Sabudh Foundation

Predicting the Price of a Football Player (Group Coursework)

Team H

Efforts By: Ridhima Airi Uday Mahajan

The Dataset contains the following information:

- Name: Name of the playerClub: Club of the player
- Age: Age of the player
- Position: The usual position on the pitch
- Position category:
- 1 for attackers
- 2 for midfielders
- 3 for defenders
- 4 for goalkeepers
 - Market value: As on transfermrkt.com on July 20th, 2017
 - Page views: Average daily Wikipedia page views from September 1, 2016 to May 1, 2017
 - fpl_value: Value in Fantasy Premier League as on July 20th, 2017
 - fpl_sel: % of FPL players who have selected that player in their team
 - fpl_points: FPL points accumulated over the previous season
 - Region:
- 1 for England
- 2 for EU
- 3 for Americas
- 4 for Rest of World
 - Nationality
 - New foreign: Whether a new signing from a different league, for 2017/18 (till 20th July)
 - Age category
 - Cuboid
 - Big club: Whether one of the Top 6 clubs
 - New signing: Whether a new signing for 2017/18 (till 20th July)

Findings:

<u>Size</u>

(Original): 471 X 17, i.e., 471 players and their information on 17 features.

(After removing null values): 470 X 17.

The data includes the players from following clubs:

- Arsenal
- Bournemouth
- Brighton and Hove
- Burnley
- Chelsea
- Crystal Palace
- Everton
- Huddersfield
- Leicester City
- Liverpool
- Manchester City
- Manchester United
- Newcastle United
- Southampton
- Stoke City
- Swansea
- Tottenham
- Watford
- West Brom
- West Ham

We check the correlation between different attributes.

Results:

For the output variable 'market_value', correlation is maximum with the features 'fpl_value' and 'page_views' followed by 'fpl_points'.

Using the describe() command, we can observe that:

Mean (Age) = 26 years ranging between 17 years to 38 years.

Mean (Market Value) = 11 ranging between 0.05 and 75.

We define the input and output variables in order to train our model.

For input set, we drop the redundant features like "Name", "Club", "Age", "Nationality", "Position", "Club_id, "fpl_sel" and "Market_value" as "Market_value" defines the output variable.

We use Seaborn to obtain countplot() to Show the counts of observations in each categorical bin using bars.

We plot Boxplots to obtain the 5-number summary: Minimum, Maximum, Median, first and third quartile.

• fpl_points

Page views

Modelling:

We train the data using four algorithms:

Linear Regression

SVR

Random Forest

Extra Tree Regressor

We find that the Extra Tree Regressor gives the most accurate results.