Sprawozdanie 3

Stanisław Wilczyński 17 kwietnia 2017

Zadanie1

W tym zadaniu będziemy estymować wartości krytyczne testu Higher Criticism na poziomie istotności $\alpha_0 = 0.05$. Niech $p \in (5000, 50000, 500000)$. Zakładamy, że nasze zmienne X_1, \ldots, X_p pochodzą z rozkładu normalnego o wariancji 1. Testujemy globalną hipotezę $H_0: \mu_1, \ldots, \mu_p = 0, H_0 = \bigcap_{i=1}^p H_{0i}$ przeciwko alternatywie H_1 mowiącej, że istnieje μ_i niezerowe. Będziemy generować statystykę

$$HC^* = \max_{0 < \alpha \le 0.05} \sqrt{p} \frac{F_p(\alpha) - \alpha}{\sqrt{\alpha(1 - \alpha)}},$$

gdzie $F_p(\alpha)$ jest dystrybuantą empiryczną dla p-wartości pojedynczych testów dla hipotez H_{0i} . Wygenerujemy naszą statystykę 100 razy i weźmiemy kwantyl próbkowy rzędu 95%.

Otrzymaliśmy następujące wyniki:

- 1. Dla $p = 5000 \ 2.6899034$.
- 2. Dla $p = 50000 \ 2.4111515$.
- 3. Dla $p = 500000 \ 2.3118553$.

Zadanie 2

W tym zadaniu będziemy estymować moc testów Bonferroniego, Higher Criticism, chi-kwadrat, Kołmogorowa-Smirnowa i Andersona-Darlinga. Niech p=5000. Zakładamy, że nasze zmienne pochodzą z rozkładu normalnego o wariancji 1. Dla $H_0: \mu_1, \ldots, \mu_p=0$ będziemy testować alternatywy:

$$H_1: \mu_1 = 1.2\sqrt{2\log p}, \mu_2, \dots, \mu_p = 0$$

$$H_2: \mu_1, \dots, \mu_{1000} = 0.15\sqrt{2\log p}, \mu_{1001}, \dots, \mu_p = 0$$

$$H_3: \mu_1, \dots, \mu_{100} = 2, \mu_{101}, \dots, \mu_p = 0$$

Aby oszacować moc, wygenerujemy zmienne 500 razy z rozkładów przy hipotezie alternatywnej i sprawdzimy w jak wielu przypadkach hipoteza zerowa została odrzucona.

	μ_1	μ_2	μ_3
Bonf	0.69	0.11	0.53
$^{\mathrm{HC}}$	0.03	0.80	0.99
ChiKw	0.06	0.98	0.98
KS	0.06	1.00	0.51
AD	0.05	1.00	0.84

Table 1: Estymowane moce testów

Widzimy, że jedynym testem nadającym się do szukania igły w stogu siana (H_1) jest test Bonferroniego, bo pozostałe testy dla jednego sygnału mają bardzo małe moce. Jeśli chodzi o testy Higher Criticism i Chi-Kwadrat zachowują się one bardzo podobnie - zarówno dla wielu małych sygnałów (H_2) jak i mniejszej liczby silniejszych sygnałów (H_3) mają duże moce, a więc są skuteczne. Test Bonferroniego wyłapuje również całkiem dobrze sygnał o wielkości z H_3 - nie radzi sobie jednak z wieloma małymi sygnałami, co już sprawdzaliśmy na liście pierwszej. Jeśli chodzi o test Kołmogorowa-Smirnowa, jest on bardzo skuteczny dla wielu małych sygnałów (H_2) , jednak dla przypadku z trzeciej kolumny skuteczność przestaje być zadowalająca. Natomiast test Andersona-Darlinga wypada lepiej - zarówno dla H_3 jak i dla H_2 ma dużą moc.

Zadanie 3

W tym zadaniu będzimey testować hipotezy $H_0: X_1,\ldots,X_p \sim N(0,1)$ przeciwko $H_1: X_1,\ldots,X_p \sim \epsilon N(\mu,1) + (1-\epsilon)N(0,1)$, gdzie $p \in \{5000,50000,500000\}$, $\epsilon = p^{-\beta}$, gdzie $\beta \in \{0.6,0.8\}$ i $\mu = \sqrt{2r\log p}$, gdzie $r \in \{0.1,0.2,0.3,0.4\}$. Dla każdych możliwych ustawień porównamy moce testów Neymana-Pearsona, Higher Criticism, Bonferroniego, KS, AD oraz Chi-Kwadrat. Najpierw jednak musimy zasymulować wartości krytyczne dla testu Neymana-Pearsona o staytystyce testowej $L = \prod_{i=1}^p ((1-\epsilon) + \epsilon \exp(\mu X_i - \frac{\mu^2}{2}))$.

	0.1	0.2	0.3	0.4
5000	2.75	3.00	0.55	0.15
50000	2.88	4.54	0.12	0.00
5e + 05	2.92	0.90	0.00	0.00

Table 2: Wartości krytyczne dla $\beta = 0.6$

	0.1	0.2	0.3	0.4
5000	1.34	1.60	3.08	3.53
50000	1.16	1.50	2.16	3.96
5e + 05	1.10	1.33	1.90	2.16

Table 3: Wartości krytyczne dla $\beta = 0.8$

Teraz porównamy wymienione wcześniej testy. Ustawienie są generowane następująco najpierw ustalamy β , dla którego przeglądamy mozliwe wartości p, dla którego przeglądamy kolejne wartości r i stąd $24 = 2 \cdot 3 \cdot 4$ wiersze w tabelce.

	β	p	r	NP	Bonf	НС	ChiKw	KS	AD
1	$\frac{\beta}{0.60}$	$\frac{P}{5000.00}$	0.10	0.28	0.06	0.11	0.18	0.07	0.11
2	0.60	5000.00	0.20	0.20	0.00	0.11	0.10	0.08	0.11
3	0.60	5000.00	0.20	0.98	0.56	0.21	0.23 0.51	0.09	0.11
4	0.60	5000.00	0.40	0.98	0.57	0.73	0.63	0.06	0.10
5	0.60	5000.00	0.40	0.38	0.02	0.13	0.09	0.06	0.10
6	0.60	50000.00	0.10	0.74	0.02 0.18	0.11 0.34	0.03 0.24	0.06	0.10
7	0.60	50000.00	0.20	1.00	0.18	0.54 0.58	0.24 0.41	0.00	0.10
8	0.60	50000.00	0.30	1.00	0.94	0.97	0.41 0.64	0.12 0.03	0.17
9	0.60	50000.00	0.40	0.29	0.94 0.04	0.97 0.13	0.04 0.10	0.03	0.09 0.07
	0.60	500000.00							
10			0.20	0.92	0.24	0.41	0.30	0.03	0.05
11	0.60	500000.00	0.30	1.00	0.76	0.66	0.36	0.07	0.12
12	0.60	500000.00	0.40	1.00	0.95	0.94	0.63	0.05	0.13
13	0.80	5000.00	0.10	0.05	0.03	0.02	0.10	0.12	0.12
14	0.80	5000.00	0.20	0.18	0.09	0.08	0.11	0.03	0.03
15	0.80	5000.00	0.30	0.09	0.09	0.05	0.04	0.04	0.04
16	0.80	5000.00	0.40	0.23	0.19	0.05	0.08	0.05	0.07
17	0.80	50000.00	0.10	0.07	0.07	0.04	0.03	0.04	0.04
18	0.80	50000.00	0.20	0.14	0.08	0.03	0.06	0.04	0.05
19	0.80	50000.00	0.30	0.24	0.18	0.08	0.04	0.05	0.04
20	0.80	50000.00	0.40	0.37	0.20	0.15	0.09	0.06	0.07
21	0.80	500000.00	0.10	0.11	0.03	0.05	0.04	0.05	0.06
22	0.80	500000.00	0.20	0.15	0.05	0.06	0.05	0.06	0.05
23	0.80	500000.00	0.30	0.25	0.18	0.10	0.08	0.03	0.01
24	0.80	500000.00	0.40	0.46	0.19	0.08	0.07	0.07	0.09

Table 4: Moce testów dla kolejnych ustawień

Możemy zauważyć, że zgodnie z oczekiwaniami test Neymana-Pearsona ma największą moc. Zauważamy

również, że dla $\beta=0.8$ mieszanina jest na tyle rzadka, że zaden test nie działa dobrze - nie osiągamy mocy powyżej 0.5. Co więcej widzimy, że dla ustalonych β,p moc każdego testu rośnie wraz ze wzrostem r, co jest zgodne z teorią, gdyż silniejszy sygnał łatwiej rozpoznać. Ponadto dla $\beta=0.6$ i ustalonego r możemy zauważyć, że moce testów Neymana-Pearsona, Bonferroniego i Higher Criticism rosną wraz ze wzrostem p, co sugeruje, że te testy przy tych ustawieniach są asymptotycznie mocne względem p. Jeśli chodzi o testy KS i AD widzimy, że przy żadnych ustawieniach się nie mają dużej mocy. Oznacza to, że nie nadają się one do wykrywania rzadkich mieszanin.

Zadanie 4

Niech p=5000. W tym zadaniu wygenerujemy 1000 trajektorii procesu empirycznego $U_p(t)$ na podstawie zmiennych losowych ze standardowego rozkładu normalnego, tzn. $U_p(t)=\sqrt{p}(F_p(t)-t)$, gdzie $F_p(t)=\frac{|\{i:p_i\leq t\}|}{p}$, gdzie p_i są p-wartościami, czyli $p_i=2(1-\Phi(x_i))$. Do wygenerowania 1000 trajektorii mostu Browna użyjemy funckji $rbridge\{e1071\}$.

Most Browna vs proces empiryczny

Na wykresie przedstawiono przykładowe po 5 wygenerowanych procesów empirycznych i mostów Browna. Z samego wykresu, cieżko coś jednoznacznie wywnioskować, można jednak zauważyć, że procesy mają podobne przebiegi, tzn. bez legendy cięzko odróżnić most Browna od procesu empirycznego. W celu analizy podobieństwa porównujemy kwantyle próbkowe(po to generowaliśmy 1000 trajektorii) rzędu 80% dla statystyk $T_1 = \sup_{t \in (0,1)} |B(t)|$ oraz $T_2 = \sup_{t \in (0,1)} |U_p(t)|$. Wynoszą one odpowiednio 1.0610848 i 1.0647079, co potwierdza teorię z wykładu mówiącą, że $T_1 \to_{p \to \infty} T_2$.