מודלים חישוביים תרגול מס' 3

2016 במרץ 16

נושאי התרגול:

- למת הניפוח לשפות רגולריות.
 - . משפט מיהיל־נרוד

1 למת הניפוח לשפות רגולריות

נזכר בלמת הניפוח, שתהווה עבורנו טכניקה להוכחת אי־רגולריות:

s=xyz למה 1.1 לכל שפה רגולרית L קיים l>0 כך שלכל $s\in L$ המקיימת לכל שפה רגולרית לפיים קיים ליים l>0 כך ש:

- $.xy^iz\in L$, $i\geq 0$ לכל.
 - |y| > 0 .2
 - $|xy| \leq \ell$.3

 ℓ איך נשתמש בלמת הניפוח כדי להוכיח ששפה L כלשהי היא אי־רגולריות? נניח בשלילה ש־ L רגולרית ויהא $|xy| \le \ell$ ו־ |y| > 0 של $s \in L$ כך ש־ $s \in L$ באורך גדול מ־ $t \in L$ ונראה שלכל חלוקה $t \in L$ של מספקת תנאי הכרחי לרגולריות, קיים $t \in L$ בסתירה ללמת הניפוח. שימו לב שלמת הניפוח מספקת תנאי הכרחי לרגולריות, אך לא מספיק.

תרגיל 1

. אינה הגולרית, L_1 בי שפת הפלינדרומים מעל $\Sigma=\{0,1\}$, שנסמנה בי L_1 , אינה רגולרית

פתרון

נניח בשלילה ש־ בחלרית ויהא ℓ רגולרית רגולרית ש־ בשלילה בשלילה לנו. נבחר

$$s = 0^{\ell} 10^{\ell} \in L_1$$

y ים מקיימת שי |y|>0 ור $|xy|\leq \ell$ רך מקיימת של לי xyz כך של אכן פעת נשים לב שכל כעת נשים לב שכל חלוקה של xyz כך בסתירה. $xy^2z\notin L_1$, מורכבת כולה מאפסים.

תרגיל 2

. אינה רגולרית בי
$$\Sigma = \{0\}$$
 מעל $L_2 = \left\{0^{n^2} \mid n \geq 0 \right\}$ הוכח כי

פתרון

נניח בשלילה ש־ בחר ויהא ℓ קבוע ויהא לנו. נבחר גניח בשלילה בי

$$s = 0^{\ell^2} \in L_2$$

ונסתכל על $|y|=k\leq \ell$ נסמן ווי |y|>0 ור עך על xyz לד xyz ונשים לב שאכן. ווי נשים לב אכן אל לד אלי

$$w = xy^2z = 0^{\ell^2 + k}$$

:נניח בשלילה ש־ $\ell^2+k=n^2$ אזי, קיים n אזי, אזי, $w\in L_2$ ש

$$\ell^2 < \ell^2 + k \le \ell^2 + \ell = \ell (\ell + 1) < (\ell + 1)^2$$

מכאן קיבלנו ש־ $\ell < n < \ell + 1$ בסתירה. אזי, כלומר שקיים $\ell < n < \ell + 1$ בסתירה. אזי, $\ell^2 < n^2 < (\ell+1)^2$ אינה רגולרית.

2 משפט מיהיל־נרוד

נזכר כי עבור שפה $z\in \Sigma^*$ מעל הא"ב ב, היחס היחס מעל מילים בר בי Σ^* מוגדר כך: z אם לכל אם מיהיל־נרוד הוחס שר בי z למחלקות שקילות. משפט מיהיל־נרוד הווה משרט מיהיל־נרוד הווה בי z למחלקות אי־רגולריות:

. משפט $\Sigma^{\star}/_{\sim_L}$ המנה קבוצת אם"ם רגולרית אם בוצת רגולרית בביע רגולרית בביע רגולרית אם

דוגמא 1

עבור השפה באותה מחלקת מילים הילים מהזוגות מילים מילים לכל $L_3=L\left(ba^\star b^\star\right)$

- . בשפה מילה של של אינן רישא אינן פחילה בשפה. aa
- . ולהיפך של baa יהיה המשך חוקי של ולהיפף כל. כל כל המשך המשך ווba
 - $.baba
 otin L_3$ אך אד א און אפור $baaa \in L_3$ אד אפור לא. עבור $baa \bullet bab$
 - $.ba \in L_3$ אך $aba \notin L_3$,z = ba אך פור *e לא. עבור *e

עבור אותה שפה, מהן מחלקות השקילות?

$$.[\epsilon]_{\sim_{L_2}} = \{\epsilon\}$$
 .1

$$[b]_{\sim_{L_3}} = L(ba^\star)$$
 .2

$$[bb]_{\sim_{L_3}} = L \left(ba^\star bb^\star \right)$$
 .3

$$[a]_{\sim_{L_3}} = L\left(\left(\epsilon + ba^{\star}bb^{\star}\right)a\left(b+a\right)^{\star}\right)$$
 .4

ואכן ציפינו למספר סופי של מחלקות שקילות. הוכיחו שארבעת הקבוצות הנ"ל הן אכן מחלקות שקילות ושאלו הן כל מחלקות השקילות.

 $^\circ\!L_3$ את מיען להשתמש בכך כדי לבנות אוטומט המקבל את

- המצבים יהיו מחלקות השקילות.
- ϵ את המכילות השקילות מחלקת יהיה התחלתי המכילה את •
- L_3 ב- המצבים המקבלים יהיו מחלקות שקילות המוכלות ב- ullet

תרגיל 3

הוכיחו כי השפה $L_4 = \left\{ ww \mid w \in \{0,1\}^\star \right\}$ אינה רגולרית.

פתרון

 $(z=x_i$ נשים לב שלכל x_i,x_j לבע ש־ מתקיים ש־ $x_i=0^i$ (למשל, עבור געבור $x_i=0^i$) לכל x_i,x_j לכל x_i,x_j לכל x_i,x_j נשים לב שלכל יש אינסוף מחלקות שקילות, ולפי משפט מיהיל־נרוד x_i,x_j אינה בור x_i,x_j אינה x_i,x_j אם כך, ליחס בין, ליחס בין אינסוף מחלקות שקילות, ולפי משפט מיהיל־נרוד אינה בולרית.

תרגיל 4

הוכיחו כי השפה $L_{5}=\left\{ w\in\left\{ 0,1\right\} ^{\star}\mid\#_{0}\left(w
ight) =\#_{1}\left(w
ight)
ight\}$ אינה רגולרית.

פתרון

בהרצאה הוכחנו טענה זו לפי למת הניפוח. כעת נראה שתי דרכים שונות. תחילה, בעזרת משפט מיהיל־נרוד. בהרצאה הוכחנו טענה זו לפי למת הניפוח. כעת נראה אד x_i אך x_i אך x_i אם כך, ליחס x_i עבור x_i אינסוף מחלקות שימו לב כי מחלקות השקילות הן מהצורה הבאה, ולפי משפט מיהיל־נרוד x_i אינה רגולרית. שימו לב כי מחלקות השקילות הן מהצורה הבאה, עבור x_i אינה רגולרית.

$$C_k = \{ w \in \{0, 1\}^* \mid \#_a(w) - \#_b(w) = k \}$$

הוכיחו זאת.

כעת, נוכיח כי בא אינה רגולרית בעזרת תכונות סגור. נניח בשלילה כי רגולרית ונשים לב כי בעזרת נוכיח כי לב

$$L_5 \cap L(0^*1^*) = \{0^i 1^i \mid i \ge 0\}$$

מכיוון שגם L_5 וגם (מכיוון שהיא מוגדרת (מכיוון שהיא מוגדרת (מכיוון שלה) רגולריות וגם ביטוי רגולריות (מכיוון שהיא מוגדרת ע"י ביטוי רגולריות אינה רגולריות בסתירה. לכן, בסתירה לכן, בסתירה אינה רגולרית, בסתירה ל $\{0^i 1^i \mid i \geq 0\}$

תרגיל 5

יהי Σ בצורה הבאה ונגדיר מעל $\Sigma = \{\sigma_1, \dots, \sigma_n\}$ יהי יהי

$$L_6 = \{ w \in \Sigma^* \mid \forall \sigma \in \Sigma . \#_{\sigma} (w) \le 1 \}$$

. תשובתכם. הוכיחו האם בעו האם וקבעו של השקילות השקילות את מצאו את וקבעו אר \sim_{L_6}

פתרון

לכל מילה Σ ענדיר וקטור v_w באורך v_w כך ש־ v_w הוא מספר המופעים של σ_i נראה כי v_w נראה ניסמן ב- מחלקות השקילות של \sim_{L_6} הן אוסף הוקטורים הבינאריים באורך v_w ומחלקה אחת נוספת, שאותה נסמן ב- v_w אז v_w הוא וקטור בינארי וכל המילים בשפה בעלי אותו יצוג בינארי נמצאים באותה v_w אז v_w הוא וקטור בינארי וכל המילים בשפה בעלי אותו יצוג בינארי נמצאים באותה מחלקת שקילות. עבור כל v_w מתקיים v_w מתקיים v_w מתקיים v_w ב- v_w מחלקות השקילות שאינן v_w ב- v_w ב- בהתאם לקידוד העשרוני של הוקטור הבינארי. נוכיח כי אלו אכן מחלקות השקילות של היחט. לשם כך, נוכיח:

- $.w_1 \sim_{L_6} w_2$ מתקיים $w_1, w_2 \in C_i$.1
- $w_1 \sim_{L_6} w_2$ מתקיים $w_1, w_2 \in C_{no}$.2
- $.w_1 \not\sim_{L_6} w_2$ מתקיים $w_2 \in C_{no}$ רז $w_1 \in C_i$.3
- $w_1 \not\sim_{L_6} w_2$ מתקיים $i \neq j$ עבור $w_2 \in C_i$ ו־ $w_1 \in C_i$.4
 - .5 כל $w \in \Sigma^\star$ שייך למחלקה כלשהי ואף מחלקה אינה ריקה.

ברגע שנוכיח טענו אלו, נוכל לסכם כי L_6 רגולרית – שכן מספר מחלקות השקילות הוא L_6 . אם כך:

- $\sigma\in\Sigma$ מתקיים ש
- $z\in\Sigma^*$ אם w_1 וכן w_2 וכן w_3 וכן w_3 וכן w_3 מתקיים ש
- w_3 מתקיים ש
- w_3 מתקיים ש
- $w_1z\notin L_6$ וגם $w_1z\notin L_6$ אזי $w_1z\notin L_6$ מדי $w_3z\notin L_6$ בך ש
- $w_1z\notin L_6$ אזי $w_3z\notin L_6$ וגם $w_1z\notin L_6$ אזי $w_3z\notin L_6$ וגם $w_3z\notin L_6$ אזי $w_3z\notin L_6$ אזי $w_3z\notin L_6$ וגם $w_3z\notin L_6$ ווגם $w_3z\notin L_6$ אזי $w_3z\notin L_6$ ווגם $w_3z\notin L_6$ אזי $w_3z\notin L_6$ ווגם $w_3z\notin L_6$ ווגם $w_3z\notin L_6$ אם $w_3z\notin L_6$ ווגם $w_3z\notin L_6$ ווגם $w_3z\notin L_6$ ווגם $w_3z\notin L_6$ אם $w_3z\notin L_6$ ווגם $w_3z\notin L_6$
- $\#_{\sigma}\left(wu\right)>1$ גם $u\in\Sigma^{\star}$ לכל, לכל, לכל, לכל $w\notin L_{6}$ ולכן $\#_{\sigma}\left(w\right)>1$ כך ש־ $\sigma\in\Sigma$ קיים $w\in C_{no}$ לכל $w_{1}\sim_{L_{6}}w_{2}$ ולכן $w_{2}z\notin L_{6}$ וגם $w_{1}z\notin L_{6}$ מתקיים $z\in\Sigma^{\star}$ מתקיים $w_{2}z\notin L_{6}$ ולכן $w_{3}z\notin L_{6}$
- עבור 2. אם $w_1z\in L_6$ אך $w_1z\in L_6$ מתקיים $z=\epsilon$ עבור $\#_\sigma(w_1)\leq 1$ מתקיים $\sigma\in \Sigma$. אם . $w_1\not\sim_{L_6}w_2$
- ולכן $\#_\sigma\left(w_2\right)=1$, אם כך, $\#_\sigma\left(w_1\right)=0$.4. נניח בה"כ כי $\#_\sigma\left(w_1\right)\neq\#_\sigma\left(w_2\right)$ אם כך, פליים .4. $\#_\sigma\left(w_2\right)=\omega_1$ אדן $\#_\sigma\left(w_2\right)=\omega_2$ ולכן $\#_\sigma\left(w_2\right)=\omega_2$ מתקיים שי $\#_\sigma\left(w_2\right)=\omega_2$ אדן $\#_\sigma\left(w_2\right)=\omega_2$ ולכן $\#_\sigma\left(w_2\right)=\omega_2$
- .5 תחילה, ברור כי לכל v_w קיים v_w שהוא או בינארי (דהיינו, מתאים לאחד מה־ $w\in \Sigma^*$ או לא $v_w=b$ כך ש־ $w\in \Sigma^*$ קיימת ל- $v_w=b$ כך ש־ $v_w=b$ (למשל, מתאים ל- $v_w=b$). ברור גם כי $v_w=b$ ולכל ולכל $v_w=b$ קיימת ל- $v_w=b$ כך ש־ $v_w=b$ (למשל, מעבר בסדר לקסיקוגרפי על $v_w=b$ ועבור כל 1 במקום ה־ $v_w=b$ נשרשר את $v_w=b$ (למשל, מעבר בסדר לקסיקוגרפי על $v_w=b$ ועבור כל 2 במקום ה־ $v_w=b$ נשרשר את $v_w=b$ (למשל, החל מהמילה הריקה).