

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

PROGRAMA DE MAESTRÍA Y DOCTORADO EN CIENCIAS MATEMÁTICAS Y DE LA ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA

MAESTRÍA EN CIENCIAS MATEMÁTICAS

Program	Programa de la actividad académica Análisis Numérico I							
Clave	ave Semestre 1,2,3 o 4		Créditos 9	Campo de conocimiento	Análisis Numérico y Computación Científi (Incluyendo Modelación)			•
Modalidad Curso Básico		Básico		Tipo	T (X)	P()	T/P ()	
Carácter Obligatorio de Elección			cción	Horas				
Duración del programa Semestral			estral	Semana			Semestre	
					Teóric	as: 4.5		Teóricas: 72
					Práctio	cas: 0		Prácticas: 0
					Total:	4.5		Total: 72

		Seriación
		Ninguna (X)
		Obligatoria ()
Actividad antecedente	académica	
Actividad subsecuente	académica	
		Indicativa()
Actividad antecedente	académica	
Actividad subsecuente	académica	

Objetivo general:

Presentar los fundamentos matemáticos de los métodos numéricos.

Objetivos específicos:

Que el alumno:

- Estudie los métodos directos numéricamente estables básicos de bajo costo computacional, como los métodos interactivos rápidos y seguros.
- Sea capaz de diagnosticar cuando un problema matemático es de datos numéricamente bien o mal-comportados.
- Realice experimentación numérica usando software profesional, o bien desarrollando programas en Matlab y/o Fortran77, y/o C.
- Se ejercite en la resolución numérica de problemas elementales de interés en las ciencias, la tecnología y los servicios.

	Índice temático				
	Tema	Horas semestre			
		Teóricas	Prácticas		
1	Sistemas numéricos de punto flotante	10	0		
2	Álgebra lineal numérica	10	0		
3	Solución de ecuaciones escalares	10	0		
4	Mínimo de cuadrados lineales	10	0		
5	Valores y vectores propios	10	0		
6	Aproximación de funciones	10	0		
7	Diferenciación e integración numérica	12	0		
	Total	72	0		
	Suma total de horas	7	2		

Contenido Temático				
	Tema y subtemas			
1	Sistemas Numéricos de punto flotante 1.1 Condición de un problema numérico 1.2 Estabilidad de un método 1.3 Problemas bien y mal planteados			
2	Álgebra lineal numérica 2.1 Solución de sistemas de ecuaciones lineales 2.2 Factorización LU 2.3 Estrategias de pivoteo 2.4 Estabilidad y condición 2.5 Factorización de Cholesky 2.6 Métodos iterativos: Guass-Seydel y Jacobi			
3	Solución de ecuaciones escalares 3.1 Métodos de bisección 3.2 Newton 3.3 Secante			
4	Mínimo de cuadrados lineales 4.1 Ecuaciones normales de Euler 4.2 Descomposición QR 4.3 Problemas de rango deficiente 4.4 Descomposición en valores singulares 4.5 Análisis de error			
5	Valores y vectores propios 5.1 Método de potencia 5.2 Iteración inversa 5.3 Método de Rayleigh 5.4 Algoritmo QR			
6	Aproximación de funciones 6.1 Interpolación polinomial 6.2 Diferencias divididas 6.3 Interpolación de Hermite 6.4 Iterpolación spline 6.5 Iterpolación trigonométrica 6.6 Transformada de Fourier rápida			
7	Diferenciación e integración numérica 7.1 Diferenciación numérica usando interpolación 7.2 Reglas básicas de cuadratura			

7.3 Newton-Cotes
7.4 Gaussiana
7.5 Cuadratura adaptiva

Estrategias didácticas		Evaluación del aprendizaje	
Exposición		Exámenes parciales	Х
Trabajo en equipo		Examen final	X
Lecturas		Trabajos y tareas	X
Trabajo de investigación	X	Presentación de tema	
Prácticas (taller o laboratorio)		Participación en clase	X
Prácticas de campo		Asistencia	
Aprendizaje por proyectos		Rúbricas	
Aprendizaje basado en problemas		Portafolios	
Casos de enseñanza		Listas de cotejo	
Otras (especificar)		Otras (especificar)	

Perfil profesiográfico			
Grado	Maestro o Doctor en Ciencias Matemáticas		
Experiencia docente			
Otra característica			

Bibliografía Básica:

- Golub, Gene H. and James M. Ortega, Scientific Computing and Differential Equations an Introduction to Numerical Methods, Academic Press, 1992.
- Golub, G.H. Y Van Loan, Matrix Computations, 3° Edition, John Hopkins University Press, USA, 1996.
- Hammerlin, G. Y Hoffman, Kk. Numerical Mathematics, Springer Verlag Undergraduatetexts -In Mathematics Series, 1991.
- Kincaid, D Y Cheney, W, Numerical Analysis, Books/Cole, 1991.
- Stoer, J. Bulirsch, R., Introduction to Numerical Analysis, 2° Edition, Springer-Verlag, 1994.

Bibliografía Complementaria:

- Kahaner, D, Numerical Methods and Software, Prentice Hall, 1989.
- Niederreiter, H., Random Number Generation and Quasi-Montecarlo Methods, Cbms Ns Regional Conference Ser in Applied Mathematics, Siam, 1992.