Основные понятия и история искусственного интеллекта. Принципы построения систем поддержки принятия врачебных решений.

Лекция 1

Киселёв Глеб Андреевич к.т.н., старший преподаватель ФФМиЕН РУДН

тел.:+79067993329

email: kiselev@isa.ru

• Что такое искусственный интеллект (ИИ)?

Это программа, выполняющая интеллектуальные функции. Функции считаются интеллектуальными, когда не существует заранее заданного алгоритма решения проблемы.

• Каким бывает ИИ?

ИИ бывает сильным и слабым. Сильный искусственный интеллект — недостижимая цель, при которой машина обладает всеми интеллектуальными способностями человека. Слабый искусственный интеллект — это группа программно-аппаратных, либо программных комплексов, автоматизирующих интеллектуальную задачу.

• Примеры создания сильного ИИ:

Робототехнические устройства, управляемые комплексными когнитивными системами: LIDA, SOAR, ICARUS, STRL, CLARION и т.д.

• Примеры создания слабого ИИ:

- 1. Чат боты Для управления устройством/универсальные Sap conversational AI, Alexa от Amazon, Assistant от Google; Cortana от Microsoft; Siri от Apple; Алиса от Яндекс; Маруся от Mail.ru Group;
- 2. Для взаимодействия с бизнес-приложениями- ассистент «Олег» в приложении банка «Тинькофф»; голосовой помощник от Сбербанка; голосовой помощник ASICS подбор спортивного снаряжения;
- 3. Предметно-ориентированные сервисы умные навигаторы (Citymapper, UGV Driver Assistant); умные сиделки (Mishka AI), фитнес тренеры, приложения для оптимизации расписания;
- 4. Системы распознавания аудио, видео сигналов и т.д.

	STRL	LIDA	SOAR	CLARION	ACT-R	ICARUS	SemaFORR	CAMAL	HiPOP	CARINA
Структура	стратегический,	3 фазы - 1. понимания 2. внимания 3. действий и обучения	Набор связанных вычислительных	внимание и осознавание	Модульность. Каждый модуль имеет буфер, через который запрашивает иинформацию. В отличии от SOAR описывается более подробный когнитивный цикл	Линейная структура распознавания среды и поиска навыков в долговременно й и кратковременн ой памяти	(реактивные), 2. по планированию и 3. по	соединением схемы BDI нотации, аффективных	(перепланиров ания),	4 уровня: уровень 0.когнитивного агента 1. рассуждений о его деятельности 2. мета-модель рассуждений 3. мета- мета модель
Способ представления знаний	(c) - знаковая модель (т) - метрические топологические графы (р) - нелинейные регуляторы	реализации: кодлеты + сети схем, векторы многомерного модульного составного	чанки (куски, вектора) и процедурный (продукции). Знания краткосрочные и	Знания в каждой из подсистем представлены в явном и неявном виде. Явный - системы правил, не явный - нейросети	Декларативный - чанки (куски, вектора) и процедурный (продукции). Знания краткосрочные и долгосрочные.	Знания представлены в предикатной форме. Знания краткосрочные и долгосрочные.	Дескриптивы - описания среды для советчиков. Также присутствует 3 вида геометрически х абстракций: - трассы, области и конвейеры	доверия	В предикативно й форме	Элементами внутреннего языка М++
планирования	на принципах распространения активности	представлен оыстро повторяющимися когнитивными	Иерархия процессов обработки подцелей. Процессы	разделении когнитивных лействий по кажлой и	Иерархичность процесса заключается в	Иерархичность в поиске и приобретении навыков, а также в распознавании и концептуализа ции ситуации	Иерархический , основан на цикле опроса советчиков	Стандартная иерархичность BDI-рассуждений, дополненная расширенными вероятностными оценками доверия	Иерархическая версия алгоритма частичного планирования ¹ РОР	Иерхичность заключается во множественном оценивании реакции окружающей среды на текущее действие
Обучение	переиспользуется. Абстрактные действия планировшика	Опыт сохраняется и переиспользуется. Образуются новые когнитивные связи.	Лекпаративная и		И декларативная, и процедурная память пополняемы		Опыт планирования используется в эвристиках советчиков		явно не представлен	Явно не представлено. Авторы описывают обучение, как смену стратегий, основываясь на опыте.

Пополнение знаний на основе данных сенсоров	тактическом и реактивном уровнях. Используются SLAM по карте, распознавание объектов лля	понимания. Расши п яется с	молупем обработки	описание	Реализации модуля распознавания и визуализации	•	Пополнение знаний с помощью HoloLens+SLA M+EKF	Представлено в аффективном виде	Используется в робототехниче ской постановке	Модуль воспрития датчиками и распознавания.
Неопределенность данных	представлением о возможностях манипулирования с объектами в процессе	существуют примеры байесовской интерпретации	Правила по выбору операторов в процессе планирования генерируются с помощью RI	представление	Используются допущения к представлению задачи	Неоднозначнос ть распознавания среды.	их представление м об выполнимости	1		Явно не представлена.
Персонифицированность знаний	стратегическом уровне знаками "Я" и "Они". Используется рефлексия 1 (авторефлексия) и 2	перцептивной памяти рефлексией 1 и 2	субъективность декларативных и	Достигается посредством метокогнитивн ого уровня осознавания	Отсутствует в классической реализации	Описание отсутствует.	Отсутствует явное представление.	Представлена BDI графом отношений.		Знания персонифицированы с помощью само-модели на метауровне м1.
Моделирование внимания агента	на стратегическом уровне представлена иерархическим фокусом внимания агента.	представлена соответствующей фазой когнитивного	• •	достигается	Представлена сегментацией событий для робототехнических реализаций	Описание отсутствует.	Представлена деятельностью советчиков 1 и 2 уровней.		Описание отсутствует.	Представлена различными стратегиями метауровней по выявлению важных вещей при распознавании ситуации.
использование автоматических процедур	тактического и	Используются кодлеты. Зависит от реализации.	отсутствует.	неявным представление	Различается в зависимости от реализации архитектуры	Для выполнения действий. Ограничены временными рамками.	Любое выполнение действий.	Обусловлено реализацией аффективного поведения. Если робот слабый используется система SCARAB.	Представлено 1 действиями перемещений.	Присутствует в конкретных реализациях когнитивных агентов.

	-	Явно не описан, зависит от реализации.	основанные на		Представлен модулем коммуникации	Явно не описан. Зависит от робототехничес кой реализации.	коммуникация. Для отслеживания деятельности группы (толпы) используются алгоритмы CUSUM-A* и Risk-A*.	С помощью протокола коммуникации и обмена данных.	Протоколы коммуникаций (обычный, восстановления плана, синхронизации).	Явно непредставлен.
Применение	Робототехника, интеллектуальные ассистенты	симуляция когнитивных агентов, медицинская	человеческого	когнитивных агентов	Моделирование человеческого поведения для тестирования	Игровая индустрия, робототехника	Робототехника, игровая индустрия.	Робототехника.	Робототехника.	Интеллектуальные ассистенты.
Разработчик		Университет Мемфиса, США	Университет Корнеги Мелон,		Университет Корнеги Мелон, Питсбург, США	NASA, DARPA, CIIIA	Городской Университет Нью-Йорка, США	Университет Халла, Англия	Университет Тулузы, Франция	Университет Сан Пауло. Бразилия
Ссылка на описание	управления интеллектуальными агентами // В кн.: Пятнадцатая национальная конференция по искусственному интеллекту с международным участием КИИ-2016 (3-7 октября	LEARNING TO AN INTELLIGENT, AUTONOMOUS, SOFTWARE AGENT." (2006).	Laird, J. E., Lebiere, C., & Rosenbloom, P. S. (2017). A standard model of the mind: Toward a common computational framework across artificial intelligence, cognitive science, neuroscience, and robotics. AI Magazine. https://doi.org/10.16 09/aimag.v38i4.2744	Sun, R. 2016. Anatomy of the Mind: Exploring Psychological Mechanisms and Processes with the Clarion Cognitive Architecture. New York, NY: Oxford University Press	Ritter, FE, Tehranchi F, Oury, JD. ACT-R: A cognitive	Evolution of the ICARUS Cognitive Architecture. Cognitive Systems Research	Epstein, S. L., Aroor, A., Sklar E. I., & Parsons, S. (2013). Navigation with Learned Spatial Affordances. 1– 6. Retrieved from http://www.com psci.hunter.cuny .edu/~epstein/pa pers/CogSciFina	(2017). Reasoning with BDI robots: From simulation to physical environment - Implementations and limitations. Paladyn. https://doi.org/10	losses. Autonomous Robots. https://doi.org/10.	International Conference on Cognitive Informatics and Cognitive Computing,
Ссылка на код и ссылка на архитектуру	http://strl-robotics.ru/ https://github.com/cog-isa/map- core	http://ccrg.cs.memphis.e du/tutorial/	https://soar.eecs.umi ch.edu/articles/down loads/soar-suite/227- soar-suite-9-6-0	Oncognitive archi	http://act- r.psy.cmu.edu/	http://cll.stanfor d.edu/research/o ngoing/icarus/	unter.curry.edu/~	Описание отсутствует.		https://www.research gate.net/profile/Man uel_Pineres

Реактивная

• Распространено использование виртуальных ассистентов на рабочем месте

- 1. Системы автоматизированной обработки клиентских запросов. RealPage®Contact Center 3.0, HelpDeskEddy, Okdesk
- 2. Системы управления рабочим процессом Wrike, Forms On Fire, Evernote, Metronik.
- 3. Системы управления материальными ресурсами компании Anixter, PAE, Udata, Logistix.
- 4. Планировщики расписания Bitrix24, Timecamp, LeaderTask, Directum.

• Использование виртуальных ассистентов в сфере образования

- 1. Системы типа «личный кабинет». Coursera, Khan Academy, Udemy, Academic Earth, edX, Code academy, Stepik. автоматизация проверки и подачи знаний
- 2. Сервисы с элементами геймификации Quizlet, Memorise, Duolingo, Socratic, SoloLearn. Примеры отечественных сервисов: Examer, Фоксфорд, LinguaLeo, Смотри.Учись
- 3. Рекомендательные системы поиск работы, привычек, хобби на основе навыков. Pathsource, Ripple, Deepstash, Coach.me. Отечественных рекомендательных систем такого рода в свободном доступе не обнаружено.
- 4. Роботы чат-боты: Зарешай, Miao academy и т.д.

• Сравнить ассистентов можно по следующим параметрам:

- 1. Является ли ассистент помощником широкого спектра или помогает решить узконаправленную задачу?
- 2. Производится ли учет контекста при работе с пользователем? (так называемые ассистенты 3 волны по классификации DARPA);
- 3. Является ли ассистент системой дополненного/усиленного интеллекта? (Augmented/Amplified Intelligence оперирование другими системами и выстраивание инфополя владельца);
- 4. Существует ли экосистема ассистентов или различные сценарии работы родительского ассистента?

Медицинские Ассистенты: принципы построения систем поддержки принятия врачебных решений

	Экспертные СППВР	Прецедентные СППВР
Логический вывод	Основан на правилах (Rule-Based Reasoning)	Основан на прецедентах (Case-Based Reasoning)
Способы и единицы хранения знаний	 База фактов – структурированное множество фактов (утверждений). Например: «Адам является человеком». Базы правил – параметризированные утверждения из 2 и более частей. Например: «Если X является потомком человека, то X является человеком» Алгоритм вывода: Проверка истинности какого-либо факта (на основе законов формальной логики из баз данных и правил) Нахождение множества значений параметра некоторого правила, при котором данное правило превращается в истинный факт. 	Прецедент состоит из кортежа <ситуация, решение (лечение), результат> Ситуация — множество фактов (пол, возраст, чсс,) Решение — функция от ситуации и результата по выбору оптимального решения из множества возможных Результат - множество фактов (чсс, вариабельность с.р.,)
Выбор решения **https://ru.wikipedia.org/wiki%D0%9C%D0%B0%D1%88%D0%B8%D0%B0%D0%B0_%D0%B2%D 1%8B%D0%B2%D0%BE%D0%B4%D0%B0	В первом случае на вопрос типа «Истинно ли А?» машина вывода даёт ответ «Да» либо «Нет», во втором — на вопрос типа «При каких X истинно правило $A(X)$?» машина вычисляет все возможные значения X , при подстановке которых в правило A это правило превращается в истинный факт.**	Алгоритмы сравнения признаков ситуации с признаками прецедента (ML алгоритмы, например, k-ближайших соседей, деревья решений и т.д.)
Проблема использования	 Неистинные факты (факт недоказуем) = ложные факты; Все правила субъективны; Добавление новой нозологии требует проверки всех правил. 	 Сохранение ошибочных прецедентов; Отсутствие прецедентов (В РФ нет доступных качественных наборов данных); Субъективность описания прецедента врачом; Полнота данных в описании прецедента (время ремиссии, коморбидность состояния и т.д.)
Пример системы	MYCIN, ДСМ-метод	Айболит, Fruit Street Health

Медицинские Ассистенты: экспертные СППВР

- Блок метазнаний управление выбором правил (стратегия поиска решения, может быть иерархической);
- База фактов позитивные, негативные, характеризующие неопределенность;
- **База знаний** механизм управления для обеспечения непротиворечивости правил. Должна обеспечивать функционал поиска слабых мест в рассуждениях и функционал разрешения конфликтов;
- Логический вывод удовлетворение, приоритеты правил.
 Обратный вывод проверка правильности врачебной гипотезы при движении от диагноза к симптомам. Решатель может быть основан на нечетких правилах вывода (правила на основе нечеткой логики).

Описание

задачи

Слайд основан на лекциях проф., д.м.н., Б.А. Кобринского.

Медицинские Ассистенты: прецедентные и гибридные СППВР

- Жалобы пользователя и информация из МИС формируют вектор-запрос;
- По БД векторов происходит поиск наиболее подходящего вектора (либо тензора, если решение объединено с проблемой) одним из алгоритмов статистики (например, косинусное расстояние, knn, расстояние Дамерау Левенштейна,...);
- Если решение нашлось и привело к выздоровлению, то увеличиваем коэффициент уверенности;
- Если решения нет, то используют алгоритм планирования способ создания прецедента на основе последовательного улучшения состояния пользователя);
- Синтезированное решение сохраняют в БД прецедентов.

Технологическое ценностное предложение

Планировщик

персонифицированных тренировок

Учет

коморбидных состояний

Анализ данных Google Fit и т.д.

Динамика изменений **для врача**

CNN+LSTM

Планируется распознавание болезней Опорно-двигательного аппарата

> Модуль отслеживания показателей пользователя

Клинические эффекты:

- **1. Улучшение клинического прогноза**: снижение риска летального исхода, развития инфарктов миокарда и повторных оперативных вмешательств на сердечно-сосудистой системе.
- 2. Снижение потребности в антиангинальных, антигипертензивных и сахароснижающих препаратах.
- **3.** Повышение толерантности к физических нагрузкам: прирост абсолютных показателей выносливости (MET's), рост мышечной силы и гибкости.
- **4. Улучшение реакции** артериального давления и **частоты** сердечных сокращений на физические нагрузки («двойное произведение»).
- **5. Коррекция факторов** риска сердечно-сосудистых событий (гиподинамия, ожирение, расстройства липидного и углеводного обмена).
- **6. Повышение качества жизни**: улучшение переносимости бытовых нагрузок, рост рабочих адаптационных возможностей и социальной интеграции.
- 7. Улучшение реалистичной оценки собственных физических возможностей.
- 8. Снижение стрессовых реакций, повышение психической устойчивости.
- 9. Повышение приверженности пациента рекомендованному лечению и здоровому образу жизни.

Patient journey (сердечно-сосудистый континуум)

- На каждом из этапов пациент будет задерживаться дольше
- Есть шанс не дойти до инвалидизации и затормозить развитие заболевания
- Подготовка пациента к операции и ускоренному восстановлению

Модель Oran and Braunwald (упрощенная)

• Что мы будем проходить?

Технологии, механизмы и способы создания систем слабого искусственного интеллекта на языке Python.

• Какой план занятий?

На лекции – знакомиться с направлениями ИИ и разбирать историю их создания, основные актуальные применения, способы взаимодействия с технологией.

На семинарах – краткий курс в язык Python, как наиболее распространенный механизм создания приложений для ИИ. Математическую постановку задачи ИИ и реализовывать практические задания по ИИ.

• Формула оценивания:

0.7*накопленную + 0.3*экзамен (зачет) = 100 баллов по предмету.

Накопленная:

40 баллов за Контрольную работу (после 4 Лекции) + 40 баллов за сданные ДЗ (продолжение семинара) + 20 баллов за Проект

Экзамен:

3 теоретических вопроса и 1 практический. 20 баллов за 1 теоретический вопрос * 3 + 40 баллов за решение задачи.

Возможность получения автомата (95 баллов):

Накопленная > 70 баллов, проект > 15 баллов, посещаемость > 80 %.

Оценивание проекта:

- 1. 10 баллов работоспособность кода (код запускается и проходит все проверочные тесты);
- 2. 5 баллов актуальность задачи (задача является актуальной и способна претендовать на дальнейшее развитие);
- 3. 5 баллов каждый из участников проекта понимает весь код и способен ответить на дополнительные вопросы преподавателя.

Пример тем для проектов:

- Часть 1: Создать скрапер новостей, касающихся развития медицины в РФ, льгот для мед. работников преподавателей ВУЗа на основе токенов: «врач, препод, медсестр, рак, инсульт, ...». Полученные новости html структурировать на странице В порядке: картинка – текст. Ссылки скрапинга: https://medportal.ru/mednovosti/ https://minobrnauki.gov.ru/press-center/ https://rscf.ru/news/ https://medvestnik.ru/content/roubric/medicine Предполагаемые библиотеки: bs4, requests. Язык: Python 3.9+. Часть 2: Составьте словарь уникальных слов в тексте публикаций из части 1, отфильтруйте предлоги/союзы и нарисуйте график частотности слов. Часть 3: Произведите замеры важности слов на основе TF-IDF меры. Примените рекуррентную сеть для классификации тематики новостей.
- Часть 1: Установите ROS Galactic или Humble версии. (требуется ubuntu 20+\debian). Пройдите http://wiki.ros.org/ROS/Tutorials и создайте стол в Gazebo с 4-6 размерами блоков; Часть 2: Установите пакеты moveit. Запустите роборуку и создайте скрипт взятия в актуатор всех типов блоков. Часть 3: Реализуйте алгоритм автоматического построения башни из блоков https://en.wikipedia.org/wiki/Blocks_world.
- Часть 1: Познакомиться с алгоритмом обучения с подкреплением DQN. Установите библиотеку PyTorch и разберитесь с кодом https://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html . Часть 2: познакомиться с применением для Atari https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf ; Часть 3: Попробуйте повторить эксперимент из https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6365640/
- Часть 1: Познакомиться с алгоритмами обучения свёрточных нейросетей и библиотекой Tensorflow (https://www.coursera.org/learn/introduction-tensorflow). Выбрать 1 из медицинских датасетов https://medium.com/@ODSC/15-open-datasets-for-healthcare-830b19980d9 и обучить сеть на выбранных данных. Часть 2: Создать описание сверток, поэкспериментировать с свёрточными и объединяющими слоями. Часть 3: Описать современные подходы к распознаванию образов.

Зарегистрируйте Вашу команду

https://forms.yandex.ru/cloud/64f5a90802848fdb2f6f54b4/

Установить Git:

Для windows: http://git-scm.com/download/win

Для Linux: sudo apt-get install git

Для Osx: brew install git или https://git-

scm.com/download/mac

Запушить проект в Git:

- 1. Заходим на https://github.com/
- 2. Создаем профиль/логинимся
- 3. Нажимаем Repositories
- 4. Жмем New и вписываем названием репозитиория.
- 5. Копируем ссылку на репозиторий
- 6. Открываем командную строку (bash, cmd, ...)
- 7. cd ПапкаПроекта
- 8. git clone ссылка
- 9. Работаем над проектом
- 10. git add.
- 11. git commit -m "описание коммита"
- 12. git push origin master

Спасибо за внимание!

Руководитель проекта Когнитивный ассистент старший преподаватель, к.т.н. Киселёв Г.А. +79067993329 kiselev@isa.ru