Contenido específico de la práctica

- 0) Obtén las ecuaciones de movimiento (si no te sale, http://scienceworld.wolfram.com/physics/DoublePendulum.html)
- 1) Utiliza la subrutina **mirk4** de la P8. Fig91.png o fig92.png puedes subtituirse por gifs animados.
- 2) Estudia casos límite, $\ell_2 \ll \ell_1$, $m_1 \gg m_2$ y compara con el péndulo simple correspondiente, haz una figura ilustrativa, **figP91.png** de pequeñas oscilaciones y grandes oscilaciones, (m₁=1kg, m₂=0.1 kg y l₁=l₂=1m) y (m₁=1kg, m₂=1 kg y l₁=1, l₂=0.1m). Deltat=0.01 s, Tmax=20 s.
- 3) Estudia modos normales (con m₁=m₂=1kg y l₁=l₂=1m) por ejemplo estos dos, $\theta_1(0)=0.1, \theta_2(0)=0.15, \dot{\theta}_1=0, \dot{\theta}_2=0$ $\theta_1(0)=0.1, \theta_2(0)=-0.15, \dot{\theta}_1=0, \dot{\theta}_2=0$
- Genera una figura figP92.png . (m_1 =1kg, m_2 =1 kg y l_1 = l_2 =1m), Deltat=0.01 s, Tmax=20 s.
- 4) Estudia la convergencia del método, compara el valor inicial y final, tras una evolución de 20 s hacia adelante en el tiempo seguida de 20 s hacia atrás para volver al estado inicial. Dibuja la discrepancia como función de Delta t, 0.5s, 0.1s, 0.05s, 0.01s, 0.001s. Considera como estado inicial uno de los de 5) y otro de los de 3), **figP93.png**
- 5) Caos. Considera dos soluciones cuyas condiciones iniciales difieren ligeramente, $\theta_1(0)=\pi-0.5, \theta_2(0)=\pi-0.2+\delta, \dot{\theta}_1=0, \dot{\theta}_2=0$ Estudia como varían como función de $\delta \in [0,0.2]$ las diferencias siguientes tras 6s de evolución: (Deltat=0.01 s), fig94.png $\Delta \theta = \theta_\delta(t=6s) \theta_{\delta=0}(t=6s)$ $\Delta K = K_\delta(t=6s) K_{\delta=0}(t=6s)$