MATH 4281 Risk Theory-Ruin and Credibility

Start of Module 3: Credibility Theory

March 16th, 2021

Introduction

2 Crash Course on Bayesian Estimation

Introduction

Recall from the first lecture

Q1: What do you do when L is equal to a sum of smaller RVs?

⇒ Module 1: Aggregate Loss Models

Q2: How do you introduce time to this model?

⇒ Module 2: Ruin Theory

Q3: How do I estimate the parameters of the model for L...if I don't have a nice heterogeneous sample?

⇒ Module 3: Credibility

Simple/Classical Example: Auto Insurance

Say I am insuring auto losses. I want the net premium for an individual policy but...

- Lots of ways to segment drivers e.g. age, location, car make/model, education, climate etc...
- Every relevant subdivision creates smaller and smaller sub-samples.
- Very quickly I can start to run into a lack of data on each sub-sample. Not advisable to estimate using simple mean of sub-sample.
- How can I incorporate data from the total sample of all drivers?

Credibility Theory

- Need to set a premium for different groups of insurance contracts when:
 - there are reasons to believe that groups have different risks (heterogeneous), but there is only limited experience (data) for each group of contracts,
 - ② But there is quite a lot of experience when combined with other contracts which are more or less related.
- Claim amounts X_{jt} are known for group (or individual) j = 1, 2, ..., J and time periods t = 1, 2, ..., T.
- How to find the optimal estimators of claims for the group for next period.

Two extreme approaches

Premium for group j can be based on two extreme positions:

- ① Use overall mean \overline{X} of the data [makes sense only if the portfolio is *homogeneous*].
- ② Use the average \overline{X}_j in group j [makes sense only if the group is sufficiently large and arguably different from other groups].

Can we combine these in some way?

Reconciling these approaches

 Around 1900, American actuaries got the idea to use a weighted average of these extremes as a compromise:

Credibility Premium
$$= z_j \overline{X}_j + (1 - z_j) \overline{X}$$
,

where z_j is called the <u>credibility factor</u> representing the weight attached to individual data.

- The credibility weight will be a value between 0 and 1, with it being close to 1 if:
 - group j is large enough; and/or
 - claims for the group are very predictable; and/or
 - the variability between the groups is very large.

The problem

Assume:

- every risk j in the collective is characterized by its individual risk profile $\theta_j \in \Theta$ that does not change over time and that we can't observe.
- Θ may be either qualitative (e.g. good/bad) or quantitative (e.g. average number of accidents per year).
- we have T observations X_{j1}, \ldots, X_{jT}

We want to estimate

$$\mu(\theta_i) = E[X_{i,T+1}|\theta_i]$$

but θ_i is unknown to the insurer...

Two random variables

- It is obvious that the losses $X_{j1}, X_{j2}, ...$ are random and depend on θ_j .
- Given θ_j , the losses X_{j1}, X_{j2}, \ldots are independent.
- Since the risk profile can't be observed, we will also model it as random¹.
- Thus $\mu(\theta)$ becomes a random variable we will use Bayesian techniques to estimate.

¹Another interpretation of probability i.e. a measure of belief or certainty

Crash Course on Bayesian Estimation

First we define some notation

- The prior distribution is denoted by a CDF $\Pi(\theta)$ and pdf $\pi(\theta)$.
- The likelihood function has CDF $F(x|\theta)$ and pdf $f(x|\theta)$.
- The probability of the data has CDF F(x) and pdf f(x).
- The posterior distribution has CDF $\Pi(\theta|x)$ and pdf $\pi(\theta|x)$.
- And they are all related through Bayes' Theorem:

$$\pi(\theta|x) = \frac{f(x \mid \theta)\pi(\theta)}{f(x)}$$

$$= \frac{f(x \mid \theta)\pi(\theta)}{\int_{\phi} f(x \mid \phi) d\phi}$$

$$= \frac{f(x \mid \theta)\pi(\theta)}{\int_{\phi} f(x \mid \phi)\pi(\phi) d\phi}$$

Estimation

Let θ be a variable we want to estimate

- we don't know the value of θ
- it is drawn out of a population distributed like $\Pi(\theta)$

We want to create an estimator $\hat{\delta}$ of θ .

- What criteria should it respect?
- For example: unbiased
- and..?

The concept of loss function

Estimation error:

- when we estimate something, we (almost surely) make an error
- of course, we want to minimize that error
- are there errors we dislike more than others?
- (for example it might be better to overestimate a loss than underestimate it)
- \Rightarrow The loss function $L(\theta, \hat{\delta})$

Loss functions

The loss function $L(\theta, \hat{\delta})$:

- is a function of θ and $\hat{\delta}$
- reflects the weight we want to give to estimation errors
- is the function we want to minimize
- minimization (of its expectation) yields the associated estimator

The absolute error (or deviation) loss function

The function:

$$L(\theta, \hat{\theta}) = |\theta - \hat{\delta}| \tag{1}$$

The idea:

- the importance of the error is proportional to the distance between θ and $\hat{\delta}$
- positive errors and negative errors have the same weight (symmetrical)

The quadratic (MSE) loss function

The function:

$$L(\theta, \hat{\theta}) = (\theta - \hat{\delta})^2 \tag{2}$$

The idea:

- ullet the farther $\hat{\delta}$ is from heta, the (exponentially) worse it is
- positive errors and negative errors of identical magnitude have the same weight (symmetrical)

Almost constant loss functions

The function:

$$L(\theta, \hat{\theta}) = \begin{cases} c & \hat{\delta} \neq \theta \\ 0 & \hat{\delta} = \theta \end{cases}$$
 (3)

The idea:

- the result of the estimation is binary: right or wrong
- if it is wrong, the cost is c

When c = 1, the above loss function is also called an **all-or-nothing** loss function.

Other loss functions

- any loss function could be used
- the only restriction is the creativity of the user
- (of course, some restrictions just make sense such as $L(\theta, \hat{\delta})$ positive for all θ)

For example,

$$L(\theta, \hat{\delta}) = \begin{cases} \alpha(\hat{\delta} - \theta) & \hat{\delta} > \theta \\ \beta(\theta - \hat{\delta}) & \hat{\delta} < \theta \end{cases} \tag{4}$$

- the cost is α times the error if θ is overestimated and β times the error if θ is underestimated
- \bullet this is a generalization of the absolute error loss function, which is the case $\alpha=\beta=1$

The Risk Function

• $L(\theta, \hat{\delta}(\mathbf{x}))$, the loss function, if θ is the "true" parameter and $\hat{\delta}(\mathbf{x})$ is the value taken by the estimator if \mathbf{X} is observed

• The risk function of the estimator \hat{g}

$$R_{\hat{\delta}}(\theta) := E_{\mathbf{X}|\theta}[L(\theta, \hat{\delta}(\mathbf{X}))] = \int_{\mathbb{R}^n} L(\theta, \hat{\delta}(\mathbf{x})) \, dF_{X|\theta}(\mathbf{x}|\theta) \quad (5)$$

Frequentist Risk function

- In the case of frequentist inference we use the empirical distribution for our likelihood.
- In the case of the MSE we have:

Bayes Risk

However in the Bayesian case we augment our risk function with our prior:

$$R(\hat{\delta}) = \int_{\Theta} R_{\hat{\delta}}(\theta) \, d\Pi(\theta) = \int_{\Theta} E_{X|\theta}[L(\theta, \hat{\delta})] \, d\Pi(\theta)$$

$$= \int_{\Theta} \int_{\mathbb{R}^n} L(\theta, \hat{\delta}(\mathbf{x})) \, dF(\mathbf{x}|\theta) \, d\Pi(\theta)$$

$$= \int_{\mathbb{R}^n} \left[\int_{\Theta} L(\theta, \hat{\delta}(\mathbf{x})) \, d\Pi(\theta|\mathbf{x}) \right] \, dF(\mathbf{x}). \tag{6}$$

Where in the last step we apply Bayes theorem to obtain the quantity in brackets.

Bayes estimator

The Bayes estimator is defined such that Bayes risk $R(\hat{\delta})$ is minimal:

$$\widetilde{\delta} : \widehat{\delta} \mid R(\widehat{\delta}) \text{ is minimal}$$
 (7)

From (6) it follows that given $\mathbf{X} = \mathbf{x}$, $g(\mathbf{x})$ takes the value which minimizes the error

$$\int_{\Theta} L(\theta, \hat{\delta}(\mathbf{x})) d\Pi(\theta|\mathbf{x}).$$

In other words.

- ullet $\widetilde{\delta(\mathbf{x})}$ is the estimator which minimizes Bayes risk
- $\delta(\mathbf{x})$ is the estimator which minimizes the expected loss with respect to the posterior distribution of θ
- $\delta(\mathbf{x})$ is "the best" estimator with respect to the loss function

Example 1 The Bayes estimator under the quadratic loss is the mean of the posterior distribution, i.e.

$$\widetilde{\delta(\mathbf{x})} = \int \theta d\Pi(\theta|x) = E[\theta|x]$$

Example 2 The Bayes estimator under the absolute error loss is

the median of the posterior distribution, i.e.

$$\widetilde{\delta(\mathbf{x})} = \theta \mid \Pi(\theta|x) = 0.5$$

Example 3 The Bayes estimator under the all-or-nothing loss is the mode of the posterior distribution, i.e.

$$\widetilde{\delta(\mathbf{x})} = \theta \mid \Pi(\theta|x)$$
 is maximal

Exercise

Prove example 1. In other words, show that the Bayes estimator under the quadratic loss is the mean of the posterior distribution.

Bayes estimate for the mean

Assume that:

- $\theta \sim \mathcal{N}(\mu, \tau)$
- $x|\theta \sim \mathcal{N}(\theta, \sigma)$
- What is the Bayes estimate for the mean given some sample of x_i for i = 1...n?