Olimpiada Națională de Matematică Etapa Județeană/a Sectoarelor Municipiului București, 16 martie 2019 Clasa a IX-a

Soluții și bareme orientative

Problema 1. Fie $n \in \mathbb{N}$, $n \geq 2$ şi numerele strict pozitive $a_1, a_2, ..., a_n$, respectiv $b_1, b_2, ..., b_n$ astfel încât $a_1 + a_2 + \dots + a_n = b_1 + b_2 + \dots + b_n = S.$

- a) Demonstrați că $\sum_{k=1}^{n} \frac{a_k^2}{a_k + b_k} \ge \frac{S}{2}$.
- **b)** Demonstrați că $\sum_{k=1}^{n} \frac{a_k^2}{a_k + b_k} = \sum_{k=1}^{n} \frac{b_k^2}{a_k + b_k}$.

Soluție și barem:

- a) Avem $\sum_{k=1}^{n} \frac{a_k^2}{a_k + b_k} \ge \frac{\left(\sum_{k=1}^{n} a_k\right)^2}{\sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k} = \frac{S^2}{2S} = \frac{S}{2}.$ 4p b) Avem $\sum_{k=1}^{n} \frac{a_k^2}{a_k + b_k} \sum_{k=1}^{n} \frac{b_k^2}{a_k + b_k} = \sum_{k=1}^{n} \frac{a_k^2 b_k^2}{a_k + b_k} = \sum_{k=1}^{n} (a_k b_k) = \sum_{k=1}^{n} a_k \sum_{k=1}^{n} b_k = S S = 0$
- de unde obtinem concluzia.

Problema 2. Fie H ortocentrul triunghiului ascutitunghic ABC. În planul triunghiului ABC considerăm un punct X astfel încât triunghiul XAH este dreptunghic isoscel cu ipotenuza AH, iar B și Xsunt de o parte și de alta a dreptei AH. Demonstrați că $\overrightarrow{XA} + \overrightarrow{XC} + \overrightarrow{XH} = \overrightarrow{XB}$ dacă și numai dacă $\angle BAC = 45^{\circ}.$

Soluţie şi barem: Cum $BA \perp HC$ şi $BC \perp HA$, deducem că B este ortocentrul triunghiului HAC. 2p Relația $\overrightarrow{XA} + \overrightarrow{XC} + \overrightarrow{XH} = \overrightarrow{XB}$ are loc dacă și numai dacă X este centrul cercului circumscris

Dacă X este centrul cercului circumscris triunghiului AHC, atunci $\angle AXH$ este unghi la centru, deci

Reciproc, fie Y centrul cercului circumscris triunghiului AHC. Atunci $\angle AYH = 2\angle ACH = 90^{\circ}$. Triunghiul YAH este dreptunghic isoscel, deciY = X. Atunci X este centrul cercului circumscris

Problema 3. Fie $(a_n)_{n\in\mathbb{N}^*}$ un şir de numere reale cu proprietatea

$$2(a_1 + a_2 + \dots + a_n) = na_{n+1},$$

pentru orice $n \geq 1$.

- a) Demonstrați că șirul $(a_n)_{n\in\mathbb{N}^*}$ este o progresie aritmetică.
- b) Dacă $[a_1] + [a_2] + ... + [a_n] = [a_1 + a_2 + ... + a_n]$, pentru orice $n \in \mathbb{N}^*$, demonstrați că toți termenii șirului sunt numere întregi. (cu [x] s-a notat partea întreagă a numărului real x)

Soluție și barem:

a) Pentru n=1 obținem $a_2=2a_1$, iar pentru n=2 obținem $a_3=3a_1$. Prin inducție matematică demonstrăm că $a_n = na_1$, pentru orice $n \ge 1$, de unde deducem că șirul este o progresie aritmetică. **2p**

b) Fie $\alpha = \{a_1\}$. Relația [x+y] = [x] + y, pentru orice $x \in \mathbb{R}$ și $y \in \mathbb{Z}$, ipoteza și punctul precedent conduc la egalitatea $[\alpha] + [2\alpha] + \dots + [n\alpha] = \left\lceil \frac{n(n+1)}{2} \alpha \right\rceil,$ Pentru n=2 obţinem $[\alpha]+[2\alpha]=[3\alpha]$, deci $[2\alpha]=[3\alpha]$, adică $\alpha\in\left[0,\frac{1}{3}\right)\cup\left[\frac{1}{2},\frac{2}{3}\right)$. Cazul n=3conduce la $[\alpha] + [2\alpha] + [3\alpha] = [6\alpha]$. Atunci $2[3\alpha] = [6\alpha]$. Această egalitate conduce la $\alpha \in [0, \frac{1}{6})$. $2\mathbf{p}$ Presupunem că $\alpha \neq 0$. Atunci există $p \in \mathbb{N}^*$, $p \geq 7$ cu $\frac{1}{p} \leq \alpha < \frac{1}{p-1}$. Atunci $[\alpha] + [2\alpha] + \ldots + [p\alpha] = 1$ $[p\alpha]=1$. Apoi $\frac{p(p+1)}{2}\alpha\geq \frac{p+1}{2}\geq 4$, deci egalitatea din enunț nu este satisfăcută pentru n=p. **Problema 4.** Determinați toate numerele naturale nenule p pentru care există $n \in \mathbb{N}^*$ astfel încât $p^n + 3^n$ să dividă numărul $p^{n+1} + 3^{n+1}$. **Soluţie şi barem:** Avem egalitatea $p^{n+1} + 3^{n+1} = (p^n + 3^n)(p+3) - 3p(p^{n-1} + 3^{n-1})$. Dacă p^n+3^n divide numărul $p^{n+1}+3^{n+1}$, atunci p^n+3^n divide pe $3p\left(p^{n-1}+3^{n-1}\right)$. Dacă presupunem că p și 3 sunt prime între ele, atunci $p^n + 3^n$ va fi prim și cu 3 și cu p. Obținem că $p^n + 3^n$ divide pe $p^{n-1}+3^{n-1}$, ceea ce este fals deoarece $p^n+3^n>p^{n-1}+3^{n-1}>0$. De aici obținem că p este divizibil cu 3.**3**p Fie $k \in \mathbb{N}^*$ astfel încât p = 3k. Atunci $3^n (k^n + 1) | 3 \cdot 3k \cdot 3^{n-1} (k^{n-1} + 1)$, de unde obținem că $k^n+1\left|3k^n+3k\right|$, adică $k^n+1\left|3k^n+3+3k-3\right|$. Atunci $k^n+1\left|3k-3\right|$. Pentru $n\geq 2$, avem $k^n+1\geq 2$ Primul caz conduce la p=3, iar proprietatea din enunt este valabilă pentru orice $n \in \mathbb{N}^*$. În al doilea caz, din k + 1 | 3k - 3 obținem $k \in \{1, 2, 5\}$, deci $p \in \{3, 6, 15\}$ **2p**