DECISION TREE

Anurag Nagar

What is a DT?

Decision Tree

■ 2-D case

GPA	Years Exp	Internship
4.0	0	0
3.0	1	0
3.4	4	1
3.6	0	0
3.8	4	1
2.5	3	1

Of course, you could start with Exp as the first sorting or splitting criteria and get a different tree.

Decision Tree - Representation

- In this class, DT is a way to represent concepts & hypothesis about a target concept
- Can be written in form of rules

IF $\exp > 3$ and GPA > 3.5 THEN internship = 1

- Leaf nodes decide values of output variable
- Internal nodes & edges represent splitting (sorting) criteria.
- We will consider Boolean attributes and output.
- Given instances with n Boolean attributes i.e. each Xⁱ is of the form:

$$X^{i} = (x1, x2, ..., xn)$$
 e.g. $X^{i} = (0, 1, ..., 0)$

How will you represent one hypothesis

=> A binary tree

Properties of Binary Trees

- A complete binary tree of height h has 2^{h+1} -1 nodes
- Number of nodes at depth d is 2^d

Properties of Binary Trees

- A complete binary tree of height h has 2^{h+1} -1 nodes
- Number of nodes at depth d is 2^d

Learning a DT

Use of DT in learning

- Use the training examples and their labels to construct decision tree
- For example, (X^1, y^1) could be ((0, 0, 0), 1)
- You can use DT to model knowledge from training data.

A Decision tree for

F: <Outlook, Humidity, Wind, Temp> → PlayTennis?

Each internal node: test one discrete-valued attribute X_i

Each branch from a node: selects one value for X_i

Each leaf node: predict Y (or $P(Y|X \in leaf)$)

Using DT to represent hypotheses

- Internal nodes test the value of particular features x_j and branch according to the results of the test.
- Leaf nodes specify the class $h(\mathbf{x})$.

Suppose the features are **Outlook** (x_1) , **Temperature** (x_2) , **Humidity** (x_3) , and **Wind** (x_4) . Then the feature vector $\mathbf{x} = (Sunny, Hot, High, Strong)$ will be classified as **No**. The **Temperature** feature is irrelevant. (c) Anurag Nagar - Do Not Distribute

Decision trees divide the feature space into axis-parallel rectangles, and label each rectangle with one of the K classes.

(c) Anurag Nagar - Do Not Distribute

11

Hypothesis Space of DT

As the number of nodes (or depth) of tree increases, the hypothesis space grows

- depth 1 ("decision stump") can represent any boolean function of one feature.
- **depth 2** Any boolean function of two features; some boolean functions involving three features (e.g., $(x_1 \land x_2) \lor (\neg x_1 \land \neg x_3)$
- etc.

Finding the best split (also called sort)

DT – How to find best sorting?

- Which attribute should
 I sort (split) on first?
 It DOES make a
 difference.
- Informally, we want that split that gives maximum purity at each node i.e. split such that all instances are of a single class (or close to it).

Which test is more informative?

Split over whether applicant is employed

Unemployed

Employed

Entropy

Entropy is a measure of Information Content (IC).

$$H(X) = \sum -p_i \log_2 p_i$$

where pi is the probability of the ith class.

If you think deeply, it is the expected value of $-\log_2 p_i$ or $\log(1/p_i)$.

This quantity is also known as information of an attribute.

Also, H(x) can be thought of as the number of bits needed to encode a dataset • Entropy = $\sum_{i} -p_{i} \log_{2} p_{i}$

p_i is the probability of class i

Compute it as the proportion of class i in the set.

16/30 are green circles; 14/30 are pink crosses
$$log_2(16/30) = -.9$$
; $log_2(14/30) = -1.1$
Entropy = $-(16/30)(-.9) - (14/30)(-1.1) = .99$

 Entropy comes from information theory. The higher the entropy the more the information content.

What does that mean for learning from examples?

 What is the entropy of a group in which all examples belong to the same class?

$$-$$
 entropy = - 1 $\log_2 1 = 0$

not a good training set for learning

$$-$$
 entropy = $-0.5 \log_2 0.5 - 0.5 \log_2 0.5 = 1$

good training set for learning

(c) Anurag Nagar - Do Not Distribute

Minimum impurity

Maximum impurity

Entropy of a binary random variable

- Entropy is maximum at p=0.5
- Entropy is zero and p=0 or p=1.

Information Gain

- We want to determine which attribute in a given set of training feature vectors is most useful for discriminating between the classes to be learned.
- Information gain tells us how important a given attribute of the feature vectors is.
- We will use it to decide the ordering of attributes in the nodes of a decision tree.

Information Gain

- Suppose you just know the class labels initially.
- Then you know one of the attributes.
 - Soes it really help you?
 - => Do you get any information gain or reduction in entropy?
 - => Do you get any increase in purity of the classes by knowing an attribute?

Mean the same thing

Information Gain

- Information Gain (IG) is defined as:
 - IG = Parent Entropy Average Entropy of children
- Average entropy of children: Probability weighted entropy of all the child nodes. $= \frac{C_1}{P} \times H_1 + \frac{C_2}{P} \times H_2 + \dots + \frac{C_n}{P} \times H_n$
- Information Gain (IG) = = H $-(\frac{C_1}{P} \times H_1 + \frac{C_2}{P} \times H_2 + \dots + \frac{C_n}{P} \times H_n)$

Parent has P data instances and entropy of H After splitting into n child nodes:

 ${
m Child_1}$ has ${
m C_1}$ data instances and entropy of ${
m H_1}$ ${
m Child_2}$ has ${
m C_2}$ data instances and entropy of ${
m H_2}$

 $\overset{\dots}{\text{Child}_n}$ has C_n data instances and entropy of H_n

Example of IG

Predicting credit risk

<2 years at current job?	missed payments?	defaulted?
Z	z	Z
Y	Ν	Y
N	Ν	N
N	Ν	N
N	Y	Y
Y	Ν	N
N	Y	N
N	Y	Y
Y	N	N
Y	N	N

Class attribute is defaulted? Independent Attributes - the first two

How many bits does it take to specify the attribute of 'defaulted?'

$$H(Y) = -\sum_{i=Y,N} P(Y = y_i) \log_2 P(Y = y_i)$$

$$= -0.3 \log_2 0.3 - 0.7 \log_2 0.7$$

$$= 0.8813$$

Can you do better than this by knowing another attribute?

IG

Back to the credit risk example

$$\begin{split} H(Y|X) &\equiv -\sum_{x} P(x) \sum_{y} P(y|x) \log_{2} P(y|x) \\ &= -\sum_{x} P(x) \sum_{y} P(Y=y|X=x) \log_{2} P(Y=y|X=x) \\ &= -\sum_{x} P(x) \sum_{y} H(Y|X=x) \end{split}$$

Predicting credit risk

<2 yrs	missed	def?		
N	Z	Ν		
Y	Z	Y		
N	Z	Z		
N	Ν	z		
N	Y	Y		
Υ	Z	z		
N	Y	Z		
N	Y	Y		
Υ	Z	Ν		
Y	Z	Z		

$$H(\text{defaulted}|<2\text{years}=\text{N}) \ = \ -\frac{4}{4+2}\log_2\frac{4}{4+2} - \frac{2}{6}\log_2\frac{2}{6} = 0.9183$$

$$H(\text{defaulted}|<2\text{years}=Y) \ = \ -\frac{3}{4}\log_2\frac{3}{4}-\frac{1}{4}\log_2\frac{1}{4}=0.8133$$

$$H(\text{defaulted}|<2\text{years}) = \frac{6}{10}0.9183 + \frac{4}{10}0.8133 = 0.8763$$

Average entropy given value of "<2years" attribute

$$H(\text{defaulted}|\text{missed} = N) = -\frac{6}{7}\log_2\frac{6}{7} - \frac{1}{7}\log_2\frac{1}{7} = 0.5917$$

$$H(\text{defaulted}|\text{missed} = Y) = -\frac{1}{3}\log_2\frac{1}{3} - \frac{2}{3}\log_2\frac{2}{3} = 0.9183$$

$$H(\text{defaulted}|\text{missed}) = \frac{7}{10}0.5917 + \frac{3}{10}0.9183 = 0.6897$$
(c) Anurag Nagar - Do Not Distribute

Average entropy given value of "missed" attribute

25

IG

 We now have the entropy - the minimal number of bits required to specify the target attribute:

$$H(Y) = \sum_{y} P(y) \log_2 P(y)$$

The conditional entropy - the remaining entropy of Y knowing X

$$H(Y|X) = -\sum_{x} P(x) \sum_{y} P(y|x) \log_2 P(y|x)$$
 values represented by x y represents the possible

Attribute X has different class labels

- So we can now define the reduction of the entropy after learning Y.
- This is known as the mutual information between Y and X

$$I(Y;X) = H(Y) - H(Y|X)$$

Entropy

Original Average entropy after sorting on attribute X

So... which attribute should I split on?


```
H({
m defaulted}) - H({
m defaulted}|< 2 {
m years})
0.8813 - 0.8763 = 0.0050
H({
m defaulted}) - H({
m defaulted}|{
m missed})
0.8813 - 0.6897 = 0.1916
```


Calculating Information Gain

Information Gain = entropy(parent) – [average entropy(children)]

child entropy
$$-\left(\frac{13}{17} \cdot \log_{2} \frac{13}{17}\right) - \left(\frac{4}{17} \cdot \log_{2} \frac{4}{17}\right) = 0.787$$

Entire population (30 instances)

Sorting on some attribute

17 instances

child entropy
$$-\left(\frac{1}{13} \cdot \log_2 \frac{1}{13}\right) - \left(\frac{12}{13} \cdot \log_2 \frac{12}{13}\right) = 0.391$$

parent
$$-\left(\frac{14}{30} \cdot \log_2 \frac{14}{30}\right) - \left(\frac{16}{30} \cdot \log_2 \frac{16}{30}\right) = 0.996$$

entropy

13 instances

(Weighted) Average Entropy of Children =
$$\left(\frac{17}{30} \cdot 0.787\right) + \left(\frac{13}{30} \cdot 0.391\right) = 0.615$$

Information (Aniag Naga D D Not Distribute 615 = 0.38 for this split

Calculating IG

$$E(S) = E(29, 35)$$

$$E(X1) = E(21, 5)$$

$$E(X2) = E(30, 8)$$

$$IG = E(S) - [26/64 * E(X1) + 38/64 * E(X2)]$$

Information Gain

Gain(S, A) = expected reduction in entropy due to sorting on A

$$Gain(S, A) \equiv Entropy(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$

Available attributes= {a1, a2, ..., an}

Use IG to build a tree

- Start at the root of the tree (N1) and choose the best attribute according to IG. Let's say it is a1
- Create its children according to possible values of a1.
 If a1 is Boolean, it will have 2 values 0 and 1.
- These two nodes will be the leaf nodes for now -> since we haven't constructed whole tree yet.
- Also, these two nodes will have only less attribute to choose from. Their available choices will be {a2, ..., an}
- Similarly create the rest of the tree, choosing the best attribute at each step.
- Terminating Condition:
 - The node is pure in terms of class label.
 - There are no more attributes remaining.

ID3 algorithm

Top-Down Induction of Decision Trees

[ID3, C4.5, Quinlan]

node = Root

Main loop:

- 1. $A \leftarrow \text{the "best" decision attribute for next } node$ one that gives
- 2. Assign A as decision attribute for node
- 3. For each value of A, create new descendant of node
- 4. Sort training examples to leaf nodes Note: These newly created nodes will be leaf nodes for now
- 5. If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes

(c) Anurag Nagar - Do Not Distribute

ID3 algorithm

Simpler version

ID3 (node, {attributes})

- 1. Let A = best attribute among {attributes} according to IG
- 2. Sort according to A and create child nodes (which will be leaf nodes for

now)

```
3. For all the child nodes

If it is pure or {attributes} is empty,

STOP

else
```

call ID3(childNode, {attributes} - A) /* Recursive Call */

Worked out example

- Please see the handout/notes for a worked out example using ID3
- Remember:
- For each node, you have to find the best attribute
- You can only use an attribute once along a path. So, a node needs to inherit a list of attributes from its parent class
 - -> You have to program this. ©
- At the leaf node, find the majority class (by count). Use that for the prediction rule.

Does it really matter which attribute comes first?

■ ID3 helps us in selecting the shortest i.e. most compact tree

- ID3 performs heuristic search through space of decision trees
- It stops at smallest acceptable tree. Why?

Occam's razor: prefer the simplest hypothesis that fits the data

ID3 is a greedy algorithm Top-down induction of trees

Problem with DT

Problem with DT?

- Over-zealous learner -> learns all features
- What if there is noise?
- DT will try to change everything??
- Consider tree below:

What would happen if you get noisy data point

Sunny, Hot, Normal, Strong, PlayTennis = No

Overfitting

You train on the <u>training dataset</u>

The data that the learner trains with.

- => It is possible to design a DT that gives 100% accuracy on training data. Think how?? e.g. each instance gets its own leaf node
- But is that a good thing?
- => NO! Because you are in fact memorizing (rote learning) the training data
- => No room for generalization, it's a case of Overfitting
- So, you have to find a balance between underfitting (learning very little) and overfitting.
- Notation:

Training error of hypothesis $h = e_{train}(h)$ True error (on unseen data) of hypothesis $h = e_{true}(h)$

Overfitting

Consider a hypothesis h and its

- Error rate over training data: $error_{train}(h)$
- True error rate over all data: $error_{true}(h)$

We say h overfits the training data if

$$error_{true}(h) > error_{train}(h)$$

Amount of overfitting =

$$error_{true}(h) - error_{train}(h)$$

Overfitting in Decision Tree Learning

How to avoid overfitting?

1. Stop growing when splits are not statistically significant (TOUGHER PROBLEM)

OR

2. Grow full tree then post-prune i.e. remove nodes and see if true error decreases (EASIER PROBLEM)

How to avoid overfitting?

- Keep another dataset -> validation dataset
- Build model on training, test accuracy on validation
- Learn model from training dataset.
- Randomly remove nodes and see if validation accuracy improves

Reduced-Error Pruning

Split data into *training* and *validation* set

Create tree that classifies *training* set correctly

Do until further pruning is harmful:

- 1. Evaluate impact on validation set of pruning each possible node (plus those below it)
- 2. Greedily remove the one that most improves validation set accuracy

(c) Algorithm Set Accuracy: 80%

Validation Set Accuracy: 85%

Validation Set Accuracy: 90%

Validation Set Accuracy: 50%

Final Decision Tree

What have we learnt?

- Idea of DT
- Number of instances (leaf nodes) and hypotheses
- How to choose best sorting attribute for each node
- How to induce top-down tree using ID3
- What is overfitting
- Avoiding overfitting