Arbres binaires

Alix Munier-Kordon et Maryse Pelletier

LIP6 Sorbonne Université Paris

Module LU2IN003 Algorithmique Elémentaire

Plan du cours

Arbres binaires

2 Arbres binaires d'expressions

Arbres binaires : définitions (1)

Voici une définition **inductive** des arbres binaires.

Definition

Un arbre binaire T étiqueté sur un ensemble E est :

- soit l'arbre vide, noté ∅,
- soit un triplet (x, G, D) où $x \in E$ et G, D sont des arbres binaires étiquetés sur E.

$$\begin{cases}
T = \emptyset \\
\text{ou} \\
T = (x, G, D)
\end{cases}$$

Arbres binaires : définitions (2)

Definition

Si T = (x, G, D) alors :

- x est la racine de T,
- G est le sous-arbre gauche de T,
- D est le sous-arbre droit de T.

Arbres binaires : liens de parenté

Dans un arbre binaire T = (x, G, D) on dit que :

- G et D sont les fils (gauche et droit) de x,
- x est le père de G et D,
- G et D sont frères.

Exemples

$$E = \mathbb{N}$$

Représentation

- AB (x, G, D) renvoie un arbre de racine x, de sous-arbre gauche G et de sous-arbre droit D,
- ABvide() renvoie l'arbre vide,
- estABvide(T) teste si l'arbre T est vide.

Pour un arbre T:

- T.clef désigne l'étiquette (ou clef) de T,
- T. gauche désigne le sous-arbre gauche de T,
- T.droit désigne le sous-arbre droit de T.

Complexité: en $\Theta(1)$ pour chaque primitive.

Définitions et preuves par induction structurelle

Les arbres binaires étant définis par induction, les définitions et preuves sur les arbres binaires peuvent être faites par **induction structurelle**.

- Définitions inductives de fonctions sur les arbres binaires :
 - cas de base : définition de la fonction pour l'arbre vide
 - la fonction étant définie pour les sous-arbres gauche et droit, on la définit pour l'arbre.
- Preuves inductives de propriétés sur les arbres binaires :
 - cas de base : preuve de la propriété pour l'arbre vide
 - on suppose la propriété vraie pour les sous-arbres gauche et droit et on montre qu'elle est vraie pour l'arbre.

Nœuds et feuilles

Definition

Les *nœuds* d'un arbre binaire sont sa racine, les nœuds de son sous-arbre gauche et les nœuds de son sous-arbre droit.

On note $\mathcal{N}(T)$ l'ensemble des nœuds de T.

Definition

Une feuille est un nœud dont les deux fils sont vides.

On note $\mathcal{F}(T)$ l'ensemble des feuilles de T.

Definition

Un nœud interne est un nœud qui n'est pas une feuille.

On note $\mathcal{I}(T)$ l'ensemble des nœuds internes de T.

Nœuds et feuilles

Définitions inductives des nœuds, feuilles, nœuds internes :

$$\mathcal{N}(T) = \begin{cases} \emptyset & \text{si } T = \emptyset \\ \{x\} \cup \mathcal{N}(G) \cup \mathcal{N}(D) & \text{si } T = (x, G, D) \end{cases}$$

$$\mathcal{F}(T) = \begin{cases} \emptyset & \text{si } T = \emptyset \\ \{x\} & \text{si } T = (x, \emptyset, \emptyset) \\ \mathcal{F}(G) \cup \mathcal{F}(D) & \text{si } T = (x, G, D) \end{cases}$$

$$\mathcal{I}(T) = \begin{cases} \emptyset & \text{si } T = \emptyset \text{ ou} T = (x, \emptyset, \emptyset) \\ \{x\} \cup \mathcal{I}(G) \cup \mathcal{I}(D) & \text{si } T = (x, G, D) \text{ avec } G \neq \emptyset \text{ ou } D \neq \emptyset \end{cases}$$

Taille d'un arbre binaire

La taille d'un arbre binaire est son nombre de nœuds.

Definition

La taille d'un arbre binaire est définie **inductivement** par :

$$n(T) = \begin{cases} 0 & \text{si } T = \emptyset \\ 1 + n(G) + n(D) & \text{si } T = (x, G, D) \end{cases}$$

```
def ABtaille(T):
    if estABvide(T):
        return 0
    else:
        return 1 + ABtaille(T.gauche) + ABtaille(T.droit)
```


Taille d'un arbre binaire

La taille d'un arbre binaire est son nombre de nœuds.

Definition

La taille d'un arbre binaire est définie **inductivement** par :

$$n(T) = \begin{cases} 0 & \text{si } T = \emptyset \\ 1 + n(G) + n(D) & \text{si } T = (x, G, D) \end{cases}$$

```
def ABtaille(T):
    if estABvide(T):
        return 0
    else:
        return 1 + ABtaille(T.gauche) + ABtaille(T.droit)
```


Hauteur d'un arbre binaire

La hauteur d'un arbre binaire est le plus grand nombre de nœuds que l'on peut rencontrer en suivant un chemin de la racine vers une feuille.

Definition

La *hauteur* d'un arbre binaire est définie **inductivement** par :

$$h(T) = \begin{cases} 0 & \text{si } T = \emptyset \\ 1 + \max(h(G), h(D)) & \text{si } T = (x, G, D) \end{cases}$$

```
def ABhauteur(T):
    if estABvide(T):
        return 0
    else:
        return 1 + max(ABhauteur(T.gauche), ABhauteur(T.droit))
```


Hauteur d'un arbre binaire

La hauteur d'un arbre binaire est le plus grand nombre de nœuds que l'on peut rencontrer en suivant un chemin de la racine vers une feuille.

Definition

La *hauteur* d'un arbre binaire est définie **inductivement** par :

$$h(T) = \begin{cases} 0 & \text{si } T = \emptyset \\ 1 + \max(h(G), h(D)) & \text{si } T = (x, G, D) \end{cases}$$

```
def ABhauteur(T):
    if estABvide(T):
        return 0
    else:
        return 1 + max(ABhauteur(T.gauche), ABhauteur(T.droit))
```

Taille, hauteur : exemple

Taille: 7

Hauteur: 4

Complexité de ABtaille et ABhauteur

Theorem

Pour un arbre T de taille n:

- la complexité de la fonction ABtaille (T) est en $\Theta(n)$
- la complexité de la fonction ABhauteur (T) est en $\Theta(n)$.

Preuve par induction structurelle

Pour un arbre de taille n :

- on note c(n) le nombre d'additions effectuées par ABtaille
- lacktriangle on note d(n) le nombre d'additions effectuées par ABhauteur

On montre, par induction structurelle, que

- c(n) = 2n
- d(n) = n

Complexité de ABtaille et ABhauteur

Theorem

Pour un arbre T de taille n:

- la complexité de la fonction ABtaille (T) est en $\Theta(n)$
- la complexité de la fonction ABhauteur (T) est en $\Theta(n)$.

Preuve par induction structurelle.

Pour un arbre de taille n :

- on note c(n) le nombre d'additions effectuées par ABtaille
- lacktriangle on note d(n) le nombre d'additions effectuées par ABhauteur

On montre, par induction structurelle, que :

- c(n) = 2n
- $oldsymbol{d} d(n) = n$

Relations entre taille et hauteur

Theorem

Pour tout arbre de taille n et de hauteur h : $h \le n \le 2^h - 1$.

Corollary

Pour tout arbre de taille n et de hauteur $h : \log_2(n+1) \le h \le n$.

Preuve du théorème par induction structurelle (en TD). Le corollaire est une conséquence évidente du théorème.

Cas extrêmes. Pour une hauteur *h* fixée,

- arbre de taille minimum : arbre "longiligne"
- arbre de taille maximum : arbre "plein"

Relations entre taille et hauteur

Theorem

Pour tout arbre de taille n et de hauteur h : $h \le n \le 2^h - 1$.

Corollary

Pour tout arbre de taille n et de hauteur h : $\log_2(n+1) \le h \le n$.

Preuve du théorème par induction structurelle (en TD). Le corollaire est une conséquence évidente du théorème. **Cas extrêmes.** Pour une hauteur *h* fixée.

- arbre de taille minimum : arbre "longiligne"
- arbre de taille maximum : arbre "plein"

Arbres binaires : égalité

L'égalité entre arbres binaires est définie par induction structurelle.

Definition

Deux arbres binaires T₁ et T₂ sont égaux si :

- $T_1 = \emptyset$ et $T_2 = \emptyset$
- ou bien $T_1 = (x_1, G_1, D_1)$, $T_2 = (x_2, G_2, D_2)$, avec $x_1 = x_2$, G_1 et G_2 égaux, D_1 et D_2 égaux.

Arbres binaires : égalité (suite)

Égalité entre arbres binaires :

```
def ABegal(T1, T2):
    if estABvide(T1):
        if estABvide(T2):
            return True
        return False
    if estABvide(T2):
        return False
    return False
    return False
    return (T1.clef == T2.clef) and
        ABegal(T1.gauche, T2.gauche) and
        ABegal(T1.droit, T2.droit)
```

Complexité meilleur cas en $\Omega(1)$ et pire cas en $O(\min(n_1, n_2))$ (voir TD).

Parcours d'un arbre binaire

Trois parcours possibles:

- parcours préfixe : visiter la racine puis parcourir le sous-arbre gauche et enfin parcourir le sous-arbre droit
- parcours infixe: parcourir le sous-arbre gauche puis visiter la racine et enfin parcourir le sous-arbre droit
- parcours suffixe: parcourir le sous-arbre gauche puis parcourir le sous-arbre droit et enfin visiter la racine.

Le résultat d'un parcours est une liste.

Liste vide pour l'arbre vide.

Parcours: exemple

Parcours préfixe : (1,5,3,7,10,8,9)

Parcours infixe: (5,3,1,10,7,9,8)

Parcours suffixe: (3, 5, 10, 9, 8, 7, 1)

Fonctions ABpref, ABinf, ABsuf

Parcours préfixe :

```
def ABpref(T):
    if estABvide(T):
        return []
    else:
        return [T.clef] + ABpref(T.gauche) + ABpref(T.droit)
Parcours infixe:
def ABinf(T):
    if estABvide(T):
        return []
    else:
        return ABinf(T.gauche) + [T.clef] + ABinf(T.droit)
Parcours suffixe:
def ABsuf(T):
    if estABvide(T):
        return []
    else:
        return ABsuf(T.gauche) + ABsuf(T.droit) + [T.clef]
```

Complexité de ABpref, ABinf, ABsuf

Theorem

Pour un arbre de taille n, la complexité de chacune des fonctions ABpref, ABinf et ABsuf est en $\Theta(n)$, si l'on représente les listes par des listes circulaires doublement chaînées.

Preuve par induction structurelle (voir TD).

Question : qu'en est-il si l'on représente les listes par des tableaux ou par des listes simplement chaînées ?

Tableaux : meilleur cas en $\Omega(n \log n)$ et pire cas en $O(n^2)$

Listes simplement chaînées : meilleur cas en $\Omega(n)$ et pire cas en $O(n^2)$.

Complexité de ABpref, ABinf, ABsuf

Theorem

Pour un arbre de taille n, la complexité de chacune des fonctions ABpref, ABinf et ABsuf est en $\Theta(n)$, si l'on représente les listes par des listes circulaires doublement chaînées.

Preuve par induction structurelle (voir TD).

Question : qu'en est-il si l'on représente les listes par des tableaux ou par des listes simplement chaînées ?

Tableaux : meilleur cas en $\Omega(n \log n)$ et pire cas en $O(n^2)$

Listes simplement chaînées : meilleur cas en $\Omega(n)$ et pire cas en $O(n^2)$.

Complexité de ABpref, ABinf, ABsuf

Theorem

Pour un arbre de taille n, la complexité de chacune des fonctions ABpref, ABinf et ABsuf est en $\Theta(n)$, si l'on représente les listes par des listes circulaires doublement chaînées.

Preuve par induction structurelle (voir TD).

Question : qu'en est-il si l'on représente les listes par des tableaux ou par des listes simplement chaînées ?

Tableaux : meilleur cas en $\Omega(n \log n)$ et pire cas en $O(n^2)$.

Listes simplement chaînées : meilleur cas en $\Omega(n)$ et pire cas en $O(n^2)$.

Complexité de Abpref (calculs)

```
def ABpref(T):
    if estABvide(T):
        return []
    else:
        return [T.clef] + ABpref(T.gauche) + ABpref(T.droit)
```

Représentation par tableaux

Relation de récurrence : $c(n) = n + c(n_1) + c(n_2)$.

- Pire cas : $n_1 = n 1$ à chaque appel récursif (arbre longiligne) d'où $O(n^2)$.
- Meilleur cas : $n_1 \approx n/2$ à chaque appel récursif (arbre plein) d'où $\Omega(n \log n)$.
- Représentation par listes chaînées

Relation de récurrence : $c(n) = n_1 + 1 + c(n_1) + c(n_2)$.

- Pire cas: n₁ = n 1 à chaque appel récursif (arbre longiligne gauche) d'où O(n²).
- Meilleur cas : n₁ = 0 à chaque appel récursif (arbre longiligne droit) d'où Ω(n).

Exercice: recherche dans un arbre binaire

Recherche d'un élément x dans un arbre binaire T.

Principe. Comparer x à la racine de T. En cas de non-égalité, chercher x dans le sous-arbre gauche de T puis, éventuellement, dans le sous-arbre droit de T.

```
def ABcherche(x, T):
    if estABvide(T):
        return False
    if x == T.clef:
        return True
    if ABcherche(x, T.gauche):
        return True
    return ABcherche(x, T.droit)
```

Exercice (voir TD)

- Prouver que ABcherche (x, T) se termine et retourne True si x est dans T et False sinon.
- Prouver que la complexité de ABcherche (x, T) est en $\Omega(1)$ dans le meilleur cas et en O(n) dans le pire cas.

Exercice: recherche dans un arbre binaire

Recherche d'un élément x dans un arbre binaire T.

Principe. Comparer x à la racine de T. En cas de non-égalité, chercher x dans le sous-arbre gauche de T puis, éventuellement, dans le sous-arbre droit de T.

```
def ABcherche(x, T):
    if estABvide(T):
        return False
    if x == T.clef:
        return True
    if ABcherche(x, T.gauche):
        return True
    return ABcherche(x, T.droit)
```

Exercice (voir TD)

- Prouver que ABcherche (x, T) se termine et retourne True si x est dans T et False sinon.
- Prouver que la complexité de ABcherche (x, T) est en $\Omega(1)$ dans le meilleur cas et en O(n) dans le pire cas.

Arbres binaires d'expressions

Quatre opérations arithmétiques d'arité 2:+,-,*,/. Voici une définition **inductive** des arbres binaires d'expressions.

Definition

Un arbre binaire d'expression T est :

- soit un arbre réduit à une feuille dont l'étiquette est une valeur numérique,
- soit un triplet (x, G, D) où x est l'un des opérateurs +, -, *, / et où G, D sont des arbres binaires d'expressions.

Remarque : pour l'induction structurelle sur les arbres d'expressions, le cas de base est le cas de l'arbre réduit à une feuille.

Arbres binaires d'expressions : primitives

Aux primitives sur les arbres binaires, on ajoute les primitives :

- ABfeuille (x) renvoie l'arbre réduit à une feuille d'étiquette x,
- estABfeuille(T) teste si l'arbre T est réduit à une feuille.

Complexité: en $\Theta(1)$ pour chaque primitive.

Un exemple

Propriétés des arbres binaires d'expressions

Theorem

Dans un arbre binaire d'expression :

- chaque nœud interne a exactement deux fils
- ◆ chaque nœud interne contient un opérateur (+, −, * ou /)
- chaque feuille contient une valeur numérique
- le nombre de valeurs numériques est égal au nombre d'opérateurs augmenté de 1.

Preuve par induction structurelle.

Arbres d'expressions : évaluation

Voici une définition **inductive** de l'évaluation d'un arbre d'expression.

```
def ABeval(T):
    if estABfeuille(T):
        return T.clef
    if T.clef == "+":
        return ABeval(T.gauche) + ABeval(T.droit)
    if T.clef == "-":
        return ABeval(T.gauche) - ABeval(T.droit)
    if T.clef == "*":
        return ABeval(T.gauche) * ABeval(T.droit)
    return ABeval(T.gauche) / ABeval(T.droit)
```

Complexité de ABeval (T) : en $\Theta(n)$

Arbres d'expressions : parcours préfixe

Parcours préfixe : [* - 53 + 7/84]

C'est une expression arithmétique préfixe (opérateur avant opérandes).

L'évaluation de l'arbre et celle de l'expression donnent le même résultat : 18.

Arbres d'expressions : parcours suffixe

Parcours suffixe : $[5 \ 3 \ -7 \ 8 \ 4 \ / \ + \ *]$

C'est une expression arithmétique suffixe (opérateur après opérandes).

L'évaluation de l'arbre et celle de l'expression donnent le même résultat : 18.

Arbres d'expressions : parcours infixe

Parcours infixe : [5 - 3 * 7 + 8 / 4]

C'est une expression arithmétique infixe (opérateur entre opérandes).

Attention! Sans parenthésage, l'évaluation de cette expression infixe est obtenue en appliquant les règles de priorité habituelles. Le résultat est -14.

Expressions préfixes bien formées

Definition

Une liste L est une *expression préfixe bien formée* si elle est égale au parcours préfixe d'un arbre d'expression.

Theorem

Une liste L de longueur n est une expression préfixe bien formée ssi

- le nombre de valeurs numériques de L est égal au nombre d'opérateurs de L augmenté de 1
- pour tout i < n 1, le nombre de valeurs numériques de L[0..i] est inférieur ou égal au nombre d'opérateurs de L[0..i].

Preuve en TD

Des expressions préfixes vers les arbres (1)

La fonction <code>operandesPref(L)</code> définie ci-dessous retourne le couple formé des deux opérandes de L, en supposant que L est une expression préfixe bien formée.

```
def operandesPref(L):
    cpt_operateurs = 0
    cpt_valeurs = 0
    i = 1
    while cpt_operateurs >= cpt_valeurs:
        if estOperateur(L[i]):
            cpt_operateurs = cpt_operateurs + 1
        else:
            cpt_valeurs = cpt_valeurs + 1
        i = i + 1
    return (L[1:i], L[i:])
```

La fonction estOperateur (x) teste si x est un opérateur.

```
>>> L0 = ["*","-",5,3,"+",7,"/",8,4]
>>> operandesPref(L0)
(['-',5,3],['+',7,'/',8,4])
```


Des expressions préfixes vers les arbres (2)

La fonction suivante associe un arbre à toute expression préfixe bien formée :

```
def prefVersAB(L):
    x = L[0]
    if estNombre(x):
        return ABfeuille(x)
    (L1, L2) = operandesPref(L)
    return AB(x, prefVersAB(L1), prefVersAB(L2))
```

Theorem

Le parcours préfixe de l'arbre prefVersAB(L) est égal à L.

Complexité de prefVersAB

Représentation par tableaux

Complexité de operandesPref (L)

- Pire cas : $n_1 = n 2$ d'où O(n).
- Meilleur cas : $n_1 = 1$ d'où $\Omega(1)$.

Complexité de prefVersAB (L)

- Pire cas : $n_1 = n 2$ à chaque appel récursif donc $c(n) = n + c(n_1) = n + c(n-2)$ à chaque appel récursif d'où $O(n^2)$.
- Meilleur cas : $n_1 = 1$ à chaque appel récursif donc $c(n) = 1 + c(n_2) = 1 + c(n-2)$ à chaque appel récursif d'où $\Omega(n)$.
- Représentation par listes chaînées
 Complexité de operandesPref (L) en Θ(n).

Relation de récurrence : $c(n) = n + c(n_1) + c(n_2)$.

- Pire cas : $n_1 = n 2$ à chaque appel récursif d'où $O(n^2)$.
- Meilleur cas : $n_1 \approx n/2$ à chaque appel récursif d'où $\Omega(n \log n)$.

