M1 – Computers and Data

Data Representation

Module Outline

- Architecture vs. Organization.
- Computer system and its submodules.
- Concept of frequency.
- Processor performance equation.
- Representation of information characters, signed and unsigned integers.
 - IEEE 754 floating point standard.

Objective

 How are program data (integers, strings, floats, addresses) represented (encoded) in an object file and during program execution?

Character Data

 American Standard Code for Information Interchange (ASCII) 7-bit format

Character Data

- American Standard Code for Information Interchange (ASCII) 7-bit format
- Unicode 8/16/32-bit formats (UTF-8, UTF-16, UTF-32)
 - Repertoire of >110,000 characters covering 100 scripts and various symbols
 - All ASCII characters included in UTF-8.

Integer Data

- Signed and Unsigned
 - int x;
 - unsigned int y;

$$X_{n-1}X_{n-2}...X_2X_1X_0$$

$$(-1)^{x_{n-1}} \times [x_{n-2} \cdot 2^{n-2} + ... + x_1 \cdot 2^1 + x_0 \cdot 2^0]$$

Sign Magnitude Representation

$$(-1)^{x_{n-1}} \times [x_{n-2} \cdot 2^{n-2} + ... + x_1 \cdot 2^1 + x_0 \cdot 2^0]$$

Binary to/from Decimal conversion (8-bit values):

(a) 0x4C (b) -27

Signed Integer Data – Problems

• Sign bit uses up one bit space.

Signed Integer Data – Problems

- Sign bit uses up one bit space.
- Arithmetic circuits need extra steps to identify sign of the result.

Signed Integer Data – Problems

- Sign bit uses up one bit space.
- Arithmetic circuits need extra steps to identify sign of the result.
- +0 and -0 exist.

```
0000 → 0
0001 → 1
0010 → 2
.....
0111 → 7
```

```
0000 → 0
0001 → 1
0010 → 2
.....
0111 → 7
1000 → -8
```

```
0000 → 0
0001 → 1
0010 → 2
.....
0111 → 7
1000 → -8
1001 → -7
.....
1110 → -2
1111 → -1
```

```
0000 0000 → 0
0000 - 0
                         0000 0001 → 1
0001 → 1
                         0000 0010 -> 2
0010 - 2
                         0111 1110 → 126
0111 → 7
                         0111 1111 → 127
1000 → -8
                         1000 0000 → -128
1001 → -7
                         1000 0001 → -127
                         1000 0010 → -126
1110 → -2
1111 --> -1
                         1111 1110 --- -2
                         1111 1111 → -1
```

$$x_b = x_{n-1} x_{n-2} \dots x_2 x_1 x_0$$

$$x_{decimal} = -x_{n-1} \cdot 2^{n-1} + x_{n-2} \cdot 2^{n-2} + \dots + x_1 \cdot 2^1 + x_0 \cdot 2^0$$

$$x_b = x_{n-1} x_{n-2} \dots x_2 x_1 x_0$$

$$x_{decimal} = -x_{n-1} \cdot 2^{n-1} + x_{n-2} \cdot 2^{n-2} + \dots + x_1 \cdot 2^1 + x_0 \cdot 2^0$$

Example

Convert 17, -21, 32 into their 2's complement notation.

$$x_b = x_{n-1} x_{n-2} \dots x_2 x_1 x_0$$

$$x_{decimal} = -x_{n-1} \cdot 2^{n-1} + x_{n-2} \cdot 2^{n-2} + \dots + x_1 \cdot 2^1 + x_0 \cdot 2^0$$

 Observe: Pick an 8-bit, 2's complement binary number. Invert its bits: 0 → 1 and 1 → 0. Add both these numbers in binary. What is the result?

X

1111 1111 1111 1111 1111 1111 1110

x 1111 1111 1111 1111 1111 1111 1100

x 0000 0000 0000 0000 0000 0000 0011

x 1111 1111 1111 1111 1111 1111 1100

x 0000 0000 0000 0000 0000 0000 00011

$$x + \overline{x} = -1 \qquad \qquad \overline{(x + 1)} = -x$$

 \bar{x} +1 0000 0000 0000 0000 0000 0000 0100 \rightarrow x = -4

- x 1111 1111 1111 1111 1111 1111 1100
- x 0000 0000 0000 0000 0000 0000 0011

$$x + \overline{x} = -1 \qquad \qquad \overline{(x + 1)} = -x$$

 \bar{x} +1 0000 0000 0000 0000 0000 0000 0100 \rightarrow x = -4

Binary to/from Decimal conversion:

0xFFFFBD5

Binary to Decimal conversion:

(a) 1 1011 (b) 11 1011 (c) 111 1011 (d) 1111 1011

Binary to Decimal conversion:

(a) 1 1011 (b) 11 1011 (c) 111 1011 (d) 1111 1011

Replicate the Most Significant Bit to the left.

Binary to Decimal conversion:

```
(a) 1 1011 (b) 11 1011 (c) 111 1011 (d) 1111 1011
```

- Replicate the Most Significant Bit to the left.
- Sign extension
 - 1001, 11001, 111001 ... = -7
 - 11.....1001 = 7

Binary to Decimal conversion:

```
(a) 1 1011 (b) 11 1011 (c) 111 1011 (d) 1111 1011
```

- Replicate the Most Significant Bit to the left.
- Sign extension
 - 1001, 11001, 111001 ... = -7
 - 11.....1001 = 7
- Zero extension
 - -0111 = 7,00111 = 7,000111 = 7,...

Unsigned Integer Data

 Interpret the 8-bit quantity 0x81 as (a) a signed integer, and (b) an unsigned integer.

Unsigned Integer Data

 Interpret the 8-bit quantity 0x81 as (a) a signed integer, and (b) an unsigned integer.

Unsigned Integer Data

 Interpret the 8-bit quantity 0x81 as (a) a signed integer, and (b) an unsigned integer.

 What are the max and min unsigned values of 16bit unsigned data?

Byte Ordering

 How does one read the 4 bytes at address 100?

Byte Ordering

 How does one read the 4 bytes at address 100?

000047A0 vs. A0470000

Byte Ordering

 How does one read the 4 bytes at address 100?

Byte Ordering

 How does one read the 4 bytes at address 100?

Big Endian notation vs. Little Endian notation

Biased Representation

The most negative value is represented by 0.

Two's Complement

```
0000 0000 → 0
0000 0001
0000 0010
1000 0000 → -128
         → -127
1000 0001
           ► -126
1000 0010
```

Biased Representation

The most negative value is represented by 0.

Two's Complement

```
0000 0000 → 0
0000 0001 → 1
0000 0010 -> 2
0111 1110
         → 126
1000 0000 → -128
1000 0001 → -127
1000 0010 → -126
1111 1110 -
1111 1111
```

Biased Notation (Biased by 128)

```
1000 0000 —
                  1000 0001 → 1
                  1000 0010 → 2
                  1111 1110 → 126
                  1111 1111 → 127
0000 0000 → -128
0000 0001 → -127
0000 0010 → -126
0111 1110 -
0111 1111 → -1
```

(Excess 128)

Real Data

- 3.14159265 ... (pi), 2.71828 ... (e)
- $0.00001 = 1.0 \times 10^{-5}$
- $3,155,760,000 = 3.15576 \times 10^{-9}$

Real Data

- 3.14159265 ... (pi), 2.71828 ... (e)
- $0.00001 = 1.0 \times 10^{-5}$
- $3,155,760,000 = 3.15576 \times 10^{-9}$
- Scientific form of a real number
 - Single digit before the decimal point
 - -1.0×10^{-5} , 0.1 x 10⁻⁴, 0.01 x 10⁻³, ...

Real Data

- 3.14159265 ... (pi), 2.71828 ... (e)
- $0.00001 = 1.0 \times 10^{-5}$
- $3,155,760,000 = 3.15576 \times 10^{-9}$
- Scientific form of a real number
 - Single digit before the decimal point
 - -1.0×10^{-5} , 0.1 x 10⁻⁴, 0.01 x 10⁻³, ...
- Normalized representation
 - No leading zeros
 - 1.0 x 10⁻⁵
 - Not 0.1 x 10⁻⁴, 0.01 x 10⁻³, ...

•
$$7.5_{10} = (\underline{})_2$$

•
$$7.25_{10} = (\underline{})_2$$

•
$$7.125_{10} = (\underline{})_2$$

•
$$7.75_{10} = (\underline{})_2$$

•
$$7.375_{10} = (\underline{})_2$$

•
$$7.625_{10} = (\underline{})_2$$

•
$$7.875_{10} = (\underline{})_2$$

• $7.625_{10} = 111.101_2$

- $7.625_{10} = 111.101_2$
- 111.101 x 2⁰, 1111.01 x 2⁻¹, 11.1101 x 2¹, ...

- $7.625_{10} = 111.101_2$
- 111.101 x 2⁰, 1111.01 x 2⁻¹, 11.1101 x 2¹, ...
- Scientific form
 - 1.11101 x 2², 0.111101 x 2³, 0.0111101 x 2⁴, ...

- $7.625_{10} = 111.101_2$
- 111.101 x 2⁰, 1111.01 x 2⁻¹, 11.1101 x 2¹, ...
- Scientific form
 - 1.11101 x 2², 0.111101 x 2³, 0.0111101 x 2⁴, ...
- Normalized representation
 - 1.11101 x 2²

- $7.625_{10} = 111.101_2$
- 111.101 x 2⁰, 1111.01 x 2⁻¹, 11.1101 x 2¹, ...
- Scientific form
 - 1.11101 x 2², 0.111101 x 2³, 0.0111101 x 2⁴, ...
- Normalized representation
 - 1.11101 x 2²
- Computers use Normalized representation to store floats.
 - 1.f x 2e
 - f: fraction, e: exponent.

Floating Point Representation

31 30 23 22 21 1 0
s exponent fraction

$$(-1)^s \times 1. f \times 2^{e-127}$$

Floating Point Representation

```
31 30 .... .... 23 22 21 ..... 1 0

s exponent fraction
```

$$(-1)^s \times 1. f \times 2^{e-127}$$

- IEEE 754 single precision format
- Exponent is biased by 127

 Convert 0.5 into binary. Represent in IEEE 754 single precision floating point representation.

- Convert 0.5 into binary. Represent in IEEE 754 single precision floating point representation.
- Binary = $0.1 = 1.0 \times 2^{-1}$.
- s=?, f=?, e=?

- Convert 0.5 into binary. Represent in IEEE 754 single precision floating point representation.
- Binary = $0.1 = 1.0 \times 2^{-1}$.
- s=?, f=?, e=?
- s=0, f=0, e=(-1)+127=126

- Convert 0.5 into binary. Represent in IEEE 754 single precision floating point representation.
- Binary = $0.1 = 1.0 \times 2^{-1}$.
- s=?, f=?, e=?
- s=0, f=0, e=(-1)+127=126

0 01111110 00... 00

0x3F000000

- Convert 0.75 into IEEE 754 SP FP.
- Convert 0xBDCCCCCC into decimal.

- Convert 0.75 into IEEE 754 SP FP.
- Convert 0xBDCCCCCC into decimal.
- Four special values

Exponent	Fraction	Value
0	0	Zero (± 0)
255	0	Infinity (± ∞)
0	≠ 0	Denormal numbers (± 0.M x 2 ⁻¹²⁶)
255	≠ 0	NaN (0/0 or √-1)

IEEE 754 Double Precision

63 62 52 51 50 1 0

s exponent fraction

$$(-1)^s \times 1. f \times 2^{e-1023}$$

Module Outline

- Architecture vs. Organization.
- Computer system and its submodules.
- Concept of frequency.
- Processor performance equation.
- Representation of information characters, signed and unsigned integers.
 - IEEE 754 floating point standard.

Word Alignment

- Word size = 32 bits
- Words can be stored linearly in addresses 0x00, 0x04, 0x08, 0x0C, 0x10,
- These addresses are 'word boundaries'

Real Data Representation – Recap

 What are the place values of 7 positions after the decimal point in a binary real number?

Binary to Decimal conversion:

- (a) 1.10 (b) 11.11 (c) 111.1011 (d) 111.100110011001
- (e) 111.110111011101 ...

Real Data Representation – Recap

- Convert into IEEE 754 SP FP:
 - 13.1, 12.2, 11.3, 10.4, 9.5, 8.6, 7.7, 6.8, 5.9