Linux Workshop

S. T. Balan, L. Whiteway

Department of Physics and Astronomy University College London

15 October 2015

Where to find this presentation

url

https://github.com/Astrophysics-UCL/HPCInfo/blob/master/training/workshops_2015/linux_workshop/slides/linux_workshop_oct_2015.pdf

What will you learn?

- In this talk:
 - Accessing Astrophysics group machines
 - Using the Linux console for your research
- In the next talk:
 - How to run programs on High Performance Computing (HPC) machines

Command shell

- You will be using a 'command shell'.
- This is a text-based environment in which you type commands and text output.
- ▶ Not GUI! Reflects the hardware limitations current when Unix was created. Low-tech and reliable e.g. for remote access.
- ▶ Various command shell programs in use: bash, csh, tcsh,...

Accessing machines from outside

You will need a username and password

Steps:

```
# step 1: login to zuserver
ssh -YC username@zuserver.star.ucl.ac.uk
# step 2: login to other machines from zuserver
ssh -YC username@splinter-login.star.ucl.ac.uk
```

Directory structure

- Everything is organised around files (which may be program files i.e. instructions to be executed) or data files.
- Files live in directories. There is a hierarchical tree structure of directories.
- Sample file name: /share/splinter/ucapwhi/des/foo.txt
- Note use of slash '/', not backslash '\' as in Windows.
- Case sensitivity: 'Foo' and 'foo' are different strings.

Special symbols for directories

Symbol	Meaning
/	Top of the directory tree (the root directory)
	Current directory
	Parent of the current directory
~	User's 'home' directory

Structure of commands

structure

```
\# [command] -[option[s]] [argument]
```

Example

```
ls -la
mkdir hello_world
cp hello.cpp new_hello.cpp
```

Linux console cheat sheat I

navigation and help

```
ls -lah dir_name
cd dir_name
cd ..
cd -
man command_name
pwd
exit
```

copy or move

```
cp src dest
cp -r src dest
mv src dest
ln -s src targ
```

create or delete

```
touch file.txt
mkdir dir_name
mkdir -p prt/dir
rm -i file.txt
rm -rf dir_name
```

find or search

```
locate file
whereis file
grep "bla" file
awk 'pattern' file
```

Linux console cheat sheat II

```
file contents
                                  ssh
cat file
more file
less file
head file
tail file
nm object_file
readelf shared_obj_file
ldd executable
                                  who
process management
ps -e
kill
killall
top
```

```
ssh usr@host
ssh -YC user@host
scp usr@host:file dest
```

system info

```
uname -a
who
whoami
whois
which
finger
ping
echo $VAR NAME
```

Linux console cheat sheat III

```
&; | ¿ i
  # background
  # combine
  # next line
  # combine
* # wildcard
> # output
  # input
Text editors
emacs
νi
gedit
```

```
web
firefox
google-chrome
wget
curl
publishing
latex
pdflatex
bibtex
```

Linux console cheat sheat IV

```
compressed files
gzip
gunzip
tar xvzf
tar cvzf
tar xvjf
tar xvJf
images
eog
xfig
gimp
gthumb
convert
```

development

```
make
cmake
python
gcc
g++
gfortran
```

scientific

```
gnuplot
R
matlab
IDL
```

Exercises I

- 1. Go to your home directory and create a directory called linux_hpc_workshop.
- Change directory to linux_hpc_workshop.
- 3. What is the present working directory?
- Make a directory level_1/level_2, and move to level_1/level_2 in one command.
- 5. Move back to the previous directory.
- Remove the directory level_1 (and its contents).
- Make a symbolic link to usr/lib in the current directory called my_sybolic_link.
- 8. Create a file called foo.txt with contents "This file contains the word foo".
- 9. Add another line in foo.txt called "This is the second line".
- Check if it worked.
- 11. Search for the phrase foo in foo.txt.

Exercises II

- 1. Find the location of your python installation.
- Find the installation location(s) of liblapack.a.
- Find whether an object daxpy is in liblapack.a.
- 4. Find the value the environment variable PATH and LD_LIBRARY_PATH.
- Set the environment variable MY_LINUX_HPC_VAR to the absolute path to linux_hpc_workshop.
- 6. Add (i.e append) to the PATH the absolute path to linux_hpc_workshop.
- 7. Use the *source* command do the last two steps from source file.
- 8. Use the *man* command to find the option of 1s that shows the output in Kilobyte, Megabyte.

Exercises III

- Find hostname, processor type and operating system version and write this info into a text file called info.txt.
- 2. List the people who are currently logged into the system.
- 3. Find the process that is taking most of the CPU at the moment.
- 4. Find the IDs of the processes that you are running.
- Make a directory called to_be_compressed. Add the files hello.cpp and hello.py in this dir. Now compress this directory using tar and zip.
- Delete the directory to_be_compressed and extract the files from to_be_compressed.tar.gz.
- Use wget to download files from ftp://heasarc.gsfc.nasa.gov/software/fitsio/c/cfitsio3370.tar.gz.
- 8. What is the size of the item you just downloaded in MB?
- 9. Find the number of occurrences of the phrase table is easy in all the files with extension .h.
- 10. Remove all the files with extension .h.
- 11. Copy the files with extension .c into a new directory c_files.

More information

```
Astrophysics Wiki
```

https:

//wiki.ucl.ac.uk/display/PhysAstAstPhysGrp/Main+Page

UCL Research Computing Platforms

https://wiki.rc.ucl.ac.uk/wiki/Main_Page

DiRAC

http://www.dirac.ac.uk