RENDSZER- ÉS IRÁNYÍTÁSTECHNIKA

MÁSODIK HÁZI FELADAT

Réda Vince – Z697LX

1. táblázat. Házi feladat kódja

ϑ_0	ϑ_1	ϑ_2	ϑ_3	ϑ_4
36 V	60°	10%	3%	50 ms

Mechatronika, Optika és Gépészeti Informatika Tanszék

Budapesti Műszaki és Gazdaságtudományi Egyetem

2020. november 14.

Tartalomjegyzék

1.	PI s	I szabályzó tervezése pólus-zérus kiejtéssel				
	a.	P és I paraméterek számítása	4			
	b.	Egységugrás válasz	5			
	c.	Állandósult szögsebesség	6			
2.	PD s	szabályzó tervezése pólus-zérus kiejtéssel	7			
	a.	P és D paraméterek számítása	7			
	b.	Egységugrás válasz	8			
	c.	Állandósult szögsebesség	9			
2	PI p	ozíció szabályozás szimmetrikus optimum módszerrel	10			
٥.	•					
J.	a.	P és I paraméterek számítása	10			
٠.		P és I paraméterek számítása	10			
J.	a.					
	a. b. c.	Egységugrás válasz	11			
	a. b. c.	Egységugrás válasz	11			
	a. b. c. PID	Egységugrás válasz	11 12 13			

A második házi feladat a tárgyhoz kapcsolódó első házi feladat folytatása. A rendszer paraméterei és egyenleteit ott tárgyaltam, amelyeket itt fel fogok használni.

Az egyenáramú motor paraméterei

2. táblázat. A motor és a hajtómű paraméterei

Név	Jelölés	Katalógus-beli érték	SI-beli érték
armatúra ellenállás	$R_{\rm a}$	11,1 Ω	11,1 Ω
armatúra induktivitás	$L_{\rm a}$	1,52 mH	$1,52\cdot 10^{-3}~\mathrm{H}$
nyomatékállandó	$k_{\rm m}$	$58,2 \frac{\text{mNm}}{\text{V}}$	$0.0582 \frac{\text{Nm}}{\text{V}}$
sebességállandó	$k_{ m s}$	$164 \frac{\text{rpm}}{\text{V}}$	$17,17 \frac{\text{rad}}{\text{Vs}}$
elektromos állandó	$k_{\rm e}$	$0.006097 \frac{V}{rpm}$	$0.05822 \frac{\mathrm{Vs}}{\mathrm{rad}}$
forgórész tehetetlenségi nyomatéka	$J_{\rm a}$	44,6 gcm ²	$4,46\cdot10^{-6}~{ m kgm}^2$
névleges szögsebesség	$\omega_{ m n}$	4430 rpm	463,91 $\frac{\text{rad}}{\text{s}}$
névleges áramerősség	i_{n}	0,804 A	0,804 A
névleges feszültség	$u_{\rm n}$	36 V	36 V

(a) A motor hatásvázlata

(b) A szabályozott rendszer hatásvázlata

1. ábra. A rendszer és a visszacsatolt kör hatásvázlatai

1. PI szabályzó tervezése pólus-zérus kiejtéssel

a. P és I paraméterek számítása

Az 1b. ábra mutatja a rendszerünket, ahol a Wc szabályzó átviteli függvénye

$$W_{c} = P \frac{1 + sT_{I}}{sT_{I}} \tag{1}$$

alakú. $T_{\rm I}$ -vel a motor legnagyobb időállandóját ejtjük ki, tehát ezt válasszuk $T_{\rm I}=T_1=0,0145$ s értékűre, az első házi feladatban kiszámoltak alapján.

Az előrevezető ág átviteli függvénye ekkor leegyszerűsödik:

$$W_{x} = \frac{A}{(T + T_{1}s)(1 + T_{2}s)} P \frac{T + sT_{1}}{sT_{1}} = \frac{AP}{T_{1}} \frac{1}{s(1 + sT_{2})},$$
 (2)

ahol T_1 és T_2 a szabályozott szakasz időállandója, A a nullfrekvenciás erősítés.

Most írjuk fel a fáziskésést az $s=j\omega$ helyettesítéssel.

$$\varphi(\omega) = \underbrace{-\frac{\pi}{2}}_{\text{integráló tag miatt}} - \underbrace{\operatorname{arctg}(T_2\omega)}_{\text{kisebbik időállandó}}.$$
 (3)

A megadott fázistartalék $\varphi_{\rm t}=\vartheta_1=60^\circ$. A következő egyenlet megoldása adja a vágási körfrekvenciát:

$$\varphi_{t} = \varphi(\omega_{c}) + \pi \Rightarrow \omega_{c} = 4176, 1 \frac{\text{rad}}{\text{s}}$$
(4)

Ha ω_c a vágási körfrekvencia, definíció szerint $|W_x(\omega_c)| = 1$. Ez alapján P = 4,0709.

A MATLAB-ban található margin függvény segítségével ellenőrizzük a számolást, amit a 2. ábra igazol.

2. ábra. Szabályozott rendszer Bode-diagramja

b. Egységugrás válasz

Az előrevezető ág $W_{\boldsymbol{x}}$, a zárt kör átviteli függvénye ebből

$$W_{cl} = \frac{W_x}{1 + W_x},\tag{5}$$

mivel a visszacsatoló ágban $W_{fb}=1$. Ezt meg kell szorozni az $\omega_{ref}=4430~\text{rpm}=705.0564~\frac{\text{rad}}{\text{s}}$ referencia szögsebességgel.

A PI-szabályozott rendszer egységugrás-válaszát a MATLAB-os step függvény adja meg.

3. ábra. PI egységugrás-válasz

A bemenet legyen $X=\frac{\omega_{\rm ref}}{s}$, a rendszer válasz $Y=W_{\rm cl}X$.

A végérték-tétel alapján az állandósult szögsebesség $\omega_{\infty} = \lim_{s \to 0} s Y = 705,0564.$

2. PD szabályzó tervezése pólus-zérus kiejtéssel

a. P és D paraméterek számítása

Az 1b. ábra mutatja a rendszerünket, ahol a Wc szabályzó átviteli függvénye

$$W_{c} = P \frac{1 + sT_{D}}{1 + snT_{D}} \tag{6}$$

alakú. T_D-vel a motor második legnagyobb időállandóját ejtjük ki,

tehát ezt válasszuk $T_{\rm D}=T_2=1,3825\cdot 10^{-4}$ s értékűre, az első házi feladatban kiszámoltak alapján.

Az előrevezető ág átviteli függvénye ekkor leegyszerűsödik:

$$W_{x} = \frac{A}{(1+T_{1}s)(1+T_{2}s)} P \frac{1+sT_{2}}{1+snT_{D}} = \frac{AP}{(1+sT_{1})(1+snT_{2})},$$
(7)

ahol T_1 és T_2 a szabályozott szakasz időállandója, A a nullfrekvenciás erősítés.

Most írjuk fel a fáziskésést az $s = j\omega$ helyettesítéssel.

$$\varphi(\omega) = -\underbrace{\arctan(T_1\omega)}_{\text{nagyobbik időállandó}} -\underbrace{\arctan(nT_2\omega)}_{\text{szűrő időállandó}}.$$
(8)

A megadott fázistartalék most is $\varphi_t = \vartheta_1 = 60^\circ$. A következő egyenlet megoldása adja a vágási körfrekvenciát:

$$\varphi_{t} = \varphi(\omega_{c}) + \pi \implies \omega_{c} = 41920 \frac{\text{rad}}{\text{s}}$$
 (9)

Ha $\omega_{\rm c}$ a vágási körfrekvencia, definíció szerint $|W_{\rm x}(\omega_{\rm c})|=1$. Ez alapján P=40,9024.

A MATLAB-ban található margin függvény segítségével ellenőrizzük a számolást, amit a 2. ábra igazol.

4. ábra. Szabályozott rendszer Bode-diagramja

b. Egységugrás válasz

Az előrevezető ág $W_{\boldsymbol{x}}$, a zárt kör átviteli függvénye ebből

$$W_{cl} = \frac{W_x}{1 + W_x},\tag{10}$$

mivel a visszacsatoló ágban $W_{fb}=1$. Ezt meg kell szorozni az $\omega_{ref}=4430~\text{rpm}=705.0564~\frac{\text{rad}}{\text{s}}$ referencia szögsebességgel.

A PI-szabályozott rendszer egységugrás-válaszát a MATLAB-os step függvény adja meg.

5. ábra. PI egységugrás-válasz

A bemenet legyen $X=\frac{\omega_{\rm ref}}{s}$, a rendszer válasz $Y=W_{\rm cl}X$.

A végérték-tétel alapján az állandósult szögsebesség $\omega_{\infty} = \lim_{s \to 0} s Y = 704,0542.$

3. PI pozíció szabályozás szimmetrikus optimum módszerrel

a. P és I paraméterek számítása

A DC motor szögsebességének integrálásával kapjuk meg annak pozícióját. A módosított hatásvázlatot a 6. ábra mutatja.

6. ábra. Pozíció-szabályzott DC motor hatásvázlata

Írjuk fel az előrevezető ág átviteli függvényét:

$$W_{x} = W_{c}W_{x}\frac{1}{s} = \frac{AP(T_{1}s+1)}{T_{1}s^{2}(T_{1}s+1)(T_{2}s+1)},$$
(11)

ahol A a szabályozott szakasz erősítése.

Ezután írjuk fel a fázistolást a körfrekvencia függvényében:

$$\varphi(\omega) = -\pi - \arctan(T_1\omega) - \arctan(T_2\omega) + \arctan(T_1\omega). \tag{12}$$

Ennek a függvénynek a szélsőértékét keressük. Ehhez tegyük nullává a deriváltat:

$$\frac{\partial \varphi}{\partial \omega} = \frac{T_{\rm I}}{T_{\rm I}^2 \,\omega^2 + 1} - \frac{T_2}{T_2^2 \,\omega^2 + 1} - \frac{T_1}{T_1^2 \,\omega^2 + 1} = 0. \tag{13}$$

Ebből megkaptunk egy ω_c értéket, ami T_I -től függ. Ezt helyettesítsük be a fázistartalékhoz tartozó képletbe, ami kiadja T_I -t és ezáltal ω_c numerikus értékét is:

$$\varphi_{\rm t} = \pi + \varphi(\omega_{\rm c}) \Rightarrow T_{\rm I}.$$
 (14)

Ebből $T_{\rm I}=0,204$ s, és $\omega_{\rm c}=18,2783$ $\frac{{\rm rad}}{{\rm s}}.$

Már csak a P körerősítést kell meghatároznunk, ami ugyanúgy történik mint az első feladatban:

$$|W_x(\omega_c)| = 1 \Rightarrow P = 1,0642.$$
 (15)

Ellenőrizzük, hogy a fázistartalék tényleg 60°-e a margin függvénnyel.

7. ábra. Pozíció-szabályzott rendszer Bode-diagramja, fázistartalék feltüntetve

Ez teljesül.

b. Egységugrás válasz

Egy kör fordulat szabályozása esetén a bemenet Laplace-transzformáltja $X = \frac{2\pi}{s}$, a kimenet ebből $Y = W_{cl}X$. Ezt a szokásos step függvény ki is rajzolja nekünk időtartományban, amit a 10. ábra mutat.

8. ábra. PI egységugrás-válasz

Az előző részfeladatban kiszámolt kimenetet felhasználva az állandósult szög érték: $\omega_{\infty}=\lim_{s\to 0}sY=6,2832^{\circ}.$

Az állandósult hiba a PI szabályzótól vártan zérus.

4. PID pozíció szabályozás szimmetrikus optimum módszerrel

a. P, I és D paraméterek számítása

Az előző feladatból a szabályzót változtassuk meg egy PID kontrollerre.

Írjuk fel az előrevezető ág átviteli függvényét:

$$W_{x} = W_{c}W_{x}\frac{1}{s} = \frac{AP(T_{I}s+1)}{T_{I}s^{2}(T_{1}s+1)(T_{2}s+1)}, \frac{AP(\frac{1}{T_{I}s} + \frac{T_{D}s}{nT_{D}s+1} + 1)}{s(T_{1}s+1)(T_{2}s+1)}$$
(16)

ahol A a szabályozott szakasz erősítése.

Ezután írjuk fel a fázistolást a körfrekvencia függvényében:

$$\varphi(\omega) = -\pi - \arctan(T_1\omega) - \arctan(T_2\omega) + \arctan(T_1\omega). \tag{17}$$

Ennek a függvénynek a szélsőértékét keressük. Ehhez tegyük nullává a deriváltat:

$$\frac{\partial \varphi}{\partial \omega} = \frac{T_{\rm I}}{T_{\rm I}^2 \,\omega^2 + 1} - \frac{T_2}{T_2^2 \,\omega^2 + 1} - \frac{T_1}{T_1^2 \,\omega^2 + 1} = 0. \tag{18}$$

Ebből megkaptunk egy ω_c értéket, ami T_I -től függ. Ezt helyettesítsük be a fázistartalékhoz tartozó képletbe, ami kiadja T_I -t és ezáltal ω_c numerikus értékét is:

$$\varphi_{\rm t} = \pi + \varphi(\omega_{\rm c}) \Rightarrow T_{\rm I}.$$
 (19)

Ebből $T_{\rm I}=0,204$ s, és $\omega_{\rm c}=18,2783$ ${\rm rad \over s}$.

Már csak a P körerősítést kell meghatároznunk, ami ugyanúgy történik mint az első feladatban:

$$|W_x(\omega_c)| = 1 \Rightarrow P = 1,0642.$$
 (20)

Ellenőrizzük, hogy a fázistartalék tényleg 60°-e a margin függvénnyel.

9. ábra. Pozíció-szabályzott rendszer Bode-diagramja, fázistartalék feltüntetve

Ez teljesül.

b. Egységugrás válasz

Egy kör fordulat szabályozása esetén a bemenet Laplace-transzformáltja $X = \frac{2\pi}{s}$, a kimenet ebből $Y = W_{cl}X$. Ezt a szokásos step függvény ki is rajzolja nekünk időtartományban, amit a 10. ábra mutat.

10. ábra. PI egységugrás-válasz

Az előző részfeladatban kiszámolt kimenetet felhasználva az állandósult szög érték: $\omega_{\infty}=\lim_{s\to 0}sY=6,2832^{\circ}.$

Az állandósult hiba a PI szabályzótól vártan zérus.

Hivatkozások

[1] DC motor adatlapja

https://www.maxongroup.com/maxon/view/product/motor/dcmotor/amax/amax32/236671