Практическая работа 5.

Гармонический и спектральный анализ периодических сигналов. Спектральный анализ на основе быстрого преобразования Фурье.

Цель работы. Изучение возможностей описания любой периодической функции с помощью тригонометрического ряда Фурье. Приобретение навыков вычисления коэффициентов ряда Фурье и графического отображения результатов гармонического и спектрального синтеза периодической функции. Изучение возможностей встроенных в Mathcad средств быстрого преобразования Фурье. Приобретение навыков применения быстрого преобразования Фурье для спектрального анализа и синтеза.

Задание к работе

1.1 Вычислить коэффициенты разложения в ряд Фурье заданной функции f(t) на отрезке $[0, 2\pi]$ в соответствии с полученным номером варианта. Построить графики первых пяти гармоник. Выполнить гармонический синтез функции f(t) по пяти гармоникам. Результаты синтеза отобразить графически. Отобразить графически спектры амплитуд и фаз, результат спектрального синтеза функции f(t).

Таблица 1. Варианты заданий.

Вариант	f(t)	Вариант	f(t)
1.	cost	11.	$\sin(\sqrt{1+t^2})$
	$1+\cos^2 2t$,
2.	$\underline{-\sin t}$	12.	$\cos(\sqrt{1+t^2})$
	$1+\cos^2 2t$, , ,
3.	$\sin 2t + \sin^2 3t$	13.	$e^{-10(t-\pi)^2}$
	$3 + \sin t + \cos 2t$		
4.	sin 3t	14.	$e^{\cos\frac{1}{3}t}$
	$ \sin t + \cos t $		e^{3}
5.	cos e sin 3 t	15.	-cos-t
			$e^{-\cos\frac{1}{2}t}\cos(\sin t)$
6.	$\cos t \cos \sin t $	16.	$\cos^2(t) + \sin(t)$
7.	arata(ans t)	17.	$\sin^2(t) + \cos(t)$
	$arctg(\cos\frac{1}{2}t)$		
8.	$e^{\sin\frac{1}{3}t}$	18.	$e^{-\cos\frac{1}{2}t}\sin(\cos t)$
	e^{-3}		$e^{-2}\sin(\cos t)$
9.	$ \sin t + \sin 2t $	19.	$\sin t \sin \cos t $
10.	$\sin(\frac{1}{2}t)^2$	20.	$-\sin^{-1}t$
	$\frac{\sin(-\iota)}{2}$		$e^{\frac{1}{2}}\sin(\cos t)$

1.2 Задать в соответствии с вариантом функцию f(t) дискретно в 128 отсчетах. Выполнить прямое быстрое преобразование Фурье с помощью функции ft и отобразить графически найденные спектры амплитуд и фаз. Выполнить обратное быстрое преобразование Фурье с помощью функции ift и отобразить графически результат спектрального синтеза функции f(t). Для фильтрации функции f(t) с помощью быстрого преобразования Фурье (БПФ) необходимо выполнить следующее:

- синтезировать функцию f(t) в виде полезного сигнала, представленного 128 отсчетами вектора v;
- к полезному сигналу v присоединить шум с помощью функции rnd (rnd(2) 1) и сформировать вектор из 128 отсчетов зашумленного сигнала s;
- преобразовать сигнал с шумом s из временной области в частотную, используя прямое БПФ (функция fft);
- выполнить фильтрующее преобразование с помощью функции Хевисайда (параметр фильтрации $\alpha = 2$);
- с помощью функции *ifft* выполнить обратное $Б\Pi\Phi$ и получить вектор выходного сигнала h;
- построить графики полезного сигнала v и сигнала, полученного фильтрацией зашумленного сигнала s.

Порядок выполнения работы.

- 1. Ознакомиться с теоретическими сведениями.
- 2. По предложенному преподавателем варианту выполнить задание.
- 3. Оформить отчет по лабораторной работе. Отчет должен содержать: титульный лист, цель работы, задание, результаты работы, анализ результатов и выводы по работе. Ответить на контрольные вопросы.

Контрольные вопросы

- 1. Дайте определение понятию спектр функции.
- 2. В чем заключается спектральный анализ периодических функций?
- 3. В чем заключается гармонический анализ?
- 4. В чем заключается гармонический синтез?
- 5. Привести выражения для коэффициентов Фурье.
- 6. Привести выражение для тригонометрического ряда Фурье.