

HO CHI MINH CITY UNIVERSITY OF TECHNOLOGY

FACULTY OF TRANSPORTATION ENGINEERING

Department Automotive and Engine

STUDY ON AUTOMOTIVE PUSH-ROD SUSPENSION SYSTEM

Instructor: Ph.D. Tran Dang Long

Ho Chi Minh City, 15th June, 2022

Nhu Quoc Huy - 1852412 Students:

I. Introduction of the thesis

Objectives: Evaluate the technical characteristic of the Push-rod suspension system

- Relationship between the wheel displacement and the suspension travel
- The spring stiffness and damping coefficient
- The change in camber angle and sliding range of the tire

Project's Idea:

Compare with the conventional suspension system with the same conditions:

- Natural frequency
- Damping ratio

1. Build 3D model

II. Method and solution

Build a 3D model on SolidWorks with the appropriate linkage components and properties (mass)

Fig 1. 3D model on SolidWorks

Fig 2. Simulation model in Matlab/Multibody environment

Importing to Matlab/ Multibody environment to create and simulate the models

III. Implementation process

Fig 3. 3D models of Push-rod suspension system and Conventional suspension system

Table 1: light truck suspension parameters (Source: Vibration analysis of a light truck by 3d dynamic vehicle vibration model by Mr. Truong Hoang Tuan, Dr. Tran Huu Nhan and Mr. Tran Quang Lam.)

2. Simulate on Matlab/Multibody

Fig 4. Simulation model in Matlab/ Multibody environment

Natural frequency (fn) Damping ratio (ζ)

 \rightarrow Dynamic deflection (Δx)

4. Calculation flow

Start

Fig 6. Calculation flowchart of the simulation model

3. Road profile simulation

Fig 5. Harmonic road profile simulation on Matlab/ Multibody

IV. Result and disscussion

Wheel displacement and suspension travel Relationship between Wheel displacement and Suspension travel Push-rod suspension Conventional suspension Suspension travel (mm

Fig 7. Relationship between wheel displacement and suspension travel curve

Change in camber angle and sliding range

Fig 8. Relationship between change in camber angle and tire's sliding range curve

Gain response spectrum

Fig 9. Gain response spectrum of 1/3 load condition

Fig 10. Gain response spectrum of 2/3 load condition

Fig 11. Gain response spectrum of full load condition

Simulation results

	1/3 Load		2/3 load		Full load	
Suspension	Push-rod	Conventional	Push-rod	Conventional	Push-rod	Conventional
Natural frequency	1.62	1.25	1.15	1.17	1.02	1.09
Damping ratio	0.259	0.259	0.249	0.249	0.274	0.274

Table 2: Natural frequency and damping ratio of Push-rod and Conventional suspension system with different load condition

	Push-rod	Conventional	Difference
Spring stiffness (N/m)	36500	28566	1.27 times
Damping coefficient (Ns/m)	3034	2090	1.45 times

Table 3: Spring stiffness and damping coefficient of Push-rod and Conventional suspension system

Discussion

- More linkage components
- Shorter suspension travel and body movement
- stiffness Greater spring damping coefficient