K nearest neighbor

LING 572 Advanced Statistical Methods for NLP Shane Steinert-Threlkeld January 16, 2020

The term "weight" in ML

Weights of features

Weights of instances

Weights of classifiers

The term "binary" in ML

- Classification problem:
 - Binary: the number of classes is 2
 - Multi-class: the number is classes is > 2

- Features:
 - Binary: the number of possible feature values is 2.
 - Categorical / discrete: > 2 values
 - Real-valued / scalar / continuous: the feature values are real numbers
- File format:
 - Binary: human un-readable
 - Text: human readable

kNN

Instance-based (IB) learning

- No training: store all training instances.
 - "Lazy learning"

- Examples:
 - kNN
 - Locally weighted regression
 - Case-based reasoning
 - ...
- The most well-known IB method: kNN

kNN

kNN

Training: record labeled instances as feature vectors

- Test: for a new instance d,
 - find k training instances that are closest to d.
 - perform majority voting or weighted voting.

- Properties:
 - A "lazy" classifier. No learning in the training stage.
 - Feature selection and distance measure are crucial.

The algorithm

Determine parameter K

Calculate the distance between the test instance and all the training instances

- Sort the distances and determine K nearest neighbors
- Gather the labels of the K nearest neighbors

Use simple majority voting or weighted voting.

Issues

• What's *K*?

How do we weight/scale/select features?

How do we combine instances by voting?

Picking K

- Split the data into
 - Training data
 - Dev/val data
 - Test data

- Pick k with the lowest error rate on the validation set
 - use N-fold cross validation if the training data is small

Normalizing attribute values

- Distance could be dominated by some attributes with large numbers:
 - Example: features: age, income
 - Original data: $x_1=(35, 76K)$, $x_2=(36, 80K)$, $x_3=(70, 79K)$

- Rescale: i.e., normalize to [0,1]
 - Assume: age ∈ [0,100], income ∈ [0, 200K]
 - After normalization: x_1 =(0.35, 0.38), x_2 =(0.36, 0.40), x_3 = (0.70, 0.395).

The Choice of Features

• Imagine there are 100 features, and only 2 of them are relevant to the target label.

- Differences in irrelevant features likely to dominate:
 - kNN is easily misled in high-dimensional space.
 - Feature weighting or feature selection is key (It will be covered next time)

Feature weighting

- Reweighting a dimension j by weight w_j
 - Can increase or decrease weight of feature on that dimension
 - Setting w_i to zero eliminates this dimension altogether.

• Use (cross-)validation to automatically choose weights $w_1, \ldots, w_{|F|}$

Some similarity measures

Euclidean distance:

$$d(d_i, d_j) = \sqrt{\sum_k (a_{i,k} - a_{j,k})^2}$$

• Weighted Euclidean distance:

$$d(d_i, d_j) = \sqrt{\sum_k w_k (a_{i,k} - a_{j,k})^2}$$

$$cos(d_i, d_j) = \frac{\sum_{k} a_{i,k} a_{j,k}}{\sqrt{\sum_{k} a_{i,k}^2} \sqrt{\sum_{k} a_{j,k}^2}}$$

Cosine:

Voting by k-nearest neighbors

Suppose we have found the k-nearest neighbors.

• Let $f_i(x)$ be the class label for the *i*-th neighbor of x.

$$\delta(c, f_i(x)) = \begin{cases} 1 & f_i(x) = c \\ 0 & \text{otherwise} \end{cases}$$
$$g(c) = \sum_{i} \delta(c, f_i(x))$$

that is, g(c) is the number of neighbors with label c.

Voting

- Majority voting: $c * = \arg \max_{c} g(c)$
- Weighted voting: weighting is on each neighbor

$$c * = \arg \max_{c} \sum_{i} w_{i} \delta(c, f_{i}(x))$$

Weighted voting allows us to use more training examples, e.g.:

$$w_i = \frac{1}{d(x, x_i)}$$

→ We can use all the training examples.

kNN Decision Boundary

IR, fig 14.6

1-NN: unions of cells of Voronoi tessellation

kNN Decision Boundary

<u>link</u>

5-NN example

Summary of kNN algorithm

Decide k, feature weights, and similarity measure

- Given a test instance x
 - Calculate the distances between x and all the training data
 - Choose the k nearest neighbors
 - Let the neighbors vote

Pros/Cons of kNN algorithm

- Strengths:
 - Simplicity (conceptual)
 - Efficiency at training: no training
 - Handling multi-class
 - Stability and robustness: averaging k neighbors
 - Predication accuracy: when the training data is large
 - Complex decision boundaries

Weakness:

- Efficiency at testing time: need to calculate all distances
 - Better search algorithms: e.g., use k-d trees
 - Reduce the amount of training data used at the test time: e.g., Rocchio algorithm
- Sensitivity to irrelevant or redundant features
- Distance metrics unclear on non-numerical/binary values