Proposition de correction de l'exercice 32 p 33

D'après le **doc.** 2, la combustion du bois produit du dioxyde de carbone (CO_2) qui est ensuite consommé par les arbres. Pour que l'utilisation du bois de chauffage ait un bilan carbone neutre, il faut que les arbres consomment autant de molécules de CO_2 que la combustion du bois de chauffage. D'après le **doc.** 3, le bois est essentiellement composé d'un dérivé du glucose; la combustion d'une molécule de glucose produit 6 molécules de CO_2 . D'après le **doc.** 1, la photosynthèse permet aux végétaux chlorophylliens et donc aux arbres de produire du glucose à partir de CO_2 . Produire une molécule de glucose consomme 6 molécules de CO_2 .

Si un nouvel arbre est planté pour chaque arbre coupé, alors pour chaque molécule de glucose consommée, le CO_2 produit sera à son tour consommé pour produire une nouvelle molécule de glucose. Donc, l'utilisation de bois de chauffage produit dans ces conditions affiche un bilan carbone neutre.

Proposition de correction de l'exercice 32 p 33

D'après le **doc.** 2, la combustion du bois produit du dioxyde de carbone (CO_2) qui est ensuite consommé par les arbres. Pour que l'utilisation du bois de chauffage ait un bilan carbone neutre, il faut que les arbres consomment autant de molécules de CO_2 que la combustion du bois de chauffage. D'après le **doc.** 3, le bois est essentiellement composé d'un dérivé du glucose; la combustion d'une molécule de glucose produit 6 molécules de CO_2 . D'après le **doc.** 1, la photosynthèse permet aux végétaux chlorophylliens et donc aux arbres de produire du glucose à partir de CO_2 . Produire une molécule de glucose consomme 6 molécules de CO_2 .

Si un nouvel arbre est planté pour chaque arbre coupé, alors pour chaque molécule de glucose consommée, le CO_2 produit sera à son tour consommé pour produire une nouvelle molécule de glucose. Donc, l'utilisation de bois de chauffage produit dans ces conditions affiche un bilan carbone neutre.

Proposition de correction de l'exercice 32 p 33

D'après le **doc.** 2, la combustion du bois produit du dioxyde de carbone (CO_2) qui est ensuite consommé par les arbres. Pour que l'utilisation du bois de chauffage ait un bilan carbone neutre, il faut que les arbres consomment autant de molécules de CO_2 que la combustion du bois de chauffage. D'après le **doc.** 3, le bois est essentiellement composé d'un dérivé du glucose; la combustion d'une molécule de glucose produit 6 molécules de CO_2 . D'après le **doc.** 1, la photosynthèse permet aux végétaux chlorophylliens et donc aux arbres de produire du glucose à partir de CO_2 . Produire une molécule de glucose consomme 6 molécules de CO_2 .

Si un nouvel arbre est planté pour chaque arbre coupé, alors pour chaque molécule de glucose consommée, le CO_2 produit sera à son tour consommé pour produire une nouvelle molécule de glucose. Donc, l'utilisation de bois de chauffage produit dans ces conditions affiche un bilan carbone neutre.