PROGRAMMATION DYNAMIQUE

INTRODUCTION

C'est une méthode introduite dans le cadre des algorithmes d'optimisation.

Optimisation. — Répond à la problématique de maximisation d'une fonction sous un ensemble de contraintes.

Exemples. — En autres:

- la planification;
- satisfaction de contraintes;
- mathématiques financières.

Il y a deux grandes familles de méthodes en optimisation :

- la programmation dynamique;
- la programmation linéaire.

1. CALCULER UNE SUITE DÉFINIE PAR UNE RÉCUR-RENCE SUR DEUX INDICES

Soit $f: \mathbb{N}^3 \to \mathbb{N}$. On suppose que l'on dispose d'un algorithme F pour calculer f. On s'intéresse à la suite définie par :

- $-(a_{0,j})_{j\in\mathbf{N}}, (a_{i,0})_{i\in\mathbf{N}} \text{ donnés};$
- $a_{i+1,j+1} = f(a_{i,j+1}, a_{i+1,j}, a_{i,j}).$

On vérifie qu'il s'agit bien d'une suite :

Lemme 1.1

Soient $(a_{i,j})_{i,j\in\mathbb{N}}$ et $(b_{i,j})_{i,j\in\mathbb{N}}$ telles que :

$$a_{i+1,j+1} = f(a_{i,j+1}, a_{i+1,j}, a_{i,j})$$

$$b_{i+1,j+1} = f(b_{i,j+1}, b_{i+1,j}, b_{i,j})$$

et :

$$\forall i \in \mathbf{N}, \ a_{i,0} = b_{i,0} \text{ et } a_{0,i} = b_{0,i}.$$

Alors $a_{i,j} = b_{i,j}$ pour tout couple $(i, j) \in \mathbf{N}^2$.

DÉMONSTRATION 1.1

Par double récurrence.

On imbrique une récurrence (externe) sur i avec une récurrence (interne) sur j. Sur i on veut montrer :

$$P_i \equiv \forall j \in \mathbf{N}, \ a_{i,j} = b_{i,j}.$$

Par définition, P_0 est vraie. On suppose P_i vérifiée pour tous $i \leq i_0$. Il s'agit de montrer P_{i_0+1} par récurrence sur j.

On définit la proposition :

$$Q_j^{i_0+1} \equiv a_{i_0+1,j} = b_{i_0+1,j}.$$

On remarque que P_{i_0+1} est vraie si, et seulement si, $Q_0^{i_0+1}, Q_1^{i_0+1}, \ldots$ sont vraies. C'est-à-dire que P_{i_0+1} est vraie si, et seulement si :

$$\bigwedge_{j\in\mathbf{N}}Q_j^{i_0+1}.$$

Par définition, $Q_0^{i_0+1}$ est vraie. On suppose $Q_j^{i_0+1}$ vraie pour tous $j \leq j_0$. On a :

$$a_{i_0+1,j_0+1} = f(a_{i_0,j_0+1}, a_{i_0+1,j_0}, a_{i_0,j_0})$$

$$a_{i_0+1,j_0+1} = f(b_{i_0,j_{0+1},b_{i_0+1,j_0},b_{i_0,j_0}})$$

$$a_{i_0+1,j_0+1} = b_{i_0+1,j_0+1}$$

et donc $Q_{j_0+1}^{i_0+1}$ est vraie.

On en conclut que pour tout i, P_i est vraie et donc le lemme est démontré.

Soit T un tableau tel que $T[i,j] = a_{i,j}$.

ALGORITHME DE CALCUL DE T. — On se donne un algorithme A qui calcule $(a_{i,0})$ et un autre algorithme B qui calcule $(a_{0,i})$.

```
function tabIter(n,m)
1
2
           for i from 0 to n do
3
                   T[i, 0] = algoA(i)
4
           for j from 0 to m do
                   T[0,j] = algoB(j)
5
6
           for i from 1 to n do
                    for j from 1 to m do
7
                            T[i,j]=F(T[i-1,j],T[i,j-1],T[i-1,j-1])
8
9
           return T
```

2. LCS (LEAST COMMON SUBSEQUENCE) : PROBLÈME D'UNE PLUS LONGUE SOUS-SUITE COMMUNE

Exemple. — Supposons que l'on dispose de deux brins d'ADN :

$$u = t t a t a t g c g t$$

 $v = t a t c c c c t t a$

le mot « t a t t t » apparait dans les deux brins et est le plus grand.

2.1. Propriétés

Soit Σ un alphabet fini. Soient $u, v \in \Sigma^*$. Une sous-suite commune à u et v est un mot $w \in \Sigma^*$ tek que :

$$\exists 1 \le i_0 < i_1 < \ldots < i_{|w|}, \exists 1 \le j_0 < j_1 < \ldots < j_{|w|}, \forall k \le |w|, \ w_k = u_{i_k} = v_{j_k}.$$

NOTATIONS. — On suppose que les mots $w \in \Sigma^*$ sont indexés de 1 à |w|. On note également

$$w[1 \dots i] = w[1]w[2] \dots w[i] = w_1 w_2 \dots w_i.$$

Dans la suite on considère le tableau $A: \{0, \ldots, n\} \times \{0, \ldots, m\}$ tel que A[i, j] est la longueur de la plus longue sous-suite commune à $u[1 \ldots i]$ et $v[1 \ldots j]$.

Proposition 2.1 (Optimalité des sous-structures)

Si w est une sous-suite commune à u et v de longueur maximale k, alors pour tout $h \leq k$, $w[1 \dots h]$ est une sous-suite commune maximale à $u[1 \dots i_h]$ et $v[1 \dots j_h]$.

DÉMONSTRATION 2.1

 $w[1\ldots h]$ est bien une sous-suite commune. Si b était une sous-suite, strictement plus grande, à $u[1\ldots i_h]$ et $v[1\ldots j_h]$ alors $bw[h+1,\ldots k]$ serait une sous-suite qui contredirait la maximalité de w.

NOTATION. — $\wedge_{x=y}$ est la fonction constante égale à 1 si x=y et 0 sinon.

```
Proposition 2.2 Si A[0,j] = A[i,0] = 0. Alors A[i+1,j+1] = \max \begin{cases} A[i+1,j] \\ A[i,j+1] \\ \land_{u[i+1]=v[j+1]} + A[i,j] \end{cases}.
```

DÉMONSTRATION 2.2

Si une plus longue sous-suite commune à u[1 ... i+1] et v[1 ... j+1] à pour dernier élément u[i+1] = v[j+1] alors c'est vérifié.

Si ce n'est pas le cas, le dernier élément de w est différent, soit de u[i+1] soit de v[j+1]

- dans le premier cas, w est une plus longue sous-suite commune à $u[1 \dots i]$ et $v[i \dots j+1]$ et c'est donc vérifié;
- dans le second cas, w est une plus longue sous-suite commune à $u[1\dots ui+1]$ et $v[i\dots j]$ et c'est vérifié.

2.2. Algorithme

```
1
    function tabDynLCS(u,v)
 2
              n, m = len(u), len(v)
3
              for i from 0 to n do A[i,0] = 0
              for j from 0 to m do A[0,j] = 0
4
 5
              for i from 1 to n do
6
                        for j from 1 to m do
 7
                                  if A[i-1,j] > A[i,j-1] then
8
                                            L[i,j] = nord
                                           A[i,j] = A[i-1,j]
9
10
                                  else
                                           L[i,j] = ouest
11
                                           A[i, j] = A[i, j-1]
12
                                   \mbox{if} \ \ u\,[\,i\,\,] \ = \ v\,[\,j\,\,] \ \ \mbox{and} \ \ A[\,i\,\,,\,j\,\,] \ < \ 1 \ + \ A[\,i\,-1\,,\,j\,-1] \ \ \mbox{then} 
13
                                            L[i,j] = nord-ouest
14
                                           A[i,j] = 1 + A[i-1,j-1]
15
16
              return A, L
    function LCS(L,u,v)
17
18
              k, i, j = 0, len(n), len(m)
              while min(i,j) > 0 do
19
                        if L[i,j] = nord-ouest then
20
```

2.3. Coût

Le coût de l'algorithme sera le coût des fonctions tabDynLCS et LCS.

- tabDynLCS demande $O(n \times m)$.
- LCS demande n + m itérations, c'est-à-dire O(n + m).

Finalement on peut dire que c'est algorithme est en $O(n \times m)$ avec n la longueur de la suite u et m celle de v.

3. Problème du sac à dos

3.1. Présentation du problème

Soient des objets numérotés de 1 à n tel que pour tout $i \leq n$, w_i est le poids de l'objet et p_i sa valeur. La capacité du sac est notée W. Le problème étant de maximiser la somme des valeurs des objets mis dans le sac sous la contrainte du poids.

Notons (x_1, \ldots, x_n) une suite de 1 et 0 tel que $x_i = 1$ si l'objet i est dans le sac et vaut 0 sinon. Il s'agit de résoudre le problème

$$\begin{cases} \max_{x_i} \sum_{i=1}^n x_i p_i \\ \sum_{i=1}^n x_i w_i \le W \end{cases}.$$

3.2. Propriétés

On définit un tableau KP[i,c], un tableau à deux dimensions avec $0 \le i \le n$ et $0 \le c \le W$. KP[i,c] est la valeur optimale d'un sac à dos ne contenant que des objets d'indices inférieurs à i et dont le poids total ne peut dépasser c. Plus formellement :

$$KP[i, c] = \max \left\{ \sum_{j \in \mathcal{L}} p_j \middle| \mathcal{L} \subset \{1, \dots, i\} \text{ et } \sum_{j \in \mathcal{L}} w_j \le c \right\}.$$

De plus:

$$KP[0, c] = KP[i, 0] = 0.$$

Proposition 3.1

Si $c \geq w_{i+1}$ alors :

$$KP[i+1,c] = \max \begin{cases} KP[i,c] \\ p_{i+1} + KP[i,c-w_{i+1}] \end{cases}$$

DÉMONSTRATION 3.1

Si $\mathcal{L} \subset \{1, \dots, i\} \subset \{1, \dots, i, i+1\}$ et donc $KP[i, c] \leq KP[i+1, c]$. Si $\mathcal{L} \subset \{1, \dots, i+1\}$ et $i+1 \in \mathcal{L}$ alors

$$\sum_{j \in \mathcal{L}} p_j = p_{i+1} + \sum_{j \in \mathcal{L} \setminus \{i+1\}} p_j.$$

On a

$$KP[i+1,c] \ge p_{i+1} + KP[i,c].$$

Et donc

$$KP[i+1,c] \ge \max \{KP[i,c], p_{i+1} + KP[i,c-w_{i+1}]\}.$$

Supposons qu'il existe une solution \mathcal{L} au problème (i+1,c).

— Si $i+1 \in \mathcal{L}$ alors $KP[i+1,c] = p_{i+1} + \sum_{j \in \mathcal{L} \setminus \{i+1\}} p_j$. Or

$$\sum_{j \in \mathcal{L}} w_j \le c \iff \sum_{j \in \mathcal{L} \setminus \{i+1\}} w_j \le c - w_{i+1}.$$

 $\mathcal{L} \setminus \{i+1\}$ est nécessairement optimale pour $(i, c-w_{i+1})$. Dans le cas contraire $\mathcal{L}' \cup \{i+1\}$ nierait l'optimalité de \mathcal{L} . En conclusion, on a

$$KP[i+1,c] = p_{i+1} + KP[i,c-w_{i+1}].$$

— Si $i + 1 \notin \mathcal{L}$ alors $\mathcal{L} \subset \{1, \dots, i\}$ et donc

$$KP[i+1,c] = KP[i,c].$$

On a bien

$$KP[i+1,c] = KP[i,c] \bigwedge_{i+1 \notin \mathcal{L}} + (p_{i+1} + KP[i,c-w_{i+1}]) \bigwedge_{i+1 \in \mathcal{L}} = \max \{KP[i,c], p_{i+1} + KP[i,c-w_{i+1}]\}.$$

3.3. L'algorithme

```
1
  function knapSack (w, n, p, W)
2
           for i from 0 to n do
3
                    kp[i,0] = 0
           for c from 0 to W do
4
5
                    kp[0,c] = 0
6
           for i from 1 to n do
7
                    for c from 1 to W do
                             if c > w[i] then
8
```

```
kp[i,c] = max(kp[i-1,c],p[i] + kp[i-1,c-w[
 9
10
                                                     else
                                                                   \mathrm{kp}\left[\,\mathrm{i}\,\,,\mathrm{c}\,\right] \;=\; \mathrm{kp}\left[\,\mathrm{i}\,-1,\mathrm{c}\,\right]
11
12
                     for i from 1 to n do
                                    w[\ i\ ]\ =\ 0
13
                     c = W
14
15
                      for i from n to 1 do
                                     {\bf if} \ kp \, [\, i \ , c \, ] \ != \ kp \, [\, i \, -1, c \, ] \ then
16
                                                    x[i] = 1
17
18
                                                    c = c-w[i]
                     \mathbf{return} \ \mathbf{x} \, , \mathrm{kp}
19
```