Batch Normalization, https://arxiv.org/abs/1502.03167

Target

Reduce the *internal covariate shift*.

Covariate shift: The input distribution to a learning system changes.

Internal covariate shift: In the course of training, the change in the distributions of internal nodes of a deep network.

Training Time

Let $\{f_1, f_2, f_3, ..., f_n\}$ be the batched feature vector of some layer (a.k.a. that layer's output, either pre-activation or post-activation). Let's say each $f_i \in \mathbb{R}^d$. The Batch Normalization first computes

$$\begin{split} \mu &= \frac{1}{n} \sum_{i=1}^{n} f_i \\ \sigma &= \sqrt{\frac{\sum_{i=1}^{n} \left(f_i - \mu\right)^2}{n}} \\ \tilde{f}_i &= \frac{f_i - \mu}{\sigma}, \mu, \sigma \in \mathbb{R}^d \end{split}$$

second, computes the affine transform

$$\hat{f}_i = \gamma \cdot \tilde{f}_i + \beta$$

where all arithmetic are element-wise, and $\gamma, \beta \in \mathbb{R}$ are learnable.

We'll use each \hat{f}_i as next layer's input. Each new batch features $\left\{\hat{f}_i\right\}_{i=1}^n$ has mean $\mathbf{0} \in \mathbb{R}$ and standard deviation $\mathbf{1} \in \mathbb{R}$.

Note that the batch normalization is computed independently for each channel in CNN.

Testing Time

During the testing time, mostly we don't have a bachted data. Hence no on-line μ , σ to compute. Instead, we use the training data to help us get them.

For each i-th batch, we have μ_i, σ_i . We can then use the Exponential Moving Average to compute the μ^-, σ^- for testing

$$\begin{split} \boldsymbol{\mu}^{^{-}} &= \alpha \boldsymbol{\mu}^{^{-}} + (1-\alpha) \boldsymbol{\mu}_i \\ \boldsymbol{\sigma}^{^{-}} &= \alpha \boldsymbol{\sigma}^{^{-}} + (1-\alpha) \boldsymbol{\sigma}_i \end{split}$$

where $\alpha \in [0, 1]$ is a pre-defined hyper parameter and μ^- , σ^- are both initialized to **0**. In pytorch, α is called *momentum* and the default value is 0.1.

We use

$$\hat{f} = \frac{f - \mu^{-}}{\sigma^{-}} \cdot \gamma + \beta$$

as the testing time batch normalization.

Layer Normalization, https://arxiv.org/abs/1607.06450

Instance Normalization, https://arxiv.org/abs/1607.08022 Group Normalization, https://arxiv.org/abs/1803.08494 Weight Normalization, https://arxiv.org/abs/1602.07868 Weight Normalization, https://arxiv.org/abs/1705.10941