Test of Distributed Systems

Lecture 11: Linear Temporal Logic

Århus University Department of Engineering

15 May 2015

What do we expect?

Axioms

Proof

What do we expect?

Axioms

Proof

Should these statements be true?

- ▶ $\Box p \leftrightarrow \neg \Diamond \neg p$ (duality)
- ▶ $\Box(p \to q) \to (\Box p \to \Box q)$ (distributivity)
- ▶ $\Box p \rightarrow p$ (reflexivity)
- ▶ $p \rightarrow \Diamond p$ (reflexivity)
- ▶ $\Box p \rightarrow \Box \Box p$ (transitivity)
- $\Diamond p \to \Diamond \Diamond p$ (transitivity)
- ▶ $\Box p \to \bigcirc p$ (step)
- ▶ $\bigcirc p \rightarrow \Diamond p$ (step)
- ▶ $\bigcirc p \leftrightarrow \neg \bigcirc \neg p$ (linearity)

What do we expect?

Axioms

Proof

Axioms of LTL

- 1. Predicate Calculus
- 2. $\Box(p \to q) \to (\Box p \to \Box q)$ (distributivity of \Box over \to)
- 3. $\bigcirc(p \to q) \to (\bigcirc p \to \bigcirc q)$ (distributivity of \bigcirc over \to)
- 4. $\Box p \rightarrow (p \land \bigcirc p \land \bigcirc \Box p)$ (expansion of \Box)
- 5. $\Box(p \to \bigcirc p) \to (p \to \Box p)$ (induction)
- 6. $\bigcirc p \leftrightarrow \neg \bigcirc \neg p$ (linearity)

Inference rules:

Define:

▶ $\Diamond p \leftrightarrow \neg \Box \neg p$ (duality)

What do we expect?

Axioms

Proof

☐ is transitive and reflexive

Theorem: $\Box p \leftrightarrow \Box \Box p$. Proof:

 $\Box p \leftrightarrow \Box \Box p$

{PC}

- $\Box p \to \Box \Box p$ {induction}
 - $\Box p \to \bigcirc \Box p$

{expansion}

• $\Box\Box p \to \Box p$ {expansion}

\square distributes over \land

Theorem: $\Box(p \land q) \to (\Box p \land \Box q)$. Proof:

□ contraction

Theorem: $p \land \bigcirc \Box p \rightarrow \Box p$. Proof:

```
p \land \bigcirc \Box p \rightarrow \Box p
     {PC}
p \land \bigcirc \Box p \rightarrow \Box p \land \Box \bigcirc \Box p
     {distribution over ∧}
p \land \bigcirc \Box p \rightarrow \Box (p \land \bigcirc \Box p)
     {induction}
p \land \bigcirc \Box p \rightarrow \bigcirc (p \land \bigcirc \Box p)
     {PC}
\bigcirc \Box p \rightarrow \bigcirc (p \land \bigcirc \Box p)
     {generalization}
\Box p \to p \land \bigcirc \Box p
     {expansion}
```

♦ current

Theorem: $p \to \Diamond p$.

Proof:

$$\begin{split} p &\to \Diamond p \\ & \{ \text{definition} \} \\ p &\to \neg \Box \neg p \\ & \{ \text{PC} \} \\ \neg \neg p &\to \neg \Box \neg p \\ & \{ \text{PC} \} \\ \Box \neg p &\to \neg p \\ & \{ \text{expansion} \} \end{split}$$

♦ next

Theorem: $\bigcirc p \rightarrow \Diamond p$.

Proof:

$$\bigcirc p \to \Diamond p$$
 {definition}
$$\bigcirc p \to \neg \Box \neg p$$
 {linearity}
$$\neg \bigcirc \neg p \to \neg \Box \neg p$$
 {PC}
$$\Box \neg p \to \bigcirc \neg p$$
 {expansion}

□ implies ◊

Theorem: $\Box p \to \Diamond p$.

Proof:

What do we expect?

Axioms

Proof

Distribution

```
Law: \Box(p \land q) \leftrightarrow (\Box p \land \Box q).
Theorem: \Diamond(p \lor q) \leftrightarrow (\Diamond p \lor \Diamond q).
Proof:
                                    \Diamond(p\vee q)\leftrightarrow(\Diamond p\vee\Diamond q)
                                         {definition}
                                    \neg \Box \neg (p \lor q) \leftrightarrow (\neg \Box \neg p \lor \neg \Box \neg q)
                                         {PC}
                                    \neg \Box (\neg p \land \neg q) \leftrightarrow \neg (\Box \neg p \land \Box \neg q)
                                         {PC}
                                    \Box(\neg p \land \neg q) \leftrightarrow (\Box \neg p \land \Box \neg q)
                                         {the law above}
```

More laws

- $\blacktriangleright \ \Diamond p \leftrightarrow p \lor \bigcirc \Diamond p$
- $ightharpoonup \Box(p \to q) \to (\Diamond p \to \Diamond q) \quad \{ \text{ generalization } \}$
- ▶ $\Box\bigcirc p \leftrightarrow \bigcirc\Box p$ { exchange }
- $\blacktriangleright \ \Diamond \bigcirc p \leftrightarrow \bigcirc \Diamond p \quad \{ \text{ exchange } \}$

Contraction

Theorem: $\Box \Diamond \Box p \leftrightarrow \Diamond \Box p$. Proof: $\Box\Diamond\Box p\leftrightarrow\Diamond\Box p$ {PC} $\Box\Diamond\Box p \to \Diamond\Box p$ {expansion} $\bullet \quad \Diamond \Box p \to \Box \Diamond \Box p$ {induction} $\Diamond \Box p \to \bigcirc \Diamond \Box p$ {exchange} $\Diamond \Box p \to \Diamond \bigcirc \Box p$ {generalization} $\Box p \to \bigcirc \Box p$ {expansion}

More laws

Theorem (Contraction): $\Diamond\Box\Diamond p \leftrightarrow \Box\Diamond p$.

Proof: exercise.

Theorem: $\Diamond \Box p \to \Box \Diamond p$.

Proof: exercise.

Theorem: $\Box \Diamond p \rightarrow \Diamond \Box p$.

Proof?

Counterexample!