

LoRaWAN模块 AT指令手册

V1.0.5

All rights reserved 版权所有 侵权必究

修订记录

更新版本	修改内容	修改人	日期
V1.0.0	初始版本	吴泽源	2017-8-25
V1.0.1	调整部分 AT 指令格式	吴泽源	2017-9-25
V1.0.2	增加 AT 指令使用示例	吴泽源	2017-9-28
V1.0.3	增加 Class B/C 功能相关指令描述	吴泽源	2017-10-26
V1.0.4	修改部分 AT 指令返回内容描述	吴泽源	2017-12-4
V1.0.5	调整文档排版	吴泽源	2017-12-6

目录

1.	概述	4
	1.1 AT 指令概述	4
	1. 1. 1 规定	4
	1.1.2 符号定义	4
	1.2 格式定义	4
	1. 2. 1 AT 指令类型	5
	1. 2. 2 AT 指令返回类型	
	1. 2. 3 错误码参考列表	
2.	基本指令	
	2.1 OK: 连接确认	7
	2.2 DEVADDR: 模块设备地址	
	2.3 DEVEUI: 终端 DEVEUI 信息	
	2.4 APPEUI:应用 APPEUI 信息	8
	2.5 ID: 模块详细 ID 信息(包括 DEVADDR/DEVEUT/APPEUT)	9
	2.6 ADR: 自适应数据速率调整功能	9
	2.7 DR: 数据速率	10
	2.8 MODE: 终端入网激活模式	11
	2.9 CLASS:模块工作模式	12
	2.10 POWER: 最大发射功率	13
	2. 11 BAUDRATE:设置 <mark>串口波特率</mark>	14
	2.12 RESET:模块复位	15
	2.13 FIXEDBAND:设置数据 <mark>发送频段</mark>	
	2.14 JOIN: 入网	17
	2.15 MSG:向服务器发送字符串数据	19
	2.16 +RXDONE:模块接收数据	21
	2.17 MSGHEX: 向服务器发送十六进制数据	22
	2.18 VERSION: 版本号	24

1. 概述

1.1 AT指令概述

模块提供 AT 指令接口,模块通过 AT 指令可以方便地跟外部设备进行通信。

1.1.1 规定

- 方括号中的值为缺省值。
- 选配参数和必配参数必须按照规定的顺序排列,各参数间必须用逗号隔开。 举例: AT+MSG=<len>,<data>
- 如果某参数是字符串(比如: <number>),该字符串必须放在双引号中。例如: "12345". "cmnet"。双引号中的各项符号可看作是字符串。
- 命令的可选子参数或 TA 返回结果的可选部分位于方括号中。
- 不使用双引号时,字符串中各字符间的空格可忽略不计。
- 实际使用中, <>,[]不必输入。
- 所有 AT 命令本身不区分大小写,但其参数对大小写敏感。
- 所有命令都有回应;
- 命令必须以"\r\n"或<CR><LF>为结束符;
- UART串口配置 "115200, 8, n 1" (8 bits data, no parity, 1 stop bit);
- 十六进制数据的<mark>所有输入格式为:</mark> 大端在前小端在后 如 0x1234 -> 1234

1.1.2 符号定义

符号	功能描述		
=	设置命令参数		
?	查询		
=?	帮助指令		
:	输入参数列表起始		
+	命令字连接符		
,	参数间隔符		

1.2 格式定义

■ AT 指令以"AT"开头, <CR><LF>结束, 为方便描述, 所有<CR><LF>省略。

1. 2. 1 AT 指令类型

AT 指令作为一个接口标准,它的指令返回值和格式都是固定的,总体来说有四种形式:

指令类型	指令功能描述	指令格式	实例	
执行指令	要求执行某个具体功能	AT+ <command/>	AT+OK?	[输入]
			OK	[返回值]
查询指令	查询该指令当前设置的值	AT+ <command/> ?	AT+DR?	[输入]
			+DR:0	[返回值1]
			OK	[返回值 2]
测试指令	用于查询设置命令或者内	AT+ <command/> =?	AT+DR=?	[输入]
	部程序设置的参数以及其		+DR: (0-5)	[返回值 1]
	取值范围		OK	[返回值 2]
设置指令	列出该指令的可能参数	AT+ <command/> = <par1></par1>	AT+ADR=5	[输入]
			+ADR:5	[返回值1]
			ОК	[返回值 2]
设置指令	比较常用的一种格式,它	AT+ <command/> =	AT+MSG=2, 0, 2, 12	[输入]
(带参数)	为指令提供了强大的灵活	<par1>, <par2>, <par3></par3></par2></par1>	+MSG:TXDONE	[返回值1]
	性	6	OK	[返回值 2]

1. 2. 2 AT 指令返回类型

下面给出了模块支持的 AT 指令格式和返回说明:

返回类型	格式	实例	
执行正确时返回(含数据)	+CMD: <return data=""> OK</return>	AT+MSG=2, 0, 6, 123456	[输入]
		+MSG:TXDONE	[返回值 1]
		+MSG:OK	[返回值 2]
执行正确时返回(不含数据)	+CMD:OK	AT+OK?	[输入]
		OK	[返回值]
行时错误时返回	ERROR: <err></err>	AT+MSG=0, 12345	[输入]
	其中 err 为错误返回码	ERROR:2	[返回值]

1.2.3 错误码参考列表

错误码	含义
1	指令错误
2	指令中数据长度错误
3	指令中数据内容或者参数错误
4	指令执行失败
5	设备没有入网

2. 基本指令

国动物联网技术(上海)有限公司

2.1 **0K**: 连接确认

类型	命令	可能返回的结果	说明
查询命令	AT+OK?	OK	连接成功
测试命令	AT+OK=?	OK	连接成动
备注	该命令为判断模块是否能正常使用AT命令,如果没有任何返回则表明不能使用。		

举例:

AT+OK?

OK

AT+OK=?

OK

2.2 DEVADDR: 模块设备地址

类型	命令	可能返回的结果	说明
查询命令	AT+DEVADDR?	+DEVADDR: <devaddr></devaddr>	
		OK	
测试命令	AT+DEVADDR=?	OK	

举例:

AT+DEVADDR?

+DEVADDR:00123456

OK

AT+DEVADDR=?

OK

2.3 **DEVEUI:** 终端DEVEUI信息

类型	命令	可能返回的结果	说明
查询命令	AT+DEVEUI?	+DEVEUI: <deveui></deveui>	
		OK	
测试命令	AT+DEVEUI=?	OK	

举例:

AT+DEVEUI?

+DEVEUI:000000000123456

OK

AT+DEVEUI=?

OK

2.4 APPEUI:应用APPEUI信息

类型	命令	可能返回的结果	说明
查询命令	AT+APPEUI?	+APPEUI: <appeui></appeui>	
		OK	
测试命令	AT+APPEUI=?	OK	

举例:

AT+APPEUI?

+APPEUI:000000000123456

OK

AT+APPEUI=?

OK

2.5 **ID**: 模块详细ID信息(包括DEVADDR/DEVEUI/APPEUI)

类型	命令	可能返回的结果	说明
查询命令	AT+ID?	+DEVADDR: <devaddr></devaddr>	返回模块的
		+DEVEUI: <deveui></deveui>	devaddr,devrui,appeui信
		+APPEUI: <appeui></appeui>	息。
		OK	
测试命令	AT+ID=?	OK	
备注	如果没有设置,则显示存储	者的原始内容为一般全0	

举例:

AT+ID?

- +DEVADDR:00123456
- +DEVEUI:000000000123456
- +APPEUI:0000000000000456

OK

AT+ID=?

OK

2.6 ADR: 自适应数据速率调整功能

类型	命令	可能返回的结果	说明
设置命令	AT+ADR= <adr></adr>	+ADR: <adr></adr>	成功: adr为设置的值
		ОК	
		ERROR: <err></err>	失败: err为错误码
查询命令	AT+ADR?	+ADR: <adr></adr>	
		OK	

测试命令	AT+ADR=?	+ADR:(<adr>的取值列表)</adr>	Adr的取值列表为: (0,1)
		ОК	0:表示关闭ADR功能
			1:表示打开ADR功能
备注	当ADR功能打开时,DR功能无效,即发送数据时不是按设置的DR发送		
	当ADR功能关闭时,D	R功能起作用,发送数据的DR必须是	设置的DR。

举例:

2.7 DR: 数据速率

类型	命令	可能返回的结果	说明
设置命令	AT+DR= <dr></dr>	+DR: <dr></dr>	成功: dr为设置数据速度的值
		ОК	
		ERROR: <err></err>	失败: err为错误码
查询命令	AT+DR?	+DR: <dr></dr>	

		OK	
测试命令	AT+DR=?	+DR: (<dr>)的取值列表)</dr>	dr的取值列表为:
		OK	(0, 1, 2, 3, 4, 5)
			设置为0时模块发送的速率最
			慢,用时最长;设置5时为速
			率最快,用时最短。
备注	DR不同数据发送的字节长度不同		

2.8 MODE: 终端入网激活模式

类型	命令	可能返回的结果	说明
一 天工	"P" 4	7) 10 10 10 10 10 10 10 10 10 10 10 10 10	וליטש

设置命令	AT+MODE= <mode></mode>	+MODE: <mode></mode>	成功: mode为设置模块激活方
		OK	式的值
		ERROR: <err></err>	失败: err为错误码
查询命令	AT+MODE?	+MODE: <mode></mode>	
		OK	
测试命令	AT+MODE=?	+MODE:(<mode>的取值列表)</mode>	mode的取值列表为: (0,1)
		OK	0:表示为ABP模式
			1:表示为OTA模式

举例:

AT+MODE=0

+MODE:0

设置模块在OTA模式激活

OK

AT+MODE?

+MODE:0

OK

AT+MODE=?

+MODE: (0,1)

模块可以设置的模式值为0或者1

OK

2.9 **CLASS**: 模块工作模式

类型	命令	可能返回的结果	说明
设置命令		+CLASS: <class></class>	成功: class为设置模块工作
	AT+CLASS= <class></class>	ОК	模式值
			失败: err为错误码
		ERROR: <err></err>	
查询命令	AT+CLASS?	+CLASS: <class></class>	

		OK	
测试命令	AT+CLASS=?	+CLASS:(<class>的取值列表)</class>	class的取值列表为: (0, 1, 2)
		OK	0:表示为classA模式
			1:表示为classB模式
			2:表示为classC模式

举例:

AT+CLASS=1

+CLASS:1

OK

AT+CLASS?

+CLASS:1

OK

AT+CLASS=?

+CLASS: (0,1,2)

OK

模块设置为classB模式

模块当前为classA模式

模块可以设置为classA,classB或者classC模式

2.10 **POWER**: 最大发射功率

类型	命令	可能返回的结果	说明
设置命令		+POWER: <power></power>	成功: power为模块最大发射
	AT+POWER= <power></power>	ОК	功率值
		ERROR: <err></err>	失败: err为错误码
查询命令	AT+POWER?	+POWER: <power></power>	
		OK	
测试命令	AT+POWER=?	 +POWER:(<power>的取值列表)</power>	power
		OK	的取值列表为: (20,17,

			16, 14, 12, 10, 7, 5, 2), 单位为
			-dBm
备注	模块默认的POWER值为20	0,使用时建议设置值为20	

AT+POWER=20

+POWER:20 设置模块的最大发射功率为-14dBM

OK

AT+POWER?

+POWER:20 当前模块的最大发射功率为-20dBM

OK

AT+POWER=?

+POWER:(20,17,16,14,12,10,7,5,2) 模块的最大发送功率可以设置为-20~-2dBM

OK

2.11 BAUDRATE:设置串口波特率

类型	命令	可能返回的结果	说明
设置命令	\'	+BAUDRATE: <baudrate></baudrate>	成功: baudrate为模块UART
	AT+BAUDRATE= <baudrate></baudrate>	OK	的波特率
		ERROR: <err></err>	失败: err为错误码
查询命令	AT+BAUDRATE?	+BAUDRATE: <baudrate></baudrate>	
		OK	
测试命令	AT+BAUDRATE=?	+BAUDRATE:(<baudrate>的</baudrate>	baudrate的取值列表为:
		取值列表)	(1200, 2400, 4800, 9600, 1440
		OK	0, 19200, 38400, 56000, 57600

	, 115200, 128000)
备注	模块默认的波特率值为115200。如果设置波特率,必须先与模块的默认波特率115200匹
	配,否则无法设置其他波特率值。设置完成后必须再次与模块匹配,模块才能正常通信。

AT+BAUDRATE=115200

设置当前模块波特率为115200

+BAUDRATE:115200

OK

AT+BAUDRATE?

+BAUDRATE:115200

OK

AT+BAUDRATE=?

+BAUDRATE:(1200,2400,4800,9600,

14400,19200,38400,56000,57600,115200,128000) OK

模块UART支持的波特率列表

2. 12 **RESET**: 模块复位

类型	命令	可能返回的结果	说明
执行命令	AT+RESET	AT+RESET	成功: 执行指令后设备会重启
		+RESET	并提示开机信息
		OK	
		Boot Completed!!!	失败: err为错误码
		ERROR: <err></err>	
备注	建议模块由ABP转OTA模式,	OTA转ABP模式, 以及CLASSA,	CLASSB, CLASSC相互切换时,
	先发AT+CLEAR指令清除设置	置的参数,再发AT+RESET指令让	模块处于开机状态, 然后重新
	设置参数。		

AT+RESET

+RESET

OK

Boot Completed!!!

2.13 FIXEDBAND: 设置数据发送频段

类型	命令	可能返回的结果	说明
设置命令		+FIXEDBAND: \langle gap \rangle, \langle freq1 \rangle	gap:上下同频的参数
	AT+FIXEDBAND= <gap>, <fr< td=""><td>, <freq2>,<freqn></freqn></freq2></td><td>gap=0时为网关与模块上下同</td></fr<></gap>	, <freq2>,<freqn></freqn></freq2>	gap=0时为网关与模块上下同
	eq1>, <freq2>, <freqn< td=""><td>OK</td><td>频;为其他值时为网关与模块</td></freqn<></freq2>	OK	频;为其他值时为网关与模块
	>		上下异频。gap的单位为1MHZ。
			freql-freqn 为设置模块工
			作的频点,单位为1*10 ^{5HZ}
			即0.1MHZ。
		4	
			成功:显示设置的gap值,和
			设置的所有频点。
		ERROR: <err></err>	失败: err为错误码
查询命令	AT+FIXEDBAND?	+FIXEDBAND: \langle gap \rangle, \langle freq1 \rangle	
		, <freq2>, <freqn></freqn></freq2>	
		OK	
测试命令	AT+FIXEDBAND=?	+FIXEDBAND=(<gap>), <freq< td=""><td>gap的取值列表为: (0-20)</td></freq<></gap>	gap的取值列表为: (0-20)
		1-freqn>	freq的取值列表:
		OK	(4700-5100)
备注	模块第一次使用或者AT+CL	EAR后没有设置FIXEDBAND时,	直接发送查询会提示ERROR:3。
	此为正常现象。定频入网剪	艾者全频入网成功后,发查询命	命令可以查询当前工作的频点。

AT+FIXEDBAND=0,4703,4705,4707,4709

+FIXEDBAND:0,4703,4705,4707,4709

OK

AT+FIXEDBAND?

+FIXEDBAND:0,4703,4705,4707,4709

OK

AT+FIXEDBAND=?

+FIXEDBAND:(0-20),(4700-5100)

OK

2.14 **JOIN**: 入网

	_		
类型	命令	可能返回的结果	说明
执行命令	AT+JOIN	+JOIN: ABP	成功:显示模块的激活方式
		+JOIN:TXDONE	
		+JOIN:RXDONE	
4		OK	
	\\	+JOIN:OTA	
		+JOIN:TXDONE	
		+JOIN:RXDONE	
		OK	
		ERROR: <err></err>	失败: err为错误码
查询命令	AT+JOIN?	+JOIN:OK	+JOIN:OK表示已经入网成功
		OK	
			+JOIN:NOT JOIN表示模块没

			有入网
		+JOIN: NOT JOIN	
		OK	
备注	入网分为ABP和OTA的方式入网,模块执行命令后必须有TXDONE和RXDONE才能保证模块入		
	网成功。		
	没有入网前发送AT+JOIN?查询会返回+JOIN:NOT JOIN 表示没有入网		
	入网成功后发送AT+JOIN?查询会返回+JOIN:OK。		
	建议:		
	如果知道想要入网的网关的频点,	可以先发送设置发送频点的命令,这样。	入网的时间短和成功率较高。
	如果不知道当前想要入网的网关,	可以直接JOIN,但是入网的时间可能花	费较长。

ERROR:4

ABP入网失败

AT+JOIN

+JOIN:OTA

+JOIN:TXDONE

...

+JOIN:TXDONE

ERROR:4

OTA入网失败

2.15 MSG: 向服务器发送字符串数据

类型	命令	可能返回的结果	说明
执行命令		+MSG:TXDONE	port:发送数据的端口号
	AT+MSG= <port>, <ack>, <1</ack></port>	OK	ack:重发标志,
	en>, <data></data>	W. M. M.	0:unconfirmed 类型
		+MSG:TXDONE	1:confirmed 类型
		+MSG:RXDONE	len:为要发送数据data的长
		OK	度,
			data:为发送数据的内容。
			成功: 发送数据成功
		ERROR: <err></err>	失败: err为错误码
测试命令	AT+MSG=?	+MSG: (1-223), (0,1), (0-22	
		0),(string data)	
		+OK	
		ERROR	
备注	当模块没有入网直接发送数据时模块会报ERROR:5。模块只有入网成功后才可以发送数		
	据。		
	当ack参数设置为1时,模块必须有+MSG:RXDONE 回复。当第一次发送出现+MSG:TXDONE		
	没有收到+MSG:RXDONE时,模块会重发,最多会有3次+MSG:TXDONE,如果3次都没有+MSG:		

RXDONE回复,则发送失败。

当ack参数设置为0时,模块只要有+MSG:TXDONE回复,则表示发送成功。 发送的数据长度跟DR有关。以下为设置不同DR时支持的最大发送数据的长度

DR0:51

DR1:51

DR2:51

DR3:115

DR4:220

DR5:220

举例:

AT+MSG=2,0,6,12a4b6

ERROR:5

AT+MSG=2,0,6,12a45q

+MSG:TXDONE

OK

AT+MSG=2,1,6,12a45q

+MSG:TXDONE

+MSG:RXDONE

OK

AT+MSG=2,1,6,w2345s

+MSG:TXDONE

+MSG:TXDONE

+MSG:RXDONE

OK

AT+MSG=2,1,6,dh3,56

模块没有入网

友送数据成功

发送数据成功

发送数据成功

+MSG:TXDONE

发送数据成功

+MSG:TXDONE

+MSG:TXDONE

+MSG:RXDONE

OK

AT+MSG=2,1,6,12w45s

+MSG:TXDONE

+MSG:TXDONE

+MSG:TXDONE

ERROR:4

AT+MSG=3,1,6,12345

ERROR: 2

AT+MSG=2,5,123456

ERROR:3

AT+SSG=5,12345

ERROR:1

发送数据失败

数据的长度错误

数据内容错误

命令错误

2. 16 **+RXDONE**:模块接收数据

类型	命令	可能返回的结果	说明
执行命令		+RXDONE: <1en>, <data></data>	len为接收送数据data的长
			度, data为接收数据的内容
备注	此指令用于收到下行有效数据后显示,〈data〉为十六进制显示,每个十六进制数以空格		
	隔开。例如"+RXDONE:3,31 32 33"表示接收到3个有效数据,为0x31、0x32和0x33。		

举例:

+RXDONE:3,31 32 33

OK

2.17 **MSGHEX**:向服务器发送十六进制数据

类型	命令	可能返回的结果	说明
		+MSGHEX: TXDONE	port:发送数据的端口号
执行命令	AT+MSGHEX= <port>, <ack></ack></port>	OK	ack:重发标志,
	, <len>, <hexdata></hexdata></len>		0:unconfirmed 类型
		+MSGHEX:TXDONE	1:confirmed 类型
		+MSGHEX:RXDONE	len:为要发送数据data的长
		OK	度,
			hexdata:为发送数据的内容
			MIL
			成功:发送数据成功
		ERROR: <err></err>	失败: err为错误码
测试命令	AT+MSGHEX=?	+MSGHEX: (1-223), (0, 1), (0	
		-220), (hex data)	
		+OK	
		ERROR	
备注	port ,ack,len为十进制的ASCLL码值,data 为十六进制数。		
	发送十六进制数据时,字符串的长度必须为2的整数倍,且字符串的中字符必须为: 0-9, a-f, A-F之中否则报长度错误和内容错误, 大端在前小端在后。		
	发送的数据长度跟DR有关。以下为设置不同DR时支持的最大发送数据的长度		
	DRO:51		
	DR1:51		
	DR2:51		
	DR3:115		
	DR4:220		

DR5:220

举例:

AT+MSGHEX=2,0,3,313233

+MSGHEX:TXDONE 数据发送成功

(₩₩x313233)

数据发送成功

OK

AT+MSGHEX=2,1,3,123Ad6 (\(\pm \times 123AD6\)

+MSGHEX:TXDONE 数据发送成功

+MSGHEX:RXDONE

OK

AT+MSGHEX=2,1,3,123Ad6

+MSGHEX:TXDONE (\(\psi\)\(\pi\)x123AD6

+MSGHEX:TXDONE 数据发送成功

+MSGHEX:RXDONE

OK

AT + MSGHEX = 2,1,3,123Ad6 (\text{\text{WW}} \times 123AD6)

+MSGHEX:TXDONE

+MSGHEX:TXDONE

+MSGHEX:TXDONE

+MSGHEX:RXDONE

OK

AT+MSGHEX=2,1,3,123Ad6 (\widetilde{\psi} x123AD6)

ERROR: 5 模块没有入网

AT+MSGHEX=2,1,3,123Ad6 (\(\pi\psi\x123AD6\)

+MSGHEX:TXDONE

+MSGHEX:TXDONE 数据发送失败

保密等级: 内部公开 GD-WI-001/Rev01

+MSGHEX:TXDONE

ERROR:4

AT+MSGHEX=2,0,2,123456 (\(\pm\)x123456)

ERROR:2 数据长度错误

AT+MAGHEX=2,1,5,12345 (₩₩x12345)

ERROR:1 命令错误

2.18 **VERSION**: 版本号

类型	命令	可能返回的结果	说明
查询命令	AT+VERSION?	+VERSION: <version></version>	读取版本号
测试命令	AT+VERSION=?	+VERSION: <version></version>	读取版本号

举例:

AT+VERSION?

+VERSION: LM005A_AT_V1.04_20171202_M10

OK