x)} \underbrace{\iint_{\xi - x| = at} u_1(\xi_1, \xi_2) dS_{\xi}}_{V(t, x)} + \underbrace{\frac{1}{4\pi a^2} \iint_{|\xi - x| < at} \frac{f\left(t - \frac{|\xi - x|}{a}, \xi\right)}{|\xi - x|} d\xi$$

Покажем, например, что функция V(t,x) не зависит от x_3 . Сфера, по которой ведется интегрирование, разбивается на две полусферы, проектирующиеся в одну окружность, т.е. $S_{at} = S_{at}^+ \bigcup S_{at}^-$, причем эти полусферы задаются уравнениями $\xi_3 = x_3 \pm \sqrt{a^2t^2 - (\xi_1 - x_1)^2 - (\xi_2 - x_2)^2} = x_3 \pm \sqrt{a^2t^2 - |\xi' - x'|^2}$.

Т.к. интегралы
$$\iint\limits_{S_{at}^+}=\iint\limits_{S_{at}^-}$$
, имеем $V(t,x)=rac{1}{2\pi a^2 t}\iint\limits_{S_{at}^+}u_1(\xi_1,\xi_2)dS_\xi.$

Из мат. анализа известно, что для поверхности S, заданной явно: $\xi_3 = F(\xi_1, \xi_2), \ (\xi_1, \xi_2) \in D$, справделиво

$$\iint_{S} u(\xi)dS_{\xi} = \iint_{D} u(\xi_{1}, \xi_{2}, F(\xi_{1}, \xi_{2})) \sqrt{1 + F_{\xi_{1}}^{2} + F_{\xi_{2}}^{2}} d\xi_{1}d\xi_{2}.$$

В нашем случае
$$\sqrt{1+F_{\xi_1}^2+F_{\xi_2}^2}$$
 = $\sqrt{1+\frac{(\xi_1-x_1)^2+(\xi_2-x_2)^2}{a^2t^2-(\xi_1-x_1)^2-(\xi_2-x_2)^2}}$ = at

$$\frac{at}{\sqrt{a^2t^2 - (\xi_1 - x_1)^2 - (\xi_2 - x_2)^2}}$$

Получили, что

$$V(t,x) = \frac{1}{2\pi a} \iint_{|\xi'-x'| \le at} \frac{u_1(\xi_1, \xi_2)}{\sqrt{a^2 t^2 - |\xi'-x'|^2}} d\xi_1 d\xi_2$$

не зависит от третьей переменной.

Аналогично для двух других слагаемых, т. к. во всех трех под знаками интегралов или производных можно выделить интеграл вида $\int\limits_{|\xi-x|=at} \varphi(\xi_1,\xi_2)dS_\xi$, который, как показано выше, от

 x_3 не зависит. Доказанное можно сформулировать как теорему:

Теорема 7.1. Пусть в задаче Коши (10) $u_0(x) \in C^3(\mathbb{R}^2)$, $u_1(x) \in C^2(\mathbb{R}^2)$, $D_x^{\alpha} f(t,x) \in C\{t \ge 0, x \in \mathbb{R}^2\}$ $\forall \alpha : |\alpha| \le 2$. Тогда функция $(d\xi = d\xi_1 d\xi_2)$

$$u(t,x) = \frac{\partial}{\partial t} \left[\frac{1}{2\pi a} \iint_{|\xi-x| < at} \frac{u_0(\xi)d\xi}{\sqrt{a^2t^2 - |\xi-x|^2}} \right] + \frac{1}{2\pi a} \iint_{|\xi-x| < at} \frac{u_1(\xi)d\xi}{\sqrt{a^2t^2 - |\xi-x|^2}} + \int_0^t \left[\frac{1}{2\pi a} \iint_{|\xi-x| < a(t-\tau)} \frac{f(\tau,\xi)d\xi}{\sqrt{a^2(t-\tau)^2 - |\xi-x|^2}} \right] d\tau$$

принадлежит $C^2\{t\geqslant 0, x\in \mathbb{R}^2\}$ и является классическим решением задачи Коши (10).

Определение 7.1 (Диффузия волн). – это отсутствие принципа Гюйгенса. В \mathbb{R}^2 его нет. Есть эффект последействия: передний фронт есть, а заднего нет, так как интегралы берутся не по контурам, а по всей внутренней области.

Можно привести более наглядное доказательство. Пусть носители функций u_0 , u_1 содержатся в некотором компакте M. Тогда «погрузив» \mathbb{R}^2 в \mathbb{R}^3 , получим, что носитель начального возмущения - неограниченный цилиндр $\{(x_1,x_2,x_3): (x_1,x_2)\in M,\ x_3\in\mathbb{R}\}$. Следовательно, начальное возмущение неограничено в пространстве, и возмущение в любой точке неограничено во времени(у цилиндрических волн отсутствует задний фронт)

8 Билет 8. Теорема о единственности классического решения задачи Коши для волнового уравнения (на примере случая \mathbb{R}^2). Метод интеграла энергии.

Теорема 8.1. Классическое решение 3K для волнового уравнения в \mathbb{R}^n единственно.

Доказательство (для случая \mathbb{R}^2). Пусть u_1 и u_2 - классические решения.

Тогда функция $v(t,x) = u_1(t,x) - u_2(t,x)$ удовлетворяет полностью однородной задаче:

$$\begin{cases} v_{tt} - a^2(v_{x_1x_1} + v_{x_2x_2}) = 0\\ v|_{t=0} = v_t|_{t=0} = 0 \end{cases}$$

Наша цель - показать, что $v \equiv 0$ в $(t \geqslant 0, x \in \mathbb{R}^2)$.

Возьмем точку (t^0, x^0) , $t^0 > 0$, $x^0 \in \mathbb{R}^2$. Выпустим из этой точки характеристическую поверхность - конус

$$w(t,x) = a^{2}(t-t^{0})^{2} - (x_{1}-x_{1}^{0})^{2} - (x_{2}-x_{2}^{0})^{2} = 0, \ t < t^{0}.$$

Возьмем его часть - усечённый конус V_T с нижним основанием Σ_0 , верхним Σ_T и боковой поверхностью Γ_T .

Вектор (внешней) нормали \overrightarrow{n} к этому усеченному конусу:

- на $\Sigma_T : \overrightarrow{n} = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix}^T$
- на $\Sigma_0: \overrightarrow{n} = \begin{pmatrix} -1 & 0 & 0 \end{pmatrix}^T$
- на $\Gamma_T: \overrightarrow{n} = \frac{-1}{\sqrt{w_t^2 + w_{x_1}^2 + w_{x_2}^2}} \begin{pmatrix} w_t \\ w_{x_1} \\ w_{x_2} \end{pmatrix}$. В силу соотношений $w_t^2 a^2 w_{x_1}^2 a^2 w_{x_2}^2 = 0$, имеем $n_t^2 = a^2 (n_{x_1}^2 + n_{x_2}^2)$.

Т.к.
$$n_t^2 + n_{x_1}^2 + n_{x_2}^2 = 1$$
, $n_t^2 = \frac{a^2}{a^2 + 1} \implies n_t = \frac{a}{\sqrt{a^2 + 1}}$.

Функция $\psi \equiv 0 = v_t(v_{tt} - a^2v_{x_1x_1} - a^2v_{x_2x_2}) \equiv 0$, во всех точках усеченного конуса. Раскроем скобки:

$$\begin{split} v_t v_{tt} - a^2 v_t v_{x_1 x_1} - a^2 v_t v_{x_2 x_2} &= \\ &= \frac{1}{2} (v_t^2)_t + a^2 v_{x_1} v_{x_1 t} - (a^2 v_t v_{x_1})_{x_1} + a^2 v_{x_2} v_{x_2 t} - (a^2 v_t v_{x_2})_{x_2} = \\ &= \frac{1}{2} (v_t^2)_t - (a v_t v_{x_1})_{x_1} - (a v_t v_{x_2})_{x_2} + \left(\frac{1}{2} a^2 v_{x_1}^2\right)_t + \left(\frac{1}{2} a^2 v_{x_2}^2\right)_t = \\ &= \left(\frac{v_t^2 + a^2 v_{x_1}^2 + a^2 v_{x_2}^2}{2}\right)_t + (-a^2 v_t v_{x_1})_{x_1} + (-a^2 v_t v_{x_2})_{x_2} = \\ &= F_t^t + F_{x_1}^{x_1} + F_{x_2}^{x_2} - \text{дивергентный вид.} \end{split}$$

Введем в рассмотрение векторное поле $\overrightarrow{F} = \begin{pmatrix} F^t & F^{x_1} & F^{x_2} \end{pmatrix}^T$. Тогда то выражение, к которому мы пришли, есть

$$\operatorname{div} \overrightarrow{F} = \frac{\partial}{\partial t} F^t + \frac{\partial}{\partial x_1} F^{x_1} + \frac{\partial}{\partial x_2} F^{x_2}.$$

Проинтегрируем эту дивергенцию по объему усеченного конуса:

$$0 = \iiint_{V_T} \operatorname{div} \overrightarrow{F} = \oiint_{\partial V_T} (\overrightarrow{F}, \overrightarrow{n}) dS =$$

$$= \iint_{\Sigma_T} \frac{v_t^2 + a^2 v_{x_1}^2 + a^2 v_{x_2}^2}{2} dS - \iint_{\Sigma_0} \frac{v_t^2 + a^2 v_{x_1}^2 + a^2 v_{x_2}^2}{2} dS +$$

$$+ \frac{1}{2} \iint_{\Gamma_T} \left((v_t^2 + a^2 v_{x_1}^2 + a^2 v_{x_2}^2) n_t - 2a^2 v_t v_{x_1} n_{x_1} - 2a^2 v_t v_{x_2} n_{x_2} \right) dS =$$

$$= E(\Sigma_T) + E(\Gamma_T) - E(\Sigma_0)$$

В силу начальных условий $v|_{t=0}=0$ и $v_t|_{t=0}$, имеем $E(\Sigma_0)=0$ (под интегралом тождественный ноль).

Тогда $E(\Sigma_T) + E(\Gamma_T) = 0$. Кроме того, $E(\Sigma_T) \geqslant 0$ (под интегралом сумма квадратов).

Покажем, что и $E(\Gamma_T) \geqslant 0$: разделим и домножим её на $n_t = \frac{a}{\sqrt{a^2 + 1}}$

$$\frac{1}{2} \frac{\sqrt{a^2 + 1}}{a} \iint_{\Gamma_T} \left((v_t^2 + a^2 v_{x_1}^2 + a^2 v_{x_2}^2) n_t^2 - 2a^2 v_t v_{x_1} n_t n_{x_1} - 2a^2 v_t v_{x_2} n_t n_{x_2} \right) dS =$$

$$= \frac{1}{2} \frac{\sqrt{a^2 + 1}}{a} \iint_{\Gamma_T} \left(v_t^2 a^2 (n_{x_1}^2 + n_{x_2}^2) + a^2 v_{x_1}^2 n_t^2 + a^2 v_{x_2}^2 n_t^2 - 2a^2 v_t v_{x_1} n_t n_{x_1} - 2a^2 v_t v_{x_2} n_t n_{x_2} \right) dS =$$

$$= \frac{1}{2} a \sqrt{a^2 + 1} \iint_{\Gamma_T} \left((v_t n_{x_1} - v_{x_1} n_t)^2 + (v_t n_{x_2} - v_{x_2} n_t)^2 \right) dS \geqslant 0$$

Значит, $E(\Sigma_0)=E(\Sigma_T)=E(\Gamma_T)\equiv 0$. Из $E(\Sigma_T)\equiv 0$ получаем:

$$v_t \equiv 0; v_{x_1} \equiv 0; v_{x_2} \equiv 0 \Rightarrow \nabla v = 0 \Rightarrow v = const = v|_{t=0} = 0$$

Это верно всюду внутри усеченного конуса. Заметая такими конусами всё пространство, получим, что $v\equiv 0$.

9 Билет 9. Формула Пуассона решения задачи Коши для однородного уравнения теплопроводности в \mathbb{R}^1 Фундаментальное решение. Существование классического решения задачи Коши при непрерывной ограниченной начальной функции.

Задача :

$$\begin{cases} u_t - a^2 u_{xx} = 0, t > 0, \ x \in \mathbb{R}, \\ u|_{t=0} = u_0(x), \ x \in \mathbb{R} \end{cases}$$

Пусть для начала:

$$u_0(x) = \begin{cases} 1, x \geqslant 0, \\ 0, x < 0 \end{cases}$$

Сделаем замену:

$$\begin{cases} \tau = \alpha t, \alpha > 0, \\ \xi = \beta x, \beta > 0. \end{cases}$$

Пусть u(t,x) - решение задачи. Введём $v(\tau,\xi)=u\left(\frac{\tau}{\alpha},\frac{\xi}{\beta}\right)$, тогда: $v_{\tau}=\frac{1}{\alpha}u_{t},v_{\xi}=\frac{1}{\beta}u_{x},v_{\xi\xi}=\frac{1}{\beta^{2}}u_{xx}$.

Из уравнения: $v_{\tau} = \frac{\beta^2}{\alpha} a^2 v_{\xi\xi}$ следует, что при $\alpha = \beta^2$ новая функция тоже будет решением, а значит, решение задачи не единственно: для любого решения u(t,x) функция $v(t,x) = u\left(\frac{t}{\beta^2},\frac{x}{\beta}\right)$ будет решеним задачи Коши $\forall \beta > 0$.

Определение 9.1. Множество преобразований $\{u_{\alpha}\}_{{\alpha}\in\mathcal{D}}$ - однопараметрическая группа преобразований если:

- $\forall \alpha_1, \alpha_2 \in \mathcal{D} \exists ! \alpha \in \mathcal{D} : u_\alpha = u_{\alpha_1} \circ u_{\alpha_2}$, то есть задана $\gamma : \mathcal{D} \times \mathcal{D} \to \mathcal{D}$
- $\exists ! \alpha_0 \in \mathcal{D} \colon \forall \alpha \in \mathcal{D} \colon \gamma(\alpha_0, \alpha) = \gamma(\alpha, \alpha_0) = \alpha$, то есть u_{α_0} тождественное.
- $\forall \alpha \in \mathcal{D} \ \exists ! \beta \in \mathcal{D} \colon \ \gamma(\alpha, \beta) = \gamma(\beta, \alpha) = \alpha_0$, то есть u_β обратное к u_α .

Определение 9.2. Функция I(x) - инвариант однопараметрической группы преобразовний, если: $\forall \alpha \in \mathcal{D} \colon I(x) \equiv I(u_{\alpha}(x))$.

Определение 9.3. Говорят, что уравнение допускает однопараметрическую группу преобразований, если оно инвариантно относительно $u_{\alpha} \ \forall \ \alpha \in \mathcal{D}$.

Определение 9.4. Решение уравнения называется *автомодельным*, если оно зависит только от инвариантов некоторой допустимой группы преобразований.

Множество преобразований:

$$\begin{cases} \tau = \beta^2 t, \\ \xi = \beta x \end{cases}$$

есть однопарметрическая группа преобразований, $\xi = \frac{x}{\sqrt{t}}$ - инвариант группы.

Найдём такое решение $u(t,x) = f\left(\frac{x}{\sqrt{t}}\right) = f(z)$.

Тогда:

$$u_t = f'\left(\frac{x}{\sqrt{t}}\right) \cdot \left(\frac{-x}{2t^{\frac{3}{2}}}\right), \quad u_x = f'\left(\frac{x}{\sqrt{t}}\right) \cdot \frac{1}{\sqrt{t}}, \quad u_{xx} = f''\left(\frac{x}{\sqrt{t}}\right) \cdot \frac{1}{t}$$

Подставляем в первое уравнение задачи:

$$-\frac{x}{2t\sqrt{t}}f'\left(\frac{x}{\sqrt{t}}\right) = a^2f''\left(\frac{x}{\sqrt{t}}\right) \cdot \frac{1}{t} \Leftrightarrow a^2f''(z) = -\frac{z}{2}f'(z) \Rightarrow \ln|f'(z)| = -\frac{z^2}{4a^2} + \tilde{C}_1$$

Получили, что: $f(z) = C_1 \int_{-\infty}^{z} e^{-\frac{\eta^2}{4a^2}} d\eta + C_2$

Задача была следующей: бесконечный стержень разделён на две половины, начальные температуры половин $T_0=0$ и $T_1=1$. Из физических соображений:

$$\lim_{z \to -\infty} f(z) = 0, \\ \lim_{z \to +\infty} f(z) = 1. \quad \text{im} \int_{-\infty}^{+\infty} e^{-\frac{\eta^2}{4a^2}} d\eta = C_1^{-1} = 2a \int_{-\infty}^{+\infty} e^{-\frac{\eta^2}{4a^2}} d\frac{\eta}{2a} \Rightarrow C_1 = \frac{1}{\sqrt{4\pi a^2}}$$

Окончательно:

$$f(z) = \frac{1}{\sqrt{4\pi a^2}} \int_{-\infty}^{z} e^{-\frac{\eta^2}{4a^2}} d\eta = \frac{2a}{\sqrt{4\pi a^2}} \int_{-\infty}^{z/2a} e^{-\mu^2} d\mu = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{z/2a} e^{-\mu^2} d\mu$$

Введём интеграл ошибок:

$$\Phi(z) = \frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-\xi^{2}} d\xi, \quad \Phi(\pm \infty) = \pm 1, \quad \Phi(0) = 0.$$

Тогда:

$$u(t,x) = f\left(\frac{x}{\sqrt{t}}\right) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\frac{x}{\sqrt{4ta^2}}} e^{-\mu^2} d\mu = \frac{1}{2} \left[1 + \Phi\left(\frac{x}{\sqrt{4a^2t}}\right) \right]$$

1. Мы рассмотрим модельную задачу.

2. Увеличим ступеньку в u_* раз и сдвинем.

$$u(t,x) = \frac{u_*}{2} \left[1 + \Phi\left(\frac{x - x_0}{\sqrt{4a^2t}}\right) \right]$$

3. Можем получить и ступеньку конечной ширины.

$$u(t,x) = \frac{u_*}{2} \left[\Phi\left(\frac{x - x_1}{\sqrt{4a^2t}}\right) - \Phi\left(\frac{x - x_2}{\sqrt{4a^2t}}\right) \right]$$

4. Для системы из N интервалов имеем:

$$u(t,x) = \sum_{k=1}^{N} \frac{u_{*k}}{2} \left[\Phi\left(\frac{x - x_{1k}}{\sqrt{4a^2t}}\right) - \Phi\left(\frac{x - x_{2k}}{\sqrt{4a^2t}}\right) \right]$$

Последнее можно переписать в следующем виде:

$$u(t,x) = \sum_{k=1}^{N} \left[\frac{\left\{ -\frac{1}{2}\Phi\left(\frac{x-x_{2k}}{\sqrt{4a^2t}}\right) \right\} - \left\{ -\frac{1}{2}\Phi\left(\frac{x-x_{1k}}{\sqrt{4a^2t}}\right) \right\}}{x_{2k} - x_{1k}} \right] u_{*k}(x_{2k} - x_{1k})$$

5. Окончательно, пусть $u_0(x)$ финитна, непрерывна, ограничена. Разбиваем ее носитель $\sup u_0(x)$ на отрезки, аппроксимируем кусочно постоянной. Для приближенных решений справедливо:

$$u(t,x) = \left[\Psi(t,x,\xi) = -\frac{1}{2}\Phi\left(\frac{x-\xi}{\sqrt{4a^2t}}\right)\right] = \sum \frac{\Psi(t,x,x_{2k}) - \Psi(t,x,x_{1k})}{x_{2k} - x_{1k}} u_0\left(\frac{x_{2k} + x_{1k}}{2}\right) (x_{2k} - x_{1k}) \approx \sum_{k=1}^N \frac{\partial\Psi}{\partial\xi}\Big|_{\xi = \frac{x_{2k} + x_{1k}}{2}} u_0\left(\frac{x_{2k} + x_{1k}}{2}\right) (x_{2k} - x_{1k}) = \left[\frac{\partial\Psi}{\partial\xi} = \frac{1}{\sqrt{4\pi a^2t}}e^{-\frac{(x-\xi)^2}{4a^2t}}\right] = \sum_{k=1}^N \frac{1}{\sqrt{4\pi a^2t}} e^{-\frac{(x-\xi)^2}{4a^2t}}\Big|_{\xi = \frac{x_{2k} + x_{1k}}{2}} u_{*k} (x_{2k} - x_{1k}) - \text{ Интегральная сумма Римана}$$

Предположение: решение будет

$$u(t,x)=rac{1}{\sqrt{4\pi a^2 t}}\int_{-\infty}^{\infty}e^{-rac{(x-\xi)^2}{4a^2t}}u_0(y)dy$$
 — Формула Пуассона

Функция

$$\mathcal{E}(t,x) = rac{1}{\sqrt{4\pi a^2 t}} e^{-rac{x^2}{4a^2 t}} -$$
фундаментальное решение (или функция источника)

Теорема 9.1. Пусть $u_0 \in C(\mathbb{R}^1)$, $|u_0(x)| \leqslant M_0 \quad \forall \ x \in \mathbb{R}^1$. Тогда функция $u(t,x) = \frac{1}{\sqrt{4\pi a^2 t}} \int_{-\infty}^{\infty} e^{-\frac{(x-y)^2}{4a^2t}} u_0(y) dy$

- 1. Принадлежит классу $C^{\infty}(t>0,x\in\mathbb{R}^1)\cap C(t\geqslant 0,x\in\mathbb{R}^1)$
- 2. Является классическим решением задачи Коши

$$\begin{cases} u_t - a^2 u_{xx} = 0, t > 0, \ x \in \mathbb{R}^3, \\ u\big|_{t=0} = u_0(x), \ x \in \mathbb{R} \end{cases}$$

3. $|u(t,x)| \leq M \quad \forall t \geq 0, x \in \mathbb{R}^1$

Доказательство. 1. В исходном интеграле для u(t,x) сделаем такую замену:

$$\frac{y-x}{2a\sqrt{t}} = \eta, \ y = x + 2a\sqrt{t}\eta, \ dy = 2a\sqrt{t}d\eta$$

Тогда получим

$$u(t,x) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-\eta^2} u_0(x + 2a\sqrt{t}\eta) d\eta, \ u_0(x + 2a\sqrt{t}\eta) \in C(t \geqslant 0, x \in \mathbb{R}^1, \eta \in \mathbb{R}^1)$$

Оценим $\left|e^{-\eta^2}u_0(x+2a\sqrt{t}\eta)\right| \leqslant M_0e^{-\eta^2}$, причем $\int_{-\infty}^{\infty}M_0e^{-\eta^2}d\eta < \infty \Rightarrow$ этот интеграл сходится абсолютно и равномерно, а значит лежит в $C(t\geqslant 0,x\in\mathbb{R}^1)$. Отсюда следует третье утверждение теоремы.

Возьмем

$$u_x(t,x) \sim \int_{-\infty}^{\infty} \frac{1}{4a^3\sqrt{\pi}t^{3/2}} e^{-\frac{(x-y)^2}{4a^2t}} (y-x)u_0(y)dy = J,$$

где выражение под интегралом лежит в $C(t \geqslant 0, x \in \mathbb{R}^1, \eta \in \mathbb{R}^1)$. Покажем равномерную сходимость этого интеграла серией оценок:

(a)
$$|y - x| \ge |y| - A$$
, $|x| < A$, $y \in \mathbb{R}$

(b) $|y - x| \le |y| + A$

(c) При
$$|y| > A : (y-x)^2 \geqslant (|y|-A)^2 = y^2 + A^2 - 2\frac{|y|}{\sqrt{2}}(\sqrt{2}A) \geqslant y^2 + A^2 - \frac{y^2}{2} - 2A^2 = \frac{y^2}{2} - A^2.$$
 При $|y| \leqslant A : (x-y)^2 > -\frac{A^2}{2}.$

(d) Возьмем

$$\varphi_A(y) = \begin{cases}
-\frac{y^2}{2} - A^2, & |y| \geqslant A \\
-\frac{A^2}{2}, & |y| < A
\end{cases}$$

Тогда $(x-y)^2 \geqslant \varphi_A(y) \ \forall x \leqslant A, y \in \mathbb{R}.$

Получили следующую оценку:

$$\left| \frac{1}{4a^3 \sqrt{\pi} t^{3/2}} e^{-\frac{(x-y)^2}{4a^2 t}} (y-x) u_0(y) \right| \leqslant \frac{M_0}{4a^3 \sqrt{\pi} t^{3/2}} (|y| + A) e^{-\frac{\varphi_A(y)}{4a^2 t}}$$

Этот интеграл сходится при ограничения на t, т.е. в прямоугольнике $Q = \{t \in (t_1, t_2), x \in (-A, A)\}$, т.е. есть равномерная сходимость J в любом прямоугольнике. Беря в качестве Q всевозможные такие прямоугольники, получим $J \in C(t \ge 0, x \in \mathbb{R}^1)$. Аналогично будет для любой другой производной (будет асимптотика $|P_n(y)|e^{-\alpha y^2}$).

2.

$$\mathcal{E}(t,x-y) = \frac{1}{\sqrt{4\pi a^2 t}} e^{-\frac{(x-y)^2}{4a^2 t}}, \ \mathcal{E}_x(t,x-y) = -\frac{(x-y)}{2\sqrt{\pi}2a^3t^{3/2}} e^{-\frac{(x-y)^2}{4a^2 t}}$$

$$\mathcal{E}_{xx}(t,x-y) = \frac{1}{2\sqrt{\pi}} \left[\frac{-1}{2a^3t^{3/2}} + \frac{(x-y)^2}{4a^5t^{5/2}} \right] e^{-\frac{(x-y)^2}{4a^2 t}}, \ \mathcal{E}_t(t,x-y) = \frac{1}{2\sqrt{\pi}} \left[\frac{-1}{2at^{3/2}} + \frac{(x-y)^2}{4a^3t^{5/2}} \right] e^{-\frac{(x-y)^2}{4a^2 t}}$$

Тогда

$$u_t - a^2 u_{xx} = \int_{-\infty}^{+\infty} \left[\mathcal{E}_t(t, x - y) - a^2 \mathcal{E}_{xx}(t, x - y) \right] u_0(y) dy = 0.$$

Начальное условие (используя самое начало выкладок)

$$u|_{t=0} = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-\eta^2} u_0(x) d\eta = u_0(x)$$

Теорема доказана.

10 Билет 10. Формула Пуассона решения задачи Коши для однородного и неоднородного уравнений теплопроводности в \mathbb{R}^n . Метод Дюамеля. Существование классического решения.

Задача:

$$\begin{cases}
 u_t(t,x) - a^2 \Delta_x u(t,x) = 0, & t > 0, x \in \mathbb{R}^n, \\
 u|_{t=0} = u_0(x) = \varphi_1(x_1) \dots \varphi_n(x_n), & \varphi_k(x_k) \in C(\mathbb{R}^1), \quad |\varphi(x_k)| \leqslant M, \quad k = \overline{1,n};
\end{cases}$$
(11)

Напишем серию задач Коши:

$$\begin{cases} u_t^k(t,x) - a^2 u_{x_k x_k}^k(t,x) = 0, \\ u_{t=0}^k = \varphi_k(x_k); \end{cases}$$
 (12)

Решение каждой даётся формулой Пуассона:

$$u^{k}(t, x_{k}) = \frac{1}{\sqrt{4\pi a^{2}t}} \int_{-\infty}^{+\infty} e^{-\frac{(x_{k} - y_{k})^{2}}{4a^{2}t}} \varphi_{k}(y_{k}) dy_{k}$$
(13)

Покажем, что решение всей задачи:

$$u = \prod_{k=1}^{n} \overset{\mathrm{k}}{u} (t, x_k)$$

1. Очевидно, $u(t,x) \in C(t \ge 0, x \in \mathbb{R}^n) \cap C^{\infty}(t > 0, x \in \mathbb{R}^n);$

2.
$$u(0,x) = \prod_{k=1}^{n} \varphi_k(x_k);$$

3.
$$u_{t}(t,x) = \frac{\partial}{\partial t} \left[\prod_{k=1}^{n} \overset{k}{u}(t,x_{k}) \right] = \sum_{j=1}^{n} \left[\overset{j}{u_{t}}(t,x_{j}) \prod_{\substack{k=1\\k\neq j}}^{n} \overset{k}{u}(t,x_{k}) \right] = \sum_{j=1}^{n} \left[a^{2} \overset{j}{u}_{x_{j}x_{j}} \prod_{\substack{k=1\\k\neq j}}^{n} \overset{k}{u}(t,x_{k}) \right] = a^{2} \sum_{j=1}^{n} \frac{\partial^{2}}{\partial x_{j}^{2}} \prod_{k=1}^{n} \overset{k}{u}(t,x_{k}) = a^{2} \sum_{j=1}^{n} \frac{\partial^{2}}{\partial x_{j}^{2}} u(t,x) = a^{2} \Delta_{x} u(t,x).$$

Итак, в случае разделения переменных имеем:

$$u(t,x) = \left(\frac{1}{\sqrt{4\pi a^2 t}}\right)^n \int_{\mathbb{R}} \dots \int_{\mathbb{R}} e^{-\frac{\sum_{j=1}^n (x_j - y_j)^2}{4a^2 t}} \prod_{k=1}^n \varphi_k(y_k) dy_1 \dots dy_n = \left[\left(\frac{1}{\sqrt{4\pi a^2 t}}\right)^n \int_{\mathbb{R}^n} e^{-\frac{|x-y|^2}{4a^2 t}} u_0(y) dy\right]$$
(14)

Полученная формула называется формулой Пуассона в \mathbb{R}^n .

Теорема 10.1. Пусть $u_0 \in C(\mathbb{R}^n), |u_0| \leq M \ \forall \ x \in \mathbb{R}^n$. Тогда

$$u(t,x) = \left(\frac{1}{\sqrt{4\pi a^2 t}}\right)^n \int_{\mathbb{R}^n} e^{-\frac{|x-y|^2}{4a^2 t}} u_0(y) dy -$$

классическое решение задачи Коши 11, лежащее в классе $C^{\infty}(t>0,x\in\mathbb{R}^n)\cap C(t\geqslant 0,x\in\mathbb{R}^n)$. Кроме того, $|u(t,x)|\leqslant M\ \forall\ t>0,x\in\mathbb{R}^n$.

Доказательство. Сохраняется из предыдущего билета с заменой $(x-y)^2 \to |x-y|^2$. \square

Зная решение однородного уравнения, можно найти решение и для неоднородного:

$$\begin{cases} u_t - a^2 \Delta_x u = f(t, x), & t > 0, x \in \mathbb{R}^n, \\ u|_{t=0} = 0; \end{cases}$$
 (15)

Используем метод Дюамеля. Предположения относительно f:

- 1. $D_x^{\alpha} f(t, x) \in C(t \ge 0, x \in \mathbb{R}^n) \ \forall \ \alpha : |\alpha| \le 2;$
- 2. $|f(t,x)| \leq M_0 \ \forall \ t \geq 0, x \in \mathbb{R}^n$;
- 3. $|D_x^{\alpha} f(t, x)| \leq M_2 \ \forall \ t \geq 0, x \in \mathbb{R}^n$.

Сводим задачу к семейству однопараметрических задач:

$$\begin{cases} v_t(t, x, \tau) - a^2 \Delta_x v(t, x, \tau) = 0, & t > \tau, x \in \mathbb{R}^n, \\ v|_{t=\tau} = f(\tau, x), & x \in \mathbb{R}^n; \end{cases}$$
(16)

Решение даётся формулой Пуассона в \mathbb{R}^n :

$$v(t, x, \tau) = \left(\frac{1}{\sqrt{4\pi a^2(t - \tau)}}\right)^n \int_{\mathbb{R}^n} e^{-\frac{|x - y|^2}{4a^2(t - \tau)}} f(\tau, y) dy$$

v(t,x, au) непрерывно продолжима до $t\geqslant au,$ ограничена: $|v(t,x, au)|\leqslant M_0.$

Покажем, что $u(t,x)=\int\limits_0^t v(t,x,\tau)d\tau$ — решение задачи.

Исследуем вспомогательную функцию:

$$w(\tilde{t}, x, \tau) = \left(\frac{1}{\sqrt{4\pi a^2 \tilde{t}}}\right)^n \int_{\mathbb{R}^n} e^{-\frac{|x-y|^2}{4a^2 \tilde{t}}} f(\tau, y) dy, \quad \tilde{t} > 0, \tau \geqslant 0, x, y \in \mathbb{R}^n$$

Введём
$$\eta = \frac{y-x}{2a\sqrt{\tilde{t}}} \Rightarrow y = x + 2a\sqrt{\tilde{t}}\eta \Rightarrow dy = dy_1 \dots dy_n = \left(2a\sqrt{\tilde{t}}\right)^n d\eta_1 \dots d\eta_n = \left(2a\sqrt{\tilde{t}}\right)^n d\eta.$$

Тогда
$$w(\tilde{t},x,\tau)=rac{1}{\pi^{n/2}}\int\limits_{\mathbb{R}^n}e^{-\eta^2}f\left(\tau,x+2a\sqrt{\tilde{t}}\eta\right)d\eta,\quad \tilde{t}>0$$

$$f\left(\tau, x + 2a\sqrt{\tilde{t}}\eta\right) \in C(\tau \geqslant 0, \tilde{t} \geqslant 0, x \in \mathbb{R}^n, \eta \in \mathbb{R}^n)$$

$$\left| f\left(\tau,x+2a\sqrt{\tilde{t}}\eta\right)e^{-\eta^2}\right| \leqslant M_0e^{-\eta^2} \text{ и} \int\limits_{\mathbb{D}^n} e^{-\eta^2}d\eta < +\infty \Rightarrow w(\tilde{t},x,\tau) \text{ сходится равномерно.}$$

Итак, $w \in C(\tilde{t} \geqslant 0, \tau \geqslant 0, x \in \mathbb{R}^n)$.

Утверждение 10.2. w можно дифференцировать и вносить производную под интеграл.

Доказательство.
$$w_{x_i}(\tilde{t},x,\tau) \sim \frac{1}{\pi^{n/2}} \int\limits_{\mathbb{T}^{n}} e^{-\eta^2} f_{x_i}\left(\tau,x+2a\sqrt{\tilde{t}}\eta\right) d\eta, \quad \tilde{t}>0$$

$$f_{x_i}\left(\tau, x + 2a\sqrt{\tilde{t}\eta}\right) \in C(\tau \geqslant 0, \tilde{t} \geqslant 0, x \in \mathbb{R}^n, \eta \in \mathbb{R}^n)$$

$$\left|f_{x_i}\left(\tau,x+2a\sqrt{\tilde{t}}\eta\right)e^{-\eta^2}\right|\leqslant M_2e^{-\eta^2}\Rightarrow w_{x_i}(\tilde{t},x,\tau)\ \text{сходится равномерно}.$$

Поэтому, вместо '∼' можно поставить '=':

$$w_{x_i}(\tilde{t}, x, \tau) = \frac{1}{\pi^{n/2}} \int_{\mathbb{R}^n} e^{-\eta^2} f_{x_i} \left(\tau, x + 2a\sqrt{\tilde{t}}\eta \right) d\eta, \quad \tilde{t} > 0$$

Аналогично и для вторых производных по x:

$$w_{x_i x_j}(\tilde{t}, x, \tau) = \frac{1}{\pi^{n/2}} \int_{\mathbb{R}^n} e^{-\eta^2} f_{x_i x_j} \left(\tau, x + 2a \sqrt{\tilde{t}} \eta \right) d\eta, \quad \tilde{t} > 0$$

Теперь производная по времени: в силу того, что уравнение

$$\begin{cases} w_{\tilde{t}} - a^2 \Delta_x w = 0, \\ w|_{\tilde{t}=0} = f(\tau, x); \end{cases}$$

выполняется везде, включая границу, получаем, что $w_{\tilde{t}} \in C(\tilde{t} \geqslant 0, \tau \geqslant 0, x \in \mathbb{R}^n)$

Мы исследовали w, а цель — v. Связь этих функций: $v(t,x,\tau)=w(t-\tau,x,\tau)$. При условиях $\tau\geqslant 0, t\geqslant \tau, x\in\mathbb{R}^n$ имеем непрерывность следующих функций: $v,v_t,v_{x_i},v_{x_ix_j}$. Тогда для функции

$$u(t,x)=\int\limits_0^tv(t,x, au)d au$$
 получаем непрерывность $u,u_t,u_{x_i},u_{x_ix_j}\Rightarrow$ решение будет классическим.

Осталось проверить уравнение:
$$u_t = v(t,x,t) + \int\limits_0^t v_t(t,x,\tau)d\tau = f(t,x) + \int\limits_0^t a^2\Delta_x v d\tau = f(t,x) + a^2\Delta_x u$$

Определение 10.1. Пусть Q — область в $\mathbb{R}^{n+1}_{t,x_1,\dots,x_n}$, а $\hat{Q} = Q \cup \{$ некоторое подмножество $\partial Q \}$. Обозначим $C^{p,q}_{t,x}(\hat{Q})$ множество функций u(t,x) таких, что $u, D^{\alpha}_x u, D^{\beta}_t u \in$

 $C(Q), \alpha$ — мультииндекс, $|\alpha| \leqslant q, \beta \in \mathbb{N} \cup \{0\}, \beta \leqslant p$, и все эти функции допускают непрерывное продолжение на \hat{Q} .

Теорема 10.3. Пусть в задаче Коши

$$\begin{cases} u_t - a^2 \Delta_x u = f(t, x), & t > 0, x \in \mathbb{R}^n \\ u|_{t=0} = u_0(x), & x \in \mathbb{R}^n; \end{cases}$$

- a) $u_0 \in C(\mathbb{R}^n), |u_0(x)| \leq M_0 \ \forall \ x \in \mathbb{R}^n$
- 6) $f(t,x) \in C_{t,x}^{1,2}(t \ge 0, x \in \mathbb{R}^n)$
- e) $|f(t,x)| \leq M_1$, $|f_{x_i}(t,x)| \leq M_2$, $|f_{x_ix_i}(t,x)| \leq M_2 \ \forall t \geq 0, x \in \mathbb{R}^n$

Тогда функция

$$u(t,x) = \left(\frac{1}{\sqrt{4\pi a^2 t}}\right)^n \int_{\mathbb{R}^n} e^{-\frac{|x-y|^2}{4a^2 t}} u_0(y) dy + \int_0^t \left[\left(\frac{1}{\sqrt{4\pi a^2 (t-\tau)}}\right)^n \int_{\mathbb{R}^n} e^{-\frac{|x-y|^2}{4a^2 (t-\tau)}} f(\tau,y) dy \right] d\tau$$

является классическим решением задачи Коши, лежит в классе $C(t \ge 0, x \in \mathbb{R}^n) \cap C^{1,2}_{t,x}(t > 0, x \in \mathbb{R}^n)$. Кроме того, справедлива оценка $|u(t,x)| \le M_0 + tM_1$

Доказательство. Последний факт:
$$|u|\leqslant M_0+\int\limits_0^t|v_t|d\tau\leqslant M_0+M_1t$$

11 Билет 11. Принцип максимума для уравнения теплопроводности. Теорема о единственности решения задачи Коши уравнения теплопроводности в классе $M_2(T)$ (без доказательства)

• Пусть Ω - ограниченная область в \mathbb{R}^n , T>0, $Q_T=(0,T)\times\Omega$ - цилиндр. Сечение цилиндра плоскостью t= au обозначим $\Omega_{ au}$

Определение 11.1. Параболическая граница области Q_T - множество $\Gamma_T = \Omega_0 \cup \{[0,T] \times \partial \Omega\}$

Определим оператор $L: Lu(t,x) = u_t - a^2 \Delta_x u$, где $u \in C^{1,2}_{t,x}(Q_T)$

Теорема 11.1. (Принцип максимума) Пусть $u(t,x) \in C^{1,2}_{t,x}(Q_T) \cap C(\overline{Q_T})$, и пусть $\mathrm{L}u(t,x) \leqslant 0$ в Q_T . Тогда $\max_{(x,t) \in \overline{Q_T}} u(t,x)$ достигается на параболической границе Γ_T области Q_T

Доказательство. Возьмем усеченный цилиндр $Q_{T-\delta}$. Рассматриваются $M=\max_{\overline{Q_{T-\delta}}}u(t,x)$ и $m=\max_{\Gamma_{T-\delta}}u(t,x)$. Теорема утверждает, что M не превосходит m.

• Пусть это не так и m < M. Тогда $\exists (t^1, x^1) \in Q_{T-\delta} \cup \Omega_{T-\delta}$ такая, что $M = u(t^1, x^1)$. Т.к. это точка максимума гладкой функции, $u_{x_ix_i}(t^1, x^1) \leq 0$, а $u_t(t^1, x^1) \geq 0$ (Если внутри, то равенство, если на верхней кромке, то ≥ 0). Значит, значение образа u(t, x) под действием оператора L в точке (t^1, x^1) : $Lu(t^1, x^1) = u_t - a^2 \Delta_x \ u|_{(t^1, x^1)} \geq 0$.

Для противоречия необходимо показать, что неравенство строгое.

- Строгость: Возьмем функцию $v_{\beta}(t,x) = u(t,x) + \beta |x-x^1|^2$, $\beta = \frac{M-m}{2(\text{diam}Q_T)^2}$ такая же гладкая, как u. На параболической границе $v_{\beta} \leqslant m + \frac{M-m}{2d^2} \cdot d^2 = \frac{M+m}{2} < M$. Тем не менее, $v_{\beta}(t^1,x^1) = M \Rightarrow$ максимум v_{β} не на параболической границе. Пусть он в точке $(t^2,x^2) \notin \Gamma_{T-\delta}$. Тогда $\mathsf{L} \ v_{\beta}|_{(t^2,x^2)} = \mathsf{L} \ u|_{(t_2,x_2)} \beta d^2 2n \geqslant 0 \Rightarrow \mathsf{L} \ u|_{(t_2,x_2)} \geqslant \beta d^2 2n > 0 \Rightarrow \mathsf{Противорчиe}$ (вывод \geqslant аналогичен рамке выше)
- Предельный переход с $\delta \to +0$: Пусть $u_* = \max_{\Gamma_T} u(t,x)$. Тогда $\max_{\overline{Q_{T-\delta}}} u(t,x) \leqslant \max_{\Gamma_{T-\delta}} u(t,x) \leqslant \max_{\Gamma_T} u(t,x) = u_* \Rightarrow u(t,x) \leqslant u_*$ во всех точках $\overline{Q_T} \diagdown \Omega_T$ $u(t,x)|_{\Omega_T} = \lim_{(\widehat{t},\widehat{x}) \in Q_T \to (t,x) \in \Omega_T} u(\widehat{t},\widehat{x}) \boxed{\leqslant} u_*$ ($\boxed{\leqslant}$ предельный переход в неравенствах.) Теорема доказана.

Следствие. Пусть $u(t,x)\in C^{1,2}_{t,x}(Q_T)\cap C(\overline{Q_T}), Lu=0\ \forall\ (t,x)\in Q_T.$ Тогда $\max_{\overline{Q_T}}u(t,x)\ u$ $\min_{\overline{Q_T}}u(t,x)$ достигаются на параболической границе Γ_T множества Q_T

Доказательство. Максимум достигается, т.к. $Lu \leq 0$, минимум достигается, т.к. $L(-u) \leq 0$

Единственность решения задачи Коши

Вообще говоря, решение единственным будет не всегда. Но если ограничиться некоторым классом функций, то в нем решение может оказаться единственным. Введем такой класс.

• Пусть $T>0, \sigma\geqslant 0$. Слой толщины ${\bf T}$ - множество $\Pi_T=\{(t,x): 0< t< T; x\in \mathbb{R}^n\}$ Обозначим $M_\sigma(T)$ -класс функций $u(t,x)\in C^{1,2}_{t,x}(\Pi_T)\cap C(\overline{\Pi_T})$ таких, что $\forall\, u(t,x)\,\exists\, A>0, \alpha\geqslant 0$ такие, что $|u(t,x)|\leqslant A\exp^{\alpha|x|^\sigma}\,\,\forall\, (t,x)\in \overline{\Pi_T}$

Лемма 11.2. $M_{\sigma}(T)$ - линейное пространство, причем $\sigma_0 \leqslant \sigma_1 \Rightarrow M_{\sigma_0}(T) \subset M_{\sigma_1}(T)$

Доказательство. Очевидно. \Box

Лемма 11.3. $\forall T>0$ функция $u_T(t,x)=\frac{1}{(T-t)^{\frac{n}{2}}}\exp^{\frac{|x|^2}{4a^2(T-t)}}, t< T, x\in \mathbb{R}^n$ удовлетворяет однородному уравнению теплопроводности

Доказательство. $-u_T \in C^{\infty} \{t < T, x \in \mathbb{R}^n\}$

$$- \frac{\partial u_T}{\partial t} = \left[\frac{n}{2(T-t)^{\frac{n}{2}}} + \frac{1}{(T-t)^{\frac{n}{2}}} \frac{|x|^2}{4a^2(T-t)^2} \right] \exp^{\frac{|x|^2}{4a^2(T-t)}}$$

$$-\Delta_x u_T = \left[\frac{1}{(T-t)^{\frac{n}{2}}} \frac{2n}{4a^2(T-t)} + \frac{1}{(T-t)^{\frac{n}{2}}} \frac{4|x|^2}{4^2a^4(T-t)^2}\right] \exp^{\frac{|x|^2}{4a^2(T-t)}} \Rightarrow (u_T)_t' - a^2 \Delta_x u_T = 0$$
 ч.т.д

• Класс Тихонова - $M_2(T)$

Лемма 11.4. Пусть v(t,x) такова, что $v \in M_2(T)$ и v - решение полностью однородной 3K {L $v=0, v|_{t=0}$ }. Тогда $\exists T_1 \leqslant T: |v| \leqslant \varepsilon u_{2T_1}(x,t) \ \forall \ \varepsilon > 0$

Доказательство. $|v| \leqslant A \exp^{\alpha |x|^2} \ \forall \ t, x \in \overline{\Pi_T}$. Выбираем $T_1 \leqslant T : \frac{1}{8a^2T_1} > \alpha : T_1 = \min\left\{T, \frac{1}{16\alpha a^2}\right\}$

Возьмем $\varepsilon > 0$ и $\omega_e^{\pm}(t,x) = \varepsilon u_{2T_1} \pm v(t,x)$. Нужно показать, что $\omega_e^{\pm}(t,x) > 0$:

$$\omega_e^{\pm}(t,x)\geqslant \varepsilon u_{2T_1}-|v(t,x)|\geqslant \varepsilon u_{2T_1}-A\exp^{\alpha|x|^2}=\frac{\varepsilon}{(2T_1-t)^{\frac{n}{2}}}\exp^{\frac{|x|^2}{4a^2(2T_1-t)}}-A\exp^{\alpha|x|^2}\geqslant \frac{|x|^2}{(2T_1-t)^{\frac{n}{2}}}\exp^{\frac{|x|^2}{4a^22(T_1)}}-A\exp^{\alpha|x|^2}=\frac{\varepsilon}{(2T_1)^{\frac{n}{2}}}\exp^{\frac{|x|^2}{8a^2(T_1)}}\left[1-\frac{(2T_1)^{\frac{n}{2}}}{\varepsilon}A\exp^{-\left(\frac{1}{8a^2(T_1)}-\alpha\right)|x|^2}\right]$$
 (для выделенной части $\exists\,R>0$: эта часть $<\frac{1}{2}$ при $|x|>R$) Значит, $\forall\,(t,x):0\leqslant t\leqslant T$ и $|x|\geqslant R$ $\Rightarrow \omega_e^{\pm}(t,x)>0$.

Но $\omega_e^\pm(t,x)$ удовлетворяет уровнению теплопроводности \Rightarrow на Γ_{T_1} достигаются максимум и минимум $\omega_e^\pm(t,x)$ \Rightarrow он строго >0 \Rightarrow $\omega_e^\pm(t,x)$ >0 всюду в полосе $(0,T_1)$. Итак, $\mp v(t,x) \leqslant \varepsilon u_{2T_1}(t,x)$ \Rightarrow $|v| \leqslant \varepsilon u_{2T_1}(t,x)$ \forall $\varepsilon > 0$ \Rightarrow $v \equiv 0$ в $\overline{\Pi_{T_1}}$

Теорема 11.5. Задача Коши $Lu = f(x,t), u|_{t=0} = u_0(x)$ в классе Тихонова не может иметь более одного решения в полосе Π_T

Доказательство. Пусть существует два решения: u_1 и u_2 . Возьмем $v(t,x) = u_2 - u_1$. Функция v удовлетворяет полностью однородной ЗК и лежит в **классе Тихонова** \Rightarrow в

полосе Π_{T_1} , где T_1 определенно из предыдущей леммы, будет $v\equiv 0$ Если $T \leqslant T_1$, то все доказано. В противном случае вводим: $w(t,x) = v(t+T_1,x)$. Она удовлеворяет:

$$\begin{cases} w_t - a^2 \Delta_x w = 0 \\ w|_{t=0} = 0, T_1 \leqslant t < T, x \in \mathbb{R}^n \end{cases}$$
 (17)

 \Rightarrow в полосе $(0,T_1)$ получим $w\equiv 0$ (T_1) определяется $\frac{1}{8a^2\alpha}\Rightarrow$ одно и то же)

Так за конечное число шагов $N = \lceil \frac{T}{T_1} \rceil$ мы покроем всю Π_T

12 Билет 12. Решение методом Фурье смешанной задачи для однородного уравнения теплопроводности на отрезке с однородными краевыми условиями Дирихле. Существование и единственность классического решения.

Рассмотрим смешанную (начально-краевую) задачу:

$$\begin{cases}
 u_t - a^2 u_{xx} = f(t, x), & 0 < t < T, 0 < x < l, \\
 u|_{t=0} = u_0(x), & 0 \le x \le l, \\
 u|_{x=0} = \psi_0(t), & u|_{x=l} = \psi_1(t), & 0 \le t \le T;
\end{cases}$$
(18)

Рассматриваем ее классическое решение — функцию $u(t,x) \in C^{1,2}_{t,x}(Q_T) \cap C(\overline{Q_T})$, где $Q_T = \{(t,x): t \in (0,T); x \in (0,l)\}$, удовлетворяющую в Q_T уравнению, начальному и граничным условиям.

Теорема 12.1 (Единственности). *Не может существовать более одного классического решения задачи 18*

Доказательство. Если u_1, u_2 — классические решения, то $v = u_1 - u_2$ — классическое решение полностью однородной задачи. На параболической границе $\Gamma_T = \{t = 0, x \in [0, l]\} \cup \{x = 0, t \in [0, T]\} \cup \{x = l, t \in [0, T]\} \ v|_{\Gamma_T} = 0$. Но на Γ_T достигается максимум и минимум v в Q_T в силу принципа максимума $\Rightarrow v \equiv 0$

Частный случай, указанный в билете:

$$\begin{cases} u_t - a^2 u_{xx} = 0, & 0 < t < T, 0 < x < l, \\ u|_{t=0} = u_0(x), & 0 \leqslant x \leqslant l, \\ u|_{x=0} = 0, & u|_{x=l} = 0, & 0 < t < T; \end{cases}$$

Из непрерывности естественно требовать выполнение условий согласования: $u_0(0) = u_0(l) = 0$. Оказывается, в таких условиях решение существует.

 $Memod \ \Phi ypbe-$ поиск решения в виде ряда по собственным функциям стационарного оператора.

Придём к этой идее. Будем искать решение $Lu=u_t-a^2u_{xx}=0$ методом разделения переменных:

$$u(t,x) = \Theta(t)X(x), \quad u(t,x) \not\equiv 0.$$

Подставляем: $\dot{\Theta}(t)X(x)-a^2\Theta(t)X''(x)=0\Rightarrow \frac{\dot{\Theta}(t)}{a^2\Theta(t)}=\frac{X''(x)}{X(x)}=-\lambda=\mathrm{const},$ т.к. равенство выполнено $\forall\,(t,x)\in Q_T$

Получаем на функции Θ и X следующие уравнения:

$$\begin{cases} -X''(x) = \lambda X(x), & 0 \leqslant x \leqslant l, \\ \dot{\Theta}(t) + \lambda a^2 \Theta(t) = 0, & 0 \leqslant t \leqslant T; \end{cases}$$

Из начального условия $u(t,0) = \Theta(t)X(0) \ \forall \ t \in (0,T) \Rightarrow X(0) = 0.$ Аналогично X(l) = 0. Задача для X:

$$\begin{cases}
-X''(x) = \lambda X(x), & x \in (0, l), \\
X(0) = X(l) = 0, \\
X(x) \not\equiv 0;
\end{cases}$$
(19)

Поставленная задача называется задачей Штурма-Лиувилля.

Введем оператор A:

•
$$D(A) = \{X \in C^2[0, l] : X(0) = X(l) = 0\}$$

•
$$Im(A) = \{Y \in C[0, l]\}$$

•
$$AX = -\Delta X = Y$$

Задача Штурма-Лиувилля — это задача на собственные функции и собственные значения оператора A.

Решим ее:

•
$$\lambda < 0$$
:
$$X(x) = C_1 e^{\sqrt{|\lambda|}x} + C_2 e^{-\sqrt{|\lambda|}x}$$

$$\begin{cases} X(0) = C_1 + C_2 = 0, \\ X(l) = C_1 e^{\sqrt{|\lambda|}l} + C_2 e^{-\sqrt{|\lambda|}l} = 0; \end{cases}$$

$$\det \begin{pmatrix} 1 & 1 \\ e^{2\sqrt{|\lambda|}l} & 1 \end{pmatrix} = 1 - e^{2\sqrt{|\lambda|}l} = 0 \Rightarrow \sqrt{|\lambda|}l = 0, \text{ противоречие.}$$

Итак, « $-\Delta$ » с граничными условиями Дирихле не имеет отрицательных собственных значений.

•
$$\lambda = 0$$
:
 $X(x) = C_1 x + C_2$

$$\begin{cases} X(0) = C_2 = 0, \\ X(l) = C_1 l = 0; \end{cases}$$

Нетривиальных решений нет.

•
$$\lambda > 0$$
:
$$X(x) = C_1 \cos \sqrt{\lambda} x + C_2 \sin \sqrt{\lambda} x$$

$$\begin{cases} X(0) = C_1 = 0, \\ X(l) = C_2 \sin \sqrt{\lambda} l = 0; \end{cases}$$

$$\sqrt{\lambda} l = \pi k \Rightarrow \lambda_k = \left(\frac{\pi k}{l}\right)^2, k \in \mathbb{N}$$
 Функции $X_k(x) = \sin\left(\frac{\pi k}{l}x\right)$

Теперь для найденных λ_k решаем $\dot{\Theta}_k(t) + \lambda_k a^2 \Theta_k(t) = 0 \Rightarrow \Theta_k(t) = e^{-a^2 \lambda_k t}$

Мы нашли $u_k(t,x)=e^{-a^2\lambda_k t}\sin\left(\frac{\pi k}{l}\right)$ — счетное число бесконечно гладких решений: u_k удовлетворяет задаче

$$\begin{cases} (u_k)_t - a^2 (u_k)_{xx} = 0, \\ u_k(t, 0) = u_k(t, l) = 0, \\ u_k(0, x) = X_k(x) = \sin \lambda_k x; \end{cases}$$

Тогда $u_A(t,x)=\sum_{k=1}^N A_k u_k(t,x)$ — решение для задачи с начальным условием $u(0,x)=\sum_{k=1}^N A_k X_k(x).$

Обозначим Ku_0 — класс функций $u_0 = \sum_{k=1}^N A_k X_k(x)$ — тех, для которых умеем выписать явное решение. Пусть A_k — k-мерные векторы. Между Ku_0 и A_k есть биекция (по $u_0 = \sum_{k=1}^N A_k X_k(x)$ однозначно восстанавливаем $A_k = \frac{2}{l} \int\limits_0^l u_0(x) \sin\left(\frac{\pi k}{l}x\right) dx$)

Бесконечномерный вектор подойдет уже не всегда. Как минимум ряд $\sum_{k=1}^{\infty} A_k X_k(x)$ должен сойтись в замыкании области. Функция $\sum_{k=1}^{\infty} A_k u_k(t,x)$ должна быть нужной гладкости, а также удовлетворять уравнению 18.

Утверждение 12.2. $\{A_k\}_{k=1}^{+\infty}: \sum_{k=1}^{+\infty} |A_k| < +\infty$ подойдет

Доказательство. Пусть $u_0(x) = \sum_{k=1}^{+\infty} A_k \sin\left(\frac{\pi k}{l}x\right), \sum_{k=1}^{+\infty} |A_k| < +\infty$. Тогда $\left|A_k \sin\left(\frac{\pi k}{l}x\right)\right| \leqslant |A_k| \Rightarrow$ по теореме Вейерштрасса ряд сходится абсолютно и равномерно \Rightarrow сумма непрерывна.

Равномерно сходящийся ряд можно почленно интегрировать \Rightarrow по $u_0(x)$ восстанавливаем A_n :

$$\int_{0}^{l} u_0(x) \sin\left(\frac{\pi n}{l}x\right) dx = \sum_{k=1}^{+\infty} A_k \int_{0}^{l} \sin\left(\frac{\pi k}{l}x\right) \sin\left(\frac{\pi n}{l}x\right) dx \Rightarrow A_n = \frac{2}{l} \int_{0}^{l} u_0(x) \sin\left(\frac{\pi n}{l}x\right) dx$$

Теперь рассмотрим ряд
$$u_A(t,x) \sim \sum_{k=1}^{+\infty} A_k e^{-\left(\frac{a\pi k}{l}\right)^2 t} \sin\left(\frac{\pi k}{l}x\right)$$

Пока не можем поставить знак равенства, поскольку еще не выяснили сходимость.

 $\left|A_k e^{-\left(\frac{a\pi k}{l}\right)^2 t} \sin\left(\frac{\pi k}{l}x\right)\right| \leqslant |A_k| \Rightarrow$ ряд сходится абсолютно и равномерно, и мы можем поставить знак равенства:

$$u_A(t,x) = \sum_{k=1}^{+\infty} A_k e^{-\left(\frac{a\pi k}{l}\right)^2 t} \sin\left(\frac{\pi k}{l}x\right)$$

Покажем, что получилась $u_A(t,x) \in C^{\infty}(t > 0, 0 \le x \le l)$.

Возьмем прямоугольник $Q_{\delta} = \{(t, x) : t \geqslant \delta > 0, 0 \leqslant x \leqslant l\}.$

Формально
$$\frac{\partial u_A}{\partial t} \sim -\sum_{k=1}^{+\infty} A_k \left(\frac{a\pi k}{l}\right)^2 e^{-\left(\frac{a\pi k}{l}\right)^2 t} \sin\left(\frac{\pi k}{l}x\right) = -\sum_{k=1}^{+\infty} \varphi_k(t,x)$$

Для краткости введём $y = \left(\frac{a\pi k}{l}\right)^2$.

Оценка:
$$|\varphi_k| \leqslant |A_k| y e^{-y\delta} = |A_k| \frac{1}{\delta} (y\delta) e^{-y\delta} \leqslant |A_k| \frac{1}{\delta e}$$

Последнее неравенство следует из того, что функция xe^{-x} имеет максимум в точке x=1, равный $\frac{1}{e}$.

Итак, по теореме Вейерштрасса, ряд сходится абсолютно и равномерно.

Варьируя δ , прямоугольниками Q_{δ} заметаем всю область $\{t>0, 0\leqslant x\leqslant l\}$

Для остальных производных получим то же самое — всегда будет получаться произведение многочлена на экспоненту с отрицательным показателем.

Мы научились решать задачу для
$$u_0(x) = \sum_{k=1}^{+\infty} A_k \sin\left(\frac{\pi k}{l}x\right)$$
.

Докажем серию лемм.

Лемма 12.3. Пусть в гильбертовом пространстве \mathcal{H} оператор A симметричный (самосо-пряжённый), т.е. (Ax, y) = (x, Ay). Тогда:

- 1. Все собственные значения А вещественны;
- 2. Собственные функции, отвечающие различным собственным значениям, ортогональны.

Доказательство. Пусть x_k — собственный вектор, отвечающий собственному значению λ_k , а x_n — собственный вектор, отвечающий собственному значению λ_n , причем $\lambda_k \neq \lambda_n$. Тогда:

1.
$$\lambda_k(x_k, x_k) = (Ax_k, x_k) = (x_k, Ax_k) = (x_k, \lambda_k x_k) = \overline{\lambda_k}(x_k, x_k) \Rightarrow \lambda_k = \overline{\lambda_k} \Rightarrow \operatorname{Im} \lambda_k = 0$$

2.
$$\lambda_k(x_k, x_n) = (Ax_k, x_n) = (x_k, Ax_n) = \overline{\lambda_n}(x_k, x_n) = 1 \xrightarrow{\text{пункт 1}} \lambda_n(x_k, x_n) \Rightarrow \underline{(\lambda_k - \lambda_n)}(x_k, x_n) = 0 \Rightarrow (x_k, x_n) = 0$$

Лемма 12.4. Оператор $A = -\frac{d^2}{dx^2}$, определенный на D(A), является симметричным относительно скалярного произведения в $\mathbb{L}_2([0,l]): (u,v) = \int\limits_0^l u(x)\overline{v(x)}dx$

Доказательство. $(Au,v)=\int\limits_0^l(-u''(x))\overline{v(x)}dx=\int\limits_{=0,\text{ B}}^l-u'(x)\overline{v(x)}\Big|_0^l+\int\limits_0^lu'(x)\overline{v'(x)}dx=\int\limits_{0}^l(-u''(x))\overline{v($

$$\underbrace{u(x)\overline{v'(x)}\Big|_0^l}_{=0, \text{ в силу определения D}(A)} + \int_0^l u(x)\left(-\overline{v''(x)}\right)dx = (u,Av)$$

Лемма 12.5. Пусть $\{e_k\}$ — не более чем счетная ортогональная система в линейном пространстве со скалярным произведением: $(e_k,e_j)=\delta_{kj}\underline{(e_k,e_k)}$. Тогда $\forall \ f$ из этого простран-

ства справедливо неравенство Бесселя: $\sum_{k=1}^{+\infty} |c_k|^2 (e_k, e_k) = \sum_{k=1}^{>0} \left| \frac{(f, e_k)}{(e_k, e_k)} \right|^2 (e_k, e_k) \leqslant (f, f)$

Доказательство.
$$0 \leqslant \left(f - \sum_{k=1}^{n} c_k e_k, f - \sum_{k=1}^{n} c_k e_k\right) = (f, f) - \sum_{k=1}^{n} c_k (e_k, f) - \sum_{j=1}^{n} \overline{c_j}(f, e_j) + \sum_{k=1}^{n} \sum_{j=1}^{n} c_k \overline{c_j}(e_k, e_j) =$$

$$= (f,f) - \sum_{k=1}^{n} c_{k} \overline{c_{k}}(e_{k},e_{k}) - \sum_{j=1}^{n} c_{j} \overline{c_{j}}(e_{j},e_{j}) + \sum_{i=1}^{n} c_{i} \overline{c_{i}}(e_{i},e_{i}) = (f,f) - \sum_{k=1}^{n} |c_{k}|^{2}(e_{k},e_{k}).$$
 Переходя к пределу при $n \to +\infty$, получаем $\sum_{k=1}^{+\infty} |c_{k}|^{2}(e_{k},e_{k}) \leqslant (f,f).$

Лемма 12.6. Пусть два ряда $\sum_{k=1}^{+\infty} |\alpha_k|^2 = A$, $\sum_{k=1}^{+\infty} |\beta_k|^2 = B$ сходятся. Тогда ряд $\sum_{k=1}^{+\infty} \alpha_k \beta_k$ сходится абсолютно, причем $\sum_{k=1}^{+\infty} |\alpha_k \beta_k| \leqslant \sqrt{A} \sqrt{B}$

 \mathcal{A} оказательство. $\sum_{k=1}^n |\alpha_k \beta_k| \lesssim \sum_{\mathrm{KBIII}} \sqrt{\sum_{k=1}^n |\alpha_k|^2} \sqrt{\sum_{k=1}^n |\beta_k|^2}$. Переходя к пределу при $n \to +\infty$, получаем требуемое.

Лемма 12.7. Пусть $v(x) \in C^{1}([0,l]), v(0) = v(l) = 0.$

Тогда ряд $\sum_{k=1}^{+\infty} A_k \sin\left(\frac{\pi k}{l}x\right)$, где $A_k = \frac{2}{l} \int\limits_0^l v(y) \sin\left(\frac{\pi k}{l}y\right) dy$, сходится на [0,l] к v(x) абсолютно и равномерно.

- Доказательство. 1. Система $\{e_k\} = \left\{\sin\left(\frac{\pi k}{l}x\right)\right\}$ ортогональна относительно скалярного произведения в $\mathbb{L}_2\left([0,l]\right)$, так как состоит из собственных функций оператора « $-\Delta$ » с однородными условиями Дирихле симметричного в $\mathbb{L}_2\left([0,l]\right)$ оператора.
 - 2. $A_k = \frac{(v, e_k)}{(e_k, e_k)}$, ряд $\sum_{k=1}^{+\infty} |A_k|^2 < +\infty$ по неравенству Бесселя.
 - 3. $A_k = \underbrace{-\frac{2}{l}\frac{l}{\pi k}v(y)\cos\left(\frac{\pi k}{l}y\right)\Big|_0^l}_{=0} + \underbrace{\frac{2}{l}\frac{l}{\pi k}\int\limits_0^l v'(y)\cos\left(\frac{\pi k}{l}y\right)dy}_{=0} = \underbrace{\frac{l}{\pi k}\alpha_k}_{=0}$, где $\alpha_k = \underbrace{\frac{2}{l}\int\limits_0^l v'(y)\cos\left(\frac{\pi k}{l}y\right)dy}_{=0}$.
 - 4. Ряд $\sum_{k=1}^{+\infty} |\alpha_k|^2 < +\infty$ по неравенству Бесселя, т.к. система $\{g_k\} = \left\{\cos\left(\frac{\pi k}{l}x\right)\right\}$ ортогональна относительно скалярного произведения в $\mathbb{L}_2\left([0,l]\right)$, так как состоит из собственных функций оператора « $-\Delta$ » с однородными условиями Неймана симметричного в $\mathbb{L}_2\left([0,l]\right)$ оператора.

Ряд
$$\sum_{k=1}^{+\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$$
 сходится. Тогда сходится абсолютно ряд $\sum_{k=1}^{+\infty} \frac{\alpha_k}{k} \Rightarrow \sum_{k=1}^{+\infty} |A_k| < +\infty$.

Функция
$$\varphi(x) = \sum_{k=1}^{n} A_k \sin\left(\frac{\pi kx}{l}\right)$$
 непрерывна.

5. Сходимость к v(x): Построим

$$\tilde{v}(x) = \begin{cases} v(x), & x \in [0, l] \\ -v(-x), & x \in [-l, 0] \end{cases}$$

Затем продолжим на \mathbb{R} , сделав периодической: $\tilde{v}(x+2l) = \tilde{v}(x)$. Получаем непрерывную периодическую функцию, а во всех точках $x \in [0,l] \exists \tilde{v}'_-(x), \tilde{v}'_+(x)$. Тогда ряд Фурье этой функции сходится к ней на всей \mathbb{R} . В силу нечетности \tilde{v} , этот ряд — только по синусам, а коэффициенты Фурье равны A_k (для них совпадают формулы). Значит, на [0,l] имеем

$$v(x) = \sum_{k=1}^{+\infty} A_k \sin\left(\frac{\pi k}{l}x\right)$$

Таким образом, доказана теорема:

Теорема 12.8. Пусть в смешанной задаче

$$\begin{cases} u_t - a^2 u_{xx} = 0, & 0 < t < T, 0 < x < l, \\ u|_{t=0} = u_0(x), & 0 \le x \le l, \\ u|_{x=0} = u|_{x=l} = 0, & 0 \le t \le T; \end{cases}$$

функция $u_0(x)$ удовлетворяет условиям гладкости $(u_0 \in C^1([0,l]))$ и согласования $(u_0(0) = u_0(l) = 0)$. Тогда ряд $\sum_{k=1}^{+\infty} A_k e^{-\left(\frac{a\pi k}{l}\right)^2 t} \sin\left(\frac{\pi k}{l}x\right) = u(t,x)$, где $A_k = 0$

$$\frac{2}{l}\int\limits_0^lu_0(x)\sin\left(rac{\pi k}{l}x
ight)dx$$
, сходится абсолютно и равномерно в $\overline{Q_T}=[0,T] imes[0,l]$, функ-

иия $u(t,x) \in C(\overline{Q_T}) \cap C^{\infty}(Q_T)$ и является классическим решением этой задачи, а любая производная при t > 0 от u(t,x) может быть найдена почленным дифференцированием.

13 Билет 13. Метод Фурье решения смешанной задачи для уравнения колебаний струны с закреплёнными концами. Обоснование метода для случая однородного уравнения.

13.1 Формулировка задачи

Задача:

$$\begin{cases}
 u_{tt} - a^2 u_{xx} = f(x, t), & (t, x) \in Q_T = (0, T) \times (0, l), \\
 u\big|_{t=0} = u_0(x); & u_t\big|_{t=0} = u_1(x), & x \in [0, l], \\
 u\big|_{x=0} = \psi_0(t), & u\big|_{x=l} = \psi_1(t); & t \in [0, T].
\end{cases}$$
(20)

Рассматриваем её классическое решение - функцию $u(t,x) \in C^2(Q_T) \cap C^1(\overline{Q}_T)$, удовлетворяющую уравнению, начальным и граничным условиям.

13.2 Теорема единственности

Теорема 13.1 (Единственности). *Не может существовать более одного классического решения задачи* 20.

Единственность решения. Для двух решений \tilde{u}_1 и \tilde{u}_2 построим $V(t,x) = \tilde{u}_1 - \tilde{u}_2 \in C^2(Q_T) \cap C^1(\overline{Q}_T)$.

V - решение полностью однородной задачи:

$$\begin{cases} V_{tt} - a^2 V_{xx} = 0, \\ V|_{t=0} = V_t|_{t=0} = 0, \\ V|_{x=0} = V|_{x=l} = 0. \end{cases}$$

Докажем, что $V \equiv 0$ с помощью интеграла энергии: рассмотрим функцию $I = V_t [V_{tt} - a^2 V_{xx}], (t,x) \in Q_T$.

$$I = V_t V_{tt} - a^2 V_t V_{xx} = \frac{1}{2} (V_t^2)_t - a^2 (V_t V_x)_x + a^2 \underbrace{V_x V_{xt}}_{\frac{1}{2} (V_x^2)_t} = \underbrace{\left(\frac{V_t^2 + a^2 V_x^2}{2}\right)_t}_{F_x^1} \underbrace{-\left(a^2 V_t V_x\right)_x}_{F_x^2} \mid \operatorname{div} \boldsymbol{F} = \operatorname{div} \begin{pmatrix} F^1 \\ F^2 \end{pmatrix}$$

Воспользуемся формулой Грина: $\iint_{\Omega} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dx dy = \oint_{\partial \Omega} Q \, dy + P \, dx.$ Для её использования требуется непрерывность производных до границы, поэтому напишем её для области: $Q_{\tau,\varepsilon} = \{(t,x)\colon \varepsilon < t < \tau, \ \varepsilon < x < l - \varepsilon\}.$

Доказательство.

$$0 = \iint\limits_{Q_{\tau,\varepsilon}} I \ dxdt = \iint\limits_{Q_{\tau,\varepsilon}} \operatorname{div} \boldsymbol{F} \ dxdt = \oint\limits_{\partial Q_{\tau,\varepsilon}} \left[-\frac{V_t^2 + a^2 V_x^2}{2} \ dx - a^2 V_t V_x \ dt \right]$$
 Распишем интеграл по $\partial Q_{\tau,\varepsilon}$:

$$\int_{\varepsilon}^{l-\varepsilon} \left(\frac{V_t^2 + a^2 V_x^2}{2} \right) \Big|_{t=\tau} dx - \int_{\varepsilon}^{l-\varepsilon} \left(\frac{V_t^2 + a^2 V_x^2}{2} \right) \Big|_{t=\varepsilon} dx - \int_{\varepsilon}^{\tau} \left(a^2 V_x V_t \right) |_{x=l-\varepsilon} dt + \int_{\varepsilon}^{\tau} \left(a^2 V_x V_t \right) |_{x=\varepsilon} dt = 0$$

В пределе при $\varepsilon \to 0$ получаем :

Аналогично для $\int (a^2 V_t V_x)\big|_{x=\varepsilon} dt = 0$. Поэтому получаем, что:

$$\int_{0}^{l} \frac{V_t^2(\tau, x) + a^2 V_x^2(\tau, x)}{2} dx = 0$$

Тогда $V_t^2(\tau, x) + a^2 V_x(\tau, x) = 0 \ \forall (x, t) \in (0, l) \times \tau$

В любой точке $(t,x) \in Q_{\tau}$: $\nabla V(t,x) = \mathbf{0} \Rightarrow V = \text{const } \forall (t,x) \in Q_{\tau}$.

На замыкании в силу непрерывности V в \overline{Q}_{τ} также будет $V\equiv {\rm const},$ но на границе $V=0\Rightarrow$ $V \equiv 0 \ \forall (t, x) \in \overline{Q}_{\tau}$, поэтому $\tilde{u}_1 = \tilde{u}_2$.

Существование решения Будем рассматривать смешанную задачу для однородного уравнения колебаний струны при закреплённых концах.

$$\begin{cases} u_{tt} = a^2 u_{xx}, & (t, x) \in Q_{\tau}, \\ u\big|_{t=0} = u_0(x), & u_t\big|_{t=0} = u_1(x), & x \in [0, l], \\ u\big|_{x=0} = u\big|_{x=l} = 0, & t \in [0, \tau]. \end{cases}$$

Рассмотрим дифференциальный оператор $-\Delta_0$:

$$\mathcal{D}(-\Delta) = \{X(x) \in C^2[0, l] : \ X(0) = X(l) = 0\}$$

У это оператора есть счётное однопараметрическое семейство собственных функий: λ_k = $\left(\frac{\pi k}{l}\right), X_k = \sin(\lambda_k x), k \in \mathbb{N}.$

Решение будем искать в виде ряда $u(t,x) = \sum_{k=1}^{\infty} \Theta_k(t) X_k(x)$. Будем требовать выполнения следующих условий:

Последние три условия называются условиями согласования.

Рассматриваемый оператор симметричен относительно скалярного произведения в \mathbb{L}_2 , значит, собственные функции ортогональны в \mathbb{L}_2 . Разложим u_0, u_1 в ряды Фурье по X_k на [0, l]:

$$u_0(x) = \sum_{k=1}^{\infty} A_k X_k, \ A_k = \frac{2}{l} \int_0^l u_0(x) X_k \ dx$$
$$u_1(x) = \sum_{k=1}^{\infty} B_k X_k, \ B_k = \frac{2}{l} \int_0^l u_1(x) X_k \ dx$$

Формально подставляем в уравнение: $\sum_{k=1}^{\infty} \left[\Theta_k^{\cdot \cdot} + a^2 \lambda_k^2 \Theta_k\right] X_k = 0$. Из начальных условий: $\Theta_k(0) = A_k, \ \Theta_k^{\cdot}(0) = B_k$.

В силу ортогональности $\{X_k(x)\}_{k=1}^\infty$ получаем счётное число задач Коши:

$$\begin{cases} \Theta_k^{\cdot \cdot} + a^2 \lambda_k^2 \Theta_k = 0, \\ \Theta_k(0) = A_k, \ \Theta_k^{\cdot}(0) = B_k. \end{cases}$$

Решение:
$$\Theta_k(t) = A_k \cos\left(\frac{a\pi k}{l}\right) t + \frac{l}{a\pi k} B_k \sin\left(\frac{a\pi k}{l}\right) t, \ t \in [0, \tau].$$

13.3 Обоснование метода

Теорема 13.2. Пусть данные Коши $u_0(x)$ и $u_1(x)$ удовлетворяют условиям гладкости и согласования. Тогда ряд $\sum_{k=1}^{\infty} \Theta_k(t) X_k(x)$ сходится абсолютно и равномерно в \overline{Q}_{τ} . Его сумма принадлежит классу $C^2(\overline{Q}_{\tau})$ и является классическим решением задачи 13.2. Частные производные по t и x до второго порядка включительно можно вычислить почленным дифференцированием ряда.

Доказательство.

$$A_{k} = \frac{2}{l} \int_{0}^{l} u_{0} \sin(\frac{\pi k}{l}x) dx = \frac{-2}{l} \frac{l}{\pi k} u_{0}(x) \cos(\frac{\pi k}{l}x) \Big|_{0}^{l} + \frac{l}{\pi k} \frac{2}{l} \int_{0}^{l} u_{0}' \cos(\frac{\pi k}{l}x) dx = \left(\frac{l}{\pi k}\right)^{2} \frac{2}{l} u_{0}'(x) \sin(\frac{\pi k}{l}x) \Big|_{0}^{l} - \frac{2}{l} \left(\frac{l}{\pi k}\right)^{2} \int_{0}^{l} u_{0}''(x) \sin(\frac{\pi k}{l}x) dx = -\left(\frac{l}{\pi k}\right)^{3} \frac{2}{l} \int_{0}^{l} u_{0}'''(x) \cos(\frac{\pi k}{l}x) dx + \frac{2}{l} \left(\frac{l}{\pi k}\right)^{3} u_{0}''(x) \cos(\frac{\pi k}{l}x) \Big|_{0}^{l} = -\left(\frac{l}{\pi k}\right)^{3} \alpha_{k}$$

 $\Pi pume vahue: \alpha_k$ - коэффициенты Фурье функции $u_0'''(x)$ по ортогональной системе функций $\cos\left(\frac{\pi k}{l}\right)$ - собственных функций оператора $-\Delta_0$ с граничными условиями Неймана - тоже симметричного оператора.

Аналогично находим коэффициенты B_k :

$$B_k = -\left(\frac{l}{\pi k}\right)^2 \beta_k$$
, где $\beta_k = \frac{2}{l} \int\limits_0^l u_1''(x) \sin\left(\frac{\pi k}{l}x\right) dx$

Из того, что

$$|u_k(t,x)| = |\Theta_k(t)X_k(k)| = \left| \left[A_k \cos(a\lambda_k t) + \frac{B_k}{a\lambda_k} \sin(a\lambda_k) \right] \right| \leqslant \left(\frac{l}{\pi k} \right)^3 |\alpha_k| + \frac{1}{a\lambda_k} \left(\frac{l}{\pi k} \right)^2 |\beta_k| \leqslant \frac{c}{k^3}$$

следует абсолютная и равномерная сходимость ряда на $\overline{Q}_{ au}$

- 1. Граничные условия: $u(t,0) = \sum_{k=1}^{\infty} \left[\dots \right] \sin(0) = 0, \quad u(t,l) = \sum_{k=1}^{\infty} \left[\dots \right] \sin(\pi k) = 0.$ Начальные условия: $u(0,x) = \sum_{k=1}^{\infty} A_k \sin(\lambda_k x) = u_0(x), \quad u_t(0,x) = \sum_{k=1}^{\infty} B_k \sin(\lambda_k x) = u_1(x).$ Итак, ряд порождает непрерывную на \overline{Q}_{τ} функцию, удовлетворяющую начальным и граничным условиям.
- 2. Производные: $u_t \sim \sum_{k=1}^{\infty} \left[-\frac{a\pi k}{l} A_k \sin(\lambda_k a t) + B_k \cos(a\lambda_k t) \right] \sin(\lambda_k x) = \sum_{k=1}^{\infty} V_k.$ $|V_k| \leqslant a\lambda_k |A_k| + |B_k| \leqslant \frac{a\pi k}{l} \left(\frac{l}{\pi k}\right)^3 |\alpha_k| + \left(\frac{l}{\pi k}\right)^2 |\beta_k| \leqslant \frac{\tilde{c}}{k^2} \Longrightarrow u_t \in C(\overline{Q}_\tau)$

Значит, $u \in C(Q_{\tau})$.

$$u_{tt} \sim \sum_{k=1}^{\infty} \left[-\left(\frac{a\pi k}{l}\right)^2 A_k \cos(\lambda_k at) - \frac{a\pi k}{l} B_k \sin(\lambda_k at) \right] \sin(\lambda_k x) = \sum_{k=1}^{\infty} w_k.$$

$$|w_k| = \left(\frac{a\pi k}{l}\right)^2 |u_k| \leqslant \left(\frac{a\pi k}{l}\right)^2 \left(\frac{l}{\pi k}\right)^3 \left[|\alpha_k| + \frac{1}{a}|\beta_k|\right]$$

Ряд $\sum\limits_{k=1}^\infty w_k$ сходится абсолютно и равномерно, так как: $\sum\limits_{k=1}^\infty |\alpha_k|^2 < \infty, \sum\limits_{k=1}^\infty \frac{1}{k^2} < \infty,$ а ряд $\sum\limits_{k=1}^\infty \frac{\alpha_k}{k}$ сходится абсолютно; поэтому $u(t,x) \in C^2(\overline{Q}_\tau)$.

Можно ставить задачу:

$$\begin{cases} u_{tt} - a^2 u_{xx} = f(x), \\ u\big|_{t=0} = u_0(x), \ u_t\big|_{t=0} = u_1(x), \\ u\big|_{x=0} = u\big|_{x=l} = 0. \end{cases}$$

при более широких условиях.

При условиях $u_0(x) \in C^2[0,l], \ u_1(x) \in C^1[0,l]$ (гладкости) и $u_0(0) = u_0(l) = u_0''(0) = u_0''(l) = u_1(0) = u_1(l) = 0$ (согласования) и условиях на $f: f(t,x), f_x(t,x) \in C(\overline{Q}_\tau), f(t,0) = f(t,l) = 0$ - классическое решение задачи существует и единственно.

С помощью метода продолжений делаем u_0, u_1, f нечётными и 2π - периодическими, получаем задачу Коши для волнового уравнения. Решение даётся формулой Даламбера.

14 Билет 14. Формулы Грина для оператора Лапласа. Постановка краевых задач Дирихле и Неймана для уравнения Пуассона в ограниченной области. Единственность классического решения задачи Дирихле. Неединственность решения задачи Неймана и необходимое условие её разрешимости.

14.1 Формулы Грина

Определение 14.1. Ограниченная область Ω называется *областью с гладкой границей*, если $\forall \, x_0 \in \Gamma = \partial \Omega$ найдутся:

- ullet такая декартова СК , что начало в $x_0,\, \xi=(\xi_1,\ldots,\xi_n)$ координаты точек в этой СК
- Окрестность $U_0(x^0) = \{\xi \colon |\xi'| < r, |\xi_n| < h\}$, где $\xi' = (\xi_1, \dots, \xi_{n-1})$, такая, что в $U_0(x^0)$ часть границы $\Gamma \cap U_0(x^0)$ представляется в виде: $\xi_n = F(\xi'), |\xi'| < r, F(0) = 0, F(\xi') \in C^1(|\xi'| < r), \nabla_{\xi'} F(0) = 0,$
- Множество $U_{-}(x^{0}) = U_{0}(x^{0}) \bigcap \{x \colon \xi_{n} < F(\xi')\} \in \Omega,$ Множество $U_{+}(x^{0}) = U_{0}(x^{0}) \bigcap \{x \colon \xi_{n} \geqslant F(\xi')\} \colon \Omega \bigcap U_{+} = \emptyset$
- Числа $r>0,\,h>0$ можно выбрать независимо от $x^0\in\Gamma$.

Для ограниченных областей с гладкими границами справедлива формула Остроградского-Гаусса (F - непрерывно дифференцируемое векторное поле):

$$\int_{\Omega} \operatorname{div} \mathbf{F}(x) \ dx = \int_{\partial \Omega} (\mathbf{F}(x), \mathbf{n}) \ dS = \int_{\Gamma} (\mathbf{F}(x), \mathbf{n}) \ dS$$

Лемма 14.1.

14.1.1 Формулы Грина

Пусть Ω - ограниченная область с границей класса C^1 в \mathbb{R}^n , тогда справедливы следующие формулы.

$$\forall u(x) \in C^{2}(\Omega) \cap C^{1}(\overline{\Omega}), v(x) \in C^{1}(\overline{\Omega}) \to \int_{\Omega} (\Delta u) v \, dx = \oint_{\Gamma} \frac{\partial u}{\partial \boldsymbol{n}} v \, dS_{x} - \int_{\Omega} (\nabla u, \nabla v) \, dx$$

$$\forall u(x) \in C^{2}(\overline{\Omega}), v(x) \in C^{2}(\overline{\Omega}) \to \int_{\Omega} (\Delta u)v \ dx - \int_{\Omega} (\Delta v)u \ dx = \oint_{\Gamma} \frac{\partial u}{\partial \boldsymbol{n}} v \ dS_{x} - \oint_{\Gamma} \frac{\partial v}{\partial \boldsymbol{n}} u \ dS_{x}$$

Полученные формулы называются первой и второй формулами Грина соответственно.

Доказательство.

Первая формула Грина 14.1.2

Пусть $\boldsymbol{f}(x), v(x)$ - гладкие векторное и скалярное поля соответственно: $\operatorname{div}(\boldsymbol{f} \cdot v) = (\nabla, \overset{\downarrow}{\boldsymbol{f}} v) +$ Пусть $\mathbf{J}(w)$, $\mathbf{v}(w)$, $\mathbf{v}(w)$, $\mathbf{v}(w)$, $\mathbf{f}(w)$, $\mathbf{f}(w)$ = \mathbf{v} div \mathbf{f} + \mathbf{f} , grad \mathbf{v}). Положим $\mathbf{f} = \nabla u \in C^1 \Rightarrow \mathrm{div}(v\nabla u) = v\underbrace{\mathrm{div}(\nabla u)}_{\Delta u} + (\nabla u, \nabla v)$.

Положим
$$\boldsymbol{f} = \nabla u \in C^1 \Rightarrow \operatorname{div}(v\nabla u) = v \underbrace{\operatorname{div}(\nabla u)}_{\Delta u} + (\nabla u, \nabla v).$$

Интегрируем по объёму в Ω :

$$\int_{\Omega} v \Delta u \ dx = \int_{\Omega} \operatorname{div}(v \nabla u) \ dx - \int_{\Omega} (\nabla u, \nabla v) \ dx = \oint_{\Gamma} (v \nabla u, \boldsymbol{n}) \ ds - \int_{\Omega} (\nabla u, \nabla v) \ dx$$

Заметим, что:

$$(v\nabla u, \boldsymbol{n}) = v \sum_{k=1}^{\dim \mathbb{R}^n} \frac{\partial u(x)}{\partial x_k} n_k = \frac{\partial u}{\partial \boldsymbol{n}}(x) \cdot v(x)$$

При подстановке данного результата в равенство выше немедленно получим первую формулу Грина.

Вторая формула Грина 14.1.3

Для получения второй формулы Грина необходимо вычесть из первой формулы Грина симметричное ему по u и v равенство:

$$\int_{\Omega} u\Delta v \ dx = \oint_{\Gamma} (u\nabla v, \boldsymbol{n}) \ ds - \int_{\Omega} (\nabla v, \nabla u) \ dx$$

14.2 Внутрення задача Дирихе для уравнения Пуассона

Пусть Ω - ограниченная область с границей Γ класса $C^1, u_0(x) \in C(\Gamma), f(x) \in C(\overline{\Omega})$. Требуется найти u(x), удовлетворяющую условиям:

$$\begin{cases} \Delta u(x) = f(x), x \in \Omega, \\ u|_{\Gamma} = u_0(x). \end{cases}$$
 (22)

Классическим решением задачи Дирихле 22 называется $u(x) \in C^1(\overline{\Omega}) \cap C^2(\Omega)$, удовлетворяющая уравнению и начальным условиям.

Лемма 14.2. Не может существовать более одного классического решения задачи 22.

Доказательство. Если $\exists u_I$ и u_{II} - классические решения задачи 22, то $v(x) = u_I - u_{II}$ есть классическое решение полностью однородной задачи: $\Delta v \equiv 0, \ v\big|_{\Gamma} = 0$. По формуле Грина:

$$\int_{\Omega} v \Delta v \, dx = \oint_{\partial \Omega} \frac{\partial v}{\partial n} x \, ds - \int_{\Omega} (\nabla v, \nabla v) \, dx \Rightarrow \nabla v \equiv 0 \, \forall \, x \in \Omega \Rightarrow v(x) = \text{const}$$

С учётом того, что $\Delta(x) = 0$ и $v(x)|_{\Gamma} = 0$, получим, что v(x) = 0, а значит, $u_I = u_{II}$, и решение единственно.

14.3 Внутренняя задача Неймана для уравнения Пуассона

Пусть Ω -ограниченная область с границей класса $C^1, u_1(x) \in C(\Gamma), f(x) \in C(\overline{\Omega})$. Требуется найти u(x) удовлетворяющую условиям:

$$\Delta u(x) = f(x), x \in \Omega, \frac{\partial u}{\partial \mathbf{n}} = u_1(x), x \in \Gamma.$$
 (23)

Определение 14.2. *Классическое решение задачи Неймана* 23 есть такая функция $u(x) \in C^1(\overline{\Omega}) \cap C^2(\Omega)$, удовлетворяющая уравнению и граничным условиям.

Лемма 14.3. Любые два классические решения задачи Неймана отличаются на константу.

Доказательство. Если $\exists u_I$ и u_{II} - классические решения задачи $\frac{23}{\partial n}$, то $v(x) = u_I - u_{II}$ есть классическое решение полностью однородной задачи: $\Delta v \equiv 0$, $\frac{\partial v}{\partial n}|_{\Gamma} = 0$. По формуле Грина имеем:

$$\int_{\Omega} \Delta v v \, dx = \oint_{\Gamma} \frac{\partial v}{\partial n} v \, dS - \int_{\Omega} |\nabla v|^2 \, dx \Rightarrow v \equiv \text{const}$$

Лемма 14.4. Необходимым условием существования классического решения задачи Неймана является условие $\int\limits_{\Omega} f(x) \ dx = \int\limits_{\Gamma} u_1(x) \ dS$

Доказательство.

$$\int\limits_{\Omega} f(x) \ dx = \int\limits_{\Omega} \Delta u \ dx = \int\limits_{\Omega} \Delta u \cdot 1 \ dx = \left[1 \text{-ая формула Грина} \right] = \int\limits_{\partial \Omega} \frac{\partial u}{\partial \boldsymbol{n}} \cdot 1 \ ds - \int\limits_{\Omega} (\nabla u, \nabla 1) \ dx = \int\limits_{\partial \Omega} u_1(x) \cdot 1 \ ds$$

L

15 Билет 15. Симметричность и положительная определенность оператора $-\Delta$ при однородном граничном условии Дирихле. Положительность собственных значений и ортогональность собственных функций.

Задача на собственные функции и собственные значения оператора Лапласа при однородном условии Дирихле: Найти λ и $u(x) \in C^1(\overline{\Omega}) \cap C^2(\Omega)$, где Ω - область с кусочно-гладкой границей Γ , такие, что

$$\begin{cases} -\Delta u = \lambda u, \\ u|_{\Gamma} = 0, \\ u(x) \neq 0, \end{cases}$$

Утверждение 15.1 (без доказательства). Существует счетное число собственных значений $\{\lambda_k\}_k$,

 $\{\lambda_k\} o \infty$, причем каждому λ_k соответствует конечное число собственных функций.

Формула Грина справедлива и для комплексных функций. Считаем, что $\lambda \in \mathbb{C}$

$$\int_{\Omega} \overline{u} \Delta u dx = -\lambda \int_{\Omega} u \overline{u} dx$$

$$\int_{\Omega} \overline{u} \Delta u dx = \oint_{\partial \Omega} \frac{\partial u}{\partial n} \overline{u} dS - \int_{\Omega} (\nabla u, \nabla \overline{u}) dx$$

$$\Rightarrow \lambda = \frac{\int\limits_{\Omega} |\nabla u|^2 dx}{\int\limits_{\Omega} |u|^2 dx}$$
 - соотношение Рэлея.

 $\Rightarrow \lambda \in \mathbb{R}, \lambda > 0$ (строго больше, т.к. $\nabla u = 0 \Rightarrow u = 0$). В задаче Неймана $\lambda = 0$ возможно.

Утверждение 15.2. Оператор $-\Delta$ с граничными условиями Дирихле является симметричным относительно скалярного произведения в $\mathbb{L}_2(\Omega): (u,v) = \int\limits_{\Omega} u(x)\overline{v}(x)dx$

 $\ensuremath{\mathcal{A}\xspace}$ оказательство. Пусть u(x),v(x) лежат в области определения нашего оператора

$$D_0(-\Delta) = \{ u(x) : u(x) \in C^1(\overline{\Omega}) \cap C^2(\Omega); \ \Delta u(x) \in C(\overline{\Omega}), \ u|_{\partial\Omega} = 0 \}.$$

Симметричность оператора означает, что

$$(-\Delta u, v) = (u, -\Delta v) \ \forall u, v \in D_0(-\Delta).$$

Проверим это:

$$(-\Delta u, v) - (u, -\Delta v) = \int\limits_{\Omega} (u \Delta v - v \Delta u) dx \stackrel{\text{2 формула Грина}}{=} \oint\limits_{\partial \Omega} (\frac{\partial v}{\partial \boldsymbol{n}} u - \frac{\partial u}{\partial \boldsymbol{n}} v) dS = 0.$$

Утверждение 15.3. Собственные функции рассматриваемого оператора $u_k(x)$ и $u_m(x)$, соответствующие различным собственным значениям λ_k и λ_m , ортогональны относительно скалярного произведения в $\mathbb{L}_2(\Omega)$.

Доказательство.

$$(-\Delta u_k, u_m) = (u_k, -\Delta u_m)$$
$$\lambda_k(u_k, u_m) = \lambda_m(u_k, u_m)$$
$$\Rightarrow (\lambda_k - \lambda_m)(u_k, u_m) = 0 \Rightarrow (u_k, u_m) = 0$$

16 Билет 16. Решение методом Фурье задачи Дирихле для уравнения Лапласа в круге. Представление решения в виде ряда по однородным гармоническим многочленам и в виде интеграла Пуассона. Существование классического решения при непрерывной граничной функции.

16.1 Решение методом Фурье задачи Дирихле для уравнения Лапласа в круге.

Задача: в круге $D = \{x | |x| < R\}$ и на границе $\Gamma = \partial D$ рассматриваем задачу:

$$\begin{cases} \Delta u(x) = f(x), x \in D \longleftarrow \text{ уравнение Пуассона} \\ u|_{\Gamma} = u_0(x), x \in \partial D \end{cases}$$
 (24)

Сделаем замену: $x_1 = \rho \cos \varphi, x_2 = \rho \sin \varphi$.

Функция $\hat{u}(\rho,\varphi) = u(\rho\cos\varphi,\rho\sin\varphi).$

Аналогично $\hat{u}_0(\rho,\varphi) = u_0(\rho\cos\varphi,\rho\sin\varphi), \hat{f}(\rho,\varphi) = f(\rho\cos\varphi,\rho\sin\varphi).$

Задача перепишется в виде:

$$\begin{cases} \hat{u}_{\rho\rho} + \frac{1}{\rho} \hat{u}_{\rho} + \frac{1}{\rho^2} \hat{u}_{\varphi\varphi} = \hat{f}(\rho, \varphi), 0 < \rho < R, 0 \leqslant \varphi \leqslant 2\pi \\ \hat{u}(R, \varphi) = \hat{u}_0(R, \varphi) \\ \hat{u}(\rho, \varphi) = \hat{u}(\rho, \varphi + 2\pi) \end{cases}$$

Далее считаем $\hat{f}=0,$ то есть решаем уравнение Лапласа.

Предположение: $u_0(x) \in C^1(\Gamma)$. Предполагаем, что решение принадлежит классу $C^2(D) \cap C^1(\bar{D})$. При этом $\hat{u} - 2\pi$ -периодическая по $\varphi \Rightarrow$ можно разложить \hat{u}_0, \hat{u} в ряды Фурье. [Если был было уравнение Пуассона – требовали бы $f \in C^1(\bar{D})$.]

$$\begin{cases} \hat{u}(\rho,\varphi) \\ \hat{u}_0(R,\varphi) \end{cases} = \frac{1}{2} \begin{cases} a_0(\rho) \\ A_0 \end{cases} + \sum_{k=1}^{\infty} \left[\begin{cases} a_k(\rho) \\ A_k \end{cases} \cos k\varphi + \begin{cases} b_k(\rho) \\ B_k \end{cases} \sin k\varphi \right], \text{где}$$

$$\begin{cases} a_k(\rho) \\ A_k \end{cases} = \frac{1}{\pi} \int_0^{2\pi} \begin{cases} \hat{u}(\rho,\psi) \\ \hat{u}_0(R,\psi) \end{cases} \cos k\psi d\psi, k \in \mathbb{N}_0,$$

$$\begin{cases} b_k(\rho) \\ B_k \end{cases} = \frac{1}{\pi} \int_0^{2\pi} \begin{cases} \hat{u}(\rho,\psi) \\ \hat{u}_0(R,\psi) \end{cases} \sin k\psi d\psi, k \in \mathbb{N}.$$

Формально подставляем в уравнение (аргументы функций опускаем – они все уже определены).

$$\frac{1}{2} \left(a'' + \frac{1}{\rho} a'_0 \right) + \sum_{k=1}^{\infty} \left\{ \left[a''_k + \frac{1}{\rho} a'_k - \frac{k^2}{\rho^2} a_k \right] \cos k\varphi + \left[b''_k + \frac{1}{\rho} b'_k - \frac{k^2}{\rho^2} b_k \right] \sin k\varphi \right\} = 0$$

Из граничного условия:

$$\frac{1}{2}a_0(R) + \sum_k \left[a_k(R)\cos k\varphi + b_k(R)\sin k\varphi \right] = \frac{1}{2}A_0 + \sum_k \left[A_k\cos k\varphi + B_k\sin k\varphi \right]$$

В силу ортогональности тригонометрической системы в $L_2[0,2\pi]$ имеем на a_k и b_k следующие задачи:

$$\begin{cases} a_k''(\rho) + \frac{1}{\rho} a_k'(\rho) - \frac{k^2}{\rho^2} a_k(\rho) = 0, 0 \leqslant \rho \leqslant R \\ a_k(R) = A_k, \ k \in \mathbb{N}_0 \end{cases} \qquad \begin{cases} b_k''(\rho) + \frac{1}{\rho} b_k'(\rho) - \frac{k^2}{\rho^2} b_k(\rho) = 0, 0 \leqslant \rho \leqslant R \\ b_k(R) = B_k, \ k \in \mathbb{N} \end{cases}$$

Будем искать только ограниченные решения – для этого одного граничного условия окажется достаточно.

Решения данных уравнений Эйлера ищем в виде $\alpha \rho^{\mu}$:

Для первой серии задачи: $\alpha[\mu(\mu-1) + \mu - k^2]\rho^{\mu-2} = 0 \Rightarrow \mu = \pm k$.

Общее решение:

$$a_k(\rho) = C_{1k}\rho^k + C_{2k}\rho^{-k}$$
$$a_0(\rho) = C_{10} \cdot 1 + C_{20} \cdot \ln \rho$$

Для ограниченности в круге берем $C_{2k} = C_{20} = 0 \Rightarrow a_k = C_{1k}\rho^k, C_{1k} = \frac{A_k}{R^k}, k \in \mathbb{N}_0.$ Итак,

$$\begin{cases}
 a_k(\rho) \\
 b_k(\rho)
\end{cases} = \begin{cases}
 A_k \\
 B_k
\end{cases} \left(\frac{\rho}{R}\right)^k \Rightarrow \hat{u}(\rho,\varphi) = \frac{A_0}{2} + \sum_{k=1}^{\infty} \left(A_k \cos k\varphi + B_k \sin k\varphi\right) \left(\frac{\rho}{R}\right)^k \tag{25}$$

Вернемся в исходные переменные. Заметим, что если ввести $z = x_1 + ix_2 = \rho e^{i\varphi}$, то $\rho^k \cos k\varphi = \text{Re } z^k$,

 $\rho^k \sin k\varphi = \text{Im } z^k.$

Обозначим Re $z^k = p_k(x_1, x_2)$, Im $z^k = q_k(x_1, x_2)$.

$$\Rightarrow u(x_1, x_2) = \frac{A_0}{2} + \sum_{k=1}^{\infty} \left[\frac{A_k}{R^k} p_k(x_1, x_2) + \frac{B_k}{R^k} q_k(x_1, x_2) \right]$$
 (26)

16.2 Представление решения в виде ряда по однородным гармоническим многочленам и в виде интеграла Пуассона. Существование классического решения при непрерывной граничной функции.

Теорема 16.1. Пусть $u_0 \in C(\Gamma)$. Тогда:

- 1. Существует и единственно классическое решение $u(x) \in C^{\infty}(D) \cap C(\bar{D})$ задачи 24 с $f \equiv 0$.
- 2. В D это решение представимо рядами 25 и 26, сходящимися в $|x| \leqslant R_1 < R$ равномерно.
- 3. Классическое решение представимо формулой Пуассона:

$$u(x) = \frac{1}{2\pi R} \oint_{\partial D} \frac{R^2 - |x|^2}{|x - \xi|^2} u_0(\xi) dS_{\xi}$$

4. Любые частные производные по x_1 и x_2 вычисляются почленным дифференцированием p n d a.

Доказательство. 1. Единственность докажем позднее (в этом билете ее нет).

2. Пусть $|u_0| < M$ на Γ . Тогда:

$$|A_k| \leqslant \frac{1}{\pi} \int_0^{2\pi} |u_0| |\cos k\psi| d\psi \leqslant 2M, \ |B_k| \leqslant 2M$$

Запишем

$$u(x_1,x_2)=rac{A_0}{2}+\sum_{k=1}^{\infty}\left[rac{A_k}{R^k}p_k(x_1,x_2)+rac{B_k}{R^k}q_k(x_1,x_2)
ight]=\mathrm{Re}\,w_1+\mathrm{Im}\,w_2$$
, где $w_1=rac{A_0}{2}+\sum_{k=1}^{\infty}rac{A_k}{R_k}z^k,\;w_2=\sum_{k=1}^{\infty}rac{B_k}{R_k}z^k$

Оба ряда сходятся абсолютно и равномерно в круге $|z| \leq R_1 < R \Rightarrow$ порождают в круге радиуса R_1 регулярные функции, что и требовалось.

3. Докажем формулу Пуассона:

$$\begin{split} \hat{u}(\rho,\varphi) &= \frac{1}{2} \cdot \frac{1}{\pi} \int_{0}^{2\pi} \hat{u}_{0}(R,\psi) d\psi + \sum_{k=1}^{\infty} \frac{1}{\pi} \int_{0}^{2\pi} \hat{u}_{0}(\psi) \left(\cos k\psi \cdot \cos k\varphi + \sin k\psi \sin k\varphi\right) d\psi \left(\frac{\rho}{R}\right)^{k} = \\ &= \left(\text{сходимость равномерная}\right) = \frac{1}{2\pi} \int_{0}^{2\pi} \left[1 + \sum_{k=1}^{\infty} 2\cos k(\psi - \varphi) \left(\frac{\rho}{R}\right)^{k}\right] \hat{u}_{0}(\psi) d\psi = \\ &= \frac{1}{2\pi} \int_{0}^{2\pi} \left[\sum_{k=0}^{\infty} e^{-ik(\psi - \varphi)} \left(\frac{\rho}{R}\right)^{k} + \sum_{k=1}^{\infty} e^{ik(\psi - \varphi)} \left(\frac{\rho}{R}\right)^{k}\right] \hat{u}_{0}(\psi) d\psi = \frac{1}{2\pi} \int_{0}^{2\pi} \left[\sum_{k=0}^{\infty} p^{k} + \sum_{k=1}^{\infty} \bar{p}^{k}\right] \hat{u}_{0}(\psi) d\psi \end{split}$$

Под интегралом ($|p|=|\bar{p}|=rac{
ho}{R}<1$):

$$\sum_{k=1}^{\infty} p^k + \sum_{k=1}^{\infty} \bar{p}^k = \frac{1}{1-p} + \frac{1}{1-\bar{p}} - 1 = \frac{1-p+1-\bar{p}-1+p+\bar{p}-p\bar{p}}{(1-p)(1-\bar{p})} = \frac{1-|p|^2}{1-(p+\bar{p})+p\bar{p}} = \frac{1-|p|^2}{1-(p+\bar{p})+p\bar{p}} = \frac{1-|p|^2}{1-2\operatorname{Re} p+|p|^2} = \frac{1-\left(\frac{\rho}{R}\right)^2}{1-2\frac{\rho}{R}\cos(\psi-\varphi)+\frac{\rho^2}{R^2}} = \frac{R^2-\rho^2}{R^2+\rho^2-2R\rho\cos(\varphi-\psi)} = \frac{R^2-|x|^2}{|x-\xi|^2}, \quad x = (\rho,\varphi)$$

$$= \frac{R^2-|x|^2}{|x-\xi|^2}, \quad x = (\rho,\varphi)$$

Итак,

$$\hat{u}(\rho,\varphi) = \frac{1}{2\pi R} \int_0^{2\pi} \frac{R^2 - \rho^2}{R^2 + \rho^2 - 2R\rho\cos(\varphi - \psi)} \hat{u}_0(\psi) d\psi$$

$$\iff u(x) = \frac{1}{2\pi R} \oint_{\Gamma} \frac{R^2 - |x|^2}{|x - \xi|^2} u_0(\xi) dS_{\xi}$$

Заметим, что при $u_0 \equiv 1$ мы получим ядро Пуассона:

$$1 \equiv \frac{1}{2\pi R} \oint_{\Gamma} \frac{R^2 - |x|^2}{|x - \xi|^2} dS_{\xi}$$

Покажем, что $u(x) \in C(\bar{D})$.

Пусть $x \in D \cap \{x : |x - x^0| < \delta_{n_0}\}$, где $x_0 \in \Gamma$, а δ_{n_0} выбрано так, чтобы $|u_0(x) - u_0(x^0)| \leqslant \varepsilon$.

$$u(x) - u(x^{0}) = \frac{1}{2\pi R} \oint_{\Gamma} \frac{R^{2} - |x|^{2}}{|x - \xi|^{2}} \left(u_{0}(\xi) - u_{0}(x^{0}) \right) dS_{\xi} =$$

$$= \frac{1}{2\pi R} \left(\int_{\left\{ \xi \in \Gamma: |\xi - x^{0}| < \delta_{n_{0}} \right\}} + \int_{\left\{ \xi \in \Gamma: |\xi - x^{0}| \geqslant \delta_{n_{0}} \right\}} \right) \frac{R^{2} - |x|^{2}}{|x - \xi|^{2}} \left(u_{0}(\xi) - u_{0}(x^{0}) \right) dS_{\xi} = I_{<} + I_{\geqslant}$$

$$\begin{split} |I_<| \leqslant & \frac{1}{2\pi R} \int_{(<)} \frac{|R^2 - |x|^2|}{|x - \xi|^2} \Big| u_0(\xi) - u_0(x^0) \Big| dS_\xi \leqslant \varepsilon \cdot \big\{ \text{ядро Пуассона} \big\} = \varepsilon \\ |I_\geqslant| \leqslant & \frac{1}{2\pi R} \frac{(R - |x|)(R + |x|)}{\min|\xi - x|^2} \cdot 2M \cdot \int_{(\geqslant)} dS_\xi \leqslant 4MR \frac{R - |(|x)|}{\min|\xi - x|^2}, \text{где } R + |x| \leqslant 2R \text{ и} \int_{(\geqslant)} dS_\xi \leqslant 2\pi R \\ |\xi - x| = \left| \xi - x^0 + x^0 - x \right| \geqslant \left| \xi - x^0 \right| - \left| x^0 - x \right| > \delta_{n_0} - \frac{\delta_{n_0}}{2} = \frac{\delta}{2} \Rightarrow |I_\geqslant| \leqslant 16MR \frac{R - |x|}{\delta_{n_0}^2} \\ \text{Возьмем } \delta_n = \min \left\{ \frac{\delta_{n_0}}{2}, \varepsilon \delta_{n_0}^2 \right\}. \text{ Тогда при } |x - x^0| < \delta_n \text{ будем иметь } R - |x| \leqslant |x^0 - x| < \delta_n \Rightarrow 0 \end{split}$$

Итак, при $|x^0 - x| < \delta_n : |u(x) - u(x^0)| \le |I_<| + |I_>| \le \varepsilon + 16MR\varepsilon$. Непрерывность доказана.

4. Дифференцируемость:

 $u = \operatorname{Re} w_1 + \operatorname{Im} w_2.$

Вспомогательный факт: $\tilde{w}(z) = \tilde{u}(z) + i\tilde{v}(z) \Rightarrow \frac{d\tilde{w}}{dz} = \tilde{u}_{x_1} + i\tilde{v}_{x_1} \Rightarrow \tilde{u}_{x_1} = (\operatorname{Re} \tilde{w})_{x_1} = \operatorname{Re} (\tilde{w}_z)$ В нашем случае:

$$\frac{\partial}{\partial x_1} \operatorname{Re} w_1(z) = \operatorname{Re} \frac{dw}{dz} = \operatorname{Re} \sum_{k=0}^{\infty} \frac{A_k}{R^k} \left(z^k \right)_z' = \sum_{k=0}^{\infty} \frac{A_k}{R^k} \operatorname{Re} \frac{dz^k}{dz} = \sum_{k=0}^{\infty} \frac{A_k}{R^k} \frac{\partial}{\partial x_1} \operatorname{Re} z^k = \sum_{k=0}^{\infty} \frac{A_k}{R^k} \left(p_k \right)_{x_1}' (x_1, x_2)$$

Аналогично для B_k и для производного любого порядка.

- 17 Билет 17. Интегральное представление решений уравнений Лапласа и Пуассона в ограниченной области. Фундаментальное решение уравнения Лапласа.
- 17.1 Интегральное представление решений уравнений Лапласа и Пуассона в ограниченной области.

Рассматривается уравнение Пуассона в \mathbb{R}^3 : $\Delta u(x) = \left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \frac{\partial^2}{\partial x_3^2}\right) u(x) = f(x), x \in \Omega \subset \mathbb{R}^3$, где Ω – область.

Определение 17.1 (Гармоническая функция). Функция u(x) называется гармонической в $\Omega \in R^3$, если $u(x) \in C^2(\Omega)$ и $\Delta u(x) \equiv 0, \ \forall \ x \in \Omega$.

Удобно перейти в сферическую систему координат:

$$\begin{cases} x_1 = r \sin \theta \cos \varphi \\ x_2 = r \sin \theta \sin \varphi \\ x_3 = r \cos \theta. \end{cases}$$

Уравнение примет вид:

$$0 = \Delta \hat{u}(r, \theta, \varphi) = \hat{u}_{rr} + \frac{2}{r}\hat{u}_r + \frac{1}{r^2} \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \hat{u}}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2 \hat{u}}{\partial \varphi^2} \right]$$

В квадратных скобках написан оператор Лапласа-Бельтрани от функции \hat{u} . Решение зависящее от r, удовлетворяет уравнению Эйлера:

$$\hat{u}_{rr} + \frac{1}{r^2}\hat{u}_r = 0 \Rightarrow \hat{u}(r) = r^{\mu} \Rightarrow \mu(\mu - 1) + 2\mu = 0 \Rightarrow \hat{u}(r) = C_1 + \frac{C_2}{r}$$

Функция $\hat{u}(r) = \frac{1}{r}$ – гармоническая всюду кроме 0.

Лемма 17.1 (Интегральное представление решения уравнения Пуассона). Пусть Ω – область c кусочно-гладкой границей Γ . Пусть $u(x) \in C^2(\Omega) \cap C^1(\bar{\Omega}), \Delta u \in C(\bar{\Omega})$. Тогда для $\forall x \in \Omega \ u(x)$ представима в виде суммы трех потенциалов (объемного Ньютонова, простого слоя, двойного слоя):

$$u(x) = \underbrace{\int_{\Omega} \left(-\frac{1}{4\pi |x-y|} \right) \Delta u(y) dy}_{\text{объёмный Ньютоновый потенциал}} - \underbrace{\oint_{\Gamma} \left(-\frac{1}{4\pi |x-y|} \right) \frac{\partial u(y)}{\partial \boldsymbol{n_y}} dS_y}_{\text{потенциал простого слоя}} + \underbrace{\oint_{\Gamma} \frac{\partial}{\partial \boldsymbol{n_y}} \left(-\frac{1}{4\pi |x-y|} \right) u(y) dS_y}_{\text{потенциал обойного слоя}}$$

 \mathcal{A} оказательство. Берем $x \in G, \varepsilon > 0$ такое, что $\bar{B}(x,\varepsilon) \subset \Omega$ (B – открытый шар в \mathbb{R}^3). Строим область $\Omega_x^{\varepsilon} = \Omega \backslash \bar{B}(x,\varepsilon), \partial \Omega_x^{\varepsilon} = \Gamma \cup \gamma$, где $\gamma = \partial B(x,\varepsilon)$.

В Ω_x^{ε} ядро $K_3(x,y)=-\frac{1}{4\pi|x-y|}\in C^{\infty}$ ($\Delta K_3(x,y)\equiv 0$). Используем 2 формулу Грина:

$$\begin{split} &\int_{\Omega_x^\varepsilon} \Delta u(y) K_3(x,y) dy - \int_{\Omega_x^\varepsilon} u(y) \Delta K_3(x,y) dy = \\ &= \oint_{\Gamma} \frac{\partial u(y)}{\partial \boldsymbol{n_y}} K_3(x,y) dS_y + \oint_{\gamma} \frac{\partial u(y)}{\partial \boldsymbol{n_y}} K_3(x,y) dS_y - \oint_{\Gamma} u(y) \frac{\partial}{\partial \boldsymbol{n_y}} K_3(x,y) dS_y - \oint_{\gamma} u(y) \frac{\partial}{\partial \boldsymbol{n_y}} K_3(x,y) dS_y \end{split}$$

$$\iff \int_{\Omega_x^{\varepsilon}} f(y) K_3(x,y) dy + \oint_{\Gamma} u(y) \frac{\partial}{\partial \boldsymbol{n_y}} K_3(x,y) dS_y - \oint_{\Gamma} \frac{\partial u(y)}{\partial \boldsymbol{n_y}} K_3(x,y) dS_y =$$

$$= \oint_{\gamma} \frac{\partial u(y)}{\partial \boldsymbol{n_y}} K_3(x,y) dS_y - \oint_{\gamma} u(y) \frac{\partial}{\partial \boldsymbol{n_y}} K_3(x,y) dS_y$$

Offtop 17.1. uhmerpan om $\frac{1}{|x|^{\alpha}}$ cxodumca npu $\alpha < n = \dim \mathbb{R}^n$. Y hac $n = 3, \alpha = 1$.

Устремляем $\varepsilon \to 0$:

1. $\int_{\Omega_x^{\varepsilon}} \to \int_{\Omega}$ в силу последнего замечания.

2.
$$\oint_{\gamma} u(y) \frac{\partial}{\partial \mathbf{n}_{y}} \left(-\frac{1}{4\pi} \cdot \frac{1}{|x-y|} \right) dS_{y} = \frac{1}{4\pi\varepsilon^{2}} \oint \left(u(y) - u(x) + u(x) \right) dS_{y} = \frac{1}{4\pi\varepsilon^{2}} \oint_{\gamma} \left(u(y) - u(x) \right) dS_{y} + u(x)$$

$$\frac{\partial}{\partial \mathbf{n}_{y}} \left(-\frac{1}{4\pi} \cdot \frac{1}{|x-y|} \right) \to \frac{1}{4\pi} \left(-\frac{\partial}{\partial \rho} \frac{1}{\rho} \right) \Big|_{\rho=\varepsilon}$$

$$\frac{1}{4\pi\varepsilon^{2}} \Big| \oint_{\gamma} \left(u(y) - u(x) \right) dS_{y} \Big| \leqslant \frac{1}{4\pi\varepsilon^{2}} \cdot \max_{|y-x| \leqslant R} |u(y) - u(x)| \cdot \oint_{\gamma} dS_{y} \to 0$$

3.

$$\left| \oint_{\Gamma} \frac{\partial u(y)}{\partial \boldsymbol{n_y}} K_3(x,y) dS_y \right| \leqslant \frac{1}{4\pi\varepsilon} M \int_{\gamma} dS_y = M\varepsilon \to 0$$

$$\left| \frac{\partial u}{\partial \boldsymbol{n_y}} \right| = |(\nabla u, \boldsymbol{n})| \leqslant |\nabla u| \cdot |n| \leqslant M, \text{ так как } \nabla u \in C\left(\overline{\Omega}\right)$$

Итак, после предельного перехода получим требуемое соотношение

17.2 Фундаментальное решение уравнения Лапласа.

Экскурс в обобщенные функции

Определение 17.2. $\mathcal{D}(\mathbb{R}^n)$ – пространство пробных (основных) функций: $\varphi(x) \in \mathcal{D}(\mathbb{R}^n) \Longleftrightarrow \varphi(x) \in C^{\infty}(\mathbb{R}^n)$, supp $\varphi(x)$ – компакт.

Определение 17.3. В $\mathcal{D}(\mathbb{R}^n)$ вводится сходимость по следующему правилу: $\{\varphi_k(x)\}_{k=1}^{\infty} \to \varphi(x) \in \mathcal{D}(\mathbb{R}^n) \iff$

- $\forall \alpha = (\alpha_1, \dots, \alpha_n) \mathcal{D}^{\alpha} \varphi_k \rightrightarrows \mathcal{D}^{\alpha} \varphi$
- $\exists A > 0 : \varphi_k(x) \equiv 0$ при $|x| > A, \ \forall k \in \mathbb{N}$ (у всех функций общий носитель)

Пример функции из $\mathcal{D}(\mathbb{R}^n)$:

$$\omega_{\varepsilon}(x) = \begin{cases} \frac{1}{\varepsilon^n} e^{-\frac{1}{1 - (x/\varepsilon)^2}}, |x| \leqslant \varepsilon \\ 0, |x| > \varepsilon \end{cases} \Rightarrow \mathcal{D}(\mathbb{R}^n) \neq \emptyset$$

Определение 17.4. Обобщенная функция f над $\mathcal{D}(\mathbb{R}^n)$ – всякий линейный непрерывный функционал над $\mathcal{D}(\mathbb{R}^n)$

Определение 17.5. Линейный функционал: $(f, \alpha \varphi + \mu \psi) = \alpha(f, \varphi) + \mu(f, \psi)$

Определение 17.6. Непрерывный функционал: $\forall \{\varphi_k\} \to \varphi$ в $\mathcal{D}(\mathbb{R}^n) \Rightarrow f(\varphi_k) \to f(\varphi)$

По определению $\forall \lambda, \mu$ -чисел, $\forall f, g \in \mathcal{D}'(\mathbb{R}^n)$ обобщенная функция $F = \lambda f + \mu g \in \mathcal{D}'(\mathbb{R}^n)$, $(F, \varphi) \stackrel{\text{def}}{=} \lambda(f, \varphi) + \mu(g, \varphi)$

Определение 17.7 (сходимость в $\mathcal{D}'(\mathbb{R}^n)$). $\{f_n\}_{n=1}^{\infty} \to f \in \mathcal{D}'(\mathbb{R}^n) \stackrel{\text{def}}{\iff} (f_k, \varphi) \to (f, \varphi), \ \forall \ \varphi \in \mathcal{D}(\mathbb{R}^n)$ (слабая* сходимость).

Определение 17.8. Функция f(x) называется локально интегрируемой, если $\forall \ B > 0 \ \exists \ \int_{|x| < B} |f(x)| dx < \infty.$

Каждая такая f(x) порождает обобщенную функцию $(f,\varphi) = \int_{\mathbb{R}^n} f(x)\varphi(x)dx$. Если существует локально интегрируемая f(x) такая, что обобщенная функция f представляется в виде $(f,\varphi) = \int_{\mathbb{R}^n} f(x)\varphi(x)dx$, то $f \in \mathcal{D}'(\mathbb{R}^n)$ называется регулярной.

Лемма 17.2 (Дюбуа-Реймон). Если f и g непрерывны и порождают одну обобщенную функцию, то $f \equiv g$. Если f и g разрывны, то они совпадают почти всюду.

Определение 17.9 (δ -функция). $(\delta, \varphi) \stackrel{\text{def}}{=} \varphi(0)$

 δ -функция не является регулярной.

Обобщенные функции бесконечно дифференцируемы.

Правило дифференцирования: $(\mathcal{D}^{\alpha}f,\varphi)=(-1)^{|\alpha|}(f,\mathcal{D}^{\alpha}\varphi).$

В частном случае $(\Delta f, \varphi) = (f, \Delta \varphi)$

Теорема 17.3. Функция $E(x) = \frac{-1}{4\pi|x|}$ является решением в обобщенных функциях уравнения $\Delta E(x) = \delta(x)$.

Доказательство. Пусть $\varphi \in \mathcal{D}(\mathbb{R}^n)$, $\operatorname{supp} \varphi \subset B(0,A)$. Возьмем $\Omega = B(0,A+1)$. По теореме об интегральном представлении

$$\begin{split} \varphi(0) &= \int_{|y| < A+1} E(y) \Delta_y \varphi(y) dy + \underbrace{\oint_{|y| = A+1} \varphi(y) \underbrace{\partial E(y)}_{\partial \boldsymbol{n_y}} dS_y}_{\partial \boldsymbol{n_y}} - \underbrace{\oint_{|y| = A+1} \underbrace{\partial \varphi(y)}_{\partial \boldsymbol{n_y}} E(y) dS_y}_{\partial \boldsymbol{n_y}} = \\ &= (E, \Delta_x \varphi(x)) = (\Delta E, \varphi(x)) \end{split}$$

Что и требовалось.

Определение 17.10. Функция E(x) называется фундаментальным решением оператора Лапласа.

18 Билет 18. Свойства гармонических функций в \mathbb{R}^3 : бесконечная дифференцируемость, теорема о среднем. Обратная теорема о среднем.

Определение 18.1. Функция u(x) гармоническая в $\Omega \in \mathbb{R}^3$, если

- 1. $u(x) \in C^2(\Omega)$
- 2. $\Delta u(x) = 0 \quad \forall x \in \Omega$

Теорема 18.1. Всякая функция u(x), гармоническая в области Ω , является в Ω бесконечно дифференцируемой, т.е. $u(x) \in C^{\infty}(\Omega)$.

Доказательство. Возьмем $x_0 \in \Omega$ и $\overline{B}_r(x_0) \subset \Omega$. Представим u(x) суммой:

$$u(x) = -\oint_{|y-x_0|=r} \left(\frac{-1}{4\pi|x-y|}\right) \frac{\partial u(y)}{\partial \boldsymbol{n_y}} dS_y + \oint_{|y-x_0|=r} u(y) \frac{\partial}{\partial \boldsymbol{n_y}} \left(\frac{-1}{4\pi|x-y|}\right) dS_y$$

Теперь берем $B_{\delta}(x_0) \subsetneq B_r(x_0)$. Будем обозначать $S(x_0,r)$ сферу $\partial B_r(x_0)$. Если $x \in \overline{B}_{\delta}(x_0), y \in S(x_0,r)$, то $|x-y| \geqslant r-\delta > 0$.

Рассмотрим в $\overline{B}_{\delta}(x_0)$

$$u_0(x) = \oint_{|y-x_0|=r} \left(\frac{-1}{4\pi|x-y|}\right) \frac{\partial u(y)}{\partial \boldsymbol{n_y}} dS_y.$$

Напишем

$$\tilde{u_0}(x) = \oint_{|y-x_0|=r} D_x^{\alpha} \left(\frac{-1}{4\pi|x-y|}\right) \frac{\partial u(y)}{\partial \boldsymbol{n_y}} dS_y$$

Заметим, что $\frac{-1}{4\pi|x-y|} \in C^{\infty}(\overline{B}_{\delta}(x_0) \times S(x_0,r)) \Rightarrow$ записанные частные производные непрерывны, интеграл $\tilde{u_0}$ существует $\Rightarrow \tilde{u_0}(x) = D_x^{\alpha} u_o(x)$.

Теперь берем

$$u_2(x) = \oint_{|y-x_0|=r} u(y) \frac{\partial}{\partial \boldsymbol{n_y}} \left(\frac{-1}{4\pi |x-y|} \right) dS_y$$

$$\frac{\partial}{\partial \boldsymbol{n_y}} \left(\frac{-1}{4\pi |x-y|} \right) = \sum_{1}^{n} n_k \frac{\partial}{\partial \boldsymbol{y_k}} \left(\frac{-1}{4\pi |x-y|} \right)$$

В $\overline{B}_{\delta}(x_0)$ запишем

$$\tilde{u}_2(x) = \sum_{1}^{3} \oint u_0(y) n_k(y) D_x^{\alpha} \left(\frac{\partial}{\partial y_k} \left(\frac{-1}{4\pi |x - y|} \right) dS_y \right)$$

Записанные частные производные непрерывны, интеграл $\tilde{u}_2(x)$ существует $\Rightarrow \tilde{u}_2(x) = D_x^{\alpha} u_2(x)$. Итак, для $u_0(x)$ и $u_2(x)$ существуют частные производные любого порядка. Значит, $u(x) \in C^{\infty}(\overline{B}_{\delta}(x_0))$, где

 x_0 - произвольная точка из $\Omega. \Rightarrow u(x) \in C^\infty(\Omega)$

Теорема 18.2 (Теорема о среднем). Пусть u(x), гармоническая в шаре $B_r(x_0)$ и $u(x) \in C^1(\overline{B}_r(x_0))$. Тогда $u(x_0) = \frac{1}{4\pi r^2} \int\limits_{|y-x_0|=r} u(y) dS_y$. (в центре - среднее по значениям на сфере)

Доказательство.

$$u(x_0) = -\oint_{|y-x_0|=r} \left(\frac{-1}{4\pi|x_0-y|}\right) \frac{\partial u}{\partial \boldsymbol{n_y}} dS_y + \oint_{|y-x_0|=r} u(y) \frac{\partial}{\partial \boldsymbol{n_y}} \left(\frac{-1}{4\pi|x_0-y|}\right) dS_y$$

$$\frac{\partial}{\partial \boldsymbol{n_y}} \left(\frac{-1}{4\pi|x_0-y|}\right) \stackrel{\rho=|x_0-y|}{=} \frac{-1}{4\pi} \frac{\partial}{\partial \rho} \frac{1}{\rho} = \frac{1}{4\pi r^2},$$

тогда

$$\oint_{|x-x_0|=r} u(y) \frac{\partial}{\partial \mathbf{n}_y} \left(\frac{-1}{4\pi |x_0-y|} \right) dS_y = \frac{1}{4\pi r^2} \oint_{|y-x_0|=r} u(y) dS_y.$$

Покажем, что потенциал простого слоя равен нулю.

$$-\oint_{|y-x_0|=r} \left(\frac{-1}{4\pi|x_0-y|}\right) \frac{\partial u(y)}{\partial \boldsymbol{n_y}} dS_y = \frac{1}{4\pi} \frac{1}{r} \oint_{|y-x_0|=r} \frac{\partial u(y)}{\partial \boldsymbol{n_y}} dS_y = \frac{1}{4\pi r} \oint_{|y-x_0|=r} (\nabla u(y), \boldsymbol{n}(y)) dS_y \stackrel{\text{ф-ла Остр.-Гаусса}}{=}$$

$$= \frac{1}{4\pi r} \oint_{|y-x_0|< r} \operatorname{div}(\nabla u) dy = \frac{1}{4\pi r} \oint_{|y-x_0|< r} \Delta u dy = 0$$

П

Теорема 18.3 (Обратная теорема о среднем). Пусть $u(x) \in C(\Omega)$ и u(x) обладает свойством среднего $\forall x \in \Omega$, где $\Omega \in \mathbb{R}^3$ - произвольная область. Тогда u(x) - гармоническая функция на Ω .

Доказательство. $\forall x_0 \in \Omega \exists r > 0 : \overline{B(x_0, r)} \subset \Omega$. Рассмотрим решение

$$v(x) = \frac{1}{4\pi R} \oint_{|y|=r} \frac{r^2 - |x|^2}{|y - x|^3} u(y) dS_y$$

для задачи
$$\begin{cases} \Delta u(x) = 0, |x| < r \\ v|_{|x|=r} = u|_{|x|=r} \end{cases}$$

Введем w(x) = u(x) - v(x), $w(x) \in C(|x| \leqslant r)$, получим что w(x) удовлетворяет свойству среднего. Тогда по принципу максимума (для функции, удовлетворяющей свойству среднего, будет доказан в следующем билете) $|w(x)| \leqslant \max_{|y-x|=r} |w(y)| = 0 \Rightarrow u(x) = v(x) \; \forall \; x: |x| < r$

19 Билет 19.Принцип максимума и минимума для гармонических функций. Единственность классического решения задачи Дирихле для уравнения Пуассона при непрерывной граничной функции

19.1 Теорема (принцип максимума)

Теорема 19.1. (Принцип максимума) $Ecnu\ u(x)$ - гармоническая в области $\Omega\ u$ достигает тах или тіп значения в точке $a \in \Omega$, то $u(x) \equiv u(a) \ \forall \ x \in \Omega$

Offtop 19.1. Теорема справедлива в \mathbb{R}^n

Доказательство.

• Докажем вспомогательное локальное

Утверждение 19.2. Пусть $u(x) \in C^2(\Omega)$ достигает максимума в точке a, a так же удовлетворяет свойству среднего:

$$u(a) = \frac{1}{4\pi r^2} \oint_{|y-a|=r} u(y) dS_y \quad \forall r : 0 < r < d_a = dist(a, \mathbb{R}^3 \setminus \Omega)$$

Тогда $u(x) \equiv u(a) \ \forall \ x \in B(a, d_a)$

Доказательство.
$$u(a) = \frac{1}{4\pi r^2} \oint_{|y-a|=r} u(y) dS_y = \frac{u(a)}{4\pi r^2} \oint_{|y-a|=r} dS_y + \frac{1}{4\pi r^2} \oint_{|y-a|=r} (u(y)-u(a)) dS_y = u(a) + \frac{1}{4\pi r^2} \oint_{|y-a|=r} (u(y)-u(a)) dS_y \Rightarrow \oint_{|y-a|=r} \underbrace{(u(y)-u(a))}_{\leq 0, \text{ непрерывна}} dS_y = 0 \Leftrightarrow u(y)=u(a) \ \forall \ y: |y-a|=r < d_a$$

• Докажем саму теорему

Соединим a и b кусочно-гладкой кривой. Эту кривую параметризуем натуральным параметром(параметризация кривой длиной её дуги): x = x(s), x(0) = a, x(L) = b. Обозначим $d = dist\{\gamma = x; \partial\Omega\} > 0$ (d действительно > 0: если d = 0, то $\exists \{x_n\}_{n=1}^{\infty} \subset \gamma : \rho(x_n, \partial\Omega) \to 0$. Выделим из $\{x_n\}$ сходящуюся $\{x_{n_k}\} = \{y_k\}(\gamma - 0)$ ограничено). Пусть $y_k \to y_0$. Тогда y_0 - предельная для $\partial\Omega$ в силу замкнутости $y_0 \in \gamma \cup \partial\Omega \Rightarrow$ противоречие)

Разобьем [0,L] на части размера $\Delta S = \frac{L}{N}$

Пусть $\{S_k = k\Delta S, x_k = x(S_k)\}$. Число N выберем так, чтобы $\Delta S = \frac{L}{N} < d$

Заметим, что $|x_k - x_{k-1}| \le s_k - s_{k-1} < d($ - кратчайшее расстояние между точками это отрезок).

Рассмотрим шары $B_d(x_k)_{k=0}^N$. В силу $|x_k - x_{k-1}|$) < d верно $x_{k+1} \in B_d(x_k)$. Примем утверждение 19.2 к первому шару. Как следствие $u(x_1) = u(a) \Rightarrow$ утверждение 19.2 применимо уже ко второму шару. В цепочке шаров конечное число \Rightarrow добираемся до точки b - теорема доказана.

• Заметим, что достаточно было потребовать свойство среднего и непрерывность, вместо гармоничности.

Следствие. Пусть Ω - ограниченная область, а u(x) - гармоническая в Ω и непрерывная на $\overline{\Omega}$. Тогда u(x) достигает тах и тіп на $\partial\Omega$, т.е. $\min_{y\in\partial\Omega}u(y)\leqslant u(x)\leqslant \max_{y\in\partial\Omega}u(y)$

Доказательство. Либо максимум/минимум на границе, либо $u(x) \equiv const$ в Ω

Следствие. Для указанной в следствии 19.1 $u(x)\hookrightarrow |u(x)|\leqslant \max_{y\in\partial\Omega} |u(y)|$

Доказательство.

$$\begin{cases} u(x) \leqslant \max_{\partial \Omega} u(y) \leqslant \max_{\partial \Omega} |u(y)| \\ -u(x) \leqslant \max_{\partial \Omega} (-u(y)) \leqslant \max_{\partial \Omega} |u(y)| \end{cases}$$
 (27)

$$\Rightarrow |u(x)| \leqslant \max_{\partial \Omega} |u(y)| \qquad \Box$$

19.2 Новая постановка задачи Дирихле для уравнения Пуассона

 Ω - ограниченная область

$$\begin{cases}
\Delta u(x) = f(x), x \in \Omega \\
u(x)|_{\partial\Omega} = u_0(x), x \in \partial\Omega
\end{cases}$$
(28)

Определение 19.1. Классическое решение задачи Дирихле - функция $u(x) \in C^2(\Omega) \cap C(\overline{\Omega})$, удовлетворяющая уравнению и граничному условию.(раньше было $u(x) \in C^2(\Omega) \cap C^{\boxed{1}}(\overline{\Omega})$, единица была нужна для формул Грина, теперь убираем ее)

19.3 Теорема единственности

Теорема 19.3. (единственности) Не может существовать более 1 классического решения $задачи \ Дирихле(28)$.

Доказательство. Пусть u_1 и u_2 - классические решения (28). Тогда $v(x) = u_1 - u_2$ - классическое решение полностью однородной задачи:

$$\begin{cases}
\Delta v(x) \equiv 0, x \in \Omega \\
v(x)|_{\partial\Omega} = 0, x \in \partial\Omega
\end{cases}$$
(29)

Согласно принципу максимума, $|v(x)| \leq \max_{\partial\Omega} |v(x)| = 0 \Rightarrow v(x) \equiv 0$

20 Билет 20. Функция Грина для задачи Дирихле (случай \mathbb{R}^3). Функция Грина для шара. Формула Пуассона решения задачи Дирихле для уравнения Лапласа в шаре

20.1 Функция Грина

Пусть $\Omega\subset\mathbb{R}^3$ - ограниченная область с кусочно-гладкой границей. Пусть $u(x)\in C^2(\Omega)\cap C^1(\overline{\Omega})$ — некоторое классическое решение задачи:

$$\begin{cases} \triangle u = f(x), & x \in \Omega \\ u|_{\partial\Omega} = u_0(x), & x \in \partial\Omega \end{cases}$$

Запишем интегральное представление:

$$u = \int_{\Omega} \left(\frac{-1}{4\pi |x - y|} \right) \triangle u(y) dy - \oint_{\partial \Omega} \left(\frac{-1}{4\pi |x - y|} \right) \frac{\partial u(y)}{\partial \overrightarrow{n}_{y}} dS_{y} + \oint_{\partial \Omega} u(y) \frac{\partial}{\partial \overrightarrow{n}_{y}} \left(\frac{-1}{4\pi |x - y|} \right) dS_{y}$$

Рассмотрим задачу при фиксированном $x \in \Omega$:

$$\begin{cases} \triangle_y g(x,y) = 0, & \forall y \in \Omega \\ g(x,y)|_{\partial\Omega} = \frac{1}{4\pi |x-y|} \end{cases}$$

Если $\partial\Omega\in C^2$, то решение существует (пока не можем это доказать).

Используем вторую формулу Грина:

$$\int_{\Omega} \triangle_y u(y) g(x,y) dy - \int_{\Omega} u(y) \triangle_y g(x,y) dy =$$

$$= 0$$

$$= \oint_{\partial \Omega} \frac{\partial u(y)}{\partial \overrightarrow{n}_y} g(x,y) dS_y - \oint_{\partial \Omega} \frac{\partial g(x,y)}{\partial \overrightarrow{n}_y} u(y) dS_y$$

Отсюда получаем

$$\int_{\Omega} g(x,y)f(y)dy + \oint_{\partial\Omega} \left(\frac{-1}{4\pi|x-y|} \right) \frac{\partial u(y)}{\partial \overrightarrow{n}_{y}} dS_{y} + \oint_{\partial\Omega} \frac{\partial g(x,y)}{\partial \overrightarrow{n}_{y}} u(y)dS_{y} = 0$$

Тогда

$$u(x) = \int_{\Omega} \left(\frac{-1}{4\pi |x-y|} + g(x,y) \right) f(y) dy + \oint_{\partial \Omega} u_0(y) \frac{\partial}{\partial \overrightarrow{n}_y} \left(\frac{-1}{4\pi |x-y|} + g(x,y) \right) dS_y$$

Функция Грина, по определению:

$$G(x,y) \triangleq \frac{-1}{4\pi|x-y|} + g(x,y)$$

Она симметрична и имеет ту же особенность, что и $\frac{-1}{4\pi|x-y|}$

20.2 Функция Грина для шара

Получим функцию Грина для шара:

$$\begin{cases} \triangle_y g(x,y) = 0, y \in \Omega \\ g(x,y)|_{|y|=R} = \frac{1}{4\pi|x-y|} \end{cases}$$

Будем обозначать x^* точку, инверсную точке x относительно окружности |y|=R.

$$x^* = x \frac{R^2}{|x|^2}$$

Покажем, что решением является функция:

$$g(x,y) = \begin{cases} \frac{R}{4\pi|x||y-x^*|}, & x \neq 0\\ \frac{1}{4\pi R}, & x = 0 \end{cases}$$

Функция g(x,y) - гармоническая по y в шаре |y| < R (особенность $y = x^*$ лежит вне шара, т.к. x* лежит внутри него).

Посмотрим значение функции g на границе:

Заметим, что $\triangle OXY \sim \triangle OYX*$, т.к. $\angle XOY$ - общий, и $\frac{|x|}{|y|} = \frac{|y|}{|x^*|}$.

Из подобия $\frac{|y-x|}{|y-x^*|} = \frac{|x|}{|y|} = \frac{|x|}{R}$.

Значит, $\frac{R}{4\pi|x||y-x^*|}\Big|_{|y|=R}=\frac{1}{4\pi y},$ что и требовалось.

20.3 Формула Пуассона в шаре

Получим формулу Пуассона решения задачи Дирихле в шаре:

$$u(x) = \int_{\Omega} G(x, y) f(y) dy + \oint_{\partial \Omega} u_0(y) \frac{\partial G(x, y)}{\partial \overrightarrow{n}_y} dS_y$$

Преобразуем последний интеграл:

$$\frac{\partial G(x,y)}{\partial \overrightarrow{n}_{y}} = \sum_{k=1}^{3} n_{k}(y) \frac{\partial G}{\partial y_{k}}\Big|_{|y|=R} = \sum_{k=1}^{3} n_{k}(y) \frac{\partial}{\partial y_{k}} \left[-\frac{1}{4\pi} \left(\frac{1}{|y-x|} - \frac{R}{|x|} \frac{1}{|y-x^{*}|} \right) \right] = \frac{1}{4\pi} \sum_{k=1}^{3} \frac{y_{k}}{R} e^{-\frac{1}{4\pi} \left(\frac{y_{k}}{|y-x|^{3}} - \frac{R}{|x|} \frac{y_{k} - x_{k}^{*}}{|y-x|^{3}} \right) e^{-\frac{1}{4\pi} \left(\frac{y_{k}}{|y-x|^{3}} - \frac{R}{|x|} \frac{y_{k} - x_{k}^{*}}{|y-x^{*}|^{3}} \right)}$$

Вспомним, что $\frac{R}{|x|\cdot|y-x^*|}\Big|_{|y|=R} = \frac{1}{|x-y|}$:

$$\left. \frac{\partial G(x,y)}{\partial \overrightarrow{n}_y} \right|_{|y|=R} = \sum_{k=1}^3 \frac{1}{4\pi} \frac{y_k}{R} \left[\frac{y_k - x_k}{|y - x|^3} - \frac{R}{|x|} \left(\frac{|x|}{R} \right)^3 \frac{y_k - x_k^*}{|y - x|^3} \right] = \frac{1}{4\pi R|y - x|^3} \sum_{k=1}^3 y_k \left[y_k - x_k - \frac{|x|^2}{R^2} (y_k - x_k^*) \right] = \frac{1}{4\pi R|y - x|^3} \sum_{k=1}^3 y_k \left[y_k - x_k - \frac{|x|^2}{R^2} (y_k - x_k^*) \right] = \frac{1}{4\pi R|y - x|^3} \sum_{k=1}^3 y_k \left[y_k - x_k - \frac{|x|^2}{R^2} (y_k - x_k^*) \right] = \frac{1}{4\pi R|y - x|^3} \sum_{k=1}^3 y_k \left[y_k - x_k - \frac{|x|^2}{R^2} (y_k - x_k^*) \right] = \frac{1}{4\pi R|y - x|^3} \sum_{k=1}^3 y_k \left[y_k - x_k - \frac{|x|^2}{R^2} (y_k - x_k^*) \right] = \frac{1}{4\pi R|y - x|^3} \sum_{k=1}^3 y_k \left[y_k - x_k - \frac{|x|^2}{R^2} (y_k - x_k^*) \right] = \frac{1}{4\pi R|y - x|^3} \sum_{k=1}^3 y_k \left[y_k - x_k - \frac{|x|^2}{R^2} (y_k - x_k^*) \right] = \frac{1}{4\pi R|y - x|^3} \sum_{k=1}^3 y_k \left[y_k - x_k - \frac{|x|^2}{R^2} (y_k - x_k^*) \right] = \frac{1}{4\pi R|y - x|^3} \sum_{k=1}^3 y_k \left[y_k - x_k - \frac{|x|^2}{R^2} (y_k - x_k^*) \right] = \frac{1}{4\pi R|y - x|^3} \sum_{k=1}^3 y_k \left[y_k - x_k - \frac{|x|^2}{R^2} (y_k - x_k^*) \right] = \frac{1}{4\pi R|y - x|^3} \sum_{k=1}^3 y_k \left[y_k - x_k - \frac{|x|^2}{R^2} (y_k - x_k^*) \right] = \frac{1}{4\pi R|y - x|^3} \sum_{k=1}^3 y_k \left[y_k - x_k - \frac{|x|^2}{R^2} (y_k - x_k^*) \right] = \frac{1}{4\pi R|y - x|^3} \sum_{k=1}^3 y_k \left[y_k - x_k - \frac{|x|^2}{R^2} (y_k - x_k^*) \right] = \frac{1}{4\pi R|y - x|^3} \sum_{k=1}^3 y_k \left[y_k - x_k - \frac{|x|^2}{R^2} (y_k - x_k^*) \right]$$

$$= \frac{1}{4\pi R|y-x|^3} \left[\langle y, y-x \rangle - \frac{|x|^2}{R^2} \langle y, y-x^* \rangle \right] = \frac{1}{4\pi R|y-x|^3} \left[\langle y, y \rangle - \langle y, x \rangle - \frac{|x|^2}{R^2} \langle y, y \rangle + \frac{|x|^2}{R^2} \langle y, x^* \rangle \right] = \frac{1}{4\pi R|y-x|^3}$$

$$= \frac{R^2 - |x|^2}{4\pi R|y-x|^3}$$

Итак, формула Пуассона для решения задачи Дирихле для уравнения Лапласа в шаре:

$$u(x) = \frac{1}{4\pi R} \oint_{|y|=R} \frac{R^2 - |x|^2}{|y - x|^3} u_0(y) dS_y$$

21 Билет 21. Теорема Лиувилля для гармонических функций (случай \mathbb{R}^3)

21.1 Формулировка теоремы

Теорема 21.1. (Теорема Лиувилля) Функция u(x), гармоническая в \mathbb{R}^3 ($\Delta u = 0$) и имеющая на бесконечности рост не выше степенного (т.е. $|u(x)| \leq C(1+|x|)^{\mu}$), является многочленом от x_1, x_2, x_3 степени не выше μ .

21.2 Доказательство при $\mu \geq 0$

Общая идея - доказать, что все производные степени выше μ равны нулю.

1. Выберем $x \in \mathbb{R}^3, R > 0$ так, чтобы R > 2|x|:

В области $|x| < R\ u(x)$ - гармоническая, а $u(x)|_{\partial\Omega} \in C(\partial\Omega).$

Тогда применима формула Пуассона для шара:

$$u(x) = \frac{1}{4\pi R} \oint_{|y|=R} \frac{R^2 - |x|^2}{|y - x|^3} u(y) dS_y$$

В силу выбора R имеем $|y-x| \ge |y|-|x| \ge \frac{R}{2} > 0$.

Можем записать:

$$\mathcal{D}_x^{\alpha} u(x) = \frac{1}{4\pi R} \oint_{|y|=R} \mathcal{D}_x^{\alpha} \left(\frac{R^2 - |x|^2}{|y - x|^3} \right) u(y) dS_y$$

2. Докажем по индукции, что

$$\forall \alpha = (\alpha_1, \alpha_2, \alpha_3) \quad \mathcal{D}_x^{\alpha} \left[\frac{R^2 - |x|^2}{|x - y|^3} \right] = \frac{P_{\alpha}(R, x, y)}{|x - y|^{3 + 2|\alpha|}},$$

где P_{α} - однородный многочлен степени |a|+2 от $R, x_1, x_2, x_3, y_1, y_2, y_3.$

• База:

$$\mathcal{D}_x^{(0,0,0)} \left[\frac{R^2 - |x|^2}{|x - y|^3} \right] = \frac{R^2 - x_1^2 - x_2^2 - x_3^2}{|x - y|^3}$$

• Переход. Пусть требуемое верно $\forall \alpha : |a| \leq k$. Возьмём $\hat{\alpha} = (\alpha_1 + 1, \alpha_2, \alpha_3)$:

$$\mathcal{D}_{x}^{\hat{\alpha}}\left[\frac{R^{2}-|x|^{2}}{|x-y|^{3}}\right] = \frac{\partial}{\partial x_{1}}\left[\frac{P_{\alpha}(R,x,y)}{|x-y|^{3+2|\alpha|}}\right] = \frac{\frac{\partial P_{\alpha}}{\partial x_{1}}\cdot|x-y|^{2}-(3+2|\alpha|)\cdot P_{\alpha}\cdot(x_{1}-y_{1})}{|x-y|^{3+2(|\alpha|+1)}} = \frac{P_{\hat{\alpha}}(R,x,y)}{|x-y|^{3+2|\hat{\alpha}|}}$$

3. Покажем теперь, что $\forall |x| \leq \frac{R}{2}, \ \forall |y| = R, \ \forall \ \alpha = (\alpha_1, \alpha_2, \alpha_3)$ справедлива оценка:

$$\left| \mathcal{D}_x^{\alpha} \left(\frac{R^2 - |x|^2}{|x - y|^3} \right) \right| \le \frac{C_{\alpha}}{R^{1 + |\alpha|}}.$$

Действительно, $|P_{\alpha}| \leq \tilde{C}_{\alpha}R^{|a|+2}$, а $|x-y|^{3+2|\alpha|} \geq \left(\frac{R}{2}\right)^{3+2|\alpha|} = \hat{C}_{\alpha}R^{3+2|\alpha|}$. Отсюда следует требуемая оценка.

4. Теперь докажем, что $\mathcal{D}_x^{\alpha}u(x)=0 \quad \forall \ \alpha: |\alpha|>\mu.$

$$\begin{split} |\mathcal{D}_{x}^{\alpha}u(x)| &= \frac{1}{4\pi R} \left| \oint_{|y|=R} \mathcal{D}_{x}^{\alpha} \left(\frac{R^{2} - |x|^{2}}{|y - x|^{3}} \right) u(y) dS_{y} \right| \leq \frac{1}{4\pi R} \cdot C \cdot (1 + |x|)^{\mu} \cdot \frac{C_{\alpha}}{R^{1 + |a|}} \cdot 4\pi R^{2} \leq \\ &\leq \frac{C \cdot C_{\alpha} \cdot (1 + R)^{\mu}}{R^{|\alpha|}} \underset{R \to \infty}{\longrightarrow} 0 \quad \text{Значит}, \quad \mathcal{D}_{x}^{\alpha}u(x) = 0 \quad \forall \, x \in \mathbb{R}^{3}, |\alpha| > \mu. \end{split}$$

5. Для гармонической в \mathbb{R}^3 функции u(x) справедливо представление:

$$u(x) = u(0) + \sum_{k=1}^{m} \sum_{|\alpha|=k} \frac{1}{\alpha_1! \alpha_2! \alpha_3!} \mathcal{D}_x^{\alpha} u(0) x_1^{\alpha_1} x_2^{\alpha_2} x_3^{\alpha_3} + \sum_{k=m+1}^{\infty} \sum_{|\alpha|=k} \frac{1}{\alpha_1! \alpha_2! \alpha_3!} \mathcal{D}_{x=0}^{\alpha} u(0) x_1^{\alpha_1} x_2^{\alpha_2} x_3^{\alpha_3} = 0$$

$$= u(0) + \sum_{k=1}^{m} \sum_{|\alpha|=k} \frac{1}{\alpha!} \mathcal{D}_x^{\alpha} u(0) x^{\alpha},$$

где $m = [\mu], \alpha! \triangleq \alpha_1! \alpha_2! \alpha_3!, x^{\alpha} \triangleq x_1^{\alpha_1} x_2^{\alpha_2} x_3^{\alpha_3}.$

21.3 Доказательство при $\mu < 0$

Пусть $\mu < 0$. Тогда т.к. $|u(x)| \le C(1+|x|)^{\mu}, \mu < 0$, то $|u(x)| \le C(1+|x|)^0 \equiv C_1$.

По предыдущему пункту, u(x) - полином степени 0, т.е. константа.

Ho
$$|u(x)| \le \frac{C}{(1+|x|)^{|\mu|}} \Rightarrow u(x) \xrightarrow[|x| \to \infty]{} 0 \Rightarrow u(x) \equiv 0.$$

22 Билет 22. Теорема об устранимой особой точке для гармонических функций (случай \mathbb{R}^3)

Теорема 22.1. (об устранимой особой точке). Пусть u(x) - гармоническая в $\mathring{B}_{\rho}(a) \subset \mathbb{R}^3$ u(x) = o(E(x-a)) при $x \to a$, где $E(x) = -\frac{1}{4\pi|x|}$. Тогда u(x) можно так доопределить в точке a, что она будет гармонической в $B_{\rho}(a) = \{x : |x-a| < \rho\}$.

Доказательство.

1.
$$u(x) = o\left(\frac{1}{|x|}\right) \Leftrightarrow |x| \cdot u(x) \xrightarrow[x \to 0]{} 0$$

2. Возьмём $r < \rho$.

Функция u(x) непрерывна на $\partial B_r(a)$.

Построим гармоническую функцию:

$$\hat{u}(x) = \frac{1}{4\pi r} \oint_{|y|=r} \frac{r^2 - |x|^2}{|y - x|^3} u(y) dS_y \in C(|x| \le r)$$

- .
- 3. Считаем a=0. Покажем, что $u(x)\equiv \hat{u}(x)$ при $0<|x|\leq r$. Строим $v(x)=u(x)-\hat{u}(x)$. Эта функция гармоническая в $\mathring{B}_r(a)$, непрерывная на $(0<|x|\leq r)$, а также $v(x)\equiv 0$ $\forall x:|x|=r$ и $|x|\cdot v(x) \underset{x\to 0}{\longrightarrow} 0$.
- 4. Фиксируем $\varepsilon>0$ и рассмотрим функции $W_{\varepsilon}^{\pm}=\frac{\varepsilon}{|x|}\mp v(x).$

Функции W_ε^\pm также гармонические в (0<|x|< r), непрерывны на $(0<|x|\le r)$, а $W_\varepsilon^\pm(x)|_{|x|=r}=\frac{\varepsilon}{|x|}>0$.

5. Выберем $\delta>0$ так, чтобы $~\forall~x:~~|x|\leq\delta\to|x|\cdot|v(x)|<\frac{\varepsilon}{2}.$ При $|x|\leq\delta$:

$$W_{\varepsilon}^{\pm} = \frac{\varepsilon}{|x|} \mp v(x) \ge \frac{\varepsilon}{|x|} - |v(x)| \ge \frac{\varepsilon}{|x|} \left[1 - \frac{|x| \cdot |v(x)|}{\varepsilon} \right] \ge \frac{\varepsilon}{|x|} \left[1 - \frac{1}{2} \right] = \frac{\varepsilon}{2|x|} > 0$$

6. При $\delta \leq |x| \leq r$ функции $W_{\varepsilon}^{\pm}(x)$ — гармонические в $(\delta < |x| < r)$ и непрерывны на замыкании этой ограниченной области \Rightarrow по принципу максимума максимум и минимум достигаются на границе.

Значит, $W_{\varepsilon}^{\pm}(x) > 0$ при $\delta \leq |x| \leq r$.

Итак, $W_{\varepsilon}^{\pm}(x)$ положительна в $(0<|x|\leq r)\Rightarrow |v(x)|<\frac{\varepsilon}{|x|}$ в $(0<|x|\leq r).$

Значит, $v(x)\equiv 0$ при $0<|x|\leq r\Rightarrow v(x)$ можно продолжить на $|x|\leq r$, положив v(0)=0, ч.т.д.

23 Билет 23. Преобразование Кельвина и его свойства. Регулярность поведения гармонических функций на бесконечности. Единственность решения внешних задач Неймана и Дирихле для уравнения Лапласа (случай \mathbb{R}^3).

Пусть x лежит в окрестности ∞ , т.е. |x|>R>0, а y лежит в окрестность нуля. Считаем $y\neq 0$. Тогда между этими окрестностями есть биекция - инверсия: $x^*=x\frac{R^2}{|x|^2}, x=x^*\frac{R^2}{|x^*|^2}; |x||x^*|=R^2$

Лемма 23.1. Если функция u(x) гармоническая в окрестности $\infty: |x| > R$ в \mathbb{R}^n , то функция $u^*(y) = \left(\frac{R}{|y|}\right)^{n-2} \cdot u\left(\frac{R^2}{|y|^2}y\right)$ будет гармонической в проколотой окрестности нуля. Если $u^*(y)$ гармоническая в проколотой окрестности нуля, то $u(x) = \left(\frac{R}{|x|}\right)^{n-2} \cdot u^*\left(\frac{R^2}{|x|^2}x\right)$ -гармоническая в окрестности ∞ .

Определение 23.1. Преобразование $u(x) \longmapsto u^*(y)$ и $u^*(y) \longmapsto u(x)$ называется преобразованием Кельвина.

Доказательство. Пусть $x \in U_{\varepsilon}(\infty), y \in U_{\delta}(0), |x| = \rho, |y| = r, x = y \frac{R^2}{|y|^2}$. Перейдем в сферическую систему. Лемму докажем в одну сторону. $x = (x_1, x_2, x_3)$

$$y = (y_1, y_2, y_3).$$

$$\begin{cases} x_1 = \rho \sin \theta \cos \varphi \\ x_2 = \rho \sin \theta \sin \varphi \\ x_3 = \rho \cos \theta \end{cases}, \begin{cases} y_1 = r \sin \theta \cos \varphi \\ y_2 = r \sin \theta \sin \varphi \\ y_3 = r \cos \theta \end{cases}$$

Тогда $\hat{u}^*(r,\theta,\varphi) = \frac{R}{r}\hat{u}(\frac{R^2}{r},\theta,\varphi)$:

$$\widehat{\Delta_y u^*}(r,\theta,\varphi) = \left[\frac{1}{r} \frac{\partial^2}{\partial r^2} (r \hat{u}^*(r,\theta,\varphi)) + \frac{1}{r} \underbrace{\Delta'_{\theta,\varphi}}_{\text{oii-p Лапласа}} \hat{u}^*(r,\theta,\varphi) \right] = \frac{R}{r} \frac{\partial^2}{\partial r^2} \left[\hat{u}(\underbrace{\frac{R^2}{r}}_{\rho},\theta,\varphi) \right] + \frac{R}{r^3} \Delta'_{\theta,\varphi} \hat{u}(\underbrace{\frac{R^2}{r}}_{\rho},\theta,\varphi)$$

Вспомогательная выкладка:

$$\begin{split} &\frac{\partial}{\partial r} \hat{u}(\rho,\theta,\varphi) = \frac{\partial \hat{u}}{\partial \rho} \frac{\partial \rho}{\partial r} = -\frac{\rho^2}{R^2} \frac{\partial}{\partial \rho} \hat{u}(\rho,\theta,\varphi) \\ &\frac{\partial}{\partial r} \hat{u}(\rho,\theta,\varphi) = \frac{\partial}{\partial r} \left[-\frac{\rho^2}{R^2} \frac{\partial}{\partial \rho} \hat{u}(\rho,\theta,\varphi) \right] = \frac{\rho^2}{R^4} \frac{\partial}{\partial \rho} \left[\rho^2 \frac{\partial}{\partial \rho} \hat{u}(\rho,\theta,\varphi) \right] \end{split}$$

С учетом выкладки имеем:

$$\widehat{\Delta_y u^*}(r,\theta,\varphi) = \frac{\rho^3}{R^5} \frac{\partial}{\partial \rho} \left[\rho^2 \frac{\partial}{\partial \rho} \hat{u}(\rho,\theta,\varphi) \right] + \frac{\rho^3}{R^5} \Delta_{\theta,\varphi}' \hat{u}(\rho,\theta,\varphi) = \frac{\rho^5}{R^5} \Delta_x \hat{u}(\rho,\theta,\varphi) = 0$$

Теорема 23.2. Пусть u(x) – гармоническая функция в окрестности бесконечности |x|>R $u(x)\to 0, x\to \infty$. Тогда $u(x)=O\left(\frac{1}{|x|}\right)$ u $D^{\alpha}u(x)=O\left(\frac{1}{|x|^{1+|\alpha|}}\right)$ npu $x\to \infty$

Доказательство. Применим к нашей функции прямое преобразование Кельвина: $u^*(y) = \frac{R}{|y|}u\left(\frac{R^2}{|y|^2}y\right)$. Эта функция гармоническая в проколотой окрестности нуля: 0 < |y| < R. Далее, $|y|u^*(y) = Ru\left(\frac{R^2}{|y|^2}y\right) \to 0, y \to 0$ (аргумент $\to \infty$) $\Rightarrow u^*(y) = o\left(\frac{1}{|y|}\right), y \to 0$.

- Воспользуемся теоремой об устранимой точке и доопределим $u^*(y)$ в нуле. Теперь $u^*(y)$ гармоническая в $|y| < R \Rightarrow$ в $|y| \leqslant \frac{R}{2}$ есть непрерывность вплоть до границы любых производных $\Rightarrow \forall \alpha \exists M_\alpha : |D^\alpha u^*(y)| \leqslant M_\alpha, \ \forall \ y : |y| \leqslant \frac{R}{2}$
- Пусть $|x| \geqslant 2R, y = x^* \Rightarrow |x^*| = |y| \leqslant \frac{R}{2}$. Тогда $u(x) = u\left(\frac{R^2}{|y|^2}y\right) = \frac{R}{|x||y|}u\left(\frac{R^2}{|y|^2}y\right) = \frac{R}{|x|}u^*(y)$. Можем оценить: $|u(x)| \leqslant \frac{R}{|x|}M_0 \Rightarrow u(x) = O\left(\frac{1}{|x|}\right), x \to \infty$.
- Возьмем теперь $\alpha = (1, 0, 0)$:

$$\frac{\partial u(x)}{\partial x_1} = D^{\alpha}u(x) = \frac{\partial}{\partial x_1} \left(\frac{R}{|x|} u^*(y) \right) = -\frac{R}{|x|^3} x_1 u^*(y) + \frac{R}{|x|} \sum_{k=1}^3 \frac{\partial u^*(y)}{\partial y_k} \frac{\partial y_k}{\partial x_1} =$$

$$= -\frac{R}{|x|^3} x_1 u^*(y) + \frac{R^3}{|x|^3} \sum_{k=1}^3 \frac{\partial u^*(y)}{\partial y_k} \left[\delta_k^1 - 2 \frac{x_1 x_k}{|x|^2} \right]$$

Оценка:

$$\left| \frac{\partial u(x)}{\partial x_1} \right| \leqslant R \frac{x_1}{|x|} \frac{1}{|x|^2} \underbrace{|u^*(y)|}_{\leqslant M_0} + \frac{R^3}{|x|^3} \sum_{k=1}^3 \underbrace{\left| \frac{\partial u^*(y)}{\partial y_k} \right|}_{\leqslant M_{(1,0,0)}} \left[\delta_k^1 + 2 \frac{|x_1| \cdot |x_k|}{|x|^2} \right] \leqslant \frac{C}{|x|^2}$$

Итак, $\frac{\partial u(x)}{\partial x_1} = O\left(\frac{1}{|x|^2}\right)$. Аналогично, по индукции, и для других производных.

Постановка внешних задач.

Определение 23.2. Область $\Omega \subset \mathbb{R}^3$ называется внешней, если $\mathbb{R}^3 \backslash \overline{\Omega} = \Omega_1$ – ограниченная область в \mathbb{R}^3

Определение 23.3. Внешнюю область в Ω будем называть внешней областью с гладкой (кусочно-гладкой) границей, если $\Omega_1 = \mathbb{R}^3 \backslash \overline{\Omega}$ – область с (кусочно-гладкой) границей.

86

Внешняя задача Дирихле Найти $u(x) \in C^2(\Omega) \cap C(\Omega \cup \Gamma)$, удовлетворяющую условиям:

$$\begin{cases} \Delta u(x) = 0, \ \forall \ x \in \Omega \\ u|_{\Gamma} = u_0(x), \ x \in \Gamma \\ u(x) \to_{|x| \to \infty} 0 \end{cases}$$

Такое решение называется **класси- ческим**

Внешнаяя задача Неймана

Найти $u(x) \in C^2(\Omega) \cap C(\Omega \cup \Gamma)$, удовлетворяющую условиям:

$$\begin{cases} \Delta u(x) = 0, \ \forall \ x \in \Omega \\ \frac{\partial v}{\partial \bar{n}}|_{\Gamma} = u_1(x), \ x \in \Gamma \\ u(x) \to_{|x| \to \infty} 0 \end{cases}$$

Такое решение называется **класси- ческим**

Отличие постановок внешних и внутренних задач - $u(x) \to 0$ во внешних задачах. Для внутренней задачи Неймана - даже при выполнении условий разрешимости $\oint u_1(x) dS_x = 0$ решение не единственно

Теорема 23.3. Не может существовать более 1 классического решения внешней задачи Дирихле

Доказательство. Если $u_1,\ u_2$ - классические решения, то $v(x)=u_1-u_2$ -удовлетворяет полностью однородной задаче

$$\begin{cases} v(x)|_{\Gamma} = 0 \\ v(x) \to_{|x| \to \infty} 0 \ (\ \forall \ \varepsilon > 0 \ \exists \ \widetilde{R}(\varepsilon) : \ \forall \ x : |x| > \widetilde{R}(\varepsilon) \to |v(x)| < \varepsilon) \end{cases}$$

Строим сферу радиуса $R\geqslant \widetilde{R}(\varepsilon),\Omega_1\subset B_R(o)$. По следствию из принципа максимума $|v(x)|\leqslant \max_{\partial\Omega_1\cup\partial B_R(0)}|v(y)|\leqslant \varepsilon$

Т.к. $\varepsilon > 0$ было выбрано произвольно, имеем $v(x) \equiv 0$ в $\Omega \cup \Gamma$

Теорема 23.4. Не может существовать более 1 классического решения внешней задачи Неймана

Доказательство. Если $u_1,\ u_2$ - классические решения, то $\underbrace{v(x)=u_1-u_2}_{\text{гармоническая в }\Omega\ \text{и }C^2(\Omega)\cap C^2(\Omega\cup\Gamma)}$

удовлетворяет полностью однородной задаче

$$\begin{cases} \frac{\partial v}{\partial \bar{n}}|_{\Gamma} = 0\\ v(x) \to_{|x| \to \infty} 0 \ (\ \forall \, \varepsilon > 0 \ \exists \ \widetilde{R}(\varepsilon) : \ \forall \, x : |x| > \widetilde{R}(\varepsilon) \to |v(x)| < \varepsilon) \end{cases}$$

Возьмем $R:\ \Omega_1\subset B_R(0),\ \rho>R.$ По І-ф-лу Грина для v

Получили
$$\int\limits_{B_R(0)\backslash\Omega_1}|\nabla v(x)|^2dx=\int\limits_{\partial B_R(0)}\frac{\partial v}{\partial \bar{\boldsymbol{n}}}v(x)dS_x.$$
 Далее $\int\limits_{B_R(0)\backslash\Omega_1}|\nabla v(x)|^2dx$ \leqslant

$$\int\limits_{B_{\rho}(0)\backslash\Omega_{1}}|\nabla v(x)|^{2}dx=\int\limits_{\partial B_{\rho}(0)}\left|\frac{\partial v}{\partial \bar{\boldsymbol{n}}}\right||v(x)|dS_{x}\leqslant (\text{ теорема об асимптотике гармонических функций })\leqslant \frac{C_{1}}{\rho^{2}}\cdot\frac{C_{2}}{\rho}\cdot 4\pi\rho^{2}\to 0$$
 при $\rho\to\infty$.

Итак,
$$\nabla v(x) \equiv 0 \Rightarrow v(x) \equiv const = 0$$
, ч.т.д.

24 Билет 24. Интегральные операторы с непрерывными и полярными ядрами в ограниченной области, их непрерывность в пространстве $C(\bar{G})$. Приближение операторов с полярными ядрами операторами с непрерывными ядрами.

Определение 24.1 (Интегральное уравнение Фредгольма второго рода). Уравнение вида

$$u(x) = \lambda \int_{G} K(x, y)u(y)dy + f(x)$$

называется интегральным уравнением Фредгольма 2-го рода. Здесь:

- $x \in \bar{G}$, G ограниченная область в \mathbb{R}^3 ;
- $f(x) \in C(\bar{G})$ задана;
- $K(x,y): (\bar{G} \times \bar{G}) \to \mathbb{R}$.
- λ числовой параметр;
- $u(x) \in C(\bar{G})$ искомая функция.

Определение 24.2 (Интегральный оператор). Оператор K такой, что

$$(Ku)(x) = \int_G K(x, y)u(y)dy,$$

называется интегральным оператором с ядром K(x, y).

Теорема 24.1. Если ядро $K(x,y) \in C(\bar{G} \times \bar{G})$, то оператор K ограничен в $C(\bar{G})$ и имеет место оценка

$$||K|| \le \max_{x \in G} \int_{G} |K(x,y)| dy \le \max_{x,y \in \bar{G}} |K(x,y)| mesG$$

Доказательство. Если $K(x,y) \in C(\bar{G} \times \bar{G})$, то $K: C(G) \to C(G)$.

$$\begin{split} \|Ku\|_{C(\bar{G})} &= \max_{\bar{G}} |(Ku)(x)| &= \max_{\bar{G}} |\int_{G} K(x,y)u(y)dy| \leq \max_{\bar{G}} \int_{G} |K(x,y)||u(y)|dy \leq \\ \max_{x \in \bar{G}} \max_{y \in \bar{G}} |u(y)| \int_{G} |K(x,y)|dy &= \|u\|_{C(\bar{G})} \max_{x \in \bar{G}} \int_{G} |K(x,y)|dy \Rightarrow \|K\| &= \sup_{\|u\|_{C(\bar{G})} = 1} \frac{\|Ku\|_{C(\bar{G})}}{\|u\|_{C(\bar{G})}} \leq \\ \max_{x \in \bar{G}} \int_{G} |K(x,y)|dy &= \|u\|_{C(\bar{G})} \|u(y)| dy &= \|u\|_{C(\bar$$

Определение 24.3 (Полярное ядро). Ядро K(x,y) называется полярным, если его можно представить в виде $K(x,y) = \frac{\kappa(x,y)}{|x-y|^{\alpha}} \ \forall \ x,y \in \bar{G}, x \neq y,$ где $\kappa \in C(\bar{G} \times \bar{G}), \ \alpha < n$ — размерность пространства.

Лемма 24.2 (Признак полярного ядра). Ядро K является полярным $\Leftrightarrow K(x,y) \in C((\bar{G} \times \bar{G}) \setminus \{x=y\})$ и $|K(x,y)| \leq \frac{B}{|x-y|^{\beta}} \ \forall \, x,y \in \bar{G}, x \neq y, B > 0, \beta < n.$

 \mathcal{A} оказательство. (\Rightarrow): Пусть ядро полярное. Тогда $\exists B: |\kappa| \leq B$ на $\bar{G} \times \bar{G}$ и $|K| \leq \frac{B}{|x-y|^{\alpha}}$. (\Leftarrow): Пусть $\beta < n \Rightarrow \exists \, \varepsilon > 0: \beta + \varepsilon < n$. Рассмотрим $\kappa = \begin{cases} K(x,y)|x-y|^{\beta+\varepsilon}, & x,y \in G, x \neq y; \\ 0, & x=y \in G. \end{cases}$

Построенная κ непрерывна в $(\bar{G} \times \bar{G}) \setminus \{x = y\}$.

Возьмем $x^0, y^0 \in G, x^0 \neq y^0 : |\kappa(x,y) - \kappa(x^0,x^0)| = |\kappa(x,y)| \le |K||x-y|^{\beta+\varepsilon} \le \frac{B}{|x-y|^\beta}|x-y|^{\beta+\varepsilon} \le B|x-y|^\varepsilon = B|(x-x^0) - (y-y^0)|^\varepsilon \le B(|x-x^0| + |y-y^0|)^\varepsilon \Rightarrow \kappa$ непрерывна всюду в $\bar{G} \times \bar{G}$.

Очевидно из определения κ , что можем записать $K(x,y) = \frac{\kappa(x,y)}{|x-y|^{\beta+\varepsilon}}$, т.е. это ядро – полярное по определению.

Определение 24.4 (Транспонированное ядро). Ядром, транспонированным к ядру K(x,y), называется ядро K'(x,y) = K(y,x). Соответствующий оператор K' так же называют транспонированным.

Теорема 24.3. Интегральный оператор K с полярным ядром является ограниченным оператором в $C(\bar{G})$. Справедлива оценка: $\|K\| \leq \sup_{x \in G} \int_{G} |K(x,y)| dy; \ \forall \ \varepsilon > 0$ оператор K можно представить в виде суммы $K = K_{\varepsilon}^{cont} + K_{\varepsilon}^{pol}, \ \epsilon \partial e \ \|K_{\varepsilon}^{pol}\| \leq \varepsilon, \ \|(K_{\varepsilon}^{pol})'\| \leq \varepsilon, \ K_{\varepsilon}^{cont} - u.o. \ c$ непрерывным ядром, $K_{\varepsilon}^{pol} - u.o. \ c$ полярным ядром.

Доказательство.

- 1. Пусть $\psi(y) = K(x,y)u(y)$. Функция ψ непрерывна при $y \neq x$. В особенности: $|\psi(y)| = |K(x,y)||u(y)| \leq \frac{B}{|x-y|^{\alpha}} \|u\|_{C(\bar{G})}$ интегрируема, т.к. $\alpha < n$. Значит, порождается функция $\varphi(x) = \int_G \psi(y) dy = \int_G K(x,y)u(y) dy$ этот интеграл существует $\forall \, x \in \bar{G}$.
- 2. Определим $\delta-$ срезку функции $\frac{1}{|x-y|^{\alpha}}$:

$$\left(\frac{1}{|x-y|^{\alpha}}\right)_{\delta} = \begin{cases} \frac{1}{|x-y|^{\alpha}}, & |x-y| \ge \delta; \\ \frac{1}{\delta^{\alpha}}, & |x-y| < \delta. \end{cases} \in C(\mathbb{R}^{n} \times \mathbb{R}^{n})$$

3. Представим $K(x,y) = K_{\delta}^1(x,y) + K_{\delta}^2(x,y)$, где $K_{\delta}^1(x,y) = \kappa(x,y)(\frac{1}{|x-y|^{\alpha}})_{\delta}$,

$$K_{\delta}^{2}(x,y) = \begin{cases} 0, & |x-y| \ge \delta; \\ \kappa(x,y)(\frac{1}{|x-y|^{\alpha}} - \frac{1}{\delta^{\alpha}}), & |x-y| < \delta. \end{cases}$$

4. Выберем произвольно $u(x) \in C(\bar{G})$ и рассмотрим $\|K_{\bar{\delta}}^2 u\|_{C(\bar{G})}$:

$$\begin{split} \|K_{\delta}^2 u\| &= \max_{x \in G} |\int_{|y-x| < \delta} \kappa(x,y) (\tfrac{1}{|x-y|^{\alpha}} - \tfrac{1}{\delta^{\alpha}}) u(y) dy | & \leq B \|u\|_{C(\bar{G})} \int_{|y-x| < \delta} \tfrac{dy}{|x-y|^{\alpha}} &= B \|u\|_{C(\bar{G})} \int_{|z| < \delta} \tfrac{dz}{|z|^{\alpha}}. \end{split}$$

Замена
$$\begin{cases} x_k = r \sin \varphi_1 ... \sin \varphi_{k-1} \cos \varphi_k, & k = 1, ..., n-1; \\ x_n = r \sin \varphi_1 ... \sin \varphi_{n-1}, \end{cases}$$
 где $\varphi_k \in [0, \Pi], \varphi_n \in [0, 2\Pi]$

Якобиан $J = \frac{D(x_1,\dots,x_n)}{D(r,\varphi_1,\dots,\varphi_{n-1})} = r^{n-1}\sin^{n-2}\varphi_1\sin^{n-3}\varphi_2\dots\sin\varphi_{n-1}$. Получили:

$$\|K_{\delta}^2 a\| \leq C_1 \|u\|_{C(G)} \int_0^{\delta} \frac{r^{n-1}}{r^{\alpha}} dr = C \|u\|_{C(G)} \delta^{n-\alpha} \to 0$$
 при $\delta \to 0$.

Получили $K^2_\delta u \to K u$ по норме $\Rightarrow K u \in C(\bar{G}).$

5. $||K|| \le ||K_{\delta}^1|| + ||K_{\delta}^2|| \le C\delta^{n-\alpha} + ||K_{\delta}^1|| < \infty \Rightarrow K$ — ограничен.

Для транспонированного ядра все рассуждения аналогичны, т.к. полярное ядро $K=\frac{\kappa(x,y)}{|x-y|^{\alpha}}$ при замене x на y изменяет только непрерывный числитель κ .

25 Билет 25. Интегральное уравнение Фредгольма второго рода с малым по норме интегральным оператором K. Представление решения рядом Неймана. Ограниченность оператора $(I - \lambda K)^{-1}$.

Рассмотрим уравнение

$$u(x) = \lambda \int_{G} K(x, y)u(y)dy + f(x), \ x \in \overline{G}$$
 (1)

Теорема 25.1. Пусть в интегральном уравнении (1) ядро K полярное и выполнено $|\lambda| \cdot ||K|| < 1$, тогда:

• $\forall f \in C(G)$ (1) имеет единственное решение $u(x) \in C(\overline{G})$. Это решение при фиксированном λ_{fix} представимо абсолютно сходящимся в $C(\overline{G})$ рядом Неймана:

$$u(x) = f(x) + \sum_{i=1}^{\infty} \lambda^i K^i f(x), \ x \in G$$

• Оператор $I - \lambda K$ отображает всё $C(\overline{G})$ на всё $C(\overline{G})$ и имеет на $C(\overline{G})$ непрерывный обратный оператор $(I - \lambda K)^{-1}$, причём $\|(I - \lambda K)^{-1}\| \leqslant (1 - |\lambda| \cdot \|K\|)^{-1}$

Доказательство. 1. Отметим, что оператор λK сжимающий: $\|\lambda K\| = |\lambda| \cdot \|K\| < 1$. Построим итерационный процесс:

$$u_0 = f(x)$$

$$u_1 = f(x) + \lambda K u_0(x) = f(x) + \lambda K f(x)$$

$$\dots$$

$$u_n = f(x) + \sum_{i=1}^n \lambda^i K^i f(x)$$

Все $u_k(x) \in C(\overline{G})$, причем $u_k = S_k$ – k-я частичная сумма ряда Неймана. Далее,

$$\left\|\lambda^i K^i f(x)\right\|_{C(\overline{G})} \leqslant \left|\lambda^i\right| \cdot \|K\|^i \cdot \|f\|_{C(\overline{G})} = (|\lambda| \cdot \|K\|)^i \|f\|_{C(\overline{G})} \Longrightarrow$$

$$\Longrightarrow \sum_{i=0}^{\infty} \left\| \lambda^i K^i f(x) \right\|_{C(\overline{G})} \leqslant \sum_{i=0}^{\infty} (|\lambda| \cdot \|K\|)^i \|f\| = \frac{\|f\|}{1 - |\lambda| \cdot \|K\|}.$$

Указанный в условии ряд сходится абсолютно в банаховом пространстве $C(\overline{G}) \Longrightarrow$ он сходится \Longrightarrow

$$\implies \exists u(x) \in C(\overline{G}) : ||U - U_n||_{C(\overline{G})} \xrightarrow[n \to \infty]{} 0 \Longrightarrow U_n \xrightarrow{||\cdot||_{C(\overline{G})}} U$$

• Покажем что U – решение: $U_n = f + \lambda K U_{n-1}$, при этом $U_n \longrightarrow U$ а $\lambda K U_{n-1} \longrightarrow \lambda K U$ в силу непрерывности оператора K.

• Единственность: пусть $U_I,\,U_{II}$ – решения, обозначим $V=U_I-U_{II}\in\overline{G}$. При этом V удовлетворяет однородному уравнению $V=\lambda KV,\,x\in C(\overline{G})$. Тогда

$$\|V\| \leqslant |\lambda| \cdot \|K\| \cdot \|V\| \longrightarrow (1 - |\lambda| \cdot \|K\|) \cdot \|V\| \leqslant 0 \longrightarrow \|V\| = 0 \longrightarrow V \equiv 0$$

2. $u = \lambda K u + f \longleftrightarrow (I - \lambda K) u = f$. То, что $I - \lambda K$ отображает всё $C(\overline{G})$, – ясно. Согласно пункту $1 \ \forall \ f \in C(\overline{G}) \ \exists \ ! u(x)$ – решение, значит оператор отображает всё $C(\overline{G})$ на всё $C(\overline{G})$. Значит, существует обратный оператор $(I - \lambda K)^{-1}$. Он ограничен т.к.

$$\left\| (I - \lambda K)^{-1} f \right\|_{C(\overline{G})} = \|U\|_{C(\overline{G})} \leqslant \sum_{i=0}^{\infty} \left\| \lambda^{i} K^{i} f \right\|_{C(\overline{G})} \leqslant \frac{\|f\|_{C(\overline{G})}}{1 - |\lambda| \cdot \|K\|} < \infty$$

26 Билет 26. Интегральное уравнение Фредгольма второго рода с вырожденными ядрами. Сведение к системе линейных алгебраических уравнений. Теоремы Фредгольма в этом случае.

Рассмотрим уравнение

$$u(x) = \lambda \int_{G} K(x, y)u(y)dy + f(x), \ x \in \overline{G}$$
 (1)

Определение 26.1. Интегральное уравнение вида

$$v(x) = \lambda \int_{G} K'(x, y)v(y)dy + g(x), \ x \in \overline{G}, K'(x, y) = K(y, x)$$

называется союзным уравнению (1).

Определение 26.2. Ядро $K(x,y) \in \left(C(\overline{G}) \times C(\overline{G})\right)$ называется вырожденным, если оно представимо в виде

$$K(x,y) = \sum_{i=1}^{N} a_i(x)b_i(y), \ a_i, b_i \in C(\overline{G})$$

Будем считать что $\{a_1...a_n\}$ и $\{b_1...b_n\}$ – линейно независимые наборы (если это не так, то уменьшим N). Будем теперь рассматривать уравнение

$$u(x) = \lambda \int_{G} \left[\sum_{i=1}^{N} a_{i}(x)b_{i}(y) \right] u(y)dy + f(x), \ x \in \overline{G}$$
 (2)

- Введем в $C(\overline{G})$ билинейную форму $\langle u;v\rangle = \int_G u(x)v(x)dx \ \forall u.v \in C(\overline{G})$
- Введем также следующие обозначения:

$$-\mu_{ij} = \langle b_i; a_j \rangle; A = \|\mu_{ij}\|_{i,j}^N$$
$$-\varphi_i = \langle b_i; f \rangle; \varphi = \|\varphi_1 ... \varphi_N\|^T$$
$$-c_i = \langle b_i; u \rangle; \mathbf{c} = \|c_1 ... c_N\|^T$$
(3)

Лемма 26.1 (об эквивалентности). Пусть $u(x) \in C(\overline{G})$ – решение уравнения (2). Тогда $u(x) = \lambda \sum_{i=1}^{N} c_i a_i(x) + f(x), \ x \in \overline{G}, \ \text{где (c)}$ определяется (3) и удовлетворяет системе $(E - \lambda A)\mathbf{c} = \boldsymbol{\varphi}$. Обратно, если (c) – некоторое решение системы $(E - \lambda A)\mathbf{c} = \boldsymbol{\varphi}$ то $u(x) = \lambda \sum_{i=1}^{N} c_i a_i(x) + f(x), \ x \in \overline{G}$ является решением интегрального уравнения.

Доказательство. 1. Пусть u(x) решение интегрального уравнения. Тогда

$$u(x) = \lambda \int_{G} \left[\sum_{i=1}^{N} a_i(x)b_i(y) \right] u(y)dy + f(x) = \lambda \sum_{i=1}^{N} a_i(x)c_i + f(x)$$

Домножим на b_i и проинтегрируем по G:

$$c_i = \lambda \sum_{j=1}^{N} \mu_{ij} c_j + \varphi_i \iff \mathbf{c} = \lambda A \mathbf{c} + \boldsymbol{\varphi}$$

2. Обратно, если $c_i = \lambda \sum_{j=1}^{N} \mu_{ij} c_j + \varphi_i$, $i = \overline{1, N}$ то рассмотрим $u_*(x) = \lambda \sum_{i=1}^{N} a_i(x) c_i + f(x)$. Подставим в уравнение:

$$\begin{aligned} u_* - \lambda \int_G K(x,y) u_*(y) dy - f(x) &= \\ &= u_* - \lambda \int_G \left[\sum_{i=1}^N a_i(x) b_i(y) \right] u_*(y) dy - f(x) = \\ &= \lambda \sum_{j=1}^N a_j(x) \left[c_j - \int_G b_j(y) u_*(y) dy \right] = \\ &= \lambda \sum_{j=1}^N a_j(x) \left[c_j - \lambda \sum_{i=1}^N c_i \underbrace{\int_G b_j(y) a_i(y) dy}_{\mu_{ji}} - \underbrace{\int_G b_j(y) f(y) dy}_{\varphi_i} \right] = \\ &= \lambda \sum_{j=1}^N a_j(x) \underbrace{\left[c_j - \lambda \sum_{i=1}^N \mu_{ji} c_i - \varphi_j \right]}_{0} \end{aligned}$$

Таким образом, исследование интегральных уравнений с вырожденным ядром эквивалентно иссследованию системы $(E - \lambda A)\mathbf{c} = \boldsymbol{\varphi}$.

Offtop 26.1. Отметим что для союзного уравнения $v(x) = \lambda \sum_{j=1}^N b_j(x) \underbrace{\int_G a_j(y)v(y)dy}_{d_j} + g(y)$ соответствующей системой является $(E - \lambda A^T)\mathbf{d} = \boldsymbol{\varphi}$, где $\boldsymbol{\varphi} = \int_G \mathbf{a}(y)g(y)dy$.

26.1 Разрешимость интегрального уравнения с вырожденным ядром

Пусть $D(\lambda)=det(E-\lambda A)=det(E-\lambda A^T)$. Ясно что $D(\lambda)\not\equiv 0$ т.к. D(0)=1. $D(\lambda)$ есть многочлен $P(\lambda),\ deg P\leqslant N\longrightarrow$ он имеет p действительных корней $\lambda_1..\lambda_p,\ 0\leqslant p\leqslant N$.

- Если $D(\lambda) \neq 0$ то $\forall k : \lambda_k \neq \lambda \longrightarrow$ у уравнения $(E \lambda A) c = \varphi$ решение существует и оно единственно. Аналогичное утверждение верно и для союзного уравнения.
- ullet Если $\exists \, k : \lambda_k = \lambda o Rg(E \lambda A) = Rg(E \lambda A^T) = r < N$

Пусть m = N - r > 0. Тогда базис в пространстве решений $(E - \lambda A)c$ обозначим как $c_1...c_n$ а базис в пространстве решений $(E - \lambda A^t)d = 0$ обозначим как $d_1..d_n$. Соответствующие им решения обозначим $u_1..u_m$ и $v_1..v_m$ соответственно $(u_k(x) = \lambda \sum_{j=1}^N a_j(x)c_{j,k}, \ v_k(x) = \lambda \sum_{j=1}^N b_j(x)d_{j,k})$.

Покажем что $u_1..u_n$ базис решения однородного уравнения. Пусть

$$\sum_{i=1}^{m} \alpha_i u_i = 0 \iff \sum_{i=1}^{m} \alpha_i \left[\lambda \sum_{j=1}^{n} a_j(x) c_{j,i} \right] = 0 \iff \sum_{i=0}^{m} \alpha_i c_{i,j} = 0 \iff \sum_{i=0}^{m} \alpha_i c_i = 0$$

Значит система $u_1..u_m$ – линейно независима.

Определение 26.3 (Собственные функции и собственные числа оператора K). Функция $u(x) \in C(\overline{G}), \ u \not\equiv 0$ удовлетворяющая уравнению

$$u(x) = \lambda \int_{G} K(x, y)u(y)dy, \ x \in C(\overline{G})$$

называется собственной функцией ядра K или собственной функцией оператора K. Соответствующие собственным функциям λ называются характеристическими числами ядра/оператора K.

Свойства характеристических чисел:

- $\lambda \neq 0$ (иначе $u \equiv 0$).
- λ не собственное значение оператора: $u=\lambda Ku \Leftrightarrow Ku=\frac{1}{\lambda}u=>\Rightarrow \mu=\frac{1}{\lambda}$ собственное значение.
- Собственные значения K и K' совпадают.

Рассмотрим систему $(E - \lambda A)\mathbf{c} = \boldsymbol{\varphi}$. По теореме Фредгольма эта система совместна тогда и только тогда, когда каждое решение сопряженной однородной системы $(E - \lambda A^T)\mathbf{d} = \mathbf{0}$ ортогонально $\boldsymbol{\varphi}$:

$$\langle \boldsymbol{\varphi}; \boldsymbol{d} \rangle = 0 \Longleftrightarrow \sum_{j=1}^{N} \varphi_j d_j = 0 \Longleftrightarrow \int_G f(y) \left[\sum_{j=1}^{N} b_j(y) d_j \right] dy = 0 \Longleftrightarrow \int_G f(y) v(y) dy = 0$$

Получили что интегральное уравнение с вырожденным ядром совместно тогда и только тогда, когда f ортогонально каждому решению однородного союзного уравнения.

Сформулируем все полученные и доказанные выше результаты в виде теорем Фредгольма:

Теорема 26.2 (Первая теорема Фредгольма). Если $D(\lambda) \neq 0$, то интегральное уравнение с вырожденным ядром и союзное к нему однозначно разрешимы при любых правых частях из $C(\overline{G})$.

Теорема 26.3 (Вторая теорема Фредгольма). Если $D(\lambda) = 0$, то интегральное уравнение с вырожденным ядром и союзное к нему имеют одинаковое число линейно независимых решений $m = N - Rg(E - \lambda A)$

Теорема 26.4 (Третья теорема Фредгольма). Если $D(\lambda) = 0$, то для разрешения интегрального уравнения с вырожденным ядром необходимо и достаточно, чтобы свободный член $f(x) \in C(\overline{G})$ был ортогонален всем решениям союзного уравнения.

27 Билет 27. Интегральное уравнение Фредгольма второго рода с непрерывными и полярными ядрами. Теоремы Фредгольма. Дискретность множества характеристических чисел.

Рассмотрим уравнение

$$u(x) = \lambda \int_{G} K(x, y)u(y)dy + f(x), \ x \in \overline{G}$$
(1)

и ему союзное

$$v(x) = \lambda \int_{G} K'(x, y)v(y)dy + g(x), \ x \in \overline{G}, K'(x, y) = K(y, x)$$
(2)

Теорема 27.1 (Первая теорема Фредгольма (Теорема Фредгольма об альтернативах)). Либо интегральное уравнение (1) однозначно разрешимо в $C(\overline{G})$ для каждой функции f(x) из $C(\overline{G})$ либо соответствующее однородное уравнение имеет по крайней мере одно нетривиальное решение.

Теорема 27.2 (Вторая теорема Фредгольма). Если для уравнения (1) имеет место первый случай альтернативы, то он же имеет место и для уравнения (2). Как однородное уравнение соответствующее (1) так и однородное уравнение соответствующее (2) имеют конечные числа линейно независимых собственных функций, причем эти числа совпадают.

Теорема 27.3 (Третья теорема Фредгольма). Если для уравнения (1) имеет место второй случай альтернативы, то неоднородное уравнение (1) разрешимо в $C(\overline{G})$ тогда и только тогда, когда выполнено условие "ортогональности":

$$\int_{G} f(y)v(y)dy = 0$$

Теорема 27.4. В любом круге $|\lambda| < R$ на \mathbb{C} у ядра уравнения (1) имеется не более чем конечное количество характеристических чисел. Единственная возможная точка накопления характеристических чисел – бесконечно удаленная точка.

Билет посвящен доказательству этих теорем.

Теорема 27.5 (Апроксимационная теорема Вейерштрасса). Пусть Ω – ограниченная область в \mathbb{R}^n , а $W(x) \in C(\overline{G})$. Тогда $\forall \varepsilon > 0 \exists P_{\varepsilon}(x)$ – многочлен от $x_1...x_n$ такой, что $\|h(x) - P_{\varepsilon}(x)\|_{C(\overline{G})} < \varepsilon$.

Будем использовать данный факт из анализа.

Лемма 27.6. Пусть K – интегральный оператор c непрерывным ядром K(x,y) $K(x,y) \in \langle C(\overline{G}); C(\overline{G}) \rangle$. Тогда $\forall \varepsilon > 0$ этот оператор можно представить ε виде $K = \Phi_{\varepsilon}^{B} + K_{\varepsilon}$, $\|K_{\varepsilon}\| < 0$

$$\varepsilon, \ \left\| \stackrel{H}{K_{\varepsilon}'} \right\| < \varepsilon$$

Доказательство. По $\varepsilon > 0$ найдем $P_{\varepsilon}(x,y)$ от $x_1...x_n, y_1...y_n : \|K(x,y) - P_{\varepsilon}(x,y)\|_{C(\overline{G})} < \varepsilon$. Тогда $\|K_{\varepsilon}\| \le \|K(x,y) - P_{\varepsilon}(x,y)\|_{C(\overline{G})} \cdot mesG = \varepsilon \cdot mesG$. При этом оператор Φ_{ε} имеет вырожденное ядро P_{ε} .

Лемма 27.7. Пусть K – интегральный оператор c полярным ядром K(x,y) $K(x,y) \in \langle C(\overline{G}); C(\overline{G}) \rangle$. Тогда $\forall \varepsilon > 0$ этот оператор можно представить e виде $K = \Phi_{\varepsilon} + Q_{\varepsilon}$, $\|Q_{\varepsilon}\| < \varepsilon$, $\|Q_{\varepsilon}\| < \varepsilon$

 \mathcal{A} оказательство. Представим K в виде суммы $K_{\varepsilon} + K_{\frac{\varepsilon}{2}}^{\Pi}$. По предыдущей лемме $K_{\varepsilon} + K_{\frac{\varepsilon}{2}}^{H}$. Значит, $K = \Phi + K_{\frac{\varepsilon}{2}}^{H} + K_{\frac{\varepsilon}{2}}^{\Pi} = \Phi + Q_{\varepsilon}^{\Pi}$, $\|Q_{\varepsilon}\| \leqslant \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$

Перейдем к теоремам Фредгольма.

Пусть R > 0, $\overline{D_R} = \{\lambda \in \mathbb{C} : |\lambda| < R\}$.

уравнения:

- Возьмем $\varepsilon = \frac{1}{2R}, \ K = \Phi + Q, \ P = P(x,y) = \sum_{j=1}^{N} a_j(x) b_j(y), \ \|Q\|, \|Q'\| < \varepsilon$
- Представим уравнение $u = \lambda K u + f$ в виде $(I \lambda K)u = \lambda \Phi u + f$, аналогично, его союзное уравнение $v = \lambda K'v + g$ представим в виде $(I \lambda K')v = \lambda \Phi'v + g$. Далее представим эти уравнения в следующей форме:

$$(I - \lambda Q)u = \lambda \sum_{j=1}^{N} a_j(x) \int_G b_j(y)u(y)dy + f(x)$$
$$(I - \lambda Q')v = \lambda \sum_{j=1}^{N} b_j(x) \int_G a_j(y)v(y)dy + g(x)$$

• Q — оператор с малой нормой: $|\lambda|\cdot \|Q\| \leqslant \frac{|\lambda|}{2R} < 1$. Аналогичные рассуждения верны и для оператора Q', а значит операторы $(I-\lambda Q), (I-\lambda Q')$ непрерывно обратимы. Перепишем

$$u(x) = \lambda \sum_{j=1}^{N} \underbrace{(I - \lambda Q)^{-1} a(x)}_{\hat{a}_{j}(x,\lambda)} \int_{G} b_{j}(y) u(y) dy + \underbrace{(I - \lambda Q)^{-1} f(x)}_{\hat{f}(x)} = \lambda \sum_{j=1}^{N} \hat{a}_{j}(x,\lambda) \int_{G} b_{j}(y) u(y) dy + \hat{f}(x,\lambda)$$

$$v(x) = \dots = \lambda \sum_{j=1}^{N} \hat{b}_j(x, \lambda) \int_G a_j(y) u(y) dy + \hat{g}(x, \lambda)$$

Это уравнения с вырожденными ядрами, их решение эквивалентно решению систем:

$$(E - \lambda \hat{A})\mathbf{c} = \boldsymbol{\varphi}; \ \hat{A}(\lambda) = \|\mu_{ij}\|_{i,j=1}^{N}; \ \mu_{i,j} = \langle b_i; \hat{a}_j \rangle; \ \varphi_i = \langle b_i; \hat{f} \rangle$$

$$(E - \lambda \hat{A}')\boldsymbol{d} = \boldsymbol{\varphi}; \ \hat{A}'(\lambda) = \left\| \mu'_{ij} \right\|_{i,j=1}^{N}; \ \mu'_{i,j} = \left\langle a_{i}; \hat{b}_{j} \right\rangle; \ \varphi_{i} = \left\langle a_{i}; \hat{g} \right\rangle$$

Лемма 27.8. Пусть K – полярное ядро такое, что $\|\lambda K\| < 1$. Тогда $\forall a,b \in C(\overline{G}) \longrightarrow \langle (I-\lambda K)^{-1}a;b \rangle = \int_G (I-\lambda K)^{-1}a(x)b(x)dx$ – регулярная функция при $|\lambda| < \|K\|^{-1}$. Если дополнительно выполнено $|\lambda| \cdot \|K'\| < 1$, то $[(I-\lambda K)^{-1}a;b] = [a;(I-\lambda K')^{-1}b]$.

Доказательство.

$$(I-\lambda K)^{-1}a(x) = \sum_{j=0}^{\infty} \lambda^j K^j a(x) \Longrightarrow \int_G (I-\lambda K)^{-1} a(x)b(x) dx = \int_G \underbrace{\sum_{j=0}^{\infty} \lambda^j K^j (a(x))b(x)}_{\text{сход. равномерно}} dx = \sum_{j=0}^{\infty} \lambda^j \left[\int_G K(x) dx - \int_G \sum_{j=0}^{\infty} \lambda^j K^j (a(x))b(x) dx \right] = \int_G \underbrace{\sum_{j=0}^{\infty} \lambda^j K^j (a(x))b(x)}_{\text{сход. равномерно}} dx = \underbrace{\sum_{j=0}^{\infty} \lambda^j K^j (a(x))b(x)}_{\text{сход. равномерно}} dx$$

Полученный ряд сходится абсолютно т.к. справедлива оценка

$$\left| \lambda^{j} \int_{G} K^{j}(a(x))b(x)dx \right| \leq \|a\| \cdot \|b\| \cdot mesG \cdot \underbrace{\left| \lambda^{j} \cdot \|K\|^{j} \right|}_{q_{i}; \ q < 1}$$

Докажем теперь вторую часть:

$$\left\|\lambda K'\right\| < 1 \Longrightarrow \exists (I - \lambda K')^{-1} \in \mathcal{L}(C(\overline{G})) \Longrightarrow (I - \lambda K')^{-1}b = \sum_{j=0}^{\inf} \lambda^{j} (K')^{j} b(x)$$

Тогда:

$$\left\langle (I - \lambda K)^{-1} a; b \right\rangle \stackrel{*}{=} \sum_{j=0}^{\infty} \lambda^{j} \left\langle K^{j} a; b \right\rangle = \sum_{j=0}^{\infty} \lambda^{j} \left\langle a; (K')^{j} b \right\rangle = \left\langle a; \sum_{j=0}^{\infty} \lambda^{j} (K')^{j} b \right\rangle = \left\langle a; (I - \lambda K')^{-1} b \right\rangle$$

Докажем (*):

$$\langle Ku; v \rangle = \int_{G} \int GK(x, y)u(y)dyv(x)dx =$$

$$= \int_{G} u(y) \left[\int GK(x, y)v(x)d(x) \right] dy = [x \to y; y \to x; (**)] =$$

$$= \int_{G} u(x) \left[\int G\underbrace{K(y, x)}_{K'(x, y)}v(y)dy \right] dx = \left\langle u; K'v \right\rangle$$

Где переход (**) верен по т. Фубини-Тонелли.

Лемма 27.9. Матрица $\hat{A}'(\lambda)$ является транспонированной к матрице $\hat{A}(\lambda)$. Элементы $\hat{m}u_{ij}$ матрицы \hat{A} – регулярные в круге $|\lambda| < 2R$ функции λ .

Доказательство.

$$|\lambda| < 2R \Longrightarrow |\lambda| \cdot ||Q|| < 1, \ |\lambda| \cdot ||Q'|| < 1$$
$$\hat{\mu}'_{ij} = \left\langle a_i; (I - \lambda Q')^{-1} b_j \right\rangle = \left\langle (I - \lambda Q)^{-1} a_i; b_j \right\rangle = \hat{\mu}_{ji}$$

Регулярность следует из предыдущей леммы.

• Рассмотрим $D(\lambda) = det(E - \lambda \hat{A}(\lambda)) = det(E - \lambda \hat{A}'(\lambda))$. Это регулярная в круге $|\lambda| < 2R$ функция, $D(0) = 1 \Longrightarrow D(\lambda) \not\equiv 0$.

В круге $|\lambda| < R$ может быть только конечное число нулей λ_k иначе по теореме о единственности имели бы $D(\lambda) \equiv 0$.

Если λ не корень $D(\lambda)=0$ то оба уравнения однозначно разрешимы.

Если же λ – корень $D(\lambda)=0$, то оба уравнения имеют конечномерные пространства решений одной размерности.

Таким образом, мы доказали следующие эквивалентности:

- разрешимость исходного уравнения
- разрешимость системы

$$u(x) = \lambda \sum_{j=1}^{N} \hat{a}_j(x, \lambda) \int_G b_j(y) u(y) dy + \hat{f}(x, \lambda)$$

— разрешимость $(E - \lambda \hat{A}') \boldsymbol{d} = \boldsymbol{\varphi}$

Осталась третья теорема: условие разрешимости: $\boldsymbol{\varphi} \perp \boldsymbol{d}_{\text{одн}}$ – любому решению $\left[E - \lambda \hat{A}'(\lambda)\right] = \mathbf{0}$ т.е.

$$\sum_{j=1}^{N} \hat{\varphi} d_j = \sum_{j=1}^{N} \left\langle b_j; \hat{f} \right\rangle d_j = \sum_{j=1}^{N} \left\langle b_j; (I - \lambda Q)^{-1} f \right\rangle_j =$$

$$= \sum_{j=1}^{N} \left\langle f; (I - \lambda Q')^{-1} b_j \right\rangle_j = \left\langle f, \sum_{j=1}^{N} \underbrace{(I - \lambda Q')^{-1} b_j}_{\hat{b_j}} d_j \right\rangle = \left\langle f; v \right\rangle = \int_G f v dx = 0$$

- 28 Билет 28. Объемный ньютонов потенциал и его свойства. Убывание на бесконечности. Результат действия оператора Лапласа на объемный потенциал.
 - Функция $E(x) = \frac{-1}{4\pi|x|}$ является решением в обобщенных функциях уравнения $\triangle E(x) = \delta(x)$. Эту запись нужно понимать следующим образом:

$$\int_{\mathbb{R}^3} \left(\frac{-1}{4\pi |y|} \right) \Delta_y \varphi(y) dy = \varphi(0), \ \varphi \in D(\mathbb{R}^n)$$

Определение 28.1. Функция $\vartheta(x)$ вида $\vartheta(x) = \int_{\mathbb{R}^3} \frac{\rho(y)}{|x-y|} \mathrm{d}y$ называется объемным ньютоновым потенциалом.

3амечание. Это свёртка фундаментального решения с функцией $-4\pi\rho(x)$

Теорема 28.1. 1. Пусть $\rho(x)$ — кусочно-непрерывная, ограниченная, финитная. Тогда $\vartheta(x) \in C^1(\mathbb{R}^3)$ и $\vartheta(x) = O\left(\frac{1}{|x|}\right)$ при $x \to \infty$.

2. Если \exists область $\Omega \subset \mathbb{R}^3$: $\rho(x) \in C^1(\Omega)$, то $\vartheta(x) \in C^2(\Omega)$ $u \triangle \vartheta(x) = -4\pi \rho(x)$, $x \in \Omega$.

Доказательство. Доказательство проведем в менее общей постановке: считаем $\rho \in C^{\infty}$ и $supp\ \rho$ компактом.

- $\exists C: |\rho(x)| \leqslant C \ \forall \ x \in \mathbb{R}^3$. Считаем, что $supp \ \rho \subset B_A(0)$. Берем x: |x| > 2A. Тогда если $|y| \leqslant A$, то $|y| < \frac{|x|}{2}$.
- Оценка:

$$\begin{split} |\vartheta(x)| &= \left| \int\limits_{\mathbb{R}^3} \frac{\rho(y)}{|x-y|} \mathrm{d}y \right| = \\ &= \left| \int\limits_{|y| < A} \frac{\rho(y)}{|x-y|} \mathrm{d}y \right| \, \leqslant \, \int\limits_{|y| < A} \frac{|\rho(y)|}{|x-y|} \mathrm{d}y \, \leqslant \, \frac{c}{\frac{|x|}{2}} \int\limits_{|y| < A} \frac{\mathrm{d}y}{1} = \frac{8}{3} \frac{\pi c A^3}{|x|} \, \Rightarrow \\ &\Rightarrow \vartheta(x) = O\left(\frac{1}{|x|}\right). \end{split}$$

• Пользуемся утверждением из анализа: Пусть F(x,y) и $\frac{\partial F}{\partial x_j}(x,y)$, $j=\overline{1,n}$ непрерывны на $\Omega \times G$, где $\Omega \subset \mathbb{R}^n$, $G \subset \mathbb{R}^m$. Пусть g(x) абсолютно интегрируема: $\int\limits_G |g(x)| \mathrm{d} x < \infty|$. Тогда $\int\limits_G F(x,y)g(y) \mathrm{d} y \in C^1(\overline{\Omega})$ и

$$\frac{\partial}{\partial x_j} \int_G F(x, y) g(y) dy = \int_G \frac{\partial F}{\partial x_j}(x, y) g(y) dy$$

.

• Пусть $\rho(x) \in C^{\infty}(\mathbb{R}^3)$ и $\exists A : \rho(x) \equiv 0 \ \forall x : |x| > A$. Пусть

$$\Omega = \{x : |x| < R\}; \quad F(x,y) = \rho(x+y)$$

$$G = \{y : |y| < R + A\}; \quad g(y) = \frac{1}{|y|}.$$

При |x| < R, |y| > A + R $\hookrightarrow |x+y| \geqslant |y| - |x| \geqslant A + R - R = A \Rightarrow \rho(x+y) \equiv 0$.

$$\vartheta(x) = \int_{\mathbb{R}^3} \frac{\rho(x+y)}{|y|} dy = \int_{|y| < R+A} \frac{\rho(x+y)}{|y|} dy \quad \Rightarrow \quad \frac{\partial \vartheta}{\partial x_j} = \int_{|y| < R+A} \frac{\partial \rho(x+y)}{\partial x_j} \frac{1}{|y|} dy;$$

Также для остальных производных.

29 Билет 29. Понятие области с границей C^2 . Потенциал просто слоя. Его свойства. Непрерывность в \mathbb{R}^3

Определение 29.1. Область с границей Γ класса C^2 - ограниченная область ($\Omega \subset \mathbb{R}^3$), удовлетворяющая условиям :

• $\forall x^0 \in \Gamma \exists$ декартова с.к. (ξ_1, ξ_2, ξ_3) с началом в x^0 и функция $F_{x^0}(\xi')$, где $\xi' = (\xi_1, \xi_2), |\xi'| \leqslant r$ т.чт

$$-F_{x^0}(\xi') \in C^2(|\xi'| \leqslant r); F_{x^0}(0,0) = 0, \frac{\partial F_x}{\partial \xi_i}(0,0) = 0, i = 1, 2$$

— Множество
$$\sum_{x^0} = \{x: \xi_3 = F_{x^0}(\xi'), |\xi'| \leqslant r\} \subset \Gamma$$

– Множество
$$\mathbf{U}_{x^0}^- = \{x: F_{x^0}(\xi') - h < \xi_3 < F_{x^0}(\xi'), |\xi'| < r\} \subset \Omega$$

— Множество $\mathrm{U}_{x^0}^+ = \{x: \; F_{x^0}(\xi') < \xi_3 < F_{x^0}(\xi') + h, \; |\xi'| < r \}$ не пересекается с Ω

•
$$F_{x^0}(\xi') \in C^2(|\xi'| \leqslant r) \Rightarrow \left| \frac{\partial F_x}{\partial \xi_i} \right| \leqslant M_1; \left| \frac{\partial^2 F_x}{\partial \xi_i \partial \xi_j} \right| \leqslant M_2, |\xi'| \leqslant r$$

• Постоянные $r>0,\;h>0$ и M_1,M_2 можно выбрать не зависящими от $x^0\in\Gamma$ и от с.к. ξ

Определение 29.2. Указанную с.к. и окрестность $U_{x^0} = U_{x^0}^- \cup U_{x^0}^+$ назовем подходящим для X^0 , а ξ' - локальными координатами на куске \sum_{x^0} границы Γ .

Определение 29.3. Неограниченная область называется внешней областью с границей $\Gamma \in C^2$, если $\mathbb{R}^3 \setminus \bar{\Omega}$ есть ограниченная область с границей $\in C^2$.

Определение 29.4. Пусть $\Omega \subset \mathbb{R}^3$ - область с границей Γ класса C^2 . Функция вида $V^{(0)}(x) = \int_{\Gamma} \frac{\mu(y)}{|x-y|} dS_y$ называется потенциалом простого слоя.

Теорема 29.1. Пусть $\mu(x) \in \mathbb{C}(\Gamma)$. Тогда:

1.
$$V^0(x) \in C(\mathbb{R}^3)$$

2.
$$V^0(x)$$
 гармоническая в $\mathbb{R}^3 \backslash \Gamma$

3.
$$V^0(x) = O(\frac{1}{x}) \text{ npu } x \to \infty$$

Доказательство. 2. Пусть $x^1 \in \mathbb{R}^3 \backslash \Gamma$, $\delta_1 = \text{dist}\{x^1, \Gamma\} > 0$

Возьмем шар $B(x^1,\frac{\delta_1}{2})=\{x\in\mathbb{R}^3:|x-x^1|<\frac{\delta_1}{2}\}.$ Тогда расстояние от произвольной точки $x\in\overline{B(x^1,\frac{\delta_1}{2})}$ до $\forall\,y\in\Gamma$ не меньше $\frac{\delta_1}{2}:|x-y|\geqslant|x^1-y|-|x-x^1|\geqslant\delta_1-\frac{\delta_1}{2}=\frac{\delta_1}{2}$ Поэтому $\frac{1}{|x-y|}\in C^\infty(\overline{B(x^1,\frac{\delta_1}{2})}\times \underbrace{\Gamma}_y)\Rightarrow \mathcal{D}_x^\alpha\frac{1}{|x-y|}\in C(\overline{B(x^1,\frac{\delta_1}{2})}\times \Gamma)$

По теореме о дифференцировании интеграла по параметру (формулировка в билете 5) имеем

$$\mathcal{D}_x^{\alpha}V^{(0)}(x)=\int_{\Gamma}\mathcal{D}_x^{\alpha}\frac{\mu(y)}{|x-y|}dS_y\in C(\overline{B(x^1,\frac{\delta_1}{2})} imes\Gamma)\ \ orall\ lpha$$
-мультииндекса

В частности, $\triangle_x V^{(0)}(x) = \int_{\Gamma} \triangle_x (\frac{1}{|x-y|}) \mu(y) dS_y = 0$, что и требовалось.

1. Если $x \in \Gamma$, то $\frac{1}{|x-y|}$ - полярное ядро, следовательно, интегральный оператор с полярным ядром переводит непрерывную функцию $\mu(y)$ в непрерывную $\Rightarrow V^{(0)}(x) \in C(\Gamma)$. Мы уже доказали, что $V^{(0)}(x) \in C(\mathbb{R}^3 \backslash \Gamma) \Rightarrow$ осталось показать непрерывность в областях Ω следующего вида:

Построим для этого последовательность функций, равномерно сходящихся к $V^{(0)}(x)$:

Пусть
$$\left(\frac{1}{|x-y|}\right)_{\delta} - \delta$$
-срезка функции $\frac{1}{|x-y|}$:

$$\left(\frac{1}{|x-y|}\right)_{\delta} = \begin{cases} \frac{1}{|x-y|}, & \text{если } |x-y| \geqslant \delta; \\ \frac{1}{\delta}, & \text{если } |x-y| < \delta. \end{cases}$$

$$V_{\delta}^{(0)}(x) = \int_{\Gamma} \left(\frac{1}{|x-y|}\right)_{\delta} \mu(y) dS_y \in C(\overline{\Omega})$$

Будем выбирать $0<\delta<\frac{d}{2}(d-$ из свойств области с границей класса $C^2)-$ такое число, что $~\forall~x^0\in\Gamma\to B(x^0,d)\subset U_{x^0}$

$$\left| V^{(0)}(x) - V_{\delta}^{(0)}(x) \right| = \left| \int_{\Gamma} \left(\frac{1}{|x - y|} - \left(\frac{1}{|x - y|} \right)_{\delta} \right) \mu(y) dS_y \right|$$

Если
$$x:|x-y|\geqslant \delta$$
, то $\left(\dfrac{1}{|x-y|}-\left(\dfrac{1}{|x-y|}
ight)_{\delta}
ight)=0$

В противном случае она равна
$$\left| \int_{\Gamma} \underbrace{\left(\frac{1}{|x-y|} - \frac{1}{\delta} \right)}_{|\mu(y)| \leqslant ||\mu||_{C(\Gamma)} = C} dS_y \right| \geqslant C \int\limits_{\substack{y \in \Gamma \\ |x-y| < \delta}} \frac{dS_y}{|x-y|}$$

Нам осталось оценить интеграл $\int\limits_{\substack{y\in\Gamma\\|x-y|<\delta}}\frac{dS_y}{|x-y|}$

Пусть $x^* = \pi_{\Gamma}(x)$. Построим $B(x, \delta)$ и $B(x^*, 2\delta)$.

Ясно, что т.к. $|x-x^*| < \delta \Rightarrow B(x,\delta) \subset B(x^*,2\delta)$.

Увеличивая область интегрирования, запишем:

$$\int_{\substack{y \in \Gamma \\ |x-y| < \delta}} \frac{dS_y}{|x-y|} \leqslant \int_{\substack{y \in \Gamma \\ |x^*-y| < 2\delta}} \frac{dS_y}{|x^*-y|}$$

По определению числа d имеем $B(x^*, 2\delta \subset U_{x^*})$.

Свяжем с x^* локальную систему координат и функцию $F_{x^*}(\xi_1, \xi_2)$

Т.к.
$$y \in \Gamma, y = (\xi_1, \xi_2, F_{x^*}(\xi_1, \xi_2))$$

Т.к. $x^* = \pi_{\Gamma}(x)$, точка х имеет ненулевую компоненту только по ξ_3 : $x = (0,0,x_3)$

Оценки:
$$|x-y|^2=\xi_1^2+\xi_2^2+(x_3-F_{x^*}(\xi_1,\xi_2))^2\leqslant \xi_1^2+\xi_2^2\ |x^*-y|^2=\xi_1^2+\xi_2^2+(F_{x^*}(\xi_1,\xi_2))^2\leqslant \xi_1^2+\xi_2^2\Rightarrow$$
 расширяем область интегрирования до $\sqrt{\xi_1^2+\xi_2^2}<2\delta$

$$\left| V^{(0)}(x) - V_{\delta}^{(0)}(x) \right| \geqslant C \int_{\sqrt{\xi_1^2 + \xi_2^2} < 2\delta} \frac{\sqrt{1 + \left(\frac{\partial F_{x^*}}{\partial \xi_1}(\xi_1, \xi_2)\right)^2 + \left(\frac{\partial F_{x^*}}{\partial \xi_2}(\xi_1, \xi_2)\right)^2}}{\sqrt{\xi_1^2 + \xi_2^2}} d\xi_1 d\xi_2 \leqslant$$

$$C\sqrt{1+2M_1^2} \int_{\sqrt{\xi_1^2+\xi_2^2}<2\delta} \frac{d\xi_1 d\xi_2}{\sqrt{\xi_1^2+\xi_2^2}}$$

В полярной системе координат $\binom{\xi_1}{\xi_2} = r\binom{\cos\varphi}{\sin\varphi}$ последний интеграл примет вид $\int\limits_0^{2\pi} d\varphi \int\limits_0^{2\delta} \frac{rdr}{r} = 4\pi\delta \to 0$ при $\delta \to 0$.

Итак,
$$\underbrace{V_{\delta}^{(0)}(x)}_{\in C(\overline{\Omega})} \rightrightarrows_{\delta \to 0} V^{(0)}(x) \Rightarrow V^{(0)}(x) \in C(\overline{\Omega}) \Rightarrow V^{(0)}(x) \in C(\mathbb{R}^3).$$

3. $\mu(x) \in \Gamma \Rightarrow |\mu(x)| \leq ||\mu||_{\Gamma} = C \quad \forall x \in \Gamma$

Возьмем сферу радиуса R такую, что Γ лежит внутри этой сферы. Тогда $\forall y \in \Gamma \to |y| \leqslant R$.

При
$$x \to \infty$$
 $\to |x| \geqslant 2R$ $\Rightarrow y \leqslant \frac{|x|}{2}$ $\Rightarrow |V^0(x)| \leqslant \int_{\Gamma} \frac{|\mu(y)|}{|x-y|} dS_y \leqslant \frac{2C}{|x|} \underbrace{\int_{\Gamma} dS_y}_{C} \Rightarrow V^0(x) = \int_{\Gamma} \frac{|\mu(y)|}{|x-y|} dS_y = \int_{\Gamma} \frac{|\mu(y)|}{|x-y|} dS_y$

$$O(\frac{1}{|x|})$$
 при $x \to \infty$.

30 Билет 30. Потенциал двойного слоя. Интеграл Гаусса. Скачок потенциала двойного слоя при переходе через границу, на которой задаётся плотность

Пусть Γ - граница класса C^2 ограниченной области $\Omega \subset \mathbb{R}^3.$

Определение 30.1. Функция вида $V^{(2)}(x) = \int\limits_{\Gamma} \frac{\partial}{\partial \bar{n}_y} \left(\frac{1}{|x-y|}\right) \nu(y) dS_y$ называется потенциалом двойного слоя

Сразу будет удобно переписать определение в иной форме:

$$\frac{\partial}{\partial \bar{n}_y} \left(\frac{1}{|x-y|} \right) = \sum_{k=1}^3 n_k(y) \frac{\partial}{\partial y_k} \frac{1}{|x-y|} = \sum_{k=1}^3 \frac{n_k(y)(x_k - y_k)}{|x-y|^3} = \frac{(x-y, \bar{n}_y)}{|x-y|^3} \Rightarrow$$

$$\Rightarrow V^{(2)}(x) = \int_{\Gamma} \frac{(x-y, \bar{n}_y)}{|x-y|^3} \nu(y) dS_y$$

Лемма **30.1.** Пусть $\nu(x) \in C(\Gamma)$. Тогда:

а) $V^{(2)}(x)$ - гармоническая функция в в $x \in \mathbb{R}^3 \backslash \Gamma$;

6)
$$V^{(2)}(x) = O\left(\frac{1}{|x|^2}\right) npu |x| \to \infty$$

Доказательство.

a)

$$V^{(2)}(x) = \sum_{k=1}^{3} \int\limits_{\Gamma} \underbrace{n_{k}(y)}_{\substack{\in C(\Gamma) \\ \text{т.к.}\Gamma \in C^{2}}} \underbrace{\nu(y)}_{\substack{\in C(\Gamma) \\ \text{условию}}} \underbrace{\frac{\partial}{\partial y_{k}} \frac{1}{|x-y|}}_{\substack{-\frac{\partial}{\partial x_{k}} \frac{1}{|x-y|} \\ \in C\left((\mathbb{R}^{3} \backslash \Gamma) \times \Gamma\right)}} dS_{y} = -\sum_{k=1}^{3} \frac{\partial}{\partial x_{k}} \int\limits_{\Gamma} \underbrace{n_{x}(y)\nu(y) \frac{1}{|x-y|}}_{\substack{\text{потенциал простого слоя с } \\ \mu = n_{k} \cdot \nu \in C(\Gamma)}}_{\substack{\text{увляется гармонической dynkrused b. } R^{3} \backslash \Gamma}$$

Остаётся воспользоваться тем, что производная гармонической функции - гармоническая.

б) Возьмём сразу сферу радиуса R такую, что Γ лежит внутри сферы. При

$$|x| \to \infty \Rightarrow |x| > 2R \Rightarrow |y| \leqslant \frac{|x|}{2} \Rightarrow |x - y|^2 \geqslant (|x| - |y|)^2 \geqslant \frac{|x|}{4}$$

$$\left| \frac{\partial}{\partial \bar{n}_y} \frac{1}{|x - y|} \right| \leqslant \frac{|x - y| \cdot |\bar{n}_y|}{|x - y|^3} = \frac{1}{|x - y|^2} \Rightarrow$$

$$\Rightarrow |V^{(2)}(x)| = \left| \int_{\Gamma} \frac{\partial}{\partial \bar{n}_y} \left(\frac{1}{|x - y|} \right) \nu(y) dS_y \right| \leqslant \frac{4}{|x|^2} \int_{\Gamma} |\nu(y)| dS_y \leqslant 4 \|\nu(y)\|_{C(\Gamma)} \int_{\Gamma} dS_y \cdot \frac{1}{|x|^2} \Rightarrow$$

$$\Rightarrow V^{(2)}(x) = O\left(\frac{1}{\left|x\right|^2}\right)$$
при $x \to \infty$

Лемма 30.2. Если Ω ограниченная область с границей $\Gamma \in C^2$, то $\forall x, y \in \Gamma, x \neq y$, справедлива оценка

$$\left|\frac{(x-y,n(y))}{\left|x-y\right|^{2}}\right|\leqslant\frac{M}{\left|x-y\right|}$$

Доказательство. Пусть d - число из определения поверхности с границей $\Gamma \in C^2$:

- если $|x-y| \geqslant d$, то $\frac{|(x-y,\bar{n}_y)|}{|x-y|^3} \leqslant \frac{1}{|x-y|^2} \leqslant \frac{1}{d} \frac{1}{|x-y|}$
- если |x-y| < d, то свяжем y с локальной системой координат. В этой системе: $y=(0,0,0), \ x=(\xi_1,\xi_2,F(\xi_1,\xi_2)), \ \bar{n}_y=(0,0,1)\Rightarrow \ |x-y,\bar{n}_y)| = |F_y(\xi_1,\xi_2)| \leqslant M_2(\xi_1^2+\xi_2^2) \leqslant M_2(\xi_1^2+\xi_2^2+F_y^2(\xi_1,\xi_2)) = M_2|x-y|^2, \$ что и требовалось.

Лемма 30.3. Пусть $\nu(x) \in C(\Gamma)$. Тогда потенциал двойного слоя $V^{(2)} \in C(\Gamma)$

Доказательство. Используем признак полярного ядра (билет №24). В силу леммы $|K(x,y)| \le$ $\frac{M}{|x-y|}$ и $K(x,y)=\frac{(x-y,\bar{n}_y)}{|x-y|^2}\in C\left((\Gamma\times\Gamma)\backslash\{x=y\}\right)$ Оператор с полярным ядром переводит непрерывные функции в непрерывные, а $\nu \in C(\Gamma) \Rightarrow V^{(2)}(x) \in C(\Gamma)$

Наша цель - описать скачок $V^{(2)}(x)$ при переходе через границу. Для этого потребуется несколько вспомогательных утверждений.

 $V_{GAUSS}^{(2)}(x) = \int \frac{\partial}{\partial \bar{n}_y} \left(\frac{1}{|x-y|} \right) \nu(y) \cdot 1 \cdot dS_y = \frac{(x-y, \bar{n}_y)}{|x-y|^3} dS_y - (unmergan \ \Gamma aycca) \ pasen$

$$\begin{cases} -4\pi, x \in \Omega \\ -2\pi, x \in \Gamma \\ 0, x \in \mathbb{R}^3 \backslash \overline{\Omega} \end{cases}$$

Доказательство. 1) Пусть $x \in \Omega$. Возьмём $u(x) \equiv 1$ и запишем представление этой функции в виде суммы трёх потенциалов:

$$u(x) \equiv 1 = \int_{\Omega} \left(\frac{-1}{4\pi |x-y|} \right) \underbrace{\Delta 1}_{=0} dy + \int_{\Gamma} \frac{\partial}{\partial \bar{n}_y} \left(\frac{-1}{4\pi |x-y|} \right) u(y) dS_y - \int_{\Gamma} \left(\frac{-1}{4\pi |x-y|} \right) \underbrace{\frac{\partial u(y)}{\bar{n}_y}}_{=0} = -\frac{1}{4\pi} V_{GAUSS}^{(2)}(x)$$

2) Пусть $x \in \mathbb{R}^3 \backslash \overline{\Omega}$ Возьмём $u(y) \equiv 1$ и $v(y) = \frac{1}{|x-y|}$ и воспользуемся для этих функций первой формулой Грина:

$$\int_{\Omega} \underbrace{\Delta_y v(y)}_{=0} \cdot u(y) dy = \int_{\Gamma} \underbrace{\frac{\partial}{\partial \bar{n}_y} v(y) u(y) dS_y}_{=V_{GAUSS}(x)} - \underbrace{\int_{\Omega} \left(\nabla_y v(y), \nabla 1\right) dy}_{=0} \Rightarrow V_{GAUSS}^{(2)}(x) = 0$$

3) Пусть $x \in \Gamma$. Введём $B = B(x, \varepsilon), \Omega_{\varepsilon} = \Omega \backslash \bar{B}, \Gamma_{\varepsilon} = \Gamma \backslash B, \sigma_{\varepsilon} = \partial B \cap \bar{\Omega}$ Тогда $\partial \Omega_{\varepsilon} = \Gamma_{\varepsilon} \cup \sigma_{\varepsilon} \Rightarrow x \in \mathbb{R}^3 \backslash \bar{\Omega}_{\varepsilon}$

Согласно второму пункту можем написать $\int\limits_{\partial\Omega_{\varepsilon}}\frac{\partial}{\partial\bar{n}_y}\left(\frac{1}{|x-y|}\right)dS_y=0$ Значит

$$\underbrace{\int\limits_{\Gamma_{\varepsilon}} \frac{\partial}{\partial \bar{n}_{y}} \left(\frac{1}{|x-y|} \right) dS_{y}}_{-\int\limits_{\Gamma} \text{при } \varepsilon \to 0} + \int\limits_{\sigma_{\varepsilon}} \frac{\partial}{\partial \bar{n}_{y}} \left(\frac{1}{|x-y|} \right) dS_{y} = 0$$

Покажем, что

$$\int_{\sigma_{\varepsilon}} \frac{\partial}{\partial \bar{n}_{y}} \left(\frac{1}{|x-y|} \right) dS_{y} \to 2\pi \text{ при } \varepsilon \to 0$$

$$\frac{\partial}{\partial \bar{n}_{y}} \left(\frac{1}{|x-y|} \right) = \frac{(x-y,\bar{n}_{y})}{|x-y|^{3}} = \frac{|x-y||\bar{n}_{y}|}{|x-y|^{3}} = \frac{1}{|x-y|^{2}} = \frac{1}{\varepsilon^{2}}$$

Поэтому
$$\int_{\sigma_{\varepsilon}} \frac{\partial}{\partial \bar{n}_y} \left(\frac{1}{|x-y|} \right) dS_y = \frac{1}{\varepsilon^2} \int_{\sigma_{\varepsilon}} dS_y$$

При малых ε кусок границы Γ внутри \to к полуплоскости \Rightarrow σ_{ε} \to к полусфере.

Поэтому
$$\int_{\sigma_{\varepsilon}} dS_y = 2\pi \varepsilon^2 (1 + O(1))$$
, что и требовалось

Offtop : Геометрический смысл интеграла Гаусса: $\frac{(y-x,\bar{n}_y)}{\left|x-y\right|^3}dS_y = \frac{dS_y cos\beta}{\left|x-y\right|^2} = d\Omega$

– телесный угол, под которым из точки x видна часть dS_y . Интеграл Гаусса есть сумма всех таких углов со знаком "минус". Поэтому геометрически последняя лемма очевидна.

Лемма 30.5. Пусть Ω - ограниченная область в \mathbb{R}^3 с границей $\Gamma \in C^2$. Пусть $x^o \in \Gamma$. Тогда

$$\forall \, x: (x \in \mathbb{R}^3) \cap \left(|x - x^o| < \frac{d_*}{2} \right) \, \text{ верно} \int\limits_{|y - x^o| < d_*} \frac{(x - y, \bar{n}_y)}{\left| x - y \right|^3} dS_y < K, d_* = \frac{1}{2} min \left(d, \frac{2}{M_2} \right)$$

Без доказательства

Лемма 30.6. Пусть Ω - ограниченная область в \mathbb{R}^3 с границей $\Gamma \in C^2$. Пусть $x^o \in \Gamma$. Тогда $\lim_{x \to x^o} W(x, x^o) = W(x^o, x^o)$, где $W(x, x^o) = \int_{|y-x^o| < d_*} \frac{(x-y, \bar{n}_y)}{|x-y|^3} (\nu(y) - \nu(x^o)) \, dS_y$, а $\nu(x) \in C(\Gamma)$

Доказательство. Требуется показать, что $\forall \, \varepsilon > 0 \, \exists \, \delta_{\varepsilon} > 0 : \, \forall \, x : |x-x^o| < \delta_{\varepsilon} \to |W(x,x^o)-W(x^o,x^o)| < \varepsilon$ Функция $\nu(x)$ непрерывна на компакте, следовательно она и равномерно непрерывна на нём. Значит $\exists \, \beta = \beta(\varepsilon) : \, \forall \, y \in \Gamma : |y-x^o| < \delta \to |\nu(y)-\nu(x^o)| < \varepsilon$. Выберем $\beta \leqslant \frac{d_*}{2}$

$$\begin{split} |W(x,x^o) - W(x^o,x^o)| &= \left| \int\limits_{\Gamma} \left(\frac{(x-y,\bar{n}_y)}{|x-y|^3} - \frac{(x^o-y,\bar{n}_y)}{|x^o-y|^3} \right) (\nu(y) - \nu(x^o)) \, dS_y \right| \leqslant \\ &\leqslant \int\limits_{|y-x^o| < \beta} \underbrace{\left(\frac{(x-y,\bar{n}_y)}{|x-y|^3} - \frac{(x^o-y,\bar{n}_y)}{|x^o-y|^3} \right)}_{\leqslant K+K} \underbrace{\left(\nu(y) - \nu(x^o) \right)}_{\leqslant \varepsilon} \, dS_y + \\ &\int\limits_{\Gamma \setminus (|y-x^o| < \beta)} \underbrace{\left(\frac{(x-y,\bar{n}_y)}{|x-y|^3} - \frac{(x^o-y,\bar{n}_y)}{|x^o-y|^3} \right)}_{\leqslant \psi(x); \psi(x^o) = 0} \underbrace{\left(\nu(y) - \nu(x^o) \right)}_{\leqslant 2||\nu||_{C(\Gamma)}} \, dS_y \\ &\frac{\exists \, \delta_1: ||\psi(x)|| < \varepsilon,}{\text{если} |x-x^o| < \delta_1} \end{split}$$

Значит, при $|x-x^o|\leqslant max\left(\frac{d_*}{2},\delta_1(\varepsilon)\right)$ имеет место оценка $|W(x,x^o)-W(x^o,x^o)|\leqslant 2K\varepsilon+2\varepsilon\|\nu\|_{C(\Gamma)}$

Теперь можно перейти к описанию скачка потенциала.

Теорема 30.7. Пусть Ω - ограниченная область в \mathbb{R}^3 с границей $\Gamma \in C^2$, а $\nu(x) \in C(\Gamma)$. Тогда потенциал двойного слоя $V^{(2)}(x) \in C(\bar{\Omega})$ и $V^{(2)}(x) \in C(\mathbb{R}^3 \setminus \bar{\Omega})$ (можно непрерывно продолжить на замыкания). Обозначим $\forall x^o \in \Gamma : V_+^{(2)}(x^o) = \lim_{x \in \Omega, x \to x^o} V^{(2)}(x); V_-^{(2)}(x^o) = \lim_{x \in \mathbb{R} \setminus \bar{\Omega}, x \to x^o} V^{(2)}(x)$ Тогда $V_\pm^{(2)}(x^o) = V^{(2)}(x^o) \mp 2\pi\nu(x^o)$

Доказательство.

$$V^{(2)}(x) = W(x, x^{o}) + \nu(x^{o}) \int_{\Gamma} \frac{(x - y, \bar{n}_{y})}{|x - y|^{3}} \nu(y) dS_{y}$$

$$V_{+}^{(2)}(x^{o}) = \lim_{x \in \Omega, x \to x^{o}} V^{(2)}(x) = \underbrace{\lim_{x \in \Omega, x \to x^{o}} W(x, x^{o})}_{W(x^{o}, x^{o})} + \nu(x^{o}) \lim_{x \in \Omega, x \to x^{o}} \underbrace{\int_{\Gamma} \frac{(x - y, \bar{n}_{y})}{|x - y|^{3}} \nu(y) dS_{y}}_{\text{при } x \in \Omega \text{ это } 4\pi} = W(x^{o}, x^{o}) - 4\pi\nu(x^{o})$$

Далее, если
$$x^o \in \Gamma$$
, то $V^{(2)}(x^o) = W(x^o, x^o) + \nu(x^o) \int\limits_{\Gamma} \frac{(x^o - y, \overline{n}_y)}{|x^o - y|^3} \nu(y) dS_y = W(x^o, x^o) - 2\pi\nu(x^o)$

Поэтому $V_+^{(2)}(x^o) = V_+^{(2)}x^o) - 2\pi\nu(x^o)$ Это, в частности, означает, что $V_-^{(2)}(x)$ можно непрерывно продолжить до $\bar{\Omega}$. Для стремления $x \to x^o$ извне доказательство аналогично:

$$V_{-}^{(2)}(x^o) = \underbrace{\lim_{x \in \mathbb{R}^3 \backslash \Omega, x \to x^o} W(x, x^o)}_{W(x^o, x^o)} + \lim_{x \in \mathbb{R}^3 \backslash \Omega, \ x \to x^o} \nu(x^o) \underbrace{\int_{\Gamma} \frac{(x - y, \bar{n}_y)}{|x - y|^3} \nu(y) dS_y}_{\text{при } x \in \mathbb{R}^3 \backslash \Omega \text{ это } 0} = W(x^o, x^o) = V^{(2)}(x^o) + 2\pi\nu(x^o)$$

Это, в частности, означает, что $V^{(2)}$ можно непрерывно продолжить до $\mathbb{R}^3 \backslash \Omega$

31 Билет 31. Понятие правильной нормальной производной. Существование правильной нормальной производной у потенциала простого слоя с непрерывной плотностью Формула скачка для нормальной производной

Мотивация: во внутренней задаче Неймана (билет 14) ищется решение $u(x) \in C^2(\Omega) \cap C^1(\bar{\Omega})$ уравнения

$$\Delta u = f(x), x \in \Omega$$

при условии

$$\frac{\partial u}{\partial \mathbf{n}}|_r = u_1(x),$$

где $u_1 \in C(\Gamma)$.

Но существуют примеры гармонических в области функций, градиент которых нельзя продолжить по непрерывности на замыкание этой области. Можно расширить понятие классического решения.

Пусть $u(x) \in C^1(\Omega) \cap C(\bar{\Omega}), \Omega$ - ограниченная область в \mathbb{R}^3 с границей $\Gamma \in C^2$

Пусть $x^o \in \Gamma$, а $\boldsymbol{n}(\boldsymbol{x}^o)$ - нормаль к Γ в x^o Т.к. $\Gamma \in C^2$, $\boldsymbol{n}(\boldsymbol{x}^o)$ - непрерывная функция по x^o . Проведем через x^o прямую $x = x^o + \boldsymbol{n}(\boldsymbol{x}^o)t, t \in \mathbb{R}$

Распишем произведенеие

$$(\boldsymbol{n}(x^o), \nabla u) = \sum_{k=1}^3 n_x(x^o) \frac{\partial u}{\partial x_k}(x) = \frac{du(x^o + \boldsymbol{n}(x^o)t)}{dt} = \frac{\partial u}{\partial \boldsymbol{n}(x^o)}$$

Определение 31.1. Говорят, что u(x) имеет правильную нормальную производную по направлению внешней нормали на Γ из Ω , если

1. $\forall x^o \in \Gamma$ существует конечный предел

$$\frac{\partial u}{\partial \boldsymbol{n}}(x^o) \equiv \lim_{x=x^o+\boldsymbol{n}(x^o)t, x \in \Omega, x \to x^o} \frac{\partial u}{\partial \boldsymbol{n}(x^o)}(x)$$

2. Этот предел равномерный по $x^o \in \Gamma$

Лемма 31.1. Если u(x) имеет ПНП по нормали $\boldsymbol{n}(x^o)$ из Ω на Γ , то

- 1. u(x) имеет обычную производную по нормали $n(x^o)$ в точке $x^o \in \Gamma$, и эта производная совпадает с ПНП
- 2. $\Pi H \Pi \in C(\Gamma)$

Доказательство. Обычная производная по нормали

$$\lim_{x \to x^o, x = x^o + \boldsymbol{n}(x^o)t} \frac{u(x^o) - u(x)}{|x^o - x|} = \lim_{t < 0, t \to 0} \frac{u(x^o - u(x^o + \boldsymbol{n}(x^o)t))}{-t} = \lim_{t < 0, t \to 0} \frac{du(x^o + \boldsymbol{n}(x^o)t)}{dt} = \frac{\partial u}{\partial \boldsymbol{n}(x^o)}$$

- этот предел существует по условию.

Покажем непрерывность: Пусть δ мало, $0 < \delta < \delta_o, x = x^o - \delta n(x^o)$

Пусть
$$V_{\delta}(x^{o}) = \frac{\partial u}{\partial n}(x^{o} - \delta n(x^{o})) =$$

$$= \sum_{k=1}^{3} n_k(x^o) \frac{\partial u}{\partial x_n} (x^o - \delta \boldsymbol{n}(x^o)) => V_{\delta}(x^*) \in C(\Gamma)$$

 $n_k(x^o)$ непрерывна, т.к. $\Gamma \in C^2$

По определению ПНП: $V_\delta \rightrightarrows \Pi$ НП => она также непрерывная на Γ .

• После расширения определения классического решения встает вопрос о единственности решения. При исследовании этого вопроса мы использовали формулы Грина. Дли них требовалось гладкость $C^2(\Omega) \cap C^1(\bar{\Omega})$. Покажем, как обобщить эти факты с помощью ПНП.

• Пусть Ω - ограниченная область с границей \mathbb{R}^3 , граница $G \in C^2, 0 < \delta < \delta_\mu$

 $\Gamma_{\delta}=x:x=x^{o}-\delta {m n}(x^{o})$ - граница класса уже $C^{1},$ т.к. ${m n}$ inC^{1}

Лемма 31.2. Пусть Ω - ограниченная область с границей $G \in C^2, u(x) \in C^2(\Omega) \cap C(\bar{\Omega}), a y u(x) \exists \Pi H \Pi$ по направлению внешней нормали $\mathbf{n}(x^o), \Delta u \in C(\Omega)$. Тогда

$$\int_{\Omega} (\Delta u) u dx = \oint_{\Gamma} \frac{\partial u}{\partial \mathbf{n}}(x) u(x) dS - \int_{\Omega} |\nabla|^2 dx$$

Доказательство. $u(x) \in C^2(\Omega) \cap C(\bar{\Omega}) => u(x) \in C^2(\Omega_\delta) \cap C^1(\Omega_\delta) =>$

$$\int_{\Omega_{\delta}} (\Delta u(x)) u(x) dx(1) = \oint_{G_{\delta}} \frac{\partial u}{\partial \boldsymbol{n}} u(x) dS(2) - \int_{\Omega_{\delta}} |\nabla u(x)|^2 dx(3)$$

$$\lim_{\delta \to 0} (1) = \int_{\Omega} \Delta u dx$$
, т.к. $\Delta u(x)$ и $u(x) \in C(\bar{\Omega})$

$$\lim_{\delta \to 0} (2) = \int_{G_{\delta}} \frac{\partial u}{\partial n} u(x) dS$$

$$\lim_{\delta \to 0} (3) = \lim_{x = x^{o} - \delta n x^{o}} \int_{\Omega_{\delta}} |\nabla u(x)|^{2} dx$$

• С учетом сделанного обобщения все сделанные ранее рассуждения о внутренних и внешних задачах верны и для расширенного понятия классического решения.

Теорема 31.3 (Кореектная постановка внутренней задачи Неймана для уравнения Лапласа). Ω - ограниченная область, граница $G \in C^2$. Найти функцию $u(x) \in C^2(\Omega) \cap C(\bar{\Omega})$, имеющую ПНП и удовлетворяющую

$$\begin{cases} \Delta u(x) = 0, x \in \Omega \\ \frac{\partial u}{\partial \mathbf{n}}|_{G} = u_{1}(x) \in C(G) \end{cases}$$
(30)

Теорема 31.4 (Корректная постановка внешней задачи Неймана для уравнения Лапласа). Ω - внешняя область, граница $G \in C^2$. Найти функцию $u(x) \in C^2(\Omega) \cap C(\bar{\Omega})$ имеющую ПНП и удовлетворяющую

$$\begin{cases}
\Delta u(x) = 0, x \in \Omega \\
\frac{\partial u}{\partial \mathbf{n}}|_{\Gamma} = u_1(x) \in C(\Gamma) \\
u(x)_{x \to \infty} \to 0
\end{cases}$$
(31)

• Рассмотрим потенциал простого слоя

 Ω - ограниченная область с границей $\Gamma \in C^2; x = x^o - \delta {\pmb n}(x^o); 0 < \delta < \delta^*$

$$V^* = \int_{\Gamma} \frac{\mu(x)}{|x - y|} dS_y$$

$$\frac{\partial u}{\partial \boldsymbol{n}}(x) = \sum_{k=1}^{3} n_k(x^o) \frac{\partial}{\partial x_k} \oint_{\Gamma} \frac{\mu(x)}{|x-y|} dS_y = \sum_{k=1}^{3} n_k(x^o) \frac{\partial}{\partial x_k} \oint_{G} \frac{1}{|x-y|} \mu(y) dS_y$$

$$\sum_{k=1}^{3} n_k(x^o) \frac{\partial}{\partial x_k} \frac{1}{|x-y|} \mu(y) dS_y = \oint_{\Gamma} \sum_{k=1}^{3} n_k(x^o) \frac{y_k - x_k}{|x-y|^3} \mu(y) dS_y = \oint_{\Gamma} \frac{(y-x, \boldsymbol{n}(x^o))}{|x-y|^3} \mu(y) dS_y$$

Обозначим $\left(\frac{\partial V^o}{\partial \boldsymbol{n}}\right)_{\pm}(x^o) = \lim_{x=x^o \mp \delta \boldsymbol{n}(x)}, \delta \to +0 \frac{\partial V^o}{\partial \boldsymbol{n}(x^o)}(x)$

$$\frac{\partial V^o)}{\partial n}(x^o)(1) = \int_{\Gamma} \frac{(y-x^o,n(x^o))}{|x^o-y|^3} \mu(y) dS_y, x^o \in G(2)$$

(1) - прямое значение нормальной производной

(2) - полярное ядро => $\forall \mu(x) \in C(G), \ \forall x^o \in \Gamma$ этот интеграл существует, и более того

Теорема 31.5. У потенциала простого слоя $V^o(x)$ с плотностью $\mu(x) \in C(\Gamma)$ существует ПНП на Γ :

$$\left(\frac{\partial V^o}{\partial \boldsymbol{n}}_+(x^o)\right)u\left(\frac{\partial V^o}{\partial \boldsymbol{n}}_-(x^o)\right),$$

причем имеет место формула скачка

$$\left(\frac{\partial V^o}{\partial \boldsymbol{n}}_{\pm}(x^o)\right) = \frac{\partial V^o}{\partial \boldsymbol{n}}(x^o) \pm 2\pi\mu(x^o)$$
 Следствие.
$$\left(\frac{\partial V^o}{\partial \boldsymbol{n}}\right)_+(x^o) - \left(\frac{\partial V^o}{\partial \boldsymbol{n}}\right)_-(x^o) = 4\pi\mu(x^o), x^o \in \Gamma$$

$$\frac{\partial V^o}{\partial \boldsymbol{n}}(x^o) = \frac{1}{2} \left[\left(\frac{\partial V^o}{\partial \boldsymbol{n}}\right)_+(x^o) + \left(\frac{\partial V^o}{\partial \boldsymbol{n}}\right)_=(x^o) \right], x \in \Gamma$$

32 Билет 32. Сведение с помощью потенциалов внутренней задачи Дирихле и внешней задачи Неймана для уравнения Лапласа к интегральным уравнениям на границе. Существование и единственность решения этих задач

32.1 Внешняя задача Неймана для уравнения Лапласа

Найти функцию $u(x)\in C^2(\mathbb{R}^3\;\Omega)\cap C(\mathbb{R}^3\;\Omega)$ имеющую ПНП по направлению внешней нормали, и такую, что

$$\begin{cases}
\Delta u(x) = 0, x \in \mathbb{R}^3 \ \Omega \\
(\frac{\partial u}{\partial n})_-|_r = u_1(x), x \in G; u_1(x) \in C(G) \\
u(x) \to 0, x \to \infty
\end{cases}$$
(32)

Решение этой задачи ищем в виде потенциала простого слоя:

 $u(x)=\int_G rac{\mu(x)}{|x-y|}dS_y$. Свойства $\Delta u(x)=0$ и $\lim_{x o\infty}u(x) o 0$ выполнены.

Кроме того, $u(x) \in C^2(\mathbb{R}^3|\Omega) \cap C(R^3|\Omega)$ и имеет ПНП. Нужно проверить $(\frac{\partial u}{\partial n})_-|_r = u_1(x), x \in G$.

• Пусть

$$x^o \in G \Rightarrow (\frac{\partial u}{\partial \boldsymbol{n}})_-(x^o) = -2\pi\mu(x^o) + \int_x \frac{(y-x,\boldsymbol{n}(x^o))}{|x^o-y|^3}\mu(y)dS_y = u_1(x^o)$$

 $\mu(x^o)=\frac{1}{2\pi}\int_x\frac{(y-x,n(x^o))}{|x^o-y|^2}\mu(y)dS_y-\frac{1}{2\pi}u_1(x^o), x^o\in G$ - Интегральное уравнение Фредгольма 2-го рода с интегральным оператором и полярным ядром.

Уравнение однозначно разрешимо \Leftrightarrow уравнение $\mu_*(x^o) = \frac{1}{2\pi} \int_x \frac{(y-x, \boldsymbol{n}(x^o))}{|x^o-y|^3} \mu(y) dS_y \equiv 0$ имеет только тривиальное решение.

Для этого покажем, что $V_*(x) = \int_G \frac{\mu(x)}{|x-y|} dS_y \equiv 0$

Ясно, что уравнение на μ_* получается таким же образом как и уравнение на μ_* но из задачи Неймана

$$\begin{cases}
\Delta v(x) = 0, x \in R^3 | \Omega \\
(\frac{\partial u}{\partial \boldsymbol{n}})|_r = 0, x \in G; u_1(x) \in C(G) \\
u(x) \to 0
\end{cases}$$
(33)

В силу единственности решение этой задачи $V_*=0 (x\in\mathbb{R}^3|\Omega)$. Но $V_*\in C(\mathbb{R}^3)\Rightarrow X_*\equiv 0$ на $X\in\mathbb{R}^3|\Omega$ Функция V_* удовлетворяет внутренней задаче Дирихле

$$\begin{cases} \Delta V_* = 0 \ \forall \ x \in \Omega \\ V_*(x) = 0 \ \forall \ x \in G \end{cases}$$
 (34)

 $\Rightarrow V_* \equiv 0 \ \forall \ x \in \Omega$

Итак, $V_*(x) \equiv 0 \ \forall \in \mathbb{R}^3$.

Ho
$$(\frac{\partial u}{\partial n})|_{+}(x^{o}) - (\frac{\partial u}{\partial n})|_{-}(x^{o}) = 4\pi\mu_{*}(x^{o}), x^{o} \in G \Rightarrow \mu_{*}(x^{o}) \equiv 0 \ \forall \ x^{o} \in G$$

Итак, по теореме Фредгольма об альтернативе уравнение

$$(*)~\mu(x^o)=\frac{1}{2\pi}\int_x\frac{(y-x,{\bf n}(x^o))}{|x^o-y|^3}\mu(y)dS_y-\frac{1}{2\pi}u_1(x^o), x\in G$$
 однозначно разрешимо

32.2 Внутренняя задача Дирихле для уравнения Лапласа

Найти функцию $u(x) \in C^2(\Omega) \cap C(\bar{\Omega})$ такую, что:

$$1)\Delta u(x)=0, x\in\Omega$$

$$(2)u|_r = u_0(x), x \in G(u_o(x) \in C(G))$$

Решение этой задачи ищем в виде потенциала двойного слоя

$$u(x) = \frac{1}{2\pi} \int_x \frac{(y-x, n(x^o))}{|x^o-y|^3} \nu(y) dS_y, \nu(x) \in C(G)$$

Условия $\Delta u=0\in\Omega$ и $u(x)\in C^2(G)\cap C(\bar\Omega)$ уже выполнены. Осталось проверить $u|_r=u_0(x), x\in G$

• Для потенциала двойного слоя справедлива формула скачка: $u_+(x^o) = u(x^o) - 2\pi\nu(x^o) \Rightarrow u_0(x^o) = \int_x \frac{(y-x, \boldsymbol{n}(x^o))}{|x^o-y|^3} \nu(y) dS_y - 2\pi\nu(x^o)$

$$\Rightarrow \nu(x^o) = \int_x rac{(y-x, m{n}(x^o))}{|x^o-y|^3} \nu(y) dS_y - rac{u_0(x^o)}{2\pi}, x^o \in G$$
 Ядро, транспонированное к тому, что стоит в (*)

Т.к. (*) однозначно разрешмимо, это уравнение тоже имеет единственное решение

Теорема 32.1. Пусть Ω - ограниченная область в \mathbb{R}^3 с границей $G \in C^2$. Тогда у внутренней задачи Дирихле $\forall u_1 \in C(G)$, а также у внешней задачи Неймана $\forall u_0 \in C(G)$ существует единственное классическое решение