

PROPOSAL PROGRAM KREATIVITAS MAHASISWA

METODE PEMODULASI DENGAN SISTEM MODULASI 16-QAM (QUADRATURE AMPLITUDE MODULATION)

BIDANG KEGIATAN: PKM PENELITIAN

Diusulkan oleh:

Khoerunusa Nurul Jannah;151344016;2016

Desi Dewi Anjani;151344009;2015

Yuliana Nur Rahmawati;171344031;2017

POLITEKNIK NEGERI BANDUNG BANDUNG 2019

PENGESAHAN PKM-PENELITIAN

1. Judul Kegiatan : Metode Pemodulasi dengan Sistem Modulasi

16-QAM (Quadrature Amplitude Modulation)

2. Bidang Kegiatan : PKM-P

3. Ketua Pelaksana Kegiatan

a. Nama Lengkap : Khoerunisa Nurul Jannah

b. NIM : 161344016 c. Jurusan : Teknik Elektro

d. Politeknik : Politeknik Negeri Bandung

e. Alamat Rumah : Jln Gandasari Kampung Sukarajin RT 02

RW 03 No.30 Desa Gandasar Kecamatan

Katapang Kabupaten Bandung

f. Nomor Tel/HP : 0895320078015

g. Email : Jannah8116@gmail.com

4. Anggota Pelaksana Kegiatan/Penulis : 2 orang

5. Dosen Pendamping

a. Nama Lengkap dan Gelar : Slameta, S.T., M.Eng.

b. NIDN : 0010116114

c. Alamat Rumah : Jl. Sipil No. 03 Perumahan Polban Bandung

d. Nomot Tel/HP : 081573515781

6. Biaya Kegiatan Total

a. Kemenrisdikti : Rp 7.909.500

b. Sumber lain : -

7. Jangka Waktu Pelaksanaan : 5 bulan

Bandung, 01 Januari 2019

Ketua Pelaksana Kegiatan,

(Khoerunisa Nurul Jannah)

NIM.151344025

Mengetahui,

Dosen Pendamping

(Slameta, S.T., M.Eng.) NIDN. 0010116114

Mile

NIP. 19540101 198403 1 001

BSEE., M. Eng.)

Pembantu Direktur Bidang Kemahasiswaan,

Dr. Ir. Rachmad Imbang Vrijahjo

NIP. 19600316 198710

DAFTAR ISI

HALAMAN SAMPUL

HALAMAN PENGESAHAN

DAFTAR ISIii
PENDAHULUAN
1.1 Latar Belakang1
1.2 Perumusan Masalah
1.3 Tujuan Program2
1.4 Luaran yang Diharapkan2
1.5 Kegunaan Perangkat
TINJAUAN PUSTAKA4
METODE PELAKSANAAN6
3.1 Metode Pengumpulan Data6
3.2 Rekayasa Keteknikan (Perancangan)6
3.3 Pengujian
3.4 Analisis
BIAYA DAN JADWAL KEGIATAN8
4.1 Anggaran Biaya8
4.2 Jadwal Kegiatan8
DAFTAR PUSTAKA
LAMPIRAN-LAMPIRAN
Lampiran 1. Biodata Ketua, Anggota, dan Dosen Pembimbing
Lampiran 2. Justifikasi Anggaran Kegiatan
Lampiran 3. Susunan Organisasi Tim Kegiatan dan Pembagian Tugas20
Lampiran 4. Surat Pernyataan Ketua Peneliti

BAB 1 PENDAHULUAN

1.1.Latar Belakang

Modulasi adalah proses pencampuran dua sinyal menjadi satu sinyal. Biasanya sinyal yang dicampur adalah sinyal berfrekuensi tinggi dan sinyal berfrekuensi rendah. Dengan memanfaatkan karakteristik masing-masing sinyal, maka modulasi dapat digunakan untuk mentransmisikan sinyal informasi pada daerah yang luas atau jauh. Sebagai contoh Sinyal informasi (suara, gambar, data), agar dapat dikirim ke tempat lain, sinyal tersebut harus ditumpangkan pada sinyal lain. Dalam konteks radio siaran, sinyal yang menumpang adalah sinyal suara, sedangkan yang ditumpangi adalah sinyal radio yang disebut sinyal pembawa (carrier) (Fahmizal, 2005). Sedangkan modulasi digital adalah suatu sistem disebut bermodulasi digital jika sinyal informasinya berbentuk digital sedangkan sinyal carriernya berbentuk analog. Macam-macam modulasi digital yang akan kita bahas adalah: ASK, FSK, BPSK, QPSK, dan QAM (Manik, 2017).

Pada masing-masing modulasi digital terdapat kelemahan seperti pada ASK (Amplitudo Shift Key Modulation) sangatlah untuk memastikan level tanda yang terus, ketika di transmisikan jarak jauh kemungkinan bakal terserang distorsi serta redaman. FSK (Frequency Shift Key Modulation) hanya bisa diaplikasikan pada komunikasi data dengan bit rate yang rendah. BPSK (Binary Phase Shift Key Modulation) hanya bisa mentransmisikan satu bit per simbol. QPSK (Quadrature Phase Shift Key Modulation) fasanya lebih sensitif dari pada BPSK (Manik, 2017). Hadirlah QAM yaitu sebuah metode untuk menggabungkan dua amplitude-modulated (AM) sinyal dalam satu saluran, sehingga dua kali lipat bandwidth yang efektif (Mahenisme, 2013).

Solusi teknik modulasi yang memungkinkan kecepatan yang lebih tinggi untuk bandwidth yang ditentukan, sehingga lebih tahan terhadap noise (Mahenisme, 2013). Teknik modulasi QAM hadir dimana fungsinya sama seperti teknik modulasi lainnya, namun menggunakan 2 modulasi yaitu kombinasi amplitude modulation dan phase shift keying. Sinyal direpresentasikan dalam kombinasi besaran amplitudo (2 besaran) dan phase (4 status) (Manik, 2017) (Rina Anggarini, 2017). Dikarenakan sistem komunikasi digital memungkinkan untuk melakukan komunikasi dalam bentuk data atau yang sering disebut komunikasi data, komunikasi data adalah komunikasi dimana pertukaran informasi yang diasajikan oleh isyarat digital yang disajikan dalam bentuk biner yang digunakan oleh mesin pengolah informasi misalnya komputer, dimana komunikasi data ini banyak digunakan di instansi-instansi pemerintahan, akademik, perusahan-perusahan, perbankan dan banyak lainnya yang telah memakai jaringan

komunikasi data yang canggih untuk mengirim data dari suatu tempat ke tempat yang lain, maka kami mencoba untuk menganalisa hasil keluaran pada modulator tersebut.

Untuk permasalahan tersebut maka kami tertarik untuk melakukan penelitian mengenai "Metoda Pemodulasian dengan Sistem Modulasi 16 QAM". Gambaran sistem ini adalah dengan menggunakan IC 74LS74 yang berisikan D flip-flop, D flip-flop berfungsi sebagai register penggeser (shift register) dan register penyangga (buffer register). Lalu membuat rangkaian pengubah level 2 ke4 (2 to 4 level converter) dimana prinsip kerjanya identik dengan pengubah dari digital ke analog (DAC). Menggunakan rangkain balanced modulator atau rangkaian pemodulasi dimana keluaran dari modulator ini merupakan perkalian dari dua sinyal masukan, dalam hal ini masukan dari sinyal pembawa yang berupa gelombang sinusoidal akan dikalikan dengan keluaran dari sirkuit pengubah 2 ke 4 (2 to 4 level converter) yang berupa PAM (Pulse Amplitudo Modulation). Lalu menggunakan rangkaian osilator quadratur yang menghasilakan dua gelombang sinus yaitu gelombang sinus dan gelombang cosinus, untuk mendapatkan gelombang cosines dengan cara menggeser gelombang sinus. Selanjutnya menggunakan rangkain linier adder, rangkaian penjumlah linier dipakai untuk menggabungkan sinyal masukan menjadi satu sinyal keluaran, sinyal keluaran bisa merupakan penjumlahan dengan penguatan maupun penjumlahan lansgung sinyal masukan. Dan menggunakan rangkaian BFP sehingga menghasilkan keluaran sinyal 16 QAM.

1.2.Perumusan Masalah

Program kegiatan PKM Penelitian ini dilakukan untuk memecahkan masalah-masalah seperti berikut :

1. Bagaimana merancang dan merealisasikan sistem modulasi digital dengan menggunakan metoda QAM

1.3. Tujuan Program

Tujuan yang hendak dicapai dari program kegiatan ini adalah:

- 1. Merancang dan merealisasikan Modulator 16-QAM
- 2. Mengukur dan menganalisis karakteristik-karakteristik "Modulator 1 6 -QAM"

1.4.Luaran yang Diharapkan

Luaran yang diharapkan dari pelaksanaan program ini adalah terciptanya suatu modul yang dapat bermanfaat khususnya untuk praktikum mahasiswa.

Begitupun dengan masyarakat yang anaknya kuliah di Jurusan Telkom ini akan sangat bermanfaat.

1.5.Kegunaan Perangkat

Kegunaan perangkat untuk meneliti suatu modul sehingga berguna bagi masyarakat khususnya mahasiswa, dengan adanya modul ini bisa belajar dan lebih mendalami mengenai modul ini.

BAB 2 TINJAUAN PUSTAKA

Modulasi adalah proses pencampuran dua sinyal menjadi satu sinyal. Biasanya sinyal yang dicampur adalah sinyal berfrekuensi tinggi dan sinyal berfrekuensi rendah. Dengan memanfaatkan karakteristik masing-masing sinyal, maka modulasi dapat digunakan untuk mentransmisikan sinyal informasi pada daerah yang luas atau jauh. Sebagai contoh Sinyal informasi (suara, gambar, data), agar dapat dikirim ke tempat lain, sinyal tersebut harus ditumpangkan pada sinyal lain. Dalam konteks radio siaran, sinyal yang menumpang adalah sinyal suara, sedangkan yang ditumpangi adalah sinyal radio yang disebut sinyal pembawa (carrier) (Fahmizal, 2005). Sedangkan modulasi digital adalah suatu sistem disebut bermodulasi digital jika sinyal informasinya berbentuk digital sedangkan sinyal carriernya berbentuk analog. Macam-macam modulasi digital yang akan kita bahas adalah ASK, FSK, BPSK, QPSK, dan QAM (Manik, 2017).

Sebagai sebuah teknik modulasi yang terus berkembang, tentu saja macam-macam teknik modulasi ini memiliki kelebihan dan juga kelemahannya masing-masing. Diantaranya kelebihan modulasi ASK mempunyai bit per bauds (kecepatan digital) yang tinggi, modulasi FSK memudahkan proses demodulasi, kemungkinan error rate kecil, modulasi BPSK menggunakan format yang sederhana, cocok untuk transmisi data dengan kecepatan tinggi, modulasi QPSK dapat mentransmisikan dua bit per symbol (Manik, 2017).

Adapun kekurangan dari modulasi ASK ketika di transmisikan jarak jauh kemungkinan bakal terserang distorsi serta redaman, karena sulit dalam menentukan level acuan yang dimilikinya sehingga setiap sinyal yang diteruskan melalui saluran transmisi jarak jauh selalu dipengruhi oleh redaman dan distorsi lainnya. Oleh sebab itu metoda ASK hanya menguntungkan bila dipakai untuk hubungan jarak dekat saja (Puja, 2013). Modulsi FSK hanya bisa diaplikasikan pada komunikasi data dengan bit rate yang rendah, karena tempat persyaratan akut untuk bandwidth sistem komunikasi yang digunakan serta perubahan output frekuensi setiap waktu kondisi logic dari perubahan sinyal input binernya berubah. Modulasi BPSK hanya bisa mentransmisikan satu bit per symbol, karena menggunakan sistem deteksi yang rumit. Oleh karena itu penerapan sistemnya tidak cukup luas untuk transmisi data. Modulasi QPSK fasanya lebih sensitif dari pada BPSK, karena BPSK memiliki jumlah level yang dikodekan lebih banyak (Sandy, 2008).

Gambaran sistem ini adalah dengan menggunakan IC 74LS74 yang berisikan D flip-flop, D flip-flop berfungsi sebagai register penggeser (shift register) dan register penyangga (buffer register). Lalu membuat rangkaian

pengubah level 2 ke4 (2 to 4 level converter) dimana prinsip kerjanya identik dengan pengubah dari digital ke analog (DAC). Menggunakan rangkain balanced modulator atau rangkaian pemodulasi dimana keluaran dari modulator ini merupakan perkalian dari dua sinyal masukan, dalam hal ini masukan dari sinyal pembawa yang berupa gelombang sinusoidal akan dikalikan dengan keluaran dari sirkuit pengubah 2 ke 4 (2 to 4 level converter) yang berupa PAM (Pulse Amplitudo Modulation). Lalu menggunakan rangkaian osilator quadratur yang menghasilakan dua gelombang sinus yaitu gelombang sinus dan gelombang cosinus, untuk mendapatkan gelombang cosines dengan cara menggeser gelombang sinus. Selanjutnya menggunakan rangkain linier adder, rangkaian linier dipakai untuk penjumlah menggabungkan dua sinyal masukan menjadi satu sinyal keluaran, sinyal keluaran bisa merupakan penjumlahan dengan penguatan maupun penjumlahan lansgung sinyal masukan. Dan menggunakan rangkaian BFP sehingga menghasilkan keluaran sinyal 16 QAM.

BAB 3 METODE PENELITIAN

3.1. Metode Pengumpulan Data

1) Dokumentasi

Mencari berita, jurnal dan pustaka mengenai teknik modulasi dan lain-lain melalui media elektronik yaitu internet.

2) Studi Literatur

Menghimpun dan melakukan observasi data-data yang berhubungan dengan topik mengenai teknik modulasi.

3.2.Rekayasa Keteknikan (Perancangan)

Awal proses perancangan adalah membuat rangkaian bit spliter dengan menggunakan IC 74LS74 yang berisikan D flip-flop, D flip-flop berfungsi sebagai register penggeser (shift register) dan register penyangga (buffer register). Lalu membuat rangkaian pengubah level 2 ke4 (2 to 4 level converter) dimana prinsip kerjanya identik dengan pengubah dari digital ke analog (DAC).

Selanjutnya membuat rangkaian balanced modulator atau rangkaian pemodulasi dimana keluaran dari modulator ini merupakan perkalian dari dua sinyal masukan, dalam hal ini masukan dari sinyal pembawa yang berupa gelombang sinusoidal akan dikalikan dengan keluaran dari sirkuit pengubah 2 ke 4 (2 to 4 level converter) yang berupa PAM (Pulse Amplitudo Modulation). Lalu membuat rangkaian osilator quadratur yang menghasilakan dua gelombang sinus yaitu

 gelombang sinus dan gelombang cosinus, untuk mendapatkan gelombang cosines dengan cara menggeser gelombang sinus.

Selanjutnya membuat rangkain linier adder, rangkaian penjumlah linier dipakai untuk menggabungkan dua sinyal masukan menjadi satu sinyal keluaran, sinyal keluaran bisa merupakan penjumlahan dengan penguatan maupun penjumlahan lansgung sinyal masukan. Selanjutnya membuat rangkaian BFP sehingga menghasilkan keluaran sinyal 16 QAM.

3.3.Pengujian

Untuk pengujian sistem ini dapat dilakukan dengan cara mengecek setiap keluaran dari blok pada modulator 16 QAM, dari mulai keluaran blok blit spliter, 2 to 4 level converter, balanced modulator, osilator quadratur, linier adder, BFP serta keluaran hasil dari blok keseluruhan.

Pengujian ini dilakukan untuk mengetahui apakah hasil rancangan yang dibuat sudah bekerja sesuai dengan fungsinya atau tidak, perlu dilakukan beberapa pengukuran pada beberapa test point yang dianggap perlu.

3.4.Analisis

Berdasarkan pengujian yang akan dilakukan maka analisis sistem meliputi bagaimana hasil keluaran dari setiap blok serta keseluruhan blok. Hasil analisis akan direpresentasikan dalam bentuk gambar. Gambar tersebut untuk memudahkan dalam menganalisis data uji yang didapatkan. Sehingga terlihat perbedaan hasil rancangan dengan teori yang sudah ada.

BAB 4 BIAYA DAN JADWAL KEGIATAN

4.1. Anggaran Biaya

No	Jenis Biaya	Biaya (Rp)						
1	Peralatan Penunjang	4.005.000,-						
2	Bahan Habis Pakai	1.270.500,-						
3	Perjalanan	672.000,-						
4	Lain-lain: administrasi, publikasi, seminar, laporan, dll	1.962.000,-						
	Jumlah 7.							

Keterangan: Rincian anggaran biaya terdapat pada Lampiran 2

4.2. Jadwal Kegiatan

No	Jenis Kegiatan		Bulan 1			Bulan 2			Bulan 3			Bulan 4			4	Bulan 5					
	Jems Regutum	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
1	Pengadaan Alat																				
	dan Bahan																				
	Pembuatan																				
	rangkaian bit																				
2	spliter dan 2 to 4																				
	Level Converter																				
	serta pengujian																				
	hasil keluarannya																				
	Pembuatan																				
2	rangkaian balanced																				
3	modulator serta																				
	pengujian hasil																				
	keluarannya																				
	Pembuatan																				
	rangkaian linier																				
4	adder dan osilator																				
	quadratur serta																				
	pengujian hasil																				
	keluarannya																				

	Pembuatan										
5	rangkaian BPF										l
	serta pengujian										l
	hasil keluarannya										
	Pengujian										
6	Keseluruhan										
	Sistem										
_	Analisis dan										
7	Pemecahan										
	Masalah										
8	Penyusunan										
	Laporan										

DAFTAR PUSTAKA

- Fahmizal. (2005, Februari 25). Dipetik Desember 15, 2018, dari https://fahmizaleeits.wordpress.com/tag/fungsi-modulasi/
- Mahenisme. (2013). Dipetik Desember 16, 2018, dari http://mahenisme.blogspot.com/2016/01/qam-quadrature-amplitude-modulation.html
- Manik, R. G. (2017, May 16). Dipetik Desember 15, 2018, dari https://fit.labs.telkomuniversity.ac.id/kelebihan-dan-kekurangan-modulasi-digital/
- Puja, E. (2013). Dipetik Desember 16, 2018, dari http://ekapujap.blogspot.com/2015/08/pengertian-ask-amplitude-shift-keying.html
- Rina Anggarini, B. (2017). Analisa unjuk kerja Quadrature Amplitude Modulation pada kanal fading untuk citra digital. 1-6.
- Sandy, S. A. (2008). Dipetik Desember 20, 2018, dari http://selvi-ari-sandy.blogspot.com/2013/01/modulasi-digital-pada-siskomber_19.html

LAMPIRAN-LAMPIRAN

Lampiran 1. Biodata Ketua, Anggota dan Dosen Pembimbing

1.1 Biodata Ketua

A. Identitas Diri

1	Nama Lengkap	Khoerunisa Nurul Jannah
2	Jenis Kelamin	Perempuan
3	Program Studi	D4 – Teknik Telekomunikasi
4	NIM	161344016
5	Tempat dan Tanggal Lahir	Bandung,08 November 1997
6	E-mail	Jannah8116@gmail.com
7	Nomor Telepon/HP	0895320078015

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

No.	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	Pelatihan Bela Negara dan Kedisiplinan	Peserta	2016, Cimahi
2	Program Pengenalan Kehidupan Kampus	Peserta	2016, Bandung
3	ESQ Leadership Training	Peserta	2016, Bandung
4	Workshop networking "Raising Networking Skill"	Peserta	2016, Bandung

C. Penghargaan dalam 10 tahun terakhir (dari pemerintah, asosiasi atau institusi lainnya)

No.	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
1			

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Hibah "Metode Pemodulasian dengan Sistem Modulasi 16 QAM"

Bandung, 01 Januari 2019

Pengusul,

Khoerunnisa Nurul Jannah

1.2 Biodata Anggota 1

A. Identitas Diri

1	Nama Lengkap	Desi Dewi Anjani
2	Jenis Kelamin	Perempuan
3	Program Studi	D4 – Teknik Telekomunikasi
4	NIM	151344009
5	Tempat dan Tanggal Lahir	Bandung, 15 Juni 1997
6	E-mail	desidewianjani26@gmail.com
7	Nomor Telepon/HP	085536476579

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	Pelatihan Bela Negara dan Kedisiplinan	Peserta	2015, Cimahi
2.	Program Pengenalan Kehidupan Kampus	Peserta	2015, Bandung
3.	ESQ Leadership Training	Peserta	2015, Bandung
	Butterfly Act Learning Re- Creation	Peserta	2015, Bandung
	Kegiatan Pendidikan Karakter Melalui Mentoring Agama	Pesert	2015, Bandung
	Kunjungan Industri 1.0	Peserta	2016, Bandung
4.	Taiwan Education Exhibition	Volunteer	2017, Bandung
5.	Kunjungan Industri 2.0 Pelatihan "Pengenalan Sistem Kabel Laut serta Praktek Penyambungan & Pengukuran Sinyal Optic"	Peserta	2017, Bandung

C. Penghargaan dalam 10 tahun terakhir (dari pemerintah, asosiasi atau institusi lainnya)

No.	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
1			

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Hibah "Metode Pemodulasian dengan Sistem Modulasi 16 QAM"

Bandung, 01 Januari 2019

Pengusul,

Desi Dewi Anjani

1.3 Biodata Anggota 2

A. Identitas Diri

1	Nama Lengkap	Yuliana Nur Rahmawati
2	Jenis Kelamin	Perempuan
3	Program Studi	D4 – Teknik Telekomunikasi
4	NIM	171344031
5	Tempat dan Tanggal Lahir	Bandung,18 Juni 1998
6	E-mail	yuliananurrahmawati18@gmail.com
7	Nomor Telepon/HP	083820744491

B. Pemakalah Seminar Ilmiah (Oral Presentation)

No.	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	Pelatihan Bela Negara dan Kedisiplinan	Peserta	2017, Cimahi
2.	Program Pengenalan Kehidupan Kampus	Peserta	2017, Bandung
3.	ESQ Leadership Training	Peserta	2017, Bandung
5.	Workshop Fiber Optic	Peserta	2017, Bandung
6.	Seminar Program Kreativitas Mahasiswa	Peserta	2017, Bandung
6.	Workshop 5G	Peserta	2018, Bandung

C. Penghargaan dalam 10 tahun terakhir (dari pemerintah, asosiasi atau institusi lainnya)

No.	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
1			

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Hibah "Metode Pemodulasian dengan Sistem Modulasi 16 QAM.

Bandung, 01 Januari 2019

Pengusul,

Yuliana Nur Rahmawati

1.4 Biodata Pembimbing

A. Identitas Diri

1	Nama Lengkap	Slameta, S.T., M.Eng.
2	Jenis Kelamin	Laki-laki
3	Program Studi	Teknik Telekomunikasi
4	NIDN	0010116114
5	Tempat dan Tanggal Lahir	Klaten, 10 Nopember 1961
6	E-mail	slameta@polban.ac.id
7	Nomor Telepon/HP	081573515781

B. Riwayat Pendidikan

Gelar Akademik	DIPLOMA III	SARJANA	PASCA
			SARJANA
Nama Institusi	Politeknik Negeri	Universitas Islam	Universitas
	Bandung	Nusantara Bandung	Gadjah Mada
			Yogyakarta
Jurusan/Prodi	Teknik Elektro	Teknik Elektro	Teknik Elektro
Tahun Masuk-	1983-1986	1985-1993	2008-2011
Lulus			

C. Rekam Jejak Tri Dharma PT

C.1 Pendidikan/pengajaran

NO	Nama Mata Kuliah	Wajib/Pilihan	SKS
1	Sistem Komunikasi Analog	Wajib	3
2	Sistem Komunikasi Digital	Wajib	3
3	Sistem Komunikasi 1	Wajib	4
4	Sistem Komunikasi 2	Wajib	4

C.2 Pengalaman Penelitian

	Pengembangan Inftastruktur Jaringan	Th 2012
1.	Komputer di Politeknik Negeri	
	Bandung	
	Analisis Pengaruh Perubahan	Th 2013
2.	Parameter jaringan Wireless LAN	
	terhadap Throughput	
	Simulasi dan Analisis Unjuk Kerja	Th 2013
3.	Load Balancer pada Server-Cluster	
	menggunakan OPNET IT Guru	

Ī		Perancangan BPF Ultra Wide Band	Th 2017
		pada Frekuensi Tengah	
	4.	3,1-5,1 Ghz dengan Metoda Reonator	
		Setengah Panjang Gelombang Ujung	
		Terbuka	

C.2 Pengalaman Pengabdian Kepada Masyarakat

No.	Tahun	Judul	Sumber	Jumlah (Rp)
1.	2012	Pelatihan Sistem Operasi Komputer Administrasi Tingkat Kelurahan Gegerkalong Bandung.		
2.	2015	Perancangan Ulang dan Pelatihan Teknis Pengoperasian dan perawatan Sound System di Masjid Jami Al-Hag Bandung		
3.	2017-2019	Ketua RT 003 RW001 zDeda Sariwangi Kec. Parongpong Kab. Bandung Barat.		
4.				

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi. Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Hibah Program Kreativitas Mahasiswa Bidang Penelitian (PKM–P) 2018.

Bandung, 01 Januari 2019

Dosen Pembimbing,

Slameta, S.T., M.Eng.

NIP. 19611110 198503 1 004

Lampiran 2. Justifikasi Anggaran Kegiatan

Jenis Perlengkapan	Justifikasi Pemakaian	Volume	Harga Satuan (Rp)	Jumlah Biaya (Rp)
Digital Multimeter			650.000	650.000
Stand Solder	Tempat menyimpan solder	1 buah	76.000	76.000
Solder	Penghubung komponen elektronika	1 buah	184.000	184.000
Timah	Bahan penyambung komponen	2 buah	63.000	126.000
Penyedot timah	Pembersih timah solder	1 buah	103.000	103.000
Tang Jepit	Penjepit komponen	1 buah	93.000	93.000
Tang Kupas	Pengupas kabel	1 buah	111.000	111.000
Tang Potong	Pemotong komponen	1 buah	106.000	106.000
Iron Cleaner Spon	Busa pembersih timah	5 buah	4.000	20.000
Pasta Solder	Pengencer timah	2 buah	48.000	96.000
Obeng	Pemasangan komponen	1 set	200.000	200.000
Tool box	Penyimpanan alat	1 buah	555.000	555.000
Osiloskop	Alat penunjang perancangan sistem	1 buah	1.400.000	1.400.000
		SUB	TOTAL (Rp)	4.005.000

Bahan Habis Pakai	⊥ Justifikasi Pemakaian		Harga Satuan (Rp)	Jumlah Biaya (Rp)
Protoboard	Protoboard Menempatkan komponen elektronika		50.000	200.000
IC 74LS74	IC 74LS74 Komponen alat perakit		4.000	40.000
IC MC1496	Komponen alat perakit	3 buah	50.000	150.000
IC 741	Komponen alat perakit	10 buah	10.000	100.000
IC TL082P	Komponen alat perakit	3 buah	5.000	15.000
Resistor 10K ohm	Komponen alat perakit	20 buah	200	4.000
Resistor 1K ohm	Komponen alat perakit	20 buah	200	4.000
Kapasitor 470 uF	Komponen alat perakit	10 buah	500	5.000
Kapasitor 10 uF	Komponen alat perakit	10 buah	500	5.000
Kapasitor 100 uF	Komponen alat perakit	5 buah	500	2.500
Kabel VCC	Kabel Penghubung tegangan	5 buah	35.000	175.000
Kabel Male to male	Komponen alat perakit	80 Buah	1.000	80.000
Kabel Male to female	Komponen alat perakit	40 Buah	1.000	40.000
Konektor	Komponen alat perakit	secukupn ya	50.000	50.000
Tinta	Untuk print proposal	secukupn ya	400.000	400.000
	I	SUB TO	OTAL (Rp)	1.270.500

Perjalanan	Justifikasi	Volume	Harga	Jumlah Biaya (Rp)
------------	-------------	--------	-------	-------------------

	Perjalanan		Satuan (Rp)		
Ongkos kirim barang ke kota Bandung	Pembelian komponen/alat dari luar kota	3 kali pengiriman	60.000	180.000	
Perjalanan ke Jaya Plaza	Pengadaan sarana dan prasarana	3 orang	50.000	150.000	
Perjalanan ke daerah Cibiru	Akomodasi pada saat pembuatan alat	3 orang	40.000	120.000	
Perjalanan ke Bandung	Akomodasi pada saat seminar	3 orang	50.000	150.000	
Parkir	Biaya Parkir	36 Lot	2.000	72.000	
SUB TOTAL (Rp) 672.000					

Lain-lain	Justifikasi Pemakaian	Volume	Harga Satuan (Rp)	Ju	mlah Biaya (Rp)		
Pembuatan proposal	Biaya percetakkan	4 buah	20.000		80.000		
Pembuatan laporan	Biaya percetakkan	2 buah	41.000		82.000		
Pembuatan banner	Publikasi	3 buah	100.000	300.000			
Seminar	Menyampaikan hasil	3 orang	500.000	1.500.000			
	SUB TOTAL (Rp) 1.962.000						
	Total 1+2+3+4(Rp) 7.909.500						
(Terbilang tujuh juta sembilang ribu lima ratus rupiah)							

Lampiran 3. Susunan Organisasi Tim Kegiatan dan Pembagian Tugas

No	Nama/NIM	Program Studi	Bidang Ilmu	Alokasi Waktu (jam/minggu)	Uraian Tugas
1	Khoerunnisa Nurul Jannah/151344016	D4 Teknik Telekomunikasi	Teknik Elektro	32 Minggu	Mengkoordinir tim dalam perancangan & pelaksanaan serta penggabungan rangkain
2	Desi Dewi Anjani/151344009	D4 Teknik Telekomunikasi	Teknik Elektro	32 Minggu	Membuat rangkaian Bit Splitter, 2 to 4 level converter dan osilator quadratur,
3	Yuliana Nur Rahmawati/171344031	D4 Teknik Telekomunikasi	Teknik Elektro	32 Minggu	Membuat rangkaian balance modulator, linier adder dan BPF

Lampiran 4. Surat Pernyataan Ketua Peneliti

SURAT PERNYATAAN KETUA PENELITI/PELAKSANA

Yang bertanda tangan di bawah ini:

Nama : Khoerunisa Nurul Jannah

NIM : 161344016

Program Studi : D4-Teknik Telekomunikasi

Fakultas : Teknik Elektro

Dengan ini menyatakan bahwa usulan (**Isi sesuai dengan bidang PKM**) saya dengan judul:

Metoda Pemodulasian dengan Sistem Modulasi 16 QAM.

yang diusulkan untuk tahun anggaran 2019 **bersifat original dan belum pernah dibiayai oleh lembaga atau sumber dana lain.**

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya penelitian yang sudah diterima ke kas negara.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenar-benarnya.

Bandung, 01 Januari 2019

