Commutative Algebra

Swayam Chube

April 5, 2023

Abstract

This document mainly contains terse notes of commutative algebra and solutions to exercises from [1]. The three main references were [1], [3] and [4].

Except for in the chapter on modules, all rings are assumed to be commutative unless stated otherwise. We use a uniform convention to represent a commutative ring with A and a general ring with R. Similarly, we represent modules by one of M, N, P. A maximal ideal is generally denoted by \mathfrak{m} while a prime ideal is denoted by \mathfrak{p} .

Contents

I	Theory Building			
	Rings and Ideals			
	2. Modules			
	2.1	Introduction	4	
	2.2	Free Modules	6	
	2.3	Finitely Generated Modules	6	
		Exact Sequences		
	2.5	Tensor Product	8	

Part I Theory Building

Chapter 1 Rings and Ideals

Chapter 2

Modules

2.1 Introduction

Throughout this section, *R* denotes a general ring which need not be commutative.

Definition 2.1 (Module). A left *R*-module is an abelian group (M, +) along with a ring action, that is, a ring homomorphism $\mu : R \to \text{End}(M)$.

Henceforth, unless specified otherwise, an R-module refers to a left R-module. Trivially note that R is an R-module, so is any ideal in R and so is every quotient ring R/I where I is an ideal in R. When R is a field, an R-module is the same as a vector space.

Every abelian group G trivially forms a \mathbb{Z} -module. Using this and the forthcoming Structure Theorem for Finitely Generated Modules over a PID, we obtain the Structure Theorem for Finitely Generated Abelian Groups.

Definition 2.2 (Submodule). Let M be an R-module. An R-submodule of M is a subgroup N of M which is closed under the action of R.

Proposition 2.3 (Submodule Criteria). *Let* M *be an* R-*module. Then* $\varnothing \subsetneq N \subseteq M$ *is a submodule if and only if for all* $x, y \in N$ *and* $r \in R$, $x + ry \in N$.

Proof. Straightforward definition pushing.

Definition 2.4 (Module Homomorphism). Let M,N be R-modules. A *module homomorphism* is a group homomorphism $\phi: M \to N$ such that for all $x \in M$ and $r \in R$, $\phi(rx) = r\phi(x)$.

In other words, a module homomorphism is simply an *R*-linear map.

Proposition 2.5 (Homomorphism Criteria). *Let* M, N *be* R-modules. Then $\phi: M \to N$ *is an* R-module homomorphism if and only if for all $x,y \in M$ and $r \in R$, $\phi(x+ry) = \phi(x) + r\phi(y)$.

Proof. Straightforward definition pushing.

It is not hard to see, using the above proposition and the submodule criteria that the image of an *R*-module under a homomorphism is a submodule.

For R-modules M, N, we denote the set of all R-module homomorphisms from M to N by $\operatorname{Hom}_R(M,N)$. When the choice of the ring R is clear from the context, we shall denote this set by $\operatorname{Hom}(M,N)$.

Proposition 2.6. *Let* M, N *be* R-modules. Then Hom(M, N) *forms an* R-module.

Proof. It is obvious that Hom(M, N) has the structure of an abelian group. Define the natural action by (rf)(x) = rf(x). It is not hard to see that this action is well defined.

Proposition 2.7. Let $\phi: M \to N$ be an R-module homomorphism. Then, for every R-module P, there is an induced R-module homomorphism $\overline{\phi}: \operatorname{Hom}(N,P) \to \operatorname{Hom}(M,P)$ and an induced R-module homomorphism $\widetilde{\phi}: \operatorname{Hom}(P,M) \to \operatorname{Hom}(P,N)$.

Equivalently phrased, $\operatorname{Hom}(-,P)$ is a contravariant functor while $\operatorname{Hom}(P,-)$ is a covariant functor.

Proof. We shall prove only the first half of the assertion since the second half follows from a similar proof. Define $\overline{\phi}$ using the following commutative diagram:

$$M \xrightarrow{\phi} N$$

$$f \circ \phi \qquad \downarrow f$$

$$P$$

To see that this is indeed an R-module homomorphism, we need only verify that for all $f,g \in \text{Hom}(N,P)$ and all $r \in R$, $(f+rg) \circ \phi = f \circ \phi + rg \circ \phi$ which is trivial to check.

Definition 2.8 (Kernel, Cokernel). Let $\phi: M \to N$ be an R-module homomorphism. We define

$$\ker \phi = \{ x \in M \mid \phi(x) = 0 \}$$
 $\operatorname{coker} \phi = N/\phi(M)$

For an *R*-module *M*, define the annihilator of *M* in *R* as

$$Ann(M) = \{ r \in R \mid rx = 0 \ \forall x \in M \}$$

It is trivial to check that Ann(M) is a left ideal in R, and if R were commutative, it would be an ideal.

2.2 Free Modules

Throughout this section, *R* denotes a general ring which need not be commutative. The content of this section is taken from [2].

We define the free module using a universal property and then provide a construction for it. This should establish uniqueness.

Definition 2.9. Let S be a non-empty set. A *free module on* S is an R-module F together with a mapping $f: S \to F$ such that for every R-module M and every set map $g: S \to M$, there is a unique R-module homomorphism $h: F \to M$ such that the following diagram commutes:

$$\begin{array}{c}
S \longrightarrow M \\
f \downarrow & \exists !h \\
F
\end{array}$$

2.3 Finitely Generated Modules

Definition 2.10 (Finitely Generated Module). An *R*-module *M* is said to be finitely generated if there is a finite subset *S* of *M* which generates *M*. That is, there is no proper submodule *N* of *M* containing *S*.

Proposition 2.11. An R-module M is finitely generated if M is isomorphic to a quotient of $R^{\oplus n}$ for some positive integer n.

Proof. We shall only prove the forward direction since the converse is trivial to prove. Suppose M is finitely generated. Then, it is generated by a finite subset $S = \{x_1, \ldots, x_m\}$. Define the R-module homomorphism $\phi: R^{\oplus n} \to M$ by $(r_1, \ldots, r_n) \mapsto r_1 x_1 + \cdots + r_n x_n$. From the first isomorphism theorem, we have $M \cong R^{\oplus n} / \ker \phi$.

Proposition 2.12. Let M be a finitely generated A-module and \mathfrak{a} an ideal of A. Let $\phi \in \operatorname{End}(M)$ such that $\phi(M) \subseteq \mathfrak{a}M$. Then, there are $a_0, \ldots, a_{n-1} \in \mathfrak{a}$ such that

$$\phi^n + a_{n-1}\phi^{n-1} + \dots + a_0 = 0$$

as an element of End(M), where a_k is treated as the homomorphism $x \mapsto a_k x$ in End(M).

Proof. Let $\{x_1, \ldots, x_n\}$ be a generating set for M. Then, for all $1 \le i \le n$, there are coefficients $\{a_{i1}, \ldots, a_{in}\}$ in \mathfrak{a} such that

$$\phi(x_i) = \sum_{j=1}^n a_{ij} x_j$$

We may rewrite this as

$$\sum_{i=1}^{n} (\phi \delta_{ij} - a_{ij}) x_j = 0$$

Let B denote the matrix $(\phi \delta_{ij} - a_{ij})_{1 \le i,j \le n}$. Then, multiplying by $\operatorname{adj}(B)$, we see that $\det(B)(x_j) = 0$ for all $1 \le j \le n$ where $\det(B)$ is viewed as an element in $\operatorname{End}(M)$ and thus, is the zero map in $\operatorname{End}(M)$. It is not hard to see that $\det(B)$ is in the required form.

Lemma 2.13 (Nakayama). *Let* M *be a finitely generated module and* $\mathfrak{a} \subseteq \mathfrak{R}$ *be an ideal such that* $M = \mathfrak{a}M$. *Then,* M = 0.

Proof. Let $\phi = \mathbf{id}$ be the identity homomorphism in $\operatorname{End}(M)$. Using Proposition 2.12, there are coefficients $a_0, \ldots, a_{n-1} \in \mathfrak{a}$ satisfying the statement of the proposition. As a result, $x = 1 + a_{n-1} + \ldots + a_0$ is the zero endomorphism. But since $a_{n-1} + \ldots + a_0 \in \mathfrak{a} \subseteq \mathfrak{R}$, x is a unit and hence, M = 0.

Over a PID

Throughout this section, let *R* denote a principal ideal domain.

2.4 Exact Sequences

Definition 2.14. A sequence of module homomorphisms

$$M \xrightarrow{f} N \xrightarrow{g} P$$

is said to be exact at N if im $f = \ker g$. A short exact sequence is a sequence of module homomorphisms:

$$0 \longrightarrow M \stackrel{f}{\longrightarrow} N \stackrel{g}{\longrightarrow} P \longrightarrow 0$$

which is exact at *M*, *N* and *P*.

It is not hard to see that the sequence in the definition is short exact if and only if f is injective, g is surjective and im $f = \ker g$.

Theorem 2.15. For all R-modules X, $\operatorname{Hom}(X,-)$ is a left exact functor. That is, $0 \longrightarrow M \longrightarrow N \longrightarrow P$ is exact if and only if $0 \longrightarrow \operatorname{Hom}(X,M) \longrightarrow \operatorname{Hom}(X,N) \longrightarrow \operatorname{Hom}(X,P)$ is exact.

Proof. Consider the following commutative diagram where the row is exact.

$$0 \longrightarrow M \xrightarrow{u} v \\ v \\ V \xrightarrow{g} P$$

Let $u \in \ker \overline{f}$. Since f is injective, it is obvious that u must be the trivail homomorphism. Next, we must show that $\operatorname{im} \overline{f} = \ker \overline{g}$. First, note that $\overline{f} \circ \overline{g} = \overline{f \circ g} = 0$ since $\operatorname{Hom}(X, -)$ is a covariant functor. Finally, suppose $v \in \ker \overline{g}$. Then, $g \circ v = 0$, consequently, $\operatorname{im} v \subseteq \operatorname{im} f$. Now, since f is injective, $f^{-1}(\operatorname{im} v)$ is a submodule of M and hence, the map $w : X \to M$ given by $x \mapsto f^{-1}(v(x))$ is well defined and $f \circ w = v$.

For the converse, simply note that Hom(R, M) is isomorphic to M.

Diagram Chasing

2.5 Tensor Product

Throughout this section, *R* denotes a general ring which need not be commutative.

Definition 2.16 (Bilinear Map). Let M, N, P be R-modules. A map $T: M \times N \to P$ is said to be bilinear if for each $x \in M$, the mapping $T_x: N \to P$ given by $y \mapsto T(x,y)$ is R-linear and for each $y \in N$, the mapping $T_y: M \to P$ given by $x \mapsto T(x,y)$ is R-linear.

Fix two R-modules M and N. Let $\mathscr C$ denote the category of bilinear maps $T: M \times N \to P$ where P is any R-module. A morphism between two bilinear maps $f: M \times N \to P_1$ and $g: M \times N \to P_2$ in this category is a module homomorphism $\phi: P_1 \to P_2$ such that the following diagram commutes:

$$\begin{array}{c}
M \times N \xrightarrow{f} P_1 \\
\downarrow \\
P_2
\end{array}$$

A universal object in $\mathscr C$ is called the tensor product of M and N and is denoted by $M\otimes N$. In other words, the tensor product is an initial object in the category $\mathscr C$.

Definition 2.17 (Universal Property of the Tensor Product). Let M, N, P be R-modules and $T: M \times N \to P$ be a bilinear map. Then, there is a unique R-module homomorphism $\phi: M \otimes N \to P$ such that the following diagram commutes:

Of course, having the universal property would imply that the tensor product, if it exists, is unique upto a unique isomorphism. We shall now construct a tensor product of M and N.

Constructing the Tensor Product

Let *F* be the free *R*-module on $M \times N$. Let us denote the basis elements of *F* by $e_{(x,y)}$ where $x \in M$ and $y \in N$. Now, for all $x, x_1, x_2 \in M$, $y, y_1, y_2 \in N$ and $r \in R$, let *D* denote the submodule generated by elements of the form:

$$e_{(x_1+x_2,y)} - e_{(x_1,y)} - e_{(x_2,y)}$$

$$e_{(x,y_1+y_2)} - e_{(x,y_1)} - e_{(x,y_2)}$$

$$e_{(rx,y)} - re_{(x,y)}$$

$$e_{(x,ry)} - re_{(x,y)}$$

Let G = F/D and let $\varphi : M \times N \to G$ be the composition of the following maps:

$$M \times N \hookrightarrow F \twoheadrightarrow G$$

Let $T: M \times N \to P$ be a bilinear map. Consider the following commutative diagram:

$$\begin{array}{ccc}
M \times N & \xrightarrow{T} P \\
\downarrow & & & & & & \\
\downarrow & & & & & & \\
F & \xrightarrow{\pi} & G
\end{array}$$

To show that existence of ϕ , we must show that $D \subseteq \ker f$, since we can then finish using the universal property of the kernel. But this is trivial to check and follows from the fact that T is a bilinear map and completes the construction.

Similarly, we define the tensor product for a finite sequence of R-modules $\{M_i\}_{i=1}^n$. That is, given a multilinear map $T: \prod_{i=1}^n M_i \to P$, there is a unique R-module homomorphism ϕ such that the following diagram commutes:

$$M_1 \times \cdots \times M_n \xrightarrow{T} P$$

$$\downarrow \varphi \qquad \qquad \exists ! \phi \qquad \qquad M_1 \otimes \cdots \otimes M_n$$

Properties of Tensor Product

Given two modules M and N with the canonical map $\varphi : M \times N \to M \otimes N$, we denote by $m \otimes n$, the element $\varphi(m, n)$ in $M \otimes N$.

Proposition 2.18. *Let M, N, P be A-modules. Then,*

- (a) $M \otimes N \cong N \otimes M$
- (b) $(M \otimes N) \otimes P \cong M \otimes (N \otimes P) \cong M \otimes N \otimes P$
- (c) $M \oplus N \otimes P \cong (M \otimes P) \oplus (N \otimes P)$
- (d) $A \otimes M \cong M$

Further, in each case, the isomorphism is unique.

Proof. In each case, it suffices to show that both modules have the same universal property, which would imply a unique isomorphism between the two modules.

(a) Consider the map $T: M \times N \to N \times M$ given by $(m, n) \mapsto (n, m)$. Let $\varphi: M \times N \to M \otimes N$ and $\varphi': N \times M \to N \otimes M$ be the canonical morphisms. Consider now the following commutative diagram:

$$\begin{array}{c}
M \times N \xrightarrow{T} N \times M \\
\varphi \downarrow \qquad \qquad \downarrow \varphi' \\
M \otimes N & \xrightarrow{\phi'} N \otimes M
\end{array}$$

Define the map $\phi(m \otimes n) = n \otimes m$ and $\phi'(n \otimes m) = m \otimes n$. It is not hard to see that ϕ and ϕ' make the diagram commute. Further, since $\phi' \circ T$ is bilinear, ϕ is the unique morphism making the diagram commute and similarly for ϕ' . Finally, since ϕ and ϕ' are

Bibliography

- [1] Michael Francis Atiyah and I. G. MacDonald. *Introduction to Commutative Algebra*. Addison-Wesley-Longman, 1969.
- [2] T. S. Blyth. Module Theory: An approach to linear algebra. 1990.
- [3] David S. Dummit and Richard M. Foote. *Abstract algebra*. Wiley, New York, 3rd ed edition, 2004.
- [4] Serge Lang. Algebra. Springer, New York, NY, 2002.