Chapter 1

Induction and Asymptotic Notations.

1.1 Induction.

What is induction?

- 1. A mathematical proof technique. It is essentially used to prove that a property P(n) holds for every natural number n.
- 2. The method of induction requires two cases to be proved:
 - (a) The first case, called the base case, proves that the property holds for the first element.
 - (b) The second case, called the induction step, proves that if the property holds for one natural number, then it holds for the next natural number.
- 3. The domino metaphor.

The two types of induction, their steps, and why it makes sense (Strong vs Weak) - Emphasize the change in the induction step.

Example 1.1.1 (Weak induction). *Prove that* $\forall n \in N \sum_{i=0}^{n} i = \frac{n(n+1)}{2}$.

Proof. Base: For $n=1,\sum_{i=0}^11=1=\frac{(1+1)\cdot 1}{2}.$ Assumption: Assume that the claim holds for n. Step:

$$\sum_{i=0}^{n+1} i = \left(\sum_{i=0}^{n} i\right) + n + 1 = \frac{n(n+1)}{2} + n + 1 = \frac{n(n+1) + 2 \cdot (n+1)}{2} = \frac{(n+1)(n+2)}{2}$$

Example 1.1.2 (Weak induction.). Let $q \in \mathbb{R}/\{1\}$, consider the geometric series $1,q,q^2,q^3....q^k....$ Prove that the sum of the first k elements is

$$1 + q + q^2 + \dots + q^{k-1} + q^k = \frac{q^{k+1} - 1}{q - 1}$$

Proof. Base: For n=1, we get $\frac{q^{k+1}-1}{q-1}=\frac{q-1}{q-1}=1$. Assumption: Assume that the claim holds for k. then: Step:

$$1 + q + q^{2} + \dots + q^{k-1} + q^{k} + q^{k+1} = \frac{q^{k} - 1}{q - 1} + q^{k+1} = \frac{q^{k+1} - 1 + q^{k+1} (q - 1)}{q - 1} = \frac{q^{k+1} - 1 + q^{k+2} - q^{k+1}}{q - 1} = \frac{q^{k+2} - 1}{q - 1}$$

Example 1.1.3 (Strong induction). Let there be a chocolate bar that consists of n square chocolate blocks. Then it takes exactly n-1 snaps to separate it into the n squares no matter how we split it.

Proof. By strong induction. Base: For n=1, it is clear that we need 0 snaps. Assumption: Assume that for **every** m < n, this claim holds.

Step: We have in our hand the given chocolate bar with n square chocolate blocks. Then we may snap it anywhere we like, to get two new chocolate bars: one with some $k \in [n]$ chocolate blocks and one with n-k chocolate blocks. From the induction assumption, we know that it takes k-1 snaps to separate the first bar, and n-k-1 snaps for the second one. And to sum them up, we got exactly

$$(k-1) + (n-k-1) + 1 = n-1$$

snaps.

1.2 Asymptotic Notations.

Definition 1.2.1. Let $f, g : \mathbb{N} \to \mathbb{R}^+$. We say that f(n) = O(g(n)) if $\exists N \in \mathbb{N}, \exists c > 0$ s.t. $\forall n \geq N : f(n) \leq c \cdot g(n)$

Example 1.2.1. For exmaple, if f(n) = n + 10 and $g(n) = n^2$, then f(n) = O(g(n)) (Draw the graphs) for $n \ge 5$: $f(n) = n + 10 \le n + 2n = 3n \le n \cdot n = n^2$

Definition 1.2.2. Let $f, g : \mathbb{N} \to \mathbb{R}$ We say that $f(n) = \Omega(g(n))$ if g(n) = O(f(n)), equivalently, $\exists N \in \mathbb{N}, \exists c > 0$ s.t. $\forall n \geq N c_0 g(n) \leq f(n)$

Example 1.2.2. Also if f(n) = 5n and $g(n) = n^2$, then f(n) = O(g(n)) (Now discuss intuition - no matter how much we "stretch" f, g is still the winner)

Definition 1.2.3. Let $f, g : \mathbb{N} \to \mathbb{R}$, We say that $f(n) = \Omega(g(n))$ if: $\exists N \in \mathbb{N}, \exists c > 0$ s.t $\forall n \geq N$ $f(n) \geq c \cdot g(n)$.

Example 1.2.3. For exmaple, if f(n) = n + 10 and $g(n) = n^2$, then $g(n) = \Omega(f(n))$

Definition 1.2.4. Let $f, g: \mathbb{N} \to \mathbb{R}$, We say that $f(n) = \Theta(g(n))$ if: f(n) = O(g(n)) and $f(n) = \Omega(g(n))$ That is, we say that $f(n) = \Theta(g(n))$ if: $\exists N \in \mathbb{N}, \exists c_1, c_2 > 0$ s.t. $\forall n \geq N \ c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n)$

Example 1.2.4. For every $f: \mathbb{N} \to \mathbb{R}$, $f(n) = \Theta(f(n))$

Example 1.2.5. If $p(n) = n^5$ and $q(n) = 0.5n^5 + n$, then $p(n) = \Theta(q(n))$

But why is this example true? This next Lemma helps for intuition:

Lemma
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} < \infty \Rightarrow f(n) = O(g(n))$$

Proof. Assume that $l=\lim_{n\to\infty}\frac{f(n)}{g(n)}<\infty$. Then for some $N\in\mathbb{N}$ we have that for all $n\geq N$: $\frac{f(n)}{g(n)}< l+1\Rightarrow f(n)<(l+1)g(n)$ Which is exactly what we wanted.

1.3 Examples with proofs.

Claim 1.3.1. $n = O(2^n)$

(This must seem very silly, but even though we have a strong feeling it's true, we still need to learn how to PROVE it)

Proof. We will prove by induction that $\forall n \geq 1$, $2^n \geq n$, and that will suffice. Basis: n=1, so it is clear that: $n=1 < 2 = 2^n$ Assumption: Assume that $n < 2^n$ for some n. Step: We will prove for n+1. It holds that:

$$n+1 < 2^n + 1 < 2^n + 2^n = 2^{n+1}$$

Claim 1.3.2. Let p(n) be a polynomial of degree d and let q(n) be a polynomial of degree k. Then:

- 1. $d \le k \Rightarrow p(n) = O(q(n))$ (set upper bound over the quotient)
- 2. $d \ge k \Rightarrow p(n) = \Omega(q(n))$ (an exercise)
- 3. $d = k \Rightarrow p(n) = \Theta(g(n))$ (an exercise)

Proof. Proof (Of 1) First, let's write down p(n), g(n) explicitly:

$$p(n) = \sum_{i=0}^{d} \alpha_i n^i, \ g(n) = \sum_{j=0}^{k} \beta_j n^j$$

Now let's manipulate their quotient:

$$\frac{p(n)}{q(n)} = \frac{\sum_{i=0}^{d} \alpha_{i} n^{i}}{\sum_{j=0}^{k} \beta_{j} n^{j}} = \frac{\sum_{i=0}^{d} \alpha_{i} n^{i}}{\sum_{j=0}^{k} \beta_{j} n^{j}} \cdot \frac{n^{k-1}}{n^{k-1}} = \frac{\sum_{i=0}^{d} \alpha_{i} n^{i-k+1}}{\sum_{j=0}^{k} \beta_{j} n^{j-k+1}} \le \frac{\sum_{i=0}^{d} \alpha_{i}}{\beta_{k}} < \infty$$

And now we can use the lemma that we have proved earlier.

1.4 Logarithmic Rules.

Just a quick reminder of logarithmic rules:

- 1. $log_a x \cdot y = log_a x + log_a y$
- 2. $log_a \frac{x}{y} = log_a x log_a y$

- 3. $log_a x^m = m \cdot log_a x$
- 4. Change of basis: $\frac{log_a x}{log_a y} = log_y x$

And so we get that:

Remark 1.4.1. For every $x, a, b \in \mathbb{R}$, we have that $log_a x = \Theta(log_b x)$

Example 1.4.1. Let f(n) be defined as:

$$f(n) = \left\{ \begin{array}{cc} & f\left(\lfloor \frac{n}{2} \rfloor\right) + 1 & \textit{for } n > 1 \\ & 5 & \textit{else} \end{array} \right.$$

Let's find an asymptotic upper bound for f(n). let's guess $f(n) = O(\log(n))$.

Proof. We'll prove by strong induction that : $f(n) < c\log(n) - 1$ for c = 8 And that will be enough (why? This implies $f(n) = O(\log(n))$). Base: n = 2. Clearly, f(2) = 6 < 8 Assumption: Assume that for every m; n, this claim holds. Step: Then we get:

$$\begin{split} f(n) &= f\left(\lfloor \frac{n}{2} \rfloor\right) + 1 \leq c \log\left(\lfloor \frac{n}{2} \rfloor\right) + 1 \\ &\leq c \log\left(n\right) - c \log\left(2\right) + 1 \leq c \log\left(n\right) \quad \text{for } c = 8 \end{split}$$