BAYESIAN LEARNING - LECTURE 9

Mattias Villani

Division of Statistics

Department of Computer and Information Science
Linköping University

LECTURE OVERVIEW

- ► Markov Chain Monte Carlo
- ► Metropolis-Hastings

MARKOV CHAINS

Markov chain

$$Pr(X_{t+1} = x | X_t = x_t, ..., X_1 = x_1) = Pr(X_{t+1} = x | X_t = x_t)$$

► Markov chain with two states: *i* and *j*. **Transition probabilities**:

$$p_{ij} = \Pr(X_{t+1} = j | X_t = i)$$

Example

$$P = \begin{pmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{pmatrix} = \begin{pmatrix} 0.3 & 0.7 \\ 0.4 & 0.6 \end{pmatrix}$$

STATIONARY DISTRIBUTION

- ▶ Initial probabilities: $\alpha_0 = Pr(X_0 = x)$.
- ▶ Marginal distribution of the chain at time t

$$\alpha_0 P^t$$

Stationary distribution

$$\pi = \pi P$$

$$P^{t} \to \begin{pmatrix} \pi \\ \pi \\ \vdots \\ \pi \end{pmatrix}$$

- lacktriangledown [π is the normalized left eigenvector corresponding to the eigenvalue 1]
- ► Example:

$$P = \left(\begin{array}{ccc} 0.8 & 0.1 & 0.1 \\ 0.2 & 0.6 & 0.2 \\ 0.3 & 0.3 & 0.4 \end{array}\right)$$

$$\pi = (0.545, 0.272, 0.181)$$

SIMULATING THE STATIONARY DISTRIBUTION

- ▶ Suppose we want to simulate from a discrete distribution p(x) for $x \in \{s_1, s_2, ..., s_k\}$.
- ▶ Basic idea of MCMC: simulate from a Markov chain with a stationary distribution that is exactly p(x).
- ▶ How to set up the transition matrix P? Metropolis-Hastings.

REJECTION SAMPLING

THE METROPOLIS ALGORITHM

- ▶ Initialize with $\theta = \theta_0$
- ▶ For t = 1, 2, ...
 - ▶ Sample a proposal draw $\theta^* | \theta^{(t-1)} \sim J_t(\theta^*, \theta^{(t-1)})$
 - Accept θ^* with probability

$$r(\theta^*, \theta^{(t-1)}) = \min \left[\frac{p(\theta^*|y)}{p(\theta^{(t-1)}|y)}, 1 \right].$$

• If the proposal is accepted, set $\theta^{(t)} = \theta^*$, otherwise set $\theta^{(t)} = \theta^{(t-1)}$.

METROPOLIS ALGORITHM, CONT.

- ▶ We must be able to compute the posterior density $p(\theta|y)$ for any θ .
- ► The Metropolis algorithm works even if $p(\theta|y)$ is only known up to a proportionality constant as it simply cancels in $r(\theta^*, \theta^{(t-1)})$.
- ▶ The proposal, or jumping, distribution $J_t(\theta^*|\theta^{(t-1)})$ may vary from iteration to iteration.
- ▶ $J_t(\theta^*, \theta^{(t-1)})$ must be symmetric, i.e.

$$J_t(\theta_a|\theta_b) = J_t(\theta_b|\theta_a)$$
 for all θ_a, θ_b and t .

Every proposal that θ^* that lies uphill $(p(\theta^*|y) \ge p(\theta^{(t-1)}|y))$ is accepted with certainty. Downhill moves accepted with prob. $r(\theta^*, \theta^{(t-1)})$.

METROPOLIS - CHOOSING THE PROPOSAL DISTRIBUTION

► Common choice of proposal distribution:

$$J_t(\theta^*|\theta^{(t-1)}) = N\left(\theta^{(t-1)}, \Sigma\right)$$

where $\Sigma = c^2 \cdot J_{\tilde{\theta}, \mathbf{x}}^{-1}$ and $\cdot J_{\tilde{\theta}, \mathbf{x}}$ is the observed information matrix at the posterior mode (numerical optimization).

- ▶ c is a tuning constant set so that average acceptance probability is something like 0.3 (see Section 11.9).
- lacktriangle A good proposal $J_t(heta^*| heta^{(t-1)})$ should have the following properties
 - Easy to sample
 - ▶ Easy to compute $r(\theta^*, \theta^{(t-1)})$
 - ► Takes reasonably large jumps in the parameter space
 - ▶ The jumps are not rejected too frequently.

PRACTICAL IMPLEMENTATION OF MCMC ALGORITHMS

- ► The autocorrelation in the simulated sequence $\theta^{(1)}$, $\theta^{(2)}$,, $\theta^{(N)}$ makes it somewhat problematic to define the effective number of simulation draws.
- ► Inefficiency factor:

$$IF = 1 + 2\sum_{i=1}^{\infty} \rho_i,$$

where ρ_i is the autocorrelation at lag i.

Effective sample size:

$$ESS = N/IF.$$

- ▶ When do we stop sampling?
- How many burn-in iterations to discard?
- ► Several short sequences or a single long sequence? To thin out or not to thin out?
- Software issues.

CONVERGENCE DIAGNOSTICS

- Raw plots of the simulated sequences (trajectories)
- CUSUM plots (+ Local)
- Anova-type tests. After convergence, it should not matter if we compute the marginal posterior variance of from:
 - 1. one big posterior sample which merges all the m parallel sequences together
 - each of the parallel sequences separately and then average the m estimates.
- Potential scale reduction factor:

$$R = \frac{\text{Variance under setting 1}}{\text{Variance under setting 2}}$$

 $R \downarrow 1$ as $N \rightarrow \infty$.

THE METROPOLIS-HASTINGS ALGORITHM

- Generalization of the Metropolis algorithm to non-symmetric proposals.
- ▶ The acceptance probability is slightly more complicated

$$r(\theta^*, \theta^{(t-1)}) = \min \left[\frac{p(\theta^*|y)/J_t(\theta^*|\theta^{(t-1)})}{p(\theta^{(t-1)}|y)/J_t(\theta^{(t-1)}|\theta^*)}, 1 \right].$$

- ▶ Gibbs sampling is a special case of the MH algorithm where the proposal is the full conditional posterior and $r(\theta^*, \theta^{(t-1)}) = 1$ for any $(\theta^*, \theta^{(t-1)})$ pair.
- ► Metropolis-Hastings-within-Gibbs hybrid algorithms.