计算机体系结构实验三--实验报告

Author: PB17111614 王嵘晟

cache 编写与设计

• 对于 k 路组相连的理解: 组相连度 k 代表了每组有 k 路 line。在使用 set 定位到对应的组后,需要的 cache 块可能在该组中的任意一个位置上,需要并行比较 cache 组中的每一个块的 tag 和 valid 位,来确 定最终引用的 line 的地址。对此,从直接映射改到组相连,首先拓展了 cache_mem, cache_tags, valid, dirty:

```
reg [ 31:0] cache_mem [SET_SIZE][WAY_CNT][LINE_SIZE]; // SET_SIZE个 line, 每个line有LINE_SIZE个word reg [TAG_ADDR_LEN-1:0] cache_tags [SET_SIZE][WAY_CNT]; // SET_SIZE个 TAG reg valid [SET_SIZE][WAY_CNT]; // SET_SIZE个 valid(有效位) reg dirty [SET_SIZE][WAY_CNT];
```

• 由于无论 FIFO 还是 LRU 都需要换出 cache 中停留时间最长的块,所以这里用一个数组来记录每个块中的内容被换入后维持的时间:

```
reg [31:0] record[SET_SIZE][WAY_CNT]; // 每块 cache 的历史记录,从被换入到现在的时间
```

这样在使用这两种策略的时候,当 cache miss,只需要替换掉对应的 record 值最大的块。

• LRU 与 FIFO 的实现:由于对于 cache 的访问,即 read 或 write 请求信号是一个不止有一个周期的信号,所以为了防止写回策略长时间更新,这里使用一个标记位 access_signal 用来表示对 cache 有访问,对 cache 访问了则立即对历史记录进行更新,并根据访问结果(hit/miss)做出适当的操作。 hit 时仅把 hit 的数据对应的 record 清零,其他的 record 值加1。而 miss 时,替换数据,将被替换的数据的 record 置零,其他 record 的值加1。通过这种方法,当使用 LRU 时,替换掉 record 最大的数据,可以保证被替换掉的数据一定是最近最少使用的,而使用 FIFO 时,被替换掉的数据一定是最先进入 cache 的。

cache 电路性能分析

首先保证组数为8不变的情况下,改变组相连度,分别取值1,2,4:

• LRU, 组相连度1:

Resource	Utilization	Available	Utilization %
LUT	1259	63400	1.99
FF	3053	126800	2.41
BRAM	4	135	2.96
Ю	81	210	38.57

Resource	Utilization	Available	Utilization %
LUT	2495	63400	3.94
FF	5680	126800	4.48
BRAM	4	135	2.96
IO	81	210	38.57

• LRU, 组相连度2:

• LRU, 组相连度4:

Resource	Utilization	Available	Utilization %
LUT	4819	63400	7.60
FF	10421	126800	8.22
BRAM	4	135	2.96
IO	81	210	38.57

• FIFO, 组相连度1:

Resource	Utilization	Available	Utilization %
LUT	1259	63400	1.99
FF	3053	126800	2.41
BRAM	4	135	2.96
Ю	81	210	38.57

• FIFO, 组相连度2:

Resource	Utilization	Available	Utilization %
LUT	2465	63400	3.89
FF	5678	126800	4.48
BRAM	4	135	2.96
Ю	81	210	38.57

• FIFO, 组相连度4:

Resource	Utilization	Available	Utilization %
LUT	4705	63400	7.42
FF	10415	126800	8.21
BRAM	4	135	2.96
10	81	210	38.57

现在保证 cache 规模不变,即同时修改组数和组相连度:

• LRU, 组相连度1, 组数8:

Resource	Utilization	Available	Utilization %
LUT	1259	63400	1.99
FF	3053	126800	2.41
BRAM	4	135	2.96
Ю	81	210	38.57

• LRU, 组相连度2, 组数4:

Resource	Utilization	Available	Utilization %
LUT	2188	63400	3.45
FF	3320	126800	2.62
BRAM	4	135	2.96
Ю	81	210	38.57

• LRU, 组相连度4, 组数2:

Resource	Utilization	Available	Utilization %
LUT	2834	63400	4.47
FF	3333	126800	2.63
BRAM	4	135	2.96
Ю	81	210	38.57

• FIFO, 组相连度1, 组数8:

Resource	Utilization	Available	Utilization %
LUT	1259	63400	1.99
FF	3053	126800	2.41
BRAM	4	135	2.96
Ю	81	210	38.57

• FIFO, 组相连度2, 组数4:

Resource	Utilization	Available	Utilization %
LUT	2163	63400	3.41
FF	3318	126800	2.62
BRAM	4	135	2.96
Ю	81	210	38.57

• FIFO, 组相连度4, 组数2:

Resource	Utilization	Available	Utilization %
LUT	2692	63400	4.25
FF	3331	126800	2.63
BRAM	4	135	2.96
Ю	81	210	38.57

结论:在这部分为看出FIFO的方法于LRU的方法没有明显的电路资源消耗差异,可能的原因是在我对LRU和FIFO两种方法的时间都采用了计数的方式,这种实现方式中,LRU仅比FIFO多一个边沿检测电路,导致两种方法电

路资源消耗接近。但是对于组数相同时,提高组相连度明显会提高 cache 占用的电路资源量。当 cache 规模一定时,提高组相连度有同样的效果。所以提高组相连度可以导致电路开销代价增长。

CPU cache 缺失率统计

这里直接用仿真结果通过表格呈现:

快速排序

规模256

首先保持组数不变,改变组相连度:

• LRU:

组相连度1,组数8 组相连度2,组数8 组相连度4,组数8

访存次数	6168	6168	6168
miss 次数	766	572	73
缺失率	12.42%	9.27%	1.18%

• FIFO:

组相连度1,组数8 组相连度2,组数8 组相连度4,组数8

访存次数	6168	6168	6168
miss 次数	766	508	63
缺失率	12.42%	8.24%	1.02%

再保持 cache 总大小不变,改变组数和组相连度:

• LRU:

组相连度1,组数8 组相连度2,组数4 组相连度4,组数2

访存次数	6168	6168	6168
miss 次数	766	766	710
缺失率	12.42%	12.42%	11.51%

• FIFO:

组相连度1,组数8 组相连度2,组数4 组相连度4,组数2

访存次数	6168	6168	6168
miss 次数	766	704	705
缺失率	12.42%	11.41%	11.43%

规模512

首先保持组数不变,改变组相连度:

• LRU:

组相连度1,	细 数 8	组相连度2,	细 数 🞗	组相连度4,	细 数 🞗
组加进汉门	5日. 女人 〇	组加进汉军,	知效O	组,但此, 又等 ,	红女

访存次数	13882	13882	13882
miss 次数	1863	1367	219
缺失率	13.42%	9.85%	1.58%

• FIFO:

组相连度1,组数8 组相连度2,组数8 组相连度4,组数8

访存次数	13882	13882	13882
miss 次数	1790	1257	199
缺失率	12.89%	9.05%	1.43%

再保持 cache 总大小不变,改变组数和组相连度:

• LRU:

组相连度1,组数8 组相连度2,组数4 组相连度4,组数2

访存次数	13882	13882	13882
miss 次数	1863	1835	1784
缺失率	13.42%	13.22%	12.85%

• FIFO:

组相连度1,组数8 组相连度2,组数4 组相连度4,组数2

访存次数	13882	13882	13882
miss 次数	1863	1804	1755
缺失率	13.42%	12.99%	12.64%

矩阵乘法

规模8

首先保持组数不变,改变组相连度:

• LRU:

组相连度1,组数8 组相连度2,组数8 组相连度4,组数8

组相连度1,	细数8	组相连度2,	组数8	组相连度4,	组数8
温川足及り	2000	24.111年/文€,	200	ユ 川 在 八マ・	211.000

访存次数	1088	1088	1088
缺失率	24.08%	18.20%	2.75%

FIFO:

组相连度1,	かり米ケロ	组相连度2,	组数8	组相连度4,	と日来たり
组们足段▮,	组蚁Ο	组们足及4,	组蚁Ο	组们足及4,	组奴◐

访存次数	1088	1088	1088
缺失率	24.08%	17.18%	2.20%

再保持 cache 总大小不变,改变组数和组相连度:

• LRU:

组相连度1,组数8 组相连度2,组数4 组相连度4,组数2

访存次数	1088	1088	1088
缺失率	24.08%	45.86%	35.11%

• FIFO:

组相连度1,组数8 组相连度2,组数4 组相连度4,组数2

访存次数	1088	1088	1088
缺失率	24.08%	27.57%	38.97%

规模16

首先保持组数不变,改变组相连度:

• LRU:

组相连度1,组数8 组相连度2,组数8 组相连度4,组数8

访存次数	8448	8448	8448
缺失率	60.22%	56.21%	22.53%

• FIFO:

组相连度1,组数8 组相连度2,组数8 组相连度4,组数8

访存次数	8448	8448	8448
缺失率	60.22%	57.19%	20.21%

再保持 cache 总大小不变,改变组数和组相连度:

• LRU:

组相连度1,组数8 组相连度2,组数4 组相连度4,组数2

访存次数	8448	8448	8448
缺失率	60.22%	59.46%	55.11%

• FIFO:

组相连度1,组数8 组相连度2,组数4 组相连度4,组数2

访存次数	8448	8448	8448
缺失率	60.22%	59.47%	57.95%

总结与结论

经过上面的测试,可以得出以下结论:

- 在只改变cache组相连度的时候,cache容量增大,随着组相联度增加,两个应用缺失率大幅度下降,在快速排序中,LRU的效果略好于FIFO;在矩阵乘法中,两种方法各有胜负。
- 在保证cache大小不变,调整组相联数和组数时,随着组相联度增加,两个应用的的缺失率都略有下降,但是FIFO的效果反而好于LRU。