I - Mapas Unidimensionais

Referência Principal: *Chaos*K. Alligood, T. D. Sauer, J. A. Yorke
Springer (1997)

1- Introdução

- Sistemas Dinâmicos: Conjunto de estados possíveis com uma regra de evolução determinística discreta (mapa) ou contínua (equação diferencial).
- Modelo: ideliazação simples, descreve algumas características do processo. Essas características são do processo e não devido às aproximações.

2- Mapas Unidimensionais

```
x_{n+1} = f(x_n)

Exemplos:

f = 2x_n

g = 2x_n(1-x_n)

n 	 f(x_n) 	 g(x_n)

0 	 0.0100000000 	 0.0100000000

3 	 0.0800000000 	 0.0746184887

12 	 40.9600000000 	 0.5000000000
```

Construção Gráfica de uma Trajetória

Figure 1.1 An orbit of f(x) = 2x.

The dotted line is a cobweb plot, a path that illustrates the production of a trajectory.

Construção Gráfica de uma Trajetória

Figure 1.2 A cobweb plot for an orbit of g(x) = 2x(1-x). The orbit with initial value .1 converges to the sink at .5.

Órbita / Ponto Fixo

Órbita:
$$\{x_0, x_1, x_2, ... x_n, ...\} = \{x_0, f(x_0), f^2(x_0), ... f^n(x_0), ...\}$$

 x_0 : ponto inicial

Ponto fix $p : f^k(p) = p$

Para encontrar o ponto fixo usamos: $x_{n+1} = x_n$

Para o Mapa Logístico, $x_{n+1} = 2x_n (1-x_n) \Rightarrow x_n = 0; 0,5$

Exemplo

$$x_{n+1} = f(x_n)$$
 $f = \frac{3x - x^3}{2}$

Para obter os pontos fixos: $x = \frac{3x - x^3}{2} \Rightarrow x = 1; 0; -1$

Alligood et al. Chaos

Figure 1.3 A cobweb plot for two orbits of $f(x) = (3x - x^3)/2$.

The orbit with initial value 1.6 converges to the sink at 1; the orbit with initial value 1.8 converges to the sink at -1.

3- Estabilidade de Pontos Fixos

 $N_{\varepsilon}(p)$: vizinhança ε em torno de x = p ($\varepsilon \approx 0$ e $\varepsilon > 0$) $N_{\varepsilon}(p) = \{x \in \mathbb{R} : |x - p| < \varepsilon\}$

Ponto fixo de atração:

Para
$$\varepsilon > 0$$
 e $x \in N_{\varepsilon}(p) \Rightarrow \lim_{k \to \infty} f^{k}(x) = p$

Ponto fixo de repulsão:

Para
$$\varepsilon > 0$$
 e $x \in N_{\varepsilon}(p) \Rightarrow \lim_{k \to \infty} f^{k}(x) \notin N_{\varepsilon}(p)$

n	$g^n(x)$	$g^n(x)$	$g^n(x)$
0	0.2000	0.5000	0.9500
1	0.5280	0.8250	0.1568
2	0.8224	0.4764	0.4362
3	0.4820	0.8232	0.8116
4	0.8239	0.4804	0.5047
5	0.4787	0.8237	0.8249
6	0.8235	0.4792	0.4766
7	0.4796	0.8236	0.8232
8	0.8236	0.4795	0.4803
9	0.4794	0.8236	0.8237
10	0.8236	0.4794	0.4792
11	0.4794	0.8236	0.8236
12	0.8236	0.4794	0.4795
13	0.4794	0.8236	0.8236
14	0.8236	0.4794	0.4794

Órbita Estável de Período 2

Table 1.2 Three different orbits of the logistic model g(x) = 3.3x(1-x). Each approaches a period-2 orbit.

Órbita Estável de Período 2

Alligood et al. Chaos

Figure 1.4 Orbit converging to a period-two sink.

The dashed lines form a cobweb plot showing an orbit which moves toward the sink orbit $\{p_1, p_2\}$.

Estabilidade de Um Ponto Fixo / Bácia de Atração

Teorema

Seja f um mapa (suave) em R, com um ponto fixo x = p se |f'(p)| < 1, pé um ponto fixo estável se |f'(p)| > 1, pé um ponto fixo instável

Bacia de atração:
conjunto das condições iniciais cujas órbitas
convergempara x = p

Exemplo

$$Mapa Log istico x_{n+1} = 2 x_n (1-x_n)$$

Pontos fixos: 0; 0,5 Exemplo
$$f(0)=0$$
 e $f(1)=0$
 $f'(0)=2 > 1 \Rightarrow ponto de repulsão$
 $f'(0,5)=0 < 1 \Rightarrow ponto de atração$

Abacia de atração de x=0,5 é o intervalo 0 < x < 1

Exemplo

Mapa
$$x_{n+1} = \frac{3x - x^3}{2}$$

Pontos fixos: -1; 0; 1

 $f'(0) = 3/2 > 1 \Rightarrow ponto de repulsão$

$$f'(-1) = f'(1) = 0 < 1 \Rightarrow \text{ponto de atração}$$

A bacia de atração de x = 1 contem os intervalos

$$(0,\sqrt{3})$$
 e $[-2,-\sqrt{3})$ e outros no intervalo $-\sqrt{5} < x < \sqrt{5}$

4- Pontos periódicos

Mapa Logístico
$$x_{n+1} = f(x_n) = a x_n (1-x_n)$$
 $a = 3,3$

Pontos fixos instáveis : x = 0; 0,696969...

Órbitas periódicas estáveis com período 2:

$$f^{2}(0,4794)=0,4794$$
 $f^{2}(0,8236)=0,8236$
 $f^{2}(0,4794)=|-0,2904|<1$ $f^{2}(0,8236)<1$

Mapa Logístico
$$x_{n+1} = f(x_n) = a x_n (1-x_n)$$
 $a=3,5$

Pontos fixos instáveis:

$$f'(0)=3.5$$
 $f'(5/7)=-1.5$ $f(0)=0$ e $f(5/7)=0$

Órbita periódica instável com período 2:

$$f'^{2}(3/7) > 1$$
 $f'^{2}(6/7) > 1$ $ff(3/7) = 6/7 e ff(6/7) = 3/7$

Órbitas com período k>2

$$(f^{k}(p_{1}))' = f'(p_{k})f'(p_{k-1})...f'(p_{1})$$

Note que
$$(f^k(p_i))' = (f^k(p_i))'$$

5- Mapa Logístico

Mapa Logístico
$$x_{n+1} = g_a(x_n) = a x_n (1-x_n)$$

Para
$$0 < a < 1$$
, $\forall x_0 \in o < x_0 < 1 \Rightarrow x \rightarrow 0$

Para
$$1 < a < 3$$
, $\forall x_0 \in o < x_0 < 1 \Rightarrow x \rightarrow 0$; $\frac{a-1}{a}$

$$g'(0) = a > 1 \Rightarrow ponto de repulsão$$

$$\left| g'(\frac{a-1}{a}) \right| = \left| -a + 2 \right| < 1 \Rightarrow \text{ponto de atração}$$

Para 3 < a < 4, novas órbitas periódicas (além das caóticas).

Para a = 3 período 1 \rightarrow período 2

Para a = 3,45 período 2 \rightarrow período 4

Duplicação de períodos: período 2ⁿ, n = 1, 2, 3...

Para a > 4, não há atrator $(x \rightarrow \infty)$

Mesmo atrator $\forall x_0$ (para qualquer a)

Numericamente observamos as órbitas estáveis

Não Invertibilidade do Mapa Logístico

Dependência com o Parâmetro de controle

Figure 1.5 The logistic family.

(a) The origin attracts all initial conditions in [0, 1]. (b) The fixed point at (a − 1)/a attracts all initial conditions in (0, 1). (c) The fixed point at (a − 1)/a is unstable.

Órbitas Periódicas do Mapa Logístico

Órbita com período 2

Ott

Chaos ...

Órbita Caótica

Figure 1.8 Cobweb plot for the logistic map.

A single orbit of the map g(x) = 3.86x(1-x) shows complicated behavior.

Diagrama de Bifurcação

Figure 1.6 Bifurcation diagram of $g_a(x) = ax(1-x)$.

The fixed point that exists for small values of a gives way to a period-two orbit at the "bifurcation point" a=3, which in turn leads to more and more complicated orbits for larger values of a. Notice that the fixed point is only plotted while it is a sink. When the period-two orbit appears, the fixed point is no longer plotted because it does not attract orbits. See Lab Visit 12 for laboratory versions.

Diagramas de Bifurcação Ampliados

Figure 1.7 Magnifications of the logistic bifurcation diagram.

(a) Horizontal axis is $3.4 \le a \le 4.0$ (b) Horizontal axis is $3.82 \le a \le 3.86$.

Diagrama de Bifurcação

Ott Chaos ...

Mapeamento de ordem 3

Figure 1.9 Graphs of the third iteration $g^3(x)$ of the logistic map $g_a(x) = ax(1-x)$.

Three different parameter values are shown: (a) a = 3.82 (b) a = 3.84 (c) a = 3.86.

Mapeamentos com Ordens Diferentes

Alligood et al. Chaos

Figure 1.10 Graphs of compositions of the logistic map.

(a) the logistic map G(x) = 4x(1-x). (b) The map $G^2(x)$. (c) The map $G^3(x)$.

6- Sensibilidade às Condições Iniciais

Definição: x_o é sensivel às condições iniciais se existir uma distância d tal que pontos arbitrariamente próximos de x_0 são mapeados para distâncias maiores que d:

$$\exists d > 0 \mid x \in N_{\varepsilon}(x_0) \Rightarrow \mid f^k(x) - f^k(x_0) \mid \ge d$$

Exemplo de Sistema Sensível às Condições Iniciais

Figure 1.11 The 3x mod 1 map.

(a) The map $f(x) = 3x \pmod{1}$ is discontinuous on the unit interval. (b) When the points 0 and 1 are identified, turning the unit interval into a circle, the map is continuous. The inner dashed semicircle is the subinterval [0, 1/2], and the outer dashed curve is its image under the map. If x and y are two points that are close together on the circle, then f(x) and f(y) will be 3 times further apart than x and y.

May (1976) (the logistic equation):

$$x_{t+1} = \mathbf{k} x_t (1 - x_t).$$

Sensibilidade às Condições Iniciais

7- Itinerários

Órbitas do Mapa Logístico com a = 4 $x_{n+1} = 4x_n (1-x_n)$

Cada intervalo assinalado contêm os pontos cuja órbita passa pela sequência do seu nome.

Regra

 $LR \rightarrow LRR$, LRL (número impar de R)

Itinerários

Figure 1.12 Schematic itineraries for G(x) = 4x(1-x).

The rules: (1) an interval ending in L splits into two subintervals ending in LL and LR if there is an even number of R's; the order is switched if there are an odd number of R's, (2) an interval ending in R splits into two subintervals ending in RL and RR if there are an even number of R's; the order is switched if there are an odd number of R's

Transições

Alligood et al. Chaos

Figure 1.13 Transition graph for the logistic map G(x) = 4x(1-x).

The leftmost arrow tells us that f maps the interval L over itself, i.e., that f(L) contains L. The top arrow says that f(L) contains R, and so forth.