Le jeu du cerveau et du hasard

This manuscript (<u>permalink</u>) was automatically generated from <u>laurentperrinet/2021 theconversation hasard@71322d3</u> on June 30, 2021.

Authors

Laurent U Perrinet · https://laurentperrinet.github.io/
© 0000-0002-9536-010X · ○ laurentperrinet
Institut de Neurosciences de la Timone, CNRS / Aix-Marseille Université · Funded by ANR project "Horizontal-V1"
N°ANR-17-CE37-0006.; ANR project "AgileNeuroBot" N°ANR-20-CE23-0021.

Dans la pièce de théâtre la plus célèbre de Marivaux « <u>Le jeu de l'amour et du hasard</u> », l'auteur joue à inverser le rôle des personnages, et le hasard est invité à guider leurs destins. De la même façon, notre cerveau est ballotté au gré du hasard, aussi bien dans une loterie que dans les incertitudes et ambiguïtés révélées dans la vision par les illusions d'optique. Au point que l'on peut attribuer à un esprit malin le fait que la tartine tombe du côté de la confiture, ou que la fiche du câble USB soit toujours dans le mauvais sens. Le hasard s'invite comme un personnage à part entière dans la cognition, et on peut s'interroger du rôle que celui-ci peut jouer dans le fonctionnement de notre cerveau.

Les loteries jouent avec notre cerveau

Entre pari sportif, jeu en ligne, carte à gratter et loterie multimillionnaire, les jeux de hasard ont toujours pris une part importante dans nos vies. Ceux-ci peuvent vite devenir addictifs et révèlent de façon étonnante la dépendance entre le hasard et des mécanismes ancestraux du fonctionnement de notre cerveau. Par exemple, nous sommes prêts dans une loterie à jouer un peu d'argent pour en gagner beaucoup, même si l'on sait pertinemment que comme il est très rare de gagner, on est assuré de perdre à presque tous les coups!

Pourtant, notre cerveau nous pousse à nous abandonner à ce plaisir irrationnel, une forme <u>« d'addiction sans drogue »</u>. En théorie, les règles sont préétablies et on peut prédire les gains à long terme. Et avec un minimum de recul, on peut se rendre compte que certaines stratégies présentées par des revues spécialisées, par exemple la prétendue « loi des séries », n'ont aucun fondement en termes de logique pure. Dans le cas de la loterie nationale par exemple, tout est mis en œuvre pour que le tirage des boules un jour donné soit complètement indépendant de celui qui est fait le jour suivant. Même s'il est arrivé récemment qu'une loterie en Afrique du Sud donne la <u>série des nombres consécutifs 5, 6, 7, 8, 9 et 10</u>, on peut justifier mathématiquement que de telles séries apparaissent : c'est extrêmement rare, mais aussi nécessaire car à la longue, tous les tirages sont possibles, y compris les plus surprenants.

Le fait qu'on les trouve surprenants révèle en fait un biais cognitif sur notre perception du hasard, trace de croyances souvent inconscientes. De façon opportuniste, on en déduit que l'on peut effectivement tirer une stratégie de gain, une sorte de martingale infaillible. Il suffit en effet simplement de connaître ces biais cognitifs et de jouer... l'inverse! Dans le loto par exemple, beaucoup jouent leur date de naissance. On peut en déduire que sur les 49 numéros possibles, il vaut mieux jouer un nombre supérieur à 31. Comme on sait que les nombres tombent *a priori* avec la même fréquence, pour une même probabilité de réussite, les personnes qui suivent le biais cognitif des dates de naissance ne les joueront pas: ces dates auront moins de gagnants et on peut espérer se partager un gain plus important.

Figure 1: Notre cerveau crée des formes dans le bruit. Dans cet œuvre d'Etienne Rey, "Trames", des points sont générés aléatoirement. Trace de nos biais cognitifs et perceptifs, notre œil interprète les coïncidences et regroupements pour y retrouver des structures qui pourraient être interprétées - même si dans cet exemple, le hasard est total.

Ainsi, comme le définissait le mathématicien Henri Poincaré <u>"le hasard n'est que la mesure de notre ignorance"</u> pour signifier que celui-ci peut suivre des lois et que pour chaque forme de hasard on peut s'atteler à le quantifier, par exemple en déterminant des fréquences d'occurence. De la même façon, notre cerveau joue le rôle d'un statisticien qui avec ses propres règles dompte le hasard pour prendre des décisions pour le meilleur ou pour le pire. En donnant un exemple de stratégie de jeu, nous avons ici montré qu'on peut dans une loterie exploiter une forme d'ignorance (le biais cognitif) pour maximiser son gain. De manière générale, le système le plus informé aura plus de chance de gagner. Et ce facteur a donc sûrement opéré au cours de l'évolution pour sélectionner les meilleures stratégies d'intégration des informations que l'on peut extraire du hasard.

Construire des croyances

Dans le jeu de loto, nous avons en quelque sorte mesuré le hasard, en établissant des fréquences d'occurrence d'événements. Ainsi, on peut observer à partir d'un grand nombre d'observations qu'une boule a bien une chance sur 49 d'être sélectionnée. Depuis le calcul de ces propriétés, on va ainsi pouvoir étendre notre connaissance du hasard en établissant des croyances sur les paris futurs. Ces stratégies peuvent être étendues à des situations qui dépassent le cadre d'un simple jeu de hasard combinatoire et s'appliquer à la complexité de la vie réelle. Par exemple, comment adaptons-nous notre comportement quand le monde autour de nous change ? La situation sanitaire actuelle montre de façon criante à quel point notre environnement peut brutalement basculer d'un état à un autre, illustrant tragiquement la volatilité à laquelle nous pouvons être confrontés. Pour comprendre cette notion de volatilité, prenons le cas d'un médecin qui, parmi les patients qu'il reçoit, diagnostique d'habitude un cas de grippe sur dix. Soudain, il reçoit 5 patients sur 10 qui sont testés positivement. S'agit-il d'une coïncidence liée à la loi des séries ou peut-on maintenant être sûr d'être en présence d'un basculement vers un épisode de grippe ? Les événements actuels prouvent qu'il n'est pas facile de prendre une décision rationnelle en période d'incertitude, et notamment de savoir quand réagir.

Heureusement, des solutions mathématiques existent qui suggèrent que notre comportement peut combiner de façon optimale les informations explorées récemment et celles exploitées dans le passé.

Dans notre laboratoire, nous avons récemment montré que le cerveau répond aux changements de l'environnement sensoriel de la même façon que ce modèle mathématique optimal [1]. Pour cela, nous avons manipulé au cours du temps un biais de probabilité, celui de la direction du mouvement d'une cible visuelle sur un écran, c'est-à-dire, si la cible avait plus tendance à aller à gauche ou à droite. En introduisant des changements brusques dans ce biais de probabilité, cette expérience a permis de manipuler la volatilité de l'environnement de façon quantifiée et contrôlée. Les résultats théoriques et expérimentaux prouvent que dans cette situation réaliste où le contexte change à des moments aléatoires tout au long de l'expérience, le système nerveux peut s'adapter de façon adaptative, au fil des essais, et notamment, mieux et plus rapidement qu'un modèle classique comme la moyenne flottante (voir Figure 2). Les expériences montrent en particulier que cette adaptation s'opère au niveau sensorimoteur précoce, par des mouvements oculaires d'anticipation, mais aussi à un niveau cognitif plus élevé, par la prédiction explicite de la direction au prochain essai qui est produite par les observateurs. Ces expériences suggèrent que les humains (et de futurs systèmes artificiels) peuvent utiliser des stratégies d'adaptation beaucoup plus riches qu'on ne le supposait auparavant pour optimiser dynamiquement l'équilibre entre exploitation et exploration. Elles permettent aussi de mieux comprendre comment chaque humain s'adapte à des environnements changeants, par exemple pour porter des jugements ou planifier des réponses basées sur des informations variables dans le temps, une illustration de la richesse de nos différences interindividuelles.

Figure 2: La réponse du cerveau aux changements de l'environnement sensoriel. La génération du mouvement d'une cible visuelle sur un écran est ici contrôlée par un biais de probabilité de la direction. Ce biais évolue lui-même au cours de l'expérience par des sauts abrupts. Ces bascules font changer de façon aléatoire le biais parmi les différents degrés de probabilité (par exemple de fortement plus probable à gauche à modérément probable à droite). À chaque essai, le biais permet alors de générer une réalisation, soit un mouvement à gauche (G) ou bien à droite (D). La cible se déplace dans des blocs de 50 essais (1 à 50) et ces réalisations sont les seules à être observées, l'évolution du biais et en particulier des bascules restant cachée à l'observateur. Par rapport à la moyenne flottante qui est classiquement utilisée, on peut démontrer l'existence d'un modèle mathématique comme une moyenne prédictive qui permet de mieux suivre la dynamique du biais de probabilité. Grâce à ces expériences psychophysiques, on peut mettre en évidence que les observateurs suivent préférentiellement la moyenne prédictive, plutôt que la moyenne flottante, aussi bien dans des jugements explicites (pari prédictif) que, de façon plus surprenante, dans les mouvements d'anticipation des yeux qui sont effectués sans que les observateurs n'en aient conscience.

L'étude des différentes stratégies révélées dans ces comportements d'exploitation et d'exploration peuvent être un marqueur pour détecter des pathologies neuronales. En effet, la population humaine révèle une grande diversité de profils cognitifs et il est ardu de définir de façon monolithique un standard neuro-typique. En faisant un lien entre cerveau et hasard, nous pouvons exploiter cette connaissance fondamentale pour mieux comprendre cette diversité. Parmi le spectre du répertoire des comportements humains, les comportements schizophrènes se manifestent en particulier par des délusions et une certaine impulsivité. Ceci est illustré par une expérience simple: Imaginons une urne opaque qui contient 100 billes bleu et rouge dans une proportion non équilibrée: soit 90 rouges et 10 bleues ou bien 10 rouges et 90 bleues. Le but du jeu est de tirer une conclusion pour savoir quelle est la couleur majoritaire tout en prélevant le moins de billes. On observe que face à ce problème dans lequel le hasard de tirage joue le rôle principal, les patients avec des comportements schizophrènes donnent en moyenne une conclusion avant la population moyenne. Ce résultat suggère donc que ces patients ont plus tendance à croire à leurs propres hypothèses par rapport à des contrôles. Un comportement opposé semble être en jeu dans le spectre autistique suggérant des mécanismes similaires mais antagonistes. Plus précisément, il semble que le traitement du hasard est contrôlé par l'anatomie fine du cerveau et du réseau de neurones qui le définit. Entre exploitation et exploration, tout est affaire d'équilibre!

Du hasard aux croyances

Les biais cognitifs ne se révèlent pas seulement dans les statistiques sur des fréquences d'occurrence d'événements comme celles rencontrées dans la loterie, et le cerveau semble manipuler des croyances complexes sur son environnement. Mais dans ce contexte, qu'est qu'une croyance ?

Une contribution majeure d'<u>Antoine-Augustin Cournot</u> est d'avoir démystifié une origine du hasard qui permet de mieux comprendre cette notion. Économiste, il étudiait durant le XIX^e siècle des processus d'établissement de monopoles économiques. S'interrogeant sur les aléas perturbant ses données expérimentales, il fit cette proposition simple. Si au lieu d'être un processus autonome, comme on en fait l'hypothèse dans les mécanismes quantiques, n'est-ce pas l'ignorance de l'observateur sur l'origine des données qui crée cette impression de hasard ?

Par exemple, si vous observez deux joueurs de go alors que vous ignorez tout des règles du jeu, vous aurez l'impression que les coups sont joués au hasard, alors que pour de joueurs expérimentés ce jeu ne fait aucunement intervenir la chance, mais un haut niveau de stratégie. Dans cette perspective, l'impression de hasard – et donc sa gestion par notre cerveau – peut être causée par des processus bien déterministes quand bien même l'observateur ignore les causes de leurs interactions. En miroir de l'impression de hasard, une « croyance » serait, dans ce contexte, une mesure d'un « degré d'évidence » de l'observateur sur ces connaissances.

Ainsi, au lieu d'être passif vis-à-vis du hasard, notre cerveau a dû évoluer pour manipuler ces « croyances », ou ces « interprétations a priori » de la situation à laquelle il fait face. Toutefois, les mécanismes biologiques qui sont en jeu sont mal connus et il existe encore une grande différence entre l'intelligence biologique révélée dans le cerveau et celle, artificielle, que l'on construit dans les automates ou robots, ou encore plus récemment avec les ordinateurs ou l'apprentissage profond. Il n'y a pour ces derniers pas de place pour le hasard alors qu'à l'opposé, notre cerveau utilise le hasard, et qu'il arrive que, par « sérendipité », des découvertes scientifiques soient dues au hasard.

Au niveau théorique, la théorie des probabilités, une branche des mathématiques, permet de définir une « croyance » comme un objet mathématique précis attribuant des probabilités aux différents événements possibles.

Par exemple, imaginons que vous cherchiez à déterminer l'orientation des arbres dans une forêt : les troncs sont principalement orientés verticalement, mais quelques-uns sont penchés ou tordus. Équipée de notre outil théorique, cette mesure physique peut être représentée par la probabilité de vraisemblance de chacune des orientations possibles. Souvent, on peut représenter cette distribution de probabilités par sa valeur la plus probable et par la dispersion autour de cette valeur. Ce type de formalisation permet en particulier de manipuler différents degrés de « croyance » par des règles dites d'« inférence».

En pratique, cette notion permet d'affiner les algorithmes classiques d'intelligence artificielle et permet en particulier d'intégrer plusieurs distributions de probabilité de sources différentes. Par exemple, on peut inférer l'orientation d'un arbre à partir de fragments de son image, tout en donnant plus de poids à une information précise (par exemple l'image du bord de son tronc) par rapport à ce qui l'est moins (une vue du feuillage).

Est-ce qu'un tel mécanisme pourrait être à l'œuvre dans le cerveau?

Un processus dynamique

Récemment, nous avons pu directement interroger des neurones biologiques sur cette hypothèse. Nous nous sommes concentrés sur le cortex visuel primaire, une région sur la surface du cerveau qui est essentielle pour la vision. Depuis les expériences de Hubel et Wiesel[2], on sait que les neurones de cette région répondent préférentiellement à l'orientation des contours dans l'image, par exemple celle d'une barre lumineuse qui serait présentée devant nos yeux.

Pour étendre la portée de ces expériences fondatrices des neurosciences de la vision, nous avons synthétisé des stimulations visuelles dans lesquelles nous manipulons explicitement la précision de cette orientation, comme sur les photos de l'image ci-dessous. Ainsi nous ajoutons aux images une nouvelle dimension qui représente le fait qu'un objet visuel peut être plus ou moins orienté en modifiant la précision de cette orientation. Celle-ci peut ainsi être transformée depuis une barre parfaitement orientée, à une orientation intermédiaire jusqu'à une texture totalement non orientée.

Figure 3: L'orientation et sa précision dans une image naturelle. L'orientation peut avoir différentes précisions dans différentes zones. Dans une image naturelle (© Hugo Ladret) nous avons extrait une zone correspondant à une surface d'eau qui montre une distribution serrée des orientations autour d'une orientation principale proche de l'horizontale. Dans une autre zone correspondant à du feuillage, l'orientation principale est similaire mais beaucoup plus dispersée: l'orientation est moins précise.

Cette nouvelle dimension permet par exemple de distinguer ce qui est dessiné par le contour net d'un objet visuel par rapport à la texture d'un objet pour laquelle la précision est moindre (comme la texture à droite de l'image). Ces expériences de neurophysiologie [3] ont révélé que lorsque l'on présente ces stimulations, l'activité de la population de neurones construit graduellement une

représentation de l'orientation, mais aussi de sa précision, donc du degré de croyance sur cette orientation. Nos résultats indiquent aussi que les neurones communiquent entre eux différentiellement en fonction de cette précision, notamment qu'une précision moins fine intègre son information plus lentement.

Pour comprendre intuitivement ce mécanisme dynamique, on peut imaginer qu'à la manière d'un peintre ajustant une touche de peinture sur son œuvre, la représentation globale de notre environnement visuel se construit progressivement à partir de ces fragments. Dans le futur, de nouvelles expériences sont nécessaires pour mieux comprendre ces mécanismes. Nous souhaitons en particulier comprendre comment nous intégrons les informations de manière dynamique, dans le flux incessant des stimuli que notre système sensoriel doit traiter.

De l'utilité du hasard

Pour conclure, nous avons invoqué le hasard pour mieux comprendre le cerveau. Même s'il peut être une source de confusion, c'est un mécanisme face auquel le cerveau ne reste pas passif, et il constitue une notion centrale pour donner du sens aux mécanismes complexes qui y ont lieu.

Ainsi, une meilleure connaissance du hasard permet l'intégration optimale des « bits » d'information distribués dans notre cerveau et conduisant éventuellement à une conscience unifiée du monde qui nous environne. En écho à la comédie de Marivaux, espérons que le hasard permette d'unir neurosciences et informatique pour mieux comprendre l'intelligence.

References

1. Humans adapt their anticipatory eye movements to the volatility of visual motion properties

Chloé Pasturel, Anna Montagnini, Laurent Udo Perrinet

PLOS Computational Biology (2020-04-13) https://doi.org/gjpqzz

DOI: 10.1371/journal.pcbi.1007438 · PMID: 32282790 · PMCID: PMC7179935

2. Receptive fields of single neurones in the cat's striate cortex

D. H. Hubel, T. N. Wiesel

The Journal of Physiology (1959-10-01) https://doi.org/gcjp95

DOI: 10.1113/jphysiol.1959.sp006308 · PMID: 14403679 · PMCID: PMC1363130

3. Dynamical processing of orientation precision in the primary visual cortex

Hugo J. Ladret, Nelson Cortes, Lamyae Ikan, Frédéric Chavane, Christian Casanova, Laurent U. Perrinet

Cold Spring Harbor Laboratory (2021-05-28) https://doi.org/gjpqzx

DOI: 10.1101/2021.03.30.437692