See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/235949313

Vapor Pressure Isotope Effects in Liquid Methyl Fluoride

ARTICLE in THE JOURNAL OF PHYSICAL CHEMISTRY · JANUARY 1983

Impact Factor: 2.78

READS

5

4 AUTHORS, INCLUDING:

Takao Oi

Sophia University

213 PUBLICATIONS 1,597 CITATIONS

SEE PROFILE

Jan Shulman

Dow Chemical Company

4 PUBLICATIONS 31 CITATIONS

SEE PROFILE

order of microseconds.34,36-38

Similar equilibria can be written by taking into account the presence of spin-probe molecule \boldsymbol{R}

$$(n-r)S + rR \underset{k,'}{\overset{k_i'}{\rightleftharpoons}} [S_{(n-r)}R_r]$$
 (8a)

where r = 1, 2, ... with residence time τ_{R1}

$$[S_{n-r}R_r] \xrightarrow{k_{+'}} [S_{n-r}R_{r-1}] + R$$
 (9a)

with residence time of the probe in the micelle τ_{R2} .

The time scale of the ESR experiment allows one to follow process 9a, while process 8a does not influence the line shape. Thus, an ESR line shape analysis near the cmc allows the evaluation of τ_{R2} and these values can be compared with the exchange time $1/k_{-}$ reported for the surfactant monomers of SOS, SDS, and SHS.²⁸

The ESR line shape is determined by the relative rate of chemical exchange $P_{\rm exch}$ between bulk and micelle with respect to the separation between the ESR lines of the probe in both environments, $\delta\omega$ (in rad s⁻¹).³ Two extreme cases may occur: ³⁹ (a) with $P_{\rm exch}$ very slow with respect to $\delta\omega$

$$P_{\rm exch} \ll \delta \omega$$

two separate absorptions are observed; (b) with $P_{\rm exch}$ very fast with respect to $\delta\omega$

$$P_{\rm exch} \gg \delta \omega$$

the observed spectrum is a weighted average of the signals of the probe in water and in the micelle.

In the intermediate region, the line width $1/T_2$ depends both on the relaxation time of the probe in water, $1/T_{2.0}$,

and on the exchange frequency: 39

$$1/T = 1/T_{2.0} + P_{\text{exch}}$$

The systems analyzed in this work are representative of the three cases: for SHS we have separate spectra, i.e., $P_{\rm exch} \ll \delta \omega$; for SDS we do not observe separate spectra while the line width passes through a maximum ner the cmc (Figure 4), i.e., $P_{\rm exch} \cong \delta \omega$; finally, for SOS the line width increases regularly with the surfactant concentration, i.e., $P_{\rm exch} \gg \delta \omega$. Table IV reports the $\delta \omega$ and $\tau_{\rm R2}$ for the three systems, together with $1/k_-$ values reported by Aniansson et al.²⁸ and obtained from k_-/n and k_-/σ^2 measurements (σ being the distribution width of the aggregation number) in the same micellar solution without addition of spin probe.

As is seen, the monomer-micelle exchange time of the spin probe into SDS micelle equals the exchange time of SDS monomer into the same micelle. The exchange times of TM-Tempamine⁺ in SOS and SHS have the same trend as those of surfactant monomers. This fact was also observed by Nakagawa.⁴⁰

This fact, together with the finding that the same cmc values are obtained from ESR measurements as those obtained with other techniques, leads to the conclusion that very small perturbations on the properties of the micelles are introduced by the addition of small quantities of paramagnetic molecules.

Acknowledgment. We are indebted to Prof. E. Ferroni for the useful discussions during the elaboration of this paper. Thanks are also due to the Consiglio Nazionale delle Ricerche (CNR), Piani Finalizzati Chimica Fine e Secondaria, for financial support.

Registry No. SOS, 142-31-4; SDS, 142-87-0; SHA, 1120-01-0; T, 2226-96-2; $TM-T^+I^-$, 64525-01-5.

Vapor Pressure Isotope Effects in Liquid Methyl Fluoride

Takao Oi, Jan Shuiman, Anthony Popowicz, and Takanobu Ishida*

Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794 (Received: August 19, 1982; In Final Form: October 27, 1982)

The vapor pressures of the isotopic methyl fluorides $^{12}\text{CH}_3\text{F}$, $^{12}\text{CD}_3\text{F}$, and $^{13}\text{CH}_3\text{F}$ have been measured at temperatures between 132.48 and 213.12 K by differential manometric techniques in a precision cryostat. Throughout the whole temperature range of the measurements, $P(^{12}\text{CH}_3\text{F}) > P(^{12}\text{CD}_3\text{F})$ and $P(^{12}\text{CH}_3\text{F}) < P(^{13}\text{CH}_3\text{F})$. The data are best represented by $T \ln (f_c/f_g) = (2225.2 \pm 7.4)/T - (4.444 \pm 0.046)$ for the D/H effect and by $T \ln (f_c/f_g) = (56.58 \pm 2.09)/T - (0.6383 \pm 0.0133)$ for the $^{13}\text{C}/^{12}\text{C}$ effect. A series of calculations using Wilson's GF matrix method and a modified Schachtschneider–Snyder program resulted in temperature-dependent internal–external interactions in the liquid phase: Presence of such interactions between the molecular translation in the direction of the molecular figure axis and the parallel normal modes ν_2 and ν_3 is a necessary requirement for satisfactory explanation of all isotopic vapor pressure and spectroscopic data of the liquid. The specific internal–external interactions found are consistent with the structure of CH₃F clusters obtained by ab initio molecular orbital calculations.

Introduction

The vapor pressure ratio of isotopic molecules is quite sensitive to intermolecular interactions in the condensed phases and to the perturbation of internal vibrational motions of the molecule by these intermolecular interactions. Hence, the measurement of vapor pressure isotope effects (VPIE's) is a useful tool in obtaining information about intra- and intermolecular forces and molecular motions in condensed phases.¹⁻¹⁵ Various vapor pressure

⁽³⁸⁾ A. Coleen, J. Phys. Chem., 78, 1676 (1974).

⁽³⁹⁾ A. Carrington and A. D. McLachlan, "Introduction to Magnetic Resonance", Harper and Row, New York, 1967.

⁽⁴⁰⁾ T. Nakagawa, Colloid Polym. Sci., 252, 482 (1974).

[†]Present address: Colgate-Palmolive Co., Piscataway, NJ 08854.

⁽¹⁾ J. Bigeleisen and E. Roth, J. Chem. Phys., 35, 68 (1961).

phenomena of isotopic molecules have been explained by the VPIE theory based on the simple cell model. 16,17 The rather surprising success of the theory has been due to the fact that all configurational factors of the condensed-phase partition function are, within the framework of the Born-Oppenheimer approximation, invariant under isotopic substitution and thus cancel each other out 18,19 in the isotopic reduced partition function ratio (RPFR), (s/s)f.

The VPIE's are measured most precisely by differential manometric techniques. In differential manometry, the ratio of the RPFR's of the two phases, $f_{\rm c}/f_{\rm g}, f_{\rm c}$, and $f_{\rm g}$ being the RPFR's of the condensed and gas phases, respectively, is related to the vapor pressure ratio of isotopic species by the first-order approximation

$$\ln (f_c/f_g) = [1 + P'\{\mathbf{B} - (V_c/RT)\}] \ln (P'/P) \quad (1)$$

where T is the absolute temperature, R is the gas constant, B is the second virial coefficient of the gas when the equation of state is written in the form

$$PV_{c}/RT = 1 + \mathbf{B}P + \dots \tag{2}$$

 $V_{\rm c}$ is the molar volume of the lighter isotopic species in the condensed phase, and P' and P are the vapor pressures of the lighter and heavier isotopic species, respectively. Under the approximations of Born-Oppenheimer, harmonic forces and the simple cell model description of the condensed phase, the RPFR is expressed as

$$\ln (s/s)f = \sum_{i} \delta \ln b(u_i)$$
 (3)

where

$$\ln b(u) = u/2 - \ln u + \ln (1 - e^{-u}) \tag{4}$$

$$\delta \ln b(u_i) = \ln b(u_i) - \ln b(u_i) \tag{5}$$

in which $u_i = hc\omega_i/kT$, ω_i is the *i*th normal frequency, h is the Planck constant, c is the velocity of light, k is the Boltzmann constant, and the summation is taken over the appropriate degrees of freedom of the molecule. Normal frequencies are calculated by Wilson's GF matrix me-

thod,²⁰ using the geometry, masses of the constituent atoms, and the force field of the molecule. The internal forces of the gaseous molecule are usually well-known, which enables one to calculate the RPFR of the gas ln $(s/s)f_{g}$ and, consequently, to deduce $\ln (s/s)f_{c}$ from the experimentally obtained $\ln (f_c/f_g)$ and, further, the force field of the molecule in the condensed phase.

In a previous study, 15 we reported a differential manometric study on ¹³C/¹²C and deuterium/protium (D/H) VPIE's in liquid fluoroform using a precision cryostat,21 which incorporated several modifications over the cryostat designed and constructed by Bigeleisen, Brook, Ishida, and Ribnikar (BBIR).²² The VPIE data were consistent with the blue shift in the C-H stretching frequency of fluoroform upon condensation, which is due to a kinetic energy coupling between the C-H stretching motion and the molecular translation in the direction of the C-H bond, caused in large part by a weak but directional Coulombic interaction between hydrogen and fluorine atoms of neighboring molecules. The present work was undertaken to obtain information about intra- and intermolecular forces and intermolecular interactions in liquid methyl fluoride through ¹³C/¹²C and D/H VPIE measurements. In view of the similarity between methyl fluoride and fluoroform in the nature of the intermolecular interaction, 23,24 it was interesting to see if some of the unique features found in fluoroform could also be found in methyl fluoride. Vapor pressure measurements were made on liquid ¹²CH₃F, ¹²CD₃F, and ¹³CH₃F.

Experimental Section

The cryostat, temperature and pressure measurements, and calibration and control have been described previously. 15,21

The sample purification procedure is a critical part of the whole experimental program in order to minimize the error in the VPIE data. For each of the isotopically labeled samples, approximately 1 dm³ of gas at 1 atm and room temperature was purchased or synthesized. The methyl fluoride sample of natural isotopic composition, denoted by ¹²CH₃F and used as the reference for the differential vapor pressure measurements, was chemically 99.7% pure (500 ppm ¹²CO₂, 200 ppm ¹²CH₃Cl, 100 ppm H₂O, and about 0.2% of an unknown as the impurities) when purchased from Linde-Union Carbide Corp. (The stated levels of impurities are the ratios of the areas under the chromatographic peak.) The ¹²CD₃F sample, obtained from Prochem Ltd., was 99.4% pure containing about 0.6% ¹²CO₂, 150 ppm ¹²CD₃Cl, 50 ppm H₂O, and 10 ppm of an unknown as the impurities. The sample of ¹³CH₃F was prepared by a two-step synthesis starting with methanol-13C. The synthesis and purification of the ¹³CH₃F sample has been described previously.²⁵ The process of purification of the ¹²CH₃F and ¹²CD₃F samples was identical with that of ¹³CH₃F, except that the use of Chromosorb was not required. The gas-chromatograph analysis of the final purified samples showed 5, 10, 10, and 10 ppm of CO₂, CH₃Cl, H₂O, and the unknown impurity, respectively, in $^{12}\text{CH}_3\text{F}$; 5, 10, 10, and 1 ppm of CO₂, CD₃Cl, H₂O, and the unknown impurity, respectively, in ¹²CD₃F; and

⁽²⁾ J. Bigeleisen, S. V. Ribnikar, and W. A. Van Hook, J. Am. Chem. Soc., 83, 2956 (1961).

⁽³⁾ J. Bigeleisen and S. V. Ribnikar, J. Chem. Phys., 35, 1297 (1961).

⁽⁴⁾ J. Bigeleisen, S. V. Ribnikar, and W. A. Van Hook, J. Chem. Phys., 38, 489 (1963)

⁽⁵⁾ J. Bigeleisen, M. J. Stern, and W. A. Van Hook, J. Chem. Phys., 38, 497 (1963).

⁽⁶⁾ W. A. Van Hook, J. Chem. Phys., 44, 234 (1966)

⁽⁷⁾ J. Bigeleisen, C. B. Cragg, and M. Jeevanandam, J. Chem. Phys.,

⁽⁸⁾ T. Ishida and J. Bigeleisen, J. Chem. Phys., 49, 5498 (1968).

⁽⁹⁾ M. W. Lee, S. Fuks, and J. Bigeleisen, J. Chem. Phys., 53, 4066 (1970).

⁽¹⁰⁾ M. W. Lee, D. M. Eshelman, and J. Bigeleisen, J. Chem. Phys., 56, 4585 (1972).

⁽¹¹⁾ Z. Bilkadi, M. W. Lee, and J. Bigeleisen, J. Chem. Phys., 62, 2087

⁽¹²⁾ Y. Yato, M. W. Lee, and J. Bigeleisen, J. Chem. Phys., 63, 1555

⁽¹³⁾ J. Bigeleisen, S. Fuks, S. V. Ribnikar, and Y. Yato, J. Chem. Phys., 66, 1689 (1977)

⁽¹⁴⁾ L. Borodinsky, H. J. Wieck, D. Mayfield, and T. Ishida, J. Chem. Phys., 68, 3279 (1978)

⁽¹⁵⁾ A. Popowicz, T. Oi, J. Shulman, and T. Ishida, J. Chem. Phys., 76, 3732 (1982).

⁽¹⁶⁾ J. Bigeleisen, J. Chem. Phys., 34, 1485 (1961).

⁽¹⁷⁾ M. J. Stern, W. A. Van Hook, and M. Wolfsberg, J. Chem. Phys., 39, 3179 (1963)

⁽¹⁸⁾ J. S. Pollin and T. Ishida, J. Chem. Phys., 66, 4433 (1977).

⁽¹⁹⁾ J. S. Pollin and T. Ishida, J. Chem. Phys., 66, 4442 (1977).

⁽²⁰⁾ E. B. Wilson, Jr., J. C. Decius, and P. C. Cross, "Molecular Vibrations", McGraw-Hill, New York, 1955.

⁽²¹⁾ T. Oi, A. Popowicz, and T. Ishida, to be submitted for publication. (22) J. Bigeleisen, F. P. Brooks, T. Ishida, and S. V. Ribnikar, Rev. Sci. Instrum., 39, 353 (1968)

⁽²³⁾ A. Popowicz and T. Ishida, Chem. Phys. Lett., 83, 520 (1981).

⁽²⁴⁾ T. Oi, E. Sekreta, and T. Ishida, J. Phys. Chem., in press.
(25) I. Cohen, J. Shulman, A. Popowicz, and T. Ishida, J. Labelled Compd. Radiopharm., 19, 631 (1982).

TABLE I: 13C/12C Vapor Pressure Isotope Effect in Liquid Methyl Fluoride

			OTOFT TITE			 			
		$\delta P =$	$T \ln$	date			$\delta P =$	$T \ln$	date
T, K	$P_{\mathbf{r}}$, torr		f_{-}/f_{-} K	(1980)	T, K	$P_{\mathbf{r}}$, torr	$P_{\mathbf{r}} - P_{\mathbf{i}}$, torr		(1980)
	- r, torr		/ C//g,		-,	- r, ton	- r - 1, 0011	7 C/1 g,	(1000)
132.48	3.712	-0.00472	-0.205	10/06	155.44	46.311	-0.06854	-0.2764	10/08
133.22	4.085	-0.00568	-0.227	10/06	156.04	48.943	-0.07124	-0.2740	10/02
133.22	4.085	-0.006 30	-0.250	10/06	156.66	51.751	-0.07936	-0.2931	10/08
133.60	4.314	-0.00545	-0.204	10/00		54.512			10/00
100.00					157.25	54.512	-0.07852	-0.2722	10/02
133.60	4.328	-0.00619	-0.233	10/13	157.87	57.585	-0.08958	-0.2983	10/08
133.84	4.460	-0.00754	-0.274	10/13	158.59	61.298	-0.09075	-0.2846	10/02
133.85	4.459	-0.00607	-0.223	10/13	159.85	68.433	-0.10143	-0.2850	10/02
134.00	4.529	-0.00733	-0.263	10/06	161.17	76.595	-0.11388	-0.2896	10/02
134.03	4.565	-0.00678	-0.243	10/13	162.48	85.401	-0.12747	-0.2937	10/02
134.78	4.988	-0.006 31	-0.208	10/16	163.13	90.232	-0.13635	-0.2964	09/23
	5.323				163.75	94.956	-0.14280	-0.2972	10/02
135.30	5.5∠5	-0.00649	-0.201	10/06		100.00			
135.59	5.572	-0.00846	-0.252	10/14	164.64	102.09	-0.15216	-0.2914	09/23
135.59	5.572	-0.00916	-0.273	10/14	165.17	106.34	-0.16278	-0.2992	09/24
135.71	5.608	-0.00651	-0.192	10/06	165.68	110.72	-0.16626	-0.2882	10/02
136.23	5.988	-0.00788	-0.219	10/06	166.20	115.37	-0.17091	-0.2946	09/23
137.03	6.605	-0.00937	-0.238	10/07	167.16	124.28	-0.19032	-0.3073	09/24
137.30	6.838	-0.00868	-0.213	10/15	167.37	126.34	-0.19089	-0.3026	10/02
137.34	6.898	-0.00873	-0.211	10/15	168.68	139.59	-0.21435	-0.3047	09/24
137.95	7.392	-0.01041	-0.2364	10/07	169.47	148.29	-0.22659	-0.3154	10/08
138.06	7.509	-0.01137	-0.2552	10/10	170.17	156.34	-0.24024	-0.3133	09/24
138.14	7.569	$-0.011\ 18$	-0.2489	10/10	170.98	165.92	-0.25653	-0.3088	10/08
138.25	7.678	-0.01154	-0.2521	10/10	171.67	174.56	-0.2687	-0.3181	09/24
138.42	7.846	-0.00921	-0.1977	10/14	173.17	194.55	-0.2994	-0.3194	09/24
138.82	8.201	-0.01217	-0.2514	10/07	174.54	214.52	-0.3323	-0.3208	09/24
139.35	8.733	-0.01217			174.88	219.72	-0.3376	-0.3232	
100.00			-0.2448	10/07			0.3370		09/24
139.82	9.262	-0.01182	-0.2169	10/15	176.26	241.78	-0.3719	-0.3217	09/25
139.96	9.409	-0.01139	-0.2065	10/15	177.95	271.48	-0.4164	-0.3198	09/25
140.34	9.834	-0.01486	-0.2588	10/07	179.19	294.83	-0.4476	-0.3251	10/02
140.84	10.444	-0.01292	-0.2134	10/15	179.65	304.05	-0.4667	-0.3298	09/25
141.34	11.018	-0.01667	-0.2653	10/07	181.20	336.56	-0.5147	-0.3257	10/02
141.74	11.555	-0.01397	-0.2090	10/15	181.37	340.24	-0.5227	-0.3349	09/25
141.89	11.747	-0.01357	-0.2058	$\frac{10}{15}$	183.02	378.15	-0.5802	-0.3323	09/25
142.34	12.310	-0.01198	-0.1689	10/15	184.16	405.98	$-0.624\ 2$		
								-0.3376	09/25
142.34	12.326	-0.02016	-0.2950	10/07	184.79	422.45	-0.6481	-0.3356	09/25
142.43	12.465	-0.01706	-0.2363	10/10	185.89	451.84	-0.6921	-0.3396	09/25
142.58	12.644	-0.01555	-0.2058	10/10	187.56	500.11	-0.7680	-0.3396	09/25
142.62	12.706	-0.01305	-0.1776	10/07	188.54	529.77	-0.8102	-0.3386	10/08
143.17	13.487	-0.01678	-0.2066	10/15	189.28	553.15	-0.8501	-0.3413	09/25
143.63	14.193	-0.01719	-0.2092	10/07	190.24	585.37	-0.9000	-0.3426	10/09
144.13	14.998	-0.01992	-0.2221	10/16	190.97	610.25			
144.25	15.185	-0.01895	-0.2195	10/16			-0.9384	-0.3442	09/25
144.75	16.010	-0.01893			192.75	675.46	-1.0422	-0.3496	09/25
			-0.2308	10/07	194.85	759.89	-1.1772	-0.3518	09/25
145.34	17.045	-0.02358	-0.2485	10/16	196.17	815.85	-1.2393	-0.3430	10/02
145.86	18.021	$-0.024\ 58$	-0.2360	10/07	196.73	841.31	-1.3173	-0.3550	09/25
146.40	19.068	-0.02743	-0.2612	10/16	197.97	898.83	-1.3692	-0.3489	10/02
146.52	19.283	-0.02593	-0.2401	10/16	198.75	936.57	-1.4250	-0.3479	10/09
146.95	20.169	-0.02852	-0.2568	10/07	199.95	998.08	-1.5210	-0.3507	10/02
147.54	21.464	-0.03075	-0.2504	10/16	200.87	1046.9			
148.04	21.404 22.618	-0.03073	-0.2504	10/10			-1.606 5	-0.3528	10/03
					201.97	1106.6	-1.6935	-0.3558	10/03
148.61	23.982	-0.03197	-0.2408	10/01	202.66	1145.6	-1.7088	-0.3444	10/09
149.34	25.830	-0.03560	-0.2527	10/16	202.85	1157.8	-1.7895	-0.3610	10/03
149.72	26.831	-0.03781	-0.2506	10/01	204.86	1279.6	-1.9536	-0.3466	10/03
150.82	29.926	-0.04307	-0.2629	10/01	205.57	1324.1	-1.9365	-0.3533	10/09
151.92	33.269	-0.04781	-0.2602	10/01	206.85	1408.8	-2.2020	-0.3665	10/03
153.02	36.974	-0.05355	-0.2709	10/01	207.75	1471.4	-2.2944	-0.3676	10/09
153.57	38.917	-0.05477	-0.2630	10/01	208.83	1548.0	-2.4555	-0.3656	10/03
154.15					209.85				
	41.081	-0.05987	-0.2727	10/01		1622.7	-2.5656	-0.3787	10/09
154.84	43.863	-0.06490	-0.2779	10/02	211.13	1724.5	-2.771	-0.3847	10/03

10, 10, 5, and 15 ppm of ¹³CO₂, ¹³CH₃Cl, H₂O, and the unknown impurity, respectively, in ¹³CH₃F.

The isotopic composition of the purified methyl fluoride samples was determined by using a Kratos MS 30 dualbeam mass spectrometer with DS 50 data base system. The results of the mass-spectroscopic analysis were corrected for relative intensities²⁶ of peaks. The isotopic composition of the three labeled samples are as follows. The reference sample consists of 98.48% ¹²CH₃F and 1.52% ¹³CH₃F. The carbon-13-labeled sample consists of 83.28% $^{13}CH_3F$ and 16.72% $^{12}CH_3F$. The deuterated sample consists of 97.41% $^{12}\text{CD}_3\text{F}$, 1.15% $^{12}\text{CHD}_2\text{F}$, 0.60%

¹³CD₃F, 0.59% ¹²CH₂DF, and 0.25% ¹²CH₃F.

Results and Discussion

The VPIE measurements were made at temperatures between 132.48 and 213.12 K. The results for the carbon and hydrogen VPIE measurements are summarized in Tables I and II, respectively. The absolute temperature, T, and pressure, P_r , were obtained by the methods described previously. $^{15}P_r$ and P_i refer to the observed vapor pressures of the reference (" $^{12}\mathrm{CH_3F}$ ") and isotopic (" $^{12}\mathrm{CD_3F}$ " or " $^{13}\mathrm{CH_3F}$ ") samples, respectively, but differ from the isotopic vapor pressures, P' and P, of eq 1 in that $P_{\rm r}$ and $P_{\rm i}$ are the total observed pressures of the mixtures of isotopic species. Each $T \ln f_c/f_g$ datum was obtained by correcting for the presence of the isotopic impurities

⁽²⁶⁾ American Petroleum Institute, "Mass Spectral Data", Carnegie Institute of Technology, Pittsburgh, PA, 1953.

Figure 1. $T \ln f_{\rm c}/f_{\rm g}$ vs. 1/T for $^{13}{\rm C}/^{12}{\rm C}$ VPIE: The solid line has been computed from the F matrices on Tables IV, VII, and VIII.

Figure 2. $T \ln f_c/f_a$ vs. 1/T for D/H VPIE: The solid line has been computed from the F matrices of Tables IV, VII, and VIII.

using Raoult's law and the rule of the geometric means of isotopic vapor pressures for the mixed isotopic species, gas nonideality and liquid molar volume using Zwolinski's virial coefficient data,27 and the condensed-phase molar volume data of Grosse et al.28

In Figures 1 and 2 are shown the plots of $T \ln f_{\rm c}/f_{\rm g}$ vs. 1/T for the carbon and the hydrogen VPIE's, respectively. Over the entire temperature range of our measurements the deuterium/protium (D/H) VPIE is normal, i.e., P' $(^{12}CH_3F) > P(^{12}CD_3F)$, while the $^{13}C/^{12}C$ VPIE is inverse, i.e., $P'(^{12}CH_3F) < P(^{13}CH_3F)$. The least-squares-fit coefficients for the functional form

$$T \ln (f_c/f_g) = A/T + B \tag{6}$$

are as follows: For the D/H effect, $A = 2225.2 \pm 7.4$ and $B = -4.444 \pm 0.046$ and, for the ${}^{13}C/{}^{12}C$ effect, A = 56.58 \pm 2.09 and $B = -0.6383 \pm 0.0133$. A fit of $T \ln f_c/f_g$ to a three-term form, A/T + B + CT, yielded a similar degree of goodness. Interpretation of these coefficients along the conventional lines, i.e., A being the contribution of the lattice vibrations and hindered molecular rotations via the first quantum correction, and B the isotope effect in the zero-point energy shift upon condensation, should be made carefully. In fact, as will conclude later, the observed VPIE's cannot be explained without considering temperature-dependent rotational force constants and temperature-dependent interactions between internal vibrations and the lattice vibration along the molecular figure axis of methyl fluoride. As such, the values of A and B obtained here do not have the conventional meaning.

Figure 3. Equilibrium geometry and valence coordinates of methyl fluoride.

The remainder of the present discussion will be devoted to substantiating the conclusions mentioned above.

Before proceeding further we note the least-squares-fit parameters obtained for natural-abundance methyl fluoride, P_r , for the functional form

$$\log P(\text{torr}) = A - B/\{C + t(^{\circ}C)\}$$
 (7)

are A = 7.09204, B = 741.597, and C = 254.381. The average deviation is 0.07% over the entire temperature range studied. Our least-squares-fit coefficients compare reasonably well with Zwolinski's tabulation.²⁷ His values are A = 7.11232, B = 745.52, and c = 254.51 over the pressure range of 0.004 \sim 10 torr and A = 7.09761, B =740.218, and C = 253.89 over the range of $10 \sim 1500$ torr. The average absolute deviation of vapor pressure values computed from the Zwolinski equations over our temperature range are 1.40% below 10 torr and 0.58% between 10 and 1500 torr.

The VPIE results obtained for liquid methyl fluoride are similar to those found in liquid fluoroform¹⁵ and just the opposite to those found in liquid methane.²⁹⁻³¹ We note that the difference in the VPIE's between fluoroform and methane was qualitatively explained on the basis of the blue and red shifts in the C-H stretching normal frequencies upon condensation, 15 respectively. For methyl fluoride, the v_4 frequency has been reported at 3006 cm⁻¹ for gaseous ¹²CH₃F and at 3030 cm⁻¹ for liquid ¹²CH₃F. ³² A detailed and quantitative analysis of the VPIE's in methyl fluoride, however, reveals a more complicated situation.

To quantitatively explain the present VPIE data and published spectroscopic results we used the simple cell model and Wilson's FG-matrix method. For the latter a modified version of the Schachtschneider and Synder program was used,33 and the G matrices (see paragraph at end of text regarding supplementary material) were calculated by using the equilibrium geometry^{34,35} and the

⁽²⁷⁾ B. J. Zwolinski, "Selected Values of Properties of Chemical Compounds", American Petroleum Institute of Research Project 44, Thermodynamic Research Center, Texas A&M University, College Station, Tx, 1974

⁽²⁸⁾ A. V. Grosse, R. C. Wackher, and C. B. Linn, J. Phys. Chem, 44, 275 (1940).

⁽²⁹⁾ G. T. Armstrong, F. G. Brickwedde, and R. B. Scott, J. Res. Natl.

Bur. Stand., 55, 39 (1955).

(30) T. F. Johns, "Proceedings of the International Symposium on Isotope Separation", North-Holland Publishing Co., Amsterdam, 1958.

(31) K. Clusius, F. Endtinger, and K. Schleich, Helv. Chim. Acta, 43, 1267 (1960)

⁽³²⁾ T. H. Chao and D. F. Eggers, Jr., J. Chem. Phys., 66, 970 (1977). (33) J. H. Schachtschneider and R. G. Synder, Spectrochim. Acta, 19, 117 (1963).

⁽³⁴⁾ F. A. Anderson, B. Bak, and S. Broderson, J. Chem. Phys., 24, 989

TABLE II: D/H Vapor Pressure Isotope Effect in Liquid Methyl Fluoride

TABLE II.	D/II Vapor I		tope Effect	in Liquid	Methyl Fluoric					
		$\delta P =$						$\delta P =$		
		$P_{\rm r}-P_{\rm i}$,	$T \ln$	date				$P_{\mathbf{r}} - P_{\mathbf{i}}$,	$T \ln$	date
T, K	$P_{\mathbf{r}}$, torr	torr	$f_{ m c}/f_{ m g},{ m K}$	(1980)	T,	K	$P_{\mathbf{r}}$, torr	torr	$f_{\rm c}/f_{\rm g},{ m K}$	(1980)
132.48	3.712	0.3255	12.41	10/06	156.	04	48.943	2.970	9.899	10/02
133.22	4.085	0.3510	12.22	10/06	156.		51.751	3.096	9.790	10/02
133.60	4.314	0.3731	12.34	10/00	150. 157.		54.512	3.254	9.802	10/08
133.60	4.328	0.3731	12.34 12.29	10/13	157.	27	57.585	3.383	9.677	10/02
133.84	4.460	0.3805	12.23 12.18	10/13	158.		61.298	3.585	9.673	10/08
133.85	4.459	0.3819	12.13 12.23	10/13	159.		68.433	3.932	9.566	10/02
134.00	4.529	0.3813	12.23 12.11	10/13	161.	17	76.595	4.319	9.453	10/02
134.03	4.565	0.3884	12.11 12.16	10/00	162.	18	85.401	4.729	9.346	10/02
134.78	4.988	0.3664 0.4126	11.88	10/13	163.	13	90.232	4.723	9.276	09/23
135.30	5.323	0.4120 0.4403	11.92	10/06	163.		94.956	5.164	9.237	$\frac{09/23}{10/02}$
135.71	5.608	0.4403 0.4592	11.83	10/06	164.		102.09	$5.104 \\ 5.472$	9.158	09/23
136.23	5.988	0.4332 0.4873	11.80	10/06	165.		106.34	5.656	9.105	$09/23 \\ 09/24$
136.82	6.459	0.5248	11.83	10/00	165. 165.		110.72	5.865	9.093	10/02
137.03	6.605	0.5318	11.73	10/14	166.		115.40	6.058	9.029	09/23
137.67	7.174	0.5740	11.71	10/07	167.	16	124.28	6.435	8.951	09/23
137.95	7.392	0.5867	11.71 11.64	10/14	167.		126.34	6.539	8.952	10/02
138.04	7.492	0.5955	11.66	09/29	168.		139.59	7.081	8.839	09/24
138.06	7.509	0.5913	11.55	10/10	169.		148.29	7.446	8.763	10/08
138.14	7.569	0.5913	$11.55 \\ 11.54$	10/10	170.		156.34	7.773	8.709	09/24
138.25	7.678	0.5955 0.6021		10/10	170. 170.		165.92	8.159	8.651	10/08
138.42	7.846	0.6021 0.6181	$11.51 \\ 11.58$	$\frac{10/10}{10/14}$	171.		174.56	8.509	8.593	09/24
138.42	7.851		11.68 11.63		173.		194.55	9.297	8.494	09/24 $09/24$
138.82	8.201	$0.6207 \\ 0.6434$	11.56	$\frac{10/14}{10/07}$	174.		214.52	10.065	8.383	09/24
139.11	8.503	0.6626		09/29	174.		219.72	10.266	8.368	09/24
139.35	8.733	0.6626 0.6792	11.51	10/07	176.		241.78	11.091	8.262	09/24
139.73	9.159		11.50	10/07	177.		271.48	12.177	8.140	09/25
	9.409	0.7069	11.44	09/29	179.	10	294.83	13.029	8.060	10/02
139.96 140.11	9.588	$0.7108 \\ 0.7336$	$11.50 \\ 11.37$	10/15 09/29	179.	45 65	304.05	13.341	8.016	09/25
140.11	9.834				181.		336.56	14.487	7.917	$\frac{09/25}{10/02}$
140.34 140.72	10.294	0.7510	$11.36 \\ 11.314$	10/07	181.		340.24	14.604	7.895	09/25
141.34	11.018	0.7810		09/30	183.		378.15	15.885	7.782	
$141.34 \\ 141.72$	11.537	0.8289	$11.251 \\ 11.212$	10/07	184.		405.98	16.812	7.703	09/25 09/25
141.72 142.34	12.310	$0.8622 \\ 0.9078$	11.212 11.111	09/30 10/07	184.		403.36 422.45	17.349	7.659	09/25
142.34 142.34	12.310 12.326	0.9132	11.111	10/07	185.		451.84	18.300	7.584	$09/25 \\ 09/25$
142.62	12.706	0.9132 0.9351	11.105	10/07	187.		500.11	19.833	7.364 7.470	09/25
142.02 142.75	12.700 12.874	0.9331 0.9483	11.105 11.121	09/30	188.	50 51	529.77	20.748	7.470	10/08
143.17	13.487	0.9843	11.121	$\frac{09}{30}$	189.	98	553.15	21.480	7.361	09/25
143.63	14.193	1.0284	11.008	10/13	190.		585.37	21.430 22.437	7.291	10/09
143.71	14.350	1.0419	11.031	09/30	190.		610.25	23.202	7.249	09/25
144.13	14.998	1.0728	10.893	10/16	192.		675.46	25.107	7.128	09/25
144.25	15.185	1.0848	10.888	10/16	194.		759.89	27.490	6.985	09/25
144.75	16.010	1.1409	10.894	10/07	196.		815.85	29.065	6.909	10/02
144.75	16.043	1.1469	10.920	09/30	196.		841.31	29.745	6.868	09/25
145.34	17.045	1.1988	10.789	10/16	197.		898.83	31.323	6.793	10/02
145.85	18.015	1.2684	10.841	09/30	198.		936.57	32.299	6.738	10/02
145.86	18.021	1.2624	10.785	10/07	199.		951.40	32.612	6.702	09/25
146.40	19.068	1.3209	10.694	10/16	199.		998.08	33.922	6.662	10/02
146.52	19.283	1.3371	10.712	10/16	200.		1045.7	35.093	6.597	09/25
146.93	20.163	1.3983	10.739	09/30	200.		1046.9	35.171	6.608	10/03
146.95	20.169	1.3914	10.682	10/07	201.		1106.6	36.698	6.537	10/03
147.54	21.464	1.4640	10.601	10/16	202.		1145.6	37.691	6.499	10/09
148.04	22.618	1.5348	10.580	10/07	202.		1157.8	37.944	6.466	10/03
148.04	22.633	1.5417	10.622	09/30	204.		1236.1	39.769	6.382	09/26
148.61	23.982	1.6248	10.594	10/01	204.	86	1279.6	40.940	6.362	10/03
149.15	25.304	1.6959	10.537	09/30	205.		1324.1	42.100	6.324	10/09
149.72	26.831	1.7835	10.468	10/01	205.		1348.3	42.415	6.259	09/26
150.24	28.226	1.8603	10.405	09/30	206.		1408.8	43.950	6.216	10/03
150.82	29.926	1.9566	10.356	10/01	207.		1470.3	45.239	6.144	09/26
151.37	31.510	2.0469	10.320	09/30	207.	75	1471.4	45.425	6.167	10/09
151.92	33.269	2.1411	10.260	10/01	208.		1548.0	47.092	6.095	10/03
153.02	36.974	2.3424	10.162	10/01	209.		1602.8	48.083	6.019	09/26
153.57	38.917	2.4558	10.157	10/01	209.	85	1622.7	48.723	6.025	10/09
154.15	41.081	2.5584	10.052	10/01	211.		1724.5	50.920	5.940	10/03
154.84	43.863	2.706	9.998	10/02	211.		1738.9	51.184	5.916	09/26
155.44	46.311	2.824	9.914	10/08	213.	12	1887.1	54.255	5.812	09/26

valence coordinate system shown in Figure 3. The F matrices were fitted by the method of partial derivatives described in a previous paper.15

was obtained by a modification of Aldous and Mills' F

The F matrix for the gas phase tabulated in Table III

matrix.³⁶ The matrix of Table III accounts for Duncan's Fermi resonance correction³⁷ on ν_1 of $^{12}\mathrm{CH_3F}$ and $^{13}\mathrm{CH_3F}$ due to the triad of ν_1 °, $2\nu_2$ °, and $2\nu_5$ ° and the similar Fermi resonance correction on ν_1 of $^{12}\mathrm{CD_3F}$ between ν_1 ° and $2\nu_5$ °.

 ⁽³⁶⁾ J. Aldous and I. M. Mills, Spectrochim. Acta, 18, 1073 (1962).
 (37) J. L. Duncan, D. C. McKean, and G. K. Speirs, Mol. Phys., 24, 553 (1972).

⁽³⁵⁾ L. E. Sutton, "Interatomic Distances", Chemical Society Special Publication No. 11, Chemical Society, London, 1958.

TABLE III: F Matrix of Gaseous Methyl Fluoride^a

dia	agonals		off-d	iagonals
description	nota- tion	value, mdyn Å-1	nota- tion	value, mdyn Å-1
C-H stretch C-F stretch HCH bend HCF bend	$egin{array}{c} f_d \ f_D \ f_lpha \ f_eta \end{array}$	4.686 5.662 0.408 0.617	fad faD f dα faα fDα f αα f ββ f αβ f αβ f αβ f αβ f αβ f ββ	-0.036 0.502 -0.125 -0.225 -0.258 -0.054 0.118 0.015 0.258 -0.143 -0.119 -0.144

^a All bending coordinates are weighted by the equilibrium C-H bond length. An F-matrix element with one subscript is a diagonal element. When two off-diagonal elements are listed to a similar interaction, e.g., $f'_{d\alpha}$ and $f_{d\alpha}$, the one without a prime refers to the interaction between two coordinates which share a common C-H bond, while the one with a prime refers to the interaction between two coordinates which do not share a common C-H bond.

TABLE IV: Observed and Calculated Frequencies of Gaseous Methyl Fluoride

		calcd, cm ⁻¹		
mode	$\overset{ extbf{exptl},^a}{ ext{cm}^{-1}}$	Aldous and Mills ^b	this work	
	1	² CH ₃ F		
$\nu_1(\mathbf{A}_1)^c$	2910	2924.7	2909.790	
$\nu_2(\mathbf{A}_1)$	1460	1469.4	1462.627	
$\nu_3(\mathbf{A}_1)$	1049	1059.6	1056.809	
$\nu_{\mathbf{A}}(\mathbf{E})$	3006	3028.4	3006.715	
$\nu_{5}(\mathbf{E})$	1467	1468.7	1479.265	
$\nu_6(\mathbf{E})$	1182	1178.7	1183.019	
	1	$^{2}CD_{3}F$		
$\nu_1(\mathbf{A}_1)^c$	2110	2112.8	2112.031	
$\nu_{2}(\mathbf{A}_{1})$	1135	1131.5	1131.511	
$\nu_3(\mathbf{A}_1)$	992	994.5	982.646	
$\nu_4(\mathbf{E})$	2259	2243.9	2258.930	
$\nu_s(\mathbf{E})$	1071	1069.9	1057.561	
$\nu_6(\mathbf{E})$	911	901.8	909.564	
	1	³ CH ₃ F		
$\nu_1(\mathbf{A}_1)^c$	2906	ž920.4	2904.568	
$\nu_2(\mathbf{A}_1)$	1455	1463.9	1456.819	
$\nu_3(\mathbf{A}_1)$	1027	1038.2	1036.048	
$v_4(\mathbf{E})$	2995	3017.5	2992.344	
$\nu_{s}(\mathbf{E})$	1465	1465.7	1478.275	
$v_6(\mathbf{E})$	1174	1171.0	1175.123	

 a Consensus of best values of fundamental frequencies from several authors. $^{\rm 34,37-44}$ b Reference 36. c Corrected for Fermi resonance.

No evidence was found linking the third transition $2\nu_2^{\circ}$ with the resonance; $2\nu_2$ was observed in the solid phase only.³⁷ The resonance interaction parameter, $W_{155} = 27.5$ cm⁻¹, for the gaseous ¹²CD₃F yields the calculated frequencies within ± 0.5 cm⁻¹ of the experimental data. In Table IV the observed frequencies of gaseous methyl fluoride $^{34,37-44}$ are compared with the frequencies calculated

TABLE V: Fermi Resonance Correction of Liquid ¹²CH₃F and ¹²CD₃F Frequencies

$\operatorname{cm}^{-1}^{a}$	v^0 unperturbed, cm^{-1}	$\operatorname{cm}^{\nu} \operatorname{calcd}, b$
	¹² CH ₂ F	
2971	2915 .0	2971.1
2864	2920.0	2863.9
	¹² CD ₂ F	
2145	Ž107.0	2145.0
2088	2126.5	2088.5
	2971 2864 2145	¹² CH ₃ F 2971 2915.0 2864 2920.0 ¹² CD ₃ F 2145 2107.0

^a Reference 32. ^b This work.

TABLE VI: Internal Elements of F Matrix for Liquid Methyl Fluoride^a

dia	gonals	off-diagonals		
notation	value, mdyn Å ⁻¹	notation	value, mdyn A ⁻¹	
f_d	4.791	f_{dd}	-0.035	
f_{D}	5.098	f_{Dd}	0.515	
f_{α}	0.407	$f'_{d\alpha}$	-0.185	
$f_{lpha} \ f_{eta}$	0.602	$f_{d\alpha}$	-0.125	
		$f_{D\alpha}$	-0.260	
		$f_{Dlpha} \ f_{lphalpha}$	-0.056	
		$f'_{d\beta}$	0.094	
		$f_{d\beta}$	0.021	
		$f_{D\beta}$	0.260	
		$f'_{\alpha\beta}$	-0.138	
		$f_{lphaeta}$	-0.112	
		$f_{\beta\beta}$	-0.149	

^a See the footnote of Table III for the explanation of the internal coordinates.

TABLE VII: External and Internal-External Interaction Elements of F Matrix for Liquid Methyl Fluoride

element	value, a mdyn A-1 or mdyn A
$f_{\mathbf{T}_{\mathcal{X}}}, f_{\mathbf{T}_{\mathcal{Y}}}$	0.120
$f_{\mathbf{T}_{z}}$	0.300
$f_{\mathbf{R}_{\mathcal{X}}}^{\mathbf{z}}, f_{\mathbf{R}_{\mathcal{Y}}}$	$8.1527 imes 10^{-2} - (6.3040 imes 10^{-4}) \Delta + (3.6677 imes 10^{-6}) \Delta^2$
$f_{\mathbf{R}_z}$	$f_{\rm R_x}/8$
$f_{D\mathbf{T}_{\mathcal{Z}}}$	$9.\mathring{4}169 \times 10^{-2} + (1.0788 \times 10^{-3})\Delta + (1.6879 \times 10^{-5})\Delta^{2}$
$f_{eta \mathbf{T}_{\mathcal{Z}}}$	$1.2045 imes 10^{-1} + (7.1425 imes 10^{-4}) \Delta + (1.4527 imes 10^{-6}) \Delta^2$
$f_{\alpha \mathbf{T}_{z}}$	$-\hat{f}_{eta extbf{T}_{oldsymbol{z}}}$

^a All elements are in units of mdyn A^{-1} except f_R 's, which are in units of mdyn A. $\Delta \equiv T - 153$.

from the F matrix of Table III and the frequencies computed by Aldous and Mills. It is noted that our gaseous F matrix is generally in better agreement with experimental values. The calculated frequencies are listed to three decimal places in order to provide reproducibility in isotope-effect calculations to the appropriate precision.

The F matrix for the liquid phase was formulated to reproduce not only the available spectroscopic data for liquid methyl fluoride^{32,45,46} but also the present VPIE data. The observed ν_1 for the liquid $^{12}CH_3F$ and $^{12}CD_3F$ were corrected for the $(\nu_1^{\circ}, 2\nu_5^{\circ})$ Fermi resonance based on the data of Chao and Eggers.³² The resonance parameter obtained, $W_{155} = 43.5 \text{ cm}^{-1}$, yielded the results tabulated in Table V. The construction of the liqud F matrix was started by first adding on the external force constants to

⁽³⁸⁾ J. Pickworth and H. W. Thompson, Proc. R. Soc. London, Ser.

A, 222, 443 (1954).

(39) W. F. Edgell and L. Parts, J. Am. Chem. Soc., 78, 2358 (1956).

(40) W. L. Smith and I. M. Mills, J. Mol. Spectrosc., 11, 11 (1963).

(41) C. D. Lauro and I. M. Mills, J. Mol. Spectrosc., 21, 386 (1966).

(42) E. W. Jones, R. J. L. Popplewell, and H. W. Thompson, Proc. R. Soc. London, Ser. A, 290, 490 (1966).

⁽⁴³⁾ R. J. H. Clark, O. H. Ellestad, and R. Escribano, Mol. Phys., 31, 65 (1976).

⁽⁴⁴⁾ G. L. Caldow and L. O. Halonen, Mol. Phys., 46, 223 (1982). (45) J. E. Griffiths, Bell Telephone Lab, private communication. (46) A. Gerschel, I. Dimicoli, J. Jaffre, and A. Riou, Mol. Phys., 32, 679

TABLE VIII: Internal and External Frequencies (cm⁻¹) for Liquid Methyl Fluoride

	¹² CH ₃ F							
		exptl			$^{12}\mathrm{CD}_3\mathbf{F}$			
mode	$\overline{Chao^a}$	Griffiths ^b	Gerschel ^c	$calcd^d$	$exptl^a$	$calcd^d$	$^{13}\mathrm{CH_3F}$, calcd d	
$v_1(\mathbf{A}_1)^e$	2915	2912		2915.048	2107	2108.581	2910.584	
$\nu_{2}(\mathbf{A}_{1})$		1456		1456.997	1112	1112.672	1450.702	
v (A)	990	993.1		995.121	959	953.739	974.554	
ν (E)	3030	3021.3		3030,290	2272	2271.773	3016.366	
ν , (E)	1468	1491 (?)		1480.227	1073	1060.658	1478.980	
ν (E)	1180	1179 `´		1181.726	909	908.672	1173.827	
T. ´				77.382		70.582	76.099	
\mathbf{T}_{n}^{n}				77.382		70.582	76.099	
\mathbf{T}_{z}^{y}				86,608		81.857	85.455	
$ \begin{array}{l} \nu_4 & (E) \\ \nu_5 & (E) \\ \nu_6 & (E) \\ T_x \\ T_y \\ T_z \\ R_x \\ R_x \end{array} $			83	83.788		78.717	82.848	
R.			83	83.788		78.717	82.848	
R_y R_z			33	72,890		51.561	72.890	

^a Reference 32. ^b Reference 45. ^c Reference 46. ^d Calculated by using the liquid F matrix at T = 153 K. ^e Corrected for the Fermi resonance.

the F matrix of the gas phase and then introducing internal-external interaction elements and modification of internal force constants as required. The final F matrix for the liquid is given in Tables VI and VII. This F matrix best reproduces the observed frequencies of liquid methyl fluorides and the VPIE data among all the F matrices that were tested. Although the final F matrix is not unique, we believe there is little, if any, room for improvement.

The temperature-dependent force constants shown in Table VII were formulated to reproduce a set of rotational frequencies, $\nu_{R_x} = \nu_{R_y}$ observed in the far-IR region⁴⁶ at six temperatures, determining f_{R_x} (= f_{R_y}), and to yield acceptable agreement between the observed VPIE data and those calculated from the resulting **F** matrix. The rotational force constants determined in order to reproduce the experimental frequencies⁴⁶ at T=210,200,180,165,153, and 140 K were fitted by least-squares to the functional form

$$f_{ij} = A(T - 153)^2 + B(T - 153) + C$$
 (8)

where A, B, and C are adjustable parameters. The temperature of 153 K was chosen as the reference temperature for this purpose because the liquid frequency data of Chao and Eggers³² were obtained at this temperature. The value of $f_{\rm R_z}$ was somewhat arbitrarily set equal to one-eighth of those of $f_{\rm R_z}$ and $f_{\rm R_z}$.

The most difficult problem we encountered was that of reproduction of the VPIE data and, in particular, the steep slope of the D/H effect (cf. Figure 2). As Figures 4 and 5 illustrate, any temperature-independent liquid F matrix we tried yielded a plot which is too flat for the D/H effect while producing a plot which is too steep for the ¹³C/¹²C effect. Variations of the translational force constants which yield the lattice frequencies within reason, e.g., ≤100 cm⁻¹, did not significantly change the slope of the D/H VPIE plot. In the absence of experimental data, the large values of $f_{\rm T}$ of Table VII were chosen arbitrarily, but they yield frequencies of reasonable value. The magnitude of f_{T} will be later justified in terms of an intermolecular interaction of a quasi-hydrogen-bond type. The value of f_{T_z} obtained here for the condensed phase at these cryogenic temperatures is not unreasonable in comparison with the magnitude for the force constant obtained from the second virial coefficient⁴⁷ for the gas phase at temperatures between 298 and 423 K. The latter is about one-tenth the magnitude of our f_{T_z} and corresponds to an interaction of a pair of molecules at elevated temperatures. Thus, in order to reproduce the VPIE data, the introduction of the

Figure 4. Contributions of individual normal modes and external motions to $T \ln f_{\rm c}/f_{\rm g}$ for ¹³C/¹²C VPIE: All calculated contributions were obtained by using the liquid **F** matrix at 153 K.

termperature dependence in the rotational force constants, and some internal-external interaction constants, was found essential.

It can be shown for the D/H VPIE plot that (i) the most significant contribution to the steep slope is provided by the temperature dependencies of $f_{\alpha T}$, and $f_{\beta T}$, through their effects on the CH_3 symmetric deformation (ν_2) mode, and (ii) the temperature dependence of f_{DT_z} has a significant effect on the C-F stretching (v₃) mode but which is counteracted by the effect on ν_2 . For the $^{13}\text{C}/^{12}\text{C}$ VPIE the change comes from the temperature dependence of f_{DT_z} , through its effect on ν_3 , and those of $f_{\alpha T_z}$ and $f_{\beta T_z}$ through their effects on ν_2 . The temperature-dependent interaction force constants listed in Table VII were obtained by using the procedures similar to that used for obtaining the rotational force constants. The only difference in the procedure is the type of experimental, temperature-dependent, data fitted to: Here, the data are those of the VPIE.

The choice of f_{T_z} has profound effects on the optimum magnitudes of $f_{D\mathrm{T}_z}$, $f_{\alpha\mathrm{T}_z}$, and $f_{\beta\mathrm{T}_z}$. For instance, a change in f_{T_z} from 0.3 to 0.2 mdyn Å⁻¹ makes a 40% change in $f_{D\mathrm{T}_z}$ and a few percent change in $f_{\alpha\mathrm{T}_z}$ (=- $f_{\beta\mathrm{T}_z}$) necessary to reproduce all experimental data. However, the conclusions of the preceding paragraph are generally valid at all values of f_{T_z} tested in the range 0.1 $\leq f_{\mathrm{T}_z} \leq$ 0.5 mdyn Å⁻¹.

Figure 5. Contributions of individual normal modes and external motions to $T \ln f_{\rm c}/f_{\rm g}$ for D/H VPIE: All calculated contributions were obtained by using the liquid **F** matrix at 153 K.

The solid lines in Figures 1 and 2 have been computed by using the ${\bf F}$ matrices of Tables III, VI, and VII. The agreement between experimental and calculated results is excellent. In Table VIII the observed internal and external frequencies of liquid molecules are compared with the frequencies calculated by using the ${\bf F}$ matrix of Tables VI and VII at $T=153~{\rm K}$, the temperature at which Chao and Eggers' data were obtained.

The effect of f_{DT_2} on the carbon isotope effect is most significant simply because this interaction directly influences the motion of the isotopically substituted (carbon) atoms. In the ν_2 vibration the carbon and three hydrogen atoms move symmetrically, which in fact explains the dominance of the temperature dependence of this mode in both isotope effects. In contrast, all internal–external interactions involving the external modes other than T_2 , i.e., T_x , T_y , R_x , R_y , and R_z , and perpendicular internal modes were found ineffective. We have been convinced

that the interactions involving T_z are the only ones with which the present VPIE data can be reproduced throughout our experimental temperature range. This implies that there is a definite directional intermolecular interaction in liquid methyl fluoride.

The existence of a directional intermolecular interaction among methyl fluoride molecules is supported by recent ab initio MO calculations on methyl fluoride clusters²⁴ using the Gaussian-70 algorithm with the STO-3G minimal basis set. It has been found from the calculations that the major cause of stability of methyl fluoride clusters is the Coulombic attraction between hydrogen and fluorine atoms belonging to separate molecules, which is best characterized as a weak or quasi-hydrogen bond: The most stable intermolecular geometry is practically independent of cluster sizes, i.e., the C-H···F angle of 180°, the H···F distance of 2.1 Å, and the $H \cdot \cdot \cdot F - C$ angle slightly greater than 120°. In addition, the stabilization energy obtained by such an interaction is small and practically independent of cluster sizes, i.e., about 0.83 kcal per mole of H...F interaction, as long as the geometric restrictions stated above are observed. If one regards liquid methyl fluoride as a huge cluster of molecules and if one assumes that every CH3F is coordinated by six nearest neighbors as in crystalline methyl chloride,48 then the representative molecule and its external force field for the purpose of the simple cell model would still maintain the $C_{3\nu}$ symmetry.²⁴ This picture is consistent with the present result that the interactions of the translation in the direction of the symmetry axis with the internal coordinates, D, α , and β , satisfy the same symmetry.

Acknowledgment. This research was supported by the Office of Basic Energy Sciences, U.S. Department of Energy, under Contract No. DE-AC02-80ER10612. We gratefully acknowledge use of the computer time at the Computer Center of the State University of New York at Stony Brook.

Registry No. 13 C, 14762-74-4; D₂, 7782-39-0; methyl fluoride, 593-53-3.

Supplementary Material Available: G matrices for gaseous and liquid ¹²CH₃F, ¹³CD₃F, and ¹³CH₃F (7 pages). Ordering information is given on any current masthead page.

⁽⁴⁸⁾ R. D. Burbank, J. Am. Chem. Soc., 75, 1211 (1953).