Tutorial 4 - STAT 485/685

Trevor Thomson

Department of Statistics & Actuarial Science Simon Fraser University, BC, Canada

October 5, 2020

Today's Plan

- Recap of Tutorial 3
 - Trends
 - Residual Analysis
- ② Examples
 - Example 1: Questions 3.5 & 3.11
 - Example 2: Questions 3.6 & 3.12
- Random Walk Example in R

Trends

- $\{Y_t: t \in \mathcal{I}\}$ is a time series
 - ...a realization of a stochastic process, t is time.
- Express each term as

$$Y_t = \mu_t + X_t,$$

where
$$E(Y_t) = \mu_t \Rightarrow E(X_t) = 0$$
.

- Goal: Model and estimate μ_t .
 - $\mu_t = \mu \Rightarrow$ constant mean model
 - $\mu_t = \beta_0 + \beta_1 t \Rightarrow$ linear trend model
 - $\mu_t = \mu_{t+k}$ for some $k \Rightarrow$ seasonal mean model
 - $\mu_t = \beta_0 + \beta_1 \cos(2\pi f t) + \beta_2 \sin(2\pi f t) \Rightarrow$ cosine trend model
- lacktriangle \Rightarrow Estimate parameters in μ_t by minimizing the *least squares* objective function.

Trends

For the time series $\{Y_t : t \in \mathcal{I}\}$:

• ...textbook specifies $\mathcal{I} = \{1, 2, \dots, n\}$.

For the larain dataset:

• Let Y_{t-1877} denote the value of precipitation (in inches) in Los Angeles in year t.

We can allow for $\mathcal{I} = \{1, 2, \dots, 115\}$ (i.e. n = 115).

For the wages and tempdub datasets:

- $I = \{1, 2, \cdots, n\}$?
 - ⇒ depends on the time scale we want!
 - If the time scale is **months**, $\mathcal{I} = \{1, 2, \dots, n\}$ is okay!
 - If the time scale is **years**, $\mathcal{I} = \{1, 2, \cdots, n\}$ doesn't make sense if we have monthly observations!

Problem: What if we want to model in this years?

You saw this issue in Question 2 of Assignment 2!

See Week 4 - Video 11 on specifying indicator variables as regressors.

Residual Analysis

- With $Y_t = \mu_t + X_t$,
 - Specify a model for μ_t .
 - Estimate the parameters
 - Obtain $\hat{\mu}_t$
 - Now what?
- Estimate the "error term" X_t with

$$\hat{X}_t = Y_t - \hat{\mu}_t.$$

- **Basic idea**: If we specify a "good" model for $\mu_t \Rightarrow X_t \approx 0$.
 - If we properly accounted for the autocorrelation structure present within $\{Y_t: t \in \mathcal{I}\}$, then $\{X_t: t \in \mathcal{I}\}$ should "behave" like white noise.
 - Since we don't know $\{X_t: t \in \mathcal{I}\} \Rightarrow$ we use $\{\hat{X}_t: t \in \mathcal{I}\}$ instead.

Residual Analysis

- Recall, $\{X_t : t \in \mathcal{I}\}$ is a white noise process if
 - X_t are iid random variables.
 - $E(X_t) = 0$.
 - $Var(X_t) = \sigma_e^2$.

There are a few general checks to see if $\{X_t: t\in \mathcal{I}\}$ "behaves" like white noise, and other general goodness-of-fit procedures we can conduct:

• Estimate σ_e

$$\hat{\sigma}_e = s = \sqrt{\frac{1}{n-p} \sum_{t=1}^n (Y_t - \hat{\mu}_t)^2},$$

where p is the number of parameters.

Residual Analysis

• Compute \mathbb{R}^2 - Coefficient of Determination

$$R^{2} = 1 - \frac{\sum_{t=1}^{n} (Y_{t} - \hat{\mu}_{t})^{2}}{\sum_{t=1}^{n} (Y_{t} - \bar{Y})^{2}}.$$

Here, R^2 is the proportion of the variation in Y_t that the variables in $\hat{\mu}_t$ can explain.

- Generally, $R^2 \approx 1$ means that that the $\hat{\mu}_t$ fits the data well.
- lacktriangle Compute The Adjusted R^2 Adjusted Coefficient of Determination

$$\bar{R}^2 = 1 - (1 - R^2) \frac{n - 1}{n - p^* - 1},$$

where p^* is the number of covariates in the model (excluding the intercept).

- ullet R^2 increases if we keep adding variables to the model.
- \bar{R}^2 at least accounts for the number of variables included in the model.

October 5, 2020

Residual Analysis

Plot The Residuals Over Time

If $\{X_t : t \in \mathcal{I}\}$ "behaves" like white noise, we should see a random scatter around 0.

Histogram of Residuals

Empirically plot the distribution of $\{X_t : t \in \mathcal{I}\}$, to see if it follows the normal distribution.

Normal Q-Q Plot

Another empirical check to see if $\{X_t : t \in \mathcal{I}\}$ is normally distributed.

Perform The Runs Test:

 $H_0:$ Elements of $\{X_t:t\in\mathcal{I}\}$ are mutually independent

 $H_a: \mathsf{Not}\ H_0.$

If we fail to reject H_0 , X_t are independent random variables.

Residual Analysis

Compute the Sample Autocorelation Function (ACF)

$$r_k = \widehat{Corr}(Y_t, Y_{t-k}) = \frac{\sum\limits_{t=k+1}^{n} (Y_t - \bar{Y})(Y_{t-k} - \bar{Y})}{\sum\limits_{t=1}^{n} (Y_t - \bar{Y})^2}.$$

This is a very useful quantity, we will see this again later in the course!

We can perform the following hypothesis test for each k with $\rho_k = Corr(Y_t, Y_{t-k})$:

$$H_0: \rho_k = 0$$

 $H_a: \rho_k \neq 0$

If we fail to reject H_0 for each k, Y_t are independent random variables.

- \Rightarrow Useful for both $\{Y_t: t \in \mathcal{I}\}$ and $\{X_t: t \in \mathcal{I}\}$.
 - acf() in R plots r_k vs. k (a *correlogram*) and 95% confidence intervals under H_0 .

Examples

 See the R file Tutorial3.R where solutions are provided for Questions 3.5, 3.6, 3.11, and 3.12.

Recall the random walk from Tutorial 1:

Let $Y_t = Y_{t-1} + e_t$, where $Y_0 = 0$, where $\{e_t : t \in \mathbb{N}\}$ is a white noise process.

$$Y_1 = e_1$$

$$Y_2 = Y_1 + e_2 = e_1 + e_2$$

$$Y_3 = Y_2 + e_3 = e_1 + e_2 + e_3$$

$$\vdots$$

$$Y_t = \sum_{u=1}^t e_u.$$

Recall the random walk from Tutorial 1:

Let $Y_t = Y_{t-1} + e_t$, where $Y_0 = 0$, where $\{e_t : t \in \mathbb{N}\}$ is a white noise process.

$$Y_1 = e_1$$

$$Y_2 = Y_1 + e_2 = e_1 + e_2$$

$$Y_3 = Y_2 + e_3 = e_1 + e_2 + e_3$$

$$\vdots$$

$$Y_t = \sum_{u=1}^t e_u.$$

Recall the

- mean function: $\mu_t = E(Y_t)$
- autocovariance function: $\gamma_{t,t-k} = Cov(Y_t, Y_{t-k})$
- autorcorrelation function: $\rho_{t,t-k} = Corr(Y_t, Y_{t-k})$

For k > 0:

 μ_t :

$$\mu_t = E(Y_t) = E\left(\sum_{u=1}^t e_u\right) = \sum_{u=1}^t E(e_u) = \sum_{u=1}^t 0 = 0$$

 $\gamma_{t,t-k}$:

$$\gamma_{t,t} = Var(Y_t) = Var\left(\sum_{u=1}^t e_u\right) = \sum_{u=1}^t Var(e_u) = \sum_{u=1}^t \sigma_e^2 = t\sigma_e^2$$

$$\gamma_{t,t-k} = Cov(Y_t, Y_{t-k}) = Cov\left(\sum_{v=1}^t e_v, \sum_{v=1}^{t-k} e_v\right) = (t-k)\sigma_e^2$$

 $\rho_{t,s}$:

$$\rho_{t,t-k} = \frac{\gamma_{t,t-k}}{\sqrt{\gamma_{t,t}} \times \sqrt{\gamma_{t-k,t-k}}} = \frac{(t-k)\sigma_e^2}{\sqrt{t\sigma_e^2} \times \sqrt{(t-k)\sigma_e^2}} = \sqrt{\frac{t-k}{t}}.$$

SFU

With the random walk, consider the following two questions:

• Question: Suppose we propose the following regression model

$$Y_t = \mu_t + e_t = \beta_0 + \beta_1 t + e_t$$

$$\Rightarrow E(Y_t) = \beta_0 + \beta_1 t$$
. But we know that $E(Y_t) = 0$.

$$\Rightarrow \beta_0 = \beta_1 = 0.$$

If we use lm() in R, can we use

- (1) the reported estimates $\hat{\beta}_0$ and $\hat{\beta}_1$?
- (2) the reported standard errors of $\hat{\beta}_0$ and $\hat{\beta}_1$?
- ⇒ Let's conduct a simulation study in R to answer (1) and (2)!
 - See Tutorial4.R

Office hour Tomorrow:

Tuesday, October 6, 7:00-8:00 PM (PT)

See Canvas for the Zoom link

Good luck on your midterm!

