VE215 Introduction to Circuits

Sung-Liang Chen Fall 2018

About me

- 1999 2003 B.S., Electrical Engineering National Taiwan University
- 2003 2005 M.S., Electro-optical Engineering, National Taiwan University
- 2007.09 2011.12 Ph.D., Electrical Engineering, University of Michigan
- 2012.01 2013.03 Research Fellow, Radiology Department, University of Michigan
- 2013.05 present Assistant Professor, UM-SJTU Joint Institute, Shanghai Jiao Tong University

What are circuits?

Circuit-Merriam Webster's definition

- **a**: the complete path of an electric current including usually the source of electric energy
- **b**: an assemblage of electronic elements
- **c**: a two-way communication path between points (as in a computer)
- d: a neuronal pathway of the brain along which electrical and chemical signals travel

Circuit-Wikipedia's definition (part list)

- Circuit theory, the theory of accomplishing work by routing electrons, gas, fluids, or other matter through loops
- In electrical engineering
 - Electrical circuit
- In fluid power and fluid mechanics
 - Hydraulic circuit
 - Pneumatic circuit
- In physics
 - Magnetic circuit
- In mathematics and computer science...

Circuit – Electrical Engineering

■ In electrical engineering

- Circuit analysis: V and I
- Series and parallel circuits
- -LC circuit
- Analog circuit or digital circuit
- Integrated circuit
- Mixed-signal integrated circuit

Electrical circuit

- An electrical circuit is a path in which electrons from a voltage or current source flow.
- Electric current flows in a closed path.
- A simple electrical circuit
 - A power source
 - A complete path for electrons to flow
 - A resistor as the load

Electrical circuits and electronic circuits

Electrical circuits

Usually alternating current sources

Load: refrigerators, televisions,
 or microwave ovens; the output of
 a hydroelectric power generating station.

Electronic circuits

- Usually low voltage direct current sources
- Load: the flash in a digital camera; the microprocessors.

More on electronic circuit

- Definition: An electronic circuit is composed of **individual electronic components**, such as resistors, transistors, capacitors, inductors and diodes, connected by conductive wires or traces through which electric current can flow.
- Function: The combination of components and wires allows various simple and complex operations to be performed:
 - signals can be amplified
 - computations can be performed
 - data can be moved from one place to another

Print circuit board (PCB)

- Circuits can be constructed of discrete components connected by individual pieces of wire.
- Today it is much more common to create interconnections by photolithographic techniques on a laminated substrate (a printed

circuit board or PCB) and solder the components to these interconnections to create a finished circuit.

Markings on PCB

ı

A separable assembly LS loudspeaker, buzzer AR amplifier M meter AT attenuator; isolator MG motor-generator В MH* blower, motor mounting hole BT battery MK microphone C capacitor MP mechanical part CB circuit breaker P connector, plug, male connector adapter, coupling PS CP power supply capacitor network CN Q transistor D or CR diode R resistor D or VR breakdown diode RN resistor network DC. directional coupler RT thermistor DL delay line S switch DS display, lamp T transformer E terminal TB terminal board, terminal strip F TC thermocouple fuse TP" FD* fiducial test point, In-circuit test points FI T7 filter transzorb G generator, oscillator U inseparable assembly, IC pkg GN electron tube general network V voltage regulator Н hardware VR HY circulator, directional coupler W wire, cable, cable assembly connector, jack, female fuse holder, lamp holder, socket J Х K contactor, relay Υ crystal, magnetostriction oscillator coil, inductor, bead, ferrite bead 7

miscellaneous

Integrated circuit (IC)

In an IC, the components and interconnections are formed on the same substrate, typically a semiconductor such as silicon or (less commonly) gallium arsenide.

The die from an Intel 8742, an **8-bit microcontroller** that includes

- a CPU
- 128 bytes of RAM
- 2048 bytes of EPROM
- I/O

Categories of electronic circuit

- Analog circuits
- Digital circuits
- Mixed-signal circuits (a combination of analog circuits and digital circuits)

Analog circuits

Current or voltage may vary continuously with time to correspond to the information being represented.

Lumped and distributed

- A lumped system: the dependent variables are a function of **time** alone.
- A distributed system: all dependent variables are functions of **time** and one or more **spatial** variables.

Distributed Lumped

Applicability/Validity

- The lumped element model ($L_c << \lambda$):
 - Ignores the finite time it takes signals to propagate around a circuit.
 - The attributes of the circuit elements are concentrated into idealized electrical components (resistors, capacitors, and inductors, etc.) joined by a network of perfectly conducting wires.
- Distributed circuit model $(L_c \sim \lambda)$:
 - When the circuit size is comparable to a wavelength of the relevant signal frequency.
 - Such considerations typically become important for circuit boards at frequencies above a GHz.

 L_c : circuit's characteristic length; λ : circuit's operating wavelength

Digital circuits

- Electric signals take on **discrete values**, to represent logical and numeric values.
- In the vast majority of cases, **binary encoding** is used: one voltage (typically the more positive value) represents a binary '1' and another voltage (usually a value near the ground potential, 0 V) represents a binary '0'.
- Extensive use of transistors, interconnected to create logic gates that **provide the functions of Boolean logic**: AND, NAND, OR, NOR,
 XOR and all possible combinations thereof.

Digital circuits

- Advantages over analog circuits
 - Each logic gate regenerates the binary signal, so the designer need not account for distortion, gain control, offset voltages, and other concerns faced in an analog design.
 - Extremely complex digital circuits (billions of logic elements integrated on a single silicon chip) can be fabricated at low cost.
- Digital circuitry
 - General purpose computing chips, such as microprocessors
 - Custom-designed logic circuits, known as application-specific integrated circuit (ASICs).
 - Field-programmable gate arrays (FPGAs), chips with logic circuitry whose configuration can be modified after fabrication
- Applications
 - Ubiquitous in modern electronic devices

Digital circuits-microprocessor

Intel 80486DX2 microprocessor

Digital circuits-FPGA

FPGA from Altera

FPGA from Xilinx

Sequential digital logic (example)

- •Different results for P->Q (towards right) and Q->P (towards left)
- Car hits P line: P turned to 1; Car hits Q line: Q turned to 1
- Electrical line colors: A high (1) signal is shown in red and a low (0) signal is shown in green
- Whilst you are looking at the animation try to follow the signals propagating through the circuit using the rules for the gates (NOT and NAND here).
- Results:
 - P=1-> Q=1, output light becomes red.
 - Q=1-> P=1, output light keeps green.

Mixed-signal circuits

Mixed-signal or hybrid circuits contain elements of both analog and digital circuits.

- Examples: Comparators, timers, phase-locked loops, analog-to-digital converters, and digital-to-analog converters (E.g., A laser marking machine).
- Most modern radio and communications circuitry uses mixed signal circuits. E.g, in a receiver:
 - Analog: amplification, frequency conversion
 - Digital: signal processing

Circuit symbols-passive components

Circuit symbols-active components

Example-operational amplifier

- Widely used in signal processing circuits, control circuits, and instrumentation
- An operational amplifier (op-amp) is a high gain, differential, voltage amplifier.
 - Voltage amplifier: the input is a voltage and the output is a voltage.
 - Typically, the gain is over 100,000
 - Differential amplifier: It actually amplifies the difference between two voltages.
- Symbol
 - V_{out} is the output voltage
 - − V₊ is the non-inverting input voltage
 - V_{_} is the inverting input voltage

Example-operational amplifier

■ The 741, a typical op-amp

A typical op-amp on a circuit board

■ Most op-amps today are ICs. Of course the actual size is smaller than the picture above!

Example-operational amplifier

A component-level diagram of the common 741 op-amp. Dotted lines outline: current mirrors (red); differential amplifier (blue); class A gain stage (magenta); voltage level shifter (green); output stage (cyan).

Example-a photodetector

■ New FocusTM 1801

Example-a photodetector

■ New FocusTM 1801-AC

29

Example-a photodetector

Application: Fiber-optic hydrophone

 Advantage: to amplify and extract only the small modulated signal (the useful signal)

Circuit types

Circuit types

Electrical Circuits

Magnetic Circuits

Bio

Biosensor chip

Mechanical Circuits

Glutamate sensor Glutamine sensor Glucose sensor Circuits Outlet Meander-like electrode Inlet of fluidic channel 10 mm 34

Printed circuit board

Circuit hierarchy

Circuit related curriculum in JI

Freshmen

- Math
- Physics
- Programming

Sophomore

- VE215
 Introduction to
 Circuits
- VE216
 Signal and
 System
- VE230 Electromagnetics
- VE270
 Introduction to Logic Design

Junior

- VE311
 Analog circuits
- VE320 Semiconductor
- VE330 Electromagentics II
- VE312
 Digital Integrated
 Circuits
- VE334 Optics

Senior

- VE413 Analog IC
- VE411 RF Microwave Circuits
- VE427 VLSI I
- VE434 Photonics

My contact

- Office location: Rm. 428, JI Building
- Office tel: 3420-6045 ext. 4281
- ■Email:

sungliang.chen@sjtu.edu.cn

Course expectation and requirement

- Pre-requisites: VV156 or VV186, VG101
- Co-requisites: VP240 or VP260
- Basic college math and physics
 - -Scalar & Vector
 - -Differentiation & Integration
 - -Electric Charge
 - -Current & Voltage

Textbook

Main Textbook

Laboratory book

Computer Aided Design - CAD

- Pspice CAD tool to simulate most analog and digital circuits.
- Demo version available online for free.

http://www.cadence.com/prod ucts/orcad/pages/download s.aspx#demo

Course schedule

- **Lectures**:
 - Monday 8:00 9:40 am
 - Wednesday 4:00 5:40 pm
 - -Friday 10:00 11:40 am (weeks 1-5)
- Recitation: TBD
- My office hours: Tu & We 2:00 3:00 pm
- TA office hours: TBD

Teaching assistants (TAs)

- ■Yuanhao Wang(王袁皓) wangyuanhao980405@sjtu.edu.cn
- ■Yan Fang (方砚)
 fangyan1998@sjtu.edu.cn
- Runqing Zhou (周润即) zrq16sjtu@sjtu.edu.cn

Grading policy

- In-class Quizzes 5%
- Homework 15%
 - −10 problem sets
- Lab 15%
 - -5 labs
- Midterm 1 20%
- Midterm 2 20%
- Final 25%

The JI Honor Code

- Personal integrity as students and professionals.
- Respect other people and their work.
- Respect yourself and your own efforts.
- Mutual trust.
- Applicable to all your academic activities here, including homework, quizzes, lab reports, projects and exams.
- Violations will be reported to the Honor Council.
 - Copy other student's homework, quizzes, lab reports, exams.
 - Illegal copy of online resource and academic literatures.
 - Helping others on the abovementioned activities.
 - Fake ID for exams.

Class rules

- Please do not come in late and do not get up to leave until the class is dismissed.
- You are responsible for all material covered in class, whether or not it is in the book.

Homework rules

- Homework will be assigned online at Canvas as scheduled. They are usually due one week later or specified otherwise. One day automatic grace period; second day late penalty -25%; later no credit.
- Students should complete the homework independently. Copy of others' homework is not allowed and is a violation to the Honor Code.
- Solutions will be posted on Sakai one week after the due date.

Exam rules

- There will be two midterm exams and one final exam. Each lasts 100 minutes.
- Students should complete the exam independently. No talk and collaboration are allowed.
- Closed book, cheat sheet may be allowed.
- No electronic devices except basic calculators will be allowed to use.

Week	Date	Lecture Topics	Homework	Labs
1	Sep 10	Introduction to Ve215, Basic concepts (Sections 1.3-1.7)		81-
	Sep 12	Basic laws (2.1-2.8)	HW1 issued	či:
	Sep 14	Methods of analysis (3.1-3.6)		200
2	Sep 17	Methods of analysis (3.7,3.9), Circuit theorems (4.1-4.4)	HW2 issued	
	Sep 19	Circuit theorems (4.5-4.8, 4.10)		2
	Sep 21	Operational amplifiers (5.1-5.5)	HW3 issued	SK
3	Sep 24	Moon Festival		26
	Sep 26	Operational amplifiers (5.6-5.8, 5.10)		
	Sep 28	Capacitors and inductors (6.1-6.6)	HW4 issued	
4	Oct 1	No lecture, National Holiday	0.	8
	Oct 3	No lecture, National Holiday		8
	Oct 5	No lecture, National Holiday		
5	Oct 8	No lecture, Midterm Exam 1		Lab1
	Oct 10	First-order circuits (7.1-7.4)		
	Oct 12	First-order circuits (7.5-7.7, 7.9)	HW5 issued	
6	Oct 15	Second-order circuits (8.1-8.6)		Lab2
	Oct 17	Second-order circuits (8.7-8.8, 8.10-8.11)		
7	Oct 22	Sinusoids and phasors (9.1-9.4)	HW6 issued	Lab3
	Oct 24	Sinusoids and phasors (9.5-9.8)		
8	Oct 29	Sinusoidal steady-state analysis (10.1-10.6)		Lab4
	Oct 31	Sinusoidal steady-state analysis (10.7, 10.9)	HW7 issued	
9	Nov 5	No lecture, Midterm Exam 2		Lab5
	Nov 7	AC power analysis (11.1-11.6)		
10	Nov 12	AC power analysis (11.7-11.9)	8	
	Nov 14	Three-phase circuits (12.1-12.6)		
11	Nov 19	Three-phase circuits (12.7-12.8, 12.10)	HW8 issued	-11.5
	Nov 21	Magnetically coupled circuits (13.1-13.5)		
12	Nov 26	Magnetically coupled circuits (13.6-13.7, 13.9)	HW9 issued	
	Nov 28	Frequency response (14.1-14.3)		
13	Dec 3	Frequency response (14.4-14.6)	HW10 issued	=_ 7
	Dec 5	Frequency response (14.7-14.8)		I EYE
14	Dec 10	No lecture, Final Exam		3

Any questions?