Started on	Friday, 17 November 2023, 6:32 PM
State	Finished
Completed on	Friday, 17 November 2023, 7:15 PM
Time taken	42 mins 34 secs

Grade 12.00 out of 15.00 (**80**%)

Question 1

Correct

Mark 1.00 out of 1.00

Two causal discrete-time signals x[n] and y[n] are related as $y[n]=\sum_{m=0}^n x[m]$. If the z-transform of y[n] is $\frac{2}{z(z-1)^2}$, the value of x[2] is

Select one:

- 3
- _-2
- 0
- 2
- _-1
- None of these

Your answer is correct.

The correct answer is: 0

${\tt Question}~2$

Correct

Mark 1.00 out of 1.00

For the discrete-time system shown in figure, the poles of the system transfer function are located at

Select one:

- 2,1/3
- 1/2,1/3
- None of these
- 1/2,-1/3
- 2,3
- -1/2,1/3
- 1/2,3

Your answer is correct.

The correct answer is: 1/2,1/3

Correct

Mark 1.00 out of 1.00

A realization of a stable discrete time system is shown in the figure. If the system is excited by a unit step sequence input x[n]=u[n], the response y[n] is

Select one:

$$0 5(-\frac{2}{3})^n u[n] - 3(-\frac{1}{3})^n u[n]$$

$$0 4(\frac{1}{3})^n u[n] - 5(\frac{2}{3})^n u[n]$$

$$0 4(-\frac{1}{3})^n u[n] - 5(-\frac{2}{3})^n u[n]$$

$$= 5(\frac{1}{3})^n u[n] - 5(\frac{2}{3})^n u[n]$$

~

$$5(\frac{2}{3})^n u[n] - 5(\frac{1}{3})^n u[n]$$

$$5(\frac{2}{3})^n u[n] - 3(\frac{1}{3})^n u[n]$$

None of these

Your answer is correct.

The correct answer is: $5(\frac{1}{3})^n u[n] - 5(\frac{2}{3})^n u[n]$

Not answered

Marked out of 1.00

Consider a causal and stable LTI system with rational transfer function H(z). Whose corresponding impulse response begins at n=0. Further, $H(1)=\frac{5}{4}$. The poles of H(z) are $P_k=\frac{1}{\sqrt{2}}\exp(\frac{j(2k-1)\pi}{4})$ for k=1,2,3,4. The zeros of H(z) are all z=0. Let $g[n]=j^nh[n]$. The value of g[8] is approximately

Select one:

- 0.03
- 0.09
- 0.01
- 0.20
- 0.06
- None of these
- 0.30

Your answer is incorrect.

The correct answer is: 0.09

Incorrect

Mark 0.00 out of 1.00

Let H(z) be the z-transform of a real-valued discrete-time signal h[n]. if $P(z)=H(z)H^*(\frac{1}{z^*})$ has a zero at $z=\frac{1}{2}+\frac{1}{2}j$, and P(z) has a total of four zeros (in the finite Z-plane excluding the origin), which one of the following plots represent all the zeros correctly?

Select one:

Incorrect

Mark 0.00 out of 1.00 The discrete-time signal $x[n]\leftrightarrow X(z)=\sum_{n=0}^\infty \frac{3^n}{(2+n)}z^{2n}$, where \leftrightarrow denotes a transform-pair relationship, is orthogonal to the signal

Select one:

$$lacksquare y_4[n] \leftrightarrow Y_4(z) = 2z^{-4} + 3z^{-2} + 1$$

- None of the options is correct
- $\bigcirc \quad y_2[n] \leftrightarrow Y_2(z) = \sum_{n=0}^{\infty} (5^n-n) z^{-(2n+1)}$
- $igcup y_3[n] \leftrightarrow Y_3(z) = \sum_{n=0}^\infty 2^{-|n|} z^{-n}$
- $\bigcirc \quad y_1[n] \leftrightarrow Y_1(z) = \sum_{n=0}^{\infty} (rac{2}{3})^n z^{-n}$

Your answer is incorrect.

The correct answer is: $y_2[n] \leftrightarrow Y_2(z) = \sum_{n=0}^{\infty} (5^n-n) z^{-(2n+1)}$

Question 7

Correct

Mark 1.00 out of 1.00

It is known that H(z) is of rational type. consider the following statement:

Statement 1: Given the poles and zeros of $P(z)=H(z)H^{st}(1/z^{st})$, you can uniquely determine the zeros and poles of H(z)

Statement 2: Given $P(e^{j\omega})$, you can determine H(z)

Select one:

- Both statements are always true
- statement 2 is true, but statement 1 is false
- Statements 1 and 2 can be true under some conditions on H(z)

√

- Statement 1 and 2 are both always false
- statement 1 is true, but statement 2 is false

Your answer is correct.

The correct answers are: Statement 1 and 2 are both always false, statement 1 is true, but statement 2 is false, Statements 1 and 2 can be true under some conditions on H(z)

Correct

Mark 1.00 out of 1.00

Let $H_1(z)=(1-pz^{-1})^{-1}$, $H_2(z)=(1-qz^{-1})^{-1}$, $H(z)=H_1(z)+rH_2(z)$. The quantities p,q,r are real numbers. Consider $p=\frac12,q=-\frac14,|r|<1$. if the zero

of H(z) lies on unit circle, then $r = \dots$

Answer: -0.5

The correct answer is: -0.5

Question 9

Correct

Mark 1.00 out of 1.00

The pole-zero diagram of a causal and stable discrete-time system is shown in the figure. The zero at the origin has multiplicity of 4. The impulse response of the system is h[n]. if h[0] = 1, we can conclude

Select one:

- one of the other options are correct
- h[n] is real for only even n
- h[n] is real for all n

- h[n] is purely imaginary for all n
- h[n] is purely imaginary for only odd

Your answer is correct.

The correct answer is: h[n] is real for all n

Correct

Mark 2.00 out of 2.00

An input signal $x(t)=2+5\sin(100\pi t)$ is sampled with a sampling frequency of 400HZ and the discrete-time sequence x[n] applied to the system whose transfer function is represented by $\frac{Y(z)}{X(z)}=\frac{1}{N}\frac{(1-z^{-N})}{(1-z^{-1})}$ where, N represents the number of samples per time-period of x[n]. The output y(n) of the system under steady state is

Select one:

- 2
- 3
- **5**
- None of these
- 0
- 4
- 1

Your answer is correct.

The correct answer is: 2

Correct

Mark 1.00 out of 1.00

A cascade system having the impulse responses $h_1(n)=\{\uparrow 1,-1\}$ and $h_2(n)=\{\uparrow 1,1\}$ is shown in the figure below, where symbol \uparrow denotes the time origin (this implies that $h_1(0)=1$ and h_1(1)=-1\). The input sequence x(n) for which the cascade system produces an output sequence $y(n)=\{\uparrow 1,2,1,-1,-2,-1\}$ is

Select one:

- None of the options are correct
- $\bigcirc \quad x(n) = \{\uparrow 1, 2, 1, 1\}$
- $igcup x(n)=\{\uparrow 1,1,2,2\}$
- $\bigcirc \quad x(n)=\{\uparrow 1,-2,2,1\}$
- $x(n) = \{\uparrow 1, 2, 2, 1\}$

4

- $\bigcirc \quad x(n)=\{\uparrow -1,2,2,1\}$
- $\bigcirc \quad x(n) = \{\uparrow 1, 1, 1, 1\}$

Your answer is correct.

The correct answer is: $x(n) = \{\uparrow 1, 2, 2, 1\}$

Correct

Mark 2.00 out of 2.00

Let $S=\sum_{n=0}^\infty n\alpha^n$, where $|\alpha|<1$. The value of α in the range $0<\alpha<1$, such that $S=2\alpha$ is approximately

Select one:

- 0.9
- 0.1
- 0.3
- 0
- None of these
- 1.4
- 0.6
- 1.1

Your answer is correct.

The correct answer is: 0.3

Question 13

Correct

Mark 1.00 out of 1.00

A discrete-time signal $x[n]=\delta(n-3)+2\delta(n-5)$ has a transform X(z). If Y(z)=X(-z) is the z-transform of another signal y[n], then

Select one:

- $\bigcirc \quad y[n] = x[n]$
- $\bigcirc \qquad y[n] = -x[-n]$
- lacksquare y[n] = -x[n]

√

- y[n] = x[-n]
- None of these

Your answer is correct.

The correct answer is: y[n] = -x[n]

Jump to...