HAI722I — **TD**s

Ivan Lejeune

16 septembre 2025

			1			
1	h		00	ma	1	roc
u	U	u	C 3	HIG		

TD1																			2
1.1	Conv	exité	é : ε	ense	embl	es e	et f	one	ctic	ons									9

TD1

1.1 Convexité : ensembles et fonctions

Exercice 1.1 Convexité.

- 1. Soit une famille (éventuellement infinie) d'inégalités linéaires $a_i^T x \leq b_i, i \in I$. Soit C son ensemble de solutions. Montrer que C est convexe.
- 2. Montrer que la boule fermée $\mathsf{B}(a,r)$ est convexe pour tout $a \in \mathbb{R}^n$ et $r \in \mathbb{R}^+$.
- 3. Soit $S \subseteq \mathbb{R}^n$ et soit W l'ensemble de toutes les combinaisons convexes de points de S. Montrer que W est convexe.
- 4. Soit C un convexe. Montrer que

$$\bigcup_{0 \le \lambda \le 1} \lambda C$$

est convexe.

5. Une matrice $A = (a_{ij})$ de dimension $n \times n$ est bistochastique si elle satisfait

$$\forall i \in \{1, \dots, n\}, \sum_{j=1}^{n} a_{ij} = 1,$$
 $\forall j \in \{1, \dots, n\}, \sum_{i=1}^{n} a_{ij} = 1,$
 $\forall (i, j) \in \{1, \dots, n\}^{2}, a_{ij} \ge 0.$

Une matrice de permutation P est une matrice bistochastique à valeurs entières, c'est-à-dire que dans chaque ligne de P il y a un et un seul élément égal à 1, et les autres sont nuls. De même pour chaque colonne.

- (a) Montrer que pour toute matrice bistochastique A, il existe une matrice de permutation P de même dimension telle que $p_{ij} = 0$ si $a_{ij} = 0$.
- (b) Est-ce qu'une combinaison convexe de matrices de permutation est une matrice bistochastique?
- (c) Montrer que toute matrice bistochastique A est une combinaison convexe de matrices de permutation.
- (d) Trouver la combinaison convexe pour la matrice A suivante :

$$A = \begin{pmatrix} 0.15 & 0.37 & 0 & 0.48 \\ 0.02 & 0.15 & 0.67 & 0.16 \\ 0.46 & 0.02 & 0.16 & 0.36 \\ 0.37 & 0.46 & 0.17 & 0 \end{pmatrix}.$$

6. Soient maintenant C_1 et C_2 deux convexes disjoints et

$$D_1 = \bigcup_{0 \le \lambda \le 1} \lambda C_1, \quad i = 1, 2.$$

Montrer que l'un des deux convexes $C_1 \cap D_2$ ou $C_2 \cap D_1$ est vide.

Solution. A remplir

Exercice 1.2 Combinaison convexe.

- 1. Rappeler la définition d'une combinaison convexe.
- 2. Est-ce que le point A de coordonnées (1,1,1) est une combinaison convexe des points (2,2,0),(0,0,3),(0,0,0)?
- 3. Déterminer si le point de coordonnées (0,7) est une combinaison convexe des points (3,6), (-6,9), (2,1), (-1,1).

2

4. Déterminer gra

Solution. Exercice solution

Exercice 1.3 Ensembles convexe. Montrer qu'étant donné un sous-ensemble convexe C et deux réels positifs α et β alors on a

$$\alpha C + \beta C = (\alpha + \beta)C.$$

Solution. Commencons par montrer l'inclusion $(\alpha + \beta) C \subset \alpha C + \beta C$. Soit $x \in (\alpha + \beta) C$. Alors, il existe $x_0 \in C$ tel que

$$x = (\alpha + \beta) x_0 = \alpha x_0 + \beta x_0.$$

Donc $x \in \alpha C + \beta C$.

Montrons maintenant l'inclusion $\alpha C + \beta C \subset (\alpha + \beta) C$.

Soit $x \in \alpha C + \beta C$. Alors, il existe $x_1, x_2 \in C$ tels que

$$x = \alpha x_1 + \beta x_2 = (\alpha + \beta) \left(\frac{\alpha}{\alpha + \beta} x_1 + \frac{\beta}{\alpha + \beta} x_2 \right).$$

Exercice 1.4 Ensembles convexes. Soit $S \subset \mathbb{R}^n$ vérifiant la propriété de demi-somme suivante :

$$\forall x, y \in S, \quad \frac{x+y}{2} \in S.$$

- 1. S est-il convexe?
- 2. Même question si on suppose que S est fermé.

Solution.

1. Non. Par exemple, le sous-ensemble S suivant :

$$S = \left\{ x \in [0, 1] \mid x = \sum_{i=1}^{n} \frac{1}{2^i} \right\} = \left\{ 0, \frac{1}{2}, \frac{1}{4}, \frac{3}{4}, \dots \right\}$$

vérifie la propriété de demi-somme mais n'est pas convexe, car par exemple $\sqrt{2}/2 \in [0,1] \notin S$

Exercise 1.5 Ensembles convexes. Exercise 2 content

Solution. Exercice solution

Exercise 1.6 Ensembles convexes. Exercise 2 content

Solution. Exercice solution

Exercice 1.7 Fonction convexe.

- 1. Est-ce qu'une combinaison linéaire à coefficients positifs de fonctions convexes est convexe ?
- 2. Est-ce que le produit de deux fonctions convexes est convexe?
- 3. Si f_1 et f_2 sont deux fonctions convexes, est-ce que max (f_1, f_2) est convexe?
- 4. Montrer que la fonction $f: x \mapsto x^2$ est une fonction convexe sur \mathbb{R} .

Solution.

1. Oui. On pose $g(x) = \sum_{i \in I} \alpha_i f_i(x)$. Alors

$$g(\lambda x + (1 - \lambda)y) = \sum_{i \in I} \alpha_i f_i(\lambda x + (1 - \lambda)y)$$

$$\leq \sum_{i \in I} \alpha_i (\lambda f_i(x) + (1 - \lambda)f_i(y))$$

$$= \lambda g(x) + (1 - \lambda)g(y).$$

- 2. Non. Par exemple, $f_1(x) = x$ et $f_2(x) = x^2$ sont convexes mais $f_1(x)f_2(x) = x^3$ n'est pas convexe.
- 3. Oui. On pose $g(x) = \max(f_1(x), f_2(x))$. Alors

$$g(\lambda x + (1 - \lambda)y) = \max (f_1(\lambda x + (1 - \lambda)y), f_2(\lambda x + (1 - \lambda)y))$$

$$\leq \max (\lambda f_1(x) + (1 - \lambda)f_1(y), \lambda f_2(x) + (1 - \lambda)f_2(y))$$

$$\leq \lambda \max (f_1(x), f_2(x)) + (1 - \lambda) \max (f_1(y), f_2(y))$$

$$= \lambda g(x) + (1 - \lambda)g(y).$$

4. Soit $x, y \in \mathbb{R}$ et $\lambda \in [0, 1]$. Alors

$$f(\lambda x + (1 - \lambda)y) = (\lambda x + (1 - \lambda)y)^{2}$$

$$= \lambda^{2}x^{2} + (1 - \lambda)^{2}y^{2} + 2\lambda(1 - \lambda)xy$$

$$\iff \lambda^{2}x^{2} + (1 - \lambda)^{2}y^{2} + 2\lambda(1 - \lambda)xy - \lambda x^{2} - (1 - \lambda)y^{2} \le 0$$

$$\iff \lambda(1 - \lambda)\left(\frac{\lambda}{1 - \lambda}x^{2} + \frac{1 - \lambda}{\lambda}y^{2} + 2xy - \frac{x^{2}}{1 - \lambda} - \frac{y^{2}}{\lambda}\right) \le 0$$

$$\iff \lambda(1 - \lambda)\left(-(x - y)^{2}\right) \le 0.$$

Or tous les termes sont positifs sauf le dernier. Donc l'inégalité est vérifiée.

Exercice 1.8 Fonction convexe. Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction continue telle que

$$\forall (x,y) \in \mathbb{R}^2, \quad f\left(\frac{x+y}{2}\right) \leq \frac{f(x)+f(y)}{2}.$$

Prouver que f est convexe.

Indication : Montrer par récurrence que sur ≥ 2 , on a

$$\forall (x,y) \in \mathbb{R}^2, \forall p \in \{0,1,\ldots,2^n\}, \quad f\left(\frac{p}{2^n}x + \left(1 - \frac{p}{2^n}\right)y\right) \leq \frac{p}{2^n}f(x) + \left(1 - \frac{p}{2^n}\right)f(y).$$

Solution.

- Exercice 1.9.
- Solution.
- Exercice 1.10.
- Solution.

Exercice 1.11 Forme standard et forme canonique. Dans cet exercice vous devez mettre les programmes suivants sous forme standard et donner également la forme matricielle.

1.

$$\begin{cases} \max z = x_1 + x_2 \\ x_1 + 5x_2 \le 5 \\ 2x_1 + x_2 \le 4 \\ x_1 \ge 0, \quad i = 1, 2. \end{cases}$$

2.

$$\begin{cases} \max z = 80x_1 + 60x_2 \\ 0.2x_1 + 0.32x_2 \le 0.25 \\ x_1 + x_2 = 1 \\ x_1 \ge 0, \quad i = 1, 2. \end{cases}$$

3. Réécrire le programme précédent dans le cas où la fonction objectif est la minimisation.

4.

$$\begin{cases} \max z = 5x_1 + 2x_2 \\ 6x_1 + x_2 \ge 6 \\ 4x_1 + 3x_2 \ge 12 \\ x_1 + 2x_2 \ge 4 \\ x_1 \ge 0, \quad i = 1, 2. \end{cases}$$

Solution.

1. La forme standard est

$$\begin{cases} \max z = x_1 + x_2 + 0 \cdot x_3 + 0 \cdot x_4 \\ x_1 + 5x_2 + x_3 = 5 \\ 2x_1 + x_2 + x_4 = 4 \\ x_1, x_2, x_3, x_4 \ge 0. \end{cases}$$

La forme matricielle est

$$\begin{cases} \max z = \begin{pmatrix} 1 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \\ \begin{pmatrix} 1 & 5 & 1 & 0 \\ 2 & 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 5 \\ 4 \end{pmatrix} \\ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \ge 0.$$

2. La forme standard est

$$\begin{cases} \max z = 80x_1 + 60x_2 + 0 \cdot x_3 - M \cdot x_4 \\ 0.2x_1 + 0.32x_2 + x_3 = 0.25 \\ x_1 + x_2 + x_4 = 1 \\ x_1, x_2, x_3, x_4 \ge 0. \end{cases}$$

La forme matricielle est

$$\begin{cases} \max z = \begin{pmatrix} 80 & 60 & 0 & -M \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \\ \begin{pmatrix} 0.2 & 0.32 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 0.25 \\ 1 \end{pmatrix} \\ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \ge 0. \end{cases}$$

3. La forme standard est

$$\begin{cases} \min z = -80x_1 - 60x_2 + 0 \cdot x_3 + M \cdot x_4 \\ 0.2x_1 + 0.32x_2 + x_3 = 0.25 \\ x_1 + x_2 + x_4 = 1 \\ x_1, x_2, x_3, x_4 \ge 0. \end{cases}$$

La forme matricielle est

$$\begin{cases} \min z = \begin{pmatrix} -80 & -60 & 0 & M \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \\ \begin{pmatrix} 0.2 & 0.32 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 0.25 \\ 1 \end{pmatrix} \\ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \ge 0. \end{cases}$$

4. La forme standard est

$$\begin{cases} \max z = 5x_1 + 2x_2 + 0 \cdot x_3 + 0 \cdot x_4 + 0 \cdot x_5 + M \cdot (x_6 + x_7 + x_8) \\ 6x_1 + x_2 - x_3 + x_6 = 6 \\ 4x_1 + 3x_2 - x_4 + x_7 = 12 \\ x_1 + 2x_2 - x_5 + x_8 = 4 \\ x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8 \ge 0. \end{cases}$$

La forme matricielle est

$$\max z = \begin{pmatrix} 5 & 2 & 0 & 0 & 0 & M & M & M \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \\ x_8 \end{pmatrix}$$

$$\begin{pmatrix} 6 & 1 & -1 & 0 & 0 & 1 & 0 & 0 \\ 4 & 3 & 0 & -1 & 0 & 0 & 1 & 0 \\ 1 & 2 & 0 & 0 & -1 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \\ x_8 \end{pmatrix} = \begin{pmatrix} 6 \\ 12 \\ 4 \end{pmatrix}$$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \\ x_8 \end{pmatrix} \ge 0.$$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \\ x_8 \end{pmatrix} \ge 0.$$

- Exercice 1.12.
- Solution.
- Exercice 1.13.
- Solution.
- Exercice 1.14.
- Solution.
- Exercice 1.15.
- Solution.
- Exercice 1.16.
- Solution.
- Exercice 1.17.

Solution.