## **CLAIMS**

Therefore, having thus described the invention, at least the following is claimed:

A system to derive symbol timing for a receiver, comprising: a slicer that decodes a received signal segment into a discrete data symbol; a calculator that receives the received signal segment and the discrete data 3 symbol, that derives a timing phase error based upon the received signal segment and 4 discrete data symbol, and computes an average based upon said timing phase error; 5 a circuit that receives the average and that develops a control signal based 6 upon the average; and 7 an oscillator that receives the control signal and that generates symbol 8 9 timing for a receiver. The system of claim 1, wherein the calculator comprises a multiplier and 2. 1 a leaky integrator. 2 The system of claim/1\ wherein the slicer employs an advanced data 3. recovery technique for decoding the received signal segment. 2 The system of claim 1, wherein the circuit comprises a phase locked loop. The system of claim 1, wherein the oscillator is a voltage controlled 5. oscillator. 2



| 1 | 15.            | The system of      | claim 14, further comprising a centroid error calculation for |
|---|----------------|--------------------|---------------------------------------------------------------|
| 2 | the plurality  | of coefficients re | ceived from the fractionally spaced forward equalizer.        |
|   |                |                    |                                                               |
| 1 | 16.            | The system of      | claim 15, wherein the calculator is configured to subtract    |
| 2 | the centroid   | error calculation  | from the average.                                             |
|   |                |                    |                                                               |
| 1 | 17.            | The system of      | claim 13, further comprising a dual eye close structure, the  |
| 2 | first eye clos | se being coupled   | to the received signal segment and the second eye close       |
| 3 | heing counte   | ed to an output of | a decision feedback equalizer, wherein said first and second  |

eye closes control a switch to remove the signal path from the calculator to the circuit.

| 1  | 18.             | A system to track sym      | for a receiver, comprising:                             |
|----|-----------------|----------------------------|---------------------------------------------------------|
| 2  |                 | a forward equalizer for    | receiving a signal segment and for producing an         |
| 3  | equalized sign  | al based upon a pluralit   | y of coefficients applied to the received signal        |
| 4  | segment;        |                            |                                                         |
| 5  |                 | a centroid error calcul    | ator for receiving a plurality of coefficients from the |
| 6  | forward equal   | izer and for calculating   | a centroid error from the plurality of coefficients     |
| 7  | and a nominal   | number based upon the      | e plurality of coefficients;                            |
| 8  |                 | a first subtractor for re  | ceiving the equalized signal from the forward           |
| 9  | equalizer and   | a noise correction calcu   | lated by a decision feedback equalizer, and for         |
| 10 | calculating a f | irst difference based up   | on the equalized signal and the noise correction;       |
| 11 |                 | a first phase rotator for  | receiving the first difference from the first           |
| 12 | subtractor and  | an inverted result of a    | phase corrector, and for producing a square signal      |
| 13 | based upon the  | e first difference and the | e inverted result;                                      |
| 14 |                 | a slicer or receiving the  | e square signal from the first phase rotator, that      |
| 15 | decodes the so  | quare signal into a discre | ete data symbol;                                        |
| 16 |                 | a first multiplier for re  | ceiving the first difference and the discrete data      |
| 17 | symbol, and fo  | or deriving a timing ph    | se error therefrom;                                     |
| 18 |                 | a leaky integrator for     | eceiving the timing phase error and the centroid        |
| 19 | error calculati | on and for producing ar    | average timing phase error based upon the timing        |
| 20 | phase error an  | d the centroid error calc  | ulation;                                                |
| 21 |                 | a switch for receiving     | he average timing phase error and an eye close          |
| 22 | signal from a   | first and second eye clo   | se function, which opens a connection to a phase        |

| 23 | locked loop when the eye close signal is asserted, the eye close signal being asserted by |
|----|-------------------------------------------------------------------------------------------|
| 24 | the first or second eye close functions when no received signal segment is sensed;        |
| 25 | a phase locked loop for receiving the average timing phase error when the                 |
| 26 | switch is closed and producing a control voltage; and                                     |
| 27 | a voltage controlled oscillator for receiving the control voltage from the                |
| 28 | phase locked loop and generating symbol timing for a receiver.                            |
|    |                                                                                           |
| 1  | 19. A system to track symbol timing for a receiver, comprising:                           |
| 2  | means for decoding a received signal segment into a discrete data symbol                  |
| 3  | means for calculating a timing phase error, based upon the received signal                |
| 4  | segment and discrete data symbol, and an average timing phase error;                      |
| 5  | means for creating a control signal based upon the average timing phase                   |
| 6  | error; and                                                                                |
| 7  | means for receiving the dontrol signal and generating symbol timing for a                 |
| 8  | receiver.                                                                                 |
|    |                                                                                           |

| 1 | 20.                                    | The system of claim 19, wherein the system further comprises:            |  |
|---|----------------------------------------|--------------------------------------------------------------------------|--|
| 2 |                                        | means for equalizing the received signal;                                |  |
| 3 |                                        | means for computing a centroid error based upon coefficients of the      |  |
| 4 | equalizing me                          | ans;                                                                     |  |
| 5 |                                        | means for subtracting the centroid error from the average timing phase   |  |
| 6 | error; and                             |                                                                          |  |
| 7 |                                        | means for opening the circuit between said calculating means and said    |  |
| 8 | means for creating the control signal. |                                                                          |  |
|   |                                        |                                                                          |  |
| 1 | 21.                                    | A method for deriving symbol timing, comprising the steps of:            |  |
| 2 |                                        | decoding a received signal segment into an discrete data symbol;         |  |
| 3 |                                        | calculating a timing phase error and an average timing phase error based |  |
| 4 | upon the recei                         | ived signal segment and discrete data symbol;                            |  |
| 5 |                                        | creating a control signal based upon the average timing phase error; and |  |
| 6 |                                        | generating symbol timing for a receiver based upon the control signal.   |  |
|   |                                        |                                                                          |  |
| 1 | 22.                                    | The method of claim 21, further comprising the step of generating symbol |  |
| 2 | timing for a tr                        | ansmitter based upon the control signal.                                 |  |
|   |                                        |                                                                          |  |

| l | 23.          | The method of claim 21, further comprising the steps of:                   |
|---|--------------|----------------------------------------------------------------------------|
| 2 |              | equalizing the received signal with a forward equalizer;                   |
| 3 |              | calculating the centroid of the coefficients of the forward equalizer; and |
| 4 |              | subtracting the dentroid of the coefficients of the forward equalizer from |
| 5 | the average. |                                                                            |
|   |              |                                                                            |
| 1 | 24.          | The method of claim 21, further comprising the steps of:                   |
| 2 |              | using a first eye close test on the received signal;                       |
| 3 |              | cleaning noise from the received signal with a decision feedback           |
| 4 | equalizer;   |                                                                            |
| 5 |              | using a phase corrector to put a constellation in a correct orientation;   |
| 6 |              | using a second eye close test on the constellation; and                    |
| 7 |              | opening a flywheel switch when an output of the first or second eye close  |
| 8 | is asserted. |                                                                            |
|   | Add          | A2                                                                         |