Session

CNNConvolutional Neural Network

Ajvad Haneef

Grey Scale Image

157	153	174	168	150	152	129	151	172	161	155	156
155	182	163	74	75	62	33	17	110	210	180	154
180	180	50	14	34	6	10	33	48	105	159	181
206	109	6	124	131	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87	71	201
172	106	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	215	211	158	139	75	20	169
189	97	165	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	105	36	190
205	174	155	252	236	231	149	178	228	43	95	234
190	216	116	149	236	187	86	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	95	50	2	109	249	215
187	196	235	75	1	81	47	0	6	217	255	211
183	202	237	145	0	0	12	108	200	138	243	236
195	206	123	207	177	121	123	200	175	13	96	218

157	153	174	168	150	152	129	151	172	161	155	156
155	182	163	74	75	62	33	17	110	210	180	154
180	180	50	14	34	6	10	33	48	106	159	181
206	109	5	124	131	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87	n	201
172	106	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	215	211	158	139	75	20	169
189	97	166	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	106	36	190
206	174	155	252	236	231	149	178	228	43	96	234
190	216	116	149	236	187	86	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	96	50	2	109	249	215
187	196	235	75	1	81	47	0	6	217	255	211
183	202	237	145	0	0	12	108	200	138	243	236
196	206	123	207	177	121	123	200	175	13	96	218

RGB Image

RGB Image

How a Computer Reads an Image

Size of the image will be – B x A x 3

Convolutional Neural Networks have following layers:

- ✓ Convolution
- ✓ ReLU Layer
- ✓ Pooling
- ✓ Fully Connected

Trickier Case

Here, we will have some problems, because X and O images won't always have the same images. There can be certain deformations. Consider the diagrams shown below:

A computer understands an image using numbers at each pixels.

In our example, we have considered that a black pixel will have value 1 and a white pixel will have -1 value.

-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	1	-1	-1	-1	1	-1	-1
-1	-1	-1	1	-1	1	-1	-1	-1
-1	-1	-1	-1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1	-1	-1	-1
-1	-1	1	-1	-1	-1	1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1

Using normal techniques, computers compare these images as:

-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	1	-1	-1	-1	1	-1	-1
-1	-1	+1	1	-1	1	-1	-1	-1
-1	-1	-1	-1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1	-1	-1	-1
-1	-1		-1	-1	-1	1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1

CNN compares the images piece by piece. The pieces that it looks for are called features. By finding rough feature matches, in roughly the same position in two images, CNN gets a lot better at seeing similarity than whole-image matching schemes.

We will be taking three features or filters, as shown below:

1	-1	-1
-1	4	-1
-1	-1	1

1	-1	1
-1	1	-1
1	-1	1

-1	-1	1
-1	1	-1
1	-1	-1

These are small pieces of the bigger image. We choose a feature and put it on the input image, if it matches then the image is classified correctly.

Steps Involved in Convolution Layer

Here we will move the feature/filter to every possible position on the image.

Step - 1

Step - 2

Line up the feature and the image.

Multiply each image pixel by the corresponding feature pixel.

Multiplying the Corresponding Pixel Values

Multiplying the Corresponding Pixel Values

Steps Involved in Convolution Layer

Here we will move the feature/filter to every possible position on the image.

Step - 1

Line up the feature and the image patch (by default image patch size is taken of 9 pixels).

Step - 3

Multiply each image pixel by the corresponding feature pixel.

Step - 4

Divide by total number of pixels in the feature

Adding and Dividing by the Total Number of Pixe.

$$\frac{1+1+1+1+1+1+1+1}{9} = 1$$

-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	1	-1	-1	-1	1	-1	-1
-1	-1	-1	1	-1	1	-1	-1	-1
-1	-1	-1	-1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1	-1	-1	-1
-1	-1	1	-1	-1	-1	1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1

1	1	1
1	1	1
1	1	1

13

Creating a Map to Put the Value of the Filter

Now to keep track of where that feature was, we create a map and put the value of the filter at that place

Sliding the Filter Throughout the Image

Now, using the same feature and move it to another location and perform the filtering again.

1	-1	-1
-1	1	-1
-1	-1	1

1	1	-1
1	1	1
-1	1	1

Convolution Layer Output

Similarly, we will move the feature to every other positions of the image and will see how the feature matches that area. Finally we will get an output as:

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.0	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.0	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

Convolution Layer Output

Similarly, we will perform the same convolution with every other filters

-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	1	-1	-1	-1	1	-1	-1
-1	-1	-1	1	-1	1	-1	-1	-1
-1	-1	-1	-1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1	-1	-1	-1
-1	-1	1	-1	-1	-1	1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.0	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.0	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

0.33	-0.55	0.11	-0.11	0.11	-0.55	0.33
-0.55	0.55	-0.55	0.33	-0.55	0.55	-0.55
0.11	-0.55	0.55	-0.11	0.55	-0.55	0.11
-0.11	0.33	-0.77	1.00	-0.77	0.33	-0.11
0.11	-0.55	0.55	-0.77	0.55	-0.55	0.11
-0.55	0.55	-0.55	0.33	-0.55	0.55	-0.55
0.33	-0.55	0.11	-0.11	0.11	-0.55	0.33

0.33	-0.11	0.55	0.33	0.11	-0.11	0.77
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.77	-0.11	0.11	0.33	0.55	-0.11	0.33

ReLU Layer

- ✓ In this layer we remove every negative values from the filtered images and replaces it with zero's
- ✓ This is done to avoid the values from summing up to zero

Rectified Linear Unit (ReLU) transform function only activates a node if the input is above a certain quantity, while the input is below zero, the output is zero, but when the input rises above a certain threshold, it has a linear relationship with the dependent variable

x	f(x)=x	F(x)
-3	f(-3) = 0	0
-5	f(-5) = 0	0
3	f(3) = 3	3
5	f(5) = 5	5

Removing the Negative Values

Removing the Negative Values

Output for One Feature

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.0	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.0	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

0.77	0	0.11	0.33	0.55	0	0.33
0	1.00	0	0.33	0	0.11	0
0.11	0	1.00	0	0.11	0	0.55
0.33	0.33	0	0.55	0	0.33	0.33
0.55	0	0.11	0	1.00	0	0.11
0	0.11	0	0.33	0	1.00	0
0.33	0	0.55	0.33	0.11	0	1.77

Output for All Features

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.0	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.0	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

0.33	-0.55	0.11	-0.11	0.11	-0.55	0.33
-0.55	0.55	-0.55	0.33	-0.55	0.55	-0.55
0.11	-0.55	0.55	-0.11	0.55	-0.55	0.11
-0.11	0.33	-0.77	1.00	-0.77	0.33	-0.11
0.11	-0.55	0.55	-0.77	0.55	-0.55	0.11
-0.55	0.55	-0.55	0.33	-0.55	0.55	-0.55
0.33	-0.55	0.11	-0.11	0.11	-0.55	0.33

-0.11	0.55	0.33	0.11	-0.11	0.77
0.11	-0.11	0.33	-0.11	1.00	-0.11
-0.11	0.11	-0.33	1.00	-0.11	0.11
0.33	-0.33	0.55	-0.33	0.33	0.33
-0.11	1.00	-0.33	0.11	-0.11	0.55
1.00	-0.11	0.33	-0.11	0.11	-0.11
-0.11	0.11	0.33	0.55	-0.11	0.33
	0.11 -0.11 0.33 -0.11 1.00	0.11 -0.11 -0.11 0.11 0.33 -0.33 -0.11 1.00 1.00 -0.11	0.11 -0.11 0.33 -0.11 0.11 -0.33 0.33 -0.33 0.55 -0.11 1.00 -0.33 1.00 -0.11 0.33	0.11 -0.11 0.33 -0.11 -0.11 0.11 -0.33 1.00 0.33 -0.33 0.55 -0.33 -0.11 1.00 -0.33 0.11 1.00 -0.11 0.33 -0.11	-0.11 0.55 0.33 0.11 -0.11 0.11 -0.11 0.33 -0.11 1.00 -0.11 0.31 0.00 -0.11 0.33 -0.33 0.33 -0.11 1.00 -0.33 0.11 -0.11 1.00 -0.33 0.11 -0.11 1.00 -0.11 0.33 -0.11 0.11 -0.11 0.11 0.33 0.55 -0.11

0.77 0 0.11 0.33 0.55 0 0.33 0 0.55 0 0.33 0 0.55 0 0.35 0 0.55 0 0.35 0 0.55 0 0.35 0							
0.11 0 1.00 0 0.11 0 0.25 0.33 0.33 0 0.55 0 0.33 0.33 0.55 0 0.11 10 1.00 0 0.11 0 0.11 0 1.00 0	0.77	0	0.11	0.33	0.55	0	0,33
0.33 0 0.55 0 0.33 0.33 0.55 0 0.11 0 1.00 0 0.11 0 0.11 0 0 1.00 0	0	1.00	0	0.33	0	0.11	0
0.55: 0 0.11 1.00 0 0.11 c 0.11 0 0 1.00 0	0.11	0	1.00	0	0.11	ō	0.55
0 211 0 0 1.00 0	0.33	0.33	0	0.55	0	0.33	0.33
	0.55	0	0.11		1,00	0	0.11
0.33 0 0.55 0.33 0.11 0 1.77	0	0.11	0	-	D	1.00	0
	0.33	0	0.55	0.33	0.11	0	1.77

0.33	0	0.11	0	0.11	0	0.33
0	0.55	.0	0.80	0	0.55	D
0,11	0	0.55	0	0.55	0	0,11
ō.	0.33	0.	1.00	0	0.33	0
0,11	0.	0.55	0	0,55	0.	0.11
0	0.55	0	0.33	0	0.55	0
0.33	0	0.11	0	0.11	0	0.33

2.02	2	tion	9531	271	10	16.27
9.	0117		3033	10.	100	k
RM		521	8.	5,00		9.00
0.03	gar	-	en:	9	100	ii.m
2,11	2	100		6.11	8.	\$36
6	1.00		326	2.	9.11	.0.
E277	*	an:	800	844	0.	4.0

Pooling Layer

In this layer we shrink the image stack into a smaller size

Steps:

- Pick a window size (usually 2 or 3).
- Pick a stride (usually 2).
- Walk your window across your filtered images. 3.
- From each window, take the maximum value. 4.

Symbol:

Let's perform pooling with a window size 2 and a stride 2

Calculating the Maximum Value in each Window

Let's start with our first filtered image In our first window the maximum or highest value is 1, so we track that and move the window two strides

0.77	0	0.11	0.33	0.55	0	0.33
0	1.00	0	0.33	0	0.11	0
0.11	0	1.00	0	0.11	0	0.55
0.33	0.33	0	0.55	0	0.33	0.33
0.55	0	0.11	0	1.00	0	0.11
0	0.11	0	0.33	0	1.00	0
0.33	0	0.55	0.33	0.11	0	1.77

Moving the Window Across the Entire Image

0.77	0	0.11	0.33	0.55	0	0.33
0	1.00	0	0.33	0	0.11	0
0.11	0	1.00	0	0.11	0	0.55
0.33	0.33	0	0.55	0	0.33	0.33
0.55	0	0.11	0	1.00	0	0.11
0	0.11	0	0.33	0	1.00	0
0.33	0	0.55	0.33	0.11	0	1.77

1.00	0.33	0.55	0.33
0.33	1.00	0.33	0.55
0.55	0.33	1.00	0.11
0.33	0.55	0.11	0.77

Output After Passing Through Pooling Layer

0.77	.0	0.11	0.33	0.55	0	0.33
0	1.00	0	0.33	0	0.11	0
0,11	0	1.00	0	0.11	0	0.55
0.33	0.33	0	0.55	0	0.33	0.33
0.55	0	0.11	0	1.00	5	0.11
0	0.11	0	0.33	0	1.00	.0
0.33	0	0.55	0,33	0.11	0.	1,77

0.33	0	0.11	0	≙11	0	0.33
0	0.55	0	0.33	0	0.55	0
0.11	ō	0.55	0	0.55	0	0.11
0	0.33	0	1.00	0	0.33	0
0.11	0	0.55	0	0.55	0.	0.11
0	0.55	0	0,33	0	0.55	0
0.33	0	0.11	0	0.11	0	0.33

15.24	×	131	8.0	811	9	14.27
9	Van		849	1	100	*
130		Arr	E	1=		623
1000	500		kys		630	433
9.11	×	5.00	2	233	b	5005
	tim	*	100		421	2
6.01	-8	911	6.00	246	16	0.01

1.00	0.33	0.55	0.33
0.33	1.00	0.33	0.55
0.55	0.33	1.00	0.11
0.33	0.55	0.11	0.77

0.55	0.33	0.55	0.33
0.33	1.00	0.55	0.11
0.55	0.55	0.55	0.11
0.33	0.11	0.11	0.33

0.33	0.55	1.00	0.77
0.55	0.55	1.00	0.33
1.00	1.00	0.11	0.55
0.77	0.33	0.55	0.33

Stacking up the Layers

1.00	0.33	0.55	0.33
0.33	1.00	0.33	0.55
0.55	0.33	1.00	0.11
0.33	0.55	0.11	0.77

0.55	0.33	0.55	0.33
0.33	1.00	0.55	0.11
0.55	0.55	0.55	0.11
0.33	0.11	0.11	0.33

0.33	0.55	1.00	0.77
0.55	0.55	1.00	0.33
1.00	1.00	0.11	0.55
0.77	0.33	0.55	0.33

Stacking up the Layers

Pooling

0.55
1.00
0.55
0.55
1.00
0.55

Fully Connected Layer

This is the final layer where the actual classification happens

Here we take our filtered and shrinked images and put them into a single list

1	0.55	
0.55	1.00	

1	0.55	
0.55	0.55	

0.55	1.00	
1.00	0.55	

1.00
0.55
0.55
1.00
1.00
0.55
0.55
0.55
0.55
1.00
1.00
0.55

Output

When we feed in, 'X' and 'O'. Then there will be some element in the vector that will be high. Consider the image below, as you can see for 'X' there are different elements that are high and similarly, for 'O' we have different elements that are high.

Prediction

Consider the below list of a new input image:

Let's compare this with the list of 'X' and 'O'

Comparing the Input Vector with X

Input Image Vector for 'X'

Comparing the Input Vector with O

Result

The input image is classified as 'X'

Dog and Cat Identifier

Implementing the Use-Case

