lidar_classdef

import math #Imports math to do trig calculations

class lidar: #Definition of a new class called lidar

def __i ni t__(sel f, i nput_horz_ang=0, i nput_vert_ang=0, radi us=0):

horz_ang=math.radians(input_horz_ang) #converts the horizontal angle

from degrees to radians

vert_ang=math.radians(input_vert_ang) #converts the vertical angle from degrees to radians

self.z_pos = -radius*math.cos(vert_ang) #Calculates the length of

the position vector projected on the z-axis

self.y_pos = radius*math.sin(vert_ang)*math.sin(horz_ang)

#Calculates the length of the position vector projected onto the y axis

self.x_pos = radius*math.sin(vert_ang)*math.cos(horz_ang)

#Calculates the length of the position vector projected onto the x axis

def display_data(self): #Instance method to display the data encapsulated in the lidar object

print "X Position = ", self.x_pos
print "Y Position = ", self.y_pos
print "Z Position = ", self.z_pos