

In the circuit of Fig. 8.63, suppose all resistors are equal to $2 \text{ k}\Omega$ and $g_{m1} = g_{m2} = 1/(200 \Omega)$. Assuming $\lambda = \gamma = 0$, calculate the closed-loop gain and output impedance.

- **8.20.** A CMOS inverter can be used as an amplifier with or without feedback (Fig. 8.64). Assume $(W/L)_{1,2} = 50/0.5$, $R_1 = 1 \text{ k}\Omega$, $R_2 = 10 \text{ k}\Omega$, and the dc levels of V_{in} and V_{out} are equal.
 - (a) Calculate the voltage gain and the output impedance of each circuit.
 - (b) Calculate the sensitivity of each circuit's output with respect to the supply voltage. That is, calculate the small-signal "gain" from V_{DD} to V_{out} . Which circuit exhibits less sensitivity?

In the circuit of Fig. 8.66, assume $\lambda = 0$, $g_{m1,2} = 1/(200 \Omega)$, $R_{1-3} = 2 k\Omega$, and $C_1 = 100$ pF. Neglecting other capacitances, estimate the closed-loop voltage gain at very low and very high frequencies. (5+5)

Figure 8.66