

MAT041 - Probabilidad y Estadística Formulario Distribuciones Discretas y Continuas

Distribución	Recorrido	$f_X(x)$	E[X]	V[X]	FGM
Ber(p)	{0,1}	$p^x(1-p)^{1-x}$	p	p(1-p)	$1 - p + pe^t$
Bin(n,p)	$\left \{0,1,\ldots,n\} \right $	$\binom{n}{x} p^x (1-p)^{n-x}$	np	np(1-p)	$(1 - p + pe^t)^n$
Geo(p)	$\{1,2,\ldots\}$	$p(1-p)^x$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{pe^t}{1 - (1 - p)e^t}$
BN(r,p)	$\left \{r,r+1,\ldots\} \right $	$\begin{pmatrix} x-1\\r-1 \end{pmatrix} p^r (1-p)^{x-r}$	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$	$\left \left(\frac{pe^t}{1 - e^t + pe^t} \right)^r \right $
$Poisson(\lambda t)$	$\{0,1,\ldots\}$	$\frac{e^{-\lambda t}(\lambda t)^x}{x!}$	λt	λt	$e^{\lambda(e^t-1)}$
$\mathrm{U}(a,b)$	(a,b)	$\frac{1}{b-a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{tb} - e^{ta}}{t(b-a)}$
$\mathrm{Exp}(\lambda)$	\mathbb{R}^+	$\lambda e^{-\lambda x}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\frac{1}{1-t/\lambda}$
$\operatorname{Gamma}(\alpha,\lambda)$	\mathbb{R}^+	$\frac{\lambda(\lambda x)^{\alpha-1}e^{-\lambda x}}{\Gamma(\alpha)}$	$\frac{\alpha}{\lambda}$	$\frac{lpha}{\lambda^2}$	$\left(\frac{\lambda}{\lambda - t}\right)^{\alpha}$
$N(\mu,\sigma^2)$	\mathbb{R}	$\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$	μ	σ^2	$e^{t\mu+\sigma^2t^2/2}$