⊤	,	0.0
Interrogat	ION ECE	RITE N°9

 $NOM: \hspace{1.5cm} Pr\'{e}nom: \hspace{1.5cm} Note:$

1. On pose $\mathbb{Q}[i]=\{\alpha+ib, (\alpha,b)\in\mathbb{Q}^2\}$. Montrer que $(\mathbb{Q}[i],+,\times)$ est un corps.

 $2. \ \ \text{Soit} \ (\alpha,r) \in \left(\mathbb{N} \setminus \{0,1\}\right)^2 \ \text{tel que} \ \alpha^r - 1 \ \text{soit premier. Montrer que} \ \alpha = 2 \ \text{puis que} \ r \ \text{est premier.}$

3. Déterminer le reste de la division euclidienne de 2^{2017} par 7.
4. Soit $(a,b,c,d) \in \mathbb{Z}^4$ tel que a et b divisent respectivement c et d et tel que c et d soient premiers entre eux. Montrer que a et b
sont (α , β , c , α) $\in \mathbb{Z}$ tel que α et β divisent respectivement c et α et tel que c et α solent premiers entre eux. Montrer que α et β sont également premiers entre eux.
som egmentent premiere entre eam
5. Donner une partie génératrice de $F = \{(x, y, z) \in \mathbb{R}^3, \ x - 2y + 3z = 0\}$ (mettre sous forme d'un vect).