P425/1
PURE MATHEMATICS
Paper 1
July/Aug. 2020
3 hours

AITEL JOINT MOCK EXAMINATIONS

Uganda Advanced Certificate of Education PURE MATHEMATICS

Paper 1

3 hours

INSTRUCTIONS TO CANDIDATES

Answer all the eight questions in section A and any five questions from section B

Any additional question(s) answered will **not** be marked

Show all the necessary workings clearly

Begin each question on a fresh page of paper

Silent, non-programmable scientific calculators and mathematical tables with a

list of formulae may be used

SECTION A (40 MARKS)

Attempt all questions in this section

1. Given that $a = \log_5 35$ and $b = \log_9 35$, show that $\log_5 21 = \frac{1}{2b} (2ab - 2b + a)$. (05 marks)

- 2. Solve the inequality: |x-2| > 3|2x+1|. (05 marks)
- 3. Prove that: $\tan^{-1} \frac{1}{2} \cos ec^{-1} \frac{\sqrt{5}}{2} = \cos^{-1} \frac{4}{5}$. (05 marks)
- 4. Expand $\frac{1}{\sqrt{1+x}}$ up to the term in x^2 and by letting $x = \frac{1}{4}$, show that $\sqrt{5} \approx \frac{256}{115}$. (05 marks)

5.

A, B, C and P are four points such that $\overline{3AP} = \overline{2AB} + \overline{AC}$, show that

B, P and C are collinear and that P is the point of trisection of the line BC

. (05 marks)

- 6. Given that $y = \frac{e^x e^{-x}}{e^x + e^{-x}}$, show that $\frac{d^2y}{dx^2} + 2y\frac{dy}{dx} = 0$. (05 marks)
- 7. Find the volume of the solid generated by rotating the area bounded by the curve $y = \cos \frac{1}{2}x$ from x = 0 to $x = \pi$ about the x axis. (05 marks)
- 8. Solve the d.e given $\cos x \frac{dy}{dx} 2y \sin x = 1$. (05 marks)

SECTION B (60 MARKS)

Attempt any five questions in this section

- 9 (a) Evaluate the coefficient of x in the expansion of $\left(x + \frac{2}{x^2}\right)^{10}$. (05 marks)
- (b) Prove by Mathematical induction that: $\sum_{r=2}^{n} \frac{1}{r^2 1} = \frac{3}{4} \frac{2n+1}{2n(n+1)}.$ (07 marks)
- 10 (a) Prove the identity: $\cos^6 x + \sin^6 x = 1 \frac{3}{4}\sin^2 2x$. (06 marks)
 - (b) Solve the equation: $4\sin^2 x + 8\cot^2 x = 5\csc^2 x$ for $0 \le x \le 2\pi$. (06 marks)
- 11. Sketch the curve $y = \frac{4 + 3x x^2}{x 8}$, clearly find the nature of the turning points and state their asymptotes. (12 marks)
- 12 (a) The points $P\left(5p, \frac{5}{p}\right)$ and $Q\left(5q, \frac{5}{q}\right)$ lie on the rectangular hyperbola xy = 25. Find the equation of the tangent at P and hence deduce the equation of the tangent at Q. (05 marks)
 - (b) The tangents at P and Q meet at point N, show that the coordinates of N are $\left(\frac{10pq}{p+q}, \frac{10}{p+q}\right)$, hence find the locus of N given that pq = -1.

 (07 marks)
- 13 (a) Given that z(5+5i) = a(1+3i) + b(2-i) where a and b are real numbers and that $\arg z = \frac{\pi}{2}$ and |z| = 7, find the values of a and b. (06 marks)
 - (b) Describe the locus of the complex number z when it moves in the argand diagram such that $\arg\left(\frac{z-3}{z-2i}\right) = \frac{\pi}{4}$. (06 marks)
- 14 (a) Evaluate: $\int_0^{\pi/3} x \sin 3x \, dx$ (06 marks)

Turn Over

(b) Prove that:
$$\int_{\pi}^{4\pi/3} \cos e c \frac{1}{2} x \, dx = In3$$
 (06 marks)

- 15 (a) Find the point of intersection between the plane $\mathbf{r} \cdot (2\mathbf{i} \mathbf{j} + \mathbf{k}) = \mathbf{4}$ and the line passing through the point (3, 1, 2) and is perpendicular to this plane. (05 marks)
 - (b) Find the perpendicular distance of the point (4, -3, 10) to the line

$$\frac{x-1}{3} = 2 - y = \frac{z-3}{2}.$$
 (07 marks)

16. A liquid is being heated in an oven maintained at a constant temperature of $180^{\circ}C$. It is assumed that the rate of increase in the temperature of the liquid is proportional to $(180 - \theta)$, where $\theta^{\circ}C$ is the temperature of the liquid at time t minutes. If the temperature of the liquid rises from $0^{\circ}C$ to $120^{\circ}C$ in 5 minutes, find the temperature of the liquid after a further 5 minutes. (12marks)

END