Electrochemistry Question bank

S. No.	Question	Year
Not	te: The PINK coloured questions are from the reduced por	rtion of
1101		
	syllabus as per CBSE guidelines.	
1.	Out of zinc and tin, whose coating is better to protect iron objects?	2020
2.	(a) Calculate ΔG° for the reaction	2020
	$Zn(s) + Cu^{2+}(aq) \longrightarrow Zn^{2+}(aq) + Cu(s)$	
	Given: E° for $Z_{n}^{2+}/Z_{n} = -0.76 \text{ V}$ and	
	E°for $Cu^{2+}/Cu = +0.34 \text{ V}$	
	$R = 8.314 \text{ JK}-1 \text{ mol}^{-1}, F = 96500 \text{ C mol}^{-1}.$ (b) Give two advantages of fuel cells.	
	OR	
	(a) Out of the following pairs, predict with reason which pair will allow greater conduction of	
	electricity:	
	(i) Silver wire at 30°C or silver wire at 60°C.	
	(ii) 0·1 M CH ₃ COOH solution or 1 M CH ₃ COOH solution.	
	(iii) KCl solution at 20°C or KCl solution at 50°C.	
	(b) Give two points of differences between electrochemical and electrolytic cells.	
3.	For an electrochemical cell	2020
	$Mg(s) + Ag^{+}(aq) \longrightarrow Ag(s) + Mg^{2+}(aq),$	
	give the cell representation. Also write the Nernst equation for the above cell at 25°C.	
4.	Conductivity of 2 x 10 ⁻³ M methanoic acid is 8 x 10 ⁻⁵ S cm ⁻¹ . Calculate its molar conductivity	2020
	and degree of dissociation if for methanoic acid is 404 S cm ² mol ⁻¹ .	
5.	For an electrochemical cell	2020
	$Cu^{2+}(aq) + Ni(s) \longrightarrow Ni2+(aq) + Cu(s),$	
	give the cell representation. Also write the Nernst equation for the above cell at 25°C.	2020
6.	State Kohlrausch's law. Calculate the molar conductance of Sr(NO ₃) ₂ . The molar ionic	2020
7	conductance of Sr ²⁺ and NO ³⁻ ions are 119 S cm ² mol ⁻¹ and 72 S cm ² mol ⁻¹ respectively.	2020
7.	For an electrochemical cell	2020
	$F_2(g) + 2I^-(aq) \longrightarrow 2F^-(aq) + I_2(s)$, give the cell representation. Also write the Nernst equation for the above cell at 25°C.	
8.	State Kohlrausch's law. Calculate the molar conductance of Ba(OH) ₂ . The molar ionic	2020
0.	conductance of Ba ²⁺ and OH ⁻ ions are 127 and 199 S cm ² mol ⁻¹ respectively.	2020
9.	Name the cell which was used in the Apollo Space Programme.	2020
	How many coulombs are required for the oxidation of 1 mol of H ₂ O to O ₂ ?	2020
11.		2020
11.	Ni (s) + 2 Ag ⁺ (aq) \rightarrow Ni ²⁺ (aq) + 2 Ag (s)	
	Given: $E^{\circ}Ni^{2+}/Ni = -0.25 \text{ V}$, $E^{\circ}Ag^{+}/Ag = +0.80 \text{ V}$, $1 \text{ F} = 96500 \text{ C mol}^{-1}$	
12.		2020
13.		2020
	cross-section 0.625 cm ² is 5 x 10 ³ ohm. Calculate its resistivity, conductivity and molar	
	conductivity.	
	(b) Predict the products of electrolysis of an aqueous solution of CuCl ₂ with platinum	
	electrodes.	
	(Given: $\mathbf{E}_{Cu^{2+}/Cu}^{\circ} = +0.34 \text{ V}, \ \mathbf{E}_{\left(\frac{1}{2}\right)}^{\circ} = +1.36 \text{ V}$	
	$\mathbf{E}_{\mathbf{H}^{+}/\mathbf{H}_{2}(\mathbf{g}), \mathbf{Pt}}^{ o} = 0.00 \mathrm{V}, \mathbf{E}_{\left(\frac{1}{2}\right) \mathbf{O}_{2}/\mathbf{H}_{2}\mathbf{O}\right)}^{ o} = + 1.23 \mathrm{V})$	
	OR	

	(a) Calculate e.m.f. of the following cell:	
	$Zn(s)/Zn^{2+}$ (0.1 M) (0.01 M) $Ag^{+}/Ag(s)$	
	Given: $E^{\circ}Zn^{2+}/Zn = -0.76 \text{ V}, E^{\circ}Ag^{+}/Ag = +0.80 \text{ V}$	
	[Given : $log 10 = 1$] (b) X and Y are two electrolytes. On dilution molar conductivity of 'X' increases 2.5 times	
	while that Y increases 25 times. Which of the two is a weak electrolyte and why?	
14.	Name the cell used in hearing aids and watches.	2020
15.	How much charge in terms of Faraday is required to reduce one mol of MnO ₄ ⁻ to Mn ²⁺ ?	2020
16.	When a steady current of 2A was passed through two electrolytic cells A and B containing electrolytes ZnSO ₄ and CuSO ₄ connected in series, 2 g of Cu were deposited at the cathode of cell B. How long did the current flow? What mass of Zn was deposited at cathode of cell A? [Atomic mass : Cu = 63.5 g mol-1, Zn = 65 g mol-1; 1F = 96500 C mol-1] 3	2020
17.	E°cell for the given redox reaction is 2.71 V $Mg(s) + Cu^{2+}(0.01 \text{ M}) \longrightarrow Mg^{2+}(0.001 \text{ M}) + Cu(s)$ Calculate E_{cell} for the reaction. Write the direction of flow of current when an external opposite potential applied is (i) less than 2.71 V and (ii) greater than 2.71 V OR	2019
	(a) A steady current of 2 amperes was passed through two electrolytic cells X and Y connected in series containing electrolytes FeSO4 and ZnSO4 until 2.8 g of Fe deposited at the cathode of cell X. How long did the current flow? Calculate the mass of Zn deposited at the cathode of cell Y.	
	(Molar mass : Fe = 56 g mol ⁻¹ Zn = 65.3 g mol ⁻¹ , 1F = 96500 C mol ⁻¹) (b) In the plot of molar conductivity (Λ m) vs square root of concentration ($c^{1/2}$), following curves are obtained for two electrolytes A and B:	
	Answer the following: (i) Predict the nature of electrolytes A and B. (ii) What happens on extrapolation of Λ _m to concentration approaching zero for electrolytes A and B?	
18.	 (a) The conductivity of 0·001 mol L⁻¹ acetic acid is 4·95 x 10⁻⁵ S cm⁻¹. Calculate the dissociation constant if Λ° m for acetic acid is 390·5 S cm² mol⁻¹. (b) Write Nernst equation for the reaction at 25°C: 2Al (s) + 3Cu²⁺ (aq)	2019
	2 Al (s) + 3 Ni ²⁺ (0·1 M) 2 Al ³⁺ (0·01 M) + 3 Ni (s) Calculate its emf if E°cell = 1·41 V. (b) How does molar conductivity vary with increase in concentration for strong electrolyte and	

	weak algorial	yte? How can you obtain limiting molar	conductivity (A ^o m) for week alastrolyte?	
19.		and cathode reactions that occur in dry ce	· · · · · · · · · · · · · · · · · · ·	2019
	mercury cell?	•		
20.		reaction takes place in the cell:		2019
	Zn(s) + As	$g_2O(s) + H_2O(l) \longrightarrow Zn^{2+}(aq) + 2l$	$Ag(s) + 2OH^{-}(aq)$	
	Calculate	$\Delta_{ m r} { m G}^{ m o}$ of the reaction.		
	[Given : E	$\frac{10^{\circ}}{(\text{Zn}^{2+}/\text{Zn})} = -0.76 \text{ V},$		
	$E^{0}_{(Ag^{+}/Ag)}$	$= 0.80 \text{ V}, 1 \text{ F} = 96,500 \text{ C mol}^{-1}$		
	(b) How can y electrolyte?	ou determine limiting molar conductivity	ty, $(\Lambda^{\circ}m)$ for strong electrolyte and weak	
21.		reaction that occurs at anode on electroly	vsis of concentrated H ₂ SO ₄ using	2019
	platinum elec		amaa?	
22.		e effect of temperature on ionic conduct ne of two fuels other than hydrogen used		2019
22.		an ordinary cell.	in fuer cen. Write two advantages of	2017
23.		a graph, the variation of molar conductiv	rity of a strong electrolyte with dilution.	2019
24.	Calculate ΔrC	6° and log Kc for the following reaction	:	2019
		$\operatorname{d}(s) \longrightarrow \operatorname{Zn}^{2+}(\operatorname{aq}) + \operatorname{Cd}(s)$		
	Given: I	$E_{\text{Cd}^{2+}/\text{Cd}}^{\text{o}} = -0.403 \text{ V}$		
	1	$E_{\text{Zn}^{2+}/\text{Zn}}^{\text{o}} = -0.763 \text{ V}$		
		OR		
		etal is electroplated using an acidic solut	ion containing CrO ₃ according to the	
	following equ	$-6H^{+} + 6e^{-} \longrightarrow Cr(s) + 3H_{2}O$		
		_	roplated by 24 000 coulombs. How long	
	Calculate how many grams of chromium will be electroplated by 24,000 coulombs. How long will it take to electroplate 1.5 g chromium using 12.5 A current?			
			A current?	
	[Atomic mass			
25.	Define electro	electroplate 1.5 g chromium using 12.5	·¹]	2019
25. 26.	Define electron than E°cell of Following real	electroplate 1.5 g chromium using 12.5 g of Cr = 52 g mol ⁻¹ , 1 F = 96500 C mol ochemical cell. What happens when apple electrochemical cell?	ied external potential becomes greater	2019
	Define electron than E°cell of Following reachloride. What	electroplate 1.5 g chromium using 12.5 g of Cr = 52 g mol ⁻¹ , 1 F = 96500 C mol ochemical cell. What happens when apple electrochemical cell?	ied external potential becomes greater during electrolysis of aqueous sodium	
	Define electron than E°cell of Following reachloride. What answer.	electroplate 1.5 g chromium using 12.5 g of Cr = 52 g mol ⁻¹ , 1 F = 96500 C mol ochemical cell. What happens when apple electrochemical cell? Exactions may occur at cathode and anode out products will be held at anode and cath	ied external potential becomes greater during electrolysis of aqueous sodium node? Use given E° values to justify your	
	Define electron than E°cell of Following reachloride. What answer.	electroplate 1.5 g chromium using 12.5 g of $Cr = 52$ g mol ⁻¹ , 1 $F = 96500$ C mol ochemical cell. What happens when apple electrochemical cell? The electrochemical cell at products will be held at anode and cather than A and A are also an anomalous A and A and A and A are also an anomalous A and A are also are also are also an anomalous A are also are also are also are also are also are also are als	ied external potential becomes greater during electrolysis of aqueous sodium node? Use given E° values to justify your $E^{\circ} = -2.71 \text{ V}$	
	Define electron than E°cell of Following reachloride. What answer. Cathode:	electroplate 1.5 g chromium using 12.5 g of $Cr = 52$ g mol ⁻¹ , 1 $F = 96500$ C mol ochemical cell. What happens when apple electrochemical cell? Exactly actions may occur at cathode and anode out products will be held at anode and cath $Na^+(aq) + e^- \rightarrow Na(s)$ $H^+(aq) + e^- \rightarrow \frac{1}{2}H_2(g)$	ied external potential becomes greater during electrolysis of aqueous sodium node? Use given E° values to justify your $E^{\circ} = -2.71 \text{ V}$ $E^{\circ} = 0.00 \text{ V}$ $E^{\circ} = + 1.36 \text{ V}$	
	Define electron than E°cell of Following reachloride. What answer. Cathode:	electroplate 1.5 g chromium using 12.5 g of Cr = 52 g mol ⁻¹ , 1 F = 96500 C mol ochemical cell. What happens when applications may occur at cathode and anode out products will be held at anode and cath $Na^{+}(aq) + e^{-} \rightarrow Na(s)$ $H^{+}(aq) + e^{-} \rightarrow \frac{1}{2}H_{2}(g)$ $Cl^{-}(aq) \rightarrow \frac{1}{2}Cl_{2}(g) + e^{-}$	ied external potential becomes greater during electrolysis of aqueous sodium node? Use given E° values to justify your $E^{\circ} = -2.71 \text{ V}$ $E^{\circ} = 0.00 \text{ V}$ $E^{\circ} = + 1.36 \text{ V}$	

	Al (s) \mid Al ³⁺ (0·001 M) \mid (0·1) Ni ²⁺ \mid Ni (s)	
	Given: $E^{o}_{(Ni^{2+}/Ni)} = -0.25 \text{ V}$	
	$E^{o}_{(Al^{3+}/Al)} = -1.66 \text{ V}$	
	$[\log 2 = 0.3010, \log 3 = 0.4771]$	
28.	(a) Write the cell reaction and calculate the e.m.f. of the following cell at 298 K: Sn (s) Sn ²⁺ (0·004 M) H ⁺ (0·020 M) H ₂ (g) (1 bar) Pt (s), (Given: E°(Sn ^{2+/} Sn)= -0·14 V) (b) Give reasons: (i) On the basis of E° values, O ₂ gas should be liberated at anode but it is Cl ₂ gas which is	2018
	liberated in the electrolysis of aqueous NaCl. (ii) Conductivity of CH ₃ COOH decreases on dilution.	
29.	(a) For the reaction $2 \text{AgCl (s)} + \text{H}_2 \text{ (g) (1 atm)} \longrightarrow 2 \text{Ag (s)} + 2 \text{H}^+ (0.1 \text{ M}) + 2 \text{Cl}^- (0.1 \text{ M}),$ Calculate the e.m.f. of the cell. Given $\Delta G^\circ = -43600 \text{ J}$ at 25°C . [log $10^{-n} = -n$]	2018
20	(b) Define fuel cell and write its two advantages.	2017(OD)
30.	Write the name of the cell which is generally used in hearing aids. Write the reactions taking place at the anode and the cathode of this cell.	2017(OD)
31.	(a) The cell in which the following reaction occurs: $2 \text{ Fe}^{3+} (\text{aq}) + 2 \text{ I}^{-} (\text{aq}) 2 \text{ Fe}^{2+} (\text{aq}) + \text{I}_{2} (\text{s})$	2017(OD)
	has $E^{\circ}_{cell} = 0.236 \text{ V}$ at 298 K. Calculate the standard Gibbs energy of the cell reaction. (b) How many electrons flow through a metallic wire if a current of 0.5 A is passed for 2 hours? (Given: $1 \text{ F} = 96,500 \text{ C mol}^{-1}$)	
32.		2017(OD)
33.	Write the name of the cell which is generally used in transistors. Write the reactions taking place at the anode and the cathode of this cell.	2017(OD)
34.	Calculate the degree of dissociation (α) of acetic acid if its molar conductivity (Λ_m) is 39.05 Scm ² mol ⁻¹ . Given $\lambda^{\circ}_{(H+)} = 349.6$ S cm ² mol ⁻¹ and $\lambda^{\circ}_{(CH3COO^{-})} = 40.9$ S cm ² mol ⁻¹	2017(D) 2016(OD)
35.	(a) Calculate the mass of Ag deposited at cathode when a current of 2 amperes was passed through a solution of AgNO ₃ for 15 minutes. (Given: Molar mass of Ag = 108 g mol ⁻¹ 1F = 96500 C mol ⁻¹) (b) Define fuel cell.	2017(D)
36.	In a galvanic cell, the following cell reaction occurs: $Zn(s) + 2 Ag^{+}(aq) \longrightarrow Zn^{2+}(aq) + 2 Ag(s)$ $E^{\circ}_{cell} = +1.56 V$ (a) Is the direction of flow of electrons from zinc to silver or silver to zinc? (b) How will concentration of Zn^{2+} ions and Ag^{+} ions be affected when the cell functions?	2017(F)
37.	The electrical resistance of a column of 0.05 M KOH solution of diameter 1 cm and length 45.5 cm is 4.55×10^3 ohm. Calculate its molar conductivity.	2017(F)
38.	Calculate E°_{cell} for the following reaction at 298 K: $2Al(s) + 3Cu^{2+}(0.01M) \longrightarrow 2Al^{3+}(0.01M) + 3Cu(s)$; Given: $E_{cell} = 1.98 \text{ V}$	2016(OD)
39.		2016(OD)
40.	Define electrochemical cell. What happens if external potential applied becomes greater than E°_{cell} of electrochemical cell?	2016(OD)
41.	From the given cells:	2016(D)

	Lead storage cell, mercury cell, fuel cell and Dry cell. Answer the following:	
	(i) Which cell is used in hearing aids?	
	(ii) Which cell was used in Apollo space programme?	
	(iii) Which cell is used in automobiles and inverters?	
	(iv) Which cell does not have long life?	
42.	Calculate e.m.f of the following cell at 298K:	2016(D)
	$2Cr(s) + 3Fe^{2^{+}}(0.1M) \longrightarrow 2Cr^{3^{+}}(0.01M) + 3Fe(s)$	
	Given: $E^0(Cr^{3+} Cr) = -0.74V$ $E^0(Fe^{2+} Fe) = -0.44V$	
43.	Following reaction occurs at cathode during the electrolysis of aqueous silver chloride	2015(D)
	solution:	
	$Ag^{+}(aq) + e^{-} \longrightarrow Ag(s)$ $E^{o} = +0.80 \text{ V}$ $H^{+}(aq) + e^{-} \longrightarrow \frac{1}{2} H_{2}(g)$ $E^{o} = 0.00 \text{ V}$	
	$H^{+}(aq) + e^{-} \longrightarrow \frac{1}{2} H_{2}(g) \qquad E^{0} = 0.00 \text{ V}$	
	On the basis of their standard electrode potential (E°) values, which reaction is feasible and	
	why?	
44.	Define limiting molar conductivity. Why conductivity of an electrolyte solution increases with	2015(D)
	the decrease in concentration?	
45.	Calculate emf of the following cell at 25 °C:	2015(D)
	$Fe Fe^{2+}(0.001M) \parallel H^{+}(0.01M) \mid H_{2}(g) (1bar) Pt(s)$	2013(D)
	$E^{0}(Fe^{2+}/Fe) = -0.44 \text{ V}, \ E^{0}(H^{+}/H_{2}) = 0.00 \text{ V}$	
46.	Calculate the time to deposit 1.27g of copper at cathode when a current of 2A was passed	2015(O)
	through the solution of CuSO ₄ . (molar mass of Cu=63.5g mol ⁻¹ , 1 F= 96500 C)	
47.	J	2015(O)
	conductivity and degree of dissociation. Given: $\lambda^{\circ}(H^{+}) = 349.5 \text{ S cm}^{2} \text{ mol}^{-1}$ and	
	$\lambda^{\circ}(\text{HCOO}^{-}) = 50.5 \text{ S cm}^{2} \text{ mol}^{-1}$	
48.	Define the following terms:	2015(D,C)
	(i) Molar conductivity (Λ_m) (ii) Secondary batteries (iii) Fuel cell	2014(O)
49.	For the cell reaction	2015(D,C)
	$Ni(s) Ni^{2+}(aq) \parallel Ag^{+}(aq) Ag(s)$	
	Calculate the equilibrium constant at 25 °C. How much maximum work can be obtained by	
	operation of this cell? $E^{0}(Ni^{2+} Ni) = 0.25 \text{ V}, E^{0}(Ag^{+} Ag) = 0.80 \text{ V}$	2017(0.0)
50.	Calculate $\Delta_r G^{\circ}$ and emf that can be obtained from the following under the standard conditions	2015(O,C)
	at 25 °C: $Zn(s) Zn^{2+}(aq) Sn^{2+}(aq) Sn(s)$	
F.1	Given: $E^{o}(Zn^{2+}/Zn) = -0.76 \text{ V}$, $E^{o}(Sn^{2+}/Sn) = -0.14 \text{ V}$ and $F = 96500 \text{ C}$ mol ⁻¹	2017(0)
51.		2015(O)
<i>5</i> 2	variation with concentration.	2014(D,O)
52.		2015(O,C)
	place: $\sum_{n=2}^{2} \frac{3}{(2n)} + A_{n} \frac{4}{(2n)} $	
	$Fe^{2+}(aq) + Ag^{+}(aq) \longrightarrow Fe^{3+}(aq) + Ag(s)$	
	Calculate $\Delta_r G^\circ$ and equilibrium constant of the reaction also.	
52	$(E^{0}(Ag^{+}/Ag) = 0.80V; E^{0}(Fe^{3+}/Fe^{2+}) = 0.77V$	2014(D)
53.	Define the following terms:	2014(D)
<u> </u>	(i) Limiting molar conductivity (ii) Fuel cell	2014(O)
54.	Resistance of a conductivity cell filled with 0.1 mol L ⁻¹ KCl solution is 100 Ω . If the resistance of the same cell when filled with 0.02 mol L ⁻¹ KCl solution is 520 Ω , calculate the conductivity	2014(D)
	and molar conductivity of 0.02 mol L ⁻¹ KCl solution. The conductivity of 0.1 mol L ⁻¹ KCl	
	solution is $1.29 \times 10^{-2} \Omega^{-1} \text{cm}^{-1}$.	
	SOLUTION IS 1.27 × 10 S2 CIII .	
1	State faraday's first law of electrolysis. How much charge in terms of Faraday is required for	2014(D)

	reduction of 1 mole of Cu ²⁺ to Cu.	
56.	Calculate emf of the following cell at 298 K	2014(D)
	$Mg(s) Mg^{2+}(0.1M) Cu^{2+}(0.01M) Cu(s)$ Given $E^{o}_{cell} = +2.71 \text{ V}, 1F = 96500 \text{ C mol}^{-1}$	
57.	State Kohlrausch's law of independent migration of ions. Why does the conductivity of a	2014(O)
	solution decreases with dilution?	
58.	Calculate $\Delta_r G^{\circ}$ fot the reaction $Mg(s) + Cu^{2+}(aq) \longrightarrow Mg^{2+}(aq) + Cu(s)$	2014(O)
	Given $E_{cell}^{o} = +2.71 \text{ V}$, $1F = 96500 \text{ C mol}^{-1}$	
59.	The conductivity of 0.20 M solution of KCl at 298 K is 0.025 S cm ⁻¹ . Calculate its molar	2013(D)
	conductivity.	
60.	The standard electrode potential (E°) of Daniel cell is 1.1 V. Calculate the ΔG° for the reaction	2013(O)
	$Zn(s) + Cu^{2+}(aq) \longrightarrow Zn^{2+}(aq) + Cu(s)$ Given: $1F = 96500 \text{ C mol}^{-1}$	2013(D,C)
61.		2013(O)
	$Ag(s) Ag^{+}(0.001M) Cu^{2+}(0.1M) Cu(s)$ Given $E_{cell}^{o} = +0.46 \text{ V}, 1F = 96500 \text{ C mol}^{-1}$	2009(D)
62.	What are fuel cells? Write the electrode reactions and overall reaction of H ₂ -O ₂ fuel cell.	2013(O,C)
		2011(O,C)
63.	What type of battery is the lead storage battery? Write the anode and cathode reactions and	2012(D)
	overall reaction occurring in a lead storage battery when current is drawn from it. What	2011(D),(O)
	happens on charging the battery?	2010(D)
64.		2012(D)
	$Zn(s) + Ag_2O(s) + H_2O(l) \longrightarrow Zn^{2+}(aq) + 2Ag(s) + 2OH(aq)$	
	Determine E° and ΔG° for the reaction. (Given: E°(Ag ⁺ /Ag) = +0.80 V, E°(Zn ²⁺ /Zn) = -0.76 V)	
65.	Define molar conductivity of a solution and how molar conductivity changes with change in	2012(D)
	concentration of solution for a weak and strong electrolyte. How is such change explained?	2009(D)
66.	The resistance of conductivity cell containing 0.001 M KCl solution at 298 K is 1500 Ω . What	2012(D)
	is the cell constant if the conductivity of 0.001 M KCl solution at 298 K is 0.146×10^{-3} S cm ⁻¹ .	2009(D,C)
67.	Express the relation among the cell constant, resistance of the solution in the cell and	2012(O)
	conductivity of the solution. How is molar conductivity of a solution related to its	
	conductivity?	
68.	The molar conductivity of a 1.5 M solution of an electrolyte is found to be 138.9 S cm ⁻² mol ⁻¹ .	2012(O)
	Calculate the conductivity of this solution.	2010(O,C)
69.	The electrical resistance of a column of 0.05 M NaOH solution of diameter 1 cm and length 50	2012(O)
	cm is 5.55×10^3 ohm. Calculate resistivity, conductivity and molar conductivity.	
70.		2012(O)
	(0.50M). Write an equation for the reaction that occurs when the cell generates an electrical	2011(O)
	current and determine the cell potential. $E^{\circ}(Ni^{2+}/Ni) = -0.25 \text{ V}$ and $E^{\circ}(Al^{3+}/Al) = -1.66 \text{ V}$	2009(D)(O)
71.	What is corrosion? Explain the electrochemical theory of rusting of iron and write reaction	2012(D,C)
7.0	involved in the rusting of iron.	2009(D)
72.	Determine the value of equilibrium constant(Kc) and ΔG° for the following reaction:	2011(D)
770	$Ni(s) + 2Ag^{+}(aq) \longrightarrow Ni^{2+}(aq) + 2Ag(s)$; Given $E^{\circ} = 1.05 \text{ V}$, $1F = 96500 \text{ C mol}^{-1}$.	2011(D)
/3.	The half reactions of an electrochemical cell are given below:	2011(D)
	$MnO_4^-(aq) + 8H^+ + 5e^- \longrightarrow Mn^{2+}(aq) + 4H_2O(1), E^\circ = +1.51 \text{ V}$	2010(O)
	$\operatorname{Sn}^{2+}(\operatorname{aq}) \longrightarrow \operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-}, E^{\circ} = +0.15 \text{ V}$	2009(O)
	Construct the redox equation from the standard potential of the cell and predict if the reaction	
7.4	is reactant favoured or product favoured?	2011(0)
/4.	Calculate the potential of the half-cell containing $0.10 \text{ M K}_2\text{Cr}_2\text{O}_7(\text{aq})$, 0.20 M Cr^{3+} (aq) and	2011(O)
	$1.0 \times 10^{-4} \text{ M H}^{+}(\text{aq})$. The half-cell reaction is	
	$Cr_2O_7^{2-}(aq) + 14H^+ + 6e^- \longrightarrow 2Cr^{3+}(aq) + 7H_2O(l), E^0 = +1.33 V$	
75	How many males of manager will be and dured by sleetes by the 1.0 M H. (NO.) and the training of the state of	2011(0)
75.	How many moles of mercury will be produced by electrolyzing 1.0 M Hg(NO ₃) ₂ solution with	2011(O)

	a current of 2.00 A for 3hours? [$Hg(NO_3)_2 = 200.6 \text{ g mol}^{-1}$]	
76.	1	2011(O)
	$3\text{Sn}^{4+}(\text{aq}) + 2\text{ Cr(s)} \longrightarrow 3\text{Sn}^{2+}(\text{aq}) + 2\text{ Cr}^{3+}(\text{aq}) \text{ Given: } \text{E}^{\circ} = 0.885 \text{ V}$	
77.	Calculate the degree of dissociation of acetic acid at 298 K, given that:	2011(D,C)
	$\Lambda_{\rm m}({\rm CH_3COOH}) = 11.7 \text{ S cm}^2 \text{ mol}^{-1}$	
	$\Lambda^{\circ}_{\mathrm{m}}(\mathrm{CH}_{3}\mathrm{COO}^{-}) = 49.9 \mathrm{S} \mathrm{cm}^{2} \mathrm{mol}^{-1}$	
	$\Lambda^{\circ}_{m}(H^{+}) = 349.1 \text{ S cm}^{2} \text{ mol}^{-1}$	
78.	Calculate the equilibrium constant, Kc for the reaction at 298 K	2011(O,C)
	$Zn(s) + Cu^{2+}(aq) \longrightarrow Zn^{2+}(aq) + Cu(s)$ [Given: $E^{\circ}(Cu^{2+}/Cu) = +0.34 \text{ V}$,	
	$E^{\circ}(Zn^{2+}/Zn) = -0.76 \text{ V}$	
79.	Write the Nernst equation and compute the emf of the following cell at 298 K:	2011(O,C)
	$Sn(s) Sn^{2+}(0.05M) H^{+}(0.02M) H_{2}(g) 1 \text{ atm/Pt}; (Given: E^{\circ}(Sn^{2+}/Sn) = -0.136 \text{ V})$	
80.	State Kohlrausch's law of independent migration of ions. Write an expression for the molar	2010(D)
	conductivity of acetic acid at infinite dilution according to Kohlrausch law.	
81.	Calculate Λ°_{m} for acetic acid; given that	2010(D)
	$\Lambda^{\circ}_{m}(HC1)=426 \text{ S cm}^{2} \text{ mol}^{-1} \Lambda^{\circ}_{m}(NaC1)=126 \text{ S cm}^{2} \text{ mol}^{-1}, \Lambda^{\circ}_{m}(CH_{3}COONa)=91 \text{ S cm}^{2} \text{ mol}^{-1}$	
82.	A copper silver cell is set up. The copper ion concentrations is 0.1 M. The concentration of	2010(D)
	silver ion is not known. The cell potential when measured was 0.422 V. Determine the	2009(O)
	concentration of silver ions in the cell. (Given $E^{\circ}(Ag^{+}/Ag) = +0.80 \text{ V}$, $E^{\circ}(Cu^{2+}/Cu) = +0.34 \text{ V}$)	
83.	Given that the standard electrode potentials (E°) of metals are:	2010(O)
	$K^{+}/K = -2.93V$, $Ag^{+}/Ag = 0.80V$, $Hg^{2+}/Hg = 0.79V$, $Mg^{2+}/Mg = -2.37 V$, $Cr^{3+}/Cr = -0.74V$,	
	$Fe^{2+}/Fe = -0.44V.$	
	Arrange these metals in order of their reducing power.	
	Define the term molar conductivity. How is it related to conductivity of the related solution?	2009(D)
85.	One half-cell in a voltaic cell is constructed from silver wire dipped in silver nitrate solution of	2009(D)
	unknown concentration. Its other half-cell consists of a zinc electrode dipping in a 1.0 M	
	solution of Zn(NO ₃) ₂ . A voltage 1.48 V is measured for this cell. Use this information to	
	calculate the concentration of silver nitrate solution used. (Given: $E^{\circ}(Ag^{+}/Ag) = +0.80 \text{ V}$,	
	$E^{\circ}(Zn^{2+}/Zn) = -0.76 \text{ V}$	
86.	Calculate the equilibrium constant for the equilibrium reaction at 298 K	2009(D)
	$Fe(s) + Cd^{2+}(aq) \longrightarrow Fe^{2+}(aq) + Cd(s)$ [Given: $E^{\circ}_{(Cd2+/Cd)} = -0.40 \text{ V}$, $E^{\circ}_{(Fe2+/Fe)} = -0.44 \text{ V}$]	