Alejandro Rojas - Santiago Passos

Homework 6 - Numerical Analysis

Interpolation

We selected the function $f(x) = e^x - 1$, then we calculated the value for the given points.

Table 1: Points used with the interpolation method.

x	f(x)
-2.5	-0.9179150013761012
-1	-0.6321205588285577
0.5	0.6487212707001282
1.2	2.3201169227365472

With these points and their values we run the interpolation methods Vandermonde, Newton and Lagrange. For each method we obtained the following results:

Vandermonde Matrix:

```
([[-15.625, 6.25, -2.5, 1.],

[-1., 1., -1., 1.],

[ 0.125, 0.25, 0.5, 1.],

[ 1.728, 1.44, 1.2, 1.]])
```

Polynomial:

 $0.12866657x^3 + 0.60712136x^2 + 1.0609553x - 0.04962004$

Fig 1: Approximation with Vandermonde method.

Divided Differences table:

```
([[-0.917915 , 0. , 0. , 0. ],
        [-0.63212056, 0.19052963, 0. , 0. ],
        [ 0.64872127, 0.85389455, 0.22112164, 0. ],
        [ 2.32011692, 2.38770807, 0.69718796, 0.12866657]])
```

Newton Polynomial:

-0.917915 + 0.19052963(x+2.5) + 0.22112164(x+2.5)(x+1) + 0.12866657(x+2.5)(x+1)(x-0.5)

Fig 2: Approximation with Newton method.

Lagrange Polynomial:

 $0.128667x^3 + 0.607121x^2 + 1.06096x - 0.04962$

Fig 2: Approximation with Lagrange method.

Root finding methods

For this section we used the vandermonde polynomial which had the following coefficients:

0.12866657 X ^3 + 0.60712136X ^2 + 1.0609553 X - 0.04962004

We used the incremental search method starting from **-3** and with a step of **0.001**. The interval found was **[-2.1938700855983484e-13**, **0.00099999999780613**].

Using the previous interval we run the methods bisection, regula falsi, newton and secant. For each method we obtained the following results using a tolerance of **1e-7** and an iteration limit of **10000**:

Result	Bisection	Regula falsi	Newton	Secant
Iterations	14	2	5	6
Error	0.000000648	0.0000000000	0.0000000000	0.000000005
x	0.0000000610	0.0000000000	0.0000000000	0.0000000000

The approximate polynomial obtained using the Vandermonde method was good enough to obtain a very close value to the real root of the original function.

X0 for newton: -0.1

x0 and **x1** for secant: -0.12, -0.1

Iterations:

Bisection	

Disection			
Iteration a x	b f(x)	Error	
1 -0.0000000000	0.0005000000	0.0010000000	0.0005306294
2 -0.0000000000	0.0002500000	0.0005000000	0.0002652768
0.0002500000			
3 -0.0000000000	0.0001250000	0.0002500000	0.0001326289
0.0001250000			
4 -0.0000000000	0.0000625000	0.0001250000	0.0000663121
0.0000625000			
5 -0.0000000000	0.0000312500	0.0000625000	0.0000331554
0.0000312500			
6 -0.0000000000	0.0000156250	0.0000312500	0.0000165776
0.0000156250			
7 -0.0000000000	0.0000078125	0.0000156250	0.0000082888
0.0000078125			
8 -0.0000000000	0.0000039062	0.0000078125	0.0000041444
0.0000039063			
9 -0.0000000000	0.0000019531	0.0000039062	0.0000020722
0.0000019531			
10 -0.0000000000	0.0000009766	0.0000019531	0.0000010361
0.0000009766			
11 -0.0000000000	0.0000004883	0.0000009766	0.0000005180
0.0000004883			
12 -0.0000000000	0.0000002441	0.0000004883	0.0000002590
0.0000002441			
13 -0.0000000000	0.0000001221	0.0000002441	0.0000001295
0.000001221			
14 -0.0000000000	0.0000000610	0.0000001221	0.0000000648
0.0000000610			

Regula Falsi

Iteration	a	x	b	f(x)	Error		
1 -0	.000000	0000	-0.00	00000000	0.0010000000	-0.0000000000	
2 -0	.000000	0000	-0.00	00000000	0.0010000000	-0.0000000000	
0.000000	0000						

Newto	on(root	t)							
Iterati	on	x	f(x)		Error				
0	-0.10	00000	000	-C	.1001529	834	-		
1	0.020	71180	34	0.0	02223588	31	0.1207	'11803	34
2	0.000	71101	58	0.0	00075466	29	0.0200	00787	77
3	0.000	00086	868	0.0	00000091	96	0.0007	'10149	90

4	0.000000000	0.000000000	0.0000008668
5	-0.0000000000	-0.0000000000	0.0000000000
Secan	t		
Iteratio	on x f(x) Error	
0	-0.1200000000	-0.1187944247	-
1	-0.1000000000	-0.1187944247	-
2	0.0074519738	0.0079399790	0.1074519738
3	-0.0004409213	-0.0004676798	0.0078928951
4	-0.0000018755	-0.0000019898	0.0004390458
5	0.0000000005	0.0000000005	0.0000018760
6	-0.0000000000	-0.0000000000	0.0000000005