MA2001 AY24/25 Sem 1 Final

Solution by Thang Pang Ern Audited by Malcolm Tan Jun Xi

Question 1

For each of the following systems of equations, say whether there is no solution, a unique solution, or infinitely many solutions (you do not need to provide a solution). Make sure to justify your answers.

(a)

$$x-y+z=1$$
$$2x-y+z=4$$
$$4x-3y+3z=3$$

(b)

$$x+y=4$$
$$3x+y=10$$
$$x-y=2$$

(c)

$$2w-2y+3z = -1$$
$$-x-y+4z = 2$$
$$-w+x-10y = -6$$

Solution.

(a) Consider

$$\begin{pmatrix} 1 & -1 & 1 & 1 \\ 2 & -1 & 1 & 4 \\ 4 & -3 & 3 & 3 \end{pmatrix} \xrightarrow{\text{RREF}} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

The last row corresponds to 0x + 0y + 0z = 1, which is a contradiction, so the system has no solution.

- (b) By considering the first and third equation, we have (x,y) = (3,1). Substituting this into the second equation, we have $3 \cdot 3 + 1 \cdot 1 = 10$, which implies that the system is consistent and has a unique solution.
- (c) Consider

$$\begin{pmatrix} 2 & 0 & -2 & 3 & -1 \\ 0 & -1 & -1 & 4 & 2 \\ -1 & 1 & -10 & 0 & -6 \end{pmatrix} \xrightarrow{\text{RREF}} \begin{pmatrix} 1 & 0 & 0 & \frac{25}{24} & -\frac{1}{8} \\ 0 & 1 & 0 & -\frac{85}{24} & -\frac{19}{8} \\ 0 & 0 & 1 & -\frac{11}{24} & \frac{3}{8} \end{pmatrix}.$$

This corresponds to

$$w + \frac{25}{24}z = -\frac{1}{8}$$
 $x - \frac{85}{24}z = -\frac{19}{8}$ $y - \frac{11}{24}z = \frac{3}{8}$.

So, we can set z to be a free variable, which yields infinitely many solutions to the system. \Box

Question 2

Which of the following sets are linearly independent? Justify all answers.

- (a) $\{(1,1,1),(1,2,2),(1,2,3)\}$
- **(b)** $\{(1,1,1,1),(1,0,-1,1),(-1,2,5,-1)\}$
- (c) The solution set of Ax = b, where A is square and invertible.
- (d) The solution set of Ax = 0, where A is square and invertible.

Solution.

(a) Yes. The coefficient matrix is

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{pmatrix}$$

which has determinant 1. Since the determinant is non-zero, by the invertible matrix theorem, the set is a basis for \mathbb{R}^3 . We conclude that the set is linearly independent.

(b) Yes. Consider

$$c_{1}\begin{pmatrix}1\\1\\1\\1\end{pmatrix}+c_{2}\begin{pmatrix}1\\0\\-1\\1\end{pmatrix}+c_{3}\begin{pmatrix}-1\\2\\5\\1\end{pmatrix}=\begin{pmatrix}0\\0\\0\\0\end{pmatrix}.$$

This yields

$$\begin{pmatrix} 1 & 1 & -1 \\ 1 & 0 & 2 \\ 1 & -1 & 5 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

The first and fourth rows imply $c_1 + c_2 - c_3 = 0$ and $c_1 + c_2 + c_3 = 0$ respectively, so $c_3 = 0$. Hence, $c_1 = -c_2$. By considering the second row, $c_1 = 0$, so $c_2 = 0$. Substituting $c_1 = c_2 = c_3 = 0$ into the third equation, we see that the system is consistent. Hence, the only solution is the trivial one, so the three vectors are linearly independent in \mathbb{R}^4 .

(c) Yes¹ Since **A** is an invertible matrix, then $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$, which is the only solution to the equation. A set containing one non-zero vector is linearly independent, so the result follows.

¹We are under the assumption that $\mathbf{b} \neq \mathbf{0}$.

(d) No. Let

$$\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \mathbf{x}_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \quad \mathbf{x}_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}.$$

Then, \mathbf{x}_1 and \mathbf{x}_2 satisfy the equation $A\mathbf{x} = \mathbf{0}$, but \mathbf{x}_1 and \mathbf{x}_2 are linearly dependent since each vector is a scalar multiple of the other.

Question 3

Consider the matrix

$$\mathbf{A} = \begin{pmatrix} 1 & 3 & 3 & 2 \\ 2 & 6 & 9 & 7 \\ -1 & -3 & 3 & 4 \end{pmatrix}.$$

- (a) Find a basis for the column space of A.
- (b) Find a basis for the row space of A.
- (c) Find a basis for the null space of A.

Solution.

(a) We have

$$\begin{pmatrix} 1 & 3 & 3 & 2 \\ 2 & 6 & 9 & 7 \\ -1 & -3 & 3 & 4 \end{pmatrix} \xrightarrow{\text{RREF}} \begin{pmatrix} 1 & 3 & 0 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

So, only the first and third columns are pivot columns. As such, a basis for the column space is

$$\left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\}.$$

(b) From the RREF in (a), a basis would be

$$\left\{ \begin{pmatrix} 1\\3\\0\\-1 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\1 \end{pmatrix} \right\}.$$

(c) From the RREF in (a), suppose (w, x, y, z) is contained in the nullspace of A. Then,

$$\begin{pmatrix} 1 & 3 & 0 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} w \\ x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

3

So, w + 3x - z = 0 and y + z = 0. Setting z to be a free variable, we have y = -z and w = z - 3x. This implies that x is another free variable, so

$$\begin{pmatrix} w \\ x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -3x + z \\ x \\ -z \\ z \end{pmatrix} = x \begin{pmatrix} -3 \\ 1 \\ 0 \\ 0 \end{pmatrix} + z \begin{pmatrix} 1 \\ 0 \\ -1 \\ 1 \end{pmatrix}.$$

A basis for the nullspace is

$$\left\{ \begin{pmatrix} -3\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\-1\\1 \end{pmatrix} \right\}.$$

Question 4

Let

$$\mathbf{M} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 2 \\ 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} \quad \mathbf{b} = \begin{pmatrix} 2 \\ 3 \\ 1 \\ 2 \end{pmatrix}.$$

- (a) Find the least squares solution to Mx = b.
- (b) Find the orthogonal projection of **b** onto the column space of **M**.
- (c) Show that for any matrix \boldsymbol{X} with linearly independent columns, the matrix $\boldsymbol{X}^T\boldsymbol{X}$ is invertible.

Solution.

(a) Let $\mathbf{x} = (x, y, z)$. Consider $\mathbf{M}^{\mathrm{T}}\mathbf{M}\mathbf{x} = \mathbf{M}^{\mathrm{T}}\mathbf{b}$, so

$$\begin{pmatrix} 7 & 3 & 6 \\ 3 & 2 & 2 \\ 6 & 2 & 7 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 10 \\ 3 \\ 11 \end{pmatrix} \quad \text{so} \quad \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 7 & 3 & 6 \\ 3 & 2 & 2 \\ 6 & 2 & 7 \end{pmatrix}^{-1} \begin{pmatrix} 10 \\ 3 \\ 11 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}.$$

As such, the least squares solution is $\mathbf{x} = (1, -1, 1)$.

(b) The orthogonal projection is

$$\mathbf{p} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 2 \\ 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \\ 1 \\ 2 \end{pmatrix}.$$

Alternatively, one can work out manually by using the Gram-Schmidt process.

(c) Suppose **X** is an $n \times n$ matrix. Let the columns of **X** be $\mathbf{c}_1, \dots, \mathbf{c}_n$. Then,

$$\mathbf{X} = \begin{pmatrix} \mathbf{c}_1 & \dots & \mathbf{c}_n \end{pmatrix}$$
 so $\mathbf{X}^{\mathrm{T}} = \begin{pmatrix} \mathbf{c}_1^{\mathrm{T}} \\ \vdots \\ \mathbf{c}_n^{\mathrm{T}} \end{pmatrix}$.

As such,

$$\mathbf{X}^{\mathrm{T}}\mathbf{X} = \begin{pmatrix} \mathbf{c}_{1}^{\mathrm{T}}\mathbf{c}_{1} & \mathbf{c}_{1}^{\mathrm{T}}\mathbf{c}_{2} & \dots & \mathbf{c}_{1}^{\mathrm{T}}\mathbf{c}_{n} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{c}_{n}^{\mathrm{T}}\mathbf{c}_{1} & \mathbf{c}_{n}^{\mathrm{T}}\mathbf{c}_{2} & \dots & \mathbf{c}_{n}^{\mathrm{T}}\mathbf{c}_{n} \end{pmatrix}$$

The trick is to let $\mathbf{y} = (a_1, \dots, a_n) \in \mathbb{R}^n$ and compute the quadratic form associated with $\mathbf{X}^T\mathbf{X}$, i.e.

$$\mathbf{y}^{\mathrm{T}}\left(\mathbf{X}^{\mathrm{T}}\mathbf{X}\right)\mathbf{y} = \left(\sum_{i=1}^{n} a_{i}\mathbf{c}_{i}\right)^{\mathrm{T}}\left(\sum_{j=1}^{n} a_{j}\mathbf{c}_{j}\right) = \sum_{1 \leq i, j \leq n} a_{i}a_{j}\mathbf{c}_{i}^{\mathrm{T}}\mathbf{c}_{j} = \left\|\sum_{i=1}^{n} a_{i}\mathbf{c}_{i}\right\|^{2}.$$

Because the columns $\mathbf{c}_1, \dots, \mathbf{c}_n$ are linearly independent, the only way the linear combination can be the zero vector is by taking all coefficients $a_i = 0$. Thus, $\mathbf{y} \neq \mathbf{0}$ implies that

$$\left\|\sum_{i=1}^n a_i \mathbf{c}_i\right\|^2 > 0.$$

So, $\mathbf{y}^T \left(\mathbf{X}^T \mathbf{X} \right) \mathbf{y} > 0$, i.e. $\mathbf{X}^T \mathbf{X}$ is positive-definite. Positive-definiteness forces all eigenvalues to be strictly positive, so 0 cannot be an eigenvalue. By the invertible matrix theorem, $\mathbf{X}^T \mathbf{X}$ is invertible.

Question 5

Consider the matrix

$$\mathbf{S} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$

- (a) Find the eigenvalues and eigenvectors of SS^{T} .
- (b) Find the eigenvalues and eigenvectors of S^TS .
- (c) Prove that for any $m \times n$ matrix **B**, all eigenvalues of $\mathbf{B}^{\mathrm{T}}\mathbf{B}$ and of $\mathbf{B}\mathbf{B}^{\mathrm{T}}$ are non-negative.
- (d) Prove that $\mathbf{B}^{T}\mathbf{B}$ and $\mathbf{B}\mathbf{B}^{T}$ share the same non-zero eigenvalues.

Solution.

(a) We have

$$\mathbf{SS}^{\mathrm{T}} = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$$

which is a diagonal matrix, so the eigenvalues of SS^T are 2 and 1. One can deduce that the corresponding eigenvectors are (1,0) and (0,1) respectively.

(b) We have

$$\mathbf{S}^{\mathsf{T}}\mathbf{S} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

which has

eigenvalues 0, 1, 2 and corresponding respective eigenvectors $\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$.

(c) Let λ be an eigenvalue of $\mathbf{B}^{\mathrm{T}}\mathbf{B}$ with corresponding eigenvector \mathbf{v} . Then,

$$\mathbf{B}^{\mathrm{T}}\mathbf{B}\mathbf{v} = \lambda \mathbf{v}$$
 so $\mathbf{v}^{\mathrm{T}}\mathbf{B}^{\mathrm{T}}\mathbf{B}\mathbf{v} = \lambda \mathbf{v}^{\mathrm{T}}\mathbf{v} = \lambda \|\mathbf{v}\|^{2}$.

Thus, $(\mathbf{B}\mathbf{v})^{\mathrm{T}}(\mathbf{B}\mathbf{v}) = \lambda \|\mathbf{v}\|^{2}$. Note that $\mathbf{B}\mathbf{v}$ is a column vector, say $(v_{1}, \dots, v_{m}) \in \mathbb{R}^{m}$, so

$$(\mathbf{B}\mathbf{v})^{\mathrm{T}}(\mathbf{B}\mathbf{v}) = v_1^2 + \ldots + v_m^2.$$

By definition, an eigenvector must be non-zero, so $\|\mathbf{v}\|^2 > 0$, but the sum of squares $v_1^2 + \ldots + v_m^2$ is ≥ 0 , which forces $\lambda \geq 0$.

Similarly, let μ be an eigenvalue of $\mathbf{B}\mathbf{B}^{\mathrm{T}}$ with corresponding eigenvector \mathbf{w} . Then,

$$\mathbf{B}\mathbf{B}^{\mathrm{T}}\mathbf{w} = \mu\mathbf{w}$$
 so $\mathbf{w}^{\mathrm{T}}\mathbf{B}\mathbf{B}^{\mathrm{T}}\mathbf{w} = \mu \|\mathbf{w}\|^{2}$.

Thus, $(\mathbf{B}^{\mathrm{T}}\mathbf{w})^{\mathrm{T}}(\mathbf{B}^{\mathrm{T}}\mathbf{w}) = \mu \|\mathbf{w}\|^2$. In a similar fashion, note that $\mathbf{B}^{\mathrm{T}}\mathbf{w}$ is a column vector, say $(w_1, \ldots, w_n) \in \mathbb{R}^n$, so

$$(\mathbf{B}^{\mathrm{T}}\mathbf{w})^{\mathrm{T}}(\mathbf{B}^{\mathrm{T}}\mathbf{w}) = w_1^2 + \ldots + w_n^2.$$

By definition, an eigenvector must be non-zero, so $\|\mathbf{w}\|^2 > 0$, but the sum of squares $w_1^2 + \ldots + w_n^2$ is ≥ 0 , which forces $\mu \geq 0$.

(d) Let $\lambda \neq 0$ be an eigenvalue of $\mathbf{B}^T \mathbf{B}$ with corresponding eigenvector \mathbf{v} , so $\mathbf{B}^T \mathbf{B} \mathbf{v} = \lambda \mathbf{v}$, so

$$\mathbf{B}\mathbf{B}^{\mathrm{T}}\mathbf{B}\mathbf{v} = \lambda \mathbf{B}\mathbf{v}$$

so λ is an eigenvalue of $\mathbf{B}\mathbf{B}^{\mathrm{T}}$. Conversely, let $\mu \neq 0$ be an eigenvalue of $\mathbf{B}\mathbf{B}^{\mathrm{T}}$ with corresponding eigenvector \mathbf{w} , so $\mathbf{B}\mathbf{B}^{\mathrm{T}}\mathbf{w} = \lambda \mathbf{w}$, so

$$\mathbf{B}^{\mathrm{T}}\mathbf{B}\mathbf{B}^{\mathrm{T}}\mathbf{w} = \mu \mathbf{B}^{\mathrm{T}}\mathbf{w}.$$

Thus, μ is an eigenvalue of $\mathbf{B}^T\mathbf{B}$. We conclude that $\mathbf{B}^T\mathbf{B}$ and $\mathbf{B}\mathbf{B}^T$ share the same non-zero eigenvalues.

6

Question 6

Consider the vector spaces \mathbb{R}^m and \mathbb{R}^n .

(a) Prove that there exists a linear transformation

$$T: \mathbb{R}^n \to \mathbb{R}^m$$
 with $\ker(T) = \{\mathbf{0}\}$ if and only if $m \ge n$.

(b) Prove that there exists a linear transformation

$$T: \mathbb{R}^n \to \mathbb{R}^m$$
 with $R(T) = \mathbb{R}^m$ if and only if $m \le n$.

Solution.

(a) For the forward direction, suppose $\ker(T) = \{0\}$. Then, T is injective, so nullity (T) = 0. By the rank-nullity theorem, $\operatorname{rank}(T) = n$. Since the image of T is a subspace of \mathbb{R}^m , then $n \le m$.

For the reverse direction, suppose $m \ge n$. For any vector in \mathbb{R}^m , we note that we can write it as $(y_1, \dots, y_n, y_{n+1}, y_m)$. Define

$$T: \mathbb{R}^n \to \mathbb{R}^m$$
 where $T((x_1, \dots, x_n)) = (x_1, \dots, x_n, 0, \dots, 0)$.

Then, The first n standard basis vectors of \mathbb{R}^m form the columns of the matrix representation T. The basis vectors are linearly independent, so T is injective and $\ker(T) = \{\mathbf{0}\}$.

(b) For the forward direction, suppose $R(T) = \mathbb{R}^m$. Then, rank (T) = m. By the rank-nullity theorem, nullity (T) = n - m. Since the dimension of any subspace is ≥ 0 , then $n - m \geq 0$, so $n \geq m$.

For the reverse direction, suppose $n \ge m$. Consider the linear transformation

$$T: \mathbb{R}^n \to \mathbb{R}^m$$
 where $T((x_1, \dots, x_n)) = (x_1, \dots, x_m)$.

Essentially, T projects the vector $(x_1, \ldots, x_n) \in \mathbb{R}^n$ to its first m coordinates, so T is surjective because for any $(x_1, \ldots, x_m) \in \mathbb{R}^m$, there exists $(x_1, \ldots, x_n) \in \mathbb{R}^n$ such that the claim holds. Hence, $R(T) = \mathbb{R}^m$.

Question 7

State whether each statement is **TRUE** or **FALSE**. No justification is required.

- (a) A square matrix with a 0 on its diagonal is necessarily singular.
- (b) A system Ax = b has a solution if and only if rank $(A) = \text{rank}(A \mid b)$.
- (c) The solution set of Ax = b is a subspace of \mathbb{R}^n .
- (d) If $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ with $\mathbf{u} \neq \mathbf{0}$ and $\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \cdot \mathbf{w}$, then $\mathbf{v} = \mathbf{w}$.
- (e) If **A** is an $m \times n$ matrix with m > n, the system $\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}$ always has a solution.
- (f) If $v_1, ..., v_n$ are linearly independent eigenvectors of A, then applying Gram–Schmidt to them yields orthogonal eigenvectors of A.
- (g) An $n \times n$ matrix with n distinct eigenvalues must be diagonalizable.
- (h) Every square upper-triangular matrix is diagonalizable.
- (i) Every square upper-triangular matrix is orthogonally diagonalizable.
- (j) A linear transformation must send 0 to 0.

Solution.

(a) False. Let

$$\mathbf{A} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

which is non-singular since it has non-zero determinant.

(b) True². To see why, write the augmented matrix and perform Gaussian elimination as follows:

$$\begin{pmatrix} \mathbf{A} \mid \mathbf{b} \end{pmatrix} \xrightarrow{\text{REF}} \begin{pmatrix} * & \dots & * & | & * \\ 0 & \ddots & * & | & * \\ \vdots & \ddots & \ddots & | & \vdots \\ 0 & \dots & 0 & | & k \end{pmatrix}.$$

If the last pivots occur only inside **A**, then no row is of the form $(0\ 0\ ...\ 0\ |\ k)$ with $k \neq 0$. The augmented column does not create a new pivot and the ranks stay equal, i.e. the system is consistent. On the other hand, if such a row appears, the augmented column introduces an extra pivot, so $\operatorname{rank}(\mathbf{A} \mid \mathbf{b}) = \operatorname{rank}(\mathbf{A}) + 1$ and the system is inconsistent.

- (c) False. The statement is true if and only if b = 0.
- (d) False. Let $\mathbf{u} = (1,0), \mathbf{v} = (0,1), \mathbf{w} = (0,2).$
- (e) True. $\mathbf{A}^{\mathrm{T}}\mathbf{b}$ lies in $C(\mathbf{A}^{\mathrm{T}}\mathbf{A})$ and $C(\mathbf{A}^{\mathrm{T}}\mathbf{A}) = C(\mathbf{A}^{\mathrm{T}})$. So, the system is always consistent.
- (f) False. The Gram-Schmidt produces orthogonal vectors in the same span, but each new vector is a linear combination of several eigenvectors except in the special case where the vectors

²A fun fact is that this is known as the Rouché–Capelli theorem.

already belong to mutually orthogonal eigenspaces, the orthogonality step *destroys* the eigenvector property. To see why, let

$$\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$$
 where $\mathbf{P} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $\mathbf{D} = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$.

So, the eigenvectors are (1,0) and (1,1). By the Gram-Schmidt process, we obtain the orthogonal set $\{(1,0),(0,1)\}$ but (0,1) is not an eigenvector of **A**.

- (g) True. For every eigenvalue, its corresponding eigenspace is one-dimensional, so the matrix is diagonalisable.
- (h) False. To come up with a counterexample, we can come up with a 2×2 upper triangular matrix with an eigenvalue of multiplicity 2 but its eigenspace is one-dimensional³. For example, let

$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

Then, **A** has an eigenvalue $\lambda = 1$ of algebraic multiplicity 2. However, its corresponding eigenspace span $\{(1,0)\}$ is one-dimensional, so **A** is not diagonalisable.

- (i) False. By the spectral theorem, a square matrix is orthogonally diagonalisable if and only if it is symmetric. As a counterexample, one can come up with an upper triangular matrix that is not symmetric.
- (j) True. By definition of a linear transformation, $T(\mathbf{x} + \mathbf{y}) = T(\mathbf{x}) + T(\mathbf{y})$. Setting $\mathbf{x} = \mathbf{y} = \mathbf{0}$, we have $T(\mathbf{0}) = 2T(\mathbf{0})$, so $T(\mathbf{0}) = \mathbf{0}$.

³We say that the algebraic multiplicity of the eigenvalue is 2 but the geometric multiplicity is 1.