Dijkstra's Algorithm tutorial

Consider the example graph below and assume we want to find the shortest path from Node 1 to Node 9.

a- Fill in the following table summarising the workings of the algorithm:

Vertex\	Initial	Step1	Step2	Step3	Step4	Step5	Step6	Step7	Step8
Node		V1	V3	V2	V4	V5	V7	V8	V6
Visited									
1	0								
2	∞								
3	8								
4	∞								
5	∞								
6	∞								
7	∞								
8	8		_						_
9	8								

b- Prove the same result using the graph directly:

Solution:

Vertex\	Initial	Step1	Step2	Step3	Step4	Step5	Step6	Step7	Step8
Node		V1	V3	V2	V4	V5	V7	V8	V6
Visited									
1	0	0	0	0	0	0	0	0	0
2	∞	5	4	4	4	4	4	4	4
3	∞	2	2	2	2	2	2	2	2
4	∞	∞	∞	<u>7</u>	7	7	7	7	7
5	∞	∞	∞	11	9	9	9	9	9
6	∞	∞	∞	∞	∞	17	17	16	16
7	∞	∞	11	11	11	11	11	11	11
8	∞	∞	∞	∞	∞	16	13	13	13
9	∞	20							

Hence the minimum path from 1 to 9 is {9,6,8,7,3,1} by backtracking from 9.