Databázové systémy

Základní relační operace

Vilém Vychodil

KMI/DATA1, Přednáška 3

Databázové systémy

Přednáška 3. Přehled

- Přehled relačního dotazování:
 - relační operace a relační algebra,
 - relační kalkuly.
- Množinové relační operace:
 - průnik, sjednocení a rozdíl relací,
 - odvozené množinové operace,
 - implementace v Tutorial D a SQL.
- Projekce a restrikce:
 - projekce, restrikce,
 - zákony a vztahy k dalším operacím,
 - implementace v Tutorial D a SQL.
- Fyzická vrstva databáze a otázky efektivity:
 - uspořádané množiny, databázové indexy,
 - práce s indexy v SQL,
 - algoritmy pro výpočet výsledků relačních operací.

Relační model: Opakování

komponenty relačního modelu:

- typový systém: skalární, n-ticové a relační typy
- (základní) relační proměnné (definované typy a klíče)
- relační přiřazení přiřazení hodnot (relací) relačním proměnným
- kolekce generických relačních operací pro vyjadřování relací z jiných relací

související jazyky:

- Tutorial D (implementace Rel) relační jazyk (těsně vázaný na RM)
- SQL jazyk podporovaný nasaditelnými SŘBD (slabší vztah k RM)

otázky:

- definice a modifikace dat (máme vyřešeno), zbývá:
- dotazování získávání dat z databáze na základě předpisů (dotazů)

Relační dotazování

(zjednodušená) formalizace databáze a dotazů:

instance databáze, angl.: database instance

Instance databáze je konečná množina relačních proměnných, jejich aktuálních hodnot a integritních omezení (zatím nepotřebujeme).

dotaz, angl.: query

Dotaz je částečná rekurzivní funkce z množiny všech instancí databáze do možiny všech relací (nad relačními schématy).

poznámky:

- z pohledu predikátové logiky: instance databáze = struktury
- ullet typický přístup: dotaz je popsán v určitém jazyku+ je dána jeho interpretace
- (dotazovací) jazyk je **doménově nezávislý**, pokud výsledky dotazů nezávisí na typech (doménách), ale pouze na hodnotách relačních proměnných

Základní dotazovací systémy:

relační algebra:

- specifikuje množinu operací s relacemi
- dotazy = výrazy skládající se ze složených relačních operací
- interpretace dotazů: postupné vyhodnocení operací
- elementární operace s relacemi (SŘBD může dobře optimalizovat)

@ relační kalkuly:

- několik typů: doménový relační kalkul, n-ticový relační kalkul
- dotazy = formule predikátové logiky (s volnými proměnnými)
- interpretace dotazů: ohodnocování formulí ve struktuře (instanci databáze)
- ryze deklarativní, vychází z něj řada jazyků (QUEL, do jisté míry SQL)

poznámky:

- moderní překladače dotazů (obvykle) vytvářejí plány používající operace, které jsou blízko operacím relační algebry
- známý mýtus: relační algebra "není deklarativní" (nedává smysl)

Typy relačních operací

motto:

Množina relačních operací přímo ovlivňuje, jak silný (expresivní) bude dotazovací jazyk, který je na ní založen.

dělení operací relační algebry:

- základní (minimální množina operací) / odvozené
- podle počtu operandů (operace s jednou, dvěma, třemi, . . . relacemi)
- podle významu (množinové operace, protějšky kvantifikátorů,...)
 ...

rozumná množina operací:

Množina operací, která zaručuje, že relační algebra je stejně silná jako (doménově nezávislý) doménový relační kalkul.

Množinové operace: Průnik relací

Definice (průnik relací, angl.: intersection)

Pro dvě relace \mathcal{D}_1 a \mathcal{D}_2 na relačním schématu $R\subseteq Y$ zavádíme

$$\mathcal{D}_1 \cap \mathcal{D}_2 = \{r \in \prod_{y \in R} D_y \, | \, r \in \mathcal{D}_1 \text{ a zároveň } r \in \mathcal{D}_2\}.$$

Relace $\mathcal{D}_1 \cap \mathcal{D}_2$ na schématu R se nazývá **průnik relací** \mathcal{D}_1 a \mathcal{D}_2 .

Tutorial D:

```
\langle rela\check{c}n\acute{i}-v\acute{y}raz_1\rangle INTERSECT \langle rela\check{c}n\acute{i}-v\acute{y}raz_2\rangle
INTERSECT \{\langle rela\check{c}n\acute{i}-v\acute{y}raz_1\rangle, \langle rela\check{c}n\acute{i}-v\acute{y}raz_2\rangle, \ldots\}
```

SQL:

```
SELECT * FROM \langle jm\acute{e}no_1 \rangle
INTERSECT
SELECT * FROM \langle jm\acute{e}no_2 \rangle
```

Množinové operace: Sjednocení relací

Definice (sjednocení relací, angl.: union)

Pro dvě relace \mathcal{D}_1 a \mathcal{D}_2 na relačním schématu $R\subseteq Y$ zavádíme

$$\mathcal{D}_1 \cup \mathcal{D}_2 = \{r \in \prod_{y \in R} D_y \, | \, r \in \mathcal{D}_1 \text{ a/nebo } r \in \mathcal{D}_2 \}.$$

Relace $\mathcal{D}_1 \cup \mathcal{D}_2$ na schématu R se nazývá **sjednocení relací** \mathcal{D}_1 a \mathcal{D}_2 .

Tutorial D:

```
\langle rela\check{c}n\acute{i}-v\acute{y}raz_1\rangle UNION \langle rela\check{c}n\acute{i}-v\acute{y}raz_2\rangle UNION \{\langle rela\check{c}n\acute{i}-v\acute{y}raz_1\rangle, \langle rela\check{c}n\acute{i}-v\acute{y}raz_2\rangle, ...}
```

SQL:

```
SELECT * FROM \langle jm\acute{e}no_1 \rangle
UNION
SELECT * FROM \langle jm\acute{e}no_2 \rangle
```

```
Příklad (SQL: Kvalifikátory ALL a DISTINCT)
CREATE TABLE foo (x NUMERIC NOT NULL PRIMARY KEY);
CREATE TABLE bar (x NUMERIC NOT NULL PRIMARY KEY);
INSERT INTO foo VALUES (10):
INSERT INTO foo VALUES (20);
INSERT INTO foo VALUES (30);
INSERT INTO bar VALUES (20);
INSERT INTO bar VALUES (40);
/* implicit qualifier DISTINCT */
SELECT * FROM foo UNION SELECT * FROM bar;
SELECT * FROM foo UNION DISTINCT SELECT * FROM bar:
/* qualifier ALL: value 20 appears multiple times */
SELECT * FROM foo UNION ALL SELECT * FROM bar;
```

Věta (Základní vlastnosti ∩ a ∪)

Operace \cap a \cup s relacemi na schématu R mají následující vlastnosti:

- lacksquare \cap $a \cup jsou$ asociativní, komutativní, idempotentní a isotonní;
- ② \emptyset_R (prázdná relace na R) je neutrální prvek operace \cup a anihilátor operace \cap ;
- ③ ∩ $a \cup j$ sou vzájemně distributivní, to jest $\mathcal{D}_1 \cup (\mathcal{D}_2 \cap \mathcal{D}_3) = (\mathcal{D}_1 \cup \mathcal{D}_2) \cap (\mathcal{D}_1 \cup \mathcal{D}_3),$ $\mathcal{D}_1 \cap (\mathcal{D}_2 \cup \mathcal{D}_3) = (\mathcal{D}_1 \cap \mathcal{D}_2) \cup (\mathcal{D}_1 \cap \mathcal{D}_3);$

$$\mathcal{D}_1 = \mathcal{D}_1 \cap (\mathcal{D}_1 \cup \mathcal{D}_2),$$

 $\mathcal{D}_1 = \mathcal{D}_1 \cup (\mathcal{D}_1 \cap \mathcal{D}_2).$

Důkaz.

Tvrzení f 0- f 0 plynou z vlastností pravdivostních funkcí logických spojek "konjunkce" a "disjunkce". Například pro f 0: Pokud $r\in \mathcal{D}_1$, pak i $r\in \mathcal{D}_1\cup \mathcal{D}_2$ a proto $\mathcal{D}_1\subseteq \mathcal{D}_1\cap (\mathcal{D}_1\cup \mathcal{D}_2)$. Opačně, pokud $r\in \mathcal{D}_1\cap (\mathcal{D}_1\cup \mathcal{D}_2)$, pak zřejmě $r\in \mathcal{D}_1$.

Množinové operace: Rozdíl relací

Definice (rozdíl relací, angl.: difference/minus)

Pro dvě relace \mathcal{D}_1 a \mathcal{D}_2 na relačním schématu $R\subseteq Y$ zavádíme

$$\mathcal{D}_1 \setminus \mathcal{D}_2 = \{ r \in \prod_{y \in R} D_y \, | \, r \in \mathcal{D}_1 \text{ a zároveň } r \notin \mathcal{D}_2 \}.$$

Relace $\mathcal{D}_1 \setminus \mathcal{D}_2$ na schématu R se nazývá **rozdíl relací** \mathcal{D}_1 a \mathcal{D}_2 .

Tutorial D:

```
\langle rela\check{c}n\acute{i}-v\acute{y}raz_1 \rangle MINUS \langle rela\check{c}n\acute{i}-v\acute{y}raz_2 \rangle
```

SQL:

Věta (Základní vlastnosti ∩, ∪ a \)

Operace \cap, \cup, \setminus s relacemi na schématu R mají následující vlastnosti:

- je isotonní v prvním argumentu a antitonní v druhém argumentu;
- ② \cup a \setminus jsou adjungované operace: $\mathcal{D}_1 \setminus \mathcal{D}_2 \subseteq \mathcal{D}_3$ právě tehdy, když $\mathcal{D}_1 \subseteq \mathcal{D}_2 \cup \mathcal{D}_3$;

- $lackbox{0}$ pokud $\mathcal{D}_1 \subseteq \mathcal{D}_2$, pak $\mathcal{D}_1 = \mathcal{D}_2 \setminus (\mathcal{D}_2 \setminus \mathcal{D}_1)$;
- **③** \ je distributivní (zleva/zprava) vzhledem $k \cup a \cap$ následovně:
 - $(\mathcal{D}_1 \cup \mathcal{D}_2) \setminus \mathcal{D}_3 = (\mathcal{D}_1 \setminus \mathcal{D}_3) \cup (\mathcal{D}_2 \setminus \mathcal{D}_3)$,

$$(\mathcal{D}_1\cap\mathcal{D}_2)\setminus\mathcal{D}_3=(\mathcal{D}_1\setminus\mathcal{D}_3)\cap(\mathcal{D}_2\setminus\mathcal{D}_3)$$
,

$$\mathcal{D}_1 \setminus (\mathcal{D}_2 \cap \mathcal{D}_3) = (\mathcal{D}_1 \setminus \mathcal{D}_2) \cup (\mathcal{D}_1 \setminus \mathcal{D}_3)$$
,

$$\mathcal{D}_1 \setminus (\mathcal{D}_2 \cup \mathcal{D}_3) = (\mathcal{D}_1 \setminus \mathcal{D}_2) \cap (\mathcal{D}_1 \setminus \mathcal{D}_3).$$

Důkaz.

①, ③, ⑤ jsou zřejmé; ③ plyne z ② pro $\mathcal{D}_3=\emptyset_R$; ⑦ je speciální případ ③; zbývá tedy ukázat ②, ⑥ a ③:

Pro dokázání ② nejprve předpokládejmě, že $\mathcal{D}_1 \setminus \mathcal{D}_2 \subseteq \mathcal{D}_3$ a vezměme $r \in \mathcal{D}_1$. Stačí ukázat, že pokud $r \not\in \mathcal{D}_2$, pak $r \in \mathcal{D}_3$; to je ale pravda, protože z $r \not\in \mathcal{D}_2$ a $\mathcal{D}_1 \setminus \mathcal{D}_2 \subseteq \mathcal{D}_3$ máme $r \in \mathcal{D}_3$. Obráceně: nechť platí $\mathcal{D}_1 \subseteq \mathcal{D}_2 \cup \mathcal{D}_3$ a vezmeme $r \in \mathcal{D}_1 \setminus \mathcal{D}_2$. To jest, $r \in \mathcal{D}_1$ a $r \not\in \mathcal{D}_2$ a z $\mathcal{D}_1 \subseteq \mathcal{D}_2 \cup \mathcal{D}_3$ dostáváme $r \in \mathcal{D}_3$.

Pokud $r \in \mathcal{D}_1 \cap \mathcal{D}_2$, pak zřejmě $r \notin \mathcal{D}_2 \setminus \mathcal{D}_1$. Tím pádem ale $r \in \mathcal{D}_2 \setminus (\mathcal{D}_2 \setminus \mathcal{D}_1)$, protože $r \in \mathcal{D}_2$. Obráceně, pokud $r \in \mathcal{D}_2 \setminus (\mathcal{D}_2 \setminus \mathcal{D}_1)$, pak $r \in \mathcal{D}_2$ a $r \notin \mathcal{D}_2 \setminus \mathcal{D}_1$. Tím pádem ale i $r \in \mathcal{D}_1$, což dohromady ukazuje \odot .

Prokážeme první případ ③, ostatní jsou analogické. Předpokládejme, že $r \in (\mathcal{D}_1 \cup \mathcal{D}_2) \setminus \mathcal{D}_3$, to jest platí, že $r \not\in \mathcal{D}_3$. Rozlišíme dva případy: buď $r \in \mathcal{D}_1$ nebo $r \in \mathcal{D}_2$. V prvním případě platí, že $r \in \mathcal{D}_1 \setminus \mathcal{D}_3$ a tím spíš $r \in (\mathcal{D}_1 \setminus \mathcal{D}_3) \cup (\mathcal{D}_2 \setminus \mathcal{D}_3)$. Druhý případ je analogický. Opačně, předpokládejme, že $r \in (\mathcal{D}_1 \setminus \mathcal{D}_3) \cup (\mathcal{D}_2 \setminus \mathcal{D}_3)$, pokud $r \in \mathcal{D}_1 \setminus \mathcal{D}_3$, tvrzení plyne z isotonie \setminus v prvním argumentu. Analogicky pro případ, kdy $r \in \mathcal{D}_2 \setminus \mathcal{D}_3$.

Odvozené množinové operace

otázky související s množinovými operacemi:

- Které operace vzít jako základní a které jako odvozené?
- Jak zavést obecný koncept (booleovské) operace s relacemi?

Definice (obecná booleovská operace, angl.: Boolean operation)

Mějme relace $\mathcal{D}_1,\ldots,\mathcal{D}_n$ a \mathcal{D} nad relačním schématem R takové, že platí $\mathcal{D}_i\subseteq\mathcal{D}$ pro každé $i=1,\ldots,n$. Dál uvažujme výrokovou formuli φ , která obsahuje nejvýš výrokové symboly p_1,\ldots,p_n . Pak $\mathrm{Bool}(\mathcal{D}_1,\ldots,\mathcal{D}_n,\mathcal{D},\varphi)$ je definovaná

Bool(
$$\mathcal{D}_1, \ldots, \mathcal{D}_n, \mathcal{D}, \varphi$$
) = $\{r \in \mathcal{D} \mid e_r(\varphi) = 1\},\$

kde e_r je ohodnocení výrokových symbolů (jednoznačně rozšířené na všechny výrokové formule), splňující

$$e_r(p_i) = \begin{cases} 1, & \text{pokud } r \in \mathcal{D}_i, \\ 0, & \text{jinak.} \end{cases}$$

Příklad (Příklady obecných množinových operací)

průnik, sjednocení a rozdíl:

$$\mathcal{D}_{1} \cap \mathcal{D}_{2} = \operatorname{Bool}(\mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{D}_{1} \cup \mathcal{D}_{2}, p_{1} \wedge p_{2})$$

$$\mathcal{D}_{1} \cup \mathcal{D}_{2} = \operatorname{Bool}(\mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{D}_{1} \cup \mathcal{D}_{2}, p_{1} \vee p_{2})$$

$$\mathcal{D}_{1} \setminus \mathcal{D}_{2} = \operatorname{Bool}(\mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{D}_{1} \cup \mathcal{D}_{2}, p_{1} \wedge \neg p_{2})$$

$$= \operatorname{Bool}(\mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{D}_{1} \cup \mathcal{D}_{2}, \neg (p_{1} \Rightarrow p_{2}))$$

příklady dalších operací:

$$\mathcal{D}_{1} \triangle \mathcal{D}_{2} = \operatorname{Bool}(\mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{D}_{1} \cup \mathcal{D}_{2}, (p_{1} \wedge \neg p_{2}) \vee (\neg p_{1} \wedge p_{2}))$$

$$= \operatorname{Bool}(\mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{D}_{1} \cup \mathcal{D}_{2}, \neg (p_{1} \Leftrightarrow p_{2}))$$

$$\mathcal{D}_{1} \rightarrow_{\mathcal{D}} \mathcal{D}_{2} = \operatorname{Bool}(\mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{D}, p_{1} \Rightarrow p_{2})$$

Věta (Vyjádření obecných množinových operací)

Pro každou výrokovou formuli φ lze $\operatorname{Bool}(\mathcal{D}_1, \ldots, \mathcal{D}_n, \mathcal{D}, \varphi)$ vyjádřit pouze pomocí relací $\mathcal{D}_1, \ldots, \mathcal{D}_n, \mathcal{D}$ a relačního rozdílu \setminus .

Důkaz.

Vezměme libovolnou výrokovou formuli φ , která obsahuje nejvýš výrokové symboly p_1,\ldots,p_n . Dále zavedeme následující logické spojky: nulární spojka $\mathbbm{1}$ (konstanta pro pravdivostní hodnotu "pravda") a binární spojky $\mathbbm{1}$ (abjunkce). Pro každé ohodnocení e položíme:

$$e(\mathbb{1})=1, \qquad \qquad e(\varphi \mathbin{\backslash\!\!\backslash} \psi) = \left\{ \begin{array}{ll} 1, & \mathsf{pokud} \ e(\varphi) = 1 \ \mathsf{a} \ e(\psi) = 0, \\ 0, & \mathsf{jinak}. \end{array} \right.$$

Zřejmě $e(\varphi \Rightarrow \psi) = e(\mathbb{1} \setminus (\varphi \setminus \psi))$ a $e(\neg \varphi) = e(\mathbb{1} \setminus \varphi)$. To jest, ke každé výrokové formuli φ existuje formule φ^{\bullet} obsahující pouze spojky $\mathbb{1}$ a \setminus , která je sémanticky ekvivalentní s φ . Hledané vyjádření $\operatorname{Bool}(\mathcal{D}_1, \dots, \mathcal{D}_n, \mathcal{D}, \varphi)$ získáme z φ^{\bullet} tím, že \setminus nahradíme \setminus , $\mathbb{1}$ nahradíme \mathcal{D} a každý výrokový symbol p_i nahradíme \mathcal{D}_i .

Příklad (Vyjádření základních binárních logických spojek)

Příklad (Tutorial D: Další množinové operace)

```
VAR foo BASE RELATION {x INTEGER}
 INIT (RELATION {TUPLE {x 10}, TUPLE {x 20}, TUPLE {x 30}})
 KEY \{x\};
/* union vs. union of disjoint relations */
foo D_UNION RELATION {TUPLE {x 20}} /* error */
/* difference vs. included difference */
foo MINUS RELATION {TUPLE \{x \mid 40\}\} \Longrightarrow \cdots
foo I MINUS RELATION (TUPLE (x 40)) /* error */
/* symmetric difference */
foo XUNION RELATION {TUPLE {x 40}, TUPLE {x 20}}
  \implies RELATION {TUPLE {x 10}, TUPLE {x 30}, TUPLE {x 40}}
```

Intermezzo: Operace s n-ticemi

sjednocení (zřetězení) n-tic, angl.: concatenation/union

Mějme n-tice $r \in \prod_{y \in R} D_y$ a $s \in \prod_{y \in S} D_y$ takové, že r(y) = s(y) pro každý atribut $y \in R \cap S$. Zobrazení $r \cup s$ (zkráceně rs) nazveme sjednocení (zřetězení) n-tic r a s.

projekce (zúžení) n-tice, angl.: projection

Mějme n-tici $r\in\prod_{y\in R}D_y$ a pak $S\subseteq R$ definujeme $r(S)\in\prod_{y\in S}D_y$ tak, že (r(S))(y)=r(y) pro každý $y\in S$. Zobrazení r(S) se nazývá projekce r na S.

poznámky:

- sjednocení je: komutativní (rs = sr), asociativní (r(st) = (rs)t), idempotentní (rr = r), neutrální vzhledem k \emptyset $(r\emptyset = \emptyset r = r)$
- ullet sjednocení n-tic $r \cup s$ je množinově-teoretické sjednocení zobrazení, odtud:

$$(rs)(y) = \begin{cases} r(y), & \mathsf{pokud}\ y \in R, \\ s(y), & \mathsf{jinak}. \end{cases}$$

Příklad (Tutorial D: Sjednocení a projekce *n*-tic)

```
TUPLE {x 10, y 20} UNION TUPLE {z 30, a "foo"}
  \implies TUPLE {x 10, y 20, z 30, a "foo"}
TUPLE {x 10, y 20} UNION TUPLE {z 30, y 20}
  \implies TUPLE {x 10, y 20, z 30}
TUPLE {x 10, y 20} UNION TUPLE {z 30, y 666} /* error */
TUPLE \{w \ 0, x \ 10, y \ 20, z \ 30\} \{x, z\}
  \implies TUPLE {x 10, z 30}
TUPLE {w 0, x 10, y 20, z 30} {ALL BUT x, z}
  \implies TUPLE {w 0, y 20}
TUPLE {w 0, x 10, y 20, z 30} {}
  ⇒ TUPLE {}
```

Projekce

Definice (projekce, angl.: projection)

Mějme relaci $\mathcal D$ na schématu R. Pri libovolné $S\subseteq R$ položíme:

$$\pi_S(\mathcal{D})=\{s\in\prod_{y\in S}D_y\,|\, ext{existuje}\,\,t\in\prod_{y\in R\setminus S}D_y\,\, ext{tak, \'ze}\,\,st\in\mathcal{D}\}.$$

Relace $\pi_S(\mathcal{D})$ se nazývá **projekce** \mathcal{D} na schéma S.

Tutorial D:

```
\langle rela\check{c}n\acute{i}-v\acute{y}raz\rangle {\langle atribut_1\rangle,\ldots,\langle atribut_n\rangle}
\langle rela\check{c}n\acute{i}-v\acute{y}raz\rangle {ALL BUT \langle atribut_1\rangle,\ldots,\langle atribut_n\rangle}
```

SQL:

SELECT DISTINCT $\langle atribut_1 \rangle$,..., $\langle atribut_n \rangle$ FROM $\langle jm\acute{e}no \rangle$

Příklad (SQL: Kvalifikátory ALL a DISTINCT)

```
CREATE TABLE foo (
  x NUMERIC NOT NULL,
  y NUMERIC NOT NULL,
 PRIMARY KEY (x, y),
  z NUMERIC NOT NULL);
INSERT INTO foo VALUES (10, 20, 30);
                                                  10 20 30
INSERT INTO foo VALUES (10, 30, 30);
                                                  10 30 30
INSERT INTO foo VALUES (20, 40, 60);
/* explicit qualifier DISTINCT */
SELECT DISTINCT x, z FROM foo;
/* implicit qualifier ALL, nonrelational operation */
SELECT x, z FROM foo;
SELECT ALL x, z FROM foo;
```

Věta (Základní vlastnosti projekce)

Pro relaci \mathcal{D} na schématu R platí:

- $\pi_{S_1}(\pi_{S_2}(\mathcal{D})) = \pi_{S_1}(\mathcal{D})$ pro každé $S_1 \subseteq S_2 \subseteq R$;

Důkaz.

① je zřejmá; ② plyne z toho, jak vypadají relace nad prázdným schématem; ③ plyne z toho, že pokud $s \in \prod_{y \in S} D_y$, pak existuje $t \in \prod_{y \in R \setminus S} D_y$ tak, že $st \in \mathcal{D}$ p. k. s = r(S) pro nějakou $r \in \mathcal{D}$; pro ④ je $\pi_{S_1}(\pi_{S_2}(\mathcal{D})) = \{s_2(S_1) \mid s_2 \in \pi_{S_2}(\mathcal{D})\} = \{r(S_2)(S_1) \mid r \in \mathcal{D}\} = \{r(S_1) \mid r \in \mathcal{D}\};$ ⑤ $\pi_{S}(\mathcal{D}_1 \cup \mathcal{D}_2) = \{r(S) \mid r \in \mathcal{D}_1 \cup \mathcal{D}_2\} = \{r(S) \mid r \in \mathcal{D}_1\} \cup \{r(S) \mid r \in \mathcal{D}_2\} = \pi_{S}(\mathcal{D}_1) \cup \pi_{S}(\mathcal{D}_2).$

Restrikce

Definice (restrikce, angl.: restriction)

Mějme relaci $\mathcal D$ na schématu R a nechť θ je skalární výraz typu "pravdivostní hodnota", který může obsahovat jména atributů z R. Řekneme, že $r \in \mathcal D$ **splňuje** (podmínku danou výrazem) θ , pokud má θ hodnotu "pravda" za předpokladu, že jsme nahradili jména atributů v θ jejich hodnotami z r. Položíme

$$\sigma_{\theta}(\mathcal{D}) = \{ r \in \mathcal{D} \, | \, r \text{ splňuje } \theta \}$$

Relace $\sigma_{\theta}(\mathcal{D})$ se nazývá **restrikce** \mathcal{D} splňující θ .

poznámky:

- restrikce na rovnost restrikce tvaru $\sigma_{y=d}(\mathcal{D})$
- terminologie: restrikce = selekce (nezaměňovat se SELECT z SQL, !!)
- restrikce (*zmenšení velikosti* relace) × projekce (*zmenšení stupně* relace)

Restrikce v Tutorial D a SQL

Tutorial D:

```
\langle relačni-výraz \rangle WHERE \langle podminka \rangle
```

SQL:

```
SELECT * FROM \langle jm\acute{e}no \rangle WHERE \langle podm\acute{i}nka \rangle
```

Poznámka o výrazech v restrikcích

Výraz $\langle podmínka \rangle$ chápeme jako obecný výraz, který lze formulovat v daném dotazovacím jazyku. Pro zjednodušení dalších úvah budeme předpokládat, že $\langle podmínka \rangle$ je výraz, který se chová z hlediska své interpretace funkcionálně (nemá vedlejší efekty); lze jej chápat jako zobrazení $\theta\colon \prod_{y\in R} D_y \to \{0,1\}$, kde $\theta(r)=1$ znamená, že r splňuje θ .

důsledek: pokud je $\prod_{y \in R} D_y$ konečná, $\sigma_{\theta}(\mathcal{D})$ lze chápat jako průnik relací (!!)

Věta (Základní vlastnosti restrikce)

Pro relaci \mathcal{D} na schématu R platí:

- $\bullet \sigma_{\theta_1}(\sigma_{\theta_2}(\mathcal{D})) = \sigma_{\theta_2}(\sigma_{\theta_1}(\mathcal{D}))$

Důkaz.

Bod ① plyne z komutativity konjunkce, konkrétně $r \in \sigma_{\theta_1}(\sigma_{\theta_2}(\mathcal{D}))$ p. k. r splňuje θ_1 a náleží do $\sigma_{\theta_2}(\mathcal{D})$ což platí p. k. r splňuje θ_1 a r splňuje θ_2 a náleží do \mathcal{D} , což je p. k. r splňuje θ_2 a r splňuje θ_1 a náleží do \mathcal{D} (viz poznámku o funkcionálním charakteru podmínek), to jest $r \in \sigma_{\theta_2}(\sigma_{\theta_1}(\mathcal{D}))$. Bod ② plyne analogicky z idempotence konjunkce (opět důležitý předpoklad z předchízí poznámky).

značení:

- pro podmínky $\theta_1, \dots, \theta_n$ píšeme $\sigma_{\theta_1, \dots, \theta_n}(\mathcal{D})$ místo $\sigma_{\theta_1}(\sigma_{\theta_2}(\dots(\sigma_{\theta_n}(\mathcal{D}))\dots))$
- alternativní značení: $\sigma_{\theta_1 \wedge \cdots \wedge \theta_n}(\mathcal{D})$ (\wedge je symbol pro konjunkci)

Věta (Vztah restrikce a projekce)

Mějme relaci \mathcal{D} na schématu R. Pokud jsou všechna jména atributů z výrazu θ obsažena v $S \subseteq R$, pak $\pi_S(\sigma_{\theta}(\mathcal{D})) = \sigma_{\theta}(\pi_S(\mathcal{D}))$.

Důkaz.

Platí, že $s \in \pi_S(\sigma_\theta(\mathcal{D}))$ právě tehdy, když existuje t tak, že $st \in \sigma_\theta(\mathcal{D})$. To platí p. k. existuje t tak, že $st \in \mathcal{D}$ a st splňue θ . Platnost θ však nezávisí na t, protože všechna jména atributů z θ jsou v s, takže předchozí podmínka je ekvivalentní podmínce: existuje t tak, že $st \in \mathcal{D}$ a s splňuje θ . To jest, s splňuje θ a navíc existuje t tak, že $st \in \mathcal{D}$, což znamená $s \in \sigma_\theta(\pi_S(\mathcal{D}))$.

pozor:

- pokud je v θ obsaženo jméno některého atributu, který není v $S\subseteq R$, pak $\sigma_{\theta}(\pi_S(\mathcal{D}))$ nedává smysl (pravá strana rovnosti předchozí věty není definovaná)
- příkaz SELECT v SQL chápeme tak, že projekce následuje za restrikcí

Věta (Vztah restrikce a množinových operací)

Pro relace \mathcal{D}_1 a \mathcal{D}_2 na stejném relačním schématu platí:

Důkaz.

Bod ① se dokáže následovně: $r \in \sigma_{\theta}(\mathcal{D}_1 \cup \mathcal{D}_2)$ p. k. r splňuje θ a buď $r \in \mathcal{D}_1$ nebo $r \in \mathcal{D}_2$. To znamená, že buď r splňuje θ a $r \in \mathcal{D}_1$ nebo r splňuje θ a $r \in \mathcal{D}_2$, to jest $r \in \sigma_{\theta}(\mathcal{D}_1) \cup \sigma_{\theta}(\mathcal{D}_2)$. Bod ② plyne analogicky z toho, že $r \in \sigma_{\theta}(\mathcal{D}_1 \cap \mathcal{D}_2)$ p. k. r splňuje θ a $r \in \mathcal{D}_1$ a $r \in \mathcal{D}_2$ (dále použijem idempotenci, asociativitu a komutativitu konjunkce). Analogicky dokážeme ③ z toho, že $r \in \sigma_{\theta}(\mathcal{D}_1 \setminus \mathcal{D}_2)$ p. k. r splňuje θ a platí, že $r \in \mathcal{D}_1$ a $r \notin \mathcal{D}_2$.

poznámka: $\sigma_{\theta}(\mathcal{D}_1 \setminus \mathcal{D}_2) \subseteq \mathcal{D}_1 \setminus \sigma_{\theta}(\mathcal{D}_2)$ ale obecně ne obráceně (!!)

Příklad (Tutorial D: Modifikace dat, příkaz INSERT)

```
VAR person BASE
  INIT (RELATION {
          TUPLE {name "Abbe", salary 15000, bonus 0},
          TUPLE {name "Blangis", salary 10000, bonus 0}})
  KEY {name};
INSERT person RELATION {
   TUPLE {name "Curval", salary 12000, bonus 500},
    TUPLE {name "Durcet", salary 11000, bonus 1500}};
/* equivalently using relational assignment */
person := person UNION
  RELATION {
   TUPLE {name "Curval", salary 12000, bonus 500},
   TUPLE {name "Durcet", salary 11000, bonus 1500}};
```

Příklad (Tutorial D: Modifikace dat, příkaz DELETE)

```
VAR person BASE
  INIT (RELATION {
          TUPLE {name "Abbe", salary 15000, bonus 0},
          TUPLE {name "Blangis", salary 10000, bonus 0},
          TUPLE {name "Curval", salary 12000, bonus 500},
          TUPLE {name "Durcet", salary 11000, bonus 1500}})
  KEY {name}:
DELETE person WHERE salary < 12000;
DELETE person; /* delete all tuples */
/* equivalently using relational assignment */
person := person WHERE NOT (salary < 12000);
person := person MINUS (person WHERE salary < 12000);</pre>
person := person WHERE FALSE;
```

Příklad (Tutorial D: Modifikace dat, příkaz UPDATE)

```
VAR person BASE
  INIT (RELATION {
          TUPLE {name "Abbe", salary 15000, bonus 0},
          TUPLE {name "Blangis", salary 10000, bonus 0},
          TUPLE {name "Curval", salary 12000, bonus 500},
          TUPLE {name "Durcet", salary 11000, bonus 1500}})
  KEY {name};
UPDATE person WHERE salary >= 12000: {
  salary := (salary * 120) / 100,
  bonus := bonus + 2000
};
UPDATE person: {bonus := 0};
```

poznámka: UPDATE lze také vyjádřit jako relační přiřazení (Přednáša 6)

Problémy fyzické vrstvy: Otázky efektivity

připomenutí:

- logická vrstva databázového systému:
 - abstrahuje od fyzického uložení dat
- fyzická vrstva databázového systému:
 - nejnižší vrstva, zabývá se fyzickým (efektivním a perzistentním) uložením dat
 - zajímavá z pohledu implementace DB systému, pro uživatele (téměř) nezajímavá

doposud: pouze úvahy o logické (a externí) vrstvě

otázky fyzické vrstvy:

- jak efektivně organizovat data na disku
- efektivní organizace z pohledu: odezvy dotazů / modifikace dat
- jaké algoritmy používat pro vyhodnocování dotazů
- jak odstínit uživatele od aspektů fyzické vrstvy (automatická indexace, . . .)

Efektivní vyhodnocování relačních operací

otázka:

Jak efektivně počítat výsledky relačních operací typu sjednocení, průnik, rozdíl, projekce a restrikce?

naivní vyhodnocování:

- σ : iterace přes všechny prvky tabulky
- \cap , \cup , \setminus , π : iterace ve vnořené smyčce

optimalizované vyhodnocování:

- využití dodatečných struktur (indexů) umožňujících rychlé vyhledávání n-tic
- zjednodušování dotazů na základě vlastností operací (viz předchozí tvrzení)

podpora:

- SQL explicitní podpora pro vytváření indexů
- Tutorial D nedefinuje indexy ani jiné koncepty související s fyzickou vrstvou

Základní metody implementace indexů

dva základní typy struktur pro indexy:

- indexy reprezentují uspořádané množiny:
 - organizace indexu: perzistentní B-strom nebo jeho modifikace (B⁺-strom)
 - rychlé nalezení hodnot splňující podmínky s <, \leq , =, \geq , >
- indexy reprezentují asociační pole:
 - organizace indexu: perzistentní (a rozšiřitelná) hashovací tabulka
 - rychlé nalezení hodnot splňující podmínky s =

další vlastnosti indexů:

- jednosloupcové / vícesloupcové
- husté / řídké (indexovány jsou první hodnoty bloků, sekvenční dohledávání)
- mohou být unikátní (vytvořené při definici integritního omezení typu "UNIQUE")
- úplné / částečné (indexují pouze podmnožinu tabulky)

Příklad (SQL: Vytváření indexů) CREATE TABLE foo (x NUMERIC NOT NULL PRIMARY KEY, y NUMERIC NOT NULL, z NUMERIC NOT NULL): /* creating unique multicolumn B-tree index explicitly */ CREATE UNIQUE INDEX foo_yz_idx ON foo (y, z); DROP INDEX foo_yz_idx; /* creating implicit index by imposing constraint */ CREATE TABLE bar (x NUMERIC NOT NULL PRIMARY KEY, y NUMERIC NOT NULL, z NUMERIC NOT NULL,

UNIQUE (y, z));

Příklad (SQL: Vytváření indexů) CREATE TABLE foo (x NUMERIC NOT NULL PRIMARY KEY, y NUMERIC NOT NULL, z NUMERIC NOT NULL); /* hash index */ CREATE INDEX foo_y_idx ON foo USING hash (y); /* partial index */ CREATE INDEX foo_z_idx ON foo (z) WHERE z >= 1000; /* index on results of expression */ CREATE INDEX foo_abs_idx ON foo (abs (y + z)); /* application in query */ SELECT * FROM foo WHERE abs (y + z) >= 1000;

Přednáška 3: Závěr

pojmy k zapamatování:

- relační model dat, atributy, relační schémata, typy (domény)
- typy v RM: skalární, n-ticové, relační
- kartézské součiny, relace, první normální forma
- relační proměnné, klíče a jejich realizace v jazycích Tutorial D a SQL

použité zdroje:

- Date C. J.: Database in Depth: Relational Theory for Practitioners O'Reilly Media 2005, ISBN 978-0596100124
- Date C. J., Darwen H.: *Databases, Types and the Relational Model* Addison Wesley 2006, ISBN 978–0321399427
- Maier D: *Theory of Relational Databases*Computer Science Press 1983, ISBN 978–0914894421