ECE 210 Fall 2023

Homework 5

Problem 1 (4 pt)

Find the differential equation for v_0 in the opamp circuit below (You don't need to solve the equation). Assume the opamp is ideal with infinite gain.

Problem 2 (5 pt)

The circuit below is a model of a MOS common drain amplifier where v_s is the input voltage and v_0 is the output.

- a) Find the differential equation for v_0 .(3 pt)
- b) If $v_0(0) = 0$ and if $v_s(t) = 1$ V for t > 0, what is the solution for $v_0(t)$ for t > 0. (Consider R, C, g are known; **note** that V_g is not known) (2 pt)

ECE 210 Fall 2023

Problem 3 (5 pt)

In the circuit below, $R_1 = 1 \text{ K}\Omega$, $R_2 = 2 \text{ K}\Omega$, and $C = 3 \mu\text{F}$. Assume the initial rest conditions (namely v_1 has been 0 V for a long time), and assume that v_1 has a 6-volt step at t = 0 (namely it jumps from 0 to 6 V). Find $v_2(t)$ for t > 0. Show the details (4 pt). Also please sketch $v_2(t)$ (1 pt).

Problem 4 (6 pt)

In the circuit below, R_1 , R_2 , C_1 , C_2 and V_0 are known. Assume that the switch has stayed at **1** for a long time and now at t = 0 moves from 1 to 2. Find v (t) for t > 0.

