Présentation stage

Clément Legrand

July 3, 2018

Capacitated Vehicle Routing Problem

Instance

- n-1 clients (et leur demande d_i)
- k véhicules disponibles, de capacité C

Objectif

Déterminer Sol (ensemble des tournées) tel que:

Sol =
$$\underset{i=0}{\operatorname{argmin}} \sum_{i=0}^{n} \sum_{j=0}^{n} \sum_{v=1}^{k} distance(i,j) x_{i,j}^{v} = \underset{i}{\operatorname{argmin}} Sol cost(Sol)$$

où $x_{i,j}^{v} = 1$ si j est desservi après i par le véhicule v (et 0 sinon).

Contraintes

- Chaque client doit être desservie par un unique véhicule;
- Chaque tournée doit partir et s'arrêter au dépôt;
- La somme des demandes sur une tournée ne peut excéder la capacité du véhicule.

Illustration

Instance A-n37-k06 (donc 36 clients, et 6 véhicules disponibles de capacité 100):

Représentation instance

Meilleure solution connue, cost = 950

Objectif

Intégrer de la connaissance pour trouver une meilleure solution

Méthode

Réussir à prédire des arêtes qui appartiendront à la solution optimale, et les exploiter pour construire une nouvelle solution.

- Comparer à des solutions optimales pour des petites instances;
- Établir des règles qui caractérisent ces arêtes;
- Exploiter ces arêtes dans un algorithme d'optimisation.

Problèmes

- Comment construire une solution initiale de bonne qualité ?
- Comment extraire la connaissance ?
- Comment intégrer la connaissance dans un algorithme d'optimisation ?
- Quel algorithme d'optimisation utiliser ?

Algorithme Clarke & Wright (CW)

 $\mathsf{CW}^1 o \mathsf{Algorithme}$ glouton (chaque client est initialement desservi par un véhicule (contrainte de véhicules non respectée), puis la fusion des tournées est basée sur un calcul de saving.

Définition saving

Calcul du saving de i et j avec:

$$s(i,j) = c_{i0} + c_{0j} - \lambda c_{ij} + \mu |c_{i0} - c_{0j}| + \nu \frac{d_i + d_j}{\overline{d}}$$

(λ, μ, ν) sont des paramètres à déterminer

Fonctionnement

Tant que $\max_{(i,j)} s(i,j) > 0$:

- $(i,j) \leftarrow argmax_{(i,j)}s(i,j)$;
- Les tournées qui contiennent i et j sont fusionnées (si possible);
- $s(i,j) \leftarrow 0$.

¹IK. Altinel and T. Öncan, A new enhancement of the Clarke and Wright savings heuristic for the capacitated vehicle routing problem (2005)

Exécution pour $(\lambda, \mu, \nu) = (1, 1, 1)$ sur A-n37-k06

Initialisation

1^{ere} fusion

2^{eme} fusion

↓ Solution

Observation

Pour améliorer la solution obtenue, on pourrait réorganiser chaque tournée, pour diminuer leur coût.

Choix de (λ, μ, ν) ?

Dans la littérature plusieurs résultats sont disponibles :

- On peut se restreindre à l'intervalle [0, 2] pour choisir λ , μ et ν .
- Il est inutile de regarder ce qui se passe au centième.

Bilan

Ainsi on se contentera pour la suite de prendre des valeurs de λ,μ et ν arrondies au dixième, et comprises entre [0,2].

Choix de (λ, μ, ν) ?

Bilan

Difficile de prévoir l'influence des paramètres (λ,μ,ν) (pas d'évolution linéaire...).

C'est aussi le cas pour toute instance : l'influence de (λ,μ,ν) dépend de l'instance.

Heuristique Arnold & Sörensen

Heuristique A & S ²

```
Sol \leftarrow CW(\lambda, \mu, \nu)
   NewSol \leftarrow Sol
   while Pas d'améliorations depuis 3 min do
         Calcul de la pire arête
4
         NewSol \leftarrow EiectionChain_{BI-O}
 5
         NewSol \leftarrow LinKernighan_{BI-O}
6
         NewSol \leftarrow CrossExchange_{BI-O}
7
         NewSol \leftarrow LinKernighan_{BI-O}
8
        if cost(NewSol) < cost(Sol) then
q
              Sol \leftarrow NewSol
10
```

11 return Sol

²Florian Arnold and Kenneth Sörensen, A simple, deterministic and efficient knowledge-driven heuristic for the vehicle routing problem (2017) $\mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}$

Pire arête

Pire arête

La pire arête du graphe est l'arête (i,j) qui maximise la fonction:

$$b(i,j) = \frac{[\gamma_w w(i,j) + \gamma_c c(i,j)][\frac{d(i,j)}{\max_{k,l} d(k,l)}]^{\frac{\gamma_d}{2}}}{1 + p(i,j)}$$

Opérateurs de voisinage

Ejection-chain

Déplacer I clients sur des tournées. On fixe I=3 d'après la littérature.

Cross-exchange

Échanger deux séquences de clients entre deux tournées.

Figure 2: Illustration of the ejection chain with two relocations.

Figure 1: Illustration of the CROSS-exchange with sequences of two customers.

Opérateurs de voisinage

Lin-Kernighan

- Créé pour TSP;
- Optimisation intra-tournée (chaque tournée est améliorée indépendamment des autres).

Algorithme d'optimisation (H_c)

```
1 Sol \leftarrow CW(\lambda, \mu, \nu)
   NewSol ← Sol
   while La dernière amélioration date de moins de n/3 min do
        Calcul de la pire arête
 4
        NewSol \leftarrow EjectionChain_{FI-RD}
 5
        NewSol \leftarrow LinKernighan_{BI-O}
 6
        NewSol \leftarrow CrossExchange_{FI-RD}
 7
        NewSol \leftarrow LinKernighan_{BI-O}
 8
        if cost(NewSol) < cost(Sol) then
 9
             Sol \leftarrow NewSol
10
        if Pas d'améliorations depuis n/2 itérations then
11
             NewSol \leftarrow Sol
                                                                                 Restart
12
```

13 return Sol

Validation

	,	4-n37-k0	6	,	4-n65-k0	9	P-n101-k04			
Ajout	Best	Mean	Time	Best	Mean	Time	Best	Mean	Time	
Rien	950	957	195	1197	1215	395	722	736	783	
Divers	950	969	200	1200	1230	350	698	706	1500	

Bilan

Diversification plus intéressante pour des grandes instances

Exemples

Protocole

Questions

- Combien de solutions dans l'échantillon ?
- Combien de solutions pour apprendre ?
- Comment choisir les arêtes à conserver ?

Protocole

Combien de solutions dans l'échantillon ?

- Considérer tous les (λ, μ, ν) ;
- Tirer $N(\lambda, \mu, \nu)$ aléatoirement;

Quelles solutions pour apprendre ?

- Tout l'échantillon (Tout);
- x% des meilleures solutions : quantité privilégiée (Quan_x);
- Solutions avec coût inférieur à $c_{min} + (c_{max} c_{min}) \frac{x}{100}$: qualité privilégiée (Qual_x);

Comment choisir les arêtes à conserver ?

Pour chaque arête (i,j), on incrémente la valeur de MAT[i][j];

- Conserver $(i,j) \Leftrightarrow MAT[i][j] > seuil$ (Seuil);
- Conserver les rg premières arêtes dans la matrice (Rang).

Résultats A-n37-k06, critère Seuil

		Qua	n ₁₀			Qual	10		Tout			
	Seuil	Arêtes	Corr	Prop	Seuil	Arêtes	Corr	Prop	Seuil	Arêtes	Corr	Prop
50	3	34	21	0.5	S _{1b} /2	33	21	0.50	25	23	15	0.35
	4	23	14	0.33	3S _{1b} /4	17	12	0.28	38	10	7	0.16
100	5	30	21	0.5	S _{1b} /2	31	23	0.55	50	24	17	0.40
	8	16	15	0.36	3S _{1b} /4	17	14	0.33	75	6	6	0.14
500	25	32	24	0.57	S ₁₆ /2	31	22	0.52	250	22	15	0.36
	38	15	14	0.33	3S _{1b} /4	20	16	0.38	375	7	7	0.18
8000	400	33	24	0.57	- 101	30	23	0.55	4000	25	16	0.38
	600	15	14	0.33	3S _{1b} /4	18	16	0.38	6000	9	6	0.14

Bilan

Taille de l'échantillon ne semble pas avoir d'influence sur les résultats. Beaucoup de bruit dans Tout. Base Quan₁₀ trop petite avec échantillon 50 ou 100.

Résultats A-n37-k06, critère Rang

	Ç	uan:	10	(Qual ₁	LO	Tout			
	Rang	Corr	Prop	Rang	Corr	Prop	Rang	Corr	Prop	
50	10	6	0.14	10	6	0.14	10	7	0.16	
	20	13	0.31	20	13	0.32	20	13	0.31	
	18	12	0.28	18	13	0.3	18	12	0.28	
100	10	9	0.21	10	9	0.21	10	10	0.24	
	20	16	0.38	20	16	0.38	20	15	0.36	
	18	13	0.3	18	13	0.3	18	12	0.29	
500	10	9	0.21	10	10	0.24	10	9	0.21	
	20	16	0.38	20	16	0.38	20	15	0.36	
	18	13	0.3	18	13	0.3	18	12	0.28	
8000	10	8	0.19	10	9	0.21	10	7	0.17	
	20	14	0.33	20	14	0.33	20	14	0.33	
	18	12	0.29	18	12	0.29	18	12	0.29	

Pas de différences majeures entre les 3 bases d'apprentissage.

Résultats A-n65-k09, critère Seuil

		Qua	n ₁₀			Qual	10		Tout			
	Seuil	Arêtes	Corr	Prop	Seuil	Arêtes	Corr	Prop	Seuil	Arêtes	Corr	Prop
50	3	73	43	0.59	L _{1b} /2	64	44	0.60	25	40	31	0.43
	4	61	40	0.55	3L _{1b} /4	39	29	0.40	38	14	9	0.13
100	5	70	44	0.6	L _{1b} /2	58	42	0.58	50	43	33	0.45
	8	63	41	0.56	3L _{1b} /4	36	28	0.39	75	15	10	0.14
500	25	71	43	0.59	L _{1b} /2		41	0.56	250	45	35	0.48
	38	60	40	0.55	$3L_{1b}/4$	35	28	0.39	375	14	9	0.13
8000	400	62	41	0.56	L ₁₆ /2	56	40	0.55	4000	45	35	0.48
	600	15	14	0.33	3L _{1b} /4	35	28	0.39	6000	13	9	0.12

Bilan

Beaucoup d'arêtes renvoyées avec critère Seuil o Solutions infaisables ?

Résultats A-n65-k09, critère Rang

	Ç	uan:	10	(Qual	LO	Tout			
	Rang	Corr	Prop	Rang	Corr	Prop	Rang	Corr	Prop	
50	10	6	0.08	10	7	0.1	10	7	0.1	
	20	14	0.2	20	15	0.21	20	14	0.19	
	33	23	0.32	33	26	0.36	33	24	0.33	
100	10	6	0.08	10	7	0.1	10	7	0.1	
	20	16	0.22	20	16	0.22	20	14	0.19	
	33	26	0.36	33	26	0.36	33	25	0.34	
500	10	7	0.1	10	7	0.1	10	6	0.08	
	20	17	0.23	20	15	0.21	20	13	0.18	
	33	27	0.37	33	26	0.36	33	25	0.34	
8000	10	7	0.1	10	7	0.1	10	6	0.08	
	20	17	0.23	20	17	0.23	20	13	0.18	
	33	27	0.37	33	27	0.37	33	25	0.34	

De nouveau les 3 bases renvoient des résultats similaires.

Résultats P-n101-k04, critère Seuil

		Qua	n ₁₀			Qual	10		Tout			
	Seuil	Arêtes	Corr	Prop	Seuil	Arêtes	Corr	Prop	Seuil	Arêtes	Corr	Prop
50	3	93	65	0.62	L _{1b} /2	83	66	0.64	25	71	61	0.59
	4	54	44	0.42	3L _{1b} /4	42	37	0.36	38	24	21	0.20
100	5	80	66	0.64	107	79	66	0.63	50	72	62	0.60
	8	45	41	0.40	3L _{1b} /4	42	39	0.38	75	24	22	0.21
500	25	83	69	0.67	L _{1b} /2	81	68	0.66	250	72	63	0.60
	38	43	39	0.38	3L ₁₆ /4	39	36	0.35	375	22	20	0.19
8000	400	87	73	0.7	L _{1b} /2	85	71	0.68	4000	70	60	0.58
	600	42	39	0.38	3L _{1b} /4	41	38	0.37	6000	23	21	0.2

Bilan

Plus la taille de l'instance augmente, et plus la proportion d'arêtes optimales renvoyées présentes dans la solution optimale est grande.

Résultats P-n101-k04, critère Rang

	Ç	uan:	10	(Qual	LO	Tout			
	Rang	Corr	Prop	Rang	Corr	Prop	Rang	Corr	Prop	
50	10	8	0.08	10	8	0.08	10	8	0.08	
	20	18	0.17	20	17	0.16	20	18	0.17	
	50	43	0.41	50	44	0.43	50	44	0.43	
100	10	8	0.08	10	8	0.08	10	8	0.08	
	20	18	0.17	20	18	0.17	20	18	0.17	
	50	46	0.44	50	46	0.44	50	46	0.44	
500	10	8	0.08	10	8	0.08	10	8	0.08	
	20	18	0.17	20	18	0.17	20	18	0.17	
	50	46	0.44	50	46	0.44	50	46	0.44	
8000	10	8	0.08	10	8	0.08	10	8	0.08	
	20	18	0.17	20	18	0.17	20	18	0.17	
	50	46	0.44	50	46	0.44	50	46	0.44	

Toujours des résultats similaires avec les 3 bases.

Nouvel algorithme

LearnHeuristic (LH)

```
Construire Echantillon
 2 Déterminer Init par apprentissage
   (\lambda, \mu, \nu) \leftarrow argmin_{(\lambda, \mu, \nu) \in Echantillon} CW(I, D, \lambda, \mu, \nu)
   newBase ← []
    for i \leftarrow 1 to 10 do
         if i = 1 then
                Sol \leftarrow H_c(Init, I, D, \lambda, \mu, \nu)
 7
                newBase \leftarrow newBase \cup Sol
 8
         else
 9
                Déterminer Init avec les connaissances de newBase
10
                Sol \leftarrow H_c(Init, I, D, \lambda, \mu, \nu)
11
                newBase \leftarrow newBase \cup Sol
12
```

13 return La meilleure solution

Résultats

Choix pour apprentissage

• Taille échantillon : 100

Base: Qual₁₀

• Critère : Rang = n/2

		A-n37	'-k06	Α.	\-n65-	k09	P-n101-k04		
Connaissances	Best	Mean	Time	Best	Mean	Time	Best	Mean	Time
			805						
Avec	950	966	1073 (3)	1186	1193	911 (8)	694	704	1533 (78)

Bilan

L'intégration de connaissance semble apporter de meilleurs résultats

Conclusion

Améliorations

- Meilleurs critères pour apprendre ?
- Base d'apprentissage trop petite dans LH
- Ajouter de la diversification dans l'apprentissage