Numerical Analysis - ENME 602

Engineering and Materials Science Assoc.Prof.Dr. Hesham H. Ibrahim Spring 2021

Practice Sheet 1

Computer Arithmetic & Error Analysis

Problem 1

Compute the absolute error and relative error in approximations of p by p^* .

a.
$$p = \pi$$
, $p^* = 22/7$

e.
$$p = e^{10}, p^* = 22000$$

b.
$$p = \pi$$
, $p^* = 3.1416$

f.
$$p = 10^{\pi}, p^* = 1400$$

c.
$$p = e, p^* = 2.718$$

g.
$$p = 8!, p^* = 39900$$

d.
$$p = \sqrt{2}, p^* = 1.414$$

h.
$$p = 9!, p^* = \sqrt{18\pi}(9/e)^9$$

Solution:

Question	Absolute Error	Relative Error
a	1.264×10^{-3}	4.025×10^{-4}
b	7.346×10^{-6}	2.338×10^{-6}
c	2.818×10^{-4}	1.037×10^{-4}
d	2.136×10^{-4}	1.51×10^{-4}
e	26.466	1.202×10^{-3}
f	14.544	1.05×10^{-2}
g	420	1.042×10^{-2}
h	3343.127	9.213×10^{-3}

Suppose p^* must approximate p with relative error at most 10^{-3} . Find the largest interval in which p^* must lie for each value of p.

a. 150

b. 900

c. 1500

d. 90

Solution:

Question	Interval
a	$p^* \in [149.85, 150.15]$
b	$p^* \in [899.1, 900.9]$
С	$p^* \in [1498.5, 1501.5]$
d	$p^* \in [89.91, 90.9]$

1. Use three-digit rounding arithmetic to perform the following calculations. Compute the absolute error and relative error with the exact value determined to at least five digits.

a.
$$133 + 0.921$$

d.
$$(121 - 119) - 0.327$$

g.
$$(\frac{2}{9}).(\frac{9}{7})$$

e.
$$\frac{\frac{13}{14} - \frac{6}{7}}{2e - 5.4}$$

h.
$$\frac{\pi - \frac{22}{7}}{\frac{1}{17}}$$

c.
$$(121 - 0.327) - 119$$
 f. $-10\pi + 6e - \frac{3}{62}$

f.
$$-10\pi + 6e - \frac{3}{62}$$

- 2. Repeat part 1 using four-digit rounding arithmetic.
- 3. Repeat part 1 using three-digit chopping arithmetic.
- 4. Repeat part 1 using four-digit chopping arithmetic.

Solution:

1.

Question	Absolute Error	Relative Error	
a	0.079	5.9×10^{-4}	
b	0.499	3.77×10^{-3}	
c	0.327	0.195	
d	3×10^{-3}	1.79×10^{-3}	
e	0.154	0.786	
f	0.0546	3.6×10^{-3}	
g	2.86×10^{-4}	10^{-3}	
h	0.0215	1	

2.

Question	Absolute Error	Relative Error	
a	0.021	1.568×10^{-4}	
b	0.001	7.55×10^{-6}	
c	0.027	0.01614	
d	0	0	
e	0.03246	0.01662	
f	0.005377	3.548×10^{-4}	
g	1.429×10^{-5}	5×10^{-5}	
h	0.0045	0.2092	

3.

Question	Absolute Error	Relative Error	
a	0.921	921 6.88×10^{-3}	
b	0.501	3.78×10^{-3}	
c	0.673	0.402	
d	0.003	1.79×10^{-3}	
e	1.60	0.817	
f	0.0454	0.00299	
g	0.00171	0.00600	
h	0.02150	1	

4.

Question	Absolute Error	Relative Error	
a	0.021	1.568×10^{-4}	
b	b 0.001 $7.55 \times 10^{-}$		
c	0.073	0.04363	
d	0	0	
e	0.02945	0.01508	
f	0.004622	3.050×10^{-4}	
g	2.143×10^{-4}	7.5×10^{-4}	
h	0.0045	0.2092	

Use three-digit chopping arithmetic to compute the sum $\sum_{i=1}^{10} (1/i^2)$ first by $\frac{1}{1} + \frac{1}{4} + \cdots + \frac{1}{100}$ and then by $\frac{1}{100} + \frac{1}{81} + \cdots + \frac{1}{1}$. Which method is more accurate, and why?

Solution:

$$\frac{1}{1} + \frac{1}{4} + \dots + \frac{1}{100} = 1.53; \ \frac{1}{100} + \frac{1}{81} + \dots + \frac{1}{1} = 15.4.$$

The actual value is 1.549; Thus Method 2 is more accurate.

The number e is defined by $e = \sum_{n=0}^{\infty} (1/n!)$. Use four-digit chopping arithmetic to compute the following approximations to e, and determine the absolute and relative errors.

a.
$$e \approx \sum_{n=0}^{5} \frac{1}{n!}$$

c.
$$e \approx \sum_{n=0}^{10} \frac{1}{n!}$$

b.
$$e \approx \sum_{j=0}^{5} \frac{1}{(5-j)!}$$

d.
$$e \approx \sum_{j=0}^{10} \frac{1}{(10-j)!}$$

Solution:

Question	Approximation	Absolute Error	Relative Error
a	2.715	3.282×10^{-3}	1.207×10^{-3}
b	2.716	2.282×10^{-3}	8.394×10^{-4}
c	2.716	2.282×10^{-3}	8.394×10^{-4}
d	2.718	2.818×10^{-4}	1.037×10^{-4}