FCDS Programming I

Lecture 9: Arrays I

Can we solve this problem?

Consider the following program (input underlined):

```
How many days' temperatures?

Day 1's high temp: 45

Day 2's high temp: 39

Day 4's high temp: 48

Day 5's high temp: 37

Day 6's high temp: 46

Day 7's high temp: 53

Average temp = 44.6

4 days were above average.
```


Why the problem is hard

- We need each input value twice:
 - to compute the average (a cumulative sum)
 - to count how many were above average
- We could read each value into a variable... but we:
 - don't know how many days are needed until the program runs
 - don't know how many variables to declare
- We need a way to declare many variables in one step.

Arrays

- array: object that stores many values of the same type.
 - —element: One value in an array.
 - index: A 0-based integer to access an element from an array.

Array declaration

```
type[] name = new type[length];

- Example:
   int[] numbers = new int[10];

index 0 1 2 3 4 5 6 7 8 9

value 0 0 0 0 0 0 0 0 0
```

Array declaration, cont.

The length can be entered by the user

```
Scanner console = new Scanner(System.in)
n = console.nextInt()
int[] numbers = new int[n];

index 0 1 2 3 4 5 6 7 8 9

value 0 0 0 0 0 0 0 0
```

Array declaration, cont.

The length can be any integer expression.

```
int x = 2 * 3 + 1;
int[] data = new int[x % 5 + 2];
```

Each element initially gets a "zero-equivalent" value.

Туре	Default value
int	0
double	0.0
boolean	false
String	null
or other object	(means, "no object")

Accessing elements

```
name [index]
                           // access
name[index] = value; // modify
  – Example:
   numbers[0] = 27;
   numbers[3] = -6;
   System.out.println(numbers[0]);
   if (numbers[3] < 0) {
       System.out.println("Element 3 is negative.");
     index 0 1 2 3 4 5 6 7 8 9
      value
                  0
                                  0
                     -6
                        0
                               0
```

Arrays of other types

```
double[] results = new double[5];
results[2] = 3.4;
results [4] = -0.5;
    index 0 1 2 3 4
    value | 0.0 | 0.0 | 3.4 | 0.0 | -0.5
boolean[] tests = new boolean[6];
tests[3] = true;
    index 0 1 2 3 4 5
    value
         false | false | false |
                           false
                               false
                      true
```

Out-of-bounds

- Legal indexes: between 0 and the array's length 1.
 - Reading or writing any index outside this range will throw an ArrayIndexOutOfBoundsException.

Example:

```
int[] data = new int[10];
System.out.println(data[0]); // okay
System.out.println(data[9]); // okay
System.out.println(data[-1]); // exception
System.out.println(data[10]); // exception

index 0 1 2 3 4 5 6 7 8 9

value 0 0 0 0 0 0 0 0 0
```

Accessing array elements

```
int[] numbers = new int[8];
    numbers[1] = 3;
    numbers[4] = 99;
    numbers [6] = 2;
    int x = numbers[1];
    numbers[x] = 42;
    numbers[numbers[6]] = 11; // use numbers[6] as
    index
         index 0 1 2 3 4 5 6 7
                   3
                       11
          value
                          42
                              99
                                  0
numbers
```

Arrays and for loops

 It is common to use for loops to access array elements.

```
for (int i = 0; i < 8; i++) {
    System.out.print(numbers[i] + " ");
}
System.out.println(); // output: 0 3 11 42 99 0 2 0</pre>
```

Sometimes we assign each element a value in a loop.

```
for (int i = 0; i < 8; i++) {
   numbers[i] = 2 * i;
}
   index    0    1    2    3    4    5    6    7

value    0    2    4    6    8    10    12    14</pre>
```

Arrays and for loops, cont.

 It is common to use for loops to read array elements from the user.

```
for (int i = 0; i <= 9; i++) {
    System.out.print("Enter element " + i);
    number[i] = console.nextInt()
}
System.out.println();</pre>
```

The length field

• An array's length field stores its number of elements.

```
name.length
```

```
for (int i = 0; i < numbers.length; i++) {
    System.out.print(numbers[i] + " ");
}
// output: 0 2 4 6 8 10 12 14</pre>
```

- It does not use parentheses like a String's .length().

- What expressions refer to:
 - The last element of any array? numbers[numbers.length 1]
 - The middle element?
 numbers[(numbers.length 1) / 2]

Weather question

Use an array to solve the weather problem:

```
How many days' temperatures? 7
Day 1's high temp: 45
Day 2's high temp: 44
Day 3's high temp: \overline{39}
Day 4's high temp: \overline{48}
Day 5's high temp: \overline{37}
Day 6's high temp: \overline{46}
Day 7's high temp: \overline{53}
Average temp = 44.6
4 days were above average.
```

Weather answer

```
// Reads temperatures from the user, computes average and # days above average.
import java.util.*;
public class Weather {
   public static void main(String[] args) {
       Scanner console = new Scanner(System.in);
       System.out.print("How many days' temperatures? ");
       int days = console.nextInt();
       int sum = 0;
       for (int i = 0; i < days; i++) { // read/store each day's temperature
           System.out.print("Day " + (i + 1) + "'s high temp: ");
           temps[i] = console.nextInt();
           sum += temps[i];
       double average = (double) sum / days;
       int count = 0;
                                        // see if each day is above average
       for (int i = 0; i < days; i++) {
           if (temps[i] > average) {
              count++;
       // report results
       System.out.println("Average temp =" + average);
       System.out.println(count + " days above average");
```

Quick array initialization

- Useful when you know what the array's elements will be
- The compiler figures out the size by counting the values

Array traversal

- traversal: An examination of each element of an array.
- What element are prime numbers in the following array?

```
int[] a = {1, 7, 5, 6, 4, 14, 11};
for (int i = 0; i < a.length; i++) {
    if (isPrime(a[i])) {
        System.out.println(a[i]);
    }
}
Output:</pre>
```

5 1 1

Array traversal (Example)

```
// Find the smallest element in an array.
public class Smallest {
   public static void main(String[] args) {
     int min = num[0];
     int minIndex = 0;
      for (int i = 1; i < num.length; i++) {
         if (num[i] < min) {
              min = num[i];
              minIndex = i;
       // report results
      System.out.println("The smallest element is: " + min);
     System.out.println("The index of the smallest element is: "
 + minIndex);
```

"Array mystery" problem

What element values are stored in the following array?

```
int[] a = {1, 7, 5, 6, 4, 14, 11};
for (int i = 0; i < a.length - 1; i++)
{
    if (a[i] > a[i + 1]) {
        a[i + 1] = a[i + 1] * 2;
    } index 0 1 2 3 4 5 6
}
value 1 7 10 12 8 14 22
```

Parallel Arrays

- These are independent arrays of the same size, that have a meaningful connection to each other.
- For example, one array with a students gpa, and one with his letter grade.

Parallel Arrays (Example)

```
// Print the name of the student with the highest gpa.
public class ParallelArrays {
    public static void main(String[] args) {
       int[] GPA = {60, 92, 40, 86};
       String[] name = {"Aly", "Samer", "May", "Ahmed"};
       int max = GPA[0];
       int maxIndex = 0;
       for (int i = 1; i < GPA.length; i++) {
          if (GPA[i]>max) {
             max=GPA[i];
             maxIndex = i;
  System.out.println("The student with the highest grade is: " + name[maxIndex] + "and his GPA is" + max);
```

Limitations of arrays

You cannot resize an existing array:

```
int[] a = new int[4];
a.length = 10;  // error
```

You cannot compare arrays with == or equals:

```
int[] a1 = {42, -7, 1, 15};
int[] a2 = {42, -7, 1, 15};
if (a1 == a2) { ... } // false!
if (a1.equals(a2)) { ... } // false!
```

An array does not know how to print itself:

```
int[] a1 = {42, -7, 1, 15};
System.out.println(a1); // [I@98f8c4]
```

The Arrays class

• Class Arrays in package java.util has useful static methods for manipulating arrays:

Method name	Description
copyOf (array, length)	returns a new copy of an array
equals(array1, array2)	returns true if the two arrays contain same elements in the same order
fill(array, value)	sets every element to the given value
sort(array)	arranges the elements into sorted order
toString(array)	returns a string representing the array, such as "[10, 30, -25, 17]"

• Syntax: Arrays.methodName(parameters)

Arrays.toString

• Arrays.toString accepts an array as a parameter and returns a String representation of its elements.

```
int[] e = {0, 2, 4, 6, 8};
e[1] = e[3] + e[4];
System.out.println("e is " + Arrays.toString(e));

Output:
e is [0, 14, 4, 6, 8]
```

- Must import java.util.*;

Weather question 2

Modify the weather program to print the following output:

```
How many days' temperatures? 7

Day 1's high temp: 45

Day 2's high temp: 39

Day 4's high temp: 48

Day 5's high temp: 37

Day 6's high temp: 46

Day 7's high temp: 53

Average temp = 44.6

4 days were above average.

Temperatures: [45, 44, 39, 48, 37, 46, 53]

Two coldest days: 53, 48
```

Weather answer 2

```
// Reads temperatures from the user, computes average and # days above average.
import java.util.*;
public class Weather2 {
    public static void main(String[] args) {
        int[] temps = new int[days];
                                           // array to store days' temperatures
        ... (same as Weather program)
        // report results
        System.out.println("Average temp ="+ average);
        System.out.println(count + " days above average");
        System.out.println("Temperatures: " + Arrays.toString(temps));
       Arrays.sort(temps);
        System.out.println("Two coldest days: " + temps[0] + ", " + temps[1]);
        System.out.println("Two hottest days: " + temps[temps.length - 1] +
                           ", " + temps[temps.length - 2]);
```