$1\quad Al cançabilidade \ de \ Definiç\~oes$

 $Gen \dots$ $Kill \dots$ $IN \dots$ $OUT \dots$

	Gen	Kill	IN	OUT
B_1	110	110	000	110
B_2	001	001	111	111
B_3	000	000	110	110
B_4	000	000	111	111

Table 1: Alcançabilidade de Definições — (b:=0, c:=1, a:=b+c)

2 Vivacidade de Variáveis

 $Gen \ \dots$

 $Kill\ \dots$

 $IN \ \dots$

 $OUT \ \dots$

	Gen	Kill	IN	OUT
$\overline{B_1}$	000	011	000	011
B_2	011	100	011	011
B_3	000	000	011	011
B_4	000	000	011	011

Table 2: Vivacidade de Variáveis — (a,b,c)

3 Disponibilidade de Expressões

A análise é para frente (forward) e sua intenção é determinar em cada ponto do código, quais expressões estão disponíveis, isto é, foram seguramente executadas e, caso fossem executadas novamente (naquele ponto) produziriam o mesmo resultado.

Gen Indica quais expressões foram geradas dentro do bloco e que não foram "mortas" por redefinições de seus operandos dentro do mesmo bloco. É igual à entrada das expressões antecipáveis.

Kill Indica quais expressões (considerando o universo inteiro) foram mortas por redefinições (posteriores 1) de seus operandos que ocorrem dentro do bloco.

IN Indica quais expressões estão disponíveis na entrada do bloco. É uma interseção das saídas dos blocos predecessores.

OUT Indica quais expressões estão disponíveis na saída do bloco. É igual ao último Gen.

	Gen	Kill	IN	OUT
B_1	0	1	0	0
B_2	1	0	0	1
B_1 B_2 B_3 B_4	0	0	0	0
B_4	0	0	1	1

Table 3: Disponibilidade de Expressões — ((+, b, c))

 $^{^1{\}rm S}$ ó faz sentido em análises internas ao bloco.

4 Disponibilidade de Expressões Anticipáveis

A análise é para trás (backward) e sua intenção é determinar em cada ponto do código, quais expressões podem ser movidas para o início do bloco (ou para blocos antecedentes).

Gen Indica quais expressões podem ser movidas para o início do bloco (ou para blocos antecedentes).

Kill Indica quais expressões (considerando o universo inteiro) foram mortas por redefinições (anteriores ²) de seus operandos que ocorrem dentro do bloco.

IN Indica quais expressões podem ser movidas para blocos antecedentes.

OUT Indica quais expressões de blocos subsequêntes podem ser movidas para o final do bloco atual – estas expressões podem ou não serem antecipadas pelo bloco atual.

	Gen	Kill	IN	OUT
$\overline{B_1}$	0	1	0	1
B_2	1	0	1	0
B_1 B_2 B_3 B_4	0	0	1	1
B_4	0	0	1	1

Table 4: Disponibilidade de Expressões Anticipáveis — $((+,\,b,\,c))$

 $^{^2}$ Só faz sentido em análises internas ao bloco.

5 Disponibilidade Parcial de Expressões

 $Gen \dots$ $Kill \dots$ $IN \dots$ $OUT \dots$

	Gen	Kill	IN	OUT
B_1	0	1	0	0
B_1 B_2 B_3 B_4	1	0	1	1
B_3	0	0	0	0
B_4	0	0	1	1

Table 5: Disponibilidade Parcial de Expressões — ((+, $b,\,c))$

6 Mortalidade de Variáveis

 $Gen \dots$

 $Kill\ \dots$

 $In \ \dots$

 $In \dots$

	Gen	Kill	IN	OUT
B_1	011	000	111	100
B_2	100	011	100	100
B_3	000	000	100	100
B_4	000	000	100	100

Table 6: Mortalidade de Variáveis — (a,b,c)

7 Alcançabilidade de Definições para Propagação de Cópias

Gen ...

Kill ...

In ...

In ...

	Gen	Kill	IN	OUT
B_1	110	110	000	110
B_2	000	000	000	000
B_3	000	000	110	110
B_4	000	000	000	000

Table 7: Alcançabilidade de Definições para Propagação de Cópias — (b:=0,c:=1,a:=b+c)

8 Eliminação de Redundâncias Parciais

8.1 Expressão Redundante

Uma expressão é redundante no ponto p se em cada caminho até p:

- 1. Ela é avaliada antes de alcançar p, e
- 2. Nenhum de seus operandos constituintes é redefinido antes de p.

Por exemplo, na Equação 1, as ocorrências de expressões em negrito são redundantes.

Uma expressão é parcialmente redundante no ponto p se ela é redundante ao longo de alguns caminhos, mas não todos, até p.

Por exemplo, na Equação 2, a expressão b+c em negrido no diagrama da esquerda é parcialmente redundante. A inserção de uma cópia de b+c depois da definição de b pode tornar uma expressção parcialmente redundante em uma totalmente redundante como mostra o diagrama da direita.

	ENTRY	B_1	B_2	B_3	B_4	EXIT
e_gen	{0}	{0}	{1}	{0}	{0}	{0}
e_kill	{0}	{1}	{0}	{0}	{0}	{0}
anticipated_out	{0}	{1}	{0}	{1}	{1}	{0}
anticipated_in	{0}	{0}	{1}	{1}	{1}	{0}
available_in	{0}	{0}	{1}	{0}	{1}	{1}
available_out	{0}	{0}	{1}	{1}	{1}	{1}
earliest	{0}	{0}	{0}	{1}	{0}	{0}
$postponable_in$	{0}	{0}	{0}	{0}	{0}	{0}
postponable out	{0}	{0}	{0}	{1}	{0}	{0}
latest	{0}	{0}	{0}	{1}	{0}	{0}
used out	$\{0\}$	$\{0\}$	$\{1\}$	$\{1\}$	$\{1\}$	$\{0\}$
used_in	$\{0\}$	$\{0\}$	{1}	$\{0\}$	{1}	$\{0\}$
cond 1	{0}	{0}	{0}	{1}	{0}	{0}
cond 2	{0}	{0}	{1}	{0}	{0}	{0}
						,

Table 8: Eliminação de Redundâncias Parciais — $((+,\,b,\,c))$

9 Propagação de Constantes

Gen ...

Kill ...

In ...

In ...

	IN	OUT
B_1	(\top, \top, \top, \top)	$(\top, 0, 1, \top)$
B_2	(1,0,1,1)	(1,0,1,1)
B_3	$(\top, 0, 1, \top)$	$(\top, 0, 1, 1)$
B_4	(1,0,1,1)	(1,0,1,1)

Table 9: Propagação de Constantes — (a,b,c,t_4)

