

Lecture 5

Density-dependent population growth

WILD3810 (Spring 2020)

Readings

Mills 126-141

Density-independence vs density-dependence

In lecture 3, we learned about population growth models that assume demographic rates are unrelated to population size

Density-independence vs density-dependence

We also learned that this assumption leads to exponential population growth

Limitless population growth?

No population can grow exponentially forever (or even for relatively short periods of time)

Limitless population growth?

No population can grow exponentially forever (or even for relatively short periods of time)

Thomas Malthus was the first to propose that no population could grow without bound forever (1798)

• At some point, resources will be become limited and populations must either stop growing or decline

Limitless population growth?

No population can grow exponentially forever (or even for relatively short periods of time)

Thomas Malthus was the first to propose that no population could grow without bound forever (1798)

• At some point, resources will be become limited and populations must either stop growing or decline

Stochasticity and extinction risk over time

We also learned that, given enough time, populations that experience stochasticity will eventually go extinct

Stochasticity and extinction risk over time

We also learned that, given enough time, populations that experience stochasticity will eventually go extinct

Why isn't extinction more common?

Density-dependence

The tendency of population vital rates, and therefore population growth rate, to change (increase or decrease) as a function of population size

Density-dependence

The tendency of population vital rates, and therefore population growth rate, to change (increase or decrease) as a function of population size

At small population sizes, individual organisms may be able to acquire all of the resources they need to survive and reproduce

Density-dependence

The tendency of population vital rates, and therefore population growth rate, to change (increase or decrease) as a function of population size

At small population sizes, individual organisms may be able to acquire all of the resources they need to survive and reproduce

As the population grows, competition, disease, and predation increase

Competition

At small population sizes, individual organisms may be able to acquire all of the resources they need to survive and reproduce

As increases, the availability of resources per organism will decrease, leading to increased competition

Competition

At small population sizes, individual organisms may be able to acquire all of the resources they need to survive and reproduce

As increases, the availability of resources per organism will decrease, leading to increased competition

Intra-specific competition:

interaction between individuals of a single species brought about by the need for a shared resource

Competition

At small population sizes, individual organisms may be able to acquire all of the resources they need to survive and reproduce

As increases, the availability of resources per organism will decrease, leading to increased competition

Intra-specific competition:

interaction between individuals of a single species brought about by the need for a shared resource

Intra-specific competition can arise in multiple ways:

Animals	Plants	
• food	• space	
shelter	• light	8/44

Competition

Ecologists generally distinguish between two types of competition:

Competition

Ecologists generally distinguish between two types of competition:

- 1) Exploitation competition
 - consumption of limited resource by individuals depletes the amount available for others
 - also known as: depletion, consumption, or scramble competition
 - indirect

Competition

Ecologists generally distinguish between two types of competition:

- 1) Exploitation competition
- 2) Interference competition
 - individuals actively prevent others from attaining a resource in a given area or territory
 - also known as: encounter or contest competition
 - direct

Competition

As population size increases, the resources available to each individual will eventually shrink to the point where demographic parameters are negatively effected

Competition

As population size increases, the resources available to each individual will eventually shrink to the point where demographic parameters are negatively effected

• Increased density can also increase rates of disease transmission or predation

Carrying-capacity

Remember that the population growth rate

Carrying-capacity

Remember that the population growth rate

lf

Carrying-capacity

Remember that the population growth rate

lf :

Carrying-capacity

Remember that the population growth rate

lf :

population remains stable

Carrying-capacity

Remember that the population growth rate

lf :

population remains stable

If :

Carrying-capacity

Remember that the population growth rate

If :

•

population remains stable

If :

•

Carrying-capacity

Remember that the population growth rate

If :

population remains stable

lf

•

population will grow

Carrying-capacity

Remember that the population growth rate

```
lf :
```

population remains stable

```
If :
```

•

population will grow

lf

Carrying-capacity

Remember that the population growth rate

```
If :
```

•

population remains stable

```
If :
```

•

population will grow

lf

Carrying-capacity

Remember that the population growth rate

If :

•

population remains stable

If :

•

population will grow

lf

Carrying-capacity

Carrying-capacity

Carrying-capacity

Carrying capacity

Carrying capacity:

the population size that the environment can maintain

Population regulation vs limitation

The density-dependent processes we just learned about are called **regulating** factors

 Regulating factors keep population size from going too far above or below

Models of densitydependent population growth

Models of D-D population growth

Remember the (continuous time) density-independent model of population growth:

How can we modify this equation to include density-dependence?

To start, remember what density-dependence means:

the rate of population growth changes as population size increases

20/44

Models of D-D population growth

A good starting point for this is a linear response that looks something like this:

Models of D-D population growth

How do we add this relationship to our model?

Models of D-D population growth

How do we add this relationship to our model?

Remember the equation for a line:

Models of D-D population growth

How do we add this relationship to our model?

Remember the equation for a line:

In our model, we can write this as:

•

Models of D-D population growth

In our population model, represents the rate of increase when the population is 0

Models of D-D population growth

In our population model, represents the rate of increase when the population is 0

We can see in the figure that this is the largest value of the population can experience

Models of D-D population growth

In our population model, represents the rate of increase when the population is 0

We can see in the figure that this is the largest value of the population can experience

Call that

Models of D-D population growth

In our population model, represents the rate of increase when the population is 0

We can see in the figure that this is the largest value of the population can experience

- Call that
- Because the maximum rate of increase (nothing limiting population growth), it is equivalent to in the D-I model

Models of D-D population growth

What is , the slope of the relationship between and ?

Models of D-D population growth

What is , the slope of the relationship between and ?

• It has to be negative has to decrease as increases)

Models of D-D population growth

What is , the slope of the relationship between and ?

• It has to be negative has to decrease as increases)

Remember that when , so:

therefore,

Models of D-D population growth

What is , the slope of the relationship between and ?

• It has to be negative has to decrease as increases)

Remember that when , so:

therefore,

Models of D-D population growth

We now have a full equation for the relationship between and .

which simplifies to:

25/44

Models of D-D population growth

How does this work?

Models of D-D population growth

How does this work?

Assume and

Models of D-D population growth

How does this work?

Assume and

What is the population growth rate when

• — 0.9

Models of D-D population growth

How does this work?

Assume and

What is the population growth rate when

• — 0.9

What about when

• — 0.5

Models of D-D population growth

How does this work?

Assume and

What is the population growth rate when

• — 0.9

What about when

• — 0.5

When 3

Models of D-D population growth

Now let's insert our new equation for into the population growth model:

Models of D-D population growth

Now let's insert our new equation for into the population growth model:

This is called the **logistic growth model**

Models of D-D population growth

How does this work? Again, and

Models of D-D population growth

How does this work? Again, and

What is — when

• — 90

Models of D-D population growth

How does this work? Again, and

What is — when

• — 90

What about when ?

• — — 250

Models of D-D population growth

How does this work? Again, and

What is — when ?

• — 90

What about when ?

When ?

Models of D-D population growth

How does this work?

Models of D-D population growth

How does this work?

Models of D-D population growth

31/44

32/44

Non-linear effects

The logistic model assumes that decreases linearly with increasing

Non-linear effects

The logistic model assumes that decreases linearly with increasing

In reality, this relationship is not likely to be linear, for example:

Non-linear effects

The logistic model assumes that decreases linearly with increasing

In reality, this relationship is not likely to be linear, for example:

 might not change much (or at all) until population size is high enough that resources start to become limited

Non-linear effects

The logistic model assumes that decreases linearly with increasing

In reality, this relationship is not likely to be linear, for example:

- might not change much (or at all) until population size is high enough that resources start to become limited
- decrease very quickly if resources are used rapidly by additional individuals

Non-linear effects

The logistic model assumes that decreases linearly with increasing

In reality, this relationship is not likely to be linear, for example:

- might not change much (or at all) until population size is high enough that resources start to become limited
- decrease very quickly if resources are used rapidly by additional individuals

We can make the logistic model more flexible by adding a new term, :

Non-linear effects

When , does not respond to until is big enough that resources become limiting

Non-linear effects

If , resources quickly become scarce, and is suppressed even at low

Allee effects

So far, we have assumed that and (and therefore) decrease as population size increases

• This is called *negative* density dependence

Allee effects

So far, we have assumed that and (and therefore) decrease as population size increases

• This is called *negative* density dependence

In some cases, the slope could also be positive

Positive relationships between and or generally occur at small population sizes

Allee effects

Why might the death rate be high at small ?

Allee effects

Why might the death rate be high at small ?

• Group signaling breaks down, predation increases

Allee effects

Why might the death rate be high at small ?

- Group signaling breaks down, predation increases
- Cooperative foraging becomes less efficient

Allee effects

Why might the death rate be high at small ?

- Group signaling breaks down, predation increases
- Cooperative foraging becomes less efficient
- Inbreeding depression

Allee effects

Why might the death rate be high at small ?

- Group signaling breaks down, predation increases
- Cooperative foraging becomes less efficient
- Inbreeding depression

Allee effects

Why might the death rate be high at small ?

- Group signaling breaks down, predation increases
- Cooperative foraging becomes less efficient
- Inbreeding depression

Why might the birth rate be low at small ?

Pollination failure

Allee effects

Why might the death rate be high at small ?

- Group signaling breaks down, predation increases
- Cooperative foraging becomes less efficient
- Inbreeding depression

- Pollination failure
- Unable to find mates because of rarity

Allee effects

Why might the death rate be high at small ?

- Group signaling breaks down, predation increases
- Cooperative foraging becomes less efficient
- Inbreeding depression

- Pollination failure
- Unable to find mates because of rarity
- Unable to find mates because of skewed sex ratio

Allee effects

Why might the death rate be high at small ?

- Group signaling breaks down, predation increases
- Cooperative foraging becomes less efficient
- Inbreeding depression

- Pollination failure
- Unable to find mates because of rarity
- Unable to find mates because of skewed sex ratio
- Inbreeding depression

Allee effects

When abundance drops below the minimum viable population (MVP), the population will likely approach extinction without help!

Discrete dynamics

Remember the discrete-time model of density-independent growth

Discrete dynamics

Remember the discrete-time model of density-independent growth

As before, we need to account for possible changes in caused by changes in population density

Discrete dynamics

Remember the discrete-time model of density-independent growth

As before, we need to account for possible changes in caused by changes in population density

Remember that:

and:

Discrete dynamics

Therefore, one discrete-time density-dependent growth model is:

This known as the Ricker model

Discrete dynamics

Any adjustment that can be made to the continuous time logistic model can also be made to the Ricker model

