В самой левой части цепочки равенства подразумевается, что касательное пространство $T_{tv}(T_pM)$ пространства T_pM канонически отождествлено с самим T_pM , так что $\left(d_{tv}\exp_p\right)(v)$ — это значение на векторе $v\in T_{tv}(T_pM)=T_pM$ дифференциала отображения \exp_p в точке tv. Полагая t=0, получаем

$$d_0 \exp_p \nu = \gamma'_{\nu}(0) = \nu,$$

и нам остается только сослаться на теорему об обратном отображении.

Определение. Радиусом инъективности многообразия M в точке p называется

$$\rho_{inj} = \sup\{\rho > 0 : \exp_p|_{B_{\rho}(0)}$$
 — диффеоморфизм $\}$.

Радиус инъективности может быть бесконечным.

Определение. Пусть V — окрестность нуля в пространстве $T_p M$ из теоремы 2.5.4. Тогда $\exp_p V$ — окрестность точки $p \in M$, называемая *нормальной* окрестностью. Зафиксируем какой-нибудь изоморфизм Φ между векторными пространствами $T_p M$ и \mathbb{R}^n . Например, если (U,φ) — карта, содержащая точку p, то нам подходит $d\varphi$. Тогда карта $(\exp_p V, \psi)$, где

$$\psi = \Phi \circ (\exp_p)^{-1} \colon \exp_p V \to \mathbb{R}^n,$$

задает нормальные (геодезические) координаты в окрестности точки р.

2.6 Экстремальные свойства геодезических

Геодезические на римановых многообразиях обладают экстремальными свойствами, а именно, они представляют собой локально кратчайшие кривые: каждый достаточно малый отрезок геодезической является кратчайшей гладкой кривой, соединяющей свои концевые точки.

Определение. Вариацией (или гладкой гомотопией) кривой $\gamma: [0,1] \to M$ называют такое гладкое отображение $f: Q \to M$ прямоугольника $Q = \{(t,s) \in \mathbb{R}^2 : t \in [0,1], s \in [-\varepsilon, \varepsilon]\}$, что $f(t,0) = \gamma(t)$ для любого $t \in [0,1]$.

Пути $\gamma_s(t)=f(t,s)$, где s фиксировано, называют *продольными* линиями вариации, а пути $\delta_t(s)=f(t,s)$, где t фиксировано, — *поперечными* линиями вариации. В частности, $\gamma_0(t)=\gamma(t)$.

Вариация кривой γ называется $\emph{reodesuveckoй}$, если все продольные линии вариации являются геодезическими кривыми.

С каждой вариацией связаны два векторных поля: $\frac{\partial f}{\partial t} = \gamma_s'(t)$ и $\frac{\partial f}{\partial s} = \delta_t'(s)$ — вектора скорости продольных и поперечных линий вариации.

Лемма 2.6.1.

$$\frac{\nabla}{ds}\frac{\partial f}{\partial t} = \frac{\nabla}{dt}\frac{\partial f}{\partial s}.$$

Доказательство. Пусть (U, φ) — локальная система координат в окрестности какойнибудь точки из f(Q). Тогда можно записать

$$\varphi \circ f(t,s) = (x_1(t,s), \dots, x_n(t,s)),$$

$$\frac{\partial f}{\partial t} = \sum_{i=1}^{n} \frac{\partial x_i}{\partial t} \frac{\partial x_i}{\partial x_i},$$

$$\frac{\partial f}{\partial s} = \sum_{i=1}^{n} \frac{\partial x_i}{\partial s} \frac{\partial x_i}{\partial x_i}.$$

Подставляя координаты полей в формулу (555), получим:

$$\frac{\nabla}{ds} \frac{\partial f}{\partial t} = \sum_{k} \left(\frac{\partial^{2} x_{k}}{\partial s \partial t} + \sum_{ij} \frac{\partial x_{j}}{\partial s} \frac{\partial x_{i}}{\partial t} \Gamma_{j,i}^{k} \right) \frac{\partial}{\partial x_{k}}$$

$$\frac{\nabla}{dt}\frac{\partial f}{\partial s} = \sum_{k} \left(\frac{\partial^{2} x_{k}}{\partial t \partial s} + \sum_{ij} \frac{\partial x_{i}}{\partial t} \frac{\partial x_{j}}{\partial s} \Gamma_{i,j}^{k} \right) \frac{\partial}{\partial x_{k}}$$

Утверждение леммы следует из равенства вторых смешанных производных и симметричности связности: $\Gamma_{i,i}^k = \Gamma_{i,j}^k$

Теорема 2.6.2 (лемма Гаусса¹³**).** Пусть $p \in M$ и экспоненциальное отображение определено на векторе $v \in T_pM$. Тогда для любого вектора $w \in T_pM \approx T_v(T_pM)$ справедливо равенство

$$\langle (d_{\nu} \exp_{p})(\nu), (d_{\nu} \exp_{p})(w) \rangle = \langle \nu, w \rangle. \tag{2.15}$$

Доказательство. Пусть $w = w_T + w_N$, где $w_T || v$ и $w_N \perp v$. Из формулы (2) 4) следует, что

$$|(d_{\nu}\exp_{p})(\nu)| = |\gamma_{\nu}'(1)| = |\nu|.$$

Поэтому, в силу линейности дифференциала и скалярного произведения, имеем

$$\langle (d_v \exp_p)(v), (d_v \exp_p)(w_T) \rangle = \langle v, w_T \rangle.$$

Это означает, что нам достаточно доказать равенство (2.15) для случая $w=w_N\neq 0$ \downarrow Так как отображение \exp_p определено на векторе v, найдется такое $\varepsilon>0$, что отображение \exp_p определено также на любом векторе

$$u = tv(s), \ 0 \le t \le 1, \ -\varepsilon \le s \le \varepsilon,$$

¹³В различных книгах под леммой Гаусса (в данном контексте) понимаются совершенно различные утверждения. Мы следуем книге [2]

Tyl I

51 *U*

In M delxpelw)

M delxpelw)

1 waste

где v(s) — такая кривая в $T_p M$, что v(0) = v, $v'(0) = w_p \mu |v(s)| = const.$

Рассмотри вариацию $f:Q \to M$, заданную формулой

$$f(t,s) = \exp_p t v(s).$$

Заметим, что для фиксированного s_0 кривая $f(t,s_0)$ является геодезической (см. доказательство пункта 3 леммы 2.5.3). Далее заметим, что

$$\frac{\partial f}{\partial s}(1,0) = (d_v \exp_p)(w_N), \quad \frac{\partial f}{\partial t}(1,0) = (d_v \exp_p)(v).$$

Поэтому

$$\langle \frac{\partial f}{\partial s}, \frac{\partial f}{\partial t} \rangle (1,0) = \langle (d_v \exp_p)(w_N), (d_v \exp_p)(v) \rangle. \equiv 0$$
 (2.16) $\mathcal{S} = \mathcal{O}$

Далее, для любых $(t,s) \in Q$ силу формулы (2.7) имеем

Второе слагаемое справа равно 0, так как $\frac{\partial f}{\partial t}$ — поле касательных векторов геодезической. Преобразуем первое слагаемое справа:

 $[\]frac{15}{3}$ квадрат длины вектора скорости геодезической, который одинаков для всех продольных геодезических

 $^{^{14}}$ Нужно взять выражение справа от равенства и применить к нему формулу (2.7)