```
#| label: annual-inflation-vs-year
my_palette2 <- c('cadetblue3', 'aquamarine3', 'deeppink')</pre>
ggplot(data = DOI_joined_USInflation_CPI, aes(x = year, y = annual_inflation,
     shape = description, color = description)) +
  geom_point() +
  geom_line() +
  labs(
    title = "Annual Inflation Per Year By CPI Division",
    x = "Year"
    y = "Annual Inflation",
    color = "CPI Division",
    shape = "CPI Division"
  scale color manual(values = mv palette2) +
  theme(
        legend.position = "bottom",
        legend.direction = "vertical"
       Annual Inflation Per Year By CPI Division
    5.0 -
Annual Inflation
                                                   2019
                  2013
                                   2016
                       CPI Division

    Clothing and footwear

    Food and non-Alcoholic beverages

                       Restaurants and hotels
```

Pivot

```
{r}
#| label: country-inflation-longer

pivoted_CI <- country_inflation |>
    pivot_longer(
    cols = !country, names_to = "year", values_to = "annual_inflation",
    names_transform = as.numeric)
```

•	country	[‡] 1993 [‡]	1994	1995
Austri	a ustralia	1.753653	1.9696348	4.6277666
2	Austria	3.631786	2.9534065	2.2433638
3	Belgium	2.754426	2.3775445	1.4679612
4	Canada	1.865079	0.1655629	2.1487603

country <chr></chr>	year <dbl></dbl>	annual_inflation <dbl></dbl>	
Australia	1993	1.753653e+00	
Australia	1994	1.969635e+00	

1 patients

```
# A tibble: 3 \times 4
  patient_id pulse_1 pulse_2 pulse_3
  <chr>
                <dbl>
                         <dbl>
1 XYZ
                    70
                            85
                                     73
                                    102
2 ABC
                    90
                             95
3 DEF
                  100
                                     70
```

```
patients_longer <- patients |>
pivot_longer(
cols = !patient_id,
names_to = "measurement",
values_to = "pulse_rate"
)
```

Arrange/Select/Mutate

```
country_inflation |>
  mutate(inf_ratio = `2021` / `1993`) |>
  arrange(desc(inf_ratio)) |>
  select(country, inf_ratio)
```

Filter

Vector

```
countries_of_interest <- c("Italy", "United States", "Japan")</pre>
```

Summarize / Quantile

```
midwest |>
  summarize(
   median = median(popdensity),
  q1 = quantile(popdensity, 0.25),
  q3 = quantile(popdensity, 0.75)
)
```

Group_by (Prop counties in urban areas in each state)

```
midwest |>
  mutate(metro = if_else(inmetro == 1, "Yes", "No")) |>
  group_by(state, metro) |>
  summarise(count = n()) |>
  mutate(proportion_inmetro = count / sum(count)) |>
  filter(metro == "Yes")
```

```
midwest <- midwest |>
  mutate(potential_outlier = if_else(percollege > 40 |
  percbelowpoverty == max(percbelowpoverty), "Yes", "No"))
```

Scatterplot

Summarize

```
state_poverty <- midwest |>
  group_by(state) |>
  summarize(mean_percbelowpoverty = mean(percbelowpoverty)) |>
  select(state, mean_percbelowpoverty)
```

```
state_population <- midwest |>
  group_by(state) |>
  summarize(total_population = sum(poptotal))

pop_summary <- population_continent |>
  group_by(continent) |>
  summarize(total_pop = sum(population)) |>
  arrange(desc(total_pop))
```

```
flights |>
  count(month, day) |>
  arrange(desc(n))
```

Count by two vars

Left_Join (keep all left singles)

Right_Join (keep all right singles)

```
1 patients_longer |>
2   group_by(patient_id) |>
3   summarize(mean_pulse = mean(pulse_rate))
```

ggplot(

patients longer,

aes(x = measurement, y = pulse_rate, group = patient_id, color = patient_id)) +

Initializing

country_inflation <- read_csv("data/country-inflation.csv")
glimpse(country_inflation)</pre>

pull(country_inflation, var="country")

Arrange/Select/Slice

```
country_inflation |>
  arrange(desc(`2021`)) |>
  select(country, `2021`) |>
  slice(0:3)
```

Logical operators

operator	definition
<	is less than?
<=	is less than or equal to?
>	is greater than?
>=	is greater than or equal to?
==	is exactly equal to?
!=	is not equal to?
x & y	is x AND y?
x \l y	is x OR y?
is.na(x)	is x NA?
!is.na(x)	is x not NA?
x %in% y	is x in y?
!(x %in% y)	is x not in y?
!x	is not x? (only makes sense if \mathbf{x} is TRUE or FALSE)

Visualization

```
ggplot(population_summary) +
  geom_point(aes(x = total_pop, y = continent)) +
  geom_segment(aes(y = continent, yend = continent, x = 0, xend = total_pop)) +
  scale_x_continuous(labels = label_number(scale = 1/1000000, suffix = " bil")) +
  theme_minimal() +
  labs(
    x = "Total population",
    y = "Continent",
    title = "World population",
    subtitle = "As of 2022",
    caption = "Data sources: The World Bank and Our World in Data"
)
```


Full_Join (keep all singles)

Inner_join (keep no singles, keep BOTH values) Semi_join (keep no singles, keep left value)

```
population_continent <- population |>
  left_join(continents, by = join_by(country == entity))
```

Case When

Plots

- Pie charts and waffle charts are for visualizing distributions of categorical data only
- Scatterplots are for visualizing the relationship between two numerical variables
- Histograms, Density Plots, and Box Plots = visualizing the distributions of one variable

Types/Classes

<u>double</u>: a real number stored in double-precision floatint point format.

<u>integer</u>: an integer (positive or negative)

Class is metadata about the object that can determine how common functions operate on the object (ex: factor)

<u>Factor</u>: A factor is a vector that can contain only predefined values. It is used to store categorical data.

Types of Vectors

Logical, integer, double, character (list, NULL, complex)

Date:

logical (NA) \rightarrow Int (1L, 1:3) \rightarrow double (5) \rightarrow character ("a")