Instituto Tecnológico de Costa Rica Escuela de Ingeniería en Computadores

Fundamentos de Arquitectura de Computadores Grupo #1

Estudiante: Kevin Josué Ruiz Rodríguez

Carné: 2018170538

Bitácora

20/3/2025

Se realizó la tabla de verdad 1 para interpretar las entradas, en la cual se le asigna un valor a cada una de las 4 combinaciones posibles.

Cuadro 1: Tabla de verdad de las entradas.

A	В	С	D	X_1	X_0
1	0	0	0	0	1
1	1	0	0	1	0
1	1	1	0	1	1
1	1	1	1	0	0

Teniendo estos valores asignados, se encontraron las siguientes ecuaciones booleanas para cada dígito utilizando los mintérminos para encontrar la suma de productos.

$$X_1 = AB\overline{CD} + ABC\overline{D}$$

$$X_0 A \overline{BCD} + ABC \overline{D}$$

Estas ecuaciones se simplificaon utilizando álgebra booleana para facilitar la implementación del circuito.

$$X_1 = AB\overline{D}$$

$$X_0 A \overline{D} \overline{(B \oplus C)}$$

Además se realizó la tabla para el decodificador de suma

Cuadro 2: Tabla de verdad del decodificador de suma.

X_1	X_0	Y_1	Y_0	S_1	S_0
0	0	0	0	0	0
0	0	0	1	0	1
0	0	1	0	1	0
0	0	1	1	1	1
0	1	0	0	0	1
0	1	0	1	1	0
0	1	1	0	1	1
0	1	1	1	0	0
1	0	0	0	1	0
1	0	0	1	1	1
1	0	1	0	0	0
1	0	1	1	0	1
1	1	0	0	1	1
1	1	0	1	0	0
1	1	1	0	0	1
1	1	1	1	1	0

Para simplificar la tabla 2 se realizaron los siguientes mapas de Karnaugh

Cuadro 3: Mapa K para S_1 .

$X_1X_0 Y_1Y_0$	00	01	11	10
00	0	0	1	1
01	0	1	0	1
11	1	0	1	0
10	1	1	0	0

Cuadro 4: Mapa K para S_0 .

$X_1X_0 Y_1Y_0$	00	01	11	10
00	0	1	1	0
01	1	0	0	1
11	1	0	0	1
10	0	1	1	0

30/3/2025

Del mapa K 3 se obtiene la ecuación

$$S_1 = \overline{X_1} \overline{X_0} Y_1 + \overline{X_1} X_0 \overline{Y_1} Y_0 + \overline{X_1} Y_1 \overline{Y_0} + X_1 \overline{Y_1} \overline{Y_0} + X_1 X_0 Y_1 Y_0 + X_1 \overline{X_0} \overline{Y_1}$$

Esta ecuación para Z_1 requiere muchas compuertas en su implementación, por lo que se puede simplificar en la siguiente ecuación.

$$S_1 = (X_1 \oplus Y_1) \oplus X_0 Y_0$$

Figura 1: Circuito propusto para los decodificadores de número y suma.

De la misma manera, con el mapa K 4 se obtiene una ecuación para este dígito

$$S_0 = X_0 \overline{Y_0} + \overline{X_0} Y_0$$

Se puede observar que esta ecuación corresponde a la operación de o exclusivo, o XOR

$$S_0 = X_0 \oplus Y_0$$

Con estas ecuaciones para encontrar el número a sumar, y la suma de los 2 números se propone el circuito de la figura