_	$\omega_{1^{+}lphaeta}^{\#1}$	$\omega_{1}^{\#2}{}_{\alpha\beta}$	$f_{1^{+}\alpha\beta}^{\#1}$	$\omega_{1^{-}\alpha}^{\sharp 1}$	$\omega_{1-\alpha}^{\#2}$	$f_{1}^{\#1}\alpha$	$f_{1-\alpha}^{\#2}$
$\omega_{1}^{\#1}\dagger^{lphaeta}$	$k^2 (2 r_1 + r_5)$	0	0	0	0	0	0
$\omega_{1}^{\#2}\dagger^{lphaeta}$	0	0	0	0	0	0	0
$f_{1}^{#1} \dagger^{\alpha\beta}$	0	0	0	0	0	0	0
$\omega_{\scriptscriptstyle 1}^{\scriptscriptstyle \#1}\dagger^{lpha}$	0	0	0	$k^2 \left(r_1 + r_5 \right) + \frac{2t_3}{3}$	$-\frac{\sqrt{2} t_3}{3}$	0	$-\frac{2}{3} \bar{l} k t_3$
$\omega_1^{\#2} \dagger^{\alpha}$	0	0	0	$-\frac{\sqrt{2} t_3}{3}$	<u>t3</u> 3	0	$\frac{1}{3}\bar{l}\sqrt{2}kt_3$
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	<u>2 i kt</u> 3 3	$-\frac{1}{3}\bar{l}\sqrt{2}kt_3$	0	$\frac{2k^2t_3}{3}$

					t3)		Ιm
$\tau_{1^{-}\alpha}^{\#2}$	0	0	0	$\frac{2i}{k(1+2k^2)(r_1+r_5)}$	$\frac{i\sqrt{2}(3k^2(r_1+r_5)+2t_3)}{k(1+2k^2)^2(r_1+r_5)t_3}$	0	$\frac{6k^2(r_1+r_5)+4t_3}{(1+2k^2)^2(r_1+r_5)t_3}$
$\tau_{1^-}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{#2}$	0	0	0	$\frac{\sqrt{2}}{k^2 (1+2 k^2) (r_1+r_5)}$	$\frac{3k^2(r_1+r_5)+2t_3}{(k+2k^3)^2(r_1+r_5)t_3}$	0	$-\frac{i\sqrt{2}(3k^2(r_1+r_5)+2t_3)}{k(1+2k^2)^2(r_1+r_5)t_3}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{1}{k^2 \left(r_1 + r_5 \right)}$	$\frac{\sqrt{2}}{k^2 (1+2 k^2) (r_1 + r_5)}$	0	$-\frac{2i}{k(1+2k^2)(r_1+r_5)}$
$\tau_1^{\#1}{}_+\alpha\beta$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}\ \tau_{1}^{\#1}{}_{\alpha\beta}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#1}{}_{+}\alpha\beta$	$\frac{1}{k^2\left(2r_1+r_5\right)}$	0	0	0	0	0	0
	$\sigma_{1}^{\#1} + ^{lphaeta}$	$\sigma_1^{\#2} + \alpha^{\beta}$	$\tau_1^{\#1} + ^{\alpha\beta}$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#1} + ^{lpha}$	$t_1^{\#2} + ^{\alpha}$

$\sigma_{0}^{\#1}$	0	0	0	0
$\tau_0^{\#2}$	0	0	0	0
$\tau_{0}^{\#1}$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$\sigma_{0}^{\#1}$	$\frac{1}{(1+2k^2)^2t_3}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	0	0
	$\sigma_{0}^{\#1}$ †	$\tau_{0}^{\#1}$ †	$\tau_{0}^{\#2}$ †	$\sigma_{0}^{\#1} +$

Source constraints	
SO(3) irreps	#
$\sigma_{0}^{\#1} == 0$	1
$\tau_{0^{+}}^{\#2} == 0$	1
$\tau_{0^{+}}^{\#1} - 2 \bar{\imath} k \sigma_{0^{+}}^{\#1} == 0$	1
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3
$\tau_1^{\#1}{}^{\alpha} == 0$	3
$\tau_{1+}^{\#1}{}^{\alpha\beta} == 0$	3
$\sigma_{1+}^{\#2\alpha\beta} == 0$	3
$\tau_{2^{+}}^{\#1\alpha\beta} == 0$	5
$\sigma_{2+}^{\#1\alpha\beta} == 0$	5
Total #:	25

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$\tau_{2}^{\#1}_{\alpha\beta}$	$\sigma_{2^{-}\alpha\beta\chi}^{\#1}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	0	0	0
$\tau_2^{\#1} \dagger^{\alpha\beta}$	0	0	0
$\sigma_{2}^{#1}\dagger^{lphaeta\chi}$	0	0	$\frac{1}{k^2 r_1}$

	$\omega_0^{\sharp 1}$	$f_{0}^{#1}$	$f_{0^{+}}^{#2}$	$\omega_0^{\#1}$
$\omega_{0^+}^{\sharp 1}$ †	t_3	$-\bar{l}\sqrt{2}kt_3$	0	0
$f_{0}^{#1}\dagger$	$i \sqrt{2} kt_3$	$2k^2t_3$	0	0
$f_{0}^{#2} \dagger$	0	0	0	0
$\omega_{0}^{\sharp 1}$ †	0	0	0	0

$\omega_{2}^{\#1}_{+}$ $\beta_{2}^{\#1}_{+}$ $\alpha_{2}^{\#1}_{-}$ $\alpha_{\beta\chi}$	0	0	$k^2 r_1$
$f_2^{\#1}_2 \alpha \beta$	0	0	0
$\omega_2^{\#1}{}_+\alpha\beta$	0	0	0
	$\omega_2^{\#1} + ^{lphaeta}$	$f_2^{#1} + ^{\alpha \beta}$	$\omega_{2}^{\#1} +^{lphaeta\chi}$

Quadratic pole

Pole residue: $-\frac{1}{r_1(r_1+r_5)(2r_1+r_5)p^2} > 0$

Polarisations: 2

Unitarity conditions

 $r_1 < 0 \&\& (r_5 < -r_1 || r_5 > -2 r_1) || r_1 > 0 \&\& -2 r_1 < r_5 < -r_1$

(No massive particles)