

1º Grado en Ingeniería Informática **Lógica**

4ª Prueba de Trabajo **en Grupo**

Semántica y resolución en LPO

Grupo: 21

Estudiante: Sergio González Estudiante: Sergio Heras Estudiante: Pablo Tesoro

1. Formalización

1.1 (0.5p) Con 1 predicado y 1 función, sobre D = N:

"Cualquier número impar multiplicado por 2 es par"

P(x)=x es par F(x)=x multiplicado por 2 $\forall x(\neg P(F(x)) \rightarrow P(x))$

1.2 (0.75p) Con 2 predicados, sobre D = alumnos:

"Ningún alumno aprueba Lógica sin estudiar"
P(x)= x aprueba lógica
S(x)= x estudia lógica
¬∃x(P(x) ∧¬S(x))

"Cuando al menos un alumno no estudia, todos suspenden lógica"
P(x)= x estudia
S(x)= x suspende lógica
∃x¬P(x) →∀x(S(x))

"Al menos un alumno que estudia aprueba"

P(x)= x aprueba S(x)= x estudia $\exists x(S(x) \rightarrow P(x))$

1º Grado en Ingeniería Informática **Lógica**

4ª Prueba de Trabajo en Grupo

2. (2p) Demuestra **semánticamente** sobre $D = \{1, 2\}$, si la siguiente argumentación es consecuencia lógica. Justifica la respuesta mediante la interpretación de fórmulas.

$$\{ \forall x (P(x,x) \to Q(x)), \neg Q(a), P(a,b) \land P(b,a) \} \ | =? \ \neg \exists x P(x,x)$$

$$i(\forall x (P(x,x) \to Q(x))) = V \ sii$$

$$y \left\{ \begin{array}{ll} i(P(a,a) \to Q(a)) = V \ sii \\ i(P(b,b) \to Q(b)) = V \ sii \\ i(P(b,b)) = V \ sii \\ i(P(a,b) \to Q(b)) = V \ sii \\ i(P(a,b)) = V \ sii \\ i(P(b,a)) = V \ sii \ si(P(a,a)) = F \ sii \\ i(P(a,a)) = F \ sii \ si(P(a,a)) = F \ sii \\ i(P(a,a)) = F \ sii \ si(P(a,a)) = F \ sii \\ i(P(a,a)) = F \ sii \ si(P(a,a)) = F \ sii \ si(P(a,a)) = F \ sii \\ i(P(a,a)) = F \ sii \ si(P(a,a)) = F \ si(P(a,a$$

3. Pasar a forma clausular la siguiente argumentación (1.25p)

T [
$$\forall x \exists y \ P(x,y) \rightarrow \exists x \ Q(x,x)$$
] |- $\exists x \exists y \ R(x,y) \rightarrow \forall z \ Q(x,z)$
A= $\forall x \exists y \ P(x,y) \rightarrow \exists x \ Q(x,x)$
Prenex(A)= $\forall z \exists y \ P(z,y) \rightarrow \exists x \ Q(x,x)$
Cierre(A)= $\forall z \exists y \exists x \ (P(z,y) \rightarrow \exists x \ Q(x,x))$
FNC(A)= $\forall z \exists y \exists x \ (\neg P(z,y) \ V \ Q(x,x))$
FNS(A)= $\forall z \ (\neg P(z,f(z)) \ V \ Q(g(z),g(z))$
FC(A)= {($\neg P(z,f(z)) \ V \ Q(g(z),g(z))$ }

1º Grado en Ingeniería Informática **Lógica**

4ª Prueba de Trabajo en Grupo

4. Obtener el UMG (justificando la respuesta) de los siguientes literales (1.25p)

α	Αα	Βα	tA, tB
{λ}	P(g(x), x, g(h(t)), t)	P(y, h(z), y, b)	y, g(x)
{y/g(x)}	P(g(x), x, g(h(t)), t)	P(g(x), h(z), g(x), b)	x, h(z)
${y/g(h(z)), x/h(z)}$	P(g(h(z)), h(z), g(h(t)), t)	P(g(h(z)), h(z), g(h(z)), b)	z, t
${y/g(h(t)), x/h(t), z/t}$	P(g(h(t)), h(t), g(h(t)), t)	P(g(h(t)), h(t), g(h(t)), b)	z, b
${y/g(h(t)), x/h(t), t/b, z/b}$	P(g(h(b)), h(b), g(h(b)), b)	P(g(h(b)), h(b), g(h(b)), b)	

A y B son unificables y su UMG es: $\{y/g(h(t)), x/h(t), t/b, z/b\}$.

5. Demuestra por resolución con UMG si el siguiente conjunto de cláusulas es insatisfacible (2.25p):

C1: $\neg P(x, y) \lor \neg Q(x) \lor R(y)$

C2: $\neg P(x, y) \lor \neg S(x) \lor \neg R(f(y))$

C3: $\neg S(x) \lor Q(x)$

C4: $S(f(x)) \vee S(f(y))$

C5: P(x, f(x))

Factorización.

 $(S(f(x)) \lor S(f(y))) \lbrace y/x \rbrace = S(f(x)) \lor S(f(x)) = S(f(x))$

Demostración.

C1: $\neg P(x, y) \lor \neg Q(x) \lor R(y)$

C2: $\neg P(x, y) \lor \neg S(x) \lor \neg R(f(y))$

C3: $\neg S(x) \lor Q(x)$

C4: $S(f(x)) \vee S(f(y)) = S(f(x))$

C5: P(x, f(x))

 $(C3,C4) \{x1/x2\}$ R1: Q(x2)

(R1,C1) $\{x2/x3\}$ R2: $\neg P(x3, y3) \lor R(y3)$

 $(R2,C5) \{x3/x4, y3/f(x4)\}$ R3: R(f(x4))

 $(C4,C2) \{x5/x6\}$ R4: $\neg P(x6, y6) \lor \neg R(f(y6))$

 $(R4,C5) \{x6/x7, y6/f(x7)\}$ R5: ¬ R(f(x7))

(R3,R5) {x4/x7} R6: □

Como hemos llegado a una contradicción, el conjunto de cláusulas es INSATISFACIBLE.

1º Grado en Ingeniería Informática Lógica 4ª Prueba de Trabajo en Grupo

6. Formaliza el siguiente argumento en lógica de primer orden sobre el dominio de los animales (0.5p), pasa a forma clausular con cláusulas de Horn (0.5p) y demuestra si es correcto mediante **resolución SLD** (1p):

Todos los rinocerontes tienen un cuerno. Todos y sólo los rinocerontes son dignos de ser cazados. Por tanto, todos los animales dignos de ser cazados tienen un cuerno.

- 1) Formalización.
- $\forall x (P(x) \rightarrow Q(x))$
- $\forall x (R(x) \rightarrow P(x))$
- $|- \forall x (R(x) \rightarrow Q(x))$
- 2) Forma Clausular.

A1: $\forall x (P(x) \rightarrow Q(x))$ ya está en forma prenex y presenta el cierre existencial.

 $\forall x (\neg P(x) \lor Q(x))$ Formal Normal Conjuntiva

 $\{\neg P(x) \lor Q(x)\}$ Forma Clausular

 ${Q(x) \ V \neg P(x)}$ Forma Clausular con cláusulas de Horn

A2: $\forall x (R(x) \rightarrow P(x))$ ya está en forma prenex y presenta el cierre existencial.

 $\forall x (\neg R(x) \lor P(x))$ Formal Normal Conjuntiva

 $\{\neg R(x) \lor P(x)\}$ Forma Clausular

 $\{P(x) \ V \neg R(x)\}$ Forma Clausular con cláusulas de Horn

1º Grado en Ingeniería Informática **Lógica**

4ª Prueba de Trabajo en Grupo

 $\neg B: \neg \forall x (R(x) \rightarrow Q(x))$

 $\exists x \neg (R(x) \rightarrow Q(x))$ forma prenex y cierre \exists

 $\exists x \neg (\neg R(x) \lor Q(x)) A \rightarrow B \equiv \neg A \lor B$

 $\exists x(\neg\neg R(x) \land \neg Q(x))$ Morgan

 $\exists x(R(x) \land \neg Q(x))$ Elim \neg , FNC

 $R(a) \land \neg Q(a)$ FNS

 $\{R(a), \neg Q(a)\}$ FC

 $FC = {Q(x) \ V \neg P(x), P(x) \ V \neg R(x), R(a), \neg Q(a)}$

C1: Q(x) V - P(x)

C2: P(x) V - R(x)

C3: R(a)

C4: ¬ Q(a)

(C1,C4) $\{x/a\}$ R1: ¬ P(a)

 $(R1,C2) \{x/a\}$ R2: ¬ R(a)

(R2,C3) R3: □

Al llegar a una contradicción podemos afirmar que el conjunto de cláusulas es insatisfacible, por tanto el argumento es correcto