

AJUSTE DE UMA RETA

$$\sum \Bigl(Y_i - \hat{Y_i}\,\Bigr)$$

MINIMIZAÇÃO DOS DESVIOS ABSOLUTOS

$$\sum \left| Y_i - \hat{Y}_i \right|$$

Considere o seguinte conjunto de pontos

Χ	Υ
1	1
2	1
3	2
4	2
5	4

5

* 〇

RETAS DE AJUSTE

R2
$$Y = 0.5 + 0.5X$$

R3
$$Y=-0.7+0.9X$$

RETAS

R1	R2	R3
0.6	1	0.2
1.3	1.5	1.1
2	2	2
2.7	2.5	2.9
3.4	3	3.8

7

DESVIOS

Desv1	Desv2	Desv3
0.4	0	0.8
-0.3	-0.5	-0.1
0	0	0
-0.7	-0.5	-0.9
0.6	1	0.2
0	0	0

DESVIOS ABSOLUTOS

Desv1	Desv2	Desv3
0.4	0	0.8
0.3	0.5	0.1
0	0	0
0.7	0.5	0.9
0.6	1	0.2
2	2	2

QUADRADO DOS DESVIOS

(Desv1) ²	(Desv2) ²	(Desv3) ²
0.16	0	0.64
0.09	0.25	0.01
0	0	0
0.49	0.25	0.81
0.36	1	0.04
1.10	1.50	1.50

EXEMPLO 2

 Comprimento alar (cm) em função da idade (dias) para andorinhas

Dias	Comp.
3	1,4
4	1,5
5	2,1
6	2,4
8	3,1
9	3,2
10	3,3

13

EXEMPLO 2

14

EXEMPLO 2

17

☆ 〇

RETA DE MÍNIMOS QUADRADOS

RESÍDUOS

19

Estimadores

$$Y_i = \beta_0 + \beta_1 \cdot \left(X_i - \overline{X} \right) + \varepsilon_i \quad i = 1,...,n$$

$$\hat{\beta}_0 = \frac{1}{n} \sum_i Y_i = \overline{Y}$$

$$\beta_1 = \frac{\sum_{i} \left(X_i - \overline{X} \right) \cdot \left(Y_i - \overline{Y} \right)}{\sum_{i} \left(X_i - \overline{X} \right)^2} = \frac{s_{XY}}{s_{xx}}$$

$$\sigma^{2} = \frac{1}{n-2} \sum_{i} \hat{e}_{i}^{2} = \frac{1}{n-2} \sum_{i} \left\{ Y_{i} - \left[\hat{\beta}_{0} + \hat{\beta}_{1} \cdot \left(X_{i} - \overline{X} \right) \right] \right\}^{2}$$

DISTRIBUIÇÃO DOS ERROS

DISTRIBUIÇÃO DO DECLIVE

23

IC e Testes de hipóteses

	IC	TH
βο	$\hat{\beta}_0 \pm t_{n-2,(\frac{\alpha}{2})} \cdot \frac{s}{\sqrt{n}}$	$\begin{aligned} H_0: \beta_0 &= b_0 \\ H_1: \beta_0 &\neq b_0, \beta_0 > b_0 \text{ ou } \beta_0 < b_0 \end{aligned}$ $ET = \frac{\hat{\beta}_0 - b_0}{s / \sqrt{n}}$ $H_0 \text{ verdadeira } \Rightarrow ET \sim t_{n-2}$
β _o ΄	$\left(\hat{\beta}_0 - \overline{X}.\hat{\beta}_1\right) \pm t_{n-2,\left(\frac{n}{2}\right)}.s.\sqrt{\frac{1}{n} + \frac{\overline{X}^2}{s_{XX}}}$	$H_{0}: \beta_{0}^{'} = b_{0}^{'}$ $H_{1}: \beta_{0}^{'} \neq b_{0}^{'}, \beta_{0}^{'} > b_{0}^{'} \text{ ou } \beta_{0}^{'} < b_{0}^{'}$ $ET = \frac{\left(\hat{\beta}_{0} - \overline{X}.\hat{\beta}_{1}\right) - b_{0}^{'}}{s.\sqrt{\frac{1}{n} + \frac{\overline{X}^{2}}{s_{XX}}}}$ $H_{0} \text{ verdadeira } \Rightarrow ET \sim t_{n-2}$
β ₁	$\hat{\beta}_1 \pm t_{n-2,\binom{\alpha_2}{2}} \cdot \frac{s}{\sqrt{s_{XX}}}$	$H_{0}: \beta_{1} = b_{10}$ $H_{1}: \beta_{1} \neq b_{10}, \beta_{1} > b_{10} \text{ ou } \beta_{1} < b_{10}$ $ET = \frac{\hat{\beta}_{1} - b_{10}}{\sum_{\Sigma} (x_{i} - \overline{x})^{2}}$ $H_{0} \text{ verdadeira } \Rightarrow ET \sim t_{n-2} 24$

☆ 〇 REGRESSÃO NÃO LINEAR

 $\hat{Y} = \beta_0 + \beta_1 \frac{1}{X}$

REGRESSÃO NÃO LINEAR

Modelo	Transformação
$\bullet Y_i = \alpha' + \frac{\beta}{X_i} + e_i$	$U_{i} = \frac{1}{X_{i}}$ $Y_{i} = \alpha' + \beta . U_{i} + e_{i}$
• $Y_i = e^{\alpha' + \beta \cdot X_i + e_i}$	$Z_{i} = \ln Y_{i}$ $Z_{i} = \alpha' + \beta . X_{i} + e_{i}$
• $Y_i = e^{\alpha' + \frac{\beta}{X_i} + e_i} \operatorname{com} \alpha' > 0, \beta < 0$	$U_{i} = \frac{1}{X_{i}}$ $Z_{i} = \ln Y_{i}$ $Z_{i} = \alpha' + \beta \cdot U_{i} + e_{i}$

27

COEFICIENTE DE CORRELAÇÃO

Coeficiente de correlação de Pearson

$$R = \frac{\sum (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\sum (X_i - \overline{X})^2 \sum (Y_i - \overline{Y})^2}} = \frac{s_{XY}}{\sqrt{s_{xx}} \cdot \sqrt{s_{YY}}}$$

TESTES DE ASSOCIAÇÃO

<u>Unilateral à direita</u> <u>Unilateral à esquerda</u> <u>Bilateral</u>

 $H_0: \rho = 0$ $H_0: \rho = 0$ $H_0: \rho = 0$

 $H_1: \rho > 0$ $H_1: \rho < 0$ $H_1: \rho \neq 0$

Estatística de teste $t = \frac{r \cdot \sqrt{n-2}}{\sqrt{1-r^2}}$

Região de Rejeição:

 $t > t_{\scriptscriptstyle n-2,(\alpha)} \hspace{1cm} t < -t_{\scriptscriptstyle n-2,(\alpha)} \hspace{1cm} |t| > t_{\scriptscriptstyle n-2,(\alpha/2)}$

29

EXEMPLO

- Índice de Desenvolvimento de Griffiths
 - avaliações motora e intelectual para 9 crianças com a idade de 4 anos

Motor	Intelectual
84	77
73	85
101	105
74	86
88	108
100	116
86	96
95	100
82	100

_3

DIAGRAMA DE DISPERSÃO

COEFICIENTE DE DETERMINAÇÃO

37

<u>Coeficiente de determinação</u> (r²), representa a proporção da variação de Y que é explicada pela regressão

$$r^{2} = \frac{\hat{\beta}_{1}^{2}.s_{XX}}{s_{YY}} = \frac{\hat{\beta}_{1}^{2}.\sum_{i} (X_{i} - \bar{X})^{2}}{\sum_{i} (Y_{i} - \bar{Y})^{2}} = \frac{\text{variação de } Y \text{ explicada pela regressão}}{\text{variação total de } Y}$$