

Data Description and Proposed Projects

BC Data Science Workshop -- August 21, 2017

Borhan Sanandaji

Agenda

1. Data Description

- Description
- Available Dataset
- How to Load

2. Proposed Projects

- Basic Vehicle Data Statistics
- Multiple Drivers Detection
- Battery Voltage Forecasting

Data Description

Data Size:

- almost every 10 seconds one message per device when running
- on average 150 messages per trip
- currently recording 1 million trips per day

time-invariant variables:

- Vehicle Make
- Vehicle Model
- Vehicle Year
- ...

time-variant variables:

- speed (times series data)
- RPM (time series data)
- Fuel Efficiency (time series data)
- ...

- There are two data files and can be downloaded from, https://canvas.sfu.ca/courses/31980/files
- You could either work with R data frames or SQL data

	R Data		SQL Data	
Name	case_study_dt1.RData	case_study_dt2.RData	casestudy_dt1.sqlite	casestudy_dt2.sqlite
Size	254 MB	387 MB	2.5 GB	3.9 GB
No. of Variables	158	158	158	158
No. of Data Records	946,650	1,462,146	946,650	1,462,146

Use of additional data sources optional

Loading R data files

- Download R data file on to you machine
- Set working directory: setwd("dir")
- Load Rdata: load("case_study_dt1.RData")
- Print variable names: names(case_study_dt1)
- Read variable values: case_study_dt1\$source_id[1]

Loading SQL Data files

- Download and Set working directory
- Install R packages: RSQLite and DBI
- Creating a database connection:
 - con = dbConnect(RSQLite::SQLite(), dbname="casestudy_dt1.sqlite")
- Look for tables in the above database using the connection you created
 - dbListTables(con)
- Read variable names of the data table
 - dbGetQuery(con, "PRAGMA table_info('case_study_dt1')")
- Pull / Read variable value
 - dbGetQuery(con, "SELECT source_Vehicle_VinDetails_Make FROM case_study_dt1 WHERE source_Vehicle_Vindetail_Year==2014")

Project Proposals

Idea 1:

- derive basic insights from our dataset
- possible options:
 - > data visualization and summary of make-model-year distribution of vehicles
 - consider geographical distribution as well
 - design an algorithmic way to detect outliers and inaccurate values
 - > find missing values, replace them with something reasonable (e.g. imputation method)
- any other interesting facts about the available dataset

Idea 2:

- multiple drivers per car detection
- "source_id" is a unique identifier of each car
- possible variables to consider:
 - "source_DeviceTime_TimeStamp" and "source_DeviceTime_Status"
 - "source_Vehicle_Location_Lat" and "source_Vehicle_Location_Lng"
 - "source_Vehicle_Speed_Value"

Idea 3:

- forecast battery voltage given the existing information in the data-set
 - > start with linear regression
 - use external data resources to improve performance
 - use more advanced algorithms such as KNN
- compare results using different metrics (e.g., MAE, RMSE, etc.)
- drive results for different prediction horizon
 - > minutes
 - hours
 - > days
- challenges:
 - > values sent when ignition off are more accurate
 - different people make different number of trips

Borhan Sanandaji Data Scientist borhans@moj.io

Narayan Sainaney CTO narayans@moj.io

Thank You!

OFFICES

Canada

1080 Howe St, 9th Floor

Vancouver, BC

V6Z 2T1

United States

4005 Miranda Ave, #100

Palo Alto

94304

CONTACT

info@moj.ic

+1-855-556-6546

www.moj.io

