Early symmetrical lenses

Lens Design OPTI 517

Singlet/doublet lens solutions

Plano-convex (Studied by Airy)

Chevalier's or French
Prof. Leaneds campe lens early 1800's

Wollanston's meniscus 1812

French landscape lens

Daguerre's camera using a Chevalier lens.

Photography, R. Hunt, 1853.

The doublet solutions

- Four cemented
- More un-cemented
- How do you find them?

Crown in front

Flint in front

Chevalier double lens 1840

Petzval lens use of doublets

Early symmetrical lenses

(Symmetrical about the stop)

Stenheil, periskop 1865

Rapid rectilinear, Dallmeyer 1866, Steinheil 1866

- Use of the symmetrical principle
- Odd aberrations cancel
- "Doubling of a lens" principle
- F/16

Rapid rectilinear lens

Prof. Dodling System

- Intermediate lens at f/8
- A great design
- ~70 years life span
- 1866
- John Dallmeyer
- Hugo Steinheil
- Glass selection is key

Comparison I

24 deg @ f/8

BK7-F2

F=100 mm

10 mm spacing

Weight 5 on axis

Comparison II

24 deg @ f/8

F2-BK7

F=100 mm

10 mm spacing

Comparison III

24 deg @ f/8

F2-BK7 F2 to v=51

F=100 mm

10 mm spacing

Weight 5 on axis V1=51 V2=64

Ross concentric lens

Ross concentric (Schroeder) lens 1889 (two new achromats)

Thick and thin meniscus

- •Thick meniscus lens corrects field curvature of the thin meniscus
- Thick meniscus is afocal
- •Thick lens likely unconventional prior to 1890

Time table

- 1812 Wollaston landscape lens; 30 deg @ f/15
- 1839 Photography was disclosed by Daguerre
- 1839 Chevalier lens
- 1840 Petzval (Hungarian) portrait lens; 15 deg @ f/3.7
- 1841 Gauss, cardinal points
- 1856 Seidel theory
- 1865 Periskop, Steinheil
- 1866 Normal glasses: soda-lime-silica and lead oxide
- 1866 Rapid rectilinear, Dallmeyer (England) and Steinheil (Germany), 40-year span; 20 deg @ f/8
- 1873 Piazzi Smyth field-flattener
- 1885 before this year the field was artificially flattened by astigmatism
- 1885 E. Abbe and O. Schott new glasses; barium in place of lead;
 - 'Jena' glass; new achromat;
- 1889 Ross concentric lens

Fabrication issues

- Easy to make
- Same radius of curvature or flat
- Glass to air interfaces
- Ghost images
- Lens volume
- Back focal length (Packaging)
- Negative thickness. Razor blade edge.
- Lenses too thick, too thin
- Concentric meniscus centering vs. alignment

Conclusions

- Symmetrical lenses
- Doublet lens combinations
- Fabrication issues

