Exercise 9

Brandon Hosley Mike Davis

Exercise 9

10.2

b. Prove with Boolean algebra the absorption property, $x \cdot x + y = x$. Give a reason for each step in your proof.

Property:
$$x \cdot x + y = x$$

distributive: $(x \cdot y) + (x \cdot x)$
commutative: $x \cdot y + x$
identity: $x \cdot y + x \cdot 1$
distributive: $x(y+1)$
zero-theorem: $x \cdot 1$
identity: x

10.3

b. Prove with Boolean algebra the consensus theorem. Give a reason for each step in your proof. $(x + y) \cdot (x' + z) \cdot (y + z) = (x + y) \cdot (x' + z)$

Property:
$$(x+y) \cdot (x+z) \cdot (y+z) = (x+y) \cdot (x+z)$$
Property:
$$(x+y) \cdot (x'+z) \cdot (y+z) = (x+y) \cdot (x'+z)$$
duality:
$$(x+y) + (x'+z) + (y+z)$$
complement:
$$(x+y) + (x'+z) + (x+x') \cdot (y+z)$$
distributive:
$$(x+y) + (x'+z) + (x+x') \cdot (y+z)$$
commutative:
$$(x+y) + (x'+z) + (x+x') \cdot (x'+z)$$
distributive:
$$(x+y) + (x'+z) + (x'+z) + (x'+z)$$

$$(x+y) + (x'+z) + (x'+z) + (x'+z)$$

$$(x+y) + (x'+z) + (x'+z) + (x'+z)$$

$$(x+y) + (x'+z) + (x'+z) + (x'+z) + (x'+z)$$

$$(x+y) + (x'+z) +$$

ES9 3

10.4

Prove DeMorgan's Law $(a + b)' = a' \cdot b'$ by giving the dual of the proof in the text. Give a reason for each step in the proof.

First Part:

Property:
$$(a+b)' + (a' \cdot b') = 1$$
distributive: $(a+b) + a' \cdot (a+b) + b'$
commutative: $a+a'+b \cdot a+b+b'$

complementary: $1+b \cdot b+1$

zero-theorem: $1 \cdot 1$

identity: 1

Second Part:

Property: $(a+b) \cdot (a' \cdot b') = 0$

distributive: $a' \cdot b' \cdot a + a' \cdot b' \cdot b$

complementary: $0 \cdot b' + a' \cdot 0$

zero-theorem: $0 + 0$

identity: 0

10.6

b. Prove with Boolean algebra that $(x \cdot y) + (x' \cdot y) = y$. Give a reason for each step in your proof.

Property:
$$(x \cdot y) + (x' \cdot y) = y$$

distributive: $y \cdot (x + x')$
complementary: $y \cdot 1$
identity: y

10.7

b. Prove with Boolean algebra that $(x \cdot y) \cdot (y + x') = x \cdot y$. Give a reason for each step in your proof.

Property $(x \cdot y) \cdot (y + x') = x \cdot y$

distributive: $y(x \cdot y) + x'(x \cdot y)$

commutative: $x \cdot y \cdot y + y$

distributive: $y(x \cdot y + 1)$

zero-theorem: $y(x \cdot 1)$

identity: y(x)

commutative: $x \cdot y$

ES9 5

References

Warford, J. (2009). Computer systems (4th ed.). Jones and Bartlett.