CMPUT 350 F2021 A2 Problem 2 Solutions

a) Claim: h*(n) is consistent.

Proof:

Need to show:

1) $h^*(v) \le h^*(n) + cost(v,n)$ for arbitrary node v with neighbour n

If $h^*(v) > h^*(n) + cost(v,n)$, then there is a path v->n->...G which with length $< h^*(v)$. This means that $h^*(v)$ is not minimal - a contradiction.

2) h*(G) = 0 for goal node G

This is true because no steps need to be taken to arrive at a goal

QED

c) For node v and neighbour n we have:

d) True for k=1, but false for k>1. For instance $hi(n)=h^*(n)$, which is admissible. Then $h1(n)+...+hk(n)=k^*h^*(n)$ which is not k>1 QED

e) True.
$$(h1(n)+...hk(n)/k \le (h*(n)+...+h*(n))/k = h*(n)$$

| hi(n) admissible QED