#### **Network and Web Security**

Pentesting

Dr Sergio Maffeis

Department of Comput

**Department of Computing** 

Course web page: <a href="https://331.cybersec.fun">https://331.cybersec.fun</a>

## Pentesting

- Penetration testing: pay someone to break into your system/organisation and report weaknesses
  - Network security, physical access, social engineering...
- Important to scope the pentesting exercise and avoid operational damage
  - Restrictions on targets to attack, tools and techniques to use, admissible side effects
- Access to information
  - Black box: no information
  - Gray box: selected information to help focus the exercise
  - White box: access to source code, system architecture, protocols, valid accounts
- Hard to ensure that pentester "tried hard enough"
  - Sometimes pentesting teams are played against each other
  - Pentester certifications (such as CISSP, <a href="https://www.isc2.org/cissp/">https://www.isc2.org/cissp/</a>) commend higher fees
  - Penetration Testing Execution Standard (PTES): fundamental principles and technical guidelines for penetration testing: <a href="http://www.pentest-standard.org/index.php">http://www.pentest-standard.org/index.php</a>

#### **PTES**



- Key steps
  - 1. Pre-engagement interactions
    - Sign contract, define scope, agree on rules of engagement
  - 2. Intelligence gathering
  - 3. Threat modelling
  - 4. Vulnerability analysis
  - 5. Exploitation
  - 6. Post-exploitation
  - 7. Reporting
    - Provide actionable intelligence to the customer: executive summary, technical report, etc
- We use penetration testing as a way to
  - Find weaknesses in our own web applications
  - Gain insight into attacker's approach
    - To inform better defenses





# Attackers compared

|                 | Black hat                                 | Gray hat                                                        | White hat                                |
|-----------------|-------------------------------------------|-----------------------------------------------------------------|------------------------------------------|
| Definition      | Penetrates a system without permission    | Penetrates a system without permission but with good intentions | A pentester doing her job                |
| Is it legal?    | No                                        | Still no!                                                       | Yes                                      |
| Avoid detection | Yes                                       | Yes                                                             | Depends on job spec                      |
| Constraints     | None                                      | Avoid damaging target                                           | Restriction on what, when, how to attack |
| Tools           | Paid-for exploit kits 0-days Secret tools | Limited resources Public domain tools                           | Professional tools Insider information   |
| Disclosure      | None                                      | Responsible, full                                               | Confidential report                      |

## 2. Intelligence gathering

- Passive information gathering
  - Aim to build a DFD, a network map, an architectural diagram, an organization chart, a sociogram of the target
  - Avoid any interaction with the target to avoid suspicion
    - To be sure, you can block your access to target using a proxy or firewall
  - Look for publicly available information about the target
    - Search online presence of company and/or employees (social networks, blogs), for comments, emails, company roles/data
    - Locate the target Web presence (services, webpages)
      - Use search engines cache, archive.org, alexa.org
      - Look at the source code of webpages for comments, hidden form fields, links
      - Find out what protocols are used: HTTP(S), FTP, SMTP
      - Look for any uptime statistics sites
      - Query the domain registrar, look for reverse DNS information
    - Look for comments in open source code used by the target
      - Are there open bugs?
      - Hardcoded credentials in older versions of the code
  - Caution: even publicly accessible data may be protected by law

### Google Hacking



- 1,084 pages on passive information gathering (and more) with Google
- Some advanced operators
  - Search for files with specific extensions ext:pdf
  - Search within a given website only site:example.com
     Search inside url or title or body of a page "index.html" inurl: -html
- Identifying potential targets using operators
  - Locate (unintentional) exposed directory listings intitle:index.of "parent directory"
  - Locate sites running software known to be vulnerable
    allintext: "Powered by phpbb"
    inurl:index.asp Search for all index.asp pages that uses phpbb
- Cache search

Looking for

index.html in the
content without

having 'html' in

the URL itself

- The code of cached webpages can be seen without accessing the target
- Use proxy to prevent loading uncached elements (images)
- Google slows down some "interesting" queries using CAPTCHAs



#### Imperial College

## 2. Intelligence gathering

- Active information gathering
  - Other useful information can be obtained by contacting target services
    - These activities may be detected as suspicious
    - Better to do it from IP addresses that you will not use for exploitation
  - What version is the DNS server running?
    - dig query to target DNS server
  - Verify potential email addresses, user names
    - Send an email, see if it bounces
  - Determine network perimeter
    - Are you accessing the target directly, or via a firewall?
    - Use traceroute, reverse DNS to identify intermediate hosts
  - Probe the network
    - Host discovery: identify what subnet addresses are active
    - Port scanning: identify what ports accept communications
    - OS fingerprinting: identify target OS
    - Identify services
      - Banner grabbing: some services send identifying information by default
      - By reverse-engineering the protocol
      - Sometimes it's enough to send a random string and observe the error msg
  - We'll see some of these in the network lab next week



#### Imperial College

### 4. Vulnerability analysis

- Unpatched systems
  - Search in the CVE database for vulnerabilities affecting any identified component
  - Scan for known vulnerabilities using tools
    - Nessus, Nikto, W3AF, Metasploit scanner, Nmap scripts
    - Beware that vulnerability scanners typically send a lot of probes, so are easy to detect
  - Same as above for exposures (misconfigurations)
- Patched systems
  - If source code is available, perform code review
    - By hand: we'll do that for JavaScript and PHP
    - Using static analysis tools
    - This activity can be very time consuming
  - Try to trigger unknown vulnerabilities
    - Using educated guesses: we'll do that for SQLi, XSS
    - Fuzzing input parameters: automated tools help with this task
- Obtain credentials
  - Investigate password policies, identify default passwords
  - Look for password hashes published by hackers (offline dictionary attack)

### 5. Exploitation

- Gain access to the target system by exploiting the identified vulnerabilities
- Use valid credentials, or try brute-force (online dictionary attack)
- Run publicly available exploits
  - From databases: <a href="https://www.exploit-db.com/">https://www.exploit-db.com/</a>
  - Using automated tools, like Metasploit
    - Use exploits tailored to verified vulnerabilities, don't just throw anything the tool has at the target (easy to detect)
- Build your own exploits
  - We'll do that for PHP, JavaScript, SQLi, XSS ...



#### Imperial College London

#### 6. Post-exploitation

- Well done, you're in! What now?
- If the exploited account is not admin, try privilege escalation
  - pass-the-hash technique in Windows
    - · send the admin's hashed password to an internal authentication server
    - the server verifies the hash and grants you admin access
  - Confused deputy: exploit application that runs as root or system
- Steal data
  - Explore local and network disks for interesting files
  - Install keylogger
  - Capture screenshots, access webcam
- Send data back to hacker
  - Password hashes for off-line attacks
  - Other valuable data
  - Use information-hiding techniques to avoid detection
- Pivot: use compromised host to exploit other targets on LAN
- Maintain access
  - Open backdoors, reverse shells
  - Create new user accounts to login later
- Cover your tracks
  - Manipulate logs
  - Install rootkits to hide backdoors
- We'll practice some of these in the lab

