BFS and DFS

Tutorial 10

INDRAPRASTHA INSTITUTE OF INFORMATION TECHNOLOGY **DELHI**

Breadth First Search

Breadth First Search

Perform a BF search of the graph with m as the starting vertex. Write the order in which vertices are added to the queue.

Breadth First Search

One possible vertex order in queue:

m->x->q->r->t->u->y->v->w->z

1. Is a BFS tree unique for a given graph?

- 1. Is a BFS tree unique for a given graph?
- 2. Which graph representation is more suited for BFS adjacency list or adjacency matrix?

- 1. Is a BFS tree unique for a given graph?
- 2. Which graph representation is more suited for BFS adjacency list or adjacency matrix?
- 3. Once you reach a node and set its distance from the source, will its distance change at a later iteration?

- 1. Is a BFS tree unique for a given graph?
- 2. Which graph representation is more suited for BFS adjacency list or adjacency matrix?
- 3. Once you reach a node and set its distance from the source, will its distance change at a later iteration?
- 4. Is it possible to perform BFS using recursion?

- 1. Is a BFS tree unique for a given graph?
- 2. Which graph representation is more suited for BFS adjacency list or adjacency matrix?
- 3. Once you reach a node and set its distance from the source, will its distance change at a later iteration?
- 4. Is it possible to perform BFS using recursion? Can you do that in optimal time?

- 1. Is a BFS tree unique for a given graph?
- 2. Which graph representation is more suited for BFS adjacency list or adjacency matrix?
- 3. Once you reach a node and set its distance from the source, will its distance change at a later iteration?
- 4. Is it possible to perform BFS using recursion? Can you do that in optimal time?
- 5. If one performs a level order traversal, is it the same as BFS?

Depth First Search

Depth First Search

Perform a DF search of the graph with q as the starting vertex. For each node write the time step in which you enter the node to perform a recursive DFS and the time step at which you return out of the node.

Depth First Search

1. Is a DFS path traversal unique for a given graph?

- 1. Is a DFS path traversal unique for a given graph?
- 2. Which graph representation is more suited for DFS?

- 1. Is a DFS path traversal unique for a given graph?
- 2. Which graph representation is more suited for DFS?
- 3. We know of multiple order traversals. Does anything resemble to DFS?

Strongly Connected Components using DFS

Strongly Connected Components using DFS

There are a total of 5 strongly connected components. The vertex sets of those components are $\{r\}$, $\{u\}$, $\{q, y, t\}$, $\{x, z\}$ and $\{s, w, v\}$.

Find the minimum and maximum depth of the tree.

Find the minimum and maximum depth of the tree.

Hint: BFS/DFS for maximum and BFS for minimum.

You are given an array (1 indexed) of whole numbers. You are to start from 1st index and reach the nth index of the array. But you are allowed to do only two possible movements:

- I. Move to index i+1 from i.
- II. Move to index i+A[i] from i.

What is the least number of jumps you need to make to reach the nth index?

$$A = [3, 1, 2, 0, 5, 1, 5, 3, 2, 1]$$

You are given an array (1 indexed) of whole numbers. You are to start from 1st index and reach the nth index of the array. But you are allowed to do only two possible movements:

- I. Move to index i+1 from i.
- II. Move to index i+A[i] from i.

What is the least number of jumps you need to make to reach the nth index?

$$A = [3, 1, 2, 0, 5, 1, 5, 3, 2, 1]$$

Hint: Construct a graph with jumps as edges and indices as vertices and find shortest path to nth index.

Is there a cycle in this graph?

Is there a cycle in this graph?

Hint: DFS and check if there is an unexplored edge from a DFS child to its parent.

Say there are only 5 cities in a country that have airport access. However, flights do not go between all pairs of cities. You would like to travel to all the 5 cities. Would it be possible for you to travel to all the cities only via flights if you randomly choose a city to start with?

The cities are named 0, 1, 2, 3 and 4 and the available flights are the ones that fly as $1 \rightarrow 0$, $0 \rightarrow 2$, $2 \rightarrow 1$, $0 \rightarrow 3$, $3 \rightarrow 4$ and $4 \rightarrow 0$.

Say there are only 5 cities in a country that have airport access. However, flights do not go between all pairs of cities. You would like to travel to all the 5 cities. Would it be possible for you to travel to all the cities only via flights if you randomly choose a city to start with?

The cities are named 0, 1, 2, 3 and 4 and the available flights are the ones that fly as $1 \rightarrow 0$, $0 \rightarrow 2$, $2 \rightarrow 1$, $0 \rightarrow 3$, $3 \rightarrow 4$ and $4 \rightarrow 0$.

Hint: How many strongly connected components does this graph have?

Thank You