

MODULIO APRAŠAS

Modulio pavadinimas	Kodas
Kompiuterių architektūra	

Dėstytojas(-ai/-os)	Padalinys
Koordinuojantis: prof. dr. Saulius Gražulis	Informatikos katedra
Kitas (-i/-os): -	Matematikos ir informatikos fakultetas
	Vilniaus universitetas

Studijų pakopa	Dalyko tipas	
pirmoji	Privalomasis	

Įgyvendinimo forma	Vykdymo laikotarpis	Vykdymo kalbos	
Auditorinė/nuotolinė	3 semestras	Lietuvių, anglų	

Reikalavimai studijuojančiajam	
Išankstiniai reikalavimai: -	

Modulio apimtis kreditais	Visas studento darbo	Kontaktinio darbo	Savarankiško darbo
	krūvis	valandos	valandos
5	134	66	68

Modulio tikslas: studijų programos ugdomos kompetencijos

Modulio tikslas:

suformuoti realaus programų vykdymo supratimą kaip iteracinį duomenų būsenos transformavimą kompiuterio komandų pagalba, įvaldyti mašininio lygmens sąvokų sistemą, išmokti skaityti ir rašyti mašininio lygmens programas.

Bendrosios kompetencijos:

- Analizuoti ir sisteminti informaciją (BK1).
- Žinias pritaikyti praktikoje (BK2).
- Organizuoti ir planuoti darbus, dirbti individualiai ir grupėje (BK3).

Dalykinės kompetencijos:

- Programavimo (DK6).
- Sistemų architektūros (DK7).

Modulyje ugdomi studentų gebėjimai:	Mokymo ir mokymosi metodai	Vertinimo metodai
Gebės laisvai ir tikslingai operuoti kompiuterių architektūros sąvokomis Supras kompiuterinių sistemų diagnostinius pranešimus mašininiais terminais supras kompiuterio architektūros įtaką programų greitaveikai ir teisingumui	Mokymo metodai: Paskaitos; Laboratoriniai darbai. Mokymosi metodai: Faktinių žinių kaupimas; Žinių sintezė – faktinių žinių apibendrinimas, abstrahavimas ir agregavimas; Žinių analizė – naujų žinių derinimas su agreguotomis žiniomis, verifikavimas ir	Egzaminavimas raštu. Laboratorinių darbų atsiskaitymas. Apklausa. Ataskaita ir jos pristatymas. Vertinimo kriterijai: • gebėjimas spręsti praktines užduotis; • gebėjimas sudaryti, derinti, stebėti vykdymą, modifikuoti ir paaiškinti
Turės vaizdinius, reikiamus programavimo kalbų įsisavinimui	koregavimas; • Agreguotų ir verifikuotų žinių taikymas.	programas asemblerio kalba; • gebėjimas paaiškinti kompiuterio ir procesoriaus darbo principus loginių schemų lygmenyje;

	Kontaktinio darbo valandos				lland	Sav	arankiškų studijų laikas ir užduotys		
Temos	Paskaitos	Konsultacijos	Seminarai	Pratybos	Laboratoriniai darbai (LD)	Konsultavimas LD metu	Visas kontaktinis darbas	Savarankiškas darbas	Užduotys
Bendra kompiuterių architektūros apžvalga. Perjungiančios elektrinės schemos.	2				2		4	4	I, II. Loginių grandinių tyrimas tranzistorių ir
Pagrindiniai kompiuterių schemų elementai. Loginės schemos. Skaičiavimo sistemos ir skaičių atvaizdavimas. Posto teorema.	2				2		4	4	loginių ventilių lygyje (naudojant Logisim ar panašią modeliavimo
3. Aritmetinių operacijų įgyvendinimas. Pozicinės skaičiavimo sistemos ir skaičių atvaizdavimas.	2				2		4	4	programą); III, IV. Programų
4. Skaitmeninės schemos su būsena. Atmintis	2				2		4	4	asemblerio kalba
5. Procesoriaus duomenų traktas ir jo valdymas. Baigtiniai automatai. Mikroprogramavimas.	2				2		4	4	rašymas įvairioms aptartoms
6. Informacijos atvaizdavimas kompiuteriuose. Įvairūs sveikų ir racionalių skaičių atvaizdavimo metodai. Simbolių eilučių atvaizdavimas. koduo- tės. Unikodas.	2				2		4	4	architektūroms, jų vykdymo analizė naudojant modeliavimo ir emuliavimo
7. Slankaus kablelio skaičiai.	2				2		4	4	programinę įrangą.
8. Kintamo dydžio duomenų atvaizdavimas. Įvairūs sudėtingesni skaičių atvaizdavimo būdai. Padidinto tikslumo aritmetika. CISC ir RISC komandų skaičiams ir simboliams apdoroti pavyzdžiai.	2				2		4	4	
9. Aparatinė procesoriaus realizacija. Konvejeriai. Procesoriaus valdymo automatas. Skirtingi architektūrų tipai (steko mašinos, akumuliatorinės mašinos, arch. atmintis-atmintis ir registras-registras), CISC ir RISC architektūrų principai. Nulio, vieno, dviejų ir trijų adresų komandos.	2				2		4	4	
10. RISC-V ISA	2				2		4	4	
11. Programavimas asemblerio kalba. Komandų mnemonikos, operandai, adresavimo režimai, sekcijos, žymės, makrokomandos. Kompiliavimas iš aukšto lygio programavimo kalbų (pvz. C).	2				2		4	4	
12. Konvejerinės architektūros. Tarpinė atmintis. RISC-V emuliatorius. Programų pavyzdžiai ir analizė.	2				2		4	4	
13. CISC procesoriai. x86 architektūros pavyzdys.	2				2		4	4	
14. Virtuali atmintis. Pusliapiavimas. Segmentavimas. Atminties apsauga.	2				2		4	4	
15. Mikrovaldikliai (pvz. AVR). Pertraukimai. Periferiniai įrenginiai (taimeriai, analoginiaiskaitmeniniai keitikliai).	2				2		4	4	
16. Egzotiškos, futuristinės, nestandartinės architektūros: DNN, žymių architektūros (angl. <i>tagged architectures</i>). FPGA, FORTH mašinos, ląstelių matrica. Aparatūros aprašymo kalbos.	2				2		2	4	
Pasiruošimas egzaminui ir jo laikymas Iš viso	3				3		6	68	
15 7150	2				2		6		

Vertinimo strategija	Svoris %	Atsiskaitymo laikas	Vertinimo kriterijai
Apklausos prieš paskaitas	10	10 min. prieš paskaitą ar praktikos darbą.	4-klausimų apklausa iš keleto praeitų paskaitų temų (1 ir antro lygio klausimai pagal Blūmo (Bloom) klasifikaciją) naudojant elektronines mokymo priemones (Moodle, Open edX ar pan).
Tarpinis kontrolinis	15	semestro vidurys	Apytikriai 30 klausimų apklausa iš visų praeitų dalykų (1 iki 9 lygio klausimai pagal <u>Bloom</u> klasifikaciją) naudojant elektronines mokymo priemones (Moodle, Open edX ar pan).
Pratybų (laboratoriniai) darbai	50	pagal pratybų vadovų paskelbtą grafiką	Praktikos darbai atliekami pagal pratybų vadovų nurodytas užduotis ir atsiskaitomi bei vertinami pagal kiekvieno pratybų vadovo nurodytą grafiką bei kriterijus.
Savarankiškas konkrečios architektūros studijavimas	10	semestro pabaiga	Studentai pateikia maždaug 4 psl. (A4, 9pt) techninį aprašymą apie jiems paskirtą ir savarankiškai išnagrinėtą kompiuterių architektūrą, arba 5 min. žodinį pristatymą su skaidrėmis (PDF formatu). Žodinis pristatymas galimas studentams, pasiekusiems gerų rezultatų kurso metu ir gali būti užskaitomas kaip egzaminas (sąlygas žr. punkte "Egzaminas").
Egzaminas	15	semestro pabaiga	Apytikriai 30 klausimų apklausa iš viso kurso dalykų (1 iki 9 lygio klausimai pagal <u>Bloom</u> klasifikaciją) naudojant elektronines mokymo priemones (Moodle, Open edX ar pan).
			Kad studentai būtų prileisti prie egzamino, jie turi: 1. Atlikti bent vieną praktikos darbą ir surinkti teigiamą (didesnį už nulį) pratybų balą; 2. Sukaupti suminį balą už darbą per semestrą (iš praktikos darbų, tarpinio kontrolinio, darbo paskaitose, galimai kitų dėstytojų paskirtų užduočių), kad, parašius egzamino kontrolinį, būtų įmanoma pasiekti patenkinamo pažymio balą (t. y. balą, užtikrinantį bent pažymį "5"); 3. Ypač gerai pasirodžiusiems semestro metu studentams gali būti leidžiama laikyti išankstinį egzaminą, padarant žodinį pranešimą dėstytojo paskirtu laiku užsiėmimų metu. Norint laikyti išankstinį egzaminą, būtina: 1. Surinkti bent bent 60% semestro metu galimų gauti teorijos balų (pvz. bent 150 iš dabar prieinamų 250 balų); 2. Atsiskaityti laiku visus praktikos darbus; 3. Turėti teigiamas praktikos vadovo rekomendacijas. Jei norinčių laikyti egzaminą iš anksto studentų yra daugiau, negu leidžia turimas užsiėmimų laikas, pirmenybė suteikiama studentams, surinkusiems daugiau balų. Egzamino kontrolinis yra būtinas visiems nepriklausomai nuo surinkto balų skaičiaus, išskyrus tuos studentus, kurie gavo leidimą laikyti egzaminą iš anksto ir kuriems užskaitytas kaip egzaminas žodinis savarankiško darbo pristatymas. Studentams, neatvykusiems į egzaminą, žiniaraštyje bus žymima "neatvyko". Egzamine būtina

		surinkti bent 50% egzamino balo.
Viso	100	Galutinis pažymys gaunamas susumavus už visas veiklas
		surinktus balus, padalinant sumą iš 100 ir su apvalinant
		iki <i>didesnio</i> sveiko skaičiaus (t.y. 0.001 apvalinama link
		1; 9.1 apvalinama iki 10).

Autorius	Leidi mo metai	Pavadinimas	Periodinio leidinio Nr. arba tomas	Leidimo vieta ir leidykla ar internetinė nuoroda
Privalomoji literatūra				
Andrew S. Tanenbaum	2005	Structured computer organization		Prentice Hall PTR, Fifth Edition
D. A. Patterson and J. L. Hennessy	2017	Computer Organization and Design: The Hardware/ Software Interface. RISC-V edition.		Elsevier
A. Waterman, Y. Lee, D. Patterson, and K. Asanović	2011	The RISC-V instruction set manual. Volume I: base user-level ISA. Version 1.0.	Vol. 1, ver. 1.0	https://inst.eecs.berkeley.edu/ ~cs250/fa11/handouts/riscv- spec.pdf
Papildoma literatūra				
Antanas Mitašiūnas	2016	Computer architecture. Teaching book (in Lithuanian Kompiuterių architektūra)		Vilnius, 126 p. http://www.mif.vu.lt/katedros/c s/Asmen/Kompiuteriu %20architektura.pdf
D. E. Knuth	2005	MMIX – A RISC Computer for the New Millennium	Vol. 1, Fasc. 1	Addison-Wesley, http://www.mmix.cs.hm.edu/do c/fasc1.pdf, https://www-cs- faculty.stanford.edu/~knuth/fasc 1.ps.gz
C. W. Kann	2016	Implementing a One Address CPU in Logisim		Gettysburg College; https://open.umn.edu/opentextb ooks/textbooks/implementing-a- one-address-cpu-in-logisim
C. W. Kann	2019	Digital Circuit Projects: An Overview of Digital Circuits Through Implementing Integrated Circuits	Second Edition	Gettysburg College; http://cupola.gettysburg.edu/oer /1
C. W. Kann	2019	Introduction To MIPS Assembly Language Programming		Gettysburg College; https://cupola.gettysburg.edu/oe r/2
M. J. Murdocca and V. P. Heuring	1999	Principles of Computer Architecture		Prentice Hall
D. A. Patterson and J. L. Hennessy	2013	Computer Organization and Design: The Hardware/Software Interface. MIPS edition.		Elsevier
E. Upton	2016	Learning Computer Architecture with Raspberry Pi		John Wiley & Sons
A. P. Malvino and J. A. Brown	1999	Digital Computer Electronics		McGraw-Hill
R. E. Bryant and D. R. O'Hallaron	2001	Computer Systems: A Programmer's Perspective	3rd Edition	https://github.com/ smellslikekeenspirit/an- askreddit-list-of-compsci- books/blob/master/Randal %20E.%20Bryant%2C %20David%20R.%20O %E2%80%99Hallaron%20- %20Computer%20Systems. %20A%20Programmer %E2%80%99s%20Perspective

			%20%5B3rd%20ed.%5D %20(2016%2C %20Pearson).pdf
D. Goldberg	1991	What every computer	https://doi.org/
		scientist should know about	<u>10.1145/103162.103163</u>
		floating-point arithmetic	
J. L. Gustafson	2015	The End of Error: Unum	CRC Press
		Computing	