corrigé colle S7 exercices 16 et 19

exercice 16

Soit E un (C)-espace vectoriel de dimension n, $u \in \mathcal{L}(E)$

Montrer que u est diagonalisable ssi tout sous-espace de E admet un supplémentaire stable par u.

Sens direct:

Soit F un sous-espace vectoriel de E.

On note $\{\lambda_1, \lambda_2, \dots \lambda_p\} = \operatorname{Sp}(u)$, où, pour $i \neq j$, $\lambda_i \neq \lambda_j$.

On considère, pour $k \leq p$, $F_k = F \cap E_{\lambda_k}(u)$. On note S_k un supplémentaire de F_k dans $E_{\lambda_k}(u)$.

u est diagonalisable, donc $E = \bigoplus_{k=1}^{p}$. On a alors $E = \bigoplus_{k=1}^{p} (F_k \oplus S_k) = \bigoplus_{k=1}^{p} F_k \oplus \bigoplus_{k=1}^{p} S_k = F \oplus \bigoplus_{k=1}^{p} S_k$

Or, pour tout k, S_k est stable par u (car inclus dans un sous-espace propre), donc $\bigoplus_{k=1}^{p} S_k$ est stable par u.

On a trouvé un supplémentaire de F stable par u.

Réciproquement, supposons que tout sous-espace de E admet un supplémentaire stable par u.

Pour $n \in \mathbb{N}$, on note H_n , bla, bla, vous avez l'idée

- vous en connaissez beaucoup des matrices d'ordre 1 pas diagonalisables? (H_1 est vraie.)
- Soit n, bla, bla. E est un \mathbb{C} -espace vectoriel, donc admet un vecteur propre e_1 . On note S un supplémentaire de $\text{Vect}(e_1)$ stable par u.

Soit F un sous-espace de S. Par hypothèse, il admet un supplémentaire T (dans E) stable par u. $T \cap S$ est alors supplémentaire de F dans S. E est un \mathbb{C} -espace vectoriel, donc admet un vecteur propre e_1 .

On note S un supplémentaire de $Vect(e_1)$ stable par u.

T et S sont stables par u, donc $T\cap S$ également. On considère \tilde{u} l'endomorphisme induit.

Par hypothèse de récurrence, il existe une base B tq $\mathrm{Mat}_B u$ est diagonale. On a alors $\mathrm{Mat}_{(e1)\sqcup B} u$ diagonale.

Ce qui clôt la récurrence.

exercice 19

On se donne une matrice $M=(m_{i,j})\in M_n(\mathbb{R})$, avec, pour tout $j,\sum_{k=1}^n m_{i,j}=1$, et, pour tout $(i, j), 0 \le m_{i,j} \le 1$.

1. Montrer que 1 est valeur propre de M, puis montrer que toutes les valeurs propres complexes de M vérifient $|\lambda| \leq 1$

Pour montrer que 1 est valeur propre, il suffit de considérer $X = {}^T(1\ 1\ \dots\ 1).$

Soit $X = (x_i)$ un vecteur propre associé à la valeur propre λ . On note i_0 tel que $|x_{i_0}| = \max |x_i|$. (On note que $X \neq 0$ donc $x_{i_0} \neq 0$.)

On considère la i_0 -ième ligne de MX:

$$\lambda x_{i_0} = \sum_{j=1}^n m_{i_0,j} x_j$$

Ainsi, par inégalité triangulaire:

$$|\lambda| |x_{i_0}| \leqslant \sum_{j=1}^n m_{i_0,j} |x_j| \leqslant \sum_{j=1}^n m_{i_0,j} |x_{i_0}| = |x_{i_0}|$$

Dès lors, $\lambda \leq 1$.

2. Montrer que, si λ est valeur propre de module 1, alors $\lambda = 1$.

On reprend les notations de la question précédente.

Ainsi, les inégalités sont alors des égalités.

On a alors, pour tout j, $m_{i_0,j}x_j=m_{i_0,j}x_{i_0}$ (positivement colinéaires d'après l'inégalité triangulaire, de module constant par passage à la borne supérieure). Dès lors, $\lambda x_{i_0} = \sum_{j=1}^n m_{i_0,j} x_{i_0}$, d'où $\lambda = 1$.

3. Montrer que $\ker(M-I_n) = \ker(M-I_n)^2$

L'inclusion directe est immédiate.

On prend $X \in \ker(M - I_n)^2$.

$$M^{k}X = (M - I_{n} + I_{n})^{k}X = \sum_{j=0}^{k} {k \choose j} (M - I_{n})^{j}X = X + k(M - I_{n})X$$

On en déduit $(M - I_n)X = \frac{M^k X - X}{k}$. De plus, on montre aisément (j'ai un peu la flemme) que M^k est stochastique, donc borné, d'où $(M-I_n) \to 0$, donc $X \in \ker(M-I_n)$. D'où l'égalité.

2