

Fig. 1A PRIOR ART

Fig. 1B PRIOR ART

Fig. 1C PRIOR ART

Fig. 1D PRIOR ART

Fig. 1E PRIOR ART

Fig. 1F PRIOR ART

Fig. 1G PRIOR ART

Fig. 1H PRIOR ART

Fig. 2A PRIOR ART

Fig. 2B PRIOR ART

Fig. 2C PRIOR ART

Fig. 2D PRIOR ART

Fig. 2E PRIOR ART

Fig. 2F PRIOR ART

Fig. 2G PRIOR ART

Fig. 2H PRIOR ART

10
87

Fig. 2J PRIOR ART

Fig. 2K PRIOR ART

Fig. 2L PRIOR ART

Fig. 2M PRIOR ART

15/
87

Fig. 2N PRIOR ART

Fig. 20 PRIOR ART

17/
87

Fig. 2P PRIOR ART

18
87

Fig. 3 PRIOR ART

19
87

Fig. 4 PRIOR ART

Fig. 5A

Fig. 5B

Fig. 5C

Fig. 5D

Fig. 5E

Fig. 5F

Fig. 5G

Fig. 5H

Fig. 5I

Fig. 5J

Fig. 6

Fig. 7

Fig. 8A

Fig. 8B

28
87

Fig. 8C

TEMPERATURE (°C)	200	225	250	300	350	400
LAYER 111	ABSENCE OF Si	ABSENCE OF Si	PRESENCE OF Si	PRESENCE OF Si	PRESENCE OF Si	PRESENCE OF Si

Fig. 9A

30
87

Fig. 9B

Fig. 9C

Fig. 9D

Fig. 9E

34 / 87

Fig. 9F

Fig. 9G

Fig. 9H

37
87

Fig. 9I

38/
87

Fig. 9J

Fig. 9K

Fig. 9L

Fig. 9M

42/
87

Fig. 9N

43/
87

Fig. 90

Fig. 9P

Fig. 9Q

46/
87

Fig. 9S

Fig. 10A

Fig. 10B

Fig. 10C

Fig. 10D

Fig. 10E

Fig. 10F

Fig. 10G

Fig. 10H

Fig. 10I

Fig. 10J

Fig. 10K

55/
87

Fig. 10L

Fig. 10M

Fig. 10N

58/
87

Fig. 100

60/
87

Fig. 10Q

Fig. 10R

62/87

Fig. 10S

Fig. 10T

64 /
87

Fig. 10U

65/
87

Fig. 10V

67/
87

Fig. 12

Fig. 13A

Fig. 13B

70/
87

Fig. 13C

Fig. 13D

72/
87

Fig. 13E

73
87

Fig. 13F

Fig. 14

75/
87

Fig. 15A

76/87

Fig. 15B

77
87

Fig. 15C

78/
87

Fig. 15D

79
87

Fig. 15E

80
87

Fig. 15F

81 / 87

Fig. 16A

82
87

Fig. 16B

DIELECTRIC CONSTANT	2.9 at 1MHz
REFRACTIVE INDEX	1.39 at 633nm
STRESS	7.00E+08 dyne/cm ²
HARDNESS	0.9 Gpa
SHEAR MODULUS	6 Gpa
THERMAL EXPANSION RATIO	18 ppm/deg-C
GLASS TRANSITION POINT	none
THERMAL CONDUCTIVITY RATIO	0.31 W/mk@25deg-C

83
87

Fig. 16C

84
87

Fig. 16D

Fig. 17

Fig. 18

86/
87

Fig. 19

Fig. 20

87/
87

Fig. 21A

Fig. 21B

	①	②	③	④	⑤
HYDROGEN SILOXANE	957	981	915	922	932
HSQ	1198	1232	1007	1101	1058

(Å)