5/8/2021 OneNote

Section 1.2: Taylor Series

Recall Taylor Series of fix) about the point xo $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_n)}{n!} (x-x_n)^n$

Taylor Series approximate functions

Suppose $f \in C[a_1b_7]$, forth) exists on $[a_1b_7]$.

For every $x \in [a_1b_7] = \frac{1}{2} \cos s$ a number $g \in [a_1b_7]$

Such that

where

 \Rightarrow Tn(x)=f(x)+f'(x)(x-x)+ $\frac{f''(x)}{21}(x-x)^2$ $+ \dots + \frac{f^{(n)}(x)}{(x-x_0)^n}$

> Rn (x) is our 'remainder' (ewor) "Truncation error"

bet f(x)=cos(x). Determire the 2nd Taylor Polynomial of f about 70=0.

$$f(x) \approx T_2(x) = f(x_0) + f'(x_0)(x_0) + \frac{1}{2}(x_0) + \frac{1}{2}(x$$

Look @ Remainder term

$$R_2(x) = \frac{f^{(3)}(\xi)}{3!}(x-0)^3$$

$$= \frac{SM(E)}{6} \times^{3}$$

$$R_{2}(x) \leq \frac{SM(E)}{6} \times^{3}$$

$$R_{2}(x) \leq \frac{x^{3}}{6} \qquad E \in [a_{1}b]$$

$$[-t, \tau]$$

Companson between ful= cosa) and Tz(x)=1-x2

Find 4th Taylor Polynomial of cos(x) about %=0.

a)
$$T_4(x) = \left[-\frac{1}{2}x^2 + \frac{1}{24}x^4 +$$

$$\frac{4}{3!}(x-x_0)^3 + \frac{r}{4!}(x-x_0)^7$$
= $(0.8(0) - \sin(0.00x-0) - \frac{\cos(0)}{2}(x-0)^2$
+ $\frac{\sin(0)}{2}(x-0)^3 + \frac{\cos(0)}{24}(x-0)^7$
= $(-\frac{1}{2}x^2 + \frac{1}{24}x^4)$
b) $R_4(x) = \frac{f(5)(5)}{5!}(x)^5$
= $-\frac{\sin(5)}{120}x^5$
 $R_4(x) \stackrel{?}{=} \frac{|-\sin(5)|}{120}x^5$

when is 1-sin(x) largest over

[-7, 7]?

 $R_4(x) \stackrel{?}{=} \frac{x^5}{120}$

What is every bound of Raw if $x \in [0, \frac{1}{4}]$?

 $R_4(x) \stackrel{?}{=} \frac{|-\sin(5)|}{120}x^5$

when is 1-sin(x) largest over

 $[0, \frac{\pi}{4}]$?

 $R_4(x) \stackrel{?}{=} \frac{|-\sin(5)|}{120}x^5$

Companion Netween $f(x) = \cos(x)$, $f_2(x)$, $f_4(x)$

