Dr Kamal Bentahar

School of Computing, Electronics and Mathematics Coventry University

Lecture 3

minamap

NFA → DFA

€-NFAs

Regular operations
Regular

 $RegEx \rightarrow NFA$ $NFA \rightarrow RegEx$ GNFA $NFA \rightarrow GNFA$ $GNFA \rightarrow RegEx$

NFA ↔ DFA ↔ RegEx

Mindmap

NFA → DFA

Regularity

€-NFAs Regular operations

Regular expressions

 $NFA \rightarrow RegEx$ GNFA $NFA \rightarrow GNFA$ $GNFA \rightarrow RegEx$

Last time: DFAs & NFAs

NFA ↔ DFA ↔ RegEx

■ **DFA**: $\delta: Q \times \Sigma \to Q$ ■ **NFA**: $\delta: Q \times \Sigma \to 2^Q$

Deterministic computation

start

reject

accept of reject

Nondeterministic computation

reject

accept of reject

Surprising result

NFAs recognize exactly the same languages as DFAs.

a

b

Observation: DFAs are a *special case* of NFAs. For example:

DFA	а	b		NFA
\rightarrow A	Α	В	\rightarrow	\rightarrow /
* B	Α	В		* E

How about the reverse?
Can we convert any NFA into a DFA?

Minamap

 $NFA \rightarrow DFA$

Regularity *€*-NFAs

Regular operations

expressions $\begin{array}{c} \text{RegEx} \rightarrow \text{NFA} \\ \text{NFA} \rightarrow \text{RegEx} \\ \text{GNFA} \\ \text{NFA} \rightarrow \text{GNFA} \end{array}$

GNFA → RegEx Summary

Example (The **Subset construction method**)

€-NFAs

RegEx → NFA

NFA → RegEx NFA → GNFA GNFA → RegEx

NFA → DFA

€-NFAs

RegEx → NFA NFA → RegEx NFA → GNFA

GNFA → RegEx

Example	(The su	bset construction	method directl	y applied	l to a table)
---------	---------	-------------------	----------------	-----------	---------------

NFA		0	1	
	Α	{A, B}	{A, B}	
*	A B C	{A, B} {A}	{A, B} {C}	
\rightarrow	С	{A}	{A}	

Example (A longer example)

NFA ↔ DFA ↔ RegEx

Mindmap

 $NFA \rightarrow DFA$

Regularity

egular operations egular

RegEx → NFA
NFA → RegEx
GNFA
NFA → GNFA
GNFA → RegEx

Summary

The subset construction method

NFA ↔ DFA ↔ RegEx

wiinumap

 $NFA \rightarrow DFA$

Regularity
ε-NFAs
Regular operations

expressions

RegEx \rightarrow NFA

NFA \rightarrow RegEx

GNFA

NFA \rightarrow GNFA

GNFA \rightarrow RegEx

Summary

Given an NFA $N = (Q, \Sigma, \delta, q_{\text{start}}, F)$, we can construction an equivalent DFA $D = (Q', \Sigma, \delta', \{q_{\text{start}}\}, F')$ as follows:

- $Q' \subset 2^Q$ is the set of all possible states that can be reached from q_{start} .
- For each entry $(A, s) \in Q' \times \Sigma$ in the transition table of D, we find the result $\delta'(q, s)$ as the **union** of all $\delta(q, s)$ for all $q \in A$
- $F' \subset Q'$ contains all the sets that have a state from F.

Regular Languages

→ ReaEx

NFA -> DFA

€-NFAs

GNFA → RegEx

RegEx → NFA NFA → RegEx NEA - GNEA

Definition (Regular Languages)

Every NFA has an equivalent DFA.

Theorem: The equivalence of NFAs and DFAs

A language is **regular** if and only if some NFA recognizes it.

Theorem: NFAs and DFAs recognize the same languages

NFAs and DFAs are equivalent in terms of languages recognition.

Extension: ε -NFAs \longleftrightarrow Regular Languages

We allow ε as a transition label.

Definition of ε -NFAs

An ε -NFA is defined by the 5-tuple $(Q, \Sigma, \delta, q_{\text{start}}, F)$ like normal NFAs, but where the transition function is given by

$$\delta \colon Q imes {\displaystyle \sum_{arepsilon}} o 2^Q \quad \text{where } {\displaystyle \sum_{arepsilon}} = {\displaystyle \sum} \cup \{arepsilon\}.$$

Definition (Regular Languages)

A language is **regular** if and only if some ε -NFA recognizes it.

NFA ↔ DFA ↔ RegEx

Mindmap

NFA → DFA

Regularity E-NFAs

Regular operations

Regular
expressions
RegEx → NFA
NFA → RegEx
GNFA
NFA → GNFA
GNFA → RegEx

The following operations are called the regular operations:

- **1 Union:** $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$ i.e. strings from A or from B.
- **Concatenation:** $AB = \{xy \mid x \in A \text{ and } y \in B\}$ i.e. string from A followed by string from B.
- **Star:** $A^* = \{x_1 x_2 \cdots x_n \mid n \ge 0 \text{ and each } x_i \in A\}$ i.e. concatenations of zero or more strings from A.

$$A^* = \{\varepsilon\} \cup A \cup AA \cup AAA \cup \cdots = A^0 \cup A^1 \cup A^2 \cup A^3 \cup \cdots$$

wiiriamap

NFA → DFA

≺egularity &-NFAs Regular operations

expressions

RegEx → NFA

NFA → RegEx

GNFA

NFA → GNFA

GNFA → RegEx

Regular Languages - closures

NFA ↔ DFA ↔ RegEx

If L and M are two regular languages then the following are also regular

1 $L \cup M$ (Union: string in L or M)

LM (Concatenation: string from L followed by string M)

3 L^* (Star: $L^* = L^0 \cup L^1 \cup L^2 \cup \cdots$)

Theorem

The class of regular languages is closed under the regular operations (union, concatenation, and star).

Proof: Next 3 slides.

NFA → DFA
Regularity

ε-NFAs Regular operations

expressions

RegEx → NFA

NFA → RegEx

GNFA

NFA → GNFA

GNFA → RegEx

Proof: Closure under Union

NFA ↔ DFA ↔ RegEx

Mindmap

NFA → DFA

Regularity ε-NFAs

Regular operations

RegEx \rightarrow NFA NFA \rightarrow RegEx GNFA NFA \rightarrow GNFA

GNFA → RegEx
Summary

Proof: Closure under Concatenation

NFA ↔ DFA ↔ RegEx

Mindmap

NFA → DFA

Regularity ε-NFAs

Regular operations

RegEx \rightarrow NFA
NFA \rightarrow RegEx
GNFA
NFA \rightarrow GNFA
GNFA \rightarrow RegEx

Proof: Closure under Star

NFA ↔ DFA → RegEx

NFA → DFA

€-NFAs Regular operations

RegEx → NFA NFA → RegEx

NFA → GNFA GNFA → RegEx

Regular expressions

We can describe NFAs using Finite Automata.

We can also describe them using Regular Expressions.

Example

Let $\Sigma = \{0, 1\}$

- The finite language $\{1, 11, 00\}$: 1 + 11 + 00
- Strings ending with 0: ∑*0
 - Strings starting with 11: 11∑*
- Strings of even length: $(\Sigma\Sigma)^*$

Definition (Regular Expressions – Recursive definition)

R is said to be a regular expression (RegEx) if and only if

- \blacksquare R is \emptyset or ε or a single symbol from the alphabet
- or R is the union, concatenation or star of other ("smaller") RegEx's.

NEA 📥 DEA → ReaEx

NFA -> DFA

€-NFAs

Regular expressions

RegEx → NFA

NFA -> RegEx

NEA - GNEA GNFA → RegEx

- Union: +
- Concatenation: Juxtaposition (i.e. no symbol)
- Star: * as a superscript

Unless brackets are used to explicitly denote precedence, the **operators precedence** for the regular operations is: star, concatenation, then union.

Theorem

A language is regular if and only if some regular expression describes it.

Constructive proof in two parts:

- (1/2): RegEx → NFA
- (2/2): NFA → RegEx

wiinumap

NFA → DFA

€-NFAs

Regular expressions

RegEx \rightarrow NFA NFA \rightarrow RegEx GNFA NFA \rightarrow GNFA GNFA \rightarrow RegEx

Proof (1/2): RegEx \rightarrow NFA

We cover all the possible cases from the definition of RegEx's:

$$\mathbf{1}$$
 $\mathbf{R} = \emptyset$

2
$$R=\varepsilon$$

3 R = a where $a \in \Sigma$ (i.e. a is a symbol from the alphabet)

NFA ↔ DFA ↔ RegEx

Mindmap

NFA → DFA

Regularity ε-NFAs

Regular expressions

RegEx → NFA
NFA → RegEx

GNFA

NFA → GNFA

GNFA → RegEx

Proof (1/2): RegEx \rightarrow NFA \longrightarrow R = A + B

NFA ↔ DFA ↔ RegEx

Mindmap

NFA → DFA

Regularity

Regular operations

 $\begin{array}{c} \text{RegEx} \longrightarrow \text{NFA} \\ \text{NFA} \longrightarrow \text{RegEx} \\ \text{GNFA} \end{array}$

NFA \rightarrow GNFA GNFA \rightarrow RegEx

Summa

16/23

NFA ↔ DFA ↔ RegEx

Mindmap

NFA → DFA

Regularity *E*-NFAs

Regular operations

expressions

RegEx → NFA

NFA → RegEx

GNFA

NFA → GNFA

GNFA → RegEx

Mindmap

NFA → DFA

Regularity

€-NFAs Regular operations

expressions
RegEx → NFA

 $NFA \rightarrow RegEx$ GNFA $NFA \rightarrow GNFA$ $GNFA \rightarrow RegEx$

ımmary

Proof (2/2): NFA \rightarrow RegEx

We introduce a machine to help us produce RegEx's for any given NFA:

Generalized Nondeterministic Finite Automaton (GNFA)

GNFAs are similar to NFAs but have the following restrictions/extensions:

- 1 Only one accept state
- 2 Initial state: no in-coming transitions
- 3 Accept state: no out-going transitions
- **Transitions:** RegEx's, rather than just symbols from the alphabet

We can convert any NFA into a GNFA in three steps:

- 1 Add a **new start state** with an ε-transition to the NFA's start state.
- **2** Add a **new accept state** with ε -transitions from the NFA's accept states.
- Replace **transitions that have multiple labels** with their union. (e.g. $a, b \rightarrow a + b$.)

NFA ↔ DFA ↔ RegEx

Mindmap

NFA -> DFA

Regularity &-NFAs

expressions
RegEx → NFA
NFA → RegEx
GNFA
NFA → GNFA

GNFA → RegEx Summary

9/23

Proof (2/2): NFA \rightarrow RegEx — Converting NFA into GNFAs

Example (NFA \rightarrow GNFA)

NFA ↔ DFA ↔ RegEx

viinamap

NFA → DFA

_ . . .

ε-NFAs
Regular operations

PXPRESSIONS

RegEx → NFA

NFA → RegEx

GNEA

 $NFA \rightarrow GNFA$ $GNFA \rightarrow RegEx$

Key observation: Given a GNFA, the "inner states" may be removed from it, one at a time, with regular expressions replacing each removed transition. We end with only the initial and accept states, and a single transition between them, labelled with a regular expression.

The GNFA Algorithm

- Convert the NFA to a GNFA.
- 2 Remove the "inner states," one at a time, and replace the affected transitions using RegEx's.
- Repeat until only two states (initial and accept) remain.
- 4 The RegEx on the only remaining transition is the required RegEx.

.....

NFA → DFA

e-NFAs
Regular operations

expressions

RegEx \rightarrow NFA

NFA \rightarrow RegEx

GNFA

NFA \rightarrow GNFA

GNFA \rightarrow RegEx

Example

NFA ↔ DFA ↔ RegEx

Mindmap

NFA → DFA

Regularity €-NFAs

Regular operations

expressions

RegEx → NFA

NFA → RegEx

GNFA

 $\begin{array}{c} \text{NFA} \longrightarrow \text{GNFA} \\ \text{GNFA} \longrightarrow \text{RegEx} \end{array}$

Summary

- Introduced GNFAs as a means of converting NFAs to equivalent RegEx's
- Demonstrated how to turn an NFA into a GNFA
- Demonstrated how to obtain RegEx's from a GNFA by removing states one at a time
- The set of regular languages is exactly equal to the set of languages described by some RegEx/GNFA/ε-NFA/NFA/DFA.

Regular Languages

The class of regular languages can be:

- Recognized by NFAs. (equiv. GNFA or ε-NFA or NFA or DFA).
- Described using Regular Expressions.
- Generated using **Linear Grammars**. (See this later!)

NFA ↔ DFA ↔ RegEx

Mindmap

 $NFA \rightarrow DFA$

Regularity €-NFAs Regular operations

Paypressions

RegEx \rightarrow NFA

NFA \rightarrow RegEx

GNFA

NFA \rightarrow GNFA

GNFA \rightarrow RegEx