FMI, Info, Anul I

Logică matematică și computațională

Seminar 8

(S8.1) Să se demonstreze Teorema de completitudine tare - versiunea 2, dar fără a se folosi, precum în curs, Teorema de completitudine tare - versiunea 1.

Demonstrație: Fie $\varphi \in Form$, $\Gamma \subseteq Form$. Avem că:

(S8.2) Să se arate că Teorema de completitudine tare - versiunea 2 implică Teorema de completitudine tare - versiunea 1.

Demonstrație: Fie $\Gamma \subseteq Form$. Vrem să arătăm că Γ este consistentă dacă și numai dacă Γ este satisfiabilă. Avem că:

(S8.3) Să se arate că pentru orice formule φ, ψ, χ avem:

- (i) $\{\varphi \wedge \psi\} \vdash \varphi$;
- (ii) $\{\varphi \wedge \psi\} \vdash \psi$;
- (iii) $\{\varphi, \psi\} \vdash \varphi \land \psi$;
- (iv) $\{\varphi, \psi\} \vdash \chi$ ddacă $\{\varphi \land \psi\} \vdash \chi$.

Demonstrație: Reamintim că $\varphi \wedge \psi = \neg(\varphi \rightarrow \neg \psi)$. De asemenea, oriunde folosim o

teoremă formală cunoscută, aplicăm implicit Propoziția 1.39.(ii). Demonstrăm (i):

Demonstrăm (ii):

Demonstrăm (iii):

(1)	$\{\varphi, \psi, \neg \neg (\varphi \to \neg \psi)\}$	$\vdash \varphi$	Propoziţia 1.37.(ii)
(2)	$\{\varphi, \psi, \neg \neg (\varphi \to \neg \psi)\}$	$\vdash \psi$	Propoziţia 1.37.(ii)
(3)	$\{\varphi, \psi, \neg \neg (\varphi \to \neg \psi)\}$	$\vdash \neg \neg (\varphi \to \neg \psi)$	Propoziţia 1.37.(ii)
(4)	$\{\varphi, \psi, \neg \neg (\varphi \to \neg \psi)\}$	$\vdash \neg \neg (\varphi \to \neg \psi) \to (\varphi \to \neg \psi)$	(S7.2).(iii)
(5)	$\{\varphi, \psi, \neg \neg (\varphi \to \neg \psi)\}$	$\vdash \varphi \to \neg \psi$	(MP): (3), (4)
(6)	$\{\varphi, \psi, \neg \neg (\varphi \to \neg \psi)\}$	$\vdash \neg \psi$	(MP): (1), (5)
(7)	$\{\varphi, \psi, \neg \neg (\varphi \to \neg \psi)\}$	$\vdash \neg \psi \to (\psi \to \bot)$	(S7.2).(ii)
(8)	$\{\varphi, \psi, \neg \neg (\varphi \to \neg \psi)\}$	$\vdash \psi \rightarrow \bot$	(MP): (6), (7)
(9)	$\{\varphi, \psi, \neg \neg (\varphi \to \neg \psi)\}$	$\vdash \bot$	(MP): (2), (8)
(10)	$\{arphi,\psi\}$	$\vdash \neg(\varphi \to \neg\psi)$	(9) şi $(S7.1)$.

Demonstrăm (iv), implicația "⇒":

Demonstrăm (iv), implicația "⇐":

- $\begin{array}{llll} (1) & \{\varphi \wedge \psi\} & \vdash \chi & \text{ipoteză} \\ (2) & & \vdash (\varphi \wedge \psi) \rightarrow \chi & \text{Teorema deducţiei} \\ (3) & \{\varphi, \psi\} & \vdash (\varphi \wedge \psi) \rightarrow \chi & (2) \\ (4) & \{\varphi, \psi\} & \vdash \varphi \wedge \psi & (\text{iii}) \\ (5) & \{\varphi, \psi\} & \vdash \chi & (\text{MP}) \colon (3), \ (4). \end{array}$

(S8.4)

(i) Să se arate că mulțimea modelelor unei mulțimi satisfiabile și finite de formule este infinită.

(ii) Găsiți o mulțime infinită de formule care nu este semantic echivalentă cu nicio mulțime finită de formule.

Demonstrație:

(i) Fie Γ o multime de formule ca în enunț. Dat fiind că Γ este satisfiabilă, admite un model și fie acesta e. Pe de altă parte, dat fiind că Γ este finită, există un $n \in \mathbb{N}$ cu proprietatea că $\bigcup_{\varphi \in \Gamma} Var(\varphi) \subseteq \{v_0, v_1, \dots, v_n\}.$

Fie, atunci, pentru orice $k \in \mathbb{N}$, câte o funcție $e_k : V \to \{0,1\}$, definită, pentru orice $x \in V$, prin:

$$e_k(x) := \begin{cases} e(x), & \text{dacă } x \in \{v_0, \dots, v_n\} \\ 1, & \text{dacă } x \in \{v_{n+1}, \dots, v_{n+k}\} \\ 0, & \text{altfel.} \end{cases}$$

Atunci, pentru $k \neq l$ avem $e_k \neq e_l$. Prin urmare, $\{e_k \mid k \in \mathbb{N}\}$ este o mulţime numărabilă. Pentru orice $k \in \mathbb{N}$ și $\varphi \in \Gamma$, aplicând Propoziția 1.13 pentru φ , e și e_k , avem că $e_k^+(\varphi) = e^+(\varphi) = 1$, deci $e_k \vDash \varphi$.

Am obținut astfel că $\{e_k \mid k \in \mathbb{N}\} \subseteq Mod(\Gamma)$. Aşadar, $Mod(\Gamma)$ este infinită.

(ii) Considerăm $\Gamma := V = \{v_n \mid n \in \mathbb{N}\},$ o mulțime infinită de formule. Demonstrăm că Γ nu este echivalentă cu nicio mulțime finită de formule. Observăm că o evaluare $e: V \to \{0,1\}$ este model al lui Γ dacă și numai dacă $e(v_n) = 1$ pentru orice $n \in \mathbb{N}$ dacă și numai dacă e este funcția constantă 1. Prin urmare, $Mod(\Gamma) = \{1\}$.

Fie acum Δ o mulțime finită de formule. Avem două cazuri:

(a) Δ nu este satisfiabilă. Atunci $Mod(\Delta) = \emptyset$.

(b) Δ este satisfiabilă. Atunci aplicăm (i) pentru a concluziona că $Mod(\Delta)$ este infinită.

În ambele cazuri, obținem că $Mod(\Delta) \neq Mod(\Gamma)$, deci Γ nu este echivalentă cu Δ .