- 1. (Jan-00.4): Let $A \in M_n(\mathbb{C})$ and assume that A has rank 1.
 - (a) What are the possible Jordan canonical forms for A?
 - (b) For each of the forms in (a), find the characteristic and minimal polynomial of A.
- 2. (Jan-13.5): Let W_n be the set of $n \times n$ complex matrices C such that the equation AB BA = C has a solution in $n \times n$ matrices A and B.
 - (a) Show that W_n is closed under scalar multiplication and conjugation.
 - (b) Show that the identity matrix is not in W_n .
 - (c) Give a complete description of W_2 .
- 3. (Jan-11.4): Let V be a finite-dimensional \mathbb{C} -vector space and $T: V \to V$.
 - (a) Suppose W is a subspace with $T(W) \subseteq W$. Show that the characteristic polynomial $f_S(x)$ of $S = T|_W$ divides the characteristic polynomial $f_T(x)$ of T on V.
 - (b) Let λ be a root of $f_T(x)$ of multiplicity m and $V_{\lambda} = \{v \in V : T(v) = \lambda v\}$. Show that $1 \leq \dim_{\mathbb{C}} V_{\lambda} \leq m$.
 - (c) Find (V, T, λ) such that λ has multiplicity 5 as a root of $f_T(x)$ but $\dim_{\mathbb{C}} V_{\lambda} = 1$.
- 4. (Jan-14.2): Let F be a field and n a positive integer. Let $A \in M_{n \times n}(F)$ such that $A^n = 0$ but $A^{n-1} \neq 0$. Show that any $B \in M_{n \times n}(F)$ that commutes with A is contained in the F-linear span of $I, A, A^2, \ldots, A^{n-1}$.
- 5. (Aug-82.7): Let $A \in M_n(\mathbb{C})$. Show that the following are equivalent:
 - (a) The ranks of A and A^2 are equal.
 - (b) The multiplicity of 0 as a root of the minimal polynomial of A is at most 1.
 - (c) There is an $n \times n$ matrix X such that AXA = A, XAX = X, AX = XA.
- 6. (Aug-06.5): Let $F = \mathbb{F}_q$ and $M_2(F)$ be the ring of 2×2 matrices over F.
 - (a) If $A \in M_2(F)$ has equal eigenvalues in the algebraic closure of F, show that the eigenvalues of A belong to F.
 - (b) Determine the number of nonzero nilpotent matrices in $M_2(F)$ as a function of q.
- 7. (Jan-10.4): Let V be finite-dimensional over F and $T: V \to V$, with characteristic polynomial $f(x) \in F[x]$.
 - (a) Show that f(x) is irreducible in F[x] iff there are no proper nonzero subspaces W of V with $T(W) \subseteq W$.
 - (b) If f(x) is irreducible and char(F) = 0, show that T is diagonalizable over \overline{F} .
- 8. (Jan-05.4): Let F be an algebraically-closed field and $M_n(F)$ be the ring of $n \times n$ matrices over F. Describe those matrices $X \in M_n(F)$ such that all matrices that commute with X are diagonalizable.