Липецкий государственный технический университет

Факультет автоматизации и информатики

Кафедра автоматизированных систем управления

ЛАБОРАТОРНАЯ РАБОТА №2

по дисциплине

«Прикладные интеллектуальные системы и экспертные системы»

Студент Мамедов Р. В.

Группа М-ИАП-23-1

Руководитель Кургасов В. В.

доцент, канд. пед. наук

Цель работы

Получить практические навыки решения задачи бинарной классификации данных в среде Jupiter Notebook. Научиться загружать данные, обучать классификаторы и проводить классификацию. Научиться оценивать точность полученных моделей.

Задание кафедры

- 1) В среде Jupiter Notebook создать новый ноутбук (Notebook)
- 2) Импортировать необходимые для работы библиотеки и модули
- 3) Загрузить данные в соответствие с вариантом
- 4) Вывести первые 15 элементов выборки (координаты точек и метки класса)
- 5) Отобразить на графике сгенерированную выборку. Объекты разных классов должны иметь разные цвета.
- 6) Разбить данные на обучающую (train) и тестовую (test) выборки в пропорции 75% 25% соответственно.
- 7) Отобразить на графике обучающую и тестовую выборки. Объекты разных классов должны иметь разные цвета.
- 8) Реализовать модели классификаторов, обучить их на обучающем множестве. Применить модели на тестовой выборке, вывести результаты классификации:
 - Истинные и предсказанные метки классов
 - Матрицу ошибок (confusion matrix)
 - Значения полноты, точности, f1-меры и аккуратности
 - Значение площади под кривой ошибок (AUC ROC)
- Отобразить на графике область принятия решений по каждому классу В качестве методов классификации использовать:
 - а) Метод к-ближайших соседей (n_neighbors = $\{1, 3, 5, 9\}$)
 - b) Наивный байесовский метод
 - c) Случайный лес (n_estimators = $\{5, 10, 15, 20, 50\}$)
- 9) По каждому пункту работы занести в отчет программный код и результат вывода.
- 10) По результатам п.8 занести в отчет таблицу с результатами классификации всеми методами и выводы о наиболее подходящем методе классификации ваших данных.

11) Изучить, как изменится качество классификации, если на тестовую часть выделить 10% выборки, 35% выборки. Для этого повторить п.п. 6-10.

Ход работы

На рисунке 1 представлены импортируемые необходимые библиотеки и модули для начальной работы программы. Остальные будут добавляться по мере выполнения работы.

```
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import make_classification
import numpy as np
```

Загружаем данные в соответствие с вариантом (вариант 12) и выводим первые 15 элементов выборки (рисунки 2-3).

‡	first ‡	second ‡	class :
0	-2.524672	5.509991	0
1	-13.433619	-1.698099	1
2	-3.429146	0.204845	1
3	1.869207	3.301294	0
4	-11.681285	-6.357410	1
5	-11.214032	4.703204	1
6	4.264361	9.229041	0
7	-4.744878	-0.153989	1
8	2.050991	-1.903319	0
9	4.388322	1.433953	0
10	1.431567	1.463239	0
11	2.677893	0.997666	0
12	-11.369388	-4.656133	1
13	5.634561	6.802091	0
14	4.425509	-2.606092	0

Рисунок 1 — Первые 15 элементов выборки Отобразим на графике сгенерированную выборку (рисунок 2).

Рисунок 2 – Сгенерированная выборка

Разобьем данные на обучающую и тестовую выборки.

```
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(ds[0], ds[1])
```

Отобразим на графике обучающую выборку (рисунок 3).

```
train_df = pd.DataFrame(x_train, columns=['first', 'second'])
train_df['res'] = y_train
train_df.plot.scatter(x='first', y='second', c='res', colormap='viridis')
```


Рисунок 3— Обучающая выборка (код и график)

Отобразим на графике тестовую выборку (рисунок 4).

```
test_df = pd.DataFrame(x_test, columns=['first', 'second'])
test_df['res'] = y_test
test_df.plot.scatter(x='first', y='second', c='res', colormap='viridis')
                                                                                   - 1.0
             0.75
             0.50
                                                                                   - 0.8
                                                    •
             0.25
                                                                                   - 0.6
             0.00
                                   •
         second
            -0.25
                                                                                    0.4
            -0.50
                                                                                    0.2
            -0.75
            -1.00
                                                                                    0.0
                  -2.0
                         -1.5
                                -1.0
                                        -0.5
                                                0.0
                                                       0.5
                                                               1.0
                                                                      1.5
                                              first
```

Рисунок 4 – тестовая выборка

Функция для вывода результатов классификации:

```
def show_statistic(clf, x_test, y_test):
    clf.fit(x_train, y_train)
    print(f"y_true: {y_test}")
    y_pred = clf.predict(x_test)
    print(f"y_pred: {y_pred}")
    cm = confusion_matrix(y_test, y_pred, labels=clf.classes_)
    disp = ConfusionMatrixDisplay(confusion_matrix=cm,

display_labels=clf.classes_)
    disp.plot()
    print(classification_report(y_test, y_pred, target_names=['first', 'second']))
    print("area under curve: {:.2f}".format(roc_auc_score(y_test, y_pred)))
    DecisionBoundaryDisplay.from_estimator(clf, x_test)
```

Напишем функцию, реализующую метод k-ближних соседей с принимаемыми параметрами.

```
def test_KNeighthboursClassifier_hyper(hyperparams):
    for param in hyperparams:
        print(f"param = {param}")
        clf = KNeighborsClassifier(n_neighbors=param)
```

```
show_statistic(clf, x_test, y_test)
test_KNeighthboursClassifier_hyper([1, 3, 5, 9])
```

Выполним данную функцию с параметрами n_neighbors = 1, 3, 5 и 9 и выведем результаты.

```
param = 1
Prediction and test:
prediction: [0 0 1 1 0 0 1 1 0 1 1 1 1 0 0 1 0 0 1 1 0 0 1 0]
y_test: [0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 1 0 0 1 1 0 0 0 1 0]
             precision
                           recall f1-score
                                              support
                  1.00
                                       0.93
                                                   15
      first
                             0.87
                   0.83
                             1.00
                                       0.91
      second
                                                   10
                                       0.92
                                                   25
   accuracy
   macro avg
                   0.92
                             0.93
                                       0.92
                                                   25
weighted avg
                   0.93
                             0.92
                                       0.92
                                                   25
AUC ROC: 0.93
```

Рисунок 5 – Статистика по методу k-ближних соседей (n_neighbors = 1)

Рисунок 6 – Матрица ошибок по методу k-ближних соседей (n_neighbors = 1)

Рисунок 7 – Области принятия решений (метод k-ближних соседей (n_neighbors = 1))

Проведём классификацию наивным байесовским методом с параметрами по умолчанию. Код представлен на рисунке 22.

```
from sklearn.naive_bayes import GaussianNB

clf = GaussianNB()
 clf.fit(x_train, y_train)
 show_statistic(clf, x_test, y_test)
```

y_true:	[0	0	1	0	1	1	0	1	1	1	0	0	0	1	1	1	1	0	0	1	0	1	0	0	1]
y_pred:	[0	0	0	0	1	1	0	1	0	1	0	0	0	1	1	1	1	0	0	1	0	0	0	0	1]
			ı	ore	eci	isi	Lor	1		re	ca	11	L	fí	1-9	sco	ore	9	5	sup	р	ort	t		
f	ir	st				Θ.	86)			1.	.00)			Θ.	. 89	9				12	2		
se	100	nd				1.	.00	9			Θ.	77	7			Θ.	87	7				13	3		
accu	ıra	су														Θ.	.88	3				25	5		
macro	a	vg				Θ.	96	9			Θ.	. 88	3			Θ.	. 88	3				25	5		
weighted	l a	vg				Θ.	96	9			Θ.	. 88	3			Θ.	. 88	3				25	5		

area under curve: 0.88

Рисунок 8 – Статистика по наивному байесовскому методу

Рисунок 9 – Матрица ошибок по наивному байесовскому методу

Рисунок 10 – Области принятия решения по наивному байесовскому методу

Проведём классификацию методом случайного леса поочередно используя параметр n_estimators = 5, 10, 15, 20, 50. Данная функция на языке python имеет следующий вид:

```
from sklearn.ensemble import RandomForestClassifier

def test_RandomForestClassifier_hyper(hyperparams):
    for param in hyperparams:
        print(f"param = {param}")
        clf = RandomForestClassifier(n_estimators=param)
        clf.fit(x_train, y_train)
        show_statistic(clf, x_test, y_test)
```

Результаты работы представлены на рисунках 11-13.

```
param = 5
y_true: [0 0 1 0 1 1 0 1 1 1 0 0 0 1 1 1 1 0 0 1 0 1 0 1 0 1]
y_pred: [0 0 0 0 1 1 0 1 0 1 0 0 0 1 1 1 1 0 0 1 0 0 0 1]
             precision recall f1-score
                  0.80
                            1.00
                                      0.89
                                                 12
      first
     second
                  1.00
                            0.77
                                      0.87
                                                 13
                                      0.88
   accuracy
                                                 25
  macro avg
                  0.90
                            0.88
                                      0.88
                                                 25
weighted avg
                            0.88
                                      0.88
                  0.90
                                                 25
```

area under curve: 0.88

Рисунок 11 -Статистика по методу случайного леса (n_estimators = 5)

Рисунок 12 — Матрица ошибок по методу случайного леса (n_estimators = 5)

Рисунок 13 – Области принятия решений по методу случайного леса (n_estimators = 5)

По итогам классификации при размере тестововой выборки 25% лучшие результаты показал метод случайного леса (n_estimators = 5,15,20,50) и метод k-ближних соседей (n_neighbors = 3,5,9). Увеличение параметров в этих методах не ведёт к улучшению результатов, а в случае с методом случайного леса вызывает ухудшение классификации. Увеличение тестовой выборки особо не ведёт к улучшению показателей (кроме наивного байесовского). Заполним сводную таблицу (таблица 1) для каждого метода и размера тестовой выборки 10%, 25% и 35%.

Таблица 1 — Сводная таблица

Метод	Размер	тестовой	Результат
	выборки		
k-ближних	10 %		Confusion matrix:
			[60]
			[04]
			Accuracy score: 0.91
			AUC ROC:0,92
Наивный байесовский			Confusion matrix:
			[60]
			[0 4]
			Accuracy score: 0.94
			AUC ROC: 0.95
Рандомный лес			Confusion matrix:
			[60]
			[04]
			Accuracy score: 0.94
			AUC ROC: 0.95
k-ближних	25%		Confusion matrix:
			[111]
			[14 9]
			Accuracy score: 0,91
			AUC ROC:0,92
Наивный байесовский			Confusion matrix:
			[12 0]
			[3 10]
			Accuracy score: 0,94
			AUC ROC: 0,95
Рандомный лес			Confusion matrix:
			[12 0]
			[3 10]
			Accuracy score: 0,94
			AUC ROC: 0,95

Окончание таблицы 1

Метод	Размер	тестовой	Результат
	выборки		
k-ближних	35%		Confusion matrix:
			[16 2]
			[0 17]
			Accuracy score: 0,94
			AUC ROC:0,94
Наивный байесовский			Confusion matrix:
			[16 2]
			[0 17]
			Accuracy score: 0,94
			AUC ROC: 0,94
Рандомный лес			Confusion matrix:
			[16 2]
			[0 17]
			Accuracy score: 0,94
			AUC ROC: 0,94

Вывод

Мы получили практические навыки решения задачи бинарной классификации данных.

Приложение А (рекомендованное)

Исходный код

```
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.datasets import make_blobs
ds = make_blobs(random_state=28, centers=2, cluster_std=4.5,
shuffle=1)
df = pd.DataFrame(ds[0], columns=['first', 'second'])
df['class'] = ds[1]
df.head(15)
df.plot.scatter(x='first', y='second', c='class',
colormap='viridis')
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(ds[0],
ds[1]
train_df = pd.DataFrame(x_train, columns=['first', 'second'])
train_df['class'] = y_train
train_df.plot.scatter(x='first', y='second', c='class',
colormap='viridis')
test_df = pd.DataFrame(x_test, columns=['first', 'second'])
test_df['class'] = y_test
test_df.plot.scatter(x='first', y='second', c='class',
colormap='viridis')
from sklearn.metrics import confusion_matrix,
ConfusionMatrixDisplay, classification_report, roc_auc_score
from sklearn.inspection import DecisionBoundaryDisplay
def show_statistic(knn, x_test, y_test):
    knn.fit(x_train, y_train)
    prediction = knn.predict(x_test)
    print('Prediction and test: ')
```

```
print(f"prediction: {prediction}")
    print(f"y_test: {y_test}")
    cm = confusion_matrix(y_test, prediction,
labels=knn.classes_)
    disp = ConfusionMatrixDisplay(confusion_matrix=cm,
display_labels=knn.classes_)
    disp.plot()
    print(classification_report(y_test, prediction,
target_names=['first', 'second']))
    print("AUC ROC: {:.2f}".format(roc_auc_score(y_test,
prediction)))
    disp = DecisionBoundaryDisplay.from_estimator(knn, ds[0],
response_method="predict")
    disp.ax_.scatter(ds[0][:,0], ds[0][:,1], c=ds[1],
edgecolor="k")
    plt.show()
from sklearn.neighbors import KNeighborsClassifier
def test_KNeighthboursClassifier(neighbors_params):
    for param in neighbors_params:
        print(f"param = {param}")
        clf = KNeighborsClassifier(n_neighbors=param)
        show_statistic(clf, x_test, y_test)
test_KNeighthboursClassifier([1, 3, 5, 9])
from sklearn.naive_bayes import GaussianNB
knn = GaussianNB()
knn.fit(x_train, y_train)
show_statistic(knn, x_test, y_test)
from sklearn.ensemble import RandomForestClassifier
def test_RandomForestClassifier(estimators_params):
    for param in estimators_params:
        print(f"param = {param}")
        clf = RandomForestClassifier(n_estimators=param)
```

```
clf.fit(x_train, y_train)
        show_statistic(clf, x_test, y_test)
test_RandomForestClassifier([5, 10, 15, 20, 50])
x_train, x_test, y_train, y_test = train_test_split(ds[0],
ds[1], test_size=0.1)
train_df = pd.DataFrame(x_train, columns=['first', 'second'])
train_df['class'] = y_train
train_df.plot.scatter(x='first', y='second', c='class',
colormap='viridis')
test_df = pd.DataFrame(x_test, columns=['first', 'second'])
test_df['class'] = y_test
test_df.plot.scatter(x='first', y='second', c='class',
colormap='viridis')
test_KNeighthboursClassifier([1, 3, 5, 9])
knn = GaussianNB()
knn.fit(x_train, y_train)
show_statistic(knn, x_test, y_test)
test_RandomForestClassifier([5, 10, 15, 20, 50])
x_train, x_test, y_train, y_test = train_test_split(ds[0],
ds[1], test_size=0.35)
train_df = pd.DataFrame(x_train, columns=['first', 'second'])
train_df['class'] = y_train
train_df.plot.scatter(x='first', y='second', c='class',
colormap='viridis')
test_df = pd.DataFrame(x_test, columns=['first', 'second'])
test_df['class'] = y_test
test_df.plot.scatter(x='first', y='second', c='class',
colormap='viridis')
```

```
test_KNeighthboursClassifier([1, 3, 5, 9])
knn = GaussianNB()
knn.fit(x_train, y_train)
show_statistic(knn, x_test, y_test)

test_RandomForestClassifier([5, 10, 15, 20, 50])
```