10/12/2018	
	Ex: We have (7.500 mL of Sr (OH) 2 (as) of
	untnown conc.
	It takes 13.82 ml of 0.250M HCergel to
	fully neutralize.
	Q:What is [Sr(OH),]?
	Plan: () [Sr(OH)2] = #mol Sr(OH)2?
	#L Sr (OH)2 7.500mLx IL = 0.007500
	1000mL
	2) Write the balanced chem ea:
	SI(OH)2(ag) + 2 Harage -> 2 H2O(R) + SIC(2(ag)
	Sr24 OH- H+ a-
	OH-
	Sr(OH)2 + 2Ha -> 2H,0 + Sra,
	Sr(OH)2 + 2HC1 -> 2H2O + SrCl2 ?mol Sr(OH)2 = ?mol HC1
	↑molar conc HC1
	vol Ha D. 250M
	13.82ml Hax 11 y 0.250mol Hax 1 mol Srlon)2 = 1.7275x10-3
	1000 mt 11 2 mol HC1 mol Si (OH)2
	2
	[Sr(OH)2] = #L Sr(OH)2 = 1.7275x10-3mol
	1 2000
	= 0.230 M

Oxidation-Reduction xus (Redox)
-involve e transfer
-important for battery tech.
-rust prevention.
- aging
- often involve 02 but not always
2.1 2.1 . Ce > 2.1 C .
ex: 2Na + Cl, -> 2NaCl atoms/molecules ionic
atoms/molecules IONIC
can think of this as occuring via two half-kn:
$2Na \longrightarrow 2Na^{\dagger} + 2e^{-}$
$2Na \longrightarrow 2Na^{+} + 2e^{-}$ $2e^{-} + Cl_{2} \longrightarrow 2Cl^{-}$
2 NaCl
ZNAC
Na loss és] we say ! Na was oxidized
az gains es J Caz was reduced
Mnemonic: OIL-RIG : Oxidation is loss
reduction is gain
LEO goes GER: loss of electrono is Oxidation
gain of electron is reduction.
We can think of the Cl2 as "taking" es from Na.
=> C/2 is "causing" the Na to be oxidized
=> C/2 is the oxidizing agent.

+	
	Simple set of rules used to assign ox. statu:
	,
	1. Ox state of atom in element = 0 Cu, Oz, P4
	2. Ov. state of atom in monatomic ion = charge Na ⁺ , 0 ²⁻ , Al ³⁺
	3. Sum of all ox. states for all atoms = charge
	x y x y
	H ₂ O , NO ₃
	2x + y = 0 $x + 3y = -1$
	4. In cods, metals always have the ox. state
	ap IA: +1 Nace CaF2
	3
	2A: +2
	(in general, ox state = charge)