CIS 660 - FINAL PROJECT

AWID ANOMALY DETECTION

TEAM

- Paul Webster
- Gabriel Madison
- Brandon Marlowe
- Mirza Baig

AWID (AEGEAN WI-FI INTRUSION) DATASET

DATASET PRODUCED FROM REAL WIRELESS NETWORK LOGGING

FULL DATASET

AWID-ATK-F-Trn								
12416	amok							
1529284	arp							
93011	authentication_request							
170826	beacon							
1860780	cafe_latte							
817954	deauthentication							
23598	evil_twin							
1089	fragmentation							
157749037	normal							
117252	probe_response							

• ~ 160,000,000 Rows x 155 Columns

REDUCED TRAINING SET USED

AWID-ATK-R-Trn									
31180	amok								
64609	arp								
3500	authentication_request								
1799	beacon								
45889	cafe_latte								
10447	deauthentication								
2633	evil_twin								
770	fragmentation								
1633190	normal								
1558	probe_response								

- ~ 1.8 Million Rows x 155 Columns
- Produced from 1 hour of logging

MAJORITY OF DATA IS OF "NORMAL" CLASS IN EITHER DATASET

PROJECT GOAL

BUILD A CLASSIFIER CAPABLE OF PROPERLY CLASSIFYING TUPLES WITH FOUR SPECIFIC ATTACK TYPES:

Amok

Deauthentication

Authentication Request

ARP

3 MAJOR TASKS

- Preprocessing/Cleaning
- Feature Selection
- Classification

ABOUT THE ATTACKS

DEAUTHENTICATION

A DENIAL OF SERVICE ATTACK THAT USES UNPROTECTED DEAUTHENTICATION PACKETS TO SPOOF AN ENTITY. THE ATTACKER MONITORS TRAFFIC ON A NETWORK TO DISCOVER MAC ADDRESSES ASSOCIATED WITH SPECIFIC CLIENTS. A DEAUTHENTICATION MESSAGE IS THEN SENT TO THE ACCESS POINT ON BEHALF OF A PARTICULAR MAC ADDRESS, WHICH FORCES THAT CLIENT OFF THE NETWORK. THE ATTACKER THEN CONNECTS TO THE ACCESS POINT AS THE CLIENT THAT WAS PREVIOUSLY DISCONNECTED.

AUTHENTICATION REQUEST

A TYPE OF FLOODING ATTACK -> "IN THIS CASE THE AGGRESSOR ATTEMPTS TO EXHAUST THE AP'S RESOURCES BY CAUSING OVERFLOW TO ITS CLIENT ASSOCIATION TABLE. IT IS BASED ON THE FACT THAT THE MAXIMUM NUMBER OF CLIENTS WHICH CAN BE MAINTAINED IN THE CLIENT AP'S ASSOCIATION TABLE IS LIMITED AND DEPENDS EITHER ON A HARD-CODED VALUE ON THE AP OR ON ITS PHYSICAL MEMORY CONSTRAINTS. AN ENTRY ON THE AP'S CLIENT ASSOCIATION TABLE IS INSERTED UPON THE RECEIPT OF AN AUTHENTICATION REQUEST MESSAGE EVEN IF THE CLIENT DOES NOT COMPLETE ITS AUTHENTICATION (I.E., IS STILL IN THE UNAUTHENTICATED/UNASSOCIATED STATE)." - INTRUSION DETECTION IN 802.11 NETWORKS: EMPIRICAL EVALUATION OF THREATS AND A PUBLIC DATASET

AMOK

ANOTHER FLOODING ATTACK, SIMILAR TO AUTHENTICATION REQUEST

ARP (ADDRESS RESOLUTION PROTOCOL)

"IN COMPUTER NETWORKING, ARP SPOOFING, ARP CACHE POISONING, OR ARP POISON ROUTING, IS A TECHNIQUE BY WHICH AN ATTACKER SENDS (SPOOFED) ADDRESS RESOLUTION PROTOCOL (ARP) MESSAGES ONTO A LOCAL AREA NETWORK. GENERALLY, THE AIM IS TO ASSOCIATE THE ATTACKER'S MAC ADDRESS WITH THE IP ADDRESS OF ANOTHER HOST, SUCH AS THE DEFAULT GATEWAY, CAUSING ANY TRAFFIC MEANT FOR THAT IP ADDRESS TO BE SENT TO THE ATTACKER INSTEAD." - WIKIPEDIA

PREPROCESSING/CLEANING

STARTING POINT

0	?	0.000000000	1393661302.645757000	0.000000000	0.000000000	0.000000000	261	261	0	0 (0 0	26	1	1 1	1	0	1 (0 0	0	0	0 1	. 0	0	1	0 (0	0	0×00000000	0	0	0 21
0		0.000000000	1393661302.670028000	0.024271000	0.024271000	0.024271000	185	185	0	0 (0 0	26	1	1 1	1	0	1 (0 0	0	0	0 1	. 0	0	1	0 (0	0	0×00000000	0	0	0 21
0		0.000000000	1393661302.671659000	0.001631000	0.001631000	0.025902000	185	185	0	0 (0 0	26	1	1 1	1	0	1 (0	0	0	0 1	. 0	0	1	0 (0	0	0×000000000	0	0	0 21
0		0.000000000	1393661302.726984000	0.055325000	0.055325000	0.081227000																						0×000000000			
			1393661302.727399000				54	54	0	0	0 0	26	1	1 1	1	0	1 (0	0	0	0 1	. 0	0	1	0 (0	0	0×000000000	0	0	0 21
0		0.000000000	1393661302.727404000	0.000005000	0.000005000	0.081647000	40	40	0	0	0 0	26	1	1 1	1	0	1 (0	0	0	0 1	. 0	0	1	0 (0	0	0×000000000	0	0	0 21
0		0.000000000	1393661302.744096000	0.016692000	0.016692000	0.098339000	261	261	0	0 (0 0	26	1	1 1	1	0	1 (0	0	0	0 1	. 0	0	1	0 (0	0	0×000000000	0	0	0 21
0		0.000000000	1393661302.744238000	0.000142000	0.000142000	0.098481000	40	40	0	0	0 0	26	1	1 1	1	0	1 (0	0	0	0 1	. 0	0	1	0 (0	0	0×000000000	0	0	0 21
۵	2	0 000000000	1202661202 772205000	0 020067000	n noons7nnn	0 126549000	105	105	۵	0	0 0	26	1	1 1	1	۵	1 (0	۵	۵	٥ ،	۵	٥	1	0 (0	٥	0.400000000	0	Δ.	0 21

WIRESHARK COLUMN NAMES

frame.interface_id
frame.dlt
frame.offset_shift
frame.time_epoch
frame.time_delta
frame.time_delta_displayed
frame.time_relative
frame.len
frame.cap_len
frame.marked
frame.ignored
radiotap.version
radiotap.pad
radiotap.length
radiotap.present.tsft
radiotap.present.flags
radiotap.present.rate
radiotap.present.channel
radiotap.present.fhss
radiotap.present.dbm_antsignal
radiotap.present.dbm_antnoise
radiotap.present.lock_quality
radiotap.present.tx_attenuation

ADDING WIRESHARK COLUMN NAMES

```
[FILE: col_names.txt]
frame.interface_id
frame.dlt
frame.offset_shift
wlan.qos.buf_state_indicated
data.len
class
with open(Path(resource_dir, 'col_names.txt')) as cols_fp:
    for line_num, name in enumerate(cols_fp):
        col_names.append(name.rstrip())
data.columns = col_names
```

AFTER APPENDING COLUMN NAMES

frame.offset_shift	frame.time_delta_displayed	radiotap.flags.shortgi	radiotap.rxflags.badplcp	wlan.fc.version	wlan.fc.type	wlan.fc.frag
0.0	0.0	0	0	0	0	0
0.0	0.024271	0	0	0	0	0
0.0	0.001631	0	0	0	0	0
0.0	0.055325	0	0	0	0	0
0.0	0.000415	0	0	0	2	0
0.0	5e-06	0	0	0	1	0
0.0	0.016692	0	0	0	0	0
0.0	0.000142	0	0	0	1	0
0 0	0 028067	0	0	0	0	0

DROPPED COLUMNS NOT LISTED ON COURSE WEBPAGE

REPLACED '?' WITH NAN VALUES, THEN DROPPED COLUMNS WITH OVER 60% NAN VALUES

removed 7 columns

DROP THE COLUMNS THAT HAVE OVER 50% OF ITS VALUES AS CONSTANT

```
for col in data:
    if data[col].nunique() >= (len(data.index) * 0.50):
        cols_to_drop.append(col)

data.drop(columns=cols_to_drop, inplace=True)
```

DROP THE ROWS WITH AT LEAST ONE NAN VALUE IN IT

• ~ 2000 rows

data.dropna(inplace=True)

OUTPUT THE RELATIVELY CLEAN DATA TO A NEW FILE

```
# Output the minimized and preprocessed dataset to a ZIP file
# (with no index column added)
data.to_csv(
    Path(resource_dir, 'preproc_dataset.zip'),
    sep=',',
    index=False,
    compression='zip')
```

PERFORM MIN-MAX NORMALIZATION ON ATTRIBUTES USED FOR CLASSIFICATION (RANGE 0-1)

```
normalize <- function(x) { return ((x - min(x)) / (max(x) - min(x))) }
...
wifiLog2$wlan.fc.type=normalize(as.numeric(wifiLog2$wlan.fc.type))
wifiLog2$frame.time_delta_displayed=normalize(as.numeric(
    wifiLog2$frame.time_delta_displayed
))
wifiLog2$wlan.duration=normalize(as.numeric(wifiLog2$wlan.duration))
View(wifiLog2)</pre>
```

NORMALIZATION OUTPUT

8	KNN-CONTINUOUS.	R* × wifiLog × wifiL	og2 × wifiLog	2 × Traii	n × test ×
+	\Rightarrow 📶 🏲 Filt	er			Q
•	wlan.fc.type 🕏	frame.time_delta_displayed 🕏	wlan.duration 💠	class ‡	
1	0.0	0.000000e+00	0.00310559	normal	
2	0.0	6.929365e-02	0.00310559	normal	
3	0.0	4.656501e-03	0.00310559	normal	
4	0.0	1.579527e-01	0.00310559	normal	
5	1.0	1.184824e-03	0.64285714	normal	
6	0.5	1.427499e-05	0.00310559	normal	
7	0.0	4.765562e-02	0.00310559	normal	
8	0.5	4.054096e-04	0.00310559	normal	
9	0.0	8.013122e-02	0.00310559	normal	
10	0.0	5.141851e-03	0.00310559	normal	
11	0.0	3.567034e-02	0.00310559	normal	
12	1.0	6.566494e-05	0.64285714	normal	
13	0.5	1.084899e-04	0.00310559	normal	
14	0.0	1.219912e-01	0.00310559	normal	
15	0.0	7.223715e-02	0.00310559	normal	
16	1.0	1.800932e-02	0.64285714	normal	
17	0.5	1.427499e-05	0.00310559	normal	
18	1.0	6.480844e-03	0.64285714	normal	

FEATURE SELECTION

WE ATTEMPTED PCA, BUT RAN OUT OF MEMORY

...even on CSU's Big Data Servers

WE EXAMINED DISTINCT VALUES IN REMAINING COLUMNS, AND CHOSE THOSE WITH MORE DISTINCT VALUES FOR THE NORMAL CLASS VALUE THAN THE ATTACK CLASS VALUES

USING A LITTLE SQL MAGIC...

```
select count(DISTINCT(wlan_fc_moredata))
  from AWID_REMOVED_NULL where class='normal'
select count(DISTINCT(wlan_fc_moredata))
  from AWID_REMOVED_NULL where class='arp'
select count(DISTINCT(wlan_fc_moredata))
  from AWID REMOVED NULL where class='amok'
select count(DISTINCT(wlan_fc_moredata))
  from AWID_REMOVED_NULL where class='authentication_request'
select count(DISTINCT(wlan_fc_moredata))
  from AWID REMOVED NULL where class='deauthentication'
select wlan fc moredata
  from AWID REMOVED NULL where class='normal'
```

THEN, CHOSE THE FOLLOWING 3 COLUMNS FOR OUR ANALYSIS:

wlan.fc.type

frame.time_delta_displayed

wlan.duration

CLASSIFICATION

ISOLATED THE ATTACK TYPES

```
ATTACKTYPE<-"amok"

# Keep only the target class and the normal packets
wifiLog2<-wifiLog2[wifiLog2$class=="normal" | wifiLog2$class==ATTACKTYPE, ]

wifiLog2$class<-as.character(wifiLog2$class)
wifiLog2$class[wifiLog2$class=="normal"]<-as.character("0")
wifiLog2$class[wifiLog2$class==ATTACKTYPE]<-as.character("1")
wifiLog2$class<-as.factor(wifiLog2$class)

...
```

SEPARATE FILES TO HANDLE EACH ATTACK TYPE

KNN-CONTINUOUS-AMOK.R

KNN-CONTINUOUS-ARP.R

KNN-CONTINUOUS-AUTHENTICATION_REQUEST.R KNN-CONTINUOUS-DEAUTHENTICATION.R

PARTITIONED DATASET INTO 66.6% TRAINING DATA AND 33.3% TEST DATA

smp_size <- floor(0.66 * nrow(wifiLog2))</pre>

PERFORMED SMOTE ON TRAINING DATA

To create synthetic tuples of attack types

```
f<-formula("class~wlan.fc.type+frame.time_delta_displayed+wlan.duration")
train_smote<-SMOTE(f,train,perc.over=150,perc.under=90,k=3)
View(train_smote)</pre>
```

K-NEAREST NEIGHBOR CLASSIFIER TO TRAIN MODEL FOR EACH SPECIFIC ATTACK TYPE

m<-kNN(f,train_smote,test_oversamp,norm=FALSE,k=5)</pre>

MADE PREDICTIONS USING THE MODEL ON THE TEST DATASET

PARAMETER SELECTION/INTERPRETATION

RECALL - "COMPLETENESS - WHAT % OF POSITIVE TUPLES DID THE CLASSIFIER LABEL AS POSITIVE?"

$$recall = \frac{TP}{TP + FN}$$

PRECISION - "EXACTNESS — WHAT % OF TUPLES THAT THE CLASSIFIER LABELED AS POSITIVE ARE ACTUALLY POSITIVE"

$$precision = \frac{TP}{TP + FP}$$

RECALL AND PRECISION ARE INVERSELY RELATED MEASURES, MEANING AS PRECISION INCREASES, RECALL DECREASES.

ACCURACY AND RECALL ARE INVERSELY RELATED IN OUR CASE (FOR A MAJORITY OF OUR DATA)

RESULTS

Performed multiple tests for each attack

ARP (ADDRESS RESOLUTION PROTOCOL) (TEST 1)

ARP (TEST 1) KNN PARAMETERS

- Smote.k = 3
- knn.k = 5
- smote.perc.over = 150
- smote.perc.under = 90

ARP (TEST 1) - CONFUSION MATRIX

• N = 576,582

	Predicted: NO	Predicted: YES	Total
Actual: NO	552,958	1,731	554,689
Actual: YES	4	21,889	21,893
Total	552,962	23,620	

ARP (TEST 1) - ANOMALY DETECTION METRICS

False Positives	1,731
True Positives	21,889
True Negatives	552,958
False Negatives	4

ARP (TEST 1) - ANOMALY DETECTION METRICS (CONTD.)

Accuracy	99.6990%
Error Rate	0.3009%
Sensitivity	92.6714%
Specificity	99.9992%
Precision	92.6714%
Recall	99.9817%

ONLY ONE SET OF RESULTS WITH ARP

- Too many errors using other settings
- Difficult to improve on already extremely good results

AMOK (TEST 1)

AMOK (TEST 1) KNN PARAMETERS

- Smote.k = 3
- knn.k = 5
- smote.perc.over = 150
- smote.perc.under = 90

AMOK (TEST 1) - CONFUSION MATRIX

• N = 565,216

	Predicted: NO	Predicted: YES	Total
Actual: NO	511,451	42,928	554,379
Actual: YES	562	10,275	10,837
Total	512,013	53,203	

AMOK (TEST 1) - ANOMALY DETECTION METRICS

False Positives	42,928
True Positives	10,275
True Negatives	511,451
False Negatives	562

AMOK (TEST 1) - ANOMALY DETECTION METRICS (CONTD.)

Accuracy	92.3056%
Error Rate	7.6944%
Sensitivity	19.3128%
Specificity	99.8902%
Precision	19.3128%
Recall	94.8140%

AMOK (TEST 2)

AMOK (TEST 2) KNN PARAMETERS

- smote.k = 1
- knn.k = 1
- smote.perc.over = 120
- smote.perc.under = 200

AMOK (TEST 2) - CONFUSION MATRIX

• N = 565,216

	Predicted: NO	Predicted: YES	Total
Actual: NO	529,906	24,473	554,379
Actual: YES	1099	9,738	10,837
Total	531,005	34,211	

AMOK (TEST 2) - ANOMALY DETECTION METRICS

False Positives	24,473
True Positives	9,738
True Negatives	529,906
False Negatives	1099

AMOK (TEST 2) - ANOMALY DETECTION METRICS (CONTD.)

Accuracy	95.4757%
Error Rate	4.5242%
Sensitivity	2.8464%
Specificity	99.7930%
Precision	28.4645%
Recall	89.8588%

DEAUTHENTICATION (TEST 1)

DEAUTHENTICATION (TEST 1) KNN PARAMETERS

- Smote.k = 3
- knn.k = 5
- smote.perc.over = 150
- smote.perc.under = 90

DEAUTHENTICATION (TEST 1) - CONFUSION MATRIX

• N = 558,167

	Predicted: NO	Predicted: YES	Total
Actual: NO	512,542	42,022	554,564
Actual: YES	95	3,508	3,603
Total	512,637	45,530	

DEAUTHENTICATION (TEST 1) - ANOMALY DETECTION METRICS

False Positives	42,022
True Positives	3,508
True Negatives	512,542
False Negatives	95

DEAUTHENTICATION (TEST 1) - ANOMALY DETECTION METRICS (CONTD.)

Accuracy	92.4544%
Error Rate	7.5455%
Sensitivity	7.7048%
Specificity	99.9814%
Precision	7.7048%
Recall	97.3633%

DEAUTHENTICATION (TEST 2)

DEAUTHENTICATION (TEST 2) KNN PARAMETERS

- smote.k = 1
- knn.k = 1
- smote.perc.over = 90
- smote.perc.under = 400

DEAUTHENTICATION (TEST 2) - CONFUSION MATRIX

• N = 558,167

	Predicted: NO	Predicted: YES	Total
Actual: NO	527,780	26,784	554,564
Actual: YES	379	3,224	3,603
Total	528,159	30,008	

DEAUTHENTICATION (TEST 2) - ANOMALY DETECTION METRICS

False Positives	26,784
True Positives	3,224
True Negatives	527,780
False Negatives	379

DEAUTHENTICATION (TEST 2) - ANOMALY DETECTION METRICS (CONTD.)

Accuracy	95.1335%
Error Rate	4.8664%
Sensitivity	10.7438%
Specificity	99.9282%
Precision	10.7438%
Recall	89.4809%

AUTHENTICATION REQUEST (TEST 1)

AUTHENTICATION REQUEST (TEST 1) KNN PARAMETERS

- Smote.k = 3
- knn.k = 5
- smote.perc.over = 150
- smote.perc.under = 90

AUTHENTICATION REQUEST (TEST 1) - ANOMALY DETECTION METRICS

• N = 555,805

	Predicted: NO	Predicted: YES	Total
Actual: NO	513,668	40,945	554,613
Actual: YES	31	1,161	1,192
Total	513,699	42,106	

AUTHENTICATION REQUEST (TEST 1) - ANOMALY DETECTION METRICS

False Positives	40,945
True Positives	1,161
True Negatives	513,668
False Negatives	31

AUTHENTICATION REQUEST (TEST 1) - ANOMALY DETECTION METRICS (CONTD.)

Accuracy	92.6276%
Error Rate	7.3723%
Sensitivity	2.7573%
Specificity	99.9939%
Precision	2.7573%
Recall	97.3993%

AUTHENTICATION REQUEST (TEST 2)

AUTHENTICATION REQUEST (TEST 2) KNN PARAMETERS

- Smote.k = 1
- knn.k = 1
- smote.perc.over = 100
- smote.perc.under = 300

AUTHENTICATION REQUEST (TEST 2) - ANOMALY DETECTION METRICS

• N = 555,805

	Predicted: NO	Predicted: YES	Total
Actual: NO	540,840	13,773	554,613
Actual: YES	152	1,040	1,192
Total	540,992	14,813	

AUTHENTICATION REQUEST (TEST 2) - ANOMALY DETECTION METRICS

False Positives	13,773
True Positives	1,040
True Negatives	540,840
False Negatives	152

AUTHENTICATION REQUEST (TEST 2) - ANOMALY DETECTION METRICS (CONTD.)

Accuracy	97.4946%
Error Rate	2.5053%
Sensitivity	7.0208%
Specificity	99.9719%
Precision	7.0208%
Recall	87.2483%

SOURCES

Intrusion Detection in 802.11 Networks: Empirical Evaluation of Threats and a Public Dataset

https://en.wikipedia.org/wiki/Address_Resolution_Protocol

THANK YOU