Automatic Control

Hak-Tae Lee

Frequency Response

Bode Plot 3 – Gain Margin and Phase Margin

Applications of the Bode Plot

• $KG(s) = K \frac{1}{s(s+1)^2}$ (Open loop transfer function)

Recall root locus

-
$$KG(s) = -1 \rightarrow |KG(s)| = 1$$

- $\angle G(s) = -180^{\circ}$

$$- \angle G(s) = -180^{\circ}$$

Trajectory of s that satisfies the phase condition

When K=2

-
$$s = j1$$
 (crossover frequency)

-
$$\angle G(s) = \angle G(j1) = -180^{\circ}$$

Magnitude: 1 when $\omega = 1$ Phase: -180° when $\omega = 1$

Bode Plot Representation

$$KG(s) = \frac{2}{s(s+1)^2}$$

When
$$\angle KG(j\omega) = -180^{\circ} \Rightarrow |KG(j\omega)| = 1$$

If the gain (K) is a value such that the close loop poles are on the imaginary axis

When a bode plot of KG(s) is plotted

Magnitude is 1 when phase is -180°

Bode Plot Representation

- Open loop transfer function
 - -KG(s)
- We are changing K and we know how the closed loop poles move with respect to K from root locus
- We can also draw a Bode plot of KG(s) with different value of Ks
 - Magnitude plot with only move up or down depending on the value of K
 - Phase plot will not change
- For a special value of K that the closed loop poles are on the imaginary axis, $K = K_N$
 - Root locus condition will still be satisfied
 - $|K_NG(s)|=1$
 - $\angle K_N G(s) = -180^{\circ}$
 - If a Bode plot is drawn for $K_NG(s)$
 - Magnitude is 1 for the frequency that gives -180°

What if $K < K_N$?

- Root locus side
 - Closed loop poles will be stable
- Bode Plot side
 - Magnitude plot will move down
 - Magnitude at $\angle G(\omega_c) = -180^\circ$ is smaller than 1
- What is the limit on K until instability occurs?
 - When the magnitude at $\angle G(\omega_c) = -180^{\circ}$ is 1

Gain Margin

Compare

$$- G_1(s) = \frac{2}{s(s+1)^2}$$

$$- G_2(s) = \frac{1}{s(s+1)^2}$$

- At which frequency the phase becomes
 - 180°?

- At
$$\omega_c = 1$$

- At the crossover frequency
 - What is the magnitude of $G_1(j\omega)$?
 - 1
 - What is the magnitude of $G_2(j\omega)$?
 - 0.5
- Is $G_2(s)$ stable?
 - Yes
- How much more can you increase the gain on $G_s(s)$
 - Can multiply up to 2 → Gain margin

Phase Margin

Compare

$$-G_1(s) = \frac{2}{s(s+1)^2}$$

$$- G_2(s) = \frac{1}{s(s+1)^2}$$

- At which frequency the magnitude becomes 1?
 - For G_1 → at ω = 1 (neutral)
 - − For G_2 → at $\omega = 0.68$ (stable)
- When $\omega = 0.68$
 - What is the phase $G_2(j\omega)$?
 - −159
- How much you phase you have left until -180° ? $G_s(s)$
 - 21° → Phase margin

Example

$$G(s) = \frac{1}{s(s^2 + 2s + 4)}$$

Imaginary axis crossing

$$s(s^{2} + 2s + 4) + K = 0$$

$$s = j\omega$$

$$j\omega(-\omega^{2} + 2j\omega + 4) + K = 0$$

$$-\omega^{3}j(-\omega^{3} + 4\omega) + K - 2\omega^{2} = 0$$

$$\omega = 2, K = 8$$

Bode Plot

$$G(s) = \frac{1}{s(s^2 + 2s + 4)}$$

Standard form

$$-G(s) = \frac{1}{s(s^2 + 2s + 4)} = \frac{1}{4} \frac{1}{s(\frac{s^2}{4} + 2\frac{1}{4}s + 1)} = \frac{1}{4} \frac{1}{s((\frac{s}{2})^2 + 2\frac{1}{2}(\frac{s}{2}) + 1)}$$

Break points (corner frequencies)

$$- s = 1$$

- $|G(j\omega)| = \frac{1}{4} (-12 \text{ dB})$ with slope of -1
- $\angle G(j\omega) = -90$

$$-s=2 \rightarrow \zeta=\frac{1}{2}$$

- Slope changes to −3
- Phase changes from -90° to -270° while

Bode Plot

Matlabe Commands

```
>> num = 1
num =
>> den = [1 2 4 0]
den =
  1 2 4 0
>> sys = tf(num, den)
sys =
s^3 + 2 s^2 + 4 s
Continuous-time transfer function.
>> [mag, phase, w] = bode(sys);
>> [Gm , Pm , Wcg , Wcp] = margin(mag, phase, w)
Gm =
 8.0000
Pm =
 82.6871
Wcg =
  2.0000
Wcp =
  0.2520
```

Root Locus vs Bode Plot

Root locus

- Open loop poles and zeros → closed loop poles
- Find a value of the gain, K, for stability

Bode plot

- Can find closed loop stability by evaluating the frequency response of the open loop transfer function, KG(s).
- Need to know K, and then evaluate stability
- → Can be used for extra small tweaks to improve the characteristics
 - Add phase margin
 - Increase low frequency gain → reduce steady state error

Derivative control vs Lead

$$D(s) = \left(\frac{s}{2} + 1\right)$$

Amount of phase addition can be adjusted

$$D(s) = \frac{\frac{s}{2} + 1}{\frac{s}{10} + 1}$$

PD Control Example

Integral Control vs Lag

Add low frequency gain

Can add low frequency gain

Too much reduction in low frequency phase

$$D(s) = \left(1 + \frac{1}{s}\right) = \frac{s+1}{s}$$

Amount of phase reduction can be adjusted

$$D(s) = 10 \frac{\frac{s}{10} + 1}{s + 1}$$