01204211 Discrete Mathematics Lecture 9b: RSA Review and Euler's Theorem

Jittat Fakcharoenphol

October 15, 2024

- Private key: (d, n), Public key: (e, n)
- ▶ Encryption $E(m) = m^e \mod n$, Decryption: $D(w) = w^d \mod n$.
- ▶ Goal: Select e, d, n such that $D(E(m)) = m^{ed} \mod n = m$.

Recap: Congruences

Definition (congruences)

For an integer m>0, if integers a and b are such that

$$a \mod m = b \mod m$$
,

we write

$$a \equiv b \pmod{m}$$
.

We also have that

$$a \equiv b \pmod{m} \Leftrightarrow m|(a-b)$$

Recap: Multiplicative inverse modulo m

Definition

The multiplicative inverse modulo m of a, denoted by a^{-1} , is an integer such that

$$a \cdot a^{-1} \equiv 1 \pmod{m}$$
.

Theorem 1

An integer a has a multiplicative inverse modulo m iff gcd(a, m) = 1.

Theorem 2 (Fermat's Little Theorem)

If p is prime and a is an integer such that gcd(a, p) = 1,

$$a^{p-1} \equiv 1 \pmod{p}$$
.

Special case of Euler's theorem

Theorem 3 (Euler's theorem)

If p and q are different primes, for a such that $\gcd(a,pq)=1$, we have

$$a^{(p-1)(q-1)} \equiv 1 \pmod{pq}.$$

Special case of Euler's theorem

Theorem 4 (Euler's theorem)

If p and q are different primes, for a such that $\gcd(a,pq)=1$, we have

$$a^{(p-1)(q-1)} \equiv 1 \pmod{pq}.$$

Is this useful?

Special case of Euler's theorem

Theorem 4 (Euler's theorem)

If p and q are different primes, for a such that $\gcd(a,pq)=1$, we have

$$a^{(p-1)(q-1)} \equiv 1 \pmod{pq}.$$

Is this useful? Yes! In the RSA algorithm.

- Private key: (d, n), Public key: (e, n)
- ▶ Encryption $E(m) = m^e \mod n$, Decryption: $D(w) = w^d \mod n$.
- ▶ Goal: Select e, d, n such that $D(E(m)) = m^{ed} \mod n = m$.

- Private key: (d, n), Public key: (e, n)
- ▶ Encryption $E(m) = m^e \mod n$, Decryption: $D(w) = w^d \mod n$.
- ▶ Goal: Select e, d, n such that $D(E(m)) = m^{ed} \mod n = m$.

- Pick two primes p and q. Let n = pq.
- Pick e (usually a small number)
- Pick d such that $d=e^{-1}\pmod{(p-1)(q-1)}$, i.e., $ed\equiv 1\pmod{(p-1)(q-1)}$, or $ed=k\cdot (p-1)(q-1)+1$, for some integer k.
- ▶ What is $m^{ed} \mod n$?

- Private key: (d, n), Public key: (e, n)
- ▶ Encryption $E(m) = m^e \mod n$, Decryption: $D(w) = w^d \mod n$.
- ▶ Goal: Select e, d, n such that $D(E(m)) = m^{ed} \mod n = m$.

- Pick two primes p and q. Let n = pq.
- Pick e (usually a small number)
- Pick d such that $d=e^{-1}\pmod{(p-1)(q-1)}$, i.e., $ed\equiv 1\pmod{(p-1)(q-1)}$, or $ed=k\cdot (p-1)(q-1)+1$, for some integer k.
- ▶ What is $m^{ed} \mod n$?

$$m^{ed} \equiv m^{k(p-1)(q-1)+1} \pmod{n}$$
$$\equiv (m^{(p-1)(q-1)})^k \cdot m \pmod{n}$$
$$\equiv 1^k \cdot m \pmod{n}$$
$$\equiv m \pmod{n}$$

- Private key: (d, n), Public key: (e, n)
- ▶ Encryption $E(m) = m^e \mod n$, Decryption: $D(w) = w^d \mod n$.
- ▶ Goal: Select e, d, n such that $D(E(m)) = m^{ed} \mod n = m$.

- Pick two primes p and q. Let n = pq.
- Pick e (usually a small number)
- Pick d such that $d = e^{-1} \pmod{(p-1)(q-1)}$, i.e., $ed \equiv 1 \pmod{(p-1)(q-1)}$, or $ed = k \cdot (p-1)(q-1) + 1$, for some integer k.
- ightharpoonup What is $m^{ed} \mod n$?

$$m^{ed} \equiv m^{k(p-1)(q-1)+1} \pmod{n}$$
$$\equiv (m^{(p-1)(q-1)})^k \cdot m \pmod{n}$$
$$\equiv 1^k \cdot m \pmod{n}$$
$$\equiv m \pmod{n}$$

- Private key: (d, n), Public key: (e, n)
- ▶ Encryption $E(m) = m^e \mod n$, Decryption: $D(w) = w^d \mod n$.
- ▶ Goal: Select e, d, n such that $D(E(m)) = m^{ed} \mod n = m$.

- Pick two primes p and q. Let n = pq.
- Pick e (usually a small number)
- Pick d such that $d = e^{-1} \pmod{(p-1)(q-1)}$, i.e., $ed \equiv 1 \pmod{(p-1)(q-1)}$, or $ed = k \cdot (p-1)(q-1) + 1$, for some integer k.
- ightharpoonup What is $m^{ed} \mod n$?

$$m^{ed} \equiv m^{k(p-1)(q-1)+1} \pmod{n}$$
$$\equiv (m^{(p-1)(q-1)})^k \cdot m \pmod{n}$$
$$\equiv 1^k \cdot m \pmod{n}$$
$$\equiv m \pmod{n}$$

What is the requirement for m? gcd(m,n)=1, otherwise you can use the message to factor $n_{\mathbb{R}}$

