

Interrogación 2

22 de Mayo de 2025

Duración: 2:30 hrs.

Pregunta 1

Sea m > 0. Demuestre que en toda secuencia de m enteros existe uno o más términos consecutivos cuya suma es divisible por m.

Solución

Sea a_1, \ldots, a_m una secuencia de enteros.

- Consideramos los valores $S_i = a_1 + \cdots + a_i$, para $1 \le i \le m$. Si alguna suma S_i es divisible por m, entonces estamos listos.
- En caso contrario, asuma que al dividir los S_i por m sólo obtenemos restos en $\{1, \ldots, m-1\}$.
- Dado definimos m sumas, el principio del palomar nos dice que deben existir S_i y S_j tal que al dividirlas por m obtenemos el mismo resto $k \in \{1, ..., m-1\}$.
- Concluímos que $S_j S_i = a_{i+1} + \dots + a_j$ es divisible por m.

Pauta (6 ptos)

- 1.0 puntos por mostrar una secuencia de sumas.
- 2.0 puntos por notar que los restos de las sumas pertenecen a $\{1, \ldots, m-1\}$.
- 2.0 puntos por usar el principio del palomar.
- 1.0 puntos por concluir una suma divisible por m.

Pregunta 2

Un cuasi-orden en un conjunto A es una relación binaria en A que es refleja y transitiva. Demuestre que si R es un cuasi-orden en A, entonces $R \cap R^{-1}$ es una relación de equivalencia en A.

Solución

Debemos demostrar que $R \cap R^{-1}$ es refleja, simétrica y transitiva.

- Dado que R es refleja, $R \cap R^{-1}$ también lo es.
- Considere ahora un par $(a,b) \in R \cap R^{-1}$, por definición se cumple que (i) $(a,b) \in R$ y (ii) $(a,b) \in R^{-1}$. Por definición de (i) se tiene que $(b,a) \in R^{-1}$ y de (ii) que $(b,a) \in R$. Concluimos que $(b,a) \in R \cap R^{-1}$, y por lo tanto, que $R \cap R^{-1}$ es simétrica.
- Considere, por último, pares $(a,b),(b,c) \in R \cap R^{-1}$. Luego, $(a,b),(b,c) \in R$ y como R es transitiva se tiene que $(a,c) \in R$. Luego, $(a,b),(b,c) \in R^{-1}$ y por definición $(c,b),(b,a) \in R$. Además, $(c,a) \in R$ ya que R es transitiva, y entonces $(a,c) \in R^{-1}$. Como $(a,c) \in R \cap R^{-1}$, concluimos que $R \cap R^{-1}$ es transitiva.

Pauta (6 ptos)

- 2.0 puntos por reflexividad.
- 2.0 puntos por simetría.
- 2.0 puntos por transitividad.

Pregunta 3

Demuestre que si A, B son conjuntos enumerables, entonces $A \times B$ también lo es.

Solución

- Dado que A, B son enumerables, existen funciones biyectivas $f: A \to \mathbb{N}$ y $g: B \to \mathbb{N}$.
- Defina la función $h: A \times B \to \mathbb{N} \times \mathbb{N}$ como h(a,b) = (f(a),g(b)). Entonces se cumple que $h: A \times B \to \mathbb{N} \times \mathbb{N}$ es una biyección.
- Por otro lado, sabemos de clases que hay biyección $t : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$. La composición de h y t es una biyacción entre $A \times B$ y \mathbb{N} , lo que demuestra que $A \times B$ es enumerable.

Pauta (6 ptos)

- 2.0 puntos por asumir que existen biyecciones.
- 2.0 puntos por definir una nueva biyección correcta.
- 2.0 puntos por componer la nueva biyección con el resultado visto en clases.

Alternativa: 6.0 puntos si, debido a que A y B son enumerables, ordena las tuplas en una tabla y argumenta que recorriendo las diagonales se puede enlistar $A \times B$.

Pregunta 4

Una relación binaria sobre un conjunto A es de equivalencia, si es refleja, simétrica, y transitiva. Sea R una relación binaria cualquiera sobre un conjunto A. Definimos $R^{-1} = \{(c,d) \mid (d,c) \in R\}$ y R_{\sim} como la "menor" relación de equivalencia que contiene a R.

Esto significa que (1) $R \subseteq R_{\sim}$, (2) R_{\sim} es una relación de equivalencia, y (3) para toda relación de equivalencia S que satisface $R \subseteq S$ se cumple que $R_{\sim} \subseteq S$.

Demuestre que para todo $a, b \in A$ se tiene que $(a, b) \in R_{\sim}$ si y solo si para algún n > 0 existen elementos $a_1, \ldots, a_n \in A$ que cumplen lo siguiente: (1) $a_1 = a$, (2) $a_n = b$, y (3) $(a_i, a_{i+1}) \in R \cup R^{-1}$, para todo $1 \le i < n$.

Solución

Defina R_n como el conjunto de pares $(a,b) \in A$ que cumplen lo siguiente: existen elementos $a_1, \ldots, a_n \in A$ tales que (1) $a_1 = a$, (2) $a_n = b$, y (3) $(a_i, a_{i+1}) \in R \cup R^{-1}$, para todo $1 \le i < n$. Queremos demostrar que $R_{\sim} = \bigcup_{n>0} R_n$.

- \Rightarrow Demostraremos que $R_{\sim} \subseteq \bigcup R_n$. Basta demostrar que $\bigcup R_n$ es refleja, simétrica y transitiva.
 - Para todo $a \in A$, $a_1 = a$ y $a_n = a$ cuando n = 1, entonces $(a, a) \in R_1$. Por lo tanto, $\bigcup R_n$ es refleja.
 - Por otro lado, si $(a,b) \in R_n$ entonces la secuencia a, \ldots, b se puede invertir para obtener b, \ldots, a ya que cada (a_{i+1}, a_i) también está en $R \cup R^{-1}$. Como $(b,a) \in R_n$, se tiene que $\bigcup R_n$ es simétrica.
 - Por último, si $(a, b) \in R_n$ y $(b, c) \in R_m$, se tienen las secuencias a, \ldots, b de tamaño n y b, \ldots, c de tamaño m. Por lo que existe la secuencia a, \ldots, c de tamaño n + m. Como $(a, c) \in R_{n+m}$, concluimos que $\bigcup R_n$ es transitiva.
- \Leftarrow Demostramos que $R_n \subseteq R_{\sim}$ por inducción en n.
 - CB: R_1 tenemos $a_1 = a_n = a = b$. Pero $(a, a) \in R_{\sim}$ ya que R_{\sim} es refleja.
 - **HI**: $R_n \subseteq R_{\sim}$.
 - **TI**: Para el caso n+1, suponga $(a,c) \in R_{n+1}$. Existen elementos $a_1, \ldots, a_{n+1} \in A$ que cumplen lo siguiente: (1) $a_1 = a$, (2) $a_{n+1} = c$, y (3) $(a_i, a_{i+1}) \in R \cup R^{-1}$, para todo $1 \le i \le n$. Suponga que $a_n = b$, la secuencia de tamaño n+1 se puede separar. De la secuencia a, \ldots, b se ontiene que $(a,b) \in R_n$ y de la secuencia b,c que $(b,c) \in R_2$. Por **HI**, $(a,b) \in R_{\sim}$ y $(b,c) \in R_{\sim}$. Concluímos que $(a,c) \in R_{\sim}$ ya que R_{\sim} es transitiva.

Pauta (6 ptos)

- 3.0 puntos por la primera dirección (1 punto por propiedad).
- 3.0 puntos por la segunda dirección (1 punto por cada parte de la inducción).