Statistica e Analisi dei dati

Università degli studi di Milano - Informatica

Luca Favini, Matteo Zagheno

Ultima modifica: 05/06/2024 - Codice sorgente

Statistica e Analisi dei dati

Insegnamento del corso di laurea triennale in Informatica, Università degli studi di Milano. Tenuto dal Professore Dario Malchiodi, anno accademico 2023-2024.

La statistica si occupa di raccogliere, analizzare e trarre conclusioni su dati, attraverso vari strumenti:

- Statistica descrittiva: esposizione e condensazione dei dati, cercando di limitarne l'incertezza;
- Calcolo delle probabilità: creazione e analisi di modelli in situazioni di incertezza;
- <u>Statistica inferenziale</u>: **approssimazione** degli esiti mancanti, attraverso modelli probabilistici;
- Appendice: Cheatsheet Python: raccolta funzioni/classi Python utili ai fini dell'esame (e non).

Indice

. Statistica descrittiva	4
1.1. Classificazione dei dati: qualitativi e quantitativi	4
1.2. Frequenze	4
1.2.1. Frequenze assolute e relative	4
1.2.2. Frequenze cumulate	4
1.2.2.1. Funzione cumulativa empirica	4
1.2.3. Frequenze congiunte e marginali	4
1.2.4. Stratificazione	4
1.3. Grafici	4
1.4. Indici di centralità	4
1.4.1. Media campionaria	4
1.4.2. Mediana campionaria	4
1.4.3. Moda campionaria	5
1.5. Indici di dispersione	5
1.5.1. Scarto assoluto medio	5
1.5.2. Varianza campionaria	5
1.5.2.1. Varianza campionaria standard	5
1.5.3. Coefficiente di variazione	6
1.5.4. Quantile	6
1.6. Indici di correlazione	6
1.6.1. Covarianza campionaria	6
1.6.2. Indice di correlazione di Pearson (indice di correlazione lineare)	7
1.7. Indici di eterogeneità	8
1.7.1. Indice di Gini (per l'eterogeneità)	8
1.7.2. Entropia	8
1.8. Indici di concentriazione	9
1.8.1. Curva di Lorentz	9
1.8.2. Indice di Gini (per la concentrazione)	10
1.8.3. Analisi della varianza (ANOVA)	10
1.9. Alberi di decisione	12
1.10. Classificatori	12
1.10.1. Casi particolari	13
1.10.2. Classificatori a soglia (Curva ROC)	13
1.11. Trasformazione dei dati	14
1.12. Grafici	14
. Calcolo delle probabilità	14

2.1. Calcolo combinatorio	14
2.1.1. Disposizioni	14
2.1.2. Combinazioni	
2.1.3. Permutazioni	15
2.2. Elementi di probabilità	
2.2.1. Algebra di eventi	
2.2.2. Assiomi di Kolmogorov	
2.2.3. Teoremi derivati dagli assiomi	
2.2.4. Spazi di probabilità ed Esiti equiprobabili	18
2.3. Probabilità condizionata	18
2.3.1. Regola di fattorizzazione	
2.3.2. Teorema delle probabilità totali	19
2.3.3. Teorema di Bayes	
2.3.4. Classificatore naive-Bayes	20
2.3.5. Eventi indipendenti	21
2.3.6. Indipendenza a tre i più eventi	
2.4. Variabili aleatorie	21
3. Statistica inferenziale	
4. Cheatsheet Python	21

1. Statistica descrittiva

Popolazione insieme di elementi da analizzare, spesso troppo numerosa per essere analizzata tutta **Campione** parte della popolazione estratta per essere analizzata, deve essere rappresentativo **Campione casuale (semplice)** tutti i membri della popolazione hanno la stessa possibilità di essere selezionati

1.1. Classificazione dei dati: qualitativi e quantitativi

Dati quantitativi / Scalari / Numerici l'esito della misurazione è una quantità numerica Discreti si lavora su valori singoli (spesso interi), ad esempio: numeri di figli Continui si lavora su range di intervalli, ad esempio: peso o altezza

Dati qualitativi / Categorici / Nominali l'esito della misurazione è un'etichetta **Booleani / Binari** due valori possibili, ad esempio: *sesso*

Nominali / Sconnessi valori non ordinabili, ad esempio: nome Ordinali valori ordinabili, ad esempio: livello di soddisfazione

i Nota

Spesso alcuni dati *numerici* vengono considerati *qualitativi*, dato che non ha senso effettuare su di essi considerazioni algebriche o numeriche. Un esempio potrebbe essere la data di nascita.

1.2. Frequenze

- 1.2.1. Frequenze assolute e relative
- 1.2.2. Frequenze cumulate
- 1.2.2.1. Funzione cumulativa empirica
- 1.2.3. Frequenze congiunte e marginali
- 1.2.4. Stratificazione

1.3. Grafici

1.4. Indici di centralità

Sono indici che danno un'idea approssimata dell'ordine di grandezza (quindi dove ricadono) dei valori esistenti.

1.4.1. Media campionaria

Viene indicata da \overline{x} , ed è la **media aritmetica** di tutte le osservazioni del campione.

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

La media opera linearmente, quindi può essere scalata ($\cdot a$) e/o traslata (+b):

$$\forall i \ y_i = ax_i + b \Rightarrow \overline{y} = a\overline{x} + b$$

Non è un stimatore robusto rispetto agli outlier. Può essere calcolata solo con dati quantitativi.

1.4.2. Mediana campionaria

È il valore a **metà** di un dataset ordinato in ordine crescente, ovvero un valore \geq e \leq di almeno la metà dei dati.

Dato un dataset di dimensione n la mediana è:

- l'elemento in posizione $\frac{n+1}{2}$ se n è dispari
- la media aritmetica tra gli elementi in posizione $\frac{n}{2}$ e $\frac{n}{2}+1$ se n è pari

È robusta rispetto agli outlier ma può essere calcolata solo su campioni ordinabili.

1.4.3. Moda campionaria

È l'osservazione che compare con la maggior frequenza. Se più di un valore compare con la stessa frequenza allora tutti quei valori sono detti modali.

1.5. Indici di dispersione

Sono indici che misurano quanto i valori del campione si discostano da un valore centrale.

1.5.1. Scarto assoluto medio

Per ogni osservazione, lo scarto è la distanza dalla media: $x_i-\overline{x}$. La somma di tutti gli scarti farà sempre 0.

$$\sum_{i=1}^n x_i - \overline{x} = \sum_{i=1}^n x_i - \sum_{i=1}^n \overline{x} = n\overline{x} - n\overline{x} = 0$$

1.5.2. Varianza campionaria

Misura di quanto i valori si discostano dalla media campionaria

$$s^2 = \frac{1}{n-1} \sum_{i=1}^n \left(x_i - \overline{x} \right)^2$$

Metodo alternativo per calcolare la varianza:

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i}^{2} - n\overline{x}^{2})$$

i Nota

Verrebbe intuitivo applicare il *valore assoluto* ad ogni scarto medio, ma questo causa dei problemi. Per questo motivo la differenza viene elevata al *quadrato*, in modo da renderla sempre positiva.

La varianza non è un operatore lineare: la traslazione non ha effetto mentre la scalatura si comporta:

$$s_y^2 = a^2 s_x^2$$

1.5.2.1. Varianza campionaria standard

È possibile applicare alla varianza campionaria la radice quadrata, ottenendo la varianza campionaria standard.

$$s = \sqrt{s^2}$$

Attenzione

Applicando la radice quadrata solo dopo l'elevamento a potenza, non abbiamo reintrodotto il problema dei valori negativi: $\sqrt{a^2} \quad \neq \quad \left(\sqrt{a}\right)^2 = a$

1.5.3. Coefficiente di variazione

Valore adimensionale, utile per confrontare misure di fenomeni con unità di misura differenti.

$$s^* = \frac{s}{|\overline{x}|}$$

i Nota

Sia la <u>varianza campionaria standard</u> che la <u>media campionaria</u> sono dimensionali, ovverro hanno unità di misura. Dividendoli tra loro otteniamo un valore adimensionale.

1.5.4. Quantile

Il quantile di ordine α (con α un numero reale nell'intervallo [0,1]) è un valore q_{α} che divide la popolazione in due parti, proporzionali in numero di elementi ad α e $(1-\alpha)$ e caratterizzate da valori rispettivamente minori e maggiori di q_{α} .

Percentile quantile descritto in percentuale

Decile popolazione divisa in 10 parti con ugual numero di elementi **Quartile** popolazione divisa in 4 parti con ugual numero di elementi

i Nota

È possibile visualizzare un campione attraverso un **box plot**, partendo dal basso composto da:

- eventuali *outliers*, rappresentati con le x prima del baffo
- il baffo "inferiore", che parte dal valore minimo e raggiunge il primo quartile
- il box (scatola), che rappresenta le osservazioni comprese tra il primo e il terzo quartile
- la linea che divide in due il box, che rappresenta la mediana
- il baffo "superiore", che parte terzo quartile e raggiunge il massimo
- eventuali outliers "superiori", rappresentati con le x dopo il baffo

Figure 1: Grafico boxplot

1.6. Indici di correlazione

Campione bivariato campione formato da coppie $\{(x_1, y_1), ..., (x_n, y_n)\}.$

Correlazione relazione tra due variabili tale che a ciascun valore della prima corrisponda un valore della seconda seguendo una certa regolarità.

1.6.1. Covarianza campionaria

È un valore numerico che fornisce una misura di quanto le due variabili varino assieme. Dato un campione bivariato definiamo la **covarianza campionaria** come:

$$\mathrm{Cov}(x,y) = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})$$

Metodo alternativo di calcolo:

$$Cov(x,y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i y_i - n\overline{xy})$$

Informalmente

Intuitivamente c'è una **correlazione diretta** se al crescere di x cresce anche y o al descrescere di x decresce anche y, dato che il contributo del loro prodotto alla sommatoria sarà positivo. Quindi se x e y hanno segno concorde allora la correlazione sarà diretta, altrimenti indiretta.

- Cov(x, y) > 0 probabile correlazione diretta
- $Cov(x, y) \simeq 0$ correlazione improbabile
- Cov(x, y) < 0 probabile correlazione indiretta

Figure 2: Correlazione lineare diretta (sinistra) e indiretta (destra)

i Nota

Una relazione diretta/indiretta non è necessariamente *lineare*, può essere anche *logaritmica* o seguire altre forme.

1.6.2. Indice di correlazione di Pearson (indice di correlazione lineare)

Utilizziamo l'indice di correlazione di Pearson per avere un valore *adimensionale* che esprime una correlazione. Possiamo definirlo anche come una misura normalizzata della covarianza nell'intervallo [-1, +1]. ρ è **insensibile** alle trasformazioni lineari.

$$\rho(x,y) = \frac{1}{n-1} \frac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{s_x s_y} = \frac{s_{XY}}{s_X s_Y}$$

Dove s è la varianza campionaria standard.

- $\rho \simeq +1$ probabile correlazione linearmente diretta
- $\rho \simeq 0$ correlazione improbabile
- $\rho \simeq -1$ probabile correlazione linearmente indiretta

Attenzione

L'<u>indice di correlazione lineare</u> (ρ) cattura **solo** relazioni dirette/indirette *lineari* ed è insensibile alle trasformazioni lineari.

Attenzione

La covarianza campionaria o l'indice di correlazione lineare $\simeq 0$ non implicano l'indipendenza del campione, ma è vero il contrario:

$$Cov(x, y) \simeq 0 \implies Indipendenza$$

$$\rho(x,y) \simeq 0 \implies \text{Indipendenza}$$

Indipendenza
$$\Rightarrow$$
 $\rho(x,y) \simeq \text{Cov}(x,y) \simeq 0$

1.7. Indici di eterogeneità

Massima eterogeneità il campione è composto da tutti elementi diversi Minima eterogeneità il campione non contiene due elementi uguali (campione omogeneo)

L'eterogeneità può essere calcolata anche su un insieme di dati qualitativi.

1.7.1. Indice di Gini (per l'eterogeneità)

$$I = 1 - \sum_{j=1}^{n} f_j^2$$

Dove f_j è la frequenza relativa di j ed n è il numero di elementi distinti. Quindi $\forall j, 0 \leq f_j \leq 1$. Prendiamo in considerazione i due estremi:

• eterogeneità *minima* (solo un valore con frequenza relativa 1):

$$I = 1 - 1 = 0$$

• eterogeneità massima (tutti i valori hanno la stessa frequenza relativa $\frac{1}{n}$ dove n è la dimensione del campione):

$$I = 1 - \sum_{j=1}^{n} \left(\frac{1}{n}\right)^2 = 1 - \frac{n}{n^2} = \frac{n-1}{n}$$

Generalizzando, I non raggiungerà mai 1:

$$0 \le I \le \frac{n-1}{n} < 1$$

Dal momento che l'indice di Gini tende a 1 senza mai arrivarci introduciamo l'**indice di Gini normalizzato**, in modo da arrivare a 1 nel caso di eterogeneità massima:

$$I' = \frac{n}{n-1}I$$

1.7.2. Entropia

$$H = \sum_{j=1}^{n} f_j \log \left(\frac{1}{f_j}\right) = \sum_{j=1}^{n} -f_j \log(f_j)$$

Dove f_j è la frequenza relativa e n è il numero di elementi distinti. L'entropia assume valori nel range $[0, \log(n)]$ quindi utilizziamo l'**entropia normalizzata** per confrontare due misurazioni con diverso numero di elementi distinti n.

$$H' = \frac{1}{\log(n)}H$$

i Nota

In base alla base del logaritmo utilizzata, l'entropia avrà unità di misura differente:

- \log_2 : bit
- \log_e : nat
- \log_{10} : hartley

Informalmente

Intuitivamente sia l'<u>indice di Gini</u> che l'<u>entropia</u> sono una "*media pesata*" tra la frequenza relativa di ogni elemento ed un peso: la *frequenza stessa* nel caso di Gini e il *logaritmo del reciproco* nell'entropia. La frequenza relativa è già nel range [0,1], quindi non c'è bisogno di dividere per il numero di elementi.

1.8. Indici di concentriazione

Un indice di concentrazione è un indice statistico che misura in che modo un *bene* è distribuito nella *popolazione*.

Distruzione del bene $a_1, a_2, ... a_n$ indica la quantità ordinata in modo **non decrescente**, del bene posseduta dall'individuo i

Media \bar{a} indica la quantità media posseduta da un individuo

Totale $TOT = n\overline{a}$ indica il totale del bene posseduto

- Concentrazione massima (sperequato): un individuo possiete tutta la quantità $a_{1..n-1}=0, \quad a_n=n\overline{a}$
- Concentrazione minima (equo): tutti gli individui possiedono la stessa quantità $a_{1..n}=\overline{a}$

1.8.1. Curva di Lorentz

La curva di Lorenz è una rappresentazione grafica della distribuzione di un bene nella popolazione.

Dati:

- $F_i = \frac{i}{n}$: posizione percentuale dell'osservazione i nell'insieme
- $Q_i = \frac{1}{\text{TOT}} \sum_{k=1}^{i} a_k$

La tupla (F_i,Q_i) indica che il $100\cdot F_i\%$ degli individui detiene il $100\cdot Q_i\%$ della quantità totale.

Inoltre: $\forall i, \ 0 \leq Q_i \leq F_i \leq 1$.

Informalmente

Possiamo vedere F_i come "quanta" popolazione è stata analizzata fino all'osservazione i, espressa nel range [0,1]. Q_i è invece una "frequenza cumulata" della ricchezza, fino all'osservazione i.

Figure 3: Curva di Lorentz

1.8.2. Indice di Gini (per la concentrazione)

Dato che la <u>curva di Lorenz</u> non assume mai alcun valore nella parte di piano superiore alla retta che collega (0,0) a (1,1), allora introduciamo l'**indice di Gini**, che invece assume valori nel range [0,1]. Anche esso indica la *concetrazione* di un bene nella popolazione.

$$G = \begin{array}{c} \sum\limits_{i=1}^{n-1} F_i - Q_i \\ \sum\limits_{i=1}^{n-1} F_i \end{array}$$

È possibile riscrivere il denominatore come:

$$\sum_{i=1}^{n-1} F_i \quad = \quad \frac{1}{n} \sum_{i=1}^{n-1} i \quad = \quad \frac{1}{n} \frac{n(n-1)}{2} \quad = \quad \frac{n-1}{2}$$

Ottendendo come formula alternatica:

$$G = \quad \frac{2}{n-1} \sum_{i=1}^{n-1} F_i - Q_i$$

Informalmente

Facendo un parallelo con la <u>curva di Lorenz</u>, possiamo vedere F_i-Q_i come la distanza tra la bisettrice (F_i) e la ricchezza dell'osservazione i (Q_i) . La somma di queste distanze viene poi "normalizzata", dividendo per $\frac{n-1}{2}$.

1.8.3. Analisi della varianza (ANOVA)

Dato un campione, è possibile suddividerlo in più *gruppi* ed effettuare delle analisi sulle *diversità* tra i vari gruppi. Ad esempio, dato un campione di dati sulla natalità, si potrebbe analizzare formando gruppi per regione o per reddito.

L'analisi della varianza (**ANOVA** - ANalysis Of VAriance) è un insieme di tecniche statistiche che permettono, appunto, di confrontare due o più *gruppi* di dati. Definiamo a questo scopo:

Numerosità dei gruppi dato un campione diviso in G gruppi, ognuno ha numerosità $n_1,...,n_G$

Osservazione viene definita x_i^g come l'i-esima osservazione del g-esimo gruppo

Media campionaria di tutte le osservazioni la media del campione

$$\overline{x} = \frac{1}{n} \sum_{g=1}^{G} \sum_{i=1}^{n_g} x_i^g$$

Media campionaria di un gruppo la media dei valori del gruppo

$$\overline{x}_g = \frac{1}{n_g} \sum_{i=1}^{n_g} x_i^g$$

Somme degli scarti

• Somma **totale** degli scarti (tra ogni elemento e la media di tutto il campione):

$$SS_T = \sum_{g=1}^{G} \sum_{i=1}^{n_g} \left(x_i^g - \overline{x} \right)^2$$

• Somma degli scarti **entro/within** i gruppi (tra ogni elemento e la media del proprio gruppo):

$$SS_W = \sum_{g=1}^{G} \sum_{i=1}^{n_g} \left(x_i^g - \overline{x}^g \right)^2$$

• Somma degli scarti **tra/between** i gruppi (tra la *media di ogni gruppo* e *la media del campione*, "pesato" per la *numerosità* del gruppo):

$$\mathrm{SS}_B = \sum_{g=1}^G n_g (\overline{x}^g - \overline{x})^2$$

Vale la seguente regola: $SS_T = SS_W + SS_B$.

Indici di variazione

• Total (la varianza totale del campione):

$$\frac{SS_T}{n-1}$$

• Within (la varianza di ogni elemento del gruppo):

$$\frac{\mathrm{SS}_W}{n-G}$$

• Between (la varianza tra ogni gruppo e il campione completo):

$$\frac{SS_B}{G-1}$$

L'ipotesi alla base è che dati G gruppi, sia possibile scomporre la varianza in due componenti: $Varianza\ interna\ ai\ gruppi$ (varianza Within) e $Varianza\ tra\ i\ gruppi$ (varianza Between).

Informalmente

Analizzando diversi gruppi attraverso l'ANOVA, si possono raggiungere due conclusioni:

- i gruppi risultano significativamente **diversi** tra loro: la *varianza between* contribuisce più significativamente alla varianza totale (il fenomeno è legato a caratteristiche proprie di ciascun gruppo)
- i gruppi risultano **omogenei**: la *varianza within* contribuisce più significativamente alla varianza totale (il fenomeno è legato a caratteristiche proprie di tutti i gruppi)

```
import numpy as np

def anova(groups):
    all_elements = pd.concat(groups)
    sum_total = sum((all_elements - all_elements.mean())**2)
    sum_within = sum([sum((g - g.mean())**2) for g in groups])
    sum_between = sum([len(g) * (g.mean()-all_elements.mean())**2 for g in groups])
    assert(np.abs(sum_total - sum_within - sum_between) < 10**-5)
    n = len(all_elements)
    total_var = sum_total / (n-1)
    within_var = sum_within / (n-len(groups))
    return (total_var, within_var*(n-len(groups))/(n-1))</pre>
```

1.9. Alberi di decisione

1.10. Classificatori

Dato un *classificatore binario* che divide in due classi (positiva e negativa) e un *insieme di oggetti* di cui è **nota** la classificazione, possiamo valutare la sua bontà tramite il numero di casi classificati in modo errato. La classificazione errata può essere:

- Falso negativo: oggetto positivo classificato come negativo
- Falso positivo: oggetto negativo classificato come positivo

i Nota

Il peso di un falso positivo può **non** essere lo stesso di un falso negativo, si pensi al caso di una malattia contagiosa: un *falso negativo* sarà molto più pericoloso di un *falso positivo* (che verrà scoperto con ulteriori analisi).

Introduciamo la **matrice di confusione**, che riassume la bontà del classificatore:

		Valore effettivo		
		Positivo	Negativi	
Predizione del classificatore	Positivo	Veri positivi (VP)	Falsi positivi (FP)	Totali classificati positivi (TOT CP)
	Negativi	Falsi negativi (FN)	Veri negativi (VN)	Totali classificati negativi (TOT CN)
		Totale positivi (TP)	Totale negativi (TN)	Totale casi (TOT casi)

Table 1: Matrice di confusione

pd.DataFrame(metrics.confusion_matrix(Y_test, preds))

Python

Sensibilità capacità del classificatore di predire bene i positivi $\frac{VP}{TP}$ Specificità capacità del classificatore di predire bene i negativi $\frac{VN}{TN}$ È possibile valutare la bontà di un classificatore attraverso il punto:

$$(1-\operatorname{Specifit\`{a}},\operatorname{Sensibilit\`{a}}) \quad = \quad \left(1-\frac{\operatorname{VN}}{\operatorname{TN}},\frac{\operatorname{VP}}{\operatorname{TP}}\right) \quad = \quad \left(\frac{\operatorname{FP}}{\operatorname{TN}},\frac{\operatorname{VP}}{\operatorname{TP}}\right)$$

1.10.1. Casi particolari

Classificatore costante associa indiscriminatamente gli oggetti ad una classe (positiva o negativa) Classificatori positivi (CP) tutti i casi sono classificati come positivi

• Sensibilità: 1, Specificitià: 0, Punto (1, 1) •

Classificatori negativi (CN) tutti i casi sono classificati come negativi

• Sensibilità: 0, Specificitià: 1, Punto (0,0) •

Classificatore ideale (CI) tutti i casi sono classificati correttamente

• Sensibilità: 1, Specificitià 1, Punto (0, 1) •

Classificatore peggiore (CE) tutti i casi sono classificati erroneamente

• Sensibilità: 0, Specificitià 0, Punto (1,0) •

Classificatore casuale ogni caso viene assegnato in modo casuale

• Sensibilità: 0.5, Specificitià 0.5, Punto $(\frac{1}{2}, \frac{1}{2})$ •

Figure 4: Rappresentazione classificatori

1.10.2. Classificatori a soglia (Curva ROC)

Un classificatore a soglia discrimina un caso in base ad una **soglia** stabilita a priori, in caso la misurazione sia *superiore* alla soglia allora verrà classificato *positivamente*, altrimenti *negativamente*.

Per trovare il valore con cui *fissare* la soglia, possiamo sfruttare questo metodo:

- definiamo θ come una generica soglia
- è necessario stabilire un intervallo $[\theta_{\min}, \theta_{\max}]$
 - utilizzando $heta_{\min}$ tutti i casi saranno positivi, ottenento un classificatore positivo lacktriangle
 - utilizzando $\theta_{\rm max}$ tutti i casi saranno negativi, ottenento un classificatore negativo \bullet
- definiamo D come una discretizzazione di questo intervallo continuo

Per ogni soglia $\theta \in D$ è possibile calcolare la sensibilità e specificità. Questo classificatore viene quindi rappresentato sul piano cartesiano attraverso il punto (1 - Specifità, Sensibilità).

Il risultato è una **curva**, detta **ROC** (Receiver Operator Carapteristic) —, che ha sempre come estremi in (0,0) (caso in cui viene usato θ_{min}) e (1,1) (caso in cui viene usato θ_{min}).

Per misurare la *bontà* del classificatore viene misurata l'area di piano sotto la curva (**AUC** - Area Under the ROC Curve), più si avvicina a 1, *migliore* è il classificatore.

Figure 5: Curva ROC

1.11. Trasformazione dei dati

1.12. Grafici

2. Calcolo delle probabilità

2.1. Calcolo combinatorio

Analizzare come e in quanti modi si possono effettuare raggruppamenti di elementi.

Principio di enumerazione (principio fondamentale del calcolo combinatorio) se dobbiamo compiere t esperimenti e per ognuno di essi ci possono essere s_i possibili risultati, il numero di risultati totali è $s_1 \cdot s_2 \cdot \ldots \cdot s_t$

Informalmente

Vogliamo selezionare k elementi da un insieme A di n elementi:

Disposizioni l'ordine è importante $(a, b) \neq (b, a)$

Combinazioni l'ordine *non* è importante (a, b) = (b, a)

Permutazioni tutti gli elementi vengono disposti k = n

È possibile sia avere che non avere delle ripetizioni in tutti i casi.

2.1.1. Disposizioni

Dato un insieme di n oggetti distinti $A=\{a_1,...,a_n\}$, vogliamo selezionare k oggetti (con $k\leq n$), tenendo in cosiderazione l'**ordine**.

Disposizione senza ripetizioni (semplici) gli oggetti di A possono essere usati una volta sola

$$d_{n,k} = \frac{n!}{(n-k)!}$$

Disposizione con ripetizione gli oggetti di A possono essere usati più di una volta

$$D_{n,k} = n^k$$

2.1.2. Combinazioni

Dato un insieme di n oggetti distinti $A=\{a_1,...,a_n\}$, vogliamo selezionare k oggetti (con $k\leq n$), senza considerare l'ordine.

i Nota

Il numero di combinazioni $c_{n,k}$ è sempre minore del numero di disposizioni $d_{n,k}$, dato che l'ordine non conta.

Combinazione senza ripetizioni (semplici) gli oggetti di A possono essere usati una volta sola

$$c_{n,k} = \frac{d_{n,k}}{k!} = \frac{n!}{k!\cdot(n-k)!} = \binom{n}{k}$$

i Nota

 $\binom{n}{k}$ viene detto **coefficiente binomiale**

Combinazione con ripetizioni gli oggetti di A possono venir usati più di una volta

$$C_{n,k} = \frac{(n+k-1)!}{k! \cdot (n-1)!} = \binom{n+k-1}{k}$$

2.1.3. Permutazioni

Dato un insieme di n oggetti $A = \{a_1, ..., a_n\}$, una **permutazione** è una sequenza *ordinata* in cui compaiono *tutti* gli oggetti (quindi vogliamo selezionare k elementi).

Permutazioni semplici (senza ripetizioni) l'insieme A non contiene elementi duplicati

$$P_n = n!$$

Permutazioni di oggetti distinguibili a gruppi (con ripetizioni) l'insieme A contiene k gruppi di oggetti indistinguibili, ognuno con numerosità $n_1,...,n_k$ (con $\sum_{i=1}^k n_i = n$), allora dobbiamo disporre tutti questi elementi

$$P_{n:n_1,\dots,n_k} = \frac{n!}{n_1!\cdot\dots\cdot n_k!} = \binom{n}{(n_1,\dots,n_k)}$$

i Nota

 $\binom{n}{(n_1,\dots,n_k)}$ viene detto **coefficiente multinomiale**

2.2. Elementi di probabilità

Esito $\omega \in \Omega$ risultato effettivo di un esperimento

Evento $E\subseteq \Omega$ è un qualsiasi insieme formato da tutti, alcuni o nessuno dei possibili esiti di un esperimento

Probabilità quantificazione dell'incertezza di un evento

Spazio campionario Ω (insieme degli esiti o insieme universo) è l'insieme di tutti gli esiti possibili. Può essere finito o infinito, continuo o discreto

Informalmente

Esempio: lanciando un dado, l'*esito* è il numero risultante, un *evento* può essere "esce 3 o 6" e la *probabilità* di questo evento è $\frac{2}{6}$.

Evento certo $E=\Omega$ si verifica sempre Evento impossibile $E=\emptyset$ non si verifica mai

i Nota

Indichiamo sempre con una minuscola un esito, mentre con una maiuscola un evento.

Dati degli eventi, è possibile applicare le operazioni e proprietà degli insiemi su di essi:

Unione $E \cup F$ quando si verifica l'evento E o l'evento F

Intersezione $E \cap F$ quando si verificano entrambi gli eventi E ed F

Mutualmente esclusivi $E \cap F = \emptyset$ i due eventi sono *mutualmente esclusivi*

Differenza E-F si verifica l'evento E, ma l'evento F non si verifica (l'operazione di sottrazione non è commutativa, $E-F \neq F-E$)

Complemento $\Omega - E = E^c = \overline{E} \;$ quando l'evento E non si verifica

Sottoinsieme $E \subseteq F = E \to F$ quando si verifica E, allora si verifica anche F

Proprietà per unione e intersezione

Commutatività $E \cup F = F \cup E$

Associatività $(D \cup E) \cup F = D \cup (F \cup E)$

Distributività $D \cup (E \cap F) = (D \cup E) \cap (D \cup F)$

De Morgan $\overline{E \cup F} = \overline{E} \cap \overline{F}$: l'evento che si verifica quando non si verifica E o F è lo stesso evento che si verifica quando non si verifica E e non si verifica F

È possibile dare diverse interpreazioni alla probabilità:

Approccio soggettivista la probabilità di un esito non è oggettiva: è il livello di *fiducia* che un soggetto (*lo studioso*) ripone nel verificarsi di un evento

Approccio frequentista la probabilità di un esito è una *proprietà* dell'esito stesso: viene calcolata come il rapporto tra il numero di casi *favorevoli* e il numero di casi *possibili* ripetendo l'esperimento un numero di volte tendente all'infinito

2.2.1. Algebra di eventi

Un algebra di eventi A è un insieme di eventi $\{E_1,E_2,\ldots\}$ a cui sono associate delle operazioni che soddisfa le proprietà:

- $\forall E \in A, \ E \subseteq \Omega$: ogni evento appartenente all'algebra A appartiene all'insieme di tutti gli eventi possibili Ω
- $\Omega \in A$: l'insieme di tutti gli *eventi possibili* Ω appartiene all'*algebra A*
- $\forall E \in A, \ \overline{E} \in A$: chiusura rispetto al *complemento*
- $\forall E, F \in A, E \cup F \in A$: chiusa rispetto all'*unione*
- $\forall E, F \in A, E \cap F \in A$: chiusura rispetto all'*intersezione*

i Nota

La chiusura rispetto all'*intersezione* non è una vera proprietà, ma deriva dalla chiusura rispetto all'*unione* a cui viene applicata la *legge di De Morgan*

i Nota

Se la chiusura sull'*unione* vale anche per $|\Omega|=\infty$, allora A viene chiamata σ -algebra

Informalmente

L'algebra degli eventi non è un vero insieme di eventi, ma è un "dizionario" che sfruttiamo per definire quali operazioni e variabili sono ammesse su un Ω

2.2.2. Assiomi di Kolmogorov

Definiamo la funzione **probabilità** $P:A\to [0,1]$, che stabilisce la probabilità che un evento avvenga.

 $P:A \rightarrow [0,1]$ è una funzione di probabilità se e solo se:

- 1. $\forall E \in A, 0 \le P(E) \le 1$: la frequenza è sempre *positiva* e compresa tra 0 e 1
- 2. $P(\Omega) = 1$: un evento che si verifica tutte le *n* volte: $\frac{n}{n} = 1$
- 3. $\forall E, F \in A, (E \cap F) = \emptyset \Rightarrow P(E \cup F) = P(E) + P(F)$

i Nota

La probabilità che accadano diversi eventi distinti E_i, E_j e disgiunti $E_i \cap E_j = \emptyset$ è la somma delle loro probabilità:

$$P\bigg(\bigcup_{i=1}^n E_i\bigg) = \sum_{i=1}^n P(E_i)$$

i Nota

Formalmente la funzione probabilità è definita $P:A\to\mathbb{R}^+$ (numeri *reali positivi*), applicando gli assiomi il *codominio* viene ristretto a [0,1].

In modo analogo, il *primo assioma* stabilisce che il risultato dell'applicazione della funzione debba essere *positiva*, senza imporre un *limite superiore*, che poi viene aggiunto dal *secondo assioma*

2.2.3. Teoremi derivati dagli assiomi

Probabilità del complemento

$$\forall E \in A, \ P(\overline{E}) = 1 - P(E)$$

Probabilità dell'evento impossibile

$$P(\emptyset) = 0$$

Proprietà di monotonicità

$$\forall E, F \in A \mid E \subseteq F \Rightarrow P(E) \leq P(F)$$

Probabilità dell'unione di eventi

$$\forall E, F \in A, \ P(E \cup F) = P(E) + P(F) - P(E \cap F)$$

2.2.4. Spazi di probabilità ed Esiti equiprobabili

Definiamo lo **spazio di probabilità** come la tripla (Ω, A, P) composta dallo spazio di *esiti possibili* Ω , l'algebra A e la funzione probabilità P.

Spazio equiprobabile uno spazio è *equiprobabile* se gli eventi elementari (gli elementi Ω) hanno tutti la *stessa* probabilità:

$$P(E) = \frac{1}{N} \qquad P(\{E_1, ..., E_k\}) = \frac{k}{N}$$

Si dimostra con il secondo assioma di Kolmogorov:

$$P(\Omega) = 1 = P(\{e_1\}) + \ldots + P(\{e_N\}) = \sum_{i=1}^N P(\{e_i\})$$

i Nota

Uno spazio può essere equiprobabile solo se Ω è un insieme finito

2.3. Probabilità condizionata

Dati due eventi E, F, la probabilità che si verifichi l'evento E sapendo che si è verificato l'evento F è detta **probabilità condizionata**:

$$P(E|F) = \frac{P(E \cap F)}{P(F)}$$

i Nota

- P(E|F) si legge "probabilità di E dato F"
- ullet E si dice evento condizionato
- F si dice evento condizionante

Attenzione

In caso P(F)=0, ovvero $F=\emptyset$, allora P(E|F)= indefinita

Informalmente

Intuitivamente P(E|F) è la probabilità che preso un punto qualsiasi all'interno di F, il punto appartenga a $E\cap F$, quindi $\frac{E\cap F}{F}$

2.3.1. Regola di fattorizzazione

Dati due eventi $E, F \in \Omega$, la probabilità che accadano entrambi (la loro intersezione) è data dalla regola di fattorizzazione:

$$P(E \cap F) = P(F) \cdot P(E|F)$$

Informalmente

A differenza di una possibilità condizionata "semplice", non sappiamo se F si sia già verificato o meno, quindi dobbiamo considerare anche la sua possibilità oltre a quella condizionata di E

2.3.2. Teorema delle probabilità totali

Dato Ω partizionato in $F_1,...,F_n$ partizioni disguinte, la probabilità che accada un evento $E\in\Omega$ è:

$$P(E) = \sum_{i=1}^{n} P(F_i) \cdot P(E|F_i)$$

i Nota

Insieme A partizionato: $\bigcup_{i=1}^n F_i = A$ con $\forall i,j,\ i \neq j,\ F_i \cap F_j = \emptyset$. L'*unione* di tutte le partizioni è uguale all'insieme iniziale e tutte le partizioni sono *disgiunte*

Figure 6: Probabilità di E:

$$\begin{split} P(E) &= (P(F_1) \cdot P(E|F_1)) + (P(F_2) \cdot P(E|F_2)) + (P(F_3) \cdot P(E|F_3)) \\ &= \left(\frac{1}{3} \cdot 0\right) + \left(\frac{1}{3} \cdot \frac{1}{6}\right) + \left(\frac{1}{3} \cdot \frac{1}{2}\right) = \frac{2}{9} \end{split}$$

È possibile esprimere E come:

$$\begin{split} P(E) &= P(E \cap F) + P\big(E \cap \overline{F}\big) \\ &= P(E \mid F)P(F) + P\big(E \mid \overline{F}\big)P\big(\overline{F}\big) \\ &= P(E \mid F)P(F) + P\big(E \mid \overline{F}\big)P(1 - P(F)) \end{split}$$

Altre trasformazioni utili:

$$(E \cap F) \cup (E \cap \overline{F}) = E \cap (F \cup \overline{F}) = E \cap \Omega = E$$
$$(E \cap F) \cap (E \cap \overline{F}) = E \cap (F \cup \overline{F}) = E \cap \emptyset = \emptyset$$

2.3.3. Teorema di Bayes

Dato Ω partizionato in $F_1,...,F_n$ partizioni disguinte, e un evento E, la probabilità che accada una certa $F_k\subseteq\Omega$ è:

$$\begin{split} P(F_k \mid E) &= \frac{P(E \mid F_k)P(F_k)}{P(E)} \\ &= \frac{P(E \mid F_k)P(F_k)}{\sum\limits_{i=1}^n P(E \mid F_i)P(F_i)} \end{split}$$

Figure 7: Probabilità di F_2 :

$$\begin{split} P(F_2) &= P(E|F_2) \cdot \frac{P(F_2)}{P(E)} \\ &= \frac{\frac{P(E \cap F_2)}{P(F_2)} P(F_2)}{(P(F_1) \cdot P(E|F_1)) + (P(F_2) \cdot P(E|F_2)) + (P(F_3) \cdot P(E|F_3))} \\ &= \frac{\frac{\frac{1}{6} \cdot \frac{1}{3}}{\frac{1}{3}} \frac{1}{3}}{\frac{2}{2}} = \frac{1}{4} \end{split}$$

2.3.4. Classificatore naive-Bayes

Possiamo generalizzare il teorema di Bayer per ricavarne un classificatore: date delle caratteristiche $X_1,...,X_n$ che assumono valore $x_1,...,x_n$, vogliamo assegnare l'oggetto y_k alla classe che massimizza la probabilità:

$$P(Y = y_k \mid X_1 = x_1, ..., X_n = x_n)$$

Applicando il teorema di Bayes:

$$= \frac{P(X_1 = x_1, ..., X_n = x_n \mid Y = y_k) \cdot P(Y = y_k)}{P(X_1 = x_1, ..., X_n = x_n)}$$

La formula viene semplificata in modo "ingenuo" (naive), assumendo che $P(X_1=x_1 \land X_2=x_2 \mid Y)=P(X_1=x_1) \cdot P(X_2=x_2)$:

$$=\frac{P(Y=y_k)\cdot\prod\limits_{i=1}^nP(X_i=x_i\mid Y=y_k)}{P(X_1=x_1,...,X_n=x_n)}$$

Per trovare la classe alla quale assegnare l'oggetto, bisogna calcolare la probabilità per ogni possibile y_k e trovare il massimo:

$$= \arg\max_k P(Y = y_k) \cdot \prod_i^n P(X_i = x_i \mid Y = y_k)$$

i Nota

Dato che ci interessa solo y_k massimo e il denominatore non dipende da k, allora possiamo ignorarlo dato che non influenzerà la scelta del masssimo

2.3.5. Eventi indipendenti

Quando il verificarsi di un evento F non influenza la probabilità del verificarsi di un altro evento E, allora gli eventi si dicono **indipendenti**:

$$P(E \mid F) = P(E)$$

$$P(E \cap F) = P(E) \cdot P(F)$$

i Nota

Sfruttando le formule viste in precedenza, è possibile verificare che i conti tornino:

$$P(E) = \frac{P(E \cap F)}{P(F)} = \frac{P(E) \cdot P(F)}{P(F)} = P(E)$$

Informalmente

È molto difficile rappresentare *graficamente* attraverso *diagrammi di Venn* eventi indipendenti, meglio non farlo :)

Proprietà

- Se E è indipendente da $F,\,F$ è indipendente da E
- Se E e F sono indipendenti, allora anche E e \overline{F} sono indipendenti

2.3.6. Indipendenza a tre i più eventi

Tre eventi E, F, G sono *indipendenti* se valgono le proprietà:

- $P(E \cap F \cap G) = P(E) \cdot P(F) \cdot P(G)$
- $P(E \cap F) = P(E) \cdot P(F)$
- $P(F \cap G) = P(F) \cdot P(G)$
- $P(E \cap G) = P(E) \cdot P(G)$

È possibile estendere la definizione ad un numero arbitrario di eventi:

Gli eventi $E_1,...,E_n$ si dicono indipendenti se per ogni loro sottogruppo $E_{a_1},...,E_{a_r}$ con $1\leq a_1\leq ...\leq a_r\leq n$ vale l'equazione:

$$P\bigg(\bigcap_{i=1}^r E_{ai}\bigg) = \prod_{i=1}^r P\Big(E_{a_i}\Big)$$

2.4. Variabili aleatorie

3. Statistica inferenziale

4. Cheatsheet Python