Algorithms and Computability

Lecture 3 Maximum Flow

SW6 spring 2025 Simonas Šaltenis

Maximum flow

- Main goals of the lecture:
 - to understand how flow networks and maximum flow problem can be **formalized**;
 - to understand the Ford-Fulkerson method and to be able to prove that it works correctly;
 - to understand the **Edmonds-Karp** algorithm and the intuition behind the analysis of its worst-case running time;
 - To understand how **linear programming** can be used to solve different variants of network flow problems
 - to be able to apply the Ford-Fulkerson method to solve the maximum-bipartite-matching problem.

Flow networks

- What if the weights in a graph are maximum capacities of some flow of material?
 - Pipe network to transport fluid (e.g., water, oil)
 - Edges pipes, vertices junctions of pipes
 - Data communication network
 - Edges network connections of different capacity, vertices routers (do not produce or consume data just move it)
 - Concepts (informally):
 - **Source** vertex s (where material is produced)
 - Sink vertex t (where material is consumed)
 - For all other vertices what goes in must go out
 - Goal: maximum rate of material flow from source to sink

Formalization

- How do we formalize flows?
 - Graph G = (V, E) a flow network
 - Directed, each edge has **capacity** $c(u,v) \ge 0$
 - Two special vertices: source s, and sink t
 - For any other vertex v, there is a path $s \rightarrow ... \rightarrow v \rightarrow ... \rightarrow t$
 - **Flow** a function $f: V \times V \rightarrow R$
 - Capacity constraint: For all $u, v \in V$: $0 \le f(u,v) \le c(u,v)$
 - Flow conservation: For all $u \in V \{s, t\}$:

$$\sum_{v \in V} f(v, u) = \sum_{v \in V} f(u, v)$$
$$f(V, u) = f(u, V)$$

Antiparallel edges

- To simplify the discussion we do not allow both (u,v) and (v,u) together in the graph.
- Easy to eliminate such antiparallel edges by introducing artificial vertices.

Maximum flow

- What do we want to maximize?
 - Value of the flow f:

$$|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s) = f(s, V) - f(V, s)$$

Equivalently:

$$|f| = \sum_{v \in V} f(v,t) - \sum_{v \in V} f(t,v) = f(V,t) - f(t,V)$$

The goal: to find a flow of maximum value!

Augmenting path

- Straightforward idea for an algorithm:
 - If $|f| \ge 0$, i.e., we have some flow (or none),...
 - ...and can find a path p from s to t (augmenting path), such that there is a > 0, and for each edge (u,v) in p we can add a units of flow: $f(u,v) + a \le c(u,v)$
 - Then just do it, to get a better flow!
 - Augmenting path in this graph?

The Ford-Fulkerson method

Sketch of the method:

```
Ford-Fulkerson(G,s,t)
01 initialize flow f to 0 everywhere
02 while there is an augmenting path p do
03    augment flow f along p
04 return f
```

- How do we find augmenting path?
- How much additional flow can we send through that path?
- Does the algorithm always find the maximum flow?

Changing our mind...

- Need to be careful how we define the augmenting path:
 - Let's try sending flow:
 - *scbt* : 6 units

• *sabt* : 5 units

- Can we do more?
- Yes!: sbcdt : 5 units!

Residual network

Remember:

no antiparallel

edges!

- How do we find an augmenting path?
 - It is any path in a residual network:
 - Residual capacities:

capacities:
$$c_f(u,v) = \begin{cases} c(u,v) - f(u,v) & \text{if } (u,v) \in E, \\ f(v,u) & \text{if } (v,u) \in E, \\ 0 & \text{otherwise.} \end{cases}$$

• Residual network: $G_f = (V, E_f)$, where

$$E_f = \{(u,v) \in V \times V : c_f(u,v) > 0\}$$

• Observation – edges in E_f are either edges in E or their reversals: $|E_f| \le 2|E|$

Compute residual network

Compute residual network:

Compute residual network

Compute residual network:

Residual capacity of a path

- How much additional flow can we send through an augmenting path?
 - Residual capacity of a path p from s to t in G_t : $c_f(p) = \min\{c_f(u,v): (u,v) \text{ is in } p\}$
 - Doing augmentation: for all (u,v) in p, we just add this $c_f(p)$ to f(u,v), if $(u,v) \in E$, else (if $(v,u) \in E$) subtract it from f(v,u).
 - Resulting flow is a valid flow with a larger value, more specifically $|f| + c_f(p)$. Why?
 - Validity: capacity constraint on each edge + flow conservation at each vertex
 - Value increase: let's look at s or t.

The Ford-Fulkerson method


```
Ford-Fulkerson(G, s, t)
01 for each edge (u, v) ∈ G.E do
02  f(u, v) ← 0
03 while there exists a simple path p from s to t in residual network G<sub>f</sub> do
04  c<sub>f</sub> = min{c<sub>f</sub>(u, v): (u, v) ∈ p}
05  for each edge (u, v) ∈ p do
06  if (u, v) ∈ G.E then f(u, v) ← f(u, v) + c<sub>f</sub>
07  else f(v, u) ← f(v, u) - c<sub>f</sub>
08 return f
```

■ The algorithms based on this method differ in how they choose *p* in step 03.

Cuts

- Does it always find the maximum flow?
 - A *cut* is a partition of *V* into *S* and T = V S, such that $s \in S$ and $t \in T$
 - The *net flow* (f(S,T)) through the cut is the sum of flows f(u,v) minus the sum of flows f(v,u), where $u \in S$ and $v \in T$
 - The *capacity* (c(S,T)) of the cut is the sum of capacities c(u,v), where $u \in S$ and $v \in T$
 - $|f| = f(S,T) \le c(S,T)$
 - Why?

Correctness of Ford-Fulkerson

Max-flow min-cut theorem:

- If *f* is the flow in G, the following conditions are equivalent:
 - 1. *f* is a maximum flow in *G*
 - 2. The residual network G_f contains no augmenting paths
 - 3. |f| = c(S,T) for some cut (S,T) of G
 - We have to prove three parts:

- 1. => 2. and 3. => 1. are rather obvious
- For 2. => 3., let's examine the cut:
- (S, V S), where $S = \{v \in V : \text{there exists a path from s to } v \text{ in } G_f\}$
- From this we have 1. \Leftrightarrow 2., which means that the Ford-Fulkerson method always correctly finds a maximum flow

Worst-case running time

- What is the worst-case running time of this method?
 - Let's assume integer flows.
 - Each augmentation increases the value of the flow by some positive amount.
 - Augmentation can be done in O(E).
 - Total *worst-case* running time $O(E|f^*|)$, where f^* is the max-flow found by the algorithm.
 - Can we run into this worst-case?
 - Lesson: how an augmenting path is chosen is very important!

Edmonds-Karp algorithm

- Take shortest path (in terms of the number of edges)
 as an augmenting path Edmonds-Karp algorithm
 - How do we find such a shortest path?
 - Running time O(VE²), because the number of augmentations is O(VE)
 - To prove this we need to prove that:
 - The length of the shortest path does not decrease
 - Each edge can become **critical** at most ~ V/2 times. Edge (u,v) on an augmenting path p is critical if it has the minimum residual capacity in the path: $c_f(u,v) = c_f(p)$

Non-decreasing shortest paths

- Why does the length of a shortest path from s to any v does not decrease?
 - Observation: Augmentation may add some edges to residual network or remove some.
 - Removed edges obviously only increase the length of the shortest path
 - Only the added edges ("shortcuts") may potentially decrease the length of a shortest path.
 - Where do these edges are added?
 - Opposite to some edge on the augmenting path, which is the shortest path!

Number of augmentations

- Why each edge can become critical at most ~V/2 times?
 - Scenario for edge (u,v):
 - Critical the first time: (u,v) on an augmenting path
 - Disappears from the residual network
 - Reappears on the residual network: (v,u) has to be on an augmenting path
 - We can show that in-between these events the distance from s to u increased by at least 2.
 - This can happen at most V/ 2 times
- We have proven that the running time of Edmonds-Karp is O(VE²).

Example of Edmonds-Karp

Run the Edmonds-Karp algorithm on the following graph:

Linear programming and flow

- Many problems can be formulated as linear programs
 - Shortest path
 - Maximum flow
 - Other variants of it: e.g. minimum-cost-flow problem

maximize
$$\sum_{v \in V} f_{sv} - \sum_{v \in V} f_{vs}$$
 subject to
$$f_{uv} \leq c(u,v) \quad \text{for each } u,v \in V$$

$$\sum_{v \in V} f_{vu} = \sum_{v \in V} f_{uv} \quad \text{for each } u \in V - \{s,t\}$$

$$t_{uv} \geq 0 \quad \text{for each } u,v \in V$$

- Remember duality?
 - Here, informally: Minimize the sum of capacities on a cut, subject to it being a cut. ~= max-flow min-cut theorem!

Multiple sources or sinks

- What if we have more sources or sinks?
 - Augment the graph to make it with one source and one sink!

Application of max-flow

- Maximum bipartite matching problem
 - Matching in a graph is a subset M of edges such that each vertex has at most one edge of M incident on it. It puts vertices in pairs.
 - We look for *maximum* matching in a *bipartite* graph, where $V = L \cup R$, L and R are disjoint and all edges go between L and R
 - Dating agency example:
 - L women, R men.
 - An edge between vertices: they have a chance to be "compatible" (can be matched)
 - Do as many matches between "compatible" persons as possible

Maximum bipartite matching

 How can we reformulate this problem to become a max-flow problem?

 What is the running time of the algorithm if we use the Ford-Fulkerson method?