7. Zwischenbericht

zum

BMFT-Verbundprojekt
"Einsatz der Mikromechanik zur Herstellung
frequenzanaloger Sensoren"

Förderkennzeichen 13 AS 0115

Berichtszeitraum: 1.7. bis 31.12.1992

MotoMeter GmbH

Daimlerstraße 6

7250 Leonberg

Projektleiter: Dr. S. Dagenbach

Bearbeiter: W. Hartig

Kurzfassung der Vorhabenbeschreibung

TEM 3 W. Hartig

MotoMeter wird den Einsatz mikromechanischer Resonatoren in Form schwingungsfähiger Membranen zur Druckmessung untersuchen.

Planung: 1988	Realisierung: 1989-1992
	FEM Berechnungen zur Auslegung von druckempfindlichen Quarzmembranen
	Mikromechan. Strukturierung von Quarz im HSG-Labor
FEM Berechnungen zur Elektrodenformbestimmung	Grundlagenuntersuchungen zur Schwingungsanregung von piezoelektrischem Quarz
Strukturierung der Elektro- den mittels Laser	Zeichnung ist direkte Vorlage für Lasersteuerung
Kontaktierung und mechan. Einbindung der Sensorele- mente in das Gehäuse.	"Sandwich" Aufbau aus der LCD Technik
	Schwingungsanregeelektronik
Intelligente Aus- werteelektronik	

Bosch Telecom

Membranform-Entwicklung

TEM 3 W. Hartig

- 1. Vorgaben
 - Quarz
 - 125µm 200µm Elektrodenabstand
 - "kleiner" Membrandurchmesser
 - Membranstrukturierung durch naßchemisches Ätzen
 - Empfindlichkeits-Vergleich mit

* ETA Zugsensor: f=48 kHz; △f=1200 Hz -7500 Hz (5-8 N)

* ETA Drucksensor: f= 28kHz; $\triangle f=100$ Hz (3 bar)

2. Gesucht: Membranform (im Querschnitt) mit guter Resonanzfrequenzänderung bei Druckbelastung

Form	Werk- stoff	Dicke in µm	Durch- messer in µm	Grund- freq. in kHz	Frequenz- änderung in Hz
·	SI ·	25	9600	5	+ 9000
mr im	Quarz	125	9600	16	+ 1500 bzw. + 1800
	Quarz	125	6000	38	+ 700
J.,,,	Quarz	125	4200	53	± 3300
	Quarz	125	4200		

- 3. Festlegen der Ringform
 - Stromzuführung
 - Rüchseitengraben ① (1)
 - Optimierung der geometrischen Maße wie
 - * Grabenbreite
 - * Grabendurchmesser O

Schwingungsanregung

TEM 3 W. Hartig

Bosch Telecom

* Welcher Mode (Schwingungsform) ist druckabhängig?

* Welche Teilbereiche müßen dazu gedehnt, gestaucht, verschoben werden?

* Welche Kombination aus bestimmtem Quarzschnitt und bestimmter Elektrodenanordnung erzwingt diese Teilbereichsdeformationen?

- ---> Gesammtkonzept
 - Membranform
 - Quarzschnitt
 - Elektrodenform

Eigenschaften und Bezeichnungen verschiedener Quarzschnitte

Schnitt	Bezeichnung	Schwingungsform	Frequenzbereich
AT	(YXI)-35 ⁰	Dickenscherschwingung	0,5 - 100 MHz
CT	(YXI)-38 ⁰	Flächenscherschwingung	. 300 - 1000 kHz
X-5 ⁰	(XYt)-5 ⁰	Biegeschwingung	10 - 100 kHz
GT	(YXIt)-51 ⁰ /-45 ⁰	Längs-Dehnungs-Schwingung	100 - 550 kHz
			r

aus S. Büttgenbach , Mikromechanik

Schwingungsanregung in Quarz

- Auswahl des Quarzschnittes (X-, Z-, AT-Schnitt; Themp.; Ätzrate; Anregung; ...)
- Strukturierung des Quarzblanks (Platte; Balken; Scheibe; Geätzt; Gebohrt; Gesägt; ...)
- Elektrodenanordnung (senkrecht oder parallel zur Ebene)

(bewirkt durch Piezzoeffekt)

Lokale Deformation (z.B. je angeregtem Würfelstück)

Summe der anderen Deformationen

(mit Berücksichtigung ihrer Position ergibt die)

Sensorverformung (entsprechend der Eigenresonanzform) (Biegung; Drehung; Dehnung; Scheerung...)

Bosch Telecom

Elektroden erzeugen ein Feld in Y'-Richtung


```
08:55:07
PLOT NO. 3
POST1 STRESS
       - Huslenkung in Richtung der
                            Platten normali
DMX =0.294E-08
SMN =-0.293E-08
SMX =0.135E-09
DSYS=11
                     Biege grund moe
χŲ
     =-10
ΥŲ
     =10
ŽV =8
DIST=0.004638
      =0.003
      =0.625E-04
 YF
      =0.003
PRECISE HIDDEN
       -0.293E-08 = 2,93 nm bei 10V
       -0.191E-08
       -0.123E-08
       -0.547E-09
0.135E-09
```

klo: AT-Schnitt; 4 Schicht-Platte in X-Richt. oben allseit fest

Quarz-Membran-Formen TEM 3 W. Hartig

Kreisring Teststruktur

Max. konkave Unterätzung 105° 90°

konvexe Unterätzung

Kreisringbreite: 200 µm

AT-Quarzschnitt

Atzlösung: 48%HF:40%NH4F (3:2)

Atztemperatur: 80°

Atzzeit: 79 min

Ätztiefe: 95 µm

MOTO METER Bosch Telecom

Schliffbilder von Ätzgräben im AT-Quarz

25.06.92 TEM 3 W. Hartig

[Abb. 11]

Bosch Telecom

Doppelseitiges Ätzen an Ausrichtmarken

25.06.92 TEM 3 W. Hartig

[Abb. 8]

[Abb. 9]

5 × BRS -B

82mm 37106un 7 mm 8

20× BR5-B

1:

1 :

Sensor-Aufbau

TEM 3 W. Hartig

EPOXI-DIL-Pins ITO-Verbindungsdraht beschichteter Quarzmembran Leitsilberpunkt Glasträger Kleberahmen Alu-Anschlußnippel

Bosch Telecom

Sensor-Aufbau

TEM 3 W. Hartig

Bosch Telecom

Sensor-Aufbau mit Leitgummi TEM 3 W. Hartig

Amplitutenprofil

Entlang der Lasertrennlinie (Z-Richtung)

Abstand von Membranmitte in mm

MOTO METER Bosch Telecom

Elektrische Schaltung

TEM 3 W. Hartig

Resonanzfrequenz = f (Unterdruck)

MOTO METER Bosch Telecom

Druckempfindlichkeit verschiedener Membranformen

TEM 3 W. Hartig

Langlochform (4/6mm); 34,8-36,3kHz Grundfrequenz

Name	Form	Aufbau	∆f bei 600mbar in Hz
1M	()		+ 750
ЗМ	(1)		+ 1100
ЗВ	[1]		- 1200
ЗN	0		- 1300
ЗNХ	0		- 1460
2N	0	7/1/ 3/1/20	- 800
1F	\Box	<u></u>	+ 850 (fo= 25,8 KHZ)

Bosch Telecom

Ergebnis-Bewertung und Ausblick

TEM 3 W. Hartig

- * 16 er Nutzen
- * Langloch: 4/6 mm
- * Empfindlichkeit:1500 Hz/600mbar
- -> 20er (24) Nutzen
- -> 3/5 mm
- * Nenndruckbereich ändern durch Variation von
 - Ätztiefe
 - Quarzdicke
 - (Membrandurchmesser)
- * Einfache Herstellung, da kein zusätzlicher Prozesschritt zum Aufbringen einer schwingungsanregenden Schicht nötig ist
- * Ätzverhalten von AT-Quarz ist nun bekannt
- * Aufbau- und Verbindungstechnik
- Überdruckaufbau für höhere Drücke
- Grundträger aus Keramik mit Hybridschaltung
- Leitgummi

* Elektrische Schaltung

- geringere Versorgungsspanung
- Verkleinerung durch Hybrid-Aufbau

* sonstige Maßnahmen

- Temperaturgang
- Intelligente Auswertung

* Preisliche Einordnung:

