1. Consider the matrix

$$\mathbf{A} = \left[\begin{array}{cc} 2 & 2 \\ 2 & -1 \end{array} \right]$$

Without using a computer:

- (a) Find the eigenvalues and normalized eigenvectors of A.
- (b) Write the spectral decomposition of **A**.
- (c) Verify that the determinant of **A** equals the product of its eigenvalues.
- (d) The trace of a square matrix equals the sum of its diagonal elements. Verify that the trace of \mathbf{A} equals the sum of its eigenvalues.
- (e) Is **A** orthogonal? Why or why not?
- (f) Is **A** positive definite? Why or why not?
- (g) Find A^{-1} and determine its eigenvalues and normalized eigenvectors.
- 2. Consider the matrices

$$\mathbf{A} = \begin{bmatrix} 4.000 & 4.001 \\ 4.001 & 4.002 \end{bmatrix} \quad \text{and} \quad \mathbf{B} = \begin{bmatrix} 4.000 & 4.001 \\ 4.001 & 4.002001 \end{bmatrix}$$

These matrices are identical except for a small difference in the (2, 2) position. Also, the columns of **A** and **B** are nearly linearly dependent. Show that $\mathbf{A}^{-1} \approx (-3)\mathbf{B}^{-1}$. So, small changes - perhaps due to rounding - can result in substantially different inverses.

- 3. Derive expressions for the means and variances of the following linear combinations in terms of the means and covariances of the random variables X_1 , X_2 , and X_3 .
 - (a) $2X_1 X_2$.
 - (b) $X_1 + X_2 2X_3$.
 - (c) $4X_1 3X_2$ if X_1 and X_2 are independent (so, $\sigma_{12} = 0$).
- 4. Consider the random vector $\mathbf{X}' = [X_1, X_2, X_3, X_4]$ with mean vector $\boldsymbol{\mu}' = [1, 2, 3, 4]$ and covariance matrix

$$\Sigma = \begin{bmatrix} 4 & 0 & 3 & 1 \\ 0 & 1 & 1 & 0 \\ 3 & 1 & 9 & -2 \\ 1 & 0 & -2 & 4 \end{bmatrix}$$

Partition X as

$$\mathbf{X} = \begin{bmatrix} X_1 \\ X_2 \\ \overline{X_3} \\ X_4 \end{bmatrix} = \begin{bmatrix} \mathbf{X}^{(1)} \\ \overline{\mathbf{X}}^{(\overline{2})} \end{bmatrix}$$

Let

$$\mathbf{A} = \begin{bmatrix} 2 & 1 \end{bmatrix}$$
 and $\mathbf{B} = \begin{bmatrix} -1 & -2 \\ 2 & 1 \end{bmatrix}$

and consider the linear combinations $AX^{(1)}$ and $BX^{(2)}$. Find the following:

- (a) $E(\mathbf{X}^{(1)})$.
- (b) $E(\mathbf{BX}^{(2)})$.
- (c) $\operatorname{Cov}\left(\mathbf{A}\mathbf{X}^{(1)}\right)$.
- (d) $Cov(\mathbf{X}^{(1)}, \mathbf{X}^{(2)})$.
- (e) $\operatorname{Cov}\left(\mathbf{A}\mathbf{X}^{(1)}, \mathbf{B}\mathbf{X}^{(2)}\right)$.