2012级《微积分A下》期末试卷(A卷)

班级	学-	号	姓	名

(注:本试卷共6页,十个大题。请撕下试卷最后一张空白纸做草稿)

题号	_	=	Ξ	四四	五	六	七	八	九	十	总分
得											
分											
评阅											
人											

一、填空(每小题4分,共20分)

(1) 设平面区域
$$D$$
为: $x^2 + y^2 \le 1$, 则二重积分 $\iint_D \ln(1 + x^2 + y^2) d\sigma =$ _____

(2) 设曲线
$$L$$
为 $x^2+y^2+z^2=1$ 与 $x+y+z=0$ 的交线,则 $\int\limits_L x^2 ds=$ ______

(3) 设向量场
$$\vec{A} = \{x^2 + yz, y^2 + 2xz, z^2 + 3xy\}$$
, 则其散度 $\operatorname{div}(\vec{A}) =$ ______

(4) 设
$$(a > 0)$$
, 幂级数 $\sum_{n=0}^{\infty} (ax + \frac{1}{2})^n$ 的收敛区间为 $(-\frac{1}{2}, b)$, 则 $b =$ ______

二、选择题(每小题2分,共10分)
(1). 通过曲面 $S: e^{xyz} + x - y + z = 3$ 上点 $(1,0,1)$ 的切平面 ()
A. 通过 y 轴; B. 平行于 y 轴; C.垂直于 y 轴; D. 上述A,B,C均不对.
(2) 设 L 为 xOy 平面内,不经过原点 $O(0,0)$ 的简单光滑闭曲线,逆时针方
向,则积分 $\int_L \frac{2xydx-x^2dy}{x^4+y^2}$ ()
A. 恒为零;
B. L 环绕 $O(0,0)$ 时值为零,不环绕 $O(0,0)$ 时值为 π ;
C. L 环绕 $O(0,0)$ 时值为 π ,不环绕 $O(0,0)$ 时值为零;
D. 以上结论都不对.
(3). 设 Σ 为球面 $x^2 + y^2 + z^2 = 1$ 的上半部分 $z \ge 0$,取上侧,则下列结论中,
不正确的是: ()
A. $\iint_{\Sigma} x^2 dy dz = 0;$ B. $\iint_{\Sigma} x dy dz = 0;$
A. $\iint_{\Sigma} x^2 dy dz = 0;$ B. $\iint_{\Sigma} x dy dz = 0;$ C. $\iint_{\Sigma} y dy dz = 0;$ D. $\iint_{\Sigma} y^2 dy dz = 0.$
(4). 设曲面 Σ 为平面 $x-y-z+1=0$ 在第二卦限取上侧,则
$\iint dydz + 2dzdx + 3dxdy = $
A. 2; B. 3; C. 4; D.6
(5) 下列命题中正确的是: ()
A. 若 $\sum_{n=1}^{\infty} a_n$ 收敛,则 $\lim_{n\to\infty} na_n = 0$; B.若 $\lim_{n\to\infty} na_n = 0$,则 $\sum_{n=1}^{\infty} a_n$ 收敛;
A. 若 $\sum_{n=1}^{\infty} a_n$ 收敛,则 $\lim_{n \to \infty} na_n = 0$; B.若 $\lim_{n \to \infty} na_n = 0$,则 $\sum_{n=1}^{\infty} a_n$ 收敛; C. 若 $0 < a_n < \frac{1}{n}$,则 $\sum_{n=1}^{\infty} \frac{a_n}{(\ln n)^2}$ 收敛; D.若 $\sum_{n=1}^{\infty} a_n$ 收敛,则 $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} \le 1$.

三(本题满分9分): 求二元函数 $z=f(x,y)=x^2+y^3-6xy$ 的极值点和极值。

四(本题满分9分): 已知某一均匀物体(密度 μ 为常数)占有的区域 Ω 是 抛物面 $z=x^2+y^2$ 与平面z=0, |x|=a, |y|=a围成,求该物体关于z轴的转 动惯量.

六 (本题满分9分): 已知 Σ 为曲面 $z = \sqrt{x^2 + y^2}$ (0 $\leq z \leq$ 1), 取下側。 计算 $I = \iint_{\Sigma} x(1+x^2z) dy dz + y(1-x^2z) dz dx + z(1-x^2z) dx dy$. 七(本题满分9分): 设f(x)具有连续的二阶导数,且f(1)=f'(1)=1, $\oint_L (\frac{y^2}{x}-xf(\frac{y}{x}))dx+(y-xf'(\frac{y}{x}))dy=0,$ 其中L是任一不与y轴相交的简单光滑闭曲线,求f(x)

八(本题满分9分): 设 Γ 是曲面 $z=x^2+y^2$ 和 $x+y+z=\frac{1}{2}$ 的交线,从z轴的正向看是逆时针方向,求 $\int_{\Gamma}ydx-xdy+dz$ 的值。

九(本题满分8分):求幂级数 $\sum_{n=2}^{\infty} \frac{3n+5}{n(n-1)} x^n$ 的收敛半径、收敛域及和函数,并求数项级数 $\sum_{n=2}^{\infty} \frac{(-1)^{n-1}(3n+5)}{n(n-1)}$.

十(本题满分8分): 设有正项级数 $\sum_{n=1}^{\infty} a_n$, $S_n = \sum_{k=1}^{n} a_k$ 是它的部分和,

- (1)求证: $\sum_{n=2}^{\infty} (\frac{1}{S_{n-1}} \frac{1}{S_n})$ 收敛
- (2)判断级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}a_n}{S_n^2}$ 是条件收敛还是绝对收敛,并给出证明。