- 1. What does a neuron compute?
 - Answer : A neuron computes a linear function (z = Wx + b) followed by an activation function
- 2. Which of these is the "Logistic Loss"?
 - Answer :

- 3. Suppose img is a (32,32,3) array, representing a 32x32 image with 3 color channels red, green and blue. How do you reshape this into a column vector?
 - Answer:

```
x = img.reshape((32*32*3,1))
```

4. Consider the two following random arrays a and b

```
a = np.random.randn(2, 3) # a.shape = (2, 3)
```

$$b = np.random.randn(2, 1) # b.shape = (2, 1)$$

$$c = a + b$$

What will be the shape of c?

- Answer: c.shape = (2, 3)
- 5. Consider the two following random arrays a and b:

$$a = np.random.randn(4, 3) # a.shape = (4, 3)$$

$$b = np.random.randn(3, 2) # b.shape = (3, 2)$$

$$c = a*b$$

What will be the shape of c?

- Answer: The computation cannot happen because the sizes don't match. It's going to be "Error"!
- 6.

	6. Suppose you have n_x input features per example. Recall that $X=[x^{(1)}x^{(2)}x^{(m)}]$. What is the dimension of X?
	\bigcirc $(m,1)$
	\bigcirc (n_x,m)
	\bigcirc $(1,m)$
	$\bigcap (m, n_x)$
7.	Recall that np.dot(a,b) performs a matrix multiplication on a and b, whereas a*
	performs an element-wise multiplication.
	Consider the two following random arrays a and b:
	a = np.random.randn(12288, 150) # a.shape = (12288, 150)
	b = np.random.randn(150, 45) # b.shape = (150, 45)
	c = np.dot(a,b)
	What is the shape of c?
	- Answer: $c.shape = (12288, 45)$
8.	Consider the following code snippet:
	# $a.shape = (3,4)$
	# b.shape = $(4,1)$
	for i in range(3):
	for j in range(4):
	c[i][j] = a[i][j] + b[j]c[i][j] = a[i][j] + b[j]
	How do you vectorize this?
	- Answer : $c = a + b.T$
9.	Consider the following code:
	a = np.random.randn(3, 3)
	b = np.random.randn(3, 1)
	c = a*b
	What will be c? (If you're not sure, feel free to run this in python to find out).
	- Answer: This will invoke broadcasting, so b is copied three times to become (3,3), an
	** is an element-wise product so c.shape will be (3, 3)

10. Consider the following computation graph.

What is the output J?

- Answer : J = (a - 1) * (b + c)