## Question 30.

Let  $U \subseteq \mathbf{R}^n$  be an open set in  $\mathbf{R}^n$ , and let K be a compact subset of U. Prove that there exists an *infinitely differentiable* function  $\varphi : \mathbf{R}^n \to [0,1]$  such that  $\varphi(p) = 1$  for all  $p \in K$ , and  $\varphi(p) = 0$  for all  $p \in \mathbf{R}^n \setminus U$ . This is called a **bump function** supported on U.

(For a function  $f: U \to Y$ , the **nth total derivative**  $f^{(n)}$  is defined as follows: for n = 0, we set  $f^{(0)} = f$ ; for  $n \ge 1$ , if  $f^{(n-1)}$  is totally differentiable, we set  $f^{(n)} = (f^{(n-1)})'$ . We say that f is **infinitely differentiable** if  $f^{(n)}$  exists for all  $n \ge 0$ .)

*Proof.* First, we notice that the bump function in Big List #4 can be generalised to arbitrary intervals by simply performing horizontal translations. Now, we show that bump functions for closed rectangles within open rectangles in  $\mathbb{R}^n$  can be constructed.

Let  $R = \prod_{i=1}^n [a_i, b_i]$  be a closed rectangle that is inside an open rectangle  $S = \prod_{i=1}^n (c_i, d_i)$  in  $\mathbb{R}^n$ . This implies that for all  $i, c_i < a_i \le b_i < d_i$ . Considering this as an interval in  $\mathbb{R}$ , we can find a bump function  $\varphi_i$  such that  $\varphi_i([a_i, b_i]) = \{1\}$  and  $\varphi_i(\mathbb{R} \setminus (c_i, d_i)) = \{0\}$ . Notice that this is a function from  $\mathbb{R}$  to  $\mathbb{R}$ . We define  $\alpha_i : \mathbb{R}^n \to \mathbb{R}$  by  $\alpha_i(x) = \varphi_i(x_i)$ . It will be shown that the bump function supported in S is

$$\beta(x) = \prod_{i=1}^{n} \alpha_i(x)$$

First, note that each  $\alpha_i$  is infinitely differentiable, so  $\beta$  is infinitely differentiable as well. If  $p = (p_1, ..., p_n) \in R$ , then for all  $i \in \{1, ..., n\}$ ,  $p_i \in [a_i, b_i]$ , so  $\alpha_i(p) = 1$ . We have

$$\beta(p) = \prod_{i=1}^{n} \alpha_i(p) = 1$$

Using a similar argument, if  $p \in \mathbb{R}^n \setminus S$ , there is at least one component of p such that  $p_i \notin (c_i, d_i)$ , and so  $\alpha_i(p) = 0$ , which implies that

$$\beta(p) = 0$$

as desired.

Additionally, if there exists bump functions  $\alpha_1$  and  $\alpha_2$  supported on open sets  $U_1$  and  $U_2$  respectively, where the compact sets are  $K_1 \subseteq U_1$  and  $K_2 \subseteq U_2$ , then there exists a bump function  $\varphi$  supported on  $U_1 \cup U_2$  for the compact set  $K_1 \cup K_2$ , which is defined by

$$\varphi(x) = \alpha_1(x) + \alpha_2(x) - \alpha_1(x)\alpha_2(x).$$

Verifying this, we see that if  $x \in K_1 \cup K_2$ , then either  $x \in K_1$  or  $x \in K_2$ . Assuming without loss of generality that  $x \in K_1$ , we have that

$$\varphi(x) = 1 + \alpha_2(x) - \alpha_2(x) = 1$$

As well, if  $x \in \mathbb{R}^n \setminus (U_1 \cup U_2)$ , then  $\varphi(x) = 0$ , showing that  $\varphi$  is indeed a bump function. Next, let  $\mathbb{R}^n$  be equipped with the max-norm. We claim that  $\prod_{i=1}^n (p-r, p+r) \subseteq B(p, r)$ , for  $p \in \mathbb{R}^n$  and r > 0.

Let  $x \in \prod_{i=1}^{n} (p-r, p+r)$ . For all  $i, |p_i - x_i| < r$ , so  $||x - p||_{\max} < r$ . Hence  $x \in B(p, r)$ .

Thus  $\prod_{i=1}^{n} (p-r, p+r) \subseteq B(p, r)$ , and moreover by taking the closure of both sets,  $\prod_{i=1}^{n} [p-r, p+r] \subseteq \overline{B}(p, r)$ .

Now, we can proceed proving the main result.

Let U be an open subset of  $\mathbb{R}^n$ , and let  $K \subseteq U$  be compact. For every  $y_i \in K$ , there exists an open ball centered around  $y_i$  so that  $B(y_i, \delta_i) \subseteq U$ . Furthermore, we have that

$$\prod_{i=1}^{n} \left[ y_i - \frac{\delta_i}{2}, y_i + \frac{\delta_i}{2} \right] \subseteq \prod_{i=1}^{n} (y_i - \delta_i, y_i + \delta_i) \subseteq B(y_i, \delta_i) \subseteq U$$

Let  $R_i = \prod_{i=1}^n \left[ y_i - \frac{\delta_i}{2}, y_i + \frac{\delta_i}{2} \right]$  and  $S_i = \prod_{i=1}^n (y_i - \delta_i, y_i + \delta_i)$ . Notice that  $\{R_i^{\circ}\}$  forms an open cover on K, and by compactness, there is an finite subcover  $\{R_{i_n}^{\circ}\}_{n \leq N}$ . Note that if we take the closure of each set, we get the closed cover  $\{R_{i_n}\}$ .

For each closed rectangle  $R_{i_n}$ , we can find a bump function supported on  $S_i$ . Since we have a finite number of rectangles, we can "merge" all the bump functions to obtain a bump function  $\gamma$  supported on  $\bigcup_{n=1}^{N} S_{i_n}$  for the compact set  $\bigcup_{n=1}^{N} K_{i_n}$ . We claim that this bump function is also a bump function support on U for the compact set K.

If  $x \in K$ , then it is also true that  $x \in \bigcup_{n=1}^N K_{i_n}$ . It follows that  $\gamma(x) = 1$ .

In a similar fashion, if  $x \in \mathbb{R}^n \setminus U$ , then  $x \in \mathbb{R}^n \setminus \bigcup_{n=1}^N S_{i_n}$ , from which it follows that  $\gamma(x) = 0$ .

Therefore we have found a bump function as desired and the proof is complete.

L

## Question 31

- (a) Let  $A \in M_n(\mathbf{R})$  be a symmetric matrix and let  $Q(\vec{x}) = \vec{x}^T A \vec{x}$  be the corresponding quadratic form. Prove that the following two statements are equivalent:
  - (i)  $Q(\vec{x}) > 0$  for all  $\vec{x} \neq \vec{0}$ .
  - (ii) All eigenvalues of A are strictly positive.

In this case, we say that Q is a **positive definite** quadratic form, and that A is a **positive definite** matrix.

- (b) Prove the following "stay away" lemma, which you will need for part (c): if  $Q : \mathbf{R}^n \to \mathbf{R}$  is a positive definite quadratic form, then there exists a constant  $\eta > 0$  such that  $Q(\vec{x}) \geq \eta ||\vec{x}||^2$  for all  $\vec{x} \in \mathbf{R}^n$ .
- (c) Let  $U \subseteq \mathbf{R}^n$  be an open set, let  $f: U \to \mathbf{R}$  be a twice continuously differentiable function, and let  $p_0 \in U$  be a point at which  $\nabla f(p_0) = \vec{0}$ . Prove that if the Hessian matrix  $Hf(p_0)$  is positive definite, then f achieves a **local minimum** at  $p_0$ ; *i.e.*  $p_0$  has an open neighborhood  $U_0$ , contained in U, such that  $f(p) \geq f(p_0)$  for all  $p \in U_0$ .

## Proof. (a):

Suppose that  $Q(\vec{x}) > 0$  for all  $\vec{x} \neq 0$ . Since A is symmetric, it is orthogonally diagonalizable, so there exists an orthogonal matrix  $P \in M_n(\mathbb{R})$  such that  $B = P^{\top}AP$  is diagonal. Letting  $Q_B(\vec{x}) = \vec{x}^{\top}B\vec{x}$ , we have that

$$Q(\vec{x}) = Q_B \circ P(\vec{x})$$

We will show that  $Q_B(\vec{x}) > 0$  for all  $\vec{x} \neq 0$ .

Let  $\vec{x} \in \mathbb{R}^n$  so that  $\vec{x} \neq 0$ . Since  $Q(\vec{x}) > 0$ , it follows that  $Q_B(\vec{x}) > 0$  as well, which implies that its eigenvalues are strictly positive. Since A and B share the same eigenvalues, we are done.

Conversely, suppose that all the eigenvalues of A are strictly positive. By a similar argument as before, the eigenvalues of B are positive, so  $Q_B(\vec{x}) > 0$  for all  $\vec{x} \neq 0$ . The same applies to Q and we are done.

(b):

First, equip  $\mathbb{R}^n$  with the 2-norm.

Let Q be a positive definite quadratic form, so  $Q(\vec{x}) = \vec{x}^{\top} A \vec{x}$ , for some diagonalizable matrix A, where all its eigenvalues  $\lambda_i$  are strictly positive.

Let  $\eta = \min_{1 \leq i \leq n} \{\lambda_i\}$ . Let B be the diagonal matrix such that  $A = P^{\top}BP$  for an orthogonal matrix P. Denote  $P(\vec{x}) = (p_1, ..., p_n)$ . We have

$$Q(\vec{x}) = Q_B \circ P(\vec{x}) = (P(\vec{x}))^{\top} B(P(\vec{x})) = \sum_{i=1}^{n} \lambda_i \cdot p_i^2 \ge \eta \sum_{i=1}^{n} p_i^2 = \eta \|P(\vec{x})\|_2$$

Since P preserves distance, we have that

$$Q(\vec{x}) \ge \eta \|P(\vec{x})\|_2^2 = \eta \|\vec{x}\|_2^2$$

as desired.

(c):

Let  $U \subseteq \mathbb{R}^n$  be an open set, let  $f: U \to \mathbb{R}$  be a  $C^2$  function. Suppose that  $Hf(p_0)$  is positive definite.

П