4/20/2015 Coursera

Feedback — Quiz: Week Five

Help Center

You submitted this quiz on **Mon 20 Apr 2015 5:24 AM PDT**. You got a score of **7.00** out of **7.00**.

Question 1

Which of the following is a form of multiple linear regression equation?

Your Answer	Score	Explanation
$ \bigcirc \text{ y = } \\ \beta_0 + \beta_1 X_1 + \beta_2 X_1 + \ldots + \beta_k X_1 $		
• y =	✓ 1.00	Great job!
$eta_0 + eta_1 X_1 + eta_2 X_2 + \ldots + eta_k X_k$		This response is correct because there are ${\cal K}$ different variables
$\bigcirc \ y = \beta_0 + \beta_1 X_1$		
Total	1.00 /	
	1.00	

Question 2

False

In case of multiple linear regression, the mean value of Y at x_1,\dots,x_k is a linear function of X_1,\dots,X_k .

(please answer True or False below)

Your Answer		Score	Explanation
True	~	1.00	Good job!
			We know this because $\mu_{y/x1,x2}=eta_0+eta_1X_1+eta_2X_2+\ldots+eta_kX_k$
			<i>0</i> / ···· /·····

4/20/2015 Coursera

Total 1.00 / 1.00

Question 3

Which of the following is not an inherently linear model?

Your Answer	Score	Explanation
$igo \mu_{y x} = eta_1 X$		
$\odot~\mu_{y x}=eta_0e^{eta 1X}$		
$igoplus \mu_{y x} = eta_0 + eta_1 X_1$		
$\mu_{y x1,x2} = e^{eta 0} + e^{eta 1X1} + e^{eta 2X2}$	✓ 1.00	Great job. This response is correct because it cannot be easily transformed into a linear form.
Total	1.00 / 1.00	

Question 4

The total sum of squares (SST) remains unchanged irrespective of the number of independent variables.

(please answer True or False below)

Your Answer		Score	Explanation
True	~	1.00	Great job!
			We know this because the SST is the sum of squared deviations about the grand mean.
False			
Total		1.00 /	
		1.00	

Question 5

If the tolerance is 0.0001 then it implies that there is no multicollinearity between the independent variables.

(please answer True or False below)

Your Answer		Score	Explanation
True			
False	~	1.00	Good job! We know this to be false because if the tolerance is less than 0.01, then it indicates multicollinearity. In this case, 0.0001 < 0.01
Total		1.00 / 1.00	

Question 6

Suppose that $F=4\,\mathrm{where}\;F=(\mathrm{MS}\;\mathrm{regression})$ / (MS Residual). Then R^2 is:

Your Answer	Score	Explanation
0.64		
● 0.8	1 .00	Nice work!
		We know that $F=R^2/(1-R^2)$
		So, if we let w represent R^2 , then we can say that $4=w/(1-w)$ which we can solve to show that $w=0.8$
0.2		
The given information is not sufficient to calculate		
R^2		

4/20/2015 Coursera

Total 1.00 / 1.00

Question 7

Suppose the following:

After running some analysis, the result of the partial F-test for a particular variable was: F = 8.9 and the result of the t-test for the variable under consideration was: t-test = 0.01.

This statement is:

(please answer True or False below)

Your Answer		Score	Explanation
True			
False	*	1.00	Great job! We know this is false because the partial F-test and its respective t-test are equivalent. $F=t^2$
Total		1.00 /	