We introduce the notion of categorification. Then we discuss some naive attempts to categorify the Iwahori–Hecke algebra by means of constructible sheaves. A possible reference for the latter topic is Lecture 24 in Romanov–Williamson's lecture notes. Along the way, we introduce the function-sheaf dictionary, partly following the book by Kiehl–Weissauer.

12.1.

Categorification of an additive group A means constructing an additive category C such that A is the Grothendieck group of C in an appropriate sense.

There are several different kinds of additive category, each with its own notion of Grothendieck group. In each case, we assume that C admits a small skeleton; the Grothendieck group is generated by the isomorphism classes of objects in the skeleton modulo certain relations.

(1) For any C, the *split Grothendieck group* $[C]_{\oplus}$ is given by the relations

$$[c] = [c'] + [c'']$$
 for any $c \simeq c' \oplus c''$.

(2) For C abelian, the usual *Grothendieck group* [C] is given by the relations

$$[c] = [c'] + [c'']$$
 for any exact sequence $0 \to c' \to c \to c'' \to 0$.

(3) For C triangulated, the *triangulated Grothendieck group* $[C]_{\triangle}$ is given by the relations

$$[c] = [c'] + [c'']$$
 for any exact triangle $c' \to c \to c'' \to c'[1]$.

Note that for any c, the triangle $c \to 0 \to c[1] \to c[1]$ is exact, giving [c[1]] = -[c]. That is, the shift [1] must decategorify to scaling by -1.

It appears to be well-known that if C is abelian and $D^b(C)$ is the bounded derived category of complexes of objects in C, then $[D^b(C)]_{\triangle} = [C]$. Seemingly less-known, but important for our goals, is a result recorded by David Rose in "A Note on the Grothendieck Group. . ." Below, for any additive C, let $K^b(C)$ be the bounded homotopy category of complexes of objects in C.

Theorem 12.1 (Rose). We have
$$[K^b(C)]_{\Delta} = [C]_{\oplus}$$
.

Remark 12.2. For C abelian, $[C]_{\oplus}$ is usually larger than [C]. This corresponds to the fact that a short exact sequence of complexes in C will give rise to an exact triangle in $D^b(C)$ but not necessarily in $K^b(C)$.

¹Thank-you to David B. for spotting an error here during the lecture.

Categorification of a ring R begins with categorification of the underlying additive group to some category C. We then need to construct some monoidal product * on C that distributes over the direct sum \oplus , such that the relations

$$[c] = [c'][c'']$$
 for any $c \simeq c' * c''$

define the multiplication on R.

12.2.

Fix an algebraically closed field k and a prime ℓ invertible in k. Fix a scheme X of finite type over k and a finite stratification \mathcal{S} of X by (pairwise-disjoint) constructible subschemes.² A sheaf over \mathcal{F} is *constructible* with respect to \mathcal{S} if and only if it is étale-locally constant along each stratum: i.e., constant after pullback along a finite étale cover of the stratum. Let $\mathsf{Shv}(X) = \mathsf{Shv}(X, \bar{\mathbf{Q}}_{\ell}; \mathcal{S})$ be the category of étale sheaves of finite-dimensional $\bar{\mathbf{Q}}_{\ell}$ -vector spaces over X that are constructible with respect to \mathcal{S} .

Example 12.3. Set $pt := \operatorname{Spec} k$. Then all stratifications of pt are the same, and $\operatorname{Shv}(pt)$ is simply the category of finite-dimensional $\bar{\mathbf{Q}}_{\ell}$ -vector spaces.

If H is an algebraic group over k, acting on X with finitely many orbits, then it is natural to take the stratification \mathcal{S} to be the H-orbit stratification. In particular, if G is a reductive algebraic group over k and \mathcal{B} is its flag variety, then it is interesting to take $X = \mathcal{B} \times \mathcal{B}$ and H = G. Alternatively, if $B \subseteq G$ is a fixed Borel subgroup, then we might take X = G and $H = B \times B$.

How can we recover the Iwahori–Hecke algebra $H_W = H_W(x)$ from sheaves in this setup? Recall that if $k = \bar{\mathbf{F}}_q$ and $F: G \to G$ corresponds to the split \mathbf{F}_q -form, then we can identify $H_W(q^{1/2})$ with G^F -invariant functions on $\mathcal{B}^F \times \mathcal{B}^F$, and under this identification, the rescaled standard basis elements $q^{\ell(w)/2}\sigma_w$ correspond to the indicator functions on G^F -orbits.

The sheafy analogue of an indicator function is the extension-by-zero of a constant sheaf. This leads to a naive guess: Since Shv(X) is abelian, we can form either of the Grothendieck groups $[Shv(X)]_{\oplus}$ or [Shv(X)]. For $X = \mathcal{B} \times \mathcal{B}$, we might hope that the extensions-by-zero to X of the constant sheaves on its G-orbits decategorify to a rescaled standard basis of $H_W(x)$.

Unfortunately, this can't work. Take $G = \operatorname{GL}_1$ (or any other torus). Then $\mathcal{B} = pt$, so X = pt. By Example 12.3, $[\operatorname{Shv}(pt)]_{\oplus} = [\operatorname{Shv}(pt)] = \mathbf{Z}$, whereas we want $H_W(x) = \mathbf{Z}[x^{\pm 1}]$.

²The definition of a stratification is something technical, but I will not go into this.

12.3.

In trying to fix this issue, we might set $k = \bar{\mathbf{F}}_q$ and try to specialize x to a square root of q, like we did to compare the Hecke algebra to functions on $\mathcal{B}^F \times \mathcal{B}^F$. However, we immediately realize that k itself does not see q, but only the underlying prime of which q is a power. This suggests working with sheaves equipped with extra structure coming from an \mathbf{F}_q -structure on X, and using this structure to enrich our Grothendieck groups.

Henceforth, $k = \bar{\mathbf{F}}_q$, so that $\ell \nmid q$. Suppose that $X = X_1 \otimes k$ and $\mathcal{F} = \mathcal{F}_1|_X$ for some scheme X_1 over \mathbf{F}_q and sheaf \mathcal{F}_1 over X_1 . We will describe the *fonctions-faisceaux* (or *function-sheaf*) *dictionary*, which sends \mathcal{F} to a collection of *trace of Frobenius* functions

$$\mathbf{t}_{\mathcal{F}} = \mathbf{t}_{\mathcal{F},d} : X_1(\mathbf{F}_{q^d}) \to \bar{\mathbf{Q}}_{\ell} \quad \text{for } d \ge 1.$$

Theorem 1.1.2 in Laumon's "Transformation de Fourier..." states a precise sense in which the functions $\mathbf{t}_{\mathcal{F},d}$ determine the class of \mathcal{F} in an appropriate Grothendieck group. We will return to this point in a later lecture.

Recall that given Z over \mathbf{F}_q , the absolute Frobenius map $\sigma_Z: Z \to Z$ is the map over \mathbf{F}_q that fixes the underlying topological space and sends $f \mapsto f^q$ on sections of the structure sheaf \mathcal{O}_Z . We also worked with the relative Frobenius maps $F = \sigma_{X_1} \otimes \mathrm{id}: X \to X$, which are maps over k. We claim that if $\mathcal{F} = \mathcal{F}_1|_X$, then there is an isomorphism

$$(12.1) F^*\mathcal{F} \xrightarrow{\sim} \mathcal{F}$$

induced from \mathcal{F}_1 via étale descent. The idea is that \mathcal{F}_1 is built up from étale algebraic spaces $E_1 \to X_1$. The relative Frobenius of $E = E_1 \otimes k$, given by $\sigma_{E_1} \otimes \operatorname{id}$, factors through an isomorphism $E \stackrel{\sim}{\to} (\sigma_{X_1} \otimes \operatorname{id})^* E = F^* E$, and the inverse isomorphisms $F^* E \stackrel{\sim}{\to} E$ give rise to (12.1).

An arbitrary sheaf \mathcal{F} equipped with an isomorphism of the form (12.1) is called a *Weil sheaf* with respect to $F: X \to X$. We may regard (12.1) as specifying an action of a *pro-generator* of the Galois group $\operatorname{Gal}(k/\mathbb{F}_q)$. It defines a descent datum from X to X_1 if and only if it extends to an action of $\operatorname{Gal}(k/\mathbb{F}_q)$ itself. We will focus on the Weil sheaves for which this occurs: *i.e.*, those that take the form $\mathcal{F}_1|_X$ for some \mathcal{F}_1 on X_1 .

Example 12.4. A Weil sheaf on $pt := \operatorname{Spec} k$ is equivalent to a vector space over $\bar{\mathbf{Q}}_{\ell}$ equipped with an invertible operator F. The sheaf comes from $\operatorname{Spec} \mathbf{F}_q$ precisely when the F-action extends to a continuous $\operatorname{Gal}(k/\mathbf{F}_q)$ -action.

In particular, if the vector space is 1-dimensional, then such a Galois action is specified by a continuous homomorphism $\operatorname{Gal}(k/\mathbf{F}_q) \to \bar{\mathbf{Q}}_{\ell}^{\times}$. Continuity forces the image of F to be an element of $\bar{\mathbf{Z}}_{\ell}^{\times}$, the maximal compact subgroup of $\bar{\mathbf{Q}}_{\ell}^{\times}$.

We want to use (12.1) to define a Frobenius action on stalks. Note that for any $\bar{x} \in X(k)$, we have an identification

$$\mathcal{F}_{F(\bar{x})} = \lim_{U \ni F(\bar{x})} \mathcal{F}(U) = \lim_{V \ni \bar{x}} \mathcal{F}(F(V)) = (F^* \mathcal{F})_{\bar{x}}.$$

One can check that if \bar{x} factors through a point $x \in X_1(\mathbf{F}_{q^d})$, then F^d fixes \bar{x} . So for such \bar{x} and x, we obtain a morphism of $\bar{\mathbf{Q}}_{\ell}$ -vector spaces

$$F^d: \mathcal{F}_{\bar{x}} = F^* \mathcal{F}_{\bar{x}} \xrightarrow{(12.1)} \mathcal{F}_{\bar{x}}.$$

The trace of this morphism only depends on x, so we can set

$$\mathbf{t}_{\mathcal{F},d}(x) = \operatorname{tr}(F^d \mid \mathcal{F}_{\bar{x}}).$$

Remark 12.5. In Kiehl–Weissauer's book, they take a different approach that results in the same action. To explain: Observe that

$$\sigma_X = F_X \circ F = F \circ F_X$$
, where $F_X = \mathrm{id}_{X_1} \otimes \sigma_{\mathrm{Spec}\,k}$.

We get two actions on the set of k-points X(k) that turn out to be equivalent. Namely, given $\bar{x} : \operatorname{Spec} k \to X$:

- (1) One action sends $\bar{x} \mapsto F \circ \bar{x}$.
- (2) Another action sends $\bar{x} \mapsto F_X \circ \bar{x} \circ \sigma_{\operatorname{Spec} k}^{-1}$.

The composition of (1) and (2) in either order sends $\bar{x} \mapsto \sigma_X \circ \bar{x} \circ \sigma_{\operatorname{Spec} k}^{-1} = \bar{x}$. Therefore, (1) and (2) are mutually inverse. Kiehl–Weissauer present most of the stalk construction in terms of (the inverse of) map (2).

In our earlier discussion of Galois actions on a sheaf \mathcal{F} , we may regard $\sigma_{\operatorname{Spec} k}^{-1}$ as the pro-generator of $\operatorname{Gal}(k/\mathbb{F}_q)$ whose action on \mathcal{F} coincides with that of F.

12.4.

The above discussion gives the impression that we should replace Shv(X) with an analogue $Shv(X_1)$, understood as a full subcategory of the category of Weil sheaves on X.

Unfortunately, we have now overshot the size of the Grothendieck groups. Again taking G to be a torus, so that X = pt, we find from Example 12.4 that $[\mathsf{Shv}(pt_1)]_{\oplus} = [\mathsf{Shv}(pt_1)] = \mathbf{Z}[\bar{\mathbf{Z}}_{\ell}^{\times}].$

So we should only use a certain subcategory of $Shv(X_1)$. Based on our example, we might try to restrict the possible eigenvalues that occur in the action of F^d on $\mathcal{F}_{\bar{x}}$ discussed above. For instance, we could restrict the eigenvalues to be powers of $q^{1/2}$.

But more issues arise when we try to define a monoidal product * that corresponds to the multiplication in H_W . From previous lectures, we expect * to

arise from some kind of convolution on X that should preserve our subcategory. A priori, it is not clear how to ensure that restrictions on eigenvalues would be preserved by this convolution.

Finally, we also want our subcategory to contain objects that, under the function-sheaf dictionary, recover the two bases that we have studied in detail: the standard basis $(\sigma_w)_w$ and the Kazhdan-Lusztig basis $(c_w)_w$. Next week, we will find that the approach that works is:

- (1) First, categorify H_W to a merely additive category C preserved by a convolution *, the element x to a *new* kind of shift functor $\langle 1 \rangle$, and the basis $(c_w)_w$ to a collection of objects that generate this category under \oplus and $\langle 1 \rangle$.
- (2) Next, form objects in the triangulated category $K^b(C)$ that categorify the standard basis $(\sigma_w)_w$.

We can give a preview of how $\langle 1 \rangle$ arises.

Recall that the *Tate twist* $\bar{\mathbf{Q}}_{\ell}(1)$ is the 1-dimensional vector space on which F acts by $q^{-1} \in \bar{\mathbf{Z}}_{\ell}^{\times}$. (Here we use the hypothesis that $\ell \nmid q$.) Fixing a square root of q allows us to define a *half Tate twist* $\bar{\mathbf{Q}}_{\ell}(\frac{1}{2})$, on which F acts by $q^{-1/2}$. We will construct \mathbf{C} inside a larger triangulated category called the constructible derived category, then set $\langle 1 \rangle = (- \otimes \bar{\mathbf{Q}}_{\ell}(\frac{1}{2}))[1]$.