

Nonresponse Bias Analysis Methods: A Taxonomy and Summary

James Wagner
University of Michigan - SRC

Overview

- Background
- Five approaches
 - Response rate comparisons
 - Subgroup response rate variation
 - Comparisons to external estimates
 - Changes due to level of effort
 - Contrasting alternative adjustment strategies
- Conclusion

Background

- Nonresponse bias concerns have grown
- Nonresponse bias evaluation has been a burgeoning area of research
 - Groves (2006) provides useful taxonomy
- OMB requires nonresponse bias analysis for surveys with response rates lower than 80%
- FCSM Nonresponse Bias Subcommittee report: "Best Practices for Nonresponse Bias Reporting"

Background

- Nonresponse bias analysis is driven by the available data:
 - Sampling frame/auxiliary data
 - Paradata
 - Survey data
 - Administrative data
- Want data that are "closer to the target"

1. Response Rates

- Response rates are a valuable indicator
 - Not the only, and maybe not the best
- Groves and Peytcheva (2008)
 - "NR rate by itself is a poor predictor of...NR bias"
- Brick and Tourangeau (2017) reanalysis

2. Subgroup Response Rate Variation

- We can also think of as comparisons -responders vs nonresponders
- Using sampling frame, auxiliary, and paradata
 - Ideally, proxy-Y variables
- Controlling variation seems helpful
 - Assume balanced response is better
 - Assume better than simply adjusting

2. Subgroup Response Rate Variation

- Example indicator: R-Indicator (Schouten, et al., 2009)
 - Variation of estimated response probabilities
 - $-1-2SD(\hat{\rho}_i) --> 1$ is perfect balance
 - Schouten et al. (2016)
 - Simulation study: increases in sample balance are associated with reductions in bias

Coffey, et al., 2019

2. Sugroup Response Rate Variation

- Comparison of responders and sample
- Based on administrative data:

Survey variable	Sample	Respondent
Cumulative GPA	3.18	3.26
Avg. weekly Campus Rec Facility visits	0.78	1.02***
Avg. PE classes skipped	2.98	2.95
Greek life participant	0.2	0.18*
Residential village participant	0.49	0.54

^{*}p < 0.05, **p < 0.01, ***p < 0.001

Standish and Umbach (2019) 8

3. Comparisons to External Estimates

- Poststratification factors
- Comparison so other surveys

HINTS 4 Cycle 1 compared to NHIS/MEPS (abridged from Maitland, et al., 2017)

Characteristic	Final calibrated estimate	Bench-mark estimate	Bench-mark source
Access to Internet	78.1	70.9*	
Excellent, very good, or good health	84.9	86.9	
Never visited doctor	21.2	19.0*	NHIS
Looked for health information on the Internet (Internet users only)	78	57.9*	
Health professionals always explain things in a way you understand	61	61.4	
In past 12 months, health professionals always spend enough time with you	44.6	52.4*	MEPS
*n<0.05			0

*p<0.05

4. Variation within survey

- Comparison of estimates by level-of-effort
 - Special nonresponse follow-up studies

• Example:

- Early vs Lateresponders inCanadian AddictionSurvey
- CATI → Completion
 within 1-6 (Early) vs 7+
 (Late) attempts
- Zhao, et al., (2009)

Substance	Early	Late	
Alcohol			
12 months*	77.57	83.24	
Chronic risky use*	6.25	8.23	
Heavy weekly use	4.69	5.55	
Cannabis			
Lifetime*	42.94	47.88	
12 months*	13.21	16.35	
Any illicit drug			
Lifetime*	43.66	48.47	
12 months*	13.64	16.69	

^{*}p<0.05

4. Variation within survey

- Which design features reduce the risk of nonresponse bias?
 - Groves and Heeringa (2006): Change design when current design no longer leads to changes in estimates – "phase capacity"
 - Peytchev et al. (2009)
 - More of the same (e.g. additional call attempts) does not lead to changes in estimates
 - Changing the protocol in a way that addresses the mechanism leads to changes in estimates
 - Example: Reduced length questionnaire

5. Contrasting post-survey adjustments

- "Sensitivity" to nonresponse and poststratification adjustment model selection
 - Little, et al. (2020)
 Standardized Measure of Unadjusted Bias (SMUB)
 - Using Pattern-Mixture
 Models to estimate bias
 under different
 assumptions about
 nonrespondents,
 including NMAR

Lessons Learned

- Choose design features that minimize risk of nonresponse bias
 - Reduce the impact of multiple mechanisms:
 - Topic not interesting, Too little time, etc.
- Multiple approaches to evaluation is a best practice
- Check sensitivity to model assumptions
- Allow users to evaluate risks relative to their analyses

Thank You!

• Email: jameswag@umich.edu

References

- Brick, J. M. and R. Tourangeau (2017). "Responsive Survey Designs for Reducing Nonresponse Bias." <u>Journal of Official Statistics</u> **33(3): 735-752.**
- Coffey, S., B. Reist and P. V. Miller (2020). "Interventions on-Call: Dynamic Adaptive Design in the 2015 National Survey of College Graduates." <u>Journal of Survey Statistics and Methodology</u> **8(4)**: **726-747**.
- Groves, R. M. (2006). "Nonresponse Rates and Nonresponse Bias in Household Surveys." <u>Public Opinion Quarterly</u> **70(5): 646-675.**
- Groves, R. M. and S. G. Heeringa (2006). "Responsive Design for Household Surveys: Tools for Actively Controlling Survey Errors and Costs." <u>Journal of the Royal Statistical Society: Series A (Statistics in Society)</u> **169(3): 439-457.**
- Groves, R. M. and E. Peytcheva (2008). "The Impact of Nonresponse Rates on Nonresponse Bias: A Meta-Analysis." Public Opinion Quarterly **72(2): 167-189.**
- Little, R.J.A., West, B.T., Boonstra, P., and Hu, J. (2020). Measures of the Degree of Departure from Ignorable Sample Selection. <u>Journal of Survey Statistics and Methodology</u>, **8**, **932-964**.
- Maitland, A., A. Lin, D. Cantor, M. Jones, R. P. Moser, B. W. Hesse, T. Davis and K. D. Blake (2017). "A Nonresponse Bias Analysis of the Health Information National Trends Survey (Hints)." <u>Journal of Health Communication</u> 22(7): 545-553.
- Peytchev, A., R. K. Baxter and L. R. Carley-Baxter (2009). "Not All Survey Effort Is Equal: Reduction of Nonresponse Bias and Nonresponse Error." <u>Public Opinion Quarterly</u> **73(4): 785-806.**
- Schouten, B., F. Cobben and J. G. Bethlehem (2009). "Indicators for the Representativeness of Survey Response." Survey Methodology **35(1)**: **101-113**.
- Schouten, B., F. Cobben, P. Lundquist and J. Wagner (2016). "Does More Balanced Survey Response Imply Less Non-Response Bias?" Journal of the Royal Statistical Society: Series A (Statistics in Society) 179(3): 727-748.
- Standish, T. and P. D. Umbach (2019). "Should We Be Concerned About Nonresponse Bias in College Student Surveys? Evidence of Bias from a Validation Study." <u>Research in Higher Education **60(3): 338-357.**</u>
- Zhao, J., T. Stockwell and S. MacDonald (2009). "Non–Response Bias in Alcohol and Drug Population Surveys."
 Drug and Alcohol Review 28(6): 648-657.