# الإجابة النموذجية وسلم التنقيط

امتحان شهادة البكالوريا دورة: 2010

اختبار مادة: العلوم الفيزيائية الشعب(ة): علوم تجريبية

| مجموع | مجزأة    | عناصر الإجابة           |             |          |                            |                                           |                                    |                          |                              | المحاور |
|-------|----------|-------------------------|-------------|----------|----------------------------|-------------------------------------------|------------------------------------|--------------------------|------------------------------|---------|
|       | <u> </u> |                         |             |          | ع الأول                    |                                           |                                    |                          |                              |         |
|       |          |                         | _           |          |                            |                                           | نقاط)                              | ل : ( 04                 | التمرين الأوا                |         |
|       |          |                         |             |          |                            |                                           |                                    |                          | 1- جدول ا                    |         |
|       |          |                         |             |          |                            |                                           |                                    |                          |                              |         |
|       |          | 2                       | المعانل     | Zn       | (s) +                      | · 2H * (aq)                               | <u> </u>                           | Zn <sup>2+</sup> (aq)-   | + H <sub>2</sub> (g)         |         |
|       | 0.75     | ح/ الجملة               | التقدم      | ~        |                            | (mol)                                     | ية المادة                          | کم                       |                              |         |
|       |          | ح/ ابند                 | 0           | 1,5      | 4×10 <sup>-2</sup>         | 2×1                                       | 0-2                                | 0                        | 0                            |         |
| 01    |          | ح/ إنتقا                | x           | 1,54     | $\times 10^{-2} - x$       | 2×10 <sup>-2</sup>                        | -2x                                | x                        | х                            |         |
|       |          | ح/ نها                  | $x_f$       | 1,54×    | $(10^{-2} - x_f)$          | 2×10 <sup>-2</sup>                        | $-2x_f$                            | $x_f$                    | $x_f$                        |         |
|       |          |                         |             |          |                            |                                           |                                    | V                        |                              |         |
|       | 0.25     |                         |             |          |                            | *                                         | $n_{H_1} = x =$                    | $\frac{V_{H_2}}{V_M}$ :3 | - ألعلاق                     |         |
|       |          |                         |             |          |                            |                                           |                                    | ~<br>جدول:               | 2- إكمال الـ                 |         |
|       |          |                         | (s)         | 0        | 50                         | 100                                       | 150                                | 200                      |                              |         |
| 05    | 0.5      | $x \times 10^{-3} (ma)$ | <del></del> | 0        | 1,44                       | 2,56                                      | 3,44                               | 16,4                     | ļ                            |         |
|       |          |                         | (s)         | 250      | 300                        | 400                                       | 500                                | 750                      |                              |         |
|       |          | $x \times 10^{-3} (mc)$ | (l)         | 4,80     | 5,28                       | 6,16                                      | 6,80                               | 8,00                     | )                            |         |
| 0.5   | 0.5      |                         |             |          |                            |                                           |                                    |                          |                              |         |
|       |          |                         |             |          | (8/2                       | لر الصفحة                                 | . = x (أنظ                         | f(t) :ان                 | 3- رسم البي                  |         |
|       | 0.25     |                         |             |          |                            | . <b>v</b> :                              | $=\frac{1}{x} \cdot \frac{dx}{dx}$ | الحجمية:                 | 4- السرعة                    |         |
|       | 0.25     |                         |             | 10       | ~4.7~10                    |                                           | , ,                                |                          | - في اللحظ                   |         |
| 01    | 0.25     |                         |             |          |                            |                                           | •                                  |                          | - في اللحظ<br>- في اللحظ     |         |
|       | 0.25     | نصد ،                   | سسس نة      | _        |                            |                                           | <del></del>                        |                          | مي سخط<br>يلاحظ أن قيد       |         |
|       |          | <b>-</b>                | * * *       | - سريس   |                            |                                           |                                    |                          | وحصر المتفا<br>تراكيز المتفا |         |
|       | 2×0.25   | ، المحد هو              | المتفاعل    | ير ومنه  | $_{\rm max} = 10^{-2}  mc$ | ل التقدم اد                               | : من جدو                           |                          | 5/ أ- المتفاء                |         |
|       | -        |                         |             |          |                            | •                                         | يدروجين                            | , كلور اله               | حمض                          |         |
| 01    |          | (                       | م التفاعل   | فيها تقد | ية التي يبلغ               | المدة الزمد                               | : t <sub>1/2</sub> هو              | التفاعل                  | - زمن نصف                    |         |
| 01    | 0.25     |                         |             |          |                            | $x_{(t_{(1)})} = \frac{x_{(1)}}{x_{(1)}}$ | عظمی ××                            | تقدمه الأ                | نصف قيمة                     |         |
|       | 0.75     |                         |             |          |                            | 2                                         | -                                  |                          | من البيان:                   |         |
|       | 0.25     |                         |             |          | 11/2 ~ 2                   | 703 🛶 x                                   | ( <sub>1/2</sub> ) = 3 ^           | io moi                   | من سبيان،                    |         |
|       |          |                         |             |          |                            |                                           |                                    |                          |                              |         |
|       |          |                         |             |          |                            |                                           |                                    |                          |                              |         |
|       |          |                         |             |          |                            |                                           |                                    |                          |                              |         |
|       | :        |                         |             |          |                            |                                           |                                    |                          |                              |         |
|       |          |                         |             |          |                            |                                           |                                    |                          |                              |         |

الشعب (ة): علوم تجريبية

تابع الإجابة التموذجية اختبار مادة : العلوم الفيزيائية

| مجموع | مجزأة                        | عناصر الإجابة                                                                                                                                                                                                                                                                  | المحاور                               |
|-------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
|       |                              |                                                                                                                                                                                                                                                                                |                                       |
|       |                              |                                                                                                                                                                                                                                                                                | , , , , , , , , , , , , , , , , , , , |
|       |                              |                                                                                                                                                                                                                                                                                |                                       |
|       |                              |                                                                                                                                                                                                                                                                                |                                       |
|       | :                            |                                                                                                                                                                                                                                                                                |                                       |
| -     |                              | التمرين الثاني: ( 04 نقاط)                                                                                                                                                                                                                                                     |                                       |
| 0.5   | 0.25<br>0.25                 | تركيب نواة الكريون 14: عدد البروتونات: 5=2<br>عدد النيترونات: N = A - Z = 8                                                                                                                                                                                                    |                                       |
| 01    | 0.25<br>0.25<br>0.25<br>0.25 | $A = 14 \iff A + 1 = 14 + 1$ النواة بتطبيق قانوني الإنحفاظ: $A = 14 \iff A + 1 = 14 + 1$ $= -2$ $= -2 + 1$ ومنه: $A = 14 \iff A = 14 + 1 = 14 + 14 = 14$ ومنه: $A = 14 \iff A = 14 \implies A$ المعادلة: $A = 14 \iff A = 14 \implies A$ ومنه $A = 14 \implies A$ (الأزوت 14). |                                       |
|       | 0.25<br>0.25                 | $N_0$ المعادية. $N_0 = 2^{1/2} = 2^{1/2}$ ومنه $2^{1/2} = 2^{1/2}$ المحادثة. $N(t)$ : عدد الأنوية غير المتفككة في العينة في اللحظة $N_0$ : عدد الانوية غير متفككة في العينة في اللحظة $N_0$                                                                                    |                                       |
| 1.75  | 0.25<br>0.25                 | $\lambda$ : ثابت النفكك الاشعاعي، $\lambda$ : ثابت النفكك الاشعاعي، $N(t) = N_0/2$ يكون: $N(t) = N_0/2$                                                                                                                                                                        |                                       |
|       | 0.25                         | $\lambda = \frac{\ln 2}{t_{1/2}}$ : $-\ln 2 = -\lambda t_{1/2} \leftarrow 1/2 = e^{-\lambda t_{1/2}} \leftarrow N_0/2 = N_0 e^{-\lambda t_{1/2}}$                                                                                                                              |                                       |
|       | 0.25                         | ج/ $[T]^{-1} = [T]^{-1}$ اي أن وحدة قياس $\lambda$ هي مقلوب وحدة الزمن $[\lambda] = \frac{1}{T}$                                                                                                                                                                               |                                       |
|       | 0.25                         | $\lambda = 1,244 \times 10^{-4}  ans^{-1}$ : ومنه $\lambda = \frac{\ln 2}{t_{1/2}}$ : $\lambda$                                                                                                                                                                                |                                       |
|       | 0.25                         | $A(t) = -\frac{dN}{dt} \Rightarrow A(t) = N_0 \lambda e^{-\lambda t} = A_0 e^{-\lambda t} = -4$                                                                                                                                                                                |                                       |
|       | 0.25                         | $rac{A}{A_0} = e^{-\lambda t} \iff \ln rac{A}{A_0} = -\lambda t$ حساب عمر العينة:                                                                                                                                                                                            |                                       |
| 0.75  | 0.23                         | $t = -\frac{\ln A/A_0}{\lambda} = 1489, 28ans$                                                                                                                                                                                                                                 |                                       |
|       | 0.25                         | تم قطع الشجرة التي انحدرت منها القطعة عام: 510×510,72 = 2000−1489,28 = 510,72 = 2000                                                                                                                                                                                           |                                       |

تابع الإجابة النموذجية اختبار مادة : العلوم الفيزيائية الشعب (ة): علوم تجريبية

| مجموع   | مجزاة         | عناصر الإجابة                                                                                                                           | المحاور |
|---------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------|
|         |               | التمرين الثالث: ( 04 نقاط)                                                                                                              |         |
| 01      | 2×0.5         | $u_b = r.i + L\frac{di}{dt}$ , $u_R = R.i - 1$                                                                                          |         |
| 0.5     | 2×0.25        | u .                                                                                                                                     |         |
|         |               | $E = (R+r)i + L\frac{di}{dt} \Leftrightarrow \frac{di}{dt} + \frac{(R+r)}{L}i = \frac{E}{L}$                                            |         |
| 0.5     | 0.5           | -3 باشتقاق عبارة التيار والتعويض في المعادلة التفاضلية تتحقق المساواة. $E$                                                              |         |
|         | 2×0.25<br>0.5 | $i_{\max} = \frac{E}{R+r} \Leftrightarrow r = 2\Omega / -4$                                                                             |         |
| 1.5     | 0.5           | t=0 باستعمال ميل المماس في اللحظة $t=0$                                                                                                 |         |
|         | 2×0.25        | $i_{ m max}$ أو طريقة النسبة المئوية ( $63\%$ ) من $I_0$ أي $L$                                                                         |         |
|         |               | $\tau = \frac{L}{R+r} \iff L = 1, 2 \times 10^{-1} H$                                                                                   |         |
| 0.5     | 2×0.25        | 5- الطاقة المخزنة في الوشيعة في حالة النظام الدائم:<br>                                                                                 |         |
|         |               | $E_{b} = \frac{1}{2}L.i_{\text{max}}^{2}; E_{b} = 1,5 \times 10^{-2}J$                                                                  |         |
|         |               | التمرين الرابع: (04 نقاط)                                                                                                               |         |
|         |               | 1- عملية التمديد:                                                                                                                       |         |
|         | 0.25          | $n_1 = n_2 \qquad c_1 V_1 = c_2 V_2$                                                                                                    |         |
| 01      | 0.25          | $V_2 = rac{c_1 V_1}{c_2} = rac{c_1 V_1}{rac{c_1}{10}} = 10 V_1$                                                                      |         |
|         | 0.5           | الشرح : نأخذ $20 \mathrm{mL}$ من المحلول $\left(S_{\scriptscriptstyle 0} ight)$ ونضعها في حوجلة قياسية (عيارية) سعتها $200 \mathrm{mL}$ |         |
|         |               | نضيف الماء المقطر حتى الخط العياري 200mL (إضافة 180mL من الماء المقطر).                                                                 |         |
| _       |               | 2- معادلة التفاعل المنمذج:                                                                                                              |         |
| 0.5     | 0.5           | $OH^{-}(aq) + HCOOH(aq) = HCOO^{-}(aq) + H_2O(l)$                                                                                       |         |
|         | 0.5           | $E(20mL\;;\;8,2)$ : نقطة التكافؤ من البيان $-3$                                                                                         |         |
| 1.25    |               | تركيز الحمض الممدد :                                                                                                                    |         |
|         | 0.25          | $c_a V_a = c_b V_b \Rightarrow c_a = \frac{c_b V_b}{c_b}$                                                                               |         |
|         | 2×0.25        | $c_a = \frac{0.02 \times 20}{20} = 0.02 mol/L$                                                                                          |         |
|         |               | 20                                                                                                                                      |         |
| 0.75    | 3×0.25        | $pH = pK_a = 3.8$ : نقطة نصف التكافؤ: $K_a = 10^{-3.8} = 1.58 \times 10^{-4}$                                                           |         |
| 0.5     | 0.5           | $(S_0)$ تركيز المحلول الأصلي $(S_0)$ :                                                                                                  |         |
| <b></b> | 0.0           | $c_0 = 10c_a \Rightarrow c_0 = 10 \times 0,02 = 0,2 mol/L$                                                                              |         |
|         |               |                                                                                                                                         |         |
|         |               |                                                                                                                                         |         |
|         |               |                                                                                                                                         |         |

تابع الإجابة النموذجية اختبار مادة: العلوم الفيزيائية الشعب(ة): علوم تجريبية

|       | ###   | تابع الإجابه النمودجيه اختبار ماده: العلوم الفيزيانية الشعب(ه): علوم               |         |
|-------|-------|------------------------------------------------------------------------------------|---------|
| مجموع | مجزاة | عناصر الإجابة                                                                      | المحاور |
|       |       | التمرين التجريبي: (04 نفاط)                                                        |         |
|       | 0.25  | ا البيان $f(t) = v = v$ يعبر عن نظامين أحدهما انتقالي والآخر دائم.                 |         |
| 0.75  | 0.25  | النظام الانتقالي: $t \leq 7s$ ح.م. متسارعة $0 \leq t \leq 7s$                      |         |
|       | 0.25  | v=Cte ح.م. منتظمة $t>7s$ - النظام الدائم $t>7s$                                    |         |
|       |       | ,                                                                                  |         |
|       | 0.25  | $v_{\mathrm{lim}} = 19.6m/s$ ألسرعة الحدية $-2$                                    |         |
| 0.75  | 0.25  | $t=0$ عند $t=0$ يتمثل في حساب ميل المماس عند $t=0$ $\Delta v$ $19.6-0.6$           |         |
|       | 0.25  | $a_0 = \frac{\Delta v}{\Delta t} = \frac{19.6 - 0.6}{2 - 0} = 9.5 \text{m.s}^{-2}$ |         |
| 0.5   | 0.5   | 3- الشكل ، الحجم ، الكتلة                                                          |         |
|       | 0.25  | $\vec{f} + \vec{P} = m.\vec{a}$ -4                                                 |         |
|       | 0.25  | -f + P = m.a                                                                       |         |
| 1.25  | الرسم |                                                                                    |         |
|       | 0.5   | $-Kv + m.g = m\frac{dv}{dt}$                                                       |         |
|       | 0.25  | $g = \frac{K}{m}v + \frac{dv}{dt}$                                                 |         |
|       |       |                                                                                    |         |
|       | 0.05  | 5- بيان السرعة بدلالة الزمن يكون خطيا.                                             |         |
|       | 0.25  | ومنه $g = \frac{dv}{dt} = a$ ومنه $v = gt$ دالة خطية.                              |         |
| 0.75  | 0.25  | $\sqrt{V(ms)}$                                                                     |         |
|       |       |                                                                                    |         |
|       | 0.25  |                                                                                    |         |
|       |       | t(s)                                                                               |         |
|       |       |                                                                                    |         |
|       |       | <b>!</b>                                                                           |         |
|       | ſ     |                                                                                    |         |
|       |       |                                                                                    |         |
| :     |       |                                                                                    |         |
|       |       |                                                                                    |         |
|       |       |                                                                                    |         |

23

صفحة 4 من 8

الجديد و الحصري فقط على موقع الأستاذ otphilosophie.

sites.google.com/site/lotphilosophie

الشعب (ة): علوم تجريبية

تابع الإجابة النموذجية اختبار مادة: العلوم الفيزيائية النموذجية اختبار مادة:

| مجموع |              | عناصر الإجابة                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | المحاور |
|-------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|       |              | الموضوع الثاني                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |
|       |              | التمرين الأول: (04 ثقاط)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |
|       | <u> </u>     | $^{14}C$ معادلة النفكك $^{14}C$ :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |
|       |              | ${}^{14}_{6}C \rightarrow {}^{A}_{7}Y + {}^{0}_{1}e$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |
|       | 0.25<br>0.25 | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |
| 01    | 0.25         | $     \begin{array}{rcl}         & 14 = A + 0, & A = 14 \\         & 6 = Z - 1, & Z = 7     \end{array},  {}_{Z}^{A}Y = {}_{7}^{14}N $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |
|       | 0.25         | $^{14}_{6}C \rightarrow ^{14}_{7}N + ^{0}_{-1}e$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |
|       | 0.25         | $t_{\chi},t,A_0$ بدلالة $A(t)$ علقة (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |
| 0.75  | 0.25         | $A = A_0 e^{-\lambda t}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |
| 0.70  |              | $A = A_0 e^{-\frac{\ln 2}{\ell_{VI}}},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |
|       | 0.25         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|       |              | (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |
|       |              | $ \ln \frac{A}{A_0} = -\frac{\ln 2}{t_{1/2}}t $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|       |              | , and the second |         |
|       | 0.25         | $t = \frac{t_{1/2}}{\ln 2} \cdot \ln \frac{A_0}{A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |
|       | 2×0.25       | 5570 p 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |
|       | 2 0,22       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| 1.5   |              | $t_A = 1458,57$ ans $5570 - 4500$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |
|       | 2×0.25       | $t_B = \frac{5570}{0.639} \ln \frac{4500}{6000}$ الفريق الثاني:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|       |              | $t_{_B} \simeq 2301,45  ans$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |
|       | 0.25         | $ t_A - t_B  = 842,88 \text{ ans}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |
|       |              | الجمجمتان لا تتتميان لنفس الحقبة الزمنية.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |
|       | 0.25         | $E_{I}({}_{6}^{14}C) = \Delta mC^{2} \tag{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |
|       | 0.25         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| 0.75  | 0.25         | $E_1({}_{6}^{14}C) = ([6 \times 1,00728 + (14-6) \times 1,00866] - 14,00324)C^2 \times \frac{931,5}{C^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |
|       | 0.25         | $E_{I} = 102,2MeV = 102,2 \times 10^{6} eV$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |
|       | 0.25         | $E_{I} = 102, 2MeV = 102, 2 \times 10 \text{ eV}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |
|       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|       |              | التمرين الثاني: ( 04 نقاط)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |
|       | 0.5          | $C_6H_5COOH(aq) + HO^-(aq) = C_6H_5COO^-(aq) + H_2O(l) / -1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |
| 1.5   | 0.5          | E(10mL;8) برا نقطة التكافؤ: $E(10mL;8)$ تحدد $E$ بيانيا باستعمال طريقة المماسات المتوازية.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |
| 1     | 0.5          | تحدد ي بيانيا باستعمال طريعه المماسات المنوارية.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |
|       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |

تابع الإجابة النموذجية اختبار مادة: العلوم الفيزيائية الشعب(ة): علوم تجريبية

| ٠     |        | <b>شعب (ه):</b> علوم         |                                                                                                   | ماده: العلوم الفيز<br>عناصر الإجابة                   | J                                           |                                       | المحاور |  |  |  |
|-------|--------|------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------|---------------------------------------|---------|--|--|--|
| مجموح | مجزاة  |                              |                                                                                                   | عدصر الإجاب                                           |                                             |                                       | المحاور |  |  |  |
|       | 0.25   |                              | $C_a = \frac{C_b V_{bE}}{V_a}$ : ومنه $C_a V_a = C_b V_{bE}$ : عند التكافق $C_a V_a = C_b V_{bE}$ |                                                       |                                             |                                       |         |  |  |  |
|       | 0.25   |                              | $C_a = 2.0 \times 10^{-2}  mol.L^{-1}$                                                            |                                                       |                                             |                                       |         |  |  |  |
|       |        |                              | 2-أ-جدول التقدم:                                                                                  |                                                       |                                             |                                       |         |  |  |  |
| :     |        | المعانلة                     | $C_6H_2COOH(aq)$                                                                                  |                                                       | $C_6H_2OOO(aq)$                             | $+ H_2O(l)$                           |         |  |  |  |
|       |        | ح/إبتد                       | $C_a V_o = 10^{-3} mol$                                                                           | $C_b V_b = 10^{-3}  mol$                              | 0                                           | بزيادة                                |         |  |  |  |
|       | 0.5    | ح/نها                        | $10^{-3} - x_{\bar{E}}$                                                                           | $10^{-3} - x_{E}$                                     | $x_{\scriptscriptstyle E}$                  | بزيادة                                |         |  |  |  |
|       |        |                              | - ·                                                                                               | $_{5}COOH$ $_{2}O^{+}$                                | مية مادة كل مز                              | ب- حساب ک                             |         |  |  |  |
| 02    | 0.25   |                              | $(V_a + V_b) = 10^{-8}$                                                                           | $\times (50+10)10^{-3}$                               |                                             |                                       |         |  |  |  |
| 02    | 0.25   | $n_{(H_3O^*)} = 6 \times 10$ |                                                                                                   |                                                       |                                             |                                       |         |  |  |  |
|       | 0.25   |                              | $^{4)} \times (50+10)10^{-3}$                                                                     |                                                       |                                             |                                       |         |  |  |  |
|       |        | $n_{(HO^+)} = 6 \times 10$   | $0^{-8} mol \Leftrightarrow 10^{-3} - x$                                                          | $_{\rm F} = 6 \times 10^{-8} \Rightarrow x_{\rm E} =$ | $10^{-3} mol$                               | •                                     |         |  |  |  |
|       | 0.25   | ,                            |                                                                                                   |                                                       |                                             |                                       |         |  |  |  |
|       | 2×0.25 | $n_{(C_4H,COOH_{(aq)})}$ :   | $=C_d V_o - x_E = 10^{-3}$                                                                        | $-x_E = 0$                                            |                                             |                                       |         |  |  |  |
|       |        |                              | $n_{(C_6H_2COOH)} = 0$                                                                            | ل المعايرة تام وبالتال                                | ة عند ذكر تفاء                              | * تقبل الإجاب                         |         |  |  |  |
| 0.5   | 0.5    |                              | غيره اللوني يحوي                                                                                  | ل فتاليين لأن مجال ت                                  |                                             |                                       |         |  |  |  |
|       |        |                              |                                                                                                   |                                                       | rٍ نقطة التكافق.                            | قيمة H <sub>:</sub>                   | :       |  |  |  |
|       |        | Γ                            | ······································                                                            |                                                       | (04 نقاط)                                   | التمرين الثالث                        |         |  |  |  |
| 0.75  | 0.75   |                              | 1                                                                                                 |                                                       | رة:                                         | 1 مخطط الدار                          | :       |  |  |  |
|       |        | •                            | A PA                                                                                              |                                                       |                                             |                                       |         |  |  |  |
|       | 0.5    | E (                          | $u_{AB} = C$                                                                                      | au = 1                                                | , من البيان ns                              | اً 2) ثابت الذمن                      |         |  |  |  |
|       |        |                              | ↑ <b>↑</b> B                                                                                      |                                                       |                                             | •                                     |         |  |  |  |
| 1.5   |        |                              | $u_R \mid R$                                                                                      | ديقه بنسبه                                            | لازم لتشحن الم<br>                          |                                       |         |  |  |  |
|       | 0.5    |                              | K ' \                                                                                             |                                                       | تنتها العظمى.                               |                                       |         |  |  |  |
|       |        |                              |                                                                                                   | $\tau = RC =$                                         | $C = \frac{\tau}{R} = \frac{10^{-1}}{100}$  | 3<br>- 3 2* cr 11 3                   |         |  |  |  |
|       | 0.5    |                              |                                                                                                   | $C = 10^{-5}F$                                        |                                             | سعه المحتقة (                         |         |  |  |  |
|       |        |                              | $Q_{\max} = q_0$                                                                                  | = E C                                                 |                                             |                                       |         |  |  |  |
| 0.5   | 2×0.25 |                              | $q_0 = 5.10^{-}$                                                                                  | * _31.411                                             | ثفة عند النظام                              | ً 3) شحن المك                         |         |  |  |  |
|       |        | <b>↓</b> u <sub>e</sub> (v)  |                                                                                                   |                                                       |                                             | 4) شكل المنحا                         |         |  |  |  |
|       |        |                              |                                                                                                   |                                                       | <i>ح</i> ي                                  | · · · · · · · · · · · · · · · · · · · |         |  |  |  |
|       | 0.5    | 5                            |                                                                                                   | **************************************                |                                             |                                       |         |  |  |  |
|       | 0.5    | τ'                           | -                                                                                                 |                                                       |                                             |                                       |         |  |  |  |
| 1.25  |        |                              |                                                                                                   | t(s)                                                  |                                             |                                       |         |  |  |  |
|       | 0.75   |                              |                                                                                                   | τ                                                     | $t = 2\tau \Leftarrow \frac{\tau}{\tau'} =$ | التعليل:'                             |         |  |  |  |
|       |        | <b></b>                      |                                                                                                   |                                                       | ₹'=                                         | 2RC                                   |         |  |  |  |

صفحة 6 من 8

تابع الإجابة النموذجية اختبار مادة: العلوم الفيزيائية الشعب (ة): علوم تجريبية مجزأة مجموع عناصر الإجاية المحاور التمرين الرابع (04) نقاط)  $\sum \vec{F}_{ext} = m.\vec{a}$ : القانون الثاني لنيونن في مرجع غالبلي -1 0.25  $\vec{P} = m\vec{a}$ 0.25  $x=v_0\coslpha.t$  : على  $a_x=0$  حمد منتظمة معادلتها  $a_x=0$ 2.5 3×0.25  $y=-rac{1}{2}gt^2+v_0\sinlpha t$  على  $y=-rac{1}{2}gt^2+v_0\sinlpha t$  على خرم.م. بإنتظام معادلتها  $a_y=-g$  $3 \times 0.25$ معادلة المسار :  $y = \frac{-g}{2v_{cos}^{2}\alpha}x^{2} + \tan \alpha.x$  وهو عبارة عن قطع مكافئ. 0.5 y=h , x=d :سجل الهدف لما -20.25  $h = \frac{-g}{2a^2 \cos^2 \alpha} d^2 + \tan \alpha . d$ 01 0.25  $v_{
m e} \simeq 18,6 ms^{-1}$  بالتعویض نجد:  $x = v_0 \cos \alpha t = d$ t = 1.55s2×0.25  $v_A = \sqrt{(v_0 \cos \alpha)^2 + (-qt + v_0 \sin \alpha)^2}$  $v_{A} = 17,26 m.s^{-1}$ y=0 و x=d و x=0 $0 = \frac{-g}{2v_c^2 \cos^2 \alpha} d^2 + \tan \alpha d$ 0.25 0.5  $v_0^{-1} = 17 ms^{-1}$ 0.25 التمرين التجريبي: (04 نقاط).  $Zn(s) = Zn^{2+}(aa) + 2e^{-}$ 0.25  $I_2(aq) + 2e^- = 2I^-(aq)$ 0.75 0.25  $Zn(s) + I_2(aq) = Zn^{2+}(aq) + 2I^{-}(aq)$ 0.25 2- أ) البروتوكول التجريبي: المواد والأدوات وطريقة العمل والرسم. ب) تعريف السرعة الحجمية: هي سرعة النفاعل من أجل وحدة الحجم للوسط النفاعلى. 0.5 0.25  $v = \frac{1}{V} \frac{dx}{dx}$  $v = -\frac{d[I_2]}{dt}$ 1.75 0.25 t نحسب السرعة بيانيا بميل المماس للمنحنى في كل لحظة 0.25 ج) السرعة الحجمية تتناقص مع مرور الزمن بسبب تناقص التركيز وبالتالي 0.5 نقص الاصطدامات الفعالة .

الشعب(ة): علوم تجريبية مجزأة مجموع تابع الإجابة النموذجية اختبار مادة: العلوم الفيزيائية عناصر الإجابة المحاور 3 -3 شكل المنحنى: 20 0.5 0.5 السرعة عند t=0 أقل من السرعة في التجربة (1) عند نفس اللحظة بسبب التناقص في التركيز الابتدائي.  $\Lambda[I_2]$ 20 0.5 0.5 5- العوامل الحركية هي: 0.5 0.5 - التركيز المولى للمتفاعلات. - درجة الحرارة



# الإجابة النموذجية وسلم التنقيط

امتحان شهادة البكالوريا دورة: 2010

|          | يبية         | يف) الشعب(ة): علوم تجر                       |                                            |                        | العلوم الفيزي                                             | بار مادة:                    | اخت         | · · · · · · · · · · · · · · · · · · · |
|----------|--------------|----------------------------------------------|--------------------------------------------|------------------------|-----------------------------------------------------------|------------------------------|-------------|---------------------------------------|
| مجموع    | مجزاة        |                                              |                                            | عناصر ا                |                                                           |                              |             | المحاور                               |
|          |              |                                              | ع الأول                                    | الموضو                 |                                                           |                              |             |                                       |
| <u> </u> |              |                                              |                                            |                        | 0 نقاط)                                                   | ر <del>الأولى</del> : ( 4    | التمرين     |                                       |
| ļ        |              |                                              | m ,                                        | $V_{gaz}$              | <b>.</b>                                                  | V <sub>H2</sub> 135%         | · % _ 1     | !                                     |
| 1        | 2×0.5        | $n = \frac{1}{l}$                            | $\overline{M} \stackrel{\mathcal{G}}{=} N$ | $=\overline{V}_{M}$    | $\Rightarrow n_{H_2} = x$                                 | $=\frac{V_{H_2}}{V_M}$ : 30) | <u> </u>    |                                       |
|          |              |                                              |                                            |                        | :x                                                        | باب قيم التقدم               | 2- حس       |                                       |
| -        |              | <i>t</i> (s) 0                               | 50                                         | 100                    | 150                                                       | 200                          |             |                                       |
| ~ "      | o #          | $x \times 10^{-3} (mol)$ 0                   | 1,44                                       | 2,56                   | 3,44                                                      | 16,4                         |             |                                       |
| 0.5      | 0.5          | <i>t(s)</i> 250                              | 300                                        | 400                    | 500                                                       | 750                          |             |                                       |
| ]<br>    |              | $x \times 10^{-3} (mol) \qquad 4,80$         | 5,28                                       | 6,16                   | 6,80                                                      | 8,00                         |             |                                       |
| -        |              | <u> </u>                                     |                                            |                        | ۸~                                                        |                              |             |                                       |
| <u>}</u> | 0.25         |                                              |                                            | ·v                     | $=\frac{\Delta \lambda}{\Delta t}$ : $\frac{1}{\Delta t}$ | رعة المتوسط                  | 3 - السد    |                                       |
|          | 0.5          |                                              | $v_1 = 7$                                  | $7.6 \times 10^{-6}$   | $nols^{-1}$                                               | : [300s,5                    | 500s]       |                                       |
| 1.5      | 0.5          |                                              | •                                          |                        |                                                           | : [50s,1                     | - 1         |                                       |
|          | 0.5          |                                              | ~                                          |                        |                                                           | . و 2000<br>سرعة المتوس      |             |                                       |
|          | 0.25<br>0.5  | ، كلور الهيدروجين.                           | -                                          |                        |                                                           | -                            | _           |                                       |
| •        | 0.3          | غ فيها تقدم التفاعل                          |                                            |                        |                                                           |                              | ,           |                                       |
| 1        |              | $x_{(t_{1/2})} = 5 \times 10^{-3}  \text{m}$ | *                                          |                        |                                                           |                              | -           |                                       |
|          | 0.25         | $x_{(t_{1/2})} = 3 \times 10^{-7}$           | noi                                        | $X_{(i_{1/2})} = -$    | ر عظمي 2                                                  | وتنعه بعتعه ا                | نصنت        |                                       |
|          |              |                                              |                                            |                        | <u>.</u>                                                  |                              | <del></del> |                                       |
| 0.6      | 0.25         |                                              | _                                          |                        | •                                                         | <u>، الثاني</u> : ( 4        |             |                                       |
| 0.5      | 0.25<br>0.25 | Z =                                          | يتونات: 6=                                 | _                      |                                                           | تركيب نواة ا<br>. الدير باير |             |                                       |
|          |              | 4-14 4-41                                    | 14.1 1                                     |                        |                                                           | د النيترونات:<br>ا/ تسمال    |             |                                       |
|          | 0.25<br>0.25 | $A=14 \Leftarrow A+1=$                       | 14+1 :±4<br>:6<=7+0                        |                        | ه بنطبیق ها                                               | ا/ تعيين النوا               | -2          |                                       |
| 1        | 0.25         | <i>L.</i> =                                  |                                            | = 2 +1<br>ومنه: ۲٫     |                                                           |                              |             |                                       |
|          | 0.25         | ن م 147.                                     |                                            |                        | $^{4}C \rightarrow ^{14}N$                                | عادلة: °e− عادلة             | A) /: ,     |                                       |
|          | 0.25         |                                              |                                            |                        |                                                           | : N(t) عدد                   | • •         | ;                                     |
|          | 0.25         |                                              |                                            |                        |                                                           | (ه).<br>: عدد الانوية        | •           |                                       |
| 1.50     | 0.25         |                                              | ي                                          | " کي                   |                                                           | ابت التفكك الا               | ~           |                                       |
| 1.30     | 0.25         |                                              | $N(t) = N_0 /$                             | t يكون: 2              | - T                                                       | ات العلاقة: :                | 1           |                                       |
| 1        |              | $_{2}$ $_{2}$ $ln 2$                         | 30 2.                                      | . 1/0                  | ~Alus                                                     | 37 /0 W                      | - 36        | :                                     |
|          | 0.25         | $\lambda = \frac{\ln 2}{t_{1/2}}$ - ومنه:    | $- m 2 = -M_1$                             | $_{/2} \leftarrow 1/2$ | = e ···// ←                                               | $N_0/2 = N_0$                | .e          | İ                                     |
|          |              | ومدة الذمن النوا                             | د مقامه                                    |                        | دا أمان                                                   | 1_1_[T                       | 7-1 /-      | :                                     |
|          | 0.25         | ب وحدة الزمن (s <sup>-1</sup> ).             | ا/ هي مصور                                 | حده عباس               | יט כ ייט כ                                                | $T_1 - \overline{T} = L^T$   | ر ا<br>خ/ ا |                                       |
|          | ;            |                                              | 1=1 244                                    | $c10^{-4} cm s^{-1}$   | :dia                                                      | $=\frac{\ln 2}{t}:\lambda$   | د/ قومة     | !                                     |
| ļ        | 0.25         |                                              | 76 — 1, <b>2</b> 7777                      | · iv uns               | - ۱٪ ویست.                                                | $t_{1/2}$                    | د ا میت     |                                       |
| سر ا     |              |                                              |                                            |                        |                                                           |                              | į           |                                       |

صفحة 1 من 6 الحصري فقط على موقع الأستاذ Atemphilosophie الجديد و الحصري فقط على موقع الأستاذ sites.google.com/site/lotphilosophie

 

 تابع الإجابة النموذجية اختبار مادة : العلوم الفيزيائية (الموضوع المكيف) الشعب(ة): علوم تجريبية المحاور الإجابة النموذجية اختبار مادة : العلوم الفيزيائية (الموضوع المكيف) مجزأة مجموع المحاور  $A(t) = \frac{dN}{dt} \Rightarrow A(t) = N_0 \lambda e^{-\lambda t} = A_0 e^{-\lambda t}$ 
 $\frac{A}{A_0} = e^{-\lambda t} \Leftrightarrow \ln \frac{A}{A_0} = -\lambda t$  =  $\frac{1}{4}$ 0.25  $t = -\frac{\ln A / A_0}{2} = 1489,28 ans$ 0.25 تم قطع الشجرة التي انحدرت منها القطعة عام: 511 = 510,72 = 1489,28 0.25 التمرين الثالث: ( 04) نقاط)  $u_b = r.i + L\frac{di}{dt}$   $u_R = R.i - 1$ 1  $2 \times 0.5$  $E = (R+r)i + L\frac{di}{dt} \Leftrightarrow \frac{di}{dt} + \frac{(R+r)}{r}i = \frac{E}{r}$  : is it is a solution in the content of the con 0.5 2×0.25 3- باشتقاق عبارة التيار والتعويض في المعادلة التفاضلية تتحقق المساواة. 0.5 0.5  $i_{\text{max}} = 0.25 \times 2 = 0.5A \iff i_{\text{max}} = \frac{E}{R + r} \Leftrightarrow r = 2\Omega / -4$ 2×0.25  $\tau = \frac{t_{\frac{1}{2}}}{1-2} \iff \tau \approx 10 ms$ 1.5 0.5  $\tau = \frac{L}{R+r} \Leftrightarrow L = 1,2 \times 10^{-1} H$ 2×0.25 ب- الطاقة المخزنة في الوشيعة في حالة النظام الدائم:  $E_b = \frac{1}{2} L i_{\text{max}}^2$ ;  $E_b = 1.5 \times 10^{-2} J$ 0.5 2×0.25 التمرين الرابع: (04 نقاط) ا- عملية التمديد: 0.25  $n_1 = n_2 \qquad c_1 V_1 = c_2 V_2$  $V_2 = \frac{c_1 V_1}{c_2} = \frac{c_1 V_1}{c_1} = 10V_1$ 01 0.25  $200 \mathrm{mL}$  الشرح: نأخذ  $20 \mathrm{mL}$  من المحلول  $(S_0)$  ونضعها في حوجلة قياسية (عيارية) سعتها 0.5 نضيف الماء المقطر حتى الخط العياري 200mL (إضافة 180mL من الماء المقطر). 2- معادلة التفاعل المنمذج:  $OH^{-}(aq) + HCOOH(aq) = HCOO^{-}(aq) + H_2O(l)$ 0.5 0.5 E(20mL; 8,2) : نقطة التكافؤ: -3 0.5 تركيز الحمض الممدد: 0.25  $c_a V_a = c_b V_b \Rightarrow c_a = \frac{c_b V_b}{c_a}$ 1.25  $c_a = \frac{0.02 \times 20}{20} = 0.02 mol/L$ 2×0.25

امتحان شهادة البكالوريا دورة: 2010 تابع الإجابة النموذجية اختبار مادة: العلوم الفيزيائية (الموضوع المكيف) الشعب(ة): علوم تجريبية عناصر الإجابة مجزأة مجموع المحاور  $K_{\circ} = 10^{-3.8} = 1,58 \times 10^{-4}$  : غند نقطة نصف التكافئ:  $K_{\circ} = 10^{-3.8} = 1,58 \times 10^{-4}$ 0.75 3×0.25  $(S_0)$  تركيز المحلول الأصلى  $(S_0)$ :  $c_0 = 10c_a \Rightarrow c_0 = 10 \times 0.02 = 0.2 mol/L$ 0.5 0.5 التمرين التجريبي: (04 نقاط) 1- المعطيات تبين وجود نظامين أحدهما انتقالي والآخر دائم. النظام الانتقالي :  $0 \leq t \leq 10s$  ح.م. متسارعة -01 2×0.5 v=Cte ح.م. منتظمة t>10s - النظام الدائم  $v_{\rm Lim}=19.6m/s$  السرعة الحدية -201 01 3- الشكل ، الحجم ، الكتلة، ... 01 01  $\sum \vec{F}_{ext} = m\vec{a} \iff \vec{f} + \vec{P} = m.\vec{a}$ 0.25 -f + P = m.a01 0.25  $-Kv + m.g = m\frac{dv}{dt}$ 0.25  $g = \frac{K}{m}v + \frac{dv}{dt}$ 0.25

| بيه   | <b>):</b> علوم تجري | الإجابة التموذجية اختبار مادة: العلوم الفيزيائية (الموضوع المكيف) الشعب(ة                                 |         |
|-------|---------------------|-----------------------------------------------------------------------------------------------------------|---------|
| مجموع | مجزأة               | عناصر الإجابة                                                                                             | المحاور |
|       |                     | الموضوع الثاني                                                                                            |         |
|       |                     | التمرين الأول: (04 نقاط)                                                                                  |         |
|       |                     | ا معادلة التفكك $^{14}C$ :                                                                                |         |
|       |                     | $^{14}C \rightarrow ^{4}Y + ^{0}e$                                                                        |         |
| 0.1   | 0.25                | u 2 1                                                                                                     |         |
| 01    | 0.25<br>0.25        | $   \begin{array}{ccccccccccccccccccccccccccccccccccc$                                                    |         |
|       | 0.25                | ${}^{14}_{6}C \rightarrow {}^{14}_{7}N + {}^{0}_{1}e$                                                     |         |
| ;     |                     | $t_{\chi},t,A_0$ بدلالة $A(t)$ علقة (2)                                                                   |         |
| ,     |                     | $A = A_0 e^{-\lambda t}$                                                                                  |         |
| 0.75  | 0.25                |                                                                                                           |         |
| 0.75  | 2×0.25              | $A = A_0 e^{-\frac{\ln 2}{\epsilon_{V1}}}$                                                                |         |
|       |                     | (3                                                                                                        |         |
|       | 0.25                | '                                                                                                         |         |
|       |                     | $ \ln \frac{A}{A_0} = -\frac{\ln 2}{t_{1/2}}t $                                                           |         |
|       |                     | $^{t}$ $_{V_{0}}$ . $A_{0}$                                                                               |         |
|       | 2×0.25              | $t = \frac{t_{\frac{1}{2}}}{\ln 2} \cdot \ln \frac{A_0}{A}$                                               |         |
| 1.5   |                     | $t_A = \frac{5570}{0.693} \ln \frac{5000}{6000}$ الفريق الأول:                                            |         |
|       | 2×0.25              | " I                                                                                                       |         |
|       |                     | $t_A \approx 1458,57 ans$                                                                                 |         |
|       |                     | $t_B = \frac{5570}{0.639} \ln \frac{4500}{6000}$ الفريق الثاني:                                           |         |
|       |                     | $t_B = 2301,45$ ans                                                                                       |         |
|       | 0.25                | $ t_A - t_B  = 842,88  ans$                                                                               |         |
|       |                     | الجمجمتان لا تتتميان لنفس الحقبة الزمنية.                                                                 |         |
|       | -                   | $E_{I}({}_{6}^{14}C) = \Delta mC^{2} \tag{4}$                                                             |         |
|       | 0.25                | 2/(60)-13/10                                                                                              |         |
|       |                     | 931.5                                                                                                     |         |
| 0.75  | 0.25                | $E_1({}^{14}_6C) = ([6 \times 1,00728 + (14 - 6) \times 1,00866] - 14,00324)C^2 \times \frac{931,5}{C^2}$ |         |
|       | 0.25                | $E_i = 102, 2MeV = 102, 2 \times 10^6 eV$                                                                 |         |
|       |                     | (List 0.4 ) - 12 1 - 1                                                                                    |         |
|       |                     | $(44)$ التمرين الثاني : ( $04$ نقاط) $C_6H_5COOH(aq) + HO^-(aq) = C_6H_5COO^-(aq) + H_2O(l)$              |         |
|       | 0.5<br>0.5          | E(10mL;8) النكافق: $E(10mL;8)$                                                                            |         |
|       | -10                 | _(3,0,0) -(3,0)                                                                                           |         |
|       |                     |                                                                                                           |         |

تابع الإجابة النموذجية اختبار مادة: العلوم الفيزيائية (الموضوع المكيف) الشعب(ة): علوم تجريبية

|       |                | الإجابة التمودجية احتبار ماده: العلوم العيزياتية (الموصوع المخيف) العُنعب(ه):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |
|-------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| مجموع | مجزاة          | عناصر الإجابة                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | المحاور |
| 1.75  | 2×0.25<br>0.25 | $C_a=rac{C_bV_{bE}}{V_a}$ ومنه: $C_aV_a=C_bV_{bE}$ : ج $C_a=2,0	imes10^{-2}mol.L^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |
|       | 0.23           | 2- حساب كمية مادة الأنواع الكيميائية:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |
|       | 0.25           | $n_{(H_3O^+)} = 10^{-\rho H} \times (V_a + V_b) = 10^{-8} \times (50 + 10)10^{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|       | 0.25           | $n_{(H_3O^+)} = 6 \times 10^{-10}  mol$ $n_{(HO^-)} = 10^{(8-14)} \times (50+10)10^{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |
| 1.75  | 0.25<br>2×0.25 | $n_{(HO^{-})} = 6 \times 10^{-8}  mol \iff 10^{-3} - x_E = 6 \times 10^{-8} \implies x_E = 10^{-3}  mol$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |
|       | 0.25<br>0.25   | $n_{(C_6H_2COO^{-})} = n_{N\sigma^{+}} = x_E = 10^{-3} mol$ $n_{(C_6H_2COOH_{(\sigma_F)})} = C_d V_{\sigma} - x_E = 10^{-3} - x_E = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |
| 0.5   | 0.5            | 3- الكاشف المناسب هو فينول فتاليين لأن مجال تغيره اللوني يحوي قيمة pH نقطة التكافؤ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |
|       |                | /1 ic + c) 4) A HAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |
|       | 0.5            | التمرين الثالث (04 نقاط) $r = 1ms$ ثابت الزمن $t = 1ms$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |
|       | 0.5            | 1) عبت الرمن اللازم انشحن المكنفة بنسبة                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |
| 02    | 0.5            | %63 من شحنتها العظمى.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |
|       | 0.5            | $	au = RC \Rightarrow C = rac{	au}{R} = rac{10^{-3}}{100}$ سعة المكثفة                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |
|       | 0.5            | $C = 10^{-5} F = 10 \mu F$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |
|       | 0.5            | 2) شحن المكثفة عند النظام الدائم:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |
| 01    |                | $Q_{\text{max}} = q_0 = EC$ $q_0 = 5.10^{-5} Coulomb$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |
| 01    | 0.5<br>2×0.5   | $ \tau' = 2ms $ ومنه $ \tau' = 2\tau  $ $ = \frac{\tau = RC}{\tau' = 2RC} $ (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |
|       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |
| :     | 0.25           | $egin{aligned} rac{	ext{line} m. d}{	ext{line}} & rac{	ext{line} m. d}{	ext{line}} \end{aligned}$ القانون الثاني لنيوتن في مرجع غاليلي $m. d$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |
|       | 0.25           | $P_{est} = m.a$ الفانون النالي لليوان في مرجع غانيلي : $\overrightarrow{P} = m.\overrightarrow{a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| 2.5   | 3×0.25         | $x=v_0\coslpha.t$ على $x=v_0\coslpha.t$ على خ.م.منتظمة معادلتها $a_x=0$ على المتعاد على المتعاد على المتعاد على المتعاد على المتعاد المتع | :       |
|       | 3×0.25         | 1 2 (===)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |
|       | 0.5            | معادلة المسار : $y = \frac{-g}{2v_0^2\cos^2\alpha}x^2 + \tan\alpha.x$ وهو عبارة عن قطع مكافئ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |
|       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |

المنحال سنهاده البحالورية دوره: 2010 تابع الإجابة النموذجية اختبار مادة: العلوم الفيزيائية (الموضوع المكيف) الشعب(ة): علوم تجريبية

| ببيه  | علوم لجريا   | الإجابه النموذجية اختبار مادة: العلوم الفيزيائية (الموضوع المكيف) الشعب(ة):              |         |
|-------|--------------|------------------------------------------------------------------------------------------|---------|
| مجموع | مجزاة        | عناصر الإجابة                                                                            | المحاور |
|       | 0.25         | y=h و $x=d$ -2 سجل الهدف لما: $x=d$                                                      |         |
|       | 0.23         | $h = \frac{-g}{2v_{\star}^2 \cos^2 \alpha} d^2 + \tan \alpha . d$                        | -       |
| 01    | 0.25         | 20, 500 0                                                                                |         |
|       |              | $v_{ m o} \simeq 18,6ms^{-1}$ بالتعویض نجد: $v_{ m o} \simeq 18,6ms^{-1}$                |         |
|       | 2×0.25       | $x = v_0 \cos \alpha t = d$                                                              |         |
|       |              | t = 1,55s                                                                                |         |
|       |              | $v_A = \sqrt{(v_0 \cos lpha)^2 + (-gt + v_0 \sin lpha)^2}$                               |         |
|       |              | $v_{_{A}}=17,26m.s^{-1}$                                                                 |         |
|       |              | y=0 و $x=d$ و $x=d$ -3                                                                   |         |
| 0.5   | 0.25         | $0=rac{-g}{2v_0^2\cos^2lpha}d^2+	anlpha.d$                                              |         |
| 0.5   | 0.25         | $v_{ m o}^{\ '}=17ms^{-1}$                                                               |         |
|       |              | التمرين التجريبي: (04 نقاط).                                                             |         |
|       |              | -1                                                                                       |         |
|       | 0.05         | $Zn(s) = Zn^{2+}(aq) + 2e^-$                                                             |         |
| 0.75  | 0.25<br>0.25 | $I_2(aq) + 2e^- = 2I^-(aq)$                                                              |         |
| 0.75  | 0.25         | $Zn(s) + I_2(aq) = Zn^{2+}(aq) + 2I^{-}(aq)$                                             |         |
|       |              | 2- أ) تعريف السرعة الحجمية: هي سرعة التفاعل من أجل وحدة الحجم للوسط التفاعلي.            |         |
|       | 0.5          | $v = \frac{1}{V} \frac{dx}{dt}$                                                          |         |
|       | 0.25         | r to                                                                                     |         |
|       | 0.25         | $v = -\frac{d[I_2]}{dt}$                                                                 |         |
| 1.75  |              | حساب قيمة السرعة الحجمية المتوسطة:                                                       |         |
|       | 0.25         | $v_1 = 27.5 mmol L^{-1}.min^{-1}$ : $[0 \cdot 0.4 min]$                                  |         |
|       | 0.25         | $v_2 = 12,5 \text{mmol } L^{-1}.\text{min}^{-1} : [0,4 \text{min} \cdot 0,8 \text{min}]$ | 1       |
|       |              | ب) السرعة المحمية تتناقص مع مرور الزمن بسبب تناقص التركيز وبالتالي                       |         |
|       | 0.25         | نقص الاصطدامات الفعالة .                                                                 |         |
| 0.5   | 0.5          | 3- سرعة التفاعل تصبح أقل لأن تركيز المادة المتفاعلة أصبح أقل بفعل التمديد.               |         |
| 0.5   | 0.5          | 4- سرعة التفاعل تصبح أكبر لأن رفع درجة الحرارة يزيد الاصطدامات الفعالة.                  |         |
|       |              | 5- العوامل الحركية هي :                                                                  |         |
|       |              | ر المعوامل العربية لعي .<br>- النزكيز المولى للمتفاعلات.                                 |         |
| 0.5   | 0.5          | - شرخير الموني المتفاعدات.<br>- درجة الحرارة.                                            |         |
|       |              | · · · · · · · · · · · · · · · · · · ·                                                    |         |
| L     | J            | 1                                                                                        | <u></u> |

33