Representation Theory 1 V4A3

So Murata

2024/2025 Winter Semester - Uni Bonn

1 Overview of the material

1.1 Lie groups

Definition 1.1. A Lie group is a group G whose underlying set is endowed with the structure of smooth manifolds such that multiplication and inversions are smooth maps.

Definition 1.2. A topological group is a group G whose underlying set is endowed with the structure of topological space such that multiplication and inversions are continuous.

2 Preliminaries

2.1 Topology

Definition 2.1. We have two axioms about the topological spaces

- 1. $T_0(Komogolov)$: Given any 2 points, there exists an open set such that it contains one of them but not both.
- 2. $T_1(Hausdorff)$: Given any 2 points, there exist disjoints open set that each contains one of them.

Definition 2.2. A topological space is second countable if it has a basis which contains at most countably many subsets.

3 Lie groups

3.1 Manifolds

Definition 3.1. Let $f: X \to Y$ be a mapping between two topological spaces X, Y. f is called a homeomorphism if

- 1. f is a bijection,
- 2. f is continuous,

3. f^{-1} is also continuous.

Definition 3.2. Let $U \subseteq \mathbb{R}^n, V \subseteq \mathbb{R}^m$ be open sets and $f: U \to V$ be a smooth map. Then the derivative of f at $p \in U$ is

$$df(p) = \left(\frac{\partial f_i}{\partial x_j}\right)_{ij}.$$

Proposition 3.1. Let $f: U \to V, g: V \to W$ be smooth maps. Then for $p \in U$ we have

$$d(g\circ f)=dg(f(p))df(p).$$

Definition 3.3. Let $U \subseteq \mathbb{R}^n, V \subseteq \mathbb{R}^m$ be open sets. A map $f: U \to V$ is called a diffeomorphism if

- i). f is smooth. (\Leftrightarrow arbitrary order of partial derivatives exists),
- ii). f^{-1} is defined and is also a smooth map.

Definition 3.4. Let X be a topological space. A chart on X is a homeomorphism $h: U \to V$ where $U \subseteq X$ is open and $V \subseteq \mathbb{R}^n$ is open.

Definition 3.5. An atlas $\mathscr A$ on a topological space X is a collection of charts $\{h_{\lambda} \mid h_{\lambda} : U_{\lambda} \to V_{\lambda}\}_{\lambda \in \Lambda}$ such that $\{U_{\lambda}\}_{\lambda \in \Lambda}$ is an open cover of X.

Definition 3.6. An atlas \mathscr{A} of X is said to be smooth if for any two charts $h_1: U_1 \to V_2, h_2: U_2 \to V_2$. The following,

$$h_2 \circ h_1^{-1} : h_1(U_1 \cap U_2) \to h_2(U_1 \cap U_2),$$

is a smooth map. Such map is called a transition map.

Definition 3.7. Let X be a topological space and $\mathscr{A}_1, \mathscr{A}_2$ be smooth at lases. We say they are equivalent if $\mathscr{A}_1 \cup \mathscr{A}_2$ is also smooth.

Proposition 3.2. Above definition indeed defines an equivalence relation.

Proof. For any $h_1 \in \mathcal{A}_1, h_2 \in \mathcal{A}_2, h_3 \in \mathcal{A}_3$,

$$h_3 \circ h_1^{-1} = h_3 \circ h_2^{-1} \circ h_2 \circ h_1^{-1}.$$

Definition 3.8. A smooth manifold is a second countable Hausdorff topological space with equivalence classes of smooth atlases.

Definition 3.9. Let M, N be smooth manifolds, $f : M \to N$ be a map, and $p \in M$. f is said to be smooth at p if for one (hence any) pair of charts around p and f(p),

$$h_M: U_M \to V_M, h_N: U_N \to V_N,$$

the composed function

$$h_N \circ f \circ h_M^{-1}: V_M \to V_N$$

is smooth at $h_M(p)$.

Remark 3.1. We can define a function dim : $M \to N$ such that

$$\dim(p) = \dim(V)_p,$$

for any chart $h: U \to V$ around p. And this function is locally constant. In particular, if M is connected then it has a well-defined dimensions.

Definition 3.10. Let M, N be smooth manifold and $f: M \to N$ be a mapping which is smooth at $p \in M$. For any charts,

$$h_N \circ f \circ h_M^{-1} : V_M \to V_N,$$

the rank of f at p is such that

$$\operatorname{rk}(f; p) = \operatorname{rank}(\operatorname{\mathbf{df}}(h_M(p))(h_N \circ f \circ h_M^{-1})).$$

Definition 3.11. Let M, N be smooth manifolds and $f: M \to N$ be a smooth map. A point p is said to be regular with respect to the map f. And a point $q \in N$ is called a regular value if all $p \in f^{-1}(q)$ are regular.

Definition 3.12. Let M be a manifold. A subset $N \subseteq M$ is called an embedded submanifold if for any point $p \in N$, there is a chart $h_M : U_M \to V_M$ around p such that

$$h_M|_N: U_M \cap N \to V_M \cap \mathscr{R}^n$$
,

is a diffeomorphism where n is the dimension of N.

In particular, an embedded submanifold of an euclidean space is called a embedded manifold.

Definition 3.13. A map $f: M \to N$ of smooth manifolds is called a diffeomorphism if

- i). $f: M \to N$ is a bijection,
- ii). f, f^{-1} are both smooth.

Theorem 3.1. Let $f: M \to N$ be a smooth map between manifolds, and $q \in N$ be a regular value. Then $f^{-1}(q) \subset M$ is an embedded submanifold.

Theorem 3.2. Let $f: M \to N$ be a smooth map of manifolds $p \in M$ be a regular point, and $\dim(p) = \dim(f(p))$. Then f is a local diffeomorphism of p. In other words, there is a neighborhood U_M of p in M and $f(p) \in U_N \subset N$ such that

$$f|_{U_M}:U_M\to U_N,$$

is a diffeomorphism.

Definition 3.14. Let $M \subseteq \mathbb{R}^n$ be an embedded manifold such that for some open set $U \subset \mathbb{R}^n$, there is $V \subset \mathbb{R}^n$ such that

$$h: U \to V$$
, $h_M: U \cap M \to V \cap \mathbb{R}^m$,

is a diffeomorphism where h_M is defined to be taking the first m coordinate of the points in V. (Thus $m \leq n$).

The tangent space T_pM of M at p is the subspace of \mathbb{R}^n such that

$$(\mathbf{dh}(p))^{-1}(\mathbb{R}^m) \subset \mathbb{R}^n.$$

There are three definitions of tangent spaces and they are all equivalent. However, each of them has its own advantages.

Definition 3.15 (Coordinate tangent space). Given a smooth manifold M and a point $p \in M$. The coordinate tangent space of p is such that

$$T_p^{\mathbf{Coo}}M = \{(h,v) \mid h: U \to V \ \text{is a chart}, v \in \mathbb{R}^m\}/\sim.$$

Where \sim is an equivalence relation such that

$$(h_1, v_1) \sim (h_2, v_2)$$
 if $(\mathbf{d}(h_2 \circ h_1^{-1})(h_1(p)))(v_1) = v_2$.

Definition 3.16. Given a smooth manifold M, a point $p \in M$, and a smooth map $\alpha : I \to M$ whose domain I is an open interval contains 0. α is called a smooth curve if $\alpha(0) = p$.

Definition 3.17. Two smooth curves $\alpha, \beta: I \to M$ through p are said to be tangentially equivalent if for one (hence any) charts $h: U \to V$ around p, we have

$$d(h \circ \alpha)(0) = d(h \circ \beta)(0).$$

We denote such relation as \sim_T .

Definition 3.18 (Geometric tangent space). The geometric tangent space at p of a smooth manifold M is such that

$$T_p^{\mathbf{Geo}} = \{\alpha: I \to M \mid \alpha \text{ is a smooth curve}\}/\sim_T.$$

Definition 3.19. A germ of smooth functions of manifolds M at p is an equivalence class of tuples (U, f) where

- i). $U \subset M$ is a neighborhood of p,
- ii). $f:U\to\mathbb{R}$ is smooth.

and two tuples $(U_1, f_1), (U_2, f_2)$ are equivalent if there is a neighborhood V of p such that $V \in U_1 \cap U_2$ and $f_1|_V = f_2|_V$.

And we denote the set of germs at p as

$$\mathscr{C}^{\infty}(p)$$
.

Remark 3.2. $\mathscr{C}^{\infty}(U,\mathbb{R})$ and $\mathscr{C}^{\infty}(p)$ are rings, in fact \mathbb{R} -algebras.

Definition 3.20. Let R be a ring and A be a bimodule over R. A R-derivation in A is an operator $X: A \to A$ such that the Leibniz rule holds. In other words,

$$X(ab) = aX(b) + X(a)b,$$

holds for all $a, b \in A$.

Definition 3.21 (Algebraic tangent space). The algebraic tangent space $T_p^{\mathbf{Alg}}M$ of M at p is the set of \mathbb{R} -derivations $X: \mathscr{C}^{\infty}(p) \to \mathbb{R}$.

Remark 3.3. In the above definition, \mathbb{R} is considered as a $\mathscr{C}^{\infty}(p)$ -bimodule via the evaluation map $f \mapsto f(p)$.

Theorem 3.3. The following are isomorphisms of \mathcal{R} -vector spaces.

$$T_p^{\mathbf{Geo}}M \to T_p^{\mathbf{Alg}}M, \alpha \mapsto (f \mapsto (f \circ \alpha)'(0)),$$

$$T_p^{\mathbf{Alg}}M \to T_p^{\mathbf{Coo}}M, X \mapsto (h, ((Xh_i)(p))_{i=1,\dots,n}),$$

$$T_p^{\mathbf{Coo}}M \to T_p^{\mathbf{Geo}}M, (h, v) \mapsto \alpha(t) = h^{-1}(h(p) + t \cdot v).$$

Proposition 3.3. $\mathscr{C}^{\infty}(p)$ is a local ring with its maximal ideal

$$\mathfrak{m}_p = \{ f \in \mathscr{C}^{\infty}(p) \mid f(p) = 0 \}.$$

Moreover, if we have a derivation $X : \mathscr{C}^{\infty}(p) \to \mathbb{R}$, the restricted derivation $X|_{\mathfrak{m}_p}$ is in $\operatorname{Hom}_{\mathbb{R}}(\mathfrak{m}_p/\mathfrak{m}_p^2)$. And by this restriction, we get an isomorphism between $T_p^{\mathbf{Alg}}M$ and $\operatorname{Hom}_{\mathbb{R}}(\mathfrak{m}_p/\mathfrak{m}_p^2, \mathbb{R})$.

Remark 3.4. In this way, a smooth manifold is recognized as a locally ringed space, locally isomorphic to \mathbb{R}^n .

Remark 3.5. Let V be a finite dimensional \mathbb{R} -vector space. It has a tautological smooth manifold structure by taking charts such that the sets of isomorphisms of V and \mathbb{R}^n given by arbitrary basis of V.

We claim that we have canonical isomorphisms

$$T_nV \to V$$

for any $p \in V$,

$$\begin{split} V &\to T_p^{\mathbf{Coo}} V, v \mapsto (h, h(v)), \\ V &\to T_p^{\mathbf{Geo}} V, v \mapsto (t \mapsto p + tv), \\ V &\to T_p^{\mathbf{Alg}} V, v \mapsto \left(f \mapsto \frac{d}{dt} \bigg|_{t=0} f(p + tv) \right) \end{split}$$

Definition 3.22. Let $f: M \to N$ be a map of smooth manifolds which is smooth at $p \in M$. Its differential of p is the linear map

$$\mathbf{d}f(p) = \mathbf{d}_p(f) : T_pM \to T_{f(p)}N,$$

defined as follows.

- 1). Geometric tangent space: $\mathbf{d}_{p}(f)(\alpha) = f \circ \alpha$ where α is a smooth curve.
- 2). Algebraic tangent space : $\mathbf{d}_p(f)(X)(\varphi) = X(\varphi \circ f)$ where $\varphi \in \mathscr{C}^{\infty}(f(p))$.
- 3). Coordinate tangent space : $\mathbf{d}_p(f)(h_M, v_M) = (h_N, d_{h_M(p)}(h_N))$.

Remark 3.6. Given a chart $h: U \to V$ around $p \in M$. h consists of coordinate functions h_i where $1 \le i \le m$ for $V \subset \mathbb{R}^m$. We have for each i

$$\mathbf{d}_p h_i: T_p M \to \mathbb{R},$$

and

$$B = \{d_p h_1, \cdots, d_p h_m\}$$

is a basis of the dual space $(T_pM)^*$.

Let

$$\{\frac{\partial}{\partial x_1}, \cdots, \frac{\partial}{\partial x_m}\}$$

be the dual basis of B. By definition, this means that for any $1 \le i, j \le m$, we have

$$\frac{\partial}{\partial x_i} h_j = d_p h_j(\frac{\partial}{\partial x_i}) = \delta_{ij}.$$

Proposition 3.4. Let $f: M \to N$ be a map between smooth manifolds which is smooth and $q \in N$ be a regular value. For $p \in f^{-1}(q)$, we have

$$T_p f^{-1}(q) = \mathbf{d}_p(f)^{-1}(0) \subset T_p M.$$

Proof. \Box

3.2 Immersions and Submersions

Definition 3.23. Let $f: M \to N$ be a smooth map of smooth manifolds. f is called an

- 1). immersion if $\mathbf{d}f: T_pM \to T_{f(p)}N$ is injective for any $p \in M$,
- 2). submersion, if $\mathbf{d}f(p): T_pM \to T_{f(p)}N$ is surjective for any $p \in M$.

Remark 3.7. An immersion need not be injective. The counter example is

$$e^{ix}: \mathbb{R} \to S^1$$
.

is an immersion.

Remark 3.8. A submersion need not be injective. The counter example is

$$i_U:U\to M$$
.

an inclusion map is a submersion.

Remark 3.9. We know that if f is a submersion, then $f^{-1}(q)$ is an embedded submanifold. However, if f is an immersion, even it is injective, f(M) need not be an embedded submanifold of N.

Definition 3.24. An immersed submanifold is an image of an injective immersion.

Remark 3.10. We endow f(M) with the transported topology and differential structure from M so that f becomes a diffeomorphism between M and f(M). But this topology need not be the relative topology from N. It may be strictly finite.

Example 3.1. Let $T = S^1 \times S^1$ be a torus. Let $r \in \mathbb{R}$. We consider a map $f : \mathbb{R} \to T$ such that

$$f(x) = (e^{2\pi tx}, e^{2\pi rix}).$$

This is an immersion for any r. We examine this by several cases.

First, when r is not a rational number then f is injective, the image is an immersed manifold. However, a copy of \mathbb{R} . But this image is a dense subset of the torus.

Second, if r is rational then f is not injective. It is going to factor through an injective immersion $\mathbb{R}/b\mathbb{Z} \to T$ where $r = \frac{a}{b}$, $a, b \in \mathbb{Z}$ are coprime. This image is not only immersed but also embedded.

Remark 3.11. If $f: M \to N$ is an immersion, $\mathbf{d}f(p)$ identifies T_pM with a linear subspace of $T_{f(p)}N$.

Proposition 3.5. If $f: M \to N$ is an injective immersion, that is also closed subset of N, then its image is an embedded submanifold.

Remark 3.12. Thus we have the notion of a closed submanifold.

3.3 Multi-linear forms

Definition 3.25. Let \mathbb{V} be a vector space and $\varphi: \bigoplus_{i=1}^m V \to \mathbb{R}$ is called a m-multi-linear function if for any $i = 1, \dots, m$ and $\{a_j\}_{j \neq i} \subset V$ we have

$$\varphi(a_1,\cdots,a_{i-1},x,a_{i+1},\cdots,a_m):V\to\mathbb{R}$$

is a linear function

Definition 3.26. Let X be a smooth n-dimensional manifold and $m \in \mathbb{N}$. Then we define the followings

1.
$$\mathscr{L}_p^m = \{ \varphi : \bigoplus_{i=1}^m T_p X \to \mathbb{R} | \varphi \text{ is a m-multi-linear function.} \}$$

2.
$$\mathscr{L}^m = \bigcup_{p \in X} \mathscr{L}_p^m$$

Definition 3.27. Let X be a smooth n-dimensional manifold. A map $V: X \to \mathcal{L}^m$ is called a m-tensorfield if

- i. For any $p \in X$, $V(p) \in \mathcal{L}_p^m$.
- ii. For any chart (U,φ) around p with a basis $\{e_1^{\varphi},\cdots,e_n^{\varphi}\}$ and for any $i_1,\cdots,i_m\in\{1,\cdots,n\}$ we have a map $V_{(i_1,\cdots,i_m)}:X\to\mathbb{R}$ such that $V_{(i_1,\cdots,i_m)}(p)=V(p)(\underline{e}_{i_1},\cdots,\underline{e}_{i_m})$ is smooth.

Proposition 3.6. For any m tensorfield V, we have

Definition 3.28. We define $\mathscr{V}^m(X)$ to be the set of all m-tensorfield.

Proposition 3.7. $\mathscr{V}^m(X)$ is a vector space over \mathbb{R} and a module over $\mathscr{F}(X)$ with the common basis $\{E_{i_1,\cdots,i_m}\}_{i_1,\cdots,i_m\in\{1,\cdots,n\}}$

Proposition 3.8. Let X be a smooth n-dimensional manifold and $V: X \to \mathcal{L}^m$ be such that for any $p \in X, V(p) \in \mathcal{L}_p^m$ the followings are equivalent.

- 1. V is a m-tensorfield.
- 2. For any chart (U,φ) around p with basis $\{\underline{e}_1^{\varphi},\cdots,\underline{e}_n^{\varphi}\}$ and for any $1\leq i_1,\cdots,i_m\leq n$ there exist smooth mappings $\lambda_{i_1,\cdots,i_m}:X\to\mathbb{R}$ such that $V(p)=\sum_{1\leq i_1,\cdots,i_m\leq n}\lambda_{i_1,\cdots,i_m}(p)E_{i_1,\cdots,i_m}^{\varphi}$.
- 3. For any vectorfields $v_1, \dots, v_m : X \to TX$ we have a function $V : X \to \mathbb{R}$ such that $V_{v_1, \dots, v_m}(p) = V(p)(v_1(p), \dots, v_m(p))$ is smooth.

Proof. 1. \Leftrightarrow 2. is trivial. 1. \Rightarrow 3. is clear by the multi-linearity, and 3. \Rightarrow 1. is choosing $v_i = e_i^{\varphi}$ for each $i = 1, \dots, n$.

Proposition 3.9. Let $V: X \to \mathcal{L}^m$ then thre followings are equivalent.

- 1. V is a m-tensorfield.
- 2. For any $\{v_1, \dots, v_m\} \in \mathcal{V}(X)$, $\Psi : \bigoplus_{i=1}^m \mathcal{V}(X) \to \mathcal{F}(X)$ such that $\Psi(v_1, \dots, v_m)(p) = V(p)(v_1(p), \dots, v_m(p))$ is smooth and $\mathcal{F}(X)$ -linear.

Proof. 1. \Rightarrow 2. follows from the multilinearity and decompositions of tensors. 2. \Rightarrow 1. follows by fixing all element except one we still have the linearity thus, the function is mutilinear.

3.4 Tensor and Wedge products

Definition 3.29. Let $V_1: X \to \mathcal{L}^r, V_2: X \to \mathcal{L}^s$ be tensorfield. Then We define the tensorproduct $V_1 \otimes V_2: X \to \mathcal{L}^{r+s}$ of them to be

$$(V_1 \otimes V_2)(p)(v_1, \cdots, v_r, v_{r+1}, \cdots, v_{r+s}) = V_1(p)(v_1, \cdots, v_r)V_2(p)(v_{r+1}, \cdots, v_{r+s})$$

Proposition 3.10. The operation \bigotimes is bilinear and associative.

Proof. By substituting values, they are trivial.

Proposition 3.11. Let $U \subset X$ be an open set and $V_1, \dots, V_n \in \mathscr{V}^1(U)$ be a basis in $\mathscr{V}^1(U)$ then $\{\bigotimes_{j=1}^r V_{i_j}\}_{1 \leq i_1, \dots, i_r \leq r}$ is a basis in $\mathscr{V}^r(U)$.

Proof. Since \otimes is bilinear, this is a tensor product thus the set in the statement is indeed a basis.

Definition 3.30. Let $V \in \mathscr{V}^m(X)$ be a m-tensor. V is said to be alternating if for any $p \in X$, $(v_1, \dots, v_m) \in \bigoplus_{i=1}^m T_p X$ and $\sigma \in \mathfrak{S}_m$ we have

$$V(p)(v_{\sigma(1)}, \cdots, v_{\sigma(m)}) = \operatorname{sgn}(\sigma)V(p)(v_1, \cdots, v_m)$$

Furthermore, such V is called a m-form.

Notation 3.1. The set of all m-forms is denoted by

$$\mathscr{A}^m(X) = \{ V \in \mathscr{V}^m(X) \mid V \text{ is a m-form.} \}$$

Definition 3.31. Let $V_1 \in \mathscr{A}^r(X), V_2 \in \mathscr{A}^s(X)$ then the wedge product is

$$(V_1 \wedge V_2)(p)(v_1, \cdots, v_{r+s}) = \frac{1}{r!s!} \sum_{\sigma \in \mathfrak{S}_{r+s}} \operatorname{sgn}(\sigma) V_1 \otimes V_2(v_{\sigma(1)}, \cdots, v_{\sigma(r+s)})$$

Proposition 3.12. Let $V_1, \dots, V_n \in \mathcal{A}^1(X)$, $p \in X$ and $v_1, \dots, v_n \in T_pX$ then we have

$$(V_1 \wedge \cdots \wedge V_n)(p)(v_1, \cdots, v_n) = \det(V_i(p)(v_i))_{i,j}$$

Proof.

$$(V_1 \wedge \dots \wedge V_n)(p)(v_1, \dots, v_n) = \frac{1}{1! \dots 1!} \sum_{\sigma \in \mathfrak{S}_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n V_i(p)(v_{\sigma}(i))$$

Proposition 3.13. Similar to the case in tensorfields, we have the following statements.

- 1. $\mathscr{A}^m(X)$ is a subspace of \mathscr{V}^m over \mathbb{R} .
- 2. $\mathscr{A}^m(X)$ is a module over $\mathscr{F}(X)$.

Proof. Trivial. \Box

Proposition 3.14. Let $V_1 \in \mathscr{A}^r, V_2 \in \mathscr{A}^s$, then $V_1 \wedge V_2 \in \mathscr{A}^{r+s}$ and such $\wedge : \mathscr{A}^r \times \mathscr{A}^s \to \mathscr{A}^{r+s}$ is bilinear.

Proof. Bilinearity follows from the bilinearity of \otimes . We will show that this is indeed well-defined.

Let $\sigma \in \mathfrak{S}_{r+s}$. Then we have

$$(V_1 \wedge V_2)(p)(v_{\sigma(1)}, \dots, v_{\sigma(r+s)}) = \frac{1}{r!s!} \sum_{\tau \in \mathfrak{S}_{r+s}} \operatorname{sgn}(\tau) V_1 \otimes V_2(v_{\tau \circ \sigma(1)}, \dots, v_{\tau \circ \sigma(r+s)})$$

$$= \operatorname{sgn}(\sigma) \frac{1}{r!s!} \sum_{\tau \circ \sigma \in \mathfrak{S}_{r+s}} \operatorname{sgn}(\tau \circ \sigma) V_1 \otimes V_2(v_{\tau \circ \sigma(1)}, \dots, v_{\tau \circ \sigma(r+s)})$$

$$= \operatorname{sgn}(\sigma) (V_1 \wedge V_2)(p)(v_{\sigma(1)}, \dots, v_{\sigma(r+s)})$$

Proposition 3.15.

$$V_2 \wedge V_1 = (-1)^{rs} (V_1 \wedge V_2)$$

Proof. Let $\tau \in \mathfrak{S}_{r+s}$ to be such that

$$\tau(i) = \begin{cases} r+i & (1 \le i \le s) \\ i-s & (s+1 \le i \le r+s) \end{cases}$$

Then clearly the inversion number is $N(\tau) = rs$. It is also obvious that

$$V_2 \wedge V_1(p)(v_{\tau(1)}, \dots, v_{\tau(r+s)}) = V_1 \wedge V_2(p)(v_1, \dots, v_{r+s})$$

Proposition 3.16. Let $V_1 \in \mathscr{A}^r, V_2 \in \mathscr{A}^s, V_3 \in \mathscr{A}^t$ then $(V_1 \wedge V_2) \wedge V_3 = V_1 \wedge (V_2 \wedge V_3)$.

Proof.

$$(V_1 \wedge V_2) \wedge V_3(p)(v_1, \dots, v_{r+s+t}) = \frac{1}{(r+s)!t!} \sum_{\tau \in \mathfrak{S}_{r+s+t}} \operatorname{sgn}(\tau)(V_1 \wedge V_2) \oplus V_3(v_{\tau(1)}, \dots, v_{\tau(r+s+t)})$$

$$= \frac{1}{(r+s)!t!} \sum_{\tau \in \mathfrak{S}_{r+s+t}} \operatorname{sgn}(\tau)$$

$$(\frac{1}{r!s!} \sum_{\sigma \in \mathfrak{S}_{r+s}} \operatorname{sgn}(\sigma)V_1 \otimes V_2(v_{\tau \circ \sigma(1)}, \dots, v_{\tau \circ \sigma(r+s)}))$$

$$V_3(v_{\sigma(r+s+1)}, \dots, v_{\sigma(r+s+t)})$$

If for $\tau_1, \tau_2 \in \mathfrak{S}_{r+s+t}, \sigma_1, \sigma_2 \in \mathfrak{S}_{r+s}$ we have $\tau_1 \circ \sigma_1 = \tau_2 \circ \sigma_2$ then they satisfy the followings

- i. For any $r+s+1 \le i \le r+s+t$ we have $\tau_1(i) = \tau_2(i)$.
- ii. From above we get $\tau_2^{-1} \circ \tau_1 \in \mathfrak{S}_{r+s}$

Fixing σ_1 , there exists (r+s)! many such σ_2 . This implies that we can choose σ_1 to be the identity. Thus we get

$$(V_{1} \wedge V_{2}) \wedge V_{3}(p)(v_{1}, \dots, v_{r+s+t}) = \frac{1}{(r+s)!t!} \sum_{\tau \in \mathfrak{S}_{r+s+t}} \operatorname{sgn}(\tau)(V_{1} \wedge V_{2}) \oplus V_{3}(v_{\tau(1)}, \dots, v_{\tau(r+s+t)})$$

$$= \frac{1}{(r+s)!t!} \sum_{\tau \in \mathfrak{S}_{r+s+t}} \operatorname{sgn}(\tau) \frac{(r+s)!}{r!s!} V_{1} \oplus V_{2} \oplus V_{3}(v_{\tau(1)}, \dots, v_{\tau(r+s+t)})$$

$$= \frac{1}{r!s!t!} \sum_{\tau \in \mathfrak{S}_{r+s+t}} \operatorname{sgn}(\tau) V_{1} \oplus V_{2} \oplus V_{3}(v_{\tau(1)}, \dots, v_{\tau(r+s+t)})$$

From the previous proposition we get

4 Integration

Definition 4.1. A differential k-form ω on a smooth manifold M is a collection $\omega(p) \in A^k(T_pM)$ for all $p \in M$.

Remark 4.1. We can define what it means for ω to be continuous or smooth at some points $p \in M$ as follows.

First, we pick a chart $h: U \to V$ around p and get the basis

$$\{\frac{\partial}{\partial x_1}, \cdots, \frac{\partial}{\partial x_m}\},\$$

of T_pM that moves with $p \in U$.

We also have a basis $A^k(T_pM) = \bigwedge^k(T_pM)^*$. Hence we can express ω as p in terms of that basis and the scalars in this expression are functions on U.

$$\omega(p) = \sum f_{i_1, \dots, i_k} \cdot d_{x_{i_1}} \wedge \dots \wedge d_{x_{i_k}}.$$

And we can require $f_{i_1,\dots,i_k}\cdots d_{x_{i_1}}$ to be smooth/continuous at p.

Example 4.1. If $M = \mathbb{R}^n$, we have the canonical identification,

$$T_pM=\mathbb{R}^n$$
.

This gives us standard differential form of degree n. which is given by

$$e_1^* \wedge \cdots \wedge e_n^*,$$

where e_1, \dots, e_n is the standard basis of \mathbb{R}^n .

Definition 4.2. Let $f: M \to N$ be a smooth map of manifolds and ω be a differential form of degree k on N. We define $f^*(\omega)$ of degree k on M by

$$f^*(w)(p)(x_1,\dots,x_k) = \omega(f(p))(\mathbf{d}f_p(x_1),\dots,\mathbf{d}f_p(x_k)).$$

Definition 4.3. A differential n-form ω on M is said to be locally integrable if for any point $p \in M$, if for any point $p \in M$, there is one (hence any) chart $h: U \to V$ such that $\omega|_U =$

5 Lie Algebras

5.1 Important homomorphisms and their properties.

Recall if $f: M \to N$ is a smooth map of smooth manifolds and $p \in M$, we get $df(p): T_pM \to T_{f(p)}N$ is linear.

Proposition 5.1. Let $(G, \mu, \iota, 1)$ be a lie group and $\mathfrak{g} = T_1G$. We have

$$d\mu(1,1): \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}, (X,Y) \mapsto X + Y.$$
$$d\iota(1): \mathfrak{g} \times \mathfrak{g}, X \mapsto -X$$

Definition 5.1. A Lie group homomorphism is a smooth map of Lie groups that is a homomorphism.

Remark 5.1. If $f: G \to H$ is a Lie group homomorphism then

$$df(1): \mathfrak{g} \to \mathfrak{h}$$

is a linear map.

Definition 5.2. Let G be a Lie group. The adjoint action of G on itself is

$$\underline{\mathrm{Ad}}(g): G \to G, h \mapsto ghg^{-1}$$

which is a group homomorphism.

Definition 5.3. Let G be a Lie group and $\mathfrak{g} = T_1G$. Then we define

$$Ad(g) = d\underline{Ad}(g)(1) : \mathfrak{g} \to \mathfrak{g}.$$

We call this the adjoint action of G on \mathfrak{g} .

Remark 5.2. The term, "action" in the definition above is justified by the chain rule

$$Ad(g \cdot h) = Ad(g) \circ Ad(h).$$

Definition 5.4. Let G be a Lie group and $\mathfrak{g} = T_1G$. By regarding Ad as a function from G to $GL(\mathfrak{g})$. Notice that by the definition of groups we have Ad(g) is injective.

We now define the adjoint action of \mathfrak{g} on itself to be

$$ad : \mathfrak{g} \to End(\mathfrak{g}), X \mapsto d Ad(1)X.$$

Definition 5.5. Let G be a Lie group and $\mathfrak{g} = T_1G$. The Lie bracket is $[\cdot|\cdot]$: $\mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ such that

$$[X|Y] = \operatorname{ad}(X)(Y).$$

Proposition 5.2. Let $G = GL_n(\mathbb{R})$ and $\mathfrak{g} = \mathbb{R}^{n \times n}$. Let $g \in G$ and $X, Y \in \mathfrak{g}$. We have

$$[X|Y] = XY - YX.$$

Proof. Let $g \in G$,

$$Ad(g)X = d\underline{Ad}(g)(1)X,$$

$$= g(1+X)g^{-1} - g1g^{-1} \mod o(X),$$

$$= gXg^{-1} \mod o(X),$$

$$= gXg^{-1}.$$

In particular \underline{Ad} is a liner map. Now we compute the Lie bracket

$$[X|Y] = \operatorname{ad}(X)(Y) = [E_Y \circ \operatorname{ad}](X),$$

where E_Y is the evaluation map

$$E_Y : \operatorname{End}(\mathfrak{g}) \to \mathfrak{g}, \phi \mapsto \phi(Y).$$

$$[X|Y] = [E_Y \circ \operatorname{ad}](X),$$

= $d[g \mapsto \operatorname{Ad}(g)Y](1)(X),$
= $d[g \mapsto gYg^{-1}](1)(X).$

By the first computation we did, we see that

$$[X|Y] = (1+X)Y(1+X)^{-1} - Y \mod o(X).$$

We have the following identity

$$(1-X)^{-1} = 1 + X + X^2 + \cdots$$

Substituting -X we derive that

$$1 + X = \sum_{i=0}^{\infty} (-1)^i X^i.$$

And we only need at most degree 1 terms of X. We conclude that

$$[X|Y] = XY - YX.$$

Remark 5.3. This works for any matrix groups such as $SL_n(\mathbb{R})$, O(p,q).

Proposition 5.3. Let $f: G \to H$ be a Lie group homomorphism. For $g \in G$, we have

$$df(1) \circ \operatorname{Ad}(g) = \operatorname{Ad}(f(g)) \circ df(1). \tag{5.1}$$

And for $X, Y \in \mathfrak{g}$, we have

$$df(1)([X|Y]_G) = [df(1)X, df(1)Y]_H.$$
(5.2)

Proof. Let us consider the composition of f and Ad. By definition, we see

$$f \circ \underline{\mathrm{Ad}}(g)(h) = f(g)f(h)f(g)^{-1} = \underline{\mathrm{Ad}}(f(g))(f(h)).$$

Since $\underline{Ad}(1) = 1$ and by the chain rule we have Equation 5.1.

5.2 Lie Algebras

Definition 5.6. A Lie algebra a (finite dimensional) vector space L over \mathbb{R} or \mathbb{C} together with a bilinear map $[\cdot|\cdot]: L \times L \to L$ such that

$$i[X|Y] = -[Y|X],$$

ii [X|[Y|Z]] + [Y[Z|X]] + [Z|[X|Y]] = 0 which is called Jacobi identity.

Proposition 5.4. Let G be a Lie group and $\mathfrak{g} = T_1G$. Then \mathfrak{g} equipped with $[X|Y] = \operatorname{ad}(X)(Y)$ is a \mathbb{R} -Lie algebra.

Proof. Consider the commutator map $G \times G \to G$, $(x,y) \mapsto xyx^{-1}y^{-1}$. This is a smooth map as it is a composition of smooth maps $\mu(\mu(\cdot,\cdot),\mu(\iota(\cdot)))$. Moreover, we can write this as

$$\underline{\mathrm{Ad}}(x)(y)\iota(y).$$

Differentiate this at y = 1 in the direction of Y, we get

$$d(\operatorname{Ad}(x)(1)\iota(1))Y = \operatorname{Ad}(x)Y - Y,$$

since $d\iota(Y) = -Y$. Differentiate this again at x = 1 with respect to X we get [X,Y].

Repeating the argument with

$$x\underline{\mathrm{Ad}}(y)(\iota(x)).$$

Differentiate this at x = 1 with the direction to X we get

$$X - \underline{\mathrm{Ad}}(y)X = X - yXy^{-1}.$$

Differentiate this again at y = 1 with the direction to Y, we get -[Y|X]. By smoothness, we get

$$[X|Y] = -[Y|X].$$

For the second property, we consider the Lie group homomorphism,

$$Ad: G \to GL(\mathfrak{g}).$$

By Proposition 5.3, we have

$$\operatorname{ad}[X|Y]_G = [\operatorname{ad}(X)|\operatorname{ad}(Y)]_{\operatorname{GL}(\mathfrak{g})} = \operatorname{ad}(X)\operatorname{ad}(Y) - \operatorname{ad}(Y)\operatorname{ad}(X).$$

Therefore, by definition of $[\cdot|\cdot]$, we get

$$[[X|Y]|Z] = [X|[Y|Z]] - [Y|[X|Z]]$$

By the first property, we get the Jacobi identity.

Example 5.1. If V is a finite dimensional \mathbb{R} -vector space then $\operatorname{End}(V)$ equipped with [X|Y] = XY - YX is a Lie algebra. In fact, this coincides with the Lie algebra of the Lie group $\operatorname{GL}(V)$.

Definition 5.7. A homomorphism of Lie algebras is a linear map $f: L \to M$ such that for $X, Y \in L$

$$f([X|Y]_L) = [f(X)|f(Y)]_M$$

Corollary 5.1. If $f: G \to H$ is a homomorphism of Lie groups, then $df(1): \mathfrak{g} \to \mathfrak{h}$ is a homomorphism of Lie algebras.

5.3 The identity component

Lemma 5.1. Let G be a topological group. If $H \subset G$ is an open subgroup, then it is also closed. Thus if G is connected we have H = G.

Proof. Let $\{1\} \cup I$ be a set of representations of equivalence classes in G/H. In other words we have

$$G=H\cup\bigcup_{i\in I}iH.$$

Since $\bigcup_{i \in I} iH$ is open, thus its complement H is closed.

Lemma 5.2. Let G be a connected topological group and $U \subseteq G$ be a neighborhood of 1. Then U generates G.

Proof. Since $U \cap U^{-1}$ is non-empty and open. We may assume with out the loss of generality that $U = U^{-1}$. Let us denote

$$U^n = \{g_1 \cdots g_n \mid g_1, \cdots, g_n \in U\}.$$

And for $g_1 \cdots g_n \in U^n$, we take $V \subset U$ an open subset and $g_1 \in V$. $Vg_2 \cdots g_n$ is open in U. We now conclude that

$$H = \bigcup_{n=1}^{\infty} U^n$$

is an open subset which is a subgroup of G since it is closed under multiplication and inversion. Since G is connected we conclude that H = G.

Definition 5.8. A subgroup H of a group G is said to be characteristic if for any automorphism $\varphi: G \to G$, we have $\varphi(H) \subseteq H$.

Definition 5.9. Let X be a topological space. A connected component C of $x \in X$ is the largest connected set which contains x.

Proposition 5.5. If C is a connected component of the topological space X, then it is closed.

Proof.

Proof. Let $f: \overline{C} \to \{0,1\}$ be a continuous function where $\{0,1\}$ is with the discrete topology. Then for any $x \in C$ we conclude f(x) = 0 without the loss of generality. By the continuity of f we conclude that f(x) = 0 for any $x \in \overline{C}$. \square

Definition 5.10. A topological space (X, \mathcal{T}) is said to be locally connected if for any point $x \in X$ and its neighborhood U, there exists a connected neighborhood V such that $x \in V \subset U$.

Proposition 5.6. A component of locally connected topological space is open.

Proposition 5.7. Let G be a topological group and G^0 be the connected component of G containing 1.

- 1) G^0 is a closed characteristic subgroup of G.
- 2) If G is locally connected then G^0 is open and contained in any open subgroup of G.
- 3) The connected component of G are precisely G^0 -cosets.

Proof. By Proposition 5.5, G^0 is a closed set. Since continuous maps preserve connectedness and 1 is mapped to 1, we can conclude that G^0 is characteristic. Similarly, since multiplication and inversion are smooth, thus continuous, we conclude that G^0 is a subgroup of G. This proves the first statement.

If G is locally connected, by Proposition 5.6, G^0 is open. If $H \subset G$ is any open subgroup, then $H \cap G^0$ is an open subgroup of G^0 . By Lemma 5.2, we have $H \cap G^0$ generates G^0 . $H \cap G^0$ is a group, we conclude that it is equal to G^0 . This shows that G^0 is contained in any open subgroup of G.

Let C be a connected component and $g \in C$. Since $\mu(\cdot, g^{-1}: G \to G)$ is continuous, we conclude that $\mu(C, g^{-1})$ is contained in the connected component which contains 1. Hence $C = G^0 g$.

5.4 Invariant vector fields

Definition 5.11. Let M be a manifold. A vector field v on M is an assignment that for each $p \in M$, we have $v(p) \in T_pM$. It is said to be smooth if locally around each point $p \in M$, it's coefficients in terms of local coordinates are smooth functions. In other words, given a chart $h: U \to V$, we can get a basis $\frac{\partial}{\partial x_1}, \cdots, \frac{\partial}{\partial x_n}$ of T_pM for all $p \in U$. And locally

$$v(p) = \sum_{i=1}^{n} c_i(p) \cdot \frac{\partial}{\partial x_i}.$$

And each c_i is smooth.

Definition 5.12. Let M be a manifold, v be a smooth vector field. An integral curve is a pair (I, γ) where

- i). I is an open interval,
- ii). $\gamma: I \to M$ is a smooth map such that $\gamma'(t) = v(\gamma(t))$.

Proposition 5.8. Let v be a smooth vector field on a manifold M, then we have the following statements.

- 1). Given $p \in M$, there exists a integral curve (I, γ) such that $0 \in I$ and $\gamma(0) = p$.
- 2). $(I_1, \gamma_1), (I_2, \gamma_2)$ be integral curves with above properties. Then for any $t \in I_1 \cap I_2$, we have $\gamma_1(t) = \gamma_2(t)$.
- 3). In particular, we can splice such γ_1, γ_2 .

Proof. Follows from existence and uniqueness of solutions of ordinary differential equations in \mathbb{R}^n via charts.

Remark 5.4. There is a maximal integral curve through p.

Definition 5.13. Let G be a Lie group and $g \in G$. We define

$$L_g: G \to G, L_g(x) = gx, \quad R_g: G \to G, R_g(x) = xg,$$

the left and the right translations. Obviously these are diffeomorphisms as the inverses are $L_{q^{-1}}$, $R_{q^{-1}}$, respectively.

Remark 5.5. By differentiating these we get

$$dL_q(1): \mathfrak{g} \to T_qG, \quad dR_q(1): \mathfrak{g} \to T_qG.$$

Proposition 5.9. Let G be a Lie group and $g \in G$. Then $dL_g(1), dR_g(1)$ are isomorphisms between $\mathfrak g$ and T_gG . Therefore, we can naturally identify T_gG by $\mathfrak g$. Moreover, $dL_g(1), dR_g(1)$ are not the same in general and differ by the automorphism $\mathrm{Ad}(g)$.

Proof. \Box

Definition 5.14. A vector field v on the Lie group G is said to be

- 1). left-invariant if $v(g) = dL_g(1)(v(1))$,
- 2). right-invariant if $v(g) = dR_g(1)(v(1))$.

Remark 5.6. Such vector field is automatically smooth. And the assignments

$$X^L = X \mapsto (g \to dL_q(1)(X)), \quad X^R = X \mapsto (g \to dR_q(1)(X))$$

identify the Lie algebra $\mathfrak g$ with the space of left/right-invariant vector fields on G.

Lemma 5.3. Let v be a left-invariant vector field on G. The maximal integral curve γ with $\gamma(0) = 1$ is defined on all of \mathbb{R} and is a group homomorphism.

Proof. Let $\gamma: I \to G$ be an integral curve with v with $\gamma(0) = 1$.

Assume $I \neq \mathbb{R}$ thus, without the loss of generality I has an upper bound $t_0 \in \mathbb{R}$. We will have to show that γ is not maximal. To see this, we choose $0 < \varepsilon < t_0$ and $t_0 - \varepsilon < t_1 < t_0, t \in I$.

Consider $\delta(t) = \gamma(t_1) \cdot \gamma(t - t_1)$. Thus γ is a smooth curve defined an open neighborhood of t_0 and $\delta(t_1) = \gamma(t_1)$ and

$$\begin{split} \delta'(t) &= d\delta(t)(1), \\ &= dL_{\gamma(t_1)}(\gamma(t-t_1))(dr(t-t_1)(1)), \\ &= dL_{\gamma(t_1)}(v(\gamma(t-t_1))), \\ &= dL_{\gamma(t_1)}(\gamma(t-t_1)(dL_{r(t-t_1)}(1)(v(1))), \\ &= dL_{\gamma(t_1)\gamma(t-t_1)}(1)(v(1)), \\ &= v(\gamma(t_1)\gamma(t-t_1)), \\ &= v(\delta(t)). \end{split}$$

Thus δ is an integral curve for v defined on an open neighborhood of t_0 containing t_1 and $\delta(t_1) = \gamma(t_1)$. Therefore γ is not maximal.

Now we are going to show that γ is a homomorphism. For fixed $t \in \mathbb{R}$, note that the maps

$$s\mapsto \gamma(t+s),\quad s\mapsto \gamma(t)\gamma(s)$$

are both integral curves for v with equal value at s=0, hence equal.

5.5 The Exponential Maps

Proposition 5.10. Let $X \in \mathfrak{g}$, there exists a unique group homomorphism $\gamma_X : \mathbb{R} \to G$ differentiable at 0 and $\gamma_X'(0) = X$. It is the maximal integral curve through 1 for both X^L and X^R . We have $\gamma_{tX}(s) = \gamma_X(ts)$ for $t \in \mathbb{R}$.

Proof. By Lemma 5.3, there exist maximal integral curves for X^L and X^R , we denote them by $\gamma_{X^L}, \gamma_{X^R}$, respectively. By Lemma 5.8, we can assume $\gamma_{X^L}(0) = \gamma_{X^R}(0) = 1$, and these are defined on the whole \mathbb{R} .

For uniqueness, let $\gamma: \mathbb{R} \to G$ be a group homomorphism which is differentiable at 0 with $\gamma'(0) = X$. Then

$$\gamma(t)\gamma(s) = \gamma(t+s) = \gamma(s+t) = \gamma(s)\gamma(t). \tag{5.3}$$

Fix t and apply $\frac{d}{ds}|_{s=0}$ to see that γ is differentiable at any t in the following way

$$\frac{d}{ds}|_{s=0}\gamma(t)\gamma(s) = \frac{d}{ds}|_{s=0}\gamma(t+s),$$

$$\Rightarrow \gamma(t)\gamma'(0) = \gamma'(t).$$

By construction, when $\gamma = \gamma_{X^L}$ we have

$$\begin{split} \gamma_{X^L}'(t) &= dL_{\gamma_{X^L}(t)}(1)(X^L(1)) \\ &= dL_{\gamma_{X^L}(t)}(1)X \\ &= L_{\gamma_{X^L}(t)}X. \end{split}$$

Similarly for $\gamma = \gamma_{X^R}$ we have

$$\begin{split} \gamma_{X^R}'(t) &= dR_{\gamma_{X^R}(t)}(1)(X^R(1)) \\ &= dR_{\gamma_{X^R}(t)}(1)X \\ &= R_{\gamma_{X^R}(t)}X. \end{split}$$

By the uniqueness of solutions of ordinary differential equations, we derive that $\gamma_{X^L} = \gamma_{X^R}$. This proves that $\gamma_{X^L}, \gamma_{X^R}$ are maximal as they are defined on all $t \in \mathbb{R}$.

For the second property, we only need to check that $\gamma_{tX}(s) = \gamma_X(ts)$ coincide at s = 0.

Definition 5.15. Let G be a Lie group and $\mathfrak{g} = T_1G$. Then we define the exponential map

$$\exp_G: \mathfrak{g} \to G, \exp_G(X) = \gamma_X(1),$$

where γ_X is the integral curve of $v(g) = dL_q(1)X$.

Theorem 5.1. $\exp_G : \mathfrak{g} \to G$ is smooth and has the following properties.

- 1). $\underline{\mathrm{Ad}}(x) \circ \exp_G = \exp_G \circ \underline{\mathrm{Ad}}(x)$ for any $x \in G$.
- 2). Ad $\circ \exp_G = \exp_{GL(\mathfrak{g})} \circ \operatorname{ad}$.
- 3). $d \exp_G(0) : \mathfrak{g} \to \mathfrak{g}$ is an identity $id_{\mathfrak{g}}$.

4). If $f: G \to H$ is a homomorphism of Lie groups, then $f \circ \exp_G = \exp_H \circ df(1)$.

5).
$$\gamma_X(t) = \exp_G(t \cdot X)$$
.

Proof. Look at the homework

Proposition 5.11. Let V be a finite dimensional \mathbb{R} -vector space. Then

$$\exp_{\mathrm{GL}(V)}:\mathfrak{gl}(V)\to\mathrm{GL}(V)$$

is given by

$$\exp_{\mathrm{GL}(V)}(X) = \sum_{n=0}^{\infty} \frac{1}{n!} X^n.$$

Proof. Homework

Corollary 5.2. Furthermore, we can derive the following properties of \exp_G ,

- 1). Im $\exp_G \subseteq G^0$.
- 2). $\exp_G: \mathfrak{g} \to G$ is a diffeomorphism locally around 0.
- 3). If $U \subseteq \mathfrak{g}$ is a neighborhood of 0 in \mathfrak{g} , then $\exp_G(U)$ generates G^0 .

Proof. Note that \exp_G is a smooth map.

By the smoothness, it is also continuous. Since \mathfrak{g} is connected, it is mapped to a connected subset of G which contains 1. Thus we have the first property.

By the third property of Theorem 5.1, we have $d \exp_G(0)$ is invertible.

By the second property of the same theorem, $\exp_G(U)$ contains an open neighborhood of 1, thus generates G^0 .

Corollary 5.3. Let G be a connected Lie group and $g \in G$, we have the following

$$g \in Z(G) \Leftrightarrow \operatorname{Ad}(g) = id_{\mathfrak{a}}.$$

Proof. If $g \in Z(G)$, then $\underline{\mathrm{Ad}}(g) = id_G$, therefore $\mathrm{Ad}(g) = id_{\mathfrak{g}}$. Conversely, if $\mathrm{Ad}(g) = id_{\mathfrak{g}}$, by the first property of Theorem 5.1 we have $\underline{\mathrm{Ad}}(g)$ is identity on the image of \exp_G . By the second statement of Corollary 5.2, this image generates G. Since $\underline{\mathrm{Ad}}(g)$ is a homomorphism, it is trivial on the entire group G.

Corollary 5.4. Let G be a Lie group and $X, Y \in \mathfrak{g}$. We have

$$[X|Y] = 0 \Rightarrow \exp_G(X) \exp_G(Y) = \exp_G(Y) \exp_G(X).$$

Proof. Let $x = \exp_G(X), y = \exp_G(Y)$. By the first and second statements of Theorem 5.1,

$$xyx^{-1} = \exp_G(\operatorname{Ad}(X)Y) = \exp_G(\exp_{\operatorname{GL}(\mathfrak{g})}(\operatorname{ad}(X)(Y))).$$

By Proposition 5.11 and the assumption, this is equal to

$$\exp_G(Y) = y.$$

Corollary 5.5. Let $f_1, f_2 : H \to G$ be homomorphisms of Lie groups. If H is connected and $df_1(1) = df_2(1)$. Then $f_1 = f_2$.

Proof. Using the forth statement of Theorem 5.1, we have $f_1 = f_2$ upon restriction to the image of \exp_H , and such image generates H.

5.6 Differentials of \exp_G

Theorem 5.2. Let $X \in \mathfrak{g}$. (Recall that we have the canonical identification $T_x \mathfrak{g} \to \mathfrak{g}$).

Consider

$$d(\exp_G)(x): \mathfrak{g} \to T_{\exp(X)}G, \quad dR_{\exp_G(x)}(1): \mathfrak{g} \to T_{\exp_G(x)}G.$$

Then we have the following,

$$dR_{\exp_G(x)}(1)^{-1} \circ d(\exp_G)(x) : \mathfrak{g} \to \mathfrak{g}, X \to \int_0^1 \exp_{\mathrm{GL}(\mathfrak{g})}(s \cdot \mathrm{ad}(X)) ds.$$

Corollary 5.6. An element $X \in \mathfrak{g}$ is a singular point for \exp_G if and only if $\operatorname{ad}(X) \in \mathfrak{gl}(\mathfrak{g})$ has an eigenvalue of the form $2\pi ik$ for some $k \in Z^{\times}$.

Proof. Since both \mathfrak{g} and G have the same dimension, X is singular if and only if $d(\exp_G)(X)$ is not invertible. By Theorem the equation

$$\int_0^1 \exp_{\mathrm{GL}(\mathfrak{g})}(s \cdot \mathrm{ad}(X)) dx \tag{5.4}$$

is not invertible. In other words, it admits 0 as an eigenvalue. Using the formula

$$\int_0^1 \exp_{\mathrm{GL}(\mathfrak{g})}(s\lambda) dx = \begin{cases} \lambda^{-1}(e^{\lambda} - 1) & (\lambda \neq 0), \\ 1 & (\lambda = 0). \end{cases}$$

We see that the eigenvalues of the (5.4) are given by 1 if 0 is an eigenvalue of ad(X) and $\lambda^{-1}(e^{\lambda}-1)$ if $\lambda \neq 0$ is an eigenvalue of ad(X).

Remark 5.7. The formula (5.4) generalizes to

$$\int_0^1 e^{sA} ds = A^{-1}(e^A - 1) = \sum_{k=0}^\infty \frac{1}{(k+1)!} A^k.$$

for any $A \in GL(V)$ where V is a finite dimensional \mathbb{R} -vector space. If A is not invertible, we can define $A^{-1}(e^A - 1)$ by the above formula.

This is particularly useful for $A = \operatorname{ad}(X)$, for $X \in \mathfrak{g} = V$, which is never invertible since $\operatorname{ad}(X)(X) = 0$. Moreover, for $A = \operatorname{ad}(X), A^{-1}(e^A - 1)$ is invertible for X in a neighborhood of 0 by Corollary 5.6.

5.7 The Product in Logarithmic Coordinates

Theorem 5.3. Let $U \subset \mathfrak{g}$ be an open neighborhood of 0. For $X, Y \in U$, consider the differential equation for $z : \mathbb{R} \to \mathfrak{g}$, such that

$$z(0) = Y$$
, $\frac{dz}{dt}(t) = (\operatorname{ad} z(t))^{-1} (\exp_{\operatorname{GL}\mathfrak{g}}(\operatorname{ad} z(t)) - 1))^{-1}(X)$.

For U sufficiently small, this differential equation has (a unique) solution for all $X, Y \in U$ and all $t \in [0,1]$. Define $\mu(X,Y) = z(1)$. Then

$$\exp_G(X) \exp_G(Y) = \exp_G(\mu(X, Y)).$$

Proof.

Corollary 5.7. The collection of maps $\kappa_X : U \to G$, where $U \subset \mathfrak{g}$ is an open neighborhood of 0.

$$\kappa_x(Y) = x \cdot \exp_G(Y)$$

is a smooth, in fact real analytic, atlas for the manifold G.

Proof. We know that \exp_G is smooth and a locally diffeomorphism around 0. So κ_x is a diffeomorphism onto its image. Thus $(\kappa_x)_{x\in G}$ is a smooth atlas.

The transition maps are expressible in terms of μ by Theorem 5.3. Since μ is real analytic in X, Y. we see that the atlas is real analytic.

Definition 5.16 (Real analytic manifolds). A manifold is said to be

Remark 5.8. In particular, any Lie group is automatically real analytic.

Theorem 5.4. Let $X, Y \in U$, then

$$\mu(X,Y) = X + Y + \sum_{k=1}^{\infty} \frac{(1)^k}{k+1} \sum_{\substack{l_1, \dots, l_k \ge 0, \\ m_1, \dots, m_k \ge 0, \\ l_i + m_i > 0}} \frac{1}{\sum_{i=1}^k l_i + 1} \prod_{i=1}^k \frac{\operatorname{ad}(X)^{l_i}}{l_i!} \frac{\operatorname{ad}(X)^{m_i}}{m_i!}$$

Corollary 5.8.

$$\mu(X,Y) = X + Y + \frac{1}{2}[X,Y] + O(|(X,Y)|^3).$$

5.8 Lie Subgroups

Definition 5.17. Let G be a Lie group. A Lie subgroup H of G is a immersive submanifold that is also a subgroup.

Remark 5.9. A tautological inclusion $i_H: H \to G$ is an injective immersion.

Theorem 5.5. There is a bijection between

$$\{H\subseteq G\mid Lie\ subgroups.\}\leftrightarrow \{Lie\ subalgebras\ of\ \mathrm{Lie}(G).\},$$

which is induced by the tautological injection $i_H: H \to G$.

Proof. Recall that H is generated by $\exp_H(\mathfrak{h})$ which is equal to $\exp_G(\mathfrak{h})$ by the forth statement of Theorem 5.1.

Remark 5.10. This map is a bijection from the set of connected Lie subalgebras of G to the set of Lie subalgebras of Lie(G).