- 1. (3 point) Et anti-aliaseringsfilter ønskes designet med fladest mulig pasbånd. Hvilket af følgende filtre opfylder bedst dette ønske?
 - ★ Butterworth lavpasfilter
 - Chebyshev lavpasfilter
 - O Butterworth højpasfilter
 - O Chebyshev højpasfilter
- 2. (3 point) Benyt Figur 1 til at bestemme filterordenen for et analog højpasfilter med afskæringsfrekvens på 2000 Hz og stopbåndsfrekvens på 1000 Hz med stopbåndsdæmpning større end 50 dB.
 - Filterordenen skal være:

Figur 1: Amplitudekarakteristik for frekvensnormeret 0,5 dB Chebyshev lavpasfilter.

3. (3 point) Er følgende diskrete overføringsfunktion stabil?

$$G(z) = \frac{z+2}{z^2 + 0.5}$$

✓ Ja
 ✓ Ne

4. (3 point) Hvor ligger poler og nulpunkter for følgende diskrete overføringsfunktion

$$G(z) = \frac{z^2 + 1}{(z+2)(z-0.5)}$$

- Poler: Z = -2, Z = 6,5
- Nulpunkter: Z=1 69 Z=-1
- 5. (3 point) Betragt følgende diskrete overføringsfunktion

$$G(z) = \frac{z - 0.75}{(z - 0.5)(z + 0.5)}$$

• Hvad er DC-forstærkningen for G(z)?

11. (10 point) Betragt sekvensen

$$x(n) = \begin{cases} 1 & \text{for } n = 0 \\ 0 & \text{for } n = 1 \\ 2 & \text{for } n = 2 \\ 0 & \text{for } n = 3 \\ 3 & \text{for } n = 4 \\ 0 & \text{for } n = 5 \\ 4 & \text{for } n = 6 \\ 0 & \text{for } n = 7 \end{cases}$$

$$(2)$$

Udregn en 8-punkts diskret Fourier transformation (DFT) af sekvensen
$$x(n)$$
. Bestem $\ker X(1)$ og $X(4)$.

$$\begin{aligned}
W_{g} &= e^{-\frac{1}{2}\frac{2\pi}{8}} = e^{-\frac{\pi}{4}} \\
X_{m} &= \frac{1}{N} \cdot \sum_{N=0}^{N-1} X_{N} \cdot W_{N} = \frac{1}{4} \sum_{n=0}^{\infty} X_{n} \cdot e^{-\frac{\pi}{4}} \\
&= \frac{1}{8} \left(1 \cdot e^{-\frac{\pi}{4}} + 3 \cdot e^{-\frac{\pi}{4}} + 3 \cdot e^{-\frac{\pi}{4}} + 4 \cdot e^{-\frac{\pi}{4}} \right) \\
&= \frac{1}{8} \left(1 \cdot 2 \cdot e^{-\frac{\pi}{4}} + 3 \cdot e^{-\frac{\pi}{4}} + 4 \cdot e^{-\frac{\pi}{4}} \right) \\
X_{(1)} &= \frac{1}{8} \left(1 \cdot 2 \cdot e^{-\frac{\pi}{4}} + 3 \cdot e^{-\frac{\pi}{4}} + 4 \cdot e^{-\frac{\pi}{4}} \right) \\
&= \frac{1}{8} \left(1 \cdot 2 \cdot e^{-\frac{\pi}{4}} + 3 \cdot e^{-\frac{\pi}{4}} + 4 \cdot e^{-\frac{\pi}{4}} \right) \\
&= \frac{1}{8} \left(1 \cdot 2 \cdot e^{-\frac{\pi}{4}} + 3 \cdot e^{-\frac{\pi}{4}} + 4 \cdot e^{-\frac{\pi}{4}} \right) \\
&= \frac{1}{8} \left(1 \cdot 2 \cdot e^{-\frac{\pi}{4}} + 3 \cdot e^{-\frac{\pi}{4}} + 4 \cdot e^{-\frac{\pi}{4}} \right) \\
&= \frac{1}{8} \left(1 \cdot 2 \cdot e^{-\frac{\pi}{4}} + 3 \cdot e^{-\frac{\pi}{4}} + 4 \cdot e^{-\frac{\pi}{4}} \right) \\
&= \frac{1}{8} \left(1 \cdot 2 \cdot e^{-\frac{\pi}{4}} + 3 \cdot e^{-\frac{\pi}{4}} + 4 \cdot e^{-\frac{\pi}{4}} \right) \\
&= \frac{1}{8} \left(1 \cdot 2 \cdot e^{-\frac{\pi}{4}} + 3 \cdot e^{-\frac{\pi}{4}} + 4 \cdot e^{-\frac{\pi}{4}} \right) \\
&= \frac{1}{8} \left(1 \cdot 2 \cdot e^{-\frac{\pi}{4}} + 3 \cdot e^{-\frac{\pi}{4}} + 4 \cdot e^{-\frac{\pi}{4}} \right) \\
&= \frac{1}{8} \left(1 \cdot 2 \cdot e^{-\frac{\pi}{4}} + 3 \cdot e^{-\frac{\pi}{4}} + 4 \cdot e^{-\frac{\pi}{4}} \right) \\
&= \frac{1}{8} \left(1 \cdot 2 \cdot e^{-\frac{\pi}{4}} + 3 \cdot e^{-\frac{\pi}{4}} + 4 \cdot e^{-\frac{\pi}{4}} \right) \\
&= \frac{1}{8} \left(1 \cdot 2 \cdot e^{-\frac{\pi}{4}} + 3 \cdot e^{-\frac{\pi}{4}} + 4 \cdot e^{-\frac{\pi}{4}} \right) \\
&= \frac{1}{8} \left(1 \cdot 2 \cdot e^{-\frac{\pi}{4}} + 3 \cdot e^{-\frac{\pi}{4}} + 4 \cdot e^{-\frac{\pi}{4}} \right) \\
&= \frac{1}{8} \left(1 \cdot 2 \cdot e^{-\frac{\pi}{4}} + 3 \cdot e^{-\frac{\pi}{4}} + 4 \cdot e^{-\frac{\pi}{4}} \right) \\
&= \frac{1}{8} \left(1 \cdot 2 \cdot e^{-\frac{\pi}{4}} + 3 \cdot e^{-\frac{\pi}{4}} + 4 \cdot e^{-\frac{\pi}{4}} \right) \\
&= \frac{1}{8} \left(1 \cdot 2 \cdot e^{-\frac{\pi}{4}} + 3 \cdot e^{-\frac{\pi}{4}} + 4 \cdot e^{-\frac{\pi}{4}} \right) \\
&= \frac{1}{8} \left(1 \cdot 2 \cdot e^{-\frac{\pi}{4}} + 3 \cdot e^{-\frac{\pi}{4}} + 4 \cdot e^{-\frac{\pi}{4}} \right) \\
&= \frac{1}{8} \left(1 \cdot 2 \cdot e^{-\frac{\pi}{4}} + 3 \cdot e^{-\frac{\pi}{4}} + 4 \cdot e^{-\frac{\pi}{4}} \right) \\
&= \frac{1}{8} \left(1 \cdot 2 \cdot e^{-\frac{\pi}{4}} + 3 \cdot e^{-\frac{\pi}{4}} + 4 \cdot e^{-\frac{\pi}{4}} \right) \\
&= \frac{1}{8} \left(1 \cdot 2 \cdot e^{-\frac{\pi}{4}} + 3 \cdot e^{-\frac{\pi}{4}} \right) \\
&= \frac{1}{8} \left(1 \cdot 2 \cdot e^{-\frac{\pi}{4}} + 3 \cdot e^{-\frac{\pi}{4}} \right) \\
&= \frac{1}{8} \left(1 \cdot 2 \cdot e^{-\frac{\pi}{4}} + 3 \cdot e^{-\frac{\pi}{4}} \right) \\
&= \frac{1}{8} \left(1 \cdot 2 \cdot e^{-\frac{\pi}{4}} +$$

$$3y(n+1) - 5y(n-1) = 3x(n) + 5x(n-3) - 5x(n-5)$$
(3)

(a) (6 point) Bestem en overføringsfunktion for differensligningen (3). Overføringsfunktionen skal have positive eksponenter.

$$\Rightarrow H(z) = \frac{Y(z)}{X(z)} = \frac{3+5z^{-3}-5z^{-5}}{3z^{-5}z^{-1}} = \frac{3z^{5}+5z^{2}-5}{3z^{6}-5z^{4}}$$

(b) (4 point) Bestem om overføringsfunktionen er stabil.

Overføringsfunktionen er stabil hvis alle polerne ligger inden for den imaginære enheds cirkel. Altså må nævneren KUN være 0 inden for enkedscirklen. Dette tjækker vi:

Fire nulpunkter i
$$z = 0$$

$$3z^{6} - 5z^{4} = 0$$

$$\begin{cases} z^{4} = 0 \\ z^{4} = 0 \end{cases} \Rightarrow z^{-1}\sqrt{\frac{5}{3}} \approx \pm 1,3$$

Nulpunkterne i ca. 1.3 og -1.3 er uden for den imaginære enhedscirkel og overføringsfunktionen er derfor USTABIL.

13. (15 point) Benyt invers z-transformation til at finde udgangssekvensen y(n) for følgende diskrete overføringsfunktion, når indgangsstimulus x(n) er enhedssamplen $\delta(n)$.

$$G(z) = \frac{Y(z)}{X(z)} = \frac{z^2 - 0.2z}{z^2 - 0.7z + 0.06}$$

Partialbrøkopløs (brøken skal være ægte, så jeg dividerer med z først).

$$\frac{G(z)}{z} = \frac{z-c,2}{z^2-c,7z+c,06} = \frac{z-c,2}{(z-c,6)(z-c,1)} = \frac{A}{z^2-c,6} + \frac{B}{z-c,1}$$

Ganger med venste nævner

Indsætter interessante z-værdier

$$\Rightarrow \frac{G(2)}{Z} = \frac{0.8}{Z - 0.6} + \frac{0.2}{Z - 0.1} \Rightarrow G(2) = \frac{0.82}{Z - 0.6} + \frac{0.22}{Z - 0.6}$$

Invers z-tranformation på led

$$\frac{2}{z-a} \rightarrow a^n$$

$$y(n) = 0.8 \cdot 0.6^n + 0.2 \cdot 0.1^n$$

Dette er også det diskrete impulsrespons for systemet. Dette er fordi:

$$Z[S(n)] = 1 \Rightarrow G(z) = \frac{Y(z)}{1} \Rightarrow G(z) = Y(z) \Rightarrow Y(n) = Z^{-1}[G(z)]$$

Altså er dette svaret den diskrete impuls respons:

$$y(n) = 0.8 \cdot 0.6^{n} + 0.2 \cdot 0.1^{n}$$

			fficienterne for venser $f_{a_1} = 1$							
have 3	3 samples.		$Ja_1 = J$		5 1112 50					
T=	- Book	Mal								
<i>r</i> -	27/	C C \	= 250	/6	1000) - >5	7 41000	_ 4 _	0 11	
Ca -	4 (1	raz -tai/	= 250	00.0	060 - 1600	7 = 2300	5 .4660	- 25 =	0,16	
C. =	C = 5	- (sin(21 mTfa)-Sin (2m	atfall)					
m	-w	71,								
C ₁ = C.	₁ - -	Sin (27	50000 Sc	ام، کا – (مو	2π· 500€€	1000)				
	= 4.1	<	- Sin (<u>T</u>)	~ C14	7					
	TT (334(=)-	311 (25)	0 0,11	7					
					l					
Меа	et rekt	angulæ	rt vindue	e benøve	er vi ikke	gange r	loget pa	konsta	intern	е
-										
C 14	= Cm									
Filte	rkonsta	ner								
a_i	= C'M-	;								
ac	= 6 = 6	3,147								
		0.14								
a,	= Co = (3,16								
G.	= (_1 = (2,147								
Ops	kriver c	overførir	ngsfunkti	on						
	2		2							
	7-1-		2 2 4	~&						
110	Z) - <	$- u_i \cdot z$	- <u>-</u> - <u>-</u> -	(4·E						
		.0								
	= a	· Z° + a,	-1 + az -2	-						
	= 0,14	17+0,16	b = "+ C, 14	7~~						
+										
										-
										-
										+++