Sea-Bird Scientific 13431 NE 20th Street Bellevue, WA 98005 USA +1 425-643-9866 seabird@seabird.com www.seabird.com

SENSOR SERIAL NUMBER: 1810 CALIBRATION DATE: 27-Dec-24

SBE 37 CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:

j = -4.395705e-005

BATH TEMP (° C)	BATH SAL (PSU)	BATH COND (S/m)	INSTRUMENT OUTPUT (Hz)	INSTRUMENT COND (S/m)	RESIDUAL (S/m)
22.0000	0.0000	0.0000	2684.05	0.00001	0.00001
1.0000	34.6654	2.96429	5362.91	2.96411	-0.00018
4.5000	34.6447	3.27013	5565.74	3.27013	0.00000
15.0000	34.5990	4.24777	6169.10	4.24819	0.00042
18.5000	34.5887	4.59142	6367.30	4.59159	0.00016
24.0000	34.5765	5.14688	6675.14	5.14659	-0.00029
29.0000	34.5688	5.66633	6950.73	5.66571	-0.00062
32.5000	34.5620	6.03664	7141.38	6.03714	0.00049

f = Instrument Output(Hz) * sqrt(1.0 + WBOTC * t) / 1000.0

t = temperature (°C); p = pressure (decibars); δ = CTcor; ϵ = CPcor;

Conductivity (S/m) = $(g + h * f^2 + i * f^3 + j * f^4) / (1 + \delta * t + \epsilon * p)$

Residual (Siemens/meter) = instrument conductivity - bath conductivity

