# Санкт-Петербургский политехнический университет Петра Великого Институт прикладной математики и механики Кафедра «Прикладная математика»

Отчёт по лабораторной работе №2 по дисциплине «Интервальный анализ»

Выполнил студент: Величко Арсений Юрьевич

Проверил: к.ф.-м.н., доцент Баженов Александр Николаевич

# Содержание

| 1 | Постановка задачи |          |                           |  |
|---|-------------------|----------|---------------------------|--|
|   | 1.1               | Линей    | іный случай               |  |
|   | 1.2               |          | нейный случай             |  |
| 2 | Teo               | рия      |                           |  |
|   | 2.1               | Внеш     | нее множество решений     |  |
|   | 2.2               | Метод    | ц Кравчика                |  |
| 3 | Pea               | ализация |                           |  |
| 4 | Результаты        |          |                           |  |
|   | 4.1               | Линей    | йный случай               |  |
|   |                   | 4.1.1    | Спектральный радиус       |  |
|   |                   | 4.1.2    |                           |  |
|   |                   | 4.1.3    | Внешнее множество решений |  |
|   |                   | 4.1.4    | Результаты работы метода  |  |
|   | 4.2               | Нелин    | ейный случай              |  |
|   |                   | 4.2.1    | Спектральный радиус       |  |
|   |                   | 4.2.2    | Начальное приближение     |  |
|   |                   | 4.2.3    | Результаты работы метода  |  |

## 1 Постановка задачи

#### 1.1 Линейный случай

Оценить методом Кравчика внешнее множество решений следующей ИСЛАУ

$$\begin{cases} 3x_1 + 2x_2 = [30, 31] \\ x_1 - [0.8, 1]x_2 = 0 \end{cases}$$

Также необходимо:

- определить спектральный радиус матрицы
- провести оценку начального бруса решения

Провести вычисления и привести иллюстрации:

- положения брусов при итерациях
- рабочих брусов
- расстояния от центров брусов при итерациях до конечной точки алгоритма

#### 1.2 Нелинейный случай

Оценить методом Кравчика внешнее множество решений следующей ИСЛАУ

$$\begin{cases} 3x_1 + 2x_2 = [30, 31] \\ \frac{x_1}{x_2} = [0.8, 1] \end{cases}$$

Провести вычисления и привести иллюстрации:

- положения брусов при итерациях
- графики радиусов рабочих брусов
- расстояния от центров брусов при итерациях до конечной точки алгоритма

Сравнить результаты с линейным случаем.

# 2 Теория

## 2.1 Внешнее множество решений

Внешним множеством решений называется объединенное множество решений, образованное решениями всех точечных систем F(a,x)=b

$$\Xi_{\text{uni}}(\mathbf{F}, \mathbf{a}, \mathbf{b}) = \{ x \in \mathbb{R}^n \mid (\exists a \in \mathbf{a})(\exists b \in \mathbf{b})(F(a, x) = b) \}$$
 (1)

#### 2.2 Метод Кравчика

Метод Кравчика предназначен для уточнения двухсторонних границ решений систем уравнений, в общем случае нелинейных, заданных на некотором брусе  $\mathbf{X} \subset \mathbb{IR}$ , вида

$$F(x) = 0$$
, где  $F(x) = \{F_1(x), ..., F_n(x)\}^T$ ,  $x = (x_1, ...x_n)$  (2)

Также данный метод может быть использован для того, чтобы понять, что решений нет.

Отображение  $\mathcal{K}: \mathbb{ID} \times \mathbb{R} \to \mathbb{IR}^n$ , задаваемое выражением

$$\mathcal{K}(\mathbf{X}, \overline{x}) := \overline{x} - \Lambda * F(\overline{x}) - (I - \Lambda * \mathbf{L} * (\mathbf{X} - \overline{x})) \tag{3}$$

называеся оператором Кравчика на ID относительно точки  $\overline{x}$ .

Итерационная схема данного метода выглядит следующим образом

$$\mathbf{X}^{k+1} \leftarrow \mathbf{X}^k \cap \mathcal{K}(\mathbf{X}^k, \overline{x}^k), \quad k = 0, 1, 2..., \ x^k \in \mathbf{X}^k$$
 (4)

Сходимость данного метода гарантирована при выполнении условия

$$\rho(I - \Lambda * \mathbf{L}) < 1 - \text{спектральный радиус меньше единицы}$$
(5)

Частным случаем данного метода является линейный метод Кравчика, итерационная схема которого выглядит следующим образом:

$$\mathbf{x}^{k+1} = (\Lambda * \mathbf{b} + (I - \Lambda * \mathbf{A}) * \mathbf{x}^k) \cap \mathbf{x}^k$$
 (6)

 ${\bf A}$  в данном случае является интервальной матрицей коэффициентов соответсвующей ИСЛАУ, а  ${\bf b}$  - вектором свободных членов.

В случае линейности системы и выполнения условия  $\eta = ||I - \Lambda * \mathbf{A}||_{\infty} \le 1$  в качестве начального приближения можно взять брус

$$\mathbf{x}^0 = ([-\theta, \theta], ..., [-\theta, \theta])^T, \quad \text{где } \theta = \frac{||\Lambda \mathbf{b}||_{\infty}}{1 - \eta}$$
 (7)

# 3 Реализация

Лабораторная работа выполнена при помощи пакета Matlab с использованием библиотек IntLab и IntLinInc2D.

Ссылка на репозиторий с исходный кодом:

https://github.com/ArsenyVelichko/IntervalAnalysis

# 4 Результаты

### 4.1 Линейный случай

В качестве матрицы предобуславливания, как это принято, возьмём  $\Lambda = (\text{mid}(\mathbf{A}))^{-1}$ .

#### 4.1.1 Спектральный радиус

Проверим условие сходимости метода

$$|I - \Lambda * A| \approx \begin{pmatrix} 0 & 0.0426 \\ 0 & 0.0638 \end{pmatrix} \tag{8}$$

$$\rho(|I - \Lambda * A|) \approx 0.0638\tag{9}$$

#### 4.1.2 Начальное приближение

Так как условие  $\eta = ||I - \Lambda * \mathbf{A}||_{\infty} = 0.0638 \le 1$  выполняется, мы можем явно вычислить начальное приближение.

$$\theta = \frac{||\Lambda \mathbf{b}||_{\infty}}{1 - \eta} = 7.0455 \Rightarrow \mathbf{x}^0 = ([3.5227, 10.5682], [3.5227, 10.5682])^T$$
 (10)

#### 4.1.3 Внешнее множество решений



Рис. 1: Внешнее множество решений (1)

# 4.1.4 Результаты работы метода



Рис. 2: Положения брусов в линейном методе Кравчика



Рис. 3: Радиусы брусов в линейном методе Кравчика



Рис. 4: Расстояние до конечного положения в линейном методе Кравчика

#### 4.2 Нелинейный случай

Положим интервальную матрицу Липшица  ${\bf L}$  равной якобиану на каждой итерации метода:  ${\bf L} = {\bf J}({\bf X}).$ 

В качестве  $\overline{x}^k \in \mathbf{X}^k$  будем использовать  $\operatorname{mid}(\mathbf{X}^k)$ .

В тоже время определим матрицу предобуславливания как

$$\Lambda(\mathbf{X}^k) = (J(\overline{x}^k))^{-1} \tag{11}$$

#### 4.2.1 Спектральный радиус

Проверим условие сходимости метода

$$|I - \Lambda * J| \approx \begin{pmatrix} 0.0800 & 0.2720 \\ 0.1200 & 0.4080 \end{pmatrix}$$
 (12)

$$\rho(|I - \Lambda * A|) \approx 0.4880 \tag{13}$$

#### 4.2.2 Начальное приближение

В качестве начального приближения возьмём

$$\mathbf{x}^0 = ([5, 8], [5, 8])^T \tag{14}$$

## 4.2.3 Результаты работы метода



Рис. 5: Положения брусов в нелинейном методе Кравчика



Рис. 6: Радиусы брусов в нелинейном методе Кравчика



Рис. 7: Расстояние до конечного положения брусов в нелинейном методе Кравчика

# 5 Обсуждение

- 1. Метод Кравчика для линейной ИСЛАУ показал крайне быструю сходимость. Для достижения конечной точки ему потребовалось всего 2 итерации. Однако при этом достаточно точно достигается лишь верхняя часть интервальной оболочки  $\Xi_{\rm uni}$ .
- 2. В случае нелинейной интерпретации метод Крачика демонстрирует куда более интересные рузельтаты. Достижение конечной точки занимает порядка 15 итераций. Уточнее ведётся по всем граням одновременно. Финальный брус же отличается от интервальной оболочки  $\Xi_{\rm uni}$  приблизительно на 0.07 по каждой из граней.
- 3. Сравнивая две интерпретации между собой можно сказать, что общая точность, с которой они приблизили  $\Xi_{\rm uni}$  оказалась примерно одинаковой. При этом в достоинства линейного случая можно записать то, что точность достижения одной из граней была достаточна велика, а также что сложность самого метода и поиска начального приближения меньше, чем в нелинейном случае.