Homework 7

D. Zack Garza

November 6, 2019

Contents

1		Problem 1 1.1 Part 1															1												
	1.2	Part 2																											2
2	Problem 2 2.1 Part 1																3												
	2.1	Part 1																							 				3
	2.2	Part 2																											3
3	Problem 3 3.1 Part 1																3												
	3.1	Part 1																							 				3
	3.2	Part 2																							 				4
	3.3	Part 3																											5
4	Pro	blem 4																											6

1 Problem 1

1.1 Part 1

In order for IS to be a submodule of A, we need to show the following implication:

$$x \in IS, \ a \in A \implies xa, ax \in IS.$$

Suppose $x \in IS$. Then by definition, $x = \sum_{i=1}^{n} r_i a_i$ for some $r_i \in R, a_i \in A$. But then

$$xa = \left(\sum_{i=1}^{n} r_i a_i\right) a$$
$$= \sum_{i=1}^{n} r_i a_i a$$
$$= \sum_{i=1}^{n} r_i a'_i,$$

where $a'_i := a_i a$ for each i, which is still an element of A since A itself is a module and thus closed under multiplication.

But this expresses xa as an element of IS. Similarly, we have

$$ax = a\left(\sum_{i=1}^{n} r_i a_i\right)$$
$$= \sum_{i=1}^{n} a r_i a_i a$$
$$:= \sum_{i=1}^{n} r_i a a_i,$$
$$:= \sum_{i=1}^{n} r_i a'_i,$$

and so $ax \in IS$ as well.

1.2 Part 2

Letting $R/I \curvearrowright A/IA$ be the action given by $r+I \curvearrowright +IA := ra+IA$, we need to show the following:

- r.(x + y) = r.x + r.y,
- (r+r').x = r.x + r'.x,
- (rs).x = r.(s.x), and
- 1.x = x.

Letting \oplus denote the addition defined on cosets, we have

$$r \curvearrowright (x + IA \oplus y + IA) := r \curvearrowright x + y + IA$$

 $\coloneqq r(x + y) + IA$
 $= rx + ry + IA$
 $\coloneqq rx + IA \oplus ry + IA$
 $\coloneqq (r \curvearrowright x + IA) \oplus (r \curvearrowright y + IA).$

$$(r+s) \curvearrowright x + IA := (r+s)x + IA$$

 $\coloneqq rx + sx + IA$
 $\coloneqq rx + IA \oplus sx + IA$
 $\coloneqq (rs \curvearrowright IA) \oplus (sx \curvearrowright IA).$

$$(rs) \curvearrowright x + IA := rsx + IA$$

= $r(sx) + IA$
:= $r \curvearrowright (sx + IA)$
= $r \curvearrowright (s \curvearrowright x + IA)$.

$$1 \curvearrowright x + IA := 1x + IA = x + IA$$
.

2 Problem 2

2.1 Part 1

We want to show that every simple R-module M is cyclic, i.e. if the only ideals of M are (0) and M itself, that $M = \langle m \rangle$ for some element $m \in M$.

Towards a contradiction, let M be a simple R-module and suppose M is not cyclic, so $M \neq \langle m \rangle$ for any $m \in M$. But then let $a \in M$ be an arbitrary nontrivial element; then (a) is a non-empty ideal (since it contains a), so $(a) \neq 0$. Since M is simple, we must have (a) = M, a contradiction.

2.2 Part 2

Let $\phi:A\to A$ be a module endomorphism on a simple module A. Then im $\phi:=\phi(A)$ is a submodule of A. Since A is simple, we have either im $\phi=0$, in which case ϕ is the zero map, or im $\phi=A$, so ϕ is surjective. In this case, we can also consider $\ker\phi$, which is a submodule of A. Since A is simple, we can again only have $\ker\phi=A$, which can not happen if ϕ is not the zero map, or $\ker\phi=0$, in which case ϕ is both a surjective and an injective map and thus an isomorphism of modules.

3 Problem 3

3.1 Part 1

We want to show that if A, B are R-modules then $X = (\text{hom}_{R-\text{mod}}(A, B), + \text{ is an abelian group.}$ Let $f, g, h \in X$, we then need to show the following:

- a. Closure: $f + g \in X$
- b. Associativity: f + (g + h) = (f + g) + h
- c. Identity: $id \in X$
- d. Inverses: $f^{-1} \in X$
- e. Commutativity: f + g = g + f

Closure: This follows from the definition, because $(f+g) \curvearrowright x := f(x) + g(x)$ pointwise, which is well-defined homomorphism $A \to B$.

Associativity: We have

$$f + (g+h) \curvearrowright x := f(x) + (g+h)(x)$$
$$:= f(x) + (g(x) + h(x))$$
$$= (f(x) + g(x)) + h(x)$$
$$= (f+g) + h \curvearrowright x.$$

Identity: We can define $\mathbf{0}: A \to B$ by $\mathbf{0}(x) = 0 \in B$. Then

$$(f + \mathbf{0}) \curvearrowright x = f(x) + 0 = f(x) = 0 + f(x) = (\mathbf{0} + f) \curvearrowright x.$$

Inverses: Given $f \in X$, we can define $-f : A \to B$ as -f(x) = -x. Then

$$(f+-f) \curvearrowright x = f(x) + -f(x) = f(x) - f(x) = x - x = 0 = \mathbf{0} \curvearrowright x$$

 $(-f+f) \curvearrowright x = -f(x) + f(x) = -f(x) + f(x) = -x + x = 0 = \mathbf{0} \curvearrowright x.$

Commutativity: Since B is a module, by definition (B, +) is an abelian group. Thus

$$(f+g) \curvearrowright x = f(x) + g(x) = g(x) + f(x) = (g+f) \curvearrowright x.$$

3.2 Part 2

By part 1, $(\hom_{R-\text{mod}}(A, A), +)$ is an abelian group, We just need to check that $(\hom_R(A, A), \circ)$ is a monoid, i.e.:

• Associativity: $f \circ (g \circ h) = (f \circ g) \circ h$

• Identity: $id \circ f = f$

• Closure: $f \circ g \in \text{hom}_{R\text{-mod}}(A, A)$

Associativity: We have

$$f \circ (g \circ h) \curvearrowright x := (f \circ (g \circ h))(x)$$

$$= f((g \circ h)(x))$$

$$= f(g(h(x)))$$

$$= (f \circ g)(h(x))$$

$$= ((f \circ g) \circ h)(x)$$

$$:= (f \circ g) \circ h \curvearrowright x.$$

Identity: Take $id_A: A \to A$ given by $id_A(x) = x$, then

$$f \circ \mathrm{id}_A \curvearrowright x = f(\mathrm{id}_A(x)) = f(x) = \mathrm{id}_A(f(x)) = \mathrm{id}_A \circ f \curvearrowright x.$$

Closure: If $f:A\to A$ and $g:A\to A$ are homomorphisms, then $f\circ g:A\to A$ as a set map, and is an R-module homomorphism because

$$f \circ g \curvearrowright (r+s)(x+y) = f(g((r+s)(x+y)))$$

$$= f((r+s)(g(x)+g(y)))$$

$$= (r+s)(f(g(x))+f(g(y)))$$

$$= (f \curvearrowright (r+s)(x+y)) \circ (g \curvearrowright (r+s)(x+y)).$$

3.3 Part 3

For arbitrary $x, y \in A$, we need to check the following:

a.
$$f \curvearrowright (x+y) = f \curvearrowright x+f \curvearrowright y$$

b. $(f+g) \curvearrowright x = f \curvearrowright x+g \curvearrowright x$
c. $f \circ g \curvearrowright x = f \curvearrowright (g \curvearrowright x)$
d. $\mathrm{id}_a \curvearrowright x = x$

For (a):

$$\begin{split} f &\curvearrowright (x+y) \coloneqq f(x+y) \\ &= f(x) + f(y) \qquad \text{since } f \text{ is a homomorphism} \\ &= f \curvearrowright x + f \curvearrowright y \end{split}$$

.

For (b):

$$(f+g) \curvearrowright x = (f+g)(x)$$

$$= f(x) + g(x)$$

$$= f \curvearrowright x + g \curvearrowright x.$$

For (c):

$$f \circ g \curvearrowright x = (f \circ g)(x)$$

$$= f(g(x))$$

$$= f \curvearrowright g(x)$$

$$= f \curvearrowright (g \curvearrowright x).$$

For (d):

$$id_A \curvearrowright x = id_A(x) = x.$$

4 Problem 4

Injectivity: We have the following situation:

where we would like to show that f is a monomorphism, i.e. that $\ker f = 0$. So let $x \in \ker f$, so $y := f(x) = 0 \in B_3$.

We will show that $x = 0 \in A_3$:

- Since $y = 0 \in B_3$, applying $B_3 \to B_4$ yields $y \mapsto 0 \in B_4$ since these maps are homomorphisms and always map zero to zero.
- Pull back $0 \in B_4$ to $0 \in B_3$ along α_4 , which can be done since α_4 is injective, giving $0 \in A_4$.
- Since this is 0 in A_4 , it is in the kernel of $A_3 \to A_4$, yielding some $x \in A_3$.
- By commutativity of the third square, $x \mapsto f(x)$ under $f: A_3 \to B_3$.
- Since $x \in \ker(A_3 \to A_4) = \operatorname{im}(A_2 \to A_3)$ by exactness, there is some $\alpha \in A_2$ such that $\alpha_2(a) = x \in A_3$.
- By injectivity of α_2 , a maps to a unique element $\alpha_2(a) \in B_2$.
- By commutativity of the middle square, since $a \in A_2 \mapsto 0 \in B_3$, we must have $\alpha_2(a) \mapsto 0 f(x)$ under $B_2 \to B_3$.
- Then $\alpha_2(a) \in \ker(B_2 \to B_3) = \operatorname{im}(B_1 \to B_2)$, so it pulls back to some $b \in B_1$.
- By surjectivity of α_1 , b pulls back to some $a' \in A_1$.
- By commutativity of square 1, $a' \mapsto a$ under $A_1 \to A_2$.
- So $a \mapsto x$ under $A_1 \to A_3$.
- But then $a \in \text{im } (A_1 \to A_2) = \text{ker}(A_2 \to A_3)$, so $a \mapsto 0$ under $A_1 \to A_3$.
- So x = 0 as desired.

Surjectivity: We now have this situation: