

Vincent Rennie, PhD Annelies Van Rie, MD, PhD

Why another pipeline?

Mtb pipelines were developed for research

What we need now is:

A clinical bioinformatics pipeline

For personalized DR-TB treatment

And targeted public health interventions

Challenges posed by clinical Mtb samples

Low amount of Mtb in sputum samples and primary MGIT cultures

- High levels of contaminating sequences (human, NTMs, other bacteria)
- Low amounts of (hard-to-extract) Mtb DNA

Mixed infections and hetero-resistance

- Need to disentangle mixed infections
- Need to detect major and minor variants

Mtb genome contains conserved regions similar to contaminating sequences

• Can lead to false positive variants in candidate resistance genes (e.g rrl, rrs)

Mtb genome contains repetitive regions

Elimination of complex regions by most analysis pipelines (loss of data)

Maximum Accessible Genome for Mtb Analysis

Aim One:

Call variants in genomes with low coverage

Aim Two:

Call both major and minor variants

Aim Three:

Call variants in the presence of contaminating sequences

Aim Four:

Retain data from complex regions in Mtb genome

Core Software Package

Developed for human genomics

Key features:

1

Joint variant calling of major variants

2

Filtering of artefacts and contamination

Automation and standardization

nextlow

Workflow

Quality Control

Mapping to reference genome

Detection of Multiple Infections

Variant Calling

Cohort calling and filtering

Joint calling

Filtering and merging

Primary outputs

DR Variant Characterisation

Phylogenetic Analysis

MAGMA Performance

How does MAGMA compare with other Mtb pipelines?

Comparison with two MTB pipelines

UVP pipeline

Relational Sequencing TB Data Platform

MTBseq pipeline

ngs-fzb/
MTBseq_source

UVP: Ezewudo, M., Borens, A., Chiner-Oms, Á. et al. Integrating standardized whole genome sequence analysis with a global Mycobacterium tuberculosis antibiotic resistance knowledgebase. Sci Rep 2018

MTBSeq: Kohl TA, Utpatel C, Schleusener V, De Filippo MR, Beckert P, Cirillo DM, Niemann S. MTBseq: a comprehensive pipeline for whole genome sequence analysis of Mycobacterium tuberculosis complex isolates. PeerJ. 2018

High accuracy at low coverage

Performance in presence of contamination

UVP

Does not analyse samples containing >20% contamination

MTBSeq

Does not perform well at high levels of contamination

MAGMA

Performance never drops below a 0.95 F₁ score

High accuracy at complex regions

Conclusion

Works with low Mtb genome coverage

Retains data from complex genomic regions in Mtb

Still calls variants in the presence of high levels of contamination