4.1.4 晶体管的主要参数

4. 温度的影响

(1)温度对输入特性的影响

(2)温度对输出特性的影响

温度升高, v_{BE}减小

温度升高, I_{CBO} 、 I_{CEO} 、 β 增大 输出特性曲线上移

4.1.5 半导体三极管的型号

国家标准对半导体三极管的命名如下:

第二位: A锗PNP管、B锗NPN管、

C硅PNP管、D硅NPN管

第三位:X低频小功率管、D低频大功率管、

G高频小功率管、A高频大功率管、K开关管

4.1.5 半导体三极管的型号

参数	P_{CM}	I_{CM}	$V_{ m BRCBO}$	$V_{ m BR~CEO}$	$V_{ m BR\ EBO}$	I_{CBO}	$f_{ m T}$
型号	mW	mA	V	V	\mathbf{V}	μΑ	MHz
3AX31D	125	125	20	12		≤ 6	*≥8
3BX31C	125	125	40	24		≤ 6	*≥8
3CG1010	100	30	45	5		0.1	100
3DG1230	500	50	40	30		0.35	
3DD101I	5W	5A	300	250	4	≤ 2mA	
3DK100H	100	30	25	15	* 7 <i>89</i>	≤ 0.1	300
3DG23	250W	30A	400	325	1/4		8

4.2 基本共射极放大电路

4.2.1 放大的概念

- 1. 放大的对象:主要放大微弱(small signals)、变化(ac)的信号,使信号的电压/电流/功率得到放大!
- 2. 晶体管放大特性的实质: 直流能 → 交流能 三极管也是一种换能器。
- 3. 信号可展开为多个正弦信号的叠加,分析时采用正弦信号。

4.2 基本共射极放大电路 4.2.1 放大的概念

三极管放大电路有三种基本形式:

管子要工作在放大区!

Je正偏, Jc反偏

管子要工作在放大区!

Je正偏, Jc反偏

管子要工作在放大区!

Je正偏, Jc反偏

4.2 基本共射极放大电路 4.2.2 电路结构

-集电极电源为电路提供能量,并保证集电结反偏。

-集电极电阻,将变化的电流转变为变化的电压。 i_{B}

-基极电源与基极电阻使发 射结正偏

 $R_{\rm B}$

-交流信号源叠加在 V_{RR} 上

(1) 基本共射放大电路 (原理性电路)

放大元件T工作在放大区, 作在放大区, 要保证集电结 反偏,发射结 正偏。 $i_C=\beta i_B$

+

 $v_{\rm s}$

4.2 基本共射极放大电路 4.2.2 电路结构

(2) 阻容耦合的 基本共射放大电路

耦合电容*C*₁、*C*₂隔离输入、输出与电路的直流 联系,同时能使交流信 号顺利输入输出。

注意耦合电容的极性。 (仅考虑直流电源时的 高电平端接正极)

4.2 基本共射极放大电路 4.2.2 电路结构

使用两个电源, 欠缺实用性。

→改单电源供电

(3) 实用的共射放大电路

4.3 基本放大电路的分析方法

总信号 = 动态信号 + 直流分量; 可分别进行分析。

第一步,静态分析(工作在放大区)

第二步, 动态分析(信号的放大效果)

4.3.1 静态分析 DC Analysis

静态分析有两种方法:

- 一、近似计算法
- 二、图解分析法(Graphical Analysis)

分析路径: 直流通路

确保静态工作点Q位于放大区

分析对象: Q (Quiescent)

 $(I_{\mathbf{B}}, I_{\mathbf{C}}$ 和 $V_{\mathbf{CE}}$ 的值?)

4.3.1 静态分析 一、提取直流通路

做静态分析, 只看直流信号。

4.3.1 静态分析 二、近似计算法(从发射结正偏着手)

 $R_{
m B}$ 称为基极偏置电阻, $I_{
m BO}$ 称为基极偏置电流。

$$I_{\mathrm{BQ}} = \frac{V_{\mathrm{CC}} - V_{\mathrm{BEQ}}}{R_{\mathrm{B}}}$$

$$\approx \frac{V_{\mathrm{CC}} - 0.7}{R_{\mathrm{B}}}$$

$$\approx \frac{V_{\mathrm{CC}}}{R_{\mathrm{B}}}$$
 V_{CC} 远大于 V_{BE} 时

例如,工程上若可接受10%误差,则 $V_{CC}>10V_{BE}$ 时就可以忽略 V_{BE} 了。

$$I_{\text{CQ}} = \beta I_{\text{BQ}}$$

$$V_{\text{CEO}} = V_{\text{CC}} - I_{\text{CO}} R_{\text{C}}$$

4.3.1 静态分析 二、近似计算法----算例

例:用估算法计算静态工作点。

已知: $V_{\rm CC}$ =12 V, $R_{\rm C}$ =4 k Ω ,

$$R_{\rm B}$$
=300 k Ω , β =37.5.

解:
$$I_{\text{BQ}} \approx \frac{V_{\text{CC}} - 0.7}{R_{\text{B}}} \approx \frac{12}{300 \text{k}} = 0.04 \text{mA} = 40 \mu \text{A}$$

$$I_{\text{CO}} \approx \beta I_{\text{BO}} = 37.5 \times 0.04 \text{mA} = 1.5 \text{mA}$$

$$V_{\text{CEO}} = V_{\text{CC}} - I_{\text{CO}} R_{\text{C}} = 12 - 1.5 \times 4 = 6 \text{V}$$

注意: I_{CO} 是 I_{BO} 的 β 倍,即大了几十~几百倍。

 I_{BQ} 通常几十~几百微安, I_{CQ} 通常几~几百毫安。

练习:已知T的 V_{BEQ} =0.6V, I_{CEO} 和 V_{CES} 可忽略不计,试分析当S分别接通A、B、C三个位置时,T的工作区域?并估算 I_{C} 。

解: $I_{\text{CMAX}} = 12/(4 \text{ k}) = 3 \text{ mA}$

(1)接A,

 $I_{\rm B} \approx 12/(40~{
m k}) = 0.3~{
m mA}$ $eta I_{\rm B} = 80*0.3~{
m mA} > I_{
m CMAX}$ 所以工作在饱和区。 $I_{
m C} \approx 12/(4~{
m k}) = 3~{
m mA};$

- (2)接B, $I_{\rm B} \approx 12/(500 \ {\rm k}) = 24 \ {\rm uA}$ $\beta I_{\rm B} = 80*24 \ {\rm \mu} = 1.92 \ {\rm mA} = I_{\rm C}$ 工作在放大区;
 - (3)接C, v_{BE} <0, 截止区; $I_C \approx 0$

4.3.1 静态分析 三、图解分析

(1)输入回路

从发射结正偏着手

(1) 三极管的输入特性。

(2) 电阻 $R_{\rm B}$: $v_{\rm BE} = V_{\rm CC} - i_{\rm B}R_{\rm B}$

4.3.1 静态分析 三、图解分析

(2)输出回路

(1) 三极管的输出特性。

4.3.2 动态分析 AC Analysis

动态分析有两种方法:

- 一、图解分析法
- 二、小信号模型分析法

(微变等效电路法)

分析路径:交流通路

分析对象: A_{ν} $R_{\rm i}$ $R_{\rm o}$

4.3.2 动态分析 AC Analysis

一、交流通路

电阻和晶体管不变;

耦合、旁路电容短路;

直流电压源置零 (接地)

4.3.2 动态分析 二、图解分析法

交流通路

$$v_{\rm ce} = v_{\rm o} = -i_{\rm c} R_{\rm L}$$

$$R_{\rm L}^{'}=R_{\rm L}^{\prime}/R_{\rm C}^{\prime}$$

(1) 交流负载线

过Q点作交流负载线,斜率为: $-\frac{1}{R}$

4.3.2 动态分析 二、图解分析法(2)动态工作情况分析

4.3.2 动态分析 二、图解分析法(2) 动态工作情况分析

4.3.2 动态分析 二、图解分析法

(3) 静态工作点与非线性失真

Q点过高,信号进入饱和区

图解法总结

静态工作点对波形失真的影响

在放大电路中,输出信号应该成比例地放大输入信号(即线性放大);如果两者不成比例,则输出信号不能反映输入信号的情况,放大电路产生<u>非线性失真</u>。

为了得到尽量大的输出信号,要把Q设置在交流 负载线的中间部分。如果Q设置不合适,信号进入截 止区或饱和区,造成非线性失真。

最大不失真输出电压

由于受晶体管截止和饱和的限制,放大器的不失真输出电压有一个范围,其最大值称为放大器输出动态范围。

静态工作点偏低时,因受截止失真限制,其最大不失真 输出电压的幅度为

$$Vom = IcQR'L$$

静态工作点偏高时,而因饱和失真的限制,最大不失真输出电压的幅度则为

$$Vom = V_{CEQ} - V_{CES}$$

输出动态范围 $V_{\rm opp} = 2V_{\rm om}$

4.2 & 4.3 BJT共射放大电路分析

本节小结

掌握: 直流通路、交流通路

掌握:静态分析计算方法;

掌握: 利用图解法分析Q点和非线性失真

预习: BJT的小信号分析法

作业(下周一交)

4.2.1; 4.3.5

问题?

