一体化超声波测距模块 多路串口使用说明书

型号: AJ-SRO4M-T-X

产品实物图:

深圳市安吉电子

目录

>>产品概述…	••••••	2
>>产品特点…	• • • • • • • • • • • • • • • • • • • •	•••••4
>>产品应用••	• • • • • • • • • • • • • • • • • • • •	•••••4
>>技术参数••	• • • • • • • • • • • • • • • • • • • •	5
产品结构	内图	•••••5
电气参数	΄	•••••5
>>硬件联接说		•••••6
>>通信协议及	支示例	•••••6
>>电脑软件调	聞试方法	8
>>模块安装说	治明······	10
波束角图	<u> </u>	10
位置选择	Z F	·····11
惶		·····11
惶		·····11
惶		·····12
惶	 青况四······	·····12
惶	青况五······	·····13
狈	则人范围······	·····13
>>注意事项	•••••	14

14	>>产品尺寸
15	超声波换能器尺寸
15	控制主板尺寸
<u>†15</u>	板载换能器主板尺寸

>>产品概述

AJ-SR04M- T-X超声波测距模块,是采用收发一体的防水带线探头,运用非接触试超声波探测技术设计而成。产品在20cm 至800cm 范围内,能够准确探测出与平面物体间的距离,并且在20cm 至250cm 范围内,能够准确测人。

基本工作原理:此超声波测距模块连接3-5.5V 电源后,同时最多并联255个模块工作。如有相关要求,可以与本公司联系,我们会为您提供和定做符合您需求的产品

发散角度可以自由调节,波特率自由设定

>>产品特点

- 1、体积小,使用便捷;
- 2、功耗低, 先择低功耗模式时〈20ua:
- 3、使用电压宽 3-5.5V 工作电压
- 3、测量精度高最高分辩率 1mm 精度:
- 4、抗干扰强;
- 5、一体化封闭式防水带线探头,适用于潮湿、恶劣的测量场

>>产品应用场合

- 1、智能小车测距,避障
- 2、物体距离测量,人体高度测量
- 3、智能交通控制,停车位控制
- 4、教研,安防,工业控制
- 5、人工智能,飞机高度测量等

>>技术参数:

产品结构图

电气参数

上 户 会 W.	
电气参数	AJ-SR04M 超声波模块
工作电压	DC 3-5.5V
工作电流	40mA 持续时间小于 50us
待机电流	2mA
工作频率	40KHz
最远量程	8m
最近量程	20cm
测量角度	75 度
输入触发信号	2:Trig/RX 触发/串口接收/开关量使能
棚八熈久信与	3:Echo/TX 脉宽输出/串口输出/开关量输出
输出回响信号	输出 TTL, 串口 5 种模式选择
串口输出格式	4800/9600/19200/38400/115200 n 8 1
分辨率	约 1mm
工作温度	-20-75℃
存储温度	-40-80°C
探头线长	1米 / 2.5米 / 6米
状态指示	LED 指示状态,工作一次闪一次/开关量输出状态
规格尺寸	41.3*28.5*23mm

>>硬件联接说明

电脑或者 MCU 端的 TX 和所有模块的 RX 接到一起, 电脑或者 MCU 端的 RX 和所有模块的 TX 接到一起,最并联 255 个站.

>>通信协议及示例

所有的通信格式如下:

起始	站号	功能编号	数据方向	数据 0	数据1	数据 2	数据 3	结束码	BCC
OX7F	00	0X10	00	00	00	00	00	0X03	

起始: 起始码为 0X7F

站号: 向哪个站发送数据或者是哪个站回来的数据

功能编码: 0X10 读模块参数,0X11 写模块参数,0X12 获取模块距离,0X20 休眠所有模块数据方向: 0X00 电脑或 MCU 向模块发送数据,0X01 模块向电脑或者 MCU 回应数据

数据 0,1,2,3: 有效数据位,跟据命令的不同而不同

结束码: 固定 0X03

BCC: 和校验,从"站号"即第二位加到结束码 0X03 为 BCC 值,不包含启始位 0X7F

备注:建议每一条命令下去最少间隔时间为 50ms;

通信示例 1: 读取站号 1# 2# 3#站距离信息

	起	站	命	数据方					结束	和校
	始	号	令	向	data0	data1	data2	data3	码	验
读站 1#数据	7F	01	12	00	00	00	00	00	03	16
读站 2#数据	7F	02	12	00	00	00	00	00	03	17
读站 3#数据	7F	03	12	00	00	00	00	00	03	18

起始: 起始码为 **0X7F**

站号: 向哪个站发送数据 功能编码: 0X12 读模块距离

数据方向: 0X00 电脑或 MCU 向模块发送数据

data0,1,2,3: 无任何意义 结束码: 固定 0X03

BCC: 和校验.从"站号"即第二位加到结束码 0X03 为 BCC 值,不包含启始位 0X7F

通信示例 2: 站号 1# 2# 3#站返回距离信息

	起	站		数据方					结束	和校
	始	号	命令	向	data0	data1	data2	data3	码	验
返回 1#数据	7F	01	0x12	01	XX	XX	00	00	03	BCC
返回 2#数据	7F	02	0x12	01	XX	XX	00	00	03	BCC
返回 3#数据	7F	03	0x12	01	XX	XX	00	00	03	BCC

起始: 起始码为 0X7F站号: 向哪个站发送数据功能编码: 0X12 读模块距离

数据方向: 0X01 模块向电脑或者 MCU 回应数据 data0.1: data0*0x100+data1=距离,距离单位 mm

data2,3: 无任何意义 结束码: 固定 0X03

BCC: 和校验,从"站号"即第二位加到结束码 0X03 为 BCC 值,不包含启始位 0X7F

通信示例 3: 站读取模块上面的参数

	起	站		数据方					结束	和校
	始	号	命令	向	data0	data1	data2	data3	码	验
返回1#数据	7F	00	0X10	00	00	00	00	00	03	BCC

起始: 起始码为 0X7F

站号: 00 所有站都响应大于 0 则对应的站响应,如果总线上有多个模块请不要使用 00

功能编码: 0X10 读模块参数

数据方向: 0X00 电脑或 MCU 向模块发送数据

data0,1,2,3: 无任何意义 结束码: 固定 0X03

BCC: 和校验,从"站号"即第二位加到结束码 0X03 为 BCC 值,不包含启始位 0X7F

通信示例 4: 模块回应参数

	起	站		数据方					结束	和校
	始	号	命令	向	data0	data1	data2	data3	码	验
返回 1#数据	7F	04	0X10	01	04	1E	01	01	03	BCC

起始: 起始码为 **0X7F** 站号: 4#模块回应参数值 功能编码: **0X10** 读模块参数

数据方向: 0X01 模块向电脑或者 MCU 回应数据

data0: 模块设定的站号为 4#站

data1: 最远测距 1E=30=3.0 米,分辩率为分米

data2: 测量角度=75-(data2*5)=70度,测量角度大约为70度

data3: 通信波特率 00=2400 01=9600 02=19200 03=38400 04=115200

结束码: 固定 0X03

BCC: 和校验,从"站号"即第二位加到结束码 0X03 为 BCC 值,不包含启始位 0X7F

第7页 共16页

通信示例 5: 写模块参数

	起	站		数据方					结束	和校
	始	号	命令	向	data0	data1	data2	data3	码	验
返回1#数据	7F	00	0X11	00	04	1E	01	01	03	38

起始: 起始码为 0X7F

站号: 00 所有站都响应大于 0 则对应的站响应,如果总线上有多个模块请不要使用 00

功能编码: 0X11 写模块参数

数据方向: 0X00 电脑或 MCU 向模块发送数据

data0: 模块设定的站号为 4#站

data1: 最远测距 1E=30=3.0 米,分辩率为分米

data2: 测量角度=75-(data2*5)=70度,测量角度大约为70度

data3: 通信波特率 00=2400 01=9600 02=19200 03=38400 04=115200

结束码: 固定 0X03

BCC: 和校验,从"站号"即第二位加到结束码 0X03 为 BCC 值,不包含启始位 0X7F

>>电脑软件调试方法

软件界面介绍:

- 1: 选中的站号可以被软件获取距离,如果获取一次失败软件自动会屏蔽该站号
- 2: 获取距离的周期,最小设置 30ms
- 3: 自动触发选择"开"并且正常配置 10#位置的串口参数
- 4: 配置或者读出模块的站号
- 5: 配置或者读出模块的最远距离
- 6: 配置或者读出模块的角度等级
- 7: 配置或者读出模块的波特率
- 8: 读出模块参数,操作前需要正常配置 10#位置的串口参数
- 9: 写入模块参数,操作前需要正常配置 10#位置的串口参数

距离波形图:

点击主界面"距离波形图"即可打开距离曲线界面,如果获取到一个正常的距离数据则表格会更新一次,没有获取正常表格不会更新.

新模块到手配置方法:

- 1: 模块出厂时默认为9600波特率
- 2: 写参数到模块其中波特率需要重启模块才生效,其它参数即时生效

>>模块安装说明 波束角图

波束角:超声波传感器在发射超声波时沿传感器中轴线的延长线(垂直于传感器表面 0°线)方向上的超声射线能量最大。由此向外其他方向上的声波能量逐渐减弱。以传感器中轴线的延长线为轴线,由此向外,至能量强度减少一半(-2dB)处,这个角度被称为波束角。

位置选择

要求:被测物体应该在波束角范围内,尽量垂直于轴线及相切于弧线。情况一:

情况二:

情况三:

情况四:

情况五:

测人范围

>>注意事项:

- ① 模块检测最小距离为 20cm, 在 20cm 内有物体, 将获得不准确信号
- ② 测距时,被测物体的面积不小于 0.2 平方米且平面尽量平整,否则会影响测试结果;

>>产品尺寸

带线超声波换能器尺寸

带线控制主板尺寸

板载换能器主板尺寸

第 15 页 共 16 页

END 感谢您的阅读