

Lecture: Multi-Agent RL

Jiayi Geng
PLI, Princeton NLP, AI Lab
jiayig@princeton.edu
2025/04/17

Overview

- Multi-agent RL:
 - Game theory
 - Multi-agent learning
- Multi-agent meets large language model:
 - Multi-agent communication
 - Multi-agent collaboration

Overview

- Multi-agent RL:
 - Game theory
 - Multi-agent learning
- Multi-agent meets large language model:
 - Multi-agent communication
 - Multi-agent collaboration

Basic Concepts of Game Theory

Three fundamental components of Game Theory

Players: The decision-makers in the game. Players can be individuals or entities.

Three fundamental components of Game Theory

Players: The decision-makers in the game. Players can be individuals or entities.

Strategies: The actions available to the players, from which they choose their course of action.

Three fundamental components of Game Theory

Players: The decision-makers in the game. Players can be individuals or entities.

Strategies: The actions available to the players, from which they choose their course of action.

Payoffs: The outcomes resulting from the combination of strategies chosen by all players, usually quantified in terms of utility or rewards.

Nash Equilibrium

The concept of Nash Equilibrium, named after mathematician John Nash, is central to game theory. It is a situation in which no player can benefit by changing their strategy while the other players keep theirs unchanged.

A strategy profile $s^*=(s_1^*,s_2^*,\ldots,s_n^*)$ is a Nash Equilibrium if for every player i,

$$u_iig(s_i^*,s_{-i}^*ig) \geq u_iig(s_i,s_{-i}^*ig)$$

for all s_i in the strategy space of player i, where u_i is the payoff function for player i and s_{-i}^* denotes the strategy profile of all players except i.

1928-2015

Two-Player Zero-Sum Matrix Game

Let's consider a simple 2x2 matrix:

$$A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$

Two-Player Zero-Sum Matrix Game

Let's consider a simple 2x2 matrix:

$$A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$

Actions:

- Player 1 chooses the first action
- Player 2 also chooses the first action

Two-Player Zero-Sum Matrix Game

Let's consider a simple 2x2 matrix:

$$A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$

Actions:

- Player 1 chooses the first action -> Player 1 gains 1
- Player 2 also chooses the first action -> Player 2 loses 1

Maximin and Minimax Strategies

• **Maximin Strategy:** Player 1 tries to maximize the minimum payoff they can guarantee:

$$\max_{\mathbf{x}} \min_{\mathbf{y}} \mathbf{x}^T A \mathbf{y}.$$

• Minimax Strategy: Player 2 aims to minimize their maximum possible loss (equivalently, minimizing Player 1's maximum payoff):

$$\min_{\mathbf{y}} \max_{\mathbf{x}} \mathbf{x}^T A \mathbf{y}.$$

Saddle Point & Equality

Strong duality in linear programming and convex optimization ensures that for a zero-sum game,

$$\max_{\mathbf{x}} \min_{\mathbf{y}} \mathbf{x}^{T} A \mathbf{y} = \min_{\mathbf{y}} \max_{\mathbf{x}} \mathbf{x}^{T} A \mathbf{y},$$

implying the existence of a saddle point where both strategies are optimal and no unilateral change is beneficial.

Learning in Games

How to solve for Nash: Best response?

Best Responses Dynamics

Best response dynamics is a process in which players iteratively adjust their strategies to best respond to the strategies currently played by their opponents

Best Responses Dynamics

Best response dynamics is a process in which players iteratively adjust their strategies to best respond to the strategies currently played by their opponents

Suppose at time t, Player 1 and Player 2 updates their strategies are given by:

$$\mathbf{x}_{t+1} = \mathrm{BR}_1(\mathbf{y}_t), \quad \mathbf{y}_{t+1} = \mathrm{BR}_2(\mathbf{x}_t),$$

Fictitious Play

Fictitious play is a simple iterative learning process in which each player assumes that their opponents are playing fixed and mixed strategies.

Fictitious Play

Fictitious play is a simple iterative learning process in which each player assumes that their opponents are playing fixed mixed strategies.

"Track the opponent's past actions and best-respond to their frequency."

Convergence of Fictitious Play

Convergence of Fictitious Play

Multi-Agent Learning

Key idea of multi-agent RL: Self-Play

Self-play in Multi-Agent RL: AlphaGo Zero (2017)

b Neural network training

Source:https://deepmind.google/discover/blog hago-zero-starting-from-scratch/

Self-play in Multi-Agent RL: AlphaGo Zero (2017)

RL evolves over time, finding new strategies and phase out old ones (rapid reranking).

Self-play in Multi-Agent RL: AlphaGo Zero (2017)

Self-play in Multi-Agent RL: OpenAI Five (2018)

	OpenAl 1v1 bot	OpenAl Five
CPUs	60,000 CPU cores on Azure	128,000 <u>preemptible</u> CPU cores on GCP
GPUs	256 K80 GPUs on Azure	256 P100 GPUs on GCP
Experience collected	~300 years per day	~180 years per day (~900 years per day counting each hero separately)
Size of observation	~3.3 kB	~36.8 kB
Observations per second of gameplay	10	7.5
Batch size	8,388,608 observations	1,048,576 observations
Batches per minute	~20	~60

Deepmind's AlphaStar (2019)

Self-fictitious play in AlphaStar

Rock, paper, scissors

StarCraft II players can create a variety of 'units', which have balanced strengths and weaknesses, similar to the game rock, paper, scissors

Overview

- Multi-agent RL:
 - Game theory
 - Multi-agent learning
- Multi-agent meets large language model:
 - Multi-agent communication
 - Multi-agent collaboration

Recap Howard Chen's Lecture

RL Framework for LLMs: LLMs generate answers token by token, similar to an RL agent taking actions in a state.

Recap Howard Chen's Lecture

RL Framework for LLMs: LLMs generate answers token by token, similar to an RL agent taking actions in a state.

Verifiable Reward: The model's response is evaluated by clear, verifiable outcomes (correct vs. incorrect answers), providing a straightforward reward signal.

Recap Howard Chen's Lecture

RL Framework for LLMs: LLMs generate answers token by token, similar to an RL agent taking actions in a state.

Verifiable Reward: The model's response is evaluated by clear, verifiable outcomes (correct vs. incorrect answers), providing a straightforward reward signal.

Group Relative Policy Optimization (GRPO): GRPO refines the model by adjusting log probabilities based on groups of responses.

Recap Howard Chen's Lecture

RL Framework for LLMs: LLMs generate answers token by token, similar to an RL agent taking actions in a state.

Verifiable Reward: The model's response is evaluated by clear, verifiable outcomes (correct vs. incorrect answers), providing a straightforward reward signal.

Group Relative Policy Optimization (GRPO): GRPO refines the model by adjusting log probabilities based on groups of responses.

DeepSeek R1 and Emergent Behaviors for LLM: DeepSeek R1 applies GRPO directly on a strong pretrained model. A approach has led to emergent behaviors.

Multi-Agent RL meets Large Language Models

Figure 1: A challenging multi-agent cooperation problem with decentralized control, raw sensory observations, costly communication, and long-horizon multi-objective tasks.

Multi-Agent Communication

LLMs are increasingly capable, why do we need multiple agents and why multi-agent communication is important?

Multi-Agent Communication

LLMs are increasingly capable, why do we need multiple agents and why multi-agent communication is important?

Multi-Agent Communication

LLMs are increasingly capable, why do we need multiple agents and why multi-agent communication is important?

AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation

Qingyun Wu[†], Gagan Bansal*, Jieyu Zhang[±], Yiran Wu[†], Beibin Li*

Erkang Zhu*, Li Jiang*, Xiaoyun Zhang*, Shaokun Zhang † , Jiale Liu $^{\mp}$

Ahmed Awadallah*, Ryen W. White*, Doug Burger*, Chi Wang*1

*Microsoft Research, †Pennsylvania State University

[±]University of Washington,[∓]Xidian University

Core Design

A1. Math Problem Solving

A1. Math Problem Solving

A2. Retrieval-augmented Chat

A1. Math Problem Solving

A2. Retrieval-augmented Chat

A3. ALF Chat

A2. Retrieval-augmented Chat

A3. ALF Chat

A4. Multi-agent Coding

Commander

A4. Multi-agent Coding

Safeguard

A5. Dynamic Group Chat

Writer

A4. Multi-agent Coding

A5. Dynamic Group Chat

A6. Conversational Chess

Results

AutoGen
AutoGe

(a) A1: Performance on MATH (w/ GPT-4).

(b) A2: Q&A tasks (w/ GPT-3.5).

(c) A3: Performance on ALFWorld.

Summary

AutoGen is a general framework for building LLM applications using **multi-agent** conversations.

It provides:

- Modular, customizable agents;
- A programming interface that blends natural language and Python;
- Native support for tools, humans, and complex interaction patterns.

Each agent is "conversable": it talks, thinks, and acts through messages. The conversation is the program.

Multi-Agent Collaboration & Cooperation

What happens when we put multiple LLMs in a room and ask them to collaborate?

Multi-Agent Cooperation

Embodied LLM Agents Learn to Cooperate in Organized Teams

Xudong Guo¹ Kaixuan Huang² Jiale Liu³ Wenhui Fan¹ Natalia Vélez²
Qingyun Wu³ Huazheng Wang⁴ Thomas L. Griffiths² Mengdi Wang²

¹Tsinghua University ²Princeton University

³Penn State University ⁴Oregon State University

Without any organization, agents don't cooperate well

Plan disruption

Challenges

LLMs are great at individual reasoning and planning, current multi-agent setups don't scale well:

- They often assume two-agent scenarios,
- They use hardcoded interaction patterns,
- They don't support organizational flexibility
- Blindly follow instructions and over-communicate

Research Questions

What role do organizational prompts play in LLM agent collaboration?

Research Questions

What role do organizational prompts play in LLM agent collaboration?

Can we let LLMs reflect on their performance and optimize those prompts over time?

Multi-LLM-RL Agents: Architecture

Self improving via LLM critic

Efficiency

Emergence of Organizational Structures

Summary

- Structured inter-agent communication is essential for cooperative behavior.
- The integration of an LLM critic can greatly enhance coordination, leading to more robust and coherent team behavior.

Thank you!

