Задача 1.

Доказать свойство определитель, содержащий определителей: две одинаковые строки, равен нулю.

Задача 2.

Доказать свойство определителей: определитель не изменится, если к элементам какой-либо строки прибавить соответствующие элементы другой строки, умноженные на одно и то же число.

Задача 3.

Доказать свойство определителей: сумма произведений элементов какойлибо строки определителя на алгебраические дополнения соответствующих элементов другой строки равна нулю.

Задача 4.

Чему равен определитель треугольной матрицы с нулями над главной диагональю? Ответ обосновать.

Задача 5.

Чему равен определитель треугольной матрицы с нулями под побочной диагональю? Ответ обосновать.

Задача 6.

Дан определитель $\Delta = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$. Чему равно значение выражения:

a)
$$a_{11}A_{21} + a_{12}A_{22} + a_{13}A_{23}$$
;

6)
$$a_{21}\begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} - a_{22}\begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} + a_{23}\begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix};$$

B) $a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} - a_{23}\begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix} + a_{33}\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix};$

B)
$$a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} - a_{23}\begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix} + a_{33}\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix};$$

$$\Gamma) b_1 \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} - b_2 \begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix} + b_3 \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} ?$$

Ответ обосновать.

Задача 7.

Верно ли равенство:

a)
$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = -\begin{vmatrix} a_{12} & 2a_{11} & a_{13} \\ a_{22} & 2a_{21} & a_{23} \\ a_{32} & 2a_{31} & a_{33} \end{vmatrix};$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = -\begin{vmatrix} a_{11} & 2a_{11} - a_{12} & a_{13} \\ a_{21} & 2a_{21} - a_{22} & a_{23} \\ a_{31} & 2a_{31} - a_{32} & a_{33} \end{vmatrix};$$

Ответ обосновать.

Задача 8.

Как изменится определитель, если во всех его элементах изменить знак на противоположный? Ответ обосновать.

Задача 9.

Как изменится определитель n-го порядка, если его строки записать в обратном порядке? Ответ обосновать.

Задача 10.

Как изменится определитель n-го порядка, если каждый его элемент a_{ik} умножить на 3^{i-k} ? Ответ обосновать.

Задача 11.

Чему равен определитель, у которого сумма строк с четными номерами равна сумме строк с нечетными номерами? Ответ обосновать.

Задача 12 [Олимп БГТУ2017].

Все элементы матрицы A размера 10×10 - целые числа, причем 92 из этих чисел имеют одинаковый остаток r (0 < r < 5) при делении на 5. Доказать, что определитель матрицы A делится на 5.

Задача 13 [Олимп БГТУ2008].

Имеются три натуральных трёхзначных числа $n_i = \alpha_{i1}\alpha_{i2}\alpha_{i3}$ (i=1, 2, 3), где α_{ii} -- десятичные цифры. Известно, что каждое n_i делится на некоторое натуральное число $m \ge 2$. Доказать, что определитель $\Delta = |\alpha_{ii}|$, составленный из цифр α_{ii} , также делится на m.

Задача 14.

Задача 15 [Олимп БГТУ2019].

Построить график функции
$$y = \begin{vmatrix} 1 & 2 & 3 & 4 \\ x+1 & 2 & x+3 & 4 \\ 1 & x+3 & x+4 & x+5 \\ 1 & -3 & -4 & -5 \end{vmatrix}$$
. Задача 16.

Вычислить определитель
$$\begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix}$$
.

Задача 17.

Вычислить определитель $\begin{vmatrix} \alpha & \beta & \gamma \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta \end{vmatrix}, \quad \text{где} \quad \alpha, \beta, \gamma \quad \text{-} \quad \text{корни} \quad \text{уравнения}$

$$x^3 + px + q = 0.$$

Задача 18.

Пусть $O_{2\times 3}$ - нулевая матрица размера 2×3 , $A_{m\times n}$ - матрица размера $m\times n$. При каких значениях m и n существует и чему равно: а) A+O; б) $A\cdot O$? Указать размеры итоговых матриц.

Задача 19.

Матрицы A и B, для которых AB = BA, называются коммутирующими (перестановочными). Что можно сказать о размерах коммутирующих матриц?

Задача 20.

Как изменится произведение матриц AB, если переставить первый и второй столбцы матрицы B?

Задача 21 [Олимп БГТУ2011].

Найти все матрицы 2-ого порядка, квадрат которых равен нулевой матрице.

Задача 22 [Олимп БГТУ2017].

Рассмотрим все вещественные матрицы $A = \|a_{ij}\|_{2\times 2}$ второго порядка, квадраты которых равны нулевой матрице. Если $a_{11} = 2017$, то какое наименьшее значение может принимать сумма квадратов элементов матрицы A, стоящих на побочной диагонали?

Задача 23.

Найти матрицы
$$X$$
 и Y , если
$$\begin{cases} X+Y=\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \\ 2X+3Y=\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}. \end{cases}$$

Задача 24 [Олимп БГТУ2018].

Решить уравнение
$$\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2x \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 3x \\ 0 & 1 \end{pmatrix} \cdot \dots \cdot \begin{pmatrix} 1 & 2018x \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2018 \\ 0 & 1 \end{pmatrix}.$$

Задача 25.

Вычислить
$$\begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{pmatrix}^2$$
.

Задача 26 [Олимп БГТУ2006].

Вычислить A^n для любого натурального n, если $A = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$.

Задача 27.

Найти
$$\begin{bmatrix} 2 & -1 \\ 3 & -2 \end{bmatrix}^n$$
.

Задача 28 [Олимп БГТУ2015].

Вычислить
$$A^2$$
, A^3 , A^{2015} , если $A = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

Задача 29.

Как изменится обратная матрица A^{-1} , если в матрице A вторую строку умножить на 3? Ответ обосновать.

Задача 30.

Как изменится обратная матрица A^{-1} , если в матрице A поменять местами второй и третий столбцы? Ответ обосновать.

Задача 31.

Даны матрицы $A_{2\times 2}$ и $B_{4\times 2}$. Как найти матрицу X , если $X\cdot A=B$? Какой размер имеет матрица X? Ответ обосновать.

Задача 32.

Как найти матрицу X, если $A \cdot X \cdot B = C$, где A и B – квадратные матрицы 2го и 3-го порядков соответственно? Какой размер имеет матрица X? Ответ обосновать.

Задача 33.

Решить матричное уравнение:
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \cdot X = \begin{bmatrix} 4 & -2 & 0 & 5 \\ 10 & -4 & 2 & 11 \end{bmatrix}.$$

Задача 34.

Решить матричное уравнение:
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \cdot X \cdot \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
.

Задача 35.

Решить матричное уравнение:
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \cdot X \cdot \begin{bmatrix} 4 & 5 \\ 6 & 7 \end{bmatrix} = \begin{bmatrix} 14 & 17 \\ 34 & 41 \end{bmatrix}$$
.

Задача 36.

Решить уравнение AX = B, если:

1)
$$A = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 0 & 2 \\ 1 & 1 & -3 \end{pmatrix}, B = \begin{pmatrix} 5 & -3 \\ 4 & -1 \\ 1 & 0 \end{pmatrix};$$

2) $A = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 0 & 2 \\ 1 & 1 & -3 \end{pmatrix}, B = \begin{pmatrix} 5 & -3 \\ 4 & -1 \\ 1 & -2 \end{pmatrix}.$

2)
$$A = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 0 & 2 \\ 1 & 1 & -3 \end{pmatrix}, B = \begin{pmatrix} 5 & -3 \\ 4 & -1 \\ 1 & -2 \end{pmatrix}$$

Задача 37 [Олимп БГТУ2010].

Уравнение $x^2 = -1$ не имеет решений во множестве действительных чисел.

Верно ли аналогичное утверждение для матричного уравнения $X^2 = -\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$?

Задача 38 [Олимп БГТУ2016].

Существуют ли такие матрицы
$$A$$
 и B , что $AB = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, а $BA = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$?

Задача 39.

Чему равен ранг единичной матрицы n-го порядка? Ответ обосновать.

Задача 40 [Олимп БГТУ2011].

При каких значениях
$$x$$
 ранг матрицы $A(x) = \begin{pmatrix} 3 & 1 & 2 & x+2 \\ 3 & 1 & 2 & 2x+1 \\ x+3 & 1 & 3x-1 & 3x \end{pmatrix}$

наименьший?

Задача 41.

Система линейных алгебраических уравнений содержит три уравнения с четырьмя неизвестными. Может ли ранг ее матрицы быть равен: а) 2; б) 3; в) 4? Ответ обосновать.

Задача 42.

Система линейных алгебраических уравнений содержит четыре уравнения с тремя неизвестными. Может ли ранг ее матрицы быть равен: а) 2; б) 3; в) 4? Ответ обосновать.

Задача 43.

Что можно сказать о решении СЛАУ с 4 неизвестными, если она содержит 4 уравнения, ранг матрицы системы равен 3, ранг расширенной матрицы равен 3? Ответ обосновать.

Задача 44.

Что можно сказать о решении СЛАУ с 2 неизвестными, если она содержит 3 уравнения, ранг матрицы системы равен 2, ранг расширенной матрицы равен 2? Ответ обосновать.

Задача 45.

Что можно сказать о решении СЛАУ с 4 неизвестными, если она содержит 4 уравнения, ранг матрицы системы равен 2, ранг расширенной матрицы равен 2? Ответ обосновать.

Задача 46.

В каком случае однородная система линейных алгебраических уравнений имеет только нулевое решение?

Задача 47.

Может ли система линейных алгебраических уравнений иметь единственное решение, если она содержит: а) четыре уравнения с тремя неизвестными; б) три уравнения с четырьмя неизвестными? Ответ обосновать.

Задача 48 [Олимп БГТУ2010].

Найти все значения параметра c при которых система уравнений $\begin{cases} x+2y=3,\\ x+(c^3-3c+4)y=4 \end{cases}$ несовместна.

Задача 49 [Олимп БГТУ2018].

При каких значениях параметра a система $\begin{cases} x + 2y - az = 0, \\ x + y - z = 1, \\ x + y + (a^3 + a - 3)z = 3, \end{cases}$ имеет

решения?

Задача 50 [Олимп БГТУ(1)2016].

При каких значениях a и b система $\begin{cases} (a+1)^2x - (a+1)y = -a, \\ (b-1)x + (5-2b)y = a+4 \end{cases}$ имеет

единственное решение x = 1, y = 1?

Задача 51 [Олимп БГТУ2015].

Найти все такие значения b, чтобы при любом значении a система $\begin{cases} 3x+y=a, \\ ax-y=b \end{cases}$ имела хотя бы одно решение.

Задача 52 [Олимп БГТУ2016].

Два студента поочередно заменяют звездочки числами в системе

$$\begin{cases} x + *y + *z = *, \\ x + *y + *z = *, \\ x + *y + *z = *. \end{cases}$$

Доказать, что начинающий всегда может добиться того, что полученная в итоге система будет несовместной (студент, делающий ход, может заменить любую из оставшихся звездочек любым числом).