MA215 Probability Theory

Assignment 15

1. Suppose that a discrete random variable X has finite kth moment, i.e., $E(|X|^k) < \infty$ (k > 0, but k may not be a positive integer). Show that for any $\varepsilon > 0$,

$$P\{|X|\geqslant\varepsilon\}\leqslant\frac{E(|X|^k)}{\varepsilon^k}.$$

2. Suppose that $\{X_1, X_2, \cdots, X_n, \cdots\}$ is a sequence of independent r.v.s (not necessarily with the same distribution), each with finite (but not necessarily with the same) mean and uniformly bounded variance by $M < \infty$ (i.e., $\text{Var}(X_i) \leq M \ \forall i \geq 1$). Let $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ be the sample mean. Show that for any $\varepsilon > 0$, we have

$$\lim_{n \to \infty} P\left\{ |\bar{X}_n - E\bar{X}_n| > \varepsilon \right\} = 0.$$

- 3. Suppose that $\{X_1, X_2, \dots\}$ is a sequence of i.i.d. r.v.s with common mean 0 and variance 16. Let n be sufficiently large and $Y = X_1 + X_2 + \dots + X_n$. Estimate the value of $P\{26.08 < Y \le 44.12\}$ when n = 100. (Hint: using the central limit theorem and normal approximation method.)
- 4. Let $\{X_n\}_{n\geqslant 1}$ be a sequence of i.i.d. random variables with a common normal distribution N(20,25). For positive integer n, let

$$Y = \sum_{i=1}^{6} X_i, \quad W_n = \sum_{i=1}^{n} X_i, \quad \bar{X}_n = \frac{W_n}{n}.$$

- (i) Find the distributions of Y, \bar{X}_n , W_n .
- (ii) Find the probability that the random variable \bar{X}_{30} is between 19 and 21, i.e., find $P(19 < \bar{X}_{30} < 21)$. Also, find the probability that W_{30} is greater than 650, i.e., find $P(W_{30} > 650)$.
- (iii) Are Y and W_{30} uncorrelated or correlated? Use details to illustrate your statements.
- (iv) Let $Y_n = \frac{\bar{X}_n 20}{5\sqrt{n}}$. Use the moment generating functions to find the asymptotic distributions of \bar{X}_n and Y_n as $n \to +\infty$.
- 5. Let X and Y are independent Poisson random variables with parameter 1. Use the moment generating functions to show $X + Y \sim Poisson(2)$. Then use the central limit theorem to show the following statement:

$$\lim_{n \to +\infty} e^{-n} \left[1 + \frac{n}{1!} + \frac{n^2}{2!} + \dots + \frac{n^n}{n!} \right] = \frac{1}{2}.$$

1