Question	Answer	Marks	Guidance	
	Attempt to resolve in any direction	M1	For resolving. Allow sin/cos mix. Allow sign error. Correct number of terms.	
	$F\cos\alpha - 20\cos 40 - 100\sin 20 = 0$ $[F\cos\alpha = 15.320+34.202 = 49.5229]$	A1		
	$F \sin \alpha + 20 \sin 40 - 100 \cos 20 = 0$ $[F \sin \alpha = 93.969 12.855 = 81.1135]$	A1		
	$F = \sqrt{(49.5229)^2 + (81.1135)^2}$	M1	OE; Attempt to solve for F ; one term missing in total	
	$\alpha = \tan^{-1} \left(\frac{81.1135}{49.5229} \right)$	M1	OE; Attempt to solve for α ; one term missing in total	
	$F = 95(.0), \alpha = 58.6$	A1	$F = 95.0364$ and $\alpha = 58.5943$	
	Alternative mark scheme for question : For candidates who use cosine and/or sine rule			
	Attempt at cosine rule from triangle of forces	M1	Must use lengths 100 and 20 with a suitable angle	
	$F^2 = 100^2 + 20^2 - 2 \times 100 \times 20\cos 70$	A1	Correct	
	F = 95[.0]	A1		
	$\frac{95.0364}{\sin 70} = \frac{20}{\sin \beta} \text{OR} \frac{95.0364}{\sin 70} = \frac{100}{\sin \gamma}$	M1	Attempt at sin rule	
		A1	where $\beta = (70 - \alpha)$ where $\gamma = (40 + \alpha)$	
	$\alpha = 58.6$	A1	$\alpha = 58.5943$	

Question	Answer	Marks	Guidance	
	Alternative mark scheme for question : For candidates who resolve in other directions			
	Attempt to resolve (e.g. parallel or perpendicular to 100 N)	M1	For resolving. Allow sin/cos mix. Allow sign error. Correct number of terms.	
	$F\sin(\alpha+20)+20\sin 20-100=0$ [$F\sin(\alpha+20)=93.159$]	A1		
	$F\cos(\alpha+20)-20\cos 20=0$ [$F\cos(\alpha+20)=18.793$]	A1		
	$F = \sqrt{93.159^2 + 18.793^2}$	M1	OE; Attempt to solve for F ; one term missing in total	
	$\alpha = \tan^{-1} \left(\frac{93.159}{18.793} \right) - 20$	M1	OE; Attempt to solve for α ; one term missing in total	
	$F = 95[.0], \alpha = 58.6$	A1	$F = 95.0364$ and $\alpha = 58.5943$	
		6		