Statistics for Linguists 08 July 2022

10:00	Workshop introduction	
10:15	Loading and exploring datasets	
10:45	Data transformation and coding	
11:15	Practical exercise	
12:15	Review of practical	
12:30 - 13:30	LUNCH BREAK	
13:30	lmer and glmer	
14:30	Post-hoc analysis and model visualization	
15:00	Practical exercise	
16:00	Review of practical	
16:15	Model building	
17:00	End of workshop	

Statistics for Linguists

Data transformation and coding

Learning objectives

- You will learn to load/import data
- Explore a dataset and create descriptive statistics
- Transform a dataset (if needed)
- Code your factors
- Build a mixed model
- Perform post-hoc statistics
- Visualize your data and your model

4 main types of data

Туре	Example
numeric	integer (2), double (2.34)
character (strings)	'tidyverse!'
boolean	TRUE / FALSE
complex	2+0i

Special types:

NA # missing data

NULL # empty

-Inf/Inf # infinite values

NaN # Not a Number

4 main types of data

- But what if the automatic coding that R gives isn't correct?
 - For example, participant 1, 2, 3, 4,... often seen as integers, which they are not

- > as.character(c(2, TRUE, 'a string'))
- > as.integer()
- > as.factor() #or factor()

Some tidyverse operations

Some tidyverse operations

psycholinguistics_data%>%
select(-session, -list)

-> type ?select for help

psycholinguistics_data%>% filter(ReadingTime < 500)

- Same filtering without tidyverse:
- > psycholinguistics_data[psycholinguistics_data\$ReadingTime < 500,]

• This can be useful for, for example, removing outliers

- Many different ways to select and exclude outliers
 - 2.5 * SD
 - Based on IQR (per participant?)
 - Based on predetermined values (e.g., an response time of < 200 ms is implausible)
 - we won't go into details of what the best method is here

- Many different ways to select and exclude outliers
- One simple way is through the boxplot function
- > boxplot()
- > boxplot()\$out
- See ?boxplot for more information

- For categorical variables, factors can be coded in different ways
- Linear models need a baseline: you are in control of setting the baseline for your analyses
- The default coding for factors is treatment or dummy coding: [0,1]
- > contrasts(psycholinguistics_data\$capitalization)

cap C

nocap 1

- Treatment coding compares each level of a categorical variable to a reference level. By default, the reference level is the first level of the categorical variable, in alphabetical order.
- You can change the baseline of your model:
- > psycholinguistics_data\$capitalization <factor(psycholinguistics_data\$capitalization, levels=c("nocap","cap"))
- > psycholinguistics_data\$capitalization <factor(psycholinguistics_data\$capitalization, levels=c("cap","nocap"))
- > psycholinguistics_data\$capitalization = relevel(psycholinguistics_data\$capitalization, ref = "nocap")

- You can always check your contrasts:
- > contrasts(psycholinguistics_data\$capitalization)
- > levels(psycholinguistics_data\$capitalization)

- Other contrasts possible. For example, sum or deviation coding compare each level to the grand mean. Compare:
- > contr.sum(2)
- > contr.treatment(2)

- You can always check your contrasts:
- > contrasts(psycholinguistics_data\$capitalization)
- > levels(psycholinguistics_data\$capitalization)
- Other contrasts possible. For example, sum or deviation coding compare each level to the grand mean. Compare:
- > contr.sum(2)
- > contr.treatment(2)
- This can be useful when you have multiple factor levels or interactions. You can also try
 - > contr.sum(4)

- More information:
 - https://stats.oarc.ucla.edu/r/library/r-library-contrast-coding-systems-for-categorical-variables/
 - https://marissabarlaz.github.io/portfolio/contrastcoding/
- Always check your coding to make sure you're interpreting any model output correctly! This can become complicated when working with factors with multiple levels or interactions

• For non-categorical (i.e. continuous) variables, there are other considerations

 Centering variables is a common way to standardize them, so that the predictors have mean 0. This makes it easier to interpret model outcomes.

• By using scale(x) you standardize that variable relative to a normal distribution. This is used when one variable has a scale very different from others

- Mixed models have similar assumptions compared to ANOVAs
- We won't go into all of these in detail, but some normality assumptions may require data manipulations

Right (positive) skewed data:

- Logarithm log(x). Commonly used transformation
- Reciprocal 1/x.

• Left (negative) skewed data:

- Square x². Stronger with higher power.
- Exponential e^x. Stronger with higher base.

- Mixed models have similar assumptions compared to ANOVAs
- We won't go into all of these in detail, but some normality assumptions may require data manipulations

- To display the distribution, you could use a histogram or a density plot
 - > hist(psycholinguistics_data\$ReadingTime)

Statistics for Linguists 08 July 2022

10:00	Workshop introduction	
10:15	Loading and exploring datasets	
10:45	Data transformation and coding	
11:15	Practical exercise	
12:15	Review of practical	
12:30 - 13:30	LUNCH BREAK	
13:30	lmer and glmer	
14:30	Post-hoc analysis and model visualization	
15:00	Practical exercise	
16:00	Review of practical	
16:15	Model building	
17:00	End of workshop	