$\tau_{1}^{#2} + \alpha$	$\tau_{1-}^{#1} + \alpha$	$\sigma_{1}^{#2} + \alpha$	$\sigma_{1^{-}}^{\#1} +^{\alpha}$	$ au_{1+}^{\#1} + ^{lphaeta}$	$\sigma_{1+}^{\#2} \dagger^{\alpha\beta}$	$\sigma_{1+}^{*1} \dagger^{lphaeta}$	
0	0	0	0	$\frac{\sqrt{2} k}{t_1 + k^2 t_1}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	0	$\sigma_{1^{+}lphaeta}^{\#1}$
0	0	0	0	$\frac{i(2k^3(2r_3+r_5)\cdot kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^2(2r_3+r_5)+t_1}{(1+k^2)^2t_1^2}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\sigma_{1^{+}lphaeta}^{\#2}$
0	0	0	0	$\frac{-2k^4(2r_3+r_5)+k^2t_1}{(1+k^2)^2t_1^2}$	$\frac{-2ik^3(2r_3+r_5)+ikt_1}{(1+k^2)^2t_1^2}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$ au_{1}^{\#1}{}_{lphaeta}$
$\frac{i}{k(1+2k^2)(-r_1+2r_3+r_5)}$	0	$\frac{1}{\sqrt{2} (k^2 + 2k^4) (r_1 - 2r_3 - r_5)}$	$\frac{1}{k^2(-r_1+2r_3+r_5)}$	0	0	0	$\sigma_{1^-\alpha}^{*1}$
$-\frac{i(6k^2(r_1-2r_3-r_5)-t_1)}{\sqrt{2}k(1+2k^2)^2(r_1-2r_3-r_5)t_1}$	0	$\frac{1}{\frac{-r_1+2r_3+r_5}{2(k+2k^3)^2}} + \frac{6k^2}{t_1}$	$\frac{1}{\sqrt{2} (k^2 + 2k^4) (r_1 - 2r_3 - r_5)}$	0	0	0	$\sigma_{1^-lpha}^{#2}$
0	0	0	0	0	0	0	$ au_{1^{-}}^{\#1}{}_{lpha}$
$\frac{1}{\frac{-r_1+2r_3+r_5}{(1+2k^2)^2}} + \frac{6k^2}{t_1}$	0	$\frac{i(6k^2(r_1-2r_3-r_5)-t_1)}{\sqrt{2}k(1+2k^2)^2(r_1-2r_3-r_5)t_1}$	$\frac{i}{k(1+2k^2)(r_1-2r_3-r_5)}$	0	0	0	$ au_{1^-}^{\#2}lpha$

 $-\frac{1}{3}t_1 \omega_i^{\alpha_i} \omega_{\kappa\alpha}^{\kappa} - t_1 \omega_i^{\kappa\lambda} \omega_{\kappa\lambda}^{\prime} + 2r_1 \partial_i \omega_{\kappa\lambda}^{\kappa\lambda} \partial^i \omega_{\lambda\alpha}^{\alpha} - 2r_3 \partial_i \omega_{\kappa\lambda}^{\kappa\lambda} \partial^i \omega_{\lambda\alpha}^{\alpha}$ $r_5 \partial_i \omega^{\kappa \lambda}_{\kappa} \partial^i \omega_{\lambda \alpha}^{\alpha} - \frac{2}{3} r_1 \partial^{\beta} \omega^{\theta \alpha}_{\kappa} \partial_{\theta} \omega_{\alpha \beta}^{\kappa} - \frac{2}{3} r_1 \partial_{\theta} \omega_{\alpha \beta}^{\kappa} \partial_{\kappa} \omega^{\alpha \beta \theta} +$ $\frac{2}{3} r_1 \partial_{\theta} \omega_{\alpha\beta}^{\quad \kappa} \partial_{\kappa} \omega^{\theta\alpha\beta} - 2 r_1 \partial_{\alpha} \omega_{\lambda}^{\quad \alpha}_{\quad \theta} \partial_{\kappa} \omega^{\theta\kappa\lambda} + 2 r_3 \partial_{\alpha} \omega_{\lambda}^{\quad \alpha}_{\quad \theta} \partial_{\kappa} \omega^{\theta\kappa\lambda}$ $r_5 \partial_{\alpha} \omega_{\lambda}^{\ \alpha}_{\ \theta} \partial_{\kappa} \omega^{\theta \kappa \lambda} + 2 r_1 \partial_{\theta} \omega_{\lambda}^{\ \alpha}_{\ \alpha} \partial_{\kappa} \omega^{\theta \kappa \lambda} - 2 r_3 \partial_{\theta} \omega_{\lambda}^{\ \alpha}_{\ \alpha} \partial_{\kappa} \omega^{\theta \kappa \lambda} +$ $r_5 \, \partial_\theta \omega_{\lambda \alpha}^{\alpha} \partial_\kappa \omega^{\theta \kappa \lambda} + 2 \, r_1 \, \partial_\alpha \omega_{\lambda \theta}^{\alpha} \partial_\kappa \omega^{\kappa \lambda \theta} - 2 \, r_3 \, \partial_\alpha \omega_{\lambda \theta}^{\alpha} \partial_\kappa \omega^{\kappa \lambda \theta}$ $r_5 \partial_{\alpha} \omega_{\lambda}^{\ \alpha}_{\ \theta} \partial_{\kappa} \omega^{\kappa \lambda \theta} - 4 r_1 \partial_{\theta} \omega_{\lambda}^{\ \alpha}_{\ \alpha} \partial_{\kappa} \omega^{\kappa \lambda \theta} + 4 r_3 \partial_{\theta} \omega_{\lambda}^{\ \alpha}_{\ \alpha} \partial_{\kappa} \omega^{\kappa \lambda \theta} +$ $2r_5\partial_{\theta}\omega_{\lambda}^{\alpha}\partial_{\kappa}\omega^{\kappa\lambda\theta} - \frac{1}{2}t_1\partial^{\alpha}f_{\theta\kappa}\partial^{\kappa}f_{\alpha}^{\theta} - \frac{1}{2}t_1\partial^{\alpha}f_{\kappa\theta}\partial^{\kappa}f_{\alpha}^{\theta} \frac{1}{2}t_1\partial^{\alpha}f^{\lambda}_{\kappa}\partial^{\kappa}f_{\alpha\lambda} + \frac{1}{3}t_1\omega_{\kappa\alpha}^{\alpha}\partial^{\kappa}f'_{\mu} + \frac{1}{3}t_1\omega_{\kappa\lambda}^{\lambda}\partial^{\kappa}f'_{\mu} + \frac{2}{3}t_1\partial^{\alpha}f_{\kappa\alpha}\partial^{\kappa}f'_{\mu} \frac{1}{3} t_1 \partial_{\kappa} f^{\lambda}_{\lambda} \partial^{\kappa} f^{\prime}_{\lambda} + 2 t_1 \omega_{\kappa\theta} \partial^{\kappa} f^{\prime\theta} - \frac{1}{3} t_1 \omega_{\alpha}^{\alpha} \partial^{\kappa} f^{\prime}_{\kappa} - \frac{1}{3} t_1 \omega_{\lambda}^{\lambda} \partial^{\kappa} f^{\prime}_{\kappa} +$ $\frac{1}{2} t_1 \partial^{\alpha} f^{\lambda}_{\kappa} \partial^{\kappa} f_{\lambda \alpha} + \frac{1}{2} t_1 \partial_{\kappa} f^{\lambda}_{\theta} \partial^{\kappa} f^{\theta}_{\lambda} + \frac{1}{2} t_1 \partial_{\kappa} f^{\lambda}_{\theta} \partial^{\kappa} f^{\theta}_{\lambda} \frac{1}{3} t_1 \partial^{\alpha} f^{\lambda}_{\alpha} \partial^{\kappa} f_{\lambda \kappa} + \frac{2}{3} r_1 \partial_{\kappa} \omega^{\alpha \beta \theta} \partial^{\kappa} \omega_{\alpha \beta \theta} - \frac{2}{3} r_1 \partial_{\kappa} \omega^{\theta \alpha \beta} \partial^{\kappa} \omega_{\alpha \beta \theta} +$ $\frac{2}{3} r_1 \partial^{\beta} \omega_{I}^{\alpha \lambda} \partial_{\lambda} \omega_{\alpha \beta}^{I} + \frac{4}{3} r_1 \partial^{\beta} \omega_{I}^{\lambda \alpha} \partial_{\lambda} \omega_{\alpha \beta}^{I} - 4 r_3 \partial^{\beta} \omega_{I}^{\lambda \alpha} \partial_{\lambda} \omega_{\alpha \beta}^{I} +$ $2 r_1 \partial_{\alpha} \omega_{\lambda \theta}^{\alpha} \partial^{\lambda} \omega^{\theta \kappa}_{\kappa} - 2 r_3 \partial_{\alpha} \omega_{\lambda \theta}^{\alpha} \partial^{\lambda} \omega^{\theta \kappa}_{\kappa} + r_5 \partial_{\alpha} \omega_{\lambda \theta}^{\alpha} \partial^{\lambda} \omega^{\theta \kappa}_{\kappa} 2r_1 \partial_{\theta} \omega_{\lambda \alpha}^{\alpha} \partial^{\lambda} \omega^{\theta \kappa}_{\kappa} + 2r_3 \partial_{\theta} \omega_{\lambda \alpha}^{\alpha} \partial^{\lambda} \omega^{\theta \kappa}_{\kappa} - r_5 \partial_{\theta} \omega_{\lambda \alpha}^{\alpha} \partial^{\lambda} \omega^{\theta \kappa}_{\kappa}$

Added source term:	$\int_{0}^{\alpha \rho}$	$\tau_{\alpha\beta} + \omega^{\alpha\rho\chi}$	$\sigma_{lphaeta\chi}$

_	$\omega_{1^{+}lphaeta}^{\sharp1}$	$\omega_{1^{+}\alpha\beta}^{\#2}$	$f_{1^{+}\alpha\beta}^{\#1}$	$\omega_{1}^{\sharp 1}{}_{lpha}$	$\omega_{1}^{ extstyle 2}{}_{lpha}$	$f_{1-\alpha}^{\#1}$	$f_{1\alpha}^{\#2}$
$\omega_{1}^{\#1}\dagger^{lphaeta}$	$k^2 (2r_3 + r_5) - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
$\omega_{1}^{\#2} \dagger^{\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$f_{1}^{#1} \dagger^{\alpha\beta}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{#1}$ † lpha	0	0	0	$k^2 \left(-r_1 + 2 r_3 + r_5 \right) + \frac{t_1}{6}$	$\frac{t_1}{3\sqrt{2}}$	0	$\frac{i k t_1}{3}$
$\omega_{1}^{#2} \dagger^{\alpha}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	<u>t</u> 1 3	0	$\frac{1}{3}\bar{l}\sqrt{2}kt_1$
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	$-rac{1}{3}ar{l}kt_1$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_1$	0	$\frac{2k^2t_1}{3}$

Total #:	$\tau_{2+}^{\#1\alpha\beta} - 2ik\sigma_{2+}^{\#1\alpha\beta} == 0$	$\tau_{1+}^{\#1\alpha\beta} + ik\sigma_{1+}^{\#2\alpha\beta} == 0$	$\tau_1^{\#1\alpha} == 0$	$\tau_{1}^{\#2\alpha} + 2ik \sigma_{1}^{\#2\alpha} == 0$	$\tau_{0+}^{\#1} == 0$	$\tau_{0+}^{\#2} == 0$	SO(3) irreps	Source constraints
16	5	3	3	3	1	1	#	

$\omega_{2^{-}}^{#1} \dagger^{\alpha\beta\chi}$	$f_{2+}^{#1} \dagger^{\alpha\beta}$	$\omega_{2^{+}}^{*1} \dagger^{\alpha\beta}$	
0	$\frac{i k t_1}{\sqrt{2}}$	$\frac{t_1}{2}$	$\omega_{2+\alpha\beta}^{\#1} f_{2+\alpha\beta}^{\#1}$
0	$k^2 t_1$	$-\frac{ikt1}{\sqrt{2}}$	$f_{2}^{\#1}\alpha\beta$
$k^2 r_1 + \frac{t_1}{2}$	0	0	$\omega_{2^{-}}^{*1}{}_{lphaeta\chi}$

	∞ ₀ +	′0+	′0+	ω_0
$\omega_{0}^{\#1}$ †	$6 k^2 (-r_1 + r_3)$	0	0	0
$f_{0}^{#1}\dagger$	0	0	0	0
$f_{0}^{#2} \dagger$	0	0	0	0
$\omega_0^{\#1}$ †	0	0	0	-t ₁

 $f^{\#1}_{+} f^{\#2}_{+} \omega^{\#1}$

 $\omega^{\#1}$

Unitarity conditions $r_1 < 0 \&\& r_5 < r_1 - 2 r_3 \&\& t_1 > 0$