Assignment 13

1

Matish Singh Tanwar

Abstract—This document solves a problem of Linear Algebra.

Download all latex-tikz codes from

https://github.com/Matish007/Matrix-Theory-EE5609-/tree/master/Assignment_13

1 Problem

Let **A** be a $m \times n$ matrix and **B** be a $n \times m$ matrix over real numbers, with

$$m < n \tag{1.0.1}$$

Then,

- 1) AB is always nonsingular
- 2) AB is always singular
- 3) BA is always nonsingular
- 4) **BA** is always singular

2 SOLUTION

$$rank(\mathbf{A}) \le \min(m, n) \qquad (2.0.1)$$

$$\implies \le m, \because m < n \qquad (2.0.2)$$

$$rank(\mathbf{R}) \le \min(n, m) \qquad (2.0.3)$$

$$rank(\mathbf{B}) \le \min(n, m) \tag{2.0.3}$$

$$\implies \le m, \because m < n$$
 (2.0.4)

We also know that **AB** will be a $m \times m$ matrix and **BA** will be a $n \times n$ matrix.

$$rank(\mathbf{AB}) \le \min(rank(\mathbf{A}), rank(\mathbf{B}))$$
 (2.0.5)

$$\implies \le m$$
 (2.0.6)

$$rank(\mathbf{BA}) \le \min(rank(\mathbf{B}), rank(\mathbf{A}))$$
 (2.0.7)

$$\implies \le m$$
 (2.0.8)

Options	Explanation
AB is always nonsingular	$rank(\mathbf{AB}) \leq m$
	$Let, rank(\mathbf{AB}) = k, k < m.$
	So, there are $m - k$ linearly dependent columns.
	So, $det(\mathbf{AB}) = 0.\mathbf{AB}$ will be singular
	Hence,incorrect
AB is always singular	$rank(\mathbf{AB}) \leq m$
	$Let, rank(\mathbf{AB}) = m$
	So, there are 0 linearly dependent columns.
	So, $det(AB) \neq 0.AB$ will be nonsingular
	Hence, incorrect
BA is always nonsingular	$rank(\mathbf{BA}) \le m.rank(\mathbf{BA})$ can be atmost m
	BA is $n \times n$ matrix. $n > m$.
	So, there are at least $n-m$ linearly dependent columns.
	So, $\det(\mathbf{B}\mathbf{A}) = 0.\mathbf{B}\mathbf{A}$ will be singular always.
	Hence, incorrect
BA is always singular	$rank(\mathbf{BA}) \le m.rank(\mathbf{BA})$ can be atmost m
	BA is $n \times n$ matrix. $n > m$.
	So, there are at least $n-m$ linearly dependent columns.
	So, $\det(\mathbf{B}\mathbf{A}) = 0.\mathbf{B}\mathbf{A}$ will be singular always.
	Hence,correct

TABLE 1: Finding Correct Option