Ques-1

total no. of proton per unit valueme,

$$N = \int_{0}^{\infty} n(\nu) d\nu$$

$$N = V \int_{0}^{\infty} \frac{u(\nu) d\nu}{h\nu} = \frac{2\pi V}{c^{3}} \int_{0}^{\infty} \frac{v^{2} d\nu}{e^{h\nu kt-1}}$$
Let $\frac{h\nu}{kt} = x$

$$N = 8\pi V \left(\frac{k!}{h\nu}\right)^{3} \int_{0}^{\infty} \frac{x^{2} dx}{e^{x-1}}$$

$$2.40 \text{ V}$$

Authorse energy
$$E = \int_{0}^{\infty} \frac{v(\omega)dv}{h(\omega)dv} = \frac{\alpha T^{1}}{N|V}$$

$$Ainva = \frac{40}{c} \quad and \quad N = 3.405 \left[8\pi v \left(\frac{RT}{Ac} \right)^{3} \right]$$

$$E = \frac{\sigma C^{2}h^{3}T}{(2.405)(2\pi k^{3})}$$

$$= 3.73 \times 10^{-20}J$$

E = 0.233W

$$P(V)dV = 4\Pi \left[\frac{m}{2\pi KBT}\right]^{3/2} exp \left[\frac{-mV^2}{2KBT}\right]V^2 dV$$

We have
$$m = \frac{32}{6r02 \cdot x10^{23}} gm = 5r32 \cdot x10^{26} kg$$

$$k_8 = (.38 \times 10^{-23}) \text{ J/K}$$

$$T = 200K$$
 $V = 1000Mls$

Ques-3

Now = 1.59
$$\int \frac{KBT}{m}$$
 $\frac{VO}{VH} = \int \frac{TO}{TH} \frac{mH}{mO}$
 $\frac{1}{2} = \int \frac{300 \times 1}{TH \times 16}$
 $\frac{1}{2} = \frac{15K}{TH}$

Ques-4

$$vmp = 1.41 \sqrt{\frac{RBT}{m}} ; \frac{vms}{vmp} = \sqrt{\frac{3}{2}}$$

$$\frac{1}{1} \frac{\sqrt{1} ms}{\sqrt{mp}} = \sqrt{\frac{3}{2}}$$

QW1-5

$$W = n! \prod_{i=1}^{k} \frac{(g_i)^{m_i}}{n_i!}$$

$$g_1 = g_2 = g_3 = \frac{1}{3} \quad n = 5 \quad k = 3$$

$$W = 5! \prod_{i=1}^{m} \frac{(g_i)^{m_i}}{n_i!}$$

$$= 5! \frac{(g_1)^{m_1} (g_2)^{m_2} (g_3)^{m_3}}{n_1! \quad n_2! \quad n_3!}$$

$$= \frac{5!}{n_1! \quad n_2! \quad n_3!} \frac{(\frac{1}{3})^{m_1+m_2+m_3}}{(\frac{1}{3})^{m_1+m_2+m_3}}$$

$$= \frac{5!}{3^5 \quad n_1! \quad n_2! \quad n_3!}$$

	'nι	n ₂	M3 .	5! m1 m2! m	<u>» l</u>
	5	0	0	1	
	Ч	1	D	5	
	3	2	0	01	
	B	1) -	ao	
	۵	2	. , I	30	
nout	probable	marradar a	ue - (2,2,1)	, (2,1,2)	, (1,2,2)

$$N(V)dV = \frac{9\pi V^2 dV}{C^3}$$

No of harmonic orielatore per unit usume book

$$\frac{V}{1-\frac{1}{1}} = \frac{AV}{\frac{AV}{e}} = \frac{AV}{1}$$

$$\text{Evdw} = \frac{8\pi h v^3}{c^3} \frac{dv}{(e^{hv]KT} - 1}$$

$$v = c/\lambda$$
 , $dv = -\frac{cd\lambda}{\lambda^2}$

and preq. is ine =) u(v)dv = -u(A)dA

Que-7

$$w = n! \prod_{n=1}^{k} \frac{(q_i)^{ni}}{ni!}$$

$$g_1 = Y$$
 , $g_2 = 2$, $R = 2$, $N = 8$

$$W = 8! \frac{(4)^{ni} (3)^{nx}}{n! n^{2}!}$$

$$W(3,0) = \frac{8!}{8!} = 65536$$

QUU-9

FLE) =
$$\left[\frac{1}{\text{exp}}\left(\frac{E-E_f}{KBT}\right)^{H}\right]$$

 $E = E_f + 0.5\text{er}$; $\left[(E) = 0.01\right]$
 $0.01 = \frac{1}{\text{exp}}\left[\frac{0.5}{KBT} + 1\right]$
 $0.01\text{exp}\left[\frac{0.5}{KBT}\right] = 0.99$
 $T = \frac{0.5}{40.99 \text{ KB}} = \frac{0.109}{KB}$

QUU-10

$$N = \frac{(n+9i-1)!}{n! (9i-1)!}$$

$$n = 8 \ 2 \ 9i = 6$$

$$N = \frac{13!}{8! \ 5!} = 1287$$

aws-11

$$N = \frac{9i!}{n! (9i-n)!}$$

$$9i = 15, \quad m = 10$$

$$N = \frac{15!}{10! 5!} = 3003$$

gm-13

HALL OF Na =
$$38.18 \times 10^{-24}$$
 gm dennity "

When the state of the s

We know,

$$\begin{aligned}
&\text{Ep} &= \frac{h^2}{4m} \left(\frac{3e}{3H} \right)^{2/3} \\
&\text{Ef} &= \frac{\left(6.64 \times 10^{-34} \right)^2}{2 \times 9.1 \times 10^{-31}} \left[\frac{3 \times 0.035 \times 10^{30}}{3 \times 3.14} \right]^{2/3} \\
&= 0.05031 \times 10^{-17} \text{ J}
\end{aligned}$$

gwes -13

Let journi energy of conduction electron in be is to and to - In remim,

quien - ege =
$$34.2 \times 10^{22} \text{cm}^3$$

ece = $0.91 \times 10^{22} \text{cm}^3$
E1 = $14.14eV$
E2 = ?

$$G = \frac{92}{\text{amo}} \left(\frac{3eBe}{8\pi} \right)^{2/3} - 0$$

$$E_2 = \frac{h^2}{9m_0} \left(\frac{3ece}{8\pi} \right)^{3/3} - 0$$

$$\frac{62}{61} = \frac{1000}{1000} = \frac{0.91 \times 10^{22}}{24.2 \times 10^{22}}$$

$$n(E) dE = \frac{3n}{2} = \frac{-3/2}{5} = \frac{4/2}{2} dE - 0$$

we know,
$$Ep = \frac{h^2}{am} \left(\frac{3n}{9\pi v}\right)^{2/3}$$

$$8\sqrt{2}\frac{\pi}{43}$$
 Vm^{3/2} = $\frac{3}{2}$ NE^{-3/2}

$$M = \int_{0}^{F} n(E) dE = 2\sqrt{2} \frac{\pi}{8^{3}} v_{m}^{3/2} \int_{0}^{F} E^{1/2} dE$$

$$m = \frac{2\sqrt{2}}{3\pi^2} \frac{1}{4^3} V_m^{3/2} \left(\frac{1}{2} m V_g^2 \right)^{3/2}$$

$$M = \frac{\Lambda M_3 \Lambda_3}{3 \Pi_3 \Lambda_3}$$

the all energy states below germilied are filled so -

$$\gamma = \frac{\Omega m^3 V^3}{3 \pi^2 h^3}$$

$$dh = \frac{Vm^3 V^2 dV}{T^2 h^3}$$

now and pour e-unacity at absolute were is-

$$abla = \frac{1}{m} \int_{0}^{v} v dn$$

$$\overline{V} = \frac{1}{n} \int_{0}^{V} V \left(\frac{vm^{3}}{\pi^{2}h^{3}} v^{3} dv \right)$$

$$\overline{V} = \frac{1}{n} \frac{vm^{3}}{\pi^{2}h^{3}} \frac{v^{4}}{4} \left(\frac{3\pi^{2}h}{4} \right)$$

$$\overline{V} = \frac{3VE}{4}$$

QUEN-15

QUU -13							
-	namuell Bollman	Bost - evnutuñ	Cermi piral				
applies to syllon	Odentical Divingui-	Identical sinditurgui- snable; doern't obey encertion principle	identital, indittingul- shabile; obey excussion principle				
paruile rategory	aarrical	Boieni	reunitors				
Properties of porticle	any upin, for enough no that naw from accumpt overlap	spin 0,1,2, mane umm. to interchange of porticle real	upp 1/2,3/2 wall funct. are and- alm. to interposse of partill.				
dinging of	no while for itales	no cimit is no of paralles	Never more than				
emamples	mounts of dar	motors in compl	free elellons in metals.				

$$n(E)dE = \frac{a\pi n}{(\pi k\tau)^{3/2}} JE e^{-E/k\tau} dE - 0$$

$$E = \frac{1}{n} \int_{0}^{\infty} E n(E) dE$$

$$= \frac{1}{n} \frac{2\pi n}{(\pi (\pi T)^{3})^{2}} \int_{0}^{\infty} E^{3/2} e^{-E/kT} dE$$

wing -
$$\int_{0}^{0} \chi^{3|2} e^{-\alpha \chi} d\chi = \frac{3}{u\alpha^{2}} \int_{0}^{\frac{\pi}{u}} dx$$

$$E = \frac{a\pi}{(\pi \kappa r)^{3}} \frac{3}{2} \left[\frac{3}{4} (\kappa r)^{2} \int_{0}^{\pi \kappa r} dx \right]$$

$$E = \frac{3}{2}kT$$

$$m(E)dE = \frac{2\pi n}{(\pi n +)^3 12} E^{12} e^{-\frac{1}{2} kT} dE$$

$$tmp = \frac{KT}{2}$$

(a)
$$n(E) dE = 8/2 \frac{\pi}{h^3} vm^{3/2} E^{-1/2} dE = 0$$

If N is no. of electrons in e-gas, the value of Ey can be found Ex

$$\int \frac{dr}{r} = \frac{4h^2}{am} \left(\frac{3N}{8\pi v} \right)^{\frac{2}{3}} \frac{13}{3}$$

(4) If to is wal energy of relations gas at absolute zero, trun-

$$4000$$
 $50 = \frac{3}{2}N5^{-3/2}$
 $57 = \frac{3}{2}d5$

The aug prec electron energy at absolute reso is - $\frac{1}{E} = \frac{10}{N} = \frac{3}{5}Ef$