

CS 5541 – Computer Systems

"Based on lecture notes developed by Randal E. Bryant and David R. O'Hallaron in conjunction with their textbook "Computer Systems: A Programmer's Perspective"

Module 1

Representing Numbers

Part 4 — Floating Point Introduction

From: Computer Systems, Chapter 2

Instructor: James Yang https://cs.wmich.edu/~zijiang zijiang.yang@wmich.edu

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Fractional binary numbers

What is 1011.101₂?

Fractional binary numbers

Fractional Binary Numbers

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number: $\sum_{k=-i}^{i} b_k \times 2$

Fractional Binary Numbers: Examples

Value Representation

5 3/4 101.112

2 7/8 10.1112

1 7/16 1 . **0111**₂

Observations

- Divide by 2 by shifting right (unsigned)
- Multiply by 2 by shifting left
- Numbers of form 0.111111...2 are just below 1.0
 - $1/2 + 1/4 + 1/8 + ... + 1/2^i + ... \rightarrow 1.0$
 - Use notation 1.0ε

Representable Numbers

- Limitation #1
 - Can only exactly represent numbers of the form x/2^k
 - Other rational numbers have repeating bit representations
 - Value Representation
 - 1/3 0.01010101[01]...2
 - 1/5 0.001100110011[0011]...2
 - 1/10 0.000110011[0011]...2
- Limitation #2
 - Just one setting of binary point within the w bits
 - Limited range of numbers (very small values? very large?)

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

IEEE Floating Point

- IEEE Standard 754
 - Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
 - Supported by all major CPUs
- Driven by numerical concerns
 - Nice standards for rounding, overflow, underflow
 - Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

Floating Point Representation

Numerical Form:

$$(-1)^{s} M 2^{E}$$

- Sign bit s determines whether number is negative or positive
- Significand M normally a fractional value in range [1.0,2.0).
- Exponent E weights value by power of two
- Encoding
 - MSB S is sign bit s
 - exp field encodes E (but is not equal to E)
 - frac field encodes M (but is not equal to M)

Precision options

Single precision: 32 bits

Double precision: 64 bits

• Extended precision: 80 bits (Intel only)

S	ехр	frac		
1	15-bits	63 or 64-bits		

"Normalized" Values

 $v = (-1)^s M 2^E$

- When: exp ≠ 000...0 and exp ≠ 111...1
- Exponent coded as a biased value: E = Exp Bias
 - Exp: unsigned value of exp field
 - Bias = 2^{k-1} 1, where k is number of exponent bits
 - Single precision: 127 (Exp: 1...254, E: -126...127)
 - Double precision: 1023 (Exp: 1...2046, E: -1022...1023)
- Significand coded with implied leading 1: M = 1.xxx...x2
 - xxx...x: bits of frac field
 - Minimum when frac=000...0 (M = 1.0)
 - Maximum when frac=111...1 (M = 2.0ε)
 - Get extra leading bit for "free"

Normalized Encoding Example

 $v = (-1)^s M 2^E$ E = Exp - Bias

- Value: float F = 15213.0;
 15213₁₀ = 11101101101101₂
 = 1.1101101101101₂ x 2¹³
- Significand

```
M = 1.101101101_2
frac= 101101101101000000000_2
```

Exponent

```
E = 13
Bias = 127
Exp = 140 = 10001100_2
```

• Result:

Denormalized Values

$$v = (-1)^s M 2^E$$

E = 1 - Bias

- Condition: exp = 000...0
- Exponent value: E = 1 Bias (instead of E = 0 Bias)
- Significand coded with implied leading 0: M = 0.xxx...x2
 - xxx...x: bits of frac
- Cases
 - exp = 000...0, frac = 000...0
 - Represents zero value
 - Note distinct values: +0 and -0 (why?)
 - exp = 000...0, $frac \neq 000...0$
 - Numbers closest to 0.0
 - Equispaced

Special Values

- Condition: **exp** = **111**...**1**
- Case: exp = 111...1, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- Case: **exp** = **111**...**1**, **frac** ≠ **000**...**0**
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., sqrt(-1), $\infty \infty$, $\infty \times 0$

Visualization: Floating Point Encodings

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Tiny Floating Point Example

- 8-bit Floating Point Representation
 - the sign bit is in the most significant bit
 - the next four bits are the exponent, with a bias of 7
 - the last three bits are the frac
- Same general form as IEEE Format
 - normalized, denormalized
 - representation of 0, NaN, infinity

Dynamic Range (Positive Only) $v = (-1)^s M 2^E$

	s exp	frac	E	Value	n: E = Exp — Bias
	0 000	0 000	-6	0	d: E = 1 - Bias
	0 000	0 001	-6	1/8*1/64 = 1/512	closest to zero
Denormalized	0 000	0 010	-6	2/8*1/64 = 2/512	closest to zero
numbers	•••				
	0 000	0 110	-6	6/8*1/64 = 6/512	
	0 000	0 111	-6	7/8*1/64 = 7/512	largest denorm
	0 000	1 000	-6	8/8*1/64 = 8/512	_
	0 000	1 001	-6	9/8*1/64 = 9/512	smallest norm
	0 011	.0 110	-1	14/8*1/2 = 14/16	
	0 011	0 111	-1	15/8*1/2 = 15/16	closest to 1 below
Normalized	0 011	1 000	0	8/8*1 = 1	
numbers	0 011	1 001	0	9/8*1 = 9/8	closest to 1 above
	0 011	1 010	0	10/8*1 = 10/8	closest to 1 above
	0 111	.0 110	7	14/8*128 = 224	
	0 111	0 111	7	15/8*128 = 240	largest norm
	0 111	.1 000	n/a	inf	

Distribution of Values

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is $2^{3-1}-1=3$

Notice how the distribution gets denser toward zero.

Distribution of Values (close-up view)

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is 3

Special Properties of the IEEE Encoding

- FP Zero Same as Integer Zero
 - All bits = 0
- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider -0 = 0
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

Module 1 (Part 4) Summary

- Use fractional binary numbers
- Explain "significand" and frac field
- Explain "exponent" and exp field
- Explain bias
- Differentiate between various types of floating point numbers (normalized, denormalized, etc.)