Transformações Geométricas

A figura junta apresenta o mostrador de um relógio em 3D. O centro do mostrador encontra-se a uma distância de 5 unidades do eixo YY e a uma altura de 3 unidades. O plano em que se encontra é vertical e faz um ângulo de 20° com o eixo XXL

Das alternativas seguintes, diga qual ou quais correspondem à matriz de transformação a aplicar ao ponteiro quando avança um minuto.

- a)- Ry(-20°).T(5, 3, 0).Rz(-6°).T(-5, -3, 0).Ry(20°)

 b)- Ry(20°).T(5, 3, 0).Rz(-6°).T(-5, -3, 0).Ry(-20°)

 c)- Ry(20°).T(-5, -3, 0).Rz(-6°).T(5, 3, 0).Ry(-20°)

 F ✓
- d)- Ry(-20°).T(0, 3, 0).T(5, 0, 0).Rz(-6°).T(0, -3, 0).T(-5, 0, 0).Ry(20°) V +

Pergunta 2 Correta Pontuou 3,000 de 3,000 № Destacar pergunta

Iluminação Local

A figura junta apresenta uma superfície cilíndrica com eixo central em E. Considere para as alíneas seguintes o modelo de iluminação de Phong, sem qualquer tipo de atenuação. Para ângulos conhecidos, use a tabela anexa de funções trigonométricas.

 $I_a = I_L = 10$ Ka = 0; Kd = Ks = 0.5; Kd = 1

	cos	sen
0₅	1	0
30º	$\sqrt{3}/_{2}$	1/2
45º	$\sqrt{2}/_{2}$	$\sqrt{2}/_{2}$
60º	1/2	$\sqrt{3}/_{2}$
90⁰	0	1

Determine a iluminação observada no ponto Q, considerando as diferentes situações seguintes:

Fonte de Luz	Observador	Valor de I _Q		
А	D	0 \$ 🗸		
С	D	5*√2 \$ ✔		
D	D	10 💠 🗸		
В	С	0 + 🗸		
С	С	2.5 * √2 ♦ ✔		

Pergunta 3 Parcialmente correta Pontuou 1,000 de 3,000 ▼ Retirar destaque

Cálculo de Visibilidade

Responda às questões seguintes com Verdadeiro (V) / Falso (F) / Não sei (NS):

A pré-ordenação dos polígonos em Z é um passo necessário em todos os algoritmos de cálculo de visibilidade.	V	
O passo de back face culling pode aumentar o número de polígonos a testar em algoritmos de cálculo de visibilidade.	F	
Todos os algoritmos de cálculo de visibilidade necessitam de repetir todos os cálculos se o observador alterar a sua posição.	٧	
O algoritmo de Roberts não consegue dividir uma aresta em mais de dois segmentos de recta.	F	
O algoritmo de Atherton & Weiller, baseia-se na divisão e separação de arestas em segmentos de arestas visíveis e não visíveis.	V	
O algoritmo de Warnock aplica subdivisões recursivas a cada objeto da cena.	V	
Uma das desvantagens apontadas ao algoritmo de Z-Buffer é o uso de dois buffers de memória no seu funcionamento.	V	
Back face culling é uma solução possível para o problema de ambiguidade de ordenação (cyclic overlapping polygons) em algoritmos de tipo lista de prioridades.	F	
Cortar/Subdividir polígonos é uma solução possível para o problema de ambiguidade de ordenação (cyclic overlapping polygons) em algoritmos do tipo lista de prioridades.	F	

Ray Tracing

nte do observador, passando através de um pixel A para dentro da cena, de acordo com o algoritmo de Ray-Tracing:

concluir-se que (responda com Verdadeiro (V) / Falso (F) / Não sei (NS)):

1- A cena representada pode ter mais do que 5 objetos		\$	~
2- Existe apenas uma fonte de luz na cena representada	V	ф	×
3- Os nós-folha correspondem a objetos não iluminados	F	¢	~
4- O objeto O3 influencia a iluminação do objeto O5	V	\$	×
5- A cena contém, pelo menos, 2 objetos transparentes	F	\$	×
6- O objeto 4 está mais afastado do observador do que o objeto 2	V	\$	×

Pergunta 5 Correta Pontuou 2,000 de 2,000 🌾 Destacar pergunta

Radiosidade - Fatores de Forma

A figura junta apresenta quatro conjuntos de polígonos, numerados. Cada par de polígonos é paralelo entre si, exceto o último par (7-8). As distâncias entre os centros dos polígonos são "d" ou "2d" consoante os casos.

Ás áreas dos polígonos são as seguintes: A2=A4=A8=a A1=A3=A5=A6=A7=2.a

Atendendo à definição da grandeza Fator de Forma, utilizada em radiosidade, complete as seguintes relações:

1. F12 > **♦ ★** F34

2. F12 < \$ \square F56

3. F12 < **♦ ✓** F21 4. F56 = **♦** ✔ F65

5. F43 > **♦ ✓** F87

Curvas e Superfícies

Considere a sequência de curvas S1-S2-S3-S4 cujos vetores geométricos se representam de seguida, na forma de curva de Bezier e de curva de Hermite.

a) Determine os valores em falta acima, nas duas curvas S3 e S4 representadas na forma de Hermite.

Pergunta 7 Correta Pontuou 3,500 de 3,500 ♥ Destacar pergunta

Modelação de sólidos

As figuras seguintes apresentam três vistas (perspetiva, frente e lado) de um conjunto de três sólidos A, B e C que se intersetam mutuamente.

a) Complete a expressão Booleana que traduz o objeto resultante D:

b) Verifique que o sólido final é válido à luz da fórmula estendida de Euler.

$$V - E + F - H = 2.(C - G)$$

