Geometry and spectrum of random hyperbolic surfaces

Laura Monk, IRMA, Strasbourg (France)

supervised by Nalini Anantharaman

October 26th, 2020

Introduction

Aim Prove **properties** true for **typical** surfaces. Motivation Large random regular graphs.

What properties?

- geometry:
 - diameter, injectivity radius, Cheeger constant [Mirzakhani 13]
 - ▶ length spectrum [Mirz.-Petri 17]
 - ► BS convergence, tangle-freeness [M. 20, M.-Thomas 20]

Selberg trace formula

► spectrum of the Laplacian [M. 20, Gil-LeMa-Sahl-Tho 19]

"Typical"?

several possible point of views:

- generic surfaces
- discrete probabilistic construction
 [Brooks-Makover 04]
- ► random covers [Magee-Naud-Puder 20]
- ▶ probability density on set of surfaces → our approach [Mirzakhani 07, 13]

Probability on the set of surfaces

The moduli space

Idea: equip the moduli space

$$\mathcal{M}_g = \{\text{hyperbolic surfaces of genus } g\}$$
 isometries

with a **probability measure** \mathbb{P}_g^{WP} .

High-genus limit

The volume of a hyperbolic surface of genus g is $2\pi(2g-2)$.

 \rightarrow take the genus g going to infinity.

We will prove events true with high probability (w.h.p), i.e. such that

$$\lim_{g \to +\infty} \mathbb{P}_g^{\mathrm{WP}}(event) = 1.$$

Parametrisation the set of surfaces

Fenchel-Nielsen coordinates

Fix a topological surface of genus g, with a **pair of pant** decomposition.

Parametrisation the set of surfaces

Fenchel-Nielsen coordinates

Fix a topological surface of genus g, with a **pair of pant** decomposition. Define a hyperbolic surface by picking a **length** ℓ_i and a **twist angle** τ_i for each curve of the pant decomposition.

Fenchel-Nielsen coordinates

Fix a topological surface of genus g, with a **pair of pant** decomposition. Define a hyperbolic surface by picking a **length** ℓ_i and a **twist angle** τ_i for each curve of the pant decomposition.

Any hyperbolic surface is isometric to a surface obtained this way.

o The **Teichmüller space** $\mathcal{T}_g = \underbrace{\left(\mathbb{R}_+^*\right)^{3g-3}}_{\text{lengths}} \times \underbrace{\mathbb{R}^{3g-3}}_{\text{twists}}$ is the universal cover

of the moduli space $\mathcal{M}_g = \mathcal{T}_g$ /isometry.

Wolpert's magic theorem

The natural symplectic form

$$\omega_g^{\text{WP}} = \sum_{i=1}^{3g-3} d\ell_i \wedge d\tau_i$$

on $\mathscr{T}_g = (\mathbb{R}_{>0})^{3g-3} \times \mathbb{R}^{3g-3}$ is invariant by the action of isometries. \rightsquigarrow Natural symplectic structure on \mathscr{M}_g , with nice geometric properties.

Weil-Petersson probability

Wolpert's magic theorem

The natural symplectic form

$$\omega_g^{\text{WP}} = \sum_{i=1}^{3g-3} d\ell_i \wedge d\tau_i$$

on $\mathscr{T}_g = (\mathbb{R}_{>0})^{3g-3} \times \mathbb{R}^{3g-3}$ is invariant by the action of isometries. \rightsquigarrow Natural symplectic structure on \mathscr{M}_g , with nice geometric properties.

Probability measure

Symplectic form \rightsquigarrow volume form $\operatorname{Vol}_g^{WP} = \frac{1}{(3g-3)!} (\omega_g^{WP})^{\wedge (3g-3)}$.

The total volume of \mathcal{M}_g for $\operatorname{Vol}_g^{WP}$ is **finite**.

We can **normalise** and obtain a probability $\mathbb{P}_g^{\mathrm{WP}} = \frac{1}{\mathrm{Vol}_{\mathscr{E}}^{\mathrm{WP}}(\mathscr{M}_g)} \mathrm{Vol}_g^{\mathrm{WP}}$.

Geometry of typical surfaces of high genus

▶ Diameter [Mirzakhani 13]

$$\log(4g-2) \leq \underset{\text{always}}{\leq} \operatorname{diam}(X) \leq \underset{\text{w.h.p.}}{\leq} 40 \log g.$$

Atypical hyperbolic surface of high genus:

Geometry of typical surfaces of high genus

▶ Diameter [Mirzakhani 13]

$$\log(4g-2) \leq \underset{\text{always}}{\leq} \dim(X) \leq \underset{\text{w.h.p.}}{\leq} 40 \log g.$$

► Separating systole [Mirzakhani 13]

$$\log g \lesssim \underset{\text{w.h.p}}{\lesssim} \text{sepsys}(X) \lesssim \underset{\text{always}}{\lesssim} \log g.$$

Atypical hyperbolic surface of high genus:

Geometry of typical surfaces of high genus

▶ Diameter [Mirzakhani 13]

$$\log(4g-2) \leq \operatorname{diam}(X) \leq 40 \log g$$
.

► Separating systole [Mirzakhani 13]

$$\log g \lesssim \underset{\text{w.h.p}}{\lesssim} \operatorname{sepsys}(X) \lesssim \underset{\text{always}}{\lesssim} \log g.$$

▶ The number of primitive **closed geodesics** in [a,b] is asymptotically a **Poisson law** of parameter $\int_a^b \frac{e^t + e^{-t} - 2}{t} dt$ [Mirzakhani Petri 17].

$$\mathbb{P}_g^{\mathrm{WP}}(\mathrm{injrad}(X) \le \epsilon) \simeq \frac{\epsilon^2}{2}$$
 for $\epsilon \ll 1$ and $g \to +\infty$.

Atypical hyperbolic surface of high genus:

Cheeger constant

Definition

$$h = \inf_{A \sqcup B = X} \left\{ \frac{\text{length } \partial A}{\min(\text{area}(A), \text{area}(B))} \right\}$$

h large \Leftrightarrow it is difficult to cut X.

Cheeger constant

Definition

$$h = \inf_{A \sqcup B = X} \left\{ \frac{\text{length } \partial A}{\min(\text{area}(A), \text{area}(B))} \right\}$$

h large \Leftrightarrow it is difficult to cut X.

Typical hyperbolic surface

 $\exists c > 0$ such that h > c with high probability.

A first spectral consequence

Cheeger-Buser inequality: $\frac{h^2}{4} \le \lambda_1 \le h(1+10h)$.

→ uniform spectral gap for random hyperbolic surfaces!

Logarithmic-scale information

Motivation

- ▶ In spectral theory, we need to understand geodesics of length $\sim \log g$.
- ▶ Idea: we could assume that

$$injrad(X) \ge log g$$
.

- ♠ It is unlikely in this probabilistic setting...
- ► Solution: find ways to say that these small geodesics are rare.

Logarithmic-scale information

Motivation

- ▶ In spectral theory, we need to understand geodesics of length $\sim \log g$.
- ▶ Idea: we could assume that

$$injrad(X) \ge log g$$
.

- ⚠ It is unlikely in this probabilistic setting...
- ▶ Solution: find ways to say that these small geodesics are **rare**.

Theorem (Mirzakhani 13, M. 20)

W.h.p., random surfaces converge in the sense of **Benjamini-Schramm** to the hyperbolic plane:

$$\frac{\operatorname{Vol}\left(\left\{z\in X\,:\, \operatorname{injrad}_X(z)<\frac{1}{6}\log g\right\}\right)}{\operatorname{Vol}(X)}=O\left(g^{-\frac{1}{3}}\right).$$

The tangle-free hypothesis

Definition (M.-Thomas 20)

We say a surface is L-tangle-free if it has no embedded pair of pant or handle of total boundary length < 2L.

Theorem (M.-Thomas 20)

 \blacktriangleright $\forall a < 1$, with high probability, random surfaces are $(a \log g)$ -TF.

Proof: Use Mirzakhani's integration formula to compute the probability of each topological possibility:

The tangle-free hypothesis

Definition (M.-Thomas 20)

We say a surface is L-tangle-free if it has no embedded pair of pant or handle of total boundary length < 2L.

Theorem (M.-Thomas 20)

- \blacktriangleright $\forall a < 1$, with high probability, random surfaces are $(a \log g)$ -TF.
- ▶ Any surface is $(4\log g + O(1))$ -tangled.

Proof: Expand a neighbourhood around a 'short' closed geodesic γ .

The tangle-free hypothesis

Definition (M.-Thomas 20)

We say a surface is L-tangle-free if it has no embedded pair of pant or handle of total boundary length < 2L.

Theorem (M.-Thomas 20)

- \blacktriangleright $\forall a < 1$, with high probability, random surfaces are $(a \log g)$ -TF.
- ▶ Any surface is $(4\log g + O(1))$ -tangled.

Proof: Expand a neighbourhood around a 'short' closed geodesic γ . For some width w, the topology changes \rightarrow embedded pair of pant or handle.

Theorem (M.-Thomas 20)

Let X be a L-tangle-free hyperbolic surface.

▶ Improved collar lemma: the $\frac{L-\ell}{2}$ -neighbourhood of a closed geodesic of length $\ell < L$ is isometric to a cylinder.

Theorem (M.-Thomas 20)

Let X be a L-tangle-free hyperbolic surface.

- ▶ Improved collar lemma: the $\frac{L-\ell}{2}$ -neighbourhood of a closed geodesic of length $\ell < L$ is isometric to a cylinder.
- ► All closed geodesics of length < L are simple.
- ► All closed geodesics of length $< \frac{L}{2}$ are pairwise disjoint.

Theorem (M.-Thomas 20)

Let X be a L-tangle-free hyperbolic surface.

- ▶ Improved collar lemma: the $\frac{L-\ell}{2}$ -neighbourhood of a closed geodesic of length $\ell < L$ is isometric to a cylinder.
- ► All closed geodesics of length < L are simple.
- ► All closed geodesics of length $< \frac{L}{2}$ are pairwise disjoint.
- For all $z \in X$, the ball of center z and radius $\frac{L}{8}$ is isometric to:
 - a ball in the hyperbolic plane if injrad(z) > $\frac{L}{A}$
 - a ball in a cylinder otherwise.

Spectral theory of compact hyperbolic surfaces

Laplacian

X Riemannian manifold \rightsquigarrow Laplace-Beltrami operator Δ on $L^2(X)$. On the hyperbolic plane,

$$\Delta = -y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right).$$

Spectral theorem

If X is **compact**, then there is an orthonormal basis of $L^2(X)$ of smooth eigenfunctions ϕ_i , such that $\Delta \phi_i = \lambda_i \phi_i$ and

$$0 = \lambda_0 < \lambda_1 \leq \ldots \leq \lambda_n \xrightarrow[n \to +\infty]{} +\infty.$$

- ▶ 0 is always a simple eigenvalue, associated to constant functions.
- ▶ The spectrum of Δ on the hyperbolic plane is $\left[\frac{1}{4}, +\infty\right]$.
- ightharpoonup Eigenvalues below $\frac{1}{4}$ are called **small eigenvalues**.
- For $0 \le a \le b$, we study the **counting function**

$$\mathcal{N}_X(a,b) = \#\{j : \lambda_j(X) \in [a,b]\}$$

We will compare what we can say for all surfaces and most.

- $\mathcal{N}_X\left(0,\frac{1}{4}\right) \le 2g 2$. [Otal-Rosas 09]
- ▶ $\forall \epsilon > 0$, \exists a surface X: $\mathcal{N}_X(0,\epsilon) = 2g 2$. [Randol, Buser 70s]
- $\forall \epsilon > 0$, $\mathcal{N}_X\left(0, \frac{1}{4} + \epsilon\right)$ cannot be bounded in terms of g only. [Buser 77]

- $\mathcal{N}_X\left(0,\frac{1}{4}\right) \le 2g-2$. [Otal-Rosas 09]
- ▶ $\forall \epsilon > 0$, \exists a surface X: $\mathcal{N}_X(0,\epsilon) = 2g 2$. [Randol, Buser 70s]
- \blacktriangleright $\forall \epsilon > 0$, $\mathcal{N}_X\left(0, \frac{1}{4} + \epsilon\right)$ cannot be bounded in terms of g only. [Buser 77]
- ► Weyl law [Bérard, Randol 78]

$$\frac{\mathscr{N}_X(0,b)}{\operatorname{Vol}(X)} = \frac{b}{4\pi} + O\left(\frac{\sqrt{b}}{\log b}\right) \quad \text{as } b \to +\infty.$$

The implied constant depends on the surface.

▶ Uniform spectral gap [Mirzakhani 13] (by Cheeger inequality)

$$\lambda_1 \ge 0.002467$$
 w.h.p.

Estimate on the **counting function** [M. 20]:

$$\frac{\mathscr{N}_X\left(a,b\right)}{\operatorname{Vol}(X)} \sim \mu(a,b) \qquad \text{as } g \text{ and/or } b \to +\infty.$$

for a measure μ supported on $\left[\frac{1}{4}, +\infty\right)$.

→ Similar to [McKay 81] for random regular graphs.

"Precise" statements

Theorem (M. 20)

 \exists a sequence of sets $\mathscr{A}_g \subset \mathscr{M}_g$ satisfying the following.

- $\triangleright \mathbb{P}_g^{\mathrm{WP}}(\mathcal{A}_g) \underset{g \to +\infty}{\longrightarrow} 1.$
- ► For any large enough g, any $0 \le a \le b$ and any $X \in \mathcal{A}_g$,
 - ▶ if $b \le \frac{1}{4}$, then

$$\frac{\mathscr{N}_X(0,b)}{\text{Vol }X} = O\left(\frac{g^{-2^{-15}(\frac{1}{4}-b)^2}}{(\log g)^{\frac{3}{4}}}\right).$$

Corollary: Then the number of small eigenvalues is $O\left(g(\log g)^{-\frac{3}{4}}\right)$.

"Precise" statements

Theorem (M. 20)

 \exists a sequence of sets $\mathcal{A}_g \subset \mathcal{M}_g$ satisfying the following.

- $\triangleright \mathbb{P}_g^{\mathrm{WP}}(\mathscr{A}_g) \underset{g \to +\infty}{\longrightarrow} 1.$
- ► For any large enough g, any $0 \le a \le b$ and any $X \in \mathcal{A}_g$,
 - ▶ if $b \le \frac{1}{4}$, then

$$\frac{\mathscr{N}_X(0,b)}{\operatorname{Vol} X} = O\left(\frac{g^{-2^{-15}(\frac{1}{4}-b)^2}}{(\log g)^{\frac{3}{4}}}\right).$$

Corollary: Then the number of small eigenvalues is $O\left(g(\log g)^{-\frac{3}{4}}\right)$.

▶ as soon as $a \ge \frac{1}{4}$ and $(b-a)\sqrt{\frac{\log g}{b+1}} \to +\infty$,

$$\frac{\mathscr{N}_{X}\left(a,b\right)}{\operatorname{Vol}(X)} \sim \frac{1}{4\pi} \int_{\frac{1}{4}}^{+\infty} \mathbb{1}_{\left[a,b\right]}(\lambda) \tanh\left(\pi\sqrt{\lambda - \frac{1}{4}}\right) \mathrm{d}\lambda.$$

Corollary: Uniform Weyl law + multiplicity estimate.

Idea of the proof

Method from [Le Masson-Sahlsten 17].

Selberg pretrace formula

$$\frac{1}{\operatorname{Vol}(X)} \sum_{j} f(\lambda_{j}) = \frac{1}{4\pi} \int_{\frac{1}{4}}^{+\infty} f(\lambda) \tanh\left(\pi \sqrt{\lambda - \frac{1}{4}}\right) d\lambda + R(X, f).$$

Test function

Smooth functions f_t converging to the step function $\mathbb{1}_{[a,b]}$ as $t \to +\infty$.

0.50

0.75

Idea of the proof: remainder estimate

For $X = \mathcal{H}/\Gamma$, the remainder is:

$$R(X,f) = \int_{D} \sum_{\gamma \in \Gamma \setminus \{id\}} K(z,\gamma \cdot z) dz$$

where:

10

-10

Fourier transform \hat{h}_t for (a, b) = (0.50, 0.75)

- K depends on the **Fourier transform** of the test function.
 - → exponential decay
 - \rightarrow spreading as t increases.

Idea of the proof: remainder estimate

For $X = \mathcal{H}/\Gamma$, the remainder is:

$$R(X,f) = \int_{D} \sum_{\gamma \in \Gamma \setminus \{id\}} K(z,\gamma \cdot z) dz$$

where:

10

-10

Fourier transform \hat{h}_t for (a,b) = (0.50,0.75)

- K depends on the **Fourier transform** of the test function.
 - → exponential decay
 - \rightarrow spreading as t increases.
- D is a fundamental domain.
 - ▶ Good(D) = points of large injectivity radius \sim small contribution.
 - by Benjamini-Schramm convergence, Vol(Bad(D)) small.

Perpectives

Conjecture (Wright 19)

 $\forall \epsilon > 0$.

$$\mathbb{P}_g^{\mathrm{WP}}\left(X \text{ has an eigenvalue in } \left[0, \frac{1}{4} - \epsilon\right]\right) \underset{g \to +\infty}{\longrightarrow} 0.$$

- ► Equivalent of the Alon-Friedman theorem for large regular graphs. [Friedman 08, Bordenave 15]
- ▶ Joint work with Nalini Anantharaman.

Difficulties

Largest scale on the surface:

$$\frac{1}{6}\log g \longrightarrow A\log g$$
, A arbitrarily large.

Use the oscillations of the kernel and not only the exponential decay. Thank you for your attention!