Mathematischer Satz mit dem Paket amsmath

- Tutorium -

Günter Partosch*

mailto:Guenter.Partosch@hrz.uni-giessen.de

7. März 2007^{\dagger}

Zielgruppe für diese Kursunterlagen sind LATEX-Anwender, die auf ihrem Rechner Dokumente erstellen wollen, die mathematische Formeln enthalten und nicht mit den Möglichkeiten in Standard-LATEX auskommen. Im Kurs werden die (meisten) Möglichkeiten zur Formelgestaltung und die wichtigsten Formelelemente des Pakets amsmath vorgestellt. Wünschenswert sind mindestens Anfangskenntnisse in $\text{LATEX } 2_{\varepsilon}$.

 $^{^*}$ Hochschulrechenzentrum (HRZ) der Justus-Liebig-Universität Gießen

[†]überarbeitet 9. März 2021

Inhaltsverzeichnis

Inhaltsverzeichnis

1	Bemerkungen zum Setzen mathematischer Formeln	5
2	Aufbau der Datei 2.1 Ohne amsmath	
3	So bringe ich Mathematik in mein Dokument 3.1 Inline-Formeln	7 7
4	Abgesetzte Formeln mit Nummern 4.1 Möglichkeiten ohne amsmath	
5	Matrizen und andere rechteckige Konstruktionen5.1 Möglichkeiten ohne amsmath	
6	Abstände in Formeln 6.1 Möglichkeiten ohne amsmath	
7	Auslassungspunkte7.1 Möglichkeiten ohne amsmath	
8	Wurzeln8.1 Möglichkeiten ohne amsmath	
9	Formeln in Kästen	21
10	Pfeile drunter und drüber10.1 Möglichkeiten ohne amsmath	22 22 22
11	Brüche 11.1 Möglichkeiten ohne amsmath	23 23 24 24
A	Abgesetzte Formeln mit Nummern	25
В	Matrizen und andere rechteckige Konstruktionen	26
C	Abstände in Formeln	27

Inhaltsverzeichnis

Inc	dex	30
E	Pfeile drunter und drüber	29
D	Auslassungspunkte	28

Vorbemerkung 1 (Konventionen):

In der vorliegenden Anleitung wird versucht, an Hand zahlreicher Beispiele zu zeigen, wie mathematische Formeln in \LaTeX 2ε mit Hilfe des Pakets amsmath gesetzt werden können.

- Dabei wird für (fast) jedes Beispiel jeweils in der rechten Spalte die Eingabe und in der linken Spalte das zugehörige Ergebnis aufgeführt.
- Um den Platz in der linken Spalte besser nutzen zu können, müssten eigentlich die Formeln dort linksbündig gesetzt werden (durch die Option fleqn in der documentclass-Anweisung). Um einige wesentliche Eigenschaften nicht zu verdecken, wird aber darauf verzichtet.
- Die Texte in den Beispielen wurden in UTF-8 codiert (einschließlich der Umlaute und des Eszets); auf die Umschreibung wie beispielsweise in "a für ä wurde verzichtet.

1 Bemerkungen zum Setzen mathematischer Formeln

Das Setzen mathematischer Formeln unterscheidet sich in TEX und LATEX deutlich von der Aufbereitung "normaler" Texte. Dabei gelten die folgenden Regeln (sinngemäß aus der LATEX-Kurzanleitung):

- Leerzeilen in der Eingabe für eine Formel sind generell nicht zulässig.
- Leerzeichen und Zeilenwechsel haben bei der Eingabe keine Bedeutung; alle Abstände in der Formel werden automatisch nach der Logik mathematischer Ausdrücke bestimmt bzw. müssen durch spezielle Befehle wie \,, \! oder \qquad festgelegt werden.
- Jeder einzelne Buchstabe in der mathematischen Eingabe wird als Name einer Variablen betrachtet und entsprechend gesetzt: kursiv mit zusätzlichem Abstand; so beispielsweise "mathematischerText" statt "mathematischer Text". Will man innerhalb eines mathematischen Kontextes normalen Text (d. h. aufrecht mit korrekten Abständen) setzen, muss man diesen als Parameter in \textrm{...} bzw. \text{...} aufführen.

2 Aufbau der Datei

2.1 Ohne amsmath

2.2 Zusätzlich mit amsmath

```
\documentclass[fleqn,
                            % linksbündige, abgesetzte Formeln
                            % links stehende Formelnummern
               legno,
                            % A4-Papier
               paper=a4,
               parskip=half,
]{scrartcl}
% \usepackage[utf8]{inputenc} % kann hier entfallen
\usepackage[ngerman]{babel}
\usepackage[T1]{fontenc}
\usepackage[tbtags,
                            % Platzierung der Formel-Tags;
                            % es gibt auch centertags
sumlimits,
                            % Platzierung der Summationsgrenzen
                            % (oberhalb/unterhalb)
intlimits,
                            % Platzierung der Integrationsgrenzen
                            % (oberhalb/unterhalb)
namelimits
                            % Platzierung der Grenzen
                            % (oberhalb/unterhalb) bei Funktionen
{amsmath}
\usepackage{amsfonts}
\usepackage{amsthm}
                            % Theoreme
\usepackage{amscd}
                            % kommutative Diagramme
\setcounter{MaxMatrixCols}{12}
\begin{document}
\end{document}
```

3 So bringe ich Mathematik in mein Dokument

3.1 Inline-Formeln

Seien a und b die Katheten und c die Hypotenuse, dann gilt $c = \sqrt{a^2 + b^2}$ (Lehrsatz des Pythagoras).

%--inline1.tex---

Seien \$a\$ und \$b\$ die Katheten und \$c\$ die Hypotenuse, dann gilt \$c=\sqrt{a^2+b^2}\$ (Lehrsatz des Pythagoras).

%--inline2.tex---

Seien a und b die Katheten und c die Hypotenuse, dann gilt $c = \sqrt{a^2 + b^2}$ (Lehrsatz des Pythagoras).

Seien \$a\$ und \$b\$ die Katheten und \$c\$ die Hypotenuse, dann gilt \begin{math} $c=\sqrt{a^2+b^2}$ \end{math} (Lehrsatz des Pythagoras).

%--inline3.tex---

Seien a und b die Katheten und c die Hypotenuse, dann gilt $c = \sqrt{a^2 + b^2}$ (Lehrsatz des Pythagoras).

Seien \$a\$ und \$b\$ die Katheten und \$c\$ die Hypotenuse, dann gilt $\ (c=\sqrt{a^2+b^2}\)$ (Lehrsatz des Pythagoras).

3.2 Abgesetzte Formeln

Seien a und b die Katheten und c die Hypote-%--display1.tex--nuse, dann gilt

$$c^2 = a^2 + b^2$$

Seien \$a\$ und \$b\$ die Katheten und \$c\$ die Hypotenuse, dann gilt \$\$c^2=a^2+b^2\$\$ (Lehrsatz des Pythagoras).

(Lehrsatz des Pythagoras).

Seien a und b die Katheten und c die Hypotenuse, dann gilt

$$c^2 = a^2 + b^2$$

(Lehrsatz des Pythagoras).

%--display2.tex---

Seien \$a\$ und \$b\$ die Katheten und \$c\$ die Hypotenuse, dann gilt \begin{displaymath} $c^2=a^2+b^2$ \end{displaymath} (Lehrsatz des Pythagoras).

Seien a und b die Katheten und c die Hypotenuse, dann gilt

$$c^2 = a^2 + b^2$$

(Lehrsatz des Pythagoras).

%--display2.tex---

Seien \$a\$ und \$b\$ die Katheten und \$c\$ die Hypotenuse, dann gilt \begin{displaymath} c^2=a^2+b^2 \end{displaymath}

(Lehrsatz des Pythagoras).

4 Abgesetzte Formeln mit Nummern

4.1 Möglichkeiten ohne amsmath

Seien a und b die Katheten und c die Hypotenuse, dann gilt

$$c^2 = a^2 + b^2$$

(Lehrsatz des Pythagoras). Aus (1) folgt . . . %--display4.tex--ote- Seien \$a\$ und \$b\$ die Katheten
 und \$c\$ die Hypotenuse, dann gilt
 \begin{equation}\label{Pythagoras}
(1) c^2=a^2+b^2
 \end{equation}
 (Lehrsatz des Pythagoras).\par
 Aus (\ref{Pythagoras}) folgt \dots

$$f(x) = \cos x$$

$$f'(x) = -\sin x$$

$$\int_{0}^{x} f(y) dy = \sin x$$

%--display5.tex--(2) \begin{eqnarray}

(3) f(x) & = & \cos x \\
f'(x) & = & - \sin x \\

(4) \int_0^xf(y)\mathrm{d}y&=&\sin x
\end{eqnarray}

4.2 Möglichkeiten mit amsmath

$$c^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

%--gleichung-equation1.tex-(5) \begin{equation}
 c^3=a^3 + 3a^2b + 3ab^2 + b^3
 \end{equation}

%--gleichung-equation2.tex--

$$a = b + c - d$$

$$+ e - f$$

$$= g + h$$

$$= i$$

Aus Gleichung (6) ergibt sich . . .

%--gleichung-split.tex- \begin{equation}\label{gl:aufgeteilt}
 \begin{split}
 a& =b+c-d\\
 & \quad +e-f\\
 & =g+h\\
 & =i
 \end{split}
 \end{equation}

Aus Gleichung~\eqref{gl:aufgeteilt}
ergibt sich \dots

$$H_{c} = \frac{1}{2n} \sum_{l=0}^{n} (-1)^{l} (n-l)^{p-2} \sum_{l_{1}+\dots+l_{p}=l} \prod_{i=1}^{p} \binom{n_{i}}{l_{i}}$$

$$\cdot \left[(n-l) - (n_{i}-l_{i}) \right]^{n_{i}-l_{i}} \cdot \left[(n-l)^{2} - \sum_{i=1}^{p} (n_{i}-l_{i})^{2} \right]$$

$$(7)$$

%--gleichung-gather1.tex--

%--gleichung-gather2.tex--

 $\begin{equation}\label{gl:barwq} $$ \begin{array}{c} \begin{array}{c} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \\$

```
%--gleichung-align1.tex--
                                           \begin{align}
          a_1 = b_1 + c_1
                                    (13)
                                           a_1 & & = b_1 + c_1 \setminus
      a_2 + 1 = b_2 + c_2 - d_2 + e_2
                                    (14)
                                           a 2 + 1 & = b 2 + c 2 - d 2 + e 2
                                           \end{align}
                                        %--gleichung-align2.tex--
                                           \begin{align}
                                           a_{11} & = b_{11} &
             a_{12} = b_{12}
  a_{11} = b_{11}
                                    (15)
                                             a \{12\}\& = b \{12\}\
  a_{21} = b_{21}
               a_{22} = b_{22} + c_{22}
                                    (16)
                                          a \{21\} \& = b \{21\} \&
                                             a_{22} = b_{22} + c_{22}
                                           \end{align}
                                        %--gleichung-align3.tex--
                                          \begin{align}
                    X = Y
                                    (17)
    x = y
                                          x&=y
                                                      & X&=Y
                                                                    //
                    X' = Y'
   x' = y'
                                    (18)
                                          x'&=v'
                                                       & X'&=Y'
x + x' = y + y' \qquad X + X' = Y + Y'
                                    (19)
                                          x+x'&=y+y' & X+X'&=Y+Y'
                                           \end{align}
                                        %--gleichung-align4.tex--
                                            \begin{align}
                                            x\& = y_1-y_2+y_3-\dots
x = y_1 - y_2 + y_3 - \dots wg. (26)
                                    (20)
                                                 && \text{wg. \eqref{gl:C}}\\
 = y' \circ y^*
                      wg. (27)
                                    (21)
                                            &=y'\circ
 = y(0)y'
                      wg. Satz 1
                                    (22)
                                            y^*&&\text{wg. \eqref{gl:D}}\\
                                            &=y(0) y'
                                                         &&\text {wg. Satz 1}
                                            \end{align}
                                        %--gleichung-alignat1.tex--
                                            \begin{alignat}{2}
                                            x\& = y_1-y_2+y_3-\dots
                                                 &\quad&
x = y_1 - y_2 + y_3 - \dots wg. (26)
                                    (23)
                                                 \text{wg. \eqref{gl:C}}\\
  =y'\circ y^*
                                    (24)
                      wg. (27)
                                            &=y'\circ
  =y(0)y'
                      wg. Satz 1
                                    (25)
                                            y^*&&\text{wg. \eqref{gl:D}}\\
                                            &=y(0) y' &&\text {wg. Satz 1}
                                            \end{alignat}
```

```
%--gleichung-align5.tex--
                                                        \begin{equation*}
                                                        \left.\begin{aligned}
                                                        B'&=-\partial\times E,\\
 B' = -\partial \times E,

E' = \partial \times B - 4\pi j, Maxwell-Gleichungen
                                                        E'\&=\partial\times B - 4\pi j,
                                                        \end{aligned}
                                                        \right\}
                                                        \quad\text{Maxwell-Gleichungen}
                                                        \end{equation*}
                                                   %--gleichung-flalign.tex--
                                                     \begin{flalign}\label{gl:C}
                                                     a_{11} & = b_{11} &
                            a_{12} = b_{12} \tag{26}
a_{11} = b_{11}
                                                      a \{12\}\& = b \{12\}\setminus
a_{21} = b_{21}
                             a_{22} = b_{22} + c_{22} (27) a_{21} & = b_{21} &
                                                        a_{22} = b_{22} + c_{22} \ | \ abel{g1:D}
                                                     \end{flalign}
                                                   %--gleichung-cases.tex--
                                                     \begin{equation*}
                                                     P_{r-j}=
                                                     \begin{cases}
 P_{r-j} = \begin{cases} 0 & r-j \text{ ist ungerade,} \\ r! (-1)^{(r-j)/2} & r-j \text{ ist gerade} \end{cases}
                                                     0& \text{$r-j$ ist ungerade},\\
                                                     r!\,(-1)^{(r-j)/2}&
                                                     \text{$r-j$ ist gerade}
                                                     \end{cases}
                                                     \end{equation*}
```

Siehe dazu auch Anhang A auf Seite 25.

5 Matrizen und andere rechteckige Konstruktionen

5.1 Möglichkeiten ohne amsmath

```
%--matrix1.tex---
                                                    \[ \begin{array}{|cccc|}
  \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{21} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{vmatrix}
                                                    a_{11} & a_{12} & \cdots & a_{1n} \
                                                    a_{21} & a_{22} & \cdots & a_{21} \
                                                    \vdots & \vdots & \ddots & \vdots \\
                                                    a_{m1} & a_{m2} & \cdots & a_{mn}
                                                     \end{array} \]
                                                    %--matrix2.tex---
                                                     \begin{displaymath}
                                                     \left\{\begin{array}{cccc}
                                                     \Gamma_{11} & \Gamma_{12} & \Gamma_{12} 
                                                        \Gamma_{1n}\

\left\{
\begin{array}{cccc}
\Gamma_{11} & \Gamma_{12} & \cdots & \Gamma_{1n} \\
\Gamma_{21} & \Gamma_{22} & \cdots & \Gamma_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
\Gamma_{m1} & \Gamma_{m2} & \cdots & \Gamma_{mm}
\end{array}
\right\}

                                                    \Gamma_{21} & \Gamma_{22} & \cdots &
                                                        \Gamma_{2n}\
                                                     \vdots
                                                                       & \vdots
                                                                                             & \ddots &
                                                        \vdots\\
                                                     \Gamma_{m1} \& \Gamma_{m2} \& \cdots \&
                                                        \Gamma_{mn}
                                                     \end{array}\right\}
                                                     \end{displaymath}
                                                    %--matrix3.tex---
                                                    [|x|= \left( \frac{x}{2} \right)]
 |x| = \begin{cases} x & \text{für } x \ge 0\\ -x & \text{für } x < 0 \end{cases}
                                                      x & \text{textrm{für}} x \ge 0
                                                     -x & \text{textrm}\{f\ddot{u}r \} x < 0 \
                                                     \end{array}\right. \]
```

%--matrix4.tex---

```
\[\left(
                                    \begin{array}{c0{}c0{}c}
                                    \begin{array}{|cc|}
                                    \hline
                                    a_{11} & a_{12} \\
                                    a_{21} & a_{22} \\
                                    \hline
                                    \end{array} & 0 & 0 \\
                                    0 & \begin{array}{|ccc|}
a_{11} a_{12}
a_{21} a_{22}
                                        \hline
        b_{11} b_{12} b_{13}
                                        b_{11} & b_{12} & b_{13}\\
        b_{21} b_{22} b_{23}
                                        b_{21} & b_{22} & b_{23}\\
        b_{31} b_{32} b_{33}
                                        b_{31} & b_{32} & b_{33}\\
                                        \hline
                     c_{11} c_{12}
  0
             0
                                        \end{array} & 0 \\
                         c_{22}
                     c_{21}
                                    0 & 0 & \begin{array}{|cc|}
                                             \hline
                                             c_{11} & c_{12} \\
                                             c_{21} & c_{22} \\
                                             \hline
                                             \end{array} \\
                                    \end{array}
                                    \right)\]
                                    %--matrix5.tex---
                                    \mbox{newcommand}\{\A\}[5]{
                                    \left#1\begin{array}{cccc}
                                    {#2}_{11} & {#2}_{12} & \cdots &
                                      {#2}_{1#4}\\
                                    {#2}_{21} & {#2}_{22} & \cdot cdots &
                                      {#2}_{2#4}\\
                                    \vdots
                                               & \vdots
                                                            & \ddots &
                                                 //
                                      \vdots
                                    \{#2\}_{\#31} \& \{#2\}_{\#32} \& \cdots \&
                                      {#2}_{#3#4}
   \end{array}\right)
                                    % ...
                                    \[ \A(amn) \]
                                    \[\A[xij]\]
                                    \[ \A\{{\int}mn\} \]
```

5.2 Möglichkeiten mit amsmath

Mit Hilfe des Pakets amsmath lassen sich recht kleine Matrizen, so beispielsweise $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, oder kleine Determinanten, z. B. $\begin{vmatrix} a & b \\ c & d \end{vmatrix}$, in den laufenden Text einstreuen.

%--matrizen-smallmatrix.tex-Mit Hilfe des Pakets \file{amsmath}
lassen sich recht kleine Matrizen,
so beispielsweise
\(\bigl(\begin{smallmatrix}
a&b\\ c&d
\end{smallmatrix}\bigr)\), oder kleine
Determinanten, z.\,B.
\(\bigl\lvert \begin{smallmatrix}
a&b\\ c&d
\end{smallmatrix}\bigr\rvert\), in
den laufenden Text einstreuen.

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{21} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{vmatrix}$$

%--matrix1.tex---\[\begin{array}{|cccc|} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{21} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn}\ \end{array} \]

```
\begin{pmatrix} D_1 t & -a_{12}t_2 & \dots & -a_{1n}t_n \\ -a_{21}t_1 & D_2 t & \dots & -a_{2n}t_n \\ \dots & \dots & \dots & \dots \\ -a_{n1}t_1 & -a_{n2}t_2 & \dots & D_n t \end{pmatrix}
```

%--matrizen-pmatrix1.tex- \begin{equation}
 \begin{pmatrix}
 D_1t&-a_{12}t_2&\dots&-a_{1n}t_n\\
 -a_{21}t_1&D_2t&\dots&-a_{2n}t_n\\
 \hdotsfor[3]{4}\\
 -a_{n1}t_1&-a_{n2}t_2&\dots&D_nt\\
 \end{epmatrix}
 \end{equation}

```
%--matrix2.tex---
                                                   \begin{displaymath}
                                                   \left\{\begin{array}{cccc}
                                                   \Gamma_{11} \& \Gamma_{12} \& \cdots \&
                                                      \Gamma_{1n}\

\left\{
\begin{array}{cccc}
\Gamma_{11} & \Gamma_{12} & \cdots & \Gamma_{1n} \\
\Gamma_{21} & \Gamma_{22} & \cdots & \Gamma_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
\Gamma_{m1} & \Gamma_{m2} & \cdots & \Gamma_{mn}
\end{array}
\right\}

                                                   \Gamma_{21} & \Gamma_{22} & \cdots &
                                                      \Gamma_{2n}\
                                                   \vdots
                                                                     & \vdots
                                                                                          & \ddots &
                                                      \vdots\\
                                                   \Gamma_{m1} \& \Gamma_{m2} \& \cdots \&
                                                      \Gamma_{mn}
                                                   \end{array}\right\}
                                                   \end{displaymath}
                                                   %--matrizen-pmatrix2.tex--
                                                      \[\begin{pmatrix}
       \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}
                                                      a {11} & a {12} & a {13}\\
                                                      a_{21} & a_{22} & a_{23} \
                                                      a_{31} & a_{32} & a_{33}
                                                      \end{pmatrix}\]
                                                   %--matrizen-bmatrix.tex--
                                                      \[\begin{bmatrix}
        \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}
                                                      a_{11} & a_{12} & a_{13} \
                                                      a_{21} & a_{22} & a_{23} \
                                                      a_{31} & a_{32} & a_{33}
                                                      \end{bmatrix}\]
                                                   %--matrizen-bbmatrix.tex--
                                                      \[\begin{Bmatrix}

\begin{cases}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{cases}

                                                      a_{11} & a_{12} & a_{13} \
                                                      a_{21} & a_{22} & a_{23}\\
                                                      a_{31} & a_{32} & a_{33}
                                                      \end{Bmatrix}\]
                                                   %--matrizen-vmatrix.tex--
                                                      \[\begin{vmatrix}
         a_{11} a_{12} a_{13}
                                                      a_{11} & a_{12} & a_{13}\\
         \begin{vmatrix} a_{21} & a_{22} & a_{23} \end{vmatrix}
                                                      a_{21} & a_{22} & a_{23} \
         \begin{vmatrix} a_{31} & a_{32} & a_{33} \end{vmatrix}
                                                      a_{31} & a_{32} & a_{33}
                                                      \end{vmatrix}\]
```

Siehe dazu auch Anhang B auf Seite 26.

6 Abstände in Formeln

6.1 Möglichkeiten ohne amsmath

6.2 Möglichkeiten mit amsmath

Siehe dazu auch Anhang C auf Seite 27.

7 Auslassungspunkte

7.1 Möglichkeiten ohne amsmath

$$\vec{x} \stackrel{\text{def}}{=} (x_1, x_2, \dots, x_n) \qquad \begin{array}{lll} %-\text{ueber1.tex---} \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & &$$

7.2 Möglichkeiten mit amsmath

Siehe dazu auch Anhang D auf Seite 28.

8 Wurzeln

8.1 Möglichkeiten ohne amsmath

$\sqrt{x^3 + \sqrt{\alpha}}$	%wurzel4.tex \[\sqrt{x^3 + \sqrt\alpha} \]
$\sqrt[n+1]{a}$	%wurzel6.tex \[\sqrt[n+1]{a} \]
$\sqrt[3]{h_n''(\alpha x)}$	%wurzel8.tex \[\sqrt[3]{h''_n(\alpha x)} \]

8.2 Möglichkeiten mit amsmath

9 Formeln in Kästen

10 Pfeile drunter und drüber

10.1 Möglichkeiten ohne amsmath

10.2 Möglichkeiten mit amsmath

Siehe dazu auch Anhang E auf Seite 29.

11 Brüche

11.1 Möglichkeiten ohne amsmath

$\frac{1}{2}$ $\frac{n+1}{3}$	%bruch1.tex \[\frac{1}{2} \qquad \frac{n+1}{3} \]
$a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{a_4}}}}$	%bruch6.tex \[a_0+\frac{1}{\displaystyle a_1 + \frac{\strut 1}{\displaystyle a_2 + \frac{\strut 1}{\displaystyle a_3 + \frac{\strut 1}{a_4}}} \]
$\frac{\frac{a}{b}}{\frac{c}{d}}$	%bruch7.tex \[\frac{\displaystyle \frac{a}{b}}% {\displaystyle\frac{c}{d}} \]

11.2 Möglichkeiten mit amsmath

$$\frac{1}{k} \log_2 c(f) \qquad \qquad (30) \begin{gather}{0.5cm} & & & & & \\ \frac{1}{k} \log_2 c(f) & & & & \\ \hline \sqrt{\frac{1}{k}} \log_2 c(f) & & & & \\ \hline \sqrt{\frac{1}{k}} \log_2 c(f) & & & & \\ \hline \sqrt{\frac{1}{k}} \log_2 c(f) & & & & \\ \hline \sqrt{\frac{1}{k}} \log_2 c(f) & & & & \\ \hline \sqrt{\frac{1}{k}} \log_2 c(f) & & & & \\ \hline \end{array}$$

$$\frac{1}{\sqrt{2}+\frac{1}{\sqrt{2}+\frac{1}{\sqrt{2}+\cdots}}} \tag{34} \begin{equation} \\ \cfrac[c]{1}{\sqrt{2}+}\\ \cfrac[c]{1}{\sqrt{2}+}\\ \cfrac[c]{1}{\sqrt{2}+\cdots} \\ \cfrac[c]{1}{\sqrt{2}+\cdots} \\ \end{equation}$$

%--brueche-cfrac.tex--

11.3 Der amsmath-Befehl genfrac

$$\begin{pmatrix}
\frac{a+b}{c+d} \\
n \\
n-1
\end{pmatrix}$$

$$\frac{a+b}{c+d}$$

$$\frac{e+f}{g+h}$$

%--brueche-genfrac.tex-\renewcommand{\frac}[2]%
 {\genfrac{}{}{}{#1}{#2}}
\renewcommand{\tfrac}[2]%
 {\genfrac{}{}{1}{#1}{#2}}
) \renewcommand{\binom}[2]%

- (35) \renewcommand{\binom}[2]% \{\genfrac{(\{\})\}{0pt}\{0\}{#1}{#2}}
- (36) \newcommand{\DBruch}[2]% {\genfrac{}{}{2pt}{0}{#1}{#2}} \begin{gather}
- $\label{eq:continuous} \begin{tabular}{llll} $$ \int_{a+b}{c+d} \ \int_{a+b}{c+d} \left(\frac{e+f}{g+h} \right) \end{gather}$

A Abgesetzte Formeln mit Nummern

Im Vergleich zu LATEX stehen mit amsmath folgende Umgebungen für die Darstellung abgesetzter Formeln zur Verfügung:

align ausgerichtete Formeln mit Formelnummern align* ausgerichtete Formeln ohne Formelnummern alignat mehrfach ausgerichtete Formeln mit Formelnummern mehrfach ausgerichtete Formeln ohne Formelnummern alignat* eine Formel mit Formelnummer equation equation* eine Formel ohne Formelnummer flalign ausgerichtete Formeln mit Formelnummern ausgerichtete Formeln ohne Formelnummern flalign* zentrierte Formeln mit Formelnummern gather zentrierte Formeln ohne Formelnummern gather* mehrzeilige Formel mit Formelnummer multline multline* mehrzeilige Formel ohne Formelnummer split mehrzeilige Formel innerhalb einer anderen Umgebung

B Matrizen und andere rechteckige Konstruktionen

(max. 10-spaltig)

Das Paket amsmath stellt zusätzlich folgende Umgebungen für matrixartige Konstruktionen zur Verfügung:

smallmatrix kleine rechteckige Anordnung (nicht abgesetzt); sinnvoll maximal für 2-spaltig

matrix	rechteckige Anordnung ohne Begrenzungen (max. 10-spaltig)
pmatrix	rechteckige Anordnung mit runden Klammern als Begrenzungen (max. 10-spaltig)
bmatrix	rechteckige Anordnung mit rechteckigen Klammern als Begrenzungen (max. 10-spaltig)
bbmatrix	rechteckige Anordnung mit geschweiften Klammern als Begrenzungen (max. 10-spaltig)
vmatrix	rechteckige Anordnung mit senkrechten Strichen als Begrenzungen (max. 10-spaltig)
vvmatrix	rechteckige Anordnung mit doppelten senkrechten Strichen als Begrenzungen

C Abstände in Formeln

Wenn Sie das Paket amsmath einsetzen, stehen Ihnen die folgenden Abstandsbefehle zur Verfügung:

Befehl	abgekürzt	Bedeutung	Abstand	Beispiel
_		normaler Zwischenraum		
\thinspace	١,	schmaler Zwischenraum	3/18 em	
\negthinspace	\!	verkleinerter Zwischenraum	-3/18 em	
\medspace	\ :	mittlerer Zwischenraum	4/18 em	
\negmedspace		kleiner Zwischenraum		
\thickspace	\ ;	breiter Zwischenraum	5/18 em	
\negthickspace		sehr kleiner Zwischenraum		
		breiterer Zwischenraum	$1 \mathrm{\ em}$	
\qquad		sehr breiter Zwischenraum	$2 \mathrm{em}$	

Die genauesten Abstandsbefehle haben Sie mit $\mbox{\sc mspace}\{...\}$ und den mathematischen Einheiten (mu, 1/18 em).

D Auslassungspunkte

Mit amsmath stehen Ihnen die folgenden zusätzlichen Auslassungspunkte zur Verfügung:

- \dotsc: Auslassungspunkte mit Kommata
- \dotsb: Auslassungspunkte mit binären Operatoren/Relationen
- \dotsm: Multiplikations-Auslassungspunkte
- \dotsi: Auslassungspunkte mit Integralen
- \dotso: andere Auslassungspunkte (sonst)

E Pfeile drunter und drüber

- $\bullet \ \overrightarrow{AB} \ (\texttt{\coverrightarrow})$
- \overleftarrow{AB} (\overleftarrow)
- $\bullet \; \stackrel{\displaystyle \longleftrightarrow}{AB} \; (\texttt{\coverleftrightarrow})$
- \overleftarrow{AB} (\overleftarrow)
- AB = (underleftarrow)
- $\bullet \ \overrightarrow{AB} \ (\texttt{\coverrightarrow})$
- AB = (underrightarrow)
- \overrightarrow{AB} (\overleftrightarrow)
- AB (\underleftrightarrow)

Index

Abstand, 18, 27	matrix, 26		
Abstandsbefehl, 27	multline, 25		
amsmath-Anweisung	$multline*, \frac{25}{}$		
$\backslash \mathtt{binom}, \frac{10}{}$	pmatrix, 15 , 16 , 26		
\boxed, 21	smallmatrix, 15 , 26		
$\backslash cfrac, \frac{23}{}$	split, 10, 21, 25		
$\backslash dfrac, \frac{23}{}$	vmatrix, 16, 26		
\dotsb, 28	$vvmatrix, \frac{17}{26}$		
\dotsc, 28	Auslassungspunkte, 19, 28		
\dotsi, 28			
$\setminus dotsm, \frac{28}{}$	Binomialkoeffizient, 10		
\dotso, 28	Bruch, 18, 23, 24		
\eqref, 10, 11	Dataianthan 6		
\genfrac, 24	Dateiaufbau, 6		
\hdotsfor, 15	em (Maßeinheit), 27		
\leftroot, 20			
$\mbox{mspace}, \frac{27}{}$	Formel		
\negthickspace, $\frac{27}{}$	abgesetzt, $7, 9, 25$		
\overleftarrow, 29	Abstand, 18, 27		
\overleftrightarrow, 29	Inline, 7		
\overrightarrow, 29	Kasten, 21		
\text, 5, 11, 12	Nummer, 9–12, 15, 25		
$\text{tfrac}, \frac{23}{24}$	Satz, 5		
\underleftarrow, 22, 29	Claichung 0 10		
\underleftrightarrow, 29	Gleichung, 9, 10		
\underrightarrow, 29	Integral, 18		
\uproot, 20	,		
\xleftarrow, 22	Konventionen, 4		
\xrightarrow, 22	IATOV Apweigung		
amsmath-Umgebung	LATEX-Anweisung		
align, 11, 25	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		
$align*, \frac{25}{2}$	\alpha, 20, 22		
alignat, 11, 25	\beta, 20, 22		
alignat*, 25	$\mathbb{B}igl, 10$		
aligned, 12	\bigl, 15		
bbmatrix, 16, 26	\Bigr, 10		
bmatrix, 16, 26	\bigr, 15		
cases, 12	\cdot, 10		
equation, $9, 10, 23, 25$	\cdots, 13-16, 18, 19, 23		
equation*, 9 , 12 , 25	\circ, 11		
flalign, 12, 25	$\cos, 9, 18$		
flalign*, 25	\ddots, $13-16$, 19		
gather, 10 , $23-25$	\delta, 21		
gather*, 25	\displaystyle, 23		
,	\documentclass, 4 , 6		

\dots, $9-11$, 15 , 19	leqno, <mark>6</mark>
\eta, 21	paper, 6
\frac, 10, 18, 19, 23	parskip, 6
\hline, 14	reqno, 6
\infty, 19	I⁴T _E X-Paket
\int, 9, 14, 18	$\mathtt{amscd}, 6$
$\$ label, 9 , 10 , 12	amsfonts, 6
\setminus Lambda, 21	$\mathtt{amsmath},\ 4,\ 6,\ 9 - 13,\ 15 - 24,\ 27 - 29$
\left, $12-14$, 16	$\mathtt{amsthm}, 6$
\leq, 21	babel, <mark>6</mark>
\limits, 18	fontenc, 6
\log, 23	IAT _F X-Paket-Option
\lvert, 15	intlimits, 6
	· ·
\mathrm, 9	namelimits, 6
\: (\medspace), 27	ngerman, 6
\mu, 22	sumlimits, 6
\! (\negthinspace), 5 , 18 , 27	T1, 6
ackslashnewcommand, 14	tbtags, <mark>6</mark>
\setminus overrightarrow, 22	L ^A T _E X-Umgebung
\par, 9	array, 13–16, 19
\partial, 12	\[(displaymath), 8, 13-20, 22, 23
\pi, 12, 18, 19	\] (displaymath), 8, 13-20, 22, 23
\pm, 22	displaymath, $7, 13, 16, 20$
\prod, 10	eqnarray, 9
\ -	- · · · · · · · · · · · · · · · · · · ·
\Psi, 22	eqnarray*, 19
\qquad, 5, 23, 27	equation, 9, 15, 21
, $10-12$, 27	\setminus ((math), 7 , 15
$\rdot{ref}, 9, 10$	$\$ (math), 7 , 15
$\$ renewcommand, 24	$\mathtt{math}, 7$
\right , $12-14$, 16	Leerzeichen, 5
\rvert, 15	Leerzeile, 5
\setcounter, 6	,
$\sqrt{\sin, 9, 18}$	Matrix, 13–17, 26
_ (\space), 27	mu (Maßeinheit), 27
\sqrt, 7, 18, 20, 23	
, *	Pfeil, 22, 29
\stackrel, 19	Produkt, 10
\strut, 23	Pythagoras, 7
\setminus sum, 10 , 19	
$\texttt{\textrm}, 5, 13, 19$	Summe, 10, 19
\; (\thickspace), $\frac{27}{}$	
(\thinspace), 5 , 12 , 18 , 27	Text
$\$ times, 12	mathematischer, 5
\usepackage, 6	normaler, 5
\vdots, 13-16, 19	LIMP of
\vec, 19	UTF-8, 4
ETFX-Klassen-Option	V:-11- E
-	Variable, 5
$fleqn, \frac{4}{6}$	

Wurzel, 18, 20 Zeilenwechsel, 5 Zielgruppe, 1 Zwischenraum breiter, 27 breiterer, 27 kleiner, 27 mittlerer, 27 normaler, 27 schmaler, 12, 18, 27 sehr breiter, 27 sehr kleiner, 27 verkleinerter, 18, 27