Computational results for E2

INSTANCE	n	m	U	LPT	MF	COMB	LIST	PSMF	JOH	LB
1	2	10	100.800	2029.0	2039.0	2029.0	2029.0	2029.0	2027.0	2025.0
2 3	2 2	10 10	100.800 100.800	2200.0	$2221.0 \\ 2098.0$	2200.0	2166.0 2029.0	2163.0	$2163.0 \\ 2029.0$	2160.0 2028.0
4	2	10	100.800	$2053.0 \\ 2243.0$	2098.0 2277.0	$2053.0 \\ 2243.0$	2029.0	2031.0 2243.0	$2029.0 \\ 2243.0$	2028.0
5	2	10	100.800	2340.0	2321.0	2321.0	2317.0	2315.0	2315.0	2315.0
6 7	2 2	10 10	100.800 100.800	$1983.0 \\ 2617.0$	$2008.0 \\ 2652.0$	1983.0 2617.0	1973.0 2611.0	1973.0 2606.0	$1973.0 \\ 2590.0$	1971.0 2589.0
8	2	10	100.800	2733.0	2706.0	2706.0	2701.0	2693.0	2684.0	2680.0
9	2 2	10 10	100.800 100.800	1753.0 1884.0	1706.0 1908.0	1706.0 1884.0	1701.0 1866.0	1706.0 1877.0	$1706.0 \\ 1864.0$	1700.0 1864.0
11	2	10	100.800	1975.0	2071.0	1975.0	1975.0	1975.0	1971.0	1970.0
12 13	2 2	10 10	100.800 100.800	2343.0 2134.0	$2338.0 \\ 2132.0$	$2338.0 \\ 2132.0$	2336.0 2132.0	2321.0 2132.0	2322.0 2132.0	2321.0 2132.0
14	2	10	100.800	2604.0	2563.0	2563.0	2560.0	2562.0	2560.0	2558.0
15 16	2 2	10 10	100.800 100.800	$2047.0 \\ 2435.0$	$2019.0 \\ 2440.0$	$2019.0 \\ 2435.0$	2006.0 2434.0	2003.0 2425.0	$2002.0 \\ 2424.0$	2002.0 2423.0
17	2	10	100.800	1751.0	1753.0	1751.0	1738.0	1737.0	1737.0	1736.0
18 19	2 2	10 10	100.800 100.800	$2267.0 \\ 2283.0$	$2321.0 \\ 2355.0$	$2267.0 \\ 2283.0$	2266.0 2283.0	2267.0 2283.0	$2266.0 \\ 2282.0$	2266.0 2279.0
20	2	10	100.800	2284.0	2324.0	2284.0	2278.0	2279.0	2278.0	2270.0
21 22	2 2	10 10	100.800 100.800	$2222.0 \\ 2659.0$	$2179.0 \\ 2688.0$	$2179.0 \\ 2659.0$	$2179.0 \\ 2659.0$	2179.0 2654.0	$2179.0 \\ 2654.0$	2179.0 2653.0
23	2	10	100.800	2624.0	2633.0	2624.0	2600.0	2598.0	2598.0	2597.0
24 25	2 2	10 10	100.800 100.800	$1992.0 \\ 2720.0$	$1983.0 \\ 2742.0$	$1983.0 \\ 2720.0$	1983.0 2716.0	1967.0 2709.0	$1967.0 \\ 2709.0$	1962.0 2709.0
26	2	10	100.800	2172.0	2173.0	2172.0	2172.0	2172.0	2172.0	2172.0
27	2	10	100.800	2628.0	2622.0	2622.0	2622.0	2620.0	2615.0	2615.0
28 29	2 2	10 10	100.800 100.800	$2111.0 \\ 2264.0$	$2083.0 \\ 2271.0$	$2083.0 \\ 2264.0$	2083.0 2251.0	2075.0 2252.0	$2075.0 \\ 2251.0$	2074.0 2250.0
30	2	10	100.800	2049.0	2034.0	2034.0	2027.0	2030.0	2027.0	2026.0
31 32	2 2	10 10	100.800 100.800	$2222.0 \\ 2345.0$	$2214.0 \\ 2255.0$	$2214.0 \\ 2255.0$	2195.0 2254.0	2195.0 2249.0	$2195.0 \\ 2249.0$	2195.0 2248.0
33	2	10	100.800	1889.0	1918.0	1889.0	1870.0	1873.0	1870.0	1868.0
34 35	2 2	10 10	100.800 100.800	1999.0 2521.0	1992.0 2506.0	$1992.0 \\ 2506.0$	1965.0 2467.0	1979.0 2463.0	1965.0 2463.0	1963.0 2459.0
36	2	10	100.800	2248.0	2278.0	2248.0	2248.0	2248.0	2247.0	2246.0
37 38	2 2	10 10	100.800	2308.0	$2310.0 \\ 2026.0$	2308.0	2308.0 2026.0	2308.0 2024.0	$2308.0 \\ 2022.0$	2306.0
39	2	10	100.800 100.800	$2028.0 \\ 2306.0$	2343.0	$2026.0 \\ 2306.0$	2294.0	2289.0	2289.0	2022.0 2288.0
40 41	2 2	10 10	100.800	2303.0 2634.0	2351.0 2619.0	2303.0 2619.0	2303.0 2598.0	2303.0 2611.0	$2303.0 \\ 2598.0$	2302.0 2595.0
41 42	2	10	100.800 100.800	1864.0	1842.0	1842.0	1842.0	1842.0	1842.0	1841.0
43	$\frac{2}{2}$	10 10	100.800	2172.0	2212.0	2172.0	2169.0	2168.0	2168.0	2168.0
44 45	2	10	100.800 100.800	$2888.0 \\ 2171.0$	$2809.0 \\ 2167.0$	$2809.0 \\ 2167.0$	2782.0 2147.0	2809.0 2146.0	2777.0 2141.0	2771.0 2139.0
46	$\frac{2}{2}$	10	100.800	2464.0	2447.0	2447.0	2414.0	2408.0	2408.0	2405.0
47 48	2	10 10	100.800 100.800	$2483.0 \\ 2050.0$	$2487.0 \\ 2050.0$	$2483.0 \\ 2050.0$	2461.0 2036.0	2451.0 2040.0	$2448.0 \\ 2028.0$	2448.0 2024.0
49	2 2	10 10	100.800	2503.0	2502.0	2502.0	2502.0	2488.0	2488.0	2487.0
50 51	2	10	100.800 100.800	$2212.0 \\ 2695.0$	$2215.0 \\ 2643.0$	$2212.0 \\ 2643.0$	2190.0 2643.0	2189.0 2633.0	$2189.0 \\ 2632.0$	2189.0 2630.0
52	2	10	100.800	2480.0	2478.0	2478.0	2412.0	2426.0	2412.0	2411.0
53 54	2 2	10 10	100.800 100.800	$2434.0 \\ 2074.0$	2438.0 2099.0	$2434.0 \\ 2074.0$	2414.0 2073.0	2418.0 2069.0	2414.0 2069.0	2413.0 2068.0
55	2 2	10	100.800	2089.0	2079.0	2079.0	2078.0	2079.0	2073.0	2073.0
56 57	2	10 10	100.800 100.800	$2542.0 \\ 1446.0$	$2586.0 \\ 1435.0$	$2542.0 \\ 1435.0$	$2542.0 \\ 1427.0$	2539.0 1425.0	$2539.0 \\ 1425.0$	2539.0 1425.0
58	2	10	100.800	1812.0	1863.0	1812.0	1812.0	1820.0	1811.0	1810.0
59 60	2 2	10 10	100.800 100.800	$2484.0 \\ 2206.0$	$2469.0 \\ 2210.0$	$2469.0 \\ 2206.0$	$2456.0 \\ 2205.0$	2451.0 2206.0	$2451.0 \\ 2204.0$	2448.0 2200.0
61	2	10	100.800	2225.0	2250.0	2225.0	2225.0	2218.0	2218.0	2217.0
62 63	2 2	10 10	100.800 100.800	$1833.0 \\ 2135.0$	$1855.0 \\ 2136.0$	$1833.0 \\ 2135.0$	1832.0 2135.0	1833.0 2135.0	$1833.0 \\ 2135.0$	1829.0 2132.0
64	2	10	100.800	2354.0	2356.0	2354.0	2345.0	2354.0	2345.0	2345.0
65 66	2 2	10 10	100.800 100.800	2700.0 2138.0	$2622.0 \\ 2142.0$	$2622.0 \\ 2138.0$	$2617.0 \\ 2135.0$	2612.0 2138.0	$2612.0 \\ 2135.0$	2611.0 2135.0
67	2	10	100.800	2931.0	2889.0	2889.0	2861.0	2872.0	2859.0	2859.0
68 69	2 2	10 10	100.800 100.800	$2328.0 \\ 2233.0$	$2325.0 \\ 2228.0$	$2325.0 \\ 2228.0$	2308.0 2221.0	2311.0 2222.0	$2304.0 \\ 2221.0$	2303.0 2213.0
70	2	10	100.800	2804.0	2696.0	2696.0	2684.0	2686.0	2684.0	2682.0
71 72	2 2	10 10	100.800 100.800	$2370.0 \\ 1867.0$	$2390.0 \\ 1866.0$	$2370.0 \\ 1866.0$	2370.0 1866.0	2389.0 1866.0	$2370.0 \\ 1866.0$	2370.0 1866.0
73	2	10	100.800	2120.0	2126.0	2120.0	2076.0	2068.0	2068.0	2067.0
74 75	2 2	10 10	100.800 100.800	$1978.0 \\ 1774.0$	$1972.0 \\ 1791.0$	$1972.0 \\ 1774.0$	1972.0 1768.0	1970.0 1775.0	$1970.0 \\ 1767.0$	1969.0 1767.0
76	2	10	100.800	2055.0	2016.0	2016.0	2010.0	2005.0	2005.0	2003.0
77 78	2 2	10 10	100.800 100.800	$1879.0 \\ 1952.0$	1882.0 1963.0	$1879.0 \\ 1952.0$	1846.0 1952.0	1846.0 1942.0	$1846.0 \\ 1942.0$	1844.0 1941.0
79	2	10	100.800	2015.0	2015.0	2015.0	2015.0	2008.0	2008.0	2008.0
80	2 2	10 10	100.800 100.800	2056.0	$2071.0 \\ 2004.0$	2056.0	2050.0 1965.0	2054.0	$2050.0 \\ 1956.0$	2049.0
81 82	2	10	100.800	$1982.0 \\ 2054.0$	2087.0	$1982.0 \\ 2054.0$	2047.0	1958.0 2041.0	2041.0	1950.0 2041.0
83	2	10	100.800	2544.0	2543.0	2543.0	2531.0	2531.0	2524.0	2511.0
84 85	2 2	10 10	100.800 100.800	$1815.0 \\ 2154.0$	$1846.0 \\ 2136.0$	$1815.0 \\ 2136.0$	1815.0 2125.0	1815.0 2125.0	$1815.0 \\ 2125.0$	1813.0 2124.0
86	2	10	100.800	2746.0	2752.0	2746.0	2717.0	2725.0	2709.0	2704.0
87 88	2 2	10 10	100.800 100.800	$\frac{2241.0}{1951.0}$	2202.0 1983.0	$\frac{2202.0}{1951.0}$	2197.0 1931.0	2198.0 1932.0	$2197.0 \\ 1923.0$	2195.0 1921.0
89	2	10	100.800	2959.0	2873.0	2873.0	2838.0	2851.0	2838.0	2837.0
90 91	2 2	10 10	100.800 100.800	$1903.0 \\ 2701.0$	$1893.0 \\ 2645.0$	$1893.0 \\ 2645.0$	1865.0 2645.0	1859.0 2645.0	$1859.0 \\ 2645.0$	1859.0 2645.0
92	2	10	100.800	2107.0	2073.0	2073.0	2073.0	2072.0	2072.0	2071.0
93 94	$\frac{2}{2}$	10 10	100.800 100.800	$1791.0 \\ 2302.0$	$1839.0 \\ 2291.0$	$1791.0 \\ 2291.0$	1791.0 2286.0	1791.0 2291.0	$1791.0 \\ 2285.0$	1790.0 2284.0
95	2	10	100.800	2876.0	2882 0 2096 2 0	2876.0	2856.0	2853.0	2853.0	2849.0
96 97	2 2	10 10	100.800 100.800	$2120.0 \\ 2351.0$	2096 <u>∡</u> 0 2378.0	$2096.0 \\ 2351.0$	2079.0 2327.0	2082.0 2327.0	$2079.0 \\ 2326.0$	2079.0 2326.0
98	2	10	100.800	2933.0	2853.0	2853.0	2853.0	2853.0	2851.0	2851.0
99 100	2	10 10	100.800 100.800	$2367.0 \\ 1902.0$	2368.0 1922.0	$2367.0 \\ 1902.0$	2357.0 1895.0	2355.0 1893.0	$2353.0 \\ 1886.0$	2352.0 1885.0
1	2 2	30	100.800	6220.0	6199.0	6199.0	6197.0	6197.0	6197.0	6197.0
2 3	2 2	30 30	100.800 100.800	6375.0	$6408.0 \\ 6782.0$	6375.0 6761.0	6364.0 6756.0	6363.0 6755.0	6363.0 6755.0	6363.0 6755.0
4	2	30	100.800	$6761.0 \\ 6657.0$	6638.0	6638.0	6630.0	6629.0	6629.0	6629.0
5	2	30	100.800	6176.0	6152.0	6152.0	6149.0	6149.0	6149.0	6149.0
6 7	2 2	30 30	100.800 100.800	$7607.0 \\ 7395.0$	$7589.0 \\ 7400.0$	$7589.0 \\ 7395.0$	7581.0 7388.0	7581.0 7387.0	$7581.0 \\ 7387.0$	7581.0 7387.0
8	2	30	100.800	7398.0	7387.0	7387.0	7387.0	7387.0	7387.0	7387.0
9 10	2 2	30 30	100.800 100.800	$6801.0 \\ 6401.0$	$6807.0 \\ 6400.0$	$6801.0 \\ 6400.0$	6781.0 6398.0	6781.0 6397.0	6781.0 6397.0	6781.0 6397.0
11	2	30	100.800	6864.0	6872.0	6864.0	6854.0	6854.0	6854.0	6854.0

References

Alvim, A.C.F., Ribeiro, C.C., Glover, F., Aloise, D.J.: A hybrid improvement heuristic for the one-dimensional bin packing problem. J. Heuristics 10, 205-229 (2004)

Alvim, A.C.F., Ribeiro, C.C.: A hybrid bin-packing heuristic to multiprocessor scheduling. In: Ribeiro, C.C., Martins, S.L. (eds.) Lecture Notes in Computer Science 3059, pp. 1-13. Springer-Verlag (2004a)

Alvim, A.C.F., Ribeiro, C.C.: A hybrid bin-packing heuristic to multiprocessor scheduling: Detailed computational results. http://www.uniriotec.br/~adriana/files/detPCmaxIN.pdf (2004b)

Blazewicz, J.: Selected topics in scheduling theory. Ann. Discrete Math. 31, 1-60 (1987)

Chen, B., Potts, C.N., Woeginger, G.J.: A review of machine scheduling: complexity, algorithms and approximability. In: Du, D.Z., Pardalos, P. (eds.) Handbook of Combinatorial Optimization, vol. 3, pp. 21-169. Kluwer Academic, Dordrecht (1998).

Cheng, T.C.E., Sin, C.C.S.: A state-of-the-art review of parallel-machine scheduling research. Eur. J. Oper. Res. 47, 271-292 (1990).

Chiaselotti, G., Gualtieri, M. I., Pietramala, P.: Minimizing the Makespan in Nonpreemptive Parallel Machine Scheduling Problem. Journal of Mathematical Modelling and Algorithms, 9(1), 39-51 (2010).

Coffman Jr., E.G., Garey, M.R., Johnson, D.S.: An application of bin-paking to multiprocessor scheduling. SIAM J. Comput. 7, 1-17 (1978).

Dell'Amico, M., Martello, S.: Optimal scheduling of tasks on identical parallel processors. ORSA J. Comput. 7, 191-200 (1995).

Dell'Amico, M., Iori, M., Martello, S., Monaci, M.: Heuristic and exact algorithms for the identical parallel machine scheduling problem. INFORMS J. Comput. 20, 333-344 (2008)

Fatemi Ghomi, S.M.T., Jolai Ghazvini, F.: A pairwise interchange algorithm for parallel machine scheduling. Prod. Plan. Control 9, 685-689 (1998)

Finn, G., Horowitz, E.: A linear time approximation algorithm for multiprocessor scheduling. BIT 19, 312-320 (1979)

França, P.M., Gendrau, M., Laporte, G., Müller, F.M.: A composite heuristic for the identical parallel machine scheduling problem with minimum makespan objective. Comput. Oper. Res. 21, 205-210 (1994)

Frangioni, A., Necciari, E., Scutellà, M.G.: A multi-exchange neighborhood for minimum makespan parallel machine scheduling problems. J. Comb. Optim. 8, 195-220 (2004)

Friesen, D.K.: Tighter bounds for the MultiFit processor scheduling algorithm. SIAM J. Comput. 13, 170-181 (1984).

Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman (1979).

Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell Syst. Tech. J. 45, 1563-1581 (1966).

Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math. 17, 416-429 (1969).

Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization and approximation in deterministic sequencing and scheduling: A survey. Ann. Discrete Math. 5, 287-326 (1979).

Gupta, J.N.D., Ruiz-Torres, A.J.: LISTFIT heuristic for minimizing makespan on identical parallel machines. Production Planning and Control 12, 28-36 (2001).

Haouari M., Gharbi A. and Jemmali, M.: Tight bounds for the identical parallel machine scheduling problem, International Transactions in Operational Research, 13: 1475-3995 (2006)

Hoogeveen, A., Lenstra, J.K., Van de Velde, S.L.: Sequencing and Scheduling. In: Dell'Amico, M., Maffioli, F., Martello, S. (eds.) Annotated Bibliographies in Combinatorial Optimization, pp. 181-197. Wiley, Chichester (1997)

Hübscher, R., Glover, F.: Applying tabu search with influential diversification to multiprocessor scheduling. Comput. Oper. Res. 21, 877-884 (1994)

Kedia, S. K.: A job scheduling problem with parallel processors. Unpublished Report, Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI (1971).

Langston, M.A.: Improved 0/1 interchange scheduling. BIT 22, 282-290 (1982)

Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B.: Sequencing and scheduling: algorithms and complexity. In: Graves, S.C., Rinnooy Kan, A.H.G., Zipkin, P.H. (eds.) Handbooks in Operations Research and Management Science 4, pp. 445-522. Elsevier (1993).

Lee, C. Y., Massey, J.D.: Multiprocessor scheduling: combining LPT and MULTIFIT. Discrete Applied Mathematics 20, 233-242 (1988).

Mokotoff, E.: Parallel machine scheduling problem: A survey. Asia Pac. J. Oper. Res. 18, 193-242 (2001).

Mokotoff, E.: An exact algorithm for the identical parallel machine scheduling problem. Eur. J. Oper. Res. 152, 758-769 (2004)

Paletta, G., Pietramala, P.: A new approximation algorithm for the nonpreemptive scheduling of independent jobs on identical parallel processors. SIAM J. Discrete Math. 21, 313-328 (2007).

Paletta G., Vocaturo F.: A short note on an advance in estimating the worst-case performance ratio of the MPS algorithm. SIAM J. on Discrete Math. 23, 2198-2203 (2010).

Paletta, G., Vocaturo, F.: A composite algorithm for multiprocessor scheduling. Journal of Heuristics, 17, 281-301 (2011)

Pinedo, M. L.: Scheduling: Theory, Algorithms, and Systems. Springer (2012).

Thesen, A.: Design and evaluation of tabu search algorithms for multiprocessor scheduling. J. Heuristics 4, 141-160(1998).

Yue, M.: On the exact upper bound for the MultiFit processor scheduling algorithm. Ann. Oper. Res. 24, 233-259 (1990).