Nailing Down The Directed Integral

Spencer T. Parkin

November 9, 2013

1 Motivation

2 Definitions

We shall let \mathbb{R}^n denote n-dimensional euclidean space and let this space be represented by a vector space that is denoted by the same symbol \mathbb{R}^n . We will let \mathbb{G} denote the geometric algebra that is generated by \mathbb{R}^n . To add structure to our space \mathbb{R}^n , we shall assume the euclidean metric which, for any pair of vectors (points) $a, b \in \mathbb{R}^n$, may be taken as |a-b|. It can then be shown that \mathbb{R}^n is a metric space. To add further structure, we shall assume the usual topology on \mathbb{R}^n for open sets.

Definition 2.1 (Tangent Vector). Given any subset S of \mathbb{R}^n and a point $x \in S$, we call a vector $t \in \mathbb{R}^n$ a tangent vector of S at x if there exists a sequence of points $\{x_i\}_{i=1}^{\infty} \subseteq S$ such that for any real number $\epsilon > 0$, there exists an integer j > 0 such that for all $i \geq j$, we have $|x_i - x| < \epsilon$ and

$$\left| \frac{t}{|t|} - \frac{x_i - x}{|x_i - x|} \right| < \epsilon.$$

In light of Definition 2.1, we shall let T(x) denote the set of all tangent vectors of S at the point x.

Definition 2.2 (Surface). A subset S of \mathbb{R}^n is a k-dimensional surface if for all points $x \in S$, the set $T(x) \cup \{0\}$ is a vector space of dimension k.

With Definition 2.2 in place, it is easy to imagine examples of surfaces in \mathbb{R}^n , such as a hollow sphere or plane, although the typical surface may not really be anything like what we would or could imagine.

Given a surface $S \subseteq \mathbb{R}^n$, we will, for any point $x \in S$, let G(x) denote the geometric algebra generated by the tangent space T(x) at x.

If S is an orientable surface, then there exists a function $v: S \to \mathbb{G}$ giving, for each point $x \in S$, a consistent unit psuedo-scalar for the tangent algebra G(x). The unit psuedo-scalar v(x) is referred to as the tangent of S at x, while its principle dual, the normal of S at x.

Definition 2.3 (Surface Covering). Given a surface S, a surface covering of S of radius r is a set C of open balls centered on points of S, each of radius r, with the property that for any point $x \in S$, there exists an open ball $b \in C$ such that $x \in b$.

Letting ball(x,r) denote an open ball of radius r centered at a point x, notice that if a surface S is compact, then, by the Heine-Borel property, (see []), we can always take the surface covering $\{\text{ball}(x,r)|x\in S\}$ and reduce it to a finite sub-cover. That is, find a finite subset of this cover that is also a surface cover of S.

If C is a surface covering of S, then we are going to let C' denote the set of open ball centers of all open balls in C.

Definition 2.4 (Directed Integral). Let S be a compact surface upon which is defined a multivector field f. Then the directed integral of f over S, if it exists, is an element $L \in \mathbb{G}$, and we write

$$L = \int_{S} dv f(x),$$

if for every real number $\epsilon > 0$, there exists a real number $\delta > 0$ such that if C is a finite surface covering of S of radius $r < \delta$, then

$$\left| L - \sum_{x \in C'} rv(x) f(x) \right| < \epsilon.$$

We will characterize the set of all integrable functions on a compact surface S as those defined on such a surface, and for which the integral of Definition 2.4 exists over that surface.

Lemma 2.1. The directed integral of Definition 2.4, as a function, is well defined.

Proof. Letting f be an integrable function on S, we must show here that there are no two multivectors $L_0 \neq L_1$ of \mathbb{G} that are both integrals of f over S. To that end, let $D = |L_0 - L_1|$ and choose $\epsilon = \frac{D}{2}$. (Use triangle inequality, if you can make it work.)