CS 267: Automated Verification

Lecture 1: Brief Introduction. Transition Systems. Temporal Logic LTL.

Instructor: Tevfik Bultan

What do these people have in common?

2013 Leslie Lamport

2007 Clarke, Edmund M

2007 Emerson, E Allen

2007 Sifakis, Joseph

1996 Pnueli, Amir

1991 Milner, Robin

1980 Hoare, C. Antony R.

1978 Floyd, Robert W

1972 Dijkstra, E. W.

State of the art in automated verification: Model Checking

- What is model checking?
 - Automated verification technique
 - Focuses on bug finding rather than proving correctness
 - The basic idea is to exhaustively search for bugs in software
 - Has many flavors
 - Explicit-state model checking
 - Symbolic model checking
 - Bounded model checking

Hardware to Software Model Checking

- In 90s model checking was mainly used in industry as a technique for analyzing hardware designs
 - Most hardware companies had their in house automated verification tools
- In the last ten years very promising results have been obtained in verification of software
 - Microsoft started using a model checker to verify device drivers
 - Based on a research project from Microsoft Research
 - Model checking tools found numerous bugs in Linux code

Is There More Research Left To Do?

- Model checking does not scale very well
 - To verify a program you need to investigate all possible states (configurations) of the program somehow
 - In theory: inifinite state ⇒ undecidable
 - In practice: finite but large number of states ⇒ run out of memory
- We look for ways to reduce the state space while showing that properties we are interested are preserved in the transformed system
 - symbolic representations
 - modularity
 - abstraction
 - symmetry reduction, etc.

Beyond Model Checking

- Promising results obtained in the model checking area created a new interest in automated verification
- Nowadays, there is a wide spectrum of verification/analysis/ testing techniques with varying levels of power and scalability
 - Bounded verification using SAT solvers
 - Symbolic execution using Satisfiability Modulo Theories (SMT) solvers
 - Dynamic symbolic execution (aka concolic execution)
 - Various types of symbolic analysis: shape analysis, string analysis, size analysis, etc.
- Taking this course should give you a better understanding of all these techniques

What to Verify

- Before we start talking about automated verification techniques, we need to identify what we want to verify
- It turns out that this is not a very simple question
- For the rest of this lecture we will discuss issues related to this question

A Mutual Exclusion Protocol

Two concurrently executing processes are trying to enter a critical section without violating mutual exclusion

```
Process 1:
while (true) {
   out: a := true; turn := true;
  wait: await (!b or !turn);
   cs: a := false;
Process 2:
while (true) {
   out: b := true; turn := false;
  wait: await (!a or turn);
   cs: b := false;
```

Reactive Systems: A Very Simple Model

- We will use a very simple model for reactive systems
- A reactive system generates a set of execution paths
- An execution path is a concatenation of the states (configurations) of the system, starting from some *initial* state
- There is a transition relation which specifies the next-state relation, i.e., given a state what are the states that can follow that state

State Space

- The state space of a program can be captured by the valuations of the variables and the program counters
- For our example, we have
 - two program counters: pc1, pc2
 domains of the program counters: {out, wait, cs}
 - three boolean variables: turn, a, b
 boolean domain: {True, False}
- Each state of the program is a valuation of all the variables

State Space

Each state can be written as a tuple

```
(pc1,pc2,turn,a,b)
```

- Initial states: {(o,o,F,F,F), (o,o,F,F,T), (o,o,F,T,T), (o,o,F,T,T), (o,o,T,F,F), (o,o,T,F,F), (o,o,T,F,T), (o,o,T,T,T)}
 initially: pc1=o and pc2=o
- How many states total?

exponential in the number of variables and the number of concurrent components

Transition Relation

- Transition Relation specifies the next-state relation, i.e., given a state what are the states that can come immediately after that state
- For example, given the initial state (o,o,F,F,F)
 Process 1 can execute:

```
out: a := true; turn := true;
or Process 2 can execute:
out: b := true; turn := false;
```

- If process 1 executes, the next state is (w, o, T, T, F)
- If process 2 executes, the next state is (o, w, F, F, T)
- So the state pairs ((o,o,F,F,F), (w,o,T,T,F)) and ((o,o,F,F,F), (o,w,F,F,T)) are included in the transition relation

Transition Relation

The transition relation is like a graph, edges represent the next-state relation

Transition System

- A *transition system* T = (S, I, R) consists of
 - a set of states
 - a set of initial states $I \subseteq S$
 - and a transition relation $R \subseteq S \times S$
- A common assumption in model checking
 - R is total, i.e., for all $s \in S$, there exists s' such that $(s,s') \in R$

Execution Paths

• A *path* in T = (S, I, R) is an infinite sequence of states

$$x = s_0, s_1, s_2, ...$$

such that for all $i \ge 0$, $(s_i, s_{i+1}) \in R$

Notation: For any path x

 x_i denotes the i'th state on the path (i.e., s_i)

 x^{i} denotes the i'th suffix of the path (i.e., s_{i} , s_{i+1} , s_{i+2} , ...)

• An execution path in T = (S, I, R) is a path x in T = (S, I, R) where $x_0 \in I$

Execution Paths

A possible execution path:

$$((0,0,F,F,F),(0,W,F,F,T),(0,C,F,F,T))^{\omega}$$

(ω means repeat the above three states infinitely many times)

Temporal Logics

- Pnueli proposed using temporal logics for reasoning about the properties of reactive systems
- Temporal logics are a type of modal logics
 - Modal logics were developed to express modalities such as "necessity" or "possibility"
 - Temporal logics focus on the modality of temporal progression
- Temporal logics can be used to express, for example, that:
 - an assertion is an invariant (i.e., it is true all the time)
 - an assertion eventually becomes true (i.e., it will become true sometime in the future)

Temporal Logics

- We will assume that there is a set of basic (atomic) properties called AP
 - These are used to write the basic (non-temporal) assertions about the program
 - Examples: a=true, pc0=c, x=y+1
- We will use the usual boolean connectives: ¬ , ∧ , ∨
- We will also use four temporal operators:

```
Invariant p: G p (aka \square p) (Globally)
```

Eventually p: F p (aka $\diamondsuit p$) (Future)

Next p : X p (aka O p) (neXt)

p Until q : $p \cup q$

Atomic Properties

• In order to define the semantics we will need a function L which evaluates the truth of atomic properties on states:

L:
$$S \times AP \rightarrow \{True, False\}$$

L((o,o,F,F,F), pc1=o) = True
L((o,o,F,F,F), pc1=w) = False
L((o,o,F,F,F), turn) = False
L((o,o,F,F,F), turn=false) = True

Linear Time Temporal Logic (LTL) Semantics

Given a path x and LTL properties p and q

$$x \models p$$
 iff $L(x_0, p) = True$, where $p \in AP$
 $x \models \neg p$ iff not $x \models p$
 $x \models p \land q$ iff $x \models p$ and $x \models q$
 $x \models p \lor q$ iff $x \models p$ or $x \models q$
 $x \models x \models q$ iff $x^1 \models p$
 $x \models x \models q$ iff for all $i \ge 0$, $x^i \models p$
 $x \models p \lor q$ iff there exists an $i \ge 0$ such that $x^i \models q$
 $x \models p \lor q$ iff there exists an $i \ge 0$ such that $x^i \models q$ and for all $0 \le j < i, x^j \models p$

LTL Properties

$$\mathsf{F}\,\mathsf{p}$$

$$p U q$$
 $p p p q$
 $p q$

Example Properties

```
mutual exclusion: G (\neg (pc1=c\land pc2=c)) starvation freedom: G(pc1=w\Rightarrow F(pc1=c)) \land G(pc2=w\Rightarrow F(pc2=c))
```

Given the execution path:

LTL Equivalences

- We do not really need all four temporal operators
 - X and U are enough (i.e., X, U, AP and boolean connectives form a basis for LTL)

$$F p = true U p$$

$$G p = \neg (F \neg p) = \neg (true U \neg p)$$

LTL Model Checking

Given a transition system T and an LTL property p
 T |= p iff for all execution paths x in T, x |= p

For example:

T |=? G (
$$\neg$$
 (pc1=c \land pc2=c))
T |=? G(pc1=w \Rightarrow F(pc1=c)) \land G(pc2=w \Rightarrow F(pc2=c))

Model checking problem: Given a transition system T and an LTL property p, determine if T is a model for p (i.e., if T |=p)