

Focus for this lecture

Deep Learnt Features

- Image Representation
 - Hand-crafted features
 - Statistical features
 - Deep LearntFeatures

Al and Problem of Perception

Why is it challenging?

Occlusions/Truncations

View Point Variation

Intra class variations

Inter class variations

Hand-crafted features

What is a digital image?

• 2D matrix of intensities (gray or color values) or numbers

100	50	0	150
90	255	70	70
200	150	255	50
0	100	80	0

Image Representation

Image Representation

Example of an AI system which outputs high-level image description

Image or Image Representation

(High-level)
Image Description

Classification vs Clustering

- Classification (known categories)
- Clustering (unknown categories)

Clustering (Unsupervised Classification)

Various kinds of ML problems involving images

Why is this hard?

A Typical Problem: CIFAR-10

10 classes. 50K Train. 10K Test

- Our "smaller" Lab problem
 - Automobile vs bird
 - Separate/recognize two classes
 - 10K Train 2K Test Samples

A Naïve Attempt

- If (image has green/grass)
 - It is an animal
 - if (it is tall) it is a horse
- If (image has blue)
 - It is either airplane or bird
 - If (...)
- And so on ...

Any hope of this working?

Human knowledge

Human knowledge

Possible Features: Handcrafting

MIN RED

MAX RED

MEAN RED

MIN GREEN

MAX GREEN

MEAN GREEN

MIN BLUE

MAX BLUE

MEAN BLUE

Concerns:

- Too naïve to capture the visual content?
- Too small to represent information?

9 X 1
FEATURE VECTOR
PER IMAGE

Possible Features: Raw Data Itself

FEATURE VECTOR

32 X 32 X 3 = 3072

DIMENSION

PER IMAGE (d = 3072)

CONCERNS:

- Too big?
- May be redundancy?
- Too rigid?

3072 X 1 vector

Visual Bag of Words

Visual BoW: Basic Idea

Bag of Visual Words

Example: Search in a huge video DBs

Person Riding Bicycle: Results

SVM Classifier, Intersection Kernel, BoW feature

Cityscape: Results

SVM Classifier, Intersection Kernel, BoW feature

Female Face Close-up: Results

SVM Classifier, Intersection Kernel, BoW feature

NSE talent Sprint IIIT Hyderabad

Bag of Words model

SIFT Features

Vector Quantization

Dictionary/Codebook

Histogram of Visual Words / Image Representation

Deep Features

Neural Network, Deep Learning and Deep ______
Features

Image Representation

Features: Classical

Edges and Corners: Sobel, LoG and Canny

PCA, Subspaces and Manifolds

Fourier and Wavelet

Texture; Filter bank; Histogram of responses

Well Engineered Features

SIFT (Lowe 1999, 2004)

HOG(Dalal and Triggs 2005)

Bag of Words (Sivic and Zisserman 2003)

Focus: Dictionary Learning, Pooling and Coding

Mid-Level Features (2012-2013)

Deep Learnt Features (2013-XXX)

• It's deep if it has more than one stage of non-linear feature transformation.

Source: Yann LeCun

Object-recognition: conventional approach

Object-recognition: conventional approach

Object Recognition: Deep Neural Networks

Data-driven, End-to-End learning

Object Recognition: Deep Neural Networks

Data-driven, End-to-End learning, Task-specific feature hierarchy

Why deep learning

Summary

Deep Learning

Complex Functions and Richer Features

$$\mathbf{x} \Longrightarrow \mathbf{f}_{\mathbf{n}}(\mathbf{f}_{\mathbf{n-1}}(\dots \mathbf{f}_{2}(\mathbf{f}_{1}(\mathbf{x}))\dots)) \Longrightarrow \mathbf{y}$$

Deep Learnt Features (2013-XXX)

• It's deep if it has more than one stage of non-linear feature transformation.

Source: Yann LeCun

Deep Features

Cutting a Trained Neural Network

Input

Cut after 2nd Hidden Layer Cut after (n-2)th Hidden Layer Hidden **layers**

MLP Perspective

Deep Image Features

Deep Learning = End to End Learning (Raw data to labels)

Deep Learning = Feature Learning!! **Deep Neural Networks** Many linear and nonlinear I/P: Raw operations **Images Final** An intermediate **Stages** representation from a popular Classifier "Deep VGGNet", which was designed and trained for solving a "general" 1000 class classification.

Deep Image Features

Deep Image Features

Summary

Summary

Features

Thanks!!!

Questions?