

UNIFIED MODELING LANGUAGE TM

Louis-Edouard LAFONTANT

Modélisation en génie logiciel

- Activité consistant à créer une représentation simplifiée (modèle) d'un phénomène ou d'un système
- Modèle est une abstraction du système
- Modèle permet d'étudier structure et fonctionnement du système

Modèle

- Approfondir compréhension du système
 - Raffinement de l'analyse et de la conception
 - Représentation d'un système existant : rétro-ingénierie (reverse engineering)
- Réduire la complexité du problème par abstraction
- Réunir et visualiser un ensemble de détails choisis
- Favoriser la communication au sein de l'équipe
- Documenter
- Plus le formalisme est précis, plus on peut l'utiliser pour **générer** l'implémentation

Unified Modeling Language (UML)

 Norme de l'OMG (Object Management Group) pour la modélisation OO et standard ISO

- Langage majoritairement **graphique** (diagrammes) et non formel Manag Group
- Moyen de communication qui facilite la représentation et la compréhension du logiciel (basé sur OO)
- Notations pour décrire les exigences, la conception et le déploiement
- Extensible (via les profiles)
- Abstrait: indépendant des langages de programmations, domaines d'application ou processus de développement

Attention! UML n'est pas...

Un langage de programmation

- > Peut être utilisé pour générer le code dans un langage donné
- > La modélisation est une activité d'abstraction

OU

Un processus

> Le processus unifié est souvent utilisé quand on modélise en UML

Différentes vues sur le même système

Modèle 4+1

Vue des scénarios

- Ce qui tient tout ensemble
- Cohérence du système, validité
 - Tests
- Diagramme UML impliqué
 - Diagramme de CU
 - Scénarios écrits des CUs

Vue logique

- Vue de conception
- Décomposition orientée objet
- Exigences fonctionnelles: services que le système doit fournir aux utilisateurs
- Diagrammes UML impliqués
 - Diagramme de classes
 - Diagramme d'objet
 - Diagramme d'état
 - Diagramme de séquence
 - Diagramme de communication

Vue du processus

- Processus et leurs communications
- Exigences non fonctionnelles
 - Performance, scalabilité, débit du système
- Diagramme UML impliqué
 - Diagramme d'activité

Vue de développement

- Décomposition en sous-systèmes
- Organisation des modules
- Couches hiérarchiques, réutilisation, contraintes d'outils
- Diagrammes UML impliqués
 - Diagramme de composants
 - Diagramme de paquets

Vue physique

- Lien entre logiciel et matériel hardware
- Exigences non fonctionnelles sur le matériel
 - Topologie, communication
- Diagramme UML impliqué
 - Diagramme de déploiement

Diagrammes

14 diagrammes divisés en

UML 2.X

- > Structure
- **≻** Comportement

Diagrammes utilisés dans ce cours

• Diagramme de cas d'utilisations

Exigences du système du p.d.v. des acteurs qui jouent différents rôles en interagissant avec le système

Diagramme d'activités

Comportement dynamique du processus d'affaire, logique des procédures

Diagramme de classes

Modélisation de la structure statique des entités et leurs relations

• Diagramme de séquence

Comment les objets communiquent entre eux au fil du temps pour réaliser chaque CU