

Lab Experiment #10:

Measurement of Earth's Magnetic Field

David McNeary

Partner: Glendy Lara

PHYS 220BL 11/15/2021

Data

Initial dip angle: $heta_0=31\degree$

Helmholtz coil radius: $R=11~\mathrm{cm}$

Helmholtz coil wrap quantity: $N=124~{
m turns}$

Dip angle vs current

Iteration	1	2	3	4	5	6
Resistance	100Ω	50Ω	30Ω	250Ω	300Ω	100Ω
Current i	$37 \mathrm{mA}$	$67.2 \mathrm{mA}$	100.2mA	$15.66 \mathrm{mA}$	$-13.14 \mathrm{mA}$	$-36.97 \mathrm{mA}$
Dip angle θ_i	54°	64°	70°	42°	16°	$-19\degree$
$\begin{array}{c} \textbf{Calculated} \\ B_i \end{array}$	$37.5 \mu T$	$68.1 \mu T$	$101.6 \mu T$	$15.9 \mu T$	$-13.3 \mu T$	$-37.5 \mu T$

7	8
200Ω	200Ω
$-19.4\mathrm{mA}$	19.4mA
7°	49°
$-19.7 \mu T$	$19.7 \mu T$

Calculations and plots

Calculated values

$$egin{aligned} B_V &= 4.55 imes 10^{-5} \ \mathrm{T} \ B_H &= 2.56 imes 10^{-5} \ \mathrm{T} \ B_E &= \sqrt{B_V^2 + B_H^2} = 5.22 imes 10^{-5} \ \mathrm{T} \end{aligned}$$

Reference value

$$B_E = 4.65 \times 10^{-5} \; \mathrm{T}$$

Measured at: CSUN Library

Latitude: 34° 14' 21" N Longitude: 118° 31' 40" W Model used: WMM-2020

Referenced from: https://www.ngdc.noaa.gov/geomag/calculators/magcalc.shtml

Percent difference: 11.6%

Data sheet + Quiz

(Quiz was a physical exercise)

10.6 Data sheet

Name: David McWery	Date: (//9/2)	Instructor's initials:
Partner: Clendy Lava	Group No:	

Data

1. Record the initial dip angle $\theta_0 = 31^\circ$. Note that 0° is straight down, so adjust your readings accordingly.

2. Set the source to 4 V. Vary the resistance and record six values of the dip angle θ vs. current. Pay attention to the sign of the current as described in section 10.4. Only record resistance R if you are using method 1 to control the current.

20-100 mA

139	1	2	3	4	5	6	7	18
(Resistance R)	10052	50a	30-2	250-2	300-1	100-2	2002	2002
Current i	37mA	67.2 mA	100.2mA	15.66MA		-36.97m	-19.4	19.4
Dip angle θ_i	54°	640	70°	420	160	-190	70	490
Calculated B _i	375 pt	68.1 pt	101-6pt	15.9uT	-13.3uT	-37.5UT	-19.747	19.703

- 3. Record the Helmholtz coil radius : R = 11 cm
- 4. Record the Helmholtz coil number of turns: N = 124

Calculations

Plot $\tan \theta_i$ vs. B_i and fit it with a straight line (see Fig. 10.2). Deduce the values of B_V and B_H from the graph.

$$B_V = 4.55 \times 10^{-5} T$$

$$B_H = 2.56 \times 10^{-5} T$$

Calculate
$$B_E = 5.22 \times 10^{-5} \text{T}$$

 $B_H = 2.56 \times 10^{-5} T$ Calculate $B_E = 5.22 \times 10^{-5} T$ Lookup value of $B_E = 4.65 \times 10^{-5} T$