Target Case study

Red ones are the query

Then screenshot

Green ones are insights or suggestions.

Q1. Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset

a. Data type of columns in a table

	Field name	Туре	Mode
	order_id	STRING	NULLABLE
	order_item_id	INTEGER	NULLABLE
	product_id	STRING	NULLABLE
	seller_id	STRING	NULLABLE
	shipping_limit_date	TIMESTAMP	NULLABLE
	price	FLOAT	NULLABLE
ans:	freight_value	FLOAT	NULLABLE

Data type present in columns are string, integer, float, timestamp.

b. Time period for which the data is given

ans:

select min(order_purchase_timestamp) as min_time, max(order_purchase_timestamp) as max_time,

from `Target_store.orders`

Row	min_time	11	max_time
1	2016-09-04 21:15:19 UT	c	2018-10-17 17:30:18 UTC

Time period for which the data is given was between 2016 to 2018

c. Cities and States of customers ordered during the given period ans:

```
select distinct c.customer_city, c.customer_state
from `Target_store.customers` c join `Target_store.orders` o
on c.customer_id = o.customer_id
limit 10
```

Row	customer_city //	customer_state
1	acu	RN
2	ico	CE
3	ipe	RS
4	ipu	CE
5	ita	SC
6	itu	SP
7	jau	SP
8	luz	MG

Q2. In-depth Exploration:

a. Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?

Ans:

with Q1 as

(select order_id, extract(month from order_purchase_timestamp) as month, extract(year from order_purchase_timestamp) as year

from `Target_store.orders`)

select count (distinct order_id) as order_counts, sum(count (distinct order_id)) over(partition by year) as year sales, year, Q1.month from Q1

group by year, Q1.month

order by year, month

Row	order_counts //	year_sales //	year //	month //
1	4	329	2016	9
2	324	329	2016	10
3	1	329	2016	12
4	800	45101	2017	1
5	1780	45101	2017	2
6	2682	45101	2017	3
7	2404	45101	2017	4
8	3700	45101	2017	5

There was a growing trend on year on year basis as the no. of sales increased, In Nov 2017, Jan 2018, and March 2018 the sales were at the peak.

b. What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

Dawn 12 am - 6 am

Morning 6 am - 12 pm

Afternoon 12 pm - 6 pm

Night 6-12 am

Ans:

with Q1 as

(select order_id, extract(hour from order_purchase_timestamp) as hours from `Target_store.orders`),

Q2 as

```
(select case when hours between 0 and 6 then "dawn" when hours between 6 and 12 then "morning" when hours between 12 and 18 then "afternoon" else "night"
```

end as time_zone, order_id

from Q1)

select time_zone, count(order_id) as sales from Q2 group by time_zone

Row	time_zone	sales //
1	morning	27733
2	dawn	5242
3	afternoon	38135
4	night	28331

As we can see above data, Brazilian customers tend to buy at afternoon time

Q3. Evolution of E-commerce orders in the Brazil region:

a. Get month on month orders by states

ans:

with Q1 as

(select c.customer_state, o.order_id, extract(month from o.order_purchase_timestamp) as month from `Target_store.customers` c join `Target_store.orders` o on c.customer_id = o.customer_id)

select customer_state, month, count(order_id) as months_orders from Q1 group by customer_state, month order by customer_state, month

Row	customer_state	month //	months_orders
1	AC	1	8
2	AC	2	6
3	AC	3	4
4	AC	4	9
5	AC	5	10
6	AC	6	7
7	AC	7	9
8	AC	8	7
9	AC	9	5
10	AC	10	6
11	AC	11	5
12	AC	12	5

b. Distribution of customers across the states in Brazil

ans:

select customer_state, count(customer_unique_id) as customers_distribution from `Target_store.customers` group by customer_state

_		-	
	Row	customer_state	customers_distr
	1	RN	485
	2	CE	1336
	3	RS	5466
	4	SC	3637
	5	SP	41746
	6	MG	11635
	7	BA	3380
	8	RJ	12852

These are the distribution for the customers present in each state.

Q4. Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.

```
a. Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only) - You can use "payment_value" column in payments table

Ans:
with Q1 as
(
select extract(month from o.order_purchase_timestamp) as month,
extract(year from o.order_purchase_timestamp) as year,
o.order_id,
p.payment_value
from `Target_store.orders` o join `Target_store.payments` p on o.order_id = p.order_id
where extract(year from o.order_purchase_timestamp) = 2017 or extract(year from
o.order_purchase_timestamp)=2018
),

Q2 as
(select year, sum(payment_value) as current_year_sales, lag(sum (payment_value)) over(order by
```

year) as previous_year_sales, sum(payment_value) over(order by year) as diffrence,

from Q1 where month between 1 and 8 $\,$

group by year order by year)

select year, current_year_sales, previous_year_sales, diffrence, round(diffrence/current_year_sales*100,2) as Percent_increase from Q2

Row	year //	current_year_sal	previous_year_s	diffrence	Percent_increas
1	2017	3669022.11	nuli	nuli	nuli
2	2018	8694733.83	3669022.11	5025711.71	57.8

There is 57.8% increase in cost of orders from 2017 to 2018.

b. Mean & Sum of price and freight value by customer state

Ans:

select c.customer_state, round(sum(ot.price),1) sum_of_price, round(avg(ot.price),1) avg_of_price, round(sum(ot.freight_value),1) sum_of_freight, round(avg(ot.freight_value),1) avg_of_freight from `Target_store.customers` c

```
join `Target_store.orders` o on c.customer_id = o.customer_id
join `Target_store.order_items` ot on o.order_id = ot.order_id
```

group by c.customer_state

Daw		our of muion	our of maios	arms of funishet	over of funished
Row	customer_state	sum_of_price	avg_of_price	sum_of_freight	avg_of_freight /
1	MT	156453.5	148.3	29715.4	28.2
2	MA	119648.2	145.2	31523.8	38.3
3	AL	80314.8	180.9	15914.6	35.8
4	SP	5202955.1	109.7	718723.1	15.1
5	MG	1585308.0	120.7	270853.5	20.6
6	PE	262788.0	145.5	59449.7	32.9
7	RJ	1824092.7	125.1	305589.3	21.0
8	DF	302603.9	125.8	50625.5	21.0
9	RS	750304.0	120.3	135522.7	21.7
10	SE	58920.9	153.0	14111.5	36.7

Q5. Analysis on sales, freight and delivery time

a. Calculate days between purchasing, delivering and estimated delivery

Ans:

with Q1 as

(select extract(date from order_purchase_timestamp) purchase_date, extract(date from order_delivered_customer_date) delivery_date, extract(date from order_estimated_delivery_date) estimate_deliv_date

from `Target_store.orders`)

select date_diff(delivery_date, purchase_date, day) as time_to_delivery, date_diff(estimate_deliv_date, purchase_date, day) as diff_estimated_delivery from Q1

where delivery_date is not null

Row	time_to_delivery	diff_estimated_d
1	30	18
2	31	60
3	36	53
4	31	33
5	33	34
6	30	32
7	44	40
8	41	37
9	37	36
10	34	29

There were many nulls in delivery date, which may be that orders was cancelled by the customer or some problems with the seller, but seems like some of the orders have over passed the estimated date, but many of the orders are delivered within the estimated date also.

b. Find time to delivery & diff estimated delivery. Formula for the same given below:

b1. time_to_delivery = order_purchase_timestamp-order_delivered_customer_date
Ans:

with Q1 as

(select extract(date from order_purchase_timestamp) purchase_date, extract(date from order_delivered_customer_date) delivery_date, extract(date from order_estimated_delivery_date) estimate_deliv_date from `Target store.orders`)

select date_diff(delivery_date, purchase_date, day) as time_to_delivery from Q1 where delivery_date is not null

Row	time_to_delivery	//
1		30
2		31
3		36
4		31
5		33
6		30
7		44
8		41
9		37
10		34

b2. diff_estimated_delivery = order_estimated_delivery_dateorder_delivered_customer_date

Ans:

with Q1 as

(select extract(date from order_purchase_timestamp) purchase_date, extract(date from order_delivered_customer_date) delivery_date, extract(date from order_estimated_delivery_date) estimate_deliv_date from `Target_store.orders`)

select

date_diff(estimate_deliv_date, purchase_date, day) as diff_estimated_delivery from Q1

where delivery_date is not null

Row	diff_estimated_delivery
1	53
2	60
3	52
4	53
5	53
6	62
7	59
8	58
9	45
10	53

c. Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery Ans:

with Q1 as

(select extract(date from order_purchase_timestamp) purchase_date, extract(date from order_delivered_customer_date) delivery_date, extract(date from order_estimated_delivery_date) estimate_deliv_date, c.customer_state,

ot.freight_value

from `Target_store.orders` o join `Target_store.order_items` ot on o.order_id = ot.order_id join `Target_store.customers` c on o.customer_id = c.customer_id),

Q2 as

(select customer_state, date_diff(delivery_date, purchase_date, day) as time_to_delivery, date_diff(estimate_deliv_date, purchase_date, day) as diff_estimated_delivery, freight_value from Q1 where delivery_date is not null)

select customer_state, round(avg(freight_value),1) as mean_of_freight_value, round(avg(time_to_delivery),1) as mean_of_time_to_delivery, round(avg(diff_estimated_delivery),1) as mean_of_diff_estimated_delivery from Q2 group by customer_state

Row	customer_state	mean_of_freight_value	mean_of_time_to_delivery	mean_of_diff_estimated_deliver
1	RJ	20.9	15.1	27.1
2	MG	20.6	11.9	25.3
3	SC	21.5	15.0	26.5
4	SP	15.1	8.7	19.9
5	GO	22.6	15.3	27.6
6	RS	21.6	15.1	29.3
7	ВА	26.5	19.2	30.2
8	MT	28.0	17.9	32.5
9	SE	36.6	21.4	31.4

This is the comparison of average freight value, average delivery time in days and average estimate delivery time.

- d. Sort the data to get the following:
- e. Top 5 states with highest/lowest average freight value sort in desc/asc limit 5 Ans

with Q1 as

(select extract(date from order_purchase_timestamp) purchase_date, extract(date from order_delivered_customer_date) delivery_date, extract(date from order_estimated_delivery_date) estimate_deliv_date, c.customer_state,

```
ot.freight_value
from `Target_store.orders` o join `Target_store.order_items` ot on o.order_id = ot.order_id
join `Target_store.customers` c on o.customer_id = c.customer_id),
```

Q2 as

(select customer_state, date_diff(delivery_date, purchase_date, day) as time_to_delivery, date_diff(estimate_deliv_date, purchase_date, day) as diff_estimated_delivery, freight_value from Q1 where delivery_date is not null),

Q3 as

(select customer_state, round(avg(freight_value),2) as mean_of_freight_value, dense_rank() over(order by (avg(freight_value)) desc) as rank_value, "highest_avg" as low_or_high from Q2 group by customer_state order by avg(freight_value) desc limit 5),

Q4 as

(select customer_state, round(avg(freight_value),2) as mean_of_freight_value, dense_rank() over(order by (avg(freight_value))) as rank_value, "lowest_avg" as low_or_high from Q2 group by customer_state order by avg(freight_value) limit 5)

select * from Q3 union all

select * from Q4

Row	customer_state	mean_of_freight	rank_value	low_or_high
1	SP	15.11	1	lowest_avg
2	PR	20.47	2	lowest_avg
3	MG	20.63	3	lowest_avg
4	RJ	20.91	4	lowest_avg
5	DF	21.07	5	lowest_avg
6	PB	43.09	1	highest_avg
7	RR	43.09	2	highest_avg
8	RO	41.33	3	highest_avg
9	AC	40.05	4	highest_avg
10	PI	39.12	5	highest_avg

This is the data of top 5 highest and lowest states which take average freight value for the product.

f. Top 5 states with highest/lowest average time to delivery

Ans: with Q1 as (select extract(date from order_purchase_timestamp) purchase_date, extract(date from order_delivered_customer_date) delivery_date, extract(date from order_estimated_delivery_date) estimate_deliv_date, c.customer_state, ot.freight_value from `Target_store.orders` o join `Target_store.order_items` ot on o.order_id = ot.order_id join `Target_store.customers` c on o.customer_id = c.customer_id), Q2 as (select customer_state, date_diff(delivery_date, purchase_date, day) as time_to_delivery, date_diff(estimate_deliv_date, purchase_date, day) as diff_estimated_delivery, freight_value from Q1 where delivery date is not null), Q3 as (select customer_state, round(avg(time_to_delivery),2) as avg_time_to_delivery, dense_rank() over(order by (avg(time_to_delivery)) desc) as rank_value, "highest_avg" as low_or_high from Q2 group by customer_state order by avg(time_to_delivery) desc limit 5), Q4 as (select customer_state, round(avg(time_to_delivery),2) as avg_time_to_delivery, dense_rank() over(order by (avg(time_to_delivery))) as rank_value, "lowest_avg" as low_or_high from Q2 group by customer_state order by avg(time_to_delivery)

select * from Q3 union all select * from Q4

limit 5)

Row	customer_state	avg_time_to_deli	rank_value	low_or_high
1	SP	8.66	1	lowest_avg
2	PR	11.89	2	lowest_avg
3	MG	11.92	3	lowest_avg
4	DF	12.89	4	lowest_avg
5	SC	14.95	5	lowest_avg
6	AP	28.22	1	highest_avg
7	RR	28.17	2	highest_avg
8	AM	26.34	3	highest_avg
9	AL	24.45	4	highest_avg
10	PA	23.7	5	highest_avg

This is the data of top 5 highest and lowest states which take average time to deliver the product in days. There is more scope of improvement time taken to deliver in states with highest avg time.

g.Top 5 states where delivery is really fast/ not so fast compared to estimated date Ans:

with Q1 as

(select extract(date from order_purchase_timestamp) purchase_date, extract(date from order_delivered_customer_date) delivery_date, extract(date from order_estimated_delivery_date) estimate_deliv_date, c.customer_state,

ot.freight_value

from `Target_store.orders` o join `Target_store.order_items` ot on o.order_id = ot.order_id join `Target_store.customers` c on o.customer_id = c.customer_id),

Q2 as

(select customer_state, date_diff(delivery_date, purchase_date, day) as time_to_delivery, date_diff(estimate_deliv_date, purchase_date, day) as diff_estimated_delivery, freight_value from Q1 where delivery_date is not null),

Q3 as

(select customer_state, round(avg(diff_estimated_delivery - time_to_delivery),2) as delivery_speed, dense_rank() over(order by (avg(diff_estimated_delivery - time_to_delivery)) desc) as rank_value, "fast" slow_or_fast from Q2 group by customer_state order by avg(diff_estimated_delivery - time_to_delivery) desc limit 5),

Q4 as

(select customer_state, round(avg(diff_estimated_delivery - time_to_delivery),2) as delivery_speed, dense_rank() over(order by (avg(diff_estimated_delivery - time_to_delivery))) as rank_value, "slow" slow_or_fast from Q2

```
group by customer_state
order by avg(diff_estimated_delivery - time_to_delivery)
limit 5)
```

select * from Q3 union all select * from Q4

Row	customer_state	delivery_speed_	rank_value	slow_or_fast
1	AC	20.98	1	fast
2	RO	20.04	2	fast
3	AM	19.93	3	fast
4	AP	18.4	4	fast
5	RR	18.33	5	fast
6	AL	8.74	1	slow
7	MA	9.91	2	slow
8	SE	10.0	3	slow
9	ES	10.65	4	slow
10	ВА	10.98	5	slow

Sellers in Country like AL, MA, SE, ES, BA should improve their delivery speed and try to meet the given estimated delivery time.

Q6. Payment type analysis:

a. Month over Month count of orders for different payment types Ans:

with Q1 as

(select extract (month from o.order_purchase_timestamp) as month, o.order_id, p.payment_type from `Target_store.orders` o join `Target_store.payments` p on o.order_id = p.order_id)

select month, payment_type, count(order_id) order_count from Q1 group by month, payment_type order by month, payment_type

Row	month //	payment_type	order_count
1	1	UPI	1715
2	1	credit_card	6103
3	1	debit_card	118
4	1	voucher	477
5	2	UPI	1723
6	2	credit_card	6609
7	2	debit_card	82
8	2	voucher	424
9	3	UPI	1942
10	3	credit_card	7707

By observing data, most of the orders were done by credit card, as they get benefits of EMIs and credit points on spending. Seconds highest orders were taken by UPI, as it is a fastest ways of payment method, Voucher are type of discounts which attracts people.

Suggetion: Increase Vouchers and give more offers on UPI payment, there is scope of increase in transaction over UPI

b. Count of orders based on the no. of payment instalments Ans:

select p.payment_installments , count(o.order_id) as count_of_orders from `Target_store.orders` o join `Target_store.payments` p on o.order_id = p.order_id group by p.payment_installments order by p.payment_installments

Row	payment_installr	count_of_orders
1	0	2
2	1	52546
3	2	12413
4	3	10461
5	4	7098
6	5	5239
7	6	3920
8	7	1626
9	8	4268
10	9	644

There are majority of peoples ordering using EMI option, may be due to ease of credit card use.