Exercice 1

Énoncé

D'après Hatier (2020).

- **a** La température d'une brique de capacité thermique $C = 900 J.K^{-1}$ diminue de $20^{\circ}C$
 - 1. sa variation d'énergie interne vaut $\Delta U = 18 \; kJ$
 - 2. sa variation d'énergie interne vaut $\Delta U = -18 \; kJ$
 - 3. sa variation d'énergie interne vaut $\Delta U = 0,26~MJ$
- ${\bf b}$ On veut garder constante l'énergie interne d'un système qui reçoit un travail $W=100\,J$
 - 1. il faut lui fournir une énergie thermique Q = 100 J
 - 2. il faut qu'il cède une énergie thermique $Q=100\,J$
 - 3. Aucun transfert thermique ne peut assurer cette conservation

c La température d'un système thermodynamique de capacité thermique

 $C=1.0~kJ.K^{-1}$ qui reçoit une puissance thermique $P_{th}=1.2~kW$ augmente de

$$\Delta T = 10 K \text{ en } \Delta t = 20 s$$

- 1. il cède un travail W = 14 kJ
- 2. il reçoit un travail W = 14 kJ
- 3. il n'échange aucun travail
- **d** La variation d'énergie interne d'un système incompressible est proportionnelle à
 - 1. la température du système
 - l'écart de température entre le système et l'extérieur
 - 3. la variation de température du système
- e L'unité de la capacité thermique massique c'est
 - 1. $J.K^{-1}$
 - 2. $W.K^{-1}.kg^{-1}$
 - 3. $J.K^{-1}.kg^{-1}$

Exercice 2

Énoncé

D'après Hachette (2020).

- a L'énergie interne U d'un système macroscopique est égale à la somme des énergies
 - cinétique et potentielle, de toutes les entités microscopiques qui constituent le système
 - cinétiques de toutes les entités microscopiques qui constituent le système
 - potentielles de toutes les entités microscopiques qui constituent le système
- b L'énergie totale d'un système est égale à
 - 1. son énergie interne
 - la somme de ses énergies mécanique et interne
 - 3. son énergie mécanique

- c L'énergie peut être transférée par
 - 1. travail
 - 2. transfert thermique
 - 3. travail et transfert thermique
- **d** Pour le système {cornet de glace} le transfert thermique *Q* avec l'extérieur
 - 1. est positif
 - 2. est négatif
 - 3. s'effectue du cornet vers l'extérieur
- e Lorsqu'un système est au repos macroscopique, sa variation d'énergie est égale
 - 1. à la variation de son énergie interne
 - à la variation de son énergie mécanique
 - 3. à la variation de son énergie interne et de son énergie mécanique
- ${\bf f}$ La variation ΔU d'énergie interne d'un système au repos macroscopique est
 - 1. W + Q
 - 2. W-Q
 - 3. $W \times Q$
- **g** L'ampoule électrique étant le système étudié, on attribue
 - un signe positif à l'énergie qui sort du système

- un signe négatif à l'énergie qui sort du système
- la valeur 0 J à l'énergie qui sort du système

h La variation d'énergie interne ΔU d'un système incompressible de masse m, de capacité thermique c, qui passe d'une température initiale T_i à une température finale T_f s'écrit

- 1. $\Delta U = m \times c \times (T_f T_i)$
- 2. $\Delta U = m \times c \times (T_i T_f)$
- 3. $\Delta U = m \times c \times (T_f + T_i)$

i Si la température d'un système incompressible augmente alors

- 1. son énergie interne augmente
- 2. son énergie interne diminue
- 3. son énergie interne ne varie pas

j On chauffe $100\ mL$ d'eau d'une tasse à café à l'aide d'un thermoplongeur de puissance $1000\ W$ pendant $2\ min$. La variation d'énergie interne de l'eu est

- 1. 2000 J
- 2. $1.0 \times 10^5 J$
- 3. $1.2 \times 10^5 J$

Énoncé

D'après Hachette (2020).

Le fluide frigorigène d'une pompe à chaleur prend de l'énergie à l'air froid extérieur et en redonne à l'air de la pièce à chauffer. Pour cela, un compresseur transfère de l'énergie par travail mécanique au fluide frigorigène. Voir figure 1.

Figure 1 - Principe d'une pompe à chaleur

Exercice 3

Énoncé

D'après Hatier (2020).

Une brique en terre cuite indéformable et immobile, de capacité thermique $C=900\,J.K^{-1}$ a une température qui dimi-

 $C = 900 J.K^{-1}$ a une température qui diminue de $420 \, ^{\circ}C$ après sa cuisson.

Quelle énergie thermique cède-t-elle à l'extérieur?

Exercice 4

Énoncé

D'après Hatier (2020).

Un système formé de m=100~g d'eau reçoit par mouvement de brassage un travail W=250~J. Pourtant sa température baisse de $5^{o}C$. La capacité thermique massique de l'eau est

 $c_{eau} = 4.18 \ kJ.K^{-1}.kg^{-1}.$

Calculer l'énergie thermique Q qu'il cède à l'extérieur.

a Reproduire la figure 1 et le compléter avec les trois transferts d'énergie ayant lieu entre le système { fluide frigorigène} et le milieu extérieur.

b Écrire le premier principe pour ce système.

Exercice 11

Énoncé

D'après Hachette (2020).

Un ballon d'eau chaude contient un volume $V=80\ L$ d'eau. Lors du premier remplissage, l'eau passe d'une température initiale de $17.0^{o}C$ à une température finale $65^{o}C$. Les pertes thermiques sont négligées. L'eau est supposée incompressible.

La plaque des caractéristiques du chauffe eau donne les informations suivantes

- Emplacement : vertical ou horizontal
- Capacité: 80 L
- Alimentation: 230 V monophasé
- Temps de chauffe réel à $50^{\circ}C$: 3h00
- Classe énergétique : B
- Puissance nominale: 1500 W

On précise aussi

- masse volumique de l'eau $\rho = 1000 \ kg.m^{-3}$
- capacité thermique massique de l'eau $c_{eau}=4.18\times 10^3~J.kg^{-1o}C^{-1}$

Exercice 12

Énoncé

D'après Hachette (2020).

Une pompe à chaleur (PAC) géothermique est un système de chauffage qui capte l'énergie thermique du sol pour la transférer vers un habitat grâce à un triple circuit d'échange thermique :

- un premier circuit d'eau capte l'énergie thermique du sol et la transfert vers un deuxième circuit d'un fluide frigorifique
- un fluide frigorifique est comprimé puis détendu. Il peut ainsi transférer l'énergie thermique du circuit extérieur vers le circuit intérieur
- un circuit intérieur transfert l'énergie thermique du fluide frigorifique vers l'eau du circuit de chauffage de l'habitat.

Voir figure 3.

La capacité thermique massique de l'eau est $c_{eau} = 4.18 \times 110^3 \ J.kg^{-1}.^{\circ}C^{-1}$

- a Calculer la variation d'énergie interne ΔU_1 de l'eau contenue dans le ballon.
- **b** Rappeler le premier principe pour ce système, et en déduire le transfert thermique Q_1 apporté au système par le conducteur ohmique chauffant.
- c Exprimer le transfert thermique minimal Q_1 en fonction de la puissance électrique et de la durée de chauffe minimale Δt_1 . On rappelle que le conducteur ohmique restitue intégralement à l'eau par transfert thermique l'énergie qu'l reçoit par travail électrique.
- **d** Calculer Δt_1 .
- e La durée de chauffe annoncée est-elle correcte?

Figure 3 – Principe d'une PAC

La PAC fonctionne pendant 4h sur une journée pour élever la température de l'eau des radiateurs d'une maison de $\theta_i=12^oC$ à $\theta_f=20^oC$. Le débit massique de l'eau dans les radiateurs est $D_m=145~kg.h^{-1}$. Pendant la durée du chauffage, le transfert d'énergie électrique vers le moteur du compresseur est $4.82\times 10^6\,J$.

- a Schématiser les différents transferts d'énergie entre le systeme {fluide frigorifique } et le milieu extérieur au cours du fonctionnement de la PAC.
- **b** Calculer la variation d'énergie interne

- ΔU_2 de l'eau des radiateurs lorsque la température évolue.
- ${\bf c}$ En déduire le transfert thermique Q_2 entre le système {fluide frigorifique} et l'eau des radiateurs.
- Le fluide frigorifique effectue des cycles dans la PAC. Au bout d'un cycle, les énergies mécaniques et internes du système ne varient pas.
- **d** Écrire le premier principe pour le système {fluide calorifique}.
- **e** En déduire le transfert thermique Q_1 .
- f Calculer le rapport entre l'énergie utile donnée par la PAC à l'eau des radiateurs et l'énergie facturée qu'elle consomme.