Part 2: Weights

Artificial Neural Networks

Vectorizing Forward Computation

For now let's ignore bias

$$W^{(1)} = \begin{bmatrix} w_{11}^{(1)} & w_{12}^{(1)} & w_{13}^{(1)} \\ w_{21}^{(1)} & w_{22}^{(1)} & w_{23}^{(1)} \end{bmatrix}$$
 Neurons in layer l
$$w_{ij}^{(l)}$$
: weight from j^{th} neuron on layer l to

the i^{th} neuron on layer l+1

Features/Inputs
$$X = \begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \\ x_{41} & x_{42} & x_{43} \end{bmatrix}$$

 x_{ij} : i^{th} sample for feature j

Vectorizing Forward Computation

For now let's ignore bias
$$W^{(1)} \cdot X^T = \begin{bmatrix} w_{11}^{(1)} & w_{12}^{(1)} & w_{13}^{(1)} \\ w_{21}^{(1)} & w_{22}^{(1)} & w_{23}^{(1)} \end{bmatrix} \cdot \begin{bmatrix} x_{11} & x_{21} & x_{31} & x_{41} \\ x_{12} & x_{22} & x_{32} & x_{42} \\ x_{13} & x_{23} & x_{33} & x_{43} \end{bmatrix}$$

$$= \begin{bmatrix} w_{11}^{(1)} x_{11} + w_{12}^{(1)} x_{12} + w_{13}^{(1)} x_{13} & \dots & w_{11}^{(1)} x_{41} + w_{12}^{(1)} x_{42} + w_{13}^{(1)} x_{43} \\ w_{21}^{(1)} x_{11} + w_{22}^{(1)} x_{12} + w_{23}^{(1)} x_{13} & \dots & w_{21}^{(1)} x_{41} + w_{22}^{(1)} x_{42} + w_{23}^{(1)} x_{43} \end{bmatrix}$$

Forward Computation

On every layer we multiply the output of the previous layer with the weights and apply activation function $\varphi(\cdot)$:

$$z^{(l)} = W^{(l)}X^T$$
$$a^{(l)} = \varphi(z^{(l)})$$

Linear Activation

Vanishing/Exploding Gradients

Reminder: Backpropagation uses the chain rule to compute gradients.

Let's examine gradient of the first layer: a_{I} a_{I} a_{I} a_{I} a_{I} a_{I} a_{I} a_{I}

$$\frac{\partial L}{\partial a} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial d} \frac{\partial d}{\partial c} \frac{\partial c}{\partial b} \frac{\partial b}{\partial a}$$

$$X \xrightarrow{a} b \xrightarrow{b} c \xrightarrow{d} \hat{y}$$

Activation Functions

$$\varphi(x) = \frac{1}{1 + e^{-x}}$$

$$\varphi(x) = \frac{e^{2x} - 1}{e^{2x} + 1}$$

$$\varphi(x) = \max(0, x)$$

Vanishing/Exploding Activations

To simplify assume linear activation function $\varphi(x) = x$ and 0 bias. Then the NN output will be:

$$\hat{y} = W^{(n)}W^{(n-1)}\cdots \overbrace{W^{(2)}\ W^{(1)}X^T}^{second\ layer}$$

$$\underbrace{\hat{y} = W^{(n)}W^{(n-1)}\cdots W^{(2)}\ W^{(1)}X^T}_{first\ layer}$$

If we initialize weights randomly:

• W >> 1

What will happen to the output of the NN?

Vectorizing Forward Computation

$$W^{(1)} = \begin{bmatrix} w_{10}^{(1)} & w_{11}^{(1)} & w_{12}^{(1)} & w_{13}^{(1)} \\ w_{10}^{(1)} & w_{21}^{(1)} & w_{22}^{(1)} & w_{23}^{(1)} \end{bmatrix}$$
 Neurons in layer l
$$w_{ij}^{(l)}$$
: weight from j^{th} neuron on layer l to

the i^{th} neuron on layer l+1

Weight Initialisation

Q: Why not initialize all the weights to

0?

W=0

Initialise with small random number $N(0, \alpha)$ $\alpha = 1e-2$

Works for small networks but leads to skewed activations for deeper networks

- Let's assume that we have 10-D input data x data normally distributed in N(0, 1)
- Let's create 5 layers with 10 neurons on each layer
- Let's initialise weights from using a normal distribution N(0, 1e-2)

What is the expected distribution of activations after a forward pass?

sigmoid

sigmoid

Xavier Initialisation

Xavier with ReLU

10 8 6 4 2 0 -10 -5 0 5 10

relu

 $\mathcal{N}(0, 0.31622776601683794)$

Kaiming Initialisation

$$\sqrt{\frac{2}{size^{(l-1)} + size^{(l)}}}$$

 $\mathcal{N}(0, 0.4472135954999579)$

Batch Normalisation

If we need zero mean, unit variance in every layer why not normalize at every layer for every mini-batch?

$$\mathcal{B} = \{x_1 ... m\}$$

$$\widehat{x_i} = \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \varepsilon}}$$

Where $\mu_{\mathcal{B}}$ and $\sigma_{\mathcal{B}}^2$ the mean and variance of the minibatch

$$\mu_{\mathcal{B}} = \frac{1}{m} \sum_{i=1}^{m} x_i$$

$$\sigma_{\mathcal{B}}^2 = \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_{\mathcal{B}})^2$$

Batch Normalisation

This way we constrain the layers and nonlinear activations to operate in zero mean, unit variance input and this may not be desirable.

$$y_i = \gamma \widehat{x_i} + \beta$$
$$BN_{\gamma,\beta}(x_i)$$

$$\widehat{x_i} = \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \varepsilon}}$$
 $\gamma = \sqrt{\sigma_{\mathcal{B}}^2 + \varepsilon}$ $\beta = \mu_{\mathcal{B}}$