Lecture 3 – Nonlinear Regression

Bulat Ibragimov

bulat@di.ku.dk

Department of Computer Science University of Copenhagen

UNIVERSITY OF COPENHAGEN

Outline

Recap: Linear Regression

2 Non-Linear Response, Overfitting, and Cross-Validation

Regularisation

Summary & Outlook

Recap: Multivariate Linear Regression

- Given: Pairs of the form $(\mathbf{x}_1, t_1), \dots, (\mathbf{x}_N, t_N) \in \mathbb{R}^D \times \mathbb{R}$.
- Let's "augment" all data points $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N$. This yields an augmented data matrix $\mathbf{X} \in \mathbb{R}^{N \times (D+1)}$ and an associated target vector $\mathbf{t} \in \mathbb{R}^N$:

$$\mathbf{X} = \begin{bmatrix} 1 & x_{1,1} & x_{1,2} & \dots & x_{1,D} \\ 1 & x_{2,1} & x_{2,2} & \dots & x_{2,D} \\ \vdots & & & & & \\ 1 & x_{N,1} & x_{N,2} & \dots & x_{N,D} \end{bmatrix} \quad \text{and} \quad \mathbf{t} = \begin{bmatrix} t_1 \\ t_2 \\ \vdots \\ t_N \end{bmatrix}$$

As before, we can write the overall loss in the following form:

Overall Loss

$$\mathcal{L}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} (f(\mathbf{x}_n; \mathbf{w}) - t_n)^2 = \frac{1}{N} (\mathbf{X} \mathbf{w} - \mathbf{t})^T (\mathbf{X} \mathbf{w} - \mathbf{t})$$

Recap: Multivariate Linear Regression

- Given: Pairs of the form $(\mathbf{x}_1, t_1), \dots, (\mathbf{x}_N, t_N) \in \mathbb{R}^D \times \mathbb{R}$.
- Goal: Find (D+1)-dimensional weight vector $\hat{\mathbf{w}} = [\hat{w_0}, \hat{w_1}, \dots, \hat{w_D}]^T$ that minimizes $\mathcal{L}(\mathbf{w}) = \frac{1}{N} (\mathbf{X}\mathbf{w} \mathbf{t})^T (\mathbf{X}\mathbf{w} \mathbf{t})$, i.e., which is a solution for

$$\nabla \mathcal{L}(\mathbf{w}) = \mathbf{0}$$

$$\Leftrightarrow \mathbf{X}^T \mathbf{X} \mathbf{w} = \mathbf{X}^T \mathbf{t}$$
(1)

Computation in Practice

- Definition of data matrix $\mathbf{X} \in \mathbb{R}^{N \times (D+1)}$ (make use of Numpy arrays and functions!)
- There are different ways to compute an optimal weight vector $\hat{\mathbf{w}}$:
 - Compute $\hat{\mathbf{w}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{t}$ (e.g., via numpy.linalg.inv)
 - 2 Directly solve system of equations (1) (e.g., via numpy.linalg.solve)
 - 3 ...
- For new point $\mathbf{x}_{new} \in \mathbb{R}^D$: Compute $t_{new} = [1, \mathbf{x}_{new}^T] \hat{\mathbf{w}}$

Outline

Recap: Linear Regression

2 Non-Linear Response, Overfitting, and Cross-Validation

Regularisation

Summary & Outlook

Non-Linear Regression

The same idea as for linear regression, we want to find a non-linear representation z = g(x), so that loss L(g(x), y) is minimal

Quadratic model

- Let's focus again on D = 1, i.e., on input data of the form $x_n \in \mathbb{R}$.
- Now, let's "augment" all data points $x_1, x_2, ..., x_N$, now with an additional column containing x_n^2 . This yields an augmented data matrix $\mathbf{X} \in \mathbb{R}^{N \times 3}$ and an associated target vector $\mathbf{t} \in \mathbb{R}^N$:

$$X = \begin{bmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ \vdots & & & \\ 1 & x_N & x_N^2 \end{bmatrix}$$
 and $t = \begin{bmatrix} t_1 \\ t_2 \\ \vdots \\ t_N \end{bmatrix}$

- Note: Basically as before, just a "new" input feature/variable.
 (i.e., we have generated a new column based on an existing column)
- As before: $f(\mathbf{x}; \mathbf{w}) = \mathbf{x}^T \mathbf{w}$ with $\mathbf{x} = [1, x, x^2]^T$ and $\mathbf{w} = [w_0, w_1, w_2]^T$
- Our model is still linear in the parameters, but the actual function that is fitted is now quadratic:

$$f(\mathbf{x}; \mathbf{w}) = w_0 + w_1 x + w_2 x^2$$

Polynomial model

We can continue adding columns of this form . . .

$$\mathbf{X} = \begin{bmatrix} x_1^0 & x_1^1 & x_1^2 & \dots & x_1^K \\ x_2^0 & x_2^1 & x_2^2 & \dots & x_2^K \\ \vdots & & & & & \\ x_N^0 & x_N^1 & x_N^2 & \dots & x_N^K \end{bmatrix} \quad \text{and} \quad \mathbf{t} = \begin{bmatrix} t_1 \\ t_2 \\ \vdots \\ t_N \end{bmatrix}$$

• Our model function can then be written as $f(\mathbf{x}; \mathbf{w}) = \sum_{k=0}^{K} w_k x^k$

...... 424/3/ 43

Demo

Arbitrary 'basis' functions

We can basically resort to arbitrary functions . . .

$$\mathbf{X} = \begin{bmatrix} h_1(x_1) & h_2(x_1) & h_3(x_1) & \dots & h_K(x_1) \\ h_1(x_2) & h_2(x_2) & h_3(x_2) & \dots & h_K(x_2) \\ \vdots & & & & & \\ h_1(x_N) & h_2(x_N) & h_3(x_N) & \dots & h_K(x_N) \end{bmatrix} \quad \text{and} \quad \mathbf{t} = \begin{bmatrix} t_1 \\ t_2 \\ \vdots \\ t_N \end{bmatrix}$$

• Our model function can then be written as $f(\mathbf{x}; \mathbf{w}) = \sum_{k=0}^{K} w_k h_k(\mathbf{x})$

General Case

Also, given more input variables (D > 1), we can simply

- transform each input variable/column . . .
- combine different input variables (e.g., difference between columns) ...
- combine and transform input variables . . .
- ...

Which model is optimal?

- We are given a so-called training set $T = \{(\mathbf{x}_1, t_1), \dots, (\mathbf{x}_N, t_N)\} \subset \mathbb{R}^D \times \mathbb{R}$.
- Given the additional flexibility, we now have to choose a "good" model . . .
 - Which non-linear functions should we choose?
 - 2 How many additional columns should be generated?
 - 3 ...
- We would like to choose a model that performs well on new, unseen data!

Question: How can we select such a model?

Overfitting

A model that performs best on training samples does not necessarily performs well on test samples

Polynomial Curve Fitting: Polynomials having various order M (in red), fitted to the data (in blue) coming from the true underlying curve shown in green.

- The simple model $f(\mathbf{x}, \mathbf{w}) = \mathbf{x}^T \mathbf{w}$ with $\mathbf{w} = [0, ..., 0]^T$ always predicts 0.
- Consider the following 5-th order polynomial:

$$f(x; \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4 + w_5 x^5$$

Let's start with $\mathbf{w} = \mathbf{0}$. Now, by allowing some of the w_i to be non-zero, we can make the model more and more complex/flexible!

Let's make the model "pay" for every non-zero w_i

We can augment the loss function:

$$Loss = \sum_{i} (f(\mathbf{x}; \mathbf{W}) - \mathbf{t})^{2} + \mu \sum_{j} |w_{j}|$$

What will this additional terms do?

Let's consider two sets of parameters:

- $\widetilde{W} = [0, 0, 1, 10, 0]$
- $\overline{W} = [0, 0, 1, 1, 1]$

Which set will result in more reliable, robust model?

 \check{W} uses fewer coefficients

 \overline{W} does not put all of its trust to one coefficient

We can augment the loss function:

$$Loss = \sum_{i} (f(\mathbf{x}; \mathbf{W}) - \mathbf{t})^{2} + \mu \sum_{j} (w_{j})^{2}$$

What will this additional terms do?

Gradient

$$\mathcal{L}(\mathbf{w}) = \frac{1}{N} (\mathbf{X}\mathbf{w} - \mathbf{t})^{T} (\mathbf{X}\mathbf{w} - \mathbf{t}) + \lambda \mathbf{w}^{T} \mathbf{w},$$

$$\mathcal{L}(\mathbf{w}) = \frac{1}{N} \mathbf{w}^T \mathbf{X}^T \mathbf{X} \mathbf{w} - \frac{2}{N} \mathbf{w}^T \mathbf{X}^T \mathbf{t} + \frac{1}{N} \mathbf{t}^T \mathbf{t} + \lambda \mathbf{w}^T \mathbf{w}$$

Toolbox (Table 1.4 in Rogers & Girolami)

$$f(\mathbf{w}) = \mathbf{w}^T \mathbf{w} \Rightarrow \nabla f(\mathbf{w}) = 2\mathbf{w}$$

$$f(\mathbf{w}) = \mathbf{w}^T \mathbf{C} \mathbf{w} \Rightarrow \nabla f(\mathbf{w}) = 2 \mathbf{C} \mathbf{w}$$

We have $\nabla \mathcal{L}(\mathbf{w}) = \frac{2}{N} \mathbf{X}^T \mathbf{X} \mathbf{w} - \frac{2}{N} \mathbf{X}^T \mathbf{t} + 2\lambda \mathbf{w}$ and therefore:

$$\frac{2}{N} \mathbf{X}^T \mathbf{X} \mathbf{w} - \frac{2}{N} \mathbf{X}^T \mathbf{t} + 2\lambda \mathbf{w} = \mathbf{0}$$

Multivariate Regularized Linear Regression

- Given: Pairs of the form $(\mathbf{x}_1, t_1), \dots, (\mathbf{x}_N, t_N) \in \mathbb{R}^D \times \mathbb{R}$ and parameter $\lambda > 0$.
- Goal: Find (D+1)-dimensional weight vector $\hat{\mathbf{w}} = [\hat{w_0}, \hat{w_1}, \dots, \hat{w_D}]^T$ that minimizes $\mathcal{L}(\mathbf{w}) = \frac{1}{N} (\mathbf{X}\mathbf{w} \mathbf{t})^T (\mathbf{X}\mathbf{w} \mathbf{t}) + \lambda \mathbf{w}^T \mathbf{w}$, i.e., which is a solution to

$$\nabla \mathcal{L}(\mathbf{w}) = \mathbf{0}$$

$$\Leftrightarrow (\mathbf{X}^T \mathbf{X} + N\lambda \mathbf{I}) \mathbf{w} = \mathbf{X}^T \mathbf{t}$$
(2)

Solve (2) to find the optimal multivariate solution

Let's say we have the following data:

	Tumor Size	Survival	Recurrence
Case1	0.5	3.2	0
Case2	2.11	1.9	0
Case3	2.9	1.0	1
Case4	2.8	1.3	1
Case5	2.1	2.0	1
Case6	1.9	1.0	0

Can we predict cancer recurrence with linear regression?

Minimizer for Linear Regression

$$\hat{\mathbf{w}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{t}$$

The linear regression solutions is:

$$w_0 = -0.4082; w_1 = 0.4427$$

	Tumor Size	Recurrence	Predicted
Case1	0.5	0	-0.19
Case2	2.11	0	0.53
Case3	2.9	1	0.88
Case4	2.8	1	0.83
Case5	2.1	1	0.52
Case6	1.9	0	0.43

$$L = (-0.19)^{2} + (0.53)^{2} + (1 - 0.88)^{2} + (1 - 0.83)^{2} + (1 - 0.52)^{2} + (0.43)^{2} = 0.7718$$

The nonlinear (2d polynomial) regression solutions is:

$$w_0 = 0.147; w_1 = -0.452; w_1 = 0.265$$

	Tumor Size	Recurrence	Predicted
Case1	0.5	0	-0.01
Case2	2.11	0	0.37
Case3	2.9	1	1.06
Case4	2.8	1	0.96
Case5	2.1	1	0.37
Case6	1.9	0	0.24

$$L = (-0.01)^{2} + (0.37)^{2} + (1 - 1.06)^{2} + (1 - 0.37)^{2} + (0.24)^{2} + (0.6066)$$

The regressions we tried are not perfectly suitable. We would like:

- Model to saturate and not go above 1
- Model to saturate and not go below 0

$$F(x) = \frac{1}{1 + e^{-(b_0 + b_1 x)}}$$

The regressions we tried are not perfectly suitable. We would like:

- Model to saturate and not go above 1
- Model to saturate and not go below 0

Logistic regression: derivatives

Loss function:

$$L(b_0, b_1) = \sum_{i} (F(x_i) - t_i)^2$$

Derivatives:

$$\frac{\partial L}{\partial b_0} = \frac{\partial L}{\partial F} \frac{\partial F}{\partial b_0} = \sum_i 2(F(x_i) - t_i) \cdot (e^{-(b_0 + b_1 x)} (1 + e^{-(b_0 + b_1 x)})^2)$$

$$\frac{\partial L}{\partial b_1} = \frac{\partial L}{\partial F} \frac{\partial F}{\partial b_1} = \sum_i 2(F(x_i) - t_i) \cdot (e^{-(b_0 + b_1 x)} (1 + e^{-(b_0 + b_1 x)})^2) x_i$$

	Tumor Size	Recurrence	Predicted
Case1	0.5	0	0
Case2	2.11	0	0.51
Case3	2.9	1	1
Case4	2.8	1	1
Case5	2.1	1	0.47
Case6	1.9	0	0.03

$$L = (0)^{2} + (0.51)^{2} + (1-1)^{2} + (1-1)^{2} + (1-0.47)^{2} + (0.03)^{2} = 0.5457$$

Model:
$$P=rac{1}{1+e^{-(-36.9639+17.5358x_1)}}$$

Plot of Model and Data

Problem with derivatives

Linear, polynomial and logistic regression models are very simple, but their derivatives are already complex:

Linear regression
$$\frac{\partial \mathcal{L}}{\partial w_0} = 2w_0 + 2w_1 \frac{1}{N} \left(\sum_{n=1}^{N} x_n \right) - \frac{2}{N} \left(\sum_{n=1}^{N} t_n \right)$$

$$\frac{\partial \mathcal{L}}{\partial w_1} = 2w_1 \frac{1}{N} \left(\sum_{n=1}^{N} x_n^2 \right) + \frac{2}{N} \left(\sum_{n=1}^{N} x_n (w_0 - t_n) \right)$$

2-degree polynomial regression

$$\frac{2}{N}\boldsymbol{X}^{T}\boldsymbol{X}\boldsymbol{w} - \frac{2}{N}\boldsymbol{X}^{T}\boldsymbol{t} + 2\lambda\boldsymbol{w} = \boldsymbol{0}$$

Derivatives: chain rule

Let's look closely at the derivatives for logistic regression:

$$\frac{\partial L}{\partial b_0} = \frac{\partial L}{\partial F} \frac{\partial F}{\partial b_0} = \sum_{i} 2(F(x_i) - t_i) \cdot (e^{-(b_0 + b_1 x)}(1 + e^{-(b_0 + b_1 x)})^2)$$

$$\frac{\partial L}{\partial b_1} = \frac{\partial L}{\partial F} \frac{\partial F}{\partial b_1} = \sum_{i} 2(F(x_i) - t_i) \cdot (e^{-(b_0 + b_1 x)}(1 + e^{-(b_0 + b_1 x)})^2) x_i$$
This components comes

This components comes the logistic regression derivative.

from the square loss

the logistic regression derivative

The only difference that comes from internal linear function

Shamir's secret sharing

$$f(\mathbf{x}; \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \cdots$$

29

Lagrange interpolation

Lagrange
$$f(x_1) = f(x_1) \frac{x - x_2}{x_1 - x_2} \frac{x - x_3}{x_1 - x_2}$$

Polynomials $f(x_2) = f(x_1) \frac{x - x_2}{x_1 - x_2} \frac{x - x_3}{x_1 - x_3}$
 $f(x_2) = f(x_1) \frac{x - x_1}{x_2 - x_1} \frac{x - x_3}{x_2 - x_1} \frac{x - x_2}{x_2 - x_3}$
 $f(x_2) = f(x_3) \frac{x - x_1}{x_2 - x_1} \frac{x - x_2}{x_3 - x_2} \frac{x - x_2}{x_3 - x_2}$

Questions?