BIG DATA ANALYTICS LAB

Name: Jayasuriya E,Sanjay Krishna R

Roll No.: 1934012, 1934036

Dataset:

Goal: The Aim is to Classify whether The Loan Will Get Sanctioned or not.

Link: https://www.kaggle.com/datasets/altruistdelhite04/loan-prediction-problem-dataset

Features:

- Loan Id
- Gender
- Married
- Dependents
- Education
- Self-Employed
- ApplicationIncome
- CoapplicantIncome
- LoanAmount
- Loan_Amount_Term
- Credit_History
- Property_Area
- Loan_Status

Connecting to database:

```
import findspark
findspark.init()

import pyspark # only run after findspark.init()
from pyspark.sql import SparkSession
spark = SparkSession.builder.getOrCreate()

dataframe_mysql = spark.read.format("jdbc").options(
    url="jdbc:mysql://localhost:3306/BDA",
    driver = "com.mysql.jdbc.Driver",
    dbtable = "mytable",
    user="root",
    password="jaya3502").load()
dataframe_mysql.show()
```

The MySQL database is connected.

Importing Libraries:

The Libraries used are,

- pyspark
- findspark
- pandas
- numpy

- matplotlib
- sklearn
- seaborn

Visualizing database and Schema of database:

7 10 6461						authoust	**					
+												
Loan_ID G	Gender M	arried Dep	oendents	Education	Self_Employed <i>F</i>	ApplicantIncome C	oapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	Property_Area I	oan_Status
++-												
LP001002	Male	No	0	Graduate	No	5849	0E-8	null	360	true	Urban	Y
LP001003	Male	Yes	1	Graduate	No	4583	1508.000000000	128	360	true	Rural	N
LP001005	Male	Yes	0	Graduate	Yes	3000	0E-8	66	360	true	Urban	Y
LP001006	Male	Yes	0 Not	Graduate	No	2583	2358.000000000	120	360	true	Urban	Y
LP001008	Male	No	0	Graduate	No	6000	0E-8	141	360	true	Urban	Y
LP001011	Male	Yes	2	Graduate	Yes	5417	4196.000000000	267	360	true	Urban	Y
LP001013	Male	Yes	0 Not	Graduate	No	2333	1516.000000000	95	360	true	Urban	ΥĮ
LP001014	Male	Yes	3+	Graduate	No	3036	2504.000000000	158	360	false	Semiurban	N
LP001018	Male	Yes	2	Graduate	No	4006	1526.000000000	168	360	true	Urban	Υ
LP001020	Male	Yes	1	Graduate	No	12841	10968.000000000	349	360	true	Semiurban	N
LP001024	Male	Yes	2	Graduate	No	3200	700.000000000	70	360	true	Urban	ΥĮ
LP001027	Male	Yes	2	Graduate	null	2500	1840.000000000	109	360	true	Urban	Y
LP001028	Male	Yes	2	Graduate	No	3073	8106.000000000	200	360	true	Urban	Υ
LP001029	Male	No	0	Graduate	No	1853	2840.000000000	114	360	true	Rural	N
LP001030	Male	Yes	2	Graduate	No	1299	1086.000000000	17	120	true	Urban	Y
LP001032	Male	No	0	Graduate	No	4950	0E-8	125	360	true	Urban	ΥĮ
LP001034	Male	No	1 Not	Graduate	No	3596	0E-8	100	240	null	Urban	Y
LP001036 F	emale	No	0	Graduate	No	3510	0E-8	76	360	false	Urban	N
LP001038	Male	Yes	0 Not	Graduate	No	4887	0E-8	133	360	true	Rural	N

```
root
|-- Loan_ID: string (nullable = true)
|-- Gender: string (nullable = true)
|-- Married: string (nullable = true)
|-- Dependents: string (nullable = true)
|-- Education: string (nullable = true)
|-- Self_Employed: string (nullable = true)
|-- ApplicantIncome: integer (nullable = true)
|-- CoapplicantIncome: decimal(13,8) (nullable = true)
|-- LoanAmount: integer (nullable = true)
|-- Loan_Amount_Term: integer (nullable = true)
|-- Credit_History: boolean (nullable = true)
|-- Property_Area: string (nullable = true)
|-- Loan_Status: string (nullable = true)
```

Describe the datatbase:

	0	1	2	3	4
summary	count	mean	stddev	min	max
Loan_ID	614	None	None	LP001002	LP002990
Gender	601	None	None	Female	Male
Married	611	None	None	No	Yes
Dependents	599	0.5547445255474452	0.7853289861674311	0	3+
Education	614	None	None	Graduate	Not Graduate
Self_Employed	582	None	None	No	Yes
ApplicantIncome	614	5403.459283387622	6109.041673387181	150	81000
CoapplicantIncome	614	1621.245798027101	2926.2483692241894	0E-8	41667.00000000
LoanAmount	592	146.41216216216216	85.58732523570545	9	700
Loan_Amount_Term	600	342.0	65.12040985461255	12	480
Property_Area	614	None	None	Rural	Urban
Loan_Status	614	None	None	N	Υ

Exploratory Data Analysis: Categorical features:

Preprocessing:

☐ Encoding

```
dataframe mysql =
dataframe mysql.withColumn(dataframe mysql.columns[1],
when (col (dataframe mysql.columns[1]) == "Male", 1).otherwise(0))
dataframe mysql =
dataframe mysql.withColumn(dataframe_mysql.columns[2],
when(col(dataframe mysql.columns[2]) == "Yes", 1).otherwise(0))
dataframe mysql =
dataframe mysql.withColumn(dataframe mysql.columns[4],
when (col (dataframe mysql.columns[4]) == "Graduate", 1).otherwise(0))
dataframe mysql =
dataframe mysql.withColumn(dataframe mysql.columns[5],
when(col(dataframe mysql.columns[5]) == "Yes", 1).otherwise(0))
dataframe mysql =
dataframe mysql.withColumn(dataframe mysql.columns[10],
when(col(dataframe mysql.columns[10]) == "true", 1).otherwise(0))
dataframe mysql =
dataframe mysql.withColumn(dataframe mysql.columns[11],
when(col(dataframe mysql.columns[11]) == "Urban", 1).otherwise(0))
dataframe mysql =
dataframe mysql.withColumn(dataframe mysql.columns[12],
when (col(dataframe mysql.columns[12]) == "Y", 1).otherwise(0))
dataframe mysql=dataframe mysql.na.replace('OE-8', '0')
dataframe mysql.show(5)
```

							oapplicantIncome Loa					
++ LP001002	 	+	 0	 1	 	+ 5849	+ 0E-8	 null	360l	 1	 1	1
LP001003	1	1	1	1	0	4583	1508.00000000	128	360	1	0	0
LP001005	1	1	0	1	1	3000	0E-8	66	360	1	1	
LP001006	1	1	0	0	0	2583	2358.000000000	120	360	1	1	
LP001008	1	0	0	1	0	6000	0E-8	141	360	1	1	

☐ Correlation:

Loanamount and Applicantincome are positively correlated.

Train_Test Split:

```
features = dataframe_mysql.drop('Loan_Status')
output = assembler.transform(dataframe_mysql)
output= output.select("features", "Loan_Status")
train_df,test_df = output.randomSplit([0.7, 0.3])
```

Model Building:

1. Logistic Regression:

Fitting for Training data:

```
from pyspark.ml.classification import LogisticRegression
lr = LogisticRegression(featuresCol = 'features', labelCol =
'Loan_Status', maxIter=10)
lrModel = lr.fit(train_df)
```

Beta coefficients:

ROC curve:

PR curve:

Predicted the values for Test Dataset

```
+-----
            features | Loan_status |
                                      rawPrediction
                                                           probability prediction
|(11,[0,1,3,5,7,8]...|
                             1|[0.14896248075439...|[0.53717190909627...|
                                                                             0.0
|(11,[0,1,5,6,7,8]...|
                             0|[0.80354794294678...|[0.69073290853685...|
                             0|[1.02509445673796...|[0.73596374927432...|
|(11,[0,2,3,5,7,8]...|
                                                                             0.0
                             0|[0.76077725281358...|[0.68152245999549...|
|(11,[0,2,3,5,7,8]...|
                                                                             0.0
                             0|[0.84128376430095...|[0.69873552269556...|
|(11,[0,3,5,6,7,8]...|
                                                                             0.0
|(11,[0,3,5,7,8],[...|
                             0|[1.16209968889239...|[0.76171402988426...|
                                                                             0.0
|(11,[0,3,5,7,8,9]...|
                             1|[-1.2247941032870...|[0.22709387802659...|
                                                                             1.0
                             1|[-1.2043247673428...|[0.23070675804769...|
|(11,[0,3,5,7,8,9]...|
                                                                             1.0
                             1|[-1.1693482100046...|[0.23697281858488...|
|(11,[0,3,5,7,8,9]...|
                                                                             1.0
|(11,[0,3,5,7,8,9]...|
                             1|[-1.1233902509203...|[0.24538296845152...|
                                                                             1.0
|(11,[0,3,5,7,8,9]...|
                             1|[-1.1110036452242...|[0.24768382541848...|
                                                                             1.0
|(11,[0,5,6,7,8],[...|
                             1|[1.36642893536716...|[0.79680258160670...|
                                                                             0.0
                             1|[-0.5726000266727...|[0.36063709897710...|
|(11,[0,5,6,7,8,9]...|
                                                                             1.0
                             0|[1.64884111987616...|[0.83873436294600...|
|(11,[0,5,6,7,8,10...|
                                                                             0.0
                             1|[-0.6092330158205...|[0.35223417722563...|
|(11,[0,5,7,8,9],[...|
                                                                             1.0
|(11,[0,5,7,8,9],[...|
                             0|[-0.5429750543305...|[0.36749578060245...|
                                                                             1.0
                             0|[0.67577859657012...|[0.66279587361049...|
|(11,[1,2,5,6,7,8]...|
                                                                             0.0
                             0|[0.35556425309903...|[0.58796624231475...|
|(11,[1,3,4,5,7,8]...|
                                                                             0.0
|(11,[1,3,5,7,8,9]...|
                             1|[-1.9275262341158...|[0.12702464148860...|
                                                                             1.0
                             0|[-1.8497793968074...|[0.13589880043108...|
|(11,[1,3,5,7,8,9]...|
                                                                             1.0
only showing top 20 rows
```

ROC for test:

Test Area Under ROC 0.690357498931776

Accuracy:

Model accuracy: 76.404%

Classification Report and Confusion matrix:

```
-- Logistic Regression --
Classification Report
             precision recall f1-score
                                         support
         0
                0.71
                        0.49
                                  0.58
                                            59
         1
                0.78
                        0.90
                                  0.84
                                           119
                                  0.76
   accuracy
                                           178
              0.74
  macro avg
                        0.70
                                 0.71
                                           178
                                 0.75
weighted avg
               0.76
                        0.76
                                           178
Confusion matrix
[[ 29 30]
[ 12 107]]
```

2. Decision Tree

Fitting for Training data:

```
from pyspark.ml.classification import DecisionTreeClassifier
dt = DecisionTreeClassifier(featuresCol = 'features', labelCol =
'Loan_Status', maxDepth = 3)
dtModel = dt.fit(train_df)
```

Predicted the values for Test Dataset

```
+-----
          features | Loan_Status | rawPrediction | probability | prediction |
+-----
|(11,[0,1,3,5,7,8]...|
                        1| [41.0,20.0]|[0.67213114754098...|
                                                           0.0
|(11,[0,1,5,6,7,8]...|
                        0| [1.0,8.0]|[0.111111111111111...|
                                                           1.0
                        0 [41.0,20.0] [0.67213114754098...]
|(11,[0,2,3,5,7,8]...|
                                                           0.0
|(11,[0,2,3,5,7,8]...|
                        0| [41.0,20.0]|[0.67213114754098...|
                                                           0.0
|(11,[0,3,5,6,7,8]...|
                            [1.0,8.0]|[0.111111111111111...|
                                                           1.0
                         0|
|(11,[0,3,5,7,8],[...|
                        0
                             [5.0,1.0]|[0.833333333333333...|
                                                           0.01
|(11,[0,3,5,7,8,9]...|
                        1 [14.0,103.0] [0.11965811965811...]
                                                           1.01
|(11,[0,3,5,7,8,9]...|
                        1| [14.0,103.0]|[0.11965811965811...|
                                                           1.0
|(11,[0,3,5,7,8,9]...|
                        1| [14.0,103.0]|[0.11965811965811...|
                                                           1.0
|(11,[0,3,5,7,8,9]...|
                        1 [46.0,146.0] [0.239583333333333...]
                                                           1.0
only showing top 10 rows
```

ROC for test:

```
Test Area Under ROC 0.7261786070360348
```

Accuracy:

```
Model accuracy: 71.910%
```

Classification Report and Confusion matrix

```
-- Decision Tree Classifier --
Classification Report
            precision recall f1-score
                                       support
         0
               0.62 0.41
                                0.49
                                          59
         1
               0.75
                       0.87
                                0.81
                                         119
                                0.72
                                         178
   accuracy
            0.68 0.64
                                0.65
  macro avg
                                         178
weighted avg 0.70 0.72
                                0.70
                                         178
Confusion matrix
[[ 24 35]
[ 15 104]]
```

3. Random Forest

Fitting for Training data:

```
from pyspark.ml.classification import RandomForestClassifier

rf = RandomForestClassifier(featuresCol = 'features', labelCol =
'Loan_Status')

rfModel = rf.fit(train_df)
```

Predicted the values for Test Dataset

```
features | Loan_Status |
                                                               probability prediction
                                        rawPrediction
                                1|[12.7302741335011...|[0.63651370667505...|
|(11,[0,1,3,5,7,8]...|
                                                                                  0.0
                                0|[6.02239283042659...|[0.30111964152132...|
|(11,[0,1,5,6,7,8]...|
                                                                                  1.0
|(11,[0,2,3,5,7,8]...|
                                0|[11.3729342741531...|[0.56864671370765...|
                                                                                  0.0
|(11,[0,2,3,5,7,8]...|
                                0|[12.9164826088475...|[0.64582413044237...|
                                                                                  0.0
                                0|[3.80291039898244...|[0.19014551994912...|
|(11,[0,3,5,6,7,8]...|
                                                                                  1.0
                                0|[12.8079764950782...|[0.64039882475391...|
|(11,[0,3,5,7,8],[...|
                                                                                  0.0
                                1|[4.39610923144848...|[0.21980546157242...|
|(11,[0,3,5,7,8,9]...|
                                                                                  1.0
                                1|[5.30520014053938...|[0.26526000702696...|
|(11,[0,3,5,7,8,9]...|
                                                                                  1.0
|(11,[0,3,5,7,8,9]...|
                                1|[5.22138704240469...|[0.26106935212023...|
                                                                                  1.0
                                1|[4.54552170504859...|[0.22727608525242...|
|(11,[0,3,5,7,8,9]...|
                                                                                  1.0
|(11,[0,3,5,7,8,9]...|
                                1|[4.86195172533257...|[0.24309758626662...|
                                                                                  1.0
                                1|[10.3935084392824...|[0.51967542196412...|
|(11,[0,5,6,7,8],[...|
                                                                                  0.0
                                1|[3.44649190693687...|[0.17232459534684...|
|(11,[0,5,6,7,8,9]...|
                                                                                  1.0
                                0|[10.5377147884887...|[0.52688573942443...|
|(11,[0,5,6,7,8,10...|
                                                                                  0.0
                                1|[4.73659132016209...|[0.23682956600810...|
|(11,[0,5,7,8,9],[...|
                                                                                  1.0
                                0|[5.43899492868701...|[0.27194974643435...|
|(11,[0,5,7,8,9],[...|
                                                                                  1.0
                                0|[15.5722188541181...|[0.77861094270590...|
                                                                                  0.0
|(11,[1,2,5,6,7,8]...|
                                0|[13.2643945585307...|[0.66321972792653...|
|(11,[1,3,4,5,7,8]...|
                                                                                  0.0
                                1|[5.41960429551284...|[0.27098021477564...|
|(11,[1,3,5,7,8,9]...|
                                                                                  1.0
                                0|[5.83890331796547...|[0.29194516589827...|
|(11,[1,3,5,7,8,9]...|
                                                                                  1.0
only showing top 20 rows
```

ROC for test:

Test Area Under ROC 0.6913545079048571

Accuracy:

Model accuracy: 71.910%

Classification Report and Confusion matrix

```
-- Random Forest Classifier --
Classification Report
            precision recall f1-score support
                      0.39
                                0.48
         0
               0.62
                                          59
               0.74
         1
                       0.88
                                0.81
                                         119
                                0.72
                                         178
   accuracy
                       0.64
                                0.64
  macro avg
              0.68
                                         178
                                0.70
weighted avg
              0.70
                       0.72
                                         178
Confusion matrix
[[ 23 36]
[ 14 105]]
```

4. Multi-Layer Perceptron

Fitting for Training data:

```
from pyspark.ml.classification import MultilayerPerceptronClassifier
layers = [11, 256,128,64, 32,16,8,2]
trainer =
MultilayerPerceptronClassifier(labelCol="Loan_Status",maxIter=100,
layers=layers, blockSize=128, seed=1234)
mpModel = trainer.fit(train_df)
```

Predicted the values for Test Dataset

```
features | Loan_Status |
                                       rawPrediction
                                                             probability prediction
                              1|[-1.3011770712666...|[0.33499476247893...|
|(11,[0,1,3,5,7,8]...|
                                                                                1.0
                              0|[-1.7189168599172...|[0.15566469364585...|
|(11,[0,1,5,6,7,8]...|
                                                                                1.0
                              0|[-1.3011200426050...|[0.33502532346906...|
|(11,[0,2,3,5,7,8]...|
                                                                                1.0
                              0|[-1.3158850366253...|[0.32715979556008...|
|(11,[0,2,3,5,7,8]...|
                                                                                1.0
                              0|[-1.7180555842954...|[0.15595778593640...|
|(11,[0,3,5,6,7,8]...|
                                                                                1.0
                              0|[-1.3020069662667...|[0.33446246848602...|
|(11,[0,3,5,7,8],[...|
                                                                                1.0
|(11,[0,3,5,7,8,9]...|
                              1|[-1.2999105209281...|[0.33562417550800...|
                                                                                1.0
                              1|[-1.3157424471367...|[0.32723484578906...|
|(11,[0,3,5,7,8,9]...|
                                                                                1.0
                              1|[-1.3158850366190...|[0.32715979556335...|
|(11,[0,3,5,7,8,9]...|
                                                                                1.0
|(11,[0,3,5,7,8,9]...|
                              1|[-1.3031165529353...|[0.33395624120298...|
                                                                                1.0
|(11,[0,3,5,7,8,9]...|
                              1|[-1.3011200426050...|[0.33502532346906...|
                                                                                1.0
|(11,[0,5,6,7,8],[...|
                              1|[-1.6822499988029...|[0.16763812738038...|
                                                                                1.0
                              1|[-1.5832095317115...|[0.20388064579438...|
|(11,[0,5,6,7,8,9]...|
                                                                                1.0
                              0|[-1.6224969494485...|[0.18880475434397...|
|(11,[0,5,6,7,8,10...|
                                                                                1.0
|(11,[0,5,7,8,9],[...|
                              1|[-1.3158850365637...|[0.32715979559269...|
                                                                                1.0
                              0|[-1.3011200426050...|[0.33502532346906...|
|(11,[0,5,7,8,9],[...|
                                                                                1.0
                              0|[-1.6029109295886...|[0.19621125242690...|
|(11,[1,2,5,6,7,8]...|
                                                                                1.0
                              0|[-1.3011200426050...|[0.33502532346906...|
|(11,[1,3,4,5,7,8]...|
                                                                                1.0
                              1|[-1.3158850366253...|[0.32715979556006...|
|(11,[1,3,5,7,8,9]...|
                                                                                1.0
                              0|[-1.3011200426050...|[0.33502532346906...|
|(11,[1,3,5,7,8,9]...|
                                                                                1.0
only showing top 20 rows
```

ROC for test:

Test Area Under ROC 0.41561031192137865

Accuracy:

Model accuracy: 66.854%

Classification Report and Confusion matrix:

```
-- Multilayered Perceptron --
Classification Report
             precision recall f1-score support
         0
                         0.00
                                 0.00
                                           59
                0.00
         1
                0.67
                        1.00
                                 0.80
                                           119
                                 0.67
                                           178
   accuracy
                                           178
  macro avg
                       0.50
                                 0.40
               0.33
weighted avg
               0.45
                       0.67
                                0.54
                                           178
Confusion matrix
[[ 0 59]
 [ 0 119]]
```