Xranda and Tree

IEEE Xtreme 13

Xranda and Tree

Time limit: 2500 ms Memory limit: 256 MB

Xranda and her boyfriend, a man who does not chew are living in an tree with N nodes, with numerical labels on the edges. Their passion for treeology determined them to answer some seemingly impossible problems like "how many labeled trees lie in the isomorphism class of a given tree?" or "what is the generalised rotation distance from their tree and some arbitrary other one?". Exhausted by these tasks, they ask you to solve an easier one.

We define the distance d(u, v) between two nodes u and v as the largest label of an edge which belongs to the unique path between them. Compute the sum of the distances across each possible pair of nodes, that is:

$$\sum_{a=1}^{n} \sum_{b=1}^{a-1} d(a,b)$$

Given that this number can be quite large, we are only interested of its remainder when divided by $10^9 + 7$.

We have the following distances:

$$d(1,2) = 1; d(1,3) = 2; d(1,4) = 3;$$

 $d(1,5) = 4; d(2,3) = 2; d(2,4) = 3;$
 $d(2,5) = 4; d(3,4) = 3; d(3,5) = 4;$
 $d(4,5) = 4$

The total sum is 30.

$$\sum_{a=1}^{n} \sum_{b=1}^{a-1} d(a,b)$$

d(a, b): Max edge value from a to b

Source Summary Results Compilation messages

Score: 25/100 (2564 ms - 41.3

Result \$	Memory Usage	CPU Usage \$	Test Number ≑
Time limit exceeded	41.3 MB	2560 ms	20
Time limit exceeded	41.3 MB	2559 ms	19
Time limit exceeded	41.2 MB	2558 ms	18
Time limit exceeded	41.3 MB	2558 ms	17
Time limit exceeded	41.2 MB	2557 ms	16
Time limit exceeded	41.2 MB	2560 ms	15
Time limit exceeded	41.3 MB	2563 ms	14
Time limit exceeded	41.2 MB	2564 ms	13
Time limit exceeded	41.2 MB	2559 ms	12
Time limit exceeded	41.3 MB	2558 ms	11
Time limit exceeded	41.3 MB	2564 ms	10
Time limit exceeded	41.2 MB	2558 ms	9
Time limit exceeded	41.3 MB	2559 ms	8
Time limit exceeded	41.3 MB	2558 ms	7
Time limit exceeded	41.3 MB	2557 ms	6
ОК	4392 KB	337 ms	5
OK	4424 KB	387 ms	4
OK	4400 KB	346 ms	3
OK	4384 KB	340 ms	2
OK	4392 KB	352 ms	1
OK	3968 KB	21 ms	0

Edges

Πόσες φορές πρέπει να μετρηθεί

1 φορά total += w1

2 φορές total += 2 * w2

Πόσες φορές πρέπει να μετρηθεί

wj > όλες τις άλλες ακμές

Συνολικά μονοπάτια που περνάνε από wj: n * m

total += wj * n * m

total = 0

Sorted

Edges = [(1, 2, w=1), (1, 3, w=2), (2, 4, w=3), (2, 5, w=4)]

total = 1

Edges = [(1, 3, w=2), (2, 4, w=3), (2, 5, w=4)]

Edges =
$$[(2, 4, w=3), (2, 5, w=4)]$$

Edges = [(2, 5, w=4)]

Edges = []

Sort: n logn

Disjoint Set

Find: logn (find which set a node belongs to)
Union: logn (merge 2 sets)

Total Complexity: O(n logn) + n * O(logn) = O(n logn)