INTEGRAL CALCULUS

1. Let f be an even function, locally integrable in \mathbb{R} .

Prove that the integral function $F(x) = \int_0^x f(t) dt$ is odd.

2. Let f be an odd function, locally integrable in \mathbb{R} .

Prove that $F(x) = \int_{x_0}^x f(t) dt$ is even for all $x_0 \in \mathbb{R}$.

3. Let f be locally integrable in \mathbb{R} and such that, for all $x \in \mathbb{R}$ with |x| > 10, f(x) = 0.

Find out if the function $F(x) = \int_{-3}^{x} f(t) dt$ is bounded or unbounded.

- 4. Let f be locally integrable in \mathbb{R} , such that $f(x) \geq 1$. Consider the integral function $F(x) = \int_2^x f(t) \ dt$. Verify that $\lim_{x \to +\infty} F(x) = +\infty$ and $\lim_{x \to +\infty} F(x) = -\infty$.
- 5. Let $f: \mathbb{R} \to \mathbb{R}$ be periodic, with period 2, such that $f(x) = -\operatorname{sgn}\left(x \frac{1}{2}\right)$, for all $x \in \left[-\frac{1}{2}, \frac{3}{2}\right)$.
 - Sketch a graph of $F(x) = \int_0^x f(t) dt$.
 - Compute, if it exists, $\lim_{x \to +\infty} F(x)$.
- 6. Let g be differentiable in \mathbb{R} and f be continuous in \mathbb{R} . Let $G(x) = \int_0^{g(x)} f(t) \ dt$.

Prove that G(x) is differentiable on \mathbb{R} and compute its derivative, using the chain rule.

7. Let f be continuous in [a, b], such that $f(x) \ge 0$, for all $x \in [a, b]$.

Prove that $\int_a^b f(x) dx = 0$ if and only if f(x) = 0 for all $x \in [a, b]$.

[Hint: argue by contradiction.]