Adversarial Attacks FGSM **Targeted:** $x' := x - \epsilon \cdot \operatorname{sign}(\nabla_x \mathcal{L}_{\operatorname{target}}(x))$ Untargeted: $x' := x + \epsilon \cdot \operatorname{sign}(\nabla_x \mathcal{L}_{label}(x))$ Carlini-Wagner (Minimize Perturbation)..... **Opt.** Prob.: find η minimize $\|\eta\|_p$ s.t. $f(x+\eta) =$ $t, x + \eta \in [0, 1]^n$ **Relaxed:** find η minimize $\|\eta\|_p + c \cdot \text{obj}_t(x+\eta)$ s.t. $x + \eta \in [0, 1]^n$ With obj_t $(x + \eta) \le 0 \Rightarrow f(x + \eta) = t$ (e.g., $\mathcal{L}_t(x) - 1 =$ $-\log_C(p(x)_t) - 1 \text{ or } \max(0, 0.5 - p(x)_t)$ When using L_{∞} , gradient of $\|\eta\|_{\infty}$ is zero at all non-max entries \rightarrow use $L(\eta) = \sum_{i} \max(0, |\eta_i| - \tau)$ instead; Start with $\tau = 1$, update ηK times, if $L(\eta) = 0$ decrease τ and repeat, otherwise stop and return previous η . PGD **def** PGD $(x, y, k, \epsilon_{\text{step}}, \epsilon)$ $x' \leftarrow x + \eta$ for random η with $\|\eta\|_{\infty} \leq \epsilon$ for $i = 1, \ldots, k$ do $q \leftarrow \nabla_{x'} \mathcal{L}(f(x'), y)$ $\triangleright uFGSM(x', y)$ $x' \leftarrow x' + \epsilon_{\text{step}} \cdot \text{sign}(q) \qquad \triangleright uFGSM(x', y)$ $x' \leftarrow x + \max(\min(x' - x, \epsilon), -\epsilon)$ Clip x' to input domain $\triangleright e.g., [0,1]^n$ return x'For general norm $\|\cdot\|$, use $x' \leftarrow x' + \epsilon_{\text{step}} \cdot \frac{g}{\|g\|}$ \triangleright dir of q, not sign if $||x'-x||_p > \epsilon$ then $x' \leftarrow x + \epsilon \frac{x'-x}{\|x'-x\|}$ Diffing Networks.... $\operatorname{obj}_t(x) := f(x)_t - g(x)_t$ (or abs. diff. of prob.) **def** Diff Nets (f, q, ϵ) Select x classified as t by both f and qwhile class(f(x)) = class(g(x)) do $x \leftarrow x + \epsilon \cdot \nabla_x \operatorname{obj}_t(x) \triangleright Make \ f \ more \ confi$ dent about t while making q less confident return xAdversarial Defenses

Adversarial accuracy: check if data point in test set is classified correctly and network is robust in region around point (e.g., using PGD in ϵ L_{∞} -ball). Often

have tradeoff with standard accuracy.

Opt. Prob.:
$$\underset{\theta}{\operatorname{argmin}} \mathbb{E} \left[\max_{x' \in S(x)} \mathcal{L}(\theta; x', y) \right]$$

PGD training.....

1. Select mini-batch B

2. $B_{\max} \leftarrow \{ \underset{x \in S(x)}{\operatorname{argmax}} \mathcal{L}(\theta; x', y) | x \in B \}$

3.
$$\theta \leftarrow \theta - \frac{1}{|B_{\text{max}}|} \sum_{(x,y) \in B_{\text{max}}} \nabla_{\theta} \mathcal{L}(\theta; x, y)$$

TRADES.....

$$\underset{\theta}{\operatorname{argmin}} \mathbb{E}_{(x,y) \sim D} \left[\mathcal{L}(\theta; x, y) + \lambda \cdot \max_{x' \in S(x)} \mathcal{L}(\theta; x', f_{\theta}(x)) \right]$$

Certification

Soundness When a property is violated, if the method terminates, it always states that the property is violated

Completeness When a property holds, the method is able to prove it

Incompleteness When a property holds, the method might not be able to prove it (e.g. bounds propagation with convex relaxations)

Box Abstract Transformers.....

 $\bullet [a, b] + \sharp [c, d] = [a + c, b + d]$

 $\bullet - ^{\sharp}[a, b] = [-b, -a]$

• $ReLU^{\sharp}([a,b]) = [ReLU(a), ReLU(b)]$

• $\lambda \cdot^{\sharp} [a, b] = [\lambda \cdot a, \lambda \cdot b]$ for $\lambda \ge 0$

• [a, b] · $^{\sharp}$ $[c, d] = [\min(ac, ad, bc, bd), \max(ac, ad, bc, bc)]$

Certification (Complete Methods)

MILP (complete for ReLU, NP-complete)......

 $\begin{array}{ll} \textbf{Objective} & \min_{x_1,\dots,x_n} c_1 x_1 + \dots + c_n x_n \\ \textbf{Constraints} & a_{i,1} x_1 + \dots + a_{i,n} x_n \leq b_i, \ 1 \leq i \leq m \\ \textbf{Bounds} & x_j \in [l_j, u_j] \ \text{or} \ x_j \in \mathbb{Z}, \ 1 \leq j \leq n \\ \textbf{Affine layer} & y = Wx + b \\ \textbf{ReLU layer} & y \leq x - l(1-a) \\ & y \leq ua \\ & y \geq x \\ & y \geq 0 \\ & a \in \{0,1\} \end{array} \right\} \begin{array}{l} x \in [l,u] \\ a = 0 \Rightarrow (y = 0) \\ & \land x \in [l,0]) \\ a = 1 \Rightarrow (y = x) \\ & \land x \in [0,u] \end{aligned}$

Bounds $x_i \in [l_i, u_i]$ (precomputed box bounds for neurons) or $x_i' \in [x_i - \epsilon, x_i + \epsilon]$ (inputs)

Objective $\min o_{\text{label}} - o_i$ (verification succeeds iff $o_{\text{label}} > o_i$)

Zonotope .

Zonotope $\hat{x_j} = a_0^j + \sum_{i=1}^k a_i^j \epsilon_i, \ \epsilon_i \in [-1, 1]$ **Symmetry** center is $a_0, 2 \cdot a_0 - X$ is X flipped

Affine Zonotope is linear

ReLU Enumerate $\epsilon_i \in [-1,1]$ to find l_x , u_x . If $u_x \leq 0$, $\hat{y} = 0$. If $l_x \geq 0$, $\hat{y} = \hat{x}$. Otherwise, $\hat{y} = \lambda \hat{x} - \epsilon_{\text{new}} \frac{\lambda l_x}{2} - \frac{\lambda l_x}{2}$, $\lambda := \frac{u_x}{u_x - l_x}$

DeepPoly _

Def $x_i \in [l_i, u_i], \ a_i^{\leq} \leq x_i \leq a_i^{\geq}, \ a_i = \sum_j w_j x_j + v$ **Complexity** Affine: $\mathcal{O}((\# \text{layers}) (\max \# \text{neurons})^2),$ ReLU: $\mathcal{O}(1)$

any $\lambda \in [0,1]$

Area heuristic Choose $\lambda = 0$ if $u \le -l$, else $\lambda = 1$ **Backsub** After affine layer, repeatedly backsubstitute (for l, choose a^{\le} for $w \ge 0$, a^{\ge} otherwise)

Verification Backsubstitute $x_{label} - x_i$ to find lower bound, verifies iff > 0

Abstract Interpretation _

Soundness $\forall z \in \mathbb{A}.F(\gamma(z)) \subseteq \gamma(F^{\sharp}(z))$

Exactness $\forall z \in \mathbb{A}.F(\gamma(z)) = \gamma(F^{\sharp}(z))$

Optimality $\forall z. \forall F^{\sharp} \text{ sound.} \gamma(F^{\sharp}(z)) \not\subset \gamma(F^{\sharp}_{\text{best}}(z))$

Domain	Affine Transformer	ReLU Transformer
Box	not exact optimal	not exact optimal
Zonotope	exact optimal	not exact no optimal trafo
DeepPoly	exact optimal	not exact no optimal trafo

Certified Defenses

Train networks to be provably robust (instead of experimentally result as in PGD training).

Opt.:
$$\underset{\theta}{\operatorname{argmin}} \mathbb{E} \left[\max_{z \in \gamma(\operatorname{NN}^{\sharp}(S(x)))} \mathcal{L}(\theta; z, y) \right]$$

Loss $\mathcal{L}(z, y) := \max_{q \neq y} (z_q - z_y) = \max_{q \neq y} (\operatorname{box}(z_q - z_y))$

CE loss $\mathcal{L}(z,y) = CE(z',y)$, with $z'_u := l_u$, $z'_a := u_a$ for $q \neq y$

Universal Approximation For any neural network, there exists a network with the same properties that can be analyzed exactly with Box.

Complexity Using complex relaxations generally leads to worse results in provability than with Box (more complex optimization problem)

COLT For each layer, find $x_l \in S_l$ that maximizes loss in final layer, and use it.

COLT projection Write zonotope as

 $Z = A \cdot [-1, 1]^d$, compute $e = A^{-1} \cdot x$, clip e to [-1, 1], projection is $A \cdot e_{\text{clip}}$. This projection is sound (result inside zonotope), but not optimal.

Certified Robustness to Geometric Trafo Rotation

$$T_{\phi}(x,y) = (x\cos(\phi) - y\sin(\phi), x\sin(\phi) + y\cos(\phi))$$

Translation $T_{\delta}(x,y) = (x + \delta_x, y + \delta_y)$

Scaling $T_{\lambda}(x,y) = (\lambda x, \lambda y)$

Interpolation To compute pixel value $I_{\kappa}(x,y)$ after T_{κ} : compute pre-image $T_{\kappa}(x,y)$, then interpolate.

Domain $w_l^T \kappa + b_l < I_{\kappa}(x,y) < w_u^T + b_u$, for all κ **Tightness**

$$L(w_l, b_l) := \int_{\kappa \in D} \left(I_{\kappa}(x, y) - (w_l^T \kappa + b_l) \right) d\kappa$$
$$U(w_u, b_u) := \int_{\kappa \in D} \left((w_u^T \kappa + b_u) - I_{\kappa}(x, y) \right) d\kappa$$

Optimization

- $L(w_l, b_l) \approx \frac{1}{N} \sum_{i=1}^{N} \left(I_{\kappa}(x, y) (w_l^T \kappa^i + b_l) \right)$
- $w_l^T \kappa^i + b_l \leq I_{\kappa^i}(x, y), 1 \leq i \leq N$
- \rightarrow Solve in poly-time with linear programming.

Soundness Find upper bound δ on violation: $(w_l^T \kappa^i + b_l) - I_{\kappa}(x, y) \leq \delta_l \quad \forall \kappa \in D$

 $I_{\kappa}(x,y) - (w_{u}^{T}\kappa + b_{u}) \leq \delta_{u} \quad \forall \kappa \in D$ Using $b_l - \delta_l$, $b_u + \delta_u$ is sound.

 \rightarrow **Box** Use Box to compute upper bound on $f(\kappa)$

 \rightarrow **MVTh** if $|\partial_i f(\kappa')| \leq |L_i| \forall \kappa' \in D = [h_l, h_n],$ $f(\kappa) = f(\kappa_C) + \nabla f(\kappa')^T (\kappa - \kappa_C) \le$ $f(\kappa_C) + |L|^T (\kappa - \kappa_C) \le f\left(\frac{h_u + h_l}{2}\right) + |L|^T \frac{(h_u - h_l)}{2}$ Visualization

Opt.: $\operatorname{argmin}_{x} \operatorname{score}(x) - \sum \lambda_{i} \operatorname{Regularizer}_{i}(x)$, $score(x) := mean(layer_I[x])$ (using GD)

Gradient Feature Attribution $\nabla_x \operatorname{logit}_t(x)$ Shapley Values

$$C_i := \sum_{S \subseteq P \setminus \{i\}} \frac{|S|!(|P| - |S| - 1)!}{|P|!} \left(f(S \cup \{i\}) - f(S) \right)$$

Need to define f(S) (e.g., set pixels not in S to 0)

Prop. $\sum_i C_i = f(P)$

Robustness Robust NN rely on more robust features, more aligned with human perception

Logic & Deep Learning

Querving

Optimization: $\forall x.T(\phi)(x) = 0 \Leftrightarrow x \text{ satisfies } \phi$

$$\frac{\phi \qquad T(\phi) \text{ (non-negative)}}{t_1 \le t_2 \quad \max(0, t_1 - t_2)}$$

$$t_1 \ne t_2 \quad [t_1 = t_2]$$

$$t_1 = t_2 \quad T(t_1 \le t_2 \land t_2 \le t_1)$$

$$t_1 < t_2 \quad T(t_1 \le t_2 \land t_1 \ne t_2)$$

$$\phi \lor \psi \qquad T(\phi) \cdot T(\psi)$$

$$\phi \land \psi \qquad T(\phi) + T(\psi)$$

Box Box constraints are encoded separately (e.g., w/ L-BFGS-B optimizer)

Counter-example Use optimization to find counter-examples to a given property.

Training with Background Knowledge.....

- 1. $\underset{\theta}{\operatorname{argmax}} \mathbb{E}_{s \sim D} \left[\forall z. \phi(z, s, \theta) \right]$ (find θ s.t. exp. val. of property increases)
- 2. $\underset{\theta}{\operatorname{argmin}} \mathbb{E} \left[\max_{s \sim D} \left[\max_{z} \neg \phi(z, s, \theta) \right] \right]$ (find θ s.t. max. violation of ϕ is minimized)
- 3. $\underset{\theta}{\operatorname{argmin}} \mathbb{E}_{s \sim D}[T(\phi)(z_{\text{worst}}, s, \theta)],$ $z_{\text{worst}} := \operatorname{argmin} T(\neg \phi)(z, s, \theta)$ (find worst possible violation of ϕ , then find θ that minimizes its effect) To solve inner opt. problem efficiently, split into objective and (efficient) projections on convex set (e.g., L_{∞} -ball)

Randomized Smoothing _

Given classifier $f: \mathbb{R}^d \to \mathcal{Y}$, construct smoothed classifier g as $g(x) := \underset{c \in \mathcal{Y}}{\operatorname{argmax}} \mathbb{P}_{\epsilon}[f(x+\epsilon) = c]$ where $\epsilon \sim \mathcal{N}(0, \sigma^2 \mathbf{1})$

Robustness If

accuracy: T=0)

$$\mathbb{P}[f(x+\epsilon) = c_A] \ge \underline{p_A} \ge \overline{p_B} \ge \max_{c \ne c_A} \mathbb{P}[f(x+\epsilon) = c],$$

then $q(x + \delta) = c_A$ for all

$$\|\delta\|_2 < R := \frac{\sigma}{2} \left(\Phi^{-1}(\underline{p_A}) - \Phi^{-1}(\overline{p_B}) \right)$$

Certification p_A approximate with sampling: if $p_A > 0.5$, return radius $\sigma \Phi^{-1}(p_A)$, otherwise abstain. Certified Accuracy Pick target radius T, count #points in test set with certified radius R > T and where predicted label matches test set label (Standard

Inference Reject null hypothesis (true prob. of f returning \hat{c}_A is 0.5, i.e., classes are indistinguishable) if estimated p-value $\leq \alpha$, else abstain.

 \rightarrow returns wrong class $\hat{c_A} \neq c_A$ with prob. $\leq \alpha$

Generalized Smoothing

 $g(x) = \operatorname{argmax}_{c \in \mathcal{V}} \mathbb{P}_{\epsilon}[f(\psi_{\epsilon}(x)) = c], \ \epsilon \sim \mathcal{N}(0, \sigma^2 \mathbf{1}),$ $\psi_{\alpha}(\psi_{\beta}) = \psi_{\alpha+\beta}$ (e.g., instantiate ψ with geometric transformations).

Summary

- Scales to large networks;
- Relaxes deterministic guarantees into statistical guarantees on robustness:
- May need many samples to obtain higher certified radius. Also requires sampling at inference time;
- Generalizing smoothing to different properties is harder than convex methods.

General

<u> </u>	$ \cdot x _1$	$ \cdot x _2$	$ \cdot x _{\infty}$
$ x _1 = \sum_{i=1}^d x_i $		\sqrt{d}	d
$\ x\ _2 = \sum_{i=1}^d x_i ^2$	1		\sqrt{d}
$ x _{\infty} = \max_{1 \le i \le d} x_i $	1	1	

 $\mathbb{B}_1^1 \subseteq \mathbb{B}_1^2 \subseteq \mathbb{B}_1^\infty \subseteq \mathbb{B}_{\sqrt{d}}^2 \subseteq \mathbb{B}_d^1$ (Classifier safe for L_2 -radius of $\epsilon \Rightarrow \text{safe}$ for L_{∞} -radius of $\frac{\epsilon}{\sqrt{J_d}}$

$$CE(p, y) = -\sum_{i} y_i \cdot \log(p_i)$$

 $(= -\log(p_{\rm lbl}) = -\log(o_{\rm lbl}) + \log(Z)$ for single label)