Limits of Rauzy graphs and horocyclic products of trees

Preliminary version

P.-H. LEEMANN

May 19, 2016

The main result of this paper is the computation of the Benjamini-Schramm limit of the Rauzy graphs associated to a finite subshift. We show that it is a measure supported on horocyclic product of two trees.

1 Introduction

Let \mathcal{A} be a finite alphabet on $k \geq 2$ letters. For convenience, say $\mathcal{A} = \{0, 1, \dots, k-1\}$. We note \mathcal{A}^n the set of sequences of n letters and \mathcal{A}^* the set of finite sequences (it is the free monoid on \mathcal{A}). We also define $\mathcal{A}^{\mathbf{N}}$, respectively $\mathcal{A}^{-\mathbf{N}}$, to be the set of right, respectively left, infinite sequences on \mathcal{A}

Def of oriented graphs, positive and negative edges, derangement

Let $F \subseteq \mathcal{A}^*$ be a finite set of forbidden words. We are interested in \mathcal{A}_F^* (and in \mathcal{A}_F^n), the set of all words (of length n) without subwords belonging to F. Up to changing \mathcal{A} , we can suppose that $F \subseteq \mathcal{A}^2$. In the following, we will be interested only in F such that for all $a \in \mathcal{A}$, there exists b and c such that ab and ca do not belong to F. That is, any element of \mathcal{A}_F^* is always left and right extendable.

Given an alphabet \mathcal{A} and a set of forbidden words F, we can construct an infinite family of oriented labeled Rauzy graphs $R_{F,n}$ in the following way. The vertex set of $R_{F,n}$ is \mathcal{A}_F^n and the edge set is \mathcal{A}_F^{n+1} , where the edge $x_1 \dots x_{n+1}$ is labeled by x_{n+1} and has initial vertex $x_1 \dots x_n$ and final vertex $x_2 \dots x_{n+1}$.

For example, $R_{\emptyset,n} = B_n$ the oriented de Bruijn graph on \mathcal{A} .

For $F \subseteq \mathcal{A}^2$, it is also natural to define an infinite oriented labeled (non connected) graph $R_{F,\infty}$ with vertex set $\mathcal{A}_F^{\mathbf{N}} \times \mathcal{A}_F^{-\mathbf{N}}$ and with an edge labeled by i from $(x_1x_2...;...x_{-2}x_{-1})$ to $(x_2x_3...;...x_{-1}i)$. We also define the subgraph $R'_{F,\infty} \subseteq R_{F,\infty}$ as the complete subgraph on the vertex set consisting of paires (ξ,η) such that at least one of the sequence is not eventually periodic. We have that $R'_{F,\infty}$ is a disjoint union of connected components of $R_{F,\infty}$.

As an immediate consequence of the definitions we have the following.

Lemma 1. For every $F \subseteq A^2$,

- 1. If $n \geq 2$, then $R_{F,n}$ is a complete subgraph of B_n ;
- 2. If $n \geq 1$, then $R_{F,n+1} \cong \mathcal{L}(R_{F,n})$, the line graph of $R_{F,n}$.

Proof. If $x_1 ldots x_n$ is a vertex in $R_{F,n}$, then $x_2 ldots x_n i$ is in $R_{F,n}$ if and only if $x_n i \notin F$, if and only if $x_1 x_2 ldots x_n i$ is an edge in $R_{F,n}$.

The isomorphism is given by $\phi \colon \mathcal{L}(R_{F,n}) \to R_{F,n+1}$ described in Figure 1.

Figure 1: The edge e in the line graph of $R_{F,n}$ and its image by ϕ .

Since we have, for each F, a infinite family of finite graphs $R_{F,n}$, it is natural to ask for the existence of some kind of limit for this family. In the context of finite non-rooted graphs, the more natural notion of limit is the Benjamini-Schramm limit, also called local limit or weak limit. A rooted graph, is a pair (G, v) where G is a graph and v, the root, is a vertex of G. There are natural analogs of this definition for oriented, labeled or oriented labeled graphs. Let \mathcal{G}_{\bullet} denotes the space of oriented, labeled, rooted graphs, up to labeled root preserving isomorphisms. This is a metric space where the distance between (G, v) and (H, w) is 2^{-r} with r is the biggest integer such that $\operatorname{Ball}_G(v, r)$ and $\operatorname{Ball}_H(w, r)$ are isomorphic. For any integer d, the space $\mathcal{G}_{\bullet,d}$ of marked graph with degree bounded by d is compact. To a sequence of finite graphs G_n , it is possible to attach a sequence of probability measure μ_n on \mathcal{G}_{\bullet} , where μ_n consist of choosing uniformly the root of G_n . The sequence (G_n) is said to have the Benjamini-Schramm limit μ if the sequence μ_n weakly converges to μ . Every sequence of finite graphs of uniformly bounded degree admits a converging subsequence.

Question 1. Does the Benjamini-Schramm limit of $R_{F,n}$ exist and it is possible to compute it?

We will show that, under some mild assumptions, any connected component of $R'_{F,\infty}$ is a limit of the sequence $(R_{F,n})_{n\geq 1}$. Before doing that, we show that connected components of $R_{F,\infty}$ are horocyclic products of tree.

Definition 1. Let $F \subseteq \mathcal{A}^2$ such that $\mathcal{A}_F^{\mathbf{N}}$ is non empty and let $\xi = (x_1 x_2 \dots)$ be an element of $\mathcal{A}_F^{\mathbf{N}}$. We will construct a directed infinite tree $T_{F,\xi}$. Start with an infinite ray, directed upstair, where vertices are labeled by x_1, x_2, \dots Under each vertex v already constructed and labeled by x, for each $i \in \mathcal{A}$ such that $ix \notin F$, if there is not already a vertex with label i under v, attach a new vertex with label i. Repeat this construction

Rewrite this part.

Be careful of the orientation Add references + convergence by sampling + compactness.

Def of Ball as the ball in the underlying nonoriented graph

This is the tree of sequences that are co-finals with ξ . Maybe use this as a definition.

infinitely many time to obtain a tree. Finally, we put an orientation on $T_{F,\xi}$ such that each edge is going up and we label each edge by its initial vertex.

Maybe not label this one?

not very clear: directed upstair, but the edges are going down

If $\eta = \dots x_{-2}x_{-1}$ is an element of $\mathcal{A}_F^{-\mathbf{N}}$, we can similarly construct a directed infinite tree $T_{F,\eta}$. Start with an infinite ray, directed upstair, where vertices are labeled by x_{-1}, x_{-2}, \ldots . Under each vertex v already constructed and labeled by x, for each $i \in \mathcal{A}$ such that $xi \notin F$, if there is not already a vertex with label i under v, attach a new vertex with label i. Repeat this construction infinitely many time to obtain a tree. Finally, we put an orientation on $T_{F,\eta}$ such that each edge is going down and we label each edge by its terminal vertex.

See Figure 2 for an example. An important but rather obvious property of $T_{F,\xi}$ is that all paths (and infinite and biinfinite rays) consisting of positive edges are labeled by elements in \mathcal{A}_F^* (or in $\mathcal{A}_F^{\mathbf{N}} \cup \mathcal{A}_F^{\mathbf{Z}}$ for rays). Moreover, infinite rays consisting of positive edges in $T_{F,\xi}$ (respectively in $T_{F,\xi}$) are exactly the right infinite words in \mathcal{A}_F that are cofinal with ξ (respectively coinitial with η).

Figure 2: Part of the tree $T_{\{01,12,20\},021...}$ and $T_{\{01,12,20\},...021}$ on the alphabet $\{0,1,2\}$. Labeling of the edges are not shown. In blue, the image of w = (11...; ... 0211).

For an infinite tree T, and a right infinite ray ξ , it is possible to define the Busemann rank function $\mathfrak{h}\colon V(X)\to \mathbf{Z}$ by $\mathfrak{h}(v):=d(p_{\xi}(v),\xi_1)-d(p_{\xi}(v),v)$, where $p_{\xi}(v)$ is the projection of v onto ξ . This naturally endows T with an orientation: the initial vertex of an edge between v and w is the vertex with the lower Busemann rank. If η is a left infinite ray, we define \mathfrak{h} by $\mathfrak{h}(v):=-d(p_{\eta}(v),\eta_1)+d(p_{\eta}(v),v)$

we already defined an orientation on T...

Definition 2. Let (T_1, ξ) be a pair consisting of a infinite tree with a right infinite ray and (T_2, η) be a pair consisting of a infinite tree with a left infinite ray. The horocyclic product $DL((T_1, \xi), (T_2, \eta))$ of (T_1, ξ) and (T_2, η) is graph with vertex set $\{(v, w) \in V(T_1) \times V(T_2) \mid \mathfrak{h}(v) = \mathfrak{h}(w)\}$. There is an edge from (v, w) to (x, z) if and only if there is an edge from v to x and an edge from v to v. This graph is naturally rooted at (ξ_1, η_1)

If T_2 is a labeled graphs, then the horocyclic product is a labeled graph where the label of (e, f) is the label of f.

Explain the notation.

It is a connected component of the

This is one possibility to define the label.
Justify!

Lemma 2. Let $(\xi, \eta) = (x_1 x_2 \dots x_{-2} x_{-1})$ be a vertex in $R'_{F,\infty}$. Let p and q be two paths with initial vertex v and with same final vertex. Then, der(p) = der(q).

Proof. Observe that positive edges shift both sequences $x_1x_2...$ and $...x_{-2}x_{-1}$ to the left (and change a finite number of digits), while negative edges shift the sequence to the right.

Therefore, if $\tau(p) = \tau(q)$ but $der(p) \neq der(q)$, both sequences ξ and η are eventually periodic, which is absurd.

Definition 3. Let v be a vertex in $R'_{F,\infty}$. We define the associated rank function: $\operatorname{rk}_v \colon (R'_{F,\infty}, v)^0 \to \mathbf{Z}$ by $\operatorname{rk}_v(w) = \operatorname{der}(p)$ where p is any path from v to w.

By the last lemma, this is well defined. The following formula directly follows from definitions and will be useful later.

Lemma 3. Let w be a vertex in $(R'_{F,\infty}, v)^0$. If $\operatorname{rk}_v(w) \geq 0$, we have

$$w = (y_{1+rk_v(w)} \dots y_n v_{n+1} \dots; \dots v_{-m} y_{-m+1} \dots y_{-1} z_1 \dots z_{rk_v(w)})$$

for some y_i 's and z_i 's in A, while if $\operatorname{rk}_v(w) \leq 0$ we have

$$w = (z_1 \dots z_{-rk_v(w)} y_1 \dots y_n v_{n+1} \dots; \dots v_{-m} y_{-m+1} \dots y_{-1+rk_v(w)}).$$

Theorem 1. For each vertex $v = (\xi, \eta)$ in $R'_{F,\infty}$, there is a labeled and rooted <u>isomorphism</u> between $(R'_{F,\infty}, v)^0$ and the horocyclic product $DL(T_{F,\xi}, T_{F,\eta})$.

give a better name

Proof. For a vertex x in $T_{F,\xi}$, the projection of x on ξ is noted by $p_{\xi}(x)$.

already defined

Let w be a vertex in $(R'_{F,\infty}, v)^0$. By the last lemma, if $\operatorname{rk}_v(w) \geq 0$, then w determines a vertex in $T_{F,\xi}$: the unique vertex x such that $p_{\xi}(x) = v_{n+1}$ and the label of vertices between x and v_{n+1} is given by $y_{1+\operatorname{rk}_v(w)} \dots y_n$. This also determines a vertex in $T_{F,\eta}$: the unique vertex y such that $p_{\eta}(y) = v_{-m}$ and the label of vertices between x and v_{n+1} is given by $y_{-m+1} \dots y_{-1} z_1 \dots z_{\operatorname{rk}_v(w)}$. Under this correspondance, we have

$$\mathfrak{h}(x) = n - (n - rk_v(w)) = rk_v(w)$$

 $\mathfrak{h}(y) = -(m-1) + (rk_v(w) + m - 1) = rk_v(w)$

A similar argument takes care of the case $rk_v(w) \leq 0$.

Hence, we have a function ϕ from vertices of $(R'_{F,\infty}, v)^0$ to vertices of $\mathrm{DL}(T_{F,\xi}, T_{F,\eta})$. By definition, ϕ preserves root and is injective.

In $R'_{F,\infty}$, there is an outgoing edge e from w with label i if and only if $w_{-1}i$ does not belongs to F, if and only if in $\mathrm{DL}(T_{F,\xi},T_{F,\eta})$ there is an outgoing edge f from $\phi(w)$ with label i. Moreover, in this case, the terminal vertex of e is $(w_2,\ldots,w_{-1}i)$ which is sent by ϕ to the terminal vertex of f. Therefore, the function ϕ naturally extends to a labeled graph homomorphism, which is thus locally bijective on outgoing edges. The injectivity of ϕ implies that it is locally injective and thus locally injective on ingoing edges.

It remains to show that ϕ is locally surjective on ingoing edges. Indeed, in this case ϕ is locally bijective and hence surjective. If w is a vertex in $R'_{F,\infty}$, then the number of ingoing edges is $|\{i \mid iw_1 \notin F\}|$, which is exactly the number of ingoing edges for $\phi(w)$. Since ϕ is locally injective on ingoing edges, it is also locally bijective on ingoing edges.

For an illustration of the proof, see Figure 2. It shows the two tree corresponding to v = (021..., ... 021) and in blue the vertices corresponding to $w = (1v_3...; ... v_{-1}1)$. This w is connected to v by at least two paths, given by

$$v \xrightarrow{1} (v_2 \dots; \dots v_{-1}1) \xrightarrow{j} (v_3 \dots; \dots v_{-1}1j) \xleftarrow{j} w$$

for $j \in 0, 1$.

Now that we have a description of connected components of $R'_{F,\infty}$ as horocyclic products, we are going to investigate the relations between the $R_{F,n}$'s and $R'_{F,\infty}$. In order to do that, we are going to construct a labeled tree where (some of the) vertices of level n will correspond to vertices of $R_{F,n}$.

Definition 4. Let $F \subseteq \mathcal{A}^2$ be a set of forbidden words. The associated infinite rooted tree T_F is constructed inductively on level as follows. The root is the empty set. Every vertex $x_1 \ldots x_{2n}$ of level 2n has as children all the $x_1 \ldots x_n i x_{n+1} \ldots x_{2n}$ such that $x_n i \notin F$. On the other hand, every vertex vertex $x_1 \ldots x_{2n+1}$ of level 2n+1 has as children all the $x_1 \ldots x_{n+1} i x_{n+2} \ldots x_{2n+1}$ such that $i x_{n+1} \notin F$. The vertices in \mathcal{A}_F^* are called *good vertices* and the ones not in \mathcal{A}_F^* the *bad vertices*.

Put later in the text?

Observe that in a bad vertex $x_1 \dots x_n$, the only forbidden word that appears is in the middle, i.e. is $x_{\lceil \frac{n}{2} \rceil} x_{\lceil \frac{n}{2} \rceil + 1}$. See Figure 3 for an example.

Figure 3: The top of the tree $T_{\{11\}}$ on the alphabet $\{0,1\}$. Bad vertices are parenthesized.

By construction, good vertices of level n are in one-to-one correspondence with vertices of $R_{F,n}$. On the other hand, infinite rays in T_F are parametrized by a pair of infinite sequences $(x_1x_2...;...x_{-2}x_{-1})$ and are in one-to-one correspondence with vertices (ξ, η) in $R_{F,\infty}$.

Definition 5. Let v be a vertex in $R'_{F,\infty}$ and $r \in \mathbb{N}$ an integer. For all $n \geq 2r + 2$, define a function on vertices

$$\pi_n = \pi_{n,r} \colon \operatorname{Ball}_{R'_{F,\infty}}(v,r) \to R_{\emptyset,n}$$

$$w = (w_1 \dots; \dots w_{-1}) \mapsto (w_1 \dots w_{\lceil \frac{n}{2} \rceil - \operatorname{rk}_v(w)} w_{-\lfloor \frac{n}{2} \rfloor - \operatorname{rk}_v(w)} \dots w_{-1})$$

Lemma 4. Let $v \in R'_{F,\infty}$. For all $n \geq 2r + 2$, the function π_n

- 1. Is well-defined and has values in $Ball_{R_{\emptyset,n}}(\pi_n(v),r)$;
- 2. Naturally extends to a labeled graph homomorphism;
- 3. Is locally injective;
- 4. Is locally bijective if $v_{\lceil \frac{n}{\alpha} \rceil} v_{-\lceil \frac{n}{\alpha} \rceil} \notin F$;
- 5. We have $\operatorname{Im}(\pi_n) = \operatorname{Ball}_{R_{F,n}}(\pi_n(v), r)$ if and only if $v_{\lceil \frac{n}{2} \rceil} v_{-\lfloor \frac{n}{2} \rfloor} \notin F$.

Proof. We will prove the assertions for 2n, in this case $n = \lceil \frac{2n}{2} \rceil = \lfloor \frac{2n}{2} \rfloor \geq r+1$. The proofs for 2n+1 are similar.

Write at least once the prof to check

Since w is at distance at most r from v, it has rank between -r and r. Hence, π_{2n} is well-defined.

If there is an edge labeled by i with initial vertex $w = (w_1 \ldots; \ldots w_{-1})$, then it has final vertex $u = (w_2 \ldots; \ldots w_{-1}i)$ and der(u) = der(w)+1. Therefore, these vertices are send respectively onto $(w_1 \ldots w_{n-\mathrm{rk}_v(w)} w_{-n-\mathrm{rk}_v(w)} \ldots w_{-1})$ and $(w_2 \ldots w_{n-\mathrm{rk}_v(w)} w_{-n-\mathrm{rk}_v(w)} \ldots w_{-1}i)$. Hence, there is a natural extension of π_{2n} to a labeled graph homomorphism. This directly implies that it has values in $\mathrm{Ball}_{R_{\emptyset,2n}}(\pi_{2n}(v),r)$.

The local injectivity for outgoing edges follow from the fact that π_{2n} preserves the labeling and that for each vertex there is at most one outgoing edge with label i. On the other hand, for any vertex $w \in R'_{F,\infty}$, the set of incoming edges (they all have label w_{-1}) is $\{(jw_1 \ldots; \ldots w_{-2} | jw_1 \notin F\}$. Since $2n \geq 2r + 2$, these edges are sent onto $j \ldots w_{-2}$ which are pairwise distinct.

If v_nv_{-n} is in F, then $\pi_{2n}(v)$ is not in \mathcal{A}_F^* . On the other hand, if v_nv_{-n} is not in F, we have $\operatorname{Im}(\pi_{2n})\subseteq R_{F,2n}$. Indeed, in this case, a vertex w in $\operatorname{Ball}_{R_{F,\infty}}(v,r)$ is of the form $(*\cdots *v_{r+1}\ldots v_n\ldots ;\ldots v_{-n}\ldots v_{-r-1}*\cdots *)$ and is therefore send onto $*\cdots *v_{r+1}\ldots v_nv_{-n}\ldots v_{-r-1}*\cdots *$. Since w belongs to $R_{F,\infty}$, there is no forbidden words in $*\cdots *v_{r+1}\ldots v_n$ and in $v_{-n}\ldots v_{-r-1}*\cdots *$ and v_nv_{-n} is not forbidden by assumption.

It remains to show that if v_nv_{-n} is not in F, then π_{2n} is locally surjective. Indeed, in this case π_{2n} is locally bijective and hence surjective. If w is a vertex in $R_{F,\infty}$, then the number of outgoing edges is $|\{i \mid w_{-1}i \notin F\}|$, which is exactly the number of outgoing edges for $\pi_{2n}(w)$. The same kind of relation holds for ingoing edges. Since π_{2n} is locally injective, it is therefore locally bijective.

We want to prove that the sequence of $(R_{F,n}, \pi_n(v))^0$'s (or at least a subsequence of it) locally converges to $(R_{F,\infty}, v)^0$ for n going to infinity. Therefore, we want to prove that for all r, there exist n big enough such that π_n is an isomorphism onto $\operatorname{Ball}_{R_{F,n}}(\pi_n(v), r)$. That is, π_n injective and, by the last lemma, $v_{\lceil \frac{n}{2} \rceil}v_{-\lfloor \frac{n}{2} \rfloor}$ is not in F.

Lemma 5. For all vertex v of $R'_{F,\infty}$ and all r, there exists n_0 such that for all $n \ge n_0$, the function π_n is injective.

Proof. Let w and u be two distinct vertices in the ball or radius r around v. Suppose that $\mathrm{rk}_v(w) = \mathrm{rk}_v(u) = i \geq 0$. In this case we have

$$w = (y_{1+i} \dots y_r v_{r+1} \dots ; \dots v_{-r-1} y_{-r} \dots y_{-1} z_1 \dots z_i)$$

and a similar formula for u. This implies that $w_j = u_j$ for all $j \geq r - i$ and all $j \leq -r - i$, and therefore that there exists $-r - i \leq j \leq r - i$ such that $w_j \neq u_j$. By definition of π_n , we have $\pi_n(w) \neq \pi_n(u)$ as soon as $\lfloor \frac{n}{2} \rfloor \geq r$, i.e. as soon as $n \geq 2r$. If $\operatorname{rk}_v(w) = \operatorname{rk}_v(u) = i \leq 0$, a similar proof gives the same result.

Suppose now that $\operatorname{rk}_v(u) - \operatorname{rk}_v(w) = i \neq 0$. By Lemma 3, if $\pi_n(u) = \pi_n(w)$, then for all $r < j \leq \lfloor \frac{n}{2} \rfloor - i$ we have $v_j = v_{j+i}$ and $v_{-j} = v_{-j-i}$. That is, between the $r + 1^{\text{th}}$ and the $\lfloor \frac{n}{2} \rfloor^{\text{th}}$ digit, both sequences $(v_1 v_2 \dots)$ and $(v_{-1} v_{-2} \dots)$ are periodic of period i. Since at least one of this sequence is not eventually periodic, there exists $n_i(v)$ such that for all $n \geq n_i(v)$, we have $\pi_n(u) \neq \pi_n(w)$.

Finally, for $n_0 = 2 \cdot \max_{-r \le i \le r} \{r+1, n_i\}$ we have that π_{n_0} is injective and so is π_n for $n \ge n_0$.

Observe that in the proof we can chose $n_0 = 2j$, where j is the smallest integer $j \ge r+1$ such that at least one of the sequences $(v_{r+1}v_{r+2}\dots v_j)$ or $(v_{-r-1}v_{-r-2}\dots v_{-j})$ is not r! periodic. In order to obtain a better, but less useful in practice, estimate, one can replace the r! periodicity by $\lim_{l < r} \{l\}$ periodicity.

Proposition 1. Let $v = (w_1, w_2, w_3, ...)$ be a ray in T_F . Suppose that infinitely many w_i are good and let w_{m_j} be the corresponding subsequence. Suppose that either $v_1 ...$ or $... v_{-1}$ is not eventually periodic. Then the sequence $(R_{F,m_j}, w_{m_j})^0$ locally converges to $(R_{F,\infty}, v)^0$ as j goes to infinity.

Careful with the notation

Proof. The ray $v=(v_1\ldots;\ldots v_{-1})$ correspond to the vertex $(v_1\ldots;\ldots v_{-1})\in R_{F,\infty})$. If at least one of the sequence is not eventually periodic, then $(v_1\ldots;\ldots v_{-1})\in R_{F,\infty}$. Under this correspondance, $w_m=\pi_m(v)=(v_1\ldots v_{\lceil\frac{n}{2}\rceil}v_{-\lfloor\frac{n}{2}\rfloor}\ldots v_{-1})$. It is parenthesized if and only if $v_{\lceil\frac{n}{2}\rceil}v_{-\lfloor\frac{n}{2}\rfloor}$ belongs to F. An application of Lemmas 4 and 5 finishes the proof.

By the discussion after Definition 4, points of ∂T_F are in bijection with vertices of $R_{F,\infty}$. Therefore, we have a map $f: \partial T_F \to \mathcal{G}_{\bullet}$, where f(v) is the equivalence class of $(R_{F,\infty},v)^0$. Since the function f is continuous and thus measurable, for any measure μ on ∂T_F , the pushforward $f_*(\mu)$ of μ gives a measure on \mathcal{G}_{\bullet} .

Definition 6. For every n, it is possible to define a function μ_n on the the vertices of T_F in the following way. Let $\{v_1 \dots v_m, u_1 \dots u_l\}$ be the vertices of level n of T_F where the v_i are the good ones. Then

$$\mu_n(w) \coloneqq \begin{cases} \frac{|\{i \mid v_i \leq w\}|}{m} & \text{if } w \text{ is of level at most } n \\ \frac{1}{m} \frac{1}{|\{v \leq v_i \mid v \text{ of same level as } w\}|} & \text{if } w \leq v_i \text{ for some } i \\ 0 & \text{otherwise (i.e. } w \leq u_i \text{ for some } i) \end{cases}$$

That is, if w is of level at most n, then μ_n simply count the percentage of good vertices of level n which are under w. On the other hand, for $w \leq v$ with v of level n, then μ_n is $\mu_n(v)$ times the uniform measure on $(T_F)_v$.

Define $(T_F)_v$

It is immediate that the restriction of μ_n on any level defines a measure. Moreover, these measure are compatible in the sense that for all v and all j bigger than the level of v, we have $\mu_n(v) = \sum_{w \leq v, w \in \mathcal{L}(j)} \mu_n(w)$. Therefore, μ_n induces a measure on ∂T_F , also noted μ_n , by $\mu_n(C_v) := \mu_n(v)$ where $C_v = \{w \mid w \leq v\}$ is a cylinder set.

Since ∂T_F is a compact metric space, the set of measure on it is compact for the weak* topology. In particular, since the cylinder sets are clopen, for any converging sequence $\nu_n \to \nu$, the Portmanteau theorem implies that for any $v \in T_F$, the $\lim \nu_m(C_v)$ exists and is equal to $\nu(C_v)$.

We will show that under a weak assumption on $F \subseteq A^2$, the limit points of the sequence $(\mu_n)_n$ of Definition 6 give raise to Benjamini-Schramm limit points for the sequence of finite graphs $(R_{F,n})_n$.

Let $T = T_F$. Since for any n, the measure μ_n on ∂T is cylindrical, it can be represented by putting some weight on the edges of T such that for each vertex v, the measure $\mu_n(C_v)$ is the product of the weight of edges on the unique path from v to the root. It is immediate that a subsequence $(\mu_{n_i})_i$ is weakly convergent if and only for each v and each child w of v, the sequence of weight of the edge from v to w is convergent.

Definition 7. For any vertex $v = (v_1 \dots v_n)$ of $T = T_F$, define its type to be $v_{\lceil \frac{n}{2} \rceil} \overline{v}_{\lceil \frac{n}{2} \rceil + 1}$ if v is of even level and $\overline{v}_{\lceil \frac{n}{2} \rceil} v_{\lceil \frac{n}{2} \rceil + 1}$ if v is of odd level, with the convention that the type of the root is \emptyset and the type of a vertex a of the first level is \overline{a} .

By construction of T, the type of the children of v depends only on the type of v. Indeed, if v has type $\overline{a}b$, then it has one descendant of each type $a\overline{c}$ such that cb does not belongs to F. On the other hand, if v has type $a\overline{b}$, then it has one descendant of each type $\overline{c}b$ such that ac does not belongs to F. For any two type t and t', write t' < t if a vertex with type t has a vertex with type t' has a child.

Lemma 6. If the subsequence $(\mu_{n_j})_j$ weakly converges to μ^j , then the weight of the edge between v and w depends only on their types.

Proof. For a vertex v of level m and type t, let $G_t(n)$ be the number of good vertices of level n+m that are under v. This is depends only on t on not on v or m. For example, $G_t(0) = 0$ if t corresponds to a bad vertex and 1 otherwise. For any type t, we have

$$G_t(n+1) = \sum_{t' \le t} G_{t'}(n).$$

Now, if v is a vertex of type t and of level m, w a child of type t' and $n \ge m+1$, then the measure μ_n gives the weight $G_{t'}(n-m-1)/G_t(n-m)$ to the edge from v to w. This implies that the for all m and all $t' \le t$ (such that there is a vertex of level m and type t), the sequence $G_{t'}(n_j - m - 1)/G_t(n_j - m)$ is convergent.

Definition 8. A set of forbidden words F is too restrictif if there exists i and j in \mathcal{A} such that there is at most one pair of infinite sequence $(ix_2 \ldots; \ldots x_{-2}j)$ in $\mathcal{A}^{\mathbf{N}} \times \mathcal{A}^{-\mathbf{N}}$.

Proposition 2. Suppose that F is not too restrictif and that $(\mu_{n_j})_j$ is a subsequence weakly converging to a measure μ on ∂T_F . Then,

Use this to encode into a finite graph and use Perron Froebenius to show convergence

- 1. $\mu(R'_{F,\infty}) = 1$;
- 2. the Benjamini-Schramm limit of the R_{F,n_i} is $f_*(\mu)$.

Proof. Firstly, observe that since any ray is a countable intersection of cylinder, which are clopen, if $(\mu_{n_i})_i$ weakly converges to μ , then it also punctually converges to μ .

The set F is not too restrictif if and only if for every vertex v in $T = T_F$ there is at least two infinite rays passing trough v. This is in turn equivalent to the fact that for every vertex v in T_F there is uncountably many rays passing trough v. Therefore, for all n, and all ray ω in ∂T , we have $\mu_n(\omega) = 0$ and thus $\mu(\omega) = 0$. This implies that $\mu(R'_{F,\infty}) = 1$ since $R_{F,\infty} \setminus R'_{F,\infty}$ is a countable union of rays.

Now, we look at

 $A := \{ \omega \in \partial T \mid \text{only finitely many vertices on } \omega \text{ are good} \}.$

It is possible to write $A = \bigcup_{m>0} A_m$ where

$$A_m := \{\omega_1 \omega_2 \dots \mid \omega_m \text{ is good}, \forall i > m, \omega_i \text{ is bad}\}$$

Since the alphabet is finite, there exist a constant c < 1 such that for all vertex v in T, the proportion of children of v that are bad is at most c. Hence, for all $n_j > m$ we have $\mu_{n_j}(A_m) \le c^{n_j-m}$ tends to 0 when n_j tends to infinity. This implies that $\mu(A_m) = 0$ and $\mu(A) = 0$.

Need a condition on F for that

Now, let $E := R'_{F,\infty} \setminus A \subseteq \partial T$. This is a measurable subset, with $\mu(E) = 1$. For any finite rooted subgraph α and any positive radius r, let $B := \{\omega \in \partial T = R_{F,\infty} \mid \operatorname{Ball}(\omega, r) \cong \alpha\}$. We have $B = (B \cap E) \cup (B \setminus E)$. Since $\mu(E) = 1$, the subset $B \setminus E$ is measurable and of measure 0. On the other hand, if $\omega = \omega_1 \omega_2 \dots$ is in $B \cap E$, then by Proposition 1 there exists m such that

$$\operatorname{Ball}_{R_{F,m}}(\omega_m, r) \cong \operatorname{Ball}_{R_{F,\infty}}(\omega, r) \cong \alpha$$

By Lemmas 4 and 5, if δ is in $C_{\omega_m} \cap E$, then $\operatorname{Ball}_{R_{F,\infty}}(\omega,r)$ is also isomorphic to $\operatorname{Ball}_{R_{F,m}}(\omega_m,r)$. This implies that $B \cap E$ can be written as the intersection of E with an union of cylinder and is therefore measurable. We conclude that E is measurable and $\mu(E) = \mu(E) = \mathbf{P}(f_*(\mu), \alpha, r)$.

By Proposition 1, for any ω in E, we have rooted convergence of the graphs along ω . This implies that

Rewrite the

$$\mathbf{P}(\mu_{n_i}, \alpha, r) \to \mathbf{P}(f_*(\mu), \alpha, r)$$

Corollary 1. Let $F \subseteq A^2$. For $a \in A$, define $i_a := |\{b \mid ab \in F\}|$ and $o_a := |\{a \mid bs \in F\}|$. Suppose that for all a and b in A we have $i_a = i_b$ and $o_a = o_b$. Suppose moreover that all subsequence of μ_n admits a weakly converging subsequence. Then

1. $i_a = o_a$;

2. The Benjamini-Schramm limit of the Rauzy graphs $R_{F,n}$ is a Dirac measure concentrated on DL(d, d), where $d = |\mathcal{A}| - i_a$.

Proof. Let $k = |\mathcal{A}|$. Then $|F| = k \cdot i_a = o_a \cdot k$ and the first assertion is proven.

It is clear that for any ray (ξ, ω) in $R_{F,\infty}$, the trees $T_{F,\xi}$ and $T_{F,\eta}$ are both d+1 regular. Therefore, $DL(T_{F,\xi}, T_{F,\eta}) \cong DL(d,d)$.

By assumption, there exists a partition of **N** in infinite set $\mathbf{N} = \sqcup X_j$ such that for all j, the sequence $(\mu_n)_{n \in X_j}$ weakly converges to a measure μ^j . But each of this measure, the measure $f_*(\mu^j)$ is the Dirac measure on $\mathrm{DL}(d,d)$. Therefore, the whole sequence $R_{F,n}$ converge to the Dirac measure on $\mathrm{DL}(d,d)$.

Example 1. Corollary 1 directly applies to De Bruijn graphs, with $F = \emptyset$ and $i_a = o_a = 0$. On the other hand, there are examples of F satisfying the hypothesis such that for all n, the graph $R_{F,n}$ is not isomorphic to De Bruijn graphs. For example, for $\mathcal{A} = \{0,1,2\}$ and $F = \{01,12,20\}$. In this case, $i_a = 1 = o_a$, the limit is DL(2,2) and $R_{F,n}$ are 4 regular graphs with exactly 3 loops (on 0...0, 1...1 and 2...2). But the only De Bruijn graphs with 3 loops are the $B_{3,n}$ which are 6 regular.