Advanced Thermodynamics

Hancheng Zhao Sept 12 2022

1. Conjugated polymers: why the absorption wavelength increases with chain length

(a) The governing equation for the electron in the box is

$$\frac{d^2\Psi}{dx^2} + G^2\Psi = 0$$

where $G^2 = \sqrt{\frac{8\pi^2 m E_n}{h^2}}$. Solving the above equation we get:

$$\Psi = C_1 \cos(Gx) + C_2 \sin(Gx)$$

Given the boundary conditions

$$\Psi|_{x=0} = 0, \Psi|_{x=l} = 0$$

we can derive

$$C_1 = 0, Gl = G(2N+1)d = \sqrt{\frac{8\pi^2 m E_n}{h^2}}(2N+1)d = n\pi$$

We can further get the equation for calculating E_n :

$$E_n = \frac{n^2 h^2}{8md^2 (2N+1)^2}$$

Substituting n with N and N+1, we can get

$$E_N = \frac{N^2 h^2}{8md^2(2N+1)^2}, E_N + 1 = \frac{(N+1)^2 h^2}{8md^2(2N+1)^2}$$

So the absorption energy ΔE is

$$\Delta E = E_N + 1 - E_N = \frac{h^2}{8md^2(2N+1)}$$

(b) The wavelength of absorbed photon is

$$\lambda = \frac{hc}{\Delta E} = \frac{8md^2c(2N+1)}{h}$$

We can see that the wavelength increases with N, so the absorption wavelength increases with chain length.

2. Why are conjugated bonds so stiff?

(a) Using the results from Q1, we have

$$E_n \approx \frac{n^2 h^2}{8md^2(2N)^2} = \frac{n^2 h^2}{32md^2N^2}$$

$$\sum_{i=1}^{N} E_i = \frac{i^2 h^2}{32md^2 N^2}$$

$$= \frac{h^2}{32md^2 N^2} \frac{N(N+1)(2N+1)}{6}$$

$$= \frac{h^2}{192md^2} \frac{(N+1)(2N+1)}{N}$$

Since N is usually sufficiently large, the above equation can be approximated as:

$$\sum_{i=1}^{N} E_i = \frac{h^2}{192md^2} \frac{(N+1)(2N+1)}{N}$$
$$= \frac{h^2}{192md^2} (1+1/N)(2N+1)$$
$$\approx \frac{Nh^2}{96md^2}$$

The total energy of all electrons (2 in each energy level)

$$E_e = 2\sum_{i=1}^{N} E_i \approx \frac{Nh^2}{48md^2}$$

(b) The energy of an electron in energy layer n is now:

$$E_n = \frac{n^2 h^2}{8md^2 N^2}$$

$$\sum_{i=1}^{N} E_i = \frac{h^2}{8md^2N^2} \frac{(N+1)(2N+1)N}{6}$$

$$\approx \frac{Nh^2}{24md^2}$$

$$E_e = 2\sum_{i=1}^{N/2} E_i = \frac{Nh^2}{12md^2}$$

(c) The energy of the straight chain is only $\frac{1}{4}$ that of the bent chain, hence the straight chain has lower energy.