1. 板量物U= 2x(y+ 32)在点(1,1,1)处治了=或+或+或的方 何多数光为 _____ A.8 B.10 C. 3/6 D. 3/6 TIM= ex+2ex+ex 其为何余弦为 $\cos t = \frac{\ln t}{|\mathcal{T}|} = \frac{1}{\sqrt{6}}, \quad \cos p = \frac{\ln t}{|\mathcal{T}|} = \frac{2}{\sqrt{6}}, \quad \cos r = \frac{1}{\sqrt{6}}$ ax m = zy+222 m = 4, ay m = 2x m=2, ax m=4x2 m=4 1 3 1 1 = 3 word + 34 cosp + 34 cosr = 1 + 1 + 1 = 10 2. 无旋矢量场 成 = Q·x²+g·y³+ Q·z⁴可从用 A 表示 A. 一个标量场的梯度 B. 一个标量场的旋度 C. 一个矢量场的散度 D. 一个矢量场的旋度 3.斯托克斯定理中,天量物产旋度的面积分了。又定·d字等于 A. f. P.ds B. f. F.dr C. f. VF. dr D. f. o F. dr 5. 无限太平面 Z=0的例(Z<0)是理想介质(Er=6),另一例(Z>0)是空气则的电位移矢量 D= Ex(x²-Z²) + Ex(y²-Zyz) + Ex Zxy²,则 Z=0平面上介质侧 D为 C A.D= & 6x2+ Ex 6y2+ Ex 12xy2 おか=はなみをますするまなり C. D= Q. 6x2+ g. 6y2+ g. 2xy2 D. D= g. tx2+ gty2+ g. 2xy2 法何: Dinz=Dznz TITEL SEINT = EXXT > E. DIX = 6E. DIX > DIX = 6DIX Eigt = Ezyt & Diy = DEODZy Dzy = bDiy : B= Px 6(x=x2) + Ex 6(42-242) + Extr 2-001 -> B-

6.位于X=0平面处有一天限大接地多体面, 其右侧入=76平面 内放置有一无限长线电荷, 若该线电荷的电荷线强度为见则其镜 多电荷的电荷线密度为____,位置为____ A. P_{i} , $\chi = -\chi_{0}$ B- P_{i} , $\chi = -\chi_{0}$ C. ZP_{i} , $\chi = -\chi_{0}$ D. $-ZP_{i}$, $\chi = \chi_{0}$ D. 开 = 包 120TL e-az sin(27X109 t-BZ) 均匀电波 8.均匀平面度的表达式产=它105m(wt-kz+本)+或10cos(wt) 8. 均对中国投版成立了 -K&+却则该均距面设的极化为程式为_____ 4. 七份目极化 B. 右旋圆极化 C. 线极化 D. 右旋那有圆根处 越来必 Ex与Ey 初始相位差效 0° 到 80° 园极化: Exm=Eym=Em, 相随相差 ±90° のy-のx=至左旋 文本の, eg. wt=の取./45°的/90°的 SIN(2+4) = cost sin(2-4) = cost cos(=+d) == sind cos(=-d)= sind

	コンスケヤナルはなり、 リンコッタ・コーニトットナリヘア
0	9.电石弦波由媒质 (Er=4, Ur=1) 斜入勇士至空气时,产生全区
0	自动临界的 D A. O.
	和爱子————————————————————————————————————
	$\theta_c = \operatorname{arcsin}(\sqrt{\frac{\epsilon_c}{\epsilon_c}}) = \operatorname{arcsin}(\sqrt{\frac{\epsilon_c}{4}}) = \frac{\epsilon_c}{\epsilon_c}$ $\sin x = \frac{\epsilon_c}{\epsilon_c}$
	The state of the state of the same state of state of state of the stat
0	10.同轴报导的最低模式是
0	A.TErote B.TEo.模 C.TEM模 D.TMITE 高水模 高水模
Ö	高水學
0	地域 大学 中央 中央 中央 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	、静电场外,侧重电区中国的强度大重日之间天然的变势之人 中三一70 、相同不成场中与显然位置与不成成成
0	小静电场中,标量电位 9 与电场强度关量 E 之间关系的数学表达式为 E = - 7 P ,但是 R 兹 物中, 关量 R 兹 位 A 与 R 兹 感 枢 经 下 发 矢量 B 之间的关系的数学表达式为 B = V X A
0	
0	2、对于线性、各间同性的简单媒介来说、静电场中、电场强度等等与电影和关系,但是我
0	使失量与电位极失量之间满足 D= 8E 的东内关系;恒尾磁物中、磁场强度失量与磁感应强度失量之间满足 B=NIF
0	的种的关系;但定电场中,电场强度天量与电流、密度天量之间、海,足
0	了=6官的本构关系
	3.恒灵磁场中, 在两种磁导率均为有限值的媒介分界面上
	3.恒灵磁场中, 在两种磁导率均均有限值的媒介分界面上 3.独场强度失量和磁感区强度失量分别满足已x(用)-H2)=(和它(B-B2)=0的边界条件
0	
0	4.静电场中,断质内部极化电荷体强度及基本面极化的面离密度与极化强度失量之间的关系为 R=-VP、Psp=Pe
0	
0	5.瞬时坡印廷矢量了的定义式是字= EXH,时谓杨阳路 时坡印延矢量了与鸭坡印廷矢量 Sav的关系是
0	財报印延天量 S与 np 极印廷天量 Sav的关系是
	Sav= + 5 dt

6. 时变电磁场中, 十义安培环路是律的积分形式为 负 开·dP= ∫。 (了十二)·ds 7. 任意时变电磁场中, 利源强烈介质内部的电场强度失量所满足的波动方程为 V°已一业至安全 = 0. 对于时增电磁场,情况,该方程的复数量表达形式可以写为 V°已十分以至已 = 0 8. 若已知海水的电子率 0=45/m,相对介电常数 Er=81,则海水对100 GHz 电方兹波的损耗角正切为 450,属于弱导电媒介 (弱/强导电媒介) 6V = 4 100万多多~ 4x18 = 8x10-2 = 450 < 100 9.空气填充矩的液等横截面尺寸为 axb (azb),则该液等的 主模是TEIO模,该模式的截止波长是入c=Za 最低次波 10空气填充的延畅潜振腔尺寸为axbxl且a>1>1>大复空 为重为C,则该消粮腔的最低消散板较率为至√产+产,对面 的模划下[10]模

2、截面为短码的天限金属槽整体接地、槽的宽度和高度分 Q(x)0)= Q(x,b)=0 Plo,y) = Uosin 3to y φ(a,y)=0 (0<y<b) 透解的のはあり=(AutBox)(CotDoy)+ ~(Anchknx+Bnshknx)(Cncoskny+Dnsinkny) 4=0, 0=x=add, 9(x,0)=0 -, φ(x,0)= (AotBoX)·Co+ = (AnchKn)+BnshKn)·Cn = 0 : C; = 0 P(x,y)=(AotBoX)·Doy+ 震(Anchkny+Brankny) Dasinkny 4=b, x0 < x < a & 8, \(\rangle (x, b) = 0 P(3,b) = (Ao+Box). Dob+ & (Ancheny + Bashens). Dasintab =0 :, Do=0, sin knb=0 > Kn= B (N=0,1,2,...) :(ρ(x,y)= = (Anch = x + Bnsh = x). Dnsin = y φ(a,y)= = (An. ch ba+ bn sh b. a) - Dnsin by= D : An Ch arat Bash ba = 0 > An=-Bn. tanh ara · Plany)= = (-Brtanh had ch bx + Brsh ht x) · Drsin by ing(0,4)= 2 (- By tanh Tra). Disingy = Wash By $\therefore -B_n D_n = \begin{cases} 0, m \neq 3 \\ \frac{b}{2} U_0, m = 3 \end{cases}$ $\therefore B_n D_n = \begin{cases} 0, m \neq 3 \\ \frac{b}{2} U_0, m = 3 \end{cases}$: (P(x,y)=[Uoch 31 x - tan 31a sh 5 x] sin 3 xy

3.均与平面派的申场传播幅为已=60对已e-j参+已je-j参2),从空 气中重点入其到 3二0的事体平面上,来 八九射波的加水化方式及相伴及轻功的表达式 2) 反射波的 中场与磁场的表达式并判断其极化形式 引求导体表面的面电流 窓友 1) 2射技为丘旋极化设 用;二方。它x产;二元前已x产;二元(或e-j参-或je-j参) 2) Er = (= (Ex Exmej = + ey j Eyme j = >) 在导体表面 200上、开动= 过空-已过)+过空-已过) 由强势较累条件 ⇒ 了= 一宫×开礼 = 一宫×1官子宫) 二郎十部了 4.已知空气填充的矩形液导截面尺寸为axb=22、86mmx10.16mm 当传播106118的磁波时,求り汲争中能支撑哪些模式的电磁波 更否存在简并模式 如果存在, 请指出. 2地果波导中摄入理想介质(Er=9, Ur=1) 浓争中能支持哪些模煳的电磁波 是否存在简并模式 如果存在, 清整性 c = 3×108 a
1) f=10GHZ=1010HZ时, 空气中入= = 1010=0.03m=30mm 短刑没载止波长入。二 12-30 mm BJ, 2< 2c ⇒ (22.8b)+(10.1b) < 900 a)m=0时, n<0.67], 无传播 b) m=188, N<0.51, XITY TE10. c) m=2 时, 不满足条件 ··波导中仅支持传输 TEI。模式,不存在简并现象

