Cuprates and Stripes using Hubbard Model

Shruti Agarwal

University of Tennessee, Knoxville

12th December, 2023

Objective

- ► Looking for the effects of electron-phonon coupling on the physics of stripes seen in Hubbard model for square lattice in 2D designed for Cuprates.
- ▶ Modelling the coupling using bond-SSH mechanism.
- ► In future,
 - ▶ plan to execute more "physical" mechanism, namely, optical-SSH;
 - looking for the possible similarities and differences with the results obtained from Holstein mechanism.

Model

- ► Hubbard model on 2D square lattice with nearest and next nearest neighbour hopping.
- ► Adding bond SSH coupling. equation

equation

- ▶ Relationship between α and λ .
- Norking in hole doped regime. For starters, going till p=0.2 and point of interest around p=0.125 due to ...

Assesment of sign for different temperature

Figure: 1a. $\langle sign \rangle$ vs T

Figure: 1b. $\langle n \rangle$ vs T

NOTES: To check the limit on lower value of T, note: with varying T, important to keep <n> constant. $\langle n \rangle = 0.875, U = 6, t' = -0.25, t = 1$, varying T to check $\langle \text{sign} \rangle$ for a set of λ values set by α

Is Mott gap decreasing?

Figure: $\langle {\it n} \rangle$ vs μ

Initial assessment of Mott gap by looking at $\langle n \rangle$ vs μ curve. The trend of slope increasing with increasing λ indicates that the mott gap is decreasing.

Parameters used: $\beta = 3.5$ others are same as before.

- The sign gets worse very quickly as move away from half filling.
- Same distribution of chemical potential used for varying coupling strength to evaluate filling fraction.
- The denser the peak at half filling, more number of μ points near half filling, meaning larger the gap.
- $c\{\lambda\}$ (e.g., c0) counts such number within indicated upper and lower bounds and it again indicates decrease in Mott gap.
- This is not so evident from μ vs sign scan.

Structure factor

Direct look at the spin $S(\mathbf{Q}, \omega=0)$ and charge density $N(\mathbf{Q}, \omega=0)$ structure factor calculated for varying λ .

SDW for $q=(\pi/a,\pi/a)$ are found suppressed. As an example,

Figure: Spin structure factor along $(q_x, q_y = \pi/a)$

For the charge density wave, however the location of maxima shifts from (0,0) to $(\pi/a,\pi/a)$.

$$p = 0.1, \beta = 4$$

Studying Mott Gap

- $G(r = 0, \tau = \beta/2)$ gives the spectral weigh near fermi energy (μ at $T \neq 0$).
- $G(r = 0, \tau)$ records the cumulative spectral weighs over an energy range depending on τ .
- ▶ $G(k, \tau)$ projects this on k-space, and with the model being single band, each k hosts non-degenerate single particle eigenstate.
- $G(k, \tau = 0^-) = 1 \langle n_k \rangle$, recording $\langle n_k \rangle$

Both tell us that the states near fermi energy are moving away. The former graph also indicates increase in Mott gap, contrary to what we (think) we see earlier in $\langle n \rangle$ vs μ graph.

To see clearer on what is happening, looking at $\langle n_{\rm k} \rangle$

where, $\langle n_{\bf k} \rangle = G({\bf k}, \tau=\beta/2)$ captures the spectral weigh near fermi energy, making it clearer to see the fermi surface(FS).

Fermi surface(FS) appears to sharpen.

Hypothesis:

With Mott gap reducing and the FS sharpening, U might e effectively reducing.

(This has been already seen in Hubb-Holstein model)

Ideas to check this?

- 1. Looking for compressibility, $\kappa (= \partial \langle n \rangle / \partial \mu)$.
- 2. Direct comparison of ...(results) between low U, $\lambda=0$ and high U with $\lambda\neq0$.
- 3. Comparison with the weak-coupling physics, RPA limit results.

Compressibility

With increasing α , I find that μ required to fix specific $\langle n \rangle$ (let us say, 0.8) shifts away from 0, and κ reduces as well, implying the rate at which $\langle n \rangle$ is changing w.r.t μ is slowing down(slower the rate, lower the number of states).

Both of these lead to the conclusion that the Mott gap is increasing with e-ph coupling.

- Looking closely at the data of $\langle n \rangle$, κ with varying μ , closer to half-filling, let us say ~1.004 or ~0.997 as the filling, κ increases with both fixed μ or $\langle n \rangle$ for increasing α ; hinting decrease in Mott gap.
- ▶ On the other hand, the rough μ range for $\langle n \rangle$ to change from ~1.008 to ~ 0.997, the interval shifts toward lower values of μ but stay roughly same ~ 0.25 0.3.
- It should be noted that for this part of the analysis, better data is needed to conclude the statement with more confidence as the range interval has pattern of [0.3, 0.25, 0.25, 0.3] for [0,0.12,0.19,0.27] as α values. More number of alpha points and more number of μ points are needed at $\langle n \rangle \sim 1$ (there were mostly 3-4 points).
- ▶ IDEA : Fine tune $\langle n \rangle \mu$ map by running calc. for denser set of μ points. Result?

Result

Figure: $\langle n \rangle$ vs μ

This shows much clearly and conclusively that the gap is reducing. μ range interval for 0.995 $<\langle n \rangle < 1.005$.

As we move away from $\langle n \rangle = 0.99, \langle n \rangle$ drops drastically, hinting this is very close to Mott gap.

For further concrete comments, however, we need to look at DOS. >>> Analytic Continuation!