КН, 30.06.2024 Изпит

 Φ ормулата за оценка е 2+ брой точки. Време за работа: 4 часа. Успех.

Задача 1. Асен и петима негови приятели всеки ден играят футбол, като се разделят по равномерно случаен начин на два отбора по трима души. Колко е математическото очакване и дисперсията на броя дни до първия път, когато:

- 1. (0.25 т.) Асен е в отбор с 2-мата най-добри от приятелите си?
- 2. (0.25 т.) се разделят на отбори, на които вече са се делили в предишен ден?
- 3. (0.5 т.) вече са играли във всички възможни комбинации помежду си?

Задача 2. Борис и Валя се разбират да се срещнат пред ФМИ. Нека времената, които отнема на всеки от тях да стигнат до мястото на срещата са независимо експоненциално разпределени със средно 10 минути.

- 1. (0.25 т.) Колко е вероятността (може да закръглите с точност 0.01) първият от тях да се появи след по-малко от 10 минути, а следващият 1 минута след него?
- 2. (0.25 т.) Намерете число x, такова че вероятността и двамата да стигнат след поне x минути да бъде 50%.
- 3. (0.25 т.) Каква е вероятността (приблизително с точност 0.01) след 100 такива уговорки, Борис да е пристигал по-рано в поне 55 от случаите?
- 4. (0.5 т.) Колко е очакването, дисперсията и плътносттна на случайната величина, равна на времето (в минути), които първият пристигнал ще изчака до пристигането на втория?

Задача 3. 1. (0.5 т.) Нека Ω е множество с 10 елемента. По колко начина можем да изберем негови три подмножества $A, B, C \subset \Omega$, така че да е изпълнено равенството

$$\mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) = 1 + \mathbb{P}(A \cap B) + \mathbb{P}(A \cap C) + \mathbb{P}(B \cap C)?$$

2. (0.5 т.) Нека Ω е множеството от ненамаляващи функции от $\{1, \dots, 10\}$ в $\{1, \dots, 20\}$. Каква е вероятостта равномерно случаен негов елемент да бъде строго растяща функция?

Задача 4. Нека X и Y са независими Exp(1) сл. вел. и $Z:=\sqrt{X/Y}$.

- 1. (0.5 т.) Намерете функцията на разпределение F_Z и използвайки я, очакването $\mathbb{E} Z$.
- 2. (0.5 т.) Изразете $\mathbb{E} Z$ чрез съвместната плътност на X и Y. Заключете, че $\Gamma(1/2) = \sqrt{\pi}$.

(бонус 0.5 т.) Намерете границата

$$\lim_{n\to\infty} e^{-n} \left(\frac{n^1}{1!} + \frac{n^2}{2!} + \dots \frac{n^n}{n!} \right).$$

 $^{^1\}Gamma$ ама-функцията на Ойлер се дефинира чрез $\Gamma(z)=\int_0^\infty t^{z-1}e^{-t}\mathrm{d}t$ и изпълнява $\Gamma(z+1)=z\Gamma(z).$