Universität des Saarlandes Fakultät für Mathematik und Informatik Fachrichtung Mathematik

Prof. Dr. Roland Speicher Dr. Tobias Mai

Übungen zur Vorlesung Höhere Mathematik für Ingenieure I Wintersemester 2020/21

Blatt 8

Lösungshinweise

Aufgabe 1 (4 × 2,5 Punkte): Untersuchen Sie die folgenden Reihen auf Konvergenz:

(a)
$$\sum_{n=1}^{\infty} \frac{1}{(n!)^2}$$

(c)
$$\sum_{n=1}^{\infty} 2^{-n^2}$$

(b)
$$\sum_{n=1}^{\infty} \frac{n}{2^{n(n+1)}}$$

(d)
$$\sum_{n=1}^{\infty} \frac{2^{-n}}{n(n+1)}$$

Lösung:

(a) Es bezeichne $(a_n)_{n\in\mathbb{N}}$ die Folge der Reihenglieder, d. h. $a_n := \frac{1}{(n!)^2}$ für alle $n \in \mathbb{N}$. Da alle Reihenglieder von Null verschieden sind, können wir das *Quotientenkriterium* anwenden. Indem wir (n+1)! = n! (n+1) ausnutzen, sehen wir, dass

$$\frac{a_{n+1}}{a_n} = \frac{(n!)^2}{((n+1)!)^2} = \frac{(n!)^2}{(n!)^2(n+1)^2} = \frac{1}{(n+1)^2} \xrightarrow{n \to \infty} 0 < 1.$$

Das Quotientenkriterium liefert damit die Konvergenz der Reihe $\sum_{n=1}^{\infty} \frac{1}{(n!)^2}$.

(b) Wir bezeichnen mit $(b_n)_{n\in\mathbb{N}}$ die Folge der Reihenglieder, d. h. $b_n:=\frac{n}{2^{n(n+1)}}$ für alle $n\in\mathbb{N}$. Hier wenden wir das Wurzelkriterium an. Beachten wir, dass $\lim_{n\to\infty}\frac{1}{2^{n+1}}=0$ und nach Aufgabe 2 von Übungsblatt 6 ferner $\lim_{n\to\infty}\sqrt[n]{n}=1$ gilt, so können wir mittels der Grenzwertrechenregeln folgern, dass

$$\sqrt[n]{|b_n|} = \sqrt[n]{\frac{n}{2^{n(n+1)}}} = \frac{\sqrt[n]{n}}{\sqrt[n]{2^{n(n+1)}}} = \frac{1}{2^{n+1}} \sqrt[n]{n} \xrightarrow{n \to \infty} 0 < 1.$$

Das Wurzelkriterium liefert somit die Konvergenz der Reihe $\sum_{n=1}^{\infty} \frac{n}{2^{n(n+1)}}$.

(c) Es sei $(c_n)_{n\in\mathbb{N}}$ die Folge der Reihenglieder, d.h. $c_n:=2^{-n^2}$ für alle $n\in\mathbb{N}$. Wir verwenden nochmals das Wurzelkriterium. Es gilt

$$\sqrt[n]{|c_n|} = \sqrt[n]{2^{-n^2}} = 2^{-n} \stackrel{n \to \infty}{\longrightarrow} 0 < 1.$$

Aus dem Wurzelkriterium folgt somit die Konvergenz der Reihe $\sum_{n=1}^{\infty} 2^{-n^2}$.

(d) Wir bezeichnen mit $(d_n)_{n\in\mathbb{N}}$ die Folge der Reihenglieder, d. h. $d_n := \frac{2^{-n}}{n(n+1)}$ für alle $n\in\mathbb{N}$. Da alle Glieder der Folge von Null verschieden sind, können wir das Quotientenkriterium anwenden. Hierzu berechnen wir, dass

$$\frac{d_{n+1}}{d_n} = \frac{2^{-(n+1)}n(n+1)}{2^{-n}(n+1)(n+2)} = \frac{n}{2(n+2)} \xrightarrow{n \to \infty} \frac{1}{2} < 1.$$

Das Quotientenkriterium bestätigt damit die Konvergenz der Reihe $\sum_{n=1}^{\infty} \frac{2^{-n}}{n(n+1)}$

Aufgabe 2 (2 + 4 + 4) Punkte:

(a) Für welche $x \in \mathbb{R}$ ist die Reihe

$$\sum_{n=0}^{\infty} (n+1)x^n$$

konvergent?

(b) Es sei $x \in \mathbb{R}$ mit |x| < 1. Zeigen Sie mithilfe der Rechenregeln für Reihen, dass

$$(1-x)\sum_{n=0}^{\infty} (n+1)x^n = \sum_{n=0}^{\infty} x^n,$$

und folgern Sie daraus, dass

$$\sum_{n=0}^{\infty} (n+1)x^n = \frac{1}{(1-x)^2}.$$
 (1)

(c) Geben Sie mithilfe des Cauchy-Produkts von Reihen einen weiteren Beweis für (1).

Lösung:

(a) Bei der Reihe $\sum_{n=0}^{\infty} (n+1)x^n$ handelt es sich um eine Potenzreihe mit der Koeffizientenfolge $(a_n)_{n\in\mathbb{N}}$, die gegeben ist durch $a_n:=n+1$ für alle $n\in\mathbb{N}_0$. Für $n\in\mathbb{N}$ können wir aufgrund der Monotonie der n-ten Wurzel aus der offensichtlichen Abschätzung $n\leq n+1\leq 2n$ folgern, dass

$$\sqrt[n]{n} \le \sqrt[n]{n+1} \le \sqrt[n]{2} \sqrt[n]{n}$$

gilt. In Aufgabe 2 auf Übungsblatt 6 haben wir gezeigt, dass $\lim_{n\to\infty} \sqrt[n]{n} = 1$ gilt. Ferner wissen wir aus Aufgabe 1 von Übungsblatt 7, dass $\lim_{n\to\infty} \sqrt[n]{2} = 1$ gilt. Der Einschließungssatz liefert uns sodann, dass $\lim_{n\to\infty} \sqrt[n]{n+1} = 1$. Mittels der Formel von Cauchy-Hadamard bestimmen wir damit den Konvergenzradius der Potenzreihe zu

$$\rho = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{a_n}} = \frac{1}{\lim_{n \to \infty} \sqrt[n]{n+1}} = 1.$$

Folglich ist die Potenzreihe $\sum_{n=0}^{\infty} (n+1)x^n$ auf (-1,1) konvergent und auf $\mathbb{R}\setminus [-1,1]$ divergent. Zu klären bleibt somit nur, ob in den Randpunkten -1 und 1 Konvergenz oder Divergenz vorliegt. Für x=1 bzw. x=-1 bildet $(a_n)_{n\in\mathbb{N}}$ bzw. $(a_n(-1)^n)_{n\in\mathbb{N}}$ die Folge der Reihenglieder, und weil keine dieser Folgen eine Nullfolge darstellt, können die zugehörigen Reihen nicht konvergieren. Somit ist die Potenzreihe für x=-1 und für x=1 divergent, konvergiert also genau in den Punkten aus (-1,1).

(b) Für $x \in \mathbb{R}$ mit |x| < 1 ist die Reihe $\sum_{n=0}^{\infty} (n+1)x^n$ konvergent. Damit berechnen wir

$$(1-x)\sum_{n=0}^{\infty} (n+1)x^n = \sum_{n=0}^{\infty} (n+1)x^n - \sum_{n=0}^{\infty} (n+1)x^{n+1}$$

$$= 1 + \sum_{n=1}^{\infty} (n+1)x^n - \sum_{n=0}^{\infty} (n+1)x^{n+1}$$

$$= 1 + \sum_{n=1}^{\infty} (n+1)x^n - \sum_{n=1}^{\infty} nx^n$$

$$= 1 + \sum_{n=1}^{\infty} ((n+1) - n)x^n$$

$$= 1 + \sum_{n=1}^{\infty} x^n$$

$$= \sum_{n=0}^{\infty} x^n.$$

Weil für die geometrische Reihe bekanntlich $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$ gilt, ergibt sich aus der gerade bewiesenen Identität

$$(1-x)\sum_{n=0}^{\infty} (n+1)x^n = \frac{1}{1-x}$$

und somit nach Division von 1-x die behauptete Formel (1).

(c) Mittels der Formel für die geometrische Reihe können wir für $x \in \mathbb{R}$ mit |x| < 1

$$\frac{1}{(1-x)^2} = \left(\sum_{n=0}^{\infty} x^n\right)^2 = \sum_{n=0}^{\infty} c_n x^n$$

schreiben, wobei die Folge $(c_n)_{n\in\mathbb{N}}$ gemäß dem Satz zum Cauchy-Produkt von Reihen gegeben ist durch

$$c_n = \sum_{k=0}^{n} 1 \cdot 1 = n + 1.$$

Wir erhalten somit wieder die in (1) angegebene Darstellung.

Aufgabe 3 (5 + 5 Punkte): Wir betrachten die Funktionenfolgen $(f_n)_{n\in\mathbb{N}}$, $(g_n)_{n\in\mathbb{N}}$ und $(h_n)_{n\in\mathbb{N}}$, die gegeben sind durch

$$f_n: \left[\frac{1}{2}, 1\right] \longrightarrow \mathbb{R}, \quad x \longmapsto \sqrt[n]{x},$$

$$g_n: \left[0, 1\right] \longrightarrow \mathbb{R}, \quad x \longmapsto \frac{x - \frac{1}{n}}{1 + 2\frac{x^2}{n^2}},$$

$$h_n: \left[0, \infty\right) \longrightarrow \mathbb{R}, \quad x \longmapsto \frac{x - \frac{1}{n}}{1 + 2\frac{x^2}{n^2}}.$$

- (a) Welche dieser Folgen sind punktweise konvergent? Bestimmen Sie gegebenenfalls den Grenzwert.
- (b) Welche dieser Folgen sind sogar gleichmäßig konvergent?

Hinweis: Zur Untersuchung von $(h_n)_{n\in\mathbb{N}}$ berechnen Sie zunächst $h_n(n)$ für alle $n\in\mathbb{N}$.

Lösung:

(a) Die Folge $(f_n)_{n\in\mathbb{N}}$ ist punktweise konvergent gegen die Funktion

$$f: \left[\frac{1}{2}, 1\right] \longrightarrow \mathbb{R}, \quad x \longmapsto 1,$$

denn nach Aufgabe 1 von Übungsblatt 7 gilt insbesondere für alle $x \in [\frac{1}{2}, 1]$, dass

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \sqrt[n]{x} = 1 = f(x).$$

Die Folgen $(h_n)_{n\in\mathbb{N}}$ ist punktweise konvergent gegen die Funktion

$$h: [0,\infty) \longrightarrow \mathbb{R}, \quad x \longmapsto x.$$

Tatsächlich gilt nach den Grenzwertrechenregeln für jedes $x \in [0, \infty)$, dass

$$\lim_{n \to \infty} h_n(x) = \lim_{n \to \infty} \frac{x - \frac{1}{n}}{1 + 2\frac{x^2}{n^2}} = \frac{x - \lim_{n \to \infty} \frac{1}{n}}{1 + 2x^2 \lim_{n \to \infty} \frac{1}{n^2}} = x = h(x).$$

Da $g_n = h_n|_{[0,1]}$ für alle $n \in \mathbb{N}$, ist auch die Folge $(g_n)_{n \in \mathbb{N}}$ punktweise konvergent, nämlich gegen die Restriktion $g := h|_{[0,1]}$, also

$$g: [0,1] \longrightarrow \mathbb{R}, \quad x \longmapsto x.$$

(b) Die Folge $(f_n)_{n\in\mathbb{N}}$ konvergiert sogar gleichmäßig gegen die in (a) bestimmte punktweise Grenzfunktion f. Dies sehen wir wie folgt: Für alle $n\in\mathbb{N}$ und für alle $x\in[\frac{1}{2},1]$ gilt

$$\sqrt[n]{\frac{1}{2}} \le \sqrt[n]{x} \le 1$$

aufgrund der Monotonie der n-ten Wurzel, sodass wir

$$0 \le 1 - \sqrt[n]{x} \le 1 - \sqrt[n]{\frac{1}{2}}$$

und deshalb

$$||f_n - f||_{\infty} = \sup_{x \in [\frac{1}{2}, 1]} |\sqrt[n]{x} - 1| \le 1 - \sqrt[n]{\frac{1}{2}}$$

erhalten. Nach Aufgabe 1 von Übungsblatt 7 gilt $\lim_{n\to\infty} \sqrt[n]{\frac{1}{2}} = 1$, womit uns der Einschließungssatz wie behauptet

$$\lim_{n \to \infty} ||f_n - f||_{\infty} = 0$$

liefert.

Ebenso konvergiert die Folge $(g_n)_{n\in\mathbb{N}}$ gleichmäßig gegen die in (a) berechnete punktweise Grenzfunktion g. Tatsächlich haben wir für alle $n\in\mathbb{N}$, dass

$$||g_n - g||_{\infty} = \sup_{x \in [0,1]} |g_n(x) - g(x)|$$

$$= \sup_{x \in [0,1]} \left| \frac{x - \frac{1}{n}}{1 + 2\frac{x^2}{n^2}} - x \right|$$

$$= \sup_{x \in [0,1]} \left| \frac{(x - \frac{1}{n}) - x(1 + 2\frac{x^2}{n^2})}{1 + 2\frac{x^2}{n^2}} \right|$$

$$= \sup_{x \in [0,1]} \left| \frac{-\frac{1}{n} - 2\frac{x^3}{n^2}}{1 + 2\frac{x^2}{n^2}} \right|$$

$$= \frac{1}{n} \sup_{x \in [0,1]} \frac{1 + 2\frac{x^3}{n}}{1 + 2\frac{x^2}{n^2}}$$

$$\leq \frac{1}{n} \sup_{x \in [0,1]} \left(1 + 2\frac{x^3}{n}\right)$$

$$\leq \frac{3}{n}$$

woraus sich wegen $\lim_{n\to\infty}\frac{3}{n}=0$ mittels des Einschließungssatzes wie behauptet

$$\lim_{n \to \infty} \|g_n - g\|_{\infty} = 0$$

ergibt.

Die Folge $(h_n)_{n\in\mathbb{N}}$ konvergiert hingegen nicht gleichmäßig gegen ihre punktweise Grenzfunktion h, die wir in (a) bestimmt haben. Für $n\in\mathbb{N}$ haben wir nämlich $h_n(n)=\frac{1}{3}(n-\frac{1}{n})$ und somit

$$\sup_{x \in [0,\infty)} |h_n(x) - h(x)| \ge |h_n(n) - h(n)|$$

$$= \left| \frac{1}{3} (n - \frac{1}{n}) - n \right|$$

$$= \frac{2}{3} n + \frac{1}{3n}$$

sodass

$$\lim_{n \to \infty} \sup_{x \in [0,\infty)} |h_n(x) - h(x)|$$

nicht existiert.

Aufgabe 4 ($(2 \times 2) + (2 \times 3)$ Punkte):

(a) Untersuchen Sie, für welche $x \in \mathbb{R}$ die folgenden Potenzreihen jeweils konvergieren:

(i)
$$\sum_{n=0}^{\infty} \frac{1}{\sqrt{n+1}} (x-1)^n$$
 (ii) $\sum_{n=0}^{\infty} \frac{n!}{3} x^n$

(b) Begründen Sie, warum es sich bei den folgenden Reihen um Potenzreihen im Sinne der Vorlesung handelt, und untersuchen Sie anschließend für welche $x \in \mathbb{R}$ diese jeweils konvergieren:

(i)
$$\sum_{n=0}^{\infty} \frac{1}{8^n} (x-2)^{3n}$$
 (ii) $\sum_{n=0}^{\infty} {2n \choose n} x^{2n}$

Hinweis zu (ii): Sie dürfen *ohne Beweis* verwenden, dass $\frac{1}{n+1}4^n(n!)^2 \le (2n)! \le 4^n(n!)^2$ für alle $n \in \mathbb{N}_0$ gilt; vgl. Hinweis zu Aufgabe 4 (g) auf Übungsblatt 7.

- **Lösung:** (a) Wir halten zunächst fest, dass die beiden Potenzreihen in Standardform $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ gegeben sind, nämlich mit $a_n = \frac{1}{\sqrt{n+1}}$ und $x_0 = 1$ bzw. $a_n = \frac{n!}{3}$ und $x_0 = 0$.
 - (i) Aus unserer Lösung zu Aufgabe 2 (a) auf diesem Blatt wissen wir bereits, dass $\lim_{n\to\infty} \sqrt[n]{n+1} = 1$. Wegen $1 \le \sqrt{n+1} \le n+1$ liefert uns die Monotonie der n-ten Wurzel, dass $1 \le \sqrt[n]{a_n} \le \sqrt[n]{n+1}$ für alle $n \in \mathbb{N}_0$, woraus wir mittels des Einschließungssatzes $\limsup_{n\to\infty} \sqrt[n]{a_n} = 1$ folgern können. Schließlich können wir den Konvergenzradius ρ der Potenzreihe mithilfe der Formel von Cauchy-Hadamard berechnen; wir erhalten

$$\rho = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{a_n}} = 1.$$

Die Potenzreihe in (i) konvergiert also auf jeden Fall auf dem Intervall $(1-\rho,1+\rho)=(0,2)$ und ist auf $\mathbb{R}\setminus[0,2]$ divergent. Fraglich ist somit nur die Konvergenz in den Randpunkten des Intervalls. Für x=0 ergibt sich die alternierende Reihe $\sum_{n=0}^{\infty} (-1)^n a_n$, die nach dem Leibniz-Kriterium konvergiert, weil $(a_n)_{n\in\mathbb{N}_0}=(\frac{1}{\sqrt{n+1}})_{n\in\mathbb{N}_0}$ eine monoton fallende Nullfolge darstellt. Für x=2 erhalten wir die Reihe $\sum_{n=0}^{\infty} \frac{1}{\sqrt{n+1}}$, für die die harmonische Reihe $\sum_{n=0}^{\infty} \frac{1}{n+1}$ wegen der offensichtlichen Abschätzung $\frac{1}{\sqrt{n+1}}\geq \frac{1}{n+1}$ für alle $n\in\mathbb{N}_0$ eine divergente Minorante darstellt; diese muss somit selbst divergent sein. Zusammenfassend sehen wir, dass die Potenzreihe $\sum_{n=0}^{\infty} \frac{1}{\sqrt{n+1}} (x-1)^n$ genau auf dem Intervall [0,2) konvergent ist.

(ii) Die Potenzreihe $\sum_{n=0}^{\infty} \frac{n!}{3} x^n$ ist nur für x=0 konvergent. Dies sehen wir wie folgt. Für jedes $N \in \mathbb{N}$ und alle $n \in \mathbb{N}$ mit $n \geq N$ haben wir die einfache Abschätzung

$$n! = (N-1)! \prod_{k=N}^{n} k \ge (N-1)! N^{n-N+1}$$

und somit

$$\sqrt[n]{a_n} = \frac{1}{\sqrt[n]{3}} \sqrt[n]{n!} \ge \frac{1}{\sqrt[n]{3}} \sqrt[n]{(N-1)!} N^{\frac{n-N+1}{n}}.$$

Indem wir für festes N den Grenzübergang $n \to \infty$ durchführen, erhalten wir

$$\limsup_{n \to \infty} \sqrt[n]{a_n} \ge \lim_{n \to \infty} \frac{1}{\sqrt[n]{3}} \sqrt[n]{(N-1)!} N^{\frac{n-N+1}{n}} = N.$$

Weil jedoch $N \in \mathbb{N}$ beliebig vorgegeben war, bedeutet dies $\limsup_{n \to \infty} \sqrt[n]{a_n} = \infty$, womit sich gemäß der Formel von Cauchy-Hadamard $\rho = 0$ für den Konvergenzradius ρ der Potenzreihe $\sum_{n=0}^{\infty} \frac{n!}{3} \, x^n$ ergibt. Dies beweist unsere Behauptung.

(b) Die beiden Potenzreihen in (a) sind nicht in Standardform gegeben, weil nicht alle Potenzen $(x-x_0)^n$ auftauchen. Die Koeffizienten vor den ausgelassenen Termen $(x-x_0)^n$ werden dabei als 0 verstanden. Konkret haben diese Potenzreihen also die Standardform $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ mit $x_0=2$ und

$$a_n = \begin{cases} \frac{1}{8^k}, & \text{falls } n = 3k \text{ für ein } k \in \mathbb{N}_0\\ 0, & \text{sonst} \end{cases}$$

bzw. mit $x_0 = 0$ und

$$a_n = \begin{cases} \binom{2k}{k}, & \text{falls } n = 2k \text{ für ein } k \in \mathbb{N}_0 \\ 0, & \text{sonst} \end{cases}$$

(i) Wir bestimmen zunächst

$$\limsup_{n \to \infty} \sqrt[n]{a_n} = \lim_{k \to \infty} \sqrt[3k]{\frac{1}{8^k}} = \lim_{k \to \infty} \sqrt[3k]{\frac{1}{2^{3k}}} = \lim_{k \to \infty} \frac{1}{2} = \frac{1}{2},$$

womit sich mittels der Formel von Cauchy-Hadamard der Konvergenzradius $\rho=2$ ergibt. Die Potenzreihe $\sum_{n=0}^{\infty}\frac{1}{8^n}(x-2)^{3n}$ ist somit auf $(2-\rho,2+\rho)=(0,4)$ konvergent und auf $\mathbb{R}\setminus[0,4]$ divergent. In den Randpunkten x=0 und x=4 ergeben sich die Reihen $\sum_{n=0}^{\infty}(-1)^n$ bzw. $\sum_{n=0}^{\infty}1$, die beide divergieren. Die Potenzreihe $\sum_{n=0}^{\infty}\frac{1}{8^n}(x-2)^{3n}$ ist daher genau in den Punkten des Intervalls (0,4) konvergent.

(ii) Für alle $k \in \mathbb{N}_0$ liefert die im Hinweis angegebene Abschätzung wegen $\binom{2k}{k} = \frac{(2k)!}{(k!)^2}$, dass

$$\frac{4^k}{(k+1)^2} \le \frac{4^k}{k+1} \le \binom{2k}{k} \le 4^k$$

und somit, aufgrund der Monotonie der 2k-ten Wurzel, dass

$$\frac{2}{\sqrt[k]{k+1}} \le \sqrt[2k]{\binom{2k}{k}} \le 2.$$

Wie wir in unserer Lösung zu Aufgabe 2 (a) auf diesem Blatt gesehen haben, ist $\lim_{k\to\infty} \sqrt[k]{k+1} = 1$ und deshalb nach dem Einschließungssatz

$$\limsup_{n \to \infty} \sqrt[n]{a_n} = \lim_{k \to \infty} \sqrt[2k]{\binom{2k}{k}} = 2.$$

Somit ergibt sich $\rho=\frac{1}{2}$ als der Konvergenzradius der Potenzreihe $\sum_{n=0}^{\infty} \binom{2n}{n} x^{2n}$. Diese Potenzreihe ist also für $x\in(-\frac{1}{2},\frac{1}{2})$ konvergent und für $x\in\mathbb{R}\setminus[-\frac{1}{2},\frac{1}{2}]$ divergent. An den Rändern $x=\pm 2$ des Konvergenzintervalls $(-\frac{1}{2},\frac{1}{2})$ erhalten wir die Reihe $\sum_{n=0}^{\infty} \frac{1}{4^n} \binom{2n}{n}$, die wegen $\frac{1}{4^n} \binom{2n}{n} \geq \frac{1}{n+1}$ für alle $n\in\mathbb{N}_0$ (was sich unmittelbar aus der im Hinweis angegebenen Abschätzung ergibt), die harmonische Reihe als divergente Minorante besitzt, also selbst divergent sein muss. Zusammenfassend sehen wir damit, dass die Reihe $\sum_{n=0}^{\infty} \binom{2n}{n} x^{2n}$ genau in den Punkten des Intervalls $(-\frac{1}{2},\frac{1}{2})$ konvergiert.