第一章 数据与信息

课时1 数据、信息与知识

- 21. 下列有关信息和信息技术的说法,不正确的是()
- A. 信息的表示、传播、存储必须依附于载体
- B. 信息经过加工处理后一定具有更高的使用价值
- C. 计算机对各类信息加工处理,本质上都是通过计算完成的
- D. 物联网、人工智能、云计算等都是当前信息技术发展的热点
- 22. 下列关于信息的说法,不正确的是()
- A. 在搜索引擎上检索信息时, 要注意信息的时效性与真伪性
- B. 信息在传递过程中不会产生损耗
- C. 车载导航上显示的路线是信息
- D. 酒店里通过扫描二维码来租用充电宝, 手机扫描二维码的过程属于信息的获取
- 23. 下列有关信息的说法,正确的是()
- A. 计算机中的信息是以十六进制形式存储的
- B. 计算机信息处理能力只与 CPU 有关
- C. 离开计算机网络, 信息便无法传递
- D. 使用加密技术可以提高信息的安全性
- 24. 下列有关信息特征的说法,正确的是()
- A. 信息是不可以进行加工和处理的
- B. 信息在传递和共享的过程中会产生损耗
- C. 信息的表示、传播、存储不一定依附于某种载体
- D. 信息可以脱离它所反应的事物被存储、保存和传播
- 25. 下列有关信息技术的说法,不正确的是(
- A. 信息技术是伴随着计算机和互联网技术的发展而诞生的
- B. 信息技术是对信息进行采集、处理、传输、存储、表达和使用的技术
- C. 信息技术包含微电子技术、通信技术、计算机技术和传感技术等
- D. 物联网、人工智能、云计算等技术都是当前信息技术发展的热点
- 26. 下列关于信息处理的描述,错误的是()
- A. 只有计算机才能进行信息处理
- B. 计算机进行信息处理通常需要软件支持
- C. 只有数字化后的信息才能被计算机处理
- D. 算术运算和逻辑运算是计算机处理信息的基本运算
- 27. 下列有关信息的描述,正确的是()
- A. 通过无线网络传输的信息不依附于任何载体
- B. 给考生分配考号, 该考号也属于数据
- C. 微信中发送的文字和图片是信息
- D. 信息的表达方式仅包括语言、文字和图像三种
- 28. 下列关于信息与信息技术的说法正确的是()
- A. 我们生活在一个千变万化的信息世界, 一时一刻也离不开信息, 信息无处不在
- B. 信息不恰当的表达与传递体现了信息的真伪性,如: 盲人摸象
- C. 信息技术是应用信息科学的原理和方法,利用计算机平台对信息进行采集、处理、传输、存储、表达和使用的技术
- D. 无线电广播的出现率先实现了多对多的以声音为载体的信息传播

课时2 数据采集与编码(一)

- 20. 关于信息数字化的描述,错误的是()
- A. 可以利用扫描仪、照相机、手机等采集设备
- B. 非数字化信息转化成数字信息,只需要经过采样、编码两个过程
- C. 非数字化信息要转化成二进制数字
- D. 需进入数字设备存储和加工
- 21. 录制声音的过程如图所示。

其中 ADC 模块的主要功能是(

- A. 将模拟信号转换为数字信号
- B. 将数字信号转换为模拟信号
- C. 对模拟信号进行放大
- D. 对数字信号进行压缩
- 22. 下列关于数制的说法,不正确的是()
- A. 8 位二进制数能表示的最大十进制数为 255
- B. 若二进制数末尾是 "0"则该数转换的十进制数是偶数
- C. 若十六进制数末尾是"0",则该数转换的十进制数的末尾也是"0"
- D. 某 3 位的十六进制数, 转换为二进制数后, 有效位数不超过 12 位
- 23. 八位二进制数 10 的首位是 1, 末位是 0, 其余数字模糊不清, 下列说法正确的是()
- A. 该数转换成十进制, 肯定是偶数
- B. 该数用十六进制表示,最大值是 7FH
- C. 在该数后面添加一个 0, 新数是原数的 10 倍
- D. 若该数存在于计算机内存中,可能表示的是某个 ASCII 字符
- 24. 某个在 100~254 十进制偶数 x, 将其转化为二进制数 y, 以下说法不正确的是()
- A. x/2 的运算结果转为二进制一定比 y 少 1 位
- B. 二进制数 y 的最低位一定是 0
- C. 十进制数 x+1 转化为二进制数不超过 8 位
- D. 十进制数 x 除以 16 的余数与二进制数 y 的左侧 4 位的值相等
- 25. 十进制正整数 n 转换为二进制数,该二进制数共 4 位,下列说法正确的是()
- A. 若该二进制数的首位为 1. 则 n 必大于 9
- B. 若该二进制数的末位为 1,则 n+1 可能为奇数
- C. 该二进制数首位去掉, 转换为十进制数, 所得的值是 n/2
- D. 该二进制数按位取反,转换为十进制数,与 n 相加的结果必为 15

课时3 数据采集与编码(二)

13. 在软件中录制了一段 10 分钟的 WAVE 格式音频, 状态信息如图所示, 该音频的存储容量约为()

A. 6. 72 MB B. 100. 9 MB C. 50. 5 MB D. 168 MB

14. 一个时长为 10 秒、320×240 像素、24 位真彩色、30 帧/秒的未经压缩的 AVI 格式无声视频文件,压缩为 MP4 格式后的文件大小约为 626 KB,则其压缩比约为()

A. 4:1 B. 11:1 C. 108:1 D. 863:1

15. 一副未经压缩的 1100×1024 像素的 BMP 图像文件, 其存储容量约为 1.07 MB, 则该图像每个像素色彩编码的位数为()

A. 4 B. 8 C. 16 D. 24

16. 一个时长为 8 分钟、采样频率为 32 kHz、量化位数为 16、双声道未经压缩的 Wave 格式音频文件, 其存储容量约为()

A. 1 MB B. 29 MB C. 59 MB D. 469 MB

课时4 数据管理与安全、数据与大数据

- 10. 下列对大数据特点的说法中, 错误的是()
- A. 数据规模大 B. 数据类型多样 C. 数据处理速度
 - C. 数据处理速度快 D. 数据价值密度高
- 11. 要对图书馆数十万册的图书建立图书档案,最科学有效的方法是()
- A. 文件管理 B. 人工管理 C. 数据库管理 D. 卡片管理
- 12. 大数据时代,数据使用的关键是()
- A. 数据收集 B. 数据分析 C. 数据再利用 D. 数据存储
- 13. (多选题) 大数据的来源途径有许多,如下哪些属于大数据来源()
- A. 网络爬虫得到的数据
- B. 计算机网络运行产生的日志
- C. 人在微博上发表的记录
- D. 传感器设备采集的数据

第二章 算法与问题解决

课时1 算法的概念及描述

- 8. 某算法描述如下:
- ①将 0 赋值给变量 Num, 将 10 赋值给变量 Max, 将 9 赋值给变量 i
- ②若 i 除以 3 余 2、除以 5 余 3、除以 7 余 2,则将变量 Num 的值增加 1 并输出 i
- ③变量 i 的值增加 1, 若变量 Num 小于变量 Max, 则转②
- ④结束
- 对于上述算法,下列说法错误的是()
- A. 该算法是用自然语言来描述的
- B. 该算法符合有穷性的特征
- C. 该算法最后输出 10 个数值
- D. 该算法转换成流程图只需用到一个选择框
- 9. 统计投硬币 1000 次出现正面这一概率实验的算法步骤如下:
- ①将 i, k 分别赋初值 0;
- ②用随机函数产生一个数来模拟硬币的正反面,若随机数在[0,0.5)之间,k的值加1;
- ③i 的值加 1, 若 i<1000, 则转②;
- ④输出结果 k/1000, 结束。

对于上述算法,下列说法错误的是()

- A. 变量 k 代表正面次数
- B. 该算法的循环结构内部包含了选择结构
- C. 该算法主要体现了枚举思想
- D. 该算法没有输入, 因此不符合算法的基本特征
- 10. 描述某算法的伪代码如下。

输入两个正整数 m、n

r←m除以n的余数

while $r \neq 0$

(m←n, n←r, r←m 除以 n 的余数)

输出 n

(1) 执行上述算法,如果输入 m、n 的值分别为 24、16, 那么输出 n 的值为_____。
(2) 请用流程图描述上述算法。

课时 2 算法的控制结构

11. 某算法的部分流程如下图所示。进入流程前 b 的初值为 0, 流程执行后,依次输入 3, -2, 1, 4, 则输出的值是()

A. 8 B. 11 C. 19 D. 21

12. 某算法的部分流程图如图所示。执行这部分流程,分别输入35、50、60,则输出值依次为()

A. 10, 3 B. 10, 4 C. 7, 10, 4 D. 10, 12, 3

13. 某算法的部分流程图如图所示,以下说法正确的是()

- A. 该流程执行后,变量 k 的值是-1
- B. 该流程执行后, 变量 a 的值是 16
- C. 该流程用于计算并输出 1+8-16 的值
- D. 该流程完整执行 1 次, "a<32?" 共执行了 3 次
- 14. 某算法部分流程图如图所示。执行这部分流程, 依次输入 12、一5、29、18、7, 则输出值是()

A. 12 B. -5 C. 29 D. 7

15. 某算法的部分流程图如图所示。执行这部分流程,输出的 s 和 i 的值分别是()

A. 26, 9 B. 28, 11 C. 30, 9 D. 30, 11

16. 某算法的部分流程图如图所示,以下说法正确的是()

- A. 该流程执行后, 变量 b 的值是 16
- B. 该流程中包含两个循环结构
- C. 该流程完整执行 1 次, "a←a-b" 共执行了 3 次
- D. 该流程用于计算并输出 32 和 24 的最大公约数

课时3 用算法解决问题的过程

7. 十进制整数转换为二进制数。将一个十进制整数转换为二进制数的方法为:将该整数除以8,得到一个 余数,然后再将该整数整除8,又得到一个整数,如此继续,直到商为0,最后将余数从后往前拼接起来, 就是该整数所对应的八进制数。假设整数为 x, 余数为 k, 按要求完成以下任务:

(1)分析问题,确定解决此问题所使用的控制结构,并列出十进制数转换为八进制数的关键步骤。

(2) 協宁管注	高电相应的法程图		

(2)确定算法,画出相应的流程图。

8. 角谷猜想是指一个正整数 x,如果 x 是奇数,则将其乘以 3,然后再加 1;如果是偶数,则将其除以 2。 这样经过若干次运算后,总可以得到自然数1。

小明根据角谷猜想进行了算法设计,并用如下流程图来描述该算法。

请回答下列问题:

- (1)解决此问题所使用的控制结构为______
- (2) 根据本题算法的流程图所示,则流程图中①②处应填写的内容分别是:
- ①_____; ②___
- (3) 若输入 x 的值为 5, 则输出的运算次数为______; 若输入 x 的值为 128, 则输出的运算次数为 (填数字)。

第三章 算法的程序实现
课时 1 Python 程序设计语言基础
13. 与表达式 not x<0 or y % 2==0 具有相同功能的是()
A. $x \ge 0$ and $y\%2 = =1$ B. $x \ge 0$ and $y//2 = =0$
0. x>0 or $y/2 = int(y/2)$ D. x>=0 or $y//2 = y/2$
14. 若 x 是大于 0 的偶数,则下列关系表达式值一定为真的是()
① $x\%2 = 0$ ② $x//2 = 0$ ③ $x//2 = x/2$ ④int($x/2$) = $x/2$
A. ①② B. ①②③ C. ①③ D. ①③④
15. 三角形的三边长为 a、b、c(均大于 0),不能判断它是等边三角形的 Python 表达式是()
A. $a==b==c$ B. $a==b$ and $b==c$
C. $a = = b$ and $b = = c$ and $a = = c$ D. $a**2 + b**2 = = c**2$
16. 有 45 位同学排成一列,从第一位同学开始按 1 至 9 循环报数,则能正确表示第 n 位同学所报数字的表
达式是()
A. n B. $n\%9$ C. $(n-1)\%9+1$ D. $9-(n-1)\%9$
17. 将数学代数式 ^{x3+y3} 转换为 Python 表达式为:。
18. 表示 n 为数字 0~9 的 Python 表达式为:。
19. 已知 x 为四位数整数,求该整数个位、十位、百位和千位上的数字。
①个位上的数为:。
②十位上的数为:。
③百位上的数为:。
④千位上的数为:

课时 2 Python 基本数据结构

```
9. 已知字符串 s1=" 134", 执行语句 s2=s1*2 后, s2 的值为( )
           B. " 268" C. " 134134" D. " 113344"
A. " 134"
10. 已知字符串 s1="man" , s2="woman" , 下列表达式的值为 True 的是( )
            11. 已知列表 list1=[1, 2, 3, 4], 执行语句 list1[2]=5 后, 列表 a1 中的内容为(
A. [1, 2, 3, 4, 5] B. [1, 5, 3, 4] C. [1, 2, 5, 4] D. [1, 2, 3, 4, 5]
12. 已知 list1=list(" php"), 执行语句 list1[2:]=list(" Python")后, 列表 list1 中内容为(
A. ['p', 'h', 'p', 'P', 'y', 't', 'h', 'o', 'n']
B. ['p', 'P', 'y', 't', 'h', 'o', 'n']
C.['p', 'h', 'P', 'y', 't', 'h', 'o', 'n']
D.['P', 'y', 't', 'h', 'o', 'n']
13. 已知 | list1 = [2, 3, 5], 执行语句 | list1[1: 1] = [7, 8, 9] 后, 列表 | list1 中的内容为(
A. [2, 7, 5] B. [2, 7, 8, 9] C. [2, 3, 5, 7, 8, 9] D. [2, 7, 8, 9, 3, 5]
14. 已知 dict1={'name': 'Jhon', 'age': 20, 'height': 1.82}, 执行语句 dict1['tel']=13867238656
后,字典 dict1 中的内容为(
A. {'name': 'Jhon', 'age': 20, 'height': 1.82, 'tel': '13867238656'}
B. {'name': 'Jhon', 'age': 20, 'tel': 13867238656}
C. {'name': 'Jhon', 'age': 20, 'height': 1.82, tel: 13867238656}
D. {'name': 'Jhon', 'age': 20, 'height': 1.82, 'tel': 13867238656}
                        课时 3 Python 常用内置函数及顺序结构
7. 有如下 Python 程序段:
s = '3657'
list1=['aa', 123, 'bb', 56]
list1[1: 2] = s[1: 3]
print(list1)
程序运行的结果是
8. 有如下 Python 程序段:
x = 3.14159
v = -5
x = int(x) + abs(y)
y = x + y
x = x - y
print(x)
程序运行的结果是。
9. 已知三角形的三边长度分别为 a、b、c, 可用海伦公式求解三角形的面积 s, 海伦公式为:
s = \sqrt{p*(p-a)*(p-b)*(p-c)}, 其中 p = \frac{a+b+c}{2}。利用海伦公式求三角形面积,请回答下列问题:
(1)输入三角形三边长分别为 3, 4, 5, 下列赋值语句不正确的是( )
A.a, b, c=3, 4, 5
B.a=3
 b=4
 c=5
C. [a, b, c] = [3, 4, 5]
D. a=3; b=4; c=5
```

(2) 为实现上述功能,请在程序划线处填入合适的代码。

课时 4 分支结构及程序实现

9. COD 是衡量水质污染程度的重要指标之一, 污水处理时根据污水的 COD 指标来计算 COD 去除剂的投放量。当 COD 指标 x 小于 50 时, 剂量为 10, 指标大于等于 50 且小于等于 500 时, 剂量为 1. 2X/5, 指标超过 500 时, 剂量为 1. 5X/4。运行程序后, 输入 COD 指标, 输出计算结果。请在划线处填入合适的代码。

x=int(input(" 请输入 COD 指标 x")) if x<50:

(2)

print("所需剂量为"+str(y))

10. 模拟一个简单计算器,输入两个数和一个运算符(加、减、乘、除),进行算术运算,并输出运算结果。程序运行时,先后输入第一个数、运算符和第二个数,输出运算结果。当输入的运算符不是加、减、乘、除四种运算符时,则输出"运算符不正确";当进行除法运算时,如果除数为0,提示输出"除数不能为零"。为实现上述功能,请在划线处填入合适的代码。

```
x=int(input("请输入第1个数"))
ch=input("请输入运算符")
y=int(input("请输入第2个数"))
flag=True
s = " + -*/"
if ch in s:
 if ch = = " + ":
   z=x+y
 elif ch=="-":
   z=x-y
 elif ch=="*":
   z=x*y
 else:
   if _____:
    print(" 除数不能为 0! ")
    flag=False
   else:
    z = x/y
if____:
 print(" 运算的结果为: " +str(z))
else:
 print("运算符不正确")
```

11. 编写 Python 程序,实现如下功能:输入 Aqi 指数,输出该 Aqi 值所对应的空气质量等级及空气状况。程序运行效果如下图所示。

请输入 Aqi 指数值: 220 空气质量等级为: V 空气状况为: 重度污染

Aqi 指数所对应的空气质量等级及空气状况如下表所示:

AQI 指数	0-50	51-100	101-150	151-200	201-300	>300
等级		II	III	IV	V	VI
空气状况	优	良	轻度污染	中度污染	重度污染	严重污染

实现上述功能的程序如下,请在程序划线处填入合适的代码。

```
aqi=float(input(" 请输入 Aqi 指数值: "))
if aqi <=50:
 ss=" 优"
 dj=1
elif aqi<=100:
 ss="良"
 dj=2
elif_____1
 ss=″轻度污染″
 di=3
elif aqi<=200:
 ss="中度污染"
 dj=4
elif aqi<=300:
 ss="重度污染"
 dj = 5
else:
 ss="严重污染"
 dj=6
 2
print(" 空气质量等级为: " +skydd, " 空气状况为: " +ss)
(1)程序运行时,输入200,则屏幕上显示的内容为____。
(2) 划线①处应填入的语句为: ________; 划线②处应填入的语句为: ______。
```

课时 5 循环语句及程序实现

```
8. 有下列 Python 程序代码:
data=" My Name is Tom! "
imax, t=0, 0
for ch in data:
    if(" A" <=ch<=" Z" )or(" a" <=ch<=" z" ):
        t=t+1
    else:
        if t>imax:
        imax=t
        t=0
```

执行上述代码后,输出的内容是____。 9. 公元 1900 年是鼠年,以后每 12 年一个轮回,输入一个年份,输出该年及该年以后共 12 个年份及相应 的属相。代码如下: sx= " 鼠牛虎兔龙蛇马羊猴鸡狗猪" y=int(input(" 请输入开始的年份")) for i in____1_: $t = \bigcirc$ print(" 第" +str(i)+" 年的属相是: " +sx[t]) (1) 在程序划线①②处填入合适的代码。 (2)按照上述算法,输入2020,该年的属相是。。 10. 某压缩算法如下: 用两个数据表示一段连续相同的字符, 第一个数据记录指定字符重复的次数, 第二 个数据记录具体字符的值。例如:字符串 RRRRGGBBB,用该压缩算法压缩后可用 4R2G3B 表示。 s=input(" 输入一个字符") n=1ss=" " for i in range $(\underline{}, \underline{})$: if s[i] = = s[i-1]: n+=1else: ss=ss+str(n)+s[i-1]**(2**) ss=ss+str(n)+s[len(s)-1] #3 print(ss) (1) 在程序划线①②处填入合适的代码。 (2) 若删除③处语句,输入字符串 RRRRGGBBB,输出的内容是。 6. 奇偶校验是一种校验数据传输正确性的方法。其中奇校验方法:统计二进制数据的数位中"1"的个数, 若个数为奇数,则校验位值为0,否则校验位值为1。小李编写了一个计算奇校验位的程序,功能如下: 键盘输入 1~255 十进制待校验数,输出该数对应的二进制值及该数的校验位值。程序运行界面如图所示。 请输入待校验数:2020 转换为二进制数为:11111100100 校验位值为:0 实现上述功能的程序如下,请在程序划线处填入合适的代码。 n=int(input(" 请输入待校验数: ")) t=0s=" " while n>0: a=n%2t=t+as = str(a) + sprint("转换为二进数为:", s, "校验位值为:", 1-v) 划线①处应填入的语句为: _________; 划线②处应填入的语句为: ________

print (imax)

课时6 函数与模块

6. 用随机函数产生 1000 个包含大写或小写字母的字符串,统计各个字母的个数,大写的 A 和小写的 a 视为同一字母,输出出现最多的字母的次数, python 代码如下,请在程序划线处填入合适的代码。

```
import random
def tj(s):
 s1 = [0]*26
 t, imax=1, 0
 for ch in s:
    ch=ch. upper ()
    t=ord(ch)-ord('A')
     1
    if imax<s1[t]:
    imax = s1[t]
 return imax
str1=" "
for i in range (1000):
  if random. randint (0, 1) = =1:
    str1+=chr(ord('A')+t)
  else:
    str1+=chr(ord('a')+t)
print(" 产生的字符串是: " , str1)
print(tj(str1))
划线①处应填入的语句为:
划线②处应填入的语句为: ______
```

课时7 解析算法及程序实现

5. 某仓库物品代码格式为 "X—XXX—XXXXX—Y", 其中 "X"和 "Y"均为0到9之间的数字, "Y"为校验码。校验码由前面9个X计算得到,计算方法为:从左边开始,第1个数字乘以1加上第2个数字乘以2······依此类推,直到加上第9个数字乘以9,将该结果除以10,所得余数即为校验码。

编写一个根据校验码校验物品代码的程序,功能如下:输入物品代码,如果输入的校验码与计算所得的校验码一致,则输出"校验通过",否则输出"校验不通过"。程序运行效果如下图所示。

课时8 枚举算法及程序实现

4. 三次函数 $f(x) = \frac{1}{3}x3 - 2x2 + 3x - 2$ 的图像如下图所示。

从图像中观察得到,在[0, 4]区间内,分别存在一个局部极大点 P(在 P 附近的函数值都小于 f(P))和局部极小点 Q(在 Q 附近的函数值都大于 f(Q))。寻找 P 和 Q 近似值的方法如下:在[0, 4]区间内,每间隔 e(e=0.001)取一个值逐一进行枚举,如果找到某个值 x,能同时满足 f(x)>f(x-e)和 f(x)>f(x+e),则 x 可作为 P 的近似值;如果找到的某个值 x,同时满足 f(x)<f(x-e)和 f(x)<f(x+e),则 x 可作为 Q 的近似值。请仔细阅读和分析寻找 P、Q 近似值的方法和下列程序,在划线处填入合适代码,将下列程序补充完整。def f(x):

5. 用 Python 程序实现统计随机数出现的次数。下面程序的功能是:首先随机产生 30 个[10,99]之间的不重复整数,并以每行 10 个输出在屏幕上,然后统计[10,19]、[20,29]、…、[90,99]各区间段的整数个数,并输出统计结果。程序运行效果下图所示:

```
30个不重复的随机整数为:
85 20 78 44 28 14 77 17 76 98
57 12 21 55 99 23 48 87 24 15
46 38 88 82 71 47 89 94 45 61
各区间段统计结果为:
10 - 19: 4
20 - 29: 5
30 - 39: 1
40 - 49: 5
50 - 59: 2
60 - 69: 1
70 - 79: 4
80 - 89: 5
90 - 99: 3
```

实现上述功能的程序如下, 回答下列问题。

```
import random
def check(x):
 check=True
 if____:
  check=False
 return check
list2 = [0]*10
n=1
while n \le 30:
 num=random.randint(10, 99)
 if check (num):
  list1. append (num)
  n+=1
print(" 30 个不重复的随机整数为: ")
for i in range (0, 30):
 print(list1[i], end=" ")
 if (3):
  print()
            #换行输出
print(" 各区间段统计结果为: a")
for i in range (1, 10):
 if list2[i] = 0:
   print(i*10, " -", i*10+9, ": ", list2[i])
(1) check 函数的功能是_
(2) 请在程序划线处填入合适的代码。
划线①处应填入的语句为: ______
划线②处应填入的语句为: _____;
划线③处应填入的语句为: _____
```

第四章 数据处理与应用

课时1 表格数据处理

4. 小李收集了 2015 年浙江省全社会就业人数情况数据,并使用 Excel 软件进行数据处理。

	G4	-	(°)	€ =F4/S	UM(F4:F1	4)*100				
-4	A	В	C	D	Е	F	G	Н		
1		2015	年浙江省	省全社会	就业人数	数情况				
2	单位: 万人									
3	城市	地域	第一产业	第二产业	第三产业	就业总人数	占全省就业总 人数比例(%)			
4	杭州市	浙东北	67.01	271.90	324.12	663.03	17.89			
5	宁波市	浙东北	18.96	270.70	219.84	509.50				
6	温州市	浙西南	63.62	283.79	226.56	573.97				
7	嘉兴市	浙东北	30.25	186.13	112.54	328.92				
8	湖州市	浙东北	22.87	94.73	66.88	184.48				
9	绍兴市	浙东北	45.78	178.01	123.01	346.80				
10	金华市	浙西南	68.26	162.87	114.88	346.01				
11	衢州市	浙西南	51.25	39.15	40.18	130.58				
12	丽水市	浙西南	51.74	36.86	52.55	141.15				
13	台州市	浙西南	72.43	182.00	152.89	407.32				
14	舟山市	浙东北	10.50	30.21	33.79	74.50				
15										

请回答下列问题:

- (1) 当前工作表中仅区域 A1: G14 有数据,其中 G4 单元格正确计算了杭州市占全省就业总人数比例。小李通过 G4 单元格中的公式对区域 G5: G14 进行自动填充,则 G14 单元格中显示的计算结果是______(选填: 0.00/17.89/100.00)。
- (2)上述操作后,小李发现区域 G5: G14 计算结果不符合要求。若要正确计算"占全省就业总人数比例(%)"列 的数 据,可先 修 改 G4 单元 格中的公式,再进行自动填充。修改后 G4 单元格的公式为(公式中要求保留使用 SUM 函数)。
- 5. 小张收集了某地部分市场菜篮子价格数据,并使用 Excel 软件进行数据处理,如图所示。

	I	3	- (*)	f _x	=AVER	AGE(C3	:H3)				~
A	Α	В	С	D	Е	F	G	Н	I	J	E
1		某地	也当日音	部分市:	场菜篮	子价格	各(计价单	単位: ラ	亡/500克	\Box)	Ē
2	类别	商品名	市场一	市场二	市场三	市场四	市场五	市场六	平均值	最大差价	
3	蔬菜	包心菜	3.5	3.0	3.0	3.0	3.0	3.0	3.1	0.5	
4	水产	草鱼	8.5	9.5	9.0	9.0	10.0	8.0	9.0	2.0	
5	水产	带鱼	25.0	25.0	25.0	25.0	25.0	30.0	25.8	5.0	
6	主食	东北大米	3.5	3.3	3.8	3.0	3.0	4.0	3.4	1.0	
7	水产	花鲢鱼	9.0	10.0	10.0	10.0	9.0	8.5	9.4	1.5	
8	水产	黄鳝	42.0	42.0	45.0	45.0	42.0	42.0	43.0	3.0	L
9	水产	活河虾	75.0	75.0	70.0	65.0	80.0	75.0	73.3	15.0	ì
10	水产	活鲫鱼	12.0	12.5	13.0	12.0	12.5	13.0	12.5	1.0	1
11	禽蛋	鸡蛋	5.8	6.0	6.0	5.5	6.1	6.0	5.9	0.6	1
12	肉类	猪大排	15.0	18.0	18.0	17.0	17.5	15.0	16.8	3.0	1
13	肉类	猪腿肉	14 Q	15.5	.16 0	.16.0	.15.0	.15.0	15.3	2.0	
4 4	> >	Sheet1	Sheet2 /	Sheet3	10/	Į	1	III)	

请回答下列问题:

- (1) 若将 C3: H3 单元格的数值小数位数设置为 0,则 H3 单元格中的值____(填字母: A. 变大/B. 不变/C. 变小)。
- (2) 表中"最大差价"数据是用函数 MAX 和函数 MIN 计算得到的:选择 J3 单元格输入公式,然后用自动填充功能完成其他单元格的计算。则 J3 单元格中的公式为______(提示:"最大差价"是各市场中同一商品的最高价格与最低价格之差。函数 MAX (数据区域) 的功能为求该数据区域中的最大值,函数 MIN (数据区域) 的功能为求该数据区域中的最小值)。
- (3)小张要找出在六个市场中"最大差价"最小的水产类商品(若存在符合条件的多个商品,则全部选取)。下列方法可行的是_____(多选,填字母)。

- A. 以"类别"为水产、"最大差价"为最小 1 项进行筛选, 然后选取筛选出的全部商品
- B. 以"类别"为水产进行筛选,再以"最大差价"为关键字升序排序,选取排在最前面的商品
- C. 以"最大差价"为主要关键字、"类别"为次要关键字,均按升序排序,选取排在最前面的商品
- D. 以"最大差价"为关键字升序排序,再以"类别"为水产进行筛选,选取排在最前的商品
- 5. 由于国内新型冠状病毒的爆发,小明决定呆在家里,通过观看网上电影来度过寒假,他将假期准备观看的电影用 Excel 软件整理并进行数据处理,如图 a 所示,请回答下列问题:

À	A	В	C	D	Е	F	G
1			寒假	观看电影汇总	表		
2	电影名称	类型	格式	语言	时长(分钟)	产地	观看次数(万)
3	《风中有朵雨做的云》	悬疑片-中国	HD	国语中英双字幕	124	中国	150
4	《宾果:晨光之王》	喜剧片–巴西	BD	中文字幕	113	巴西	230
5	《驯龙高手3》	动画片–美国	BD	中英双字幕	104	美国	111
6	《气球/奇迹热气球》	惊悚片–德国	BD	中英双字幕	120	德国	362
7	《阿波罗11号》	纪录片–美国	BD	中英双字幕	90	美国	5512
8	《流浪地球》	科幻片-中国	HD	国语中英双字幕	125	中国	15556
9	《惊奇队长》	科幻片-美国	BD	中英双字幕	124	美国	899
10	《超人总动员2》	动画片–美国	HD	中英双字幕	118	美国	233
11	《看不见的客人》	悬疑片-西班牙	BD	国西双语中英双字幕	106	西班牙	123
32	•••				•••		•••
33	《地球:神奇的一天》	纪录片-中国/英国	HD	国语中字幕	94	中国/英国	4125
34	《 Щ2 》	战争片-土耳其	BD	日语中字幕	132	土耳其	562
35	《杰出公民》	喜剧片-阿根廷/西班牙	BD	中文字幕	118	阿根廷/西班牙	63.5
36	《八年级》	喜剧片–美国	BD	中英双字幕	94	美国	1456
37	《美国队长3》	科幻片-美国	BD	中英双字幕	147	美国	844
38	《狄仁杰探案》	悬疑片-中国	HD	国语中英双字幕	103	中国	125
39	《逗爱熊仁镇》	喜剧片–中国	HD	国语中字幕	102	中国	458
40	《悠然见南山》	喜剧片-中国	HD	国语中英双字幕	90	中国	366

图 a

(1) 区域 F3: F40 的数据是通过公式计算得到的:在 F3 单元格输入公式后,用自动填充功能完成 F4: F40 的计算,则 F3 单元格中的公式是_____。(说明:"类型"列中数据格式为影片类型(3 个汉字)一国家(最多不超过 7 个字符),"产地"列中的数据是通过 Mid 函数从"类型"列中数据计算得到,MID() 函数的语法格式为: MID(text, start_num, num_chars)。参数 text 表示包含要提取字符的文本字符串,参数 Start_num 表示文本中要提取的第一个字符的位置,参数 Num_chars 表示从文本中返回字符的个数。)(2) 为了更直观地对比前 8 部电影的播放时长,小明创建了如图 b 所示的图表,该图表的数据区域为

图 b

- (3) 小明想知道图 a 中观看次数排在前五位的电影(每部电影的"观看次数(万)"均不相同),下列方法能实现的有。。
- A. 以"观看次数(万)"为关键字降序排序,排在前五位的电影即是
- B. 进行数据筛选"十个最大的值",设置"最大"、"5项"
- C. 进行自定义筛选,设置"观看次数(万)"筛选方式为:等于、前五位
- D. 以"观看次数(万)"为关键字升序排序,排在最后五位的电影即是

课时 2 大数据处理的基本思想与架构

- 8. 下列有关分治思想的描述,正确的是()
- A. 将复杂的问题分解成两个或多个相同或相似的小问题, 然后分别对小问题进行求解
- B. 运用分治思想,可以提高数据的处理速度
- C. 运用分治思想, 最终结果的正确性得不到保障
- D. 运用分治思想, 系统的容错性得不到保障
- 9. 下列属于图并行处理软件的是()
- A. InfiniteGraph B. Neo4j C. OrientDB
- 10. 要构建一个电子商务平台,需实时向用户推送相关产品信息,推荐该平台底层采用的文件系统和数据

处理平台是()

A. HDFS Google Pregel

B. Ext4 Heron

D. GooglePregel

C. HDFS Storm D. HDFS Hadoop

- 11. 实时处理与批处理整合的优势有(
- ①减少了系统开销
- ②不利于降低使用成本
- ③可以在同一个平台做批处理计算和流计算
- 4)缩短了批处理计算和流计算之间的切换延时
- A. (1)(2)(3) B. (1)(2)(4) C. (1)(3)(4) D. (2)(3)(4)

课时 3 利用 Pandas 模块处理数据

- 8. 某 DataFrame 对象 df,包含"学校""考号""姓名""成绩"数据列,下列语句中,可以以学校为单位, 只显示各校学生成绩平均值的是()
- A. df. groupby('学校'). mean()
- B. df. groupby('成绩'). mean()
- C. df. groupby('学校'). 成绩. mean() D. df. groupby('学校'). describe()
- 9. 有 Python 程序段如下:

import pandas as pd

- s1=pd. read excel(" a1. xlsx")
- s2=pd. read excel(" a2. xlsx")
- s1=s1.append(s2, ignore_index=True)
- s1. sort_values('姓名', ascending=False, inplace=True)
- s1. to excel('a3.xlsx')
- 运行该程序段,下列说法错误的是(
- A. a3. xlsx 文件中有 a1. xlsx 和 a2. xlsx 信息
- B. a3. xlsx 文件中,姓名列有序排列的
- C. a3. xlsx 和 a1. xlsx 文件的列数是相等的
- D. s1 的索引列的值不会重复
- 10. 浙江省各个县级行政区的信息存放在 Excel 文件 "zj. xlsx" 中,如下图所示。

4	A	В	C	D
1	地级市	县级行政区	县级代码	国土面积
2	湖州市	安吉县	330523	1 886
3	宁波市	北仑区	330206	598
4	杭州市	滨江区	330108	72
5	温州市	苍南县	330327	1 077
6	衢州市	常山县	330822	1 097
7	杭州市	淳安县	330127	4 452
8	宁波市	慈溪市	330282	1 360
9	舟山市	岱山县	330921	325
10	湖州市	德清县	330521	938

现要编程对表格中数据进行分析,程序代码如下,在程序划线处填入合适的代码。

import pandas as pd s1 = 1s2=s1.groupby("地级市", as_index=False) print(②)#输出各地级市的县级行政区个数)#输出各地级市的国土面积之和,并降序输出。 print(" 最大的地级市国土面积是: ", ______⑤_____)

课时 4 数据可视化

6. 编写如下 Python 程序研究随机数值的分布情况。

import numpy as np import matplotlib.pyplot as plt plt.figure(figsize=(10, 10)) n = 1000x = np. random. randn(1, n)y = np. sin(x)plt.scatter(x, y) #填入代码

- (1)程序运行后,并未出现图像,应在程序的最后添加一条语句为
- (2) 某次运行时绘制的图形如图所示。则下列说法正确的是(

- A. 每次运行程序绘制 2000 个数据点
- B. 每次运行程序绘制的散点图均相同
- C. 改变 figsize 的值为(10, 20), 同一数据所画图像不会发生变化
- D. 该图像中体现了 x 与 sin(x)的关系
- 7. 某地区的模拟考试成绩存放在 Excel 表格中, 其中包含县市、学校、班级、准考证号、姓名和信息学科 总分和 16 小题的得分, 共 22 列。请回答下列问题。
- (1) 若要体现每所的学校信息技术总分的高分,应进行的操作是:先按字段进行分组,再利用函数统计对 总分求最大值。
- (2) 若要求每所学校每个班级的平均分,应进行的操作是:先按和字段进行分组,再利用函数统计对班级 求平均值。
- (3) 将各学校各班级总分的平均分导出到"结果, xlsx"文件中。

实现上述功能的代码如下,请在程序划线处填入合适的代码。

import pandas as pd

import matplotlib.pyplot as plt

课时5 文本数据处理

7. 制作标签云的代码如下:

import collections

import jieba

import wordcloud as wc

import numpy as np

from PIL import Image

mask=np.array(Image.open(" assets/heart.jpg"))

 $wcg = wc. \ WordCloud (background_color = "white", font_path = 'assets/msyh. \ ttf', mask = mask)$

text=open('data/浙江师范大学.txt', encoding='utf-8').read()

seg list=jieba.cut(text)

f=collections. Counter (seg_list)

wcg. fit_words(f)

wcg. to file('output/c.png')

运行该程序段,输出如图 1 所示的标签云。内置的 collections 库用 Counter 函数可以统计各个字词出现的频率。请回答下列问题:

图 1

- (1) 结合代码,根据以上提示,则对文本文件进行分词的语句是______
- (2) 若要输出各个字词及出现的次数,运行过程如图 2 所示,则划线①处应填入的代码为____

图 2

第五章 人工智能及应用

课时1 人工智能的概念与发展

9. 下列关于图灵机,说法错误的是()
A. 现代计算机的理论模型是图灵机 B. 原始递归函数不能完成图灵机的计算任务
C. "图灵奖"名字的得来与图灵机的发明者有关 D. 图灵机不是计算机,而是一个理论上的计算模型
10. 下列应用中,目前运用人工智能技术不能实现的是()
A. 模拟人脑的全部智能 B. 辅助医生进行病情诊断
C. 提供网络购物的语音客服 D. 识别手写的文字
11. 对人工智能的误解有()
A. 人工智能就是机器学习
B. 深度学习只是人工智能中的一个方向
C. 人工智能发展受到大数据的驱动较多
D. 提升计算机处理数据的能力是推进人工智能方法之一
12. 现在的科技十分发达,警察破案大多数是通过指纹系统来辨认真凶,这是运用人工智能技术的()
A. 自然语言系统 B. 机器学习 C. 专家系统 D. 人类感官模拟
13. 最早提出人工智能的含义,并且同时提出一个机器智能的测试模型的科学家是()
A. 明斯基 B. 扎德 C. 图灵 D. 冯·诺依曼
课时 2 人工智能的应用及对社会的影响
9. 下列关于人工智能的说法,正确的是()
A. 人工智能技术就是虚拟现实技术
B. 烟雾探测器探测到浓烟时自动启动喷淋系统,体现了人工智能技术
C. 计算机病毒具有传染性和破坏性,也是人工智能技术的体现
D. 人工智能是一种模拟人类智能活动,尝试对事物进行识别、理解、学习和推理的技术
10. "智慧学校"已经开始进入校园生活。下列校园的日常行为使用了人工智能技术的有()
①早上 6:30 校园广播自动响起,提醒同学们起床
②上课时,老师在一体机上通过手写输入录入文字
③教学楼走廊的灯检测到有人靠近时会自动打开
④英语课上,老师通过有道词典的在线翻译功能辅助进行翻译
⑤晚自习结束,通过人脸识别系统进行入寝点名
A. (1)(2)(3) B. (1)(2)(4) C. (2)(4)(5) D. (3)(4)(5)
11. 快递分拣机器人为高速发展的物流行业打开了新天地。下列过程中,体现人工智能技术的是()
A. 机器人进行面单条形码扫描以读取订单信息
B. 机器人可以进行包裹称重
C. 机器人到达指定位置后,将快件投入到收件区
D. 对个别手写面单,工作人员可通过对机器人发语音指令"送到温州区",机器人接收指令后,快速投件
12. 小周到某科技馆游玩,经历了下列事件:
①使用纸质地图查找该科技馆的位置 ②在自动售货机上使用刷脸支付 ③安装科技馆油管 APP 下载中文
导游图 ④和机器人进行象棋对弈
对于以上事件,下列选项中都体现人工智能技术应用的是()
A. ①③ B. ②③ C. ②④ D. ③④
13. 下列应用没有使用到人工智能技术的是()
A. 酒店入住时"刷脸"验证身份 B. 小区门口通过摄像头识别车牌号码

C. 刑警通过"天网"摄像头排查犯罪嫌疑人的活动轨迹 D. 小明通过语音来控制空调的开关及温度