Let $\mathsf{Ch}(\mathbb{Z})$ denote the category of cochain complexes of abelian groups, $\mathsf{Ch}(\mathbb{Z})^{\text{free}}$ and $\mathsf{Ch}(\mathbb{Z})^{\text{tf}}$ the full subcategories of objects whose entries are free and p-torsion-free, and $D(\mathbb{Z})$ the derived category. Since \mathbb{Z} has projective dimension 1, this is given by

$$D(\mathbb{Z}) \simeq h \operatorname{Ch}(\mathbb{Z})^{\operatorname{free}} \simeq \operatorname{Ch}(\mathbb{Z})^{\operatorname{tf}}[\operatorname{qis}^{-1}].$$

The category $h\operatorname{\mathsf{Ch}}(\mathbb{Z})^{\text{free}}$ is the homotopy category of $\operatorname{\mathsf{Ch}}(\mathbb{Z})^{\text{free}}$, whose objects are $X,Y\in\operatorname{\mathsf{Ch}}(\mathbb{Z})^{\text{free}}$ and morphisms are cochain homotopy classes of maps in [X,Y]. Note that our construction of the derived category requires choosing free or p-torsion-free resolutions for general cochain complexes.

Remark 1. Let's talk a bit about homotopy. The abelian category $\mathsf{Ch}(\mathbb{Z})$ comes equipped with a natural tensor product \otimes giving it the structure of a symmetric monoidal category. There is an internal Hom functor $\underline{\mathsf{Hom}} : \mathsf{Ch}(\mathbb{Z})^{\mathrm{op}} \times \mathsf{Ch}(\mathbb{Z}) \to \mathsf{Ch}(\mathbb{Z})$ which of course satisfies

$$\operatorname{Hom}(Z \otimes X, Y) \cong \operatorname{Hom}(Z, \underline{\operatorname{Hom}}(X, Y))$$

functorial in $X, Y, Z \in \mathsf{Ch}(\mathbb{Z})$. Explicitly,

$$\underline{\operatorname{Hom}}^n(X,Y) = \prod_{i \in \mathbb{Z}} \operatorname{Hom}(X^i, Y^{i+n})$$

with differential $df = d_Y \circ f - (-1)^n f \circ d_X$ for f homogeneous of degree n.² One of the nice things about <u>Hom</u> is that it captures homotopy. There is a natural group isomorphism

$$\operatorname{Hom}(X,Y) \cong Z^0(\underline{\operatorname{Hom}}(X,Y)) = \{ f \in \underline{\operatorname{Hom}}^0(X,Y) : df = 0 \}$$

that identifies the nullhomotopies of a fixed $f \in \text{Hom}(X,Y)$ with

$$B^0(\underline{\operatorname{Hom}}(X,Y)) = \{ h \in \underline{\operatorname{Hom}}^{-1}(X,Y) : dh = f \}.$$

It follows that $H^0(\underline{\operatorname{Hom}}(X,Y)) \cong [X,Y]$ and taking higher cohomology captures higher homotopy. Also note that if $X,Y \in \operatorname{\mathsf{Mod}}_{\mathbb{Z}}$ then $\underline{\operatorname{Hom}}(X,Y)$ is just $\operatorname{\mathsf{Hom}}(X,Y)$ concentrated in degree 0.3

Definition 2. Classical p-completion is the functor

$$\widehat{\cdot} : \mathsf{Mod}_{\mathbb{Z}} \to \mathsf{Mod}_{\mathbb{Z}}, \qquad X \mapsto \varprojlim_{n \geq 1} X/p^n X.$$

We say $X \in \mathsf{Mod}_{\mathbb{Z}}$ is **classically** p-**complete** if the natural map $X \to \widehat{X}$ is an isomorphism. On a somewhat related note, $X \in D(\mathbb{Z})$ is **derived** p-**complete** if $\mathsf{Hom}_{D(\mathbb{Z})}(Y,X) = 0$ for every $Y \in D(\mathbb{Z})$ such that $p: Y \xrightarrow{\sim} Y$. Such objects span a full subcategory $D_p(\mathbb{Z}) \subseteq D(\mathbb{Z})$.

Proposition 3. The inclusion $D_p(\mathbb{Z}) \hookrightarrow D(\mathbb{Z})$ admits a left adjoint $\widehat{\cdot} : D(\mathbb{Z}) \to D_p(\mathbb{Z})$ called the **derived** p-completion given by choosing a representative in $\mathsf{Ch}(\mathbb{Z})$ and applying classical p-completion in each degree.

¹Hom is sometimes referred to as the **mapping class group**.

²Be warned that I might be confusing homological and cohomological conventions.

³Hence, <u>Hom</u> extends the inner Hom on $\mathsf{Mod}_{\mathbb{Z}}$ (which is represented by the naïve Hom that is automatically enriched over \mathbb{Z}). Note that <u>Hom</u> gives rise to $\underline{\mathrm{Ext}}^i$ on $\mathsf{Ch}(\mathbb{Z})$. For $X,Y\in \mathsf{Mod}_{\mathbb{Z}}$ it seems reasonable that we would have $\underline{\mathrm{Ext}}^i(X,Y)$ is just $\mathrm{Ext}^i(X,Y)$ in degree 0. More generally I expect there to be some spectral sequence relating the two notions.

We extend derived notions to $\mathsf{Mod}_{\mathbb{Z}}$ by thinking of abelian groups as complexes concentrated in degree 0. Given $X \in \mathsf{Mod}_{\mathbb{Z}}$, the classical *p*-completion of X represents the derived *p*-completion of X and so we may identify the two.

Proposition 4. Let $X \in \mathsf{Mod}_{\mathbb{Z}}$.

(a) X is derived p-complete if and only if $\operatorname{Hom}(\mathbb{Z}[p^{-1}], X)$ and $\operatorname{Ext}^1(\mathbb{Z}[p^{-1}], X)$ are both contractible. This holds if and only if every short exact sequence

$$0 \longrightarrow X \longrightarrow M \longrightarrow \mathbb{Z}[p^{-1}] \longrightarrow 0$$

admits a unique splitting.

- (b) X is classically p-complete if and only if it is p-adically separated and derived p-complete.
- (c) X is **pro-free** (i.e., the p-completion of a free abelian group) if and only if it is derived p-complete and p-torsion-free.

Remark 5. I'm not entirely sure about the content of the above proposition. I know that $\operatorname{Ext}^1(\mathbb{Z}[p^{-1}], X)$ classifies extensions of $\mathbb{Z}[p^{-1}]$ by X, with the zero element corresponding to the trivial extension. Any splitting is by definition an extension isomorphic to the trivial extension as a short exact sequence. So it makes sense that if Ext^1 vanishes then there is a unique splitting (up to ismorphism). But what if there is only a weak equivalence to 0?

Complexes of pro-free abelian groups span a full subcategory $\mathsf{Ch}(\mathbb{Z})^{\mathsf{pro-free}} \subseteq \mathsf{Ch}(\mathbb{Z})$. The following result shows that this subcategory lets us get at $D_p(\mathbb{Z})$.

Theorem 6. The functor $\mathsf{Ch}(\mathbb{Z})^{\mathsf{pro-free}} \to D(\mathbb{Z})$ obtained by passing to (formal) qis classes has essential image $D_p(\mathbb{Z})$ and induces an equivalence $h \, \mathsf{Ch}(\mathbb{Z})^{\mathsf{pro-free}} \xrightarrow{\sim} D_p(\mathbb{Z})$.

Our goal now is to start tying in fixed points. Our first stop is deriving η_p .

Proposition 7. There is an essentially unique functor $L\eta_p:D(\mathbb{Z})\to D(\mathbb{Z})$ such that

$$\begin{array}{ccc} \mathsf{Ch}(\mathbb{Z})^{\mathrm{tf}} & \xrightarrow{\eta_p} & \mathsf{Ch}(\mathbb{Z})^{\mathrm{tf}} \\ & & & \downarrow & & \downarrow \\ D(\mathbb{Z}) & \xrightarrow{\exists ! \ L\eta_p} & D(\mathbb{Z}) \end{array}$$

commutes up to natural isomorphism.⁴

Definition 8. Let C be a category and $T: C \to C$ an endofunctor. The **fixed point** category C^T of C with respect to T is the category whose objects are pairs (X, φ) with $X \in C$ and $\varphi \in \mathrm{Isom}_{C}(X, TX)$. The data of a morphism $f: (X, \varphi) \to (X', \varphi')$ is $f \in \mathrm{Hom}_{C}(X, X')$ such that

⁴In particular, there is no nontrivial homotopical coherence introduced at this stage in the game.

$$\begin{array}{ccc} X & \xrightarrow{f} & X' \\ \varphi \Big| & & & \downarrow \varphi' \\ TX & \xrightarrow{Tf} & TX' \end{array}$$

commutes.

Basically by definition, we immediately see that there is an equivalence $\mathsf{DC}_{\mathrm{sat}} \simeq (\mathsf{Ch}(\mathbb{Z})^{\mathrm{pro-free}})^{\eta_p}$. In fact, more is true.

Theorem 9. $\mathsf{DC}_{\mathrm{sat}} \simeq (\mathsf{Ch}(\mathbb{Z})^{\mathrm{pro-free}})^{\eta_p}$ restricts to an equivalence $\mathsf{DC}_{\mathrm{str}} \xrightarrow{\sim} D_p(\mathbb{Z})^{L\eta_p}$.