Université Pierre et Marie Curie 2007–2008

LM110 — Fonctions

Feuille 7: étude globale, 2

Exercice 1. Déterminer (sans calculatrice!) une valeur approché à 10^{-5} près des nombres $\sqrt{4,0008}$, $\sqrt[3]{27,0054}$, $\ln(1,003)$.

Exercice 2. 1. Montrer que l'équation $2x\sqrt{x^2+1} = x+1$ admet solution dans [0,1].

- 2. Soit l'équation $2\cos(x) = x$.
 - (a) Montrer que les solutions, si elles existent, appartiennent à l'intervalle [-2, 2].
 - (b) Montrer l'existence d'au moins une solution.

Exercice 3. Soit $f: [a,b] \to [a,b]$ une fonction continue. Montrer que f possède un point fixe dans [a,b] c'est-à-dire qu'il existe $x \in [a,b]$ tel que f(x) = x. (Indication: on pourra considérer $g: x \mapsto f(x) - x$.)

Exercice 4. Soit f définie par $f(x) = (x^2 + 1) \sin x$ pour $x \in \mathbf{R}$.

- 1. Calculer la dérivée de f.
- 2. Montrer que l'équation $(x^2 + 1)\cos x + 2x\sin x = 0$ admet au moins une solution dans $[0, \pi]$.

Exercice 5. Soit f une fonction n fois dérivable sur]a,b[s'annulant en n+1 points de]a,b[. Montrer, que si $f^{(n)}$ est continue, il existe un point x_0 de]a,b[tel que $f^{(n)}(x_0)=0$.

Exercice 6. Montrer que la suite (S_n) définie par

$$S_n = \sum_{k=1}^n \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

tend vers l'infini quand n tend vers l'infini. (Indication : on pourra comparer $\frac{1}{k}$ et $\ln(k) - \ln(k-1)$.)

Exercice 7. 1. Pour tout x > 0, montrer que

$$\frac{1}{x+1} < \ln(x+1) - \ln x < \frac{1}{x} .$$

2. Calculer $\lim_{x \to +\infty} \sqrt{x} (\ln(x+1) - \ln x)$ et $\lim_{x \to +\infty} x (\ln(x+1) - \ln x)$.

- 3. En déduire que $\lim_{x\to +\infty} \left(1+\frac{1}{x}\right)^x = e$.
- 4. Calculer $\lim_{x \to +\infty} \left(1 \frac{1}{x}\right)^x$.

Exercice 8. Montrer que le polynôme $X^n + aX + b$ (a et b réels) admet au plus trois racines réelles distinctes.

Exercice 9. On pose $P(x) = x - \frac{x^3}{3} + \frac{x^5}{120} - \frac{x^7}{7!}$.

1. Montrer que, pour tout $0 \le x \le \frac{\pi}{2}$,

$$P(x) \le \sin(x) \le P(x) + \frac{x^9}{9!}.$$

2. Trouver un nombre a>0 tel que l'on ait $|\sin(x)-P(x)|\leq 10^{-5}$ pour tout $x\in[0,a].$

Exercice 10. Monter les inégalités suivantes.

- 1. $\frac{2}{\pi} \leqslant \sin(x) \leqslant x$ pour $x \in [0, \frac{\pi}{2}]$.
- 2. $\frac{1-e^{-x}}{x} \leqslant 1$ pour $x \geqslant 0$.
- 3. $x \leqslant \frac{y-x}{\ln(y)-\ln(x)} \leqslant y$ pour 0 < x < y.