Light Collection Efficiency Map of XENON100 detector

Chloé Therreau

April-June 2016

Outline

- Introduction
- The XENON100 experiment
- Cesium source and selection of events in the photopeak
- Conclusion

Introduction

- What is Dark Matter ?
 - Missing mass in the universe
 - Weakly interacting particles

The XENON100 experiment

- TPC filled with liquid xenon
- Two signals: S1 and S2
- Reconstruction of the interaction position

[3]

Cesium source

- Light Collection Efficiency Map
 - For given energy, the quantity of measured light depends on the position of the interaction
 - Several effects :
 - Reflectivity
 - Impurities
 - Solid angle effect
 - Rayleigh scattering

Cesium source

Cesium source

[4]

Cesium source

- Photoelectric effect
- Compton scattering

Selection of events in the photopeak

Selection of events in the photopeak

CS1 and CS2 energy spectrum

Anti-correlation

Anti-correlation between scintillation signal (S1) and ionization signal (S2)

[5]

Anti-correlation

- S1 is proportional to the light yield, S2 to the charge yield.
- Combine S1 and S2 to improve the energy resolution

[6]

Combined Energy Scale

Combined Energy Scale

$$CES = a*cS1+b*cS2$$
 tot bottom

 CS2 tot bottom is the corrected S2 signal measured by the bottom PMTs array

[6]

Combined Energy Scale

03/06/2016

Selection of events in the photopeak

03/06/2016

Conclusion

- Improvement of the energy resolution for the selection of events
- Next step of my project
 - Select events in the photopeak
 - Divide the TPC in r,z slices
 - Correct S1 with a overall LCE map
 - Build a per PMT LCE map

Thank you for listening

Do you have any questions?

Bibliography

- [1] BERTONE, Gianfranco, 2014, Le mystère de la matière noire, dans les coulisses de l'univers, Dunod, Quai des Sciences.
- [2] Penn State: The rotation curve of the Milky Way: https://www.e-education.psu.edu/astro801/content/18_p8.html
- [3] XENON100 Collaboration, astro-ph.IM (2012), arXiv:1107.2155, The XENON100 Dark Matter Experiment, http://arxiv.org/pdf/1107.2155.pdf
- [4] Wikipedia: Caesium 137, https://en.wikipedia.org/wiki/Caesium-137
- [5] Le Calloch M., these (2014), Study of the single electron charge signal in the XENON100 direct Dark Matter search experiment
- [6] XENON Collaboration, Astro-ph (2007), arXiv:0704.1118v1, Observation of Anti-correlation between Scintillation and Ionization for MeV Gamma-Rays in Liquid Xenon, http://arxiv.org/pdf/0704.1118v1.pdf

Light Collection Efficiency Map of XENON100 detector

Chloé Therreau

April-June 2016

Introduction

- Rotational curve of Galaxies
 - A: Theoretical curve based on visible mass of galaxies
 - B : Curve based on observation
- Gravitational lens
 - Bending of light by a massive object
 - Galaxies mass can be directly measured

[2]

The XENON100 experiment

Discrimination of interactions

[3]

Photomultiplier Tubes

Combined Energy Scale

CES(keV) = a*CS1(keV) + b*CS2 tot bottom/200(keV)

$$\theta = 0.5 * \arctan\left(\frac{\left(2\rho\sigma_{CS1}\sigma_{CS2}\right)}{\left(\sigma_{CS1}^2 + \sigma_{CS2}^2\right)}\right)$$

$$a = \frac{-662}{(\cos(\theta) - \sin(\theta))} * \sin(\theta) = 0,56$$

$$b = \frac{662}{(\cos(\theta) - \sin(\theta))} * \cos(\theta) = 0,44$$

Combined Energy Scale

$$d = y \sin \theta$$

 $e = x \cos \theta$
 $u = x \cos \theta + y \sin \theta$

$$v + f = y \cos \theta$$

 $f = x \sin \theta$
 $v = y \cos \theta - x \sin \theta$