Formation ElementR

Statistiques univariées et bivariées

Sylvestre Duroudier 21 mars 2023

Contact: sylvestre.duroudier@univ-paris1.fr

Les statistiques en géographie sont l'étude des variations géographiques de phénomènes localisés.

Différents objectifs :

- Explorer des données
- Mesurer des phénomènes
- Caractériser des variations
- Identifier des formes et des régions
- Expliquer des phénomènes par d'autres

Exemple : Cartes des appartenances ethno-raciales des aires métropolitaines des Etats-Unis en 2020.

Les statistiques comme un ensemble des techniques et des méthodes pour analyser une matrice d'information géographique.

Vocabulaire:

- <u>Caractère</u>: variable d'intérêt (colonnes)
- <u>Individus</u>: entités géographiques, unités spatiales (lignes)
- <u>Valeur (ou modalité)</u>: chiffre ou texte pris par un individu donné pour un caractère donné
- <u>Statistiques univariées :</u> étude de la variation d'un seul caractère.
- <u>Statistiques bivariées</u>: étude de la covariation de deux caractères.
- <u>Approche descriptive</u>: caractériser des caractères (par des indicateurs, des graphiques, des cartes).
- Approche explicative : prédire/modéliser une caractère par un autre.

CBSAA CBSAN	State	POP20	WHITE	BLACK	ASIAN	HISPA	OTHER
10100 Aberdeen	SD	42287	36484	547	985	1720	2551
10140 Aberdeen	WA	75625	57056	972	1151	7833	8613
10180 Abilene	TX	175610	109578	13076	3142	41446	8368
10220 Ada	ОК	38065	22703	861	385	2208	11908
10300 Adrian	MI	99424	83126	2437	484	8495	4882
10420 Akron	ОН	702212	536305	86857	26093	16711	36246
10460 Alamogordo	NM	67838	30931	2299	1146	26151	7311
10500 Albany	GA	151797	62519	78973	1697	4067	4541
10540 Albany	OR	128609	104117	623	1714	12571	9584
Albany-							
Schenectady	,						
10580-Troy	NY	895799	668079	72201	46260	53166	56093
10620 Albemarle	NC	62504	48645	7000	1149	3086	2624
10660 Albert Lea	MN	29324	23612	456	1122	3129	1005
10700 Albertville	AL	97612	74666	2293	707	15658	4288
Albuquerqu							
10740 e	NM	916530	349194	21562	22702	439141	83931
10780 Alexandria	LA	152199	93004	43323	1911	6424	7537
10820 Alexandria	MN	39006	36629	223	238	815	1101
10860 Alice	TX	38891	6963	180	155	30835	758
Allentown-							
Bethlehem-							
10900 Easton	PA-NJ	859645	596312	46964	26838	157312	32219
10940 Alma	MI	41761	34812	2195	189	3153	1412
10980 Alpena	MI	28907	27006	99	124	417	1261
11020 Altoona	PA	122815	113008	2464	880	1708	4755
11060 Altus	OK	24785	14883	1614	397	5937	1954
11100 Amarillo	TX	268689	153401	16623	8754	77790	12121
11140 Americus	GA	31049	13584	14730	367	1554	814
11180 Ames	IA	96834	78389	2980	5469	4962	5034
11220 Amsterdam	NY	49532	38237	987	488	7312	2508

Exemple: Tableau des appartenances ethno-raciales des aires métropolitaines des Etats-Unis en 2020 (extrait).

Différents types de caractères

1. Quantitatif:

- Stock : un effectif dont le 0 marque l'absence et la somme des individus a un sens.
- Rapport : un ratio, un pourcentage, une quantité dont la somme des individus n'a pas de sens.
- Echelle : la valeur 0 est un repérage conventionnel

2. Qualitatif:

- Nominal : il n'y a pas d'ordre entre les modalités
- Ordinal : il y a une hiérarchie entre les modalités

Les méthodes statistiques dépendent de la nature des caractères...

Les natures des caractères

Les types d'analyses univariées

Les types d'analyses bivariées

	Variable quantitative	Variable qualitative
Variable quantitative	Corrélation, régression linéaire	Analyse de la variance (anova)
Variable qualitative	Analyse de la variance (anova)	Analyse du Chi2

Du côté théorique

Au programme:

- 1. Statistiques univariées
- 2. Bivarié quantitatif
- 3. Bivarié qualitatif
- 4. Bivarié quali-quanti (?)

A chaque étape :

- Des mesures
- Des graphiques
- Des cartes
- Des exercices

Du côté R

Des packages :

- *tidyverse* : gestion de tableau
- *sf* : gestion de données spatiales
- *Imtest* : aide au bivarié
- *RColorBrewer* : palettes de couleur
- *ggplot2* : réalisation de graphiques
- *tmap* : cartographie

Des données : Appartenances ethno-raciales dans les aires métropolitaines des Etats-Unis en 2020.

Des fonds de cartes : aires métropolitaines et Etats fédérés.

Des exemples filés : les Hispaniques, les régions, les types de villes selon la taille

Objectif principal : caractériser la distribution statistique d'un caractère.

Les bornes

- Minimum min()
- Maximum *max()*

2. Les valeurs centrales

- Moyenne mean()
- Médiane median()

AL CODITUALE	PROPRIÉTÉ
ALGORITHME	PROPRIÉTÉ

MOYENNE Faire la somme des valeurs et diviser par l'effectif Minimise la somme du carré des écarts entre toutes les valeurs et elle-même Ordonner la série et trouver la valeur qui la découpe en deux ensembles d'eff. égaux Minimise la somme du carré des écarts entre toutes les valeurs et elle-même

```
# Généralités ====
 # obtenir un résumé partiel d'une variable
 summary(db$HISPA)
  Min. 1st Qu. Median
                          Mean 3rd Qu.
          2125
                               20484 5835137
                  6111
                        66004
 ## la fonction reprend min(), max(), median(), mean(), quantile(,0.25), quantile(,0.75)
 # obtenir un résumé d'un ensemble de variables
 summary(db)
   CBSAA
                      CBSAN
                                         State
                                                           Division
                                                                           Region
                   Length: 909
Length:909
                                     Length: 909
                                                             :1.00
                                                                              :1.000
Class :character
                  Class :character
                                     Class :character
                                                        1st Qu.:3.00
                                                                       1st Qu.:2.000
Mode :character
                   Mode :character
                                     Mode :character
                                                        Median:5.00
                                                                       Median :3.000
                                                        Mean :5.19
                                                                       Mean :2.674
                                                        3rd Qu.:7.00
                                                                       3rd Qu.:3.000
                                                              :9.00
    POP20
                                         BLACK
                                                          ASIAN
                                                                            HISPA
                       WHITE
           12456
                   Min.
           40105
                   1st Qu.: 30095
                                                      1st Qu.:
                   Median: 56204
           75922
                                                      Median:
                                                                20963
3rd Qu.: 186468
                   3rd Qu.: 133178
                                     3rd Qu.: 16623
                                                      3rd Qu.:
                                                                 3823
       :20626380
                          :9033783
                                            :3055666
                                                             :2477126
                                                                               :5835137
                                                      Max.
 # problème pour les variables qualitatives
 summary(as.factor(db$DEFI))
 L LM M MS S
 7 8 29 7 858
 summary(as.factor(db$Region))
 1 2 3 4
 91 282 368 168
 # juste les indices de ségrégation
 summary(db[,19:23], digits = 2)
   WHITEIS
                  BLACKis
                                 ASIANis
                                                HISPAis
                                                              OTHERIS
                                                                 :0.05
      :0.08
               Min. :0.14
                             Min. :0.10
                                            Min.
                                                    :0.09
                                                           Min.
1st Qu.:0.23
               1st Qu.:0.36
                              1st Qu.:0.31
                                             1st Qu.:0.22
                                                           1st Qu.:0.11
Median:0.31
               Median:0.43
                              Median:0.37
                                            Median:0.28
                                                           Median:0.14
      :0.31
               Mean :0.43
                              Mean
                                   :0.37
                                             3rd Qu.: 0.35
 3rd Ou.:0.38
               3rd Qu.: 0.50
                              3rd Qu.:0.43
                                                            3rd Ou.:0.17
       :0.70
                                    :0.67
 min(db$HISPA) # minimum
[1] 224
 - max(db$HISPA) # maximum
[1] 5835137
» mean(db$HISPA) # moyenne
[1] 66004.3
median(db$HISPA) # mediane
[1] 6111
```

2.1 Statistiques univariées ====

Objectif principal : caractériser la distribution statistique d'un caractère.

3. Les paramètres de dispersion

Etendue: max - min Variance : moyenne des carrés des

grandeur)

sd() Ecart-type : racine carrée de la

écarts à la moyenne (sans ordre de

variance (dans l'ordre de grandeur) Coefficient de variation : écart-type divisé par la moyenne (entre 0 et +inf)

Quantiles : valeurs prises pour des partitions en effectifs égaux (quartiles, quintiles, déciles...)

Intervalle inter-quantiles : par ex. intervalle interquartiles = quartile 3 – quartile 1

range()

var()

sd() / mean()

quantile(var, ratio)

quantile(,0.75)quantile(,0.25


```
# étendue
        224 5835137
  var(db$HISPA) # variance
   1.13955e+11
  sd(db$HISPA) # ecart-type
   337572.3
  sd(db$HISPA) / mean(db$HISPA) # coefficient de variation
[1] 5.114398
 quantile(db$HISPA, 0.25) # quartile 1
 25%
2125
 quantile(db$HISPA, 0.9) # décile 9
    90%
94001.6
```

Objectif principal : caractériser la distribution statistique d'un caractère.

- 4. Pour les variables qualitatives
 - Le mode : la modalité la plus fréquente

Obtenir un dénombrement :

fonction table()

Méthode plus riche :

package questionr,

fonction freq(variable, valeurs cumulées, total)

Représentations graphiques univariées

- → Variables quantitatives : histogramme
- → Utilisation de *ggplot() + geom_histogram()*

Distribution du nombre d'Hispaniques dans les aires métropolitaines des Etats-Unis

Représentations graphiques univariées

- → Variables qualitatives : diagramme en barres
- → Utilisation de *ggplot() + geom_bar()*

Distribution des aires métropolitaines des Etats-Unis selon leur catégorie de taille


```
# variable qualitative = diagramme en barre
graph <- ggplot(db, aes(x = DEFI))+
    geom_bar() +
    theme_bw() +
    scale_y_log10() +
    labs(
        title = "Distribution des aires métropolitaines des Etats-Unis selon leur catégorie de taille",
        x = "Catégorie de taille de ville",
        y = "Nombre d'aires métropolitaines"
    )
graph</pre>
```

Connaître la distribution pour cartographier : la discrétisation

Discrétisation : transformation d'un caractère quantitatif continu en un caractère discret.

= découper une série en classes, chaque entité appartient à 1 seule classe

Combien de classes ? Par convention, entre 3 et 8.

Quelle méthode?

- Seuils naturels
- Effectifs égaux (quantiles)
- Amplitudes égales (par ex. moyenne et écarttype)
- Progressions arithmétiques ou géométriques
- Algorithme de Jenks

Source: Duroudier, 2023, ISTE.

Exercices: Par des calculs et des graphiques...

- 1. Identifier la répartition des villes selon les régions.
 - Quelle est la région modale ?
 - Quelle est la région comptant le moins de villes ?
- 2. Déterminer la forme de la distribution des Noirs dans les villes des Etats-Unis.
 - Quelle est l'étendue ?
 - Quel est le coefficient de variation ?
 - A quel pourcentage est le décile des villes ayant le moins de Noirs en poids relatif?
- 3. Idem pour l'indice de ségrégation des Noirs.
 - Quelles sont les moyenne et médiane ?
 - Le coefficient de variation est-il supérieur ou inférieur à celui du pourcentage de Noirs ?

Objectifs:

- Analyser la covariation entre 2 caractères quantitatifs
- Expliquer un caractère quantitatif par un autre

Notion d'« explication » en statistique :

- Expliquer une variation inconnue avec du connu, c'est-à-dire apporter de l'information sur un phénomène par des covariations.
- Explication n'est pas causalité!
- Distinction entre 2 caractères :
 - Variable « à expliquer », notée Y et axe des ordonnées
 - Variable « explicative », notée X et axe des abscisses

Exemple : l'effectif des Hispaniques dépend-il de la taille des villes en termes de population ?

Source: Pumain et al, 2005.

L'écart au score moyen national des votes en faveur des trois principaux candidats selon la distance aux villes

Source: Slate, 2012.

Approche descriptive par un graphique : nuage de points

fonction ggplot() + geom_point()

Population hispanique selon la taille des aires métropolitaines aux Etats-Unis

Population hispanique selon la taille des aires métropolitaines aux Etats-Unis

Approche descriptive par une mesure : le coefficient de corrélation

Coef. de Bravais Pearson:

Principe: calculer la covariation statistique entre 2 caractères quantitatifs

Calcul: R = covariance / produit des écarttypes

Propriétés du R de Pearson :

- Valeur standardisée : permet de comparer des relations entre caractères
- Variation entre :
 - -1 = corrélation négative : + en X et en
 Y, ou inversement)
 - 1 = corrélation positive : + en X et + en Y).
- 0 signifie l'absence de relation statistique.

$$R = \frac{COV_{xy}}{\sigma_x \sigma_y}$$

Variables d'origine x_i et y_i

Écart à la moyenne $x_i - \overline{x}$ et $y_i - \overline{y}$ Produit des écarts $(x_i - \overline{x})(y_i - \overline{y})$

Moyenne du produit des écarts (covariance)

$$\frac{1}{n}\sum_{i=1}^{n}(x_i-\bar{x})(y_i-\bar{y})$$

Source : Denis Boigelot, wikimedia.org

Supplément : calcul de la covariance

Cov(x,y) = moyenne du produit des écarts à la moyenne de x et de y

Interprétation:

- Relation positive : covariance positive (- par et + par +).
- Relation négative : covariance négative (- par + et + par -).

Propriétés de la covariance :

- Ne dépend pas de l'ordre de grandeur (produit)
- Ne dépend pas des effectifs (moyenne)
- Dépend de la dispersion autour de la moyenne (écarts) : on ne peut pas comparer deux résultats de covariance.

$$R = \frac{COV_{xy}}{\sigma_x \sigma_y}$$

Variables d'origine x_i et y_i

Écart à la moyenne $x_i - \overline{x}$ et $y_i - \overline{y}$ Produit des écarts $(x_i - \overline{x})(y_i - \overline{y})$

Moyenne du produit des écarts (covariance)

$$\frac{1}{n}\sum_{i=1}^{n}(x_i-\bar{x})(y_i-\bar{y})$$

Source: Denis Boigelot, wikimedia.org

Calcul dans R:

fonction *cor(x, y, methode, use)*

Variante : le coefficient de corrélation de Spearman

- Principe : covariation entre les rangs des individus
- Application : caractère quantitatif de stock (ex. populations)
- Dans R : cor(method = "spearman")

Opérations avancées dans R :

- Calcul d'une matrice des corrélations
- Générer un tableau
- Mettre en forme le tableau
- Exporter la matrice des corrélations

```
# relation entre plein de variables
## fonctions successives
cor(db[,9:23])
round(cor(db[,9:23]), digits = 1)
correl <- round(cor(db[,9:23]), digits = 1)
correl <- as.data.frame(round(cor(db[,9:23]), digits = 1))
## chaînage
correl <- cor(db[,9:23]) %>%
    round(digits = 1) %>%
    as.data.frame() %>%
    mutate(CBSA = row.names(correl)) %>%
    select(CBSA, WHITE:OTHERis)
## Export
write_csv2(correl, "correlation.csv")
```

```
ASIAN HISPA OTHER WHITED BLACKD ASIAND HISPAD OTHERD
                                         -0.2
                                                         0.5
                                                                0.1
                                                                        0.0
WHITE
                                                                0.1
BLACK
                             0.7
                                   0.9
                                         -0.2
                                                                       0.0
                                         -0.2
                                                                0.1
ASIAN
                             0.9
                                   0.9
                                                                0.2
                                   0.8
                                         -0.3
                                                         0.4
HISPA
                      0.9
                            1.0
                                                                       0.0
                0.9
                      0.9
                            0.8
                                                                       0.1
OTHER
                                  1.0
                                                                0.1
                    -0.2
                           -0.3
                                  -0.2
                                                        -0.3
                                                               -0.7
WHITEP
               -0.2
                                                                       -0.1
                                                               -0.2
BLACKP
                             0.0
                                   0.1
                                         -0.5
                                                                       -0.1
ASIAND
              0.3
                             0.4
                                         -0.3
                                                                       0.0
                                   0.1
                                         -0.7
                                                         0.2
HISPAP
                0.1
                             0.2
                                                                       -0.1
          0.0
                      0.0
                             0.0
                                   0.1
                                         -0.1
OTHERD
```

Approche explicative : la régression linéaire

Principe : modéliser les valeurs d'un caractère Y à partir des valeurs d'un caractère X

- Equation : Y = aX + b
- Paramètres de l'équation :
 - Y = variable à expliquer
 - X = variable explicative
 - a = pente de la droite de régression
 - b = valeur de Y à l'origine, c'est-à-dire quand X = 0.

Coefficient de détermination (R²) : permet de caractériser le pouvoir explicatif du modèle.

- Calcul : carré du coefficient de corrélation
- Interprétation : « la régression explique _% de la variation de Y

Relation entre le % de cadres et le % d'ouvriers dans l'unité urbaine de Grenoble

Source : Duroudier, 2022, Université Paris 1.

Approche explicative : la régression linéaire

Application dans R:

 $Im(y \sim x)$

Voir le modèle :

model1

Examiner l'objet créé :

str(model1)

```
model1
                        List of 12
   $ coefficients : Named num [1:2] -2.47e+04 2.67e-01
    ..- attr(*, "names")= chr [1:2] "(Intercept)" "POP20"
    $ residuals : Named num [1:909] 15088 12288 19170 16705 6587 ...
    ..- attr(*, "names")= chr [1:909] "1" "2" "3" "4" ...
                  : Named num [1:909] -1990005 9195786 18633 16121 6025 ...
    ..- attr(*, "names")= chr [1:909] "(Intercept)" "POP20" "" "" ...
                  : int 2
    $ rank
    $ fitted.values: Named num [1:909] -13368 -4455 22276 -14497 1908 ...
    ..- attr(*, "names")= chr [1:909] "1" "2" "3" "4" ...
    $ assign
                  : int [1:2] 0 1
    $ qr
                  :List of 5
    ..$ qr : num [1:909, 1:2] -30.1496 0.0332 0.0332 0.0332 0.0332 ...
    ... - attr(*, "dimnames")=List of 2
    .. .. ..$ : chr [1:909] "1" "2" "3" "4" ...
    .. .. ..$ : chr [1:2] "(Intercept)" "POP20"
    .. ..- attr(*, "assign")= int [1:2] 0 1
    ..$ graux: num [1:2] 1.03 1.01
    ..$ pivot: int [1:2] 1 2
    ..$ tol : num 1e-07
    .. $ rank : int 2
    ..- attr(*, "class")= chr "qr"
    $ df.residual : int 907
   $ xlevels
                  : Named list()
   $ call
                  : language lm(formula = HISPA ~ POP20, data = db)
                  :Classes 'terms', 'formula' language HISPA ~ POP20
    ....- attr(*, "variables")= language list(HISPA, POP20)
```

Approche explicative : la régression linéaire

Analyse des résultats du modèle :

summary(model1)

- Coef. de détermination R² : 0,82
- Significativité : très forte
- Estimate : pente et *intercept*

Quelques tests supplémentaires :

- Analyse de variance des résidus
- Histogramme des résidus
- Test de Breusch-Pagan

```
> summary(model1) # résultats généraux : equation, variabilité de
call:
lm(formula = HISPA ~ POP20, data = db)
Residuals:
   Min
            10 Median
                            30
                                   Max
-999107 -3687 12936 18706 2357295
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.467e+04 4.996e+03 -4.938 9.37e-07 ***
            2.673e-01 4.198e-03 63.689 < 2e-16 ***
POP20
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 144400 on 907 degrees of freedom
Multiple R-squared: 0.8173, Adjusted R-squared: 0.8171
F-statistic: 4056 on 1 and 907 DF, p-value: < 2.2e-16
```

Approche explicative : analyse des résidus de la régression linéaire

On appelle résidu l'information qui n'est pas expliquée par le modèle de régression.

→ Intérêt majeur en géographie!

Résidus bruts:

RB = Yobservé – Yestimé

Propriétés : moyenne = 0, interprétation dans l'unité de la variable Y.

Résidus relatifs :

RR = RB / Yestimé

Propriétés : variation autour de 0, lissent l'effet de taille mais perdent l'ordre de grandeur.

Approche explicative : analyse des résidus de la régression linéaire

Application dans R : extraire les résultats de lm()

Valeurs estimées

fitted(model1)

Valeurs résiduelles

resid(model1)

Concaténation avec le tableau de données

cbind(db, estimées, résidus)

- Calcul des résidus relatifs
- Visualiser les résultats :

summary()
agplot() + geom histogram()

```
analyse des résidus
 ## exporter les résidus
 estim <- as.data.frame(fitted(model1))
 head(estim)
fitted(model1)
     -13367.779
      -4454.920
     22275.907
     -14496.524
      1907.704
    163062.089
 res <- as.data.frame(resid(model1))</pre>
 head(res)
resid(model1)
    15087.779
    12287.920
    19170.093
    16704.524
      6587.296
  -146351.089
 results <- cbind(db, estim, res)
 results <- results %>%
  rename(estimate = `fitted(model1)`,
         residus = `resid(model1)`)
 ## Calcul des résidus relatifs
 results <- results %>%
  mutate(RR = (residus/estimate))
 # head(results)
 summary(results[,25:26])
   residus
       :-999107
                  Min. :-3776.909
1st Qu.: -3687
                  1st Qu.:
                  Median:
Median : 12936
                  Mean
                             -5.117
                             -0.442
3rd Qu.: 18706
                  3rd Qu.:
                             26,990
 ## histogramme travaillé
 #### outils : ggplot2
graph <- ggplot(results, aes(residus)) +
  geom_histogram() +
  scale_v_log10() +
```

Approche explicative : cartographie des résidus

Où sont les cas qui ne suivent pas le modèle ? Est-ce qu'il existe une logique géographique ?

Quelques rappels pour l'application dans R :

- Package tmap
- Jointure des données à un fond de carte
- Représentation des résidus :

```
tm_shape(tomap) +
tm_polygons(col = "variable")
```

Discrétisation :

Palette : double gamme inversée

```
Cartographie des résidus
### outils : tmap, colorbrewer
tomap <- left_join(fdc_cities, results, by = c("GEOID" = "CBSAA"))
## carte de base
ap <- tm_shape(fdc_states) +
 tm_polygons(col = "white", alpha = 0, border.col = "black", border.lwd = 1, border.alpha = 0) +
 tm_shape(tomap) +
 tm_polygons(col = "residus",
             style = "pretty",
             palette = "-RdBu",
             alpha = 1.
             border.col = "grey30",
             border. 1wd = 0.2,
             border.alpha = 1.
 tm_shape(fdc_states) +
 tm_polygons(col = "white", alpha = 0, border.col = "black", border.lwd = 1, border.alpha = 1) +
 tm_legend(legend.position = c("left", "bottom"),
            legend.outside = T) +
 tm_credits(align = "left", size = 0.7, text = "Résidus d'un super modèle
 ource : US Bureau of Census, 2010 ; 2013 ; 2020...
artographie : Sylvestre Duroudier, 2024.",
            position = c("left", "bottom")) +
tm_layout(legend.title.size = 0.7,
 tm_scale_b
```

Approche explicative : cartographie des résidus

 Cartographier selon la population des aires métropolitaines

Cartographier selon les résidus relatifs


```
map <- tm_shape(fdc_states) +
 tm_polygons(col = "white", alpha = 0, border.col = "black", border.lwd = 1, border.alpha = 1) +
 tm_shape(tomap) +
 tm_bubbles(size = "POP20",
            scale = 5,
            col = "residus",
            style = "pretty",
            # breaks = c(-2, -1, -0.5, 0, 0.5, 1, 2, 3),
            palette = "-RdBu".
            alpha = 1,
            border.col = "grey30",
            border. 1wd = 0.2,
            border.alpha = 1,
 tm_legend(legend.position = c("left", "bottom"),
            legend.outside = T) +
 tm_credits(align = "left", size = 0.7, text = "Résidus d'un super modèle
Source : US Bureau of Census, 2010 ; 2013 ; 2020...
artographie : Sylvestre Duroudier, 2024.",
            position = c("left", "bottom")) +
 tm_layout(legend.title.size = 0.7,
           legend.text.size = 0.7) +
 tm_scale_bar(color.dark = "gray60", position = c("right", "bottom"))
```

