Львівський національний університет імені Івана Франка

Порівняння ефективності класів стеганографічних алгоритмів

Грициндишина Віталія Любомировича

24 травня 2022 р.

- Постановка задачі
 - Актуальність теми
 - Задача та класифікація стеганографії
 - Математична постановка задачі
- Отруктури мультимедійних даних
 - Приховування інформації у нерухомих зображеннях
 - Приховування інформації у текстових файлах
 - Приховування інформації в аудіосигналах
 - Оцінка ефективності стеганоситеми
- Приклади застовування
 - Приховування даних в ВМР форматі методом заміни найменш значущого біта
- Висновки

$$E: C \times M \to S; \tag{1}$$

$$D: S \to M, \tag{2}$$

$$\sum (C, M, S, E, D) \tag{3}$$

$$sim[c, E(c, m)] = 1, \forall m \in M, c \in C$$

$$\tag{4}$$

$$c = \max(sim[x, E(x, m)]) \tag{5}$$

$$E(c,m) \approx E(c+\delta,m)$$
 $D[E(c,m)] \approx D[E(c+\delta,m)] = m$ (6)

де $S=\{(c_1,m_1),(c_2,m_2),...,(c_q,m_q),\}=\{s_1,s_2,...,s_q\}$ - множина стеганограм (заповнених контейнерів), $m_a,m_b\in M$, $(c_a,m_a),(c_b,m_b)\in S$

Деякі методи приховування даних:

• Метод заміни найменш значущого біта;

• Метод маскування та фільтрації;

• Метод перетворення.;

$$F(u,v) = \frac{1}{4}C(u)C(v)\left[\sum_{x=0}^{7}\sum_{y=0}^{7}f(x,y)\cdot\cos\frac{(2x+1)u\pi}{16}\cos\frac{(2y+1)v\pi}{16}\right],$$

де $C(x) = 1/\sqrt{2}$, коли x = 0 та C(x) = 1 в інших випадках.

$$F^{Q}(u,v) = \left\lfloor \frac{F(u,v)}{Q(u,v)} \right\rfloor,$$

де Q(u,v) - 64 елементна таблиця квантування.

До методів приховування інформації у текстових файлах належать:

- синтаксичні методи;
- семантичні методи, які обумовлюють два синоніми, що відповідають значенням прихованих бітів;
- методи довільного інтервалу.

Метод	Знаків стега	Щільність,%
Чергування маркерів кінця	267	0.21
Вирівнювання пробілами	411	0.32
Двійкові нулі	740	0.58
Хвостові пропуски	1071	0.85
Знаки одного накреслення	4065	3.21

Методів приховування інформації в аудіосигналах:

- заміни найменш значущого біта;
- фазового кодування;
- розширення спектру;
- приховування інформації за допомогою вставки тонів;
- приховування інформації використовуючи ехо-сигнал.

$$IF = 1 - \frac{\sum_{x=1}^{n} \sum_{y=1}^{m} (C_{x,y} - S_{x,y})^{2}}{\sum_{x=1}^{n} \sum_{y=1}^{m} (C_{x,y})^{2}}$$

$$NAD = \frac{\sum_{x=1}^{n} \sum_{y=1}^{m} |C_{x,y} - S_{x,y}|}{\sum_{x=1}^{n} \sum_{y=1}^{m} |C_{x,y}|};$$

$$SNR = \frac{\sum_{x=1}^{n} \sum_{y=1}^{m} (C_{x,y})^{2}}{\sum_{x=1}^{n} \sum_{y=1}^{m} (C_{x,y} - S_{x,y})^{2}};$$

$$AD = \frac{1}{X \cdot Y} \sum_{x=1}^{n} \sum_{y=1}^{m} |C_{x,y} - S_{x,y}|$$

$$MSE = \frac{1}{X \cdot Y} \sum_{x=1}^{n} \sum_{y=1}^{m} (C_{x,y} - S_{x,y})^{2}$$

Розмір повідомлення, байт	MSE	PSNR
64	8.273495506057053e-05	88.95391325528558
128	0.00016699638530676044	85.90373290069535
256	0.00031964390386869873	83.08413934724122
512	0.0006307395466979289	80.13230299219362
1024	0.0012688061742868308	77.09685077517824
4096	0.004987299726455647	71.15214891660129

Розмір зображення: 1280×853 У ФРУ В РОЗМІР В РО

- Стеганографія в поєднанні з криптографією, є потужним захистом інформації.
- Метою стеганографічних алгоритмів є забезпечити приховування факту наявності даних, що потребують захисту.
- Надійними алгоритмами захисту даних в зображеннях є алгоритми маскування та перетворення.
- Найбільш надійним для захисту даних в текстових форматах є метод знаків одного накреслення.
- Для аудіо-форматів найефективнішим вважають метод заміни найменш значущого біта.
- Метод ЗНЗБ для приховування даних в ВМР форматі є простим та може приховувати великий об'єм даних.
- Якщо збільшити розмір вбудованих даних, то погіршиться якість зображення.

Дякую за увагу!

https://github.com/vitalikkk19/Coursework