Maspredicciones by Masbaratillas

Clinical-microbiological characterisation of SARS-CoV-2 infection in the paediatric age

Cleaning the Dataset

- The dataset contains many fields that are not relevant to us: IDs, Type of Interview, Interviewer Initials
- There are also many data that we cannot treat in this event: Postal Code,
 School Name and Position, Date of the symptoms, Sports Activities
- There are fields that contain text that would require text mining approaches
- Other columns have data related with PCR and Antigens test, that are only filled if the subject is positive in COVID-19

We have deleted these fields

Cleaning the Dataset

- Many fields depend on others. If there is no headache, then headache_first is not filled
- Some values have arbitrary numbers:
 - Yes represented as 1
 - No represented as 2
- Other cases the value is not known. Those values are not accepted by our models
- Those cases that are suspected of COVID but are not confirmed

Fill missing data as no symptoms

Normalize the data to [0,1]. 1 means yes

→ Change value to 0.5

Remove the observations

Other possible data treatments

- Instead of 0.5 we could use the data distribution of each variable. For example we know that 60% of childs have no smokers at home
- We could perform data mining on the comments and observations field to create a dictionary of words
- We could add the Accumulated Incidence of each postal code to each observation

Linear Regression

- With the 90% of the cleaned data we have trained a Linear Regression Model in R
- This models tells us that what are the variables that are more relevant:
 - Environment cases: positive or symptoms at home
 - Modification in smell perception
 - Presence of fever
 - Headaches and shortness of breath
- Surprisingly the models tells us that some indicators are not good:
 - Presence of cough
 - > Fatiga
 - Nasal congestion

Linear Regression

• The area under the ROC curve is 0.909

Bayesian Linear Regression Model

- We use Bayesian Regression model to predict if a case is COVID or not
- The bayesian network uses the probability of each variable and the relations between them to predict a final result
- We use a bayesian linear regression from sklearn library

Neural Networks

- Keras library
- Train set: 120 positives, 120 negatives
- Validation set: 30 positives, 30 negatives
- Test set: the rest
- Softplus activation for hidden layers
- Sigmoid activation for output layer
- Binary crossentropy error
- We tried different configurations

Neural Networks: ROC curve

The COVID-19 Positive Patient

- We have performed a K-means clustering and hierarchical clustering on the data
- We have found that
 - 50% have a COVID-19 positive at home or with symptoms
 - 60% have fever and mostly under 39°C
 - 20% have alterations in the smell or taste
 - 40% have cough
 - 50% have diarrhea or vomits
- The clustering approach allows us to create groups of positives that are similar
- And allow us to visualize the data

The COVID-19 Positive Patient

Hepato and splenomegaly

Alteration in smell

- Here we can see part of the visualization of the clustering
- We can see codified in color the values of the patients
- We can see that many patients with Hepatomegaly problems have alterations with smell

Interface for Our Models

- We use Django connecting python with html
- The user has to fill a form.
- Then in the screen will show up several results
 - Index of the bayesian regression
 - Index of the neuronal network
 - Clustering

Thank You

Isaac Sanchez Rubén Langarita Sergio Langarita Víctor Soria