模拟电路

- 第3章 集成运算放大电路
 - 3.1 多级放大电路
 - 3.2 集成运放
 - 3.3 单元电路
 - 3.3.1 抑制温度漂移
 - 3.3.2 长尾式差分放大电路
 - 3.3.3 电流源电路
 - 3.3.4 直接耦合互补输出级
 - 3.4 集成运放电路
 - 3.5 性能指标与低频等效电路
 - 3.5.1 主要性能指标
 - 3.5.2 低频等效电路
 - 3.6 种类与选择
 - 3.6.1 集成运放的发展概况
 - 3.6.2 集成运放的种类
 - 3.6.3 集成运放的选择
 - 3.7 集成运放的使用
 - 3.7.1 使用时必做的工作
 - 3.7.2 保护措施

使用基本放大电路空载情况下动态参数的数量级:

接法	$\left \dot{A}_{u} ight $	$A_{ m i}$	$R_{ m i}$	$R_{ m o}$
共射	> 100	β	0.1 - 10 kΩ	0.1 - 10 kΩ
共集	< 1	$1 + \beta$	10 - 100 kΩ	10 - 100 Ω
共基	> 100	α	10 - 30 Ω	0.1 - 10 kΩ
共源	1~100		> 1 MΩ	0.1 - 10 kΩ
共漏	< 1		> 1 MΩ	0.1 - 10 kΩ

注意

- 如果第二级的输入电阻较小,则会使第一级的电压放大倍数变小,所以为得到较大的电压放大倍数, 第二级也不能采用共基电路.
 - e.g. 若输入级为共集-共基接法,则无法增大输入电阻,只能展宽频带.

如果第一级管是 NPN 型,则复合管是 NPN 型. 如果第一级管时 PNP 型,则复合管是 PNP 型.

第3章集成运算放大电路

3.1 多级放大电路

耦合方式	优点	缺点
直接耦合	1. 低频特性好. 2. 没有大电容, 易于集成.	1. 零点漂移现象. 2. 静态工作点分析麻烦.
阻容耦合	1. 静态工作点分析简单.	1. 低频特性差. 2. 不易于集成.
变压器耦合	$1.$ 静态工作点分析简单。 $2.$ 可以实现阻抗变换。 $R_L'=n^2R_L=\left(rac{I_2}{I_1} ight)^2R_L.$	1. 低频特性差. 2. 不易于集成.
光电耦合 (达林顿结构)	1. 抗干扰能力强. 2. 适用于远距离信号传输.	1. 不易于集成.

- 直接耦合的思路(设置合适静态工作点的方法)
 - \circ 增加 $R_{\rm e2}$ (会降低放大倍数)
 - 使用二极管 (正向, 压降较小)
 - 使用稳压管 (反向, 压降较大)
 - o NPN 与 PNP 型管混合使用.
- 光电耦合的传输比 $\mathrm{CTR} = rac{\Delta i_{\mathrm{C}}}{\Delta i_{\mathrm{D}}}igg|_{U_{\mathrm{CE}}}$ 一般只有 $0.1 \sim 1.5$.
- 动态分析
 - \circ 电压放大倍数: $\dot{A}_u = \prod_{j=1}^N \dot{A}_{uj}$.
 - \circ 输入电阻: $R_i = R_{i1}$.
 - \circ 输出电阻: $R_o = R_{iN}$.

注意:

- 。 当共集放大电路作为输入级时,输入电阻与电路第二级的输入电阻有关.
- 当共集放大电路作为输出级时,输出电阻与倒数第二级的输出电阻有关.

3.2 集成运放

组成部分	输入级 (前置级)	中间级 (主放大 级)	输出级 (功率级)	偏置电路
采用电 路	差分放大电路	共射放大电路	准互补输出级	多路电流源

组分	成部	输入级 (前置级)	中间级 (主放大 级)	输出级 (功率级)	偏置电路
性求	能要	$R_{ m i}$ 大, $A_{ m d}$ 大, $K_{ m CMR}$ 大.	放大能力强	$R_{ m o}$ 小, $U_{ m om}$ 大 (幅值接近电源电 压)	温度稳定性好

注意:即使分立元件组成和集成运放内部完全相同的电路,由于光速的限制,高频性能也较差。

3.3 单元电路

3.3.1 抑制温度漂移

零点漂移现象又称温度漂移.

- 引入直流负反馈 R_e .
- 采用温度补偿 (热敏元件).
- 差分(差动)放大电路.

差分放大电路的概念

- 共模信号: $u_{\rm Ic} = \frac{u_{\rm I1} + u_{\rm I2}}{2}$.
- 差模信号: $u_{\text{Id}} = u_{\text{I1}} u_{\text{I2}}$.

- 共模放大倍数: $A_{\rm c}=\frac{\Delta u_{\rm Oc}}{\Delta u_{\rm Ic}}$.
 差模放大倍数: $A_{\rm d}=\frac{\Delta u_{\rm Od}}{\Delta u_{\rm Id}}$.
 共模抑制比: $K_{\rm CMR}=\left|\frac{A_{\rm d}}{A_{\rm c}}\right|$.

3.3.2 长尾式差分放大电路

- 共同点
 - 。 静态工作点电流: $I_{\mathrm{EQ}}pproxrac{V_{\mathrm{EE}}-U_{\mathrm{BEQ}}}{2R}$.
 - 。 差模信号: $u_{\mathrm{Id}} = u_{\mathrm{I}}$.
 - 输入电阻: $R_{\rm i} = 2(R_{\rm b} + r_{\rm be})$.
- 双端输入
 - \circ 共模信号: $u_{Ic}=0$.
- 单端输入
 - o 共模信号: $u_{\rm Ic}=\frac{u_{\rm I}}{2}$.
- 双端输出
 - 静态工作点: $U_{\rm CEQ} \approx V_{\rm CC} I_{\rm CQ} R_{\rm e} + U_{\rm BEQ}$.
 - \circ 输出电阻: $R_{
 m o}=2R_{
 m c}$.
 - 。 差模放大倍数: $A_{
 m d}=-etarac{R_{
 m c}\ /\!/\ rac{R_{
 m L}}{2}}{R_{
 m b}+r_{
 m be}}.$
 - \circ 共模放大倍数: $A_{\rm c}=0$.
 - \circ 共模抑制比: $K_{\mathrm{CMR}} = +\infty$.
 - \circ 输出电压: $\Delta u_{
 m o} = A_{
 m d} \Delta u_{
 m I}$.
- 单端输出
 - 。 静态工作点: $U_{\text{CEQ}} \approx V'_{\text{CC}} I_{\text{CQ}} R'_{\text{L}} + U_{\text{BEQ}}$.

其中
$$V_{
m CC}' = rac{R_{
m L}V_{
m CC}}{R_{
m L}+R_{
m c}}$$
 , $R_{
m L}' = R_{
m c}$ // $R_{
m L}$.

 \circ 输出电阻: $R_{
m o}=R_{
m c}$.

。 差模放大倍数:
$$A_{
m d} = -rac{eta}{2}rac{R_{
m c}\;/\!/\;R_{
m L}}{R_{
m b}+r_{
m be}}$$

。 共模放大倍数:
$$A_{
m d}=-etarac{R_{
m c}\ /\!/\ R_{
m L}}{R_{
m b}+r_{
m be}+2(1+eta)R_{
m e}}.$$

。 共模抑制比:
$$K_{
m CMR}=rac{R_{
m b}+r_{
m be}+2(1+eta)R_{
m e}}{R_{
m c}\;/\!/\;R_{
m L}}.$$

。 输出电压:
$$\Delta u_{
m o} = A_{
m d} \Delta u_{
m I} + A_{
m c} rac{\Delta u_{
m I}}{2}.$$

注意: 如果单端输出采用有源负载, 即将 $R_{\rm e}$ 替换为恒流源, 则等效电阻无穷大, 共模放大倍数也为零, 即 $A_{\rm d}=0,\,K_{\rm CMR}=+\infty$.

• 改进

。 恒流源: 对共模信号等效为无穷大电阻.

。 调零电位器: 输入差模信号为零时输出电压为零.

。 场效应管: 增大输入电阻.

3.3.3 电流源电路

图 3.1.7 集成运放中常见的电流源电路

- (a) 镜像电流源 (b) 微电流源 (c) 晶体管组成的多路电流源
- (d) 多集电极组成的多路电流源 (e) MOS 管组成的多路电流源

• 基本电流源电路

。 镜像电流源

$$lacksquare I_{
m R} = rac{V_{
m CC} - U_{
m BE}}{R}.
onumber$$
 $I_{
m C} = rac{eta}{eta + 2} I_{
m R}.
onumber$

。 比例电流源

$$\begin{split} & \quad I_{\mathrm{R}} \approx \frac{V_{\mathrm{CC}} - U_{\mathrm{BE0}}}{R + R_{\mathrm{e0}}}. \\ & \quad I_{\mathrm{C1}} \approx \frac{R_{\mathrm{e0}}}{R_{\mathrm{e1}}} I_{\mathrm{R}} + \frac{U_{\mathrm{T}}}{R_{\mathrm{e1}}} \mathrm{ln} \, \frac{I_{\mathrm{R}}}{I_{\mathrm{C1}}} \approx \frac{R_{\mathrm{e0}}}{R_{\mathrm{e1}}} I_{\mathrm{R}}. \end{split}$$

注:

- $lacksymbol{\blacksquare}$ 利用 $I_{
 m E}pprox I_{
 m S}{
 m e}^{rac{U_{
 m BE}}{U_{
 m T}}}$ 进行推导.
- R_{e1} 较大时方可忽略第二项.

o 微电流源

$$lacksquare I_{
m E1} pprox rac{U_{
m BE0} - U_{
m BE1}}{R_{
m e}}. \ lacksquare I_{
m R} pprox rac{V_{
m CC} - U_{
m BE0}}{R}.$$

$$lacksquare I_{
m C1} pprox rac{U_{
m T}}{R_{
m e}} {
m ln} \, rac{I_{
m R}}{I_{
m C1}}.$$

• 改进型电流源电路

。 加射极输出器的镜像电流源:
$$I_{\mathrm{C1}}=\dfrac{I_{\mathrm{R}}}{1+\dfrac{2}{(1+eta)eta}}$$
. (实际电力路中可加电阻 R_{e2})

。 威尔逊电流源:
$$I_{\mathrm{C2}} = \left(1 - \frac{2}{\beta^2 + 2\beta + 2}\right) I_{\mathrm{R}}.$$

• 多路电流源电路

。 基于比例电流源:
$$I_{\rm E0}R_{\rm e0}pprox I_{\rm E1}R_{\rm e1}pprox I_{\rm E2}R_{\rm e2}pprox \cdots$$

$$\circ$$
 基于多电极管: $rac{I_{
m C0}}{S_0} = rac{I_{
m C1}}{S_1} = rac{I_{
m C2}}{S_2} = \cdots$ \circ 基于 MOS 管: $rac{I_{
m D0}}{S_0} = rac{I_{
m D1}}{S_1} = rac{I_{
m D2}}{S_2} = \cdots$

• 以电流源为有源负载的放大电路

为了提高电压放大倍数, 可以增大集电极电阻 $R_{\rm c}$ (或漏极电阻 $R_{\rm d}$), 但同时也需要提高电源电压. 于是可以使用电流源电路取代 $R_{\rm c}$ (或 $R_{\rm d}$), 在电压不变的情况下获得合适的静态电流, 且有很大的等效输出电阻.

注意: 有源负载电路中要考虑 $h_{22}=rac{1}{r_{co}}$.

。 有源负载共射放大电路

$$lacksquare I_{
m CQ1} = I_{
m C2} - I_{
m L} = rac{eta}{eta+2} I_{
m R} - rac{U_{
m CEQ}}{R_{
m L}}.$$

$$\dot{A}_u = -eta_1 rac{r_{
m ce1} \; / / \; r_{
m ce2} \; / / \; R_{
m L}}{R_{
m b} + r_{
m be1}}.$$

。 有源负载差分放大电路

3.3.4 直接耦合互补输出级

• 基本电路

- 。 最大幅值: $\pm (V_{\rm CC} |U_{\rm CES}|)$.
- \circ 交越失真: 由 $U_{
 m on}>0$ 引起

• 消除交越失真

- 。 使用二极管电路: $U_{\rm B1B2} = U_{\rm D1} + U_{\rm D2}$.
- 。 使用 $U_{
 m BE}$ 倍增电路: $U_{
 m B1B2}pprox \left(1+rac{R_3}{R_4}
 ight)\!U_{
 m BE}$. (还可以温度补偿)

• 准互补电路

即输出管为同一类型管的电路, 常作为*功率放大电路* (OCL 电路), 是<u>电压跟随电路</u>.

在消除交越失真的基础上, 可以使用复合管:

- T₁: NPN, T₂: NPN.
- o T₃: PNP, T₄: NPN.

实际应用时, R_1 常用电流源取代 (即内阻为无穷大)

• CMOS 互补输出级

3.4 集成运放电路

读图方法

- 1. 找出基准电流, 分析偏置电路.
- 2. 简化电路, 将多路电流用电流源取代.
- 3. 读放大电路, 通常为三级.
- 4. 定量分析电路的性能特点.

集成运放电路实例

- 双极型集成运放电路: F007 (通用型集成运放).
- 单极型集成运放: C14573.
- 双极型与单极型混合结构集成运放
 - Bi-MOS (晶体管 MOS 管混合)
 - Bi-CMOS (晶体管 CMOS 管混合)
 - Bi-FET (晶体管 结型场效应管混合): LF153.

注意

• 通用型集成运放含有 PN 结, 存在很多结电容和分布电容, 因此高频特性很差, 仅适合放大低频信号.

3.5 性能指标与低频等效电路

3.5.1 主要性能指标

指标	符号	物理意义	F007 典型数值
开环差模增益	$A_{ m od}$	$20\lg\left rac{u_{ m O}}{u_{ m P}-u_{ m N}} ight $	> 94 dB
共模抑制比	$K_{ m CMR}$	$20\lg\left rac{A_{ m d}}{A_{ m c}} ight $	> 80 dB
差模输入电阻	$r_{ m id}$	对差模电压信号源 的输入电阻	> 2 MΩ
输入失调电压	$U_{ m IO}$	使输出电压为零 的输入补偿电压	< 2 mV
$U_{ m IO}$ 温漂	$\frac{\mathrm{d}U_{\mathrm{IO}}}{\mathrm{d}T}$	$U_{ m IO}$ 的温度系数	< 20 μV / °C
输入失调电流	$I_{ m IO}$	$ I_{ m B1}-I_{ m B2} $	
$I_{ m IO}$ 温漂	$\frac{\mathrm{d}I_{\mathrm{IO}}}{\mathrm{d}T}$	$I_{ m IO}$ 的温度系数	
输入偏置电流	$I_{ m IB}$	$rac{I_{ m B1}+I_{ m B2}}{2}$	
最大共模输入电压	$U_{ m Icmax}$	能正常放大的 最大共模信号	±13 V
最大差模输入电压	$U_{ m Idmax}$	输入级不损坏 最大差模信号	±30 V

指标	符号	物理意义	F007 典型数值
-3 dB 带宽频率	$f_{ m H}$	上限截止频率	7 Hz
单位增益带宽	$f_{ m C}$	使差模增益为 0 dB 的频率	
转换速率	SR	$\left \frac{\mathrm{d}u_{\mathrm{o}}}{\mathrm{d}t} \right _{\mathrm{max}}$	

3.5.2 低频等效电路

图 3.5.1 集成运放低频等效电路

图 3.5.2 简化的集成运放低频等效电路

3.6 种类与选择

3.6.1 集成运放的发展概况

四代产品

- 1. 分立元件放大电路的设计思想, 采用集成数字电路的工艺.
 - 如: µA709, F003, 5G23 等.
- 2. 采用有源负载, 提高开环增益, 属于通用型运放.
 - 如: µA741, LM324, F007, F324, 5G24.
- 3. 输入级采用超 β 管 (高达 1000 5000), 且考虑热效应, 增大共模抑制比和输入电阻. 如: AD508, MC1556, F1556, F030.
- 4. 采用斩波稳零和动态稳零技术, 无需调零.
 - 如 HA2900, SN62088, 5G7650.

3.6.2 集成运放的种类

1 按工作原理分类

- 1. 电压放大型
- 2. 电流放大型
- 3. 跨导放大型 (电压 -> 电流)
- 4. 互阻放大型 (电流 -> 电压)

2 按可控性分类

- 1. 可变增益运放.
- 2. 选通控制运放.

3 按性能指标分类

类型	性能特点	用途
高阻型	高输入电阻, $r_{ m id}>10^9~\Omega$.	作测量放大器
高速型	单位增益带宽和转换速率高	数模和模数转换器, 视频放大器, 锁相环电路
低功耗型	工作电源低,静态功耗低	空间技术, 遥感遥测电路
高精度型	低失调, 低温漂, 低噪声, 高增益, 共模抑制比高	微弱信号的测量与运算, 高精度仪器
高压型	输出高压	需高电压驱动的负载
大功率型	输出大功率, 大电流	功率放大器, 需大电流驱动的负载

3.6.3 集成运放的选择

- 1. 信号源
- 2. 负载
- 3. 精度
- 4. 环境

3.7 集成运放的使用

3.7.1 使用时必做的工作

- 1. 集成运放的外引线 (管脚)
- 2. 参数测量
- 3. 调零和设置偏置电压
- 4. 消除自激振荡: 增加去耦电容, 即使用一个大容量和一个小容量的电容并联在电源正负极.

3.7.2 保护措施

- 1. 输入保护
- 2. 输出保护
- 3. 电源端保护