9/11/2022

תרגיל בית 1 בלמידת מכונה

We define
$$\sigma = 1$$
, $n = 1000$, $m = 2$ when $\beta = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$.

For these values, we got $\hat{\beta} \approx {0.956 \choose 2.082}$.

For
$$n = 100$$
, $\hat{\beta} \approx {1.205 \choose 1.983}$.

For
$$n = 10$$
, $\hat{\beta} \approx \begin{pmatrix} 0.990 \\ 0.841 \end{pmatrix}$.

The more samples we have, the best is the estimation. Let us define n = 1000. We would like to see how the variations of σ are influencing the value of $\hat{\beta}$.

For
$$\sigma = 0.1$$
, $\hat{\beta} \approx {0.982 \choose 2.029}$.

For
$$\sigma = 0.01$$
, $\hat{\beta} \approx \begin{pmatrix} 1.000 \\ 2.004 \end{pmatrix}$.

The smaller σ is, the better the result of the linear regression is.