

High-Dimensional Sparse Linear Bandits

Botao Hao, Tor Lattimore, Mengdi Wang

Contribution

- Provide a fresh view of sparse linear bandits from a **high-dimensional regime** perspective.
- Derive the first $\Theta(n^{2/3})$ minimax optimal regret bound.
- Provide an example where carefully balancing the trade-off between **information** and **regret** is necessary, in terms of **minimax regret**.

Problem Setting

Model:

At each round t, the agent chooses an action $A_t \in \mathcal{A} \subseteq \mathbb{R}^d$ (finite, fixed action set) and receives a reward:

$$Y_t = \langle A_t, \theta^* \rangle + \eta_t, \ t \in [n],$$

where $\|\theta^*\|_0 = s \ll d$.

Interested in **high-dimensional regime**: d > n.

Hardness result:

Unfortunately, there exists a $\Omega(\sqrt{dsn})$ minimax lower bound in general.

However, minimax bounds Do Not tell the whole story!

• Why?

A crude maximisation over all environments hides much of the rich structure of linear bandits with sparsity.

What we want to tell:

Derive a sharp $\Omega(\mathsf{poly}(s)n^{2/3})$ lower bound in high-dimensional regime under the condition that

"the feature vectors admit a well-conditioned exploration distribution".

A Novel Minimax Lower Bound

Definition. Let $\mathcal{P}(\mathcal{A})$ be the space of probability measures over \mathcal{A} . Then we define

$$C_{\min}(\mathcal{A}) = \sup_{\mu \in \mathcal{P}(\mathcal{A})} \sigma_{\min} \Big(\mathbb{E}_{A \sim \mu} \big[A A^{\top} \big] \Big).$$

Remark 0.1. • When $C_{\min}(A)$ is independent of d, n, we say "feature vectors admit a well-conditioned exploration distribution".

• $C_{\min}(\mathcal{A}) > 0$ if and only if \mathcal{A} spans \mathbb{R}^d . Two illustrative examples are the hypercube and probability simplex. Sampling uniformly from the corners of each set shows that $C_{\min}(\mathcal{A}) \geq 1$ for the former and $C_{\min}(\mathcal{A}) \geq 1/d$ for the latter.

Theorem (Minimax Lower Bound). For any policy π , there exists s-sparse parameter $\theta \in \mathbb{R}^d$ and an action set \mathcal{A} where $C_{\min}(\mathcal{A})$ is independent of d, n such that

$$R_{ heta}(n) \gtrsim \min\left(C_{\min}^{-rac{1}{3}}(\mathcal{A})s^{rac{1}{3}}n^{rac{2}{3}},\sqrt{dn}
ight),$$

where \geq just hides universal constants.

Remark 0.2. • When $d > n^{1/3}s^{2/3}$ the bound is $\Omega(n^{2/3})$, which is **independent of** the dimension.

• When $d \leq n^{1/3} s^{2/3}$, we recover the standard $\Omega(\sqrt{sdn})$ dimension-dependent lower bound up to a \sqrt{s} -factor, even though feature vectors admit a well-conditioned exploration distribution.

Hard Problem Instance

• Construct a **low regret** action set S (sparse) and an **informative** action set H (half of the hypercube) as follows:

$$S = \left\{ x \in \mathbb{R}^d \middle| x_j \in \{-1, 0, 1\} \text{ for } j \in [d-1], ||x||_1 = s - 1, x_d = 0 \right\},$$

$$\mathcal{H} = \left\{ x \in \mathbb{R}^d \middle| x_j \in \{-1, 1\} \text{ for } j \in [d-1], x_d = 1 \right\}.$$

• True parameter θ :

$$\theta = (\underline{\varepsilon, \dots, \varepsilon}, 0, \dots, 0, -1),$$

for some small $\varepsilon > 0$.

• Pull \mathcal{H} : provide more information to infer θ but suffer high regret due to the last coordinate -1.

Matching Upper Bound

Theorem. Assume the action set A spans \mathbb{R}^d . The regret upper bound of explore-the-sparsity-then-commit (ESTC) algorithm satisfies

$$R_{ heta}(n) \lesssim C_{\min}^{-rac{2}{3}}(\mathcal{A}) s^{rac{2}{3}} n^{rac{2}{3}}.$$

Algorithm.

1. Given an action set A, we first solve the following optimization problem to find the most informative design:

$$\hat{\mu} = \max_{\mu \in \mathcal{P}(\mathcal{A})} \sigma_{\min} \left(\int_{x \in \mathcal{A}} x x^{\top} d\mu(x) \right).$$

- 2. Independently pulls arms following $\hat{\mu}$ by n_1 rounds and denote the collected samples as $\{(A_1, y_1), \ldots, (A_{n_1}, y_{n_1})\}$. Then we calculate the lasso estimator $\hat{\theta}_{n_1}$.
- 3. Executes the greedy action $A_t = \operatorname{argmax}_{x \in \mathcal{A}} \langle x, \hat{\theta}_{n_1} \rangle$ for the rest $n n_1$ rounds.

Experiments

We compare ESTC (our algorithm) with LinUCB [1] and doubly-robust (DR) lasso bandits [2] on a linear contextual bandits: action set from $N(0_N, V)$, where N is the number of arms, $V_{ii} = 1$ and $V_{ik} = \rho^2$ for every $i \neq k$. Larger ρ favorable to DR-lasso.

[1]. Improved algorithms for linear stochastic bandits. [2]. Doubly-robust lasso bandit.