

Maize Yield Predictions

Results from the 2022 G2F prediction competition

Alencar Xavier^{1,2}, Wesley Barber¹, Cristiano Zimmer¹, Fabiani Rocha¹, Ignacio Trucillo¹, Abelardo de la Vega¹, Jim Holland³, Jacob Washburn³, Jose Varella³, Natalia de Leon⁴, Dayane Lima⁴, David Ertl⁵, Joseph Gage⁶, Qiuyue Chen⁶, Cinta Romay⁷.

1 Corteva Agrisciences; 2 Purdue University; 3 USDA-ARS; 4 UW Madison; 5 National Corn Growers Associations; 6 NCSU; 7 Cornell;

Outline

1. Introduction

- Our team
- Evaluation criterion

2. Data

- Information
- Population (TPG, TPE)

3. Modeling and QC

- What to model
- Genomic information
- Statistical model

4. Statistical models

- Model A
- Model B
- Submissions

5. Conclusion

1. Introduction

- Our team
- Evaluation criterion

2. Data

- Information
- Population (TPG, TPE)

Modeling and QC

- What to model
- Genomic information
- Statistical model

4. Statistical models

- Model A
- Model B
- Submissions

5. Conclusion

CLAC team (Corteva Latin America Corn)

• Alencar Xavier - Breeding Analyst LAAF, adj. prof. Purdue

Wesley Barber – Safrinha corn breeder, EZ lead (Brazil, south)

Cristiano Zimmer – Tropical corn breeder (Brazil, central)

Fabiani Rocha – Subtropical corn breeder (Brazil, south)

• Ignacio Trucillo – Temperate corn breeder (Argentina)

Evaluation criterion

Some considerations

Ranking matter less than getting environmental means correctly

- Shrinkage is also our enemy
 - Genomic BLUPs must be rescaled into phenotypic variance
 - Environmental means predicted via machine learning too

Picture source

1. Introduction

- Our team
- Evaluation criterion

2. Data

- Information
- Population (TPG, TPE)

3. Modeling and QC

- What to model
- Genomic information
- Statistical model

4. Statistical models

- Model A
- Model B
- Submissions

5. Conclusion

Information

- Resources:
 - Genomic information (400K markers, 150K after QC)
 - Environmental covariates (EnvRtype), weather from NASA power, soil data
 - Meta data: Irrigation, Treatment

Population structure

TPE

2014 2015 2016 2017 2018 2019 2020 2021 12675 13688 15387 15533 20851 20806 16940 20132

1. Introduction

- Our team
- Evaluation criterion

2. Data

- Information
- Population (TPG, TPE)

3. Modeling and QC

- What to model
- Genomic information
- Statistical model

4. Statistical models

- Model A
- Model B
- Submissions
- 5. Conclusion

What to model?

$$y|E_i = \mu_i + g|E_i$$

Phenotype @ ith Loc = ith Loc Mean + Genetic effect @ ith Loc

- Prediction set:
 - 11555 observations
 - 26 locations
 - 548 genotypes (43 were observed in the ES)
 - Ranging from 336 to 530 GE/AOI

Genomic information

Just too much SNP data for ~5K hybrids (not parents, no GCA)

- QC'ed based on LD and MAF
 - MAF of 0.05 in both training and prediction sets
 - Reduced data to ~150K

Need reparameterization!!

Genomic information

(Kernel trick + Kernel-to-X trick)

ArcCos relationship matrix

$$A = f(Z)$$

where:

Z (5K x 300K) A (5K x 5K)

EVD

$$A = UD^2U'$$
 $A = (UD)(UD)'$ where $M = UD$ (5K x 5K)
 $A = MM'$

So that

$$\begin{array}{ll} y = \mu + Ma + e & = \text{Ridge regression} \\ var(y) = MM'\sigma_g^2 + I\sigma_e^2 & = \text{A}\sigma_g^2 + I\sigma_e^2 = \text{GBLUP} \end{array}$$

Formatting the data

State, Stations: Obtained from Env names: OHH1_2020 = Ohio, H1

- Pooling levels
 - Previous crop (peanut, soy, etc. = "Legume")
 - Treatment (early, irrigated, Standard = "Standard")
 - Irrigation: Irrigated in meta data or treatment says it is irrigated
 - Level with too few locations were set as unknown

Yield outliers: More than 3 Std Dev within location

Loc with irrigation:

- 3 of 217 locs in ES
- 9 of 26 locs in PS

Prediction model

Our final predictions were the average of two models

$$\hat{\mathbf{y}} = \frac{\hat{\mathbf{y}}_{A} + \hat{\mathbf{y}}_{B}}{2}$$

Model A – Simple univariate GBLUP, no spatial

Model B – Highly processed/engineered GBLUP model

1. Introduction

- Our team
- Evaluation criterion

2. Data

- Information
- Population (TPG, TPE)

Modeling and QC

- What to model
- Genomic information
- Statistical model

4. Statistical models

- Model A
- Model B
- Submissions
- 5. Conclusion

Model A

Simple GBLUP

$$y = X\beta + Zu + e$$

$$u \sim N(0, MM'\sigma_u^2)$$

$$e \sim N(0, I\sigma_e^2)$$

Terms

- Fixed terms (Xβ): State, station, treatment, irrigation, previous crop
- Random (Zu): Hybrid
- No year component

Model A

Fixed terms were found significant via LRT

•
$$H_3$$
: Yield = $Env + Hyb + PC + Irr + Trt$

Model A

R package bWGR

DOURNAL ARTICLE bWGR: Bayesian whole–genome regression Alencar Xavier ▼, William M Muir, Katy M Rainey ▼ Bioinformatics, Volume 36, Issue 6, 15 March 2020, Pages 1957–1959, https://doi.org/10.1093/bioinformatics/btz794 Published: 24 October 2019 Article history ▼

Method / Solver

```
Efficient Estimation of Marker Effects in Plant
Breeding ∂
Alencar Xavier 

G3 Genes|Genomes|Genetics, Volume 9, Issue 11, 1 November 2019, Pages 3855–3866, https://doi.org/10.1534/g3.119.400728

Published: 01 November 2019 Article history ▼
```


Model B

$$y = \mu + g\sigma + e$$

- Three separate models:
 - Location mean (μ) f(EC, meta data)
 - Location variance (σ) f(EC)
 - Normalized hybrid prediction (g) f(SNPs, spatial)

Model B – Predict mean and SD

Model B – Hybrid prediction

Spatial Fit multivariate model. Create selection Adjustment each loc as a trait index for each within location (217 locs) prediction target A new approach fits multivariate genomic prediction f(Acc, State, Station)f(Row, Column)models efficiently Genetics Selection Evolution 54, Article number: 45 (2022) | Cite this article 1792 Accesses | 1 Citations | 2 Altmetric | Metrics (Available in the R package bWGR)

Model B – Hybrid prediction

$$y = \mu + X\beta + e$$

• Where
$$y=\{y_1,y_2,...,y_K\},\ \mu=\{\mu_1,\mu_2,...,\mu_K\},\ \beta=\{\beta_1,\beta_2,...,\beta_K\},$$

$$e=\{e_1,e_2,...,e_K\},\ Z=BlockDiag\{\textbf{X}_1,\textbf{X}_2,...,\textbf{X}_K\}$$

Variances:

$$\Sigma_{\beta} = \begin{bmatrix} \sigma_{\beta(1)}^2 & ... & \sigma_{\beta(1,K)} \\ \vdots & \ddots & \vdots \\ \sigma_{\beta(K,1)} & ... & \sigma_{\beta(K)}^2 \end{bmatrix} \quad \text{and} \quad \Sigma_{e} = \begin{bmatrix} \sigma_{e(1)}^2 & ... & 0 \\ \vdots & \ddots & \vdots \\ 0 & ... & \sigma_{e(K)}^2 \end{bmatrix}$$

More information on the approach:

Slides - https://github.com/alenxav/Lectures/blob/master/UIUC 2022/AX UIUC 2022.09.16.pdf

Paper - https://gsejournal.biomedcentral.com/articles/10.1186/s12711-022-00730-w

Model B – Hybrid prediction

- Selection index:
 - We calculated the deterministic accuracy (A) between every pair of training environment and testing environment

$$a_{PS|ES} = cor(g_{PS}, \hat{g}_{ES}) = \frac{cov(g_{PS}, \hat{g}_{ES})}{sd(g_{PS})sd(\hat{g}_{ES})} = \sqrt{\frac{cov(g_{PS}, \hat{g}_{ES})}{v(\hat{g}_{ES})}} = \sqrt{\frac{G_{PS,ES}V_{ES}^{-1}G_{ES,PS}}{G_{PS,PS}}}$$

Index

 $g_{PS|ES_i} = 0.1 a_{PS|ES_i} + 2 a_{PS|ES_i}$ (if same state) + $2 a_{PS|ES_i}$ (if same station)

The index is where/how we are capturing GxE!!

Why would multivariate be any better?

Simple (bivariate) model:

INFORMATION GAIN

$$y = g + e$$

$$Var\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} \sigma_{a_1}^2 & \sigma_{a_{12}} \\ \sigma_{a_{12}} & \sigma_{a_2}^2 \end{bmatrix} + \begin{bmatrix} \sigma_{e_1}^2 & \sigma_{e_{12}} \\ \sigma_{e_{12}} & \sigma_{e_2}^2 \end{bmatrix}$$

Why would multivariate be any better?

$$y = Zg + e, y \sim N(0, V)$$
$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} Z_1 & 0 \\ 0 & Z_2 \end{bmatrix} \begin{bmatrix} g_1 \\ g_2 \end{bmatrix} + \begin{bmatrix} e_1 \\ e_2 \end{bmatrix}$$

Covariance structure

$$V = G \otimes \Sigma_a + I \otimes \Sigma_e = G \otimes \begin{bmatrix} \sigma_{a_1}^2 & \sigma_{a_{12}} \\ \sigma_{a_{12}} & \sigma_{a_{2}}^2 \end{bmatrix} + I \otimes \begin{bmatrix} \sigma_{e_1}^2 & \sigma_{e_{12}} \\ \sigma_{e_{12}} & \sigma_{e_{2}}^2 \end{bmatrix}$$

Mixed model equation

$$\begin{bmatrix} Z_1'\Sigma_e^{11}Z_1 + G^{-1}\Sigma_a^{11} & Z_1'\Sigma_e^{12}Z_2 + G^{-1}\Sigma_a^{12} \\ Z_2'\Sigma_e^{12}Z_1 + G^{-1}\Sigma_a^{12} & Z_2'\Sigma_e^{11}Z_2 + G^{-1}\Sigma_a^{22} \end{bmatrix} \begin{bmatrix} g_1 \\ g_2 \end{bmatrix} = \begin{bmatrix} Z_1'(\Sigma_e^{11}y_1 + \Sigma_e^{12}y_2) \\ Z_2'(\Sigma_e^{22}y_2 + \Sigma_e^{12}y_1) \end{bmatrix}$$

Univariate vs bivariate

$$\begin{split} g_1 &= (Z_1' \Sigma_e^{11} Z_1 + G^{-1} \Sigma_a^{11})^{-1} (Z_1' \Sigma_e^{11} y_1) \\ g_1 | g_2 &= (Z_1' \Sigma_e^{11} Z_1 + G^{-1} \Sigma_a^{11})^{-1} (Z_1' (\Sigma_e^{11} y_1 + \Sigma_e^{12} y_2) - (Z_1' \Sigma_e^{12} Z_2 + G^{-1} \Sigma_a^{12}) g_2) \end{split}$$

GAIN

Submissions

Submission	RMSE	Description
S1	2.454	GBLUP cooked with minor QC and some ECs
S2	2.521	QC'ed data for GEBVs and location means; No Ecs
S3	2.353	Average S1 and S4
S4	2.410	QC'ed GEBVs; Non-QC'ed location means; No ECs
S5	2.239	Average S1 and uncooked univariate GBLUP

Submissions

Ranking with other metrics

(post-competition analysis)

Realized results

Ranking with alternative metrics

Team Name	Within RMSE	Team Name	Cor Within Loc	Team Name	Cor Across Loc
CLAC	2.329	CLAC	 <mark>0.357</mark>	breedingteam	0.650
igorkf	2.345	CGM	0.353	DataJanitors	0.644
phenomaize	2.374	MPB_Group	0.342	CLAC	<mark>0.631</mark>
UCD_MegaLMM	2.387	UCD_MegaLMM	0.338	Purdue	0.631
CGM	2.391	SmAL	0.285	UCD_MegaLMM	0.628
breedingteam	2.398	DeepCropVision	0.281	phenomaize	0.617
Purdue	2.402	CropEnthusiast	0.279	igorkf	0.600
SmAL	2.425	AllModelsAreWrong	0.272	CGM	0.587
ML_APT	2.472	DataJanitors	0.256	SmAL	0.586
MPB_Group	2.544	supermanwasd	0.243	AllModelsAreWrong	0.575

(Doing well because of CLAC's 5th submission)

Source: Jacob Washburn, Jose Ignacio Varela, Alencar Xavier

(Sorted by RMSE)

RMSE vs Corr

Team Name	RMSE	WL Corr	Subm
CLAC	2.329	0.357	5
igorkf	2.345	-	4
CLAC	2.353	0.266	3
igorkf	2.355	-	2
phenomaize	2.374	0.238	6
UCD_MegaLMM	2.387	0.338	3
CGM	2.391	0.353	1
breedingteam	2.398	0.208	1
breedingteam	2.399	0.232	4
Purdue	2.402	0.161	1
UCD_MegaLMM	2.404	0.337	5
breedingteam	2.408	0.237	6
CLAC	2.410	0.267	4
igorkf	2.414	-	5
phenomaize	2.419	-	5
breedingteam	2.420	0.240	5
SmAL	2.425	0.146	4
igorkf	2.441	0.225	3
SmAL	2.446	0.146	1
phenomaize	2.448	-	4

•••

1. Introduction

- Our team
- Evaluation criterion

2. Data

- Information
- Population (TPG, TPE)

Modeling and QC

- What to model
- Genomic information
- Statistical model

4. Statistical models

- Model A
- Model B
- Submissions

5. Conclusion

Thank you for your attention!

Final remarks:

- 1) The evaluation metric values locations means
- 2) ES-PS shared same locations environments
- 3) Our best model was an average of two GBLUPs

Questions??

Alencar Xavier

Alencar.Xavier@Corteva.com

