Lesson 12: Interactions, Part 2

Nicky Wakim 2025-02-19

Learning Objectives

Last time:

- 1. Define confounders and effect modifiers, and how they interact with the main relationship we model.
- 2. Interpret the interaction component of a model with a binary categorical covariate and continuous covariate, and how the main variable's effect changes.
- 3. Interpret the interaction component of a model with a multi-level categorical covariate and continuous covariate, and how the main variable's effect changes.

This time:

- 4. Interpret the interaction component of a model with **two categorical covariates**, and how the main variable's effect changes.
- 5. Interpret the interaction component of a model with **two continuous covariates**, and how the main variable's effect changes.
- 6. Report results for a best-fit line (with confidence intervals) at different levels of an effect measure modifier

Learning Objectives

Last time:

- 1. Define confounders and effect modifiers, and how they interact with the main relationship we model.
- 2. Interpret the interaction component of a model with a binary categorical covariate and continuous covariate, and how the main variable's effect changes.
- 3. Interpret the interaction component of a model with a multi-level categorical covariate and continuous covariate, and how the main variable's effect changes.

This time:

- 4. Interpret the interaction component of a model with **two categorical covariates**, and how the main variable's effect changes.
- 5. Interpret the interaction component of a model with **two continuous covariates**, and how the main variable's effect changes.

Do we think income level can be an effect modifier for world region?

- Taking a break from female literacy rate to demonstrate interactions for two categorical variables
- We can start by visualizing the relationship between life expectancy and world region by income level
- Questions of interest: Does the effect of world region on life expectancy differ depending on income level?
 - This is the same as: Is income level an effect modifier for world region?
- Let's run an interaction model to see!

Model with interaction between a *multi-level categorical and binary* variables

Model we are fitting:

```
LE = eta_0 + eta_1 I(	ext{high income}) + eta_2 I(	ext{Americas}) + eta_3 I(	ext{Asia}) + eta_4 I(	ext{Europe}) + eta_5 \cdot I(	ext{high income}) \cdot I(	ext{Americas}) + eta_6 \cdot I(	ext{high income}) \cdot I(	ext{Asia}) + eta_7 \cdot I(	ext{high income}) \cdot I(	ext{Europe}) + \epsilon
```

- LE as life expectancy
- I(high income) as indicator of high income
- I(Americas), I(Asia), I(Europe) as the indicator for each world region

In R:

Displaying the regression table and writing fitted regression equation

1 tidy(m_int_wr_inc, conf.int=T) %>% gt() %>% tab_options(table.font.size = 25) %>% f

term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	60.850	1.281	47.488	0.000	58.290	63.410
income_levels2Higher income	2.100	2.865	0.733	0.466	-3.624	7.824
four_regionsAmericas	10.800	3.844	2.810	0.007	3.121	18.479
four_regionsAsia	7.467	1.957	3.815	0.000	3.556	11.377
four_regionsEurope	11.500	2.865	4.014	0.000	5.776	17.224
income_levels2Higher income:four_regionsAmericas	2.640	4.896	0.539	0.592	-7.141	12.421
income_levels2Higher income:four_regionsAsia	1.543	3.956	0.390	0.698	-6.360	9.447
income_levels2Higher income:four_regionsEurope	2.382	4.020	0.592	0.556	-5.649	10.412

$$\begin{split} \widehat{LE} = & \widehat{\beta}_0 + \widehat{\beta}_1 I(\text{high income}) + \widehat{\beta}_2 I(\text{Americas}) + \widehat{\beta}_3 I(\text{Asia}) + \widehat{\beta}_4 I(\text{Europe}) + \\ \widehat{\beta}_5 \cdot I(\text{high income}) \cdot I(\text{Americas}) + \widehat{\beta}_6 \cdot I(\text{high income}) \cdot I(\text{Asia}) + \\ \widehat{\beta}_7 \cdot I(\text{high income}) \cdot I(\text{Europe}) \\ \widehat{\beta}_7 \cdot I(\text{high income}) \cdot I(\text{Europe}) \end{split}$$

$$\widehat{LE}$$
 =60.85 + 2.10 · $I(\text{high income})$ + 10.8 · $I(\text{Americas})$ + 7.47 · $I(\text{Asia})$ + 11.50 · $I(\text{Europe})$ + 2.64 · $I(\text{high income})$ · $I(\text{Americas})$ + 1.54 · $I(\text{high income})$ · $I(\text{Asia})$ + 2.38 · $I(\text{high income})$ · $I(\text{Europe})$

Poll Everywhere Question 4

Comparing fitted regression means for each world region

$$\begin{split} \widehat{LE} = & \widehat{\beta}_0 + \widehat{\beta}_1 I(\text{high income}) + \widehat{\beta}_2 I(\text{Americas}) + \widehat{\beta}_3 I(\text{Asia}) + \widehat{\beta}_4 I(\text{Europe}) + \\ & \widehat{\beta}_5 \cdot I(\text{high income}) \cdot I(\text{Americas}) + \widehat{\beta}_6 \cdot I(\text{high income}) \cdot I(\text{Asia}) + \\ & \widehat{\beta}_7 \cdot I(\text{high income}) \cdot I(\text{Europe}) \\ \widehat{LE} = & 60.85 + 2.10 \cdot I(\text{high income}) + 10.8 \cdot I(\text{Americas}) + 7.47 \cdot I(\text{Asia}) + 11.50 \cdot I(\text{Europe}) + \\ & 2.64 \cdot I(\text{high income}) \cdot I(\text{Americas}) + 1.54 \cdot I(\text{high income}) \cdot I(\text{Asia}) + \\ & 2.38 \cdot I(\text{high income}) \cdot I(\text{Europe}) \end{split}$$

Africa

$$egin{aligned} \widehat{LE} = & \widehat{eta}_0 + \widehat{eta}_1 I (ext{high income}) + \\ & \widehat{eta}_2 \cdot 0 + \widehat{eta}_3 \cdot 0 + \widehat{eta}_4 \cdot 0 + \\ & \widehat{eta}_5 I (ext{high income}) \cdot 0 + \\ & \widehat{eta}_6 I (ext{high income}) \cdot 0 + \\ & \widehat{eta}_7 I (ext{high income}) \cdot 0 \\ & \widehat{LE} = & \widehat{eta}_0 + \widehat{eta}_1 I (ext{high income}) \end{aligned}$$

The Americas

$$egin{aligned} \widehat{LE} = &\widehat{eta}_0 + \widehat{eta}_1 I ext{(high income)} + \\ &\widehat{eta}_2 \cdot 1 + \widehat{eta}_3 \cdot 0 + \widehat{eta}_4 \cdot 0 + \\ &\widehat{eta}_5 I ext{(high income)} \cdot 1 + \\ &\widehat{eta}_5 I ext{(high income)} \cdot 0 + \\ &\widehat{eta}_7 I ext{(high income)} \cdot 0 \\ \widehat{LE} = & (\widehat{eta}_0 + \widehat{eta}_2) + \\ & (\widehat{eta}_1 + \widehat{eta}_5) I ext{(high income)} \end{aligned}$$

Asia

$$egin{aligned} \widehat{LE} = &\widehat{eta}_0 + \widehat{eta}_1 I ext{(high income)} + \ &\widehat{eta}_2 \cdot 0 + \widehat{eta}_3 \cdot 1 + \widehat{eta}_4 \cdot 0 + \ &\widehat{eta}_5 I ext{(high income)} \cdot 0 + \ &\widehat{eta}_6 I ext{(high income)} \cdot 1 + \ &\widehat{eta}_7 I ext{(high income)} \cdot 0 \ &\widehat{LE} = & (\widehat{eta}_0 + \widehat{eta}_3) + \ & (\widehat{eta}_1 + \widehat{eta}_6) I ext{(high income)} \end{aligned}$$

Europe

$$egin{aligned} \widehat{LE} = &\widehat{eta}_0 + \widehat{eta}_1 I (ext{high income}) + \\ &\widehat{eta}_2 \cdot 0 + \widehat{eta}_3 \cdot 0 + \widehat{eta}_4 \cdot 1 + \\ &\widehat{eta}_5 I (ext{high income}) \cdot 0 + \\ &\widehat{eta}_5 I (ext{high income}) \cdot 0 + \\ &\widehat{eta}_6 I (ext{high income}) \cdot 0 + \\ &\widehat{eta}_7 I (ext{high income}) \cdot 1 \\ &\widehat{LE} = (\widehat{eta}_0 + \widehat{eta}_4) + \\ &(\widehat{eta}_1 + \widehat{eta}_7) I (ext{high income}) \end{aligned}$$

Comparing fitted regression means for each income level

$$\begin{split} \widehat{LE} = & \widehat{\beta}_0 + \widehat{\beta}_1 I(\text{high income}) + \widehat{\beta}_2 I(\text{Americas}) + \widehat{\beta}_3 I(\text{Asia}) + \widehat{\beta}_4 I(\text{Europe}) + \\ & \widehat{\beta}_5 \cdot I(\text{high income}) \cdot I(\text{Americas}) + \widehat{\beta}_6 \cdot I(\text{high income}) \cdot I(\text{Asia}) + \\ & \widehat{\beta}_7 \cdot I(\text{high income}) \cdot I(\text{Europe}) \\ & \widehat{LE} = & 60.85 + 2.10 \cdot I(\text{high income}) + 10.8 \cdot I(\text{Americas}) + 7.47 \cdot I(\text{Asia}) + 11.50 \cdot I(\text{Europe}) + \\ & 2.64 \cdot I(\text{high income}) \cdot I(\text{Americas}) + 1.54 \cdot I(\text{high income}) \cdot I(\text{Asia}) + \\ & 2.38 \cdot I(\text{high income}) \cdot I(\text{Europe}) \end{split}$$

For lower income countries: I(high income) = 0

$$\begin{split} \widehat{LE} = & \widehat{\beta}_0 + \widehat{\beta}_1 \cdot 0 + \widehat{\beta}_2 I(\text{Americas}) + \widehat{\beta}_3 I(\text{Asia}) + \widehat{\beta}_4 I(\text{Europe}) + \\ & \widehat{\beta}_5 \cdot 0 \cdot I(\text{Americas}) + \widehat{\beta}_6 \cdot 0 \cdot I(\text{Asia}) + \widehat{\beta}_7 \cdot 0 \cdot I(\text{Europe}) \\ & \widehat{LE} = & \widehat{\beta}_0 + \widehat{\beta}_2 I(\text{Americas}) + \widehat{\beta}_3 I(\text{Asia}) + \widehat{\beta}_4 I(\text{Europe}) \end{split}$$

For higher income countries: I(high income) = 1

$$egin{aligned} \widehat{LE} = &\widehat{eta}_0 + \widehat{eta}_1 \cdot 1 + \widehat{eta}_2 I(\operatorname{Americas}) + \widehat{eta}_3 I(\operatorname{Asia}) + \widehat{eta}_4 I(\operatorname{Europe}) + \\ &\widehat{eta}_5 \cdot 1 \cdot I(\operatorname{Americas}) + \widehat{eta}_6 \cdot 1 \cdot I(\operatorname{Asia}) + \widehat{eta}_7 \cdot 1 \cdot I(\operatorname{Europe}) \\ \widehat{LE} = &(\widehat{eta}_0 + \widehat{eta}_1) + (\widehat{eta}_2 + \widehat{eta}_5) I(\operatorname{Americas}) + (\widehat{eta}_3 + \widehat{eta}_6) I(\operatorname{Asia}) + \\ &(\widehat{eta}_4 + \widehat{eta}_7) I(\operatorname{Europe}) \end{aligned}$$

• Example interpretation: The America's effect on mean life expectancy increases $\widehat{\beta}_5$ comparing high income to low income countries.

Let's take a look back at the plot

For lower income countries: I(high income) = 0

$$egin{aligned} \widehat{LE} = & \widehat{eta}_0 + \widehat{eta}_2 I(ext{Americas}) + \widehat{eta}_3 I(ext{Asia}) + \ \widehat{eta}_4 I(ext{Europe}) \end{aligned}$$

For higher income countries: I(high income) = 1

$$\widehat{LE} = (\widehat{eta}_0 + \widehat{eta}_1) + (\widehat{eta}_2 + \widehat{eta}_5)I(ext{Americas}) + (\widehat{eta}_3 + \widehat{eta}_6)I(ext{Asia}) + (\widehat{eta}_4 + \widehat{eta}_7)I(ext{Europe})$$

Lesson 12: Interactions 2

Income level

Lower income

Higher income

Interpretation for interaction between two categorical variables

$$\begin{split} \widehat{LE} = & \widehat{\beta}_0 + \widehat{\beta}_1 \cdot I(\text{high income}) + \widehat{\beta}_2 I(\text{Americas}) + \widehat{\beta}_3 I(\text{Asia}) + \widehat{\beta}_4 I(\text{Europe}) + \\ & \widehat{\beta}_5 \cdot I(\text{high income}) \cdot I(\text{Americas}) + \widehat{\beta}_6 \cdot I(\text{high income}) \cdot I(\text{Asia}) + \\ & \widehat{\beta}_7 \cdot I(\text{high income}) \cdot I(\text{Europe}) \\ & \widehat{LE} = & \left[\widehat{\beta}_0 + \widehat{\beta}_1 \cdot I(\text{high income}) \right] + \left[\widehat{\beta}_2 + \widehat{\beta}_5 \cdot I(\text{high income}) \right] I(\text{Americas}) + \\ & \left[\widehat{\beta}_3 + \widehat{\beta}_6 \cdot I(\text{high income}) \right] I(\text{Asia}) + \left[\widehat{\beta}_4 + \widehat{\beta}_7 \cdot I(\text{high income}) \right] I(\text{Europe}) \end{split}$$

• Interpretation:

- lacksquare β_1 = mean change in the Africa's life expectancy, comparing high income to low income countries
- β_5 = mean change in the Americas' effect, comparing high income to low income countries
- β_6 = mean change in Asia's effect, comparing high income to low income countries
- β_7 = mean change in Europe's effect, comparing high income to low income countries

Test interaction between two categorical variables (1/2)

• We run an F-test for a group of coefficients (β_5 , β_6 , β_7) in the below model (see lesson 9)

$$LE = \beta_0 + \beta_1 I(\text{high income}) + \beta_2 I(\text{Americas}) + \beta_3 I(\text{Asia}) + \beta_4 I(\text{Europe}) + \beta_5 \cdot I(\text{high income}) \cdot I(\text{Americas}) + \beta_6 \cdot I(\text{high income}) \cdot I(\text{Asia}) + \beta_7 \cdot I(\text{high income}) \cdot I(\text{Europe}) + \epsilon$$

$\mathsf{Null}\,H_0$

$$\beta_5 = \beta_6 = \beta_7 = 0$$

Alternative H_1

$$eta_5
eq 0$$
 and/or $eta_6
eq 0$ and/or $eta_7
eq 0$

Null / Smaller / Reduced model

$$LE = eta_0 + eta_1 I(ext{high income}) + eta_2 I(ext{Americas}) + eta_3 I(ext{Asia}) + eta_4 I(ext{Europe}) + \epsilon$$

Alternative / Larger / Full model

$$LE = eta_0 + eta_1 I(ext{high income}) + eta_2 I(ext{Americas}) + eta_3 I(ext{Asia}) + \ eta_4 I(ext{Europe}) + eta_5 \cdot I(ext{high income}) \cdot I(ext{Americas}) + \ eta_6 \cdot I(ext{high income}) \cdot I(ext{Asia}) + eta_7 \cdot I(ext{high income}) \cdot I(ext{Europe}) + \epsilon$$

Test interaction between two categorical variables (2/2)

Fit the reduced and full model

Display the ANOVA table with F-statistic and p-value

term	df.residual	rss	df	sumsq	statistic	p.value
LifeExpectancyYrs ~ income_levels2 + four_regions	67.000 1	1,693.242	NA	NA	NA	NA
LifeExpectancyYrs ~ income_levels2 + four_regions + income_levels2 * four_regions	64.000 1	1,681.304	3.000	11.938	0.151	0.928

• Conclusion: There is not a significant interaction between world region and income level (p = 0.928).

Learning Objectives

Last time:

- 1. Define confounders and effect modifiers, and how they interact with the main relationship we model.
- 2. Interpret the interaction component of a model with a binary categorical covariate and continuous covariate, and how the main variable's effect changes.
- 3. Interpret the interaction component of a model with a multi-level categorical covariate and continuous covariate, and how the main variable's effect changes.

This time:

- 4. Interpret the interaction component of a model with **two categorical covariates**, and how the main variable's effect changes.
 - 5. Interpret the interaction component of a model with **two continuous covariates**, and how the main variable's effect changes.

Do we think food supply is an effect modifier for female literacy rate?

- We can start by visualizing the relationship between life expectancy and female literacy rate by food supply
- Questions of interest: Does the effect of female literacy rate on life expectancy differ depending on food supply?
 - This is the same as: Is food supply is an effect modifier for female literacy rate? Is food supply an effect modifier of the association between life expectancy and female literacy rate?
- Let's run an interaction model to see!

Model with interaction between two continuous variables

Model we are fitting:

$$LE = \beta_0 + \beta_1 F L R^c + \beta_2 F S^c + \beta_3 F L R^c \cdot F S^c + \epsilon$$

- LE as life expectancy
- FLR^c as the **centered** around the mean female literacy rate (continuous variable)
- FS^c as the **centered** around the mean food supply (continuous variable)
- ► Code to center FLR and FS

In R:

```
1 m_int_fs = lm(LifeExpectancyYrs ~ FLR_c + FS_c + FLR_c*FS_c, data = gapm_sub)
```

OR

```
1 m_int_fs = lm(LifeExpectancyYrs ~ FLR_c*FS_c, data = gapm_sub)
```

Displaying the regression table and writing fitted regression equation

```
1 tidy_m_fs = tidy(m_int_fs, conf.int=T)
2 tidy_m_fs %>% gt() %>% tab_options(table.font.size = 35) %>% fmt_number(decimals =
```

term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	70.32060	0.72393	97.13721	0.00000	68.87601	71.76518
FLR_c	0.15532	0.03808	4.07905	0.00012	0.07934	0.23130
FS_c	0.00849	0.00182	4.67908	0.00001	0.00487	0.01212
FLR_c:FS_c	c -0.00001	0.00008	-0.06908	0.94513	-0.00016	0.00015

$$\begin{split} \widehat{LE} = & \widehat{\beta}_0 + \widehat{\beta}_1 F L R^c + \widehat{\beta}_2 F S^c + \widehat{\beta}_3 F L R^c \cdot F S^c \\ \widehat{LE} = & 70.32 + 0.16 \cdot F L R^c + 0.01 \cdot F S^c - 0.00001 \cdot F L R^c \cdot F S^c \end{split}$$

Comparing fitted regression lines for various food supply values

$$\begin{split} \widehat{LE} = & \widehat{\beta}_0 + \widehat{\beta}_1 F L R^c + \widehat{\beta}_2 F S^c + \widehat{\beta}_3 F L R^c \cdot F S^c \\ \widehat{LE} = & 70.32 + 0.16 \cdot F L R^c + 0.01 \cdot F S^c - 0.00001 \cdot F L R^c \cdot F S^c \end{split}$$

To identify different lines, we need to pick example values of Food Supply:

Food Supply of 1812 kcal PPD

$$egin{aligned} \widehat{LE} = & \widehat{eta}_0 + \widehat{eta}_1 FLR^c + \ & \widehat{eta}_2 \cdot (-1000) + \ & \widehat{eta}_3 FLR^c \cdot (-1000) \ \widehat{LE} = & (\widehat{eta}_0 - 1000\widehat{eta}_2) + \ & (\widehat{eta}_1 - 1000\widehat{eta}_3) FLR^c \end{aligned}$$

Food Supply of 2812 kcal PPD

$$egin{aligned} \widehat{LE} = & \widehat{eta}_0 + \widehat{eta}_1 FLR^c + \ & \widehat{eta}_2 \cdot 0 + \ & \widehat{eta}_3 FLR^c \cdot 0 \ \widehat{LE} = & (\widehat{eta}_0) + \ & (\widehat{eta}_1) FLR^c \end{aligned}$$

Food Supply of 3812 kcal PPD

$$egin{aligned} \widehat{LE} = & \widehat{eta}_0 + \widehat{eta}_1 FLR^c + \ & \widehat{eta}_2 \cdot 1000 + \ & \widehat{eta}_3 FLR^c \cdot 1000 \ \widehat{LE} = & (\widehat{eta}_0 + 1000\widehat{eta}_2) + \ & (\widehat{eta}_1 + 1000\widehat{eta}_3) FLR^c \end{aligned}$$

Poll Everywhere Question??

Interpretation for interaction between two continuous variables

$$\widehat{LE} = \widehat{eta}_0 + \widehat{eta}_1 F L R^c + \widehat{eta}_2 F S^c + \widehat{eta}_3 F L R^c \cdot F S^c$$

$$\widehat{LE} = \left[\widehat{eta}_0 + \widehat{eta}_2 \cdot F S^c\right] + \left[\widehat{eta}_1 + \widehat{eta}_3 \cdot F S^c\right] F L R$$
FLR's effect

- Interpretation:
 - β_3 = mean change in female literacy rate's effect, for every one kcal PPD increase in food supply
- In summary, the interaction term can be interpreted as "difference in adjusted female literacy rate effect for every 1 kcal PPD increase in food supply"
- It will be helpful to test the interaction to round out this interpretation!!

Test interaction between two continuous variables

• We run an F-test for a single coefficients (β_3) in the below model (see lesson 9)

$$LE = \beta_0 + \beta_1 F L R^c + \beta_2 F S^c + \beta_3 F L R^c \cdot F S^c + \epsilon$$

 $\mathsf{Null}\,H_0$

$$\beta_3 = 0$$

Alternative H_1

$$\beta_3 \neq 0$$

Null / Smaller / Reduced model

$$LE = \beta_0 + \beta_1 F L R^c + \beta_2 F S^c + \epsilon$$

Alternative / Larger / Full model

$$LE = \beta_0 + \beta_1 F L R^c + \beta_2 F S^c +$$

 $\beta_3 F L R^c \cdot F S^c + \epsilon$

Test interaction between two continuous variables

Fit the reduced and full model

▶ Display the ANOVA table with F-statistic and p-value

term	df.residual	rss	df sumsq statistic p.valu			
LifeExpectancyYrs ~ FLR_c + FS_c	69.000 2,0	05.556	NA	NA	NA	NA
LifeExpectancyYrs ~ FLR_c + FS_c + FLR_c * FS_c	68.000 2,0	05.415	1.000	0.141	0.005	0.945

• Conclusion: There is not a significant interaction between female literacy rate and food supply (p = 0.945). Food supply is not an effect modifier of the association between female literacy rate and life expectancy.

Learning Objective

Bonus learning objective that's not really bonus but just a last minute addition

6. Report results for a best-fit line (with confidence intervals) at different levels of an effect measure modifier

How to find the confidence interval for each slope?

• In the example with FS and FLR, we showed:

Best-fit line for Food Supply of 3812 kcal PPD

$$\widehat{LE} = (\widehat{eta}_0 + 1000\widehat{eta}_2) + (\widehat{eta}_1 + 1000\widehat{eta}_3)FLR^c$$

- ullet Often, we want to report the estimate of the combined coefficients: $\widehat{eta}_1+1000\widehat{eta}_3$
 - This allows us to make a statement like: "At a food supply of 3812 kcal PPD, mean life expectancy increases ($\widehat{\beta}_1 + 1000\widehat{\beta}_3$) years for every one percent increase in female literacy rate (95% CI: __, __)."

- ullet We can calculate $\widehat{eta}_1+1000\widehat{eta}_3$ by using the values of the estimated coefficients
- BUT we always want to have a 95% confidence interval when we report this combined estimate!!

Getting a 95% confidence interval requires linear combinations!

• If we want a confidence interval for $\widehat{eta}_1+1000\widehat{eta}_3$, then we would use the formula:

$$\left(\widehat{eta}_1 + 1000\widehat{eta}_3
ight) \pm t^* imes SE_{(eta_1 + 1000eta_3)}$$

- ullet The hard part is figuring out what $SE_{(eta_1+1000eta_3)}$ (or $ext{Var}(eta_1+1000eta_3)$) equals
- We need to go back to variance of linear combinations (BSTA 512/612, EPI 525):

$$\operatorname{Var}(aX+bY)=a^2\operatorname{Var}(X)+b^2\operatorname{Var}(Y)+2ab\operatorname{Cov}(X,Y)$$

or

$$\operatorname{Var}(aX-bY)=a^2\operatorname{Var}(X)+b^2\operatorname{Var}(Y)-2ab\operatorname{Cov}(X,Y)$$

Reference: calculating $SE_{(eta_1+1000eta_3)}$ by hand

• A helpful function that returns the variance-covariance matric of all the coefficients in model m_int_fs:

```
1 vcov(m int fs)
                                                                                           Var(\beta_1) = 0.0014498
                                          FLR C
                                                                      FLR c:FS c
                 (Intercept)
                                                            FS c
                                                                                           \mathrm{Var}(eta_3) = 6 	imes 10^{-9}
(Intercept) 5.240754e-01 -6.771205e-03 5.586960e-05 -2.609611e-05
FLR c
              -6.771205e-03 1.449828e-03 -3.150719e-05 1.543619e-06
                                                                                       {
m Cov}(eta_1,eta_3) = 1.544 	imes 10^{-6}
       5.586960e-05 -3.150719e-05 3.294981e-06 -1.273649e-08
FS c
FLR c:FS c -2.609611e-05 1.543619e-06 -1.273649e-08 5.949082e-09
               \text{Var}(\beta_1 + 1000\beta_3) = \text{Var}(\beta_1) + 1000^2 \text{Var}(\beta_3) + 2000 \text{Cov}(\beta_1, \beta_3)
               \mathrm{Var}(eta_1 + 1000eta_3) = 0.0014498 + 1000^2 \times 6 \times 10^{-9} + 2000 \times 1.544 \times 10^{-6}
                Var(\beta_1 + 1000\beta_3) = 0.0104861
                      SE_{(eta_1+1000eta_3)}=\sqrt{0.0104861}
                      SE_{(\beta_1+1000\beta_3)}=0.1024019
```

We can use R and estimable () to find the estimate and CI

For $\widehat{eta}_1 + 1000 \widehat{eta}_3$:

Our conclusion: At a food supply of 3812 kcal PPD, mean life expectancy increases 0.14999 years for every one percent increase in female literacy rate (95% CI: -0.05435, 0.35433).

Another example: income (binary) and FLR (1/2)

```
1 m_int_inc2 = gapm_sub %>%
2 lm(formula = LifeExpectancyYrs ~ FLR_c*income_levels2)
```

$$\widehat{LE} = \widehat{eta}_0 + \widehat{eta}_1 FLR + \widehat{eta}_2 I(\text{high income}) + \widehat{eta}_3 FLR \cdot I(\text{high income})$$

$$\widehat{LE} = 54.85 + 0.156 \cdot FLR - 16.65 \cdot I(\text{high income}) + 0.228 \cdot FLR \cdot I(\text{high income})$$

For lower income countries: I(high income) = 0

$$egin{aligned} \widehat{LE} = &\widehat{eta}_0 + \widehat{eta}_1 FLR + \widehat{eta}_2 \cdot 0 + \widehat{eta}_3 FLR \cdot 0 \\ \widehat{LE} = &54.85 + 0.156 \cdot FLR - 16.65 \cdot 0 + \\ &0.228 \cdot FLR \cdot 0 \\ \widehat{LE} = &54.85 + 0.156 \cdot FLR \end{aligned}$$

For higher income countries: I(high income) = 1

$$egin{aligned} \widehat{LE} = &\widehat{eta}_0 + \widehat{eta}_1FLR + \widehat{eta}_2 \cdot 1 + \widehat{eta}_3FLR \cdot 1 \\ \widehat{LE} = &54.85 + 0.156 \cdot FLR - 16.65 \cdot 1 + \\ &0.228 \cdot FLR \cdot 1 \\ \widehat{LE} = &38.2 + 0.384 \cdot FLR \end{aligned}$$

Another example: income (binary) and FLR (2/2)

```
1 m int inc2$coefficients # I just need to see the exact names
                   (Intercept)
                                                       FLR c
                    67.6818102
                                                   0.1564398
     income_levels2Higher income FLR_c:income_levels2Higher income
                     2.0729925
                                                   0.2282290
 1 m int inc2 %>% estimable(
                      c("(Intercept)" = 0, # beta0
                         "FLR_c" = 1, # beta1
                         "income levels2Higher income" = 0, # beta2
                         "FLR c:income levels2Higher income" = 1), # beta3
                      conf.int = 0.95)
         Estimate Std. Error t value DF Pr(>|t|) Lower.CI Upper.CI
(0 1 0 1) 0.3846688 0.1591843 2.416499 68 0.01836001 0.06702138 0.7023161
```

Our conclusion: For countries with high income, mean life expectancy increases 0.385 years for every one percent increase in female literacy rate (95% CI: 0.067, 0.702).

If our example had an effect measure modifier

- None of our examples had a significant interaction, so it's hard to demonstrate exactly how we would report this
- Let's say, just for example, that income had a significant interaction with FLR
 - How would we report this to an audience??
- Here's how to report on an interaction/EMM:
 - We found that a country's income status (high or low) is a significant effect measure modifier on female literacy rate (*include p-value for interaction test here*). For countries with high income, mean life expectancy increases 0.385 years for every one percent increase in female literacy rate (95% CI: 0.067, 0.702). For countries with low income, mean life expectancy increases 2.073 years for every one percent increase in female literacy rate (95% CI: -2.922, 7.068)."

Extra Reference Material

General interpretation of the interaction term (reference)

$$E[Y \mid X_1, X_2] = eta_0 + \underbrace{(eta_1 + eta_3 X_2)}_{X_1 ext{'s effect}} X_1 + \underbrace{eta_2 X_2}_{X_2 ext{ held constant}} \ = eta_0 + \underbrace{(eta_2 + eta_3 X_1)}_{X_2 ext{'s effect}} X_2 + \underbrace{eta_1 X_1}_{X_1 ext{ held constant}}$$

- Interpretation:
 - β_3 = mean change in X_1 's effect, per unit increase in X_2 ;
 - mean change in X_2 's effect, per unit increase in X_1 ;
 - where the " X_1 effect" equals the change in E[Y] per unit increase in X_1 with X_2 held constant, i.e. "adjusted X_1 effect"
- In summary, the interaction term can be interpreted as "difference in adjusted X_1 (or X_2) effect per unit increase in X_2 (or X_1)"

A glimpse at how interactions might be incorporated into model selection

- 1. Identify outcome (Y) and primary explanatory (X) variables
- 2. Decide which other variables might be important and could be potential confounders. Add these to the model.
 - This is often done by indentifying variables that previous research deemed important, or researchers believe could be important
 - From a statistical perspective, we often include variables that are significantly associated with the outcome (in their respective SLR)
- 3. (Optional step) Test 3 way interactions
 - This makes our model incredibly hard to interpret. Our class will not cover this!!
 - We will skip to testing 2 way interactions
- 4. Test 2 way interactions
 - When testing a 2 way interaction, make sure the full and reduced models contain the main effects
 - ullet First test all the 2 way interactions together using a partial F-test (with alpha=0.10)
 - If this test not significant, do not test 2-way interactions individually
 - If partial F-test is significant, then test each of the 2-way interactions
- 5. Remaining main effects to include of not to include?
 - For variables that are included in any interactions, they will be automatically included as main effects and thus not checked for confounding
 - For variables that are not included in any interactions:
 - Check to see if they are confounders by seeing whether exclusion of the variable(s) changes any of the coefficient of the primary explanatory variable (including interactions) X by more than 10%
 - If any of X's coefficients change when removing the potential confounder, then keep it in the model