Author(s): Li, Zhang and Wang Question: Remimazolam compared to propofol for sedation and anesthesia in adult intubated patients. Setting: Hospital/clinical setting for patients requiring sedation or anesthesia

	Certainty assessment							№ of patients		Effect		
№ of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	remimazolam	propofol	Relative (95% CI)	Absolute (95% CI)	Certainty	Importance
QoR-15, P	=0.0007 (assess	ed with: scores; S	cale from: 0 to 15	D) ^a								
4	randomised trials	not serious	not serious	not serious	not serious	none	143	144	-	MD 6.89 lower (10.89 lower to 2.89 lower)	⊕⊕⊕ High	IMPORTANT
elirium, P	=0.85 (assessed	with: Nu-DESC/C	AM-ICU)									•
6	randomised trials	not serious	not serious	not serious	not serious	none	73/621 (11.8%)	75/622 (12.1%)	RR 0.97 (0.72 to 1.13)	4 fewer per 1,000 (from 34 fewer to 16 more)	⊕⊕⊕ High	CRITICAL
Hypotensi	ion, P=0.04 (asse	essed with: multip	ole definition stand	ards)								
6	randomised trials	not serious	serious ^b	not serious	not serious	none	73/215 (34.0%)	114/216 (52.8%)	RR 0.63 (0.40 to 0.99)	195 fewer per 1,000 (from 317 fewer to 5 fewer)	⊕⊕⊕ Moderate ^b	CRITICAL
ostoperat	ive nausea and v	omiting, P=0.12										
7	randomised trials	not serious	not serious	not serious	not serious	none	31/351 (8.8%)	20/349 (5.7%)	RR 1.52 (0.89 to 2.61)	30 more per 1,000 (from 6 fewer to 92 more)	⊕⊕⊕ _{High}	IMPORTANT
xtubation	time (min), P=0	.88										
4	randomised trials	not serious	very serious ^c	not serious	serious ^c	none	216	213	-	MD 0.4 lower (5.74 lower to 4.94 higher)	⊕OOO Very low ^c	IMPORTANT
Extubatio	n time (s), P=0.0	1	•				•			-		•
3	randomised trials	not serious	not serious ^d	not serious	not serious	none	122	125	-	MD 104.63 lower (184.07 lower to 25.18 lower)	⊕⊕⊕ _{High} d	NOT IMPORTANT d

CI: confidence interval; MD: mean difference; RR: risk ratio

Explanations

a. "*" denotes statistical significance.
b. Substantial heterogeneity was observed (I² = 69%, P = 0.01). The main sources of inconsistency can be attributed to: 1. Different surgical settings: Some studies involved day surgery (Wenchen Luo et al.), while others included one-lung ventilation (Q.Kuang et al.), bronchoscopy (Yafei Pan et al.), elderly patients, cancer patients). 3. Methodological variations: - Different definitions of hypotension across studies - Variations in hemodynamic monitoring methods - Potential differences in anesthetic protocols and drug administration bespite this heterogeneity, the direction of effect remained largely consistent, and subgroup analyses (e.g., by age) demonstrated robust results. The heterogeneity (I² e 99%, P < 0.00001) with completely opposite effect directions across studies - Variations in hemodynamic monitoring methods - Potential differences in anesthetic protocols and drug administration bespite this heterogeneity (I² e 99%, P < 0.00001) with completely opposite effect directions across studies - Variations in hemodynamic monitoring methods - Potential differences in anesthetic protocols and drug administration bespite this heterogeneity (I² e 99%, P < 0.00001) with completely opposite effect directions across studies - Variations in hemodynamic monitoring methods - Potential differences in anesthetic protocols and drug administration bespite this heterogeneity (I² e 99%, P < 0.00001) with completely opposite effect directions across studies - Variations in hemodynamic monitoring methods - Potential differences in anesthetic protocols and drug administration bespite this heterogeneity (I² e 99%, P < 0.0001) with completely opposite effect directions across studies - Variations in hemodynamic monitoring methods - Potential differences in anesthetic protocols and drug administration bespite this heterogeneity (I² e 99%, P < 0.0001) with completely experience - 10.0001 with completely experience - 10.0001 with completely experience - 10.0001 with completely experience