ÁLGEBRA LINEAR

Exercícios - Valores próprios e vectores prórpios

Lic. Ciências da Computação

1. Considere as matrizes seguintes:

$$\begin{bmatrix} 1 & 0 & 0 \\ 5 & 1 & 1 \\ 7 & 1 & 1 \end{bmatrix}, \quad \begin{bmatrix} 0 & 1 & -1 \\ 2 & 1 & 1 \\ 1 & 0 & 3 \end{bmatrix}, \quad \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ -1 & -2 & 2 \end{bmatrix}, \quad \begin{bmatrix} 2 & 5 & 2 \\ 0 & 3 & 0 \\ 2 & -1 & 2 \end{bmatrix}, \quad \begin{bmatrix} 3 & 2 & 0 \\ -4 & -3 & 0 \\ 4 & 2 & -1 \end{bmatrix}.$$

- (i). Determine os valores próprios de cada matriz.
- (ii). Determine os vectores próprios associado um dos valores próprios a sua escolha.
- 2. Seja f o endomorfismo de \mathbb{R}^2 definido por f(a,b)=(3a+4b,-2a-3b), para todo $(a,b)\in\mathbb{R}^2$.
 - (a) Mostre que (-2,1) e (1,-1) são vectores próprios de f.
 - (b) Indique uma base \mathcal{B} de \mathbb{R}^2 tal que $M(f; \mathcal{B}, \mathcal{B})$ seja uma matriz diagonal. Justifique.
 - (c) Diga, justificando, se f é automorfismo de \mathbb{R}^2 .

3. Considere, no espaço vectorial real \mathbb{R}^3 , a base $\mathcal{B} = (v_1, v_2, v_3)$ e o endomorfismo φ tal que

$$M(\varphi; \mathcal{B}, \mathcal{B}) = \left[egin{array}{ccc} 1 & 0 & 0 \ 0 & 2 & -4 \ 2 & -2 & 0 \end{array}
ight].$$

- (a) Determine os valores próprios de φ .
- (b) Determine o subespaço próprio de φ associado ao valor próprio -2.
- (c) Diga, justificando, se
- i) φ é diagonalizável;
- φ é automorfismo de \mathbb{R}^3 .

4. Sejam V um espaço vectorial real e $\mathcal{B}=(v_1,v_2,v_3)$ uma base de V. Para $a,b\in\mathbb{R},$ seja

$$f_{a,b} \in \mathcal{L}(V,V) \text{ tal que } M(f_{a,b};\mathcal{B},\mathcal{B}) = \begin{bmatrix} 1 & a+1 & -b \\ 1 & 1 & 1 \\ a & a & a+b+1 \end{bmatrix}.$$

- (a) Mostre que, para quaisquer $a, b \in \mathbb{R}, v_1 v_3$ é vector próprio de $f_{a,b}$.
- (b) Determine os valores de a e de b para os quais 1 é valor próprio de $f_{a,b}$.
- (c) Determine os valores de a e de b para os quais 0 é valor próprio de $f_{a,b}$ com multiplicidade geométrica 2.

5. Seja φ o endomorfismo de \mathbb{R}^3 cuja matriz em relação à base canónica de \mathbb{R}^3 é $\begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

Diga, justificando, se φ é diagonalizável.

- 6. Dê exemplo de um endomorfismo de \mathbb{C}^3 que admita -1 como valor próprio com multiplicidade algébrica 2 e seja diagonalizável. Justifique.
- 7. Seja $A = \begin{bmatrix} 2 & 1 & \frac{5}{2} \\ -2 & -1 & -5 \\ 0 & 0 & 1 \end{bmatrix} \in \mathcal{M}_3(\mathbb{C})$. Determine uma matriz invertível $P \in \mathcal{M}_3(\mathbb{C})$ tal que $P^{-1}AP$ seja uma matriz diagonal.
- 8. Sejam V um espaço vectorial sobre \mathbb{K} , $f \in \mathcal{L}(V, V)$ e $n \in \mathbb{N}$. Diga, justificando, se são verdadeiras ou falsas as seguintes afirmações:
 - (a) Todo o vector próprio de f é também um vector próprio de $f \circ f$.
 - (b) Se $v_1, v_2 \in V$ são vectores próprios de f associados a valores próprios distintos, então $v_1 + v_2$ é vector próprio de f.
 - (c) Se $g \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^3)$ admite 0 como valor próprio com multiplicidade algébrica 2, então dim $\mathrm{Nuc} g = 2$.
 - (d) Para cada $A \in \mathcal{M}_n(\mathbb{K})$, as matrizes $A \in A^T$ têm os mesmos valores próprios.
 - (e) Uma matriz $A \in \mathcal{M}_n(\mathbb{K})$ que admite n valores próprios distintos é diagonalizável.
 - (f) Se $A \in \mathcal{M}_2(\mathbb{K})$ admite os valores próprios 2 e -1, então $\operatorname{tr} A = 1$ e |A| = -2.
 - (g) Se $A, B \in \mathcal{M}_n(\mathbb{K})$ e A é invertível, então AB e BA têm o mesmo polinómio característico.