

المحاضرة الخامسة

كلية الهندسة المعلوماتية

مقرر تعلم الآلة

معايير تقييم جودة النماذج المدرَّبة

د. ریاض سنبل

Traditional ML Pipeline

New input

- Parameters (Hyperparameters)?
- Handle unseen cases

Metrics

- It is extremely important to use quantitative metrics for evaluating a machine learning model.
- These metrics can be used to better evaluate and understand the model
- For classification: Accuracy/Precision/Recall/F1-score, ROC curves,...
- For regression: Mean Absolute Error (NMAE),...
- In this lecture, we will focus on classification tasks.

Accuracy

• Accuracy is a measure of how close a given set of guessing from our model are closed to their true value:

$$Accuracy = \frac{\text{\# Correct classifications}}{\text{\# All classifications}}$$

 If a classifier make 10 predictions and 8 of them are correct, the accuracy is 80%.

Confusion Matrix

 Confusion Matrix is a performance measurement for the machine learning classification problems where the output can be two or more classes. It is a table with combinations of predicted and actual values.

Example (Binary Classification)

- True Positive: We predicted positive and it's true.
- True Negative: We predicted negative and it's true.
- False Positive (Type 1 Error): We predicted positive and it's false.
- False Negative (Type 2 Error): We predicted negative and it's false.

Example

Predict Positive

Predict Negative

TP	TN	FP	FN	Acc
9	8	2	1	0.85

Limitation of Accuracy

- Consider a 2-class problem
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10
- If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
- Accuracy is misleading because model does not detect any class 1 example
- Solution ©
 - > Use precision, recall, F1 measure, etc

Precision

- Precision is defined as the ratio of True Positives count to total <u>True</u>
 <u>Positive</u> count made by the model.
- Precision = TP/(TP+FP)
- It explains how many of the <u>correctly predicted</u> cases actually turned out to be positive.
- Precision is useful in the cases where False Positive is a higher concern than False Negatives.
 - Ex: music or video recommendation systems

Recall

- Recall is defined as the ratio of True Positives count to the <u>total Actual</u> <u>Positive</u> count. It is also called "True Positive Rate"/ "sensitivity".
- Recall = TP/(TP+FN)
- It explains how many of the actual positive cases we were <u>able to</u> <u>predict</u> correctly with our model.
- Recall is a useful metric in cases where False Negative is of higher concern than False Positive.
 - Ex: medical cases

Example

Predict Positive Predict Negative

TP	TN	FP	FN	Acc	P	R	F1
9	8	2	1	0.85	0.81	0.90	0.857

F1-score

- It is usually better to compare models by means of one number only.
- The F1-score can be used to combine precision and recall

	Precision(P)	Recall (R)	Average	F ₁ Score	
Algorithm 1	0.5	0.4	0.45	0.444	The best is Algorithm 1
Algorithm 2	0.7	0.1	0.4	0.175	
Algorithm 3	0.02	1.0	0.51	0.0392	
└── Algori	thm 3 predict alw	ays 1	Average sa	ys not corre	ctly

Average =
$$\frac{P+R}{2}$$
 F_1 score = $2\frac{PR}{P+R}$

•
$$P = 0$$
 or $R = 0 \Rightarrow F_1$ score = 0

•
$$P = 1$$
 and $R = 1 \Rightarrow F_1$ score = 1

RIAD SONBOL - ML COURSE 10

Multiclass Classifier

 Having m classes, confusion matrix is a table of size m×m, where, element at (i, j) indicates the number of instances of class i but classified as class j.

Class	C1	C ₂	C ₃	C4	C ₅	C_6
C1	52	10	7	0	0	1
C2	15	50	6	2	1	2
C3	5	6	6	0	0	0
C4	0	2	0	10	0	1
C ₅	0	1	0	0	7	1
C ₆	1	3	0	1	0	24

What is the accuracy?

Multiclass Classifier

- Precision, Recall, and F1-score are calculated for each class.
 - A large confusion matrix of m*m can be considered into 2*2 matrix.

Class	C ₁	C ₂	C ₃	C ₄	C ₅	C_6
C ₁	52	10	7	0	0	1
C ₂	15	50	6	2	1	2
C ₃	5	6	6	0	0	0
C4	0	2	0	10	0	1
C5	0	1	0	0	7	1
C ₆	1	3	0	1	0	24

- Finally, we can merge overall scores (ex: using weighted average)
 - What is the overall F1-score in the previous example?

RIAD SONBOL - ML COURSE 12

123