MODULE 7

LIMITING DISTRIBUTIONS

LECTURE 38

Topics

7.1 CONVERGENCE IN DISTRIBUTION AND PROBABILITY

Theorem 1.1

Let $\{X_n\}_{n\geq 1}$ be a sequence of random variables such that $X_n \stackrel{d}{\to} X$, as $n \to \infty$, for some random variable X. Let F_n and F denote the d.f.s of X_n (n = 1, 2, ...) and X, respectively. Then

$$\lim_{n\to\infty} F_n(x-) = F(x-) = F(x) = \lim_{n\to\infty} F_n(x), \forall x \in C_F,$$

where C_F is the set of continuity points of F.

Proof. We are given that

$$\lim_{n\to\infty} F_n(x) = F(x), \forall x \in C_F \left(\text{since } X_n \xrightarrow{d} X, \text{as } n \to \infty \right).$$

Moreover F(x-) = F(x), $\forall x \in C_F$. Thus it suffices to show that $\lim_{n \to \infty} F_n(x-) = F(x-)$, $\forall x \in C_F$. Let $d \in C_F$ so that F(d-) = F(d). Fix $m \in \mathbb{N} = \{1, 2, ...\}$. Since the set $C_F^c = \mathbb{R} - C_F$ of discontinuity points of F is countable and the interval $\left(d - \frac{1}{m}, d\right)$ is uncountable there exists a $d_m \in \left(d - \frac{1}{m}, d\right) \cap C_F$. Then we have $\lim_{n \to \infty} F_n(d_m) = F(d_m)$ and $\lim_{n \to \infty} F_n(d) = F(d)$. Moreover

$$F_n(d_m) \le F_n(d-) \le F_n(d), n = 1, 2, \dots$$

$$\Rightarrow \lim_{n \to \infty} F_n(d_m) \le \lim_{n \to \infty} F_n(d-) \le \lim_{n \to \infty} F_n(d)$$

$$\Rightarrow F(d_m) \le \lim_{n \to \infty} F_n(d-) \le F(d) = F(d-). \tag{1.1}$$

Since $d_m \in \left(d - \frac{1}{m}, d\right)$, we have

$$\lim_{m \to \infty} F(d_m) = F(d_m) = F(d). \tag{1.2}$$

On taking $m \to \infty$ in (1.1) we get

$$\lim_{m \to \infty} F(d_m) \le \lim_{m \to \infty} F_n(d -) \le F(d -)$$

$$\Rightarrow F(d -) \le \lim_{n \to \infty} F_n(d -) \le F(d -) \qquad \text{(using (1.2))}$$

$$\Rightarrow \lim_{n \to \infty} F_n(d -) = F(d -) \cdot \blacksquare$$

Corollary 1.1

Let $\{X_n\}_{n\geq 1}$ be a sequence of random variables with corresponding sequence of d.f.s as $\{F_n\}_{n\geq 1}$. Further let X be another random variable having the d.f. F.

- (i) If $X_n \stackrel{d}{\to} X$, as $n \to \infty$, and X is of continuous type then $\lim_{n \to \infty} F_n(x) = F(x), \forall x \in \mathbb{R}$ and $\lim_{n \to \infty} F_n(x-) = F(x-), \forall x \in \mathbb{R}$.
- (ii) Suppose that $P(\{X_n \in \{0, 1, 2, ...\}\}) = P(\{X \in \{0, 1, 2, ...\}\}) = 1$ and $X_n \xrightarrow{d} X$, as $n \to \infty$. Then $\lim_{n \to \infty} F_n(x) = F(x)$, $\forall x \in \mathbb{R}$ and $\lim_{n \to \infty} F_n(x -) = F(x -), \forall x \in \mathbb{R}$.
- (iii) Under the assumptions of (ii), let f and f_n be the p.m.f.s of X and X_n , respectively, n=1,2,... Then

$$X_n \stackrel{d}{\to} X$$
, as $n \to \infty \Leftrightarrow \lim_{n \to \infty} f_n(x) = f(x), \forall x \in \{0, 1, 2, ...\}.$

Proof.

- (i) Since *X* is of continuous type we have $C_F = \mathbb{R}$, where C_F is the set of continuity points of *F*. The assertion now follows from Theorem 1.1.
- (ii) Fix $x \in \mathbb{R}$. If P(X = x) = 0 then $x \in C_F$ and, therefore, by Theorem 1.1.

$$\lim_{n\to\infty} F_n(x) = F(x), \quad \text{and} \quad \lim_{n\to\infty} F_n(x-) = F(x-).$$

Now suppose that $P({X = x}) > 0$. Then $x \in {0, 1, 2, ...}$ and $P({X = x + 0.5}) = P({X = x - 0.5}) = 0$. Consequently $x \pm 0.5 \in C_F$,

$$F_n(x) = F_n(x + 0.5)$$
 and $F_n(x - 0.5)$, $n = 1,2,...$

$$\Rightarrow \lim_{n \to \infty} F_n(x) = F(x + 0.5) = F(x) \text{ and } \lim_{n \to \infty} F_n(x - 0.5) = F(x - 0.5) = F(x - 0.5)$$

It follows that

$$\lim_{n\to\infty} F_n(x) = F(x) \text{ and } \lim_{n\to\infty} F_n(x-) = F(x-), \forall x\in\mathbb{R}.$$

(iii) First suppose that $X_n \xrightarrow{d} X$, as $n \to \infty$. Then, for $x \in \{0, 1, 2, ...\}$,

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} P(\{X_n = x\})$$

$$= \lim_{n \to \infty} [F_n(x) - F_n(x - 1)]$$

$$= F(x) - F(x - 1) \quad \text{(using (ii))}$$

$$= P(\{X = x\})$$

$$= f(x).$$

Conversely suppose that $\lim_{n\to\infty} f_n(x) = f(x), \forall x \in \{0, 1, 2, ...\}$. Then, for $x \in \mathbb{R}$,

$$F_n(x) = P(\lbrace X_n \leq x \rbrace)$$

$$= \sum_{k=0}^{\lfloor x \rfloor} P(\lbrace X_n = k \rbrace)$$

$$= \sum_{k=0}^{\lfloor x \rfloor} f_n(k)$$

$$\xrightarrow{n \to \infty} \sum_{k=0}^{\lfloor x \rfloor} f(k)$$

$$= F(x).$$

where [x] denotes the largest integer not exceeding x. It follows that $X_n \stackrel{d}{\to} X$, as $n \to \infty$.

For the random variables of absolutely continuous type we state the following theorem without providing its proof.

Theorem 1.2

Let $\{X_n\}_{n\geq 1}$ be a sequence of random variables of absolutely continuous type with corresponding sequence of p.d.f.s as $\{f_n\}_{n\geq 1}$. Further let X be another random variable of

absolutely continuous type with p.d.f. f. Suppose that $\lim_{n\to\infty} f_n(x) = f(x), \forall x \in \mathbb{R}$. Then $X_n \stackrel{d}{\to} X$, as $n \to \infty$.

The following example demonstrates that if $X_n \stackrel{d}{\to} X$, as $n \to \infty$, then $\lim_{n \to \infty} F_n(x-) = F(x-)$ may not hold; here F_n and F are d.f.s of X_n (n=1,2,...) and X, respectively.

Example 1.5

Let $X_n \sim N\left(0, \frac{1}{n}\right)$, n = 1, 2, ..., and let X be a random variable degenerate at 0 (i.e., $P(\{X = 0\}) = 1$). Then, for $x \in \mathbb{R}$,

$$F(x) = P(\lbrace X \le x \rbrace) = \begin{cases} 0, & \text{if } x < 0 \\ 1, & \text{if } x \ge 0 \end{cases}$$

$$F_n(x) = P(\lbrace X_n \le x \rbrace)$$

$$= \Phi(\sqrt{n}x)$$

$$\xrightarrow{n \to \infty} \begin{cases} 0, & \text{if } x < 0 \\ \frac{1}{2}, & \text{if } x = 0. \\ 1, & \text{if } x > 0 \end{cases}$$

Clearly $\lim_{n\to\infty} F_n(x) = F(x), \forall x\in C_F = \mathbb{R}-\{0\}$ and, therefore, $X_n\stackrel{d}{\to} X$, (equivalently $X_n\stackrel{p}{\to} 0$) as $n\to\infty$. However $\lim_{n\to\infty} F_n(0-) = \lim_{n\to\infty} F_n(0) = \frac{1}{2} \neq F(0-) = 0$.

The following example illustrates that, in general, the limiting distribution cannot be obtained by taking the limit of p.m.f.s/p.d.f.s.

Example 1.6

Let $\{X_n\}_{n\geq 1}$ be a sequence of random variables such that

$$P\left(\left\{X_n = \frac{1}{2n}\right\}\right) = P\left(\left\{X_n = \frac{1}{n}\right\}\right) = \frac{1}{2}, n = 1, 2, ...,$$

and let X be another random variable with $P(\{X=0\})=1$. Then it is easy to verify that $X_n \stackrel{d}{\to} X$, as $n \to \infty$. The p.m.f. of X_n is

$$f_n(x) = \begin{cases} \frac{1}{2}, & \text{if } x \in \left\{ \frac{1}{2n}, \frac{1}{n} \right\}, \\ 0, & \text{otherwise} \end{cases}$$

and the p.m.f. of X is

$$f(x) = \begin{cases} 1, & \text{if } x = 0 \\ 0, & \text{otherwise} \end{cases}$$

We have

$$\lim_{n\to\infty} f_n(x) = 0 \neq f(x), \forall x \in \mathbb{R}.$$

The following theorem provides a characterization of convergence in probability.

Theorem 1.3

Let $\{X_n\}_{n\geq 1}$ be a sequence of random variables and let c be a real constant. Then

$$X_n \stackrel{p}{\to} c$$
, as $n \to \infty \iff \forall \varepsilon > 0$, $\lim_{n \to \infty} P\left(\{|X_n - c| \ge \varepsilon\}\right) = 0$.

Proof. Let F_n denote the d.f. of X_n (n = 1, 2, ...) and let F denote the d.f. of random variable degenerate at c. First suppose that $X_n \stackrel{p}{\to} c$, as $n \to \infty$. Then, for $x \in \mathbb{R} - \{c\}$,

$$\lim_{n \to \infty} F_n(x) = \lim_{n \to \infty} P\left(\{ X_n \le x \} \right)$$
$$= \begin{cases} 0, & \text{if } x < c \\ 1, & \text{if } x > c \end{cases} = F(x).$$

Fix $\varepsilon > 0$. Then $c \pm \varepsilon \in C_F$ and therefore, using Theorem 1.1,

$$\lim_{n \to \infty} P(\{|X_n - c| \ge \varepsilon\}) = \lim_{n \to \infty} [P(\{X_n \le c - \varepsilon\}) + P(\{X_n \ge c + \varepsilon\})]$$

$$= \lim_{n \to \infty} [F_n(c - \varepsilon) + 1 - F_n((c + \varepsilon) -)]$$

$$= [F(c - \varepsilon) + 1 - F(c + \varepsilon)]$$

$$= 0.$$
(1.3)

Conversely, suppose that

$$\lim_{n\to\infty} P(\{|X_n-c|\geq \varepsilon\}) = 0, \forall \varepsilon > 0.$$

Then, using (1.3),

$$\lim_{n\to\infty} \left[F_n(c-\varepsilon) + 1 - F_n((c+\varepsilon) -) \right] = 0, \forall \varepsilon > 0,$$

$$\Rightarrow \lim_{n\to\infty} F_n(c-\varepsilon) = \lim_{n\to\infty} \left[1 - F_n((c+\varepsilon) -) \right] = 0, \forall \varepsilon > 0$$

$$\left(\text{since } F_n(c-\varepsilon) \ge 0 \text{ and } 1 - F_n((c+\varepsilon) -) \ge 0, \forall n \ge 1 \right)$$

$$\Rightarrow \lim_{n \to \infty} F_n(x) = 0, \forall x < c \text{ and } \lim_{n \to \infty} F_n(y -) = 1, \forall y > c$$

$$\Rightarrow \lim_{n \to \infty} F_n(x) = 0, \forall x < c \text{ and } \lim_{n \to \infty} F_n(y) = 1, \forall y > c$$

$$(\text{since } 1 \ge F_n(y) \ge F_n(y -), n = 1, 2, \dots).$$

Thus, for all $x \in \mathbb{R} - \{c\}$,

$$\lim_{n \to \infty} F_n(x) = \begin{cases} 0, & \text{if } x < c \\ 1, & \text{if } x > c \end{cases} = F(x)$$

$$\Rightarrow X_n \stackrel{p}{\rightarrow} c$$
, as $n \rightarrow \infty$.

In many situations the above theorem in conjunction with Markov's inequality (see Corollary 5.1, Module 3) turns out to be quite useful in proving convergence in probability.