1.1 - Preliminari di Calcolo Differenziale

Prima di tutto, diamo un'occhiata ad alcune nozioni del calcolo differenziale e multivariabile di cui avremo bisogno per sviluppare la nostra teoria.

Derivabilità per funzioni reali in più variabili

In questa sezione diamo una rapida occhiata ai risultati sulla derivabilità per funzioni reali in più variabili; considereremo quindi funzioni del tipo $f: U \to \mathbb{R}$, con $U \subseteq \mathbb{R}^n$ aperto.

♯ Definizione 1.1.1 (Derivata parziale).

Fissato $a \in U$, si definisce la derivata parziale di f rispetto a x^j in a, e si denota con $[\partial f/\partial x^j]_a$ il seguente limite, se esiste ed è finito:

$$\left\lceil rac{\partial f}{\partial x^j}
ight
ceil_a = \lim_{h o 0} rac{f(a^1,\ldots,a^j+h,\ldots,a^n) - f(a^1,\ldots,a^j,\ldots,a^n)}{h}$$

Al variare di $j \in \{1, ..., n\}$, se $\partial f/\partial x^j$ è definita in ogni punto di U, essa definisce una funzione su U, precisamente di legge $U \to \mathbb{R}: \ a \mapsto [\partial f/\partial x^j]_a$;

nel caso in cui queste funzioni siano tutte definite e continue su U, la funzione f si dice continuamente differenziabile su U, oppure di classe C^1 su U.

L'insieme delle funzioni di classe C^1 su U si denota con $C^1(U)$.

La sola esistenza delle derivate parziali è una proprietà troppo debole per la maggior parte degli scopi. Ad esempio, la funzione definita su \mathbb{R}^2 da

$$f(x,y) = egin{cases} rac{xy}{x^2 + y^2}\,, & ext{se}\ (x,y)
eq (0,0), \ 0, & ext{se}\ (x,y) = (0,0). \end{cases}$$

non è continua in (0,0), sebbene entrambe le derivate siano definite lì.

L'estensione naturale della derivabilità per funzioni di una variabile a funzioni di più variabili è la seguente.

₩ Definizione 1.1.2 (Differenziabilità).

f si dice differenziabile in $a\in U$ quando esiste un'applicazione lineare $T:\mathbb{R}^n o \mathbb{R}$ tale che

$$\lim_{x o a}rac{f(x)-f(a)-T(x-a)}{\|x-a\|}=0.$$

Se f è differenziabile per ogni $a \in U$, diciamo che f è differenziabile su U.

Va precisato che il termine "differenziabile" avrà più avanti una connotazione più informale, per indicare la continua differenziabilità di qualche ordine, principalmente di classe C^{∞} .

Le proprietà principali delle funzioni differenziabili sono espresse nella seguente proposizione:

Proposizione 1.1.3 (Proprietà della differenziabilità).

Sia $U \subseteq \mathbb{R}^n$ aperto.

Sia $f:U \to \mathbb{R}$ una funzione differenziabile in a.

Si hanno i seguenti fatti:

- f è continua in a;
- Sono definite tutte le derivate parziali $[\partial f/\partial x^j]_a$;
- ullet L'applicazione T è unica, ed è data dalla legge

$$\mathbb{R}^n o \mathbb{R}: \quad x \mapsto \sum\limits_{j=1}^n \left[rac{\partial f}{\partial x^j}
ight]_a \cdot x^j.$$

L'applicazione indicata nel terzo punto è detta differenziale di f in a, e si denota con Df_a , o semplicemente Df qualora non vi siano equivoci sul punto interessato.

Si ha anche un'altra proposizione che fornisce invece una condizione sufficiente per la differenziabilità:

Proposizione 1.1.4 (Teorema del differenziale totale).

```
Sia U \subseteq \mathbb{R}^n aperto, e sia a \in U.
```

Sia $f:U\to\mathbb{R}$ una funzione; si supponga che le derivate parziali $\partial f/\partial x^1,\ldots,\partial f/\partial x^n$ siano definite in un intorno di a, e siano continue in a.

Allora, f è differenziabile in a.

Quindi, una funzione f di classe $C^1(U)$ con $U \subseteq \mathbb{R}^n$ aperto, è anche differenziabile in tutto U.

Fatto questo, si può definire anche la classe C^r su un insieme aperto $U \subseteq \mathbb{R}^n$, per ogni $r \in \mathbb{N}_{\geq 2}$ e anche per $r = \infty$:

\mathbb{H} Definizione 1.1.5 (Classe C^r , C^{∞}).

f si dice di classe $C^r(U)$, con $r \in \mathbb{N}_{\geq 2}$, quando le sue derivate parziali sono di classe C^{r-1} ; l'insieme delle funzioni di classe C^r su U si denota con $C^r(U)$.

f si dice di classe $C^{\infty}(U)$, oppure liscia, quando è di classe $C^{r}(U)$ per ogni r; l'insieme delle funzioni di classe C^{∞} su U si denota con $C^{\infty}(U)$.

I teoremi di Lagrange e di Schwarz

Di fondamentale importanza nel calcolo differenziale e multivariabile sono i seguenti due teoremi.

Teorema 1.1.6 (Di Lagrange).

Sia $U \subseteq \mathbb{R}^n$ aperto e stellato rispetto a un certo punto $a \in U$. Sia $f: U \to \mathbb{R}$ una funzione differenziabile su U.

Per ogni $x \in U$, esiste $t \in]0;1[$ tale che

$$g(x) - g(a) = \mathrm{D} f_{[a+t(x-a)]}(x-a).$$

Teorema 1.1.7 (Di Schwarz).

Sia $U \subseteq \mathbb{R}^n$ aperto. Sia f di classe C^r su U.

In ogni punto di U il valore delle derivate di ordine k, con $1 < k \le r$, è indipendente dell'ordine di differenziazione; in altri termini, se (j_1, \ldots, j_k) è una permutazione di (i_1, \ldots, i_k) , allora

$$rac{\partial^k f}{\partial x_{j_1} \cdots \partial x_{j_k}} = rac{\partial^k f}{\partial x_{i_1} \cdots \partial x_{i_k}}.$$

Differenziabilità di funzioni vettoriali e matrici Jacobiane

Generalizziamo ora le idee finora indicate al caso di funzioni vettoriali, ossia definite su sottoinsiemi di \mathbb{R}^n ma aventi codominio \mathbb{R}^m invece che semplicemente \mathbb{R} .

Data una funzione vettoriale $F: A \to \mathbb{R}^m$, con $A \subseteq \mathbb{R}^n$, e posta $\pi^i: \mathbb{R}^n \to \mathbb{R}$ la proiezione sulla *i*-esima coordinata, cioè $\pi^i(x^1, \dots, x^n) = x^i$, allora $F \in \mathcal{E}$ univocamente determinata dalle sue funzioni coordinate $f^i = x^i \circ F$.

Infatti, per ogni $x \in A$ si ha

$$F(x) = ig(f^1(x), \ldots, f^m(x)ig);$$

viceversa, qualsiasi insieme di m funzioni f^1, \ldots, f^m su A a valori in $\mathbb R$ individua la funzione vettoriale $F: A \to \mathbb R^m$ definita con la stessa legge di sopra.

Detto ciò, considereremo quindi funzioni del tipo $F: U \to \mathbb{R}^m$, con $U \subseteq \mathbb{R}^n$ aperto.

Intanto, dalla topologia generale sappiamo che F è continua se e solo se sono tali tutte le sue funzioni coordinate.

Alla luce di questo fatto, diciamo che F è differenziabile / di classe C^r / di classe C^∞ in un punto $a \in U$ / su U quando ciascuna delle sue funzioni coordinate ha la proprietà corrispondente.

Come per le funzioni, le funzioni C^{∞} verranno dette anche *regolari* o *lisce*.

Nei punti in cui F è differenziabile, risulta ben definita la matrice $m \times n$ data da

$$rac{\partial (f^1,\ldots,f^m)}{\partial (x^1,\ldots,x^n)}:=egin{bmatrix} rac{\partial f^1}{\partial x^1} & \cdots & rac{\partial f^1}{\partial x^n} \ dots & \ddots & dots \ rac{\partial f^m}{\partial x^1} & \cdots & rac{\partial f^m}{\partial x^n} \end{bmatrix}$$

che prende il nome di matrice Jacobiana.

Per semplicità, anziché la notazione indicata useremo principalmente DF per denotare la matrice Jacobiana di F, e DF(a) per denotarne la valutazione in a.

Se F è differenziabile su tutto U, le sue mn entrate sono funzioni su U.

non per forza sono continue su U; lo sono se e solo se F è di classe C^1 .

Notiamo quindi che $F \in C^1(U)$ se e solo se l'associazione $U \to \mathbb{R}^{m,n}: x \mapsto \mathrm{D} F(x)$ è continua, avendo identificato $\mathbb{R}^{m,n}$ come lo spazio topologico \mathbb{R}^{mn}

Un risultato sulla differenziabilità che segue immediatamente dalla definizione e dalla <u>Proposizione 1.1.3</u> è il seguente:

Proposizione 1.1.8 (Caratterizzazione della differenziabilità delle funzioni).

Sia $U \subseteq \mathbb{R}^n$ aperto.

Sia $F:U\to\mathbb{R}^m$ una funzione.

F è differenziabile in $a \in U$ se e solo se esiste una matrice $A \in \mathbb{R}^{m,n}$ tale che

$$\lim_{x o a}rac{F(x)-F(a)-A\cdot(x-a)}{\|x-a\|}=0$$

dove "·" indica il prodotto matriciale, e si assume che gli elementi in \mathbb{R}^n e \mathbb{R}^m si scrivano come vettori colonna.

Inoltre, in tal caso, la matrice A è unica e coincide con DF(a).

La regola della catena

Di fondamentale importanza è capire come si comporta la differenziabilità di funzioni rispetto alla composizione.

Intanto, siano $U \subseteq \mathbb{R}^n$ e $V \subseteq \mathbb{R}^m$, e si considerino le due funzioni $F: U \to \mathbb{R}^n$ e $G: V \to \mathbb{R}^p$;

supponendo che valga $F(U)\subseteq V$ risulta ben definita da U in \mathbb{R}^p la composizione $H=G\circ F$.

Possiamo scrivere le funzioni coordinate di H in termini di quelle di F e G:

$$h^i(x)=g^i\circ F(x)=g^iig(f^1(x),\ldots,f^m(x)ig),\quad {
m con}\ i=1,\ldots,p.$$

Il risultato che lega la differenziabilità di H alla differenziabilità di F e G, è dato dal seguente

Teorema 1.1.9 (Regola della catena).

Siano $U \subseteq \mathbb{R}^n$ e $V \subseteq \mathbb{R}^m$ aperti.

Siano $F:U\to\mathbb{R}^n$ e $G:V\to\mathbb{R}^p$ due funzioni, e si assuma $F(U)\subseteq V$.

Si supponga che F sia differenziabile in $a \in U$, e che G sia differenziabile in F(a).

La funzione composta $H=G\circ F$ è differenziabile in a, e vale

$$\mathrm{D}H(a) = \mathrm{D}G\big(F(a)\big) \cdot \mathrm{D}F(a) \; ,$$

dove "·" denota il prodotto matriciale.

Questo teorema permette anche di dimostrare il seguente

\supseteq Corollario 1.1.10 (Le classi C^r sono chiuse rispetto alla composizione).

Siano $U \subseteq \mathbb{R}^n$ e $V \subseteq \mathbb{R}^m$ aperti.

Siano $F:U\to\mathbb{R}^n$ e $G:V\to\mathbb{R}^p$ due funzioni, e si assuma $F(U)\subseteq V$.

Si supponga che F e G siano di classe C^r nel loro dominio, con $r \in \mathbb{N}^+$ o $r = \infty$.

La funzione composta $H = G \circ F$ è anch'essa di classe C^r su U.

Diffeomorfismi; il teorema della funzione inversa

₩ Definizione 1.1.11 (Diffeomorfismo).

Siano $U \subset \mathbb{R}^n$ e $V \subset \mathbb{R}^m$ insiemi aperti.

Una funzione $F:U \to V$ si dice diffeomorfismo di classe C^r (o semplicemente C^r -diffeomorfismo) quando:

- F è un omeomorfismo;
- Sia F che F^{-1} sono di classe C^r .

Ci soffermeremo esclusivamente sul caso $r = \infty$, per cui utilizziamo semplicemente il termine diffeomorfismo.

Nota: Il motivo per cui richiediamo che sia F che F^{-1} siano di classe C^r , è perché desideriamo che la relazione di diffeomorfismo tra sottoinsiemi aperti di \mathbb{R}^n sia simmetrica (cioè il fatto che F sia un C^r -diffeomorfismo implichi che F^{-1} sia anch'essa un C^r -diffeomorfismo).

Difatti, la differenziabilità di F^{-1} non è una conseguenza di quella di F, anche quando F è un omeomorfismo.

Se ad esempio si considera $F: \mathbb{R} \to \mathbb{R}: t \mapsto t^3$, questa funzione è un omeomorfismo tra \mathbb{R} e sé stesso, di classe C^{∞} , ma la funzione inversa $F^{-1}: \mathbb{R} \to \mathbb{R}: s \mapsto \sqrt[3]{s}$ non è nemmeno di classe C^1 sul dominio poiché non è derivabile per s=0.

Consideriamo due esempi di diffeomorfismi da \mathbb{R}^n a \mathbb{R}^n .

@ Esempio 1.1.12 (Le traslazioni sono diffeomorfismi).

Sia $F: \mathbb{R}^n \to \mathbb{R}^n$ una traslazione, dunque con una legge del tipo

$$F(x^1,\ldots,x^n)=(x^1+a^1,\ldots,x^n+a^n)$$

Le funzioni coordinate $f_i(x^1,\ldots,x^n)=x^i+(b^i-a^i)$ sono di classe C^∞ , dunque F è tale;

inoltre, F è invertibile, e la sua inversa F^{-1} è anch'essa una traslazione (che nello specifico ha legge $(x^1, \dots, x^n) \mapsto (x^1 - a^1, \dots, x^n - a^n)$), è quindi anch'essa C^{∞} .

Quindi, F è un diffeomorfismo.

@ Esempio 1.1.13 (Applicazioni lineari che sono diffeomorfismi).

Sia $T: \mathbb{R}^n \to \mathbb{R}^n$ una trasformazione lineare (che dunque è di classe C^{∞}), la cui legge si può quindi scrivere come

$$T(x) = A \cdot x$$

dove x si scrive come una matrice colonna $n \times 1$ e A è una matrice $n \times n$;

semplici calcoli mostrano che $\mathrm{D}T(x)=A$ per ogni $x\in\mathbb{R}^n$.

Se $\det(A) \neq 0$, allora A è invertibile e la funzione S definita ponendo $S(x) = A^{-1}x$ è esattamente l'inversa di T, che quindi è anch'essa di classe C^{∞} .

D'altra parte, se det(A) = 0, allora T non è iniettiva.

Ne viene che F è un diffeomorfismo se e solo se $DF(\mathbf{x}) = A$ è non singolare.

Indichiamo adesso una conseguenza notevole della regola della catena.

Proposizione 1.1.14 (Invarianza della dimensione e Jacobiana per diffeomorfismi).

Siano $U\subseteq\mathbb{R}^n$ e $V\subseteq\mathbb{R}^m$ sottoinsiemi aperti;

sia $F: U \to V$ sia un diffeomorfismo.

Vale m = n; inoltre, per ogni $a \in U$, la Jacobiana DF(a) è invertibile, con $DF(a)^{-1} = D(F^{-1})(F(a))$.

Dimostrazione

Abbiamo $F^{-1} \circ F = \mathrm{id}_U$ da cui segue, per la regola della catena, che vale

$$\mathbf{I}_n = \mathrm{D}(\mathrm{id}_U)(a) = \mathrm{D}(F^{-1})ig(F(a)ig)\cdot \mathrm{D}F(a),$$

per ogni $a \in U$.

Similmente, avendosi $F \circ F^{-1} = \mathrm{id}_V$ troviamo anche che $\mathbf{I}_m = \mathrm{D}F(a) \cdot \mathrm{D}(F^{-1})\big(F(a)\big)$ per ogni $a \in U$.

Da queste due uguaglianze deduciamo che DF(a) è una matrice quadrata invertibile con inversa $D(F^{-1})(F(a))$ (in quanto le applicazioni lineari associate a queste due matrici sono una l'inversa dell'altra), da cui segue quindi che m = n.

Quindi, due sottoinsiemi aperti di \mathbb{R}^m e \mathbb{R}^n rispettivamente non possono essere diffeomorfi, se $m \neq n$.

Sulle funzioni lisce abbiamo dei risultati cruciali, che ci dicono essenzialmente che il comportamento locale di una funzione liscia è modellato dal comportamento della sua derivata totale.

Teorema 1.1.15 (Della funzione inversa).

Siano U e V siano sottoinsiemi aperti di \mathbb{R}^n ; sia $F:U\to V$ una funzione di classe C^∞ .

Sia $p \in U$ tale che DF(a) sia invertibile.

Esiste allora un intorno $U_0 \subseteq U$ di a tale che $V_0 = F(U_0)$ sia aperto, e $F: U_0 \to V_0$ sia un diffeomorfismo.

Questo è uno dei teoremi fondamentali dell'analisi ordinaria; esso presenta conseguenze di una certa importanza, come mostra il seguente

🔁 Corollario 1.1.16 (Al teorema della funzione inversa).

Sia $U\subseteq\mathbb{R}^n$ aperto; sia $F:U\to\mathbb{R}^n$ una funzione di classe C^∞ .

Si hanno i seguenti fatti:

- Se la Jacobiana DF è invertibile in ogni punto di U, allora F è una funzione aperta (cioè manda U e i suoi aperti in aperti di \mathbb{R}^n);
- Condizione necessaria e sufficiente affinché F sia un diffeomorfismo tra U e F(U) è che essa sia iniettiva e DF sia non singolare in ogni punto di U.