

MA0301 Elementary discrete mathematics Spring 2018

Norwegian University of Science and Technology Department of Mathematics

Solutions — exercise 1

Section 2.1

- 3 Let p, q be the primitive statements for which the implication $p \to q$ false. Determine the truth values for each of the following:
 - **b)** $\neg p \lor q$

The implication $p \to q$ is only false when p is True and q is False. Thus, $\neg p \lor q$ is False (or 0).

d)
$$\neg q \rightarrow \neg p$$

This is just the same staten written as a contrapositive. $\neg q = \text{True}$ and $\neg p = \text{False}$. Thus, the statement is False (or 0).

- 8 Construct a truth table for each of the following compounded statements, where p, q, r denote primitive statements.
 - a) $(p \rightarrow q) \rightarrow (q \rightarrow p)$

p	q	$(p \to q)$	$(q \to p)$	$(p \to q) \to (q \to p)$
F	F	T	T	T
F	T	T	F	F
T	F	F	T	T
T	T	T	T	T

b)
$$[p \land (p \rightarrow q)] \rightarrow q$$

p	q	$(p \to q)$	$[p \wedge (p \to q)]$	$[p \land (p \to q)] \to q$
F	F	T	F	T
F	T	T	F	T
T	F	F	F	T
T	T	T	T	T

c)
$$(p \wedge q) \rightarrow p$$

\overline{p}	q	$(p \wedge q)$	$(p \land q) \to p$
F	F	F	T
F	T	F	T
T	F	F	T
T	T	T	T

d)
$$q \leftrightarrow (\neg p \lor \neg q)$$

p	q	$(\neg p \vee \neg q)$	$q \leftrightarrow (\neg p \vee \neg q)$
\overline{F}	F	T	F
F	T	T	F
T	F	T	F
T	T	F	F

e)
$$[(p \rightarrow q) \land (q \rightarrow r)] \rightarrow (p \rightarrow r)$$

p	q	r	$(p \to q)$	$(p \to r)$	$(q \to r)$	$[(p \to q) \land (q \to r)] \to (p \to r)$
\overline{F}	F	F	T	T	T	\overline{F}
F	F	T	T	T	T	T
F	T	F	T	T	F	T
F	T	T	T	T	T	T
T	F	F	F	F	T	T
T	F	T	F	T	F	T
T	T	F	T	F	T	F
T	T	T	T	T	T	T

The integer variables m and n are assigned the values 3 and 8, respectively, during the execution of a program. Each of the following *successive* statements is then encountered during program execution. What are the values of m, n after each of these statements are encountered?

a) if
$$n-m=5$$
 then $n:=n-2$ end if

$$m = 3$$
 and $n = 8 - 2 = 6$

b) if
$$(2*m=n)$$
 and $(\lfloor n/4 \rfloor = 1)$ then $n:=4*m-3$

end if

$$m = 3$$
 and $n = 4 \cdot 3 - 3 = 9$.
c)
if $(n < 8)$ or $(\lfloor m/2 \rfloor = 3)$ then
 $n := 4 * m - 3$
else
 $m = 2 * n$

end if

Neither of the conditions are true. Thus, $m = 2 \cdot 9 = 18$ and n = 9.

d)
$$\begin{aligned} & \text{if } (m < 20) \text{ and } (\lfloor n/6 \rfloor = 1) \text{ then} \\ & m := m-n-5 \\ & \text{end if} \end{aligned}$$

Both conditions holds, thus m = 18 - 9 - 5 = 4 and n = 9.

e) if
$$((n=2*m) \text{ or } (\lfloor n/2 \rfloor = 5))$$
 then $n:=4*m-3$ end if

Neither conditions holds, thus m = 4 and n = 9.

Section 2.2

6 Negate each of the following and simplify the resulting statement

b)
$$(p \wedge q) \rightarrow r$$

$$\neg [(p \land q) \to r] = p \land q \land \neg r$$

As $\neg(a \implies b) = a \land \neg b$ I am not sure how to expand on the calculations..

c)
$$p \lor q \lor (\neg p \land \neg q \land r)$$

$$\neg [p \lor q \lor (\neg p \land \neg q \land r)] = \neg p \land \neg q \land \neg (\neg p \land \neg q \land r)$$
$$= \neg p \land \neg q \land (p \lor q \lor \neg r)$$
$$= \neg p \land \neg q \land \neg r$$

Used DeMorgans laws in the first equality and removed inverses in the second.

 $\overline{7}$ a) If p, q are primitive statements, prove that

$$(\neg p \lor q) \land (p \land (p \land q)) \leftrightarrow (p \land q)$$

$$(\neg p \lor q) \land (p \land (p \land q)) \Leftrightarrow (\neg p \lor q) \land ((p \land p) \land q) \qquad \text{Commutative laws}$$

$$\Leftrightarrow (\neg p \lor q) \land (p \land q) \qquad \text{Idempotent laws}$$

$$\Leftrightarrow [(\neg p \land p) \lor (q \land p)] \land q \qquad \text{Distributive laws}$$

$$\Leftrightarrow [F_0 \lor (q \land p)] \land q \qquad \text{Inverse laws}$$

$$\Leftrightarrow [(q \land p)] \land q \qquad \text{Identity laws}$$

$$\Leftrightarrow p \land (q \land q) \qquad \text{Commutative laws}$$

$$\Leftrightarrow p \land (q \land q) \qquad \text{Commutative laws}$$

$$\Leftrightarrow (p \land q) \qquad \text{Idempotent laws}$$

Alternatively the statement follows from the table below

p	q	$(\neg p \vee q)$	$(p \land (p \land q))$	$(\neg p \lor q) \land (p \land (p \land q))$	$(p \wedge q)$
\overline{F}	F	T	F	F	F
F	T	T	F	F	F
T	F	F	F	F	F
T	T	T	T	T	T

b) Write the dual of the logical equivalence in a).

The dual of a compound proposition that contains only the logical operators \vee , \wedge , and \neg is the compound proposition obtained by replacing each \vee by \wedge , each \wedge by \vee , each T_0 by T_0 , and each T_0 by T_0

$$(\neg p \land q) \lor (p \land (p \land q)) \leftrightarrow (p \lor q).$$

18 Give the reasons for earch step in the following simplifications of compound statements

a)
$$[(p \lor q) \land (p \lor \neg q)] \lor q$$
 Reasons
$$\Leftrightarrow [p \lor (q \land \neg q)] \lor q$$
 Idempotent & Commutative & Distributive laws
$$\Leftrightarrow (p \lor F_0) \lor q$$
 Inverse Laws
$$\Leftrightarrow p \lor q$$
 Identity laws