Topic 4:

Optimization of single variable objective functions

Outline

- 1. Necessary condition of local Maximum/minimum points
- 2. Sufficient condition 1: First derivative test
- 3. Sufficient condition 2: Second derivative test
- 4. Global optimization
- 5. Taylor Expansion (Series)

1. Necessary condition of local Maximum/minimum points

- If f has domain D, then
 - $-c \in D$ is a (global) maximum point of $f \Leftrightarrow f(x) \leq f(c)$ for all $x \in D$
 - $-d \in D$ is a (global) minimum point of $f \Leftrightarrow f(x) \ge f(d)$ for all $x \in D$
 - A point is called (global) extreme point if it is either a minimum or a maximum point
- If there is a neighborhood I of c such that c is the maximum (minimum) point of f on I, then c is called a local maximum (minimum)

- Suppose that a function f is differentiable in an interval I, if an interior point x_0 of I is a local minimum/maximum point, then the tangent line must be horizontal at x_0 , i.e., $f'(x_0) = 0$
 - If $f'(x_0) = 0$, then x_0 is called the stationary point of f.
 - The condition $f'(x_0) = 0$ is referred to as the first order condition (FOC)

- For a differentiable function, $f'(x_0) = 0$ is a necessary condition for x_0 to be local minimum or maximum point.
- For a non-differentiable function, above is not true. e.g., $f(x) = |x|, x_0 = 0$ is a local minimum point, but $x_0 = 0$ is not a stationary point.

2. Sufficient condition 1: First derivative test

Recall

```
f'(x) \ge 0 on I \Leftrightarrow f is increasing on I
f'(x) \le 0 on I \Leftrightarrow f is decreasing on I
```

- (First derivative test) Suppose that f is differentiable and x_0 is stationary point, if there is a small neighborhood I of x_0 such that for $x \in I$
 - If $f'(x) \ge 0$ for $x \le x_0$ and $f'(x) \le 0$ for $x \ge x_0$, then, $x = x_0$ is a (local) maximum point
 - If $f'(x) \le 0$ for $x \le x_0$ and $f'(x) \ge 0$ for $x \ge x_0$, then, $x = x_0$ is a (local) minimum point

• **Example**: Find the local extreme points of the function

$$f(x) = x^3 - 12x^2 + 36x + 8$$

- FOC: $f'(x) = 3x^2 24x + 36 = 3(x 2)(x 6) = 0$
- Stationary points: x = 2 or x = 6

• In addition,
$$f'(x)$$
 $\begin{cases} > 0 \text{ when } x < 2 \\ < 0 \text{ when } 2 < x < 6 \\ > 0 \text{ when } x > 6 \end{cases}$

• from first derivative test, ${x_1}^*=2$ is a local maximum point and ${x_2}^*=6$ is a local minimum point.

Example: Find the local maximum/minimum/inflection points of the

function

$$f(x) = e^{2x} - 5e^x + 4$$

• FOC:
$$f'(x) = 2e^{2x} - 5e^x = e^x(2e^x - 5) = 0$$
 when $x = \ln(2.5)$.

• In addition
$$f'(x)$$
 $\begin{cases} < 0 \text{ when } x < \ln(2.5) \\ > 0 \text{ when } x > \ln(2.5) \end{cases}$

• Therefore, $x = \ln(2.5)$ is local (global?) minimum point.

3. Sufficient condition 2: Second derivative test

- Suppose that $f \in C^2$ and x_0 is a stationary point, I is a small neighborhood of x_0
 - If $f''(x) \ge 0$ for $x \in I$, f'(x) is increasing, $f'(x) \le 0$ for $x \le x_0$ and $f'(x) \ge 0$ for $x \ge x_0$, x_0 is minimum point in I
 - If $f''(x) \le 0$ for $x \in I$, f'(x) is decreasing, $f'(x) \ge 0$ for $x \le x_0$ and $f'(x) \le 0$ for $x \ge x_0$, x_0 is maximum point in I

- [Second order conditions for local extremes] Suppose that $f \in C^2$ and x_0 is a stationary point in I
 - A sufficient condition for x_0 to be local minimum is $f''(x_0) > 0$.
 - A sufficient condition for x_0 to be local maximum is $f''(x_0) < 0$.
 - A necessary condition for x_0 to be local minimum is $f''(x_0) \ge 0$.
 - A necessary condition for x_0 to be local maximum is $f''(x_0) \le 0$.
 - If $f''(x_0) = 0$, then, x_0 can be a local minimum, a local maximum or an inflection point.

• Example (revisit): Find the local extreme points of the function

$$f(x) = x^3 - 12x^2 + 36x + 8$$

- Recall: Stationary points: x = 2 or x = 6
- f''(x) = 6x 24, f''(2) = -12 < 0, f''(6) = 12 > 0.
- from second derivative test, $x_1^* = 2$ is a local maximum point and $x_2^* = 6$ is a local minimum point.

4. Global optimization

- Every extreme point in an interval *I* must belong to one of the following:
 - Interior points in *I* where f'(x) = 0
 - End points in I
 - Interior points in I where f' does not exist
- Any point satisfying one of the above three conditions is a candidate for extreme points.

• Example: Find the (global) extreme values of

$$f(x) = \frac{1}{4}x^4 - \frac{5}{6}x^3 + \frac{1}{2}x^2 - 1, x \in [-1, 3]$$

$$- f'(x) = x^3 - \frac{5}{2}x^2 + x = \frac{1}{2}x(2x - 1)(x - 2). f''(x) = 3x^2 - 5x + 1$$

- Stationary points:
$$x = 0, \frac{1}{2}, 2$$
. $f''(0) = 1 > 0, f''(\frac{1}{2}) = -\frac{3}{4} < 0, f''(2) = 3 > 0$

- Therefore, x = 0.2 are local minimum and $x = \frac{1}{2}$ is local maximum
- Candidate for global minimum: 0,2,-1,3. $f(0)=-1,f(2)=-\frac{5}{3},f(-1)=\frac{7}{12},$ $f(3)=\frac{5}{4},x=2$ is global minimum point.
- Candidate for global maximum: $\frac{1}{2}$, -1,3. Since $f\left(\frac{1}{2}\right) = -\frac{185}{192}$, x = 3 is global maximum point.
- Note: If the interval considered in the above example is (-1,3), then f does not have a global maximum.

Profit maximization

• Let R = R(Q) be the total revenue function and C = C(Q) is the total cost function, where Q is the output level, the profit function is

$$\pi(Q) = R(Q) - C(Q).$$

all functions are second-order differentiable.

• The profit-maximizing output level Q^* should satisfy the first-order condition:

$$\pi'(Q^*) = R'(Q^*) - C'(Q^*) = 0$$

or

$$R'(Q^*) = C'(Q^*)$$

• In order to maximize profit, a firm must equate marginal cost and marginal revenue (MR=MC).

• Example: Suppose that the firm obtains a fixed price P=121 per unit and that the cost function is $C(Q) = 0.02Q^3 - 3Q^2 + 175Q + 500$, Find the production level that maximizes profits, and compute the maximum profit.

•
$$\pi(Q) = 121Q - C(Q) = -0.02Q^3 + 3Q^2 - 54Q - 500$$
,

FOC

$$\frac{d\pi}{dQ} = -0.06Q^2 + 6Q - 54 = -0.06(Q^2 - 100Q + 900)$$
$$= -0.06(Q - 10)(Q - 90) = 0$$

• the stationary points are $Q^* = 10$ or $Q^{**} = 90$

$$\frac{d\pi}{dQ} \begin{cases} < 0 \text{ when } Q < 10 \\ > 0 \text{ when } 10 < Q < 90 \\ < 0 \text{ when } Q > 90 \end{cases} \Rightarrow Q^{**} = 90 \text{ is local maximum}$$

• The profit maximizing output is $Q^{**}=90$ and the maximized profit is $\pi(Q^{**})=4360$

• **Example**: Suppose the firm has a monopoly in the sale of the commodity, assume that the price per unit P(Q) = 1200 - 2Q, Suppose the cost function is

$$C(Q) = Q^3 - 61.25Q^2 + 1528.5Q + 2000$$

- Find the production level that maximizes profits, and compute the maximum profit.
- $\pi(Q) = QP(Q) C(Q) = -Q^3 + 59.25Q^2 328.5Q 2000$,
- FOC: $\frac{d\pi}{dQ} = -3Q^2 + 118.5Q 328.5 = 0$ when Q = 3 or Q = 36.5 $\frac{d^2\pi}{dQ^2} = -6Q + 118.5 \begin{cases} > 0 \text{ when } Q = 3 \\ < 0 \text{ when } Q = 36.5 \end{cases}$
- The profit maximizing output is $Q^*=36.5$ and the maximized profit is $\pi(Q^*)=16388.44$

5. Taylor Expansion (Series)

• Consider the following three functions at the point x = 0

f(x)	f'(x)	f''(x)	f'(0)	<i>f</i> ''(0)	Point $x = 0$
<i>x</i> ⁴	$4x^3$	$12x^{2}$	0	0	minimum
$-x^4$	$-4x^{3}$	$-12x^{2}$	0	0	maximum
<i>x</i> ³	$3x^2$	6 <i>x</i>	0	0	inflection

$$f(x) = x^4$$

$$f(x) = -x^4$$

$$f(x) = x^3$$

- Second derivative test does not work here
- We can justify the above observation through Taylor expansion of a function $f \in C^n$.

$$f(x) = \frac{f(x_0)}{0!} + \frac{f'(x_0)}{1!} (x - x_0) + \frac{f''(x_0)}{2!} (x - x_0)^2 + \frac{f^{(3)}(x_0)}{3!} (x - x_0)^3 + \dots + \frac{f^{(n)}(\xi)}{n!} (x - x_0)^n$$

where ξ is a point between x and x_0

• In the Taylor expansion, set n=1, you get the Mean Value Theorem: If $f \in C^1$, then there is at least one c between a and b such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

• Justification of second derivative test: For $f \in C^2$:

$$f(x) = \frac{f(x_0)}{0!} + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(\xi)}{2!}(x - x_0)^2$$

where ξ is between x and x_0 .

- If $f'(x_0) = 0$ and $f''(x_0) < 0$, then $f''(\xi) < 0$ when x is close to x_0 . therefore $f(x) < f(x_0)$: x_0 is a local maximum.
- If $f'(x_0) = 0$ and $f''(x_0) > 0$, then $f''(\xi) > 0$ when x is close to x_0 . therefore $f(x) > f(x_0)$: x_0 is a local minimum.
- If $f'(x_0) = 0$, $f''(x_0) = 0$ and $f'''(x_0) > 0$, set n = 3 in the Taylor expansion,

$$f(x) = \frac{f(x_0)}{0!} + \frac{f'(x_0)}{1!} (x - x_0) + \frac{f''(x_0)}{2!} (x - x_0)^2 + \frac{f'''(\xi)}{3!} (x - x_0)^3$$
$$= f(x_0) + \frac{f'''(\xi)}{3!} (x - x_0)^3$$

- when x is close to x_0 , $f'''(\xi) > 0$, but $(x x_0)^3 \begin{cases} > 0 \text{ when } x > x_0 \\ < 0 \text{ when } x < x_0 \end{cases}$
- x_0 can not be maximum or minimum point

- A general result: Suppose $f^{(k)}(x_0)=0$ for $k=1,2,\ldots,n-1$ and $f^{(n)}(x_0)\neq 0$, then,
 - if n is odd, x_0 is a inflection point;
 - if n is even and $f^{(n)}(x_0) > 0$, x_0 is a local minimum point;
 - if n is even and $f^{(n)}(x_0) < 0$, x_0 is a local maximum point.
- **Example**: $f(x) = x^n$ for $n \ge 2$. If n is odd, then $x_0 = 0$ is not maximum/minimum point; if n is even, then $x_0 = 0$ is a minimum point.
- Example: Find the stationary points of

$$f(x) = (x-1)^4 - 4(x-1)^3 - 1$$

are they local maximum, local minimum, or inflection points?