Exercise 3

A is a matrix of size $m \times n$. Define $P = A^T A$ (size: $n \times n$) and $Q = AA^T$ (size: $m \times m$).

Part (a)

For any vector y of size $n \times 1$:

$$\mathbf{y}^T \mathbf{P} \mathbf{y} = \mathbf{y}^T \mathbf{A}^T \mathbf{A} \mathbf{y} = (\mathbf{A} \mathbf{y})^T \mathbf{A} \mathbf{y} = ||\mathbf{A} \mathbf{y}||^2 \ge 0$$

Hence proved.

For any vector z of size $m \times 1$:

$$z^T Q z = z^T A A^T z = (A^T z)^T A^T z = ||A^T z||^2 > 0$$

Hence proved.

Let λ be an eigenvalue of P with non-zero eigenvector v. Then:

$$Pv = \lambda v \longrightarrow AA^Tv = \lambda v$$

Pre-multiplying both sides by v^T :

$$\boldsymbol{v}^T \boldsymbol{A} \boldsymbol{A}^T \boldsymbol{v} = \lambda \boldsymbol{v}^T \boldsymbol{v} \longrightarrow (\boldsymbol{A}^T \boldsymbol{v})^T \boldsymbol{A}^T \boldsymbol{v} = \lambda \boldsymbol{v}^T \boldsymbol{v} \longrightarrow ||\boldsymbol{A}^T \boldsymbol{v}||^2 = \lambda ||\boldsymbol{v}||^2 \longrightarrow \lambda = \frac{||\boldsymbol{A}^T \boldsymbol{v}||^2}{||\boldsymbol{v}||^2} \ge 0$$

Similarly, let η be an eigenvalue of ${\bf Q}$ with non-zero eigenvector ${\bf w}$. Then:

$$Qw = \eta w \longrightarrow A^T A w = \eta w$$

Pre-multiplying both sides by w^T :

$$\boldsymbol{w}^T \boldsymbol{A}^T \boldsymbol{A} \boldsymbol{w} = \eta \boldsymbol{w}^T \boldsymbol{w} \longrightarrow (\boldsymbol{A} \boldsymbol{w})^T \boldsymbol{A} \boldsymbol{w} = \eta \boldsymbol{w}^T \boldsymbol{w} \longrightarrow ||\boldsymbol{A} \boldsymbol{w}||^2 = \eta ||\boldsymbol{w}||^2 \longrightarrow \eta = \frac{||\boldsymbol{A} \boldsymbol{w}||^2}{||\boldsymbol{w}||^2} \ge 0$$

Hence, proved.

Part (b)

Let u be an eigenvector of P with eigenvalue λ . Then:

$$Pu = \lambda u \longrightarrow A^T A u = \lambda u$$

Pre-multiplying both sides by A, we have:

$$AA^{T}Au = \lambda Au \longrightarrow (AA^{T})Au = \lambda Au \longrightarrow QAu = \lambda Au$$

Let v = Au, then:

$$\boldsymbol{Q}\boldsymbol{v}=\lambda\boldsymbol{v}$$

Therefore, Au is an eigenvector of Q with eigenvalue λ .

Similarly, let v be an eigenvector of Q with eigenvalue μ . Then:

$$Qv = \mu v \longrightarrow AA^Tv = \mu v$$

Pre-multiplying both sides by A^T , we have:

$$A^T A A^T v = \mu A^T v \longrightarrow (A^T A) A^T v = \mu A^T v \longrightarrow P A^T v = \mu A^T v$$

Let $\boldsymbol{u} = \boldsymbol{A}^T \boldsymbol{v}$, then:

$$Pu = \mu u$$

Therefore, $A^T v$ is an eigenvector of P with eigenvalue μ .

Size of vector u would be $n \times 1$ and size of vector v would be $m \times 1$.

Part (c)

Since v_i is an eigenvector of Q (with an eigenvalue $\lambda_i \geq 0$, as proved in the part (a)), we have:

$$Qv_i = \lambda_i v_i \longrightarrow AA^T v_i = \lambda_i v_i$$

Dividing both sides by $||A^T v_i||_2$, we have:

$$rac{oldsymbol{A}oldsymbol{A}^Toldsymbol{v}_i}{||oldsymbol{A}^Toldsymbol{v}_i||_2} = rac{\lambda_ioldsymbol{v}_i}{||oldsymbol{A}^Toldsymbol{v}_i||_2}$$

As given in the question, $u_i = \frac{A^T v_i}{||A^T v_i||_2}$. Substituting this in the original equation:

$$\frac{\boldsymbol{A}\boldsymbol{A}^T\boldsymbol{v}_i}{||\boldsymbol{A}^T\boldsymbol{v}_i||_2} = \frac{\lambda_i\boldsymbol{v}_i}{||\boldsymbol{A}^T\boldsymbol{v}_i||_2} \longrightarrow \boldsymbol{A}\boldsymbol{u}_i = \frac{\lambda_i}{||\boldsymbol{A}^T\boldsymbol{v}_i||_2}\boldsymbol{v}_i$$

Therefore, $\gamma_i = \frac{\lambda_i}{||\boldsymbol{A}^T\boldsymbol{v}_i||_2}$.

The eigenvalue λ_i has to be non-negative as proved in part (a) and the denominator is definitely positive (it cannot be zero since u_i won't be well defined then), so γ_i is also non-negative.

Part (d)

Define $U = [v_1|v_2|v_3|....|v_m]$, $V = [u_1|u_2|u_3|....|u_m]$ and a $m \times n$ diagonal matrix Γ with diagonal entries γ_1 , γ_2 , γ_m . From the previous part, we know $Au_i = \gamma_i v_i$. Thus we have:

$$AV = [Au_1|Au_2|Au_3|....|Au_m] = [\gamma_1v_1|\gamma_2v_2|\gamma_3v_3|....|\gamma_mv_m] = U\Gamma$$

Post-multiplying both sides by V^T , we have:

$$AVV^T = U\Gamma V^T \longrightarrow A = U\Gamma V^T$$

where the last equality follows from the fact that V is an orthonormal matrix (since $u_i^T u_j = 0$ for $i \neq j$), thus implying that $VV^T = V^T V = I$. Hence, proved.