B Notation

Basic Concepts

Scalars: small *italic* letters....*a*,*b*,*c*

Vectors: small **bold** nonitalic letters.....**a,b,c**

Matrices: capital BOLD nonitalic letters.....A,B,C

Language

Vector means a column of numbers.

Row vector means a row of a matrix used as a vector (column).

General Vectors and Transformations (Chapters 5 and 6)

$$x = A(y)$$

Weight Matrices

Scalar Element

$$w_{i,j}^k(t)$$

i - row, j - column, k - layer, t - time or iteration

Matrix

$$\mathbf{W}^{k}(t)$$

Column Vector

$$\mathbf{w}_{j}^{k}(t)$$

Row Vector

$$_{i}\mathbf{w}^{k}(t)$$

Bias Vector

Scalar Element

$$b_i^k(t)$$

Vector

$$\mathbf{b}^k(t)$$

Input Vector

Scalar Element

$$p_i(t)$$

As One of a Sequence of Input Vectors

$$\mathbf{p}(t)$$

As One of a Set of Input Vectors

$$\mathbf{p}_q$$

Net Input Vector

Scalar Element

$$n_i^k(t)$$
 or $n_{i,q}^k$

Vector

$$\mathbf{n}^k(t)$$
 or \mathbf{n}_q^k

Output Vector

Scalar Element

$$a_i^k(t)$$
 or $a_{i,q}^k$

Vector

$$\mathbf{a}^k(t)$$
 or \mathbf{a}_q^k

Transfer Function

Scalar Element

$$a_i^k = f^k(n_i^k)$$

Vector

$$\mathbf{a}^k = \mathbf{f}^k(\mathbf{n}^k)$$

Target Vector

Scalar Element

$$t_i(t)$$
 or $t_{i, q}$

Vector

$$\mathbf{t}(t)$$
 or \mathbf{t}_a

Set of Prototype Input/Target Vectors

$$\{\mathbf{p}_1, \mathbf{t}_1\}, \{\mathbf{p}_2, \mathbf{t}_2\}, \dots, \{\mathbf{p}_Q, \mathbf{t}_Q\}$$

Error Vector

Scalar Element

$$e_i(t) = t_i(t) - a_i(t)$$
 or $e_{i, q} = t_{i, q} - a_{i, q}$

Vector

$$\mathbf{e}(t)$$
 or \mathbf{e}_q

Sizes and Dimensions

Number of Layers, Number of Neurons per Layer

$$M, S^k$$

Number of Input Vectors (and Targets), Dimension of Input Vector

Parameter Vector (includes all weights and biases)

Vector

X

At Iteration k

$$\mathbf{x}(k)$$
 or \mathbf{x}_k

Norm

X

Performance Index

$$F(\mathbf{x})$$

Gradient and Hessian

$$\nabla F(\mathbf{x}_k) = \mathbf{g}_k$$
 and $\nabla^2 F(\mathbf{x}_k) = \mathbf{A}_k$

Parameter Vector Change

$$\Delta \mathbf{x}_k = \mathbf{x}_{k+1} - \mathbf{x}_k$$

Eigenvalue and Eigenvector

$$\lambda_i$$
 and \mathbf{z}_i

Approximate Performance Index (single time step)

$$\hat{F}(\mathbf{x})$$

Transfer Function Derivative

Scalar

$$\dot{f}(n) = \frac{d}{dn}f(n)$$

Matrix

$$\dot{\mathbf{F}}^{m}(\mathbf{n}^{m}) = \begin{bmatrix} \dot{f}^{m}(n_{1}^{m}) & 0 & \dots & 0 \\ 0 & \dot{f}^{m}(n_{2}^{m}) & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & \dot{f}^{m}(n_{S^{m}}^{m}) \end{bmatrix}$$

Jacobian Matrix

Approximate Hessian Matrix

$$\mathbf{H} = \mathbf{J}^T \mathbf{J}$$

Sensitivity Vector

Scalar Element

$$s_i^m \equiv \frac{\partial \hat{F}}{\partial n_i^m}$$

Vector

$$\mathbf{s}^m \equiv \frac{\partial \hat{F}}{\partial \mathbf{n}^m}$$

Marquardt Sensitivity Matrix

Scalar Element

$$\tilde{s}_{i,h}^{m} \equiv \frac{\partial v_{h}}{\partial n_{i,q}^{m}} = \frac{\partial e_{k,q}}{\partial n_{i,q}^{m}}$$

Partial Matrix (single input vector \mathbf{p}_q) and Full Matrix (all inputs)

$$\tilde{\mathbf{S}}_q^m$$
 and $\tilde{\mathbf{S}}^m = \begin{bmatrix} \mathbf{S}_1^m & \mathbf{S}_2^m & \dots & \mathbf{S}_Q^m \end{bmatrix}$

Dynamic Networks

Sensitivity

$$s_{k,i}^{u,m}(t) \equiv \frac{\partial^e a_k^u(t)}{\partial n_i^m(t)}$$

Weight Matrices

 $\mathbf{IW}^{m,\,l}(d)$ - input weight between input l and layer m at delay d

 $\mathbf{L}\mathbf{W}^{m,\,l}(d)$ - layer weight between layer l and layer m at delay d

Index Sets

 $DL_{m,\,l}$ - delays in the tapped delay line between Layer l and Layer m.

 $DI_{m,l}$ - delays in the tapped delay line between Input l and Layer m.

 I_m - indices of input vectors that connect to layer m.

 \mathcal{L}_{m}^{f} - indices of layers that directly connect forward to layer m.

 L_m^b - indices of layers that are directly connected backwards to layer m (or to which layer m connects forward) and that contain no delays in the connection.

$$E_{LW}^{U}(x) = \{ u \in U \ni \exists (\mathbf{LW}^{x, u}(d) \neq 0, d \neq 0) \}$$

$$E_S^X(u) = \{ x \in X \ni \exists (\mathbf{S}^{u,x} \neq 0) \}$$

$$E_S(u) = \{x \ni \exists (\mathbf{S}^{u, x} \neq 0)\}\$$

$$E_{LW}^{X}(u) = \{x \in X \ni \exists (\mathbf{LW}^{x, u}(d) \neq 0, d \neq 0)\}$$

$$E_S^U(x) = \{ u \in U \ni \exists (\mathbf{S}^{u, x} \neq 0) \}$$

B Notation

Definitions

Input Layer (X) - has an input weight, or contains any delays with any of its weight matrices

Output Layer (U) - its output will be compared to a target during training, or it is connected to an input layer through a matrix that has delays associated with it.

Parameters for Backpropagation and Variations

Learning Rate and Momentum

 α and γ

Learning Rate Increase, Decrease and Percentage Change

 η , ρ and ζ

Conjugate Gradient Direction Adjustment Parameter

 β_k

Marquardt Parameters

 μ and ϑ

Generalization

Regularization Parameters

$$\alpha$$
, β and $\rho = \frac{\alpha}{\beta}$

Effective Number of Parameters

γ

Selected Model

M

Sum Squared Error and Sum Squared Weights

$$E_D$$
 , E_W

Maximum Likelihood and Most Probable Weights

$$\mathbf{x}^{ML}$$
, \mathbf{x}^{MP}

Feature Map Terms

Distance Between Neurons

 d_{ij} - distance between neuron i and neuron j

Neighborhood

$$N_i(d) = \{j, d_{ij} \le d\}$$

Grossberg and ART Networks

On-Center and Off-Surround Connection Matrices

$${}^{+}\mathbf{W}^{1} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix} \text{ and } {}^{-}\mathbf{W}^{1} = \begin{bmatrix} 0 & 1 & \cdots & 1 \\ 1 & 0 & \cdots & 1 \\ \vdots & \vdots & & \vdots \\ 1 & 1 & \cdots & 0 \end{bmatrix}$$

Excitatory and Inhibitory Biases

⁺**b** and ⁻**b**

Time Constant

3

Relative Intensity

$$\bar{p}_i = \frac{p_i}{P}$$
 where $P = \sum_{i=1}^{S^1} p_i$

Instar and Outstar Weight Matrices

$$\mathbf{W}^{1:2}$$
 and $\mathbf{W}^{2:1}$

Orienting Subsystem Parameters

$$\alpha$$
, β and $\rho = \frac{\alpha}{\beta}$ (vigilance)

ART1 Learning Law Parameter

ζ

Lyapunov Stability

Lyapunov Function

 $V(\mathbf{a})$

Zero Derivative Set, Largest Invariant Set and Closure

Z, L and L°

Bounded Lyapunov Function Set

$$\Omega_{\eta} = \{a: V(a) < \eta\}$$

Hopfield Network Parameters

Circuit Parameters

$$T_{i,j}$$
, C , R_i , I_i , ρ

Amplifier Gain

γ