Analysing and Predicting Starbucks Customers' Reponses towards 10 kinds of Promotion Offers

```
Introduction
Data Set
Data Cleaning and Preprocessing
Exploration analysis
  Q1 Offers Distribution
  Q2 Interest Distribution towards different offers
  Q3 Difficulty Distribution of different offers
  Q4 Index IIR: is the offer significant popular?
  Summary for Data Exploration
Feature Extraction
Model
  Issue1: Offer is going to be sent to a customer, will this offer effective?
    Issue1 Summary:
  Issue2: Offer is already sent to a customer, is this offer effective?
    Issue2 Summary:
  Issue3: Given basic infos of a customer, how to recommend an offer with the most effctivity?
    Issue3 Summary:
  Additional Issue: Neural Network for regeression
    Additional Issue summary:
Results: deployment of Issue2
Conclusion
References
```

Introduction

With the advent of the era of big data, companies are more and more inclined to analyze customer consumption behaviors, in order to formulate specific marketing strategies to promote consumers to complete the transactions.

Customer groups of different ages and different incomes obviously have different consumption habits. Taking age as an example, young people are more susceptible to online and social media advertisements. And more, because of their relatively less savings, they will be more concerned about the price and the promotion.

In this context, Starbucks has developed an experimental system that simulates user consumption data, and analyzes the data to find the patterns of customer consumption, so as to conduct more targeted promotions and optimize revenue.

Once every few days, Starbucks sends out an offer to users of the mobile app. An offer can be merely an advertisement for a drink or an actual offer such as a discount or BOGO (buy one get one free).

Some users might not receive any offer during certain weeks.

Not all users receive the same offer.

This data set contains simulated data that mimics customer behavior on the Starbucks rewards mobile app, it's a simplified version of the real Starbucks app because the underlying simulator only has one product whereas Starbucks actually sells dozens of products.

The task is to combine transaction, demographic and offer data to determine which demographic groups respond best to which offer type.

More precisely, I aim to answer two questions:

- 1. What are the main factors that driver customers or groups to complete an offer?
- 2. Given offer characteristics and user demographics, can we predict whether the customer will complete the offer effectively? What's more, how much money will the customer pay for?

Data Set

portfolio.json
 containing offer ids and meta data about each offer (duration, type, etc.)

Columns	Data Type	Explanation	Total Count	NaN Count
id	str	id of offer	10	_

Columns	Data Type	Explanation	Total Count	NaN Count
offer_type	str	type of offer values: 'bogo','discount','informationa l'	10	_
difficulty	int	the minimum consumption to complete the offer	10	_
reward	int	reward after completing the offer	10	_
duration	int	the valid duration of the offer	10	_
channels	str list	the channel to send the offer	10	_

profile.json demographic data for each customer

Columns	Data Type	Explanation	Total Count	NaN Count
age	int	the age of customer	14825	2175
became_memb er_on	int	the enroll date of customer e.g. 20170101	17000	_
gender	str	the gender of customer values: 'male', 'female', 'other'	17000	_
id	str	the id of customer	17000	_
income	float	the income of customer	14825	2175

• transcript.json

records for transactions, offers received, offers viewed, and offers completed. It shows user purchases made on the app including the timestamp of purchase and the amount of money spent on a purchase.

Columns	Data Type	Explanation	Total Count	NaN Count
person	str	the id of customer	306534	_

Columns	Data Type	Explanation	Total Count	NaN Count
event	str	the description of transcript values:'offer received','offer viewed','transaction','offer completed'	306534	
time	int	the happend time of event(hour)	306534	_
value	str dict	some includes id of offer, some includes amount of transaction	306534	_

Data Cleaning and Preprocessing

At the begining, I try to know the basic informations about **NaN values**, they all bounded with the unusual age value "118". After all these NaN records have been deleted, Here comes the distributions of gender, age and income.

Immediately after, I wrangled the data `transcript` by extracting the value column to offer id and amount columns. What's more, I merged the 'duration' and 'offer_type' infos bounded with the offer id for further data preprocessing. Below is description of the wrangled 'transcript':

Column	Туре	Explanation	Total Count	NaN Count
person	int	Id of customer	272762	_

event	str object	State of the record: 'offer received', 'offer viewed', 'transaction', 'offer completed'	272762	_
time	float	Happend time of this record	272762	_
amount	float	How much money paid under this record Notice: exist only when 'event' value is transaction	272762	_
offer_id	str object	The offer_id bound with this record Notice: '-1' means there is no offer	272762	123957 of '-1' value
duration	float	The valid duration of the offer	272762	123957
offer_type	str object	The offer type	272762	123957

By using the data set above, based on a self designed program flow chart(File: data_preprocessing_class.py), I extract the transactions infomation direct to the related person and offer.

Meantime, I wrangle the data type of some features (e.g. the 'value' column in portfolio is a list, should be unfolded), and transform some features to normal form(e.g. transform the member enroll date from 'int' to 'date').

Then I divide all the customers into 12 segments according to 'age' and 'income', which tends to show a group characteristics.

What's more important, considering all kinds of response situations to offer, I divide all transactions to 4 groups:

1. none_offer	never received offer
2. no_care_offer	received, but don't care about the offer
3. tried_offer	tried to do some transaction, but not complete within the duration of offer
4. effective_offer	complete the offer

Finally, I get an ideal wrangled data set with label of segments and response groups described as follows(File: model_dataset_raw):

Column	Туре	Explanation	Total Count	NaN Count
person	int	id of customer	66506	_
offer_id	str object	values: '-1', '0'-'9' represent 10 offers, '-1'means no offer received	66506	_
time_recei	float	time when offer received 'NaN' represents not received	66506	5
time_viewe	float	time when offer viewed 'NaN' represents not viewed	66506	16646
time_trans action	str object	time then transaction(s) takes place '' represents there is no transaction ',3.0,5.0' means there are two transactions under this offer, one is at time 3.0, another in at time 5.0	66506	8754
time_comp	float	time when offer completed 'NaN' represents not completed	66506	26099
amount_wi	float	How much money has been paid under this	66506	_

th_offer		offer '0.0' represent no transaction		
label_effec tive_offer	int	the label to mark the completing level of offer More details See Notice below	66506	_
reward	float	Reward after completing the offer	66501	5
difficulty	float	The minimum consumption to complete the offer	66501	5
duration	float	The valid duration of the offer 'NaN' implies the offer_id is '-1'	66501	5
offer_type	str object	'bogo', 'discount','informational'	66501	5
email	float	One Channel to send offer	66501	5
mobile	float	One Channel to send offer	66501	5
social	float	One Channel to send offer	66501	5
web	float	One Channel to send offer	66501	5
gender	str object	'male','female','other'	66506	_
age	int	Age of the customer	66506	_
income	float	Yearly income of the customer	66506	_
member_d ays	int	The days from enroll date to 2019.01.01	66506	_
label_grou	str object	4 groups of resonse to offers Values see Notice2. below	66506	_
label_seg	int	1–12: 12 segments based on age and income	66506	_

Notice 1.: label_effective_offer (Label describes the completed level of offer) (Attention: there is no infomation about 'offer viewed')

Values	Meaning
1	for informational offer there is at least one transaction within duration; for other offer there should be 'offer completed'
0	for informational offer there is no valid transaction within the duration but 'offer received';

	for other offers there is no 'offer completed', but within duration there maybe some amount, although the amount of transactions not fulfil requirements
-1	the initial label, when there is no 'offer received', the label keeps '-1'
-2	represent some people: they only have transactions within all the experimantal time, no offer was sent to them

Notice 2.: label_group (4 groups of resonse to offers)

Group	receiv ed	viewe d	valid completed	trans actio n amou nt	Scenario	Logical expression
1.none_o ffer	0	0	0		haven't received the offer	label_effective_off er.isin([-1, -2]) & time_viewed == NaN
2.no_car e	1	0	_		received but not viewed. regarded as "don't care"	label_effective_off er.isin([0, 1]) & time_viewed == NaN
	1	1	0	=0.0	received, viewed but no transaction	<pre>label_effective_off er == 0 & amount == 0.0 & time_viewed.notnul I()</pre>
	1	1	1 viewed after completed		received, but completed unintentionally, namely viewing after completed	<pre>label_effective_off er == 1 & time_viewed > time_completed</pre>
3.tried	1	1	0	>0.0	received, viewed, have transaction,	label_effective_off er == 0

				but amount less than 'difficulty'	& amount > 0.0 & time_viewed.notnul I()
4.effctiv e_offer	1	1	1 viewed before completed	viewed before completed, effctive offer	<pre>label_effective_off er == 1 & time_viewed < time_completed</pre>

Notice 3.: label_seg (12 segments based on age and income)

Segment #	Age Group (edge included) (Experiment in 2018)	Income
1	Millenials(-21 & 22-37)	low
2	Millenials(-21 & 22-37)	medium
3	Millenials(-21 & 22-37)	high
4	Gen X(38-53)	low
5	Gen X(38-53)	medium
6	Gen X(38-53)	high
7	Baby Boomer(54–72)	low
8	Baby Boomer(54–72)	medium
9	Baby Boomer(54–72)	high
10	Silent(73-90 & 91+)	low
11	Silent(73-90 & 91+)	medium
12	Silent(73-90 & 91+)	high

Income Level:

Income	Values(\$)
low	30,000-50,000
medium	50,001-82,500
high	82,501–120,000

Notice 4.: offer_id (10 Kinds of offer)

offer_id	type	duration	requirement	reward
0	bogo	7	10	10
1	bogo	5	10	10
2	infomational	4	_	_
3	bogo	7	5	5
4	discount	10	20	5
5	discount	7	7	3
6	discount	10	10	2
7	informational	3	_	-
8	bogo	5	5	5
9	discount	7	10	2

Exploration analysis

Below is the structure of the analysis data:

Seg #1 (segment_dfs[0])	Seg #12 (segment_dfs[11])	group_segment_list	
Group 1: none_offer	Group 1: none_offer	no care segment list	combined:
Group 2: no_care	 Group 2: no_care	2	no_care group
Group 3: tried	Group 3: tried	tried segment list	
Group 4: effective_offer	Group 4: effective_offer		combined:
		effective_offer_segment_list	cared group

The data set has been divided into 12 Segments based on age and income, and each segment has 4 response groups.

With different combination of the 4 response groups, there are 3 questions to be explored.

	Combined group set 1	Combined group set 2		
1 Offers Distribution	received none offer <u>Group(s): none offer</u>	received offer <u>Group(s): no care, tried,</u> <u>effective offer</u>		
2 Interest Distribution towards different offers	don't care <u>Group(s): no care</u>	care <u>Group(s): tried,</u> <u>effective offer</u>		
3 Difficulty Distribution of different offers	tried but not completed <u>Group(s): tried</u>	effectively completed <u>Group(s): effective offer</u>		

What's more, I will use the index IIR to discuss, whether the offer is significantly popular by customer.

Q1 Offers Distribution

the whole group of offer not received is_none_offer = (summary_dataset.offer_id == '-1') summary_dataset[is_none_offer] email mobile social web gender age income member_days Offer_Distributions label_seg NaN NaN NaN NaN F 66 34000.0 459 none_offer NaN NaN NaN NaN F 72 35000.0 444 none_offer NaN 54 72000.0 725 none_offer NaN NaN NaN 8 NaN 55 88000.0 868 NaN NaN NaN none offer 91 70000.0 1184 11 NaN NaN none_offer

In general

- 1. There are just 5 person, who never received the offer (offer_id is '-1')
 - a. Two in segment #7; One in each segment #8 #9 #11.
 - b. They all are more than 50 years old and has more than one year membership. It seems they are regular customer and needn't receive the offer.
- 2. The offer distributions under income: see segment #3 VS. segment #12
 - a. Young people have not so much money.
 - b. Elder people tend to have more savings.
- 3. The offer distributions under age: see segment #1 VS. segment #10
 - a. In the low income group, compared with young person, the elder person seems to receive less offers

• In segments(subplots)

1. In each segment, person reveive almost the same quantity of offers. See the average line.

Q2 Interest Distribution towards different offers


```
# offer 0, 1, 5, 6, 8
portfolio_raw[portfolio_raw.offer_id.isin(['0','1','5','6','8'])]
```

	reward	difficulty	duration	offer_type	offer_id	email	mobile	social	web
0	10	10	7	bogo	0	1	1	1	0
1	10	10	5	bogo	1	1	1	1	1
5	3	7	7	discount	5	1	1	1	1
6	2	10	10	discount	6	1	1	1	1
8	5	5	5	bogo	8	1	1	1	1

```
# offer 2, 3, 4
portfolio_raw[portfolio_raw.offer_id.isin(['2','3','4'])]
```

	reward	difficulty	duration	offer_type	offer_id	email	mobile	social	web
2	0	0	4	informational	2	1	1	0	1
3	5	5	7	bogo	3	1	1	0	1
4	5	20	10	discount	4	1	0	0	1

```
# offer 7, 9
portfolio_raw[portfolio_raw.offer_id.isin(['7','9'])]
```

	reward	difficulty	duration	offer_type	offer_id	email	mobile	social	web
7	0	0	3	informational	7	1	1	1	0
9	2	10	7	discount	9	1	1	0	1

• In general

- 1. The customers care more about offer 0, 1, 5, 6, 8
- 2. Offer 2, 3, 4 are not in interest
- 3. For offer 7, 9, some cares, some doesn't care

From the three tables above, we can conclude that:

- 1. 'social' is an import factor to attract people to complete the offer
- 2. 'bogo' with medium difficulty are more popular
- 3. 'discount' with less difficulty are more popular

• In segments(subplots)

- 1. Offer 0, 1
 - a. The high income groups show less interst compared with other income group. <u>(see Segments #3 #6 #9 #12)</u>
- 2. Offer 5, 6, 8
 - a. Customer shows great interst(in all Segments)

Q3 Difficulty Distribution of different offers

offer 5, 6, 8
portfolio_raw[portfolio_raw.offer_id.isin(['5','6','8'])]

	reward	difficulty	duration	offer_type	offer_id	email	mobile	social	web
5	3	7	7	discount	5	1	1	1	1
6	2	10	10	discount	6	1	1	1	1
8	5	5	5	bogo	8	1	1	1	1

offer 0, 1
portfolio_raw[portfolio_raw.offer_id.isin(['0','1'])]

	reward	difficulty	duration	offer_type	offer_id	email	mobile	social	web	
0	10	10	7	bogo	0	1	1	1	0	
1	10	10	5	bogo	1	1	1	1	1	

- Summary: Level of completion for each offer
- 1. Offer 5, 6, 8 are better completed
 - a. most are 'discount', and there is 'social' factor
 - b. 'difficulty' of 'bogo' is not so much
- 2. Offer 0, 1 are harder to complete
 - a. 'difficulty' of 'bogo' is a little bit heavy
- 3. Offer 7: an informational offer
 - a. richer customers don't care (see segment #6 #9 #12, compared to the average line)
 - b. more attracted to less rich people (see average line)
- 4. Offer 2, 3, 4 are more attracted in medium elder and rich people (see segment #5 #8)
- 5. The person with high income tends to complete all offers (see segment #6 #9 #12)
 - a. even for the offer 0, 1

Q4 Index IIR: is the offer significant popular?

Definition of IIR: Incremental Response Rate

$$IIR = rac{n_1}{sum_1} - rac{n_0}{sum_0}$$

Symbol	Meaning
n_1	number of Purchasers in Treated Group
sum ₁	Total number of Purchasers in Treated Group
n_0	number of Purchasers in Control Group
sum ₀	Total number of Purchasers in Control Group

IIR of 10 Offers in 12 Segments

offer 0, 1, 2, 3, 4
portfolio_raw[portfolio_raw.offer_id.isin(['0','1','2','3','4'])]

	reward	difficulty	duration	offer_type	offer_id	email	mobile	social	web
0	10	10	7	bogo	0	1	1	1	0
1	10	10	5	bogo	1	1	1	1	1
2	0	0	4	informational	2	1	1	0	1
3	5	5	7	bogo	3	1	1	0	1
4	5	20	10	discount	4	1	0	0	1

• In general: which offer seems popular?

- 1. Offer 2, 3, 4 have positive IIR
 - a. for offer 4, the difficulty is 20, maybe few people want to complete it, so it shows high IIR
 - b. for offer 3, difficulty is not big, but reward is ok, so it's popular
- 2. Offer 0,1 have a huge negtive IIR
 - a. specially for the low income person(see segments #1 #4 #7 #10)
- In segments(subplots)
- 1. The rich people seem not so excited about offer received(see Segments #6 #9 #12)
 - a. Maybe they are too rich to be encouraged from the reward of offer

Summary for Data Exploration

- 1. The channel to send an offer
 - o Through 'social' is a better way.
- 2. The type of offer
 - People like 'discount', because the reward is real money compared to 'bogo'(get another same thing) and 'informational'(just information)
- 3. The content of offer
 - o If the 'difficulty' is too much, e.g. 20, people have less desire to complete the offer
 - ∘ 5-10 maybe a good range of 'difficulty'
- 4. For all offers, considering of Interest(care) and Difficulty(Level of completion)
 - Offer 5, 6, 8 are more attracted and more easy to complete: could be sent to all customers
 - o Offer 0, 1 are hard to complete, but could be sent to high income customers
 - Offer 2, 3, 4 are more attracted to the medium elder, income people(Segment #5 #8)
 - Offer 7 for less income people(maybe the information is attracted by them)

Feature Extraction

Based on the model_dataset_raw above, after some objects columns(offer_id, offer_type, gender etc.) transformed to 0-1 variables, all the potential features have been extracted.

Features	Туре	Explanation	Total Count	NaN Count
person	int		66501	_
time_received	float		66501	_
time_viewed	float		66501	_

transaction_cnt	int	count of transactions under this offer of the customer	66501	_
time_completed	float		66501	_
amount_with_of fer	float	How much money has been paid under this offer '0.0' represent no transaction	66501	
amount_total	float	Total amount of paid money for each customer	66501	
offer_received_	float	Count of all received offers	66501	_
reward	float	Reward after completing the offer	66501	_
difficulty	float	The minimum consumption to complete the offer	66501	
duration	float	The valid duration of the offer	66501	
email	float	One Channel to send offer	66501	_
mobile	float	One Channel to send offer	66501	_
social	float	One Channel to send offer	66501	_
web	float	One Channel to send offer	66501	_

age	int	Age of the customer	66501	_
income	float	Yearly income of the customer	66501	_
member_days	int	The days from enroll date to 2019.01.01	66501	_
label_seg	int	1–12: 12 segments based on age and income	66501	_
gender_F gender_M gender_O	int 0-1 variables of genedr		66501	_
group_effective _offer group_no_care group_tried	int	0-1 variables of group(the group of none_offer has been removed)		_
offer_0 offer_1 offer_9	int	0-1 variables of 10 kinds offers	66501	_

Model

I wonder whether Machine Learning will find some intersting points of the data. Especially in the following situations:

- 1. Offer is going to be sent to a customer, will this offer effective?
- 2. Offer is already sent to a customer, is this offer effective?
- 3. Given basic infos of a customer, how to recommend an offer with the most effctivity?

To answer these questions, I build a model pipeline:

- Select features and target(for different issue concerned use different features and target)
- Select classifiers and compare the perform of all classifiers
- Select the suitable parameters of the best performed classifier by using grid search method

Analyse the result

Notice: One Neural Network is also built for regeression analysing.

Issue1: Offer is going to be sent to a customer, will this offer effective?

	Object	Description
Data Set	Subset data of 3 offer response groups	no_caretriedeffective_offer
Target	label_group	0: customer doesn't care the offer1: Within the duration of offer, customer tried or completed the transactions
Features	age	basic info about customer
	income	basic info about customer
	member_days	basic info about customer
	gender_	basic info about customer (3 kinds of 0–1 variables)
	offer_	offer id (10 kinds of 0–1 variables)
	amount_total	amount paid of all transactions
	offer_received_cnt	number of all received offers
	time_received	receive time for this offer

Model training result:

	model	train_time	test_time	train_score	test_score
0	KNeighborsClassifier	2.942335	13.412032	0.817613	0.662431
1	SVC	1685.705038	22.675041	0.699474	0.696414
2	NuSVC	22959.358365	43.541081	0.780620	0.703406
3	DecisionTreeClassifier	2.100798	0.068962	1.000000	0.649124
4	RandomForestClassifier	27.510256	0.927469	0.999981	0.721750
5	AdaBoostClassifier	6.932032	0.262848	0.715226	0.716788
6	GradientBoostingClassifier	25.969138	0.057967	0.730808	0.727163

Issue1 Summary:

- 1. The first model KNeighborsClassifier could be a reference model
- 2. SVC and NuSVC take more time, I attempt to continue without them.
- 3. DecisionTreeClassifier and RandomForestClassifier both have a high score in training, is there something speciall?
 - Notice that: the test time is much more less than train time. The possible reason is that
 the data set has a simple structure so that all predict with same result(<u>see the</u>
 <u>deployment of Issue2</u>: no matter how I change the input data, it all shows the same
 result.)
- 4. For all, the accuracy of predicting is around 70%, it seems models are not so appropriate in this situation.

Issue2: Offer is already sent to a customer, is this offer effective?

	Object	Description
Data Set	Subset data of 3 offer response groups	no_caretriedeffective_offer
Target	label_group	0: customer doesn't care the offer1: Within the duration of offer, customer tried or completed the transactions
Features	age	basic info about customer
	income	basic info about customer

member_days	basic info about customer
gender_	basic info about customer (3 kinds of 0–1 variables)
offer_	offer id (10 kinds of 0–1 variables)
amount_total	amount paid of all transactions
offer_received_cnt	number of all received offers
time_received	receive time for this offer
amount_with_offer	amount paid for this offer
time_viewed	view time for this offer. If not, the value is 0.0

Model training result:

	model	train_time	test_time	train_score	test_score
0	KNeighborsClassifier	1.301255	32.317506	0.884398	0.784903
1	DecisionTreeClassifier	0.609653	0.015999	1.000000	0.878280
2	RandomForestClassifier	10.026261	0.350799	1.000000	0.912413
3	AdaBoostClassifier	3.316102	0.184913	0.897030	0.896173
4	GradientBoostingClassifier	11.604355	0.033999	0.911692	0.908804

Issue2 Summary:

- 1. As a reference model, KNeighborsClassifier performs not bad.
- 2. DecisionTreeClassifier and RandomForestClassifier both have a full score in training, is there something speciall?
 - Notice that: the test time is much more less than train time. The possible reason is that
 the data set has a simple structure so that all predict with same result(<u>see the</u>
 <u>deployment of Issue2</u>: no matter how I change the input data, it all shows the same
 result.)

P.S.: I've used the GradientBoostingClassifier as the target model to deploy my project.

Issue3: Given basic infos of a customer, how to recommend an offer with the most effctivity?

	Object	Description
Data Set	Subset data of 2 offer response groups(at least transaction exists)	triedeffective_offer
Target	offer_(10 classes)	0: uneffective in this offer_id 1: effective in this offer_id
Features	age	basic info about customer
	income	basic info about customer
	member_days	basic info about customer
	gender_	basic info about customer (3 kinds of 0-1 variables)
	amount_total	amount paid of all transactions
	offer_received_cnt	number of all received offers
	time_received	receive time for this offer
	amount_with_offer	amount paid for this offer
	time_viewed	view time for this offer. If not, the value is 0.0

Model training result:

	model	train_time	test_time	train_score	test_score
0	KNeighborsClassifier	0.535691	5.152049	0.236869	0.048868
1	DecisionTreeClassifier	2.167758	0.016993	1.000000	0.148897
2	Random Forest Classifier	31.097193	1.230297	0.999534	0.008169
3	MultiOutputClassifier	54.604750	0.126927	0.019061	0.010318

Issue3 Summary:

1. For all, the predicting performs are totally bad.

- But still, DecisionTreeClassifier and RandomForestClassifier have high score in training, what's going on?
 - Notice that: the test time if much more less than train time. The possible reason is that the data set has a simple structure so that all predict with same result(<u>see the</u> <u>deployment of Issue2</u>: no matter how I change the input data, it all shows the same result.)
- 2. Pay attention to that the GradientBoostingClassifier() is not suitable for multi-class problem.

So I used MultiOutputClassifier(GradientBoostingClassifier())

Additional Issue: Neural Network for regeression

	Object	Description
Data Set	all model_dataset	
Target	amount_total (float)	The total amount of money paid by a costomer
Features	age	basic info about customer
	income	basic info about customer
	member_days	basic info about customer
	gender_	basic info about customer (3 kinds of 0–1 variables)
	reward	bounded with offer
	difficulty	bounded with offer
	duration	bounded with offer
	email	bounded with offer
	mobile	bounded with offer
	social	bounded with offer
	web	bounded with offer
	transaction_cnt	count of all transactions for a customer
	offer_received_cnt	count of received offers for a customer
	group_effctive_offer	Label of

	group(effctive_offer)
group_no_care	Label of group(no_care)
group_tried	Label of group(tried)

Model training result:

```
epoch:1/20.. Training Loss: 20550.215.. Test Loss: 16089.338.. Time Cost: 85.232s..
epoch:2/20.. Training Loss: 18629.431.. Test Loss: 15645.789.. Time Cost: 108.798s..
epoch:3/20.. Training Loss: 18059.719.. Test Loss: 15397.492.. Time Cost: 88.476s..
epoch: 4/20.. Training Loss: 18591.784.. Test Loss: 17092.785.. Time Cost: 84.721s..
epoch:5/20.. Training Loss: 17867.469.. Test Loss: 16893.158.. Time Cost: 106.455s..
epoch:6/20.. Training Loss: 17776.402.. Test Loss: 16882.059.. Time Cost: 88.753s..
epoch:7/20.. Training Loss: 17767.603.. Test Loss: 16883.391.. Time Cost: 87.397s..
epoch:8/20.. Training Loss: 17766.653.. Test Loss: 16884.016.. Time Cost: 97.170s..
epoch: 9/20.. Training Loss: 17766.521.. Test Loss: 16884.375.. Time Cost: 93.455s..
epoch:10/20.. Training Loss: 17766.495.. Test Loss: 16884.461.. Time Cost: 150.855
epoch:11/20.. Training Loss: 17766.488.. Test Loss: 16884.436.. Time Cost: 90.398s..
epoch:12/20.. Training Loss: 17766.486.. Test Loss: 16884.402.. Time Cost: 75.996s..
epoch:13/20.. Training Loss: 17766.486.. Test Loss: 16884.424.. Time Cost: 70.614s..
epoch:14/20.. Training Loss: 17766.486.. Test Loss: 16884.420.. Time Cost: 71.088s..
epoch:15/20.. Training Loss: 17766.486.. Test Loss: 16884.416.. Time Cost: 70.461s..
epoch:16/20.. Training Loss: 17766.486.. Test Loss: 16884.414.. Time Cost: 84.942s..
epoch:17/20.. Training Loss: 17766.486.. Test Loss: 16884.414.. Time Cost: 93.021s..
epoch:18/20.. Training Loss: 17766.486.. Test Loss: 16884.414.. Time Cost: 82.828s..
epoch:19/20.. Training Loss: 17766.486.. Test Loss: 16884.414.. Time Cost: 100.545
epoch: 20/20.. Training Loss: 17766. 486.. Test Loss: 16884. 414.. Time Cost: 94. 549s..
```

Additional Issue summary:

This experiment for regression analysing seems useless because of the stagnant and huge training loss.

Results: deployment of Issue2

Offer is already sent to a customer, is this offer effective?

Classifier: GradientBoostingClassifier

Features importances order:

Deployment – input the data:

Deployment - result:

Customer

Age: 35

Income: 50000.0

Enroll date: 2018-08-09

Gender: male

Offer id: offer9

amount with offer: 11.0

amount total: 40.0

offer received cnt: 5

>time_received: 1.5

time_viewed: 2.6

Result

It's a pity

The customer is only 19.9% likely to purchase something related with this offer

Conclusion

- 1. Two analysis methods: heuristic exploration & model building
 - a. The model method fits not good at the reality: for example the deployment of Issue2, when I change the input data, the result seems always the same.
 - b. But the heuristic exploration makes more sense.
 - c. In this case we could try unsupervised Machine Learning method like Cluster. See References[6]
- 2. About Data Set
 - a. Maybe when the amount of data is big enough, we could get some resonable founds by using the supervised Machine Learning method.
 - b. Besides, there is no features of customer id, the customer exists in the form of the segment group, maybe when the transactions of an unique customer more frequently occurs, there would be some patterns of the consuming behavior.
- 3. About the Segment

a. Here I use the information of age and income. We can also use other method to segment the customers, e.g. age and gender.

For more details of this project, you could refer to my Github Repository I would like to thank Udacity & Starbucks for all the supports, especially for teaching assistant.

References

- [1]Create dummies from a column with multiple values in pandas
- [2]Starbucks Capstone Challenge: Using Starbucks app user data to predict effective offers
- [3]Starbucks Promotion Optimization
- [4]generations-and-age
- [5]single taxable income
- [6]Investigating Starbucks Customers Segmentation using Unsupervised Machine Learning