

Sistem Komunikasi 1

Bab 11 Pengenalan Transmisi Digital

Baseband Digital Transmission Link

Sinyal Terima + AWGN

original message d(t)

Figure 3-23a Transmitted signal for "10010" using rectangular pulses.

Bentuk gelombang/sinyal PCM

- NonReturn-to-Zero (NRZ)
- Return-to-Zero (RZ)

- Phase encoded
- Multilevel binary

Miller

NRZ-L

Unipolar-RZ

Bipolar-RZ

Spectrum sinyal PCM

Introduction: Analog modulation and digital modulation

- Both analog and digital modulation systems use analog carriers to transport the information signal.
- In analog modulation, the information is also analog, whereas with digital modulation, the information is digital which could be computer generated data or digitally encoded analog signals.

Introduction to Digital Modulation

Offer several outstanding advantages over traditional analog system.

- Ease of processing
- Ease of multiplexing
- Noise immunity

Applications:

Low speed voice band data comm. modems High speed data transmission systems Digital microwave & satellite comm. systems Mobile communication systems

Important Criteria

- 1. High spectral efficiency
- 2. High power efficiency
- 3. Robust to multipath
- 4. Low cost and ease of implementation
- 5. Low carrier-to-co channel interference ratio
- 6. Low out-of-band radiation

- 7. Constant or near constant envelop
- 8. Bandwidth Efficiency
 - Ability to accommodate data within a limited bandwidth
 - Tradeoff between data rate and pulse width
- 9. Power Efficiency
 - To preserve the fidelity of the digital message at low power levels.
 - Can increase noise immunity by increasing signal power

Forms of Digital Modulation

Forms of Digital Modulation

$$v(t) = V \sin(2\pi f t + \theta)$$

- If the *amplitude*, *V* of the carrier is varied proportional to the information signal, a digital modulated signal is called **Amplitude Shift Keying (ASK)**
- If the *frequency*, *f* of the carrier is varied proportional to the information signal, a digital modulated signal is called **Frequency Shift Keying (FSK)**

- If the phase, θ of the carrier is varied proportional to the information signal, a digital modulated signal is called Phase Shift Keying (PSK)
- If both the amplitude and the phase, θ of the carrier are varied proportional to the information signal, a digital modulated signal is called Quadrature Amplitude Modulation (QAM)

Example 1

For the digital message 1101 1100 1010, sketch the waveform for the following:

- a. ASK
- b. FSK
- c. PSK
- d. QAM

Block Diagram

Simplified block diagram of a digital modulation system

- Precoder performs level conversion & encodes incoming data into group of bits that modulate an analog carrier.
- Modulated carrier filtered, amplified & transmitted through transmission medium to Rx.

 In Rx, the incoming signals filtered, amplified & applied to the demodulator and decoder circuits which extracts the original source information from modulated carrier.

M-ary Encoding

- It is often advantageous to encode at a level higher than binary where there are more then two conditions possible.
- The number of bits necessary to produce a given number of conditions is expressed mathematically as

$$N = \log_2 M$$
 OR

$$M = 2^N$$

Where N = number of bits necessary

M = number of conditions, level or combinations

possible with N

bits.

- Each symbol represents n bits, and has M signal states, where $M = 2^{N}$.
- Example;

A digital signal with four possible conditions (voltage levels, frequencies, etc) is an M-ary system with number of possible conditions, M=4.

Example 2

Find the number of voltage levels which can represent an analog signal with

- a. 3 Bits
- b. 8 bits
- c. 12 bits

Ans: M=8,256,4096

Digital Modulation Techniques

- Amplitude Shift Keying (ASK)
- Frequency Shift Keying (FSK)
- Phase Shift Keying (PSK)
- Quadrature Amplitude Modulation (QAM)