1. Kvadratikus alakok

Ortogonalizálás.

F7.2.4. Definíció

Legyen B bilineáris függvény a V vektortéren. A $v, w \in V$ vektorok B-ortogonálisak, ha B(v, w) = 0. A b_1, \ldots, b_n bázis B-ortogonális, ha $i \neq j \implies B(b_i, b_j) = 0$. A b_1, \ldots, b_n bázis nyilván pontosan akkor *B-ortogonális*, ha *B* mátrixa ebben a bázisban diagonális.

F7.2.3. Tétel

Legyen B valósban szimmetrikus, komplexben Hermite-féle bilineáris függvény. Ekkor létezik B-ortogonális bázis. Ha V euklideszi tér, akkor van B-ortogonális ONB is.

Bizonyítás: háromféle eljárás (lásd Freud: 7.2. Szakasz). Módosított Gauss-elimináció, illetve Gram-Schmidt módszer.

B-ortogonális ONB keresése: sajátértékek segítségével.

Ortogonalizálás ONB-ben.

Bizonvítás

Tudjuk, hogy $B(v, w) = \langle v, Aw \rangle$ alkalmas $A \in \text{Hom}(V)$ -re, ahol A valósban szimmetrikus, komplexben önadjungált. Ezért A ONB-ben diagonalizálható (valósban főtengelytétel). Legyen b_1, \ldots, b_n ilyen ONB. Belátjuk, hogy ez B-ortogonális. Ha $Ab_j = \lambda_j b_j$, akkor $B(b_i, b_j) = \langle b_i, Ab_j \rangle = \lambda_j \langle b_i, b_j \rangle$, és ez nulla, ha $i \neq j$.

 $B(b_i, b_i) = \lambda_i$, azaz B mátrixában a főátló elemei éppen az A sajátértékei.

Másképp fogalmazva: tudjuk, hogy A és B mátrixa mindegyik ONB-ben ugyanaz. Legyen M a B mátrixa egy tetszőleges ONB-ben. Ha az M mátrixot egy alkalmas ONB-ben diagonalizáljuk, akkor ugyanez az ONB B-ortogonális is lesz, és a két diagonális mátrix ugyanaz.

Négyzetösszeg alak.

F7.2.5. Tétel

Legyen B valósban szimmetrikus, komplexben Hermite-féle bilineáris függvény és b_1, \ldots, b_n B-ortogonális bázis.

Ekkor $\lambda_i = B(b_i, b_i)$ valós (hiszen $B(b_i, b_i) = \overline{B(b_i, b_i)}$). Ha $\lambda_i > 0$, akkor legyen $c_i = b_i/\sqrt{\lambda_i}$. Ha $\lambda_i < 0$, akkor legyen $c_i = b_i/\sqrt{-\lambda_i}$. Ekkor c_1, \ldots, c_n is B-ortogonális bázis, melyben B mátrixának főátlójában minden elem 0, 1, vagy -1. Ebben a bázisban a B-hez tartozó kvadratikus alak előjeles "négyzetösszeg": ha $v=x_1c_1+\ldots+x_nc_n$, akkor $Q(v)=B(v,v)=\sum_{i=1}^n \mu_i|x_i|^2$, ahol $\mu_i\in\{0,1,-1\}$.

Valóban: akár $\lambda_i > 0$, akár $\lambda_i < 0$,

$$B(c_i, c_i) = \frac{B(b_i, b_i)}{\sqrt{|\lambda_i|}\sqrt{|\lambda_i|}} = \frac{\lambda_i}{|\lambda_i|} = \pm 1.$$

A tehetetlenségi tétel.

F7.2.6. Sylvester tehetetlenségi tétele

Legyen *B* valósban szimmetrikus, komplexben Hermite-féle bilineáris függvény. Bárhogy veszünk egy *B*-ortogonális bázist, az ebben felírt mátrix főátlójában szereplő pozitív, nulla és negatív elemek száma csak *B*-től függ, a bázistól nem.

Bizonvítás

Elég belátni, hogy a pozitív elemek száma nem függ a bázistól. Ezt ugyanis —*B*-re alkalmazva kapjuk, hogy a negatív elemek száma sem függ a bázistól. A nullák számát a főátlóban pedig úgy kapjuk, hogy a pozitív és a negatív elemek számát kivonjuk a tér dimenziójából, tehát akkor a nullák száma sem függ a bázistól.

Lemma a tehetetlenségi tételhez.

Lemma

Legyen v_1, \ldots, v_k és w_1, \ldots, w_ℓ két független, B-ortogonális vektorrendszer. Tegyük föl, hogy $B(v_i, v_i) > 0$ és $B(w_j, w_j) \leq 0$ minden i, j-re. Ekkor ezek a vektorok együtt is függetlenek.

Bizonyítás

Tegyük föl, hogy $\sum x_i v_i + \sum y_j w_j = 0$ (ahol x_i, y_j skalárok). Legyen $v = \sum x_i v_i$ és $w = \sum y_j w_j$, ekkor v = -w. Innen

$$B(v, v) = \sum B(v_i, v_i)|x_i|^2 \ge 0$$

$$B(w, w) = \sum B(w_i, w_i)|y_i|^2 \le 0.$$

De B(v, v) = B(-w, -w) = B(w, w), így mindkét összeg nulla.

Mivel $B(v_i, v_i) > 0$, ez csak úgy lehet, ha $x_1 = \ldots = x_k = 0$. Ezért $\sum y_j w_j = 0$, így a függetlenség miatt minden $y_j = 0$.

A tehetetlenségi tétel bizonyítása.

Tegyük föl, hogy adott két B-ortogonális bázis. Legyen $n = \dim(V)$, továbbá M_1 és M_2 a B mátrixa az első, illetve a második bázisban. Jelölje k_1 , illetve k_2 rendre az M_1 , illetve M_2 főátlójában a pozitív elemek számát. Be kell látni, hogy $k_1 = k_2$.

Az M_i főátlójában nyilván $n-k_i$ nempozitív elem van. Legyenek v_1,\ldots,v_{k_1} az első bázisból azok a vektorok, melyekre $B(v_i,v_i)>0$ (ezek száma tehát k_1), továbbá w_1,\ldots,w_{n-k_2} a második bázisból azok a vektorok, melyekre $B(w_j,w_j)\leq 0$ (ezek száma $n-k_2$).

A lemma miatt ezek együtt is függetlenek, így $k_1 + (n - k_2) \le \dim(V) = n$, ahonnan $k_1 \le k_2$. A két bázist megcserélve $k_2 \le k_1$.

Kvadratikus alak karaktere.

F7.3.2 Definíció, F7.3.3 Tétel

Legyen B valósban szimmetrikus, komplexben Hermite-féle bilineáris függvény, és Q a hozzá tartozó kvadratikus alak, továbbá M a B mátrixa egy B-ortogonális bázisban.

- (1) Q pozitív definit, ha $v \neq 0 \implies Q(v) > 0$. (Az M mátrix főátlójában minden elem pozitív.)
- (2) *Q negatív definit*, ha $v \neq 0 \implies Q(v) < 0$. (Az *M* mátrix főátlójában minden elem negatív.)
- (3) Q pozitív szemidefinit, ha $(\forall v)Q(v) \ge 0$. (Az M mátrix főátlójában minden elem nemnegatív.)
- (4) Q negatív szemidefinit, ha $(\forall v)Q(v) \leq 0$. (Az M mátrix főátlójában minden elem nempozitív.)
- (5) *Q indefinit*, ha pozitív és negatív értéket is felvesz. (Az *M* mátrix főátlójában van pozitív és van negatív elem.)

Kvadratikus karakter és aldeterminánsok.

F7.3.4 Tétel (NB)

Legyen B valósban szimmetrikus, komplexben Hermite-féle bilineáris függvény, Q a hozzá tartozó kvadratikus alak, és M a B mátrixa egy nem feltétlenül B-ortogonális bázisban. Jelölje d_k az M mátrix első k sorából és első k oszlopából készített részmátrix determinánsát.

- (1) A Q pontosan akkor pozitív definit, ha minden $d_k > 0$.
- (2) A Q pontosan akkor negatív definit, ha $d_1 < 0$, $d_2 > 0$, $d_3 < 0$, és így tovább, azaz $d_k > 0$ ha k páros és $d_k < 0$ ha k páratlan.

Ezt könnyű ellenőrizni, ha a bázis *B*-ortogonális (HF). A kvadratikus karakter jelzőit *B*-re is alkalmazzuk. A skaláris szorzatot tehát definiálhatjuk, mint *pozitív definit* szimmetrikus, illetve Hermite-féle bilineáris függvényt.

Illusztráció másodrendű görbékkel.

Tétel (Hajós: Bevezetés a geometriába, 47. §, NB).

Tekintsük az $ax^2 + by^2 + cxy = 1$ egyenletű görbét a síkon. Ha a bal oldali kvadratikus alak

- (1) pozitív definit, akkor a görbe *ellipszis*. Ez akkor teljesül, ha a > 0 és $c^2 < 4ab$.
- (2) indefinit, akkor a görbe *hiperbola*. Ez akkor teljesül, ha $c^2 > 4ab$.

Magyarázat: Legyen B a fenti kvadratikus alakhoz tartozó szimmetrikus bilineáris függvény, mátrixa $M = \begin{bmatrix} a & c/2 \\ c/2 & b \end{bmatrix}$. Ennek determinánsa $ab - c^2/4$, így karaktere leolvasható. Diagonalizáljuk ezt ÖNB-ben, a főátló elemei legyenek u és v. Az új koordinátarendszerben az egyenlet $ux^2 + vy^2 = 1$.