Annotated slides

2526-MA140: Week 03, Lecture 1 (L07)

2526-MA140: Week 03, Lecture 1 (L07)
The Squeeze Theorem & one-sided limits

Dr Niall Madden

University of Galway

Tuesday, 30 September, 2025

Outline

- 1 News!
 - Assignments and Tutorials
 - Class test
- 2 Recall... the Squeeze Theorem
- $3 \sin(\theta)/\theta$
 - Other examples
- 4 Infinite Limits

- 5 Digression: How fast can an object travel
- 6 One-sided Limits
 - Notation
 - Piecewise functions
 - Empty and full circle notation
 - Existence of a limit
- 7 Exercises

For more, see Section 2.2 (Limit of a Function) from **Calculus** by Gil Strang and Jed Herman, published by the non-profit OpenStax. See

https://openstax.org/books/calculus-volume-1/pages/

2-2-the-limit-of-a-function

Reminder

- Assignment 1 has a deadline of 5pm, Monday 6 October. You can access it on Canvas... 2526-MA140...
 Assignments. (Or directly, at this link).
- ► The Tutorial Sheet is available at https://universityofgalway.instructure.com/ courses/46734/files/2883465?wrap=1
- Assignment 2 is also open, with a deadline of 5pm, 13 Oct.

News! Class test

The first (of two) class tests will take place 2 weeks from now: Tuesday, 14th October.

- ➤ You will have 40 minutes to complete the test, which will be in the form of a Multiple Choice Test.
- ► Test will take place in one of ENG-G017 or ENG-G018.
- ▶ I need to gather information on Reasonable Accommodations for tests. If you want to avail of such, please complete this form: https://forms.office.com/e/HaAsrzaE3D by 10am Thursday 2nd Oct.

Recall... the Squeeze Theorem

Last Thursday, we finished with...

The Squeeze Theorem (a.k.a. Sandwich Theorem)

Suppose that for functions f, g and h in a given interval I:

$$g(x) \leqslant f(x) \leqslant \frac{h(x)}{h(x)}$$
 and $\lim_{x \to c} g(x) = \lim_{x \to c} h(x) = L$.

Then $\lim_{x \to c} f(x) = L$.

h (x)

$$\sin(\theta)/\theta$$

Note sin (0) = 0 . S.

We'll use the Squeese Theorem to explain that

$$\lim_{\theta o 0} rac{\sin heta}{ heta} = 1$$

First, we review some facts about trigonometric functions.

- In this module, we only every use radians (never degrees).
- Given the triangle drawn below, $\sin \theta = \frac{b}{h}, \cos \theta = \frac{a}{h}$

$$\tan \theta = \frac{b}{a} = \frac{\sin \theta}{\cos \theta}$$

$$ton (\theta) = \frac{b}{a} = \frac{b}{h} \cdot \frac{h}{a}$$
$$= sin (\theta) \cdot \frac{1}{cos(A)}$$

The length of a sector, subtended by the angle θ , of a circle of radius r, is $s = r\theta$. In particular, for the unit circle the angle (in radians) is the length of the arc.

Area of a sector of a circle is $\frac{1}{2}r^2\theta$ where r is the radius of the circle, and θ is the angle subtended by the sector.

► The sin (red) and cos (blue) functions look like this:

Various other facts are summarised in the State Examination Commission's Tables:

Nóta: Bíonn tan A agus sec A gan sainiú nuair $\cos A = 0$. Bíonn $\cot A$ agus $\operatorname{cosec} A$ gan sainiú nuair $\sin A = 0$.

Note: $\tan A$ and $\sec A$ are not defined when $\cos A = 0$. $\cot A$ and $\csc A$ are not defined when $\sin A = 0$.

A (céimeanna)	6	90°	180°	270°	30°	45°	60°	A (degrees)
A (raidiain)	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	A (radians)
cos A	1	0	-1	0	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	$\cos A$
sin A	0	1	0	-1	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	sin A
tan A	0	-	0	-	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	tan A

1 rad. ≈ 57.296°

1° ≈ 0.01745 rad.

- 13 -

Foirmlí uillinneacha comhshuite

$$\cos(A+B) = \cos A \cos B - \sin A \sin B$$

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

$$\cos 2A = \cos^2 A - \sin^2 A$$

$$\sin 2A = 2\sin A \cos A$$

$$\cos^2 A = \frac{1}{2} \left(1 + \cos 2A \right)$$

$$\sin^2 A = \frac{1}{2} (1 - \cos 2A)$$

Compound angle formulae

$$cos(A - B) = cos A cos B + sin A sin B$$

$$sin(A - B) = sin A cos B - cos A sin B$$

$$\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

Double angle formulae

$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$

$$\cos 2A = \frac{1 - \tan^2 A}{1 + \tan^2 A}$$

$$\sin 2A = \frac{2\tan A}{1 + \tan^2 A}$$

Iolraigh a thiontú ina suimeanna agus ina ndifríochtaí

Products to sums and differences

$$2\cos A\cos B = \cos(A+B) + \cos(A-B)$$

$$2\sin A\cos B = \sin(A+B) + \sin(A-B)$$

$$2\sin A\sin B = \cos(A-B) - \cos(A+B)$$

$$2\cos A\sin B = \sin(A+B) - \sin(A-B)$$

Suimeanna agus difríochtaí a thiontú ina n-iolraigh

Sums and differences to products

$$\cos A + \cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$$

$$\cos A - \cos B = -2\sin\frac{A+B}{2}\sin\frac{A-B}{2}$$

$$\sin A + \sin B = 2\sin \frac{A+B}{2}\cos \frac{A-B}{2}$$

$$\sin A - \sin B = 2\cos\frac{A+B}{2}\sin\frac{A-B}{2}$$

The radius of Ehio circle is r=1 To show that $\lim_{\theta \to 0}$ $\frac{\sin \theta}{2} = 1$ From Should length at Sin (0) = = 5 = 5 for (0). and thut $sin(0) \leq \Theta \leq tan(0)$ So $sin(\theta) \le \theta \le \frac{sin(\theta)}{\cos(\theta)}$ So, dividing by sin(Θ) we get

1-1

$$\sin(\theta)/\theta$$

Other examples

Example

Evaluate $\lim_{x\to 0} \frac{\tan(3x)}{\sin(2x)}$

First note
$$fon(3x) = \frac{\sin(3x)}{\cos(3x)}$$

$$\frac{1}{\sin(2x)} = \frac{\sin(3x)}{1} \frac{1}{(\cos(3x)) \cdot \sin(2x)}$$

$$\frac{50}{x \to 0} \frac{1}{\sin(3x)} = \lim_{x \to 0} \left(\frac{\sin(3x)}{3x}, \frac{1}{\cos(3x)}, \frac{2x}{\sin(2x)}, \frac{3}{2} \right) \\
= \lim_{x \to 0} \frac{\sin(3x)}{3x} \cdot \lim_{x \to 0} \frac{1}{\cos(3x)} \cdot \lim_{x \to 0} \frac{2x}{\sin(2x)}, \frac{3}{2} \\
= (1) \times (1) \times (1) \times (\frac{3}{2}) = \frac{3}{2}$$

Example

Evaluate
$$\lim_{\theta \to 0} \frac{1 - \cos \theta}{\theta^2}$$

Try this yourself.

Tip:
$$(1 - \cos(\theta))(1 + \cos(\theta))$$

$$= 1 - (\cos^{2}(\theta)) = \sin^{2}(\theta)$$

(Notation $\cos^{2}(x)$ means $[\cos(x)]^{2}$

" (os squared x".

Infinite Limits

So far, we've had lots of examples that are a little like:

$$\lim_{x \to 1} \frac{x^3 - x^2 - x + 1}{(x - 1)^2} = 2.$$

(Check that this is correct).

But what about

$$\lim_{x \to 1} \frac{1}{(x-1)^2} = ???$$

Let's plot it and see:

Infinite Limits

$$f(x) = \frac{1}{(x-1)^2}$$

As x get closer and closer to 1, the value of f(x) gets larger and larger. In fact, it becomes infinite.

For this we write $\lim_{x \to 1} f(x) = \infty.$

Digression: How fast can an object travel

- Q: Is there any limit to the speed at which an object can travel?
- ► A: Yes! (Assuming you believe Einstein)

Thanks to Einstein ($E = mc^2$), Lorenz and others, it is known that the mass of a moving charged particle behaves like

$$m(v) = m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$

where m_0 is its mass at rest, c is the speed of light, and v is the particles current speed. What happens as $v \to c$?

$$\lim_{V \to C} m(v) = \lim_{V \to C} \frac{m_0}{1 - \frac{v^2}{c^2}} \longrightarrow \frac{m_0}{\sqrt{1 - 1}} \longrightarrow \frac{m_0}{\sqrt{1 - 1}}$$

One-sided Limits

Let's consider a motivating example, very similar to the one where we introduced ∞ .

$$f(x) = \frac{1}{x - 1}$$

As x get closer and closer to 1, then $f(x) \to -\infty$ or $f(x) \to \infty$, depending on whether x approaches 1 from the left or right.

To express this, we need the concept of a **one-sided limit**

 $\lim_{x\to a^-} f(x)$ is: limit of f as x approaches a from the left

 $\lim_{x\to a^+} f(x)$ is: limit of f as x approaches a from the right

In the previous example, with $f(x) = \frac{1}{x-1}$, we have

$$\lim_{x \to 1^-} f(x) = -\infty$$

In many important examples, we encounter functions that have different definitions in different regions. The most classic example is the **absolute value function**:

$$|x| = \begin{cases} -x & x < 0 \\ x & x \geqslant 0. \end{cases}$$

Care has to be taken when evaluating the limits of such functions....

Example

Sketch the function

$$f(x) = \begin{cases} 3 - x, & x \leq 2\\ \frac{x}{2} + 1, & x > 2 \end{cases}$$

Find $\lim_{x\to 2^-} f(x)$ and $\lim_{x\to 2^+} f(x)$.

$$f(0) = 3 - 0 = 3$$

$$f(1) = 3 - 1 = 2$$

$$f(2) = 3 - 2 = 1$$

$$f(4) = 3$$

$$f(6) = 4$$

Empty and Full Circle Notation:

In the previous sketch, we use the convention that

- ► If the end point of a line segment is **not** included in its definition, it terminates with an **open circle**, ∘
- ► If the end point of a line segment is included in its definition, it terminates with an **closed circle** •.

Finished here Tuesday

Existence of a limit

 $\lim_{x \to a} f(x)$ exists if and only if

$$\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x)$$

So if $\lim_{x\to a} f(x) = L$ exists, we have

$$\lim_{x \to a^{-}} f(x) = \lim_{x \to a} f(x) = \lim_{x \to a^{+}} f(x) = L$$

though it is not necessary that f(a) = L

Example

Sketch the function

$$f(x) = \begin{cases} 3 - x, & x < 2 \\ 4, & x = 2 \\ \frac{x}{2}, & x > 2 \end{cases}$$

Determine if $\lim_{x\to 2} f(x)$ exists.

Exercises

Exercise 3.1.1 (from 2023/24 Q1(b))

Evaluate

$$\lim_{\theta \to 0} \frac{2\sin(\theta)}{\theta + 3\tan(\theta)}$$