TD de MTH102

- 1. Soit \star la loi définie sur \mathbb{R} par : $x \star y = x + y xy$. Montrer que la loi \star est interne , associative, admet un élément neutre et que tout élément de \mathbb{R} ,sauf pour une valeur que l'on précisera, est symétrisable.
- 2. Soient $G = \mathbb{R}^* \times \mathbb{R}$ et * la loi dans G définie par : $(x,y)*(x',y') = (xx',xy'+\frac{y}{x'})$ Montrer que la loi * sur G est associative et que (G,*) admet un élément neutre puis que tout élément de (G,*) est symétrisable.
- 3. Soient $G = \mathbb{R}^* \times \mathbb{R}$ et * la loi dans G définie par : (x,y)*(x',y') = (xx',xy'+y)Montrer que la loi * sur G est associative et que (G,*) admet un élément neutre puis que tout élément de (G,*) est symétrisable.
- 4. Soit $G = \{a, b, c, d\}$ un groupe noté multiplicativement. Compléter la table de G suivante:

\bigcirc	a	b	c	d
a	d	c		
b	c			
c			c	
d		a		

- 5. Soient x_1, x_2, x_3 les racines de $X^3 2X^2 + X + 3$, un polynôme de $\mathbb{C}[X]$.
 - (a) Calculer $x_1^2 + x_2^2 + x_3^2$ puis $x_1^3 + x_2^3 + x_3^3$.
 - (b) Déterminer un polynôme du troisième degré dont les trois racines sont x_1^2 , x_2^2 et x_3^2 .
- 6. Trouver le quotient de degré 4 dans la division par rapport aux puissances croissantes de f par g, $f(X) = 1 abX^2$, $g(X) = 1 (a + b)X + abX^2$.
- 7. Soient x_1, x_2, x_3, x_4 les racines de $P = X^4 + pX^2 + qX + r$ avec $r \neq 0$. Calculer $u = \frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} + \frac{1}{x_4}$ et $v = \frac{1}{x_1^2} + \frac{1}{x_2^2} + \frac{1}{x_3^2} + \frac{1}{x_4^2}$ en fonction de p, q et r en utilisant la formule de Viète.
- 8. Décomposer en éléments simples de $\mathbb{R}[X]$ les fractions rationnelles suivantes:

$$f(x) = \frac{x^4}{x^2 + 3x + 2} \qquad g(x) = \frac{x^2 + 1}{(x - 1)(x^2 + x + 1)}$$

- 9. Décomposer les fractions rationnelles suivantes en éléments simples: $\frac{3}{X^3+1}$ sur \mathbb{C} puis sur \mathbb{R} , $\frac{X^3}{X^3-1}$ sur \mathbb{R} , $\frac{X^2+X+1}{(X-1)^2(X+1)^2}$ sur \mathbb{R} .
- 10. Soit σ une permutation de S_{10} définie par: $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ & & & & & & \\ 3 & 5 & 7 & 10 & 8 & 2 & 1 & 4 & 6 & 9 \end{pmatrix}$.
 - (a) Décomposer σ en produit de cycles disjoints puis en produit de transpositions.
 - (b) Calculer $I(\sigma)$ le nombre d'inversions de σ puis sa signature $\varepsilon(\sigma)$.
 - (c) Déterminer σ^{-1} puis σ^{2020} .
 - (d) Déterminer la permutation μ telle que $\sigma\mu = (1273)$.
- 11. (a) Soient p un nombre premier et q un entier tels que 0 < q < p. Démontrer que C_p^q est divisible par p.
 - (b) Démontrer que dans un anneau commutatif A de caractéristique p, pour toute suite finie $a_1, a_2, ..., a_k$ d'éléments de A, on a $(a_1 + a_2 + ... + a_k)^p = a_1^p + a_2^p + ... + a_k^p$. En déduire que pour tout entier positif k, on a $k^p \equiv k \pmod{p}$.
- 12. Soit \mathbb{Z} l'ensemble des entiers relatifs. On définit $\mathbb{Z}\sqrt{3} = \{a + b\sqrt{3} / a, b \in \mathbb{Z}\}.$
 - (a) Montrer que $\mathbb{Z}\sqrt{3}$ est un sous anneau de \mathbb{R} . Est-il un corps ?
 - (b) Soit $I = \{2p + 2q\sqrt{3} / p, q \in \mathbb{Z}\}$. Montrer que I est un idéal bilatère de $\mathbb{Z}\sqrt{3}$.
 - (c) Montrer que l'anneau quotient $\mathbb{Z}\sqrt{3}/I$ est un ensemble fini. Donner la table de multiplication de cet anneau quotient.
 - (d) $\mathbb{Z}\sqrt{3}/I$ est-il un corps? Trouver un idéal, non trivial, de $\mathbb{Z}\sqrt{3}/I$.
 - (e) Montrer que tout élément $a+b\sqrt{3}$ de $\mathbb{Z}\sqrt{3}$ est racine d'une équation polynomiale (E), de degré 2 à coefficients dans \mathbb{Z} . Trouver la seconde racine.
 - (f) Montrer que l'application $f: a+b\sqrt{3} \mapsto$ la seconde racine de (E), de $\mathbb{Z}\sqrt{3}$ dans $\mathbb{Z}\sqrt{3}$ est un isomorphisme d'anneaux.