1. За чистый интернет

Яндекс всегда пытается показывать креативную рекламу интересную для данного пользователя. Но, к сожалению, это выходит не всегда. Мальчик Петя является идейным марксистом и не хочет, чтобы крупные акулы капитала зарабатывали на нём деньги. Для этого он завёл себе правило каждый раз, заходя на новый сайт, банить ровно по одному рекламному баннеру.

У вас есть история перемещений Пети по Интернету, представленная в виде N URL-ов сайтов, которые он посещал. Ваша задача состоит в том, чтобы определить сколько есть забанненых баннеров на сайтах, имеющих своим URL-префиксом данную последовательность символов.

Формат ввода

На вход вам вводится $1≤N≤2*10^3$ сайтов которые посетил Петя. Далее, каждый на отдельной строке, вводятся URL-ы, состоящие из доменного имени и пути (возможно пустым). После вводятся число 1≤N≤105, количество запросов. Потом идут сами запросы, каждый на отдельной строке, состоящие из последовательности символов.

URL и запрос состоит только из прописных латинских букв, точек и слешей и его длина $1 \le k \le 50$. Оканчивается URL и запрос всегда на латинскую букву.

Формат вывода

Для каждого из **М**запросов на отдельной строке выведите количество забаненных баннеров, размещённых на сайтах, имеющих своим URL-префиксом данную последовательность символов.

Пример 1

Ввод	Вывод
5 yandex.ru/news yandex.ru yandex.ru/news yandex.ru/pogoda yandex.ru/news/story 4 yandex.ru yandex.ru yandex.ru/pogoda yandex.ru/news yandex.ru/news	5 1 3 1

Пример 2

Ввод	Вывод
2 yandex yandex.market	2 1 0 2 2
yandex yandex.market blablacar y yan	

Ограничение памяти 256.0 Мб. Ограничение времени2 с

Ввод стандартный ввод или input.txt

Вывод стандартный вывод или output.txt

2. Лучшее приближение

Расстояние Хэмминга (кодовое расстояние) — число позиций, в которых соответствующие символы двух слов одинаковой длины различны. В более общем случае расстояние Хэмминга применяется для строк одинаковой длины любых *q*-ичных алфавитов и служит метрикой различия (функцией, определяющей расстояние в метрическом пространстве) объектов одинаковой размерности.

Вам даны пары бинарных строк одинаковой длины (s, d). Найдите бинарную строку t, для которой величина $\max(hamming(s,t),hamming(d,t))$ минимальна (hamming(s,t)) — расстояние Хемминга между строками s и t).

Если бинарных строк минимизирующих данную величину несколько, выведите любую из них.

Формат ввода

В первой строке записаны два целых числа n и q ($1 \le n \le 25$, $1 \le q \le 100000$) — длина строк в наборе тестовых данных и количество тестовых пар.

В каждой из следующих q строк записаны две бинарные строки s и t длины n. Строки разделены одиночным пробелом.

Формат вывода

Для каждой из q тестовых пар выведите найденную строку t. Тестовые пары нужно обрабатывать в порядке следования во входных данных.

Пример 1

Ввод	Вывод
5 3 01000 00110 00000 11111 00001 00111	01100 01010 00011

Пример 2

Ввод	Вывод
111111	1

Пример 3

Ввод	Вывод
2 10	00
	00
00 00	00
00 01	01
00 10	01
00 11	00
01 01	01
01 10	10
01 11	10
10 10	11
10 11	
11 11	

Ограничение памяти 256.0 Мб. Ограничение времени 4 с

Ввод стандартный ввод или input.txt

Вывод стандартный вывод или output.txt

3. Книжное настроение

У Пети есть большая книжная полка с книгами, которые он давно хотел прочитать. Некоторые из книг кажутся ему интересными, а другие нет. Петя случайным образом выбирает равновероятно любую книгу из оставшихся непрочитанными и читает ее. При этом он тратит |ai| времени на прочтение книги. Если книга ему понравилась, он продолжает читать книги дальше; если же нет, то он прекращает читать книги.

Если неинтересных книг на полке нет, то Петя прочитает все книги.

Васе известно про каждую книгу, сколько Петя будет ее читать, и понравится она ему или нет. Теперь Вася хочет узнать математическое ожидание времени чтения Петей книг с этой книжной полки.

Формат ввода

Первая строка ввода содержит число n --- количество книг на полке ($1 \le n \le 100$).

Вторая строка содержит n целых чисел ai: |ai| указывает, сколько Петя будет читать i-ю кингу ($|ai| \le 100$). Если значение ai отрицательно, i-я книга считается неинтересной.

Некоторые книги могут быть прочитаны мгновенно (ai=0), будем считать, что все такие книги интересны.

Формат вывода

В единственной строке выведите математическое ожидание времени чтения.

Ответ будет зачитан, если абсолютная или относительная погрешность не превысит 10-9.

Пример 1

Ввод

5

41302

Вывод

10.0000000000

Пример 2

Ввод

2

-1 -2

Вывод

1.5000000000

Ограничение памяти

256.0 Мб

Ограничение времени

2 c

Ввод

стандартный ввод или input.txt

Вывод

стандартный вывод или output.txt

4. Технический долг

Реализация большого проекта — очень сложная задача, и при разработке программист Алексей руководствуется следующим принципом: сначала написать работающий прототип, а потом улучшать код. Чтобы не забыть, что именно отложено на потом, на каждый такой долг Алексей заводит на себя задачу в специальной системе Yaqile.

Система устроена следующим образом: для каждой задачи задается дедлайн — день \mathfrak{k}^i . Если задача не решена до этого момента времени, то в задачу приходит робот и пишет комментарий о том, что задачу надобно закрыть. Если через \mathfrak{K} дней задача не решена, то робот приходит снова. Так г \mathfrak{p} одолжается до тех пор, пока задача не будет решена. i

Алексей каждый день заходит в Yagile и видит сообщения от робота. Если Алексей не хочет приступать к решению накопленных задач, то он прочитывает все сообщения с помощью одной кнопки и занимается другими делами. Однако Алексей понимает, что так долго делать нельзя, поэтому он разрешает себе нажимать на эту кнопку ровно \mathcal{K} —1 раз, а на \mathcal{K} -й раз садится и решает все задачи разом (даже те, у которых не настал дедлайн).

Определите день, когда Алексей закроет все задачи.

Формат ввода

Первая строка содержит три целых числа $\mathcal{N}(1 \le \mathcal{N} \le 105)$ — количество накопленных задач, $\mathcal{X}(1 \le \mathcal{X} \le 109)$ — количество дней, через которое приходит робот и число \mathcal{K} из условия $(1 \le \mathcal{K} \le 109)$.

Вторая строка содержит N целых чисел t1, t2, ..., tN($1 \le t \le 109$) — дедлайны соответствующих задач.

Формат вывода

Выведите одно число — день, когда Алексей закроет все задачи.

Пример 1

Ввод

6510 123456 Вывод

Пример 2

Ввод

5 7 12 5 22 17 13 8 Вывод 27

Ограничение памяти 256.0 Мб. Ограничение времени 2 с.

Ввод

стандартный ввод или input.txt

Вывод

стандартный вывод или output.txt