

Unidade 19 – Conceitos de Mineração de Dados – Parte 3

Prof. Aparecido V. de Freitas Doutor em Engenharia da Computação pela EPUSP

Bibliografia

Sistemas de Banco de Dados Elmasri / Navathe 6ª edição

Sistema de Banco de Dados Korth, Silberschatz - Sixth Editon

Tipos de Conhecimentos descobertos pela Mineração de Dados

- A mineração de dados enfoca o <u>Conhecimento Indutivo</u>, que descobre <u>novas regras</u> e <u>padrões</u> com base nos <u>dados fornecidos</u>;
- É comum descrever-se o conhecimento descoberto durante a Mineração de Dados por:
 - ✓ Regras de Associação;
 - ✓ Classificação;
 - ✓ Padrões Sequenciais;
 - ✓ Padrões dentro de séries temporais;
 - ✓ Agrupamento.

Classificação

- É o processo que descreve diferentes <u>classes</u> de dados;
- Por exemplo, em uma aplicação bancária, os clientes que solicitam um cartão de crédito podem ser classificados como risco fraco, risco médio ou risco bom;
- É uma das técnicas mais utilizadas em mineração de dados;
- Classificar um objeto consiste em se determinar com que grupo de entidades, já classificadas anteriormente, esse objeto apresenta mais semelhança;
- Logo, esse tipo de atividade também é chamada Aprendizado Supervisionado.

Aprendizado Supervisionado

Exemplos - Classificação

- Predizer se um tumor é benigno ou maligno;
- Classificar transações de cartões de crédito como legítimas ou fraudulentas;
- Analisar concessão de empréstimos bancários em Instituições financeiras;
- Filtrar (marcar) e-mails que seriam spams em softwares de correio eletrônico.

Classificação - Procedimento

- O primeiro passo <u>aprendizado do modelo</u> é realizado com um conjunto de dados que já foram classificados;
- Cada registro nos dados de treinamento, contém um atributo chamado rótulo de classe (label) que indica a que classe o registro pertence;
- O modelo que é produzido costuma estar na forma de árvore de decisão;

Árvore de Decisão

É uma representação gráfica da descrição de cada classe ou, em outras palavras, uma representação das regras de classificação

Exemplo - Árvore de Decisão

ld	Casa própria	EstCivil	Rendim.	Mau Pagador
1	S	Solteiro	125K	NÃO
2	N	Casado	100K	NÃO
3	N	Solteiro	70K	NÃO
4	S	Casado	120K	NÃO
5	N	Divorc.	95K	SIM
6	N	Casado	60K	NÃO
7	S	Divorc.	220K	NÃO
8	N	Solteiro	85K	SIM
9	N	Casado	75K	NÃO
10	N	Solteiro	90K	SIM

Learning Algorithm

Set Training

Algoritmo de Aprendizado

ld	Casa própria	EstCivil	Rendim.	Mau Pagador
1	S	Solteiro	125K	NÃO
2	N	Casado	100K	NÃO
3	N	Solteiro	70K	NÃO
4	S	Casado	120K	NÃO
5	N	Divorc.	95K	SIM
6	N	Casado	60K	NÃO
7	S	Divorc.	220K	NÃO
8	N	Solteiro	85K	SIM
9	N	Casado	75K	NÃO
10	N	Solteiro	90K	SIM

Learning Algorithm

Set Training

Uma coleção de registros (<u>set Training</u>), ou conjunto de dados de treinamento, é submetida ao algoritmo de aprendizado (<u>Learning Algorithm</u>);

O que o algoritmo de aprendizado faz com os dados de treinamento?

Algoritmo de Aprendizado

- O algoritmo de aprendizado procura encontrar um modelo para determinar o valor do atributo classe em função dos valores dos outros atributos;
- Esse modelo, costuma ser produzido na forma de uma árvore de decisão;

Para que serve o modelo gerado pelo algoritmo de aprendizado?

Uso do modelo

A partir do modelo, pode-se usá-lo para se classificar novos dados.

Test Set

Class

Attrib3

55K

110K

95K

67K

Modelo - Árvore de Decisão

- As árvores de decisão são representações do modelo que consistem em:
 - <u>Nós internos</u>, que representam os atributos;
 - Arestas que correspondem aos valores dos atributos;
 - Nós folha, que designam uma classificação.

ld

1

2

3

4

5

6

7

8

9

10

Casa própria

S

Ν

Ν

S

Ν

Ν

S

Ν

Ν

Ν

Modelo - Árvore de Decisão

classe

✓ <u>Nós internos</u> representam os atributos;

stCivil	Rendim.	Mau Pagador
olteiro	125K	NÃO
asado	100K	NÃO
olteiro	70K	NÃO
asado	120K	NÃO
Divorc.	95K	SIM
asado	60K	NÃO
Divorc.	220K	NÃO
olteiro	85K	SIM
asado	75K	NÃO
olteiro	90K	SIM

Dados de treinamento

Modelo: árvore de decisão

Modelo - Árvore de Decisão

SIM

categórico categórico continuo

ld	Casa própria	EstCivil	Rendim.	Mau Pagador
1	S	Solteiro	125K	NÃO
2	N	Casado	100K	NÃO
3	N	Solteiro	70K	NÃO
4	S	Casado	120K	NÃO
5	N	Divorc.	95K	SIM
6	N	Casado	60K	NÃO
7	S	Divorc.	220K	NÃO
8	N	Solteiro	85K	SIM
9	N	Casado	75K	NÃO
10	N	Solteiro	90K	SIM

Dados de treinamento

Modelo: árvore de decisão

NÃO

Modelo - Árvore de Decisão

categorico categorico continuo

ld	Casa própria	EstCivil	Rendim.	Mau Pagador
1	S	Solteiro	125K	NÃO
2	N	Casado	100K	NÃO
3	N	Solteiro	70K	NÃO
4	S	Casado	120K	NÃO
5	N	Divorc.	95K	SIM
6	N	Casado	60K	NÃO
7	S	Divorc.	220K	NÃO
8	N	Solteiro	85K	SIM
9	N	Casado	75K	NÃO
10	N	Solteiro	90K	SIM

Dados de treinamento

✓ <u>Nós folha</u> designam a classificação;

Pode haver mais de uma árvore de decisão?

Outra Árvore de Decisão

classe

ld	Casa própria	EstCivil	Rendim.	Mau Pagador
1	S	Solteiro	125K	NÃO
2	N	Casado	100K	NÃO
3	N	Solteiro	70K	NÃO
4	S	Casado	120K	NÃO
5	N	Divorc.	95K	SIM
6	N	Casado	60K	NÃO
7	S	Divorc.	220K	NÃO
8	N	Solteiro	85K	SIM
9	N	Casado	75K	NÃO
10	N	Solteiro	90K	SIM

Pode haver mais de uma árvore para o mesmo conjunto de dados!!!

Dado para teste

Casa	Estado	Rendim.	Mau
Própria	Civil		pagador
N	Casado	80K	?

Dado para teste

Dado para teste

Exemplo - Árvore de Decisão - Elmasri

Árvore de decisão da amostra para aplicações de cartão de crédito

Exemplo - Árvore de Decisão - Elmasri

- ✓ A árvore mostra que se um cliente for casado e se salário >= 50K, então ele tem um risco bom para um cartão de crédito bancário;
- ✓ Essa é uma das regras que descrevem o risco bom;
- ✓ A travessia da árvore a partir da raiz para algum nó folha forma outras regras para essa e outras classes.

Como uma árvore de decisão é criada?

Geração da Árvore de Decisão

- Os algoritmos mais conhecidos para a geração da árvore de decisão são ID3 (Quinlan, 1986) e C4.5 (Quinlan, 1993);
- John Ross Quinlan é um pesquisador na área de Data Mining e Teoria da Decisão;

Algoritmo ID3

- O algoritmo recebe como entrada um conjunto de dados para treinamento;
- Por meio do algoritmo, constrói-se a árvore de decisão em uma abordagem topdown considerando a questão: "Qual atributo é o mais importante e, portanto, que deve ser colocado na raíz da árvore?";

- Para isso cada atributo é testado e sua capacidade para se tornar nó raiz é avaliada;
- Cria-se tantos nós filhos da raiz quantos valores possíveis esse atributo puder assumir;
- Repete-se o processo para cada nó filho da raiz e assim, sucessivamente.

Algoritmo ID3 - Observação

"O atributo mais importante deverá ser colocado na raiz da árvore".

Como definir o atributo que será usado como raiz da Árvore de Decisão?

No exemplo, escolho CasaPrópria ou EstCivil?

Como definir o atributo mais adequado?

- O algoritmo ID3 utiliza a medida de Ganho de Informação;
- Para definir <u>Ganho de Informação</u>, será necessário estudar-se o conceito de <u>Entropia</u>.
- Entropia é um conceito da Termodinâmica usado para se determinar a quantidade de energia útil de um determinado sistema;
- Entropia está associada à medida da desordem das partículas de um sistema físico;
- De acordo com a Lei da Termodinâmica, quanto maior for a desordem de um sistema, maior será a sua entropia (medida da incerteza).

Entropia no Algoritmo ID3

- O conceito de Entropia foi incorporado no algoritmo ID3;
- Considere-se uma coleção S de instâncias, com duas classes distintas (por exemplo, maupagador = sim e maupagador = não, a Entropia será calculada por:

$$E(S) = -p_{sim} \times \log_2 p_{sim} - p_{nao} \times \log_2 p_{nao}$$

- E(S) Entropia corresponde à informação necessária para classificar os dados de treinamento de S amostras (instância);
- p_{sim} é a probabilidade de que uma amostra aleatória pertença à classe maupagador = sim;
- ϕ p_{nao} é a probabilidade de que uma amostra aleatória pertença à classe maupagador = **não**.

Entropia no Algoritmo ID3

- Para ilustrar, considere um conjunto S com 14 registros de algum conceito booleano:
 - √ 4 positivos
 - ✓ 9 positivos
- Dogo, a Entropia desse conjunto é dada por:

$$E(S) = -\frac{9}{14}\log_2\frac{9}{14} - \frac{5}{14}\log_2\frac{5}{14} = 0.94$$

Entropia no Algoritmo ID3

- Em outros casos, note:
 - Para [7+, 7-]

$$E(S) = -\frac{7}{14}\log_2\frac{7}{14} - \frac{7}{14}\log_2\frac{7}{14} = 0.99... \approx 1$$
 Incerteza!

Para [0+, 14-] ou [14+, 0-]

$$E(S) = -\frac{14}{14}\log_2\frac{14}{14} = 0$$
 Certeza!

 Entropia mede o nível de certeza que temos sobre um evento

Cálculo da Entropia - Exemplo

- Considere a coleção de instâncias (amostra de treinamento) definida por 6 registros;
- Cada instância tem 5 atributos (Casado, Salário, Saldo_conta, Idade e Emprestar);
- RID é um identificador de registros e, portanto, <u>não</u> fará parte da árvore de decisão;
- O atributo Emprestar será o designador da classificação (rótulo de classe) e conterá duas classes: Emprestar = não e Emprestar = sim (2 Classes).

RID	Casado	Salário	Saldo_conta	Idade	Emprestar
1	não	>=50K	<5K	>=25	sim
2	sim	>=50K	>=5K	>=25	sim
3	sim	20K50K	<5K	<25	não
4	não	<20K	>=5K	<25	não
5	não	<20K	<5K	>=25	não
6	sim	20K50K	>=5K	>=25	sim

Cálculo da Entropia da Amostra - E(S)

- O atributo Emprestar será o designador da classificação (rótulo de classe) e conterá duas classes: Emprestar = não e Emprestar = sim (2 Classes).
- Φ P(Emprestar = não) = 3/6 = 0,5
- Φ P(Emprestar = sim) = 3/6 = 0,5
- \oplus E(S) = -0.5 log 20.5 0.5 log 20.5 = -0.5 (-1) 0.5 (-1) = 0.5 + 0.5 = 1

RID	Casado	Salário	Saldo_conta	Idade	Emprestar
1	não	>=50K	<5K	>=25	sim
2	sim	>=50K	>=5K	>=25	sim
3	sim	20K50K	<5K	<25	não
4	não	<20K	>=5K	<25	não
5	não	<20K	<5K	>=25	não
6	sim	20K50K	>=5K	>=25	sim

Cálculo da Entropia do Atributo Casado = Sim

- \oplus E(Casado = Sim) = -2/3 log 2(2/3) 1/3 log 2(1/3) = -2/3 log 2(0,666) -1/3 log 2(0,333)
- ⊕ E(Casado = Sim) = 0,92

RID	Casado	Salário	Saldo_conta	Idade	Emprestar
1	não	>=50K	<5K	>=25	sim
2	sim	>=50K	>=5K	>=25	sim
3	sim	20K50K	<5K	<25	não
4	não	<20K	>=5K	<25	não
5	não	<20K	<5K	>=25	não
6	sim	20K50K	>=5K	>=25	sim

Cálculo da Entropia do Atributo Casado = Não

- \oplus E(Casado = Sim) = -2/3 log $_2(2/3) 1/3$ log $_2(1/3) = -2/3$ log $_2(0,666)$ -1/3log $_2(0,333)$
- ⊕ E(Casado = Sim) = 0,92

RID	Casado	Salário	Saldo_conta	Idade	Emprestar
1	não	>=50K	<5K	>=25	sim
2	sim	>=50K	>=5K	>=25	sim
3	sim	20K50K	<5K	<25	não
4	não	<20K	>=5K	<25	não
5	não	<20K	<5K	>=25	não
6	sim	20K50K	>=5K	>=25	sim

Cálculo do Ganho de Informação

- Ganho de informação é a redução esperada da entropia ao utilizarmos um determinado atributo da árvore;
- Ganho de informação mede a redução na Entropia, ao se selecionar um determinado atributo;
- O atributo com o maior ganho é escolhido como atributo de particionamento.

O ganho de informação é dado por:

Ganho (S, A) = Entropia (S) - \sum ((|Sv| / |S|) * Entropia (Sv))

Onde:

Ganho (S, A) é o ganho do atributo A sobre o conjunto S Sv = subconjunto de S para um valor do atributo A |Sv| = número de elementos de Sv |S| = número de elementos de S

Exemplo de dados para concessão de Empréstimo Bancário

caso	montante	idade	salário	conta	empréstimo
1	médio	sênior	baixo	sim	não
2	médio	sênior	baixo	não	não
3	baixo	sênior	baixo	sim	sim
4	alto	média	baixo	sim	sim
5	alto	jovem	alto	sim	sim
6	alto	jovem	alto	não	não
7	baixo	jovem	alto	não	sim
8	médio	média	baixo	sim	não
9	médio	jovem	alto	sim	sim
10	alto	média	alto	sim	sim
11	médio	média	alto	não	sim
12	baixo	jovem	baixo	não	sim
13	baixo	sênior	alto	sim	sim
14	alto	média	baixo	não	não

Entropia(S) = $-9/14 \log 2 (9/14) - 5/14 \log 2 (5/14) = 0,940$

caso	montante	idade	salário	conta	empréstimo
1	médio	sênior	baixo	sim	não
2	médio	sênior	baixo	não	não
3	baixo	sênior	baixo	sim	sim
4	alto	média	baixo	sim	sim
5	alto	jovem	alto	sim	sim
6	alto	jovem	alto	não	não
7	baixo	jovem	alto	não	sim
8	médio	média	baixo	sim	não
9	médio	jovem	alto	sim	sim
10	alto	média	alto	sim	sim
11	médio	média	alto	não	sim
12	baixo	jovem	baixo	não	sim
13	baixo	sênior	alto	sim	sim
14	alto	média	baixo	não	não

Amarelo = classe *não* Verde = classe *sim*

Entropia(montante=médio) = $-2/5 \log_2 (2/5) - 3/5 \log_2 (3/5) = 0,971$

caso	montante	idade	salário	conta	empréstimo
1	médio	sênior	baixo	sim	não
2	médio	sênior	baixo	não	não
3	baixo	sênior	baixo	sim	sim
4	alto	média	baixo	sim	sim
5	alto	jovem	alto	sim	sim
6	alto	jovem	alto	não	não
7	baixo	jovem	alto	não	sim
8	médio	média	baixo	sim	não
9	médio	jovem	alto	sim	sim
10	alto	média	alto	sim	sim
11	médio	média	alto	não	sim
12	baixo	jovem	baixo	não	sim
13	baixo	sênior	alto	sim	sim
14	alto	média	baixo	não	não

Entropia(montante=médio) = - $2/5 \log_2 (2/5) - 3/5 \log_2 (3/5) = 0,971$

Entropia(montante=baixo) = $-4/4 \log_2 (4/4) - 0/4 \log_2 (0/4) = 0$

caso	montante	idade	salário	conta	empréstimo
1	médio	sênior	baixo	sim	não
2	médio	sênior	baixo	não	não
3	baixo	sênior	baixo	sim	sim
4	alto	média	baixo	sim	sim
5	alto	jovem	alto	sim	sim
6	alto	jovem	alto	não	não
7	baixo	jovem	alto	não	sim
8	médio	média	baixo	sim	não
9	médio	jovem	alto	sim	sim
10	alto	média	alto	sim	sim
11	médio	média	alto	não	sim
12	baixo	jovem	baixo	não	sim
13	baixo	sênior	alto	sim	sim
14	alto	média	baixo	não	não

Entropia(montante=médio) = - 2/5 \log_2 (2/5) - 3/5 \log_2 (3/5) = 0,971 Entropia(montante=baixo) = - 4/4 \log_2 (4/4) - 0/4 \log_2 (0/4) = 0

Entropia(montante=alto) = $-3/5 \log_2 (3/5) - 2/5 \log_2 (2/5) = 0,971$

caso	montante	idade	salário	conta	empréstimo
1	médio	sênior	baixo	sim	não
2	médio	sênior	baixo	não	não
3	baixo	sênior	baixo	sim	sim
4	alto	média	baixo	sim	sim
5	alto	jovem	alto	sim	sim
6	alto	jovem	alto	não	não
7	baixo	jovem	alto	não	sim
8	médio	média	baixo	sim	não
9	médio	jovem	alto	sim	sim
10	alto	média	alto	sim	sim
11	médio	média	alto	não	sim
12	baixo	jovem	baixo	não	sim
13	baixo	sênior	alto	sim	sim
14	alto	média	baixo	não	não

Entropia(S) =
$$-9/14 \log_2 (9/14) - 5/14 \log_2 (5/14) = 0,940$$

Entropia(montante=médio) = $-2/5 \log_2 (2/5) - 3/5 \log_2 (3/5) = 0,971$

Entropia(montante=baixo) = $-4/4 \log_2 (4/4) - 0/4 \log_2 (0/4) = 0$

Entropia(montante=alto) = $-3/5 \log_2 (3/5) - 2/5 \log_2 (2/5) = 0,971$

Entropia (idade = senior)= - $2/4 \log_2 (2/4)$ - $2/4 \log_2 (2/4)$ = 1

Entropia (idade = média)= - $3/5 \log_2 (3/5) - 2/5 \log_2 (2/5) = 0,971$

Entropia (idade = jovem)= - $4/5 \log_2 (4/5) - 1/5 \log_2 (1/5) = 0,722$

.

Ganho (S,idade) = 0.940 - (4/14). 1 - (5/14). 0.971 - (5/14). 0.722 = 0.049

Ganho (S,salário) = 0,940 - (7/14). 0,592 - (7/14). 0,985 = 0,151

Ganho (S,conta) = 0.940 - (8/14). 0.811 - (6/14). 1 = 0.047

Maior

Ganho

Escolha do Próximo Atributo

Ferramentas para Mineração de Dados

- Kate
- Knowledege SEEKER
- Business Miner
- QueryObject
- Data Surveyour
- DBMiner
- Intellingent Miner
- Enterprise Miner