SCHOOL OF MECHANICAL ENGINEERING

Continuous Assessment Test - I - Fall Semester 2019-2020

Programme Name & Branch:

B.Tech (BME, BEM, BMA)

Course Name & Code: Heat Transfer, MEE2005

Class Number: 1210 Slot: A1/TA1/V1 Exam Duration: 90 mins Maximum Marks: 50

General instruction(s):

5.

Use of Heat and Mass Transfer Data book is permitted ON

SPARCH VIT QUESTION PAPERS ON TELEGRAM TO JOIN

Assume Suitable data if required

S.No.	Answer all questions (5 x 10 = 50 Marks) Question	
		Outcome (CO)
1.	The inside of a furnace wall is at 1000°C and with the existing wall of material with thermal conductivity of 1.7 W/mK, looses 2.5 kW/m² when the outside is exposed to convection to air at 30°C with h = 27 W/m²K. Determine the wall thickness. Additionally 75 mm thickness of insulation with k = 0.15 W/mK is added inside. The furnace wall temperature and the surrounding temperature and convection coefficient remain unchanged. Determine the reduction in heat flow and reduction in the outside surface temperature.	COI
	Derive the expression of critical radius of insulation. Heat is generated at the constant rate of 2×10^3 W/m ³ in a copper sphere (k = 386 W/mK) of 1 cm radius. The sphere is cooled by convection from its outer surface into an ambient at 10° C with a convection coefficient of 2000 W/m ² K. What would be the maximum rate of heat transfer can be achieved by the insulation with the plastic material (k = 5 W/mK)	COI
lè	Derive a study state temperature profile (T=f(x)) for a semi-infinite slab width 2L) with constant heat generation (g), cooling in the environment Γ_{∞}). Assume the other parameters as constant.	CO2
su the ste (a) cor (b)	Consider a homogeneous spherical piece of radioactive material of radius round that is generating heat at a constant rate of q _{gen} = 4 x 10 ⁷ W/m ³ , the heat generated is dissipated to the environment steadily. The outer rate of the sphere is maintained at a uniform temperature of 80°C and at the temperature of the sphere is k= 15 W/m°C. Assuming ady one dimensional heat transfer, Express the differential equation and the boundary conditions for heat aduction through the sphere. Determine the temperature at the centre of the sphere.	CO2
boil taste	ing water pan for 4 minutes and found to be boiled to the consumers. For how long should a similar egg for same consumers by health and	CO3
The	n from a refrigerator at 5°C? Take the following properties for egg: mal conductivity = 50 W/m°C, density = 1200 kg/m³, Specific heat = 2 g°C and heat transfer coefficient = 100 W/m²°C.	