CSE 326: Data Structures

Binomial Queues

Brian Curless Spring 2008

Comparing Heaps

Worst case [avg/amort. case]	Binary Heap	Leftist Heap	Skew Heap
insert	O(log <i>n</i>) [O(1)]	$O(\log n)$	$O(n)$ $[O(\log n)]$
findMin	O(1)	O(1)	O(1)
deleteMin	$O(\log n)$	$O(\log n)$	$O(n)$ $[O(\log n)]$
merge	O(n)	$O(\log n)$	$O(n)$ $[O(\log n)]$
build	O(n)	O(n)	O(n)

Announcements (4/14/08)

HW #2 due on Friday at beginning of class.

Can still partner up this afternoon.

Our Last Priority Queue

In exchange for getting fast merges with leftist and skew heaps, we have lost the fast (average case) inserts of binary heaps.

We'll look at one more priority queue data structure that doesn't make this trade-off: **binomial queues**.

But first, a brief diversion into binomial trees...

Binomial Trees

- A binomial tree B_h has height h and exactly 2^h nodes.
- B_h is formed by making B_{h-1} a child of another B_{h-1} .

$\operatorname{her} \mathbf{B}_{h-1}$.	B ₃		B_{I}	B_0
Height (h)	3	2	1	0
number of elements	$2^3 = 8$	$2^2 = 4$	$2^1 = 2$	$2^0 = 1$

Binomial Trees

- The root has exactly *h* children.
- Every subtree of a binomial tree is also a binomial tree.

	B ₃	<i>B</i> ₂	<i>B</i> ₁	B_0
Height (h)	3	2	1	0
number of elements	$2^3 = 8$	$2^2 = 4$	$2^1 = 2$	$2^0 = 1$

Binomial Trees

Number of nodes at depth *d* is a binomial coeff.:

$$\binom{h}{d} = \frac{h!}{(h-d)!d!}$$

Pascal's triangle:

Binomial Queues

- Structural property
 - Forest of binomial <u>trees</u> with at most one tree of any height
 What's a forest?
- Order property
 - Each binomial tree has the heap-order property

8

Binomial Queue with *n* elements

Binomial Q with *n* elements has a *unique* structural representation in terms of binomial trees!

Binomial Queue with *n* elements

Each binomial tree obeys heap order.

Properties of Binomial Queue

11

- At most one binomial tree of any height.
- *n* nodes
 - \Rightarrow # of bits in binary representation:
 - \Rightarrow number of trees:
 - ⇒ deepest tree has height:
- Is each subtree a binomial queue?

A Few More Examples

How to merge queues?

- There is a direct correlation between
 - the number of nodes in the tree
 - the representation of that number in base 2
 - and the actual structure of the tree
- When we merge two queues, the number of nodes in the new queue is the *sum of* N_1+N_2
- We can use these facts to help see how fast merges can be accomplished
- E.g., add 3+3 in base 2 arithmetic:

Example	e 1.
---------	------

Merge BQ.1 and BQ.2

Easy Case.

There are no comparisons and there is no restructuring.

BQ.1			9
N=1 ₁₀ =1 ₂	$2^2 = 4$	$2^1 = 2$	$2^0 = 1$
+ BQ.2		8	
N=2 ₁₀ =10 ₂	$2^2 = 4$	$2^1 = 2$	20=1
= BQ.3			

N=3₁₀=11₂

Example 2.

Merge BQ.1 and BQ.2

This is an add with a carry out.

It is accomplished with one comparison and one pointer change: O(1)

Example 3.

Merge BQ.1 and BQ.2

BQ.1		3	
N=3 ₁₀ =11 ₂	$2^2 = 4$	$2^1 = 2$	$2^0 = 1$
+ BQ.2		6	8
N=3 ₁₀ =11 ₂	$2^2 = 4$	$2^1 = 2$	$2^0 = 1$
= carry			
N=2 ₁₀ =10 ₂	$2^2 = 4$	$2^1 = 2$	$2^0 = 1$

Merge Algorithm

- Just like binary addition algorithm
- Assume trees X₀,...,X_n and Y₀,...,Y_n are binomial queues
 - $-X_i$ and Y_i are of type B_i or null

```
C_0 := \text{null; //initial carry is null//} for i = 0 to n do combine X_i, Y_i, and C_i to form Z_i and new C_{i+1} Z_{n+1} := C_{n+1}
```

Complexity of Merge

Constant time for each tree.

Max number of trees is:

 \Rightarrow worst case running time =

Insert

DeleteMin

Insert

- Create a single node queue B₀ with the new item and merge with existing queue.
- Total time (worst case) =
- Total time (average case) =
 - Hint: Think of adding 1 to 1101

DeleteMin

- 1. Assume we have a binomial queue $X_0, ..., X_m$
- 2. Find tree X_k with the smallest root
- 3. Remove X_k from the queue
- 4. Remove root of X_k (return this value)
 - $-\quad \text{This yields a binomial queue } Y_0,\,Y_1,\,...,\!Y_{k\text{-}1}.$
- 5. Merge this new queue with remainder of the original (from step 3)
- Total time (worst case) =

More Operations on Binomial Queue

- buildBinomialQ can be done with repeated inserts in O(*n*) time.
- Can we do decreaseKey efficiently? increaseKey?
- What about findMin?

26

25

Comparing Heaps

Worst case [avg/amort. case]	Binary Heap	Leftist Heap	Skew Heap	Binomial Queue
insert	O(log <i>n</i>) [O(1)]	$O(\log n)$	$O(n)$ $[O(\log n)]$	O(log <i>n</i>) [O(1)]
findMin	O(1)	O(1)	O(1)	$O(\log n)$
deleteMin	$O(\log n)$	$O(\log n)$	$O(n)$ $[O(\log n)]$	$O(\log n)$
merge	O(n)	$O(\log n)$	$O(n)$ $[O(\log n)]$	$O(\log n)$
build	O(n)	O(n)	O(n)	O(n)