

TFG del Grado en Ingeniería Informática

Presentado por Guillermo Paredes Muga en Universidad de Burgos — 24 de febrero de 2020

Tutor: Álvar Arnaiz González y César Ignacio García Osorio

Dr. Álvar Arnaiz González y Dr. César Ignacio García Osorio, profesores del departamento de Ingeniería Civil, Área de Lenguajes y Sistemas Informáticos.

Expone:

Que el alumno D. Guillermo Paredes Muga, con DNI 13174210-V, ha realizado el Trabajo final de Grado en Ingeniería Informática titulado Metrominuto.

Y que dicho trabajo ha sido realizado por el alumno bajo la dirección del que suscribe, en virtud de lo cual se autoriza su presentación y defensa.

En Burgos, 24 de febrero de 2020

V°. B°. del Tutor: V°. B°. del co-tutor:

D. nombre tutor D. nombre co-tutor

Resumen

En este primer apartado se hace una **breve** presentación del tema que se aborda en el proyecto.

Descriptores

Palabras separadas por comas que identifiquen el contenido del proyecto Ej: servidor web, buscador de vuelos, android ...

Abstract

A **brief** presentation of the topic addressed in the project.

Keywords

keywords separated by commas.

Índice general

Indice general	III
Índice de figuras	\mathbf{v}
Índice de tablas	VI
Introducción	1
Objetivos del proyecto	3
Conceptos teóricos	5
3.1. Metrominuto	5
3.2. Mapa de tránsito	8
3.3. Referencias	11
3.4. Imágenes	11
3.5. Listas de items	12
3.6. Tablas	13
Técnicas y herramientas	15
4.1. Técnicas	15
4.2. Herramientas	16
Aspectos relevantes del desarrollo del proyecto	19
Trabajos relacionados	21
Conclusiones y Líneas de trabajo futuras	23

IV

25

Índice de figuras

3.1.	Metrominuto de Pontevedra	6
3.2.	Mapa del metro de Londres de 1928	6
3.3.	Mapa del metro de Londres de 1933	10
3.4.	Autómata para una expresión vacía	12

Índice de tablas

3.1. Herramientas y tecnologías utilizadas en cada parte del proyecto 13

Introducción

El tema principal del proyecto se basa en la mejora de la movilidad de los peatones en las ciudades a la hora de transitar por ellas a pie. Se centra en la idea de Metrominuto, que consiste en un mapa sinóptico que une diferentes puntos de la ciudad en función de la distancia existente entre cada uno de ellos. Trata de promover el transito a pie dentro de las ciudades Este proyecto ofrece la posibilidad de marcar tus propias rutas incluyendo los lugares o destinos que quieras visitar y calcula la mejor forma de recorrerlos en función de la distancia para minimizar el tiempo y recorrido empleados en ello.

//Hablar sobre la movilidad urbana y sobre el fomento del turismo y la movilidad a pie ?? Quizás algún gráfico?

Objetivos del proyecto

Este apartado explica de forma precisa y concisa cuales son los objetivos que se persiguen con la realización del proyecto. Se puede distinguir entre los objetivos marcados por los requisitos del software a construir y los objetivos de carácter técnico que plantea a la hora de llevar a la práctica el proyecto.

Objetivos Principales

- Desarrollar una aplicación web en la que los diferentes usuarios puedan seleccionar diversos puntos en un mapa (ciudad) con el fin de recorrerlos de la forma más óptima posible.
- Visualizar los puntos seleccionados: información acerca de la ubicación, marcador en el mapa.
- Poder añadir puntos al recorrido cuando el usuario lo desee.
- Calcular el trayecto mas corto para el usuario de manera que pase por todos los puntos seleccionados.

Objetivos Técnicos

- Desarrollar la aplicación web con Flask.
- Utilizar el API de Google para usar los mapas.
- Utilizar Git como sistema de control de versiones.
- Aplicar la teoría de grafos.
- Usar redes para el cálculo de los grafos.

Objetivos a nivel personal

- Realizar una aportación al turismo derivada de una necesidad personal.
- Profundizar en el desarrollo de un proyecto.

Conceptos teóricos

En aquellos proyectos que necesiten para su comprensión y desarrollo de unos conceptos teóricos de una determinada materia o de un determinado dominio de conocimiento, debe existir un apartado que sintetice dichos conceptos.

Algunos conceptos teóricos de L^AT_EX¹.

3.1. Metrominuto

«En los conceptos teóricos yo indicaría lo que es el concepto de Metrominuto, con bastante detalle (al menos un par de páginas y poniendo el diagrama por ejemplo).»

El concepto de Metrominuto surgió como resultado de diversas ideas sobre movilidad en la ciudad de Pontevedra. Este concepto hace referencia a un mapa sináptico, como si de un mapa de metro se tratase, que representa las distancias y los tiempos existentes entre los diferentes puntos de una ciudad. //Algún gráfico sobre movilidad urbana, medios de transporte....?

¹Créditos a los proyectos de Álvaro López Cantero: Configurador de Presupuestos y Roberto Izquierdo Amo: PLQuiz

Figura 3.1: Metrominuto de Pontevedra

Metrominuto no solo ofrece información de cara a la gente que quiere visitar la ciudad, si no que también fomenta caminar como medio de transporte en una ciudad, donde de una manera sencilla y curiosa nos muestra como llegar de un sitio a otro. Caminar, como ya sabemos, es la mejor solución para evitar el gran flujo de automóviles en el área urbana, y lo que ello conlleva: una constante emisión de elementos contaminantes.

En los orígenes de este sistema de movilidad se encuentra el estudio, por medio de la técnica DAFO(¿cita?) (Debilidades, Amenazas, Fortalezas, Oportunidades):

Debilidades: Como el estado cambiante del tiempo, diferente ritmo al caminar dependiendo de las personas, y la comodidad de coger el coche para moverse.

Amenazas: Prejuicios de la población.

Fortalezas: Cuidado del medio ambiente, mayor salud y al reducir los desplazamientos en automóvil se produce como resultado una mayor seguridad en los pocos que haya.

7

Oportunidades: Mejorar la ciudad, bienestar.

Estos planos no solo nos incitan a caminar, si no que también incluyen información útil acerca de líneas de autobús, estaciones de ferrocarril o de metro . . .

Proceso de elaboración

- 1. Paso 1: Consiste en la selección, dentro de una ciudad, de los puntos los cuales se quieren representar en el mapa. Estos puntos pueden elegirse en función de su importancia, interés turístico o de los ciudadanos.
- 2. Paso 2: Decidir qué ruta **peatonal** es la mas adecuado para unirlos.
- 3. Paso 3: Considerar cómo se va a dibujar el mapa. Puede ser más o menos preciso respecto a la realidad cartográfica.
- 4. Paso 4: Situar un punto central que sirva como punto de origen y de orientación para todos los usuarios.
- 5. Paso 5: Realizar por medio de herramientas de mapas, como Google Maps en nuestro caso o los mapas de Bing, el cálculo de las distancias entre los diferentes puntos.
- 6. Paso 6: Establecer una relación entre las distancias con el tiempo medio que lleva recorrerlas. Tenemos que tener en cuenta que toda la población no camina al mismo ritmo.
- 7. Paso 7: Una vez establecidas las diferentes rutas, hacer un estudio sobre ellas para corregir errores que puedan surgir, así como la variación en el tiempo si el terreno no es uniforme o si las condiciones de tráfico y semáforos varía.
- 8. Paso 8: Reflejar accidentes naturales o elementos de la ciudad como parques, mar, ríos...A través de elementos muy sencillos y con un código de colores al que estamos acostumbrados.
- 9. Paso 9: Reflejar aspectos de la movilidad intermodal, es decir elementos como estaciones de metro, autobús, tren, etc.
- 10. Paso 10: Advertir de los espacios con condiciones adversas para personas con problemas de movilidad.

- 11. Paso 11: Simplicidad, claridad y facilidad de lectura a la hora de dibujar el mapa.
- 12. Paso 12: No sólo mostrar conexiones con el punto central establecido como referencia, si no que también debe aparecer información sobre la interconexión entre los diferentes puntos.

El objetivo de este proyecto es automatizar este proceso, ya que actualmente los Metrominutos existentes se realizan de esta forma. Con el proceso automatizado sería el mismo usuario quien realice su propio Metrominuto con los puntos de interés personalizados que él decida, evitando que aparezcan puntos o información que no le resulta interesante.

3.2. Mapa de tránsito

Un mapa de tránsito consiste en un mapa topológico esquemático utilizado para mostrar trayectos y estaciones en el ámbito urbano, como puede ser el metro o el autobús. Los elementos principales de este tipo de mapas son:

- Líneas de diferentes colores y grosores que indican las distintas líneas del medio de transporte en cuestión.
- Iconos o puntos que indican las paradas o estaciones del medio en el que se vaya a viajar.
- Diferentes iconología para señalar características significativas.

//Algo de historia?

Harry Beck

Harry Beck fue un ingeniero electrónico del metro de Londres que trabajaba diseñando diagramas del circuito eléctrico, y que comenzó a diseñar un nuevo mapa de las líneas y estaciones de metro de su ciudad. El objetivo de la solución estaba claro: tenía que ser sencillo de leer para el público y que este pudiese reconocer claramente las distintas estaciones, salidas y traslados. Realizó varias versiones antes de llegar a la que conocemos hoy en día, como por ejemplo las que podemos observar en las imágenes //preguntar esto.

Figura 3.2: Mapa del metro de Londres de 1928

Figura 3.3: Mapa del metro de Londres de 1933

11

3.3. Referencias

Las referencias se incluyen en el texto usando cite [2]. Para citar webs, artículos o libros [1].

3.4. Imágenes

Se pueden incluir imágenes con los comandos standard de LATEX, pero esta plantilla dispone de comandos propios como por ejemplo el siguiente:

Figura 3.4: Autómata para una expresión vacía

3.5. Listas de items

Existen tres posibilidades:

- primer item.
- lacksquare segundo item.
- 1. primer item.

3.6. TABLAS 13

Herramientas	App AngularJS	API REST	BD	Memoria
HTML5	X			
CSS3	X			
BOOTSTRAP	X			
JavaScript	X			
AngularJS	X			
Bower	X			
PHP		X		
Karma + Jasmine	X			
Slim framework		X		
Idiorm		X		
Composer		X		
JSON	X	X		
PhpStorm	X	X		
MySQL			X	
PhpMyAdmin			Χ	
Git + BitBucket	X	X	X	X
MikT _E X				X
TEXMaker				X
Astah				X
Balsamiq Mockups	X			
VersionOne	X	X	X	X

Tabla 3.1: Herramientas y tecnologías utilizadas en cada parte del proyecto

2. segundo item.

Primer item más información sobre el primer item.

Segundo item más información sobre el segundo item.

3.6. Tablas

Igualmente se pueden usar los comandos específicos de LATEXo bien usar alguno de los comandos de la plantilla.

Técnicas y herramientas

Esta parte de la memoria tiene como objetivo presentar las técnicas metodológicas y las herramientas de desarrollo que se han utilizado para llevar a cabo el proyecto. Si se han estudiado diferentes alternativas de metodologías, herramientas, bibliotecas se puede hacer un resumen de los aspectos más destacados de cada alternativa, incluyendo comparativas entre las distintas opciones y una justificación de las elecciones realizadas. No se pretende que este apartado se convierta en un capítulo de un libro dedicado a cada una de las alternativas, sino comentar los aspectos más destacados de cada opción, con un repaso somero a los fundamentos esenciales y referencias bibliográficas para que el lector pueda ampliar su conocimiento sobre el tema.

4.1. Técnicas

Scrum

Scrum es una metodología de desarrollo ágil la cual proporciona un marco de trabajo y desarrollo de productos. No es un solo proceso, si no que en esta metodología se aplican un conjunto de buenas practicas y procesos para que el producto final sea de la mejor calidad posible. El principal elemento del Scrum consiste en los llamados Sprints, que son ciclos de trabajo de una semana de duración, período el cual sirve para producir un desarrollo o mejora del producto final. Estos sprints están marcados por dos reuniones:

 Planificación: en ella se presentan los requisitos o avances que tiene que cumplir el proyecto, a la vez que se estiman los tiempos y se realiza la planificación. Reunión de revisión: entrega de los requisitos acordados en la reunión de planificación y el equipo analiza el sprint.

El uso de esta metodología, junto con las diversas reuniones que se realizan, permite que el producto final sea de mejor calidad ya que en todo momento se conoce el feedback del cliente y se pueden realizar distintos cambios incrementales a medida que avanza el proyecto. Es una metodología pensada para el trabajo en equipo, por lo que en este proyecto se han mantenido las bases pero se ha adaptado la forma de trabajar, de manera que las reuniones han sido entre los tutores y el alumno y la fecha de la reunión de planificación del Sprint coincide con la fecha de revisión del sprint anterior.

GitHub

Para el control de versiones de este proyecto he utilizado GitHub, que es un repositorio en línea que emplea Git. De esta manera tenemos acceso en línea a los diferentes cambios de nuestro proyecto. Git maneja los distintos archivos del proyecto como un conjunto de copias instantáneas.

4.2. Herramientas

Flask

Flask es un framework de Python que nos permite crear páginas web de una manera mas sencilla y empleando un mínimo número de lineas para ello. Ofrece servicios HTTP, pero para poder hacer uso de los contenidos HTML requiere de la utilización del motor de templates *Jinja2*: lenguaje de plantillas que permite insertar datos procesados y texto predeterminado.

Bibliotecas

Networkx

JavaScript para dibujar redes

Tube Map - D3

//incluir estructura archivo JSON y explicar lo que significan las diferentes opciones de dirección.

17

Entorno de desarrollo Integrado (IDE)

Para el desarrollo del proyecto, se valoraron inicialmente dos editores:

- Visual Studio Code
- PyCharm

Al inicio del proyecto se empezó trabajando con Visual Studio Code, pero tras darle una vuelta mas se decidió usar Pycharm, ya que al estar orientado el proyecto a Python, este IDE ofrece mejores opciones para el desarrollo de este tipo de proyectos.

Google API

En este proyecto, para la selección de los distintos puntos a recorrer por parte del usuario he empleado los mapas de Google. Google proporciona una plataforma para los desarrolladores en la que se puede encontrar una gran cantidad de documentación². Para poder integrar en la aplicación web tanto los mapas como las diferentes funcionalidades que ofrecen debemos adquirir lo que llama API Key ³, la cual se trata de una clave «privada» para tener acceso a los servicios de su API. Para su obtención es necesario incluir tus datos bancarios, ya que durante el primer año el uso de los servicios es gratis y luego comienza a pagarse a partir de un determinado número de peticiones. Una vez obtenida la clave, puede restringirse su uso para ciertas direcciones o dominios, de modo que puedes mantener el control de quien la usa. Además, no vale con conseguir una clave y ya esta, si no que para usar los diferentes servicios que proporciona Google hay que activar diferentes APIs. Las APIs que se usan en este proyecto son:

- Maps JavaScript API: Se utiliza en el cliente, de manera que se muestra el mapa al cargar la página y permite realizar diferentes acciones en él; tales como buscar, seleccionar puntos o moverte a traves de él. Algunas de estas acciones implican el uso de algunas de funcionalidades que proporcionan las APIs explicadas a continuación.
- Geocoding API: este API consta de dos elementos:
 - Geocodificación: Consiste en convertir direcciones en coordenadas.

²https://cloud.google.com/maps-platform/

³https://developers-dot-devsite-v2-prod.appspot.com/maps/
documentation/geocoding/get-api-key

- Geocodificación inversa: Consiste en convertir coordenadas en una dirección legible.
- Places API: este servicio devuelve como resultado de la petición toda la información acerca de un lugar.
- Distance Matrix API: este API proporciona tanto la distancia como el tiempo de viaje que hay entre una lista de orígenes y una de destinos. En otras palabras, como resultado devuelve la distancia y tiempo que hay entre cada origen y cada destino.
- Directions API: como respuesta nos devuelve las indicaciones a seguir para llegar desde el punto de inicio hasta el punto de destino. Además, puede configurarse para diferentes modos de trasporte, diferentes momentos de salida o llegada.

Documentación

Aspectos relevantes del desarrollo del proyecto

Este apartado pretende recoger los aspectos más interesantes del desarrollo del proyecto, comentados por los autores del mismo. Debe incluir desde la exposición del ciclo de vida utilizado, hasta los detalles de mayor relevancia de las fases de análisis, diseño e implementación. Se busca que no sea una mera operación de copiar y pegar diagramas y extractos del código fuente, sino que realmente se justifiquen los caminos de solución que se han tomado, especialmente aquellos que no sean triviales. Puede ser el lugar más adecuado para documentar los aspectos más interesantes del diseño y de la implementación, con un mayor hincapié en aspectos tales como el tipo de arquitectura elegido, los índices de las tablas de la base de datos, normalización y desnormalización, distribución en ficheros3, reglas de negocio dentro de las bases de datos (EDVHV GH GDWRV DFWLYDV), aspectos de desarrollo relacionados con el WWW... Este apartado, debe convertirse en el resumen de la experiencia práctica del proyecto, y por sí mismo justifica que la memoria se convierta en un documento útil, fuente de referencia para los autores, los tutores y futuros alumnos.

Trabajos relacionados

Como se menciona anteriormente en este proyecto, la inicial de Metrominuto proviene de una idea en Pontevedra que tenía como finalidad el fomento del «arte de caminar». Derivada de ella, han aparecido aplicaciones y propuestas de metrominutos aplicados no solo a la movilidad urbana, si no también al turismo, a los colegios y a rutas por senderos y montaña. //desarrollar mas cada una de ellas?o poner alguna imagen de cada una?

Conclusiones y Líneas de trabajo futuras

Todo proyecto debe incluir las conclusiones que se derivan de su desarrollo. Éstas pueden ser de diferente índole, dependiendo de la tipología del proyecto, pero normalmente van a estar presentes un conjunto de conclusiones relacionadas con los resultados del proyecto y un conjunto de conclusiones técnicas. Además, resulta muy útil realizar un informe crítico indicando cómo se puede mejorar el proyecto, o cómo se puede continuar trabajando en la línea del proyecto realizado.

Bibliografía

- [1] John R. Koza. Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, 1992.
- [2] Wikipedia. Latex wikipedia, la enciclopedia libre, 2015. [Internet; descargado 30-septiembre-2015].