```
In [1]:
        import numpy as np
         import pandas as pd
         import os
        os.getcwd()
Out[1]: 'C:\\Users\\Gaurav\\Untitled Folder'
In [2]: os.listdir()
Out[2]: ['.ipynb_checkpoints',
          '1 .LIST_TUPLE_SETS_DICT.ipynb',
          '10 .Visualization Practice.ipynb',
          '11.LINEAR REGRESSION.ipynb',
          '2 .STRING.ipynb',
          '3 .Untitled.ipynb'
          '4 .ERROR MAPS.ipynb',
          '5 .NUMPY.ipynb',
          '6 .PANDAS.ipynb',
          '7 .PANDAS.ipynb',
          '8 .MATPLOTLIB.ipynb',
          '9 .SEABORN.ipynb',
          'a .LINEAR LOGISTIC
                               IRIS REGRESSION.ipynb',
          'Churn-Data.csv',
          'iris.csv',
          'king.png',
          'pp-2018.csv',
          'salaryData.csv',
          'TITANIC',
          'winemag-data-130k-v2.csv',
          'yearsofexperince.csv']
```

Preprocessing

Out[4]:

	YearsExperience	Salary
0	1.1	39343
1	1.3	46205
2	1.5	37731
3	2.0	43525
4	2.2	39891

Data Exploration

In [7]: df.describe()

Out[7]:

	YearsExperience	Salary
count	31.000000	31.000000
mean	5.525806	80002.903226
std	3.030618	34963.913711
min	1.100000	37731.000000
25%	3.200000	56799.500000
50%	4.900000	66029.000000
75%	8.050000	103442.000000
max	11.900000	200000.000000

```
In [12]: import matplotlib.pyplot as plt
    plt.scatter(df["YearsExperience"],df["Salary"],color='red')
    plt.title("Simple Linear Regression")
    plt.show()
```


Data Manipulation

```
In [9]: emp=df.iloc[:,0].values
salary=df.iloc[:,1].values
```

Data Split

```
In [19]: from sklearn.model_selection import train_test_split
    xtrain,xtest,ytrain,ytest=train_test_split(emp,salary,test_size=0.2,random_state=
```

```
In [20]: xtrain=pd.DataFrame(xtrain)
    xtest=pd.DataFrame(xtest)
    ytrain=pd.DataFrame(ytrain)
    ytest=pd.DataFrame(ytest)
```

Model Making

Evaluate Model

```
In [32]:
        from sklearn.metrics import mean squared error
         print(" Root Mean Squared Error")
         print("-----")
         np.sqrt(mean squared error(pred,ytrain))
             Root Mean Squared Error
Out[32]: 11741.920913494481
In [33]:
        from sklearn.metrics import mean_squared_error
         print("
                    Root Mean Squared Error")
         print("-----")
         pred=regressor.predict(xtest)
         np.sqrt(mean_squared_error(pred,ytest))
             Root Mean Squared Error
Out[33]: 12703.131268414472
        plt.scatter(xtrain,ytrain,color="red")
In [40]:
         plt.plot(xtest,pred,color="blue")
         plt.show()
         200000
         175000
         150000
         125000
         100000
          75000
          50000
                                               10
                                                     12
```

Model Creation

```
In [41]: def linear(xtrain,ytrain,xtest,ytest):
    global regressor
    regressor=LinearRegression()
    regressor.fit(xtrain,ytrain)
    pred=regressor.predict(xtest)
    plt.scatter(xtrain,ytrain,color="red")
    plt.plot(xtest,pred,color="blue")
    plt.show()
    return np.sqrt(mean_squared_error(pred,ytest))
```


Out[42]: 12703.131268414472

Model Improvement

```
In [49]: df=df.iloc[:30,:]
In [50]: df.head()
```

Out[50]:

	YearsExperience	Salary
0	1.1	39343
1	1.3	46205
2	1.5	37731
3	2.0	43525
4	2.2	39891

```
In [52]: df['YearsExperience']=np.round(df['YearsExperience'])
    df.head()
```

Out[52]:

	YearsExperience	Salary
0	1.0	39343
1	1.0	46205
2	2.0	37731
3	2.0	43525
4	2.0	39891

```
In [53]: emp=df.iloc[:,0].values
salary=df.iloc[:,1].values
```

In [57]: linear(xtrain,ytrain,xtest,ytest)

Out[57]: 5041.08726482858

In []: #We see that our model has imporved and RMSE came down a lot

Mode Deployed

```
In [58]: data=pd.read_csv('yearsofexperince.csv')
    data.head()
```

Out[58]:

	experience
0	7.6
1	4.0

```
In [60]: data['experience']=np.round(data['experience'])
    regressor.predict(data)
```

Out[60]: array([[101337.58028455], [64735.75101626]])