

Agenda

- Why network functions in Edge & K8s clusters?
- Edge-computing scenario to describe the K8s networking requirements
- Networking requirements
- OVN-for-K8s-NFV architecture blocks
- OVN-for-K8s-NFV details
- Current Status and roadmap
- Q&A

Application Transformation

□ (AR/VR apps, Gaming, Analytics and Even traditional applications due to sovereignty and context)

Centralized computing to Geo distributed computing

An App consisting of four Micro-services ms1 talks to ms2, ms2 to ms3 and ms3 to ms4 ms1" is user facing service "ms1", "ms2" are expected to be there together Current/In-progress Edge computing deployments : Multi-Cloud and Multi-Edge **Appx Manager** App Orchestrator – Simple (git based) **VNF** Orchestrator **ADC Controller WAF Controller SDWAN Controller** operatack POD POD **SDWAN** POD POD **SDWAN** SLB WAF WAF SLB ingress ingress SLB SLB WAF ingress WAF ingress **SDWAN SDWAN** ingress POD POD POD ingress SW Platform SW Platform **SW Platform SW Platform** HW HW HW HW **Compute Cluster Compute cluster SDWAN & Security SDWAN & Security** (Edge computing) (Edge computing) Internal machines Internal machines

Edge/private-cloud/VPC

Edge/private-cloud/VPC

Challenge: Under utilization of resources

Challenge: Multiple Site level orchestrators leading to wasting of resources

How does NFV based deployment with Cloud-native applications look like (Taking SDWAN with security NFs as an example)

View in Slide show

Networking Requirements

Why did we choose OVN in Akraino Edge platform?

One of the best programmable controller

Hides OVS complexity

Broader eco-system

L2 CNI – Support for unicast, multicast, broadcast applications

One site level IPAM – No IP address restriction with number of nodes

Possible to implement critical features with table based pipeline (Firewall, Routing, Switching, Load balancing)

SmartNIC friendly

OVN for K8S and NFV Architecture blocks

NFN Operator:

- Exposes virtual, provider, chaining CRDs to external world.
- Programs OVN to create L2 switches.
- Watches for PODs being coming up
 - Assigns IP addresses for every network of the deployment.
 - Looks for replicas and auto create routes for chaining to work.
 - Create LBs for distributing the load across CNF replicas.

NFN Daemon:

- Performs CNI operations.
- Configures VLAN and Routes in Linux kernel (in case of routes, it could do it in both root and network namespaces)
- Communicates with OVSDB to inform of provider interfaces. (creates ovs bridge and creates external-ids:ovn-bridge-mappings)

Proved with service orchestration (ONAP4K8s)

Used by Akarino ICN

Participants: Intel, Verizon, VMWare, F5

Virtual Network CR

```
apiVersion: k8splugin.opnfv.org/v1alpha1
kind: Network
metadata:
    name: ovn-priv-net
spec:
    cniType: Ovn4nfv
    ipv4subnets:
    - subnet: 172.16.33.0/24
        name: subnet1
        gateway: 172.16.33.1/24
        excludeIps: 172.16.33.2 172.16.33.5..172.16.33.10
```

Creates OVN Switch with this configuration

Dynamic Multiple Network Interfaces

Pod Annotation

- CNI (ovn4k8s-cni) Works with Multus
- Assumes primary/first interface provided by another CNI
- Supports Static IP addresses

ONAP vFW Use case using OVN dynamic networks

Test scenario – to comprehend multiple deployment "variations

External existing entities

Provider Network CR

```
apiVersion: k8splugin.opnfv.org/v1alpha1
kind: OvnProviderNetwork
metadata:
  name: ovn-provider-net
spec:
  cniType: Ovn4nfv
  ipv4subnets:
  - subnet: 172.16.33.0/24
    name: subnet1
    gateway: 172.16.33.1/24
    excludeIps: 172.16.33.2 172.16.33.5..172.16.33.10
  providerNetworkType: vlan
 vlan:
    vlanTd: 100
    providerInterfaceName: eth0
    Node: node1, node2
    logicalInterfaceName: eth0.100
```

Create OVN Switch and configures nodes

Provider Network Functionality

- CR creates OVN Switch
- Per Node (can be list of nodes, "all" nodes or "any" node)
 - Creates VLAN interfaces
 - Creates OVS Bridge and attaches VLAN interface
 - Configure ovs external-ids:ovn-bridge-mappings
- Pod annotation for attaching Provider network to a Pod

NFN Operator and Agent Communication

Network Chaining CR

```
apiVersion: k8splugin.opnfv.org/v1alpha1
kind: NetworkChaining
metadata:
 name: chain1
  namespace: vFW
spec:
 type: Routing
  routingSpec:
    leftNetwork:
      - networkName: ovn-provider1
        gatewayIP: 10.1.5.1
        subnet: 10.1.5.0/24
    rightNetwork:
      - networkName: ovn-provider1
        gatewayIP: 10.1.10.1
        subnet: default
    networkChain: app=slb, ovn-net1, app=ngfw, ovn-net2, app=sdwancnf
```

Inserts routes in Container Namespaces

Status

Current

- Dynamic Network Creation
- Attaching multiple interfaces to Pods
- Multus integration
- Support for Virtlet with Multus
- Provider Network Support Controller and Agent

Link to Repo: https://github.com/opnfv/ovn4nfv-k8s-plugin

WIP

Chaining Controller

Roadmap / Wishlist

- Enabling SDWAN use case
 - Support for primary interface with NFN Operator and CNI
 - · One switch for the whole deployment
- Network Policy Support
- LB support for NF elasticity
- Integrate with Kubevirt
- Proxy less service mesh with OVN & IPsec in network namespace