Ornstein-Uhlenbeck Processes

Oswin Krause, PML, 2022

UNIVERSITY OF COPENHAGEN

Reminder Random Fields

- Let Ω be an event space (e.g., \mathbb{R}^N)
- Let \mathcal{X} be an index set (e.g. \mathbb{N} or \mathbb{R}^d)
- A random field is a collection of random variables
 - $F_x \in \Omega$, $\forall x \in \mathcal{X}$ with realizations f_x
 - Intuitively: A function that assigns a random variable to each point $x \in \mathcal{X}$
- If $\mathcal{X} = \mathbb{R}^d$ it is also called a *random process*

Reminder Random Fields

- Let Ω be an event space (e.g., \mathbb{R}^N)
- ullet Let ${\mathcal X}$ be an index set (e.g. ${\mathbb N}$ or ${\mathbb R}^d)$
- A random field is a collection of random variables
 - $F_x \in \Omega$, $\forall x \in \mathcal{X}$ with realizations f_x
 - ullet Intuitively: A function that assigns a random variable to each point $x \in \mathcal{X}$
- ullet If $\mathcal{X}=\mathbb{R}^d$ it is also called a *random process*
- Random Fields are defined by their Marginals:
 - Pick any finite subset $S_{\ell} = \{x_1, \dots, x_{\ell}\} \subseteq \mathcal{X}$
 - Marginal: $p(f_1, \ldots, f_\ell | S_\ell) = p(f_{x_1}, \ldots, f_{x_\ell})$

Reminder: Gaussian Processes

Definition

Let \mathcal{X} be an index set

A random field $F_x \in \mathbb{R}$ whose marginals p(f|S) are Multivariate Normal distributions, is called a Gaussian Process.

Moreover, there exists a kernel $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ and a function $m: \mathcal{X} \to \mathbb{R}$ such that

$$p(f|S) = \mathcal{N}(m(S), K(S)), \forall S = \{x_1, \dots, x_\ell\} \subset \mathcal{X}, \forall \ell \in \mathbb{N}$$

with $m(S) = (m(x_1), \dots, m(x_\ell))$ and $K(S)_{ij} = k(x_i, x_i)$. If m and k are known, we write

$$f \sim \mathcal{GP}(m(\cdot), k(\cdot, \cdot))$$

Ornstein-Uhlenbeck Processes

Special case of GP:

- index set \mathbb{R}_+
- Today t is the index variable (for time) and X_t the random variable.
- Mean m(t) = 0
- Kernel

$$k(t,t') = \frac{\sigma_k^2}{2\theta} e^{-\theta|t-t'|}$$
 .

Ornstein-Uhlenbeck Processes

Special case of GP:

- index set \mathbb{R}_+
- Today t is the index variable (for time) and X_t the random variable.
- Mean m(t) = 0
- Kernel

$$k(t,t') = e^{-\frac{1}{2}|t-t'|}$$
.

- Today:
 - $\begin{array}{ll} \bullet & \theta = \frac{1}{2} \\ \bullet & \sigma_k^2 = 1 \end{array}$

Why the OU Process?

• Stationary process:

$$p(X_t) = p(X_{t'})$$

- It is a "forgetting" process
 - for large t' > t: $X_{t'}$ almost independent of X_t
- Markov process:

$$p(x_1, x_2, ..., x_T | S) = p(x_1)p(x_2|x_1)...p(x_T|x_{T-1})$$

OU Process Samples

How does the OU process "forget"?

- for large t' > t: $X_{t'}$ almost independent of X_t
- That means

$$ho(x_{t'}|x_t)
ightarrow
ho(x_{t'}), ext{ as } |t-t'|
ightarrow\infty$$

The Marginal of the OU process for the two variables $X_t, X_{t'}$ is

$$\begin{bmatrix} X_t \\ X_{t'} \end{bmatrix} \sim \mathcal{N} \left(0, \underbrace{\begin{bmatrix} 1 & e^{-\frac{1}{2}|t-t'|} \\ e^{-\frac{1}{2}|t-t'|} & 1 \end{bmatrix}}_{\mathcal{K}(\mathcal{S})} \right)$$

Conditioning leads to

$$X_{t'}|X_t \sim \mathcal{N}(e^{-\frac{1}{2}|t-t'|}X_t, 1-e^{-|t-t'|})$$

Conditioning leads to

$$X_{t'}|X_t \sim \mathcal{N}(e^{-\frac{1}{2}|t-t'|}X_t, 1-e^{-|t-t'|})$$

• Let $|t-t'| \to \infty$

Conditioning leads to

$$X_{t'}|X_t \sim \mathcal{N}(e^{-\frac{1}{2}|t-t'|}X_t, 1-e^{-|t-t'|})$$

- Let $|t-t'| \to \infty$
- Then $e^{-\frac{1}{2}|t-t'|} \rightarrow 0$
- ullet Approaches marginal $\mathcal{N}(0,1).$

OU is a Markov Process

For a set $S = \{t_1, \dots, t_T\}$, ordered such that $t_1 < \dots, t_T$ we can write the marginal as

$$p(x_1, x_2, ..., x_T | S) = p(x_1)p(x_2|x_1)...p(x_T|x_{T-1})$$

With

$$\rho(x_j|x_{j-1}) = \mathcal{N}\left(x_j; e^{-\frac{1}{2}|t_j - t_{j-1}|} X_{j-1}, 1 - e^{-|t_j - t_{j-1}|}\right)$$

(This is assignment work!)

For a set $S = \{t_1, \dots, t_T\}$, ordered such that $t_1 < \dots, t_T$ we can write the marginal as

$$p(x_1, x_2, ..., x_T | S) = p(x_1)p(x_2|x_1)...p(x_T|x_{T-1})$$

With

$$p(x_j|x_{j-1}) = \mathcal{N}\left(x_j; e^{-\frac{1}{2}|t_j - t_{j-1}|} X_{j-1}, 1 - e^{-|t_j - t_{j-1}|}\right)$$

Reparameterize with $\beta_t = 1 - e^{-|t_j - t_{j-1}|}$

For a set $S = \{t_1, \dots, t_T\}$, ordered such that $t_1 < \dots, t_T$ we can write the marginal as

$$p(x_1, x_2, ..., x_T | S) = p(x_1)p(x_2|x_1)...p(x_T|x_{T-1})$$

With

$$p(x_j|x_{j-1}) = \mathcal{N}\left(x_j; \sqrt{1-\beta_j}X_{j-1}, \beta_t\right)$$

Reparameterize with $\beta_i = 1 - e^{-|t_j - t_{j-1}|}$

The marginal can be written without t_i

- Instead of choosing $S = \{t_0, \dots, t_T\}$
- We can choose $0 < \beta_j < 1$, $j = 1 \dots, T$
- ullet Assuming t_0 is fixed and $t_{j-1} < t_j$, both formulations are equivalent

- Instead of choosing $S = \{t_0, \dots, t_T\}$
- We can choose $0 < \beta_j < 1$, $j = 1 \dots, T$
- Assuming t_0 is fixed and $t_{j-1} < t_j$, both formulations are equivalent
- Proof:

$$\beta_t = 1 - e^{-|t_j - t_{j-1}|}$$

$$\Leftrightarrow t_j = t_{j-1} - \log(1 - \beta_j)$$

$$\Leftrightarrow t_j = \dots$$

$$\Leftrightarrow t_j = t_0 - \sum_{l=1}^{j} \log(1 - \beta_l)$$

Marginal in β parameterisation

• What is $X_i|X_0$ with β parameters?

Marginal in β parameterisation

- What is $X_i|X_0$ with β parameters?
- We have $t_i = t_0 \sum_{l=1}^{j} \log(1 \beta_l)$

Marginal in β parameterisation

- What is $X_j|X_0$ with β parameters?
- ullet We have $t_j = t_0 \sum_{l=1}^j \log(1-eta_l)$
- The marginal is

$$X_j | X_0 \sim \mathcal{N} \left(\sqrt{\bar{\alpha}_j} X_0, 1 - \bar{\alpha}_j \right)$$

 $\bar{\alpha}_j = e^{-|t_j - t_0|} = \prod_{i=1}^j (1 - \beta_i)$.

The OU process as a diffusion Process

- Diffusion: the slow mixing of atoms/molecules in a fluid over time
- For example: ink in water diffuses until the water is equally colored
- Diffusion in statistics: an initial complex distribution becomes similar to a simple distribution over time

The OU process as a diffusion Process

- OU process properties:
 - As time goes on, $X_i|X_0 \to X_i$
 - Due to Markov property $p(X_i|X_{i-1})$ each trajectory follows the same rules
 - The mean is shrunk a bit
 - pure noise is added to make up for the lost scale
 - Models random particle movement with drift towards zero
 - This means we forget the starting points after a while as noise gradually covers all information
- Next up: using OU processes for generative models

The OU process as a diffusion Process

