Day - 85 Quick sard It is a sarting algorithm. 6 4 2 8 13 7 11 9 3 6 First we have to select a pivot element. 4 Pivot: Any element that is on their correct position in the sorted array. For finding the cornect position of the pivoti first we \Rightarrow to find how many elements are equal on less than pivat element. suppose, in the above ex, we select 6 as pivot elem. thon & 4 elements are equal on less than 6. 23 6 8 13 7 119 = 3 6 9 6 8 1 59 3 13 11 3 46 6 7 8 9 11 137 sorted array. After putting the proof element on the correct 7 position. Then, you will have all the elements less than pivot on left & greater than pivot on right Now again do this same thing with these has コ halves.

int partition (int ara(), int start; int end) { int pos = stanti for (inti = startis i rend; i++){. if (anci) = ancend) { swap (anci), an (pos) bi pos ++i return pos-1; Time Complexity: log th 1 ← At every level, N+ N+N+N+ .-- + N (NIOgN) But this is the aug. time complexity of Q.S. =1 S.C. - log N ('in aug. case) · =)

For this ex. - 6 5 4 3 2 1 The cond. for Q.S. is worst case. N+(N-1)+(N-2)+_+1 = $O(N^2)$ The warst case is when our array is in descending ander order & we have to sort it in ascending order. 2 S.C. - O(N). 1 Also, when our array is already sorted then the case is worst case. 1