Solution of time-dependent problems in quantum mechanics

Joseph A. Driscoll

Department of Physics and Astronomy Vanderbilt University Nashville, TN

Website for book

 Codes for many of this week's topics can be found at the following link:

https://sites.google.com/site/varga1kalmanbook/

See Chapter 5 for the code I'll discuss today

Why do we need time dependence?

- We're often interested in time-dependent phenomena
- Usually, time-independent methods just give you information about the ground state
 - they can sometimes give TD, but only approximately
- Our approach: We solve the time-dependent Schrödinger equation (TDSE)

$$i\hbar \frac{\partial}{\partial t} \Psi(t) = H\Psi(t).$$

Methods of time propagation

- Direct integration of TDSE
 - Euler, Runge-Kutta, etc.

- Application of the time evolution operator
 - Taylor expansion, Crank-Nicholson, etc.

• Either way: use ground state as initial state $\Psi(x,0)$, then time-develop the wavefunction to get $\Psi(x,t)$

Direct integration of the TDSE

We can use the standard definition of the derivative to write

$$\frac{\partial \Psi}{\partial t} = \frac{\Psi(t + \Delta t) - \Psi(t)}{\Delta t} = \frac{H\Psi(t)}{i\hbar}$$

which gives

$$\Psi(t + \Delta t) = \frac{\Delta t}{i\hbar} H \Psi(t) + \Psi(t) + \mathcal{O}((\Delta t)^2)$$

Using a symmetric form of the derivative,

$$\frac{\partial \Psi}{\partial t} = \frac{\Psi(t + \Delta t) - \Psi(t - \Delta t)}{2\Delta t} = \frac{H\Psi(t)}{i\hbar}$$

we get a more accurate method:

$$\Psi(t+\Delta t) = \frac{2\Delta t}{i\hbar} H\Psi(t) + \Psi(t-\Delta t) + \mathcal{O}((\Delta t)^3)$$

We can do even better: Runge-Kutta

Let

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, t)$$
$$\mathbf{x}(t) = (\Psi(x_1, t), \Psi(x_2, t), \dots, \Psi(x_N, t))$$

The RK method approximates the solution by

$$\mathbf{x}(t + \Delta t) \equiv \mathbf{x}(t) + \frac{1}{6} \left[f(\mathbf{y}_1, \tau_1) + 2f(\mathbf{y}_2, \tau_2) + 2f(\mathbf{y}_3, \tau_3) + f(\mathbf{y}_4, \tau_4) \right] \Delta t + \mathcal{O}((\Delta t)^5)$$

where the terms are given by

$$\mathbf{y}_{1} = \mathbf{x}(t), \qquad \tau_{1} = t$$

$$\mathbf{y}_{2} = \mathbf{x}(t) + \frac{1}{2}f(\mathbf{y}_{1}, \tau_{1})\Delta t, \qquad \tau_{2} = t + \frac{1}{2}\Delta t$$

$$\mathbf{y}_{3} = \mathbf{x}(t) + \frac{1}{2}f(\mathbf{y}_{2}, \tau_{2})\Delta t, \qquad \tau_{3} = t + \frac{1}{2}\Delta t$$

$$\mathbf{y}_{4} = \mathbf{x}(t) + f(\mathbf{y}_{3}, \tau_{3})\Delta t, \qquad \tau_{4} = t + \Delta t.$$

Code for RK4 method

```
! fourth-order Runge-Kutta
! step 1
call Hamiltonian_wavefn(psi,t,H_Psi)
rk(:,1)=dt*H Psi(:)
! step 4
psi(:)=psi0(:)+rk(:,3)
t=t.0+dt
call Hamiltonian_wavefn(psi,t,H_Psi)
rk(:,4)=dt*H_Psi(:)
! together
psi(:)=psi0(:)+(rk(:,1)+rk(:,4))/6.0+(rk(:,2)+rk(:,3))/3.0
```

Another approach: the time evolution operator

We can solve the TDSE using

$$\Psi(t + \Delta t) = U(t + \Delta t, t)\Psi(t)$$

where the time evolution operator is given by

$$U(t + \Delta t, t) = e^{-\frac{i}{\hbar}H\Delta t}$$

To use this approach one has to approximate the exponential operator

Approximations to the time evolution operator

• We can simply Taylor expand the exponential:

$$e^{-iH\Delta t/\hbar} \approx \sum_{n=0}^{N} \left[\frac{(-i\Delta t/\hbar)^n H^n}{n!} \right]$$

Truncating the series breaks unitarity, so small time steps are needed.

The Crank-Nicholson scheme approximates the exponential as

$$e^{-rac{i}{\hbar}H\Delta t/\hbar}pproxrac{1-rac{i\Delta t}{2\hbar}H}{1+rac{i\Delta t}{2\hbar}H}$$

Unitary, so can use longer time steps. But the inverse is expensive.

Code for Taylor method

```
! Taylor expansion coefficients
do i=1,N_p
  Taylor(i)=(-zI*dt)**i
 do j=1,i
    Taylor(i)=Taylor(i)/i
  end do
end do
! calculate the Hamiltonian, H_time at time t
call time_dependent_hamiltonian(t)
! Taylor expansion of exp(-iHdt)
psip=psi
do power=1,N_p
  psip=matmul(H_time, psip)
  psi=psi+Taylor(power)*psip
end do
```

Example: Free Gaussian wave packet

The time development of a free Gaussian wave packet is analytically solvable:

$$\psi(x,t) = \sqrt{\frac{\sigma}{\sqrt{\pi}(1+i\Omega t)}} \mathrm{e}^{-\frac{\sigma^2}{2}\frac{(x-vt)^2}{1+i\Omega t}} \mathrm{e}^{ik_0(x-vt)}$$

where $v = \hbar k_0/m$ and $\Omega = \hbar \sigma^2/m$

As time goes by, the center of the packet moves with the classical speed v, but the width of the packet w(t) increases

$$w^2(t) = \frac{(1+\Omega^2t^2)}{\sigma^2}.$$

The spreading occurs more rapidly if Ω is large, that is, if the original width $w(0) = 1/\sigma$ is small

Wave packet vs. time

Example: Particle in a time-dependent potential

Small perturbation

Larger perturbation

