Machine learning - Boosting

L. Rouvière

laurent.rouviere@univ-rennes2.fr

NOVEMBRE 2022

Présentation

- Objectifs : comprendre les aspects théoriques et pratiques des algorithmes de gradient boosting.
- Pré-requis : théorie des probabilités, modélisation statistique, machine learning, méthodes par arbres. R, niveau avancé.
- Enseignant : Laurent Rouvière laurent.rouviere@univ-rennes2.fr
 - Recherche : statistique non paramétrique, apprentissage statistique
 - Enseignements : statistique et probabilités (Université, école d'ingénieur et de commerce, formation continue).
 - Consulting : energie, finance, marketing, sport.

Programme

Matériel :

- slides: https: //lrouviere.github.io/page_perso/apprentissage_sup.html
- Tutoriel: https://lrouviere.github.io/TUTO_ARBRES/

• 3 parties :

- 1. Rappels sur les fondamentaux du machine Learning
- 2. Les algorithmes de Gradient Boosting
- 3. Xgboost: Extreme Gradient Boosting.

Rappels

Boosting

- Algorithme de gradient boosting
- Choix des paramètres
- Compléments/conclusion
- Xgboost

Bibliographie

Machine Learning - Prévision

Le problème

Prédire/expliquer une sortie Y par des entrées $X=(X_1,\ldots,X_d)$

• Fonction de prévision : $f: \mathbb{R}^d \to \mathbb{R}$.

- Fonction de prévision : $f : \mathbb{R}^d \to \mathbb{R}$.
- Fonction de perte : $\ell : \mathbb{R} \times \mathbb{R} \to \mathbb{R}^+$ telle que

$$\begin{cases} \ell(y, y') = 0 & \text{si } y = y' \\ \ell(y, y') > 0 & \text{si } y \neq y'. \end{cases}$$

- Fonction de prévision : $f: \mathbb{R}^d \to \mathbb{R}$.
- Fonction de perte : $\ell : \mathbb{R} \times \mathbb{R} \to \mathbb{R}^+$ telle que

$$\left\{ \begin{array}{ll} \ell(y,y')=0 & \mathrm{si}\ y=y' \\ \ell(y,y')>0 & \mathrm{si}\ y\neq y'. \end{array} \right.$$

• Risque : $\mathcal{R}(f) = \mathbf{E}[\ell(Y, f(X))]$.

- Fonction de prévision : $f : \mathbb{R}^d \to \mathbb{R}$.
- Fonction de perte : $\ell : \mathbb{R} \times \mathbb{R} \to \mathbb{R}^+$ telle que

$$\begin{cases} \ell(y, y') = 0 & \text{si } y = y' \\ \ell(y, y') > 0 & \text{si } y \neq y'. \end{cases}$$

- Risque : $\mathcal{R}(f) = \mathbf{E}[\ell(Y, f(X))]$.
- Champion ou fonction de prévision optimale

$$f^* \in \underset{f}{\operatorname{argmin}} \mathcal{R}(f) \Longleftrightarrow \mathcal{R}(f^*) \leq \mathcal{R}(f) \ \forall f$$

5

- Fonction de prévision : $f : \mathbb{R}^d \to \mathbb{R}$.
- Fonction de perte : $\ell : \mathbb{R} \times \mathbb{R} \to \mathbb{R}^+$ telle que

$$\begin{cases} \ell(y, y') = 0 & \text{si } y = y' \\ \ell(y, y') > 0 & \text{si } y \neq y'. \end{cases}$$

- Risque : $\mathcal{R}(f) = \mathbf{E}[\ell(Y, f(X))]$.
- Champion ou fonction de prévision optimale

$$f^* \in \operatorname*{argmin}_f \mathcal{R}(f) \Longleftrightarrow \mathcal{R}(f^*) \leq \mathcal{R}(f) \ \forall f$$

Problème

 f^* est toujours inconnu.

• Les données $\mathcal{D}_n = \{(x_1, y_1), \dots, (x_n, y_n)\}.$

• Les données $\mathcal{D}_n = \{(x_1, y_1), \dots, (x_n, y_n)\}.$

Le problème pratique

Trouver un algorithme de prévision $f_n(.) = f_n(., \mathcal{D}_n)$ tel que $\mathcal{R}(f_n) \approx \mathcal{R}(f^*)$.

• Les données $\mathcal{D}_n = \{(x_1, y_1), \dots, (x_n, y_n)\}.$

Le problème pratique

Trouver un algorithme de prévision $f_n(.) = f_n(., \mathcal{D}_n)$ tel que $\mathcal{R}(f_n) \approx \mathcal{R}(f^*)$.

Exemples

- Algorithme linéaires ou logistique : MCO, ridge, lasso
- Plus proches voisins, SVM
- Arbres, forêts aléatoires, boosting...

Ré-échantillonnage

Conséquence

Crucial de savoir calculer/estimer le risque d'un algorithme de prévision

$$\mathcal{R}(f_n) = \mathbf{E}[\ell(Y, f_n(X))].$$

Ré-échantillonnage

Conséquence

Crucial de savoir calculer/estimer le risque d'un algorithme de prévision

$$\mathcal{R}(f_n) = \mathbf{E}[\ell(Y, f_n(X))].$$

Cela s'effectue généralement à l'aide de méthodes de ré-échantillonnage :

- Validation hold-out (on coupe en deux)
- Validation croisée (on coupe en blocs)
- Bootstrap (tirages avec ou sans remise)

Validation croisée

Algorithme - CV

Entrée : $\{B_1, \dots, B_K\}$ une partition de $\{1, \dots, n\}$ en K blocs.

Pour k = 1, ..., K:

- 1. Ajuster l'algorithme de prévision en utilisant l'ensemble des données privé du k^e bloc, c'est-à-dire $\mathcal{B}_k = \{(x_i, y_i) : i \in \{1, \dots, n\} \setminus \mathcal{B}_k\}$. On désigne par $f_k(.) = f_k(., \mathcal{B}_k)$ l'algorithme obtenu.
- 2. Calculer la valeur prédite par l'algorithme pour chaque observation du bloc $k: f_k(x_i), i \in B_k$ et en déduire le risque sur le bloc k:

$$\widehat{\mathcal{R}}(f_k) = \frac{1}{|B_k|} \sum_{i \in B_k} \ell(y_i, f_k(x_i)).$$

Retourner: $\frac{1}{K} \sum_{k=1}^{K} \widehat{\mathcal{R}}(f_k)$.

Le sur-apprentissage

 La plupart des modèles statistiques renvoient des estimateurs qui dépendent de paramètres λ à calibrer.

Le sur-apprentissage

 La plupart des modèles statistiques renvoient des estimateurs qui dépendent de paramètres λ à calibrer.

Exemples

- nombres de variables dans un modèle linéaire ou logistique.
- paramètre de pénalités pour les régressions pénalisées.
- profondeur des arbres.
- nombre de plus proches voisins.
- nombre d'itérations en boosting.
- ...

Le sur-apprentissage

 La plupart des modèles statistiques renvoient des estimateurs qui dépendent de paramètres λ à calibrer.

Exemples

- nombres de variables dans un modèle linéaire ou logistique.
- paramètre de pénalités pour les régressions pénalisées.
- profondeur des arbres.
- nombre de plus proches voisins.
- nombre d'itérations en boosting.
- ...

Remarque importante

Le choix de ces paramètres est le plus souvent crucial pour la performance de l'estimateur sélectionné.

Complexité ⇒ **compromis** biais/variance

• λ petit \Longrightarrow modèle peu flexible \Longrightarrow mauvaise adéquation sur les données \Longrightarrow biais \nearrow , variance \searrow .

Complexité ⇒ **compromis** biais/variance

- λ petit \Longrightarrow modèle peu flexible \Longrightarrow mauvaise adéquation sur les données \Longrightarrow biais \nearrow , variance \searrow .
- λ grand \Longrightarrow modèle trop flexible \Longrightarrow sur-ajustement \Longrightarrow biais \searrow , variance \nearrow .

Complexité ⇒ **compromis** biais/variance

- λ petit \Longrightarrow modèle peu flexible \Longrightarrow mauvaise adéquation sur les données \Longrightarrow biais \nearrow , variance \searrow .
- λ grand \Longrightarrow modèle trop flexible \Longrightarrow sur-ajustement \Longrightarrow biais \searrow , variance \nearrow .

Overfitting

Sur-ajuster signifie que le modèle va (trop) bien ajuster les données d'apprentissage, il aura du mal à s'adapter à de nouveaux individus.

Overfitting en régression

Overfitting en régression

Overfitting en classification supervisée

Overfitting en classification supervisée

Application shiny

https://lrouviere.shinyapps.io/overfitting_app/

Représentation de l'arbre

Représentation de l'arbre

Remarque

Visuel de droite plus pertinent :

- Plus d'information.
- Généralisation à plus de deux dimensions.

Arbres et sur-apprentissage

• La complexité d'un arbre est caractérisé par sa profondeur ou son nombre de coupures :

Arbres et sur-apprentissage

- La complexité d'un arbre est caractérisé par sa profondeur ou son nombre de coupures :
 - Arbres trop profond ⇒ sur-ajustement, peu de biais mais trop de variance
 - Arbre peu profond ⇒ sous-ajustement, peu de variance mais beaucoup de biais.

Arbres et sur-apprentissage

- La complexité d'un arbre est caractérisé par sa profondeur ou son nombre de coupures :
 - Arbres trop profond ⇒ sur-ajustement, peu de biais mais trop de variance
 - Arbre peu profond ⇒ sous-ajustement, peu de variance mais beaucoup de biais.

Solution : élagage [Breiman et al., 1984]

- 1. Construire un arbre très/trop profond;
- 2. Retirer les branches inutiles ou peu informatives.

Agrégation

• Idée : construire un grand nombre d'algorithmes "simples" et les agréger pour obtenir une seule prévision. Par exemple

Agrégation

• Idée : construire un grand nombre d'algorithmes "simples" et les agréger pour obtenir une seule prévision. Par exemple

Questions

- 1. Comment choisir les échantillons $\mathcal{D}_{n,b}$?
- 2. Comment choisir les algorithmes?
- <mark>3</mark>. ...

Bagging

- Le bagging désigne un ensemble de méthodes introduit par Léo Breiman [Breiman, 1996].
- Bagging : vient de la contraction de Bootstrap Aggregating.
- Idée : plutôt que de constuire un seul estimateur, en construire un grand nombre (sur des échantillons bootstrap) et les agréger.

Idée : échantillons bootstrap

• Echantillon initial:

1	2	3	4	5	6	7	8	9	10
---	---	---	---	---	---	---	---	---	----

Idée : échantillons bootstrap

• Echantillon initial:

1 2 3 4 5 6 7 8 9	10
-------------------	----

• Echantillons bootstrap : tirage de taille *n* avec remise

3	4	6	10	3	9	10	7	7	1	T_1
2	8	6	2	10	10	2	9	5	6	T_2
2	9	4	4	7	7	2	3	6	7	T_3
6	1	3	3	9	3	8	10	10	1	T_4
3	7	10	3	2	8	6	9	10	2	T_5
	:								:	
7	10	3	4	9	10	10	8	6	1	T_B

Idée : échantillons bootstrap

• Echantillon initial:

		1	2	3	4	5	6	7	8	9	10
--	--	---	---	---	---	---	---	---	---	---	----

• Echantillons bootstrap : tirage de taille *n* avec remise

3	4	6	10	3	9	10	7	7	1	T_1
2	8	6	2	10	10	2	9	5	6	T_2
2	9	4	4	7	7	2	3	6	7	T_3
6	1	3	3	9	3	8	10	10	1	T_4
3	7	10	3	2	8	6	9	10	2	T_5
	:								:	
7	10	3	4	9	10	10	8	6	1	T_B

• A la fin, on agrège :

$$f_n(x) = \frac{1}{B} \sum_{b=1}^B T_b(x)$$

Coupures "aléatoires"

Arbres pour forêt

 Breiman propose de sélectionner la "meilleure" variable dans un ensemble composé uniquement de mtry variables choisies aléatoirement parmi les d variables initiales.

Coupures "aléatoires"

Arbres pour forêt

- Breiman propose de sélectionner la "meilleure" variable dans un ensemble composé uniquement de mtry variables choisies aléatoirement parmi les d variables initiales.
- Objectif : diminuer la corrélation entre les arbres que l'on agrège.

Algorithme forêts aléatoires

Entrées :

- B un entier positif;
- mtry un entier entre 1 et d;
- min.node.size un entier plus petit que n.

Pour *b* entre 1 et *B* ·

- 1. Faire un tirage aléatoire avec remise de taille n dans $\{1,\ldots,n\}$. On note \mathcal{I}_b l'ensemble des indices sélectionnés et $\mathcal{D}_{n,b}^{\star}=\{(x_i,y_i),i\in\mathcal{I}_b\}$ l'échantillon bootstrap associé.
- 2. Construire un arbre CART à partir de $\mathcal{D}_{n,b}^{\star}$ en découpant chaque nœud de la façon suivante :
 - 2.1 Choisir mtry variables au hasard parmi les d variables explicatives;
 - 2.2 Sélectionner la meilleure coupure $X_j \le s$ en ne considérant que les mtry variables sélectionnées;
 - 2.3 Ne pas découper un nœud s'il contient moins de min.node.size observations.
- 3. On note $T(., \theta_b, \mathcal{D}_n)$ l'arbre obtenu.

Retourner: $f_n(x) = \frac{1}{B} \sum_{b=1}^{B} T(x, \theta_b, \mathcal{D}_n)$.

Le coin R

- Notamment 2 packages avec à peu près la même syntaxe.
- randomforest : le plus ancien et probablement encore le plus utilisé.
- ranger [Wright and Ziegler, 2017]: plus efficace au niveau temps de calcul (codé en C++).

```
> library(ranger)
> set.seed(12345)
> foret <- ranger(type~.,data=spam)</pre>
> foret
## ranger(type ~ ., data = spam)
## Type:
                                       Classification
## Number of trees:
## Sample size:
                                       4601
## Number of independent variables:
                                       57
## Mtry:
## Target node size:
## Variable importance mode:
                                       none
## Splitrule:
                                       gini
## 00B prediction error:
                                      4.59 %
```

Choix des paramètres

B

le plus grand possible.
 En pratique on pourra s'assurer que le courbe d'erreur en fonction du nombre d'arbres est stabilisée.

Choix des paramètres

- B

 le plus grand possible.
 En pratique on pourra s'assurer que le courbe d'erreur en fonction du nombre d'arbres est stabilisée.
- min.node.size petit ⇒ bagging = réduction de variance ⇒ il faut des arbres profonds. Par défaut
 - *min.node.size* = 5 en régression
 - min.node.size = 1 en classification

Choix des paramètres

- B

 le plus grand possible.
 En pratique on pourra s'assurer que le courbe d'erreur en fonction du nombre d'arbres est stabilisée.
- min.node.size petit ⇒ bagging = réduction de variance ⇒ il faut des arbres profonds. Par défaut
 - min.node.size = 5 en régression
 - min.node.size = 1 en classification
- Par défaut mtry = d/3 en régression et \sqrt{d} en classification mais à calibrer (estimation du risque).

• Visualisation d'erreur en fonction de min.node.size et mtry

• Visualisation d'erreur en fonction de min.node.size et mtry

Commentaires

min.node.size petit et mtry à calibrer.

En pratique

• On peut bien entendu calibrer ces paramètres avec les approches traditionnelles mais...

En pratique

- On peut bien entendu calibrer ces paramètres avec les approches traditionnelles mais...
- les valeurs par défaut sont souvent performantes!

En pratique

- On peut bien entendu calibrer ces paramètres avec les approches traditionnelles mais...
- les valeurs par défaut sont souvent performantes!
- On pourra quand même faire quelques essais, notamment pour mtry.

Un exemple avec tidymodels

1. Initialisation du workflow :

```
> tune_spec <- rand_forest(mtry = tune(),min_n= tune()) %>%
+ set_engine("ranger") %>%
+ set_mode("classification")
> rf_wf <- workflow() %>% add_model(tune_spec) %>% add_formula(type ~ .)
```

2. Ré-échantillonnage et grille de paramètres :

```
> blocs <- vfold_cv(spam, v = 10,repeats = 5)
> rf_grid <- expand.grid(mtry=c(seq(1,55,by=5),57),
+ min_n=c(1,5,15,50,100,500))</pre>
```

3. Calcul des erreurs :

```
> rf_res <- rf_wf %>% tune_grid(resamples = blocs,grid = rf_grid)
```

4. Visualisation des résultats (AUC et accuracy) :

Remarque

On retrouve bien min.node.size petit et mtry proche de la valeur par défaut (7).

Remarque

On retrouve bien min.node.size petit et mtry proche de la valeur par défaut (7).

5. Ajustement de l'algorithme final :

```
> foret_finale <- rf_wf %>%
+ finalize_workflow(list(mtry=7,min_n=1)) %>%
+ fit(data=spam)
```

Conclusion

Beaucoup d'avantages

- Bonnes performances prédictives

 souvent parmi les algorithmes de tête dans les compétitions [Fernández-Delgado et al., 2014].
- Facile à calibrer.

Conclusion

Beaucoup d'avantages

- Bonnes performances prédictives

 souvent parmi les algorithmes de tête dans les compétitions [Fernández-Delgado et al., 2014].
- Facile à calibrer.

Assez peu d'inconvénients

Coté boîte noire (mais guère plus que les autres méthodes...)

Rappels

Boosting

Algorithme de gradient boosting

Choix des paramètres

Compléments/conclusion

Xgboost

Bibliographie

• Le terme Boosting s'applique à des méthodes générales permettant de produire des décisions précises à partir de règles faibles (weaklearner).

- Le terme Boosting s'applique à des méthodes générales permettant de produire des décisions précises à partir de règles faibles (weaklearner).
- Historiquement, le premier algorithme boosting est adaboost [Freund and Schapire, 1996].
- Beaucoup de travaux ont par la suite été développés pour comprendre et généraliser ces algorithmes (voir [Hastie et al., 2009]) :
 - modèle additif
 - descente de gradient ⇒ gradient boosting machine, extreme gradient bossting (Xgboost).
 - ...

- Le terme Boosting s'applique à des méthodes générales permettant de produire des décisions précises à partir de règles faibles (weaklearner).
- Historiquement, le premier algorithme boosting est adaboost [Freund and Schapire, 1996].
- Beaucoup de travaux ont par la suite été développés pour comprendre et généraliser ces algorithmes (voir [Hastie et al., 2009]) :
 - modèle additif
 - descente de gradient ⇒ gradient boosting machine, extreme gradient bossting (Xgboost).
 - ..
- Dans cette partie ⇒ descente de gradient.

Machine learning ⇒ objectifs prédictifs ⇒ minimisation de risque.

- Machine learning ⇒ objectifs prédictifs ⇒ minimisation de risque.
- Risque d'une fonction de prévision $f: \mathbb{R}^d \to \mathbb{R}$:

$$\mathcal{R}(f) = \mathbf{E}[\ell(Y, f(X))].$$

- Machine learning ⇒ objectifs prédictifs ⇒ minimisation de risque.
- Risque d'une fonction de prévision $f: \mathbb{R}^d \to \mathbb{R}$:

$$\mathcal{R}(f) = \mathbf{E}[\ell(Y, f(X))].$$

• $\mathcal{R}(f)$ inconnu \Longrightarrow version empirique

$$\mathcal{R}_n(f) = \frac{1}{n} \sum_{i=1}^n \ell(y_i, f(x_i)).$$

- Machine learning ⇒ objectifs prédictifs ⇒ minimisation de risque.
- Risque d'une fonction de prévision $f: \mathbb{R}^d \to \mathbb{R}$:

$$\mathcal{R}(f) = \mathbf{E}[\ell(Y, f(X))].$$

• $\mathcal{R}(f)$ inconnu \Longrightarrow version empirique

$$\mathcal{R}_n(f) = \frac{1}{n} \sum_{i=1}^n \ell(y_i, f(x_i)).$$

Idée

Minimiser $\mathcal{R}_n(f)$ sur une classe d'algorithmes \mathcal{F} .

- Il est bien entendu crucial.
- ullet riche/complexité élevée \Longrightarrow

- Il est bien entendu crucial.
- \mathcal{F} riche/complexité élevée $\Longrightarrow \mathcal{R}_n(f) \searrow \Longrightarrow f(x_i) \approx y_i, i = 1, \dots, n$ $\Longrightarrow \text{sur-ajustement}.$

- Il est bien entendu crucial.
- \mathcal{F} riche/complexité élevée $\Longrightarrow \mathcal{R}_n(f) \searrow \Longrightarrow f(x_i) \approx y_i, i = 1, \dots, n$ \Longrightarrow sur-ajustement.
- et réciproquement pour des classes $\mathcal F$ simple/complexité faible.

- Il est bien entendu crucial.
- \mathcal{F} riche/complexité élevée $\Longrightarrow \mathcal{R}_n(f) \searrow \Longrightarrow f(x_i) \approx y_i, i = 1, \dots, n$ \Longrightarrow sur-ajustement.
- ullet et réciproquement pour des classes ${\mathcal F}$ simple/complexité faible.

Combinaisons d'arbres

• [Friedman, 2001, Friedman, 2002] propose de se restreindre à des combinaisons d'arbres :

$$\mathcal{F} = \left\{ \sum_{b=1}^{B} \lambda_b T(x, \theta_b), \lambda_b \in \mathbb{R}, \theta_b \in \Theta \right\}$$

où θ_b désigne les paramètres de l'arbre (impureté, profondeur)...

$$T(x, \theta_b) = \sum_{\ell=1}^{L} \gamma_{b\ell} \mathbf{1}_{x \in \mathcal{N}_{b\ell}}$$

où $\mathcal{N}_{b\ell}$ désigne les feuilles et $\gamma_{b\ell}$ les prévisions dans les feuilles.

$$T(x, \theta_b) = \sum_{\ell=1}^{L} \gamma_{b\ell} \mathbf{1}_{x \in \mathcal{N}_{b\ell}}$$

où $\mathcal{N}_{b\ell}$ désigne les feuilles et $\gamma_{b\ell}$ les prévisions dans les feuilles.

- Les paramètres B, θ_b définissent la complexité de \mathcal{F} .
- Il faudra les calibrer à un moment mais nous les considérons fixés pour l'instant.

$$T(x,\theta_b) = \sum_{\ell=1}^{L} \gamma_{b\ell} \mathbf{1}_{x \in \mathcal{N}_{b\ell}}$$

où $\mathcal{N}_{b\ell}$ désigne les feuilles et $\gamma_{b\ell}$ les prévisions dans les feuilles.

- Les paramètres B, θ_b définissent la complexité de \mathcal{F} .
- Il faudra les calibrer à un moment mais nous les considérons fixés pour l'instant.

Un premier problème

Chercher $f \in \mathcal{F}$ qui minimise $\mathcal{R}_n(f)$.

$$T(x,\theta_b) = \sum_{\ell=1}^{L} \gamma_{b\ell} \mathbf{1}_{x \in \mathcal{N}_{b\ell}}$$

où $\mathcal{N}_{b\ell}$ désigne les feuilles et $\gamma_{b\ell}$ les prévisions dans les feuilles.

- Les paramètres B, θ_b définissent la complexité de \mathcal{F} .
- Il faudra les calibrer à un moment mais nous les considérons fixés pour l'instant.

Un premier problème

Chercher $f \in \mathcal{F}$ qui minimise $\mathcal{R}_n(f)$.

- Résolution numérique trop difficile.
- Nécessité de trouver un algorithme qui approche la solution.

Rappels

Boosting

Algorithme de gradient boosting

Choix des paramètres

Compléments/conclusion

Xgboost

Bibliographie

 Définissent des suites qui convergent vers des extrema locaux de fonctions R^p → R.

- Définissent des suites qui convergent vers des extrema locaux de fonctions R^p → R.
- Le risque $\mathcal{R}_n(f)$ ne dépend que des valeurs de f aux points x_i .

- Définissent des suites qui convergent vers des extrema locaux de fonctions ℝ^p → ℝ.
- Le risque $\mathcal{R}_n(f)$ ne dépend que des valeurs de f aux points x_i .
- En notant $\mathbf{f} = (\mathbf{f}(x_1), \dots, \mathbf{f}(x_n)) \in \mathbb{R}^n$, on a

$$\mathcal{R}_n(f) = \widetilde{\mathcal{R}}_n(\mathbf{f}) = \frac{1}{n} \sum_{i=1}^n \ell(y_i, \mathbf{f}(x_i))$$

avec $\widetilde{\mathcal{R}}_n: \mathbb{R}^n \to \mathbb{R}$.

- Définissent des suites qui convergent vers des extrema locaux de fonctions R^p → R.
- Le risque $\mathcal{R}_n(f)$ ne dépend que des valeurs de f aux points x_i .
- ullet En notant $\mathbf{f}=(\mathbf{f}(x_1),\ldots,\mathbf{f}(x_n))\in\mathbb{R}^n$, on a

$$\mathcal{R}_n(f) = \widetilde{\mathcal{R}}_n(\mathbf{f}) = \frac{1}{n} \sum_{i=1}^n \ell(y_i, \mathbf{f}(x_i))$$

avec $\widetilde{\mathcal{R}}_n: \mathbb{R}^n \to \mathbb{R}$.

Nouveau problème

Minimiser $\widetilde{\mathcal{R}}_n$.

 \implies en gardant en tête que minimiser de $\mathcal{R}_n(f)$ n'est pas équivalent à minimiser $\widetilde{\mathcal{R}}_n(\mathbf{f})$.

• Descente de gradient \Longrightarrow suite $(\mathbf{f}_b)_b$ de vecteurs de \mathbb{R}^n qui convergent vers des extrema (locaux) de $\widetilde{\mathcal{R}}_n$.

- Descente de gradient \Longrightarrow suite $(\mathbf{f}_b)_b$ de vecteurs de \mathbb{R}^n qui convergent vers des extrema (locaux) de $\widetilde{\mathcal{R}}_n$.
- Suite récursive :

$$\mathbf{f}_b = \mathbf{f}_{b-1} - \rho_b \nabla \widetilde{\mathcal{R}}_n(\mathbf{f}_{b-1}),$$

où $\nabla \widetilde{\mathcal{R}}_n(\mathbf{f}_{b-1})$ désigne le vecteur gradient de $\widetilde{\mathcal{R}}_n$ évalué en \mathbf{f}_{b-1} . \Longrightarrow vecteur de \mathbb{R}^n donc la i^e coordonnée vaut

$$\frac{\partial \widetilde{\mathcal{R}}_n(\mathbf{f})}{\partial \mathbf{f}(x_i)}(\mathbf{f}_{b-1}) = \frac{\partial \ell(y_i, \mathbf{f}(x_i))}{\partial \mathbf{f}(x_i)}(\mathbf{f}_{b-1}(x_i)).$$

- Descente de gradient \Longrightarrow suite $(\mathbf{f}_b)_b$ de vecteurs de \mathbb{R}^n qui convergent vers des extrema (locaux) de $\widetilde{\mathcal{R}}_n$.
- Suite récursive :

$$\mathbf{f}_b = \mathbf{f}_{b-1} - \rho_b \nabla \widetilde{\mathcal{R}}_n(\mathbf{f}_{b-1}),$$

où $\nabla \widetilde{\mathcal{R}}_n(\mathbf{f}_{b-1})$ désigne le vecteur gradient de $\widetilde{\mathcal{R}}_n$ évalué en \mathbf{f}_{b-1} . \Longrightarrow vecteur de \mathbb{R}^n donc la i^e coordonnée vaut

$$\frac{\partial \widetilde{\mathcal{R}}_n(\mathbf{f})}{\partial \mathbf{f}(x_i)}(\mathbf{f}_{b-1}) = \frac{\partial \ell(y_i, \mathbf{f}(x_i))}{\partial \mathbf{f}(x_i)}(\mathbf{f}_{b-1}(x_i)).$$

Exemple

Si
$$\ell(y, f(x)) = 1/2(y - f(x)^2)$$
 alors

$$-\frac{\partial \ell(y_i, \mathbf{f}(x_i))}{\partial \mathbf{f}(x_i)}(\mathbf{f}_{b-1}(x_i)) = y_i - \mathbf{f}_{b-1}(x_i),$$

 \implies résidu de $\mathbf{f}_{b-1}(x_i)$.

• Si tout se passe bien... la suite $(\mathbf{f}_b)_b$ doit converger vers un minimum de $\widetilde{\mathcal{R}_n}$.

Deux problèmes

• Si tout se passe bien... la suite $(\mathbf{f}_b)_b$ doit converger vers un minimum de $\widetilde{\mathcal{R}_n}$.

Deux problèmes

1. Cette suite définit des prévisions uniquement aux points $x_i \Longrightarrow$ impossible de prédire en tout x.

• Si tout se passe bien... la suite $(\mathbf{f}_b)_b$ doit converger vers un minimum de $\widetilde{\mathcal{R}}_n$.

Deux problèmes

- 1. Cette suite définit des prévisions uniquement aux points $x_i \Longrightarrow$ impossible de prédire en tout x.
- 2. Les éléments de la suite ne s'écrivent pas comme des combinaisons d'arbres.

• Si tout se passe bien... la suite $(\mathbf{f}_b)_b$ doit converger vers un minimum de $\widetilde{\mathcal{R}}_n$.

Deux problèmes

- 1. Cette suite définit des prévisions uniquement aux points $x_i \Longrightarrow$ impossible de prédire en tout x.
- 2. Les éléments de la suite ne s'écrivent pas comme des combinaisons d'arbres.

Une solution

[Friedman, 2001] propose d'ajuster un arbre sur les valeurs du gradient à chaque étape de la descente.

1. Initialisation : $f_0(.) = \operatorname{argmin}_c \frac{1}{n} \sum_{i=1}^n \ell(y_i, c)$

- 1. Initialisation : $f_0(.) = \operatorname{argmin}_c \frac{1}{n} \sum_{i=1}^n \ell(y_i, c)$
- 2. Pour b = 1 à B:
 - 2.1 Calculer l'opposé du gradient $-\frac{\partial}{\partial f(x_i)}\ell(y_i,f(x_i))$ et l'évaluer aux points $f_{b-1}(x_i)$:

$$u_i = -\frac{\partial}{\partial f(x_i)} \ell(y_i, f(x_i)) \Big|_{f(x_i) = f_{b-1}(x_i)}, \quad i = 1, \dots, n.$$

- 1. Initialisation : $f_0(.) = \operatorname{argmin}_c \frac{1}{n} \sum_{i=1}^n \ell(y_i, c)$
- 2. Pour b = 1 à B:
 - 2.1 Calculer l'opposé du gradient $-\frac{\partial}{\partial f(x_i)}\ell(y_i,f(x_i))$ et l'évaluer aux points $f_{b-1}(x_i)$:

$$u_i = -\frac{\partial}{\partial f(x_i)} \ell(y_i, f(x_i)) \Big|_{f(x_i) = f_{b-1}(x_i)}, \quad i = 1, \dots, n.$$

2.2 Ajuster un arbre de régression à J feuilles sur $(x_i, u_i), \ldots, (x_n, u_n)$.

- 1. Initialisation : $f_0(.) = \operatorname{argmin}_c \frac{1}{n} \sum_{i=1}^n \ell(y_i, c)$
- 2. Pour b = 1 à B:
 - 2.1 Calculer l'opposé du gradient $-\frac{\partial}{\partial f(x_i)}\ell(y_i,f(x_i))$ et l'évaluer aux points $f_{b-1}(x_i)$:

$$u_i = -\frac{\partial}{\partial f(x_i)} \ell(y_i, f(x_i))\Big|_{f(x_i) = f_{b-1}(x_i)}, \quad i = 1, \ldots, n.$$

- 2.2 Ajuster un arbre de régression à J feuilles sur $(x_i, u_i), \ldots, (x_n, u_n)$.
- 2.3 Calculer les valeurs prédites dans chaque feuille

$$\gamma_{jb} = \underset{\gamma}{\operatorname{argmin}} \sum_{i:x_i \in \mathcal{N}_{jb}}^{n} \ell(y_i, f_{b-1}(x_i) + \gamma).$$

- 1. Initialisation : $f_0(.) = \operatorname{argmin}_c \frac{1}{n} \sum_{i=1}^n \ell(y_i, c)$
- 2. Pour b = 1 à B:
 - 2.1 Calculer l'opposé du gradient $-\frac{\partial}{\partial f(x_i)}\ell(y_i,f(x_i))$ et l'évaluer aux points $f_{b-1}(x_i)$:

$$u_i = -\frac{\partial}{\partial f(x_i)} \ell(y_i, f(x_i))\Big|_{f(x_i) = f_{b-1}(x_i)}, \quad i = 1, \ldots, n.$$

- 2.2 Ajuster un arbre de régression à J feuilles sur $(x_i, u_i), \ldots, (x_n, u_n)$.
- 2.3 Calculer les valeurs prédites dans chaque feuille

$$\gamma_{jb} = \underset{\gamma}{\operatorname{argmin}} \sum_{i:x_i \in \mathcal{N}_{jb}}^n \ell(y_i, f_{b-1}(x_i) + \gamma).$$

2.4 Mise à jour :
$$f_b(x) = f_{b-1}(x) + \sum_{j=1}^{J} \gamma_{jb} \mathbf{1}_{x \in \mathcal{N}_{jb}}$$
.

- 1. Initialisation : $f_0(.) = \operatorname{argmin}_c \frac{1}{n} \sum_{i=1}^n \ell(y_i, c)$
- 2. Pour b = 1 à B:
 - 2.1 Calculer l'opposé du gradient $-\frac{\partial}{\partial f(x_i)}\ell(y_i,f(x_i))$ et l'évaluer aux points $f_{b-1}(x_i)$:

$$u_i = -\frac{\partial}{\partial f(x_i)} \ell(y_i, f(x_i)) \Big|_{f(x_i) = f_{b-1}(x_i)}, \quad i = 1, \ldots, n.$$

- 2.2 Ajuster un arbre de régression à J feuilles sur $(x_i, u_i), \ldots, (x_n, u_n)$.
- 2.3 Calculer les valeurs prédites dans chaque feuille

$$\gamma_{jb} = \underset{\gamma}{\operatorname{argmin}} \sum_{i:x_i \in \mathcal{N}_{jb}}^n \ell(y_i, f_{b-1}(x_i) + \gamma).$$

2.4 Mise à jour : $f_b(x) = f_{b-1}(x) + \sum_{j=1}^{J} \gamma_{jb} \mathbf{1}_{x \in \mathcal{N}_{jb}}$.

Retourner: l'algorithme $f_n(x) = f_B(x)$.

Paramètres

Nous donnons les correspondances entre les paramètres et les options de la fonction gbm :

- ℓ la fonction de perte \Longrightarrow distribution
- B nombre d'itérations \implies n.tree
- J le nombre de feuilles des arbres \Longrightarrow interaction.dept (=J-1)
- λ le paramètre de rétrécissement \Longrightarrow shrinkage.

Stochastic gradient boosting

[Friedman, 2002] montre qu'ajuster les arbres sur des sous-échantillons (tirage sans remise) améliore souvent les performances de l'algorithme. bag.fraction : taille des sous-échantillons.

Exemple

• Données sinus

• On entraı̂ne l'algorithme :

```
> set.seed(1234)
> library(gbm)
> boost.5000 <- gbm(Y~.,data=data_sinus,
+ distribution="gaussian",shrinkage=0.1,n.trees = 5000)</pre>
```

• On visualise les prévisions en fonction du nombre d'itérations :

Rappels

Boosting

Algorithme de gradient boosting

Choix des paramètres

Compléments/conclusion

Xgboost

Bibliographie

Fonction de perte

- Pas vraiment un paramètre...
- Elle doit
 - 1. mesurer un coût (comme d'habitude).

 \implies elle caractérise la fonction de prévision à estimer \implies f_n est en effet un estimateur de

$$f^* \in \underset{f:\mathbb{R}^d \to \mathbb{R}}{\operatorname{argmin}} \, \mathbf{E}[\ell(Y, f(X))].$$

Fonction de perte

- Pas vraiment un paramètre...
- Elle doit
 - 1. mesurer un coût (comme d'habitude).

 \implies elle caractérise la fonction de prévision à estimer $\implies f_n$ est en effet un estimateur de

$$f^{\star} \in \underset{f \cdot \mathbb{R}^d \to \mathbb{R}}{\operatorname{argmin}} \mathbf{E}[\ell(Y, f(X))].$$

2. être convexe et dérivable par rapport à son second argument (spécificité gradient).

• Correspond à la perte quadratique

$$\ell(y, f(x)) = \frac{1}{2}(y - f(x))^2.$$

• Correspond à la perte quadratique

$$\ell(y, f(x)) = \frac{1}{2}(y - f(x))^2.$$

• fonction de prévision optimale : $f^*(x) = \mathbf{E}[Y|X=x]$.

Correspond à la perte quadratique

$$\ell(y, f(x)) = \frac{1}{2}(y - f(x))^2.$$

• fonction de prévision optimale : $f^*(x) = \mathbf{E}[Y|X=x]$.

Remarque

• Avec cette perte, les u_i sont donnés par

$$u_i = -\frac{\partial \ell(y_i, f(x_i))}{\partial f(x_i)}(f_{b-1}(x_i)) = y_i - f_{b-1}(x_i),$$

Correspond à la perte quadratique

$$\ell(y, f(x)) = \frac{1}{2}(y - f(x))^2.$$

• fonction de prévision optimale : $f^*(x) = \mathbf{E}[Y|X=x]$.

Remarque

• Avec cette perte, les *u_i* sont donnés par

$$u_i = -\frac{\partial \ell(y_i, f(x_i))}{\partial f(x_i)} (f_{b-1}(x_i)) = y_i - f_{b-1}(x_i),$$

• f_b s'obtient donc en corrigeant f_{b-1} avec une régression sur ses résidus.

Version simplifiée du L₂-boosting

La boucle de l'algorithme de gradient boosting peut se réécrire :

- 1. Calculer les résidus $u_i = y_i f_{b-1}(x_i), i = 1, \ldots, n$;
- 2. Ajuster un arbre de régression pour expliquer les résidus u_i par les x_i ;
- 3. Corriger f_{b-1} en lui ajoutant l'arbre construit.

Version simplifiée du L₂-boosting

La boucle de l'algorithme de gradient boosting peut se réécrire :

- 1. Calculer les résidus $u_i = y_i f_{b-1}(x_i), i = 1, \dots, n$;
- 2. Ajuster un arbre de régression pour expliquer les résidus u_i par les x_i ;
- 3. Corriger f_{b-1} en lui ajoutant l'arbre construit.

Interprétation

- On "corrige" f_{b-1} en cherchant à expliquer "l'information restante" qui est contenue dans les résidus.
- Meilleur ajustement lorsque $b \nearrow \Longrightarrow$ biais \searrow (mais variance \nearrow).

• Classification binaire avec Y dans $\{-1,1\}$ et $\tilde{Y}=(Y+1)/2$ dans $\{0,1\}.$

- Classification binaire avec Y dans $\{-1,1\}$ et $\tilde{Y}=(Y+1)/2$ dans $\{0,1\}.$
- Log-vraisemblance binomiale de la prévision $p(x) \in [0,1]$ par rapport à l'observation \tilde{y} :

$$\mathcal{L}(\tilde{y}, p(x)) = \tilde{y} \log p(x) + (1 - \tilde{y}) \log(1 - p(x)).$$

- Classification binaire avec Y dans $\{-1,1\}$ et $\tilde{Y}=(Y+1)/2$ dans $\{0,1\}.$
- Log-vraisemblance binomiale de la prévision $p(x) \in [0,1]$ par rapport à l'observation \tilde{y} :

$$\mathcal{L}(\tilde{y}, p(x)) = \tilde{y} \log p(x) + (1 - \tilde{y}) \log(1 - p(x)).$$

• Soit $f: \mathbb{R}^d \to \mathbb{R}$ telle que

$$f(x) = \frac{1}{2} \log \frac{p(x)}{1 - p(x)} \Longleftrightarrow p(x) = \frac{1}{1 + \exp(-2f(x))}.$$

⇒ re-paramétrisation.

• Chercher p(x) qui maximise $\mathcal{L}(\tilde{y}, p(x))$ revient à chercher f(x) qui minimise son opposé :

$$-\mathcal{L}(y, f(x)) = -\frac{y+1}{2}\log p(x) - \left(1 - \frac{y+1}{2}\right)\log(1 - p(x))$$

$$= \frac{y+1}{2}\log(1 + \exp(-2f(x))) + \left(1 - \frac{y+1}{2}\right)\log(1 + \exp(2f(x)))$$

$$= \log(1 + \exp(-2yf(x))).$$

• Chercher p(x) qui maximise $\mathcal{L}(\tilde{y}, p(x))$ revient à chercher f(x) qui minimise son opposé :

$$-\mathcal{L}(y, f(x)) = -\frac{y+1}{2} \log p(x) - \left(1 - \frac{y+1}{2}\right) \log(1 - p(x))$$

$$= \frac{y+1}{2} \log(1 + \exp(-2f(x))) + \left(1 - \frac{y+1}{2}\right) \log(1 + \exp(2f(x)))$$

$$= \log(1 + \exp(-2yf(x))).$$

Remarque

$$f(x) \mapsto \log(1 + \exp(-2yf(x)))$$
 est convexe et dérivable.

Algorithme de gradient boosting avec la fonction de perte

$$\ell(y, f(x)) = \log(1 + \exp(-2yf(x))).$$

Algorithme de gradient boosting avec la fonction de perte

$$\ell(y, f(x)) = \log(1 + \exp(-2yf(x))).$$

• Fonction optimale

$$f^*(x) = \frac{1}{2} \log \frac{\mathbf{P}(Y = 1|X = x)}{1 - \mathbf{P}(Y = 1|X = x)}.$$

Algorithme de gradient boosting avec la fonction de perte

$$\ell(y, f(x)) = \log(1 + \exp(-2yf(x))).$$

• Fonction optimale

$$f^*(x) = \frac{1}{2} \log \frac{\mathbf{P}(Y = 1|X = x)}{1 - \mathbf{P}(Y = 1|X = x)}.$$

• f_n estimant f^* , on estime P(Y = 1 | X = x) avec

$$\frac{1}{1+\exp(-2f_n(x))}.$$

Adaboost

• Remarque : $f(x) \mapsto \exp(-yf(x))$ est aussi convexe et dérivable.

Adaboost

Algorithme de gradient boosting avec la fonction de perte

$$\ell(y, f(x)) = \exp(-yf(x)).$$

Adaboost

• Remarque : $f(x) \mapsto \exp(-yf(x))$ est aussi convexe et dérivable.

Adaboost

Algorithme de gradient boosting avec la fonction de perte

$$\ell(y, f(x)) = \exp(-yf(x)).$$

Remarque

• Même nom que l'algorithme initial de [Freund and Schapire, 1996] car

Adaboost

• Remarque : $f(x) \mapsto \exp(-yf(x))$ est aussi convexe et dérivable.

Adaboost

Algorithme de gradient boosting avec la fonction de perte

$$\ell(y, f(x)) = \exp(-yf(x)).$$

Remarque

- Même nom que l'algorithme initial de [Freund and Schapire, 1996] car quasi-similaire [Hastie et al., 2009].
- Même f* que logitboost.

Adaboost - version 1

Algorithme [Freund and Schapire, 1996]

Entrées : une règle faible, *M* nombre d'itérations.

- 1. Initialiser les poids $w_i = 1/n$, i = 1, ..., n
- **2. Pour** m = 1 à M :
 - a) Ajuster la règle faible sur l'échantillon d_n pondéré par les poids w_1, \ldots, w_n , on note $g_m(x)$ l'estimateur issu de cet ajustement
 - b) Calculer le taux d'erreur : $e_m = \frac{\sum_{i=1}^n w_i \mathbf{1}_{y_i \neq g_m(x_i)}}{\sum_{i=1}^n w_i}.$
 - c) Calculer : $\alpha_m = \log((1 e_m)/e_m)$
 - d) Réajuster les poids : $w_i = w_i \exp(\alpha_m \mathbf{1}_{y_i \neq g_m(x_i)}), \quad i = 1, \dots, n$

Sorties: l'algorithme de prévision $\sum_{m=1}^{M} \alpha_m g_m(x)$.

Récapitulatif

• Les principales fonctions de perte pour la régression et classification sont résumées dans le tableau :

	Y	Perte	Prév. optimale
L ₂ -boosting	\mathbb{R}	$(y-f(x))^2$	$\mathbf{E}[Y X=x]$
Logitboost	$\{-1, 1\}$	$\log(1+\exp(-2yf(x)))$	$\frac{1}{2}\log\frac{\mathbf{P}(Y=1 X=x)}{1-\mathbf{P}(Y=1 X=x)}$
Adaboost	$\{-1,1\}$	$\exp(-yf(x))$	$\frac{1}{2}\log\frac{\mathbf{P}(Y=1 X=x)}{1-\mathbf{P}(Y=1 X=x)}$

- Dans gbm on utilise distribution=
 - gaussian pour le L_2 -boosting.
 - bernoulli pour logitboost.
 - adaboost pour adaboost.

Profondeur des arbres

- interaction.depth qui correspond au nombre de coupures \implies nombre de feuilles J-1.
- On parle d'interaction car ce paramètre est associé au degrés d'interactions que l'algorithme peut identifier :

$$f^{*}(x) = \sum_{1 \leq j \leq d} f_{j}(x_{j}) + \sum_{1 \leq j,k \leq d} f_{j,k}(x_{j},x_{k}) + \sum_{1 \leq j,k,\ell \leq d} f_{j,k,\ell}(x_{j},x_{k},x_{\ell}) + \dots$$

⇒ interaction.depth=

- $1 \Longrightarrow$ premier terme
- 2 \Longrightarrow second terme (interactions d'ordre 2)
- ...

• Boosting : réduction de biais.

- Boosting : réduction de biais.
- Nécessité d'utiliser des arbres biaisés \Longrightarrow peu de coupures.

- Boosting : réduction de biais.
- Nécessité d'utiliser des arbres biaisés \Longrightarrow peu de coupures.

Recommandation

Choisir interaction.depth entre 2 et 5.

Nombre d'itérations

- Le nombre d'arbres n.trees mesure la complexité de l'algorithme.
- Plus on itère, mieux on ajuste
 si on itère trop, on sur-ajuste.

Nombre d'itérations

- Le nombre d'arbres n.trees mesure la complexité de l'algorithme.
- Plus on itère, mieux on ajuste
 si on itère trop, on sur-ajuste.
- Nécessité de calibrer correctement ce paramètre.

Comment?

Nombre d'itérations

- Le nombre d'arbres n.trees mesure la complexité de l'algorithme.
- Plus on itère, mieux on ajuste
 - \implies si on itère trop, on sur-ajuste.
- Nécessité de calibrer correctement ce paramètre.

Comment?

Avec des méthodes classiques d'estimation du risque.

Sélection de n.trees dans gbm

- gbm propose d'estimer le risque associé au paramètre distribution par ré-échantillonnage :
 - bag.fraction pour du Out Of Bag.
 - train.fraction pour de la validation hold out.
 - cv.folds pour de la validation croisée.

Sélection de n.trees dans gbm

- gbm propose d'estimer le risque associé au paramètre distribution par ré-échantillonnage :
 - bag.fraction pour du Out Of Bag.
 - train.fraction pour de la validation hold out.
 - cv.folds pour de la validation croisée.
- La valeur sélectionnée s'obtient avec gbm.perf.

Exemple

Risque quadratique estimé par hold out avec 75% d'observations dans

l'échantillon d'apprentissage.

Rétrécissement

- shrinkage dans gbm.

Rétrécissement

- shrinkage dans gbm.

Conséquence

shrinkage est lié à n.trees :

- shrinkage $\nearrow \implies$ n.trees \searrow .
- shrinkage $\searrow \implies$ n.trees \nearrow .

Illustration

Remarque

Le nombre d'itération optimal diminue lorsque shrinkage augmente.

Recommandation

- Pas nécessaire de trop optimiser shrinkage.
- Tester 3 ou 4 valeurs (0.01, 0.1,0.5...) et regarder les courbes de risque.

Recommandation

- Pas nécessaire de trop optimiser shrinkage.
- Tester 3 ou 4 valeurs (0.01, 0.1,0.5...) et regarder les courbes de risque.
- S'assurer que le nombre d'itérations optimal se trouve sur un "plateau" pour des raisons de stabilité.

Rappels

Boosting

Algorithme de gradient boosting

Choix des paramètres

Compléments/conclusion

Xgboost

Bibliographie

Importance des variables

- Similaire aux forêts aléatoires.
- Score d'impureté :

$$\mathcal{I}_{j}^{\mathsf{imp}} = \frac{1}{B} \sum_{b=1}^{B} \mathcal{I}_{j}(T_{b}).$$

Visualisation avec vip.

• Deux algorithmes qui agrègent des arbres :

$$f_n(x) = \sum_{b=1}^B \alpha_b T_b(x).$$

• Indépendance pour les forêts $\Longrightarrow T_b$ se construit indépendamment de T_{b-1} .

• Deux algorithmes qui agrègent des arbres :

$$f_n(x) = \sum_{b=1}^B \alpha_b T_b(x).$$

- Indépendance pour les forêts $\Longrightarrow T_b$ se construit indépendamment de T_{b-1} .
- Récursivité pour le boosting $\implies T_b$ se construit à partir de T_{b-1} .

• Deux algorithmes qui agrègent des arbres :

$$f_n(x) = \sum_{b=1}^B \alpha_b T_b(x).$$

- Indépendance pour les forêts $\Longrightarrow T_b$ se construit indépendamment de T_{b-1} .
- Récursivité pour le boosting $\implies T_b$ se construit à partir de T_{b-1} .

Interprétation statistique

- Boosting : réduction de biais ⇒ arbres peu profonds.
- Random Forest : réduction de variance \Longrightarrow arbres très profonds.

• Deux algorithmes qui agrègent des arbres :

$$f_n(x) = \sum_{b=1}^B \alpha_b T_b(x).$$

- Indépendance pour les forêts $\Longrightarrow T_b$ se construit indépendamment de T_{b-1} .
- Récursivité pour le boosting $\implies T_b$ se construit à partir de T_{b-1} .

Interprétation statistique

- Boosting : réduction de biais ⇒ arbres peu profonds.
- Random Forest : réduction de variance \Longrightarrow arbres très profonds.
- ⇒ les arbres sont ajustés de façon différente pour ces deux algorithmes.
- ⇒ dans les deux cas, il faut des arbres "mauvais".

Rappels

Boosting

Algorithme de gradient boosting

Choix des paramètres

Compléments/conclusion

Xgboost

Bibliographie

- Pour Extreme Gradient Boosting [Chen and Guestrin, 2016]
- Version plus "sophistiquée" de l'algorithme de gradient boosting.

- Pour Extreme Gradient Boosting [Chen and Guestrin, 2016]
- Version plus "sophistiquée" de l'algorithme de gradient boosting.
- Idée : ajouter de la régularisation dans le procédé itératif d'entrainement des arbres.

Références

- https:
 - //xgboost.readthedocs.io/en/stable/tutorials/model.html
- https://arxiv.org/pdf/1603.02754.pdf

Le problème d'optimisation

• On cherche toujours des combinaisons d'arbres

$$f_b(x) = f_{b-1}(x) + h_b(x)$$
 où $h_b(x) = w_{q(x)}$

est un arbre à T feuilles : $w \in \mathbb{R}^T$ et $q : \mathbb{R}^d \to \{1, 2, \dots, T\}$.

Le problème d'optimisation

On cherche toujours des combinaisons d'arbres

$$f_b(x) = f_{b-1}(x) + h_b(x)$$
 où $h_b(x) = w_{q(x)}$

est un arbre à T feuilles : $w \in \mathbb{R}^T$ et $q : \mathbb{R}^d \to \{1, 2, \dots, T\}$.

• À l'étape b, on cherche l'arbre qui minimise la fonction objectif de la forme

$$obj^{(b)} = \sum_{i=1}^{n} \ell(y_i, f_b(x_i)) + \sum_{j=1}^{b} \Omega(h_j)$$
$$= \sum_{i=1}^{n} \ell(y_i, f_{b-1}(x_i) + h_b(x_i)) + \sum_{j=1}^{b} \Omega(h_j)$$

où $\Omega(h_j)$ est un terme de régularisation qui va pénaliser h_j en fonction de son nombre de feuilles T et des valeurs prédites w.

• Un développement limité à l'ordre 2 donne

$$\ell(y_i, f_{b-1}(x_i) + h_b(x_i)) = \ell(y_i, f_{b-1}(x_i) + h_b(x_i)) + \ell_i^{(1)} h_b(x_i) + \frac{1}{2} \ell_i^{(2)} h_b^2(x_i)$$

οù

$$\ell_i^{(1)} = \frac{\partial \ell(y_i, f(x))}{\partial f(x)} (f_{b-1}(x_i)) \quad \text{et} \quad \ell_i^{(2)} = \frac{\partial^2 \ell(y_i, f(x))}{\partial f(x)^2} (f_{b-1}(x_i)).$$

• Un développement limité à l'ordre 2 donne

$$\ell(y_i, f_{b-1}(x_i) + h_b(x_i)) = \ell(y_i, f_{b-1}(x_i) + h_b(x_i)) + \ell_i^{(1)} h_b(x_i) + \frac{1}{2} \ell_i^{(2)} h_b^2(x_i)$$

οù

$$\ell_i^{(1)} = \frac{\partial \ell(y_i, f(x))}{\partial f(x)} (f_{b-1}(x_i)) \quad \text{et} \quad \ell_i^{(2)} = \frac{\partial^2 \ell(y_i, f(x))}{\partial f(x)^2} (f_{b-1}(x_i)).$$

Conséquence

La fonction objectif peut se ré-écrire

$$\operatorname{obj}^{(b)} = \sum_{i=1}^{n} [\ell_i^{(1)} h_b(x_i) + \frac{1}{2} \ell_i^{(2)} h_b^2(x_i)] + \Omega(h_b) + \text{constantes}.$$

La fonction de régularisation

• Elle doit prendre des valeurs élevées pour des arbres profonds et des valeurs ajustées élevées.

La fonction de régularisation

- Elle doit prendre des valeurs élevées pour des arbres profonds et des valeurs ajustées élevées.
- On utilise généralement

$$\Omega(h) = \Omega(T, w) = \gamma T + \frac{1}{2} \lambda \sum_{j=1}^{I} w_j.$$

• Les paramètres γ et λ contrôlent le poids que l'on donne aux paramètres de l'arbre.

L'algorithme

Xgboost

- 1. Initialisation $f_0 = h_0$.
- 2. Pour b = 1, ..., B
 - 2.1 Ajuster un arbre h_b à T feuilles qui minimise

$$\sum_{i=1}^{n} [\ell_i^{(1)} h_b(x_i) + \frac{1}{2} \ell_i^{(2)} h_b^2(x_i)] + \gamma T + \frac{1}{2} \lambda \sum_{j=1}^{T} w_j.$$

2.2 Mettre à jour

$$f_b(x) = f_{b-1}(x) + h_b(x).$$

3. Sortie : la suite d'algorithmes $(f_b)_b$.

Choix des paramètres

On donne ici les principaux paramètres (il existe des variantes) et leur équivalent dans la fonction \times gboost du package \times gboost :

- Fonction de perte (objective) : idem au gradient boosting, par exemple
 - reg :squarederror : erreur quadratique $\ell(y, f(x)) = (y f(x))^2$.
 - reg :logistic : vraisemblance multinomiale
 - binary :logistic : vraisemblance binomiale avec les probabilités en sortie

Choix des paramètres

On donne ici les principaux paramètres (il existe des variantes) et leur équivalent dans la fonction xgboost du package xgboost :

- Fonction de perte (objective) : idem au gradient boosting, par exemple
 - reg :squarederror : erreur quadratique $\ell(y, f(x)) = (y f(x))^2$.
 - reg :logistic : vraisemblance multinomiale
 - binary :logistic : vraisemblance binomiale avec les probabilités en sortie
- Nombre d'itérations (nrounds).

Choix des paramètres

On donne ici les principaux paramètres (il existe des variantes) et leur équivalent dans la fonction \times gboost du package \times gboost :

- Fonction de perte (objective) : idem au gradient boosting, par exemple
 - reg :squarederror : erreur quadratique $\ell(y, f(x)) = (y f(x))^2$.
 - reg :logistic : vraisemblance multinomiale
 - binary :logistic : vraisemblance binomiale avec les probabilités en sortie
- Nombre d'itérations (nrounds).
- Learning rate (eta): idem au gradient boosting pour la mise à jour

$$f_b(x) = f_{b-1}(x) + \operatorname{eta} h_b(x).$$

• Early stopping (early_stopping_rounds) : nombre d'itérations avant de stopper l'algorithme si il ne progresse pas.

- Early stopping (early_stopping_rounds) : nombre d'itérations avant de stopper l'algorithme si il ne progresse pas.
- Profondeur des arbres (max_depth)

- Early stopping (early_stopping_rounds) : nombre d'itérations avant de stopper l'algorithme si il ne progresse pas.
- Profondeur des arbres (max_depth)
- Régularisation L₂ (lambda)
- ..

Conclusion

• Plus général que le gradient boosting mais

Conclusion

- Plus général que le gradient boosting mais
- plus difficile à calibrer.

Conclusion

- Plus général que le gradient boosting mais
- plus difficile à calibrer.
- Se révèle souvent très efficace si bien calibré.

Discussion/comparaison des algorithmes

	Linéaire	SVM	Réseau	Arbre	Forêt	Boosting
Performance	_			▼	A	A
Calibration	▼	▼	▼	A	A	A
Coût calc.	_	▼	▼	A	A	A
Interprétation	A	▼	▼		▼	▼

Commentaires

- Résultats pour données tabulaires.
- Différent pour données structurées (image, texte..)
 ⇒ performance / réseaux pré-entrainés ⇒ apprentissage profond/deep learning.

Rappels

Boosting

- Algorithme de gradient boosting
- Choix des paramètres
- Compléments/conclusion
- Xgboost

Bibliographie

Références i

🔋 Breiman, L. (1996).

Bagging predictors.

Machine Learning, 26(2):123-140.

Breiman, L., Friedman, J., Olshen, R., and Stone, C. (1984).

Classification and regression trees.

Wadsworth & Brooks.

Chen, T. and Guestrin, C. (2016).

XGBoost: A scalable tree boosting system.

In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '16, pages 785–794, New York, NY, USA. ACM.

Références ii

Fernández-Delgado, M., Cernadas, E., Barro, S., and Amorim, D. (2014).

Do we need hundreds of classifiers to solve real world classification problems?

Journal of Machine Learning Research, 15:3133–3181.

Freund, Y. and Schapire, R. (1996).

Experiments with a new boosting algorithm.

In Proceedings of the Thirteenth International Conference on Machine Learning.

Friedman, J. H. (2001).

Greedy function approximation : A gradient boosting machine.

Annals of Statistics, 29:1189–1232.

Références iii

Friedman, J. H. (2002).

Stochastic gradient boosting.

Computational Statistics & Data Analysis, 28:367-378.

Hastie, T., Tibshirani, R., and Friedman, J. (2009).

The Elements of Statistical Learning : Data Mining, Inference, and Prediction.

Springer, second edition.

Wright, M. and Ziegler, A. (2017).

ranger : A fast implementation of random forests for high dimensional data in c++ and r.

Journal of Statistical Software, 17(1).