Дискретная математика

1 Множества

1.1 Понятие множества. Множества и подмножества. Способы задания множества

Георг Кантор, основатель теории множеств, опредял *множество* как «многое, мыслимое как единое целое». Можно дать и более строгую формулировку:

Определение 1.1.1. *Множество* — это математический объект, являющий совокупностью объектов произвольной природы, которые называются *элементами* этого множества и обладают общим для них характеристическим свойством.

Определение 1.1.2. Множество S называется подмножеством множества M, если $\forall s \in S \ s \in M$.

Существует несколько способов задания множества. Во-первых, можно задать множество просто перечислив все его элементы:

$$\mathbb{N} = \{1, 2, 3, \ldots\}.$$

Также можно задать множество с помощью так называемого *характеристического предиката*:

$$S = \{x \colon x \in \mathbb{Z} \land x > 30\}.$$

Другим вариантом будет задание породжающей процедуры, например, для генерирования множества чисел последовательности Фибоначчи:

$$F = \{a : a_1 = 0, a_2 = 0, a_i = a_{i-2} + a_{i-1}, \text{ где } i = 3, 4, \ldots \}.$$

1.2 Конечные и бесконечные множества. Сравнимые множества. Мощность множества. Булеан

Определение 1.2.1. Множество называется *конечным*, если оно содержит конечное количество элементов. Пустое множество также считается конечным.

Соответственно, множество, которое содержит бесконечное количество элементов называется бесконечным. Например, множество натуральных чисел $\mathbb N$ является бесконечным.

Бесконечные множества делятся еще на вида: счетные и несчетные. Счетные множества — это те, элементы которых мы можем пронумеровать: первый, второй, третий, . . . Очевидно, что множество натуральных чисел является счетным. А что на счет множества действительных чисел? Можем ли мы пронумеровать все его элементы? Очевидно, нет. Поэтому множество действительных чисел является несчетным. А все множества с такой же мощностью как у множества действительных чисел называются континуальными.

Говоря формально, множество является счетным, если его можно взаимо-однозначно сопоставить со множеством натуральных чисел.

Определение 1.2.2. Два множества A и B называют сравнимыми, если $A \subset B$ или $B \subset A$.

Другими словами, два множества называются сравнимыми, если одно из них является подмножеством другого.

Определение 1.2.3. Мощностью множества или его кардинальным числом называют количество элементов, которые содержатся в этом множестве. Мощность множества A обозначается через card(A), #A или |A|.

Рассмотрим множество $\{1,2,3\}$. В нем три элемента, значит его мощность равна 3. А какова мощность множества натуральных чисел? Мощность множества натуральных чисел обозначается как \aleph_0 (читается «алеф-ноль»). Мощность множества действительных чисел обозначается как \mathfrak{c} . Предположение о том, что $\mathfrak{c}=\aleph_0$ называется континуум-гипотезой.

Определение 1.2.4. *Булеаном* 2^A называют множество всех подмножеств данного множества A.

Пример. Например, булеаном множества $\{1,2\}$ будет являтся множество $\{\{1,2\},\{1\},\{2\},\varnothing\}.$

Очевидно, что количество элементов в булеане множества всегда больше количества элементов самого множества. Можно вывести и более общую формулу, выражающую зависимость между мощностью конечного множества и мощностью его булеана:

$$card(2^A) = 2^{card(A)}$$
.

1.3 Парадоксы теории множеств

1.3.1 Парадокс Рассела

Одним из парадоксов наивной теории множеств является парадокс Рассела. Будем называть множество «обычным», если оно не содержит себя в

качестве своего элемента. И «необычным», если содержит. Допустим, у нас есть множество S, содержащее абсолютно все «обычные» множества. Парадокс возникает, когда мы пытаемся понять, каким является множество S — обычным или необычным.

С одной стороны, если оно «обычное», то оно должно включать себя в качестве своего элемента, посколько состоит из всех «обычных» множеств. Но тогда оно не будет является «обычным», т. к. включает содержит само себя в качестве своего элемента.

С другой стороны, если оно «необычное», то должно влючать само себя в качестве своего элемента, т. к. это свойство всех «необычных» множеств. Однако оно не может включать себя в качестве своего элемента, т. к. состоит только из «обычных» множеств.

1.3.2 Парадокс Кантора

Пусть существует множество всех множеств S. Тогда, по-определению, оно должно содержать свой булеан, т. е. $2^S \subset S$. Очевидно, что если $A \subset B$, то card(A) < card(B), но мощность булеана всегда больше мощности исходного множества. Получили противоречие.

2 Отношения

2.1 Отношение. Бинарное отношение. Обратное отношение. Композиция бинарных отношений. Тождественное отношение. Универсальное отношение

Определение 2.1.1. Множество φ называют n-арным отношением между элементами множеств $A_1,\ A_2,\ \ldots,\ A_n,$ если оно является подмножеством их декартова произведения $A_1 \times A_2 \times \ldots \times A_n$.

Определение 2.1.2. Бинарным отношением φ между элементами множеств A и B называют любое подмножество их декартова произведения. Другими словами, $\varphi \subseteq A \times B$.

Определение 2.1.3. Пусть дано бинарное отношение $\varphi \subseteq A \times B$. Тогда *обратным бинарным отношением* будет называться отношение φ^{-1} такое, что

$$\varphi^{-1} = \{(b,a) \ : \ (a,b) \in \varphi\}.$$

Определение 2.1.4. Пусть дано два бинарных отношения $\rho \subseteq A \times B$ и $\phi \subseteq B \times C$. Тогда их композицией $\rho \circ \phi$ будет называться бинарное отношение $\mu \subseteq A \times C$:

$$\mu = \rho \circ \phi = \{(a, c) : (\exists b \in B) [(a, b) \in \rho \ and \ (b, c) \in \phi]\}.$$

Определение 2.1.5. Бинарное отношение $\varphi \subseteq A^2 = \{(a,a) \colon a \in A\}$ называется *тождественным* и обозначается как id_A .

Определение 2.1.6. Отношение $\varphi \subseteq A \times B = \{(a,b) \colon a \in A, b \in B\}$ называется *универсальным*.

2.2 Степень отношения

Определение 2.2.1. *Степенью* ρ^n бинарного отношения ρ называют композицию этого отношения с самим собой n раз:

$$\rho \underbrace{\circ \dots \circ}_{n \text{ pas}} \rho.$$

Определение 2.2.2. $\mathcal{A}\partial pom$ отношения ρ называется композиция отношения и обратного ему: $\rho \circ \rho^{-1}$.

2.3 Отношения эквивалентности. Теорема об отношении эквивалентности и разбиении множества. Классы эквивалентности. Фактор—множество

Определение 2.3.1. Бинарное отношение называется *отношением эквивалентности*, если оно рефлексивно, симметрично и транзитивно.

Определение 2.3.2. Разбиением множества A называется множество его подмножеств такое, что

$$\bigcup_{i \in I} A_i = A \land [\forall i, j \colon i \neq j] (A_i \cap A_j = \varnothing).$$

Теорема. Всякое отношение эквивалентности множества A определяет разбиение множества A, причем среди элементов разбиения нет пустых. Верно и обратное: всякое разбиение множества A, не содежащее пустых элементов, определяет отношении эквивалентности на множестве A.

Определение 2.3.3. Пусть \equiv является отношением эквивалентности на множестве A и $x \in A$. Тогда *классом эквивалентности* для x называют подмножество элементов из A, эквивалентных x:

$$[x]_{\equiv} = \{y \colon y \in A \land y \equiv x\}.$$

Определение 2.3.4. Пусть R — отношение эквивалентности на множестве A. Тогда фактор—множеством называют множество всех классов эквивалентности множества A по отношению R и обозначают как M/R или $\{[x]\}_{x\in A}$.

2.4 Замыкание бинарных отношений. Теорема о транзитивном замыкании

Замкнутость множества относительно применения какой-либо операции означает, что многократное применение операции к элементам этого множества не выводит образующиеся в результате применения операции элементы за пределы исходного множества.

Например, множество натуральных чисел $\mathbb N$ замкнуто относительно операции сложения, потому что при сложении любых двух натуральных чисел получается натуральное число. Однако $\mathbb N$ не является замкнутым относительно операции деления, т. к. при делении двух натуральных чисел может получиться число, не являющееся натуральным.

Определение 2.4.1.
$$R^+ = \bigcup_{i=1}^{\infty} R^i$$
.

Определение 2.4.2. Транзитивное замыкание отношения R на множестве M есть наименьшее транзитивное отношение на множестве M, включающее R.

Пример. Например, если элементами множества M являются люди, а отношение $R \subset M^2$ — это отношение «является родителем», то транзитивным замыканием отношения R будет являться отношение «является предком».

Теорема. R^+ есть транзитивное замыкание R.

2.5 Функции. Инъекция, сюрьекция, биекция. Теорема о тотальной биекции

Определение 2.5.1. Функцией называют бинарное отношение, которое обладает свойством однозначности:

$$(a,b) \in f \land (a,c) \in f \rightarrow b = c.$$

Бинарное отношение $f \subseteq X \times Y$, обладающее свойством однозначности называется функциональным и записывается как $f \colon X \to Y$.

Определение 2.5.2. Функция называется *инъективной*, если у каждого значения функции есть только один прообраз:

$$y = f(x_1) \ and \ y = f(x_2) \to x_1 = x_2.$$

Определение 2.5.3. Функция $f: X \to Y$ является *сюръективной*, если областью ее значений является все множество Y, т. е. если она принимает все возможные значения:

$$\forall y \in Y \exists x \in X \colon (x,y) \in f.$$

Определение 2.5.4. Функция называется *биективной*, если она сюръективна и инъективна одновременно.

Биективная функция также называется взаимно-однозначным соответствием.

3 Алгебраические структуры

3.1 Операции и их свойства. Алгебраическая структура. Модель. Примеры алгебраических структур

Определение 3.1.1. n-арной (или n-местной) операцией на M называют всюду определенную на множестве M тотальную функцию от n аргументов.

Если φ — бинарная операция, т. е. $\varphi\colon M^2\to M$, то её обозначают как $\varphi(a,b)$, где $a,b\in M$. Иногда используют инфиксную форму записи $a\circ b$, где \circ — знак операции.

Определение 3.1.2. Множество с набором определенных на нем операций $\mathcal{A} = \langle M; \varphi_1, \dots, \varphi_m \rangle$, где $\varphi_i \colon M^{n_i} \to M$ называется алгебраической структурой.

Определение 3.1.3. Алгебраическая структура с пустым множеством операций называется *моделью*.

Пример. Одним из простейших примеров алгебраической структуры является множество целых чисел с операциями сложения и вычитания: $\langle \mathcal{A}; +, - \rangle$.

3.2 Булева алгебра. Примеры булевых алгебр. Теорема Стоуна

Определение 3.2.1. *Булевой алгеброй* называют алгебраическую систему $\langle M; \wedge, \vee, \neg, 0, 1 \rangle$, причем для любых $a,b,c \in M$ верны следующие аксиомы:

- i. $a \wedge (b \wedge c) = (a \wedge b) \wedge c$ и $a \vee (b \vee c) = (a \vee b) \vee c$ (ассоциативность);
- ii. $a \wedge b = b \wedge a$ и $a \vee b = b \vee a$ (коммутативность);
- ііі. $a \wedge (a \vee c) = a$ и $a \vee (a \wedge b)$ (законы поглощения);
- iv. $a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c) \vee a \vee (b \wedge c) = (a \vee b) \wedge (a \vee c) (\partial ucmpu \delta ymu \varepsilon hocmb);$
- v. $a \wedge \neg a = 0$ и $a \vee \neg a = 1$ (дополнительность).

Пример. В качестве примера булевой алгебры можно привести множество всех подмножеств данного множества M, которое образует булеву алгебру относительно операций объединения, пересечения и унарной операции дополнения.

Теорема (Стоуна). Всякую булеву алгебру можно интерпретировать как булеву алгебру подмножеств некоторого множества.

Другими словами, какой бы ни была булева алгебра мы можем считать её элементы подмножествами некоторого множества, а операции, соответственно, — теоретико-множественными операциями.

3.3 Подалгебра. Теорема о непустом пересечении подалгебры

Определение 3.3.1. Если в алгебре $\langle M; \Sigma \rangle$ мы рассмотрим $X \subset M$ такое, что X замкнуто относительно всех операций из Σ , то система $\langle X; \Sigma_X \rangle$ образует *подалгебру* алгебры $\langle M; \Sigma \rangle$, где Σ_X состоит из сужений операций из Σ на X.

Теорема (о не пустом пересечении подалгебр). *Непустое пересечение подалгебр одной алгебры образует подалгебру той же алгебры*.

3.4 Полугруппа. Примеры. Свободная полугруппа

Определение 3.4.1. *Полугруппой* называют алгебраическую структуру с одной бинарной ассоциативной операций.

Пример. Например, алгебраическая система $\langle A^+;\cdot \rangle$, где A^+ — множество слов в алфавите, а · — операция конкатенации строк, является полугруппой.

Определение 3.4.2. Если в полугруппе все различные слова, состоящие из образующих определяют различные элементы носителя, то полугруппа называется *свободной*.

Пример. Например, системой образующих полугруппы $\langle \mathbb{N}; + \rangle$ является множество $\{1\}$. Так как различные слова в алфавите $\{1\}$ — суть различные элементы носителя, то $\langle \mathbb{N}; + \rangle$ является полугруппой.

3.5 Моноид. Примеры. Теорема о единственности единицы в моноиде

Определение 3.5.1. *Моноидом* называют полугруппу $\langle M; \circ, e \rangle$, в которой существует нейтральный элемент (также называемый единицей) e такой, что $\forall m \in M \ m \circ e = e \circ m = m$.

Пример. Простейшими примерами моноидов являются $\langle \mathbb{N}; +, 0 \rangle$ и $\langle \mathbb{R}; \cdot, 1 \rangle$.

Теорема. Единица в моноиде единственна.

Доказательство. Пойдем от противного и предположим, что существует два нейтральных элемента e_1 и e_2 . Тогда $e_1 = e_1 \circ e_2 = e_2 \circ e_1 = e_2$.

3.6 Группа. Примеры. Теорема о единственности обратного элемента в группе

Определение 3.6.1. *Группой* называют моноид, в котором для каждого элемента существует элемент, обратный ему.

Пример. Примером группы является $(\mathbb{Z}; +)$, где для каждого целого числа существует обратное ему число с противоположным знаком.

Теорема. Обратный элемент в группе единственнен.

Доказательство. Пойдем от противного и предположим, что в группе $\langle M; \circ \rangle$ для данного $m \in M$ существует два обратных элемента a и b. Тогда $a = a \circ e = a \circ (m \circ b) = (a \circ m) \circ b = e \circ b = b$.

3.7 Теорема о свойствах операций в группе

Теорема. В группе выполняются следующие соотношения:

1.
$$(a \circ b)^{-1} = b^{-1} \circ a^{-1}$$
;

2.
$$a \circ b = a \circ c \Rightarrow b = c$$
:

3.
$$b \circ a = c \circ a \Rightarrow b = c$$
;

4.
$$(a^{-1})^{-1} = a$$
.

Доказательство. Каждое соотношение легко доказывается с помощью простых логических выводов:

$$2. \ a \circ b = a \circ c \ \Rightarrow \ a^{-1} \circ (a \circ b) = a^{-1} \circ (a \circ c) \ \Rightarrow \ (a^{-1} \circ a) \circ b = (a^{-1} \circ a) \circ c \ \Rightarrow \ e \circ b = e \circ c \ \Rightarrow \ b = c;$$

- 3. (доказывается по аналогии с предыдущим соотношением);
- 4. (прямо следует из факта единственности обратного элемента в группе).

3.8 Теорема об однозначности решения в группе уравнения $a \times x = b$

Теорема. В группе можно однозначно решить уравнение $a \times x = b$.

Доказательство.
$$a \times x = b \Rightarrow a^{-1} \times (a \times x) = a^{-1} \times b \Rightarrow (a^{-1} \times a) \times x = a^{-1} \times b \Rightarrow e \times x = a^{-1} \times b \Rightarrow x = a^{-1} \times b.$$

3.9 Коммутативная группа. Примеры

Определение 3.9.1. *Коммутативной* (или *абелевой*) группой называют группу, в которой бинарная операция коммутативна.

Пример. Например, группа $\langle \mathbb{Z}; + \rangle$ является абелевой группой, так как операция + обладает свойством коммутативности.

3.10 Кольцо. Примеры. Теорема о соотношениях в кольце

Определение 3.10.1. *Кольцом* называют алгебраическую систему $\langle M; +, \times \rangle$, являющуюся абелевой группой по сложению, полугруппой по умножению, и обладающая двухсторонней дистрибутивностью умножения относительно сложения.

Пример. Простейшим примером кольца является множество целых чисел с обычными операциями сложения и умножения.

Теорема. В кольце выполняются следующие соотношения:

- 1. $0 \cdot a = a \cdot 0 = 0$;
- 2. $a \cdot (-b) = (-a) \cdot b = -(a \cdot b);$
- 3. $(-a) \cdot (-b) = a \cdot b$.

Доказательство. Все соотношения доказываются простыми логическими цепочками:

- 1. $a \cdot 0 = a \cdot (x x) = ax ax = 0$, a takke $0 \cdot a = (x x) \cdot a = xa xa = 0$;
- 2. $ab + (-a)b = [a + (-a)]b = 0 \cdot b = 0$, а также $ab + a(-b) = a[b + (-b)] = a \cdot 0 = 0$;
- 3. (-a)(-b) = -[a(-b)] = -(-ab) = ab.