高等数学(上)试题

一、 填空题 (每小题 3 分, 本题共 15 分)

1.
$$\lim_{x\to 0} (1+3x)^{\frac{2}{x}} =$$
_____.

2、 当
$$k$$
_____时, $f(x) = \begin{cases} e^x & x \le 0 \\ x^2 + k & x > 0 \end{cases}$ 在 $x = 0$ 处连续.

3、设
$$y = x + \ln x$$
,则 $\frac{dx}{dy} =$ _____

4、曲线 $y = e^x - x$ 在点 (0, 1) 处的切线方程是______

5、若
$$\int f(x)dx = \sin 2x + C$$
, C 为常数,则 $f(x) =$ ______.

二、 单项选择题 (每小题 3 分, 本题共 15 分)

1、若函数
$$f(x) = \frac{|x|}{x}$$
,则 $\lim_{x \to 0} f(x) = ($)

$$B_{s} = 1$$

$$A. \ln \frac{1}{x} (x \to 0^+)$$

B.
$$\ln x(x \to 1)$$

C.
$$\cos x (x \to 0)$$

A.
$$\ln \frac{1}{x}(x \to 0^+)$$
 B. $\ln x(x \to 1)$ C. $\cos x(x \to 0)$ D. $\frac{x-2}{x^2-4}(x \to 2)$

3、满足方程
$$f'(x) = 0$$
 的 x 是函数 $y = f(x)$ 的 ().

A. 极大值点

B. 极小值点 C. 驻点 D. 间断点

A,
$$\int_{0}^{+\infty} \sin x dx$$

B,
$$\int_{0}^{+\infty} e^{-2x} dx$$

$$C \cdot \int_0^{+\infty} \frac{1}{x} dx$$

A,
$$\int_0^{+\infty} \sin x dx$$
 B, $\int_0^{+\infty} e^{-2x} dx$ C, $\int_0^{+\infty} \frac{1}{x} dx$ D, $\int_0^{+\infty} \frac{1}{\sqrt{x}} dx$

5、若
$$\lim_{x\to -1} \frac{x^3 + ax + 4}{x + 1} = l$$
,则()

A,
$$a = 6, l = 3$$

B,
$$a = -6, l = 3$$

C,
$$a = 3, l = 6$$

D,
$$a = -3, l = -6$$

三、计算题(每小题7分,本题共56分)

$$1、求极限 \qquad \lim_{x\to 0} \frac{\sqrt{4+x}-2}{\sin 2x} \quad .$$

$$2、求极限 \qquad \lim_{x\to 0} (\frac{1}{x} - \frac{1}{e^x - 1})$$

$$\int_{x\to 0}^{\cos x} e^{-t^2} dt$$
3、求极限
$$\lim_{x\to 0} \frac{1}{x^2}$$

4、设
$$y = e^5 + \ln(x + \sqrt{1 + x^2})$$
,求 y'

5、设
$$f = y(x)$$
 由已知
$$\begin{cases} x = \ln(1+t^2) \\ y = \arctan t \end{cases}$$
, 求
$$\frac{d^2y}{dx^2}$$

6、求不定积分
$$\int \frac{1}{x^2} \sin(\frac{2}{x} + 3) dx$$

7、求不定积分
$$\int e^x \cos x dx$$

四、应用题(本题7分)

设曲线 $y = x^2$ ($0 \le x \le 1$) 和直线 y = 1, x = 0 围成平面图形 D,求 D 绕 x 轴旋转而成的旋转体的体积

五、证明题(本题7分)

若
$$f(x)$$
 在[0,1]上连续,在(0,1)内可导,且 $f(0) = f(1) = 0$, $f(\frac{1}{2}) = 1$,证明:

在(0,1)内至少有一点
$$\xi$$
, 使 $f'(\xi) = 1$ 。