МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ

(государственный университет)

Лабораторная работа 2.1.1

ИЗМЕРЕНИЕ УДЕЛЬНОЙ ТЕПЛОЕМКОСТИ ВОЗДУХА ПРИ ПОСТОЯННОМ ДАВЛЕНИИ

Янковский Д. С. Б01-405

Содержание

Введение						
Методика						
Рез	ультат	гы	6			
Вы	воды		9			
Прі	иложе	ние	10			
$5.\overline{1}$	Прило	ожение 1	10			
5.2			10			
5.3						
5.4			12			
5.5	-		12			
5.6	-		12			
1						
	_	*				
			13			
	5.7.2					
			13			
	5.7.3	\\-/	13			
	· · · · · · · · · · · · · · · · · · ·					
	Mes Pes Bun 5.1 5.2 5.3 5.4 5.5 5.6	Методика Результат Выводы Приложе: 5.1 Прило 5.2 Предл 5.3 Прило 5.4 Прило 5.4 Прило 5.5 Прило 5.6 Прило 5.7 Форм 5.7.1 5.7.2	Методика Результаты Выводы Приложение 5.1 Приложение 1 .			

Аннотация

Измерена зависимость мощности нагревателя от разности температур воздуха в диапазоне от 2 до $10\,^{\circ}\mathrm{C}$ при двух расходах воздуха при атмосферном давлении. (не важная информация для работы, нужно писать про измерение теплоемкости) Измерения проводились с помощью калориметра с встроенным нагревателем, через который прокачивался воздух. В результате обнаружено, что мощность нагревателя пропорциональна разности температур воздуха. По угловому коэффициенту полученной зависимости вычислена удельная теплоёмкость воздуха при постоянном давлении $(1063\pm13)\frac{\mathcal{L}_{\rm K}}{\rm kr\cdot K}$.

1 Введение

В современных условиях особый интерес представляет повышение энергоэффективности зданий и сооружений, оптимизация промышленных процессов, поэтому точный расчет тепловой нагрузки приобретает первостепенное значение. Тепловая нагрузка представляет собой количество энергии, которое необходимо подвести/отвести для поддержания заданных температурных условий внутри помещения, технологического аппарата. Тепловая нагрузка является ключевым параметром при проектировании систем отопления и вентиляции. Одним из фундаментальных параметров, используемых при расчете тепловой нагрузки, является удельная теплоемкость c_p воздуха при постоянном давлении. Целью настоящей работы было измерение удельной теплоемкости воздуха при атмосферном давлении. (добавить конкретики, описать более подробно решаемую задачу с помощью полученной теплоемкостью)

2 Методика

Известно из литературы (методическое пособие), что удельная теплоемкость воздуха, прокачиваемого через калориметр, зависит от мощности нагревателя по следующему закону

$$c_p = \frac{N - N_{\text{пот}}}{q\Delta T} \tag{1}$$

где N - мощность нагревателя, $N_{\text{пот}}$ - мощность тепловых потерь, q - массовый расход воздуха, ΔT - разность температур воздуха на входе и выходе из калориметра.

При малых расходах воздуха и достаточно большом диаметре трубы калориметра перепад давления на ее концах мал, поэтому $P_1 \approx P_2 = P_0$. Из этого следует, что c_p в выражении (1) является удельной теплоемкостью воздуха при постоянном давлении.

При $\Delta T \ll T$ можно считать, что мощность тепловых потерь пропорциональна разности температур воздуха $N_{\rm not} = \alpha \Delta T$. При этом выражение (1) принимает вид

$$N = (c_p q + \alpha) \Delta T \tag{2}$$

 α - некоторая константа.

Для определения удельной теплоемкости c_p воздуха необходимо измерить зависимости мощности N нагревателя от разности температур ΔT воздуха на концах трубы калориметра при двух расходах q воздуха. Угловые коэффициенты полученных зависимостей $k=c_pq+\alpha$ являются линейными функциями от удельной теплоемкости c_p . Значит c_p определяется как угловой коэффициент графика зависимости k от расхода q воздуха.

3 Результаты

В эксперименте использована установка, состоящая из калориметра, представляющего собой стеклянную цилиндрическую трубку с двойными стенками, запаянную с торцов. Из пространства между стенками откачан воздух до высокого вакуума (10^{-5} торр). В калориметр встроен нагреватель нихромовая проволока. Воздух прокачивается через калориметр с помощью компрессора.

Более подробное описание установки см. в Приложение 1.

Мощность нагрева нихромовой проволоки вычисляется по значениям напряжения и тока, текущего через нее. Напряжение U и ток I регистрируются цифровыми мультиметрами. Таким образом

$$N = U \cdot I \tag{3}$$

Для определения разности температур ΔT воздуха на концах калориметра служит медно-константановая термопара. Один спай термопары расположен в струе воздуха, входящего в калориметр, и находится при комнатной температуре $T_0=22.2\,^{\circ}\mathrm{C}$, а второй в струе выходящего нагретого воздуха. Константановая проволока термопары расположена внутри калориметра, а медные проводники подключены к цифровому вольтметру. Напряжение E на вольтметре пропорционально разности температур ΔT спаев

$$E = \beta \Delta T \tag{4}$$

(температура измеряется с помощью нагревательной проволоки, используемой как термопара, подробное описание определения температуры по формулам -> в приложение) (аналогично для расхода и мощности нагревателя)

 $\hat{\beta} = 40.7 \frac{\text{мкB}}{^{\circ}\text{C}}$ - чувствительность термопары в рабочем диапазоне температур $20-30^{\circ}\text{C}.$

Массовый расход q воздуха, проходящего через калориметр, вычисляется через объемный расход следующим образом

$$q = \rho_0 \frac{\Delta V}{\Delta t} \tag{5}$$

 ho_0 - плотность воздуха при комнатной температуре и атмосферном давлении $P_0=101600\Pi$ а. Из уравнения Менделеева-Клапейрона: $ho_0=\frac{\mu P_0}{RT_0}$, где $\mu=29\frac{\Gamma}{\text{моль}}$ - средняя молярная масса сухого воздуха. Подставляя выражение для ho_0 в (5), получаем

$$q = \frac{\mu P_0}{RT_0} \frac{\Delta V}{\Delta t} \tag{6}$$

Объем ΔV воздуха, проходящего через калориметр, измеряется газовым счетчиком (см. описание экспериментальной установки в Приложение 1). Время Δt прохождения некоторого объема ΔV воздуха измеряется секунломером.

Перед каждой серией измерений зависимости N от ΔT при фиксированном расходе воздуха калориметр был охлажден до комнатной температуры. Компрессор включен, кран K открыт до максимального расхода воздуха, источник постоянного тока выключен.

Чтобы в процессе измерений величина ΔT равномерно увеличивалась от 2 до $10\,^{\circ}$ C, была оценена величина тока I_0 нагревателя, требуемая для нагрева воздуха на $1\,^{\circ}$ C. Способ вычисления I_0 описан в Предложение 2. Таким образом, чтобы нагреть воздух на $\Delta T=2\,^{\circ}$ C, нужно пропустить через нить ток $I\approx 2I_0$.

По измеренным зависимостям $N(\Delta T)$ для двух расходов воздуха построены графики. Результаты измерения представлены на рисунке

Графики зависимости $N(\Delta T)$

(добавить подписи к графикам, непонятно что такое $N, \Delta T$)

Графики, изображенные на рисунке, являются линейными. Значит, предположение о том, что при небольшом нагреве ($\Delta T \ll T_0$) мощность $N_{\text{пот}}$ тепловых потерь пропорциональна разности температур ΔT , оказалось верным.

По методу наименьших квадратов определены коэффициенты k наклона прямых. Таблица значений k при двух расходах q представлена в Приложение 4.

Используя данные из таблицы 3 (см. Приложение 4) построили график зависимости k(q)

Графики зависимости k(q)

Из графика видно, что k линейно зависит от расхода q и является возрастающей функцией. При увеличении расхода q воздуха, прокачиваемого через калориметр, увеличивается масса $\Delta m = q \Delta t$ воздуха, которую необходимо нагреть на температуру ΔT за время Δt . Из этого следует, что увеличивается количество теплоты, которое нужно передать воздуху за время Δt , чтобы нагреть его на температуру ΔT . Значит, увеличивается $k=\frac{Q}{\Delta T\Delta t}=\frac{N}{\Delta T}.$ С помощью метода наименьших квадратов определили удельную теп-

лоемкость c_p при постоянном давлении как угловой коэффициент графика k(q) и коэффициент α в выражении (2) как точку $(0;\alpha)$ пересечения графика с осью k.

$$c_p = (1063 \pm 13) \frac{\text{Дж}}{\text{кг·K}}$$

$$\alpha = (19 \pm 1) \cdot 10^{-3} \frac{\text{Дж}}{\text{K}}$$

По полученному коэффициенту α была рассчитана доля мощности тепловых потерь от мощности нагревателя при каждом расходе воздуха.

$$\frac{N_{\text{not}}}{N} = \frac{\alpha \Delta T}{(c_p q + \alpha) \Delta T} = \frac{\alpha}{k}$$
 (7)

Результаты вычислений приведены в таблице 4 (см. Приложение 5). Согласно таблице 4 (см. Приложение 5) доля $\frac{N_{\rm nor}}{N}$ увеличивается при уменьшении расхода q воздуха. Действительно, при уменьшении расхода увеличивается время теплообмена воздуха, текущего через калориметр, с окружающей средой. Из этого следует, что увеличивается энергия, расходующаяся на нагрев окружающей среды. Значит $\frac{N_{\text{пот}}}{N}$ возрастает.

4 Выводы

По графикам зависимости $N(\Delta T)$ определено, что при небольшом нагреве $\Delta T \ll T$ мощность тепловых потерь пропорциональна разности температур ΔT .

Определено, что при увеличении расхода воздуха увеличивается угловой коэффициент наклона графика $N(\Delta T)$.

Определено, что доля тепловых потерь увеличивается при уменьшении расхода воздуха.

Вычислено значение удельной теплоемкости воздуха при постоянном давлении $c_p=(1063\pm13)\frac{\mathcal{J}_{\text{ж}}}{\text{кr-K}}$, которое оказалось завышенным по сравнению с табличным значением. Это связано с погрешностью измерения разности температур ΔT с помощью цифрового вольтметра. Значения считывались в момент, когда система еще не достигла стационарного состояния, в котором показания вольтметра не изменяются.

5 Приложение

5.1 Приложение 1

Схема экспериментальной установки приведена на рис. 1

Рис. 1. Экспериментальная установка

Установка состоит из калориметра, через который прокачивается воздух, нагнетаемый компрессором. На пути воздуха перед калориметром расположен газовый счетчик (Γ C) и кран (K) для регулировки расхода воздуха. Калориметр представляет собой стеклянную трубку с двойными стенками, запаянную с торцов. На внутреннюю поверхность стенок трубки нанесено серебряное покрытие для минимизации потерь энергии за счет излучения. Воздух из пространства между стенками откачан до высокого вакуума (10^{-5} торр) для минимизации потерь энергии за счет теплопроводности.

В калориметр встроен нагревательный элемент, представляющий собой нихромовую проволоку, намотанную на пенопласт. Нагреватель расположен в потоке воздуха, прокачиваемого через калориметр. Нагрев проволоки производится с помощью источника постоянного тока (ИП).

5.2 Предложение 2

Считая воздух смесью двухатомных идеальных газов, теоретическое значение теплоемкости C_p при постоянном давлении определяется выражением:

$$C_p = 3.5\nu R \tag{8}$$

 ν - количество молей воздуха

Количество теплоты, которое необходимо передать воздуху для нагрева его на $\Delta T=1\,^{\circ}\mathrm{C}$ равно

$$Q = C_p \Delta T = C_p = 3.5\nu R \tag{9}$$

Мощность нагревателя N выражается через Q как

$$N = \frac{\delta Q}{dt} \tag{10}$$

Подставляя (9) в (10), получаем

$$N = 3.5R \frac{d\nu}{dt} \tag{11}$$

Выразим производную $\frac{d\nu}{dt}$ через уравнение Менделеева-Клапейрона:

$$PV = \nu RT \Rightarrow \nu = \frac{PV}{RT} \Rightarrow \frac{d\nu}{dt} = \frac{P}{RT} \cdot \frac{dV}{dt}$$
 (12)

Подставляя (12) в (11), получаем

$$N = 3.5 \frac{P}{T} \frac{dV}{dt} \tag{13}$$

Так как $N = I_0^2 R_{\rm H}$, где $R_{\rm H}$ - сопротивление нагревателя, то, приравнивая данное выражение к (13), получаем

$$I_0^2 R_{\rm H} = 3.5 \frac{P}{T} \frac{dV}{dt} \Rightarrow I_0 = \sqrt{3.5 \frac{P}{TR_{\rm H}} \frac{dV}{dt}}$$
 (14)

5.3 Приложение 3

I, мА	U, B	N, Br	$R_{\scriptscriptstyle \mathrm{H}}, \mathrm{O}_{\scriptscriptstyle \mathrm{M}}$	E , м B	ΔT ,° C	$\sigma_{\Delta T}$,° C	σ_N , м ${ m B}{ m T}$
77.23	2.77	0.20	37	0.037	0.91	0.025	0.72
111.97	4.00	0.45	37	0.078	1.92	0.025	1.12
140.58	5.03	0.71	37	0.127	3.12	0.025	1.41
188.30	6.74	1.27	37	0.226	5.55	0.025	1.88
223.40	7.79	1.74	37	0.320	7.86	0.025	2.23
172.56	6.17	1.06	37	0.186	4.57	0.025	1.73

Таблица 1: Зависимость $N(\Delta T)$ при $q=0.2\frac{\Gamma}{c}$, N - мощность нагревателя, ΔT - разность температур воздуха, q - расход воздуха

(описание всех переменных в таблице)

I, MA	U, B	N, Br	$R_{\rm H}, { m Om}$	E, м B	ΔT ,° C	$\sigma_{\Delta T}$,° C	σ_N , м Br
45.47	1.63	0.08	37	0.035	0.86	0.025	0.45
68.57	2.46	0.17	37	0.083	2.04	0.025	0.69
112.22	4.01	0.45	37	0.220	5.41	0.025	1.12
133.32	4.77	0.64	37	0.315	7.74	0.025	1.33
139.32	4.98	0.69	37	0.345	8.48	0.025	1.39

Таблица 2: Зависимость $N(\Delta T)$ при $q=0.07\frac{\Gamma}{c},$ N - мощность нагревателя, ΔT - разность температур воздуха, q - расход воздуха

5.4 Приложение 4

$k, \frac{\mathrm{B_T}}{\mathrm{^{\circ}C}}$	$q, \frac{\Gamma}{c}$	$\sigma_q \cdot 10^{-7}, \frac{\Gamma}{c}$	$\sigma_k \cdot 10^{-3}, \frac{\mathrm{B_T}}{\mathrm{\circ C}}$
0.22	0.20	4	4.0
0.08	0.07	4	0.7

Таблица 3: Зависимость k(q), k - угловой коэффициент зависимости $N(\Delta T), q$ - расход воздуха

5.5 Приложение 5

$\frac{N_{\text{not}}}{N}$	$q, \frac{\Gamma}{\mathrm{c}}$	$\sigma_{\frac{N_{\text{HOT}}}{N}} \cdot 10^{-3}$
0.086	0.20	15
0.238	0.07	6

Таблица 4: Значения $\frac{N_{\text{пот}}}{N}$ при фиксированных расходах q воздуха

5.6 Приложение 6

Воздух μ = 28,970						
t	c _p					
°C						
-50 -25 0 25 50 75 100 125	1,0019 1,0023 1,0032 1,0040 1,0057 1,0073 1,0098 1,0128					
150 175 200 250	1,0157 1,0199 1,0241 1,0337					

Таблица значений удельной теплоемкости воздуха при постоянном давлении при различных температурах.

- 5.7 Формулы для расчета погрешностей
- 5.7.1 Расчет погрешности углового коэффициента графика $N(\Delta T)$

$$\sigma_k = \frac{1}{\sqrt{n}} \sqrt{\frac{\langle N^2 \rangle - \langle N \rangle^2}{\langle \Delta T^2 \rangle - \langle \Delta T \rangle^2} - k^2}$$

n - количество экспериментальных точек.

5.7.2 Расчет погрешности углового коэффициента и свободного члена графика k(q)

$$\sigma_{c_p} = \frac{1}{\sqrt{n}} \sqrt{\frac{\langle k^2 \rangle - \langle k \rangle^2}{\langle q^2 \rangle - \langle q \rangle^2} - c_p^2}$$
$$\sigma_{\alpha} = \sigma_{c_p} \cdot \sqrt{\langle q^2 \rangle - \langle q \rangle^2}$$

5.7.3 Расчет погрешности измерения мощности нагревателя

$$N = U \cdot I$$

$$\epsilon_N = \epsilon_U + \epsilon_I = \frac{\sigma_U}{U} + \frac{\sigma_I}{I}$$

$$\frac{\sigma_N}{N} = \frac{\sigma_U}{U} + \frac{\sigma_I}{I}$$

$$\sigma_N = N(\frac{\sigma_U}{U} + \frac{\sigma_I}{I})$$

5.7.4 Расчет погрешности вычисления доли тепловых потерь

$$\begin{split} \frac{N_{\text{not}}}{N} &= \frac{\alpha}{k} \\ \epsilon_{\frac{N_{\text{not}}}{N}} &= \epsilon_{\alpha} + \epsilon_{k} = \frac{\sigma_{\alpha}}{\alpha} + \frac{\sigma_{k}}{k} \\ \frac{\sigma_{\frac{N_{\text{not}}}{N}}}{\frac{N_{\text{not}}}{N}} &= \frac{\sigma_{\alpha}}{\alpha} + \frac{\sigma_{k}}{k} \\ \sigma_{\frac{N_{\text{not}}}{N}} &= \frac{N_{\text{not}}}{N} (\frac{\sigma_{\alpha}}{\alpha} + \frac{\sigma_{k}}{k}) \end{split}$$