

CONCOURS ARTS ET MÉTIERS ParisTech - ESTP - POLYTECH

Épreuve de Mathématiques 1 PSI

Durée 4 h

Si, au cours de l'épreuve, un candidat repère ce qui lui semble être une erreur d'énoncé, d'une part il le signale au chef de salle, d'autre part il le signale sur sa copie et poursuit sa composition en indiquant les raisons des initiatives qu'il est amené à prendre.

L'usage de calculatrices est interdit.

AVERTISSEMENT

La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies. En particulier, les résultats non justifiés ne seront pas pris en compte. Les candidats sont invités à encadrer les résultats de leurs calculs.

EXERCICE 1.

Soit $(a_n)_{n\in\mathbb{N}^*}$ une suite de réels.

Pour tout $n \in \mathbb{N}^*$, on pose :

$$b_n = n(a_n - a_{n+1}), \ A_n = \sum_{k=1}^n a_k \ \text{et} \ B_n = \sum_{k=1}^n b_k$$

- **1.** On prend dans cette question, pour tout $n \ge 1$, $a_n = \frac{1}{2^{n-1}}$.
 - 1.1 Vérifier que la série $\sum_{n\geqslant 1}a_n$ converge et calculer sa somme.
 - **1.2** Déterminer le rayon de convergence de la série entière $\sum_{n\geq 1} n x^{n-1}$
 - 1.3 Montrer que la série $\sum_{n\geqslant 1}b_n$ converge et calculer sa somme.
- **2.** On prend dans cette question, $a_n = \frac{1}{n \ln(n)}$, $n \ge 2$ et $a_1 = 0$.
 - **2.1** Etudier la monotonie et la convergence de la suite $(a_n)_{n\geqslant 2}$.
 - **2.2** Quelle est la nature de la série $\sum_{n\geqslant 1} a_n$?
 - **2.3** Calculer $\lim_{n\to+\infty} n \, a_n$.
 - **2.4** Quelle est la nature de la série $\sum_{n\geq 1} b_n$?
- 3. On suppose dans cette question que la série $\sum_{n\geqslant 1}a_n$ converge et que la suite $(a_n)_{n\in\mathbb{N}^*}$ est une suite décroissante de réels positifs.
 - **3.1** Pour tout entier naturel n non nul, on note $u_n = \sum_{p=n+1}^{2n} a_p$. Montrer que : $\forall n \in \mathbb{N}^*, n a_{2n} \leqslant u_n$.
 - **3.2** En déduire $\lim_{n\to+\infty} n \, a_{2n}$.
 - **3.3** Démontrer alors que $\lim_{n \to +\infty} n \, a_n = 0$.
 - **3.4** Montrer que la série $\sum_{n\geqslant 1}b_n$ converge.
 - **3.5** A-t-on $\sum_{n=1}^{+\infty} a_n = \sum_{n=1}^{+\infty} b_n$?
- 4. On suppose dans cette question que la série $\sum_{n\geqslant 1}b_n$ converge et que la suite $(a_n)_{n\in\mathbb{N}^*}$ est positive, décroissante et de limite nulle.
 - **4.1** Vérifier que : $\forall m \in \mathbb{N}^*, m \leqslant n, B_n \geqslant A_m m a_{n+1}.$
 - **4.2** En déduire que la série $\sum_{n\geqslant 1}a_n$ converge.

4.3 Peut-on en déduire que $\sum_{n=1}^{+\infty} a_n = \sum_{n=1}^{+\infty} b_n$?

EXERCICE 2.

Pour tout entier naturel n, on note $e_n : x \in \mathbb{R}_+ \longmapsto x^n e^{-x}$.

Soient $N \in \mathbb{N}^*$ et E le sous-espace vectoriel de $\mathscr{C}^1(\mathbb{R}_+,\mathbb{R})$ défini par : $E = \text{Vect}(e_0,e_1,...,e_N)$.

- 1. Montrer que $\mathscr{B} = (e_0, e_1, ..., e_N)$ est une base de E. En déduire la dimension de E.
- **2.** Pour tout élément g de E, on note $\Delta(g) = g'$.
 - **2.1** Démontrer que $\Delta \in \mathcal{L}(E)$
 - **2.2** Ecrire la matrice A de Δ dans la base \mathscr{B} . Δ est-il un automorphisme de E?
 - **2.3** Déterminer les éléments propres de Δ . L'endomorphisme Δ est-il diagonalisable?
- **3.** Soient $k \in [0, N]$ et $x \ge 0$.

Montrer que la série de terme général $w_n = e_k(x+n)$ est convergente.

4.

4.1 Pour tout entier naturel k, on considère une suite $(u_{n,k})_{n\in\mathbb{N}}$ telle que la série $\sum_{n\geqslant 0}u_{n,k}$ converge .

Citer le théorème du cours qui justifie que l'on a pour tout $N \in \mathbb{N}$: $\sum_{n=0}^{+\infty} \left(\sum_{k=0}^{N} u_{n,k}\right) = \sum_{k=0}^{N} \left(\sum_{n=0}^{+\infty} u_{n,k}\right)$.

4.2 Soit $f \in E$.

Démontrer que la série de terme général $u_n = f(n+x)$ est convergente pour tout $x \ge 0$.

On note alors
$$F(x) = \sum_{n=0}^{+\infty} f(n+x)$$
.

4.3 Justifier que la série de terme général n^j e⁻ⁿ pour tout j fixé de \mathbb{N} est convergente.

On note alors
$$A_j = \sum_{n=0}^{+\infty} n^j e^{-n}$$
.

- **4.4** Exprimer F(x) en fonction des A_j pour tout $x \ge 0$.
- **4.5** En déduire que $F \in E$ et que l'application $\Phi : f \longmapsto F$ ainsi définie est un endomorphisme de E.
- **5.** Ecrire la matrice de Φ dans la base \mathcal{B} en fonction des A_i .

L'endomorphisme Φ est-il diagonalisable?

EXERCICE 3.

1. Programmes mystères

1.1 On donne les programmes python P0 et P1 suivants. Que renvoient les appels P0(5), P1(5) et P0(9), P1(9)?

Dire en une phrase ce que fait chacun des programmes P0 et P1?

P0

return True

: # N entier naturel def PO(N): # N entier naturel P1(N) if N == 1 : if N == 1 : 2 2 return False return False 3 3 if N == 2 : if N == 2 :return True return True for d in range(2,N): for d in range(2,N): 6 if N % d == 0 : if N % d == 0 : return False return False

P1

return True

1.2 En une phrase dire ce que fait le programme python, P2, qui utilise le programme P1 précédent :

```
def P2(N) : # N entier naturel
L = []
k = 0
n = k * k + 1
while n <= N :
     if P1(n) :
     L.append(n)
     k = k + 1
n = k * k + 1
return L</pre>
```

Que renvoie l'appel P2(127)?

1.3 Écrire une fonction nextPrime en langage python qui prend un argument entier N et qui retourne comme valeur le premier nombre premier qui est strictement supérieur à N.

1.4 Nombres jumeaux

On appelle couple de nombre premiers jumeaux toute liste [p,q] telle que p,q sont deux nombres premiers vérifiant p < q et q = p + 2. Par exemple [3,5], ou [11,13] sont des couples de nombres premiers jumeaux alors que [2,3] ne l'est pas.

1.4a Écrire à l'aide de la fonction nextPrime précédente, une fonction python nommée jumeau, prenant comme argument un entier N et renvoyant le couple [p,q] de nombres premiers jumeaux tel que p strictement supérieur à N et le plus petit possible.

Par exemple, >>> jumeau(5), renvoie comme valeur: [11, 13]

1.4b Écrire avec les mêmes consignes une fonction, les Jumeaux, prenant en argument un entier N et renvoyant la liste de tous les couples de nombres premiers jumeaux [p,q] tels que q soit inférieur ou égal à N.

```
Par exemple, >>> lesJumeaux(18), retourne : [[3, 5], [5, 7], [11, 13]] (le couple [17,19] n'en fait donc pas partie.)
```

2. Fonction récursive

On considère la fonction définie comme suit en python :

```
def M(n):
 if n > 100:
     return n - 10
 else:
     return M (M (n + 11))
```

- 2.1 Que fait l'appel M(101)?
- 2.2 Plus généralement, que fait l'appel M(N) si N > 100?
- 2.3 Que renvoient l'appel M(100)? Puis M(99), M(98)?
- 2.4 Conjecturer ce que renvoie l'appel M(N) où N ≤ 100, entier naturel, puis le démontrer.

EXERCICE 4.

Dans tout l'exercice n est un entier naturel non nul.

PRÉLIMINAIRES

1. Soit u un endomorphisme d'un espace vectoriel E.

Le sous-espace Im(u) est-il stable par l'endomorphisme u? Justifiez votre réponse.

2. Soit u l'endomorphisme de $E=\mathbb{R}^4$ défini dans la base canonique $\mathscr{B}=(e_1,e_2,e_3,e_4)$ de E par :

$$u(e_1) = e_3, \ u(e_2) = e_4, \ u(e_3) = u(e_4) = 0$$

- **2.1** Déterminer Im(u), Ker(u), rg(u). A-t-on $E = Ker(u) \oplus Im(u)$?
- **2.2** L'endomorphisme u est-il diagonalisable?
- **2.3** Ecrire dans une base de Im(u) la matrice de l'endomorphisme induit par u sur Im(u).
- **3.** Soit $A \in \mathcal{M}_n(\mathbb{R})$ et λ une valeur propre de A.

Que peut-on dire de la dimension du sous-espace vectoriel $\operatorname{Ker}(A-\lambda\,I_n)$ où I_n désigne la matrice identité de $\mathcal{M}_n(\mathbb{R})$?

4. On suppose que $A \in \mathcal{M}_n(\mathbb{R})$ possède n valeurs propres distinctes. Donner, en le justifiant, l'ordre de multiplicité de chacune de ces valeurs propres dans le polynôme caratéristique.

Dans tout l'exercice :

- on identifie le vecteur V de \mathbb{R}^n et la matrice colonne de ses composantes dans la base canonique de \mathbb{R}^n .
- on munit l'espace \mathbb{R}^n du produit scalaire usuel : $(X|Y) = {}^t X Y$ où ${}^t X$ désigne la transposée de la matrice $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$
- M est une matrice de $\mathcal{M}_n(\mathbb{R})$ possédant n valeurs propres réelles distinctes, $\lambda_1,...,\lambda_n$.

Pour tout $k \in [1, n]$, on choisit un vecteur V_k non nul de $E_k = \text{Ker}(M - \lambda_k I_n)$

1. Montrer que la matrice tM , transposée de M, est diagonalisable dans $\mathscr{M}_n(\mathbb{R})$ et admet les mêmes valeurs propres que M.

On choisit alors, pour tout $k \in [1, n]$, un vecteur W_k non nul de $Ker({}^tM - \lambda_k I_n)$.

- **2.** Prouver que : $\forall (i,j) \in [1,n]^2, i \neq j \Longrightarrow {}^tV_iW_j = 0.$
- 3. Démontrer que : $\forall i \in \llbracket 1, n \rrbracket$, ${}^tV_i\,W_i \neq 0$. Pour tout $k \in \llbracket 1, n \rrbracket$, on note $B_k = \frac{1}{{}^tV_k\,W_k}\,(V_k\,{}^tW_k)$.
- 4. Exemple: Soit $A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$.

Vérifier que A posssède deux valeurs propres λ_1 et λ_2 , distinctes et telles que $\lambda_1 < \lambda_2$.

Déterminer les matrices $B_1 + B_2$ et $\lambda_1 B_1 + \lambda_2 B_2$.

5. On revient au cas général.

Soit $k \in [1, n]$. Déterminer le rang de B_k . Calculer B_k^2 . La matrice B_k est-elle diagonalisable dans $\mathcal{M}_n(\mathbb{R})$?

- **6.** Déterminer $P = \sum_{k=1}^{n} B_k$ et $Q = \sum_{k=1}^{n} \lambda_k B_k$.
- 7. Soit $r \in \mathbb{N}$. Déterminer $G_r = \sum_{k=1}^n (\lambda_k)^r B_k$.

EXERCICE 5

- 1. Soient $x \in \mathbb{R}$ et φ_x la fonction qui à tout réel t associe $\varphi_x(t) = \max(x, t)$.
 - 1.1 Donner une représentation graphique de φ_x .
 - **1.2** Calculer $\Phi(x) = \int_0^1 \varphi_x(t) dt$.
 - 1.3 Donner une représentation graphique de Φ .

Dans toute la suite de l'exercice, on considère une variable aléatoire X, définie sur un espace probabilisé $(\Omega, \mathscr{A}, \mathbb{P})$ et on admet que l'on définit une variable aléatoire Y, définie sur le même espace probabilisé par :

$$\forall \omega \in \Omega, \ Y(\omega) = \int_0^1 \max(X(\omega), t) dt$$

- 2. Dans cette question, X suit une loi géométrique. Déterminer $Y(\omega)$ pour tout $\omega \in \Omega$.
- 3. Dans cette question, X suit une loi binomiale $\mathscr{B}(n,p)$ où $n\in\mathbb{N}^*$ et $p\in]0,1[$.
 - **3.1** Donner $X(\Omega)$, $\mathbb{P}([X=x])$ où $x \in X(\Omega)$, l'espérance et la variance de X.
 - 3.2 Déterminer $Y(\Omega)$ et donner la loi de probabilité de Y.
- **4.** On suppose dans cette question que l'on a : $X(\Omega) = \left\{-1, 0, \frac{1}{2}, 2\right\}$ et que :

$$\mathbb{P}(X = -1) = \mathbb{P}(X = 0) = \frac{1}{8}, \ \mathbb{P}(X = 2) = \frac{1}{3}$$

- **4.1** Déterminer la valeur de $\mathbb{P}\left(X = \frac{1}{2}\right)$.
- 4.2 Donner la loi de probabilité de la variable aléatoire Y puis calculer son espérance mathématique $\mathrm{E}(Y)$.
- 4.3 On note Z la variable aléatoire définie sur le même espace probabilisé par Z = XY.

Justifier que
$$Z(\Omega) = \left\{-\frac{1}{2}, 0, \frac{5}{16}, 4\right\}$$
.

Déterminer la loi de probabilité de la variable aléatoire Z.

4.4 Calculer le coefficient de corrélation $\rho(X,Y)$ des deux variables aléatoires X et Y.