Chapter 4: Statistical Decision Theory *

4 Statistical Decision Theory

4.1 Basic Framework and Concepts

• To the usual statistical modeling framework from earlier

$$X, \quad \Theta, \quad \mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$$

we add the following elements

- 1. some "action space" \mathcal{A} with σ -algebra ϵ ,
- 2. a suitably measurable "loss function"

$$L(\theta, a): \Theta \times \mathcal{A} \to [0, \infty),$$

3. and (non-randomized) decision rules

$$\delta(x): (\mathcal{X}, \mathcal{B} \to (\mathcal{A}, \epsilon))$$

For data X, $\delta(x)$ is the action taken based on X.

To identify "good" devusuib rules δ , we have to average our X, which naturally leads to expectation.

• Risk function The mapping from $\Theta \to [0, \infty)$ given by

$$R(\theta, \delta) \equiv R_{\theta}L(\theta, \delta(X)) = \int_{\mathcal{X}} L(\theta, \delta(x)) dP_{\theta}(x)$$

is call the risk function for θ .

- $-\delta$ is at least as good as δ' if $R(\theta, \delta) \leq R(\theta, \delta')$ for all $\theta \in \Theta$
- $-\delta$ is better than δ' if $R(\theta, \delta) \leq R(\theta, \delta')$ for all $\theta \in \Theta$, and $R(\theta_0, \delta) < R(\theta_0, \delta')$ for some θ_0
- $-\delta$ and δ' are risk equivalent if $R(\theta, \delta) = R(\theta, \delta')$ for all $\theta \in \Theta$.
- $-\delta$ is best in a class of decision rules Δ if $\delta \in \Delta$, and δ is at least as good as any other $\delta' \in \Delta$
- Example: $X \sim N(\theta, 1), \theta \in \mathbb{R}$ with Δ = "the class of all estimators of θ ". There is no best element here. Prove by proposing two constant estimators and zero-one loss.
- If there is no best estimator,
 - Try a smaller and appropriate Δ , e.g. unbiased estimators.
 - Reduce the risk function $R(\theta, \delta)$ to a number and compare numbers for different δ 's, e.g.: averaging over θ according to some distribution G on Θ is a way to make "Bayes Risk" and look for "Bayes optimal" decision rules.
 - Maximize $R(\theta, \delta)$ over θ and seek to minimize over δ 's, i.e. mini-max procedures.
- Inadmissible: δ is inadmissible in Δ if there exists $\delta' \in \Delta$ that is better than δ .
- Admissible: δ is admissible in Δ if it is not inadmissible in Δ .

Note: One may never want to use an inadmissible rule, but there are decision problems where every rule is inadmissible.

• Behavorial decision rule: If for each $x \in \mathcal{X}$, ϕ_x is a distribution on (\mathcal{A}, ϵ) , then ϕ_x is called a behavorial decision rule.

^{*}STA643: Advanced Theory of Statistical Inference. Instructed by Dr. Daniel Nordman. Arranged by Zhiling Gu

– $\mathcal{D}^* \equiv \{\phi_x\} \equiv$ the class of behavorial decision rules

 $-\mathcal{D}\subset\mathcal{D}^*$ where

$$\mathcal{D} \equiv \{\delta(x)\} \equiv$$
 the class of non-randomized decision rules $\delta: \mathcal{X} \to \mathcal{A}$

 $-\,$ The risk function of a behaviial decision rule is defined as

$$R(\theta,\phi) = \int_{\mathcal{X}} \int_{\mathcal{A}} L(\theta,a) d\phi_x(a) dP_{\theta}(x)$$