

Grafos: Programação Dinâmica- Todos os Menores Caminhos

Prof. André Britto

Problema P m_1 problemas P'_1 m_2 problemas P'_2 ... m_n problemas P'_n

- Resolvendo P'_{1} , P'_{2} ..., P'_{n} resolve P.
- P'_{i} 1 i n é de natureza igual ou semelhante a P.
- Tamanho de P', é menor que P.

• **Ideia:** resolver P'_{i} a primeira vez em que for considerado; nas m_{i} -1 outras vezes consultar uma tabela onde está armazenada a solução de P'_{i} .

Aplicação da técnica exige:

- decomposição de P em P', 1 i n seja de natureza simples.
- tabela para armazenamento de P', deve ser definida de modo a tornar simples o acesso a seus resultados.

Exemplo Clássico:

Sequência de Fibonacci *F(n)*

Formulação recursiva:

Se
$$n$$
 1 então $F(n) = n$
senão $F(n) = F(n-1) + F(n-2)$

Fibonacci: Árvore de Recursão

Vários problemas iguais são resolvidos mais de uma vez na formulação recursiva. A formulação recursiva leva a um algoritmo de complexidade exponencial!

Eliminação da redundância de solução de problemas parciais pela introdução de uma estrutura de armazenamento destas soluções.

Na primeira vez que o problema aparece, ele é calculado, nas demais vezes consulta-se a solução armazenada.

Para a sequência de Fibonacci, a estrutura pode ser um vetor de n+1 elementos.

n	0	1	2	3	4	5	6
F[n]	0	1	1	2	3	5	8

```
Algoritmo Fibonacci(n, F);
{entrada: inteiro n
  saída: sequência de Fibonacci no vetor F}
  inicio
  para i = 0, 1, ..., n faça
  se i 1 então F[i] := i
  senão F[i] := F[i-1] + F[i-2];
  fim
```

- Observe que agora um vetor é usado e o cálculo dos valores da sequência se dá por consulta aos valores armazenados em F.
- Complexidade?


```
Algoritmo Fibonacci(n, F);
{entrada: inteiro n
  saída: sequência de Fibonacci no vetor F}
  inicio
  para i = 0, 1, ..., n faça
  se i 1 então F[i] := i
  senão F[i] := F[i-1] + F[i-2];
  fim
```

- Observe que agora um vetor é usado e o cálculo dos valores da sequência se dá por consulta aos valores armazenados em F.
- Complexidade? O(n)

Aplicações da técnica

• Problema de Determinar todos os caminhos mais curtos entre vértices de um grafo.

- Problema: Dado um grafo, com peso nas arestas, G (direcionado ou não) encontrar o caminho de menor tamanho entre todos os pares de vértices de G.
- Peso nas arestas :
 - considerar inteiro não negativo
 - reflete o tamanho (distância) do caminho entre dois vértices, extremos da aresta.

- Simplificação: vamos na realidade determinar os comprimentos desses caminhos curtos, ao invés do caminho explicitamente.
- Suposição: dígrafo

1ª Solução: indução no número de arestas.

Temos todos os caminhos mais curtos para um grafo com m-1 arestas. O que acontece ao unirmos a m-ésima aresta, digamos (u,v)?

$$O(mn^2)$$
 $O()$ n^4

- 2ª Solução: indução no tipo do caminho
 - vértices e arestas fixos.
 - rotular os vértices dos caminhos com rótulos de 1 a n.

Um caminho de *u* a *w* é chamado um *k-caminho* se excetuando-se *u* e *w,* o rótulo mais alto dos vértices no caminho for *k.* Em particular, um *0-caminho* é uma aresta(não há outros vértices no caminho além de *u* e *w).*

Ex.:

Hipótese de Indução:

Sabemos os comprimentos dos caminhos mais curtos entre todos os pares de vértices tais que **somente** k **caminhos**, para algum 0 k < m, são considerados

 O que acontece para caminhos com k = m, ou seja, k < m+1?

- Base de Indução: m = 1
- Hipótese de indução: vale para todos os k caminhos com 0 k < m.
- Caso geral: Estender para k < m+1 considerar todos os m-caminhos.
 - $V_{\rm m}$ vértice rotulado com m.
 - Qualquer m-caminho mais curto inclui V_m exatamente uma vez.

- *P* k-caminho mais curto (k < m) entre $u \in V_m$.
- *Q j-caminho* mais curto (j < m) entre V_m e w.
- PQ m-caminho mais curto entre $u \in w$? $(u,...,V_m,...,w)$

• Hipótese de Indução: Sabemos comprimento P e Q.

Soma = comprimento de R Q

 Para a solução verifica-se se esse m-caminho é menor que o (m-1)-caminho entre u e w.

```
algoritmo CaminhosMaisCurtos(matComp)

{dados: matrix n x n de comprimentos dos caminhos, matComp;
    matComp[x,y] é o peso da aresta (x,y), se ela
    existir e ∞ no caso contrário.
    matComp[x,x] = 0 para x
}

{saída:
    matComp contém os comprimentos dos caminhos mais
    curtos entre os pares de vértices do grafo.
}
```

fim

fim

Programação Dinâmica?

```
início
  para v := 1,2,...,n faça
    para u := 1,2,...,n faça
    para w := 1,2,...,n faça
    Se matComp[u,v] + matComp[v,w] <
        matComp[u,w] então
        matComp[u,w] := matComp[u,v]+
        matComp[v,w];
fim</pre>
```

```
início
  para v := 1,2,...,n faça
    para u := 1,2,...,n faça
    para w := 1,2,...,n faça
    Se matComp[u,v] + matComp[v,w] <
        matComp[u,w] então
        matComp[u,w] := matComp[u,v]+
        matComp[v,w];
    fim</pre>
```

```
início
  para v := 1,2,...,n faça
    para u := 1,2,...,n faça
    para w := 1,2,...,n faça
    Se matComp[u,v] + matComp[v,w] <
        matComp[u,w] então
        matComp[u,w] := matComp[u,v]+
        matComp[v,w];

fim</pre>
```

Complexidade: $O(|V|^3)$

```
início
  para v := 1,2,...,n faça
    para u := 1,2,...,n faça
    para w := 1,2,...,n faça
    Se matComp[u,v] + matComp[v,w] <
        matComp[u,w] então
        matComp[u,w] := matComp[u,v]+
        matComp[v,w];

fim</pre>
```

Referências

- Seção 5.4 do Szwarcfiter, J. L., Grafos e Algoritmos Computacionais, Ed. Campus, 1983.
- Seção 25.2 do Cormen, Introduction to Algorithms, MIT Press, 2009.
- Seção 3.9 do Jungnickel, D., Graphs, Networks and Algorithms, Springer, 2007.