Dimensionality Reduction: Feature Selection

Tozammel Hossain

Dimensionality Reduction

Removes irrelevant, redundant, and noisy features

- Could be used with supervised and unsupervised settings
- Learns character/structure of data
- Used as a preprocessing step

Dimensionality Reduction

- Feature Selection
 - aka subset selection
 - finding a subset of features that give most information
- Feature Extraction
 - finding a new subset of features that are combinations of original dimensions
 - A type of feature engineering

Irrelevant, noisy, and redundant features

Why Feature Selection?

- Ideal Case: the learning algorithm (e.g., classifier or regressor) should be able to use whichever features are necessary
 - Doesn't work as feature selection is not inherent to many models
- Feature selection reduces memory and computation
 - Complexity (time and space) depends on the number of input dimension
- Save the cost of extracting irrelevant features

Why Feature Selection?

- Implements Occam's razor: the simplest explanation is usually the right one
- If data could be explained with fewer features, we get a better idea about the process that generates the data
 - Facilitate knowledge extraction
- Easier to visualize data with fewer features

Curse of Dimensionality

With the increase of features

- Need more instances for reliable estimation of model; otherwise, overfitting problem occurs
- Each data point resides into its own cluster
 - Data spreads out in the space
 - E.g., 8 features; each takes 10 values/bins => 10⁸ =
 100 M possible data points
- Increase a dimension requires an exponentiallygrowing amount of data points to overcome spread out of data points

Curse of Dimensionality

https://towardsdatascience.com/the-curse-of-dimensionality-minus-the-curse-of-jargon-520da109fc87

Feature Selection Strategy

 Goal: finding the "best" subset of the set of features

Naive Strategy:

- for n features, there are 2ⁿ possible subsets
- take each subset and see its performance on the validation set
- infeasible if n is large

Two components

- Selection criteria
- Search methods

Feature Selection Types

Filter Methods

- Aka variable ranking method; univariate feature selection
- Runs independent of the learning algorithm
 - classification/regression/clustering
- Select the features using the "character" of the data
 - identify relationship between each feature and target

Filter Methods

Filter Methods

Pros

- Independent of the learning method
 - Bias of the learning algorithm does not interact with the bias inherent in the feature selection method
- Fast to compute
 - No need to build a learning model

Cons

- May miss features that are relevant for the target learning algorithm
- Each feature is considered individually
 - A feature could be informative when combined with another feature

Wrapper Methods

- Feature selection is "wrapped around" a learning algorithm
- Utilize the estimated accuracy from the learning algorithm as the measure of goodness
- Bias of the learning algorithm interacts with the bias inherent in the feature selection method

Wrapper Methods

Wrapper Methods

Pros

- Takes insights from the learning algorithm
 - Predictive accuracy estimates are used for scoring a subset
- May perform better given a learning algorithm

Cons

- Computationally expensive
 - Naïve approach is exponential
 - Remedy: different search strategy
 - hill-climbing, best-first, branch-and-bound, and genetic algorithms

Embedded method

- Feature selection is embedded in the process of model construction
- A tradeoff between filter and wrapper methods
- No additional strategy is required for selecting the features
- Examples:
 - Ridge Regression, LASSO, Elasticnet, Logistic Regression, Decision Tree

Embedded Method

- Model provides some measure of importance for each of the features
 - sklearn:

Attributes: classes_: ndarray of shape (n_classes,) or list of ndarray

The classes labels (single output problem), or a list of arrays of class labels (multi-output problem).

feature_importances_: ndarray of shape (n_features,)

Return the feature importances.

Embedded methods

Pros

- Combines the power of two methods
 - filter models and wrapper models
- Computationally less expensive compared to wrapper method
 - Learning model is executed once
- Includes the interaction with the learning model

Cons

- Relatively slow compared to filter method

Ranking Features

Statistical Measures

- Classifiction
 - Pearson x² test
 - ANOVA F-value
- Pearson correlation (r²) coefficient
 - Regression

Information Theoretic Measure

- Mutual Information
 - Applicable to both classification and regression

Filter Methods: Pearson's x² test

- Measures dependence between two variables
 - Feature is categorical/count, target is categorical
 - Applicable to classification
 - sklearn: chi2

FS: ANOVA F-value

- Measures dependence between two variables
 - Feature is continuous and target is discrete
 - The F-value scores
 - group the numerical feature by the target
 - check whether the means for each group are significantly different
 - sklearn: f_classif

FS: Filter Methods

Pearson's correlation (r²)

- Measures (linear) dependence between two variables
- Feature is continuous and target is continuous
- sklearn: f_regression

FS: Filter Methods

Mutual Information

- Reduction of uncertainty in a variable given the other one
- Defined in terms of entropy
 - Entropy measures uncertainty in a variable
 - M(C,Xi) = H(C) H(C|Xi)
- $-MI(X,Y) = 0 \rightarrow Independent$
- $-MI(X,Y) > 0 \rightarrow Dependency$
- Q: Any other usage of this measure?

Linear vs Non-linear Dependency

Measure of *linear* dependence between r.v.'s X and Y.

$$\rho(X,Y) = \frac{\mathrm{cov}(X,Y)}{\sigma_X \cdot \sigma_Y} = \frac{\mathrm{E}[XY] - \mathrm{E}[X] \cdot \mathrm{E}[Y]}{\sigma_X \cdot \sigma_Y}.$$

How to select given ranking?

1.13.2. Univariate feature selection

Univariate feature selection works by selecting the best features based on univariate statistical tests. It can be seen as a preprocessing step to an estimator. Scikit-learn exposes feature selection routines as objects that implement the transform method:

- SelectKBest removes all but the k highest scoring features
- SelectPercentile removes all but a user-specified highest scoring percentage of features
- using common univariate statistical tests for each feature: false positive rate **SelectFpr**, false discovery rate **SelectFdr**, or family wise error **SelectFwe**.
- **GenericUnivariateSelect** allows to perform univariate feature selection with a configurable strategy. This allows to select the best univariate selection strategy with hyper-parameter search estimator.

Baseline Feature Selection Method

VarianceThreshold is a simple baseline approach to feature selection. It removes all features whose variance doesn't meet some threshold. By default, it removes all zero-variance features, i.e. features that have the same value in all samples.

As an example, suppose that we have a dataset with boolean features, and we want to remove all features that are either one or zero (on or off) in more than 80% of the samples. Boolean features are Bernoulli random variables, and the variance of such variables is given by

$$\mathrm{Var}[X] = p(1-p)$$

so we can select using the threshold .8 * (1 - .8):

FS: Wrapper Methods

Forward selection

- Start with no features and at each step add one that decreases the error the most
- Continue until any further addition does not decrease the error (or decrease it only slightly)

Backward elimination

- Start with all variables and at each step remove one that decrease the error the most
- Continue until any further removal increases the error significantly
- Recursive Feature Elimination

sklearn Feature Selection

<pre>feature_selection.GenericUnivariateSelect([])</pre>	Univariate feature selector with configurable strategy.
<pre>feature_selection.SelectPercentile([])</pre>	Select features according to a percentile of the highest scores.
<pre>feature_selection.SelectKBest([score_func, k])</pre>	Select features according to the k highest scores.
<pre>feature_selection.SelectFpr([score_func, alpha])</pre>	Filter: Select the pvalues below alpha based on a FPR test.
<pre>feature_selection.SelectFdr([score_func, alpha])</pre>	Filter: Select the p-values for an estimated false discovery rate
<pre>feature_selection.SelectFromModel(estimator, *)</pre>	Meta-transformer for selecting features based on importance weights.
<pre>feature_selection.SelectFwe([score_func, alpha])</pre>	Filter: Select the p-values corresponding to Family-wise error rate
<pre>feature_selection.SequentialFeatureSelector()</pre>	Transformer that performs Sequential Feature Selection.
<pre>feature_selection.RFE(estimator, *[,])</pre>	Feature ranking with recursive feature elimination.
feature coloction REECV(octimator *[])	Feature ranking with recursive feature elimination and cross-validated
<pre>feature_selection.RFECV(estimator, *[,])</pre>	selection of the best number of features.
feature_selection. VarianceThreshold([threshold])	
	selection of the best number of features.
	selection of the best number of features.
<pre>feature_selection.VarianceThreshold([threshold])</pre>	selection of the best number of features. Feature selector that removes all low-variance features. Compute chi-squared stats between each non-negative feature and
<pre>feature_selection.VarianceThreshold([threshold]) feature_selection.chi2(X, y)</pre>	selection of the best number of features. Feature selector that removes all low-variance features. Compute chi-squared stats between each non-negative feature and class.
<pre>feature_selection.VarianceThreshold([threshold]) feature_selection.chi2(X, y) feature_selection.f_classif(X, y)</pre>	Selection of the best number of features. Feature selector that removes all low-variance features. Compute chi-squared stats between each non-negative feature and class. Compute the ANOVA F-value for the provided sample.
<pre>feature_selection.VarianceThreshold([threshold]) feature_selection.chi2(X, y) feature_selection.f_classif(X, y) feature_selection.f_regression(X, y, *[, center])</pre>	Selection of the best number of features. Feature selector that removes all low-variance features. Compute chi-squared stats between each non-negative feature and class. Compute the ANOVA F-value for the provided sample. Univariate linear regression tests.