

Принципи дефинисања скупова

Аксиома екстензије. Два скупа су једнака акко имају исте елементе, тј.

$$X = Y \Leftrightarrow (\forall u)(u \in X \Leftrightarrow u \in Y).$$

Дефиниција. Скуп X је **подскуп** скупа Y (а скуп Y је надскуп скупа X), у ознаци $X\subseteq Y$, ако је сваки елемент скупа X уједно и елемент скупа Y, тј.

$$X \subseteq Y \stackrel{\text{def}}{\Leftrightarrow} (\forall u) (u \in X \Rightarrow u \in Y).$$

Релација ⊆ зове се релација подскупа или **инклузија**.

Ако је $X\subseteq Y$, кажемо и да је X садржан у Y.

Дефинишемо и **прави подскуп**: $A \subset X$ акко $A \subseteq X_A$ и, $A \neq X_B$,

Принципи дефинисања скупова

Теорема. За произвољне скупове X,Y и Z важи

- $ightharpoonup X \subseteq X$
- $X \subseteq Y \land Y \subseteq X \Rightarrow X = Y$
- $X \subseteq Y \land Y \subseteq Z \Rightarrow X \subseteq Z.$

Принципи дефинисања скупова

Аксиома подскупа (издвајања). За дати скуп X и дато својство S постоји скуп $A = \{x \in X | S(x)\}.$

Из аксиоме екстензије следи да је овако дефинисан скуп A јединствен.

Теорема. Не постоји скуп свих скупова.

Доказ. Покажимо да за сваки скуп X постоји скуп A који му не припада.

Нека је $A=\{x\in X|x\notin x\}$. Тада $x\in A\iff x\in X\land x\notin x$. Узимајући за x скуп A имамо $A\in A\iff A\in X\land A\notin A$, па би нас тачност исказа $A\in X$ довела до: $A\in A\iff A\notin A$. Контрадикција. Следи $A\notin X$.

Празан скуп

Дефиниција. Скуп

$$\emptyset \stackrel{\mathrm{def}}{=} \{ x \in X | x \neq x \}$$

се зове празан скуп.

Егзистенција празног скупа следи из аксиоме подскупа (узимајући $S(x) := x \neq x$), а јединственост из аксиоме екстензије.

Из дефиниције следи да празан скуп нема ниједан елемент, тј.

$$(\forall x) \ x \notin \emptyset.$$

Теорема. $\emptyset \subseteq X$, за сваки скуп X.

Пресек и разлика

Принцип издвајања нам омогућава да од постојећих скупова X и Y применом својстава $x \in Y$ и $x \notin Y$ изградимо нове:

- $lacksymbol{\lambda} X \cap Y \stackrel{\mathrm{def}}{=} \{x \in X | x \in Y\}$ пресек скупова X и Y
- $lackbox X\setminus Y\stackrel{\mathrm{def}}{=}\{x\in X|x
 otin Y\}$ разлика скупова X и Y
- lacktriangle Ако је $X\cap Y=\emptyset$ кажемо да су скупови X и Y дисјунктни.

Теорема (особине пресека и разлике).

- $X \cap X = X \qquad X \setminus X = \emptyset$
- $X \cap \emptyset = \emptyset \qquad X \setminus \emptyset = X$
- $X \cap Y \subseteq X \emptyset \setminus X = \emptyset$
- $X \cap Y \subseteq Y \qquad X \setminus Y \subseteq X$
- lacktriangle Ако је $Z\subseteq X$ и $Z\subseteq Y$ онда је $Z\subseteq X\cap Y$.

Комплемент

Дефиниција. Ако су A и X скупови и $A\subseteq X$, тада

$$A^C \stackrel{\mathrm{def}}{=} X \setminus A$$

зовемо **комплемент** скупа A у односу на скуп X.

Теорема. За $A\subseteq X$ и $B\subseteq X$ важи

- $(A^C)^C = A$
- ▶ Ако је $A \subseteq B$ онда $B^C \subseteq A^C$.

Уређени пар

Аксиома неуређеног пара.За свака два скупа x и y постоји скуп $\{x,y\}$ чији су једини елементи x и y.

Дефиниција. Скуп $\{x,y\}$ (чију егзистенцију обезбеђује претходна аксиома) се зове неуређени **пар** елемената x и y.

Специјално, за x=y скуп $\{x\}\stackrel{\mathrm{def}}{=}\{x,x\}$ се зове **синглтон** или једночлани скуп.

Из дефиниције непосредно следи $\{x,y\}=\{y,x\}$.

Често је потребно истаћи који елемент пара је први, а који други. Зато дефинишемо уређени пар.

Дефиниција.Уређен пар (x,y) скупова x и y дефинисан је следећом једнакошћу

$$(x,y) \stackrel{\text{def}}{=} \{\{x\}, \{x,y\}\}.$$

x је прва координата (компонента), а y је друга координата.

Уређени пар

Теорема.

$$(a,b) = (c,d) \Leftrightarrow a = c \quad \text{if} \quad b = d$$

Напомена.

$$\{a,b\} = \{b,a\},$$
 $(a,b) = (b,a)$ акко $a=b$.

Индуктивно се даље дефинишу уређене тројке, четворке, \dots уопште уређене n-торке:

$$(a,b,c)\stackrel{\mathrm{def}}{=}((a,b),c)$$
 - уређена тројка $(a_1,a_2,\ldots,a_n)\stackrel{\mathrm{def}}{=}((a_1,a_2,\ldots,a_{n-1}),a_n)$ -уређена n -торка.

Декартов производ скупова

Скуп $A \times B \stackrel{\mathrm{def}}{=} \{(x,y) | x \in A \land y \in B\}$ се зове Декартов производ скупова A и B.

Слично, дефинишемо

$$A \times B \times C \stackrel{\text{def}}{=} \{(a, b, c) | a \in A, b \in B, c \in C\}.$$

$$A_1 \times A_2 \times \cdots \times A_n \stackrel{\text{def}}{=} \{(a_1, \dots, a_n) | a_1 \in A_1, a_2 \in A_2, \dots, a_n \in A_n\}$$

$$A^2 \stackrel{\text{def}}{=} A \times A,$$

$$A^3 \stackrel{\text{def}}{=} A \times A \times A, \dots$$

Пример. За
$$A=\{0,1\}$$
 и $B=\{x,y,z\}$ важи $A\times B=\{(0,x),(0,y),(0,z),(1,x),(1,y),(1,z)\},$ $B\times A=\{(x,0),(x,1),(y,0),(y,1),(z,0),(z,1).$ $A^2=\{(0,0),(0,1),(1,0),(1,1)\},$ $A^3=\{(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,0),(1,0,1),(1,1,0),(1,1,1)\}$

Аксиома уније

Аксиома уније. За дати скуп X постоји скуп који садржи све елементе елемената скупа X.

Скуп чију егзистенцију обезбеђује претходна аксиома се зове унија елемената скупа X и означава са $\cup X$.

Специјално, за $X=\{A,B\}$, постоји скуп који садржи све елементе скупа A и све елементе скупа B. Скуп

 $A \cup B \stackrel{\mathrm{def}}{=} \{x | x \in A \ \lor \ x \in B\}$ се зове унија скупова A и B.

Теорема. За произвољне скупове X,Y,Z важи:

- $ightharpoonup X \cup X = X$,
- $X \cup \emptyset = X$
- lacktriangle Ако је $X\subseteq Z$ и $Y\subseteq Z$ онда је $X\cup Y\subseteq Z$.

Аксиома партитивног скупа

Аксиома партитивног скупа. За дати скуп A постоји скуп који садржи све подскупове скупа A.

Претходна аксиома и аксиома екстензије оправдавају следећу дефиницију.

Скуп $\mathcal{P}(A) \stackrel{\mathrm{def}}{=} \{X | X \subseteq A\}$ се зове партитивни скуп скупа A. Пример.

- $P(\emptyset) = \{\emptyset\}$
- $\mathcal{P}(\{x\}) = \{\emptyset, \{x\}\},\$
- $\mathcal{P}(\{1, a, 2\}) = \{\emptyset, \{1\}, \{a\}, \{2\}, \{1, a\}, \{1, 2\}, \{a, 2\}, \{1, 2, a\}\}.$

