

UNCLASSIFIED

AD NUMBER

AD903337

NEW LIMITATION CHANGE

TO

Approved for public release, distribution
unlimited

FROM

Distribution authorized to U.S. Gov't.
agencies only; Test and Evaluation; Sep
1972. Other requests shall be referred to
Commander, Naval Ship Systems Command,
[Navy], Attn: Code 12052, Washington, DC.

AUTHORITY

USNNSSC ltr, 2 Jul 1976

THIS PAGE IS UNCLASSIFIED

Radian Corporation

8500 SHOAL CREEK BLVD. • P. O. BOX 9948 • AUSTIN, TEXAS 78757 • TELEPHONE 512/454-9535

AD903337

Radian Corporation

8500 SHOAL CREEK BLVD. • P. O. BOX 9948 • AUSTIN, TEXAS 78766 • TELEPHONE 512/454-9535

• TELEPHONE 513/54-9535

A large, solid black oval shape is drawn over the bottom portion of the contact information, obscuring the address and some of the phone number.

FINAL REPORT

CONTRACT NO. N00024-71-C-1246

SUPPORT TASKS FOR TRANSDUCER
ANALYSIS AND DIFFRACTION
INVESTIGATIONS

INVESTIGATIONS

Submitted to:

Commander
Naval Ship Systems Command
Department of the Navy
Washington, D.C.

Washington, D.C.
Code 12052

DDC
Rearview
SEP 18 1972
Reference
B

CHEMICAL RESEARCH • SYSTEMS ANALYSIS • COMPUTER SCIENCE • CHEMICAL ENGINEERING

Radian Corporation 8500 SHOAL CREEK BLVD. • P. O. BOX 9948 • AUSTIN, TEXAS 78766 • TELEPHONE 512-454-9535

TABLE OF CONTENTS

	<u>Page</u>
1.0 INTRODUCTION.....	1
2.0 TRANSDUCER ANALYSIS AND DESIGN.....	2
3.0 DIFFRACTION INVESTIGATIONS.....	4
APPENDIX A - Examples of SEADUCER Run Under UNIVAC 1108 EXEC II..	A-1
APPENDIX B - Scattering from Translucent Baffles.....	B-1

Radian Corporation

8500 SHOAL CREEK BLVD. • P. O. BOX 9948 • AUSTIN, TEXAS 78766 • TELEPHONE 512-454-9535

1.0

INTRODUCTION

This report describes the work performed by Radian Corporation on Contract No. N00024-71-C1246 from 1 July 1971 to 1 September 1972. This work consisted of on-site support to Naval Undersea Research and Development Center (NUC) personnel in the area of sonar transducer analysis and design. In addition, work was performed to investigate the effects of diffraction and transmission characteristics of planar baffles on passive array performance.

Radian Corporation 8500 SHOAL CREEK BLVD. • P. O. BOX 9948 • AUSTIN, TEXAS 78766 • TELEPHONE 512-454-9535

2.0

TRANSDUCER ANALYSIS AND DESIGN

This section describes the work performed in the on-site support to the Transducer and Array Systems Division of NUC, San Diego. This work involves the computer-aided transducer analysis and design using SEADUCER (Steady-state Evaluation and Analysis of TransDUCERs). This computer model is designed to model any linear system which can be described as an interconnection of multi-port networks; however, its function for this contract was related strictly to sonar transducers. The on-site support included the following tasks:

- Reformat magnetic tapes supplied to NUC by General Dynamics/Electric Boat Division that contained impedances and velocities to be compatible with SEADUCER input format.
- Design and set up SEADUCER runs to analyze the properties of the 3C5 transducer elements varying the element configuration.
- Review documentation of Modest Improvement Plan (MIP) for the TR-208 active transducer element.
- Convert SEADUCER from UNIVAC 1108 EXEC 8 to UNIVAC 1108 EXEC II, and execute several example runs.

Reformatting the 9 track magnetic tapes to a format compatible with the SEADUCER input format was accomplished via subroutines written for the NUC UNIVAC 1108 facility. The data on the tapes supplied by GD/EB were impedance matrices and

Radian Corporation

8500 SHOAL CREEK BLVD. • P. O. BOX 9948 • AUSTIN, TEXAS 78766 • TELEPHONE 512-454-9535

velocities for different heads for the 3C5 transducer. The impedances matrices were reduced to determine an array of unique impedances to be used in the computation of various performance variables as a function of frequency. This process was done to reduce the computation time associated with the performance variables.

Radian assisted NUC personnel in the design and set-up of a single frequency design run to analyze the 3C5 element (Run No. 80168). The analysis consisted of examination of the element without a can, and then adding the can and mounts to determine their effect on the element performance. The 3C5 element was also analyzed with different transducer heads that were designed by GD/EB.

The documentation of the Modest Improvement Plan was reviewed by Radian. This documented work performed by NUC and assisted by Radian for improvement at the performance of the TR-208 active transducer element. The analysis consisted of computed critical performance variables as a function of frequency and displaying these via a Calcomp plotter.

The SEADUCER computer model was implemented at the Radian facility which utilizes a UNIVAC 1108 operating under the EXEC II operating system. This required some minor changes in control cards from the NUC UNIVAC 1108 EXEC 8 version. Radian converted the magnetic tape supplied by NUC using a program supplied by UNIVAC. After conversion of the tape, the model was checked by running the example runs that are included in the SEADUCER model documentation. Two of these example runs are included in Appendix A.

3.0

DIFFRACTION INVESTIGATIONS

This section describes the support effort that Radian has provided in connection with NUC investigations on passive-array baffle design. These efforts have been concerned with developing a computer model to investigate the effects of diffraction and transmission characteristics of planar baffles on passive-array performance.

The modeling efforts represent one facet of an overall exploratory development program whose objective is to provide design guidelines for improved baffles to enhance the low frequency, passive performance of wide aperture arrays. Due to the increased size and weight requirements associated with extending the conventional puffs baffle concept to lower frequencies, the goal of the development effort is to examine possible alternatives to design a functional baffle which is effective in shielding the array from internal machinery noise and simultaneously enhances low frequency, passive-array performance.

In connection with this program, Radian's support efforts have involved development of a computer model to characterize the scattering and transmission properties of planar strip baffles. To date a working computer model has been developed for calculating the pressure field in the vicinity of a planar baffle which accounts for the combined effects of transmission and diffraction from a half plane. A version of this computer program is operational on the UNIVAC 1230 at NUC and is being used in conjunction with an experimental investigation of scattering from rectangular plates of various materials for a wide range of frequencies. In addition, this model is currently being generalized to treat the case of a planar strip baffle according to the approach outlined in Appendix B.

Radian Corporation 1500 SHOAL CREEK BLVD. • P. O. BOX 9948 • AUSTIN, TEXAS 78766 • TELEPHONE 812-454-9325

These efforts represent an initial attempt, as part of a continuing investigation, toward the synthesis of a valid composite math model to perform parametric analyses of significant baffle parameters on performance of passive-arrays.

Radian Corporation 8500 SHOAL CREEK BLVD. • P. O. BOX 9948 • AUSTIN, TEXAS 78766 • TELEPHONE 512-454-9535

Appendix A

Examples of SEADUCER Run Under UNIVAC 1108 EXEC II.

Radian Corporation

6500 SHOAL CREEK BLVD. • P. O. BOX 1948 • AUSTIN, TEXAS 78766 • TELEPHONE 512-454-9535

This appendix shows examples of the SEADUCER model run under UNIVAC 1108 EXEC II. The purpose of this task was to demonstrate that the SEADUCER model was written in standard FORTRAN and could operate under different operating systems, and also on different types of computers. The task also made available to potential users of the model a version that had compiled and executed correctly under the EXEC II operating system.

The first example presented here is a single frequency transducer element design. The transducer element is described by defining network interconnections and specifying individual network types. Then for a variety of tail lengths, ceramic areas, and ceramic lengths, the problem is to determine the number of ceramic pieces required to minimize the voltage-velocity control impedance, Z_{ec} . The second example is strictly a matrix calculation for a given transducer element configuration, and was included since it checks many of the features of the model.

卷之三

ESTATE PLANNING • RETIREMENT • INVESTMENTS

卷之三

0024	LC05T4	LC05T4
0031	HC4024	HC4024
0036	FNOTL	FNOTL
0043	CUPGAM	CUPGAM
0050	PRPTBL	PRPTBL
0055	NRDCS	NRDCS
0062	LC05T1	LC05T1
0067	LC05TR	LC05TR
0074	LC05T11	LC05T11
0081	LC05T25	LC05T25
0088	LC05T27	LC05T27
0095	LC05T29	LC05T29
0102	LC05T31	LC05T31
0109	LC05T34	LC05T34
0116	LC05T37	LC05T37
0123	LC05T40	LC05T40
0130	LC05T43	LC05T43
0137	LC05T46	LC05T46
0144	LC05T49	LC05T49
0151	LC05T52	LC05T52
0158	LC05T55	LC05T55
0165	LC05T58	LC05T58
0172	LC05T61	LC05T61
0179	LC05T64	LC05T64
0186	LC05T67	LC05T67
0193	LC05T70	LC05T70
0200	LC05T73	LC05T73
0207	LC05T76	LC05T76
0214	LC05T79	LC05T79
0221	LC05T82	LC05T82
0228	LC05T85	LC05T85
0235	LC05T88	LC05T88
0242	LC05T91	LC05T91
0249	LC05T94	LC05T94
0256	LC05T97	LC05T97
0263	LC05T99	LC05T99
0270	LC05T02	LC05T02
0277	LC05T05	LC05T05
0284	LC05T08	LC05T08
0291	LC05T11	LC05T11
0298	LC05T14	LC05T14
0305	LC05T17	LC05T17
0312	LC05T20	LC05T20
0319	LC05T23	LC05T23
0326	LC05T26	LC05T26
0333	LC05T29	LC05T29
0340	LC05T32	LC05T32
0347	LC05T35	LC05T35
0354	LC05T38	LC05T38
0361	LC05T41	LC05T41
0368	LC05T44	LC05T44
0375	LC05T47	LC05T47
0382	LC05T50	LC05T50
0389	LC05T53	LC05T53
0396	LC05T56	LC05T56
0403	LC05T59	LC05T59
0410	LC05T62	LC05T62
0417	LC05T65	LC05T65
0424	LC05T68	LC05T68
0431	LC05T71	LC05T71
0438	LC05T74	LC05T74
0445	LC05T77	LC05T77
0452	LC05T80	LC05T80
0459	LC05T83	LC05T83
0466	LC05T86	LC05T86
0473	LC05T89	LC05T89
0480	LC05T92	LC05T92
0487	LC05T95	LC05T95
0494	LC05T98	LC05T98
0501	LC05T01	LC05T01
0508	LC05T04	LC05T04
0515	LC05T07	LC05T07
0522	LC05T10	LC05T10
0529	LC05T13	LC05T13
0536	LC05T16	LC05T16
0543	LC05T19	LC05T19
0550	LC05T22	LC05T22
0557	LC05T25	LC05T25
0564	LC05T28	LC05T28
0571	LC05T31	LC05T31
0578	LC05T34	LC05T34
0585	LC05T37	LC05T37
0592	LC05T40	LC05T40
0600	LC05T43	LC05T43
0607	LC05T46	LC05T46
0614	LC05T49	LC05T49
0621	LC05T52	LC05T52
0628	LC05T55	LC05T55
0635	LC05T58	LC05T58
0642	LC05T61	LC05T61
0649	LC05T64	LC05T64
0656	LC05T67	LC05T67
0663	LC05T70	LC05T70
0670	LC05T73	LC05T73
0677	LC05T76	LC05T76
0684	LC05T79	LC05T79
0691	LC05T82	LC05T82
0698	LC05T85	LC05T85
0705	LC05T88	LC05T88
0712	LC05T91	LC05T91
0719	LC05T94	LC05T94
0726	LC05T97	LC05T97
0733	LC05T02	LC05T02
0740	LC05T05	LC05T05
0747	LC05T08	LC05T08
0754	LC05T11	LC05T11
0761	LC05T14	LC05T14
0768	LC05T17	LC05T17
0775	LC05T20	LC05T20
0782	LC05T23	LC05T23
0789	LC05T26	LC05T26
0796	LC05T29	LC05T29
0803	LC05T32	LC05T32
0810	LC05T35	LC05T35
0817	LC05T38	LC05T38
0824	LC05T41	LC05T41
0831	LC05T44	LC05T44
0838	LC05T47	LC05T47
0845	LC05T50	LC05T50
0852	LC05T53	LC05T53
0859	LC05T56	LC05T56
0866	LC05T59	LC05T59
0873	LC05T62	LC05T62
0880	LC05T65	LC05T65
0887	LC05T68	LC05T68
0894	LC05T71	LC05T71
0901	LC05T74	LC05T74
0908	LC05T77	LC05T77
0915	LC05T80	LC05T80
0922	LC05T83	LC05T83
0929	LC05T86	LC05T86
0936	LC05T89	LC05T89
0943	LC05T92	LC05T92
0950	LC05T95	LC05T95
0957	LC05T01	LC05T01
0964	LC05T04	LC05T04
0971	LC05T07	LC05T07
0978	LC05T10	LC05T10
0985	LC05T13	LC05T13
0992	LC05T16	LC05T16
0999	LC05T19	LC05T19
0006	LC05T22	LC05T22
0013	LC05T25	LC05T25
0020	LC05T28	LC05T28
0027	LC05T31	LC05T31
0034	LC05T34	LC05T34
0041	LC05T37	LC05T37
0048	LC05T40	LC05T40
0055	LC05T43	LC05T43
0062	LC05T46	LC05T46
0069	LC05T49	LC05T49
0076	LC05T52	LC05T52
0083	LC05T55	LC05T55
0090	LC05T58	LC05T58
0097	LC05T61	LC05T61
0104	LC05T64	LC05T64
0111	LC05T67	LC05T67
0118	LC05T70	LC05T70
0125	LC05T73	LC05T73
0132	LC05T76	LC05T76
0139	LC05T79	LC05T79
0146	LC05T82	LC05T82
0153	LC05T85	LC05T85
0160	LC05T88	LC05T88
0167	LC05T91	LC05T91
0174	LC05T94	LC05T94
0181	LC05T97	LC05T97
0188	LC05T02	LC05T02
0195	LC05T05	LC05T05
0202	LC05T08	LC05T08
0209	LC05T11	LC05T11
0216	LC05T14	LC05T14
0223	LC05T17	LC05T17
0230	LC05T20	LC05T20
0237	LC05T23	LC05T23
0244	LC05T26	LC05T26
0251	LC05T29	LC05T29
0258	LC05T32	LC05T32
0265	LC05T35	LC05T35
0272	LC05T38	LC05T38
0279	LC05T41	LC05T41
0286	LC05T44	LC05T44
0293	LC05T47	LC05T47
0300	LC05T50	LC05T50
0307	LC05T53	LC05T53
0314	LC05T56	LC05T56
0321	LC05T59	LC05T59
0328	LC05T62	LC05T62
0335	LC05T65	LC05T65
0342	LC05T68	LC05T68
0349	LC05T71	LC05T71
0356	LC05T74	LC05T74
0363	LC05T77	LC05T77
0370	LC05T80	LC05T80
0377	LC05T83	LC05T83
0384	LC05T86	LC05T86
0391	LC05T89	LC05T89
0398	LC05T92	LC05T92
0405	LC05T95	LC05T95
0412	LC05T01	LC05T01
0419	LC05T04	LC05T04
0426	LC05T07	LC05T07
0433	LC05T10	LC05T10
0440	LC05T13	LC05T13
0447	LC05T16	LC05T16
0454	LC05T19	LC05T19
0461	LC05T22	LC05T22
0468	LC05T25	LC05T25
0475	LC05T28	LC05T28
0482	LC05T31	LC05T31
0489	LC05T34	LC05T34
0496	LC05T37	LC05T37
0503	LC05T40	LC05T40
0510	LC05T43	LC05T43
0517	LC05T46	LC05T46
0524	LC05T49	LC05T49
0531	LC05T52	LC05T52
0538	LC05T55	LC05T55
0545	LC05T58	LC05T58
0552	LC05T61	LC05T61
0559	LC05T64	LC05T64
0566	LC05T67	LC05T67
0573	LC05T70	LC05T70
0580	LC05T73	LC05T73
0587	LC05T76	LC05T76
0594	LC05T79	LC05T79
0601	LC05T82	LC05T82
0608	LC05T85	LC05T85
0615	LC05T88	LC05T88
0622	LC05T91	LC05T91
0629	LC05T94	LC05T94
0636	LC05T97	LC05T97
0643	LC05T02	LC05T02
0650	LC05T05	LC05T05
0657	LC05T08	LC05T08
0664	LC05T11	LC05T11
0671	LC05T14	LC05T14
0678	LC05T17	LC05T17
0685	LC05T20	LC05T20
0692	LC05T23	LC05T23
0699	LC05T26	LC05T26
0706	LC05T29	LC05T29
0713	LC05T32	LC05T32
0720	LC05T35	LC05T35
0727	LC05T38	LC05T38
0734	LC05T41	LC05T41
0741	LC05T44	LC05T44
0748	LC05T47	LC05T47
0755	LC05T50	LC05T50
0762	LC05T53	LC05T53
0769	LC05T56	LC05T56
0776	LC05T59	LC05T59
0783	LC05T62	LC05T62
0790	LC05T65	LC05T65
0797	LC05T68	LC05T68
0804	LC05T71	LC05T71
0811	LC05T74	LC05T74
0818	LC05T77	LC05T77
0825	LC05T80	LC05T80
0832	LC05T83	LC05T83
0839	LC05T86	LC05T86
0846	LC05T89	LC05T89
0853	LC05T92	LC05T92
0860	LC05T95	LC05T95
0867	LC05T01	LC05T01
0874	LC05T04	LC05T04
0881	LC05T07	LC05T07
0888	LC05T10	LC05T10
0895	LC05T13	LC05T13
0902	LC05T16	LC05T16
0909	LC05T19	LC05T19
0916	LC05T22	LC05T22
0923	LC05T25	LC05T25
0930	LC05T28	LC05T28
0937	LC05T31	LC05T31
0944	LC05T34	LC05T34
0951	LC05T37	LC05T37
0958	LC05T40	LC05T40
0965	LC05T43	LC05T43
0972	LC05T46	LC05T46
0979	LC05T49	LC05T49
0986	LC05T52	LC05T52
0993	LC05T55	LC05T55
0007	LC05T58	LC05T58
0014	LC05T61	LC05T61
0021	LC05T64	LC05T64
0028	LC05T67	LC05T67
0035	LC05T70	LC05T70
0042	LC05T73	LC05T73
0049	LC05T76	LC05T76
0056	LC05T79	LC05T79
0063	LC05T82	LC05T82
0070	LC05T85	LC05T85
0077	LC05T88	LC05T88
0084	LC05T91	LC05T91
0091	LC05T94	LC05T94
0098	LC05T97	LC05T97
0105	LC05T02	LC05T02
0112	LC05T05	LC05T05
0119	LC05T08	LC05T08
0126	LC05T11	LC05T11
0133	LC05T14	LC05T14
0140	LC05T17	LC05T17
0147	LC05T20	LC05T20
0154	LC05T23	LC05T23
0161	LC05T26	LC05T26
0168	LC05T29	LC05T29
0175	LC05T32	LC05T32
0182	LC05T35	LC05T35
0189	LC05T38	LC05T38
0196	LC05T41	LC05T41
0203	LC05T44	LC05T44
0210	LC05T47	LC05T47
0217	LC05T50	LC05T50
0224	LC05T53	LC05T53
0231	LC05T56	LC05T56
0238	LC05T59	LC05T59
0245	LC05T62	LC05T62
0252	LC05T65	LC05T65
0259	LC05T68	LC05T68
0266	LC05T71	LC05T71
0273	LC05T74	LC05T74
0280	LC05T77	LC05T77
0287	LC05T80	LC05T80
0294	LC05T83	LC05T83
0301	LC05T86	LC05T86
0308	LC05T89	LC05T89
0315	LC05T92	LC05T92
0322	LC05T95	LC05T95
0329	LC05T01	LC05T01
0336	LC05T04	LC05T04
0343	LC05T07	LC05T07
0350	LC05T10	LC05T10
0357	LC05T13	LC05T13
0364	LC05T16	LC05T16
0371	LC05T19	LC05T19
0378	LC05T22	LC05T22
0385	LC05T25	LC05T25
0392	LC05T28	LC05T28
0399	LC05T31	LC05T31
0406	LC05T34	LC05T34
0413	LC05T37	LC05T37
0420	LC05T40	LC05T40
0427	LC05T43	LC05T43
0434	LC05T46	LC05T46
0441	LC05T49	LC05T49
0448	LC05T52	LC05T52
0455	LC05T55	LC05T

ECONOMIC GROWTH AND VASTNESS IN LITERATURE

卷之三

0001	000434	2336	0001	000453	2455
0001	000632	93L	0000	0	000005
0000	0	5E8AND	0013	0	000002
0015	0	000005	0012	0	000006
0000	0	000004	0012	0	000005
0000	0	000004	0014	0	000003
0000	0	000004	0012	0	000010
0000	R	0000038	0000	I	000051
0000	I	0000034	0016	I	000081
0011	I	000000	0000	I	000031
0000	I	000000	0000	I	000032
0000	I	000000	0000	I	000032
0000	I	000005C	0000	I	000076
0003	I	000115S	0037	I	000033
0000	I	0000024	0017	I	000001
0000	I	0000000	0003	I	000144
0003	I	0000000	0003	I	000764
0001	I	0000003	0000	I	000044
0002	I	0000002	0017	I	000032
0002	I	0000002	0000	R	000067
0000	R	0000072	0000	R	000047
0000	R	0000027	0000	R	000026
0000	R	0000054	0002	R	000072
0000	R	0000000	0000	R	000000

```

1* IMPLICIT DOUBLE PRECISION (D)
2* COMMON / CATALES / NAME(100), MRES SIZ(100), I PC(100),
3*          I TOT(100), I TYPE(100), N CT STATIC), LOCATION), I CLF 53
4* COMMON / SASIC 3 / D F, O CHEG1, D RI
5* COMMON / STA TOR / XX DATA
6* COMMON / CATAZIC / CATAZIC
7* COMMON / TOT L / ST L
8* COMMON / TOT WRT / ET MASS
9* COMMON / PCT OFF / NO PCT
10* COMMON / C FNU R? / I FNU PR
11* COMMON / CDESEN / RL P261, RL P221, RA C5D, NP GE MN, RA R201
12* COMMON / G4 EC TC / G4ECP, DREC1, EGICR, OGICI, DZECR, DZICR, DZIC
13* COMMON / C SP SCT / D NK, DSECT
14* COMMON / C SECTP / WTP SW
15* COMMON / FLS SOR4 / I NY SW, I FLC IC, I FLC SP, I FLC LC
16* COMMON / CNT FN4 / MIN SEP, MAX SKIP, HI POL 0

```



```

157* CALL LD DT11•Y223S•2702•81•R2223 •C•0•0•0•035354•5200•0•0•0•
156* CALL SLD MLL•9705•
CALL RDC PRT1 •R 705• •3505• )
157* OCCCMN = 1.E30
158* KRSI CHT = C
NP LO = 2
NP HI = 26
159* DC 100 N = NP LO, NP HI, 2
RL C3D = 0112E5
CALL LD DT11•CENS•,N, 75C8•21, RA C3D •C.0•S.C• RL C10.
160* E •14•1166•4• S.0C, -2419850-2•
G •2452070-1• C.0G, -167427-D-3•
S •9436950-11, C.0D, •1570290-2•
CALL FND T L •L R2D1• 3 1
RL 9231 = ST L - RL P2A1 - RL 9221
RA 9231 = 5•7•14CE-4
CALL LD DT11•32D1••7702.90, RA R2D1 • 0.0•0• RL R2D1•3970•0•0•0•)
161* TF ( NO PPT •EGC. U ) CALL PAGE
NO PRT = 0
NO PRT = 1
162* CALL SLD KKL(•A605•)
CALL RDC PRT1 •A605• •4205• )
163* IZ420 = LOC HTPR1•4D• 21
IZ420 = IZ420•9
CALL RDC PRT1 •A605• •4205• )
164* SCL Z TCA(172420, 1A62D)
165* IF ( NO P1 •HE•, 3 ) EO TO 99
CALL HEAD 241• A 420
CALL PRT MTR1(IA420, 2)
166* 99 CONTINUE
167* CALL LD & M25
CALL CHP GHW17A42D)
168* OCCMG = D59A1•35EC8••2•06EC1••2)
169* IF ( OCCMG •GE• D5ECMN ) GO TO 100
OCCMN = 06EC1S
PLSE MN = RL CED
170* NINICAT = MIN CAT + 1
171* 100 CONTINUE

```

```

1454 IFI MIN CNT .LT. 21 CALL HEAD244" NO MIN GAM EC
1455 IF ( MIN CNT .LT. 2 ) GO TO 200
1456 PPN P2 = 1
1457 IFN DP = C
1458 DL C3D = RLGE MN
1459 CALL FPUT DL C3D, DNAME, DNAME, DL MIN, DGECHN )
1460
1461 CALL FNCT MS
1462 RT MASS = DT MASS + RM Y224
1463 CALL FNFT L ( L NAMES, 4 )
1464 RT L = ST L + PL Y224
1465 IF ( NC.NP - E2.0 ) CALL PAGE
1466 SEM = 1.0-30
1467 DF BAND = 3500.00
1468 HTR GVN = 1
1469 *MAX*, *IC*, *P*, DRN )
1470 CALL SR M201 DF BAND,
1471 *FLG LC = C
1472 RTCHG = DSCHT LOGIC(2+BSICI*2)
1473 PFACT = DIRECT
1474 RPPGMN = NPGEN
1475 RTL3D = DL MIN * RPGEN
1476 RGECHN = DGECHN
1477 IF ( MI HDS -E2.0 ) GO TO 160
1478 MI HDS = 0
1479 CALL SKPLIN(1)
1480 PPOINT 142
1481 IF((IPUNCH.NE.0) PUNCH 5
1482 IF((IPUNCH.NE.0) PUNCH 149
1483 149 FORMATT
1484 / * REACTOR SEMIC IC GAM EC MIN* )
1485 16C CONTINUE
1486 IF(IPUNCH.NE.0) PUNCH 150,RL T2A1,RA C3D,RTLC3D,RTMASS,RTL,RREACT
1487 1 POINT 152, RL T2A1, RA C3D, RTLC3D, RTMASS, RTL, RREACT,
1488 / RGECHN, RPPGMN, NPGEN
1489 FC29211 3E10.4;
1490 FC29411 6E10.4; /21X, *N =* , IS /
1491
1492 200 CONTINUE
1493 C 200 EXIT C3D AREA LOOP
1494 CALL SKPLIN(1)
1495 300 CONTINUE

```

142 C 250 EXIT T2L LENGTH LOOP

143 *
144 *
145 *
146 *
147 *
148 *
149 *
150 *
151 *
152 *
153 *
154 *
155 *
156 *
157 *
158 *
159 *
160 *
161 *
162 *
163 *
164 *
165 *
166 *
167 *
168 *
169 *
170 *
171 *
172 *
173 *
174 *
175 *
176 *
177 *
178 *
179 *
180 *
181 *
182 *
183 *
184 *
185 *
186 *
187 *
188 *
189 *
190 *
191 *
192 *
193 *
194 *
195 *
196 *
197 *
198 *
199 *
200 *
201 *
202 *
203 *
204 *
205 *
206 *
207 *
208 *
209 *
210 *
211 *
212 *
213 *
214 *
215 *
216 *
217 *
218 *
219 *
220 *
221 *
222 *
223 *
224 *
225 *
226 *
227 *
228 *
229 *
230 *
231 *
232 *
233 *
234 *
235 *
236 *
237 *

CALL FND NAME(YZ••LYZ)
IAY224 = LOC(LYZ•4)
IAY224 = IAY274 • 8
CALL SPLIN(2)
CALL PES 240 • 4 Y274
CALL PET MTRIA Y224•2)
CALL SPLIN(2)
CALL HED 240 • 2 Y224
CALL SRT MTRIA Y224,2)
CALL PRSE
CALL PR PTBL
CALL PAGE
CALL PR CTLG
CALL PAGE
STOP
END

END OF UNIVAC 1108 FORTRAN V COMPIRATION.
SYMBOLIC
RELOCATABLE
CONTROL S
CONTROL R

0 *DIAGNOSTIC* MESSAGE(S)
23 JUN 71 14:23:29 0 00273476 14 94 (DELETED)
23 JUN 71 14:23:29 1 00276142 48 70 1 (DELETED)

16:56:21-112
SUBROUTINE RLR211 SUBROUTINE RLR211
LEVEL 2256 5523

SUBROUTINE RLR211 ENTRY POINT CC1167

STORAGE USED (BLOCK, NAME, LENGTH)

CC11	*CODE	003205
CC12	*DATA	003124
CC13	*BLANK	003310
CC14	CCYPR	000011
CC15	PRT OFF	000001
CC16	TCL	000002
CC17	GHECIC	000020
CC18	CCESN	000005
CC19		

EXTERNAL REFERENCES (BLOCK, NAME)

CC11	PAGE	0012	LDCT11	0013	FNDT
CC12	EDSPAT	0017	LOCCTR	0027	ZTCA
CC13	LDAM25	0024	XPSSAM	0025	PRMARI
CC14					

STORAGE ASSIGNMENT FOR VARIABLES (BLOCK, TYPE, RELATIVE LOCATION, NAME)

CC11	CC1121	SL	CC02	C	0000000 DAT A	CC06	D	0000002 D6ECI	0006	D	000000 DGECR
CC12	CC0006	DGICI	CC06	D	000004 DGICR	0010	0	000000 DSGRT	0005	D	000000 OTL
CC13	CC0012	DZECI	CC06	D	000010 DZEGR	CC06	D	000016 DZICI	0006	D	000014 DZICR
CC14	CC0013	I2A2D	CC03	I	000000 IFMYPR	0000	000072 INJPS	0000	I	000012 IIZAD	
CC15	CC0005	L	CC17	I	000005 LOCCTR	CC00	I	000005 LR201	CC03	I	000007 N
CC16	CC0006	NCPEV	CC04	I	000005 ACPECT	CC07	I	000005 NPCEMN	CC07	R	000002 RAC3D
CC17	CC0004	SER2D1	CC03	F	000010 RL201	CC07	R	000000 RL201	CC03	R	000011 RL201
CC18	CC0001	RLR221									

```

2*
3* DOUBLE PRECISION DX, DYL, DIM, DYS
4* DOUBLE PRECISION DATA
5* DOUBLE PRECISION DSQRT
6* COMMON / LOGI / DATA (1LOG)
7* COMMON / CMMN PR / I FNM PR
8* COMMON / FMT SEE / NC NFT
9* DOUBLE PRECISION CT L
10* DOUBLE PRECISION DSECR, DSEC1, DSICR, DZICI, DZECR, DZEC1, D7ICR, DZICI
11* COMMON / GMEC IC / DSECP, DGECP, D6ICR, DZECR, DZEC1, DZICR, DZICI
12* COMMON / COSEN / RL Q2A1, RL Q2Z1, RA C3D, NP GE MN, RA R2D1
13* DIMENSION L (22115)
14* DATA (L Q2D1 (L), L=1..3) / *VN* *EE* *CD* /
15* NO PRT = NO PRT
16* NO PRT = 1 - I FNM PR
17* IF ( NO PRT .EQ. 0) CALL PAGE
18* N = RP GE MN
19* RL C3D = DX
20* CALL LD DT 111*C3D5*N, 7528*21, RA C3D *C*0*0*0*, RL C3D
21* E *141166E04, 0*0D, -2419850*2*
22* G *245297D-1, P*0D, -187427D-3,
23* S *945495D-11, C*0D, -167029D-2
24* CALL FLD T L C L R2D1, 3
25* RL Q2D1 = DT L - RL Q2A1 - PL Q2Z1
26* CALL LD DT 1*Q2D1* *7702*3D, RA R2D1*0*0*0*, RL R201*4970*0*0*091
27* NO PRT = NO PR SW
28* CALL SLC KKL*AGDS*1
29* CALL RDC PRT1*AGDS*1 *A20S*1
30* IZAD2 = LOC MTR(TAA42D, 2)
31* IZAD2 = IZAD2+2
32* CALL 2 TO AIZA42D, IAIA2D)
33* IF ( NO PRT = NE - O ) GO TO 9
34* CALL HEAD 24*4 A2D
35* CALL PRT MTR(TAA42D, 2)
36* COUNTINUE
37* CALL LR A N2S
38* CALL CNP GAMMA42D)
39* DRL = DSEC2
40* DIM = DSEC1
41* DMG = DSCPT(DPL*2*DIM**2)
42* IF ( I FNM PR - EG - 0 ) RETURN
43* CALL HELG 241, GAMMA FC
44* CALL PR M2A1(1, *SEG*, DRL, OIM)

```

0044C 4E *
0044C 4F *

RETURN
END

END OF UNIVAC 1108 FORTPAN V COMPIILATION.
SPLITING S SYM3OLIC
SPLITING S RELOCATABLE

C *DIAGNOSTIC* MESSAGE(S)
23 JUN 71 14:25:41 0 00513172 14 40 (DELETED)
23 JUN 71 14:25:41 1 70514252 36 1 (DELETED)
0 00614316 14 10

BLANK COMMON 156704 153777
 STARTING ADDRESS 0140003
 ECFE LIMITS 0140000 050240 100000 1145C4 156675 156703

CONTROL/R	NSTOPS/PL22	DSORT /RL22	NERRS /RL23	SORT /RL22
0 1C00005-10C554	1 015153-015164	1 0151E5-015222 2 1C05E5-100576	0 100577-100736 1 C15223-015756	1 015757-016021 2 100737-100744
NIEFS /RL23	NFTVS /RL22	NCNWTS /RL23	NOTINS/RL23	
0 1C0745-1C0745	1 015321-017204	1 C17205-017227	1 017230-017447 2 1C1254-101140	1 017450-020036 2 101141-101203
1 C16022-016320	2 1D1046-101053			
2 1C0746-101037				
NIOINS/RL22	NCUTS /RL23	NTABS /RL22	NBOCVS/RL23	PRCTLG/R
1 0200337-320C105	0 101235-101242	0 101261-101620	0 101621-102004	0 1C2005-102063
2 101234-101234	1 C20105-021027			1 C21030-021104
	2 101243-101260			
PRPTBL/R	FNDMWS/R	SRM108/R	DACMUL/R	OCMMUL/R
0 1C22554-1C2143	C 1C2144-1C2156	0 102157-102531	C 102532-102541	0 1C2542-102551
1 C2111C5-021163	1 C21164-021227	1 C21233-022552	1 022563-022623	1 022624-022660
MTRKJL/R	CASCODE/P	AT02 /R	L228Y2/R	LA28Y2/R
0 1C22552-1C2652	C 102653-102572	C 102673-102733	0 1C2734-102745	0 1C2746-102757
1 022561-023123	1 023124-023360	1 023361-023606	1 023607-023636	1 023637-023666
PTPNCV/R	TYPICAL/P	TYPE25/2	TYPE24/R	DCRC1P/R
0 1C27EC-1C2776	0 1C2777-1C3024	C 103025-103045	C 103045-103066	0 1C3067-1C3076
1 023567-023735	1 023735-024217	1 C24220-024301	1 024302-024401	1 024402-024434
TYPE22/R	TYPE21/R	TYPE20/R	TYPE15/R	TP1415/R
0 1C27C7-1C3117	C 1C3125-1C3140	0 1C3141-103227	0 103230-103235	C 103236-103323
1 C24435-024533	1 C24534-C24614	1 024615-C25550	1 C25051-025075	1 025076-C25542

CSNCSS/R	DSHCK /R	CEXP /RL23	FATHA/RL22	DSINCO/RL22
C 1C3324-1C22343	C 103344-103361	C 103362-103363	1 C26124-026176	1 026177-025412
1 C25643-025725	1 C25726-025764	1 C25765-C26123	2 103475-103510	2 103511-103562
		2 103364-103474		
CSNCIV/R	Y14155/?	DISCGRT/R	CS1415/*/*/*/*	L239Y3/R
C 1C2563-1C3571	C 1C3577-1C35623	C IC2624-1C3662	0 1C3E53-1C3666	C 1C3667-103700
1 C26413-025460	1 C26461-C26723	1 C26724-027155		1 027156-027205
LS1415/R	CESSFP/*/*/*	CW1415/*/*/*/*	CWN15C/*/*/*/*	TYPE14/R
C 1C37C1-1C3714	C 1C3715-1C3722	C 1C3723-1C3754	0 1C3755-103756	0 1C3757-103754
C 27276-327254				1 027255-027301
TYPE11/R	DCSHCH/R	DCACSH/R	DACANG1/R	DATAN /RL22
C 1C3765-1C4056	0 1C4057-1C4075	0 1C4077-1C4122	0 1C4123-104153	1 030621-031016
1 C27302-C30316	1 C30317-C30375	1 C30377-C30470	1 030471-030620	2 104154-104305
SIOS /RL22	T11565/R	LD5311/R	CZ23Y3/*/*/*/*	TYPE7 /R
C 31317-031960	C 1C4372-1C4427	C 1C4430-1C4443	0 1C4444-104465	0 104466-104565
2 104305-104371	1 C31C61-C31355	1 031356-C31424		1 031425-032261
DECOM3/R	DLCG10/QL22	DCM50L/*/*/*/*	DECOND/*/*/*/*	VALDET/*/*/*/*
C 1C4565-1C5225	1 C34154-C342C2	C 1C5G17-1C5434	C 1C5435-1C5436	0 1C5437-105442
1 C322F2-034162	2 1C5CC6-1C5C16			
TYPE2 /R	TYPE1 /R	BLDMTR/R	FNDMTR/R	UNPACK/R
C 1C5443-1C5564	0 1C5565-1C5657	0 1C5660-1C5712	0 1C5713-105726	0 105727-106054
1 C34203-03454C	1 034541-034755	1 C34756-C35254	1 035255-035332	1 035333-036146
YEXP15/RL22	C3LD /*/*/*/*	C4P2S /P	PRMARI/R	FNDTHSS/R
1 036147-036202	0 1C6C56-1C6C56	C 1C6C57-1C6C77	0 1C610D-1C6141	C 1C6142-106172
2 106055-106055		1 036203-036235	1 036236-036340	1 036341-036450
FMFN /R	PPSFIT/R	RLIMMG/R	CGMMPR/*/*/*/*	POLED /R
C 1C6173-1C6213	C 1C6214-1C6265	C 1C6266-1C6371	C 1C6372-1C6372	C 1C6373-106526
1 C36451-036571	1 036572-C36734	1 C36735-C37141		1 037142-037504
CMPGAM/R	PRGMTR/*/*/*/*	CWN2S /*/*/*/*	LD4M2S/R	CFLGA2/*/*/*/*
C 1C6527-1C6624	0 1C6625-1C6625	C 1C6626-1C6631	0 1C6632-106714 -	0 106715-106715
1 C375C5-C37755			1 C37756-040261	
SRCHE5/*/*/*/*	POTMTP/R	ZTOA /R	C228Y2/*/*/*/*	CA29Y2/*/*/*/*
C 1C5715-1C6725	C 1C6726-1C6754	C 1C6755-1C7015	0 1C7015-107025	0 107026-107035

```

1 040262-040366 1 040367-040614
LOCMTR/R
0 1C7926-1G7C52
1 34C615-34C71
A10CD /R
0 107331-107355
1 041647-042047
FNCNET/R
C 1C7663-10771C
1 344C30-044211

FNDTL /R
D 107653-107114
1 34CF72-C41975

CONN1//***** 0 107356-107416
CPTIN//***** 0 107711-107711

LDMTR/R
0 107756-1100C2
1 C44266-544455

SKPLIN/R
0 1100C3-110014
1 C444E7-C44512

MINITS/RL23
0 110304-110305
1 C45593-346426
2 110306-110349

MININS/RL23
1 C46427-046566
2 110341-110417

LDPCT/R
0 110643-110730
1 047466-050011

UPPTBL/R
0 110731-110756
1 050012-050206

PAGE /R
0 113123-113131
1 C50224-050240

CMCIC/***** 0 113132-113134
COESGN/***** 0 113166-113172
CMNFMN/***** 0 113135-113140

CMNPR/***** 0 113173-113173
BASIC3/***** 5 113252-113207

END OF ALLOCATION 1103 00394 0

```

Copy available to DDC does not
permit fully legible reproduction

MCD 9 RUN RCC32 APR 23, 1970 \$ LIKE MOD 7 PUN 70335
FESIGN EUY S
LINES OF CONSTANT TAIL LENGTHS
CHARGE TO 16000501 ARRAY DESIGN

* * * * * 9D 7 NETWORK TABLE

S 137D, -♦111A, -♦1R24, \$
S 237D, 1E2E, \$
S 387D, 2R2A, \$
S 437D, 1R2Z, \$
S 537D, 2Y2Z, \$
S 637D, -♦2E2E, \$
S 737D, -♦1T13, 2R2Z, \$
S 837D, -♦1T13, 2Y2A, \$

* * * * * AD 6 NETWORK TABLE

S 1A6D, 3C2D, \$
S 246D, 535D, \$
S 346D, -♦2C3D, 2B6D, \$
S 4A6D, -♦1B5D, 1C3D, \$
S 546D, -♦3B5D, 1D2D, \$
S 646D, -♦435D, 2D2D, \$

TYPE 1 FHD 425A ID 00 LENGTH
E2E1S 4416.90 • 142261-C1 • 0000000 • 137394 • .009070 MASS
C REAL C 1M46 C MULT 0000000 • .59394
497C.00 • 0000000 • 0000000 • .0000000 MASS
• 09412

TYPE 1 FHD 425A ID 00 LENGTH
R2A1S 77'2.83 • 720233-02 • 0000000 • C31720 • .007248 MASS
C REAL C 1M46 C MULT 0000000 • 0000000 • 0000000 MASS
497C.00 • 0000000 • 0000000 • .0000000 MASS

TYPE 1 FHD 425A ID 00 LENGTH
A-15

Copy available to DDC does not
permit fully legible reproduction

	RHO	AREA	LENGTH	
TYPE 1 T231\$	7702.80 C REAL 4970.00	•790233-03 C 1WAG •000000	•000000 C MULt •000000	•000838 MASS •00510
TYPE 1 T232\$	7730.00 C REAL 4970.00	•228639-02 C 1W45 •000000	•000000 C MULt •000000	•003257 MASS •05937
TYPE 1 T233\$	7724.87 C REAL 4970.00	•152452-02 C 1W4G •000000	•000000 C MULt •000000	•003314 MASS •04311
TYPE 1 T254\$	7712.24 C PREAL 4970.00	•130699-02 C 1W4G •000000	•000000 C MULt •000000	•010214 MASS •10305
TYPE 1 V2H1\$	7731.80 C REAL 4970.00	•790233-03 C 1W46 •000000	•000000 C MULt •000000	•005679 MASS •04666
TYPE 1 V2H2\$	4416.90 C REAL 4820.00	•112776-01 C 1W4G •000000	•000000 C MULt •000000	•011370 MASS •56637
TYPE 1 V2H3\$	7788.48 C REAL 5116.00	•254984-02 C 1W45 •000000	•000000 C MULt •000000	•002224 MASS •04418
TYPE 1 A-16	RHO	AREA	LENGTH	

2700-01 .346119-02 .000000 .566575 .011370
C REAL C I446 C MUL1
5200-00 .000000 .000000 .000000 .000000
 000000
2700-01 .346119-02 .000000 .566575 .011370
C REAL C I445 C MUL1
5200-00 .000000 .000000 .000000 .000000
 000000
TYPE 4
Y223\$

UNIT MATRIX
1.000

PAGE 7 SCALE MATRIX NUMERATOR DENOMINATOR SYMMETRY
 FACTOR FORM ORDER ORDER FLAG
 I 1000+51 2 i -1
 IZES * 1000+51 2
 CUEF. TO CHECK NEW TYPE 7 WITH OLD TYPE 7
 POLYNOMIAL COEFFICIENTS FOR Z(I,J) = (C0+C1*F+...+1/(D0*D))*F+...

NUMERATOR POLYNOMIAL COEFFICIENTS FOR MATRIX ELEMENT (1, 1)
 0000000000 -85989996000+09
 0000000000 -7711482222+05
 0000000000 -954062000+01
 0000000000 -1627919982-02

DENOMINATOR POLYNOMIAL COEFFICIENTS FOR MATRIX ELEMENT (1, 1)
 0000000000 -9000000000
 0000000000 -8000000000

NUMERATOR POLYNOMIAL COEFFICIENTS FOR MATRIX ELEMENT (1, 2)
 0000000000 -8683080000+09
 0000000000 -7620410000+05
 0000000000 -1246739380+02
 0000000000 -1135119350-02

DENOMINATOR POLYNOMIAL COEFFICIENTS FOR MATRIX ELEMENT (1, 2)
 0000000000 -0000000000
 0000000000 -0000000000

NUMERATOR POLYNOMIAL COEFFICIENTS FOR MATRIX ELEMENT (2, 1)
 0000000000 -8F3165000+09
 0000000000 -774306500+05
 0000000000 -267139000+00
 0000000000 -1807459260-02

DENOMINATOR POLYNOMIAL COEFFICIENTS FOR MATRIX ELEMENT (2, 1)
 0000000000 -0000000000
 0000000000 -0000000000

F25 UNIT MATRIX
 E25 UNIT MATRIX
 S25 UNIT MATRIX

***** = 2520.000000 * * * *

TYPE 1
T2A1S
RHO 7832.48 AREA .217225-01 ID 00 LENGTH
C REAL C TW46 -000308 -166307 .038125
5.11E-00 C WLT MASS
3000000 300000 5.48656

REPLACE

TYPE 1
Y2Z3S
RHO 2702.61 AREA .245000-02 ID 00 LENGTH
C REAL C TW46 -000000 -035354
5.20E-00 C WLT MASS
300000 300000 23411

TYPE 11
C3D5
RHO 7535-21 AREA .490000-02 ID 00 LENGTH
C REAL C TW46 -000000 -513625
3743.27 312617-01 C WLT N PIECES MASS
312617-01 .935144-03 2 1.01324

TYPE 11
E331
RHO 1.911656000+004 ID 00 LENGTH
C REAL C TW46 -34119970+001 -241985000-002
633 -2452070000-001 -4595841239-005 -187427000-003
S330 -9404950000-011 -1570899394-013 -167029000-002

K33 -6664539643+000 -6940265089-004

TOTAL LENGTH = .061285 FOR SECTIONS VM EE CD

TYPE 1
P2D1S
RHO 7702.60 AREA .571140-02 ID 00 LENGTH
C REAL C TW46 -000000 -053199
4.97E-00 C WLT MASS
300000 300000 23404

Z SELF	MAG	ANG DEG	REAL	IMAG
	.5555555555	-3000000000	.0000000000	.0000000000
L T241	A C3D	L C3D	TOT MASS	TOT LENGTH
-3612-01	-4900-02	*1738+00	*1910+02	-3242+00
N = 12	N = 12	N = 12	N = 12	N = 12
*3812-01	*6500-02	-2086+00	-2315+02	*3590+00
N = 16	N = 16	N = 16	N = 16	N = 16
*3612-01	*7520-02	-2259+00	-2532+02	*3764+00
N = 16	N = 16	N = 16	N = 16	N = 16
*3812-01	*8100-02	-2345+00	-2747+02	*3850+00
N = 18	N = 18	N = 18	N = 18	N = 18
*3612-01	*1290-01	-2827+00	-4116+02	*4331+00
N = 20	N = 20	N = 20	N = 20	N = 20
*7625-01	*4900-02	-1291+00	-2372+02	*3176+00
N = 16	N = 16	N = 16	N = 16	N = 16
*7625-01	-6500-02	*1614+00	-2710+02	*3499+00
N = 12	N = 12	N = 12	N = 12	N = 12
*7625-01	*7520-02	-1782+00	-2944+02	*3658+00
N = 14	N = 14	N = 14	N = 14	N = 14
*7625-01	*8100-02	*1863+00	*3031+02	*3754+00
N = 16	N = 16	N = 16	N = 16	N = 16
*7625-01	*1290-01	-2387+00	-4315+02	*4273+00
N = 18	N = 18	N = 18	N = 18	N = 18
*7625-01	*4900-02	-1095+00	-2939+02	*3362+00
N = 8	N = 8	N = 8	N = 8	N = 8
*1144+00	-6500-02	*1385+00	*3236+02	*3552+00
N = 10	N = 10	N = 10	N = 10	N = 10
*1144+00	*7520-02	-1537+00	-3442+02	*3804+00
N = 12	N = 12	N = 12	N = 12	N = 12
-1144+00	*8100-02	*1615+00	*3553+02	*3882+00
N = 12	N = 12	N = 12	N = 12	N = 12
-1144+00	*1290-01	-2098+00	-4666+02	*4363+00
N = 16	N = 16	N = 16	N = 16	N = 16
1525+00	*4900-02	-9843-01	-3542+02	-3633+02
N = 8	N = 8	N = 8	N = 8	N = 8
-11525+00	-5000-02	-1252+00	-3813+02	-3901+02

* * * COMMON PRT TBL * * *

N	NET	SP	C	0	J	P	ORTS	N	NET	NET	NUM	NUM	N	N	LCJ
											APO	APO	AHEAD	BACK	ROW
1	1	1	1	1	7	8D	T4	1	1	1	-1	-1	4	0	1
2	1	1	1	1	2	RA	RA	1	2	2	-1	-3	3	0	858
3	1	1	1	1	2	SD	2	2	2	2	-3	-3	5	2	380
4	1	1	1	1	2	EE	2	3	4	4	-4	-4	6	1	2
5	1	1	1	1	2	RA	3	3	4	4	-3	-3	5	3	341
6	1	1	1	1	2	SD	R2	4	4	4	-4	-4	6	4	381
7	1	1	1	1	2	7	SD	5	5	5	-5	-5	6	13	419
8	1	1	1	1	2	7	SD	6	6	6	-6	-6	10	8	5
9	1	1	1	1	2	7	EE	6	6	6	-5	-5	10	15	652
10	1	1	1	1	2	7	SD	7	7	7	-7	-7	11	11	666
11	1	1	1	1	2	7	SD	8	8	8	-8	-8	11	18	651
12	1	1	1	1	2	7	SD	9	9	9	-9	-9	10	6	342
13	1	1	1	1	2	7	SD	10	10	10	-10	-10	10	6	5
14	1	1	1	1	2	7	SD	11	11	11	-11	-11	11	6	19
15	1	1	1	1	2	7	SD	12	12	12	-12	-12	12	7	7
16	1	1	1	1	2	7	SD	13	13	13	-13	-13	13	6	7
17	1	1	1	1	2	7	SD	14	14	14	-14	-14	14	6	7
18	1	1	1	1	2	7	SD	15	15	15	-15	-15	15	6	862
19	1	1	1	1	2	7	SD	16	16	16	-16	-16	16	6	420
20	1	1	1	1	2	7	SD	17	17	17	-17	-17	17	6	567
21	1	1	1	1	2	7	SD	18	18	18	-18	-18	18	6	197
22	1	1	1	1	2	7	SD	19	19	19	-19	-19	19	6	1024
23	1	1	1	1	2	7	SD	20	20	20	-20	-20	20	6	198
24	1	1	1	1	2	7	SD	21	21	21	-21	-21	21	6	870
25	1	1	1	1	2	7	SD	22	22	22	-22	-22	22	6	199
26	1	1	1	1	2	7	SD	23	23	23	-23	-23	23	6	1023
27	1	1	1	1	2	7	SD	24	24	24	-24	-24	24	6	867
28	1	1	1	1	2	7	SD	25	25	25	-25	-25	25	6	201
29	1	1	1	1	2	7	SD	26	26	26	-26	-26	26	6	201
30	1	1	1	1	2	7	SD	27	27	27	-27	-27	27	6	868
31	1	1	1	1	2	7	SD	28	28	28	-28	-28	28	6	1591
32	1	1	1	1	2	7	SD	29	29	29	-29	-29	29	6	202
33	1	1	1	1	2	7	SD	30	30	30	-30	-30	30	6	31
34	1	1	1	1	2	7	SD	31	31	31	-31	-31	31	6	869

35 5 1 1 2 2 80 80 10 10 0 32 32 3592

* * * COMMON CATALOG * * *

I	NAME	MTR SIZ	I PC TOT	N PC TOT	I TYPE	N DT STR	LOC
1	BD	6	0	0	0	0	1
2	AJ	7	0	0	0	0	187
3	EE	7	0	0	0	0	341
4	EE	7	0	0	0	0	357
5	RA	8	0	0	0	0	360
6	RA	8	0	0	0	0	396
7	RZ	8	0	0	0	0	419
8	RZ	8	0	0	0	0	435
9	TB	9	0	0	0	0	458
10	TB	9	0	0	0	0	474
11	TB	9	0	0	0	0	497
12	TB	9	0	0	0	0	520
13	TB	9	0	0	0	0	543
14	VW	14	0	0	0	0	566
15	VW	14	0	0	0	0	582
16	VW	14	0	0	0	0	605
17	VW	14	0	0	0	0	626
18	YZ	14	0	0	0	0	651
19	YZ	14	0	0	0	0	667
20	YZ	14	0	0	0	0	690
21	YZ	14	0	0	0	0	713
22	YZ	14	0	0	0	0	737
23	FS	24	0	0	0	0	795
24	DS	25	0	0	0	0	803
25	SS	25	0	0	0	0	811
26	T4	25	0	0	0	0	819
27	T4	25	0	0	0	0	835
28	T4	25	0	0	0	0	858
29	T8	29	0	0	0	0	662
30	SD	30	0	0	0	0	86E
31	SD	31	0	0	0	0	96E
32	SD	32	0	0	0	0	982
33	CO	33	0	0	0	0	1022
34	ED	34	0	0	0	0	1091
35	ED	35	0	0	0	0	1107
36	AD	36	0	0	0	0	113C

37	AD	0	0	0	0	0	0
38	AD	0	0	0	0	0	0
39	ES	2	0	0	0	0	0
40	HS	2	0	0	0	0	0
41	GS	2	0	0	0	0	0
42	HS	2	0	0	0	0	0

TOTAL DATA CELLS USED IN MASTER STORAGE

1273

SEADUCER RUN 80031 (LIKE MOD 7 RUN 70294) SEPT 26, 1970
WARDS DUCER FOR MOD 8 DEVELOPMENT (K 8D NETWORK)

• • • • MOD 8 NETWORK TABLE

S 1K6D, 182E, S
S 2K6D, 292B, S
S 3K8D, 303A, S
S 4K6D, 182B, 182C, -+282E, S
S 5K6D, 181D, -+282C, -+282R, S
S 6K6D, 182F, 182R, -+282G, S
S 7K6D, 1D3A, -+282F, S
S 8K6D, -+2D3A, 182E, S

TYPE	RHO	AREA	ID	00	LENGTH	
8281\$	7815.00	*139360-02	•000003	•042214	•121570	MASS
	C REAL	C IMAG	C MULT			
	5116.00	•000000	•000000			1.32972
TYPE 1	RHO	AREA	ID	00	LENGTH	
8282\$	7815.00	*815030-02	•000000	•101554	•102400	MASS
	C REAL	C IMAG	C MULT			
	5116.00	•000000	•000000			6.48207
TYPE 1	RHO	AREA	ID	00	LENGTH	
8283\$	7815.00	*134200-02	•000003	•041336	•667854	MASS
	C REAL	C IMAG	C MULT			
	5116.00	•000000	•000000			•71163
TYPE 1	RHO	AREA	ID	00	LENGTH	
82C1\$	7558.40	*101971-02	•000000	•036032	•003175	MASS
	C REAL	C IMAG	C MULT			
	5116.00	•000000	•000000			•02447
TYPE 4	UNIT MATRIX					
82C2\$						1.00

Copy available to DDC does not
permit fully legible reproduction

TYPE 1
B201S
RHO 774E-03 AREA 76C378-03 ID 00 LENGTH
C REAL C IMAG C MULT .009601 MASS
4970.00 .000000 .05655

TYPE 2
B202S
RHO 7743-74 AREA 76C378-03 ID 00 LENGTH
A1 C IMAG C MULT .031115 MASS
A2 C IMAG C MULT .002 LENGTH
455310-03 .000000 .024077 .002540
C REAL C IMAG C MULT .000000 .01183
4970.00 .000000

TYPE 1
B203S
RHO 7743-45 AREA 455310-03 ID 00 LENGTH
C REAL C IMAG C MULT .003302 MASS
4970.00 .000000 .000000 .01164

TYPE 1
B204S
RHO 7737.80 AREA 240258-03 ID 00 LENGTH
C REAL C IMAG C MULT .003600 MASS
4970.00 .000000 .000000 .006669

TYPE 1
B205S
RHO 7738.00 AREA 240258-03 ID 00 LENGTH
C REAL C IMAG C MULT .003300 MASS
4970.00 .000000 .000000 .01952

TYPE 1
B206S
RHO 7738.00 AREA 285023-03 ID 00 LENGTH
C REAL C IMAG C MULT .035250 MASS
4970.00 .000000 .000000 .07774

TYPE 1
B207S
RHO 7738.00 AREA 197933-03 ID 00 LENGTH
C REAL C IMAG C MULT .474537 MASS
4970.00 .000000 .000000 .72680

TYPE 1
B208S
RHO 7738.00 AREA 225023-03 ID 00 LENGTH
C REAL C IMAG C MULT .337290 MASS
4970.00 .000000 .000000 .92774

Copy available to DDC does not
permit fully legible reproduction

Copy available to DDC does not
permit fully legible reproduction

Copy available to DDC does not
permit fully legible reproduction

TYPE 1
B2E5S
RHO 7738.00 AREA *240258-03 ID 00 LENGTH
C REAL C IMAG C MULT .003000 .017490 .003246
4970.00 .000000 MASS .01533

TYPE 4
B2E1S
UNIT MATRIX
1.00

TYPE 1
B2E2S
RHO 7814.88 AREA *426383-02 ID 00 LENGTH
C REAL C IMAG C MULT .000000 .073681 .031750
5116.00 .000000 .000000 MASS 1.05795

TYPE 1
B2F1S
RHO 7802.15 AREA *456037-02 ID 00 LENGTH
C REAL C IMAG C MULT .000000 .076200 .031750
5116.03 .000000 .000000 MASS 1.12969

TYPE 1
B2G1S
RHO 7815.00 AREA *260000-02 ID 00 LENGTH
C REAL C IMAG C MULT .000000 .057536 .010520
5116.00 .000000 .000000 MASS 21376

TYPE 1
B2G2S
RHO 7815.00 AREA *215000-02 ID 00 LENGTH
C REAL C IMAG C MULT .000000 .052321 .021340
5116.00 .000000 .000000 MASS 35856

TYPE 11
D3S
RHO 7440.00 AREA *253354-02 ID 00 LENGTH
C REAL C IMAG C MULT .000000 .056796 .019198
3479.30 .482230-01 .138600-02 N PIECES 26
MULT 9.40871

E33T *1280390000+004 -1771470370+001 *1363000000-002
535 *2378780000-001 -.1207944484-004 *5076000000-003
30 .1110300000-010 -.3077751600-013 *7720000000-002

K33 5057167048+0001 .7167454677-0004

Copy available to DDC does not
permit fully legible reproduction

Copy available to DDC does not
permit fully legible reproduction

REPLACE

TYPE 4
B2E2S

UNIT MATRIX
1.00

REPLACE

TYPE 1
B2E1S

RHO	AREA	ID	00	LENGTH
7814.88	*426383-02	*000000	*073681	.031750
C REAL	C IMAG	C MULT		
5116.00	.000000	.000000		

REPLACE

TYPE 2
B2D2S

RHO	AREA	ID	001	LENGTH
7743.74	*760378-03	*000000	*031115	
A2		ID2	002	LENGTH
*455310-03	*000000	*024077	.002540	
C REAL	C IMAG	C MULT		
4970.00	.000000	.000000		

REPLACE

TYPE 1
B2D4S

RHO	AREA	ID	00	LENGTH
7737.80	*240258-03	*000000	*017490	.003600
C REAL	C IMAG	C MULT		
4970.00	.000000	.000000		

REPLACE

TYPE 1
B2E2S

RHO	AREA	ID	00	LENGTH
7615.00	*139960-02	*000000	*042214	.121570
C REAL	C IMAG	C MULT		
5116.00	.000000	.000000		

REPLACE

TYPE 11
B2E3S

RHO	AREA	ID	00	LENGTH
7440.00	*253354-02	*000000	*056795	.019198
C REAL	C IMAG	C MULT		
5022.00	*174500-02	*000000		N PIECES

	REAL	IMAG	MULT
E33T	-128089000C+004	--177147087C+001	*13830CCCC00-002
G33	-237872000C-001	--1207944484-004	*5C780CCCC00-003
S33D	*1110300000-010	--3077751600-013	*2772000000-002

K33 -6052162044+000 .7160454537-004

TOTAL MASS = 21.72491 KG. 47.89518 LBS.

TOTAL LENGTH = .886332 FOR SECTIONS BG BF DA BE BB

F = 2530.000000 * * * *

FINAL K3D MATRIX

1	1	-8246883136*03	-9847054664*05
2	1	-8513539926*03	-14390892*06
3	1	-5459747956*02	-112571571*05
1	2	-5459747956*02	-112571571*05
2	2	-1464582941*04	-9957370445*05
3	2	-591433365*02	-198C984506*04
1	3	-591433365*02	-163490892*05
2	3	-5459747956*02	-12570213422*04
3	3	-5935133270*01	-2570213422*04

Z K2D MATRIX

1	1	-4594277801*03	-4682782852*05
2	1	-5399045679*03	-1552435546*06
1	2	-137633913*04	-8304902498*05
2	2	-137633913*04	-8304902498*05
1	3	-5399045679*03	-1552435546*06
2	3	-5935133270*01	-2570213422*04
3	3	-5935133270*01	-2570213422*04

COMMON PRT TAB									
I	SIGN	J	PORT	N	NET	NAME	NUM	NUM	LC J RW
I	C	D	PORT	N	NET	NAME	APD	NPD	AHEAD BACK
1	1	2	2	8	KD	8G	-1	-1	3
2	2	6	2	8	KD	8G	-2	-2	0
3	3	5	3	8	KD	8G	-3	-3	0
4	4	4	4	8	DA	8G	-4	-4	0
5	5	4	4	8	BB	8G	-5	-5	0
6	6	4	4	8	BC	8G	-6	-6	0
7	7	2	2	8	BE	8G	-7	-7	0
8	8	2	2	8	KD	8G	-8	-8	0
9	9	2	2	8	SD	8G	-9	-9	0
10	10	2	2	8	BC	8G	-10	-10	0
11	11	2	2	8	BR	8G	-11	-11	0
12	12	2	2	8	KD	8G	-12	-12	0
13	13	2	2	8	BF	8G	-13	-13	0
14	14	2	2	8	BR	8G	-14	-14	0
15	15	2	2	8	KD	8G	-15	-15	0
16	16	2	2	8	SD	8G	-16	-16	0
17	17	2	2	8	BR	8G	-17	-17	0
18	18	2	2	8	KD	8G	-18	-18	0
19	19	2	2	8	BF	8G	-19	-19	0
20	20	2	2	8	DA	8G	-20	-20	0
21	21	2	2	8	BF	8G	-21	-21	0
22	22	2	2	8	KD	8G	-22	-22	0
23	23	2	2	8	DA	8G	-23	-23	0
24	24	2	2	8	BF	8G	-24	-24	0
25	25	2	2	8	KD	8G	-25	-25	0
26	26	2	2	8	SD	8G	-26	-26	0
27	27	2	2	8	BR	8G	-27	-27	0
28	28	2	2	8	KD	8G	-28	-28	0
29	29	2	2	8	BF	8G	-29	-29	0
30	30	2	2	8	DA	8G	-30	-30	0
31	31	2	2	8	BF	8G	-31	-31	0
32	32	2	2	8	KD	8G	-32	-32	0
33	33	2	2	8	SD	8G	-33	-33	0
34	34	2	2	8	BR	8G	-34	-34	0
35	35	2	2	8	KD	8G	-35	-35	0
36	36	2	2	8	BF	8G	-36	-36	0
37	37	2	2	8	DA	8G	-37	-37	0
38	38	2	2	8	BF	8G	-38	-38	0
39	39	2	2	8	KD	8G	-39	-39	0
40	40	2	2	8	SD	8G	-40	-40	0
41	41	2	2	8	BR	8G	-41	-41	0
42	42	2	2	8	KD	8G	-42	-42	0
43	43	2	2	8	BF	8G	-43	-43	0
44	44	2	2	8	DA	8G	-44	-44	0
45	45	2	2	8	BF	8G	-45	-45	0
46	46	2	2	8	KD	8G	-46	-46	0
47	47	2	2	8	SD	8G	-47	-47	0
48	48	2	2	8	BR	8G	-48	-48	0
49	49	2	2	8	KD	8G	-49	-49	0
50	50	2	2	8	BF	8G	-50	-50	0
51	51	2	2	8	DA	8G	-51	-51	0
52	52	2	2	8	BF	8G	-52	-52	0
53	53	2	2	8	KD	8G	-53	-53	0
54	54	2	2	8	SD	8G	-54	-54	0
55	55	2	2	8	BR	8G	-55	-55	0
56	56	2	2	8	KD	8G	-56	-56	0
57	57	2	2	8	BF	8G	-57	-57	0
58	58	2	2	8	DA	8G	-58	-58	0
59	59	2	2	8	BF	8G	-59	-59	0
60	60	2	2	8	KD	8G	-60	-60	0
61	61	2	2	8	SD	8G	-61	-61	0
62	62	2	2	8	BR	8G	-62	-62	0
63	63	2	2	8	KD	8G	-63	-63	0
64	64	2	2	8	BF	8G	-64	-64	0

COMMON CATALOG									
	MTR	I	PC	N	PC	TOT	TYPE	I	N
	NAME	SIZ	LOC	DT	STR	0	0	0	1
1	KD	8	2	257	257	0	0	0	1
2	B8	2	2	273	273	0	0	0	1
3	B8	2	2	296	296	0	0	0	1
4	B8	2	2	319	319	0	0	0	1
5	EC	2	2	342	342	0	0	0	1
6	EC	2	2	356	356	0	0	0	1
7	EC	2	2	381	381	0	0	0	1
8	EC	2	2	405	405	0	0	0	1
9	EC	2	2	421	421	0	0	0	1
10	BD	2	2	444	444	0	0	0	1
11	BD	2	2	468	468	0	0	0	1
12	BD	2	2	491	491	0	0	0	1
13	BD	2	2	514	514	0	0	0	1
14	BR	2	2	530	530	0	0	0	1
15	BR	2	2	553	553	0	0	0	1
16	BR	2	2	576	576	0	0	0	1
17	BR	2	2	599	599	0	0	0	1
18	BR	2	2	622	622	0	0	0	1
19	BR	2	2	645	645	0	0	0	1
20	BE	2	2	661	661	0	0	0	1
21	BE	2	2	685	685	0	0	0	1
22	BE	2	2	708	708	0	0	0	1
23	BF	2	2	724	724	0	0	0	1
24	BF	2	2	747	747	0	0	0	1
25	BF	2	2	763	763	0	0	0	1
26	BF	2	2	785	785	0	0	0	1
27	BD	2	2	809	809	0	0	0	1
28	DA	2	2	822	822	0	0	0	1
29	BD	2	2	842	842	0	0	0	1
30	KD	2	2	862	862	0	0	0	1
31	KD	2	2	882	882	0	0	0	1
32	KD	2	2	904	904	0	0	0	1
33	KD	2	2	1078	1078	0	0	0	1
34	KD	2	2	1094	1094	0	0	0	1
35	KD	2	2	1098	1098	0	0	0	1

TOTAL DATA CELLS USED IN MASTER STORAGE

1105

Radian Corporation

1508 SHOAL CREEK BLVD. • P. O. BOX 9948 • AUSTIN, TEXAS 78766 • TELEPHONE 512-454-9535

Appendix B

Scattering from Translucent Baffles

Radian Corporation

1600 SHOAL CREEK BLVD. • P. O. BOX 9948 • AUSTIN, TEXAS 78766 • TELEPHONE 512-454-9535

Scattering from Translucent Baffles

The purpose of this discussion is to outline an approach for treating the combined effects of transmission and edge diffraction for plane wave scattering from a planar baffle. The scope of the discussion includes a brief description of an integral formulation of the problem and some of the difficulties inherent in an approximate approach.

A rigorous formulation of the problem of interest differs from that of an opaque baffle in the requirement of characterizing the response of the baffle material to a distribution of forces on its surfaces. In effect, this requirement is equivalent to the determination of a Green's function or "influence" function for the baffle material.*

Knowing the influence function for the baffle material, one can write an integral relationship between the force distribution on the baffle surfaces and the velocity field on the baffle surface. Since the baffle is immersed in a fluid which is assumed inviscid, the force at a given point on the baffle is normal to the surface. Consequently, the normal velocity $v_n(\vec{r})$ at a point \vec{r} on the baffle surface depends on the normal force per unit area, i.e., the pressure, p , according to the relation:

$$v_n(\vec{r}) = \int_{S_b} K(\vec{r}|\vec{r}') p(\vec{r}') dS' , \quad (B-1)$$

* See Sec. IV of Ref. [B-1] for an analogous approach to transducer dome interaction.

Radian Corporation 1500 SHOAL CREEK BLVD. • P. O. BOX 998 • AUSTIN, TEXAS 78766 • TELEPHONE 512-454-9535

where $K(\vec{r}|\vec{r}')$ is the n-n component of the influence dyadic [B-1] for the baffle material. The integral in Equation (B-1) is taken over both sides of the baffle.

It is important to note that the kernel, $K(\vec{r}|\vec{r}')$, depends only on the geometrical and physical properties of the baffle, i.e., it is independent of the conditions existing at any point of the fluid in which the baffle is immersed. Also we note that Equation (B-1) is a generalized impedance relationship; more correctly $K(\vec{r}|\vec{r}')$ has the units of an admittance per unit area. As such, Equation (B-1) is a mathematical formulation of the transmissive properties of the baffle material. Furthermore, any baffle material having linear constitutive equations gives rise to an impedance relationship of the form given in Equation (B-1)*, i.e., the form of Equation (B-1) does not depend on any assumptions regarding baffle geometry.

To complete the specification of the scattering of a plane wave

$$p_i(\vec{r}) = e^{ik \cdot \vec{r}} \quad (B-2)$$

by the baffle, we use the Helmholtz representation of the total field:

$$p(\vec{r}) = p_i(\vec{r}) + \int_{S_b} \left[p(\vec{r}') \frac{\partial g}{\partial n}(\vec{r}|\vec{r}') - \frac{\partial p}{\partial n}(\vec{r}') g(\vec{r}|\vec{r}') \right] dS' , \quad (B-3)$$

* For cases of locally reacting surfaces, the kernel is proportional to a (surface) "delta function".

Radian Corporation

6500 SHOAL CREEK BLVD. • P. O. BOX 9948 • AUSTIN, TEXAS 78766 • TELEPHONE S12-454-9535

where $p(\vec{r})$ is the total pressure field at the point \vec{r} in the fluid, and g is the free space Green's function for the fluid medium. ^{B-1}

The above relationships, in conjunction with the definition

$$v_n(\vec{r}) = \frac{1}{ik\rho c} \left[\frac{\partial p}{\partial n}(\vec{r}) \right]_{S_b}, \quad (B-4)$$

where k is the wave number and ρc is the fluid, acoustical impedance, serve to define a solution to the problem. In particular, Equation (B-1), and the limiting form of Equation (B-3) as the field point \vec{r} approaches the baffle surface, give rise to a pair or coupled integral equations which, by virtue of Equation (B-4), relate the unknown pressure and velocity fields on the baffle surface, p and v_n , respectively, to the incident pressure field p_i . A simultaneous solution of these integral equations defines the terms appearing in the integral of Equation (B-3), hence Equation (B-3) defines the pressure field at every point in the fluid.

While the above approach is conceptually applicable to general baffle shapes in either two or three dimensions, the practical aspects of implementing the formalism is limited first of all to baffles for which the influence function can be evaluated analytically and secondly by computational difficulties of obtaining an approximate solution to the coupled integral equations.*

In view of the difficulties mentioned, it would be desirable to have an alternative, approximate approach to represent the essential features of the pressure field. In order to

* Additionally the formalism would need to be modified for treating "resonance" wave numbers associated with the baffle.

Radian Corporation

5500 SHOAL CREEK BLVD. • P. O. BOX 9948 • AUSTIN, TEXAS 78766 • TELEPHONE 812-454-9535

derive such an approximation it is necessary to limit the discussion to specialized geometrical configurations. In particular, we limit the subsequent discussion to the case of a planar baffle.

As a first approximation, we assume that the pressure and velocity fields on the baffle surfaces are not influenced appreciably by the presence of the edge. This assumption corresponds in some sense to the Kirchhoff approximation used previously for analysis of opaque baffles. Furthermore, the assumption enables one to write

$$p(\vec{r}')|_{S_b} = \begin{cases} e^{i\vec{k}\cdot\vec{r}} + R(\vec{k})e^{i\vec{k}_1\cdot\vec{r}} & \text{on } S_i \\ T(\vec{k})e^{i\vec{k}\cdot\vec{r}} & \text{on } S_s \end{cases} \quad (B-5)$$

where $R(\vec{k})$, $T(\vec{k})$ denote, respectively, the (amplitude) reflection and transmission coefficients for a layer of the baffle material which incorporate the physical properties of the baffle*, \vec{k}_1 denotes the propagation vector of the reflected wave, S_i denotes the illuminated baffle surface, and S_s denotes the shadow baffle surface. In writing the above relationship, we have implicitly assumed the baffle thickness is negligible relative to the acoustical fluid wavelength. This assumption simplifies the discussion and can easily be removed.

* See Reference B-2 for the definition of the transmission and reflection coefficients for a composite layer.

Radian Corporation 8500 SHOAL CREEK BLVD. • P. O. BOX 1940 • AUSTIN, TEXAS 78766 • TELEPHONE 812-454-9535

If, in addition to Equation (B-5), we assume an analogous equality for the normal derivative on the baffle surface, then the resulting approximate pressure field takes the form:

$$p(\vec{r}) = e^{i\vec{k} \cdot \vec{r}} + [1 - T(\vec{k})]U(\vec{r}|\vec{k}) + R(\vec{k})U(\vec{r}|\vec{k}_1) \quad (B-6)$$

where

$$U(\vec{r}|\vec{k}) = \int_{S_s} [g(\vec{r}|\vec{r}') \frac{\partial}{\partial n'} e^{i\vec{k} \cdot \vec{r}'} - e^{i\vec{k} \cdot \vec{r}'} \frac{\partial g}{\partial n'}(\vec{r}|\vec{r}')] dS' \quad (B-7)$$

The above relationships result from substituting Equations (B-2), (B-5) into Equation (B-3) and using the fact that the integral over S_i is the negative of the integral over S_s because of the assumption of negligible thickness of the baffle.

As in the case for opaque baffles, the approximation scheme described above gives rise to an approximate Green's function which violates the reciprocity principle. It has been noted previously (B-4) that the problem of plane wave scattering corresponds to a limiting process on the Green's function in which the source point moves to infinity. Furthermore physical considerations have indicated that for an opaque baffle, a more accurate approximation for plane wave scattering can be obtained from a Kirchhoff approximation to the Green's function by interchanging field and source coordinates before taking the limit. Whether this holds true for the present approximation remains to be investigated, but the assumption that it does gives rise to an approximation which replaces Equation (B-6) by an integral representation which involves reflection and transmission coefficients

Radian Corporation

8500 SHOAL CREEK BLVD. • P. O. BOX 1948 • AUSTIN, TEXAS 78766 • TELEPHONE 512-454-9535

integrated over all angles. This form arises by using the plane wave integral representation for the Green's function given in Reference B-2. Presumably, the latter approximation accounts partially for the fact that the presence of the edge modifies the source strengths appearing in Equation (B-3) from the zero order approximation given by Equation (B-5). This point requires more investigation. In the final analysis it may be required to check any approximation with the pair of coupled integral equations for justification of the assumptions.

The above relationships represent approximate expressions for the pressure field which are applicable to either plates or strips. In the former case g denotes the three-dimensional free space Green's function and the integral is taken over the shadowed surface of the plate.* In the latter case, the integral can be considered as one-dimensional with g denoting the two-dimensional Green's function:

$$g(\vec{r}|\vec{r}') = \frac{i}{4} H_0(k|\vec{r}-\vec{r}'|) \quad (B-8)$$

with H_0 denoting the zero order Hankel function of the first kind.

* The functional form of the integral in Equation (B-7) is such that its value is determined strictly by the edge line of the plate.

The subsequent discussion is concerned with a specialization of Equations (B-6) and (B-7) for the case of a strip baffle.

FIG. B-1 - GEOMETRY OF PLANE WAVE SCATTERING FROM A STRIP

Consider the geometrical situation depicted in Figure B-1. It is convenient to reference the arbitrary field point \vec{r} relative to both edges in terms of two systems of cylindrical coordinates as indicated in Figure B-1.

To evaluate Equation (B-7), we make use of the fact that the line integral can be taken over any contour having its end points on the edges of the strip and lying on the same side of the field point as the strip. In particular, the contour can be taken to consist of S_1 : the straight line from the left edge to the point a small distance δ from the field point as indicated in Figure B-1; S_δ : the portion of a circle of radius δ centered at the field point and contained between rays from the field point passing through the edges of the strip; S_2 : the straight line joining the field point to the right-hand baffle edge taken from a distance δ away from the field point to the right-hand edge.

Radian Corporation 1600 SHOAL CREEK BLVD. • P. O. BOX 9940 • AUSTIN, TEXAS 78764 • TELEPHONE 512-454-9838

It is important to note that the contribution from S_δ does not vanish as the radius δ shrinks to zero. The simplest means of evaluating this limit is to recognize that it is equal to the limit for the integral taken over an entire circle multiplied by the ratio of the angle subtended by S_δ and 2π . Recognizing that the angle subtended at \vec{r} by S_δ is $\pi - \theta_1 - \theta_2$, and that the limit over the entire circle is $-e^{-ik \cdot \vec{r}}$ according to the Helmholtz integral formula, we obtain

$$U_\delta \xrightarrow[\delta \rightarrow 0^+]{ } - \left[\frac{\pi - \theta_1 - \theta_2}{2\pi} \right] e^{-ik \cdot \vec{r}} .$$

Also by observing that on S_1 the normal derivative of G is identically zero we find in the limit as δ approaches zero that

$$U_1 \xrightarrow[\delta \rightarrow 0^+]{ } \left[\frac{\sin(\theta_1 - \alpha_1)}{4} \int_0^{kr_1} dt H_o(t) e^{-it \cos(\theta_1 - \alpha_1)} \right] e^{ik \cdot \vec{r}} ,$$

where we have used Equation (B-3) and the fact that \vec{k} has an angular orientation α_1 relative to the left-hand edge.

A similar result is obtained for the right-hand edge except that the angles are referenced with the subscript 2. Combination of the results gives

$$U(\vec{r}|\vec{k}) = e^{ik \cdot \vec{r}} \left[\frac{\theta_1 + \theta_2 - \pi}{2\pi} + \frac{\sin \psi_1}{4} \int_0^{kr} dt H_o(t) e^{-it \cos \psi_1} \right. \\ \left. + \frac{\sin \psi_2}{4} \int_0^{kr_2} dt H_o(t) e^{-it \cos \psi_2} \right] , \quad (B-9)$$

Radian Corporation

6500 SHOAL CREEK BLVD. • P. O. BOX 79766 • AUSTIN, TEXAS 78766 • TELEPHONE 812-454-7335

where

$$\psi_1 = \theta_1 - \alpha_1, \quad \psi_2 = \theta_2 - \alpha_2 .$$

A method of evaluating the integrals in Equation (B-9) has already been discussed in the appendix of Reference B-3. An alternative means of evaluation will be discussed subsequently, but first it is convenient to consider the limiting case of Equation (B-9) as the right-hand edge moves to infinity keeping the field point \vec{r} fixed. According to Figure B-1 this amounts to letting r_2 approach infinity and simultaneously allowing θ_2 to approach zero. Thus

$$\lim_{r_2 \rightarrow \infty} U(\vec{r}|\vec{k}) = e^{i\vec{k} \cdot \vec{r}} \left[\frac{\theta_1 - \pi}{2\pi} + \frac{\sin \psi_1}{4} \int_0^{kr_1} dt H_o(t) e^{-it \cos \psi_1} \right. \\ \left. - \frac{\sin \alpha_2}{4} \int_0^{\infty} dt H_o(t) e^{-it \cos \alpha_2} \right] .$$

Using the integral representation of the Hankel function and rotating the contour in the t -plane by 90° it may be shown that

$$\frac{\sin \alpha}{4} \int_0^{\infty} dt H_o(t) e^{it \cos \alpha} = \frac{\alpha}{2\pi} \quad \text{for } -\pi \leq \alpha \leq \pi, \text{ and} \\ \text{periodic outside this interval.}$$

(B-10)

Radian Corporation

8600 SHOAL CREEK BLVD. • P. O. BOX 1946 • AUSTIN, TEXAS 78766 • TELEPHONE 512-454-9535

This result in conjunction with the identity $\alpha_2 = \pi - \alpha_1$ evident from Figure B-1 gives:

$$\lim_{\substack{r_2 \rightarrow \infty \\ \theta_2 \rightarrow 0}} U(\vec{r}|\vec{k}) = u(kr_1, \psi_1) e^{-ik \cdot \vec{r}}, \quad (B-11)$$

where

$$u(kr_1, \psi_1) = \frac{\psi_1 - \pi}{2\pi} + \frac{\sin \psi_1}{4} \int_0^{kr_1} dt H_o(t) e^{-it \cos \psi_1}, \quad (B-12)$$

the above relation being valid under the assumption that α_1 is less than π . A similar analysis shows

$$\lim_{\substack{r_1 \rightarrow \infty \\ \theta_1 \rightarrow 0}} U(\vec{r}|\vec{k}) = u(kr_2, \psi_2) e^{-ik \cdot \vec{r}}. \quad (B-13)$$

The relation (B-12) is the same as Equation (3.23) derived by a different method in Reference B-5 if we recognize that Reference B-5 uses the complement of ψ_1 . It corresponds to the field diffracted by the edge of a black half-plane the geometric shadow occurring for $\psi_1 \leq 0$.

Furthermore we have according to Equations (B-9), (B-11), (B-12), and (B-13) that

$$U(\vec{r}|\vec{k}) = e^{-ik \cdot \vec{r}} [1 + u(kr_1, \psi_1) + u(kr_2, \psi_2)],$$

which in conjunction with Equation (B-7) shows that the field is the superposition of the effects from the two edges.

Radian Corporation 800 SHOAL CREEK BLVD. • P. O. BOX 9900 • AUSTIN, TEXAS 78766 • TELEPHONE 512-454-9525

Making use of Equation (B-10) it follows that Equation (B-12) can be written as

$$u(kr, \psi) = f(\psi) - \frac{\sin \psi}{4} \int_{kr}^{\infty} dt H_0(t) e^{-it \cos \psi}, \quad (B-14)$$

where

$$f(\psi) = \begin{cases} 0 & \psi > 0 \\ -1 & \psi < 0 \end{cases}$$

A simple approximation to the integral in Equation (B-14) can be obtained by using the asymptotic form of the Hankel function to get

$$\begin{aligned} v(kr, \psi) &= \frac{\sin \psi}{4} \int_{kr}^{\infty} dt H_0(t) e^{-it \cos \psi} \\ &\approx \frac{\sin \psi}{4} \frac{2}{\pi} e^{-i(\pi/4)} \int_{kr}^{\infty} dt \frac{e^{i(1-\cos \psi)t}}{\sqrt{t}} \end{aligned}$$

Or

$$v(kr, \psi) \approx \cos\left(\frac{\psi}{2}\right) \left[\frac{1-i}{2} \int_x^{\infty} dt e^{i(\pi/2)t^2} \right], \quad (B-15)$$

where

$$x = 2 \sqrt{\frac{kr}{\pi}} \sin \psi/2. \quad (B-16)$$

Equation (B-16) is valid only for $\psi \geq 0$ and we use the fact that the original expression is odd to determine the approximate representation in the shadow. Note that curves of constant x are parabolic.

Radian Corporation

100 SHOAL CREEK BLVD. • P. O. BOX 9946 • AUSTIN, TEXAS 78766 • TELEPHONE 812-454-9535

While Equation (B-16) is strictly valid only for kr large relative to unity, in practice the approximation compares well with the previous representation given in Reference B-3 for distances greater than 2 or 3 wavelengths. Furthermore a slight modification of the previous analysis shows that applying the approximation in Equation (B-16) to the case of a black half-plane gives a pressure field in the shadow region that differs from the Sommerfeld function^{B-6} by the factor $\cos \psi/2$.

The above relationships provide an approximate representation for the scattering from a translucent strip baffle which is straightforward from a computational point of view. Furthermore it is not difficult to show that Equation (B-6) reduces to the solution for an infinite planar baffle as the edges of the strip move to infinity. This fact can be obtained most simply by recognizing that for this case the integral in Equation (B-7) can be evaluated in terms of the Helmholtz integral formula if one recognizes that the integral over a large semicircle drawn in the shadow region vanishes. Consequently we find

$$U(\vec{r}|\vec{k}) = \begin{cases} -e^{i\vec{k}\cdot\vec{r}} & \text{in the shadow} \\ 0 & \text{in the illuminated region} \end{cases}$$

$$U(\vec{r}|\vec{k}_1) = \begin{cases} 0 & \text{in the shadow} \\ e^{i\vec{k}_1\cdot\vec{r}} & \text{in the illuminated region.} \end{cases}$$

Substitution of these relations into Equation (B-6) gives the usual results for an infinite planar baffle.

Radian Corporation 2600 SHOAL CREEK BLVD. • P. O. BOX 9948 • AUSTIN, TEXAS 78766 • TELEPHONE 512-454-9525

Previous investigations (B-3), (B-4) concerning diffraction from opaque baffles have shown that the diffracted field computed according to the above approach gives good agreement with known exact results for strip baffles greater than or equal to four wavelengths.* Consequently one might expect similar criteria to apply also in the present case. On the other hand, it should be noted that the above approximation does not account for the additional structural modes of vibration resulting from the boundary conditions on the plate edges which are not present in an infinite plate. The extent to which these modes affect the pressure field in the vicinity of a finite plate remains to be investigated.

* Note that an opaque baffle can be characterized in terms of Equation (B-6) by setting the transmission coefficient to zero and the reflection coefficient to plus or minus unity.

Radian Corporation

8500 SHOAL CREEK BLVD. • P. O. BOX 7748 • AUSTIN, TEXAS 78766 • TELEPHONE 512-454-9835

REFERENCES

- B-1. R. F. Pohler, "Concerning the Influence of Transducer Element and Dome Models on Transmit Receive Reciprocity", TRACOR Document 69-915-U, 17 October 1969.
- B-2. L. M. Brekhovskikh, Waves in Layered Media, Academic Press, New York, 1960.
- B-3. R. F. Pohler, "An Assessment of the Validity of the Kirchhoff Approximation with Respect to the Radiation Characteristics of an Array on a Strip Baffle", TRACOR Document T70-AU-7442-U, 1 August 1970.
- B-4. R. F. Pohler, "The Shielding Characteristics of A Surface Ship Stern Baffle" TRACOR Document T71-AU-9510-U, 20 January 1971.
- B-5. B. Baker and E. T. Copson, The Mathematical Theory of Huygen's Principle, Oxford Press, 1950.
- B-6. A. Sommerfeld, Optics, Academic Press, 1964.

Radian Corporation

8500 SHOAL CREEK BLVD. • P. O. BOX 9948 • AUSTIN, TEXAS 78766 • TELEPHONE 512-454-9535

DISTRIBUTION LIST

Contract No. N00024-71-C-1246

Item No. 0002
A001 AB Final Technical Report

<u>Sent to:</u>	<u>No. Copies</u>
Commander Naval Ship Systems Command Department of the Navy Washington, D.C. 20360 Attn: 00V2	
PMS-385	1
PMS-386	1
PMS-387	1
PMS-388	1
00V3	1
00V12	1
Director Naval Research Laboratory Washington, D.C. 20390 Attn: Sam Hanish, Code 8150	1
Dr. Paul Smith, Code 6431	1
Director, Naval Research Laboratory Underwater Sound Reference Division P. O. Box 8337 Orlando, Florida 32006	1
Commander, Naval Ship Research & Development Center Washington, D.C. 20007 Attn: C. Chatten	1
Commander, Naval Ship Research & Development Lab. Panama City, Florida Attn: Rufus Cook, Code 722	1

Radian Corporation

8500 SHOAL CREEK BLVD. • P. O. BOX 9948 • AUSTIN, TEXAS 78766 • TELEPHONE 512-454-9535

DISTRIBUTION LIST CONTINUED
Contract No. N00024-71-C-1246

<u>Sent to:</u>	<u>No. Copies</u>
Commander, Naval Undersea Research & Development Center San Diego, California 92132	
Attn: John Hickman, Code 601	1
David Carson, Code 601	1
Dr. Gordon Martin, Code 601	1
Commanding Officer Navy Underwater Systems Center New London Laboratory New London, Connecticut 06320	
Attn: Ed. Parssinen, Code 2220	1
B. B. Burnham, Code 2330	1
Sidney Baron, Code 2113	1
Richard Strang, Code 2134	1
Applied Research Laboratory The University of Texas P. O. Box 8029 Austin, Texas 78712	1
General Dynamics Corporation Electric Boat Division Eastern Point Road Groton, Connecticut 06340	
Attn: George Sefcik, N00024-69-C-1344	1
General Electric Farrell Road Plant, Building 1 Syracuse, New York 13201	
Attn: Steve Auyer, N00024-69-C-1006	1
Raytheon Company Submarine Signal Division P. O. Box 360 Portsmouth, Rhode Island 02871	
Attn: Norman Serotta, N00024-69-C-1006	1

Radian Corporation 8500 SHOAL CREEK BLVD. • P. O. BOX 9948 • AUSTIN, TEXAS 78766 • TELEPHONE 512-454-9535

DISTRIBUTION LIST CONTINUED
Contract No. N00024-71-C-1246

<u>Sent to:</u>	<u>No. Copies</u>
Stanford Research Institute 333 Ravenwood Drive Menlo Park, California 94021 Attn: Vincent Salmon	1
Tracor, Incorporated Austin, Texas 78721 Attn: William Moyer	1
Commander, Naval Ship Systems Command Washington, D.C. 20360 Attn: 2052	1
Defense Documentation Center Cameron Station (Bldg. 5) 5010 Duke Street Alexandria, Virginia 22314	2