Seria 1 No.	Question Number	COO	Bloo m's Taxo nom y Leve	Diffi culty Leve 1	Competit ive Exam Question Y/N	Area	Topic	U ni t	Ma rks
1	Classify the second order linear $A(x,y)\frac{\partial^{2}u}{\partial x^{2}} + B(x,y)\frac{\partial^{2}u}{\partial x\partial y} + C(x,y)\frac{\partial^{2}u}{\partial y^{2}} + D(x,y)\frac{\partial u}{\partial x} + P(x,y)\frac{\partial^{2}u}{\partial y} + F(x,y) = 0$ following given value of A, B, C $A = 1, B = 0, C = 3$	5	K4	L	N	PDE	Classif ication of second order PDE	5	2
2	Classify the second order linear $A(x,y)\frac{\partial^{2}u}{\partial x^{2}} + B(x,y)\frac{\partial^{2}u}{\partial x\partial y} + C(x,y)\frac{\partial^{2}u}{\partial y^{2}} + D(x,y)\frac{\partial u}{\partial x} + P(x,y)\frac{\partial^{2}u}{\partial y} + F(x,y) = 0$ following given value of A, B, C $A = -2, B = 3, C = -4$	5	K4	L	N	PDE	Classif ication of PDE	5	2
3	Classify the second order linear $A(x,y)\frac{\partial^{2}u}{\partial x^{2}} + B(x,y)\frac{\partial^{2}u}{\partial x\partial y} + C(x,y)\frac{\partial^{2}u}{\partial y^{2}} + D(x,y)\frac{\partial u}{\partial x} + P(x,y)\frac{\partial^{2}u}{\partial y} + F(x,y) = 0$ following given value of A, B, C $A = -4, B = -2, C = -1$	5	K4	L	N	PDE	Classif ication of PDE	5	2
4	Classify the second order linear $A(x,y)\frac{\partial^{2}u}{\partial x^{2}} + B(x,y)\frac{\partial^{2}u}{\partial x\partial y} + C(x,y)\frac{\partial^{2}u}{\partial y^{2}} + D(x,y)\frac{\partial u}{\partial x} + P(x,y)\frac{\partial^{2}u}{\partial y} + F(x,y) = 0$ following given value of A, B, C $A = 2, B = 2, C = 2$	5	K4	L	N	PDE	Classif ication of PDE	5	2
5	Classify the second order linear $A(x,y)\frac{\partial^{2}u}{\partial x^{2}} + B(x,y)\frac{\partial^{2}u}{\partial x\partial y} + C(x,y)\frac{\partial^{2}u}{\partial y^{2}} + D(x,y)\frac{\partial u}{\partial x} + P(x,y)\frac{\partial^{2}u}{\partial y} + F(x,y) = 0$ following given value of A, B, C $A = -5, B = -5, C = -5$	5	K4	L	N	PDE	Classif ication of PDE	5	2
6	Classify the second order linear	5	K4	L	N	PDE	Classif ication	5	2

	PDE $A(x,y)\frac{\partial^{2}u}{\partial x^{2}} + B(x,y)\frac{\partial^{2}u}{\partial x\partial y} + C(x,y)\frac{\partial^{2}u}{\partial y^{2}} + D(x,y)\frac{\partial u}{\partial x} + \text{for}$ $E(x,y)\frac{\partial u}{\partial y} + F(x,y) = 0$ following given value of A, B, C $A=100, B=10, C=10$						of PDE		
7	Classify the second order linear $A(x,y)\frac{\partial^{2}u}{\partial x^{2}} + B(x,y)\frac{\partial^{2}u}{\partial x\partial y} + C(x,y)\frac{\partial^{2}u}{\partial y^{2}} + D(x,y)\frac{\partial u}{\partial x} + \text{for}$ $E(x,y)\frac{\partial u}{\partial y} + F(x,y) = 0$ following given value of A, B, C $A = \mathbf{x^{2}}, B = \mathbf{x^{2}}\mathbf{y}, C = \mathbf{x^{3}}$	5	K4	L	N	PDE	Classif ication of PDE	5	2
8	Classify the second order linear $A(x,y)\frac{\partial^{2}u}{\partial x^{2}} + B(x,y)\frac{\partial^{2}u}{\partial x\partial y} + C(x,y)\frac{\partial^{2}u}{\partial y^{2}} + D(x,y)\frac{\partial u}{\partial x} + \text{for}$ $E(x,y)\frac{\partial u}{\partial y} + F(x,y) = 0$ following given value of A, B, C $A = x^{2}y, B = y^{2}, C = x^{5}$	5	K4	L	N	PDE	Classif ication of PDE	5	2
9	Classify the second order linear $A(x,y)\frac{\partial^{2}u}{\partial x^{2}} + B(x,y)\frac{\partial^{2}u}{\partial x\partial y} + C(x,y)\frac{\partial^{2}u}{\partial y^{2}} + D(x,y)\frac{\partial u}{\partial x} + \text{for}$ $E(x,y)\frac{\partial u}{\partial y} + F(x,y) = 0$ following given value of A, B, C $A = y^{3}, B = x^{2}, C = y^{2}$	5	K4	L	N	PDE	Classif ication of PDE	5	2
10	Find the region for which the second order linear $PDE = \frac{A(x,y)\frac{\partial^2 u}{\partial x^2} + B(x,y)\frac{\partial^2 u}{\partial x \partial y} + C(x,y)\frac{\partial^2 u}{\partial y^2} + D(x,y)\frac{\partial u}{\partial x} + \int_{0}^{\infty} \frac{\partial^2 u}{\partial x^2} + D(x,y)\frac{\partial^2 u}{\partial x} + \int_{0}^{\infty} \frac{\partial^2 u}{\partial x^2} + D(x,y)\frac{\partial^2 u}{\partial x} + \int_{0}^{\infty} \frac{\partial^2 u}{\partial x^2} + D(x,y)\frac{\partial^2 u}{\partial x} + \int_{0}^{\infty} \frac{\partial^2 u}{\partial x^2} + D(x,y)\frac{\partial^2 u}{\partial x} + \int_{0}^{\infty} \frac{\partial^2 u}{\partial x^2} + D(x,y)\frac{\partial^2 u}{\partial x} + \int_{0}^{\infty} \frac{\partial^2 u}{\partial x^2} + D(x,y)\frac{\partial^2 u}{\partial x} + \int_{0}^{\infty} \frac{\partial^2 u}{\partial x^2} + D(x,y)\frac{\partial^2 u}{\partial x} + \int_{0}^{\infty} \frac{\partial^2 u}{\partial x^2} + D(x,y)\frac{\partial^2 u}{\partial x} + \int_{0}^{\infty} \frac{\partial^2 u}{\partial x^2} + D(x,y)\frac{\partial^2 u}{\partial x} + \int_{0}^{\infty} \frac{\partial^2 u}{\partial x^2} + D(x,y)\frac{\partial^2 u}{\partial x} + \int_{0}^{\infty} \frac{\partial^2 u}{\partial x^2} + D(x,y)\frac{\partial^2 u}{\partial x} + \int_{0}^{\infty} \frac{\partial^2 u}{\partial x^2} + D(x,y)\frac{\partial^2 u}{\partial x} + \int_{0}^{\infty} \frac{\partial^2 u}{\partial x^2} + D(x,y)\frac{\partial^2 u}{\partial x} + \int_{0}^{\infty} \frac{\partial^2 u}{\partial x^2} + D(x,y)\frac{\partial^2 u}{\partial x} + \int_{0}^{\infty} \frac{\partial^2 u}{\partial x$	5	K1	L	N	PDE	Classif ication of PDE	5	2
11	Find the region for which the second order linear $PDE = \frac{A(x,y)\frac{\partial^2 u}{\partial x^2} + B(x,y)\frac{\partial^2 u}{\partial x \partial y} + C(x,y)\frac{\partial^2 u}{\partial y^2} + D(x,y)\frac{\partial u}{\partial x} + \int_{0}^{\infty} \frac{\partial^2 u}{\partial y} + F(x,y) = 0$ $E(x,y)\frac{\partial u}{\partial y} + F(x,y) = 0$ parabola/Hyperbola/Ellipse for following values	5	K1	L	N	PDE	Classif ication of PDE	5	2

		1 1		1			1		1
	of A, B, C, D, E, F $A = x^3$, $B = x^2$, $C = y^2$, $D = 7^2$, $E = 8^{-1}$,								
	$F = 3^{-1}$								
12	Find the region for which the second order linear $A(x,y) \frac{\partial^2 u}{\partial x^2} + B(x,y) \frac{\partial^2 u}{\partial x \partial y} + C(x,y) \frac{\partial^2 u}{\partial y^2} + D(x,y) \frac{\partial u}{\partial x} + \text{is}$ PDE	5	K1	L	N	PDE	Classif ication of PDE	5	2
	$E(x,y)\frac{\partial u}{\partial y} + F(x,y) = 0$ parabola/Hyperbola/Ellipse for following values of A, B, C, D, E, F $A = x^2, B = x^2, C = x^2, D = x^2, E = x^2,$ $F = x^2$								
13	Classify the following 2^{nd} order homogeneous linear differential equations. Show the details of your work: $(i) \frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}, (ii) \frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2},$ $(iii) \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$	5	K4	L	N	PDE	Classif ication of PDE	5	2
14	Classify the partial differential equation $(x^2-y^2)u_{xx}+2(x^2+y^2)u_{xy}+(x^2-y^2)u_{yy}=0$ for region x>0, y>0.	5	K4	M	Y	PDE	Classif ication of PDE	5	2
15	Find region in which partial differential equation $(x^2)u_{xx} - x(y^2 - 1)u_{xy} + y(x^2 - y^2)u_{yy} = 0$ is hyperbolic? [GATE2011]	5	K1	M	Y	PDE	Classif ication of PDE	5	2
16	Solve partial differential equations :(Exa. 9.15/9.30/J) $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$	5	K3	M	N	PDE	Metho d of Separa tion of Variab le	5	6
17	Solve partial differential equations: $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$	5	K3	M	N	PDE	Metho d of Separa tion of Variab le	5	6
18	Solve partial differential equations: $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$	5	K3	М	N	PDE	Metho d of Separa tion of Variab le	5	6

19	Solve partial differential equations: $\frac{\partial^2 u}{\partial x^2} = 5 \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y}$	5	К3	M	N	PDE	Metho d of Separa tion of Variab le	5	6
20	Use separation of variables method to solve following PDE: $(9,10/\text{Exc. }9.4/9.50/\text{J})$ $\frac{\partial u}{\partial t} = \frac{\partial u}{\partial x}, \ u(0,x) = 2e^{-3x}$	5	К3	M	N	PDE	Metho d of Separa tion of Variab le	5	6
21	Let $u(x,t)$ be the solution of initial value problem $u_t - u_{xx} = 0$, $u(x,0) = \sin x$; $u_x(x,0) = 1$. Then find value of , $u(\pi,\pi/2)$? [GATE2006]	5	K3	Н	Y	PDE	Heat Equati on	5	6
22	Find the solution of initial value problem $u_t = u_{xx} = 0$, $0 < x < \pi$, $t > 0$, $u(0, t) = 0$, $u(\pi, t) = 0$ and $u(x, 0) = 3\sin 2x$. [GATE2009]	5	K3	Н	Y	PDE	Heat Equati on	5	6
23	Let $\mathbf{u}(\mathbf{x},t)$ be the solution of initial value problem $u_{tt}-4u_{xx}=0,\ \mathbf{u}(x,0)=\sin x\ ;\ \mathbf{u}(0,t)=\mathbf{u}(\pi,t)$ $\mathbf{u}_{t}(x,0)=0.$ Then find value of $\mathbf{u}_{t}(\pi,0)=0$. [GATE2010]	5	К3	Н	Y	PDE	Wave Equati on	5	6
24	Use separation of variables method to solve following PDE: $(i)4\frac{\partial u}{\partial t} + \frac{\partial u}{\partial y} = u, \ u(0, y) = 4e^{-3y}$ $(ii)4\frac{\partial u}{\partial t} + \frac{\partial u}{\partial y} = u, \ u(0, y) = 4e^{-3y} - 2e^{y} + 5e^{-2y}$	5	К3	M	N	PDE	Metho d of Separa tion of Variab le	5	6
25	Solve the following initial boundary value problem corresponding to the one-dimensional wave equation: $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}, 0 < x < l, t > 0, u(0,t) = u(l,t) = 0, \\ u(x,0) = x(l-x), \frac{\partial u}{\partial t}(x,0) = 0$	5	K3	M	N	PDE	Wave Equati on	5	9/1 0
26	Solve the following initial boundary value problems corresponding to the one-dimensional heat equation:	5	К3	M	N	PDE	Heat Equati on	5	9/1 0

	2		1	1			1		
	$\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}, 0 < x < \pi, t > 0, u(0, t) = u(\pi, t) = 0,$								
	$u(x,0) = T(a\cos\tan t)$								
27	Find the steady-state solutions (temperatures) in the square plate $0 \le x \le 2, 0 \le y \le 2$ if the upper side is kept at	5	К3	M	N	PDE	Laplac e	5	9/1 0
	the temperature $1000\sin (1/2)\pi x$ and the other sides						Equati on		
28	are at 0^0 . Solve the following one-dimensional wave equation:	5	К3	M	N	PDE	Wave	5	9/1
28	Solve the following one-dimensional wave equation: $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}, 0 < x < l, t > 0, u(0, t) = u(l, t) = 0,$ $u(x, 0) = \sin \frac{\pi x}{l} - 5\sin \frac{3\pi x}{l}, \frac{\partial u}{\partial t}(x, 0) = 0$	3	K3	M	IN.	FDE	Equati on	3	0
	$u(x,0) = \sin \frac{1}{l} - 3\sin \frac{1}{l}, \frac{1}{\partial t}(x,0) = 0$								
29	Solve the following one-dimensional heat equation: $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}, 0 < x < l, t > 0, u(0, t) = u(l, t) = 0,$ $u(x, 0) = x$	5	K3	M	N	PDE	Heat Equati on	5	9/1
30	Solve the Laplace equation by the separation of variables method: $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, 0 < x < l, 0 < y < \infty, u(0,y) = u(l,y) = u(x,\infty) = 0, \\ u(x,0) = f(x).$	5	K3	M	N	PDE	Laplac e Equati on	5	9/1 0
31	An elastic string of length l which is fastened at the ends $x=0$ and $x=l$. Motion is started by displacing the string in the form $y=a\sin\frac{\pi x}{l}$ from which it is released from rest at t=0. Show that the displacement of the string at any instant of time is $y=a\sin\frac{\pi x}{l}\cos\frac{\pi ct}{l}$	5	K3	M	N	PDE	Wave Equati on	5	9/1 0
32	An elastic string of length l which is fastened at the ends $x = 0$ and $x = l$ is released from its horizontal position (zero initial displacement) with initial velocity $g(x)$ given as: $g(x) = \begin{cases} x, & 0 \le x \le l/3 \\ 0, & l/3 < x < l \end{cases}$ Find the displacement of the string at any instant of time. (Exa.9.18/9.41/J	5	К3	M	N	PDE	Wave Equati on	5	9/1 0
33	Solve the following initial boundary value problem corresponding to the one-dimensional wave equation: $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}, 0 < x < l, t > 0, u(0,t) = u(l,t) = 0,$	5	К3	M	N	PDE	Wave Equati on	5	9/1 0

	$u(x,0) = x(l-x), \frac{\partial u}{\partial t}(x,0) = 0$								
34	Solve the following initial boundary value problem corresponding to the one-dimensional heat equation: $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}, 0 < x < \pi, t > 0, u(0,t) = u(\pi,t) = 0, \\ u(x,0) = T(aconstant) \qquad (23/Exc.9.4/9.51/J)$	5	K3	M	N	PDE	Wave Equati on	5	9/1 0
35	Find the temperature in a laterally insulated bar of length L whose ends are kept at temperature 0, assuming that the initial temperature is $f(x) = \begin{cases} x, & 0 < x < L/2 \\ L - x, & L/2 < x < L \end{cases}$ (Exa.3/562/K)	5	К3	Н	N	PDE	Heat Equati on	5	9/1 0
36	Find the temperature in a laterally insulated bar of length 1(one) whose ends are kept at temperature 0, assuming that the Boundary conditions are $u(0,t) = 0, u(1,t) = 0, u(x,0) = 3\sin n\pi x$ for $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$	5	К3	M	N	PDE	Heat Equati on	5	9/1 0
37	Find the temperature in a laterally insulated bar of length L whose ends are suddenly cooled at 0 degree C and kept at that temperature, was initially at a uniform temperature u_0 .	5	К3	M	N	PDE	Heat Equati on	5	9/1 0
38	Find the solution of initial value problem $u_t = u_{xx} = 0$, $u(0,t) = 0$, $u(\pi,t) = 0$ and $u(x,0) = \cos x \sin 5x$. [GATE2012]	5	К3	Н	Y	PDE	Heat Equati on	5	9/1 0
39	Let $u(x,t)$ be the solution of initial value problem $u_{tt} - u_{xx} = 0$, $u(x,0) = \cos 5\pi x$; $u_t(x,0) = 0$. Then find value of , $u(1,1)$? [GATE2013]	5	K3	Н	Y	PDE	Wave Equati on	5	9/1 0
40	Let $u(x,t)$ be the solution of initial value problem $u_{tt} - u_{xx} = 0$, $u(x,0) = 0$; $u_t(x,0) = \cos x$. Then find value of , $u(0,\pi/4)$?	5	К3	Н	Y	PDE	Wave Equati on	5	9/1 0
41	The boundary value problem governing the steady-state temperature distribution in a flat, thin, rectangular plate of width a and insulated surface is given by $u(0, y) = 0, u(a, y) = 0, u(x, \infty) = 0, u(x, 0) = kx$. Find steady state temperature in plate.		К3	M	N	PDE	Laplac e Equati on	5	9/1 0