Eksamen på Økonomistudiet vinter 2015-16

Lineære Modeller

valgfag

Tirsdag d.22. december 2015.

(3-timers prøve med hjælpemidler, dog ikke lommeregner eller cas-værktøjer)

Dette eksamenssæt består af 2 sider.

KØBENHAVNS UNIVERSITETS ØKONOMISKE INSTITUT

2015V-3LM ex

Eksamen i Lineære Modeller

Tirsdag d.22 december 2015.

Dette er en 3-timers eksamen (2 sider med i alt 4 opgaver).

Brug af bøger, noter og lignende er tilladt, men brug af lommeregner og casværktøjer er ikke tilladt.

Opgave 1.

Vi betragter den lineære afbildning $L: \mathbf{R}^2 \to \mathbf{R}^3$, som med hensyn til standardbaserne i begge rum har afbildningsmatricen

$$L = \begin{pmatrix} 1 & 1 \\ 2 & 1 \\ 0 & 2 \end{pmatrix} .$$

- (1) Bestem nulrummet for L. Er L injektiv?
- (2) Bestem en basis for billedrummet, R(L), for L. Er L surjektiv?
- (3) Bestem løsningsmængden til ligningen Lx = y, hvor $y = (y_1, y_2, y_3)$ tilhører billedrummet R(L). Hvad skal sammenhængen mellem y_1, y_2 og y_3 være for at $y = (y_1, y_2, y_3)$ tilhører billedrummet R(L)?
- (4) Lad $v_1 = (1,0,0)$, $v_2 = (1,1,0)$ og $v_3 = (1,1,1)$ være vektorer i \mathbf{R}^3 . Gør rede for v_1, v_2, v_3 er en basis for \mathbf{R}^3 .
- (5) Bestem afbildningsmatricen for den lineære afbildning $L: \mathbf{R}^2 \to \mathbf{R}^3$ med hensyn til standardbasen i \mathbf{R}^2 og basen v_1, v_2, v_3 i \mathbf{R}^3 .

Opgave 2.

Om en symmetrisk, 2×2 -matrix A, vides, at den har egenværdierne 1 og 2, med tilhørende egenvektorer $v_1 = (1,1)$ og $v_2 = (x_1, x_2)$ og om en anden 2×2 -matrix B, vides, at den har egenværdierne 3 og 4, med samme tilhørende egenvektorer v_1 og v_2 som A.

- (1) Bestem en mulig egenvektor $v_2 = (x_1, x_2)$.
- (2) Vis at B er symmetrisk.

- (3) Bestem matricen AB.
- (4) Bestem determinanten for matricen $A^{-2}B$.
- (5) Bestem vektoren $A^{-2}Bv_1$.
- (6) Lad nu funktionen p være $p(\lambda)=\lambda^2-11\lambda+24$. Vis at $p(AB)=(AB)^2-11AB+24E=O$, hvor O er 2×2 —nulmatricen.

Opgave 3.

- (1) Beregn integralet $\int \cos(2ax)\cos^2(ax)dx$, for $a \neq 0$.
- (2) Løs ligningen $z^2 = 3 + i2$. Løsningerne ønskes angivet på rektangulær form a + ib.

Opgave 4.

Vi betragter funktionen f, som er sumfunktion for rækken

$$\sum_{n=0}^{\infty} \left(\frac{1}{e^{2x} - 2e^x + 1}\right)^n.$$

- (1) Bestem de værdier af x, for hvilke funktionen f er veldefineret.
- (2) Bestem en regneforskrift for funktionen f.
- (3) Bestem monotoniforholdene for funktionen f, og undersøg om funktionen er injektiv.
- (4) Bestem værdimængden for funktionen f.
- (5) Løs ligningen f(x) = y (med hensyn til x) for et givet y beliggende i værdimængden for funktionen f.