UNIVERZITET U NOVOM SADU FAKULTET TEHNIČKIH NAUKA

VEROVATNOĆA I MATEMATIČKA STATISTIKA FORMULE I TABLICE ZA ISPIT

NOVI SAD 2008.

VEROVATNOĆA I MATEMATIČKA STATISTIKA

Uslovna verovatnoća: $P_B(A) = P(A|B) = \frac{P(AB)}{P(B)}$

Formula totalne verovatnoće: $P(A) = \sum_{i=1}^{n} P(A|H_i) \cdot P(H_i)$.

Uopštena formula totalne verovatnoće: $P(B|A) = \sum_{i=1}^{n} P(B|AH_i) \cdot P(H_i|A)$.

Bajesova formula: $P(H_k|A) = \frac{P(A|H_k)P(H_k)}{\sum_{i=1}^{n} P(A|H_i)P(H_i)}$, k = 1, 2, ..., n.

Jednodimezionalna slučajna promenljiva diskretnog tipa:

$$X: \begin{pmatrix} x_1 & x_2 & \dots & x_n \dots \\ p_1 & p_2 & \dots & p_n \dots \end{pmatrix}, \ p_i = P(X = x_i) = p(x_i), \ x_i \in R_X, \ i = 1, 2, \dots \ F_X(x) = \sum_{i: x_i < x} p(x_i) = \sum_{i: x_i < x} p_i.$$

Jednodimezionalna slučajna promenljiva neprekidnog tipa:

$$F_X(x) = P(X < x) = \int_{-\infty}^{x} \varphi_X(t)dt, \int_{-\infty}^{\infty} \varphi_X(t)dt = 1,$$

 $\varphi_X(x) = F_X'(x)$ u svim tačkama $x \in R$ u kojima je $\varphi_X(x)$ neprekidna.

$$P(a < X < b) = P(a \le X \le b) = P(a < X \le b) = P(a \le X \le b) = P(a \le X \le b) = \int_{a}^{b} \varphi_X(x) dx = F_X(b) - F_X(a) .$$

TRANSFORMACIJA SLUČAJNE PROMENLJIVE

X je diskretnog tipa:

Ako je $g:R_X\to R$ transformacija diskretne slučajne promenljive ${\bf X}$ sa zakonom raspodele

$$X: \begin{pmatrix} x_1 & x_2 & \dots & x_n & \dots \\ p(x_1) & p(x_2) & \dots & p(x_n) & \dots \end{pmatrix} \text{ tada je za slučajnu promenljivu } \mathbf{Y} = \mathbf{g}(\mathbf{X}) \;, \quad R_Y = \left\{ \begin{array}{ccc} y_1, y_2, \dots y_k, \dots \end{array} \right\}$$

$$p(y_i) = \sum_{\substack{m \\ y_i = g(x_m)}} p(\mathbf{x_m}) \text{ , pa je zakon raspodele } Y : \begin{pmatrix} y_1 & y_2 & y_3 & \dots \\ p(y_1) & p(y_2) & p(y_3) & \dots \end{pmatrix}.$$

X je neprekidnog tipa:

Transformacijom Y=g(X) slučajne promenljive X neprekidnog tipa ne mora da se dobije slučajna promenljiva neprekidnog tipa. Međutim, ako funkcija g ima neprekidan prvi izvod različt od nule tada se transformacijom Y=g(X) slučajne promenljive neprekidnog tipa dobija slučajna promenljiva neprekidnog tipa.

U tom slučaju, neka je $m=\inf_{x\in R_X}g(x)$, ako infimum postoji, a $m=-\infty$ ako infinum ne postoji.

Dalje, neka je $M=\sup_{x\in R_v}g(x)$, ako supremum postoji, a $M=\infty$ ako supremum ne postoji. Tada je

$$\begin{split} F_Y(y) &= 0 \text{ za } y \leq m \,, \\ \text{za } g'(x) &> 0 \text{ i } \text{m$$

Za oba slučaja gustina φ_v je:

$$\begin{split} \varphi_Y(y) &= 0 \text{ , za } y \leq m \text{ ,} \\ \varphi_Y(y) &= \varphi_X\left(g^{-1}(y)\right) \middle| (g^{-1}(y))' \middle| \text{ ,} \\ &\text{za m$$

Dvodimenzionalna slučajna promeljiva diskretnog tipa:

$$p_{ij} = p(x_i, y_j) = P\left(\left\{\omega \in \Omega : X(\omega) = x_i \land Y(\omega) = y_j\right\}\right) = P(X = x_i, Y = y_j), \ x_i \in R_X, y_j \in R_Y.$$

Marginalne verovatnoće:

$$\begin{split} p(x_i) &= p_{i\bullet} = \sum_j p(x_i, y_j) = \sum_j p_{ij} \,, \quad p(y_j) = p_{\bullet j} = \sum_i p(x_i, y_j) = \sum_i p_{ij} \,, \\ F_{XY}(x, y) &= \sum_{i: x_i < x} \sum_{j: y_j < y} p(x_i, y_j) \,. \end{split}$$

 $\textbf{Uslovne verovatnoće:} \ \ p(y_j \big| x_i) = P(Y = y_j \big| X = x_i) = \frac{p(x_i, y_j)}{p(x_i)} \ , \ \ p(y_j \big| x_i) = P(Y = y_j \big| X = x_i) = \frac{p(x_i, y_j)}{p(x_i)} \ .$

Uslovni zakon raspodele:

$$X|Y = y_j : \begin{pmatrix} x_1 & x_2 & \dots \\ p(x_1|y_j) & p(x_2|y_j) & \dots \end{pmatrix}, Y|X = x_i : \begin{pmatrix} y_1 & y_2 & \dots \\ p(y_1|x_i) & p(y_2|x_i) & \dots \end{pmatrix},$$
$$p(x_i, y_i) = p(x_i|y_i)p(y_i) = p(y_i|x_i)p(x_i).$$

Nezavisnost: $p(x_i, y_i) = p(x_i)p(y_i)$.

Dvodimenzionalna slučajna promeljiva neprekidnog tipa:

$$F_{XY}(x,y) = \int_{-\infty}^{x} dt \int_{-\infty}^{y} g(t,u) du \cdot \int_{-\infty}^{\infty} dx \int_{-\infty}^{\infty} \varphi_{XY}(x,y) dy = F(\infty,\infty) = 1.$$

Uslovne gustine: $\varphi_{Y|X=x}(y) = \frac{\varphi_{XY}(x,y)}{\varphi_X(x)}$, $\varphi_{X|Y=y}(x) = \frac{\varphi_{XY}(x,y)}{\varphi_Y(y)}$

Uslovne funkcije raspodele:

$$F_{Y|X=x}(y) = \int_{-\infty}^{y} \varphi_{Y|X=x}(y)dy = \frac{1}{\varphi_X(x)} \int_{-\infty}^{y} \varphi_{XY}(x,t)dt$$
.

$$F_{X|Y=y}(x) = \int_{-\infty}^{x} \varphi_{X|Y=y}(x) dx = \frac{1}{\varphi_{Y}(y)} \int_{-\infty}^{x} \varphi_{XY}(t, y) dt.$$

Slučajne promenljive X i Y neprekidnog tipa su nezavisne ako i samo ako je $\varphi_{XY}(x,y) = \varphi_X(x)\varphi_Y(y)$ za sve $x,y\in R$.

Dvodimenzionalna slučajna promenljiva neprekidnog tipa ima uniformnu raspodelu u oblasti S ravni xy ako je njena gustina oblika

$$\varphi_{XY}(x,y) = \begin{cases} \frac{1}{m(S)}, & (x,y) \in S \\ 0, & (x,y) \notin S \end{cases}, \text{ gde je sa } m(S) \text{ označena površina oblasti S.}$$

Transformacija dvodimenzionalne slučajne promenljive diskretnog tipa

Ako je Z=g(X,Y) je transformacija slučajne promenljive (X,Y) diskretnog tipa u R, tada je slučajna promenljiva Z diskretnog tipa sa skupom vrednosti $R_Z=\left\{z_1,z_2,...\right\}$ i verovatnoćama

$$p(z_i) = \sum_{\substack{k,m \\ g(x_k, y_m) = z_i}} p(\mathbf{x}_k, y_m).$$

Transformacija dvodimenzionalne slučajne promenljive neprekidnog tipa

Transformacijom slučajne promenljive neprekidnog tipa ne mora da se uvek dobije slučajna promenljiva neprekidnog tipa.

$$\mathbf{I} \ Z = g(X,Y) \ , \ \ \varphi_{XZ}(x,z) = \varphi_{XY}(x,y(x,z)) \left| \frac{\partial y}{\partial z} \right| \ , \ \ \varphi_{Z}(z) = \int_{-\infty}^{\infty} \varphi_{XZ}(x,z) dx = \int_{-\infty}^{\infty} \varphi_{XY}(x,y(x,z)) \left| \frac{\partial y}{\partial z} \right| dx \ ,$$

$$F_Z(z) = \int_{-\infty}^{z} \varphi_Z(t) dt.$$

II
$$U = u(X,Y), V = v(X,Y)$$
, Jakobijan $J = \frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} \neq 0$, $\varphi_{UV}(u,v) = \varphi_{XY}(x(u,v),y(u,v)) \mid J \mid$.

BROJNE KARAKTERISTIKE JEDNODIMENZIONALNE SLUČAJNE PROMENLJIVE

Matematičko očekivanje (očekivanje, očekivana vrednost) slučajne promenljive X je broj E(X) definisan sa:

1)
$$E(X) = \sum_{i} x_{i} p(x_{i})$$
, za slučajnu promenljivu X diskretnog tipa,

2)
$$E(X) = \int_{-\infty}^{\infty} x \varphi_X(x) dx$$
, za slučajnu promenljivu X neprekidnog tipa.

Disperzija: $D(X) = E(X - E(X))^2 = E(X^2) - E(X)^2$.

Standardizovana (normalizovana) slučajna promenljiva: $X^* = \frac{X - E(X)}{\sqrt{D(X)}}$.

Moment reda k: $m_k = E(X^k) = \sum_i x_i^k p(x_i)$, ako je X diskretnog tipa,

$$m_k = E(X^k) = \int_{-\infty}^{\infty} x^k \varphi_X(x) dx$$
, ako je X neprekidnog tipa.

Moment reda 1 je matematičko očekivanje.

Centralni moment reda k: $s_k = E((X - E(X))^k$. Disperzija je centralni moment reda 2.

Medijana: $P(X < m_c) = P(X > m_c)$.

Modus m_{σ} slučajne promenljive X je ona vrednost iz R_X :

- a) za koju važi $p(m_{\sigma}) > p(x_i)$, $i = \sigma + 1, i = \sigma 1$, ako je X diskretnog tipa.
- b) za koju gustina $\varphi_X(x)$ ima lokalni maksimum, ako je X neprekidnog tipa.

BROJNE KARAKTERISTIKE VIŠEDIMENZIONALNE (DVODIMENZIONALNE) SLUČAJNE PROMENLJIVE:

Matematičko očekivanje: E(X,Y) = (E(X),E(Y)) $E(X_1,X_2,...,X_n) = (E(X_1),E(X_2),...,E(X_n))$.

 $\textbf{Disperzija:} \ \ D(X,Y) = (D(X),D(Y)) \quad D(X_1,X_2,...,X_n) = (D(X_1),D(X_2),...,D(X_n)) \ .$

Mešoviti moment m_{kn} : $m_{kn} = E(X^k Y^n) = \sum_i \sum_j x_i^k y_j^n p(x_i, y_j)$, ako je (X, Y) je diskretnog tipa,

$$m_{kn} = E(X^k Y^n) = \int_{-\infty}^{\infty} dx \int_{-\infty}^{\infty} x^k y^n \varphi_{XY}(x, y) dy$$
, ako je (X, Y) je neprekidnog tipa.

l) Neka je (X,Y) dvodimenzionalna slučajna promenljiva diskretnog tipa.

Uslovno matematičko očekivanje za X, ako je Y=y_j: $E(X|Y=y_j) = \sum_i x_i p(x_i|y_j) = \frac{1}{p(y_i)} \sum_i x_i p(x_i, y_j)$.

Uslovno matematičko očekivanje za Y, ako je X=x_i: $E(Y|X=x_i) = \sum_j y_j p(y_j|x_i) = \frac{1}{p(x_i)} \sum_j y_j p(x_i, y_j)$.

Regresija X po Y: $\{(E(X|Y=y_i), y_i): y_i \in R_Y\}$.

Regresija Y po **X** : $\{(x_i, (E(Y|X=x_i)): x_i \in R_X)\}$.

II) Neka je (X,Y) dvodimenzionalna slučajna promenljiva neprekidnog tipa.

Uslovno matematičko očekivanje za X, ako je Y=y:

$$E(X|Y=y) = \int_{-\infty}^{\infty} x \varphi_{X|Y=y}(x) dx = \frac{1}{\varphi_Y(y)} \int_{-\infty}^{\infty} x \varphi_{XY}(x,y) dx.$$

Uslovno matematičko očekivanje za Y ako je X=x:

$$E(Y|X=x) = \int_{-\infty}^{\infty} y \varphi_{Y|X=x}(y) dy = \frac{1}{\varphi_X(x)} \int_{-\infty}^{\infty} y \varphi_{XY}(x,y) dy.$$

Funkcija $x = r_1(y) = E(X|Y = y)$ se zove regresija X po Y.

Funkcija $y = r_2(x) = E(Y|X = x)$ je regresija Y po X.

Ako su X i Y nezavisne slučajne promenljive tada je regresija:

la
$$\{(E(X), y_j)\};$$
 lb $\{(x_i, E(Y))\},$ lla $x = r_1(y) = E(X);$ llb $y = r_2(x) = E(Y).$

Linearna korelacija: Za slučajne promenljive **X** i **Y** se kaže da su linearno korelirane ako su njihove regresije linearne funkcije, tj. prave. U tom slučaju jednačine regresionih pravih su

$$y = E(Y) + \rho_{XY} \frac{\sigma(Y)}{\sigma(X)} (x - E(X)), \qquad x = E(X) + \rho_{XY} \frac{\sigma(X)}{\sigma(Y)} (y - E(Y)).$$

Nejednakost Čebiševa: Ako za nenegativnu slučajnu promenljivu X (za svako $\omega \in \Omega$, $X(\omega) \ge 0$) postoji

$$E(X^2)$$
 , tada za svako $\varepsilon > 0$ važi $P(X \ge \varepsilon) \le \frac{E(X^2)}{\varepsilon^2}$, odnosno $P(\mid X - E(X) \mid \ge \varepsilon) \le \frac{D(X)}{\varepsilon^2}$.

CENTRALNE GRANIČNE TEOREME

I Ako je dat niz $\{X_n\}$ nezavisnih slučajnih promenljivih pri čemu svaka slučajna promenljiva X_n datog niza ima istu raspodelu, konačno matematičko očekivanje $E(X_n) = a \in R$, $n \in N$ i konačnu disperziju

$$D(X_n) = s^2 \in R^+ \,, \ n \in N \,, \text{tada je } \lim_{n \to \infty} P(\frac{\sum_{i=1}^n X_i - n \cdot a}{s\sqrt{n}} < x) = \frac{1}{\sqrt{2\pi n}} \int_{-\infty}^x e^{-\frac{t^2}{2}} dt \,, \text{ za svako } x \in R \,.$$

II Teorema Muavr-Laplasa: Ako je dat niz $\left\{X_n\right\}$ nezavisnih slučajnih promenljivih, pri čemu svaka slučajna promenljiva datog niza X_n ima istu Bernulijevu raspodelu $X_n: \begin{pmatrix} 0 & 1 \\ q & p \end{pmatrix}, \ 0 , <math>n \in \mathbb{N}$, tada je

$$\lim_{n \to \infty} P(\frac{\sum_{i=1}^{n} X_i - np}{\sqrt{npq}} < x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$$
, za svako $x \in R$.

Ako slučajna promenljiva Y ima binomnu B(n, p) raspodelu , tada za dovoljno veliko $n \in N$ važi približna

jednakost
$$P(Y = k) \approx \frac{1}{\sqrt{npq} \sqrt{2\pi}} e^{-\frac{(k-np)^2}{2npq}}, k = 0, 1, 2, ..., n.$$

III Ako slučajna promenljiva X ima χ_n^2 -raspodelu, tada za svako $x \in R$ važi:

$$\lim_{n \to \infty} P(\frac{X - n}{\sqrt{2n}} < x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt.$$

MATEMATIČKA STATISTIKA

Ako obeležje X ima normalnu $\mathcal{N}(m,\sigma^2)$ raspodelu tada \overline{X}_n ima normalnu $\mathcal{N}(m,\frac{\sigma^2}{n})$ raspodelu.

OCENE PARAMETARA

Ocena $U = u(X_1, X_2,...,X_n)$ je **postojana** (stabilna) ocena za $\tau(\theta)$ ako je

$$\lim_{n\to\infty} P(\left|\ \tau(\theta)-u(X_1,X_2,...,X_n)\ \right|\geq \varepsilon)=0\ ,\ \text{za svako}\ \ \varepsilon>0\ .$$

Ocena $U=u(X_1,X_2,...,X_n)$ je **centrirana ocena** za $\tau(\theta)$ ako je $E(u(X_1,X_2,...,X_n))=\tau(\theta)$.

Ocena $U = u(X_1, X_2,...,X_n)$ je asimptotski centrirana ocena za $\tau(\theta)$ ako je

$$\lim_{n\to\infty} E(u(X_1, X_2, ..., X_n)) = \tau(\theta).$$

Nejednakost Rao Kramera:

$$D(U) \geq \frac{\left(\tau'(\theta)\right)^2}{n \sum_k (\frac{\partial \ln \, p(x_k\,,\theta)}{\partial \theta})^2 \, p(x_k\,,\theta)} \quad \text{za slučajnu promenljivu } X \, \, \text{diskretnog tipa,}$$

$$D(U) \geq \frac{(\tau'(\theta))^2}{n\int\limits_{-\infty}^{\infty} (\frac{\partial \ln \varphi(x,\theta)}{\partial \theta})^2 \varphi(x,\theta) dx}$$
 za slučajnu promenljivu X neprekidnog tipa.

1. Interval poverenja za nepoznatu verovatnoću p u Bernulijevoj $\mathcal{B}(p)$ raspodeli:

Interval poverenja je $P(U_1 , gde su statistike <math>U_1$ i U_2 dobijene rešavanjem po p kvadratne jednačine

$$(n^2 + a^2n)p^2 + (-2Kn - a^2n)p + K^2 = 0$$
.

- 2. Interval poverenja za matematičko očekivanje m obeležja X sa normalnom \mathcal{N} (m, σ^2) raspodelom gde je σ^2 poznato: $P(\overline{X}_n \frac{a\sigma}{\sqrt{n}} < m < \overline{X}_n + \frac{a\sigma}{\sqrt{n}}) = \beta$, $a = \Phi^{-1}(\frac{1+\beta}{2})$.
- 3. Interval poverenja za matematičko očekivanje m obeležja X sa normalnom \mathcal{N} (m, σ^2) raspodelom gde je σ^2 nepoznato: $P(\overline{X}_n \frac{a\overline{S}_n}{\sqrt{n-1}} < m < \overline{X}_n + \frac{a\overline{S}_n}{\sqrt{n-1}}) = \beta$, $a = \Phi^{-1}(\frac{1+\beta}{2})$.

4. Interval poverenja za nepoznatu disperziju σ^2 obele`ja X sa normalnom \mathcal{N} (m, σ^2) raspodelom kada je m-nepoznato:

Jednostrani interval poverenja:

$$P(0<\xi^2<\frac{n\overline{S}_n^{\,2}}{b})=\beta \ \ \text{je jednostrani interval poverenja za} \ \ \sigma^2 \, , \, \text{a} \quad P(0<\sigma<\sqrt{\frac{n\overline{S}_n^{\,2}}{b}})=\beta \ \ \text{za} \ \ \sigma \, .$$

Dvostrani interval poverenja:

$$P(\frac{n\overline{S}_n^{\,2}}{b} < \sigma^2 < \frac{n\overline{S}_n^{\,2}}{a}) = \beta \ \text{ je dvostrani interval poverenja za } \ \sigma^2 \text{, a } \ P(\sqrt{\frac{n\overline{S}_n^{\,2}}{b}} < \sigma < \sqrt{\frac{n\overline{S}_n^{\,2}}{a}}) = \beta \ \text{ za } \ \sigma \ .$$

5. Interval poverenja za nepoznatu disperziju σ^2 obeležja X sa normalnom N (m, σ^2) raspodelom kada je m poznato:

Jednostrani interval poverenja dobija se slično kao u 4:

$$P(0 < \xi^2 < \frac{n\widetilde{S}_n^2}{b}) = \beta \text{ za } \sigma^2, \text{a } P(0 < \sigma < \sqrt{\frac{n\widetilde{S}_n^2}{b}}) = \beta \text{ za } \sigma$$
.

Dvostrani interval poverenja dobija se $P(\frac{n\widetilde{S}_n^2}{b} < \sigma^2 < \frac{n\widetilde{S}_n^2}{a}) = \beta$ za σ^2 , a $P(\sqrt{\frac{n\widetilde{S}_n^2}{b}} < \sigma < \sqrt{\frac{n\widetilde{S}_n^2}{a}}) = \beta$ za σ .

1. Hipoteza H($p = p_0$), o verovatnoći u Bernulijevoj $\mathcal{B}(p)$ raspodeli

Nađemo brojeve
$$\varepsilon_{\alpha} = \left| \frac{k - np_0}{\sqrt{np_0(1-p_0)}} \right|$$
 i $\varepsilon_{\alpha}^* = \Phi^{-1}(1-\frac{\alpha}{2})$ (kritična vrednost). Ako je $\varepsilon_{\alpha} \ge \varepsilon_{\alpha}^*$ hipotezu

H($p=p_0$) odbacujemo, a ako je $\varepsilon_{\alpha}<\varepsilon_{\alpha}^*$ hipotezu H($p=p_0$) ne odbacujemo.

2. Hipoteza $H(m=m_0)$ o matemati~kom očekivanju m u normalnoj $\mathcal{N}(m,\sigma^2)$ raspodeli ako je σ^2 poznato

Nađemo brojeve $\varepsilon_{\alpha} = \left| \frac{\overline{x}_n - m_0}{\xi} \sqrt{n} \right|$ i $\varepsilon_{\alpha}^* = \Phi^{-1}(1 - \frac{\alpha}{2})$. Ako je $\varepsilon_{\alpha} \ge \varepsilon_{\alpha}^*$ hipotezu $H(m = m_0)$ odbacujemo, a

ako je $\varepsilon_{\alpha} < \varepsilon_{\alpha}^{*}$ hipotezu $H(m = m_{0})$ ne odbacujemo.

3. Hipoteza $H(m=m_0)$ o matematičkom očekivanju m u normalnoj $\mathcal{N}(m,\sigma^2)$ raspodeli ako je σ^2 nije poznato

Nađemo brojeve $\varepsilon_{\alpha} = \left| \frac{\overline{x}_n - m_0}{\overline{s}_n} \sqrt{n-1} \right|$ i $\varepsilon_{\alpha}^* = F^{-1}(1 - \frac{\alpha}{2})$.Ako je $\varepsilon_{\alpha} \ge \varepsilon_{\alpha}^*$ hipotezu $H(m = m_0)$ odbacujemo,

a ako je $\varepsilon_{\alpha} < \varepsilon_{\alpha}^{*}$ hipotezu $H(m=m_{0})$ ne odbacujemo.

4. Hipoteza $H(\sigma^2 = \sigma_0^2)$ o disperziji σ^2 , u normalnoj $\mathcal{N}(m, \sigma^2)$ raspodeli ako je m nepoznato

Nađemo brojeve $\varepsilon_{\alpha} = \frac{n\overline{s}_n^2}{\sigma_0^2}$ i $\varepsilon_{\alpha}^* = F^{-1}(1-\alpha)$.Ako je $\varepsilon_{\alpha} \ge \varepsilon_{\alpha}^*$ hipotezu $H(\sigma^2 = \sigma_0^2)$ odbacujemo, a ako je

 $\varepsilon_{lpha} < \varepsilon_{lpha}^{*}$ hipotezu $H(\sigma^{2} = \sigma_{0}^{2})$ ne odbacujemo.

5. Hipoteza $H(\sigma^2 = \sigma_0^2)$ o disperziji σ^2 , u normalnoj $\mathcal{N}(m, \sigma^2)$ raspodeli ako je m poznato

Nađemo brojeve $\varepsilon_{\alpha} = \frac{n\widetilde{s}_{n}^{2}}{\sigma_{0}^{2}}$ i $\varepsilon_{\alpha}^{*} = F^{-1}(1-\alpha)$. Ako je $\varepsilon_{\alpha} \geq \varepsilon_{\alpha}^{*}$ hipotezu $H(\sigma^{2} = \sigma_{0}^{2})$ odbacujemo, a ako je $\varepsilon_{\alpha} < \varepsilon_{\alpha}^{*}$ hipotezu $H(\sigma^{2} = \sigma_{0}^{2})$ ne odbacujemo.

Pirsonov χ^2 -test

Na osnovu realizovanog uzorka $(x_1, x_2, ..., x_n)$ nalazimo $\chi_0^2 = \sum_{m=1}^k \frac{(n_m - np_m)^2}{np_m}$.

Ako je α unapred zadat prag značjanosti tada postupamo na sledeći način:

- 1. Nađemo vrednost χ_{α}^* iz tablica za χ^2 raspodelu. Ova vrednost se na neki način može shvatiti kao dozvoljeno odstupanje pri zadatom pragu značajnosti α .
- 2. Uporedimo vrednosti χ_{α}^* i $\chi_0^2 = \sum_{m=1}^k \frac{(n_m np_m)^2}{np_m}$ i ako je $\chi_{\alpha}^* > \chi_0^2 \text{ hipotezu } \mathbf{H_0} : F(x) = F_0(x) \text{ ne odbacujemo,}$ $\chi_{\alpha}^* \leq \chi_0^2 \text{ hipotezu } \mathbf{H_0} : F(x) = F_0(x) \text{ odbacujemo.}$

Statističke tablice

Normalna raspodela :

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$$

Х	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998

χ^2 - raspodela

$$F(x) = \int_{0}^{x} \frac{t^{\frac{n}{2} - 1} e^{-\frac{t}{2}}}{2^{\frac{n}{2}} \Gamma(\frac{n}{2})} dt$$

n							F						
n	.005	.010	.025	.050	.100	.250	.500	.750	.900	.950	.975	.990	.995
1	.0000	.0000	.0000	.0039	.0158	.102	.455	1.32	2.71	3.84	5.02	6.63	7.88
2	.0100	.0201	.0506	.1030	.211	.575	1.39	2.77	4.61	5.99	7.38	9.21	10.6
3	.0717	.115	.216	.352	.584	1.21	2.37	4.11	6.25	7.81	9.35	11.3	12.8
4	.207	.297	.484	.711	1.06	1.92	3.36	5.39	7.78	9.49	11.1	13.3	14.9
5	.412	.554	.831	1.15	1.61	2.67	4.35	6.63	9.24	11.1	12.8	15.1	16.7
6	.676	.872	1.24	1.64	2.20	3.45	5.35	7.84	10.6	12.6	14.4	16.8	18.5
7	.989	1.24	1.69	2.17	2.83	4.25	6.35	9.04	12.0	14.1	16.0	18.5	20.3
8	1.34	1.65	2.18	2.73	3.49	5.07	7.34	10.2	13.4	15.5	17.5	20.1	22.0
9	1.73	2.09	2.70	3.33	4.17	5.90	8.34	11.4	14.7	16.9	19.0	21.7	23.6
10	2.16	2.56	3.25	3.94	4.87	6.74	9.34	12.5	16.0	18.3	20.5	23.2	25.2
11	2.60	3.05	3.82	4.57	5.58	7.58	10.3	13.7	17.3	19.7	21.9	24.7	26.8
12	3.07	3.57	4.40	5.23	6.30	8.44	11.3	14.8	18.5	21.0	23.3	26.2	28.3
13	3.57	4.11	5.01	5.89	7.04	9.30	12.3	16.0	19.8	22.4	24.7	27.7	29.8
14	4.07	4.6	5.63	6.57	7.79	10.2	13.3	17.1	21.2	23.7	26.1	29.1	31.3
15	4.60	5.23	6.26	7.26	8.55	11.0	14.3	18.2	22.3	25.0	27.5	30.6	32.8
16	5.14	5.81	6.91	7.96	0.24	11.9	15.3	19.4	23.5	26.3	28.8	32.0	34.3
16 17	5.70	6.41	7.56	8.67	9.31 10.1	12.8	16.3	20.5	23.5 24.8	26.3 27.6	20.6 30.2	32.0 33.4	34.3 35.7
18	6.26	7.01	8.23	9.39	10.1	13.7	17.3	21.6	26.0	28.9	31.5	34.8	37.2
19	6.84	7.63	8.91	10.1	11.7	14.6	18.3	22.7	27.2	30.1	32.9	36.2	38.6
20	7.43	8.26	9.59	10.1	12.4	15.5	19.3	23.8	28.4	31.4	34.2	37.6	40.0
20	7.40	0.20	0.00	10.5	12.7	10.0	10.0	20.0	20.4	01.4	04.2	07.0	40.0
21	8.03	8.90	10.3	11.6	13.2	16.3	20.3	24.9	29.6	32.7	35.5	38.9	41.4
22	8.64	9.54	11.0	12.3	14.0	17.2	21.3	26.0	30.8	33.9	36.8	40.3	42.8
23	9.26	10.2	11.7	13.1	14.8	18.1	22.3	27.1	32.0	35.2	38.1	41.6	44.2
24	9.89	10.9	12.4	13.8	15.7	19.0	23.3	28.2	33.2	36.4	39.4	43.0	45.6
25	10.5	11.5	13.1	14.6	16.5	19.9	24.3	29.3	34.4	37.7	40.6	44.3	46.9
26	11.2	12.2	13.8	15.4	17.3	20.8	25.3	30.4	35.6	38.9	41.9	45.6	48.3
27	11.8	12.9	14.6	16.2	18.1	21.7	26.3	31.5	36.7	40.1	43.2	47.0	49.6
28	12.5	13.6	15.3	16.9	18.9	22.7	27.3	32.6	37.9	41.3	44.5	48.3	51.0
29	13.1	14.3	16.0	17.7	19.8	23.6	28.3	33.7	39.1	42.6	45.7	49.6	52.3
30	13.8	15.0	16.8	18.5	20.6	24.5	29.3	34.8	40.3	43.8	47.0	50.9	53.7

Studentova t-raspodela

$$F(t) = \int_{-\infty}^{t} \frac{\Gamma(\frac{1+n}{2})}{\sqrt{n\pi} \Gamma(\frac{n}{2})(1+\frac{x^{2}}{n})^{\frac{n+1}{2}}} dx$$

				F			
n	.75	.90	.95	.975	.99	.995	.9995
1	1.000	3.078	6.314	12.706	31.821	63.657	636.619
2	.816	1.886	2.920	4.303	6.965	9.925	31.598
3	.765	1.638	2.353	3.182	4.541	5.841	12.941
4	.741	1.533	2.132	2.776	3.747	4.604	8.610
5	.727	1.476	2.015	2.571	3.365	4.032	6.859
6	.718	1.440	1.943	2.447	3.143	3.707	5.959
7	.711	1.415	1.895	2.365	2.998	3.499	5.405
8	.706	1.397	1.860	2.306	2.896	3.355	5.041
9	.703	1.383	1.833	2.262	2.821	3.250	4.781
10	.700	1.327	1.812	2.228	2.764	3.169	4.587
11	.697	1.363	1.796	2.201	2.718	3.106	4.437
12	.695	1.356	1.782	2.179	2.681	3.055	4.318
13	.694	1.350	1.771	2.160	2.650	3.012	4.221
14	.692	1.345	1.761	2.145	2.624	2.977	4.140
15	.691	1.341	1.753	2.131	2.602	2.947	4.073
16	.690	1.337	1.746	2.120	2.583	2.921	4.015
17	.689	1.333	1.740	2.110	2.567	2.898	3.965
18	.688	1.330	1.734	2.101	2.552	2.878	3.922
19	.688	1.328	1.729	2.093	2.539	2.861	3.883
20	.687	1.325	1.725	2.086	2.528	2.845	3.850
21	.686	1.233	1.721	2.080	2.518	2.831	3.819
22	.686	1.321	1.717	2.074	2.508	2.819	3.792
23	.685	1.319	1.714	2.069	2.500	2.807	3.767
24	.685	1.318	1.711	2.064	2.492	2.797	3.745
25	.684	1.316	1.708	2.060	2.485	2.787	3.725
26	.684	1.315	1.706	2.056	2.479	2.779	3.707
27	.684	1.314	1.703	2.052	2.473	2.771	3.690
28	.683	1.313	1.701	2.048	2.467	2.763	3.674
29	.683	1.311	1.699	2.045	2.462	2.756	3.659
30	.683	1.310	1.697	2.042	2.457	2.750	3.646
40	.681	1.303	1.684	2.021	2.423	2.704	3.551
60	.679	1.296	1.671	2.000	2.390	2.660	3.460
120	.677	1.289	1.658	1.980	2.358	2.617	3.373
∞	.674	1.282	1.645	1.960	2.326	2.576	3.291

Raspodela λ Kolmogorov-Smirnova

$$Q(\lambda) = \sum_{k=-\infty}^{\infty} (-1)^k e^{-2k^2 \lambda^2}$$

	O(1)		0(1)		0(0)		0(1)	_	0(1)		0(1)
λ	$Q(\lambda)$	λ	$Q(\lambda)$	λ	Q(λ)	λ	Q(λ)	λ	$Q(\lambda)$	λ	$Q(\lambda)$
0,32	0,0000	0,66	0,2236	1,00	0,7300	1,34	0,9449	1,68	0,9929	2,00	0,9993
0,33	0,0001	0,67	0,2396	1,01	0,7406	1,35	0,9478	1,69	0,9934	2,01	0,9994
0,34	0,0002	0,68	0,2558	1,02	0,7508	1,36	0,9505	1,70	0,9938	2,02	0,9994
0,35	0,0003	0,69	0,2722	1,03	0,7608	1,37	0,9531	1,71	0,9942	2,03	0,9995
0,36	0,0005	0,70	0,2888	1,04	0,7704	1,38	0,9556	1,72	0,9946	2,04	0,9995
0,37	0,0008	0,71	0,3055	1,05	0,7798	1,39	0,9580	1,73	0,9950	2,05	0,9996
0,38	0,0013	0,72	0,3223	1,06	0,7889	1,40	0,9603	1,74	0,9953	2,06	0,9996
0,39	0,0019	0,73	0,3391	1,07	0,7976	1,41	0,9625	1,75	0,9956	2,07	0,9996
0,40	0,0028	0,74	0,3560	1,08	0,8061	1,42	0,9646	1,76	0,9959	2,08	0,9996
0,41	0,0040	0,75	0,3728	1,09	0,8143	1,43	0,9665	1,77	0,9962	2,09	0,9997
0,42	0,0055	0,76	0,3896	1,10	0,8223	1,44	0,9684	1,78	0,9965	2,10	0,9997
0,43	0,0074	0,77	0,4064	1,11	0,8399	1,45	0,9702	1,79	0,9967	2,11	0,9997
0,44	0,0097	0,78	0,4230	1,12	0,8374	1,46	0,9718	1,80	0,9969	2,12	0,9997
0,45	0,0126	0,79	0,4395	1,13	0,8445	1,47	0,9734	1,81	0,9971	2,13	0,9998
0,46	0,0160	0,80	0,4559	1,14	0,8514	1,48	0,9750	1,82	0,9973	2,14	0,9998
0,47	0,0200	0,81	0,4720	1,15	0,8580	1,49	0,9764	1,83	0,9975	2,15	0,9998
0,48	0,0247	0,82	0,4880	1,16	0,8644	1,50	0,9778	1,84	0,9977	2,16	0,9998
0,49	0,0300	0,83	0,5038	1,17	0,8706	1,51	0,9791	1,85	0,9979	2,17	0,9998
0,50	0,0361	0,84	0,5194	1,18	0,8765	1,52	0,9803	1,86	0,9980	2,18	0,9999
0,51	0,0428	0,85	0,5347	1,19	0,8823	1,53	0,9815	1,87	0,9981	2,19	0,9999
0,52	0,0503	0,86	0,5497	1,20	0,8877	1,54	0,9826	1,88	0,9983	2,20	0,9999
0,53	0,0585	0,87	0,5645	1,21	0,8930	1,55	0,9836	1,89	0,9984	2,21	0,9999
0,54	0,0675	0,88	0,5791	1,22	0,8981	1,56	0,9846	1,90	0,9985	2,22	0,9999
0,55	0,0772	0,89	0,5933	1,23	0,9030	1,57	0,9855	1,91	0,9986	2,23	0,9999
0,56	0,0876	0,90	0,6073	1,24	0,9076	1,58	0,9864	1,92	0,9987	2,24	0,9999
0,57	0,0987	0,91	0,6209	1,25	0,9121	1,59	0,9873	1,93	0,9988	2,25	0,9999
0,58	0,1104	0,92	0,6343	1,26	0,9164	1,60	0,9880	1,94	0,9989	2,26	0,9999
0,59	0,1228	0,93	0,6473	1,27	0,9206	1,61	0,9888	1,95	0,9990	2,27	0,9999
0,60	0,1357	0,94	0,6601	1,28	0,9245	1,62	0,9895	1,96	0,9991	2,28	0,9999
0,61	0,1492	0,95	0,6725	1,29	0,9283	1,63	0,9902	1,97	0,9991	2,29	0,9999
0,62	0,1632	0,96	0,6846	1,30	0,9319	1,64	0,9908	1,98	0,9992	2,30	0,9999
0,63	0,1778	0,97	0,6964	1,31	0,9354	1,65	0,9914	1,99	0,9993	2,31	1,0000
0,64	0,1927	0,98	0,7079	1,32	0,9387	1,66	0,9919				
0,65	0,2080	0,99	0,7191	1,33	0,9418	1,67	0,9924				

PRILOG 1

Šematski prikaz karakteristika nekih slučajnih promenljivih

Raspodele diskretnog tipa

Naziv raspodele	p(k)	Prostor parametara	E(X)	D(X)	k(t)
Bernulijeva raspodela $\mathcal{B}(p)$	$p(k) = p^{k} q^{1-k}$ $k \in \{0, 1\}$	0 $q = 1 - p$	р	pq	$q + pe^{it}$
Binomna raspodela $\mathcal{B}(n,p)$	$p(k) = \binom{n}{k} p^{k} q^{n-k}$ $k \in \{0, 1,, n\}$	$0 n \in N q = 1 - p$	np	npq	$(q+pe^{it})^n$
Puasonova raspodela ${\cal P}(\lambda)$	$p(k) = \frac{\lambda^k}{k!} e^{-\lambda}$ $k \in \{0, 1, 2, \dots\}$	λ > 0	λ	λ	$e^{\lambda(e^{it}-1)}$
Geometrijska raspodela $\mathcal{G}(p)$	$p(k) = pq^{k-1}$ $k \in \{0, 1,, n\}$	0 $q = 1 - p$	$\frac{1}{p}$	$\frac{p}{q^2}$	$\frac{pe^{it}}{1 - qe^{it}}$

Raspodele neprekidnog tipa

Naziv raspodele	$\varphi(x) \neq 0$	Prostor param.	E(X)	D(X)	k(t)
Uniformna <u>u(</u> a,b)	$\frac{1}{b-a}$ $x \in (a,b)$	[a,b]⊂R	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{itb} - e^{ita}}{it(b-a)}$
Normalna $\mathcal{N}(m, \sigma^2)$	$\frac{1}{\sigma\sqrt{2\pi}}e^{\frac{(x-m)^2}{2\sigma^2}}$ $\mathbf{x} \in \mathbf{R}$	$m \in R$, $\sigma > 0$	m	σ^2	$e^{itm}e^{-rac{\sigma^2t^2}{2}}$
Normalna \mathcal{N} (0,1)	$x \in R$ $\frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$ $x \in R$	-	0	1	$e^{-\frac{t^2}{2}}$
Eksponencijalna $\mathcal{E}(a)$	x ∈ R ae ^{-ax} x>0	a>0	<u>1</u>	$\frac{1}{a^2}$	<u>a</u> a – it
Studentova t _n	$\frac{\Gamma(\frac{n+1}{2})}{\sqrt{n\pi}\Gamma(\frac{n}{2})(1+\frac{x^2}{n})^{\frac{n+1}{2}}}$ $x \in R$	n∈N	0, n>1	$\frac{n}{n-2},$ $n>2$	
Hi-kvadrat χ _n ²	$x \in \mathbb{R}$ $\frac{x^{\frac{n}{2}-1} e^{-\frac{x}{2}}}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})}$ $x>0$	n∈N	n	2n	$(1-2it)^{-\frac{n}{2}}$
Vejbulova $oldsymbol{v}$ $(lpha,eta)$	$\begin{cases} \frac{\alpha}{\beta^{\alpha}} x^{\alpha-1} e^{-(\frac{x}{\beta})^{\alpha}} &, x > 0 \\ 0 &, x \le 0 \end{cases}$	$\alpha > 0, \beta > 0$	$\beta\Gamma\left(1+\frac{1}{\alpha}\right)$	$\beta^{2} (\Gamma(\beta^{-\alpha} + 2\alpha^{-1)})$ $-\Gamma^{2} (1 + \alpha^{-1}))$	
Lognormalna $\mathcal{L}(\mu, \sigma^2)$	$\begin{cases} \frac{1}{\sqrt{2\pi}\sigma x} e^{-\frac{1}{2\sigma^2} \ln x - \mu)^2} &, x > 0\\ 0 &, x \le 0 \end{cases}$	$\mu \in R, \sigma > 0$	$e^{^{\mu+rac{\sigma^2}{2}}}$	$e^{2\mu+2\sigma^2}-e^{2\eta+\sigma^2}$	

Za Studentovu, Vejbulovu i Lognormalnu raspodelu karakteristična funkcija k(t) je komplikovana, te nije navedena u tablici.