Abstract algebra I Homework 2

B13902022 賴昱錡

Due: 24th September 2025

1)

(a)

Take the sum of 14 and 13, and it's 27 modulo 30, $27 \notin G_1$ thus, G_1 is not a subgroup of G.

(b)

We can check some necessary properties a subgroup must follow:

- All elements of G_2 are also in $G, G_2 \in G$
- $\exists e \text{ such that } \forall g \in G_2, g+e=e+g=g. \text{ There } e=0.$
- $0+0 \equiv 0 \pmod{30}$, thus, $g^{-1}=0$ when g=0. All the other non-zero elements $\in G_2$ can be written as the form $2k, k \in [1, 14], k \in \mathbb{N}$. Assume g=2k, then there must exists an element $h=2(15-k) \in G_2$ such that $g+k \equiv 0 \pmod{30}$. Thus, every element in G_2 has an inverse element.

(c)

Take the sum of 1 and 29, and it's 0 modulo 30, $0 \notin G_3$ thus, G_3 is not a subgroup of G.

2)

(i)

Proof. Since H is not empty, we can choose $x, y \in G$.

By the closedness of inverse, the inverse of x exists and belongs to the H, let $y = x^{-1}$.

By the closedness of *, $x * x^{-1} = e \in H$, where e is the identity element of H. Thus, the identity of H exists.

Since H is closed under products, and inverse for each element exists, and the identity for H exists. It's a group and $H \subset G$, so H is a subgroup of G.

(ii)

For simplicity, I denote the determinant of a n by n matrix A as |A|.

Since the determinant of an identity matrix I_n is 1, $SL_n(\mathbb{R}) \neq \emptyset$.

For any matrices $a, b \in SL_n(\mathbb{R})$, suppose c = ab, then c must be a real matrix (all entries are real), also, |c| = |a||b| = 1 * 1 = 1, the determinant of c is also 1. Thus, $c \in SL_n(\mathbb{R})$. Here proves the closedness of matrix multiplication.

Claim 1: Real $n \times n$ matrix A is invertible if and only if $|A| \neq 0$

Proof. Suppose A is invertible, then there exists a matrix B such that AB = I. |I| = |A||B| = 1, |A| can't be zero.

Assume $|A| \neq 0$, then $B = \frac{1}{|A|} \operatorname{adj}(A)$ (B is also a real $n \times n$ matrix) satisfies AB = BA = I where $\operatorname{adj}(A)$ is the classical adjoint matrix of A and I is the identity matrix.

Thus, $|A| \neq 0$ is necessary and sufficient.

By claim 1, every element in H has its inverse due to their non-zero determinant. Suppose A is any matrix in H, and its inverse is A^{-1} , then $AA^{-1} = A^{-1}A = I$, $|A||A^{-1}| = |I| = 1$, thus, $|A^{-1}| = 1$.

Hence, the inverse of A, i.e., A^{-1} is also in H. Here the closedness of inverse is proved. By the subgroup criterion proved in 2(i), $SL_n\mathbb{R}$ is a subgroup of $GL_n\mathbb{R}$.

3)

(a)

Proof. Let's call the two sets A and B. $A = \{1, 2, ..., n\}, B = \{1, 2, ..., n\}$. And A is mapped to B.

Since the map is bijective, for 1 in A, there are n choices to be mapped, after 1 is mapped, 2 in A has n-1 choices to be mapped, and so on.

Thus, there are $n(n-1)(n-1)\dots 1=n!$ types of bijection, i.e., the order of S_n is n!. \square

(b)

(c)

The identity element in the group for matrices multiplication is the identity matrix $I_{2\times 2}$.

For a, $a = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, $a^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$, $a^3 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $a^1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_{2\times 2}$. Thus, o(a) = 4. For b, $b = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}$, $b^2 = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix}$, $b^3 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_{2\times 2}$, thus, o(b) = 3.

- 4)
- (a)
- (b)
- (c)

5)

(a)

Proof. \Box

(b)

(c)

Since elements in the abelian group (G, *) are commutative, i.e., for any $a, b \in G$, we have a * b = b * a.

Let's choose one arbitrarity elements g, consider the subgroup as $B = \{a_1, a_2, \ldots, a_m\}$. Then $gB = \{g * a_1, g * a_2, \ldots, g * a_m\}$, and $Bg = \{a_1 * g, a_2 * g, \ldots, a_m * g\}$. since $g * a_i = a_i * g$ for all i, we have gB = Bg.

Hence, by the definition, every subgroup of an abelian group is normal.

(d)