

Index

Ur	Init – 2 → Recurrence Relation and Propositional Logic3				
Ur	nit – 2.1 → Recurrence Relation	3			
1)	Method − 2 → Solution of Linear Recurrence Relation using Undetermined Coefficient Method	3			
Ur	nit – 2.2> Propositional Logic	5			
2)	Method 1 → Statements	5			
3)	Method 2 → Logical Connectives	8			
4)	Method 3 → Precedence Rule	.18			
5)	Method 4 → Well Formed Formula	.19			
6)	Method 5 → Tautologies	.20			
7)	Method 6 → Equivalence of Formulas	.22			
8)	Method 7 → Normal Forms	.25			

Unit – 2 → Recurrence Relation and Propositional Logic

Unit – 2.1 → Recurrence Relation

Method − 2 → Solution of Linear Recurrence Relation using Undetermined Coefficient Method

<u>Examples of Method-2: Solution of Linear Recurrence Relation using Undetermined</u> <u>Coefficient Method</u>

	1					
Α	1	Solve the recurrence relations $a_n = 6a_{n-1}$ using the method of undetermined				
		coefficients.				
		Answer: C ₁ (6) ⁿ				
Α	2	Solve the recurrence relations $a_n = a_{n-1} + 2a_{n-2}$ using the method of				
		undetermined coefficients.				
		Answer: $C_1(2)^n + C_2(-1)^n$				
Α	3	Solve the recurrence relations $a_n = 9a_{n-1} - 27a_{n-2} + 27a_{n-3}$ using the				
		method of undetermined coefficients.				
		Answer: $(C_1 + C_2 n + C_2 n^2)(3)^n$				
В	4	Solve the following recurrence relations using the method of undetermined				
		coefficients:				
		(1) $a_n - 7a_{n-1} + 10a_{n-2} = 0$; $a_0 = 0$, $a_1 = 3$				
		(2) $a_n + 2a_{n-1} - 15a_{n-2} = 0$; $a_0 = 0$, $a_1 = 1$				
		(3) $a_n = 2a_{n-1} - a_{n-2}$; $a_1 = 1.5$, $a_2 = 3$				
		(4) $a_n - 4a_{n-1} + 4a_{n-2} = 0$; $a_0 = 1$, $a_1 = 6$				
		(τ) a_n τa_{n-1} $\tau a_{n-2} = 0$, $a_0 = 1$, $a_1 = 0$				
		Answer: (1) $a_n = (5)^n - (2)^n$ (2) $a_n = \frac{1}{8}(3)^n - \frac{1}{8}(-5)^n$				
		(3) $a_n = (1.5n)(1)^n$ (4) $a_n = (1+2n)(2)^n$				

С	5	Find the unique solution to recurrence relation with the given initial					
		conditions:					
		$a_n = 10a_{n-1} - 32a_{n-2} + 32a_{n-3}$; $n \ge 3$, $a_0 = 5$, $a_1 = 18$, $a_2 = 76$					
		Answer: $a_n = (2 + n)(4)^n + 3(2)^n$					
В	6	Find solution to recurrence relation with the given initial conditions:					
		$a_n = 5a_{n-1} + 3 ; n \ge 1, a_1 = 2$					
		Answer: $a_n = \frac{11}{20} (5)^n - \frac{3}{4}$					
В	7	Solve the given recurrence relation using the method of undetermined					
		coefficients $a_n - a_{n-1} - 2a_{n-2} = n^2$; $n \ge 2$.					
		Answer: $a_n = C_1(-1)^n + C_2(2)^n - 4 - \frac{5}{2}n - \frac{1}{2}n^2$					
В	8	Solve the given recurrence relation using the method of undetermined					
		coefficients $a_n = 2a_{n-1} + 3a_{n-2} + 5^n$; $n \ge 2$, $a_0 = -2$, $a_1 = 1$.					
		Answer: $a_n = -\frac{17}{24}(-1)^n - \frac{27}{8}(3)^n + \frac{25}{12}(5)^n$					
С	9	Solve the given recurrence relation $a_n - 4a_{n-1} + 4a_{n-2} = n + 3^n$ using					
		undetermined coefficients method.					
		Answer: $a_n = (C_1 + C_2 n)(2)^n + 4 + n + (3)^{n+2}$					
С	10	Solve the given recurrence relation using the method of undetermined					
		coefficients $a_n = 5a_{n-1} - 6a_{n-2} + 2^n + 3n$; $n \ge 2$, $a_0 = 2$, $a_1 = -2$.					
		Answer: $a_n = -5(2)^n + \frac{7}{4}(3)^n - n2^{n+1} + \frac{21}{4} + \frac{3}{2}n$					

Unit - 2.2 → Propositional Logic

Method 1 ---> Statements

Examples of Method-1: Statements

	ı				
Α	1	Which of the following are proposition?			
		p: Do not go.			
		q: 4 > 3			
		r: 4 is an integer.			
		Answer: q and r are proposition			
Α	2	Which of the following are not proposition?			
		$p: x \in \{8, 9, 10, 11\}$			
		q: 2 > 3			
		r : x is perfect square.			
		Answer: p and r are not proposition			
Α	3	Which of the following are proposition?			
		p: grass is green.			
		q:2+5=5			
		s: Javaharlal Nehru is the first prime minister of india.			
		Answer: p, q and s are proposition			
Α	4	Which of the following are proposition?			
		p: Look Out!			
		q: How far is it to the next town?			
		r: x+2=2x			
		s: x + 2 = 2x when x = -2			
		Answer: s is a proposition			

Α	5	Which of the following are proposition?					
		p: 5 is a Prime Number.					
		q:8 is an odd number.					
		r : Did you lock the door?					
		s : Happy Birthday!					
		An annual in an Amanual and a second a second and a second a second and a second and a second and a second and a second an					
	(Answer: p and q are proposition					
A	6	Assign the truth value to the following sentences if it is proposition.					
		p: 4 is an integer.					
		q:4>7					
		r: India Won cricket world cup of 1983.					
		s : You are innocent.					
		Answer: $p:T$, $q:F$, $r:T$,					
		s : No truth value as it is not a proposition					
Α	7	Assign the truth value to the following sentences if it is proposition.					
		p: Water boils at 100 degrees celsius at sea level.					
		q : All birds can fly.					
		r : Sum of angles of triangle is 360°.					
		s: The sky is blue.					
		Answer: $p : T$, $q : F$, $r : F$,					
		s: No truth value as it is not a proposition					
A	8	Assign the truth value to the following sentences if it is proposition.					
		p: Dublin is a capital of Ireland.					
		q:5-11=7					
		r: 2 is an even number.					
		s: Kuala Lumpur is the capital of Malasia.					
		t: You and me.					
		Answer: $\mathbf{p}: \mathbf{T}$, $\mathbf{q}: \mathbf{F}$, $\mathbf{r}: \mathbf{T}$, $\mathbf{s}: \mathbf{T}$,					
		t : No truth value as it is not a proposition					

Assign the truth value to the following sentences if it is proposition. A p: How are you? q: Bangkok is the capital of Thailand. r : September has 30 days. s : A square has five sides. t: A cow has 12 legs. Answer: p: No truth value as it is not a proposition, q: T, r : Fs : F, t : FAssign the truth value to the following sentences if it is proposition. Α 10 p: A triangle has 3 sides. q: 57 is a prime number. r: 12 + (-4) = 8s: London is the capital of England. Answer: p : T, q : F, $\mathbf{r}:\mathbf{T},$ s:T

Method 2 ---> **Logical Connectives**

Examples of Method-2.1: Conjunction

Α	1	Find the conjunction of propositions p and q.						
11	_							
		Where, p: Shyam is happy.						
		q: Shyam is rich.						
		Answer: Shyam is happy and he is rich.						
_	_	1 11						
Α	2	Find the conjunction of propositions p and q.						
		Where, p: Today is Monday.						
		q: It is raining today.						
		Answer: Today is Monday and it is rainning.						
Α	3	Define truth value for the following conjunction:						
		(1) $4 + 2 = 6$ and Virat Kohli won the gold medal in Olympic.						
		(2) Sardar Patel was born in Guajrat and he was a lawyer.						
		Answer: (1) F, (2) T						
Α	4	Define truth value for following conjunction:						
		(1) All rational numbers are complex numbers and $2 + 8 = 10$.						
		(2) $x + 2 = 6$ if $x = 4$ and $x + 2 = 6$ if $x = 6$.						
		Answer: (1) F, (2) F						
A	5	Determine truth value for following conjunction:						
11								
		(1) Paris is in France and London is in England.						
		(2) $x + 3 = 6$ if $x = 8$ and $x + 5 = 6$ if $x = 10$						
		Answer: (1) T, (2) F						

В	6	Construct the truth table for $(q \land r)$.		
		Answe	r:	
		q	r	$(\mathbf{q} \wedge \mathbf{r})$
		T	T	T
		T	F	F
		F	T	F
		F	F	F

Examples of Method-2.2: Disjunction

A	1	Find the disjunction of propositions p and q.					
		Where, p: Mohan is scientist.					
		q : Shyam is scientist.					
		Answer: Mohan is scientist or Shyam is scientist.					
A	2	Find the disjunction of propositions p and q.					
		Where, p: Today is Monday.					
		q: It is raining today.					
		Answer: Today is Monday or it is rainning.					
Α	3	Define truth value for following disjunction:					
		(1) Tata group was title sponsor of IPL 2023 or Amazon was title sponsor					
		of IPL 2023.					
		(2) Penguin can fly or Ostrich can fly.					
		Answer: (1) T, (2) F					
A	4	Define truth value for following disjunction:					
		(1) Square root of negative number is natural number or square root of					
		negative number is real number.					
		(2) An acute angle measures less than 90° or right-angle measures less					
		than 90°.					
		Answer: (1) F, (2) T					

Examples of Method-2.3: Negation

Α	1	Write negation for each of the following propositions:				
		p: Robin is present.				
		q : He has money to purchase food.				
		r : She will accept my proposal.				
		s: Everybody will talk during the program.				
		Answer: ¬p: Robin is not present.				
		¬q: He has no money to purchase food.				
		¬r: She will never accept my proposal.				
		$\neg s$: Nobody will talk during the program.				
Α	2	Write negation for each of the following propositions:				
		p: James and Jack mentioned this place in their tutoring place.				
		q : She can make coockies and pasta for all of us.				
		r: I am going to school.				
		Answer: ¬p: Neither James nor Jack mentioned this place in their				
		tutoring place.				
		$\neg q$: She can neither make coockies nor pasta for all of us.				
		¬r: I am not going to school.				

B 3 Translate the following symbolic form into sentences:

- (1) $\neg r \land q$
- (2) $\neg q \lor p$
- (3) $\neg p \land \neg q$
- **(4)** p ∨ ¬r

Where, p: Today I am not happy.

q: The river is clean.

r: 3 > 2

Answer: (1) $3 \ge 2$ and the river is clean.

- (2) The river is not clean or today i am not happy.
- (3) Today i am happy and the river is not clean.
- (4) Today I am not happy or 3 > 2.

B 4 Construct the truth table for compound propositions $p \lor \neg q$.

Answer:

p	q	$\mathbf{p} \vee \neg \mathbf{q}$		
T	T	T		
T	F	T		
F	T	F		
F	F	T		

B | 5 | Construct the truth table for compound propositions $\neg(\neg p \lor \neg q)$.

Answer:

p	q	$\neg(\neg p \lor \neg q)$
T	T	T
T	F	F
F	T	F
F	F	F

Examples of Method-2.4: Conditional

В	1	Express the following statements in symbolic form:			
		For, p: It is cold.			
		q: It is raining.			
		(1) If it is cold, then it is raining.			
		(2) If it is raining, then it is cold.			
		(3) If it is not raining, then it is not cold.			
		(4) If it is not cold, then it is raining.			
		Answer: (1) $p \rightarrow q$, (2) $q \rightarrow p$, (3) $\neg q \rightarrow \neg p$, (4) $\neg p \rightarrow q$			
В	2	Express the following statements in symbolic form:			
		For, p: The material is interesting.			
		q: The exercise are challenging.			
		r: The course is enjoyable.			
		(1) If the material is interesting, then the exercise are challenging and			
		conversely.			
		(2) If material is not interesting and exercise are not challenging, then the			
		course is not enjoyable.			
		Answer: (1) $(p \rightarrow q) \land (q \rightarrow p)$, (2) $(\neg p \land \neg q) \rightarrow \neg r$			
В	3	Express the following compound propositions as an English sentence by			
		using p, q:			
		Where, p: It is below freezing.			
		q: It is snowing.			
		$(1) q \to p$			
		$(2) \neg q \rightarrow \neg p$			
		$(3) \neg p \rightarrow \neg q$			
		Answer: (1) If It is snowing, then it is below freezing.			
		(2) If It is not snowing, then it is not below freezing.			
		(3) If It is not below freezing, then it is not snowing.			

B 4 Determine whether the following conditional statements are true or false:

(1) If
$$1 + 1 = 3$$
, then $2 + 3 = 5$.

(2) If
$$1 + 1 = 3$$
, then dogs can fly.

(3) If
$$1 + 1 = 2$$
, then cats can fly.

(4) If
$$2 + 2 = 4$$
, then $1 + 2 = 3$.

Answer: (1) T, (2) T, (3) F, (4) T

B | 5 | Construct the truth table for $(p \lor \neg q) \rightarrow q$.

Answer:

p	q	$(p \vee \neg q) \to q$
T	T	T
T	F	F
F	T	T
F	F	F

B 6 Construct the truth table for $(p \rightarrow q) \vee (\neg p \rightarrow q)$.

Answer:

p	q	$(p \to q) \lor (\neg p \to q)$		
T	T	Т		
T	F	T		
F	T	T		
F	F	T		

B 7 Express the inverse, converse and contrapositive statements of conditional statement given below:

"If a man is a gentleman, then he is considerate of others".

Answer: (1) Converse: "If man is considerate of others,

then he is a gentleman".

(2) Inverse: "If man is not a gentleman,

then he is not considerate of others".

(3) Contrapositive: "If man is not considerate of others,

then he is not a gentleman".

В	8	Express the inverse and contrapositive statements of converse statement
		given below:
		"If a steel rod stretches, then it has been heated".
		Answer: (1) Inverse: "If a steel rod does not stretch,
		then it has not been heated".
		(2) Contrapositive: "If it has not been heated,
		then steel rod does not stretch".
В	9	Express the inverse and contrapositive statements of conditional statement
		given below:
		"If x is rational, then x is real".
		Answer: (1) Inverse: "If x is not rational, then x is not real"
		(2) Contrapositive: "If x is not real, then x is not rational"

Examples of Method-2.5: Biconditional

- Α Determine whether each of the following biconditional statements is true or false:
 - (1) 1+1=3 if and only if 2+3=5.
 - (2) 1+1 = 3 if and only if dogs can fly.
 - (3) 1+1 = 2 if and only if cats can fly.
 - (4) 2+2 = 4 if and only if 1+2 = 3.
 - Answer: (1)F, (2)T, (3)F, (4)T
 - Construct the truth table for $(p \rightarrow q) \rightleftarrows (\neg p \lor q)$. 2

Answer:

B

p	q	$(p \to q) \rightleftarrows (\neg p \lor q)$
T	T	T
T	F	T
F	T	T
F	F	T

 C Construct the truth table for $(\neg p \rightleftarrows \neg q) \rightleftarrows (p \rightleftarrows q)$. 3

Answer:

p	q	$(\neg p \rightleftarrows \neg q) \rightleftarrows (p \rightleftarrows q)$
T	T	T
T	F	T
F	T	T
F	F	T

C 4 Construct the truth table for $(p \rightleftarrows q) \rightleftarrows ((p \land q) \lor (\neg p \land q))$.

Answer:

p	q	$(p \rightleftarrows q) \rightleftarrows ((p \land q) \lor (\neg p \land q))$
T	T	T
T	F	T
F	T	F
F	F	F

С	5	Construct the truth table for $\neg(p \lor (q \land r)) \rightleftarrows ((p \lor q) \land (p \lor r))$.				
		Answer:				
		р	q	r	$\neg (p \lor (q \land r)) \rightleftarrows ((p \lor q) \land (p \lor r))$	
		T	T	T	F	
		T	T	F	F	
		T	F	T	F	
		T	F	F	F	
		F	T	T	F	
		F	T	F	F	
		F	F	T	F	
		F	F	F	F	

Method 3 ---> Precedence Rule

Examples of Method-3: Precedence Rule

- A 1 By using preference rule put parentheses at appropriate place for following compound propositions:
 - (1) $p \rightarrow q \rightleftharpoons p \land \neg p \lor \neg q$
 - (2) $\neg p \land q \rightarrow \neg p \lor \neg q$
 - (3) $(p \rightarrow q) \land q \rightarrow r) \rightarrow (p \rightarrow r)$

Answer: (1) $(p \rightarrow q) \rightleftarrows (p \land ((\neg p) \lor (\neg q)))$

- (2) $((\neg p) \land q) \rightarrow ((\neg p) \lor (\neg q))$
- $(3) \quad \left(\left(\left(p\rightarrow q\right) \land q\right)\rightarrow r\right)\rightarrow \left(p\rightarrow r\right)$
- A 2 By using preference rule put parentheses at appropriate place for following compound propositions:
 - (1) $p \vee q \rightarrow \neg p \wedge \neg q$
 - (2) $p \vee q \vee r \rightarrow \neg p \vee r$
 - (3) $p \land \neg p \lor \neg q \rightarrow q$

 $Answer: (1) \ (p \lor q) \to \left((\neg p) \land (\neg q) \right)$

- $(2) \ \left((p \lor q) \lor r \right) \to \left((\neg p) \lor r \right)$
- $(3) \ \left(\left(p \land (\neg p)\right) \lor (\neg q)\right) \to q$

Method 4 ---> Well Formed Formula

Examples of Method-4: Well Formed Formula

- Which of the following are not well-formed formula? Α
 - (1) $(p \rightarrow (p \land q))$
 - (2) $\neg p \land \neg q$

Α

2

- $(3) \quad (p \land q) \rightarrow q)$
- (4) $p \wedge q \rightarrow \neg(p)$
- (5) $(\neg p \lor (q \land r))$
- Answer: (2), (3), **(4)** Which of the following are well-formed formula?
- (1) $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$
 - (2) $(p \rightarrow q) \rightarrow (\neg p \rightarrow \neg q)$
 - (3) $(p \land (\neg p \lor \neg q)) \rightarrow q$
 - (4) $((p \rightarrow r) \lor (q \rightarrow r)) \rightarrow ((p \lor q)) \rightarrow r)$
 - Answer: None of them are well formed formula
- A Which of the following are well-formed formula?
 - (1) $((p \rightarrow r) \lor q)$
 - (2) $(((p \rightarrow r) \lor r) \lor p)$
 - (3) $(p \rightarrow (r \land (\neg p))) \rightarrow q$
 - **Answer**: (1), (2)

Method 5 → **Tautologies**

Examples of method-5: Tautologies

В	1	Show that the following propositions are tautology:
D	1	
		(1) $p \lor \neg (p \land q)$
		$(2) \neg (p \land q) \rightleftarrows ((\neg p) \lor (\neg q))$
В	2	Show that the following propositions are tautology:
		(1) $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$
		(2) $((p \lor q) \land (\neg p \lor r)) \rightarrow (q \lor r)$
В	3	Show that the following propositions are contradictions:
		(1) $(\neg q \land p) \land q$
		(2) $(p \land q) \land (\neg p \lor \neg q)$
В	4	Show that the following propositions are contradictions:
		(1) $p \wedge (\neg p \wedge q)$
		(2) $(p \land q) \land \neg (p \lor q)$
В	5	Show that the following propositions are contingency:
		$(1) (p \land q) \rightleftarrows p$
		(2) $(p \land (p \rightarrow \neg q)) \rightarrow q$
В	6	Show that the following propositions are contingency:
		(1) $(p \land q) \rightarrow (r \land (\neg p \land \neg q))$
		(2) $(p \rightarrow \neg q) \rightleftarrows (p \lor q)$

- B 7 Check whether the given formulas are tautologies, contradiction or contingency.
 - (1) $(p \rightarrow (p \lor q))$
 - (2) $(\neg p \rightarrow (p \rightarrow q))$
 - (3) $\neg (p \rightarrow q) \rightarrow p$
 - **(4)** $(p \land (p \rightarrow q)) \rightarrow q$
 - (5) $(\neg q \land (p \rightarrow q)) \rightarrow \neg p$
 - (6) $((p \land q) \rightleftarrows p)$

Answer: (1) Tautology, (2) Tautology, (3) Tautology

(4) Tautology, (5) Tautology, (6) contingency

Method 6 ---> Equivalence of Formulas

Examples of Method-6: Logical Equivalence

B | 1 | Show that, $\neg(p \rightleftharpoons q) \equiv (p \rightleftharpoons \neg q)$.

Hint:

p	q	$\mathbf{p} \rightleftarrows \neg \mathbf{q}$
T	T	F
T	F	T
F	T	T
F	F	F

B Show that $(p \rightarrow q) \equiv (\neg q \rightarrow \neg p)$.

Hint:

111116.			
p	q	$\mathbf{p} \to \mathbf{q}$	
T	T	T	
T	F	F	
F	T	T	
F	F	T	

B Show that, $\neg(p \lor q) \equiv (\neg p \land \neg q)$.

Hint:

p	q	$\neg(\mathbf{p}\lor\mathbf{q})$
T	T	F
T	F	F
F	T	F
F	F	T

B | 4 | Show that, $\neg(p \land q) \equiv (\neg p \lor \neg q)$.

Hint:

p	q	$\neg (\mathbf{p} \wedge \mathbf{q})$
T	T	F
T	F	T
F	T	T
F	F	T

B Show that, $(p \rightleftharpoons q) \equiv (p \rightarrow q) \land (q \rightarrow p)$.

Hint:

p	q	$(\mathbf{p}\rightleftarrows\mathbf{q})$
T	T	T
T	F	F
F	T	F
F	F	T

B | 6 | Show that, $(p \rightarrow q) \land (p \rightarrow r) \equiv p \rightarrow (q \land r)$.

Hint:

p	q	r	$p \to (q \wedge r)$	
T	T	T	T	
T	T	F	F	
T	F	T	F	
T	F	F	F	
F	T	T	T	
F	T	F	T	
F	F	T	T	
F	F	F	T	

B 7 Show that, $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$.

Hint:

p	q	r	$\mathbf{p} \wedge (\mathbf{q} \vee \mathbf{r})$
T	T	T	Т
T	T	F	T
T	F	T	T
T	F	F	F
F	T	T	F
F	T	F	F
F	F	T	F
F	F	F	F

B Show that, $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$.

Hint:

p	q	r	$\mathbf{p} \vee (\mathbf{q} \wedge \mathbf{r})$	
T	T	T	Т	
Т	T	F	Т	
T	F	T	Т	
T	F	F	T	
F	T	T	T	
F	T	F	F	
F	F	T	F	
F	F	F	F	

B Show that, $(p \to r) \land (q \to r) \equiv (p \lor q) \to r$.

Hint:

p	q	r	$(p \vee q) \to r$	
T	T	T	T	
T	T	F	F	
T	F	T	T	
T	F	F	F	
F	T	T	T	
F	T	F	F	
F	F	T	T	
F	F	F	T	

B | 10 | Show that, $\neg p \rightarrow (q \rightarrow r) \equiv q \rightarrow (p \lor r)$.

Hint:

p	q	r	$\neg p \to (q \to r)$
T	T	T	T
T	T	F	T
T	F	T	T
T	F	F	T
F	T	T	T
F	T	F	F
F	F	T	T
F	F	F	T

Method 7 → **Normal Forms**

Examples of Method-7.1: Disjunctive Normal Form (DNF)

A	1	Find disjunctive normal form of $\neg (p \rightarrow (q \land r))$.
		Answer: $(p \land \neg q) \lor (p \land \neg r)$
В	2	Find disjunctive normal form of ($p \rightarrow q$) \land ($q \rightarrow r$).
		Answer: $(\neg p \land \neg q) \lor (q \land \neg q) \lor (\neg p \land r) \lor (q \land r)$
С	3	Find disjunctive normal form of ($p \rightarrow q$) \land ($\neg p \land q$).
		Answer: $(\neg p \land q) \lor (q \land \neg p)$
В	4	Find disjunctive normal form of $(p \land (p \rightarrow q)) \rightarrow q$.
		Answer: $\neg p \lor (p \land \neg q) \lor q$

Examples of Method-7.2: Conjunctive Normal Form

С	1	Find conjunctive normal form of $\neg(p \land q) \rightleftarrows (p \land q)$.
		Answer: $(p \lor q) \land (\neg p \lor \neg q)$
В	2	Find conjunctive normal form of p \land (p \rightarrow q).
		Answer: $\mathbf{p} \wedge (\neg \mathbf{p} \vee \mathbf{q})$
С	3	Find conjunctive normal form of $(p \land q) \lor (\neg p \land q \land r)$.
		Answer: $(p \lor q) \land (p \lor r) \land (q \lor \neg p) \land (q) \land (q \lor r)$
В	4	Find conjunctive normal form of $(\neg p \rightarrow r) \land (p \rightarrow q)$
		Answer: $(p \lor q) \land (q \lor \neg p)$
В	5	Find conjunctive normal form of \neg (($p \lor \neg q$) $\land \neg r$).
		Answer: $(\neg p \lor r) \land (q \lor r)$

Examples of Method-7.3: Principal Disjunctive Normal Form

A	1	Find principal disjunctive normal form of $\neg (p \rightarrow (q \land r))$.
		Answer: $(\mathbf{p} \wedge \mathbf{q} \wedge \neg \mathbf{r}) \vee (\mathbf{p} \wedge \neg \mathbf{q} \wedge \mathbf{r}) \vee (\mathbf{p} \wedge \neg \mathbf{q} \wedge \neg \mathbf{r})$
С	2	Find principal disjunctive normal form of \neg (p \lor q) \rightleftarrows (p \land q).
		Answer: $(p \land \neg q) \lor (\neg p \land q)$
A	3	Find principal disjunctive normal form of \neg ((p $\lor \neg$ q) $\land \neg$ r).
		Answer: $(p \land q \land r) \lor (p \land \neg q \land r) \lor (\neg p \land q \land r) \lor (\neg p \land \neg q \land r)$
С	4	Find principal disjunctive normal form of
		$(p \rightarrow (q \land r)) \land (\neg p \rightarrow (\neg q \land \neg r)).$
		Answer: $(\mathbf{p} \wedge \mathbf{q} \wedge \mathbf{r}) \vee (\neg \mathbf{p} \wedge \neg \mathbf{q} \wedge \mathbf{r}) \vee (\neg \mathbf{p} \wedge \neg \mathbf{q} \wedge \neg \mathbf{r})$

Examples of Method-7.4: Principal Conjunctive Normal Form

A	1	Find principal conjunctive normal form of $\neg (p \rightarrow (q \land r))$.	
		Answer: $(p \lor q \lor r) \land (\neg p \lor q \lor \neg r) \land (\neg p \lor \neg q \lor r) \land (\neg p \lor \neg q \lor \neg r)$	
В	2	Find principal conjunctive normal form of \neg ($p \rightleftharpoons q$).	
		Answer: $(p \lor q) \land (\neg q \lor \neg p)$	
В	3	Find principal conjunctive normal form of $\neg ((p \lor \neg q) \land \neg r)$.	
		Answer: $(\neg p \lor \neg q \lor r) \land (p \lor \neg q \lor \neg r) \land (\neg p \lor \neg q \lor \neg r)$	

* * * * * End of the Unit * * * *

