Extended Euclidean Algorithm and Fermat's Little Theorem

CSE 468 Fall 2025 - jedimaestro@asu.edu

$$gcd(888,54) == ???$$

 $888 = 54 \times 16 + 24$
 $54 = 24 \times 2 + 6$
 $24 = 6 \times 4 + 0$

gcd(888,54) == 6

_	`	. ,			
i	q	r	S	t	
0	_	240	1	0	
1	_	46	0	1	
2	5	10	1	-5	
3	4	6	-4	21	
4	1	4	5	-26	
5	1	2	-9	47	
6	2	0	23	-120	

egcd(240,46) == 2 in 6 steps $2 == -9 \times 240 + 47 \times 46$

egcd(240,46) == ???

	`	. ,		
i	q	r	S	t
0		240	1	0
	l			

egcd(240,46) == ???

_	•	,		
i	q	r	S	t
0	_	240	1	0
1	_	46	0	1

_	`	,		
i	q	r	S	t
0	_	240	1	0
1	_	46	0	1 -5
2	5	10	1	-5

_	`	,		
i	q	r	S	t
0	_	240	1	0
1	_	46	0	1
2	5	10	1	-5
2	5 4	6	-4	21

_	`	. ,		
i	q	r	S	t
0	_	240	1	0
1	_	46	0	1
2	5	10	1	-5
3	4	6	-4	21
4	1	4	5	-26

_	`	. ,		
i	q	r	S	t
0	_	240	1	0
1	_	46	0	1
2	5	10	1	-5
3	4	6	-4	21
4	1	4	5	-26
5	1	2	-9	47

_	`	. ,			
i	q	r	S	t	
0	_	240	1	0	
1	_	46	0	1	
2	5	10	1	-5	
3	4	6	-4	21	
4	1	4	5	-26	
5	1	2	-9	47	
6	2	0	23	-120	

egcd(240,46) == 2 $2 == -9 \times 240 + 47 \times 46$ How to calculate 49^{-1} mod 239?

Fermat's little theorem: $49^{-1} = 49^{239-2} = 49^{237} = 200 \pmod{239}$

_	•	. ,		
i	q	r	S	t
0	_	239	1	0
1	_	49	0	1
2	4	43	1	-4
3	1	6	-1	5
4	7	1	8	-39
5	6	0	-49	239

 $\operatorname{egcd}(239,49) == 1 \text{ in 5 steps}$ $1 == 8 \times 239 + -39 \times 49$ egcd(239,49) == ???

_	`	,		
i	q	r	s	t 0
0		239	1	0
		1		1

egcd(239,49) == ???

•	,		
q	r	S	t
—	239	1	0
—	49	0	1
	9 —		_ 239 1

`	. ,		
q	r	S	t
_	239	1	0
—	49	0	1
4	43	1	-4
	<u> </u>	239 49	239

egcd(239,49) == ???

	`	. ,		
i	q	r	S	t
0	_	239	1	0
1	_	49	0	1
2	4	43	1	-4
3	1	6	-1	5

_	•	. ,		
i	q	r	S	t
0	_	239	1	0
1	_	49	0	1
2	4	43	1	-4
3	1	6	-1	5
4	7	1	8	-39

_	`	,		
i	q	r	S	t
0	_	239	1	0
1	_	49	0	1
2	4	43	1	-4
3	1	6	-1	5
4	7	1	8	-39
5	6	0	-49	239

egcd(239,49) == 1

$$1 == 8 \times 239 + -39 \times 49$$

 $49^{-1} = 239 - 39 = 200$