IEEE 754

- It is IEEE Standard for Floating-Point Arithmetic.
- It is a technical standard for floating-point Representation which was established in 1985 by the Institute of Electrical and Electronics Engineers (IEEE).

Components of IEEE 754

- IEEE 754 is the most efficient in most cases. IEEE 754 has 3 basic components:
- **1. Sign** (+ve or -ve)
- 2. The Biased exponent
- 3. The Normalized Mantissa

Component 1: Sign (+ve or -ve)

- □ 0 represents a positive number
- □ 1 represents a negative number.

For example: 28.017 the sign is +ve. So it will be represent by 0.

-28.017 the sign is -ve. So it will be represent by 1.

Component 2: The Biased exponent

- The exponent field needs to represent both positive and negative exponents. A bias is added to the actual exponent in order to get the stored exponent.
- ☐ The value of bias based of size of exponent component.

For example:

if size of exponent field is 8 bits then bias value is $2^{\text{size-1}}-1=127$

if size of exponent field is 11 bits then bias value is $2^{\text{size-1}}-1=1023$

Component 3: The Normalized Mantissa

- □ The mantissa is part of a number in scientific notation or a floating-point number, consisting of its significant digits.
- □ A normalized mantissa is one with only one 1 to the left of the decimal like 1.mmmmmmmmmm...mmmmm

Example: 8.25

Binary Representation: 1000.01

Normalized Mantissa: $1.00001 \times 2^{+3}$

Representation of IEEE 754

There are two types of representation:

1. Single precision

(+ve or -ve sign) 1.mantissa x 2 Exponent-127

Question: Represent 85.125 in IEEE 32 bits Format.

Binary of 85 = 1010101

Binary of 0.125 = 001

Floating Point Number $85.125 = 1010101.001 = 1.010101001 \times 2^{+6}$

So, Sign component: 0 because of +ve sign.

biased exponent: 127+6=133

Binary of 133 = 10000101

Normalized mantissa = 010101001

we will add 0's to complete the 23 bits in mantissa

The IEEE 754 Single precision is: =

Sign	Exponent	Mantissa
0	10000101	01010100100000000000000
1bit	8bits	23bits

This can be written in hexadecimal form 42AA4000 in Computer.

2. Double precision

(+ve or –ve sign) 1.mantissa x $2^{\text{Exponent-}1023}$

Double Precision
IEEE 754 Floating-Point Standard

Double Precision Example

Question: Represent 85.125 in IEEE 64 bits Format.

Binary of 85 = 1010101Binary of 0.125 = 001Floating Point Number $85.125 = 1010101.001 = 1.010101001 \times 2^{+6}$

So, Sign component: 0 because of +ve sign.

Biased exponent: 1023+6=1029

Binary of 1029 = 10000000101

Normalized mantissa = 010101001

we will add 0's to complete the 52 bits in mantissa

The IEEE 754 Double precision is

64 bits :

010000000101

Sign	Exponent	Mantissa	
0	1000000101	0101010010000	000000000000000000000000000000000000000
		000000000	
1bit	11bits	52bits	

This can be written in hexadecimal form 405548000000000 in Computer.