Emotion Intensity Predictor Project Report

BY-RISHI JAIN

CODALAB USERNAME- Rishi_Jain

Email- rj1016743@gmail.com ,rishijainai262003@gmail.com

1. Introduction

This report presents an overview of the Emotion Intensity Predictor project, which aims to predict the intensity of emotions expressed in textual data using both machine learning and deep learning models.

2. Machine Learning Model

2.1 Data Visualization

This helps us understanding its characteristics and distribution

2.2 Data Cleaning

Text preprocessing techniques such as lowercase conversion, special character replacement, and URL removal are applied to prepare the data for modelling.

2.3 Sentence Embeddings using Sentence Transformers

It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for tasks like clustering or semantic search.

2.4 Model Used and Results

Three classifiers (SVM, XGB Classifier, Random Forest Classifier) are trained, and their accuracies are reported. SVM performs the best with an accuracy of 77.32%.

Test Cases:

2.5 Classification Reports

This provides detailed performance metrics for each classifier, with SVM showing superior results compared to the other models.

Classification	report using	SVM:		
	precision	recall	f1-score	support
e	0.70	0.68	0.69	307
1	0.85	0.81	0.83	322
2	0.74	0.79	0.77	340
3	0.79	0.79	0.79	451
accuracy			0.77	1420
macro avg	0.77	0.77	0.77	1420
weighted avg	0.77	0.77	0.77	1420
Classification	report using	Random	Forest Clas	sifier:
	precision	recall	f1-score	support
ø	0.70	0.40	0.51	307
1	0.76	0.71	0.74	322
2	0.72	0.68	0.70	340
3	0.61	0.84	0.71	451
accuracy			0.68	1420
macro avg	0.70	0.66	0.66	1420
weighted avg	0.69	0.68	0.67	1420
Classification	report using	XGB Cla	assifier:	
accuracy			0.71	1420
macro avg	0.72	0.71	0.71	1420

2.6 Comparison with Deep Learning Approach

Similar text preprocessing techniques used in the deep learning approach like using nltk for stopwords, tokenization and padding were applied to the machine learning model, but they yielded lower results.

Classific	ation	report using	SVM:		
		precision		fl ccopo	support
		precision	1 ecall	11-30016	suppor c
	0	0.17	0.14	0.15	307
	1	0.24	0.18	0.20	322
	2	0.25	0.14	0.18	340
		0.30	0.49	0.37	451
accur	acv			0.26	1420
macro		0.24	0.24	0.22	1420
weighted		0.24	0.26	0.24	1420
mczBcca		0.24	0.20	0.24	1-12-0
Classific	ation	report using	Random	Forest Clas	sifier:
		precision	recall	f1-score	support
	0	0.19	0.11	0.14	307
	1	0.35	0.27	0.30	322
	2	0.29	0.26	0.27	340
		0.32	0.49	0.39	451
accur	racy			0.30	1420
macro		0.29	0.28	0.28	1420
weighted		0.29	0.30	0.29	1420
nexpirecu	5	0.23		0.23	2720
Classific	ation	report using	XGB C1	assifier:	
accur	racy			0.39	1420
macro	avg	0.38	0.38	0.38	1420
weighted	23.60	0.39	0.39	0.39	1420

3. Deep Learning Model

3.1 Data Visualization

Similar to Model1, dataset visualizations are presented to understand its characteristics.

3.2 Data Cleaning

Text preprocessing steps including URL removal and stop words removal are performed.

3.3 Tokenization and Padding with Tokenizer

Tokenization is the process of converting text into numerical sequences, while padding ensures uniform sequence lengths for input into neural networks.

3.4 Sequential Model Architecture

This Sequential model comprises four layers:

- Embedding Layer
- 2 LSTM Layer
- Dense Layer

3.5 Model Compilation and Results

The model is compiled using the Adam optimizer and sparse categorical cross entropy loss function, suitable for multi-class classification tasks. It achieves an accuracy of 84% on the test dataset.

3.6 Classification Report

A detailed classification report is provided, showcasing precision, recall, F1-score, and support metrics for each emotion class.

Classification	report:			
	precision	recall	f1-score	support
ø	0.79	0.80	0.79	307
1	0.80	0.93	0.86	322
2	0.85	0.83	0.84	340
3	0.91	0.80	0.85	451
accuracy			0.84	1420
macro avg	0.84	0.84	0.84	1420
weighted avg	0.84	0.84	0.84	1420

3.7 Comparison with Machine Learning Approach

Similar approaches such as sentence embedding using Sentence Transformers were attempted in the deep learning model, but they did not yield significant improvements in accuracy.

Classification	report:			
	precision	recall	f1-score	support
0	0.65	0.64	0.64	307
1	0.71	0.76	0.74	322
2	0.72	0.72	0.72	340
3	0.74	0.71	0.73	451
accuracy			0.71	1420
macro avg	0.70	0.71	0.71	1420
weighted avg	0.71	0.71	0.71	1420

4. Conclusion

The Emotion Intensity Predictor project successfully develops machine learning and deep learning models for predicting the intensity of emotions in textual data. SVM performs well in the machine learning model, while the deep learning model achieves higher accuracy. These models offer valuable insights into emotional content, with potential applications in sentiment analysis, mental health monitoring, and customer feedback analysis.