Formulario de ISE

Ismael Sallami Moreno

Universidad de Granada Doble Grado en Ingeniería Informática y ADE

Optimización del Rendimiento

Todas las variables operacionales deducidas que se usan en este apartado son valores medios.

- W: waiting time, tiempo de espera en la cola.
- S: service time, tiempo de servicio.
- R: response time, tiempo de respuesta.

$$R = W + S$$

Variables y leyes operacionales:

- N_0 : número de trabajos en el servidor.
- N_z : número de clientes en reflexión (esperando a que los clientes vuelvan a introducirlos en el servidor).
- T: duración del periodo de media para el que se extrae el modelo.
- A_i : número de trabajos solicitados a la estación (arrivals).
- B_i : tiempo que el dispositivo ha estado en uso (**busy**).
- C_i : número de trabajos completados en el periodo (**completed**).
- S_i : tiempo medio de servicio (service). Se mide en $\frac{segundos}{trabajo}$ o bien en segundos.
- W_i : tiempo medio de espera en la cola (waiting). Se mide en segundos [/trabajo].
- R_i : tiempo medio de respuesta (**response**). Se mide en segundos [/trabajo].

$$S_i = \frac{B_i}{C_i} \qquad \qquad R_i = W_i + S_i$$

- λ_i : tasa media de llegada (arrival rate). Unidades $\frac{trabajos}{segundos}$
- X_i : Productividad media (**throughput**). Unidades $\frac{trabajos}{segundos}$
- U_i : Utilización media (**utilization**). Unidades %, pero no suele tener. Valor máx = $U_{i,max} = 1 \rightarrow 100\%$

$$U_i = \frac{B_i}{T}$$
 $\lambda_i = \frac{A_i}{T}$ $S_i = \frac{B_i}{C_i}$ $X_i = \frac{C_i}{T}$

Haciendo referencia al número de trabajos en la estación de servicio:

- N_i : Número de trabajos en la estación de servicio.
- ullet Q_i : Número medio de trabajos en la cola de espera.
- U_i : Número medio de trabajos siendo servidos por el dispositivo.

 $U_i = N_i - Q_i$ Coincide númericamente con la Utilización Media

Variables operacionales de un servidor:

- Básicas:
 - A_0 : número de trabajos solicitados al servidor.
 - C_0 : número de trabajos completados en el servidor.
- Deducidas:
 - λ_0 : tasa media de llegada al servidor.
 - X_0 : Productividad media del servidor.
 - N_0 : Número medio de trabajos en el servidor.
 - R_0 : Tiempo medio de respuesta del servidor.

$$\lambda_0 = \frac{A_0}{T} \qquad X_i = \frac{C_0}{T}$$

Razón de visita y demanda de servicio:

- Razón media de visita al servidor: V_i (visit ratio).
- Demanda de servicio: D_i (service demand).

$$V_i = \frac{C_i}{C_0} \qquad D_i = \frac{B_i}{C_0} = V_i \times S_i$$

Ley del fujo forzado

 $\forall i=1,\dots,K \quad X_i=X_0\times V_i=\lambda_0\times V_i=\lambda_i \quad \text{Si hay equilibrio de flujo}$

Relación Utilización-demanda de servicio

 $\forall i=1,\ldots,K \quad U_i=X_0\times D_i=\lambda_0\times D_i \quad \text{Si hay equilibrio de flujo}$

Ley de Little

• Aplicada a un servidor:

$$N_0 = \lambda_0 \times R_0 = X_0 \times R_0$$

Aplicada a toda una estación de servicio:

$$N_i = \lambda_i \times R_i = X_i \times R_i$$

• Aplicada a una cola de una estación de servicio:

$$Q_i = \lambda_i \times W_i = X_i \times W_i$$

Ley general del tiempo de respuesta

$$R_0 = \sum_{i=1}^K V_i \times R_i$$

Ley del tiempo de respuesta interactivo

$$R_0 = \frac{N_T}{X_0} - Z$$

Identificación del cuello de botella

• b (bottleneck): índice del dispositivo cuello de botella

$$D_b = \max_{i=1,\dots,K} D_i = V_b \times S_b$$
$$U_b = \max_{i=1,\dots,K} U_i = X_0 \times D_b$$

Saturación del servidor

• El saturación, el cuello de botella está al máximo de su productividad.

$$1 = U_b = X_b \times S_b \Rightarrow X_b = \frac{1}{S_b}$$

Límites optimistas: redes abiertas

$$R_0 \underset{\text{optimista} = \min}{\Rightarrow} R_0^{min} = \sum_{i=1}^K V_i \times S_i = \sum_{i=1}^K D_i \equiv D$$

Si
$$U_b = 1 \Rightarrow X_0^{max} = \frac{1}{D_b}$$

Cuando $\lambda_0 \leq X_0^{max}$ estamos en equilibrio de flujo

Límites optimistas: redes cerradas

Valores de carga altos

Cuando esta cerca de la saturación: Si $U_b = 1 \Rightarrow X_0^{max} = \frac{1}{D_b}$

Valor optimista de respuesta medio: $R_0 = \left(\frac{N_T}{X_0^{max}}\right) - Z = D_b \times N_T - Z$

Valores de carga bajos

Valor optimista de respuesta medio: $R_0^{min} = \sum_{i=1}^K V_i \times S_i = \sum_{i=1}^K D_i \equiv D$ Valor optimista de productividad media: $X_0 = \frac{N_T}{R_0^{min} + Z} = \frac{N_T}{D + Z}$

Punto teórico de saturación

$$D = D_b \times N_T^* - Z \Rightarrow N_T^* = \frac{D + Z}{D_b}$$