## Problem 7.3.5

If a circle passes through the points (0,0), (a,0) and (0,b), then find the coordinates of its centre.

## **Input Variables**

| Variable                                              | Description            |
|-------------------------------------------------------|------------------------|
| $\mathbf{x}_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ | First point on circle  |
| $\mathbf{x}_2 = \begin{pmatrix} a \\ 0 \end{pmatrix}$ | Second point on circle |
| $\mathbf{x}_3 = \begin{pmatrix} 0 \\ b \end{pmatrix}$ | Third point on circle  |

## Solution

From (7.1.3.1), for three points  $x_1, x_2, x_3$  on a circle:

$$\begin{pmatrix} 2\mathbf{x}_1 & 2\mathbf{x}_2 & 2\mathbf{x}_3 \\ 1 & 1 & 1 \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} \mathbf{u} \\ f \end{pmatrix} = -\begin{pmatrix} \|\mathbf{x}_1\|^2 \\ \|\mathbf{x}_2\|^2 \\ \|\mathbf{x}_3\|^2 \end{pmatrix}, \quad \mathbf{c} = -\mathbf{u}.$$
 (1)

Substituting the given points:

$$\begin{pmatrix} 0 & 2a & 0 \\ 0 & 0 & 2b \\ 1 & 1 & 1 \end{pmatrix}^{\top} \begin{pmatrix} u_1 \\ u_2 \\ f \end{pmatrix} = - \begin{pmatrix} 0 \\ a^2 \\ b^2 \end{pmatrix}.$$
 (2)

This expands to:

$$f = 0, (3)$$

$$2au_1 + a^2 = 0, (4)$$

$$2bu_2 + b^2 = 0. (5)$$

Solving:

$$u_1 = -\frac{a}{2}, \quad u_2 = -\frac{b}{2}, \quad f = 0.$$
 (6)

Hence, the centre of the circle is

$$\mathbf{c} = -\mathbf{u} = \begin{pmatrix} \frac{a}{2} \\ \frac{b}{2} \end{pmatrix}. \tag{7}$$

Centre of the circle is 
$$\left(\frac{a}{2}, \frac{b}{2}\right)$$
 (8)



Figure 1