$[] \hspace{-0.1cm} \subseteq \hspace{-0.1cm} \text{beamer} \hspace{-0.1cm} > \hspace{-0.1cm}$

Contents

[currentsubsection]

Decisions and randomness

Christos Dimitrakakis

April 4, 2025

Contents

1 Statistical Decision Theory

1.1 Elementary Decision Theory

1.1.1 Preferences

1. Types of rewards

EXAMPLE

- For e.g. a student: Tickets to concerts.
- For e.g. an investor: A basket of stocks, bonds and currency.
- For everybody: Money.
- 2. Preferences among rewards For any rewards $x, y \in R$, we either
 - (a) Prefer x at least as much as y and write $x \leq^* y$.
 - (b) Prefer x not more than y and write $x \succeq^* y$.
 - (c) Prefer x about the same as y and write x = y.
 - (d) Similarly define \succ^* and \prec^*

1.1.2 Utility and Cost

- 1. Utility function To make it easy, assign a utility U(x) to every reward through a utility function $U: R \to \mathbb{R}$.
- 2. Utility-derived preferences We prefer items with higher utility, i.e.
 - (a) $U(x) \ge U(y) \Leftrightarrow x \succeq^* y$
 - (b) $U(x) \le U(y) \Leftrightarrow y \succeq^* x$
- 3. Cost It is sometimes more convenient to define a cost function $C: R \to \mathbb{R}$ so that we prefer items with lower cost, i.e.
 - $C(x) \ge C(y) \Leftrightarrow y \succeq^* x$

1.1.3 Random outcomes

- 1. Choosing among rewards: Roulette
 - [A] Bet 10 CHF on black
 - [B] Bet 10 CHF on 0
 - [C] Bet nothing
 - What is the reward here?
 - What is the outcome?

1.1.4 Uncertain outcomes

- [A] Taking the car to Zurich (50'-80' with delays)
- [B] Taking the train to Zurich (60' without delays)

What is the reward here?

1. Car BMCOL

2. Train BMCOL

1.1.5 Independent outcomes

1. Graphical model

- 2. Random rewards
 - We **select** our action.
 - Outcomes are random, with $\omega \sim P$, but independent of our action
 - \bullet We then obtain a random **utility** with distribution depending on a.

$$\mathbb{P}(U = u \mid a) = P(\{\omega : U(\omega, a) = u\})$$

1.1.6 General case

1. Graphical model

- 2. Random rewards
 - We **select** our action.
 - The action determines the **outcome** distribution.
 - The utility may depend on **both** the outcome and reward.

1.1.7 Route selection

1. Utility

В	EXAMPLE

$U(\omega,a)$	30'	40'	50'	60'	70'	80'	90'
Train	-1	-2	-5	-10	-15	-20	-30
Car	-10	-20	-30	-40	-50	-60	-70

2. Probability

B EXAMPLE

$P(\omega \mid a)$	30'	40'	50'	60'	70'	80'	90'
Train	0%	0%	50%	45%	4%	1%	0%
Car	0	40%	30%	15%	10%	3%	2%

3. Expected utility

1.1.8 Calculation in python

For discrete variables, the implementaion is easy.

1. Expected utility of action a: $\mathbb{E}_P[U|a] = \sum_{\omega \in \Omega} U(\omega, a)$.

```
# U: A matrix U[a, w]
# P: A matrix P[w, a]
# a: The action taken
def expected_utility(U, P, a):
   return np.dot(U[a, :], P[:, a])
```

2. Finding the optimal action: $a^* = \arg \max_{a \in A} \mathbb{E}_P[U \mid a]$.

```
# A: set of actions
def best_action(U, P, A):
   return np.argmax([expected_utility(U, P, a) for a in A])
```

1.2 Statistical Decision Theory

1.2.1 Expected utility

- 1. Actions, outcomes and utility In this setting, we obtain random outcomes that depend on our actions.
 - Actions $a \in A$
 - Outcomes $\omega \in \Omega$.
 - Probability of outcomes $P(\omega \mid a)$
 - Utility $U: \Omega \times A \to \mathbb{R}$

2. Expected utility The expected utility of an action is:

$$\mathbb{E}_{P}[U \mid a] = \sum_{\omega \in \Omega} U(\omega, a) P(\omega \mid a).$$

3. The expected utility hypothesis We prefer a to a' if and only if

$$\mathbb{E}_P[U \mid a] \ge \mathbb{E}_P[U \mid a']$$

1.2.2 Example: Betting

In this example, probabilities reflect actual randomness

Choice	Win Probability p	Payout w	Expected gain
Don't play	0	0	0
Black	18/37	2	
Red	18/37	2	
0	1/37	36	
1	1/37	36	

What are the expected gains for these bets?

1.2.3 The St-Petersburg Paradox

- 1. The game If you give me x CHF, then I promise to:
 - (a) Throw a fair coin until it comes heads.
 - (b) If it does so after T throws, then I will give you 2^T CHF.
- 2. The question
 - How much x are you willing to pay to play?
 - Given that the expected amount of money is infinite, why are you only willing to pay a small x?

1.2.4 Example: Route selection

• In this example, probabilities reflect subjective beliefs

Choice	Best time	Chance of delay	Delay amount	Expected time
Train	80	5%	5	
Car, route A	60	50%	30	
Car, route B	70	10%	10	

1.2.5 Example: Noisy optimisation

- 1. Simple maximisation For a function $f: \mathbb{R} \to \mathbb{R}$, find a maximum x^* i.e. $f(x^*) \geq f(x) \forall x$.
- 2. Necessary conditions B_THEOREM If $f: \mathbb{R} \to \mathbb{R}$ is a continuous function, a maximum point x^* satisfies:

$$\frac{d}{dx}f(x^*) = 0, \qquad \frac{d}{dx^2}f(x^*) < 0.$$

- 3. Noisy optimisation
 - We select x but **do not** observe f(x).
 - We observe a random g with $\mathbb{E}[g|x] = f(x)$.

$$f(x) \triangleq \mathbb{E}[g|x], \qquad \qquad \mathbb{E}[g|x] = \int_{-\infty}^{\infty} g(\omega, x) p(\omega) d\omega$$
 (1)

1.2.6 Mean-squared error cost function

This example is for a quadratic loss: $g(\omega, x) = (\omega -$

1.2.7 Example: Estimation

- θ : parameter (random)
- $\hat{\theta}$: **estimate** (our action)
- $(\theta \hat{\theta})^2$: **cost** function
- 1. Mean-squared error minimiser If we want to guess $\hat{\theta}$, and we knew that $\theta \sim P$, then the guess

$$\hat{\theta} = \mathbb{E}_P(\theta) = \operatorname*{arg\,min}_{\hat{\theta}} \mathbb{E}_P[(\theta - \hat{\theta})^2]$$

minimises the squared error. This is because

$$\frac{d}{d\hat{\theta}} \mathbb{E}_P[(\theta - \hat{\theta})^2] = \frac{d}{d\hat{\theta}} \sum_{\omega} [\theta(\omega) - \hat{\theta}]^2 P(\omega)$$
(2)

$$= \sum_{\omega} \frac{d}{d\hat{\theta}} [\theta(\omega) - \hat{\theta}]^2 P(\omega) \tag{3}$$

$$= \sum_{\omega}^{\omega} 2[\theta(\omega) - \hat{\theta}](-1)P(\omega) = 2(\hat{\theta} - \mathbb{E}_P[\theta]). \tag{4}$$

Setting this to 0 gives $\hat{\theta} = \mathbb{E}_P[\theta]$

2 Gradient methods

2.1 Gradients for optimisation

- 2.1.1 The gradient descent method: one dimension
 - Function to minimise $f: \mathbb{R} \to \mathbb{R}$.
 - Derivative $\frac{d}{d\theta}f(\theta)$
 - 1. Gradient descent algorithm
 - Input: initial value θ^0 , learning rate schedule α_t
 - For t = 1, ..., T $- \theta^{t+1} = \theta^t - \alpha_t \frac{d}{d\theta} f(\theta^t)$
 - Return θ^T
 - 2. Properties
 - If $\sum_t \alpha_t = \infty$ and $\sum_t \alpha_t^2 < \infty$, it finds a local minimum θ^T , i.e. there is $\epsilon > 0$ so that

$$f(\theta^T) < f(\theta), \forall \theta : \|\theta^T - \theta\| < \epsilon.$$

2.1.2 One-dimensional minimisation example

2.1.3 Gradient methods for expected value

EXAMPLE

- 1. Estimate the expected value $x_t \sim P$ with $\mathbb{E}_P[x_t] = \mu$.
- 2. Objective: mean squared error Here $\ell(x,\theta) = (x-\theta)^2$.

$$\min_{\theta} \mathbb{E}_P[(x_t - \theta)^2].$$

3. Exact derivative update If we know P, then we can calculate

$$\theta^{t+1} = \theta^t - \alpha_t \frac{d}{d\theta} \mathbb{E}_P[(x - \theta^t)^2]$$
 (5)

$$\frac{d}{d\theta} \mathbb{E}_P[(x - \theta^t)^2] = 2(\mathbb{E}_P[x] - \theta^t)$$
(6)

2.1.4 Stochastic derivative

- Function to minimise $f: \mathbb{R} \to \mathbb{R}$.
- Derivative $\frac{d}{d\theta}f(\theta)$
- $f(\theta) = \mathbb{E}[g|\theta]$
- $\frac{d}{d\theta}f = \mathbb{E}[\frac{d}{d\theta}g|\theta]$
- 1. Stochastic derivative algorithm
 - Input: initial value θ^0 , learning rate schedule α_t
 - For t = 1, ..., T- Observe $g(\omega_t, \theta^t)$, where $\omega_t \sim P$. - $\theta^{t+1} = \theta^t - \alpha_t \frac{d}{d\theta} g(\omega_t, \theta^t)$
 - Return θ^T

2.1.5 Stochastic gradient for mean estimation

1. Sampling B_{THEOREM} For any bounded random variable f,

$$\mathbb{E}_P[f] = \int_X dP(x)f(x) = \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^T f(x_t) = \mathbb{E}_P\left[\frac{1}{T} \sum_{t=1}^T f(x_t)\right], \quad x_t \sim P$$

2. Derivative ampling B_EXAMPLE We can also approximate the gradient through sampling:

$$\frac{d}{d\theta} \mathbb{E}_P[(x-\theta)^2] = \int_{-\infty}^{\infty} dP(x) \frac{d}{d\theta} (x-\theta)^2$$

$$\approx \frac{1}{T} \sum_{t=1}^{T} \frac{d}{d\theta} (x_t - \theta)^2 = \frac{1}{T} \sum_{t=1}^{T} 2(x_t - \theta)$$

• Wen can even update θ after each sample x_t :

$$\theta^{t+1} = \theta^t + 2\alpha_t(x_t - \theta^t)$$

2.1.6 The gradient method

- Function to minimise $f: \mathbb{R}^n \to \mathbb{R}$.
- Gradient $\nabla_{\theta} f(\theta) = \left(\frac{\partial f(\theta)}{\partial \theta_1}, \dots, \frac{\partial f(\theta)}{\partial \theta_n}\right)$,
- Partial derivative $\frac{\partial f}{\partial \theta_n}$
- 1. Gradient descent algorithm
 - Input: initial value θ^0 , learning rate schedule α_t
 - For t = 1, ..., T $- \theta^{t+1} = \theta^t - \alpha_t \nabla_{\theta} f(\theta^t)$
 - Return θ^T
- 2. Properties
 - If $\sum_t \alpha_t = \infty$ and $\sum_t \alpha_t^2 < \infty$, it finds a local minimum θ^T , i.e. there is $\epsilon > 0$ so that

$$f(\theta^T) < f(\theta), \forall \theta : \|\theta^T - \theta\| < \epsilon.$$

2.1.7 When the cost is an expectation

B EXAMPLE

In machine learning, we sometimes want to minimise the **expectation** of a **cost** ℓ ,

$$f(\theta) \triangleq \mathbb{E}[\ell|\theta] = \int_{\Omega} dP(\omega)\ell(\omega,\theta)$$

This can be approximated with a sample

$$f(\theta) \approx \frac{1}{T} \sum_{t} \ell(\omega_t, \theta)$$

The same holds for the gradient:

$$\nabla_{\theta} f(\theta) = \int_{\Omega} dP(\omega) \nabla_{\theta} \ell(\omega, \theta) \approx \frac{1}{T} \sum_{t} \nabla_{\theta} \ell(\omega_{t}, \theta)$$

2.1.8 Stochastic gradient method

- Function to **minimise** $f: \mathbb{R}^n \to \mathbb{R}$.
- Gradient $\nabla f(\theta)$
- $f(\theta) = \mathbb{E}[\ell|\theta]$
- $\nabla_{\theta} f = \mathbb{E}[\nabla_{\theta} \ell | \theta]$
- 1. Algorithm

- Input: initial value θ^0 , learning rate schedule α_t
- For t = 1, ..., T- Observe $\ell(\omega_t, \theta^t)$, where $\omega_t \sim P$. - $\theta^{t+1} = \theta^t - \alpha_t \nabla_{\theta} g(\omega_t, \theta^t)$
- Return θ^T
- 2. Alternative view: Noisy gradients
 - $\theta^{t+1} = \theta^t \alpha_t [\nabla_{\theta} f(\theta^t) + \epsilon_t]$
 - $\mathbb{E}[\epsilon_t] = 0$ is sufficient for convergence.