Quantum metrology

Federico Belliardo

Relatore: Vittorio Giovannetti

Scuola Normale Superiore

24 Aprile 2018

Sommario

- Stima dei parametri classica e quantistica
- Teoria della misura quantistica
- Ottimizzazioni (stimatore, misura, probe)
- Stimatore adattivo
- Heisenberg scaling

Stima dei parametri

Sistema caratterizzato da un parametro θ_0 .

- Misura: interrogazione del sistema produce x con $p(x|\theta_0)$.
- Data processing: costruzione dello stimatore $\hat{\theta}(x_1, x_2, ..., x_n)$

Esiste un limite alla precisione di $\hat{\theta}$?

Limite di Cramér-Rao e informazione di Fisher

Limite di Cramér-Rao

Sia $\hat{\theta}(\vec{x})$ stimatore di θ con \vec{x} vettore delle misure. Esiste un lower bound sulla sua varianza:

$$Var\left(\hat{ heta}
ight) \geq rac{1}{NI\left(heta
ight)}$$

con N numero di misure, dove $I(\theta)$ è detta **informazione di Fisher** ed è definita come:

$$I(\theta) = \mathbb{E}\left[\left(\frac{\partial \log p(x, \theta)}{\partial \theta}\right)^{2}\right] = -\mathbb{E}\left[\frac{\partial^{2} \log p(x, \theta)}{\partial \theta^{2}}\right]$$

Il maximum likelyhood estimator è asintoticamente efficiente, cioè:

$$Var\left(\hat{ heta}_{\mathit{ML}}
ight)
ightarrow rac{1}{\mathit{NI}(heta)} \; \mathsf{per} \; \mathit{N}
ightarrow \infty.$$

Stima dei parametri quantistica

In MQ il parametro θ che caratterizza un sistema è codificato nello stato $\rho_{\theta}.$

Esempi: $\rho_{\beta}=\frac{1}{Z}e^{-\beta H}$ (temperatura), $|\psi\rangle_{\phi}=\frac{|0\rangle+e^{i\phi}|1\rangle}{\sqrt{2}}$ (fase interferometrica), ...

Stima dei parametri quantistica

Il processo di misura è costituito dall'interazione di una probe ρ_0 con il sistema caratterizzato da θ . L'interazione è rappresentata da un generico canale quantistico (CPT).

$$\rho_0 \to \mathcal{E}_{\theta}(\rho) = \rho_{\theta}$$

Bisogna formulare il problema di stima in termini della teoria della misura quantistica! Le misure sono distruttive: è necessario utilizzare molti ρ_{θ} .

Teoria della misura quantistica

POVM: Positive Operator Valued Measure

- Interazione con ancilla
- Misure proiettive sul sistema joint

$$ho$$
 è la matrice densità ridotta del sistema $0 \le E_j \le \mathbb{I}$ $p_j = tr(\rho E_j)$ $\sum_i E_j = \mathbb{I}$

La distribuzione di probabilità $p(j, \theta)$ dipende dalla misura! Si può ottimizzare la POVM per massimizzare l'informazione estratta.

Quantum Fisher Information

Quantum Fisher Information

Si definisce $QFI(\theta)$ la massima informazione di Fisher che si può estrarre variando la POVM applicata su ρ_{θ} :

$$QFI(\theta) = \max_{POVM} I(\theta)$$

La QFI è esprimibile come derivata della distanza di Bures tra stati:

$$egin{align} D_B(
ho_1,
ho_2) &= \sqrt{2} \left[1 - \left| \mathsf{Tr} \sqrt{\sqrt{
ho_1}
ho_2 \sqrt{
ho_1}}
ight|
ight]^{rac{1}{2}} \ QFI\left(heta
ight) &= 4 \lim_{\delta o 0} rac{D_B^2\left(
ho_{ heta + \delta},
ho_{ heta}
ight)}{\delta^2} \ \end{aligned}$$

Quantum Fisher Information

 $S = \{ \rho_{\theta}, \theta \in \Theta \}$ è una traiettoria 1D nello spazio degli stati quantistici.

La $QFI(\theta)$ codifica la velocità con cui gli stati quantistici lungo la linea diventano **distinguibili** l'uno dall'altro.

Proprietà della QFI

Consideriamo il caso in cui $\rho_{\theta}=e^{-i\theta H}\rho e^{+i\theta H}$ (interferometro di Ramsey, Mach-Zehnder, ...). Per uno stato puro $|\psi_k\rangle$:

$$QFI(\theta) = 4\left(\Delta H\right)_{\psi_k}^2$$

Relazione di indeterminazione energia-tempo

$$Var\left(\hat{ heta}
ight) = (\Delta heta)_{\psi_k}^2 \geq rac{1}{4\left(\Delta H
ight)_{obs}^2}
ightarrow \Delta heta \Delta H \geq rac{1}{2}$$

Proprietà della QFI

La POVM ottimale (I=QFI) per estrarre informazione da ρ_{θ} è costituita dai proiettori sugli autospazi dell'operatore L_{θ} chiamato symmetric logarithmic derivative che soddisfa a:

$$rac{\partial
ho_{ heta}}{\partial heta} = rac{1}{2} \left(
ho_{ heta} \mathsf{L}_{ heta} + \mathsf{L}_{ heta}
ho_{ heta}
ight)$$

In generale la POVM ottimale dipende da θ . Ma il valore vero θ_0 non è noto a priori! E' necessario utilizzare una **strategia** adattiva.

Ottimizzazioni

Riassunto sulle possibilità di ottimizzazione:

- Stimatore $\hat{\theta}$
- \bullet POVM (Nuova!) problema della dipendenza da θ_0 della misura ottimale
- Probe ρ_0 (Nuova!)

La convessità della $QFI(\theta)$ assicura che l'informazione è massima per gli stati ρ_0 puri.

Strategie con entanglement

E' possibile far interagire m probes tra loro prima dell'applicazione di \mathcal{E}_{θ} creando dunque uno stato **entangled**:

Può l'entanglement migliorare la precisione delle misure?

QFI per stati entangled

Identificata la $QFI(\theta)$ come figura di merito per la precisione di una stimatore possiamo chiederci quanto vale per uno stato ρ_N costituito da N probe. Si osserva che:

 $QFI_{o\otimes N}(\theta) = NQFI_{o}(\theta)$

$$H = \sum_{i=1}^{N} h_i$$
 $QFI_{\rho^{\otimes N}}(\theta) = 4(\Delta H)^2 = 4\sum_{i=1}^{N} (\Delta h_i)^2 = NQFI_{\rho}(\theta)$

cioè QFI scala come il numero N di probe per stati separabili.

QFI per stati entangled

Per un generico stato ρ_N di N probe abbiamo:

$$QFI_{\rho_N}(\theta) = 4(\Delta H)^2 \le N^2$$

dunque:

$$QFI_{\rho_N} \leq N^2$$

Heisenberg scaling?

$$Var\left(\hat{ heta}
ight)\proptorac{1}{ extstyle N^2}\quad (extstyle N o\infty)$$

QFI per stati entangled

Vediamo alcuni esempi di stati utili:

- $|\psi\rangle_{NOON} = \frac{|N,0\rangle + |0,N\rangle}{\sqrt{2}} \rightarrow \frac{|N,0\rangle + e^{iN\theta}|0,N\rangle}{\sqrt{2}} \ \theta$ misurabile $mod \ \frac{2\pi}{N}$, sensing, stati tipici di interferometri, $QFI \ (\theta) = N^2$
- ullet $|\psi
 angle_{\it GHZ}=rac{|0
 angle^{\otimes N}+|1
 angle^{\otimes N}}{\sqrt{2}}$ (come sopra)

Gli stati entangled evolvono N volte più velocemente degli stati separabili (in termini di distinguibilità).

Stimatore adattivo

Dimentichiamo l'entanglement per ora.

Per raggiungere il quantum Cramér-Rao bound si utilizza uno stimatore MLE addattivo:

La bontà di uno stimatore è caratterizzata da:

- Consistenza: $\theta^n_{MLE} \to \theta_0$ per $n \to +\infty$
- Efficienza: $Var\left(\theta_{MLE}^{n}\right) \to \frac{1}{nQFI(\theta_{0})}$, la definizione classica prevede $I(\theta_{0})$

Consistenza ed efficienza

Consistenza forte ed efficienza dello stimatore di massima likelyhood adattivo.

- $x \in X$ spazio risultati delle misure (discreto)
- $\theta \in \Theta$ spazio dei parametri (compatto)
- $e \in E$ spazio degli esperimenti (compatto)

Ipotesi: conosciamo il miglior esperimento $\hat{e}(\theta)$ associato ad ogni valore θ (si ottiene diagonalizzando la SLD).

 $f(x_n, \theta, e_n)$ è la probabilità di misurare il valore x_n eseguendo la POVM e_n sullo stato ρ_{θ} .

$$\hat{\theta}_{MLE} = arg \max_{\theta} \prod_{i=1}^{n} f(x_i, \theta, e_i)$$

Consistenza ed efficienza

Teorema (Fujiwara 2006)

Supponiamo che il valore vero del parametro sia θ_0 e che la misura e_n sia scelta sulla base del risultato delle misure precedenti:

$$e_n = \hat{e}\left(\hat{ heta}_{n-1}(x_1,x_2,...,x_{n-1})
ight)$$
 allora

$$\sqrt{n}\left(\hat{\theta}_n - \theta_0\right) \to N\left(0, QFI(\theta)^{-1}\right)$$

Ipotesi:

- $f(x, \theta, e) > 0$ per ogni (x, θ, e) , continua in (x, θ, e) .
- $\mu(x|f(x,\theta,e) \neq f(x,\theta',e)) > 0$ per ogni $\theta \neq \theta'$, $e \in E$.
- $f(x, \theta, e)$ è C^3 in θ .

La tesi rimane vera anche se non si aggiorna subito la POVM da eseguire.

Passaggi fondamentali della dimostrazione:

- Si dimostra che $P_{\theta_0}\left[|\hat{\theta}_n-\theta_0|\geq a\right]\leq e^{-bn}$ con b>0. b dipende dalla misura, dallo stato iniziale ρ_0 e da a.
- $P_{\theta_0}\left[|\hat{\theta}_n \theta_0| \ge a \ i.o.\right] = 0$. L'evento $|\hat{\theta}_n \theta_0| \ge a$ accade un numero finito di volte. Questo prova la consistenza forte dello stimatore adattivo.
- Definiamo $\mathcal{L}(\theta|x,e) = \log f(x,\theta,e)$ e $\mathcal{L}_n(\theta) = \sum_{i=1}^n \mathcal{L}(\theta|x_i,e_i)$. Sviluppiamo a primo ordine: $\mathcal{L}'_n(\theta) = \mathcal{L}'_n(\theta_0) + \mathcal{L}''_n(\theta_0) (\theta \theta_0) + \frac{1}{2} \mathcal{L}'''_n(\theta^*) (\theta \theta_0)^2$. $\mathcal{L}'_n(\hat{\theta}_n) = 0$ per definizione di MLE, dunque:

$$\sqrt{n}\left(\hat{\theta}_{n}-\theta_{0}\right)=\frac{\frac{\mathcal{L}_{n}^{\prime}\left(\theta_{0}\right)}{\sqrt{n}}}{-\frac{\mathcal{L}_{n}^{\prime\prime}\left(\theta_{0}\right)}{n}-\frac{\mathcal{L}_{n}^{\prime\prime\prime}\left(\theta^{*}\right)}{2n}\left(\hat{\theta}_{n}-\theta_{0}\right)}$$

- $\frac{\mathcal{L}_{n}^{'''}(\theta^{*})}{2n} \leq M$ in probabilità: vi è un numero finito di n per cui la disuguaglianza non è verificata. $-\frac{\mathcal{L}_{n}^{'''}}{2n} \left(\hat{\theta}_{n} \theta_{0}\right) \rightarrow 0$.
- $\frac{\mathcal{L}_{n}^{''}(\theta_{0})}{n} \rightarrow -QFI(\theta_{0})$ in probabilità: l'informazione osservata media tende alla $QFI(\theta_{0})$.
- $\frac{\mathcal{L}_{n}^{\prime}(\theta_{0})}{\sqrt{n}} \rightarrow N(0, QFI(\theta_{0}))$ in distribuzione.

Teorema

 $\{X_n\} \to X$ in distribuzione e $\{Y_n\} \to c$ in probabilità allora $\frac{X_n}{Y_n} \to \frac{X}{c}$ in distribuzione.

$$\sqrt{n}\left(\hat{\theta}_{n}-\theta_{0}\right)
ightarrowrac{N\left(0,QFI\left(heta_{0}
ight)
ight)}{QFI\left(heta_{0}
ight)}=N\left(0,QFI\left(heta_{0}
ight)^{-1}
ight)$$

Varianza asintotica

Cosa possiamo dire sulla raggiungibilità dell'Heisenberg scaling?

$$Var\left(\hat{ heta}
ight)\proptorac{1}{N^2}\quad (N o\infty)$$

Lo stimatore adattivo raggiungere asintoticamente la varianza:

$$Var\left(\hat{\theta}_n - \theta_0\right)
ightarrow rac{1}{nQFI(\theta_0)}$$

Se eseguiamo la stima su n blocchi entangled di M probe il cui stato è stato scelto in maniera ottimale si ha $QFI(\theta_0)=M^2$, $N_{tot}=Mn$. La varianza asintotica diventa:

$$Var\left(\hat{ heta}_n - heta_0
ight)
ightarrow rac{n}{N_{tot}^2}$$

Heisenberg scaling

Non è chiaro se a N_{tot} fissato esiste una nozione di scaling: dato $\epsilon > 0$, per $N_{tot} > N_{tot}^0$ fissato $\exists n_0 \mid n > n_0$ si ha:

$$\left| Var\left(\hat{\theta}_n - \theta_0 \right) \frac{N_{tot}^2}{n} - 1 \right| < \epsilon$$

In generale il valore n_0 da cui comincia a valere il risultato asintotico può dipendere dal valore N_{tot} così che la varianza per n_0 misure sia:

$$Var\left(\hat{\theta}_n - \theta_0\right) \sim \frac{n_0(N_{tot})}{N_{tot}^2}$$

Heisenberg scaling?

Heisenberg scaling

Nello schema di Fujiwara non si possono utilizzare subito blocchi entangled, per via della limitata regione di sensibilità $(\theta \mod \frac{2\pi}{M})$.

E' necessaria una strategia in cui si varia la dimensione del blocco di qubit entangled (aumentandola esponenzialmente), oltre che il numero di ripetizioni. Non contemplata da Fujiwara perché la *QFI* non ha limite in questi schemi (cresce con *M*).

Heisenberg scaling

Rimane un problema aperto la raggiungibilità dell'Heisenberg scaling in qualche schema!

Bibliografia

Géza Tóth and Iagoba Apellaniz, Quantum metrology from a quantum information science perspective, 2014 J. Phys. A: Math. Theor. 47 424006

Akio Fujiwara, Strong consistency and asymptotic efficiency for adaptive quantum estimation problems, 2006 J. Phys. A: Math. Gen. 39 12489

Grazie per l'attenzione!