

Description

The VSM50N06 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- $V_{DS} = 60V, I_D = 50A$ $R_{DS(ON)} < 20m\Omega @ V_{GS} = 10V$
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM50N06-T1	VSM50N06	TO-251	-	-	-

Absolute Maximum Ratings (T_c=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit V	
Drain-Source Voltage	V _{DS}	60		
Gate-Source Voltage	V _{GS}	±20	V	
Drain Current-Continuous	I _D	50	А	
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	35.4	Α	
Pulsed Drain Current	I _{DM}	200	Α	
Maximum Power Dissipation	P _D	85	W	
Derating factor		0.56	W/℃	
Single pulse avalanche energy (Note 5)	E _{AS}	300	mJ	
Operating Junction and Storage Temperature Range	T _J ,T _{STG}	-55 To 175	°C	

Thermal Characteristic

Electrical Characteristics (Tc=25°Cunless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit		
Off Characteristics								
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250µA	60	-	-	V		
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =60V,V _{GS} =0V	-	-	1	μA		
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA		
On Characteristics (Note 3)			•			•		
Gate Threshold Voltage	e $V_{GS(th)}$ $V_{DS}=V_{GS}$, $I_D=250\mu A$		1.4	1.8	2.5	V		
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =20A	-	13	20	mΩ		
Forward Transconductance	g FS	V _{DS} =5V,I _D =20A	18	-	-	S		
Dynamic Characteristics (Note4)	•		•			•		
Input Capacitance	C _{lss}	\/ 20\/\/ 0\/	-	2050	-	PF		
Output Capacitance	Coss	V_{DS} =30V, V_{GS} =0V,	-	158	-	PF		
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	120	-	PF		
Switching Characteristics (Note 4)								
Turn-on Delay Time	$t_{d(on)}$		-	7.4	-	nS		
Turn-on Rise Time	t _r	V_{DD} =30V, R_L =6.7 Ω	-	5.1	-	nS		
Turn-Off Delay Time	$t_{d(off)}$	V_{GS} =10V, R_{G} =3 Ω	-	28.2	-	nS		
Turn-Off Fall Time	t _f		-	5.5	-	nS		
Total Gate Charge	Qg	V 20VI 00A	-	50		nC		
Gate-Source Charge	Q _{gs}	V_{DS} =30V, I_{D} =20A, V_{GS} =10V	-	6		nC		
Gate-Drain Charge	Q_{gd}	V _{GS} -10V	-	15		nC		
Drain-Source Diode Characteristics	•		•			•		
Diode Forward Voltage (Note 3)	V_{SD}	V _{GS} =0V,I _S =20A	-		1.2	V		
Diode Forward Current (Note 2)	Is		-	-	50	Α		
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF =20A	-	28	-	nS		
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note3)	-	40	-	nC		
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)						

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- **2.** Surface Mounted on FR4 Board, $t \le 10$ sec.
- **3.** Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production
- **5.** EAS condition : Tj=25 $^{\circ}\text{C}$,VDD=30V,VG=10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-Junction Temperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 8 Safe Operation Area

Figure 9 BV_{DSS} vs Junction Temperature

Figure 10 $V_{\text{GS(th)}}$ vs Junction Temperature

Figure 11 Normalized Maximum Transient Thermal Impedance