

YAYASAN AL-ABIDIN SURAKARTA **SEKOLAH MENENGAH ATAS** AL ABIDIN BILINGUAL BOARDING SCHOOL (ABBS) SURAKARTA

TERAKREDITASI: A (UNGGUL)

Jalan Tarumanegara III Banyuanyar, Banjarsari, Surakarta 57137 Telepon: 0271 - 7882145 / 0271 - 727792 Laman: www.abbs.alabidin.sch.id Surel: abbs@alabidin.sch.id

SUMMATIVE ASSESSMENT ACADEMIC YEAR OF 2023/2024

Subject : Physics

: Thursday, 21 March 2024 Day, date

Grade : XII MIPA Duration : 110 minutes

Multiple Choices

1. A particle physicist analyzes the results of her particle collider experiment. The analysis shows that a nucleus involved in the collision had a charge of 8.5 x 10^{-19} C \pm 0.2 x 10^{-19} C. The magnitude of an electron's charge is $e = 1.60 \times 10^{-19}$ C. Concerning the validity of the experimental results, the particle physicist should

- A. not be concerned since the observed charge is greater than e
- B. not be concerned since the observed charge is a multiple of e
- C. be concerned since it is impossible to have an observed charge greater than 5e
- D. be concerned since the observed charge is not an integer multiple of e
- E. be concerned since the observed charge is lower than e
- 2. An object that is initially neutral will be positive when
 - A. it loses electrons
 - B. it loses proton
 - C. it gains protons
 - D. it gains additional neutrons
 - E. it gains additional protons and electrons
- 3. A metal block with a charge $Q_1 = +3e$ sits near a metal ball with a charge $Q_2 = -5e$.

If the block is touched to the ball, the possible final charge on each object is

- A. $Q_1 = +4e$, $Q_2 = -4e$
- B. $Q_1 = +1e$, $Q_2 = +1e$
- C. $Q_1 = -1e$, $Q_2 = -1e$ D. $Q_1 = 0e$, $Q_2 = -3e$
- E. $Q_1 = +2e$, $Q_2 = -2e$

4. When two electric charges are held at a distance of r, the electrostatic force between them is FE. Subsequently, the distance between these charges is increased to 3r. The new electrostatic force between the charges is

- A. $3 F_E$
- B. $(\frac{1}{4})$ F_E
- C. $9 F_E$
- D. ($\frac{1}{9}$) F_E
- E. $(\frac{1}{3})$ F_E

5. Three equal charges +q are each placed at the corners of a square with side length r as shown in the figure. The force magnitude on the charge B is

- E.
- 6. Look at the circuit diagram below.

The value of the unknown resistance R is

- A. 5 ΩB. 6 Ω
- C. 7 Ω
- D. 8 Ω
- Ε. 9 Ω

7. The value of R in the circuit below is

- Α. 15.8 Ω
- B. 15.0 ΩC. 14.5 Ω

- D. 14.0 Ω
- E. 13.0Ω
- 8. Electric current in the circuit is

- A. 0.2 A
- B. 0.4 A
- C. 0.6 A

- D. 0.8 A
- E. 1.2 A
- 9. The magnitude of the current through R3 is... .

- A. 2 A B. 3 A
- C. 4 A

- D. 6 A
- E. 8 A

	10. An	electric current flow along a high-voltage power	er lii	ne from the North to the South. The
		ection of the magnetic field caused by the current a		
		South		West
		North	E.	Southeast
		East ong straight wire carrying current towards the East	tic n	laced in a homogeneous magnetic field
		100 T towards the North. If the current is 5 A an		
experiences a Lorentz force of				the wife s length is 1 m, then the wife
	-	2000 N towards the North	D.	5 N towards the South
		2000 N upwards	E.	5 N towards the North
		2000 N downwards	1.40	
12. A transformer has 300 turns in the primary coil and 1200 turns in the secondary current flowing through the primary coil is 8 A, what is the current flowing the				
		ondary coil?	vvIIa	t is the current nowing through the
		0.5 A	D.	20 A
	B.	32 A	E.	4 A
		2 A		
	13. The magnetic flux in a closed circuit of resistance 15 Ω varies with time t as $\Phi = 2t^3 - 3t^2 + 5t +$			
		culate the magnitude of the induced emf at t = 2s. 3 V	D	14 V
		5 V		17 V
		7 V		1, 1
	14. Wh	ich law is used in finding the direction of current i	n a.c	c. generator?
		Maxwell's law		Ampere circuital law
		Lenz's law	E.	Fleming's right-hand rule
		Corkscrew law w does a generator produce an electric current?		
A. By converting gravitational energy into electrical energy through the rotor.				ergy through the rotor.
B. By converting kinetic energy into electrical energy through a magnetic field.				==
C. Through the conversion of chemical energy into electrical energy through wind D. By converting heat energy into electrical energy through a working fluid.			e .	
			9	
E. Through the transformation of nuclear energy into electrical en				lectrical energy using an electrolyte.
		electromotive force (EMF) can be generated by alterations in the magnetic field solely		
	В.	•		
		modifications in the circuit's temperature solely		
		shift in the circuit's area		
E. variations in the conductivity of the connecting wires				
17. What is the expression for induced electromotive force (emf) when the magnetic field, length and real sites of the conductor are necessarily approached.				
		l velocity of the conductor are mutually perpendic emf = B ² l		$emf = B^2v$
		emf = Bil		$emf = B\sqrt{l}$
	C.	emf = Blv		
18. A conductor moves with a velocity of 0.3 m/s in a magnetic field of 6 T, inducing an emf of 1 If the magnetic field, velocity, and emf are mutually perpendicular, what is the length of				
				rpendicular, what is the length of the
		iductor? 0.9 m	D	1.2 m
		0.5 m		1.5 m
		0.6 m	۵.	1.0 111
	19. The	e voltage output of an AC source is given by the ex	pres	sion $\Delta v = (200 \text{ V}) \sin \omega t$. Find the rms
		rent in the circuit when this source is connected to		
		0.63 A		2.45 A
		1.21 A 1.41 A	Ł.	3.66 A
		8.00-μF capacitor is connected to the terminals of	a 60	0.0-Hz AC source whose rms voltage is
) V. Find the capacitive reactance.	01	voluge is
	A.	100 Ω		$414~\Omega$
		222 Ω	E.	552 Ω
	C.	332 Ω		

21. Look at the picture below.

What type of electromagnetic spectrum is safe for humans?

- A. radio, visible, x-ray
- B. ultraviolet, infrared, microwave
- C. ultraviolet, x-ray, gamma ray
- D. some portions of the UV, radio, microwave
- E. visible, gamma ray, x-ray
- 22. How can we minimize the negative impacts of electromagnetic radiation use?
 - A. By significantly increasing radiation exposure
 - B. By reducing the use of modern technology
 - C. By adopting stricter privacy policies for online data
 - D. By tightening regulations on the use of electromagnetic wave-based technology
 - E. By drastically increasing internet speed
- 23. What should be a priority in the use of electromagnetic wave technology?
 - A. Speed and efficiency
 - B. Human safety and health
 - C. Affordability and accessibility
 - D. Pleasure and entertainment
 - E. Utilizing the latest and most advanced technology
- 24. Which of the following statements best describes radioactivity?
 - A. A process of converting matter into energy
 - B. The emission of particles or electromagnetic waves from unstable atomic nuclei
 - C. A method of generating electricity from renewable sources
 - D. The absorption of radiation by living organisms
 - E. The process of creating isotopes in a laboratory
- 25. How does radioactivity contribute to the dating of archaeological artifacts?
 - A. By measuring the rate of decay of radioactive isotopes in the artifact
 - B. By analyzing the color and texture of the artifact's surface
 - C. By examining the artifacts under ultraviolet light
 - D. By calculating the distance of the artifact from known radioactive sources
 - E. By studying the magnetic properties of the artifact