Notes of "Inequalities"

Jinxin Wang

Proposition 1. If $x_1 \ge 0$, $x_2 \ge 0$, then the following inequality holds

$$|\sqrt{x_1} - \sqrt{x_2}| \le \sqrt{|x_1 - x_2|} \tag{1}$$

and the equality holds if and only if $x_1 = x_2$.

Remark 1. The geometric interpretation is related to the area of squares. Suppose x_1 and x_2 denote the area of two squares with one common vertex. Then the $+\dot{\sigma}$ of the right side is the absolute difference of the area of the two squares, and the $+\dot{\sigma}$ of the left side is the area of the square with the side length as the absolute difference of the side lengths of the squares. Then the inequality is clear.

1 排序不等式

Wikipedia about rearrangement inequality

Example 1. Prove that when n > 1 it holds that $n! < (\frac{n+2}{\sqrt{6}})^n$