1 Interpolació

Definició 1 (Interpolació). Diem que una funció f interpola una altra funció g en els punts x_0, \ldots, x_n del domini de f i de g si $f(x_i) = g(x_i), 0 \le i \le n$.

Teorema 1.1 (Existència i unicitat del polinomi interpolador). Siguin $(x_0, f(x_0))$, ..., $(x_n, f(x_n))$ parells de nombres reals arbitraris amb $x_i \neq x_j$ si $i \neq j$. Llavors, existeix un únic polinomi p de grau menor o igual a n tal que $p(x_i) = f(x_i), 0 \leq i \leq n$.

Demostració. Per inducció sobre n.

El cas n = 0 és trivial: prenem el polinomi constant $p(x) = f(x_0)$. Per n = 1 tenim:

$$p(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0}(x - x_0)$$

Suposem ara que existeix un polinomi p_{n-1} que interpola f en els punts x_0, \ldots, x_{n-1} . Llavors, imposem que:

$$p_n(x) = p_{n-1}(x) + \frac{f(x_n) - p_{n-1}(x)}{(x_n - x_0) \cdots (x_n - x_{n-1})} (x - x_0) \cdots (x - x_{n-1})$$

Comprovem que p_n interpoli tots els punts x_0, \ldots, x_n . Per a $x_i, 0 \le i < n$, es té que l'últim sumand es cancel·la i tan sols queda $p_{n-1}(x_i)$, que per hipòtesi d'inducció interpola f.

En canvi, per a x_n tenim:

$$p_n(x_n) = p_{n-1}(x_n) + \frac{f(x_n) - p_{n-1}(x_n)}{(x_n - x_0) \cdots (x_n - x_{n-1})} (x_n - x_0) \cdots (x_n - x_{n-1}) =$$

$$= p_{n-1}(x_n) + f(x_n) - p_{n-1}(x_n) = f(x_n)$$

Per demostrar la unicitat, suposem que existeixen dos polinomis interpoladors diferents p i q amb aquestes propietats. Sigui r(x) = p(x) - q(x). Cada $x_i, 0 \le i \le n$ és una arrel de r, però r és de grau menor o igual a n i té n+1 arrels; pel teorema fonamental de l'àlgebra, r=0 i per tant p=q. \square

Notació. Siguin $x_0, \ldots, x_n \in \mathbb{R}$, llavors $\langle x_0, \ldots, x_n \rangle$ és l'interval tancat més petit que conté x_0, \ldots, x_n .

Teorema 1.2 (Error en la interpolació). Sigui f amb n+1 derivades contínues en $\langle x_0, \ldots, x_n \rangle$. Si p és un polinomi de gran menor o igual a n que interpola a f en x_0, \ldots, x_n , aleshores:

$$f(x) - p(x) = \frac{f^{(n+1)}(\xi(x))}{(n+1)!}(x - x_0) \cdots (x - x_{n-1})$$

Per a algun $\xi(x) \in \langle x_0, \dots, x_n \rangle$.

Demostració. Fixem $x \in \langle x_0, \dots, x_n \rangle \setminus \{x_0, \dots, x_n\}$.