LABEL AMBIGUITY IN CROWDSOURCING FOR CLASSIFICATION AND EXPERT FEEDBACK

Tanguy Lefort IMAG, Univ Montpellier, CNRS INRIA, LIRMM,

Supervised by

Benjamin Charlier

Alexis Joly

and Joseph Salmon

ASK CITIZENS TO LABEL OUR DATA

▶ Workers sort a given task into one of the *K* classes

ASK CITIZENS TO LABEL OUR DATA

▶ Workers sort a given task into one of the *K* classes

- ▶ $y_i^{(j)} \in [K] := \text{answer of worker } j \text{ to task } i$
- $ightharpoonup n_{worker}$ workers answer n_{task} tasks

FROM THE DATA TO THE CLASSIFIER THE PIPELINE

FROM THE DATA TO THE CLASSIFIER THE PIPELINE

FROM THE DATA TO THE CLASSIFIER THE PIPELINE

FROM THE DATA TO THE CLASSIFIER THE PIPELINE

FROM THE DATA TO THE CLASSIFIER THE PIPELINE

► Can we improve performance by leveraging better-quality data?

⁽¹⁾ T. Lefort, B. Charlier, et al. (2024a). "Identify Ambiguous Tasks Combining Crowdsourced Labels by Weighting Areas Under the Margin". In: Transactions on Machine Learning Research.

⁽²⁾ T. Lefort, B. Charlier, et al. (2024b), "Peerannot: Classification for Crowdsourced Image Datasets with Python". In: Computo.

⁽³⁾ T. Lefort, A. Affouard, et al. (2024). "Cooperative learning of Pl@ntNet's Artificial Intelligence algorithm: how does it work and how can we improve it?" In: arXiv preprint arXiv:2406.03356.

► Can we improve performance by leveraging better-quality data?

Can we standardize crowdsourcing dataset's tools in python for reproducibility?

⁽¹⁾ T. Lefort, B. Charlier, et al. (2024a). "Identify Ambiguous Tasks Combining Crowdsourced Labels by Weighting Areas Under the Margin". In: Transactions on Machine Learning Research.

⁽²⁾ T. Lefort, B. Charlier, et al. (2024b). "Peerannot: Classification for Crowdsourced Image Datasets with Python". In: Computo.

⁽³⁾ T. Lefort, A. Affouard, et al. (2024). "Cooperative learning of Pl@ntNet's Artificial Intelligence algorithm: how does it work and how can we improve it?" In: arXiv preprint arXiv:2406.03356.

► Can we improve performance by leveraging better-quality data?

Can we standardize crowdsourcing dataset's tools in python for reproducibility?

► What can we do in a large-scale setting? Application to Pl@ntNet

⁽¹⁾ T. Lefort, B. Charlier, et al. (2024a). "Identify Ambiguous Tasks Combining Crowdsourced Labels by Weighting Areas Under the Margin". In: Transactions on Machine Learning Research.

⁽²⁾ T. Lefort, B. Charlier, et al. (2024b). "Peerannot: Classification for Crowdsourced Image Datasets with Python". In: Computo.

⁽³⁾ T. Lefort, A. Affouard, et al. (2024). "Cooperative learning of Pl@ntNet's Artificial Intelligence algorithm: how does it work and how can we improve it?" In: arXiv preprint arXiv:2406.03336.

- ► Can we improve performance by leveraging better-quality data?
 - ► Creation of the **WAUM**⁽¹⁾: a metric to identify ambiguous images
- Can we standardize crowdsourcing dataset's tools in python for reproducibility?

► What can we do in a large-scale setting? Application to Pl@ntNet

⁽¹⁾ T. Lefort, B. Charlier, et al. (2024a). "Identify Ambiguous Tasks Combining Crowdsourced Labels by Weighting Areas Under the Margin". In: Transactions on Machine Learning Research.

⁽²⁾ T. Lefort, B. Charlier, et al. (2024b). "Peerannot: Classification for Crowdsourced Image Datasets with Python". In: Computo.

⁽³⁾ T. Lefort, A. Affouard, et al. (2024). "Cooperative learning of Pl@ntNet's Artificial Intelligence algorithm: how does it work and how can we improve it?" In: arXiv preprint arXiv:2406.03356.

- ► Can we improve performance by leveraging better-quality data?
 - ► Creation of the **WAUM**⁽¹⁾: a metric to identify ambiguous images
- Can we standardize crowdsourcing dataset's tools in python for reproducibility?
 - ► Creation of **peerannot** library⁽²⁾:

https://peerannot.github.io

▶ What can we do in a large-scale setting? Application to Pl@ntNet

⁽¹⁾ T. Lefort, B. Charlier, et al. (2024a). "Identify Ambiguous Tasks Combining Crowdsourced Labels by Weighting Areas Under the Margin". In: Transactions on Machine Learning Research.

⁽²⁾ T. Lefort, B. Charlier, et al. (2024b). "Peerannot: Classification for Crowdsourced Image Datasets with Python". In: Computo.

⁽³⁾ T. Lefort, A. Affouard, et al. (2024). "Cooperative learning of Pl@ntNet's Artificial Intelligence algorithm: how does it work and how can we improve it?" In: arXiv preprint arXiv:2406.03356.

- ► Can we improve performance by leveraging better-quality data?
 - ► Creation of the **WAUM**⁽¹⁾: a metric to identify ambiguous images
- Can we standardize crowdsourcing dataset's tools in python for reproducibility?
 - ► Creation of **peerannot** library⁽²⁾:

https://peerannot.github.io

- ► What can we do in a large-scale setting? Application to Pl@ntNet
 - ► Creation and evaluation of a **new benchmark dataset** (3)

⁽¹⁾ T. Lefort, B. Charlier, et al. (2024a). "Identify Ambiguous Tasks Combining Crowdsourced Labels by Weighting Areas Under the Margin". In: Transactions on Machine Learning Research.

⁽²⁾ T. Lefort, B. Charlier, et al. (2024b). "Peerannot: Classification for Crowdsourced Image Datasets with Python". In: Computo.

⁽³⁾ T. Lefort, A. Affouard, et al. (2024). "Cooperative learning of Pl@ntNet's Artificial Intelligence algorithm: how does it work and how can we improve it?" In: arXiv preprint arXiv:2406.03356.

EXISTING AGGREGATION STRATEGIES

CLASSICAL AGGREGATION STRATEGY (WEIGHTED) MAJORITY VOTES

$$\hat{y_i}^{\mathrm{WMV}} = \underset{k \in [K]}{\operatorname{argmax}} \sum_{j \in \mathcal{A}(x_i)} \mathbf{A}_j \mathbb{1}(y_i^{(j)} = k)$$

For example with balanced weights:

cat

CLASSICAL AGGREGATION STRATEGY (WEIGHTED) MAJORITY VOTES

$$\hat{y_i}^{\mathrm{WMV}} = \underset{k \in [K]}{\operatorname{argmax}} \sum_{j \in \mathcal{A}(x_i)} \mathbf{A}_j \mathbb{1}(y_i^{(j)} = k)$$

For example with unbalanced weights:

CLASSICAL AGGREGATION STRATEGY (WEIGHTED) MAJORITY VOTES

Many existing weight choices:

► Inter worker agreement: WAWA (4):

$$\text{weight}(w_j) = \text{Accuracy}(\{y_i^{(j)}\}_i, \{\hat{y}_i^{\text{MV}}\}_i)$$

- ► Feature importance + game theory: Shapley-value weight (5)
- ► Matrix completion: MACE⁽⁶⁾ ...

Pros: "simple" weight can scale to large datasets and be easy to interpret **Cons:** Can not capture worker skills in detail

⁽⁴⁾ https://success.appen.com/hc/en-us/articles/202703205-Calculating-Worker-Agreement-with-Aggregate-Wawa

⁽⁵⁾ T. Lefort, B. Charlier, et al. (July 2024c). "Weighted majority vote using Shapley values in crowdsourcing". In: CAp 2024 - Conférence sur l'Apprentissage Automatique. Lille, France.

⁽⁶⁾ D. Howy et al. (2013). "Learning whom to trust with MACE". In: Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 1120–1130.

CLASSICAL AGGREGATION STRATEGY DAWID AND SKENE⁽⁷⁾

- ► Introduced in a medical context (aggregate multiple diagnosis)
- ▶ Represent worker *j* from their pairwise confusions matrix $\pi^{(j)} \in \mathbb{R}^{K \times K}$
- ► Probabilistic model on their answers:

$$y^{(j)}|y^* \sim \text{Multinomial}(\pi_{y^*, \bullet}^{(j)})$$

with $\pi_{k,\ell}^{(j)} = \mathbb{P}(\text{worker } j \text{ answers } \ell \text{ with unknown truth } k)$

Pros:

- ► Finer modelisation
- ► Can use adversarial workers

Cons:

► Memory issue: $n_{worker} \times K^2$ parameters to estimate only the confusion matrices

⁽⁷⁾ A. Dawid and A. Skene (1979). "Maximum Likelihood Estimation of Observer Error-Rates Using the EM Algorithm". In: J. R. Stat. Soc. Ser. C. Appl. Stat. 28.1, pp. 20–28.

CLASSICAL AGGREGATION STRATEGY DAWID AND SKENE – MODEL

Probabilistic model \longrightarrow Likelihood (to maximize via the Expectation Maximization algorithm)

CLASSICAL DEEP-LEARNING STRATEGY CROWDLAYER (8)

▶ Idea: put the DS confusion matrix in a neural network as a new layer

⁽⁸⁾ F. Rodrigues and F. Pereira (2018). "Deep learning from crowds". In: AAAI. vol. 32.

CLASSICAL DEEP-LEARNING STRATEGY CONAL⁽⁹⁾

► Idea: CrowdLayer + global and local confusions

 $^{{\}rm ^{(9)}Z.\,Chu,\,J.\,Ma,\,and\,H.\,Wang\,(2021).\,"} Learning\,from\,Crowds\,by\,Modeling\,Common\,Confusions.".\,In:\,AAAI,\,pp.\,5832-5840.$

IDENTIFY AMBIGUOUS TASKS IN CROWDSOURCED DATASETS

WHEN IMAGES HAVE UNDERLYING AMBIGUITY

WHEN IMAGES HAVE UNDERLYING AMBIGUITY

AMBIGUITY IN CLASSICAL SUPERVISED SETTING AREA UNDER THE MARGIN (AUM)

Goal: identify issues in classical datasets $(x_1, y_1), \ldots, (x_n, y_n) \in \mathcal{X} \times [K]$

► AUM⁽¹⁰⁾: monitor margin during training

AMBIGUITY IN CLASSICAL SUPERVISED SETTING AREA UNDER THE MARGIN (AUM)

Goal: identify issues in classical datasets $(x_1, y_1), \dots, (x_n, y_n) \in \mathcal{X} \times [K]$

- ► AUM⁽¹¹⁾: monitor margin during training
- ► Classifier: at training epoch $t \in [T]$, $C^{(t)}(x_i) \in \mathbb{R}^K$ a vector of scores (logits)

AMBIGUITY IN CLASSICAL SUPERVISED SETTING AREA UNDER THE MARGIN (AUM)

Goal: identify issues in classical datasets $(x_1, y_1), \dots, (x_n, y_n) \in \mathcal{X} \times [K]$

- ► AUM⁽¹¹⁾: monitor margin during training
- ► Classifier: at training epoch $t \in [T]$, $C^{(t)}(x_i) \in \mathbb{R}^K$ a vector of scores (logits)

Challenging for crowdsourcing:

• y_i unknown

AMBIGUITY IN CLASSICAL SUPERVISED SETTING AREA UNDER THE MARGIN (AUM)

Goal: identify issues in classical datasets $(x_1, y_1), \dots, (x_n, y_n) \in \mathcal{X} \times [K]$

- ► AUM⁽¹¹⁾: monitor margin during training
- ► Classifier: at training epoch $t \in [T]$, $C^{(t)}(x_i) \in \mathbb{R}^K$ a vector of scores (logits)

Challenging for crowdsourcing:

- y_i unknown
 - $ightharpoonup ... so C^{(t)}(x_i)_{y_i}$ does not exist

AMBIGUITY IN CLASSICAL SUPERVISED SETTING AREA UNDER THE MARGIN (AUM)

Naive Extension: identify issues in concatenated datasets $\{(x_i, y_i^{(j)})\}_{i,j}$

▶ Plugin estimate of y_i using \hat{y}_i^{MV}

AMBIGUITY IN CLASSICAL SUPERVISED SETTING AREA UNDER THE MARGIN (AUM)

Naive Extension: identify issues in concatenated datasets $\{(x_i, y_i^{(j)})\}_{i,j}$

▶ Plugin estimate of y_i using \hat{y}_i^{MV}

Which margin should be used:

• use previous work of margins' properties (12)

GOING TO THE CROWDSOURCING SETTING AUMC

Naive Extension: identify issues in concatenated datasets $\{(x_i, y_i^{(j)})\}_{i,j}$

- ▶ Plugin estimate of y_i using \hat{y}_i^{MV}
- ▶ Scores ordered: $C(x_i)_{[1]} \ge \cdots \ge C(x_i)_{[K]}$

Issue:

- Lose all worker-related information
- Sensitive to poorly performing workers

GOING TO THE CROWDSOURCING SETTING WAUM

Weighted Areas Under the Margins: identify issues in concatenated datasets $\{(x_i, y_i^{(j)})\}_{i,j}$

► Scale effects in the scores discarded, need normalization (13)

GOING TO THE CROWDSOURCING SETTING WAUM

Weighted Areas Under the Margins: identify issues in concatenated datasets $\{(x_i, y_i^{(j)})\}_{i,j}$

► Scale effects in the scores discarded, need normalization (13)

With:

• $\sigma(x_i) = \sigma(\mathcal{C}(x_i)) \in \Delta_{K-1}$ (simplex of dim K-1)

⁽¹³⁾ C. Ju, A. Bibaut, and M. van der Laan (2018). "The relative performance of ensemble methods with deep convolutional neural networks for image classification". In: J. Appl. Stat. 45.15, pp. 2800–2818.

WEIGHTS IN THE WAUM LEVERAGE BOTH TASKS AND LABELS

Our chosen worker/task score:

• Consider a score of the form $^{(14)}$: worker skill \times task difficulty $^{(15)}$

⁽¹⁵⁾ M. Servajean et al. (2017). "Crowdsourcing thousands of specialized labels: A Bayesian active training approach". In: IEEE Transactions on Multimedia 19.6, pp. 1376–1391.

Our chosen worker/task score:

• Consider a score of the form $^{(14)}$: worker skill \times task difficulty $^{(15)}$

$$s^{(j)}(x_i) = \left\langle \operatorname{diag}(\hat{\pi}^{(j)}) \mid \sigma^{(T)}(x_i) \right\rangle \in [0,1]$$

Worker j overall ability

Difficulty of task i

⁽¹⁴⁾ J. Whitehill et al. (2009). "Whose Vote Should Count More: Optimal Integration of Labels from Labelers of Unknown Expertise". In: NeurIPS. vol. 22.

⁽¹⁵⁾ M. Servajean et al. (2017). "Crowdsourcing thousands of specialized labels: A Bayesian active training approach". In: IEEE Transactions on Multimedia 19.6, pp. 1376–1391.

• Estimate confusion matrices $\pi^{(j)} \in \mathbb{R}^{K \times K}$, for all $j \in [n_{worker}]$

- Estimate confusion matrices $\pi^{(j)} \in \mathbb{R}^{K \times K}$, for all $j \in [n_{worker}]$
- Train a network on all crowdsourced task/label pairs: $(x_i, y_i^{(j)})$

- Estimate confusion matrices $\pi^{(j)} \in \mathbb{R}^{K \times K}$, for all $j \in [n_{worker}]$
- Train a network on all crowdsourced task/label pairs: $(x_i, y_i^{(j)})$
- Compute all $WAUM(x_i)$ during training

- Estimate confusion matrices $\pi^{(j)} \in \mathbb{R}^{K \times K}$, for all $j \in [n_{worker}]$
- Train a network on all crowdsourced task/label pairs: $(x_i, y_i^{(j)})$
- Compute all $WAUM(x_i)$ during training

- Estimate confusion matrices $\pi^{(j)} \in \mathbb{R}^{K \times K}$, for all $j \in [n_{worker}]$
- Train a network on all crowdsourced task/label pairs: $(x_i, y_i^{(j)})$
- Compute all $WAUM(x_i)$ during training

Usage (for learning):

- **Prune** x_i 's with WAUM (x_i) below quantile q_{α} (say $\alpha=$ 0.01)
- Estimate confusion matrices $\hat{\pi}^{(j)}$ on pruned training dataset

- Estimate confusion matrices $\pi^{(j)} \in \mathbb{R}^{K \times K}$, for all $j \in [n_{worker}]$
- Train a network on all crowdsourced task/label pairs: $(x_i, y_i^{(j)})$
- Compute all $WAUM(x_i)$ during training

Usage (for learning):

- **Prune** x_i 's with WAUM (x_i) below quantile q_{α} (say $\alpha=$ 0.01)
- Estimate confusion matrices $\hat{\pi}^{(j)}$ on pruned training dataset
- Aggregate labels and train a classifier on the newly pruned dataset

Presenting CIFAR-10H (16) DATASET

Labels: cat, dog, car, plane, bird, horse, frog, deer, ship, truck

Presenting CIFAR-10H (16) DATASET

Labels: cat, dog, car, plane, bird, horse, frog, deer, ship, truck

Presenting LabelMe dataset (17)

- ▶ 1000 training / 500 validation / 1188 test images
- ► 59 workers: each task has up to 3 votes
- ▶ 8 classes: highway, insidecity, tallbuilding, street, forest, coast, mountain, opencountry

Presenting LabelMe dataset (17)

- ▶ 1000 training / 500 validation / 1188 test images
- 59 workers: each task has up to 3 votes
- ▶ 8 classes: highway, insidecity, tallbuilding, street, forest, coast, mountain, opencountry

⁽¹⁷⁾ F. Rodrigues, F. Pereira, and B. Ribeiro (2014). "Gaussian process classification and active learning with multiple annotators". In: ICML. PMLR, pp. 433—441.

QUALITATIVE RESULTS

WAUM (crowdsourcing)

AUMC (crowdsourcing)

AUM (no crowdsourcing)

ABLATION STUDY

CIFAR-10H

LabelMe

VGG-16

Resnet-34

DISCUSSIONGOING TO THE LARGE-SCALE PROBLEM

In short

- ► Introduced the WAUM to find ambiguous images
- ▶ Better quality data can improve performance

In short

- ► Introduced the WAUM to find ambiguous images
- ▶ Better quality data can improve performance

Towards large-scale problems

- ▶ DS model and confusion matrices do not scale
- What is currently done in large-scale settings?
- ► Can we evaluate their performance?

In short

- ► Introduced the WAUM to find ambiguous images
- ▶ Better quality data can improve performance

Towards large-scale problems

- ▶ DS model and confusion matrices do not scale
- ▶ What is currently done in large-scale settings?
- ► Can we evaluate their performance?
 - ▶ To evaluate we need data and code that scale!

THE PEERANNOT LIBRARY

PEERANNOT LIBRARY HANDLE CROWDSOURCED DATA IN CLASSIFICATION

▶ Python library for small and large crowdsourced datasets

pip install peerannot

▶ Documentation available at: https://peerannot.github.io

CROWDSOURCING IN LARGE SCALE: THE CASE OF PL@NTNET

PRESENTING PL@NTNET PIPELINE

REALEASING A NEW DATASET

- ► South Western European flora obs since 2017
- ▶ $n_{\text{worker}} \simeq 823\,000$ users answered more than $K \simeq 11000$ species
- ► $n_{\text{task}} \simeq 6700000$ observations
- ▶ 9 000 000 votes casted
- ▶ Imbalance: 80% of observations are represented by 10% of total votes

REALEASING A NEW DATASET

- ► South Western European flora obs since 2017
- ▶ $n_{\text{worker}} \simeq 823\,000$ users answered more than $K \simeq 11000$ species
- ► $n_{\rm task} \simeq 6\,700\,000$ observations
- ▶ 9 000 000 votes casted
- ▶ Imbalance: 80% of observations are represented by 10% of total votes

► Extraction of 98 experts (TelaBotanica + expert knowledge)

▶ https://zenodo.org/records/10782465

PL@NTNET AGGREGATION STRATEGY

PL@NTNET AGGREGATION STRATEGY EXAMPLES

Initial setting

PL@NTNET AGGREGATION STRATEGY EXAMPLES

Label switch

PL@NTNET AGGREGATION STRATEGY EXAMPLES

Invalidate

COMPARED STRATEGIES

► Majority Vote (MV)

COMPARED STRATEGIES

- ► Majority Vote (MV)
- ▶ Worker agreement with aggregate (WAWA)

$$\operatorname{weight}(w_j) = \operatorname{Accuracy}(\{y_i^{(j)}\}_i, \{\hat{y_i}^{\operatorname{MV}}\}_i)$$

COMPARED STRATEGIES

- ► Majority Vote (MV)
- ▶ Worker agreement with aggregate (WAWA)

$$\operatorname{weight}(w_j) = \operatorname{Accuracy}(\{y_i^{(j)}\}_i, \{\hat{y_i}^{\operatorname{MV}}\}_i)$$

- ► **TwoThird** (from iNaturalist pipeline)
 - Need 2 votes
 - 2/3 of agreements

RESULTS

INTEGRATING THE AI VOTE

Why?

- ► More data
- ► Could correct non-xpert users
- ► Could invalidate bad quality observation

INTEGRATING THE AI VOTE

Why?

- ► More data
- ► Could correct non-xpert users
- ► Could invalidate bad quality observation

Main danger

► Redundancy: users are already guided by AI predictions

STRATEGIES TO INTEGRATE THE AI VOTE

- ► Al **as worker**: naive integration
- ightharpoonup Al **fixed weight**: weight=1.7 to invalidate two new users by $< heta_{conf}$
- ► Al **invalidating**: fixed weight but can only invalidate observations
- ▶ Al **confident**: fixed weight on data with $\mathbb{P}(\text{predicted species}) > \theta_{\text{score}}$

STRATEGIES TO INTEGRATE THE AI VOTE

- ► Al as worker: naive integration
- ▶ Al **fixed weight**: weight=1.7 to invalidate two new users by $<\theta_{conf}$
- ► Al **invalidating**: fixed weight but can only invalidate observations
- ► Al **confident**: fixed weight on data with $\mathbb{P}(\text{predicted species}) > \theta_{\text{score}}$

 \implies confident AI with $\theta_{\text{score}} = 0.7$ performs best... but invalidating AI could be preferred for safety \iff

CONCLUSION

CONCLUSION AND PERSPECTIVES KEY POINTS

In short:

- ▶ Identifying ambiguous data in crowdsourced datasets
- Creation of the peerannot library to run reproducible experiments
- ► Release a **new large scale dataset**
- ► Evaluation and improvements of the Pl@ntNet crowdsourcing setting

CONCLUSION AND PERSPECTIVES KEY POINTS

In short:

- ▶ Identifying ambiguous data in crowdsourced datasets
- Creation of the peerannot library to run reproducible experiments
- ► Release a **new large scale dataset**
- ▶ Evaluation and improvements of the Pl@ntNet crowdsourcing setting

Perspectives:

- ▶ Need for better data collection: **recommendation system**
- ► Extend the library for multiclass classification and regression

CONCLUSION AND PERSPECTIVES KEY POINTS

In short:

- ▶ Identifying ambiguous data in crowdsourced datasets
- ► Creation of the **peerannot library** to run reproducible experiments
- ► Release a **new large scale dataset**
- ▶ Evaluation and improvements of the Pl@ntNet crowdsourcing setting

Perspectives:

- ▶ Need for better data collection: **recommendation system**
- Extend the library for multiclass classification and regression

Thank you!

REFERENCES I

- Chu, Z., J. Ma, and H. Wang (2021). "Learning from Crowds by Modeling Common Confusions.". In: AAAI, pp. 5832–5840.
- Dawid, A. and A. Skene (1979). "Maximum Likelihood Estimation of Observer Error-Rates Using the EM Algorithm". In: J. R. Stat. Soc. Ser. C. Appl. Stat. 28.1, pp. 20–28.
- Hovy, D. et al. (2013). "Learning whom to trust with MACE". In:
 Proceedings of the 2013 Conference of the North American Chapter of the
 Association for Computational Linguistics: Human Language Technologies,
 pp. 1120–1130.
- Ju, C., A. Bibaut, and M. van der Laan (2018). "The relative performance of ensemble methods with deep convolutional neural networks for image classification". In: *J. Appl. Stat.* 45.15, pp. 2800–2818.
- Lapin, M., M. Hein, and B. Schiele (2016). "Loss functions for top-k error: Analysis and insights". In: CVPR, pp. 1468–1477.
- Lefort, T., A. Affouard, et al. (2024). "Cooperative learning of Pl@ntNet's Artificial Intelligence algorithm: how does it work and how can we improve it?" In: arXiv preprint arXiv:2406.03356.

References II

- Lefort, T., B. Charlier, et al. (2024a). "Identify Ambiguous Tasks Combining Crowdsourced Labels by Weighting Areas Under the Margin". In: Transactions on Machine Learning Research.
- (2024b). "Peerannot: Classification for Crowdsourced Image Datasets with Python". In: Computo.
- (July 2024c). "Weighted majority vote using Shapley values in crowdsourcing". In: CAp 2024 - Conférence sur l'Apprentissage Automatique. Lille, France.
- Peterson, J. C. et al. (2019). "Human Uncertainty Makes Classification More Robust". In: *ICCV*, pp. 9617–9626.
- Pleiss, G. et al. (2020). "Identifying mislabeled data using the area under the margin ranking". In: *NeurIPS*.
- Rodrigues, F. and F. Pereira (2018). "Deep learning from crowds". In: AAAI. Vol. 32.
- Rodrigues, F., F. Pereira, and B. Ribeiro (2014). "Gaussian process classification and active learning with multiple annotators". In: *ICML*. PMLR, pp. 433–441.

REFERENCES III

- Servajean, M. et al. (2017). "Crowdsourcing thousands of specialized labels: A Bayesian active training approach". In: IEEE Transactions on Multimedia 19.6, pp. 1376–1391.
- Whitehill, J. et al. (2009). "Whose Vote Should Count More: Optimal Integration of Labels from Labelers of Unknown Expertise". In: NeurIPS. Vol. 22.