SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO-MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK

Marco Hrlić

SAŽETO UZORKOVANJE

Diplomski rad

Voditelj rada: Prof. dr. sc. Damir Bakić

	1.	, predsjednik
	2.	, član
	3.	, član
ovjerenstvo	je rad ocijenilo ocjenom	
Povjerenstvo	je rad ocijenilo ocjenom	Potpisi članova povjerenstva:
Povjerenstvo	je rad ocijenilo ocjenom	Potpisi članova povjerenstva: 1.

Sadržaj

Sa	adrža	j	iv		
\mathbf{U}	vod		1		
1	Rije	etka rješenja	3		
	1.1	Rijetsko i sažetost vektora	3		
	1.2	Minimalni broj mjerenja	10		
	1.3	NP-složenost ℓ_0 -minimizacije	14		
2	Osnovni algoritmi sažetog uzorkovanja				
	2.1	Optimizacijske metode	17		
	2.2	Greedy metode	21		
	2.3	Granične metode	24		
3	ℓ_1 -minimizacija				
	3.1	Svojstvo nul-prostora	27		
	3.2	Stabilnost	31		
	3.3	Robusnost	34		
	3.4	Rekonstrukcija predodređenog vektora	37		
4	Kol	nerencija	41		
	4.1	Definicija i svojstva	41		
	4.2	Matrice male koherencije	43		
	4.3	Analiza OMP algoritma	52		
	4.4	Analiza ℓ_1 -minimizacije	52		
	4.5	Analiza graničnih metoda	54		
5	Svojstvo ograničene izometrije				
	5.1	Definicija i osnovna svojstva	57		
	5.2	Analiza ℓ_1 -minimizacije	63		

SADRŽ	$\widetilde{Z}AJ$	v
5.3	Analiza graničnih metoda	 65
Bibliog	grafija	69

$\mathbf{U}\mathbf{vod}$

...

Poglavlje 1

Rijetka rješenja

1.1 Rijetsko i sažetost vektora

Uvedimo potrebnu notaciju. Neka je [N] oznaka za skup $\{1, 2, ..., N\}$ gdje je $N \in \mathbb{N}$. Sa card(S) označujemo kardinalitet skupa S. Nadalje, \bar{S} je komplement od S u [N], tj. $\bar{S} = [N] \backslash S$.

Definicija 1.1.1. Nosač vektora $\mathbf{x} \in \mathbb{C}^N$ je skup indeksa njegovih ne-nul elemenata, tj.

$$\operatorname{supp}(\mathbf{x}) := \{ j \in [N] : x_j \neq 0 \}$$

Za vektor $\mathbf{x} \in \mathbb{C}^N$ kažemo da je s-rijedak ako vrijedi

$$\|\mathbf{x}\|_0 := \operatorname{card}(\operatorname{supp}(\mathbf{x})) \le s$$

Primjetimo,

$$\|\mathbf{x}\|_p^p := \sum_{j=1}^N |x_j|^p \xrightarrow{p \to 0} \sum_{j=1}^N \mathbf{1}_{\{x_j \neq 0\}} = \operatorname{card}(\{j \in [N] : x_j \neq 0\}) = \|\mathbf{x}\|_0$$

Gdje smo koristili da je $\mathbf{1}_{\{x_j\neq 0\}}=1$ ako je $x_j\neq 0$ te $\mathbf{1}_{\{x_j\neq 0\}}=0$ ako je $x_j=0$. Drugim riječima, $\|\mathbf{x}\|_0$ je limes p-te potencije ℓ_p -kvazinorme vektora \mathbf{x} kada p teži k nuli. Kvazinorma definira se jednako kao standardna ℓ_p -norma, jedino što nejednakost trokuta oslabimo, tj.

$$\|\mathbf{x} + \mathbf{y}\| \le C(\|\mathbf{x}\| + \|\mathbf{y}\|)$$

za neku konstantu $C \ge 1$. Funkciju $\|\cdot\|_0$ često nazivamo ℓ_0 -norma vektora x, iako ona nije niti norma niti kvazinorma. U samoj praksi, teško je tražiti rijetkost vektora,

pa je stoga prirodno zahtjevati slabiji uvjet kompresibilnosti.

Definicija 1.1.2. ℓ_p -grešku najbolje s-rijetke aproksimacije vektora $\mathbf{x} \in \mathbb{C}^N$ definiramo sa

$$\sigma_s(\mathbf{x})_p := \inf \left\{ \|\mathbf{x} - \mathbf{z}\|_p, \ \mathbf{z} \in \mathbb{C}^N \ je \ s\text{-rijedak} \right\}$$

Primjetimo da se infimum postiže za svaki s-rijedak vektor $\mathbf{z} \in \mathbb{C}^N$ koji ima nenul elemente koji su jednaki sa s najvećih komponenti vektora \mathbf{x} . Iako takav $\mathbf{z} \in \mathbb{C}^N$ nije jedinstven, on postiže infimum za svaki p > 0. Neformalno, mogli bi reći da je vektor $\mathbf{x} \in \mathbb{C}^N$ kompresibilan ako greška njegove najbolje s-rijetke aproksimacije brzo konvergira u s. Da bi to formalno iskazali, od koristi će biti ocjena na $\sigma_s(\cdot)_p$. Pošto nam za to neće biti važan poredak elemenata vektora \mathbf{x} , uvodimo sljedeću definiciju koja će nam olaksati račun.

Definicija 1.1.3. Nerastući poredak vektora $\mathbf{x} \in \mathbb{C}^N$ je vektor $\mathbf{x}^* \in \mathbb{R}^{\mathbb{N}}$ takav da

$$x_1^* \ge x_2^* \ge x_3^* \ge \dots \ge 0$$

te postoji permutacije $\pi: [N] \to [N]$ takva da $x_i^* = |x_{\pi(i)}|$ za sve $i \in [N]$.

Propozicija 1.1.4. Za svaki q > p > 0 i za svaki $\mathbf{x} \in \mathbb{C}^N$ vrijedi

$$\sigma_s(\mathbf{x})_q \le \frac{1}{s^{1/p-1/q}} \|\mathbf{x}\|_p.$$

Dokaz. Neka je $\mathbf{x}^* \in \mathbb{R}^N$ nerastući poredak vektora $\mathbf{x} \in \mathbb{C}^N$. Tada slijedi,

$$\sigma_{s}(\mathbf{x})_{q}^{q} = \sum_{j=s+1}^{N} (x_{j}^{*})^{q} = \sum_{j=s+1}^{N} (x_{j}^{*})^{p} (x_{j}^{*})^{q-p} \le (x_{s}^{*})^{q-p} \sum_{j=s+1}^{N} (x_{j}^{*})^{p}$$

$$\le \left(\frac{1}{s} \sum_{j=1}^{s} (x_{j}^{*})^{p}\right)^{\frac{q-p}{p}} \left(\sum_{j=s+1}^{N} (x_{j}^{*})^{p}\right) \le \left(\frac{1}{s} \|\mathbf{x}\|_{p}^{p}\right)^{\frac{q-p}{p}} \|\mathbf{x}\|_{p}^{p}$$

$$= \frac{1}{s^{q/p-1}} \|\mathbf{x}\|_{p}^{q}$$

Prva nejednakost slijedi iz činjenice da je $x_j^* \le x_s^*$ za svaki $j \ge s+1$. Druga nejednakost je također posljedica nerasta komponenti od \mathbf{x}^* . Potenciranjem obje strane s 1/q slijedi tvrdnja.

Primjetimo da ako je \mathbf{x} iz jedinične ℓ_p -kugle za neki mali p > 0, onda prethodna propozicija garantira kovergenciju od $\sigma_s(\mathbf{x})_q$ u s, gdje ℓ_p -kuglu definiramo kao

$$B_p^N := \left\{ \mathbf{z} \in \mathbb{C}^N : \|\mathbf{z}\|_p \le 1 \right\}$$

Vratimo se sada ocjeni iz propozicije 1.1.4. Sljedeći teorem daje najmanju konstantu $c_{p,q}$ takvu da vrijedi $\sigma_s(\mathbf{x})_q \leq c_{p,q} s^{-1/p+1/q} \|\mathbf{x}\|_p$ te zapravo predstavlja jaču tvrdnju.

Teorem 1.1.5. Za svaki q > p > 0 i za svaki $\mathbf{x} \in \mathbb{C}^N$ vrijedi

$$\sigma_s(\mathbf{x})_q \le \frac{c_{p,q}}{s^{1/p-1/q}} \|\mathbf{x}\|_p$$

gdje je

$$c_{p,q} := \left[\left(\frac{p}{q} \right)^{p/q} \left(1 - \frac{p^{1-p/q}}{q} \right) \right]^{1/p} \le 1.$$

Istaknimo za česti odabir p = 1 i q = 2

$$\sigma_s(\mathbf{x})_2 \le \frac{1}{2\sqrt{s}} \|\mathbf{x}\|_1$$

Dokaz. Neka je \mathbf{x}^* nerastući poredak vektora $\mathbf{x} \in \mathbb{C}^N$ i $\alpha_j := (x_j^*)^p$. Dokazati ćemo ekvivaltenu tvrdnju

$$\frac{\alpha_1 \ge \alpha_2 \ge \dots \ge \alpha_N \ge 0}{\alpha_1 + \alpha_2 + \dots + \alpha_N \le 1} \implies \alpha_{s+1}^{q/p} + \alpha_{s+2}^{q/p} + \dots + \alpha_{s+N}^{q/p} \le \frac{c_q^q}{s^{q/p-1}}$$
(1.1)

Stoga, za r := q/p > 1, problem se svodi na maksimizaciju konveksne funkcije

$$f(\alpha_1, \alpha_2, \dots, \alpha_N) := \alpha_{s+1}^r + \alpha_{s+2}^r + \dots + \alpha_N^r$$

na konveksnom mnogokutu

$$\mathcal{C} := \left\{ (\alpha_1, \dots, \alpha_N) \in \mathbb{R}^N : \alpha_1 \ge \alpha_2 \ge \dots \ge \alpha_N \ge 0 \\ i\alpha_1 + \alpha_2 + \dots + \alpha_N \le 1 \right\}$$

Prema teoremu (todo) f postiže maksimum na nekom od vrhova mnogokuta C, a vrhovi od C su dani kao sjecišta N hiperplohi koje dobijemo tako da u (1.1) N nejednakosti pretvorimo u jednakosti. Mogučnosti su:

1.
$$\alpha_1 = \cdots = \alpha_N \implies f(\alpha_1, \alpha_2, \ldots, \alpha_N) = 0.$$

2.
$$\alpha_1 + \cdots + \alpha_N = 1$$
 i $\alpha_1 = \cdots = \alpha_k > \alpha_{k+1} = \cdots = \alpha_N = 0$ za neki $1 \le k \le s \implies f(\alpha_1, \alpha_2, \dots, \alpha_N) = 0$

3.
$$\alpha_1 + \dots + \alpha_N = 1$$
 i $\alpha_1 = \dots = \alpha_k > \alpha_{k+1} = \dots = \alpha_N = 0$ za neki $s+1 \le k \le N \implies \alpha_1 = \dots = \alpha_k = 1/k$ te $f(\alpha_1, \alpha_2, \dots, \alpha_N) = (k-s)/k^r$

Dakle, slijedi da

$$\max_{(\alpha_1, \dots, \alpha_N) \in \mathcal{C}} f(\alpha_1, \alpha_2, \dots, \alpha_N) = \max_{s+1 \le k \le N} \frac{k-s}{k^r}$$

Shvatimo sada k kao realnu varijablu i zamjetimo da $g(k) := (k - s)/k^r$ raste do kritične točke $k^* = (r/(r-1))s$ nakon koje opada.

$$\max_{(\alpha_1, \dots, \alpha_N) \in \mathcal{C}} f(\alpha_1, \alpha_2, \dots, \alpha_N) \le g(k^*) = \frac{1}{r} \left(1 - \frac{1}{r} \right)^{r-1} \frac{1}{s^r - 1} = c_{p,q}^q \frac{1}{s^{q/p} - 1}$$

Alternativni način na koji bi mogli definirati pojam kompresibilnosti za vektor $\mathbf{x} \in \mathbb{C}^N$ je da zahtjevamo da je broj

$$\operatorname{card}(\{j \in [N] : |x_j| \ge t\})$$

tj. broj njegovih značajnih ne-nul komponenti dovoljno mali. Ovaj pristup vodi na definiciju slabih ℓ_p -prostora.

Definicija 1.1.6. Za p > 0, slabi ℓ_p -prostor s oznakom $w\ell_p^N$ definiramo kao prostor \mathbb{C}^N sa kvazinormom

$$\|\mathbf{x}\|_{p,\infty} := \inf \left\{ M \ge 0 : \operatorname{card}(\{j \in [N] : |x_j| \ge t\}) \le \frac{M^P}{t^p}, \ \forall t > 0 \right\}$$
 (1.2)

Da bi pokazali da je (1.2) zapravo kvazinorma, potreban nam je sljedeći rezultat.

Propozicija 1.1.7. Neka su $\mathbf{x}^1, \dots \mathbf{x}^k \in \mathbb{C}^N$. Tada za svaki p > 0 vrijedi

$$\|\mathbf{x}^1 + \dots + \mathbf{x}^k\|_{p,\infty} \le k^{\max\{1,1/p\}} (\|\mathbf{x}^1\|_{p,\infty} + \dots + \|\mathbf{x}^k\|_{p,\infty})$$

Dokaz. Neka je t>0. Ako je $|x_j^1+\cdots+x_j^k|\geq t$ za neki $j\in[N],$ tada imamo da je $|x_j^i|\geq t/k$ za neki $i\in[k].$ Dakle, vrijedi

$$\left\{j \in [N]: |x_j^1 + \dots + x_j^k| \ge t\right\} \subset \bigcup_{i \in [k]} \left\{j \in [N]: |x_j^i| \ge t/k\right\}$$

pa je stoga

$$\operatorname{card}(\{j \in [N] : |x_j^1 + \dots + k_j^k| \ge t\}) \le \sum_{i \in [k]} \frac{\|\mathbf{x}^i\|_{p,\infty}^p}{(t/k)^p}$$
$$= \frac{k^p(\|\mathbf{x}^1\|_{p,\infty}^p + \dots + \|\mathbf{x}^k\|_{p,\infty}^p)}{t^p}$$

Prema definiciji slabe ℓ_p -kvazinorme (1.2) vektora $\mathbf{x}^1 + \cdots + \mathbf{x}^k$ dobivamo

$$\|\mathbf{x}^1 + \dots + \mathbf{x}^k\|_{p,\infty} \le k \left(\|\mathbf{x}^1\|_{p,\infty}^p + \dots + \|\mathbf{x}^k\|_{p,\infty}^p\right)$$

Ako je $p \leq 1$, uspoređujući ℓ_p i ℓ_1 norme na \mathbb{R}^k slijedi

$$\left(\|\mathbf{x}^1\|_{p,\infty}^p + \dots + \|\mathbf{x}^k\|_{p,\infty}^p\right)^{1/p} \le k^{1/p-1} \left(\|\mathbf{x}^1\|_{p,\infty} + \dots + \|\mathbf{x}^k\|_{p,\infty}\right)$$

te ako je $p \ge 1$ slijedi

$$\left(\|\mathbf{x}^1\|_{p,\infty}^p + \dots + \|\mathbf{x}^k\|_{p,\infty}^p\right)^{1/p} \le \|\mathbf{x}^1\|_{p,\infty} + \dots + \|\mathbf{x}^k\|_{p,\infty}.$$

Tvrdnja slijedi kombiniranjem dobivenih ocjena.

Uzmimo $\mathbf{x}, \mathbf{y} \in \mathbb{C}^N$ i neka je $\lambda \in \mathbb{C}$ proizvoljan.

- 1. Neka je $\|\mathbf{x}\|_{p,\infty} = 0$. Iz (1.2) slijedi card $(\{j \in [N] : |x_j| \ge t\}) = 0$ za svaki t > 0 pa je stoga broj ne-nul komponenti on \mathbf{x} jednak nuli, tj. $\mathbf{x} = 0$
- 2. Ako je λ nula, $\|\lambda \mathbf{x}\| = |\lambda| \|\mathbf{x}\|$ vrijedi trivijalno. Za $\lambda \neq 0$, imamo $\operatorname{card}(\{j \in [N] : |\alpha x_j| \geq t\}) = \operatorname{card}(\{j \in [N] : |x_j| \geq t/|\alpha|\}) \leq (\alpha M)^p/t^p$ za svaki t > 0. Dakle, opet $\|\lambda \mathbf{x}\| = |\lambda| \|\mathbf{x}\|$.
- 3. $\|\mathbf{x}+\mathbf{y}\| \leq C(\|\mathbf{x}\|+\|\mathbf{y}\|)$ je sada direktna posljedica prethodne propozicije.

sljedeća propozicija daje alternativni izraz za slabu ℓ_p -kvazinormu.

Propozicija 1.1.8. Za p > 0, vrijedi

$$\|\mathbf{x}\|_{p,\infty} = \max_{k \in [N]} k^{1/p} x_k^*$$

gdje je $\mathbf{x}^* \in \mathbb{R}^N$ nerastući poredak vektora $\mathbf{x} \in \mathbb{C}^N$.

Dokaz. Primjetimo prvo da iz (1.2) slijedi da je $\|\mathbf{x}\|_{p,\infty} = \|\mathbf{x}^*\|_{p,\infty}$, pa zapravo pokazujemo da je $\|\mathbf{x}\| := \max_{k \in [N]} k^{1/p} x_k^* = \|\mathbf{x}^*\|$. Nadalje, za t > 0 vrijedi da je $\{j \in [N] : x_j^* \ge t\} = [k]$ za neki $k \in [N]$ ili je $\{j \in [N] : x_j^* \ge t\} = \emptyset$. U prvom

slučaju $t \leq x_k^* \leq \|\mathbf{x}\|/k^{1/p}$ pa je card $(\{j \in [N] : x_j^* \geq t\}) = k \leq \|\mathbf{x}\|/k^{1/p}$. U drugom slučaju ista nejednakost vrijedi trivijalno. Iz definicije slabe ℓ_p -kvazinorme (1.2) sada dobivamo $\|\mathbf{x}^*\|_{p,\infty} \leq \|\mathbf{x}\|$. Pretpostavimo da je $\|\mathbf{x}^*\|_{p,\infty} < \|\mathbf{x}\|$. Tada postoji $\varepsilon > 0$ takav da $(1+\varepsilon)\|\mathbf{x}^*\|_{p,\infty} \leq \|\mathbf{x}\|$. Slijedi da je $(1+\varepsilon)\|\mathbf{x}^*\| \leq k^{1/p}x_k^*$ za neki $k \in [N]$ pa stoga

$$[k] \subseteq \left\{ j \in [N] : (1+\varepsilon) \|\mathbf{x}^*\|_{p,\infty} / k^{1/p} \le x_j^* \right\}$$

Ponovo iz (1.2) imamo

$$k \le \frac{\|\mathbf{x}^*\|_{p,\infty}^p}{\left((1+\varepsilon)\|\mathbf{x}^*\|_{p,\infty}k^{1/p}\right)^p} = \frac{k}{(1+\varepsilon)^p}$$

Kontradikcija, dakle mora vrijediti $\|\mathbf{x}\| = \|\mathbf{x}^*\|_{p,\infty}$.

Sada lagano možemo usporediti slabi i jaku ℓ_p normu,

Propozicija 1.1.9. Za svaki p > 0 i za svaki $\mathbf{x} \in \mathbb{C}^N$,

$$\|\mathbf{x}\|_{p,\infty} \le \|\mathbf{x}\|_p$$

Dokaz. Neka je $k \in [N]$,

$$\|\mathbf{x}\|_p^p = \sum_{j=1}^N (x_j^*)^p \ge \sum_{j=1}^k (x_j^*)^p \ge k(x_k^*)^p$$

Tvrdnja slijedi potenciranjem na 1/p i uzimajući maksimum po k i primjenom prethodne propozicije.

Koristeći propoziciju (1.1.8) možemo dobiti verziju ocjene iz propozicije (1.1.4) sa slabom ℓ_p normom.

Propozicija 1.1.10. Za svaki q > p > 0 i $\mathbf{x} \in \mathbb{C}^N$, vrijedi

$$\sigma_s(\mathbf{x})_q \le \frac{d_{p,q}}{s^{1/p-1/q}} \|\mathbf{x}\|_{p,\infty}$$

gdje je

$$d_{p,q} := \left(\frac{p}{q-p}\right)^{1/q}.$$

Dokaz. Bez smanjenja opčenitosti možemo pretpostaviti da je $\|\mathbf{x}\|_{p,\infty} \leq 1$, pa je $x_k^* \leq 1/k^{1/p}$ za svaki $k \in [N]$. Tada vrijedi,

$$\sigma_s(\mathbf{x})_q^q = \sum_{k=s+1}^N (x_k^*)^q \le \sum_{k=s+1}^N \frac{1}{k^{q/p}} \le \int_s^N \frac{1}{t^{q/p}} dt = -\frac{1}{q/p-1} \frac{1}{t^{q/p-1}} \bigg|_{t=s}^{t=N} \le \frac{p}{q-p} \frac{1}{s^{q/p-1}}.$$

Potenciranjem sa 1/q slijedi tvrdnja.

Prethodna propozicija daje da su vektori $\mathbf{x} \in \mathbb{C}^N$ koji su kompresibilni u smislu $\|\mathbf{x}\|_{p,\infty} \leq 1$ za mali p > 0, također kompresibilni u smislu da greška njihove najbolje s-rijetke aproksimacije brzo konvergira sa s. Iskažimo još jedan tehnički rezultat,

Lema 1.1.11. Neka su $\mathbf{x}, \mathbf{y} \in \mathbb{C}^N$. Tada vrijedi,

$$\|\mathbf{x}^* - \mathbf{y}^*\|_{\infty} \le \|\mathbf{x} - \mathbf{y}\|_{\infty} \tag{1.3}$$

Nadalje, za $s \in [N]$,

$$|\sigma_s(\mathbf{x})_1 - \sigma(\mathbf{y})_1| \le ||\mathbf{x} - \mathbf{y}||_1 \tag{1.4}$$

 $i \ za \ k > s$,

$$(k-s)x_k^* \le \|\mathbf{x} - \mathbf{y}\|_1 + \sigma_s(\mathbf{y})_1 \tag{1.5}$$

Dokaz. Za $j \in [N]$, skup indeksa j najvećih komponenti vektora \mathbf{x} ima ne-trivijalni presjek sa skupom od N-j+1 najmanjih komponenti vektora \mathbf{y} . Izaberimo indeks l iz tog presjeka. Tada vrijedi,

$$x_j^* \le |x_l| \le |y_l| + \|\mathbf{x} - \mathbf{y}\|_{\infty} \le z_j^* + \|\mathbf{x} - \mathbf{y}\|_{\infty}$$

Zamjenom uloga od \mathbf{x} i \mathbf{y} slijedi (1.3). Neka je $\mathbf{v} \in \mathbb{C}^N$ najbolja s-rijetka aproksimacija vektora \mathbf{y} . Tada

$$\sigma_s(\mathbf{x})_1 \le \|\mathbf{x} - \mathbf{v}\|_1 \le \|\mathbf{x} - \mathbf{y}\|_1 + \|\mathbf{y} - \mathbf{v}\|_1 = \|\mathbf{x} - \mathbf{y}\|_1 + \sigma_s(\mathbf{y})_1$$

Ponovno, zbog simetrije slijedi (1.4). Napokon, ocjena (1.5) slijedi iz (1.4) te iz činjenice

$$(k-s)x_k^* \le \sum_{j=s+1}^k x_j^* \le \sum_{j>s+1} x_j^* = \sigma_s(\mathbf{x})_1.$$

1.2 Minimalni broj mjerenja

Problem sažetog uzorkovanja sastoji se od rekonstrukcije s-rijetkog vektora $\mathbf{x} \in \mathbb{C}^N$ iz sustava

$$y = Ax$$

Matricu $\mathbf{A} \in \mathbb{C}^{m \times N}$ nazivamo matrica mjerenja. Ako je m < N, za ovakav sustav linearnih jednadžbi kažemo da je neodređen. Iako iz klasične teorije linearne algebre ovakvi sustavi imaju beskonačno mnogo riješenja, pokazati će se da je dodatna pretpostavka rijetkosti vektora x dovoljno za jedinstvenost rješenja. U ovom poglavlju istražiti ćemo koji je minimalni broj mjerenja, tj. m broj redaka matrice \mathbf{A} , koji garantira rekonstrukciju s-rijetkog vektora \mathbf{x} . Zapravo, postoje dva pristupa ovom problemu. Možemo zahtjevati da problem mjerenja rekonstruira sve s-rijetke vektore $\mathbf{x} \in \mathbb{C}^N$ istodobno ili možemo tražiti rekonstrukciju specifičnog, tj. predodređenog vektora $\mathbf{x} \in \mathbb{C}^N$. Taj pristup čini se neprirodan, no pokazuje se da je on važan u proučavanju problema gdje matricu \mathbf{A} biramo nasumično.

Pokažimo da su za danu rijetkost s, matricu $\mathbf{A} \in \mathbb{C}^{m \times N}$ i s-rijedak vektor $\mathbf{x} \in \mathbb{C}^N$, naredne tvrdnje ekvivaltentne:

- 1. Vektor \mathbf{x} je jedinstveno s-rijetko rješenje sustava $\mathbf{A}\mathbf{z} = \mathbf{y}$ gdje je $\mathbf{y} = \mathbf{A}\mathbf{x}$, tj. $\{\mathbf{z} \in \mathbb{C}^N : \mathbf{A}\mathbf{z} = \mathbf{A}\mathbf{x}, \|\mathbf{z}\|_0 \le s\} = \{\mathbf{x}\}$
- 2. Vektor \mathbf{x} je jedinstveno rješenje problema minimizacije

$$\min_{\mathbf{z} \in \mathbb{C}^N} \|\mathbf{z}\|_0 \quad \text{uz uvjet } \mathbf{A}\mathbf{z} = \mathbf{y} \tag{P_0}$$

Ako je $\mathbf{x} \in \mathbb{C}^N$ jedinstveno s-rijetko rješenje od $\mathbf{Az} = \mathbf{y}$ takvo da je $\mathbf{y} = \mathbf{Ax}$, onda rješenje x^{\sharp} od (P_0) je s-rijetko i zadovoljava $\mathbf{Ax} = \mathbf{y}$ pa je $\mathbf{x}^{\sharp} = \mathbf{x}$. Drugi smjer slijedi trivijalno.

Rekonstrukcija svih rijetkih vektora

Neka je $\mathbf{A} \in \mathbb{C}^{m \times N}$ i $S \subset [N]$, sa \mathbf{A}_S označujemo matricu formiranu od stupaca od \mathbf{A} indeksiranih sa S. Slično, sa \mathbf{x}_S označujemo ili vektor iz \mathbb{C}^S koji se sastoji od komponenti vektora \mathbf{x} indeksiranih po S, tj. $(\mathbf{x}_S)_l = x_l$ za sve $l \in S$, ili vektor iz \mathbb{C}^N koji se podudara s \mathbf{x} na komponentama indeksiranim u S i jednak je nula na indeksima koji nisu u S, tj. $(\mathbf{x}_S)_l = x_l$ za $l \in S$ i $(\mathbf{x}_S)_l = 0$ za $l \notin S$. Iz konteksta će uvijek biti jasno na koju definiciju se misli.

Teorem 1.2.1. Neka je $\mathbf{A} \in \mathbb{C}^{m \times N}$. Ekvivalentno je:

- (a) Svaki s-rijedak vektor $\mathbf{x} \in \mathbb{C}^N$ je jedinstveno rješenje od $\mathbf{A}\mathbf{x} = \mathbf{A}\mathbf{z}$, tj. ako je $\mathbf{A}\mathbf{x} = \mathbf{A}\mathbf{z}$ i ako su \mathbf{x} , \mathbf{z} oboje s-rijetki tada $\mathbf{x} = \mathbf{z}$.
- (b) Jezgra od **A** ne sadrži niti jedan 2s-rijedak vektor osim nul-vektora, tj. ker $\mathbf{A} \cap \{\mathbf{z} \in \mathbb{C}^N : \|\mathbf{z}\|_0 \le 2s\} = \{\mathbf{0}\}$
- (c) Za svaki $S \subset [N]$ takav da $\operatorname{card}(S) \leq 2s$, podmatrica \mathbf{A}_S je injektivna kao preslikavanje sa \mathbb{C}^S u \mathbb{C}^m .
- (d) Svaki skup od 2s stupaca matrice A je linearno nezavisan skup.
- Dokaz. (b) \Longrightarrow (a). Neka su \mathbf{x} i \mathbf{z} s-rijetki vektori takvi da $\mathbf{A}\mathbf{x} = \mathbf{A}\mathbf{z}$. Tada je $\mathbf{x} \mathbf{z}$ 2s-rijedak i $\mathbf{A}(\mathbf{x} \mathbf{z}) = \mathbf{0}$. Pošto ker \mathbf{A} ne sadrži 2s-rijetke vektore osim nul-vektora, mora vrijediti $\mathbf{x} = \mathbf{z}$.
 - $(a) \implies (b)$. Obratno, pretpostavimo da za svaki s-rijetki vektor $\mathbf{x} \in \mathbb{C}^N$ vrijedi $\{\mathbf{z} \in \mathbb{C}^N : \mathbf{A}\mathbf{z} = \mathbf{A}\mathbf{x}, \|\mathbf{z}\|_0 \le s\} = \{\mathbf{x}\}$. Neka je $\mathbf{v} \in \ker \mathbf{A}$, 2s-rijedak. Tada \mathbf{v} možemo rastaviti kao $\mathbf{v} = \mathbf{x} \mathbf{z}$ gdje su \mathbf{x} i \mathbf{z} s-rijetki takvi da $\sup (\mathbf{x}) \cap \sup (\mathbf{z}) = \emptyset$. Imamo da je $\mathbf{A}\mathbf{x} = \mathbf{A}\mathbf{z}$ pa prema pretpostavci vrijedi $\mathbf{x} = \mathbf{z}$. Pošto su nosači od \mathbf{x} i \mathbf{z} disjunktni, mora vrijediti $\mathbf{x} = \mathbf{z} = \mathbf{0}$ pa je stoga i $\mathbf{v} = 0$.
 - (b) \Longrightarrow (c). Pretpostavimo suprotno, ker $\mathbf{A} \cap \{\mathbf{z} \in \mathbb{C}^N : \|\mathbf{z}\|_0 \leq 2s\} = \{\mathbf{0}\}$ i da postoji $S \in [N]$ takav da je $\operatorname{card}(S) \leq 2s$ te da \mathbf{A}_s nije injektivna. To znači da postoji vektor $\mathbf{x} \in \mathbb{C}^{\operatorname{card}(S)} \setminus \{\mathbf{0}\}$ takav da je $\mathbf{A}_S \mathbf{x} = \mathbf{0}$. Definiramo vektor $\tilde{\mathbf{x}} \in \mathbb{C}^N$ sa

$$\tilde{x}_j = \begin{cases} x_j & \text{za } j \in S \\ 0 & \text{za } j \in \bar{S} \end{cases}$$

Dakle, imamo $\mathbf{x} \neq \mathbf{0}$, $\|\mathbf{x}\|_0 \leq 2s$ i vrijedi $\mathbf{A}\mathbf{x} = 0$, tj. $\mathbf{x} \in \ker \mathbf{A}$. Kontradikcija s (b).

- $(c) \Longrightarrow (d)$. Odaberimo 2s stupaca od \mathbf{A} . Skup indeksa tih stupaca označimo sa S. Prema (c), matrica \mathbf{A}_S je injektivna, a to znači da su njeni stupci linearno nezavisni, pa su stoga i 2s odabranih stupaca matrice \mathbf{A} linearno nezavisni.
- $(d) \implies (b)$. Pretpostavimo da jezgra od \mathbf{A} sadrži 2s-rijedak ne-nul vektor $\mathbf{x} \in \mathbb{C}^N$. Neka je S skup indeksa ne-nul elemenata vektora \mathbf{x} . To znači da je $\mathbf{A}_S \mathbf{x}_S = 0$, i $\mathbf{x}_S \neq \mathbf{0}$. Dakle \mathbf{A}_S nije injektivna, pa stoga i skup stupaca od \mathbf{A} indeksiranih sa S nije linearno nezavisan, što je kontradikcija sa (d).

Uočimo da ako je moguče rekonstruirati svaki s-rijedak vektor $\mathbf{x} \in \mathbb{C}^N$ iz vektora mjerenja $\mathbf{y} = \mathbf{A}\mathbf{x} \in \mathbb{C}^m$, tada vrijedi (a). Prema prošlom teoremu tada vrijedi i tvrdnja (d) pa je stoga $rank(\mathbf{A}) \geq 2s$. Također vrijedi da je $rank(\mathbf{A}) \leq m$ pa imamo

$$m > 2s$$
.

To znači da je potrebno barem 2s mjerenja da bi rekonstruirali svaki s-rijedak vektor. Pokazati ćemo da je, makar u teoriji, dovoljno točno 2s mjerenja.

Teorem 1.2.2. Za svaki $N \geq 2s$, postoji matrica mjerenja $\mathbf{A} \in \mathbb{C}^{2s \times N}$ takva da se svaki s-rijedak vektor $\mathbf{x} \in \mathbb{C}^N$ može rekonstruirati iz vektora mjerenja $\mathbf{y} = \mathbf{A}\mathbf{x} \in \mathbb{C}^m$ kao rješenje problema minimizacije (P_0) .

Dokaz. Fiksirajmo $t_N > \cdots t_2 > t_1 > 0$ i neka je $\mathbf{A} \in \mathbb{C}^{2s \times N}$ dana sa

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ t_1 & t_2 & \cdots & t_N \\ \vdots & \vdots & \cdots & \vdots \\ t_1^{2s-1} & t_2^{2s-1} & \cdots & t_N^{2s-1} \end{bmatrix}$$
(1.6)

Nadalje, neka je $S = \{j_1 < \cdots < j_{2s}\}$ skup indeksa. Matrica $\mathbf{A}_S \in \mathbb{C}^{2s \times 2s}$ je transponirana $Vandermontova\ matrica$. Prema (TODO) slijedi

$$\det(\mathbf{A}_S) = \prod_{k < l} (t_{j_l} - t_{j_k}) > 0.$$

To znači da je matrica \mathbf{A} invertibilna, pa posebno i injektivna. Tada je zadovoljena tvrdnja (c) teorema (1.2.1), pa je po istom teoremu zadovoljena i tvrdnja (a), tj. svaki s-rijedak vektor $\mathbf{x} \in \mathbb{C}^N$ zadovoljava $\mathbf{A}\mathbf{z} = \mathbf{A}\mathbf{x}$. Stoga je taj vektor moguće jedinstveno rekonstruirati putem minimizacije (P_0) .

Zapravo, mnogo matrica zadovoljava uvjet (c) iz teorema (1.2.1). Na primjer, potencije od t_1, \ldots, t_N u (1.6) ne moraju biti uzastopne. Nadalje, brojevi t_1, \ldots, t_N ne moraju biti pozitivni, niti realni sve dok vrijedi $\det(\mathbf{A}_S) \neq 0$. Posebno, možemo uzeti $t_l = e^{2\pi i(l-1)/N}$ za $l \in [N]$, teorem (TODO) garantira da parcijalna Fourierova matrica

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & e^{2\pi i/N} & e^{2\pi i2/N} & \cdots & e^{2\pi i(N-1)/N} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & e^{2\pi i(2s-1)/N} & e^{2\pi i(2s-1)2/N} & \cdots & e^{2\pi i(2s-1)(N-1)/N} \end{bmatrix}$$

rekonstruira svaki s-rijedak vektor $\mathbf{x} \in \mathbb{C}^N$ iz $\mathbf{y} = \mathbf{A}\mathbf{x} \in \mathbb{C}^{2s}$. Zapravo može se pokazati da skup $(2s) \times N$ matrica takvih da $\det(\mathbf{A}_S) = 0$ za neki $S \subset [N]$ i $\operatorname{card}(S) \leq 2s$ ima Lebesgueovu mjeru nula, pa stoga gotovo sve $(2s) \times N$ matrice rekonstruiraju svaki s-rijedak vektor $\mathbf{x} \in \mathbb{C}^N$ iz $\mathbf{y} = \mathbf{A}\mathbf{x} \in \mathbb{C}^{2s}$. Međutim u praksi nije isplativo rješavati problem minimizacije (P_0) , što ćemo kasnije i pokazati.

Rekonstrukcija zadanog rijetkog vektora

Promatramo problem gdje je s-rijedak vektor $\mathbf{x} \in \mathbb{C}^N$ unaprijed zadan i poznat, a matricu $\mathbf{A} \in \mathbb{C}^{m \times N}$ želimo odabrati tako da ona garantira rekonstrukciju vektora \mathbf{x} iz mjerenja $\mathbf{y} = \mathbf{A}\mathbf{x} \in \mathbb{C}^m$. Isprva, ovaka pristup izgleda neprirodan zbog činjenice da je vektor \mathbf{x} apriorno poznat. Ideja je da će uvjeti rekonstrukcije vrijediti za gotovo sve $(s+1) \times N$ matrice, što podupire činjenicu da se u praksi matrice mjerenja često odabiru na nasumičan način.

Teorem 1.2.3. Za svaki $N \geq s+1$ i za dani s-rijedak vektor $\mathbf{x} \in \mathbb{C}^N$, postoji matrica mjerenja $\mathbf{A} \in \mathbb{C}^{(s+1)\times N}$, takva da se vektor \mathbf{x} može rekonstruirati iz mjerenja $\mathbf{y} = \mathbf{A}\mathbf{x} \in \mathbb{C}^m$ kao rješenje minimizacije (P_0) .

Dokaz. Neka je $\mathbf{A} \in \mathbb{C}^{(s+1)\times N}$ matrica za koju se s-rijedak vektor \mathbf{x} ne može rekonstruirati iz $\mathbf{y} = \mathbf{A}\mathbf{x}$ putem minimizacije (P_0) . To znači da postoji vektor $\mathbf{z} \in \mathbb{C}^N$ različit od \mathbf{x} , takav da $S = \operatorname{supp}(\mathbf{z}) = \{j_1, \dots, j_s\}$, $\operatorname{card}(S) \leq s$ (ako je $\|\mathbf{z}\|_0 < s$, u S dodamo proizvoljne elemente $j_l \in [N]$) i $\mathbf{A}\mathbf{z} = \mathbf{A}\mathbf{x}$. Ako je $\operatorname{supp}(\mathbf{x}) \subset S$, tada iz $\left(\mathbf{A}(\mathbf{z} - \mathbf{x})\right)_{[s]} = 0$ slijedi da $\mathbf{A}_{[s],S}$ nije invertibilna, tj.

$$f(a_{1,1}, \dots a_{1,N}, \dots, a_{m,1}, \dots, a_{m,N}) := \det(\mathbf{A}_{[s],S}) = 0.$$

Ako supp $(\mathbf{x}) \not\subset S$ tada je dimenzija prostora $V := \{\mathbf{u} \in \mathbb{C}^N : \operatorname{supp}(\mathbf{u}) \subset S\} + \mathbb{C}\mathbf{x}$ jednaka s+1, i linearno preslikavanje $G: V \to \mathbb{C}^{s+1}$, $\mathbf{v} \mapsto \mathbf{A}\mathbf{v}$ nije invertibilno, pošto je $G(\mathbf{z} - \mathbf{x}) = 0$. Matrica linearnog preslikavanja G u bazi $(\mathbf{e}_{j_1}, \dots, \mathbf{e}_{j_s}, \mathbf{x})$ prostora V, je oblika

$$B_{\mathbf{x},S} := \begin{bmatrix} a_{1,j_1} & \cdots & a_{1,j_s} & \sum_{j \in \text{supp}(\mathbf{x})} x_j a_{1,j} \\ \vdots & \ddots & \vdots & \vdots \\ a_{s+1,j_1} & \cdots & a_{s+1,j_s} & \sum_{j \in \text{supp}(\mathbf{x})} x_j a_{s+1,j} \end{bmatrix}$$

i imamo

$$g_S(a_{1,1},\ldots a_{1,N},\ldots,a_{m,1},\ldots,a_{m,N}) := \det(B_{\mathbf{x},S}) = 0.$$

Dakle, vrijedi

$$(a_{1,1}, \dots a_{1,N}, \dots, a_{m,1}, \dots, a_{m,N}) \in f^{-1}(\{0\}) \cup \bigcup_{\operatorname{card}(S)=s} g_S^{-1}(\{0\}).$$

Primjetimo da su skupovi $f^{-1}(\{0\})$ i $g_S^{-1}(\{0\})$ Lebesgueove mjere nula iz razloga što su f i g_S polinomi u varijablama $(a_{1,1}, \ldots, a_{1,N}, \ldots, a_{m,1}, \ldots, a_{m,N})$. Dakle, elemente matrice \mathbf{A} moramo izabrati izvan skupa mjere nula, da bi osigurali rekonstrukciju vekotora \mathbf{x} iz $\mathbf{y} = \mathbf{A}\mathbf{x}$.

1.3 NP-složenost ℓ_0 -minimizacije

Kao što smo najavili, pokazati ćemo da je u praksi neisplativno rješavati problem ℓ_0 -minimizacije u svrhu rekonstrukcije vektora \mathbf{x} iz mjerenja $\mathbf{y} = \mathbf{A}\mathbf{x}$. Prisjetimo se, problem koji rješavamo je oblika,

$$\min_{\mathbf{z} \in \mathbb{C}^N} \|\mathbf{z}\|_0$$
 uz uvjet $\mathbf{A}\mathbf{z} = \mathbf{y}$.

Pošto je minimizator najvise s-rijedak, najjednostavniji algoritam za rješavanje ovog problema je rješiti sve pravokutne sustave $\mathbf{A}_S\mathbf{u} = \mathbf{y}$ ili sve kvadratne sustave oblika $\mathbf{A}_S^*\mathbf{A}_S\mathbf{u} = \mathbf{A}_S^*\mathbf{y}$ za svaki $\mathbf{u} \in \mathbb{C}^S$ gdje S ide po svim poskupovima od [N], veličine s. No ispada da broj podskupova $\binom{N}{s}$, što za male probleme sa N=1000 i s=10, iznosi $\binom{1000}{10} \geq (\frac{1000}{10})^{10} = 10^{20}$. Kada bi jedan 10×10 sustav mogli rješiti u 10^{-10} sekundi, trebalo bi nam više od 300 godina da sve rješimo. Sada ćemo pokazati zašto je zapravo općenitiji problem

$$\min_{\mathbf{z} \in \mathbb{C}^N} \|\mathbf{z}\|_0 \quad \text{uz uvjet } \|\mathbf{A}\mathbf{z} - \mathbf{y}\|_2 \le \eta \tag{$P_{0,\eta}$}$$

NP-težak.

Uvedimo prvo potrebne pojmove iz kompleksnosti algoritama. Za algoritam kažemo da je *polinomijalnog-vremena* ako je broj koraka do rješenja ograničen polinomom u varijabli veličine ulaza. Nadalje, uvedimo neformalne definicije klasa problema odlučivanja:

- \$\pi\$: Svi problemi odlučivanja za koje postoji algoritam polinomijalnog vremena koji daje rješenje.
- N\$\pi\$: Svi problemi odlučivanja za koje postoji algoritam polinomijalnog vremena koji provjerava točnost rješenja.

- MP-teški: Svi problemi (ne nužno problemi određivanja) za koje se algoritam za rješenje može u polinomijalnom vremenu transformirati u algoritam rješenja za bilo koji MP problem.
- MP-potpuni: Svi problemi koji su istovremeno MP i MP-teški.

Pitanje je li \mathfrak{P} strogo sadržano u \mathfrak{NP} do dan danas nije odgovoreno. No, vjeruje se da postoje problemi za koje ne postoji algoritam rješenja polinomijalnog vremena, ali postoji algoritam koji će provjeriti točnost rješenja u polinomijalnom vremenu. Najpoznatiji \mathfrak{NP} -potpun problem je problem putujućeg prodavača. No, iskoristiti ćemo problem egzaktnog pokrivača tročlanim skupovima da bi pokazali da je problem $(P_{0,\eta})$ \mathfrak{NP} -težak.

Egzaktni pokrivač tročlanim skupovima

Za danu kolekciju $\{C_i; i \in [N]\}$ tročlanih podskupova od [m], postoji li egzaktni pokrivač skupa [m], tj. postoji li $J \subset [N]$ takav da $\bigcup_{j \in J} C_j = [m]$, gdje je $C_j \cap C_k = \emptyset$ za svaki $j, k \in J$ različiti? Poznato je da je taj problem \mathfrak{NP} -potpun (vidi TODO).

Teorem 1.3.1. Za svaki $\eta \geq 0$, $\mathbf{A} \in \mathbb{C}^{m \times N}$ i $\mathbf{y} \in \mathbb{C}^m$, problem minimizacije $(P_{0,\eta})$ je \mathfrak{NP} -potpun.

Dokaz. Zbog linearnosti problema $(P_{0,\eta})$, možemo uzeti da je $\eta < 1$. Pokazati ćemo da se problem egzaktnog pokrivač može u polinomijalnom vremenu reducirati na problem ℓ_0 -minimizacije. Neka je $\{C_i; i \in [N]\}$ kolekcija tročanih podskupova [m]. Definirajmo vektora $\mathbf{a}_1, \mathbf{a}_2, \dots \mathbf{a}_N \in \mathbb{C}^m$

$$(\mathbf{a}_i)_j = \begin{cases} 1 \text{ za } j \in \mathcal{C}_i, \\ 0 \text{ za } j \notin \mathcal{C}_i \end{cases}$$

Definiramo matricu $\mathbf{A} \in \mathbb{C}^{m \times N}$ i vektor $\mathbf{y} \in \mathbb{C}^m$ sa

$$\mathbf{A} = [\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_N], \qquad \mathbf{y} = [1, 1, \dots, 1]^T.$$

Pošto je $N \leq \binom{m}{3}$, to možemo napraviti u polinomijalnom vremenu. Ako $\mathbf{z} \in \mathbb{C}^N$ zadovoljava $\|\mathbf{A}\mathbf{z} - y\|_2 \leq \eta$, tada su svih m komponenti od $\mathbf{A}\mathbf{z}$ udaljeljene od 1 za najviše η , pa su te komponente različite od nula, jer smo η uzeli manji od 1. Dakle, vrijedi $\|\mathbf{A}\mathbf{z}\|_0 = m$. Ali pošto svaki od vektora \mathbf{a}_i imam točno tri ne-nul komponente, vektor $\mathbf{A}\mathbf{z} = \sum_{j=1}^N z_j \mathbf{a}_j$ ima najviše $r\|\mathbf{z}\|_0$ ne-nul elemenata, tj. $\|\mathbf{A}\mathbf{z}\|_0 \leq 3\|\mathbf{z}\|_0$. Dakle, za svaki vektor $\mathbf{z} \in \mathbb{C}^N$ koji zadovoljava $\|\mathbf{A}\mathbf{z} - \mathbf{y}\|_2 \leq \eta$ vrijedi $\|\mathbf{z}\|_0 \geq m/3$. Neka je sada $\mathbf{x} \in \mathbb{C}^N$ rješenje ℓ_0 -minimizacije $(P_{0,\eta})$. Imamo dva slučaj za normu vektora \mathbf{x} :

- 1. Ako je $\|\mathbf{x}\|_0 = m/3$ tada je $\{C_j; j \in \text{supp}(\mathbf{x})\}$ egzaktni pokrivač skupa [m] jer inače bi neke od m komponenti od $\mathbf{A}\mathbf{x}$ bile jednake od nula.
- 2. Ako je $\|\mathbf{x}\|_0 > m/3$ tada ne može postojati egzaktni pokrivač $\{\mathcal{C}_j; \ j \in J\}$ jer bi u suprotnom vektor $\mathbf{z} \in \mathbb{C}^N$ definiran tako da je $z_j = 1$ ako je $j \in J$ i $z_j = 0$ ako je $j \notin J$, zadovoljavao $\mathbf{A}\mathbf{z} = \mathbf{y}$ i $\|\mathbf{z}\|_0 = m/3$, što je kontradikcija s minimalnosti vektora \mathbf{x} .

Dakle, rješavanjem problem ℓ_0 -minimizacije, možemo rješiti problem egzaktnog pokrivača tročlanim skupovima, pa je stoga i sam problem ℓ_0 -minimizacije \mathfrak{NP} -potpun.

Čini se da prethodni teorem predstavlja ozbiljnu zapreku u praktičnom rješavanju problema sažetog uzorkovanja. No primjetimo, teorem tvrdi da je algoritam koji rješava problem ℓ_0 -minimizacije, za sve moguće matrie \mathbf{A} i vektore \mathbf{y} barem klase \mathfrak{NP} . Naravno, u samoj praksi nije nužno zahtjevati rekonstrukciju za sve takve matrice i vektore. Naime, pokazat ćemo da postoje algoritmi koji uspješno rekonstruiraju \mathbf{x} iz \mathbf{y} za posebno dizajnirane matrice \mathbf{A} .

Poglavlje 2

Osnovni algoritmi sažetog uzorkovanja

Algoritmi za rješavanje problema sažetog uzorkovanja, koje ćemo predstaviti, podijeljeni su u tri kategorije: optimizacije, greedy metode i granične metode. U ovom poglavlju dati ćemo samo pregled najpopularnijih algoritama, dok ćemo formalnu analizu nekih od njih ostaviti za kasnije, nakon što razvijemo potrebne teorijske alate.

2.1 Optimizacijske metode

Opčeniti problem optimizacije je oblika

$$\min_{\mathbf{x} \in \mathbb{R}^N} F_0(\mathbf{x}) \quad \text{uz uvjet } F_i(\mathbf{x}) \le b_i, \ i \in [n]$$

gdje $F_0: \mathbb{R}^N \to \mathbb{R}$ zovemo funkcija cilja, a funkcije $F_1, \ldots, F_n: \mathbb{R}^N \to \mathbb{R}$ zovemo funkcije ograničenja. Ako su F_0, F_1, \ldots, F_n konveksne funkcije, tada ovaj problem zovem problem konveksne optimizacije. Ako su te funkcije linearne, tada je to problem linearnog programiranja. Primjetimo da je problem rekonstrukcije rijetkog vektora (P_0) , zapravo problem minimizacije. No, nažalost taj problem nije konveksan i kao što smo u prethodnom poglavlju pokazali, opčenito je \mathfrak{NP} -težak. Prisjetimo se da $\|\mathbf{z}\|_q^q$ konvergira k $\|\mathbf{z}\|_0$ za $q \to 0^+$, pa je prirodno (P_0) aproksimirati problemom

$$\min \|\mathbf{z}\|_{q} \quad \text{uz uvjet } \mathbf{A}\mathbf{z} = \mathbf{y} \tag{P_q}$$

Pokaže se da za q > 1, čak 1-rijetki vektori nisu rješenja od (P_q) . Dok za 0 < q < 1, (P_q) ponovno nije konveksan i dalje je opčenito \mathfrak{NP} -težak. Za q = 1, problem postaje

konveksan

$$\min \|\mathbf{z}\|_1 \quad \text{uz uvjet } \mathbf{A}\mathbf{z} = \mathbf{y}. \tag{P_1}$$

To je zapravo konveksna relaksacija problema (P_0) i zovemo ga ℓ_1 -minimizacija ili BP algoritam (eng. basis pursuit).

ℓ_1 -minimizacija (BP)

Ulaz: Matrica mjerenja \mathbf{A} , vektor mjerenja \mathbf{y} . Problem:

$$\mathbf{x}^{\sharp} = \arg\min \|\mathbf{z}\|_1 \quad \text{uz uvjet } \mathbf{A}\mathbf{z} = \mathbf{y}$$
 $(\ell_1 - min)$

Izlaz: vektor \mathbf{x}^{\sharp}

Pokažimo sada da su ℓ_1 -minimizatori rijetki vektori u realnom slučaju.

Teorem 2.1.1. Neka je $\mathbf{A} \in \mathbb{R}^{m \times N}$ matrica mjerenja sa stupcima $\mathbf{a}_1, \dots, \mathbf{a}_N$. Ako je \mathbf{x}^{\sharp} minimizator od

$$\min_{\mathbf{z} \in \mathbb{R}^N} \|\mathbf{z}\|_1 \quad uz \ uvjet \ \mathbf{Az} = \mathbf{y},$$

tada je skup $\{\mathbf{a}_{i}, j \in \operatorname{supp}(\mathbf{x}^{\sharp})\}\ linearno\ nezavisan\ i\ vrijedi$

$$\|\mathbf{x}^{\sharp}\|_{0} = \operatorname{card}(\operatorname{supp}(\mathbf{x}^{\sharp})) \leq m.$$

Dokaz. Pretpostavimo suprotno, tj. da je skup $\{\mathbf{a}_j,\ j\in \operatorname{supp}(\mathbf{x}^\sharp)\}$ linearno zavisan. Neka je $S=\operatorname{supp}(\mathbf{x}^\sharp)$. To znači da postoji ne-nul vektor $\mathbf{v}\in\mathbb{R}^N$ sa nosačem na S takav da $\mathbf{A}\mathbf{v}=\mathbf{0}$. Tada za svaki $t\neq 0$

$$\|\mathbf{x}^{\sharp}\|_{1} < \|\mathbf{x}^{\sharp} + t\mathbf{v}\|_{1} = \sum_{j \in S} |x_{j}^{\sharp} + tv_{j}| = \sum_{j \in S} \operatorname{sgn}(x_{j}^{\sharp} + tv_{j})(x_{j}^{\sharp} + tv_{j})$$

Ako je |t|dovoljno mali, tj. $|t|<\min_{j\in S}|x_j^\sharp|/\|\mathbf{v}\|_\infty$ onda vrijedi

$$\operatorname{sgn}(x_j^{\sharp} + tv_j) = \operatorname{sgn}(x_j^{\sharp})$$
 za svaki $j \in S$.

Dakle, za $0 < |t| < \min_{j \in S} |x_j^{\sharp}| / ||\mathbf{v}||_{\infty}$ slijedi

$$\|\mathbf{x}^{\sharp}\|_{1} < \sum_{j \in S} \operatorname{sgn}(x_{j}^{\sharp})(x_{j}^{\sharp} + tv_{j}) = \sum_{j \in S} \operatorname{sgn}(x_{j}^{\sharp})(x_{j}^{\sharp}) + t \sum_{j \in S} \operatorname{sgn}(x_{j}^{\sharp})v_{j}$$
$$= \|\mathbf{x}^{\sharp}\|_{1} + t \sum_{j \in S} \operatorname{sgn}(x_{j}^{\sharp})v_{j}.$$

No, to je kontradikcija jer $t \neq 0$ možemo odabrati dovoljno mali tako da je $t \sum_{j \in S} \operatorname{sgn}(x_j^{\sharp}) v_j \leq 0$.

U realnom slučaju, (P_1) možemo reinterpretirati kao problem linearnog programiranja, tako da uvedemo pomočne varijable $\mathbf{z}^+,\ \mathbf{z}^-\in\mathbb{R}^N$ definirane sa

$$z_j^+ = \begin{cases} z_j & \text{za } z_j > 0, \\ 0 & \text{za } z_j \le 0 \end{cases}$$

$$z_j^- = \begin{cases} 0 & \text{za } z_j > 0, \\ -z_j & \text{za } z_j \le 0 \end{cases}$$

za svaki $j \in [N]$. Tada je problem (P_1) ekvivaltan problemu

$$\min_{\mathbf{z}^+, \mathbf{z}^- \in \mathbb{R}^N} \sum_{j=1}^N (z_j^+ + z_j^-) \quad \text{uz uvjet } \begin{bmatrix} \mathbf{A} & -\mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{z}^+ \\ \mathbf{z}^- \end{bmatrix} = \mathbf{y}, \quad \begin{bmatrix} \mathbf{z}^+ \\ \mathbf{z}^- \end{bmatrix} \ge 0. \tag{P_1'}$$

Isto ne vrijedi za kompleksni slučaj. Tu činjenicu pokazati ćemo na općenitijim problemu,

$$\min \|\mathbf{z}\|_1 \quad \text{uz uvjet } \|\mathbf{A}\mathbf{z} - y\|_2 \le \eta. \tag{P_{1,\eta}}$$

Taj problem je zapravo pogodniji za praksu, pošto vektor $\mathbf{y} \in \mathbb{C}^m$ ne možemo izmjeriti s beskonačnom točnošću, već uz neku grešku $\mathbf{e} \in \mathbb{C}^m$ pa je stoga

$$\mathbf{v} = \mathbf{A}\mathbf{x} + \mathbf{e}$$
.

Takvoj greški često možemo ocjeniti ℓ_2 -normu, pošto ona ima interpretaciju energije,

$$\|\mathbf{e}\|_2 < \eta$$
, za neki $\eta > 0$.

Za dani vektor $\mathbf{z} \in \mathbb{C}^N$, neka su \mathbf{u} , $\mathbf{v} \in \mathbb{R}^N$ njegovi realni i imaginarni djelovi te neka je $\mathbf{c} \in \mathbb{R}^N$ takav d je $c_j \geq |z_j| = \sqrt{u_j^2 + v_j^2}$ za sve $j \in [N]$. Problem $(P_{1,\eta})$ je tada ekvivaltan problemu

$$\min_{\mathbf{c}, \mathbf{u}, \mathbf{v} \in \mathbb{R}^{N}} \sum_{j=1}^{N} c_{j} \quad \text{uz uvjete} \quad \left\| \begin{bmatrix} \operatorname{Re}(\mathbf{A}) & -\operatorname{Im}(\mathbf{A}) \\ \operatorname{Im}(\mathbf{A}) & \operatorname{Re}(\mathbf{A}) \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \mathbf{v} \end{bmatrix} - \begin{bmatrix} \operatorname{Re}(\mathbf{y}) \\ \operatorname{Im}(\mathbf{y}) \end{bmatrix} \right\|_{2} \leq \eta$$

$$\sqrt{u_{j}^{2} + v_{j}^{2}} \leq c_{j}, \quad \forall j \in [N].$$

$$(P'_{1,\eta})$$

Ovo je problem konike drugog reda. Primjetimo da za $\eta = 0$ dobivamo formulaciju problema (P_1) za kompleksni slučaj u takvom obliku.

Princip rješavanja $(P_{1,\eta})$ zove se kvadratično ograničena ℓ_1 -minimizacija ili ℓ -minimizacija osjetljiva na šum (eng. quadratically constrainted basis pursuit).

Kvadratično ograničena ℓ_1 -minimizacija

Ulaz: Matrica mjerenja \mathbf{A} , vektor mjerenja \mathbf{y} , razina šuma η . *Problem:*

$$\mathbf{x}^{\sharp} = \arg\min \|\mathbf{z}\|_1 \quad \text{uz uvjet } \|\mathbf{A}\mathbf{z} - y\|_2 \le \eta$$
 $(\ell_1 - \min_{\eta})$

Izlaz: vektor \mathbf{x}^{\sharp}

Rješenje \mathbf{x}^{\sharp} povezano je s rješenjem problema ℓ_1 -minimizacije sa ugrađenim uklanjanjem šuma

$$\min_{\mathbf{z} \in \mathbb{C}^N} \lambda \|\mathbf{z}\|_1 + \|\mathbf{A}\mathbf{z} - \mathbf{y}\|_2^2 \tag{2.1}$$

za neki $\lambda \geq 0$. Također povezano je s rješenjem *LASSO* problema, za neki $\tau \geq 0$,

$$\min_{\mathbf{z} \in \mathbb{C}^N} \|\mathbf{A}\mathbf{z} - \mathbf{y}\|_2 \quad \text{uz uvjet } \|\mathbf{z}\|_1 \le \tau$$
 (2.2)

To upravo tvrdi naredna propozicija.

- Propozicija 2.1.2. (a) Ako je \mathbf{x} minimizator problema (2.1) sa $\lambda > 0$, onda postoji $\eta = \eta_{\mathbf{x}} \geq 0$ takva da je \mathbf{x} minizator kvadratično ograničene ℓ_1 -minimizacije $(P_{1,\eta})$.
 - (b) Ako je \mathbf{x} jedinstveni minimizator problema $(P_{1,\eta})$ sa $\eta \geq 0$, onda postoji $\tau = \tau_{\mathbf{x}} \geq 0$ takav da je \mathbf{x} minimizator LASSO problema (2.2).
 - (c) Ako je \mathbf{x} minimizator LASSO problema (2.2), onda postoji $\lambda = \lambda_{\mathbf{x}} \geq 0$ takva da je \mathbf{x} minimizator problema (2.1).
- Dokaz. (a) Neka je $\eta := \|\mathbf{A}\mathbf{x} \mathbf{y}\|_2$ i $\mathbf{z} \in \mathbb{C}^N$ takav da je $\|\mathbf{A}\mathbf{z} \mathbf{y}\|_2 \le \eta$. Pošto je prema pretpostavci \mathbf{x} minimizator od (2.1) slijedi,

$$\lambda \|\mathbf{x}\|_1 + \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2^2 \le \lambda \|\mathbf{z}\|_1 + \|\mathbf{A}\mathbf{z} - \mathbf{y}\|_2^2 \le \lambda \|\mathbf{z}\|_1 + \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2^2.$$

Dakle slijedi da je $\|\mathbf{x}\|_1 \leq \|\mathbf{y}\|_1$, pa je \mathbf{x} minimizator problema $(P_{1,\eta})$

- (b) Neka je $\eta := \|\mathbf{x}\|_1$ i neka je $\mathbf{z} \in \mathbb{C}^N \setminus \{\mathbf{x}\}$ takav da je $\|\mathbf{z}\|_1 \leq \tau$. Pošto je \mathbf{x} jedinstveni minimizator od $(P_{1,\eta})$ to znači da **z** ne može zadovoljavati uvjet iz $(P_{1,\eta})$, pa stoga $\|\mathbf{A}\mathbf{z} - \mathbf{y}\|_2 > \eta \ge \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2$. Dakle, **x** je jedinstveni minimizator LASSO problema.
- (c) Za dokaz ove tvrdnje potrebni su alati konveksne analize, vidi (TODO).

2.2Greedy metode

Upoznati ćemo se sa dva iterativna greedy algoritma koji se često koriste u kontekstu sažetog uzorkovanja. Prvo algoritam koji ćemo proučiti zove se OMP (skračenica od eng. orthogonal matching pursuit).

OMP

Ulaz: Matrica mjerenja A, vektor mjerenja y.

Inicijalizacija: $S^0 = \emptyset$, $\mathbf{x}^0 = \mathbf{0}$

Iteracija: Zaustavi kada $n = \bar{n}$:

$$S^{n+1} = S^n \cup \{j_{n+1}\}, \quad j_{n+1} := \underset{j \in [N]}{\operatorname{arg max}} \{ |(\mathbf{A}^*(\mathbf{y} - \mathbf{A}\mathbf{x}^n))_j| \}, \qquad (OMP_1)$$
$$\mathbf{x}^{n+1} = \underset{\mathbf{z} \in \mathbb{C}^N}{\operatorname{arg min}} \{ ||\mathbf{y} - \mathbf{A}\mathbf{z}||_2, \operatorname{supp}(\mathbf{z}) \subset S^{n+1} \}. \qquad (OMP_2)$$

$$\mathbf{x}^{n+1} = \underset{\mathbf{z} \in \mathbb{C}^N}{\min} \{ \|\mathbf{y} - \mathbf{A}\mathbf{z}\|_2, \ \operatorname{supp}(\mathbf{z}) \subset S^{n+1} \}. \tag{OMP_2}$$

Izlaz: \bar{n} -rijedak vektor $\mathbf{x}^{\sharp} = \mathbf{x}^{\bar{n}}$.

Numerički najskuplja operacija ovog algoritma je (OMP_2) . Situacije se može popraviti korištenjem QR dekompozicije matrice \mathbf{A}_{S_n} . Tada se mogu iskoristiti efikasni algoritmi za ažuriranje QR dekompozicije kada se u matricu doda novi stupac. Nadalje, za dodatna ubrzanja mogu se iskoristiti i algoritmi za brzo matrica-vektor množenje bazirani na brzoj Fourierovoj transformaciji (vidi TODO).

Indeks j_{n+1} bira se tako da se reducira ℓ_2 -norma reziduala $\mathbf{y} - \mathbf{A}\mathbf{x}^n$ što je više moguće. Sljedeća lema opravdava zašto je smisleno j odabrati takav da maksimizira vrijednost $|(\mathbf{A}^*(\mathbf{y} - \mathbf{A}\mathbf{x}^n))_i|$.

Lema 2.2.1. Neka je $\mathbf{A} \in \mathbb{C}^{m \times N}$ sa ℓ_2 -normaliziranim stupcima. Ako su $S \subset [N]$, $\mathbf{v} \in \mathbb{C}^N$ sa nosačem na $S, j \in [N]$, te ako vrijedi

$$\mathbf{w} := \underset{\mathbf{z} \in \mathbb{C}^N}{\operatorname{arg\,min}} \{ \|\mathbf{y} - \mathbf{A}\mathbf{z}\|_2, \ \operatorname{supp}(\mathbf{z}) \subset S \cup \{j\} \},$$

tada

$$\|\mathbf{y} - \mathbf{A}\mathbf{w}\|_2^2 \le \|\mathbf{y} - \mathbf{A}\mathbf{v}\|_2^2 - |(\mathbf{A}^*(\mathbf{y} - \mathbf{A}\mathbf{v}))_i|^2$$
.

Dokaz. Pošto svaki vektor oblika $\mathbf{v}+t\mathbf{e}_j,\ t\in\mathbb{C}$ ima nosač u $S\cup\{j\}$ vrijedi,

$$\|\mathbf{y} - \mathbf{A}\mathbf{w}\|_2^2 \le \min_{t \in \mathbb{C}} \|\mathbf{y} - \mathbf{A}(\mathbf{v} + t\mathbf{e}_j)\|_2^2$$

Stavimo da je $t = \rho e^{i\theta}$, gdje je $\rho \ge 0$ i $\theta \in [0, 2\pi)$. Imamo,

$$\|\mathbf{y} - \mathbf{A}(\mathbf{v} + t\mathbf{e}_{j})\|_{2}^{2} = \|\mathbf{y} - \mathbf{A}\mathbf{v} - t\mathbf{A}\mathbf{e}_{j}\|_{2}^{2}$$

$$= \|\mathbf{y} - \mathbf{A}\mathbf{v}\|_{2}^{2} + |t|^{2}\|\mathbf{A}\mathbf{e}_{j}\|_{2}^{2} - 2\operatorname{Re}(\bar{t}\langle\mathbf{y} - \mathbf{A}\mathbf{v}, \mathbf{A}\mathbf{e}_{j}\rangle)$$

$$= \|\mathbf{y} - \mathbf{A}\mathbf{v}\|_{2}^{2} + \rho^{2} - 2\operatorname{Re}(\rho e^{-i\theta}(\mathbf{A}^{*}(\mathbf{y} - \mathbf{A}\mathbf{v}))_{j})$$

$$\geq \|\mathbf{y} - \mathbf{A}\mathbf{v}\|_{2}^{2} + \rho^{2} - 2\rho|(\mathbf{A}^{*}(\mathbf{y} - \mathbf{A}\mathbf{v}))_{j}|^{2}$$

gdje jednakost vrijedi za pogodno odabrani θ . Kao kvadratni polinom u varijabli ρ , zadnji izraz poprima minimum za $\rho = |(\mathbf{A}^*(\mathbf{y} - \mathbf{A}\mathbf{v}))_j|$.

Korak (OMP_2) moše se prikazati u obliku

$$\mathbf{x}_{S^{n+1}}^{n+1} = \mathbf{A}_{S^{n+1}}^{\dagger} \mathbf{y},$$

gdje je $\mathbf{x}_{S^{n+1}}^{n+1}$ restrikcija od \mathbf{x}^{n+1} na svoj nosač S^{n+1} i gdje je $\mathbf{A}_{S^{n+1}}^{\dagger}$ pseudo-inverz od $\mathbf{A}_{S^{n+1}}$ (vidi TODO). Drugim rječima to znači da je $\mathbf{z} = \mathbf{x}_{S^{n+1}}^{n+1}$ rješenje sustava $\mathbf{A}_{S^{n+1}}^* \mathbf{A}_{S^{n+1}} \mathbf{z} = \mathbf{A}_{S^{n+1}}^* \mathbf{y}$. Ta činjenica je korisna i u drugim algoritmima koji imaju korak sličan (OMP_2) .

Lema 2.2.2. Neka je $S \subset [N]$ i

$$\mathbf{v} := \underset{\mathbf{z} \in \mathbb{C}^N}{\min} \{ \|\mathbf{y} - \mathbf{A}\mathbf{z}\|_2, \sup_{\mathbf{z}} (\mathbf{z}) \subset S \},$$

tada je

$$(\mathbf{A}^*(\mathbf{y} - \mathbf{A}\mathbf{v}))_S = \mathbf{0}. \tag{2.3}$$

Dokaz. Prema definiciji vektora \mathbf{v} , vektor $\mathbf{A}\mathbf{v}$ je orthogonalna projekcija vektora \mathbf{y}

na prostor $\{Az, \text{ supp}(z \subset S)\}$, pa je karakteriziran relacijom ortogonalnosti

$$\langle \mathbf{y} - \mathbf{A}\mathbf{v}, \mathbf{A}\mathbf{z} \rangle = 0$$
 za sve $\mathbf{z} \in \mathbb{C}^N$ takve da supp $(\mathbf{z}) \subset S$.

Dakle, imamo da vrijedi $\langle \mathbf{A}^*(\mathbf{y} - \mathbf{A}\mathbf{v}), \mathbf{z} \rangle = 0$ za sve $\mathbf{z} \in \mathbb{C}^N$, supp $(\mathbf{z}) \subset S$, što vrijedi ako i samo ako vrijedi (2.3).

Prirodan uvjet zaustavljanja OMP-a je kada se postigne $\|\mathbf{y} - \mathbf{A}\mathbf{x}^{\bar{n}}\| \leq \varepsilon$ ili $\|\mathbf{A}^*(\mathbf{y} - \mathbf{A}\mathbf{x}^{\bar{n}})_{\infty}\| \leq \varepsilon$ za neku toleranciju $\varepsilon > 0$. Ako nam je dostupna estimacija rijetkosti s rješenja \mathbf{x} , tada je razumno stati kada je $\bar{n} = s$. Sljedeći rezultat govori o uvjetim za uspješnu rekonstrukciju s-rijetkog vektora u s iteracija OMP algoritma.

Propozicija 2.2.3. Neka je $\mathbf{A} \in \mathbb{C}^{m \times N}$, svaki ne-nul vektor $\mathbf{x} \in \mathbb{C}^N$ sa nosačemo na skupu S, kardinaliteta s može se rekonstruirati iz $\mathbf{y} = \mathbf{A}\mathbf{x}$ u najviše s iteracija OMP algoritma ako i samo ako je matrica \mathbf{A}_S injektivna i

$$\max_{j \in S} |(\mathbf{A}^* \mathbf{r})_j| > \max_{l \in \bar{S}} |(\mathbf{A}^* \mathbf{r})_l|$$
(2.4)

za sve ne-nul $\mathbf{r} \in \{\mathbf{Az}, \text{ supp}(\mathbf{z}) \subset S\}.$

Dokaz. Pretpostavimo da OMP algoritam rekonstruira sve vektore sa nosačemo na skupu S u najviše $s = \operatorname{card}(S)$ iteracija. Neka su \mathbf{v} , \mathbf{w} sa nosačem na S, takvi da je $\mathbf{A}\mathbf{v} = \mathbf{A}\mathbf{w}$. Zbog pretpostavke, \mathbf{v} i \mathbf{w} moraju biti jednaki, a to znači da je matrica \mathbf{A}_S injektivna. Nadalje, ako je $\mathbf{y} = \mathbf{A}\mathbf{x}$ za neki $\mathbf{x} \in \mathbb{C}^N$ sa supp $(\mathbf{x}) = S$, indeks $l \in \overline{S}$ ne može biti izabran u prvoj iteraciji, pošto indeks izabran u prvoj iteraciji ostaje uvijek u nosaču, a po pretpostavci OMP rekonstruira \mathbf{x} iz $\mathbf{y} = \mathbf{A}\mathbf{x}$ u točno s iteracija. Dakle za n = 0 iz (OMP_1) imamo da je $\max_{j \in S} |(\mathbf{A}^*y)_j| > |(\mathbf{A}^*y)_l|$ za svaki $l \in \overline{S}$, pa stoga vrijedi $\max_{j \in S} |(\mathbf{A}^*y)_j| > \max_{l \in \overline{S}} |(\mathbf{A}^*y)_l|$ za sve ne-nul $\mathbf{y} \in \{\mathbf{A}\mathbf{z}, \ \operatorname{supp}(\mathbf{z}) \subset S\}$.

Obratno, pretpostavimo da je $\mathbf{A}\mathbf{x}^1 \neq y, \dots, \mathbf{A}\mathbf{x}^{s-1} \neq y$ jer u suprotnom nemamo što dokazivati. Pokazati ćemo da $S^n \subset S$, $\operatorname{card}(S^n) = n$ za $0 \leq n \leq s$. To će implicirati $S^s = S$. Nadalje, (OMP_2) daje $\mathbf{A}\mathbf{x}^s = \mathbf{y}$ a iz injektivnosti od \mathbf{A}_S slijedi $\mathbf{x}_s = \mathbf{x}$. Dakle, neka je $0 \leq n \leq s-1$. Ako je $S^n \subset S$, to povlači da je $\mathbf{r}^n := \mathbf{y} - \mathbf{A}\mathbf{x}^n \in \{\mathbf{A}\mathbf{z}, \sup_{\mathbf{z} \in S} \mathbf{z} \in S\}$, pa prema (2.4) indeks j_{n+1} leži u S, pa $S^{n+1} = S \cup \{j_{n+1}\} \subset S$. Ovo induktivno pokazuje da je S^n podskup od S za svaki $0 \leq n \leq s$. Nadalje, neka je $1 \leq n \leq s-1$. Lema (2.2.2) daje $(\mathbf{A}^*\mathbf{r}^n)_{S^n} = \mathbf{0}$. Stoga, iz (OMP_1) vidimo da indeks j_{n+1} ne leži u S^n , jer bi u protivnom $\mathbf{A}^*\mathbf{r}^n = \mathbf{0}$, a po (2.4) $\mathbf{r}^n = \mathbf{0}$. Dakle, $\operatorname{card}(S^n) = n$.

Slabost OMP algoritma leži u činjenici da ako krivi indeks uđe u nosač, on ostaje u nosaču u svim sljedećim iteracijama. Stoga s iteracija algoritma nije dovoljno za rekonstrukciju vektora koji je s-rijedak. Moguće rješenje je povećati broj iteracija. Naredni algoritam, CoSaMP (eng. compressive sampling matching pursuit

algorithm), koristi drugačiju strategiju kada nam je dostupna estimacija rijetkosti s. Uvedimo oznake $H_s(\mathbf{z})$ za najbolju s-rijetku aproksimaciju vekotra $\mathbf{z} \in \mathbb{C}^N$ i $L_s(\mathbf{z})$ za nosač od $H_s(\mathbf{z})$, tj.

$$L_s(\mathbf{z}) := \text{skup indeksa } s \text{ najvećih komponeneti vekora } \mathbf{z} \in \mathbb{C}^N$$
 (2.5)

$$H_s(\mathbf{z}) := \mathbf{z}_{L_s(\mathbf{z})}.\tag{2.6}$$

Nelinearni operator H_s zovemo hard thresholding operator reda s. Za dani vektor $\mathbf{z} \in$ \mathbb{C}^N on pušta s apsolutno najvećih komponeneti a ostale postavi na nulu. Primjetimo da to nije nužno jedinstveno definiramo. Da bi zaobišli taj problem, skup indeksa $L_s(\mathbf{z})$ biramo iz svih mogućih kandidata leksikografskim poredkom.

CoSaMP

Ulaz: Matrica mjerenja A, vektor mjerenja y, rijetkost s

Inicijalizacija: s-rijedak vektor \mathbf{x}^0 (npr. $\mathbf{x}^0 = \mathbf{0}$).

Iteracija: Zaustavi kada $n = \bar{n}$:

$$U^{n+1} = \operatorname{supp}(\mathbf{x}^n) \cup L_{2s}(\mathbf{A}^*(\mathbf{y} - \mathbf{A}\mathbf{x}^n))$$
 (CoSaMP₁)

$$\mathbf{u}^{n+1} = \underset{\mathbf{z} \in \mathbb{C}^N}{\min} \{ \|\mathbf{y} - \mathbf{A}\mathbf{z}\|_2, \sup_{\mathbf{z}}(\mathbf{z}) \subset U^{n+1} \}$$

$$(CoSaMP_2)$$

$$\mathbf{x}^{n+1} = H_s(\mathbf{u}^{n+1})$$

$$(CoSaMP_3)$$

$$\mathbf{x}^{n+1} = H_s(\mathbf{u}^{n+1}) \tag{CoSaMP_3}$$

Izlaz: \bar{n} -rijedak vektor $\mathbf{x}^{\sharp} = \mathbf{x}^{\bar{n}}$.

Granične metode 2.3

Algoritmi predstavljeni u ovom poglavlju također koriste hard thresholding operator H_s . Prvi algoritam, BT (eng. basic thresholding), sastoji se od određivanja nosača srijetkog vektora $\mathbf{x} \in \mathbb{C}^N$, koji se rekonstruira iz $\mathbf{y} = \mathbf{A}\mathbf{x} \in \mathbb{C}^m$, kao indeksi s najvećih komponenti vektora A^*y , te traženja vektora koji najbolje aproksimira mjerenje y

BT

Ulaz: Matrica mjerenja \mathbf{A} , vektor mjerenja \mathbf{y} , rijetkost s Problem:

$$S^{\sharp} = L_s(\mathbf{A}^* \mathbf{y}), \tag{BT_1}$$

$$\mathbf{x}^{\sharp} = \underset{\mathbf{z} \in \mathbb{C}^{N}}{\operatorname{arg\,min}} \{ \|\mathbf{y} - \mathbf{A}\mathbf{z}\|_{2}, \ \operatorname{supp}(\mathbf{z}) \subset S^{\sharp} \}. \tag{BT_{2}}$$

Izlaz: s-rijedak vektor \mathbf{x}^{\sharp} .

Dovoljni i nuži uvjeti rekonstrukcije jednostavnim BT algoritmom, slični su uvjetu (2.4).

Propozicija 2.3.1. BT algoritam rekonstruira vektor $\mathbf{x} \in \mathbb{C}^N$ sa nosačem na S, iz $\mathbf{y} = \mathbf{A}\mathbf{x}$ ako i samo ako

$$\min_{j \in S} |(\mathbf{A}^* \mathbf{y})_j| > \max_{l \in \bar{S}} |(\mathbf{A}^* \mathbf{y})_l|. \tag{2.7}$$

Dokaz. Vektor \mathbf{x} može se rekonstruirati ako i samo ako skup indeksa S^{\sharp} u (BT_1) jednak skupu S. A to vrijedi ako i samo ako je element vektora $\mathbf{A}^*\mathbf{y}$ s indeksom iz S, veći od svakog elementa vektora $\mathbf{A}^*\mathbf{y}$ s indeksom u \bar{S} .

IHT (eng. iterative hard thresholding) algoritam rješava kvadratni sustav $\mathbf{A}^*\mathbf{A}\mathbf{z} = \mathbf{A}^*\mathbf{y}$ umjesto $\mathbf{A}\mathbf{z} = \mathbf{y}$. To možemo interpretirati kao rješavanje problema fiksne točke $\mathbf{z} = (\mathbf{I} - \mathbf{A}^*\mathbf{A})\mathbf{z} + \mathbf{A}^*\mathbf{y}$. Prirodno je gledati iteracije oblika $\mathbf{x}^{n+1} = (\mathbf{I} - \mathbf{A}^*\mathbf{A})\mathbf{x}^n + \mathbf{A}^*\mathbf{y}$. Pošto tražimo s-rijetko rješenje u svakoj iteraciji uzimamo samo s apsolutno najvećih komponenti od $(\mathbf{I} - \mathbf{A}^*\mathbf{A})\mathbf{x}^n + \mathbf{A}^*\mathbf{y}$.

IHT

Ulaz: Matrica mjerenja A, vektor mjerenja y, rijetkost s

Inicijalizacija: s-rijedak vektor \mathbf{x}^0 (npr. $\mathbf{x}^0 = \mathbf{0}$).

Iteracija: Zaustavi kada $n = \bar{n}$:

$$x^{n+1} = H_s(\mathbf{x}^n + \mathbf{A}^*(\mathbf{y} - \mathbf{A}\mathbf{x}^n). \tag{IHT}$$

Izlaz: s-rijedak vektor $\mathbf{x}^{\sharp} = \mathbf{x}^{\bar{n}}$.

Primjetimo da IHT algoritam ne koristi orthogonalne projekcije, što je njegova prednost. No, ako smo spremi platiti cjenu projekcija, ima smisla gledati vektor koji ima isti nosač kao \mathbf{x}^{n+1} koji najbolje aproksimira mjerenje. Upravo je to strategija HTP (eng. hard thresholding pursuit) algoritma.

HTP

Ulaz: Matrica mjerenja A, vektor mjerenja y, rijetkost s

Inicijalizacija: s-rijedak vektor \mathbf{x}^0 (npr. $\mathbf{x}^0 = \mathbf{0}$).

Iteracija: Zaustavi kada $n = \bar{n}$:

$$S^{n+1} = L_s(\mathbf{x}^n + \mathbf{A}^*(\mathbf{y} - \mathbf{A}\mathbf{x}^n), \tag{HTP_1}$$

$$S^{n+1} = L_s(\mathbf{x}^n + \mathbf{A}^*(\mathbf{y} - \mathbf{A}\mathbf{x}^n),$$

$$\mathbf{x}^{n+1} = \underset{\mathbf{z} \in \mathbb{C}^N}{\min} \{ \|\mathbf{y} - \mathbf{A}\mathbf{z}\|_2, \sup_{\mathbf{z} \in \mathbb{C}^N} (HTP_1) \}.$$

$$(HTP_1)$$

Izlaz: s-rijedak vektor $\mathbf{x}^{\sharp} = \mathbf{x}^{\bar{n}}$.

Poglavlje 3

ℓ_1 -minimizacija

Prisjetimo se, problem sažetog uzorkovanja sastoji se od rekonstrukcije s-rijetkog vektora $\mathbf{x} \in \mathbb{C}^N$ iz mjerenja $\mathbf{y} = \mathbf{A}\mathbf{x} \in \mathbb{C}^m$, gdje je m < N. Prirodno se nameće problem ℓ_0 -minimizacije,

$$\min_{\mathbf{z} \in \mathbb{C}^N} \|\mathbf{z}\|_0 \quad \text{uz uvjet } \mathbf{A}\mathbf{z} = \mathbf{y}$$
 (P₀)

U poglavlju (1) vidjeli smo da je taj problem općenito \mathfrak{NP} -težak. U poglavlju (2) pokazali smo nekoliko učinkovitih strategija za rješavanje problema sažetog uzorkovanja. U ovom poglavlju fokusirati ćemo se na strategiju ℓ_1 -minimizacije

$$\min_{\mathbf{z} \in \mathbb{C}^N} \|\mathbf{z}\|_1 \quad \text{uz uvjet } \mathbf{A}\mathbf{z} = \mathbf{y}. \tag{P_1}$$

Proučiti ćemo uvjete na matricu A koji osiguravaju egzaktnu ili aproksimativnu rekonstrukciju vektora x.

3.1 Svojstvo nul-prostora

Argumenti u ovom potpoglavlje vrijede u oba kontekstu realnih i u konteksu kompleksnih prostora. Stoga ćemo rezultate prvo iznjeti za polje \mathbb{K} , koje može \mathbb{R} ili \mathbb{C} . Nakon toga uspostaviti ćemo ekvivalentnost realnog i kompleksnog svojstva nul-prostora.

Definicija 3.1.1. Za matricu $\mathbf{A} \in \mathbb{K}^{m \times N}$ kažemo da zadovoljava svojstvo nul-prostora za skup $S \subset [N]$ ako

$$\|\mathbf{v}_S\|_1 < \|\mathbf{v}_{\bar{S}}\|_1 \quad za \ svaki \ \mathbf{v} \in \ker \mathbf{A} \setminus \{\mathbf{0}\}.$$
 (3.1)

Nadalje, kažemo da **A** zadovoljava svojstvo nul-prostora reda s ako zadovoljava gornju nejednakost za svaki $S \subset [N]$ takav da $\operatorname{card}(S) \leq s$.

Primjetimo da za vektor $\mathbf{v} \in \ker \mathbf{A} \setminus \{\mathbf{0}\}$ svojstvo nul-prostora vrijedi za svaki $S \subset [N]$ takav da $\operatorname{card}(S) \leq s$, čim vrijedi za skup indeksa s apsolutno najvećih komponenti vektora \mathbf{v} .

Postoje dvije dodatne formulaciju svojsta nul-prostora. Prvu dobijemo tako da gornjoj nejednakosti dodamo $\|\mathbf{v}_s\|_1$ s obje strane. Tada imamo

$$2\|\mathbf{v}_S\|_1 < \|\mathbf{v}\|_1 \quad \text{za svaki } \mathbf{v} \in \ker \mathbf{A} \setminus \{\mathbf{0}\}. \tag{3.2}$$

Drugu dobijemo tako da u skup S stavimo s apsolutno najvećih komponenti vektora \mathbf{v} i ovaj put nejednakosti dodamo $\|\mathbf{v}_{\bar{s}}\|_1$ s obje strane. Tada imamo

$$\|\mathbf{v}\|_1 < 2\sigma_s(\mathbf{v})_1$$
 za sve $\mathbf{v} \in \ker \mathbf{A} \setminus \{\mathbf{0}\}.$ (3.3)

Prisjetimo se definicije 1.1.2 ℓ_p -greške najbolje s-rijetke aproksimacija vektora $\mathbf{x} \in \mathbb{K}^N$,

$$\sigma_s(\mathbf{x})_p = \inf_{\|\mathbf{z}\| \le s} \|\mathbf{x} - \mathbf{z}\|_p.$$

Sljedeći teorem govori o veci svojstva nul-prostora i egzaktne rekonstrukcije rijetkog vektora putem ℓ_1 -minimizacije.

Teorem 3.1.2. Za $\mathbf{A} \in \mathbb{K}^{m \times N}$, svaki vektor $\mathbf{x} \in \mathbb{K}^N$ sa nosačem na S je jedinstveno rješenje od (P_1) sa $\mathbf{y} = \mathbf{A}\mathbf{x}$ ako i samo ako \mathbf{A} zadovoljava svojstvo nul-prostora za skup S.

Dokaz. Neka je skup indeksa S fiksan. Pretpostavimo da je svaki vektor $\mathbf{x} \in \mathbb{K}^N$ s nosačem na S jedinstveni minimizator od $\|\mathbf{z}\|_1$ takav da $\mathbf{A}\mathbf{z} = \mathbf{A}\mathbf{x}$. Stoga za svaki $\mathbf{v} \in \ker \mathbf{A} \setminus \{\mathbf{0}\}$, vektor \mathbf{v}_S je jedinstveni minimizator od $\|\mathbf{z}\|_1$ takav da $\mathbf{A}\mathbf{z} = \mathbf{A}\mathbf{v}_S$. Ali imamo $\mathbf{A}(-\mathbf{v}_{\bar{S}}) = \mathbf{A}\mathbf{v}_S$ i $-\mathbf{v}_{\bar{S}} \neq \mathbf{v}_S$ jer je $\mathbf{v} \neq \mathbf{0}$ i $\mathbf{0} = \mathbf{A}\mathbf{v} = \mathbf{A}(\mathbf{v}_S + \mathbf{v}_{\bar{S}})$. Dakle, mora vrijediti $\|\mathbf{v}_S\|_1 < \|\mathbf{v}_{\bar{S}}\|_1$. Obratno, pretpostavimo da \mathbf{A} zadovoljava svojstvo nul-prostora za skup S. Tada za vektor $\mathbf{x} \in \mathbb{K}^N$ sa nosačem na S i za $\mathbf{z} \in \mathbb{K}^N$, $\mathbf{z} \neq \mathbf{x}$ takvi da $\mathbf{A}\mathbf{z} = \mathbf{A}\mathbf{x}$, označimo vektor $\mathbf{v} := \mathbf{x} - \mathbf{z} \in \ker \mathbf{A} \setminus \{\mathbf{0}\}$. Imamo,

$$\|\mathbf{x}\| \le \|\mathbf{x} - \mathbf{z}_S\|_1 + \|\mathbf{z}_S\|_1 = \|\mathbf{v}_S\|_1 + \|\mathbf{z}_S\|_1 < \|\mathbf{v}_{\bar{S}}\|_1 + \|\mathbf{z}_S\|_1 = \|-\mathbf{z}_{\bar{S}}\|_1 + \|\mathbf{z}_S\|_1 = \|\mathbf{z}\|_1$$
Dakle, vektor \mathbf{x} je minimizator od (P_1) .

Variranjem skupa S, sljedeći rezultat sljedi direktno iz prethodnog teorema.

Teorem 3.1.3. Za matricu $\mathbf{A} \in \mathbb{K}^{m \times N}$, svaki s-rijedak vektor $\mathbf{x} \in \mathbb{K}^{N}$ je jedinstveno rješenje problema (P_1) uz $\mathbf{y} = \mathbf{A}\mathbf{x}$ ako i samo ako \mathbf{A} zadovoljava svojstvo nul-prostora reda s.

Primjetimo da prethodni teorem tvrdi da za svaki $\mathbf{y} = \mathbf{A}\mathbf{x}$, gdje je \mathbf{x} s-rijedak, ℓ_1 -minimizacija (P_1) zapravo rješava problem ℓ_0 -minimizacije (P_0) kada vrijedi svojstvo nul-prostora reda s. Zaista, pretpostavimo da se svaki s-rijedak vektor \mathbf{x} može rekonstruirati ℓ_1 -minimizacijom iz $\mathbf{y} = \mathbf{A}\mathbf{x}$. Neka je \mathbf{z} minimizator ℓ_0 problema (P_0) sa $\mathbf{y} = \mathbf{A}\mathbf{x}$, tada je $\|\mathbf{z}\|_0 \le \|\mathbf{x}\|_0$ pa je \mathbf{z} također s-rijedak. No, svaki s-rijedak vektor je jedinstveni ℓ_1 -minimizator, slijedi da je $\mathbf{x} = \mathbf{z}$.

Za algoritam rekonstrukcije poželjno je da zadrži mogučnost rekonstrukcije ako su neka od mjerenja reskaliraju, ispermutiraju ili dodaju nova. ℓ_1 -minimizacija ima takvo svojstvo. Formalno, gore opisane promijene zapravo predstavljaju zamjenu matrice \mathbf{A} matricama $\mathbf{\hat{A}}$ i $\mathbf{\tilde{A}}$

$$\hat{\mathbf{A}} := \mathbf{G}\mathbf{A}$$
, gdje je \mathbf{G} neka invertibilna $m \times m$ matrica, $\tilde{\mathbf{A}} := \begin{bmatrix} \mathbf{A} \\ \mathbf{B} \end{bmatrix}$, gdje je \mathbf{B} neka $m' \times N$ matrica.

Primjetimo da je ker $\hat{\mathbf{A}} = \ker \mathbf{A}$ i ker $\tilde{A} \subset \ker \mathbf{A}$, pa svojstvo nul-prostora vrijedi i za matrice $\hat{\mathbf{A}}$ i $\tilde{\mathbf{A}}$.

Za kraj proučiti ćemo utjecaj polja \mathbb{K} . Razlika između $\ker_{\mathbb{R}} \mathbf{A}$ i $\ker_{\mathbb{C}} \mathbf{A} = \ker_{\mathbb{R}} \mathbf{A} + i \ker_{\mathbb{R}} \mathbf{A}$ vodi u slučaju da je $\mathbb{K} = \mathbb{R}$ na realno svojstvo nul-prostora,

$$\sum_{j \in S} |v_j| < \sum_{l \in \bar{S}} |v_l| \quad \text{za svaki } \mathbf{v} \in \ker_{\mathbb{R}} \mathbf{A}, \ \mathbf{v} \neq \mathbf{0}, \tag{3.4}$$

a u slučaju da je $\mathbb{K} = \mathbb{C}$, na kompleksno svojsto nul-prostora,

$$\sum_{jinS} \sqrt{v_j^2 + w_j^2} < \sum_{l \in \bar{S}} \sqrt{v_j^2 + w_j^2} \quad \text{za svaki } \mathbf{v}, \mathbf{w} \in \ker_{\mathbb{R}} \mathbf{A}, \quad (\mathbf{v}, \mathbf{w}) \neq (\mathbf{0}, \mathbf{0}).$$
 (3.5)

Zapravo, pokazati ćemo da su svojstva nul-prostora međusobno ekvivalentna u realnom i kompleksnom slučaju. Zato možemo reći da realna matrica mjerenja egzaktno rekonstruira sve rijetke vektore ℓ_1 -minimizacijom.

Teorem 3.1.4. Neka je $\mathbf{A} \in \mathbb{R}^{m \times N}$, tada je realno svojstvo nul-prostora (3.4) za skup S ekvivalentno je kompleksnom svojstvu nul-prostora (3.5) za isti skup S.

Dokaz. Primjetimo (3.4) slijedi direktno iz (3.5) za $\mathbf{w} = \mathbf{0}$. Uzmimo sada $\mathbf{v}, \mathbf{w} \in \ker_{\mathbb{R}} \mathbf{A}$, takvi da $(\mathbf{v}, \mathbf{w}) \neq (\mathbf{0}, \mathbf{0})$. Ako su \mathbf{v} i \mathbf{w} linearno zavisni. tj. $\mathbf{v} = \alpha \mathbf{w}$ za neki

 $\alpha \in \mathbb{R} \setminus \{\mathbf{0}\}$ onda je

$$\begin{split} \sum_{j \in S} \sqrt{v_j^2 + w_j^2} &= \sum_{j \in S} \sqrt{(1 + \alpha^2) w_j^2} = \sqrt{1 + \alpha^2} \sum_{j \in S} \sqrt{w_j^2} \\ &< \sqrt{1 + \alpha^2} \sum_{j \in \bar{S}} \sqrt{w_j^2} = \sum_{j \in \bar{S}} \sqrt{(1 + \alpha^2) w_j^2} = \sum_{j \in \bar{S}} \sqrt{v_j^2 + w_j^2} \end{split}$$

Pretpostavimo sada da su \mathbf{v} i \mathbf{w} linearno nezavisni i definirajmo $\mathbf{u} := \cos \theta \mathbf{v} + \cos \theta \mathbf{v} \in \ker_{\mathbb{R}} \mathbf{A} \setminus \{\mathbf{0}\}$. Tada za svaki $\theta \in \mathbb{R}$,

$$\sum_{j \in S} |\cos \theta v_j + \sin \theta w_j| < \sum_{l \in \bar{S}} |\cos \theta v_l + \sin \theta w_l|. \tag{3.6}$$

Za svaki $k \in [N]$, neka je $\theta_k \in [-\pi, \pi]$ takav da

$$v_k = \sqrt{v_k^2 + w_k^2} \cos \theta_k, \quad w_k = \sqrt{v_k^2 + w_k^2} \sin \theta_k$$

Iz (3.6) slijedi,

$$\sum_{j \in S} \sqrt{v_j^2 + w_j^2} |\cos(\theta - \theta_j)| < \sum_{l \in \bar{S}} \sqrt{v_l^2 + w_l^2} |\cos(\theta - \theta_l)|$$

Integriranjem po $\theta \in [-\pi,\pi]$ dobijemo

$$\sum_{j \in S} \sqrt{v_j^2 + w_j^2} \int_{-\pi}^{\pi} |\cos(\theta - \theta_j)| d\theta < \sum_{l \in \bar{S}} \sqrt{v_l^2 + w_l^2} \int_{-\pi}^{\pi} |\cos(\theta - \theta_l)|$$

No lako se provjeri da je

$$\int_{-\pi}^{\pi} |\cos(\theta - \theta_j)| d\theta = 4$$

tj. da je pozitivan i neovisan o $\theta' \in [-\pi, \pi]$.

Nekonveksna minimizacija

Prisjetimo se, ℓ_0 norma vektora $\mathbf{z} \in \mathbb{C}^N$ aproksimirana je q-tom potencijom svoje ℓ_q -kvazinorme,

$$\|\mathbf{z}\|_p^p := \sum_{j=1}^N |x_j|^p \xrightarrow{p \to 0} \sum_{j=1}^N \mathbf{1}_{\{z_j \neq 0\}} = \|\mathbf{z}\|_0$$

3.2. STABILNOST 31

To sugestira da ℓ_0 -minimizaciju (P_0) zamjenimo sa

$$\min_{\mathbf{z} \in \mathbb{C}^N} \|\mathbf{z}\|_q \quad \text{uz uvjet } \mathbf{A}\mathbf{z} = \mathbf{y}. \tag{P_q}$$

Za 0 < q < 1 taj je problem nekonveksan i \mathfrak{MP} -težak. No, želimo teoretski potvrditi ideju da (P_q) dobro aproksimira (P_0) za male q. Sljedeći teorem daje analogon svojstva nul-prostora za 0 < q < 1. Dokaz je također analogan dokazu teorema 3.1.3 te se koristi činjenica da za ℓ_q -kvazinorma zadovoljava nejednakost trokuta.

Teorem 3.1.5. Za matricu $\mathbf{A} \in \mathbb{C}^{m \times N}$ i 0 < q < 1, svaki s-rijedak vektor $\mathbf{x} \in \mathbb{C}^N$ je jedinstveno rješenje problema (P_q) uz $\mathbf{y} = \mathbf{A}\mathbf{x}$ ako i samo ako

$$\|\mathbf{v}_S\|_q < \|\mathbf{v}_{\bar{S}}\|_q$$
 za svaki $\mathbf{v} \in \ker \mathbf{A} \setminus \{\mathbf{0}\}.$

Sada možemo dokazivati da rekonstrukcija ℓ_q -minimizacijom implicira rekonstrukciju ℓ_p -minimizacijom za o .

Teorem 3.1.6. Za matricu $\mathbf{A} \in \mathbb{C}^{m \times N}$ i $0 , ako je svaki s-rijedak vektor <math>\mathbf{x} \in \mathbb{C}^N$ jedinstveno rješenje problema (P_q) uz $\mathbf{y} = \mathbf{A}\mathbf{x}$ onda je \mathbf{x} također i rješenje problema (P_p) za $\mathbf{y} = \mathbf{A}\mathbf{x}$.

Dokaz. Prema teoremu 3.1.5 dovoljno je pokazati da vrijedi

$$\sum_{j \in S} |v_j|^p < \sum_{l \in \bar{S}} |v_l|^p, \tag{3.7}$$

ako je $\mathbf{v} \in \ker \mathbf{A} \setminus \{\mathbf{0}\}$, S skup indeksa od s apsolutno najvećih komponeneti od \mathbf{v} i ako ista nejednakost vrijedi za q. Dakle, pretpostavimo da (3.7) vrijedi za q. Tada je nužno $\mathbf{v}_{\bar{S}} \neq \mathbf{0}$ pošto je S skup indeksa od s apsolutno najvećih komponeneti ne-nul vektora \mathbf{v} . Stoga (3.7) možemo napisati u obliku

$$\sum_{j \in S} \frac{1}{\sum_{l \in \bar{S}} (|v_l|/|v_j|)^p} < 1. \tag{3.8}$$

Primjetimo da $|v_l|/|v_j| \leq 1$ za $l \in \bar{S}$ i $j \in S$. Stoga je lijeva strana (3.8) nepadajuća funkcija u varijabli 0 . Pa stoga njena vrijednost u <math>p < q ne prelazi njezinu vrijednost u q, koji je manji od 1 po pretpostavci.

3.2 Stabilnost

Signali u praksi gotovo nikad nisu idealno rijetki. U najboljem slućaju blizu su rijetkim vektorima. Stoga, želimo da metode sažetog uzorkovanja rekonstruiraju

vektor $\mathbf{x} \in \mathbb{C}^N$ sa greškom koja je kontrolirana udaljenosti vektora \mathbf{x} do s-rijetkih vektora. Za algoritme koji imaju to svojsto kažemo da su stabilni s obzirom na defekte rijetkosti. Pokazati ćemo da je ℓ_1 -minimizacija (P_1) stabilna pod jačim svojstvom nul-prostora.

Definicija 3.2.1. Matrica $\mathbf{A} \in \mathbb{C}^{m \times N}$ zadovoljava stabilno svojstvo nul-prostora sa konstantom $0 < \rho < 1$ za skup $S \subset [N]$ ako

$$\|\mathbf{v}_S\|_1 \le \rho \|\mathbf{v}_{\bar{S}}\|_1$$
 za svaki $\mathbf{v} \in \ker \mathbf{A}$.

Nadalje, kažemo da **A** zadovoljava stabilno svojstvo nul-prostora reda s sa konstantom $0 < \rho < 1$ ako zadovoljava zadovoljava gornju nejednakost za svaki $S \subset [N]$ takav da $\operatorname{card}(S) = s$.

Teorem 3.2.2. Ako matrica $\mathbf{A} \in \mathbb{C}^{m \times N}$ zadovoljava stabilno svojstvo nul-prostora reda s sa konstantom $0 < \rho < 1$, tada za svaki $\mathbf{x} \in \mathbb{C}^N$, rješenje \mathbf{x}^{\sharp} problema (P_1) sa $\mathbf{y} = \mathbf{A}\mathbf{x}$ aproksimira vektor \mathbf{x} s ℓ_1 -greškom

$$\|\mathbf{x} - \mathbf{x}^{\sharp}\| \le \frac{2(1+\rho)}{(1-\rho)} \sigma_s(\mathbf{x})_1. \tag{3.9}$$

Sada više nemamo jedinstvenost ℓ_1 -minimizatora. Prethodni teorem biti će direktna posljedica jače tvrdnje,

Teorem 3.2.3. Ako matrica $\mathbf{A} \in \mathbb{C}^{m \times N}$ zadovoljava stabilno svojstvo nul-prostora sa konstantom $0 < \rho < 1$ za skup S ako i samo ako

$$\|\mathbf{z} - \mathbf{x}\|_{1} \le \frac{1+\rho}{1-\rho} (\|\mathbf{z}\|_{1} - \|\mathbf{x}\|_{1} + 2\|\mathbf{x}_{\bar{S}}\|_{1})$$
 (3.10)

za sve vektore $\mathbf{x}, \mathbf{z} \in \mathbb{C}^N$ za $\mathbf{A}\mathbf{z} = \mathbf{A}\mathbf{x}$.

Pokažimo kako teorem 3.2.2 slijedi iz 3.2.3: Neka je S skup s apsolutno najvećih komponeneti vekotora \mathbf{x} , tako da $\|\mathbf{x}_{\bar{S}}\| = \sigma_s(\mathbf{x})_1$. Ako je \mathbf{x}^{\sharp} minimizator problema (P_1) , tada vrijedi $\|\mathbf{x}^{\sharp}\|_1 \leq \|\mathbf{x}\|_1$ i $\mathbf{A}\mathbf{x}^{\sharp} = \mathbf{A}\mathbf{x}$. Dakle, desnu strana (3.10) za $\mathbf{z} = \mathbf{x}^{\sharp}$ možemo ocjeniti desnom stranom (3.9).

Prije dokaza teorema 3.2.3 pokažimo još jedan koristan rezultat.

Lema 3.2.4. Za $S \subset [N]$ i vektore $\mathbf{x}, \mathbf{z} \in \mathbb{C}^N$ vrijedi,

$$\|(\mathbf{x} - \mathbf{z})_{\bar{S}}\|_{1} \le \|\mathbf{z}\|_{1} - \|\mathbf{x}\|_{1} + \|(\mathbf{x} - \mathbf{z})_{S}\|_{1} + 2\|\mathbf{x}_{\bar{S}}\|_{1}$$

3.2. STABILNOST

Dokaz. Imamo,

$$\|\mathbf{x}\|_{1} = \|\mathbf{x}_{\bar{S}}\|_{1} + \|\mathbf{x}_{S}\|_{1} \le \|\mathbf{x}_{\bar{S}}\|_{1} + \|(\mathbf{x} - \mathbf{z})_{S}\|_{1} + \|\mathbf{z}_{S}\|_{1}$$
$$\|(\mathbf{x} - \mathbf{z})_{\bar{S}}\|_{1} \le \|\mathbf{x}_{\bar{S}}\|_{1} + \|\mathbf{z}_{\bar{S}}\|_{1}.$$

Sumiranjem ove dvije nejednakosti, slijedi

$$\|\mathbf{x}\|_1 + \|(\mathbf{x} - \mathbf{z})_{\bar{S}}\|_1 \le 2\|\mathbf{x}_{\bar{S}}\|_1 + \|(\mathbf{x} - \mathbf{z})_S\|_1 + \|\mathbf{z}\|_1.$$

Dokaz (Teorem 3.2.3). Pretpostavimo da matrica \mathbf{A} zadovoljava (3.10) za sve vektore $\mathbf{x}, \mathbf{z} \in \mathbb{C}^N$ uz $\mathbf{A}\mathbf{z} = \mathbf{A}\mathbf{x}$. Za dani vektor $\mathbf{v} \in \ker \mathbf{A}$, pošto je $\mathbf{A}\mathbf{v}_{\bar{S}} = \mathbf{A}(-\mathbf{v}_S)$ možemo primjeniti (3.10) sa $\mathbf{x} = -\mathbf{v}_S$ i $\mathbf{z} = \mathbf{v}_{\bar{S}}$. Slijedi,

$$\|\mathbf{v}\|_1 \le \frac{1+\rho}{1-\rho} (\|\mathbf{v}_{\bar{S}}\|_1 - \|\mathbf{v}_S\|_1).$$

To možemo zapisati kao

$$(1-\rho)(\|\mathbf{v}_S\|_1 + \|\mathbf{v}_{\bar{S}}\|_1) \le (1+\rho)(\|\mathbf{v}_{\bar{S}}\|_1 + \|\mathbf{v}_S\|_1).$$

Jednostavnom manipulacijom slijedi

$$\|\mathbf{v}_{S}\|_{1} < \rho \|\mathbf{v}_{\bar{S}}\|_{1}$$

Obratno, neka matrica \mathbf{A} zadovoljava stabilno svojstvo nul-prostora s konstantom $0 < \rho < 1$ za skup S. Neka su $\mathbf{x}, \mathbf{z} \in \mathbb{C}^N$ takvi da $\mathbf{A}\mathbf{z} = \mathbf{A}\mathbf{x}$, pošto je $\mathbf{v} := \mathbf{z} - \mathbf{x} \in \ker \mathbf{A}$, stabilno svojstvo nul-prostora daje

$$\|\mathbf{v}_S\|_1 \le \rho \|\mathbf{v}_{\bar{S}}\|_1. \tag{3.11}$$

Nadalje, iz lema 3.2.4 slijedi

$$\|\mathbf{v}_{\bar{S}}\|_{1} \le \|\mathbf{z}\|_{1} - \|\mathbf{x}\|_{1} + \|\mathbf{v}_{S}\|_{1} + 2\|\mathbf{x}_{\bar{S}}\|_{1}. \tag{3.12}$$

Substituiramo (3.11) u (3.12),

$$\|\mathbf{v}_{\bar{S}}\|_{1} < \|\mathbf{z}\|_{1} - \|\mathbf{x}\|_{1} + \rho \|\mathbf{v}_{\bar{S}}\|_{1} + 2\|\mathbf{x}_{\bar{S}}\|_{1}.$$

Pošto je $\rho < 1$,

$$\|\mathbf{v}_{\bar{S}}\|_1 \le \frac{1}{1-\rho} (\|\mathbf{z}\|_1 - \|\mathbf{x}\|_1 + 2\|\mathbf{x}_{\bar{S}}\|_1).$$

Ponovno iskoristimo (3.11),

$$\|\mathbf{v}\|_1 = \|\mathbf{v}_{\bar{S}}\|_1 + \|\mathbf{v}_S\|_1 \le (1+\rho)\|\mathbf{v}_{\bar{S}}\|_1 \le \frac{1+\rho}{1-\rho}(\|\mathbf{z}\|_1 - \|\mathbf{x}\|_1 + 2\|\mathbf{x}_{\bar{S}}\|_1).$$

3.3 Robusnost

Jasno je da u realnosti signal nikad ne možemo mjeriti sa beskonačnom točnošću. U našem kontekstu to znači da je vektor mjerenja $\mathbf{y} \in \mathbb{C}^m$ aproksimacija vektora $\mathbf{A}\mathbf{x} \in \mathbb{C}^m$, tj. formalno

$$\|\mathbf{A}\mathbf{x} - \mathbf{y}\| \le \eta$$

za neki $\eta \leq 0$ i neku normu na \mathbb{C}^m . Od metode rekonstrukcije tražimo da udaljenost rekonstruiranog vektora \mathbf{x}^{\sharp} i orginalnog vektora \mathbf{x} bude kontrolirana preciznosti mjerenja η . Ako metoda zadovoljava to svojstvo kažemo da je *robusna* ili *otporna* na greške mjerenja. Pokazati ćemo da BP algoritam (ℓ_1 -minimizacija) robusna ako (P_1) zamjenimo konveksni problemom

$$\min_{\mathbf{z}in\mathbb{C}^N} \|\mathbf{z}\|_1 \quad \text{uz uvjet } \|\mathbf{A}\mathbf{z} - \mathbf{y}\| \le \eta \tag{P}_{1,\eta}$$

te ako vrijedi sljedeča jača varijanta svojstva nul-prostora.

Definicija 3.3.1. Za matricu $\mathbf{A} \in \mathbb{C}^{m \times N}$ kažemo da zadovoljava robusno svojstvo nul-prostora s konstantama $0 < \rho < 1$ i $\tau > 0$ za skup $S \subset [N]$ ako

$$\|\mathbf{v}_S\|_1 \le \rho \|\mathbf{v}_{\bar{S}}\|_1 + \tau \|\mathbf{A}\mathbf{v}\| \quad za \ sve \ \mathbf{v} \in \mathbb{C}^N.$$
 (3.13)

Nadalje, kažemo da $\bf A$ zadovoljava robusno svojstvo nul-prostora s konstantama $0 < \rho < 1$ i $\tau > 0$ reda s ako zadovoljava gornje svojstvo za svaki $S \subset [N]$ takav da ${\rm card}(S) \leq s$.

Primjetimo da definicija ne traži da je $\mathbf{v} \in \ker \mathbf{A}$. Kada bi to vrijedilo propao bi član $\|\mathbf{A}\mathbf{x}\|$ i time bi dobili stabilno svojstvo nul-prostora.

Teorem 3.3.2. Neka matrica $\mathbf{A} \in \mathbb{C}^{m \times N}$ zadovoljava robusno svojstvo nul-prostora reda s sa konstantama $0 < \rho < 1$ i $\tau > 0$. Tada za svaki vektor $\mathbf{x} \in \mathbb{C}^N$, rješenje problema $(P_{1,\eta})$ za $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{e}$ i $\|\mathbf{e}\| \le \eta$ aproksimira vektor \mathbf{x} sa greškom

$$\|\mathbf{x} - \mathbf{x}^{\sharp}\|_{1} \le \frac{2(1+\rho)}{(1-\rho)} \sigma_{s}(\mathbf{x})_{1} + \frac{4\tau}{1-\rho} \eta$$

3.3. ROBUSNOST 35

Dokazati ćemo jau tvrdnju,

Teorem 3.3.3. Matrica $\mathbf{A} \in \mathbb{C}^{m \times N}$ zadovoljava robusno svojstvo nul-prostora sa konstantama $0 < \rho < 1$ i $\tau > 0$ za skup S ako i samo ako

$$\|\mathbf{z} - \mathbf{x}\|_{1} \le \frac{1+\rho}{1-\rho} (\|\mathbf{z}\|_{1} - \|\mathbf{x}\|_{1} + 2\|\mathbf{x}_{\bar{S}}\|_{1}) + \frac{2\tau}{1-\rho} \|\mathbf{A}(\mathbf{z} - \mathbf{x})\|$$
 (3.14)

za sve vektore $\mathbf{x}, \mathbf{z} \in \mathbb{C}^N$.

Dokaz. Pretpostavimo da ${\bf A}$ zadovoljava (3.14). Za ${\bf v}\in\mathbb{C}^N$, uzmimo ${\bf x}=-{\bf v}_S$ i ${\bf z}={\bf v}_{\bar S}$. Slijedi,

$$\|\mathbf{v}\|_{1} \leq \frac{1+\rho}{1-\rho}(\|\mathbf{v}_{\bar{S}}\|_{1} - \|\mathbf{v}_{S}\|_{1}) + \frac{2\tau}{1-\rho}\|\mathbf{A}\mathbf{v}\|.$$

Preslagivanjem članova dobivamo,

$$(1-\rho)(\|\mathbf{v}_S\|_1 + \|\mathbf{v}_{\bar{S}}\|_1) \le (1+\rho)(\|\mathbf{v}_{\bar{S}}\|_1 - \|\mathbf{v}_S\|_1) + 2\tau \|Av\|$$

tj. imamo

$$\|\mathbf{v}_S\|_1 \leq \rho \|\mathbf{v}_{\bar{S}}\|_1 + \tau \|\mathbf{A}\mathbf{v}\|.$$

Obratno, neka **A** zadovoljava robusno svojstvo nul-prostora sa konstantama $0 < \rho < 1$ i $\tau > 0$ za skup S. Za $\mathbf{x}, \mathbf{z} \in \mathbb{C}^N$, neka je $\mathbf{v} := \mathbf{z} - \mathbf{x}$. Iz robusnog svojstvo nul-prostora i leme 3.2.4 slijedi,

$$\|\mathbf{v}_S\|_1 \le \rho \|\mathbf{v}_{\bar{S}}\|_1 + \tau \|\mathbf{A}\mathbf{v}\|,$$

 $\|\mathbf{v}_{\bar{S}}\|_1 \le \|\mathbf{z}\|_1 - \|\mathbf{x}\|_1 + \|\mathbf{v}_S\|_1 + 2\|\mathbf{x}_{\bar{S}}\|_1.$

Kombiniranjem te dvije nejednakosti slijedi,

$$\|\mathbf{v}_{\bar{S}}\|_{1} \leq \frac{1}{1-\rho}(\|\mathbf{z}\|_{1} - \|\mathbf{x}\|_{1} + 2\|\mathbf{x}_{\bar{S}}\|_{1} + \tau \|Av\|).$$

Ponovno iskoristimo robusno svojstvo nul-prostoram

$$\|\mathbf{v}\|_{1} = \|\mathbf{v}_{\bar{S}}\|_{1} + \|\mathbf{v}_{S}\|_{1} \le (1+\rho)\|\mathbf{v}_{\bar{S}}\|_{1} + \tau \|\mathbf{A}\mathbf{v}\|$$

$$\le \frac{1+\rho}{1-\rho}(\|\mathbf{z}\|_{1} - \|\mathbf{x}\|_{1} + 2\|\mathbf{x}_{\bar{S}}\|_{1}) + \frac{2\tau}{1-\rho}\|\mathbf{A}\mathbf{v}\|$$

Sada ćemo poboljšati prethodni rezultat robusnosti, dati ćemo ℓ_p ocjenu greške za $p \geq 1$. Za to potrebna nam je još jedna varijantna svojstva nul-prostora,

Definicija 3.3.4. Za $q \geq 1$, matrica $\mathbf{A} \in \mathbb{C}^{m \times N}$ zadovoljava ℓ_q -robusno svojstvo nul-prostora reda s sa konstantama $0 < \rho < 1$ i $\tau > 0$, ako za svaki $S \subset [N]$, takav da $\operatorname{card}(S) \leq s$,

$$\|\mathbf{v}_S\|_q \le \frac{\rho}{s^{1-1/q}} \|\mathbf{v}_{\bar{S}}\|_1 + \tau \|\mathbf{A}\mathbf{v}\| \quad za \ svaki \ \mathbf{v} \in \mathbb{C}^N.$$

Iz $\|\mathbf{v}_S\|_p \leq s^{1/p-1/q} \|\mathbf{v}_S\|_q$ za $1 \leq p \leq q, \, \ell_1$ -robusno svojstvo nul-prostora implicira

$$\|\mathbf{v}_S\|_p \le \frac{\rho}{s^{1-1/p}} \|\mathbf{v}_{\bar{S}}\|_1 + \tau s^{1/p-1/q} \|\mathbf{A}\mathbf{v}\|$$
 za sve $\mathbf{v} \in \mathbb{C}^N$.

Stoga, za $1 \leq p \leq q$, ℓ_q -robusno svojstvo nul-prostora implicira ℓ_p -robusno svojstvo nul-prostora s jednakim konstanama, do na promjenu norme. Sljedeći teorem daje robusnost kvadratično ograničene ℓ_1 -minimizacije.

Teorem 3.3.5. Neka matrica $\mathbf{A} \in \mathbb{C}^{m \times N}$ zadovoljava ℓ_2 -robusno svojstvo nul-prostora reda s sa konstanama $0 < \rho < 1$ i $\tau > 0$. Tada za svaki $\mathbf{x} \in \mathbb{C}^N$, rješenje \mathbf{x}^{\sharp} problema $(P_{1,\eta})$ aproksimira \mathbf{x} s ℓ_p -greškom

$$\|\mathbf{x} - \mathbf{x}^{\sharp}\|_{p} \le \frac{C}{s^{1-1/p}} \sigma_{s}(\mathbf{x})_{1} + Ds^{1/p-1/2} \eta, \quad 1 \le p \le 2,$$
 (3.15)

za neke konstane C, D > 0 koje ovise samo o ρ i τ .

Ovaj teorem je direktna posljedica narednog opčenitijeg teorema za q=2 i $\mathbf{z}=\mathbf{x}^{\sharp}.$

Teorem 3.3.6. Neka je $1 \le p \le q$ i neka matrica $\mathbf{A} \in \mathbb{C}^{m \times N}$ zadovoljava ℓ_q -robusno svojstvo nul-prostora reda s sa konstantama $0 < \rho < 1$ i $\tau > 0$. Tada za svaki $\mathbf{x}, \mathbf{z} \in \mathbb{C}^N$,

$$\|\mathbf{z} - \mathbf{x}\|_p \le \frac{C}{s^{1-1/p}} (\|z\|_1 - \|\mathbf{x}\|_1 + 2\sigma_s(\mathbf{x})_1) + Ds^{1/p-1/q} \|\mathbf{A}(\mathbf{z} - \mathbf{x})\|,$$

$$gdje \ su \ C := (1+\rho)^2/(1-\rho) \ i \ D := (3+\rho)\tau/(1-\rho).$$

Dokaz. Iskoristimo prvo da ℓ_q -robusno svojstvo nul-prostora implicira ℓ_1 -robusno i ℓ_p -robusno svojstvo nul-prostora, tj.

$$\|\mathbf{v}_S\|_1 \le \rho \|\mathbf{v}_{\bar{S}}\|_1 + \tau s^{1-1/q} \|\mathbf{A}\mathbf{v}\|,$$
 (3.16)

$$\|\mathbf{v}_S\|_1 \le \frac{\rho}{s^{1-1/p}} \|\mathbf{v}_{\bar{S}}\|_1 + \tau s^{1/p-1/q} \|\mathbf{A}\mathbf{v}\|,$$
 (3.17)

za svaki $\mathbf{v} \in \mathbb{C}^N$ i za sve $S \subset [N]$, takve da $\operatorname{card}(S) \leq s$. Uvažavajući (3.17) i primjenom teorema 3.3.3 s skupom S koji je jednak skupu s apsolutno najvećih

komponenti vektora \mathbf{x} , imamo

$$\|\mathbf{z} - \mathbf{x}\|_{1} \le \frac{1+\rho}{1-\rho} (\|\mathbf{z}\|_{1} - \|\mathbf{x}\|_{1} + 2\sigma_{s}(\mathbf{x})_{1}) + \frac{2\tau}{1-\rho} s^{1-1/q} \|\mathbf{A}(\mathbf{z} - \mathbf{x})\|.$$
 (3.18)

Nadalje, odabirom skupa S kao skupa s apsolutno največih komponenti vektora $\mathbf{z} - \mathbf{x}$, iz teorema 1.1.5 slijedi

$$\|\mathbf{z} - \mathbf{x}\|_p \le \|(\mathbf{z} - \mathbf{x})_{\bar{S}}\|_p + \|(\mathbf{z} - \mathbf{x})_S\|_p \le \frac{1}{s^{1-1/p}} \|\mathbf{z} - \mathbf{x}\|_1 + \|(\mathbf{z} - \mathbf{x})_S\|_p.$$

Iz (3.17) imamo,

$$\|\mathbf{z} - \mathbf{x}\|_{p} \leq \frac{1}{s^{1-1/p}} \|\mathbf{z} - \mathbf{x}\|_{1} + \frac{2}{s^{1-1/p}} \|(\mathbf{z} - \mathbf{x})_{\bar{S}}\|_{1} + \tau s^{1/p - 1/q} \|\mathbf{A}(\mathbf{z} - \mathbf{x})\|$$

$$\leq \frac{1+\rho}{s^{1-1/p}} \|\mathbf{z} - \mathbf{x}\|_{1} + \tau s^{1/p - 1/q} \|\mathbf{A}(\mathbf{z} - \mathbf{x})\|.$$
(3.19)

Preostaje (3.18) u (3.19).

3.4 Rekonstrukcija predodređenog vektora

Ukoliko želimo rekonstruirati predoređeni rijetki vektor \mathbf{x} umjesto sve rijetke vektore s nosačemo u nekom skupu S, potrebno nam je finije svojstvo rekonstrukcije od svojstva nul-prostora. Naglasimo da se će ovdje biti sitna razlika između realnog i kompleksnog slučaja, što je posljedica definija predznaka broja z,

$$\operatorname{sgn}(z) := \begin{cases} \frac{z}{|z|} & \text{ako } z \neq 0, \\ 0 & \text{ako } z = 0 \end{cases}$$

i činjenice da je u realnom slučaju to diskretna vrijednost, dok u kompleksnom nije. Za vektor $\mathbf{x} \in C^N$, $\operatorname{sgn}(\mathbf{x}) \in \mathbb{C}^N$ definiramo kao vektor s komponentama $\operatorname{sgn}(x_j)$, $j \in [N]$.

Teorem 3.4.1. Za danu matricu $\mathbf{A} \in \mathbb{C}^{m \times N}$, vektor $\mathbf{x} \in \mathbb{C}^N$ sa nosačem S je jedinstveni minimizator od $\|\mathbf{z}\|_1$ uz uvjet $\mathbf{A}\mathbf{z} = \mathbf{A}\mathbf{x}$ ako je jedna od narednih, ekvivalentnih tvrdnji zadovoljena:

(a)
$$|\sum_{j\in S} \overline{\operatorname{sgn}(x_j)} v_j| < ||\mathbf{v}_{\bar{S}}|| \text{ za sve } \mathbf{v} \in \ker \mathbf{A} \setminus \{\mathbf{0}\},$$

(b) \mathbf{A}_S je injektivna i postoji vektor $\mathbf{h} \in \mathbb{C}^m$ takav da

$$(\mathbf{A}^*\mathbf{h})_j = \operatorname{sgn}(x_j), \ j \in S, \qquad |(\mathbf{A}^*\mathbf{h})_l| < 1, \ l \in \bar{S}.$$

Dokaz. Dokažimo prvo da (a) implicira da je \mathbf{x} jedinstveni minimizator od $\|\mathbf{z}\|_1$ takav da $\mathbf{A}\mathbf{z} = \mathbf{A}\mathbf{x}$. Za $\mathbf{z} \neq \mathbf{x}$ takav da $\mathbf{A}\mathbf{z} = \mathbf{A}\mathbf{x}$ uzmimo $\mathbf{v} := \mathbf{x} - \mathbf{z} \in \ker \mathbf{A} \setminus \{\mathbf{0}\}$

$$\|\mathbf{z}\|_1 = \|\mathbf{z}_S\|_1 + \|\mathbf{z}_{\bar{S}}\|_1 = \|(\mathbf{x} - \mathbf{z})_S\|_1 + \|\mathbf{v}_{\bar{S}}\|_1$$
$$> |\langle \mathbf{x} - \mathbf{z}, \operatorname{sgn}(\mathbf{x})_S \rangle| + |\langle \mathbf{v}, \operatorname{sgn}(\mathbf{x})_S \rangle| \ge |\langle \mathbf{x}, \operatorname{sgn}(\mathbf{x})_S \rangle| = \|\mathbf{x}\|_1.$$

Pokažimo sada $(b) \implies (a)$. Koristeći činjenicu da $\mathbf{A}\mathbf{v}_S = -\mathbf{A}\mathbf{v}_{\bar{S}}$ za $\mathbf{v} \in \ker \mathbf{A} \setminus \{\mathbf{0}\}$ slijedi,

$$\begin{aligned} |\sum_{j \in S} \overline{\operatorname{sgn}(x_j)v_j}| &= |\langle \mathbf{v}_S, \mathbf{A}^* \mathbf{h} \rangle| = |\langle \mathbf{A} \mathbf{v}_S, \mathbf{h} \rangle| = |\langle \mathbf{A} \mathbf{v}_{\bar{S}}, \mathbf{h} \rangle| \\ &= |\langle \mathbf{v}_{\bar{S}}, \mathbf{A}^* \mathbf{h} \rangle| \le \max_{l \in \bar{S}} |(\mathbf{A}^* \mathbf{h})_l| ||\mathbf{v}_{\bar{S}}||_1 < ||\mathbf{v}_{\bar{S}}||_1. \end{aligned}$$

Striktna nejednakost vrijedi jer $\|\mathbf{v}_{\bar{S}}\| > 0$. U suprotnom bi ne-nul vektor $\mathbf{v} \in \ker \mathbf{A}$ imao nosač u S, što je kontradikcija s injektivnosti od \mathbf{A}_{S} .

Preostaje pokazati $(a) \Longrightarrow (b)$. Primjetimo da (a) povlači $\|\mathbf{v}_{\bar{S}}\|_1 > 0$ za sve $\mathbf{v} \in \ker \mathbf{A} \setminus \{\mathbf{0}\}$. Pokažimo da je \mathbf{A}_S injektivna. Pretpostavimo $\mathbf{A}_S \mathbf{v}_S = \mathbf{0}$ za neki $\mathbf{v}_S \neq \mathbf{0}$. Nadopunimo \mathbf{v}_S do vektora $\mathbf{v} \in \mathbb{C}^N$ tako da stavimo $\mathbf{v}_{\bar{S}} = \mathbf{0}$. Tada je $\mathbf{v} \in \ker \mathbf{A} \setminus \{\mathbf{0}\}$, što je kontradikcija s $\|\mathbf{v}_{\bar{S}}\|_1 > 0$ za svaki $\mathbf{v} \in \ker \mathbf{A} \setminus \{\mathbf{0}\}$. Nadalje, primjetimo da je funkcija $\mathbf{v} \mapsto |\langle \mathbf{v}, \operatorname{sgn}(\mathbf{x})_S \rangle| / \|\mathbf{v}_{\bar{S}}\|_1$ neprekidna i da poprima vrijednosti manje od jedan na jediničnoj kugli u ker A, koja je kompaktan skup. Dakle maksimum η zadovoljava $\eta < 1$ i vrijedi

$$|\langle \mathbf{v}, \operatorname{sgn}(\mathbf{x})_S \rangle| < ||\mathbf{v}_{\bar{S}}||_1$$
 za sve $\mathbf{v} \in \ker \mathbf{A}$.

Za $\eta < \nu < 1$ definiramo konveksni skup \mathcal{C} i afin skup \mathcal{D} ,

$$C := \{ \mathbf{z} \in \mathbb{C}^N : \|\mathbf{z}_S\|_1 + \nu \|\mathbf{z}_{\bar{S}}\|_1 \le \|\mathbf{x}\|_1 \},$$

$$\mathcal{D} := \{ \mathbf{z} \in \mathbb{C}^N : \mathbf{A}\mathbf{z} = \mathbf{A}\mathbf{x} \}.$$

Pokažimo da je $\mathcal{C} \cap \mathcal{D} = \{\mathbf{x}\}$. Uzmimo $\mathbf{x} \in \mathcal{C} \cap \mathcal{D}$. Za $\mathbf{z} \neq \mathbf{x} \in \ker \mathbf{A} \setminus \{\mathbf{0}\}$ kontradikcija slijedi iz

$$\|\mathbf{x}\|_{1} \geq \|\mathbf{z}_{S}\|_{1} + \nu \|\mathbf{z}_{\bar{S}}\|_{1} = \|(\mathbf{x} - \mathbf{z})_{S}\|_{1} + \nu \|\mathbf{v}_{\bar{S}}\|_{1}$$

$$> \|(\mathbf{x} - \mathbf{v})_{S}\|_{1} + \mu \|\mathbf{v}_{\bar{S}}\|_{1} \geq |\langle \mathbf{x} - \mathbf{v}, \operatorname{sgn}(\mathbf{x})_{S}\rangle| + |\langle \mathbf{v}, \operatorname{sgn}(\mathbf{x})_{S}\rangle|$$

$$\geq |\langle \mathbf{x}, \operatorname{sgn}(\mathbf{x})_{S}\rangle| = \|\mathbf{x}\|_{1}.$$

Dakle, prema teoremu o separaciji konveksnih skupova hiperplohama (vidi TODO), postoji vektor $\mathbf{w} \in \mathbb{C}^N$ takav da

$$C \subset \{ \mathbf{z} \in \mathbb{C}^N : \operatorname{Re}\langle \mathbf{z}, \mathbf{w} \rangle \le ||\mathbf{x}||_1 \},$$
 (3.20)

$$\mathcal{D} \subset \{ \mathbf{z} \in \mathbb{C}^N : \operatorname{Re}\langle \mathbf{z}, \mathbf{w} \rangle = \| \mathbf{x} \|_1 \}. \tag{3.21}$$

Iz (3.20) slijedi,

$$\begin{split} \|\mathbf{x}\|_{1} &\geq \max_{\|\mathbf{z}_{S} + \nu \mathbf{z}_{\bar{S}}\|_{1} \leq \|\mathbf{x}\|_{1}} \operatorname{Re}\langle \mathbf{z}, \mathbf{x} \rangle \\ &= \max_{\|\mathbf{z}_{S} + \nu \mathbf{z}_{\bar{S}}\|_{1} \leq \|\mathbf{x}\|_{1}} \operatorname{Re}\left(\sum_{j \in S} z_{j} \overline{w_{j}} + \sum_{j \in \bar{S}} \nu z_{j} \overline{w_{j}} / \nu\right) \\ &= \max_{\|\mathbf{z}_{S} + \nu \mathbf{z}_{\bar{S}}\|_{1} \leq \|\mathbf{x}\|_{1}} \operatorname{Re}\langle \mathbf{z}_{S} + \nu \mathbf{z}_{\bar{S}}, \mathbf{w}_{\bar{S}} + (1/\nu) \mathbf{w}_{\bar{S}} \rangle \\ &= \|\mathbf{x}\|_{1} \|\mathbf{w}_{S} + (1/\nu) \mathbf{w}_{\bar{S}}\|_{\infty} = \|\mathbf{x}\|_{1} \max\{\|\mathbf{w}_{S}\|_{\infty}, (1/\nu) \|\mathbf{w}_{\bar{S}}\|_{\infty}\}. \end{split}$$

U slučaju $\mathbf{x} = \mathbf{0}$, dovoljno je uzeti vektor $\mathbf{h} = \mathbf{0}$, stoga neka je $\mathbf{x} \neq \mathbf{0}$. Gornja nejednakost daje $\|\mathbf{w}_S\|_{\infty} \leq 1$ i $\|\mathbf{w}_{\bar{S}}\|_{infty} \leq \nu < 1$. Iz (3.21) slijedi $\operatorname{Re}\langle \mathbf{x}, \mathbf{w} \rangle = \|\mathbf{x}\|_1$, tj. $w_j = \operatorname{sgn}(x_j)$ za sve $j \in S$, te $\operatorname{Re}\langle \mathbf{v}, \mathbf{w} \rangle = 0$ za sve $\mathbf{v} \in \ker \mathbf{A}$, tj. $\mathbf{w} \in (\ker \mathbf{A})^{\perp}$. Pošto je $(\ker \mathbf{A})^{\perp} = \operatorname{im} \mathbf{A}^*$, imamo $\mathbf{w} = \mathbf{A}^*\mathbf{h}$ za neki $\mathbf{h} \in \mathbb{C}^m$.

U realnom slučaju obratna tvrdnja također vrijedi, dok opčenito to nije istina. Dati ćemo još jednu karakteriziciju egzaktne rekonstrukcije ℓ_1 -minimizacijom u realnom slučaju. Za vektor $\mathbf{x} \in \mathbb{R}^N$, konveksni konus definiramo kao

$$T(\mathbf{x}) = \operatorname{cone}\{\mathbf{z} - \mathbf{x} : \mathbf{z} \in \mathbb{R}^N, \ \|\mathbf{z}\|_1 \le \|\mathbf{x}\|\}$$
(3.22)

gdje cone predstavlja konusnu ljusku (vidi TODO).

Teorem 3.4.2. Za matricu $\mathbf{A} \in \mathbb{R}^{m \times N}$, vektor $\mathbf{x} \in \mathbb{R}^N$ je jedinstveni minimizator od $\|\mathbf{z}\|_1$ takav da $\mathbf{A}\mathbf{z} = \mathbf{A}\mathbf{x}$ ako i samo ako ker $\mathbf{A} \cap T(\mathbf{x}) = \{\mathbf{0}\}$.

Dokaz. Pretpostavimo da je ker $\mathbf{A} \cap T(x) = \{\mathbf{0}\}$. Neka je $\mathbf{x}^{\sharp} \ell_1$ -minimizator. Imamo, $\|\mathbf{x}^{\sharp}\|_1 \leq \|\mathbf{x}\|_1$ i $\mathbf{A}\mathbf{x}^{\sharp} = \mathbf{A}\mathbf{x}$, pa je $\mathbf{v} := \mathbf{x}^{\sharp} - \mathbf{x} \in T(\mathbf{x}) \cap \ker \mathbf{A} = \{\mathbf{0}\}$. Stoga je $\mathbf{x}^{\sharp} = \mathbf{x}$. Dakle, \mathbf{x} je jedinstveni ℓ_1 -minimizator.

Obratno, neka je \mathbf{x} jedinstveni ℓ_1 -minimizator. Vektor $\mathbf{v} \in T(\mathbf{x}) \setminus \{\mathbf{0}\}$ možemo zapisati kao $\mathbf{v} = \sum t_j(\mathbf{z}_j - \mathbf{x})$ gdje je $t_j \geq 0$ i $\|\mathbf{z}_j\| \leq \|\mathbf{x}\|_1$. Da je $\mathbf{v} \in \ker \mathbf{A}$, vrijedilo bi $\mathbf{A}(\sum t_j' \mathbf{z}_j) = \mathbf{A}\mathbf{x}$ i $\|\sum t_j' \mathbf{z}_j\|_1 \leq \sum t_j' \|\mathbf{z}_j\|_1 \leq \|\mathbf{x}\|_1$. Zbog jedinstvenosti, to bi značilo da $\sum t_j' \mathbf{z}_j = \mathbf{x}$ pa bi $\mathbf{v} = \mathbf{0}$, što je kontradikcija. Dakle, vrijedi $(T(\mathbf{x}) \setminus \{\mathbf{0}\}) \cap \ker \mathbf{A} = \emptyset$.

Ovaj rezultat možemo proširiti i na robusnu rekonstrukciju,

Teorem 3.4.3. $Za \mathbf{A} \in \mathbb{R}^{m \times N}$, $neka je \mathbf{x} \in \mathbb{R}^N \ i \mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{e} \in \mathbb{R}^m \ i \|\mathbf{e}\|_2 \leq \eta$. Ako je

$$\inf_{\mathbf{v} \in T(x), \ \|\mathbf{v}\|_2 = 1} \|\mathbf{A}\mathbf{v}\|_2 \ge \tau$$

za neki $\tau > 0$, tada minimizator \mathbf{x}^{\sharp} od $\|\mathbf{z}\|_1$ takav da $\|\mathbf{A}\mathbf{z} - \mathbf{y}\|_2 \leq \eta$ zadovoljava

$$\|\mathbf{x} - \mathbf{x}^{\sharp}\|_{2} \le \frac{2\eta}{\tau}.\tag{3.23}$$

Dokaz. Bez smanjenja opčenitosti možemo uzeti da je $\mathbf{x}^{\sharp} = \mathbf{x}$. Iz $\|\mathbf{x}^{\sharp}\|_{1} \leq \|\mathbf{x}\|_{1}$ slijedi da je $\mathbf{v} := (\mathbf{x}^{\sharp} - \mathbf{x}) / \|\mathbf{x}^{\sharp} - \mathbf{x}\|_{2} \in T(x)$. Pošto je $\|v\|_{2} = 1$ imamo da je $\|\mathbf{A}\mathbf{v}\|_{2} \geq \tau$, tj. $\|\mathbf{A}(\mathbf{x}^{\sharp} - \mathbf{x})\|_{2} \geq \tau \|\mathbf{x}^{\sharp} - \mathbf{x}\|_{2}$. Nadalje, vrijedi

$$\|\mathbf{A}(\mathbf{x}^{\sharp} - \mathbf{x})\|_{2} < \|\mathbf{A}\mathbf{x}^{\sharp} - y\|_{2} + \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_{2} < 2\eta$$

Tvrdnja slijedi kombiniranjem prethodne dvije nejednakosti.

Poglavlje 4

Koherencija

Kao što smo vidjeli, uspješnost rekonstrukcije rijetkog vektora u kontekstu sažetog uzorkovanja ovisi o određenim kvalitetama matrice mjerenja. Jedna od takvih mjera kvalitete je koherencija. Neformalno, što je koherencija matrice mjerenja manja, to je rekonstrukcija uspješnija.

4.1 Definicija i svojstva

U cjelom poglavlju podrazumjevamo da su stupci matrice mjerenje ℓ_2 -normalizirani.

Definicija 4.1.1. Neka je $\mathbf{A} \in \mathbb{C}^{m \times N}$ matrica sa ℓ_2 -normaliziranim stupcima $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_N$, $tj. \|\mathbf{a}_i\|_2 = 1$ za sve $i \in [N]$. Koherencija $\mu = \mu(\mathbf{A})$ matrice \mathbf{A} definiramo kao

$$\mu := \max_{1 \le i \ne j \le N} |\langle \mathbf{a}_i, \mathbf{a}_j \rangle|. \tag{4.1}$$

Nadalje, uvodimo opčenitiji pojam funckije ℓ_1 -koherencije. Gornja definicija je poseban slučaj za s=1.

Definicija 4.1.2. Neka je matrica $\mathbf{A} \in \mathbb{C}^{m \times N}$ sa ℓ_2 -normaliziranim stupcima $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_N$. $Za \ s \in [N-1]$, funkcija ℓ_1 -koherencije μ_1 matrice \mathbf{A} je definirana kao

$$\mu_1(s) := \max_{i \in [N]} \max \Big\{ \sum_{j \in S} |\langle \mathbf{a}_i, \mathbf{a}_j \rangle|, \ S \subset [N], \ \operatorname{card}(S) = s, \ i \notin S \Big\}.$$

Jasno je da za $1 \le s \le N-1$ vrijedi

$$\mu \le \mu_1(s) \le s\mu \tag{4.2}$$

i opčenitije za $1 \leq s, \ t \leq N-1$ takve da $s+t \leq N-1$

$$\max\{\mu_1(s), \mu_1(t)\} \le \mu_1(s+t) \le \mu_1(s) + \mu_1(t). \tag{4.3}$$

Primjetimo da je ℓ_1 -koherencija pa stoga i koherencija invarijanta na množenje s lijeva unitarnom matricom U. Zaista, stupci od UA su ℓ_2 -normalizirani vektori $\mathbf{U}\mathbf{a}_1,\ldots,\mathbf{U}\mathbf{a}_N$ te zadovoljavaju $\langle \mathbf{U}\mathbf{a}_i,\mathbf{U}\mathbf{a}_j\rangle=\langle \mathbf{a}_i,\mathbf{a}_j\rangle$. Nadalje zbog Cauchy-Schwarzove nejednakosti imamo da vrijedi

$$\mu < 1$$
.

Neka je na matrica $\mathbf{A} \in \mathbb{C}^{m \times N}$ takva da $m \geq N$. Tada je $\mu = 0$ ako i samo ako stupci matrice \mathbf{A} formiraju ortonormirani sustav. U slučaju da je matrica kvadratna, $\mu = 0$ ako i samo ako je \mathbf{A} unitarna. U nastavu ćemo proučavati samo matrice kojima je m < N. U tom slučaju vrijednost koherencije je odozdo ograničena, što ćemo kasnije i pokazati.

Teorem 4.1.3. Neka je $\mathbf{A} \in \mathbb{C}^{m \times N}$ matrica sa ℓ_2 -normaliziranim stupcima i neka je $s \in [N]$. Za sve s-rijetke vektore $\mathbf{x} \in \mathbb{C}^N$ vrijedi,

$$(1 - \mu_1(s-1)) \|\mathbf{x}\|_2^2 \le \|\mathbf{A}\mathbf{x}\|_2^2 \le (1 + \mu_1(s-1)) \|\mathbf{x}\|_2^2$$

ili ekvivalentno, za svaki skup $S \subset [N]$ takav da $\operatorname{card}(S) \leq s$, svojstvene vrijednosti matrice $\mathbf{A}_S^* \mathbf{A}_S$ leže u segmentu $[1-\mu_1(s-1), 1+\mu(s-1)]$. Posebno, ako je $\mu_1(s-1) < 1$ tada je $\mathbf{A}_S^* \mathbf{A}_S$ invertibilna.

Dokaz. Neka je $S \subset [N]$. Pošto je matrica $\mathbf{A}_S^* \mathbf{A}_S$ pozitivno semidefinitna, svojstveni vektori koji odgovaraju realnim pozitivnim svojstvenim vrijednostima čine ortonormiranu bazu. Označimo s λ_{min} najmanju i s λ_{max} največu svojstvenu vrijednost. Pošto je $\mathbf{A}\mathbf{x} = \mathbf{A}_S\mathbf{x}_S$ za svaki $\mathbf{x} \in \mathbb{C}^N$ sa nosačem na skupu S, slijedi da je maksimum od

$$\|\mathbf{A}\mathbf{x}\|_2^2 = \langle \mathbf{A}_S \mathbf{x}_S, \mathbf{A}_S \mathbf{x}_S \rangle = \langle \mathbf{A}_S^* \mathbf{A}_S \mathbf{x}_S, \mathbf{x}_S \rangle$$

po skupu $\mathbf{x} \in \mathbb{C}^N$, supp $\mathbf{x} \subset S$, $\|\mathbf{x}\|_2 = 1$, jednak λ_{max} i minimum jednak λ_{min} . Ovo pokazuje ekvivalenciju dvije tvrdnje u teoremu. Nadalje, pošto imamo da je $\|a_j\|_2 = 1$ za sve $j \in [N]$, svi dijagonalni elementi matrice $\mathbf{A}_S^* \mathbf{A}_S$ jednaki su jedan. Prema Gershgorinom teoremu (vidi TODO), svojstvene vrijednost od $\mathbf{A}_S^* \mathbf{A}_S$ sadržane su u uniji diskova s centrom u 1 radijusa

$$r_j := \sum_{l \in S, \ l \neq j} |(\mathbf{A}_S^* \mathbf{A}_S)_{j,l}| = \sum_{l \in S, \ l \neq j} |\langle \mathbf{a}_l, \mathbf{a}_j \rangle| \le \mu_1(s-1), \quad j \in S.$$

Pošto su svojstvene vrijednost realno, moraju ležati u segmentu $[1 - \mu_1(s-1, 1 + \mu_1(s-1))]$.

Korolar 4.1.4. Neka je $\mathbf{A} \in \mathbb{C}^{m \times N}$ s ℓ_2 -normaliziranim stupcima i neka je s ≥ 1 . Ako

$$\mu_1(s) + \mu_1(s-1) < 1,$$

onda je, za svaki $S \subset [N]$ takav da $\operatorname{card}(S) \leq 2s$, matrica $\mathbf{A}_S^* \mathbf{A}_S$ invertibilna i matrica \mathbf{A}_S injektivna. Posebno, isti zaključak vrijedi ako

$$\mu < \frac{1}{2s - 1}$$

Dokaz. Iz (4.3), $\mu_1(s) + \mu_1(s-1) < 1$ povlači $\mu_1(2s-1) < 1$. Prema prethodnom teoremu, za $S \subset [N]$ takav da card(S) = 2s, najmanja svojstvena vrijednost matrice $\mathbf{A}_S^* \mathbf{A}_S$ zadovoljava $\lambda_{min} \geq 1 - \mu_1(2s-1) > 0$. Dakle, $\mathbf{A}_S^* \mathbf{A}_S$ je invertibilna. Ako je $\mathbf{A}_S \mathbf{z} = \mathbf{0}$ tada je i $\mathbf{A}_S^* \mathbf{A}_S \mathbf{z} = \mathbf{0}$ no to implicira $\mathbf{z} = \mathbf{0}$. Dakle, \mathbf{A}_S je injektivna. Isti zaključci slijedi iz $\mu_1(s) + \mu_1(s-1) \leq (2s-1)\mu < 1$ ako je $\mu < 1/(2s-1)$

4.2 Matrice male koherencije

Sada ćemo proučiti ocjene odozdo na koherenciju i na ℓ_1 -koherenciju matrice $\mathbf{A} \in \mathbb{K}^{m \times N}$ takve da m < N i gdje je $\mathbb{K} = \mathbb{R}$ ili $\mathbb{K} = \mathbb{C}$.

Definicija 4.2.1. Sustav ℓ_2 -normaliziranih vektora $(\mathbf{a}_1, \dots, \mathbf{a}_N)$ iz \mathbb{K}^m nazivamo ekviangularan ako postoji konstana $c \leq 0$ takva da

$$|\langle \mathbf{a}_i, \mathbf{a}_j \rangle| = c$$
 za sve $i, j \in [N], i \neq j$.

Definicija 4.2.2. Sustav vektora $(\mathbf{a}_1, \dots, \mathbf{a}_N)$ iz \mathbb{K}^m zovemo napeti bazni okvir ako postoji konstanta $\lambda > 0$ takva da vrijedi jedan od ekvivalentnih uvjeta:

- (a) $\|\mathbf{x}\|_2^2 = \lambda \sum_{j=1}^N |\langle \mathbf{x}, \mathbf{a}_j \rangle|^2$ za sve $\mathbf{x} \in \mathbb{K}^m$,
- (b) $\mathbf{x} = \lambda \sum_{j=1}^{N} \langle \mathbf{x}, \mathbf{a}_j \rangle \mathbf{a}_j \ za \ sve \ \mathbf{x} \in \mathbb{K}^m$,
- (c) $\mathbf{A}\mathbf{A}^* = (1/\lambda)\mathbf{I}_m$, gdje je \mathbf{A} matrica sa stupcima $\mathbf{a}_1, \dots \mathbf{a}_N$.

Sustav ℓ_2 -normaliziranih vektora zove se ekviangularni napeti bazni okvir ako je bazni okvir ujedno ekviangularni sustav vektora i napeti bazni okvir. Takve sustavi vektora postižu takozvanu Welchovu ocjenu.

Teorem 4.2.3. Koherencija matrice $\mathbf{A} \in \mathbb{K}^{m \times N}$ s ℓ_2 -normaliziranim stupcima zadovoljava

$$\mu \ge \sqrt{\frac{N-m}{m(N-1)}}. (4.4)$$

Jednakost vrijedi ako i samo ako stupci $\mathbf{a}_1, \dots \mathbf{a}_N$ matrice \mathbf{A} čine ekviangularni napeti bazni okvir.

Dokaz. $\mathbf{G} := \mathbf{A}^* \mathbf{A} \in \mathbb{K}^{N \times N}$ zovemo $Gramova\ matrica\ sustava\ vektora\ (\mathbf{a}_1, \dots, \mathbf{a}_N)$. Elementi od G su obika

$$G_{i,j} = \overline{\langle \mathbf{a}_i, \mathbf{a}_j \rangle} = \langle \mathbf{a}_j, \mathbf{a}_i \rangle, \quad i, j \in [N].$$

Nadalje, definirajmo matricu $\mathbf{H}:=\mathbf{A}\mathbf{A}^*\in\mathbb{K}^{m\times m}$. Pošto su stupci od \mathbf{A} ℓ_2 -normalizirani, imamo

$$tr(\mathbf{G}) = \sum_{i=1}^{N} \|\mathbf{a}_i\|_2^2 = N.$$
(4.5)

Pošto skalarni produkt

$$\langle \mathbf{U}, \mathbf{V} \rangle_F := \operatorname{tr}(\mathbf{U}\mathbf{V}^*) = \sum_{i,j=1}^n U_{i,j} \overline{V_{i,j}}$$

inducira Froebeniusovu normu $\|\cdot\|_F$ na $\mathbb{K}^{n\times n}$ (vidi TODO), Cauchy-Schwarzova nejednakost daje

$$\operatorname{tr}(\mathbf{H}) = \langle \mathbf{H}, \mathbf{I}_m \rangle_F \le \|\mathbf{H}\|_F \|\mathbf{I}_m\|_F = \sqrt{m} \sqrt{\operatorname{tr}(\mathbf{H}\mathbf{H}^*)}.$$
 (4.6)

Nadalje,

$$\operatorname{tr}(\mathbf{H}\mathbf{H}^*) = \operatorname{tr}(\mathbf{A}\mathbf{A}^*\mathbf{A}\mathbf{A}^*) = \operatorname{tr}(\mathbf{A}^*\mathbf{A}\mathbf{A}^*\mathbf{A}) = tr(\mathbf{G}\mathbf{G}^*) = \sum_{i,j=1}^{N} |\langle \mathbf{a}_i, \mathbf{a}_j \rangle|^2$$
$$= \sum_{i=1}^{N} \|\mathbf{a}_i\|_2^2 + \sum_{i,j=1, i\neq j}^{N} |\langle \mathbf{a}_i, \mathbf{a}_j \rangle|^2 = N + \sum_{i,j=1, i\neq j}^{N} |\langle \mathbf{a}_i, \mathbf{a}_j \rangle|^2. \tag{4.7}$$

Iz činjenice da $tr(\mathbf{G}) = tr(\mathbf{H})$, te kombiniranjem (4.5), (4.6) i (4.7) imamo

$$N^{2} \le m \left(N + \sum_{i,j=1, i \ne j}^{N} |\langle \mathbf{a}_{i}, \mathbf{a}_{j} \rangle|^{2} \right)$$

$$(4.8)$$

Napokon, uvažimo da

$$|\langle \mathbf{a}_i, \mathbf{a}_j \rangle| \le \mu \quad \text{za sve } i, j \in [N], \ i \ne j,$$
 (4.9)

pa slijedi,

$$N^2 \le m(N + (N^2 - N)\mu^2),$$

od kuda lako slijedi ocjena iz tvrdnje teorema. Nadalje, jednakost u (4.4) ako vrijede jednakosti u (4.6) i (4.9). Jednakost u (4.6) daje $\mathbf{H} = \lambda \mathbf{I}_m$ za neku nenegativnu konstantu λ , tj. sustav ($\mathbf{a}_1, \ldots, \mathbf{a}_N$) je napeti bazni okvir. Iz jednakost u (4.9) slijedi da je taj sustav ekviangularan.

Welchovu ocjenu možemo proširiti i na funkciju ℓ_1 -koherencije.

Teorem 4.2.4. Funkcija ℓ_1 -koherencije matrice $\mathbf{A} \in \mathbb{K}^{m \times N}$ s ℓ_2 -normaliziranim stupcima zadovoljava

$$\mu_1(s) \ge s\sqrt{\frac{N-m}{m(N-1)}} \quad za \ s < \sqrt{N-1}.$$
 (4.10)

Jednakost se postiže ako i samo stupci matrice ${\bf A}$ formiraju ekviangularni napeti bazni okvir.

Za dokaz biti će nam potrebna sljedeća lema,

Lema 4.2.5. Za $k < \sqrt{n}$, ako konačni niz brojeva $(\alpha_1, \alpha_2, \dots, \alpha_n)$ zadovoljava

$$\alpha_1 \ge \alpha_2 \ge \cdots \ge \alpha_n \ge 0$$
 i $\alpha_1^2, \alpha_2^2, \cdots, \alpha_n^2 \ge \frac{n}{k^2}$

tada

$$\alpha_1 + \alpha_2 + \dots + \alpha_k > 1$$
,

gdje se jednakost postiže ako i samo ako $\alpha_1 = \cdots = \alpha_n = 1/k$.

Ideja dokaza je analogna dokazu teorema 1.1.5, tj. problem se svodi na maksimizaciju konveksne funkcije (vidi TODO).

Dokaz (Teorem 4.2.4). Iz (4.8) imamo

$$\sum_{i,i=1,i\neq j}^{N} |\langle \mathbf{a}_i, \mathbf{a}_j \rangle|^2 \ge \frac{N^2}{m} - N = \frac{N(N-m)}{m},$$

odakle slijedi

$$\max_{i \in [N]} \sum_{i,j=1, i \neq j}^{N} |\langle \mathbf{a}_i, \mathbf{a}_j \rangle|^2 \ge \frac{1}{N} \sum_{i,j=1, i \neq j}^{N} |\langle \mathbf{a}_i, \mathbf{a}_j \rangle|^2 \ge \frac{N-m}{m}.$$

Neka je $i^* \in [N]$ indeks za koji se postiže maksimum. Sortirajmo niz $(|\langle \mathbf{a}_{i^*}, \mathbf{a}_j \rangle|)_{j=1}^N$ kao $\beta_1 \geq \beta_2 \geq \cdots \beta_{N-1} \geq 0$, tako da

$$\beta_1^2 + \beta_2^2 + \dots + \beta_{N-1}^2 \ge \frac{N-m}{m}.$$

Primjenom prethodne lemu s n = N - 1, k = s, i $\alpha_l := (\sqrt{m(N-1)/(N-m)}/s)\beta_l$ dobivamo $\alpha_1 + \cdots + \alpha_s \ge 1$. Dakle,

$$\mu_1(s) \ge \beta_1 + \beta_2 + \dots + \beta_s \ge s\sqrt{\frac{N-m}{m(N-1)}}.$$

Pretpostavimo sada da u (4.10) vrijedi jednakost, pa su sve nejednakosti zapravo jednakosti. Jednakost u (4.8) implicira da su stupci matrice a napeti bazni okvir. Jednakost u prethodnoj lemi implicira da $|\langle \mathbf{a}_{i^*}, \mathbf{a}_j \rangle| = \sqrt{(N-m)/(m(N-1))}$ za sve $j \in [N]$, takve da $j \neq i^*$. Pošto indeks i^* možemo proizvoljno odabrati iz [N], slijedi da je sustav stupaca matrice \mathbf{A} ekviangularan. Obrat lako slijedi iz teorema 4.2.3 i (4.2).

U kontekstu sažetog uzorkovanja zanimaju $m \times N$ matrice gdje je N puno veći od m. No, pokazati ćemo da u tom slučaju ne možemo postići Welchovu ocjenu.

Teorem 4.2.6. Kardinalitet N ekviangularnog sustava $(\mathbf{a}_1, \dots, \mathbf{a}_N)$ ℓ_2 -normaliziranih vektora u \mathbb{K}^m zadovoljava

$$N \le \frac{m(m+1)}{2} \qquad za \ \mathbb{K} = \mathbb{R},$$

$$N \le m^2$$
 $za \ \mathbb{K} = \mathbb{C}.$

Ako vrijedi jednakost onda je sustav $(\mathbf{a}_1, \dots, \mathbf{a}_N)$ također i napeti bazni okvir.

Za dokaz teorema potrebna nam je sljedeča tvrdnja,

Lema 4.2.7. Neka je $z \in \mathbb{C}$, matrica

$$\begin{bmatrix} 1 & z & z & \cdots & z \\ z & 1 & z & \cdots & z \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ z & \cdots & z & 1 & z \\ z & \cdots & z & z & 1 \end{bmatrix}$$

ima jednostruku svojstvenu vrijednost 1 + (n-1)z te svojstvenu vrijednost 1-z algebarske kratnosti n-1.

Za dokaz leme vidi TODO.

Dokaz (Teorem 4.2.6). Ideja je razmatranja sa prostora \mathbb{K}^m prebaciti na potprostor \mathcal{S}_m operatora na \mathbb{K}^m . U slučaju $\mathbb{K} = \mathbb{R}$, \mathcal{S}_m je prostor simetričnih operatora na \mathbb{R}^m , a u slučaju $\mathbb{K} = \mathbb{C}$, \mathcal{S}_m je cjeli prostor operatora na \mathbb{C}^m . Ti su prostori opremljeni Froebeniusovim skalarnim produktom

$$\langle \mathbf{P}, \mathbf{Q} \rangle_F = \operatorname{tr}(\mathbf{P}\mathbf{Q}^*)$$
 (4.11)

za $\mathbf{P}, \mathbf{Q} \in \mathcal{S}_m$. Označimo sa $\mathbf{P}_1, \dots, \mathbf{P}_N \in \mathcal{S}_m$ orthogonalne projektore na potprostore razapete sa $\{\mathbf{a}_i\}$ za $i = 1, 2, \dots, N$, definirane sa

$$\mathbf{P}_i(\mathbf{v}) = \langle \mathbf{v}, \mathbf{a}_i \rangle \mathbf{a}_i$$

za $\mathbf{v} \in \mathbb{K}^m$. Nadalje, neka je $c := |\langle \mathbf{a}_i, \mathbf{a}_j \rangle|$ za $i \neq j$ te neka je $(\mathbf{e}_1, \dots, \mathbf{e}_N)$ kanonska baza za \mathbb{K}^m . Koristeči činjenicu da je $\mathbf{P}_i^2 = \mathbf{P}_i = \mathbf{P}^*$, za $i, j \in [N], i \neq j$ računamo

$$\langle \mathbf{P}_{i}, \mathbf{P}_{i} \rangle_{F} = \operatorname{tr}(\mathbf{P}_{i} \mathbf{P}_{i}^{*}) = \operatorname{tr}(\mathbf{P}_{i}) = \sum_{k=1}^{m} \langle \mathbf{P}_{i}(\mathbf{e}_{k}), \mathbf{e}_{k} \rangle_{F} = \sum_{k=1}^{m} \langle \mathbf{e}_{k}, \mathbf{a}_{i} \rangle \langle \mathbf{a}_{i}, \mathbf{e}_{k} \rangle$$

$$= \sum_{k=1}^{m} |\langle \mathbf{a}_{i}, \mathbf{e}_{k} \rangle|^{2} = ||\mathbf{a}_{i}||_{2}^{2} = 1,$$

$$\langle \mathbf{P}_{i}, \mathbf{P}_{j} \rangle_{F} = \operatorname{tr}(\mathbf{P}_{i} \mathbf{P}_{j}^{*}) = \operatorname{tr}(\mathbf{P}_{i} \mathbf{P}_{j}) = \sum_{k=1}^{m} \langle \mathbf{P}_{i} \mathbf{P}_{j}(\mathbf{e}_{k}), \mathbf{e}_{k} \rangle = \sum_{k=1}^{m} \langle \mathbf{P}_{j}(\mathbf{e}_{k}), \mathbf{P}_{i}(\mathbf{e}_{k}) \rangle$$

$$= \sum_{k=1}^{m} \langle \mathbf{e}_{k}, \mathbf{a}_{j} \rangle \overline{\langle \mathbf{e}_{k}, \mathbf{a}_{i} \rangle} \langle \mathbf{a}_{j}, \mathbf{a}_{i} \rangle = \overline{\langle \mathbf{a}_{i}, \mathbf{a}_{j} \rangle} \langle \sum_{k=1}^{m} \langle \mathbf{a}_{i}, \mathbf{e}_{k} \rangle \mathbf{e}_{k}, \mathbf{a}_{j} \rangle$$

$$= \overline{\langle \mathbf{a}_{i}, \mathbf{a}_{j} \rangle} \langle \mathbf{a}_{i}, \mathbf{a}_{j} \rangle = |\langle \mathbf{a}_{i}, \mathbf{a}_{j} \rangle|^{2} = c^{2}.$$

Dakle, Gramova matrica sustava $(\mathbf{P}_1, \dots, \mathbf{P}_N)$ je $N \times N$ matrica oblika

$$\begin{bmatrix} 1 & c^2 & c^2 & \cdots & c^2 \\ c^2 & 1 & c^2 & \cdots & c^2 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ c^2 & \cdots & c^2 & 1 & c^2 \\ c^2 & \cdots & c^2 & c^2 & 1 \end{bmatrix}$$

Iz činjenice $0 \le c^2 < 1$ i leme 4.2.7 slijedi da je ova Gramova matrica invertibilna, što znači da je sustav $(\mathbf{P}_1, \dots, \mathbf{P}_N)$ linearno nezavisan. Taj sustav leži u prostoru \mathcal{S}_m koji je dimenzije m(m+1)/2 za $\mathbb{K} = \mathbb{R}$ te dimenzije m^2 za $\mathbb{K} = \mathbb{C}$. Stoga vrijedi,

$$N \le \frac{m(m+1)}{2}$$
 za $\mathbb{K} = \mathbb{R}$, $N \le m^2$ za $\mathbb{K} = \mathbb{C}$.

Pretpostavimo sada da vrijedi jednakost. Tada je sustav $(\mathbf{I}_m, \mathbf{P}_1, \dots, \mathbf{P}_N)$ linearno zavisan, pa je stoga

$$\begin{vmatrix} 1 & b & b & \cdots & b \\ b & 1 & b & \cdots & b \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ b & \cdots & b & 1 & b \\ b & \cdots & b & b & 1 \end{vmatrix} = 0, \quad \text{gdje je } b := \frac{mc^2 - 1}{m - 1}.$$

Pošto $1-b=m(1-c^2)/(m-1)\neq 0$, lema 4.2.7 implicira da je 1+(N-1)b=0. Slijedi,

$$c^2 = \frac{N-m}{m(N-1)}.$$

Dakle, pokazali smo da ℓ_2 -normalizirani sustav $(\mathbf{a}_1, \dots, \mathbf{a}_N)$ postiže Welchovu ocjenu a teorem 4.2.3 implicira da je taj sustav onda ekviangularan napeti okvir.

Zanimljvo je da u kontekstu prostora \mathbb{C}^m postoje sustavi od m^2 ekviangularnih vektora za sve m, dok u \mathbb{R}^m sustavi od m(m+1)/2 ekviangularnih vektora ne postoje za sve m. Poznato je da postoje u slučajevima gdje je m jednak 2, 3, 7 i 23. Pitanje ostalih slučajeva je i dalje otvoreno.

Teorem 4.2.8. Za $m \ge 3$, ako postoji ekviangularni sustav od m(m+1)/2 vektora u \mathbb{R}^m , tada je m+2 nužno kvadrat nekog neparnog prirodnog broja.

Dokaz. Neka je $(\mathbf{a}_1, \dots \mathbf{a}_N)$ sustav od N = m(m+1)/2 ekviangularnih ℓ_2 -normaliziranih vektora. Prema teoremu 4.2.6 taj je sustav napeti bazni okvir, pa stoga matrica \mathbf{A} sa

stupcima $\mathbf{a}_1, \ldots, \mathbf{a}_N$ zadovoljava $\mathbf{A}\mathbf{A}^* = \lambda \mathbf{I}_m$ za neki $\lambda > 0$. Matrica $\mathbf{G} := \mathbf{A}^*\mathbf{A}$ ima iste ne-nul svojstvene vrijednosti kao i $\mathbf{A}\mathbf{A}^*$, tj. svojstvenu vrijednost λ algebarske kratnosti m. i svojstvenu vrijednost nula kratnosti N-m. Nadalje, pošto je \mathbf{G} Gramova matrica sustava $(\mathbf{a}_1, \ldots, \mathbf{a}_N)$, njezini dijagonalni elementi jednaki su jedinici, dok su svi vandijagonalni elementi jednaki po apsolutnoj vrijednosti nekom broju c. Dakle, matrica $\mathbf{B} := (\mathbf{G} - \mathbf{I}_N)/c$ je oblika

$$\begin{bmatrix} 0 & b_{1,2} & b_{1,3} & \cdots & b_{1,N} \\ b_{2,1} & 0 & b_{2,2} & \cdots & b_{2,N} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ b_{N-1,1} & \cdots & b_{N-1,N-2} & 0 & b_{N-1,N} \\ b_{N,1} & \cdots & b_{N,N-2} & b_{N,N-1} & 0 \end{bmatrix} = 0, \quad \text{gdje je } b_{i,j} := \pm 1,$$

i ima -1/c kao svojstvenu kratnosti N-m. Stoga je njezin karakterstični polinom $p_{\mathbf{B}}(x) := \sum_{k=0}^{N} \beta_k(-x)^k, \beta_N = 1$, s cjelobrojnim koeficijentima β_k i poništava se za -1/c. Uvažeći da je

$$c = \sqrt{\frac{N-m}{m(N-1)}} = \sqrt{\frac{(m+1)/2 - 1}{m(m+1)/2 - 1}} = \sqrt{\frac{m-1}{m^2 + m - 2}} = \frac{1}{\sqrt{m+2}}$$

imamo $p_{\mathbf{B}}(-\sqrt{m+2}) = 0$, tj.

$$\left(\sum_{0 \le k \le N/2} b_{2k} (m+2)^k\right) + \sqrt{m+2} \left(\sum_{0 \le k \le (N-1)/2} b_{2k+1} (m+2)^k\right) = 0.$$

Označimo gornje cjelobrojne sume sa Σ_1 i Σ_2 . Dakle, imamo $\Sigma_1^2 = (m+2)\Sigma_2^2$, što implicira da je (m+2) kvadrat. Preostaje pokazati da je $n := \sqrt{m+2}$ neparan. Definiramo $N \times N$ matricu \mathbf{J}_N kojoj su svi elementi jednaki jedinici. Dimenzija njezine jezgre je N-1 pa je stoga u presjeku sN-m dimenzijonalnim svojstvenim potprostorom od \mathbf{B} koji odgovara svojstvenoj vrijednosti -1/c = -n, pošto N-1+N-m>N za $m\geq 3$, tj. N=m(m+1)/2>m+1. Matrica $\mathbf{C}:=(\mathbf{B}-\mathbf{I}_n+\mathbf{J}_N)/2$ ima -(n+1)/2 kao svojstvenu vrijednost. Dijagonalni elementi su joj nula, a vandijagonalni jednaki su ili nuli ili jedinici. Stoga je $p_{\mathbf{C}}(x):=\sum_{k=0}^N \gamma(-x)^k, \gamma_N=1$ s cjelobrojnim koeficijentima i $p_{\mathbf{C}}(x)$ poništava se za x=-(n+1)/2. Tu zadnju činjenicu možemo zapisati u obliku

$$(n+1)^N = -\sum_{k=0}^{N-1} 2^{N-k} \gamma_k (n+1)^k.$$

Slijedi da je $(n+1)^N$ paran pa je stoga i n+1. Konačno imamo da je $n=\sqrt{m+2}$ neparan. \Box

Naredni teorem daje eksplicitnu konstrukciju $m \times m^2$ kompleksnih matrica s koherencijom $1/\sqrt{m}$, što je ujedno i limes Welchove ocjene kada N ide u beskonačnost.

Teorem 4.2.9. Za svaki prosti broj $m \geq 5$, postoji eksplicitna $m \times m^2$ kompleksna matrica s koherencijom $\mu = 1/\sqrt{m}$.

Dokaz. Kroz dokaz [m] identificiramo sa skupom $\mathbb{Z}/m\mathbb{Z} =: \mathbb{Z}_m$. Za $k, l \in \mathbb{Z}_m$ uvodimo operator translacije \mathbf{T}_k i operator modulacije \mathbf{M}_l definirane sa

$$(\mathbf{T}_k \mathbf{z})_j = z_{j-k}, \qquad (\mathbf{M}_l \mathbf{z})_j = e^{2\pi i l j/m} z_j$$

za $\mathbf{z} \in \mathbb{C}^{\mathbb{Z}_m}$ i $j \in \mathbb{Z}_m$. Ti operatori su izometrije prostora $\ell_2(\mathbb{Z}_m)$. Uvedimo takovani Alltop ℓ_2 -normalizirani vektor $\mathbf{x} \in \mathbb{C}^{\mathbb{Z}_m}$ definiran sa

$$x_j := \frac{1}{\sqrt{m}} e^{2\pi i j^3/m}, \quad j \in \mathbb{Z}_m.$$

Eksplicitna $m \times m^2$ matrica iz tvrdnje teorema dana je kao matrica sa stupcima $\mathbf{M}_l \mathbf{T}_k \mathbf{x}$ za $k, l \in \mathbb{Z}_m$, tj. matrica oblika

$$\begin{bmatrix} \mathbf{M}_1 \mathbf{T}_1 \mathbf{x} & \cdots & \mathbf{M}_1 \mathbf{T}_m \mathbf{x} & \mathbf{M}_2 \mathbf{T}_1 \mathbf{x} & \cdots & \mathbf{M}_m \mathbf{T}_m \mathbf{x} \end{bmatrix}$$

Računamo skalarni produkt dva stupca indeksirana sa (k, l) i (k', l')

$$\langle \mathbf{M}_{l} \mathbf{T}_{k} \mathbf{x}, \mathbf{M}_{l'} \mathbf{T}_{k'} \mathbf{x} \rangle = \sum_{j \in \mathbb{Z}_{m}} (\mathbf{M}_{l} \mathbf{T}_{k} \mathbf{x})_{j} \overline{(\mathbf{M}_{l'} \mathbf{T}_{k'} \mathbf{x})_{j}}$$

$$= \sum_{j \in \mathbb{Z}_{m}} e^{2\pi i l j / m} x_{j-k} e^{-2\pi i l' j / m} \overline{x_{j-k'}}$$

$$= \frac{1}{m} \sum_{j \in \mathbb{Z}_{m}} e^{2\pi i (l-l')j / m} e^{2\pi i ((j-k)^{3} - (j-k')^{3}) / m}.$$

Označimo a:=l-l' i $b:=k-k',\ (a,b)\neq (0,0)$ i promijenimo indeks sumacije za h=j-k'

$$\begin{aligned} |\langle \mathbf{M}_{l} \mathbf{T}_{k} \mathbf{x}, \mathbf{M}_{l'} \mathbf{T}_{k'} \mathbf{x} \rangle| &= \frac{1}{m} \Big| e^{2\pi i a k'/m} \sum_{h \in \mathbb{Z}_{m}} e^{2\pi i a h/m} e^{2\pi i ((h-b)^{3} - h^{3})/m} \Big| \\ &= \frac{1}{m} \Big| \sum_{h \in \mathbb{Z}_{m}} e^{2\pi i a h/m} e^{2\pi i (-3bh^{2} + 3b^{2}h - b^{3})/m} \Big| \\ &= \frac{1}{m} \Big| \sum_{h \in \mathbb{Z}_{m}} e^{2\pi i (-3bh^{2} + (a+3b^{2})h)/m} \Big| \end{aligned}$$

Neka je c := -3b i $d := a + 3b^2$,

$$\begin{split} |\langle \mathbf{M}_{l} \mathbf{T}_{k} \mathbf{x}, \mathbf{M}_{l'} \mathbf{T}_{k'} \mathbf{x} \rangle|^{2} &= \frac{1}{m^{2}} \sum_{h \in \mathbb{Z}_{m}} e^{2\pi i (ch^{2} + dh)/m} \sum_{h' \in \mathbb{Z}_{m}} e^{-2\pi i (ch'^{2} + dh')/m} \\ &= \frac{1}{m^{2}} \sum_{h,h'} e^{2\pi i (h - h')(c(h + h') + d)/m} \\ &= \frac{1}{m^{2}} \sum_{h',h'' \in \mathbb{Z}_{m}} e^{2\pi i h''(c(h'' + 2h') + d)/m} \\ &= \frac{1}{m^{2}} \sum_{h'',h'' \in \mathbb{Z}_{m}} e^{2\pi i h''(ch'' + d)/m} \Big(\sum_{h' \in \mathbb{Z}_{m}} e^{4\pi i ch'' h'/m} \Big). \end{split}$$

Primjetimo, za svaki $h'' \in \mathbb{Z}_m$ imamo

$$\sum_{h' \in \mathbb{Z}_m} e^{4\pi i ch'' h'/m} = \begin{cases} m & \text{ako } 2ch'' = 0 \mod m, \\ 0 & \text{ako } 2ch'' \neq 0 \mod m. \end{cases}$$

Pogledajmo dva slučaja:

1. $c = 0 \mod m$:

Pošto je c=-3bi 3 $\neq 0 \mod m$, imamo b=0, pa stoga $d=a+3b^2\neq 0 \mod m$ i

$$|\langle \mathbf{M}_l \mathbf{T}_k \mathbf{x}, \mathbf{M}_{l'} \mathbf{T}_{k'} \mathbf{x} \rangle|^2 = \frac{1}{m} \sum_{h'' \in \mathbb{Z}_m} e^{2\pi i dh''/m} = 0.$$

2. $c \neq 0 \mod m$:

Pošto $2 \neq 0 \mod m,$ jednakost 2ch'' = 0vrijedi samo kada je $h'' = 0 \mod m,$ pa stoga

$$|\langle \mathbf{M}_l \mathbf{T}_k \mathbf{x}, \mathbf{M}_{l'} \mathbf{T}_{k'} \mathbf{x} \rangle|^2 = \frac{1}{m}$$

Dakle, koherencija matrice je $1/\sqrt{m}$.

4.3 Analiza OMP algoritma

Pokazati ćemo da mala koherencija osigurava rekonstrukciju rijetkih vektora OMP algortmom.

Teorem 4.3.1. Neka je $\mathbf{A} \in \mathbb{C}^{m \times N}$ matrica sa ℓ_2 -normaliziranim stupcima. Ako je

$$\mu_1(s) + \mu_1(s-1) < 1,$$
 (4.12)

onda se svaki s-rijedak vektor $\mathbf{x} \in \mathbb{C}^N$ može rekonstruirati iz vektora mjerenja $\mathbf{y} = \mathbf{A}\mathbf{x}$ u najviše s iteracija OMP algoritma.

Dokaz. Neka su $\mathbf{a}_1, \dots \mathbf{a}_N$ ℓ_2 -normalizirani stupci matrice \mathbf{A} . Prema propoziciji 2.2.3 dovoljno je dokazati da je za svaki $S \subset [N]$ takav da $\operatorname{card}(S) = s$ matrica \mathbf{A}_S injektivna te da vrijedi

$$\max_{j \in S} |\langle \mathbf{r}, \mathbf{a}_j \rangle| > \max_{l \in \bar{S}} |\langle \mathbf{r}, \mathbf{a}_l \rangle| \tag{4.13}$$

za sve ne-nul vektore $\mathbf{r} \in \{\mathbf{Az}, \operatorname{supp}(\mathbf{z}) \subset S\}$. Neka je $\mathbf{r} := \sum_{i \in S} r_i \mathbf{a}_i$ i neka je $k \in S$ takav da $|r_k| = \max_{i \in S} |r_i| > 0$. Za $l \in \overline{S}$ imamo,

$$\begin{aligned} |\langle \mathbf{r}, \mathbf{a}_{l} \rangle| &= \Big| \sum_{i \in S} r_{i} \langle \mathbf{a}_{i}, \mathbf{a}_{l} \rangle \Big| \leq \sum_{i \in S} |r_{i}| |\langle \mathbf{a}_{i}, \mathbf{a}_{l} \rangle| \leq |r_{k}| \mu_{1}(s) \\ |\langle \mathbf{r}, \mathbf{a}_{k} \rangle| &= \Big| \sum_{i \in S} r_{i} \langle \mathbf{a}_{i}, \mathbf{a}_{k} \rangle \Big| \geq |r_{k}| |\langle \mathbf{a}_{k}, \mathbf{a}_{k} \rangle| - \sum_{i \in S, i \neq k} |r_{i}| |\langle \mathbf{a}_{i}, \mathbf{a}_{k} \rangle| \\ &\geq |r_{k}| - |r_{k}| \mu_{1}(s - 1). \end{aligned}$$

Dakle, (4.13) vrijedi jer (4.12) implicira $1 - \mu_1(s-1) > \mu_1(s)$. Injektivnost od \mathbf{A}_S slijedi iz korolara 4.1.4.

4.4 Analiza ℓ_1 -minimizacije

Pokazati ćemo da mala koherencija matrice mjerenja također garantira i rekonstrukciju vektora ℓ_1 -minimizacijom tj, BT algortmom.

Teorem 4.4.1. Neka je $\mathbf{A} \in \mathbb{C}^{m \times N}$ sa ℓ_2 -normaliziranim stupcima. Ako je

$$\mu_1(s) + \mu_1(s-1) < 1,$$
(4.14)

onda se svaki s-rijedak vektor $\mathbf{x} \in \mathbb{C}^N$ može rekonstruirati iz vektora mjerenja $\mathbf{y} = \mathbf{A}\mathbf{x}$ putem ℓ_1 -minimizacije.

Dokaz. Prema teoremu 3.1.3 dovoljno i nužno je dokazati da matrica **A** zadovoljava svojstvo nul-prostora te da vrijedi

$$\|\mathbf{v}_S\|_1 < \|\mathbf{v}_{\bar{S}}\|_1 \tag{4.15}$$

za svaki ne-nul vektor $\mathbf{v} \in \ker \mathbf{A}$ i za svaki skup indeksa $S \subset [N]$ takav da $\operatorname{card}(S) = s$. Neka su $\mathbf{a}_1, \ldots, \mathbf{a}_N$ stupci od \mathbf{A} . Uvjet $\mathbf{v} \in \ker \mathbf{A}$ interpretiramo kao $\sum_{j=1}^N v_j \mathbf{a}_j = 0$. Dakle, imamo

$$v_i = v_i \langle \mathbf{a}_i, \mathbf{a}_i \rangle = -\sum_{j=1, j \neq i}^N v_j \langle \mathbf{a}_j, \mathbf{a}_i \rangle = -\sum_{l \in \bar{S}} v_l \langle \mathbf{a}_l, \mathbf{a}_i \rangle - \sum_{j \in S, j \neq i} v_j \langle \mathbf{a}_j, \mathbf{a}_i \rangle.$$

Slijedi,

$$|v_i| \le \sum_{l \in \bar{S}} |v_l| |\langle \mathbf{a}_l, \mathbf{a}_i \rangle| + \sum_{j \in S, j \ne i} |v_j| |\langle \mathbf{a}_j, \mathbf{a}_i \rangle|.$$

Sumiranjem po $i \in S$ i poretkom reda sumacije imamo,

$$\begin{aligned} \|\mathbf{v}_{S}\|_{1} &= \sum_{l \in \bar{S}} |v_{l}| \sum_{i \in S} |\langle \mathbf{a}_{l}, \mathbf{a}_{i} \rangle| + \sum_{j \in S} |v_{j}| \sum_{i \in S, i \neq j} |\langle \mathbf{a}_{j}, \mathbf{a}_{i} \rangle| \\ &\leq \sum_{l \in \bar{S}} |v_{l}| \mu_{1}(s) + \sum_{j \in S} |v_{j}| \mu_{1}(s-1) = \mu_{1}(s) \|\mathbf{v}_{\bar{S}}\|_{1} + \mu_{1}(s-1) \|\mathbf{v}_{S}\|_{1}. \end{aligned}$$

Od tuda lako slijedi tvrdnja.

Prema teoremu 4.2.9 možemo odabrati matricu $\mathbf{A} \in \mathbb{C}^{m \times N}$ s koherencijom $\mu \leq c/\sqrt{m}$. Vidimo da je uvjet $(2s-1)\mu < 1$, koji garantira rekonstrukciju OMP algoritmom i ℓ_1 -minimizacijom, zadovoljen ako

$$m \ge Cs^2. \tag{4.16}$$

Dakle imamo ocjenu na minimalni broj mjerenja za specifičnu matricu ${\bf A}$ i rijetkost s. No, primjetimo da ova ocjena nije praktična za s razumne veličine pošto ulazi u ocjenu s kvadratom. Uvjerimo se da nije moguće poboljšati ovu ocjenu u kontekstu teorema 4.3.1 i 4.4.1. Pretpostavimo da vrijedi dovoljan uvjet $\mu_1(s) + \mu_1(s-1) < 1$ sa $m \leq (2s-1)^2/2$ i $s < \sqrt{N-1}$ na primjer.Nadalje za $N \geq m$ iz teorema 4.2.4 slijedi

$$1 > \mu_1(s) + \mu_1(s-1) \ge (2s-1)\sqrt{\frac{N-m}{m(N-1)}} \ge \sqrt{\frac{2(N-m)}{N-1}} \ge \sqrt{\frac{N}{N-1}}.$$

što je kontradikcija.

4.5 Analiza graničnih metoda

Uz slične uvjete kao u prethodna dva teorema čak i BT algoritam garantira rekonstrukciju.

Teorem 4.5.1. Neka je $\mathbf{A} \in \mathbb{C}^{m \times N}$ sa ℓ_2 -normaliziranim stupcima i neka je $\mathbf{x} \in \mathbb{C}^N$ sa nosačem S, $\operatorname{card}(S) = s$. Ako je

$$\mu_1(s) + \mu_1(s-1) < \frac{\min_{i \in S} |x_i|}{\max_{i \in S} |x_i|},$$
(4.17)

onda se vektor \mathbf{x} može rekonstruirati iz vektora mjerenja $\mathbf{y} = \mathbf{A}\mathbf{x}$ putem BT algoritma.

Dokaz. Neka su $\mathbf{a}_1, \dots \mathbf{a}_N$ ℓ_2 -normalizirani stupci matrice \mathbf{A} . Prema propoziciji 2.3.1 dovoljno je dokazati da za svaki $j \in S$ i $l \in \bar{S}$,

$$|\langle \mathbf{A}\mathbf{x}, \mathbf{a}_j \rangle| > |\langle \mathbf{A}\mathbf{x}, \mathbf{a}_l \rangle|.$$
 (4.18)

Primjetimo,

$$\begin{aligned} |\langle \mathbf{A}\mathbf{x}, \mathbf{a}_{l} \rangle| &= |\sum_{i \in S} x_{i} \langle \mathbf{a}_{i}, \mathbf{a}_{l} \rangle| \leq \sum_{i \in S} |x_{i}| |\langle \mathbf{a}_{i}, \mathbf{a}_{l} | \leq \mu_{1}(s) \max_{i \in S} |x_{i}|, \\ |\langle \mathbf{A}\mathbf{x}, \mathbf{a}_{j} \rangle| &= |\sum_{i \in S} x_{i} \langle \mathbf{a}_{i}, \mathbf{a}_{j} \rangle| \geq |x_{j}| - \sum_{i \in S, i \neq j} |x_{i}| |\langle \mathbf{a}_{i}, \mathbf{a}_{j} \rangle| \\ &\geq \min_{i \in S} |x_{i}| - \mu_{1}(s-1) \max_{i \in S} |x_{i}|. \end{aligned}$$

Iz (4.17) slijedi,

$$|\langle \mathbf{A}\mathbf{x}, \mathbf{a}_j \rangle| - |\langle \mathbf{A}\mathbf{x}, \mathbf{a}_l \rangle| \ge \min_{i \in S} |x_i| - (\mu_1(s) - \mu_1(s-1)) \max_{i \in S} |x_i| > 0.$$

Uz iste uvjete, analogno se pokaže da IHT algoritam garantira rekonstrukciju. Sada ćemo pokazati da HTP algoritam uz određene uvjete, isto kao u OMP u s iteracija rekonstruira s-rijedak vektor.

Teorem 4.5.2. Neka je $\mathbf{A} \in \mathbb{C}^{m \times N}$ sa ℓ_2 -normaliziranim stupcima. Ako je

$$2\mu_1(s) + \mu_1(s-1) < 1,$$

tada se svaki s-rijedak vektor $\mathbf{x} \in \mathbb{C}^N$ može rekonstruirati iz vektora mjerenja $\mathbf{y} = \mathbf{A}\mathbf{x}$ u najviše s iteracija HTP algoritma.

Dokaz. Neka su j_1, j_2, \ldots, j_N takvi da

$$|x_{j_1}| \ge |x_{j_2}| \ge \dots \ge |x_{j_s}| > |x_{j_{s+1}}| = \dots = |x_{j_N}| = 0.$$

Pokazati ćemo da je za $0 \le n \le s-1$, skup $\{j_1, \ldots, j_{n+1}\}$ sadržan u S^{n+1} iz (HTP_1) , koji je definiran kao skup s apsolutno največih komponenti od

$$\mathbf{z}^{n+1} := \mathbf{x}^n + \mathbf{A}^* \mathbf{A} (\mathbf{x} - \mathbf{x}^n). \tag{4.19}$$

To će implicirati $S^s = S = \text{supp}(\mathbf{x})$ pa prema (HTP_2) $\mathbf{x}^s = \mathbf{x}$. Primjetimo dovoljno je dokazati

$$\min_{1 \le k \le n+1} |z_{j_k}^{n+1}| > \max_{l \in \bar{S}} |z_l^{n+1}|. \tag{4.20}$$

Dokazujemo indukcijom. Vrijedi

$$z_j^{n+1} = x_j^n + \sum_{i=1}^N (x_i - x_i^n) \langle \mathbf{a}_i, \mathbf{a}_j \rangle = x_j + \sum_{i \neq j} (x_i - x_i^n) \langle \mathbf{a}_i, \mathbf{a}_j \rangle.$$

Stoga,

$$|z_j^{n+1} - x_j| \le \sum_{i \in S^n, i \ne j} |x_i - x_i^n| |\langle \mathbf{a}_i, \mathbf{a}_j \rangle| + \sum_{i \in S \setminus S^n, i \ne j} |x_i| |\langle \mathbf{a}_i, \mathbf{a}_j \rangle|.$$
 (4.21)

Za $1 \leq k \leq n+1$ i $l \in \bar{S}$ imamo

$$|z_{j_k}^{n+1}| \ge |x_{j_k}| - \mu_1(s) \|(\mathbf{x} - \mathbf{x}^n)_{S^n}\|_{\infty} - \mu_1(s) \|\mathbf{x}_{S \setminus S^n}\|_{\infty}$$
(4.22)

$$|z_l^{n+1}| \le \mu_1(s) \|(\mathbf{x} - \mathbf{x}^n)_{S^n}\|_{\infty} - \mu_1(s) \|\mathbf{x}_{S \setminus S^n}\|_{\infty}. \tag{4.23}$$

Posebno, za n=0 je $\|(\mathbf{x}-\mathbf{x}^n)_{S^n}\|_{\infty}=0$ pa iz (4.22), (4.23) i činjenice da $2\mu_1(s)<1$ slijedi

$$|z_{j_1}^1| \ge (1 - \mu_1(s)) \|\mathbf{x}\|_{\infty} > \mu_1(s) \|\mathbf{x}\|_{\infty} \ge |z_l^1|$$
 za sve $l \in \bar{S}$.

Dakle tvrnja (4.20) vrijedi za n=0. Pretpostavimo da tvrdnja vrijedi za n-1 za $n \ge 1$. To implicira $\{j_1, \ldots j_n\} \subset S^n$. Iz (HTP_2) i leme 2.2.2 slijedi

$$(\mathbf{A}^*\mathbf{A}(\mathbf{x}-\mathbf{x}^n))_{S^n}=0.$$

Stoga za svaki $j \in S^n$, definicija (4.19) implicira $z_j^{n+1} = x_j^n$, te iz (4.21) slijedi

$$|x_j^n - x_j| \le \mu_1(s-1) \|(\mathbf{x} - \mathbf{x}^n)_{S^n}\|_{\infty} + \mu_1(s-1) \|\mathbf{x}_{S \setminus S^n}\|_{\infty}.$$

Uzimajuči maksimum po $j \in S^n$ dobivamo

$$\|(\mathbf{x} - \mathbf{x}^n)_{S^n}\|_{\infty} \le \frac{\mu_1(s-1)}{1 - \mu_1(s-1)} \|\mathbf{x}_{S \setminus S^n}\|_{\infty}.$$

Dobiveno vratimo nazad u (4.22) i (4.23),

$$|z_{j_k}^{n+1}| \ge \left(1 - \frac{\mu_1(s)}{1 - \mu_1(s-1)}\right) |x_{j_{n+1}}|,$$

$$|z_l^{n+1}| \le \frac{\mu_1(s)}{1 - \mu_1(s-1)} |x_{j_{n+1}}|,$$

za $1 \le k \le n+1$ i $l \in \bar{S}$ Pošto je $\mu_1(s)/(1-\mu_1(s-1)) < 1/2$, (4.20) vrijedi i za n. Po principu matematičke indukcije slijedi tvrdnja.

Poglavlje 5

Svojstvo ograničene izometrije

U prošlom poglavlju vidjeli smo da je pojam koherencije vrlo koristan kao mjera kvalitata matrice mjerenja. Pomoću njega lako smo postavili i dokazali uvjete koji garantiraju rekonstrukciju rijetkih vektora raznim algoritmima. No, ocjena na koherenciju iz teorema (4.2.3) ograničava analizu algoritama na male vrijednosti rijetkosti s. U ovom poglavlju uvesti ćemo novu mjeru kvalitete matrice, svojstvo ograničene izometrije (eng. restricted isometry property) koje se ponekad zove i princip uniformne neodređenosti (eng. uniform uncertainty principle).

5.1 Definicija i osnovna svojstva

Za razliku od koherencije koja uzima u obzir parove stupaca matrice, svojstvo ograničene izometrije uzima u obzir sve s-torke stupaca matrice pa je stoga prikladnija mjera kvalitete.

Definicija 5.1.1. s-ta konstanta ograničene izometrije $\delta_s = \delta_s(\mathbf{A})$ matrice $\mathbf{A} \in \mathbb{C}^{m \times N}$ je najmanja $\delta \geq 0$ takva da

$$(1 - \delta) \|\mathbf{x}\|_{2}^{2} \le \|Ax\|_{2}^{2} \le (1 + \delta) \|\mathbf{x}\|_{2}^{2}$$
(5.1)

za sve s-rijetke vektore $\mathbf{x} \in \mathbb{C}^N$. Ili ekvivalentno

$$\delta_s = \max_{S \subset [N], \operatorname{card}(S) \le s} \|\mathbf{A}_S^* \mathbf{A}_S - \mathbf{I}\|_2.$$
 (5.2)

Neformlano, kažemo da matrica \mathbf{A} zadovoljava svojstvo ograničene izometrije ako je δ_s dovoljno mali za dovoljno s (kasnije ćemo točno precizirati).

Uvjerimo se da su (5.1) i (5.2) ekvivalente tvrdnje. Iz (5.1) direktno slijedi

$$\|\mathbf{A}_{S}\mathbf{x}\|_{2}^{2} - \|\mathbf{x}\|_{2}^{2}\| \le \delta \|\mathbf{x}\|_{2}^{2}$$
 za sve $S \subset [N]$, $\operatorname{card}(S) \le s$, i za sve $\mathbf{x} \in \mathbb{C}^{s}$.

Primjetimo, za svaki $\mathbf{x} \in \mathbb{C}^s$

$$\|\mathbf{A}_S \mathbf{x}\|_2^2 - \|\mathbf{x}\|_2^2 = \langle \mathbf{A}_S \mathbf{x}, \mathbf{A}_S \mathbf{x} \rangle - \langle \mathbf{x}, \mathbf{x} \rangle = \langle (\mathbf{A}_S^* \mathbf{A}_S - \mathbf{I}) \mathbf{x}, \mathbf{x} \rangle.$$

Pošto je $\mathbf{A}_{S}^{*}\mathbf{A}_{S} - \mathbf{I}$ hermitska, imamo

$$\max_{x \in \mathbb{C}^s \setminus \{\mathbf{0}\}} \frac{\langle (\mathbf{A}_S^* \mathbf{A}_S - \mathbf{I}) \mathbf{x}, \mathbf{x} \rangle}{\|\mathbf{x}\|_2^2} = \|\mathbf{A}_S^* \mathbf{A}_S - \mathbf{I}\|_2.$$

Dakle, (5.1) je ekvivalentno sa

$$\max_{S \subset [N], \operatorname{card}(S) \le s} \|\mathbf{A}_S^* \mathbf{A}_S - \mathbf{I}\|_2 \le \delta.$$

Moguče je usporediti konstantu ograničene izometrije s koherencijom μ .

Propozicija 5.1.2. Neka je **A** sa ℓ_2 -normaliziranim stupcima $\mathbf{a}_1, \dots \mathbf{a}_N$. Tada za svaki $j \in [N]$ vrijedi

$$\delta_1 = 0, \quad \delta_2 = \mu \quad \delta_s \le \mu_1(s-1) \le (s-1)\mu, \quad s \ge 2.$$

Dokaz. Pošto su stupci od \mathbf{A} ℓ_2 -normalizirani vrijedi $\|\mathbf{A}\mathbf{e}_j\|_2^2 = \|\mathbf{e}\|_2^2$ za sve $j \in [N]$. Dakle, $\delta_1 = 0$. Neka su $\mathbf{a}_1, \dots, \mathbf{a}_N$ stupci od \mathbf{A} . Imamo,

$$\delta_2 = \max_{1 \le i \ne j \le N} \|\mathbf{A}_{\{i,j\}}^* \mathbf{A}_{\{i,j\}} - \mathbf{I}\|_2, \qquad \mathbf{A}_{\{i,j\}}^* \mathbf{A}_{\{i,j\}} = \begin{bmatrix} 1 & \langle \mathbf{a}_j, \mathbf{a}_i \rangle \\ \langle \mathbf{a}_j, \mathbf{a}_i \rangle & 1 \end{bmatrix}. \tag{5.3}$$

Svojstvene vrijednosti od $\mathbf{A}_{\{i,j\}}^* \mathbf{A}_{\{i,j\}} - \mathbf{I}$ su $|\langle \mathbf{a}_i, \mathbf{a}_j \rangle|$ i $-|\langle \mathbf{a}_i, \mathbf{a}_j \rangle|$. Pa je stoga njezina operatorska norma jednaka $|\langle \mathbf{a}_i, \mathbf{a}_j \rangle|$ Uzimajuči maksimum po $1 \leq i \neq j \leq N$ dobivamo $\delta_2 = \mu$. Nejednakost $\delta_s \leq \mu_1(s-1) \leq (s-1)\mu$ posljedica je teorema 4.1.3.

U prošlom poglavlju pokazali smo eqzistenciju $m \times m^2$ matrica s koherencijom $1/\sqrt{m}$ to direktno implicira egzistenciju matrica istih dimenzije s konstantom ograničene izometrije $\delta_s < 1$ za $s \leq \sqrt{m}$.

Propozicija 5.1.3. Neka su $\mathbf{u}, \mathbf{v} \in \mathbb{C}^N$ takvi da $\|\mathbf{u}\|_0 \leq s$ i $\|\mathbf{v}\|_0 \leq t$. Ako je $\operatorname{supp}(\mathbf{u}) \cap \operatorname{supp}(\mathbf{v}) = \emptyset$ tada

$$|\langle \mathbf{A}\mathbf{u}, \mathbf{A}\mathbf{v}\rangle| \le \delta_{s+t} \|\mathbf{u}\|_2 \|\mathbf{v}\|_2. \tag{5.4}$$

Dokaz. Neka je $S := \text{supp}(\mathbf{u}) \cup \text{supp}(\mathbf{v})$. Pošto su nosači od \mathbf{v} i \mathbf{u} disjunktni, imamo $\langle \mathbf{u}_S, \mathbf{v}_S \rangle = 0$. Slijedi,

$$|\langle \mathbf{A}\mathbf{u}, \mathbf{A}\mathbf{v}\rangle| = |\langle \mathbf{A}_S\mathbf{u}_S, \mathbf{A}_S\mathbf{v}_s\rangle - \langle \mathbf{u}_S, \mathbf{v}_S\rangle| = |\langle (\mathbf{A}_S^*\mathbf{A}_S - \mathbf{I})\mathbf{u}_S, \mathbf{v}_S\rangle|$$

$$\leq \|(\mathbf{A}_S^*\mathbf{A}_S - \mathbf{I})\mathbf{u}_S\|_2\|\mathbf{v}_S\|_2 \leq \|\mathbf{A}_S^*\mathbf{A}_S - \mathbf{I}\|_2\|\mathbf{u}_S\|_2\|\mathbf{v}_S\|_2.$$

Tvrdnja slijedi iz (5.2), $\|\mathbf{u}_S\|_2 = \|\mathbf{u}\|_2$ i $\|\mathbf{v}_S\|_2 = \|\mathbf{v}\|_2$.

Definicija 5.1.4. (s,t)-ograničena konstanta orthogonalnosti $\theta_{s,t} = \theta_{s,t}(\mathbf{A})$ matrice $\mathbf{A} \in \mathbb{C}^{m \times N}$ je najmanji $\theta \geq 0$ takva da

$$|\langle \mathbf{A}\mathbf{u}, \mathbf{A}\mathbf{v} \rangle| \le \theta \|\mathbf{u}\|_2 \|\mathbf{v}\|_2 \tag{5.5}$$

za sve s-rijetke vektore $\mathbf{u} \in \mathbb{C}^N$ i t-rijetke vektore $\mathbf{v} \in \mathbb{C}^N$ s disjunktnim nosačem ili ekvivalentno,

$$\theta_{s,t} = \max \{ \|\mathbf{A}_T^* \mathbf{A}_S\|_2, \ S \cap T = \emptyset, \ \operatorname{card}(S) \le s, \ \operatorname{card}(T) \le t \}.$$
 (5.6)

Propozicija 5.1.5. Vrijedi,

$$\theta_{s,t} \le \delta_{s+t} \le \frac{1}{s+t} (s\delta_S + t\delta_t + 2\sqrt{st}\theta_{s,t}).$$

Posebno, za t = s imamo,

$$\theta_{s,s} < \delta_{2s}$$
 i $\delta_{2s} < \delta_s + \theta_{s,s}$.

Dokaz. Prva nejednakost slijedi direktno iz propozicije 5.1.3. Pokažimo i drugu nejednakost. Neka je $\mathbf{x} \in \mathbb{C}^N$ (s+t)-rijedak vektor takav da $\|\mathbf{x}\|_2 = 1$. Moramo pokazati da

$$\left| \|\mathbf{A}\mathbf{x}\|_{2}^{2} - \|\mathbf{x}\|_{2}^{2} \right| \leq \frac{1}{s+t} (s\delta_{s} + t\delta_{t} + s\sqrt{st}\theta_{s,t}).$$

Neka su $\mathbf{u}, \mathbf{v} \in \mathbb{C}^N$ takvi da $\mathbf{u} + \mathbf{v} = \mathbf{x}$, gdje je \mathbf{u} s-rijedak, \mathbf{v} t-rijedak i imaju disjunktne nosače. Vrijedi,

$$\|\mathbf{A}\mathbf{x}\|_2^2 = \langle \mathbf{A}(\mathbf{u} + \mathbf{v}), \mathbf{A}(\mathbf{u} + \mathbf{v}) \rangle = \|\mathbf{A}\mathbf{u}\|_2^2 + \|\mathbf{A}\mathbf{v}\|_2^2 + 2\operatorname{Re}\langle \mathbf{A}\mathbf{u}, \mathbf{A}\mathbf{v} \rangle.$$

Uvrstimo $\|\mathbf{x}\|_2^2 = \|\mathbf{u}\|_2^2 + \|\mathbf{v}\|_2^2$,

$$\left| \|\mathbf{A}\mathbf{x}\|_{2}^{2} - \|\mathbf{x}\|_{2}^{2} \right| \leq \left| \|\mathbf{A}\mathbf{u}\|_{2}^{2} - \|\mathbf{u}\|_{2}^{2} \right| + \left| \|\mathbf{A}\mathbf{v}\|_{2}^{2} - \|\mathbf{v}\|_{2}^{2} \right| + 2\left| \langle \mathbf{A}\mathbf{u}, \mathbf{A}\mathbf{v} \rangle \right|
\leq \delta_{s} \|\mathbf{u}\|_{2}^{2} + \delta_{t} \|\mathbf{v}\|_{2}^{2} + 2\theta \|\mathbf{u}\|_{2}^{2} \|\mathbf{v}\|_{2}^{2} =: f(\|\mathbf{u}\|_{2}^{2}),$$

gdje je za $\alpha \in [0,1]$

$$f(\alpha) := \delta_s \alpha + \delta_t (1 - \alpha) + 2\theta_{s,t} \sqrt{\alpha (1 - \alpha)}. \tag{5.7}$$

Lako se pokaže da postoji $\alpha^* \in [0,1]$ tako da je f nepadajuća na $[0,\alpha^*]$ i neratuća na $[\alpha^*,1]$. Ovisno o poziciji od α^* s obzirom na s/(s+t) funkcija f je ili nepadajuća na [0,s/(s+t)] ili nerastuća na [s/(s+t),1]. Dobrim odabirom vektora \mathbf{u} , uvijek možemo pretpostaviti da je $\|\mathbf{u}\|_2^2$ u jednom od ta dva intervala. Zaista, ako se \mathbf{u} sastoji od s apsolutno najmanjih komponenti od \mathbf{x} a \mathbf{v} od t apsolutno najvećih komponenti od \mathbf{x} onda imamo

$$\frac{\|\mathbf{u}\|_2^2}{s} \le \frac{\|\mathbf{v}\|_2^2}{t} = \frac{1 - \|\mathbf{u}\|_2^2}{t}, \quad \text{tako da } \|\mathbf{u}\|_2^2 \le \frac{s}{s+t},$$

U slučaju da je **u** sačinjen od *s* apsolutno največih komponenti od **x**, tada bi vrijedilo $\|\mathbf{u}\|_2^2 \ge s/(s+t)$. Dakle,

$$\left| \|\mathbf{A}\mathbf{x}\|_{2}^{2} - \|\mathbf{x}\|_{2}^{2} \right| \le f\left(\frac{s}{s+t}\right) = \delta_{s}\frac{s}{s+t} + \delta_{t}\frac{t}{s+t} + 2\theta_{s,t}\frac{\sqrt{st}}{s+t}.$$

Kao kod koherencije, zanima nas koja je donja granica za s-tu konstantu ograničene izometrije matrice $\mathbf{A} \in \mathbb{C}^{m \times N}$.

Teorem 5.1.6. Neka je $\mathbf{A} \in \mathbb{C}^{mN}$ i $2 \leq s \leq N$. Tada je

$$m \ge c \frac{s}{\delta_s^2},\tag{5.8}$$

za $N \ge Cm$ i $\delta_s \le \delta_*$, gdje konstatne c, C i δ_* ovise samo o sebi međusobno. Na primjer, možemo uzeti c = 1/162, C = 30 i $\delta_* = 2/3$.

Dokaz. Primjetimo da tvrdnja ne vrijedi za s=1 jer je $\delta_1=0$ ako su svi stupci od \mathbf{A} imaju ℓ_2 -normu jednaku jedan. Neka je $t:=\lfloor s/2\rfloor \geq 1$ i rastavimo \mathbf{A} na blokove od $m\times t$, osim možda zadnjeg koji može imati manje stupaca,

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_1 & \mathbf{A}_2 & \dots & \mathbf{A}_n \end{bmatrix}, \quad N \leq nt.$$

Iz (5.2) i (5.6) za $i, j \in [n], i \neq j$ imamo

$$\|\mathbf{A}_{i}^{*}\mathbf{A}_{i} - \mathbf{I}\|_{2} < \delta_{t} < \delta_{s}, \quad \|\mathbf{A}_{i}^{*}\mathbf{A}_{i}\|_{2} < \theta_{t,t} < \delta_{2t} < \delta_{s},$$

pa svojstvene vrijednosti od $\mathbf{A}_{i}^{*}\mathbf{A}_{i}$ i singularne vrijednosti od $\mathbf{A}_{i}^{*}\mathbf{A}_{j}$ zadovoljavaju

$$1 - \delta_s \le \lambda_k(\mathbf{A}_i^*\mathbf{A}_i) \le 1 + \delta_s, \quad \sigma_k(\mathbf{A}_i^*\mathbf{A}_j) \le \delta_s.$$

Uvedimo oznake za matrice

$$\mathbf{H} := \mathbf{A}\mathbf{A}^* \in \mathbb{C}^{m \times m}, \quad \mathbf{G} := \mathbf{A}^*\mathbf{A} = [\mathbf{A}_i^*\mathbf{A}_i]_{1 \le i, i \le n} \in \mathbb{C}^{N \times N}.$$

Imamo

$$\operatorname{tr}(\mathbf{H}) = \operatorname{tr}(\mathbf{G}) = \sum_{i=1}^{n} \operatorname{tr}(\mathbf{A}_{i}^{*} \mathbf{A}_{i}) = \sum_{i=1}^{n} \sum_{k=1}^{t} \lambda_{k}(\mathbf{A}_{i}^{*} \mathbf{A}_{i}) \ge nt(1 - \delta_{s}).$$
 (5.9)

Nadalje,

$$\operatorname{tr}(\mathbf{H})^2 = \langle \mathbf{I}_m, \mathbf{H} \rangle_F^2 \le \|\mathbf{I}_m\|_F^2 \|\mathbf{H}\|_F^2 = m \operatorname{tr}(\mathbf{H}^*\mathbf{H}).$$

Zbog svojstva cikličnosti traga vrijedi,

$$\operatorname{tr}(\mathbf{H}^*\mathbf{H}) = \operatorname{tr}(\mathbf{A}\mathbf{A}^*\mathbf{A}\mathbf{A}^*) = \operatorname{tr}(\mathbf{A}^*\mathbf{A}\mathbf{A}^*\mathbf{A}) = \operatorname{tr}(\mathbf{G}\mathbf{G}^*)$$

$$= \sum_{i=1}^n \operatorname{tr}\left(\sum_{j=1}^m \mathbf{A}_i^*\mathbf{A}_j\mathbf{A}_j^*\mathbf{A}_i\right)$$

$$= \sum_{1 \le i \ne j \le n} \sum_{k=1}^t \sigma_k(\mathbf{A}_i^*\mathbf{A}_j)^2 + \sum_{i=1}^n \sum_{k=1}^t \lambda_k(\mathbf{A}_i^*\mathbf{A}_i)^2$$

$$\leq n(n-1)t\delta_s^2 + nt(1+\delta_s)^2.$$

Dobivamo ocjenu,

$$\operatorname{tr}(\mathbf{H})^2 \le mnt((n-1)\delta_s^2 + (1+\delta_s)^2).$$
 (5.10)

Kombiniranjem (5.9) i (5.10) imamo

$$m \ge \frac{nt(1-\delta_s)^2}{(n-1)\delta_s^2 + (1+\delta_s)^2}.$$

Pretpostavimo da je $(n-1)\delta_s^2<(1+\delta_s)^2/5.$ Za $\delta_s\leq 2/3,$ slijedi

$$m > \frac{nt(1-\delta_s)^2}{6(1+\delta_s)^2/5} \ge \frac{5(1-\delta_s)^2}{6(1+\delta_s)^2} N \ge \frac{1}{30}N,$$

što je kontradikcija. Dakle, mora vrijediti $(n-1)\delta_s^2 \geq (1+\delta_s)^2/5$, što uz $\delta_s \leq 2/3$ i

 $s \leq 3t$ implicira

$$m \ge \frac{nt(1-\delta_s)^2}{6(n-1)\delta_s^2} \ge \frac{1}{54}\frac{t}{\delta_s^2} \ge \frac{1}{162}\frac{s}{\delta_s^2}.$$

Usporedimo ocjene dobivene do sada. Imamo ocjenu odozdo

$$\delta_s \ge \sqrt{cs/m}.\tag{5.11}$$

Za $\mathbf{A} \in \mathbb{C}^{m \times N}$ s optimalnom koherencijom $\mu \leq c/\sqrt{m}$, propozicija 5.1.2 implicira

$$\delta_s \le (s-1)\mu \le cs/\sqrt{m}.\tag{5.12}$$

Primjetimo da je razmak između (5.11) i (5.12) značajan. Iz (5.12) imamo

$$m \ge c's^2 \tag{5.13}$$

što dozvoljava da δ_s bude malen, dok to drugo zathtjeva iz (5.11) da je $m \geq c's$. Nije poznato je li takav uvjet dovoljan. Pokaže se da određene nasumične matrice $\mathbf{A} \in \mathbb{R}^{m \times N}$ zadovoljavaju $\delta_s \leq \delta$ s velikom vjerojatnošću za neki $\delta > 0$ ako je

$$m \ge C\delta^{-2}s\ln(eN/S). \tag{5.14}$$

Konstrukcija determinističkih matrica u polinomijalnom vremenu koje zadovoljavaju $\delta_s \leq \delta$ u kontekstu (5.14) do danas otvoren je problem. Glavna zapreka je što gotovo sve aproksimacije δ_s kombiniraju estimaciju koherencije i tvrdnju oblika propozicije 5.1.2. To vodi na ocjene oblika (5.12) i kvadratnu ovisnost ocjene u varijabli s. Iznimka su radovi [1] i [2]. Bourgain et al. u [1] daje eksplicitnu konstrukciju determinističkih matrica $\mathbf{A} \in \mathbb{C}^{m \times N}$ s malim δ_s za $m \geq C s^{2-\varepsilon}$ i $s^{2-\varepsilon} \leq N \leq s^{2+\varepsilon}$ za neki $\varepsilon > 0$. Napredak je ostvaren putem novih estimacija za produkt skupova koji su suma dvaju skupa i za eksponencijalnu sumu produkta skupova s posebnom aditivnom struktorom. U [2] nadograđuje se ideja iz [1] korištenjem algebarske geometrije. Nadalje u [3] pokazano je da izračun δ_s \mathfrak{NP} -težak problem. Intuitivno to je jasno. Naime, svojstvo ograničene izometrije uzima u obizir sve moguče s-torke stupaca matrice \mathbf{A} .

63

5.2 Analiza ℓ_1 -minimizacije

Pokazati ćemo da ℓ_1 -minimizacija uspješno rekonstruira sve s-rijetke vektore za dovoljno male konstante ograničene izometrije, točnije za $\delta_{2s} < 1/3$.

Teorem 5.2.1. Neka 2s-ta konstanta ograničene izometrije matrice $\mathbf{A} \in \mathbb{C}^{m \times N}$ zadovljava

$$\delta_{2s} < \frac{1}{3}.\tag{5.15}$$

Tada je svaki s-rijedak vektor $\mathbf{x} \in \mathbb{C}^N$ jedinstveno rješenje problema

$$\min_{\mathbf{z} \in \mathbb{C}^N} \|\mathbf{z}\|_1 \quad \textit{uz uvjet } \mathbf{A}\mathbf{z} = \mathbf{A}\mathbf{x}.$$

Za dokaz potreban je sljedeči argument.

Lema 5.2.2. Neka je $\mathbf{q} > p > 0$. Ako $\mathbf{u} \in \mathbb{C}^s$ i $\mathbf{v} \in \mathbb{C}^t$ zadovoljavaju

$$\min_{i \in [s]} |u_i| \le \min_{j \in [t]} |v_j|,\tag{5.16}$$

onda,

$$\|\mathbf{u}\|_q \le \frac{s^{1/q}}{t^{1/p}} \|\mathbf{v}\|_p.$$

Posebno za p = 1, q = 2 i t = s,

$$\|\mathbf{u}\|_2 \le \frac{1}{\sqrt{s}} \|\mathbf{v}\|_1.$$

Dokaz. Primjetimo,

$$\frac{\|\mathbf{u}\|_q}{s^{1/q}} = \left[\frac{1}{s} \sum_{i=1}^s |u_i|^q\right]^{1/q} \le \max_{i \in [s]} |u_i|,$$

$$\frac{\|\mathbf{v}\|_p}{t^{1/p}} = \left[\frac{1}{t} \sum_{j=1}^t |v_j|^p\right]^{1/p} \min_{j \in [t]} |v_j|.$$

Sada iskoristimo (5.16) i slijedi tvrdnja.

Dokaz (Teorem 5.2.1). Prema teoremu 3.1.3 dovoljno je pokazati da vrijedi svojstvo

nul-prostora reda s, tj.

$$\|\mathbf{v}_S\|_1 \le \frac{1}{2} \|\mathbf{v}\|_1$$

za sve $\mathbf{v} \in \ker \mathbf{A} \backslash \{\mathbf{0}\}$ i za sve $S \subset [N], \; \mathrm{card}(S) = s.$ To će slijediti iz opčenitije tvrdnje

$$\|\mathbf{v}_S\|_2 \le \frac{\rho}{2\sqrt{s}} \|\mathbf{v}\|_1$$

za sve $\mathbf{v} \in \ker \mathbf{A} \setminus \{\mathbf{0}\}$ i za sve $S \subset [N]$, $\operatorname{card}(S) = s$, gdje

$$\rho := \frac{2\delta_{2s}}{1 - \delta_{2s}}$$

zadovoljava $\rho < 1$ za $\delta_{2s} < 1/3$. Primjetimo da je dovoljno promatrati skup $S =: S_0$, koji sadrži indekse s apsolutno najvećih komponenti vektora $\mathbf{v} \in \ker \mathbf{A}$. Nadalje, \bar{S}_0 particioniramo na $\bar{S}_0 = S_1 \cup S_2 \cup \cdots$, tako da

 S_1 : skup indeksa sapsolutno najve
vih komponenti vektora ${\bf v}$ u \bar{S}_0

 S_2 : skup indeksasapsolutno najve
vih komponenti vektora ${\bf v}$ u $\overline{S_0 \cup S_1}$

. . .

Pošto je $\mathbf{v} \in \ker \mathbf{A}$, imamo $\mathbf{A}(\mathbf{v}_{S_0}) = \mathbf{A}(-\mathbf{v}_{S_1} - \mathbf{v}_{S_2} - \cdots)$ pa stoga

$$\|\mathbf{v}_{S_0}\|_2^2 \le \frac{1}{1 - \delta_{2s}} \|\mathbf{A}(\mathbf{v}_{S_0})\|_2^2 = \frac{1}{1 - \delta_{2s}} \langle \mathbf{A}(\mathbf{v}_{S_0}), \mathbf{A}(-\mathbf{v}_{S_1}) + \mathbf{A}(-\mathbf{v}_{S_2}) + \cdots \rangle$$

$$= \frac{1}{1 - \delta_{2s}} \sum_{k \ge 1} \langle \mathbf{A}(\mathbf{v}_{S_0}), \mathbf{A}(-\mathbf{v}_{S_k}) \rangle$$
(5.17)

Prema propoziciji 5.1.3 također vrijedi

$$\langle \mathbf{A}(\mathbf{v}_{S_0}), \mathbf{A}(-\mathbf{v}_{S_k}) \le \delta_{2s} \|\mathbf{v}_{S_0}\|_2 \|\mathbf{v}_{S_k}\|_2.$$
 (5.18)

Uvrstimo (5.18) u (5.17) te podjelimo s $\|\mathbf{v}_{S_0}\| > 0$,

$$\|\mathbf{v}_{S_0}\|_2 \le \frac{\delta_{2s}}{1 - \delta_{2s}} \sum_{k > 1} \|\mathbf{v}_{S_k}\|_2 = \frac{\rho}{2} \sum_{k > 1} \|\mathbf{v}_{S_k}\|_2.$$

Za $k \geq 1$, s apsolutno najvećih komponenti od \mathbf{v}_{S_k} nisu veći od s apsolutnih kompo-

nenti od $\mathbf{v}_{S_{k-1}}$. Stoga lema 5.2.2 daje

$$\|\mathbf{v}_{S_k}\|_2 \le \frac{1}{\sqrt{s}} \|\mathbf{v}_{S_{k-1}}\|_1.$$

Napokon,

$$\|\mathbf{v}_{S_0}\|_2 \le \frac{\rho}{2\sqrt{s}} \sum_{k>1} \|\mathbf{v}_{S_{k-1}}\|_1 \le \frac{\rho}{2\sqrt{s}} \|\mathbf{v}\|_1.$$

U prethodni teorem moguće je ukomponirati stabilnost i robusnost te dodatno oslabiti uvjet, tj. dovoljno je tražiti da $\delta_{2s} < \frac{4}{\sqrt{41}} \approx 0.6246$. No, svojstvo ograničene izometrije nosi i neke probleme kod ℓ_1 -minimizacije. Naime, pokazali smo da je ℓ_1 -minimizacija invarijanta na reskaliranje, preslagivanje te dodavanje novih mjerenja. Međutim takve transformacije mogu pokvariti konstantu ograničene izometrije. Preciznije, preslagivanje mjerenja odgovora zamjeni matrice $\mathbf{A} \in \mathbb{C}^{m \times N}$ matricom $\mathbf{P}\mathbf{A}$, gdje je $\mathbf{P} \in \mathbb{C}^{m \times m}$ matrica permutacije, i takva transformacija ne mjenja δ_s . Dodavanje mjerenja odgovara dodavanju retka matrici \mathbf{A} , što može rezultirati povečanjem od δ_s . Zaista, neka je $\delta_s(\mathbf{A}) < 1$ i uzmimo $\delta > \delta_s(\mathbf{A})$. Neka je $\tilde{\mathbf{A}}$ matrica \mathbf{A} kojoj smo dodali redak $[0 \cdots 0 \sqrt{1+\delta}]$. Sada za $\mathbf{x} := [0 \cdots 0 \ 1]^T$ vidimo da je $\|\mathbf{A}\mathbf{x}\|_2^2 \ge 1 + \delta$. To implicira da je $\delta_1(\mathbf{A}) \ge \delta$ pa stoga i $\delta_s(\tilde{\mathbf{A}}) > \delta_s(\mathbf{A})$. Skaliranje dijagonalnom matricom te skaliranje konstantom također mogu povečati δ_s .

5.3 Analiza graničnih metoda

Pokazati ćemo da IHT i HTP algoritmi uspješno rekonstruiraju rijetke vektore za matric mjerenja s malim konstantama ograničene izometrije.

Teorem 5.3.1. Neka je matrica $\mathbf{A} \in \mathbb{C}^{m \times N}$ takva da

$$\delta_{3s} < \frac{1}{2}.\tag{5.19}$$

Tada za svaki s-rijedak vektor $\mathbf{x} \in \mathbb{C}^N$, niz (\mathbf{x}^n) definiran sa (IHT) za $\mathbf{y} = \mathbf{A}\mathbf{x}$ konvergira prema \mathbf{x} .

Za dokaz potrebna nam je sljedeća lema,

Lema 5.3.2. Za $\mathbf{u}, \mathbf{v} \in \mathbb{C}^N$ i skup indeksa $S \subset [N]$ vrijedi,

$$\begin{aligned} |\langle \mathbf{u}, (\mathbf{I} - \mathbf{A}^* \mathbf{A}) \mathbf{v} \rangle| &\leq \delta_t ||\mathbf{u}||_2 ||\mathbf{v}||_2 & za \operatorname{card}(\operatorname{supp}(\mathbf{u}) \cup \operatorname{supp}(\mathbf{v})) &\leq t \\ ||((\mathbf{I} - \mathbf{A}^* \mathbf{A}) \mathbf{v})_S||_2 &\leq \delta_t ||\mathbf{v}||_2 & za \operatorname{card}(S \cup \operatorname{supp}(\mathbf{v})) &\leq t. \end{aligned}$$

Dokaz. Neka je $T := \text{supp}(\mathbf{u}) \cup \text{supp}(\mathbf{v})$. Imamo,

$$\begin{aligned} |\langle \mathbf{u}, (\mathbf{I} - \mathbf{A}^* \mathbf{A}) \mathbf{v} \rangle| &= |\langle \mathbf{u}, \mathbf{v} \rangle - \langle \mathbf{A} \mathbf{u}, \mathbf{A} \mathbf{v} \rangle| = |\langle \mathbf{u}_T, \mathbf{v}_T \rangle - \langle \mathbf{A}_T \mathbf{u}_T, \mathbf{A}_T, \mathbf{v}_T \rangle| \\ &= |\langle \mathbf{u}_T, (\mathbf{I} - \mathbf{A}_T^* \mathbf{A}_T) \mathbf{v}_T \rangle| \le \|\mathbf{u}_T\|_2 \|(\mathbf{I} - \mathbf{A}_T^* \mathbf{A}_T) \mathbf{v}_T\|_2 \\ &\le \|\mathbf{u}_T\|_2 \|\mathbf{I} - \mathbf{A}_T^* \mathbf{A}_T\|_2 \|\mathbf{v}_T\|_2 \le \delta_t \|\mathbf{u}\|_2 \|\mathbf{v}\|_2. \end{aligned}$$

Druga nejednost slijedi iz prve i činjenice

$$\|((\mathbf{I} - \mathbf{A}^* \mathbf{A})\mathbf{v})_S\|_2^2 = \langle((\mathbf{I} - \mathbf{A}^* \mathbf{A})\mathbf{v})_S, (\mathbf{I} - \mathbf{A}^* \mathbf{A})\mathbf{v}\rangle \leq \delta_t \|((\mathbf{I} - \mathbf{A}^* \mathbf{A})\mathbf{v})_S\|_2 \|\mathbf{v}\|_2.$$

Dokaz (Teorem 5.3.1). Primjetimo da je dovoljno pronaći konstantu $0 \leq \rho \leq 1$ takvu da

$$\|\mathbf{x}^{n+1} - \mathbf{x}\|_{2} \le \rho \|\mathbf{x}^{n} - \mathbf{x}\|_{2}, \quad n \ge 0$$
 (5.20)

odakle induktivno imamo

$$\|\mathbf{x}^n - \mathbf{x}\|_2 \le \rho^n \|\mathbf{x}^0 - \mathbf{x}\|_2 \xrightarrow{n \to \infty} 0.$$

Prema samoj definiciji, vektor \mathbf{x}^{n+1} je bolja ili barem jednako dobra aproksimacija vektor

$$\mathbf{u}^n := \mathbf{x}^n + \mathbf{A}^*(\mathbf{y} - \mathbf{A}\mathbf{x}^n) = \mathbf{x}^n + \mathbf{A}^*\mathbf{A}(\mathbf{x} - \mathbf{x}^n)$$

od s-rijetkog vektora \mathbf{x} . Dakle,

$$\|\mathbf{u}^n - \mathbf{x}^{n+1}\|_2^2 \le \|\mathbf{u}^n - \mathbf{x}\|_2^2$$

Uvrstimo $\|\mathbf{u}^n - \mathbf{x}^{n+1}\|_2^2 = \|(\mathbf{u}^n - \mathbf{x}) - (\mathbf{x}^{n+1} - \mathbf{x})\|_2^2$ te sređivanjem dobivamo

$$\|\mathbf{x}^{n+1} - \mathbf{x}\|_2^2 \le 2\operatorname{Re}\langle \mathbf{u}^n - \mathbf{x}, \mathbf{x}^{n+1} - \mathbf{x}\rangle. \tag{5.21}$$

Lema 5.3.2 daje

$$\operatorname{Re}\langle \mathbf{u}^{n} - \mathbf{x}, \mathbf{x}^{n+1} - \mathbf{x} \rangle = \operatorname{Re}\langle (\mathbf{I} - \mathbf{A}^{*} \mathbf{A})(\mathbf{x}^{n} - \mathbf{x}), \mathbf{x}^{n+1} - \mathbf{x} \rangle$$

$$\leq \delta_{3s} \|\mathbf{x}^{n} - \mathbf{x}\|_{2} \|\mathbf{x}^{n+1} - \mathbf{x}\|_{2}. \tag{5.22}$$

Ako je $\|\mathbf{x}^{n+1} - \mathbf{x}\|_2 > 0$, iz (5.21) i (5.22) slijedi

$$\|\mathbf{x}^{n+1} - \mathbf{x}\|_2 \le 2\delta_{3s} \|\mathbf{x}^n - \mathbf{x}\|_2$$

Stoga, tražena nejednost vrijedi za $\rho = 2\delta_{3s} < 1$.

Ponovno je moguće dobiti robusnost i stabilnost te ocjena se može oslabiti. To je tvrdnja sljedećeg teorema koji vrijedi i za IHT, i za HTP algoritam.

Teorem 5.3.3. Neka je $\mathbf{A} \in \mathbb{C}^{m \times N}$ takva da

$$\delta_{3s} < \frac{1}{\sqrt{3}} \approx 0.5773.$$
 (5.23)

Tada, za svaki $\mathbf{x} \in \mathbb{C}^N$, $\mathbf{e} \in \mathbb{C}^m$ i $S \subset [N]$, $\operatorname{card}(S) = s$, $\operatorname{niz}(\mathbf{x}^n)$ definiran sa (IHT) ili sa (HTP₁), (HTP₂) za $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{e}$ zadovoljava

$$\|\mathbf{x}^n - \mathbf{x}_S\|_2 \le \rho^n \|\mathbf{x}^0 - \mathbf{x}_S\|_2 + \tau \|\mathbf{A}\mathbf{x}_{\bar{S}} + \mathbf{e}\|_2,$$
 (5.24)

za svaki $n \ge 0$, gdje je $\rho = \sqrt{3} < 1$, $\tau \le 2.18/(1-\rho)$ za (IHT), $\rho = \sqrt{2\delta_{3s}^2/(1-\delta_{2s}^2)} < 1$, $\tau \le 5.15/(1-\rho)$ za (HTP₁), (HTP₂).

U dokazu koristimo tvrdnju,

Lema 5.3.4. $Za \ \mathbf{e} \in \mathbb{C}^m \ i \ S \in [N], \ \operatorname{card}(S) \leq s \ vrijedi$

$$\|(\mathbf{A}^*\mathbf{e})_S\|_2^2 \le \sqrt{1+\delta_s}\|\mathbf{e}\|_2.$$

Dokaz. Vrijedi,

$$\begin{aligned} \|(\mathbf{A}^*\mathbf{e})_S\|_2^2 &= \langle \mathbf{A}^*\mathbf{e}, (\mathbf{A}^*\mathbf{e})_S \rangle = \langle \mathbf{e}, \mathbf{A}((\mathbf{A}^*\mathbf{e})_S) \rangle \leq \|\mathbf{e}\|_2 \|\mathbf{A}((\mathbf{A}^*\mathbf{e})_S)\|_2 \\ &\leq \|\mathbf{e}\|_2 \sqrt{1 + \delta_s} \|(\mathbf{A}^*\mathbf{e})_S\|_2. \end{aligned}$$

Dokaz (Teorem 5.3.3). Neka je $\mathbf{x} \in \mathbb{C}^N$, $\mathbf{e} \in \mathbb{C}^m$, $S \subset [N]$ takav da je card(S) = s. Ako pokažemo da za svaki $n \geq 0$ vrijedi

$$\|\mathbf{x}^{n+1} - \mathbf{x}_S\|_2 \le \rho \|\mathbf{x}^n - \mathbf{x}_S\|_2 + (1 - \rho)\tau \|\mathbf{A}\mathbf{x}_{\bar{S}} + \mathbf{e}\|_2$$
 (5.25)

tada (5.24) slijedi indukcijom. Neka je $S^{n+1} := \text{supp}(\mathbf{x}^{n+1})$ skup indeksa s apsolutno najvećih vrijednosti od $\mathbf{x}^n + \mathbf{A}^*(\mathbf{y} - \mathbf{A}\mathbf{x}^n)$. Stoga,

$$\|(\mathbf{x}^n + \mathbf{A}^*(\mathbf{y} - \mathbf{A}\mathbf{x}^n))_S\|_2^2 \le \|(\mathbf{x}^n + \mathbf{A}^*(\mathbf{y} - \mathbf{A}\mathbf{x}^n))_{S^{n+1}}\|_2^2$$

Nadalje, maknemo kontribuciju od $S \cap S^{n+1}$

$$\|(\mathbf{x}^n + \mathbf{A}^*(\mathbf{y} - \mathbf{A}\mathbf{x}^n))_{S \setminus S^{n+1}}\|_2^2 \le \|(\mathbf{x}^n + \mathbf{A}^*(\mathbf{y} - \mathbf{A}\mathbf{x}^n))_{S^{n+1} \setminus S}\|_2^2.$$

Desnu stranu možemo zapisati kao

$$\|(\mathbf{x}^n + \mathbf{A}^*(\mathbf{y} - \mathbf{A}\mathbf{x}^n))_{S^{n+1}\setminus S}\|_2^2 = \|(\mathbf{x}^n - \mathbf{x}_S + \mathbf{A}^*(\mathbf{y} - \mathbf{A}\mathbf{x}^n))_{S^{n+1}\setminus S}\|_2.$$

Lijeva strana zadovoljava,

$$\begin{aligned} \|(\mathbf{x}^n + \mathbf{A}^*(\mathbf{y} - \mathbf{A}\mathbf{x}^n))_{S \setminus S^{n+1}}\|_2 &= \|(\mathbf{x}_S - \mathbf{x}^{n+1} + \mathbf{x}^n - \mathbf{x}_S + \mathbf{A}^*(\mathbf{y} - \mathbf{A}\mathbf{x}^n))_{S \setminus S^{n+1}}\|_2 \\ &\geq \|(\mathbf{x}_S - \mathbf{x}^{n+1})_{S \setminus S^{n+1}}\|_2 \\ &- \|(\mathbf{x}^n - \mathbf{x}_S + \mathbf{A}^*(\mathbf{y} - \mathbf{A}\mathbf{x}^n))_{S \setminus S^{n+1}}\|_2. \end{aligned}$$

Sa $S\Delta S^{n+1}=(S\backslash S^{n+1})\cup (S^{n+1}\backslash S)$ označimo simetričnu razliku skupa S i S^{n+1} . Slijedi,

$$\|(\mathbf{x}_{S} - \mathbf{x}^{n+1})_{S \setminus S^{n+1}}\|_{2} \leq \|(\mathbf{x}^{n} - \mathbf{x}_{S} + \mathbf{A}^{*}(\mathbf{y} - \mathbf{A}\mathbf{x}^{n}))_{S \setminus S^{n+1}}\|_{2}$$

$$+ \|(\mathbf{x}^{n} - \mathbf{x}_{S} + \mathbf{A}^{*}(\mathbf{y} - \mathbf{A}\mathbf{x}^{n}))_{S^{n+1} \setminus S}\|_{2}$$

$$\leq \sqrt{2} \|(\mathbf{x}^{n} - \mathbf{x}_{S} + \mathbf{A}^{*}(\mathbf{y} - \mathbf{A}\mathbf{x}^{n}))_{S \wedge S^{n+1}}\|_{2}.$$
(5.26)

Koncetrirajmo se na IHT algoritam prvo. Tada imamo,

$$\mathbf{x}^{n+1} = (\mathbf{x}^n + \mathbf{A}^*(\mathbf{y} - \mathbf{A}\mathbf{x}^n))_{S^{n+1}}.$$

Slijedi,

$$\begin{aligned} \|\mathbf{x}^{n+1} - \mathbf{x}_S\|_2^2 &= \|(\mathbf{x}^{n+1} - \mathbf{x}_S)_{S^{n+1}}\|_2^2 + \|(\mathbf{x}^{n+1} - \mathbf{x}_S)_{\overline{S^{n+1}}}\|_2^2 \\ &= \|(\mathbf{x}^n - \mathbf{x}_S + \mathbf{A}^*(\mathbf{y} - \mathbf{A}\mathbf{x}^n))_{S^{n+1}}\|_2^2 + \|(\mathbf{x}^{n+1} - \mathbf{x}_S)_{S \setminus S^{n+1}}\|_2^2. \end{aligned}$$

Nadalje, iz (5.26) imamo

$$\|\mathbf{x}^{n+1} - \mathbf{x}_{S}\|_{2}^{2} \leq \|(\mathbf{x}^{n} - \mathbf{x}_{S} + \mathbf{A}^{*}(\mathbf{y} - \mathbf{A}\mathbf{x}^{n}))_{S^{n+1}}\|_{2}^{2}$$

$$+2\|(\mathbf{x}^{n} - \mathbf{x}_{S} + \mathbf{A}^{*}(\mathbf{y} - \mathbf{A}\mathbf{x}^{n}))_{S\Delta S^{n+1}}\|_{2}^{2}$$

$$\leq 3\|(\mathbf{x}^{n} - \mathbf{x}_{S} + \mathbf{A}^{*}(\mathbf{y} - \mathbf{A}\mathbf{x}^{n}))_{S\cup S^{n+1}}\|_{2}^{2}.$$

Neka je $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{e} = \mathbf{A}\mathbf{x}_S + \mathbf{e}'$ gdje je $\mathbf{e}' := \mathbf{A}\mathbf{x}_{\bar{S}} + \mathbf{e}$. Iz leme 5.3.2 i leme 5.3.4 slijedi,

Bibliografija

- [1] Jean Bourgain, S. J. Dilworth, Kevin Ford, Sergei Konyagin i Denka Kutzarova, Explicit constructions of RIP matrices and related problems, arXiv e-prints (2010), arXiv:1008.4535.
- [2] Hao Chen, Explicit RIP Matrices in Compressed Sensing from Algebraic Geometry, CoRR abs/1505.07490 (2015), http://arxiv.org/abs/1505.07490.
- [3] Andreas M. Tillmann i Marc E. Pfetsch, *The Computational Complexity of the Restricted Isometry Property, the Nullspace Property, and Related Concepts in Compressed Sensing*, arXiv e-prints (2012), arXiv:1205.2081.

Sažetak

Summary

Životopis