Field-Efect Tranzistor FET- Pol'om riadený tranzistor

Činnosť ozrejmil W. Shockley v roku 1952. Riadiacou veličinou je namiesto prúdu *napätie*

FET je *unipolárny* prvok, pretože prúd vytvárajú buď *elektróny* alebo *diery*. V prípade FET-u s *n-kanálom* sú nosičmi elektróny. V prípade FET-u s *p-kanálom* sú nosičmi diery. Pri oboch typoch FET-ov je prúd riadený napätím, ktoré je pripojené medzi vývody *gate* (hradlo) a *source*.

Pri porovnaní NPN bipolárneho tranzistora a FET-u je FET tiež trojvývodový prvok. Vývodu *Drain* (D) je ekvivalentom kolektor, vývodu *Source* (S) emitor a vývodu *Gate* (G) báza. Vývody *D* a S sa pri FET tranzistoroch zvyčajne môžu zameniť, bez toho, aby to negatívne ovplyvnilo jeho činnosť.

Hlavné výhody FET tranzistorov

- Vysoká vstupná impedancia rádovo 10^7 - 10^{12} Ω . Preto sa používajú ako vstupné obvody viacstupňových zosilňovačov.
- Generujú nižšiu úroveň šumu.
- Sú viac teplotne stabilné.
- Sú jednoduchšie na výrobu ako BJT.
- Pri malých hodnotách D prúdu sa správajú ako napätím riadený odpor.
- Vysoká vstupná impedancia umožňuje ich využitie ako pamäťových prvkov.
- Sú schopné rozptýliť väčší výkon a spínať veľké prúdy.

Hlavné nevýhody FET tranzistorov

- Niektoré typy vykazujú horšiu linearitu.
- Môžu byť zničené pri manipulácii statickou elektrinou.

Typy poľom riadených tranzistorov FET

Existujú tri hlavné typy poľom riadených, ktoré sa ešte ďalej delia na podskupiny.

- Tranzistor s PN priechodom Junction FET (JFET). Jeho modifikáciou je Metal Schottky Barier FET (MES FET), v ktorom je PN priechod vytvorený na spoji kov-polovodič.
- 2. Metal Oxide Semiconductor FET (MOS FET) v ochudobnenom móde (s ochudobneným kanálom). Hradlo je odizolované od vodivého kanála v polovodiči oxidom.

3. Metal – Oxide Semiconductor FET (MOS FET) v obohatenom móde (s obohateným kanálom). Hradlo je tiež odizolované od vodivého kanála v polovodiči oxidom.

MOS FET-y sú často označované ako FET-y s izolovaným hradlom (IG FET – Insulated Gate FET)

JFET činnosť a konštrukcia

Je to trojvývodový prvok, ktorý oproti BJT má jeden PN prechod. Jeho schematická značka je:

JFET s N kanálom

JFET s P kanálom

Fyzikálna štruktúra:

JFET s P kanálom

Pre pochopenie činnosti JFET- u je tento s N kanálom zapojený do obvodu podľa obrázka.

JFET s N kanálom, zapojený do obvodu so zdrojmi napájacieho a riadiaceho napätia

Napäťový zdroj U_{DD} odpovedá zdroju U_{CC} pri BJT a U_{GG} analogicky odpovedá zdroju U_{BB} .

 U_{DD} vytvára napätie u_{DS} a spôsobuje prúd i_D medzi D a S. Prúd i_D sa správa ako prúd prúdového zdroja a tečie kanálom, ktorý vytvára a modifikuje obklopujúce hradlo z polovodiča typu P. Napätie medzi hradlom G a vývodom S u_{GS} , ktoré je rovné $-U_{GG}$ vytvára vyprázdnenú

oblasť v kanáli čím sa šírka kanála zužuje a tým narastá odpor medzi D a S. Pretože prechod medzi G a S je polarizovaný v závernom smere, hradlom netečie prakticky žiaden prúd.

Ak predpokladáme, že $u_{GS} = 0$, ako je to znázornené na obr., potom prúd tečúci kanálom i_D vyvolá úbytok napätia pozdĺž kanála s vyšším potenciálom na PN prechode na strane D-G. Tento kladný úbytok napätia záverne polarizuje PN prechod na strane D-G a vytvára vyprázdnenú oblasť ako je to zrejme z obr. Ak narastá napätie u_{DS} , prúd i_D tiež narastá, čo vedie k zväčšovaniu vyprázdnenej oblasti a k nárastu odporu kanála medzi D a S. Ďalším nárastom u_{DS} sa vyprázdnená oblasť vytvorí cez celý kanál a prúd dosiahne bod saturácie. Ak sa u_{DS} zväčšuje ďalej prúd i_D sa už ďalej nezvyšuje.

Vyprázdnená oblasť JFET-u

Závislosť *i*_D- *u*_{DS} JFET-u s vyznačením napätia *Pinch-off*

Hodnota saturačného prúdu ak $u_{GS} = 0$ je dôležitý parameter JFET-u a označuje sa ako I_{DSS} . Ako je zrejmé, prekročením napätia u_{DS} hodnotu

 U_p , sa vyprázdnené oblasti kanála spoja (pinch off) a prúd i_D ďalej nenarastá (obr. nad).

Zmeny napätia medzi G a S JFET-u

Pri BJT je vo výstupných charakteristikách ($i_C - u_{CE}$) riadiacim parametrom prúd i_B . FET-y sú napätím riadené prvky a tak je tu riadiacim parametrom u_{GS} . Na obrázkoch sú charakteristiky $i_D - u_{DS}$ JFET-ov s N a P kanálom

Ak napätie narastá (pre N kanál s negatívnymi hodnotami a pre P kanál s pozitívnymi hodnotami), vytvára sa vyprázdnená oblasť, ktorá sa uzatvára pri nižších hodnotách i_D . Maximálny prúd i_D (I_{DSS}) sa znižuje ak u_{GS} je v prípade N-kanála zápornejšie. To napätie sa označuje U_{GSOFF} alebo *pinch off* napätie (uzatvorenia) U_P . Toto napätie je záporné pre JFET s N kanálom alebo kladné v prípade P kanála.

Prevodové charakteristiky JFET tranzistora

Prevodová charakteristika je dôležitou vlastnosťou JFET-u. Je to závislosť medzi i_D a u_{GS} je na obr. (červená). V danom prípade je pre JFET s N kanálom.

Aj keď sa prevodová charakteristika zisťuje pre konštantné u_{DS} , prakticky sa pre rôzne hodnoty u_{DS} nemení. Z charakteristík je zrejmé, že prevodová krivka vznikne ako množina bodov pri ktorých charakteristiky $i_D - u_{DS}$ nadobudnú stav nasýtenia (krivky už ďalej nestúpajú) pre príslušnú hodnotu u_{GS} . Jej matematicky opis (Schockleyho rovnica) je:

$$\frac{i_D}{I_{DSS}} \approx \left(1 - \frac{u_{GS}}{U_P}\right)^2$$

Z toho vzťahu vidieť, že pre vyjadrenie prevodovej charakteristiky je potrebné poznať iba U_P a I_{DSS} . Dá sa tiež povedať, že

UDS(SAT)= UGS+ UP

Podstatné rozdiely medzi charakteristikami BJT a JFET

- 1. Pri BJT je vo výstupných charakteristikách ($i_C u_{CE}$) riadiacim parametrom prúd i_B . JFET-y sú napätím riadené prvky a tak je tu riadiacim parametrom u_{GS} .
- 2. Vertikálne medzery medzi krivkami JFET-u nie sú pravidelné a rovnaké ako je to pri BJT v širokom rozsahu *i*_C. Z toho vyplýva, J FET je viac nelineárny (nelinearitu vidno z prevodovej charakteristiky).
- 3. Odlišnosť charakteristík v tzv. **ohmickej oblasti**. BJT má v oblasti do $\approx 5\%$ u_{CE} (saturačná oblasť) silne nelineárnu závislosť $i_C(i_b)$. Šírka ohmickej oblasti je funkciou u_{GS} . Strmosť (sklon) kriviek JFET-u v ohmickej oblasti pre sa malé hodnoty u_{DS} mení s hodnotou u_{GS} . Preto sa táto oblasť nazýva ohmická lebo JFET sa využíva ako riadený odpor.

Saturačný prúd I_{DSS} je funkciou teploty

$$I_{DSS} = KT^{-\frac{3}{2}},$$

kde K je konštanta závislá od procesu výroby. Podobne aj U_P je funkciou teploty (pri BJT prúd i_B - $i_E(T)$ je funkciou teploty)

$$\Delta U_P = -k_P \Delta T$$
,

kde $k_P \approx 2mV/^{\circ}C$.

Prúdy, napätia a charakteristiky boli zväčša uvádzané pre JFET s N kanálom. V prípade P kanálu majú opačné znamienka.

Model JFET, g_m a r_{DS}

Model JFET-u je na obr. Pretože r_{DS} býva veľmi veľký možno jeho zanedbaním zjednodušiť celý náhradný model. Pre úplný model platí

$$\Delta i_D = g_m \Delta u_{GS} + \frac{1}{r_{DS}} \Delta u_{DS}$$

a pre zjednodušený model

$$\Delta i_D = g_m \Delta u_{GS}$$
.

Úplný model

Zjednodušený

Pri JFET sa zavádza iný parameter (podobný ako h_{fE} pri BJT) - prenosová vodivosť \mathbf{g}_m . Je to miera zmeny prúdu i_D na veľkosti zmeny napätia u_{GS} .

$$\begin{split} g_{\scriptscriptstyle m} &= \frac{\partial i_{\scriptscriptstyle D}}{\partial u_{\scriptscriptstyle GS}} \approx \frac{\Delta i_{\scriptscriptstyle D}}{\Delta u_{\scriptscriptstyle GS}} \bigg|_{U_{\scriptscriptstyle DS}} = kon \check{s}t. \, \cdot \\ \text{Deriváciou} \; \frac{i_{\scriptscriptstyle D}}{I_{\scriptscriptstyle DSS}} \approx & \left(1 - \frac{u_{\scriptscriptstyle GS}}{U_{\scriptscriptstyle P}}\right)^2 \; \text{získame} \; g_{\scriptscriptstyle m} \\ g_{\scriptscriptstyle m} &= \frac{\partial i_{\scriptscriptstyle D}}{\partial u_{\scriptscriptstyle GS}} = \frac{2I_{\scriptscriptstyle DSS} \left(1 - u_{\scriptscriptstyle GS}/U_{\scriptscriptstyle P}\right)}{-U_{\scriptscriptstyle P}}. \end{split}$$

Ak zadefinujeme g_m pre u_{GS} =0, získame g_{m0}

$$g_{m0} = \frac{2I_{DSS}}{-U_{P}}$$

a potom

$$g_m = g_{m0} \left(1 - \frac{u_{GS}}{U_P} \right).$$

Podobne ak stanovíme

$$k_n = \frac{I_{DSS}}{U_P^2}$$

potom

$$i_D = I_{DSS} \left(1 - \frac{u_{GS}}{U_P} \right)^2 = \frac{I_{DSS}}{U_P^2} (U_P - u_{GS})^2 = k_n (U_P - u_{GS})^2$$

Z predchádzajúcich odvodení je zrejmé ako je dôležité poznat parametre I_{DSS} a U_P . Zvyčajne ich udáva výrobca.

Statický pracovný bod sa zvyčajne volí v rozmedzí 0,3 až 0,7 násobku I_{DSS} , čím je pracovný bod v najviac lineárnej oblasti.

Vhodným postupom pre nastavenie pracovného bodu do zhruba polovice I_{DSS} je:

1. Zvolí sa $I_{DQ} = I_{DSS}/2$ a z normovanej krivky prevodovej charakteristiky (rozsah U_P aj I_{DSS} je od 0 po 1) je zrejme, že $U_{GSQ} = 0.3U_P$ (viď obr.).

- 2. Zvolí sa $U_{DSQ} = U_{DD}/2$.
- 3. Nájde sa *prenosová vodivosť g_m* v pracovnom bode.

$$g_m = \frac{0.91I_{DSS}}{0.64U_P} = \frac{1.42I_{DSS}}{U_P} = -0.71g_{m0}$$

Tieto hodnoty sú dobrým východiskovým bodom pre nastavenie statického pracovného bodu JFET-u.

MOSFET činnosť a konštrukcia

Metal – Oxide Semiconductor FET (MOS FET), hradlo je od kanálu izolované dielektrikom z oxidu kremíka (SiO₂). MOSFET-y sú konštruované buď s ochudobneným alebo obohateným kanálom.

MOSFET s ochudobneným kanálom

Konštrukcia a schematické značky týchto tranzistorov s *N* a *P* kanálom sú na obr.

MOSFET s ochudobneným N kanálom P kanálom Prevodová charakteristika (i_D - u_{GS}) a výstupné charakteristiky, t.j. závislosť i_D - u_{DS} s parametrom u_{GS} MOSFET-u s ochudobneným Λ kanálom sú na obr.

Podobne, prevodová charakteristika (i_D - u_{GS}) a výstupné charakteristiky, t.j. závislosť i_D - u_{DS} s parametrom u_{GS} MOSFET-u s ochudobneným P kanálom sú na obr.

Ako je zrejmé, prúd kanálom preteká ak je medzi vývodmi D a S pripojené napätie u_{DS} .

N-MOSFET s ochudobneným kanálom je vytvorený na substráte z polovodiča typu P. D a S oblasti, ktoré sú dopované na polovodič typu N. Tvoria steny, ktoré vykazujú nízky odpor na koncoch N kanála. Na tieto oblasti je nanesený hliníkový povrch, ku ktorému sa kontaktujú vývody. Na povrchu N kanála sa nechá narásť oxidová vrstva (SiO₂), ktorá izoluje hliníkovú vrstvu hradla od kanála. Vlastnosti MOSFET-u s ochudobneným kanálom je možné analyzovať aj z prevodovei a výstupných charakteristík. Tieto sú podobné ako charakteristiky JFETu. Pri JFET sú jeho vlastnosti ovládané P-N priechodom medzi G a D koncom kanálu. V MOSFET takýto priechod neexistuje. Pri N-MOSFET s ochudobneným kanálom je hradlo odizolované od kanálu (SiO₂) a záporné napätie hradla u_{GS} vytláča elektróny z kanála s ochudobneným kanálom). Ak napätie u_{GS} dosiahne hodnotu U_P , kanál sa uzavrie. Pozitívne hodnoty u_{GS} kanál zväčšujú, čím narastá prúd i_D . To je zrejmé z charakteristík. Treba poznamenať, že MOSFET s ochudobneným kanálom pracuje tak so zápornými ako aj s kladnými hodnotami napätia u_{GS} . Schockley rovnica je rovnaká ako v prípade JFET, s tým, že pokračuje aj pre kladné hodnoty u_{GS} . Prúd i_D však pre kladné hodnoty u_{GS} prudko narastá. Pretože hradlo je izolované, prúdy hradla sú rádovo 10⁻¹² A. Schematická značka má aj štvrtý vývod a tým je substrát. Šípka, pre N kanál smeruje do a pre P kanál von z kanála. Pre P kanál sú materiály, napätia a prúdy naopak.

MOSFET s obohateným kanálom

Konštrukcia a schematické značky týchto tranzistorov s *N* a *P* kanálom sú na obr.

MOSFET s obohateným N kanálom P kanálom

Od MOSFET-u s ochudobneným kanálom sa líšia tým, že nemajú tenkú vrstvu N alebo P kanála. V prípade N kanála je preto žiaduce určité kladné napätie u_{GS} , ktoré vytvorí N kanál. Kladné napätie u_{GS} priťahuje elektróny zo substrátu a tým formuje (indukuje) medzi N oblasťami D a S, pod SiO_2 izolantom kanál. Ak napätie u_{GS} prekročí hodnotu U_T , v oblasti medzi D a S je naakumulovaný dostatočný počet elektrónov na to, aby sa vytvorila vodivá dráha N kanál. Pokiaľ u_{GS} nedosiahne hodnotu U_T , dovtedy nie je v spomínanej oblasti dostatočný počet elektrónov a tým nemôže tiecť prúd i_D .

Prevodová charakteristika (i_D - u_{GS}) a výstupné charakteristiky, t.j. závislosť i_D - u_{DS} s parametrom u_{GS} MOSFET-u s obohateným N kanálom sú na obr.

Pre MOSFET s obohateným neexistuje parameter I_{DSS} , pretože prúd i_D je nulový kým neexistuje kanál. To znamená, že pri $u_{GS} = 0$ kanál ešte

nie je sformovaný, a tak nemôže tiecť prúd. Pre hodnoty $|u_{GS}| > |U_T|$ je prúd v saturácii daný podľa

$$i_D = k(u_{GS} - U_T)^2,$$

pričom k závisí od konštrukcie (šírka a dĺžka kanála) MOSFET-u. Typická hodnota býva $k\sim0,3\text{mA/V}^2$ a U_T je dané výrobcom. Hodnota g_m sa potom dá odhadnúť deriváciou i_D ako:

$$g_m = \frac{\partial i_D}{\partial u_{GS}} = 2k \left(u_{GS} - U_T \right).$$

Ak $|u_{GS}| < |U_T|$ potom $i_D = 0$.

Prevodová charakteristika (i_D - u_{GS}) a výstupné charakteristiky, t.j. závislosť i_D - u_{DS} s parametrom u_{GS} MOSFET-u s obohateným P kanálom sú na obr.

Aj keď je pracovný rozsah MOSFET-ov s obohateným kanálom viac obmedzený ako v prípade MOSFET-ov s ochudobneným kanálom, ich využitie je hlavne v oblasti integrovaných obvodov, pretože sú konštrukčne malé a jednoduché na výrobu. Ich schematické značky sa líšia prerušovanou čiarou kanála.

Nastavenie pracovného bodu FET-ov (Biasing)

Pre nastavenie pracovného bodu JFET-ov aj MOSFET-ov môže byť použitý rovnaký obvod ako v prípade BJT. Avšak pre JFET a MOSFET v ochudobnenom móde je pre aktívnu oblasť polarita napätia u_{GS} opačná ako je polarita U_{DD} . Opačné (napr. pre N-JFET záporné) napätie nie je od hlavného zdroja U_{DD} k dispozícii. Môže sa preto vypustiť odpor R_2 (viď obr.).

Vždy však nie možné nájsť vhodné hodnoty odporov pre požadované umiestnenie statického pracovného bodu Q. V takom prípade sa niekedy proces opakuje voľbou iného pracovného bodu Q.

Predpokladáme zosilňovač so spoločným source—om (SS) ako v predch obrázku, kde je použitý JFET a podobne to je aj pre prípad MOSFET v ochudobnenom móde. Podobne ako v prípade BJT sa vypočíta Theveninova náhrada a ekvivalentný obvod (obr.):

$$R_G = R_1 || R_2 = \frac{R_1 R_2}{R_1 + R_2}$$
,
$$U_{GG} = \frac{R_1 U_{DD}}{R_1 + R_2}$$
.

Pretože potrebujeme určiť tri neznáme premenné a to I_{DQ} , U_{DSQ} a U_{GSQ} , je potrebná tretia rovnica. Zo G-S je možné napísať:

$$U_{GG} = U_{GSQ} + I_{DQ}R_S.$$

Treba poznamenať, že odporom R_G netečie žiaden prúd (prúd do hradla je prakticky nulový), preto na ňom nevzniká ani úbytok napätia. Druhá rovnica je zo slučky D-S a U_{DD} , čiže:

$$U_{DD} = U_{DSQ} + I_{DQ} (R_S + R_D).$$

Treťou rovnicou pre nastavenie pracovného bodu je už uvedená rovnica

$$\frac{I_{DQ}}{I_{DSS}} = \left(1 - \frac{U_{GSQ}}{U_P}\right)^2.$$

Tieto tri rovnice sú dostatočné na nastavenie pracovného bodu Q zosilňovačov na báze JFET a MOSFET v ochudobnenom móde.

Treba poznamenať, že nie je potrebné aby pracovný bod bol nutne umiestnený v strede zaťažovacej priamky. Zvyčajne je zosilňovač s FET vstupným obvodom, v ktorom sa skôr využíva vysoký vstupný odpor. V tomto bode bývajú vstupné napätia také nízke, výstupný rozkmit nebýva v celom rozsahu. Taktiež, charakteristiky FET sú nelineárne a tým nie je žiaduce, aby sa vysokým rozkmitom zvyšovalo nelineárne skreslenie.

Analýza zosilňovača so SS

Na obrázku je znázornený ekvivalentný (náhradný) obvod pre predchádzajúce zapojenie.

Predpokladáme, že r_{DS} je o mnoho väčšie ako $R_D||R_L$, tak že môže byť zanedbané. Pre G-S obvod možno teda napísať:

$$u_{GS} = u_i - i_D R_S = u_i - R_S g_m u_{GS}$$
.

Vyjadrením u_{GS}

$$u_{GS} = \frac{u_i}{1 + R_S g_m}$$

Pre D-S obvod možno napísať:

$$u_{o} = -i_{D}(R_{D} || R_{L}) = \frac{-(R_{D} || R_{L}) g_{m} u_{i}}{1 + R_{s} g_{m}}.$$

Napäťové zosilnenie je tak:

$$A_{u} = \frac{u_{o}}{u_{i}} = \frac{-g_{m}(R_{D}||R_{L})}{1 + R_{S}g_{m}} = \frac{-(R_{D}||R_{L})}{R_{S} + \frac{1}{g_{m}}}$$

Odpor R_S je niekedy premostený kondenzátorom, čím sa zvyšuje napäťové zosilnenie, a to na:

$$A_u = -g_m(R_D \| R_L)$$

Vstupný odpor a prúdové zosilnenie sú dané:

$$R_{in} = R_G = R_1 || R_2 \text{ a}$$

$$A_i = \frac{i_o}{i_{in}} = \frac{A_u R_{in}}{R_L} = \frac{-\left(R_D || R_L\right)}{R_S + \frac{1}{g_m}} \frac{R_{in}}{R_L} = \frac{-R_G}{R_S + \frac{1}{g_m}} \frac{R_D}{R_D + R_L}$$

Návrh zosilňovača so SS

Návrh zosilňovača s JFET alebo ochudobneným MOSFET je rovnaký. Zosilňovač sa navrhuje tak aby spĺňal požadované špecifikácie, ktoré musia byť v súlade s parametrami tranzistora. Zvyčajné požadované špecifikácie sú: hodnota napájacieho napätia, zaťažovací odpor, napäťový zisk a vstupný odpor. Procedúrou návrhu sa získajú hodnoty odporov R_1 , R_2 , R_D a R_S podľa obr.

Predpokladá sa sú známe aspoň V_p a I_{DSS} .

Krok 1. Zvolí sa pracovný pod v časti charakteristickej krivky, ktorá je najviac lineárna (viď obr.). Ten stanovuje I_{DQ} , U_{DSQ} a U_{GSQ} a g_m . Ak nie sú známe výstupné charakteristiky tak sa použije normovaná bezrozmerná char. Pre daný typ tranzistora

Krok 2. Rovnica 2. Kirchh. zákona pre slučku výstupného obvodu

$$V_{DD} = V_{DSQ} + (R_S + R_D)I_{DQ}$$

Z toho

$$R_S + R_D = \frac{V_{DD} - V_{DSQ}}{I_{DO}} = K_1$$

Je to rovnica o dvoch neznámych ktorými sú R_S a R_D . K_1 je však vyjadriteľné lebo všetky hodnoty sú známe.

Krok 3. Použije sa výraz pre napäťové zosilnenie

$$A_{\nu} \, = \, \frac{-\,R_L \parallel R_D}{R_S \, + \, 1/g_m} \, = \, \frac{-\,R_L \parallel R_D}{(K_1 \, - \, R_D) \, + \, 1/g_m}$$

V tejto rovnici je už iba jedna neznáma R_D , avšak po úprave a vyjadrení vzniká kvadratická rovnica, ktorá má dve riešenia. Realite vyhovuje iba kladné riešenie a navyše musí spĺňať podmienku $R_D < K_1$, aby R_S nebola záporná hodnota. V opačnom prípade je nutné sa vrátiť na Krok 1 a stanoviť iný pracovný bod. Ak je podm. Splnená postupuje sa na Krok 4.

Krok 4. Vypočíta sa R_S z predch. rovnice

$$R_S = \frac{V_{DD} - V_{DSQ}}{I_{DQ}} - R_D$$

Je potrebné nájsť už iba hodnoty odporov R₁, R₂.

Krok 5. Rovnica 2. Kirchh. zákona pre slučku vstupného obvodu

$$V_{GG} = V_{GSQ} + I_{DQ}R_S$$

Napätie U_{GSQ} ma opačnú polaritu ako U_{GG} . Potom abs. Hodnota súčinu I_{DQ} . R_S musí byť väčšia ako abs. hodnota U_{GSQ} . inak by U_{GG} malo opačnú polaritu ako U_{DD} , čo nevyhovuje pre uvedené zapojenie.

Krok 6. Vypočítajú sa hodnoty R_1 a R_2 , ak sa predpokladá rovnaká polarita U_{GG} a U_{DD} . Najskôr sa nájde hodnota R_G z prúdového zisku alebo vstupného odporu a potom

$$R_1 = \frac{R_G}{1 - V_{GG}/V_{DD}}$$

$$R_2 = \frac{R_G V_{DD}}{V_{GG}}$$

Krok 7. Ak U_{GG} a U_{DD} majú opačnú polaritu nie je možné vyjadriť R_1 a R_2 . Praktickým postupom je uvažovať nech U_{GG} = 0, čím $R_2 \rightarrow \infty$. Pretože U_{GG} je určené rovnicou

$$U_{GG} = \frac{R_1 U_{DD}}{R_1 + R_2},$$

musí sa kondenzátorom modifikovať Rs, čo vedie k

$$V_{GG} = 0 = V_{GSQ} + I_{DQ}R_{Sdc}$$

Hodnota R_{Sdc} je daná

$$R_{Sdc} = \frac{-V_{GSQ}}{I_{DQ}}$$

a R_{Sdc} = R_{S1} + R_{S2} a R_{Sac} je R_{S1}

Tým, že existuje nový R_{Sdc} musí sa zopakovať niekoľko krokov.

Krok 8. Určí sa nová hodnota R_D .

$$R_D = K_1 - R_{Sdc}$$

Nová hodnota R_{Sac} stanovuje aj iny napäťový zisk

Krok 9. Nájde sa hodnota R_{Sac} , čo je R_{S1} a potom

$$A_{\nu} = \frac{-(R_L || R_D)}{R_{Sac} + 1/g_m}$$

Čiže

$$R_{Sac} = -\frac{R_L || R_D}{A_v} - \frac{1}{g_m}$$

Predpokladá sa, že R_{Sac} je kladná hodnota ale menšia ako R_{Sdc}

$$R_{Sdc} = R_{Sac} + R_{S2}$$

A tak

$$R_1 = R_{\rm in} = R_G$$

Krok 9. Ak sa nájde kladná hodnota R_{Sac} , ale je väčšia ako R_{Sdc} , potom sa nedá navrhnúť zosilňovač s takým napäťovým ziskom a musí sa zvoliť nový pracovný bod a vrátiť sa na krok 1.