A single qubit

Ryuhei Mori

Tokyo Institute of Technology

A single bit

Let
$$u := \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
.

- Set of states = $\{\omega \in \mathbb{R}^2 \mid \omega \in C_{\geq 0}, \langle u, \omega \rangle = 1\}.$
- Set of binary measurements = $\{e \in \mathbb{R}^2 \mid e \in C_{>0}, u e \in C_{>0}\}.$

A single qubit

Let
$$u:=egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}$$
 and $\langle e,\omega \rangle:=\mathsf{Tr}(e\omega).$

- Set of states = $\{\omega \in V \mid \omega \in C_{\succ 0}, \langle u, \omega \rangle = 1\}.$
- Set of binary measurements = $\{e \in V \mid e \in C_{\succ 0}, u e \in C_{\succ 0}\}.$

A single qubit

A qubit can be represented by

$$\rho = \frac{1}{2} (I + r_X X + r_Y Y + r_Z Z)$$

for
$$[r_X \ r_Y \ r_Z] \in \mathbb{R}^3$$
 satisfying $r_X^2 + r_Y^2 + r_Z^2 \le 1$.

• A qubit can be represented by a point $[r_X \ r_Y \ r_Z]$ in a three-dimensional sphere of radius 1.

The Bloch sphere

Complex space and Hermitian operator

- X: A finite-dimensional inner product space on C.
- $\mathcal{L}(\mathcal{X})$: A set of linear operators on \mathcal{X} .

For $A \in \mathcal{L}(\mathcal{X})$, an adjoint map A^{\dagger} of A is a unique operator satisfying

$$\langle v, Aw \rangle = \langle A^{\dagger}v, w \rangle$$

for any $v, w \in \mathcal{X}$. $H \in \mathcal{L}(\mathcal{X})$ is Hermitian if and only if $H^{\dagger} = H$.

• $\mathcal{H}(\mathcal{X})$: A set of Hermitian operators on \mathcal{X} .

 $\mathcal{L}(\mathcal{X})$ and $\mathcal{H}(\mathcal{X})$ are often regarded as inner product space on \mathbb{C} and \mathbb{R} , respectively for the Hilbert–Schmidt inner product $\langle A,B\rangle=\mathrm{Tr}(A^{\dagger}B)$.

Spectral decomposition theorem

Definition (Normal operator)

 $A \in \mathcal{L}(\mathcal{X})$ is said to be normal if $AA^{\dagger} = A^{\dagger}A$.

Hermitian matrix $(H^{\dagger} = H)$ and unitary matrix $(UU^{\dagger} = I)$ are normal.

Theorem (Spectral decomposition theorem)

 $A \in \mathcal{L}(\mathbb{C}^n)$ is normal if and only if there exist orthonormal basis $\{|\psi_j\rangle\}$ of \mathbb{C}^n and complex numbers $\{\lambda_j\}$ such that

$$A = \sum_{j} \lambda_{j} |\psi_{j}\rangle \langle \psi_{j}|.$$

Pauli matrices

$$Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix} - \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \end{bmatrix}$$

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 1 \\ -1 \end{bmatrix} \begin{bmatrix} 1 & -1 \end{bmatrix}$$

$$Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 \\ i \end{bmatrix} \begin{bmatrix} 1 & -i \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 1 \\ -i \end{bmatrix} \begin{bmatrix} 1 & i \end{bmatrix}$$

Braket notation

$$\begin{split} |0\rangle &:= \begin{bmatrix} 1 \\ 0 \end{bmatrix}, & |1\rangle := \begin{bmatrix} 0 \\ 1 \end{bmatrix} \\ |+\rangle &:= \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}, & |-\rangle &:= \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix} \\ &= \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle), & = \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) \\ |\psi\rangle &= \alpha |0\rangle + \beta |1\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \end{split}$$

for
$$|\alpha|^2 + |\beta|^2 = 1$$
.

$$\langle \psi | = |\psi \rangle^{\dagger} = \alpha^* \langle 0 | + \beta^* \langle 1 | = \begin{bmatrix} \alpha^* & \beta^* \end{bmatrix}$$

Pauli matrices in braket notation

$$Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \ket{0} \bra{0} - \ket{1} \bra{1}$$

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \ket{+} \bra{+} - \ket{-} \bra{-}$$

$$Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 \\ i \end{bmatrix} \begin{bmatrix} 1 & -i \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 1 \\ -i \end{bmatrix} \begin{bmatrix} 1 & i \end{bmatrix}$$

Special states

$$\rho = \frac{1}{2} (I + r_X X + r_Y Y + r_Z Z)$$
$$r_X^2 + r_Y^2 + r_Z^2 \le 1.$$

Coordinate	State
[0 0 0]	$\frac{1}{2}I$
[1 0 0]	$\frac{1}{2}(I+X)=\ket{+}\bra{+}$
[-1 0 0]	$\frac{1}{2}(I-X)=\ket{-}\bra{-}$
[0 0 1]	$\frac{1}{2}(I+Z)=\ket{0}\bra{0}$
[0 0 -1]	$rac{1}{2}(I-Z)=\ket{1}ra{1}$

Special states in the Bloch sphere

Pure states are rank-1 density operators

 ρ is a pure state

$$\overset{\mathsf{def}}{\Longleftrightarrow} \ \rho \neq p \rho_1 + (1-p) \rho_2 \quad \forall p \in (0,1) \ \mathsf{and} \ \mathsf{states} \ \rho_1 \neq \rho_2.$$

Lemma

A quantum state ρ is a pure state if and only if ρ is rank-1.

Proof.

Let the spectral decomposition of ρ be

$$\rho = \sum_{j} \lambda_{j} |\psi_{j}\rangle \langle \psi_{j}|$$

where $\lambda_j \geq 0$ and $\sum_j \lambda_j = 1$. If ρ is not rank-1, ρ is a convex combination of quantum states $(|\psi_j\rangle \langle \psi_j|)_j$.

Assume $\rho = |\varphi\rangle \langle \varphi|$ and $\rho = p_1\rho_1 + p_2\rho_2$. $\text{Tr}(\sigma |\varphi\rangle \langle \varphi|) = 1$ if and only if $\sigma = |\varphi\rangle \langle \varphi|$ since $\text{Tr}(\sigma |\varphi\rangle \langle \varphi|) = \langle \varphi| \sigma |\varphi\rangle = \sum_j \lambda_j |\langle \psi_j|\varphi\rangle|^2$. Then, $\text{Tr}((p_1\rho_1 + p_2\rho_2) |\varphi\rangle \langle \varphi|) = 1$ implies that

$$\mathsf{Tr}(\rho_1 | \varphi \rangle \langle \varphi |) = \mathsf{Tr}(\rho_2 | \varphi \rangle \langle \varphi |) = 1$$
, and hence $\rho_1 = \rho_2 = \rho$.

Pure states and state vector

Pure state $|\psi\rangle \langle \psi|$ can be represented by a state vector $|\psi\rangle \in \mathbb{C}^2$ with $\langle \psi|\psi\rangle = 1$.

$$|\psi\rangle$$
 and $|\varphi\rangle:=\mathrm{e}^{i\theta}\,|\psi\rangle$ represent the same state since $|\psi\rangle\,\langle\psi|=|\varphi\rangle\,\langle\varphi|.$

Inner product of pure states

- ρ is a qubit pure state with a coordinate $[r_X \ r_Y \ r_Z]$.
- σ is a qubit pure state with a coordinate $[-r_X r_Y r_Z]$.

$$\operatorname{Tr}(\rho\sigma) = \operatorname{Tr}(\rho(I-\rho)) = \operatorname{Tr}(\rho) - \operatorname{Tr}(\rho^2) = 1 - 1 = 0$$

- $\rho = |\psi\rangle\langle\psi|$.
- $\sigma = |\varphi\rangle\langle\varphi|$.

$$\operatorname{Tr}(\rho\sigma) = \operatorname{Tr}(|\psi\rangle \langle \psi| |\varphi\rangle \langle \varphi|) = \langle \psi|\varphi\rangle \operatorname{Tr}(|\psi\rangle \langle \varphi|)$$
$$= \langle \psi|\varphi\rangle \langle \varphi|\psi\rangle = |\langle \psi|\varphi\rangle|^{2}$$

Single qubit measurement

Set of measurements
$$=\{(e_1,\ldots,e_k)\mid e_1+\cdots+e_k=I,e_j\in\mathcal{C}_{\succeq 0}\ i=1,2,\ldots,k,\ k=1,2,\ldots\}$$

If $e_i e_j = \delta_{i,j} e_i$, the measurement is called an orthogonal measurement.

If $|0\rangle\langle 0|$ is measured by $(|0\rangle\langle 0|, |1\rangle\langle 1|)$, the output is 0 with probability $\text{Tr}(|0\rangle\langle 0||0\rangle\langle 0|) = |\langle 0|0\rangle|^2 = 1$.

If $|+\rangle \langle +|$ is measured by ($|0\rangle \langle 0|, |1\rangle \langle 1|$), the output is 0 with probability $\text{Tr}(|0\rangle \langle 0| |+\rangle \langle +|) = |\langle 0|+\rangle|^2 = 1/2$.

If $|\psi\rangle\langle\psi|$ is measured by $(|\varphi_0\rangle\langle\varphi_0|, |\varphi_1\rangle\langle\varphi_1|)$, the output is 0 with probability $\text{Tr}(|\varphi_0\rangle\langle\varphi_0||\psi\rangle\langle\psi|) = |\langle\varphi_0|\psi\rangle|^2$.

Quantum channel

Single qubit quantum channel

Since real vector space spanned by 2x2 Hermitian matrices is 4-dimensional, any linear map Φ on the linear space is represented by 4x4 real matrix.

$$\Phi\left(\mathbf{a}\cdot\boldsymbol{\sigma}\right)=\left(T\mathbf{a}\right)\cdot\boldsymbol{\sigma}$$

Here,

$$T_{i,j} = \frac{1}{2} \mathsf{Tr}(\sigma_i \Phi(\sigma_j)).$$

From the trace-preserving property

$$T_{0,0} = \frac{1}{2} \mathrm{Tr}(\Phi(I)) = \frac{1}{2} \mathrm{Tr}(I) = 1, \quad T_{0,1} = \frac{1}{2} \mathrm{Tr}(\Phi(X)) = \frac{1}{2} \mathrm{Tr}(X) = 0.$$

$$T = egin{bmatrix} 1 & 0 & 0 & 0 \ t_1 & & & \ t_2 & & & \ t_3 & & & \end{bmatrix}$$

Unitary operation

For unitary operation U, let us consider

$$\rho \mapsto U \rho U^{\dagger}$$
.

It is easy to see that

- Tr $(U\rho U^{\dagger})=1$
- $U\rho U^{\dagger} \succeq 0$

A pure state $|\psi\rangle$ is mapped to a pure state $U|\psi\rangle$.

U and $e^{i\theta}U$ are physically equivalent.

Matrix representation of unitary channel

Unitary channel is unital, i.e., $\Phi(I) = I$.

$$T_{1,0} = \frac{1}{2}\mathsf{Tr}(X\Phi(I)) = \frac{1}{2}\mathsf{Tr}(X) = 0$$

$$T = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & & & \ 0 & & & \ 0 & & & \end{bmatrix}$$

Unitary channel is represented by the 3x3 real matrix M.

Examples of unitary operations

- The identity matrix 1.
- Pauli matrices X, Y and Z.
- Hadamard matrix $H:=rac{1}{\sqrt{2}}egin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$
- Product UV of unitary operators U and V.

Multiplications of Pauli matrices

For any unitary matrices U and V, UV is also unitary matrix.

- XY = iZ
- YZ = iX
- ZX = iY

Pauli matrices X on the Bloch sphere

$$\rho = \frac{1}{2} \left(I + r_X X + r_Y Y + r_Z Z \right)$$

$$X\rho X^{\dagger} = X\rho X = \frac{1}{2} \left(X^2 + r_X X^3 + r_Y XYX + r_Z XZX \right)$$
$$= \frac{1}{2} \left(I + r_X X - r_Y Y - r_Z Z \right)$$

$$[r_X \ r_Y \ r_Z] \stackrel{X}{\longmapsto} [r_X \ -r_Y \ -r_Z]$$

$$\pi$$
-rotation with respect to X axis. $M = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$.

Similarly, Y and Z corresponds to π -rotation with respect to Y and Z axes, respectively.

Hadamard matrix

Hadamard matrix H is unitary and Hermitian.

$$H := \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = |+\rangle \langle 0| + |-\rangle \langle 1|$$
$$= |0\rangle \langle +| + |1\rangle \langle -|$$

$$|0\rangle\,,\,|1\rangle\stackrel{H}{\longleftrightarrow}|+\rangle\,,\,|-\rangle$$

$$HXH = H(|+\rangle \langle +|-|-\rangle \langle -|)H$$
$$= |0\rangle \langle 0| - |1\rangle \langle 1| = Z$$

Similarly,
$$HZH = X$$
.
 $HYH = H(iXZ)H = iHXHHZH = iZX = -Y$

Hadamard matrix on the Bloch sphere

$$\rho = \frac{1}{2} (I + r_X X + r_Y Y + r_Z Z)$$

$$H\rho H^{\dagger} = H\rho H = \frac{1}{2} (H^2 + r_X HXH + r_Y HYH + r_Z HZH)$$

$$= \frac{1}{2} (I + r_X Z - r_Y Y + r_Z X)$$

$$[r_X r_Y r_Z] \stackrel{H}{\longmapsto} [r_Z - r_Y r_X]$$

$$M = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}.$$

Rotation matrices

$$R_{Z}(\theta) := \cos \frac{\theta}{2} I - i \sin \frac{\theta}{2} Z$$

$$R_{X}(\theta)^{\dagger} = R_{X}(-\theta)$$

$$R_{X}(\theta)R_{X}(\theta)^{\dagger} = (\cos \frac{\theta}{2} I - i \sin \frac{\theta}{2} X)(\cos \frac{\theta}{2} I + i \sin \frac{\theta}{2} X)$$

$$= \cos^{2} \frac{\theta}{2} I + \sin^{2} \frac{\theta}{2} X^{2} = I$$

$$R_{X}(\theta)X = XR_{X}(\theta), \quad R_{X}(\theta)Y = YR_{X}(-\theta), \quad R_{X}(\theta)Z = ZR_{X}(-\theta)$$

$$R_{X}(\theta)R_{X}(\tau) = R_{X}(\theta + \tau)$$

$$\begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \xrightarrow{R_{X}(\theta)} \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \xrightarrow{R_{X}(\theta)} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_{X}(\theta)} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

 θ -rotation with respect to X axis.

General unitary matrix

$$Tr(UAU^{\dagger}UBU^{\dagger}) = Tr(AB).$$
 M is orthogonal matrix.

Since for

$$U = \sum_{j} \lambda_{j} |\psi_{j}\rangle \langle \psi_{j}| = VR_{Z}(\theta)V^{\dagger}.$$

$$M = SRS^{-1}$$

$$det(M) = 1$$

Assignments

- 1 For $a, b, c, d \in \mathbb{R}$, show r_I , r_X , r_Y , $r_Z \in \mathbb{R}$ satisfying $\begin{bmatrix} a & b+ci \\ b-ci & d \end{bmatrix} = r_I I + r_X X + r_Y Y + r_Z Z.$
- **2** Express $\exp\left(-i\frac{\theta}{2}X\right)$ for $\theta \in \mathbb{R}$ as a complex linear combination of I, X, Y and Z. A summation with infinite number of terms is not allowed.
- **3** [Advanced] For a_I , a_X , a_Y , $a_Z \in \mathbb{R}$, represents

$$\exp\left(i(a_II+a_XX+a_YY+a_ZZ)\right)$$

by a linear combination of I, X, Y and Z. A summation with infinite number of terms is not allowed.