Job No.: 4 Bay Open Gable - 1

Address: 5464 SH14 Awakino Point 0372, Dargaville, New Zealand Date: 27/09/2024

Latitude: -35.922486

Longitude: 173.8925

Elevation: 4.5 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N0	Ground Snow Load	0 KPa	Roof Snow Load	0 KPa
Earthquake Zone	1	Subsoil Category	D	Exposure Zone	C
Importance Level	2	Ultimate wind & Earthquake ARI	100 Years	Max Height	5 m
Wind Region	NZ1	Terrain Category	2.29	Design Wind Speed	37.77 m/s
Wind Pressure	0.86 KPa	Lee Zone	NO	Ultimate Snow ARI	150 Years
Wind Category	High	Earthquake ARI	500		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Gable Open

For roof Cp, i = 0.63

For roof CP,e from 0 m To 7.50 m Cpe = -0.624 pe = -0.43 KPa pnet = -0.96 KPa

For roof CP,e from 7.5 m To 15 m Cpe = -0.4984 pe = -0.35 KPa pnet = -0.88 KPa

For wall Windward Cp, i = 0.63 side Wall Cp, i = -0.52

For wall Windward and Leeward CP,e from 0 m To 24 m Cpe = 0.7 pe = 0.52 KPa pnet = 0.94 KPa

For side wall CP,e from 0 m To 6 m Cpe = pe = -0.48 KPa pnet = -0.06 KPa

Maximum Upward pressure used in roof member Design = 0.96 KPa

Maximum Downward pressure used in roof member Design = 0.58 KPa

Maximum Wall pressure used in Design = 0.94 KPa

Maximum Racking pressure used in Design = 0.77 KPa

Design Summary

Purlin Design

Purlin Spacing = 800 mm Purlin Span = 5850 mm Try Purlin 150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.80 S1 Downward =9.63 S1 Upward =17.29

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M1.35D	1.16 Kn-m	Capacity	1.26 Kn-m	Passing Percentage	108.62 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	3.01 Kn-m	Capacity	1.68 Kn-m	Passing Percentage	55.81 %
$M_{0.9D\text{-W}n\text{Up}}$	-2.52 Kn-m	Capacity	-1.68 Kn-m	Passing Percentage	164.71 %
V _{1.35D}	0.79 Kn	Capacity	7.24 Kn	Passing Percentage	916.46 %

Second page

 $V_{1.2D+1.5L~1.2D+Sn~1.2D+WnDn}$ 2.06 Kn Capacity 9.65 Kn Passing Percentage 468.45 % $V_{0.9D-WnUp}$ -1.72 Kn Capacity -12.06 Kn Passing Percentage 701.16 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3 considering at least 4 members acting together

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 75.07 mm

Limit by Woolcock et al, 1999 Span/360 = 16.11 mm

Deflection under Dead and Service Wind = 98.84 mm

Limit by Woolcock et al, 1999 Span/250 = 38.67 mm

Reactions

Maximum downward = 2.06 kn Maximum upward = -1.72 kn

Number of Blocking = 1 if 0 then no blocking required, if 1 then one midspan blocking required

Girt Design Front and Back

Girt's Spacing = 900 mm Girt's Span = 6000 mm Try Girt 250x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 0.97

K8 Upward =0.72 S1 Downward =12.68 S1 Upward =18.90

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Mwind+Snow 3.81 Kn-m Capacity 4.22 Kn-m Passing Percentage 110.76 % $V_{0.9D-WnUp}$ 2.54 Kn Capacity 20.10 Kn Passing Percentage 791.34 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 32.73 mm

Limit by Woolcock et al, 1999 Span/250 = 24.00 mm

Sag during installation = 78.58 mm

Reactions

Maximum = 2.54 kn

Girt Design Sides

Girt's Spacing = 900 mm Girt's Span = 5000 mm Try Girt 250x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 0.97

K8 Upward =0.62 S1 Downward =12.68 S1 Upward =21.13

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	2.64 Kn-m	Capacity	3.59 Kn-m	Passing Percentage	135.98 %
$V_{0.9D\text{-W}nUp}$	2.12 Kn	Capacity	20.10 Kn	Passing Percentage	948.11 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 15.78 mm

Limit by Woolcock et al. 1999 Span/100 = 20.00 mm

Sag during installation =37.90 mm

Reactions

Maximum = 2.12 kn

Middle Pole Design

Geometry

275 SED H5 (Minimum 300 dia. at Floor Level)	Dry Use	Height	4700 mm
Area	64885 mm2	As	48663.8671875 mm2
Ix	335197731 mm4	Zx	2331810 mm3
Iy	335197731 mm4	Zx	2331810 mm3
Lateral Restraint	1300 mm c/c		

Loads

Total Area over Pole = 45 m^2

Dead	11.25 Kn	Live	11.25 Kn
Wind Down	26.10 Kn	Snow	0.00 Kn
Moment wind	21.60 Kn-m		
Phi	0.8	K8	1.00
K1 snow	0.8	K1 Dead	0.6
K1wind	1		

Material

Peeling	Steaming	Normal	Dry Use
fb =	36.3 MPa	fs =	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	22 MPa	E =	9257 MPa

Capacities

PhiNex Wind	934.35 Kn	PhiMnx Wind	67.72 Kn-m	PhiVnx Wind	115.24 Kn
PhiNcx Dead	560.61 Kn	PhiMnx Dead	40.63 Kn-m	PhiVnx Dead	69.14 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.37 < 1 OK

 $(Mx/PhiMnx)^2+(N/phiNcx) = 0.15 < 1 \text{ OK}$

Deflection at top under service lateral loads = 22.99 mm < 31.33 mm

Drained Lateral Strength of Middle pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma 18 Kn/m3 Friction angle 30 deg Cohesion 0 Kn/m3

 $K0 = \frac{(1-\sin(30)) / (1+\sin(30))}{Kp} = \frac{(1+\sin(30)) / (1-\sin(30))}{(1-\sin(30))}$

Geometry For Middle Bay Pole

Ds = 0.6 mm Pile Diameter

L = 2000 mm Pile embedment length

f1 = 3750 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind = 21.60 Kn-m Shear Wind = 5.76 Kn

Pile Properties

Safety Factory 0.55

Hu = 12.40 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 27.87 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.77 < 1 OK

Uplift Check

Density of Concrete = 24 Kn/m3

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(2000) x Ks(1.5) x 0.5 x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(2000)

Skin Friction = 32.31 Kn

Weight of Pile + Pile Skin Friction = 35.80 Kn

Uplift on one Pile = 33.08 Kn

Uplift is ok