Расстояние от точки до прямой

Расстояние от точки до прямой

Если точка не лежит на прямой, то расстояние от точки до прямой — это длина перпендикуляра, проведённого из точки на данную прямую. На рис. 1 показано расстояние d от точки M до прямой l.

Рис. 1. Расстояние от точки до прямой

Если точка лежит на прямой, то расстояние от точки до прямой считается равным нулю.

В конкретных задачах вычисление расстояния от точки до прямой сводится к нахождению высоты какой-либо подходящей планиметрической фигуры — треугольника, параллелограмма или трапеции.

Примеры решения задач

Разберём три задачи. Первая задача — простая, а вторая и третья примерно соответствуют уровню задачи C2 на ЕГЭ по математике.

Задача 1. Длина ребра куба $ABCDA_1B_1C_1D_1$ равна 1. Найдите расстояние: а) от точки B до прямой A_1C_1 ; б) от точки A до прямой BD_1 .

Решение. Обе ситуации изображены на рис. 2.

Рис. 2. К задаче 1

а) Искомое расстояние d есть высота BH треугольника BA_1C_1 . Данный треугольник равносторонний — все его стороны, будучи диагоналями граней, равны $\sqrt{2}$. Следовательно,

$$d = BH = BA_1 \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{6}}{2}$$
.

б) Искомое расстояние d есть высота AH треугольника ABD_1 . Данный треугольник прямоугольный. Действительно, прямая AB перпендикулярна плоскости ADD_1 и поэтому перпендикулярна любой прямой, лежащей в этой плоскости — в частности, прямой AD_1 .

Имеем: $AB=1,\ AD_1=\sqrt{2},\ BD_1=\sqrt{3}.$ Если S- площадь треугольника $ABD_1,$ то:

$$2S = AB \cdot AD_1 = BD_1 \cdot d.$$

Отсюда

$$d = \frac{1 \cdot \sqrt{2}}{\sqrt{3}} = \frac{\sqrt{6}}{3}.$$

Omeem: a) $\frac{\sqrt{6}}{2}$; б) $\frac{\sqrt{6}}{3}$.

Задача 2. Треугольник со сторонами AB=3, AC=3, BC=2 является основанием прямой призмы $ABCA_1B_1C_1$. Боковое ребро призмы равно 2. Найдите расстояние от точки A_1 до прямой BC_1 .

Решение. Искомое расстояние d есть высота A_1H треугольника A_1BC_1 (рис. 3).

Рис. 3. К задаче 2

По теореме Пифагора легко находим: $A_1B = \sqrt{13}$, $BC_1 = 2\sqrt{2}$. Таким образом, нам требуется найти высоту треугольника, в котором известны три стороны. Можно действовать по-разному; вот один из наиболее простых в данном случае путей.

Пусть $\varphi = \angle A_1 C_1 B$. Запишем теорему косинусов для стороны $A_1 B$ треугольника $A_1 B C_1$:

$$13 = 9 + 8 - 2 \cdot 3 \cdot 2\sqrt{2}\cos\varphi,$$

откуда

$$\cos\varphi = \frac{\sqrt{2}}{6}$$

И

$$\sin \varphi = \sqrt{1 - \cos^2 \varphi} = \frac{\sqrt{34}}{6} \,.$$

Тогда из прямоугольного треугольника A_1C_1H получаем:

$$d = 3\sin\varphi = \frac{\sqrt{34}}{2}.$$

Omeem: $\frac{\sqrt{34}}{2}$.

Задача 3. Основанием прямой призмы $ABCDA_1B_1C_1D_1$ служит трапеция с основаниями $AD=3,\ BC=1$ и боковыми сторонами AB=CD=2. Боковое ребро призмы равно 2. Найдите расстояние от точки A_1 до прямой BC.

Решение. Искомое расстояние d есть длина перпендикуляра A_1M , опущенного на прямую BC. Поскольку $A_1D_1 \parallel BC$, это расстояние равно также высоте BH трапеции A_1BCD_1 (рис. 4).

Рис. 4. К задаче 3

Боковая сторона данной трапеции: $A_1B = 2\sqrt{2}$. Нарисуем эту трапецию отдельно (рис. 5):

Рис. 5. Планиметрический чертёж

Легко находим:

$$A_1 H = \frac{A_1 D_1 - BC}{2} = 1,$$

и тогда

$$d = \sqrt{\left(2\sqrt{2}\right)^2 - 1^2} = \sqrt{7}.$$

Ответ: $\sqrt{7}$.