Sound Synthesis

w/ Golang

Outline

- Introduction to sound (analog/digital).
- Making some digital sound.

How sound works

wave

Waves come to ears

make the ears vibrate.

That's why we can hear sounds from space.

A Speaker

Speakers make waves to simulate sounds.

Digital Sound

ADC convert analog to digital. DAC convert digital to analog.

bluetooth head/earphones

DAC

Convert binary to voltage

16bit 44100 Hz

- 44100 samples per second.
- 1 sample is 16bit number (can be float / int).
- If the sound has LEFT + RIGHT channels, it contains 88200 samples per second.

=> 1s ~ 176 kbytes

Several formats

- WAVE: 16bit 44kHz (~1411 kbps)
- WAVE: 24bit 96kHz (~4600 kbps)
- MP3 128/256/512 kbps (lossy formats)
- AIFF: like WAVE (but data chunk use big endian)

Big/Little Endian

Audio driver

- Read buffer memory
- Send to DAC

We have to

- Read or generate samples.
- Write to buffer when the callback is called.

Let's start making some noise

(real noise)

		7	

Sine wave

$$f(x) = \sin(x)$$

Wave File

foo.wav

The Canonical WAVE file format

Let's build a basic Keyboard

Thank you!