	$ au_1^{\#2}$	0	0
	$\tau_{1^-}^{\#1}\alpha$	0	0
$\kappa \omega^{\alpha\beta\theta}$ $\kappa \omega^{\alpha\beta\theta}$ $\kappa \omega^{\theta\kappa\lambda} + \kappa^{\theta}$ $\kappa^{\theta} \omega^{\theta} \omega^{\theta}$ $\kappa^{\theta} \omega^{\theta} \omega^{\theta}$ $\kappa^{\theta} \omega^{\theta} \omega^{\theta}$ $\kappa^{\theta} \omega^{\theta}$ $\kappa^{\theta} \omega^{\theta}$	$\sigma_{1}^{\#2}{}_{\alpha}$	0	0
Lagrangian density $\frac{2}{2}t_3 \; \omega_{\kappa a}^{\alpha l} \; \omega_{\kappa a}^{\kappa + \frac{2}{3}}t_2 \; \omega_{\kappa \lambda}^{\kappa \lambda} \; \omega_{\kappa \lambda}^{l} + \frac{1}{3}t_2 \; \omega_{\kappa \lambda}^{l} \; \omega_{\kappa \lambda}^{k} + \frac{2}{3}t_3 \; \omega_{\kappa a}^{k} + \frac{2}{3}t_2 \; \omega_{\kappa \lambda}^{k} + \frac{1}{3}t_2 \; \partial_\theta \omega_{\alpha \beta}^{k} \; \partial_\kappa \omega_{\alpha \beta}^{k} - \frac{1}{2}t_2 \; \partial_\theta \omega_{\alpha \beta}^{k} \; \partial_\kappa \omega_{\alpha \beta}^{k} + \frac{1}{2}t_2 \; \partial_\theta \omega_{\alpha \beta}^{k} \; \partial_\kappa \omega_{\alpha \beta}^{k} + \frac{1}{2}t_2 \; \partial_\alpha t \omega_{\alpha \beta}^{k} + \frac{1}{2}t_2 \; \omega_{\beta \gamma}^{k} + \frac{1}{2}t_2 \; \partial_\beta \omega_{\gamma}^{k} + $	$\sigma_{1^{^{-}}\alpha}^{\#1}$	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\tau_{1}^{\#1}{}_{\alpha\beta}$	$\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	$\frac{3ik}{(3+k^2)^2t_2}$
$\frac{y}{2} \omega_{\kappa\lambda} \omega_{\kappa}$ $\frac{-\frac{2}{3}r_2 \partial^{\beta} \omega^{\theta}}{3}$ $\frac{+\frac{5}{2}r_3 \partial_{\alpha} \omega_{\lambda}}{4}$ $\frac{+\frac{5}{2}r_3 \partial_{\theta} \omega_{\lambda}}{4}$ $\frac{1}{2} \partial^{\alpha} f_{\kappa} \partial^{\kappa} f_{$	$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$\frac{3}{(3+k^2)^2 t_2}$
Lagrangian density $\frac{2}{3}t_3 \omega_{,\alpha'}^{\alpha l} \omega_{\kappa\alpha'}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{6}{(3+k^2)^2 t_2}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$
Lagrang Lagrang $\frac{2}{3}t_3 \omega_{\alpha}$ ω_{α} $\frac{2}{3}r_3 \partial_{\alpha}\omega_{\alpha}$ $\frac{2}{3}r_3 \partial_{\alpha}\omega_{\alpha}$ $\frac{2}{3}r_3 \partial_{\alpha}\omega_{\alpha}$ $\frac{2}{3}r_3 \partial_{\alpha}\omega_{\alpha}$ $\frac{1}{3}t_2 \partial_{\alpha}f_{\kappa}$ $\frac{1}{6}t_2 \partial_{\alpha}f_{\kappa}$ $\frac{2}{3}t_3 \omega_{\kappa}\lambda$ $\frac{2}{3}t_3 \omega_{\kappa}\lambda$ $\frac{2}{3}t_3 \partial_{\alpha}\omega_{\kappa}\lambda$		$\sigma_{1}^{\#1} + \alpha^{eta}$	$\sigma_{1}^{\#2} + \alpha^{eta}$

$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{4i}{3kr_3+6k^3r_3}$	$\frac{i\sqrt{2}(9k^2r_3-4t_3)}{3k(1+2k^2)^2r_3t_3}$	0	$\frac{2(9k^2r_3-4t_3)}{3(1+2k^2)^2r_3t_3}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1^{-}lpha}^{\#2}$	0	0	0	$-\frac{2\sqrt{2}}{3k^2r_3+6k^4r_3}$	$\frac{9k^2r_{3-4}t_3}{3(k+2k^3)^2r_3t_3}$	0	$-\frac{i\sqrt{2}(9k^2r_3-4t_3)}{3k(1+2k^2)^2r_3t_3}$
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	$-\frac{2}{3k^2r_3}$	$-\frac{2\sqrt{2}}{3k^2r_3+6k^4r_3}$	0	$\frac{4i}{3kr_3+6k^3r_3}$
$\tau_{1}^{\#1}{}_{\!$	$\frac{3 i \sqrt{2} k}{(3+k^2)^2 t_2}$	$\frac{3ik}{(3+k^2)^2t_2}$	$\frac{3k^2}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_{1}^{\#2}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$\frac{3}{(3+k^2)^2 t_2}$	$-\frac{3ik}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{+}\alpha\beta$	$\frac{6}{(3+k^2)^2 t_2}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$-\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	0	0	0	0
	$\sigma_{1}^{\#1} + \sigma^{eta}$	$\sigma_{1}^{\#2} + \alpha^{\beta}$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_1^{\#2} +^{lpha}$	$\tau_{1}^{\#1} + ^{\alpha}$	$\tau_1^{\#2} + \alpha$

$f_{1}^{\#2}$	0	0	0	$-\frac{2}{3}ikt_3$	$\frac{1}{3}\bar{l}\sqrt{2}kt_3$	0	$\frac{2k^2t_3}{3}$	
$f_{1^{ ext{-}}lpha}^{\#1}$	0	0	0	0	0	0	0	
$\omega_{1^{-}\alpha}^{\#2}$	0	0	0	$-\frac{\sqrt{2}t_3}{3}$	٤ <u>3</u>	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_3$	
$\omega_{1^-\alpha}^{\#1}$	0	0	0	$\frac{1}{6} \left(-9 k^2 r_3 + 4 t_3 \right)$	$-\frac{\sqrt{2}t_3}{3}$	0	2 <i>ikt</i> 3 3	
$f_1^{\#1} = \alpha \beta$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<u>i kt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	0	
$\omega_1^{\#2}{}_+\alpha\beta$	$\frac{\sqrt{2}t_2}{3}$	$\frac{\varepsilon}{2^{2}}$	$-\frac{1}{3}$ I kt_2	0	0	0	0	
$\omega_1^{\#1}{}_+\alpha_\beta$	$\frac{2t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_2\left -\frac{1}{3}\bar{l}kt_2\right $	0	0	0	0	
	$\omega_1^{#1} + \alpha^{\beta}$	$\omega_1^{\#2} + \alpha^{\beta}$	$f_{1+}^{\#1} \dagger^{\alpha\beta}$	$\omega_{1}^{\#_1} +^{\alpha}$	$\omega_1^{\#2} +^{\alpha}$	$f_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$f_1^{#2} + \alpha$	

 $\omega_{0^+}^{\#1}$

 $i\sqrt{2} kt_3$

 $f_{0^{+}}^{#1}$

 $-i \sqrt{2} kt_3$

 $2 k^2 t_3$

 $f_{0}^{#2}$

0

 $\omega_0^{\sharp_1}$

0

0

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2+\alpha\beta}^{\#1}$	$\omega_{2-\alpha\beta\chi}^{\#1}$
$\omega_{2}^{\#1}\dagger^{lphaeta}$	$-\frac{3k^2r_3}{2}$	0	0
$f_{2^{+}}^{\sharp 1}\dagger^{\alpha\beta}$	0	0	0
$\omega_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	0

 $\tau_{0}^{#2} + \sigma_{0}^{#1} + \sigma_{0}^{#1}$

	#2)+ †	()		0	0		0			$\sigma_{0}^{\#1}$	0	0	0	$\frac{1}{k^2 r_2 +}$
ω_0^i	# ₁ †	()		0	0	$k^2 r$	$t_2 + t_2$	2		$\tau_0^{\#2}$	0	0	0	0
	#	П	П	m	κ	m	М	2	2	24	${\mathfrak r}_0^{\#1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
ints			0	σ == 0		$\alpha\beta$ == 0	3					I			
Source constraints	irreps	0	$\bar{l} k \sigma_{0+}^{\#1} ==$	$+2ik\ \sigma_{1}^{\#2\alpha}$	0 ==	+ 1	$== \sigma_1^{\#_2^2\alpha\beta}$	ر == 0	0 ==	:#	$\sigma_{0}^{\#1}$	$\frac{1}{(1+2k^2)^2t_3}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	0	0
Source	SO(3) irreps	$\tau_0^{\#2} == 0$	$\tau_{0}^{\#1}$ - 2	$t_1^{\#2}\alpha$ +	$t_1^{\#1\alpha} =$	$\tau_1^{\#1}{}^{\alpha\beta}$	$\sigma_1^{\#1}{}^{\alpha\beta}$	$\sigma_{2}^{\#1}{}^{\alpha\beta\chi}$	$\tau_2^{\#1}\alpha\beta$	Total		$\sigma_{0}^{\#1}$ †	τ ^{#1} +	$\tau_{0}^{\#2}$ †	$\sigma_{0^-}^{\#1} \dagger$

	Massive partic	le
? $I^P = 0$?	Pole residue:	$-\frac{1}{r_2}$
$\frac{3}{2}$	Polarisations:	1
\vec{k}^{μ}	Square mass:	$-\frac{t_2}{r_2}$
?	Spin:	0
•	Parity:	Odo

?	Massive particle								
	Pole residue:	$-\frac{1}{r_2} > 0$							
	Polarisations:	1							
	Square mass:	$-\frac{t_2}{r_2} > 0$							
	Spin:	0							
	Parity:	Odd							

(No massless particles)

Unitarity conditions $r_2 < 0 \&\& t_2 > 0$