Stock management models

17 de abril de 2018

	Datos de entrada
B, P	Número de bobinas, número de productos
L_b	Longitud de la bobina $b, b \in \{1, 2,, B\}$
L_p	Longitud del producto $p, p \in \{1, 2,, P\}$
B_{stock}	Máximo número de bobinas que pueden almacenarse en el deposito
$D_m ax$	Máximo desperdicio admisible (total)
D_{bp}	desperdicio ocacionado por producir el producto p en la bobina b

Modelo ILP

	Variables
$\overline{x_b}$	Binaria, es 1 si y solo si la bobina b es usada para producir al menos un producto
x_{bp}	Binaria, es 1 si y solo si el producto p es producido utilizando la bobina b
z	Entera, cantidad de bobinas en uso
d	Continua, desperdicio total

Minimum number of coils problem (MCP)

Minimize:

$$z$$
 (1)

Subject to:

$$z = \sum_{b=1}^{B} x_b \tag{2}$$

$$\sum_{b=1}^{B} \sum_{p=1}^{P} D_{bp} x_{bp} \le D_{max} \tag{3}$$

$$\sum_{b=1}^{B} x_{bp} = 1 \qquad \forall p \in \{1, 2, ..., P\}$$
(4)

$$x_b \ge x_{bp} \qquad \forall p \in \{1, 2, ..., P\}, \forall b \in \{1, 2, ..., B\}$$
 (5)

$$x_b, x_{bp} \in \{0, 1\}, \quad z \in \mathbb{Z}, \quad z \ge 0$$
 (6)

Minimum waste problem (MWP)

Minimize:

$$d$$
 (7)

Subject to:

$$\sum_{b=1}^{B} x_b \le B_{stock} \tag{8}$$

$$d = \sum_{b=1}^{B} \sum_{p=1}^{P} D_{bp} x_{bp} \tag{9}$$

$$\sum_{b=1}^{B} x_{bp} = 1 \qquad \forall p \in \{1, 2, ..., P\}$$
 (10)

$$x_b \ge x_{bp} \qquad \forall p \in \{1, 2, ..., P\}, \forall b \in \{1, 2, ..., B\}$$
 (11)

$$x_b, x_{bp} \in \{0, 1\}, \quad z \in \mathbb{Z}, \quad z \ge 0$$
 (12)