Učinkovitost omrežij Poročilo

Jure Babnik Zala Stopar Špringer

 $\begin{array}{c} 2020 \\ \text{November} \end{array}$

Kazalo

1	Priprava okolja				
2	Učinkovitost v preprostih grafih				
	2.1	Mreže $m \times n$	1		
	2.2	3-dimenzionalne mreže	2		
	2.3	Cikli	2		
	2.4	Binomska drevesa	2		
3	Učinkovitost v naključnih grafih				
4	Skle	ep	2		

1 Priprava okolja

Pred začetkom simulacij sva si pripravila delovno okolje. Za programerski del naloge sva uporabila *Python* in knjižnico *Graph-Theory*.

Defirirala sva si funkcije, ki so nama ustvarile različne enostavne grafe, kot so mreže, 3-dimenzionalne mreže, popolna binomska drevesa, cikle, itd. Prav tako sva si napisala funkcije, ki izračunajo učinkovitost omrežja.

Formula za **povprečno učinkovitost** grafa G je definirana kot:

$$E(G) = \frac{1}{n(n-1)} \sum_{i \neq j \in G} \frac{1}{d(i,j)},$$

kjer je d(i,j) dolžina najkrajše poti med i-to in j-to točko, n pa je število vseh točk v grafu.

Globalna učinkovitost je definirana kot:

$$E_{glob}(G) = \frac{E(G)}{E(K_n)},$$

kjer K_n , predstavlja poln graf na n točkah.

Lokalna učinkovitost je definirana kot:

$$E_{loc}(G) = \frac{1}{n} \sum_{i \in G} E(G_i),$$

kjer G_i predstavlja podgraf grafa G, ki je sestavljen le iz sosedov točke i (brez točke i).

Vsa koda je zbrana v datoteki graphs.py

2 Učinkovitost v preprostih grafih

2.1 Mreže $m \times n$

Za nekaj različnih m in n sva ustvarila grafe in opazovala, kakšno učinkovitost imajo. Rezultati so prikazani v spodnjih tabelah.

20	m = 1			
n	Povprečna učinkovitost	Globalna učinkovitost	Lokalna učinkovitost	
2	1	1	0	
3	<u>5</u>	<u>5</u>	0	
4	13 19	<u>13</u>	0	
5	$\frac{\frac{77}{120}}{120}$	$\frac{\frac{19}{120}}{120}$	0	
10	0.4286596	0.4286596	0	
20	0.2734463	0.2734463	0	

Tabela 1: Učinkovitost $m \times n$ omrežij, m = 1

- 2.2 3-dimenzionalne mreže
- 2.3 Cikli
- 2.4 Binomska drevesa
- 3 Učinkovitost v naključnih grafih
- 4 Sklep