06:18 PM

Quick recap

- · Non-parametric supervised learning methods.
- Can learn classification and regression models.
- Predicts label based on rules inferred from the features in the training set.

Tree algorithms

sklearn implementation of trees

scikit-learn uses an optimized version of the CART algorithm; however, it does not support categorical variables for now

Classification sklearn.tree.DecisionTreeClassifier

Regression sklearn.tree.DecisionTreeRegressor

Both these estimators have the same set of parameters except for criterion used for tree splitting.

splitter max_depth min_samples_split

sklearn tree parameters

splitter Strategy for splitting at each node. best random \max_{depth} Maximum depth of the tree. int When None, the tree expanded until all leaves are pure or they contain less than min_samples_split samples. min_samples_split The minimum number of samples required float $_{\rm int}$ to split an internal node. min_samples_leaf The minimum number of samples required 1 to be at a leaf node.

sklearn tree parameters

criterion

Specifies function to measure the quality

of a split.

Classification	Regression
Classification	ricgression

gini

squarred_error

entropy

friedman_mse

absolute_error

poisson

Tree visualization

 $sklearn.tree.plot_tree$

decision_tree

The decision tree to be plotted.

 max_depth

The maximum depth of the representation. If

none, the tree is fully generated.

feature_names

Names of each of the features.

ascending numerical order.

none

class_names

Names of each of the target classes in

none

label

Whether to show informative labels for impurity.

none

Avoiding overfitting of trees

Pre-pruning

Uses hyper-parameter search like GridSearchCV for finding the best set of parameters.

Post-pruning

First grows trees without any constraints and then uses cost_complexity_pruning with max_depth and min_samples_split .

Tips for practical usage

- Decision trees tend to overfit data with a large number of features. Make sure that we have the right ratio of samples to number of features.
- Perform dimensionality reduction (PCA, or Feature Selection) on a data before using it for training the trees.
 It gives a better chance of finding discriminative features.
- Visualize the trained tree by using max_depth=3 as an initial tree depth to get a feel for the fitment and then increase the depth.
- Balance the dataset before training to prevent the tree from being biased toward the classes that are dominant.
- Use min_samples_split or min_samples_leaf to ensure that multiple samples influence every decision in the tree, by controlling which splits will be considered.
 - A very small number will usually mean the tree will overfit.
 - A large number will prevent the tree from learning the data.