

EH-MB18

Bluetooth® Technology Audio Module

Bluetooth radio

- Fully embedded Bluetooth® v4.2(Smart ready)
- Bluetooth® v3.0 specification compliant
- TX power +8dbm,-90dbm RX sensitivity
- 128-bit encryption security
- Range up to 15m
- Internal chip antenna or U.fl port
- Multipoint capability(7 transmit data devices connected at the same time)

Support profiles

- SPP (Master and slave), iAP (ipod accessory protocol)
- BLE(GATT Profile)
- HFP ,A2DP,AVRCP,HID(Salve)

User interface

- Send AT command over UART
- Firmware upgrade over USB
- With SPP service active: 560kbps transmission speed (UART)
- PCM interface (I2S,SPDIF)
- I2C interface(Master),SPI

Audio codec

- optional support for 64Mb of external SPI flash 16Mb internal flash memory (64-bit wide, 45ns)
- 80MHz RISC MCU and 80MIPS Kalimba DSP
- Support for CSR's latest CVC technology for narrow-band and wideband voice connections including wind noise reduction
- Support Apt-X ,AAC, Apt-XLL,SBC codec

General I/O

- 13 eneral purpose I/Os
- 2 analogue I/O
- Support for up to 3 capacitive touch sensor inputs
- Three fully configurable LED drivers
- FCC and Bluetooth® qualified
- Single voltage supply: 2.7-3.6V
- Small form factor: 30.4 x 15.26 x 2.4mm
- Operating temperature range: -40 °C to 85 °C

1. Contents

1.	Des	scription	4
2.	Δnr	olication	1
۷.	Th	, i cation	
3.	EH-	MB18 Product numbering	4
4.	Ele	ctrical Characteristic	5
4	1.1.	Recommend operation conditions	5
4	1.2.	Absolute Maximum Rating	5
4	1.3.	Power consumptions	5
4	1.4.	Input/output Terminal Characteristics	
	4.4.		
	4.4. 4.4.		
	4.4.		
5.	Pin	out and Terminal Description	10
5	5.1.	Pin assignment	10
6.	Phy	/sical Interfaces	13
6	6.1.	Power Supply	
6	6.2.	Reset	
6	6.3.	PIO	14
6	6.4.	AIO	14
6	6.5.	RF interface	14
6	6.6.	UART	14
6	6.7.	I2C Master	
6	S.8.	Apple iOS CP reference design	16
6	S.9.	Digital Audio Interfaces	17
	6.9.		
	6.9. 6.9.	\ , ,	
6	6.10.	Microphone input	
	5.11.	Analog Output stage	
	6.12.	USB	
_		MD49 Deference Decim	26
,		BELTY HATAFANAA IJAALAN	34

8. Mechanical and PCB Footprint Characteristics	27
9. RF Layout Guidelines	28
10. Reflow Profile	29
11. Contact Information	30
2. Table of Tables	
TABLE 1: RECOMMENDED OPERATING CONDITIONS	5
TABLE 2: ABSOLUTE MAXIMUM RATING RECOMMENDED OPERATING CONDITIONS	
TABLE 3: POWER CONSUMPTIONS	
TABLE 4: DIGITAL TERMINAL	
TABLE 5: USB TERMINAL	
TABLE 7: DIGITAL TO ANALOGUE CONVERTER	
TABLE 8: PIN TERMINAL DESCRIPTION	
TABLE 9: PIN STATUS ON RESET	
TABLE 10: POSSIBLE UART SETTINGS.	
TABLE 11: ALTERNATIVE FUNCTIONS OF THE DIGITAL AUDIO BUS INTERFACE ON THE PCM INTERFA	
TABLE 12 : DIGITAL AUDIO INTERFACE SLAVE TIMING	
TABLE 13: DIGITAL AUDIO INTERFACE MASTER TIMING	
TABLE 14: USB INTERFACE COMPONENT VALUES	25
3. Table of Figures	
FIGURE 1: PINOUT OF EH-MB18	
FIGURE 2: POWER SUPPLY PCB DESIGN	
FIGURE 3: CONNECTION TO HOST DEVICE	
FIGURE 4 : EXAMPLE EEPROM CONNECTION WITH I ² C INTERFACE	
FIGURE 5 : APPLE CO-PROCESSOR 2.0C	16
FIGURE 6 : APPLE CO-PROCESSOR 2.0B	
FIGURE 7 : AUDIO INTERFACE	
FIGURE 9 : DIGITAL AUDIO INTERFACE MIODES	
FIGURE 10 : DIGITAL AUDIO INTERFACE SLAVE TIMING	
FIGURE 11: EXAMPLE CIRCUIT FOR SPDIF INTERFACE (CO-AXIAL)	
FIGURE 12: EXAMPLE CIRCUIT FOR SPDIF INTERFACE (OPTICAL)	
FIGURE 13: MICROPHONE BIASING (SINGLE CHANNEL SHOWN)	
FIGURE 14: SPEAKER OUTPUT	
FIGURE 15: USB CONNECTIONS	
FIGURE 16: REFERENCE DESIGN	
FIGURE 17: RECOMMENDED PCB MOUNTING PATTERN (UNIT: MM, DEVIATION: 0.02MM)TOP VIEW	
FIGURE 18: CLEARANCE AREA OF ANTENNA	
FIGURE 19: RECOMMENDED REFLOW PROFILE	20

1. Description

The EH-MB18 is an easy to use Bluetooth module, compliant with Bluetooth v4.2. The module provides complete RF platform in a small form factor.

The module enables electronic devices with wireless connectivity, not requiring any RF experience or expertise for integration into the final product. The module being a certified solution optimizes the time to market of the final application.

The module built-in enhanced Kalimba DSP coprocessor with 80MIPS, supports enhanced audio and DSP Applications (t Apt-X, AAC, Apt-XLL, SBC codec). Support GATT, A2DP, AVRCP, HSP, HFP, SPP, iAP and PBAP Profiles communication with smart ready devices.

The module BLE profile communication with smart phones (iOS and Android), must be install the APP. EHong iOS system APP download address: https://itunes.apple.com/cn/app/ehong-link/id854886208?mt=8.

The module has 14 x general purpose IOs, 2x Analogue inputs/outputs (temperature sensor, charger control, etc), 3xs capacitive touch sensors, three fully configurable LED drivers (PWM). The module optional support for 64Mb of external SPI flash 16Mb internal flash memory (64-bit wide, 45ns), support Li-lon battery charger with Instant-ON.

2. Application

- Home entertainment eco-system
 - ◆ TVs
 - Smart remote controllers
 - Wired or wireless sound bars
 - Wired or wireless speakers and headphones
 - ◆ Bluetooth low energy connectivity to external 3D glasses
- Tablets / PCs / Mobile Connectivity
 - Wired or wireless headphones for music / gaming / multimedia content
 - Wired or wireless speakers
 - Wired or wireless speaker phones
 - Mono Headsets for voice

3. EH-MB18 Product numbering

EH-MB18(B)

A.	EH	Company Name(Ehong)
B.	MB18	Module Name
C.	В	U.FL Connector

4. Electrical Characteristic

4.1. Recommend operation conditions

Operating Condition	Min	Typical	Max	Unit
Operating Temperature Range	-40		+85	°C
PIO Voltage	+1.7	+3.3	+3.6	V
AIO Voltage	+1.7	+1.8	+1.95	V
LED	+1.1	3.7	+3.6	V
VDD Voltage	+2.7	+3.3	+3.6	V
VCHG(a)	+4.75	+5	+5.75	V
RF frequency	2400	2441	24800	MHz

Table 1: Recommended Operating Conditions

Note:(a) Maximum charging current 200mA

4.2. Absolute Maximum Rating

Rating	Min	Max	Unit
Storage Temperature	-40	+125	°C
PIO Voltage	-0.4	+3.6	V
AIO Voltage	-0.4	+1.95	V
LED	-0.4	+3.6	V
VDD Voltage	-0.4	+3.6	V
VCHG	-0.4	+5.75	V
USB_DP/USB_DN Voltage	-0.4	+3.6	V
Other Terminal Voltages	VSS-0.4	VDD+0. 4	V

Table 2: Absolute Maximum Rating Recommended Operating Conditions

4.3. Power consumptions

DUT Role	Connectio	n	Packet Type	Average Current	Unit
N/A	Deep sleep	With UART host connection	-	55	uA
N/A	Page scan	Page = 1280ms interval Window = 11.25ms	-	219	uA

N/A
Interval Windo W
Master ACL Sniff = 1280ms, 8 attempts, 1 timeout DH1 109 uA Master SCO Sniff = 100ms, 1 attempt, PCM HV3 7.6 mA mA Master SCO Sniff = 100ms, 1 attempt, mono audio codec HV3 9.8 mA mA Master eSCO Setting S3, sniff = 100ms, PCM 2EV3 5.8 mA mA Master eSCO Setting S3, sniff = 3EV3 3EV3 5.4 mA
Master SCO Sniff = 100ms, 1 attempt, PCM HV3 7.6 mA Master SCO Sniff = 100ms, 1 attempt, mono audio codec HV3 9.8 mA Master eSCO Setting S3, sniff = 100ms, PCM 2EV3 5.8 mA Master eSCO Setting S3, sniff = 3EV3 5.4 mA
Master SCO Sniff = 100ms, 1 attempt, mono audio codec HV3 9.8 mA Master eSCO Setting S3, sniff = 100ms, PCM 2EV3 5.8 mA Master eSCO Setting S3, sniff = 3EV3 5.4 mA
Master eSCO Setting S3, sniff = 100ms, PCM 2EV3 5.8 mA Master eSCO Setting S3, sniff = 3EV3 5.4 mA
Master eSCO Setting S3, sniff = 3EV3 5.4 mA
100ms, PCM
Master eSCO Setting S3, sniff = 2EV3 7.9 mA 100ms, mono audio codec
Master eSCO Setting S3, sniff = 3EV3 7.5 mA 100ms, mono audio codec
Slave ACL Sniff = 500ms, 1 DH1 127 uA attempt, 0 timeout
Slave ACL Sniff = 1280ms, 8 DH1 129 uA attempts, 1 timeout
Slave SCO Sniff = 100ms, 1 HV3 7.8 mA attempt, PCM
Slave SCO Sniff = 100ms, 1 HV3 10 mA attempt, mono audio codec
Slave eSCO Setting S3, sniff = 2EV3 6.2 mA
100ms, PCM

		100ms, PCM			
Slave	eSCO	Setting S3, sniff = 100ms, mono audio codec	2EV3	8.2	mA
Slave	eSCO	Setting S3, sniff = 100ms, mono audio codec	3EV3	7.9	mA

Table 3: Power consumptions

Note: Current consumption values are taken with:

- Firmware ID = 7919
- RF TX power set to 0dBm
- No RF retransmissions in case of eSCO
- Audio gateway transmits silence when SCO/eSCO channel is open
- LEDs disconnected
- AFH off

4.4. Input/output Terminal Characteristics

4.4.1. Digital Terminals

Digital Terminals	Min	Туре	Max	Unit		
Input Voltage						
VIL input logic level low	-	-	0.4	V		
VIH input logic level high	0.7 x VDD	-	VDD + 0.4	V		
Tr/Tf	-	-	25	ns		
Output Voltage						
VOL output logic level low, IOL = 4.0mA	-	-	0.4	V		
VOH output logic level high, IOH = -4.0mA	0.75 X VDD	-	-	V		
Tr/Tf	-	-	5	ns		
Input and Tristate Currents						
Strong pull-up	-150	-40	-10	μΑ		
Strong pull-down	10	40	150	μΑ		
Weak pull-up	-5	-1.0	-0.33	μΑ		
Weak pull-down	0.33	1.0	5.0	μΑ		
C _I Input Capacitance	1.0	-	5.0	pF		

Table 4: Digital Terminal

4.4.2. USB

	Min	Туре	Max	Unit				
VDD_USB for correct USB operation	3.10	3.30	3.60	V				
Input Threshold								
V _{IL} input logic level low 0.30 x VDD_US B								
VIH input logic level high	0.70 x VDD_US B	-	-	V				
Input Leakage Current								
VSS_DIG < VIN < VDD_USB(a)	-1	1	5	μΑ				
C _I input capacitance	2.5	-	10	pF				
Output Voltage Levels to Correctly Terminated USB Cable								
VOL output logic level low	VOL output logic level low 0 - 0.2 V							
VOH output logic level high	2.80	-	VDD_USB	V				

Table 5: USB Terminal

(a) Internal USB pull-up disable

4.4.3. Internal CODEC Analogue to Digital Converter

Analogue to I	igital Converter		ogue to Digital Converter					
Parameter	Conditions		Min	Туре	Max	Unit		
Resolution	-		-	-	16	Bits		
Input Sample Rate, Fsample	-		8	-	48	kHz		
		Fsample						
	fin = 1kHz	8kHz	-	93	-	dB		
	B/W = 20Hz→F _{sample} /	16kHz	-	92	-	dB		

SNR	2 (20kHz max) A-Weighted	32kHz	-	92	-	dB
THD+Ň < 0.1% 1.6V _{pk-pk} input		44.1kHz	-	92	-	dB
	πο τρκ-ρκ πιρατ	48kHz	-	92	-	dB
	fin = 1kHz	Fsample				
THD+N	B/W = 20Hz→Fsample/ 2 (20kHz max) 1.6Vpk-pk input	8kHz	-	0.004	-	%
		48kHz	-	0.008	-	%
Digital gain	Digital gain resoluti	-24	1	21.5	dB	
Pre-amplifier setting = 0dB, 9dB, 21dB or 30dB Analogue setting = -3dB to 12dB in 3dB steps			3	-	42	dB
Stereo separation (crosstalk)			-	-89	-	dB

Table 6: Analogue to Digital Converter

4.4.4. Internal CODEC Digital to Analogue Converter

Digital to Analogue Converter							
Parameter	Conditions		Min	Туре	Max	Unit	
Resolution	-			-	-	16	Bit
Output Sample Rate, Fsample	-			8	-	96	kHz
	fin = 1kHz	Fsample	Load				
SNR	B/W = 20Hz→20kHz	48kHz	100kΩ	-	96	-	dB
	A-Weighted	48kHz	32Ω	-	96	-	dB
	THD+N < 0.01% 0dBFS input	48kHz	16Ω	-	96	-	dB
			Load				
		8kHz	100kΩ	-	0.002	-	%
	f _{in} = 1kHz	8kHz	32Ω	-	0.002	-	%
THD+N	20Hz→20kHz 0dBFS input 48kH:	8kHz	16Ω	-	0.003	-	%
		48kHz	100kΩ	-	0.003	-	%
		48kHz	32Ω	-	0.003	-	%

		48kHz	16Ω	-	0.004	i	%
Digital Gain	Digital Gain Reso	olution = 1	/32	-24	1	21.5	dB
Analogue Gain	Analogue Gain Resolution = 3dB		-21	-	0	dB	
Stereo separat	Stereo separation (crosstalk)		-	-88	-	dB	

Table 7: Digital to Analogue Converter

5. Pinout and Terminal Description

5.1. Pin assignment

Figure 1: Pinout of EH-MB18

Pin	Symbol	I/O Type	Description
1	GND	Ground	Ground
2	AIO0	Bi-directional	Analogue programmable input/output line
3	AIO1	Bi-directional	Analogue programmable input/output line
4	CAP_SENSE0	Analogue input	Capacitive touch sensor input
5	CAP_SENSE1	Analogue input	Capacitive touch sensor input
6	CAP_SENSE2	Analogue input	Capacitive touch sensor input
7	GND	Ground	Ground
8	PCM_IN	CMOS Input, with weak internal pull-down	Synchronous Data Input
9	PCM_CLK	Bi-directional with weak	Synchronous Data Clock

		internal pull-down	
10	PCM_SYNC	Bi-directional with weak internal pull-down	Synchronous Data Sync
11	PCM_OUT	CMOS output, tri-state, with weak internal pull-down	Synchronous Data Output
12	RESETB	CMOS input with weak internal pull-up	Active LOW RESETB, input debounced so must be low for >5ms to cause a RESETB
13	UART_CTS	Bi-directional with weak pull down	Uart clear to send ,active low
14	UART_RTS	Bi-directional with weak internal pull-up	uart request to send ,active low
15	UART_RX	CMOS input with weak internal pull-down	UART data input
16	UART_TX	Bi-directional CMOS output, tri-state, with weak internal pull-up	UART data output
17	USB_D+	Bi-directional	USB data plus with selectable internal 1.5K pull up resistor
18	USB_D-	Bi-directional	USB data minus
19	PIO0	Bi-directional with programmable strength internal pull-up/down	Programmable input/output line
20	SPI_CSB	Input with weak internal pull-up	Chip select for Synchronous Serial Interface for programming only, active low
21	SPI_MISO	CMOS output, tri-state, with weak internal pull-down	Serial Peripheral Interface output for programming only
22	SPI_MOSI	CMOS input, with weak internal pull-down	Serial Peripheral Interface input for programming only
23	SPI_CLK	Input with weak internal pull-down	Serial Peripheral interface clock for programming only
24	LED2	Open drain output	LED Driver
25	LED1	Open drain output	LED Driver
26	LED0	Open drain output	LED Driver
27	PIO6	Bi-directional with programmable strength internal pull-up/down	Programmable input/output line
28	PIO7	Bi-directional with programmable strength	Programmable input/output line or I2C SDA

		internal pull-up/down	
29	PIO5	Bi-directional with programmable strength internal pull-up/down	Programmable input/output line or I2C SCL
30	PIO14	Bi-directional with programmable strength internal pull-up/down	Programmable input/output line
31	PIO4	Bi-directional with programmable strength internal pull-up/down	Programmable input/output line
32	VDD_3V3	Power Supply	+2.7V- +3.6V power input
33	GND	Ground	Ground
34	VDD_CHG	Charger input	+4.7V+5.7V charge input
35	QSPI_FALSH_IO3	Bi-directional with strong internal pull-down	Serial quad I/O flash data bit 3
36	QSPI_FLASH_CS	Bi-directional with strong internal pull-up	SPI flash chip select
37	QSPI_FLASH_CLK	Bi-directional with strong internal pull-down	SPI flash clock
38	QSPI_FLASH_IO0	Bi-directional with strong internal pull-down	Serial quad I/O flash data bit 0
39	QSPI_FLASH_IO2	Bi-directional with strong internal pull-down	Serial quad I/O flash data bit 2
40	QSPI_FLASH_IO1	Bi-directional with strong internal pull-down	Serial quad I/O flash data bit 1
41	QSPI_SRAM_CLK	Bi-directional with strong internal pull-down	SPI RAM clock
42	QSPI_SRAM_CS	Bi-directional with strong internal pull-up	SPI RAM chip select
43	MIC_RN	Analogue	Microphone input negative, right
44	MIC_RP	Analogue	Microphone input positive, right
45	MIC_BIAS_B	Analogue out	Microphone bias B
46	MIC_LN	Analogue	Microphone input negative, right
47	MIC_LP	Analogue	Microphone input positive, left
48	MIC_BIAS_A	Analogue out	Microphone bias A
49	SPK_RP	Analogue	Speaker output positive, right
50	SPK_RN	Analogue	Speaker output negative, right
51	SPK_LN	Analogue	Speaker output negative, left

52	SPK_LP	Analogue	Speaker output positive, left
53	GND	Ground	Ground

Table 8: PIN Terminal Description

6. Physical Interfaces

6.1. Power Supply

- The module DC3.3V power input.
- Power supply pin connection capacitor to chip and pin as far as possible close
- Capacitor decouples power to the chip
- Capacitor prevents noise coupling back to power plane.

Figure 2: Power Supply PCB Design

6.2. Reset

The module may be reset from several sources: RESETB pin, power-on reset, a UART break character or via software configured watchdog timer.

The RESETB pin is an active low RESETB and is internally filtered using the internal low frequency clock oscillator. A RESETB will be performed between 1.5 and 4.0ms following RESETB being active. It is recommended that RESETB be applied for a period greater than 5ms.

At RESETB the digital I/O pins are set to inputs for bi-directional pins and outputs are tri-state. The pull-down state is shown below.

Pin Name / Group	Pin Status on RESETB
USB_DP	N/a
USB_DN	N/a

UART_RX	Strong PU
UART_TX	Weak PU
UART_RTS	Weak PU
UART_CTS	Weak PD
SPI_MOSI	Weak PD
SPI_CLK	Weak PD
SPI_CSB	Strong PU
SPI_MISO	Weak PD
RESET	Strong PU
PIOs	Weak PD
PCM_IN	Weak PD
PCM_CLK	Weak PD
PCM_SYNC	Weak PD
PCM_OUT	Weak PD
QSPI_SRAM_CS	Strong PU
QSPI_FLASH_CS	Strong PU
QSPI_SRAM_CLK	Strong PD
QSPI_FLASH_CLK	Strong PD

Table 9: Pin Status on Reset

6.3. PIO

EH-MB18 has a total of 13digital programmable I/O terminals. They are powered from VDD . Their functions depend on firmware running on the device. PIO lines can be configured through software to have either weak or strong pull-ups or pull-downs.

Note:

All PIO lines are configured as inputs with weak pull-downs at reset.

Any of the PIO lines can be configured as interrupt request lines or as wake-up lines from sleep modes.

6.4. AIO

EH-MB18 has 2 analogue I/O terminals. Their functions depend on software. Typically ADC functions can be configured to battery voltage measurement. They can also be used as a digital PIO.

6.5. RF interface

EH-MB18 internet chip antenna and U.fl port choose one of the ways. U.fl port external antenna, impedance is 50 ohm.

6.6. **UART**

This is a standard UART interface for communicating with other serial devices. The UART interface provides a simple mechanism for communicating with other serial devices using the RS232 protocol.

The UART CTS and RTS signals can be used to implement RS232 hardware flow control where both are active low indicators.

Parameter		Possible Values
	Minimum	1200 baud (≤2%Error)
Baud Rate	IVIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	9600 baud (≤1%Error)
	Maximum	3M baud (≤1%Error)
Flow Control		RTS/CTS or None
Pa	rity	None, Odd or Even
Number of Stop Bits		1 or 2
Bits per Byte		8

Table 10: Possible UART Settings

Figure 3: Connection To Host device

6.7. I2C Master

PIO6, PIO7 and PIO8 can be used to form a master I 2 C interface. The interface is formed using software to drive these lines. It is suited only to relatively slow functions such as driving a LCD, keyboard scanner or EEPROM. In the case, PIO lines need to be pulled up through 2.2K Ω resistors.

Figure 4: Example EEPROM Connection with I²C Interface

6.8. Apple iOS CP reference design

The figures below give an indicative overview of what the hardware concept looks like. A specific MFI co-processor layout is available for licensed MFI developers from the MFI program.

Figure 5 : Apple Co-processor 2.0C

Figure 6: Apple Co-processor 2.0B

6.9. Digital Audio Interfaces

The audio interface circuit consists of:

- Stereo/Dual-mono audio codec
- Dual audio inputs and outputs
- 6 digital MEMS microphone inputs
- A configurable PCM, I2S or SPDIF interface

Figure 2 outlines the functional blocks of the interface. The codec supports stereo playback and recording of audio signals at multiple sample rates with a resolution of 16-bit. The ADC and the DAC of the codec each contain 2 independent channels. Any ADC or DAC channel can be run at its own independent sample rate.

Figure 7: Audio Interface

The interface for the digital audio bus shares the same pins as the PCM codec interface described in Table 11, which means each of the audio buses are mutually exclusive in their usage. Table 11 lists these alternative functions.

PCM Interface	SPDIF Interface	I ² S Interface
PCM_OUT	SPDIF_OUT	SD_OUT
PCM_IN	SPDIF_IN	SD_IN
PCM_SYNC	-	WS
PCM_CLK	-	SCK

Table 11: Alternative Functions of the Digital Audio Bus Interface on the PCM Interface

The audio input circuitry consists of a dual audio input that can be configured to be either single-ended or fully differential and programmed for either microphone or line input. It has an analogue and digital programmable gain stage for optimization of different microphones. The audio output circuitry consists of a dual differential class A-B output stage.

6.9.1. PCM

The audio pulse code modulation (PCM) interface supports continuous transmission and reception of PCM encoded audio data over Bluetooth.

Hardware on EH-MB18 allows the data to be sent to and received from a SCO connection. Up to three SCO connections can be supported by the PCM interface at any one time. EH-MB18 can operate as the PCM interface master generating PCM_SYNC and PCM_CLK or as a PCM interface slave accepting externally generated PCM_SYNC and PCM_CLK. EH-MB18 is compatible with a variety of clock formats, including Long Frame Sync, Short Frame Sync and GCI timing environments.

It supports 13-bit or 16-bit linear, 8-bit u-law or A-law companded sample formats and can receive and transmit on any selection of three of the first four slots following PCM_SYNC. EH-MB18 interfaces directly to PCM audio devices including the following:

- Qualcomm MSM 3000 series and MSM 5000 series CDMA baseband devices
- OKI MSM7705 four channel A-law and µ-law CODEC
- Motorola MC145481 8-bit A-law and µ-law CODEC
- Motorola MC145483 13-bit linear CODEC
- STW 5093 and 5094 14-bit linear CODECs(8)
- EH-MB18 is also compatible with the Motorola SSI interface

6.9.2. Digital Audio Interface (I2S)

The digital audio interface supports the industry standard formats for I2S, left-justified or right-justified. The interface shares the same pins of the PCM interface as Table 11.

Special firmware is needed if I2S is used. Contact EHong for the special firmware when use I2S as the interface between the module and the host or the codec. The I2S support following formats,

Figure 8 : Digital Audio Interface Modes

Symbol	Parameter	Min	Typical	Max	Unit
-	SCK Frequency	-	-	6.2	MHz
-	WS Frequency	-	-	96	kHz
t _{ch}	SCK high time	80	-	-	ns
t _{cl}	SCK low time	80	-	-	ns
t _{opd}	SCK to SD_OUT delay	-	-	20	ns
t _{ssu}	WS to SCK set up time	20	-	-	ns
t _{sh}	WS to SCK hold time	20	-	-	ns
t _{isu}	SD_IN to SCK set-up time	20	-	-	ns
t _{ih}	SD_IN to SCK hold time	20	-	-	ns

Figure 9 : Digital Audio Interface Slave Timing

Symbol	Parameter	Min	Typical	Max	Unit
-	SCK Frequency	-	-	6.2	MHz
-	WS Frequency	-	-	96	kHz
t _{opd}	SCK to SD_OUT delay	-	-	20	ns
t _{spd}	SCK to WS delay	-	-	20	ns
t _{isu}	SD_IN to SCK set-up time	20	-	-	ns
t _{ih}	SD_IN to SCK hold time	10	-	-	ns

Table 13: Digital Audio Interface Master Timing

Figure 10 : Digital Audio Interface Master Timing

6.9.3. IEC 60958 Interface (SPDIF)

The IEC 60958 interface is a digital audio interface that uses bi-phase coding to minimise the DC content of the transmitted signal and allows the receiver to decode the clock information from the transmitted signal. The IEC 60958 specification is based on the 2 industry standards:

- AES/EBU
- Sony and Philips interface specification SPDIF

The interface is compatible with IEC 60958-1, IEC 60958-3 and IEC 60958-4.

The SPDIF interface signals are SPDIF_IN and SPDIF_OUT and are shared on the PCM interface pins. The input and output stages of the SPDIF pins can interface to:

- \blacksquare A 75Ω coaxial cable with an RCA connector, see Figure 11.
- An optical link that uses Toslink optical components, see Figure 12.

Figure 11: Example Circuit for SPDIF Interface (Co-Axial)

Figure 12: Example Circuit for SPDIF Interface (Optical)

6.10. Microphone input

The module contains 2 independent low-noise microphone bias generators. The microphone bias generators are recommended for biasing electret condensor microphones. Figure 9.6 shows a biasing circuit for microphones with a sensitivity between about - 40 to - 60dB (0dB = 1V/Pa):

Where:

- The microphone bias generators derives their power from VBAT or VOUT_3V3 \ and requires no capacitor on its output.
- The microphone bias generators maintains regulation within the limits 70µA to 2.8mA, supporting a 2mA source typically required by 2 electret condensor microphones. If the microphone sits below these limits, then the microphone output must be pre-loaded with a large value resistor to ground.
- Biasing resistors R1 and R2 equal 2.2kΩ.
- The input impedance at MIC_LN, MIC_LP, MIC_RN and MIC_RP is typically 6kΩ.
- C1, C2, C3 and C4 are 100/150nF if bass roll-off is required to limit wind noise on the microphone.
- R1 and R2 set the microphone load impedance and are normally around 2.2kΩ.

Figure 13: Microphone Biasing (Single Channel Shown)

The microphone bias characteristics include:

- Power supply:
- CSR8670 BGA microphone supply is VBAT (via SMP_VBAT) or VOUT_3V3 (via SMPS_3V3)
- Minimum input voltage = Output voltage + drop-out voltage
- Maximum input voltage is 4.25V
- Drop-out voltage:
- 300mV maximum
- Output voltage:
- 1.8V or 2.6V
- Tolerance 90% to 110%
- Output current:
- 70µA to 2.8mA
- No load capacitor required

6.11. Analog Output stage

The output stage digital circuitry converts the signal from 16-bit per sample, linear PCM of variable sampling frequency to a 2Mbits/s 5-bit multi-bit bit stream, which is fed into the analogue output circuitry.

The output stage circuit is comprised a DAC with gain setting and class AB amplifier. The output is available as a differential signal between SPKR_A_N and SPKR_L_P for the right channel, as Figure 6 shows, and between SPKL_B_N and SPKL_B_P for the left channel.

Figure 14: Speaker output

6.12. USB

This is a full speed (12M bits/s) USB interface for communicating with other compatible digital devices. The module acts as a USB peripheral, responding to request from a master host controller, such as a PC.

The USB interface is capable of driving a USB cable directly. No external USB transceiver is required. The device operates as a USB peripheral, responding to requests from a master host controller such as a PC. Both the OHCI and the UHCI standards are supported. The set of USB endpoints implemented can behave as specified in the USB section of the Bluetooth specification v2.1+EDR or alternatively can appear as a set of endpoints appropriate to USB audio devices such as speakers.

The module has an internal USB pull-up resistor. This pulls the USB_DP pin weakly high when module is ready to enumerate. It signals to the USB master that it is a full speed (12Mbit/s) USB device.

Figure 15: USB Connections

Identifier	Value	Function
R _s	27Ω Nominal	Impedance matching to USB cable

Table 14: USB Interface Component Values

Note:

USB_ON is only used when the firmware need an input to detect if USB is connected and the USB function shall be enabled. In such case it is shared with the module PIO terminals. If detection is not needed (firmware already runs with USB, such as USB DFU or USB CDC), USB_ON is not needed.

7. EH-MB18 Reference Design

Figure 16: Reference Design

8. Mechanical and PCB Footprint Characteristics

Figure 17: Recommended PCB Mounting Pattern (Unit: mm, Deviation:0.02mm)TOP View

9. RF Layout Guidelines

EH-MB18 RF design to ensure enough clearance area of antenna, area length is 1.6 times of antenna length, area width is 4 times of antenna width, the bigger the better if the space allows. Module antenna clearance area size, as follows.

Figure 18: Clearance Area of Antenna

10. Reflow Profile

The soldering profile depends on various parameters necessitating a set up for each application. The data here is given only for guidance on solder reflow.

Figure 19: Recommended Reflow Profile

Pre-heat zone (A) — This zone raises the temperature at a controlled rate, **typically 0.5 – 2** °**C/s**. The purpose of this zone is to preheat the PCB board and components to 120 ~ 150 °C. This stage is required to distribute the heat uniformly to the PCB board and completely remove solvent to reduce the heat shock to components.

Equilibrium Zone 1 (B) — In this stage the flux becomes soft and uniformly encapsulates solder particles and spread over PCB board, preventing them from being re-oxidized. Also with elevation of temperature and liquefaction of flux, each activator and rosin get activated and start eliminating oxide film formed on the surface of each solder particle and PCB board. **The temperature is recommended to be 150° to 210° for 60 to 120 second for this zone**.

Equilibrium Zone 2 (c) (optional) — In order to resolve the upright component issue, it is recommended to keep the temperature in $210 - 217^{\circ}$ for about 20 to 30 second.

Reflow Zone (D) — The profile in the figure is designed for Sn/Ag3.0/Cu0.5. It can be a reference for other lead-free solder. The peak temperature should be high enough to achieve good wetting but not so high as to cause component discoloration or damage. Excessive soldering time can lead to intermetallic growth which can result in a brittle joint. The recommended peak temperature (Tp) is $230 \sim 250$ °C. The soldering time should be 30 to 90 second when the temperature is above 217 °C.

Cooling Zone (E) — The cooling ate should be fast, to keep the solder grains small which will give a longerlasting joint. **Typical cooling rate should be 4** °C.

11. Contact Information

Sales: sales@ehlink.com.cn

Technical support: support@ehlink.com.cn

Phone: +86 21 64769993 Fax: +86 21 64765833

Street address: Rom1505, Blk 1st ,No.833 South Hong mei Rd ,Ming hang district shanghai

Note: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- —Reorient or relocate the receiving antenna.
- —Increase the separation between the equipment and receiver.
- —Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- —Consult the dealer or an experienced radio/TV technician for help.

This device complies with part 15 of the FCC rules. Operation is subject to the following two conditions:

- (1) this device may not cause harmful interference, and
- (2) this device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications to this unit not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

Integrator is reminded to assure that these installation instructions will not be made available to the end-user of the final host device.

the Integrator will be responsible to satisfy SAR/ RF Exposure requirements, when the module integrated into any (portable, mobile, fixed) host device.

The final host device, into which this RF Module is integrated" has to be labelled with an auxilliary lable stating the FCC ID of the RF Module, such as "Contains FCC ID: 2ACCRMB18".