

Determinação da Constante de Boltzmann analisando Ruído Térmico

Carlos Henrique C.A.Veras - 12547187 (Engenharia de Computação)

KEYWORDS — Regressão Linear, Ruído Térmico, Constante de Boltzmann, Densidade Espectral de Potência, Aproximação de Padé

I. Introdução

Em 1902, Albert Einstein sugeriu em um periódico da época que seria teoricamente possível medir a constante de Stefan-Boltzmann, fundamental nos fenômenos termodinâmicos, observando os efeitos da energia térmica em componentes eletrônicos. Em 2017, 115 anos depois, Todor M. Mishonov, do Laboratório de Medidas de Constantes Fundamentais, e seus colegas da Universidade de Sofia, na Bulgária, decidiram colocar as ideias de Einstein em prática em um experimento para estudantes durante a 5ª Olimpíada de Física Experimental dos Bálcãs. Curiosamente, essa proposta nunca havia sido implementada de forma direta até então.

A abordagem utilizada, embora engenhosa, foi bastante simples. Ela explorou o fato de que o movimento aleatório dos elétrons (movimento browniano), uma manifestação de energia térmica, em uma resistência elétrica gera o que é conhecido como Ruído de Johnson-Nyquist, ou simplesmente Ruído Térmico: um ruído gaussiano de média zero. Assim, ao mensurar esse ruído, seria possível, em teoria, relacionar a energia elétrica com a energia térmica e calcular a constante de Boltzmann. Mas, como extrair informações úteis de uma variável aleatória com média nula? Estatisticamente, é simples: basta observar sua variância! Afinal, apesar da média ser zero, a variância do ruído está diretamente relacionada à sua energia—aquilo que, ao refletir um pouco, faz perfeito sentido.

Para implementar essa ideia, o experimento envolve acoplar um capacitor (C [F]) em paralelo com uma resistência (R [Ω]). Quando o sistema está em equilíbrio térmico, a potência quadrática média ($< U^2 > [V^2]$) nos terminais do circuito pode ser expressa como:

$$=\frac{k_bT}{C}$$
,

onde T é a temperatura em Kelvin e k_b é a constante de Boltzmann e Joule por Kelvin $(J.K^{-1})$. Essa relação estabelece que, para uma temperatura constante, a tensão quadrática média é inversamente proporcional à capacitância do sistema. Isso significa que, ao variar a capacitância e medir a tensão quadrática média em uma série de experimentos, é possível determinar o valor de k_b . Um ponto interessante desse modelo é que a resistência R não influencia o resultado final—ela "se cancela" matematicamente durante as deduções, deixando a resposta dependente apenas da capacitância e da temperatura. Uma dedução mais detalhada dessa expressão pode ser encontrada na seção de Probabilidade do Livro de Telecomunicações do Lathi (consultar as Referências) e poderá também ser encontrada na Wiki do projeto da placa.

II. Reprodução do Experimento

Em 2024, o autor buscou reproduzir os resultados de Mishonov ao replicar a placa de circuito descrita no artigo publicado em 2019 pelo físico búlgaro. O projeto, que pode ser observado em Figure 1, foi desenvolvido sob a licença CERN-OHL-S-2.0 de Hardware Livre e apresentado no Fórum de Tecnologias Livres (FOSS-FÓRUMS 2024) em agosto do mesmo ano.

Figure 1: Modelo 3D da placa desenvolvida para o experimento

No mês seguinte, a montagem da placa e a realização do experimento ocorreram no Laboratório Aberto da SEL (SEL - Departamento de Engenharia Elétrica e de Computação da Escola de Engenharia de São Carlos), um espaço voltado ao desenvolvimento de projetos estudantis, coordenado pelo Prof. Dr. José Marcos Alves.

III. METODOLOGIA EXPERIMENTAL

O experimento foi dividido em três etapas. Primeiro, as capacitâncias foram medidas usando um medidor LCR de 100 kHz (LCR-600 da *Global Specialities*®), conforme registrado na Table 1. Na segunda etapa, ilustrada em Figure 2, foi caracterizado o ganho do estágio responsável pela operação quadrática média do circuito. Para isso, o estágio ruidoso foi desligado, e o estágio de interesse foi submetido a tensões conhecidas enquanto sua saída era registrada (Table 2).

Por fim, realizou-se o experimento para determinar a constante de Stefan-Boltzmann (k_b) . Cada capacitor medido na primeira etapa foi instalado na placa, aguardando-se 1 minuto e meio para que o circuito atingisse o regime estacionário. Em seguida, registrou-se o valor da saída do circuito, além disso a temperatura ambiente foi monitorada com um sensor DHT-11 em anotada para cada medição, a fim de mitigar possíveis variações térmicas na sala devido à longa duração do procedimento (Table 3).

Figure 2: Foto da configuração experimental da segunda etapa (fontes de tensão omitidas)

IV. RESULTADOS OBTIDOS

Classes C_n $[nF]$	Média	Mediana	Moda	Desvio Padrão	Mínimo	Máximo	F. Abs
[4.573 - 18.652)	11.459	10.870	4.755	4.772	4.755	17.711	13
[18.652 - 32.732)	29.410	29.410	28.780	0.891	28.780	30.040	2
[32.732 - 46.811)	36.570	36.950	35.710	0.746	35.710	37.050	3
[46.811 - 60.891)	51.690	50.805	48.290	4.204	48.290	59.620	6
[60.891 - 74.97)	66.287	63.770	62.640	5.814	62.640	74.970	4
Geral	30.944	28.780	4.573	22.180	4.573	74.970	29

Table 1: Capacitâncias em nF medidas durante a primeira etapa do experimento

Observação: Todos os gráficos e algumas das tabelas apresentadas foram produzidos por um script em Python que está disponível **nesse repositório**

Através da análise da Table 1 observa-se que o rol de capacitores possui uma clara assimetria à esquerda.

Nº	$U_1[V]$	$U_2[V]$	Nº	$U_1[V]$	$U_2[V]$
1	0.645	0.0460	10	-0.645	0.0461
2	0.753	0.0622	11	-0.751	0.0625
3	0.860	0.0809	12	-0.859	0.0814
4	0.965	0.1022	13	-0.964	0.1026
5	1.071	0.1259	14	-1.071	0.1261
6	1.190	0.1522	15	-1.178	0.1526
7	1.287	0.1809	16	-1.285	0.1816
8	1.392	0.2118	17	-1.391	0.2126
9	1.500	0.2457	18	-1.497	0.2497

Table 2: Valores medidos de U_1 e U_2 durante a segunda etapa

A fim de calcular o ganho do estágio quadrático médio, realizou-se uma linearização dos dados apresentados na Table 2, plotando U_1^2 por U_2 e observou-se a dispersão produzida, indicada ao lado esquerdo do Gráfico em Figure 3.

Figure 3: Gráficos de Dispersão (à esquerda) e de Regressão linear (à direita) para segunda parte

Através da análise da dispersão, conclui-se que a linearização foi adequada e prossegui-se para a análise por Regressão Linear a fim de determinar o coeficiente de ganho do estágio quadrático médio. onde o ganho (U_0) do estágio é dado pela relação:

$$\langle U_2^2 \rangle = U_0^{-1} U_1^2$$
,

Logo, o coeficiente angular obtido através da regressão linear corresponte ao invérso de U_0 .

- Coeficiente Angular (a): $1,098.10^{-1} \pm 0,005.10^{-1}$
- Intercepto (b): $3,797.10^{-5} \pm 73.10^{-5}$
- U_0 : 9, 11 ± 0, 04 [V^{-1}]
- \mathbf{R}^2 : 0, 9996
- Valor p -> H0: (a) = 0: $8,35.10^{-29}$

Observação: Foi utilizada a função **linregress** da biblioteca SciPy para o cálculo da regressão linear e todos os parâmetros listados (com excessão de U_0) foram fornecidos diretamente pela função. Mais detalhes podem ser encontrados em **sua documentação**.

Γ							
Nº	$C_n[nF]$	U_2 $[mV]$	T[K]	Nº	$C_n[nF]$	U_2 $[mV]$	T[K]
1	51.87	84.4	301.05	15	37.05	90.4	301.35
2	17.711	105.1	301.05	16	63.92	82.8	301.35
3	28.78	97.1	301.15	17	4.976	169.8	301.25
4	63.62	82.4	301.15	18	52.08	84.8	301.25
5	5.902	157.8	301.25	19	16.257	108.5	301.35
6	48.29	85.5	301.25	20	9.819	130.3	301.35
7	16.708	106.9	301.25	21	36.95	90.4	301.35
8	12.574	119.6	301.25	22	74.97	81.1	301.35
9	35.71	91.8	301.25	23	7.292	146.0	301.25
10	62.64	82.6	301.35	24	49.74	85.1	301.25
11	4.573	174.8	301.35	25	16.299	108.2	301.25
12	48.54	85.6	301.35	26	30.04	94.4	301.25
13	15.780	109.9	301.25	27	59.62	83.0	301.25
14	10.029	129.1	301.35	28	4.755	173.8	301.25

Table 3: Valores das capacitâncias utilizadas, e os valores medidos de tensão e temperaturas

Para a última parte do experimento, onde é determinado de fato a constante de Boltzmann, os dados constam na Table 3. Contudo, a fim de se obter uma relação da forma y=a.x+b, faz-se necessário re-escrever as medições em termos de duas variáveis x_n e y_n :

$$\begin{split} x_n &= \left(C_n.10^{-3}\right)^{-1} \, [uF^{-1}], \\ y_n &= U_2.10^{12}.U_{\star}.T^{-1} \, [V^2.K^{-1}], \end{split}$$

onde U_{\star} corresponde à

$$U_{\star} = U_0.Y^{-2},$$

E $Y=1,01.10^6$ e corresponde ao ganho do estágio de amplificação assumindo-o independente da frequência. Os valores de x_n e y_n são exibidos em Table 4.

Nº	$x_n [uF^{-1}]$	$y_n [V^2 K^{-1}]$	Nº	$x_n [uF^{-1}]$	$y_n [V^2 K^{-1}]$
1	19.279	2.504	15	26.991	2.679
2	56.462	3.118	16	15.645	2.454
3	34.746	2.88	17	200.965	5.034
4	15.718	2.444	18	19.201	2.514
5	169.434	4.679	19	61.512	3.216
6	20.708	2.535	20	101.843	3.862
7	59.852	3.169	21	27.064	2.679
8	79.529	3.546	22	13.339	2.404
9	28.003	2.722	23	137.137	4.329
10	15.964	2.448	24	20.105	2.523
11	218.675	5.181	25	61.353	3.208
12	20.602	2.537	26	33.289	2.799
13	63.371	3.258	27	16.773	2.461
14	99.711	3.826	28	210.305	5.153

Table 4: Valores das capacitâncias utilizadas, e os valores calculados de x_n e y_n

Plotando os dados obtidos em um gráfico de dispersão (Figure 4) conclui-se o que assim como esperado, uma regressão linear potencialmente é um bom modelo estatístico a ser utilizado.

Figure 4: Gráfico de dispersão entre x_n e y_n sem correção pela frequência A regressão pode ser observada no Gráfico em Figure 5 e os resultados logo abaixo.

Figure 5: Gráfico da regressão linear entre x_n e y_n sem correção pela frequência

- Coeficiente Angular (a): $1,39.10^{-2} \pm 0,02.10^{-2}$
- Intercepto (b): $2,30 \pm 0,02$
- k_b (medido): $1,39.10^{-23} \pm 0,02.10^{-23} J.K^{-1}$
- \mathbf{R}^2 : 0, 9918
- Valor p -> H0: (a) = 0: $1,246.10^{-28}$
- k_b (real): 1, 38.10⁻²³
- Erro Relativo (%): 1,0%

V. Análise dos Resultados

Analisando os resultados da regressão obtidos, primeiro pode-se atestar que pelo valor desprezível do valor p, pode-se assegurar que o coeficiente angular não é nulo. Em seguida, pela proximidade do valor de \mathbb{R}^2 de 1 tem se um forte indicativo de que a regressão linear foi um bom modelo escolhido. A determinação da constante de Stefan-Boltzmann (k_b) se dá através da relação:

$$k_b = a.10^{-21} [J.K^{-1}],$$

Fazendo um teste de Hipótese para o coeficiente angular k_b igual à k_b (**real**), usar-se-à estatísitica T_0 , segundo o livro *Estatísitica Aplicada e Probabilidade para Engenheiros* (para mais detalhes consultar as Referências):

$$T_0 = rac{\hat{a} - (k_b.10^{21})}{ep(\hat{a})} \ [J.K^{-1}],$$

Dessa forma, aplicando um teste T bilateral ao nível de significância de 0.05 e (N - 2), ou seja 26 graus de liberdade, tem-se:

Hipóteses:

- **H0**: k b medido = k b
- **H1**: k_b_medido ≠ k_b

Resultados:

- **Valor crítico t** (alpha = 0.05): 2.055
- Estatísica T0: 0.550
- Não rejeitamos H0!

Intervalo de confiança para k_b medido:

• $1,34.10^{-23} < (k_b = 1,39.10^{-23}) < 1,45.10^{-23}$

O que indica que pela estatística nossa Hipótese ainda se sustenta! Contudo, ao observar com atenção o gráfico em Figure 5 nota-se que os pontos não estão tão homogeneamente distribuidos nos arredores da reta de *fitting* o que é ainda mais evidenciado pelo Gráfico dos resíduos Figure 6.

Figure 6: Gráfico normalizado dos resíduos da regressão entre x_n e y_n sem correção pela frequência

Observação: Para o cálculo do desvio padrão (σ) foi utilizado o estimador da variância: $\widehat{\sigma^2} = \frac{(SQ)_E}{n-2},$ onde SQ_E é a soma do quadrado dos erros.

O comportamento do gráfico de dispersão dos resíduos, segundo a literatura (mesmo livro já citado de Estatística) indica um possível dependência não linear entre x_n e y_n .

VI. Ajuste de não linearidade

A suspeita de dependência não linear não é inesperada, pois foi assumido, por simplicidade, que o ganho do estágio de amplificação do circuito era independente da frequência — o que não é totalmente correto. No Apêndice A de seu artigo de 2019, Mishonov apresenta uma derivação para o fator de correção Z, baseada em aproximações de Padé para o ganho em frequência de amplificadores operacionais em malha aberta. Este fator, ao ser multiplicado por x_n , corrige a não linearidade. Reproduzindo o cálculo de Z por integração numérica em Python, obtém-se o gráfico de $\varepsilon(C)=1-Z(C)$, mostrado em Figure 7.

Figure 7: Gráfico de $\epsilon(C)$ em (%)

Após aplicar o coeficiente o gráfico de dispersão é apresentado em Figure 8 e a regressão linear em Figure 9.

Figure 8: Gráfico de dispersão entre \boldsymbol{x}_n e \boldsymbol{y}_n com correção pela frequência

Figure 9: Gráfico da regressão linear entre \boldsymbol{x}_n e \boldsymbol{y}_n com correção pela frequência

• Coeficiente Angular (a): $1,918.10^{-2} \pm 0,012.10^{-2}$ • Intercepto (b): $2,181 \pm 0,008$ • k_b (medido): $1,918.10^{-23} \pm 0,012.10^{-23}J.K^{-1}$ • $\mathbf{R^2}$: 0,9990• Valor p -> H0: (a) = 0: $1,707.10^{-40}$ • k_b (real): $1,38.10^{-23}$ • Erro Relativo (%): 38,9%

Analisando os resultados obtidos, conclui-se novamente que (a) não é nulo devido ao valor p irrisório e que o modelo apresenta fortes indícios de adequação para a análise, dado o valor de \mathbb{R}^2 muito próximo da unidade. Além disso, ao observar o novo gráfico normalizado dos resíduos Figure 10, verifica-se que a correção pelo fator Z teve o impacto desejado, pois os resíduos estão agora muito mais próximos do comportamento esperado para um modelo satisfatório.

Figure 10: Gráfico normalizado dos resíduos da regressão entre \boldsymbol{x}_n e \boldsymbol{y}_n com correção pela frequência

• H0: k_b_medido = k_b • H1: k_b_medido ≠ k_b Resultados: • Valor crítico t (alpha = 0.05): 2,055 • Estatísica T0: 44,96 • Rejeitamos H0! Intervalo de confiança para k_b medido:

• $1,893.10^{-23} < (k_b = 1,918.10^{-23}) < 1,942.10^{-23}$

Hipóteses:

Entretanto, ao observar o teste de hipótese para $h@\{k_b\}=k_b$, conclui-se que, apesar da correção ter contribuído para um modelo melhor, é necessário rejeitar a hipótese de que o valor esperado corresponde ao valor real de k_b . Esse resultado, contudo, pode estar relacionado a uma disparidade entre o gráfico obtido pelo autor e o apresentado no artigo de 2019 de Mishonov.

VII. Conclusão

Neste trabalho, foi reproduzido o experimento proposto por Mishonov em 2017, incorporando uma análise estatística mais robusta para compreender melhor a relação entre os dados experimentais obtidos e o modelo teórico. Inicialmente, a reprodução dos resultados foi bem-sucedida ao assumir o ganho do circuito como constante, com suporte no elevado valor de R^2 e no teste de hipótese realizado. No entanto, ao aplicar a correção pela frequência, o teste de hipótese indicou a necessidade de rejeitar a correspondência direta entre o valor estimado de k_b e seu valor real. Apesar disso, melhorias significativas foram observadas no gráfico de resíduos e no valor de R^2 , sugerindo que a correção teve impacto positivo na qualidade do modelo. A discrepância nos resultados pode estar associada a fatores externos ou a diferenças metodológicas. Este estudo destaca a relevância de

revisitar modelos experimentais, considerando ajustes necessários, para aprimorar sua precisão e confiabilidade.

VIII. Trabalhos Futuros e Agradecimentos

Como trabalhos futuros, pretende-se revisitar a reprodução do cálculo do coeficiente de correção Z descrito no artigo de Mishonov, buscando refinar a metodologia e reduzir possíveis discrepâncias observadas. Além disso, planeja-se desenvolver uma versão 2 da placa de circuito, aprimorada para realizar outros experimentos idealizados por Mishonov, ampliando o escopo de análise e aplicação do modelo.

Gostaria de expressar minha gratidão a todas as pessoas que contribuíram para este projeto. À minha namorada Jade, pelo apoio constante e encorajador durante todas as etapas do projeto. Ao meu amigo Prof. Me. Edney Melo, cuja ideia inicial tornou possível o desenvolvimento da placa de circuito. Ao Prof. Dr. João Navarro, pela consultoria teórica e pelas discussões enriquecedoras. Ao meu amigo e engenheiro Júlio Calandrin, pela consultoria no projeto de hardware da placa. Também agradeço ao Prof. Dr. José Marcos Alves e ao Laboratório Aberto da SEL (LA-SEL), onde a montagem e a realização dos experimentos foram possíveis. À Prof. Dra. Daiane de Souza, sou grato pela oportunidade de usar este projeto como trabalho em sua disciplina de estatística, o que foi essencial para conectar os conceitos teóricos à prática experimental.

Finalmente, agradeço a todos os meus amigos que me suportaram falando deste projeto que, no fundo, só eu me interesso. A todos vocês, meu mais sincero agradecimento!

IX. Referências

- T. M. Mishonov, V. N. Gourev, I. M. Dimitrova, N. S. Serafimov, A. A. Stefanov, E. G. Petkov, and A. M. Varonov, "Determination of the Boltzmann constant by the equipartition theorem for capacitors," **European Journal of Physics**, vol. 40, no. 3, p. 035102, Apr. 2019. doi: [10.1088/1361-6404/ab07e0](https://doi.org/10.1088/1361-6404/ab07e0).
- C. H. C. A. Veras, "Einstein-Boltzmann Board," **GitHub** repository, https://github.com/CarlosCraveiro/einstein-boltzmann/tree/main, accessed Dec. 5, 2024.
- B. P. Lathi and Z. Ding, **Modern Digital and Analog Communication Systems**, Oxford series in electrical and computer engineering. Oxford University Press, 2019. Available: https://books.google.com.br/books?id=KZpnswEACAAJ.
- D. C. Montgomery and G. C. Runger, **Applied Statistics and Probability for Engineers**. John Wiley & Sons, 2010. Available: https://books.google.com.br/books?id=_f4KrEcNAfEC.
- "Aluno da EESC apresenta projeto de Open Hardware no FOSFORUMS 2024," **Escola de Engenharia de São Carlos**, Universidade de São Paulo, 3 de setembro de 2024. [Online]. Disponível em: https://eesc.usp.br/ppgs/stt/post.php?guidp=aluno-da-eesc-apresenta-projeto-de-open-hardware-no-fosforums-2024&catid=noticias. [Acessado: 5 de dezembro de 2024].