The answers to the exercises must be reasoned

Exercises

Exercise 1

Given the string x = 0011, obtain

- (a) Pref(x)
- (b) Suf(x)
- (c) Seg(x)

Exercise 2

Given $L = \{x \in \{a, b\}^* : |x|_a \le 2\}$

- (a) Enumerate, in canonical order, the first ten strings of L
- (b) Give a description of the language $(aba)^{-1}L$

Exercise 3

Given $L = \{x \in \{a, b\}^* : |x|_a \mod 2 = 0\}$

- (a) Enumerate, in canonical order, the first ten strings of L
- (b) Give a description of the languages $(abb)^{-1}L$ and $(bbaba)^{-1}L$
- (c) Describe the languages Pref(L) and Suf(L)

Exercise 4

Given the languages $L_1 = \{0^n 1^n : n \ge 0\}$ and $L_2 = \{0^n 1^m : n, m \ge 0\}$

- (a) Enumerate, in canonical order, the first ten strings of L_1
- (b) Enumerate, in canonical order, the first ten strings of L_2
- (c) Describe the language $L_1 \cup L_2$

Exercise 5

Given $L_1 = \{xaa : x \in \{a,b\}^*\}$ and $L_2 = \{xaay : x,y \in \{a,b\}^*\}$, describe the following languages:

- (a) $L_1 \cap L_2$
- (b) $L_1 \cup L_2$
- (c) $(aba)^{-1}L_1$

Exercise 6

Given $L_1 = \{xaby : x, y \in \{a, b\}^*\}$ and $L_2 = \{xbay : x, y \in \{a, b\}^*\}$, describe the language $L_1 \cap \overline{L_2}$

Exercise 7

Describe the language over $\{a,b\}$ whose words begin with a and do not contain the segment ba.

Given the language $L = \{a, abb\}^* \{b, baa\}^*$, enumerate, in canonical order, the first ten strings of the language.

Exercise 9

Given the language $L = \{x \in \{a, b\}^* : x = x^r\}$, describe the language L^r .

Exercise 10

Taking into account the following languages:

$$L_1 = \{axb : x \in \{a, b\}^*\}$$

 $L_2 = \{x \in \{a, b\}^* : (|x|_a = 1) \lor (|x|_b = 1)\}$

and the homomorphism:

$$\begin{cases} h(0) = ba \\ h(1) = ab \end{cases}$$

describe the following languages:

- (a) L_1^2
- (b) L_1^*
- (c) $(aab)^{-1}L_1$
- (d) $(aba)^{-1}L_1$
- (e) $\overline{L_1}$
- (f) $h^{-1}(L_1)$
- (g) $L_1 \cap L_2$
- (h) $h^{-1}(L_2)$

Exercise 11

Decide on the validity of the following statement:

$$Suf(L) = (Pref(L^r))^r$$

Exercise 12

Decide on the validity of the following statement:

Let $L \subset \Sigma^*$ be a language such that there exists a number n such that, for any $x \in \Sigma^*$, if |x| > n, then it is fulfilled that $x \in L$. The language \overline{L} is finite.

Exercise 13

Describe the language L^* taking into account that $L = L^2$.

Exercise 14

Let L_1 and L_2 be such that $L_1^* = L_2^*$. It is fulfilled that $L_1 = L_2$?

Let u, v two strings in Σ^* and let $L_1 = \{ux : x \in \Sigma^*\}$ and $L_2 = \{uvx : x \in \Sigma^*\}$ be two languages. Is there any relationship between L_1 and L_2 ?

Exercise 16

Given the language $L = \{a\}^+ \{b\}^+$

- (a) Obtain a DFA that accepts L
- (b) Describe the language \overline{L}
- (c) Obtain a DFA for the language \overline{L}

Exercise 17

Given $L = \{xab : x \in \{a, b\}^*\}$ and the following automaton:

Decide the validity of the following statements:

- (a) $L \subseteq L(A)$
- (b) $L(A) \subseteq L$

Exercise 18

Given $L = \{x \in \{a, b\}^* : |x|_b \equiv 1 \pmod{2}\}$ and the following automaton:

Decide the validity of the following statements:

- (a) $L \subseteq L(A)$
- (b) $L(A) \subseteq L$

Exercise 19

Decide the validity of the following statement:

Given a finite automaton $A = (Q, \Sigma, \delta, q_0, F)$, it is hold that $\lambda \in L(A)$ if and only if $q_0 \in F$

Exercise 20

Decide the validity of the following statement:

Let A_1 y A_2 be two accesible and completely specified DFA. If $L(A_1) \subseteq L(A_2)$, then, the number of states of A_1 is smaller or equal than the number of states of A_2

Obtain a DFA for the following languages:

- (a) $L = \{xaa : x \in \{a, b\}^*\}$ (strings that have sufix aa).
- (b) $L = \{xabay : x, y \in \{a, b\}^*\}$ (strings that contain the segment aba).
- (c) $L = \{a, abb\}^* \{b, baa\}^*$
- (d) Language over the alphabet $\Sigma = \{a, b\}$ starting with a and ending with b.
- (e) $L = \{(ab)^n : n > 0\}$
- (f) $L = \{x \in \{a, b\}^* : aa \in Seg(x) \land a \in Suf(x)\}$
- (g) $L = \{x \in \{a, b\}^* : |x|_a > 0 \land |x|_b > 0\}$
- (h) $L = \{x \in \{a, b\}^* : |x|_a = 2\}$
- (i) $L = \{x \in \{a, b\}^* : aa \notin Seg(x) \land bb \notin Seg(x)\}$

Exercise 22

Given $L = \{xa : x \in \{a, b\}^*\}$

- (a) Obtain a DFA that accepts L
- (b) Describe the language L^2
- (c) Obtain a DFA for L^2

Exercise 23

Given $L = \{x \in \{a, b\}^* : x = a^n, n > 0\}$, obtain a DFA for \overline{L}

Exercise 24

Decide the validity of the following statement:

Let A be an accesible DFA with n states. If there exists $x \in L$ such that |x| > n, then it is fulfilled that L is infinite.

Exercise 25

Compute a equivalent DFA for the following automata:

(a)

(b)

(c)

(d)

(e)

(f)

Let L be a language for which there exist $u_1, u_2, \ldots, u_{1001} \in \Sigma^*$ such that, for any pair of strings u_i, u_j , if $i \neq j$ then there exists $z \in \Sigma^*$ that fulfills that $u_i z \in L \Leftrightarrow u_j z \notin L$.

- (a) Is L a regular language?
- (b) Is L a non-regular language?