5/10/2021 Final project 3

Car Seat Sales

```
In [15]: # Import package pandas
   import numpy as np
   import pandas as pd
   import seaborn as sns
   import matplotlib.pyplot as plt

In [16]: # Introduction

# Import dataset
   df = pd.read_csv("Carseats.csv")
   df.head(10)
```

Out[16]:

	Unnamed: 0	Sales	CompPrice	Income	Advertising	Population	Price	ShelveLoc	Age	Educ
0	1	9.50	138	73	11	276	120	Bad	42	
1	2	11.22	111	48	16	260	83	Good	65	
2	3	10.06	113	35	10	269	80	Medium	59	
3	4	7.40	117	100	4	466	97	Medium	55	
4	5	4.15	141	64	3	340	128	Bad	38	
5	6	10.81	124	113	13	501	72	Bad	78	
6	7	6.63	115	105	0	45	108	Medium	71	
7	8	11.85	136	81	15	425	120	Good	67	
8	9	6.54	132	110	0	108	124	Medium	76	
9	10	4.69	132	113	0	131	124	Medium	76	
4										

In []: The data set 'Carseats' was obtained from https://vincentarelbundock.github.io
 /Rdatasets/datasets.html.

The dataset contains 400 observations across 11 variables.

The data set focuses on child car seat sales among $400\ \text{different}$ stores us ing simulated data.

```
In [13]: # EDA

# mean of sales
np.mean(df.Sales)
```

Out[13]: 7.496325000000001

5/10/2021 Final project 3

In [14]: # standard deviation of sales
 np.std(df.Sales)

Out[14]: 2.820582695893705

In []: The mean of the car seat unit sales **for** each location was calculated to be 7.4 96 (thousands of dollars) **with** a standard deviation of 2.821 (thousands of dollars).

In [19]: # Visualization # Numeric variable - box plot df['Price'].plot(kind = "box") plt.xlabel('Car Seat Price') plt.ylabel("Price (dollars)")

The box plot below demonstrates an average unit price around 115 dollars. There are a few outliers above 175 dollars **and** around 25 dollars on both ends of the spectrum.

Out[19]: Text(0,0.5,'Price (dollars)')

5/10/2021 Final project 3

```
In [20]: # Categorical variable - pie chart
    df['ShelveLoc'].value_counts() \
        .plot(kind = "pie") \
        .axis('equal')
```

The pie chart below illustrates the ratio of the different qualities of shelving location of the car seats.

As depicted, the "Medium" quality is most popular among the different location s.

The other two categories appear to be roughly even in comparison.

Out[20]: (-1.1107450160226942,

- 1.1005116894570615,
- -1.1338269874777946,
- 1.1123784856777597)

In []: