

STH320N4F6-2, STH320N4F6-6

Automotive-grade N-channel 40 V, 1.1 mΩ typ., 200 A STripFET™ F6 Power MOSFETs in H²PAK-2 and H²PAK-6

Datasheet - production data

Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max	ID
STH320N4F6-2	40.1/	1.2 mO	200 4
STH320N4F6-6	40 V	1.3 mΩ	200 A

- AEC-Q101 qualified
- Very low on-resistance
- Very low gate charge
- High avalanche ruggedness
- Low gate drive power loss

Applications

Switching applications

Description

These devices are N-channel Power MOSFETs developed using the STripFET™ F6 technology with a new trench gate structure. The resulting Power MOSFETs exhibit very low R_{DS(on)} in all packages.

Table 1: Device summary

Order code	Marking	Package	Packaging
STH320N4F6-2	00001450	H²PAK-2	Tone and real
STH320N4F6-6	320N4F6	H²PAK-6	Tape and reel

Contents

1	Electrical ratings		
2	Electric	cal characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	rcuits	8
4	Packag	je mechanical data	9
	4.1	H ² PAK-2 mechanical data	10
	4.2	H ² PAK-6 mechanical data	12
	4.3	Packaging information	15
5	Revisio	on history	17

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	40	V
V _{GS}	Gate-source voltage	±20	V
I _D ⁽¹⁾	Drain current (continuous) at T _C = 25 °C	200	Α
I _D ⁽¹⁾	Drain current (continuous) at T _C = 100 °C	200	Α
I _{DM} ⁽²⁾	Drain current (pulsed)	800	Α
Ртот	Total dissipation at T _C = 25 °C	340	W
las	Not-repetitive avalanche current	160	Α
Eas	Single pulse avalanche energy	920	mJ
T _{stg}	Storage temperature range	FF to 17F	°C
Tj	Operating junction temperature range	- 55 to 175	°C

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	0.44	°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb	35	°C/W

Notes:

 $^{(1)}$ When mounted on FR-4 board of 1 inch², 2 oz Cu.

⁽¹⁾Current value is limited by package.

⁽²⁾Pulse width is limited by safe operating area.

2 Electrical characteristics

(T_{CASE} = 25 °C unless otherwise specified)

Table 4: On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	40			V
Zono soto valto so dusis		$V_{GS} = 0 \text{ V}, V_{DS} = 40 \text{ V}$			1	μΑ
IDSS	I _{DSS} Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 40 \text{ V},$ $T_{C}=125 \text{ °C}^{(1)}$			100	μΑ
Igss	Gate-body leakage current	V _{DS} = 0 V, V _{GS} = ±20 V			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	2		4	V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 80 A		1.1	1.3	mΩ

Notes:

Table 5: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		•	13800	•	pF
Coss	Output capacitance	$V_{DS} = 15 \text{ V}, f = 1 \text{ MHz},$	ı	1870	ı	pF
C _{rss}	Reverse transfer capacitance	$V_{GS} = 0 V$	1	1095	ı	pF
Q_g	Total gate charge	V _{DD} = 20 V, I _D = 160 A, V _{GS} = 0 to 10 V (see <i>Figure 14: "Test circuit</i>	-	240	•	nC
Qgs	Gate-source charge		-	59		nC
Q _{gd}	Gate-drain charge	for gate charge behavior")	-	75.2	-	nC

Table 6: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 20 \text{ V}, I_D = 80 \text{ A},$	ı	28	ı	ns
tr	Rise time	R _G = 4.7 Ω , V _{GS} = 10 V (see Figure 13: "Test circuit for	ı	98	ı	ns
t _{d(off)}	Turn-off-delay time	resistive load switching times"	-	190	-	ns
t _f	Fall time	and Figure 18: "Switching time waveform")	-	95	-	ns

⁽¹⁾Defined by design, not subject to production test.

Table 7: Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD} ⁽¹⁾	Source-drain current		ı		200	Α
I _{SDM} ⁽²⁾	Source-drain current (pulsed)		-		800	Α
V _{SD} (3)	Forward on voltage	I _{SD} = 80 A, V _{GS} = 0 V	ı		1.1	V
t _{rr}	Reverse recovery time	I _{SD} = 160 A, V _{DD} = 32 V	ı	58.7		ns
Qrr	Reverse recovery charge	di/dt = 100 A/μs,	-	99.2		nC
I _{RRM}	Reverse recovery current	T _j = 150 °C (see Figure 15: "Test circuit for inductive load switching and diode recovery times")	-	3.38		А

Notes:

⁽¹⁾Current value is limited by package.

⁽²⁾Pulse width is limited by safe operating area

 $^{^{(3)}}$ Pulsed: pulse duration = 300 μ s, duty cycle 1.5%

2.1 Electrical characteristics (curves)

577

Figure 9: Drain-source diode forward characteristics AM15612v1 (V) TJ=-55°C 0.8 0.75 0.7 0.65 TJ=25°C 0.6 0.55 0.5 0.45 TJ=175°C 0.4 0.35 0.3 0 20 40 60 80 ISD(A)

Figure 10: Normalized gate threshold voltage vs. temperature

VGS(th)
(norm)

1.2

1

0.8

0.6

0.4

0.2

-75 -50 -25 0 25 50 75 100 125 150 TJ(°C)

3 Test circuits

Figure 13: Test circuit for resistive load switching times

Figure 14: Test circuit for gate charge behavior

Figure 14: Test circuit for gate charge behavior

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 H²PAK-2 mechanical data

Figure 19: H²PAK-2 package outline

Table 8: H²PAK-2 package mechanical data

Dim	Tuble 6. ITT AR 2 publ	mm	
Dim.	Min.	Тур.	Max.
А	4.30		4.70
A1	0.03		0.20
С	1.17		1.37
е	4.98		5.18
Е	0.50		0.90
F	0.78		0.85
Н	10.00		10.40
H1	7.40		7.80
L	15.30	-	15.80
L1	1.27		1.40
L2	4.93		5.23
L3	6.85		7.25
L4	1.5		1.7
M	2.6		2.9
R	0.20		0.60
V	0°		8°

Figure 20: H²PAK-2 recommended footprint

4.2 H²PAK-6 mechanical data

Figure 21: H²PAK-6 package outline

Table 9: H²PAK-6 package mechanical data

Dim	mm			
Dim.	Min.	Тур.	Max.	
А	4.30		4.70	
A1	0.03		0.20	
С	1.17		1.37	
е	2.34	2.54	2.74	
e1	4.88		5.28	
e2	7.42		7.82	
Е	0.45		0.60	
F	0.50		0.70	
Н	10.00		10.40	
H1	7.40		7.80	
L	14.75		15.25	
L1	1.27		1.40	
L2	4.35		4.95	
L3	6.85		7.25	
L4	1.50		1.75	
М	1.90		2.50	
R	0.20		0.60	
V	0°		8°	

Figure 22: H²PAK-6 recommended footprint 12.20 0.80 5.08 7.62

Dimensions are in mm.

footprint_Rev_8

4.3 Packaging information

Figure 23: Tape outline

Figure 24: Reel outline

Table 10: Tape and reel mechanical data

Таре			Reel		
Dim.	m	ım	Dim.	m	m
Dim.	Min.	Max.	Dilli.	Min.	Max.
A0	10.5	10.7	А		330
В0	15.7	15.9	В	1.5	
D	1.5	1.6	С	12.8	13.2
D1	1.59	1.61	D	20.2	
E	1.65	1.85	G	24.4	26.4
F	11.4	11.6	N	100	
K0	4.8	5.0	Т		30.4
P0	3.9	4.1			
P1	11.9	12.1	Base q	uantity	1000
P2	1.9	2.1	Bulk qu	uantity	1000
R	50				
Т	0.25	0.35			
W	23.7	24.3			

5 Revision history

Table 11: Document revision history

Date	Revision	Changes
01-Feb-2013	1	First release.
12-May-2017	2	Modified title and features on cover page. Updated Section 4: "Package mechanical data". Modified Figure 2: "Safe operating area", Figure 3: "Thermal impedance", Figure 5: "Transfer characteristics" and Figure 8: "Capacitance variations". Minor text changes.
29-May-2017	3	Modified <i>Table 2: "Absolute maximum ratings"</i> . Minor text changes.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

