The title of my thesis with only all lower case except for the first word

by

Jozo Texino

BA, Previous Degree, Institution, YYYY

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES (Geography)

The University of British Columbia (Vancouver)

August YYYY

© Jozo Texino, YYYY

Abstract

Preface

This thesis is original work completed by the author. Guidance was given by the supervisory committee and field assistance was provided by PERSON1, PERSON1, PERSON1, PERSON1, PERSON1, PERSON1, PERSON1, PERSON1, PERSON1.

The ACTIVITY described in ?? was completed in collaboration with PERSON1 (ROLE/TITLE), PERSON1, and PERSON1.

Photos were provided by PERSON1 and PERSON1.

A version of the work in ?? and ?? has been published as a poster [Last Name, First Initial., Last Name, First Initial., Title of the Poster]. The author acted as lead investigator, composing and presenting the poster at the CONFERENCE NAME YYYY, CITY, STATE/COUNTRY.

A version of the work in ?? and ?? has been published as a TALK [Last Name, First Initial., Last Name, First Initial., Last Name, First Initial. Title of the Poster]. The author acted as lead investigator, composing and presenting the TALK at the CONFERENCE NAME YYYY, CITY, STATE/COUNTRY.

Table of Contents

Al	stract	ii
\mathbf{Pr}	eface	iii
Та	ole of Contents	iv
Lis	t of Tables	\mathbf{v}
Lis	t of Figures	vi
Ac	${f ronyms}$	'ii
Lis	t of Symbols and Acronyms	iii
Ac	knowledgments	ii
1	hello	1
2	Introduction	2
	2.1 State of the Art	3
	2.1.1 This is a subsection	3
	2.1.2 This is a subsection	4
3	Methods	6
4	Results	7
5	Conclusion	8
6	Conclusion	9
Bi	oliography	L O
${f A}$	Supporting Materials	1

List of Tables

Table 2.1	Table of measurement	mathods at	various urban	coloc		/
1able 2.1	table of measurement	memous at	various urban s	scares	 	. 4

List of Figures

Figure 2.1	This is a nyan cat caption																									4
------------	----------------------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---

Acronyms

List of Symbols and Acronyms

Symbol	Definition	Units
b_a	factor for converting m^{-2} to ha^{-1}	i.e. $b_a = 10^4 \mathrm{m}^2 \mathrm{ha}^{-1}$
b_m	factor for converting g to kg	i.e. $b_m = 10^{-3} \mathrm{kg} \mathrm{g}^{-1}$
b_o	factor for converting μ mol to mol	i.e. $b_m = 10^{-6} \mu \text{mol mol}^{-1}$
b_t	factor for converting s^{-1} to hr^{-1}	i.e. $b_t = 3600 \mathrm{s} \mathrm{hr}^{-1}$
C	Rate of combustion	$\mu\mathrm{mol}\mathrm{m}^{-2}\mathrm{s}^{-1}$
$C_{ m air}$	heat capacity of air	$\rm J~kg^{-1}~m^{-3}$
c	molar concentration of CO_2	$\mu \mathrm{mol} \ \mathrm{m}^{-3}$
$c_{ m tower}$	c at the height of the climate tower (24 m)	$\mu \text{mol m}^{-3}$
$c_{ m mobile}$	c at screen level height (2 m)	$\mu \rm mol~m^{-3}$
EC	eddy covariance	
F_c	the mass flux of CO_2 for a given area and time	$kg CO_2 ha^{-1} hr^{-1}$
GHG	greenhouse gas	

H	sensible heat flux	${ m Wm^{-2}}$
HVAC	heating hentilation and air conditioning	
IRGA	infrared gas analyzer	
LCZ	local climate zone	
LIDAR	light detection and ranging	
M_a	molecular mass of dry air	28.97 g mol^{-1}
M_c	molecular mass of CO_2	44.01 g mol^{1}
OSM	${\bf OpenStreetMap}$	
P	Rate of photosytnesis	$\mu\mathrm{mol}\mathrm{m}^{-2}\mathrm{s}^{-1}$
PDT	Pacific Daylight Savings Time	
PST	Pacific Standard Time	
R	Rate of respiration	$\mu\mathrm{mol}\mathrm{m}^{-2}\mathrm{s}^{-1}$
r	the molar density of CO ₂ ; mole of a CO ₂ per mole dry air or " molar mixing ratio"	μ mol m ⁻¹ or ppm
RSL	roughness sublayer	
r_{aC}	aerodynamic resistance of CO_2	$\mathrm{s}\mathrm{m}^{-1}$
r_{aH}	aerodynamic resistance of sensible	${ m sm^{-1}}$

heat

S_c	volumetric source or sink strength, describes the mass of CO_2 emitted per volume and time - the c that is injected or removed; normalized per ground area in this study	$\mu\mathrm{mol}\mathrm{m}^{-3}\mathrm{s}^{-1}$
T_0	surface temperature (0 m)	$^{\circ}\mathrm{C}$
$T_{ m mobile}$	temperature at the height of the mobile sensors (2 m)	$^{\circ}\mathrm{C}$
$T_{ m tower}$	temperature at the height of the climate tower (24 m)	$^{\circ}\mathrm{C}$
t	time	S
u	horizontal wind speed in West-East direction	$\rm ms^{-1}$
UBL	urban boundary layer	
UCL	urban canopy layer	
v	horizontal wind speed in South-North direction	$\rm ms^{-1}$
w	vertical wind speed	${ m ms^{-1}}$
$\overline{w'c'}$	molar flux	$\mu\mathrm{mol}\mathrm{m}^{-2}\mathrm{s}^{-1}$
x	horizontal distance (Easting)	m
y	horizontal distance (Northing)	m
z	vertical distance (Northing)	m
$ ho_a$	(dry) air density	$\rm g\ m^{-3}$
$ ho ext{CO}_2$	mass density of CO_2	$\rm gCO_2m^{-3}$

heta	potential air temperature K
	average over a given time
,	indicates a turblent deviation from the average

Acknowledgments

Make sure to thank your friends, family, people who helped you along the way, funding agencies, etc.

hello

```
Lamport (1994)
Bringhurst (2002)
Crawford et al. (2011)
Lietzke (2011)
Alex wrote a paper that says he's got big muscles Christen et al., 2011
Cam wrote a paper that says Deirdre can eat 10 pies Velasco and Roth, 2010
there's a place called Kern et al. (2008)
```

Introduction

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Figure 2.1: Insert figure caption here.

2.1 State of the Art

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

2.1.1 This is a subsection

Table 2.1: Relevant scales and monitoring methods in urban settings. Adapted from ()

Scale (Systems studies)	Spatial Di- men- sion	Atmospheric Layer Studied	Temporal Resolution	Common Measurement Approaches
Micro-scale (buildings, roads, industry, greenspace)	1-100 m	urban canopy layer, roughness sublayer	One-time measurements at specific locations or along transects, in some cases long-term observations (5 min to years).	Traverse and vertical profile measurements in canyons, ecophysiological measurements using closed-chambers (vegetation, soils).
Local-scale (neighbor- hoods, land-use zones)	100 - 10 km	internal sublayer	Continuous measurements that resovle diurnal and seasonal dynamics (30 min to years).	Direct eddy-covariance flux measurements on towers above the city.
Meso-scale (cities, urban regions)	10 - 100 km	urban boundary layer	Short-term campaigns or continuous measurements at selected sites that resolve day-today variations and seasonal differences.	Boundary-layer budgets, upwind- downwind mixing ratio differences, regional inverse modelling, isotopic ratios.

2.1.2 This is a subsection

This is a sub subsection

Objectives

In order to address the research question, five major objectives were outlined and developed:

- 1. Sensor Development: Develop and test a compact, mobile, and multi-modal CO_2 sensor for bikes and cars.
- 2. Measurement Campaign: Deploy the sensors in a targeted measurement campaign.
- 3. Physical Concept: Develop a methodology to calculate emissions from measurements of

 CO_2 mixing ratios using knowledge about atmospheric conditions.

4. Analysis and Evaluation: Compare the mixing ratio measurements and measured emissions to traffic and building emissions inventories.

Methods

Results

Conclusion

Conclusion

Bibliography

- Bringhurst, R. The Elements of Typographic Style. Hartley & Marks, 2.5 edition, 2002. ISBN 0881791326. \rightarrow pages 1
- Christen, A., Coops, N. C., Crawford, B. R., Kellett, R., Liss, K. N., Olchovski, I., Tooke, T. R., Laan, M., van der, and Voogt, J. A. Validation of modeled carbon-dioxide emissions from an urban neighborhood with direct eddy-covariance measurements. *Atmospheric Environment*, 45(33):6057–6069, 2011. → pages 1
- Crawford, B. R., Grimmond, C. S. B., and Christen, A. Five years of carbon dioxide fluxes measurements in a highly vegetated suburban area. *Atmospheric Environment*, 45(4): 896-905, Feb. 2011. \rightarrow pages 1
- Kern, K., Alber, G., Energy, S., and Policy, C. Governing climate change in cities: modes of urban climate governance in multi-level systems. *Competitive Cities and Climate Change*, 171, 2008. → pages 1
- Lamport, L. \LaTeX : A Document Preparation System. Addison-Wesley, 2 edition, 1994. ISBN 0201529831. \rightarrow pages 1
- Lietzke, B. Dynamik der urbanen CO₂-Verteilung / Teil 1: Messungen in einer Strassenschlucht. Regio Basiliensis Basler Zeitschrift für Geographie, 51(1):37.44, Jan. 2011. → pages 1
- Velasco, E. and Roth, M. Cities as Net Sources of CO_2 : Review of Atmospheric CO_2 Exchange in Urban Environments Measured by Eddy Covariance Technique. *Geography Compass*, 4(9):1238–1259, Aug. 2010. \rightarrow pages 1

Appendix A

Supporting Materials

This would be any supporting material not central to the dissertation. For example:

- additional details of methodology and/or data;
- diagrams of specialized equipment developed.;
- copies of questionnaires and survey instruments.