Introduction to

商务智能

第5章 数值预测 Chapter 5 Numeric Prediction

Outline

- Basic concepts
- Typical techniques
- Model evaluation
- summary

What Is Numeric Prediction?

- ❖ Model continuous-valued functions, i.e., predicts unknown or missing values
- Prediction is similar to classification
- First, construct a model
- Second, use model to predict unknown value
- Prediction is different from classification
- Classification refers to predict categorical class label
- Prediction models continuous-valued functions

Classification vs. Numeric Prediction

NAME	RANK	YEARS	TENURED
Mike	Assistant Prof	3	no
Mary	Assistant Prof	7	yes
Bill	Professor	2	yes
Jim	Associate Prof	7	yes
Dave	Assistant Prof	6	no
Anne	Associate Prof	3	no

Independent variable (自变量)

↗ Dependent variable (因变量)

/			,	\			
name	age		ye	ears	inc	ome	
Mike	<=30)		3	81	20.5	
Mary	<=30)		2	62	208	λ
Bill	31	40		4	30	060	
Jim	>40			7	70	050	
Dave	>40			6	10	300	
Anne	31	40		7	20	060	

Continuous value

Prediction methods

- Two kinds of methods
 - Lazy and Eager
- Major method for prediction: regression
 - Linear and multiple regression
 - Non-linear regression
 - Model tree, regression tree

K nearest Neighbors

The k-Nearest Neighbor Algorithm

- All instances correspond to points in the n-D space.
- The nearest neighbor are defined in terms of Euclidean distance.
- The target function could be discrete- or real- valued.
- For continuous-valued target functions. Calculate the mean values of the *k* nearest neighbors

$$v' = \frac{v - min_A}{max_A - min_A}$$

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + ... + |x_{ip} - x_{jp}|^2)}$$

Application: Recommender Systems

- Collaborative Filtering (CF,协同过滤)
 - Look at users collective behavior
 - Look at the active user history
 - Combine!

- Content-based Filtering
 - Recommend items based on key-words

Collaborative Filtering: A Framework

Users: U

Unknown function $f: U \times I \rightarrow R$

The task:

Q1: Find Unknown ratings? Q2: Which items should we recommend to this user?

- .
- •

Collaborative Filtering Road Map

- User-User Methods
 - Identify like-minded users
 - Memory-based: KNN
- Item-Item Method
 - Identify buying patterns
 - Correlation Analysis

User-User Method

Intuition

- Similar users have similar preferences
 - If $u \approx u'$, then for all o's, $f(u,o) \approx f(u',o)$
- User similarity (Zhang San vs. Li Si)
 - Suppose Zhang San and Li Si viewed similar movies in the past six months ...
 - If Zhang San liked the paper, Li Si will like the paper

User-User Similarity: Intuition

How to Measure Similarity?

Pearson correlation coefficient (相关系数法)

$$w_{p}(a,i) = \frac{\sum_{j \in \text{Commonly Rated Items}} (r_{aj} - \overline{r_{a}})(r_{ij} - \overline{r_{i}})}{\sqrt{\sum_{j \in \text{Commonly Rated Items}} (r_{aj} - \overline{r_{a}})^{2} \sum_{j \in \text{Commonly Rated Items}} (r_{ij} - \overline{r_{i}})^{2}}}$$

$$v_{a}$$

$$v_{b}$$

$$v_{b}$$

$$v_{b}$$

$$v_{c}$$

$$v_{i}$$

其中: 用户i的偏好均值:

$$\frac{-}{r_i} = \frac{1}{|I_i|} \sum_{k \in I_i} r_{ik}$$

Ii表示用户i的投票范围

How to predict?

■用户a对项目j的预测偏好

i是a的邻居

User a's neutral

User a's estimated deviation

W(u1	,u2)=0).997
W(u2	.u4)=0).86

$$r_{22} = \overline{r_2} + \frac{w(2,1)(r_{12} - \overline{r_1}) + w(2,4)(r_{42} - \overline{r_4})}{w(2,1) + w(2,4)}$$
$$= 3 + \frac{0.997 \times (2-2) + 0.86 * (3-2.4)}{0.997 + 0.86} = 3.27$$

User i's deviation

CF: Item-Item method

Offline phase:

- Calculate n(n-1) similarity measures
- For each item
 - ➤ Determine its most k-similar items

Online phase:

 Predict rating for a given user-item pair as a weighted sum over similar items that he rated

Regress Analysis

Linear regression:

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

- Parameters: β_0 , β_1
- Random variable: $\varepsilon \sim N(0, \sigma^2)$

steps

- (1)构建包含因变量和自变量的训练集;
- (2)通过散点图,确认因变量和自变量之间的近似线 性关系;

Monthly

\$0

Profit

- (3) 计算系数,构建模型;
- (4)检验模型;
- (5)利用模型进行预测

Regress Analysis

Estimate parameters based on training dataset

$$\hat{y}_i = a + bx_i$$

Using the least squares criterion to the known values of (x1, y1) (x2,y2) ...

Estimating parameters

- least squares (最小二乘法)
 - 残差平方和,
 - minimize SS_E

$$SS_E = \sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$b = \frac{S_{xy}}{S_{xx}} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$$

$$a = \overline{y} - b\overline{x} = \frac{1}{n} \sum_{i=1}^{n} y_i - b \times \frac{1}{n} \sum_{i=1}^{n} x_i$$

- $\bar{x} \neq \bar{y}$: mean values of X and Y
- $-s_{xx}$ 称为x的校正平方和, s_{xy} 称为校正交叉乘积和
- s_{yy} 称为y的校正平方和。

Linear Regression

x	y
years experience	salary (in \$1000s)
3	30
8	57
9	64
13	72
3	36
6	43
11	59
21	90
1	20
16	83

$$b = \frac{(3-9.1)(30-55.4)+(8-9.1)(57-55.4)+\cdots+(16-9.1)(83-55.4)}{(3-9.1)^2+(8-9.1)^2+\cdots+(16-9.1)^2} = 3.5$$

$$a = 55.4 - (3.5)(9.1) = 23.6$$

Model validation

$$SS_E = \sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

■ 回归平方和 SS_R

$$SS_R = \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2$$

■ 总离差平方和SS_T: 将y的均值作为总体估计值时的误差

$$SS_T = \sum_{i=1}^{\infty} (y_i - \overline{y})^2$$

- $SS_T = SS_E + SS_R$
 - 总离差平方和中被回归模型解释的部分为回归平方和
- 拟合优度检验
 - R², adjusted R square
 - n为样本个数,k为自变量的个数

$$\overline{R}^2 \qquad R^2 = \frac{SS_R}{SS_T} = 1 - \frac{SS_E}{SS_T}$$

$$\overline{R}^2 = 1 - \frac{SS_E / (n - k - 1)}{SS_T / (n - 1)} = 1 - \frac{n - 1}{n - k - 1} (1 - R^2)$$

回归模型的显著性检验

Hypothesis

$$H_0$$
: b=0; H_1 : b≠0

■ 可以证明在H₀成立的情况下由下式定义的F符合F(1,n-2)分布

$$F = \frac{SS_R}{SS_E / (n-2)}$$

• 给定显著性水平 α ,查自由度为(1, n-2)的F分布临界值表得临界值 F_{α} (1,n-2),若由上式计算的 F_{0} > F_{α} (1,n-2)则因变量和自变量之间的线性关系显著,假设 H_{0} 被拒绝

回归系数的显著性检验

为了检验回归模型中每个回归系数的显著性,可以推导出系数a和b的样本方差

$$S_b^2 = \frac{SS_E/(n-2)}{S_{xx}}$$
 $S_a^2 = \frac{SS_E}{n-2}(\frac{1}{n} + \frac{\overline{x}^2}{S_{xx}})$

- 可以证明 $t_b=b/S_b$ 和 $t_a=a/S_a$ 均符合自由度为(n-2)的t分布
- 其中重要的是检验系数b是否为0。因此需要检验假设

$$H_0$$
: b=0; H_1 : b≠0

- 给定显著性水平 α ,查自由度为(n-2)的t分布表,得到 $t_{\alpha}(n-2)$ 若 $t_b > t_{\alpha}(n-2)$,则拒绝假设 H_0 ,即回归系数b显著
- 同时可以计算出P值(p value),一般以P < 0.05 为显著, P < 0.01 为非常显著。

Regression Analysis

Multiple regression:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + \varepsilon$$
$$\varepsilon \sim N(0, \sigma^2)$$

• n observation: $(x_{i1}, x_{i2}, ..., x_{ik}, y_i)$, i=1,2,...n Based on these observations, estimate parameters:

$$\hat{y}_i = b_0 + b_1 x_i + \dots + b_k x_k$$

• b_0 、 b_1 、... b_k 是 β_0 、 β_1 、... β_k 的最小二乘估计

Regression Analysis

- Many nonlinear functions can be transformed into the above:
- $y=ax^b$: lgy=lga+blgx
- $y=ae^{bx}$,可以通过两边取对数变换为 $\ln y=\ln a+bx$
- y=a+blgx, 设 X=lgx, 则有y=a+bX.
- Commonly solved by using of statistical software packages, such as SAS, SPSS, and S-Plus
- Weka: weka.classify.functions.LinearRegression

➤ Data: cpu

Evaluating Numeric Prediction

- Similar to classification
 - Training set, test set
 - cross-validation
- Different from classification
 - Quality measure by error rate is not appropriate
 - 均方误差(mean-squared error)
 - 均方根误差(root mean-squared error)
 - 平均绝对误差(mean absolute error)
 - 相对平方误差(relative squared error)
 - 相对绝对误差(relative absolute error)

Evaluating Numeric Prediction

■ 对于test set中的每个样本 $(x_{il}, x_{i2}, ..., a_i)$, 其预测值为 p_i

mean-squared error

root mean-squared error

mean absolute error

relative squared error

root relative squared error

relative absolute error

$$\frac{(\rho_{1}-a_{1})^{2}+\ldots+(\rho_{n}-a_{n})^{2}}{n}$$

$$\frac{\sqrt{(\rho_{1}-a_{1})^{2}+\ldots+(\rho_{n}-a_{n})^{2}}}{n}$$

$$\frac{|\rho_{1}-a_{1}|+\ldots+|\rho_{n}-a_{n}|}{n}$$

$$\frac{(\rho_{1}-a_{1})^{2}+\ldots+(\rho_{n}-a_{n})^{2}}{(a_{1}-\overline{a})^{2}+\ldots+(a_{n}-\overline{a})^{2}}, \text{ where } \overline{a}=\frac{1}{n}\sum_{i}a_{i}$$

$$\frac{(\rho_{1}-a_{1})^{2}+\ldots+(\rho_{n}-a_{n})^{2}}{(a_{1}-\overline{a})^{2}+\ldots+(a_{n}-\overline{a})^{2}}$$

$$\frac{|\rho_{1}-a_{1}|+\ldots+|\rho_{n}-a_{n}|}{|a_{1}-\overline{a}|+\ldots+|a_{n}-\overline{a}|}$$