

Trabalho Final - Inteligência Artificial

Maria Eduarda de Paula Duarte - 2021.1905.061-6

Raquel Freire Cerzosimo - 2020.1905.009-6

Larissa Marques Moraes - 2021.1905.032-2

1 Introdução

O problema escolhido foi a classificação de plantas, problema que possui diversas aplicações práticas. Um grande exemplo é a utilização desse mecanismo de identificação em plantações, para, por exemplo, identificar pragas ou espécies invasoras. Nosso algoritmo tem como objetivo processar diversas imagens de plantas recebidas e conseguir corretamente diferenciar as espécies.

2 Conjunto de Dados

O conjunto de dados utilizado foi o dataset público de flores provido pela Kaggle. Nela, é provido diversas imagens de 5 tipos de flores, contendo aproximadamente 800 imagens de cada tipo.

Temos 5 classes de flores:

- Tulip tulipa (1.212 imagens)
- Daisy margarida (927 imagens)
- Rose Rosa (975 imagens)
- Dandelion Dente-de-leão (1.239 imagens)
- Sunflower Girassol (885 imagens)

Dessa forma separamos nosso dataset em: treino (flower_train), validação (flower_valid) e teste (flower_test). A divisão resultou em:

- Treino:
 - Tulip 984 imagens
 - Daisy 764 imagens
 - Rose 784 imagens
 - Dandelion 1052 imagens
 - Sunflower 733 imagens
- Validção:
 - Tulip 138 imagens
 - Daisy 107 imagens

- Rose 118 imagens
- Dandelion 119 imagens
- Sunflower 97 imagens

• Teste:

- Tulip 90 imagens
- Daisy 56 imagens
- Rose 73 imagens
- Dandelion 68 imagens
- Sunflower 55 imagens

3 Pré-processamento

Após fazer a divisão do dataset criamos uma seção de código dedicada ao pré-processamendo das nossas imagens. Nele utilizamos as transformações providas pela biblioteca *torch* para normalizar, redimensionar as imagens (utilizamos aqui o padrão de 224x224) e salvá-las em um novo diretório, para serem utilizadas posteriormente no modelo.

A normalização é um processo que ajusta os valores dos pixels para facilitar a posterior leitura pelo modelo, pois reduz a assimetria tornando o processo de aprendizagem mais rápido e mais efetivo. O cálculo da normalização da biblioteca utiliza dois valores, o mean e o std, fazendo o seguinte cálculo para cada canal da imagem: image = (image - mean)/std.

No nosso caso, os valores de *mean* e *std* utilizados são os calculados pela Imagenet, que são valores calculados baseado em milhares de imagens e faz parte das boas práticas a utilização desses valores (quando não se está fazendo o próprio calculo com base em seu dataset).

Código com todas as transformações utilizadas nas imagens:

```
transforms = v2.Compose([
    v2.ToImage(),
    v2.Resize(size=(224, 224), antialias=True),
    v2.RandomHorizontalFlip(p=0.5),
    v2.ToDtype(torch.float32, scale=True),
    v2.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    v2.ToPILImage()
])
```

4 Modelo

Para o treinamento do modelo usamos uma (CNN) rede neural convolucional.

Na primeira parte do código temos o gerador de dados. Este código configura geradores de dados de imagens utilizando a classe ImageDataGenerator do Keras, com o objetivo de preprocessar imagens para um modelo de aprendizado de máquina. Ele define geradores de dados para treino, validação e teste, com a finalidade de alimentar um modelo de rede neural durante o treinamento e avaliação. Cada gerador é responsável por uma fase específica (treino, validação e teste), garantindo que as imagens sejam corretamente normalizadas e organizadas para otimizar o desempenho do modelo.

Na parte seguinte temos a construção da CNN. Esa parte do código cria, compila, treina e avalia uma rede neural convolucional (CNN) usando o Keras. O modelo é projetado para classificar imagens de flores em 5 categorias diferentes. Podemos dividir a criação da CNN da seguinte forma:

- Modelo Sequencial
- Camadas Convolucionais e de Pooling
 - Primeira camada convolucional com 32 filtros de tamanho 3x3, ativação ReLU e input shape (150, 150, 3) para imagens de entrada de 150x150 pixels com 3 canais de cor (RGB).
 - Redução da dimensionalidade pela metade usando pooling máximo em regiões 2x2.
 - Segue-se com mais duas camadas, aumentando o número de filtros para 64 e 128, capturando características de alto nível das imagens.
- Camadas Densas e de Regularização
- Compilação
- Treinamento
- Avaliação e Previsões

Em resumo, o código configura e treina uma CNN para classificar imagens de flores em 5 categorias diferentes. Ele inclui a definição das camadas do modelo, compilação com um otimizador e função de perda apropriados, e treinamento com dados de treino e validação. Finalmente, o modelo é avaliado com dados de teste, produzindo previsões que podem ser comparadas com os rótulos verdadeiros para medir a performance.

5 Resultados

Após executar o programa diversas vezes, percebemos que quando fazíamos o pré-processamento das imagens tínhamos um resultado muito pior que esperávamos. Pelo fato das imagens serem providas de um dataset público, elas diferem muito em tamanho e qualidade entre si, por esse motivo, ao executar o programa com as imagens pré-processadas perdemos muito a precisão do mesmo.

A figura a seguir mostra os resultados obtidos com as imagens pré-processadas com os valores padrão:

Figura 1: Resultado com imagens pré-processadas

A figura a seguir mostra os resultados obtidos com as imagens pré-processadas com 0.5 de parâmetros no pré-processamento:

Figura 2: Resultado com 0.5 de parâmetro

```
Acurácia para classe: daisy é 100.0 %
Acurácia para classe: dandelion é 89.2 %
Acurácia para classe: rose é 98.5 %
Acurácia para classe: sunflower é 71.1 %
Acurácia para classe: tulip é 93.3 %
```

Figura 3: Resultado com 0.5 de parâmetro

A figura a seguir mostra os resultados obtidos com as imagens pré-processadas apenas com resize:

Figura 4: Resultado com as imagens pré processadas apenas com resize

```
Acurácia para classe: daisy é 100.0 %
Acurácia para classe: dandelion é 65.7 %
Acurácia para classe: rose é 94.1 %
Acurácia para classe: sunflower é 95.5 %
Acurácia para classe: tulip é 91.6 %
```

Figura 5: Resultado com as imagens pré processadas apenas com resize

A figura a seguir mostra os resultados obtidos com as imagens pré-processadas sem resize apenas com normalização com parâmetro de 0.5:

Figura 6: Resultado com as imagens pré-processadas sem resize apenas com normalização com parâmetro de 0.5


```
Acurácia para classe: daisy é 100.0 %
Acurácia para classe: dandelion é 89.4 %
Acurácia para classe: rose é 98.3 %
Acurácia para classe: sunflower é 0.0 %
Acurácia para classe: tulip é 0.0 %
```

Figura 7: Resultado com as imagens pré-processadas sem resize apenas com normalização com parâmetro de 0.5

A seguir todos os melhores resultados obtidos considerando o código executado sem as imagens pré-processadas, apenas como elas foram baixadas para o dataset.

→ Classification Report					
	precision	recall	f1-score	support	
daisy	0.90	0.96	0.93	56	
dandelion	0.90	0.96	0.93	68	
rose	0.99	0.93	0.96	73	
sunflower	0.95	0.98	0.96	55	
tulip	0.98	0.91	0.94	90	
accuracy			0.94	342	
macro avg	0.94	0.95	0.94	342	
weighted avg	0.95	0.94	0.94	342	

Figura 8: Resultado com as imagens originais do dataset

```
Acurácia para classe: daisy é 90.0 %
Acurácia para classe: dandelion é 90.3 %
Acurácia para classe: rose é 98.6 %
Acurácia para classe: sunflower é 94.7 %
Acurácia para classe: tulip é 97.6 %
```

Figura 9: Resultado com as imagens originais do dataset5

Figura 10: Resultado com as imagens originais do dataset

Figura 11: Gráfico do treinamento e validação

Figura 12: Matriz de confusão

6 Conclusão

Como descrevemos anteriormente, nosso melhor resultado foi alcançado executando o nosso código apenas com as imagens baixadas do dataset público. Tivemos um ótimo desempenho com acurácia maior de 90% para todas a classes e loss caíndo de 1.53 para 0.23.

Como melhoria futura poderíamos estudar melhor os parâmetros de normalização e resize bem como aplicar outros métodos de treinamento ou adicionar mais camadas de convolução para que, dessa forma, os números de acurácia e loss sejam melhores do que os números obtidos quando executamos com as imagens pré-processadas.