CONTROLE UTILIZANDO LÓGICA FUZZY

Tarefa 1

Considere um processo que segue a função de transferência apresentada a seguir:

$$G(s) = \frac{1,2e^{-s}}{10s+1}$$

Desenvolva um controlador fuzzy-PI, para responder a uma perturbação degrau no sinal de entrada (SP), e avalie o desempenho do controlador.

SOLUÇÂO: Variáveis Fuzzy

ENTRADAS: erro (e) e variação do erro (de).

SAÍDA: variação da saída do controlador (du).

Para cada variável serão escolhidas as funções de pertinência:

Erro (e) → negativo e positivo universo de discurso: [-1 1]

Variação do Erro (de) → negativo e positivo universo de discurso: [-1 1]

Variação da saída (du) → pequeno, nenhum e grande

Universo de discurso: [-1 1]

Utilizando o toolbox fuzzy no MatLab:

As funções de pertinência serão definidas como mostradas a seguir:

A construção da base de regras é uma tarefa de difícil execução, pois depende grandemente do conhecimento especialista.

Aqui, uma simples base de regra é definida, como mostrado abaixo:

Utilize o visualizador das regras para testar diferentes entradas.

Com a aplicação do método de defuzzificação do centro de gravidade um valor crisp é obtido e apresentado, como pode ser observado a seguir:

O mapeamento geral de entradas e saídas do projeto fuzzy criado pode ser observado na superfície:

Para verificar o funcionamento do sistema proposto, deve-se criar, no Simulink, o modelo a seguir:

Ajuste um tempo de simulação total de 100 s. Observe o comportamento do controlador no gráfico gerado, propondo soluções para melhorar seu desempenho.

Tarefa 2

Desenvolva, para o mesmo sistema anterior, um controlador fuzzy-PID simplificado.

SOLUÇÂO: Variáveis fuzzy

Erro (e) → universo de discurso: [-1 1] Variação do Erro (de) → universo de discurso: [-1 1] Variação da saída (du) → universo de discurso: [-1 1]

Para a sintonia do controlador fuzzy-PID simplificado, deve-se partir da sintonia de um controlador PID previamente sintonizado. Assim, pode-se utilizar, como sugestão, o método de Ziegler-Nichols (Ultimate Gain):

	K_{p}	K_I	K_d
P	$0.5 K_{Pc}$	-	-
PI	$0.45K_{p_c}$	$\frac{1,2}{T_c}$	-
PID	$0.6K_{p_c}$	$\frac{2}{T_c}$	$\frac{T_c}{8}$

As relações são válidas para a função de transferência do controlador

$$G_c(s) = K_p \left(1 + \frac{K_I}{s} + K_D s \right)$$

Uma vez sintonizado o controlador PID, pode-se obter os ganhos do controlador fuzzy, conforme apresentado no esquema abaixo (Ke, Kd, K0 e K1), segundo as equações abaixo:

- Ke = 1 (valor inicial)
- Kd = α Ke
- $-\alpha + \beta = Ti$ $\beta = K1/K0$
- $-\alpha * \beta = Ti * Td$
- K0 ≥ Kc/Ti

Podem ser obtidos dois valores para α e β (resultado de uma equação do 2º grau). Assim, deve-se tomar os valores que apresentem maior valor de K1, em relação a K0 (pois o termo PD deve ser maior, ou mais intenso, que o termo PI \rightarrow estabilidade e oscilações).

Base de regras para o controlador fuzzy-PID simplificado:

dE/E	GN	MN	PN	ZR	PP	MP	GP
GP	ZR	PP	MP	GP	GP	GP	GP
MP	PN	ZR	PP	MP	GP	GP	GP
PP	MN	PN	ZR	PP	MP	GP	GP
ZR	GN	MN	PN	ZR	PP	MP	GP
PN	GN	GN	MN	PN	ZR	PP	MP
MN	GN	GN	GN	MN	PN	ZR	PP
GN	GN	GN	GN	GN	MN	PN	ZR

Para a simulação do problema proposto, parte-se do seguinte modelo construído no Simulink:

Utilizando o toolbox fuzzy no MatLab:

As funções de pertinência serão definidas como mostradas a seguir:

As regras, conformo proposto, são apresentadas abaixo:

