

Remedies in Design for Reliability RadHard in SoC Design

Chun-Zhang Chen, Ph.D.

June 25-29, 2018

RadHard in SoC Design

Causes of Chip Failures and Remedies for Reliability

- Design Bugs
- Excess Temperature
- Rush Current
- Manuf. Defaults
- ESD Issues

- Verification
- Library Corners
- Electro-migration
- DFT/ATE
- ESD Protection

SEU Sensitivity for SRAM

Reported SER (or SEU) values of SRAM products

Table 5: The reported SER (or SEU) values of SRAM					
products influenced by various neutron fluence conditions					
Products	fluence	SER (SEU) Vendor Ref.₄		
0.6um, 0-11MeV, 14MeV	$(5-86) \times 10^9$	0	Xilinx 1998		
FPGA 0.35um, 100 MeV	0.3×10^{9}	(5)	Xilinx 1998		
1Gb 130nm@3889m	3.69×10^6	(4000)	[2] 2012		
2x1Gb 90nm@2885m	3.5×10^6	(3000)	[2] 2012		
16Mb 65nm, 20-250MeV	$(2-3) \times 10^9$	838	Cypress 2017		
Virtex-6 RAM, 40nm	~1×10 ⁹	83	Xilinx 2009		

Source: Chen & Hu, 2018, CSTIC

RadHard Topics

- SEE/SEU and RadHard/TID
- FPGA chips
- SRAM
- SOI
- Stopping Power and Range
- Variable factors

Study of Radiation-Induced Effects

- TID total ionizing dose
- SEE single event effects (SP/ρ)
 - SEU, single event upset
 - SET, single event transient
 - SEL, single event latchup
 - SEB, single event burnout
 - SEGR, single event gate rupture

ESD and SEE on Bulk CMOS, FD-SOI, FinFET

Proton Interaction and CSDA/Projected Ranges

Heavy Ions Induced Secondaries and Tertiaries

- a) Trajectory path of heavy ions at 275 MeV (LET= 24 MeV-cm²/mg);
- b) Comparison with CMOS node sizes (45-350 nm)

Ref.: Griffoni Alessio, 2009

RadHard in SoC Design

Barenaked Ladies
Big Bang Theory Theme

- SEE and RadHard: SEE/SEU, RadHard/TID/SP
- Cosmic Rays & Charged Particles: p, e, α, ions
- Cosmic Rays & Neutrons: cross-section, range, fluence
- RadHard Remedies: TID, SOI
- Discussion

Big Bang Higgs Boson Eupernova Van Allen Belt

Gravitational Wave Observatory

- Predicted by <u>Albert Einstein</u> in general relativity in 1916: G-wave → G-radiation similar to <u>EM</u>
- LIGO, Feb 2016
 - includes more than 900 scientists worldwide, as well as
 - 44,000 active <u>Einstein@Home</u> users

A Brief History of Humankind - Homo Sapiens

Cosmic ray – high-energy radiation

Space Radiation

Radiation Particles in Van Allen Belts and Solar/Galactic Cosmics

Environment	Composition	Energy	Flux, 1/(cm²·s)	
Inner Van Allen belt Alt. (1,000-6,000)km	protons (99%) electrons (1%)	10-50 MeV ≥100 keV	(1-2)×10 ⁵ (≥50MeV) 3×10 ⁶ (≥1 MeV)	
Outer Van Allen belt Alt. (13,000-60,000)km	protons (1%) electrons (99%)	1 MeV (0.1-10) MeV	2×10 ⁶	
Solar/Galactic cosmics At Earth's surface	protons (90%) alphas (9%) HZE ions (1%) photons (x-, γ-)	1×10 ⁹ (1 GeV) 1×10 ¹² (1 TeV) 1×10 ¹⁶ (10 PeV) 1×10 ²⁰ (100 EeV)	1×10 ⁴ 1×10 ⁰ 1×10 ⁻⁷ [a] 1×10 ⁻⁹ [b]	
[a] a few times a year: [b] once a century				

Cosmic Rays and Ionization Radiation

- Types of Ionizing Radiation
 - Charged Particles:
 - p, e, α (He⁴), β (e⁻, e⁺), ions
 - Non-charged particles: n, X-rays, γ-rays
 - X-rays, γ-rays are EM radiation
- Interactions of Ionizing Radiation
 - Interaction process: Ionization events
 - Ionization products
 - Secondary, tertiary particles are produced

Interactions via Secondary Particles

Alpha Particles – 2 protons, 2 neutrons

- •Symbols: α , α^{2+} , He²⁺, or ⁴₂H²⁺
- Process: alpha decay

- In general >5MeV, speed is about 5% of C
- In cosmic, 10-12%

Ex.: $_{92}^{238}U \rightarrow _{90}^{234}Th + _{2}^{4}He$

Beta Particles

- Beta particles are either β⁻ or β⁺
- Electron emission, β⁻ decay

$$n \rightarrow p + e^- + v_e^-$$

Positron emission, β⁺ decay

$$p \rightarrow n + e^+ + v_e$$

- Decay via EM and may give off bremsstrahlung x-rays
- Detection and measurement
 - ion chambers
 - Geiger-Muller counters, and

Blue Cherenkov radiation light being emitted from a TRIGA reactor pool is due to high speed beta particles traveling faster than the speed of light (phase velocity) in water (which is 75% of the speed of light in vacuum).

Gamma rays (Paul Villard, 1900)

- Nuclear radiation: γ-rays
 - Villard (Fr.) discovered in Radium,
 - named as γ-rays by Rutherford in 1903

- from lighting strikes,
- terrestrial γ-ray flashes
- Characteristics of γ-rays
 - f >10 <u>exahertz</u> (or >10¹⁹ Hz), <10 pm (<10⁻¹¹nm, or 0.1 Å)
 - typically >100 keV; astronomical >10 TeV

X-ray (Röntgen radiation) 1895

- 1901 The First Nobel Prize, Wilhelm Röntgen
- Characteristics of X-ray
 - wavelength 0.01-10nm (3x10¹⁶ Hz 3x10¹⁹ Hz)
 - between UV and γ-ray
 - Energy range: 100 eV 100 keV
 - hard X-ray >5-10 keV (0.2-0.1nm);
 - soft X-ray <5 keV</p>
 - Medical radiotherapy;
 - linear accelerators 6-20 MeV

Selected Results of SP and Range for e, p, α Particles

RadHard in SoC Design

Barenaked Ladies
Big Bang Theory Theme

- SEE and RadHard: SEE/SEU, RadHard/TID/SP
- Cosmic Rays & Charged Particles: p, e, α, ions
- Cosmic Rays & Neutrons: cross-section, range, fluence
- RadHard Remedies: TID, SOI
- Discussion

Big Bang Higgs Boson Eupernova Van Allen Belt

Discovery of the Neutron (1932)

- Sir James Chadwick, 1935 Physics Nobel Prize
 - Cavendish Lab., Cambridge University
- Atomic number (Z, # of p), and (atomic) mass number (A),

Neutron Temperature

- ●Thermal neutrons, free with kT=0.0253 eV, speed 2.2km/s
- Cold neutrons, equilibrated w/ <u>deuterium</u>, for scattering exp.
- Ultracold neutrons,
 - a few kelvins w/ solid deuterium or superfluid helium
- Fission energy (fast) neutrons (0-14MeV)
 - Close to 1 MeV (1.6×10⁻¹³ J), hence of ~14000 km/s
- Fusion neutrons, D-T fusion, 14.1MeV
- Intermediate-energy neutrons, ex. epithermal
- High-energy neutrons,
 - by <u>particle accelerators</u> or from <u>cosmic rays</u>

Interactions of Neutrons with Matter

Thermal neutron

(a) Thermal neutron cross section of some nuclei

(b) Nuclear reactions caused by thermal neutron in boron nucleus

Thermal neutron, or free neutron, larger effective cross-section (higher probability for interaction with nuclei)

 $kT = 0.0253 \text{eV} (4.0 \text{x} 10^{-21} \text{J}) @RT,$ if absorbed \rightarrow fusion, \rightarrow isotope \rightarrow SEE

Cross Section, Probability of the Reaction

Probability, σ [counts cm²/particles]

$$\sigma = N_{counts}/(N/A) = N_{counts}/\Phi$$

$$N_{\text{counts}} = N(\frac{\sigma}{A}) = \frac{N}{A} \sigma = \sigma \Phi$$

- Numbers of Damage
 - In a SRAM study of the configuration memory, the cross-section is σ_{SFU} , then

$$N_{counts} = N_{SEU}$$

Neutron Flux

- Natural neutron fluence
 - F_{star}: 10⁵-10¹¹; After a supernova, 10²²;
 - in a thunderstorm $3 \cdot 10^2 5 \cdot 10^2 \left(\frac{neutrons}{cm^2 s} \right)$
- Artificial neutron fluence
 - research reactor, nuclear power plant over 40yrs:
 - 3,5 10¹⁹ n/cm² (E>1MeV)
 - weaponry:

Interactions of Neutrons with Matter

Elastic and Inelastic Scatterings

Concerns:

For SRAM using 45nm process, the Q critical is about 1fC, while a 60eV neutron, in an elastic scattering process, can be a critical SEE.

$$E_{k,Si} = 0.13 E_{k,n}$$

Neutron Generation

Neutron generation for Biology Studies –

US 13,000 individuals receive measurable n doses WW 1,000,000 airline crew members (1994) RBE of 10-100keV n, which has a range of 2um

For the interest of RadHard on IC?

Incident P (1.92-2.00 MeV), Reaction: ⁷Li(p, n)⁷Be (threshold 1.88MeV)

Neutrons in Terrestrial Particles

Neutron Flux at Known Geographical Sites

Neutron Flux at Various Latitude and Altitude

Neutron sources and types of interaction

Source: Chen & Hu, 2018, CSTIC

Neutron Interactions – Scattering and Absorption

Total neutron cross section (microscopic) σ

The macroscopic cross section Σ & the mean free path λ

Table 3: The macroscopic cross section and the mean free path of CMOS transistor compounds for 10 MeV neutrons.

Compound	ρ	M	$\sigma_{\rm l}$	σ_2	Σ_{comp}	λ_{ν}
SiO ₂	2.27	60.08	1.90	1.32	0.103	9.709
GaAs	5.32	144.6	3.65	3.80	0.165	$6.061_{^{\circ}}$
SiC	3.16	40.10	1.90	1.18	0.146	6.849_{\circ}
Si	2.329	28.08	1.90	N/A	0.095	10.53₽

Table 4: The macroscopic cross section and the mean free path of SiO₂ and Si at various neutron energies.

E, MeV	0.001	0.01	0.1	1	10	100₽
SiO ₂ , Σ_{comp}	0.217	0.213	0.189	0.478	0.103	0.053₽
SiO_2, λ	4.608	4.695	5.291	2.092	9.709	18.87
Si, Σ_{comp}	0.097	0.087	0.050	0.230	0.095	0.055
$Si, , \lambda$	10.31	11.49	20.00	4.348	10.53	18.18

RadHard in SoC Design

Barenaked Ladies
Big Bang Theory These

- SEE and RadHard: SEE/SEU, RadHard/TID/SP
- Cosmic Rays & Charged Particles: p, e, α, ions
- Cosmic Rays & Neutrons: cross-section, range, fluence
- RadHard Remedies: TID, SOI
- Discussion

Big Bang Higgs Boson Eupernova Van Allen Belt

Radiation Hardening Technique

After metalization etching

Radiation hardened <u>die</u> of the 1886VE10 <u>microcontroller</u> prior to (a), and after (b) a <u>metalization</u> <u>etching</u> process

Radiation Design Considerations in CMOS By TI (1994)

SEU current (TI Copyright, 2011)

Radiation Design Considerations in CMOS By TI (1994)

Icc (standby current) vs. TID

Radiation Resistant Computers

		TABLE					
TABLE I							
SOI TECHNOLOGY ADVANTAGES BASED ON 0.25 cm SRAM TECHNOLOGY Category SEMATCH Estimation Revenue Gain vs. Bulk CMOS Latest Industry Benchmark							
Process steps	20% less process steps	Simpler well, isolation 6% revenue gain	Between 10–20% simpler				
Mask counts	3 less masking steps	Simpler well, isolation	Between 1–3 fewer masks				
Circuit density	1.3. improvement	Tighter isolation, latch up rules Additional 45% revenue gain	30% better				
Performance	30% faster	Lower capacitance Additional 25% ASP° due to higher performance	Technology generation dependence				
		°ASP = Average Selling Price					

Heavy ions induced micro-dose is a serious concern in **UTB SOI** and SOI FinFET IR discharge current may cause Automobile chip failure Supercomputer chip error 10,000 chips are used, 10-20

faults/week

RadHard in SoC Design

Barenaked Ladies
Big Bang Theory These

- SEE and RadHard: SEE/SEU, RadHard/TID/SP
- Cosmic Rays & Charged Particles: p, e, α, ions
- Cosmic Rays & Neutrons: cross-section, range, fluence
- RadHard Remedies: TID, SOI
- Discussion

Big Bang Higgs Boson Eupernova Van Allen Belt

Impact of ESD and Ionizing Radiation

- ESD has been studied on planar technologies of
 - UTB (ultra thin body) SOI
 - SOI FinFET, and
 - Bulk FinFET
- Heavy ions induced micro-dose is a serious concern in
 - UTB SOI and
 - SOI FinFET
- IR discharge current may cause
 - Automobile chip failure
 - Supercomputer chip error
 - 10,000 chips are used, 10-20 faults/week

TID and SEE wrt R and MFP

- Analyzed CDM/ESD
- TID and SET/SEE
 - Dimension of gate oxide
 - SEE by $I_{d,sat}$, g_m
- Calculated (for p, e, a) S, LET, R, MFP
 - SP | LET can be ambiguous
 - Range | MPF is more direct
 - Particle energy at track end is absorbed...
- More studies are needed
 - CDM of ESD
 - SEU & SET of SEE

Recent Applications on DRAM

- Radiation Effects on DRAM/DDRx [5/28/15]
 - SEU/ECC NASA, SEE-immunity, std for DARM using 25nm 100 krad
- •Increasing awareness of the need for SEE-immunity in
 - both aircraft and ground-level systems
- The XR (eXtra Robust) ECC DRAMs are available in
 - DDR1, DDR2, DDR3 technologies.
 - tests have passed on: 60/100/350krad, and continued (5/14/15)
- For use in aircraft and high rel ground applications you should test in a spallation neutron source and in a thermal neutron beam. Sometimes this can be done together by using cadmium shielding and taking differences.

See IEC-TS62396 for details.

Increased Challenges in Shrinking Chips

By John McHale (May 17, 2011)

- Military and Aerospace Electronics
- Aerospace and Defense
 - Technology Focus
 - Radiation and small components
 - Performance demands
 - Performance vs. rad-hard

August 2013 Volume 24, Issue 8

ESD and SEE on Bulk CMOS, FD-SOI, FinFET

SP/LET and D/D-rate of Ionizing Radiation

SP (Stopping Power, MeV·cm²/mg)

$$S = k_1 \frac{Zz^2}{M_a \beta^2} \left[\ln \frac{2\mu \beta^2 \Delta}{I^2 (1 - \beta^2)} - \frac{(1 - \beta^2) \Delta}{2\mu} - \beta^2 - 2\frac{C}{Z} - \delta \right]$$

$$L = S_{tot} \cdot \rho \qquad (keV / \mu m)$$

• LET (Linear Energy Transfer, SP $\cdot \rho \rightarrow LET$)

$$D = \frac{\Delta E_D}{\Delta m} \qquad (1Gy = 100 rad = 1J / kg)$$

Dose (or absorbed Dose)

$$\dot{D} = \frac{dD}{dt} = \frac{d}{dt} \left(\frac{\Delta E_D}{\Delta m} \right) \qquad (1Gy / \sec = 100 rad / \sec)$$

Neutrons on SEE

- Increased needs of DFx/Reliability in SoC
- Neutron flux vs. altitude (1-100x): applications
 - DC/BD/Supercomputing, ADAS, Aerotronics
- Neutron energy w.r.t. interaction types
 - Combined SEE/SEU in materials
- Fluence and SER (SEU) in I/O, RAM
 - Advanced process

Appendix for Neutron Calculation

Diffraction Cross-section, Range, Mean Free Path, Fluence

Neutron diffraction (elastic scattering), the Bragg's law,

$$n\lambda = 2d\sin\theta$$

- The total cross section (*microscopic*), $\sigma_{T} = \sigma_{S} + \sigma_{A}$
- The Ramsauer Model, $\sigma_T(E) = 2\pi [(R + \lambda_r(E))]^2 (1 \alpha \cos \beta)$
- The *macroscopic* cross-section Σ_{comp}

$$\Sigma_{comp} = \sigma_i N_i$$
, $N_i = \rho N_a n_i / M$

- The mean free path λ , $\lambda = 1/\Sigma$
- The temperature impact of neutrons, $\sigma_T = \sigma_0 (T_0 / T)^{1/2}$
- The flux I₂ can be calculated at altitude A₂

$$I_2 = I_1 \exp[(A_1 - A_2)/L_n]$$

References

- Chen, C.-Z. and Hu, D.Y., 2018, Analysis of Affecting Factors in Neutron Interactions with Gate Oxide in CMOS Transistors. China <u>Semicon. Tech. Int. Conf.</u> (CSTIC, March 11-12, 2018, Shanghai), to be published.
- Chen, C.-Z. and Hu, D.Y., 2017, Geometry Effect with Respect to ESD and Radiative Charged Particles in SoC. China Semicon. Tech. Int. Conf. (CSTIC, March 12-13, 2017, Shanghai.) IEEE Conf. Pub., http://ieeexplore.ieee.org/document/7919894/, pp.1-3. (DOI: 10.1109/CSTIC.2017.7919894)
- Chen, C.-Z. and Hu, D.Y., 2016, Analysis of ESD Effect and Radiation Damage in SoC Design, Semicond. Tech. Inte. Conf. (CSTIC, March 13-14, Shanghai), 2016 China. Page(s): 1-4, Accepted.
- **Chen, C.-Z.** and Watt, D.E., 1986, Biophysical mechanism of radiation damage to mammalian cells by *x* and *γ*-rays. *Int. J. Radiat. Biol.* **49**, 131-142.