EXHIBIT D

KC ENGINEERING, P.C.

SIOUX CITY, IOWA 51106

DATE:

August 28, 2012

TO:

Mr. Chad Kramer Sioux Steel Company 196 ½ E 6th Street Sioux Falls, SD 57101

RE:

Engineering Analysis and Design Review of 18' Diameter and 30' Diameter Hopper Cone

Assemblies

Dear Mr. Kramer,

Per your request, KC Engineering has performed a structural engineering evaluation on the 18' Diameter and 30' Diameter Hopper Cone designs provided to us. Through the use of the structural analysis program RISA 3D and manual calculations, we have come to the conclusion that the 18' Diameter Hopper will sufficiently and efficiently support the expected loads however, the 30' Diameter Hopper is not sufficient as designed.

Hopper Description

The 18' Diameter Hopper Cone assembly consists of twelve W8x13 columns with the bin stiffeners sitting directly on these columns. This hopper has a 4" Grade 50 ksi steel compression ring stiffener and the frame is braced by 2.5"x1.0"x12 Gage Channels in both the horizontal and diagonal directions. The hopper cone itself is 14 Gauge Grade 50 ksi galvanized steel.

A larger 30' Diameter Hopper Cone assembly consists of twelve W8x28 columns with the bin stiffeners also sitting directly on these columns. This hopper has 5/16"x 8" deep compression ring channels attached to 5/16" Plates for the compression ring weldment. The frame is braced by 12 Gage Channels with the horizontal bracing and diagonal cross-bracing both being 21/2" deep. The hopper cone is 10 Gauge Grade 50 ksi galvanized steel.

Analysis

The analysis on the frames was done using ASCE 7-05 load combinations and bin eave heights provided in emails from Sioux Steel dated July 17, 2012 and August 2, 2012. The following loads were used in the analysis:

Frame Self-weight:

Calculated by RISA

Bin Dead Load:

6 psf

Snow Load:

10 psf

Wind Load:

≈ 19 psf (Varies by Height)

Grain Wall Load:

47 (As Stiffener Loads)

Grain Hopper Pressures: Varies per Depth

Exhibit No.

Audrey M. Barbush, RPR

The grain loads were calculated and evaluated in accordance with Design of Steel Bins for Storage of Bulk Solids (Gaylord, 1984) and ANSI/ASAE EP433 - Loads Exerted by Free-Flowing Grain on Bins (1998). In the attached pages, the load cases and load combinations are shown in more detail for both hoppers. The attached pages also include detailed information for all of the members and plates.

> Sioux Steel Company Engineering Services for Hopper Analysis Sloux Falls, SD

Conclusions

After completing the RISA model and hand calculations, the controlling combination for the hopper and frame analysis is Load Combination #2 (DL+LL). This combination controls for both the column design and the hopper plates. All of the members and plates for the 18' Diameter Hopper fell within the acceptable material limits for each member. However, the columns for the 30' Diameter Hopper were found to be overstressed by a factor of 1.37 and should be replaced with larger columns. The calculations for these columns can be found on Pages 20-21 of the report for the 30' Diameter Hopper.

A maximum base reaction summary can be found on Pages 519 and 664-665 in the 18' and 30' Diameter Hopper Reports, respectively.

We appreciate the opportunity to provide our services to you on this project. If you have any questions, please contact me at (712) 252-2100.

Respectfully submitted,

Deuk Matthes

Derek Matthies, EI KC Engineering, P.C. Reviewed by:

3-0___

Jason P. O'Mara Vice President KC Engineering, P.C.

Page 2 of 2

Table of Contents

RISA 3D Hopper Model	1
RISA 3D Full Model	
Load Calculations	3-8
Grain Bin Pressures	9-11
Wind Load Calculations	12-19
Column Code Check	20-21
Hopper Panel Connection	22-24
Hopper Results	25
Compression Ring Weldment Connection	26
RISA 3D Member Labels	27-40
RISA 3D Plate Labels	41-82
RISA 3D Deflected Shape – Elevation View	
RISA 3D Deflected Shape - Plan View	84
RISA 3D Deflected Shape – Isotropic View	85
RISA 3D Hopper Stresses Elevation View	86
RISA 3D Hopper Stresses – Plan View	87
RISA 3D Hopper Stresses – Isotropic View	88
RISA 3D Global Parameters	89-90
RISA 3D Hot Rolled Steel Properties	90
RISA 3D Cold Formed Steel Properties	90
RISA 3D General Material Properties	90
RISA 3D Hot Rolled Steel Section Sets	90
RISA 3D Cold Formed Steel Section Sets	91
RISA 3D General Section Sets	
RISA 3D Joint Coordinates	91-187
RISA 3D Boundary Conditions	187
RISA 3D Member Primary Data	187-196
RISA 3D Member Advanced Data	196-204
RISA 3D Hot Rolled Steel Design Parameters	204-205
RISA 3D Cold Formed Steel Design Parameters	205-208
RISA 3D Plate Primary Data	209-296
RISA 3D Plate Advanced Data	296-384
RISA 3D Joint Loads (Basic Load Case #2: Bin Dead Load)	384
RISA 3D Joint Loads (Basic Load Case #3: Snow Load)	384
RISA 3D Joint Loads (Basic Load Case #4: Wind Load on Bin)	384-385
RISA 3D Joint Loads (Basic Load Case #5: Wind Load on Hopper)	385-386
RISA 3D Joint Loads (Basic Load Case #6: Grain Wall Load)	
RISA 3D Surface Loads (Basic Load Case #7: Full Bin – Hopper Load)	
RISA 3D Surface Loads (Basic Load Case #8: Full Bin – Bin Load)	429-432
RISA 3D Surface Loads (Basic Load Case #9: Full Bin – Parallel Load)	
RISA 3D Surface Loads (Basic Load Case #10: Empty Bin – Hopper Load)	555-578 E70 630
RISA 3D Surface Loads (Basic Load Case #11: Empty Bin – Bin Load)	
RISA 3D Surface Loads (Basic Load Case #12: Empty Bin – Parallel Load)	0ZU-003
RISA 3D Basic Load Cases	
RISA 3D Load Combinations	003-004

Sioux Steel 30' Diameter Hopper Analysis

Page i

RISA 3D Load Combination Design	664
RISA 3D Joint Reactions	664-665
RISA 3D Joint Displacements	665-815
RISA 3D Member Section Forces	815-890
RISA 3D Member Section Forces	890-965
RISA 3D Member Section Stresses	065-1039
RISA 3D Member Section Deflections	4020 1040
RISA 3D AISC ASD Steel Code Checks	1039-1040
RISA 3D AISI NAS-07: ASD Code Formed Steel Code Checks	1040-1042
RISA 3D Plate Principal Stresses	1042-1311
RISA 3D Plate Principal Forces	1311-1445
RISA 3D Material Takeoff	1445-1446

Sioux Steel 18' Diameter Hopper Analysis

ZA E		
	ACHACE	HING CO.
200 \$5	Lakenort.	Swite 205
tions Cit	tv TA 5110	06
712) 252	2-2100	
	300 So. Sioux Cit 712) 25	KC ENGINEE 300 So. Lakeport, idioux City, IA 511 712) 252-2100 ax 252-0346

PROJECT NAME: 30 & HODDER Analysis	PAGE OF 6 DATE: 8/8/12
	PROJECT #: 61165
SUBJECT: LOADS	DESIGNER: DM

1. Bin Dead Load Ps = 6 psf

A. Roof:

$$SA = \pi/d + \pi/^2 = \pi(15')(17.32') + \pi(15')^2 = 1523 \text{ GeV}^2$$

Where $d = \frac{15}{\cos 30} \approx 17.32'$

$$SA = \pi DH = \pi (30)(51.33') = 4837.74 \text{ ft}^2$$

 $P = 6psf(4837.74 \text{ ft}^2) = 29,026.4 \text{ lb.s}$

2, Snow Load

$$P_{S} = C_{S} [0.7 CeC_{6} Ip_{g}]$$
 $C_{S} = 0.5$
 $C_{e} = 1.0$
 $C_{g} = 30p_{S}F$
 $C_{e} = 1.Z$

M	KC ENGINEERING CO.	
	4300 So. Lakeport, Suite 205 Sioux City, IA 51106 (712) 252-2100 Fax 252-0346	

PROJECT NAME: 30' & Hopper Analysis	PAGE 2 OF 6	DATE: 8/8/12
	PROJECT #: 6	165
SUBJECT: Loads	DESIGNER: DM	`

$$f_s = 0.5[0.7(1.0)(1.2)(0.8)(30psf)] = 10.08 psf$$

$$P = 10.08 psf (1523ft^2) - 15,352 lbs$$

$$Total \rightarrow \frac{15,352}{20 \text{ Stiffeners}} = \frac{0.77 \frac{\text{Kiff}}{\text{stiffener}}}{0.77 \frac{\text{Kiff}}{\text{stiffener}}}$$

3. Wind Load

PLF 10 Page 4

1 /27	KC ENGINEERING CO.
11/7	I/O FLACILIFE IN ACT CO.
AUT	4300 So. Lakeport, Suite 205
<(∰ \	
1 6.6	Sioux City, IA 51106
9 V 1964	(712) 252-2100
1 /W	Fax 252-0346

PROJECT NAME: 30 A Hopper Andysis	PAGE 3 OF 6	DATE: 8/8/12
	PROJECT #: 61	/65
SUBJECT: L. P.A. 45	DESIGNER: DI	1

- A. Max Overturning Moment of Bin = 7141-K

 Max Wind Shear of Bin = 18.7 Kips
- B. Max Overturning Moment of Hopper + Frame = 40.64" |
 Max Wind Shear of Hopper + Frame = 4.51 Kips

Wind Loads

Wind

* Frame/Hopper Loads in Poreutheses

$\langle \langle \langle \langle \rangle \rangle \rangle$	KC ENGINEERING CO. 4300 So. Lakeport, Suite 205 Sioux City, IA 51105 (712) 252-2100 Fax 252-0346

PROJECT NAME: 30' & Hopper Analysis	PAGE 4 OF 6 DATE: 8/8/12
LOCATION: Sioux Steel	PROJECT #: 6/165
SUBJECT: LOODS	DESIGNER:) M

4. Grain Pressures (Full Bin)

$$P' = \frac{0.68 \text{ KD} \cos^2 \theta}{\sqrt{u'}} = \frac{0.6(55.3 \frac{11}{14})(0.5)(30') \cos^2(45)}{\sqrt{.37'}}$$

$$g' = \frac{p'}{2} = \frac{409}{2} = \frac{205 psf}{2}$$

B. Pressures from the material above the hopper (Figure b)

$$P_{i}^{\prime} = \frac{P_{b} \sin^{2}\theta + P_{he} \cos^{2}\theta}{\sqrt{\omega^{\prime}}}$$

$$q' = \frac{p'}{2}$$

· a 4	140 ENOR EEEDINO 00
M	KC ENGINEERING CO.
∢ ((()	4300 So. Lakeport, Suite 205 Sioux City, IA 51106
	(712) 252-2100
8 /A	Fax 252-0346

PROJECT NAME: 30' & HOPDER Analysis	PAGE 5 OF 6 DATE: 8/8/12
	PROJECT #: 61165
SUBJECT: 100 5	DESIGNER: DM

$$P_i^1 = (1650 \text{psf}) \sin^2(45) + (825 \text{psf}) \cos^2(45) = 2034 \text{psf}$$

$$9' = \frac{1631}{2} = 815 \text{ psf}$$

5. Grain Pressures (Empty Bin/Full Hopper)

Hapex =
$$\frac{0}{2}$$
 tand where: repose angle $a = 23^{\circ}$

PLF 13 Page 7

	PROJECT NAME: 30' & Hopper Analysis	PAGE 6 OF 6 DATE: 8/8/12		
	LOCATION: Sioux Steel	PROJECT #: 61165		
E	SUBJECT: Locals	DESIGNER: DM		

- A. Pressures from material in hopper (Figure a)

 P' = 409 psf > some as Page 4

 Q' = 205 psf
- B. Pressures from the material above the hopper (Figure c) $P_{b} = \left[\frac{1}{3} IFN^{2} h\right] \frac{1}{IF^{2}} = \left[\frac{1}{3} (6.37)\right] 55.3 \frac{1}{10} = 117.4 pc$ $P_{h} = K(P_{b}max) = 0.5(117.4) = 58.7 psf$ $P_{i} = (117.4 psf) 6ih^{2}(45) + (58.7 psf) cas^{2}(45) = 144.8 psf$

$$P_{2}^{\prime} = \frac{117.4 \sin^{2} 45}{5} = \frac{58.7 \text{ psf}}{5}$$

$$P_{3}^{\prime} = \frac{116.1}{2} = \frac{58.1 \text{ psf}}{5}$$

$$P_{4}^{\prime} = \frac{3}{3} (144.8 - 58.7) + 58.7 = 116.1 \text{ psf}$$

6. Grain Wall Load

Page 1 of 4

KC Engineering, P.C.

Project Name: 30' Diameter Hopper Analysis	Date:	8/8/2012
Location: Sioux Steel	Project#:	61165
Subject: Grain Pressures and Wall Loads - 30' Diameter Hopper	Designer:	DHM

Calculate Grain Pressures and Wall Loads on a Circular Steel Bin using ANSI/ASAE EP433:

Note: This spreadsheet and ASAE EP433 shall to be used only for the design of foundations for steel bins. Concrete silos shall be designed using ACI 313 with conservative modifications in accordance with the Midwest Plan Service handbook and shall not be designed using this spreadsheet.

Input Variables for use in Janssen's Formula:

bulk density of grain, W =	55.3 pcf use 48 for corn or beans, < or = 52 for any grain
emptying angle of internal friction, ϕ =	27 degrees use 27 for shelled corn, 29 for soybeans
filling angle of repose, $\alpha =$	23 degrees use 23 for shelled corn, 25 for soybeans
coefficient of friction of grain on wall, μ =	0.37 use 0.3 for smooth steel, 0.37 for corrugated steel
k =	0.50 always use 0.5 when using ASAE EP433
Diameter of Tank, D =	30 ft
Hydraulic Radius of Tank, R =	7.5 ft
height of grain at wall, Hs =	51.3 ft

Calculate grain heights, determine whether bin is deep or shallow, and calculate Overpressure Factor, F:

height to top of grain at apex, Ht =	57.7 ft	
height of grain to 1/3 height of surcharge, H =	53.5 ft	_
height at which rupture plane intersects =	24.5 ft	< than Hs, therefore use eq. for Deep Bins
Overpressure Factor, F =	1.4	1.0 for shallow bins, 1.4 for deep bins

Use the spreadsheet on the following pages to calculate Grain Pressures and Wall Loads:

Static Vertical Pressure at depth Y, $V(Y) = (WR/\mu)$ = WY	$(k)[1-e^{(-\mu k^{\gamma}/R)}]$ for deep bins <== eq. used for shallow bins
Static Lateral Pressure at depth Y, $L_s(Y) = kV(Y)$	
Dynamic Lateral Pressure at depth Y, $L_d(Y) = FL_s(Y)$	
Shear Stress between vertical wall and grain at depth Y, $S_v(Y) = \mu L_d(Y)$	
Vertical Wall Load per unit length of bin wall at depth Y, $P_v(Y) = [WY-V]$ = $S_v(Y)^*Y$	

Maximum Results from the spreadsheet on the following pages:

Maximum Static Vertical Pressure, V _{max} =	<u>1650</u> psf
Maximum Vertical Wall Load, P _{v max} =	<u>10020</u> plf
Maximum Static Lateral Pressure, Vs _{max} =	<u>825</u> psf

Page 2 of 4

Project Name: 30' Diameter Hopper Analysis Location: Sioux Steel Subject: Grain Pressures and Wall Loads - 30' Diameter Hopper					Date: Project #: Designer:	8/8/2012 61165 DJM
Depth Y	Depth Y V(Y) (psf)					
0	0	0	0	0	0	
1	55	27	38	14	. 5	
2	108	54	7Ġ	28	20	
3	160	80	112	41	45	
4	211	105	147	55	79	
5	260	130	182	6 7	123	
6	308	154	216	80	175	
7	356	178	249	92	237	
8	401	201	281	104	307	
9	446	223	312	116	385	
10	490	245	343	127	472	
11	533	266	373	138	567	
12	574	287	402	149	669	
13	615	308	431	159	779	
14	655	327	458	170	896	
15	693	347	485	180	1021	÷
16	731	366	512	189	1153	
17	768	384	538	199	1292	
18	804	402	563	208	1437	
19	839	419	587	217	1589	
20	873	437	611	226	1 747	
21	906	453	634	235	1912	
22	939	469	657	243	2083	
22	971	485	679	251	2259	
23 24	1002	501	701	259	2442	
	1032	516	722	267	2630	
25	1052	. 531	743	275	2823	
26 27	1090	545	763	282	3023	
28	1118	559	783	290	3227	
	1146	573	802	297	3436	
29	1172	586	821	304	3651	
30	1198	599	839	310	3870	
31		612	857	317	4094	
32	1224	624	874	323	4323	
33	1249		891	330	4556	
34	1273	636 648	907	336	4794	
35	1296	648	924	342	5035	
36	1319	660 671		348	5282	
37 38	1342 1364	671 682	939 955	353	5532	

Page 3 of 4

Date: 8/8/2012

KC Engineering, P.C.

Project Name: 30' Diameter Hopper Analysis

Location: Sioux Steel Subject: Grain Pressures and Wall Loads - 30' Diameter Hopper			Project #: Designer:	61165 DJM		
Depth Y	V(Y) (psf)	Ls (Y) (psf)	Ld (Y) (psf)	Sv (psf)	Pv (plf)	
39	1385	693	970	359	5786	
40	1406	703	984	364	6044	
41	1426	713	999	369	6306	
42	1446	723	1012	375	6572	
43	1466	733	1026	380	6842	
44	1485	742	1039	385	7114	
45	1503	752	1052	389	7391	
46	1521	761	1065	394	7671	
47	1539	769	1077	399	7954	
48	1556	778	1089	403	8240	
49	1572	786	1101	407	8529	
50	1589	794	1112	411	8822	
51	1605	802	1123	416	9117	
52	1620	810	1134	420	9415	
53	1635	818	1145	424	9716	
54	1650	825	1155	427	10020	
0	0	0	0	0	0	
0	0	0	0	0	0	
0	0	0	0	0	0	
0	0	0	0	0	0	
0	0	0	0	0	0	
0	0	0	0	0	0	
0	. 0	0	0	0	0	
0	0	.0	0	0	0	
0	0	. 0	0	0	0	
0 .	0	0	0	О	0	
0	0	0	0	. 0	0	
0	0	0	0 .	0	0	
0 -	0	0	0	0	0	
0	. 0	0	0	. 0	0	
0	0	0	0	0	0	
0	0	0	0	0	0	
0 -	0	0	0	0	0 -	
0	0	0	0	0	0	
0	0	0	0	0	0	
0	0	0	0	0	0	
0	0	0	0	0	0	
0	0	0	0	0	0	
0	0	0	0	0	0	

Project Name: 30' Diameter Hopper Analysis

Date:

8/8/2012

Location: Sioux Steel Subject: Wind Loads Project #: Designer: 61165 DM

Velocity Pressure on Wall:

 $qz = 0.00256*Kz*Kzt*Kd*V^2*1$

Velocity Pressure coefficient, Kz: Varies per height

ASCE Table 6-3

Wind directionality factor, Kd:

0.95

ASCE Table 6-4

Design Force on Wall:

F = 1.6*qz*G*Cf*Cg*Af

Velocity pressure, qz: Found above

See Table Below for calulations

Force coefficient, Cf:

0.712

Linear interpolation of Figure 6-21 with h/D < 7

Projected Area normal to wind, Af:

30 ft²

For 1' increments

Velocity Pressure on Roof Middle:

 $qh = 0.00256*Kz*Kz1*Kd*V^2*I$

qh:

19.2 psf

Mean Roof Height, h:

55.7 ft

 $h = Hs + (r*tan\theta)/2$

where θ = 30⁴

Velocity Pressure coefficient, K2:

1.12

ASCE Table 6-3 for mean roof height, h

Wind directionality factor, Kd:

0.95

ASCE Table 6-4

Velocity Pressure on Roof Edges:

 $q_b = 0.00256 * Kz * Kzt * Kd * V^2 * I$

gh:

19.0 psf

Mean Roof Height, h:

52.7 ft

 $h = Hs + (r*tan\theta)/2$

where $\theta = 10^{\circ}$

Velocity Pressure coefficient, Kz:

1.11

ASCE Table 6-3 for mean roof height, h

Wind directionality factor, Kd:

0.95

ASCE Table 6-4

Project Name: 30' Diameter Hopper Analysis Location: Sioux Steel Subject: Wind Loads		Date: 8/8/2012 Project #: 61165 Designer: DM
Design Force on moof.	tive sign corresponds to a while a negative sign is a fo	
Windward Middle		
Length of Section, Lwm:	17 ft	Lwm = $r/\cos\theta$ where $\theta = 30^{\circ}$
Velocity pressure, qh:	19.2 psf	Found above
Gust effect factor, G:	0.85	ASCE Section 6.5.8.1 - Rigid Structure
Force coefficient, Cp :	0.20	ASCE Figure 6-6
Projected Area normal to wind, Af:	260 ft²	Af = 1/2*D*Lwm
Force on windward middle roof, Fwm:	0.8 kips	Fu = qz*G*Cp*Af
Horizontal Componet of Force, FHwm :	0.4 kips	FH = 1/2*Fwm
Vertical Componet of Force, FVwm :	0.7 kips	FV = (3)^.5/2*Fwm
Leeward Middle		
Length of Section, Lim:	17 ft	$LIm = r/cos\theta$ where $\theta = 30^{\circ}$
Velocity pressure, q₂:	19.2 ⁻ psf	Found above
Gust effect factor, G:	0.85	ASCE Section 6.5.8.1 - Rigid Structure
Force coefficient, C _P :	-0.60	ASCE Figure 6-6
Projected Area normal to wind, Af:	260 ft ²	Af = 1/2*D*Lwm
Force on leeward middle roof, Flm:	-2.5 kips	Fu = qz*G*Cp*Af
Horizontal Componet of Force, FHIm :	-1.3 kips	FH = 1/2*Flm
Vertical Componet of Force, FVIm :	-2.2 kips	FV = (3)^.5/2*flm
Mindurand Edga		
Windward Edge Length of Section, Lwe:	8 ft	Lwe = $r/\cos\theta$ where $\theta = 10^{\circ}$
Velocity pressure, qz:	19.0 psf	Found above
Gust effect factor, G:	0.85	ASCE Section 6.5.8.1 - Rigid Structure
Force coefficient, Cp:	-0.18	ASCE Figure 6-6
Projected Area normal to wind, Af:	179 ft²	Af = $({\pi^*r})/4$ *Lwe)*2 x2 for both edges
Force on windward middle roof, Fwe:	-0.5 kips	Fu = q2*G*Cp*Af
Horizontal Componet of Force, FHwe:	-0.3 kips	FH = 1/2*Fwe
Vertical Componet of Force, FVwe:	-0.5 kips	FV = {3}^.5/2*Fwe
	•	
Leeward Edge		
Length of Section, Lie:	8 ft	$Lle = r/\cos\theta$ where $\theta = 10^{\circ}$
Velocity pressure, qz:	19.0 psf	Found above
Gust effect factor, G:	0.85	ASCE Section 6.5.8.1 - Rigid Structure
Force coefficient, Cp:	-0.70	ASCE Figure 6-6
Projected Area normal to wind, Af:	179 ft²	Af = $(\pi^*r)/4$ *Lle x2 for both edges
Force on windward middle roof, Fle:	-2.0 kips	Fu = qz*G*Cp*Af
Horizontal Componet of Force, FHle:	-1.0 kips	FH = 1/2*Fle
Vertical Componet of Force, FVIe:	-1.8 kips	FV = (3)^.5/2*Fle

Project Name: 30' Diameter Hopper Analysis

Location: Sioux Steel Subject: Wind Loads Date:

8/8/2012 61165

Project #: Designer:

DM

**Postive Moment means clockwise and Negative Moment mean counter-clockwise

Vertical Load from Bridge:

0.0 kips

Horizontal Load from Bridge:

0.0 kips

Total Edge Length corner sections, ELc:

11.8 ft

 $ELc = (\pi/4)*r$

per section

Total Edge Length on middle sections, ELm:

23.6 ft

 $ELm = (\pi^*D - 4^*ELc)/2$

per section

Windward Middle

Vertical Componet of Force, FV_{wm} :

0.7 kips 0.7 kips Found Above

Resultant vertical roof force, Vwm: Distance from Centroid, Dvwm:

-7.5 ft

Vwm = DL_{BR} + FVwm

Moment:

-7.5 ft -5.5 kip-ft Dvwm = D/4
M = Vwm*Dvwm

0.4 kips

Found Above

Horizontal Componet of Force, HVwm:
Distance from Centroid, Dhwm:

55.7 ft

h (mean roof heigh found above)

Moment:

23.6 kip-ft

M = HVwm*Dhwm

Leeward Middle

 $\label{lem:vertical componet} \mbox{ Vertical Componet of Force, FVIm : }$

-2.2 kips

Found Above

Resultant vertical Force, VIm:

-2.2 kips

VIm = DLes + FVIm

Distance from Centroid, Dvim:

7.5 ft -16.5 kip-ft

Dvlm = D/4 M = Vwlm*Dvlm

-1.3 kips

Horizontal Componet of Force, HVIm:

-55.7 ft

Found Above

Distance from Centroid, DvIm:

70.7 Lin 6

h (mean roof heigh found above)

Moment:

Moment:

70.7 kip-ft

 $M = HVlm^*Dhlm$

Project Name: 30' Diameter Hopper Analysis

Location: Sioux Steel Subject: Wind Loads

Date: Project #: 8/8/2012 61165

Designer:

DM

Windward Edges

Vertical Componet of Force, FVwe:

Resultant Vertical Force, Vwe:

-5 ft

Found Above

Vwe = DLes + Fvwe

Distance from Centroid, Dvwe: Moment:

2.3 kip-ft

-0.5 kips

-0.5 kips

Dvwe = D/6 M = Vwe*Dvwe

Horizontal Componet of Force, HVwm:

Found Above

Distance from Centroid, Dvwm:

-0.3 kips 52.7 ft

h (mean roof heigh found above)

Moment:

-13.7 kip-ft

M = HVwe*Dhwe

Leeward Edges

Vertical Componet of Force, FVIe:

Resultant Vertical Force, Vie:

Distance from Centroid, Dvie:

-1.8 kips

Found Above Vie = DLss + Fvle

5 ft

-8.8 kip-ft

-1.8 kips

Dvle = D/6 M = Vle*Dvle

Horizontal Componet of Force, HVIe:

-1.0 kips

Found Above

Distance from Centroid, Dvle:

-52.7 ft

h (mean roof heigh found above)

Moment:

Moment:

53.3 kip-ft

M = HVie*Dhle

Total Vertical Force, VT:

-4 kips

Sum Resultant on Roof and DLwalls: + is Down

Total Uplift Force, UT:

3.7 kips

If Positive Vertical Force, no uplift on bin

Total overturning moment, MT:

714 kip-ft

Sum of moments

Tension per Stiffener, Tu:

0.18 kips

Tu = Ut/N

Total Shear Force, Vu

18.7 kips

N = number of stiffeners Sum Horizontal Forces

Project Name: 30' Diameter Hopper Analysis	Date:	8/8/2012
Location: Sioux Steel	Project #:	61165
Subject: Wind Loads	Designer:	DM

Height Z (ft)	Kz	qz (psf)	F (lbs)	F (kips)	Moment: F*Z (k-ft)
0	0.85	14.55	264	0.26	2.77
1	0.85	14.55	264	0.26	3.04
2	0.85	14.55	264	0.26	3.30
3	0.85	14.55	264	0.26	3.57
4	0.85	14.55	264	0.26	3,83
5	0.85	14.65	266	0.27	4.12
6	0.87	14.84	269	0.27	4.45
7	0.88	15.03	273	0.27	4.77
8	0.89	15.21	276	0.28	5.11
. 9	0.90	15.37	279	0.28	5.44
10	0.91	15.54	282	0.28	5.78
11	0.92	15.69	285	0.28	6.12
12	0.92	15.84	288	0.29	6.47
13	0.93	15.99	290	0.29	6.82
14	0.94	16.13	293	0.29	7.17
15	0.95	16.27	295	0.30	7.53
16	0.96	16.40	298	0.30	7.89
17	0.96	16.53	300	0.30	8.25
18	0.97	16.65	302	0.30	8.62
19	0.98	16.77	304	0.30	8.98
20	0.99	16.89	307	0.31	9.35
21	0.99	17.01	309	0.31	9.73
22	1.00	17.12	311	0.31	10.10
23	1.01	17.23	313	0.31	10.48
24	1.01	17.34	315	0.31	10.86
25	1.02	17.44	317	0.32	11.24
26	1.02	17.54	318	0.32	11.62
27	1.03	17.64	320	0.32	12.01
28	1.04	17.74	322	0.32	12.40
29	1.04	17.84	324	0.32	12.79
30	1.05	17.93	326	0.33	13.18
31	1.05	18.02	327	0.33	13.58
32	1.06	18.11	329	0.33	13.98
33	1.06	18.20	330	0.33	14.37
34	1.07	18.29	332	0.33	14.78
35	1.07	18.38	334	0.33	15.18
36	1.08	18.46	335	0.34	15.58
37	1.08	18.54	337	0.34	15.99

38	1.09	18.63	338	0.34	16.40
39	1.09	18.71	340	0.34	16.81
40	1.10	18.78	341	0.34	17.22
41	1.10	18.86	342	0.34	17.63
42	1.11	18.94	344	0.34	18.05
43	1.11	19.01	345	0.35	18.47
44	1.11	19.09	347	0.35	18.88
45	1.12	19.16	348	0.35	19.30
46	1.12	19.23	349	0.35	19.73
47	1.13	19.31	350	0.35	20.15
48	1.13	19.38	352	0.35	20.57
49	1.13	19.44	353	0.35	21.00
50	1.14	19.51	354	0.35	21.43
51	1.14	19.58	355	0.36	21.86

Project Name: 30' Diameter Hopper Analysis	Date:	8/8/2012
Location: Sioux Steel	Project #:	61165
Subject: Wind Loads	Designer:	DM

Project Name: 30' Diameter Hopper Analysis

Location: Sioux Steel
Subject: Wind Loads

Date: Project #: 8/8/2012

Designer:

61165 DM

External Pressure Coefficients, Cp

1/P	KC ENGINEERING CO.
	4300 So. Lakeport, Suite 205 Sioux City, IA 51106
	(712) 252-2100 Fax 252-0346

PROJECT NAME: 30 D Hopper Analysis	PAGE OF Z	DATE: 8/13/17
	PROJECT #: 6	
	DESIGNER: DI	-\

W8 x 28 :
$$A = 8.25 \text{ in}^2$$

 $r_x = 3.45 \text{ in}$
 $r_y = 1.62 \text{ in}$

Compressive Strength
$$\frac{KLx}{Tx} = \frac{1.0(17 \times 12)}{3.45} = 59.13$$

$$\frac{KLy}{Ty} = \frac{1.0(8 \times 12)}{1.62} = 59.26 \leftarrow Controls$$

$$F_e = \frac{\pi^2 E}{(\frac{KL}{r})^2} = 81.50$$

$$\frac{P_n}{D_c} = 191.1 \text{ Kips}$$

· Moment Capacity

$$\frac{M_{\text{N}}}{\Omega_{\text{b}}} = 49^{\circ - K}$$
 (Table 3-10) w/ Loz = 17 ft

M	KC ENGINEERING	CO.
	4300 So. Lakeport, Suita 2	05
117	Sioux City, IA 51106	
	(712) 252-2100 Ent. 262-0346	

PROJECT NAME: 30' & Hopper Analysis	PAGE 2 OF Z DATE: 8/13/17
	PROJECT #: 61165
SUBJECT: Column Code Check	DESIGNER: DM

$$\frac{P_r}{P_c}$$
 + $\frac{g}{9}$ $\left(\frac{Mr}{M_{cx}}\right)$

$$\frac{157.34}{191.1} + \frac{8}{7} \left(\frac{30.05}{49} \right) = 1.37$$

Not OK

 *** *** المستقدلة المناسخة في المراجع في المنطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة
KC ENGINEERING CO.
4300 So. Lakeport, Suite 205 Sioux City, IA 51106
(712) 252-2100

PROJECT NAME: 30' O Hopper Analysis	PAGE OF 3 DATE: 8/13/12
LOCATION: STOUK Steel	PROJECT #: 61165
SUBJECT: Hopper Panel Connection	DESIGNER: DM

Panel: 10 Ga, 50 Ksi

$$T_{k} = 40.13 \frac{8}{61} \left(\frac{28656}{12} \right)$$

$$= 95.83 \text{ Kips}$$

* Gross Section Vield

$$\frac{P_{1}}{\Omega_{t}} = \frac{F_{4}A_{4}}{\Omega_{t}} = \frac{50(28.656^{\circ} \times .1345^{\circ})}{1.67} = \frac{115.4 \text{ Kips}}{1}$$

* Net Section Fracture

Ae = UAn

$$U = 1.0$$
 (Table D3.1)
 $A_n = A_y \cdot \Xi A_n + \Xi \frac{S^2}{4g} t$
 $= 3.854 \text{ in}^2 - 14(.438 + 1/6)(.1345)^2 = 2.912 \text{ in}^2$

1/2	KC ENGINEERING CO.
	4300 %o. Lakeport, Suite 205 Sioux City, IA 51106 (712) 252-2100 Fax 252-0346

PROJECT NAME: 30' & Hopper Analysis	PAGE 2 OF 3 DATE: 8/13/12	
	PROJECT #: 61/65	
	DESIGNER: DM	

* Block Shear

· I Rows

$$A_{SV} = 14(1.0^{\circ})(.1345^{\circ}) = 1.883 \text{ in}^{2}$$

$$A_{NV} = 14[1.0^{\circ} - .5(.438 + 1/6)](.1345^{\circ}) = 1.412 \text{ in}^{2}$$

$$A_{NV} = 14[1.0^{\circ} - 0.5(0.438 + 1/6)](.1345^{\circ}) = 1.412 \text{ in}^{2}$$

$$R_n = 0.6(65)(1.412) + 1.0(65)(1.412) = 146.8 \times$$

 $\leq 0.6(50)(1.883) + 1.0(65)(1.412) = 148.3 \times$

* 2 Rows

$$A_{gv} = 14(3'')(.1345'') = 5.649 \text{ in}^{2}$$

$$A_{nv} = 14[3.0'' - 1.5(.438 + 1/6)](.1345'') = 4.235 \text{ in}^{2}$$

$$A_{nt} = 14[1.0'' - 0.5(.438 + 1/6)](.1345'') = 1.412 \text{ in}^{2}$$

$$R_{n} = 0.6(65)(4.235) + 1.0(65)(1.412) = 256.98$$

$$\leq 0.6(50)(5.649) + 1.0(65)(1.412) = 261.38$$

1	KC ENGINEERING CO.
<i>M</i> 7	4300 So. Lakeport, Suite 205
	Sioux City, IA 51106
	(712) 252-2100
81 / 34	Fax 252-0346

PROJECT NAME: 30' A HOPPEY Analysis	PAGE 3 OF 3	DATE: 8/13/17
	PROJECT #: 611	65
SUBJECT: Hopper Panel Connection	DESIGNER: DA	4

· 3 Rows

$$A_{3V} = 14(5^{\circ})(.1345^{\circ}) - 9.415 \text{ in}^{2}$$

$$A_{NV} = 14(5^{\circ} - 2.5(.438^{\circ} + 1/6)](.1345^{\circ}) = 7.059 \text{ in}^{2}$$

$$A_{NH} = 14[1.0^{\circ} - 0.5(0.438 + 1/6)](.1345^{\circ}) = 1.412 \text{ in}^{2}$$

$$R_{11} = 0.6(65)(7.059) + 1.0(65)(1.412) = 367.081 \times 0.6(50)(9.415) + 1.0(65)(1.412) = 374.23 \times 0.6(50)(9.415) + 1.0(65)(9.415) + 1.0(9.415)$$

-> Compare Rows

1.
$$z \times Q_{i} \leq \frac{R_{i}}{2\pi}$$

2. $z \times Q_{i} \leq \frac{R_{i}}{2\pi}$

3. $z \times Q_{i} = \frac{R_{i}}{2\pi}$

The second se

.. NSF Controls

<u>OK</u>

$$\frac{R_{1}}{r_{2}} = 94.6 \text{ kips} \approx T_{u} = 95.3 \text{ kips}$$

$$\frac{95.3}{94.6} = 1.007 \Rightarrow 0.7\%$$
Less than 2% therefore PKF 30 Page 24

KC	ENGINEERING CO.
\$100x (712)	So. Lakeport, Suite 205 City, IA 51106 252-2100 252-0346

PROJECT NAME: 30' & Hopper Analysis	PAGE OF DATE: 8/13/10
LOCATION: Sioux Steel	PROJECT #: 6/165
	DESIGNER: DM

OK

- * Max Reaction = 157.3 Kips (LC#2)
- · Max Upliff = -4.8 Kips (LC # 10)
- * Max Base Shear 2.17 (LC #7)

KC ENGINEERING CO. 4300 So. Lakeport, Suite 205 Sibux City, IA 51106 [712] 252-2100 Fax 252-0346
--

PROJECT NAME: 30' D Hopper Analysis	PAGE OF	DATE: 8/13/12
LOCATION: Sioux Steel	PROJECT #: 61165	
SUBJECT: Comp. Rina Weldment Connection	DESIGNER: DM	

Ma of Column = 301-8

$$30^{k-f+} = V(\frac{4.8^{4}}{24}) + V(\frac{4.8^{6}}{24})$$

$$\frac{C_A}{\Omega} = 8.29 \frac{K}{BoH} > V_{cc}$$

OK_

$$\frac{C_n}{2} = 34.1\frac{K}{m}$$

$$= 34.1\frac{K}{m}(\frac{5}{2}) = 10.6 \text{ Kips} > V_n$$

PLF 32 Page 26