Statistics for Engineering

Thobias Høivik

Fall 2025

Contents

1	Intr	oduction	3
2	Lecture 1		3
	2.1	Sentralmål	3
	2.2	Spredningsmål	3
	2.3	Tsjebytsjevs regel	4

1 Introduction

This course covers introductory statistics and is taught at the Western Norway University of Applied Science. This will be among my most scattered and improvised notes, probably mostly in norwegian.

2 Lecture 1

Mål:

- Finne matematiske størrelser som beskriver data i eit datasett
- Sentralmål
- Spredningsmål

2.1 Sentralmål

• Finne ein verdi som representerer ein "typisk" enhet i ei mengde.

Example 2.1

Lønna til 13 personer oppgitt som: 110, 125, 125, 300, 350, 370, 375, 380, 390, 410, 430, 435, 440.

Modus/typetal.

Verdien som dukkar opp flest gangar. Fra eksempellet har at vi moduslønn er 125.

Median. Median er den midterste verdien i ei datamengde. I dette tilfellet fra Example 2.1 har vi at medianlønn ligger på 375. I tilfellet hvor det er et partall antall verdier tar vi gjennomsnittet av de to midterste verdiene.

Gjennomsnitt.

Gjennomsnittet av en datamengde X er gitt ved

$$\overline{X} = \frac{1}{|X|} \sum_{i=1}^{|X|} x_i$$

I dette tilfellet, fra Example 2.1, har vi gjennomsnitt på 326.

Anta nå at en 14-ende tjener blir lagt til i mengden som tjener 30,000. Da er gjennomsnittslønnen på de 14 personene rundt 2445 som ligger langt over den nest høgste tjeneren. Med andre ord drar person nummer 14 gjennomsnittet opp vanvittigt.

2.2 Spredningsmål.

Målet med et spredningsmål er å beskrive hvor stor variasjon det er i datasettet.

Example 2.2

Gitt to mengder X, Y.

 $X = \{80, 90, 100, 110, 120\}$

 $\overline{X} = 100$

 $Y = \{20, 60, 100, 140, 180\}$

 $\overline{Y} = 100$

Variasjonsbredde.

Variasjonsbredda er største verdi minus minste verdi:

$$\max X - \min X$$

Fra Example 2.2 har vi at at variasjonsbredda til *X* er 40 og variasjonsbredda til *Y* er 160.

Varians og standardavik.

Varians:

$$var(X) = s_X^2 = \frac{1}{|X| - 1} \sum_{i=1}^{|X|} (x_i - \overline{X})^2$$

Standardavik:

$$std(X) = \sqrt{s_X^2} = \sqrt{var(X)}$$

Viss vi ser på Example 2.3 får vi

$$\operatorname{var}(X) = \frac{(80 - 100)^2 + (90 - 100)^2 + \dots + (120 - 100)^2}{4} = 250 = 15.8^2$$

og

$$std(X) = 15.8$$

mens for Y

$$var(Y) = \frac{(20 - 100)^2 + (40 - 100)^2 + \dots + (180 - 100)^2}{4} = 4000 = 63.25^2$$

$$std(Y) = 63.25$$

2.3 Tsjebytsjevs regel

"Sammenhengen mellom ei datamengde, gjennomsnitt og standardavik."

Minimum 75% av observasjonane har verdi i intervakket

$$\left[\overline{X}-2s_X,\overline{X}+2s_X\right]$$