```
Nominal Actual
0.1 mF | 0.09442 mF
20 mH | 9.387 mH
1 k2 | 0.98230 k2
50 2 | 51.375 2

Simulator results (src 1 = 2)

E2 | 1.1288 Vrm

E2 | 1.0546 Ven

VR | 2.2170 Vp
```


Data Tables

Source One Only

	WPPI		
	Theory	Experimental	% Deviation
E ₁	2	1.925 VPP	3.75
E ₂	0.06301	4 975 Vpp 0.05946 Vpp	5.63
V_R	2.0683	1.475 VAP	4.52

Table 10.1

Source Two Only

	Theory	Experimental	% Deviation
E ₁	0.1736	0.2243 Vpf	29.24
E ₂	2	1.856 Vps	7.20
V_R	2.693	2.526 Vpp	6.29

Table 10.2

Sources One and Two

	Theory	Experimental	% Deviation
E ₁	2	1.898 Vpp	5.20
E ₂	2	2.000 Vpp	0
V _R	2.3805	1.945 VPP	18.29

Table 10.3

Questions

1. Why must the sources be replaced with a 50 Ω resistor instead of being shorted? The loading impedame of the AC source is 50%, thus for accurate super postition calculations,

2. Do the expected maxima and minima from step 6 match what is measured in step 7?

Yes

3. Does one source tend to dominate the $1 \text{ k}\Omega$ resistor voltage or do both sources contribute in nearly equal amounts? Will this always be the case?

There is a slight dommention due to the differing capacitier and includer impedances. If the sources were out of phase, then a clear domination will occur dependency on the phase or hele amount,

Cursor			×
:	V(1)	V(2)	V(3)
xl	6.2471m	6.2471m	6.2471m
yl	1.1188	1.0546	1.1170
x2	4.2471m	4.2471m	4.2471m
.y2	1.1188	1.0546	1.1170
dx	-2.0000m	-2.0000m	-2.0000m
dy	-2.2204e-016	-8.8818e-016	-2.2204e-016
·dy/dx	1.1102e-013	4.4409e-013	1.1102e-013
1/dx	-500.0000	-500.0000	-500.0000

