

CLAIMS

1. In a method designed to prove to a controller entity,

- the authenticity of an entity and/or
- the integrity of a message M associated with this entity.

5 by means of all or part of the following parameters or derivatives of these parameters:

- a public modulus n constituted by the product of f prime factors p_1, p_2, \dots, p_f (f being equal to or greater than 2),

10 - a public exponent v ;

- m distinct integer base numbers g_1, g_2, \dots, g_m (m being greater than or equal to 1), the base numbers g_i being such that:

the two equations (1) and (2):

$$x^2 \equiv g_i \pmod{n} \quad \text{and} \quad x^2 \equiv -g_i \pmod{n}$$

15 cannot be resolved in x in a ring of integers modulo n ,

and such that:

the equation (3):

$$x^v \equiv g_i^2 \pmod{n}$$

can be resolved in x in the ring of integers modulo n .

20 the method according to the invention making it possible to produce the f prime factors p_1, p_2, \dots, p_f in such a way that the equations (1), (2) and (3) are satisfied, said method comprising the step of choosing firstly:

- the m base numbers g_1, g_2, \dots, g_m ,
- the size of the modulus n ,
- the size of the f prime factors p_1, p_2, \dots, p_f .

25 2. Method according to claim 1 such that, when the public exponent v has the form:

$$v = 2^k$$

where k is a security parameter greater than 1, the security parameter k is

also chosen as a prime number.

3. Method according to one of the claims 1 or 2, such that the m base numbers g_1, g_2, \dots, g_m , are chosen at least partly among the first integers.

5 4. Method according to one of the claims 2 or 3, such that the security parameter k is a small integer, especially smaller than 100.

10 5. Method according to one of the claims 1 to 4, such that the size of the modulus n is greater than several hundreds of bits.

10 6. Method according to one of the claims 1 to 5, such that the f prime factors p_1, p_2, \dots, p_f have a size close to the size of the modulus n divided by the number f of factors..

15 7. Method according to one of the claims 1 to 6 such that, among the f prime factors p_1, p_2, \dots, p_f ,

- a number e of prime factors congruent to 1 modulo 4 is chosen, e possibly being zero (should e be zero, the modulus n will hereinafter be called a basic modulus, should $e > 0$, the modulus n will hereinafter be called a combined modulus),

- the $f-e$ other prime factors are chosen to be congruent to 3 modulo 4, $f-e$ being at least equal to 2.

20 8. A method according to claim 7 such that, to produce the $f-e$ prime factors p_1, p_2, \dots, p_{f-e} congruent to 3 modulo 4,
the following steps are implemented:

- the first prime factor p_1 congruent to 3 modulo 4 is chosen and then,
- the second prime factor p_2 is chosen such that p_2 is complementary to p_1 with respect to the base number g_1 .

25 - the factor p_{i+1} is chosen in carrying out the following procedure in distinguishing two cases:

(1) the case where $i > m$

- the factor p_{i+1} congruent to 3 modulo 4 is chosen.

(2) Case where $i \leq m$

- the Profile ($\text{Profile}_i(g_i)$) of g_i with respect to the i first prime factors p_i is computed:

- if the $\text{Profile}_i(g_i)$ is flat, the factor p_{i+1} is chosen such that p_{i+1} is complementary to p_i with respect to g_i ,

- else, among the $i-1$ base numbers g_1, g_2, \dots, g_{i-1} and all their multiplicative combinations, the number, hereinafter called g , is chosen such that $\text{Profile}_i(g) = \text{Profile}_i(g_i)$, and then p_{i+1} is chosen such that $\text{Profile}_{i+1}(g_i) \neq \text{Profile}_{i+1}(g)$.

(the terms "complementary", "profile", "flat profile" having the meanings defined in the description).

9. A method according to claim 8 such that, to choose the last prime factor p_{f-e} , the following procedure is used in distinguishing three cases:

(1) Case where $f-e-1 > m$

• p_{f-e} is chosen congruent to 3 modulo 4.

(2) Case where $f-e-1 = m$

• $\text{Profile}_{f-e-1}(g_m)$ is computed with respect to the $f-e-1$ first prime factors from, p_1 to p_{f-e-1} ,

• • if $\text{Profile}_{f-e-1}(g_m)$ is flat, p_{f-e-1} is chosen such that it is complementary to p_1 with respect to g_m ,

• • else:

• • • among the $m-1$ base numbers from g_1 to g_{m-1} and all their multiplicative combinations, the number hereinafter called g is chosen such that $\text{Profile}_i(g) = \text{Profile}_i(g_i)$,

• • • then p_{f-e} is chosen such that $\text{Profile}_{f-e}(g) \neq \text{Profile}_{f-e}(g_m)$.

(3) Case where $f-e-1 < m$

• p_{f-e} is chosen such that the following two conditions are met:

(3.1) First condition

• **Profile_{f-e-1}(g_{f-e-1})** is computed with respect to the f-e-1 first prime factors from p₁ to p_{f-e-1},

•• If **Profile_{f-e-1}(g_{f-e-1})** is flat, p_{f-e} is chosen so that it meets the first condition of being complementary to p₁ with respect to g_{f-e-1}.

•• Else,

••• among the f-e-1 base numbers from g₁ to g_{m-1} and all their multiplicative combinations, the number, hereinafter called g is chosen such that **Profile_i(g) = Profile_{f-e-1}(g_{f-e-1})**,

••• then p_{f-e} is chosen so that it meets the first condition of being such that **Profile_{f-e}(g) ≠ Profile_{f-e}(g_m)**,

(3.2) Second condition

• among all the last base numbers from g_{f-e} to g_m, those numbers whose **Profile_{f-e-1}(g_i)** is flat are chosen and then

• p_{f-e} is chosen so that it meets the second condition of being complementary to p₁ with respect to each of the base numbers thus selected.

10. Method according to the claims 8 or 9 such that, to produce the e prime factors congruent to 1 modulo 4, each prime factor candidate p is evaluated, from p_{f-e} to p_f, in being subjected to the following two successive tests:

(1) First test

- the Legendre symbol is computed for each base number g_i, from g₁ to g_m, with respect to the candidate prime factor p,

• if the Legendre symbol is equal to -1, the candidate p is rejected,

• if the Legendre symbol is equal to +1, the evaluation of the candidate p is continued in passing to the following base

number and then, when the last base number has been taken into account, there is a passage to the second test.

(2) Second test

- an integer number t is computed such that $p-1$ is divisible by 2^t ,
5 but not by 2^{t+1} , then

- an integer s is computed such that $s = (p-1+2^t)/2^{t+1}$.
- the key $\langle s, p \rangle$ is applied to each public value G_i to obtain a result r

$$r \equiv G_i^s \pmod{p}$$

10 • if r is equal to g_i or $-g_i$, the second test is continued in passing to the following public value G_{i+1} .

15 • if r is different from g_i or $-g_i$, a factor u is computed in applying the following algorithm:

• the algorithm consists of the repetition of the following sequence specified for an index ii ranging from 1 to $t-2$:

20 • the algorithm implements two variables: w initialized by r and $jj = 2^{ii}$ assuming values ranging from 2 to 2^{t-2} , as well a number b obtained by application of the key $\langle (p-1)/2^t, p \rangle$ to a non-quadratic residue of $CG(p)$, then the following steps 1 and 2 are iterated:

• Step 1: $w^2/G_i \pmod{p}$ is computed,

• Step 2: the result is raised to the power of 2^{t-ii-1} .

25 • If +1 is obtained, the second test is continued in passing to the following public value G_{i+1} ,

• • • If -1 is obtained, $jj = 2^{ii}$ is computed and then w is replaced by $w.b^{ii} \pmod{p}$, then the algorithm is continued for the following value having an index ii .

• • at the end of the algorithm, the value in the variable jj is used to compute an integer u by the relation $jj = 2^{t-u}$ and then the expression $t-u$ is computed. Two cases arise:

• • • if $t-u < k$, the candidate p is rejected

5 • • • if $t-u > k$, the evaluation of the candidate p is continued in continuing the second test and in passing to the following public value G_{i+1} , the candidate p is accepted as a prime factor congruent to 1 modulo 4 if, at the end of the second test, for all the m public values G_i , it has not been rejected.

10

11. Method applying the method according to any of the claims 1 to 10, making it possible to produce f prime factors p_1, p_2, \dots, p_f , this method being designed to prove the following to a controller entity,

15

- the authenticity of an entity and/or

- the integrity of a message M associated with this entity,

by means of all or part of the following parameters or derivatives of these parameters:

20

- m pairs of private values Q_1, Q_2, \dots, Q_m and public values G_1, G_2, \dots, G_m (m being greater than or equal to 1),

- the public modulus n constituted by the product of said prime factors $f p_1, p_2, \dots, p_f$ (f being greater than or equal to 2),

- the public exponent v ;

said modulus, said exponent and said values being linked by relations of the following type:

25

$$G_i \cdot Q_i^v \equiv 1 \pmod{n} \text{ or } G_i \equiv Q_i^v \pmod{n}.$$

said exponent v being such that

$$v = 2^k$$

where k is a security parameter greater than 1.

said public value G_i being the square g_i^2 of the base number g_i smaller than

the f prime factors p_1, p_2, \dots, p_f , the base number g_i being such that:
the two equations:

$$x^2 \equiv g_i \pmod{n} \quad \text{and} \quad x^2 \equiv -g_i \pmod{n}$$

cannot be resolved in x in the ring of integers modulo n

5 and such that:

the equation:

$$x^v \equiv g_i^2 \pmod{n}$$

can be resolved in x in the ring of the integers modulo n .

10 said method implements, in the following steps, an entity called a witness having f prime factors p_i and/or parameters of the Chinese remainders of the prime factors and/or of the public modulus n and/or the m private values Q_i and/or $f.m$ components $Q_{i,j}$ ($Q_{i,j} \equiv Q_i \pmod{p_j}$) of the private values Q_i and of the public exponent v :

15 - the witness computes commitments R in the ring of integers modulo n ; each commitment being computed:

- either by performing operations of the type:

$$R \equiv r^v \pmod{n}$$

where r is a random factor such that $0 < r < n$,

- or

- • by performing operations of the type:

$$R_i \equiv r_i^v \pmod{p_i}$$

where r_i is a random value associated with the prime number p_i such that $0 < r_i < p_i$, each r_i belonging to a collection of random factors $\{r_1, r_2, \dots, r_f\}$,

- • then by applying the Chinese remainder method;

25 - the witness receives one or more challenges d , each challenge d comprising m integers d_i hereinafter called elementary challenges; the witness, on the basis of each challenge d , computing a response D ,

- either by performing operations of the type:

$$D \equiv r \cdot Q_1^{d1} \cdot Q_2^{d2} \cdots Q_m^{dm} \pmod{n}$$

• or

- • by performing operations of the type:

$$D_i \equiv r_i \cdot Q_{i,1}^{d_1} \cdot Q_{i,2}^{d_2} \cdots Q_{i,m}^{d_m} \pmod{p_i}$$

- • and then by applying the Chinese remainder method.

said method being such that there are as many responses **D** as there are challenges **d** as there are commitments **R**, each group of numbers **R**, **d**, **D** forming a triplet referenced {**R**, **d**, **D**}.

12. A method according to claim 11 such that to implement the pairs of private values **Q₁**, **Q₂**, ... **Q_m** and public values **G₁**, **G₂**, ... **G_m** as just described, the method uses the prime factors **p₁**, **p₂**, ... **p_f** and/or the parameters of the Chinese remainders, the base numbers **g₁**, **g₂**, ... **g_m** and/or the public values **G₁**, **G₂**, ... **G_m** to compute:

- either the private values **Q₁**, **Q₂**, ... **Q_m** by extracting a **k**-th square root modulo **n** of **G_i**, or by taking the inverse of a **k**-th square root modulo **n** of **G_i**,

- or the **f.m** private components **Q_{i,j}** of the private values **Q₁**, **Q₂**, ... **Q_m** such that **Q_{i,j} ≡ Q_i (mod p_j)**.

13. A method according to claim 12 such that, to compute the **f.m** private components **Q_{i,j}** of the private values **Q₁**, **Q₂**, ... **Q_m**:

- the key $\langle s, p_j \rangle$ is applied to compute **z** such that:

$$z \equiv G_i^s \pmod{p_j}$$

- and the values **t** and **u** are used.

- computed as indicated here above when **p_j** is congruent to 1 modulo 4 and

- taken to be respectively equal to 1 (**t=1**) and 0 (**u=0**) where **p_j** is congruent to 3 modulo 4.

- • if **u** is zero, we consider all the numbers **zz** such that:

• • • **zz** is equal to **z** or such that

• • • **zz** is equal to a product (mod **p_j**) of **z** by each of

the $2^{ii-t} 2^{ii}$ -th primitive roots of unity, ii ranging from 1 to $\min(k,t)$.

• • If u is positive, we consider all the numbers zz such that zz is equal to the product $(\text{mod } p_i)$ of za by each of the $2^k 2^k$ -th roots of unity, za designating the value of the variable w at the end of the algorithm implemented in claim 10,

- at least one value of the component $Q_{i,j}$ is deduced therefrom, it is equal to zz when the equation $G_i \equiv Q_i^v \pmod{n}$ is used or else it is equal to the inverse of zz modulo p_i of zz when the equation $G_i \cdot Q_i^v \equiv 1 \pmod{n}$ is used.

5

10