Рубежный контроль №1 по курсу "Методы машинного обучения"

Вариант: 2

Выполнил: Арбузов А.П. группа ИУ5-24М

Задание:

Задача №2: Для набора данных проведите кодирование одного (произвольного) категориального признака с использованием метода "target (mean) encoding".

Задача №22: Для набора данных проведите масштабирование данных для одного (произвольного) числового признака с использованием масштабирования по максимальному значению.

Дополнительное условие: Для произвольной колонки данных построить график "Скрипичная диаграмма (violin plot)".

```
B [3]: import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from category_encoders.target_encoder import TargetEncoder as ce_TargetEncoder %matplotlib inline sns.set(style="ticks")
```

```
аде - возраст workclass - работа fnlwgt education - образование education-num - код образования marital-status - брак оссираtion - наименование работы relationship - муж/жена/не в браке race - раса sex - пол сарital-gain - прирост капитала сарital-loss - снижение капитала hours-per-week - занятость в неделю native-country - место рождения, Родина salary - зарплата
```

```
B [4]: loadedData = pd.read_csv('adultData.csv', sep=",")
print("Размер датасета:", loadedData.shape)
loadedData.head()
```

Размер датасета: (32561, 15)

Out[4]:

	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship	race	se
0	39	State-gov	77516	Bachelors	13	Never- married	Adm- clerical	Not-in-family	White	Mal
1	50	Self-emp- not-inc	83311	Bachelors	13	Married- civ- spouse	Exec- managerial	Husband	White	Mal
2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	White	Mal
3	53	Private	234721	11th	7	Married- civ- spouse	Handlers- cleaners	Husband	Black	Mal
4	28	Private	338409	Bachelors	13	Married- civ- spouse	Prof- specialty	Wife	Black	Femal
<										>

```
B [5]: data_features = list(zip(
        [i for i in loadedData.columns],
        zip(
            [str(i) for i in loadedData.dtypes],
            [i for i in loadedData.isnull().sum()]
        )))
        data_features
Out[5]: [('age', ('int64', 0)),
         ('workclass', ('object', 0)),
         ('fnlwgt', ('int64', 0)),
         ('education', ('object', 0)),
         ('education-num', ('int64', 0)),
         ('marital-status', ('object', 0)),
         ('occupation', ('object', 0)),
         ('relationship', ('object', 0)),
         ('race', ('object', 0)),
         ('sex', ('object', 0)),
         ('capital-gain', ('int64', 0)),
         ('capital-loss', ('int64', 0)),
         ('hours-per-week', ('int64', 0)),
         ('native-country', ('object', 0)),
         ('salary', ('object', 0))]
```

```
B [6]: #Добавим закодированный целевой признак gender_code
dct = {'Female': 0, 'Male': 1}
loadedData['gender_code'] = loadedData['sex'].map(dct)
loadedData.head()
```

Out[6]:

	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship	race	se
0	39	State-gov	77516	Bachelors	13	Never- married	Adm- clerical	Not-in-family	White	Mal
1	50	Self-emp- not-inc	83311	Bachelors	13	Married- civ- spouse	Exec- managerial	Husband	White	Mal
2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	White	Mal
3	53	Private	234721	11th	7	Married- civ- spouse	Handlers- cleaners	Husband	Black	Mal
4	28	Private	338409	Bachelors	13	Married- civ- spouse	Prof- specialty	Wife	Black	Femal
<										>

B [7]: ce_TargetEncoder1 = ce_TargetEncoder()
 loadedData_MEAN_ENC = ce_TargetEncoder1.fit_transform(loadedData[loadedData.columloadedData_MEAN_ENC.head()

C:\Users\Alexei Arbuzov\anaconda3\lib\site-packages\category_encoders\utils.py:
21: FutureWarning: is_categorical is deprecated and will be removed in a future version. Use is_categorical_dtype instead elif pd.api.types.is_categorical(cols):

Out[7]:

	age	capital- gain	capital- loss	education	education- num	fnlwgt	hours- per- week	marital- status	native- country	occupation	
0	39	2174	0	0.697666	13	77516	40	0.553777	0.668084	0.327056	(
1	50	0	0	0.697666	13	83311	13	0.889356	0.668084	0.714953	(
2	38	0	0	0.677174	9	215646	40	0.398605	0.668084	0.880292	(
3	53	0	0	0.632340	7	234721	40	0.889356	0.668084	0.880292	(
4	28	0	0	0.697666	13	338409	40	0.889356	0.578947	0.634058	(
/										,	

B [8]: loadedData['education'].unique()

Задача №22

```
B [50]: #Только числовые признаки x_col = loadedData.drop(loadedData.columns[[1,3,5,6,7,8,9,10,11,13,14]], axis = 1 x_fin = x_col.drop('gender_code', axis = 1) x_fin.head()
```

Out[50]:

	age	fnlwgt	education-num	hours-per-week
0	39	77516	13	40
1	50	83311	13	13
2	38	215646	9	40
3	53	234721	7	40
4	28	338409	13	40

```
B [51]: #Функция для восстановления датафрейма на основе масштавирования данных def arr_to_df(arr_scaled):
    res = pd.DataFrame(arr_scaled, columns = x_fin.columns)
    return res
```

Out[52]:

	age	fnlwgt	education-num	hours-per-week
count	32561.000000	32561.000000	32561.000000	32561.000000
mean	0.428685	0.127822	0.630042	0.408459
std	0.151560	0.071092	0.160795	0.124722
min	0.188889	0.008274	0.062500	0.010101
25%	0.311111	0.079361	0.562500	0.404040
50%	0.411111	0.120129	0.625000	0.404040
75%	0.533333	0.159662	0.750000	0.454545
max	1.000000	1.000000	1.000000	1.000000

Дополнительное условие

```
B [36]: fig, ax = plt.subplots()

xdata = loadedData["gender_code"].astype(str).astype(int)
ydata = loadedData["hours-per-week"].astype(str).astype(int)

ax = sns.violinplot(x = xdata, y = ydata)

ax.set_title('Распределение рабочих часов в неделю по половому признаку')
plt.show()

# Male - 1
# Female - 0
```

