

ch12: Natural Language Processing

RNN Encoder-Decoder

overview(P6)

• given $x = (x_1, \dots, x_{T_x})$, generate $y = (y_1, \dots, y_{T_y})$

Encoder(P8)

- An RNN which learns a dense representation of a sequence.
- Compresses a sequence of tokens into a context vector c.

Decoder(P9)

- An RNN which generates an sequence **conditioned on** the intermediate representation.
- Sequentially predicts the <u>next token</u> y_i given the context vector c and the hidden state of past-generated sequence.

Training(P10)

Data:
$$\{(x^{(1)}, y^{(1)}), ..., (x^{(N)}, y^{(N)})\},$$

where $x^{(\ell)} = (x_1, ...x_{Tx})$ and $y^{(\ell)} = (y_1, ...y_{Ty}).$

Loss Function – minimize the cross-entropy loss:

$$L(\theta) = -\frac{1}{N} \sum_{\ell=1}^{N} \sum_{t=1}^{T_{\mathcal{Y}}} \log p_{\theta}(y_{t}^{(\ell)}|x^{(\ell)})$$

Optimization – gradient descend

Applications(P12-14)

- Translation
- Conversation
- Image Captioning
- Example: Chatbot(Hierarchical RNN Encoder-Decoder)P14

Attention

Sequence-to-Sequence with Attention(P18-19)

• When decoding each y_i in $y = (y_1, \dots, y_{T_y})$, we use a **dynamic context vector** c_i which corresponds to a linear combination of different positions in x.

$$c_i = \sum_{j=1}^{T_X} \alpha_{ij} h_j$$
 为为 $\alpha_{ij} h_j$

Without Attention

- $\bullet \ p(y_i|y_{< i},x) \propto g(y_i;y_{i-1},s_i,c)$
- RNN hidden state $s_i = \text{RNN}_{\text{out}}(s_{i-1}, y_{i-1}, c)$

With Attention

- $p(y_i|y_{< i},x) \propto g(y_i;y_{i-1},s_i,\textbf{c_i})$ RNN hidden state

The decoder dynamically pays attention to different tokens in the source sentences during decoding.

AEention-based Model(P19)

$$\alpha_{ij} = \frac{\exp(a(s_{i-1}, h_{i}))}{\sum_{k=1}^{T_{X}} \exp(a(s_{i-1}, h_{k}))}$$

- scores how well the inputs around position j and the output at position i match.
- where $a(\cdot)$ denotes a **neural network**: e.g., $a(s_{i-1},h_j)=v_a^T\tanh(W_as_{i-1}+U_ah_j)$

Transformer: Seq2seq model with "Self-attention" Limitations of RNN (P22-23)

• Multilayer RNNs

 X_1

 A problem for the RNN encoder/decoder: the hidden state for one position is dependent on the computation of the preceding position.

Attention Revisited (P26)

Self-Attention: The Idea(P27-30)

self-attention: 在理解任何单词的语义时,同时查看其他所有的单词,并对语义进行总结

- Let each word pay attention to all other words.
- Multiplying the query vector by each key vector produces a score for each value (technically: dot product followed by softmax)

• We multiply each value by its score and sum them up.

Word	Value vector	Score	Value X Score
<s></s>		0.001	
a		0.3	世紀 世紀 世紀 世紀 世紀 世紀 世紀 世紀 世紀 世紀
robot		0.5	一个分数,表示和it的相
must		0.002	人生文
obey		0.001	
the		0.0003	
orders		0.005	
given		0.002	
it		0.19	
		Sum:	

• The outcome vector represents the new state (refreshed memory) for the query word.

Step 1: Token Embedding(P31)

• Embedding tokens (integer id) into vectors (hidden states).

Step 2: Q, K, V vectors(P32)

• Transform each hidden state into query/key/value vectors:

Step 3: Calculate Attention Scores(P33)

• Calculate an attention score for each <query, key> pair using scaled dot-product.

Step 4: Normalize Attention Scores(P34)

• Normalize attention scores by softmax to obtain attention

Step 5: Aggregate Values Based on Attention Weights(P35)

• h1,h2的更新其实是同步进行的,彼此之间互不影响

Self-Attention as Matrix Multiplication(P40-45)

ch12: Natural Language Processing

Self-Attention with Position Encoding(P48-49)

- Position Encoding: each position has a unique positional vector e_i (typically learned from data)
- For each x_i we append a one-hot vector p_i indicating the position of the word in the sequence.

• The position encoding e_{i} , combined with the word embedding h_{i} , is feed into the self-attention layer.

Transformer Architecture(P52)

Training(P64)

The Same as RNN Encoder-Decoder

Data:
$$\{(x^{(1)}, y^{(1)}), ..., (x^{(N)}, y^{(N)})\},\$$

where $x^{(\ell)} = (x_1, ..., x_{Tx})$ and $y^{(\ell)} = (y_1, ..., y_{Ty}).$

Loss Function – minimize the cross-entropy loss:

$$L(\theta) = -\frac{1}{N} \sum_{\ell=1}^{N} \sum_{t=1}^{T_y} \log p_{\theta}(y_{t}^{(\ell)} | x^{(\ell)})$$

Optimization - gradient descend

Pretrained Language Model

Pretrained Language Models def(P69): 预训练模型,解决数据不够的问题,在公共的数据上先训练出一个模型(在大规模数据上面作无监督学习)

Bidirectional Encoder Representations from Transformers (BERT) overview(P72)

A Transformer Encoder that

- allows for learning representations of words and sentences.
- pre-trained on large-scale text corpora and then (无监督);
- fine-tuned on small task-specific datasets (e.g., classification, QA.)

1. Model Architecture

• Just like Transformer encoder, BERT takes a sequence of words as input which keep flowing up the stack.

• The first input token is always a special [CLS] token which stands for classification.

Unsupervised training on large amounts of text (e.g., books, Wikipedia, etc)

Phase 1: Pre-Training

Supervised training on a specific task with a labeled dataset. (e.g., spam detection)

Phase 2: Fine-Tuning

• Pre-Training(P75-76)

Task 1: Masked Language Model

Task 2: Next Sentence Prediction

- Finetuning(P77-79)
 - Sentence Classification

• input: a single sentence, output: class

Word Tagging

Input: a single sentence Output: class of each word

Classifying Sentence Pairs

input: two sentences output: class

• QA (Reading Comprehension)

BART (Denoising Seq-to-Seq Pretraining) (P86)

- An encoder-decoder architecture 既用encoder也用decoder,来预训练
- Pre-training by reconstructing inputs that are corrupted by
 methods: (token masking, token deletion, text infilling, sentence permutation, document rotation)
- More efficient for sequence-to-sequence tasks (e.g., generation, translation, comprehension)

