電腦視覺與應用 Computer Vision and Applications

Lecture02-1 Pinhole camera

Tzung-Han Lin

National Taiwan University of Science and Technology Graduate Institute of Color and Illumination Technology

e-mail: thl@mail.ntust.edu.tw

Pinhole Camera

- Lecture reference coverage in following:
 - Computer Vision A Modern Approach, Chapter 1.
 - Multiple View Geometry in Computer Vision, Chapter 6.
 - And, miscellaneous paper & internet resource.

■ The prototype of modern cameras (Pinhole Camera):

In 1490, Leonardo Da Vinci gave clear descriptions of darkened chamber in his notebooks.

However, in 1544, many of the first camera obscuras were large rooms like that illustrated by the Dutch scientist Reinerus Gemma-Frisius for use in observing a solar eclipse.

Camera Obscura, 1568

Modern Digital Film:

- This figure shows general design for color CCD. NOTE: All Pixels are not created equally!
- In many applications, we consider "Grey" images only.

http://www.shortcourses.com

■ Inside digital film

RGB Inside the Camera

How the "COLOR" image formed?

- Bitmap image uses 8 bit for R, G and B to store a true color pixel.
- A simple conversion from "grey CCD + Bayer pattern"

```
red = red[x][y];
green = (green[x][y-1] + green[x-1][y] + green[x+1][y] + green[x][y+1]) / 4;
blue = (blue[x-1][y-1] + blue[x+1][y-1] + blue[x-1][y+1] + blue[x+1][y+1]) / 2;
green = green[x][y];
blue = (blue[x][y-1] + blue[x][y+1]) / 2;
red = (red[x-1][y-1] + red[x+1][y-1] + red[x-1][y+1] + red[x+1][y+1]) / 4;
green = (green[x][y-1] + green[x-1][y] + green[x+1][y] + green[x][y+1]) / 4;
blue = blue[x][y];
red = (red[x][y-1] + red[x][y+1]) / 2;
green = geen[x][y];
blue = (blue[x-1][y] + blue[x+1][y]) / 2;
```

Note: This is one example. In general, CCD manufacturers will deal with "RAW data" with different algorithms to generate a final image (mostly in Jpg or Tif) for customers.

What does Color-bit stand for?

■ Color bit in image Raw data:

Some CCD or Camera manufacturers would provide SDK for reading RAW data out.

RAW data is the output from each of the original red, green and blue sensitive pixels of the image sensor, after being read out of the array by the array electronics and passing through an analog to digital

converter.

Example: Canon DSLR

 記錄各式
 相機檔案系統設計規格DCF 2.0

 影像類型
 JPEG及RAW (14位元, Canon原創)

 RAW+JPEG同時記錄
 有

 檔案大小
 (1) 大/精細:
 約1790萬像素 (518)

Raw data provides higher resolution than 8-bit on each channel (says R, G, B).

8 bit \rightarrow 256 grey levels

10 bit \rightarrow 1,024 grey levels

12 bit \rightarrow 4,096 grey levels

14 bit \rightarrow 16,384 grey levels

What does Color-bit stand for?

■ Visible spectrum: 380nm~780nm

The visible portion of the electromagnetic spectrum

Digital film

■ Different type of "Color" image sensor

Figure 1.20 Schematic diagrams of color cameras: (a) color wheel camera with red, green, and blue filters (the fourth filter position is empty, allowing the camera to be used as a monochrome detector with greater sensitivity for dim images); (b) prisms and dichroic filters for a three-chip color camera; (c) stacking the blue, green, and red sensitive detectors on top of one another; (d) Bayer and Sony RGBE patterns used in single-chip cameras (the "E" or "emerald" filter is cyan).

What does Color-bit stand for?

DSLR: Digital Single Lens reflex.

What is rolling-shutter effect?

Rolling shutter problem:

In computer vision field, all images are formed at the same instance, means, scenes in all images are assumed to be static at the moment of shooting pictures.

If you are using one camera with "rolling shutter", the distortions of all images caused by motion should be compensated as possible. In general case, increasing shutter speed of camera is the another way to suppress this effect.

What is rolling-shutter effect?

What is rolling-shutter effect?

Rolling shutter vs Global shutter

- The mathematical description for the camera in 3D space is formed by "Extrinsic" and "Intrinsic" parameters:
- Extrinsic parameter (外部參數)→defines the relation between camera and environment in Euclidean space. (a 3x4 matrix)→以3x4矩陣描述相機的位置(position)與擺置方向(orientation)。
- Intrinsic parameter (內部參數)→defines how the light goes through lens (a 3x3 matrix), and finally induces the brightness on exact 2D coordinate of the image →以3x3矩陣描述光通過鏡頭投射到影像的座標位置。

Description for extrinsic

Description for extrinsic

After intrinsic operation

相機的位置描述式(矩陣形式)

=相機外部參數

(以相機的位置重新描述定義世界座標的座標點)

*不涉及觀看物體結果,只有涉及與物體相對關係

透過相機觀看

=相機內部參數

(觀看世界座標的座標點)

*涉及觀看物體

- General projection method for pinhole camera: "Perspective"
- This is a "Computer graphics" model, and similar to intrinsic parameter.

Parallel Projection (平行投影轉換運算)

Requirement for forming a image (from geometrical viewpoint)

For Graphics model (or ideal pinhole)

- Extrinsic parameter
- Intrinsic parameter → perspective projection (in most cases, otherwise orthographical projection)

For real Cameras

- Extrinsic parameter
- Intrinsic parameter \rightarrow perspective (with camera calibration matrix)

Camera model: Example

Behaviors of the pinhole camera model

- The object image on the image plane will be upside down, but NOT "mirror".
- The pinhole perspective projection (also call central perspective) was proposed by Brunelleschi.

Behaviors of the pinhole camera model –cont.

■ Far objects appear smaller then close ones.

A and C are half the size of B (in real 3D space)

C' & B': same size (in image plane)

Behaviors of the pinhole camera model –cont.

■ Distant objects are smaller: the vanishing point

Behaviors of the pinhole camera model –cont.

- \blacksquare Plane is perpendicular to k axis.
- P'=(x', y', f') →on image plane
- $P=(x, y, z) \rightarrow \text{ in 3D space}$

$$\begin{cases} x' = \lambda x & x' = f' \frac{x}{z} \\ y' = \lambda y & y' = f' \frac{y}{z} \end{cases}$$

Another projection method:

 orthographic projection (so-called parallel projection), usually for engineering purposes

Example: better visualization for dimension measurement

Why cameras with lenses? Two Reasons:

- To gather light since a single ray of light would otherwise reach each point in the image plane. (增加進光亮、聚焦)
- To keep the picture in sharp focus. → to avoid diffraction effect. (避免衍射、繞射造成的模糊)

Lens systems in a real-camera

- A good camera lens may contain 15 elements and cost a thousand dollars
- The best modern lenses may contain aspherical elements (非球面元件)
- In modern computer vision textbook, all of the lens behaviors are described as a 3x3 matrix (intrinsic parameter for mapping 3D to 2D)

and a polynomial function for lens distortion.

Ideal case (mathematic model)

■ Intrinsic parameter governs the geometry for the ideal camera model, i.e. mathematic eqs.

Note: lens and projection are rewritten as one 3x3 matrix.

■ Between "real CCD/CMOS" and "mathematical image-plane"

Intrinsic parameter

Extrinsic parameter

 $\mathbf{x} = diag(f, f, 1)[I \mid 0]$

3D points relative to Camera coordinates

In practice, we hope to get 2D points as the coordinates on one image, then, the image should be shifted.

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} \mapsto \begin{pmatrix} fX/Z + p_x \\ fY/Z + p_y \\ 1 \end{pmatrix}$$
 image center (or called principal point)

rewrite as:

$$\begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix} \mapsto \begin{pmatrix} fX + Zp_x \\ fY + Zp_y \\ Z \end{pmatrix} = \begin{bmatrix} f & p_x & 0 \\ f & p_y & 0 \\ 1 & 0 \end{bmatrix} \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}$$

In simple:

$$\mathbf{x} = \mathbf{K}[\mathbf{I} \mid \mathbf{0}] \mathbf{X}_{cam} \qquad \text{here, } \mathbf{K} = \begin{bmatrix} f & 0 & p_x \\ 0 & f & p_y \\ 0 & 0 & 1 \end{bmatrix}$$
Camera coordinates

Intrinsic parameter (short summary)

$$\mathbf{x} = \mathbf{K}[\mathbf{I} \mid \mathbf{0}]\mathbf{X}_{cam}$$

K denotes the intrinsic parameter of the camera.

Perspective projection (central projection, with offset)

$$\mathbf{K} = \begin{bmatrix} f & 0 & p_x \\ 0 & f & p_y \\ 0 & 0 & 1 \end{bmatrix}$$

General case for REAL camera Perspective projection (Finite projective camera)

$$\mathbf{K} = \begin{bmatrix} f_x & \gamma & x_c \\ 0 & f_y & y_c \\ 0 & 0 & 1 \end{bmatrix} \begin{array}{l} f_x : \mathbf{focal \ length \ in} \ x \ \mathbf{direction} \\ f_y : \mathbf{focal \ length \ in} \ y \ \mathbf{direction} \\ \gamma : \mathbf{skew} \\ (x_c, y_c) : \mathbf{principal \ point} \end{array}$$

A application scenario (3D projection):

- Input (known): 3D point coordinates, Camera extrinsic & intrinsic parameter
- Output (unknown): to determine 2D coordinates of after projecting 3D points on to one image.

■ What's the difference between real & ideal case?

■ How the image un-distorted?

3D points relative to camera coordinate

$$r^2 = x_s^2 + y_s^2$$

■ How the image un-distorted—cont.?

$$\mathbf{x}_{d} = \begin{bmatrix} x_{d} \\ y_{d} \end{bmatrix} = (1 + k_{0}r^{2} + k_{1}r^{4} + k_{4}r^{6}) \begin{bmatrix} x_{s} \\ y_{s} \end{bmatrix} + \begin{bmatrix} 2k_{2}x_{s}y_{s} + k_{3}(r^{2} + 2x_{s}^{2}) \\ k_{2}(r^{2} + 2y_{s}^{2}) + 2k_{3}x_{s}y_{s} \end{bmatrix}$$

After un-distortion, we get new 2D coordinate → which is normalized and close to "linear" perspective model.

$$\mathbf{x}_{p} = \mathbf{K}\mathbf{x}_{d} = \begin{bmatrix} f_{x} & \gamma & x_{c} \\ 0 & f_{y} & y_{c} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_{d} \\ y_{d} \\ 1 \end{bmatrix}$$

General description for extrinsic parameter:

■ To transfer the 3D points in world coordinate into another 3D points in camera coordinate.

But, how to transform between them?

For example, Extrinsic parameter in 2D:

Data in camera_a

$$\mathbf{X}_a = \mathbf{T}_a^{-1} \mathbf{X}_{world}$$

or
$$\begin{bmatrix} x_a \\ y_a \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & T_{ax} \\ 0 & 1 & T_{ay} \\ 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} x_{world} \\ y_{world} \\ 1 \end{bmatrix}$$

Data in camera'

$$\mathbf{X'} = \mathbf{R}_{\theta}^{-1} \mathbf{X}_{world}$$

$$\mathbf{or} \quad \begin{bmatrix} x_p' \\ y_p' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_p \\ y_p \\ 1 \end{bmatrix}$$

For example: Extrinsic parameter in 2D (mixed transformation)

Translation & Rotation Case

$$\mathbf{X}'' = \begin{bmatrix} x_p'' \\ y_p'' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} x_p \\ y_p \\ 1 \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta & t_x \\ \sin\theta & \cos\theta & t_y \\ 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} x_p \\ y_p \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} \cos\theta & -\sin\theta & t \end{bmatrix}^{-1}$$

summary:
$$\mathbf{X}'' = \begin{bmatrix} \cos \theta & -\sin \theta & t_x \\ \sin \theta & \cos \theta & t_y \\ 0 & 0 & 1 \end{bmatrix}^{-1} \mathbf{X}_{world}$$

For example: Extrinsic parameter in 3D (mixed transformation)

Note: Here, u"=u', v"=v' and w"=w', but they indicate different coordinates (says start from O' or O")

Summary remark:

(hint: mapping 3D points to 2D image, one 3D intrinsic parameter→ space relative to camera → one 2D space)

Summary remark—cont.:

homogenous 2D point on image (unit: pixel)

3D point in Euclidean space (says world coordinate)

Camera intrinsic parameter

Camera transformation in this Euclidean space, says extrinsic parameter (inverse to camera position and orientation)

Comparison the coordinate transformation (extrinsic parameter) between "Computer Graphics" and "Computer Vision"

> Computer graphics textbook says:

$$\mathbf{X}_{\text{cam}} = \begin{bmatrix} u_x' & v_x' & w_x' & t_x \\ u_y' & v_y' & w_y' & t_y \\ u_z' & v_z' & w_z' & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \mathbf{X}_{\text{world}}$$

4x4 matrix (4th row is dummy)

Computer vision textbook says:

$$\mathbf{X}_{cam} = \begin{bmatrix} \mathbf{R} & \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix} \mathbf{X}_{world}$$

This photo is licensed under **CC BY-ND**