

Product Specification

- ❖ Product Name: AMOLED
- ❖ Model Name: DO0370PWR04
- Description:3.7inch Visual WVGA(480x800)

roposed by	Customer's Approval	
Checked	Approved	

DOC No. DO0370PWR04 REV 0.0 2024-04-27 1 / 23

Document Revision History

Rev. No.	Date	Contents	Remark
0.0	2023-04-27	Initial issue	Preliminary

1.General Description:

■ Driving Mode: Active Matrix.

■ Color Mode: Full Color (16.7M color)

■ Display Format: 3.7" Visual WVGA-480 x 800

■ Driver IC: TL2796

■ Interface: RGB-24bits, SPI-3 line

■ Application: Handheld & PDA

■ RoHS Compatible

2.Mechanical Data

Item	Specifications	Unit
Dimensional outline(X*Y)	55.94(W) * 104(H) * Thickness	mm
Thickness	Total 4.8(T) AMOLED=1.6mm; Foam=2.0mm; PCB=1.2mm	mm
Resolution	480(W) x800(H)	Dots
Active area	48.24(W) X80.4(H)	mm
Diagonal Inch	3.7	inch

^{*}See attached drawing for details.

3.Block Diagram

4.Dimension

5.Pin Description

Main FPC assignment- AMOLED Panel Input/output Signal Interface. Recommended 50pins 0.5MM FFC/FPC connect to DO0370PWR04, and DO0370PWR04 exclusive the FFC/FPC.

NO.	Pin Name	1/0	Description
1	GND	Р	Ground Terminal
2	VBAT	Р	Power supply for AMOLED(2.9-4.5V,3.8V TYP.)
3	VBAT	Р	
4	VCI	Р	Analog Voltage for Driver (2.5~3.3V)
5	IOVCC	Р	Power supply for I/O(1.7-3.3V)
6	GND	Р	Ground Terminal
7	SPI_RESET	1	Reset Signal (0: reset, 1: normal operation) for Display.
8	SPI_SDO	0	Serial data output pin
9	SPI_SDI	1	Serial data input pin
10	SPI_SCK	1	Serial data transfer clock input pin
11	DEN	1	Data enable signal pin for RGB I/F.
12	HSYNC	1	Horizontal sync signal of the RGB I/F
13	VSYNC	1	Vertical sync signal of the RGB I/F
14	DCLK	ı	Dot clock signal of the RGB I/F
15	D00	1	Data Bus of the RGB Interface(LSB).
16	D01	1	Data Bus of the RGB Interface.
17	D02	1	Data Bus of the RGB Interface.
18	D03	1	Data Bus of the RGB Interface.
19	D04	1	Data Bus of the RGB Interface.
20	D05	1	Data Bus of the RGB Interface.
21	D06	1	Data Bus of the RGB Interface.
22	D07	1	Data Bus of the RGB Interface.
23	D08	1	Data Bus of the RGB Interface.
24	D09	1	Data Bus of the RGB Interface.
25	D10	1	Data Bus of the RGB Interface.
26	D11	1	Data Bus of the RGB Interface.
27	D12	1	Data Bus of the RGB Interface.
28	D13	1	Data Bus of the RGB Interface.
29	D14		Data Bus of the RGB Interface.
30	D15		Data Bus of the RGB Interface.
31	D16		Data Bus of the RGB Interface.
32	D17	1	Data Bus of the RGB Interface.
33	D18	1	Data Bus of the RGB Interface.

34	D19	1	Data Bus of the RGB Interface.
35	D20	1	Data Bus of the RGB Interface.
36	D21	1	Data Bus of the RGB Interface.
37	D22	1	Data Bus of the RGB Interface.
38	D23	1	Data Bus of the RGB Interface.
39	SPI_CS	1	Chip select signal input (Low Active)
40	GND	Р	Ground Terminal
41	GND	Р	Ground Terminal
42	NC	-	Let it open
43	NC	-	Let it open
44	NC	-	Let it open
45	NC	-	Let it open
46	NC	-	Let it open
47	NC	-	Let it open
48	NC	_	Let it open
49	NC	-	Let it open
50	GND	Р	Ground Terminal

Note:

The 50Pins connector(TF31-50S-0.5SH) on DO0370PWR04, bottom contact.

3-Wire Serial interface is used to setting the register,

RGB interface is used to transferring the display data.

6. DC Characteristics

Test Conditions :Voltage Referenced to VSS=0V, IOVCC = 1.8V, VCI=3.3V,TA = 25° C Unless otherwise specified

	Item	Symb ol	Condition	Min.	Тур.	Max.	Unit	
	Logic	IOVCC	-	1.65	1.8	3.3		
Supply voltage	0	VCI	-	2.5	2.9	3.4	V	
	Power	VBat	-	2.9	3.8	4.5		
Input	"H" level	VIH	-	0.8*IOVCC	-	IOVCC	V	
Voltage	"L" level	VIL	-	-0.2	-	0.2*IOVCC		
Output	"H" level	VOH	IOH = -0.1mA	0.8*IOVCC	-	IOVCC	V	
Voltage	"L" level	VOL	IOL = 0.1mA	-0.2	-	0.2*IOVCC		
Leakage	Input	ILI	Vin=IOVCC or	-1.0	-	1.0	uA	
Current	Output	ILO	VSS	-3.0	-	3.0	uA	
Supply Current	EL Power (250cd/m ² , full white)	IBAT	VBAT=3.8V	-	320	380	mA	
		IOVCC	IOVCC	-	-	1	mA	
	Driver IC Current Consumption		=VCI=2.8V	-	-	20	mA	
Consum			IOVCC =VCI=2.8V	-	-	200	uA	

7.AC characteristics

7-1 Reset Timing

Reset timing characteristic

VSS=0V, VDDIO=1.7V to 3.3V, VCI=2.5V to 3.3V, Ta = -30 to 70° C

Item	Symbol	Unit	Min.	Тур.	Max.
Reset low-level width	tRES	us	10	-	-
Reset rise time	trRES	us	-	-	2
Reset cancel	tRT	ms			1

Ref code: RESET=0; delay_ms(1);

RESET=1; delay_ms(1);

RESET=0; delay_ms(10);

RESET=1; delay_ms(60);

7-2 SPI Interface

SPI Interface Characteristics

IOVCC=1.7 to 3.3V, VCC= 2.5 to 3.3V operation

Item		Symbol	Min.	Тур.	Max.	Unit
Serial clock	Write (received)	tSCYC	100	-	-	ns
cycle time	Read (transmitted)	tSCYC	350	-	-	ns
Serial clock high-level	Write (received)	tSCH	40	-	-	ns
pulse width	Read (transmitted)	tSCH	150	-	-	ns
Serial clock low-level	Write (received)	tSCL	40	-	-	ns
pulse width	Read (transmitted)	tSCL	150	-	-	ns
Serial clock ri	se/fall time	tSCr, tSCf	-	-	20	ns
Chip select se	et up time	tCSU	20	-	-	ns
Chip select he	old time	tCH	60	-	-	ns
Serial input d	ata set up time	tSISU	30	-	-	ns
Serial input d	ata hold time	tSIH	30	-	-	ns
	data delay time	tSOD	-	-	130	ns
Serial output	data hold time	tSOH	5	-	-	ns

SPI Interface Timing

Ref Code:

DOC No. DO0370PWR04 REV 0.0 2024-04-27 10 / 23


```
set_clk();
    }
}
void Spi_Write_Command(int reg_H,int reg_L) // SPI SUB FUNCTION 2
{
 int j,k;
 int addr=0x70;
 clr_cs();
 Spi_SendData(addr);
 Spi_SendData(reg_H);
 Spi_SendData(reg_L);
 set_cs();
}
void Spi_Write_Data(int par_H,int par_L)
int j,k;
int addr=0x72;
clr_cs();
Spi_SendData(addr);
Spi_SendData(par_H);
Spi_SendData(par_L);
set cs();
}
void Write_CmdData_SPI_16bits(unsigned int cmd,unsigned int data)
{
clr_cs();
Spi_SendData(0x70);
Spi_SendData(cmd);
set_cs();
clr_cs();
Spi_SendData(0x72);
Spi_SendData(data);
```



```
set_cs();
}
```

7-3 RGB Interface

RGB interface(16/18/24-bit), IOVCC=1.65 to 3.3V, VCC= 2.4 to 3.3V operation

Item	Symbol	Min.	Тур.	Max.	Unit
VSYNC / HSYNC "Low" level pulse width	PWHVL	1	-	-	DOTCLK
VSYNC / HSYNC set up time	tSYNCS	10	-	-	ns
VSYNC / HSYNC hold time	tSYNCH	10	-	-	ns
ENABLE set up time	tENS	10	-	-	ns
ENABLE hold time	tENH	10	-	-	ns
DOTCLK "Low" level pulse width	PWDL	10	-	-	ns
DOTCLK "High" level pulse width	PWDH	10	-	-	ns
DOTCLK cycle time	tCYCD	30	-	-	ns
Data set up time	tPDS	7	-	-	ns
Data hold time	tPDH	7	-	-	ns
DOTCLK, VSYNC, HSYNC rising, falling time	trgbr, trgbf	1	-	15	ns

Note 1) Above AC characteristics condition is in case of VCCL >= 1.8V irrespective of VCC.

RGB Interface Pin Map

Pad name	24 bits configuration	18 bits configuration	16 bits configuration
D23	R7	R5	R4
D22	R6	R4	R3
D21	R5	R3	R2
D20	R4	R2	R1
D19	R3	R1	R0
D18	R2	R0	R4/ Not used
D17	R1	R5/ Not used	R3/ Not used
D16	R0	R4/ Not used	R2/ Not used
D15	G7	G5	G5
D14	G6	G4	G4
D13	G5	G3	G3
D12	G4	G2	G2
D11	G3	G1	G1
D10	G2	G0	G0
D9	G1	G5/ Not used	G5/ Not used
D8	$\mathbf{G0}$	G4/ Not used	G4/ Not used
D7	В7	В5	B4
D6	В6	B4	В3
D5	B5	В3	B2
D4	B4	B2	B1
D3	В3	B1	В0
D2	B2	В0	B4/ Not used
D1	B1	B5/ Not used	B3/ Not used
D0	В0	B4/ Not used	B2/ Not used

8. Recommended Operating Sequence

STEP 1---[Power On]

STEP 2---[Activate Reset] Driver IC

STEP 3---[SPI Configure AMOLED Register]

STEP 4---[24Bit RGB Bus send Display data]

DOC No. DO0370PWR04 REV 0.0 2024-04-27 13 / 23

8-1. Power ON sequence

```
STEP 1---[ Power On ]
     (1) turn-ON VBAT (+3.8VDC)
     (2) turn-ON IOVCC (+1.8VDC)
     (3) turn-ON VCI (+3.3VDC)
         Wait 10ms
STEP 2---[ Activate Reset ] TL2796
STEP 3---[ SPI Configure AMOLED Register]
STEP 4---[ RGB Interface Send AMOLED Display Data]
```

```
void AMOLED_Init(void) // www.dwo.net.cn
Write_CmdData_SPI_16bits(0x14, 0x00); //set display off
Write_CmdData_SPI_16bits(0x31, 0x08); //set display mode 24-bit parallel RGB (de)
Write_CmdData_SPI_16bits(0x32, 0x14); //set display mode
Write_CmdData_SPI_16bits(0x30, 0x02); //set driver capability
Write_CmdData_SPI_16bits(0x27, 0x01);
Write CmdData SPI 16bits(0x12, 0x08); //VBP= 8*HSYNK
Write CmdData SPI 16bits(0x13, 0x08); //VFP= 8*HSYNK
Write CmdData SPI 16bits(0x15, 0x01); //Active Low SYNK, Rising Clock
Write CmdData SPI 16bits(0x16, 0x00);
clr_cs();
Spi_SendData(0x70);
Spi_SendData(0xef);
set_cs();
clr_cs();
```

Spi_SendData(0x72);


```
Spi_SendData(0xd0);
set_cs();
clr cs();
Spi_SendData(0x72);
Spi_SendData(0xe8);
set_cs();
//[Gamma Setting]
Write_CmdData_SPI_16bits(0x39, 0x44); //Gamma set Select
delay_ms(1);
#ifdef Brightness_250
/////////GAMMA2.2
Write_CmdData_SPI_16bits(0x40, 0x00); //set R_V0
Write_CmdData_SPI_16bits(0x41, 0x3f); //set R_V5
Write_CmdData_SPI_16bits(0x42, 0x2a); //set R_V15
Write_CmdData_SPI_16bits(0x43, 0x27); //set R_V31
Write_CmdData_SPI_16bits(0x44, 0x27); //set R_V63
Write CmdData SPI 16bits(0x45, 0x1f); //set R V127
Write CmdData SPI 16bits(0x46, 0x44); //set R V255
Write_CmdData_SPI_16bits(0x50, 0x00); //set G_V0
Write_CmdData_SPI_16bits(0x51, 0x00); //set G_V5
Write_CmdData_SPI_16bits(0x52, 0x17); //set G_V15
Write CmdData SPI 16bits(0x53, 0x24); //set G V31
Write_CmdData_SPI_16bits(0x54, 0x26); //set G_V63
Write_CmdData_SPI_16bits(0x55, 0x1f); //set G_V127
Write_CmdData_SPI_16bits(0x56, 0x43); //set G_V255
Write_CmdData_SPI_16bits(0x60, 0x00); //set B_V0
Write_CmdData_SPI_16bits(0x61, 0x3f); //set B_V5
```



```
Write_CmdData_SPI_16bits(0x62, 0x2a); //set B V15
Write_CmdData_SPI_16bits(0x63, 0x25); //set B_V31
Write_CmdData_SPI_16bits(0x64, 0x24); //set B V63
Write CmdData SPI 16bits(0x65, 0x1b); //set B V127
Write_CmdData_SPI_16bits(0x66, 0x5c); //set B_V255
#endif //end of 250 cd/m2
//Power On Setting Sequence
Write_CmdData_SPI_16bits(0x17,0x22); //Boosting Freq= 256*DOTCLK, 128*DOTCLK
Write_CmdData_SPI_16bits(0x18,0x33); //Power OP-AMP's current rate= Medium
Write_CmdData_SPI_16bits(0x19,0x03); //VLOUT2=3*VCI1OUT, VLOUT3=-4*VCI1OUT
Write_CmdData_SPI_16bits(0x1a,0x01); //Gray Scale OP-AMP's rate = Medium
Write_CmdData_SPI_16bits(0x22,0xa4); //Vinternal= 0.65*VCI
Write_CmdData_SPI_16bits(0x23,0x00); //VCI1= 0.98*VCI
Write_CmdData_SPI_16bits(0x26,0xa0); //dotclk reference
//Stand-by Off
Write_CmdData_SPI_16bits(0x1d,0xa0); //Stand-by Off
delay_ms(200);
Write CmdData SPI 16bits(0x14,0x03); //set display on
delay_ms(20);
AMOLED_Clear(0x0000);
} //end of AMOLED Init
```

8-2. Power OFF sequence

- (1) Sleep In Command (28h)
 Wait 120ms
- (2) Stand-by Off Command (10h)
 Wait 120ms
- (3) turn-OFF VCI (+3.3VDC)
- (4) turn-OFF IOVCC (+1.8VDC)
- (5) turn-OFF VBAT (+3.8VDC)

8-3 Gamma condition set---[Brightness set]

Five gamma register set for brightness control

#ifdef Brightness_250

```
//[Gamma Setting]
Write_CmdData_SPI_16bits(0x39,0x44); //Gamma set Select
/////////GAMMA2.2
Write CmdData SPI 16bits(0x40,0x00); //set R V0
Write CmdData SPI 16bits(0x41,0x3f); //set R V5
Write CmdData SPI 16bits(0x42,0x2a); //set R V15
Write CmdData SPI 16bits(0x43,0x27); //set R V31
Write_CmdData_SPI_16bits(0x44,0x27); //set R_V63
Write_CmdData_SPI_16bits(0x45,0x1f); //set R_V127
Write_CmdData_SPI_16bits(0x46,0x44); //set R_V255
Write_CmdData_SPI_16bits(0x50,0x00); //set G_V0
Write_CmdData_SPI_16bits(0x51,0x00); //set G_V5
Write_CmdData_SPI_16bits(0x52,0x17); //set G_V15
Write_CmdData_SPI_16bits(0x53,0x24); //set G_V31
Write_CmdData_SPI_16bits(0x54,0x26); //set G_V63
Write_CmdData_SPI_16bits(0x55,0x1f); //set G_V127
Write CmdData SPI 16bits(0x56,0x43); //set G V255
Write_CmdData_SPI_16bits(0x60,0x00); //set B_V0
Write_CmdData_SPI_16bits(0x61,0x3f); //set B_V5
Write_CmdData_SPI_16bits(0x62,0x2a); //set B_V15
Write_CmdData_SPI_16bits(0x63,0x25); //set B_V31
Write_CmdData_SPI_16bits(0x64,0x24); //set B_V63
Write_CmdData_SPI_16bits(0x65,0x1b); //set B_V127
Write CmdData SPI 16bits(0x66,0x5c); //set B V255
```

#endif //end of Brightness_250


```
//[Gamma Setting]
Write_CmdData_SPI_16bits(0x39,0x33); //Gamma set Select
//////////GAMMA2.2
Write_CmdData_SPI_16bits(0x40,0x00); //set R_V0
Write CmdData SPI 16bits(0x41,0x3f); //set R V5
Write CmdData SPI 16bits(0x42,0x28); //set R V15
Write CmdData SPI 16bits(0x43,0x29); //set R V31
Write CmdData SPI 16bits(0x44,0x27); //set R V63
Write CmdData SPI 16bits(0x45,0x21); //set R V127
Write CmdData SPI 16bits(0x46,0x3E); //set R V255
Write_CmdData_SPI_16bits(0x50,0x00); //set G_V0
Write_CmdData_SPI_16bits(0x51,0x00); //set G_V5
Write_CmdData_SPI_16bits(0x52,0x10); //set G_V15
Write_CmdData_SPI_16bits(0x53,0x25); //set G_V31
Write_CmdData_SPI_16bits(0x54,0x27); //set G_V63
Write_CmdData_SPI_16bits(0x55,0x20); //set G_V127
Write CmdData SPI 16bits(0x56,0x3D); //set G V255
Write CmdData SPI 16bits(0x60,0x00); //set B V0
Write_CmdData_SPI_16bits(0x61,0x3f); //set B_V5
Write_CmdData_SPI_16bits(0x62,0x28); //set B_V15
Write_CmdData_SPI_16bits(0x63,0x27); //set B_V31
Write_CmdData_SPI_16bits(0x64,0x25); //set B_V63
Write_CmdData_SPI_16bits(0x65,0x1D); //set B_V127
Write_CmdData_SPI_16bits(0x66,0x53); //set B_V255
```

#endif //end of Brightness_200


```
//[Gamma Setting]
Write_CmdData_SPI_16bits(0x39,0x22); //Gamma set Select
////////////150cd/m2//////////////GAMMA2.2
Write_CmdData_SPI_16bits(0x40,0x00); //set R_V0
Write CmdData SPI 16bits(0x41,0x3f); //set R V5
Write CmdData SPI 16bits(0x42,0x2D); //set R V15
Write CmdData SPI 16bits(0x43,0x29); //set R V31
Write CmdData SPI 16bits(0x44,0x28); //set R V63
Write CmdData SPI 16bits(0x45,0x23); //set R V127
Write CmdData SPI 16bits(0x46,0x37); //set R V255
Write_CmdData_SPI_16bits(0x50,0x00); //set G_V0
Write_CmdData_SPI_16bits(0x51,0x00); //set G_V5
Write_CmdData_SPI_16bits(0x52,0x0B); //set G_V15
Write_CmdData_SPI_16bits(0x53,0x25); //set G_V31
Write_CmdData_SPI_16bits(0x54,0x28); //set G_V63
Write_CmdData_SPI_16bits(0x55,0x22); //set G_V127
Write CmdData SPI 16bits(0x56,0x36); //set G V255
Write CmdData SPI 16bits(0x60,0x00); //set B V0
Write_CmdData_SPI_16bits(0x61,0x3f); //set B_V5
Write CmdData_SPI_16bits(0x62,0x2B); //set B_V15
Write_CmdData_SPI_16bits(0x63,0x28); //set B_V31
Write_CmdData_SPI_16bits(0x64,0x26); //set B_V63
Write_CmdData_SPI_16bits(0x65,0x1F); //set B_V127
Write_CmdData_SPI_16bits(0x66,0x4A); //set B_V255
```

#endif //end of Brightness 150

//[Gamma Setting]

```
Write_CmdData_SPI_16bits(0x39,0x11); //Gamma set Select
//////////GAMMA2.2
Write CmdData SPI 16bits(0x40,0x00); //set R V0
Write_CmdData_SPI_16bits(0x41,0x3f); //set R_V5
Write_CmdData_SPI_16bits(0x42,0x30); //set R_V15
Write_CmdData_SPI_16bits(0x43,0x2A); //set R_V31
Write_CmdData_SPI_16bits(0x44,0x2B); //set R_V63
Write_CmdData_SPI_16bits(0x45,0x24); //set R_V127
Write_CmdData_SPI_16bits(0x46,0x2F); //set R_V255
Write_CmdData_SPI_16bits(0x50,0x00); //set G_V0
Write CmdData SPI 16bits(0x51,0x00); //set G V5
Write_CmdData_SPI_16bits(0x52,0x00); //set G_V15
Write CmdData SPI 16bits(0x53,0x25); //set G V31
Write_CmdData_SPI_16bits(0x54,0x29); //set G_V63
Write_CmdData_SPI_16bits(0x55,0x24); //set G_V127
Write CmdData SPI 16bits(0x56,0x2E); //set G V255
Write_CmdData_SPI_16bits(0x60,0x00); //set B_V0
Write_CmdData_SPI_16bits(0x61,0x3f); //set B_V5
Write_CmdData_SPI_16bits(0x62,0x2F); //set B_V15
Write_CmdData_SPI_16bits(0x63,0x29); //set B_V31
Write_CmdData_SPI_16bits(0x64,0x29); //set B_V63
Write_CmdData_SPI_16bits(0x65,0x21); //set B_V127
Write_CmdData_SPI_16bits(0x66,0x3F); //set B_V255
#endif //end of Brightness 100
```



```
//[Gamma Setting]
Write_CmdData_SPI_16bits(0x39,0x00); //Gamma set Select
//////////50cd/m2/////////////GAMMA2.2
Write_CmdData_SPI_16bits(0x40,0x00); //set R_V0
Write CmdData SPI 16bits(0x41,0x3f); //set R V5
Write CmdData SPI 16bits(0x42,0x3C); //set R V15
Write CmdData SPI 16bits(0x43,0x2C); //set R V31
Write CmdData SPI 16bits(0x44,0x2D); //set R V63
Write CmdData SPI 16bits(0x45,0x27); //set R V127
Write CmdData SPI 16bits(0x46,0x24); //set R V255
Write_CmdData_SPI_16bits(0x50,0x00); //set G_V0
Write_CmdData_SPI_16bits(0x51,0x00); //set G_V5
Write_CmdData_SPI_16bits(0x52,0x00); //set G_V15
Write_CmdData_SPI_16bits(0x53,0x22); //set G_V31
Write_CmdData_SPI_16bits(0x54,0x2A); //set G_V63
Write_CmdData_SPI_16bits(0x55,0x27); //set G_V127
Write CmdData SPI 16bits(0x56,0x23); //set G V255
Write CmdData SPI 16bits(0x60,0x00); //set B V0
Write_CmdData_SPI_16bits(0x61,0x3F); //set B_V5
Write_CmdData_SPI_16bits(0x62,0x3B); //set B_V15
Write_CmdData_SPI_16bits(0x63,0x2C); //set B_V31
Write_CmdData_SPI_16bits(0x64,0x2B); //set B_V63
Write_CmdData_SPI_16bits(0x65,0x24); //set B_V127
Write_CmdData_SPI_16bits(0x66,0x31); //set B_V255
```

#endif //end of Brightness 50

9. Electro-optical characteristics

Item		Symbol	Temp	Condition	Min.	Тур.	Max.	Unit	Note
Bri	ghtness		25°C	Normal (White Mode)	200	250	300	cd/m²	Center brightnes s
Uni	iformity		25°C	Normal (White Mode)	82	90	ı	%	(1)
Contrast	ratio	К	25°C	Ф=0°,θ=0°	2,000		-	-	(1),(2)
		х			0.280	0.300	0.320	ı	
	White	у		Φ=0° θ=0°	0.290	0.310	0.330	1	
Color	Red	х			0.625	0.675	0.725	-	
of		У	25°C		0.275	0.325	0.375	-	(1),(2),(3)
CIE	Cusar	х		Ψ-0 0-0	0.170	0.220	0.270	-	(1),(2),(3)
coordinat e	Green	У			0.675	0.725	0.775	-	
	Dive	х			0.095	0.145	0.195	-	
	Blue	У			0.005	0.055	0.105	-	
Colo	Color Gamut		25°C	vs. NTSC	-	105	-	%	
Life	Time(5)		25°C	50% Brightness drop @250cd/m², Full White	-	30,000	-	Hr	(4)

Note 1): Uniformity Measuring Point

Uniformity = Lmin / Lmax * 100 [%]

Note 2): Definition of contrast ratio (K)

Brightness of selected dot (White patterned area) at 250cd/m²

Contrast Ratio(K) =

Brightness of non-selected dot (Black patterned area) at 250cd/m²

Note 3): Optical measuring system: temperature regulated chamber

Note 4): Life Time

The elapsed time that the full white brightness decreases to the half of initial value

10. Standard Specification For Reliability

No	Item	Condition	Cycles	Judgment Criterion
1	High Temperature Operation	80℃/ 240hours	10	No clearly visible defects or remarkable
2	Low Temperature Operation	-30°C/ 240hours	10	deterioration of display quality.However, any polarizer's deteriorations by the high temperature/ High humidity Storage test
3	High Temperature Storage	85℃/ 240hours	5	and the High temperature/ High humidity Operation test are permitted.
4	Low Temperature Storage	-30°C/ 240hours	5	No function-related abnormalities.
5	High Temperature Humidity Operation	60℃/90%RH/ 240hours	5	
6	Thermal Shock	-40℃~85℃ / 100cycles	5	

Note: The results must be measured after 2 hours later under room temperature keeping

- END -