

EECE 2150 Circuits and Signals, Biomedical Engineering

Iman Salama Electrical and Computer Engineering Northeastern University

Learning Objectives

Learn the basics of analog to digital conversion

The Nyquist criteria and sampling a continuous time signal Understanding the difference between continuous and discrete time frequency

Under-sampling and Aliasing

Quantization and mapping the discrete time signal into discrete levels

Analog to Digital Conversion, A/D

- ➤ To generate, store or process a continuous time signal on a computer, the signal must first be converted from analog to digital form.
- Samples are first taken from the continuous time signal at a given rate called the sampling rate or sampling frequency. The continuous time signal becomes a discrete time signal, but with continuous amplitude
- The next step is to convert the amplitude of the discrete time signal to a discrete set of levels, this process is referred to as quantization

Sampling

Sampling: Time Domain

A continuous-time signal is sampled at equally-spaced intervals in time,

$$x[n] = x(nT_S)$$

 $n \in \{..., -2, -1, 0, 1, 2,...\}$

 $T_{\rm s}$ is the sampling interval

$$T_{\rm S} = \frac{1}{\rm f_{\rm S}}$$

Switch closes momentarily every T_s to take a sample

How to choose the sampling rate

For a given continuous-time signal, what is the minimum sampling rate? Or what is the largest sampling interval T_s ?

$$T_{s} = \frac{1}{f_{s}}$$

$$x(nT_s) = x[n]$$

Example: Sampling a Sine wave, choice of f_S

▶ The sampled version of the signal is given by =

$$x_{sampled}(nT_S) = x(nT_S) = Asin(2\pi f_0 nT_S + \phi) = Asin\left(2\pi \frac{f_0}{f_S}n + \phi\right)$$

The continuous time frequency f_0 is in $\frac{cycles}{second}$ and ω_0 is in $\frac{radians}{second}$

$$x[n] = x_{sampled}(nT_s) = Asin(2\pi Fn + \phi)$$

where
$$F = \frac{f_0}{f_s} = \frac{T_s}{T_0} = discrete time frequency, in cylces/sample$$

$$\frac{T_0}{T_S}$$
 = number of samples per one cycle of the signal

$$x[n] = Asin(\Omega n + \phi), \quad \Omega \text{ is in } \frac{\text{radians}}{\text{sample}} \quad \Omega = 2\pi F$$

Continuous time versus discrete time signals

Continuous time frequency

- $x(t) = Asin(\omega_o t + \phi)$
- $x(t) = Asin(2\pi f_o t + \phi)$
- f_0 is in $\frac{cycles}{second}$
- ω_0 is in $\frac{radians}{second}$

Discrete time frequency,

- $x[n] = Asin(\Omega n + \phi)$
- $x[n] = Asin(2\pi Fn + \phi)$
- $F = \frac{f_0}{f_s} = \frac{T_s}{T_0} \frac{cylces}{sample}$
- $\Omega = 2\pi F \frac{radians}{sample}$

- $ho \frac{T_0}{T_s}=10 o rac{f_s}{f_0}=10 o 10 \ samples \ per \ cycle$, the sampling rate is 10 times the sinusoidal signal frequency
- The discrete time frequency is defined as
- $F = \frac{f_0}{f_S} = \frac{1}{10}$ cycles per sample, $\Omega = 2\pi F = 0.2\pi$

Discrete Time Signals at Different Frequencies

Discrete Time Signals at Different Frequencies

The discrete time Frequency Ω defined in the range $-\pi \leq \Omega \leq \pi$

- $\triangleright \cos(2.5\pi n) = \cos((2.5\pi 2\pi)n) = \cos(0.5\pi n)$
- $\cos(1.5\pi n) = \cos((1.5\pi 2\pi)n) = \cos(-0.5\pi n)$

Summary of the Difference between continuous time Frequency, ω , and discrete time frequency, Ω

Continuous time frequency, ω

- $x(t) = Asin(\omega t + \phi)$
- The units of ω : rad/s,
- ω has a distinct value. As the magnitude of ω increases, the signal fluctuates at a higher rate

Discrete time frequency,, Ω

- $x[n] = Asin(\Omega n + \phi)$
- $\Omega = 2\pi F$ $\frac{radians}{sample}$
- Ω has units of an angle(radians) and therefore it repeats after 2π .
- The discrete time frequency Ω increases in the range from $0-\pi$ and then decreases from $\pi-2\pi$ and then repeats.
- Discrete time frequencies near $0.2\pi, 4\pi \dots 2n\pi$ are low frequencies, while frequencies in the vicinity of $\pi, 3\pi, \dots (2n+1)\pi$ are high frequencies

The concept of Aliasing, definition of Alias (Oxford Living Dictionary)

- A false or assumed identity
- In Computing: an alternative name or label that refers to a file, command, address, or other item, and can be used to locate or access it.
- In Physics Telecommunications: Each of a set of signal frequencies which, when sampled at a given uniform rate, would give the same set of sampled values, and thus might be incorrectly substituted for one another when reconstructing the original signal.

Under-Sampling and Aliasing

- The higher the frequency content of the signal, the higher the sampling rate should be to preserve the full information in the signal.
- The Sampling Theorem states that a signal can be exactly reproduced if it is sampled at a frequency f_s (Hz) where f_s (Hz) is greater than twice the maximum frequency in the signal, which is known as the Nyquist rate..
- If the signal is sampled at a frequency that is lower that the Nyquist rate, when converted back into a continuous time signal, it will exhibit some form of distortion known as *aliasing*.
- Aliasing is the presence of unwanted frequency components in the reconstructed signal which were not present when the original signal was sampled.
- The process of aliasing describes the phenomenon in which components of the signal at high frequencies are mistaken for components at lower frequencies.

Frequency Limit

The sampling theory says that we must capture at least two samples per cycle of a sinusoidal input waveform

$$f_S \ge 2f_0 \rightarrow T_S \le \frac{T}{2}$$
 where $T = \frac{1}{f_0}$

where f_s is the sampling frequency and f_0 is bandwidth or highest frequency component of the sampled signal

Sampling: Example

Consider a signal $x(t) = 5\cos(200\pi t)$

is sampled at a rate of
$$500 \frac{samples}{sec} \rightarrow f_S = 500 \, Hz \, T_S = \frac{1}{f_S}$$

$$f_0 = \frac{200\pi}{2\pi} = 100$$
Hz, $x[n] = 5\cos(200\pi nT_S) = 5\cos(\frac{200\pi n}{f_S}) =$

$$x[n] = 5\cos\left(\frac{200\pi n}{500}\right) = 5\cos(0.4\pi n)$$

$$f_S = 500 \ Hz$$
, $F = \frac{f_0}{f_S} = \frac{100}{500} = 0.2$

Number of samples in one cycle
$$\frac{f_S}{f_0} = \frac{500}{100} = 5 = \frac{T_0}{T_S}$$

Duration of 40 samples =
$$40T_s = \frac{40}{f_s} = \frac{40sample}{500\frac{samples}{s}} = 0.08 sec$$

Note that in this example $f_{\rm S}=5f_o$ is larger than the Nyquist rate and the signal can be accurately recovered

Aliasing Example

Consider a signal $x_1(t) = 5 \cos(200\pi t)$ is sampled at a rate of 500 samples/sec. Here $f_s = 5f_0$

$$f_0 = \frac{200\pi}{2\pi} = 100Hz, x_1[n] = 5\cos\left(\frac{200\pi n}{f_s}\right) = x_1[n] = 5\cos\left(\frac{200\pi n}{500}\right) = 5\cos(0.4\pi n)$$

- Now another signal $x_2(t) = 5\cos(800\pi t)$ signal sampled at the same rate
- ► Here $\frac{f_s}{f_0} = \frac{500}{400} = 1.25$ $x_2[n] = 5\cos\left(\frac{800\pi n}{f_s}\right) =$ $x_2[n] = 5\cos\left(\frac{800\pi n}{500}\right) = 5\cos(1.6\pi n) = 5\cos(1.6\pi n 2\pi n)$ $x_2[n] = 5\cos(-0.4\pi n) = 5\cos(0.4\pi n) = x_1[n]$ even function
- The frequency $0.4\pi \frac{rad}{sample}$ is the alias frequency of the frequency $1.6\pi \ rad/sample$
- The signal $x_2(t)$ which is under sampled will be incorrectly recovered as $x_1(t)$

Aliasing Example:

$$x_1(t) = 5\cos(200\pi t)$$
 $x_2(t) = 5\cos(800\pi t)$ $f_S = 500Hz$

n

Quantization

Quantization

- Quantization is the process of mapping continuous signal values to a discrete set of quantization levels.
- A quantized signal can only take on a discrete, usually finite, set of values.
- Unlike sampling, where exact reconstruction is possible under suitable conditions, quantization introduces irreversible errors, resulting in information loss.
- Quantization distortion is introduced into the quantized signal and cannot be completely eliminated.
- Increasing the number of discrete levels in an analog-to-digital converter (ADC) reduces quantization error but increases the required data storage.
- For an ADC system with N bits, the number of discrete levels L is given by $L=2^N$

Uniform Quantization

- Uniform quantization maps continuous signal values to a discrete set of quantization levels that are evenly spaced across the signal range
- $\triangleright V_{FS}$ is the full-scale voltage range of the A/D, $V_{FS} = V_{max} V_{min}$
- $\triangleright V_{min}$ =minimum voltage level of A/D, V_{max} = maximum voltage level of A/D
- \triangleright For a system of N bits, the number of quantization levels is given by $L=2^N$
- \triangleright The quantization step, also defined as the system resolution is given by $\Delta = \frac{V_{FS}}{2^N}$

Uniform Quantization

$$\triangleright L = 2^N$$

$$\triangleright \Delta = \frac{V_{FS}}{2^N} = \text{system resolution}$$

$$\triangleright V_{FS} = V_{max} - V_{min}$$

- $\triangleright V_{min}$ minimum voltage level of A/D
- $\triangleright V_{max}$ =maximum voltage level of A/D
- If the signal amplitude is between x_k and x_{k+1} , it's mapped into r_k

$$r_k = V_{min} + \frac{\Delta}{2} + (k-1)\Delta$$
, $k = 1, 2, ... L$

$$\triangleright x_k = V_{min} + (k-1)\Delta. k = 1,2,.L+1$$

Quantization

Quantization Error

- If the signal falls within the full-scale range of the A/D converter, the maximum absolute value of the quantization error is half the distance between two adjacent quantization levels, q_e is $\frac{\Delta}{2}$
- $|q_e| \leq \Delta/2$
- If the signal exceeds the full-scale range, it will be clipped to the nearest quantization level within that range, and the resulting quantization error will depend on the extent of the clipping.

A/D quantizer specifications

- $\Delta = \frac{V_{FS}}{2^N} = \text{system resolution}$
- $L = 2^N$
- $V_{FS} = V_{max} V_{min}$
- V_{min} minimum voltage level of A/D
- V_{max} =maximum voltage level of A/D

Simple Example

- Consider a 2-bit system, N = 2, $L = 2^N = 2^2 = 4$ Levels
- \triangleright Consider the voltage range of the A/D is $\pm 3V$

$$V_{min} = -3V$$
, $V_{max} = 3V$ $V_{FS} = 3 - (-3) = 6V$ $\Delta = \frac{V_{FS}}{2^N} = \frac{6}{4} = 1.5V$

$$r_k = V_{min} + \frac{\Delta}{2} + (k-1)\Delta$$
, $k = 1,2,...L$ $x_k = V_{min} + (k-1)\Delta$. $k = 1,2,...L + 1$

$r_k = r_{k-1} + \Delta$	$x_k = x_{k-1} + \Delta$
$r_1 = V_{min} + \frac{\Delta}{2} = -2.25V$	$x_1 = V_{\min} = -3V$
$r_2 = r_1 + 1.5 = -0.75V$	$x_2 = x_1 + 1.5 = -1.5V$
$r_3 = r_2 + 1.5 = 0.75V$	$x_3 = x_2 + 1.5 = 0V$
$r_4 = r_3 + 1.5 = 2.25V$	$x_4 = x_3 + 1.5 = 1.5V$
	$x_5 = x_4 + 1,5 = 3V$

Simple Example, continued

- > 2-bit A/D system, N = 2, $L = 2^N = 2^2 = 4$ Levels
- \triangleright The voltage range of the A/D is $\pm 3V$

$$V_{FS} = 3 - (-3) = 6V$$

$$\Delta = \frac{V_{FS}}{2^N} = \frac{6}{4} = 1.5V$$

- If the signal range is within ± 3 , $q_e = \frac{\Delta}{2} = 0.75V$ is the maximum quantization error.
- If the signal has a range $\pm 5V$, then the maximum quantization error will be 5V 2.25V = 2.75V

Quantization error

- If the signal range is within the A/D full scale range, $q_e = \frac{\Delta}{2}$ is the maximum quantization error.
- If the signal exceeds the A/D full scale range, the error will be given by

$$q_e = V_{signal} - \left(V_{max} - \frac{\Delta}{2}\right) \quad for \ V_{signal} > V_{max}$$

$$q_e = \left(V_{min} + \frac{\Delta}{2}\right) - V_{signal} \quad for \ V_{signal} < V_{min}$$

 V_{max} is the maximum allowed input level for A/D V_{min} is the minimum allowed input level for A/D

Stair-case approximation of a sampled signal

 $T_{\rm S}$ =sampling interval $T_{\rm 0}$ = period of signal In the figure shown $f_{\rm S}=10f_{\rm 0}$

Note that the difference between adjacent steps in this figure is not representative of the quantization step size; instead, it is a function of the sampling frequency

Stair-case Approximation as the Sampling Rate Increases

In the figure shown $f_s = 25f_0$

Notice that the difference between adjacent steps is becoming smaller as the sampling frequency increases. The quantization step is characteristic of the A/D

$$\Delta = \frac{V_{FS}}{2^N}$$

(I

NI USB-6001 Data Acquisition, DAQ, USB device

- Analog-to-digital converter (ADC) withI4-bit Resolution
- Maximum Sample 20 kS/s
- The NI DAQ device has an input signal range of ±10 V.
- Provides eight single-ended analog input (AI) channels, which may also be configured as four differential channels. It also includes two analog output (AO) channels, I3 digital input/output (DIO) channels, and a 32-bit counter.

Pinout and signal description

P0.0

P0.1

P0.2

P0.3

P_{0.4}

P0.5 P0.6

P0.7

P1.0

P1.2

P1.3

P1.1/PFI 1

P2.0/PFI 0

D GND

D GND

+ 5 V

- ► AI GND : Analog Input Ground—The reference point for single-ended analog input measurements.
- Al <0..7> Al GND Input Analog Input Channels 0 to 7—For single-ended measurements, each signal corresponds to one analog input voltage channel.
- For differential measurements, Al 0 and Al 4 are the positive and negative inputs of differential analog input channel 0.
- The following signal pairs also form differential input channels: Al <1,5>, Al <2, 6>, and Al <3, 7>.

Figure 4. NI USB-6001/6002/6003 Pinout

Taking differential measurement

Figure 6. Connecting a Differential Voltage Signal

For differential signals, connect the positive lead of the voltage signal or source to the Al+terminal, and the negative lead to the Al-terminal.

Figure 7. Example of a Differential ±10 V Measurement

