Interaktive Medien

Prof. Dr. Frank Steinicke
Human-Computer Interaction
Fachbereich Informatik
Universität Hamburg

Interaktive Medien Kapitel Medien, Kanäle und Codes

Prof. Dr. Frank Steinicke

Human-Computer Interaction, Universität Hamburg

Inhalt

- Grundbegriffe über Medien
- Analoge vs. Digitale Medien
- Grundlegende Konzepte der Digitalisierung
- Grundlegende Verfahren der Kodierung

Interaktive Medien Kapitel Medien, Kanäle und Codes

Medien

Medien

 Medien (Einzahl: Medium) sind vor allem Träger / Vermittler von Kommunikation und Interaktion zwischen kommunizierenden oder handelnden Akteuren

Interaktivität

 Interaktivität (lat.: inter ("zwischen") und agere ("treiben"/"betreiben")) weist auf Wechselbeziehung zwischen Menschen und Computer(n) hin, bei der Informationen ausgetauscht werden

Interaktive Medien

 Interaktive Medien sind synchrone und asynchrone technische Kommunikationsmittel, die zum Austausch von nichtlinearen Informationen genutzt werden können

Natürliche Medien

 Natürliche Medien realisieren sich auf Grundlage natürlich gegebener Kanäle

Natürliches Medium	Physische Grundlage
Sprache	Sprachmotorik, Schall, Hörvermögen
Handlung	Sensomotorik und Newtonische Physik

Künstliche Medien

 Künstliche Medien werden auf Grundlage von Medientechnologien unterstützt

Künstliches Medium	Medientechnologie
Fernsprechen	Telefon
Fernschreiben	Telegraph, Telefax, SMS
Fernsehen	Video- und Nachrichtentechnik
World Wide Web	Internet

Digitale Medien

- Digitale Medien sind Medien, die
 - vom Computer erfasst, gespeichert, verarbeitet oder versendet und
 - vom Menschen genutzt werden können, z.B. durch sehen, lesen, hören, interagieren etc.

D. McCandless: The beauty of data visualization, TED Talk, 2013

Sight

Taste

D. McCandless: The beauty of data visualization, TED Talk, 2013

Sight

Filterung & Selektion

- beschränkte Speicher- und Verarbeitungskapazität hinsichtlich
 - Wahrnehmung
 - Gedächtnis
- hierbei keine festen Grenzwerte
 - inter- und intra-individuelle Varianz

Filterung & Selektion

- Gesamte "einfließende" Informationsmenge ca. 1.5 GBits/s
 - ca. 15 MBits/s erreichen Rezeptoren
 - ca. 100 Bits/s erreichen Bewusstsein
- → Filterung und Selektion der Informationen

Medien und Kanäle

- Digitale Medien dienen computervermittelten Kommunikation zwischen Menschen
- Erscheinungsform der Medien sind vom Computer und von Informationstechnologie geprägt

Medien und Kanäle

- Präsentationsmedium: Hilfsmittel zur Einund Ausgabe, z.B. Bildschirm, Lautsprecher, Kopfhörer
- Codierung: Repräsentation der Information,
 z.B. Wahlergebnis als Text, Zahlen oder Grafik
- Modalität: vom Menschen genutzter Sinneskanal für Wahrnehmung, z.B. visual, auditiv oder haptisch

Multimedia

 "Multimedia ist der Trend, die verschiedenen Kommunikationskanäle des Menschen mit den Mitteln der Informationswissenschaft über alle Quellen zu integrieren und als Gesamtheit für die Kommunikation zu nutzen."

—Peter Henning (2003)

Multimedia Unterscheidung

- Präsentationsebene
 - monomedial vs. multimedial
- Kodierungsebene
 - monocodal vs. multicodal
- Perzeptionsebene
 - monomodal vs. multimodal

Modal / Medial / Kodal

Kommunikation / Interaktion

Multicodal

- Text
- Farbe
- Anordnung
- Illustration
- Grafik
- ...

Multimedial

- Bildschirm
- Lautsprecher
- Touchscreen
- Force-Feedback
- Vibration
- ...

Multimodal

- visuell
- auditiv
- haptisch
- olfaktorisch
- gustatorisch
- ...

Interaktive Medien Kapitel Medien, Kanäle und Codes

Signale und Übertragung

Kommunikationsmodell

Shannon and Weaver

Analoges Signal Definition

 Analoges Signal ist gegeben durch deterministische Änderungen einer physikalischen Größe entsprechend einem Messwert der zu übertragenden Information

Analoge Signale Beispiele

- meist periodische Signale, z.B. Schalloder Lichtwellen
 - Verlauf wiederholt sich nach festen Zeitabständen (Phasen)

Analoge Signale Begriffe

- Phase beschreibt sich wiederholenden Verlauf in festem zeitlichen Abstand
- Amplitude ist durch maximalen Wert der Phase gegeben

Analoge Signale

- Wellenlänge gibt Weg an, den Signal bei gegebener Ausbreitungsgeschwindigkeit innerhalb einer Phase zurücklegt
- Frequenz gibt Anzahl von sich wiederholenden Schwingungen pro Zeiteinheit an

Analoge Signale

 Periodendauer T (in Sekunden) gibt an, wie lange eine vollständige Schwingung dauert

$$T = \frac{1}{f}$$

- Frequenz f ist Kehrwert der Periodendauer in Hz
 - gibt Anzahl sich wiederholender
 Vorgänge pro Sekunde in periodischen
 Signal an

Diskussion

Wie lange ist Periodendauer für ein analoges Signal mit f=0.5 Hz?

Kommunikationsmodell

Shannon and Weaver

Stör-Signale Beispiel: Analog

Digitales Signal Definition

 Digitales Signal orientiert sich an festem Raster des Raumes bzw. der Zeit und gibt für jeden Punkt einen diskreten Wert

Stör-Signale

Beispiel: Digital

Interaktive Medien Kapitel Medien, Kanäle und Codes

Digitalisierung

Wandlung

- Amplitude des Signals wird in kurzen
 Zeitabständen gemessen und festgehalten
 bzw. wiedergegeben
 - Analog/Digital (A/D)-Wandlung, d.h.
 Digitalisierung des analogen Signal
 - Digital/Analog (D/A)-Wandlung, d.h.
 Abspielen des digitalen Signals

Abtastung vs. Synthese

- Information, die als digitales Medium präsentiert werden soll, muss digitalisiert werden:
 - Abstastung (engl. Sampling): analoges
 Signal wird in digitales Signal
 umgewandelt
 - Synthese: Signal liegt digital vor und wird in anderes (digitales) Signal umgewandelt

- Bei Diskretisierung (engl. Sampling) wird festes Raster von Messpunkten gleichen Abstands festgelegt über die sich analoges Signal verändert
- Beispiele:
 - Zeit bei Musik
 - Raum bei Bild

Diskretisierung Abtastrate

- Dichte der Messwerte wird als Abtastrate bezeichnet
 - Beispiele: Samples pro Sekunde oder Samples pro Längeneinheit
- Zu jedem Messpunkt gemäß
 Diskretisierung wird aktueller Wert des
 Signals (engl. Sample) bestimmt

Beispiel

Beispiel

Beispiel

Quantisierung Definition

- Bei Quantisierung werden im Rahmen der Diskretisierung ermittelten Messwerte in festem Werte-Raster dargestellt
- Messwerte werden als Zahlen im endlichen Wertebereich festgehalten
- Bits pro Sample definieren Genauigkeit der gewählten Digitalisierung

Quantisierung

Beispiel: 1-Bit

Quantisierung

Beispiel: 3-Bit

Quantisierung Beispiele

- Bilder: typische Werte (24 oder 32 Bit)
 - 1-Bit-Quantisierung: s/w Bild
 - 8-Bit-Quantisierung: 256 Farben
- Audio: typischer Wert (16 Bit)
 - hochwertige Studioaufnahme (24 Bit)

Signale

Kontinuierlich vs. Diskret

- Vor Digitalisierung stellt sich Frage nach konkreten Werten für Diskretisierung und Quantisierung
- offensichtlicher Zusammenhang zwischen gewählter Quantisierung und Genauigkeit
- Aber: Wie muss diskretisiert werden, damit abgetastetes digitales Signal ein analoges Signal verfälschungsfrei wiedergibt?

Fouriertransformation

Fourier-Reihe

 Jede periodische Schwingung lässt sich durch unendliche Summe von sich überlagerten Cosinus-Schwingungen annähern

$$x(t) = \sum_{k=0}^{\infty} a_k \cdot \cos(k \cdot \omega_0 \cdot t + \theta_k)$$

- Grundfrequenz ω_0
- Anteil k-ten harmonische Schwingung a_k
- Phasenverschiebung der k-ten harmonischen Schwingung θ_k

Beispiel: Aliasing

- zu geringe Abtastfrequenz kann dazu führen, dass Details nicht rekonstruiert werden
- Bsp: zwei überlagerte Sinuskurven

Abtasttheorem Überlegung

- Erhöhung der Abtastrate erlaubt originalgetreue Rekonstruktion
- Aber: Erhöhung der Abtastrate führt zu höherem Speicherbedarf

→ Frage: Welche Abtastrate sollte gewählt werden?

Abtasttheorem Überlegung

- korrekte Wahl der Abtastrate beruht auf zwei Grundideen
 - Reales (periodisches) Signal kann als Überlagerung von Grundsignalen verschiedener Frequenzen aufgefasst werden
 - 2. Für Wahl der Abtastrate ist höchste Frequenz im Signal entscheidend

Abtasttheorem Überlegung

- Erhöhung der Abtastrate bis schnellster
 Wechsel des Signals von Abtastung relevant erfasst werden
- relevant bedeutet insbesondere vom Menschen noch wahrnehmbar (vgl. Audio, Bilder, Video, etc.)

• Wenn kontinuierliches periodisches Signal mit **oberer Grenzfrequenz** f_{max} mit Abtastrate von **mehr** als $2 \cdot f_{max}$ abgetastet wird, lässt sich Ursprungssignal ohne Informationsverlust aus abgetastetem Signal rekonstruieren

Beispiel: Audio-Frequenz

- Audio-Frequenz ist gegeben durch Anzahl sich wiederholender Phasen pro Sekunde
- Menschen können Frequenzen im Bereich von ca. 16Hz bis 20kHz hören
- menschliche Sprache: 150Hz bis 3.500Hz

Hörbarer Bereich Beispiel

Gehörschnecke

Diskussion

Wie häufig muss ein Audiosignal bei der Digitalisierung abgetastet werden?

Beispiel: Audio-Frequenz

- Audio-CD-Standard
 - Abtastung mit 44.100Hz basiert auf maximal hörbarem Bereich des Menschen mit 20.000Hz
- Digitalisierung bei ISDN-Telefonverbindungen
 - 8.000Hz basiert auf für menschliche Sprache ausreichendem Bereich des Menschen (3.500Hz)

Diskussion

Wieviel Speicherbedarf wird für eine Stunde Musik in Stereo (mit je 16 Bit) benötigt?

Interaktive Medien Kapitel Medien, Kanäle und Codes

Codierung

Informationen

 Information wird nicht direkt verarbeitet, sondern aus deren Repräsentation interpretiert

Kommunikationsmodell

Shannon and Weaver

Repräsentation Kodierung

- Wenn Information gespeichert, übertragen oder bearbeitet werden soll, muss diese in bestimmter Repräsentation bzw. Kodierung vorliegen
- Ziel bei Kodierung (engl. Code):
 - Nachrichten möglichst schnell zu übertragen, aufgrund begrenzter Kapazität des Übertragungskanals

Informationsverarbeitung

Beispiel

Codierung Beispiel

Bitmap File

Zip Archiv

Entropiekodierung

- Entropiekodierung ist Methode zur verlustfreien Datenkompression, die jedem Zeichen eines Textes unterschiedlich lange Folge von Bits zuordnet
- Stringersatzverfahren ersetzen Folge von Zeichen des Originaltextes durch Folge von Zeichen eines anderen Alphabets

Informationstheorie Shannon

- ullet Zeichenvorrat A ist endliche Menge von Zeichen
- Menge der Wörter aus Zeichenvorrat A wird mit A * bezeichnet
- Nachricht ist endliche Sequenz von Wörtern aus Zeichenvorrat A

Informationstheorie Shannon

- Seien A und B Zeichenvorräte
- Kodierung (engl. Code) c von A^* in B^* ist Abbildung von Wörtern in A^* auf Wörter in B^* $c: A^* \to B^*$

 stochastischer Ansatz: Kodierung in Abhängigkeit der Auftrittswahrscheinlichkeit eines Zeichens

Informationstheorie Nachrichtenquelle

- Nachrichtenquelle ist Zeichenvorrat A
 zusammen mit Wahrscheinlichkeitsverteilung,
 die für jedes Zeichen aus A dessen
 Auftrittswahrscheinlichkeit angibt
- Es gilt für Wahrscheinlichkeit p_a eines Zeichens $a \in A$: $p_a \in [0,1]$
- Für Summe aller Wahrscheinlichkeiten gilt

Nachrichtenquelle Beispiele

Zeichen	Α	В	С	D
Wahrscheinlichkeit p_a in Quelle 1	1.0	0.0	0.0	0.0
Wahrscheinlichkeit p_a in Quelle 2	0.25	0.25	0.25	0.25
Wahrscheinlichkeit p_a in Quelle 3	0.5	0.25	0.125	0.125

- Quelle 1 sendet nur A
- Quelle 2 sendet A, B, C, D mit gleicher Wahrscheinlichkeit
- Quelle 3 sendet A, B, C und D mit unterschiedlichen Wahrscheinlichkeiten

Entscheidungsgehalt

- Informationsgehalt eines Zeichens gibt an, wie viel Information übertragen wird
- Entscheidungsgehalt gibt Anzahl an Bits an, die notwendig sind, um aus Informationsmenge auszuwählen
 - Auswahl aus 2-elementigen Menge entspricht 1 Bit, aus 4-elementigen Menge 2 Bit ...

Entscheidungsgehalt Beispiel

Zeichen	Α	В	C	D
Wahrscheinlichkeit p_a in Quelle 1	1.0	0.0	0.0	0.0
Wahrscheinlichkeit p_a in Quelle 2	0.25	0.25	0.25	0.25
Wahrscheinlichkeit p_a in Quelle 3	0.5	0.25	0.125	0.125

• Umrechnung der Wahrscheinlichkeit in Entscheidungsgehalt in Bits $x_a = \log_2(1/p_a)$

Zeichen	Α	В	С	D
Entscheidungsgehalt von Quelle 1 in Bits	0	NULL	NULL	NULL
Entscheidungsgehalt von Quelle 2 in Bits	2	2	2	2
Entscheidungsgehalt von Quelle 3 in Bits	1	2	3	3

Entropie

Zeichen	Α	В	С	D
Entscheidungsgehalt von Quelle 1 in Bits	0	NULL	NULL	NULL
Entscheidungsgehalt von Quelle 2 in Bits	2	2	2	2
Entscheidungsgehalt von Quelle 3 in Bits	1	2	3	3

• **Entropie** ist durchschnittlicher Entscheidungsgehalt eines Zeichens der Nachrichtenquelle:

$$H = \sum_{a \in A} p_a \cdot x_a = \sum_{a \in A} p_a \cdot \log_2(1/p_a)$$

 Entropie gibt Informationsdichte der Nachrichtenquelle an

Diskussion

Welche Entropien haben Nachrichtenquellen 1, 2 und 3?

Entropie Beispiel

Zeichen	Α	В	C	D
Wahrscheinlichkeit p_a in Quelle 1	1.0	0.0	0.0	0.0
Wahrscheinlichkeit p_a in Quelle 2	0.25	0.25	0.25	0.25
Wahrscheinlichkeit p_a in Quelle 3	0.5	0.25	0.125	0.125
Entscheidungsgehalt von Quelle 1 in Bits	0	NULL	NULL	NULL
Entscheidungsgehalt von Quelle 2 in Bits	2	2	2	2
Entscheidungsgehalt von Quelle 3 in Bits	1	2	3	3

$$H = \sum_{a \in A} p_a \cdot x_a$$

Entropie Beispiel

Zeichen	Α	В	C	D
Wahrscheinlichkeit p_a in Quelle 1	1.0	0.0	0.0	0.0
Wahrscheinlichkeit p_a in Quelle 2	0.25	0.25	0.25	0.25
Wahrscheinlichkeit p_a in Quelle 3	0.5	0.25	0.125	0.125
Entscheidungsgehalt von Quelle 1 in Bits	0	NULL	NULL	NULL
Entscheidungsgehalt von Quelle 2 in Bits	2	2	2	2
Entscheidungsgehalt von Quelle 3 in Bits	1	2	3	3

- Nachrichtenquelle 1 hat Entropie von 0
- Nachrichtenquelle 2 hat Entropie von 2
- Nachrichtenquelle 3 hat Entropie von 1.75

Wortlänge

- Menge der Wörter aus einem Zeichenvorrat A wird mit A * bezeichnet
- Für Wort $w \in A^*$ ist Länge des Worts |w|Anzahl der enthaltenden Zeichen
- Wenn Kodierung c Zeichen $a \in A$ Wort $w \in B^*$ zuweist, dann ist |c(a)| = |w| Wortlänge der Kodierung von a

Wortlänge Durchschnittliche Wortlänge

 Für Kodierung c einer Nachrichtenquelle ist durchschnittliche Wortlänge L die nach Auftrittswahrscheinlichkeit gewichtete Summe der Wortlängen aller Kodierungen der Zeichen

$$L = \sum_{a \in A} p_a \cdot |c(a)|$$

Kodierung Beispiel

• Kodierungen c_1 des Zeichenvorrats $\{A,B,C,D\}$ mit **Binärcodierung**

Zeichen	Α	В	С	D
Wahrscheinlichkeit p_a in Quelle 3	0.5	0.25	0.125	0.125
Kodierung c_1	00	01	10	11
Worlänge $ c_1(a) $	2	2	2	2
Durchschnittliche Wortlänge $L=0.5$ · 2 + 0.25 · 2 + 0.125 · 2 + 0.125 · 2 = 2				

- Entropie ist 1.75
- Durchschnittliche Wortlänge ist 2

Kodierung Beispiel

• Kodierungen c_2 des Zeichenvorrats $\{A,B,C,D\}$ mit **Binärcodierung**

Zeichen	Α	В	C	D
Wahrscheinlichkeit p_a in Quelle 3	0.5	0.25	0.125	0.125
Kodierung c_2	0	10	110	111
Worlänge $ c_2(a) $	1	2	3	3
Durchschnittliche Wortlänge $L=0.5\cdot\ 1+0.25\cdot\ 2+0.125\cdot\ 3+0.125\cdot\ 3=1.75$				

- Entropie ist 1.75
- Durchschnittliche Wortlänge ist 1.75

Redundanz

 Redundanz R einer binären Kodierung für Informationsquelle ist Differenz mittlerer Wortlänge und Entropie:

$$R = L - H$$

Redundanz Beispiele

Zeichen	Α	В	C	D
Wahrscheinlichkeit p_a in Quelle 3	0.5	0.25	0.125	0.125
Kodierung c_1	00	01	10	11
Worlänge $ c_I(a) $	2	2	2	2
Durchschnittliche Wortlänge $L=0.5$ · 2 + 0.25 · 2 + 0.125 · 2 + 0.125 · 2 = 2				

- c_1 hat durchschnittliche Wortlänge von 2
- Quelle 3 hat Entropie von 1.75
- c_1 hat Redundanz von 0.25

Redundanz Beispiele

Zeichen	Α	В	C	D
Wahrscheinlichkeit p_a in Quelle 3	0.5	0.25	0.125	0.125
Kodierung c_2	0	10	110	111
Worlänge $ c_2(a) $	1	2	3	3
Durchschnittliche Wortlänge $L=0.5\cdot\ 1+0.25\cdot\ 2+0.125\cdot\ 3+0.125\cdot\ 3=1.75$				

- ullet c_2 hat durchschnittliche Wortlänge von 1.75
- Quelle 3 hat Entropie von 1.75
- c2 hat Redundanz von 0

Optimale Kodierung

 Kodierung einer Nachrichtenquelle heißt optimal, falls Redundanz der Kodierung gleich Null ist, d.h. falls Differenz zwischen mittlerer Wortlänge und Entropie gleich 0 ist

Interaktive Medien Kapitel Medien, Kanäle und Codes

Kompressionsverfahren

Kompression

- Datenmengen aus Digitalisierung medialer Informationen können sehr groß werden
- Ziel von Kompressionsverfahren ist Reduktion des Datenumfangs
- Kompressionsverfahren haben unterschiedliche Ziele und Eigenschaften

Kompressionsverfahren Klassifikation

- Kompressionsverfahren für alle Daten (unabhängig vom Ursprung und Bedeutung) heißen universelle Kompressionsverfahren
- Kompressionsverfahren, die auf Daten eines bestimmten Medientyps abgestimmt sind, heißen spezielle Kompressionsverfahren

Kompressionsverfahren

Universelles

Beispiel: ZIP

Kompressionsverfahren Spezielles

Beispiel: JPG

Kompressionsverfahren Klassifikation

- Kompressionsverfahren heißt verlustbehaftet, wenn bei Kompression Informationen verloren gehen
- Kompressionsverfahren heißt verlustfrei, wenn bei Dekompression Originaldaten vollständig und genau rekonstruiert werden können

Kompressionsverfahren

verlustbehaftet vs. verlustfrei

Beispiel: JPEG vs. PNG

Klassifikation Kompressionsverfahren

	Universell	Speziell
Verlustfrei	Bsp.: Huffman, LZW	Bsp.: PNG, AIFF
Verlustbehaftet	(nicht sinnvoll)	Bsp.: JPEG, MP3

Diskussion

Warum sind universelle Verfahren, die verlustbehaftet sind, nicht sinnvoll?

Einteilung Einzelzeichen

 Unterscheidung der Einzelzeichen (mit gleicher Länge) in Kodierung durch Gruppierung

Zeichen	Α	В	C	D
Kodierung c_1	00	01	10	11

Kodierung: 0010110001

Gruppierung: 00|10|11|00|01

Interpretation: ACDAB

Samuel F. B. Morse: Schreibtelegraf bzw. Morseapparat, 1837

Morsecode Beispiel

- häufigste Buchstaben in englischer Sprache sind "e" und "t"
- "q" ist seltener Buchstabe

Einteilung Einzelzeichen

 Problem bei variabler Länge: Wann beginnt nächstes Zeichen?

Zeichen	Α	В	C	D
Kodierung c_1	0	01	001	0001

Kodierung: 0010110001

Gruppierung: 0 0 1 ... vs. 0 01 ...

Interpretation: ???

Fano-Bedingung

• Kodierung c von Zeichen $a \in A$ auf Wort $c(a) \in B^*$ erfüllt die **Fano-Bedingung** genau dann, wenn für alle Zeichen $b \in A$ gilt, dass das Wort c(a) nicht Anfang des Wortes c(b) ist

Fano-Bedingung Beispiel

Zeichen	Α	В	C	D
Kodierung	0	10	110	111

Kodierung: 0110111010

Gruppierung: 0 110 111 0 10

Interpretation: ACDAB

Fano-Bedingung Gegen-Beispiel

Zeichen	A	В	C	D
Kodierung	0	01	001	0001

Kodierung: 0110111010

Gruppierung: 0 01 ... vs. 001 ...

Interpretation: ???

Huffman-Kodierung

- Huffman-Kodierung verwendet unterschiedliche Auftrittswahrscheinlichkeiten von Zeichen, d.h. stochastische Verfahren
- Grundidee: Seltener vorkommende Zeichen bekommen längere Codes als häufiger vorkommende Zeichen
- Code-Konstruktion über Binärbaum

- Graph ist abstrakte Struktur, die Menge von Objekten zusammen mit den zwischen diesen Objekten bestehenden Verbindungen repräsentiert
- Graph G ist Tupel (V,E) wobei V Menge von Knoten (engl. Vertex/Vertices) und E Menge von Kanten (engl. Edge/Edges) repräsentiert

Beispiele

ungerichteter Graph ohne Mehrfachkanten

gerichteter Graph ohne Mehrfachkanten

ungerichteter Graph mit Mehrfachkanten

gerichteter Graph mit Mehrfachkanten

Beispiel: Binärbaum

- ungerichteter Binärbaum ist zusammenhängender kreisfreier ungerichteter Graph, wobei jeder Knoten maximal zwei Kinderknoten (Grad) hat
 - Wurzel
 - Knoten mit max. Grad 1 heißen Blätter bzw. Halbblatt; übrigen Knoten heißen innere Knoten

Beispiel: Binärbaum

Huffman-Code-Baum Beispiel

Zeichen	Α	В	C	D
Wahrscheinlichkeit p_a in Quelle 2	0.25	0.25	0.25	0.25
Kodierung	00	01	10	11

Huffman-Algorithmus

- Eingabe:
 - Text $t \in A^*$
- Ausgabe:
 - Binärbaum mit Knotenmarkierung p und Kantenmarkierung h

Huffman-Algorithmus Methode

- für jedes Zeichen a ∈ A erzeuge Knoten;
 markiere Knoten mit Häufigkeit, mit der a im Text t∈ A* vorkommt
- suche Knoten u und v mit minimaler Markierung p(u) bzw. p(v), zu denen noch keine Kante hinführt

Huffman-Algorithmus Methode

- erzeuge neuen Knoten w und verbinde w mit u und v; markiere Kanten mit θ bzw. 1
- markiere Knoten w mit p(u) + p(v)

Diskussion

Codieren Sie nun den Text: "im westen nichts neues" nach Huffman!

Huffman-Algorithmus

Beispiel: im westen nichts neues

Huffman-Code-Baum Beispiel

Zeichen	Α	В	C	D
Wahrscheinlichkeit p_a in Quelle 3	0.5	0.25	0.125	0.125
Kodierung	0	10	110	111

Huffman-Code-Baum Beispiel

Zeichen	Α	В	C	D
Wahrscheinlichkeit p_a in Quelle 3	0.4	0.3	0.2	0.1
Kodierung	0	10	110	111

Huffman-Kodierung Beispiele

Zeichen	Α	В	C	D
Wahrscheinlichkeit p_a in Quelle 3	0.5	0.25	0.125	0.125
Kodierung 1	0	10	110	111

Zeichen	Α	В	C	D
Wahrscheinlichkeit p_a in Quelle 3	0.4	0.3	0.2	0.1
Kodierung 2	0	10	110	111

$$H = \sum_{a \in A} p_a \cdot x_a \qquad x_a = \log_2(1/p_a)$$

$$L = \sum_{a \in A} p_a \cdot |c(a)| \qquad R = L - H$$

Diskussion

Berechnen Sie die Redundanz der beiden Kodierungen!

Huffman-Codierung Optimalität

 Huffman-Codierung ist genau dann optimal, falls Wahrscheinlichkeiten der Zeichen Kehrwerte von Zweierpotenzen sind

Beispiel:

Zeichen	Α	В	C	D
Wahrscheinlichkeit p_a in Quelle 3	0.5	0.25	0.125	0.125

Gegen-Beispiel:

Zeichen	Α	В	С	D
Wahrscheinlichkeit p_a in Quelle 4	0.4	0.3	0.2	0.1

- Arithmetische Kodierung ist Entropiekodierung, bei der Nachricht reelle Zahl zugewiesen wird
- $c:A^* \mapsto [0,1) \text{ mit } c(a)=x, \ a \in A^* \text{ und } x \in [0,1)$
 - Eingabe: Menge von Wörter aus A^*
 - Ausgabe: Reelle Zahl $x \in [0,1)$, wobei $x \in [0,1) = \{x \in \Re \mid 0 \le x < 1\}$

- 1. Unterteile Startintervall [0,1) in Subintervalle; Größe der Subintervalle ist relativ zur Auftrittswahrscheinlichkeit des Zeichens; Reihenfolge der Zeichen wird durch Konvention festgelegt
- Subintervall, das dem nächsten Zeichen der Eingabe entspricht, wird zum aktuellen Intervall (Unterteilung wie in Punkt 1.)
- 3. Sind weitere Zeichen zu kodieren, dann weiter bei Punkt 2; ansonsten weiter zu Punkt 4.

4. Kodierung ist beliebige Zahl aus aktuellem Intervall und Anzahl der kodierten Zeichen

 Zahl wird so gewählt, dass möglichst wenig Nachkommastellen berücksichtigt werden müssen, d.h. weniger Bits

Beispiele: DBC

Zeichen	Α	В	С	D	E
Wahrscheinlichkeit p_a in Quelle 3	0.1	0.2	0.1	0.5	0.1
Linker Rand	0.0	0.1	0.3	0.4	0.9
Rechter Rand	0.1	0.3	0.4	0.9	1.0

Lauflängenkodierung

- Lauflängenkodierung (engl. Run Length Encoding, RLE) ist verlustfreier Entropiekodierer
- Grundidee ist jede Sequenz von identischen Symbolen durch deren Anzahl und Symbol zu ersetzen

Lauflängenkodierung

Beispiel: Paare

Ausgangssequenz lautet

wird kodiert zu:

```
{A,5},{B,7},{C,1},{D,3},{E,2}
```

oder

• ...

Diskussion

Codieren Sie folgende Zeichenkette, wobei Sie (1,3)-Bit Paare bilden!

Lauflängenkodierung Beispiel

Lauflängenkodierung Beispiel

 Nehmen wir Konvention an, dass immer mit einer 1 bei der Kodierung begonnen wird

1110 0010 0000 11

wird kodiert zu:

Lauflängenkodierung Beispiel

- Statt 1111 1000 wird 5 3 gespeichert
- Je länger einzelne Folge wird, umso größer ist Einsparung
 - für 10 Wiederholungen werden 2
 Dezimalstellen benötigt
 - für 100 Wiederholungen werden 3
 Dezimalstellen benötigt

_ ...

Lauflängenkodierung Modifikation

- Falls in Nachricht nur wenige
 Wiederholungssequenzen sind, werden nur
 Folgen ab bestimmter Länge (z. B. drei)
 kodiert
- Maskierungszeichen (engl. escape character)
 zeigt an, dass komprimiertes Tupel folgt

Lauflängenkodierung Beispiele

Lempel-Ziv-Welch Algorithmus

- Lempel-Ziv-Welch (LZW)-Kodierung ist verlustfreies Komprimierungsverfahren, welches Wörterbuch für in Nachricht vorkommenden Teilwörter anlegt
- zunächst Konventionen für in Wörter vorkommende Zeichen (z.B. ASCII) sowie Zahlenbereich für Tabelle (ungleich Wörter, d.h., z.B. >256)

Beispiel: bananenanbau

Beispiel: bananenanbau

Lempel-Ziv-Welch Bsp: LZWLZ78LZ77LZCLZMWLZAP

Zeichenkette	gefundener Eintrag	Ausgabe	neuer Eintrag
LZWLZ78LZ77LZCLZMWLZAP	L	L	LZ (wird zu <256>)
ZWLZ78LZ77LZCLZMWLZAP	Z	Z	ZW (wird zu <257>)
WLZ78LZ77LZCLZMWLZAP	W	W	WL (wird zu <258>)
LZ78LZ77LZCLZMWLZAP	LZ(=<256>)	<256>	LZ7 (wird zu <259>)
78LZ77LZCLZMWLZAP	7	7	78 (wird zu <260>)
8LZ77LZCLZMWLZAP	8	8	8L (wird zu <261>)
LZ77LZCLZMWLZAP	LZ7(=<259>)	<259>	LZ77 (wird zu <262>)
7LZCLZMWLZAP	7	7	7L (wird zu <263>)
LZCLZMWLZAP	LZ(=<256>)	<256>	LZC (wird zu <264>)
CLZMWLZAP	С	С	CL (wird zu <265>)
LZMWLZAP	LZ(=<256>)	<256>	LZM (wird zu <266>)
MWLZAP	M	M	MW (wird zu <267>)
WLZAP	WL(=<258>)	<258>	WLZ (wird zu <268>)
ZAP	Z	Z	ZA (wird zu <269>)
AP	А	А	AP (wird zu <270>)
Р	Р	Р	-

Variante LZ78

- Bsp: TOBEORNOTTOBEORTOBEORNOT#
- Wörterbuch wird am Anfang folgendermaßen aussehen ______

#	00000	0
A	00001	1
В	00010	2
С	00011	3
• •		•••
Z	11010	26

ohne LZ78-Algorithmus wäre Nachricht
 125 Bits lang (25 Zeichen × 5 Bits pro Zeichen) 147

Variante LZ78

#	00000
A	00001
В	00010
С	00011
• •	
Z	11010

Zeichenkette	gefundener Eintrag	Ausgabe	neuer Eintrag
TOBEORNOTTOBEORTOBEORNOT#	Т	20 = 10100	TO (wird zu <27>)
OBEORNOTTOBEORTOBEORNOT#	0	15 = 01111	OB (wird zu <28>)
BEORNOTTOBEORTOBEORNOT#	В	2 = 00010	BE (wird zu <29>)
EORNOTTOBEORTOBEORNOT#	Е	5 = 00101	EO (wird zu <30>)
ORNOTTOBEORTOBEORNOT#	0	15 = 01111	OR (wird zu <31>)
RNOTTOBEORTOBEORNOT#	R	18 = 010010	RN (wird zu <32>), ab hier: 6 Bits
NOTTOBEORTOBEORNOT#	N	14 = 001110	NO (wird zu <33>)
	***	•••	
TOBEORTOBEORNOT#	ТО	27 = 011011	TOB (wird zu <36>)

#	#	0 = 000000	

Variante LZ78

#	00000	
A	00001	
В	00010	
С	00011	
Z	11010	

Bits	Ausgabe	Neuer Eintrag (Ganz):
10100 = 20	Т	
01111 = 15	0	27: TO
00010 = 2	В	28: OB
00101 = 5	Е	29: BE
01111 = 15	0	30: EO
010010 = 18	R	31: OR ab hier: 6 Bits lesen
001110 = 14	N	32: RN
•••	•••	
011011 = 27	ТО	36: TOB
•••	•••	:
000000 = 0	#	

