```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings("ignore")
from google.colab import files
uploaded = files.upload()
      Choose Files Churn Modelling.csv

    Churn Modelling.csv(text/csv) - 684858 bytes, last modified: 10/12/2022 - 100% done

     Saving Churn Modelling.csv to Churn Modelling (1).csv
df=pd.read csv("/content/Churn Modelling.csv")
df.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 10000 entries, 0 to 9999
     Data columns (total 14 columns):
                           Non-Null Count Dtype
          Column
      0
          RowNumber
                           10000 non-null int64
         CustomerId
                           10000 non-null int64
                           10000 non-null object
         Surname
         CreditScore
                           10000 non-null int64
         Geography
                           10000 non-null object
                           10000 non-null object
      5
         Gender
                           10000 non-null int64
          Age
         Tenure
                           10000 non-null int64
      7
          Balance
                           10000 non-null float64
          NumOfProducts
                           10000 non-null int64
                           10000 non-null int64
      10 HasCrCard
```

11 IsActiveMember 10000 non-null int64
12 EstimatedSalary 10000 non-null float64
13 Exited 10000 non-null int64
dtypes: float64(2), int64(9), object(3)
memory usage: 1.1+ MB

Univariate ananlysis

Histogram

df.describe()

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balanc
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.00000
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.88928
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.40520
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.00000
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.00000
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.54000
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.24000
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.09000

sns.displot(df["Age"], color='darkorange')

<seaborn.axisgrid.FacetGrid at 0x7f36bbc6aa50>

sns.histplot(y="Age",data=df,color='darkorange')

<matplotlib.axes._subplots.AxesSubplot at 0x7f36b89be150>

sns.histplot(x='Age',data=df,hue=df['Tenure'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f36b8485950>

Distplot

sns.distplot(df["Age"],color='purple')

<matplotlib.axes._subplots.AxesSubplot at 0x7f36b84ad910>

sns.distplot(df["Age"],hist=False,color='blue')

<matplotlib.axes._subplots.AxesSubplot at 0x7f36b8a9fe90>

Box plot

+ Code — + Text —

sns.boxplot(df["Age"],color='pink')

<matplotlib.axes._subplots.AxesSubplot at 0x7f36b79139d0>

Bivariate analysis

Bar plot

sns.barplot(df["NumOfProducts"],df["Age"])

<matplotlib.axes._subplots.AxesSubplot at 0x7f36b7711050>

sns.lineplot(df["Age"],df["NumOfProducts"], color='purple')

<matplotlib.axes._subplots.AxesSubplot at 0x7f36b7689350>

Scatterplot

sns.scatterplot(x=df.Age,y=df.RowNumber,color='green')

Pointplot

sns.pointplot(x='Age',y='Tenure',data=df,color='pink')

<matplotlib.axes._subplots.AxesSubplot at 0x7f36b7bf8790>

Regplot

sns.regplot(df['Age'],df['Tenure'],color='orange')

<matplotlib.axes._subplots.AxesSubplot at 0x7f36b5bb7790>

Multi-variate analysis

Pairplot

sns.pairplot(data=df[["RowNumber","Age","Tenure","Balance","NumOfProducts"]],kind="kde")

sns.pairplot(data=df[["RowNumber","Age","Tenure","Balance","NumOfProducts"]], hue="Age", diag_kind="hist")

sns.pairplot(data=df[["RowNumber","Age","Tenure","Balance","NumOfProducts"]], hue="Age")

data=pd.DataFrame({"a":[1,2,np.nan],"b":[1,np.nan,np.nan],"c":[1,2,4]})
data

- a bc
- **0** 1.0 1.0 1
- 1 2.0 NaN 2
- 2 NaN NaN 4

data.isnull().any()

- a True
- b True
- c False

dtype: bool

data.isnull().sum()

- a 1
- b 2
- c 6

dtype: int64

data.fillna(value = "S")

- a b c 🧷
- **0** 1.0 1.0 1
- **1** 2.0 S 2
- **2** S S 4

data["a"].mean()

1.5

data["a"].median()

1.5

Finding and replacing outliers

outlierss=df.quantile(q=(0.25,0.75))

outlierss

		RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Ex
	0.25	2500.75	15628528.25	584.0	32.0	3.0	0.00	1.0	0.0	0.0	51002.1100	
	0.75	7500.25	15753233.75	718.0	44.0	7.0	127644.24	2.0	1.0	1.0	149388.2475	
•												-

sns.boxplot(df["Age"],color='purple')

<matplotlib.axes._subplots.AxesSubplot at 0x7f36ae421e50>

Check for Categorical columns and perform encoding.

df.head(4)

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMe
0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	
1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	
2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	
3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	
4												>

```
df["Gender"].replace({"Female":0,"Male":1},inplace = True)
df["Geography"].replace({"France":1,"Spain":2,"Germany":3},inplace = True)
df["Gender"].replace({"Female":0,"Male":1},inplace = True)
df["Geography"].replace({"France":1,"Spain":2,"Germany":3},inplace = True)
df.head(4)
```

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMe
0	1	15634602	Hargrave	619	1	0	42	2	0.00	1	1	
1	2	15647311	Hill	608	2	0	41	1	83807.86	1	0	
2	3	15619304	Onio	502	1	0	42	8	159660.80	3	1	
3	4	15701354	Boni	699	1	0	39	1	0.00	2	0	
∢												>

Split the data into dependent and independent variables.

```
y = df["Surname"]
x=df.drop(columns=["Surname"],axis=1)
x.head()
```

```
RowNumber CustomerId CreditScore Geography Gender Age Tenure
                                                                           Balance NumOfProducts HasCrCard IsActiveMember Esti
Scale the independent variables
      1
                     15647311
                                      608
                                                   2
                                                          N 41
                                                                       1 83807.86
                                                                                                1
                                                                                                          Ω
names=x.columns
names
     Index(['RowNumber', 'CustomerId', 'CreditScore', 'Geography', 'Gender', 'Age',
            'Tenure', 'Balance', 'NumOfProducts', 'HasCrCard', 'IsActiveMember',
            'EstimatedSalary', 'Exited'],
          dtype='object')
from sklearn.preprocessing import scale
X=scale(x)
Χ
     array([-1.73187761, -0.78321342, -0.32622142, ..., 0.97024255,
             0.02188649, 1.97716468],
           [-1.7315312, -0.60653412, -0.44003595, ..., 0.97024255,
             0.21653375, -0.50577476],
            [-1.73118479, -0.99588476, -1.53679418, ..., -1.03067011,
             0.2406869 , 1.97716468],
            [1.73118479, -1.47928179, 0.60498839, ..., 0.97024255,
            -1.00864308, 1.97716468],
           [1.7315312, -0.11935577, 1.25683526, ..., -1.03067011,
            -0.12523071, 1.97716468],
            [1.73187761, -0.87055909, 1.46377078, ..., -1.03067011,
            -1.07636976, -0.50577476]])
x = pd.DataFrame(X,columns = names )
Х
```

	RowNumber	CustomerId	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiv
0	-1.731878	-0.783213	-0.326221	-0.902587	-1.095988	0.179622	-1.041760	-1.225848	-0.911583	0.646092	0
1	-1.731531	-0.606534	-0.440036	0.301665	-1.095988	0.080092	-1.387538	0.117350	-0.911583	-1.547768	0
2	-1.731185	-0.995885	-1.536794	-0.902587	-1.095988	0.179622	1.032908	1.333053	2.527057	0.646092	-1
3	-1.730838	0.144767	0.501521	-0.902587	-1.095988	-0.118968	-1.387538	-1.225848	0.807737	-1.547768	-1
4	-1.730492	0.652659	2.063884	0.301665	-1.095988	0.279152	-1.041760	0.785728	-0.911583	0.646092	0
9995	1.730492	-1.177652	1.246488	-0.902587	0.912419	-0.118968	-0.004426	-1.225848	0.807737	0.646092	-1
9996	1.730838	-1.682806	-1.391939	-0.902587	0.912419	-0.517088	1.724464	-0.306379	-0.911583	0.646092	0
9997	1.731185	-1.479282	0.604988	-0.902587	-1.095988	-0.417558	0.687130	-1.225848	-0.911583	-1.547768	0
9998	1.731531	-0.119356	1.256835	1.505917	0.912419	0.179622	-0.695982	-0.022608	0.807737	0.646092	-1
9999	1.731878	-0.870559	1.463771	-0.902587	-1.095988	-1.213798	-0.350204	0.859965	-0.911583	0.646092	-1

10000 rows × 13 columns

Split the data into training and testing

```
from sklearn.model_selection import train_test_split

x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=0)

x_train.head()
```

	RowNumber	CustomerId	CreditScore	Geography	Gender	Age	Tenure	В
7389	0.827747	-0.195066	0.170424	0.301665	-1.095988	-0.616618	-0.004426	-1.
9275	1.481077	0.810821	-2.312802	1.505917	0.912419	0.179622	-1.387538	-0.
2995	-0.694379	-1.507642	-1.195351	-0.902587	-1.095988	-1.114268	-1.041760	0.
5316	0.109639	1.243462	0.035916	0.301665	0.912419	-0.019438	-0.004426	0.
356	-1.608556	-1.100775	2.063884	0.301665	-1.095988	1.672571	1.032908	0.

Colab paid products - Cancel contracts here

✓ 0s completed at 11:56 AM

×