Quantum Physics I Fall 2017 Midterm Exam

Instructor: Pai-hsien Jennifer Hsu

Friday November 10, 2017

You must show your work. No credits will be given if you don't show how you get your answers.

You may use the following formula:

• Rotation operator for rotating ϕ about a unit vector \hat{n} is

$$\hat{R}(\phi \hat{n}) = \exp\left(-i\hat{\vec{J}} \cdot \phi \hat{n}/\hbar\right)$$

where $\hat{\vec{J}} = \hat{J}_{\rm x}\hat{i} + \hat{J}_{\rm y}\hat{j} + \hat{J}_{\rm z}\hat{k}$ are the angular momentum operators satisfying the commutation relation $[\hat{J}_{\rm x},\hat{J}_{\rm y}]=i\hbar\hat{J}_{\rm z}$.

• One of the 2-D representations of $\hat{\vec{J}}$ is $\hat{\vec{S}} = \frac{\hbar}{2}\hat{\vec{\sigma}}$, where $\vec{\sigma}$ are the Pauli matrices

$$\sigma_{\mathbf{x}} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \sigma_{\mathbf{y}} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad \sigma_{\mathbf{z}} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

• One of the 3-D representations are

$$\hat{J}_{\mathbf{x}} \to \frac{\hbar}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \quad \hat{J}_{\mathbf{y}} \to \frac{\hbar}{\sqrt{2}} \begin{pmatrix} 0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0 \end{pmatrix} \quad \hat{J}_{\mathbf{z}} \to \hbar \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

• The time-evolution operator $\hat{U}(t), |\psi(t)\rangle = \hat{U}(t) |\psi(0)\rangle$, can be written as

$$\hat{U}(t) = \exp\left(-\frac{i}{\hbar}\hat{H}t\right)$$

where \hat{H} is the time-independent Hamiltonian. \hat{H} satisfies the Schödinger equation:

$$i\hbar \frac{d\left|\psi(t)\right\rangle}{dt} = \hat{H}\left|\psi(t)\right\rangle$$

- Expectation value of an operator \hat{A} for a state $|\psi\rangle$ is $\langle A \rangle = \langle \psi | \hat{A} | \psi \rangle$
- Uncertainty of an operator \hat{A} is defined as $\Delta A = \sqrt{\langle A^2 \rangle \langle A \rangle^2}$
- Heisenberg Equation:

$$\frac{d}{dt}\langle A\rangle = \langle \frac{\partial A}{\partial t}\rangle + \frac{1}{i\hbar}\langle [\hat{A},\hat{H}]\rangle$$

where \hat{H} is the Hamiltonian.

 \bullet For a spin-1/2 particle, the eigenstates of $\hat{S}_{\rm x}$ can be expressed in terms of eigenstates of $\hat{S}_{\rm z}$ as

$$|+\mathbf{x}\rangle = \frac{1}{\sqrt{2}} |+\mathbf{z}\rangle + \frac{1}{\sqrt{2}} |-\mathbf{z}\rangle$$

$$|-\mathbf{x}\rangle = \frac{1}{\sqrt{2}} \left|+\mathbf{z}\rangle - \frac{1}{\sqrt{2}} \left|-\mathbf{z}\rangle\right|$$

1. A spin-1/2 particle is in the state

$$|\psi\rangle \to \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\i \end{pmatrix}$$

in the $|\pm \mathbf{z}\rangle$ basis.

- (a) What are the expectation value $\langle S_y \rangle$ and uncertainty ΔS_y ? (2 points)
- (b) What are the uncertainties $\Delta S_{\rm x}$ and $\Delta S_{\rm z}$? (2 points) [Hint: You can save a lot of efforts by examining the properties of the state $|\psi\rangle$.]
- 2. A spin-1 particle is in the eigenstate of the \hat{S}_{x} with eigenvalue \hbar , $|1,1\rangle_{x}$ i.e. $\hat{S}_{x}|1,1\rangle_{x}=\hbar|1,1\rangle_{x}$.
 - (a) Express $|1,1\rangle_{x}$ as a column vector in the basis of \hat{S}_{z} . (3 points)
 - (b) The particle goes through a Stern-Gerlach experiment apparatus, where the magnetic field is pointing along a unit vector $\hat{n} = \cos \phi \, \hat{i} + \sin \phi \, \hat{j}$. What is the probability of measuring $S_{\rm n} = \hbar$? (3 points)

[*Hint*: Express $|1,1\rangle_n$ by applying a rotation operator on $|1,1\rangle_x$.]

- (c) What is the expectation value of $\langle S_{\mathbf{x}} \rangle$ for the state $|1,1\rangle_{\mathbf{n}}$? (3 points)
- 3. The superoxide anion O_2^- consists of a pair of oxygen atoms separated by a distance 2a. Assume the electron can only be at one of the oxygen atoms, that is, the eigenvalues of its position operator \hat{x} can be taken as +a or -a.

Let the corresponding eigenstates be $|+a\rangle$ and $|-a\rangle$. In this $|\pm a\rangle$ basis, the eigenstates and the Hamiltonian of the electron can be written as

$$|+a\rangle \rightarrow \begin{pmatrix} 1\\0 \end{pmatrix} \quad |-a\rangle \rightarrow \begin{pmatrix} 0\\1 \end{pmatrix} \quad \hat{H} \rightarrow \begin{pmatrix} 0&-A\\-A&0 \end{pmatrix}$$

where A is a real number with A > 0.

- (a) Find the eigenvalues of \hat{H} . (1 point). Express the normalized eigenstates of \hat{H} in the $|\pm a\rangle$ basis. (2 points)
- (b) The electron is initially at the position -a. What is the probability of observing the electron at -a at a later time t? (3 points) [Hint: Express $|-a\rangle$ in terms of the eigenstates of \hat{H} .]
- (c) From (b), what is the expectation value of the position of the electron as a function of time? (3 points)

- 4. An electron is placed in a constant external magnetic field pointing in the positive x-axis, $\vec{B} = B_0 \hat{i}$. Its Hamiltonian is thus given by $\hat{H} = \omega_0 \hat{S}_x$, where $\omega_0 = geB_0/2m_ec$ (you can simply use ω_0 in your answers.). The electron is initially at the state $|+z\rangle$.
 - (a) What are the eigenvalues and eigenstates of \hat{H} ? (4 points) [Note: You don't need to express the eigenstates in any particular basis for this question. Just explain what the states are.]
 - (b) What is the expectation value $\langle S_x \rangle$ of the electron as a function of time? (2 points)
 - (c) At N equally spaced times $t_n = n(t/N)$, n = 1, 2, ..., N, we measure S_z . Find the probability that we find the electron in the state $|+z\rangle$ for all N measurements. (2 points) [Note: Do **not** assume N is large or t/N is small.]
 - (d) [Bonus] Suppose we now take N to be very large but keep t fixed, so that the interval between measurements is very small. What is the probability from (c) in the limit $N \to \infty$? (4 points)

[*Hint*: The limit is in the form of $\lim_{N\to\infty}[f(a/N)]^N$ for some function f(x). Write it as $\exp\left(\lim_{N\to\infty}\ln[f(a/N)]^N\right)$, and evaluate $\lim_{N\to\infty}\ln[f(a/N)]^N=\lim_{x\to0}\frac{\ln f(ax)}{x}$ with x=1/N. Because $\ln f(0)=0$, hence the limit is the differential of $\ln f(ax)$.

You will be given full credits of this question if you perform the limit calculation. Partial credits will be given if you can deduce the correct answer by physics arguments.]