

We integrate counterfactual and prototype explanations to analyze "what-if" scenarios and find classifier biases.

The Gaussian Discriminant Variational Autoencoder (GdVAE): A Self-Explainable Model with Counterfactual Explanations

Anselm Haselhoff, Kevin Trelenberg, Fabian Küppers, and Jonas Schneider

Relevance

Current visual counterfactual explanation (CF) methods require either post-hoc training or slow optimization during inference, often without guaranteed convergence. Our self-explainable model offers a fast, transparent analysis of the classifier's decision process and boundary, with user-specified confidence for CFs.

Desirable Properties of Explanations

- Realism: CFs should stem from the data manifold.
- Consistency: CFs should be conform with the desired classifier output $F(x^{\delta}) = \delta$ or $f(z^{\delta}) = \delta$.
- · Proximity: CFs should minimally change the input.
- Transparency: Explanations (e.g., prototypes) are an intrinsic part of a white-box predictor.

Architecture

Counterfactual Generation in Latent Space

Prototypes — Global Explanations

Classifier decision is based on female prototypes!

Potential indicator of classifier or dataset bias?

Counterfactuals — Local Explanations

Fine-grained method to analyze the decision boundary.

FFHQ Counterfactual Examples

Results

Predictive Performance

Method	MNIST		CIFAR-10		CelebA - Gender	
Method	ACC%↑	$MSE\downarrow$	ACC%↑	$MSE\downarrow$	ACC%↑	$MSE\downarrow$
Imp. Sampling	99.0	1.04	55.0	2.45	94.7	1.77
Ours	99.0	1.10	65.1	1.71	96.7	0.91
Black-box	99.3	1.12	69.0	1.45	96.7	0.82
ProtoVAE	99.1	1.51	76.6	2.69	96.6	1.32
Ours (data aug.)	98.7	0.93	76.8	1.18	96.8	0.71

Takeaway: GdVAE rivals black-box and state-of-the-art methods, especially on higher-dimensional images.

Quality of Counterfactual Explanations

Method	Consistency			Realism	Proximity	
	$\rho_{p} \uparrow$	$ACC\%\uparrow$	$MSE\downarrow$	$FID\downarrow$	$MSE\downarrow$	
GANalyze	0.84	5.5	6.75	54.89	6.33	
UDID	0.85	1.2	8.82	38.89	7.44	_
ECINN	0.93	33.0	1.76	87.25	3.47	- 0/1
EBPE	0.97	44.6	0.50	108.94	25.73	
C3LT	0.89	3.6	6.32	57.09	5.83	LS: N
Ours (L2)	0.95	42.9	0.95	91.22	4.58	\geq
Ours (Maha.)	0.95	44.6	0.87	89.91	4.10	
GANalyze	0.78	15.2	5.42	147.43	13.47	C
UDID	0.86	15.8	4.22	178.23	13.73	<u>:</u>
ECINN	0.72	21.3	5.68	95.35	1.16	- Smilin
EBPE	0.94	41.9	1.22	191.67	1.54	
C3LT	0.90	11.8	3.94	101.46	3.97	PΑ
Ours (L2)	0.81	25.0	3.65	85.52	0.99	CelehA
Ours (Maha.)	0.82	<u>25.7</u>	3.51	85.56	0.92	Č

Takeaway: GdVAE consistently provides a better trade-off between metrics compared to post-hoc methods.

CelebA - Gender Bias of Smile Classifier

Hidden Attribute	ACC% ↑	$MSE\downarrow$
Male	89.9 ±1.37	0.92 ± 0.03
Female	91.1 ± 0.33	0.88 ± 0.02

Takeaway: Smile classifier shows reduced performance and increased uncertainty in classifying males.