

Today

- Multivariate linear regression
- Solution for SSD cost Assignment Project Exam Help
 - Indirect
 - https://powcoder.com
 - Direct
- Maximum likelihood cost

Linear Regression

Hypothesis:

$$h_{\theta}(x) = \theta_{\text{Assignment}} + \theta_{\text{100}} x$$

500

 θ_i 's: Parameters://powcoder.com

Cost Function:

Add WeChat powcoder

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

SSD = sum of squared differences, also SSE = sum of squared errors

Multidimensional inputs

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
2104	ssignme	ent Proje	ect Easam I	Help460
1416	3	2	40	232
1534	a ttos	://pewco	oder.&om	315
852	2	1	36	178
	Add	WeChat	powcode	 C

Notation:

n = number of features

 $x^{(i)}$ = input (features) of i^{th} training example.

 $x_j^{(i)}$ = value of feature j in i^{th} training example.

Multivariate Linear Regression

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

For convenience of notation, define x_0 Exam Help

 θ_i 's: Parameters https://powcoder.com

Cost Function: Add WeChat powcoder

$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal: minimize $J(\theta_0, \theta_1, \dots, \theta_n)$ How??

Two potential solutions

$$\min_{\theta} J(\theta; x^{(1)}, y^{(1)}, \dots, x^{(m)}, y^{(m)})$$

Gradient des Assignmenthe Pritique ti Vexalgo Helipn)

- Start with a guess for θ
 Change θ to decrease powcoder.com
- Until reach minimum.
 Add WeChat powcoder

Direct minimization

- Take derivative, set to zero
- Sufficient condition for minima
- Not possible for most "interesting" cost functions

Add WeChat powcoder Gradient Descent

Gradient Descent Algorithm

Gradient Descent: Intuition

Gradient Descent: Intuition

Gradient descent illustration (credit: https://towardsdatascience.com/

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

Assignment Project Exam Help

$$\frac{\partial}{\partial \theta_j} J(\theta)$$
 $=$ https://powcoder.com

For one example

$$\frac{\partial}{\partial \theta_{j}} J(\theta) = \frac{\partial}{\partial \theta_{j}} \frac{1}{2} (h_{\theta}(x) - y)^{2}$$
Assignment Project Exam Help

https://powcoder.com

For one example

$$\frac{\partial}{\partial \theta_{j}} J(\theta) = \frac{\partial}{\partial \theta_{j}} \frac{1}{2} (h_{\theta}(x) - y)^{2}$$
Assignment Project Exam₀Help
$$= 2 \cdot \frac{1}{2} (h_{\theta}(x) - y) \cdot \frac{1}{2} (h_{\theta}(x) - y)$$
https://powcoder.com/\theta_{j}

For one example

$$\frac{\partial}{\partial \theta_{j}} J(\theta) = \frac{\partial}{\partial \theta_{j}} \frac{1}{2} (h_{\theta}(x) - y)^{2}$$
Assignment Project Exam Help
$$= 2 \cdot \frac{1}{2} (h_{\theta}(x) - y) \cdot \frac{1}{2} (h_{\theta}(x) - y)$$

$$= \frac{\text{Add WeChat poweder}}{(h_{\theta}(x) - y)} \cdot \frac{1}{2} \theta_{j} \left(\sum_{i=0}^{n} \theta_{i} x_{i} - y \right)$$

For one example

$$\frac{\partial}{\partial \theta_{j}} J(\theta) = \frac{\partial}{\partial \theta_{j}} \frac{1}{2} (h_{\theta}(x) - y)^{2}$$
Assignment Project Exam Help
$$= \frac{2 \cdot \frac{1}{2} (h_{\theta}(x) - y) \cdot \frac{\partial}{\partial \theta_{j}} (h_{\theta}(x) - y)}{\text{http2://powcoder.com}} (h_{\theta}(x) - y)$$

$$= \frac{\text{Add WeChat powcoder.}}{(h_{\theta}(x) - y) \cdot \frac{\partial}{\partial \theta_{j}}} \left(\sum_{i=0}^{n} \theta_{i} x_{i} - y \right)$$

$$= (h_{\theta}(x) - y) x_{j} \quad \text{What is this?}$$

Gradient Descent Algorithm

Set
$$\theta = 0$$

Repeat {
$$\theta_j \coloneqq \theta_j - \alpha \frac{\mathbf{x}_j^{m}}{m} \underbrace{\mathbf{x}_j^{m} \mathbf{x}_j^{m} \mathbf{x}_j^{m} \mathbf{x}_j^{m} \mathbf{x}_j^{m}}_{\mathbf{x}_j^{m} \mathbf{x}_j^{m} \mathbf{x}_j^{m} \mathbf{x}_j^{m} \mathbf{x}_j^{m} \mathbf{x}_j^{m}}_{\mathbf{x}_j^{m} \mathbf{x}_j^{m} \mathbf{x}_$$

} until convergence Add WeChat powenderector form?

$$\boldsymbol{\theta} \coloneqq \boldsymbol{\theta} + \alpha \frac{1}{m} \boldsymbol{e}^T \boldsymbol{X} \\ \boldsymbol{e}_i = h_{\theta} (\boldsymbol{x}^{(i)}) - \boldsymbol{y}^{(i)}$$

$$\boldsymbol{X} = \begin{bmatrix} \boldsymbol{x}_1^{(1)} & \cdots & \boldsymbol{x}_n^{(1)} \\ \vdots & \ddots & \vdots \\ \boldsymbol{x}_1^{(m)} & \cdots & \boldsymbol{x}_n^{(m)} \end{bmatrix}$$

Feature normalization

- If features have very different scale, GD can get "stuck" since x_j affects size of gradient in the direction of j^{th} dimension
- Normalizing features to be zero-mean (μ) and same-variance (σ) helps gradient descent converge faster

https://powcoder.com

Add WeChat.powcoder Direct Solution

Direct solution

Want to minimize SSD:

$$J(\theta_0, \theta_1, \dots, \theta_m) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$
Assignment Project Exam Help

Find minima of fun the strong in the strong

$$\theta \in \mathbb{R}^{n+1}$$

Add WeChat powcoder

$$\frac{\partial}{\partial \theta_j} J(\theta) = \cdots = 0$$
 (for every j)

Solve for $\theta_0, \theta_1, \dots, \theta_n$

Direct solution

Re-write SSD using vector-matrix notation:

$$J(\theta) = \frac{1}{2m} (X\theta - y)^T (X\theta - y)$$
Assignment Project Exam Help

$$-(x^{(1)})^T$$
 $y^{(1)}$ $y^{(1)}$ $y^{(2)}$

$$X = \begin{bmatrix} -(x^{(1)})^T - \\ -\mathbf{Add}^T \mathbf{WeChat} & y^{(2)} \\ \vdots \\ -(x^{(m)})^T - \end{bmatrix}$$

Solution: Normal Equation

$$\theta = (X^T X)^{-1} X^T y$$

Derivation of Normal Equations

SSE in matrix form:

$$J(\theta) = \frac{1}{2m} (X\theta - y)^{T} (X\theta - y) =$$

$$= \frac{\text{Assignment Project Exam Help}}{\text{Help}}$$

$$= \frac{1}{2m} \{\theta^{T} \{X^{T} X\} \theta - 2\{X^{T} y\}^{T} \theta + const\}$$

$$= \frac{1}{2m} \{\theta^{T} \{X^{T} X\} \theta - 2\{X^{T} y\}^{T} \theta + const\}$$

• Take derivative with respect to θ (vector), set to 0

$$\frac{\partial J}{\partial \theta} \propto X^T X \theta - X^T y = 0$$
 ignore constant multiplier
$$\theta = (X^T X)^{-1} X^T y$$

Also known as the least mean squares, or least squares solution

Example: m = 4.

	Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
$\underline{}$ x_0	x_1	x_2	x_3	x_4	y
1	2104	5	1	45	460
1	1 44 §Si	gnment	Project I	Exam ^o Help	232
1	1534	3	2	30	315
1	852	https://p	owcodei	c.com ₆	178

Design **Matrix**

Add WeChat powcoder
$$\begin{bmatrix}
 1 & 2104 & 5 & 1 & 45 \\
 1 & 1416 & 3 & 2 & 40 \\
 1 & 1534 & 3 & 2 & 30 \\
 1 & 852 & 2 & 1 & 36
 \end{bmatrix}
 \quad y = \begin{bmatrix}
 460 \\
 232 \\
 315 \\
 178
 \end{bmatrix}$$

$$y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix}$$

Normal Equation

$$\theta = (X^T X)^{-1} X^T y$$

Trade-offs

m training examples, *n* features.

Gradient Descent Normal Equations Assignment Project Exam Help

- Need to choose α .
 Needs many iterations.
 No need to choose α .
 Don't need to iterate.
- Add WeChat powcoder
- Works well even when *n* is large.

Need to compute

$$(X^T X)^{-1}$$

• Slow if *n* is very large.

So far, we have treated outputs as noiseless

- Defined cost function as "distance to true output" Assignment Project Exam Help
- An alternate wiew/powcoder.com
 - data (x,y) are generated by unknown process
 however, we only observe a noisy version

 - how can we model this uncertainty?

Alternative cost function?

How to model uncertainty in data?

New cost function:

maximize probability of data given model:

$$p((\mathbf{x}^{(i)}, \mathbf{y}^{(i)})|\theta)$$

Recall: Cost Function

Alternative View:

"Maximum Likelihood"

Maximum Likelihood: Example

Intuitive example: Estimate a coin toss

I have seen 3 flips of heads, 2 flips of tails, what is the chance of head (o Assignment Project Exam Help

Model: https://powcoder.com

Each flip is a Bennowlice and power in the X

X can take only two values: 1 (head), 0 (tail)

$$p(X = 1) = \theta, \quad p(X = 0) = 1 - \theta$$

• θ is a parameter to be identified from data

Maximum Likelihood: Example

• 5 (independent) trials

• Likelihood ohttps://powerdstions:

$$p(X_1,...,X_5|\theta) = \theta^{9}(1-\theta)^{2}$$

Intuition

ML chooses θ such that likelihood is maximized

Maximum Likelihood: Example

5 (independent) trials

• Likelihood ohttps://powerdstions:

$$p(X_1,...,X_5|\theta) = \theta^{9}(1-\theta)^{2}$$

Solution (left as exercise)

$$\theta_{ML} = \frac{3}{(3+2)}$$

i.e. fraction of heads in total number of trials

PSet 1 Out

- Due on Tuesday 9/15 11:59pm GMT -5
 (Boston Time)
 Assignment Project Exam Help
- Diagnostic homework covering topics covered in preregs

 Add WeChat powcoder

Next Class

Supervised Learning II: Classification:

classification; sigmoid function; logistic Assignment Project Exam Help regression.

https://powcoder.com

Reading: Bishop 4.3.1-4.3.2; 4.3.4

overview of logistic regression