,	Ch.3-The Binomial Coefficients & their properties
\$1	The Binomial & Multinomial Theorems
	A monomial in Elementary Algebra
	is usually taken to be the product of a constant
	and a finite number of variables. A
	multinomial (or polynomial) is the sum of a finite number
,	of monomials. When we have a sum of two monomials
W	ensually call the expression a binomial - and
	for three monomials we call it a trinomial.
Ex.1	(a) 7, (-9)x4 5x24 and (6-VZ). XYZZ are
	all monomials
	(b) $(x+y)$, (x^2+y^2) , $(1+x)$ and $(3-y^3)$
- No. V. A. A. A. B.	are all binomials. $= (3+(-y^3))$ (c) $(x+y+z)$, $(x_1+x_2+x_3x_4)$ and $(1+x^2-yz)$
and the second seco	(c) (X+Y+Z) (X,+X2+X3X4) and (1+X2-YZ)
n van rooms naarhinge viringelijk, thin had van dit helde gelektingsplake klasseer	are all trinomials,
	d) $(1-\sqrt{2})^3$ is a monomial because it is
e. 	a constant
r y y y www.y . pr. h. f. f f. f. w. w. y d www. h. f. d of f.	
	In this chapter we will be interested in the
marana e di sa makeri eras marana marana marana ha sangging, min njen beberijani.	expansion of expressions of the form (x,++x)"
	expansion of expressions of the form (x,++x)" and in the properties of the coefficients we
	obtain from these expansions. Recall that we
	define the expressions (x) & (n, n, n, nk) by
e og till state at til state og state o	(K) K!(n-k)! (M,, ", "k)) Mi! Mei " - "k! otherwise,
ha et a strend state et al est de l'abraha sur al paracea à manda	Note that $\binom{n}{k} = \binom{n}{k}$. We will assume that all
	the terms in these expressions are non-negative.

: i.	
Prop3	There are $\binom{n+k-1}{k-1}$ terms in the expansion of the expression $(X_1 + \cdots + X_K)^n$.
	the expression (X,+··+XK)".
1	
1001	Number of terms in the expansion of $(x_1 + \cdots + x_n)^n$ = no, of non-negative integer solutions of the
	1 0 0 0 0 0 0 0 0 0 0
	= now of permutations of the multiset [n.1, (k-1) =+"]
	= mon of permutations of the multiset $[n.1, (k-1)t]$ $= (n+k-1)! = (n+k-1) = (n+k-1)$ $n! (k-1)! = (k-1) = (n+k-1)$
	n! (k-D!
	3 1/1 (3+3-1) (5) to towns
£x.2	$(x+y+z)^3$ will have $\binom{3+3-1}{3-1}=\binom{5}{2}=10$ terms in its expansion.
4	in 11s expansion.
£√3	Find the coefficients of x2x2 and xx22 in
5.0.	Find the coefficients of x2x2 and xx22 in the expansion of (x = 24+32)6 (x-24+32)6
Sol.	a) Coefficient of x (+24). (32) in the expansion of (x-24+32)6
	= (2,3,1) = 6! = 6.5.4 = 60.
	So the coefficient of x2y3z' in the expansion
	will be $60.(1)^2(-2)^3.(3)'.=-1440.$
(6	Coefficient of xy2z2 in the expansion of
	$(x-2y+3Z)^6$ will be zero because $(1,2,2)=0$
	since 1+2+2 = 6.
Mate	There are many reasons why 0 = 1. Here is one.
Note:	We expect that (1+x) = 1 for any x - this is not
	We expect that $(1+x)^0 = 1$ for any $x - this is not$ unreasonable. So $0^0 = [1+(-1)]^0 = (1+x)^0 = 1$ with $x = -1$.
	Also (1-x)-1 = 20 xk. Putting x=0, gives (1-0) = x0
	$k = 0 \qquad \qquad 1 \qquad 1 \qquad \qquad 1 \qquad \qquad 1 \qquad \qquad 0 \qquad \qquad \qquad 1 \qquad \qquad 1 \qquad \qquad \qquad \qquad$

§2. Properties of the Binomial Coefficients. There are quite a large number of identities which involve the Binomial Coefficients. Most of these (actually, perhaps all of these) identities can be proved in an analytic way and also in a combinatorial way. The analytic way uses algebra (and analysis sometimes) - but we are mever quite sure about the reason why the identity is true. This is in some ways like Mathematical Induction - it justifies the result and makes us certain that it is true - but we are still left wondering what was the real reason the result is true. The combinatorial way gives us an idea why the result is true - but sometimes it can be harder to understand than the analytic way. Below we will give several examples in why we prove the results both ways.

 $\frac{Prop.4}{\binom{n}{0}} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n} = 2^n, \text{ for any } n \in \mathbb{N}.$

Proof: (Analytic way): From the Binomial theorem we have $(1+x)^{n} = \binom{n}{0} + \binom{n}{1}x + \binom{n}{2}x^{2} + \cdots + \binom{n}{n} \cdot x^{n}, \text{ for any } n \in \mathbb{N}.$ Putting x = 1, we get $(1+1)^{n} = \binom{n}{0} + \binom{n}{1} \cdot 1 + \binom{n}{2} \cdot 1^{2} + \cdots + \binom{n}{n} \cdot 1^{n}$ $\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \cdots + \binom{n}{n} = 2^{n}.$ $\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \cdots + \binom{n}{n} = 2^{n}.$

 $\binom{n}{0} + \binom{n}{1} \times + \cdots + \binom{n}{k} \times^{k} + \cdots + \binom{n}{n} \times^{n}$ $= (1+x) \cdot \left\{ \binom{n-1}{0} + \dots + \binom{n-1}{k-1} x^{k-1} + \binom{n-1}{k} x^{k} + \dots + \binom{n-1}{n-1} x^{k-1} \right\}$ $= (n-1) + \dots + \left\{ \binom{n-1}{k-1} + \binom{n-1}{k} \right\} x^{k} + \dots + \binom{n-1}{n-1} x^{k}$ Since the coefficients of x^k in the two expansions must be the same, we get $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$. Algebraic way): (n-1) + (n-1) $= \frac{(n-1)!}{(k-1)!} \frac{(n-1)!}{(k-1)!} + \frac{(n-1)!}{(k-1)-k]!}$ $= \frac{(n-1)!}{k! (n-k)!} \left[\frac{k}{1} + \frac{(n-k)}{1} = \frac{n(n-1)!}{k! (n-k)!} = \frac{(n-k)!}{k! (n-k)!} \right]$ Combinatorial way): (k) = no. of k-subsets of [1,2,-,n] = no, of k-subsets of {1,2,...,n} containing 1 + no. of k-subsets of siz, ..., not containing 1 and we are done, to get a k-subset of {1,-..,n}
not containing 1. choosing k-1 elements of {2,3,...,n} to get a k-subset of {1,2,...,n} containing 1. Prop. 7 For any neN, $\sum_{k=0}^{n} \{\binom{n}{k}^2\} = \binom{2n}{n}$ Proof. (Analytic way): $(2n) = coefficient of x^n in the expansion of <math>(1+x)^{2n}$ = $coefficient of x^n$ in the expansion of $(1+x)^n(1+x)^n$

= coefficient of x^n in $\left\{\sum_{k=0}^{n} {n \choose k} \times^k \right\} \cdot \left\{\sum_{k=0}^{n} {n \choose k} \cdot X^k \right\}$ $\binom{n}{o}\binom{n}{n}+\binom{n}{j}\binom{n}{n-j}+\binom{n}{k}\binom{n}{n-k}+\cdots+\binom{n}{n}\binom{n}{o}$ $\frac{\sum_{k=0}^{n} \binom{n}{k} \binom{n}{n-k}}{\binom{n}{k}} = \frac{\sum_{k=0}^{n} \binom{n}{k}^{2}}{\binom{n}{k}^{2}} \quad bec. \binom{n}{n-k} = \binom{n}{k}.$ Combinatorial way No. of n-subsets of {1,2, -.., The union of the k-subset of {1,2,...,n} and the (n-k) - subset of (n+1,...,2n) will produce an Prop. 8 For any n, k > 1; Proof: (Algebraic way): k, Combinatorialway): We shall calculate the number of ways of picking a team of k players out of n individuals and designating a captain who must be in the team. Pick the k players first & then choose, no. of ways of picking the team & the captain

(n) (n-1) Pick the captain first & then choose

n. (n-1) k-1 more players from n-1 to get the team. und B = coll. of k-subsets of A & C = coll. of h-k) subsets

Sefine f	$B \rightarrow C$ by $f(S) = A - S$. Then f is a bijection. (9) of A
- (M) = Y	Pascal's triangle (or Pascal's infinite array)
192 to mark the market all the marke	By repeatedly using Pascal's identity we can
any interview to capacity and collections with an extension of the interview of the collection of the	build an infinite array with the Binomial
	Coefficients. Some patterns immediately "jump
ي مودود المراجعة	out "at us while others take a little more time
ar dayar yilidada da aliisanda kayar arayar arayar dan asadan ada aray arayar arawayan da kada	to appear. So let us take a peek at the
ya kacamatan da ka	(2) gray for nikeN.
ga ab ga ab quanto de ga biga galer y distrige de ab fericina spendi gana 13-di 1719 il 18-di	$\langle K \rangle = \langle K \rangle = \langle K \rangle$
n ->	The same of the sa
	$7 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
the transmission of the proof of the superior	6 1 6 15 22 15 6 1 0 0 64
Make the Bank States States and any which with which the contract of the contr	5 (15 10 10 5 1) 0 0 0 32
The state of the s	4 6 4 1 0 0 0 0
And the state of second	3 3 3 1 0 0 0 0 0
والمراجعة	2 1 2 1 0 0 0 0 0 0 4
and years and all the second s	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
And the second state of the second	0 1 2 3 4 5 6 7 8 FK
	The Cont His was the the mon serve coef-
ANY COMMENT OF THE PROPERTY OF THE SECOND SE	The first thing we notice is that the non-zero coef- ficients form a right-triangle—that is why the
أبيريا في عدو يستوقع عدد فيواه و مستود يعني براه و و و و و و و و و و و و و و و و و و و	array is called Pascal's triangle (but over the
patery participants de the good pulsar method by "Seapon and Selly pay and the belief the table that the belief the selly sell payment of the selly se	years this triangle has been drawn in different
	ways Next we notice that the sum of the
es e aureguare de l'autocomment proposition d'un est par le proposition de l'autocomment de grand d'un confidence de l'autocomment de l'autoco	entries in the n-th row is exactly 2". This is
	ways). Next we notice that the sum of the entries in the n-th row is exactly 2^n . This is because $\binom{n}{2} + \binom{n}{1} + \binom{n}{2} + \cdots + \binom{n}{n} = 2^n$.
والمراجعة المراجعة والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة	
gayarin kalipin dakin serti katanasa int Para Jaura dakimahan papa "Parrip Prop.	Observe also that the non-zero entries are enclosed by
	the x=Y main diagonal with is & column o with is.

If we look at the sum of the terms in any column up to and including the (") term, we immediately see from the square cornered rectangles that there is a pattern there 1+6=7, 1+5+15=21, 1+4+10+20=35. This comes from the following result. Prop. 9 For any $n \ge k$, we have $\binom{0}{k} + \binom{1}{k} + \binom{2}{k} + \cdots + \binom{n}{k} = \binom{n+1}{k+1}$ Actually, since ()= o for 1< n<k, we can write This as $\binom{k}{k} + \binom{k+1}{k} + \binom{k+2}{k} + \dots + \binom{n}{k} = \binom{n+1}{k+1}$. Proof: We shall prove the result by parametric induction on n (k will be the temporarily fixed parameter) Basis: For n = k, we have $\binom{k}{k} = 1 = \binom{k+1}{k+1} = \binom{n+1}{k+1}$. So the result is true for n=k. Ind. tep: Suppose the result is true n (where $n \ge k$).

Then $\binom{k}{k}' + \binom{k+l}{k} + \binom{k+2}{k} + \cdots + \binom{n}{k} = \binom{n+l}{k+l}$; So $\binom{k}{k}$ + $\binom{k+1}{k}$ + $\binom{k+2}{k}$ + \cdots + $\binom{n}{k}$ + $\binom{n+1}{k}$ $\frac{(n+1)+(n+1)=(n+1)+(n+1)}{(k+1)}+\frac{(n+1)}{($ $= \binom{n+2}{k+1} = \binom{(n+1)+1}{k+1} \quad \text{by Pascal's Identity.}$ So if the result is true for n, it will be true for ntl.

Conclusion: By the Principle of Math Induction the result is true for all n,k.

Finally if we look at terms in the diagonals

that parallel to the X+Y = 0 diagonal, then we see the following pattern from the terms enclosed in the squiggly rectangles... 1=1, 1+0=1, 1+1=2, 1+2=3, 1+3+1=5A moment's thought would indicate that is the Fibonacci sequence an which is defined by recursion as follows. $a_0 = 0$, $q_1 = 1$; and $a_n = a_{n-1} + a_{n-2}$ for $n \ge 2$. This pattern comes from the following result Prop. | For any $n \in \mathbb{N}$, we have $\binom{n}{0} + \binom{n-1}{1} + \binom{n-2}{2} + \cdots + \binom{0}{n} = a_{n+1}$ Proof. let bn = (n-1) + (n-2) + (n-3) + - . . + (o). Then for n > 2 $b_{n-1} + b_{n-2} = \binom{n-2}{6} + \binom{n-3}{1} + \binom{n-4}{2} + \binom{n-5}{3} + \frac{1}{1} + \binom{0}{n-2}$ $\binom{n-3}{\alpha}$ + $\binom{n-4}{1}$ + $\binom{n-5}{2}$ + $\binom{0}{n-3}$ $= \binom{n-2}{0} + \binom{n-2}{1} + \binom{n-3}{2} + \binom{n-4}{3} + \cdots + \binom{1}{n-2} \quad Pascal's$ $= \binom{n-2}{0} + \binom{n-2}{1} + \binom{n-3}{2} + \binom{n-4}{3} + \cdots + \binom{1}{n-2} \quad Pascal's$ $= \binom{n-1}{n} + \binom{n-2}{1} + \binom{n-3}{2} + \binom{n-4}{3} + \cdots + \binom{1}{n-2} + \binom{0}{n-1} = 6n$ Also bo = empty sum = 0.2 bi = (0) = 1. So (an) &. (bn) satisfy the same recurrence equation and the same initial conditions, Hence an = bn for each ne IV. So $\frac{(n)+(n-1)+(n-2)+\cdots+(0)}{(n)}=b_{n+1}=a_{n+1}$ and we are done.

Ex.1 Let nezt. Put D = set of all subsets of [1,...,n] with an odd number of elements and E = set of all subsets of {1,2,...,n} with an even no. of elements. Prove that |D| = |E|. We know that $(1+x)^n = \sum_{k=0}^{\infty} \binom{n}{k} x^k$, from the Biomial Theorem. Putting X = -1, we get because (n) = number of subsets of (1, m, n) with k elements. Ex.2 | Prove that - (n) + 2(n) + 3(n) + ... + n+1 (n) = 2n+1 We know that $(1+x)^n = {n \choose 0} + {n \choose 1}x + {n \choose 2}x^2 + \dots + {n \choose n}x^n$ Integrating both sides w.r.t. x from o to 1, we get $\int_{0}^{1} (t+x)^{n} dx = \int_{0}^{1} \left(\frac{h}{0} \right) + \left(\frac{m}{0} \right) x + \left(\frac{m}{2} \right) \cdot x^{2} + \dots + \left(\frac{m}{n} \right) \cdot x^{n} dx$ $\frac{1}{n+1} = \frac{1}{1} \binom{n}{0} + \frac{1}{2} \binom{n}{1} + \frac{1}{3} \binom{n}{2} + \dots + \frac{1}{n+1} \binom{n}{n}$ $\mathcal{E}_{X,3}$ Prove that $\frac{1}{1}\binom{n}{0} + \frac{1}{2}\binom{n}{1} + \frac{1}{3}\binom{n}{2} + \cdots + \frac{(-1)^n \binom{n}{n}}{n+1} = \frac{1}{n+1}$ Do for H.W. (Hint: Integrate (Itx)" from -1 to O.) Ex. (agoin): Define f: D-E by f(B)= (B-{i}) it 1EB Then f"is a bijection. So DI=IE). Here B= \(\in_12,\dots,\nabla\).

```
$4. Newton's Binomial Theorem
 Theorem 12 (Newton's Binomial Theorem)
            Let \alpha be any real number and |x| < 1. Then
\sum_{k=0}^{\infty} {\binom{\alpha}{k}} x^k \text{ converges } \& \text{ val} \left(\sum_{k=0}^{\infty} {\binom{\alpha}{k}} x^k\right) = (1+x)^{\infty}.
Here {\binom{\alpha}{k}} = {\binom{\alpha}{k}} = {\binom{\alpha}{k-1}} (\alpha-1) \cdot \cdot \cdot \cdot (\alpha-(k-1)) for k \in \mathbb{Z}^{\pm}
                                         (1 (if k=0), and o (if keZ-).
            The proof is beyond our reach in this course because it needs a background in real analysis. But we will illustrate it for special values of x.
Prop. 13 For any n \in \mathbb{Z}^+ and any k \in \mathbb{N}, we have \binom{-n}{k} = (-1)^k \binom{n+k-1}{k}.
             (1+x)^{-n} = \frac{1}{(1+x)^n} = \sum_{k=0}^{\infty} (-1)^k {m+k-1 \choose k}, x^k, |x| < 1
            Replacing x by (-x), we get that
(1-x)^n = \frac{1}{(1-x)^n} = \sum_{k=0}^{\infty} \frac{n+k-1}{k} x^k \text{ for } |x| < 1.
                         = \frac{(-1)^{k}}{2^{k}} \cdot \frac{(1)(2)(3)(4) - \cdots (2k-1)(2k)}{2 \cdot 4 \cdot \cdots (2k-2)(2k)} \cdot \frac{1}{k!}
                          = \frac{(-1)^{k}}{2^{k}} \frac{(2k)!}{2^{k}} \frac{1}{k!} = \frac{(-1)^{k}}{k!} \left(\frac{2k}{k}\right) \frac{1}{2^{2k}}
                                                                                = (-1)^{k} \frac{1}{2^{2k}} \binom{2k}{k} \sqrt{\frac{2k}{k}}
```

```
So (1+x)^{-1/2} = \sum_{k=0}^{\infty} (-1/2) \cdot x^k = \sum_{k=0}^{\infty} (-1)^k \cdot \sum_{k=0}^{\infty} (2k) \cdot x^k, (15)
                                        -..[/2-(K-1)]/k!
                (1/2)(1/2-1)(1/2-2)
                            (-3) (-5)-
                (1)(-1)
                           (1)(2),(3),(4),(5) - - · (2k-3)(2k-2)(2k-1)(2k)
                                               (-1)k-1
(2k-1), 22k
    The extended Pascal's infinite array is obtained from
                           for neIt & KEN and ( ) = 0 when ke Z.
                      k=0
21
                                         35
                                               35
                                                    21
                                                          7
                                   21
      4
            0
                0
                                              15
                                  15
                                                                0
                                        20
                       ţ
6
            0
                0
                       ĺ
                                        10
                                              5
                                                          0
                                  10
                                                                0
                 0
                                                    Ó
                                                          0
                                                                0
                       Ϊ
                                        \bigcirc
                                              0
                                                    0
                                                                0
                                                          0
            0
                 O
      r 🖅
                                                    0
                                                                0
                                              0.
                             2
                       f
                                                          ٥
                 (')
                                                               0
                                                   0
                                                         0
                 0
                                                                          n=0
                                   a.
                                                    0
                                                                0
                                              0.
           0
                                                          0
0
                 0
           0
                 0
                                        -46
                                                               ~8
                                               5
           0
                 0
                                                          28
                                                               -36
                                               15 -21
                 0
                                                               -120
                                                          84
                 O
                                                               -330
                                                70 -126
                                                          210
                 0
                       1
                                        -56 126 -252
                                                         462 -792
                 O
           0
11
                                                                         e k
                                                4
                                                     5
                                           3
                                    2
    k: -2
                       Ø
```