RectifiedHR Upgrade Plan

Contributions. We make three contributions. (1) Energy profiling for diffusion sampling: we formalize a normalized latent "energy" and introduce stability summaries (total variation, spike magnitude, monotonicity violations, area) that diagnose artifact-prone trajectories. (2) Energy-guided guidance: we propose a family of adaptive classifier-free guidance schedules (linear, cosine, step, etc.) with simple, practical rules that stabilize late steps across samplers; we also provide lightweight stabilizers (energy clipping, noise refresh). (3) Reproducible evidence: using a unified set of configurations with fixed prompts/seeds, we compare against best fixed-CFG baselines per sampler and show consistent gains in CLIPScore/LPIPS and seed-consistency alongside lower energy variation. We include a small SDXL@768 set to demonstrate scalability and perform an overhead analysis.

1. Datasets, Prompts, Seeds

- **Prompts:** 200 public prompts spanning (i) object-centric, (ii) compositional/relational, (iii) artistic/style buckets. (currently 10)
- Seeds: 5 fixed seeds per prompt. (currently 3)
- Models & resolutions: Stable Diffusion 1.5 @ 512×512 (main); add SDXL @ 768 as a lightweight scalability ablation. Optionally add a *tiny* 1024 if space allows.

2. Suggested Metrics

- Perceptual: CLIPScore (reference-free), LPIPS, MS-SSIM (you already have these)
- Energy-based stability (core): for step t, $E_t = ||x_t||_2^2/N$. Report: (i) spike magnitude, (ii) total variation (TV), (iii) # monotonicity violations, (iv) area over trajectory. (mostly done.)
- Consistency: define a metric to measure per-seed agreement across samplers/schedules.
- Link metrics: define a measure to confirm stable trajectories correspond to better quality. For exmaple, $Spearman \rho$ between -TV and CLIPScore/LPIPS across configs.

3. Guidance Schedules & Samplers

- Schedule family for CFG scale s_t : linear-decrease, cosine, step, exponential, sigmoid. (you have these.)
- Samplers: DDIM, Euler A, DPM++ 2M. (you have these.)
- Configurations: Tables 1 & 2 defines all experiments to run.

4. Baselines Under Identical Protocol

- Reproduce HiResFix and RectifiedFlow results using same configs. (Currently compared conceptually; table cites original-paper numbers not directly comparable)
- Clearly tag any non-reproduced literature numbers as reported. (you have this already)
- Include best fixed-CFG per sampler = best constant guidance per sampler selected by mean Q over prompts (e.g., EulerA: CFG=8, DPM++2M: CFG=12, DDIM: CFG=10).

5. Add Some Stress Tests

- 6. Add Some Ablations
- 7. Add a Formal Justification of the Approach: Currently discussed intuitively; formalize the rationale and notations. (I can help you with this)

Table 1: Experiment factors and levels used to define configurations. Prompts and seeds are fixed and reused across all configurations.

Factor	Levels
Model	SD 1.5 (main), SDXL (scalability ablation)
Resolution	512 (main), 768 (SDXL ablation)
Sampler	DDIM, EulerA, DPM++ 2M
Schedule type	linear, cosine, step
Endpoints $(s_0 \rightarrow s_1)$	$(12 \rightarrow 3), (10 \rightarrow 5), (8 \rightarrow 3)$
Steps	50 (main)
Prompts	200 public prompts (released)
Seeds	5 fixed seeds per prompt (released)

Table 2: Configurations to run: SD 1.5@512 (main) and a tiny SDXL@768 scalability ablation. Each row is a configuration (cfg_id) run on the same prompts and seeds.

Model	Res	Sampler	Schedule	$\mathbf{s_0}$	$\mathbf{s_1}$	cfg_id
SD 1.5 @ 512, steps=50						
SD1.5	512	DDIM	linear	12	3	$sd15-512-ddim-linear-s0_12-s1_3-n50$
SD1.5	512	DDIM	linear	10	5	$sd15-512$ -ddim-linear- $s0_10-s1_5-n50$
SD1.5	512	DDIM	linear	8	3	$sd15\text{-}512\text{-}ddim\text{-}linear\text{-}s0_8\text{-}s1_3\text{-}n50$
SD1.5	512	DDIM	cosine	12	3	$sd15-512-ddim-cosine-s0_12-s1_3-n50$
SD1.5	512	DDIM	cosine	10	5	$sd15-512$ -ddim-cosine- $s0_10-s1_5-n50$
SD1.5	512	DDIM	cosine	8	3	$sd15-512$ -ddim-cosine- $s0_8-s1_3-n50$
SD1.5	512	DDIM	step	12	3	$sd15-512-ddim-step-s0_12-s1_3-n50$
SD1.5	512	DDIM	step	10	5	$sd15-512-ddim-step-s0_10-s1_5-n50$
SD1.5	512	DDIM	step	8	3	sd15-512-ddim-step-s0-8-s1-3-n50
SD1.5	512	EulerA	linear	12	3	$sd15-512$ -eulera-linear- $s0_12-s1_3-n50$
SD1.5	512	EulerA	linear	10	5	$sd15\text{-}512\text{-}eulera\text{-}linear\text{-}s0\text{_}10\text{-}s1\text{_}5\text{-}n50$
SD1.5	512	EulerA	linear	8	3	$sd15\text{-}512\text{-}eulera\text{-}linear\text{-}s0\text{_}8\text{-}s1\text{_}3\text{-}n50$
SD1.5	512	EulerA	cosine	12	3	$sd15\text{-}512\text{-}eulera\text{-}cosine\text{-}s0_12\text{-}s1_3\text{-}n50$
SD1.5	512	EulerA	cosine	10	5	$sd15-512$ -eulera-cosine- $s0_10-s1_5-n50$
SD1.5	512	EulerA	cosine	8	3	$sd15-512$ -eulera-cosine- $s0_8-s1_3-n50$
SD1.5	512	EulerA	step	12	3	$sd15-512$ -eulera-step- $s0_12-s1_3-n50$
SD1.5	512	EulerA	step	10	5	$sd15-512$ -eulera-step- $s0_10-s1_5-n50$
SD1.5	512	EulerA	step	8	3	$sd15\text{-}512\text{-}eulera\text{-}step\text{-}s0\text{_}8\text{-}s1\text{_}3\text{-}n50$
SD1.5	512	DPM++2M	linear	12	3	$sd15\text{-}512\text{-}dpmpp2m\text{-}linear\text{-}s0_12\text{-}s1_3\text{-}n50$
SD1.5	512	DPM++2M	linear	10	5	$sd15\text{-}512\text{-}dpmpp2m\text{-}linear\text{-}s0_10\text{-}s1_5\text{-}n50$
SD1.5	512	DPM++2M	linear	8	3	$sd15\text{-}512\text{-}dpmpp2m\text{-}linear\text{-}s0_8\text{-}s1_3\text{-}n50$
SD1.5	512	DPM++2M	cosine	12	3	$sd15\text{-}512\text{-}dpmpp2m\text{-}cosine\text{-}s0\text{_}12\text{-}s1\text{_}3\text{-}n50$
SD1.5	512	DPM++2M	cosine	10	5	$sd15\text{-}512\text{-}dpmpp2m\text{-}cosine\text{-}s0\text{_}10\text{-}s1\text{_}5\text{-}n50$
SD1.5	512	DPM++2M	cosine	8	3	$sd15-512-dpmpp2m-cosine-s0_8-s1_3-n50$
SD1.5	512	DPM++2M	step	12	3	$sd15\text{-}512\text{-}dpmpp2m\text{-}step\text{-}s0_12\text{-}s1_3\text{-}n50$
SD1.5	512	DPM++2M	step	10	5	$sd15-512-dpmpp2m-step-s0_10-s1_5-n50$
SD1.5	512	DPM++2M	step	8	3	$sd15-512-dpmpp2m-step-s0_8-s1_3-n50$
SDXL @	768 (s	calability ablati	on), $steps=50$)		
SDXL	768	DDIM	linear	12	3	sdxl-768-ddim-linear-s0_12-s1_3-n50
SDXL	768	DPM++2M	linear	12	3	$sdxl-768-dpmpp2m-linear-s0_12-s1_3-n50$

Table 3: Sample main results on SD 1.5@512 (200 prompts, 5 seeds). Mean±95% CI over prompts. Fixed-CFG = best constant guidance per sampler; Ours = best adaptive schedule per sampler. Add all metrics.

Sampler	Method (CFG)	CLIP	LPIPS	Consistency	${\bf Energy\text{-}TV}$
DDIM	Fixed (best const) Ours (linear $12\rightarrow 3$)	\$\$\$ \$\$\$???	555 555	555 555
EulerA	Fixed (best const) Ours (cosine $12\rightarrow 3$)	\$55 \$55	???	555 555	555 555
DPM++2M	Fixed (best const) Ours (linear 12→3)	\$55 555	???	555 555	555 555

Table 4: Schedule ablation on SD 1.5@512 (steps=50). Mean±95% CI over prompts. Add all metrics.

Sampler	Schedule $(s_0 \rightarrow s_1)$	CLIP	LPIPS	Energy-TV
DDIM	linear $12\rightarrow 3$???	???	???
	cosine $12\rightarrow 3$	888	888	???
	step $12\rightarrow 3$???	???	???
EulerA	linear $12\rightarrow 3$???	???	???
	cosine $12\rightarrow 3$	888	888	???
	step $12\rightarrow 3$	888	???	???
$\overline{\mathrm{DPM} + +2\mathrm{M}}$	linear $12\rightarrow 3$???	???	???
	cosine $12\rightarrow 3$???	???	???
	step 12 \rightarrow 3	???	???	555

Table 5: Scalability ablation on SDXL@768 (200 prompts, 3 seeds okay). Add all metrics.

Sampler	Method	CLIP	LPIPS	Energy-TV
DDIM	Fixed (best const)	888	888	???
DDIM	Ours (linear $12\rightarrow 3$)	???	888	888
DPM++2M	Fixed (best const)	???	888	888
DPM++2M	Ours (linear $12\rightarrow 3$)	???	???	???

Table 6: Overhead vs best Fixed-CFG (SD 1.5@512). Mean runtime per image and peak memory.

Sampler	Δ Runtime (s/img)	Δ Peak Mem (MB)
DDIM	???	???
EulerA	666	888
DPM++2M	???	???

Table 7: Energy–Perception link (per-prompt Spearman ρ between Q and -TV; mean $\pm 95\%$ CI across prompts).

Setting	$Link@\rho$ (CLIP, $-TV$)
SD 1.5@512 (all configs)	???
SDXL@768 (ablation)	???