Comp 160: Algorithms, Tufts University

Introduction

Welcome! This 1-page summary contains a quick overview of the course contents and how they will be taught. Make sure to keep a copy in your notes and to check it regularly!

Goals

The main goals of the course are:

- A. Understand the importance of rigorous proofs
- B. Realize how complex algorithms can be
- C. Internalize that good coding practices start with a planning step

Objectives

Things you will learn in the course:

- 1. Describe a selection of classic algorithms
- 2. Restate proof of correctness in ideal settings
- 3. List the settings in which each of the algorithms can be used
- 4. Categorize the main tools used for proving, and the different steps of each one
- 5. Summarize the advantages and disadvantages of classic algorithms
- 6. Given a new problem setting, extract the important features
- 7. Decide which of the classic algorithms is the most helpful for this new setting
- 8. Modify existing algorithms so that they can work in more general settings
- 9. Prove that modified classic algorithms will work in a new setting

Content

The contents of the course are split into three big blocks:

Block 1: Sorting

- InsertionSort, MergeSort
- big O, Ω and Θ notation
- Recurrences by trees and substitution.
- Master method.
- Deterministic selection (median-finding)
- Sorting lower bound
- CountingSort and RadixSort
- IRV and QuickSort Analysis
- Randomized Selection

Block 2: Data Structures

- Hashing
- BST and relationship to QuickSort
- AVL Trees
- Augmented trees
- Dynamic Programming
- Amortization

Block 3: Graph algorithms

- -BFS, DFS
- Dijkstra
- Kruskal's algorithm
- Prim's algorithm
- Finding cut vertices
- Approximations and related topics

Non-content content

- Using 上X to write documents
- How to write good proofs
- How to nail a coding interview
- Analyzing problem statements
- Becoming a computer scientist, not just a programmer

Assessments

During the semester we will provide several tools so that students can get an idea of how well they are doing in class:

In class assignments

- In class discussion: explain to your peers
- Recitation: work in groups to solve questions

Outside class assignments

- Weekly homework assignments
- Sporadic programming assignments

Tests

- Midterm exams
- Final exam

On attendance

Although we **strongly** encourage students to actively participate in all course activities (lectures, recitation, and so on). We will not check for attendance nor it will have any direct influence your grade but it will enhance your learning. You are welcome to use the slides and lecture recordings of the previous instructor (Prof. Greg.

recordings of the previous instructor (Prof. Greg Aloupis), but please note that this material is for reference only.

Students are responsible for knowing what was taught during the semester, which will include the instructors variations. The course will have topics that have not been recorded and those topics will come in the exam. In other words, please come to class.

About the instructors

Matias Korman: I got a Ph.D. in computer science in 2009 in Japan. My topic of research is computational geometry. You will learn more about me in class, but for that you will have to do your homework!

Diane Souvaine: a professor at Tufts since 1998. Comp 160: Algorithms is my favorite course to teach, closely followed by Comp 163: Computational Geometry. Looking forward to getting to know you!

In addition to the two of us, we have a large pool of very motivated TAs. Treat them nicely and they will make sure you learn as much as possible!

Grading Rubric

Homework (and exam questions) will be graded with the following categories in mind. Here we show how they correspond to an 8 point scale:

Excellent grade (8-7 points)

A student must show all or most of the following items:

- Chose an appropriate technique to solve the problem
- A good justification was given
- Any modifications to the core technique (if any are needed) are clearly stated
- The algorithm cover all cases
- Proof is clear and well structured
- Clear mastery of the concepts related to the assignment

Fair Grade (6-4 points)

- Chose a reasonable technique to solve the problem
- Some justification was given
- Modifications to the technique (if any are needed) are mentioned but not clear
- The algorithm works in most cases
- Proof is reasonably structured
- A general understanding of the concepts related to the assignment

Low Grade (3 points or lower)

- The student chose an incorrect technique to solve the problem
- No (or an incorrect) justification was given
- The modifications to the technique (if any are needed) are vague or missing
- The algorithm is missing some critical cases
- Proof is unclear and/or hard to follow
- Overall, the student did not grasp the concepts related to the assignment

Naturally, the rubric will be adapted to each particular question (for example, if we specifically asks you to use a certain technique, the focus of the grade will be on that technique).

Grading

Your final grade will depend on the following factors:

Text-based assignments There will be one assignment per week. We recommend using LaTex as this is the nearly universal typesetting language of the field (see course's webpage for more information).

Coding assignments In addition to paper based assignments, we may release a small number of coding assignments. These assignments are optional and can only increase your grade.

In class exams There will be two in-class exams.

Each exam will cover only contents of the latest content of the class.

Final Exam By the end of the semester in the usual Tufts exam period we will have a 2 hours long exam. The exam will cover all material in the course with a larger emphasis in the third block.

Requesting regrades

Keep in mind that the main goal of any assignments is for you to know how are you doing in the course: did you understand the concepts explained in class? Can you reproduce them on your own? and so on.

We understand that as a student you may also be interested in the numerical grade that you will get from taking this course. We will do our best to give you a fair assessment, but please understand we are humans and can make mistakes. If you feel that the numerical grade of any assignment does not reflect properly your work, you can send a regrade request via Gradescope. We tend to frown on requests that simply state please give me more points so I can get a B+. Instead, we would suggest that you look at the feedback you received, and compare your work with the solution. State your opinion on what has been incorrectly graded and why. The person that graded your assignment will get back to you soon.

Figure: Understanding the asymptotic behavior of different algorithms is a key concept of the course.

More information

A great source of information is the course's website (available at http://www.cs.tufts.edu/comp/160/). If you still have questions, we can be reached in the following ways:

In class Just come chat with the instructor before/after lectures.

Office hours Instructors and TAs are doing office hours at most times of the day (exact schedule will be posted in the course's website).

Piazza The code for joining this discussion forum will be given in class. Homework assignments will only be posted there, so joining is a must! The main advantage of posting on Piazza over e-mail is that TAs or fellow students will also see the questions and may be able to help.

E-mail If all of the above methods fail, you can reach us at name.surname@tufts.edu. Please understand that these e-mail addresses are loosely monitored and should NOT be used for urgent issues. Any of the above methods are better methods are guaranteed to get a faster response.

Textbook

The course follows closely the contents of *Intro- duction to algorithms* book, written by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein (for brevity, we often refer to it as the CLRS). Each week we will point to specific sections of CLRS that are related to the topics discussed in class. Two copies of the book have been permanently reserved at Tufts Tisch library specifically for Comp 160 students. If you are having troubles accessing a copy, let us know and we can request additional ones.