Algebras 6.163 - 6.167

Michael Vaughan-Lee

July 2013

Algebras 6.163-6.167 give a classification of algebras of order p^6 with presentations

$$\langle a, b, c | ca - baa, cb, pa - \lambda baa - \mu bab, pb + \nu baa + \xi bab, pc, class 3 \rangle$$

with $\lambda, \mu, \nu, \xi \neq 0$. Most of these algebras are terminal, and we need a slightly different classification of these algebras from that given in the classification of nilpotent Lie rings of order p^6 , so as to classify the capable ones. It turns out that $\frac{5}{2}p - \frac{9}{2} + \frac{1}{2}\gcd(p-1,4)$ of these algebras are capable, and that they have a total of $\frac{1}{2}p^3 + 2p^2 - 5p + \frac{1}{2} + \frac{p}{2}\gcd(p-1,4)$ descendants of order p^7 and p-class 4.

Let L have the presentation above, and suppose that a', b', c' generate L and satisfy similar relations, but with (possibly) different λ, μ, ν, ξ . Then

$$a' = \alpha a + \gamma c,$$

$$b' = \delta b + \varepsilon c,$$

$$c' = \alpha \delta c$$

modulo L_2 and

$$pa' = \frac{\lambda}{\alpha \delta} b' a' a' + \frac{\mu}{\delta^2} b' a' b',$$

$$pb' = \frac{\nu}{\alpha^2} b' a' a' + \frac{\xi}{\alpha \delta} b' a' b'$$

or

$$a' = \alpha b + \gamma c,$$

$$b' = \delta a + \varepsilon c,$$

$$c' = \alpha \delta c$$

modulo L_2 and

$$pa' = \frac{\xi}{\alpha \delta} b'a'a' + \frac{\nu}{\delta^2} b'a'b',$$

$$pb' = \frac{\mu}{\alpha^2} b'a'a' + \frac{\lambda}{\alpha \delta} b'a'b'.$$

So we can take $\lambda = 1$ and $\mu = 1$ or ω (or any other fixed integer which is not a square mod p). Given these values of λ, μ it turns out that the algebra is terminal unless $\xi = 1$ or $\xi = \mu \nu$.

So we have two families of capable algebras of order p^6 :

$$\langle a, b, c | ca - baa, cb, pa - baa - \mu bab, pb + \nu baa + bab, pc, class 3 \rangle$$
,

$$\langle a, b, c | ca - baa, cb, pa - baa - \mu bab, pb + \nu baa + \mu \nu bab, pc, class 3 \rangle$$
.

These two families have immediate descendants of order p^7 with the following presentations involving parameters y, z, t:

$$\langle a, b, c | ca-baa, cb, pa-baa-\mu bab-ybaaa, pb+\nu baa+bab-zbaaa, pc-tbaaa, class 3 \rangle$$
,

$$\langle a, b, c | ca-baa, cb, pa-baa-\mu bab-ybaaa, pb+\nu baa+\mu \nu bab-zbaaa, pc-tbaaa, class 3 \rangle$$
.

For the first family of descendants we consider transformations of the form

$$a' = \pm a + \gamma c,$$

$$b' = \pm b + \varepsilon c,$$

$$c' = c,$$

where if $\mu\nu = 1$ we need $\gamma = \mu\varepsilon$, and transformations of the form

$$a' = \alpha b + \gamma c,$$

$$b' = \alpha^{-1} a + \varepsilon c,$$

$$c' = c,$$

where $\alpha^2 \nu = \mu$, and where if $\mu \nu = 1$ we need $\gamma = \mu \varepsilon$. For these transformations we have

$$y \rightarrow \pm y + \gamma t + \gamma \mu^{-1} + \varepsilon$$

$$z \rightarrow \pm z + \varepsilon t - \nu \gamma \mu^{-1} + \nu \varepsilon - 2\varepsilon \mu^{-1},$$

$$t \rightarrow t,$$

and

$$y \rightarrow -\alpha z - \gamma t + \varepsilon - \nu \gamma + 2\gamma \mu^{-1},$$

$$z \rightarrow -\alpha^{-1} y - \varepsilon t - \gamma \mu^{-1} \nu - \varepsilon \mu^{-1},$$

$$t \rightarrow -t - \nu + \mu^{-1}.$$

For the second family of descendants we can assume that $\mu\nu \neq 1$. We consider transformations of the form

$$a' = \pm a + \mu \varepsilon c,$$

$$b' = \pm b + \varepsilon c,$$

$$c' = c,$$

and, when $\mu\nu = -1$ and $p = 1 \mod 4$, transformations of the form

$$a' = \alpha b + \mu \varepsilon c,$$

$$b' = -\alpha^{-1} a + \varepsilon c,$$

$$c' = -c,$$

where $\alpha^2 = -\mu^2$. For these transformations we have

$$y \rightarrow \pm y + \mu \varepsilon t + 2\varepsilon,$$

$$z \rightarrow \pm z + \varepsilon t - 2\nu \varepsilon,$$

$$t \rightarrow t,$$

and

$$\begin{array}{rcl} y & \to & -\alpha z - \mu \varepsilon t - 2\varepsilon, \\ z & \to & \alpha^{-1} y - \varepsilon t + 2\nu \varepsilon, \\ t & \to & t. \end{array}$$

There is a Magma program to compute representative sets of parameters in notes 6.163.m.