

Testing Cert. # 1255.01 W66 N220 Commerce Court ● Cedarburg, WI 53012 ● USA

Phone: 262.375.4400 • Fax: 262.375.4248 www.lsr.com

ENGINEERING TEST REPORT # 309294 LSR Job #:C-740

Compliance Testing of:

AWID RFID 125kHz Badge reader

Test Date(s):

October 27th, 28th, 30th and November 2nd 2009

Prepared For:

1550 Innovation Way Hartford, WI 53027

In accordance with:

Federal Communications Commission (FCC)
Part 15, Subpart C, Section 15.209, and 15.109
Industry Canada (IC)

RSS 210 Annex 2 and section 2.7

General Operating Requirements for Low-Power License-Exempt Transceivers

This Test Report is issued under the Authority of:

Ryan M. Urness, EMC Laboratory Manager

Signature: The Date: November 6, 2009

Test Report Reviewed by:

Teresa A. White, Quality Manager

Signature: Inthe a white

Date: November 6, 2009

Tested by:

Khairul Aidi Zainal, Senior EMC Engineer

Signature:

Date: November 6, 2009

This Test Report may not be reproduced, except in full, without written approval of LS Research, LLC.

TABLE OF CONTENTS (page 1 of 2)

Description	Page
EXHIBIT 1: INTRODUCTION	
1.1 Scope	4
1.2 Normative References	5
1.3 LS Research, LLC Test Facility	6
1.4 Location of Testing	6
1.5 Test Equipment Utilized	6
EXHIBIT 2: PERFORMANCE ASSESSMENT	
2.1 Client Information	7
2.2 Equipment Under Test (EUT) Information	7
2.3 Associated Antenna Description	7
2.4 EUT's Technical Specifications	8
2.5 Product Description	9
·	
EXHIBIT 3: EUT OPERATING CONDITIONS & CONFIGURAT	TIONS DURING
TESTS	
3.1 Climate Test Conditions	10
3.2 Applicability & Summary of EMC Emission Test Results	10
3.3 Modifications Incorporated in the EUT for Compliance Pu	rposes 10
3.4 Deviations & Exclusions from Test Specifications	10
EXHIBIT 4: DECLARATION OF CONFORMITY	11
EXHIBIT 5: RADIATED EMISSIONS TESTING TRANSMIT AN	D RECEIVE
5.1 Test Setup	12
5.2 Test Procedure	12
5.3 Test Equipment Utilized	13
5.4 Test Results	13
5.5 Calculation of Radiated Emissions Limits	14-15
5.6 Radiated Emissions Test Data Chart	16-19
5.7 Test Setup Photo(s) – Radiated Emissions Test	20-21
5.8 Screen Captures – Radiated Emissions Test	22-26
EXHIBIT 6: CONDUCTED EMISSIONS TEST, AC POWER LII	NE TRANSMIT
AND RECEIVE.	
6.1 Test Setup	27
6.2 Test Procedure	27
6.3 Test Equipment Utilized	27
6.4 Test Results	27
6.5 FCC Limits of Conducted Emissions at the AC Mains Por	ts 28
6.6 Conducted Emissions Test Data Chart	29
6.7 Test Setup Photo(s) – Conducted Emissions Test	30
6.8 Screen Captures – Conducted Emissions Test	31
·	

Prepared For: API Healthcare	Model #:RDR-69N1AKU-API	LS Research, LLC
EUT: AWID	IC: n/a at present	Template: 15.209 - v1 10-22-09
Report #:309294	FCC ID #: W7N-PROXAW01	Page 2 of 39

TABLE OF CONTENTS (Page 2 of 2)

Description	Page
EXHIBIT 7: OCCUPIED BANDWIDTH	
7.1 Limits	32
7.2 Method of Measurements	32
7.3 Test Data	32
7.4 Screen Captures – Occupied Bandwidth	33
EXHIBIT 8: BAND-EDGE MEASUREMENT	
8.1 Test Criterion	34
8.2 Screen Captures	34-36
APPENDICES	
APPENDIX A: TEST EQUIPMENT LIST	37
APPENDIX B: TEST STANDARDS – RADIO	38
APPENDIX C: UNCERTAINTY STATEMENT	39

Prepared For: API Healthcare	Model #:RDR-69N1AKU-API	LS Research, LLC
EUT: AWID	IC: n/a at present	Template: 15.209 - v1 10-22-09
Report #:309294	FCC ID #: W7N-PROXAW01	Page 3 of 39

EXHIBIT 1. INTRODUCTION

1.1 <u>SCOPE</u>

References:	FCC Part 15, Subpart C, Section 15.209	
Title:	Telecommunication – Code of Federal Regulations,	
	CFR 47, Part 15	
Purpose of Test:	To gain FCC Certification Authorization for Low-Power	
	License-Exempt Transmitters.	

References:	FCC Part 15, Subpart B, Section 15.109	
Title:	Telecommunication – Code of Federal Regulations,	
	CFR 47, Part 15	
Purpose of Test:	To gain FCC Certification Authorization for a Digital Device	
	or a Non-Intentional Radiator.	

References:	RSS 210 Annex 2	
Title:	Low-power License-exempt Radiocommunication Devices	
	(All Frequency Bands): Category I equipment.	
Purpose of Test:	To gain IC Certification Authorization for Low-Power	
	License-Exempt Transmitters.	

References:	RSS GEN	
Title:	General requirements and Information for the Certification	
	of Radiocommunication Equipment.	
Purpose of Test:	To gain IC Certification Authorization for Low-Power	
	License-Exempt Transmitters.	

Test Procedures:	Both conducted and radiated emissions measurements were conducted in accordance with American National Standards Institute ANSI C63.4 – American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.	
Environmental Classification:	Commercial, Industrial or BusinessResidential	

Prepared For: API Healthcare	Model #:RDR-69N1AKU-API	LS Research, LLC
EUT: AWID	IC: n/a at present	Template: 15.209 - v1 10-22-09
Report #:309294	FCC ID #: W7N-PROXAW01	Page 4 of 39

1.2 NORMATIVE REFERENCES

Publication	Year	Title
47 CFR, Parts 0-15 (FCC)	2008	Code of Federal Regulations - Telecommunications
RSS 210 Annex 2	2007	Low-power License-exempt Radiocommunication Devices (All Frequency Bands): Category I equipment.
RSS GEN	2007	General requirements and information for the certification of Radiocommunication Equipment.
ANSI C63.4	2009	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
CISPR 16-1-1	2006-03 A1: 2006-09 A2: 2007-07	Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-1: Measuring Apparatus.
CISPR 16-2-1	2003 A1: 2004-04 A2: 2007-07	Specification for radio disturbance and immunity measuring apparatus and methods. Part 201: Conducted disturbance measurement.

Prepared For: API Healthcare	Model #:RDR-69N1AKU-API	LS Research, LLC
EUT: AWID	IC: n/a at present	Template: 15.209 - v1 10-22-09
Report #:309294	FCC ID #: W7N-PROXAW01	Page 5 of 39

1.3 LS Research, LLC TEST FACILITY

LS Research, LLC is accredited by A2LA (American Association for Laboratory Accreditation) to conform to ISO/IEC 17025, 2005 "General Requirements for the Competence of Calibration and Testing Laboratories".

LS Research, LLC's scope of accreditation includes all test methods listed herein, unless otherwise noted. A copy of the accreditation may be accessed on our web site: www.lsr.com. Accreditation status can be verified at A2LA's web site: www.a2la2.net.

1.4 LOCATION OF TESTING

All testing was performed at LS Research, LLC, W66 N220 Commerce Court, Cedarburg, Wisconsin, 53012 USA, utilizing the facilities listed below, unless otherwise noted.

List of Facilities Located at LS Research, LLC:

- Compact Chamber
- Semi-Anechoic Chamber
- Open Area Test Site (OATS)

1.5 <u>TEST EQUIPMENT UTILIZED</u>

A complete list of equipment utilized in testing is provided in Appendix A of this test report. Calibration dates are indicated in Appendix A. All test equipment is calibrated in accordance with A2LA standards.

Prepared For: API Healthcare	Model #:RDR-69N1AKU-API	LS Research, LLC
EUT: AWID	IC: n/a at present	Template: 15.209 - v1 10-22-09
Report #:309294	FCC ID #: W7N-PROXAW01	Page 6 of 39

EXHIBIT 2. PERFORMANCE ASSESSMENT

2.1 **CLIENT INFORMATION**

Manufacturer Name:	API Healthcare Corporation.
Address:	1550 Innovation Way
Address:	Hartford, WI 53027
Contact Person:	Gary Sutcliffe
Contact Phone:	262.670.2789
Contact Email:	Gary.sutcliffe@apihealthcare.cc

<u>EQUIPMENT UNDER TEST (EUT) INFORMATION</u> The following information has been supplied by the applicant. 2.2

Product Name:	AWID RFID Badge reader
Model Number:	RDR-69N1AKU-API
Serial Number:	N/A

ASSOCIATED ANTENNA DESCRIPTION 2.3

A proprietary multiple turn loop antenna tuned to 125 kHz.

Prepared For: API Healthcare	Model #:RDR-69N1AKU-API	LS Research, LLC
EUT: AWID	IC: n/a at present	Template: 15.209 - v1 10-22-09
Report #:309294	FCC ID #: W7N-PROXAW01	Page 7 of 39

2.4 <u>EUT'S TECHNICAL SPECIFICATIONS</u>

Additional Information:

Frequency Range (in MHz)	125 kHz/0.125 MHz
RF Power in Watts (Near-field measurement at	Radio board outside keypad enclosure: 0.000026 Watts
3 meters)	Radio board Inside keypad enclosure : 0.000003 Watts
Conducted Output Power (in dBm)	N/A
EIRP (in mW)	N/A
Field Strength at 3 meters	AWID outside host enclosure: 79.3 dBuV/m
	AWID Inside host enclosure : 70.0 dBuV/m
Occupied Bandwidth (99% BW)	460 Hz
Type of Modulation	ASK
Emission Designator	A1D
Transmitter Spurious (worst case) at 3 meters	44.1 dBuV/m at 375 kHz
Receiver Spurious (worst case) at 3 meters	44.1 dBuV/m at 375 kHz (EUT is in transmit and receive
	mode simultaneously)
Frequency Tolerance %, Hz, ppm	50 ppm
Microprocessor Model # (if applicable)	PIC18F2450
	PIC16F716
EUT will be operated under FCC Rule Part(s)	CFR 47 part 15.209
Antenna Information:	
a) Antenna Type	Multiple turn square loop
b) Detachable/Non-Detachable	Non-detachable
c) Antenna Gain (in dBi)	Not available
Modular Filing	
Portable or Mobile?	Portable

Prepared For: API Healthcare	Model #:RDR-69N1AKU-API	LS Research, LLC
EUT: AWID	IC: n/a at present	Template: 15.209 - v1 10-22-09
Report #:309294	FCC ID #: W7N-PROXAW01	Page 8 of 39

2.5 PRODUCT DESCRIPTION

The API Healthcare AWID badge reader is an RFID product operating at 125 kHz. It is a modular product that may be incorporated into different API Healthcare host consoles. The AWID Badge reader will only be installed in products under the control of API Healthcare Corporation. It is used exclusively with API access point control applications.

The AWID rely on a "back-scatter" modulation technique. The RF field produced by the AWID is actually supplying power to the card that is being read. The RF section of the AWID is powered by the host interface with 5VDC. Communications with the host is via digital interface lines connecting the AWID microprocessor and the host microprocessor.

The AWID badge reader is not self sufficient and cannot function without the use of an API host unit. API healthcare will always have control over the installation of the AWID badge reader module.

Prepared For: API Healthcare	Model #:RDR-69N1AKU-API	LS Research, LLC
EUT: AWID	IC: n/a at present	Template: 15.209 - v1 10-22-09
Report #:309294	FCC ID #: W7N-PROXAW01	Page 9 of 39

EXHIBIT 3. EUT OPERATING CONDITIONS & CONFIGURATIONS DURING TESTS

3.1 CLIMATE TEST CONDITIONS

Temperature:	71° Fahrenheit
Humidity:	38%
Pressure:	732 mmHg

3.2 APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS

FCC Paragraph	Test Requirements	Compliance (yes/no)
FCC: 15.107 IC: RSS GEN 7.2.2	Power Line Conducted Emissions Measurements	Yes
IC: RSS GEN 4.6	Occupied Bandwidth	Yes
FCC : 15.109 IC : RSS 210 2.6	Un-Intentional Radiated Emissions	Yes
FCC : 15.209 (a) IC : RSS 210 A2	Maximum RF Output Power	Yes
FCC : 15.209 (c) IC : RSS 210 A2	Maximum RF Spurious Emissions	Yes
FCC: 15.109 & 15.205 IC: RSS 210 A2 and 2.6	Transmitter General Radiated Emissions	Yes
FCC: 15.209 (b)	Band edge requirements	Yes

3.3	MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES		
	None None	Yes (explain below)	
		_ , ,	

The host unit that powers the AWID (EUT) is powered by a switch-mode supply with POE (worst case test situation). This system was installed with a clamp-on ferrite suppressor as defined in the TA500 installation manual pages 14 through 18.

Prepared For: API Healthcare	Model #:RDR-69N1AKU-API	LS Research, LLC
EUT: AWID	IC: n/a at present	Template: 15.209 - v1 10-22-09
Report #:309294	FCC ID #: W7N-PROXAW01	Page 10 of 39

EXHIBIT 4.DECLARATION OF CONFORMITY

The EUT was found to **MEET** the requirements as described within the specification of FCC Title 47, CFR Part 15.209, and Industry Canada RSS-210, Issue 7 (2007), Section 2.6 for a Low-Power License-Exempt Transmitters, as well as the specification of FCC Title 47, CFR Part 15.109, and Industry Canada RSS-210, Issue 7 (2007), Section 7 for non-intentional radiators.

If some emissions are seen to be within 3 dB of their respective limits:

As these levels are within the tolerances of the test equipment and site employed, there is a possibility that this unit, or a similar unit selected out of production may not meet the required limit specification if tested by another agency.

LS Research, LLC certifies that the data contained herein was taken under conditions that meet or exceed the requirements of the test specifications. The results in this Test Report apply only to the item(s) tested on the above-specified dates. Any modifications made to the EUT subsequent to the indicated test date(s) will invalidate the data herein, and void this certification.

Prepared For: API Healthcare	Model #:RDR-69N1AKU-API	LS Research, LLC
EUT: AWID	IC: n/a at present	Template: 15.209 - v1 10-22-09
Report #:309294	FCC ID #: W7N-PROXAW01	Page 11 of 39

EXHIBIT 5. RADIATED EMISSIONS TEST FOR TRANSMIT AND RECEIVE.

5.1 Test Setup

The test setup was assembled in accordance with Title 47, CFR FCC Part 15, RSS GEN and ANSI C63.4. The AWID RFID badge reader, henceforth referred to as the EUT, was placed on an 80cm high non-conductive pedestal, centered on a flush mounted 2-meter diameter turntable inside a 3 meter Semi-Anechoic, FCC listed Chamber. The EUT was tested in two setups:

- 1. The AWID RFID badge reader outside of the host enclosure.
- 2. The AWID RFID badge reader inside of the host enclosure.

The first setup variant is for modular testing while the second depicts normal usage/operation. The EUT operates on a single channel at 125 kHz.

The host (TA500) used in the test was chosen because it has many of the features that would be incorporated in a typical host reader. It was configured with a configuration that may have the most interaction with the AWID badge reader under test. The host enclosure draws power via POE (power over Ethernet) which in turn powers the EUT. The host was exercised by activating communication through the ethernet connection. It was tested to class B limits for residential and light industrial applications.

For the test, the AWID was in normal configuration where it continuously looks for a badge. Initial measurements were performed at 3m separation to identify the emissions below 30MHz and all identified emissions were then re-measured at a 10m separation distance.

Since the highest clock frequency present in the system is 24MHz, spurious emissions investigation will go up to 1GHz.

5.2 <u>Test Pr</u>ocedure

Radiated RF measurements were performed on the EUT in a 3 meter Semi-Anechoic, FCC listed Chamber. The frequency range from 10 kHz to 1000 MHz was scanned and investigated. In cases where emissions below 30MHz were found, measurements of those emissions were repeated on the OATS at a 10m measurement distance. The radiated RF emission levels were manually noted at the various fixed degree settings of azimuth on the turntable and antenna height. The EUT was placed on a non-conductive pedestal in the 3 meter Semi-Anechoic Chamber, with the antenna mast placed such that the antenna was 3 meters from the EUT. A Biconical Antenna was used to measure emissions from 30 MHz to 300 MHz, and a Log Periodic Antenna was used to measure emissions from 300 MHz to 1000 MHz. For emissions below 30 MHz, an active loop antenna was used. This loop antenna was set at a height of 1m above the conducting ground plane and it was rotated about its vertical and horizontal axes (while utilizing the turntable to rotate the EUT) in order to measure the maximum radiated RF emissions. The maximum radiated RF emissions above 30MHz were found by raising and lowering the antenna between 1 and 4 meters in height, using both horizontal and vertical antenna polarities and rotating the EUT using the turntable.

The EUT was rotated along three orthogonal axes during the investigations to find the highest emission levels. In addition, the fundamental power and frequency was monitored while the EUT supply voltage was varied ±15% of the nominal (102 VAC and 138 VAC).

Prepared For: API Healthcare	Model #:RDR-69N1AKU-API	LS Research, LLC
EUT: AWID	IC: n/a at present	Template: 15.209 - v1 10-22-09
Report #:309294	FCC ID #: W7N-PROXAW01	Page 12 of 39

The receiver was operated with the resolution bandwidth set at 200 Hz for measurements between 9kHz and 150kHz, 9kHz for measurements between 150kHz and 30MHz and 120kHz for measurements between 30MHz and 1000 MHz.

Due to the nature of the device, while in normal operation, the emissions of the transmitter and receiver can be measured simultaneously. Proceeding graphs and data in this report are that of both TRANSMIT and RECEIVE modes.

5.3 <u>Test Equipment Utilized</u>

A list of the test equipment and antennas utilized for the Radiated Emissions test can be found in Appendix A. This list includes calibration information and equipment descriptions. All equipment is calibrated and used according to the operation manuals supplied by the manufacturers. All calibrations of the antennas used were performed at an N.I.S.T. traceable site. In addition, the Connecting Cables were measured for losses using a calibrated Signal Generator and an Agilent E4445A/N9039A EMI System. The resulting correction factors and the cable loss factors from these calibrations were entered into the EMI Receiver database. As a result, the data taken from the EMI Receiver accounts for the antenna correction factor as well as cable loss or other corrections, and can therefore be entered into the database as a corrected meter reading. The EMI Receiver was operated with resolution bandwidths as prescribed in ANSI C63.4.

5.4 Test Results

The EUT was found to **MEET** the Radiated Emissions requirements of Title 47 CFR, FCC Part 15.209 for a Low-Power License-Exempt transmitter [Canada RSS-210, Issue 7 (2007), section 2.6]. The frequencies with significant RF signal strength were recorded and plotted as shown in the Data Charts and Graphs.

The voltage variation test revealed that the EUT showed no variation in power and frequency. The power was then cycled On/Off to observe system response. No unusual response was observed, the emission characteristics were within compliant parameters, and the system returned to the same state of operation as before the power cycle.

Prepared For: API Healthcare	Model #:RDR-69N1AKU-API	LS Research, LLC
EUT: AWID	IC: n/a at present	Template: 15.209 - v1 10-22-09
Report #:309294	FCC ID #: W7N-PROXAW01	Page 13 of 39

5.5 CALCULATION OF RADIATED EMISSIONS LIMITS

Transmitter Limits

The maximum peak output power of an intentional radiator in the 9-490 kHz band, as specified in Title 47 CFR 15.209 and RSS 210 section 2.7, is calculated in a formula as described below. The harmonic and spurious RF emissions, with appropriate receiver bandwidths, as specified in 15.209 (c) and section 2.7 of RSS 210, shall be below the measured power of the desired signal, and must also meet the requirements described in 15.205(c) for FCC and table 1 of RSS 210 where applicable.

The following table depicts the general radiated emission limits. These limits are obtained from Title 47 CFR, Part 15.209, for radiated emissions measurements and are comparable to that of table 3 in RSS 210 section 2.7. These limits were applied to the fundamental emission of the intentional radiator as well as all other significant spurious signals.

Frequency (MHz)	Limit μV/m	Limit (dBµV/m)	Measurement Distance (m)
0.009-0.490	2400/F (kHz)	Note 1	300
0.490-1.705	24000/F (kHz)		30
1.705-30.0	30		30
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
960-24,000	500	54.0	3

Note 1: Sample calculation for the Fundamental Emission of a transmitter:

For Example:

If a transmitter operates at a fundamental frequency of 25 kHz, the emission limit may be calculated:

 $2400/F = 2400/25 = 96.0 \mu V/m$ if measured at 300 meters separation.

Expressed in decibels: $20 \log_{10} (96.0) = 39.64 \, dB_{\mu}V/m$ at $300 \, m$ separation.

At 3 meters separation, the limit may be extrapolated by the addition of 40 dB/decade per 47CFR 15.31(f)(2) Limit for the fundamental emission = $39.64 \text{ dB}_{\mu}\text{V/m} + 80 \text{ dB} = 119.6 \text{ dB/}{\mu}\text{V/m}$ at 3 meters

Sample conversion from field strength μ V/m to dB μ V/m:

 $dB\mu V/m = 20 log_{10} (100)$ = 40 dB $\mu V/m$ (from 30-88 MHz)

For measurements made at 1.0 meter, a 9.5 dB correction may be invoked.

960 MHz to 10,000 MHz $500\mu V/m$ or 54.0 dB/ $\mu V/m$ at 3 meters 54.0 + 9.5 = 63.5 dB/ $\mu V/m$ at 1 meter

For measurements made at 0.3 meter, a 20 dB correction may be invoked.

960 MHz to 10,000 MHz $500\mu\text{V/m or }54.0~\text{dB/}\mu\text{V/m at }3~\text{meters}$ $54.0~+~20~=~74~\text{dB/}\mu\text{V/m at }0.3~\text{meters}$

Prepared For: API Healthcare	Model #:RDR-69N1AKU-API	LS Research, LLC
EUT: AWID	IC: n/a at present	Template: 15.209 - v1 10-22-09
Report #:309294	FCC ID #: W7N-PROXAW01	Page 14 of 39

Receiver Limits

The following table depicts the Class $\underline{\mathbf{B}}$ limits for an unintentional radiator. These limits are obtained from Title 47 CFR, Part 15.109(a) and RSS 210 section 2.6, for radiated emissions measurements.

Frequency (MHz)	3 m Limit (μV/m)	3 m Limit (dBμV/m)
30-88	100	40.0
88-216	150	43.5
216-960	200	46.0
960-10,000	500	54.0

Sample conversion from field strength μ V/m to dB μ V/m:

 $dB\mu V/m = 20 log_{10} (3m limit)$

from 30-88 MHz for example: $dB\mu V/m = 20 log_{10} (100)$

 $40.0 \text{ dB}\mu\text{V/m} = 20 \log_{10}(100)$

Prepared For: API Healthcare	Model #:RDR-69N1AKU-API	LS Research, LLC
EUT: AWID	IC: n/a at present	Template: 15.209 - v1 10-22-09
Report #:309294	FCC ID #: W7N-PROXAW01	Page 15 of 39

5.6 RADIATED EMISSIONS DATA CHART

3 Meter Measurements of Electromagnetic Radiated Emissions Test Standard: 47CFR, Part 15.209. RSS 210 section 2.7 Frequency Range Inspected: 9 kHz to 1000 MHz

A C (A D 1 1 1 1 1 1 1 1 1								
Manufacturer:		API Healthcare						
Date(s) of Test:	Octob	October 27 th , 28 th , 30 th and November 2 nd 2009						
Test Engineer(s):	Khair	ul Aidi Zainal						
Voltage:	5VDC	,						
Operation Mode:	Norm	al operation. Simultane	ous tr	ansmi	and receive			
Environmental	Temp	erature: 20 – 25° C						
Conditions in the Lab:	Relat	ive Humidity: 30 – 60 %	6					
EUT Power:		Single PhaseVAC	,		3 Phase	VAC		
EUT Power.		Battery		V	Other: TA500 host			
EUT Placement:		80cm non-conductive	table		10cm Spacers			
EUT Test Location:	1	3 Meter Semi-Anecho	ic	V	10m OATS			
EUT Test Location.	1	FCC Listed Chamber		V	IUIII UATS			
Measurements:		Pre-Compliance	Pre-Compliance			Final		
Detectors Used:		Peak	$\sqrt{}$	Quas	i-Peak	Average		

Prepared For: API Healthcare	Model #:RDR-69N1AKU-API	LS Research, LLC
EUT: AWID	IC: n/a at present	Template: 15.209 - v1 10-22-09
Report #:309294	FCC ID #: W7N-PROXAW01	Page 16 of 39

The following table depicts the level of significant *spurious* radiated RF emissions found for both *transmit* and receive mode:

1. AWID outside of host enclosure.

f(Mhz)	ANT	EUT	HEIGHT	AZIMUTH	PK	QP	AVG	LIMIT	MARGIN
			(meter)	(°)	dBuV/m	dBuV/m	dBuV/m	dBuV/m	dB
54.1	V	F	1.00	0	37.9	34.2	28.8	40.0	5.8
69.0	٧	S	1.00	322	37.4	33.0	26.2	40.0	7.0
108.8	V	F	1.00	100	42.8	39.4	33.2	43.0	3.6
108.8	V	V	1.06	277	41.8	38.1	31.9	43.0	4.9
175.6	Н	F	1.81	358	41.9	39.7	38.5	43.0	3.3
175.6	V	F	2.87	309	36.0	33.6	31.0	43.0	9.4
191.6	Н	F	1.67	0	41.5	39.4	38.5	43.0	3.6
191.6	V	F	1.00	70	43.0	40.9	40.6	43.0	2.1
191.6	V	V	1.00	66	41.9	38.9	37.4	43.0	4.1
223.5	Н	F	1.51	0	40.5	37.7	36.2	46.0	8.3
223.5	Н	V	1.47	344	43.1	40.7	39.5	46.0	5.3
287.4	Н	S	1.00	0	38.6	31.7	28.1	46.0	14.3
303.3	Н	F	1.00	242	39.1	36.2	35.0	46.0	9.8
335.3	Н	S	1.00	126	38.3	35.2	33.9	46.0	10.8
367.2	Н	٧	1.00	119	39.0	37.0	35.8	46.0	9.0

2. AWID inside of host enclosure.

f(Mhz)	ANT	EUT	HEIGHT	AZIMUTH	PK	QP	AVG	LIMIT	MARGIN
			(meter)	(°)	dBuV/m	dBuV/m	dBuV/m	dBuV/m	dB
31.9	V	S	1.00	0	37.5	34.9	32.2	40.0	5.1
47.9	V	V	1.00	206	36.9	34.1	30.1	40.0	5.9
54.2	V	V	1.00	200	35.2	31.2	25.5	40.0	8.8
108.8	V	V	1.00	98	38.2	34.3	28.8	43.0	8.7
108.8	V	F	1.00	149	38.9	35.6	30.6	43.0	7.4
143.7	V	V	1.00	260	37.5	34.8	33.2	43.0	8.2
191.6	Н	V	1.64	224	37.4	33.9	32.5	43.0	9.1
191.6	Н	F	1.67	19	38.5	36.8	35.7	43.0	6.2
223.5	Н	V	1.47	193	38.2	34.3	32.8	46.0	11.7
223.5	Н	S	1.47	315	37.0	33.0	31.5	46.0	13.0
287.4	Н	V	1.18	178	41.7	37.8	36.0	46.0	8.2
291.4	Н	V	1.00	0	37.7	34.1	23.8	46.0	11.9
303.3	Н	F	1.00	0	39.2	37.8	36.8	46.0	8.2
335.2	Н	V	1.00	205	37.7	35.2	33.0	46.0	10.8
367.2	V	٧	1.43	215	39.1	37.2	34.9	46.0	8.8
367.2	Н	S	1.00	40	39.5	37.5	35.4	46.0	8.5

- 1) An Average and quasi peak Detector function was used in measurements below 30 MHz, a Quasi-Peak Detector was used in measurements between 30 MHz and 1 GHz.
- 2) Measurement buried within receiver system noise floor. Data reported is that of the noise floor at the particular frequencies.
- 3) Measurements below 30MHz were performed at 3m and 10m separation distance. The limits were corrected to reflect the change in measurement distance.
- 4) V = Vertical, S= side, H = Horizontal, F= Flat.

Prepared For: API Healthcare	Model #:RDR-69N1AKU-API	LS Research, LLC
EUT: AWID	IC: n/a at present	Template: 15.209 - v1 10-22-09
Report #:309294	FCC ID #: W7N-PROXAW01	Page 17 of 39

RADIATED EMISSIONS DATA CHART (continued)

The following table depicts the level of significant radiated RF **fundamental and harmonic** emissions seen when the AWID OUTSIDE of the host enclosure (3m measurement):

f(MHz)	Ant	EUT	Azimuth	Peak	QP	Avg	Limit	Margin
0.125	V	S	187	79.4	79.4	79.3	105.7	26.4
0.250			Note 2	53.9	49.3	42.5	99.6	57.1
0.375	V	S	190	52.2	49.2	44.1	96.1	52
0.500			Note 2	47.3	43.4	36.3	73.6	30.2
0.625	V	S	190	46.4	42.8	36.6	71.7	28.9
0.750			Note 2	42.8	39.6	32.8	70.1	30.5
0.875	V	S	197	42.3	38.9	33.3	68.8	29.9
1.000			Note 2	40.1	36.5	29.7	67.6	31.1
1.125			Note 2	39.9	35.9	29.3	66.6	30.7
1.250			Note 2	36.8	34.2	27.4	65.7	31.5

The following table depicts the level of significant radiated RF **fundamental and harmonic** emissions seen when the AWID OUTSIDE of the host enclosure (10m measurement):

f(MHz)	Ant	EUT	Azimuth	Peak	QP	Avg	Limit	Margin
0.125	V	S	0	54.4	52.3	51.5	84.8	33.3
0.375			Note 2					
0.625			Note 2					
0.875			Note 2					

- 1) An Average and quasi peak Detector function was used in measurements below 30 MHz, a Quasi-Peak Detector was used in measurements between 30 MHz and 1 GHz.
- 2) Measurement buried within receiver system noise floor. Data reported is that of the noise floor at the particular frequencies.
- 3) Measurements below 30MHz were performed at 3m and 10m separation distance. The limits were corrected to reflect the change in measurement distance.
- 4) V = Vertical, S= side, H = Horizontal, F= Flat.
- 5) Measurement unit = dBuV/m.

Prepared For: API Healthcare	Model #:RDR-69N1AKU-API	LS Research, LLC
EUT: AWID	IC: n/a at present	Template: 15.209 - v1 10-22-09
Report #:309294	FCC ID #: W7N-PROXAW01	Page 18 of 39

The following table depicts the level of significant radiated RF **fundamental and harmonic** emissions seen when the AWID INSIDE of the host enclosure (3m measurement):

f(MHz)	Ant	EUT	Azimuth	Peak	QP	Avg	Limit	Margin
0.125	V	V	0	70.2	70.1	70.0	105.7	35.7
0.250			Note 2	53.0	49.4	42.5	99.6	57.1
0.375	٧	S	0	50.8	47.4	40.8	96.1	55.3
0.500			Note 2	46.2	43.2	36.3	73.6	30.4
0.625	V	V	0	45.3	41.6	34.9	71.7	30.1
0.750			Note 2	43.2	39.4	32.7	70.1	30.7
0.875	V	V	342	42.5	39.3	32.4	68.8	29.5
1.000			Note 2	40.0	36.4	30.0	67.6	31.2
1.125			Note 2	39.6	35.4	28.7	66.6	31.2
1.250			Note 2	38.2	34.3	27.3	65.7	31.4

The following table depicts the level of significant radiated RF **fundamental and harmonic** emissions seen when the AWID INSIDE of the host enclosure (10m measurement):

f(MHz)	Ant	EUT	Azimuth	Peak	QP	Avg	Limit	Margin
0.125	٧	V	0	46.9	44.4	41.9	84.8	42.9
0.375			Note 2					
0.625			Note 2					
0.875			Note 2					

- 1) An Average and quasi peak Detector function was used in measurements below 30 MHz, a Quasi-Peak Detector was used in measurements between 30 MHz and 1 GHz.
- 2) Measurement buried within receiver system noise floor. Data reported is that of the noise floor at the particular frequencies.
- Measurements below 30MHz were performed at 3m and 10m separation distance. The limits were corrected to reflect the change in measurement distance.
- 4) V = Vertical, S= side, H = Horizontal, F= Flat.
- 5) Measurement unit = dBuV/m.

Prepared For: API Healthcare	Model #:RDR-69N1AKU-API	LS Research, LLC
EUT: AWID	IC: n/a at present	Template: 15.209 - v1 10-22-09
Report #:309294	FCC ID #: W7N-PROXAW01	Page 19 of 39

5.7 <u>Test Setup Photo(s) – Radiated Emissions Test</u>

5.7.1 EUT outside of Host

EUT Vertical (V)

EUT Side (S)

EUT Flat (F)

Prepared For: API Healthcare	Model #:RDR-69N1AKU-API	LS Research, LLC
EUT: AWID	IC: n/a at present	Template: 15.209 - v1 10-22-09
Report #:309294	FCC ID #: W7N-PROXAW01	Page 20 of 39

5.7.2 EUT inside of Host EUT Vertical (V)

EUT Side (S)

EUT Flat (F)

AWID configuration when inside the host.

Prepared For: API Healthcare	Model #:RDR-69N1AKU-API	LS Research, LLC
EUT: AWID	IC: n/a at present	Template: 15.209 - v1 10-22-09
Report #:309294	FCC ID #: W7N-PROXAW01	Page 21 of 39

5.8 <u>Screen Captures - Radiated Emissions Testing</u>

These screen captures represent Peak Emissions. For radiated emission measurements, a Quasi-Peak or Average detector function is utilized when measuring frequencies below 1 GHz.

The signature scans shown here are from worst-case emissions with the sense antenna in either vertical or horizontal polarity for worst case presentations.

5.8.1 EUT outside of host.

10 kHz to 150 kHz, at 3m

150 kHz-1MHz, at 3m

Prepared For: API Healthcare	Model #:RDR-69N1AKU-API	LS Research, LLC
EUT: AWID	IC: n/a at present	Template: 15.209 - v1 10-22-09
Report #:309294	FCC ID #: W7N-PROXAW01	Page 22 of 39

1 MHZ to 30 MHz, at 3m

30 MHz to 300 MHz, at 3m

Prepared For: API Healthcare	Model #:RDR-69N1AKU-API	LS Research, LLC
EUT: AWID	IC: n/a at present	Template: 15.209 - v1 10-22-09
Report #:309294	FCC ID #: W7N-PROXAW01	Page 23 of 39

300 MHz to 1000 MHz, at 3m

5.8.2 EUT inside of host.

10 kHz to 150 kHz, at 3m

Prepared For: API Healthcare	Model #:RDR-69N1AKU-API	LS Research, LLC
EUT: AWID	IC: n/a at present	Template: 15.209 - v1 10-22-09
Report #:309294	FCC ID #: W7N-PROXAW01	Page 24 of 39

150 kHz-1MHz, at 3m

1 MHZ to 30 MHz, at 3m

Prepared For: API Healthcare	Model #:RDR-69N1AKU-API	LS Research, LLC
EUT: AWID	IC: n/a at present	Template: 15.209 - v1 10-22-09
Report #:309294	FCC ID #: W7N-PROXAW01	Page 25 of 39

30 MHz to 300 MHz, at 3m

300 MHz to 1000 MHz, at 3m

Prepared For: API Healthcare	Model #:RDR-69N1AKU-API	LS Research, LLC
EUT: AWID	IC: n/a at present	Template: 15.209 - v1 10-22-09
Report #:309294	FCC ID #: W7N-PROXAW01	Page 26 of 39

EXHIBIT 6. CONDUCTED EMISSIONS TEST, AC POWER LINE TRANSMIT AND RECEIVE:

6.1 Test Setup

The test area and setup are in accordance with ANSI C63.4and with Title 47 CFR, FCC Part 15 (Industry Canada RSS-210, Issue 7, 2007). The EUT was placed on a non-conductive wooden table, with a height of 80 cm above the reference ground plane. The EUT's power cable was plugged into a 50Ω (ohm), $50/250~\mu H$ Line Impedance Stabilization Network (LISN). The AC power supply of 120V was provided via an appropriate broadband EMI Filter, and then to the LISN line input. Final readings were then taken and recorded. After the EUT was setup and connected to the LISN, the RF Sampling Port of the LISN was connected to a 10 dB Attenuator-Limiter, and then to the Agilent E4445A/N9039A EMI System. The EMCO LISN used has the ability to terminate the unused port with a 50Ω (ohm) load when switched to either L1 (line) or L2 (neutral).

6.2 Test Procedure

The EUT was investigated in normal operation mode for this portion of the testing. The appropriate frequency range and bandwidths were selected on the EMI Receiver, and measurements were made. The bandwidth used for these measurements is 9 kHz, as specified in CISPR 16-1 Section 1, Table 1, for Quasi-Peak and Average detectors in the frequency range of 150 kHz to 30MHz. Final readings were then taken and recorded.

6.3 Test Equipment Utilized

A list of the test equipment and accessories utilized for the Conducted Emissions test is provided in Appendix A. This list includes calibration information and equipment descriptions. All equipment is calibrated and used according to the operation manuals supplied by the manufacturers. Calibrations of the LISN and Limiter are traceable to N.I.S.T. All cables are calibrated and checked periodically for conformance. The emissions are measured on the Agilent E4445A/N9039A EMI System, which has automatic correction for all factors stored in memory and allows direct readings to be taken.

6.4 Test Results

The EUT was found to **MEET** the Conducted Emission requirements of FCC Part 15.207 and RSS GEN 7.2.2 Conducted Emissions for an Intentional Radiator. See the Data Charts and Graphs for more details of the test results.

Prepared For: API Healthcare	Model #:RDR-69N1AKU-API	LS Research, LLC
EUT: AWID	IC: n/a at present	Template: 15.209 - v1 10-22-09
Report #:309294	FCC ID #: W7N-PROXAW01	Page 27 of 39

6.5 FCC Limits of Conducted Emissions at the AC Mains Ports

Frequency Range	Class B Limits (dBµV)		Measuring
(MHz)	Quasi-Peak	Average	Bandwidth
0.150 -0.50 *	66-56	56-46	RBW = 9 kHz
0.5 - 5.0	56	46	VBW ≥ 9 kHz for QP
5.0 – 30	60	50	VBW = 1 Hz for Average
* The limit decrea			
logarithm of the frequency in this range.			

Prepared For: API Healthcare	Model #:RDR-69N1AKU-API	LS Research, LLC
EUT: AWID	IC: n/a at present	Template: 15.209 - v1 10-22-09
Report #:309294	FCC ID #: W7N-PROXAW01	Page 28 of 39

CONDUCTED EMISSIONS - TEST DATA CHART

Frequency Range inspected: 150 KHz to 30 MHz
Test Standard: FCC 15.207 Class B
IC RSS 210 7.2.2

	10 1100 210 71212					
Manufacturer:	API	API Healthcare				
Date(s) of Test:	Oct	ober 30 th 2009				
Test Engineer:	Kha	irul Aidi Zainal				
Voltage:	120	VAC				
Operation Mode:	Nor	Normal operation				
Environmental	Ten	Temperature: 20 – 25° C				
Conditions in the Lab:	Relative Humidity: 30 – 60 %					
Test Location:		AC mains test bench				Chamber
EUT Placed On:	$\sqrt{}$	40cm from Vertical Ground Plane		1	10cm Spacers	
EOT Flaced Off.		√ 80cm above Ground Plane			Other:	
Measurements:		Pre-Compliance		Preliminary		Final
Detectors Used:		Peak	$\sqrt{}$	Quasi-Peak	V	Average

		<u>QUASI-PEAK</u>			<u>AVERAGE</u>		
Frequency (MHz)	Line	Q-Peak Reading (dBµV)	Q-Peak Limit (dBμ V)	Quasi-Peak Margin (dB)	Average Reading (dBµV)	Average Limit (dBμ V)	Average Margin (dB)
0.466	1.0	31.5	56.6	25.1	29.0	46.6	17.6
0.598	1.0	31.9	56.0	24.1	29.4	46.0	16.6
0.864	1.0	27.1	56.0	28.9	24.6	46.0	21.4
0.930	1.0	29.9	56.0	26.1	27.2	46.0	18.8
2.130	1.0	37.3	56.0	18.7	32.2	46.0	13.8
9.450	1.0	30.5	60.0	29.5	24.1	50.0	25.9
23.130	1.0	35.7	60.0	24.3	32.8	50.0	17.2
0.466	2.0	33.2	56.6	23.4	30.7	46.6	15.9
0.599	2.0	32.3	56.0	23.7	29.6	46.0	16.4
0.998	2.0	30.7	56.0	25.3	28.4	46.0	17.6
2.130	2.0	37.3	56.0	18.7	32.7	46.0	13.3
9.570	2.0	38.4	60.0	21.6	35.3	50.0	14.7
23.130	2.0	38.0	60.0	22.0	33.7	50.0	16.3
26.610	2.0	41.1	60.0	18.9	39.2	50.0	10.8

- 1) The emissions listed are characteristic of the power supply used, and did not change by the EUT.
- 2) The EUT exhibited similar emissions when the AWID was inside the host.

Prepared For: API Healthcare	Model #:RDR-69N1AKU-API	LS Research, LLC
EUT: AWID	IC: n/a at present	Template: 15.209 - v1 10-22-09
Report #:309294	FCC ID #: W7N-PROXAW01	Page 29 of 39

6.7 <u>Test Setup Photo(s) – Conducted Emissions Test</u>

Prepared For: API Healthcare	Model #:RDR-69N1AKU-API	LS Research, LLC
EUT: AWID	IC: n/a at present	Template: 15.209 - v1 10-22-09
Report #:309294	FCC ID #: W7N-PROXAW01	Page 30 of 39

6.8 **Screen Captures – Conducted Emissions Test**

These screen captures represent Peak Emissions. For conducted emission measurements, both a Quasi-Peak detector function and an Average detector function are utilized. The emissions must meet both the Quasi-peak limit and the Average limit as described in 47 CFR 15.207 and RSS GEN 7.2.2.

Line 1

Delta

Off

Marker Select Marker

Normal

Delta

Delta Pair

Span Pair

Off

1 of 2

(Tracking Ref.

R T

36.22 dBµV

DC Coupled

Line 2

Prepared For: API Healthcare	Model #:RDR-69N1AKU-API	LS Research, LLC
EUT: AWID	IC: n/a at present	Template: 15.209 - v1 10-22-09
Report #:309294	FCC ID #: W7N-PROXAW01	Page 31 of 39

EXHIBIT 7. OCCUPIED BANDWIDTH

7.1 Limits

There are no stated limits for the occupied bandwidth for devices operating under 47CFR Part 15.209. However it is required by Industry Canada per RSS GEN 4.6

7.2 Method of Measurements

ANSI C63.4, FCC and IC standard procedures were adhered to in these measurements.

The transmitter output was placed in normal operation mode. The bandwidth of the fundamental frequency was measured via radiated measurement with the Spectrum Analyzer using RBW=200 Hz and VBW=2 kHz.

7.3 Test Data

Mode	Center Frequency (kHz)	Measured -6 dBc Occ. BW (Hz)	Measured -20 dBc Occ.Bw (Hz)
AWID outside host	125.0	240	440
AWID inside host	125.0	240	460

Prepared For:	API Healthcare	Model #:RDR-69N1AKU-API	LS Research, LLC
EUT: AWID		IC: n/a at present	Template: 15.209 - v1 10-22-09
Report #:3092	94	FCC ID #: W7N-PROXAW01	Page 32 of 39

7.4 <u>Screen Captures - OCCUPIED BANDWIDTH</u>

-20 dBc Occupied Bandwidth, AWID outside host.

-20 dBc Occupied Bandwidth, AWID inside host

Prepared For: API Healthcare	Model #:RDR-69N1AKU-API	LS Research, LLC
EUT: AWID	IC: n/a at present	Template: 15.209 - v1 10-22-09
Report #:309294	FCC ID #: W7N-PROXAW01	Page 33 of 39

EXHIBIT 8. BAND EDGE MEASUREMENT.

8.1 Test Criterion

FCC 15.209(b) requires a measurement of spurious emission levels to be no higher than the fundamental emission level, in particular at the Band-Edges where the intentional radiator operates. The operation of this device shall also be limited to the frequency band between 110 kHz and 490 kHz. No components of the fundamental emission shall be allowed outside of this band.

8.2 Screen captures.

8.2.1 AWID outside of host

Prepared For: API Healthcare	Model #:RDR-69N1AKU-API	LS Research, LLC
EUT: AWID	IC: n/a at present	Template: 15.209 - v1 10-22-09
Report #:309294	FCC ID #: W7N-PROXAW01	Page 34 of 39

Screen Capture Demonstrating Compliance at the Higher Band-Edge

8.2.2 AWID inside of host

Screen Capture Demonstrating Compliance at the Lower Band-Edge

Prepared For: API Healthcare	Model #:RDR-69N1AKU-API	LS Research, LLC
EUT: AWID	IC: n/a at present	Template: 15.209 - v1 10-22-09
Report #:309294	FCC ID #: W7N-PROXAW01	Page 35 of 39

Screen Capture Demonstrating Compliance at the Higher Band-Edge

Prepared For: API Healthcare	Model #:RDR-69N1AKU-API	LS Research, LLC
EUT: AWID	IC: n/a at present	Template: 15.209 - v1 10-22-09
Report #:309294	FCC ID #: W7N-PROXAW01	Page 36 of 39

APPENDIX A

2	Wirele Eq	ESEARCH LLC ess Product Development ulpment Calibration e: 4-Nov-2009	lype lest	: Radiated E	missions (109)		Job #	t: <u>C-740</u>
	Prepared B	Ву:	Customer:	API Healtho	care		Quote :	#: 309294
No.	Asset#	Description	Manu facturer	Model #	Serial#	Cal Date	Cal Due Date	Equipment Status
ī	aa 960077	Bicon Antenna	EMCO	931108	9702-2918	11/24/2008	11/24/2009	Active Calibration
2	aa 960078	Log Periodic Antenna	EMCO	93146	9701-4855	10/16/2009	10/16/2010	Active Calibration
3	ee 960157	3Hz-13.2GHz Spectrum Analyzer	Agilent	E4445A	MY48250225	3/17/2009	3/1//2010	Active Calibration
4	ee 960158	RF Preselecter	Agilent	N9039A	MY46520110	7/2/2009	7/2/2010	Active Calibration
5	aa 960006	Active Loop Antenna	EMCO	6502	9205-2753	9/14/2009	9/14/2011	Active Calibration
		Project En	gineer: Aidi			Quality Manage	er: Teresa	

Ż	Wireles: Fqui	SEARCH LLC Product Development pment Calibration 4-May-2009	Type Test	Radiated Emissio	nns (209)		.lab #	· (2-140)
	Prepared By:		Customer:	API Healthcare			Quote #:	309294
No	Asset#	Description	Manufacturer	Model #	Serial#	Cal Date	Cal Due Date	Equipment Status
	aa 960077	Bicon Antenna	EMCO	931108	9702-2918	11/24/2008	11/24/2009	Active Calibration
	aa 960078	Log Periodic Antenna	EMCO	93146	9701-4855	10/16/2009	10/16/2010	Active Calibration
	ee 960157	3Hz-13:20Hz Spectrum Analyzer	Agilent	E4445A.	MY40250225	3/17/2009	3/17/2010	Active Calibration
	ee 980158	RF Preselecter	Agilent	N9039A	MY48520110	7/2/2009	7/2/2010	Active Calibration
	aa 960006	Active Loop Antenna	EMCO	650.2	9205-2753	9/14/2009	9/14/2011	Active Calibration
		Project Engineer	· Aidi		_	Quality Manage	Teresa	

Prepared For: API Healthcare	Model #:RDR-69N1AKU-API	LS Research, LLC
EUT: AWID	IC: n/a at present	Template: 15.209 - v1 10-22-09
Report #:309294	FCC ID #: W7N-PROXAW01	Page 37 of 39

APPENDIX B TEST STANDARDS - CURRENT PUBLICATION DATES RADIO

			STANDARDS
STANDARD#	DATE	Am. 1	Am. 2
ANSI C63.4	2009		
ANSI C63.10	2009		
CISPR 11	2009-05		
CISPR 12	2007-05		
CISPR 14-1	2005-11	2008-11	
CISPR 14-2	2001-11	2001-11	2008-05
CISPR 16-1-1 Note 1	2006-03	2006-09	2007-07
CISPR 16-1-2 Note 1	2003	2004-04	2006-07
CISPR 22	2008-09		
CISPR 24	1997-09	2001-07	2002-10
EN 55011	2007-05		
EN 55014-1	2006		
EN 55014-2	1997		
EN 55022	2006	2007	
EN 60601-1-2	2007-03		
EN 61000-3-2	2006-05		
EN 61000-3-3	2008-12		
EN 61000-4-2	2009-05		
EN 61000-4-3	2006-07	2008-05	
EN 61000-4-4	2004		
EN 61000-4-5	2006-12		
EN 61000-4-6	2009-05		
EN 61000-4-8	1994	2001	
EN 61000-4-11	2004-10		
EN 61000-6-1	2007-02		
EN 61000-6-2	2005-12		
EN 61000-6-3	2007-02		
EN 61000-6-4	2007-02		
FCC 47 CFR, Parts 0-15,	0000		
18, 90, 95 FCC Public Notice DA 00- 1407	2008		
FCC ET Docket # 99-231			
FCC Procedures	2002		
ICES 001	2006-06		
ICES 002	2009-08		
ICES 002	2004-02		
IEC 60601-1-2 Note 1	2004-02		
IEC 61000-3-2	2007-03	2008-03	2009-02
IEC 61000-3-2		2000-03	2009-02
IEC 61000-3-3	2008-06 2008-12		
ILO 01000-4-2	2000-12	incl in	
IEC 61000-4-3	2008-04	2006	

			Am.
STANDARD#	DATE	Am. 1	2
IEC 61000-4-4	2004-07		
IEC 61000-4-5	2005-11		
IEC 61000-4-6	2008-10		
IEC 61000-4-8	2009-09		
IEC 61000-4-11	2004-03		
IEC 61000-6-1	2005-03		
IEC 61326-1	2006-06		
ISO 14982	1998-07		
MIL Std. 461E	1999-08		
RSS GEN	2007-06		
RSS 119	2007-06		
RSS 123	1999-11		
RSS 125	2000-03		
RSS 131	2003-07		
RSS 136	2002-10		
RSS 137	2009-02		
RSS 210	2007-06		
RSS 213	2005-12		
RSS 243	2005-11		
RSS 310	2007-06		
	I		

Note 1: Test not on LSR Scope of Accreditation.
Updated on 10-21-09

Prepared For: API Healthcare	Model #:RDR-69N1AKU-API	LS Research, LLC
EUT: AWID	IC: n/a at present	Template: 15.209 - v1 10-22-09
Report #:309294	FCC ID #: W7N-PROXAW01	Page 38 of 39

APPENDIX C Uncertainty Statement

This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level, using a coverage factor of k=2.

Table of Expanded Uncertainty Values, (K=2) for Specified Measurements

Measurement Type	Particular Configuration	Uncertainty Values
Radiated Emissions	3 – Meter chamber, Biconical Antenna	4.24 dB
Radiated Emissions	3-Meter Chamber, Log Periodic Antenna	4.8 dB
Radiated Emissions	10-Meter OATS, Biconical Antenna	4.18 dB
Radiated Emissions	10-Meter OATS, Log Periodic Antenna	3.92 dB
Conducted Emissions	Shielded Room/EMCO LISN	1.60 dB
Radiated Immunity	3 Volts/Meter in 3-Meter Chamber	1.128 Volts/Meter
Conducted Immunity	3 Volts level	1.0 V

Prepared For: API Healthcare	Model #:RDR-69N1AKU-API	LS Research, LLC
EUT: AWID	IC: n/a at present	Template: 15.209 - v1 10-22-09
Report #:309294	FCC ID #: W7N-PROXAW01	Page 39 of 39