1

$\Pi \Lambda H31 - TE\Sigma T 4$

Θέμα 1: Ερωτήσεις Κατανόησης

Ερώτημα 1: Ποιοι από τους ακόλουθους αλγόριθμους αναζήτησης χρησιμοποιούν ευρετική συνάρτηση;

- 1. A*
- 2. Πρώτα στο Καλύτερο
- 3. Κατά Πλάτος
- 4. Κατά Βάθος

Ερώτημα 2: Επιλέξτε τον σωστό χαρακτηρισμό για την αναζήτηση Α* από τους παρακάτω:

- 1. Βέλτιστη αλλά όχι πλήρης, ακόμη και αν το ευρετικό είναι παραδεκτό (αποδεκτό)
- 2. Πλήρης, αλλά όχι βέλτιστη, ακόμη και αν το ευρετικό είναι παραδεκτό (αποδεκτό)
- 3. Βέλτιστη και πλήρης, αν το ευρετικό είναι παραδεκτό (αποδεκτό)
- 4. Κανένα από τα εναλλακτικά που δίνονται

Ερώτημα 3: Θεωρείστε δύο παραδεκτές ευρετικές συναρτήσεις h_1 και h_2 που χρησιμοποιούνται στον αλγόριθμο A^* και για τα οποία ισχύει $h_1(v) \le h_2(v)$ για κάθε κόμβο v. Ποιο από τα παρακάτω ισχύει;

- 1. Ο A^* που χρησιμοποιεί το h_1 θα βρει λύση μικρότερου κόστους από αυτόν που χρησιμοποιεί το h_2 .
- 2. Ο A^* που χρησιμοποιεί το h_2 θα βρει λύση μικρότερου κόστους από αυτόν που χρησιμοποιεί το h_1 .
- 3. Ο A^* που χρησιμοποιεί το h_1 θα αναπτύξει λιγότερους κόμβους από αυτόν που χρησιμοποιεί το h_2 .
- 4. Ο Α* που χρησιμοποιεί το h_2 θα αναπτύξει λιγότερους κόμβους από αυτόν που χρησιμοποιεί το h_1 .

Ερώτημα 4: Επιλέξτε τον (ή τους) σωστούς χαρακτηρισμούς για την αναζήτηση κατά πλάτος:

- 1. Έχει εκθετικές απαιτήσεις χρόνου
- 2. Έχει γραμμικές απαιτήσεις μνήμης
- 3. Εγγυάται την εύρεση βέλτιστη λύσης σε προβλήματα που τα κόστη μετάβασης μεταξύ γειτονικών κόμβων είναι ίσα.
- 4. Για την εκτέλεσή του αλγορίθμου, απαιτείται η χρήση ευρετικής συνάρτησης

Ερώτημα 5: Επιλέξτε τον (ή τους) σωστούς χαρακτηρισμούς για την αναζήτηση κατά βάθος:

- 1. Έχει εκθετικές απαιτήσεις χρόνου
- 2. Έχει γραμμικές απαιτήσεις μνήμης
- 3. Εγγυάται την εύρεση βέλτιστη λύσης σε προβλήματα που τα κόστη μετάβασης μεταξύ γειτονικών κόμβων είναι ίσα.
- 4. Για την εκτέλεσή του αλγορίθμου, απαιτείται η χρήση ευρετικής συνάρτησης

Θέμα 2: Αναζήτηση

Δίδεται το παρακάτω δίκτυο στο οποίο αναζητούμε την βέλτιστη διαδρομή από τον κόμβο Α (αρχική κατάσταση) στους κόμβους G1 και G2 (τελικές καταστάσεις).

Οι αριθμοί στις ακμές δηλώνουν το κόστος μετάβασης και η ευρετική συνάρτηση δίνεται στον παρακάτω πίνακα.

Κόμβος	Ευρετική Συνάρτηση
Α	4
В	5
С	2
D	1
Е	2
F	3
G₁	0
G_1 G_2	0
I	1

(Α) Εξετάστε αν η ευρετική συνάρτηση είναι παραδεκτή (δηλαδή δεν υπερεκτιμά το πραγματικό κόστος μετάβασης από τον τρέχοντα κόμβο σε κόμβο-στόχο).

(Β) Δεδομένης της ευρετικής συνάρτησης που αναγράφεται στον πίνακα εκτελέστε τους αλγόριθμους αναζήτησης: Greedy και Α*