In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]:

mydata=pd.read_excel("C:Downloads\data.csv.xlsx")

In [3]:

mydata

Out[3]:

	origin	cylinders	displacement	horsepower	weight	acceleration	year	name	Kilomet
0	1	8	307.0	130	3504	12.0	1970	chevrolet chevelle malibu	
1	1	8	350.0	165	3693	11.5	1970	buick skylark 320	
2	1	8	318.0	150	3436	11.0	1970	plymouth satellite	
3	1	8	304.0	150	3433	12.0	1970	amc rebel sst	
4	1	8	302.0	140	3449	10.5	1970	ford torino	
393	1	4	140.0	86	2790	15.6	1982	ford mustang gl	
394	2	4	97.0	52	2130	24.6	1982	vw pickup	
395	1	4	135.0	84	2295	11.6	1982	dodge rampage	
396	1	4	120.0	79	2625	18.6	1982	ford ranger	
397	1	4	119.0	82	2720	19.4	1982	chevy s- 10	

398 rows × 9 columns

In [4]:

#Replacing "?" available in the dataset to NA and then we drop NA
mydata1=mydata.replace({'?':np.nan}).dropna()

In [5]:

mydata1

Out[5]:

	origin	cylinders	displacement	horsepower	weight	acceleration	year	name	Kilomet
0	1	8	307.0	130.0	3504	12.0	1970	chevrolet chevelle malibu	
1	1	8	350.0	165.0	3693	11.5	1970	buick skylark 320	
2	1	8	318.0	150.0	3436	11.0	1970	plymouth satellite	
3	1	8	304.0	150.0	3433	12.0	1970	amc rebel sst	
4	1	8	302.0	140.0	3449	10.5	1970	ford torino	
393	1	4	140.0	86.0	2790	15.6	1982	ford mustang gl	
394	2	4	97.0	52.0	2130	24.6	1982	vw pickup	
395	1	4	135.0	84.0	2295	11.6	1982	dodge rampage	
396	1	4	120.0	79.0	2625	18.6	1982	ford ranger	
397	1	4	119.0	82.0	2720	19.4	1982	chevy s- 10	

392 rows × 9 columns

In [6]:

#Converting the datatype of "horsepower" from object to float
mydata1['horsepower']=pd.to_numeric(mydata1['horsepower'],downcast="float")

In [7]:

mydata1.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 392 entries, 0 to 397
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	origin	392 non-null	int64
1	cylinders	392 non-null	int64
2	displacement	392 non-null	float64
3	horsepower	392 non-null	float32
4	weight	392 non-null	int64
5	acceleration	392 non-null	float64
6	year	392 non-null	int64
7	name	392 non-null	object
8	Kilometer_per_liter	392 non-null	float64
dtyp	es: float32(1), float	64(3), int64(4),	object(1)

memory usage: 29.1+ KB

In [8]:

#Dropping the "name" column as it is not required
mydata2=mydata1.drop("name",axis=1)
mydata2

Out[8]:

		origin	cylinders	displacement	horsepower	weight	acceleration	year	Kilometer_per_lite
	0	1	8	307.0	130.0	3504	12.0	1970	7.65258
	1	1	8	350.0	165.0	3693	11.5	1970	6.377150
	2	1	8	318.0	150.0	3436	11.0	1970	7.652587
	3	1	8	304.0	150.0	3433	12.0	1970	6.802299
	4	1	8	302.0	140.0	3449	10.5	1970	7.227440
39	3	1	4	140.0	86.0	2790	15.6	1982	11.47888(
39	94	2	4	97.0	52.0	2130	24.6	1982	18.706323
39	95	1	4	135.0	84.0	2295	11.6	1982	13.604599
39	96	1	4	120.0	79.0	2625	18.6	1982	11.904024
39	7	1	4	119.0	82.0	2720	19.4	1982	13.17945

392 rows × 8 columns

In [9]:

#Dropping the "year" column as it is not required
mydata3=mydata2.drop("year",axis=1)
mydata3

Out[9]:

	origin	cylinders	displacement	horsepower	weight	acceleration	Kilometer_per_liter
0	1	8	307.0	130.0	3504	12.0	7.652587
1	1	8	350.0	165.0	3693	11.5	6.377156
2	1	8	318.0	150.0	3436	11.0	7.652587
3	1	8	304.0	150.0	3433	12.0	6.802299
4	1	8	302.0	140.0	3449	10.5	7.227443
393	1	4	140.0	86.0	2790	15.6	11.478880
394	2	4	97.0	52.0	2130	24.6	18.706323
395	1	4	135.0	84.0	2295	11.6	13.604599
396	1	4	120.0	79.0	2625	18.6	11.904024
397	1	4	119.0	82.0	2720	19.4	13.179455

392 rows × 7 columns

In [10]:

#Now we calculate the mean, std, min, max and quantiles by using describe function. mydata3.describe()

Out[10]:

	origin	cylinders	displacement	horsepower	weight	acceleration	Kilometer_
count	392.000000	392.000000	392.000000	392.000000	392.000000	392.000000	39
mean	1.576531	5.471939	194.411990	104.469391	2977.584184	15.541327	
std	0.805518	1.705783	104.644004	38.491138	849.402560	2.758864	
min	1.000000	3.000000	68.000000	46.000000	1613.000000	8.000000	
25%	1.000000	4.000000	105.000000	75.000000	2225.250000	13.775000	
50%	1.000000	4.000000	151.000000	93.500000	2803.500000	15.500000	
75%	2.000000	8.000000	275.750000	126.000000	3614.750000	17.025000	1
max	3.000000	8.000000	455.000000	230.000000	5140.000000	24.800000	1
4							•

In [11]:

#We use null function to calculate the null values present in the dataset. mydata3.isnull().sum()

Out[11]:

origin 0
cylinders 0
displacement 0
horsepower 0
weight 0
acceleration Kilometer_per_liter 0
dtype: int64

In [12]:

#Now we calculate the correlation of our dataset.
mydata3_corr=mydata3.corr()
mydata3_corr

Out[12]:

	origin	cylinders	displacement	horsepower	weight	acceleration	Kil
origin	1.000000	-0.568932	-0.614535	-0.455171	-0.585005	0.212746	
cylinders	-0.568932	1.000000	0.950823	0.842983	0.897527	-0.504683	
displacement	-0.614535	0.950823	1.000000	0.897257	0.932994	-0.543800	
horsepower	-0.455171	0.842983	0.897257	1.000000	0.864538	-0.689196	
weight	-0.585005	0.897527	0.932994	0.864538	1.000000	-0.416839	
acceleration	0.212746	-0.504683	-0.543800	-0.689196	-0.416839	1.000000	
Kilometer_per_liter	0.565209	-0.777618	-0.805127	-0.778427	-0.832244	0.423329	
4							•

In [13]:

#We use heatmap to demonstrate the correlation pattern.
sns.heatmap(mydata3_corr,annot=True,cmap='RdBu');

In [14]:

#We use pairplot to compare all the columns with eachother.
sns.pairplot(mydata3);

In [15]:

```
#Here by using boxplot we can compare two columns specifically.
sns.boxplot(x="horsepower",y="Kilometer_per_liter",data=mydata3);
```


In [16]:

#Similarly like the boxplot, We can use barplot as well to compare 2 different columns.
sns.barplot(x="acceleration",y="Kilometer_per_liter",data=mydata3);

In [17]:

```
#We can also use joinplot to compare 2 different columns.
sns.jointplot(x="displacement",y="Kilometer_per_liter",data=mydata3);
```


In [18]:

#And finally we have used catplot to categorize 2 columns which is similar to previous grap sns.catplot(x="weight",y="Kilometer_per_liter",data=mydata3);

In [19]:

```
#Now we separate dependent and independent values.
y_dep=mydata3.Kilometer_per_liter
y_dep
```

Out[19]:

```
0
        7.652587
1
        6.377156
2
        7.652587
3
        6.802299
4
        7.227443
       11.478880
393
       18.706323
394
395
       13.604599
       11.904024
396
       13.179455
397
Name: Kilometer_per_liter, Length: 392, dtype: float64
```

In [20]:

```
#Here we drop the dependent values to filter out all the independent values
x_ind=mydata3.drop("Kilometer_per_liter",axis=1)
x_ind
```

Out[20]:

	origin	cylinders	displacement	horsepower	weight	acceleration
0	1	8	307.0	130.0	3504	12.0
1	1	8	350.0	165.0	3693	11.5
2	1	8	318.0	150.0	3436	11.0
3	1	8	304.0	150.0	3433	12.0
4	1	8	302.0	140.0	3449	10.5
393	1	4	140.0	86.0	2790	15.6
394	2	4	97.0	52.0	2130	24.6
395	1	4	135.0	84.0	2295	11.6
396	1	4	120.0	79.0	2625	18.6
397	1	4	119.0	82.0	2720	19.4

392 rows × 6 columns

Checking p_value and R_Squared value

In [21]:

import statsmodels.api as sm

In [22]:

model=sm.OLS(y_dep,x_ind) #OLS means Ordinary Least SQuare

In [23]:

my_fit=model.fit()

```
In [24]:
```

```
my_fit.summary()
```

Out[24]:

OLS Regression Results

Covariance Type:

Dep. Variable:	Kilometer_per_liter	R-squared (uncentered):	0.954
Model:	OLS	Adj. R-squared (uncentered):	0.953
Method:	Least Squares	F-statistic:	1326.
Date:	Wed, 25 Aug 2021	Prob (F-statistic):	4.64e-254
Time:	19:54:08	Log-Likelihood:	-875.83
No. Observations:	392	AIC:	1764.
Df Residuals:	386	BIC:	1787.
Df Model:	6		

	coef	std err	t	P> t	[0.025	0.975]
origin	1.2389	0.184	6.741	0.000	0.878	1.600
cylinders	0.7222	0.207	3.486	0.001	0.315	1.130
displacement	-0.0125	0.005	-2.533	0.012	-0.022	-0.003
horsepower	0.0352	0.008	4.548	0.000	0.020	0.050
weight	-0.0025	0.000	-5.643	0.000	-0.003	-0.002
acceleration	0.6479	0.041	15.702	0.000	0.567	0.729

nonrobust

 Omnibus:
 17.389
 Durbin-Watson:
 1.132

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 21.608

 Skew:
 0.405
 Prob(JB):
 2.03e-05

 Kurtosis:
 3.816
 Cond. No.
 5.89e+03

Notes:

- [1] R² is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [3] The condition number is large, 5.89e+03. This might indicate that there are strong multicollinearity or other numerical problems.

In []:

```
#Conclusion :-
# R-Squared value is greater than 0.5 i.e. 0.954, Therefore the dataset is stable.
# P-values are less than 0.05. Therefore, all the variables are statistically significant.
```

Machine Learning

In [25]:

import sklearn #Scikit Library used for performing Machine Learning in Python.

```
In [26]:
```

```
from sklearn import model_selection
from sklearn.model_selection import train_test_split
```

In [27]:

```
x_train,x_test,y_train,y_test=train_test_split(x_ind,y_dep,train_size=0.8,random_state=1)
# x_train = 80% of x independent values
# x_test = 20% of x independent values
# y_train = 80% of y dependent values
# y_test = 20% of y dependent values
```

In [28]:

```
from sklearn import linear_model
from sklearn.linear_model import LinearRegression
```

In [29]:

```
#Create a model
model=LinearRegression()
```

In [30]:

```
#Then we fit the model.
model.fit(x_train,y_train)
```

Out[30]:

LinearRegression()

In [31]:

```
#We calculate the machine predicted values.
y_pred=model.predict(x_test)
```

In [32]:

```
y_pred
```

Out[32]:

```
array([11.84999284, 13.00748369, 12.69198052, 10.16054164, 13.53359842,
       11.71838874, 12.50362867, 5.97177772, 12.40575286, 12.88272377,
       8.75525876, 12.36354569, 7.21451224, 13.56477432, 10.87968507,
       7.64836895, 11.12196563, 12.80917311, 4.29415956, 9.77448791,
      12.20592564, 8.21412026, 7.56271109, 5.65412394, 4.79535918,
       6.61835603, 13.47663107, 8.33010537, 9.27149279, 11.0898943,
       7.64715482, 10.39338981, 5.37455235, 9.62709968, 8.66000877,
       6.18499364, 8.20703932, 8.49184554, 13.56680576, 12.75703209,
       4.99869913, 5.21975065, 10.56245595, 9.80036802, 10.00123846,
       8.04112071, 4.62045055, 13.59130868, 9.11142812, 3.66535164,
       7.00078968, 9.39089576, 10.48187735, 11.24033864, 13.27501299,
       9.54249098, 9.83650567, 10.70298983, 10.65183325, 14.08718089,
      10.00362091, 11.53318538, 13.6774748 , 8.52745023, 9.69936458,
       9.4352686 , 10.05142939 , 6.89475022 , 12.88007462 , 3.92318037 ,
      12.11724342, 7.70844148, 6.92028422, 12.25216255, 11.3334102 ,
      12.07275168, 6.72769602, 5.63734172, 5.56535967])
```

In [56]:

```
#To calculate the score of Linear Regression.
model.score(x_test,y_test)
```

Out[56]:

0.7233881200171334

In [33]:

```
#We then compare the Actual values and Machine predicted values.
f_comp=pd.DataFrame({"Actual":y_test, "Machine_predicted":y_pred})
```

```
In [34]:
```

```
f_comp
```

Out[34]:

	Actual	Machine_predicted
82	9.778305	11.849993
167	12.329168	13.007484
356	13.774656	12.691981
120	8.077730	10.160542
385	16.155461	13.533598
23	11.053736	11.333410
295	15.177630	12.072752
13	5.952012	6.727696
91	5.526868	5.637342
62	5.526868	5.565360

79 rows × 2 columns

Residuals

In [35]:

#Residuals is used to calculate the error between machine predicted value and actual values
Res = y_pred-y_test
Res

Out[35]:

```
82
       2.071688
167
       0.678316
      -1.082676
356
120
       2.082811
385
      -2.621862
23
      0.279674
295
      -3.104879
13
       0.775684
91
       0.110474
       0.038491
Name: Kilometer_per_liter, Length: 79, dtype: float64
```

In [36]:

```
from sklearn.metrics import mean_squared_error as ms
```

In [37]:

```
mean_sqr=ms(y_test,y_pred)
mean_sqr
```

Out[37]:

3.4658929751135883

In [38]:

```
#RMSE
root_mean_sqr=np.sqrt(mean_sqr)
root_mean_sqr
```

Out[38]:

1.8616908913978143

In [39]:

```
#Comparison Graph between Actual and Machine Predicted values comp_g=f_comp.head()
```

In [40]:

```
comp_g.plot(kind="bar", figsize=(10,5));
```


In [41]:

```
sns.distplot(f_comp["Actual"])
sns.distplot(f_comp["Machine_predicted"])
plt.legend(["Actual","Machine_predicted"])
```

C:\Users\aneef\anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fu tureWarning: `distplot` is a deprecated function and will be removed in a fu ture version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

C:\Users\aneef\anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fu tureWarning: `distplot` is a deprecated function and will be removed in a fu ture version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[41]:

<matplotlib.legend.Legend at 0x22494fff700>

In [42]:

model.intercept_

Out[42]:

16.886328884015484

```
In [43]:
```

```
model.coef_
```

Out[43]:

```
array([ 0.64807509, -0.08358926, 0.00210625, -0.0229945 , -0.00199078, 0.02209666])
```

Stochastic Gradient Descent

In [44]:

```
from sklearn.model_selection import train_test_split
```

In [45]:

```
\label{eq:contraction} X\_train, X\_test, Y\_train, Y\_test=train\_test\_split(x\_ind, y\_dep, train\_size=0.8, random\_state=1)
```

In [46]:

from sklearn.preprocessing import StandardScaler

In [47]:

```
norm=StandardScaler()
```

In [48]:

```
X_train=norm.fit_transform(X_train)
X_test=norm.fit_transform(X_test)
```

In [49]:

```
import seaborn as sns
```

In [50]:

```
sns.displot(X_train); # checking normal plot
```


In [51]:

from sklearn.linear_model import SGDRegressor

In [52]:

model1=SGDRegressor()

In [53]:

model1.fit(X_train,Y_train)

Out[53]:

SGDRegressor()

In [54]:

ypred=model1.predict(X_test)

In [55]:

#To calculate the score of SGDR.
model1.score(X_test,Y_test)

Out[55]:

0.7336026093987825