

18MES101L – Engineering Graphics and Design

Week 5: Projection of Solids – I

CONTENTS

- Projection Theory
- Definition of Solid
- Classification of Solids
- Terms used in Projection of Solid
- Tetrahedron and Prism

Projection Theory

• Purpose: To graphically represent a 3-D object on 2-D media (paper, screen etc.).

Concept

A projection theory is based on 2 variables:

1) Line of sight 2) Plane of projection (image or picture plane)

Line of sight (LOS)

is an imaginary ray of light between an observer's Eye and an object.

Plane of projection

is an imaginary flat plane upon which the image created by the LOS is projected.

Line of sight

Lines of sight can be **parallel** or **converge**.

Line of sight

The parallel projection lines can be **normal** (orthogonal) or **oblique** to the plane of projection.

Image on a projection plane.

View depends on a relative orientation between an object and a plane.

Multiview drawing shows a 2D view of an object.

Axonometric drawing shows a virtual 3D view of an object.

Types of views

Projections Parallel Converge **Orthogonal Oblique Perspective** drawing **Multiview Axonometric** Half Depth Cabinet Projection One Point Depth Cavalier Projection Two point Depth **Multiview drawing** General Projection **Three Point Pictorial drawing**

Type of an axonometric projection

1. Trimetric

None of the angles are equal.

2. Dimetric

Two angles are equal.

3. Isometric

All angles are equal.

Axonometric axes

View Comparison

Туре	Advantage	Disadvantage
Multiview drawing	 Accurately presents object's details, i.e. 	Require training to visualization.
	size and shape.	
Pictorial drawing	Easy to visualize.	Shape and angle distortion
		Circular hole becomes ellipse Right angle becomes obtuse angle.
Perspective drawing	Object looks more	Difficult to create
	like what our eyes	Size and shape
	perceive.	distortion Distorted width

Isometric projection

The projected lengths of the edges parallel to the axonometric axes are approximately 81% of their true length.

Definition of Solid

- A solid is a three dimensional object having length, breadth and thickness. It is completely bounded by a surface or surfaces which may be curved or plane.
- The shape of the solid is described by drawing its two orthographic views usually on the two principle planes i.e. Vertical and Horizontal.
- For some complicated solids, in addition to the above principle views, side view and Sectional view is also required.

Classification of Solids

-Solids may be divided into two main groups

(A) Polyhedra

(B) Solids of revolution

(A) Polyhedra

A Polyhedra is defined as a solid bounded by planes called faces which meet in straight lines called edges.

They are:

- (i) Regular Polyhedra
- (ii) Prisms
- (iii) Pyramids.

Polyhedra - (i) Regular Polyhedra

A polyhedron is said to be regular if its surfaces are **regular polygons**. The following are some of the regular Polyhedra.

(a) **Tetrahedron:** It consists of four equal faces, each one being a equilateral triangle

(b) Hexahedron(cube): It consists of six equal faces, each a square.

Polyhedra - (i) Regular Polyhedra

(c) Octahedron: It has eight equal faces, each an equilateral triangle.

(d) **Dodecahedron:** It has twelve regular and equal pentagonal faces.

(e) Icosahedrons: It has twenty equal, equilateral triangular faces.

(d) Dodecahedron

Polyhedra - (ii) Prisms

- A prism is a polyhedron having two equal ends called the bases parallel to each other.
- The two bases are joined by faces, which are rectangular in shape.
- The imaginary line passing through the centers of the bases is called the axis of the prism.
- A prism is named after the shape of its base. For example, a prism with square base is called a square prism, the one with a pentagonal base is called a pentagonal prism.

Polyhedra - (ii) Prisms

Solids

Thank You