Adaptively Secure Distributed PRFs from LWE

Benoît Libert^{1,2} Damien Stehlé² Radu Ţiţiu^{2,3}

¹CNRS (France) ²ENS de Lyon (France) ³Bitdefender (Romania)

June 13, 2019

Nanyang Technological University

Outline

- Distributed PRFs
- 2 Known Constructions from Key-homomorphic PRFs
- 3 Achieving Adaptive Security
- 4 Robustness against Malicious Adversaries

Pseudorandom functions (PRFs) (Goldreich-Goldwasser-Micali; FOCS'84)

Is an efficiently computable function, $F: \mathcal{K} \times \mathcal{X} \to \mathcal{Y}$

Pseudorandom functions (PRFs) (Goldreich-Goldwasser-Micali; FOCS'84)

Is an efficiently computable function, $F: \mathcal{K} \times \mathcal{X} \to \mathcal{Y}$

$$\mathbf{k} \qquad \times \qquad \mathbf{x} \in \mathcal{X} \qquad \qquad F_{\mathbf{k}}(\cdot) \qquad \qquad F_{\mathbf{k}}(\mathbf{x})$$

s.t. for $k \leftarrow U(\mathcal{K})$, the following boxes are indistinguishable:

Threshold **sharing** of the **key** among N servers

■ Dealer runs $(pp, k) \leftarrow \mathsf{Setup}(\lambda)$

- Dealer runs $(pp, k) \leftarrow \mathsf{Setup}(\lambda)$
- Dealer runs $(k_1, ..., k_N) \leftarrow \text{Share}(k)$ and gives k_i to server i

- Dealer runs $(pp, k) \leftarrow \mathsf{Setup}(\lambda)$
- Dealer runs $(k_1, ..., k_N) \leftarrow \text{Share}(k)$ and gives k_i to server i
- On input x, each server computes $y_i = PEval(k_i, x)$

- Dealer runs $(pp, k) \leftarrow \mathsf{Setup}(\lambda)$
- Dealer runs $(k_1, ..., k_N) \leftarrow \text{Share}(k)$ and gives k_i to server i
- On input x, each server computes $y_i = PEval(k_i, x)$

- Dealer runs $(pp, k) \leftarrow \mathsf{Setup}(\lambda)$
- Dealer runs (k₁,..., k_N) ← Share(k) and gives k_i to server i
- On input x, each server computes $y_i = \mathsf{PEval}(k_i, x)$
- Using any t partial evaluations, the user computes

$$F_k(x) \leftarrow \mathsf{Combine}(y_{i_1}, y_{i_2}, \dots, y_{i_t})$$

Motivations

- Distributed symmetric encryption
 (Agrawal-Mohassel-Mukherjee-Rindal; CCS 2018)
- Distributed key distribution centers (Naor-Pinkas-Reingold; Eurocrypt'99)
- Distributed coin tossing: e.g., allows threshold Cramer-Shoup
 (Canetti-Goldwasser; Eurocrypt'99) without pre-shared randomness

Security modeled as an interactive game between ${\cal A}$ and ${\cal C}$

1. C runs $(pp, k) \leftarrow \mathsf{Setup}(1^{\lambda})$ and $(k_1, \ldots, k_N) \leftarrow \mathsf{Share}(k)$

Security modeled as an interactive game between ${\mathcal A}$ and ${\mathcal C}$

- 1. $C \text{ runs } (pp, k) \leftarrow \text{Setup}(1^{\lambda}) \text{ and } (k_1, \dots, k_N) \leftarrow \text{Share}(k)$
- 2. \mathcal{A} chooses $\{i_1, i_2, \dots, i_{t-1}\} \subset [N]$ and gets $\{k_{i_1}, k_{i_2}, \dots, k_{i_{t-1}}\} \subset [N]$

Security modeled as an interactive game between ${\mathcal A}$ and ${\mathcal C}$

- 1. $C \text{ runs } (pp, k) \leftarrow \text{Setup}(1^{\lambda}) \text{ and } (k_1, \dots, k_N) \leftarrow \text{Share}(k)$
- 2. \mathcal{A} chooses $\{i_1, i_2, \dots, i_{t-1}\} \subset [N]$ and gets $\{k_{i_1}, k_{i_2}, \dots, k_{i_{t-1}}\} \subset [N]$
- 3. A adaptively learns partial evaluations $y_i = PEval(k_i, x)$

Security modeled as an interactive game between ${\cal A}$ and ${\cal C}$

- 1. C runs $(pp, k) \leftarrow \mathsf{Setup}(1^{\lambda})$ and $(k_1, \dots, k_N) \leftarrow \mathsf{Share}(k)$
- 2. \mathcal{A} chooses $\{i_1, i_2, \dots, i_{t-1}\} \subset [N]$ and gets $\{k_{i_1}, k_{i_2}, \dots, k_{i_{t-1}}\} \subset [N]$
- 3. A adaptively learns partial evaluations $y_i = PEval(k_i, x)$
- 4. \mathcal{A} chooses x^* ; \mathcal{C} flips $b \leftarrow \{0, 1\}$ \mathcal{C} returns $F_k(x^*)$ or random

Security modeled as an interactive game between ${\cal A}$ and ${\cal C}$

- 1. $C \text{ runs } (pp, k) \leftarrow \mathsf{Setup}(1^{\lambda}) \text{ and } (k_1, \dots, k_N) \leftarrow \mathsf{Share}(k)$
- 2. \mathcal{A} chooses $\{i_1, i_2, \dots, i_{t-1}\} \subset [N]$ and gets $\{k_{i_1}, k_{i_2}, \dots, k_{i_{t-1}}\} \subset [N]$
- 3. A adaptively learns partial evaluations $y_i = PEval(k_i, x)$
- 4. \mathcal{A} chooses x^* ; \mathcal{C} flips $b \leftarrow \{0,1\}$ \mathcal{C} returns $F_k(x^*)$ or random
- 5. \mathcal{A} makes more queries and outputs $b' \in \{0,1\}$

We want: $\Pr[b' = b] \leq \frac{1}{2} + \operatorname{negl}(\lambda)$

Security modeled as an interactive game between ${\cal A}$ and ${\cal C}$

1. C runs $(pp, k) \leftarrow \mathsf{Setup}(1^{\lambda})$ and $(k_1, \ldots, k_N) \leftarrow \mathsf{Share}(k)$

Security modeled as an interactive game between ${\mathcal A}$ and ${\mathcal C}$

- 1. $C \text{ runs } (pp, k) \leftarrow \text{Setup}(1^{\lambda}) \text{ and } (k_1, \dots, k_N) \leftarrow \text{Share}(k)$
- 2. A interleaves corruption queries and partial evaluation queries

Security modeled as an interactive game between ${\cal A}$ and ${\cal C}$

- 1. $C \text{ runs } (pp, k) \leftarrow \text{Setup}(1^{\lambda}) \text{ and } (k_1, \dots, k_N) \leftarrow \text{Share}(k)$
- 2. A interleaves corruption queries and partial evaluation queries

Security modeled as an interactive game between ${\cal A}$ and ${\cal C}$

- 1. C runs $(pp, k) \leftarrow \mathsf{Setup}(1^{\lambda})$ and $(k_1, \ldots, k_N) \leftarrow \mathsf{Share}(k)$
- 2. A interleaves corruption queries and partial evaluation queries
- 3. \mathcal{A} chooses x^* ; \mathcal{C} flips $b \leftarrow \{0,1\}$ \mathcal{C} replies with $F_k(x^*)$ or random

Security modeled as an interactive game between ${\cal A}$ and ${\cal C}$

- 1. $C \text{ runs } (pp, k) \leftarrow \text{Setup}(1^{\lambda}) \text{ and } (k_1, \dots, k_N) \leftarrow \text{Share}(k)$
- 2. A interleaves corruption queries and partial evaluation queries
- 3. \mathcal{A} chooses x^* ; \mathcal{C} flips $b \leftarrow \{0,1\}$ \mathcal{C} replies with $F_k(x^*)$ or random
- 4. \mathcal{A} makes more queries and outputs $b' \in \{0,1\}$

We want: $\Pr[b' = b] \leq \frac{1}{2} + \operatorname{negl}(\lambda)$

Related work on DPRFs

Multiple interaction rounds:

■ Nielsen (Crypto'02), Dodis (PKC'03), Dodis-Yampolskiy-Yung (TCC'06), . . .

Non-interactive:

- Micali and Sidney (Crypto'95): very small of very large t w.r.t N
- Naor, Pinkas and Reingold (Eurocrypt'99): uses random oracles
- Boneh et al. (Crypto'13): generic construction from key-homomorphic PRFs
- Boneh et al. (Crypto'18): generic construction from threshold FHE

All secure in the static corruption setting

This work

Our results: We build the first DPRF which is:

- secure under adaptive corruptions
- secure under the standard LWE assumption
- non-interactive
- without random oracles

Hardness assumptions

The Learning-With-Errors (LWE) problem (Regev, STOC'05)

Parameters: dimension n, number of samples $m \ge n$, modulus q.

For
$$\mathbf{A} \overset{\mathcal{R}}{\leftarrow} \mathbb{Z}_q^{m \times n}$$
, $\mathbf{s} \overset{\mathcal{R}}{\leftarrow} \mathbb{Z}_q^n$, \mathbf{e} a small error $\approx \alpha q$, distinguish

$$\left(\bigcap_{n} \mathbf{A} \cdot \bigcap_{n} \mathbf{A} \cdot$$

for uniform
$$\mathbf{b} \stackrel{\mathcal{R}}{\leftarrow} \mathbb{Z}_q^m$$

- As hard as standard worst-case lattice problems when $\alpha q > \sqrt{n}$
- Conjectured quantum-resistant
- Enables powerful functionalities (e.g., FHE, ABE for circuits)

(Boneh-Lewi-Montgomery-Raghunathan; Crypto'13)

Key-homomorphic PRFs are secure PRFs that also satisfy:

$$F(k_1 + k_2, x) = F(k_1, x) + F(k_2, x)$$

(Boneh-Lewi-Montgomery-Raghunathan; Crypto'13)

Key-homomorphic PRFs are secure PRFs that also satisfy:

$$F(k_1 + k_2, x) = F(k_1, x) + F(k_2, x)$$

To obtain a **DPRF**, use Shamir's secret sharing:

■ $k \leftarrow \mathcal{K}$, $(k_1, k_2, \dots, k_N) \leftarrow \text{ShamirSS}(k, t, N)$

(Boneh-Lewi-Montgomery-Raghunathan; Crypto'13)

Key-homomorphic PRFs are secure PRFs that also satisfy:

$$F(k_1 + k_2, x) = F(k_1, x) + F(k_2, x)$$

To obtain a **DPRF**, use Shamir's secret sharing:

- $k \leftarrow \mathcal{K}$, $(k_1, k_2, ..., k_N) \leftarrow \text{ShamirSS}(k, t, N)$
- \blacksquare PEval $(k_i, x) := F(k_i, x)$

(Boneh-Lewi-Montgomery-Raghunathan; Crypto'13)

Key-homomorphic PRFs are secure PRFs that also satisfy:

$$F(k_1 + k_2, x) = F(k_1, x) + F(k_2, x)$$

To obtain a **DPRF**, use Shamir's secret sharing:

- $k \leftarrow \mathcal{K}$, $(k_1, k_2, ..., k_N) \leftarrow \text{ShamirSS}(k, t, N)$
- PEval $(k_i, x) := F(k_i, x)$
- Combine $(y_{i_1}, \ldots, y_{i_t})$: compute $\lambda_{W,i}$ such that:

$$k = \sum_{i \in W} \lambda_{W,i} \cdot k_i$$

recover the evaluation as:

$$\sum_{i\in W} \lambda_{W,i} \cdot F(k_i, x) = F(k, x)$$

Almost key-homomorphic PRFs are secure PRFs that also satisfy:

$$F(k_1 + k_2, x) = F(k_1, x) + F(k_2, x) + e$$

for all $k_1, k_2 \in \mathcal{K}, x \in \mathcal{X}$ and some small error e

Almost key-homomorphic PRFs are secure PRFs that also satisfy:

$$F(k_1 + k_2, x) = F(k_1, x) + F(k_2, x) + e$$

for all $k_1, k_2 \in \mathcal{K}, x \in \mathcal{X}$ and some small error e

Theorem (Boneh-Lewi-Montgomery-Raghunathan; Crypto'13)

Secure almost key-homomorphic PRF ⇒ statically secure DPRF

Almost key-homomorphic PRFs are secure PRFs that also satisfy:

$$F(k_1 + k_2, x) = F(k_1, x) + F(k_2, x) + e$$

for all $k_1, k_2 \in \mathcal{K}, x \in \mathcal{X}$ and some small error e

Theorem (Boneh-Lewi-Montgomery-Raghunathan; Crypto'13)

Secure almost key-homomorphic PRF ⇒ statically secure DPRF

Almost key-homomorphic PRFs from LWE

Use
$$F_s: \{0,1\}^L \to \mathbb{Z}_p^m$$
, with $F_s(x) = \left[A(x) \cdot s \right]_p = \left[\frac{p}{q} \cdot A(x) \cdot s \right]_p$

Almost key-homomorphic PRFs are secure PRFs that also satisfy:

$$F(k_1 + k_2, x) = F(k_1, x) + F(k_2, x) + e$$

for all $k_1, k_2 \in \mathcal{K}, x \in \mathcal{X}$ and some small error e

Theorem (Boneh-Lewi-Montgomery-Raghunathan; Crypto'13)

Secure almost key-homomorphic PRF ⇒ statically secure DPRF

Almost key-homomorphic PRFs from LWE

Use
$$F_s: \{0,1\}^L \to \mathbb{Z}_p^m$$
, with $F_s(x) = \left[\begin{bmatrix} \mathbf{A}(x) & \mathbf{s} \end{bmatrix}_p = \left[\frac{p}{q} & \mathbf{A}(x) & \mathbf{s} \end{bmatrix} \right]$

$$\left[\begin{bmatrix} \mathbf{A}(x) & \mathbf{s} \end{bmatrix}_p + \begin{bmatrix} \mathbf{A}(x) & \mathbf{A}(x) & \mathbf{s} \end{bmatrix}_p + \begin{bmatrix} \mathbf{A}(x) & \mathbf{A}(x)$$

$$F_{s_1+s_2}(x) = F_{s_1}(x) + F_{s_2}(x) + e$$
, with $e \in \{0,1\}^m$

Towards adaptive security

Starting point: Modification of (Boneh *et al.*; Crypto'13)

■ Let \mathbf{A}_0 , $\mathbf{A}_{i,b} \leftarrow U(\mathbb{Z}_q^{m \times n})$ for each $i \in [L]$, $b \in \{0,1\}$:

$$F_{\mathbf{s}}: \{0,1\}^L \to \mathbb{Z}_p^m, \text{ given by } F_{\mathbf{s}}(x) = \left\lfloor \mathbf{A}(x) \cdot \mathbf{s} \right\rfloor_p = \left\lfloor \frac{p}{q} \cdot \mathbf{A}(x) \cdot \mathbf{s} \right\rfloor$$

where $s \leftarrow U(\mathbb{Z}_q^n)$ is the secret key

Towards adaptive security

Starting point: Modification of (Boneh et al.; Crypto'13)

■ Let \mathbf{A}_0 , $\mathbf{A}_{i,b} \leftarrow U(\mathbb{Z}_q^{m \times n})$ for each $i \in [L]$, $b \in \{0,1\}$:

$$F_{\mathbf{s}}: \{0,1\}^L \to \mathbb{Z}_p^m, \text{ given by } F_{\mathbf{s}}(x) = \left\lfloor \mathbf{A}(x) \cdot \mathbf{s} \right\rfloor_p = \left\lfloor \frac{p}{q} \cdot \mathbf{A}(x) \cdot \mathbf{s} \right\rfloor$$

where $s \leftarrow U(\mathbb{Z}_q^n)$ is the secret key

■ Here,

$$\mathbf{A}(x) := \prod_{i=1}^{L} \mathbf{G}^{-1} \left(\mathbf{A}_{i,x[i]} \right) \cdot \mathbf{A}_{0}$$

- \blacksquare $\textbf{G} = \textbf{I}_n \otimes \left[1,2,\ldots,2^{\lceil \log q \rceil}\right]^\top$ the gadget matrix; \textbf{G}^{-1} binary decomposition
- Our proof idea: exploit the connection with fully homomorphic encryption (Gentry-Sahai-Waters; Crypto'13)

Modified Almost key-homomorphic PRF

(Boneh-Lewi-Montgomery-Raghunathan; Crypto'13)

We change it slightly:

Modified Almost key-homomorphic PRF

(Boneh-Lewi-Montgomery-Raghunathan; Crypto'13)

We change it slightly:

1. Admissible hash function (Boneh-Boyen; Crypto'04)

$$\mathsf{AHF}: \{0,1\}^\ell \to \{0,1\}^L$$

encodes the input as x := AHF(X)

Modified Almost key-homomorphic PRF

(Boneh-Lewi-Montgomery-Raghunathan; Crypto'13)

We change it slightly:

1. Admissible hash function (Boneh-Boyen; Crypto'04)

$$\mathsf{AHF}: \{0,1\}^\ell \to \{0,1\}^L$$

encodes the input as x := AHF(X)

2. Use a deterministic randomness extractor π (Trevisan-Vadhan, FOCS'00; Dodis, PhD thesis, 2000): output is $\pi(|\mathbf{z}|)$, where

$$\boxed{\mathbf{z}} = \left[\boxed{\mathbf{A}(x)} \cdot \boxed{\mathbf{s}} \right]_{p}$$

Modified Almost key-homomorphic PRF

(Boneh-Lewi-Montgomery-Raghunathan; Crypto'13)

We change it slightly:

1. Admissible hash function (Boneh-Boyen; Crypto'04)

$$\mathsf{AHF}: \{0,1\}^\ell \to \{0,1\}^L$$

encodes the input as x := AHF(X)

2. Use a deterministic randomness extractor π (Trevisan-Vadhan, FOCS'00; Dodis, PhD thesis, 2000): output is $\pi(|\mathbf{z}|)$, where

3. DPRF obtained by sharing susing Linear Integer Secret Sharing (LISS) (Damgård-Thorbek; PKC'06): allows "small" shares

Building block: Linear integer secret sharing

LISS (Damgård-Thorbek; PKC'06)

To share an integer $s \in [-2^l, 2^l]$ among parties [N], use a matrix $\mathbf{M} \in \mathbb{Z}^{d \times e}$,

- Choose random $\rho_2, \dots \rho_e$ and define $\vec{\rho} = (s, \rho_2, \dots, \rho_e)^{\top}$
- Compute $\vec{s} = (s_1, \dots, s_d)^{\top} = \mathbf{M} \cdot \vec{\rho}$
- Give s_i to party $\psi(i)$ for some function $\psi: [d] \to [N]$

Integer Span Programs (Cramer-Fehr; Crypto'02)

Let $\mathbf{M} \in \mathbb{Z}^{d \times e}$ and a surjective function $\psi : [d] \to [N]$. Then, (\mathbf{M}, ψ) is an ISP for a monotone access structure Γ iff

- $\forall A \in \Gamma$, $\exists \vec{\lambda}_A \in \mathbb{Z}^{d_A}$ s.t. $\vec{\lambda}_A^{\top} \cdot \mathbf{M}_A = (1, 0, \dots, 0)^{\top}$
- $\forall A \notin \Gamma$, $\exists \vec{\kappa}_A \in \mathbb{Z}^e$ s.t. $\mathbf{M}_A \cdot \vec{\kappa}_A = 0$ and $\vec{\kappa}_A^{\ \top} \cdot (1, 0, \dots, 0)^{\top} = 1$

LISS/ISP: Required properties

Need an ISP $(\mathbf{M} \in \mathbb{Z}^{d \times e}, \ \psi : [d] \to [\mathit{N}])$ for threshold functions

- For correctness: $\forall A \in \Gamma$, $\exists \ \underline{\text{small}} \ \vec{\lambda}_A \in \mathbb{Z}^{d_A} \ \text{s.t.} \ \vec{\lambda}_A^{\ \top} \cdot \mathbf{M}_A = \mathbf{1}^{\top}$
- Security proof requires: $\forall A \notin \Gamma$, $\exists \text{ small } \vec{\kappa}_A \in \mathbb{Z}^e$ s.t. $\mathbf{M}_A \cdot \vec{\kappa}_A = 0$
- ... and small-magnitude shares $s_i = \mathbf{M}_i \cdot \vec{\rho}$

Useful facts:

• Damgård and Thorbek build a LISS/ISP: construction based on Benaloh-Leichter (Crypto'88) yields $\|\vec{\lambda}_A\|_{\infty}=1$ and $\|\vec{\kappa}_A\|_{\infty}=1$

LISS/ISP: Required properties

Need an ISP $(\mathbf{M} \in \mathbb{Z}^{d \times e}, \ \psi : [d] \to [N])$ for threshold functions

- For correctness: $\forall A \in \Gamma$, $\exists \ \underline{\text{small}} \ \vec{\lambda}_A \in \mathbb{Z}^{d_A} \ \text{s.t.} \ \vec{\lambda}_A^{\ \top} \cdot \mathbf{M}_A = \mathbf{1}^{\top}$
- Security proof requires: $\forall A \notin \Gamma$, $\exists \text{ small } \vec{\kappa}_A \in \mathbb{Z}^e$ s.t. $\mathbf{M}_A \cdot \vec{\kappa}_A = 0$
- ... and small-magnitude shares $s_i = \mathbf{M}_i \cdot \vec{\rho}$

Useful facts:

- Damgård and Thorbek build a LISS/ISP: construction based on Benaloh-Leichter (Crypto'88) yields $\|\vec{\lambda}_A\|_{\infty}=1$ and $\|\vec{\kappa}_A\|_{\infty}=1$
- Any threshold function $T_{t,N}$ is computable by a Boolean formula of depth $O(\log N)$ and size $d = O(N^{5.3})$ (Valiant; J. of Algorithms, 1984)

LISS/ISP: Required properties

Need an ISP $(\mathbf{M} \in \mathbb{Z}^{d \times e}, \ \psi : [d] \to [N])$ for threshold functions

- For correctness: $\forall A \in \Gamma$, $\exists \ \underline{\text{small}} \ \vec{\lambda}_A \in \mathbb{Z}^{d_A} \ \text{s.t.} \ \vec{\lambda}_A^{\ \top} \cdot \mathbf{M}_A = \mathbf{1}^{\top}$
- Security proof requires: $\forall A \notin \Gamma$, $\exists \text{ small } \vec{\kappa}_A \in \mathbb{Z}^e$ s.t. $\mathbf{M}_A \cdot \vec{\kappa}_A = 0$
- ... and small-magnitude shares $s_i = \mathbf{M}_i \cdot \vec{\rho}$

Useful facts:

- Damgård and Thorbek build a LISS/ISP: construction based on Benaloh-Leichter (Crypto'88) yields $\|\vec{\lambda}_A\|_{\infty}=1$ and $\|\vec{\kappa}_A\|_{\infty}=1$
- Any threshold function $T_{t,N}$ is computable by a Boolean formula of depth $O(\log N)$ and size $d = O(N^{5.3})$ (Valiant; J. of Algorithms, 1984)
- For a Boolean formula f, [DT06,BL88] provides $\mathbf{M} \in \{0,1\}^{d \times e}$ with $d, e = O(\operatorname{size}(f))$ and $\operatorname{depth}(f)$ non-zero entries

LISS: In our setting

Our construction:

- Dealer shares Gaussian vectors $\mathbf{s} \in \mathbb{Z}^n$ with Gaussian randomness $\{\vec{\rho_i}\}_{i=1}^n$, where $n = \text{poly}(\lambda)$, and standard deviation $\sigma = O(n^{1/2} \cdot N^{1.7})$
- Each share $s_i \in \mathbb{Z}^n$ has entries smaller than $O(n \cdot N^{1.7} \cdot \log N)$
- Using moduli q and p with $q/p > 2^{\text{poly}(\lambda)}$, security proof exploits that

$$\left\lfloor \left(\begin{array}{c} \mathbf{B}(\mathbf{x}) + \mathsf{noise} \right) \cdot \mathbf{s}_i \right\rfloor_p = \left\lfloor \mathbf{B}(\mathbf{x}) \cdot \mathbf{s}_i \right\rfloor_p$$

w.h.p. for each share $\mathbf{s}_i \in \mathbb{Z}^n$ of the secret key $\mathbf{s} \in \mathbb{Z}^n$

■ Setup : pick $A_0 \in \mathbb{Z}_q^{m \times n}$, $\left\{A_{i,b} \in \mathbb{Z}_q^{m \times n}\right\}_{i=1}^L$, a k-wise independent function π

Secret key: $s \leftarrow D_{\mathbb{Z}^n,\sigma}$

- Setup : pick $\mathbf{A}_0 \in \mathbb{Z}_q^{m \times n}$, $\left\{ \mathbf{A}_{i,b} \in \mathbb{Z}_q^{m \times n} \right\}_{i=1}^L$, a k-wise independent function π
 - Secret key: $s \leftarrow D_{\mathbb{Z}^n,\sigma}$
- Share (s, t, N): Compute
 - $\left(\mathbf{s_1}, \mathbf{s_2}, \dots, \mathbf{s_N} \right) \leftarrow \mathsf{LISS}\left(\mathbf{s}, t, N \right)$

- Setup : pick $\mathbf{A}_0 \in \mathbb{Z}_q^{m \times n}$, $\left\{ \mathbf{A}_{i,b} \in \mathbb{Z}_q^{m \times n} \right\}_{i=1}^L$, a k-wise independent function π
 - Secret key: $s \leftarrow D_{\mathbb{Z}^n,\sigma}$
- Share (s, t, N): Compute

$$\left(\mathbf{s_1}, \mathbf{s_2}, \dots, \mathbf{s_N} \right) \leftarrow \mathsf{LISS}\left(\mathbf{s}, t, N \right)$$

■ PEval $\left(\mathbf{s}_{i}, X\right)$: Let $X = \mathsf{AHF}(X) \in \{0, 1\}^{L}$, output

$$\frac{\mathbf{y}_i}{\mathbf{x}_i} = \left[\mathbf{A}(\mathbf{x}) \cdot \mathbf{s}_i \right]_{p}$$

- Setup : pick $\mathbf{A}_0 \in \mathbb{Z}_q^{m \times n}$, $\left\{ \mathbf{A}_{i,b} \in \mathbb{Z}_q^{m \times n} \right\}_{i=1}^L$, a k-wise independent function π Secret key: $\mathbf{S} \leftarrow D_{\mathbb{Z}_q^n,\sigma}$
- Share (s, t, N): Compute

$$\left(\boxed{\mathbf{s_1}}, \boxed{\mathbf{s_2}}, \dots, \boxed{\mathbf{s_N}} \right) \leftarrow \mathsf{LISS}\left(\boxed{\mathbf{s}}, t, N \right)$$

■ PEval $\left(\mathbf{s}_{i},X\right)$: Let $x=\mathsf{AHF}(X)\in\{0,1\}^{L}$, output

$$\frac{\mathbf{y}_i}{\mathbf{x}} = \left[\mathbf{A}(\mathbf{x}) \cdot \mathbf{s}_i \right]_p$$

■ Combine($\{y_i\}_{i \in W}$): Compute $\lambda_{W,i}$ s.t. $\mathbf{s} = \sum_{i \in W} \lambda_{W,i} \cdot \mathbf{s}_i$ and output

$$\pi \left(\left[\sum_{i \in W} \lambda_{W,i} \cdot \boxed{\mathbf{y}_i} \mod p \right]_{U} \right)$$

Proof component 1: Lossy mode of LWE

(Goldwasser et al., ICS 2010)

is **injective** w.h.p. for a random $\mathbf{A} \in \mathbb{Z}_q^{m \times n}$

Proof component 1: Lossy mode of LWE

(Goldwasser et al., ICS 2010)

• $f_{\text{LWE}}: [-\sigma_{\text{x}}, \sigma_{\text{x}}]^m \times [-\sigma_{\text{e}}, \sigma_{\text{e}}]^m \to \mathbb{Z}_q^m$

$$f_{LWE}(x, e) := A + e$$

is **injective** w.h.p. for a random $\mathbf{A} \in \mathbb{Z}_q^{m \times n}$

• $f_{LWE}(x, e)$ is a **lossy** function if **A** is of the form

for uniform $\mathbf{B} \overset{R}{\leftarrow} \mathbb{Z}_q^{m \times n'}$, $\mathbf{C} \overset{R}{\leftarrow} \mathbb{Z}_q^{n' \times n}$ and small $\mathbf{F} \leftarrow \mathbb{Z}^{m \times n}$

Proof component 2: The GSW encodings

(Gentry-Sahai-Waters, Crypto'13)

- Public key is $PK := \mathbf{A} \in \mathbb{Z}_q^{m \times n}$
- $\blacksquare \mu \in \{0,1\}$ is encoded by picking $\mathbb{R} \stackrel{R}{\leftarrow} \{0,1\}^{m \times m}$ and computing

Proof component 2: The GSW encodings

(Gentry-Sahai-Waters, Crypto'13)

- Public key is $PK := \mathbf{A} \in \mathbb{Z}_q^{m \times n}$
- $\blacksquare \mu \in \{0,1\}$ is encoded by picking $\mathbb{R} \stackrel{R}{\leftarrow} \{0,1\}^{m \times m}$ and computing

$$\mathbf{m} \bigcirc \mathbf{C} = \mathbf{R} \mathbf{A} + \mu \mathbf{G}$$

■ Given encodings \mathbf{C}_1 , $\mathbf{C}_2 \in \mathbb{Z}_q^{m \times n}$ of $\mu_1, \mu_2 \in \{0, 1\}$,

$$\mathbf{G}^{-1}(\mathbf{C}_1) \cdot \mathbf{C}_2$$
 encodes $\mu_1 \cdot \mu_2 \in \{0,1\}$

■ Public parameters contain $\left\{ \begin{bmatrix} \mathbf{A}_{i,b} \in \mathbb{Z}_q^{m \times n} \end{bmatrix}_{i=1}^L \right\}$

- Public parameters contain $\left\{ \mathbf{A}_{i,b} \in \mathbb{Z}_q^{m \times n} \right\}_{i=1}^L$
- Each $\mathbf{A}_{i,b}$ is "programmed" as

- Public parameters contain $\left\{ \mathbf{A}_{i,b} \in \mathbb{Z}_q^{m \times n} \right\}_{i=1}^L$
- Each $\mathbf{A}_{i,b}$ is "programmed" as

 \blacksquare **A**(x) now equals

$$\mathbf{A}(\mathbf{x}) = \mathbf{R}_{\mathbf{x}} \cdot \mathbf{A} + \left(\prod_{i=1}^{L} \mu_{i,\mathbf{x}[i]}\right) \cdot \mathbf{G}$$

- Public parameters contain $\left\{ \mathbf{A}_{i,b} \in \mathbb{Z}_q^{m \times n} \right\}_{i=1}^L$
- Each $\mathbf{A}_{i,b}$ is "programmed" as

$$\widehat{\mathbf{A}}_{i,b} = \mathbf{R}_{i,b} + \mu_{i,b} \mathbf{G}$$

 \blacksquare **A**(x) now equals

$$\mathbf{A}(\mathbf{x}) = \mathbf{R}_{\mathbf{x}} \cdot \mathbf{A} + \left(\prod_{i=1}^{L} \mu_{i,\mathbf{x}[i]}\right) \cdot \mathbf{G}$$

■ With noticeable probability, encoding x := AHF(X) allows:

$$A(x) = R_x \cdot A$$

$$\mathbf{A}(x^{\star}) = \boxed{\mathbf{R}_{x^{\star}}} \cdot \boxed{\mathbf{A}} + \boxed{\mathbf{G}}$$

Now, switch **A** to the lossy mode:

Now, switch A to the lossy mode:

Partial evaluations (LISS allows small shares s;)

$$\left[\boxed{\mathbf{A}(\mathbf{x}) \cdot \mathbf{s_i}} \right]_p = \left[\boxed{\mathbf{R}_{\mathbf{x}}} \cdot \left(\boxed{\mathbf{B}} \cdot \boxed{\mathbf{C}} + \boxed{\mathbf{F}} \right) \cdot \boxed{\mathbf{s_i}} \right]_p = \left[\boxed{\mathbf{R}_{\mathbf{x}}} \cdot \boxed{\mathbf{B}} \cdot \left(\boxed{\mathbf{C}} \cdot \boxed{\mathbf{s_i}} \right) \right]_p$$

reveals no more than $oxed{\mathsf{C}}$ $\in \mathbb{Z}_q^{n'}$

Now, switch A to the lossy mode:

Partial evaluations (LISS allows small shares s;)

$$\left[\begin{bmatrix} \mathbf{A}(\mathbf{x}) \cdot \mathbf{\hat{s}_i} \end{bmatrix}_p = \left[\begin{bmatrix} \mathbf{R}_{\mathbf{x}} \end{bmatrix} \cdot \left(\begin{bmatrix} \mathbf{B} \end{bmatrix} \cdot \mathbf{\hat{s}_i} \right) + \begin{bmatrix} \mathbf{F} \end{bmatrix} \cdot \mathbf{\hat{s}_i} \right]_p = \left[\begin{bmatrix} \mathbf{R}_{\mathbf{x}} \end{bmatrix} \cdot \mathbf{\hat{s}_i} \right]_p$$

reveals no more than $egin{array}{|c|c|c|c|c|} \hline {f c} & \in \mathbb{Z}_q^{n'} \end{array}$

- All queries reveal the same information about the secret s;
- (Deterministic) randomness extraction argument applies:

 $H_{\infty}(s \mid PEvals, Corrupted Keys) \ge sufficient entropy$

Proof idea: Summary

Why we can prove adaptive security:

- Non-modular use of key-homomorphic PRFs
- Reduction knows all secret key shares at any time

Proof idea:

- Switch matrix **A** to lossy mode
- Make sure that all evaluations reveal the same information about shares
- Lower bound on the entropy of the secret when information is leaked:
 - $H_{\infty}(s \mid PEvals, Corrupted Keys) \ge sufficient entropy$
- ullet Extract randomness using a deterministic extractor π

Robustness against malicious adversaries

Robustness

Malicious servers cannot send wrong partial evaluations $y_i = F_{SK_i}(x)$ and prevent the reconstruction of $y = F_{SK}(x)$

- Need to prove that each partial evaluation $y_i = PEval(SK_i, x)$ is correct
- ... possibly using some public commitment to SK_i
- Possible using generic NIZK:
 - NIZK with pre-processing: under the LWE assumption (Kim-Wu, Crypto'18)
 - ... or general NIZK from LWE (Peikert-Shiehian, Crypto'19)

Robustness from homomorphic signatures

Leveled homomorphic signatures (Gorbunov et al.; STOC'15)

Given (m, sig_m) , anyone can compute $(C(m), sig_{C(m)} = SigEval((m, sig), C))$

Direct construction: following Boneh et al. (Crypto'18)

- Dealer signs each secret key share SK_i using a homomorphic signature
- Given its signed share (SK_i, sig_i) , each server i
 - 1. Computes $y_i = PEval(SK_i, x)$
 - 2. Using the circuit $C_x(.)$ such that $C_x(SK_i) = F_{SK_i}(x)$, computes

$$sig_{y_i} \leftarrow SigEval((SK_i, sig_i), C_x)$$

Robustness from homomorphic signatures

Leveled homomorphic signatures (Gorbunov et al.; STOC'15)

Given (m, sig_m) , anyone can compute $(C(m), sig_{C(m)} = SigEval((m, sig), C))$

Direct construction: following Boneh et al. (Crypto'18)

- Dealer signs each secret key share SK_i using a homomorphic signature
- Given its signed share (SK_i, sig_i) , each server i
 - 1. Computes $y_i = PEval(SK_i, x)$
 - 2. Using the circuit $C_x(.)$ such that $C_x(SK_i) = F_{SK_i}(x)$, computes

$$sig_{y_i} \leftarrow SigEval((SK_i, sig_i), C_x)$$

- Combiner checks that (y_i, sig_{y_i}) is a valid pair w.r.t. $C_x(.)$
- (Simulation-based) **context-hiding** property of homomorphic signatures preserves the secrecy of SK_i

Summary

First DPRF construction in the standard model which is

- Non-interactive
- Secure under adaptive corruptions for $N \in poly(\lambda)$ servers

Requires large LWE parameters

- **Exponentially large moduli** p, q in λ (but not in N)
- Yamada's technique (Crypto'17) allows shorter public parameters $(O(\log^2 \lambda))$ matrices instead of $O(\lambda)$

Open questions:

- More efficient parameters
- DPRFs from more standard LWE assumptions
- Other applications of LISS combined with discrete Gaussians?

Thanks!

Questions?