Pauta E2 Cálculo Numérico (521230) 2018-2

1. Considere el P.V.I.;

$$\begin{cases} y'(x) &= -x - y, \quad x \in [0, 1] \\ y(0) &= 1, \end{cases}$$
cuya solución exacta es $y(x) = 1 - x$.

- a) Considerando h = 1/3, aproximar la solución y(x) utilizando el método de Euler Implícto.
- b) ¿Qué puede decir en este ejemplo sobre el error del método?. Justifique.

Desarrollo:

a) Sean
$$f(x,y)=-x-y, x_0=0, x_1=1/3, x_2=2/3$$
 y $x_3=1$. Para $i=0,1$ y 2, tenemos que
$$y_{i+1}=y_i+hf(x_{i+1},y_{i+1}),$$

$$y_{i+1}=y_i-\frac{1}{3}(x_{i+1}+y_{i+1}).$$

Despejando y_{i+1} se tiene que $y_{i+1} = \frac{3}{4}\left(y_i - \frac{1}{3}x_{i+1}\right) = \frac{3}{4}y_i - \frac{1}{4}x_{i+1}$. Entonces:

$$y_0 = 1,$$

$$y_1 = \frac{3}{4}y_0 - \frac{1}{4}x_1 = \frac{3}{4} - \frac{1}{4} \cdot \frac{1}{3} = \frac{2}{3},$$

$$y_2 = \frac{3}{4}y_1 - \frac{1}{4}x_2 = \frac{3}{4} \cdot \frac{2}{3} - \frac{1}{4} \cdot \frac{2}{3} = \frac{1}{3},$$

$$y_3 = \frac{3}{4}y_2 - \frac{1}{4}x_3 = \frac{3}{4} \cdot \frac{1}{3} - \frac{1}{4} \cdot 1 = 0.$$

b) Para i = 0, 1, 2 y 3, el error en cada nodo se define como $E_i := y(x_i) - y_i$. En este ejemplo observamos que $E_i = 0$ para i = 0, 1, 2 y 3. Esto se debe a que el mtodo de Euler, tanto Explcito como Implcito, es exacto si la solución exacta del problema es un polinomio de grado uno como lo es en este caso.

2. Considere la ecuación diferencial de tercer orden:

$$\begin{cases} y'''(x) + y''(x) - 5y'(x) + 4y(x) &= xe^x, x \in [0, 1] \\ y(0) &= 0, \\ y'(0) &= 1, \\ y''(0) &= 2. \end{cases}$$

- a) Reduzca la ecuación a un sistema de ecuaciones de primer orden.
- b) Considerando h = 1/10, realizar un paso del método de Euler Explícto al sistema obtenido.

Desarrollo:

a) Sean, $z_1(x) = y(x)$, $z_2(x) = y'(x)$ y $z_3(x) = y''(x)$. Entonces,

$$\begin{pmatrix} z_1'(x) \\ z_2'(x) \\ z_3'(x) \end{pmatrix} = \begin{pmatrix} z_2(x) \\ z_3(x) \\ xe^x - z_3(x) + 5z_2(x) - 4z_1(x) \end{pmatrix} \quad \text{y} \quad \begin{pmatrix} z_1(0) \\ z_2(0) \\ z_3(0) \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}.$$

b) En este caso $x_0 = 0$ y $x_1 = 1/10$. Luego

$$\begin{pmatrix} z_1^{(1)} \\ z_2^{(1)} \\ z_3^{(1)} \end{pmatrix} = \begin{pmatrix} z_1^{(0)} \\ z_2^{(0)} \\ z_3^{(0)} \end{pmatrix} + h \begin{pmatrix} z_2^{(0)} \\ z_3^{(0)} \\ x_0 e^{x_0} - z_3^{(0)} + 5 z_2^{(0)} - 4 z_1^{(0)} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} + \frac{1}{10} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 1/10 \\ 6/5 \\ 23/10 \end{pmatrix}.$$

3. Considere el sistema de ecuaciones

$$\begin{pmatrix} 2 & 3 & 5 \\ -2 & 7 & 5 \\ -4 & 2 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}.$$

- a) Obtener la factorización LU con estrategia de pivoteo parcial de la matriz.
- b) Utilizar la factorización de a) para para resolver el sistema.

Desarrollo:

(a) Realizamos la factorización **LU** con pivoteo parcial. Esto significa que en cada paso, de ser necesario, debemos intercambiar filas de modo que el pivote sea el elemento más grande en módulo. Sea

$$\mathbf{A} = \begin{pmatrix} 2 & 3 & 5 \\ -2 & 7 & 5 \\ -4 & 2 & 4 \end{pmatrix}.$$

Entonces

$$\mathbf{A} \quad \stackrel{f_1 \leftrightarrow f_3}{\sim} \quad \begin{pmatrix} -4 & 2 & 4 \\ -2 & 7 & 5 \\ 2 & 3 & 5 \end{pmatrix} \quad \stackrel{f_2 - \left(\frac{1}{2}\right)f_1}{\sim} \quad \begin{pmatrix} -4 & 2 & 4 \\ 0 & 6 & 3 \\ 0 & 4 & 7 \end{pmatrix} \quad \stackrel{f_3 - \left(\frac{2}{3}\right)f_2}{\sim} \quad \begin{pmatrix} -4 & 2 & 4 \\ 0 & 6 & 3 \\ 0 & 0 & 5 \end{pmatrix}.$$

Se cumple así que LU = PA, donde

$$\mathbf{L} = \begin{pmatrix} 1 & 0 & 0 \\ 1/2 & 1 & 0 \\ -1/2 & 2/3 & 1 \end{pmatrix}, \ \mathbf{U} = \begin{pmatrix} -4 & 2 & 4 \\ 0 & 6 & 3 \\ 0 & 0 & 5 \end{pmatrix} \quad \mathbf{y} \quad \mathbf{P} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

(b) Resolvemos el sistema en dos pasos:

$$\mathbf{A}x = b \iff \mathbf{P}\mathbf{A}x = \mathbf{P}b \iff \left\{ egin{array}{l} \mathbf{L}y = \mathbf{P}b, \\ \mathbf{U}x = y. \end{array} \right.$$

Se resuelve primero

$$\mathbf{L}y = \mathbf{P}b \Leftrightarrow \begin{pmatrix} 1 & 0 & 0 \\ 1/2 & 1 & 0 \\ -1/2 & 2/3 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} \Leftrightarrow y = \begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix},$$

y luego se resuelve

$$\mathbf{U}x = y \Leftrightarrow \begin{pmatrix} -4 & 2 & 4 \\ 0 & 6 & 3 \\ 0 & 0 & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix} \Leftrightarrow x = \begin{pmatrix} -1/5 \\ -1/5 \\ 2/5 \end{pmatrix}.$$

4. Sea $a \in \mathbb{R}$. Considere la siguiente matriz de iteración

$$M = \begin{pmatrix} 1+a & 0 & 0\\ 0 & 1/3 & a\\ 0 & a & 1/3 \end{pmatrix}$$

- a) Calcule sus valores propios.
- b) Determine el rango de valores que puede tomar a de de forma tal que los sistemas que involucren a estas matrices puedan ser siempre resueltos por el método iterativo general.

Desarrollo:

a) En este caso el polinomio característico es

$$p(\lambda) = \det \begin{pmatrix} 1+a-\lambda & 0 & 0 \\ 0 & 1/3-\lambda & a \\ 0 & a & 1/3-\lambda \end{pmatrix} = (1+a-\lambda)\left((1/3-\lambda)^2 - a^2\right)$$
$$= (1+a-\lambda)\left(\frac{1}{3}+a-\lambda\right)\left(\frac{1}{3}-a-\lambda\right).$$

de donde los valores propios son $\{a+1, a+1/3, -a+1/3\}$.

b) Para que el método iterativo general converga con esta matriz se debe pedir que

$$\rho(M) < 1 \rightarrow max\{|1+a|, |a+1/3|, |-a+1/3|\} < 1 \rightarrow -2/3 < a < 0.$$

5. Considere el sistema de ecuaciones lineales

$$\begin{array}{ll} 4x_1 + 2x_2 + x_3 & = 11 \\ 2x_1 + 5x_2 + x_3 & = 15 \\ x_1 + 2x_2 + 10x_3 & = 35 \end{array}$$

- a) ¿Es posible asegurar que en este caso el método de Gauss-Seidel es convergente?. Justifique.
- b) Obtener una aproximación de la solución del sistema ejecutando un paso del método de Gauss-Seidel empezando desde la aproximación inicial (1, 1, 1).

Desarrollo:

a) Como la matriz de coeficientes del sistema

$$\begin{bmatrix} 4 & 2 & 1 \\ 2 & 5 & 1 \\ 1 & 2 & 10 \end{bmatrix}$$

es evidentemente diagonal dominante, el método de Gauss-Seidel es convergente.

b) En este caso la descomposición de la matriz de coeficientes es usando el triángulo inferior invertible, y así

$$\begin{bmatrix} 4 & 0 & 0 \\ 2 & 5 & 0 \\ 1 & 2 & 10 \end{bmatrix} \mathbf{x}^{(1)} = \begin{bmatrix} 0 & -2 & -1 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix} \mathbf{x}^{(0)} + \begin{bmatrix} 11 \\ 15 \\ 35 \end{bmatrix}$$
$$\begin{bmatrix} 4 & 0 & 0 \\ 2 & 5 & 0 \\ 1 & 2 & 10 \end{bmatrix} \mathbf{x}^{(1)} = \begin{bmatrix} -2 - 1 \\ -1 \\ 0 \end{bmatrix} + \begin{bmatrix} 11 \\ 15 \\ 35 \end{bmatrix}$$
$$\begin{bmatrix} 4 & 0 & 0 \\ 2 & 5 & 0 \\ 1 & 2 & 10 \end{bmatrix} \mathbf{x}^{(1)} = \begin{bmatrix} 8 \\ 14 \\ 35 \end{bmatrix},$$

de donde

$$\mathbf{x}^{(1)} = \begin{bmatrix} 2\\2\\29/10 \end{bmatrix}.$$

Alternativamente se pude proceder de la siguiente manera, sin emabrgo no es recomendable para evitar calcular la inversa de la matriz ${\bf B}$

$$\mathbf{x}^{(1)} = \begin{bmatrix} 4 & 0 & 0 \\ 2 & 5 & 0 \\ 1 & 2 & 10 \end{bmatrix}^{-1} \begin{pmatrix} \begin{bmatrix} 0 & -2 & -1 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix} \mathbf{x}^{(0)} + \begin{bmatrix} 11 \\ 15 \\ 35 \end{bmatrix} \end{pmatrix}$$

$$= \begin{bmatrix} 1/4 & 0 & 0 \\ -1/10 & 1/5 & 0 \\ -1/200 & -1/25 & 1/10 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} -2 - 1 \\ -1 \\ 0 \end{bmatrix} + \begin{bmatrix} 11 \\ 15 \\ 35 \end{bmatrix} \end{pmatrix}$$

$$= \begin{bmatrix} 1/4 & 0 & 0 \\ -1/10 & 1/5 & 0 \\ -1/200 & -1/25 & 1/10 \end{bmatrix} \begin{bmatrix} 8 \\ 14 \\ 35 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 29/10 \end{bmatrix}.$$