Lecture 5: Backpropagation

강의 출처:

https://www.youtube.com/watch?v=isPiE-

DBagM&t=2043s&list=PL3FW7Lu3i5|snh1rnUwq TcylNr7EkRe6&index=5

들어가기 전에

- 이번 강의에서는 backprop에 대해 4가지 방식으로 설명을 해줄 것이다.
- backprop을 통달시키려는 socher 교수님의 친절함을 알 수 있다.

Explanation #1 for backprop

Two layer neural nets and full backprop

- · Let's look at a 2 layer neural network
- Same window definition for x
- · Same scoring function
- 2 hidden layers (carefully define superscripts now!)

- 전의 강의와 모두 똑같지만, hidden layer하나를 더할 것이다.
- x는 첫번째 activation이자 첫번째 hidden layer이다. 그리고 윈도우, 즉 단어를 concatenate한 것이다.
- $a^{(2)}$ 에서 sigmoid 함수같은 element-wise nonlinearity를 적용한다.
- $z^{(3)} = z^{(2)}$ 와 같은 아이디어이지만, $z^{(2)}$ 와는 다른 차원을 갖는다.
- *U*는 column vector이다. 모든 x또한 column vector이다.
- 마지막 layer에 꼭 linear layer를 선택해야되는 건 아니다. 원한다면 sigmoid함수를 써도 상관없다.

Two layer neural nets and full backprop

Fully written out as one function:

$$s = U^{T} f \left(W^{(2)} f \left(W^{(1)} x + b^{(1)} \right) + b^{(2)} \right)$$

$$= U^{T} f \left(W^{(2)} a^{(2)} + b^{(2)} \right)$$

$$= U^{T} a^{(3)}$$

$$W^{(1)}$$

Same derivation as before for W⁽²⁾ (now sitting on a⁽²⁾)

• 전의 강의에서 했던 것처럼 $w^{(2)}$ 에 대해 미분을 해준다.

Two layer neural nets and full backprop

Same derivation as last lecture for top W⁽²⁾:

$$\frac{\partial s}{\partial W_{ij}^{(2)}} = \underbrace{U_i f'\left(z_i^{(3)}\right)}_{i} a_j^{(2)} \\
= \delta_i^{(3)} a_j^{(2)}$$

• In matrix notation:
$$\frac{\partial s}{\partial W^{(2)}} = \delta^{(3)} a^{(2)}^T$$

$$x = z^{(1)} = a^{(1)}$$

$$z^{(2)} = W^{(1)}x + b^{(1)}$$

$$a^{(2)} = f\left(z^{(2)}\right)$$

$$z^{(3)} = W^{(2)}a^{(2)} + b^{(2)}$$

$$a^{(3)} = f\left(z^{(3)}\right)$$

$$s = U^{T}a^{(3)}$$

where $\delta^{(3)} = U \circ f'\left(z^{(3)}\right)$ and \circ is the element-wise product also called Hadamard product (\otimes, \odot)

• Last missing piece for understanding general backprop: $\frac{\partial s}{\partial W(\mathbb{S} tax)}$

• δ 는 두 vector U_i 와 $f'(z_i^3)$ 의 곱이다. 그리고 해당 layer에서 오는 error 값이다.

• $\delta^{(3)}a^{(2)T}$ 는 외적이다. 외적을 하는 이유는 모든 i에 대한 쌍(pair)에 대해서 cross product를 주기 때문이다. 즉, 외적을 통해 w_{ij} 에 있는 모든 정보를 이용하는 것이다.*

*잘모르겠으면 해당 링크의 Training with backpropagation의 5번째 슬라이드 참조.

Two layer neural nets and full backprop

• Last missing piece:
$$\frac{\partial s}{\partial W^{(1)}}$$

$$x = z^{(1)} = a^{(1)}$$

$$z^{(2)} = W^{(1)}x + b^{(1)}$$

$$a^{(2)} = f\left(z^{(2)}\right)$$

$$z^{(3)} = W^{(2)}a^{(2)} + b^{(2)}$$

$$a^{(3)} = f\left(z^{(3)}\right)$$

$$s = U^{T}a^{(3)}$$

- · Similar derivation to single layer model
- We already derived $W^{(2)}^T \delta^{(3)}$ as the next lower update in a model where the next lower layer were just the word vectors
- But now, we'll need to apply the chain rule again: $f'(z^{(2)})$

• 2번째 layer에서의 update는 $w^{(2)T}\delta^{(3)}$ 이다. 지난번에 이미 배웠던 거다. 하지만 지난번에는 layer가 1개었기 때문에, 여기서 끝이었지만 지금은 layer를 한번 더 쌓았기 때문에 chain rule을 다시 적용할 필요가 있다.

Two layer neural nets and full backprop

- $\bullet \quad \text{Chain rule for:} \quad s \quad = \quad U^T f\left(W^{(2)} f\left(W^{(1)} x + b^{(1)}\right) + b^{(2)}\right)$
- Get intuition by deriving $\frac{\partial s}{\partial W^{(1)}}$ as if it was a scalar
- · Intuitively, we have to sum over all the nodes coming into layer
- Putting it all together: $\delta^{(2)} = \left(W^{(2)}{}^T \delta^{(3)}\right) \circ f'\left(z^{(2)}\right)$

- vector의 미분이라 다소 복잡할 수 있지만 스칼라(차원이 없고 크기만 가지는 것)라고 생각하면 괜찮다고 한다...
- $\delta^{(2)}$ 는 이전 layer에서 구한 미분 값에 현재 layer의 미분 값을 element-wise 곱을 해준다.

Two layer neural nets and full backprop

• Final derivative:
$$\frac{\partial s}{\partial W^{(1)}} = \delta^{(2)} x^T$$

$$z^{(2)} = W^{(1)}x + b^{(1)}$$

$$a^{(2)} = f\left(z^{(2)}\right)$$

$$z^{(3)} = W^{(2)}a^{(2)} + b^{(2)}$$

$$a^{(3)} = f\left(z^{(3)}\right)$$

$$s = U^{T}a^{(3)}$$

 $x = z^{(1)} = a^{(1)}$

$$\delta^{(l)} = \left((W^{(l)})^T \delta^{(l+1)} \right) \circ f'(z^{(l)}),$$

$$\frac{\partial}{\partial W^{(l)}} E_R = \delta^{(l+1)} (a^{(l)})^T + \lambda W^{(l)}$$

- Top and bottom layers have simpler δ
- 빨간 네모 안에 있는 두 방정식을 이해하면, 이제 모든 multilayer neural networks에 대한 update의 끝판왕을 안 것이다. update 마스터가 될 수 있다.
- 각각의 W에 대한 마지막 update는 항상 오른쪽 위에 나와있는 외적이 될 것이다. 전의 강의에서 나온 것과 살짝 다른 형태를 띄고 있는데, 단지 regularization을 더해줬다. 해당 layer의 activation에 δ 배를 해주고 정규화를 해주는 것이다.

Explanation #2 for backprop: Circuits

• neural network에서 나오는 많은 matrix때문에 골머리가 날 뻔했다. 대신 이번 설명에서는 그냥 간단한 함수로 생각해 볼 것이다. 😃

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Chain rule: $\frac{\partial f}{\partial u} = \frac{\partial f}{\partial a} \frac{\partial q}{\partial u}$

- 즉, network를 이동하면서 반복적으로 error signal혹은 local gradient들을 적용, 계산할 것이다.
- f는 lost function이고 x,y,x는 parameter들이다.
- 예를 들어, x=-2, y=5, z=-4라고 해보자. q와 f에 대해 편미분을 해보면 왼쪽과 같은 결과를 얻을 수 있다.
- 우리는 이 변수들을 update하기 위해서 해당 변수들의 미분 값을 알아야 한다.
- 오른쪽 그림을 봐보자. 빨간색으로 쓰인 숫자가 미분 값이다. 변수들의 미분 값을 알기 위해서는 오른쪽에서부터 시작해야한다. f-12를 f로 미분하면 1이 나온다.
- z벡터를 update하기 위한 미분값은 $\frac{\partial f}{\partial z}$ 이다. 이 값은 손쉽게 구할 수 있다. 파란 박스에서 정의했듯이 이 값은 q이고, q는 x+y의 값인 3이다.
- $\frac{\partial f}{\partial q}$ 는 위와 비슷하 방식으로 파란 박스에서 나와있듯이 z이다. 하지만 주의할 것은 chain rule을 적용했기 때문에, higher node에서 온 미분 값을 곱해줘야 한다. 첫번째 설명에서 언급했던 것처럼 위에서 온 error signal을 전해받는 거라고 생각하면 된다. 그렇지만 여기서는 이전 미분값이 1이기 때문에 그냥 -4라고해도 상관없다
- $\frac{\partial f}{\partial y}$ 는 chain rule을 적용해, 이전 node의 미분값인 -4와 local gradient, 해당 node에서의 미분값인 $\frac{\partial q}{\partial y}$, 1을 곱해주면 된다. 나머지 미분값인 $\frac{\partial f}{\partial x}$ 도 이와 마찬가지로 구해주면 된다.

Recursively apply chain rule through each node

- 위의 그림에서 보듯이 각 node에 chain rule을 적용해, 우리가 최종적으로 구하고자 하는 변수의 미분 값, 즉 update값을 알아낼 수 있다.
- 여기서 중요한 것은 local gradient는 forward propagation때 구할 수 있다는 사실이다. 이 때 구한 값을 저장 해뒀다가 back prop때 이용하면 된다.

Jumping to the end...

$$\left(\frac{-1}{1.37^2}\right)(1.00) = -0.53$$

$$f(x) = \frac{1}{x}$$
 \rightarrow $\frac{df}{dx} = -1/x^2$

(초록색 숫자는 forward prop이고, 빨간색 숫자는 backprop이다. 앞에 미분과정이 더 나와있는 슬라이드도 있지만 생략하겠다. 위의 예시하나로 어떻게 하는지 감이 올것이다.)

- f(w,x)는 sigmoid 함수이다. 여기서 x는 input이고 w는 weights이다. 이때 목표는 모든 elements, w와 x에 대한 편미분을 계산하는 것이다.
- x를 2-dimension으로 w를 3-dimension으로 가정하자. w_2 는 bias term이다.
- f(w,x)의 값은 parameter가 뭐든지 간에 분자를 1로 취할 것이다.
- 그래프의 밑에 나와있는 식을 이용하면 , 위의 슬라이드에서처럼 미분 값을 구할 수 있다. 제일 첫번째 미분 값이 1인 이유는 $\frac{\partial f}{\partial f}$ 를 하기 때문이다.
- higher layers에서 온 error signal을 계속해서 곱해나감으로써 미분 값을 다시 쓴다. 나중에는 변수의 미분 값 인 local gradient와 위에서 부터 내려온 error signal을 곱함으로써 변수를 update할 수 있게 된다.

Combine nodes in the circuit when convenient

$$f(w,x) = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + w_2)}} \qquad \qquad \boxed{\sigma(x) \triangleq \frac{1}{1 + e^{-x}}} \qquad \text{sigmoid function}$$

$$\frac{d\sigma(x)}{dx} = \frac{e^{-x}}{\left(1 + e^{-x}\right)^2} = \left(\frac{1 + e^{-x} - 1}{1 + e^{-x}}\right) \left(\frac{1}{1 + e^{-x}}\right) = \left(1 - \sigma(x)\right)\sigma(x)$$

• 위의 슬라이드처럼 함수의 부분을 일일이 쓰는 건 매우 번거롭다. 그래서 위처럼 나타낸다. $\sigma(x)$ 로 sigmoid 함수를 나타낸다.

- 위 슬라이처럼 일일이 계산하지 않아도, sigmoid 함수를 x에 대해 미분하면 $(1-\sigma(x))\sigma(x)$ 가 나온다.
- 스탠포드 학생이 여기서 질문을 하는데, 그럼 forward prop은 뭐냐고 한다. forward prop은 그냥 전반적인 함수 값을 계산하는 것이다. 그리고 test time에 이뤄지는 과정이다.

Explanation #3 for backprop: The high-level flow graph

Simple Chain Rule

• 🗷에서 시작해 어떤 값을 계산하기 위해, 중간 변수 y를 거쳐 forward prop을 할 것이다. 그리고 backprop에서 는 forward prop과는 반대 방향으로 gradient를 계산할 것이다.

Multiple Paths Chain Rule

• 위의 슬라이스에서와 달리, y1과 y2에서 온 error signal들을 더해야한다.

Multiple Paths Chain Rule - General

• 일반적으로 x가 flow graph에서 multiple한 element들을 거친다면, 위같이 sigma를 써서 편미분 값을 더해 주면 된다.

Chain Rule in Flow Graph

Flow graph: any directed acyclic graph node = computation result arc = computation dependency

$$\{y_1,\,y_2,\,\ldots\,y_n\}$$
 = successors of x

$$\frac{\partial z}{\partial x} = \sum_{i=1}^{n} \frac{\partial z}{\partial y_i} \frac{\partial y_i}{\partial x}$$
 Stand

- 각각의 node는 계산 결과이고, 각각의 화살표는 계산이 어떻게 이루어지는지 보여준다. 화살표로 이어진 노 드는 미분 값을 계산하기 위해 서로의 미분 값을 필요로 한다.
- 좀 더 복잡한 것도 정의할 수 있는데, 그림의 왼쪽을 보면 한 layer를 뛰어넘는 화살표가 보일 것이다. 이런 방식을 short circuit connections라고 부른다.

Back-Prop in Multi-Layer Net

(검은 화살표가 forward prop, 분홍 화살표가 back prop)

- x는 input이고 y는 class이다.
- forward prop에서 sigmoid neural layer를 거칠 것이다. $h \vdash Vx$ 의 sigma이다.
- 다음 layer로 이동할 것이고, 마지막쯤에 softmax layer를 만날 것이다.
- 그 다음에 negative log likelihood를 거쳐 x와 y의 pair에 대한 cost function을 계산할 것이다.
- 그리고 forward를 했으니, parameter들을 update하기위해 back prop을 한다.

하지만 굿뉴스는 일일이 계산할 필요가 없다 ㅎㅎㅎ 이미 좋은 패키지들이 나와서 알아서 다해주기 때문이다. socher 교수님이 박사 시작하실때만 해도 이런게 없었다고 한다...

Automatic Differentiation

- The gradient computation can be automatically inferred from the symbolic expression of the fprop.
- Each node type needs to know how to compute its output and how to compute the gradient wrt its inputs given the gradient wrt its output.
- Easy and fast prototyping
- gradient의 계산은 알아서 도출된다.

Explanation #4 for backprop: The delta error signals in real neural nets

• Let's say we want $\frac{\partial s}{\partial W^{(1)}} = \delta^{(2)} a^{(1)}$ with previous layer and f = σ

Gradient w.r.t $W^{(2)} = \delta^{(3)}a^{(2)T}$

Sta

- 첫번째 설명에서 나오던 복잡한 함수 구성을 좀 더 간편하게 표현했다.
- δ(3)는 score에서 오는 error signal이다.
- 이때, W(2), W(1)모두 update하고 싶다.
- linear score을 지나갈 때 delta는 변하지 않는다.
- W(2)에 대한 update는 그냥 $\delta^{(3)}a^{(2)T}$ 의 외적값이다.

- --Reusing the $\delta^{(3)}$ for downstream updates.
- --Moving error vector across affine transformation simply requires multiplication with the transpose of forward matrix
- --Notice that the dimensions will line up perfectly too!

Sta

- matrix vector product 대한 간단한 affine 변환*을 거칠때, 그냥 forward prop matrix를 transpose한 것만 있으면 된다.
 - *affine transformation 설명
- output에서의 dimension은 n행 1열이다. 이 vector에 δ 를 곱한다. 그러면 output의 dimension과 같아진다.
- $W^{(2)T}\delta^{(3)}$ 는 W와 같은 dimension을 갖는다.

--Moving error vector across point-wise non-linearity requires point-wise multiplication with local gradient of the non-linearity

Sta

- σ 는 element wise nonlinearity를 특성으로 갖는다. (여기서는 sigmoid)
- 그래서 다음 δ 를 update할 때, 즉, error vector(error signal)을 point-wise* nonlinearity을 통과할 때, nonlinearity의 local gradient와 point-wise 곱셈을 적용해야 한다.

*element wise

• 이 과정을 거쳐 W(1)에 도달하는 $\delta(2)$ 를 얻었다.

Gradient w.r.t
$$\mathit{W}^{(1)} = \delta^{(2)} \mathit{a}^{(1)\mathrm{T}}$$

• 이제 W(1)에 대한 마지막 gradient를 계산할 수 있게 되었다.