HALTING PROBLEM AND INCOMPLETENESS THEOREM

YORIYUKI YAMAGATA

1. Introduction and the statement of the result

Theorem 1. The following statements are equivalent, that is, we can prove each clause from the other clauses.

- (1) No sound, recursively axiomatizable arithmetic which contains Robinson Arithmetic Q can prove its own consistency. (Gödel's second incompleteness theorem)
- (2) Halting problem of Turing machine is undecidable.
- (3) There is no sound, recursively axiomatizable and complete arithmetic which contains Robinson Arithmetic Q. (Gödel's first incompleteness theorem)

Proof. We prove $1 \Rightarrow 2, 2 \Rightarrow 3, 3 \Rightarrow 1$. $(3 \Rightarrow 1)$

Let T be a sound, recursively axiomatizable arithmetic which contains Robinson Arithmetic Q. By 3, T cannot prove its own consistency Con_T . On the other hand $T \not\vdash \neg Con_T$ since T is sound and $\neg Con_T$ is false in the standard model. Therefore T is not complete.

The case $1 \Rightarrow 2$ and $2 \Rightarrow 3$ are proved in Section 2 and 3 respectively.

2. Incompleteness theorem to undecidability of halting problem

In this section, prove $1 \Rightarrow 2$, that is, second incompleteness theorem implies undecidability of halting problem.

We prove the contraposition. Assume that there is a decision procedure A of halting problem. Let T be a enough strong, sound and recursively axiomatizable theory of arithmetic. For example, we can take $T \equiv PA$. Halting problem can be formalized by the arithmetical formula H(x). Then we can formalize the statement that A solves halting problem by the formula

(1)
$$\phi_A := \forall x. \{ Comp(\lceil A \rceil, x) = \text{true} \Leftrightarrow H(x) \}.$$

Let $T' := T + \phi_A$. By assumption of A, ϕ_A is true. Hence T' is sound. In particular T' is consistent.

Now, consider the program e which enumerates the theorems of T' and halt if it finds 0=1. Halting problem of e and consistency of T' are equivalent, and its proof requires only a weak fragment of arithmetic. Since T' is consistent, e never terminates. Since A solves halting problem, A(e) = false. We assume that T contains Robinson arithmetic Q. Then,

(2)
$$T \vdash A(e) = \text{false.}$$

Date: September 1, 2011.

1

By axiom ϕ_A , we have

$$(3) T' \vdash \neg H(e).$$

If we take enough strong theory as T, from (3) we can derive

$$(4) T' \vdash Con_{T'}.$$

However, T' is sound, recursively axiomatized theory of arithmetic which contains Q. This contradicts 1.

3. Undecidability of halting problem to incompleteness theorem

In this section, we prove $2 \Rightarrow 3$. The proof is folklore [1].

Again, we prove the contraposition. Assume that T is sound, recursively axiomatizable and complete theory of arithmetic which contains Robinson Arithmetic Q. As Section 2, let H(x) be an arithmetical formula stating halting problem. Since T is complete, for given code e of a program, either H(e) or $\neg H(e)$ is a theorem of T. Further, if T proves H(e) then by soundness, H(e) is true in the standard model, that is, e will halt, and if T proves $\neg H(e)$ then by soundness, H(e) is false in the standard model, that is, e will not halt.

Consider a procedure A which searches H(e) or $\neg H(e)$ from theorems of T, and if it finds H(e) then returns true, and if it finds $\neg H(e)$, then returns false. Since either H(e) or $\neg H(e)$ is a theorem of T, A will terminate. Further the answer of A is the correct answer to halting problem, since T is sound.

This contradicts clause 2.

References

 $[1]\,$ Halting Problem (Wikipedia). .

National Institute of Advanced Science and Technology (AIST), 3-11-46 Nakoji, Amagasaki, 661-0974 Japan

E-mail address: yoriyuki.yamagata@aist.go.jp