자료구조설계: 2013

높이균형 이진트리

높이균형 이진트리

© J.-H. Kang, CNU

강지훈 jhkang@cnu.ac.kr 충남대학교 컴퓨터공학과

Dynamic Dictionary By Binary Search Trees

Dynamic Dictionaries By BST

- Binary Search Trees
 - Search first.
 - If we fail to find, we may insert into the fail position.

Example:

- Maximum number of comparisons: 3
- Average number of comparisons: (1+2+2+3+3)/5 = 2.2
- The shape of a binary search tree:
 - ⇒ It is determined by the order of insertion.
- Insertion / search time \approx number of comparisons.

- Example: Best case
 - Insertion order:
 - real \rightarrow for \rightarrow with \rightarrow do \rightarrow if \rightarrow then
 - Maximum number of comparisons: 3
 - Average number of comparisons: (1+2+2+3+3+3)/6 = 2.3

- Example: Worst case
 - Insertion order:
 - do \rightarrow for \rightarrow if \rightarrow real \rightarrow then \rightarrow with
 - Maximum number of comparisons: 6
 - Average number of comparisons: (1+2+3+4+5+6)/6 =

- Insertion/Search time in a BST with *n* nodes.
 - Observation for time complexities.
 - Best case : a complete BST. $T_{bc} = O(\log n)$
 - Worst Case : a degenerate (skewed) BST. $T_{wc} = O(n)$
 - Average Case : All permutations of input data are equiprobable, ie, $p(\sigma) = 1/(n!)$ for any permutation. $T_{avg} = O(\log n)$
 - It may be one of the best ways to maintain a BST as a complete BST.
 - Very high time complexity.
 - But, it is possible to keep the trees balanced so as to ensure both an average and worst case retrieval time of $O(\log n)$ for a tree with n nodes.
 - → Height Balanced Binary Trees

Dynamic Dictionary By Height-Balanced BST

Height Balanced Binary Trees

- AVL-Trees (named from Adelson-Velskii & Landis)
- Search/Insert/Delete : O(log n)
- Definition of height balanced binary trees.
 - An empty tree is height balanced.
 - If T is a nonempty binary tree with T_L and T_R as its left and right subtrees, then T is height balanced iff
 - 1. T_L and T_R are height balanced and
 - 2. $|h_L h_R| \le 1$ where h_L and h_R are the heights of T_L and T_R , respectively.

Balance Factor: BF(T)

- $\bullet BF(T) = h_L h_R$
 - Clearly, BF is -1, 0, or 1.

- \blacksquare Minimum number of nodes N_h .
 - Let N_h be the minimum number of nodes in a height balanced tree of height h.

Then,
$$N_h = \begin{cases} 0 & \text{if } h = 0. \\ 1 & \text{if } h = 1. \\ N_{h-1} + N_{h-2} + 1 & \text{if } h \ge 2. \end{cases}$$

The Fibonacci number

$$F_n = \begin{cases} 0 & \text{if } n = 0. \\ 1 & \text{if } n = 1. \\ F_{n-1} + F_{n-2} & \text{if } n \ge 2. \end{cases}$$

The relationship between N_h and F_h is: $N_h = F_{h+2} - 1$ for $h \ge 0$. (We can prove it by induction easily.)

 \blacksquare Complexity of the height h.

Note that
$$F_h \approx \phi^h / \sqrt{5}$$
, where $\phi = (1 + \sqrt{5}) / 2$.
 $N_h = F_{h+2} - 1 \approx (\phi^{h+2} / \sqrt{5}) - 1$

Let
$$N_h = n$$
.
Then, $(\phi^{h+2} / \sqrt{5}) - 1 = n$
 $\phi^{h+2} = \sqrt{5}(n+1)$
 $h + 2 = \log_{\phi}(\sqrt{5}(n+1))$
 $h = \log_{\phi}(\sqrt{5}(n+1)) - 2 = O(\log n)$

Rebalancing rotations: LL and RR types

Figure 10.12: Rebalancing rotations

Rebalancing rotations: LR(a) and LR(b) types

Figure 10.12 (continued): Rebalancing rotations Unbalanced following rotation Rebalanced subtree type insertion Balanced subtree LR(a) (B) B LR(b) AR В h+2 h+2 ВL В В,

Rebalancing rotations: LR(c) type

Figure 10.12 (continued): Rebalancing rotations

■Insertion into an AVL tree [1]

Figure 10.11: Insertion into an AVL tree

■Insertion into an AVL tree [2]

Figure 10.11 (continued): Insertion into an AVL tree

■Insertion into an AVL tree [3]

■Insertion into an AVL tree [4]

Figure 10.11 (continued): Insertion into an AVL tree

■Insertion into an AVL tree [5]

■Insertion into an AVL tree [6]

■Insertion into an AVL tree [7]

- Empirical Study by Karlton et al.
 - We assume random insertions.

- No Rebalancing : 0.5349
- Rebalancing with LL or RR: 0.2327
- Rebalancing with LR or RL: 0.2324

Comparison of various structures

operation	(Sorted) Sequential List	(Sorted) Linked List	AVL-Tree
Search for x	$O(\log n)$	O(n)	$O(\log n)$
Search for k-th item	O(1)	O(k)	$O(\log n)$
Remove x	O(n)	O(1)*	$O(\log n)$
Remove for k -th item	O(n-k)	O(k)	$O(\log n)$
Add x	O(n)	O(1)**	$O(\log n)$
Output in order	O(n)	O(n)	O(n)

^{*} Doubly linked chain and position of x is known

^{**} Position of x is known

End of Height-Balanced Binary Search Trees