Laboratorio Nro. 02 Complejidad de algoritmos

Maria Alejandra Vélez Clavijo

Universidad Eafit Medellín, Colombia mavelezc1@eafit.edu.co

Laura Katterine Zapata Rendón

Universidad Eafit Medellín, Colombia Ikzapatar@eafit.edu.co

3) Simulacro de preguntas de sustentación de Proyectos

3.1

Mergesort		Inser	tsort
n(tamaño	T(n)	n(tamaño	T(n)
	(segundos)	del arreglo)	(segundos)
		10000	30
10000	187	20000	111
20000	295	30000	222
30000	420	40000	291
40000	448	50000	409
50000	658	60000	511
60000	1173	70000	769
70000	1250	80000	898
80000	1484		
90000	1850	90000	1180
100000	2215	100000	1410
110000	2571	110000	1692
120000	3017	120000	2026
130000	3784	130000	2370
140000	5469	140000	2744
150000	6046	150000	3170
160000	6688	160000	3544
170000	7393	170000	4022
180000	8214	180000	4508
190000	9237	190000	5032
200000	9902	200000	5567

PhD. Mauricio Toro Bermúdez

3.2

PhD. Mauricio Toro Bermúdez

- **3.3** No sería apropiado utilizar InsertSort para datos muy grandes (millones de datos) puesto que su complejidad es O(n^2) y demoraría bastante tiempo ejecutar el algoritmo con tantos datos, por ello es recomendable que para estos casos se utilice otro algoritmo de ordenación que sea mucho más rápido, como lo podría ser MergeSort.
- **3.4** La complejidad asintótica logarítmica aparece en el algoritmo MergeSort y esto sucede porque el número de divisiones que ocurre en este algoritmo siempre es menor a n, es decir a medida que aumenta la cantidad de datos, el número de operaciones aumenta, pero no de forma proporcional a los datos.
- **3.5** En arreglos grandes para que el algoritmo InsertSort sea más rápido que el algoritmo MergeSort, el arreglo debe estar ordenado, que sería el mejor de los casos, ya que la complejidad del InsertSort en este caso en particular es n, mientras que el de MergeSort sigue siendo n*log(n).
- **3.6** El ejercicio maxSpan de Array 3 en Coding Bat consiste en un algoritmo que recibe como parámetro un arreglo de enteros y tiene como objetivo retornar un entero el cual es la máxima longitud encontrada. Teniendo como longitud el número de elementos que se encuentran entre dos elementos iguales, incluvéndolos a ellos.

La implementación de este algoritmo consiste en definir dos variables enteras una para almacenar la máxima longitud y otra para almacenar la longitud actual. Luego se ejecuta un ciclo el cual recorre el arreglo desde la primera posición. Dentro de este va otro ciclo el cuál recorre el arreglo desde la última posición hasta la primera. Luego se compara si el elemento en la posición de la izquierda es igual al elemento en la posición de la derecha y posteriormente se compara si el número de elementos que hay entre ellos es mayor a la longitud máxima hasta el momento, de ser cierto, la variable donde se almacena la longitud máxima ya pasara a tener el valor de esta longitud.

PhD. Mauricio Toro Bermúdez

3.7 y 3.8

CodingBat	Algoritmo	Descripción	Comlejidad para el peor de los casos	n (descripción)
	sum13	El algoritmo sum13 devuelve la suma de los números de la matriz, devolviendo 0 para una matriz vacía. Excepto que el número 13 no se cuenta y los números que vienen inmediatamente después del 13 tampoco cuentan.	O(n)	cantidad de elementos del arreglo nums
	fizzArray	Dado un número n, el algoritmo fizzArray crea y devuelve una nueva matriz int de longitud n, que contiene los números 0, 1, 2, n-1	O(n)	longitud del arreglo a crear
Array 2	notAlone	El algoritmo norAlone devuelve una versión de la matriz dada donde cada instancia del valor dado que está solo se reemplaza por el valor a su izquierda o derecha que sea mayor.	O(n)	cantidad de elementos del arreglo nums
	countEvens	El algoritmo countEvens retorna la cantidad de enteros pares en un arreglo.	O(n)	longitud del arreglo nums
	lucky13	El algoritmo lucky13 retorna true si no hay 1's o 3's en el arreglo de enteros.	O(n)	longitud del arreglo nums
	matchUp	El algoritmo matchUp dados dos arreglos de enteros con la misma longitud, compara cada elemento en la misma posición y determina cuantos de ellos son diferentes y se encuentran en un rango de 2 numeros por encima o 2 numeros por debajo.	O(n)	longitud de los dos arreglos nums1 y nums2

PhD. Mauricio Toro Bermúdez

CodingBat	Algoritmo	Descripción	Comlejidad para el peor de los casos	n (descripción)
Array 3	linearIn	El algoritmo linearIn, dadas dos matrices de enteros ordenados en orden creciente, outer e inner , devuelve verdadero si todos los números de la matriz inner aparecen en la matriz outer.	O(n)	longitud de la matriz de enteros exterior
	canBalance	El algoritmo canBalance, dada una matriz no vacía, devuelve verdadero si hay un lugar para dividir la matriz de modo que la suma de los números de un lado sea igual a la suma de los números del otro lado.	O(n)	longitud del arreglo nums
	countClumps	Supongamos que un "grupo" en una matriz es una serie de 2 o más elementos adyacentes del mismo valor. El algoritmo countClumps devuelve el número de grupos en la matriz dada.	O(n)	longitud del arreglo nums
	maxSpan	El algoritmo maxSpan dado un arreglo de enteros, encuentra dos elementos que sean iguales y establece como longitud la cantidad de elementos que hay entre ellos, incluyendolos. Luego devuelve la mayor longitud encontrada.	O(n^2)	longitud del arreglo nums
	seriesUp	El algoritmo seriesUp dado un entero n, retorna un arreglo de enteros con la serie de la forma {1, 1, 2, 1, 2, 3, 1, 2, 3 n}.	O(n^2)	numero enésimo de la serie
	squareUp	El algoritmo squareUp dado un entero n, retorna un arreglo de enteros con la serie de la forma para n=3: {0, 0, 1, 0, 2, 1, 3, 2, 1}.	O(n^2)	numero enésimo de la serie

4) Simulacro de Parcial

4.1 Respuesta C

4.2 Respuesta B

4.3 Respuesta B

4.4 Respuesta A

4.5

4.5.1 Respuesta D

4.5.2 Respuesta A

PhD. Mauricio Toro Bermúdez

- 4.6 Para procesar 10000 datos se tardará 100000 segundos
- 4.7 Respuesta: todas son verdaderas
- 4.8 Respuesta A
- 4.9 Respuesta A
- 4.10 Respuesta C
- 4.11 Respuesta C
- 4.12 Respuesta B
- 4.13 Respuesta C
- **4.14** Respuesta A

5) Lectura recomendada (opcional)

PhD. Mauricio Toro Bermúdez

6) Trabajo en Equipo y Progreso Gradual (Opcional)

6.1 Actas de reunión

Acta	Fecha	Integrante	Hecho
	1 31/08/2020	Laura Katterine Zapata Rendón	Leer laboratorio 2
1		Maria Alejandra Vélez Clavijo	Leer laboratorio 2
		Laura Katterine Zapata Rendón	1.1 Implementar MergeSort e InsertionSort 3.1 Tomar tiempo de 20 tamaños diferentes para MergeSort y construir tabla
2	2/09/2020		3.2 Graficar los tiempos de MergeSort 1.1 Implementar MergeSort e InsertionSort
		Maria Alejandra Vélez Clavijo	3.1 Tomar tiempo de 20 tamaños diferentes para InsertionSort y construir tabla
			3.2 Graficar los tiempos de InsertionSort
		Laura Katterine Zapata Rendón	2.1 Resolver 3 ejercicios Array2 CodingBat
			3.5 Complejidad 3 ejercicios Array2 CodinBat
	2/00/2020		2.2 Resolver 3 ejercicios Array3 CodingBat
3	3 3/09/2020	Maria Alejandra Vélez Clavijo	2.1 Resolver 3 ejercicios Array2 CodingBat
			3.5 Complejidad 3 ejercicios Array2 CodinBat
			2.2 Resolver 3 ejercicios Array3 CodingBa
		Laura Katterine Zapata Rendón 1/09/2020 Maria Alejandra Vélez Clavijo	3.5 Complejidad 3 ejercicios Array3 CodinBat
			 Responder si es apropiado InsertionSort para grandes cantidades de datos
			3.4 Responder por qué aparece logaritmo en la
4	4/09/2020		complejidad del MergeSort
	4,63,1526		3.5 Complejidad 3 ejercicios Array3 CodinBat
			3.3 Responder si es apropiado InsertionSort para grandes cantidades de datos
			3.4 Responder por qué aparece logaritmo en la complejidad del MergeSort
		Laura Katterine Zapata Rendón /09/2020 Maria Alejandra Velez Clavijo	3.4 Explicar cómo funciona maxSpan de Array3 CodingBat
			6 Explicar qué son las variables de la complejidad de los ejercicios en linea
	E /00 /2-2-2		4. Simulacro Parcial
5	5/09/2020		3.4 Explicar cómo funciona maxSpan de Array3
			CodingBat
			 6 Explicar qué son las variables de la complejidad de los ejercicios en linea
			4. Simulacro Parcial
		4. 3111010010 1 010101	

PhD. Mauricio Toro Bermúdez

Acta	Haciendo	Por hacer	
	1.1 Implementar MergeSort e	3.1 Tomar tiempo de 20 tamaños diferentes para	
1	InsertionSort	MergeSort y construir tabla	
		3.2 Graficar los tiempos de MergeSort	
		2.1 Resolver 3 ejercicios Array2 CodingBat	
	1.1 Implementar MergeSort e	3.1 Tomar tiempo de 20 tamaños diferentes para	
	InsertionSort	InsertiontSort y construir tabla	
		3.2 Graficar los tiempos de InsertionSort	
		2.1 Resolver 3 ejercicios Array2 CodingBat	
	2.1 Resolver 3 ejercicios Array2	3.5 Complejidad 3 ejercicios Array2 CodinBat	
		2.2 Resolver 3 ejercicios Array3 CodingBat	
2		3.5 Complejidad 3 ejercicios Array3 CodinBat	
_	2.1 Resolver 3 ejercicios Array2	3.5 Complejidad 3 ejercicios Array2 CodinBat	
		2.2 Resolver 3 ejercicios Array3 CodingBat	
		3.5 Complejidad 3 ejercicios Array3 CodinBat	
	3.5 Complejidad 3 ejercicios Array3	3.3 Responder si es apropiado InsertionSort para	
	CodinBat	grandes cantidades de datos	
		3.4 Responder por qué aparece logaritmo en la	
		complejidad del MergeSort	
		3.5 Responder cuando InsertionSort es más rapido	
3		que MergeSort	
	3.5 Complejidad 3 ejercicios Array3	3.3 Responder si es apropiado InsertionSort para	
	CodinBat	grandes cantidades de datos	
		3.4 Responder por qué aparece logaritmo en la	
		complejidad del MergeSort	
		3.5 Responder cuando InsertionSort es más rapido	
	3.5 Responder cuando InsertionSort es	que MergeSort 3.4 Explicar cómo funciona maxSpan de Array3	
	más rapido que MergeSort	CodingBat	
		6 Explicar qué son las variables de la complejidad	
	4. Simulacro Parcial	de los ejercicios en linea	
		ac las of cranes on mice	
4	3.5 Responder cuando InsertionSort es	3.4 Explicar cómo funciona maxSpan de Array3	
	más rapido que MergeSort	CodingBat	
	4. Simulacro Parcial	3. 6 Explicar qué son las variables de la complejidad	
	4. Simulacro Parcial	de los ejercicios en linea	
5	5 Lectura recomendada y realización		
	mapa		
	5 Lectura recomendada y realización		
	mapa		

6.2 El reporte de cambios en el código

PhD. Mauricio Toro Bermúdez

 □ kattezapata / ST0245-001 <> Code (!) Issues Projects □ Wiki In Pull requests Actions Security Insights History for ST0245-001 / laboratorios / lab02 Commits on Sep 5, 2020 Se organiza la complejidad de MergeSort kattezapata committed 1 hour ago Código para hallar los 20 tiempos de insertionSort kattezapata committed 2 hours ago Se implementa ejercicio squareUp de Array3 CodingBat kattezapata committed 2 hours ago Se implementa ejercicio seriesUp de Array3 CodingBat kattezapata committed 2 hours ago Se implementa ejercicio maxSpan de Array3 CodingBat kattezapata committed 3 hours ago Se implementa ejercicio matchUp de Array2 CodingBat kattezapata committed 3 hours ago Se implementa ejercicio lucky13 de Array2 CodingBat 🏩 kattezapata committed 4 hours ago Se implementa ejercicio countEvens de Array2 CodingBat

PhD. Mauricio Toro Bermúdez

Docente | Escuela de Ingeniería | Informática y Sistemas Correo: mtorobe@eafit.edu.co | Oficina: Bloque 19 – 627 Tel: (+57) (4) 261 95 00 Ext. 9473

kattezapata committed 4 hours ago

Título Array2 y Array3

6.3 El reporte de cambios del informe de laboratorio

PhD. Mauricio Toro Bermúdez

PhD. Mauricio Toro Bermúdez

PhD. Mauricio Toro Bermúdez

PhD. Mauricio Toro Bermúdez

