Deep Learning Lab Assignment 2

DUE DATE: NOT. 6, 2020

OBJECT OF THE ASSIGNMENT:

To understand how the logistic regression learns the weight and bias values.

PROBLEM:

Implement the algorithm for logistic regression.

INPUT OF THE PROBLEM:

Training examples/ testing examples.

OUTPUT OF THE PROBLEM:

- (a) Display the weight and bias values of a proper decision boundary if the logistic regression converges. Otherwise, you need to display the maximum number of epochs.
- (b) Predict the class for each testing example if testing examples are given.
- (c) Plot the final decision line and given training/testing examples in one figure.

TESTING CASES:

(1) Find a decision boundary for the AND function if the following training examples are given:

x_1	x_2	у
0	0	0
0	1	0
1	0	0
1	1	1

Where $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ is an input vector, and y is the corresponding target.

(2) Repeat testing case (1) for OR function if the following training examples are given:

x_1	x_2	у
0	0	0
0	1	1
1	0	1
1	1	1

(3) Repeat testing case (1) for XOR function if the following training examples are given:

x_1	x_2	у
0	0	0
0	1	1
1	0	1
1	1	0

(4) Consider the following ten training examples. The input attributes are height (x_1) and weight (x_2) , and the target classes are children (target 0) and adults (target 1).

x_1	x_2	y
170	80	1
90	15	0
130	30	0
165	55	1
150	45	1
120	40	0
110	35	0
180	70	1
175	65	1
160	60	1

Apply the logistic regression to find a decision boundary and predict the class labels of the following testing examples:

x_1	x_2
170	60
85	15
145	45