

Assignment -2 Report

20th August 2019 || HARSH KUMAR (2016MT10629)

EULER METHOD

COMPUTATION METHOD FOR DIFFERENTIAL EQUATION

IMPROVED EULER METHOD

COMPUTATION METHOD FOR DIFFERENTIAL EQUATION

BACKWARD EULER METHOD

COMPUTATION METHOD FOR DIFFERENTIAL EQUATION

RK -2 METHOD

 $\frac{RK-2 \quad Method}{k_1 = h + (n_n, y_n)}$ $k_1 = h + (n_n, y_n)$ $k_2 = h + (n_n + h + k_1)$ yn+1 = yn + k2 put +(4,y) = y' = /y y(0)=1 $y_{n+1} = y_n + h \lambda \left(y_n + \frac{k_1}{2}\right)$ $= y_n + h / \left(y_n + \frac{h}{2} / y_n \right)$ = yn [1 + h) + (h)2 = Jo (1+ h) + (h) 2 1+2+22 < Graph -Re(2)