

Computer Vision

2023-24 First Semester, M.Tech (AIML)

Session #8:

Exam pattern, Revision, RANSAC

Mithun Kumar S R mithunkumar.sr@wilp.bits-pilani.ac.in

Exam pattern

- 6 questions, equal weightage
- Closed book
- Expect across the contents covered so far
- Mix of theory and numericals

Fitting and Alignment

Fitting: find the parameters of a model that

best fit the data

Alignment: find the parameters of the transformation that best align matched points

Least squares: linear regression

Linear regression

$$Cost(m, b) = \sum_{i=1}^{n} |y_i - (mx_i + b)|^2$$

Linear regression

Image Alignment Algorithm

Given images A and B

- 1. Compute image features for A and B
- 2. Match features between A and B
- 3. Compute homography between A and B using least squares on set of matches

What could go wrong?

Outliers

Robustness

Problem: Fit a line to these datapoints

Least squares fit

What can we do?

• Suggestions?

Idea

- Given a hypothesized line
- Count the number of points that "agree" with the line
 - "Agree" = within a small distance of the line
 - I.e., the inliers to that line
- For all possible lines, select the one with the largest number of inliers

Counting inliers

Counting inliers

Inliers: 3

Counting inliers

Inliers: 20

How do we find the best line?

Unlike least-squares, no simple closed-form solution

- Hypothesize-and-test
 - Try out many lines, keep the best one
 - Which lines?

RANSAC Line fitting example

Algorithm:

- 1. Sample (randomly) the number of points required to fit the model (#=2)
- 2. **Solve** for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model

Line fitting example

Algorithm:

- 1. Sample (randomly) the number of points required to fit the model (#=2)
- 2. **Solve** for model parameters using samples
- 3. Score by the fraction of inliers within a preset threshold of the model

Line fitting example

$$N_I = 6$$

Algorithm:

- 1. Sample (randomly) the number of points required to fit the model (#=2)
- 2. **Solve** for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model

Algorithm:

- 1. **Sample** (randomly) the number of points required to fit the model (#=2)
- 2. **Solve** for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model

• Idea:

- All the inliers will agree with each other on the translation vector; the (hopefully small) number of outliers will (hopefully) disagree with each other
 - RANSAC only has guarantees if there are < 50% outliers
- "All good matches are alike; every bad match is bad in its own way."
 - Tolstoy via Alyosha Efros

Translations

RAndom SAmple Consensus

RAndom SAmple Consensus

RAndom SAmple Consensus

Final step: least squares fit

- Inlier threshold related to the amount of noise we expect in inliers
 - Often model noise as Gaussian with some standard deviation (e.g., 3 pixels)
- Number of rounds related to the percentage of outliers we expect, and the probability of success we'd like to guarantee
 - Suppose there are 20% outliers, and we want to find the correct answer with 99% probability
 - How many rounds do we need?

How many rounds?

- If we have to choose *k* samples each time
 - with an inlier ratio p
 - and we want the right answer with probability P

	proportion of inliers <i>p</i>						
k	95%	90%	80%	75%	70%	60%	50%
2	2	3	5	6	7	11	17
3	3	4	7	9	11	19	35
4	3	5	9	13	17	34	72
5	4	6	12	17	26	57	146
6	4	7	16	24	37	97	293
7	4	8	20	33	54	163	588
8	5	9	26	44	78	272	1177

P = 0.99

Source: M. Pollefeys

To ensure that the random sampling has a good chance of finding a true set of inliers, a sufficient number of trials S must be tried. Let p be the probability that any given correspondence is valid and P be the total probability of success after S trials. The likelihood in one trial that all k random samples are inliers is p^k . Therefore, the likelihood that S such trials will all fail is

$$1 - P = (1 - p^k)^S (6.29)$$

and the required minimum number of trials is

$$S = \frac{\log(1 - P)}{\log(1 - p^k)}. (6.30)$$

	proportion of inliers <i>p</i>						
k	95%	90%	80%	75%	70%	60%	50%
2	2	3	5	6	7	11	17
3	3	4	7	9	11	19	35
4	3	5	9	13	17	34	72
5	4	6	12	17	26	57	146
6	4	7	16	24	37	97	293
7	4	8	20	33	54	163	588
8	5	9	26	44	78	272	1177

$$P = 0.99$$

How big is *k*?

- For alignment, depends on the motion model
 - Here, each sample is a correspondence (pair of matching points)

Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$egin{bmatrix} ig[egin{array}{c c} I & t \end{bmatrix}_{2 imes 3} \end{array}$	2	orientation $+\cdots$	
rigid (Euclidean)	$egin{bmatrix} R & t \end{bmatrix}_{2 imes 3}$	3	lengths +···	\Diamond
similarity	$\left[\begin{array}{c c} sR & t\end{array}\right]_{2 imes 3}$	4	angles + · · ·	\Diamond
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$	6	parallelism $+\cdots$	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$	8	straight lines	

RANSAC pros and cons

Pros

- Simple and general
- Applicable to many different problems
- Often works well in practice

Cons

- Parameters to tune
- Sometimes too many iterations are required
- Can fail for extremely low inlier ratios
- We can often do better than brute-force sampling

- An example of a "voting"-based fitting scheme
- Each hypothesis gets voted on by each data point, best hypothesis wins

- There are many other types of voting schemes
 - E.g., Hough transforms...

Hough transform

P.V.C. Hough, *Machine Analysis of Bubble Chamber Pictures,* Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

Given a set of points, find the curve or line that explains the data points best

Slide from S. Savarese

Hough Transform: Outline

1. Create a grid of parameter values

2. Each point votes for a set of parameters, incrementing those values in grid

3. Find maximum or local maxima in grid

Hough transform

Hough transform

Fitting Summary

- Least Squares Fit
 - closed form solution
 - robust to noise
 - not robust to outliers
- Hough transform
 - robust to noise and outliers
 - can fit multiple models
 - only works for a few parameters (1-4 typically)
- RANSAC
 - robust to noise and outliers
 - works with a moderate number of parameters (e.g, 1-8)