Design of a Switched-Capacitor Amplifier

H05E4a DAMSIC Project 2023

Parts I, II and III: Parameter derivation, Ideal, Symmetrical, Folded and Gain Boosted OTA
Students: Jakov Sola, Simon Pedersen

Group ID: 2

1 General Information and Summary

1.1 Given Target Specifications

Parameter	Unit	Specification
Sampling Frequency	MHz	50
SNR	dB	45
Static Gain Error	%	0.05
Dynamic Settling Error	%	2.2
Phase Margin (Min.)	deg	60
C_L	рF	2
Min. Input Swing	mV_{pp}	50
Max. Input Swing	mV_{pp}	100
Closed-Loop Gain	V/V	10
Input Pair	_	nmos

1.2 Derivation of System Design Parameters

$$C_{FB} = \frac{1}{10}C_{in}$$

$$A_{OL} = \frac{A_{idealCL}(\epsilon_{gain} + 1)}{1 - \beta A_{idealCL}(\epsilon_{gain} + 1)} = \frac{10.005}{1 - \frac{1}{10}10.005} = -20010$$

$$BW = -\frac{2f_s \ln(\epsilon_{set})}{2\pi} = -2 \times 50 \times 10^6 \times \frac{\ln(0.022)}{2\pi} = 60.7MHz$$

$$GBW = A_{CL}BW = 10.005 \times 60.7 \times 10^6 = 607MHz$$

$$G_m = GBW \times 2\pi \times C_{out} \approx GBW \times 2\pi \times C_l = 7.63mS$$

2 Ideal OTA

Figure 1 Open loop amplitude response¹

Figure 2 Closed loop amplitude and phase response (sampling phase)

¹ Data tips on all of the plots are dynammically placed to the closest sample point by a Matlab script **Ideal OTA** 2

Figure 3 Transient simulation with fsw=fin=50MHz

Ideal OTA 3

Figure 5 Noise simulation

Ideal OTA 4

3 Symmetrical OTA

3.1 Table of Achieved Results

5.1 Table of Achieved Results					
Parameter	Unit	Achieved			
Input Swing	mV_{pp}	100			
Output Swing	mV_{pp}	964			
Total Integrated Output Noise	mV _{rms}	3.24			
SNR	dB	40.8			
CL	pF	2			
C_{FB}	pF	0.23p			
Cin	pF	2.3p			
Open-Loop Gain	dB	53.4			
Closed-Loop Gain	V/V	9.64			
GBW (Sample Phase)	MHz	630			
Phase Margin (Sample Phase)	deg	31			
Dynamic Settling Error	%	3.6			
Static Gain Error	%	3.3			
Power dissipation	mW	2.19			

3.2 Schematic Design

Туре	Name	Value	Transistor
Supply	vdd	1.1	
	b1	550m	
	b2	0m	
Bias	b3	725m	
_	b4	280m	
	SP	550m	
_	Wfn_bias	2u	
Tail	bias_n_L	1u	M1
·	bias_n_fn	30	
ıt Vt)	Wfn_in_n	2u	
Input (Low Vt)	in_n_fn	350	M2
1 OI)	in_n_L	45n	
J.	Wfn_in_mirror	2u	
Input mirror	in_p_fn	150	M3
= E	in_p_L	45n	
SC	Wfn_n	2u	M4/M5
Output nMOS	out_n_L	300n	M5
r r	out_n_fn	150	CIVI
ıtp	out_n_L_2	600n	M4
	out_n_fn2	80	IVI 4
SC	W_fn_p	2u	M6/M7
Σ	out_p_fn	200	M6
rt D	out_p_L	300n	IVIO
Output pMOS	out_p_fn2	330	M7
õ	out_p_L2	200n	IVI /
Load	Cl	2p	
В	CMFB_gain	1	
CMFB	CMFB_r	10	
Ō	SP	550m	

3.3 Simulation Results

Figure 6 Open loop amplitude response

Figure 7 Closed loop amplitude and phase response (sampling phase)

Figure 8 Transient simulation with fsw=fin=50MHz

Figure 9 Transient simulation with fsw=fin=50kHz

Figure 10 Noise simulation

4 Folded cascode OTA

4.1 Table of Achieved Results

Parameter	Unit	Achieved
Input Swing	mV_{pp}	100
Output Swing	mV_{pp}	932
Total Integrated Output Noise	mV _{rms}	1.6
SNR	dB	46.9
CL	pF	2р
C_{FB}	pF	0.5р
C _{IN}	pF	5р
Open-Loop Gain	dB	48.3
Closed-Loop Gain	V/V	9.34
GBW (Sample Phase)	MHz	230
Phase Margin (Sample Phase)	deg	82
Dynamic Settling Error	%	10.2
Static Gain Error	%	6.6
Power dissipation	mW	1.98

4.2 Schematic Design

Figure 11 DC Operating point

Туре	Name	Value	Transistor
Supply	vdd	1.1	
	b1	500m	
	b2	450m	
Bias	b3	650m	
Bi	b4	330m	
	b5	630m	
	SP	550m	
	Wfn_bias	1.5u	
Tail	bias_n_L	600n	M1
·	bias_n_fn	120	
t Vt)	Wfn_in_n	1.5u	
Input (Low Vt)	in_n_fn	160	M2
ار ا	in_n_L	90n	
SC	Wfn_n	1.5u	M3/M4
Output nMOS	out_n_L	450n	M4
r r	out_n_fn1	150	1014
ıtt	out_n_L_2	450n	M3
Õ	out_n_fn2	150	IVIS
25	W_fn_p	1.5u	M5/M6
Output pMOS	out_p_fn	233	M5
rt D	out_p_L	390n	CIVI
rtb	out_p_fn2	233	M6
Or	out_p_L2	450n	IVIU
Load	Cl	2р	
<u>a</u>	CMFB_gain	10	
CMFB	CMFB_r	1k	
O	SP	550m	

4.3 Simulation Results

Figure 12 Open loop amplitude response

Figure 13 Closed loop amplitude and phase response (sampling phase)

Figure 14 Transient simulation with fsw=fin=50MHz

Figure 15 Transient simulation with fsw=fin=50kHz

Figure 16 Noise simulation

5 Gain-boosted OTA

5.1 Table of Achieved Results

Parameter	Unit	Achieved
Input Swing	mV_{pp}	50~100
Output Swing	mV_{pp}	499.7~999.2
Total Integrated Output Noise	mV _{rms}	
SNR	dB	42.5
CL	pF	2 p
Сғв	pF	0.8
Cin	pF	8
Open-Loop Gain	dB	91.5
Closed-Loop Gain	V/V	9.99
GBW (Sample Phase)	MHz	380
Phase Margin (Sample Phase)	deg	79
Dynamic Settling Error	%	0.7
Static Gain Error	%	0.038 (transient sim); 0.84 (PAC sim)
Power dissipation	mW	8.31

5.2 Schematic Design

Figure 17 DC Operating point of main OTA

Transistors	Model	Vds[mV]	Vdsat[mV]	gm/Id[S/A]	gm[mS]	Id[mA]
M1	nmos1v	139	116.8	14.3	15.76	1.1
M2	nmos1v_lvt	478.2	61.9	15.1	8.33	0.55
M3	pmos1v_lvt	-452.7	-82.4	13.8	7.59	-0.55
M4	/	235	108	14.8	14.7	11
M5	/	310	102.8	15.17	15	1
M6	pmos1v	-329.7	-98.5	16.3	16.13	-0.99
M7	pmos1v	-225.6	-109.1	17.6	17.4	-0.99

The main OTA is presented with a table due to its size. It is not clearly readable if it is just exported from Cadence.

Figure 18 DC Operating point of A1 OTA

Figure 19 DC Operating point of A2 OTA

Main OTA					
Туре	Name	Value	Transistor		
Supply	vdd	1.1			
Bias	b1	470m			
	Finger W	1.5u			
Tail	Finger #	420	M1		
•	L	1.1u			
t IS Vt)	Finger W	1.5u			
Input nMOS (Low Vt)	Finger #	53	M2		
	L	45n			
pMOS (Low Vt)	Finger W	1.5u	M3		
∑ ×	Finger #	27	M3		
pl (Lc	L	45n	M3		
SC	Finger W	1.5u	M4/M5		
Σ	Finger #	100	M5		
Output nMOS	L	215n	CIVI		
rtbi	Finger #	133	M4		
ŏ	L	340n	IVI 4		
SC	Finger W	1.5u	M5/M6		
Σ	Finger #	100	M5		
+	L	110n	CIVI		
Output pMOS	Finger #	200	MG		
	L	300n	M6		
В	Gain	10			
CMFB	R	10			
D	CMFB SP	550m			

Gain Boosting nMOS input OTA – A1					
Туре	Name	Value	Transistor		
Supply	vdd	1.1			
	b1	500m			
Bias	b3	550m			
Β̈́	b4	330m			
	b5	630m			
_	Finger W	1.5u			
Tail	Finger #	144	M1		
	L	600n			
t Vt)	Finger W	1.5u			
ndr , w	Finger #	192	M2		
(Lo	L	90n			
SC	Finger W	2u	M3/M4		
Σ	Finger #	200	M4		
nt r	L	450n	1014		
ıtbı	Finger #	200	M3		
Output nMOS (Low Vt)	L	450n	IVIS		
SC	Finger W	1.5u	M5/M6		
Σ	Finger #	233	M5		
ut p	L	390n	CIVI		
Output pMOS	Finger #	233	M6		
	L	450n	IVIO		
<u> </u>	Gain	1			
CMFB	R	10			
O	CMFB SP	315m			

Gain Boosting pMOS input OTA – A2				
Туре	Name	Value	Transistor	
Supply	vdd	1.1		
	b1	550m		
Bias	b3	370m		
Bi	b4	900m		
	b5	550m		
_	Finger W	1.5u		
Tail	Finger #	300	M1	
	L	1u		
Input (Low Vt)	Finger W	1.5u		
ישר שלר י אינ	Finger #	50	M2	
(FC	L	45n		
Output nMOS	Finger W	1.5u	M5/M6	
Σ	Finger #	40	M5	
± ±	L	600n	IVIO	
ltp	Finger #	60	M6	
	L	400n	IVIO	
SO	Finger W	1.5u	M3/M4	
Σ	Finger #	30	M4	
Output pMOS	L	200n	1014	
	Finger #	50	M3	
	L	200n	CIVI	
В	Gain	1		
CMFB	R	10		
O	CMFB SP	775m		

Derivation 22

5.3 Simulation Results

Figure 20 Open loop amplitude response

Figure 21 Closed loop amplitude and phase response (sampling phase) - differential loop

Derivation 23

Figure 22 Closed loop amplitude and phase response (sampling phase) – CMFB loop

Figure 23 Closed loop amplitude and phase response A1 and A2

Figure 24 Transient simulation with fsw=fin=50MHz

Figure 25 Transient simulation with fsw=fin=50kHz

Figure 26 Closed loopo PAC simulation

6 Summary and Additional Remarks

Specifications

• We managed to reach all of the given specifications except the SNR that is 2.5dB less than required. We were **able to meet all the specifications** when using voltage sources to adjust the CM output of the gain boosting amplifiers. Our dynamic settling error (0.7%) is significantly better than the specification (2.2%). According to the PAC simulation we do not meet the static gain error specification but do in the transient simulation.

Plotting and specification extraction

We wrote a script in Matlab that takes in CSV data from Cadence, analyses it and plots
the results. It automatically adjusts the axis scales, calculates important points such as
the BW, GBW, phase margin and dynamically labels them on the plots in a clear and
readable way. This eliminates the time-consuming task of the user having to manually
place points on the graph and makes the graphs and the important points easier to read.

7 Other Results

 We attempted to make a real CMFB block instead of using the ideal one that was provided to us. We managed to implement the following topology by making a separate simple OTA that would be used as a comparator in the feedback loop. This gave stable and good results when used only on the folded cascode OTA but was very unstable in the gain boosting implementation due to too much gain.

• An obvious downside of this implementation are the two sensing resistors that cause many problems. We had panned to replace them with a better CM sensing circuit later on.