

Ensayo de un compresor recíproco

ASIGNATURA: ICM557

PROFESOR: CRISTÓBAL GALLEGUILLOS

ALUMNO: OSCAR RAMÍREZ

13/11/2020

Contenido

Objetivos	3
Fórmulas	3
Tabla de valores medidos	4
Valores calculados	4
Esquema compresor	5
Gráfico caudal vs presión de descarga	6
Preguntas	7
Índice de Tablas	
Tabla 1	
Tabla 2	4
Índice de Gráficos	
Gráfico 1	6
Índice Ilustraciones	
Ilustración 1	5

Objetivos

- a) Analizar el comportamiento del compresor de tornillo como máquina de una instalación industrial.
- b) Determinar la capacidad a distintas presiones

Fórmulas

Capacidad:

$$V = 8.62 * \alpha * S * Ta \sqrt{\frac{H}{T * Pa}}$$

Donde:

V Capacidad, caudal de aire libre [m³/h]

lpha = 0.600 Coeficiente de caudal del diafragma

S Sección del orificio del diafragma en [cm³], el diámetro del orificio

es de 22 [mm]

Ta Temperatura absoluta de aspiración del compresor [K]

T Temperatura absoluta del estanque de baja presión [K]

Δh presión en el manómetro diferencial [cm_{agua}]

Pa presión barométrica [cm_{agua}]

Tabla de valores medidos

	COMPRESOR DE TORNILLO									
P.Des	Des Veloc. Temp Hi	Hum. Amb.	Temp	Punto	Temp.	Pres.	Corriente	Caudal	Pres.	
r.Des	V CIOC.	Amb Hull.	Hulli, Allib.	Desc.	Rocío	EBP	EBP	Contente	Caudai	Atm
p_d	n	t _{amb}	H_{amb}	$t_{ m desc}$	PRP	$t_{\rm EBP}$	Δh	I	Q	P _{atm}
[bar]	[rpm]	[°C]	%	[°C]	[°C]	[℃]	[mm _{ca}]	[A]	[%]	[mm _{H-g}]
5,5	4315	18	59,4	73	4	20	476	17	98	759,5
6	4350	19	58,9	73	4	20	484	16	100	759,5
7	4350	18	58,6	75	4	21	464	17	100	759,5
8	4176	18	58,9	76	4	21,5	406	17	100	759,5
9	3984	19	58,9	77	4	21	348	17	100	759,5

Tabla 1

Valores calculados

p Desc	Caudal	Velocidad	
pd	Q	n	
[bar]	[m3/h] (Normalizado)	%	[rpm]
5,39215686	63,2327394	98	4315
5,88235294	63,3334501	100	4350
6,8627451	61,9552122	100	4350
7,84313725	60,26899872	100	4176
8,82352941	58,53701037	100	3984

Tabla 2

Esquema compresor

Ilustración 1

Gráfico caudal vs presión de descarga

Gráfico 1

Preguntas

Compare los valores obtenidos con los que señala el fabricante.

Rango de caudales, para distintas presiones de trabajo ofrecidas en catalogo del fabricante

bar	m³/h
5.5	18.4-73.8
7.5	26.2-73.1
10	23.7-61.2
13	21.2-48.6

Los valores obtenidos coinciden con los valores del catálogo del fabricante

¿Los valores están en el rango que le corresponde?

Sí, al observar las tablas de valores obtenidos y del fabricante se concluye que, los valores del caudal están dentro de los rangos especificados por fabricante.

¿Qué comentario surge de lo anterior?

El compresor esta trabajando dentro del rango especificado y al estar los valores de caudal cercano al limite superior, se puede inferir que el compresor está en óptimas condiciones.

PRP

¿Qué significa el punto de rocío?

Es la temperatura a la que se inicia la condensación si el aire se enfría a presión constante.

En palabras simples es el momento que se comienza a condensar el vapor de agua en el aire al llegar a cierta temperatura según las condiciones ambientes.