UGANDA MARTYRS UNIVERSITY

FACULTY OF SCIENCE DEPARTMENT OF MATHEMATICS & STATISTICS

UNIVERSITY EXAMINATIONS SEMESTER I, 2013/14

SECOND YEAR EXAMINATIONS FOR BACHELOR OF SCIENCE (FM & GEN)

LINEAR ALGEBRA

DATE: 18TH DECEMBER 2013

TIME: 2:00 - 5:00 PM

Instructions:

- i) Attempt any five questions.
- ii) Write on both sides of the booklet paper but each question should be answered starting on a new sheet of paper.
- iii) Start with questions you find easiest and not necessarily those that carry most marks

Instructions:

- (i) Attempt any five questions.
- (ii) Write on both sides of the answer booklet paper but each question should be answered starting on a new sheet of paper.
- (iii) Start with questions you find easiest and not necessarily those that carry most marks.
 - 1. i) Let $A = \begin{pmatrix} 1 & 2 & -1 \\ 3 & 4 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$ and $C = \begin{pmatrix} 3 & 0 & 0 \\ 1 & 1 & 2 \end{pmatrix}$.
 - a) Compute B(A+C) (3 marks)
 - b) Verify that $(A-C)^T = A^T C^T$ (3 marks)
 - ii) If $A = \begin{pmatrix} -1 & 0 & 2\lambda \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$, compute A^2 , A^3 , A^4 and hence state A^n where n is a positive integer. (7 marks)
 - iii) Let A and B be matrices of size $m \times n$ and $n \times p$ respectively. Prove that $(AB)^T = B^T A^T$ (4 marks)
 - iv) Write down a 2×3 matrix whose entries are given by $x_{ij} = \frac{i^2+1}{2j}$ (3 marks)
 - 2. i) Let V be a vector space. Define
 - a) a linearly independent subset of V (3 marks)
 - b) a basis for V (2 marks)
 - c) dimension of V. (2 marks)
 - ii) Give an example of a subset U of vectors in \mathbb{R}^2 that is linearly dependent. (3 marks)
 - iii) Show that the subset $W = \{2, 1 + 3x, x^2\}$ is a basis of vector space \mathbb{P}^2 . Hence state the dimension of \mathbb{P}^2 .
 - iv) Let $M_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $M_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ and $M_3 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Describe the space generated by $\{M_1, M_2, M_3\}$. (4 marks)
- 3. Let $A = \begin{pmatrix} 1 & 2 & -2 \\ 2 & -2 & 1 \\ -2 & 2 & 1 \end{pmatrix}$. Compute A^{-1} using
 - i) the Gauss-Jordan elimination method (10 marks)
 - ii) the minor cofactors method (10 marks)
- 4. Given the following system of linear equations

$$2x + y - 2z = -2$$
$$x - y + z = 2$$
$$-x - 3y + 2z = -1$$

- i) Express the system in the form AX = b (3 marks)
- ii) Hence solve the system by the row reduction method. (9 marks)
- iii) Find the values of t for which the following system of linear equations has
 - a) no solution (4 marks)
 - b) infinitely many solutions (4 marks)

$$x - ty = -2$$
$$-2x + y = 4$$

- 5. i) Define a subspace W of vector space $(V, +, \times)$. (3 marks)
 - ii) Prove that the neutral (identity) element of a group (V, +) is unique. (3 marks)
 - iii) Let $V = \mathbb{R}^3$. Determine whether or not $W = \{(x_1, 0, 0) \in \mathbb{R}^3 | x_1, x_2, x_3 \in \mathbb{R}\}$ is a vector subspace of V. (5 marks)
 - iv) Let $(V, +, \times)$ be a vector space and U, W be subspaces of V. Show that $U \cap W$ is a subspace. (5 marks)
 - v) Give an example of a vector space V and two subsets U and W of V. Where U is a subspace of V and W is not a subspace of V. (4 marks)
- 6. i) Define a linear transformation T from vector space V into vector space W. (3 marks)
 - ii) Give an example of a transformation that is not linear. (2 marks)
 - iii) Let $T:V\to W$ be a linear transformation. Show that
 - a) T(0) = 0. (3 marks)
 - b) the image $T(V) = \{T(v) : v \in V\}$ of V is a subspace of W. (6 marks)
 - iv) Show that the mapping $T: \mathbb{P}_3 \to \mathbb{P}_2$ given by $T(a_0 + a_1x + a_2x^2 + a_3x^3) = a_1 + 2a_2x + 3a_x^2 \text{ is linear where } a_i \in \mathbb{R} \text{ for all } i = 1, 2, 3.$ (6 marks)

END