

Painting the Data for Fun and Profit

William Ballenthin
Consultant
Mandiant

Agenda

- Introduction
- Exploring the Attacker Lifecycle
- Visually Reviewing Binary Files
- Making Sense of Malware Variants
- Q&A

Introduction

WILLI BALLENTHIN

- Mandiant Consultant
- Primarily Tasked with
 - Incident response
 - Forensics
 - Mobile application pentesting
- @williballenthin

EXPLORING THE ATTACKER LIFECYCLE

Exploring the Attacker Lifecycle

- Problem Domain
 - During an IR, we collection many events, items
 - They're all related on a macro scale
 - And, if you're lucky, you're only dealing with one adversary...
- How can we digest the "big picture" of a compromise while still retaining access to the details?
- Timelines are an accepted approach, but are they scalable?

Motivating Example

- We're in the middle of an IR with ~5,000 hosts
- There are a few adversaries in the environment
- Fortunately, we have a number of tools available

Potential Solutions

- Bodyfile/CSV/Excel
 - Handles a few hundred thousand entries
 - View is usually a simple grid
 - Data formatting?
- SIEM
 - Collects all the data, so its ready to go
 - Interface may be a bit... cumbersome

Potential Solutions

- Simile Widget
 - Interactive HTML + JavaScript widget
 - MIT libraries, http://www.simile-widgets.org/timeline/
 - Tons of fun to play with!
 - Does not scale to 10s of thousands of items
 - HTML page generation is required

Potential Solutions - Simile Widget

Enter: TimeFlow

Enter: TimeFlow

TimeFlow

- http://flowingmedia.com/timeflow.html
- Developed for journalists to reconstruct events
- Extremely interactive
- Slice-n-dice on fields
- Supports long running events
- A bunch of views
 - Timeline
 - Calendar
 - Bar chart
 - Table, List
- Implemented in Java, provided as a single JAR

TimeFlow - As easy as a CSV

Example data: 4,265 events from ~2008 - 2010

Timeline Calendar Lis	e Calendar List Table Bar Graph							
Date	Host	Event	Event Group		Source			
Aug 9 2005 13:35:00	172.34.22.72	C:\WINDOWS\Downloade	2	Malware Created	File Audit			
Aug 9 2005 13:35:00	172.34.22.72	C:\Documents and Settings	2	Malware Created	File Audit			
Aug 15 2005 02:49:00	172.34.22.56	C:\WINDOWS\system32\	2	Malware Created	File Audit			
Oct 24 2005 07:50:00	172.34.22.58	C:\WINDOWS\system32\	2	Malware Created	File Audit			
May 26 2006 05:13:00	172.34.22.83	C:\CONFIG\svchost.exe w	2	Malware Created	Registry Audit			
Jul 9 2006 23:36:00	172.34.22.49	Svchosts Run Key modified	2	Malware Created	Registry Audit			
Jul 14 2006 09:21:00	172.34.22.56	C:\WINDOWS\system32\	2	Malware Created	File Audit			
Oct 23 2006 03:10:00	172.34.22.129	$C:\WINDOWS\Temp\rar.t$	2	Malware Created	File Audit			
Oct 6 2007 18:23:00	172.34.22.70	${\bf ACMru\ shows\ search\ for\ m}$	2	Context	Registry Audit			
Oct 11 2007 16:15:00	172.34.22.138	C:\Documents and Settings	3	Malware Created	File Audit			
Mar 24 2008 07:15:00	172.34.22.170	$C:\hp\hpdiags\fr\msiexec$	3	Malware Created	File Audit			
Mar 24 2008 08:20:00	172.34.22.136	C:\hp\hpsmh\namazu\test	3	Malware Created	File Audit			
Mar 25 2008 07:29:00	172.34.22.155	C:\WINDOWS\PCHealth\	3	Malware Created	File Audit			
Jul 7 2008 09:16:00	172.34.22.135	C:\hp\hpsmh\namazu\test	3	Malware Created	File Audit			
Jul 12 2008 16:17:00	172.34.22.52	C:\WINDOWS\HELP\MUI	2	Malware Created	Hit review			
Jul 15 2008 05:02:00	172.34.22.138	C:\compaq\wbem\certs\	3	Malware Created	File Audit			
Aug 4 2008 17:58:00	172.34.22.50	C:\Documents and Settings	2	Malware Created	File Audit			
Sep 14 2008 12:00:00	172.34.22.121	C:\WINDOWS\Temp\msie	3	Malware Created	MFT			

TimeFlow - Review, Edit Data

File: /home/willi/Mandiant/Client/Mandiant/MIRCon/Attacker Lifecycle.csv Source: [source unspecified]

1-50 of 4265 Events

C:\WINDOWS\Downloaded Program Files\svchost.exe created

Aug 9 2005 13:35:00 EDIT

C:\Documents and Settings\xyeonm\Local Settings\Application Data\svchost.exe created

Aug 9 2005 13:35:00 EDIT

C:\WINDOWS\system32\eventsystem.dll created

Aug 15 2005 02:49:00 EDIT Date Aug 9 2005 13:35:00

Host 172.34.22.72

Event C:\WINDOWS\Downloaded Program Files\svchost.exe created

Group 2

Category Malware Created

Source File Audit

Date Aug 9 2005 13:35:00

Host 172.34.22.72

Event C:\Documents and Settings\xyeonm\Local Settings\Application

Data\svchost.exe created

Group 2

Category Malware Created

Source File Audit

Date Aug 15 2005 02:49:00

Host 172.34.22.56

Event C:\WINDOWS\system32\eventsystem.dll created

Group 2

Category Malware Created

Source File Audit

TimeFlow - Summarize and Stack

TimeFlow - Summarize and Timeline

TimeFlow - Events over Time

File Edit Filters Examples Help																
Display	Filter	Timeline	Са	lend	ar	List	T	able	Ba	ar Gß	Sayothin	nary	N	otes	Al	oout
Calendar Controls																<u> </u>
Grid	days	200	8(Jan	Feb	Mar	Apr	May	Jun		Aug		Oct	Nov	Dec	
	months					:•				••	•	•				
	years	2009	2009	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Show	dots						••	•		::	::	:•				
	labels	201	LO	Jan	Feb	Mar	Apr	Mary	Jur		ug	Sep	Oct	Nov	Dec	
Layout	expanded			••	::				<u>"</u>	_						
	compressed	201	11	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Global Controls																~

TimeFlow - Interact with the Timeline

VISUALLY REVIEWING BINARY FILES

Visually Reviewing Binary Files

- Problem Domain
 - We treat files as (file names + arbitrary data)
 - But, what do files look like?
 - A step above hex encodings
 - Hashes, even SSDeep, have little meaning
- Once we start looking at files, can we compare them?

Motivating Example

- We have two completely unknown files recovered during disk forensics
- Do they have a similar structure?
 - Sure, we can use traditional techniques, like `file`,
 but this doesn't capture embedded structures

Potential Solutions

- 'file' guess the file type based on headers and file structure
- 'diff' compare text and show differences
- Hex editor "compare files..."
- Distance function from part 3
- Domain-specific tools
 - e.g. `objdump` for executable files

Let's try to draw the files

- Malware images: Visualization and automatic classification. L.
 Nataraj, S. Karthikeyan, G. Jacob, and B. Manjunath, 2011
 - Convert file to a vector of 8-bit values
 - Use this data as a bitmap
 - Ultimate goal: use image recognition techniques to identify malware
 - Turns out, this works

"Malware Images" Technique

- This works well
 - Very intuitive
 - Fast
- However,
 - Color scale
 - File sizes / image dimensions
 - Feature locality

Aldo Cortesi - binvis

- Aldo of Nullcube suggests an improvement `binvis`
 - Meaningful colors
 - Better spatial clustering
 - Free, open-source, Python

http://corte.si/posts/visualisation/binvis/index.html

"Malware Images"

"binvis"

"binvis" Color Schema

Black - 0x00

White - 0xFF

Blue - Printable

Red - Else

Coloring is a start...

Some mathematics: Hilbert Curves

- Space filling curves
 - Intuitively, draw line along all points in a region without crossing
 - Why? Georg Cantor: the infinite points on a unit line has the same cardinality as the infinite points in the unit square

Hilbert curve

- David Hilbert in 1891
- Mapping preserves (some) locality from 1D to 2D
- Close association with fractals, so plots are approximations

Building Hilbert Curves

"binvis" Technique

- This works well
 - Colors are meaningful
 - Features are obvious

- However,
 - Slow (Hilbert curve calcs)
 - Feature shapes inconsistent
 - Feature locations unintuitive

MAKING SENSE OF MALWARE VARIANTS

Making Sense of Malware Variants

- Problem Domain
 - Malware is not unique
 - Variants are grouped into families
 - zbot/Zeus Trojan
 - Poison Ivy RAT
 - Gh0st RAT
- How do we identify families?
 - Differences in settings
 - C2 domains or IPs
 - Differences in capabilities
 - Gh0st extended to inject shellcode
 - Differences in bugs
 - New versions of Poison Ivy

Motivating Example

- A client gives us 500 malwarez and asks for a report on each one
 - We know many share the same author, intent
 - Let's just find the families, pick representative samples, and reverse those, instead
- Result
 - Client is happy and richer
 - We spend less time in front of IDA

Data Sources

- Binary file similarities (static)
 - Entropy
 - Fuzzy hashing ssdeep
- Malware analysis sandboxes (dynamic)
 - Cuckoo sandbox, Mandiant Threat Analyzer
- PE file similarities (static)
 - objdump
- Disassembly-based graph theory comparisons (static)
 - bindiff
- Anti-virus signatures
- Malware analyst brains (expensive)

Clustering

- Explorative data mining
- From a bunch of samples, produce groups of similar things
- Here, require only a distance function to identify nearest neighbors
 - Distance function: a metric between two samples that describes how similar (or different) they are
 - Compose a distance function from a set of weighted metrics

$$D(x,y) = a0 * d0(x,y) + a1 * d1(x,y) + ... aN * dN(x,y)$$

Distance Function Ideas - Static Analysis

- Find the range of the function and normalize
 - e.g. Entropy, scale to 1.0 by dividing by 8.0
 - Other numeric functions, you may scale by the standard deviation
 - Categorical distance metric use a points-based function
 - 10 points * number of shared imports, max. 10
 - 20 points if both are a DLL
 - etc.

Distance Function Ideas - Dynamic Analysis

- Record API calls and use the Levenshtein edit distance
 - "the number of single-character edits required to change one word into the other"
 - o s/character/api call/g and s/word/call history/g
- Record file system/Registry/etc. activity and define a categorical composite distance metric
 - 10 points if it writes to the same directory
 - 50 points if it changes the same Registry key

Let's find some families

- We'll use a force-directed layout when graphing nodes
 - aka. minimize a global energy function
 - akka. pretend each spring is a bowling ball and there's springs among all the balls
 - Graphviz
 - http://www.graphviz.org/
 - 'neato', 'fdp', and 'sfdp' layout algorithms
 - Gephi
 - https://gephi.org/
 - "an interactive visualization and exploration platform for networks and complex systems"

Motivating Example: Results

Try it at home!

```
ssdeep -r -p . |
  grep "matches" |
  sed
    -e "s/.*\/\([^\/]*\) matches/\1,matches/g"
    -e "s/matches.*\/\([^\/]*\)/\1,/g"
    -e "s/ (\\([0-9]*\\))/,0.\1/g"
  awk '
    BEGIN{print "Source, Target, Weight, Type"}
          {print $0",Undirected"}'
> /tmp/clusters.csv
```


Try it at home!

- With Gephi
 - New Project...
 - Data Labratory
 - Import Spreadsheet
 - As Table... Edges table
 - Finish
 - Overview
 - Choose a layout... "Fruchterman Rheingold"
 - ∘ Run
 - ????
 - Profit

Q&A

Citations

- Malware Images: Visualization and Automatic Classification
- A Comparative Assessment of Malware Classification using Binary Texture Analysis and Dynamic Analysis
- Wikipedia
- http://corte.si/posts/visualisation/hilbert-snake/index.html and others
- http://flowingmedia.com/timeflow.html
- http://www.simile-widgets.org/
- <u>https://gephi.org/</u>

