

# Tarea 6

22 de noviembre de 2023

 $2^{0}$  semestre 2023 - Profesores G. Diéguez - S. Bugedo - N. Alvarado - B. Barías

## Requisitos

- La tarea es individual. Los casos de copia serán sancionados con la reprobación del curso con nota 1,1.
- Entrega: Hasta las 23:59:59 del 29 de noviembre a través del buzón habilitado en el sitio del curso (Canvas).
  - Esta tarea debe ser hecha completamente en L<sup>A</sup>T<sub>E</sub>X. Tareas hechas a mano o en otro procesador de texto **no serán corregidas**.
  - Debe usar el template LATEX publicado en la página del curso.
  - Cada solución de cada problema debe comenzar en una nueva hoja. *Hint:* Utilice \newpage
  - Los archivos que debe entregar son el archivo PDF correspondiente a su solución con nombre numalumno.pdf, junto con un zip con nombre numalumno.zip, conteniendo el archivo numalumno.tex que compila su tarea. Si su código hace referencia a otros archivos, debe incluirlos también.
- El no cumplimiento de alguna de las reglas se penalizará con un descuento de 0.5 en la nota final (acumulables).
- No se aceptarán tareas atrasadas.
- Si tiene alguna duda, el foro de Canvas es el lugar oficial para realizarla.

### **Problemas**

#### Problema 1

- a) Sea G = (V, E) un grafo tal que |V| = |E|. Demuestre que si ningún vértice de G tiene grado 0 o 1, entonces todos los vértices de G tienen grado 2.
- b) Sea  $n \ge 1$ . Un n-cubo es un grafo  $G_n = (V_n, E_n)$  donde:
  - $V_n = \{0, 1\}^n$ ; vale decir, cada vértice es una n-tupla de 0s y 1s. Note que cada n-tupla posible es un vértice de  $G_n$ .
  - Dos vértices son adyacentes si difieren en exactamente una coordenada.

Demuestre que  $G_n$  es Euleriano si y solo si n es par.

#### Problema 2

Sean  $a, b \in \mathbb{Z}$  y  $m \in \mathbb{N} \setminus \{0\}$ .

a) Sea  $k \in \mathbb{Z} \setminus \{0\}$  y d = MCD(k, m). Demuestre que si  $ka \equiv kb \pmod{m}$ , entonces

$$a \equiv b \pmod{\frac{m}{d}}$$

b) Sea d = MCD(a, m). Demuestre que la congruencia lineal

$$ax \equiv b \pmod{m}$$

tiene solución si y solo si  $d \mid b$ .