CPS 188 Lab 3: Repetition & Loops

Instructor: Dr. Ufkes

TA: Mohammed Emrul Hasan

Section: 18

Sayeed Ahamad

Student Number: 501209136

1 Problem Sets

1.1 Problem 1

1.1.1 Computer Program

```
1 /* Program to print the values of the Pascal's Triangle in
     Sequential Order
3 #include <stdio.h>
5 void pascal(void);
7 void main(void)
      pascal();
9
10 }
void pascal (void)
13 {
      for (int i = 1; i <= 9; ++i)</pre>
15
16
          int value = 1;
17
           for (int j = 1; j <= 9; ++j){
               if (value != 0){
               printf ("%d ", value);
24
               value = value * (i-j)/j;
            }
               printf("\n");
          }
29
30 }
```

Listing 1.1: Program to print the values of the Pascal's Triangle in Sequential Order

1.1.2 Program Output Screenshot

```
ource Code/Lab 4$ ./pascal
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1
```

1.2 Problem 2

1.2.1 Computer Program

```
1 /* Program to calculate the Gross Pay of a series of workers
        */
3 #include <stdio.h>
5 int main()
6 {
      int employee_number, number_of_shifts, number_of_hrs,
     total_hrs,i;
      double wage_rate, gross_pay;
      FILE * in;
9
      in = fopen("L4_data.txt", "r");
11
      while(!feof(in)){
12
          fscanf(in, " %d %d %lf", &employee_number, &
13
     number_of_shifts, &wage_rate);
          i = 1;
14
          total_hrs = 0;
15
          while(i<= number_of_shifts){</pre>
16
              fscanf (in, "%d", &number_of_hrs);
17
              total_hrs = total_hrs + number_of_hrs;
              i++;
19
               }
20
              if (total_hrs <= 15){</pre>
21
                   gross_pay = total_hrs * wage_rate;
```

```
else if (total_hrs >15 && total_hrs <= 25){</pre>
24
                    gross_pay = (total_hrs * wage_rate * 1.05);
25
                else if (total_hrs > 25){
27
                    gross_pay = (total_hrs * wage_rate * 1.10);
28
29
           printf("Employee Number
                                          Total Hours
                                                                Gross
      Pay\n");
           printf ( \mbox{"\%8d\%18d\%20.21f \n\n",employee\_number,total\_hrs}
31
      ,gross_pay);
33
           fclose(in);
34
           return(0);
37
38
```

Listing 1.2: Program to calculate the Gross Pay of a series of workers

1.2.2 Program Output Screenshot

Employee	Number	Total Hours	Gross Pay
77621		35	693.00
Employee	Number	Total Hours	Gross Pay
82010		16	378.00
Employee	Number	Total Hours	Gross Pay
92390		46	986.70
Employee	Number	Total Hours	Gross Pay
62396		12	384.00
Employee	Number	Total Hours	Gross Pay
89320		9	247.50
Employee	Number	Total Hours	Gross Pay
19089		43	756.80
Employee	Number	Total Hours	Gross Pay
54209		64	1196.80
Employee	Number	Total Hours	Gross Pay
50630		32	704.00
Employee	Number	Total Hours	Gross Pay
50630		32	704.00

1.3 Problem 3

1.3.1 Computer Program

```
1 /* Program to Calculate the Temperature-Pressure relation
     for some Temperature and Pressure
3 #include <stdio.h>
#include <math.h>
5 #include <string.h>
7 float part_a(float initial_temperature, float
     initial_pressure, float final_pressure);
8 void part_b(float initial_temperature, float initial_pressure
     , float final_pressure, float max_temperature);
void main(void)
11 {
      float temp_i = 300;
      float pres_i = 50;
13
      float pres_f = 500;
      /* Funtion to solve problem part a */
      float max_t = part_a(temp_i, pres_i, pres_f);
17
      /* Funtion to solve problem part b */
20
      part_b(temp_i, pres_i, pres_f, max_t);
21 }
23 float part_a(float initial_temperature, float
     initial_pressure, float final_pressure)
24 {
      float max_temperature = (initial_temperature *
     final_pressure) / initial_pressure;
      printf("Maximum temperature the cylinder can withstand
     before bursting is %f\n", max_temperature);
28
      return max_temperature;
29 }
30
void part_b(float initial_temperature, float initial_pressure
     , float final_pressure, float max_temperature)
32 {
      int space = 4;
33
      /* Header of the table */
35
      printf("Temperature (K)");
36
      for (int i = 0; i < space; i++)</pre>
37
      {
          printf(" ");
```

```
40
      printf("Pressure (atm)\n");
41
       /* Margins */
43
      for (int i = 0; i < strlen("Temperature (K)"); i++)</pre>
44
       {
45
           printf("-");
47
      for (int i = 0; i < space; i++)</pre>
48
49
           printf(" ");
51
      for (int i = 0; i < strlen("Pressure (atm)"); i++)</pre>
52
53
           printf("-");
55
      printf("\n");
56
      /* Contents of the table*/
58
      for (float temperature = initial_temperature; temperature
59
       < max_temperature; temperature += 100)</pre>
60
           /* Calculating iterative pressure*/
61
           float pressure = (initial_pressure * temperature) /
62
      initial_temperature;
           /* Calculating & tabulating the temperature-pressure
64
       relation */
           printf("%.2f", temperature);
65
           for (int i = 0; i < strlen("Temperature (K)") - 5 +</pre>
      space; i++)
           {
67
               printf(" ");
68
           }
           printf("%.2f", pressure);
70
           for (int i = 0; i < strlen("Pressure (atm)") - 4; i</pre>
71
      ++)
           {
72
               printf(" ");
73
           }
74
           /* Line termination print */
76
           printf("\n");
77
      }
78
79 }
80
81
```

Listing 1.3: Program to Calculate the Temperature-Pressure relation for some Temperature and Pressure

1.3.2 Program Output Screenshot

Maximum temperature Temperature (K)	the cylinder car Pressure (atm)	n withstand	before	bursting	is	3000.000000
reliiperacure (K)	(atili)					
300.00	50.00					
400.00	66.67					
500.00	83.33					
600.00	100.00					
700.00	116.67					
800.00	133.33					
900.00	150.00					
1000.00	166.67					
1100.00	183.33					
1200.00	200.00					
1300.00	216.67					
1400.00	233.33					
1500.00	250.00					
1600.00	266.67					
1700.00	283.33					
1800.00	300.00					
1900.00	316.67					
2000.00	333.33					
2100.00	350.00					
2200.00 2300.00	366.67 383.33					
2400.00	400.00					
2500.00	416.67					
2600.00	433.33					
2700.00	450.00					
2800.00	466.67					
2900.00	483.33					