Контрольна робота з курсу "Теоретична механіка"

Студента 3 курсу групи МП-31 Захарова Дмитра

7 грудня 2023 р.

Варіант 3

Завдання 1

Умова. Точкове тіло маси $m=10\,\mathrm{kr}$ рухається зі стану спокою по колу з радіусом $R=20\,\mathrm{m}$, розташованому в горизонтальній площині. Визначте шлях, пройдений тілом за час $\tau=5\,\mathrm{c}$ після початку руху, якщо на тіло діє горизонтальна сила $F=20\,\mathrm{H}$, яка утворює сталий кут $\alpha=\frac{\pi}{4}$ з вектором швидкості. Тертям нехтуємо.

Розв'язок.

Схематичний малюнок задачі зображено на рис.1.

Рис. 1: Ілюстрація до задачі 1

Запишемо проекцію на тангсенсальний напрямок:

$$ma_{\tau} = F\cos\alpha \implies a_{\tau} = \frac{F\cos\alpha}{m}$$

Тангенсальне прискорення $a_{\tau}=\frac{dv}{dt}=\mathrm{const.}$ Отже, швидкість від часу має вигляд $v(t)=\frac{Ft\cos\alpha}{m}$, а отже кутова швидкість $\omega(t)=\frac{Ft\cos\alpha}{mR}$.

За час $\tau=5$ с зміна кута $\Delta\theta=\int_0^{\tau}\omega(t)dt$, а тоді шлях $s=R\Delta\theta$. Поєднуючи все, маємо:

$$s = R \int_0^{\tau} \omega(t)dt = R \cdot \frac{F\tau^2 \cos \alpha}{2mR} = \frac{F\tau^2}{2\sqrt{2}m}$$

Підставивши числа, маємо $s=\frac{25}{\sqrt{2}}$ м.

Відповідь.
$$s = \frac{F\tau^2}{2\sqrt{2}m} = \frac{25}{\sqrt{2}}$$
 м.

Завдання 2

Умова. Яку мінімальну початкову кутову швидкість ω_0 слід надати однорідному стержню довжиною $\ell=1$ м, щоб він зміг здійснити повний оберт навколо нерухомої горизонтальної осі O? Якою буде максимальна реакція осі?

Розв'язок. Під час руху, стрижень має деяку потенціальну та кінетичну енергію. Кінетична енергія скаладється лише з оберательної компоненти, причому момент інерції $I = \frac{1}{3}m\ell^2$.

Розглянемо момент, коли стрижень повернувся на кут γ від початкового положення. Тоді, якщо задати нульовий рівень за точку O, то на початку центр мас знаходиться на висоті $-\frac{\ell}{2}$, а потім $-\frac{\ell}{2}\cos\gamma$.

Тепер запишемо закон збереження енергії. Сума потенціальної і кінетичної енергії не змінюється: $T+V=\mathrm{const.}$

На початку ця сума дорівнює:

$$T_0 + V_0 = -mg\frac{\ell}{2} + \frac{I\omega_0^2}{2} = -mg\frac{\ell}{2} + \frac{m\ell^2\omega_0^2}{6}$$

При куті γ :

$$T(\gamma) + V(\gamma) = -mg\frac{\ell\cos\gamma}{2} + \frac{m\ell^2\omega^2}{6}$$

Отже, в такому разі виконується

$$-mg\frac{\ell}{2} + \frac{m\ell^2\omega_0^2}{6} = -mg\frac{\ell\cos\gamma}{2} + \frac{m\ell^2\omega^2}{6}$$

Звідси дістаємо:

$$\frac{m\ell^2(\omega_0^2 - \omega^2)}{6} = \frac{mg\ell}{2}(1 - \cos\gamma) \implies \omega_0^2 - \omega^2 = \frac{3g}{\ell}(1 - \cos\gamma)$$

Якщо врахувати, що $1-\cos\gamma=2\sin^2\frac{\gamma}{2}$, то остаточно:

$$\omega^2 = \omega_0^2 - \frac{6g}{\ell} \sin^2 \frac{\gamma}{2}$$

Нас цікавить випадок, коли $\gamma=\pi$. В такому випадку швидкість буде $\omega^2=\omega_0^2-\frac{6g}{\ell}$. Щоб знайти саме мінімальне значення, помічаємо, що при крайньому випадку стрижень буде проходити верхнє положення з нульовою швидкістю. Тому, остаточно

$$\omega_{\min} = \sqrt{\frac{6g}{\ell}}$$

Знайдемо силу реакції опори N. Вважатимемо, що вона направлена уздовж стрижня. В такому разі, другий закон Ньютона в проекції на стрижень має вигляд:

$$m\omega^2\ell + mg\cos\gamma = N$$

Враховуючи, що $\omega^2 \ell = \omega_0^2 \ell - 3g(1 - \cos \gamma)$, маємо

$$m\omega_0^2\ell - 3mg(1-\cos\gamma) + mg\cos\gamma = N$$

Або, остаточно,

$$N(\gamma) = m\omega_0^2 \ell + mg(4\cos\gamma - 3)$$

Екстремум досягається при або $\gamma=0,$ або $\gamma=\pi.$ Якщо підставляти наше конкретне $\omega_0=\omega_{\min},$ то

$$N(\gamma) = 6mg + mg(4\cos\gamma - 3) = mg(3 + 4\cos\gamma)$$

Бачимо, що максимум досягається при $\gamma=0$ і тоді $N_{\max}=7mg$.

Відповідь.
$$\omega_{\min} = \sqrt{\frac{6g}{\ell}}, \ N_{\max} = 7mg.$$

Завдання 3

Умова. Гнучка нитка намотана на однорідний циліндр маси m і радіуса r. Циліндр під дією сили тяжіння починає рухатися на похилій площині без початкової швидкості, долаючи тертя і розмотуючи нитку. Коефіцієнт тертя дорівнює μ . Визначте натяг T нитки. Кут α вважаємо відомим.

Розв'язок. Розглянемо усі сили, що діють на циліндр: це сила натягу нитки T, сила нормальної реакції опори N, сила тяжіння mg та сила тертя $F_f = \mu N$ (див. рис. 2)

Рис. 2: Сили, що діють на циліндр

Спроєктуємо другий закон Ньютона на вісь Ox вздовж площини і перпендикулярно їй Oy:

$$ma_x = -\mu N + mg\sin\alpha - T$$
$$ma_y = N - mg\cos\alpha$$

Оскільки циліндр не рухається вздовж Oy, то $a_y=0$, а тому $N=mg\cos\alpha$. Підставляючи у друге:

$$ma_x = -\mu mg\cos\alpha + mg\sin\alpha - T$$

З іншого боку, ми можемо записати закон динаміки обертального руху:

$$I\varepsilon = Tr - \mu Nr$$

Момент інерції суцільного циліндру $I = \frac{mr^2}{2}$. В такому разі:

$$\frac{mr^2\varepsilon}{2} = Tr - \mu mgr\cos\alpha \implies \varepsilon = \frac{2T}{mr} - \frac{2\mu g\cos\alpha}{r}$$

Кутове прискорення пов'язане з прискоренням співвідношенням $\varepsilon=\frac{a_x}{r}$. Таким чином

$$a_x = \frac{2T}{m} - 2\mu g \cos \alpha$$

Отже, підставляючи у другий закон Ньютона:

$$2T - 2\mu mg \cos \alpha = -\mu mg \cos \alpha + mg \sin \alpha - T$$
$$3T = \mu mg \cos \alpha + mg \sin \alpha$$
$$T = \frac{mg}{3} (\mu \cos \alpha + \sin \alpha)$$

Відповідь. $T = \frac{\mu \cos \alpha + \sin \alpha}{3} \cdot mg$.