

CS 383 – Machine Learning

Introduction to Machine Learning

Slides adapted from material created by E. Alpaydin Prof. Mordohai, Prof. Greenstadt, Pattern Classification (2nd Ed.), Pattern Recognition and Machine Learning

Objectives

- Understand common machine learning problems
- Understand basic ML terminology

What is Machine Learning?

- Definition: "The study of computer algorithms that improve automatically through experience"
- Formally:
 - Improve at task T
 - With respect to performance measure P
 - Based on experience E
- Example: Recognize a Person
 - T: recognize a person
 - P: number of time we recognized a person correctly
 - E: a database of labeled faces

ML vs Al

- How is this different than AI?
 - ML can be thought of as a sub-topic within AI
- Al deals with any "intelligent" task performed by a non-human agent
 - Often "path finding algorithms"
- ML specifically deals with making decisions based on acquired data
 - Both past and current

Why do we care?

• It's everywhere!!!

Example: Photograph or Not?

Example: Character Recognition

Example: Speech Understanding

How Do We Do It?

- We need to think about
 - 1. What needs to be learned?
 - What's our task/goal?
 - 2. What feedback can we get and in what form?
 - Supervised learning (correct answers for each example)
 - Unsupervised learning (correct answers not given)
 - 3. What representation should we use (features)?

Problems in ML

- There are several typically machine learning problems that we'll tackle in the course
- Clustering
 - Given some data we want to figure out how to group them together.
 - This is an example of *unsupervised learning* where we're trying to discover the groups (instead of being given them)

Problems in ML

Regression

- Given some data, can we predict an outcome value?
- Example: We have a car's brand, year, mpgs and want to figure out its worth
- This is an example of *supervised* learning
 - To build our prediction system, we have data with labels.

Problems in ML

- Classification
 - Given data, can we predict which category something belongs to.
 - Typically involves *learning* some rules.
 - This is an example of *supervised* learning
 - To build our prediction system, we have data with labels.

Administrative Stuff...

Contacts

• Instructor:

- Matt Burlick, mjburlick@drexel.edu, UC137
- Office hours
 - Wednesday 3:00pm 5:00pm
 - Thursdays 3:30pm-5:30pm
 - And by appointment

Teacher Assistant:

- Janith Weerasignhe, bnw37@drexel.edu, CLC
 - Thursdays 2:00pm-4:00pm

• Lectures:

- Section 001 TR 09:30pm-10:50am Rush 014
- Section 002 TR 11:00am-12:20pm Rush 014

Pre-Requisites

- CS 260 (Data Structures
- CS 380 (Artificial Intelligence)
- The idea is that you should be a proficient programmer such that you can pick up a new language "on the fly" and use it as a tool.
- You should also be comfortable with linear algebra, probability, statistics, and calculus.
 - We'll have a little (ungraded) quiz at the end of today's lecture so you'll see what you're expected to know

Course Resources

- Official Textbook:
 - None
- Recommended Textbooks:
 - Basic: An Introduction to Statistical Learning (free PDF)
 - Medium: Introduction to Machine Learning (Alpaydin)
 - Advanced: Machine Learning (Murphy)
- Blackboard
- Piazza

Course Software

- Programming Environment
 - Your choice
 - I recommend MatLab (programming environment)
 - Obtain for free from http://drexel.edu/irt/computers-software/software/
- Typesetting Environment
 - LaTex or MS Equation Editor
 - First download LatTex itself (warning, it's huge!)
 - https://latex-project.org/ftp.html
 - Then (optionally) get a IDE wrapper for it
 - http://www.xm1math.net/texmaker/download.html#window
 - https://github.com/TeXworks/texworks/releases
 - Or use an online Latex typesetter!
 - www.overleaf.com
- Discussion Forum
 - Piazza You should have already received an invitation!
 - Use this as your first place to pose questions
 - Hopefully not just I can help
 - But don't post code.

Course Objectives

- Foundations of modern statistical Machine Learning
 - Regression (maximum likelihood)
 - Probabilities, Bayesian modeling and inference
 - Classification (support vector machines, etc..)
 - Mixture models (k-means, Gaussian mixtures)
 - Sequential data (Hidden Markov models)
- Applications of Machine Learning algorithms
- Implementation and use of Machine Learning algorithms

Evaluation

Homework Sets	55%
• Quizzes	15%
Final Exam	30%

Homework Sets

- Eight distributed throughout the course
- Reinforce your understanding of the material
- Include theoretical questions as well as implementation of ML algorithms
- Submission is to be made on Blackboard as a single compressed file consisting of:
 - PDF with your solutions to the theory questions
 - Must be typeset with either Microsoft Equation Editor or Tex
 - README text file on how to run your code
 - Source code
- You will lose 1pt for every hour late (round up) on an assignment up to 48hrs (after which you will receive a zero)

Midterm/Final

- Based on theory and mathematics.
- Similar to theory questions that are part of assignments.
- Midterm has significantly less weight so you can get a feel for what to expect prior to the final.

Course Policies

- Assignments are to be done individually unless otherwise noted
- While you are encouraged to use a versioning system like github or bitbucket, please make your work for this course private.
- Any dispute about an assignment grade must be made and resolved within 5 days of receiving your grade. After this period your grade cannot be adjusted.

Notation/Mathematics/Matlab

- I have placed on Blackboard a number of resources to help you review the expected and needed math as well as get you started in Matlab:
 - Course Notation There will be a lot of symbols used in this course.
 This document tries to give you an overview of them.
 - Similarity and Distance Functions Often we will need to compute the distance and/or similarity between observations. This document includes several commonly used ones.
 - Matlab Crash Course For those of you who haven't used Matlab before, here's a crash course I gave a while back.
 - Matlab Functions Here's a list of most of the Matlab functions I used in developing this course.
 - Math Review A quick review of the most critical math needed for this course. Including..
 - Calculus
 - Linear Algebra
 - Probability and Statistics

Fundamental ML Concepts

ML Overview

- We can basically break machine learning tasks into two categories
 - 1. Supervised Learning
 - 2. Unsupervised Learning
- Supervised learning
 - Data X_i and correct answer (label) Y_i given for each example $i \in \{1, ..., N\}$
- Unsupervised learning
 - Only data given for each example, X_i

Types of Problems

Types of Algorithms

- Instance Based Algorithms
 After training, performing the desired task (classification, regression, clustering, etc..) is based on training data samples themselves
- Model Based Algorithms

Training involves learning a model such that performing the desired task is done by running the data through model (which does not directly reference training data samples)

Types of Algorithms

- Algorithms can further be defined as parametric vs non-parametric
- Parametric Algorithms
 - The model we're learning is based on blending information via parameters. These parameters must be learned during the training process.
- Non-Parametric Algorithms
 - These algorithms/models are not defined by determining blending parameters.
 - However there still may be use-specified parameters

Types of Algorithms

- A large part of machine learning is attempting to divide the hypothesis space
 Linear vs. nonlinear problems
 - Separate it into clusters
 - Separate it into classes
- These "dividers" can be either
 - Linear
 - Non-Linear

Types of Data

- Our data can also be categorical or quantitative
- Categorical
 - Examples: Car Model, School
- Finite Discrete Valued
 - Ordering still matters, but there's only so many values out there
- Continuous Valued
 - Examples: Blood Pressure, Height

No Free Lunch Theorem

- Unfortunately there's no single machine learning algorithm to rule them all
- Typically we must consider the previous information in deciding which set of algorithms to train and test
 - Then we select the best.

No Free Lunch Theorem

- Questions we should ask ourselves are:
 - Do we have labels?
 - Do we want to do clustering?
 - Do we know the number of clusters?
 - Do we want to do regression?
 - Do we want to do classification?
 - Is understanding/interpreting the learned system important?
 - What are our memory and/or processing time limitations?
 - Do we want instance-based learning?
 - Do we have categorical or quantitative data?
 - Do I have enough data?
 - Do I have enough features? Too many?
 - Is linear ok or do I need non-linear?
 - And more...

CS383 ML Algorithms

- Here's a list of algorithms we'll look at in the class and what types they are
- 1. Feature Reduction (Feature Selection, Feature Projection)
- 2. Clustering
 - a. Expectation-Maximization (k-means, k-medoids, GMM)
 - b. Agglomerative Clustering
- 3. Linear Regression
- 4. Classification
 - a. Probabilistic Decisions (Inference, Bayesian Learning, Decision Trees)
 - b. Nearest Neighbors
 - c. Support Vector Machines
 - d. Logistic Regression
 - e. Multi-layer Perceptions (artificial neural networks, deep learning)
 - f. Hidden Markov Models (HMMs)