Automatic Human Action Recognition using Deep Convolutional Neural Networks

Evangelos Nikoloudakis

ECE NTUA, CVSP LAB

July 2017

Action Definition

Action Hierarchy:

- Action primitives
 - $\,\,
 ightarrow\,$ Individual movement of a body part
- Actions
 - → Sequence of action primitives
- Activities
 - \rightarrow Sequence of actions

Action Definition

Action Hierarchy:

- Action primitives
 - $\,\,
 ightarrow\,$ Individual movement of a body part
- Actions
 - → Sequence of action primitives
- Activities
 - \rightarrow Sequence of actions

Action Definition

Action Hierarchy:

- Action primitives
 - ightarrow Individual movement of a body part
- **②** Actions ∋ Gestures
 - → Sequence of action primitives
- Activities
 - \rightarrow Sequence of actions

Action Recognition Outline

Typically:

Action Recognition = Action Localization + Action Classification

Practically:

Action Recognition = Action Localization + Action Classification

Action Recognition = Action Classification

Action Recognition Challenges

- Variation in viewpoint
- Possible occlusions
- Camera motion
- Cluttered background
- Anthropometric variations
- Execution rate

Human Action Recognition System

Available action databases

KTH

- 6 classes
- 25 persons / 4 scenarios
- 2391 videos with 160×140 resolution

UCF101

- 101 classes
- 13320 realistic Youtube videos
- 3 splits: 80-110 training, 30-45 testing videos from each class

Hollywood2

- 12 classes
- 1707 videos from 69 Hollywood movies
- 823 training videos 884 testing videos

HMDB51

- 51 classes
- 6766 videos mostly from movies
- 3 splits: 70 training, 30 testing videos from each class

COGNIMUSE database

Temporal segmentation of annotated action clips from 7 movies:

- Beautiful Mind (BMI) 2001
- Chicago (CHI) 2002
- Crash (CRA) 2004
- The Departed (DEP) 2006
- Gladiator (GLA) 2000
- Lord of the Rings (LOR) 2003
- Gone with the Wind (GWW) 1939

Keep the 20 classes that contain at least $N_{thres}=30$ videos. Totally 2238 videos distributed unequally in the 20 classes.

Hand-crafted techniques

Deep learning techniques

- Hand-crafted techniques
 - Spatio-temporal Interest Points (STIPs)

Deep learning techniques

- Hand-crafted techniques
 - Spatio-temporal Interest Points (STIPs)
 - Dense Trajectories

Deep learning techniques

- Hand-crafted techniques
 - Spatio-temporal Interest Points (STIPs)
 - Dense Trajectories

- Deep learning techniques
 - Convolutional Neural Networks

3D ConvNets

Convolutional Layers with 3D filters

↓ C3D architecture

- 3D filters in Conv Layers
- 3D Pooling Layers

After training C3D net can be used as feature extractor:

- 1 A video is split into 16-frame long clips
- 2 Clips are passed to the C3D net to extract fc6 activations
- The clips activations are averaged to form a 4096-dim descriptor
- This vector is then followed by L2-normalization

Two-Stream ConvNets

- ullet Spatial stream operates on individual video frames $I_{ au} \in \mathbb{R}^{w imes h imes 3}$
- \bullet Temporal stream operates on stacks of optical flow fields d_t^x, d_t^y :

$$\begin{split} I_{\tau}(u,v,2k-1) &= d_{\tau+k-1}^{x}(u,v) \\ I_{\tau}(u,v,2k) &= d_{\tau+k-1}^{y}(u,v), \quad u = [1;w], v = [1;h], k = [1;L] \end{split}$$

Temporal Segment Networks

$$TSN\underbrace{(T_1, T_2, ..., T_K)}_{snippets} = H(G(\underbrace{F(T_1; \mathbf{W})}_{ConvNet}, F(T_2; \mathbf{W}), ..., F(T_K; \mathbf{W})))$$

G: segmental consensus function \rightarrow average

H: prediction function \rightarrow softmax classifier

Loss function:
$$L(y, \mathbf{G}) = -\sum_{i=1}^{C} y_i \left(G_i - \log \sum_{j=1}^{C} \exp G_j \right)$$

Experiments - Results

COGNIMUSE evaluation

Feature Extraction

- ullet improved trajectories o combined descriptor
 - $L = 15, N = 32, n_{\sigma} = 2, n_{\tau} = 3$
 - BoW encoding codebook of 4000 K-means centroids
- C3D features
 - pre-trained model on I380K and fine-tuned on Sports-1M
 - 16-frame long non-overlapped clips
 - average of fc6 activations followed by L2 normalization

COGNIMUSE evaluation

Feature Extraction

- ullet improved trajectories o combined descriptor
 - $L = 15, N = 32, n_{\sigma} = 2, n_{\tau} = 3$
 - BoW encoding codebook of 4000 K-means centroids
- C3D features
 - pre-trained model on I380K and fine-tuned on Sports-1M
 - 16-frame long non-overlapped clips
 - average of fc6 activations followed by L2 normalization

Classification

- multi-class x² SVM
 - kernel fusion

COGNIMUSE evaluation

- \bullet 80% of samples for training (5 iterations)
 - 10 smaller classes ($\sim 30-60$ samples per class)

Split	iDT	C3D	C3D+iDT
10_small_classes	55.2	47.3	58.4

• 10 bigger classes ($\sim 60-200$ samples per class)

Split	iDT	C3D	C3D+iDT
10_big_classes	51.2	44.7	54.1

• 8 classes (Remove $turn, walk \rightarrow \sim 60-100$ videos per class)

Split	iDT	C3D	C3D+iDT
8_classes	52.7	51.6	59.8

cry, pick, point something, ride horse, run, smile, stand up, wave hands

C3D net: Pre-trained on I380K and fine-tuned on Sports-1M

- Task-specific fine-tuning + end-to-end evaluation
 - Fine-tuning on UCF101, HMDB51, Hollywood2 training sets
 - Evaluation on corresponding validation sets

Database	C3D fine-tuned	C3D+iDT
UCF101	83.4	86.7
HMDB51	53.9	59.6
Hollywood2	50.7	61.4

Note: For UCF101, HMDB51 we calculate the average precision of the 3 splits

C3D net: Pre-trained on I380K and fine-tuned on Sports-1M

- Task-specific fine-tuning + end-to-end evaluation
 - Fine-tuning on UCF101, HMDB51, Hollywood2 training sets
 - Evaluation on corresponding validation sets

Database	C3D fine-tuned	C3D+iDT
UCF101	83.4	86.7
HMDB51	53.9	59.6
Hollywood2	50.7	61.4

Note: For UCF101, HMDB51 we calculate the average precision of the 3 splits

Deep-learned feature extraction is preferable!

→ Combination with other feature representations

C3D net: Pre-trained on I380K and fine-tuned on Sports-1M

- fc6 feature extraction from 16-frame long non-overlapped clips
 - average pooling
 - max pooling + L2 normalization
 - multiplication pooling

Database	average	max	multipl.
HMDB51	52.8	53.4	47.2
Hollywood2	46.2	48.1	29.3
Congimuse	51.6	53.8	51.4

C3D net: Pre-trained on I380K and fine-tuned on Sports-1M

- fc6 feature extraction from 16-frame long non-overlapped clips
 - average pooling
 - max pooling + L2 normalization
 - multiplication pooling

Database	average	max	multipl.
HMDB51	52.8	53.4	47.2
Hollywood2	46.2	48.1	29.3
Congimuse	51.6	53.8	51.4

• fc6 feature extraction from 8-frame overlapped clips

Database	C3D	C3D_ovrlp	C3D_ovrlp + iDT
HMDB51	53.4	53.9	60.4
Hollywood2	48.1	48.6	61.9
Cognimuse	53.8	54.3	60.2

Architecture: Temporal Segment Networks

- Task-specific training + end-to-end evaluation
 - Fine-tuning on UCF101, HMDB51 training sets
 - Evaluation on corresponding validation sets

Database	CNNs	Split 1	Split 2	Split 3	Average
	Spatial Stream	85.2	84.8	85.0	85.0
UCF101	Temporal Stream	87.5	90.2	90.3	89.3
	Two-Stream	93.2	94.4	93.8	93.8
	Spatial Stream	53.8	49.9	48.7	50.8
HMDB51	Temporal Stream	62.2	63.0	63.6	62.9
	Two-Stream	69.2	67.1	68.0	68.1

Architecture: Temporal Segment Networks

Two-stream net: Trained on HMDB51 split 1

- Spatio-temporal feature extraction from global pooling layer
 - Sample 25 RGB frames or optical flow stacks
 - Crop 4 corners & 1 center & their horizontal flipping

 - Average the activations of the crops to form a 1024-dim vector
 - **5** Average the vectors of the 25 sampled inputs
 - Apply L2 normalization to form a 1024-dim descriptor for the video

Architecture: Temporal Segment Networks

Two-stream net: Trained on HMDB51 split 1

- Spatio-temporal feature extraction from global pooling layer
 - Sample 25 RGB frames or optical flow stacks
 - Crop 4 corners & 1 center & their horizontal flipping
 - 3 Extract global pooling activations from each net
 - Average the activations of the crops to form a 1024-dim vector
 - **5** Average the vectors of the 25 sampled inputs
 - Apply L2 normalization to form a 1024-dim descriptor for the video
- x² multi-class SVM classification

Architecture: Temporal Segment Networks

Two-stream net: Trained on HMDB51 split 1

- Spatio-temporal feature extraction from global pooling layer
 - Sample 25 RGB frames or optical flow stacks
 - Crop 4 corners & 1 center & their horizontal flipping

 - Average the activations of the crops to form a 1024-dim vector
 - Solution
 Solution</p
 - Apply L2 normalization to form a 1024-dim descriptor for the video
- x^2 multi-class SVM classification

Database	TSN rgb	TSN flow	TSN rgb+flow
HMDB51(split1)	55.6	63.1	70.2
Hollywood2	51.8	63.7	67.4
Cognimuse	50.8	52.2	60.5

Architecture: Temporal Segment Networks

Two-stream net: Trained on HMDB51 split 1

Combination of TSN features with other representations

Database	TSN rgb+flow	TSN + iDT	TSN + C3D + iDT
HMDB51(split1)	70.2	72.5	73.8
Hollywood2	67.4	71.7*	72.4*
Cognimuse	60.5	61.9	62.6

Architecture: Temporal Segment Networks

Two-stream net: Trained on HMDB51 split 1

Combination of TSN features with other representations

Database	TSN rgb+flow	TSN + iDT	TSN + C3D + iDT
HMDB51(split1)	70.2	72.5	73.8
Hollywood2	67.4	71.7*	72.4*
Cognimuse	60.5	61.9	62.6

3 Two-stream nets: Trained on HMDB51 split 1,2,3

- max pooling of the 25 inputs activation vectors
- concatenation of the 3 nets feature vectors + L2 normalization

Method	HMDB51(split1)	Hollywood2	Cognimuse
TSN(3 nets) + C3D + iDT	74.4	73.1*	63.7

Comparison with other methods

Method	HMDB51	Hollywood2
iDT+BoW	52.1	62.2
iDT+FV	57.2	64.3
VideoDarwin	63.7	73.7
Two-stream	59.4	-
TDDs	65.9	-
VGG+iDT	69.2	-
HRP+iDT	69.4	76.7
TSN	68.5	-
TLEs	71.1	-
EPT+iDT	-	78.6
SSN	73.8	-
Ours	74.0	73.1*

Final Proposed Method

- x^2 Multi-class SVM classification with kernel fusion of:
 - TSN rgb features extracted from the 3 nets trained on HMDB51 3 splits, max-pooled and L2-normalized
 - 2 TSN flow features same as rgb
 - C3D features extracted from pre-trained net on Sports1M, on 16-frame long clips with 8-frame overlap, max-pooled and L2-normalized
 - Combined descriptor of BoW encoded iDT on a codebook of 4000 K-means centroids

Final Proposed Method

- x^2 Multi-class SVM classification with kernel fusion of:
 - TSN rgb features extracted from the 3 nets trained on HMDB51 3 splits, max-pooled and L2-normalized
 - 2 TSN flow features same as rgb
 - C3D features extracted from pre-trained net on Sports1M, on 16-frame long clips with 8-frame overlap, max-pooled and L2-normalized
 - Combined descriptor of BoW encoded iDT on a codebook of 4000 K-means centroids

Practically: We propose a new combined descriptor of $\{\mathbf{TSN}\ \mathbf{rgb}, \mathbf{TSN}\ \mathbf{flow}, \mathbf{C3D}, \mathbf{TD}, \mathbf{HoG}, \mathbf{HoF}, \mathbf{MBHx}, \mathbf{MBHy}\}$

Future Work

- Apply other encoding methods on iDT
- Human Detection & Tracking
- Deep-learned feature extraction from shallower feature maps
- Different pooling methods to ensure temporal consistency
- Action Localization

Thanks for watching!