

Universidad Nacional Autónoma de Honduras

Autores: Jonathan Fiallos y Roger Ponce

Adaptado por: Arnold Chávez

FS-210 Biofísica

LABORATORIO #1 Circuitos Eléctricos

Instructor (a):				
Nombre:	# cuenta:			
Nombre:	# cuenta:			
Nombre:	# cuenta:			
Nombre:	# cuenta:			
Nombre:	# cuenta:			
Fecha:	Sección:			

1. OBJETIVOS

- 1. Comprobar experimentalmente la Ley de Ohm.
- 2. Calcular la resitencia equivalente a partir de datos medidos
- 3. Familiarizarse con el uso del multímetro

2. MARCO TEÓRICO

Al analizar circuitos eléctricos, es de mucho interés conocer los elementos que los componen. Aunque los elementos utilizados en circuitería son muchos, se enumeran a continuación los de interés para esta experiencia:

Figura 1: Elementos Básicos de Circuitos Eléctricos

La resistencia eléctrica (R), el voltaje (V) y la corriente (I) en un elemento de un circuito eléctrico pueden ser relacionados por medio de la Ley de Ohm:

$$V = R \cdot I \tag{1}$$

Mediante esta ley podemos calcular la resistencia equivalente de un circuito si conocemos el voltaje que presenta la fuente a la que está conectado y la corriente que esta misma fuente genera. Analíticamente podemos comprobar ese resultado reduciendo el circuito según la conexión que presente (Serie o Paralelo).

Figura 2: Conexiones en circuitos eléctricos y sus equivalentes

3. PROCEDIMIENTO EXPERIMENTAL

3.1. Conexión Serie

Figura 3: Circuito en serie

- Conecte la fuente de voltaje, regulada a 12 V en los puntos A y B.
- Coloque el amperímetro, en la escala de miliamperios, en los puntos C y D. Esto se hará para medir la corriente en la resistencia R_1 , llamaremos a este valor I_{R_1} . Registre la corriente en la Tabla 1.
- Registre la corriente en R_2 y R_6 , colocando el amperímetro en los puntos E y L para medir I_{R_2} y en los puntos K y LL para medir I_{R_6} . Registre estos valores en la Tabla 1.
- Calcule la R_{Equiv} utilizando la Ley de Ohm y los datos previamente registrados. Anote su resultado en la Tabla 1.

Espacio para cálculos

Voltaje (V)	I_{R_1} (mA)	I_{R_2} (mA)	$I_{R_6} (\mathrm{mA})$	$R_{Equiv} (\Omega)$
12				

Tabla 1: Corrientes y resistencia equivalente de un circuito en serie

3.2. Conexión Paralelo

Figura 4: Circuito en Paralelo

- Conecte la fuente de voltaje, regulada a 12 V en los puntos A y B.
- Coloque el amperímetro, en la escala de miliamperios, en los puntos C y D. Mida el valor de la corriente en este punto y registrela en la Tabla 2.
- Utilizando la Ley de Ohm calcule el valor de R_{Equiv} para el circuito paralelo y registrelo en la Tabla 2.

Espacio para cálculos

■ Mida los voltajes V_{R_2} y V_{R_4} , colocando las terminales del voltímetro en los puntos L y K para V_{R_2} y los puntos H e I para V_{R_4} . Registre estos valores en la Tabla 2.

Voltaje (V)	V_{R_2} (V)	V_{R_4} (V)	I (mA)	$R_{Equiv} (\Omega)$
12				

Tabla 2: Voltajes y resistencia equivalente de un circuito paralelo

3.3. Conexión Mixta

- Ajuste la fuente de voltaje a 10 V y conéctela en los puntos A y B.
- Conecte el amperimetro en los puntos C y D, registre la corriente que fluye en ese punto en la Tabla 3.
- Calcule por medio de la Ley de Ohm el valor de la R_{Equiv} y anótelo en la Tabla 3.

Espacio para cálculos

Figura 5: Circuito mixto

Voltaje (V)	I (mA)	$R_{Equiv} (\Omega)$
10		

Tabla 3: Resistencia equivalente de un circuito mixto

3.4. Conexión en Serie de Foquitos

Figura 6: Foquitos conectados en serie

- Conecte los foquitos del módulo en serie, como lo muestra el diagrama de conexiones de la Figura 6.
- Ajuste la fuente de voltaje a 12V y conectela en los puntos A y B.
- Presione el interruptor, se encenderá una luz roja.

• Realice las siguientes pruebas mencionadas en la Tabla 4 y marque en las casillas correctas según sus observaciones

Casos	Colocamos	Quitamos	¿Qué sucede con?	Están (Marcar)		
1		F1	F2 y F3	ApagadosEncendidos		
2	F1	F2	F1 y F3	ApagadosEncendidos		
3	F2	F3	F1 y F2	ApagadosEncendidos		

Tabla 4: Conexión de foquitos de un circuito en serie

3.5. Conexión en Paralelo de Foquitos

Figura 7: Foquitos conectados en serie

- Conecte los foquitos del módulo en paralelo, como lo muestra el diagrama de conexiones de la Figura 3.
- Ajuste la fuente de voltaje a 8 V y conectela en los puntos A y B.
- Presione el interruptor, se encenderá una luz roja.
- Realice las siguientes pruebas mencionadas en la Tabla 5 y marque en las casillas correctas según sus observaciones

Casos	Colocamos	Quitamos	¿Qué sucede con?	Están (Marcar)		
1		F1	F2 y F3	ApagadosEncendidos		
2	F1	F2	F1 y F3	ApagadosEncendidos		
3	F2	F3	F1 y F2	ApagadosEncendidos		

Tabla 5: Conexión de foquitos de un circuito en paralelo

4. CUESTIONARIO

■ Para cada una de las tres conexiones vistas, calcule de forma teórica el valor de R_{Equiv} y compárela con el valor medido calculando el porcentaje de error para cada caso.

$$\%Error = \frac{|R_T - R_M|}{R_T} \cdot 100\% \tag{2}$$

Donde R_T es el valor teórico y R_M es el valor medido

Espacio para cálculos

Complete con los cálculos anteriores el siguiente Cuadro:

Tipo de Conexión	Valor Med	lido de R_{Equiv}	Valor T	Teórico ($de R_{Equiv}$	% Error
Serie						
Paralelo					y	
Mixta						

Tabla 6: Comparación de resultados

- ¿Qué sucede al quitar uno de los foquitos en ambos circuitos?¿por qué sucede esto?
- Enuncie algunas aplicaciones de los circuitos eléctricos en el campo de la medicina.

5. CONCLUSIONES

Redacte 2 conclusiones en base a sus resultados