Segundo parcial

- **1-** Muestre que en dos dimensiones, el calor específico $c_v(N,T)$ de un gas de fermiones es idéntico al de un gas de bosones. Interprete dicho resultado.
- **2-** Describa el modelo de Debye, y compárelo con el modelo de Einstein de un sólido cristalino. Detalle los límites de alta y baja temperatura.
- **3-** Calcule la entropía de un sistema de bosones bajo la condición $T_c < T$, exprese dicho resultado en función de N_0 y N_e , justifique su resultado.
 - **a-** Repita el cálculo para un sistema de fermiones en el límite $T \to 0$, compare con el caso anterior.
- **4-** En el epitafio de Stephen Hawking figura la fórmula de su mayor logro científico, la entropía de un agujero negro:

$$S = \frac{1}{4} \frac{c^3}{\hbar G} A$$

- a- Calcule la temperatura.
- b- ¿La entropía crece o decrece cuando dos agujeros negros colapsan?
- c- Asuma que un agujero negro irradia como un cuerpo negro, calcule el tiempo de vida del mismo.

Ayuda: considere una masa $m = 10^{30} kg$.

- **5-** El record Guinness de temperatura (5,5 trillones de grados centígrados), lo ostenta desde 2012 el acelerador LHC. Dicha temperatura se obtuvo mientras se preparaban una sopa de quarks y gluones.
 - a- ¿Cómo se puede medir dicha temperatura?
 - **b-** Interprete la figura donde se presentan los resultados utilizados para medirla.

- **6-** Considere que la masa del Sol es $2x10^{23} grs$. estime el número de electrones en el Sol. Asuma que el Sol es mayormente formado por hidrógeno.
 - a- Considere una estrella enana blanca con una masa equivalente al Sol, contenida en un radio $2x10^9cm$. Calcule la energía de Fermi de los electrones.
 - **b-** Si la temperatura de la enana blanca es $10^7 K$ discuta cuál es la fracción de electrones y nucleones degenerados.
 - **c-** Si ahora los electrones se encuentran contenidos en un pulsar (r = 10km.) calcule el orden de magnitud de la energía de Fermi.