

GEOMETRÍA

Capítulo 2

Sesión 2

ÁNGULOS

MOTIVATING | STRATEGY

ÁNGULOS

<u>Definición</u>: Es aquella figura geométrica que está formado por dos rayos que tienen en común el mismo origen.

ELEMENTOS:

• Lados: OA y OB.

NOTACIÓN

∢ AOB: Ángulo AOB.

∢ m<AOB: medida del ángulo AOB.
</p>

CLASIFICACIÓN

De acuerdo a su medida.

∢ Agudo

$$\beta = 90^{\circ}$$

∢ Recto

Bisectriz: Es aquel rayo cuyo origen es el vértice de un ángulo y que lo divide a este en dos ángulos de igual medida.

Si : OP es bisectriz del ∢ AOB

m ∢ AOP = m ∢ BOP

1. Se tiene el ángulo recto AOB, si m $< AOC = \beta$, OC es rayo del ángulo AOB y m $< BOC = 3\alpha - \beta$, halle el valor de α .

Dato: m ∢ AOB = 90°

Del gráfico se observa:

$$90^{\circ} = \beta + 3\alpha - \beta$$

$$90^{\circ} = 3\alpha$$

$$\alpha = 30^{\circ}$$

2. Se tiene un ángulo AOB, luego se traza la bisectriz OM, donde m \angle AOM = x^2 + 12°, y m \angle MOB = 16°. Halle el valor de x.

x_{min}=21°

< Obtuso

4. Según el gráfico, halle la medida del ángulo formado por las bisectrices de los ángulos AOC y BOD.

5. Halle el valor de x si OQ es bisectriz del ∢ POR y m ∢BOR – m ∢AOP = 20°.

Dato: Si OQ es bisectriz ∢ POR

$$\alpha + x = \theta + \beta$$
 \longrightarrow $x = \theta + \beta - \alpha$

Dato: m ∢BOR - m ∢AOP = 20°

$$(x + \theta + \beta) - (\alpha) = 20^{\circ}$$

$$x + \theta + \beta - \alpha = 20^{\circ}$$

$$x + \alpha = 20^{\circ}$$

 $x = 10^{\circ}$

6. Se tienen cinco ángulos consecutivos, cuyas medidas son números enteros consecutivos. Halle la medida del mayor de ellos, si los cinco suman 100°.

De la figura observamos:

Áng. mayor = 22°

7. La diferencia de las medidas de dos ángulos adyacentes AOB y BOC es 20°. Si m ∢ AOC=120°, halle la m<BOC.

 $\alpha = 50^{\circ}$

 $\beta = 20^{\circ} + \alpha$

8. Según el gráfico, halle la medida del ángulo de deriva si se sabe que este es la octava parte del ángulo formado por el Norte y la Derrota; además la Ruta es perpendicular

© SACO OUYEROS