Filter Response Normalization Layer: Eliminating Batch Dependence in the Training of Deep Neural Networks¹

September 23, 2020

¹ "Filter Response Normalization Layer: Eliminating Batch Dependence in the Training of Deep Neural Networks" by Singh and Krishnan, 2020

Overview

- ▶ BatchNorm performance degrades heavily when batch size is small
- ▶ A lot of other normalization techniques have been proposed (LayerNorm, GroupNorm, etc), but they are insufficient
- Authors propose two things:
 - Filter Response Normalization:

$$y_i = \gamma \frac{x_i}{\sqrt{\nu^2 + \epsilon}} + \beta, \quad \text{where } \nu^2 = \sum_i x_i^2 / N$$
 (1)

Thresholded Linear Unit

$$z_i = \max(y_i, \tau) \tag{2}$$

- ▶ These two techniques work the best when used in combination
- Authors demonstrate superior performance for different batch sizes (from small to large ones) on ImageNet classification and MS-COCO object detection over other normalization methods

Filter Response Normalization (FRN)

We compute the norm across spatial locations and normalize the input with it:

$$y_i = \gamma \frac{x_i}{\sqrt{\nu^2 + \epsilon}} + \beta, \quad \text{where } \nu^2 = \sum_i x_i^2 / N$$
 (3)

A problem with FRN occurs when $N=H\times W$ is too small: in this case small values of ϵ diverge the procedure into a sign function:

That's why authors initialize $\epsilon = 0.0001$ for N = 1 and learn it.

Thresholded Linear Unit (TLU)

- One of the main differences between FRN and BN is that FRN does not keep activations zero-centered (by subtracting the mean)
- ► This may make them deviate arbitrarily far away from zero
- And this consequently pushes ReLU into bad zones (all-zeros or all-linear)
- ▶ That's why authors turn ReLU activation into TLU:

$$z = \max(y, \tau) \tag{4}$$

where τ is a learnable bias.

In practice, it showed to perform well

Classification results on ImageNet

Figure: ImageNet results for ResNetV2-50

MS-COCO object detection results

Method	AP			AP^{50}			AP ⁷⁵		
imgs/gpu	8	4	2	8	4	2	8	4	2
BN*	38.3	37.1	32.9	57.2	55.4	49.1	41.5	40.4	35.9
BN	38.7	37.9	30.2	56.6	55.2	44.5	42.1	41.4	32.5
GN	39.3	39.0	38.7	57.8	57.5	56.9	42.6	42.3	41.8
FRN	39.6	39.5	39.1	58.5	58.4	57.5	43.1	43.3	42.3

Figure: RetinaNet with Resnet101 FPN backbone

FRN/TLU ablation

Method	P@1	R@5
$BN + \max(x, 0) (ReLU)$	76.21	92.98
$BN + \max(x, \tau)$ (TLU)	76.03	92.94
$\overline{\text{FRN} + \max(x, 0) \text{ (ReLU)}}$	75.24	92.65
$\max(x, \kappa x)$ (PReLU) [12]	76.43	93.30
$\max(x, \kappa x + \tau)$ (Affine-TLU)	76.71	93.32
$\max(x, \tau)$ (TLU)	77.21	93.57

Figure: Results for difference normalization/activation setups for ImageNet classification

Final thoughts

- Other normalization techniques (LN, GN, etc) work better than BN on small batch sizes, but worse on large ones
- ▶ Authors managed to "take the best of the both worlds"
- Authors argue that LN/GN perform poorly because they create additional correlations between channels
 - ▶ That's an interesting perspective
- It's interesting to see that parameters ϵ and τ are learnt to meaningful values
 - Usually such kind of parameters are not optimized well