1. General Steps:

- a) Preprocessing
 - i. input: expression matrix
 - 1. row: cell
 - 2. column: genes
 - ii. filter:
 - 1. num_genes <200 and > 5000, discard (using histogram). Outlier detection algorithms could be applied here
 - 2. filter out mitochondrial gene transcripts gene
 - 3. discard low expression genes, usually fewer than 3 cells in the data. Why? To be researched
 - iii. Inference:
 - 1. To infer the interaction between TF and target genes
 - a) For each target gene, build a ensemble model
 - b) How to measure the importance for each TFs?
 - i. Use feature importance based on the information gain
 - ii. https://github.com/vahuynh/GENIE3/blob/master/GENIE3_pyth on/GENIE3.py
 - iii. For each tree, we use the decision_tree.computa_feature importance function to compute the feature importance for each tree and use the mean for all the trees
 - Issues: this prefer to high cardinality categorical features and numerical features, might not be useful to generalize(see: https://stats.stackexchange.com/questions/450703/is-feature-importance-in-random-forest-useless)
 - 2. Random forest is non-deterministic model
 - 3. SHAP is more appropriate?
 - 2. Module generation
 - a) Get top-50 target response gene for each TF
 - 3. TF-regulon prediction
 - a) Hidden-Markov,