

University of British Columbia Electrical and Computer Engineering Digital Design and Microcomputers CPEN312

L01: Course Introduction.

Dr. Jesús Calviño-Fraga. P.Eng.
Department of Electrical and Computer Engineering, UBC
Office: KAIS 3024

E-mail: jesusc@ece.ubc.ca Phone: (604)-827-5387

January 2, 2019

Copyright © 2009-2019, Jesus Calvino-Fraga. Not to be copied, used, or revised without explicit written permission from the copyright owner.

Lectures

 Wednesdays, Fridays 8:30am to 10:00am: SWNG-221.

L01: Course Introduction.

Copyright © 2009-2019, Jesus Calvino-Fraga. Not to be copied, used, or revised without explicit written permission from the copyright owner.

Labs

- In MCLD 410.
- · There are 8 sections, 2 hours each. Check:

https://courses.students.ubc.ca/cs/main?pname=subjarea&tname=subja

- L2A Mon: 5:00 PM to 7:00 PM
 L2B Mon: 9:00 AM to 11:00 AM
 L2C Wed: 5:00 PM to 7:00 PM
 L2D Wed: 2:00 PM to 4:00 PM
 L2E Thu: 3:30 PM to 5:30 PM
 L2F Tue: 3:00 PM to 5:00 PM
- L2J Tue: 5:00 PM to 7:00 PML2K Mon: 2:00 PM to 4:00 PM
- Labs are for demonstration of work only. You are not supposed to do the lab assignments in the lab, except for lab 1 (maybe).

L01: Course Introduction.

3

Copyright © 2009-2019, Jesus Calvino-Fraga. Not to be copied, used, or revised without explicit written permission from the copyright owner.

TA this year

- Maria Lubeznov
- Mohamed Matar
- Pritam Dash
- TBA

L01: Course Introduction.

Copyright © 2009-2019, Jesus Calvino-Fraga. Not to be copied, used, or revised without explicit written permission from the copyright owner.

First Part of the Course: Reference Textbooks

- Most books on digital logic are good for the first part of this course! For your reference here are some books I like:
 - Fundamentals of Digital Logic with VHDL Design By Brown & Vranesic, 3rd Edition.
 - Digital Electronics by Kleitz, 7th Edition.
 - Digital Design by Mano and Ciletti, 5th Edition.
 - Digital Fundamentals by Floyd, 10th Edition.

L01: Course Introduction.

5

Copyright © 2009-2019, Jesus Calvino-Fraga. Not to be copied, used, or revised without explicit written permission from the copyright owner.

Second Part of the Course: Required Manual

- The MCS-51
 Microcontroller user's
 manual will be our
 reference for the
 second half of the
 course. Chapters 1, 2,
 and 3 only!
- The final exam will be open book.
 - Sharing of material will not be allowed.
 - Printed material only.
 Electronic devices will not be allowed.
- Available on Connect

L01: Course Introduction.

Copyright © 2009-2019, Jesus Calvino-Fraga. Not to be copied, used, or revised without explicit written permission from the copyright owner.

Second Part of the Course: Reference Textbook

Using the MCS-51 Microcontroller, Han-Way Huang, Oxford University Press, 1st edition/December 16, 1999, 0195125134.

L01: Course Introduction.

Copyright © 2009-2019, Jesus Calvino-Fraga. Not to be copied, used, or revised without explicit written permission from the copyright owner.

Required Hardware

All Students must have

Altera DE0-CV board. Buy from Terasic US\$89:

http://UBCCPEN312.terasic.com

8

L01: Course Introduction.

Course Evaluation

The course evaluation consists of two exams and five lab assignments:				
Evaluation:	Due Date:	Worth:		
Lab 0: Mandatory safety training	Week of January 14	0%		
Lab 1: Logic design using discrete gates	Week of January 28	3%		
Lab 2: Arithmetic Circuits	Week of February 11	4%		
Lab 3: Flip/Flops and Counters	Week of February 25	5%		
Midterm Exam (1:30h)	February 27	35%		
Lab 4: Arithmetic in assembly	Week of March 11	4%		
Lab 5: Timers/Counters Applications	Week of March 25	4%		
Final Exam	TBA: Sometime in April	45%		

L01: Course Introduction.

Copyright © 2009-2019, Jesus Calvino-Fraga. Not to be copied, used, or revised without explicit written permission from the copyright owner.

9

Exams

- The midterm exam covers only the first part of the course.
- The final exam covers only the second part of the course. The final exam will be open book.

L01: Course Introduction.

Copyright © 2009-2019, Jesus Calvino-Fraga. Not to be copied, used, or revised without explicit written permission from the copyright owner.

Lab Assignments

- Each Lab assignment is to be demoed in the laboratory: you work at home, come to the lab, demonstrate your work, get a mark, and leave. You are not supposed to do the whole lab assignment in the lab! (Exception: lab 1 if you don't own a breadboard)
- · Lab work is individual. No group submissions.
- Absolutely no late labs. Late lab=0%. Normal exceptions (medical, for example) apply.

L01: Course Introduction.

11

Copyright © 2009-2019, Jesus Calvino-Fraga. Not to be copied, used, or revised without explicit written permission from the copyright owner.

IMPORTANT: To pass the course:

 You must get a grade of at least 40% in each of the Digital AND for the Microcomputers exam in order to pass the course.

AND

You must get a average exam grade of at least 50%

AND

You must also get an aggregate mark of at least 50% overall

AND

You must get at least 40% average in the labs.

L01: Course Introduction.

12

IMPORTANT: To pass the course:

 You must get a grade of at least 40% in each of the Digital AND for the Microcomputers exam in order to pass the course.

AND

You must get a average exam grade of at least 50%

AND

· You must also get an aggregate mark of at least 50% overall

AND

• You must get at least 40 % average in the labs.

L01: Course Introduction.

13

Copyright © 2009-2019, Jesus Calvino-Fraga. Not to be copied, used, or revised without explicit written permission from the copyright owner.

Examples:

- Labs 38%, Midterm 100%, Final 80%: FAIL (labs are below 40%). Final grade=47%.
- Labs 90%, Midterm 95%, Final 35%: FAIL (Final exam is below 40%). Final grade=47%.
- Labs 52%, Midterm 62%, Final 48%: PASS. Final grade=53%.
- Labs 75%, Midterm 55%, Final 42%: FAIL (Exams average < 50%). Final grade=47%.
- Labs 85%, Midterm 60%, Final 40%: FAIL (Exams average < 50%, 60*30% + 40*40% = 34%<35%), Final grade=47%.
- Labs 42%, Midterm 60%, Final 44% = FAIL (Aggregate is below 50%: 42*0.3+60*0.3+44*0.4=48%)

L01: Course Introduction.

14

Lecture Schedule

- The Course is divided into two parts:
 - First Part: Digital Logic. From January 2 to February 16. Midterm exam covers this part.
 - Second Part: Microcomputers. From March 1 to April 3. Final exam covers this part ONLY.
 - (Is the last day of classes April 4th???)

L01: Course Introduction.

Copyright © 2009-2019, Jesus Calvino-Fraga. Not to be copied, used, or revised without explicit written permission from the copyright owner.

15

First Part: Digital Logic

Lecture	Description	Date
1	Course Introduction.	Jan 2
2	Number Representation.	Jan 2/4
3	Binary Logic and Gate Implementations	Jan 9
4	Boolean Algebra	Jan 11
5	Reduction Techniques	Jan 16/18
6	Introduction to VHDL	Jan 25
7	Arithmetic Circuits	Jan 25/30
8	Code Converters, Mux, De-Mux	Feb 1
9	ALU, Flip-Flops and Registers	Feb 6
10	Synchronous Counters	Feb 8
11	Finite State Machines	Feb 13/15

L01: Course Introduction.

Copyright © 2009-2019, Jesus Calvino-Fraga. Not to be copied, used, or revised without explicit written permission from the copyright owner.

Second Part: Microcomputers.

Lecture	Description	Date
12	Introduction to 8051 Assembly I	March 1
13	Introduction to 8051 Assembly II	March 6
14	Integer Arithmetic I	March 8
15	Integer Arithmetic II	March 13
16	Memory	March 15
17	I/O Ports	March 20
18	Timers and Counters	March 22
19	Interrupts	March 27
20	Serial Port	March 29
21	Serial Peripheral Interface (time permitting!)	April 3

L01: Course Introduction

Copyright © 2009-2019, Jesus Calvino-Fraga. Not to be copied, used, or revised without explicit written permission from the copyright owner.

17

Course Web Page

 The course material is available via 'Canvas':

http://canvas.ubc.ca/

L01: Course Introduction.

Copyright © 2009-2019, Jesus Calvino-Fraga. Not to be copied, used, or revised without explicit written permission from the copyright owner.

Software Needed

 Quartus II web edition version 16.1 or newer. Older versions may not work! Support for Cyclone V is needed.

http://dl.altera.com/?edition=lite

NI Multisim. Download from:

http://download.ni.com/support/softlib/Core/Circuit Design Suite/14. 1/14.1/NI Circuit Design Suite 14 1 Education.exe

The serial number assigned to UBC students is M71X71786

CrossIDE (second part of the course).

http://www.ece.ubc.ca/~jesusc/crosside setup.exe

L01: Course Introduction.

19

Statistics from last January 2018

- Number of students in course: 155
 - IGEN: 59
 - ENPH: 64
 - MECH: 32
- Number of students that failed: 34 (21.9%)
 - IGEN: 27 (45.7%)
 - ENPH: 5 (7.81%)
 - MECH: 2 (6.25%)

L01: Course Introduction.

Copyright © 2009-2019, Jesus Calvino-Fraga. Not to be copied, used, or revised without explicit written permission from the copyright owner.

Statistics from last January 2018

Number of students with A+: 27 (17.42%)

- IGEN: 1 (1.69%)

- ENPH: 16 (25%)

- MECH: 10 (31.25%)

• Class average: 69.52%

IGEN: 54.5%ENPH: 78.8%

- MECH: 78.6%

L01: Course Introduction.

27

Copyright © 2009-2019, Jesus Calvino-Fraga. Not to be copied, used, or revised without explicit written permission from the copyright owner.

Assumptions About the Course

- You have done or you are doing a programming course equivalent to APSC 160, e.g. C/C++, Python, or Java programming. If not, then you will probably fail the course.
- You know basic electrical concepts: voltage, current, resistance, insulators, conductors: concepts that you did in Grade 12 Physics.

L01: Course Introduction.

28