Matrices semblables

Exercice 1 [00721] [Correction] Soit $A \in \mathcal{M}_3(\mathbb{R})$ vérifiant $A^2 = 0$ et $A \neq 0$. Établir que A est semblable à la matrice

$$B = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Exercice 2 [00722] [Correction] Soit $A \in \mathcal{M}_n(\mathbb{K})$ vérifiant

$$A^{n-1} \neq O_n$$
 et $A^n = O_n$.

Établir que A est semblable à la matrice

$$B = \begin{pmatrix} 0 & 1 & & (0) \\ & \ddots & & \ddots \\ & & \ddots & 1 \\ (0) & & & 0 \end{pmatrix}.$$

Exercice 3 [00724] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice telle que $A^2 = 0$ et de rang r > 0. Montrer que A est semblable à

$$B = \begin{pmatrix} 0 & I_r \\ 0 & 0 \end{pmatrix}.$$

Exercice 4 [00726] [Correction] Soit $M \in \mathcal{M}_4(\mathbb{R})$ telle que $M^2 + I = 0$. Montrer que M est semblable à la matrice

$$\begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

Exercice 5 [03136] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice de rang 1.

- (a) Montrer que A est semblable à une matrice dont les n-1 premières colonnes sont nulles.
- (b) En déduire

$$A^{2} = \operatorname{tr}(A).A \text{ et } \det(I_{n} + A) = 1 + \operatorname{tr} A.$$

Exercice 6 [02382] [Correction]

Quelles sont les matrices carrées réelles d'ordre n qui commutent avec diag(1, 2, ..., n) et lui sont semblables?

Exercice 7 [03032] [Correction]

Soit $f: \mathcal{M}_n(\mathbb{C}) \to \mathbb{C}$ non constante telle que :

$$\forall (A, B) \in \mathcal{M}_n(\mathbb{C})^2, f(AB) = f(A)f(B).$$

Pour $A \in \mathcal{M}_n(\mathbb{C})$, prouver l'équivalence :

A inversible
$$\iff f(A) \neq 0$$
.

Exercice 8 [01322] [Correction]

Soit $A \in \mathcal{M}_3(\mathbb{R})$ non nulle vérifiant $A^2 = O_3$.

Déterminer la dimension de l'espace

$$\mathcal{C} = \{ M \in \mathcal{M}_3(\mathbb{R}) \mid AM - MA = O_3 \}.$$

Exercice 9 [03778] [Correction]

Les matrices suivantes sont-elles semblables?

$$A = \begin{pmatrix} 3 & 6 & -5 & -2 \\ -1 & -6 & 5 & -2 \\ -1 & -10 & 8 & -3 \\ 0 & -3 & 2 & 0 \end{pmatrix} \text{ et } B = \begin{pmatrix} 1 & 2 & 6 & 21 \\ 0 & 2 & 2 & 5 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & 0 & 5 \end{pmatrix}.$$

Exercice 10 [02541] [Correction]

Soit G une partie de $\mathcal{M}_n(\mathbb{R})$ non réduite à la matrice nulle. On suppose que (G, \times) est un groupe. Montrer qu'il existe $r \in \mathbb{N}^*$ tel que le groupe (G, \times) soit isomorphe à un sous-groupe de $(GL_r(\mathbb{R}), \times)$.

Exercice 11 [04953] [Correction]

Soit $A \in \mathcal{M}_2(\mathbb{C})$. Les matrices A et tA sont-elles semblables?

Exercice 12 [04966] [Correction]

Soit $A \in \mathcal{M}_3(\mathbb{C})$. Montrer que A est semblable à -A si, et seulement si, $\operatorname{tr}(A) = \det(A) = 0$.

Corrections

Exercice 1 : [énoncé]

Soient E un \mathbb{R} -espace vectoriel de dimension 3 muni d'une base \mathcal{B} et u l'endomorphisme de E représenté par la matrice A dans \mathcal{B} . On a $u^2 = 0$ et $u \neq 0$. Notons que cela entraı̂ne dim Im u = 1 et dim Ker u = 2.

Cherchons une base $\mathcal{B}' = (\varepsilon_1, \varepsilon_2, \varepsilon_3)$ telle que $\operatorname{Mat}_{\mathcal{B}'}(u) = B$. Après analyse du problème : Considérons $\varepsilon_1 \notin \operatorname{Ker}(u)$ et $\varepsilon_2 = u(\varepsilon_1)$. ε_2 est un vecteur non nul de $\operatorname{Ker} u$ qui peut être complétée en une base $(\varepsilon_2, \varepsilon_3)$ de $\operatorname{Ker} u$. Formons $\mathcal{B}' = (\varepsilon_1, \varepsilon_2, \varepsilon_3)$. Si $\lambda_1 \varepsilon_1 + \lambda_2 \varepsilon_2 + \lambda_3 \varepsilon_3 = 0$ alors en appliquant $u, \lambda_1 u(\varepsilon_1) = 0$ donc $\lambda_1 = 0$ puis $\lambda_2 \varepsilon_2 + \lambda_3 \varepsilon_3 = 0$ entraîne $\lambda_2 = \lambda_3 = 0$ puisque $(\varepsilon_2, \varepsilon_3)$ est libre. Finalement la famille \mathcal{B}' est libre et c'est donc bien une base de E. La matrice de u dans cette base est bien la matrice B. On peut conclure.

Exercice 2 : [énoncé]

Soient E un \mathbb{K} -espace vectoriel de dimension n muni d'une base \mathcal{B} et $f \in \mathcal{L}(E)$ de matrice A dans \mathcal{B} . On vérifie $f^{n-1} \neq 0$ et $f^n = 0$.

Soit $x \notin \text{Ker}(f^{n-1})$. Un tel x existe puisque $f^{n-1} \neq 0$.

Considérons la famille $\mathcal{B}' = (f^{n-1}(x), \dots, f(x), x)$.

Supposons

$$\lambda_{n-1}f^{n-1}(x) + \dots + \lambda_1f(x) + \lambda_0x = 0.$$

En y appliquant successivement f^{n-1}, \ldots, f et Id_E on obtient

 $\lambda_0 = 0, \dots, \lambda_{n-2} = 0$ puis $\lambda_{n-1} = 0$ car $f^{n-1}(x) \neq 0$.

 \mathcal{B}' est une famille libre formée de $n=\dim E$ vecteurs, c'est donc une base de E. La matrice de f dans la base \mathcal{B}' est égale à B. Les matrices A et B sont donc semblables.

Exercice 3: [énoncé]

Soient E un \mathbb{K} -espace vectoriel de dimension n muni d'une base \mathcal{B} et $f \in \mathcal{L}(E)$ de matrice A dans \mathcal{B} .

On observe $r = \operatorname{rg} f$, $f \neq 0$ et $f^2 = 0$ de sorte que $\operatorname{Im} f \subset \operatorname{Ker} f$. Soit (e_1, \ldots, e_r) une base de $\operatorname{Im} f$ complétée en (e_1, \ldots, e_{n-r}) base de $\operatorname{Ker} f$. Pour tout $i \in \{1, \ldots, r\}$, il existe e_{n-r+i} vecteur de E tel que $f(e_{n-r+i}) = e_i$. Montrons que (e_1, \ldots, e_n) est libre. Supposons

$$\lambda_1 e_1 + \dots + \lambda_r e_r + \lambda_{r+1} e_{r+1} + \dots + \lambda_{n-r} e_{n-r} + \lambda_{n-r+1} e_{n-r+1} + \dots + \lambda_n e_n = 0 \quad (1).$$

En appliquant f à la relation (1), on obtient

$$\lambda_{n-r+1}e_1 + \dots + \lambda_n e_r = 0 \tag{2}$$

et donc $\lambda_{n-r+1} = \ldots = \lambda_n = 0$ car la famille (e_1, \ldots, e_r) libre. La relation (1) devient

$$\lambda_1 e_1 + \dots + \lambda_r e_r + \lambda_{r+1} e_{r+1} + \dots + \lambda_{n-r} e_{n-r} = 0$$
 (3)

et donc $\lambda_1 = \ldots = \lambda_{n-r} = 0$ car la famille (e_1, \ldots, e_{n-r}) libre.

La famille (e_1, \ldots, e_n) est libre et formée de $n = \dim E$ vecteurs de E, c'est donc une base de E. La matrice de f dans celle-ci est égale à B et on peut conclure que les matrices A et B sont semblables.

Exercice 4: [énoncé]

Soit $f \in \mathcal{L}(\mathbb{R}^4)$ l'endomorphisme canoniquement associé à la matrice M.

Analyse: Cherchons une base (e_1, e_2, e_3, e_4) telle que:

$$f(e_1) = e_2, f(e_2) = -e_1, f(e_3) = e_4 \text{ et } f(e_4) = -e_3.$$

La connaissance de e_1 et e_3 suffit pour former e_2 et e_4 avec les quatre relations voulues.

Synthèse:

Prenons $e_1 \neq 0$, $e_2 = f(e_1)$, $e_3 \notin \text{Vect}(e_1, e_2)$ et $e_4 = f(e_3)$.

Supposons $\lambda_1 e_1 + \lambda_2 e_2 + \lambda_3 e_3 + \lambda_4 e_4 = 0$ i.e. $\lambda_1 e_1 + \lambda_2 f(e_1) + \lambda_3 e_3 + \lambda_4 f(e_3) = 0$ (1).

En appliquant l'endomorphisme $f: \lambda_1 f(e_1) - \lambda_2 e_1 + \lambda_3 f(e_3) - \lambda_4 e_3 = 0$ (2).

 $\lambda_3(1) - \lambda_4(2)$ donne $(\lambda_3\lambda_1 + \lambda_2\lambda_4)e_1 + (\lambda_3\lambda_2 - \lambda_4\lambda_1)f(e_1) + (\lambda_3^2 + \lambda_4^2)e_3 = 0$

Puisque $e_3 \notin \text{Vect}(e_1, e_2)$, on a $\lambda_3^2 + \lambda_4^2 = 0$ d'où $\lambda_3 = \lambda_4 = 0$.

(1) et (2) donne alors $\lambda_1 e_1 + \lambda_2 f(e_1) = 0$ et $\lambda_1 f(e_1) - \lambda_2 e_1 = 0$.

Comme ci-dessus on parvient à $\lambda_1^2 + \lambda_2^2 = 0$ d'où $\lambda_1 = \lambda_2 = 0$.

Finalement (e_1, e_2, e_3, e_4) est une base convenable. On peut conclure que M est semblable à la matrice proposée.

Exercice 5: [énoncé]

(a) Soit f l'endomorphisme de \mathbb{K}^n canoniquement associé à A. On a

$$\operatorname{rg} f = \operatorname{rg} A = 1$$

et donc par la formule du rang

$$\dim \operatorname{Ker} f = n - 1.$$

Si \mathcal{B} est une base adaptée à Ker f, la matrice de f dans cette base a ses n-1 premières colonnes nulles.

(b) On peut écrire $A = PBP^{-1}$ avec P matrice inversible et B une matrice de la forme

$$\begin{pmatrix} 0 & \cdots & 0 & * \\ \vdots & & \vdots & \vdots \\ \vdots & & \vdots & * \\ 0 & \cdots & 0 & \lambda \end{pmatrix}.$$

On a alors

$$\lambda = \operatorname{tr} B = \operatorname{tr} A.$$

Puisque $B^2 = \lambda B$, on a

$$P^{-1}A^2P = \operatorname{tr}(A).P^{-1}AP$$

puis

$$A^2 = \operatorname{tr}(A).A.$$

Puisque $\det(I_n + B) = 1 + \lambda$, on a

$$\det(P^{-1})\det(I_n+A)\det P=1+\operatorname{tr} A$$

puis

$$\det(I_n + A) = 1 + \operatorname{tr} A.$$

Exercice 6: [énoncé]

Posons $D=\operatorname{diag}(1,2,\ldots,n)$. L'étude, coefficient par coefficient, de la relation MD=DM donne que les matrices commutant avec D sont les matrices diagonales. Parmi les matrices diagonales, celles qui sont semblables à D sont celles qui ont les mêmes coefficients diagonaux

Exercice 7: [énoncé]

Commençons par déterminer $f(I_n)$ et $f(O_n)$.

On a $f(I_n) = f(I_n^2) = f(I_n)^2$ donc $f(I_n) = 0$ ou 1.

Si $f(I_n) = 0$ alors pour tout $A \in \mathcal{M}_n(\mathbb{C})$, $f(A) = f(A \times I_n) = f(A) \times f(I_n) = 0$ et donc f est constante ce qui est exclu. Ainsi $f(I_n) = 1$.

Aussi $f(O_n) = f(O_n^2) = f(O_n) \times f(O_n)$ donc $f(O_n) = 0$ ou 1.

Si $f(O_n) = 1$ alors pour tout $A \in \mathcal{M}_n(\mathbb{C})$,

 $f(A) = f(O_n) \times f(A) = f(O_n \times A) = f(O_n) = 1$ et donc f est constante ce qui est exclu. Ainsi $f(O_n) = 0$.

Si A est inversible alors $f(I_n) = f(A \times A^{-1})$ donne $f(A) \times f(A^{-1}) = 1$ et donc $f(A) \neq 0$.

La réciproque est plus délicate.

Supposons A non inversible et posons $r = \operatorname{rg} A$.

La matrice A est équivalente à la matrice

$$J_r = \begin{pmatrix} I_r & O_{r,n-r} \\ O_{n-r,r} & O_{n-r} \end{pmatrix}$$

ce qui permet d'écrire $A=QJ_rP$ avec P,Q inversibles. On a alors $f(A)=f(Q)f(J_r)f(P)$ et il suffit de montrer $f(J_r)=0$ pour conclure. Par permutation des vecteurs de bases, la matrice J_r est semblable à toute matrice diagonale où figure r coefficients 1 et n-r coefficients 0. En positionnant, pertinemment les coefficients 0, on peut former des matrices A_1,\ldots,A_p toutes semblables à J_r vérifiant

$$A_1 \dots A_p = O_n$$
.

On a alors

$$f(A_1)\dots f(A_p)=0.$$

Or il est facile d'établir que si deux matrices sont semblables, la fonction f prend les mêmes valeurs sur celles-ci. Par suite $f(J_r) = f(A_1) = \ldots = f(A_p)$ et ainsi $f(J_r)^p = 0$ puis enfin $f(J_r) = 0$.

Exercice 8 : [énoncé]

On vérifie aisément que \mathcal{C} est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$ car c'est le noyau de l'endomorphisme $M \mapsto AM - MA$.

Puisque $A^2 = O_3$, on a Im $A \subset \text{Ker } A$.

Puisque $A \neq \mathcal{O}_3,$ la formule du rang et l'inclusion précédente montre

$$\operatorname{rg} A = 1 \operatorname{dim} \operatorname{Ker} A = 2.$$

Soient $X_1 \in \text{Im } A$ non nul, X_2 tel que (X_1, X_2) soit base de Ker A et X_3 un antécédent de X_1 . En considérant la matrice de passage P formée des colonnes X_1, X_2, X_3 , on a

$$P^{-1}AP = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = B.$$

En raisonnant par coefficients inconnus, on obtient que les matrices N vérifiant BN=NB sont de la forme

$$N = \begin{pmatrix} a & b & c \\ 0 & b' & c' \\ 0 & 0 & a \end{pmatrix}.$$

Par suite les matrice M vérifiant AM = MB sont celle de la forme

$$M = P \begin{pmatrix} a & b & c \\ 0 & b' & c' \\ 0 & 0 & a \end{pmatrix} P^{-1}.$$

L'espace \mathcal{C} est donc de dimension 5 et l'on en forme une base à l'aide des matrices

$$M_{1} = P \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} P^{-1}, M_{2} = P \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} P^{-1}, M_{3} = P \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} P^{-1}.$$

$$M_{4} = P \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} P^{-1} \text{ et } M_{5} = P \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} P^{-1}.$$

Exercice 9: [énoncé]

 $\operatorname{tr} A \neq \operatorname{tr} B$ dont A et B ne sont pas semblables.

Exercice 10: [énoncé]

Notons E la matrice correspondant à l'élément neutre de (G, \times) . Celle-ci est nécessairement non nulle car sinon la partie G serait réduite à la matrice nulle. Puisque la matrice E est neutre, on a $E^2 = E$ et donc E est la matrice d'une projection. En posant $r = \operatorname{rg} E \in \mathbb{N}^*$, il existe $P \in \operatorname{GL}_n(\mathbb{R})$ telle que

$$E = PJ_rP^{-1}$$
 avec $J_r = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix} \in \mathcal{M}_n(\mathbb{R}).$

Pour toute matrice $M \in \mathcal{M}_n(\mathbb{R})$, on peut écrire par blocs

$$M = P \begin{pmatrix} A & B \\ C & D \end{pmatrix} P^{-1}.$$

L'identité EM = M = ME donne la nullité des blocs B, C et D.

On peut alors introduire l'application $\varphi \colon G \to \mathcal{M}_r(\mathbb{R})$ qui associe à $M \in G$ le bloc A de la description ci-dessus. On vérifie aisément que l'application φ est injective et que

$$\forall M, N \in G, \varphi(MN) = \varphi(M) \times \varphi(N).$$

Enfin, on a aussi $\varphi(E) = I_r$ de sorte qu'on peut affirmer que l'image de φ est un sous-groupe de $(GL_r(\mathbb{R}), \times)$. Le groupe (G, \times) alors isomorphe à ce sous-groupe.

Exercice 11: [énoncé]

Les matrices A et tA possède le même polynôme caractéristique P de degré 2 dont on note λ et μ les racines comptées avec multiplicité.

Cas: $\lambda \neq \mu$. Les matrices A et tA sont toutes deux diagonalisables semblables à diag (λ, μ) et donc semblables entre elles par transitivité.

Cas: $\lambda = \mu$. Si A est diagonalisable, la matrice A est semblable à λI_2 donc égale à λI_2 . Dans cette situation, A est égale à tA . Si A n'est pas diagonalisable, tA ne l'est pas non plus et ces deux matrices sont trigonalisables semblables à des matrices de la forme

$$T_{\alpha} = \begin{pmatrix} \lambda & \alpha \\ 0 & \lambda \end{pmatrix}$$
 et $T_{\beta} = \begin{pmatrix} \lambda & \beta \\ 0 & \lambda \end{pmatrix}$

avec α et β non nuls. Or ces deux dernières matrices sont semblables puisque

$$T_{\alpha} = PT_{\beta}P^{-1}$$
 avec $P = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} \in GL_2(\mathbb{C}).$

De façon générale, on peut montrer qu'une matrice est toujours semblable à sa transposée (mais c'est un résultat difficile).

Exercice 12 : [énoncé]

 (\implies) Si A est semblable à -A, ces deux matrices ont même trace et même déterminant. On en déduit

$$tr(A) = tr(-A) = -tr(A)$$
 donc $tr(A) = 0$

 $_{
m et}$

$$\det(A) = \det(-A) = (-1)^3 \det(A) \quad \text{donc} \quad \det(A) = 0$$

 (\Leftarrow) Supposons tr(A) = det(A) = 0.

La matrice A n'étant pas inversible, 0 en est valeur propre. La trace de A étant nulle, la somme des valeurs propres est nulle. On distingue alors deux cas : $Cas: \operatorname{Sp}(A) \neq \{0\}$. La matrice A possède une valeur propre non nulle λ et donc trois valeurs propres distinctes λ , $-\lambda$ et 0. On en déduit que A est diagonalisable semblable à D

$$D = \begin{pmatrix} \lambda & 0 & 0 \\ 0 & -\lambda & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Or, par échange des deux premiers vecteurs de base, c'est-à-dire par l'intermédiaire de la matrice de passage

$$P = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

la matrice D est semblable à -D et donc A est semblable à -A. $Cas: \operatorname{Sp} A = \{0\}$. La matrice A est semblable à une matrice triangulaire supérieure stricte et vérifie donc $A^3 = \operatorname{O}_3$. Si $A^2 \neq \operatorname{O}_3$, la matrice A est semblable à

$$T = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Cette matrice est semblable à son opposée via renversement des vecteurs de base et passage à l'opposé du vecteur du milieu, c'est-à-dire via la matrice de passage

$$P' = \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

Si $A^2 = O_3$ et si $A \neq O_3$, la matrice A est semblable à

$$T = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

et cette matrice est semblable à son opposé via échange des premier et dernier vecteur de base et passage à l'opposé de l'un deux, c'est-à-dire via la matrice

$$P'' = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

Enfin, si $A = O_3$, la conclusion est immédiate.