"大学物理"参考答案及评分标准(07级,A卷)

- 一、选择题(每题3分,共30分)
- $1, (A) \quad 2, (B) \quad 3, (C) \quad 4, (C) \quad 5, (B) \quad 6, (B) \quad 7, (D) \quad 8, (C) \quad 9, (D) \quad 10, (A)$
- 二、填空题(每题3分,共30分)
- $1 \cdot -S_1 I/(S_1 + S_2)$
- (3分)
- $\begin{array}{cccc}
 & & & \\
 2 & & & \\
 \end{array} (3 分)$
- 3、___1:16___ (3分)
- 4、__1___(3分)
- 5、 垂直 (2分) 相同 (1分)
- 6、__4__(3分)
- (3分)
- 8、 $\sin^2 \frac{\varphi_1}{2} / \sin^2 \frac{\varphi_2}{2}$ (3分)
- 9、 定态 (1分) (角动量)量子化 (1分) 跃迁 (1分)
- 10、 6.63×10^{-24} (3分)(或 1.06×10^{-24} , 0.53×10^{-24} , 3.32×10^{-24})
- 三、计算题、简答题(共40分)
- 1、(共5分)
- 解:延长线过O点的载流直导线在O点的磁感强度为0(1分)

半径为 R_1 的 1/2 圆弧段载流导线在O点的磁感强度为 $\frac{\mu_0 I}{4R_1}$ (1分)

半径为 R_2 的 1/2 圆弧段载流导线在O点的磁感强度为 $\frac{\mu_0 I}{4R_2}$ (1分)

O 点的总磁感强度为 $B = \frac{\mu_0 I}{4R_0} - \frac{\mu_0 I}{4R_0}$ (1分) ,方向为垂直纸面向外(1分)

- 2、(共10分)
 - 解: (1) 导体杆滑到距离 O 点 x 处时,金属架内的磁通量为 $\Phi_m = \frac{x^2 \tan \theta}{2} B$ (2分)

金属架内的动生电动势大小为
$$\varepsilon_{i1} = \frac{d\Phi_m}{dt} = \frac{B \tan \theta}{2} \frac{d(x^2)}{dt} = xBv \tan \theta$$
 (2分)

方向: 顺时针 (1分)

(2) 导体杆距离
$$O \le L$$
 处时,金属架内的磁通量为 $\Phi_m = \frac{L^2 \tan \theta}{2} B$ (2分)

金属架内的动生电动势大小为
$$\varepsilon_{i1} = \frac{d\Phi_m}{dt} = \frac{L^2 \tan \theta}{2} \frac{dB}{dt} = \frac{L^2 \tan \theta}{2} (10 + 10t)$$
 (2分)

方向: 顺时针 (1分)

3、(共10分)

解: (1) $y_0=0$ (1分),振动速度 $v_0<0$ (1分),原点处质点振动的初相位为 $\phi_0=\pi/2$ (1分) 得,原点处质点的振动方程为: $y = A\cos(\omega t + \pi/2)$ (1分)

(2) 波函数为:
$$y = A\cos[\omega(t - \frac{x}{u}) + \frac{\pi}{2}]$$
(SI) (3分)

(3) 在
$$x=l$$
 处质点的振动方程为: $y = A\cos\left[\omega(t-\frac{l}{u}) + \frac{\pi}{2}\right]$ (SI) (3分)

4、(共10分)

解: (1) 光栅常数d=0.02/8000=2.5×10⁻⁶ m (2分) 根据光栅方程: $d\sin\varphi=\pm k\lambda$ $k=0,1,2,3,\cdots$ (2分) 第k级衍射主极大的衍射角 φ_k 为: φ_k =arcsin($k\lambda/d$) (1分) k=1, $\varphi_1=\arcsin(\lambda/d)=\arcsin(589.3/2500)$ (0.5分) k=2, $\varphi_1 = \arcsin(2\lambda/d) = \arcsin(1179/2500)$ (0.5 分) k=3, $\varphi_1=\arcsin(3\lambda/d)=\arcsin(1768/2500)$ (0.5 分) k=4, $\varphi_1=\arcsin(4\lambda/d)=\arcsin(2357/2500)$ (0.5分) (2) 理论上可以看到的最高级次 $k_{\text{max}}=d/\lambda=4.24$ (2分) 理论上可以看到的最高级次取 $k_{max}=d/\lambda=4$ (1分)

5、(共5分)

解:设能使该金属产生光电效应的单色光最大波长为λ0。

由
$$hv_0$$
- W =0 (1分)
可得 (hc/λ_0) - W =0 λ_0 = hc/W (1分)
又按题意: (hc/λ) - W = E_k (1分)
∴ W = (hc/λ) - E_k (1分)

得:
$$\lambda_0 = \frac{hc}{(hc/\lambda) - E_k} = \frac{hc\lambda}{hc - E_k\lambda} = 612 \,\text{nm}$$
 (1分)

理学院 物理系 2008年12月24日