

Skorelowanie cech Analiza głównych składowych

Korelacja cech

Współczynnik korelacji liniowej Pearsona

$$\rho_{X,Y} = \frac{cov(X,Y)}{\sigma_X \sigma_Y}$$

Współczynnik korelacji rang Spearmana

$$\rho_{X,Y} = \frac{cov(rg_X, rg_Y)}{\sigma_{rg_X}\sigma_{rg_Y}}$$

Receiver Operating Characteristic Curve

False positive rate =
$$\frac{FP}{N}$$

True positive rate = $\frac{TP}{P}$

Variance Inflation Factor

- k zmiennych objaśniających
- Estymujemy model dla zmiennej i:

$$X_{i} = \alpha_{1}X_{1} + \dots + \alpha_{i-1}X_{i-1} + \alpha_{i+1}X_{i+1} + \dots + \alpha_{k}X_{k} + \alpha_{0} + \varepsilon$$

Obliczamy dla każdej zmiennej

$$VIF_i = \frac{1}{1 - R_i^2}$$

• Jeżeli VIF_i jest większy od pewnego progu to uznajemy, że zmienna jest liniowo zależna od pozostałych zmiennych

Dekompozycja macierzy danych na czynniki

Twierdzenie

Jeżeli A oraz B są macierzami symetrycznymi (a macierz B jest odwracalna) to maksimum x^TAx pod warunkiem $x^TBx = 1$ jest równe największej wartości własnej macierzy $B^{-1}A$:

$$\max x^T A x = \lambda_1 \ge \dots \ge \lambda_p = \min x^T A x.$$

Dekompozycja macierzy danych na czynniki

- p-wymiarowa chmura danych X może zostać przedstawiona rzutując elementy w przestrzeniach o mniejszym wymiarze ($E(X) = \mu, V(X) = \Sigma$)
- Pierwsza oś czynnikowa γ_1 przechodząca przez środek układu współrzędnych i minimalizująca ortogonalne odległości to wektor własny skojarzony z największą wartością własną macierzy X^TX
- Kierunki czynnikowe $1,\ldots,p$ to γ_1,\ldots,γ_p i odnoszą się do kolejnych wektorów własnych
- Współrzędne to $z_i = X\gamma_i$, i = 1, ..., q

Principal Component Analysis

- Tworzymy kombinacje liniowe cech $\delta^T X$, gdzie $\|\delta\| = 1$
- lacktriangle Celem jest maksymalizacja wariancji $\delta^T X$
- Maksymalizacja $V(\delta^T X) = \delta^T \Sigma \delta$ prowadzi do wyboru $\delta = \gamma_1$, pierwszego wektora własnego macierzy wariancji Σ odpowiadającego największej wartości własnej λ_1
- Powyższe jest uogólniane na wyższe wymiary w efekcie otrzymujemy p głównych składowych Y_1,\ldots,Y_p .
- Kombinację $Y_i = X\gamma_i$ nazywamy i-tą główną składową (PC_i)
- $Y = \Gamma^T X$
- $V(X) = \Sigma = \Gamma^T \Lambda \Gamma = \Gamma \Lambda \Gamma^T$

Principal Component Analysis

- Właściwości głównych składowych:
 - $E(Y_i) = 0$
 - $V(Y_j) = \lambda_j$
 - brak skorelowania
 - $\sum_{j=1}^{p} V(Y_j) = tr(\Sigma) = |\Sigma|$
 - $\lambda_1 \ge \cdots \ge \lambda_p \Rightarrow V(Y_1) \ge \cdots \ge V(Y_p)$
- Skala cech powinna być zbliżona
- Objaśnienie wariancji całkowitej przez q pierwszych PC:

$$\psi_q = \sum_{j=1}^q \lambda_j / \sum_{j=1}^p \lambda_j$$

Principal Component Analysis

- $Cov(X,Y) = \Gamma\Lambda$
- $\rho_{X_i Y_j} = \gamma_{ij} \left(\frac{\lambda_j}{\sigma_{X_i X_i}} \right)^{1/2}$
- Wybór liczby PC próg, wartości własne, wykres ψ
- Zastosowania rangowanie, wizualizacja do 3D, sposób radzenia sobie z "przekleństwem wielowymiarowości"