Taller de Lógica Digital - Parte 2

Organización del Computador 1

Primer Cuatrimestre 2023

Ejercicios

1. Componentes de 3 estados

a) Completar la siguiente tabla:

A	A_{en}	В	B_{en}	С	C_{en}	Estimado	Obtenido
0	0	0	0	0	0	Hi-Z	Hi-Z
0	1	1	1	0	0	Error	Error
1	0	1	0	1	0	Hi-Z	Hi-Z
1	1	0	0	0	1	Error	Error
0	1	0	1	0	1	Error	0
0	1	1	1	1	1	Error	Error
1	0	1	1	1	0	1	1

b) Completar la siguiente tabla:

Color	Interpretación				
Gris	No sabemos cuantos bits pasan				
Verde claro	1				
Verder oscuro	0				
Azul	Hi-Z				
Rojo	Error				

c) Enunciar la regla:

No mas de un bit de control prendido

d) Explicar cuáles son y por qué:

Cuando dejas pasar un valor de datos y un Hi-Z Cuando pasan dos 1 o dos 0

2. Transferencia entre registros

a) Detallar entradas y salidas:

Entradas

CLK: Clock

en_Force_input: Activa el force input

Force_input: Si esta activado, fuerza su valor a la salida y si hay algun bit de escritura se guarda

W: Permite la escritura

en_out: Permite la lectura

b) Secuencia de señales:

Wr1 = 1

F_I = 1

EFI = 1

clk = 1 (Flanco ascendiente)

Salidas

R0-2: bits de salida debug de los registros Salida: O toma el valor del force, o toma el el valor del regiostro a leer c) Secuencia de señales:

Wr0 = 1 -> FI = b -> EFI = 1 -> CLK -> Wr0 = 0 -> EFI = 0 -> Wr1 = 1 -> OUTr0 = 1 -> CLK -> Wr1 = 0 -> OUTr0 = 0 Wr0 = 1 -> OUTr2 = 1 -> CLK -> Wr0 = 0 -> OUTr2 = 0 -> OUTr1 = 1 -> Wr2 = 1 -> CLK

Flags: Salidas de datos

Valores finales: R0 = R2i; R1 = b; R2 = b; Con b como un bit cualquiera

3. Máquina de 4 registros con suma y resta.

a) Detallar entradas y salidas:

CLK: Clock OP: Controla la operacion Reg0-3_W: Controla la escritura en el registro

Reg0-3_Out: Controla la salida del registro

Force_input: Fuerza un dato a la salida, y se puede guardar en un registro

EN_Force_input: Controla el force_input

ALU_A-B_Write: Controla la escritura del registro de la ALU

ALU_enable_out: Controla la salida de la ALU

b) Detallar el contenido de cada display:

Los 4 display de los registros muestran los valores almacenados; El primer display de la ALU muestra el valor de A, el segundo el valor de B, y el ultimo muestra el valor del resultado de la operacion; Y el ultimo display de abajo o muesttra el valor forzado por el force input o el resultado de la operacion

c) Secuencia de señales:

FI = 4 -> Wr2 = 1 -> e_FI = 1 -> CLK -> Wr2 = 0 -> FI = -3 -> Wr3 = 1 -> CLK

d) Completar la siguiente tabla:

Valor inicial	Resultado operación 1	Flags	Resultado operación 2	Flags
(4, 0)	4	Ninguna	4	С
(7, -1)	-8	N, V, C	7	Ninguna
(-8, -2)	6	V, C	-6	N, C
(8, -9)	7 (Rellenando con 1)	Ninguno	0 (Rellenando con 0)	Z

Los resultados interpretados en sin signo y en complemento a 2.

e) Explicar

Corrección

Integrantes:

Nombre y Apellido: LU: Nombre y Apellido: LU:

Para uso de los docentes:

1	2	3