Za podanie odpowiedzi brawa dla:

- Morasiu
- Dawida Burnat
- [tu możesz być ty!]
- Katarzyny Twardowskiej (MrocznyNietoperzBatman124)

Zapraszam do dodawania pytań na Discord i odpowiedzi w niniejszym arkuszu~!

https://e.wsei.edu.pl/mod/quiz/view.php?id=5604 cs201-stac

Do wpisania

Jaka będzie wartość zmiennej

```
Jaka będzie wartość zmiennej k po wykonaniu podanego fragmentu kodu

01. int k = 1;
02. int i = 2;
03. while(i < 10)
04. {
05. if(i % 2 == 0)
06. k = k++;
07. i++;
08. }

Wpisz wartość.

Odpowiedź: 1
```

Odpowiedź: 4

Ile razy wykona się

```
Ile razy wykona się instrukcja zawarta w podanej pętli?
```

Program zapisany jest w pseudokodzie.

```
x ← 1
do
 instrukcja
 x ← x + 4
while (x \le 7)
```

Podaj liczbę wywołań instrukcji

Odpowiedź: 2

Ustal, co zwraca poniższa

Ustal, co zwraca poniższa funkcja rekurencyjna dla wartości 5, 6, 7 podanych kolejno:

```
int fun(int n) {
 if (n < 2) return n;
 if (n % 2 == 0) return fun(n-3) + 1;
 else return fun(n + 1)+1;
```

Wpisz do pola tekstowego zwracane wartości kolejno, oddzielając je średnikami (bez zbędnych spacji - ocenia automat).

Jeśli funkcja się zapętla w którymś przypadku, zapisz odpowiednio symbol: N/A

Przykłady poprawnie uformowanych odpowiedzi:

• 2:3:4

albo

• 3;N/A;4

Odpowiedź: 5;4;7

Odpowiedź: 5;4;7

Ustal, co zwraca poniższa

Ustal, co zwraca poniższa funkcja rekurencyjna dla wartości 6, 7, 8 podanych kolejno:

```
int fun(int n) {
  if (n < 2) return n;
  else return fun(n - 1);
}</pre>
```

Wpisz do pola tekstowego zwracane wartości kolejno, oddzielając je średnikami (bez zbędnych spacji - ocenia automat). Jeśli funkcja się zapętla w którymś przypadku, zapisz odpowiednio symbol: **N/A**

Przykłady poprawnie uformowanych odpowiedzi:

• 2;3;4

albo

• 3;N/A;4

Odpowiedź: 1,1,1,

Podaj w systemie

Podaj, w systemie dziesiątkowym, wartość liczby zakodowanej w systemie **uzupełnieniedo-dwa**:

```
(00001110)_{u2} = (...)_{10}
```

Odpowiedź: 14

Odpowiedź: 14

http://www.kalkmat.pl/U2/Decimal

Podaj wyraz zakodowany w UTF-8

Podaj wyraz zakodowany w UTF-8 (bez BOM). Wielkość liter jest istotna . 7772C3B3C5BC6B61

Odpowiedź: Nzc3MkMzQjNDNUJDNkl2MQ==

Odpowiedź: wróżka(konwertując do ASCI w notepadzie++)

 $\underline{https://sites.google.com/site/nathanlexwww/tools/utf8-convert}$

hexa

Jeśli jesteś nowym klientem banku Jeśli jesteś nowym klientem otwierającym konto z kartą kredytową, otrzymujesz 15% zniżkę na dzisiejsze zakupy. Jeśli jesteś stałym klientem banku i masz kartę lojalnościową, otrzymujesz 10% zniżkę. Jeśli masz kupon polecający, otrzymujesz 20% zniżki na dzisiejsze zakupy, ale kupon nie może być wykorzystany ze zniżką dla nowego klienta. Zniżki się sumują (jeśli to nie jest wykluczone powyższym regulaminem).

Uzupełnij tablicę decyzyjną (przeciągnij i upuść markery na odpowiednie pola):

Warunki	Reguła 1	Reguła 2	Reguła 3	Reguła 4	Reguła 5	Reguła 6
Nowy klient (15%)	Tak	3	6	9	Nie	14
Karta lojalnościowa (10%)	1	4	7	10	12	15
Kupon (20%)	2	5	8	11	13	16
Działanie						
Zniżka (%)	20	15	30	10	20	0

Tak Nie	
---------	--

Odpowiedź:

Reguła 1	Regula 2	Regula 3	Reguła 4	Regula 5	Reguła 6
Tak				Nie	

Algorytm jaka będzie wartość zmiennej i

Jaka będzie wartość zmiennej i po zakończeniu działania algorytmu, jeśli na wejściu wczytano wartości całkowite a = 23 oraz b = -8.

Odpowiedź: -9999

I=2, r=0

Zaznacz kilka

Zaznacz słowa zarezerwowane

Odpowiedź: string, static, void, public

Zaznacz poprawne stwierdzenia metody statycznej

Odpowiedź: nie, nie, nie, TAK (żdane z podanych), nie, nie

- W ciele metody statycznej, z racji tego iż nie jest wywoływana na rzecz konkretnego obiektu, nie można odwoływać się do składowych niestatycznych. Nie można więc użyć wskaźnika this, self, Me itp.
- Metoda statyczna może wywołać jedynie inne metody statyczne w swojej klasie lub odwoływać się jedynie do <u>pól statycznych</u> w swojej klasie. Dostęp do pól i metod obiektów przekazywanych jako parametry czy też obiektów i funkcji globalnych następuje tak samo jak w zwykłej funkcji, jednak w przypadku obiektów własnej klasy ma dostęp do składowych prywatnych.
- Metoda statyczna nie może być metodą wirtualną.
- metod abstrakcyjnych nie można oznaczać jako statyczne

W poniższej definicji klasy konstruktor

W poniższej definicji klasy, który z fragmentów kodu definiuje konstruktor?

```
public class Licznik {
    int aktualny = 1, krok = 0;

public void __Construct(int start, int krok) { // (2)
    set(start);
    setKrok(krok);
}

public int get() { return aktualny; } // (3)

public void set(int x) { aktualny = x; } // (4)

public void setKrok(int s) { krok = s; } // (5)
}
```

Zaznacz właściwe odpowiedzi.

Wybierz jedną lub więcej:

- Fragment kodu oznaczony jako (1) jest konstruktorem.
- Fragment kodu oznaczony jako (2) jest konstruktorem.
- Fragment kodu oznaczony jako (3) jest konstruktorem.
- Fragment kodu oznaczony jako (4) jest konstruktorem.
- Fragment kodu oznaczony jako (5) jest konstruktorem.
- W podanej definicji klasy nie ma kodu definiującego konstruktor
- Konstruktor zostanie automatycznie wygenerowany podczas kompilacji

Odpowiedź: AUTOMATYCZNIE

W poniższej definicji klasy konstruktor

W poniższej definicji klasy, który z fragmentów kodu definiuje konstruktor?

```
public class Licznik {
    int aktualny, krok;

public Licznik(int start, int krok) {
    set(start);
    setKrok(krok);
}

public int get() { return aktualny; }

public void set(int x) { aktualny = x; }

// (4)

public void setKrok(int s) { krok = s; }

// (5)
}
```

Zaznacz właściwe odpowiedzi.

Wybierz jedną lub więcej:

- Fragment kodu oznaczony jako (1) jest konstruktorem.
- Fragment kodu oznaczony jako (2) jest konstruktorem.
- Fragment kodu oznaczony jako (3) jest konstruktorem.
- Fragment kodu oznaczony jako (4) jest konstruktorem.
- Fragment kodu oznaczony jako (5) jest konstruktorem.
- W podanej definicji klasy nie ma kodu definiującego konstruktor
- Konstruktor domyślny zostanie automatycznie wygenerowany podczas kompilacji

Odpowiedź: B->2

Dana jest klasa

```
Dana jest klasa
   class K {
    int i;
    K( int j ) {
       i = j;
    void m() {
      Console.WriteLine(i);
     // ... tu wstaw kod
   }
W miejsce oznaczone komentarzem można wpisać (zaznacz właściwe):
Wybierz jedną lub więcej:
 ✓ int j = 0;
 int i = 0;
 if (i > 0) Console.WriteLine("i");
 i żaden z podanych
Odpowiedź: A D???
W C#.NET nie zostanie przechwycony wyjątek, to co go przechwyci?
W C#.NET, jeśli w programie, w trakcie jego wykonania nie zostanie przechwycony
wyjątek, to co go przechwyci?
Wybierz jedną lub więcej:
System operacyjny
Linker
```

Odpowiedź: Loaderp

Kompilator

CLR

Loader

Rozważając poniższy kod, która z poniższych instrukcji może być wstawiona

```
Rozważając poniższy kod:
```

```
public class ThisUsage {
   int planets;
   static int suns;

public void gaze() {
     int i;
     // ... wstaw tu instrukcję
   }
}
```

która z poniższych instrukcji może być wstawiona w zaznaczone miejsce?

Wybierz jedną lub więcej:

- i = this.planets;
- this = new ThisUsage();
- this.suns = planets;
- i = this.suns;
- this.i = 4;
- i żadna z podanych

Odpowiedź: A

Przyjmując, że MojaKlasa fragment kodu

Przyjmując, że MojaKlasa jest niestatyczną klasą, ile obiektów i ile zmiennych referencyjnych zostanie utworzonych w wyniku zadziałania podanego poniżej fragmentu kodu?

```
MojaKlasa x, y;

x = new MojaKlasa();

MojaKlasa z = new MojaKlasa();
```

Zaznacz poprawne odpowiedzi.

Wybierz jedną lub więcej:

- Utworzony zostanie jeden obiekt.
- Utworzone zostaną dwa obiekty.
- Utworzone zostaną trzy obiekty.
- Utworzona zostanie jedna zmienna referencyjna.
- Utworzone zostaną dwie zmienne referencyjne.
- Utworzone zostaną trzy zmienne referencyjne.

Odpowiedź: 3 obiekty

Zakładając, że mamy deklarację tablicy zwróci rozmiar

Zakładając, że mamy następującą deklarację tablicy tab oraz, że tablica została poprawnie zainicjowana i jej użycie ograniczone jest do przestrzeni nazw System, zaznacz wyrażenie, które zwróci rozmiar (liczbę elementów) tej tablicy.

```
using System;
...
int[] tab;
...

Wybierz jedną lub więcej:
   a. tab.GetLength(0)
   b. tab.GetUpperBound(0)+1
```

✓ C. tab.Count()

d. tab.LongLength

e. żadne z podanych

f. tab.Count

Odpowiedź: a-> tab.GetLength(0) [zwraca długość 1. Wymiar tabeli, Pobiera 32-bitowa liczba całkowita, która reprezentuje liczbę elementów w określonym wymiarzeArray.] [length.-Pobiera całkowitą liczbę elementów w wszystkie wymiary Array.] [GetUpperBound - Pobiera indeks ostatniego elementu określonego wymiaru tablicy.][GetLongLength - Pobiera 64-bitowa liczba całkowita, która reprezentuje liczbę elementów w określonym wymiarzeArray.]

Wybierz jedną

```
int[] a = new int[] { 5, 6, 7, 8 };
  int[] b = new int[] { 1, 2, 3, 4 };
  Stack<int> S = new Stack<int>(a);
  Queue<int> Q = new Queue<int>(b);
  S.Push(Q.Peek()); Q.Dequeue();
  S.Push(Q.Peek()); Q.Dequeue();
  S.Push(Q.Peek()); Q.Dequeue();
  Q.Enqueue(S.Peek()); S.Pop();
  Q.Enqueue(S.Peek()); S.Pop();
  S.Push(Q.Peek()); Q.Dequeue();
Wyjaśnienia:
• metody klasy | Stack | (stos): | Push - dodaj (wstaw na stos), | Peek - odczytaj element wierzchołkowy (do usunięcia), | Pop - usuń
  (zdejmij) element wierzchołkowy,
• metody klasy Queue (kolejka): Enqueue - wstaw do kolejki, Dequeue - usuń z kolejki, Peek - odczytaj element pierwszy (do
  usuniecia).
Wybierz jedną odpowiedź:
O Stos od wierzchołka: 32 | Kolejka: 418765
O Stos od wierzchołka: 187654 | Kolejka: 32
O Stos od wierzchołka: 6541 | Kolejka: 3287
O Stos od wierzchołka: 418765 | Kolejka: 32
O Stos od wierzchołka: 876541 | Kolejka: 32
O Stos od wierzchołka: 65 | Kolejka: 873241
```

Odpowiedź: D stos 418765 kolejka 32

Która z podanych deklaracji klasy

Stos od wierzchołka: 8765 | Kolejka: 1234Stos od wierzchołka: 6541 | Kolejka: 8732

Która z podanych deklaracji klasy Czlowiek najlepiej opisuje relację "*Pies jest najlepszym przyjacielem człowieka*" (inaczej mówiąc, Człowiek ma Psa, który jest jego najlepszym przyjacielem).

Odpowiedź: 3

Dwa fragmenty kodu nazwiemy

Dwa fragmenty kodu nazwiemy równoważnymi, jeżeli w tych samych sytuacjach dają takie same efekty.

Które z podanych poniżej fragmentów kodów są równoważne:

```
//Kod1
 if( temperatura > gornyLimit ) {
     if( niebezpieczenstwo ) wywolajAlarm();
 } else
     wlaczReaktor();
 //Kod2
 if( temperatura > gornyLimit && niebezpieczenstwo )
     wywolajAlarm();
 else
     wlaczReaktor();
 if( temperatura <= gornyLimit && !niebezpieczenstwo )</pre>
     wlaczReaktor();
 else
     wywolajAlarm();
Zaznacz zdania prawdziwe
Wybierz jedną odpowiedź:
O Kod1 i Kod2 są równoważne

    Kod2 i Kod3 są równoważne

    Wszystkie kody są sobie równoważne

O Kod1 i Kod3 są równoważne

    Żadne kody nie są sobie parami równoważne
```

Odpowiedź: C

Lista

Dopasuj podstawowy

Dopasuj podstawowy, wbudowany typ danych języka C# do jego opisu		
128-bitowa zmiennoprzecinkowa dokładna reprezentacja liczby dziesiętnej ze znakiem, zalecana do wykonywania obliczeń finansowych	decimal	*
8-bitowa reprezentacja liczby całkowitej bez znaku	byte	*
64-bitowa reprezentacja liczby całkowitej bez znaku	long	٧
Reprezentacja wartości logicznych true oraz false	bool	*
Reprezentacja ciągu znaków o zmiennej długości	string	*
Typ uniwersalny, będący bazą wszystkich typów - wbudowanych i zdefiniowanych przez użytkownika	var	*
16-bitowa reprezentacja znaku Unicode	char	*
	char	*

Odpowiedź: 1 - decimal, 2 - byte, 3 - ulong, 4 - bool, 5 - StringBuilder, 6 - object, 7 - char

Określ wartość wyrażenia logicznego

Określ wartość wyrażenia logicznego za	pisanego w C#. J	eśli jest ono źle skonstruowane, wybierz błąd kompilacji .
new System.Int32(2) == new int(2)	błąd kompilacji	
' ' == 32	błąd kompilacji	
true false	true	
"1" + " " == "1"	błąd kompilacji	
0.1 + 0.2 == 0.3	błąd kompilacji	
(true && false)	błąd kompilacji	

Odpowiedź: 1 - błąd

2 - true

3 - true

4 - błąd false

5 - false

6 - false

Określ wartość wyrażenia logicznego

Określ wartość wyrażenia logicznego zapisanego w C#. Jeśli jest ono źle skonstruowane, wybierz błąd kompilacji. błąd kompilacji ▼ 2f + 2d == 4true (false == false) true (new int()) is ValueType błąd kompilacji "1" + '' == "1" błąd kompilacji ▼ new int() is null błąd kompilacji ▼ (new int()) == 0

Odpowiedź:

- 1 true
- 2 -true
- 3-true
- 4 -false
- 5 błąd
- 6- true

Przeciągnij

Liczba pierwsza to taka

Liczba pierwsza to taka liczba naturalna większa od 1, która dzieli się tylko przez 1 i samą siebie. Oto kilka początkowych liczb pierwszych: 2, 3, 5, 7, 11, 13, 17, 19, ... Aby określić, czy dana liczba jest pierwsza należy zbadać jej dzielniki. Dla zadanej liczby n sprawdzamy kolejne liczby naturalne mniejsze od niej. Jeśli któraś z tych liczb jest dzielnikiem n, oznacza to, że n nie jest liczbą pierwszą. Algorytm ten można zoptymalizować - wystarczy sprawdzać liczby z przedziału $[2,\sqrt{n}]$. Napisz w C# funkcję o nazwie | JestPierwsza |, która dla zadanej wartości | n | typu | int | zwróci prawdę, gdy | n | jest liczbą pierwszą oraz fałsz w przeciwnym przypadku. Wykorzystaj podany powyżej pomysł algorytmu zoptymalizowanego oraz podany poniżej szkielet funkcji, przeciągając i upuszczając odpowiednie bloki kodu w Dane bloki kodu mogą być wykorzystane raz, wiele razy lub ani razu. Wszystkie puste pola w kodzie algorytmu muszą mieć przypisane właściwe bloki kodu. public static JestPierwsza(int n) if(n<=1) throw new Argu mentOutOfRangeException(); 6 n => i*i n % i > 0 n % i == 0 int i = 1i % n == 0 i >= 2 && i < Math.Sqrt(n) int i = 2

Odpowiedź:

1) bool	
2) int i = 2	
3)i * i <= n	
4)n % i == 0	5)false
6)i++	
7)true	

Jaki będzie stan końcowy stosu

Jaki będzie stan końcowy stosu (zmienna s) oraz kolejki (zmienna o) po wykonaniu następującego fragmentu programu napisanego w C#:

```
int[] a = new int[] { 1, 2, 3, 4 };
int[] b = new int[] { 5, 6, 7, 8 };

Stack<int> S = new Stack<int>(a);
Queue<int> Q = new Queue<int>(b);

Q.Enqueue(S.Peek()); S.Pop();
S.Push(Q.Peek());
S.Push(Q.Peek()); Q.Dequeue();
Q.Enqueue(S.Peek()); S.Pop();
Q.Enqueue(S.Peek()); S.Pop();
Q.Enqueue(S.Peek());
S.Push(Q.Peek()); Q.Dequeue();
```

Wyjaśnienia:

- metody klasy Stack (stos): Push dodaj (wstaw na stos), Peek odczytaj element wierzchołkowy (do usunięcia), Pop - usuń (zdejmij) element wierzchołkowy,
- metody klasy Queue (kolejka): Enqueue wstaw do kolejki, Dequeue usuń z kolejki, Peek odczytaj element pierwszy (do usunięcia).

Przeciągnij właściwe markery w odpowiednie miejsca. W pustych, nie wypełnionych komórkach, umieść marker z kreską [-].

Jeśli uruchomienie kodu spowoduje pojawienie się wyjątku (stos pusty, kolejka pusta) - we wszystkich komórkach kolejki i stosu umieść marker z kreską [-].

•	Stos od wierzchołka:					
•	Kolejka od początku:					

1	2	3	4	5	6	7	8	-

Odpowiedzi: stos: 65321???, kolejka:78455 ???

Ile razy wykona się

c +- 1			
fo			
instrukcja			
$\times \leftarrow \times + 5$			
shile (x i 5)			
iaj liczbę wyw	Nań Instrukcji		

Które z twierdzeń jest prawdziwe:

```
Które z podanych stwierdzeń jest prawdziwe dla ponizszego programu?
  using System;
namespace ConsoleApplication
      class NyProgram
          static void Main(string[] args)
              int index = 6;
int val = 44;
int[] a = new int[6];
                   a[index] = val;
               catch (Inde:OutOfRangeException e)
                  Console.Write("Index out of bounds ");
               Console Write("Menuiring program");
Wybierz jedną lub więcej:

    Wypisane zostanie: Remaining program

III Wypisane sostanie: Index out of bounds

    Wypisane zostanie: Index out of bounds Remaining program.

Bled kompilecji / bled syntaktyczny
Nic nie zostanie wypisane
○ Wartość ++ zostanie przypisana do +[4] ...
```

Odp: Index out of bounds Remaining program

```
using System;
using System.Collections.Generic;
using System.Collections;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace ConsoleApp3
    class Program
    {
        static void Main(string[] args)
            int k = 1;
            int i = 2;
            while (i < 10)
                if (i % 2 == 0)
                {
                    k = k++;
                    Console.WriteLine("linia");
                }
```

```
i++;
}
int x = 1;
do
{
    x = x + 4;
    Console.WriteLine("pseudokod");
} while (x <= 7);</pre>
int fun(int n)
    if (n < 2) return n;
    if (n \% 2 == 0) return fun(n - 3) + 1;
    else return fun(n + 1) + 1;
}
Console.WriteLine(fun(5));
Console.WriteLine(fun(6));
Console.WriteLine(fun(7));
Console.WriteLine("mm");
int fun2(int m)
{
    if (m < 2) return m;</pre>
    else return fun2(m -1);
Console.WriteLine(fun2(6));
Console.WriteLine(fun2(7));
Console.WriteLine(fun2(8));
Console.WriteLine();
Console.WriteLine();
Console.WriteLine("wth");
            int[] g = new int[] {5,6,7,8 };
            int[] f = new int[] {1,2,3, 4 };
            Stack<int> S= new Stack<int>(g);
            Queue<int> Q= new Queue<int>(f);
            S.Push(Q.Peek()); Q.Dequeue();
for(int ei=0; ei<g.Length; ei++)</pre>
    Console.WriteLine(g[ei]);
}*/
Console.WriteLine("Stos");
foreach(int ed in S)
    Console.Write(ed);
Console.WriteLine();
Console.WriteLine("Kolejka");
foreach (int ex in Q)
```

```
Console.Write(ex);
}
Console.WriteLine();
Console.WriteLine();
S.Push(Q.Peek()); Q.Dequeue();
Console.WriteLine("Stos");
foreach (int ed in S)
{
    Console.Write(ed);
Console.WriteLine();
Console.WriteLine("Kolejka");
foreach (int ex in Q)
{
    Console.Write(ex);
Console.WriteLine();
Console.WriteLine();
S.Push(Q.Peek()); Q.Dequeue();
Console.WriteLine("Stos");
foreach (int ed in S)
{
    Console.Write(ed);
Console.WriteLine();
Console.WriteLine("Kolejka");
foreach (int ex in Q)
{
    Console.Write(ex);
Console.WriteLine();
Console.WriteLine();
Q.Enqueue(S.Peek()); S.Pop();
Console.WriteLine("Stos");
foreach (int ed in S)
{
    Console.Write(ed);
Console.WriteLine();
Console.WriteLine("Kolejka");
foreach (int ex in Q)
{
    Console.Write(ex);
Console.WriteLine();
Console.WriteLine();
Q.Enqueue(S.Peek()); S.Pop();
Console.WriteLine("Stos");
foreach (int ed in S)
{
    Console.Write(ed);
Console.WriteLine();
Console.WriteLine("Kolejka");
foreach (int ex in Q)
    Console.Write(ex);
}
```

```
Console.WriteLine();
Console.WriteLine();
S.Push(Q.Peek()); Q.Dequeue();
Console.WriteLine("Stos");
foreach (int ed in S)
{
    Console.Write(ed);
Console.WriteLine();
Console.WriteLine("Kolejka");
foreach (int ex in Q)
{
    Console.Write(ex);
Console.WriteLine();
Console.WriteLine();
MojaKlasa o;
MojaKlasa p;
o = new MojaKlasa();
MojaKlasa r =new MojaKlasa();
Console.WriteLine("df");
/* bool coTo;
if (' ' == 32)
     coTo = true;
     Console.WriteLine(coTo);
 }
 else
     Console.WriteLine(coTo);*/
/*bool coTo = false;
if (coTo == true | coTo == false)
{
    coTo = true;
    Console.WriteLine(coTo);
}
else
    Console.WriteLine(coTo);
/*bool coTo = false;
if (0.1 + 0.2 == 0.3)
{
    coTo = true;
    Console.WriteLine(coTo);
}
else
    Console.WriteLine(coTo);*/
            bool coTo = false;
            if (coTo == true && coTo == false)
                coTo = true;
                Console.WriteLine(coTo);
            }
            else
                Console.WriteLine(coTo);
                */
```

```
if ("1" + ' ' == "1")
        {
            coTo = true;
            Console.WriteLine(coTo);
        }
        else
            Console.WriteLine(coTo);
        Console.WriteLine();
        Console.WriteLine();
        Console.WriteLine();
        int[] g2 = new int[] { 1, 2, 3, 4 };
        int[] f2 = new int[] { 5, 6, 7, 8 };
        Stack<int> S2 = new Stack<int>(g2);
        Queue<int> Q2 = new Queue<int>(f2);
        Q2.Enqueue(S2.Peek()); S2.Pop();
        S2.Push(Q2.Peek());
        S2.Push(Q2.Peek()); Q2.Dequeue();
        Q2.Enqueue(S2.Peek()); S2.Pop();
        Q2.Enqueue(S2.Peek());
        S2.Push(Q2.Peek()); Q2.Dequeue();
        /*
        for(int ei=0; ei<g.Length; ei++)</pre>
            Console.WriteLine(g[ei]);
        Console.WriteLine("Stos2");
        foreach (int ed in S2)
        {
            Console.Write(ed);
        Console.WriteLine();
        Console.WriteLine("Kolejka2");
        foreach (int ex in Q2)
        {
            Console.Write(ex);
        Console.WriteLine();
        Console.WriteLine();
        Console.WriteLine();
        Console.WriteLine();
        int iud = -1;
        int ksy = 1 - iud;
        Console.WriteLine(ksy);
        Console.ReadKey();
}
public class K
    int i;
    K (int j)
```

bool coTo = false;

```
i = j;
}

void m()
{
    Console.WriteLine(i);
}

K() { }
}

public class ThisUsage
{
    int planets;
    static int suns;

    public void gaze()
    {
        int i;
        i = this.planets;
    }
}

public class MojaKlasa
{
}
```

Za podanie odpowiedzi brawa dla:

- Morasiu
- Dawida Burnat
- Macieja Romanowskiego
- [tu możesz być ty!]
- Katarzyny Twardowskiej (MrocznyNietoperzBatman124)

Zapraszam do dodawania pytań na Discord i odpowiedzi w niniejszym arkuszu~!

https://e.wsei.edu.pl/mod/quiz/view.php?id=5604 cs201-stac

Do wpisania

Jaka będzie wartość zmiennej

```
Jaka będzie wartość zmiennej k po wykonaniu podanego fragmentu kodu

01. int k = 1;
02. int i = 2;
03. while( i < 10 )
04. {
05. if( i % 2 == 0 )
06. k = k++;
07. i++;
08. }

Wpisz wartość.

Odpowiedź: 1
```

Odpowiedź: 1

Jaka będzie wartość zmiennej

```
Jaka będzie wartość zmiennej n po wykonaniu poniższego kodu, dla i = 2 oraz n = 3.

Zakładamy, że wszystkie zmienne są poprawnie zadeklarowane

while (!(i > 4)) {
    n += i;
    i++;
    }

Wpisz wartość liczbową. Jeśli program się zapętla, wpisz -999999 (nie używaj zbędnych symboli i spacji - poprawia automat).
```

Jaka będzie wartość zmiennej

```
Jaka będzie wartość zmiennej n po wykonaniu poniższego kodu.

Zakładamy, że wszystkie zmienne są poprawnie zadeklarowane

int n = 2;
for (int i = 1; i <= 3; i++)
{
    for (int j = 1; j <= 4; j++)
    {
        if (i != j)
        {
            n--;
        }
    }
}

Wpisz wartość liczbową. Jeśli program się zapętla, wpisz | -999999 (nie używaj zbędnych symboli i spacji - poprawia automat).

-7
```

Odp: -7

Ile razy wykona się

```
lle razy wykona się instrukcja zawarta w podanej pętli?

Program zapisany jest w pseudokodzie.

x ← 1
do
instrukcja
x ← x + 4
while (x ≤ 7)

Podaj liczbę wywołań instrukcji

2
```

Odpowiedź: 2

Ile razy wykona się

Ile razy wykona się instrukcja zawarta w podanej pętli?

Program zapisany jest w pseudokodzie.

```
x +- 2
do
instrukcja
x +- x + 2
while (x < 5)</pre>
```

Podaj liczbę wywołań instrukcji

2

Odpowiedź: 2

lle wykona się

```
lie razy wykona się instrukcja zawarta w podanej pęti?
Program zapisany jest w pseudokodzie.
  × +- 1
 do
Snatrukcja
 x +- x + 5
while (x i 5)
Podaj liczbę wywołań instrukcji
```

Odp: 1

Ustal, co zwraca poniższa

Ustal, co zwraca poniższa funkcja rekurencyjna dla wartości 5, 6, 7 podanych kolejno:

```
int fun(int n) {
 if (n < 2) return n;
 if (n % 2 == 0) return fun(n-3) + 1;
 else return fun(n + 1)+1;
}
```

Wpisz do pola tekstowego zwracane wartości kolejno, oddzielając je średnikami (bez zbędnych spacji - ocenia automat).

Jeśli funkcja się zapętla w którymś przypadku, zapisz odpowiednio symbol: N/A

Przykłady poprawnie uformowanych odpowiedzi:

• 2:3:4

albo

• 3;N/A;4

Odpowiedź: 5;4;7

Odpowiedź: 5;4;7

Ustal, co zwraca poniższa

Ustal, co zwraca poniższa funkcja rekurencyjna dla wartości 6, 7, 8 podanych kolejno:

```
int fun(int n) {
  if (n < 2) return n;
  else return fun(n - 1);
}</pre>
```

Wpisz do pola tekstowego zwracane wartości kolejno, oddzielając je średnikami (bez zbędnych spacji - ocenia automat). Jeśli funkcja się zapętla w którymś przypadku, zapisz odpowiednio symbol: **N/A**

Przykłady poprawnie uformowanych odpowiedzi:

• 2:3:4

albo

• 3;N/A;4

Odpowiedź: 1,1,1,

Ustal, co zwraca poniższa

Ustal, co zwraca poniższa funkcja rekurencyjna dla wartości 7, 8, 9 podanych kolejno:

```
int fun(int n){
  if (n < 2) return n;
  if (n % 2 == 0) return fun(n - 1) + 1;
  else return fun(n / 2);
}</pre>
```

Wpisz do pola tekstowego zwracane wartości kolejno, oddzielając je średnikami (bez zbędnych spacji - ocenia automat). Jeśli funkcja się zapętla w którymś przypadku, zapisz odpowiednio symbol: **N/A**

Przykłady poprawnie uformowanych odpowiedzi:

• 2;3;4

albo

• 3;N/A;4

Odpowiedź: 1;2;2

Odpowiedź: 1;2;2

Ustal co zwraca poniższa

Ustal, co zwraca poniższa funkcja rekurencyjna dla wartości 7, 8, 9 podanych kolejno:

```
int fun(int n) {
   if (n < 2) return n;
   if (n % 2 == 1) return fun(n - 1) + 1;
   else return fun(n / 2);
}</pre>
```

Wpisz do pola tekstowego zwracane wartości kolejno, oddzielając je średnikami (bez zbędnych spacji - ocenia automat). Jeśli funkcja się zapętla w którymś przypadku, zapisz odpowiednio symbol: **N/A**

Przykłady poprawnie uformowanych odpowiedzi:

• 2;3;4

albo

• 3:N/A:4

Odpowiedź: 3;1;2

Podaj w systemie

Podaj, w systemie dziesiątkowym, wartość liczby zakodowanej w systemie **uzupełnieniedo-dwa**:

$$(00001110)_{02} = (...)_{10}$$

Odpowiedź: 14

Odpowiedź: 14

Podaj wyraz zakodowany w UTF-8

Podaj wyraz zakodowany w UTF-8 (bez BOM). Wielkość liter jest istotna . 7772C3B3C5BC6B61

Odpowiedź: Nzc3MkMzQjNDNUJDNkl2MQ==

Odpowiedź: wróżka(konwertując do ASCI w notepadzie++)

Podaj wyra: 77C499646	z zakodowany w UTF-8 (bez BOM). Wielkość liter jest istotna . 861
Odpowiedź:	wadka
обронисии.	Tryunu

odp: wędka

Jeśli jesteś nowym klientem banku

Jeśli jesteś nowym klientem otwierającym konto z kartą kredytową, otrzymujesz 15% zniżkę na dzisiejsze zakupy. Jeśli jesteś stałym klientem banku i masz kartę lojalnościową, otrzymujesz 10% zniżkę. Jeśli masz kupon polecający, otrzymujesz 20% zniżki na dzisiejsze zakupy, ale kupon nie może być wykorzystany ze zniżką dla nowego klienta. Zniżki się sumują (jeśli to nie jest wykluczone powyższym regulaminem).

Uzupełnij tablicę decyzyjną (przeciągnij i upuść markery na odpowiednie pola):

Warunki	Reguła 1	Reguła 2	Reguła 3	Reguła 4	Reguła 5	Reguła 6
Nowy klient (15%)	Tak	3	6	9	Nie	14
Karta lojalnościowa (10%)	1	4	7	10	12	15
Kupon (20%)	2	5	8	11	13	16
Działanie						
Zniżka (%)	20	15	30	10	20	0

Odpowiedź:

Jeśli jesteś nowym klientem otwierającym konto z kartą kredytową, otrzymujesz 15% zniżkę na dzisiejsze zakupy. Jeśli jesteś stałym klientem banku i masz kartę lojalnościową, otrzymujesz 10% zniżkę. Jeśli masz kupon polecający, otrzymujesz 20% zniżki na dzisiejsze zakupy, ale kupon nie może być wykorzystany ze zniżką dla nowego klienta. Zniżki się sumują (jeśli to nie jest wykluczone powyższym regulaminem).

Uzupełnij tablicę decyzyjną (przeciągnij i upuść markery na odpowiednie pola):

Warunki	Reguła 1	Reguła 2	Reguła 3	Reguła 4	Reguła 5	Reguła 6
Nowy klient (15%)	Tak	Tak	Nie	Nie	Nie	Nie
Karta lojalnościowa (10%)	Nie	Nie	Tak	Tak	Nie	Nie
Kupon (20%)	Tak	Nie	Tak	Nie	Tak	Nie
Działanie						
Zniżka (%)	20	15	30	10	20	0

Tak Nie	
---------	--

Reguła 1	Reguła 2	Reguła 3	Reguła 4	Reguła 5	Regula 6
Tak	Tak	Nie	Nie	Nie	Nie
Nie	Nie	Tak	Tak	Nie	Nie
Tak	Nie	Tak	Nie	Tak	Nie

Algorytm jaka będzie wartość zmiennej i

Jaka będzie wartość zmiennej i po zakończeniu działania algorytmu, jeśli na wejściu wczytano wartości całkowite a = 23 oraz b = -8.

Odpowiedź: -9999

Odp: 5

Zaznacz kilka

Zaznacz słowa zarezerwowane

Odpowiedź: string, static, void, public

Zaznacz poprawne stwierdzenia metody statycznej
Zaznacz poprawne stwierdzenia, w odniesieniu do metody statycznej
Wybierz jedną lub więcej:
musi być zadeklarowana w klasie statycznej
ma dostęp do niestatycznych składników klasy, w której jest zdefiniowana
może być wirtualna
i żadne z podanych
można jej użyć dopiero po utworzeniu obiektu klasy, w której została zdefiniowana
może być zdefiniowana w klasie abstrakcyjnej
Odpowiedź: D Zaznacz poprawne stwierdzenia metody statycznej
Zaznacz poprawne stwierdzenia, w odniesieniu do metody statycznej
Wybierz jedną lub więcej: może być przeciążana
✓ nie może być składnikiem interfejsu
☑ nie ma dostępu do niestatycznych składników klasy, w której jest zdefiniowana
i żadne z podanych
✓ można jej użyć nawet wtedy, gdy nie ma utworzonego obiektu klasy, w której została zdefiniowana
Zaznacz poprawne stwierdzenia metody statycznej Zaznacz poprawne stwierdzenia, w odniesieniu do metody statycznej
Wybierz jedną lub więcej: ✓ żadne z podanych
□ nie może być składnikiem typu wartościowego
musi być zadeklarowana w klasie statycznej
może być przesłaniana
może być abstrakcyjna
można jej użyć dopiero po utworzeniu obiektu klasy, w której została zdefiniowana
Zaznacz poprawne stwierdzenia metody statycznej
Zaznacz poprawne stwierdzenia, w odniesieniu do metody statycznej
Wybierz jedną lub więcej: ☐ żadne z podanych
może być przesłaniana
można jej użyć dopiero po utworzeniu obiektu klasy, w której została zdefiniowana
✓ nie może być składnikiem interfejsu
☐ nie może być prywatna

Zaznacz poprawne stwierdzenia metody statycznej

☑ można jej użyć nawet wtedy, gdy nie ma utworzonego obiektu klasy, w której została zdefiniowana

```
Zaznacz poprawne stwierdzenia, w odniesieniu do metody statycznej

Wybierz jedną lub więcej:

żadne z podanych

nie ma dostępu do instancji dowolnego obiektu, o ile nie jest on jawnie przekazany jako jej parametr

może być przeciążana

można jej użyć dopiero po utworzeniu obiektu klasy, w której została zdefiniowana

musi być zadeklarowana w klasie statycznej

może być składnikiem typu wartościowego
```

W poniższej definicji klasy konstruktor

W poniższej definicji klasy, który z fragmentów kodu definiuje konstruktor?

```
public class Licznik {
    int aktualny = 1, krok = 0;

public void __Construct(int start, int krok) { // (2)
    set(start);
    setKrok(krok);
}

public int get() { return aktualny; } // (3)

public void set(int x) { aktualny = x; } // (4)

public void setKrok(int s) { krok = s; } // (5)
}
```

Zaznacz właściwe odpowiedzi.

Wybierz jedną lub więcej:

- Fragment kodu oznaczony jako (1) jest konstruktorem.
- Fragment kodu oznaczony jako (2) jest konstruktorem.
- Fragment kodu oznaczony jako (3) jest konstruktorem.
- Fragment kodu oznaczony jako (4) jest konstruktorem.
- Fragment kodu oznaczony jako (5) jest konstruktorem.
- W podanej definicji klasy nie ma kodu definiującego konstruktor
- Konstruktor zostanie automatycznie wygenerowany podczas kompilacji

Odpowiedź: F G???

Które z podanych stwierdzeń jest prawdziwe

Które z podanych stwierdzeń jest prawdziwe dla poniższego programu?

```
using System;
  namespace ConsoleApplication
      class MyProgram
          static void Main(string[] args)
             int index = 6;
              int val = 44;
              int[] a = new int[6];
                  a[index] = val;
              catch (IndexOutOfRangeException e)
                  Console.Write("Index out of bounds ");
              Console.Write("Remaining program");
          }
      }
  }
Wybierz jedną lub więcej:

■ Wypisane zostanie: Index out of bounds Remaining program
```

- Wypisane zostanie: Index out of bounds
- Błąd kompilacji / błąd syntaktyczny
- Nic nie zostanie wypisane
- Wypisane zostanie: Remaining program
- Wartość 44 zostanie przypisana do a[6].

Odpowiedź: Wypisane zostanie: Index out of bounds Remaining program

W poniższej definicji klasy konstruktor

W poniższej definicji klasy, który z fragmentów kodu definiuje konstruktor?

```
public class Licznik {
    int aktualny, krok;

public Licznik(int start, int krok) {
    set(start);
    setKrok(krok);
}

public int get() { return aktualny; }

public void set(int x) { aktualny = x; }

// (4)

public void setKrok(int s) { krok = s; }

// (5)
}
```

Zaznacz właściwe odpowiedzi.

Wybierz jedną lub więcej:

- Fragment kodu oznaczony jako (1) jest konstruktorem.
- Fragment kodu oznaczony jako (2) jest konstruktorem.
- Fragment kodu oznaczony jako (3) jest konstruktorem.
- Fragment kodu oznaczony jako (4) jest konstruktorem.
- Fragment kodu oznaczony jako (5) jest konstruktorem.
- W podanej definicji klasy nie ma kodu definiującego konstruktor
- Konstruktor domyślny zostanie automatycznie wygenerowany podczas kompilacji

Odpowiedź: B

Dana jest klasa

```
Dana jest klasa
   class K {
    int i;
    K( int j ) {
       i = j;
     void m() {
      Console.WriteLine(i);
     // ... tu wstaw kod
   }
W miejsce oznaczone komentarzem można wpisać (zaznacz właściwe):
Wybierz jedną lub więcej:
 ✓ int j = 0;
 int i = 0;
 if (i > 0) Console.WriteLine("i");
 i żaden z podanych
Odpowiedź: A D???
W C#.NET nie zostanie przechwycony wyjątek, to co go przechwyci?
W C#.NET, jeśli w programie, w trakcie jego wykonania nie zostanie przechwycony
wyjątek, to co go przechwyci?
Wybierz jedną lub więcej:
```

Odpowiedź: ??? Loader?

System operacyjny

Linker

Loader

Kompilator

CLR

Rozważając poniższy kod, która z poniższych instrukcji może być wstawiona

Rozważając poniższy kod:

```
public class ThisUsage {
   int planets;
   static int suns;

public void gaze() {
    int i;
    // ... wstaw tu instrukcję
   }
}
```

która z poniższych instrukcji może być wstawiona w zaznaczone miejsce?

Wybierz jedną lub więcej:

- i = this.planets;
- this = new ThisUsage();
- this.suns = planets;
- i = this.suns;
- this.i = 4;
- i żadna z podanych

Odpowiedź: A ???

Przyjmując, że MojaKlasa fragment kodu

Przyjmując, że MojaKlasa jest niestatyczną klasą, ile obiektów i ile zmiennych referencyjnych zostanie utworzonych w wyniku zadziałania podanego poniżej fragmentu kodu?

```
MojaKlasa x, y;

x = new MojaKlasa();

MojaKlasa z = new MojaKlasa();
```

Zaznacz poprawne odpowiedzi.

Wybierz jedną lub więcej:

- Utworzony zostanie jeden obiekt.
- Utworzone zostaną dwa obiekty.
- Utworzone zostaną trzy obiekty.
- Utworzona zostanie jedna zmienna referencyjna.
- Utworzone zostaną dwie zmienne referencyjne.
- Utworzone zostaną trzy zmienne referencyjne.

Odpowiedź: ???

Zakładając, że mamy deklarację tablicy zwróci rozmiar

Zakładając, że mamy następującą deklarację tablicy tab oraz, że tablica została poprawnie zainicjowana i jej użycie ograniczone jest do przestrzeni nazw system, zaznacz wyrażenie, które zwróci rozmiar (liczbę elementów) tej tablicy.

```
using System;
...
int[] tab;
...
```

Wybierz jedną lub więcej:

- a. tab.GetLength(0)
- b. tab.GetUpperBound(0)+1
- ✓ C. tab.Count()
- d. tab.LongLength
- e. żadne z podanych
- f. tab.Count

Odpowiedź: ABCD

Zakładając, że mamy deklarację tablicy zwróci rozmiar

Zakładając, że mamy następującą deklarację tablicy tab oraz, że tablica została poprawnie zainicjowana i jej użycie ograniczone jest do przestrzeni nazw System, zaznacz wyrażenie, które zwróci rozmiar (liczbę elementów) tej tablicy.

```
using System;
...
int[] tab;
...
```

Wybierz jedną lub więcej:

- a. tab.length
- b. żadne z podanych
- ✓ C. tab.Length
- d. tab.Size
- e. tab[].Size()
- ✓ f. tab.GetLength(0)

Które z podanych stwierdzeń jest prawdziwe

Które z podanych stwierdzeń jest prawdziwe w odniesieniu do wyjątków w C#.NET?

Wybierz jedną lub więcej:

Pojawiają się w trakcie linkowania

Pojawiają się w trakcie wykonania programu

Pojawiają się w trakcie ładowania programuPojawiają się podczas kompilacji kodu

Pojawiają się w trakcie kompilacji *Just-In-Time*

Odpowiedź: ???

Pytanie odnosi się do podanego schematu bramek logicznych

Pytanie odnosi się do podanego schematu bramek logicznych. Jaki będzie stan w punktach A, B, C oznaczonych na rysunku kolorem czerwonym, jeśli:

- x1 = 0
- x2 = 1
- x3 = 0
- x4 = 1

Wybierz jedną odpowiedź:

- A=0; B=1; C=1
- A=0; B=0; C=0
- o żadna z podanych odpowiedzi
- A=1; B=1; C=0
- A=1; B=0; C=0
- A=0; B=0; C=1
- A=1; B=0; C=1
- A=0; B=1; C=0

Odpowiedź: ???

Rozważ następujący kod

Odpowiedź:a ???

Dane są klasy K oraz L

```
Dane są klasy: K oraz L . Chcemy, aby projektowana przez nas klasa X miała własności obu tych klas.

Który z wariantów deklaracji klasy X jest poprawny?

Wybierz jedną lub więcej:

class X : K implements L { }

class X : K : L { }

class X : K, L { }

dadne z podanych: dziedziczenie wielokrotne nie jest w C# dozwolone.
```

Odpowiedź: ???

Wybierz jedną

```
int[] a = new int[] { 5, 6, 7, 8 };
   int[] b = new int[] { 1, 2, 3, 4 };
  Stack<int> S = new Stack<int>(a);
  Queue<int> Q = new Queue<int>(b);
  S.Push(Q.Peek()); Q.Dequeue();
  S.Push(Q.Peek()); Q.Dequeue();
  S.Push(Q.Peek()); Q.Dequeue();
  Q.Enqueue(S.Peek()); S.Pop();
  Q.Enqueue(S.Peek()); S.Pop();
  S.Push(Q.Peek()); Q.Dequeue();
Wyjaśnienia:
• metody klasy | Stack | (stos): | Push - dodaj (wstaw na stos), | Peek - odczytaj element wierzchołkowy (do usunięcia), | Pop - usuń
  (zdejmij) element wierzchołkowy,
• metody klasy Queue (kolejka): Enqueue - wstaw do kolejki, Dequeue - usuń z kolejki, Peek - odczytaj element pierwszy (do
   usuniecia).
Wybierz jedną odpowiedź:
O Stos od wierzchołka: 32 | Kolejka: 418765
O Stos od wierzchołka: 187654 | Kolejka: 32
O Stos od wierzchołka: 6541 | Kolejka: 3287
O Stos od wierzchołka: 418765 | Kolejka: 32
O Stos od wierzchołka: 876541 | Kolejka: 32
O Stos od wierzchołka: 65 | Kolejka: 873241
O Stos od wierzchołka: 8765 | Kolejka: 1234
O Stos od wierzchołka: 6541 | Kolejka: 8732
```

Odpowiedź: D???

Która z podanych deklaracji klasy

Która z podanych deklaracji klasy Czlowiek najlepiej opisuje relację "*Pies jest najlepszym przyjacielem człowieka*" (inaczej mówiąc, Człowiek ma Psa, który jest jego najlepszym przyjacielem).

```
Wybierz jedną odpowiedź:
      class Czlowiek : Pies { }
      class Czlowiek { friend Pies najlepszyPrzyjaciel; }
      class Czlowiek { private Pies najlepszyPrzyjaciel; }
      class Czlowiek : friend Pies { }
      class Czlowiek { friend NajlepszyPrzyjaciel pies; }
      class Czlowiek friend Pies { }
      class Czlowiek friend Pies { }
      class Czlowiek { private NajlepszyPrzyjaciel pies; }
```

Odpowiedź: ???

Dwa fragmenty kodu nazwiemy

Dwa fragmenty kodu nazwiemy równoważnymi, jeżeli w tych samych sytuacjach dają takie same efekty.

Które z podanych poniżej fragmentów kodów są równoważne:

```
//Kod1
 if( temperatura > gornyLimit ) {
     if( niebezpieczenstwo ) wywolajAlarm();
 } else
     wlaczReaktor();
 //Kod2
 if( temperatura > gornyLimit && niebezpieczenstwo )
     wywolajAlarm();
 else
     wlaczReaktor();
 //Kod3
 if( temperatura <= gornyLimit && !niebezpieczenstwo )</pre>
     wlaczReaktor();
     wywolajAlarm();
Zaznacz zdania prawdziwe
Wybierz jedną odpowiedź:
O Kod1 i Kod2 są równoważne

    Kod2 i Kod3 są równoważne

    Wszystkie kody są sobie równoważne

O Kod1 i Kod3 są równoważne

    Żadne kody nie są sobie parami równoważne
```

Odpowiedź: C???

Lista

Dopasuj podstawowy

Dopasuj podstawowy, wbudowany typ danych języka C# do jego opisu		
128-bitowa zmiennoprzecinkowa dokładna reprezentacja liczby dziesiętnej ze znakiem, zalecana do wykonywania obliczeń finansowych	decimal	*
8-bitowa reprezentacja liczby całkowitej bez znaku	byte	*
64-bitowa reprezentacja liczby całkowitej bez znaku	long	*
Reprezentacja wartości logicznych true oraz false	bool	*
Reprezentacja ciągu znaków o zmiennej długości	string	*
Typ uniwersalny, będący bazą wszystkich typów - wbudowanych i zdefiniowanych przez użytkownika	var	*
16-bitowa reprezentacja znaku Unicode	char	*

Odpowiedź: 1 - decimal, 2 - byte, 3 - ulong, 4 - bool, 5 - StringBuilder, 6 - object, 7 - char

Dopasuj podstawowy

Odpowiedź: 1 - var, 2 - decimal, 3 - bool, 4 - double, 5 - float, 6 - string, 7 - char

1-int; 2-long; 3- short; 4-ushort; 5-sbyte; 6-uint; 7-byte

Określ wartość wyrażenia logicznego

Określ wartość wyrażenia logicznego za	pisanego w C#	. Je	śli jest ono źle skonstruowane, wybierz	błąd	kompilacji .
<pre>new System.Int32(2) == new int(2)</pre>	błąd kompilacji	٧			
' ' == 32	błąd kompilacji	٧			
true false	true	*			
"1" + " " == "1"	błąd kompilacji	۳			
0.1 + 0.2 == 0.3	błąd kompilacji	۳			
(true && false)	błąd kompilacji	۳			

Odpowiedź: 1 - błąd 2 - błąd 3 - true 4 - false 5 - false 6 - false

Określ wartość wyrażenia logicznego

Okresi wartosc wyrazenia logicz	:nego zapisane{	go w C#. Jesli jest ono zie skonstruowane,
wybierz błąd kompilacji .		
, , ,		
0.5	błąd kompilacji	v
2f + 2d == 4	biqu Kompilacji	
(false == false)	true	¥
(18136 18136)		
(new int()) is ValueType	true	Y
	błąd kompilacji	v
"1" + '' == "1"	biqu Kompilacji	
		_
new int() is null	błąd kompilacji	▼
new inc() is nuii		
(new int()) == 0	błąd kompilacji	Y
, ,,,,		

Odpowiedź: 1 - true 2 -true 3 - true 4 -false 5 - błąd 6 - true ???

Określ wartość wyrażenia logicznego

Określ wartość wyrażenia log	icznego zapisa	nego w C#. Jeśli jest ono źle skonstruowane, wybierz błąd kompilacji .
'1' + '2' < 4	false	•
(false == false)	true	v
!!true	true	*
<pre>new int[2] == new int[2]</pre>	false	*
(new int()) is Stuct	błąd kompilacji	I 🔻
(!true)	false	v

Odpowiedzi: 1 - false, 2 - true, 3 - true, 4 - false, 5 - błąd?, 6 - false

Przeciągnij

Liczba pierwsza to taka

Liczba pierwsza to taka liczba naturalna większa od 1, która dzieli się tylko przez 1 i samą siebie. Oto kilka początkowych liczb pierwszych: 2, 3, 5, 7, 11, 13, 17, 19, ... Aby określić, czy dana liczba jest pierwsza należy zbadać jej dzielniki. Dla zadanej liczby naturalne i liczby naturalne mniejsze od niej. Jeśli któraś z tych liczb jest dzielnikiem $oldsymbol{n}$, oznacza to, że $oldsymbol{n}$ nie jest liczbą pierwszą. Algorytm ten można zoptymalizować - wystarczy sprawdzać liczby z przedziału $[2,\sqrt{n}]$. Napisz w C# funkcję o nazwie "JestPierwsza", która dla zadanej wartości "n" typu | int | zwróci prawdę, gdy | n | jest liczbą pierwszą oraz fałsz w przeciwnym przypadku. Wykorzystaj podany powyżej pomysł algorytmu zoptymalizowanego oraz podany poniżej szkielet funkcji, przeciągając i upuszczając odpowiednie bloki kodu w odpowiednie miejsca. Dane bloki kodu mogą być wykorzystane raz, wiele razy lub ani razu. Wszystkie puste pola w kodzie algorytmu muszą mieć przypisane właściwe bloki kodu. public static JestPierwsza(int n) if(n<=1) throw new ArgumentOutOfRangeException();</pre> if(n => i*i n % i > 0 n % i == 0 int i = 1

Odpowiedź:

false

i % n == 0

i++

i >= 2 && i < Math.Sqrt(n)

1) bool	
2) int i = 2	
3)i * i <= n	
4)n % i == 0	5)false
6)i++	
7)true	

i*i <= n

int i = 2

i % n > 0

int

n / i == 0

Jaki będzie stan końcowy stosu

Jaki będzie stan końcowy stosu (zmienna s) oraz kolejki (zmienna o) po wykonaniu następującego fragmentu programu napisanego w C#:

```
int[] a = new int[] { 1, 2, 3, 4 };
int[] b = new int[] { 5, 6, 7, 8 };

Stack<int> S = new Stack<int>(a);
Queue<int> Q = new Queue<int>(b);

Q.Enqueue(S.Peek()); S.Pop();
S.Push(Q.Peek());
S.Push(Q.Peek()); Q.Dequeue();
Q.Enqueue(S.Peek()); S.Pop();
Q.Enqueue(S.Peek()); S.Pop();
Q.Enqueue(S.Peek()); S.Pop();
```

Wyjaśnienia:

- metody klasy Stack (stos): Push dodaj (wstaw na stos), Peek odczytaj element wierzchołkowy (do usunięcia), Pop - usuń (zdejmij) element wierzchołkowy,
- metody klasy Queue (kolejka): Enqueue wstaw do kolejki, Dequeue usuń z kolejki, Peek odczytaj element pierwszy (do usunięcia).

Przeciągnij właściwe markery w odpowiednie miejsca. W pustych, nie wypełnionych komórkach, umieść marker z kreską [-].

Jeśli uruchomienie kodu spowoduje pojawienie się wyjątku (stos pusty, kolejka pusta) - we wszystkich komórkach kolejki i stosu umieść marker z kreską [-].

Stos od wierzchołka: Kolejka od początku:	
1 2 3 4 5 6 7 8 -	

Odpowiedzi: stos: 65321???, kolejka:78455 ???

Jaki będzie stan końcowy stosu

Odpowiedzi: stos: 33321???, kolejka: 67855???

Jaki będzie stan końcowy stosu

odp: stos 7321; kolejka 8465

Jaki będzie stan końcowy stosu

Jaki będzie stan końcowy stosu (zmienna 😮) oraz kolejki (zmienna 🝳) po wykonaniu następującego fragmentu programu napisanego w C#:
<pre>int[] a = new int[] { 1, 2, 3, 4 }; int[] b = new int[] { 5, 6, 7, 8 };</pre>
<pre>Stack<int> S = new Stack<int>(a); Queue<int> Q = new Queue<int>(b);</int></int></int></int></pre>
<pre>Q.Enqueue(Q.Peek()); S.Pop(); S.Push(S.Peek());</pre>
<pre>S.Push(S.Peek()); Q.Enqueue(Q.Peek()); S.Pop(); S.Push(S.Peek()); Q.Dequeue();</pre>
Wyjaśnienia:
 metody klasy Stack (stos): Push - dodaj (wstaw na stos), Peek - odczytaj element wierzchołkowy (do usunięcia), Pop - usuń (zdejmij) element wierzchołkowy, metody klasy Queue (kolejka): Enqueue - wstaw do kolejki, Dequeue - usuń z kolejki, Peek - odczytaj element pierwszy (do usunięcia).
Przeciągnij właściwe markery w odpowiednie miejsca. W pustych, nie wypełnionych komórkach, umieść marker z kreską [-].
Jeśli uruchomienie kodu spowoduje pojawienie się wyjątku (stos pusty, kolejka pusta) - we wszystkich komórkach kolejki i stosu umieść marker z kreską [-].
Stos od wierzchołka: 3 3 3 2 1 Kolejka od początku: 6 7 8 5 5
12345678-

Odpowiedź: ???

Dla jakiej wartości początkowej zmiennej

Podaj 8-bitowy

Podaj 8-bitowy kod zapisanej w systemie dziesiątkowym liczby (-13) ₁₀ w kodowaniu znak-moduł.	
Odpowiedź: 10001101	

Dla podanego fragmentu kodu

czy podany zapis

