

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ»

Факультет информатики и прикладной математики
Кафедра прикладной математики и экономико-математических методов **ОТЧЁТ**

по дисциплине:

«Математическое моделирование»

на тему:

«Качественный анализ двумерной модели конкуренции»

Направление (специальность)_	01.03.02	
	(код, наименование)	
Обучающийся	_Бронников Егор Игоревич	
ГруппаПМ-1901 (номер группы)	(= 1-1-0.1.10.1110.1110.10)	

Модель конкуренции даёт представление о динамике популяции видов, потребляющих один ограниченный ресурс. Пусть x_1 — количество особей первого вида, а x_2 — количество особей второго вида.

$$\begin{cases} \frac{dx_1}{dt} = a_1 x_1 - b_{11} x_1^2 - b_{12} x_1 x_2 \\ \frac{dx_2}{dt} = a_2 x_2 - b_{22} x_2^2 - b_{21} x_1 x_2 \\ a_{1;2} \ge 0, b_{11;12;22;21} \ge 0 \end{cases}$$

Найдём особые точки:

$$\begin{cases} a_1 x_1 - b_{11} x_1^2 - b_{12} x_1 x_2 = 0 \\ a_2 x_2 - b_{22} x_2^2 - b_{21} x_1 x_2 = 0 \end{cases}$$

Особые точки:
$$(0,0)$$
; $(0,\frac{a_2}{b_{22}})$, $(\frac{a_1}{b_{11}},0)$, $(\frac{a_2b_{12}-a_1b_{22}}{b_{21}b_{12}-b_{11}b_{22}},\frac{a_1b_{21}-a_2b_{11}}{b_{21}b_{12}-b_{11}b_{22}})$

Чтобы определить состояние равновесия в точке, проводим линеаризацию:

1 случай – точка (0, 0):

$$\begin{pmatrix} a_1 - 2b_{11}x_1 - b_{12}x_2 & -b_{12}x_1 \\ -b_{21}x_2 & a_2 - 2b_{22}x_2 - b_{21}x_1 \end{pmatrix}$$
 при $x_1 = 0, x_2 = 0$
$$\begin{pmatrix} a_1 & 0 \\ 0 & a_2 \end{pmatrix} \rightarrow \begin{vmatrix} a_1 - \lambda & 0 \\ 0 & a_2 - \lambda \end{vmatrix} = 0 \rightarrow (a_1 - 2b_{11} - \lambda)(a_2 - 2b_{22} - \lambda) = 0$$

 $\lambda_1 = a_1$, $\lambda_2 = a_2$, так как коэффициенты положительны, то в точке (0, 0) тип состояния равновесия – *неустойчивый узел*.

2 случай – точка $(0, \frac{a_2}{b_{22}})$:

$$\begin{pmatrix} a_1 - 2b_{11}x_1 - b_{12}x_2 & -b_{12}x_1 \\ -b_{21}x_2 & a_2 - 2b_{22}x_2 - b_{21}x_1 \end{pmatrix} \text{при } x_1 = 0, x_2 = \frac{a_2}{b_{22}}$$

$$\begin{pmatrix} a_1 - \frac{b_{12}a_2}{b_{22}} & 0 \\ \frac{-b_{21}a_2}{b_{22}} & a_2 - 2b_{22}a_2 \end{pmatrix} \rightarrow \begin{vmatrix} a_1 - \frac{b_{12}a_2}{b_{22}} - \lambda & 0 \\ \frac{-b_{21}a_2}{b_{22}} & a_2 - 2b_{22}a_2 - \lambda \end{vmatrix} = 0 \rightarrow$$

$$\begin{pmatrix} a_1 - \frac{b_{12}a_2}{b_{22}} - \lambda \end{pmatrix} (a_2 - 2b_{22}a_2 - \lambda) = 0$$

 $\lambda_1 = a_1 - \frac{b_{12}a_2}{b_{22}}$, $\lambda_2 = a_2 - 2b_{22}a_2$, $\lambda_2 < 0$, с λ_1 ситуация неоднозначна, если $a_1 < \frac{b_{12}a_2}{b_{22}}$, то $\lambda_1 < 0$ и тип состояния равновесия – *устойчивый узел*, иначе, $\lambda_1 > 0$ и тип состояния равновесия – *седло*.

3 случай – точка $(\frac{a_1}{b_{11}},0)$:

$$\begin{pmatrix} a_1 - 2b_{11}x_1 - b_{12}x_2 & -b_{12}x_1 \\ -b_{21}x_2 & a_2 - 2b_{22}x_2 - b_{21}x_1 \end{pmatrix} \text{при } x_1 = \frac{a_1}{b_{11}}, x_2 = 0$$

$$\begin{pmatrix} -a_1 & \frac{-b_{12}a_1}{b_{11}} \\ 0 & a_2 - \frac{b_{21}a_1}{b_{11}} \end{pmatrix} \rightarrow \begin{vmatrix} -a_1 - \lambda & \frac{-b_{12}a_1}{b_{11}} \\ 0 & a_2 - \frac{b_{21}a_1}{b_{11}} - \lambda \end{vmatrix} = 0 \rightarrow$$

$$(-a_1 - \lambda) \left(a_2 - \frac{b_{21}a_1}{b_{11}} - \lambda \right) = 0$$

 $\lambda_1 = -a_1$, $\lambda_2 = a_2 - \frac{b_{21}a_1}{b_{11}}$, $\lambda_1 < 0$, с λ_2 ситуация неоднозначна, если $a_2 < \frac{b_{21}a_1}{b_{11}}$, то $\lambda_2 < 0$ и тип состояния равновесия — *устойчивый узел*, иначе, $\lambda_2 > 0$ и тип состояния равновесия — *седло*.

4 случай – точка $(\frac{a_2b_{12}-a_1b_{22}}{b_{21}b_{12}-b_{11}b_{22}}, \frac{a_1b_{21}-a_2b_{11}}{b_{21}b_{12}-b_{11}b_{22}})$:

$$\begin{pmatrix} a_1-2b_{11}x_1-b_{12}x_2 & -b_{12}x_1\\ -b_{21}x_2 & a_2-2b_{22}x_2-b_{21}x_1 \end{pmatrix}$$
 при $x_1=\frac{a_2b_{12}-a_1b_{22}}{b_{21}b_{12}-b_{11}b_{22}}$, $x_2=\frac{a_1b_{21}-a_2b_{11}}{b_{21}b_{12}-b_{11}b_{22}}$

$$\begin{pmatrix} a_1 - \frac{2b_{11}a_2b_{12} - 2b_{11}a_1b_{22}}{b_{21}b_{12} - b_{11}b_{22}} - \frac{b_{12}a_1b_{21} - b_{12}a_2b_{11}}{b_{21}b_{12} - b_{11}b_{22}} & \frac{-b_{12}a_2b_{12} + b_{12}a_1b_{22}}{b_{21}b_{12} - b_{11}b_{22}} \\ -\frac{b_{21}a_1b_{21} - b_{21}a_2b_{11}}{b_{21}b_{12} - b_{11}b_{22}} & a_2 - \frac{2b_{22}a_1b_{21} - 2b_{22}a_2b_{11}}{b_{21}b_{12} - b_{11}b_{22}} - \frac{b_{21}a_2b_{12} - b_{21}a_1b_{22}}{b_{21}b_{12} - b_{11}b_{22}} \end{pmatrix}$$

$$\begin{pmatrix} a_1 - \frac{2b_{11}a_2b_{12} - 2b_{11}a_1b_{22} - b_{12}a_1b_{21} - b_{12}a_2b_{11}}{b_{21}b_{12} - b_{11}b_{22}} & \frac{-b_{12}a_2b_{12} + b_{12}a_1b_{22}}{b_{21}b_{12} - b_{11}b_{22}} \\ \frac{-b_{21}a_1b_{21} + b_{21}a_2b_{11}}{b_{21}b_{12} - b_{11}b_{22}} & a_2 - \frac{2b_{22}a_1b_{21} - 2b_{22}a_2b_{11} - b_{21}a_2b_{12} - b_{21}a_1b_{22}}{b_{21}b_{12} - b_{11}b_{22}} \end{pmatrix}$$

$$\begin{pmatrix} a_1 - \frac{a_2(2b_{11}b_{12} - b_{12}b_{11}) - a_1(2b_{11}b_{22} + b_{12}b_{21})}{b_{21}b_{12} - b_{11}b_{22}} & \frac{-b_{12}a_2b_{12} + b_{12}a_1b_{22}}{b_{21}b_{12} - b_{11}b_{22}} \\ \frac{-b_{21}a_1b_{21} + b_{21}a_2b_{11}}{b_{21}b_{12} - b_{11}b_{22}} & a_2 - \frac{a_1(2b_{22}b_{21} - b_{21}b_{22}) - a_2(2b_{22}b_{11} + b_{21}b_{12})}{b_{21}b_{12} - b_{11}b_{22}} \end{pmatrix}$$

$$\begin{pmatrix} \frac{a_1(b_{21}b_{12} - b_{11}b_{22}) - a_2(b_{11}b_{12}) + a_1(2b_{11}b_{22} + b_{12}b_{21})}{b_{21}b_{12} - b_{11}b_{22}} & \frac{-b_{12}a_2b_{12} + b_{12}a_1b_{22}}{b_{21}b_{12} - b_{11}b_{22}} \\ \frac{-b_{21}a_1b_{21} + b_{21}a_2b_{11}}{b_{21}b_{12} - b_{11}b_{22}} & \frac{a_2(b_{21}b_{12} - b_{11}b_{22}) - a_1(b_{22}b_{21}) + a_2(2b_{22}b_{11} + b_{21}b_{12})}{a_2(b_{21}b_{12} - b_{11}b_{22})} \end{pmatrix}$$

$$\begin{vmatrix} \frac{a_1(b_{21}b_{12} - b_{11}b_{22}) - a_2(b_{11}b_{12}) + a_1(2b_{11}b_{22} + b_{12}b_{21})}{b_{21}b_{12} - b_{11}b_{22}} - \lambda & \frac{-b_{12}a_2b_{12} + b_{12}a_1b_{22}}{b_{21}b_{12} - b_{11}b_{22}} \\ \frac{-b_{21}a_1b_{21} + b_{21}a_2b_{11}}{b_{21}b_{12} - b_{11}b_{22}} - \lambda & \frac{-b_{12}a_2b_{12} + b_{12}a_1b_{22}}{b_{21}b_{12} - b_{11}b_{22}} - \lambda \\ \frac{-b_{21}a_1b_{21} + b_{21}a_2b_{11}}{b_{21}b_{12} - b_{11}b_{22}} - a_1(b_{22}b_{21}) + a_2(2b_{22}b_{11} + b_{21}b_{12}) - \lambda \\ \frac{-b_{21}a_1b_{21} + b_{21}a_2b_{11}}{b_{21}b_{12} - b_{11}b_{22}} - a_1(b_{22}b_{21}) + a_2(2b_{22}b_{11} + b_{21}b_{12}) - \lambda \\ \frac{-b_{21}a_1b_{21} + b_{21}a_2b_{21}}{b_{21}b_{12} - b_{11}b_{22}} - a_1(b_{22}b_{21}) + a_2(2b_{22}b_{11} + b_{21}b_{12}) - \lambda \\ \frac{-a_1(b_{21}b_{12} - b_{11}b_{22}) - a_1(b_{22}b_{21}) + a_2(2b_{22}b_{11} + b_{21}b_{12})}{b_{21}b_{12} - b_{11}b_{22}} - \lambda \\ \frac{-a_1(b_{21}b_{12} - b_{11}b_{22}) - a_1(b_{22}b_{21}) + a_2(2b_{22}b_{11} + b_{21}b_{12})}{b_{21}b_{12} - b_{11}b_{22}} - \lambda \\ \frac{-a_1(b_{21}b_{12} - b_{11}b_{22}) - a_1(b_{22}b_{21}b_{12} - b_{11}b_{22})}{b_{21}b_{12} - b_{11}b_{22}} - \lambda \\ \frac{-a_1(b_{21}b_{12} - b_{11}b_{22}) - a_1(b_{22}b_{11} + b_{21}b_{12}b_{12}}{b_{21}b_{12} - b_{11}b_{22}} - \lambda \\ \frac{-a_1(b_{21}b_{12} - b_{11}b_{22} - a_1(b_{22}b_{11} + b_{21}b_{12}b_{12})}{$$

Отсюда следует, что если $\frac{a_1b_{12}}{b_{22}} < a_1 < \frac{a_2b_{11}}{b_{21}} - устойчивый узел.$

Таким образом, мы можем встретить следующие ситуации:

Особая точка	Фазовые портреты
(0, 0)	неустойчивый узел
$(0, \frac{a_2}{b_{22}})$	устойчивый узел при седло $a_1 < \frac{b_{12}a_2}{b_{22}}$
$(\frac{a_1}{b_{11}},0)$	устойчивый узел при седло $a_2 < \frac{b_{21}a_1}{b_{11}}$
$\left(\frac{a_2b_{12}-a_1b_{22}}{b_{21}b_{12}-b_{11}b_{22}}, \frac{a_1b_{21}-a_2b_{11}}{b_{21}b_{12}-b_{11}b_{22}}\right)$	устойчивый узел при $\frac{a_1b_{12}}{b_{22}} < a_1 < \frac{a_2b_{11}}{b_{21}}$