Fisher 情報計量の測地線と一般化平均

伊藤 光弘 (筑波大学 数理物質系)*1 佐藤 弘康 (日本工業大学 工学部)*2

1. $(M,d\theta)$ を、正規化体積測度 $d\theta$ をもつコンパクト連結 C^{∞} 級多様体とする。 M 上の確率測度空間 $\mathcal{P}^+(M)$ を、 $d\theta$ に絶対連続な確率測度 μ で M 上正値連続な密度 関数 $f=f(x), x\in M$ をもつものからなるとする。 $\mathcal{P}^+(M)$ の位相は、埋め込み $\rho:\mathcal{P}^+(M)\to L^2(M,d\theta); \mu=f(x)\,d\theta\mapsto 2\sqrt{f(x)}$ による誘導位相とする。

 $\mathcal{P}^+(M)$ の各接空間 $T_\mu \mathcal{P}^+(M)$ は, $\int d\tau = 0$ を満たす M 上の符号付き測度の全体 と見なすことができ, ここには Fisher 計量 G が定義される. Friedrich [2] は計量 G の Levi-Civita 接続 ∇ を求め, 初期条件 $\gamma(0) = \mu$, $\dot{\gamma}(0) = \tau$ を満たす測地線 $\gamma(t)$ が

$$\gamma(t) = \left(\cos\frac{t}{2} + \frac{d\tau}{d\mu}\sin\frac{t}{2}\right)^2\mu\tag{1}$$

と表せることを示した([4] も参照). ここに、 $\frac{d\tau}{d\mu}$ は Radon-Nikodym 微分である. 本講演では、**確率測度の一般化平均(冪平均)**の概念による Fisher 計量の測地線の特徴付けについて述べる. また、 $(\mathcal{P}^+(M),G)$ に自然に定義される双対接続構造 $(\nabla^{(\alpha)},\nabla^{(-\alpha)})$ に関する測地線(α -測地線)についても言及する.

2 定義. $\alpha \in \mathbb{R}$ とする. 写像 $\varphi^{(\alpha)}: \mathcal{P}^+(M) \times \mathcal{P}^+(M) \to \mathcal{P}^+(M)$ を

$$\varphi^{(\alpha)}(\mu_1, \mu_2) = \frac{1}{C} \left\{ 1 + \left(\frac{d\mu_2}{d\mu_1} \right)^{\alpha} \right\}^{\frac{1}{\alpha}} \mu_1$$

と定める(ただし, C は確率測度となるための正規化定数). $\varphi^{(\alpha)}(\mu_1,\mu_2)$ を μ_1 と μ_2 の**正規化** α -冪平均とよぶ. 特に, $\alpha=1$ のときは算術平均, $\alpha=-1$ のときは調和平均と呼ばれ, $\alpha=0$ のときは

$$\varphi^{(0)}(\mu_1, \mu_2) = \left(\int_M \sqrt{\frac{d\mu_2}{d\mu_1}} \, d\mu_1 \right)^{-1} \sqrt{\frac{d\mu_2}{d\mu_1}} \, \mu_1$$

となり、これを正規化幾何平均とよぶ.

3. μ と $\mu' \in \mathcal{P}^+(M)$ が測地線 (1) で結べるとする. つまり, $\gamma(l) = \mu'$ かつ $\gamma(t) \in \mathcal{P}^+(M)$, $t \in [0,l]$ を満たす l > 0 が存在したとする. このとき, $\dot{\gamma}(0) = \tau$ は

$$\tau = \cot \frac{l}{2} \left(\varphi^{(0)}(\mu, \mu') - \mu \right), \qquad l = \ell(\mu, \mu') := 2 \arccos \left(\int_M \sqrt{\frac{d\mu_2}{d\mu_1}} \, d\mu_1 \right)$$
 (2)

と表される。これは、計量 G の測地線上の 2 点における各接線は $\mathcal{P}^+(M)$ 内で交わり、その交点が正規化幾何平均となることを示唆している(逆に、正規化幾何平均に対して、このような性質を満たす曲線は G の測地線に限ることもわかる).

^{*1〒305-8571} 茨城県つくば市天王台1-1-1

e-mail: itohm@math.tsukuba.ac.jp

^{*2〒345-8501} 埼玉県南埼玉郡宮代町学園台4-1 e-mail: hiroyasu@nit.ac.jp

また,(2)を(1)に代入することにより,

$$\gamma(t) = \frac{1}{\sin^2 \frac{l}{2}} \left(\sin \frac{l - t}{2} + \sin \frac{t}{2} \sqrt{\frac{d\mu'}{d\mu}} \right)^2 \mu \tag{3}$$

$$=a_1(t)\,\mu + a_2(t)\,\mu' + a_3(t)\,\varphi^{(0)}(\mu,\mu') \tag{4}$$

と表すことができる. ただし, $a_i:[0,l]\to\mathbb{R}$ (i=1,2,3) は, $a_i(t)\geq 0$ かつ $\sum_{i=1}^3 a_i(t)=1$ を満たす関数である. (4) の表記から, $\mathcal{P}^+(M)$ の任意の 2 点は測地線で結べることがわかる.

4. 小原氏は、対称錐 Ω 上のあるポテンシャル関数に関するヘッセ計量 g を考え、さらに、 (Ω,g) 上の双対接続構造 $(\nabla^{(\alpha)},\nabla^{(-\alpha)})$ 、 $-1 \leq \alpha \leq 1$ を定義し、 $\nabla^{(\alpha)}$ に関する測地線分(α -測地線分)の中点が端点の α -冪平均であることを示した.ここでの α -冪平均とは、関数 $\sigma_{1/2}^{(\alpha)}(t) = \left(\frac{1+t^{\alpha}}{2}\right)^{1/\alpha}$ が生成する Ω の作用素平均である(詳細は [5] を 参照).

 $(\mathcal{P}^+(M),G)$ の測地線(0-測地線)についてみてみると、(3) 式から直ちに、中点は μ と μ' の正規化 $\frac{1}{2}$ -冪平均に等しいことがわかる。[1, p.33] と同様の方法により、 $(\mathcal{P}^+(M),G)$ 上にも双対接続構造 $(\nabla^{(\alpha)},\nabla^{(-\alpha)})$ が定義でき、 $\nabla^{(\alpha)}$ に関する測地線 $\gamma^{(\alpha)}(t)=f(t)\,d\theta$ 、 $f(t)=f(\theta,t)$ は微分方程式

$$\frac{\partial}{\partial t} \left(\frac{\dot{f}(t)}{f(t)} \right) + \frac{1 - \alpha}{2} \left(\frac{\dot{f}(t)}{f(t)} \right)^2 + \frac{1 + \alpha}{2} \int_M \left(\frac{\dot{f}(t)}{f(t)} \right)^2 f(t) d\theta = 0$$

の解であることがわかっている ([3, 補遺 ‡ 2] を参照).

 $\alpha=-1$ のときは, $\gamma^{(-1)}(t)=\mu+t\tau=\frac{1}{l}((l-t)\mu+t\,\mu')$ となり, μ と μ' の中点 $\gamma^{(-1)}(l/2)$ は $\varphi^{(1)}(\mu,\mu')$ である. $\alpha=1$ のとき, μ と μ' を結ぶ 1-測地線分は, ある関数 F(t) を用いて $\gamma^{(1)}(t)=\exp\left(\frac{t}{l}F(l)-F(t)\right)\cdot\left(\frac{d\mu'}{d\mu}\right)^{t/l}$ μ と表され, $\gamma^{(1)}(l/2)$ は $\varphi^{(0)}(\mu,\mu')$ となることがわかる. 一般の α についても, μ と μ' を結ぶ α -測地線分の中点が $\varphi^{(\frac{1-\alpha}{2})}(\mu,\mu')$ に等しいことが予想される.

参考文献

- [1] S.-I. Amari and H. Nagaoka, *Methods of Information Geometry*, Trans. Math. Monogr. **191**, AMS, 2000.
- [2] T. Friedrich, Die Fisher-Information und symplektische Strukturen, Math. Nachr. **153** (1991), 273-296.
- [3] 伊藤 光弘, 重心写像の Fisher 情報幾何, 東京理科大学連続講演記録, 2015.
- [4] M. Itoh and H. Satoh, Geometry of Fisher information metric and the barycenter map, Entropy 17 (2015), 1814-1849.
- [5] A. Ohara, Geodesics for dual connections and means on symmetric cones, Integr. Equat. Oper. Th. **50** (2004), 537-548.