

Contrôle mécanique du solide

Agitateur médical

Le système permet l'agitation mécanique du bras (3) par des mouvements continus alternatifs de bas en haut. La chaîne cinématique est constituée de la manivelle (1), d'une bielle (2) et du bras (3)

La manivelle (1) est animée d'un mouvement de rotation uniforme avec la **vitesse angulaire (ω) constante**. via un moteur électrique non représenté sur le schéma.

0 : Partie fixe 1 : Manivelle OA

2 : Bielle AB

3: Bielle BO3

 $(\vec{x}\,,\,\vec{y}\,,\,\vec{z})$ repère lié à la partie fixe

 $(\overrightarrow{x_1},\overrightarrow{y_1},\overrightarrow{z})$ repère lié à (1)

 $(\overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z})$ repère lié à (2)

 $(\overrightarrow{x_3}, \overrightarrow{y_3}, \overrightarrow{z})$ repère lié à (3)

Données :

$$\overrightarrow{O_1O_2} = \mathbf{e}.\overrightarrow{x_1}\;;\; \overrightarrow{O_2B} = \mathbf{b}.\overrightarrow{x_2}\;;\; \overrightarrow{O_3B} = \mathbf{L}.\overrightarrow{x_3}\;;\; \overrightarrow{O_3O_1} = c.\overrightarrow{x} - d.\overrightarrow{y}\;;\; \theta_1 = (\overrightarrow{x},\overrightarrow{x_1})\;; \theta_2 = (\overrightarrow{x_1},\overrightarrow{x_2})\;; \theta_3 = (\overrightarrow{x},\overrightarrow{x_3})\;; \theta = (\overrightarrow{x_3},\overrightarrow{x_2})\;; \theta_3 = (\overrightarrow{x},\overrightarrow{x_3})\;; \theta =$$

Questions

- 1) Représenter les figures de changement de repère faisant apparaître les angles θ_1 , θ_2 et θ_3
- 2) Quelle est l'équation horaire angulaire $(\Theta_1 = f(t))$?
- **3)** Déterminer les vitesse de rotation $\vec{\Omega}$ (1/0), $\vec{\Omega}$ (2/0), $\vec{\Omega}$ (3/0) en fonction de Θ , θ_1 , θ_2 , θ_3 et de leurs dérivées
- 4) Déterminer le vecteur vitesse du point O_2 (par dérivation), $\overrightarrow{V_{O_2/R}}$ en fonction de θ_1 , e et de ses dérivées.
- **5)** Déterminer le vecteur vitesse du point B (par dérivation), $\overline{V_{B\,3/R}}$ en fonction de θ_3 , L et de leurs dérivées. (exprimer le vecteur dans le repère $\overrightarrow{x_3}$, $\overrightarrow{y_3}$, \overrightarrow{z} puis dans le repère $\overrightarrow{x_2}$, $\overrightarrow{y_2}$, \overrightarrow{z})
- **6)** Déterminer le vecteur vitesse du point B (par changement de point avec O_2), $\overline{V_{B\ 2/R}}$ en fonction de θ_1 , θ_2 , e, b et de leurs dérivées. (exprimer le vecteur dans le repère $\overrightarrow{x_2}$, $\overrightarrow{y_2}$, \overrightarrow{z})
- 7) Que peut-on dire des vitesses $\overline{V_{B\,3/R}}$ et $\overline{V_{B\,3/R}}$? Justifier .En déduire deux relations entre Θ , θ_1 , θ_2 , θ_3 , e, b, L et leurs dérivées
- 8) Ecrire les torseurs cinématiques suivants :
- Torseur cinématique du mouvement de 1 par rapport à R exprimé en O_1
- Torseur cinématique du mouvement de 2 par rapport à R exprimé en O₂ puis en B
- Torseur cinématique du mouvement de 3 par rapport à R exprimé en O₃ puis en B

Rappel : Le torseur cinématique $\{{\cal V}_{\scriptscriptstyle 2/1\}}\}$ du mouvement d'un solide 2 par rapport à un solide 1 exprimé au point A sera noté :

$$\left\{\boldsymbol{\mathcal{V}}_{(2\rightarrow1)}\right\} = \left\{\frac{\overrightarrow{\Omega_{2/1}}}{\overrightarrow{V_{A_{2/1}}}}\right\} = \left\{\frac{\overrightarrow{\Omega_{2/1}}}{\overrightarrow{V_{A_{2/1}}}} = \omega_{x21}.\overrightarrow{x} + \omega_{y21}.\overrightarrow{y} + \omega_{z21}.\overrightarrow{z}\right\}$$

- 9) Déterminer $\overrightarrow{\Gamma_{B\ 3/R}}$, l'accélération du point B en fonction de θ_3 , L et de leurs dérivées.
- **10)** Déterminer $\overrightarrow{\Gamma_{B\ 2/R}}$, l'accélération du point B en fonction de θ_1 , θ_2 , e, b et de leurs dérivées.