

CFM56 TREND INTERPRETATION PRESENTATION

OVERVIEW

- **▶** 1- Introduction
- **2-** Trend monitoring parameters
- **3-** CFM56 Engine Model Specifications
- **▶** 4- Performances evaluation
- **5-** Trends description
- 6- Trend monitoring interpretation

1. INTRODUCTION

ENGINE CONDITION MONITORING OBJECTIVES

- > Extend engine on-wing life performing optimized engine removals
- > Reduce maintenance cost
- > Prevent:
 - Major operational events
 - High cost failures
 - Unscheduled removals

ENGINE CONDITION MONITORING OBJECTIVES (con 't)

- > How to achieve them
 - ✓ Trouble shoot to identify cause of any significant shift of trend parameters
 - Concurrently with aircraft maintenance system reports
 - ✓ Forecast engine removal based on EGT margin levels and LLP
 - Avoid the removal of engine with enough remaining EGT margin

ENGINE CONDITION MONITORING OBJECTIVES (con 't)

> EGT Margin Deterioration

- ✓ Good knowledge of EGT margin deterioration rate for each engine model helps
 - To identify engines with unusual behavior
 - To estimate potential engine on-wing life (new and refurbished engines)
 - To define workscope objectives, in terms of restored EGT margin & EGT margin retention

ENGINE CONDITION MONITORING TOOL: SAGE

- ✓ Cruise, climb and takeoff performance trending
- **✓** Divergence monitoring

ENGINE CONDITION MONITORING PROCESS

- > Record data at cruise and takeoff
- ➤ Process data using SAGE (Engine Condition Monitoring program developed for GE/CFM56 applications)
 - ✓ Calculate deviation from reference for cruise data
 - ✓ Calculate Sea Level OATL and EGT Margin for takeoff data
- > Review data
 - ✓ Trend plots / tabular reports / alerts summaries
- > Recommend maintenance actions/troubleshooting

ENGINE CONDITION MONITORING PROCESS (con't)

Communicate results and perform any required inspections or maintenance

Corrective action

(if required)

- Inspections
- Engine maintenance
- Engine watch list

Record data

- Cruise & takeoff
- Std. instrumentation
- Automatic acquisition (or log-by-hand)

Acquire flight data

Analyze monitoring data

- Process with SAGE program
- Examine results (trends & levels)
 - Communicate Results
 - Flight Operations
 Maintenance

Transfer data

- Transmit to ground system (floppy disk, ACARS, etc.)
- Input data to PC
- Format input for SAGE
- software from vendor for acquisition system
 - screen input menu

Enter flight data into ECM software

| STATE | STAT

Examine ECM software reports

2. TREND MONITORING PARAMETERS

SUMMARY

- 2.1 Aircraft parameters
- 2.2 Engine parameters
- 2.3 Parameters classification
- 2.4 Data acquisition criteria

TYPICAL DATA FOR MONITORING TRENDS

- > Input record identification
 - ✓ aircraft identification, date, GMT
- > Aircraft operating condition
 - ✓ flight phase, altitude, Mach Nb., TAT
- ➤ Air-conditioning and bleed information
- > Engine performance and mechanical measurements
 - ✓ N1, N2, EGT, fuel flow
 - ✓ vibration, oil pressure and temperature, VSV position
- > Engine configuration
 - ✓ Rating, TCC timer, N1 modifier, EGT shunt

AIRCRAFT PARAMETERS

- ➤ The most important parameters related to aircraft operating condition are :
 - Flight phase
 - Altitude
 - Mach number
 - Total air temperature (TAT)
 - Bleed status
 - Anti-ice status
 - Isolation valve status

MACH NUMBER AND TOTAL AIR TEMPERATURE

➤ The Mach number, and TAT are analitycal function of the aircraft speed and the air temperature :

$$M = \frac{v}{\sqrt{g \cdot R \cdot S A T}}$$

Where:

g=Cp/Cv=1,4

R=8,3143 (J/mol.K) / Gas molar mass

SAT (static) air temperature

TAT(°K) can be expressed using the Mach number :

$$TAT = SAT \cdot \left(1 + \frac{g - 1}{2} \cdot M^2\right)$$

TOTAL AIR PRESSURE

> The total air pressure is expressed using TAT, SAT

$$Total _ Pressure = P \cdot \left(\frac{TAT}{SAT}\right)^{\frac{g}{g-1}} = P \cdot \left(1 + \frac{g-1}{2} \cdot M^2\right)^{\frac{g}{g-1}}$$

➤ The total air temperature or pressure is the value measured when the air flow is adiabatically arrested. It is always greater than the static (real) value.

BLEED AND ANTI-ICE DATA

- > Bleed data consist of all discretes and measurements which determine ECS bleed:
 - **✓** Engine bleed discretes
 - ✓ Aircraft pack discretes or Aircraft pack flows
 - **✓** Isolation valve
- > ECS bleed data required for baseline and limit line adjustments in analytical functions
 - ✓ Gas Path Parameter Deviations (cruise)
 - ✓ Sea Level OATL (takeoff)
 - **✓** Derate

BLEED AND ANTI-ICE DATA

- > Two types of anti-ice discretes:
 - ✓ Engine (or nacelle) anti-ice (1 value per engine)
 - **✓** Wing anti-ice (only 1 input value per aircraft)
- > Anti-ice adjustments used for takeoff calculations
 - ✓ Sea Level OATL / EGT Margin
 - **✓** Derate

AIR DISTRIBUTION CIRCUIT

737-600/700/800/900 MAINTENANCE MANUAL

36-10-00

ч

Page 3 Feb 05/1999

EFFECTIVITY -

ALL

D633A101-CFM

ENGINE PARAMETERS

➤ The minimum engine parameters that we use to perform engine condition monitoring are :

```
✓ Engine measurements
```

N1

N2

EGT

Fuel flow

✓ Engine configuration

Thrust rating (CFM56-3)

TCC timer (CFM56-3 & -2)

N1 modifier (CFM56-5B, 5C & -7)

EGT Shunt

TCC TIMER & N1 MODIFIER

> N1 MODIFIER

- ✓ Increases the EGT margin by reducing the thrust margin
- **✓** Reduces engine-to-engine thrust variation
- ✓ Fan speed output in the cockpit and on the DMU are modified

> TCC TIMER

- ✓ Turbine clearance control timer system modifies the HPTACC for the first T/O after engine start
- ✓ It decreases transient EGT overshoot during the first T/O

PARAMETERS CLASSIFICATION

➤ The parameters that we can entry in SAGE for each flight phase are classified in mandatory, recommended and optional.

TYPICAL CRUISE DATA

SAGE Enter Data Panel	Prio rity	CFM56-2	Prio rity	CFM56-3	Prio rity	CFM56- 5B	Prio rity	CFM56- 5A	Prio rity	CFM56- 7B	Prio rity	CFM56-5C
Aircraft Identification	М	Aircraft ID	М	Aircraft ID	М	Aircraft ID	М	Aircraft ID	М	Aircraft ID	М	Aircraft ID
Flight phase	M	takeoff/cruis e/climb	M	takeoff/cruis e/climb	M	takeoff/cruis e/climb	M	takeoff/cruis e/climb	M	takeoff/cruis e/climb	M	takeoff/cruis e/climb
Date	M	Date (Day/Month/ year/ hour)	M	Date (Day/Month/ year/ hour)	M	Date (Day/Month/ year/ hour)	M	Date (Day/Month/ year/ hour)	M	Date (Day/Month/ year/ hour)	M	Date (Day/Month/ year/ hour)
Actual Gross Weight	0	GW (Kg or lbs)	0	GW (Kg or lbs)	0	GW (Kg or lbs)	0	GW (Kg or lbs)	0	GW (Kg or lbs)	0	GW (Kg or lbs)
Altitude	М	ALT (ft)	М	ALT (ft)	М	ALT (ft)	М	ALT (ft)	M	ALT (ft)	М	ALT (ft)
TAT	М	TAT (°C)	М	TAT (°C)	М	TAT (°C)	М	TAT (°C)	М	TAT (°C)	М	TAT (°C)
Mach Number	М	MN	М	MN	М	MN	М	MN	М	MN	М	MN
ECS Pack Flow per Sec.					М	Kg or Lbs/s	М	Kg or Lbs/s			М	Kg or Lbs/s
ATS (Auto Throttle Switch)	0	ATS (0-10)	0	ATS (0-10)	0	ATS (0-10)	0	ATS (0-10)	0	ATS (0-10)	0	ATS (0-10)
Engine Bleed Valve Pos.	М	open/closed	М	open/closed	М	open/closed	М	open/closed	М	open/closed	М	open/closed
Isolation Valve Pos.	M	open/closed	М	open/closed	M	open/closed /auto	M	open/closed /auto	М	open/closed /auto	M	open/closed
ECS Pack Valve Pos.	M	closed/econ /full	M	closed/econ /auto/full	0	closed/econ /engout/high /normal		closed/econ /engout/high /normal		closed/econ /auto/full	0	closed/econ /high/normal
Hours Since Installed	R	Hours	R	Hours	R	Hours	R	Hours	R	Hours	R	Hours
Cycles Since Installed	R	Cycles	R	Cycles	R	Cycles	R	Cycles	R	Cycles	R	Cycles
FAN SPEED	М	N1 (%)	М	N1 (%)	М	N1 (%)	М	N1 (%)	М	N1 (%)	М	N1 (%)
CORE SPEED	М	N2 (%)	М	N2 (%)	М	N2 (%)	М	N2 (%)	М	N2 (%)	М	N2 (%)
EGT	М	EGT (°C)	М	EGT (°C)	М	EGT (°C)	М	EGT (°C)	М	EGT (°C)	М	EGT (°C)
Fuel Flow	М	FF (kg/h or lbs/h)	М	FF (kg/h or lbs/h)	М	FF (kg/h or lbs/h)	М	FF (kg/h or lbs/h)	М	FF (kg/h or lbs/h)	М	FF (kg/h or lbs/h)

TYPICAL CRUISE DATA

SAGE Enter Data panel	Prio rity	CFM56-2	Prio rity	CFM56-3	Prio rity	CFM56- 5B	Prio rity	CFM56- 5A	Prio rity	CFM56- 7B	Prio rity	CFM56-5C
Fan Speed (Actual)					0	% rpm			0	% rpm	0	% rpm
Variable Stator Vane pos.					0	VSV (Variable)	0	VSV (Variable)	0	VSV (Variable)	0	VSV (Variable)
Throtlle LeverAngle	0	TLA (deg)	0	TLA (deg)	0	TLA (deg)	0	TLA (deg)	0	TLA (deg)	0	TLA (deg)
Phase Angle (Front)	0	deg	0	deg	0	deg	0	deg	0	deg	0	deg
Phase Angle (Rear)	0	deg	0	deg	0	deg	0	deg	0	deg	0	deg
Nacelle Temperature	R	NT (°C)	R	NT (°C)	R	NT (°C)	R	NT (°C)	R	NT (°C)	R	NT (°C)
Oil Pressure	R	OIP (PSID)	R	OIP (PSID)	R	OIP (PSID)	R	OIP (PSID)	R	OIP (PSID)	R	OIP (PSID)
Oil Temperature	R	OIT (°C)	R	OIT (°C)	R	OIT (°C)	R	OIT (°C)	R	OIT (°C)	R	OIT (°C)
HPT Active Clearance					0	%	0	%	0	%	0	%
LPT Active Clearance					0	%	0	%	0	%	0	%
Rotor Active Clearance					0	%	0	%	0	%	0	%
Dual Annular Mod Valve					0	%			0	%		
IBSV					0	IBSV (0-9)			0	IBSV (0-9)		
Fan vib.(Fan pickup)	R	Variable	R	Variable	R	Variable	R	Variable	R	Variable	R	Variable
Core vib.(Rear pickup)	R	Variable	R	Variable	R	Variable	R	Variable	R	Variable	R	Variable
Core vib.(Fan pickup)	0	Variable	0	Variable	0	Variable	0	Variable	0	Variable	0	Variable
Fan vib.(Rear pickup)	0	Variable	0	Variable	0	Variable	0	Variable	0	Variable	0	Variable

TYPICAL TAKEOFF DATA

SAGE Enter Data Panel	Prio rity	CFM56-2	Prio rity	CFM56-3	Prio rity	CFM56- 5B	Prio rity	CFM56- 5A	Prio rity	CFM56- 7B	Prio rity	CFM56-5C
Aircraft Identification	М	Aircraft ID	М	Aircraft ID	М	Aircraft ID	М	Aircraft ID	М	Aircraft ID	М	Aircraft ID
Flight phase	M	Takeoff/crui se/climb	M	Takeoff/crui se/climb	M	Takeoff/crui se/climb	М	Takeoff/crui se/climb	M	Takeoff/crui se/climb	M	Takeoff/crui se/climb
Date	М	Date (Day/Month/ Year/Hour)	M	Date (Day/Month/ Year/Hour)	M	Date (Day/Month/ Year/Hour)	M	Date (Day/Month/ Year/Hour)	M	Date (Day/Month/ Year/Hour)	M	Date (Day/Month/ Year/Hour)
Altitude	R	ALT (ft)	R	ALT (ft)	R	ALT (ft)	R	ALT (ft)	R	ALT (ft)	R	ALT (ft)
TAT	М	TAT (°C)	М	TAT (°C)	М	TAT (°C)	М	TAT (°C)	М	TAT (°C)	М	TAT (°C)
Mach Number	R	MN	R	MN	R	MN	R	MN	R	MN	М	MN
CAS (Computed Air Speed)	0	CAS (kts)	0	CAS (kts)	0	CAS (kts)	0	CAS (kts)	0	CAS (kts)	0	CAS (kts)
SAT (Static Air Temperature)	0	SAT (°C)	0	SAT (°C)	0	SAT (°C)	0	SAT (°C)	0	SAT (°C)	0	SAT (°C)
ECS Pack Flow per Sec.					М	Kg or Lbs/s	М	Kg or Lbs/s	0	Kg or Lbs/s	М	Kg or Lbs/s
Auto Throttle Switch (ATS)	0	ATS (0-10)	0	ATS (0-10)	0	ATS (0-10)	0	ATS (0-10)	0	ATS (0-10)	0	ATS (0-10)
Actual Gross Weight	0	Kg or Lbs	0	Kg or Lbs	0	Kg or Lbs	0	Kg or Lbs	0	Kg or Lbs	0	Kg or Lbs
Engine Bleed Valve Pos.	M	open/closed	M	open/closed	M	open/closed	М	open/closed	M	open/closed	М	open/closed
ECS Pack Valve Pos.	M	closed/econ /full	M	closed/econ /auto/full	0	closed/econ /engout/high /normal		closed/econ /full	M	closed/econ /auto/full	0	closed/econ /high/normal
Nacelle anti-ice	R	open/closed	R	open/closed	R	open/closed	R	open/closed	R	open/closed	R	open/closed
Wing anti-ice	R	open/closed	R	open/closed	R	open/closed	R	open/closed	R	open/closed	R	open/closed
Isolation Valve Pos.	М	open/closed	М	open/closed	M	open/closed /auto	М	open/closed /auto	M	open/closed /auto	M	open/closed

TYPICAL TAKEOFF DATA

SAGE Enter Data Panel	Prio rity	CFM56-2	Prio rity	CFM56-3	Prio rity	CFM56- 5B	Prio rity	CFM56- 5A	Prio rity	CFM56- 7B	Prio rity	CFM56-5C
Fan Speed (Indicated)	М	N1 (%)	М	N1 (%)	М	N1 (%)	М	N1 (%)	М	N1 (%)	М	N1 (%)
Fan Speed (Actual)					0	N1 (%)			0	N1 (%)		
Core Speed	М	N2 (%)	М	N2 (%)	М	N2 (%)	М	N2 (%)	М	N2 (%)	М	N2 (%)
Exhaust Gas Temp	M	EGT (°C)	М	EGT (°C)	М	EGT (°C)	М	EGT (°C)	М	EGT (°C)	М	EGT (°C)
Hours Since Installed	R	Hours	R	Hours	R	Hours	R	Hours	R	Hours	R	Hours
Cycles Since Installed	R	Cycles	R	Cycles	R	Cycles	R	Cycles	R	Cycles	R	Cycles
Fan Vib (Fan Pickup)	0	(Mils-Da)	0	(Mils-Da)	0	Variable	0	(Mils-Da)	0	(Mils-Da)	0	(Mils-Da)
Core Vib (Rear Pickup)	0	(Mils-Da)	0	(Mils-Da)	0	Variable	0	(Mils-Da)	0	(Mils-Da)	0	(Mils-Da)
Core Vib (Fan Pickup)	0	(Mils-Da)	0	(Mils-Da)	0	Variable	0	(Mils-Da)	0	(Mils-Da)	0	(Mils-Da)
Fan Vib (Rear Pickup)	0	(Mils-Da)	0	(Mils-Da)	0	Variable	0	(Mils-Da)	0	(Mils-Da)	0	(Mils-Da)
Phase Angle (Front)	0	deg	0	deg	0	deg	0	deg	0	deg	0	deg
Phase Angle (Rear)	0	deg	0	deg	0	deg	0	deg	0	deg	0	deg
Dual Annular Mod Valve					0	%			0	%		

TYPICAL CLIMB DATA

SAGE Enter Data Panel	Prio rity	CFM56- 3/B737
Aircraft Identification	М	Aircraft ID
Flight phase	М	takeoff/cruis e/climb
Date	М	Date (Day/Month/ year/ hour)
Actual Gross Weight	0	GW (Kg)
Altitude	М	ALT (ft)
TAT	М	TAT (°C)
Mach Number	М	MN
Engine Bleed Valve Pos.	М	open/closed
Isolation Valve Pos.	М	open/closed
ECS Pack Valve Pos.	М	closed/econ /full
Nacelle anti-ice	М	open/closed
Wing anti-ice	М	open/closed

SAGE Enter Data Panel	Prio rity	CFM56- 3/B737
Fan Speed (Indicated)	М	N1 (%)
Core Speed	М	N2 (%)
Exhaust Gas Temp	М	EGT (°C)
Fuel Flow	0	FF (kg/h or lbs/h)
Phase Angle (Front)	0	deg
Phase Angle (Rear)	0	deg
Fan vib.(Fan pickup)	0	Variable
Core vib.(Rear pickup)	0	Variable
Core vib.(Fan pickup)	0	Variable
Fan vib.(Rear pickup)	0	Variable

PARAMETERS ACQUISITION CRITERIA

- > Disciplined Data Acquisition Is the Key
 - **✓** Stabilized flight condition
 - ✓ Stabilized engine condition (auto-throttle "off", if possible)
 - **✓** Data recording accuracy
 - **✓** Instrumentation accuracy
- > Any action which reduces scatter in the data improves the ability to detect trends or shifts

CRUISE STABILITY CRITERIA

> Recommendations Cruise

- ✓ For hand recorded data
 - Stabilize in cruise for minimum of 5 minutes
 - Establish stable aircraft and engine operation (auto-throttle "off" preferred)
 - Record data
 - If the following conditions remain valid for 12 seconds:

Altitude > 20,000 feet

Mach number > 0.6 and < 0.9

DMach number < + 0.015

DTAT $<+1^{\circ}$ C

D N1 < 0.4 %

DAltitude < + 100 feet

DN2 < + 0.8 %

- Engine bleed stable
- Cowl and wing anti-ice "off"

TAKEOFF DATA ACQUISITION CRITERIA

- ➤ Avoid using data from the "cold" engine takeoffs for CFM56-3/-7B/-5A/-5B (lower EGTHDM)
 - ✓ First takeoff of the day or after 4 to 6 hours shutdown
- ➤ The takeoff data should be recorded during the specific condition at which peak EGT levels typically occur (which differs among the various aircraft types)

ENGINE TYPE	TYPICAL MEASUREMENT CONDITIONS
CFM56-2	50 seconds after weight off of wheels or 600 feet above runway
CFM56-3	9 seconds after rotation, or about 300 feet altitude
CFM56-5A	Maximum EGT ocurring between 40-60 seconds after 80 knots
CFM56-5B	Maximum EGT ocurring between 40-60 seconds after 80 knots
CFM56-5C	Maximum EGT occuring between 30-80 seconds after 80 knots
CFM56-7	Maximum EGT ocurring within 80 seconds after 100 knots

ANNEX

CRUISE STABILITY CRITERIA

Recommendations Cruise

✓ For automatic data adquisition

Parameter	Unit	CFM56-3/-7B	CFM56-5A/5B	<u>CFM56-5C</u>
IVV	ft/min	300	300	100
FPAC	G	0.03	0.03	0.012
ROLL	Deg	4	4	8.0
TAT	°C	2	2	0.5
N2	%	0.9	0.9	8.0
EGT	$^{\circ}\mathrm{C}$	18	18	19
VACC	G	0.1	0.1	0.02
Mach	-	0.01	0.01	0.006
N1	%	1.6	1.6	1.6
FF	Kg/h	100	100	90
PT2	Pšia	0.1	0.1	0.04

> Stable frame parameter values must be within the variations during a period of 100 seconds

3.- CFM56 ENGINE TYPE SPECIFICATIONS

SUMMARY

- **3.1 Corner Point Temperature**
- 3.2 N1 modifier, EGT Shunt, TCC Timer
- **3.3 Specifications Summary**
- 3.4 Engine deterioration

CORNER POINT TEMPERATURE

- ➤ The engine thrust setting is defined by the power management schedule. The power management schedule is designed to provide, for a given airport altitude, constant takeoff thrust for ambient temperatures up to the corner point temperature for that altitude.
- ➤ For ambience temperatures above the corner point, thrust is reduced in order to maintain approximately constant or decreasing EGT.

CORNER POINT TEMPERATURE

N1 MODIFIER AND PHYSICAL N1

- ➤ For some FADEC-controlled engines the physical fan speed is modified when displayed in cockpit
 - ✓ N1 Modifier allows for more consistent indicated N1-to-thrust relationships among different engines of same family
 - ✓ Discrete levels of fan speed modification: 0 to 7
 - ✓ For these engines there are 3 possible parameters related to fan speed (used to calculate Sea level OATL/EGT Margin and Gas Path Parameter Deviations)
 - Indicated fan speed
 - N1 modifier level
 - Physical (or unmodified) fan speed (Calculated by SAGE)

N1 MODIFIER LEVEL

- > The N1 modifier level is selected based on test cell results
 - ✓ Test performed with a 0 modifier level. Then based on the demonstrated thrust margin at takeoff power setting, a modifier level is selected

CFM56-5C FADEC N1 Modifier Levels

Thrust Marg	in	Modifier
Equal to or Greater Than	But Less Than	Level
0%	1.399%	0
1.4%	1.799%	1
1.8%	2.199%	2
2.2%	2.599%	3
2.6%	2.999%	4
3.0%	3.599%	5
3.6%	4.199%	6
4.2%		7

N1 MODIFIER LEVEL

CFM56-5B Fan Speed Modifiers (5BH and 5DH Software Versions)

HPTCC VALVE TIMER

> TCC Timer

- ✓ TCC (Turbine Clearance Control) timer adjustment made for CFM56-2A, -3C1 & -3B2
- ✓ Adjustment to Sea Level OATL and EGT Margin made when
 - TCC timer is "ON"
 - Core speed less than TCC timer trigger point
- **✓** Adjustment requires 2 parameters
 - TCC timer switch value (maintenance data)
 - Core speed (takeoff data)

EGT SHUNT

- ➤ For some engine models the EGT measurement is adjusted for cockpit display
 - ✓ The EGT Shunt modifies the EGT displayed in the cockpit
 - ✓ It allows a common display scale for different engine/hardware combinations on the same aircraft
- ➤ It is due to the different hardware configurations in some engine types (CFM56-5C, 5A, 5B) that originate different EGT redlines
 - ✓ Baseline hardware CFM56-5C 950°C
 - ✓ 1st modified hardware CFM56-5C/F 965°C
 - ✓ 2nd modified hardware CFM56-5C/G 975°C
- ➤ For CFMI engine, the hardware is described in the engine type, and does not need to be entered into SAGE

ENGINE TYPE SPECIFICATIONS

Engine Models	Thrust (lbs)	Sea Level Corner Point	Hardware EGT	Shunt	Bump
	, ,	OAT (°C)	Redline (°C)	factor	-
CFM56-7-B18	19,500	ISA + 15 (30°C)	950		
CFM56-7-B20	20,600	ISA + 15 (30°C)	950		
CFM56-7-B22	22,700	ISA + 15 (30°C)	950		
CFM56-7-B22B1	22,700	ISA + 21 (36°C)	950		*
CFM56-7-B24	24,200	ISA + 15 (30°C)	950		
CFM56-7-B24B1	24,200	ISA + 26 (41°C)	950		*
CFM56-7-B26	26,300	ISA + 15 (30°C)	950		
CFM56-7-B26B1	26,300	ISA + 15 (30°C)	950		
CFM56-7-B27	27,300	ISA + 15 (30°C)	950		
CFM56-7-B27B1	27,300	ISA + 15 (30°C)	950		*
CFM56-7-B27B3	27,300	ISA + 15 (30°C)	950		
CFM56-2-C1	22,000	ISA + 15 (30°C)	870/905		
CFM56-2A2	24,000	ISA + 20 (35°C)	930		
CFM56-2A3	24,000	ISA + 17 (32°C)	930		
CFM56-2B-1	22,000	ISA + 17 (32°C)	905 (cert. 2000)		
CFM56-3C-1	18,500 to 23,500	ISA + 15 (30°C)	930		
CFM56-3B-2	18,500 to 22,000	ISA + 15 (30°C)	930		
CFM56-3B1	18,500 to 20,000	ISA + 15 (30°C)	930		
CFM56-5C2	31,200	ISA + 15 (30°C)	950		
CFM56-5C2/F	31,200	ISA + 15 (30°C)	965	950/965	
CFM56-5C2/G	31,200	ISA + 15 (30°C)	975	950/975	
CFM56-5C3/F	32,500	ISA + 15 (30°C)	965	950/965	
CFM56-5C3/G	32,500	ISA + 15 (30°C)	975	950/975	
CFM56-5C4	34,000	ISA + 15 (30°C)	975	950/975	*
CFM56-5C4/P	34,000	ISA + 15 (30°C)	975	950/975	

ENGINE TYPE SPECIFICATIONS (cont'd)

Engine Models	Thrust (lbs) (M=0)	Sea Level Corner Point OAT (°C)	Hardware EGT Redline	Shunt factor	Bump
			(°C)		
CFM56-5-A1	25,000	ISA + 15 (30°C)	890		
CFM56-5-A1/F	25,000	ISA + 15 (30°C)	915	890/915	
CFM56-5A3	26,500	ISA + 15 (30°C)	915	890/915	*
CFM56-5A4	22,000	ISA + 30 (45°C)	890		*
CFM56-5A4/F	22,000	ISA + 30 (45°C)	915	890/915	*
CFM56-5A5	23,500	ISA + 22 (37°C)	890		*
CFM56-5A5/F	23,500	ISA + 22 (37°C)	915	890/915	*
CFM56-5B9/P	23,300	ISA + 30 (45°C)	940	950/940	
CFM56-5B8/P	21,600	ISA + 30 (45°C)	940	950/940	
CFM56-5B7/P	27,000	ISA + 29 (44°C)	940	950/940	
CFM56-5B6	23,500	ISA + 30 (45°C)	950		
CFM56-5B6/P	23,500	ISA + 30 (45°C)	940	950/940	
CFM56-5B5	22,000	ISA + 30 (45°C)	950		
CFM56-5B5/P	22,000	ISA + 30 (45°C)	940	950/940	
CFM56-5B4	27,000	ISA + 29 (44°C)	950		
CFM56-5B4/P	27,000	ISA + 29 (44°C)	940	950/940	
CFM56-5B4/P1	27,000	ISA + 35 (50°C)	940	950/940	*
CFM56-5B3/P	32,000	ISA + 15 (30°C)	940	950/940	*
CFM56-5B3/P1	32,000	ISA + 15 (30°C)	940	950/940	*
CFM56-5B2	31,000	ISA + 15 (30°C)	950		
CFM56-5B2/P	31,000	ISA + 15 (30°C)	940	950/940	
CFM56-5B1	30,000	ISA + 15 (30°C)	950		
CFM56-5B1/P	30,000	ISA + 15 (30°C)	940	950/940	

ENGINE DETERIORATION

As an engine deteriorates or damage occurs, the efficiency of the engine cycle is decreased.

Lower efficiency results in more fuel and higher temperature being required to achieve the same N1 or thrust.

Basic "performance monitoring" involves monitoring the change in these parameters (at constant fan speed)

ANNEX

INTERNATIONAL STANDARD ATMOSPHERE (ISA)

																										_			_							_	_		_		_	_
- 1.000	0	1,000	2 000	3,5	300	500	e ;	700	8,000	9000	10,00/	11,000	12,000	13,000		15,000	16,000	17.000	18,000	18,000	20,000	21,000	22,000	23,000	24,000	35 000	26.000	27,000	22.5	30,000	31,000	32,000	33,000	35,000	36,000	37,000	38.000	39,000	41,000	(Japa)	ALTITUDE	
+ 17	+ 15.0	+ 13.0		+ +	+ +	n -	ω:	۱ - :	1	- 2.B	- 4.8	- 6.8	8,8	- 10.8	- 12.7	- 14.7	- 16.3	- 18.7	- 20.7	- 72.6	- 24.6	- 26.5	- 28.6	30.6	32.5	3 / 5	3 3 5 5	1 1 2 5 5 6 5 6	125	- 44.4	45.4	- 48.4	50.4	54.3	- 56.3	56.5	56.5	5 5 5 5 5 5	56.5	3	35	
1050	1013	977	942	9 5	275	943	812	787	753	724	697	670	644	619	595	572	549	527	506	485	466	446	428	10	393	375	380	344	34	301	287	274	262	238	227	217	206	97	179	품		
	14.70	14,17	13.67	3 F.	22.60	10 00	11.78	11 34	10.92	10.51	10.10	9.72	9.35	8.99	8.63	8.29	7.97	7.65	7.34	7.04	8.75	6.47	6.21	5.95	5.70	n	55.8	4.70	4.5	4.36	4.17	3.98	3 E	o S S S	3.30	3.14	2.99	2.85	2.59	P.S.L		pprocup
31.02	29.92	28.86	27.82	3 5	25.00	74 00	23.98	23 09	22 22	21.39	20.58	19,79	19.03	18.29	17.58	16.89	16.22	15.57	14.94	4.34	13.75	13.18	12.64	12.11	50	1110	10.63	100	9.50	8.89	8.49	 =	7.74	7.04	6.71	6.40	6.10	UT U	5.28	in Hg.		
1,0366	1.0000	0.9644	0 9298	0.000	0.00.00	UCES U	0.8014	0.7716	0.7428	0.7148	0.6877	0.6614	0.5350	0.6113	0,5875	0.5843	0.5420	0.5203	0.4994	0.4791	0.4595	0.4406	0,4223	0.4045	0.3876	0 3711	0.3552	2202	0.3107	0.2970	0,2837	0.2709	0.2586	0.2353	0.2243	0.2138	0.2038	0.185	0.1764	5 = P / Po	RATIO	PRESSURE
1.0295	1.0000	0,9711	0.9428	0 0 0 0	0.00	0.8817	0.8359	0.8106	0.7860	0.7620	0.7385	0.7156	0.6932	0.6713	0.6500	0.6292	0.6090	0.5892	0.5699	0.551	0.5328	0.5150	0.4976	0.4806	0.4642	0 4481	0.4325	0.4020	0.3881	0.3741	0.3605	0.3473	0.3345	0,309	0.2981	0.2844	0.2710	0.2462	0.2346	04 0 0 00		
884	661	659	656	554	500	n S	647	545	g43	640	638	636	533	ន	628	626	624	621	619	616	614	611	609	607	604	3	599	F 07	5 2	589	586	584	50.5	576	573	573	573	573	573	æ	SOUND (a)	Jo U33dS
- 36		305	010	914	200	1 1724	1.829	7 134	2.438	2.743	3,048	3,353	3,658	3,962	4,267	4,572	4.877	5.182	5,406	5,791	6,096	5,401	6,706	7,010	7,315	7 630	7,925	8 230	0,00	9,14	9,449	9,754	0.058	10,668	10,973	11,278	11,582	11.887	12,496	(cranatu)	-	

4. PERFORMANCES EVALUATION

SUMMARY

4.1.- Corrected Parameters

- **4.2.-** Takeoff Data Monitoring System
- **4.3.-** Cruise Data Monitoring System

CORRECTED PARAMETERS

Engine parameters like EGT, thrust, core speed, fuel flow depend on:

pressure (altitude), mach number, TAT, fan speed

To have a « simple » representation of the engine behaviour, the parameters are combined together to create « corrected parameters »

CORRECTED PARAMETERS

THETA FACTOR CORRECTION

$$\Theta_2 = \frac{(TAT + 273.15)}{288.15}$$

$$N_{1K} = \frac{N_1}{\Theta_2^a}$$

Where α is determined from the actual/indicated fan speed and TAT (Takeoff/Cruise calculations).It is close to 0,5.

$$EGT_{K} = \frac{\left(EGT + 273.15\right)}{\Theta_{2}^{b}}$$

Where β is determined from the actual/indicated fan speed and TAT (Takeoff/Cruise calculations). It is close to 1.

$$FNK = \frac{FN}{d_2}$$

Where $\delta_2 = PT2 / 14.696$ PT2= Total Pressure at Fan Inlet (PSIA)

CORRECTED PARAMETERS

ADDITIONAL CORRECTED PARAMETERS

Corrected air flow

$$d = \frac{D.\sqrt{T}}{P} or \frac{D.\sqrt{q}}{d}$$

Corrected fuel flow

$$WF_{K} = \frac{WF}{\boldsymbol{d}_{2} * \boldsymbol{q}_{2}^{I}} * \frac{LHV}{LHV_{ref}}$$

Where λ is determined from the actual or indicated fan speed. It is close to 0,5. LHV is the fuel Lower Heating Value.

CORRECTED PARAMETER POWER MANAGEMENT CFM56-5B

EGT MARGIN & SEA LEVEL OATL

EGTHD Margin (Exhaust Gas Temperature Hot Day Margin)

➤ The difference between the certified takeoff EGT limit and the peak EGT during a full power takeoff on sea level Corner Point day.

Sea Level OATL (Sea Level Outside Air Temperature Limit)

➤ The maximum sea level OAT at which a full power takeoff can occur without exceeding the certified takeoff EGT limit (redline EGT). If OATL is greater than corner point OAT then full power takeoff can occur at any OAT without exceeding the certified takeoff EGT limit.

EGT MARGIN & SEA LEVEL OATL

EGT MARGIN & SEA LEVEL OATL

Hot day EGT margin is calculated from measured T/O parameters applying the corrections for air conditionning, bleed status, TCC timer...., the hot temperature ratio factor and an EGT shunt scalar (if applicable):

$$EGTHotDayM \text{ arg } in = (EGTKLimit - EGTK + M \text{ arg } inAdjustments) \times \boldsymbol{q}_{hotday}$$

SLOATL can be calculated from the EGT hot day margin (approximation of another formula):

$$SeaLevelOATL = T_{cp} + \frac{EGTHDM}{1}$$

where Tcp is the corner point temperature and 1 is a coefficient depending on engine type (see annex for coefficient list)

EFFECT OF DETERIORATION

EFFECT OF DETERIORATION

The deterioration curves are average on worldwide fleet. The 2 standard deviation interval (95% of the fleet) is about +/- 15°C.

Factors influencing deterioration are:

- > environment (sand, ice)
- > derate
- > maintenance practices (water-wash, EGT probe change, ..)
- ➤ flight leg (curve in cycles)

ALTITUDE EFFECT ON EGT

- ➤ The ECM tool (SAGE) provides the projected EGT margin regardless of the Airport T/O altitude conditions. For models with altitude effect adjustments have to be handled external to the ECM tool.
- ➤ With altitude effect adjustments to the calculated S/L margin, EGT margin available for a given T/O at an altitude airport can be estimated.
- ➤ For example: CFM56-3B1

SAGE calculated S/L Hot day EGT margin for a T/O on a S/L airport = $90 \, ^{\circ}\text{C}$

For Denver T/O (Alt = 5330 ft):

- Altitude effect = 44° C
- Projected margin for a full rated T/O on a Corner point day will be $= 90^{\circ}\text{C} 44^{\circ}\text{C} = 46^{\circ}\text{C}$.

ALTITUDE EFFECT ON EGT

CFM56-5B6 - Peak EGT Relative to Sea Level Corner Point Peak EGT Figure 7

DERATE

- > SAGE uses takeoff data to compute the amount of engine "derate" (operation below rated thrust)
- > Two calculated derate values
 - Fan speed derate
 - Thrust derate
- > Compares measured fan speed to the predicted fan speed necessary for "full-rated" thrust (power management fan speed)
- > "Power-management" fan speed based on takeoff operating conditions
 - adjusted for air conditioning and anti-ice bleed
 - adjusted for any bump rating (CFM56-5 and -7 only)

DERATE CALCULATIONS

FNK: Corrected Thrust N1K: Corrected Fan Speed PM: Power Management

CRUISE DATA MONITORING SYSTEM

- > Compare performance measurements to a "baseline" (Reference engine characteristic)
- > Plot deltas from the "baseline"
- > Review plots for trends / shifts

CRUISE GAS-PATH PARAMETER DEVIATIONS

Monitor basic cockpit parameters: EGT, FF & N2

Measured values compared to expected values

- > Calculate deviation from "baseline"
 - Reference or theoretical engine characteristics for an engine model are typically:
 - Developed using data obtained during flight test
 - Consistent with information provided by aircraft manufacturer
 - Representative of average flight-test engine performance
- ➤ Baseline adjusted for operating conditions: Altitude, mach number, TAT & air conditioning bleed effects

GAS PATH PARAMETER BASELINES

CRUISE CALCULATIONS

Parameter

Fan Speed

Definition of Deviations Shown on Reports

DEGT (°C) = D EGT

GPCN25 = (D Core Speed / baseline Core Speed) X100

GWFM (%) = (D fuel flow / baseline fuel flow) X100

USER SELECTABLE FUNCTIONS

- **➢ Oil Pressure Monitoring**
- **▶** Delta VSV Calculation

- > ETOPS Margin
- > SLOATL With Cruise Update

OIL PRESSURE MONITORING

SAGE oil monitoring function compares oil pressure data to a reference oil pressure line

- ➤ Unique reference pressure curve for each engine family
- > Reference oil pressure is function of core speed

Allows for early detection of coking and other potential bearing failures

OIL PRESSURE MONITORING

DELTA VSV CALCULATION

Non-FADEC engines

➤ difference calculated between "measured" VSV (ZVSV) and a "nominal" VSV-schedule value

(The nominal VSV schedule value is obtained by evaluating the nominal VSV schedule at the corrected core speed. For this calculation, measured core speed is corrected using estimate of compressor inlet temperature based on total air temperature and fan speed.)

FADEC engines

- ➤ FADEC engines always operate on the VSV schedule, so a VSV deviation calculation is not useful.
- > "measured" VSV is output for trending purposes. If this feature is not desired, it can be turned off by the user.

DELTA VSV CALCULATION

Typical Nominal VSV Curve

Corrected Core Speed

ETOPS MARGIN

Determines whether sufficient EGT and core speed margin exist for "Extended Twin Operations" (ETOPS)

Compares EGT and core speed deviations to pre-established cruise limits

- ➤ limits represents approximately zero-margin values at maximum continuous operation (MAXCON)
- > ETOPS margin obtained by subtracting cruise EGT and core speed deviations from their respective limits

SLOATL with "Cruise Update" Method

- ➤ Initial Sea Level OATL and EGT Margin calculated using a limited number of takeoff records
- ➤ Adjustments to "initial estimate" made based on EGT deviation from cruise trends
- Takeoff and cruise data recorded during an initial time are used to establish the relationship between the takeoff margin and the cruise deviation (at least 10 cruise and takeoff data)

ANNEX

TEST CELL EGT MARGIN

EGTHDM is also calculated in test cell. The procedure is different from on-wing (ESM 72-00-00 Testing 3). In summary:

- ➤ The corrected fan speed is set to a defined value (or at least is very close)
- > The EGT is converted to hot day conditions and compared to a fixed limit
- > For CFM56-5, the EGTHDM is then adjusted to take into account the workscope (Break-in-losses)

TEST CELL EGT MARGIN

For CFM56-5 scatter exists due to

- ➤ the difference of instrumentation between test cell and on wing (Temperature, Mach, humidity, ECS bleeds, sometimes N1)
- > typical workscope deviations
- **➤** Operating conditions (warm-up time).

TEST CELL EGT MARGIN

<u>CFM56-5C4 New Engines Test Cell Vs On-Wing EGT Margin</u> (SA Zone)

1999 ON-WING PRODUCTION EGT MARGINS

	ESM EGT Limit (°C)	EGT Margin (°C)
CFM56-5B1/P	944	114
CFM56-5B2/P	946	95
CFM56-5B3/P	937	66
CFM56-5B4/P	939	111
CFM56-5B5/P	915	165
CFM56-5B6/P	919	147
CFM56-7B27	927	63
CFM56-7B26	920	83
CFM56-7B24	920	116
CFM56-7B22	919	120
CFM56-7B20	915	147
CFM56-7B18	919	142
		(
CFM56-3C1	908	47 (Avg 1990-1997)
CFM56-3B1	851 (Denver CP)	52 (Avg 1986-1995)
CFM56-3B2	887	52 (Avg 1987-1992)
CFM56-5A1	861	64
CFM56-5A3	876	80
CFM56-5A4	862	62
CFM56-5A5	855	57
051450 50 1	0.40	00
CFM56-5C4	940	63

CFM56-5A Comparision of EGT margins between ratings

> Positive sign indicates gain in EGT margin

			Delta EGT Marg	jin Sea Level Co	rner Point		
From/To	CFM56-5A1	CFM56-5A1/F CFM56-5A3		CFM56-5A4 CFM56-5A4/F		CFM56-5A5	CFM56-5A5/F
CFM56-5A1				-2		-7	
CFM56-5A1/F	-25		-9	-27	-2	-32	-7
CFM56-5A3	-16	9		-18	7	-23	2
CFM56-5A4	2					-5	
CFM56-5A4/F	-23	2	-7	-25		-30	-5
CFM56-5A5	7			5			
CFM56-5A5/F	-18	7	-2	-20	5	-25	

CFM56-5B/P Comparision of EGT margins between ratings

- > Positive sign indicates gain in EGT margin
- > Refer to SB-72-0003

			Delta EGT Marg	gin Sea Level Co	rner Point				
	CFM56-5B1/P	CFM56-5B2/P	CFM56-5B3/P	CFM56-5B4/P	CFM56-5B5/P	CFM56-5B6/P	CFM56-5B7/P	CFM56-5B8/P	CFM56-5B9/P
CFM56-5B1/P		-16	-45	-5	46	27	-5	63	30
CFM56-5B2/P	16		-29	11	62	43	11	79	46
CFM56-5B3/P	45	29		40	91	72	40	108	75
CFM56-5B4/P	5	-11	-40		51	32	0	68	35
CFM56-5B5/P	-46	-62	-91	-51		-19	-51	17	-16
CFM56-5B6/P	-27	-43	-72	-32	19		-32	36	3
CFM56-5B7/P	5	-11	-40	0	51	32		68	35
CFM56-5B8/P	-63	-79	-108	-68	-17	-36	-68		-33
CFM56-5B9/P	-30	-46	-75	-35	16	-3	-35	33	

CFM56-5B Comparision of EGT margins between ratings

> Positive sign indicates gain in EGT margin

	Delta EGT Margin Sea Level Corner Point												
	CFM56-5B1	CFM56-5B2	CFM56-5B4	CFM56-5B5	CFM56-5B6								
CFM56-5B1		-14	8	58	39								
CFM56-5B2	14		22	72	53								
CFM56-5B4	-8	-22		50	31								
CFM56-5B5	-58	-72	-50		-19								
CFM56-5B6	-39	-53	-31	19									

CFM56-7B Comparision of EGT margins between ratings

	Delta EGT Margin Sea Level Corner Point													
	CFM56-7B18	M56-7B18 CFM56-7B20 CFM56-7B22 CFM56-7B24			CFM56-7B26	CFM56-7B27								
CFM56-7B18		8	-21	-20	-51	-72								
CFM56-7B20	-8		-29	-28	-59	-80								
CFM56-7B22	21	29		1	-30	-51								
CFM56-7B24	20	28	-1		-31	-52								
CFM56-7B26	51	59	30	31		-21								
CFM56-7B27	72	80	51	52	21									

To

TAKEOFF PERFORMANCE RATING CONVERSION

CFM56-3 Comparision of EGT margins between ratings

De	elta EGT Mai	rgin Sea Leve	el Corner poir	nt
	23500	22000	20000	18500
CFM56-3C-1		+20	+64	+89
CFM56-3B-2			+44	+69
CFM56-3B1				+25

From

For CFM56-3C1, remove 17°C to the EGT margin if the timer is on-wing desactivated.

For CFM56-3C1, the test cell EGT margin takes into account the timer.

For CFM56-3B2, the test cell EGT margin does not include a possible timer effect.

CFM56-5C Comparision of EGT margins between ratings

		Delta EGT Marg	gin Sea Level Co	rner Point		
	CFM56-5C2	CFM56-5C2F	CFM56-5C2G	CFM56-5C3F	CFM56-5C3G	CFM56-5C4
CFM56-5C2						
CFM56-5C2F	-15			-15		
CFM56-5C2G	-25	-10		-25	-15	-30
CFM56-5C3F	0	15				
CFM56-5C3G	-10	5	15	-10		-15
CFM56-5C4	5	20	30	5	15	

То

From

EGT MARGIN/SEA LEVEL OATL COEFFICIENTS

ENGINE TYPE	EGTM-SLOATL COEFFICIENT
CFM56-7B27	3,5
CFM56-7B26	3,5
CFM56-7B24	3,5
CFM56-7B22	3,5
CFM56-7B20	3,5
CFM56-7B18	3,5
CFM56-5C4	3,7
CFM56-5C3	3,7
CFM56-5C2	3,7
CFM56-5B6	3,27
CFM56-5B5	3,27
CFM56-5B4	3,28
CFM56-5B3	3,43
CFM56-5B2	3,43
CFM56-5B1	3,43
CFM56-5A5	3
CFM56-5A4	2,9
CFM56-5A3	3,1
CFM56-5-A1	3,1
CFM56-3C-1	3,2
CFM56-3B-2	3,2
CFM56-3-B1	3,2
CFM56-2-C1	3,2
CFM56-2B-1	3,2
CFM56-2A	3,2

5. TREND DESCRIPTION

SUMMARY

- 5.1 Initialization
- **5.2 Smoothing**
- **5.3 Compression**
- **5.4 Report description**

INITIALIZATION

- ➤ Average value of 10 cruise or takeoff filtered records
- > Automatically calculated
- > Results stored as "original" initialization values (denoted by "A" on trend reports)
- > Re-initialization function available (denoted by "B" on trend reports)

Of Flight

Takeoff Trend Report "INITIALIZATION" POINT

Smoothed trends are not displayed, until the initialization process is complete.

INITIALIZED PARAMETERS

> Cruise parameters:

- **✓** Fan and Core Vibration
- **✓** EGT, Fuel Flow, and Core Speed Deviation
- ✓ Delta VSV
- **✓ Delta Oil Pressure**
- ✓ EGT and N2 ETOPS Margins

> Takeoff parameters:

- ✓ Sea Level OATL
- ✓ EGT Margin

RE-INITIALIZATION

- > User requested
- > Available for each flight phase and engine
- > Same process as initialization
- > Results stored as "current" initialization values (denoted by "B" on trend plots)
- > Does not affect "original" initialization values
- > Input values retained on user demand

Takeoff Trend Report "ORIGINAL" AND "CURRENT" INITIALIZATION VALUES

DATA SMOOTHING

- > Provides a "running average" of calculated parameters
 - ✓ SAGE allows two levels of smoothing: short term (detection sudden shifts) and longer term (identify gradual changes)
- > Smoothing technique is called exponential smoothing :
 - **✓** User can control outlier protection limits
 - ✓ User can control maximun and minimum raw values acceptable (same as on initialitation process)
 - ✓ User can define sensitivity of smoothing, default values are preconfigured

EXPONENTIAL SMOOTHING TECHNIQUE

 $smoothed_{new} = smoothed_{old} + a (raw_{new} - smoothed_{old})$

Decreasing α less sensitivity to raw data variation Increasing α more sensitivity to raw data variation

OUTLIER PROTECTION

SMOOTHED PARAMETERS

> Cruise parameters:

- **✓** Fan and Core Vibration
- ✓ EGT, Fuel Flow, and Core Speed Deviation
- ✓ Delta VSV
- **✓ Delta Oil Pressure**
- ✓ EGT and N2 ETOPS Margins
- ✓ Sea Level OATL & EGT Margin (from "Cruise Update")

> Takeoff parameters:

- ✓ Sea Level OATL
- **✓ EGT Margin**

COMPRESSION

- **➤** The purpose of compression:
 - **✓** Free up database space
 - ✓ Speed up processing
 - **✓** Summarize historical data
- > "Snapshots" of smoothed trends
 - **✓** One smoothed value kept per month
 - \checkmark saves alert output quantities for the month

COMPRESSION

- **➤** There are three types of compression
 - **✓** Automatic compression :
 - When the number of records exceeds the maximum value (syscon variable)
 - **✓** Demand mode compression :
 - Based on user selections
 - **✓** Engine change compression
- ➤ Delete the data from input, output, smoothed and alert tables only if the delete flag for this engine is set to 'ON' (default value)

Cruise Trend Report COMPRESSED DATA RECORDS

1 REPORT ID: CRTRND		ITION MONITORING PROGRAM ERFORMANCE MONITORING - MOS	SAGE V3.0.3 PC - Jan 99 T RECENT RECORDS	REPORT DATE: 10/18/99 PAGE: 1
AIRTYP kmno -1 B737-800 SMOOTH -20 DATE VIB.112 10299A R= 0.2 V= 10299B R= -999.0 V=	= 0.5 9.3	XX 981212 0 * **	FNRAT CONFIG CONTROL ***** .X1XN2X1 .6 34VSV67 VSV=-999.00 N2= 0.00 VSV=-999.00 N2=-999.00	SELECTOR (SCALES VARIED) X2 CRZ OIL OIL MAINT ALT SLOATL TMP PRS CODES CTR 53.5 53.5
10399C .RV 20499C .RV 30599C .RV 40299C .R V	. G . G . G	. F . F . F	* X2 X2 X2	53.7 53.2 53.0 52.9
81999 .* 81999 .RV 82099 .RV 82099 .RV 82099 .RV	G G G G G	.F .F .F .F	* * * * * *	52.0 104 48. 0 51.8 90 53. 1 51.4 98 49. 0 51.5 93 54. 1 51.4 101 48. 0
82199 .* 82199 .* 82299 .RV 82299 . *		compressed "data re - "representative" valu		51.4 101 48. 0 51.6 96 48. 0 51.5 95 51. 0 51.6 103 50. 0
82399 . * 82399 . * 82499 .RV 82499 . * 82499 .RV	. G . G . G	indicated by a "C"up to 5 records disp		51.7 95 49. 0 51.9 98 50. 0 52.2 102 52. 0 52.0 97 51. 0 52.0 99 48. 0
82499 . * 82599 .RV 82599 .VR 82699 . *	. G . G . G	. F . F .F .F	* * *	52.0 107 48. 0 51.9 94 48. 0 51.8 94 49. 0 51.7 97 50. 0
82699 . * 82799 .RV 82799 .RV 82799 .RV	. G . G . G	.F .F .F . F	* * *	51.7 101 51. 0 51.9 106 48. 0 52.0 103 47. 0 51.8 101 48. 0
82899 .RV 82899 .RV 82999 .RV 83099 .RV 83199 .RV	. G . G . G	. F . F . F .F	* * * *	51.3 96 47. 0 51.6 103 49. 0 51.4 95 51. 0 51.3 87 50. 0 51.3 98 49. 0
83199 .RV 83199 .RV	. G	. F	*	51.3 98 49.

COMPRESSED DATA RECORD

- > Compressed data denoted by "C" on trend reports
 - ✓ Up to five records displayed on trend reports
- > Tabular reports of compressed data can be selected
 - **✓** Compressed cruise records CRCOMP report
 - ✓ Compressed takeoff records TKCOMP report
 - ✓ Compressed climb records CLCOMP report

PARAMETER DIVERGENCES

- > Divergences calculated for 5 parameters:
 - ✓ EGT

- **✓** Core Speed
- ✓ Nacelle temperature
- **✓ Throttle Lever Angle**

- **✓** Fuel flow
- ➤ Divergence is difference between "measured" value and "average" value across all engine positions on aircraft
- **Example (4 engine aircraft):**

EGT Divergence (engine #1) = EGT_{eng 1}
$$-$$

$$\frac{EGT_{eng 1} + EGT_{eng 2} + EGT_{eng 3} + EGT_{eng 4}}{4}$$

REPORTS GENERATION

- ➤ There are nineteen possible standard reports:
 - ✓ 3 Takeoff Reports
 - TKSUMM « Takeoff Summary » Tabular report of input and calculated takeoff parameters
 - TKCOMP « Compressed Takeoff » Tabular report of all compressed takeoff reports
 - TKTREND « Takeoff Trend » Trend plot of takeoff performance of takeoff data only
 - ✓ 13 Cruise Reports
 - CRDATA « Cruise Data Tabular Report » Tabular report containing input values and calculated raw deviations
 - CRBASE « *Cruise Baseline* » Tabular reports containing some input values, baseline values, and calculated raw deviations
 - CRPERF « Cruise Performance » Tabular report of Performance Input Parameters
 - CRVBDG « Cruise Vibration » Tabular report of Vibration and Divergence Parameters
 - CRCALC « Cruise Calculation » Tabular report of Cruise calculated parameters raw deviations, baseline values, ETOPS margins, and calculated divergences

REPORTS GENERATION

- ✓ 13 Cruise Reports (con 't)
- CRDSCR « *Cruise Discrete* » Data Report: Tabular report of all discrete parameters, as well as both bleed and pack flows
- CRTRAW « Cruise RAW Trend » Trend report of raw performance parameters
- CRCOMP « Compressed Cruise » Tabular report of all compressed cruise reports
- CRTRND « Cruise Trend » Trend plot os smoothed and raw performance parameters
- CRETOP « Cruise ETOPS » Trend plot of Cruise ETOPS smoothed and raw parameters
- CRMECH « Cruise Mechanical » Trend plot of Cruise ETOPS smoothed and raw parameters
- CRDIVG « Cruise Divergence » Trend plot of Calculated divergence parameters
- CRSLCR « Cruise SLCR » Trend plot of Sea Level OATL Plus Cruise Update smoothed and raw parameters
- ✓ 3 Climb Reports
- CLSUMM « Climb Summary » Tabular report of input and calculated climb parameters
- CLCOMP « Compressed Climb » Tabular report of compressed climb parameters
- CLTRND « Climb Trend » Trend of Climb Performance of climb data only

REPORT HEADER

- > Each report header contains for each engine :
 - Report name
 - SAGE version
 - Report date
 - Aircraft identifier
 - Engine position
 - Aircraft type
 - Engine type
 - Engine serial number

- Installation Date
- N1 modifier
- TCC Timer Activation Switch
- Thrust rating
- Configuration
- Control
- Selector

➤ If a data range was entered it will appear in the header. If not, the header includes the sentence 'FOR MOST RECENT RECORDS'

Cruise Trend Report SUMMARY OF DATA TYPES

CRUISE DATA REPORT

AIRCRAFT	CAIRCRAFT		SERIAI			INSTA			THRUS		TCC										
ID	TYPE		NUMBER			DAT			RATIN			CONFIG		CONT	ROL	S	ELECTO	R			
ABCD	A321-100	1	779XXX			9901		0	****		*										
		2	779XXX		C 3 EE 7	9901	02	0	****	* *	*			D.7.1	u DDI		NTC.				
				FLIGHT 1 A/C ISO	DATA	4								RA	W DEV	TATIO	NS		MAV	CONT	
DATE/				PK VLV ADP		OIL	FUEL						BLEED		FF	VSV	N2		EGT	N2	
GMT	TAT ALT	мась		123 LRC 12	NT 1	PRES			'SV	NT 2	EGT	N1K	RATIO	DOP			(%)		MAR	MAR	
	-27.7 35014			0		40-55.							0.85		,	٠,	0 -0.3	/			
600-2				-		40-55.											0 -0.4				
52099-1	-24.2 34987	0.787	7 11	0	86.	30-55.	3071	55	.55	93.3	623.	92.48	0.85	-99.	-6.1	-99.9	0 -0.4	-34.1	-99.	-99.9)
1514-2	2				86.	30-55.	3038	55	.55	93.2	611.	92.48	0.85	-99.	-7.1	-99.9	0 -0.5	-45.7	-99.	-99.9	j
52199-1	-26.5 35004	0.797	7 11	0	87.	10-55.	3219	55	.55	93.5	631.	93.71	0.85	-99.	-6.5	-99.9	0 -0.2	-31.9	-99.	-99.9)
554-2	2				87.	10-55.	3194	55	.55	93.5	619.	93.71	0.85	-99.	-7.2	-99.9	0 -0.2	-44.1	-99.	-99.9)
52199-1	-23.7 35005	0.792	2 11	0	87.	50-55.	3232	55	.55	94.0	640.	93.65	0.85	-99.	-6.1	-99.9	0 -0.2	-32.9	-99.	-99.9)
1412-2	2				87.	.50-55.	3212	55	.55	94.0	628.	93.65	0.85	-99.	-6.7	7-99.9	0 -0.2	-45.1	-99.	-99.9)
52299-1	-19.2 31007	.0.780	11	0	84.	10-55.	3164	55	.55	92.5	593.	89.34	0.89				0 -0.8				
749-2	=					10-55.						89.34					0 -0.8				
	-25.7 33003	.0.782	2 11	0		80-55.											0 -0.4				
1137-2	=					.80-55.						91.16	0.89				0 -0.5				
	-24.2 33008	.0.780) 11	0		.80-55.						90.91					0 -0.4				
1048-2	=	0 500		0		.70-55.						90.80					0 -0.5				
925-2	-21.7 33010	.0.798	3 11	0		.10-55. .10-55.						90.80	0.70 0.70				0 -0.5				
	-28.5 33010	0 70	11	0		.00-55.											0 - 0.5 0 - 0.2				
1751-2		.0.765) 11	U		.00-55.						91.85	0.89				0 -0.2				
	-30.5 35003	0 800	11	0		70-55.						92.94					0 -0.3				
619-2		. 0 . 0 0 0	, 11	O		70-55.						92.94					0 -0.3				
52699-1	-22.2 28981	0.769	11	0		70-55.						86.27					0 -0.7				
1117-2	2				80.	.70-55.	2928	55	.55	90.5	537.	86.27	0.71	-99.	-10.2	-99.9	0 -0.7	-44.8	-99.	-99.9)
52799-1	-28.5 35005	0.799	11	0	86.	50-55.	3179	55	.55	93.0	620.	93.43	0.85	-99.	-6.4	-99.9	0 -0.2	-32.5	-99.	-99.9)
727-2	2				86.	40-55.	3155	55	.55	93.0	608.	93.33	0.85	-99.	-6.8	-99.9	0 -0.2	-42.8	-99.	-99.9)
52799-1	-28.7 35003	0.787	7 11	0	85.	70-55.	3053	55	.55	92.6	611.	92.62	0.85	-99.	-6.1	-99.9	0 -0.3	-31.2	-99.	-99.9)
1557-2	2				85.	70-55.	3025	55	.55	92.5	600.	92.62	0.85	-99.	-7.0	99.9	0 -0.4	-42.4	-99.	-99.9)
52899-1	-25.7 32993	.0.780	11	0	85.	40-55.	3201	55	.55	92.8	607.	91.79	0.89	-99.	-7.3	-99.9	0 -0.3	-34.8	-99.	-99.9)
2021-2						.40-55.											0 -0.3				
	-28.2 35013	.0.794	11	0		30-55.											0 -0.6				
1542-2	2				84.	.30-55.	2824	55	.55	91.8	582.	91.06	0.85	-99.	-8.4	1-99.9	0 -0.6	-44.0	-99.	-99.9)

TAKEOFF SUMMARY REPORT

1 REPORT	ID:	TKSUMM		G			ITION MO					ECEI			0.3 PC -	Jan 99	REPO	ORT DATE		/18/99 1	
AIRCRAI ID ABC		TYPE	ENG POS 1	SERI NUME 702X	BER	ENGI TYP: CF6-			NSTA DAT 9711	E M	IOD 1	THRU RAT:	ING	TC TN	MR CONFIG	; CC	NTROL	SELE	ECTOR		
INITIAI	LIZAT	ION VALUES	DA			RRENT GTMAR 6.90	OAT	ГL . 00	N	 2MAR 99.00 ENG	DA	TE 499	TIME 503 ANTI	E E	IGINAL VA EGTMAR 6.90	OATL 32.00	N2MAF -999.(ર			
									-ICE		PKS V				BLEED	UNMOD	RAW	RAW		THRUST	N1
DATE 42899		ALTITUDE 1360.0		TAT	N2 103.7	EGT	N1		USED 0		123 1			12	RATIO	N1 -5555.00		EGTMAR	MAR -999.0	DR 12.2	DR 6.6
42899		1360.C 820.C		16.6 15.3	103.7	860. 831.	103.40	0	0	111 111	555 (555 (000			-5555.00	29.14 31.46		-999.0 -999.0	16.1	6.6 8.2
42899		1680.0		9.6	102.8	852.	101.20	0	0	111	555		000			-5555.00	29.78		-999.0	8.1	4.7
42999		1140.0		15.6	103.4	832.	101.10	0	0	111	555 (000			-5555.00	31.05		-999.0	16.7	8.6
43099		1710.0		5.2	102.8	837.	103.80	0	0	111	555 (111			-5555.00	32.17		-999.0	5.7	3.1
43099		790.0		12.4	101.9	813.	100.00	0	0	111	555		000			-5555.00	32.15		-999.0	17.7	8.9
50199		1700.0		8.9	104.3	877.	107.40	0	0	111	555		000			-5555.00	29.09		-999.0	2.5	1.6
50199		1110.0		14.3	103.9	855.	103.90	0	0	111	555		000			-5555.00	30.49		-999.0	10.0	5.5
50299		1370.0		1.8	102.4	842.	104.60	0	0	111	555		000			-5555.00	28.63		-999.0	4.7	2.9
50399		1300.0		31.3	108.0	935.	109.80	0	Ō	111	555		000			-5555.00	30.99		-999.0	4.6	2.8
50499	1453	1130.0	315	9.1	104.4	870.	107.10	0	0	111	555 (00	000		0.60	-5555.00	30.64	2.2-	-999.0	2.4	1.5
50599		1860.0		23.0	103.5	838.	100.80	0	0	111	555		000			-5555.00	32.34		-999.0	20.7	10.6
50599	1451	1070.0		8.9	104.4	871.	107.40	0	0	111	555		000		0.60	-5555.00	30.94	3.3-	-999.0	1.8	1.1
50699	204	1350.0	302	19.5	105.7	893.	107.20	0	0	111	555	00	000		0.60	-5555.00	30.21	0.8-	-999.0	5.6	3.3
50699	2016	1230.0	312	10.9	103.4	846.	103.80	0	0	111	555	00	000		0.60	-5555.00	30.94	3.3-	-999.0	9.3	5.2
50799	719	1490.0	.282	32.9	104.5	865.	101.90	0	0	111	555	00	000		0.60	-5555.00	32.37	8.2-	-999.0	21.0	10.4
50799	1354	1270.0	.261	30.0	104.5	855.	101.80	0	0	111	555	00	000		0.60	-5555.00	33.58	12.4-	-999.0	20.2	10.3
50799		1420.0		31.6	108.2	938.	110.00	0	0	111	555		000		0.60	-5555.00	30.76	2.7-	-999.0	4.5	2.7
50899	604	1380.0	.275	1.4	99.5	765.	97.20	0	0	111	555	00	000		0.60	-5555.00	33.36	11.6-	-999.0	20.4	10.4
50899	1021	1360.0	255	14.1	101.7	808.	99.40	0	0	111	555	00	000		0.60	-5555.00	32.93	10.2-	-999.0	19.8	10.2
50999	1316	1310.0		5.0	100.0	775.	97.50	0	0	111	555		000			-5555.00	33.01		-999.0	21.4	10.6
50999		1710.0		0.7	99.6	766.	97.50	0	0	111	555		000			-5555.00	33.51		-999.0	19.3	10.2
50999	2019	1280.0		5.3	101.6	824.	101.50	0	0	111	555	00	000			-5555.00	28.68		-999.0	12.1	6.6
	722	1430.0	265	31.2	104.5	861.	101.90	0	0	111	555		000			-5555.00	32.69		-999.0	20.6	10.5
51099		1310.0		29.9	104.3	855.	101.80	0	0	111	555		000			-5555.00	33.53		-999.0	20.5	10.3
51099		1370.0		30.4	107.2	938.	109.10	0	0	111	555		000			-5555.00	27.95		-999.0	5.6	3.3
51299	1132	1390.0	284	7.3	102.4	829.	102.30	0	0	111	555	00	000		0.60	-5555.00	30.31	1.1-	-999.0	11.2	6.2

TAKEOFF TREND REPORT

CRUISE PERFORMANCE TREND REPORT

TREND MONITORING INTERPRETATION

SUMMARY

1.- The LOGIC

• Trend Interpretation Logic

2.- The TREND ANALYSIS

- Wrong Input Data
- Instrumentation
- Mechanical

3.- The ACTIONS

• Maintenance Actions

INTERPRETATION OF ENGINE TRENDS

- > Evaluate both engine performance and hardware condition
 - **✓** based on assessment of trends (without engine disassembly)
- ➤ Engine / instrumentation faults have "characteristic" trends
 ✓ similar for most engine models
- > Assessment of trends provides early detection of basic engine or instrumentation faults

TREND INTERPRETATION

* Shift: deviation from most recent "smoothed" trend (a shift can also be detected through consistent individual points)

TREND INTERPRETATION (cont'd)

TREND INTERPRETATION (cont'd)

Take appropriate maintenance action

TREND SHIFT CATEGORIES

- > 3 MAIN TYPES OF TREND SHIFT SOURCE
 - 1. Wrong Input Data
 - 2. Instrumentation
 - 3. Mechanical

WRONG INPUT DATA

- > Engine monitoring is very sensitive to accurate data recording
 - ✓ SAGE works well with both hand-logged and automatically recorded data (good quality data required)
- Scatter in the data could be introduced by wrong manual input or bad acquisition criteria

Acquisition of "good" quality monitoring data is essential in order to effectively interpret engine trends

IMPACT OF DATA RECORDING ACCURACY

> Impact of parameter accuracy on trend results

Error :aircraft parameters	$\Delta (DEGT^{\circ} C)$?	$\Delta(\text{DWF\%})$	Δ (DN2%)
+ 100 ft altitude	%	+ 0.5	0
+ 1° C TAT	-1	+ 0.5	- 0.2
+ 0.01 Mach	+ 0.4	- 0.8	0
Bleed "on" to "off"	- 10	- 1.2	- 0.4
Error: engine parameters	$\Delta (DEGT^{\circ} C)$?	Δ (DWF%)	Δ(DN2%)
+ 1 % N1	? 10	- 4	- 0.6
+ 1 % N2	0	0	+ 1
+ 10 °C EGT	+10	0	0
+ 1 % WF	0	+ 1	0

WRONG INPUT DATA

_	Δ DEGT (° C)	Δ FF (%)	Δ N2 (%)	Problem
Chart D.1	+26	+2,5	+0.7	Wrong Bleed Input
Chart D.2	+15	+1,5	+1	Engine Change Not Recorded
Chart D.3	scatter	scatter	scatter	Inaccurate Data Recording
Chart D.4	0	out of scale	0	Fuel Flow Indication

Wrong Bleed Input (Chart D.1)

Engine change Not Recorded (Chart D.2)

Inaccurate Data Recording (Chart D.3)

Poor Data Accuracy Results in "Highly" Scattered The Power Of Flight Trend

REPORT I D:	CRTRND		TI ON MONI TORI NG PROGRAM ERFORMANCE MONI TORI NG - FROM		REPORT DATE: 10/10/96 PAGE: 1
S MOOTH	B 1 2 3 = -999.0 V=	ENGTYP ENC CFM56-2 6930 0.EGT.20.3	GSN I NSDAT N1MOD TCC FNRA	T CONFI G METHOD PI P I D 0 0611 X 0 X N2 X 2	(SCALES VARIED)X3 CRZ OIL OIL MAINT ALT

Fuel Flow Indication / Engine #2 Problem with Input Units (Chart D.4)

INSTRUMENTATION PROBLEMS

	DEGT (°C)	DFF%	DN2%	Problem
Chart I.1	+14	-3.8	0.7	TAT gage failure
Chart I.2	+20	~0	~0	EGT connector problem
Chart I.3	+30	~0	~0	EGT indication problem
Chart I.4	~0	+2	~0	Fuel indicator accuracy / failure
Chart I.5	-20	-6	-1.4	N1 Indicator accuracy / failure
Chart I.6	~0	~0	+2.5	CIT Sensor Fittings Clogged
Chart I.7	+20	+1	-0.2	HPTACC Sensor Cable Switch

TAT Gage Failure (Chart I.1)

1 REPORT ID: CRTRND		Λ F GT10 °	$^{\circ}$ C Δ FF=+4%	$\Delta N2 = -1\%$	
		$\Delta EOI = 10$	$\Delta \mathbf{I} \mathbf{I} = 1470$	$\Delta 1\sqrt{2} = 1/0$	
3.10000					
AIRTYP XX-XXX -2 B737-700	Paviou o	f the other engir	ne trend: same devi	ation profile	
SMOOTH -10	Keview of	i me omer engn	le trenu. Same uevi	ation prome	
DATE VIB12	1	_		_	
52999A R= -999.0 V=	\ D .		C (CDD ATEA	1	
52999B R= -999.0 V=	I ≻Review of	f Cruise Summa	irv form (CRDAT <i>A</i>	$A) \rightarrow \text{no correlation}$	
10102C * V			· · · · · · · · · · · · · · · · · · ·		
20102C * V	Lbetween TA	(I) and normal te	emperature at those	e altitudes	
30102C * V	Joetween 111	i i una normar u	emperature at those	, artitudes	
40102C * V					
51402 * V	Donlogom	ant of aquinmar	at \ hools to initial	volues on the trand	
51502 * V	Replacem	ient of equipmen	$\Pi \rightarrow 0$ ack to initial	values on the trend	
51602 * V 51702 * V	. G	. F	2 X 2X	-999.0 105 48. 0	
51702 * V 51802 * V	. G	. r	2X 2X	-999.0 103 46. 0	
51902 * V	. G	. ғ н	2X 2X	-999.0 102 40.	
52002 * V	. G	. F	2X	-999.0 100 45. 0	
52102 * V	. G	. F	2X	-999.0 110 45. 0	
52202 * V	. G	. F	2X	-999.0 100 48. 0	
52302 * V	. G	. F	2X	-999.0 100 46. 0	
52402 * V	. G	. F	2X	-999.0 101 46. 0	
52502 * V	. G	. F	2X	-999.0 110 45. 1	
52702 * V	. G	. F	2X	-999.0 120 45. 0	
52802 * V	. G	. F	2X	-999.0 110 45. 0	
52902 * V	. G	. <u>F</u>	*	-999.0 110 45. 0	
53002 * V	. G	. F	*	-999.0 110 45. 0	
53102 * V 60102 * V	. G . G	. F	*	-999.0 110 45. 0 -999.0 102 45. 0	
60302 * V	. G	. F	*	-999.0 120 40. 0	
60402 * V	. G	. r	*	-999.0 120 40. 0	
60502 * V	. G	. <u>.</u>	X2	-999.0 105 45. 0	
60602 * V	. G	. F	X2	-999.0 110 45. 0	
60702 * V	. G	. F	X2	-999.0 105 46. 0	
60802 * V	. G	. F	X2	-999.0 100 45. 0	
61202 * V	. G	. F	*	-999.0 100 45. 0	
61302 * V	. G	. F	*	-999.0 110 45. 0	
61402 * V	. G	. F	X2	-999.0 103 47. 0	
61502 * V	. G	F	X2	-999.0 110 45. 0	
61602 * V	G	. F	X2	-999.0 110 45. 0	
61702 * V 61802 * V	. G . G	. F	X2 *	-999.0 105 44. 0 -999.0 105 48. 0	
61802 * V 62002 * V	. G	. r	2 X	-999.0 105 46. 0 -999.0 102 44. 1	
62102 * V	. G	. F	2 X	-999.0 105 47.	
62202 * V	. G	. F	2 X	-999.0 110 45. 1	
62302= * V	. G	. F	2 X	-999.0 100 45. 1	
	010EGT3040.	50 -2	x1xN2x1		
DATE VIB12	.3 -4.	20F/F46		SLOATL MAINT CODES CTR	
61302 -R V	. G	. F	2X	-999.0 0	

EGT Connector Problem (Chart I.2)

								$\frac{1}{1}$ AFGT- ± 20	°C Δ FF~ 0	ΛN2 ₅	~ ()
REPORT I	ID: CR'	RND	G1	E ENGINE	CONDITION	MONITORING	PROGRAM	ALG1= 20	$C = \Delta \Gamma \Gamma = 0$		
							ORING - MOST REC				
		RTYP	ENG		ENGSN		MOD TCC FNRAT		ooting showed	an eng	gine
G-ABCD - SMOOTH		-2010.			875XXX 3040		-2X	problem $\rightarrow E$	GT harness co	nnecto	r
		23			-64		2 4 6	3		mr rab co	DED CIK
22498A		0.1 V=	0.6	5.3		-0.		VSV = -999.00 N2 = -0			
22498B		0.1 V=	0.6	5.3		-0.	3 5	VSV = -999.00 N2 = -0			
10000			. G			F.		2 X	55.9		
20499C			. G			F.		*	55.3		
30599C			. G			F.		2 X	55.2		
40299C				G		F.		2 X	53.7		
81999	.RV			G		F		2 X	52.4		0
81999	. *			G		F		2 X	51.8	91 52.	1
82099	. *			G		F		2 X	51.4	99 49.	0
82099	.RV			G		F		2 X	51.7	94 52.	0
82099	.RV			G		F		2 X	51.7	02 49.	0
82199	.RV			G		F		2 X	51.9 1	02 48.	0
82199	.RV			G		F		2 X	52.2	96 48.	0
82299	.RV			G		F		2 X	51.9	95 51.	0
82299	.RV			G		F		2 X	52.0	03 51.	0
82399	.RV			G		F		2 X	51.9	97 50.	0
82399	.RV D	T Connoc	tom 5100	mod G		F		2 X		99 50.	0
82499	.* E	GT Connec	tor crea	neu	G	F		2 X	52.4	03 52.	0
82499	. *	_			G	F		2 X	52.1	97 51.	0
82499	.RV				G	F		2 X	52.2	00 48.	0
82499	.RV				G	F		2 X	52.1 1	07 49.	0
82599	.RV			G		F		2 X	52.0	96 48.	0
82599	. *			G		F		2 X	52.1	95 50.	0
82699	. *			G		F		2 X	52.2	98 50.	0
82699	. *			G		F		2 X	52.2	02 51.	0
82799	. *			G		F		2 X	52.4	07 49.	0
82799	. *			G		F		2 X	52.5	05 48.	0
82799	.RV			G		F		2 X	52.1 1	02 48.	0
82899	.RV			G		. F	1	2 X	51.5	97 48.	1
82899	. *			G		F		2 X	51.4	04 50.	0
82999	.RV			G		F		2 X	51.2	96 50.	0
83099	. *			G		F		2 X	51.4	88 50.	0
83199	. *			G		F		2 X	51.7	00 49.	0
83199	. *			G		F		2 X	51.9	00 48.	0
83199	. *			G		. F	1	2 X	52.1	91 50.	0
90199	. *			G		. F	1	2 X	52.0	95 48.	0
90199	. *			G		. F	1	2 X	52.4	91 50.	0
90299	. *			G		. F	•	2 X	52.6 1	00 49.	0
90299				G		. F		*	52.5		0
90299	. *										
	. * . *			G		. F		*	52.5		0

EGT Indication Problem (Chart I.3A)

	2 S/N 111111 (9/ 9/8		ADEPT VERSION 8.3.6PC01/92	
-2	0100EGT20	3040	-2X1XN2	.X1X2 MAINT
DATE VIB1	25	-642F/F	246 -21EPR	.122.5.THROT.2.5 OATL OT OP CODE
506A.R V	•	G .	F 2 X.	0.0
1006C.R V	•	G .	F X2	0.0
1012C.R V	•	G .	F X2 _	0.0
1018C.R V	•	G .	F X.2	A ELOTE OO OO
1023C.R V	•	G .	F X.2	$\Delta EGT = +30 ^{\circ}C$
1029C.R V		! .	F X.2	
1110 .R V		G .	F X.2	
1110 .R V		G .	F X. 2	$\Delta FF \sim 0 \Delta N2 \sim 0$
1111 .R V		G .	F X. 2	
1111 .R V	· ·	G .	F X.2	
1111 .R V	· ·	G .	F X.2	► EGT exceedance reported
1112 .R V	•	G .	F X.2	F LOT exceedance reported
1112 .R V	•	G .	*X.	
1114 .R V	•	G .		Troubleshooting revealed I DT
1114 .R V	•	G .	F X2.	Troubleshooting revealed LPT
1114 .R V	•	G .	FX2.	stage 2 normal notation and
1115 .R V	•	G .	F X2.	stage-2 nozzle rotation and
	•	G .	F X2. F X2.	41
1116 .R V	•	G .	F X2. F X2.	thermocouple probe damage
1116 .R V	•	-		
1117 .R V	•	G . G .	F X2.	
1117 .R V	· .	-	F X2.	ECM trend showed a shift on
1118 .R V	•	G .	FX2.	
1118=.R V	•	G .	F X2	EGT three-days prior to event
1119=.R V	•	G .	F X2	201 times days prior to event
1119=.R V	•	G.	F X.2	
1120=.R V	•	G.	F X.2	
1120=.R V	•	G.	F X.2	
_2	0100EGT20	30 40	-2x1xN2	y 1 y 2
	2345	-642F/F		.123456 MAINT. CODES
1116		G .	2X.	F
1116 X V	. G	· •	F X.	2
1117	. G	•	X.*	
1117=X V		G .	F X2	
1118=.R V	•	G.	X. 2	F
1118=.R V	•	G.	F X. 2	
1119=X V		. G	F 2 X.	
1119=.R V	<u> </u>	.G	X2F	
1120=.R V	•	G	F X. 2	
1120=.R V	•	G.	F X. 2	
	•	g.	F A. 2	
				0.4
				21

THE POWER OF FLIGHT

EGT Indication Problem (Chart I.3B)

							Of Fli
	NDITION MONITORING PROGRAM PERFORMANCE MONITORING - MOS	SAGE V3.0.3 PC - Jan 9 T RECENT RECORDS	9 REPORT DAT: PAG:				
КЈНКК -1 А321-100 CFM56-5B3 77 БМООТН EGT	9XXX 990301 0 * ** 203040OATL6070		ACTUAL	(SCALES VARIED) MAINT ALT			
DATE CSI 405060MAR80 32499A 69.35	50.55	05MAR15 -999.00	20 NIK FN	DR N1DR CODES CTR			
32499B 69.35 41299 -5555 H	50 55	-999 00					
41399 -5555 Н 41499 -5555 Н	REPORT ID: CRTRND		ON MONITORING PROFORMANCE MONITORING	GRAM SAGE V3.0 G - MOST RECENT RECORD	.3 PC - Jan 99 S	REPORT DATE: PAGE:	8/25/99 1
41699 -5555 H 41799 -5555 H	AIRTY		INSDAT N1MOD	TCC FNRAT CONFIG	CONTROL	SELECTOR	(
11899 -5555 H 12199 -5555 H		8070EGT5040		-2X1X		X2 CRZ OI	
12299 -5555 H 12399 -5555 H	32499A R= -999.0	23 -12 V= -999.0 -42.1	-9.06	VSV=-999.	00 N2= -0.73	SLOATL TM 50.6	P PRS CODES CTR
	32499B R= -999.0 31699C X	V= -999.0-999.0 G	-999.00 F	VSV=-999.	00 N2=-999.00 X	50.6 -999.0	
2799 -5555 Н	40199C X 50199C X	G G	F F	. 2	X X	49.3 49.4	
0199 -5555 0299 -5555 H	51699 X	G	F	. 2	X	53.7	0
0399 -5555 н	51799 X 51799 X	G G	F F	. 2	X X	54.1 54.5	0
0499 -5555 H 0699 -5555 H	51899 X 51899 X	G G	F F	. 2	X X	54.7 55.1	0
0799 -5555 H 0899 -5555 H	51999 X	G	F	. 2	X	55.8	0
0899 -5555 H	51999 X 52099 X	G G	F F	. 2	X X	56.1 56.2	0
1199 -5555 н 1399 -5555 н	52099 X	G	F	. 2	X	56.5	1
1599 -5555 Н	52199 X 52199 X	G G	F F	. 2		56.3 56.5	0
1699 -5555 H 1799 -5555 H	52299 X 52299 X	G G	F F	. 2	X X	56.8 57.6	0
1899 -5555 н	52399 X	G	F	. 2	X	58.4	0
2099 -5555 H 2299 -5555 H	52399 X 52499 X	G G	F F	. 2	X X	58.5 58.7	0
2399 -5555 H 2499 -5555 H	52499 X	G	F F	. 2	X	58.5	0
2599 -5555 н	52599 X 52599 X	G G	F F	. 2	X X	58.5 58.1	0
2699 -5555 н	52699 X 52699 X	G G	F F	. 2	X X	58.0 58.2	0
	52799 X	G	F	. 2	X	57.7	0
	52799 X 52899 X	G G	F F	. 2	X X	57.8 57.5	0
	52899 X 52999 X	G	F F	. 2	X	57.7 58.0	0
	52999 X 52999 X	G G	F	. 2	X X	58.2	0
	53099 X 53099 X	G G	F F	. 2	X X	59.2 59.6	0
	60199 X	G	F F	. 2	X	60.4	0
	60199 X 60299 X	G G	F F	. 2	X X	61.1 61.0	0
	60299 X	G	F	. 2	X	61.2	0
	60399 X 60399 X	G G	F F	. 2	X X	61.6 62.2	0
	RAW DATA -90	8070EGT5040	-30	-2X1X	.N2X1	X2 CRZ	MODULE CHG ALT
	DATE VIB1	23 -12	-108F/F4	20 34	.VSV67	SLOATL	MAINT CODES CTR

Fuel Flow Indicator Accuracy / Failure (Chart I.4)

N1 Indication Accuracy / Failure (Chart I.5)

	2 S/N 111111 (9/ 9/89		ADEPT VERSION 8.3	.6PC01/92	RUN DATE 11/25/92
	2345	-642F/F.	-2X1		22.5.THROT.2.5 OATL OT OP CODE
506A.R V	. G	-042r/r. F	2	х.	0.0
1006C.R V	. G	F.	2	x. x.	0.0
1000C.R V 1012C.R V	. G	F •	2	x	0.0
1012C.R V 1018C.R V	. G	F .	2		
1018C.R V	. G	F .	2	χ. Δ	EGT= -35 °C Δ FF<-4%
1029C.R V	. G	· ·	2	21.0	
1025C.R V	. G	ਦ ਦ	2	χ. Δ	N2=-1.5%
1111 .R V	. G	F.	2	х.	
1111 .R V	. G	F .	2	'	TD 11 1 .1 1 1
1112 .R V	. G	F .	2	x. >	Troubleshooting showed ar
1113 .R V	. G	F .	2		
1114 .R V	. G	F .	2	x. et	ngine problem ® N1
1114 .R V	. G		2		
1115 .R V	. G 👉	F .	2	- x. 111	ndication
1115 .R V	. G	F.	2	х.	T 0.0 0 0
1116 .R V	. G	F .	2	X.	T 0.0 0 0
1116 .R V	. G	F .	2	х.	T 0.0 0 0
1117 .R V	. G	F .	2	x.	T 0.0 0 0
1117 .R V	G.	F .	2	х.	T 0.0 0 0
1118 .R V	G.	F .	2	X.	T 0.0 0 0
1118=.R V	G.	F .	2	x.	T 0.0 0 0
1119=.R V	G . F	•	2	x.	T 0.0 0 0
1119=.R V	G . F	•	2	х.	T 0.0 0 0
1120=.R V	G . F	•	2	x.	T 0.0 0 0
1120=.R V	GF	•	2	x.	T 0.0 0 0
1121 X V	GF	•	2	х.	T 0.0 0 0
1121=X V	GF	•	2	х.	T 0.0 0 0
1122=.R V	G. F	•	2	х.	T 0.0 0 0
1122=.R V	, ,	F	2	х.	T 0.0 0 0
1123=X V	. G	F .	2	х.	T 0.0 0 0
1123=.R V	. G	F.	2	х.	T 0.0 0 0
1123=.R V	. G	F.	2	х.	T 0.0 0 0
1124=.R V	. G	F.	2	X.	T 0.0 0 0

Engine CIT Sensor Fittings Clogged - Engine #1 (Chart I.6)

HPTACC Sensor cable switch(Chart I.7)

MECHANICAL PROBLEMS

> Theoretical parameter shifts and potential engine problems

> Trend examples showing effective engine problems

CFM56 THEORETICAL PARAMETER SHIFTS

- Cruise influence coefficient at constant N1
 - \checkmark CFM56-3/-5A/-5B/-7: separated flow
 - cruise 35,000 ft / 0.76 / ISA
 - ✓ CFM56-5C : mixed flow
 - cruise 35,000 ft / 0.82 / ISA
- The following values are guidelines for assessing engine monitoring trends, and are valid around a specified operating point

CFM56-2/-3/-5A/-5B/-7 Theoretical Parameter Shiptener

(35000 ft / 0.76 /ISA/ constant N1)

CFM56-5C Theoretical Parameter Shifts

(35000 ft / 0.82 /ISA/ constant N1)

CFM56 INDICATORS OF POTENTIAL ENGINE PROBLEMS

Based on Engine Monitoring Trends

- Some "universal" trend interpretation principles to use when analyzing trend data:
 - ✓ EGT "up' shifts or "down' shifts of greater then 15 degrees, will be accompanied by a corresponding "up' or "down" shift of fuel flow
 - ✓ VBV trend shift in the "open" direction, will result in a corresponding shift "up" in the N2 trend (VBV not monitored with CFMI engines)
 - ✓ VSV trend shift in the "closed" direction, will result in a corresponding shift "up" in the N2 trend (VSV not monitored with CFMI engines)
 - ✓ VSV trend shift in the "open" direction, will result in a corresponding shift "down" in the N2 trend (VSV not monitored with CFMI engines)

CFM56 INDICATORS OF POTENTIAL ENGINE PROBLEMS

Based on Engine Monitoring Trends

- > Typical deterioration of CFM56 engines is in HP system
 - with EGT and FF up-shift and N2 down-shift
- LP deterioration is unusual
 - would result in up-shift of EGT, FF and N2
- VBV problem and air leakage
 - lead to parameter up-shifts

CFM56 INDICATORS OF POTENTIAL ENGINE PROBLEMS

Based on Engine Monitoring Trends

- > VSV problems
 - ✓ result in significant N2 shifts
 - ✓ small change in EGT and FF
- > VSV off schedule
 - ✓ may be associated with
 - slow start, slow acceleration, high N2 at takeoff (VSV too closed)
 - slow deceleration, low HPC stall margin (VSV too open)

NOTE: VSV position has to off-schedule more than 5° for 4 Sec. to set an A/C Maintenance Message on FADEC powered A/C

EXAMPLES OF ENGINE PARAMETER TRENDS

(Related to Hardware Condition)

Four Categories of "Characteristic" Trend Shifts

Most probable problem source

ENGINE PARAMETER TRENDS (cont'd)

D EGT ↑ D FF ↑ D N2 ↑

CFM56-3

Trend signature	Troubleshooting Result	
VBV open	Stop mechanism	Chart M.1
Air leakage	Fuel nozzle seals	Chart M.2

CFM56-5A

Trend signature	Troubleshooting Result	
VBV failure	2 VBV doors open	Chart M.3
Air leakage	HPV open	Chart M.4
Air leakage	PRV failure	Chart M.5
Air leakage	Pack valve failure	Chart M.6
	VSV lever arm failure	Chart M.7A

CFM56-5B

Trend signature	Troubleshooting Result	
VBV failure	Flexible shaft failure	Chart M.7B

 Δ EGT = +30 °C Δ FF = +3 %

CFM56-3

VBV Gear-Motor Stop-Mechanism Seized

(Chart M.1)

	S/N 111111 (9/ 9/89) -100EGT2030	40		SION 8.3.6PC01/92 1XN2X			N2 = +1.4 %	
DATE VIB12			F/F246	-21EPR1		11 1		1
506A.R V	. G		. F	x.2	> Irou	iblesh	ooting revealed	1
L006C.R V	. G		. F	2 X.	TIDIT.	4 -1	100	
L012C.R V	. G		. F	2 X.	ARA 8	stuck	open (~10°)	
.018C.R V	. G		. F	2 X.				
L023C.R V	. G		. F	2x.	N D 1			
L029C.R V	. G		. F	2 X.	≻Kepl	lacem	ent of fuel gear	<u>:</u> -
.111 .R V	. G		. F	2 X.	1 *			
.111 .R V	. G		. F	2 X.	motor	and s	top-mechanism	L
.111 .R V	. G		. F	2 X.			*	
.112 .R V	. G		. F	2X.	correct	tea th	e problem	
.113 .R V	. G		. F	X2			•	
.114 .R V	. G		. F	2X.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1		
.114 .R V	. G		. F	X2	►Stop	-mecl	hanism was late	er
.115 .R V	. G		. F	X2	1 *			
.115 .R V	. G	_	. F_	x. 2	found	seize(
.116 .R V	•	G	. F	X. 2		-	0.0	
.116 .R V	•	G _	. F_	x. 2	_	T	0.0 0 0	
.117 .R V	•	G	. F_	X.	2	T	0.0 0 0	
.117 .R V	•	G	. F_	х.	2	T	0.0 0 0	
.118 .R V	•	G	F	х.	2	T	0.0 0 0	
.118=.R V	•	G	. <u>F</u>	х.	2	T	0.0 0 0	
.119=.R V	•	G	. F	х.	2	T	0.0 0 0	
.119=.R V	•	G	. F	х.	2	T T	0.0 0 0	
.120=.R V	•	G	. F	х.	2	T	0.0 0 0	
.120=.R V .121 X V	•	G G	. F	x. x.	2	T T	$0.0 0 0 \\ 0.0 0 0$	
.121 X V .121=X V	•	G G	. F	x. X.	2	T	$0.0 0 0 \\ 0.0 0 0$	
1121=X V 1122=.R V	•	G	. F	x. X.	2	T	0.0 0 0	
.122=.R V .122=.R V	•	G	. F	x. X.	2	T	0.0 0 0	
.123=.R V .123=X V	•	G	. F	х.	2	T	0.0 0 0	
1123=x V 1123=.R V	•	G	. F	х.	2	T	0.0 0 0	
.123=.R V	•	G	. F	х.	2	т Т	0.0 0 0	
	•	G	. F	х.	2	T T	0.0 0 0	

CFM56-3

		·	<u> </u>	
	S/N 111111 (9/ 9/89)		ADEPT VERSION 8.3.6P	C01/92 RUN DATE 11/25/92
-20	100EGT2030.		-2X1X	
DATE VIB12	345 -6.	42F/F2.	46 -21	> Sixteen fuel nozzles were
506A.R V	. G	F.	2	
1006C.R V	. G	F.	2	changed for potential risk
1012C.R V	. G	F.	2	
1018C.R V	. G	F.	2	$(on 14th November) \rightarrow$
1023C.R V	. G	F .	2	`
1029C.R V	. G	F .	2	Since then, shifts were noticed
1111 .R V	. G	F	2	<i>'</i>
1111 .R V	. G	F.	2	A EL CIE 100 C
1111 .R V	G	F.	2	$\Delta EGT = +12^{\circ}C$
1112 .R V	. G	_ ·	2	
1113 .R V	. G	F. F.	2	
1114 .R V	. G	F.	2 2	$\Delta FF = +1.8 \%$
1114 .R V	. G . G	F.	2	
1115 .R V	. G	F.	2	
1115 .R V 1116 .R V	. G	r. F.	2	$\Delta N2 = +0.3 \%$
1116 .R V	. G	r. F.	2	<u> </u>
1116 .R V 1117 .R V	. G	F.	2	
1117 .R V	. G	F.	2	Two metallic seals under fuel
1117 .R V 1118 .R V	. G	F.	2	
1118 .R V	. G	F.	2	nozzles were not correctly
1110 .R V	. G	F.		_
1119 .R V	. G	F.	2 2	installed, causing CDP air leakage
1120 .R V	. G	F.	2	
1120 .R V	. G	F.	2	
1120 .K V		2 .	2	\triangleright Seals were replaced \rightarrow trend
-20	100EGT2030.	40	-2x1x	*
DATE VIB12		42F/F2		
1116 X V	. G	F .	2	Х.
1116 X	. G	. F	2	х.
1117 .R	. G	F.	2	х.
1117 X V	. G	F	2	х.
1118 .R V	. G	F .	2	х.
1118 .R V	•	G .	F	X. 2
1119 X V	. G	F.	2	х.
1119 .R V	. G	F.	2	х.
1120 .R V	. G	F.	2	х.
1120 .R V	. G	F.	2	х.

CFM56-5A VBV System Failure (Chart M.3)

1ABCD-1 CFM -5 S/N 111111 (9/ 9/89) -20100EGT203040 DATE VIB.12345 -64 506A. R V G 1006C. R V G 1012C. R V G 1018C. R V G 1029C. R V G 1111 . R V G 1112 . R V G 1114 . R V G 1115 . R V G 1115 . R V G 1116 . R V G 1117 . R V G 1118 . R V G 1118 . R V G 1119 . R V G 1119 . R V G 1110 . R V G	ADEPT VERSION -2X1 -2F/F246 -2 F F F F F F F F F F F F F F F F F F	XN2X11VSV12 .2 B	Two VBV doors seized in open position during the cruise phase Effect on engine performance trending $\Delta EGT = +15 ^{\circ}C$ $\Delta FF = +1.2 \%$ $\frac{\Delta N2 = +0.8\%}{}$ The observation of the cruise phase of the
--	---	--	--

CFM56-5A

High Pressure Valve (HPV) Control Malfunction (Chart M.4)

	5 S/N 111111 (9 -20100EGT				RSION 8.3.6PC01/92	► HF
DATE VIB1	2345	-64	2F/F2	46	-21VSV1	bleed
506A. R V	•	G	. F		2 . B	,
1006C. R V	•	G	. F		.2 B	stage
1012C. R V	•	G	. I	?	. 2B	
1018C. R V	•	G	. I	?	. 2B	
1023C. R V	•	G	. F		. *	> H⊦
1029C. R V	•	G	. I	?	. 2B	
1111 . R V	•	G	. I	?	. 2B	l only a
1111 . R V	•	G	•	F	. 2B	1
1111 . R V	•	G	. I	?	. 2B	l when
1112 . R V	•	G	•	F	. 2B	
1113 . R V	•	G	. I	?	. 2B	1S 1nst
1114 . R V	•	G	. F		. 2B	_~
1114 . R V	•	G	. I	?	. 2 B	_
1115 . R V	•	G	. I	?	. 2 B	\triangleright Ef
1115 . R V	•	G	•	F	. 2 B	, 51.
1116 . R V	•	G	. I	?	. 2B	nerfor
1116 . R V	•	G	•	F	. 2B	Perror
1117 . R V	•	G	•	F	. 2B	
1117 . R V	•	G	•	F	. 2 B	LAFGT
1118 . R V	•	G	•	F	. 2B	
1118 . R V	•	G	•	F	. 2B	
1119 . R V	•	G	•	F	. 2B	VEE -
1119 . R V	•	G	•	F	. 2 в	\(\Delta\)\ \\(\Delta\)\ \\(\Delta\)\ \\(\Delta\)\ \\(\Delta\)\ \(\Delta\)\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
1120 . R V	•	G	•	F	. 2 в	
1120 . R V	•	G	•	F	. 2 в	ΔN2 =
	-20100EGT	.203040		-2x.	1xN2x	1x

- ➤ HPV malfunction allowing bleed air from the HPC 9th-stage at cruise
- ➤ HPV should be opened only at low engine speed, when HPC 5th-stage pressure is insufficient
- ➤ Effect on engine performance trending

$$\Delta EGT = +20 \, ^{\circ}C$$

$$\Delta FF = +2.0\%$$

$$\Delta N2 = +0.3\%$$

-20100EGT203040 -2				2X1	XN2X1X2		
DATE VIB12	345	-6	42	.F/F2	46 -2	1vsv1234	56 MAINT. CODES
1116 . RV	•	G -		. F		• 2B	
1116 . R V	•		G		F	. 2 в	
1117 . R V	•		G		F	. 2 в	
1117 . R V	•	G			F	. 2 в	
1118 . R V	•		G		F	*	
1118 . R V			G	. F		2 B	
1119 .R V		G		. F	<u> </u>	. ▲2 B	
1119 .R V	•	G	TIDII	. F	T	. 2 🕇 B	
1120 .*		G	HPV	. F		. 2 B	
1120 . RV		G	OPEN	F.	1	. В2	

CFM56-5A

Bleed-Flow Control Valve (PRV) Failure (Chart M.5)

1ABCD-1 CFM56 -5	S/N 111111 (9/ 9/89)	ADEPT	VERSION 8.3.6PC01/92	PRV malfunction leads to
	100EGT203040		1XN2X	. FRV manufiction leads to
DATE VIB12.	345 -64	12F/F246	-21VSV1	increased HPC 5th-stage
506A. *	G	. F	x. 2	mereased in C Jui-stage
1006C. R V	.G	. F	x. 2	bleed-flow
1012C. RV	.G	. F	x. 2	olccu-110 w
1018C. R V	. G	. F	x. 2	
1023C. R V	. G	. F	x. 2	Effect on performance
1029C. *	. G	. F	x. 2	► Effect on performance
1111 . *	. G	. F	x. 2	trending
1111 . *	. G	. F	x. 2	uchung
1111 .VR	. G	. F	x. 2	
1112 .VR	. G	. F	x. 2	$\Delta EGT = + 8^{\circ}C$
1113 .*	. G	. F	x. 2	$\Delta EOI = + 0 C$
1114 .*	. G	. F	x. 2	
1114 .*	. G	. F	x. 2	AEC + 0.00/
1115 .*	. G	. F	x. 2	$\Delta FF = +0.8\%$
1115 .*	. G	. F	x. 2	
1116 .*	. G	. F	x. 2	ANTO 0. 00/
1116 .*	. G	. F	X. 2	$\Delta N2 = +0.2\%$
1117 .*	. G	. F	X. 2	T 0.0 0 0
1117 .*	. G	. F	X. 2	T 0.0 0 0
1118 .VR	. G	. F	x. 2	T 0.0 0 0
1118 . *	. G	. F	X. 2	T 0.0 0 0
1119 . *	. G	. F	X. 2	T 0.0 0 0
1119 . *	. G	. F	X. 2	T 0.0 0 0
1120 . *	. G	. F	X. 2	T 0.0 0 0
1120 . *	. G	. F	x. 2	T 0.0 0 0
-20	100EGT203040	_2 v	1xn2x	1 Y 2
DATE VIB12.				.23456 MAINT. CODES
1116 .*	. G	. F	X. 2	
1116 .*	. G	. F	x. 2	
1117 .VR	. G	. F	x. 2	
1117 . *	. G	. F	x. 2	
1118 .VR	. G	. F	2 X.	
1118 . *	. G	. F	x. 2	
1119 .XR	. G	. F	х.	2
1119 . *	. G	. F	x. 2	
1120 .RV	. G	. F	х. 2	
1120 . *	. G	. F	x. 2	

CFM56-5A Pack Valve Failure (Chart M.6)

1ABCD-1 CFM -5	S/N 111111 (9/ 9/89)	ADEPT VERSION	1 8.3.6PC01/92	מתאות אוום 11/25/00
-20	0100EGT20304	-2x	·1xn2x	N D 1 1 10 1
DATE VIB12	2345 -6	·42F/F246 -	·21VSV1	➤ Pack-valve malfunction
506A. *	G	. F	X2 2	loads to increase blood from
1006C.R V	.G	. F	x. 2	leads to increase bleed from
1012C. RV	.G	. F	x. 2	5th store
1018C. R V	. G	. F	x. 2	5th-stage
1023C. R V	. G	. F	x. 2	
1029C. *	. G	. F	x. 2	N ECC.
1111 . *	. G	. F	x. 2	Effect on engine
1111 . *	. G	. F	x. 2	C . 1'
1111 .VR	. G	.F	x. 2	performance trending
1112 .VR	. G	. F	x. 2	
1113 .*	. G	. F	x. 2	1 T C T
1114 .*	. G	. F	x. 2	$\Delta EGT = +16 ^{\circ}C$
1114 .*	. G	. F	x. 2	
1115 .*	. G	. F	x. 2	
1115 .*	. G	. F	x. 2	$\Delta FF = +1.8\%$
1116 .*	. G	. F	x. 2	
1116 .*	. G	. F	x. 2	
1117 .*	. G	. F	x. 2	$\Delta N2 = +0.1\%$
1117 .*	. G	. F	x. 2	$\Delta 1 \sqrt{2} = 1 0.1 / 0$
1118 .VR	. G	. F	x. 2	T 0.0 0 0
1118 . *	. G	. F	x. 2	T 0.0 0 0
1119 . *	. G	. F	x. 2	T 0.0 0 0
1119 . *	. G	. F	x. 2	T 0.0 0 0
1120 . *	. G	. F	x. 2	T 0.0 0 0
1120 . *	. G	. F	x. 2	T 0.0 0 0
-20	0100EGT20304	2 v _	-1xN2x	1 v 2
DATE VIB12				.23456 MAINT. CODES
1116 .*	. G	. F	X. 2	
1116 .*	. G G	. F	X. 2	
1117 .VR	. G	. F	X. 2	
1117 . *	. G	. F	X. 2	
1117 . 1118 .VR	. G	• <u>-</u>	X. 2	
1118 . *	. G	. F	X. 2	
1110 . 1119 .XR	. G	. F	X. 2	
1119 . *	. G	. F	X. 2	
1120 .RV	. G	. f	X. 2	
1120 .RV 1120 . *	. G	. F	X. 2	
1120 •	• •	• r	A. Z	41

CFM56-5A VSV Lever-Arm Failure (Chart M.7A)

1ABCD-1 C		S/N 111111 (100EG	9/ 9/89) T2030	40			ION 8.3.6PC01/92	X1	>HPC	Stage-1 blade
DATE VIB.		345				246			failure	consecutive to
506A. R	v	•	G		•	F	x.	2	Tarrurc	consecutive to
1006C.	R V	•	G		•	F	x.	2	broker	n VSV lever-arr
1012C.	R V	•	G		•	F	x.	2	DIOKCI	
1018C. R	v	•	G		•	F	x.	2		
1023C.	R V	•	G		•	F	x.	2	$\triangleright \Lambda + 1$	40 flights prior
1029C.	R V	•	G		•	F	x.	2	Atl	40 mgms phor
1111 .	R V	•	G		•	F	x.	2	to avai	nt, ADEPT
1111 .	R V	•	G		•	F	x.	2	to ever	III, ADLI I
1111 . R	v	•	G		•	F	х.	2	chowa	d a shift
1112 . R	v	•		G	•	F	х.	2	SHOWE	u a Siiiit
1113 . R	v	•		G	•	F	x.	2		
1114 . R	v	•		G	•	F	x.	2	AECT	$= + 12 {}^{\circ}\text{C}$
1114 . R	v	•		G	•	F	х.	2		= + 12 C
1115 . R	v	•		G	•	F	х.	2		
1115 . R	v	•		G	•	F	x.	2	ATE	. 0.00/
1116 . R	v	•		G	•	F	x.	2	$\Delta \Gamma \Gamma =$	+0.8%
1116 . R	v	•		G	•	F	x.	2		
1117 . R	v	•		G	•	F	x.	2	ANTO	. 0.20/
1117 . R	v	•		G	•	F	х.	2	$\Delta N2 =$	=+0.3%
1118 . R	v	•		G	•	F	х.	2	T	0.0 0 0
1118 . R	v	•		G	•	F	х.	2	T	0.0 0 0
	v	•		G	•	F	х.	2	T	0.0 0 0
	v	•		G	•	F	х.	2	T	0.0 0 0
	v	•		G	•	F	х.	2	T	0.0 0 0
1120 . R		•		G	•	F	х.	2	T	0.0 0 0
1121 . RV		•		G	•	F	х.	2	T	0.0 0 0
1121 . R		•		G	•	F	х.	2	T	0.0 0 0
1122 . R		•		G	•	F	х.	2	T	0.0 0 0
1122 . R		•		G	•	F	х.	2	T	0.0 0 0
1123 . R	v	•		G	•	F	х.	2	T	0.0 0 0
1123 . R	-	•		G	•	F	х.	2	T	0.0 0 0
1124 .R V	•	•		G	•	F	х.	2	T	0.0 0 0
	v	•		G	•	F	х.	2	T	0.0 0 0
1125 . *		•		G	•	F	х.	2	T	0.0 0 0
1125 . R	v	•		G	•	F	х.	2	T	0.0 0 0

CFM56-5B VBV Flexible shaft failure (Chart M.7B)

ENGINE PARAMETER SHIFTS (cont'd)

D EGT (°C) ~ 0

D FF (%) ~ 0

D**N2 (%)**

CFM56-3

Trend signature	Troubleshooting Result	
VSV open	MEC change	Chart M.8 A&B
VSV open	CIT sensor	Chart M9

1ABCD-1 CFM -3B2 S/N 111111 (9/ 9/89)

CFM56-3 MEC Change (Chart M.8A)

ADEPT VERSION 8.3.6PC01/92

➤ MEC changed due to fuel leakage

➤ Shift observed

-20	100EGT20	.3040 -2x.	1xN2x1.		
DATE VIB12	345	-642F/F246	-21EPR12.	Δ EGT =	5 °C
506A.R V	.G	F .	x. 2		+ 3 C
1006C.R V	. G	F .	x. 2		
1012C.R V	. G	F .	x. 2	$\Delta FF = -$	0.60/
1018C.R V	. G	F .	x. 2	$\mid \Delta \Gamma \Gamma - \mid$	F 0.0 %
1023C.R V	. G	F .	X. 2		
1029C.R V	. G	F .	X. 2	ANIO_	0.9 n/
1111 .R V	. G	F .	X. 2	$\Delta N2 = -$	
1111 .R V	. G	F .	X. 2	T	0.0 0 0
1111 .R V	. G	F .	x. 2	T	0.0 0 0
1112 .R V	. G	F.	x. 2	T	0.0 0 0
1113 .R V	. G	F .	x. 2	T	0.0 0 0
1114 .R V	. G	F .	x. 2	T	0.0 0 0
1114 .R V	. G	F.	x. 2	T	0.0 0 0
1115 .R V	. G	F .	x. 2	T	0.0 0 0
1115 .R V	. G	F .	x. 2	T	0.0 0 0
1116 .R V	. G	F .	x. 2	Т	0.0 0 0
1116 .R V	. G	F.	X. 2 MEC C	hange T	0.0 0 0
1117 .R V	. G	F .	Λ2	T	0.0 0 0
1117 .R V	. G	F .	X2	T	0.0 0 0
1118 .R V	. G	F .	2 X.	T	0.0 0 0
1118 .R V	. G	F.	2 X.	T	0.0 0 0
1119 .R V	. G	F.	2 X.	T	0.0 0 0
1119 .R V	. G	F	2 X.	T	0.0 0 0
1120 .R V	. G	F .	2 X.	T	0.0 0 0
1120 .R V	. G	F.	2 X.	T	0.0 0 0
1121 .R V	. G	F.	2 X.	T	0.0 0 0
1121 .R V	. G	F.	2 X.	T	0.0 0 0
1122 .R V	. G	F.	2 X.	T	0.0 0 0

CFM56-3 MEC Change (Chart M.8B)

CFM56-3 CIT Sensor Problem (Chart M.9)

	B2 S/N 111111 (9/ 9 20100EGT		ADEPT VERSION -2X1		
	.25	-642	.F/F246 -2.	1EPR.	charge leads to VSV tracking
506A.R V	G .	F	•	X2	charge reads to visit tracking
1006C.R V	G.	F	•	2 X.	more open
101C .R V		_ F		2 x.	more open
118C .R V	G .	F_			\ \— 00
203C .R V	G.	F F	. 2	x. x.	Effects on trend monitoring
229C .R V 311 .R V	G.	r F	. 2	x. X.	
311 .R V	G.	r F	. 2	x. X.	$\Delta EGT \sim 0$
311 .R V	G.	r E	. 2	х.	
312 .R V	G.	- ਜ	. 2	х.	AME
313 .R V	G.	<u>-</u> ਸ	. 2	х.	$\Delta FF \sim 0$
314 .R V	G.	- F	. 2	х.	
314 .R V	G.	F	. 2	х.	AND 0.7.0/
315 .R V	G.	F	. 2	х.	$\Delta N2 = -0.7 \%$
315 .R V	G.	F	. 2	х.	T 0.0 0 0
316 .R V	G.	F	. 2	x.	T 0.0 0 0
316 .R V	G.	F	. 2	х.	T 0.0 0 0
317 .R V	G.	F	. 2	х.	T 0.0 0 0
317 .R V	G.	F	. 2	х.	T 0.0 0 0
318 .R V	G.	F	. 2	х.	T 0.0 0 0
318 .R V	G .	F	. 2	х.	T 0.0 0 0
319 .R V	G.	F	2	х.	T 0.0 0 0
319 .R V	G.	F	. 2	х.	T 0.0 0 0
320 .R V 320 .R V	G. G.	F F	. 2	x. x.	T 0.0 0 0 T 0.0 0 0
320 .R V 321 .R V	G.	r F	. 2	x. X.	T 0.0 0 0
321 .R V	G.	F	. 2	x.	T 0.0 0 0
322 .R V	G.	F	. 2	x.	T 0.0 0 0
322 .R V	G.	F	. 2	х.	T 0.0 0 0
323 .R V	G.	F	. 2	х.	T 0.0 0 0
323 .R V	G.	F	. 2	x.	T 0.0 0 0
324 .R V	G.	F	. 2	х.	T 0.0 0 0
324 .R V	G.	F	. 2	х.	T 0.0 0 0

ENGINE PARAMETER SHIFTS (cont'd)

DEGT ~ 0

D FF (%) ~ 0

DN2 (%)

CFM56-3

Trend signature	Troubleshooting Result	
VSV Close d	VSV offschedule	Chart M.10
VSV Close d	MEC change	Chart M.11

CFM56-5A

Trend signature	Troubleshooting Result	
Closed VSV	ECU P17 change	Chart M.12

CFM56-3 VSV Off Schedule (Chart M.10)

	S/N 111111 (9/ 9/89 -100EGT20		r VERSION 8.3.6PC01/92	(alagad)	
DATE VIB12	345	-642F/F24	6 -21EPR1	(closed)	
506A.R V	.G	F .	2 X.		
1006C.R V	. G	F .	2 X.	Effect of	a Amoro d
1012C.R V	. G	F .	2x.	Effect of	n trena
1018C.R V	. G	F .	2 X.		
1023C.R V	. G	F .	2 X.	nonitoring	
1029C.R V	. G	F .	х2.	_	
1111 .R V	. G	F .	2X.		
1111 .R V	. G	F .		$\Delta EGT \sim 0$	
1111 .R V	. G	F .	х2.		
1112 .R V	. G	F .	x2		
1113 .R V	. G	F .	X2 /	$\Delta FF \sim 0$	
1114 .R V	. G	F .	х2.		
1114 .R V	. G	F.	2X.	1370 107	
1115 .R V	. G	F.	2x.	$\Delta N2 = +1\%$)
1115 .R V	. G	F.	2 X.		0.0 0 0
1116 .R V	. G	F.	2 X.	T	0.0 0 0
1116 .R V	. G	F.	2 X.	T	0.0 0 0
1117 .R V	. G	F.	2 X.	T	0.0 0 0
1117 .R V	. G	F.	2X.	T	0.0 0 0
1118 .R V	. G	F.	х2.	T	0.0 0 0
1118=.R V	. G	F.	x.2	T	0.0 0 0
1119=.R V	. G	F.	X. 2	T	0.0 0 0
1119=.R V	. G	F.	x. 2	T	0.0 0 0
1120=.R V	. G	F.	x. 2	T	0.0 0 0
1120=.R V	. G	F.	x. 2	T	0.0 0 0
1121 X V	. G	_F .	x. 2	T	0.0 0 0
1121=X V	. G	F .	x. 2	T	0.0 0 0
1122=.R V	. G	F .	x. 2	T	0.0 0 0
1122=.R V	. G	F	x. 2	T	0.0 0 0
1123=X V	. G	F.	x. 2	T	0.0 0 0
1123=.R V	. G	F	x. 2	T	0.0 0 0
1123=.R V	. G	F_	x. 2	T	0.0 0 0
1124=.R V	. G	F	X. 2	T	0.0 0 0

CFM56-3 Change of MEC (chart M.11)

- ➤ Hot start problem
- ➤ CIT Changed: no effect
- ➤ MEC Changed : shifts observed

 $\Delta EGT \sim 0$ $\Delta FF \sim 0$

 $\Delta N2 = -0.7 \%$ (and returned to baseline)

➤ Old MEC scheduled VSV closed (N2 was +1% higher)

✓ contributed to hot start problem

(further investigations confirmed that the likely cause of the hot start problem was the old MEC scheduling VSV's closed)

1	TTT / • 17 V	• •	E.
ı	1117 .R V	. G	F.
ı	1118 X V	. G	F.
ı	1118 .R V	. G	F.
ı	1119 .R V	. G	F.
ı	1119 .R V	. G	F.
ı	1120 .RV	G.	F.
ı	1120 .R V	. G	F.

ADEPT VERSI	ON 8.3.6PC01/	92		RUN I	DATE :	11/	25/92
-2x	-1XN2	x	12				MAINT
246	-21EPR	1	22.5.THROI	.2.5 OATL	OT (OΡ	CODE
	х.	2		0.0			
	х.	2		0.0			
	x.	2		0.0			
	х.	2		0.0			
	x.	2		0.0			
	x.	2		0.0			
	x.	2	T	0.0	0	0	
	x.	2	T	0.0	0	0	
	х.	2	T	0.0	0	0	
	х.	2	T	0.0	0	0	
	х.	2	T	0.0	0	0	
	X.	2	T	0.0	0	0	
	х.	2		0.0	0	0	
	х.		2 Т	0.0	0	0	
	х.		2 т	0.0	0	0	
	х.		2 т	0.0	0	0	
	х.		2 т	0.0	0	0	
	х.		2 т	0.0	0	0	
	х.		2 T	0.0	0	0	
	х.	2		0.0	0	0	
	х.	2	MEC Change ^T	0.0	0	0	
	х.			0.0	0	0	
	х.	2	T	0.0	0	0	
	х.	2	T	0.0	0	0	
	x. :	2	T	0.0	0	0	
	-1XN2						
246	-21EPR		234	56 1	IAINT	. с	ODES
	х.	2	_				
	х.		2				
•	х.	_	2				
	х.	2	•				
	х.	2					
	2x.		MEC Change				
	X.2						

x2.

CFM56-5A P17 ECU Change (Chart M.12)

DATE VIB1 DATE VIB1 DOGC. R 1 1006C. R 1 1018C. R 1 1023C. R 1 1029C. R 1 1111 . R 1 EGT and FF shifts down reflects an HP core efficiency improvement	
DATE VIB. 1 506A. R 1006C. R 1012C. R 1018C. R 1023C. R 1029C. R 1111 . R VECT and FF shifts down reflects an HP core efficiency improvement	
DATE VIB. 1. 506A. R 1 1006C. R 1 1012C. R 1 1018C. R 1 1023C. R 1 1029C. R 1 1111 . R 1 FGT and FF shifts down reflects an HP core efficiency improvement	
1006C. R 1 1012C. R 1 1018C. R 1 1018C. R 1 1023C. R 1 1029C. R 1 1111 . R 1 1 1 1	at
1012c. R 1 1018c. R 1 1018c. R 1 1023c. R 1 1023c. R 1 1029c. R 1 1111 . R 1 \times Effect on the trend $\triangle EGT = -8^{\circ}C$ $\triangle FF = -0.8\%$ $\triangle N2 = +1\%$	at
1018c. R 1023c. R 1029c. R 1111 . R Effect on the trend $\Delta EGT = -8^{\circ}C$ $\Delta FF = -0.8 \%$ $\Delta N2 = +1\%$	at
1023c. Ry Effect on the trend $\Delta EGI = -8^{\circ}C$ $\Delta FF = -0.8\%$ $\Delta N2 = +1\%$ 1029c. Ry 1111 . Ry FGT and FF shifts down reflects an HP core efficiency improvement	at
1029C. R V 1111 . R V VECT and EE shifts down reflects an HD core officiency improvement	at
1111 . RV VECT and EE shifts down reflects an HD core afficiency improvement	24
V HI - I AND HH CHITTE DOWN POTIONE ON HU COPE ATTICIONOU IMPROVAMAN	n4
1111 . R V • EOT and FT shifts down reflects all FIF core efficiency improvement	ill l
1111 · R \	
$\sqrt{N2}$ shift is due to VSV closure (2°)	
1113 . R v 1N2 shift is due to VSV closure (2)	
1114 . R V . G . F .2 B T	0.0 0 0
1114 . R V . G . F .2 B T	0.0 0 0
1115 . R V . G . F .2 B T	0.0 0 0
1115 . R V . G . F 2 B T	0.0 0 0
1116.R V . G . F .2 B T	0.0 0 0
1116 . R V . G . F .2 B T	0.0 0 0
1117 . R V . G . F .2 B T	0.0 0 0
1117 . R V . G . F . 2 B T	0.0 0 0
1118 . R V . G . F . 2 B T . 1118 . R V . G . F . 2 B T	$0.0 0 0 \\ 0.0 0 0$
	0.0 0 0 0.0 0 0
1119 . R V . G . F . 2 B T . 1119 . R V . G . F . 2 B T	0.0 0 0
1119 . R V . G . F . 2 B T	0.0 0 0
1120 . R V G F 2 B T	0.0 0 0
-20100EGT203040 -2X1XN2X1X2	
DATE VIB.12345 -642F/F246 -21VSV1234!	56 MAINT. CODES
1116 . RV +G 2. B	
1116 . R V . G . F .2 B	ECU Change
III/ · R V · · · · · · · · · · · · · · · · ·	~
	VSV 2° Closed
1118 . R V . G . F . 2 B	
1118 . R V	
1119 .R V . G . F . 2 B	
1119 .R V . G . F . 2 B	
1120 . *	
1120 . R V . G . F . 2 B	

ENGINE PARAMETER SHIFTS (cont'd)

D **EGT** (°C) ↑ D **FF** (%) ↑ D **N2**(%) ↓

CFM56-2

Tre nd signature	Troubleshooting Result	
Core deterioration	HPT deterioration/ C clip failure	Chart M.13

CFM56-3

Trend signature	Troubleshooting Result	
Core deterioration	HPT Deterioration/C clip failure	Chart M.14A
Core deterioration	FOD event / HPT deterioration	Chart M.15
Core deterioration	FOD event / HPC deterioration	Chart M.16

CFM56-5

Trend signature	Troubleshooting Result	
Core deterioration	HPT Deterioration/ C clip failure	Chart M.14B
Core deterioration	Liberation of 1 HPT blade	Chart M.14C
Core deterioration	HPT + LPT deterioration	Chart M.14D

CFM56-7

Tre nd signature	Troubleshooting Result	
LPT failure	Liberation of LPT blades	Chart M.17

CFM56-2 HPT Deterioration/C-CLIP Failure (Chart M.13)

CFM56-3 HPT Deterioration/C-Clip Failure (chart M.14A)

BCD-1 CFM -3B2	S/N 111111 (9/ -100EGT.				RSION 8.3.6PC01/92	v o	RUN DATE 11/25/92
DATE VIB12					-21EPR12		
506A.R V		-0 1	2	. F	X. 2	-Z.J.IIKOI.Z	0.0
.006C.R V	•	G		. F	X. 2		0.0
.012C.R V	•	G		. F	x. 2		0.0
.018C.R V	•	G		. г	x. 2		0.0
.023C.R V	•	G		. F	x. 2		0.0
.029C.R V	•	G		. г	x. 2		0.0
.111 .R V	•	G		. F	x. 2	т	0.0 0 0
.111 .R V		G		. F	x. 2	T	0.0 0 0
111 .R V	•	G		. F	x. 2	T	0.0 0 0
.112 .R V	•	G		. F	x. 2	T	0.0 0 0
.113 .R V	•	G		. F	x. 2	T	0.0 0 0
.114 .R V	•	G		. F	X. 2	T	0.0 0 0
.114 .R V	•	G		. F	x. 2	T	0.0 0 0
.115 .R V	•	G		. F	X. 2	T	0.0 0 0
.115 .R V	•	G		. F	X. 2	T	0.0 0 0
.116 .R V	•	G		. F	x. 2	T	0.0 0 0
.116 .R V	•	G		. F	x. 2	T	0.0 0 0
.117 .R V	•	G		. F	x. 2	T	0.0 0 0
.117 .R V	•	G		. F	x. 2	T	0.0 0 0
.118 .R V	•	G		. F	x. 2	T	0.0 0 0
.118 .R V	•	G		. F	x. 2	T	0.0 0 0
.119 .R V	•	G		. F	x.2	T	0.0 0 0
.119 .R V	•	G		. F	x2 C-Clip F	^r ailure _r	0.0 0 0
.120 .R V	•		G	. F	2x.	T	0.0 0 0
.120 .R V	•			G F	2x.	T	0.0 0 0
.121 X V	•			. G F	2x.	T	0.0 0 0
.121 X V	•			. G F	2 X.	T	0.0 0 0
.122 .R V	•			. G	F 2X.	T	0.0 0 0
.122 .R V	•			. G	F 2 X.	T	0.0 0 0
.123 X V	•			. G	F 2 X.	T	0.0 0 0
.123 .R V	•			. G	F 2 X.	T	0.0 0 0
.123 .R V	•			. G	F 2 X.	T	0.0 0 0
.124 .R V	•			. G	F 2 X.	T	0.0 0 0

CFM56-5C HPT Deterioration/C-Clip Failure (Chart M.14B)

1 REPORT ID: CRTRND		MONITORING PROGRAM MANCE MONITORING - MOST	SAGE V3.0.3 PC - Jan 99 RECENT RECORDS	REPORT DATE: 11/24/99 PAGE: 1
A340-1 -2 A340-300	ENGTYP ENGSN CFM56-5C2/F 740XXX0EGT203040	981105 2 0 3		SELECTOR (SCALES VARIED) X2 CRZ OIL OIL MAINT ALT
DATE VIB123				SLOATL TMP PRS CODES CTR
111998A R= 0.4 V=	1.2 5.0	0.03	VSV= -1.03 N2= -0.01	BEOMIE THE TRO CODES CIR
111998B R= 0.4 V=	1.2 5.0	0.03	VSV= -1.03 N2= -0.01	
10199C .R V	. G	. F	В 2 .	
20299C .R V	. G	. F	В .2 .	
30199C . R V	. G	. F	B.2 .	
40199C . R V	. G	. F	2 .В	
63099= . VR	. G	.F	в .2 .	73 47. 0
70199= . VR	. G	.F	в .2 .	66 46. 0
71199= . VR	. G	.F	в .2 .	73 46. 0
71299= . VR	. G	.F	.* .	73 47. 0
71499= . VR	. G	.F	.2B .	69 47. 0
81099= . *	. G	.F	B.2 .	67 46. 0
81099= . VR	. G	.F	B.2 .	69 48. 0
81399= . *	. G	.F	в .2 .	72 44. 0
81499= . *	. G	.F	в .2 .	72 47. 0
81599= . VR	. G	.F	B .2 . C Cli	p Failure 72 47. 0
81699= . VR	. G	.F	В .2	72 47. 0
81799= . VR	. G	.F	в 2	72 47. 1
81899= . VR	. G	.F	в 2.	72 47. 1
81999= . VR	. G	.F	в 2.	72 47. 1
82099= . VR	. G	. F	в 2	72 47. 1
82199= . VR	. G	. F	в 2	72 47. 0
82299= . VR	. G	. F	в 2	72 47. 0
RAW DATA -2010	0EGT203040		.x1xn2x1	
DATE VIB123	-64	$\ldots -2\ldots \texttt{F}/\texttt{F}\ldots 2\ldots .4\ldots$.6 -32VSV01	SLOATL MAINT CODES CTR
81399= .VR	. G	F	в .2 .	0
81499= . VR	. G	F	в . 2 .	0
81599= . VR	. G	. F	в 2	0
81699= . VR	. G	.F	В 2	0
81799= . VR	. G	. F	в 2	1
81899= . VR	. G	. F	в 2	1
81999= . VR	. G	. F	В 2	1
82099= . VR	. G	. F	в 2	1
82199= . VR	. G	. F	в 2	0

CFM56-5C HPT Deterioration/Liberation HPT blade (Chart M.14C)

	() -			
REPORT ID: CRTRND	GE ENGINE CONDITION N			onitoring showed shift in EGT
AIRTYP Fly-1 -2 A340-200	ENGTYP ENGSN CFM56-5C3 741XXX	981104 6 * ****		
DATE VIB12 101898A R= 0.2 V=	0.4 -30.5	0.20	VSV=	$^{\circ}$ C Δ FF= 1% Δ N2 ~ -0,1%
101898B R= 0.2 V= 40101C .R V . 50101C .R V .	0.4 -30.5 G	0.20 . F . F	vsv₌ ≻ Vibration	level increased
60101C .R V . 70101C .R V . 91001 .R V .	G G	. r . F . F	➤BSI revea	aled the liberation of one HPT
91001 .R V . 91201 .R V . 91201 .R V . 91501 .R V .	G G G	. F . F . F	blade 2	68 43. 1 l
91601 .R V . 91601 .R V .	G G G	. r . F . F	B . 2 B . 2 B . 2 B . 2	82 44. 1 84 44. 1 87 43. 1
91701 .R V . 91701 .R V . 91801 .R V . 91901 .R V .	G G G	. r . F . F	B . 2 B . 2 B . 2 B . 2	71 46. 1 71 46. 1 90 43. 1
92001 .R V . 92001 .R V .	G G G	. F . F . F	B . 2 B . 2 B . 2	90 43. 1 79 44. 1 69 45. 1
92101 .R V . 92301 .R V . 92301 .R V . 92301 .R V .	G G	. r . F . F	B . 2 B . 2 B . 2	66 45. 1 79 43. 1 76 44. 1
92601 .R V . 92601 .R V . 92601 .R V .	G G G	. F . F . F	B . 2 B . 2 B . 2	68 45. 2 80 48. 3 69 45. 3
92701 . R V .	G 20EGT405060	. F	B . 2 X1XN2X1	66 45. 0
92001 .R V . 92001 .R V . 92101 .RV .	G G G	. F . F . F	X 2 X 2 X 2	SHOATE MAINT CODES CIR 1 1 1
92301 .R V . 92301 .R V . 92301 .R V .	G G	. F F . . F	X 2 X 2 X 2 X 2	1 1 1
92601 . RV	G G	. F . F . F	X2 X 2 X 2 X 2	2 3 3 3
92701 . R V .	G	. F	*	0 56

CFM56-5C HPT + LPT Deterioration (Chart M.14D)

REPORT ID: CRTRND		MONITORING PROGRAM MANCE MONITORING	SAGE V4.1.0 - MAR 200 - FROM 01/01/1980 TO 11/08	
AIRTYP XX-XXX -2 A340-300	ENGTYP CFM56-5C4		>Trend mo	nitoring showed huge shift in
SMOOTH 01.VIB2. DATE			201 411611	
060302A R=0.3 V=0.3 100702B R=0.4 V=0.6 060302C .*G 070102C .RVG 082602C .VRG	-3.8 12.5 .F F	0 . 2 9 N 2 = 0 . 1 . 7 6 N 2 = 0 .	l la companya di managanta di ma	$\Delta FF = +6.5\%$ $\Delta N2 = 1\%$
082602C .VRG 090102C .*G 100702C .RVG 102402 .*G 102402 .VRG	. F . F . F . F		BSI revea	led
102402 .VRG 102602 .VRG 102602 .VRG	. F . F		≽one H	PT shroud missing and 2 burned
102602 .VRG 102702 .*G 102702 .*G	. F . F		►HPT n	ozzles with heat distress
102702 . * G 102702 . * . G 102802 . RV . G	. F . F . F		►LPT b	lade damages
102802 . RV . G 102902 . * . G 103002 . RV . G				PT notches
103002 . RV . 110102 . RV . 110102 . RV . 110102 . * .	G	F F F	B . 2 B . 2 B . 2	-999.99 59 43 7 -999.99 78 44 7 -999.99 61 44 7 -999.99 65 48 7
110202 . * . 110202 . * . 110202 . * . 110202 . RV .	G	F F F	B . 2 B . 2 B . 2	-999.99 61 45 8 -999.99 78 45 8 -999.99 62 45 5 -999.99 58 46 8
110202 . RV . 110202 . RV . 110302 . R V . 110402 . R V .	G . G . G .	F F F	B . 2 B . 2 B . 2 B . 2	-999.99 59 45 8 -999.99 57 44 8 -999.99 61 46 10
110402 .RV . 110402 .RV . 110402 .RV .	G . G . G	F F F	*. 2 B 2 B 2 .B	-999.99 55 46 10 -999.99 63 47 9 -999.99 58 45 9 -999.99 70 45 10
110502 .RV 110602 . * . 304 RAW DATA 01.VIB2.	.G 050EGT.708090	F - 2	2 .B 2 .B .X1XN2X 12 -10VSV2	-999.99 80 43 7
DATE 110202 .RV . 110202 .R V .	G	F	B .2 B 2	SLOATL MAINT CODES CTR -999.99 -999.99 8
110202 .R V . 110202 .R V . 110302 .R V . 110402 .RV .	G . G .	F F	B . 2 2 B 2 . B	-999.99 8 -999.99 8 -999.99 10
110402 . K . 110402 . K . 110402 V R . 110402 . R . V	. G . G . +G	F F	2 . B 2 . B 2 . B 2 B.	-999.99 10 -999.99 9 -999.99 9
110502	. G	F	2 . B 2 . B	-999.99 10 -999.99 7

CFM56-3 F.O.D Event / HPT Deterioration (Chart M.15B)

1 REPORT	ID:	CRTRND		E CONDITION MONITOR: JISE PERFORMANCE MOI			AGE V3.0. NT RECORDS		➤ Shifts observed in EGT, FF and N2 trending
01235 SMOOTH DATE 112498A	VIE	312		-6421		23.50 2X 46	CONFIG -1X3 34 VSV=-999.0	vsv	Δ EGT= +28 °C
112498B 112498B 120298C 10199C 12599	R = X X X		-999.0 3.4 G	. 1	-0.23 -0.23 F. F.		VSV=-999.0 VSV=-999.0 2 2 2		$\Delta FF = +2\%$
12899 20599 20599 20699 20699	X X X X	:	G G G G		F F F F		2 2 2 2 2	X X X X	Δ N2= -0.3%
20799 20899 32099 32199	X X X X	· · ·	G G G G		. F . F . F		2 2 2 2 2	X X X X	➤ Deterioration of HPT (Performance restoration was
32399 32799 40299 40399	X X X	:	G G G		. F . F . F		2 2 2 2	X X X	carried out on this engine later)
40399 40399 40399 40399 40399	X X X X	· · ·	G G G G		. F . F . F		2 2 2 2	X X X X	95 45. 0 90 45. 0 75 45. 0 90 42. 0
40499 40499 40499 40499	X X X X	· · ·	G G G G		. F . F . F		2 2 2 2 2	X X X X	91 47. 0 85 45. 0 85 45. 0 85 45. 0
40499 40499 40599 40599	X X X	:	G G G		.F .F .F		2 2 2 2	X X X	90 45. 0 90 45. 0 90 43. 0 85 45. 0
40599 40599 40699 40699 40899	X X X X	:	G G G G		. F . F . F		2 2 2 2 2	X X X X	80 47. 0 80 45. 0 85 42. 0 100 47. 0 80 48. 0
40999	X X	•	G G		. F . F		2 2	X X	83 47. 0 100 45. 0

CFM56-3 FOD Event / HPC Deterioration (Chart M.16)

1ABCD-1		B2 S/N 11111 20100			40				E V3.0.3 PC	<u> </u>	monitoring s	howed	d so	evere
DATE VI		.234				-2	.F/F	24		shift in E	EGT and FF			
506A.	-	•	g				. 1	F	2					
1006C.	v	•	G				•	F	2		ADOM A	000	A 101	D 00/
1012C.	V	•	G				•	F	2		Δ EGT= 3	U^{C}	Δ FJ	t= 2%
1018C.	v	•	G				•	F_	2					
1023C.	V	•	G				•	F	2		1370	00/		
1029C.	v v	•	G				•	F	2		Δ N2 ~ -0.	3%		
1111 . 1111 .	V	•	G G				•	ਸ ਸ	2 2					
1111 .	v	•	G				•	F F	2	b Dat		4.3	TTD	CD 1 1
1111 .	V	•	G				•	r	2	BSI on	r Fan, Booste	er and	HP	T shroud
1112 .	V	•	G				•	F			*			
1114 .	v	•	G				•	F	2 2	no dama	ge			
1114 .	v	•	G				•	F	2					
1115 .	v	•	G				•	F	2	Dat .	TIDO 1 O	1.	4	
1115 .	v	•	•	G			•	F	2	► R21 01	HPC and Co	ombus	t101	1
1116 .	v			G				F	2	<u> </u>	741 1 04	1	. 1.1	. 1
1116 .	v			G				F	2	Cnambei	r : 7th and 8t	n stage	e bi	ades
1117 .	v	•		G				F	2		domonad			
1117 .	v				;			F	2	severely	damaged			
1118 .	v				G			F	2	х.	T	0.0	0	0
1118 .	v	•		(;			F	2 2	х.	T	0.0	0	0
1119 .	v	•		C	}		•	F		х.	T	0.0	0	0
1119 .	v	•		G			•	F	2	х.	T	0.0	0	0
1120 .	v	•		G			•	F	2	х.	T	0.0	0	0
1120 .	v	•		G			•	F	2	х.	T	0.0	0	0
		20100	пат	20 20	40					xN2x	1 " 0			
DAME 1/1		.234			40 -4	2	TP / TP	 			234	E 6 M	יזיזא ד	CODEC
1116 .	.Bı	.2		-6	-4	-2 G	.F/F	•••∠•••• F	2	X.	2 3 4	э м	AINT	. CODES
1116 .	V	•				G	•	F	2	x.				
1117 .	v	•				G	•	F	2	х.				
1117 .	V	•			G	G	•	F	2	х.				
1118 .	v	•			_	G	•	F	2	х.				
1118 .	-	•					F.	-	2	х.				
1119 .		•		G		J	- ·	F	2	х.				
1119 .	v	•		ŭ	G		:	F	2	х.				
1120 .	v	•			Ğ			F	2	х.				
1120 .	v	•			G		-	F	- 2	х.				

CFM56-7B Liberation of LPT blades (Chart M.17)

1 REPORT ID: CRTRND	GE ENGINE CONDITIO	N MONTHODING DDOGDAM	SAGE V3.0.3 PC - Jan 99 REPORT	DATE: 8/25/99
REPORT ID: CRIRND		N MONITORING PROGRAM RMANCE MONITORING - MOST RE		
AIRTYP SDLFO -1 B737-600	ENGTYP ENGSN CFM56-7B20 874XXX	INSDAT N1MOD TCC FNRA 980713 0 * ******	T	lowed shift in EQ1
SMOOTH -2010 DATE VIB123	0EGT20304 -6	0 -2X. 42F/F246		
110198A R= 0.1 V= 110198B R= 0.1 V=	0.3 1.7 0.3 1.7	-0.21 -0.21	$\Delta EGT = 10^{\circ}C$ $\Delta FF = 0$	$0.3\% \Delta N2 \sim -0.1\%$
10299C *V 20199C * V	.G .G	.F F	➤ Vibration level incre	acad
30199C .RV 40299C .RV 42199 .R V	. G . G	. F . F ғ	Violation level incre	aseu
42199 .R V 42199 .R V 42299 .R V	. G . G	r F F	►BSI revealed the libe	eration of three LPT
42299 .R V 42299 .R V	. G . G	F F	stage#1 blades	
42299 .R V 42299 .R V	. G . G	F F	2X 2 X	94 44. 0 94 43. 0
42299 .R V 42399 .R V 42799 .R V	. G . G	ተ ዋ ዋ	2X 2 X 2X	84 47. 1 85 47. 0 98 43. 0
42799 .R V 42799 .R V	. G . G	F F	2X 2 X	91 45. 0 92 44. 0
42799 .R V 42799 .R V	. G . G	F F	2 X 2 X	95 43. 0 88 44. 1
42899 .R V 42899 .R V	. G . G	F F_	2 X 2 X	89 46. 0 93 43. 0
42899 .R V 42899 * V 42899 * V	. G . G . G	.F .F .F	2 X 2 X 2 X	97 42. 0 100 42. 0 82 46. 2
	0EGT20304		1XN2X1X2 C	
42799 .R V 42799 .R V	. G . G	.F F	2X 2X	0
42799 * V 42799 .R V	. G . G	F . F	2 X 2 X	0 0
42799 * V 42899 * V 42899 .R V	. G . G	. F . F . F	2 X 2X 2 X	0
42899 * V 42899 * V	. G . G	. F . F	2X 2 X	0
42899 * V 1	. G	. F	2 X	2

MAINTENANCE ACTION RECOMMENDATIONS Based on Engine Monitoring Trends

Maintenance Actions Based On Cruise Trends

- > The following maintenance actions based on trend shifts are:
 - ✓ general guidelines established over many years of operation
 - ✓ generic to the CFM56 engine models

(These guidelines are generally in line with the A/C Maintenance Manual recommendations, but in all cases the A/C trouble-shooting procedures should be followed.)

CFM56-2/-3 TYPICAL MAINTENANCE ACTIONS

Based on Engine Monitoring Trends

∆EGT (°C)	∆FF (%)	∆N2 (%)	Probable cause	Maintenance action
<+/- 10	<+/- 1	<+/- 0.5	-	No action
<+/- 10	<+/- 1	<- 0.5	VSV open	Check VSV rigging Search for CIT cold shift
<+/- 10	<+/- 1	>+ 0.5	VSV close	Check VSV rigging Search for CIT warm shift
(10,20)	(1,2)	(0, + 0.5)	Excessive bleed or air leakage LP system deterioration*	Search for valve malfunction BSI LPT, inspection of fan, inlet and exhaust areas
>20	> 1.5	(+0.5, +1.5) (0, + 0.5)	VBV Open LP system deterioration*	Check VBV BSI LPT,inspection of fan, inlet and exhaust areas
>20	> 1.5	(0, - 0.8)	HPT deterioration HPC deterioration	BSI HPT BSI HPC

^{*} Not observed in service

CFM56-5/-7 TYPICAL MAINTENANCE ACTIONS Based on Engine Monitoring Trends

∆EGT (°C)	ΔFF (%)	∆N2 (%)	Probable cause	Maintenance action
<+/- 10	<+/- 1	<+/- 0.5	-	No action
(10,20)	(1,2)	(0, + 0.5)	Excessive bleed or air leakage VSV lever arm failure LP system deterioration*	Search for faulty valves, duct damage Check VSV Lever arm BSI LPT, inspection of fan, inlet and exhaust areas
>20	> 1.5	(+0.5, +1.5) (0, + 0.5)	VBV Open LP system deterioration*	Check VBV for defects BSI LPT, inspection of fan, inlet and exhaust areas
>20	> 1.5	(0, - 0.8)	HPT deterioration HPC deterioration	BSI HPT BSI HPC

^{*} Not observed in service

MAINTENANCE ACTION RECOMMENDATIONS Based on Engine Monitoring Trends

Fuel Flow

Flow trend shifts are useful in confirming EGT

(a significant fuel flow shift, without a corresponding EGT shift, is indicative of a fuel flow indication-error or inaccurate input data)

✓ Errors in altitude and Mach will result in large shifts in fuel flow" trend