

MS29 Tipping Points in Natural Systems: Theory and applications

4:55 – 5:20	Robbin Bastiaansen	Tipping Phenomena and Time Scales
5:25 – 5:50	Kerstin Lux	Uncertainty Quantification for Tipping Points of the Atlantic Meridional Overturnin Circulation
5:55 – 6:20	lacopo Longo	Rigorous Criteria for Tipping and Tracking of Concave Coercive ODEs
6:25 – 6:50	Sebastian Wieczorek	Rate-Induced Tipping to Zombie Fires

TIPPING PHENOMENA AND TIME SCALES

ROBBIN BASTIAANSEN (R.BASTIAANSEN@UU.NL) SIAM DS23, 2023-05-14

Tipping Points

IPCC AR6 (2021):

"a critical threshold beyond which a system reorganizes, often abruptly and/or irreversibly"

Tipping Points

IPCC AR6 (2021):

"a critical threshold beyond which a system reorganizes, often abruptly and/or irreversibly"

Mathematics

Tipping points ↔ Bifurcations

$$\frac{dy}{dt} = f(y, \mu)$$

source: McKay et al, 2022

Classic Theory of Tipping

$$\frac{d\vec{y}}{dt} = f(\vec{y}; \mu)$$

Canonical example:

$$\frac{dy}{dt} = y(1 - y^2) + \mu$$

Bifurcation structure and location of tipping points are hard to predict

→ Kerstin's talk @5:25 for progress in this direction

How does tipping work?

$$\frac{dy}{dt} = y(1 - y^2) + \mu$$
Internal Dynamics
$$\frac{d\mu}{dt} = \delta$$
Parameter Drift

Time Scale Separation

 $0 < \delta \ll 1$: Bifurcation-tipping (B-tipping)

 $\delta \geq \mathcal{O}(1)$: more complicated stuff

- → lacopo's talk @ 5:55
- → Sebastian's talk @ 6:25

Time Scales

INTERNAL TIME SCALES:

dynamics of tipping element

EXTERNAL TIME SCALE: parameter drift

Previous slide: 1 internal time scale

Upcoming: examples with multiple internal time scales

EXAMPLE 1: Multiscale Global Energy Balance Model

Abrupt 4xCO2 forcing experiment

- Initialize for μ_0 (initial CO2-levels)
- Change to μ_1 (4xCO2 levels)
- → Look at dynamics

[Bastiaansen, Ashwin, Von der Heydt, 2023]

How does this work?

EXAMPLE 2: AMOC \longleftrightarrow ICE interaction

$$\frac{dI}{dt} = f(I, R, T)$$

Energy balance model [Eisenman & Wettlaufer, 2009]

Tipping Element 2 (AMOC)

$$\tau_{o} \frac{dT}{dt} = g_{1}(T, S, I)$$

$$\tau_{o} \frac{dS}{dt} = g_{2}(T, S)$$

2-Box Model [Stommel, 1961]

$$au_{O}$$

 $\tau_0 \gg 1$

Parameter drift

$$\frac{dR}{dt} = dt$$

R changes (slow: " $^1/_{\tau_O} \le \delta \ll 1$ ") Rate-dependent effects on AMOC dynamics

R changes (fast: " $\delta \gg 1$ ")

- Whole structure breaks down
- Rate-dependent effects on AMOC and ICE dynamics

Conclusions

Tipping <u>DYNAMICS</u> also important

TIME SCALES!

In multiscale systems:

- Late tipping possible
- FAST-SLOW analysis possible
- Rate-induced effects depend on time scales

slides at bastiaansen.github.io

Thanks to:

Peter Ashwin, Anna von der Heydt, David Hokken