

© 2020 Copyright ROI Training, Inc.

All rights reserved. Not to be reproduced without prior written consent.

Spark Program

CHAPTER 6: **CLUSTER ANALYSIS**

Chapter Objectives

In this chapter, we will:

- → Explore cluster analysis
- → Use K-Means algorithms

Chapter Concepts

Cluster Analysis

Algorithms

Chapter Summary

Cluster Analysis

- → Analysis tool to help make sense of the data before feeding it into other models
- Unsupervised
 - More about discovering patterns in data
 - Not about predicting values for unknown values
- → Looks for natural groupings among the data
 - Voter groups (is it just left vs. right, or left, right, center, or more)
 - Species identification (are two groups of organisms different enough to be considered a different species or not)
 - Identify different types of customers we may have
- → Often helpful as a preparatory step before classification to determine how many categories we may want to predict

Types of Cluster Analysis

- → There are two main approaches to solve this
 - Top down (K-Means)
 - Bottom up (Hierarchical clustering)
- → Both rely on the notion of similarity
 - Objects are similar if they share common attributes to others
 - The more similar they are, the closer they are to one another
 - If something is far away in similarity to one thing, it may be closer to something else
- → Ultimately the goal is to take a large sample of data and break it up into a small number of meaningful groupings that shed insight as to what the data means

Dataset

→ For this example, we have a small easy to follow dataset of the latitude and longitudes of a few Tesla superchargers

```
filename = 'superchargers.csv'
df = spark.read.csv(f'/home/student/ROI/Spark/{filename}',
header = True, inferSchema = True)
display(df)
```

	lat	Ing
0	33.679646	-117.174095
1	28.331356	-81.532453
2	37.413353	-121.897995
3	37.525905	-122.006624
4	37.919969	-122.348976
5	38.730606	-120.788085
6	39.250765	-119.948927
7	36.916349	-121.773512
8	34.441994	-119.258898
9	36.116710	-115.168258

Visualize the Data

- → It is often helpful to visualize the data by plotting it
 - There are only two features in this set so it's easy to plot
 - You can also plot a 3D graph for three features
 - Beyond that, it's hard to visualize more features

```
p = df.toPandas()
import matplotlib.pyplot as plt
plt.plot(p.loc[:,'lng'],p.loc[:,'lat'],'o')
```


Chapter Concepts

Cluster Analysis

Algorithms

Chapter Summary

K-Means in Actions

Run K-Means

→ Just eyeballing it, let's try out two clusters and plot the results

```
import matplotlib.pyplot as plt
                      CLUSTERS = 2
                      kmeans = KMeans().setK(CLUSTERS).setSeed(1)
                      model = kmeans.fit(dfML.select('features'))
                      predictions = model.transform(dfML)
                      centroids = model.clusterCenters()
                      for i in range(CLUSTERS):
38
                          p = predictions.select('lng', 'lat') \
36
                              .where(f'prediction = {i}').toPandas()
                          plt.plot(p.loc[:,'lng'],p.loc[:,'lat'],'o')
34
                          plt.plot(centroids[i][1],
32
                                  centroids[i][0],'kx')
30
28
26
     -120
            -110
                    -100
                             -90
                                     -80
```

Evaluate K-Means

- → With many features and rows it is difficult to visualize how many clusters if right
- → There are two measures that are helpful, lower numbers are better
 - Within set sum of squared errors
 - Silhouette with squared Euclidean distance
- → But it's not just about a lower number, it's about finding the marginal difference between each number until more clusters don't add any more distinctions
- → Use the helper functions to view these numbers and the centroids
- → For the small set of data we have, there is a big gain going from 2 to 3 clusters, but not much more going from 3 to 4, so 3 clusters is probably the right value

Elbow Chart

- → Here the results are very clear cut, but sometimes the data overlap and don't fit nicely into a particular cluster
- → It is often helpful to run a chart that helps figure out how many clusters is ideal
 - Too few and the items are too dissimilar
 - Too many and the additional distinctions become trivial
 - → Is there much difference between a brown poodle and a chocolate poodle?

Chapter Concepts

Cluster Analysis

Algorithms

Chapter Summary

© 2020 Copyright ROI Training, Inc.

All rights reserved. Not to be reproduced without prior written consent.

Next Steps

- → The unsupervised models of clustering do not make predictions so much as they help understand the data
- → Another unsupervised model to explore is association rules
 - Used to describe patterns like "people who like X also like Y"
- → Principal Component Analysis
- Dimension Reduction

Chapter Summary

In this chapter, we have:

- → Explored cluster analysis
- → Used K-Means algorithms