Midterm examination Business mathematics

 20^{th} December 2005

Time: 3 hours (1-4pm)

1.

a. Given

$$f(x) = ax^2 + bx + c$$

where a=c=1 and b=2. Find all the x-intercepts, y-intercepts, and critical points.

b. Given

$$ln y = 1 - x$$

Find y.

c. Given

$$\left(\frac{a^x a^y}{a^z}\right)^n = a^b$$

Find b.

d. Given

$$\log y = 3\log a + \log b - \log c$$

Find y.

[10]

2.

a.

$$q = \ln x + \ln y$$

b.

$$z = x^3 + x^2 + x + 2xy + xy^2$$

c.

$$p = 150e^{0.74t}$$

Find the first- and second-order partial derivatives.

[10]

[2]

[3]

3. Find the determinant of the following matrices.

a.

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

b.

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$

c.

$$\begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p \end{bmatrix}$$

[5]

4. The relationship between the total revenue r_t , the price p, and the output quantity q is

$$r_t = pq$$

The demand function is p = a - bq, where a and b are positive constants.

Find r_t , the marginal revenue r_m , and the average revenue r_a . Then find q at the maximum r_t . And then sketch the graphs of r_t , r_m and r_a . (assume $a_2 > 4b$)

[10]

5.

a. Let A $\stackrel{+}{\longleftrightarrow}$, B $\stackrel{\text{O}}{\longleftrightarrow}$, and C $\stackrel{-}{\longleftrightarrow}$ represent the second-order conditions of critical point of function. Suppose the graph of a function has the shape as shown in Figure 1.

Figure 1

Which of these conditions is satisfied at points I, P and T?[3] Explain.[2]

b.

$$f(x) = \frac{3}{5}x^5 - \frac{9}{4}x^4 + x^3 + \frac{9}{2}x^2 - 6x + 7$$

Find f'(x) and f''(x).[1] Show that 1, -1 and 2 are the critical points.[2] Which of these are maximum, minimum or inflection point?[2]

6. Solve the following programme by the simplex method.

maximise: $z = 3x_1 + 4x_2 + 5x_3$

subject to: $x_1 + x_2 + x_3 \le 2$

 $x_1 + x_2 + 3x_3 \le 1$

 $3x_1 + 2x_2 + x_3 \le 4$

with: all the variables non-negative

[10]