Project Summary

Project Title Enhancing Coupon Recommendation System Using DTC and MLP

Date June 2023

Project Objective Performance Comparison of the Decision Tree (DTC) and Multilayer Perceptron (MLP)

on a dataset, and choosing the best-performing model with supporting evidence

Dataset Dataset: in-vehicle-coupon-recommendation

Retrieved from:

https://archive.ics.uci.edu/ml/machine-learning-databases/00603/in-vehicle-coupon-

recommendation.csv

About Dataset Amazon Mechanical Turk poll survey describes different driving scenarios including the

destination, current time, weather, passenger presence, etc., and then asks

participants whether they would accept the coupon if were the driver

Data Features > 12684 rows, 26 columns

> Target (0 and 1) is well-balanced

Majority of features are categorical

Cleaning and Preprocessing steps

Dropped column with >5% missing entries

Removed 74 duplicates

Encoded using OrdinalEncoder.

Split train and test 70%

Scaled using StandardScaler (only for MLP)

Model 1: DTC Accuracy: 70%, Parameters: max_depth=6, max_leaf_nodes=22

Model 2: MLP Accuracy: 65%, Parameters: hidden_layer_sizes=(10,)

Best Model and reason Decision Tree Classifier (DTC), because:

 Higher precision (71%) and recall score (78%) ensure that customers receive recommendations that are relevant to their needs and preferences

It is well-suited for datasets comprised of discrete or categorical variables

Faster to compute

Tools used

Python: Scikit-learn (for MLP, data scaling, and evaluations), Category Encoders and OrdinalEncoder (for data preprocessing and feature engineering), Seaborn, Matplotlib, and Plotly Express (for visualisation).

Contents

- 1. Introduction
- 2. Data Exploration
- 3. Data Cleaning
 - Missing Values
 - Duplicates
- 4. Exploratory Data Analysis (EDA)
 - Distribution of coupons
 - a. Gender / Occupation & Salary
 - b. Marital Status
 - c. Contextual: Drivers destination and Time
 - d. Situational: Coupons Expiration Dates, Drivers destination, Weather/Season

5. Model 1: Decision Tree Classifier

- Hyperparameter Tuning
- Refinement
- Final optimised classification tree using Graphvis
- Evaluation: Confusion Matrix
- Evaluation: Model summary report
- Summary

6. Feature importance

- Feature importance (based on the final classification model)
- Feature Importance: Chi-Square
- Comparing the two feature selection methods

7. Model 2: Multi-Layer Perceptron (MLP)

- Evaluations
- Evaluation: MLP Loss and error values
- MLP Evaluation: Confusion Matrix

8. Performance Comparison: DTC vs MLP

- Performance metrics: DTC vs MLP
- Which model is better?

1. Introduction

The objective of this report is to utilize machine learning techniques, specifically Multi-Layer Perceptron (MLP) and Decision Tree Classifier (DTC), to enhance customer satisfaction, engagement, and contribute to overall company growth. We will explore and compare these models to identify which one, or a combination thereof, best enhances our coupon recommendation system.

2. Data Exploration

The 'in-vehicle coupon recommendation Dataset' was gathered from a survey on Amazon Mechanical Turk poll. The survey asked about different driving situations to predict if drivers would accept coupons.

The dataset includes 12,684 entries with 26 attributes.

- Factoria	Description	Data Type
Feature	Description	Data Type
destination	Driver's destination: "No Urgent Place", "Home", "Work" The passenger(s) in the car: "Alone", "Friend(s)", "Kid(s)",	C
passenger	"Partner"	
weather	The weather when the driver is driving: "Sunny", "Rainy", "Snowy"	С
temperature	The temperature when the driver is driving (in °F): "55", "80", "30"	C (continuous data treated as categorical)
time	The time at which the driver is driving: "2PM", "10AM", "6PM", "7AM", "10PM"	C/numeric categorical (continuous data treated as categorical)
coupon	Type of coupon that will be accepted: "Restaurant(<20)", "Coffee House", "Carryout & Take away", "Bar, Restaurant(20-\$50)"	С
expiration	The expiration date of the coupon: "1d", "2h"	C/numeric categorical (continuous data treated as categorical)
gender	Driver's gender: "Female", "Male"	C
age	Driver's age: "21", "46", "26", "31", "41", "50plus", "36", "below21"	C/numeric categorical (continuous data treated as categorical)
maritalStatus	Driver's marital status: "Unmarried partner", "Single", "Married partner", "Divorced", "Widowed"	С
has_Children	Whether the driver has child(ren) or not: 0: no, 1: yes	C (binary variable)
education	Driver's educational background: "Some college - no degree", "Bachelors degree", "Associates degree", "High School Graduate", "Graduate degree (Masters or Doctorate)", "Some High School"	С
occupation	Driver's occupation: "Unemployed", "Architecture & Engineering", "Student", "Education&Training&Library", "Healthcare Support", "Healthcare Practitioners & Technical", "Sales & Related", "Management", "Arts Design Entertainment Sports & Media", "Computer & Mathematical", "Life Physical Social Science", "Personal Care & Service", "Community & Social Services", "Office & Administrative Support", "Construction & Extraction", "Legal", "Retired", "Installation Maintenance & Repair", "Transportation & Material Moving", "Business & Financial", "Protective Service", "Food Preparation & Serving Related", "Production Occupations", "Building & Grounds Cleaning & Maintenance", "Farming Fishing & Forestry"	C
income	Driver's income: "\$37500 - \$49999", "\$62500 - \$74999", "\$12500 - \$24999", "\$75000 - \$87499", "\$50000 - \$62499", "\$25000 - \$37499", "\$100000 or More", "\$87500 - \$99999", "Less than \$12500"	C/numeric categorical (continuous data treated as categorical)
Car	Car model driven by the driver: "Scooter and motorcycle", "crossover", "Mazda5"	С
Bar	The frequency of restaurant visits per month: "never", "less1", "13", "gt8", "nan48"	С
CoffeeHouse	Frequency of cafe visits per month: "never", "less1", "48", "13", "gt8", "nan"	C/numeric categorical (continuous data treated as categorical)

CarryAway	Frequency of takeaway food consumption per month: "n48", "13", "gt8", "less1", "never"	C/numeric categorical (continuous data treated as categorical)
RestaurantLessThan20	Frequency of restaurant visits per month, where the average expense per person is less than \$20: "48", "13", "less1", "gt8", "never"	C/numeric categorical (continuous data treated as categorical)
Restaurant20To50	Frequency of restaurant visits per month, where the average expense per person is between 20–50: "13", "less 1", "never", "gt8", "48", "nan"	C/numeric categorical (continuous data treated as categorical)
toCoupon_GEQ5min	Open to travelling beyond a 5-minute distance to use the coupon: 0: no, 1: yes	C (binary variable)
toCoupon_GEQ15min	Open to travelling beyond a 15-minute distance to use the coupon: 0: no, 1: yes	C (binary variable)
toCoupon_GEQ25min	O pen to travelling beyond a 25-minute distance to use the coupon: 0: no, 1: yes	C (binary variable)
direction_same	Whether the restaurant or cafe mentioned in the coupon is in the same direction as drivers' current destination: 0: no, 1: yes	C (binary variable)
direction_opp	Whether the restaurant or cafe mentioned in the coupon is in the opposite direction as drivers' current destination: 0: no, 1: yes	C (binary variable)
Υ	Whether the driver will accept the coupon or not: 0: no, 1: yes	C (binary variable)

3. Data Cleaning

Missing Values

The feature 'car' has the highest missing value rate of 99% (12576). As per general guidelines, missing values that are less 5% have minimal impact on the overall analysis.

	missing_count	missing_percentage
саг	12576	99.148534
Bar	107	0.843582
CoffeeHouse	217	1.710817
CarryAway	151	1.190476
RestaurantLessThan20	130	1.024913
Restaurant20To50	189	1.490066

Duplicates

74 duplicates have been removed.

4. Exploratory Data Analysis (EDA)

Distribution of coupons

- Coffee House distributes the most coupons. It shows the highest acceptance rate but also experiences the highest rejection rate.
- Coupons for light meals like restaurants (<20 seats) and takeaways tend to have higher acceptance
 rates than rejection rates, whereas coupons that have the lowest distribution rate like bars and
 restaurants (20-50 seats) typically face higher rejection rates.

a. Gender / Occupation & Salary

 Both males and females have a similar acceptance rate. A larger proportion of females tend to accept the coupon compared to males.

• There is a high ratio of drivers who fall under the categories of Unemployed, Student, Education&Training&Library, Sales & Related, and Computer & Mathematical occupations.

• Categories that have higher rejection rates are Community/Social Service, Legal, and Retired.

b. Marital Status

 Coupons are distributed widely among drivers classified as 'single' and 'married partners' across all categories.

c. Contextual: Drivers Destination and Time

More drivers would accept when they are not in a hurry to reach a destination. Acceptance rates
are higher outside of rush hours, with a peak around 2pm, after lunchtime. Less popular times for
accepting coupons are around 7am, during morning commute hours, and at 10pm, closer to
bedtime.

Coupons are more frequently distributed on sunny days compared to cold and rainy days. People
are more likely to reject coupons when the weather is rainy or cold.

d. Situational: Coupons Expiration Dates, Drivers destination, Weather/Season

Accept Ac

Acceptance rates are higher when drivers are offered coupons with longer expiration dates.

• Drivers tend to decline the coupon as the distance to drive grows longer.

5. Model 1: Decision Tree Classifier

Hyperparameter Tuning

As a baseline, I used default parameters, resulting in a decision tree consisting of 4667 nodes and an accuracy score of 0.69 (2dp).

10-fold CV scores for adjusted 'max_depth' parameter

- Adjusted the max_depth parameter to limit the depth of the decision tree, testing different values
 of max_depth from 1 to 14 using 10-fold cross-validation for each value.
- Diagram below displays the average scores from 10-fold cv for various max_depth values. The
 optimal max_depth is 6.
- After adjusting the max_depth parameter, nodes in the tree decreased to 127, and the accuracy score improved to 0.70 (2dp)

Refinement

10-fold CV scores for adjusted 'max_leaf_nodes' parameter

- I focused on adjusting the max_leaf_nodes parameter, as it limits the max number of leaf nodes in the decision tree.
- Used max_depth value of 6 as a starting point, then examined different max_leaf_node values from 2 to 39. Through this process, we determined that a max_leaf_node value of 22 resulted in the highest score from our 10-fold cross-validation.
- The model achieved an accuracy score of 0.70 (2dp). Adjustments did not significantly improve the accuracy of DTC.

Final optimised classification tree using Graphvis

- This binary tree comprises a total of 47 nodes 24 internal nodes with 22 leaf nodes that make final classification decisions.
- The optimised tree has a depth of 6 levels. This depth value was identified as optimal during the
 decision tree's parameter optimisation (depth indicates the longest path from the initial node to
 any leaf node in the tree).

DTC Evaluation: Confusion Matrix

1661 instances were correctly classified as 'accept' (TP).

970 instances were correctly classified as 'reject' (TN).

684 instances were incorrectly classified as 'accept' when they were actually 'reject' (FP).

468 instances were incorrectly classified as 'reject' when they were actually 'accept' (FN).

DTC Evaluation: Model summary report

	precision	recall	f1-score	support
0 1	0.67 0.71	0.59 0.78	0.63 0.74	1654 2129
accuracy macro avg weighted avg	0.69 0.69	0.68 0.70	0.70 0.68 0.69	3783 3783 3783

- Precision 0: Model predicts a customer will respond negatively to a coupon, it is correct 67% of the time.
- Precision 1: Predicts a customers that will respond positively to a coupon, it is correct 71% of the time.
- Recall 0: Out of all the customers who truly would not respond positively to a coupon, the model correctly predicts 59% of them.

- Recall 1: out of all the customers who truly would respond positively to a coupon, the model correctly predicts 78% of them.
- F1-score 0: Out of all instances predicted as 'reject' by the model, 63% are actually 'accept'.
- F1-score 1: 74 means the model has a good overall performance in correctly identifying customers who will respond positively to a coupon.
- Accuracy: 70% of the predictions made by the model are correct (predictions across both 1 and 0 classes).

Summary

The model performs adequately in predicting coupon acceptance and rejection. Error rate of 30% indicates there are still opportunities for enhancement, especially in reducing false predictions. Further optimisation could focus on improving precision for 'reject' predictions and reducing overall prediction errors.

6. Feature importance

Feature importance (based on the final classification model)

	Feature	Importance			
5	coupon	0.477	11	education	0.000
6	expiration	0.142	1	passanger	0.000
15	CoffeeHouse	0.103	13	income	0.000
4	time	0.095	8	age	0.000
14	Bar	0.094	7	gender	0.000
10	has_children	0.021	16	СаггуАway	0.000
21	toCoupon_GEQ25min	0.016	17	RestaurantLessThan20	0.000
23	direction_opp	0.014	18	Restaurant20To50	0.000
20	toCoupon_GEQ15min	0.013	19	toCoupon_GEQ5min	0.000
0	destination	0.013	2	weather	0.000
3	temperature	0.012	22	direction_same	0.000
9	maritalStatus	0.000	12	occupation	0.000

- Each score under 'Importance' indicates the significance of input features in predicting the target variable, whether the driver will accept the coupon or not.
- The feature 'coupon' holds a substantially higher importance score of 0.477 plays the most significant role in influencing the model's decision-making process.
- Following 'coupon', factors such as 'expiration', 'coffee house', 'bar', and 'time' may also play a
 notable role in influencing the model's decision-making process.

Feature Importance: Chi-Square

To improve the performance of classification models, we eliminate features (attributes) that do not significantly impact the model's decision-making process. This time, we will try using the Chi-Squared Method.

Feature selection using Chi-Squared Method

• The top 5 significant features: Coupon (117.77), CoffeeHouse (80.34), time (76.41), destination (50.17), and expiration (23.77).

Comparing the 2 feature selections

companing the z reature concernenc	
Top 5 features from Chi-Square method (desc)	Top 5 features from DTC model (desc)
Coupon	Coupon
CoffeeHouse	expiration
time	CoffeeHouse
destination	Bar
expiration	Time

- 'Coupon' shows strong potential for influencing / predicting the target variables.
- 'CoffeeHouse,' 'time,' and 'expiration' appearing in both the Chi-Square and DTC model results suggest a strong significance. When the same feature shows up in both lists, it indicates a high level of relevance.
- We observe certain features that exist in the Chi-Square method but not in the other method, and vice versa (like 'Bar' and 'Destination').

7. Model 2: Multi-Layer Perceptron (MLP)

Testing model: single layer, hidden_layer_size =10, 10-fold-cv, 140 iterations = cv-score 0.64(2dp)

Initial parameter: hidden_layer_size=10 (single hidden layer with 10 neurons).

To find the optimal number of iteration, I tested a range of maximum iterations in increments of 10, ranging from 40 to 250.

200 iterations produced the highest average 10-fold cross-validation score of 0.64(2dp).

Testing the model using a 10-fold CV test

Evaluations

Evaluation: MLP Loss and error values

• The closely aligned curves show a corresponding decrease, meaning that an appropriate number of iterations has been used for the model.

MLP Evaluation: Confusion Matrix

MLP Evaluation: Model summary report

	precision	recall	f1-score	support	
0	0.62	0.53	0.57	1654	
1	0.67	0.75	0.71	2129	
accuracy			0.65	3783	
macro avg	0.64	0.64	0.64	3783	
weighted avg	0.65	0.65	0.65	3783	

7. Performance Comparison: DTC vs MLP

Performance metrics: DTC vs MLP

	precision	recall	f1-score	support		precision	recall	f1-score	support
0	0.67	0.59	0.63	1654	0	0.62	0.51	0.56	1654
1	0.71	0.78	0.74	2129	1	0.67	0.75	0.71	2129
accuracy			0.70	3783	accuracy			0.65	3783
macro avg	0.69	0.68	0.68	3783	macro avg	0.64	0.63	0.63	3783
weighted avg	0.69	0.70	0.69	3783	weighted avg	0.64	0.65	0.64	3783

- Precision: Reliability and correctness of the collected data. It's important metric to make informed
 and improved business decisions. The decision tree classifier holds a higher score than the MLP
 classifier, indicating that DTC does a better job in correctly identifying true positives while
 minimising false positives.
- Recall/Sensitivity: Metric to determine the likelihood of the machine recommending/offering
 irrelevant coupons to customers. DTC holds a higher recall score of 78%, indicating that the
 model does a better job of reducing the chances of falsely labelling true positives as negatives
 compared to the MLP classifier.

Which model is better?

DTC performs better in terms of reducing false positives and negatives. Additionally, it is more suitable for this particular dataset (that consist of discrete or categorical variables) and its capability of handling these variables.

DTCs are also well known for their simplicity and interpretability. The decision-making process is transparent (often called "white-box"). Moreover, due to its simplicity, they are faster and don't require excessive computational resources compared to MLP Classifiers.