N-WL: A New Hierarchy of Expressivity for Graph Neural Networks

Qing Wang, Dillon Chen, Asiri Wijesinghe, Shouheng Li, Muhammad Farhan

> Graph Research Lab School of Computing Australian National University

The work is partially funded by the Australian Research Council under Discovery Project DP210102273.

Classical k-WL Hierarchy

k-Weisfeiler-Lehman (k-WL) hierarchy is a theoretical framework for graph isormorphism tests

- \hookrightarrow but not practically useful when $k \ge 3!$
 - GIN \equiv 1-WL [Xu et al., 2019]
 - Many expressive GNNs go beyond 1-WL

Question:

Is k-WL hierarchy a good yardstick for measuring expressivity of GNNs?

GNNs vs k-WL

Our *N*-WL Hierarchy

 \mathcal{N} -WL hierarchy computes node coloring via t-order induced subgraphs within d-hop neighbourhoods.

d-hop neighbourhoods

t-order induced subgraphs

A Simple Experiment

A graph isomorphism test on 312 pairs of simple graphs of 8 vertices:

- None-or-all: none by 1-WL but all by 3-WL
- Progressive: varying with d and t by \mathcal{N} -WL

Observations and Theorems

Increasing the order of induced subgraphs, the expressive power increases – *Not surprising*

Theorem: (Weak Hierarchy)
$$\mathcal{N}^-(t,d)$$
-WL $\subsetneq \mathcal{N}^-(t+1,d)$ -WL

Increasing the hops of neighbourhood, the expressive power may decrease – *Surprising but can be fixed*

Theorem:
$$\mathcal{N}(t,d)\text{-WL} \subsetneq \mathcal{N}(t+1,d)\text{-WL}$$

(Strong Hierarchy) $\mathcal{N}(t,d)\text{-WL} \subsetneq \mathcal{N}(t,d+1)\text{-WL}$

Induced connected subgraphs remain the same expressive power — Surprising but can be proved

Theorem: (Equivalence)
$$\mathcal{N}^c(t, d)$$
-WL $\equiv \mathcal{N}(t, d)$ -WL

Main Ideas in Proofs (1)

Theorem:
$$\mathcal{N}(t,d)\text{-WL} \subsetneq \mathcal{N}(t+1,d)\text{-WL}$$

(Strong Hierarchy) $\mathcal{N}(t,d)\text{-WL} \subsetneq \mathcal{N}(t,d+1)\text{-WL}$

We prove strictness of hierarchies by constructing counterexample graphs.

Main Ideas in Proofs (2)

Theorem: (Equivalence)
$$\mathcal{N}^c(t, d)$$
-WL $\equiv \mathcal{N}(t, d)$ -WL

Our proof is based on Kocay's Vertex Theorem [Kocay, 1982].

k-WL Hierarchy vs \mathcal{N} -WL Hierarchy

	k-WL	δ - k -LWL	(k,s)-LWL	(k.	$(c)(\leq)$ -SETWL	
#Coloured objects	n ^k	n ^k	$subset(n^k, s)$	subs	$\operatorname{set}(\sum_{q=1}^k \binom{n}{q}, c)$	
#Neighbour objects	$n \times k$	$a \times k$	$a \times k$		$n \times q$	
ΔColoured objects	k-tuples	<i>k</i> -tuples	<i>k</i> -tuples		\leq k -sets	
ΔNeighbour objects	k-tuples	k-tuples	<i>k</i> -tuples			- (/C/ 1) MII
Sparsity -awareness	×	1	✓		$\frac{\mathscr{N}(t,d)\text{-WL}}{n}$	$\frac{\mathscr{N}^c(t,d)\text{-WL}}{n}$
					$\binom{a^d}{t}$	$subset(\sum_{q=1}^t \binom{a^d}{q}, 1)$
					nodes	nodes
					t-sets	\leq t -sets
					×	✓

Theorem: 1-WL $\equiv \mathcal{N}(1,1)$ -WL $\equiv \mathcal{N}^c(1,1)$ -WL

G3N Architecture

Graph Neighbourhood Neural Network (G3N) instantiates the ideas of $\mathcal{N}\text{-WL}$ algorithms for graph learning.

$$h_u^{(l+1)} = \operatorname{Combine} \left(h_u^{(l)}, \operatorname{Agg}_{(i,j) \in I_t \times J_d}^N \left(\operatorname{Agg}_{S \in \mathcal{S}_u^{(l)}(i,j)}^T \left(\operatorname{Pool}(S) \right) \right) \right)$$

References I

Kocay, W. L. (1982).

Some new methods in reconstruction theory.

In *Combinatorial Mathematics IX*, pages 89–114. Springer.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2019). How powerful are graph neural networks? In International Conference on Learning Representations (ICLR).

Thank You