1 Problem 1

Let $(X, \|\cdot\|_x)$ and $(Y, \|\cdot\|_y)$ be non-zero normed vector spaces over field \mathbb{K} where $\mathbb{K} = \mathbb{C} \vee \mathbb{R}$.

1.1 Part a

Let $T: X \to Y$ be a linear map, and let $||x||_0 = ||x||_x + ||Tx||_y$. First I will show that $||x||_0$ is a norm by adhere the properties by defination 1.1. First the triangle inequality:

$$||x + \tilde{x}||_{0} = ||x + \tilde{x}||_{x} + ||T(x + \tilde{x})||_{y}$$

$$= ||x + \tilde{x}||_{x} + ||Tx + T\tilde{x}||_{y}$$
Linar map properties
$$\leq ||x||_{x} + ||\tilde{x}||_{x} + ||Tx||_{y} + ||T\tilde{x}||_{y}$$

$$= ||x||_{0} + ||\tilde{x}||_{0}$$

Next the scalar properties:

$$\|\alpha x\|_{0} = \|\alpha x\|_{x} + \|T\alpha x\|_{y}$$

$$= \|\alpha x\|_{x} + \|\alpha T\|_{y}$$

$$= |\alpha|\|x\|_{x} + |\alpha|\|Tx\|_{y}$$

$$= |\alpha|(\|x\|_{x} + \|Tx\|_{y}) = |\alpha|\|x\|_{0}$$

Last the zero properties:

$$\begin{aligned} \|0\|_0 &= \|0\|_x + \|T0\|_y \\ &= 0 + 0 = 0 \\ \|x\|_0 &\le \|x\|_x + \|Tx\|_y, \qquad x \neq 0 \\ 0 &< \|x\|_0 \le \|x\|_x + \|Tx\|_y \end{aligned}$$

Hence $||x||_0$ is a norm. Next we will show that if the norms $||x||_0$ and $||x||_0$ are equivalent if and only if T is bounded. Two norms are equivalent if:

$$c_1 ||x||_0 \le ||x||_x \le c_2 ||x||_0$$

Suppose that T is bounded. Then there exists a C > 0 so $||Tx|| \le C||x||$. If C < 1, then let C = 1. So let $c_1 = \frac{1}{2C}$

$$\frac{1}{2C} \|Tx\|_y \le \frac{1}{2C} C \|x\|_x \le \frac{1}{2} \|x\|_x$$
$$\frac{1}{2C} \|x\|_x \le \frac{1}{2} \|x\|_x$$

side 1/9

We can use this inequality to show that $\frac{1}{2C}||x||_0 \le ||x||_x \le ||x||_0$:

$$\frac{1}{2C} \|x\|_x + \frac{1}{2C} \|Tx\|_y \le \frac{1}{2} \|x\|_x + \frac{1}{2} \|x\|_x = \|x\|_x \le \|x\|_x + \|Tx\|_y$$

Sonversely suppose that $||x||_0$ and $||x||_x$ are equivalent. Then we have $||x||_0 \ge C||x||_0$

$$||x||_x + ||Tx||_y \le C||x||_x, \qquad C > 1$$

$$||Tx||_y \le (C-1)||x||_x$$

Hence T is bounded.

1.2 Part b

Suppose that X is finite, then by theorem 1.6, that every two norms are equivalent on finite dimensional vector space. Then $||x||_0 = ||x||_x + ||Tx||_y$ and $||x||_x$ are equivalent, and by problem 1 part a, we have that T is bounded.

1.3 Part c

Let $(e_i)_{i\in\mathbb{N}}$ be a Hamel basis for X, and let $(y_i)_{i\in\mathbb{N}} = (ie_i)_{i\in\mathbb{N}}$, then there exists precisely one linear map with $T(e_i) = i$, and for any C there exists a N

$$||Tx_i|| \not \le C||x_i||, \qquad i > N \tag{1}$$

Hence T is not bounded.

1.4 Part d

Take the norm $||x||_0 \le ||x||_x + ||Tx||_y$, we have showed in problem 1 part a, that it is a norm and in part c, that there exists a T so they are not equivalent.

$$||x||_0 \le ||x||_x + ||Tx||_y$$

Let $(X, ||x||_x)$ be a Banach space. Suppose for contradiction that $(X, ||x||_0)$ is complete. Then for every cauchy sequence $(x_n)_{n\geq 1}$.

$$\forall \varepsilon > 0 \,\exists n_{\varepsilon} > 0 : \|x_m - x_n\|_0 < \varepsilon, \forall n, m > n_{\varepsilon}$$

We can show that T is continuous at 0, with:

$$||Tx_m - Tx_n||_y \le ||x_m - x_n||_x + ||T(x_m - x_n)||_y < \varepsilon, \qquad ||x_m - x_n|| < \epsilon$$

This shows us that T is continuous at 0 $((x - x_n)_{n \ge 1}$ is a cauchy sequence). By proposition 1.10 is equivalent with T is bounded, and those is a contradiction.

1.5 Part e

Let $(l_1(\mathbb{N}), \|\cdot\|_1)$ over \mathbb{C} and let $|x|_{\infty}$, these two norms are inequivalent. Since for any $C \in \mathbb{N}$, we can let $|x_n| = \frac{1}{c}$ for n satisfying $C + 1 \ge n \ge 1$ for $n \ge C + 1$ let $x_n = 0$.

 $x_n = 0.$ $1 + \frac{1}{c} = \|(x_n)_{n \ge 1}\|_1 \not\le C \|(x_n)_{n \ge 1}\|_{\infty} = 1$

Now let a sequence of 1 equal to n so $x_1 = (1, 0, 0, ...)$ and $x_2 = (1, 1, 0, ...)$, we now have that $||x_n||_{\infty} = 1$ for all n but $||x_n||_1 = n$. So x_n is a cauchy sequence in $||\cdot||'$ but are not in $l_1(\mathbb{N})$. And we have that $(l_1(\mathbb{N}), ||\cdot||_1)$ is complete but $(l_1(\mathbb{N}), ||\cdot||_{\infty})$ is not.

2 Problem 2

Let $1 \leq p < \infty$ be fixed and the subspace M of the Banach space $(l_p(N), \|\cdot\|_p)$, let M be a vector space over \mathbb{C} , given by

$$M = \{(a, b, 0, 0, \dots) \colon a, b \in C\}$$

2.1 a

Then

$$||f|| = \sup_{|x| \le 1} (|f(x)|),$$
 $||x||_p = \sqrt[p]{|a|^p + |b|^p}$

I will first compute ||f||, since we have that $||f(x)|| \le ||f|| ||x||_p$.

$$\sup_{\|x\|_p \le 1} (|f(x)|) = \sup_{\|x\|_p \le 1} (|a+b|)$$

$$\|x\|_p = (|a|^p + |b|^p)^{1/p}$$

$$= (|a|^p + |a|^p)^{1/p} \qquad \text{Let } |a| = |b|$$

$$= (2|a|^p)^{1/p}$$

$$= 2^{1/p}|a| = 1,$$

$$|a| = 2^{-1/p},$$

$$\sup_{\|x\|_p \le 1} (|f(x)|) = |2^{-1/p}| + |2^{-1/p}| = 2^{\frac{p-1}{p}}$$

Now we have that f is bounded with $C = 2^{\frac{p-1}{p}}$

$$||f(x)|| \le ||f|| ||x||_p,$$

 $|a+b| \le 2^{\frac{p-1}{p}} (|a|^p + |b|^p)^{\frac{1}{p}},$ for $1 \le p < \infty$

side 3/9

2.2 b

Let

$$l_p(\mathbb{N}) = \left\{ (x_n)_{n \ge 1} \subset \mathbb{K} : \|(x_n)_{n \ge 1}\|_p := \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{\frac{1}{p}} < \infty \right\}, \quad 1 < p < \infty$$

We like to extending f to $l_p(\mathbb{N})$ with F satisfying ||F|| = ||f||.

$$||f|| = ||F|| = \sup_{\|x\|_p \le 1} (||F(x)||),$$

$$2^{\frac{p-1}{p}} = \sup_{\|x\|_p \le 1} (|x_1 + x_2 + \sum_{i \in I} \lambda_i x_i|), \qquad x_i \in \mathbb{C}$$

We can assume that λ_i and x_i is in \mathbb{R}_+ , with without loss of generality, hence $(x_n)_{n\geq 1}\in l_p(\mathbb{N}) \Rightarrow (|x_n|)_{n\geq 1}\in l_p(\mathbb{N})$. Suppose that $\lambda_3\neq 0$, then we have the inequality

$$\sup_{\|x\|_{p} \le 1} (|x_1 + x_2|) < \sup_{\|x\|_{p} \le 1} (|x_1 + x_2 + \lambda_3 x_3|), \qquad x_i \in \mathbb{C}, 0 < \lambda_3$$

This gives us that all $\lambda_i = 0$, hence there is only one unique F that extends f to $l_p(\mathbb{N}) ||F||$.

2.3 c

Let p = 1, then we have that F_I with $i \in I$ where I is finite and that $(\lambda_i)_{i \in I}$ so $0 \le \lambda_i \le 1$.

$$\sup_{\|x\| \le 1} (\|F_I(x)\|) = \sup_{\|x\| \le 1} (|x_1 + x_2 + \sum_{i \in I} \lambda_i x_i|),$$

Then we have that

$$1 = \sup_{\|x\| \le 1} (|x_1| + |x_2|) \le \sup_{\|x\| \le 1} (\|F_I(x)\|) \le \sup_{\|x\| \le 1} (|x_1| + |x_2| + \sum_{i \in I} |\lambda_i x_i|) = 1,$$

This show us that extending f, that there do not exists a unique F_I satisfying $||F_I|| = ||f||$.

3 3

Let X be an infinite dimensional normed vector space over \mathbb{K} , where $\mathbb{K} = \mathbb{R}$ or \mathbb{C} .

side 4/9

3.1 a

Let $n \geq 1$ be an interger and let $F: X \to \mathbb{K}^n$ be a linear map. Since X is a infinite dimensional normed vector space over \mathbb{K} we have there exsist a $V \subsetneq X$ normed vector space over \mathbb{K} with dimension n+1, and we have $F|_V$ by advec is not injective, hence F is not injective.

3.2 b

Let $n \geq 1$ be an integer and let $f_1, f_2, ..., f_n \in X^*$ and let $F: X \to \mathbb{K}^n$ given by $F(x) = (f_1(x), f_2(x), ..., f_n(x)), x \in X$. If F is injective F(x) = 0 only if x = 0. From problem 3 part a we have that F is not injective, therefore there $\exists x \in X/\{0\}$ so F(x) = 0, we now have that $f_j(x) = 0$, for all $j \leq n$

$$\exists x \in X/\{0\} \text{ so } F(x) = 0,$$

$$f_j(x) = 0 \Rightarrow x \in \ker\{f_j\}, \qquad \forall j \le n$$

$$x \in \bigcap_{j=1}^n \ker(f_j),$$

This means that

$$\bigcap_{j=1}^{n} \ker(f_j) \neq \{0\}$$

3.3 c

Let $0 \neq x_1, x_2, ..., x_n \in X$ and by theorem 2.7 (b) there exists $f \in X^*$, such that ||f|| = 1 and $f_j(x) = ||x||$. And from problem 3 part a we have that there $\exists \tilde{y}$ so $0 \neq \tilde{y} \in \bigcap_{j=1}^n \ker(f_j)$, and so let $y = \frac{\tilde{y}}{||\tilde{x}||}$ so ||y|| = 1,

$$||f_j(x_j - y)|| \le ||f_j|| ||y - x_j||,$$
 Inequality for linear maps $||f_j(x) - f_j(y)|| \le 1 ||y - x_j||,$ Since $||f_j|| = 1,$ Since $|f_j(y)| = 0,$

3.4 d

Let $S = \{x \in X : ||x|| = 1\}$ be the unit sphere, suppose for contradiction that there exists $x_1, x_2, ...x_n$, such that $|x_j|$ and $\cup b(x_j, r_j)$ cover S, where $r \leq ||x||$. Then by problem 3 part c, we have that there $\exists y$ so $||x_j - y|| \geq ||x_j|| > r_j$. This means that y is not in any of the closed balls and ||y|| = 1 so $y \in S$, hence there is no finite family of closed balls cover the unit sphere.

5

3.5 e

S is compact if for all open cover of S there is a finite subcover. Now let $p \in S$ and $B := \{x \in X | : ||x - p|| < \frac{1}{2}\}$ this is a open cover of S. But proven in problem 3 part d, there is no finite subcover of S in B.

All closed unit balls in X has a center in X, let it be c then the open cover of the closed unit ball given by $B_c := \{x \in X | p \in S : \|x + c - p\| < \frac{1}{2}\} \cup \{x \in X : \|x - c\| < \frac{2}{3}\}$. Since $\{x \in X : \|x - c\| < \frac{2}{3}\}$ do not cover the sphere of the closed unit ball, we can use the same arguments, then there is no finite cover. And the unit ball in X is non-compact.

4 4

Let $L_1([0,1],m)$ and $L_3([0,1],m)$ be the Lebesgue spaces, that is

$$L_p(X,\mu) := \left\{ f := x \to \mathbb{K} \text{ measurable} : ||f||_p := \left(\int_X |f(x)|^p d\mu(x) \right)^{1/p} < \infty \right\}$$

For $n \geq 1$, let

$$E_n := \left\{ f \in L_1([0,1], m) : \int_Y |f(x)|^3 dm < n \right\}$$

4.1 a

Given $n \geq 1$, if the set $E_n \subset L_1([0,1],m)$ is absorbing, then E_n needs both be a convex set and $\forall 0 \neq x \in X$, there exists t > 0 such that $x \in tA$, or equivalently, $t^{-1}x \in A$. We have that $L_3([0,1],m) \subsetneq L_1([0,1],m)$ and $f \in L_1([0,1],m) - L_3([0,1],m) \neq \emptyset$. I will not show that E_n is a convex set, i will just show that there do not $\exists 0 < t < \infty$ so $t^{-1}f \in E_n$. We can assume that $\int_{[0,1]} |f|^3 dm \geq n$ else $f \in L_3([0,1],m)$.

$$\int_{[0,1]} |t^{-1}f|^3 dm = |t^{-3}| \int_{[0,1]} |f|^3 dm,$$

$$|t^{-3}| \int_{[0,1]} |f|^3 dm \ge |t^{-3}| \left(\int_{[0,1]} |f|^3 \right)^{1/3} \quad \text{use that } f \notin L_3([0,1], m)$$

$$= |t^{-3}| \infty = \infty$$

Hence there do not exists a t so $\forall x$ so $tx \in E_n$.

side 6/9

4.2 b

Let $f_1 \in L_1([0,1,m]) - L_3([0,1,m])$ and we can let $0 < ||f_1|| < \delta$, depend on delta since $||\delta f|| = |\delta| ||f||$. Now i will shot that $0 \in E_n$ is not an interior E_n , this shows that there no interior point since $f_2 = f_1 + f_e \in L_1([0,1],m)$ for $f_e \in E_n$

$$||f_1 - 0|| = ||f_1|| < \delta,$$

$$||f_1|| < \varepsilon \qquad \text{Let } \delta = \varepsilon$$

$$||f_e - f_2|| = ||f_e - f_1 - f_e|| = ||f_1|| < \varepsilon \qquad \text{Just to show } \forall f_e \in E_n \text{ is true}$$

Hence E_n has empty interior.

4.3 \circ

Let $f \in \overline{E_n}$ and $(f_m)_{m \ge 1} \in (E_n)$ be a sequence converging to uniformly to f. Then $\forall \varepsilon$ there exists a M so for all M < m, $||f_m - f|| < \varepsilon$.

$$\int_{[0,1]} |f|^3 dm \le \int_{[0,1]} (|f - f_m| + |f_m|)^3 dm, \qquad \text{By triangle inequality}$$

$$\le \int_{[0,1]} (\varepsilon + |f_m|)^3 dm \qquad \text{Use that} ||f_m - f|| < \varepsilon$$

$$= n + \varepsilon (3 \int_{[0,1]} |f_n|^2 + \varepsilon |f_n| + \varepsilon^2 dm),$$

$$\infty > (3 \int_{[0,1]} |f_n|^2 + \varepsilon |f_n| + \varepsilon^2 dm), \qquad \text{Since } E_n \subseteq L_3([0,1]) \subsetneq L_2([0,1]) \subsetneq L_1([0,1])$$

Hence we have that for $\varepsilon \to 0$, that $m \to \infty$ that $\int_{[0,1]} |f_m|^3 \to \int_{[0,1]} |f|^3 \le n$. This shows that $f \in E_n$ and that E_n is closed.

4.4 d

Let $(E_n)_{n\geq 1}$ be a sequence with

$$E_n := \left\{ f \in L_1([0,1], m) : \int_X |f(x)|^3 dm \le n \right\}$$

and we have that $L_1([0,1],m)$ is a topological space. From problem 4 part b and c that E_n is closed and with $Int(\overline{E_n}) = \emptyset$, this is by definition 3.12, that E_n is of nowhere dense.

$$f_3 \in L_3([0,1], m)$$

$$||f_3||_3 = c < \infty$$

$$||f_3||_3^3 = c^3 < \infty$$

$$f_3 \in E_{n > c^3},$$

$$\bigcup_{n \ge 1} (E_n) = L_3([0,1], m)$$

Since we have a sequence $(En)_{n\leq 1}$ of nowhere dense sets such that $\bigcup_{n\geq 1}(E_n)=L_3([0,1],m)$. We have by Defination 3.12 (ii) that $L_3([0,1],m)$ is of first category of $L_3([0,1],m)$.

5 5

Let H be an infinite dimensional Hilbert space with associated norm $\|\cdot\|$, let $(x_n)_{n\geq 1}$ be a sequence in H, and let $x\in H$.

5.1 a

Suppose that $x_n \to x$ in norm, as $n \to \infty$, mening that.

$$||x_n - x|| \to 0, n \to \infty$$

Then we have that

$$||x + x_n - x_n||,$$
 $||x_n|| - ||x_n - x|| \le ||x|| \le ||x_n|| + ||x_n - x||,$ Triangle inequality
 $||x_n|| - 0 \le ||x|| \le ||x_n|| + 0,$ Let $n \to \infty$
 $||x_n|| \to ||x||.$

So it does true that $||x_n|| \to ||x||$

5.2 b

Let $(e_n)_{m\leq 1}$ be a orthonormal basis in H, by defination of weakly convergens we have that $e_n \to x$ for all $h \in H$,

$$\langle e_n, h \rangle \to \langle h, x \rangle$$

 $\langle h, x \rangle = 0 = \langle 0, x \rangle$
 $e_n \to 0,$

but we have that

$$\langle x_n, x_n \rangle = ||x_n|| \to 1 \neq ||0|| = 0$$

5.3 e

Suppose that $||x_n|| \le 1$, for all $n \ge 1$, and that $x_n \to x$ weakly, as $n \to \infty$. Since $(x_n)_{n\ge 1}$ is a bound sequence we have that ||x|| is bound by the limit of the sequence. Hence $||x|| \le 1$ It is true.