

Visualización avanzada

2. Componentes básicos de visualización

Los componentes básicos de una visualización: tabla de convenciones

Gráficos base disponibles y su elección para propósitos específicos

Color

La potencia de la visión humana

Los humanos tenemos un sistema visual potentísimo, pero su papel en nuestra vida no es (solo) por la capacidad de percibir objetos o formas, sino la capacidad de *dotarlos de significado*

Capacidades cognitivas de nuestro sistema perceptivo asociadas a la visualización de datos:

http://www.fusioncharts.com/blog/2014/03/how-we-decode -visual-information-podv/

Convenciones o estándares:

se basan en capacidades específicas de SVH

De ellos dependen la rapidez en interpretar lo que se dibuja

Pero no tenemos misma capacidad para todo

https://upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Piecharts.svg/200

Pero no tenemos misma capacidad para todo

https://upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Piecharts.svg/200

Opx-Piecharts.svg.png

Gráficos base

https://matplotlibguide.readthedocs.io/en/latest/Matplotlib/types.html

MUY IMPORTANTE: Comprender la naturaleza de los datos que representamos:

- ¿Tienen significado completo los números que representamos? ¿Son medidas estrictamente cuantitativas? (Lo que se conoce como nivel de medida a nivel de intervalo)
- O por el contrario, ¿los números son arbitrarios? ¿Responden a una codificación que no mantiene las propiedades naturales de las medidas cuantitativas? (Lo que se conoce como nivel de medida cualitativa o nominal)

Fijarnos en los ejemplos complejos disponibles

https://matplotlib.org/stable/
gallery/index.html

Podremos escoger varias alternativas para nuestro propósito específico, y prototiparlas antes de elegir cuál (o cuáles) son las más adecuadas

Fijarnos en los ejemplos complejos disponibles

https://seaborn.pydata.org/tutorial.html

Consultar siempre los ejemplos de nuestra librería de elección

El color

Algunas recomendaciones importantes:

- El color en visualización de datos **no es una propiedad estética**, debe tener una función
- Sólo tenemos memoria para asociar 5 (máx. 7) colores diferentes arbitrarios a objetos o tipos -> será necesario poner una leyenda
- El color es una propiedad que requiere un cuidado extraordinario del medio con el que se presenta (ya sea impreso o proyectado)
- Usar las escalas de color testadas y propuestas por librerías:
 - https://matplotlib.org/stable/tutorials/colors/colormaps.html
 - https://seaborn.pydata.org/tutorial/color_palettes.html

El color

Tutorial completo sobre el color (en entornos R, pero aplicable a cualquier entorno de visualización):

https://github.com/pedroconcejero/taller-color

https://github.com/pedroconcejero/taller-color/blob/master/taller_color_def_grupo_madrid.docx

http://madrid.r-es.org/61-jueves-13-de-junio-2019/

Aplicación de estos principios (ejemplo)

Aplicación de estos principios (ejemplo)

Aplicación de estos principios (ejemplo)

ejemplo mosaico

Visualización para bien ... y para mal

Datos y material aquí:

https://github.com/ pedroconcejero/dgt accidentes for R madRid

Teoría de la visualización de datos

SÍ hay una teoría de visualización de datos:

https://clauswilke.com/dataviz/

¡Gracias!

Pedro Concejero

pedro.concejerocerezo@gmail.com

