Topic: Limits of composites

Question: If $f(x) = x^3$ and $g(x) = x^2 + 3$, evaluate the limit.

$$\lim_{x\to 5} f(g(x))$$

Answer choices:

$$\lim_{x \to 5} f(g(x)) = 81$$

C
$$\lim_{x \to 5} f(g(x)) = 15,628$$

$$D \qquad \lim_{x \to 5} f(g(x)) = 253$$

Solution: A

First find the composite f(g(x)), when $f(x) = x^3$ and $g(x) = x^2 + 3$.

$$f(x) = x^3$$

$$f(g(x)) = (x^2 + 3)^3$$

Then find the limit of the composite function.

$$\lim_{x\to 5} f(g(x))$$

$$\lim_{x \to 5} (x^2 + 3)^3$$

$$(5^2+3)^3$$

$$28^3$$

Topic: Limits of composites

Question: If $f(x) = \cos x$ and g(x) = x + 4, evaluate the limit.

$$\lim_{x \to -4} f(g(x))$$

Answer choices:

$$\lim_{x \to -4} f(g(x)) = 0$$

$$C \qquad \lim_{x \to -4} f(g(x)) = 1$$

D The limits does not exist (DNE)

Solution: C

First find the composite f(g(x)), when $f(x) = \cos x$ and g(x) = x + 4.

$$f(x) = \cos x$$

$$f(g(x)) = \cos(x+4)$$

Then find the limit of the composite function.

$$\lim_{x \to -4} f(g(x))$$

$$\lim_{x \to -4} \cos(x+4)$$

$$\cos(-4+4)$$

$$\cos(0)$$

1

Topic: Limits of composites

Question: Given the graphs of f(x) and g(x), find $\lim_{x\to 0} f(g(x))$.

Answer choices:

$$\mathsf{A} \qquad \lim_{x \to 0} f(g(x)) = 0$$

$$\mathsf{B} \qquad \lim_{x \to 0} f(g(x)) = \infty$$

$$C \qquad \lim_{x \to 0} f(g(x)) = -2$$

$$\mathsf{D} \qquad \lim_{x \to 0} f(g(x)) = \mathsf{DNE}$$

Solution: D

Use the theorem for limits of composite functions.

$$\lim_{x \to 0} f(g(x)) = f(\lim_{x \to 0} g(x))$$

From the graph of g(x), we can see that

$$\lim_{x\to 0}g(x)=\mathsf{DNE}$$

Therefore, $\lim_{x\to 0} f(g(x))$ does not exist.

