Chapter 2

Compressive Sensing

This section is based on [3]. The problem to be solved can be formulated as follows: Let $\boldsymbol{x} \in \mathbb{R}^N$ be a signal of interest. We do not measure \boldsymbol{x} directly and it is thus unknown. Instead, we have a measurement $\boldsymbol{y} \in \mathbb{R}^M$, with M << N, from which we want to reconstruct \boldsymbol{x} . The signals \boldsymbol{x} and \boldsymbol{y} are related as follows:

$$\mathbf{\Omega} \boldsymbol{x} = \boldsymbol{y} \tag{2.1}$$

where Ω is a known $M \times N$ matrix referred to as the sensing matrix.

For example, in [3], the signal of interest \boldsymbol{x} is an image, so that N is equal to the total number of pixels in the image and x_i is equal to the intensity of the corresponding pixel. However, we imagine that we have only access to a corrupted version of \boldsymbol{x} in which random pixel values have been deleted. This is our measurement \boldsymbol{y} . See Figure ?? for an example. The sensing matrix Ω corresponding to this scenario is obtained

Fig. 2.1 Example of a signal pair \boldsymbol{x} (left) and \boldsymbol{y} (right). We wish to reconstruct \boldsymbol{x} from \boldsymbol{y} .

by taking the $N \times N$ identity matrix and deleting the rows that correspond to the missing entries in \boldsymbol{x} .

Compressive Sensing (CS) is a collection of signal processing techniques that allow for efficient *reconstruction* (and indeed *aquisition*) of such signals by solving the underdetermined system (2.1).

Of course, there are infinitely many solutions to an underdetermined system. In the CS framework, we seek to find a solution \hat{x} that is *sparsest in some domain*. By that, we mean that we want to find \hat{x} that satisfies (2.1), such that there exists a basis transformation of \hat{x} in which it has the smallest number of nonzero entries.

More concretely, we assume there exists a domain in which the desired signal \boldsymbol{x} is sparse. I.e. there exists a $N \times N$ basis matrix $\boldsymbol{\Psi}$ such that $\boldsymbol{x} = \boldsymbol{\Psi} \boldsymbol{w}$ and \boldsymbol{w} is sparse.

The CS problem can then be expressed as follows:

$$\min ||\boldsymbol{w}||_0 \quad \text{subject to} \quad \boldsymbol{\Omega} \boldsymbol{\Psi} \boldsymbol{w} = \boldsymbol{y}$$
 (2.2)

where ||.|| denotes the l_0 norm, i.e. the number of nonzero components.

For a more detailed review of the CS framework, see [1].

References

- [1] Candès, E. J. and Wakin, M. B. (2008). An introduction to compressive sampling. Signal Processing Magazine, IEEE, 25(2):21–30.
- [2] DeVore, R. A., Jawerth, B., and Lucier, B. J. (1992). Image compression through wavelet transform coding. *Information Theory, IEEE Transactions on*, 38(2):719–746.
- [3] Pilikos, G. (2014). Signal reconstruction using compressive sensing. MPhil thesis, University of Cambridge.
- [4] Stollnitz, E. J., DeRose, T. D., and Salesin, D. H. (1995). Wavelets for computer graphics: a primer. 1. Computer Graphics and Applications, IEEE, 15(3):76–84.
- [5] Tipping, A. and Faul, A. (2002). Analysis of sparse bayesian learning. Advances in neural information processing systems, 14:383–389.
- [6] Tipping, M. E. (2001). Sparse bayesian learning and the relevance vector machine. The journal of machine learning research, 1:211–244.
- [7] Tipping, M. E., Faul, A. C., et al. (2003). Fast marginal likelihood maximisation for sparse bayesian models. In *AISTATS*.