성균관대학교 소프트웨어학과 이 지 형

Sequence Generation

Encoder-Decoder Scheme

- ▶ Encoder: compress input sequence into one vector
 - h_3 is the vector representation of the given sequence
- Decoder: uses this vector to generate output
 - ▶ It extracts necessary information only from the vector

Sequence Generation

- Encoder-Decoder Scheme
 - RNNs or CNNs can be used as Encoders
 - ► RNNs are usually used as Decoders

Sequence Generation

Challenges

- Hard for encoder to compress the whole source sentence into a single vector
- Performance is degraded as the length of sentence increases
- A single vector may not enough for decoder to generate correct words

- Observation
 - At every step, all the inputs are not equally useful

Inputs relevant to the context may be more useful

Overview

- Attention Module
 - All inputs share the same NN for matching degree

- Step 1: Evaluating Matching Degree
 - Evaluating matching degree of each input to the context
 - Produce scalar matching degree (Higher value is higher attention)
 - All inputs share the same NN

Step 2: Normalizing Matching Degree

$$s_i = \frac{\exp(m_i)}{\sum_j \exp(m_j)}$$

- Step 3: Aggregating Inputs
 - \triangleright Each input is scaled by s_i and summed up into z
 - > z is the input focused on the current context

Variation

Matching NN can be replaced with the inner products of inputs and context

Bidirectional LSTM

 $h_i = [\vec{h}_i, \overleftarrow{h}_i]$ represents the past and future information \vec{h}_i represents the past information

Bidirectional LSTM

$$\vec{h}_t = f(\overrightarrow{W}x_t + \overrightarrow{V}\overrightarrow{h}_{t-1} + \overrightarrow{b})$$

$$\overleftarrow{h}_t = f(\overrightarrow{W}x_t + \overleftarrow{V}\overrightarrow{h}_{t+1} + \overleftarrow{b})$$

$$y_t = g(U[\overrightarrow{h}_t; \overleftarrow{h}_t] + c)$$

Example

Encoder-decoder model

Attention based model

※성균관대학교

Example

Encoder-decoder model

Attention based model

※성균관대학교

- One more advantage
 - We can interpret and visualize what the model is doing

Xu et al. Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. ICML 2015

Attention is Great!

- RNNsearch-50 is a neural machine translation model with the attention mechanism trained on all the sentence pairs of length at most 50.
 - Dzmitry Bahdanau, KyungHyun Cho, Yoshua Bengio, "Neural Machine Translation by Jointly Learning to Align and Translate," ICLR 2015

Attention is Great!

- Attention significantly improves NMT performance.
 - It's very useful to allow decoder to focus on certain parts of the source.
- Attention solves the bottleneck problem.
 - Attention allows decoder to look directly at source; bypass bottleneck.
- Attention helps with vanishing gradient problem.
 - Provides shortcut to faraway states.
- Attention provides some interpretability.
 - By inspecting attention distribution, we can see what the decoder was focusing on.
 - We get alignment for free!
 - This is cool because we never explicitly trained an alignment system
 - ▶ The network just learned alignment by itself.

Question and Answer