NDA: Time Series Analysis Part 1: classic approach

Lionel Tabourier

LIP6 - CNRS and Sobonne University

first\_name.last\_name@lip6.fr

January 5th 2022

Problem definition
Some elementary concepts
Some elementary models
Decomposing the time series

# **Bibliography**

#### Formal content:

- Peter Brockwell and Richard Davis Introduction to Time Series and Forecasting
- William Thistleton and Tural Sadigov
   MOOC Coursera: Practical Time Series Analysis

#### Informal guide in python:

• www.machinelearningplus.com/time-series/

#### Illustrative datasets:

- data.world/datasets/time-series
- www.kaggle.com/tags/time-series

Problem definition
Some elementary concepts
Some elementary models
Decomposing the time series
ARMA model for residuals

## **Outline**

- Problem definition
- 2 Some elementary concepts
- Some elementary models
- Decomposing the time series
- ARMA model for residuals

Problem definition

Some elementary concept Some elementary models Decomposing the time series ARMA model for residuals

## Outline

- Problem definition
- Some elementary concepts
- 3 Some elementary models
- 4 Decomposing the time series
- 5 ARMA model for residuals

61616

#### Problem definition

Some elementary concepts
Some elementary models
Decomposing the time series
ARMA model for residuals

# What is time series analysis?

#### **Definition**

Set of observations  $\{x_t\}$ , recorded at time  $t \in T_0$ 

Think of each  $x_t$  as a realization from a distribution

#### Specificities of the problem

#### A unique realization of the process

- ⇒ necessary to make assumptions
- observe time series, identify particularities
- choose a family of models  $X_t$  to represent data
- check the goodness of the model

# Problem definition

Some elementary concep Some elementary mode Decomposing the time serie

# What is time series analysis?

#### **Definition**

Set of observations  $\{x_t\}$ , recorded at time  $t \in T_0$ 

Think of each  $x_t$  as a realization from a distribution

#### **Specificities of the problem**

#### A unique realization of the process

- $\Rightarrow$  necessary to make assumptions
- observe time series, identify particularities
- $\bullet$  choose a family of models  $X_t$  to represent data
- check the goodness of the model

oblom definition

Some elementary concepts Some elementary models Decomposing the time series

# Assumptions for this course

# Restrictions to a subfamily of problems

- discrete time series (discrete time set)
- fixed time steps (time resolution)
- univariate (one single variable over time) ≠ multivariate
  - $\rightarrow$  processes have values in  $\mathbb R$

#### **Approaches**

- part 1: classic approach (ARMA model)
- part 2: a glimpse at Machine Learning approaches
- but far from comprehensive...

#### Problem definition

Some elementary concept Some elementary model Decomposing the time serie

# Assumptions for this course

#### Restrictions to a subfamily of problems

- discrete time series (discrete time set)
- fixed time steps (time resolution)
- univariate (one single variable over time) ≠ multivariate
  - ightarrow processes have values in  $\mathbb R$

#### **Approaches**

- part 1: classic approach (ARMA model)
- part 2: a glimpse at Machine Learning approaches
- but far from comprehensive...













# Goals of time series analysis

- Have a simplified description of the data
   → improve our understanding (ex: climate data)
- Test an assumptionex: is there a significant measurable global warming?
- Filter: separate signal from noise
   ex: known physical signal broadcast → filter noise
- Predict future values
   ex: predict the future demand for a product
- Simulate a process in a complex model
   ex: expectation for the GDP to predict economic activity











# Some elementary models Decomposing the time series ARMA model for residuals How to analyze a time series? (1) First step - visual examination Plot the time series to: identify the existence of a trend (tendance) uncover seasonal variations (variations saisonnières) detect changes of behavior spot outliers (valeurs aberrantes) → subjective components in this analysis

#### Problem definition

Some elementary concepts Some elementary models Decomposing the time series ARMA model for residuals

# The classic decomposition

## Classic decomposition of the time series

$$X_t = s_t + m_t + r_t$$

- seasonality  $s_t$  (periodic and null on average)
- trend  $m_t$  (no periodicity)
- residual r<sub>t</sub>



10/38

# Outline

- Problem definition
- 2 Some elementary concepts
- 3 Some elementary models
- 4 Decomposing the time series
- 6 ARMA model for residuals

Problem definition

Some elementary concepts

Some elementary models

Decomposing the time series

ARMA model for residuals

## Mean and covariance of a time series

#### Two fundamental definitions

Let  $\{X_t\}$  a time series with  $\mathbb{E}[X_t^2] < \infty$  (finite variance) *rk: here we consider*  $X_t$  *as a random variable (model)* 

• **mean function** of  $X_t$ , defined for all t:

$$\mu_X(t) = \mathbb{E}[X_t]$$

• **covariance function** of  $X_t$ , defined for all r, s:

$$\gamma_X(r,s) = Cov(X_r, X_s) = \mathbb{E}[(X_r - \mu_X(r))(X_s - \mu_X(s))]$$

Some elementary Some elementa Decomposing the ti ARMA model for

# Stationarity

## **Informal definition**

A process is **stationary** (*stationnaire*) if its statistical properties are similar when shifted in time

#### Remarks:

- stationarity is a property of a model (not of data)
- stationary processes are simpler to investigate
   usual to transform a TS to obtain a stationary process

Problem definition
me elementary concepts
Some elementary models
proposing the time series

Some elementary model Decomposing the time serie ARMA model for residual

# Stationarity

#### Informal definition

A process is **stationary** (*stationnaire*) if its statistical properties are similar when shifted in time

#### **Formal definition**

A process is said to be weakly stationary if

- the mean function  $\mu_X(t)$  is independent of  $t \Rightarrow \mu_X$
- $\gamma_X(t+h,t)$  is independent of t for any h (including h=0) h is called the *lag (retard, décalage)*

$$\gamma_X(t+h,t) = \mathbb{E}[(X_{t+h} - \mu_X)(X_t - \mu_X)] = \gamma_X(h)$$

13/38

Problem definition

Some elementary concepts

Some elementary models

Decomposing the time series

# Stationarity

#### Informal definition

A process is **stationary** (*stationnaire*) if its statistical properties are similar when shifted in time

#### **Formal definition**

A process is said to be strictly (or strongly) stationary if

•  $\forall n$  and  $\forall h$ 

$$P(X_1 = X_1, ..., X_n = X_n) = P(X_{1+h} = X_1, ..., X_{n+h} = X_n)$$

Unless specified otherwise, we talk about weak stationarity in the following

Problem definition
Some elementary concep

Some elementary mod Decomposing the time ser ARMA model for residu

# Stationarity

#### Informal definition

A process is **stationary** (*stationnaire*) if its statistical properties are similar when shifted in time

#### **Formal definition**

A process is said to be strictly (or strongly) stationary if

•  $\forall n \text{ and } \forall h$ 

$$P(X_1 = X_1, ..., X_n = X_n) = P(X_{1+h} = X_1, ..., X_{n+h} = X_n)$$

Unless specified otherwise, we talk about weak stationarity in the following

Some elementary concept Some elementary model: Decomposing the time series

## Autocorrelation function

Notice that for a stationary time series:  $\gamma_X(t+h,t) = \gamma_X(h)$   $\Rightarrow$  the covariance function  $\gamma_X$  has one variable (the lag)

#### **Definition**

For a stationary time series:

• the autocovariance function at lag h is:

$$\gamma_X(h) = Cov(X_{t+h}, X_t)$$

• the autocorrelation function (ACF) at lag *h* is:

$$\rho_X(h) = \frac{\gamma_X(h)}{\gamma_X(0)}$$

# Equivalent on real data

Concepts well defined on models, but what about real data? Let  $\{x_1, \ldots, x_n\}$  be a series of observations

## Sample mean

• the sample mean estimator is

$$\overline{x} = \frac{1}{n} \sum_{t=1}^{n} x_t$$

Problem definition
Some elementary concept
Some elementary mode
Decomposing the time series
ARMA model for residual

# Equivalent on real data

Concepts well defined on models, but what about real data? Let  $\{x_1, \ldots, x_n\}$  be a series of observations

## Sample autocovariance function

• the sample autocovariance function estimator is

$$\hat{\gamma}(h) = \frac{1}{n} \sum_{t=1}^{n-|h|} (x_{t+|h|} - \overline{x}).(x_t - \overline{x}), -n < h < n$$

remark: notice the denominator (because of mathematical properties)

• the sample autocorrelation function estimator is

$$\hat{
ho}(h) = rac{\hat{\gamma}(h)}{\hat{\gamma}(0)} \;,\; -n < h < n.$$
 Note that  $\hat{
ho}(h) \in [-1;1]$ 

Some elementary models
Decomposing the time series

# Equivalent on real data

#### Data with strong trend:



Problem definition

Some elementary concepto Some elementary mode

Decomposing the time series

ARMA model for residual

# Equivalent on real data

## Data with strong seasonality:



periodicity on the ACF (here monthly measures  $\Rightarrow$  period = 12)

**-**1-161

## **Outline**

- Problem definition
- 2 Some elementary concepts
- 3 Some elementary models
- Decomposing the time series
- 6 ARMA model for residuals

Problem definition
Some elementary concepts
Some elementary models
Decomposing the time series

## What is a time series model?

#### **Definition**

**Time series model**: specification of the joint distributions of a sequence of random variables  $X_t$  of which the observed data is supposed to be the realization

#### Remarks:

- suppose to know  $\forall t$  the distribs  $P(x_1, \dots, x_t, \dots, x_n)$  $\Rightarrow$  in most case too many parameters to handle
- in practice, we focus on first and second order moments:
  - expected values  $\mathbb{E}[X_t]$
  - and expected products  $\mathbb{E}[X_{t+h}X_t]$ , h = 1, 2, ...

Some elementary model
Decomposing the time serie

## What is a time series model?

#### **Definition**

**Time series model**: specification of the joint distributions of a sequence of random variables  $X_t$  of which the observed data is supposed to be the realization

#### Remarks:

- suppose to know  $\forall t$  the distribs  $P(x_1, \dots, x_t, \dots, x_n)$  $\Rightarrow$  in most case too many parameters to handle
- in practice, we focus on first and second order moments:
  - expected values  $\mathbb{E}[X_t]$
  - and expected products  $\mathbb{E}[X_{t+h}X_t]$ , h = 1, 2, ...

Problem definition
Some elementary conception
Some elementary mode
Decomposing the time series
ARMA model for residual

# Independent Identically Distributed noise model

#### **IID** noise

• independant:

$$P(X_1 = X_1, ..., X_n = X_n) = P(X_1 = X_1) \cdot ... \cdot P(X_n = X_n)$$

• identically distributed:  $P(X_t = x) = P(X_{t'} = x)$ 

IID noise is obviously stationary

ex: repeated coin flipping with heads=1, tails=-1 should be IID noise



E SAIGTE

# Independent Identically Distributed noise model

#### **IID** noise

• independant:

$$P(X_1 = X_1, ..., X_n = X_n) = P(X_1 = X_1) \cdot ... \cdot P(X_n = X_n)$$

• identically distributed:  $P(X_t = x) = P(X_{t'} = x)$ 

IID noise is obviously stationary

ex: repeated coin flipping with heads=1, tails=-1 should be IID noise

#### White noise (bruit blanc)

Special case IID noise with

- 0 mean:  $E[X_t] = 0$
- autocovariance function:

$$\gamma_X(h) = \sigma^2$$
 if  $h = 0$  and  $\gamma_X(h) = 0$  if  $h \neq 0$ 

How to build a rando

Random Walk model

How to build a random walk? (marche aléatoire)

Suppose  $\{X_t\}$  is IID noise, then  $\{S_t\}$  defined as:

$$S_t = X_1 + \ldots + X_t$$

is a random walk



Problem definition
Some elementary concepts
Some elementary models
Decomposing the time series

## Random Walk model

#### How to build a random walk? (marche aléatoire)

Suppose  $\{X_t\}$  is IID noise, then  $\{S_t\}$  defined as:

$$S_t = X_1 + \ldots + X_t$$

is a random walk

#### Remarks:

- is a random walk stationary?
- it's a summation of an IID process
- and conversely  $X_t = S_t S_{t-1}$ , or  $S_t = S_{t-1} + X_t$

Problem definition
Some elementary concepts
Some elementary models
Decomposing the time series
ARMA model for residuals

## Random Walk model

#### How to build a random walk? (marche aléatoire)

Suppose  $\{X_t\}$  is IID noise, then  $\{S_t\}$  defined as:

$$S_t = X_1 + \ldots + X_t$$

is a random walk

#### Remarks:

- is a random walk stationary? No
- it's a summation of an IID process
- and conversely  $X_t = S_t S_{t-1}$ , or  $S_t = S_{t-1} + X_t$

19/3

## **Outline**

- Problem definition
- Some elementary concepts
- 3 Some elementary models
- Decomposing the time series
- 6 ARMA model for residuals

Problem definition
Some elementary concepts
Some elementary models
Decomposing the time series

# How to analyze a time series? (2)

#### Second step - Decomposition

- (if necessary) transform data
- remove the trend and seasonal components to get stationary residuals (résidus)

Residual time series obtained should be stationary, but not necessarily IID noise...

20/38

Problem definition
Some elementary concepts
Some elementary models
Decomposing the time series

# How to analyze a time series? (2)

## Second step - Decomposition

- (if necessary) transform data
- remove the trend and seasonal components to get stationary residuals (résidus)

Residual time series obtained should be stationary, but not necessarily IID noise...

Problem definiti
Some elementary conce Some elementary mod
Decomposing the time ser
ARIMA model for residu

# About pre-processing

## Second step - Decomposition

- (if necessary) transform data
- remove the trend and seasonal components to get stationary residuals

#### When is it necessary to transform data?

#### Some cases

- if outliers → if justified, discard them
   ex: external stimulus, mistake in data acquisition, . . .
- if obvious different regimes
  - ightarrow break data into homogeneous segments
- if noise or seasonality increase with trend level

→ logarithmic transformation of the data

OE 101

# About pre-processing

#### Second step - Decomposition

- (if necessary) transform data
- remove the trend and seasonal components to get stationary residuals

When is it necessary to transform data?

#### Some cases

- if outliers → if justified, discard them
   ex: external stimulus, mistake in data acquisition, . . .
- if obvious different regimes
  - → break data into homogeneous segments
- if noise or seasonality increase with trend level
  - → logarithmic transformation of the data

Problem definition
Some elementary concepts
Some elementary models
Decomposing the time series
ARMA model for residuals

# Logarithmic transformation

If fluctuations (seasonality, noise) grow with magnitude...



.. after logarithmic transform

→ c.f. course Regression (heteroscedasticity)

Conduct similar analysis on the transformed time series and reverse the transformations in the end to model the original data

Problem definition

Some elementary concepts

Some elementary models

Decomposing the time series

# Logarithmic transformation

If fluctuations (seasonality, noise) grow with magnitude...



... after logarithmic transform

→ c.f. course *Regression* (heteroscedasticity)

Conduct similar analysis on the transformed time series and reverse the transformations in the end to model the original data

Problem definition
Some elementary concepts
Some elementary models
Decomposing the time series
ARMA model for residuals

# Logarithmic transformation

If fluctuations (seasonality, noise) grow with magnitude. . .



... after logarithmic transform

→ c.f. course Regression (heteroscedasticity)

Conduct similar analysis on the transformed time series and reverse the transformations in the end to model the original data

23/3

# Back to the classic decomposition

## Classic decomposition of the time series

$$X_t = s_t + m_t + r_t$$

- seasonality s<sub>t</sub>
- trend  $m_t$
- residual r<sub>t</sub>

What is the difference between seasonality and trend?

seasonality is periodic

$$s_{t+d} = s_t$$

seasonality is null on average

$$\sum_{j=1}^d s_j = 0$$

Problem definition
Some elementary concepts Some elementary mode
Decomposing the time serion ARMA model for residuate

# Back to the classic decomposition

## Classic decomposition of the time series

$$X_t = s_t + m_t + r_t$$

- seasonality s<sub>t</sub>
- trend m<sub>t</sub>
- residual r<sub>t</sub>

What is the difference between seasonality and trend?

seasonality is periodic

$$s_{t+d} = s_t$$

• seasonality is null on average

$$\sum_{j=1}^{d} s_j = 0$$

Problem definition
Some elementary concepts
Some elementary models
Decomposing the time series
ARMA model for reciduals

# Isolate the trend component

## **Model and regression**

 $\rightarrow$  cf. course Regression

eg. 2<sup>nd</sup> order polynomial model with least squares regression



Problem definitio
Some elementary concepi
Some elementary mode
Decomposing the time serie
ARIMA model for residua

# Isolate the trend component

## **Model and regression**

ightarrow cf. course *Regression* 

eg. 2<sup>nd</sup> order polynomial model with least squares regression

Minimize 
$$\sum_{t=1}^{n} (x_t - m_t)^2$$
, with  $m_t = a_0 + a_1 t + a_2 t^2$ 



# Isolate the trend component

Then we plot the residuals  $\{x_t - m_t\}$ 



Questions to ask oneself:

- Is there a perceptible trend? Is it smooth? Do we see stretches (séquences) of values of the same sign?
- Does it look stationary? Does it look like noise?

Problem definition
Some elementary concepts
Some elementary models
Decomposing the time series
ARMA model for residuals

# Isolate seasonal component

## **Model and regression**

Which model?

25/38

Problem definition
Some elementary concepts
Some elementary models
Decomposing the time series

## Isolate seasonal component

## **Model and regression**

Which model? Harmonic regression

$$s_t = (a_0+)\sum_{j=1}^k a_j cos\left(\frac{2\pi t}{T_j}\right) + b_j sin\left(\frac{2\pi t}{T_j}\right)$$

where  $T_i$  are the expected periods of the process

Problem definitio
Some elementary concept
Some elementary mode
Decomposing the time serie

# Isolate seasonal component

## **Model and regression**

Which model? Harmonic regression

$$s_t = (a_0+)\sum_{j=1}^k a_j cos\left(rac{2\pi t}{T_j}
ight) + b_j sin\left(rac{2\pi t}{T_j}
ight)$$

where  $T_i$  are the expected periods of the process





# Isolate seasonal component (2)

## Harmonic regression on global temperature

Model:

$$s_t = a_0 + a_1 cos\left(\frac{2\pi t}{12}\right) + b_1 sin\left(\frac{2\pi t}{12}\right)$$

Only 1 period ( $T \equiv 1 \ year \Rightarrow 12 \ datapoints$ )



Problem definition
Some elementary concepts Some elementary mode
Decomposing the time series
ARMA model for residual

# Isolate seasonal component (2)

#### Harmonic regression on global temperature

Model:

$$s_t = 9.34 - 4.82cos\left(rac{2\pi t}{12}
ight) - 3.25sin\left(rac{2\pi t}{12}
ight)$$

Only 1 period ( $T \equiv 1 \ year \Rightarrow 12 \ datapoints$ )



27/38

Problem definition Some elementary concepts Some elementary models Decomposing the time series

# Isolate seasonal component (2)

#### Harmonic regression on global temperature

Model:

$$s_t = 9.34 - 4.82cos\left(rac{2\pi t}{12}
ight) - 3.25sin\left(rac{2\pi t}{12}
ight)$$

Only 1 period ( $T \equiv 1 \ year \Rightarrow 12 \ datapoints$ )



Problem definition
Some elementary concept
Some elementary model
Decomposing the time serie
ARMA model for residual

# Stationarity of the residuals

Trend and seasonal components modeled  $\rightarrow$  residuals



Visual evaluation of stationarity

- Is there a perceptible trend? Is it smooth? Do we see stretches of values of the same sign?
- Does it look stationary? Does it look like noise?

# Stationarity of the residuals

Trend and seasonal components modeled  $\rightarrow$  residuals



Quantitative evaluation of stationarity?

Problem definition
Some elementary concept
Some elementary mode
Decomposing the time series
ARMA model for residua

# Testing stationarity of a time series

A general method in Time Series Analysis:

- assume a model
- compute consequences of this model
- test if observations are compatible

→ c.f. course *Hypothesis testing* 

Remember that a test can only reject an assumption

8/38

Problem definition
Some elementary concepts
Some elementary models
Decomposing the time series

# Testing stationarity of a time series

A general method in Time Series Analysis:

- assume a model
- compute consequences of this model
- test if observations are compatible

→ c.f. course *Hypothesis testing* 

Remember that a test can only reject an assumption

Problem definition
Some elementary concept
Some elementary mode
Decomposing the time series
ARMA model for residua

# Illustration: RW and AR(1) processes

#### **Autoregressive processes**

Consider the random walk model (not stationary):

 $X_t = X_{t-1} + W_t$  where  $W_t$  is the "error", some white noise

A specific kind of autoregressive model: AR(1)

$$X_t = \phi X_{t-1} + W_t$$

 $\Rightarrow$  Random Walk is AR(1) with  $\phi = 1$ 

29/38

# Illustration: RW and AR(1) processes

#### **Autoregressive processes**

Consider the random walk model (not stationary):

 $X_t = X_{t-1} + W_t$  where  $W_t$  is the "error", some white noise

A specific kind of autoregressive model: AR(1)

$$X_t = \phi X_{t-1} + W_t$$

 $\Rightarrow$  Random Walk is AR(1) with  $\phi = 1$ 

Problem definition
Some elementary concept
Some elementary mode
Decomposing the time series

# Illustration: RW and AR(1) processes

#### AR(1) processes

$$X_t = \phi X_{t-1} + W_t$$

 $W_t$  is a white noise (mean 0, variance  $\sigma^2$ )

Stationary? (necessary conditions)

• 
$$\mathbb{E}[X_t] = 0$$

• 
$$\gamma_X(h) = \phi^{|h|} \gamma_X(0) = \phi^{|h|} \frac{\sigma^2}{1-\phi^2} \rightarrow \text{problem if } \phi = 1$$

Problem definition
Some elementary concepts
Some elementary models
Decomposing the time series

# Illustration: RW and AR(1) processes

## AR(1) processes

$$X_t = \phi X_{t-1} + W_t$$

 $W_t$  is a white noise (mean 0, variance  $\sigma^2$ )

Stationary? (necessary conditions)

• 
$$\mathbb{E}[X_t] = 0$$

• 
$$\gamma_X(h) = \phi^{|h|} \gamma_X(0) = \phi^{|h|} \frac{\sigma^2}{1-\phi^2} \rightarrow \text{problem if } \phi = 1$$

Some elementary conc Some elementary mo Decomposing the time so ARMA model for resid

# Testing for unit roots

## Notion of characteristic equation

$$X_t - \phi X_{t-1} - W_t = 0$$

$$\longrightarrow 1 - \phi X = 0$$

here, 1 is a root of this equation if  $\phi = 1$ 

More generally, if we have a process modeled by the equation

$$X_{t} - \phi_{1}X_{t-1} - \phi_{2}X_{t-2} + \dots - \phi_{p}X_{t-p} - W_{t} = 0$$

if 1 is a root, the process is not stationary (admitted)

Stationarity tests look for unit roots

30/38

# Testing for unit roots

#### **Notion of characteristic equation**

$$X_t - \phi X_{t-1} - W_t = 0$$

$$\longrightarrow 1 - \phi X = 0$$

here, 1 is a root of this equation if  $\phi = 1$ 

More generally, if we have a process modeled by the equation:

$$X_{t} - \phi_{1}X_{t-1} - \phi_{2}X_{t-2} + \dots - \phi_{p}X_{t-p} - W_{t} = 0$$
  
$$\longrightarrow 1 - \phi_{1}X - \phi_{2}X^{2} + \dots - \phi_{p}X^{p} = 0$$

if 1 is a root, the process is not stationary (admitted)

# Testing for unit roots

#### Notion of characteristic equation

$$X_t - \phi X_{t-1} - W_t = 0$$

$$\longrightarrow 1 - \phi X = 0$$

here, 1 is a root of this equation if  $\phi = 1$ 

More generally, if we have a process modeled by the equation:

$$X_{t} - \phi_{1}X_{t-1} - \phi_{2}X_{t-2} + \dots - \phi_{p}X_{t-p} - W_{t} = 0$$
  
$$\longrightarrow 1 - \phi_{1}X - \phi_{2}X^{2} + \dots - \phi_{p}X^{p} = 0$$

if 1 is a root, the process is not stationary (admitted)

Stationarity tests look for unit roots

# Process of thought

assume a model

 $\rightarrow$  AR(p) model

- compute consequences of this model
  - $\rightarrow$  if stationary 1 is not a root of the charac. equation
- test if observations are compatible
  - $\rightarrow$  parameters  $\phi_1 \dots \phi_p$  that fit the data

## **Outline**

- Problem definition
- Some elementary concepts
- Some elementary models
- Decomposing the time series
- 6 ARMA model for residuals

# How to analyze a time series? (3)

#### Third step - fit the residuals

• Find a stationary model for the residuals

#### Option 0: test if IID

correlogram test:

if IID  $\Rightarrow$  95% of the  $\hat{\rho}(h)$  values should fall in  $\left|-\frac{1.96}{\sqrt{n}}; \frac{1.96}{\sqrt{n}}\right|$ 

• many others are available: turning-point test, sign test, ...

If the residuals is an IID time series, nothing else to model. .

Otherwise: ARMA models *AutoRegressive Moving Average Models* 

Problem definition
Some elementary concepts
Some elementary models
Decomposing the time series
ARMA model for residuals

# How to analyze a time series? (3)

## Third step - fit the residuals

• Find a stationary model for the residuals

#### Option 0: test if IID

correlogram test:

if IID  $\Rightarrow$  95% of the  $\hat{\rho}(h)$  values should fall in  $\left[-\frac{1.96}{\sqrt{n}}; \frac{1.96}{\sqrt{n}}\right]$ 

• many others are available: turning-point test, sign test, ...

If the residuals is an IID time series, nothing else to model...

Otherwise: ARMA models

AutoRegressive Moving Average Models

4/38

Problem definition
Some elementary concepts
Some elementary models
Decomposing the time series

# How to analyze a time series? (3)

#### Third step - fit the residuals

• Find a stationary model for the residuals

## Option 0: test if IID

• correlogram test:

if IID  $\Rightarrow$  95% of the  $\hat{\rho}(h)$  values should fall in  $\left[-\frac{1.96}{\sqrt{n}};\frac{1.96}{\sqrt{n}}\right]$ 

• many others are available: turning-point test, sign test, ...

If the residuals is an IID time series, nothing else to model...

Otherwise: ARMA models

AutoRegressive Moving Average Models

Problem definitio
Some elementary concept
Some elementary model
Decomposing the time serie
ARMA model for residual

# Autoregressive models

#### What is autoregression?

auto means self  $\Rightarrow$  regression from itself

#### AR(p) mode

Autoregressive with a memory of length p:

$$X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + \ldots + \phi_p X_{t-p} + W_t$$

67.161

# Autoregressive models

## What is autoregression?

auto means self ⇒ regression from itself

## AR(p) model

Autoregressive with a memory of length *p*:

$$X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + \ldots + \phi_p X_{t-p} + W_t$$

Problem definitio
Some elementary concept
Some elementary model
Decomposing the time serie
ARMA model for residual

# Autoregressive models

#### Some characteristics

- Stationary process if characteristic polynomial has no unit root
- ACF typical shape: smooth decay, no cut-off



5/38

Problem definition Some elementary concepts Some elementary models Decomposing the time series

# Autoregressive models

#### Some characteristics

- Stationary process if characteristic polynomial has no unit root
- ACF typical shape: smooth decay, no cut-off



Problem definitio
Some elementary concept
Some elementary mode
Decomposing the time serie

# Moving Average models

# Why Moving Average?

The model can be seen as the weighted moving average of white noise

#### MA(1) model

signal = weighted average of noise at t and of noise at t-1 $X_t = \beta_0 W_t + \beta_1 W_{t-1}$ 

015/010

# Moving Average models

## **Why Moving Average?**

The model can be seen as the weighted moving average of white noise

## MA(1) model

signal = weighted average of noise at t and of noise at t-1 $X_t = \beta_0 W_t + \beta_1 W_{t-1}$  Problem definition
Some elementary concept
Some elementary models
Decomposing the time series

# Moving Average models

## **Why Moving Average?**

The model can be seen as the weighted moving average of white noise

## MA(q) model

signal = weighted average of noise at t and q previous steps

$$X_t = \beta_0 W_t + \beta_1 W_{t-1} + \ldots + \beta_q W_{t-q}$$

36/38

Problem definition
Some elementary concepts
Some elementary models
Decomposing the time series

# Moving Average models

#### Some characteristics

- Stationary process
- ACF typical shape: cut-off at lag q



Problem definition

Some elementary concepts

Some elementary models

Decomposing the time series

ARMA model for residuals

# Moving Average models

#### Some characteristics

- Stationary process
- ACF typical shape: cut-off at lag q



26/20

## **ARMA** models

#### ARMA(p,q) model

ARMA(p,q) model is a combination of AR(p) and MA(q) model:

$$X_t = \phi_1 X_{t-1} + \ldots + \phi_p X_{t-p} + W_t + \beta_1 W_{t-1} + \ldots + \beta_q W_{t-q}$$

nb: ARMA coefficients are found with the ACF → Yule-Walker equations

#### In practice

- fit the residuals with several (low) values of p and q
- select what is the best model
- ⇒ complete model:

trend + seasonality + ARMA(p,q) residuals

37/3

Problem definition
Some elementary concepts
Some elementary models
Decomposing the time series

# Studying time series in python

Among several options, pandas library

A few useful functions:

- Load data as dataframe: read\_csv from pandas library
- Fitting: curve\_fit in scipy.optimize library
- Autocorrelation function: plot\_ACF in statsmodels library

Problem definition
Some elementary concepts
Some elementary models
Decomposing the time series
ARMA model for residuals

## **ARMA** models

#### ARMA(p,q) model

ARMA(p,q) model is a combination of AR(p) and MA(q) model:

$$X_t = \phi_1 X_{t-1} + \ldots + \phi_p X_{t-p} + W_t + \beta_1 W_{t-1} + \ldots + \beta_q W_{t-q}$$

nb: ARMA coefficients are found with the ACF → Yule-Walker equations

#### In practice

- fit the residuals with several (low) values of p and q
- select what is the best model
- ⇒ complete model:

trend + seasonality + ARMA(p,q) residuals