

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 2001-264627
 (43)Date of publication of application : 26.09.2001

• (51)Int.CI. G02B 13/16
 G02B 13/18

(21)Application number : 2000-081771 (71)Applicant : MINOLTA CO LTD
 (22)Date of filing : 17.03.2000 (72)Inventor : KONNO KENJI
 OSAWA SATOSHI
 ISHIHARA ATSUSHI

(54) REAR PROJECTION OPTICAL SYSTEM

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a rear projection optical system made compact and thin though it has excellent optical performance.

SOLUTION: In this rear projection optical system projecting a picture on a panel display surface (I1) onto a screen surface (I2), a projecting optical system equipped with a positive-power image formation optical system (PT) including plural lenses and a negative-power curved surface mirror (M2) as a member having optical power has positive power as a whole. When a light beam passing through the center of a diaphragm from the center of the picture plane of the surface (I1) and reaching the center of the picture plane of the surface (I2) is set as a picture plane center light beam, the optical system satisfies conditional expressions: $20 < \#1 < 65$, $0.5 < dL/Fx < 2.5$, $0.5 < dL/Fy < 2.5$ [$\#1$: the incident angle ($^{\circ}$) of the picture plane center light beam to the surface (I2), dL : the diagonal length of the picture plane of the surface (I1), and Fx and Fy : the focal distances of the projection optical system in directions (x) and (y)].

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開2001-264627

(P2001-264627A)

(43)公開日 平成13年9月26日 (2001.9.26)

(51)Int.Cl.

G 0 2 B 13/16
13/18

識別記号

F I

マークト(参考)

G 0 2 B 13/16
13/18

2 H 0 8 7

審査請求 未請求 請求項の数4 OL (全24頁)

(21)出願番号

特願2000-81771(P2000-81771)

(22)出願日

平成12年3月17日 (2000.3.17)

(71)出願人 000006079

ミノルタ株式会社

大阪府大阪市中央区安土町二丁目3番13号
大阪国際ビル

(72)発明者 金野 賢治

大阪市中央区安土町二丁目3番13号 大阪
国際ビル ミノルタ株式会社内

(72)発明者 大澤 駿

大阪市中央区安土町二丁目3番13号 大阪
国際ビル ミノルタ株式会社内

(74)代理人 100085501

弁理士 佐野 静夫 (外1名)

最終頁に統く

(54)【発明の名称】 リアプロジェクション光学系

(57)【要約】

【課題】 良好的な光学性能を有しながらコンパクトで薄型のリアプロジェクション光学系を提供する。

【解決手段】 パネル表示面(I1)の画像をスクリーン面(I2)上に投影するリアプロジェクション光学系であって、光学的なパワーを有する部材として、複数のレンズを含む正パワーの結像光学系(PT)と負パワーの曲面ミラー(M2)とを備えた投影光学系が全体で正のパワーを有する。パネル表示面(I1)の画面中心から絞りの中心を通りスクリーン面(I2)の画面中心に到達する光線を画面中心光線とするとき、条件式： $20 < \theta < 65$, $0.5 < dL/Fx < 2.5$, $0.5 < dL/Fy < 2.5$ (θ :スクリーン面(I2)に対する画面中心光線の入射角度($^\circ$), dL :パネル表示面(I1)の画面对角線長さ, Fx, Fy :投影光学系の x, y 方向の焦点距離) を満たす。

1

【特許請求の範囲】

【請求項1】 パネル表示面の画像をスクリーン面上に投影するリアプロジェクション光学系であって、光学的なパワーを有する部材として、前記パネル表示面から前記スクリーン面への光路順に、少なくとも1つの透過型光学素子を含むとともに正のパワーを有する結像光学系と、負のパワーを有する曲面ミラーと、を含み、かつ、全体で正のパワーを有する投影光学系を備え、前記パネル表示面の画面中心から絞りの中心を通り前記スクリーン面の画面中心に到達する光線を画面中心光線とするとき、以下の条件式(1)～(3)を満足することを特徴とするリアプロジェクション光学系：

$$20 < \theta < 65 \cdots (1)$$

$$0.5 < dL/Fx < 2.5 \cdots (2)$$

$$0.5 < dL/Fy < 2.5 \cdots (3)$$

ただし、

θ ：スクリーン面に対する画面中心光線の入射角度(°)、

dL ：パネル表示面の画面对角線の長さ、

Fx ：投影光学系のx方向の焦点距離、

Fy ：投影光学系のy方向の焦点距離、

$$Fx = \Delta / \sin \theta x$$

$$Fy = \Delta / \sin \theta y$$

であり、ここで、投影光学系の第1面に入射する画面中心光線の進む方向をz軸の方向とし、投影光学系の第1面に入射する画面中心光線と入射法線とで決定される平面(すなわち入射面)に垂直な方向をx軸の方向とし、z軸及びx軸に直交する方向をy軸の方向とするローカルな左手系の直交座標系(x,y,z)において、投影光学系に画面中心光線からx軸、y軸の方向にそれぞれ微小量 Δ だけ平行シフトした光線を入射させ、その光線が投影光学系の最終面から射出されるときに画面中心光線と成す角度を θx 、 θy とする。

【請求項2】 さらに以下の条件式(4)及び(5)を満足することを特徴とする請求項1記載のリアプロジェクション光学系：

$$1.0 < fpx/Fx < 5.5 \cdots (4)$$

$$1.0 < fpv/Fy < 5.5 \cdots (5)$$

ただし、

fpx ：結像光学系のx方向の焦点距離、

fpv ：結像光学系のy方向の焦点距離、

$$fpx = \Delta / \sin \theta px$$

$$fpv = \Delta / \sin \theta py$$

であり、ここで、結像光学系の第1面に入射する画面中心光線の進む方向をz軸の方向とし、結像光学系の第1面に入射する画面中心光線と入射法線とで決定される平面(すなわち入射面)に垂直な方向をx軸の方向とし、z軸及びx軸に直交する方向をy軸の方向とするローカルな左手系の直交座標系(x,y,z)において、結像光学系に画面中心光線からx軸、y軸の方向にそれぞれ微小量 Δ だけ平行シフトした光線を入射させ、その光線が結像光学系の最終面から射出されるときに画面中心光線と成す角度を θpx 、 θpy とする。

10

行シフトした光線を入射させ、その光線が結像光学系の最終面から射出されるときに画面中心光線と成す角度を θpx 、 θpy とする。

【請求項3】 さらに以下の条件式(6)及び(7)を満足することを特徴とする請求項1記載のリアプロジェクション光学系：

$$-1.5 < fpx/fnx < -0.03 \cdots (6)$$

$$-1.5 < fpv/fny < -0.03 \cdots (7)$$

ただし、

fpx ：結像光学系のx方向の焦点距離、

fpv ：結像光学系のy方向の焦点距離、

fnx ：曲面ミラーのx方向の焦点距離、

fny ：曲面ミラーのy方向の焦点距離、

$$fpx = \Delta / \sin \theta px$$

$$fpv = \Delta / \sin \theta py$$

$$fnx = \Delta / \sin \theta nx$$

$$fny = \Delta / \sin \theta ny$$

20

であり、ここで、結像光学系の第1面に入射する画面中心光線の進む方向をz軸の方向とし、結像光学系の第1面に入射する画面中心光線と入射法線とで決定される平面(すなわち入射面)に垂直な方向をx軸の方向とし、z軸及びx軸に直交する方向をy軸の方向とするローカルな左手系の直交座標系(x,y,z)において、結像光学系に画面中心光線からx軸、y軸の方向にそれぞれ微小量 Δ だけ平行シフトした光線を入射させ、その光線が結像光学系の最終面から射出されるときに画面中心光線と成す角度を θpx 、 θpy とし、また、曲面ミラーの反射面に入射する画面中心光線の進む方向をz軸の方向とし、曲面ミラーの反射面に入射する画面中心光線と入射法線とで決定される平面(すなわち入射面)に垂直な方向をx軸の方向とし、z軸及びx軸に直交する方向をy軸の方向とするローカルな左手系の直交座標系(x,y,z)において、結像光学系に画面中心光線からx軸、y軸の方向にそれぞれ微小量 Δ だけ平行シフトした光線を入射させ、その光線が曲面ミラーの反射面から射出されるときに画面中心光線と成す角度を θnx 、 θny とする。

30

【請求項4】 さらに以下の条件式(8)を満足することを特徴とする請求項1記載のリアプロジェクション光学系：

$$1.0 < (d2 \times \cos \theta) / d1 < 3.0 \cdots (8)$$

ただし、

$d1$ ：結像光学系の最終面から曲面ミラーまでの画面中心光線の光路長、

$d2$ ：曲面ミラーからスクリーン面までの画面中心光線の光路長、

である。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】 本発明はリアプロジェクション光学系に関するものであり、更に詳しくは、曲面ミラ

50

ーを有するリアプロジェクション光学系に関するものである。

【0002】

【従来の技術】一般的なリアプロジェクターに用いられているリアプロジェクション光学系は、図27(A)に示すように、投影光学系(PS)からの射出光の光路をスクリーン面(I2)の後方に位置する平面ミラー(MR)で折り返す構成になっている(PS'は光路を折り返さない場合の投影光学系の光学配置を示している。)。用いられる投影光学系(PS)は共軸系であるため、スクリーン面(I2)の画面中心に入射する主光線はスクリーン面(I2)に対してほぼ垂直でなければならない。このため、リアプロジェクション光学系の厚み(DL)を減らそうとすれば、より広角の投影光学系(PS)が必要になる。しかし、投影光学系(PS)を広角化しても、斜めに配置された平面ミラー(MR)によってリアプロジェクション光学系の薄型化は制限されてしまう。

【0003】図27(B)に示すように、平面ミラー(MR)をスクリーン面(I2)に近づければ、リアプロジェクション光学系をある程度まで薄くすることは可能である。しかし、画角が一定以上に広くなると、折り返しの光路の中に投影光学系(PS)が入ってしまうため、広角化にも限度がある。また、平面ミラー(MR)をスクリーン面(I2)に近づけると、平面ミラー(MR)が大きくなるため、平面ミラー(MR)の重量増大やコストアップを招くことにもなる。

【0004】図27(C)に示すように、画像をスクリーン面(I2)上に斜め投影する投影光学系(PS)を用いれば、スクリーン面(I2)に対してほぼ平行に平面ミラー(MR)を配置することができる。これによりリアプロジェクション光学系の薄型化が可能になるが、それと同時に主光線の斜め投影角度を非常に大きくしなければならなくなる。透過型の共軸系から成る投影光学系(PS)の一部を使用して斜め投影を行う場合、斜め投影角度を大きくするには非常に広角な投影光学系(PS)が必要になる。良好な光学性能を保持しつつ投影光学系(PS)を広角化しようすれば、レンズ枚数が多く必要になりレンズ径も非常に大きくなるので、光学系全体が大型化してしまう。

【0005】上述したような問題点を解決して薄型化を図るために、特徴のある様々なリアプロジェクション光学系が提案されている。例えば、WO97/01787に記載のリアプロジェクション光学系は、反射型の投影光学系で画像をスクリーン面上に斜め投影する方式を採用している。また、特許第2932609号公報や特開平5-165095号公報に記載のリアプロジェクション光学系は、投影光学系からスクリーン面までの光路を3枚又は4枚の平面ミラーで3次元的に折り曲げる方式を採用している。

【0006】

【発明が解決しようとする課題】しかしながら従来のリ

アプロジェクション光学系では、十分な薄型化が困難であったり薄型化に伴って新たな問題が生じたりする。例えば、WO97/01787に記載されている光学構成では、光路が何度も折り返された結果、スクリーン面の下側で投影光学系が大きなスペースを占めている。このため、スクリーン面の下側(いわゆるアゴ下)のサイズ(U L、図27参照。)が非常に長くなっている。したがって、このリアプロジェクション光学系は、薄型ではあってもコンパクトとは言えない。

【0007】また、特許第2932609号公報や特開平5-165095号公報に記載されている光学構成では、スクリーン面の上方と下方の両方にミラー等の光学部材が配置されている。このため、リアプロジェクション光学系はスクリーン面の画面上下方向に長くなっている。したがって、このリアプロジェクション光学系も、薄型ではあってもコンパクトとは言えない。また、大きな平面ミラーを複数枚必要とするので、リアプロジェクション光学系の重量増大やコストアップを招くことにもなる。

【0008】本発明はこのような状況に鑑みてなされたものであって、良好な光学性能を有しながらコンパクトで薄型のリアプロジェクション光学系を提供することを目的とする。

【0009】

【課題を解決するための手段】上記目的を達成するために、第1の発明のリアプロジェクション光学系は、パネル表示面の画像をスクリーン面上に投影するリアプロジェクション光学系であって、光学的なパワーを有する部材として、前記パネル表示面から前記スクリーン面への光路順に、少なくとも1つの透過型光学素子を含むとともに正のパワーを有する結像光学系と、負のパワーを有する曲面ミラーと、を含み、かつ、全体で正のパワーを有する投影光学系を備え、前記パネル表示面の画面中心から絞りの中心を通り前記スクリーン面の画面中心に到達する光路を画面中心光線とするとき、以下の条件式(1)~(3)を満足することを特徴とする。

$$20 < \theta < 65 \cdots (1)$$

$$0.5 < dL/Fx < 2.5 \cdots (2)$$

$$0.5 < dL/Fy < 2.5 \cdots (3)$$

40 ただし、

θ ：スクリーン面に対する画面中心光線の入射角度($^{\circ}$)、

dL：パネル表示面の画面对角線の長さ、

Fx：投影光学系のx方向の焦点距離、

Fy：投影光学系のy方向の焦点距離、

$$Fx = \Delta / \sin \theta x$$

$$Fy = \Delta / \sin \theta y$$

であり、ここで、投影光学系の第1面に入射する画面中心光線の進む方向をz軸の方向とし、投影光学系の第1面に入射する画面中心光線と入射法線とで決定される平

面(すなわち入射面)に垂直な方向をx軸の方向とし、z軸及びx軸に直交する方向をy軸の方向とするローカルな左手系の直交座標系(x,y,z)において、投影光学系に画面中心光線からx軸、y軸の方向にそれぞれ微小量 Δ だけ平行シフトした光線を入射させ、その光線が投影光学系の最終面から射出されるときに画面中心光線と成す角度を θ_x 、 θ_y とする。

【0010】第2の発明のリアプロジェクション光学系は、上記第1の発明の構成において、さらに以下の条件式(4)及び(5)を満足することを特徴とする。

$$1.0 < fpx/Fx < 5.5 \cdots (4)$$

$$1.0 < fpy/Fy < 5.5 \cdots (5)$$

ただし、

fpx ：結像光学系のx方向の焦点距離、

fpy ：結像光学系のy方向の焦点距離、

$$fpx = \Delta / \sin \theta_{px}$$

$$fpy = \Delta / \sin \theta_{py}$$

であり、ここで、結像光学系の第1面に入射する画面中心光線の進む方向をz軸の方向とし、結像光学系の第1面に入射する画面中心光線と入射法線とで決定される平面(すなわち入射面)に垂直な方向をx軸の方向とし、z軸及びx軸に直交する方向をy軸の方向とするローカルな左手系の直交座標系(x,y,z)において、結像光学系に画面中心光線からx軸、y軸の方向にそれぞれ微小量 Δ だけ平行シフトした光線を入射させ、その光線が結像光学系の最終面から射出されるときに画面中心光線と成す角度を θ_{px} 、 θ_{py} とする。

【0011】第3の発明のリアプロジェクション光学系は、上記第1の発明の構成において、さらに以下の条件式(6)及び(7)を満足することを特徴とする。

$$-1.5 < fpx/fnx < -0.03 \cdots (6)$$

$$-1.5 < fpy/fny < -0.03 \cdots (7)$$

ただし、

fpx ：結像光学系のx方向の焦点距離、

fpy ：結像光学系のy方向の焦点距離、

fnx ：曲面ミラーのx方向の焦点距離、

fny ：曲面ミラーのy方向の焦点距離、

$$fpx = \Delta / \sin \theta_{px}$$

$$fpy = \Delta / \sin \theta_{py}$$

$$fnx = \Delta / \sin \theta_{nx}$$

$$fny = \Delta / \sin \theta_{ny}$$

であり、ここで、結像光学系の第1面に入射する画面中心光線の進む方向をz軸の方向とし、結像光学系の第1面に入射する画面中心光線と入射法線とで決定される平面(すなわち入射面)に垂直な方向をx軸の方向とし、z軸及びx軸に直交する方向をy軸の方向とするローカルな左手系の直交座標系(x,y,z)において、結像光学系に画面中心光線からx軸、y軸の方向にそれぞれ微小量 Δ だけ平行シフトした光線を入射させ、その光線が結像光学系の最終面から射出されるときに画面中心光線と成す角度を

10

20

【0013】

【発明の実施の形態】以下、本発明を実施したリアプロジェクション光学系を、図面を参照しつつ説明する。図1、図6、図11、図16及び図21に、第1～第5の実施の形態におけるパネル表示面(I1)からスクリーン面(I2)までの投影光路全体を示す。各実施の形態では、第1ミラー(M1)での光路の折り曲げによって各光学要素の配置が3次元的になっているため、すべての光学要素及び光路を的確に表現するのは困難である。そこで、図2、図7、図12、図17及び図22に、第1ミラー(M1)がない場合の各実施の形態におけるパネル表示面(I1)からスクリーン面(I2)までの投影光路全体を断面的に示す。また、図3、図8、図13、図18及び図23に、第1～第5の実施の形態を構成している結像光学系(PT)及びプリズム(PR)を拡大して示す。なお、各実施の形態のリアプロジェクション光学系の上下配置は、各光路図に示されているものに限らず、上下反対でもよい。つまり、実際の配置の都合に合わせて各光路図における上側を下側としてもなんら問題はない。

【0014】本発明に係る各実施の形態は、背面投写型画像投影装置(リアプロジェクター)用のリアプロジェクション光学系であり、表示パネルの画像表示面を縮小側のパネル表示面(I1)として、そのパネル表示面(I1)の2次元画像をスクリーン面(I2)上に拡大投影する構成になっている。表示パネルとしては、例えば、反射型液晶パネル、透過型液晶パネル、DMD(Digital Micromirror Device)等の表示素子が用いられる。そしてパネル表示面(I1)は、ランプ(不図示)から発せられたのち照明光学系(不図示)を通過した照明光によって照明される。

【0015】投影画像をカラー化する場合には、3枚の

30

40

50

表示パネルを用いてクロスダイクロイックプリズム等の色合成プリズムで色合成する3板式の構成を採用すればよい。例えば、照明光学系で照明光をRGBの3つに分割し、3枚の表示パネルに入射させた後、パネル表示面(I1)近傍のクロスダイクロイックプリズムで色合成する構成にすればよい。そのとき、クロスダイクロイックプリズムを色分解と色合成とに兼用してもよい。また、時分割に画像を表示する単板式の構成や表示パネル上にマイクロレンズアレイを用いた単板式の構成を採用することによっても、投影画像のカラー化は可能である。表示パネルが反射型の場合には、光束分離プリズム{例えば偏光ビームスプリッター(PBS), TIR(Total Internal Reflection)プリズム等}を用いて入射光線と反射光線とを分離する構成にしてもよい。また、リアプロジェクション光学系をパネル表示面(I1)側にテレセントリックな光学系とするために、コンデンサーレンズをパネル表示面(I1)近傍に配置してもよい。

【0016】各実施の形態のリアプロジェクション光学系は、パネル表示面(I1)からスクリーン面(I2)への光路順に、前記クロスダイクロイックプリズムや光束分離プリズム等に相当するプリズム(PR)と、複数枚のレンズを含み正のパワーを有する透過型の結像光学系(PT)と、第1～第3ミラー(M1～M3)と、で構成されている。第1、第3ミラー(M1,M3)は平面ミラーであり、第2ミラー(M2)は負のパワーを有する曲面ミラーである。第1、第4の実施の形態に用いられている第2ミラー(M2)の反射面は自由曲面(XYP)であり、第2の実施の形態に用いられている第2ミラー(M2)の反射面はアナモルフィック非球面(AAS)であり、第3、第5の実施の形態に用いられている第2ミラー(M2)の反射面は軸対称非球面(ASP)である。

【0017】なお、上記自由曲面(XYP)とは、大きく偏心した非球面を含むとともに回転対称軸を有効領域の中心近傍に持たないような面であり、球面ではなくて非球面的なうねり(自由度)を有する面である。自由曲面形状の非球面的なうねりを利用して反射面の曲率を3次元的に制御すれば、反射面の場所毎に設定した面の傾きによって、斜め投影による非軸対称な収差(歪曲等)を容易に補正することができる。

【0018】前記照明によりパネル表示面(I1)から射出した投影光は、プリズム(PR)と結像光学系(PT)を透過した後、第1ミラー(M1)の平面反射面で反射され、第2ミラー(M2)の曲面反射面で反射される。そして、第3ミラー(M3)の平面反射面で反射された後、スクリーン面(I2)に到達して投影画像を構成する。各実施の形態において光学的なパワーを有する部材は結像光学系(PT)と第2ミラー(M2)であり、全体で正のパワーを有している。したがって、結像光学系(PT)と第2ミラー(M2)がパネル表示面(I1)の画像をスクリーン面(I2)上に投影する投影光学系として機能することになる。

【0019】第1、第3ミラー(M1,M3)は共に平面ミラーであるが、互いに異なった方向に光路を折り曲げる向きに配置されている。つまり、第3ミラー(M3)がスクリーン面(I2)に対してほぼ平行に対向するように配置されているのに対し、第1ミラー(M1)はパネル表示面(I1)側の光路をスクリーン面(M2)の横方向(長辺方向)に折り曲げるよう配置されている。図2、図7、図12、図17及び図22から分かるように、第1ミラー(M1)がない場合には光路がスクリーン面(I2)の後方に突出してしまい、リアプロジェクション光学系は厚くなる。リアプロジェクション光学系を薄くするには光路を折り返せばよいが、折り返された光路がスクリーン面(I2)の下方に配置されるとアゴ下が長くなってしまう。そこで各実施の形態では、上述したように第1ミラー(M1)で光路を3次元的に折り曲げている。光路を3次元的に折り曲げれば、アゴ下を長くしなくてもリアプロジェクション光学系を薄くすることが可能である。以下にこの特徴を詳しく説明する。

【0020】各実施の形態のように画像をスクリーン面(I2)上に斜め投影する、いわゆる斜め投影光学系としては、以下の4つのタイプ①～④が考えられる。

①共軸光学系の一部を使用する透過型光学系。

②非軸対称な透過型光学系。

③反射型光学系。

④反射型と透過型とを組み合わせた非軸対称な光学系。

【0021】①のタイプでは、リアプロジェクション光学系の薄型化を達成しようとすると、非常に大きな斜め投影角度が必要になる。各実施の形態のように斜め投影角度を大きくしようとすれば、もともとの共軸光学系に非常に広い画角が要求される。広角レンズで良好な性能を達成しようとすると、一般的にレンズ枚数が多くなってしまうためコスト高となる。②のタイプでは、光学性能が良好で斜め投影角度の大きなものは現在知られていない。また非軸対称な光学系には、偏芯したレンズや自由曲面レンズ等が用いられるため、レンズを製造・保持する方法が困難であったり、レンズやレンズ保持部材が複雑化してしまうためコスト高になたりする。

【0022】③のタイプでは、反射型光学素子が用いられるため、光学系全長を実質的に大きくすることが可能であり、色収差の発生もない。したがって、光学性能的には有利である。しかし、光線を分離するために光路を何度も折り返さなければならないので、光路の折り返しに伴ってリアプロジェクション光学系が特定方向に大きくなってしまう。例えば前述したWO97/01787記載の光学構成では、リアプロジェクション光学系の薄型化は達成されているが、アゴ下のサイズが非常に長くなっている。このようにアゴ下が長くなってしまうのは、折り返した光路をスクリーン面の下側に向けて配置しているからである。

【0023】④のタイプでは、各光学要素をうまく配置

すれば、反射型光学素子と透過型光学素子を用いるメリットを活かすことができる。つまり、反射型光学素子を用いることにより実質的な光学系全長を非常に大きくすることが可能となるため、良好な光学性能が達成しやすくなる。さらに、複数枚の反射型光学素子の代わりに透過型光学素子を用いることにより、光路の折り返しに伴ってリアプロジェクション光学系が特定方向に大きくなってしまうという問題点を解消して、スペース効率を向上させることができる。**④**のタイプにおいて、3次元的な光路の折り曲げにより各光学要素の配置を3次元的にすれば、アゴ下を長くすることなくリアプロジェクション光学系を薄くすることが可能である。そのためには、パネル表示面(I1)からスクリーン面(I2)への光路順に、少なくとも1つの透過型光学素子を含む光学系と、光路を3次元的に折り曲げる平面ミラーと、曲面ミラーと、を備えることが望ましく、さらにスクリーン面(I2)に対してほぼ平行に対向する対向ミラーを備えることが望ましい。

【0024】上記少なくとも1つの透過型光学素子を含む光学系は各実施の形態における結像光学系(PT)に相当し、光路を3次元的に折り曲げる平面ミラーは各実施の形態における第1ミラー(M1)に相当する。また、上記曲面ミラーは各実施の形態における第2ミラー(M2)に相当し、上記対向ミラーは各実施の形態における第3ミラー(M3)に相当する。結像光学系(PT)に相当する光学系は、各実施の形態のようにレンズ等の透過型光学素子のみから成っていてもよく、透過型光学素子以外にミラー等の反射型光学素子を含んでいてもよい。透過型光学素子のみから成る場合には、そこで光路の折り返しがないことによるスペース効率の向上を、上記曲面ミラー(M2)との間での上記平面ミラー(M1)による光路の折り曲げによって、反射型光学素子を用いることによるメリットとうまく融合させることができになる。

【0025】第1ミラー(M1)に相当する前記平面ミラーで光路を3次元的に折り曲げるには、パネル表示面(I1)の画面中心から絞り(ST)の中心を通りスクリーン面(I2)の画面中心に到達する光線を「画面中心光線」とするとき、スクリーン面(I2)に入射する画面中心光線とスクリーン面(I2)の法線とが成す平面に対して、前記平面ミラー(M1)に入射する画面中心光線が平行でなければよい。各実施の形態のように、スクリーン面(I2)に入射する画面中心光線とスクリーン面(I2)の法線とが成す平面に対して、第1ミラー(M1)に入射する画面中心光線が平行でなければ、その3次元的な光路の折り曲げにより各光学要素の配置が3次元的になる。これにより、リアプロジェクション光学系の薄型化とともに、スクリーン面(I2)の画面上下方向のコンパクト化を達成することができる。しかも、投影光学系としての結像光学系(PT)と第2ミラー(M2)との組み合わせによって良好な光学性能を実現することができる。

【0026】通常のリアプロジェクションTVのような投影装置では、スクリーン面(I2)のサイズは上下方向(縦方向)よりも左右方向(横方向)の方が大きい。このような横長のスクリーン面(I2)に対する光学構成において、折り返しによる光路配置を上下方向(短辺方向)のみに沿って行えば、左右方向(長辺方向)のスペースを有効に活用していないことになる。したがって各実施の形態のように、パネル表示面(I1)側の光路をスクリーン面(M2)の横方向(長辺方向)に折り曲げる構成にすれば、スペースの有効活用によりリアプロジェクション光学系のコンパクト化を達成することができる。しかし、**③**のように反射型光学素子のみから成る反射型光学系(例えばWO97/017877)では、仮に平面ミラーで光路を横方向に折り曲げたとしても、アゴ下の突出を抑えることはできない。反射型と透過型とを組み合わせたタイプ**④**の光学系に、上記光路の折り曲げを適用して初めてそのメリット(光学性能上の有利性とコンパクト性)を活かすことができるのである。

【0027】また各実施の形態では、第1ミラー(M1)に入射する画面中心光線と第1ミラー(M1)で反射する画面中心光線とが90°を成しているが、第1ミラー(M1)による光路の折り曲げはこれに限らない。リアプロジェクション光学系の厚みや他の光学要素との位置関係等に応じて好ましい光路配置となるようにすればよい。実際の光路配置を考えた場合、以下の条件式(0)を満足するよう $\alpha=90\pm 20^\circ$ の角度範囲で光路を折り曲げることが望ましく、また、スクリーン面(I2)に入射する画面中心光線とスクリーン面(I2)の法線とが成す平面に対して、平面ミラー(M1)に入射する画面中心光線が成す角度もこれと同様である。

$$70 < \alpha < 110 \cdots (0)$$

ただし、

α : 第1ミラー(M1: 平面ミラー)に入射する画面中心光線と第1ミラー(M1)で反射する画面中心光線とが成す角度(°)、である。

【0028】第1～第3の実施の形態を構成している結像光学系(PT)は、いわゆる共軸系であって、結像光学系(PT)を構成している光学要素はすべて共通の軸を有している。結像光学系(PT)を共軸系にすれば、レンズ保持部材(玉枠等)の構成が容易になる。また、フォーカシングやズーミングにおける玉枠の動きが直線的になるので、フォーカシングやズーミングに関連する構成も容易になる。なかでも第3の実施の形態は、第2ミラー(M2: 曲面ミラー)も含めて投影光学系全体が共軸系になっている。このような構成にすると、収差等の扱いが通常の光学系の設計と同様に行えるので設計し易くなる。一方、第4、第5の実施の形態のように、結像光学系(PT)をいくつかのレンズブロックに分割して、それぞれが偏芯した構成にすれば、玉枠の構成は複雑になるが、光学性能を向上させることができる。

【0029】各実施の形態において、リアプロジェクション光学系のフォーカシングは、結像光学系(PT)中の1つのレンズ群をその軸方向に沿って移動させることにより行われる。また、リアプロジェクション光学系のズーミングは、結像光学系(PT)中の少なくとも2つのレンズ群をその軸方向に沿って移動させることにより行われる。ズーミングの際には縦方向(短辺方向)に像がずれるので、表示パネル又は投影光学系全体をその分だけ移動させて補正する構成にするのが好ましい。

【0030】各実施の形態では、スクリーン面(I2)の画面中心を縦に通る面に関してリアプロジェクション光学系全体が光学的な面对称になっており、その対称面が図2、図7、図12、図17及び図22に示す光学断面に相当する。第1ミラー(M1)での3次元的な光路の折り曲げにより、リアプロジェクション光学系は構造的に非対称になる。しかし、第1ミラー(M1)は光学的なパワーのない平面ミラーであるため、リアプロジェクション光学系の光学的な対称性が崩れることにはならない。このように光学的に面对称な光学構成にすると、光学部品の作り込みが行い易い上に、画面の左右で照度ムラや歪曲の差が発生するのを抑えることができる。

【0031】透過型光学素子のみで非常に広角の光学系を実現することは難しいが、各実施の形態のように第2ミラー(M2)が負のパワーを有し、結像光学系(PT)が正のパワーを有する構成にすれば、非常に広角のリアプロジェクション光学系を実現することができる。このパワー配置は、一般的な広角レンズに採用されているレトロフォーカスタイルである。このレトロフォーカスタイルのパワー構成において、さらに以下の条件式(1)～(3)を満足することが望ましい。

$$[0032] 20 < \theta < 65 \cdots (1)$$

$$0.5 < dL/Fx < 2.5 \cdots (2)$$

$$0.5 < dL/Fy < 2.5 \cdots (3)$$

ただし、

θ ：スクリーン面(I2)に対する画面中心光線の入射角度(\circ)、

dL ：パネル表示面(I1)の画面対角線の長さ、

Fx ：投影光学系のx方向の焦点距離、

Fy ：投影光学系のy方向の焦点距離、

$$Fx = \Delta / \sin \theta x$$

$$Fy = \Delta / \sin \theta y$$

であり、ここで、投影光学系の第1面に入射する画面中心光線の進む方向をz軸の方向とし、投影光学系の第1面に入射する画面中心光線と入射法線とで決定される平面(すなわち入射面)に垂直な方向をx軸の方向とし、z軸及びx軸に直交する方向をy軸の方向とするローカルな左手系の直交座標系(x,y,z)において、投影光学系に画面中心光線からx軸、y軸の方向にそれぞれ微小量 Δ だけ平行シフトした光線を入射させ、その光線が結像光学系(PT)の最終面から射出されるときに画面中心光線と成す角度を

$\theta x, \theta y$ とする。

【0033】条件式(1)は、いわゆる斜め投影角度を規定している。条件式(1)の上限を超えると、斜め投影角度が大きくなりすぎるために、非常に広角のレンズが必要となり、良好な光学性能を達成するのが困難になる。また、スクリーン面(I2)に対する入射角度が大きくなりすぎるため、スクリーン面(I2)の表面反射による光のロスが大きくなる。逆に、条件式(1)の下限を超えると、斜め投影の度合いが小さくなる。つまり共軸系の投影に近づくことから、斜め投影による薄型化が困難になる。更に良好な光学性能を有し薄型でコンパクトなリアプロジェクション光学系を実現するためには、条件式(1)の下限を30、上限を50にして、それらの条件を満たすようになるのが好ましい。

【0034】条件式(2),(3)は、投影光学系の焦点距離とパネル表示面(I1)の画面対角線の長さとの比を規定しており、これらの比が投影画角を表している。つまり、比の値が大きいと画角が広く、小さいと画角が狭いことになる。条件式(2),(3)を満たすことにより、リアプロジェクション光学系の薄型化に必要な斜め投影を広い画角で実現することができる。条件式(2),(3)の上限を超えると、非常に広角なレンズを達成することと同等になるので収差補正が困難になり、良好な光学性能を得るのが困難になる。条件式(2),(3)の下限を超えると、画角が狭くなりすぎるので斜め投影角度を大きくとることができず、リアプロジェクション光学系の薄型化が困難になる。更に良好な光学性能を有し薄型でコンパクトなリアプロジェクション光学系を実現するためには、条件式(2),(3)の下限を0.70、上限を1.70にして、それらの条件を満たすようになるのが好ましい。

【0035】また結像光学系(PT)に関しては、以下の条件式(4)及び(5)を満足することが望ましい。

$$1.0 < fpx/Fx < 5.5 \cdots (4)$$

$$1.0 < fpy/Fy < 5.5 \cdots (5)$$

ただし、

fpx ：結像光学系(PT)のx方向の焦点距離、

fpy ：結像光学系(PT)のy方向の焦点距離、

$$fpx = \Delta / \sin \theta px$$

$$fpy = \Delta / \sin \theta py$$

であり、ここで、結像光学系(PT)の第1面に入射する画面中心光線の進む方向をz軸の方向とし、結像光学系(PT)の第1面に入射する画面中心光線と入射法線とで決定される平面(すなわち入射面)に垂直な方向をx軸の方向とし、z軸及びx軸に直交する方向をy軸の方向とするローカルな左手系の直交座標系(x,y,z)において、結像光学系(PT)に画面中心光線からx軸、y軸の方向にそれぞれ微小量 Δ だけ平行シフトした光線を入射させ、その光線が結像光学系(PT)の最終面から射出されるときに画面中心光線と成す角度を $\theta px, \theta py$ とする。

【0036】条件式(4),(5)は、投影光学系と結像光学

系(PT)との焦点距離比を規定している。この比は全体で広画角な投影光学系における結像光学系(PT)の画角の負担量を示しており、比の値が小さい場合には結像光学系(PT)の画角負担が大きく、逆に大きい場合には結像光学系(PT)の画角負担が小さいことを意味する。条件式(4),(5)の上限を超えると、結像光学系(PT)での画角負担が減る代わりに、第2ミラー(M2：曲面ミラー)の負のパワーを強くしなければならなくなる。その結果、第2ミラー(M2)での収差発生量が大きくなり、投影光学系全体で収差補正を行うことが困難になる。条件式(4),(5)の下限を超えると、結像光学系(PT)での画角負担が増えることになるが、結像光学系(PT)のみで非常に広画角な投影光学系を実現することは困難である。更に良好な光学性能を得るには、条件式(4),(5)の下限を1.5、上限を4.5にして、それらの条件を満たすようにするのが好ましい。

【0037】また結像光学系(PT)と第2ミラー(M2)に関しては、以下の条件式(6)及び(7)を満足することが望ましい。

$$-1.5 < f_{px}/f_{nx} < -0.03 \cdots (6)$$

$$-1.5 < f_{py}/f_{ny} < -0.03 \cdots (7)$$

ただし、

f_{px} ：結像光学系(PT)のx方向の焦点距離、

f_{py} ：結像光学系(PT)のy方向の焦点距離、

f_{nx} ：第2ミラー(M2：曲面ミラー)のx方向の焦点距離、

f_{ny} ：第2ミラー(M2：曲面ミラー)のy方向の焦点距離、

$$f_{px} = \Delta / \sin \theta_{px}$$

$$f_{py} = \Delta / \sin \theta_{py}$$

$$f_{nx} = \Delta / \sin \theta_{nx}$$

$$f_{ny} = \Delta / \sin \theta_{ny}$$

であり、ここで、結像光学系(PT)の第1面に入射する画面中心光線の進む方向をz軸の方向とし、結像光学系(PT)の第1面に入射する画面中心光線と入射法線とで決定される平面(すなわち入射面)に垂直な方向をx軸の方向とし、z軸及びx軸に直交する方向をy軸の方向とするローカルな左手系の直交座標系(x,y,z)において、結像光学系(PT)に画面中心光線からx軸、y軸の方向にそれぞれ微小量 Δ だけ平行シフトした光線を入射させ、その光線が結像光学系(PT)の最終面から射出されるときに画面中心光線と成す角度を θ_{px} 、 θ_{py} とし、また、曲面ミラー(M2)の反射面に入射する画面中心光線の進む方向をz軸の方向とし、曲面ミラー(M2)の反射面に入射する画面中心光線と入射法線とで決定される平面(すなわち入射面)に垂直な方向をx軸の方向とし、z軸及びx軸に直交する方向をy軸の方向とするローカルな左手系の直交座標系(x,y,z)において、曲面ミラー(M2)に画面中心光線からx軸、y軸の方向にそれぞれ微小量 Δ だけ平行シフトした光線を入射させ、その光線が曲面ミラー(M2)の反射面から射出されるときに画面中心光線と成す角度を θ_{nx} 、 θ_{ny} とする。

10

20

30

40

50

【0038】条件式(6),(7)は、結像光学系(PT)と曲面ミラー(M2)との焦点距離比を規定しており、条件式(6),(7)の上限を超えると曲面ミラー(M2)のパワーが強くなり、条件式(6),(7)の下限を超えると結像光学系(PT)のパワーが強くなる。条件式(6),(7)の上限を超えると曲面ミラー(M2)のパワーが強くなりすぎるが、曲面ミラー(M2)はただ1つの面なので、非常に強いパワーを有すると当然非常に大きな収差が発生することになる。これを結像光学系(PT)で補正することは困難である。逆に、条件式(6),(7)の下限を超えると、結像光学系(PT)のパワーが非常に強くなるため、レンズ枚数が少ないと収差の発生量が大きくなる。したがって、多くのレンズ枚数が必要になる。条件式(6),(7)を満たすように2つのプロックの焦点距離比(つまりパワー比)をうまく調整すれば、少ないレンズ枚数で良好な光学性能を得ることができる。また、条件式(6),(7)の下限を-1.0、上限を-0.1にして、それらの条件を満たすようにするのが好ましく、それによって更に少ないレンズ枚数で良好な光学性能を得ることができる。

【0039】また、以下の条件式(8)を満足することが望ましい。

$$1.0 < (d_2 \times \cos \theta) / d_1 < 3.0 \cdots (8)$$

ただし、

d_1 ：結像光学系(PT)の最終面から第2ミラー(M2：曲面ミラー)までの画面中心光線の光路長、

d_2 ：第2ミラー(M2：曲面ミラー)からスクリーン面(I2)までの画面中心光線の光路長、

である。

【0040】条件式(8)は、スクリーン面(I2)から第2ミラー(M2)までの距離と第2ミラー(M2)から結像光学系(PT)までの距離との比を規定している。スクリーン面(I2)から第2ミラー(M2)までの距離はプロジェクション光学系の厚み方向の長さの約2倍であり、第2ミラー(M2)から結像光学系(PT)までの距離はプロジェクション光学系の厚み方向の長さと略同じである。したがって、第2ミラー(M2)で光線が一度反射してスクリーン面(I2)に到達する構成と、透過型の結像光学系(PT)から第2ミラー(M2)までに十分な距離を有する構成と、でリアプロジェクション光学系の薄型化を有効に行うためには、その距離のおおよその比が1.5～2倍程度であれば、薄型でアゴ下の小さなリアプロジェクション光学系を実現することができる。

【0041】光路を折り曲げるためのスペースをうまくとるには、第2ミラー(M2)から結像光学系(PT)までの距離をある程度確保する必要があるが、条件式(8)の上限を超えると、その距離と比べて第2ミラー(M2)からスクリーン面(I2)までの距離が大きくなってしまうため、リアプロジェクション光学系の薄型化が困難になる。逆に、条件式(8)の下限を超えると、第2ミラー(M2)から結像光学系(PT)までの距離が大きくなりすぎてしまうた

と共に、パネル表示面(I1)の大きさ(mm)、スクリーン面(I2)の大きさ(mm)及びFナンバー(FNO)を、画面横(長辺)方向と画面縦(短辺)方向とにそれ対応させて示している。各コンストラクションデータにおいて、 s_i ($i=0,1,2,3,\dots$)はパネル表示面(I1)から数えて*i*番目の面であり、CRはその面(s_i)の曲率半径(mm)である。また、 N_d, ν_d は面(s_i)と面(s_{i+1})との間に位置する媒質のd線に対する屈折率、アッペ数をそれぞれ示している(AIR: 空気)。

【0050】各面 s_i のデータは、左手系の直交座標系(X,Y,Z)に基づいて示されており、パネル表示面(I1: 長辺方向: X軸方向、短辺方向: Y軸方向)の中心位置を原点(0,0,0)とする面頂点座標(mm)で、面 s_i の位置(X座標、Y座標、Z座標)を表しており、面頂点を中心とするX,Y,Zの各方向の軸回りの回転角($^\circ$)で、パネル表示面(I1)を基準とする面 s_i の傾き(X回転、Y回転、Z回転)を表している(回転の順序はX回転、Y回転、Z回転である。)。ただし、X回転ではY軸からZ軸への回転方向(X軸の正側に向かって反時計回り)を正とし、Y回転ではZ軸からX軸への回転方向(Y軸の正側に向かって反時計回り)を正とし、Z回転ではZ軸の正側に向かって反時計回り)を正とし、Z*20

$$z = (C \cdot h^2) / [1 + \sqrt{1 - C^2 \cdot h^2}] + (A4 \cdot h^4 + A6 \cdot h^6 + A8 \cdot h^8 + A10 \cdot h^{10} + A12 \cdot h^{12}) \dots (A \\ SP) \\ z = (Cx \cdot x^2 + Cy \cdot y^2) / [1 + \sqrt{1 - (1+Kx)Cx^2 \cdot x^2 - (1+Ky)Cy^2 \cdot y^2}] + [Ar \{(1-Ap)x^2 + (1+Ap)y^2\}^2 + Br \{(1-Bp)x^2 + (1+Bp)y^2\}^3 + Cr \{(1-Cp)x^2 + (1+Cp)y^2\}^4 + Dr \{(1-Dp)x^2 + (1+Dp)y^2\}^5] \dots (AAS)$$

【数1】

$$z = (C \cdot h^2) / [1 + \sqrt{1 - (1+K) \cdot C^2 \cdot h^2}] + \sum_m \sum_n [C(m, n) \cdot x^m \cdot y^n] \dots (XYPP)$$

【0053】ただし、

z : 高さ h の位置での z 軸方向の基準面からの変位量(sa q)、

h : z 軸に対して垂直な方向の高さ($h^2 = x^2 + y^2$)、

C : 近軸曲率(曲率半径CRの逆数)、

Cx : x 方向の近軸曲率(x 方向の曲率半径CRxの逆数)、

Cy : y 方向の近軸曲率(y 方向の曲率半径CRyの逆数)、

$A4, A6, A8, A10, A12$: 4次、6次、8次、10次、12次の非球面係数、

K : コニック定数、

Kx : x 方向のコニック定数、

Ky : y 方向のコニック定数、

$C(m, n)$: 自由曲面係数、

Ar, Br, Cr, Dr : 円錐からの4次、6次、8次、10次の変形係数の回転対称成分、

Ap, Bp, Cp, Dp : 円錐からの4次、6次、8次、10次の変形係数の非回転対称成分、

である。

【0054】各実施例の光学性能をスポットダイアグラム(図4、図9、図14、図19、図24)と歪曲図(図5、図10、図15、図20、図25)でそれぞれ示す。スポットダイアグラムはスクリーン面(I2)での結像

*回転ではY軸からX軸への回転方向(Z軸の正側に向かって時計回り)を正とする。

【0051】また曲率半径CRの欄において、ASPが記載されている面 s_i は軸対称非球面、AASが記載されている面 s_i はアナモルフィック非球面、XYPPが記載されている面 s_i は自由曲面である。これらの面 s_i の面頂点を原点とするローカルな直交座標系(x,y,z)を考えた場合、軸対称非球面の面形状は以下の式(ASP)で定義され、アナモルフィック非球面の面形状は以下の式(AAS)で定義され、自由曲面の面形状は以下の式(XYP)で定義される。

この直交座標系(x,y,z)におけるx,y,z方向は直交座標系(X,Y,Z)におけるX,Y,Z方向とそれ一致している。したがって、以下の各式で規定される面形状は、各回転によって傾く前の面 s_i の状態を表していることになる。表2、表3、表5、表6、表8、表10、表11、表13に、各実施例における軸対称非球面データ、アナモルフィック非球面データ及び自由曲面データを示す。また、表14に各実施例の条件式対応値及び関連データを示す。

【0052】

特性(mm)をd線、g線及びc線の3波長について示しており、歪曲図はパネル表示面(I1)での長方形状網目に対応するスクリーン面(I2)での光線位置(mm)を示している。歪曲図中、D1(実線)が実施例の歪曲格子であり、D0(点線)がアナモ比を考慮した理想像点の格子(歪曲無し)である。

【0055】パネル表示面(I1)の画面長辺方向にx軸をとり、パネル表示面(I1)の画面短辺方向にy軸をとった場合、各物高(FIELD POSITION, mm)はパネル表示面(I1)の画面中心を原点とするローカルな座標(x,y)で表される。また、スクリーン面(I2)の画面長辺方向にx'軸をとり、スクリーン面(I2)の画面短辺方向にy'軸をとった場合、各像高(mm)はスクリーン面(I2)の画面中心を原点とするローカルな座標(x',y')で表される。したがって、各歪曲図はx'-y'平面に対して垂直方向から見たスクリーン面(I2)上の実際の像の歪曲状態(ただしx'の負側のみ)を示していることになる。なお、スポットや歪曲が画面の片側についてのみ表示されているのは、各実施例が光学的に左右対称だからである。

【0056】

【表1】

《実施例1》

			横(長辺)		縦(短辺)			
パネル表示面(I1)の大きさ(mm)			13.283		7.472			
スクリーン面(I2)の大きさ(mm)			1105.7		622.7			
F N O			3.0		3.0			
面	CR	Nd	v d	X 座標	Y 座標	Z 座標	X, Y, Z 回転	
s0	∞ (I1)		AIR	0.000	0.000	0.000	0.000	
s1	∞ (PR)	1.51680	64.20	0.000	5.000	12.000	0.000	
s2	∞ (PR)	1.49270	57.49	0.000	5.000	45.000	0.000	
s3	117.864	AIR		0.000	5.000	56.360	0.000	
s4	ASP	1.49270	57.49	0.000	5.000	63.353	0.000	
s5	483.873	AIR		0.000	5.000	75.095	0.000	
s6	-35.922	1.48749	70.45	0.000	5.000	82.045	0.000	
s7	66.055	AIR		0.000	5.000	95.408	0.000	
s8	-27.732	1.75450	51.57	0.000	5.000	108.408	0.000	
s9	44.053	1.84666	23.82	0.000	5.000	111.408	0.000	
s10	-339.300	AIR		0.000	5.000	127.278	0.000	
s11	-37.822	1.83350	21.00	0.000	5.000	134.278	0.000	
s12	∞ (ST)	AIR		0.000	5.000	137.872	0.000	
s13	-19.297	AIR		0.000	5.000	175.806	0.000	
s14	-96.366	1.85000	40.04	0.000	5.000	182.806	0.000	
s15	-47.244	AIR		0.000	5.000	202.831	0.000	
s16	ASP	1.49270	57.49	0.000	5.000	208.043	0.000	
面	CR	媒質	X 座標	Y 座標	Z 座標	X 回転	Y 回転	Z 回転
s17	∞ (M1)	AIR	0.000	5.000	288.043	0.000	-45.000	0.000
s18	XYP(M2)	AIR	-211.725	52.420	288.043	-90.000	-62.991	-90.000
s19	∞ (M3)	AIR	36.198	269.280	288.043	0.000	-90.000	0.000
s20	∞ (I2)	AIR	-221.479	485.130	288.043	0.000	-90.000	0.000

[0057]

* [0058]

【表2】

【表3】

<実施例1の軸対称非球面データ(ASP)>

	s4	s16
CR	-261.527	-85.086
A4	1.068×10^{-5}	-2.472×10^{-6}
A6	3.788×10^{-9}	-1.049×10^{-9}
A8	5.007×10^{-12}	-1.769×10^{-12}
A10	-1.683×10^{-14}	1.811×10^{-15}
A12	3.304×10^{-18}	-6.340×10^{-18}

30

*

<実施例1の自由曲面データ(XYP)>

s18						
CR	∞	K	0.000			
C(0,1)	-8.848×10^{-1}	C(4,0)	6.121×10^{-8}	C(0,5)	-8.338×10^{-10}	
C(2,0)	-2.736×10^{-3}	C(2,2)	1.246×10^{-7}	C(6,0)	-6.233×10^{-13}	
C(0,2)	-3.095×10^{-3}	C(0,4)	5.041×10^{-8}	C(4,2)	-3.888×10^{-12}	
C(2,1)	1.175×10^{-5}	C(4,1)	-4.123×10^{-10}	C(2,4)	-2.651×10^{-12}	
C(0,3)	1.539×10^{-5}	C(2,3)	-1.047×10^{-9}	C(0,6)	3.190×10^{-12}	

[0059]

【表4】

《実施例2》

			横(長辺)		縦(短辺)				
			15.490	8.716					
パネル表示面(II)の大きさ(mm)			1106.4	622.5					
スクリーン面(12)の大きさ(mm)									
FNO			2.5	2.5					
面	CR	Nd	v d	X座標	Y座標	Z座標	X, Y, Z回転		
s0	∞(II)			0.000	0.000	0.000	0.000		
s1	∞(PR)		AIR	0.000	7.791	0.000	0.000		
s2	∞(PR)	1.51680	64.20	0.000	7.791	34.000	0.000		
s3	419.594		AIR	0.000	7.791	34.100	0.000		
s4	-53.363	1.85000	40.04	0.000	7.791	41.100	0.000		
s5	-86.488		AIR	0.000	7.791	82.655	0.000		
s6	ASP	1.70055	30.10	0.000	7.791	85.655	0.000		
s7	-411.545		AIR	0.000	7.791	86.905	0.000		
s8	-175.601	1.49270	57.49	0.000	7.791	89.905	0.000		
s9	63.283		AIR	0.000	7.791	90.005	0.000		
s10	-28.656	1.77250	49.77	0.000	7.791	99.355	0.000		
s11	82.179	1.67339	29.25	0.000	7.791	106.355	0.000		
s12	∞(ST)		AIR	0.000	7.791	125.625	0.000		
s13	-153.560	1.75450	51.57	0.000	7.791	142.883	0.000		
s14	-61.760		AIR	0.000	7.791	149.182	0.000		
s15	331.090	1.77250	49.77	0.000	7.791	171.586	0.000		
s16	-130.868		AIR	0.000	7.791	177.841	0.000		
s17	-39.763	1.48749	70.45	0.000	7.791	259.323	0.000		
s18	66.442		AIR	0.000	7.791	262.323	0.000		
s19	ASP	1.49270	57.49	0.000	7.791	283.307	0.000		
s20	-77.346		AIR	0.000	7.791	289.000	0.000		
面	CR	媒質		X座標	Y座標	Z座標	X回転	Y回転	Z回転
s21	∞(M1)		AIR	0.000	7.791	369.000	0.000	-45.000	0.000
s22	AAS(M2)		AIR	-215.000	-1.097	369.000	0.000	-90.000	0.000
s23	∞(M3)		AIR	0.000	337.757	369.000	0.000	-90.000	0.000
s24	∞(I2)		AIR	-250.000	581.413	369.000	0.000	-90.000	0.000

[0060]

[表5]

《実施例2の軸対称非球面データ(ASP)》

	s6	s19
CR	-175.501	-50.000
A4	5.812×10^{-6}	-2.751×10^{-6}
A6	4.189×10^{-9}	2.501×10^{-9}
A8	1.956×10^{-12}	4.928×10^{-14}
A10	0.000	0.000
A12	0.000	0.000

30

[表6]

《実施例2のアノモルフィック非球面データ(AAS)》

s22			
CRy	-304.030	CEx	-293.399
Ky	0.154	Kx	0.085
Ar	3.314×10^{-8}	Ap	3.002×10^{-2}
Br	-3.803×10^{-13}	Bp	3.629×10^{-2}
Cr	3.352×10^{-18}	Cp	2.706×10^{-2}
Dr	0.000	Dp	0.000

[0061]

[0062]

[表7]

《実施例3》

			横(長辺)		縦(短辺)			
パネル表示面(11)の大きさ(mm)			19.924	11.208				
スクリーン面(12)の大きさ(mm)			555.2	311.7				
F NO			4.0	4.0				
面	CR	Nd	v d	X 座標	Y 座標	Z 座標	X, Y, Z 回転	
s0	∞ (II)		AIR	0.000	0.000	0.000	0.000	
s1	∞ (PR)			0.000	10.000	14.345	0.000	
s2	∞ (PR)	1.51680	64.20	0.000	10.000	51.845	0.000	
s3	43.638		AIR	0.000	10.000	62.351	0.000	
s4	367.337	1.84666	23.82	0.000	10.000	70.700	0.000	
s5	-228.955		AIR	0.000	10.000	73.821	0.000	
s6	ASP	1.49270	57.49	0.000	10.000	80.821	0.000	
s7	26.987		AIR	0.000	10.000	85.616	0.000	
s8	-45.949	1.75450	51.57	0.000	10.000	95.604	0.000	
s9	17.365	1.83350	21.00	0.000	10.000	102.604	0.000	
s10	∞ (ST)		AIR	0.000	10.000	109.264	0.000	
s11	-12.031	1.85000	40.04	0.000	10.000	118.148	0.000	
s12	-16.542		AIR	0.000	10.000	125.148	0.000	
s13	-96.382	1.75450	51.57	0.000	10.000	143.826	0.000	
s14	-38.915		AIR	0.000	10.000	152.900	0.000	
s15	ASP	1.49270	57.49	0.000	10.000	153.000	0.000	
s16	-57.193		AIR	0.000	10.000	160.000	0.000	
面	CR	媒質	X 座標	Y 座標	Z 座標	X 回転	Y 回転	Z 回転
s17	∞ (M1)		0.000	10.000	210.000	0.000	-45.000	0.000
s18	ASP(M2)	AIR	-180.000	10.000	210.000	0.000	-90.000	0.000
s19	∞ (M3)		20.000	168.634	210.000	0.000	-90.000	0.000
s20	∞ (I2)	AIR	-180.000	288.636	210.000	0.000	-90.000	0.000

[0063]

【表8】

<実施例3の軸対称非球面データ(ASP)>

	s6	s15	s18
CR	-67.937	-42.448	-145.535
A4	4.580×10^{-6}	-7.163×10^{-6}	2.508×10^{-7}
A6	-1.915×10^{-9}	2.776×10^{-9}	-1.519×10^{-11}
A8	3.807×10^{-13}	-1.924×10^{-12}	6.997×10^{-16}
A10	0.000	0.000	0.000
A12	0.000	0.000	0.000

[0064]

【表9】

《実施例4》

			横(長辺)			縦(短辺)		
			13.283		7.472			
パネル表示面(11)の大きさ(mm)			1101.2		560.3			
スクリーン面(12)の大きさ(mm)								
F N O			3.1		3.1			
面	CR	Nd	v d	X 座標	Y 座標	Z 座標	X 回転 Y, Z 回転	
s0	∞(11)		AIR	0.000	0.000	0.000	0.000 0.000	
s1	∞(PR)	1.51680	64.20	0.000	6.137	6.643	-10.527 0.000	
s2	∞(PR)	1.51680	64.20	0.000	-0.623	43.020	-10.527 0.000	
s3	441.207	1.51680	64.20	0.000	-2.886	44.634	-6.084 0.000	
s4	ASP		AIR	0.000	-3.629	51.605	-6.084 0.000	
s5	24.393	1.48749	70.45	0.000	7.296	52.870	1.778 0.000	
s6	-129.235		AIR	0.000	7.761	67.863	1.778 0.000	
s7	-18.455	1.59649	35.34	0.000	8.068	77.747	1.778 0.000	
s8	15.735		AIR	0.000	8.084	78.247	1.778 0.000	
s9	21.943	1.85000	40.04	0.000	8.120	79.437	1.778 0.000	
s10	-15.325		AIR	0.000	8.359	87.114	1.778 0.000	
s11	-15.706	1.62197	32.38	0.000	8.362	87.214	1.778 0.000	
s12	43.389		AIR	0.000	8.377	87.714	1.778 0.000	
s13	∞(ST)		AIR	0.000	8.386	88.001	1.778 0.000	
s14	107.349	1.75450	51.57	0.000	15.869	157.799	5.621 0.000	
s15	-104.185		AIR	0.000	16.578	164.994	5.621 0.000	
s16	59.049	1.84987	40.00	0.000	16.587	165.093	5.621 0.000	
s17	120.402		AIR	0.000	16.057	180.021	5.621 0.000	
s18	-174.794	1.69694	33.73	0.000	18.398	183.493	5.621 0.000	
s19	44.632		AIR	0.000	19.673	196.446	5.621 0.000	
s20	-33.684	1.84666	23.82	0.000	17.444	207.856	5.621 0.000	
s21	-47.856		AIR	0.000	18.913	222.784	5.621 0.000	
面	CR	媒質	X 座標	Y 座標	Z 座標	X 回転	Y 回転	Z 回転
s22	∞(M1)		AIR	0.000	20.742	282.756	1.747 -45.000	0.000
s23	XYP(M2)		AIR	-252.636	88.781	280.680	91.747 -76.538	90.000
s24	∞(M3)		AIR	19.079	265.343	275.295	0.000 -90.000	-1.747
s25	∞(I2)		AIR	-269.261	506.333	267.848	0.000 -90.000	-1.747

[0065]

[表10]

《実施例4の軸対称非球面データ(ASP)》

30

[0066]

[表11]

	s4
CR	-31.952
A4	6.667×10^{-7}
A6	5.727×10^{-10}
A8	1.130×10^{-12}
A10	8.818×10^{-16}
A12	0.000

<実施例4の自由曲面データ(XYP)>

s23						
CR	-1.424×10^3	K	0.000			
C(0,1)	-1.254×10^{-1}	C(4,1)	-5.544×10^{-10}	C(4,3)	-3.804×10^{-15}	
C(2,0)	-1.324×10^{-3}	C(2,3)	-2.702×10^{-10}	C(2,5)	-9.057×10^{-14}	
C(0,2)	5.167×10^{-5}	C(0,5)	8.618×10^{-9}	C(0,7)	1.056×10^{-12}	
C(2,1)	1.093×10^{-5}	C(6,0)	-5.162×10^{-12}	C(8,0)	4.435×10^{-16}	
C(0,3)	6.838×10^{-6}	C(4,2)	-2.022×10^{-12}	C(6,2)	1.890×10^{-16}	
C(4,0)	4.326×10^{-8}	C(2,4)	-8.563×10^{-12}	C(4,4)	3.844×10^{-16}	
C(2,2)	-1.676×10^{-8}	C(0,6)	1.178×10^{-10}	C(2,6)	-2.527×10^{-16}	
C(0,4)	1.788×10^{-7}	C(6,1)	2.652×10^{-14}	C(0,8)	3.743×10^{-15}	

[0067]

* * [表12]

<実施例5>

			横(長辺)			縦(短辺)	
パネル表示面(I1)の大きさ(mm)			13.283			7.472	
スクリーン面(I2)の大きさ(mm)			1102.5			647.4	
F NO			3.1			3.1	
面	CR	Nd	νd	X 座標	Y 座標	Z 座標	X回転 Y.Z回転
s0	$\infty(11)$		AIR	0.000	0.000	0.000	0.000
s1	$\infty(PR)$	1.51680	64.20	0.000	7.012	0.099	7.065 0.000
s2	$\infty(PR)$	144.083	AIR	0.000	11.932	39.796	7.065 0.000
s3	1.51680	64.20		0.000	0.172	41.555	4.831 0.000
s4	ASP		AIR	0.000	0.435	44.657	4.831 0.000
s5	17.834	1.48749	70.45	0.000	-1.907	44.955	-3.323 0.000
s6	99.369		AIR	0.000	-2.205	50.078	-3.323 0.000
s7	36.679	1.66888	28.47	0.000	-2.210	50.178	-3.323 0.000
s8	9.768		AIR	0.000	-2.931	62.596	-3.323 0.000
s9	10.658	1.81003	43.86	0.000	-2.943	62.805	-3.323 0.000
s10	-139.224		AIR	0.000	-3.533	72.959	-3.323 0.000
s11	-17.685	1.59752	35.21	0.000	-3.546	73.183	-3.323 0.000
s12	16.778		AIR	0.000	-3.562	73.463	-3.323 0.000
s13	$\infty(ST)$		AIR	0.000	-3.576	73.692	-3.323 0.000
s14	-46.096	1.85000	40.04	0.000	-7.254	137.045	-9.405 0.000
s15	-47.973		AIR	0.000	-8.637	145.397	-9.405 0.000
s16	-157.515	1.79519	22.70	0.000	-8.653	145.495	-9.405 0.000
s17	259.221		AIR	0.000	-8.689	145.772	-9.405 0.000
s18	261.585	1.84911	33.91	0.000	-8.715	145.870	-9.405 0.000
s19	-78.379		AIR	0.000	-11.458	162.428	-9.405 0.000
s20	-187.466	1.48749	40.44	0.000	-63.143	222.928	-10.742 0.000
s21	-301.596		AIR	0.000	-63.195	223.204	-10.742 0.000
面	CR	媒質	X 座標	Y 座標	Z 座標	X回転	Y回転 Z回転
s22	$\infty(M1)$		0.000	-79.514	280.942	-15.782	-45.000 0.000
s23	ASP(N2)	AIR	-213.209	-56.328	287.496	-105.782	-86.613 -90.000
s24	$\infty(M3)$	AIR	77.660	275.258	381.212	0.000	-90.000 15.782
s25	$\infty(I2)$	AIR	-201.006	500.085	444.755	0.000	-90.000 15.782

[0068]

[表13]

<実施例5の軸対称非球面データ(ASP)>

	s4	s23
CR	-32.492	-274.307
A4	4.215×10^{-6}	3.826×10^{-8}
A6	2.149×10^{-9}	-6.595×10^{-13}
A8	1.847×10^{-11}	1.053×10^{-17}
A10	-1.294×10^{-14}	-5.905×10^{-23}
A12	0.000	0.000

【0069】

＊＊【表14】
《条件式対応値等》

		実施例1	実施例2	実施例3	実施例4	実施例5
条件式	(0) α	90	90	90	90	90
	(1) θ	40.0	44.3	31.0	40.0	40.0
	(2) dL/F_x	1.66	1.53	1.18	1.50	1.41
	(3) dL/F_y	1.23	1.00	-0.98	1.01	1.07
	(4) f_{px}/F_x	3.56	2.53	4.35	4.29	3.60
	(5) f_{py}/F_y	2.78	1.67	3.64	2.77	2.66
	(6) f_{px}/f_{nx}	-0.233	-0.115	-0.928	-0.347	-0.189
	(7) f_{py}/f_{ny}	-0.170	-0.051	-0.726	-0.180	-0.121
	(8) $(d2 \times \cos \theta)/d1$	1.70	1.48	1.71	1.90	1.90
	(9) UL/H	0.31	0.49	0.49	0.50	0.44
		dL	15.24	17.77	22.86	15.24
		F_x	9.16	11.58	19.44	10.14
		F_y	12.38	17.75	23.39	15.15
		f_{px}	32.64	29.26	84.59	43.47
		f_{py}	34.47	29.65	85.00	41.93
		f_{nx}	-139.93	-254.89	-91.18	-125.43
		f_{ny}	-202.19	-588.98	-117.13	-233.53
		$d1$	298.5	325.9	236.4	300.0
		$d2$	682.2	678.5	471.3	744.1
		$UL(略)$	196	302	152	280
		H	622.7	622.5	311.7	580.3

【0070】

【発明の効果】以上説明したように本発明によれば、良好な光学性能を有しながらコンパクトで薄型のリアプロジェクション光学系を実現することができる。

【図面の簡単な説明】

【図1】第1の実施の形態(実施例1)のリアプロジェクション光学系を示す斜視図。

【図2】第1の実施の形態(実施例1)において第1ミラーがない場合の光路等を示す光学構成図。

【図3】第1の実施の形態(実施例1)を構成している投影光学系等を示す光学構成図。

【図4】実施例1のスポットダイアグラム。

【図5】実施例1の歪曲図。

【図6】第2の実施の形態(実施例2)のリアプロジェクション光学系を示す斜視図。

【図7】第2の実施の形態(実施例2)において第1ミラーがない場合の光路等を示す光学構成図。

【図8】第2の実施の形態(実施例2)を構成している投影光学系等を示す光学構成図。

【図9】実施例2のスポットダイアグラム。

【図10】実施例2の歪曲図。

【図11】第3の実施の形態(実施例3)のリアプロジェクション光学系を示す斜視図。

30

クション光学系を示す斜視図。

【図12】第3の実施の形態(実施例3)において第1ミラーがない場合の光路等を示す光学構成図。

【図13】第3の実施の形態(実施例3)を構成している投影光学系等を示す光学構成図。

【図14】実施例3のスポットダイアグラム。

【図15】実施例3の歪曲図。

【図16】第4の実施の形態(実施例4)のリアプロジェクション光学系を示す斜視図。

【図17】第4の実施の形態(実施例4)において第1ミラーがない場合の光路等を示す光学構成図。

【図18】第4の実施の形態(実施例4)を構成している投影光学系等を示す光学構成図。

【図19】実施例4のスポットダイアグラム。

【図20】実施例4の歪曲図。

【図21】第5の実施の形態(実施例5)のリアプロジェクション光学系を示す斜視図。

【図22】第5の実施の形態(実施例5)において第1ミラーがない場合の光路等を示す光学構成図。

【図23】第5の実施の形態(実施例5)を構成している投影光学系等を示す光学構成図。

【図24】実施例5のスポットダイアグラム。

50

- 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
- ◎、第2ミリ-(M2)力過度化大型化するに比べる。更に、
 従来型(2ミリ-(M2)力過度化大型化するに比べる。
 光学系を実現する方法について、条件式(8)の下限を1.3、上
 階構造の力を作用する力を計算して、材料のDから等価力Eを
 算出し、力を一定とする。力が大きくなると、力が大きくなる
 一方で、比較して低減する。力が大きくなると、力が大きくなる
 (0.046) 各実態の形態の大きさを計算して、光路の折り曲げ度数の
 計算結果。左側は(2ミリ-(M2)力過度化大型化するに比べる。
 (9)実験結果を示す。以下に実験結果を示す。
 H: 大きい-大きい(2ミリ-(M2)力過度化大型化するに比べる
 UL: 下手の目見え、
 0.2<UL/H<0.6... (9)
 (0.042) 以下の力过大範囲(2ミリ-(M2)力過度化大型化するに比べる
 (9)実験結果を示す。以下に実験結果を示す。
 H: 大きい-大きい(2ミリ-(M2)力過度化大型化するに比べる
 UL: 下手の目見え、
 0.2<UL/H<0.6... (9)
 (0.043) 各実態の形態の大きさを計算して、光路の折り曲げ度数の
 計算結果。左側は(2ミリ-(M2)力過度化大型化するに比べる
 (0.044) 図26(2ミリ-(M2)力過度化大型化するに比べる
 30
 20
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100
 110
 120
 130
 140
 150
 160
 170
 180
 190
 200
 210
 220
 230
 240
 250
 260
 270
 280
 290
 300
 310
 320
 330
 340
 350
 360
 370
 380
 390
 400
 410
 420
 430
 440
 450
 460
 470
 480
 490
 500
 510
 520
 530
 540
 550
 560
 570
 580
 590
 600
 610
 620
 630
 640
 650
 660
 670
 680
 690
 700
 710
 720
 730
 740
 750
 760
 770
 780
 790
 800
 810
 820
 830
 840
 850
 860
 870
 880
 890
 900
 910
 920
 930
 940
 950
 960
 970
 980
 990
 1000
 1010
 1020
 1030
 1040
 1050
 1060
 1070
 1080
 1090
 1100
 1110
 1120
 1130
 1140
 1150
 1160
 1170
 1180
 1190
 1200
 1210
 1220
 1230
 1240
 1250
 1260
 1270
 1280
 1290
 1300
 1310
 1320
 1330
 1340
 1350
 1360
 1370
 1380
 1390
 1400
 1410
 1420
 1430
 1440
 1450
 1460
 1470
 1480
 1490
 1500
 1510
 1520
 1530
 1540
 1550
 1560
 1570
 1580
 1590
 1600
 1610
 1620
 1630
 1640
 1650
 1660
 1670
 1680
 1690
 1700
 1710
 1720
 1730
 1740
 1750
 1760
 1770
 1780
 1790
 1800
 1810
 1820
 1830
 1840
 1850
 1860
 1870
 1880
 1890
 1900
 1910
 1920
 1930
 1940
 1950
 1960
 1970
 1980
 1990
 2000
 2010
 2020
 2030
 2040
 2050
 2060
 2070
 2080
 2090
 2100
 2110
 2120
 2130
 2140
 2150
 2160
 2170
 2180
 2190
 2200
 2210
 2220
 2230
 2240
 2250
 2260
 2270
 2280
 2290
 2300
 2310
 2320
 2330
 2340
 2350
 2360
 2370
 2380
 2390
 2400
 2410
 2420
 2430
 2440
 2450
 2460
 2470
 2480
 2490
 2500
 2510
 2520
 2530
 2540
 2550
 2560
 2570
 2580
 2590
 2600
 2610
 2620
 2630
 2640
 2650
 2660
 2670
 2680
 2690
 2700
 2710
 2720
 2730
 2740
 2750
 2760
 2770
 2780
 2790
 2800
 2810
 2820
 2830
 2840
 2850
 2860
 2870
 2880
 2890
 2900
 2910
 2920
 2930
 2940
 2950
 2960
 2970
 2980
 2990
 3000
 3010
 3020
 3030
 3040
 3050
 3060
 3070
 3080
 3090
 3100
 3110
 3120
 3130
 3140
 3150
 3160
 3170
 3180
 3190
 3200
 3210
 3220
 3230
 3240
 3250
 3260
 3270
 3280
 3290
 3300
 3310
 3320
 3330
 3340
 3350
 3360
 3370
 3380
 3390
 3400
 3410
 3420
 3430
 3440
 3450
 3460
 3470
 3480
 3490
 3500
 3510
 3520
 3530
 3540
 3550
 3560
 3570
 3580
 3590
 3600
 3610
 3620
 3630
 3640
 3650
 3660
 3670
 3680
 3690
 3700
 3710
 3720
 3730
 3740
 3750
 3760
 3770
 3780
 3790
 3800
 3810
 3820
 3830
 3840
 3850
 3860
 3870
 3880
 3890
 3900
 3910
 3920
 3930
 3940
 3950
 3960
 3970
 3980
 3990
 4000
 4010
 4020
 4030
 4040
 4050
 4060
 4070
 4080
 4090
 4100
 4110
 4120
 4130
 4140
 4150
 4160
 4170
 4180
 4190
 4200
 4210
 4220
 4230
 4240
 4250
 4260
 4270
 4280
 4290
 4300
 4310
 4320
 4330
 4340
 4350
 4360
 4370
 4380
 4390
 4400
 4410
 4420
 4430
 4440
 4450
 4460
 4470
 4480
 4490
 4500
 4510
 4520
 4530
 4540
 4550
 4560
 4570
 4580
 4590
 4600
 4610
 4620
 4630
 4640
 4650
 4660
 4670
 4680
 4690
 4700
 4710
 4720
 4730
 4740
 4750
 4760
 4770
 4780
 4790
 4800
 4810
 4820
 4830
 4840
 4850
 4860
 4870
 4880
 4890
 4900
 4910
 4920
 4930
 4940
 4950
 4960
 4970
 4980
 4990
 5000
 5010
 5020
 5030
 5040
 5050
 5060
 5070
 5080
 5090
 5100
 5110
 5120
 5130
 5140
 5150
 5160
 5170
 5180
 5190
 5200
 5210
 5220
 5230
 5240
 5250
 5260
 5270
 5280
 5290
 5300
 5310
 5320
 5330
 5340
 5350
 5360
 5370
 5380
 5390
 5400
 5410
 5420
 5430
 5440
 5450
 5460
 5470
 5480
 5490
 5500
 5510
 5520
 5530
 5540
 5550
 5560
 5570
 5580
 5590
 5600
 5610
 5620
 5630
 5640
 5650
 5660
 5670
 5680
 5690
 5700
 5710
 5720
 5730
 5740
 5750
 5760
 5770
 5780
 5790
 5800
 5810
 5820
 5830
 5840
 5850
 5860
 5870
 5880
 5890
 5900
 5910
 5920
 5930
 5940
 5950
 5960
 5970
 5980
 5990
 6000
 6010
 6020
 6030
 6040
 6050
 6060
 6070
 6080
 6090
 6100
 6110
 6120
 6130
 6140
 6150
 6160
 6170
 6180
 6190
 6200
 6210
 6220
 6230
 6240
 6250
 6260
 6270
 6280
 6290
 6300
 6310
 6320
 6330
 6340
 6350
 6360
 6370
 6380
 6390
 6400
 6410
 6420
 6430
 6440
 6450
 6460
 6470
 6480
 6490
 6500
 6510
 6520
 6530
 6540
 6550
 6560
 6570
 6580
 6590
 6600
 6610
 6620
 6630
 6640
 6650
 6660
 6670
 6680
 6690
 6700
 6710
 6720
 6730
 6740
 6750
 6760
 6770
 6780
 6790
 6800
 6810
 6820
 6830
 6840
 6850
 6860
 6870
 6880
 6890
 6900
 6910
 6920
 6930
 6940
 6950
 6960
 6970
 6980
 6990
 7000
 7010
 7020
 7030
 7040
 7050
 7060
 7070
 7080
 7090
 7100
 7110
 7120
 7130
 7140
 7150
 7160
 7170
 7180
 7190
 7200
 7210
 7220
 7230
 7240
 7250
 7260
 7270
 7280
 7290
 7300
 7310
 7320
 7330
 7340
 7350
 7360
 7370
 7380
 7390
 7400
 7410
 7420
 7430
 7440
 7450
 7460
 7470
 7480
 7490
 7500
 7510
 7520
 7530
 7540
 7550
 7560
 7570
 7580
 7590
 7600
 7610
 7620
 7630
 7640
 7650
 7660
 7670
 7680
 7690
 7700
 7710
 7720
 7730
 7740
 7750
 7760
 7770
 7780
 7790
 7800
 7810
 7820
 7830
 7840
 7850
 7860
 7870
 7880
 7890
 7900
 7910
 7920
 7930
 7940
 7950
 7960
 7970
 7980
 7990
 8000
 8010
 8020
 8030
 8040
 8050
 8060
 8070
 8080
 8090
 8100
 8110
 8120
 8130
 8140
 8150
 8160
 8170
 8180
 8190
 8200
 8210
 8220
 8230
 8240
 8250
 8260
 8270
 8280
 8290
 8300
 8310
 8320
 8330
 8340
 8350
 8360
 8370
 8380
 8390
 8400
 8410
 8420
 8430
 8440
 8450
 8460
 8470
 8480
 8490
 8500
 8510
 8520
 8530
 8540
 8550
 8560
 8570
 8580
 8590
 8600
 8610
 8620
 8630
 8640
 8650
 8660
 8670
 8680
 8690
 8700
 8710
 8720
 8730
 8740
 8750
 8760
 8770
 8780
 8790
 8800
 8810
 8820
 8830
 8840
 8850
 8860
 8870
 8880
 8890
 8900
 8910
 8920
 8930
 8940
 8950
 8960
 8970
 8980
 8990
 9000
 9010
 9020
 9030
 9040
 9050
 9060
 9070
 9080
 9090
 9100
 9110
 9120
 9130
 9140
 9150
 9160
 9170
 9180
 9190
 9200
 9210
 9220
 9230
 9240
 9250
 9260
 9270
 9280
 9290
 9300
 9310
 9320
 9330
 9340
 9350
 9360
 9370
 9380
 9390
 9400
 9410
 9420
 9430
 9440
 9450
 9460
 9470
 9480
 9490
 9500
 9510
 9520
 9530
 9540
 9550
 9560
 9570
 9580
 9590
 9600
 9610
 9620
 9630
 9640
 9650
 9660
 9670
 9680
 9690
 9700
 9710
 9720
 9730
 9740
 9750
 9760
 9770
 9780
 9790
 9800
 9810
 9820
 9830
 9840
 9850
 9860
 9870
 9880
 9890
 9900
 9910
 9920
 9930
 9940
 9950
 9960
 9970
 9980
 9990
 10000
 10010
 10020
 10030
 10040
 10050
 10060
 10070
 10080
 10090
 100100
 100200
 100300
 100400
 100500
 100600
 100700
 100800
 100900
 1001000
 1002000
 1003000
 1004000
 1005000
 1006000
 1007000
 1008000
 1009000
 10010000
 10020000
 10030000
 10040000
 10050000
 10060000
 10070000
 10080000
 10090000
 100100000
 100200000
 100300000
 100400000
 100500000
 100600000
 100700000
 100800000
 100900000
 1001000000
 1002000000
 1003000000
 1004000000
 1005000000
 1006000000
 1007000000
 1008000000
 1009000000
 10010000000
 10020000000
 10030000000
 10040000000
 10050000000
 10060000000
 10070000000
 10080000000
 10090000000
 100100000000
 100200000000
 100300000000
 100400000000
 100500000000
 100600000000
 100700000000
 100800000000
 100900000000
 1001000000000
 1002000000000
 1003000000000
 1004000000000
 1005000000000
 1006000000000
 1007000000000
 1008000000000
 1009000000000
 10010000000000
 10020000000000
 10030000000000
 10040000000000
 10050000000000
 10060000000000
 10070000000000
 10080000000000
 10090000000000
 100100000000000
 100200000000000
 100300000000000
 100400000000000
 100500000000000
 100600000000000
 100700000000000
 100800000000000
 100900000000000
 1001000000000000
 1002000000000000
 1003000000000000
 1004000000000000
 1005000000000000
 1006000000000000
 1007000000000000
 1008000000000000
 1009000000000000
 10010000000000000
 10020000000000000
 10030000000000000
 10040000000000000
 10050000000000000
 10060000000000000
 10070000000000000
 10080000000000000
 10090000000000000
 100100000000000000
 100200000000000000
 100300000000000000
 100400000000000000
 100500000000000000
 100600000000000000
 100700000000000000
 100800000000000000
 100900000000000000
 1001000000000000000
 1002000000000000000
 1003000000000000000
 1004000000000000000
 1005000000000000000
 1006000000000000000
 1007000000000000000
 1008000000000000000
 1009000000000000000
 10010000000000000000
 10020000000000000000
 10030000000000000000
 10040000000000000000
 10050000000000000000
 10060000000000000000
 10070000000000000000
 10080000000000000000
 10090000000000000000
 100100000000000000000
 100200000000000000000
 100300000000000000000
 100400000000000000000
 100500000000000000000
 100600000000000000000
 100700000000000000000
 100800000000000000000
 100900000000000000000
 1001000000000000000000
 1002000000000000000000
 1003000000000000000000
 1004000000000000000000
 100500000000000

31

【図25】実施例5の歪曲図。

【図26】各実施の形態に適したスクリーンの要部構成及び光路を示す図。

【図27】従来例の概略構成を示す模式図。

【符号の説明】

I1 …パネル表示面

32

* I2 …スクリーン面

PT …結像光学系(投影光学系の一部)

ST …絞り

M1 …第1ミラー(平面ミラー)

M2 …第2ミラー(曲面ミラー, 投影光学系の一部)

* M3 …第3ミラー(対向ミラー)

【図1】

【図5】

【図4】

【図6】

[図2]

[図7]

[図9]

[図10]

【図3】

【図8】

【図11】

【図12】

【図13】

【図15】

【図14】

【図19】

【図16】

【図17】

【図20】

【図18】

【図21】

【図22】

【図25】

【図23】

【図24】

【図26】

【図27】

フロントページの続き

(72)発明者 石原 淳
大阪市中央区安土町二丁目3番13号 大阪
国際ビル ミノルタ株式会社内

F ターム(参考) 2H087 KA06 KA07 PA06 PA08 PA09
PA17 PA18 PB07 PB09 QA02
QA07 QA12 QA17 QA21 QA22
QA25 QA26 QA32 QA34 QA41
QA42 QA45 QA46 RA05 RA06
RA12 RA32 RA42 TA04