

Goals

- Use-case: peer-to-peer video streaming
 - Very high bandwidth requirements with 4K+
 - Very low latency requirements
 - Must be usable on UDP (NAT-piercing)
 - Must communicate congestion to application layer
 - Frame skip is more acceptable UX than jitter
- Generalized for other use-cases
- (Optional) transport encryption

Requirements

- Multiple (mostly) independent virtual channels
- Multiple connections of unknown reliability
- Capable of application on NAT-pierced UDP
- Congestion prediction and recovery
- Packet failure tolerant
- Communication with application layer:
 - Inform of reliability changes
 - Allow application to switch mitigation strategies on-the-fly
- Transport encryption

Multiple channels

- Packet loss in one virtual channel must not impact other channels
- Application can dedicate channel to purpose, e.g. data vs OOB
- Channel characteristics individually configurable
 - Packet loss prevention & recovery
 - Connection selection, if any

Multiple connections

- Available connections are unknown in advance (TCP, UDP, local multicast, ...)
- Connections may be more or less reliable (TCP vs. UDP, link-level: cable vs. wireless)
- Receiver: must be able to seamlessly switch connections on a packet-by-packet basis
- Sender: must be able to decide packet-by-packet which connection to use
 - In practice: bind channel to connection; change binding

Reliability

- For:
 - UDP transport
 - Congestion prediction & recovery
- Implement own transport reliability
 - Resend lost packets on request vs. TCPs mechanism
 - Loss prediction via LEDBAT-like mechanism
 - Loss recovery via TCP-Cubic-like rampup
 - Loss prevention via forward error coding
 - With configurable replication factor
 - Loss reporting to application

Application on UDP

- Required for NAT-piercing
- Compact packet envelopes
- Configurable MTU
- Message splitting & reassembly

Transport encryption

Initially:

- reserve a channel for encryption handshakes
- DTLS: applies transport encryption to all packets, across all channels
 - Lost packet leads to DTLS record processing delays

Future:

- reserve a channel for encryption handshakes
- WireGuard/NOISE: message decryption is not stalled on sequence numbering
- Give each channel unique counter

