第2讲 综合评价与决策

汪晓银 教授

课后辅导微博 http:// weibo.com/wxywxq

➤层次分析法(Analytic Hierarchy

Process,简称AHP)是对一些较为复杂、较为模糊的问题作出决策的简易方法,它特别适用于那些难于完全定量分析的问题。它是美国运筹学家T. L. Saaty 教授于上世纪70年代初期提出的一种简便、灵活而又实用的多准则决策方法。

层次分析模型

- 日常工作、生活中的决策问题
- 涉及经济、社会等方面的因素
- 作比较判断时人的主观选择起相当大的作用,各因素的重要性难以量化

• AHP——一种定性与定量相结合的、 系统化、层次化的分析方法

背景

2.1.1 层次分析法的基本步骤

例. 选择旅游地

如何在3个目的地中按照景色、费用、居住条件等因素选择.

"选择旅游地"思维过程的归纳

- 将决策问题分为3个层次:目标层O,准则层C,方案层P;每层有若干元素,各层元素间的关系用相连的直线表示。
- 通过相互比较确定各准则对目标的权重,及各方案对每一准则的权重。
- 将上述两组权重进行综合,确定各方案对目标的权重。

层次分析法将定性分析与定量分析结合起来完成以上步骤,给出决策问题的定量结果。

成对比较阵 和权向量

元素之间两两对比,对比采用相对尺度

设要比较各准则 C_1,C_2,\ldots,C_n 对目标O的重要性

$$C_i:C_j \Rightarrow a_{ij} \quad A = (a_{ij})_{n \times n}, a_{ij} > 0, a_{ji} = \frac{1}{a_{ij}}$$

选 择 旅 游 地

$$A = \begin{bmatrix} 1 & 1/2 & 4 & 3 & 3 \\ 2 & 1 & 7 & 5 & 5 \\ 1/4 & 1/7 & 1 & 1/2 & 1/3 \\ 1/3 & 1/5 & 2 & 1 & 1 \\ 1/3 & 1/5 & 3 & 1 & 1 \end{bmatrix}$$
 $A \sim \mathcal{K}$ 水 比较阵

A是正互反阵

要由A确定 C_1, \ldots, C_n 对O的权向量

成对比较阵和权向量

$$A = \begin{vmatrix} 2 \\ \dots \end{vmatrix}$$

$$\begin{bmatrix} 1 & 1/2 \end{bmatrix}$$

不一致

$$a_{12} = 1/2(C_1:C_2)$$

$$a_{13} = 4(C_1:C_3)$$

$$a_{23} = 8(C_2:C_3)$$

允许不一致,但要确定不一致的允许 范围

考察完全一致的情况

$$W(=1) \Rightarrow w_1, w_2, \dots w_n$$

$$\Leftrightarrow a_{ij} = w_i / w_j$$

$$A =$$

$$w = (w_1, w_2, \dots w_n)^T \sim 权向量 \begin{bmatrix} \dots \dots \\ \frac{w_n}{w_1} & \frac{w_n}{w_2} & \dots & \frac{w_n}{w_n} \end{bmatrix}$$

w_1	w_1	• • •	w_1
W_{1}	\mathcal{W}_{-2}		W_{-n}
w_2	w_{2}	• • •	w_2
W_{-1}	W_{-2}		W_{-n}

$$\frac{w_n}{w_1} \qquad \frac{w_n}{w_2} \qquad \cdots \qquad \frac{w_n}{w_n}$$

成对比较阵和权向量

成对比较完全一致的情况

满足 $a_{jk}=a_{k}$ $i,j,k=1,2,\dots,n$ A= 的正互反阵A称一致阵,如

w_1	w_1	• • •	w_1
W_1	W_2		W_n
w_2	w_2		w_2
W_1	W_2		W_n
	•		

$$\frac{w_n}{w_1} \quad \frac{w_n}{w_2} \quad \cdots \quad \frac{w_n}{w_n}$$

- ▶若矩阵 $A=(a_{ij})_{mxn}$ 满足以下特征:
- ≻ (1) a_{ij}>0
- ➤ (2) a_{ij}=1(当 i=j)
- ➤ (3)a_{ij}=1/a_{ji} (当i≠j)
- 》 则称矩阵A 为正互反矩阵。

• A的秩为1,A的唯一非零特征根为n

一致阵性质

- A的任一列向量是对应于n 的特征向量
- A的归一化特征向量可作为权向量

对于不一致(但在允许范围内)的成对比较阵A,建议用对应于最大特征根 λ 的特征向量作为权向量w,即

 $Aw = \lambda w$

成对比较阵和权向量

Saaty等人提出1~9尺度—— a_{ij} 取值 比较尺度 a_{ij} 1,2,...,9及其互反数1,1/2,...,1/9

• 便于定性到定量的转化:

	1	2	3	4	5	6	7	8	9
$C_i:C_j$ 的重要性	相同		稍强		强	則	月显引	虽	绝对强

	e e de produce por e
标度	含 义
1	表示两个因素相比,具有相同重要性
3	表示两个因素相比,前者比后者稍重要
5	表示两个因素相比,前者比后者明显重要
7	表示两个因素相比,前者比后者强烈重要
9	表示两个因素相比,前者比后者极端重要
2, 4, 6, 8	表示上述相邻判断的中间值
倒数	若因素 i 与因素 j 的重要性之比为 a_{ij} ,那么因素 j 与因素 i 重要性
	之比为 $a_{ji} = 1/a_{ij}$ 。

 $a_{ij} = 1,1/2,...1/9 \sim C_i:C_j$ 的重要性与上面相反

- •心理学家认为成对比较的因素不宜超过9个
- •用1~3,1~5,...1~17,...,1^p~9^p (p=2,3,4,5), d+0.1~d+0.9 (d=1,2,3,4)等27种比较尺度对若干实例构造成对比较阵,算出权向量,与实际对比发现,1~9尺度较优。

一致性检验 对A确定不一致的允许范围

已知: n 阶一致阵的唯一非零特征根为n

可证: n 阶正互反阵最大特征根 $\lambda \geq n$, 且 $\lambda = n$ 时为一致阵

定义一致性指标: $CI = \frac{\lambda - n}{n - 1}$ CI 越大,不一致越严重

为衡量CI的大小,引入随机一致性指标RI——随机模拟得到 a_{ij} ,形成A,计算CI 即得RI。

Saaty的结果如下

n	1	2	3	4	5	6	7	8	9	10	11
											1.51

定义一致性比率 CR = CI/RI

当CR<0.1时,通过一致性检验

"选择旅游地"中 准则层对目标的权 向量及一致性检验 准则层对目标的成对比较阵

$$A = \begin{bmatrix} 1 & 1/2 & 4 & 3 & 3 \\ 2 & 1 & 7 & 5 & 5 \\ 1/4 & 1/7 & 1 & 1/2 & 1/3 \\ 1/3 & 1/5 & 2 & 1 & 1 \\ 1/3 & 1/5 & 3 & 1 & 1 \end{bmatrix}$$

最大特征根 *λ*=3.073

权向量(特征向量) $w = (0.263, 0.475, 0.055, 0.090, 0.110)^{T}$

一致性指标
$$CI = \frac{5.073 - 5}{5 - 1} = 0.018$$

随机一致性指标 RI=1.12 (查表)

一致性比率 CR=0.018/1.12=0.016<0.1

通过一致 性检验

组合权向量

记第2层(准则)对第1层(目标)的权向量为 $w^{(2)} = (w_1^{(2)}, \dots, w_n^{(2)})^T$

同样求第3层(方案)对第2层每一元素(准则)的权向量

方案层对C₁(景色) 的成对比较阵

$$B_1 = \begin{bmatrix} 1 & 2 & 5 \\ 1/2 & 1 & 2 \\ 1/5 & 1/2 & 1 \end{bmatrix}$$

方案层对C₂(费用) 的成对比较阵

$$B_2 = \begin{bmatrix} 1 & 1/3 & 1/8 \\ 3 & 1 & 1/3 \\ 8 & 3 & 1 \end{bmatrix}$$

$$...C_n$$

$$...B_n$$

最大特征根
$$\lambda_1$$

权向量

$$w_1^{(3)}$$

$$\lambda_2$$

$$\dots \lambda_n$$

$$w_2^{(3)}$$

$$\dots w_n^{(3)}$$

组合权向量

第3层对第2层的计算结果

k	1	2	3	4	5	n
	0.595	0.082	0.429	0.633	0.166	0.
$W_k^{(3)}$	0.277	0.236	0.429	0.193	0.166	0.
	0.129	0.682	0.142	0.175	0.668	0. 0.
$\lambda_{_k}$	3.005	3.002	3	3.009	3	0.
CI_k	0.003	0.001	0	0.005	0	

RI=0.58 (n=3), CI_k 均可通过一致性检验

方案P₁对目标的组合权重为0.595×0.263+ ...=0.300

方案层对目标的组合权向量为 (0.300, 0.246, 0.456)T

组合 权向量

第2层对第1层的权向量

$$w^{(2)} = (w_1^{(2)}, \dots, w_n^{(2)})^T$$

第3层对第2层各元素的权向量

$$W_k^{(3)} = (W_{k1}^{(3)}, \dots, W_{km}^{(3)})^T, k = 1, 2, \dots, n$$

构造矩阵
$$W^{(3)} = [w_1^{(3)}, \dots, w_n^{(3)}]$$

则第3层对第1层的组合权向量 $w^{(3)} = W^{(3)} w^{(2)}$

第s层对第1层的组合权向量

$$w^{(s)} = W^{(s)}W^{(s-1)}\cdots W^{(3)}w^{(2)}$$

其中 $W^{(p)}$ 是由第p层对第p-1层权向量组成的矩阵

层次分析法的基本步骤

1) 建立层次分析结构模型

深入分析实际问题,将有关因素自上而下分层(目标— 准则或指标—方案或对象),上层受下层影响,而层内 各因素基本上相对独立。

2) 构造成对比较阵

用成对比较法和1~9尺度,构造各层对上一层每一因素的成对比较阵。

3) 计算权向量并作一致性检验

对每一成对比较阵计算最大特征根和特征向量,作一致性检验,若通过,则特征向量为权向量。

4) 计算组合权向量(作组合一致性检验*)

组合权向量可作为决策的定量依据。

2.1.2 层次分析法的广泛应用

- 应用领域:经济计划和管理,能源政策和分配, 人才选拔和评价,生产决策,交通运输,科研选 题,产业结构,教育,医疗,环境,军事等。
- 处理问题类型:决策、评价、分析、预测等。
- 建立层次分析结构模型是关键一步,要有主要决策层参与。
- 构造成对比较阵是数量依据,应由经验丰富、判断力强的专家给出。

2.2.1 模糊数学基本概念

人脑较之精确计算机,就是能在信息不完整不精确的情况下,作出判断与决策,模糊性常常是信息浓缩所致,目的是为了提高交换的概率,所以不是毫无用处,而是积极的特性。

如果到火车站去接人,如下描述 "大胡子,高个子,长头发戴宽边黑色眼镜的中年男人"

除了男人的信息是精确的之外,其它信息全是模糊的,但是我们却能够找到那个人。

2.2.1.1 经典集合与特征函数

集合: 具有某种特定属性的对象集体。

通常用大写字母A、B、C等表示。

论域:对局限于一定范围内进行讨论的对象的全体。

通常用大写字母U、V、X、Y等表示。

论域U中的每个对象u称为U的元素。

在论域U中任意给定一个元素u及任意给定一个

经典集合A,则必有 $u \in A$ 或者 $u \notin A$,用函数表示为:

$$\chi_A: U \to \{0,1\}$$

$$u \mapsto \chi_A(u),$$

其中

$$\chi_A(u) = \begin{cases} 1, & u \in A \\ 0, & u \notin A \end{cases}$$

函数光和称为集合A的特征函数。

2.2.1.2 模糊集合及其运算

美国控制论专家Zadeh教授正视了经典集合描述的 "非此即彼"的清晰现象,提示了现实生活中的绝大多数 概念并非都是"非此即彼"那么简单,而概念的差异常以 中介过渡的形式出现,表现为"亦此亦彼"的模糊现象。 基于此,1965年, Zadeh教授在《Information and Control》杂志上发表了一篇开创性论文"Fuzzy Sets", 标志着模糊数学的诞生。

1)模糊子集

定义: 设U是论域,称映射

$$\mu_A: U \rightarrow [0,1],$$

$$x \mapsto \mu_A(x) \in [0,1]$$

确定了一个U上的模糊子集A。映射 μ_A 称为A隶属函

数, $\mu_A(x)$ 称为x 对 $\stackrel{A}{\sim}$ 的隶属程度,简称隶属度。

模糊子集 A 由隶属函数 μ_A 唯一确定,故认为二者是等同的。为简单见,通常用A来表示 A和 μ_A 。

论域 $U = \{140,150,160,170,180,190\}$ (还是经典集合)

模糊集 A: 高个子

定义隶属函数(具有主观性): $A(x) = \frac{x-140}{190-140}$

$$A = \frac{0}{140} + \frac{0.2}{150} + \frac{0.4}{160} + \frac{0.6}{170} + \frac{0.8}{180} + \frac{1}{190}$$
 (Zadeh表示法)

模糊集并不再回答"是或不是"的问题,而是对每个对象给一个隶属度,所以与经典集有本质区别。而且与隶属函数是捆绑一起的,所以可以不做区分。

模糊子集通常简称模糊集,其表示方法有:

(1) Zadeh表示法

$$A = \frac{A(x_1)}{x_1} + \frac{A(x_2)}{x_2} + \dots + \frac{A(x_n)}{x_n}$$

这里 $\frac{A(x_i)}{x_i}$ 表示 x_i 对模糊集A的隶属度是 $A(x_i)$ 。

如"将一1,2,3,4组成一个小数的集合"可表示为

$$A = \frac{1}{1} + \frac{0.8}{2} + \frac{0.2}{3} + \frac{0}{4}$$
 可省略

(2) 序偶表示法

$$A = \{(x_1, A(x_1)), (x_2, A(x_2)), \dots, (x_n, A(x_n))\}$$

(3) 向量表示法

$$A = (A(x_1), A(x_2), \dots, A(x_n))$$

若论域U为无限集,其上的模糊集表示为:

$$A = \int_{x \in U} \frac{A(x)}{x}$$

2) 模糊集的运算

定义:设A,B是论域U的两个模糊子集,定义

相等: $A = B \Leftrightarrow A(x) = B(x), \forall x \in U$

包含: $A \subset B \Leftrightarrow A(x) \leq B(x), \forall x \in U$

#: $(A \cup B)(x) = A(x) \vee B(x), \forall x \in U$

 $\dot{\Sigma}: (A \cap B)(x) = A(x) \land B(x), \forall x \in U$

 $\Rightarrow: A^c(x) = 1 - A(x), \forall x \in U$

~表示取大;

^表示取小。

几个常用的算子:

(1) Zadeh算子(\/,^)

$$a \lor b = \max\{a,b\}, a \land b = \min\{a,b\}$$

(2) 取大、乘积算子 (>,·)

$$a \lor b = \max\{a,b\}, a \cdot b = ab$$

(3) 环和、乘积算子(f,)

$$a + b = a + b - ab, a \cdot b = ab$$

(4) 有界和、取小算子(⊕,∧)

$$a \oplus b = 1 \land (a+b), a \land b = \min\{a,b\}$$

(5) 有界和、乘积算子 (⊕,·)

$$a \oplus b = 1 \wedge (a+b), a \cdot b = ab$$

(6) Einstain 算子 $(\varepsilon, \varepsilon)$

$$a \stackrel{+}{\varepsilon} b = \frac{a+b}{1+ab}, a \stackrel{-}{\varepsilon} b = \frac{ab}{1+(1-a)(1-b)}$$

3)模糊矩阵

定义: 设 $R = (r_{ij})_{m \times n}, 0 \le r_{ij} \le 1, 称 R$ 为模糊矩阵。

当 r_{ij} 只取0或1时,称R为布尔(Boole)矩阵。

当模糊方阵 $R = (r_{ij})_{n \times n}$ 的对角线上的元素 r_{ij} 都为1时,称R为模糊自反矩阵。

(1) 模糊矩阵间的关系及运算

定义: 设 $A = (a_{ij})_{m \times n}, B = (b_{ij})_{m \times n}$ 都是模糊矩阵,定义

相等: $A = B \Leftrightarrow a_{ij} = b_{ij}$

包含: $A \leq B \Leftrightarrow a_{ij} \leq b_{ij}$

$$\overset{\bullet}{\Sigma}: A \cap B = (a_{ij} \wedge b_{ij})_{m \times n}$$

$$\mathfrak{R}: \quad A^c = (1 - a_{ij})_{m \times n}$$

例: 设
$$A = \begin{pmatrix} 1 & 0.1 \\ 0.2 & 0.3 \end{pmatrix}, B = \begin{pmatrix} 0.4 & 0 \\ 0.3 & 0.2 \end{pmatrix}, 则$$

$$A \cup B = \begin{pmatrix} 1 & 0.1 \\ 0.3 & 0.3 \end{pmatrix} \qquad A \cap B = \begin{pmatrix} 0.4 & 0 \\ 0.2 & 0.2 \end{pmatrix}$$

$$A^{c} = \begin{pmatrix} 0 & 0.9 \\ 0.8 & 0.7 \end{pmatrix} \qquad B^{c} = \begin{pmatrix} 0.6 & 1 \\ 0.7 & 0.8 \end{pmatrix}$$

(2) 模糊矩阵的合成

定义: 设 $A = (a_{ij})_{m \times s}, B = (b_{ij})_{s \times n}$, 称模糊矩阵

$$A \circ B = (c_{ij})_{m \times n}$$

为A与B的合成,其中 $c_{ij} = \max\{(a_{ik} \land b_{kj}) | 1 \le k \le s\}$ 。

例: 设
$$A = \begin{pmatrix} 0.4 & 0.5 & 0.6 \\ 0.1 & 0.2 & 0.3 \end{pmatrix}, B = \begin{pmatrix} 0.1 & 0.2 \\ 0.3 & 0.4 \\ 0.5 & 0.6 \end{pmatrix}, 则$$

$$A \circ B = \begin{pmatrix} 0.5 & 0.6 \\ 0.3 & 0.3 \end{pmatrix} \quad B \circ A = \begin{pmatrix} 0.1 & 0.2 & 0.2 \\ 0.3 & 0.3 & 0.3 \\ 0.4 & 0.5 & 0.5 \end{pmatrix}$$

(3) 模糊矩阵的转置

定义: 设
$$A = (a_{ij})_{m \times n}$$
, 称 $A^T = (a_{ij}^T)_{m \times n}$ 为 A 的

转置矩阵,其中 $a_{ij}^T = a_{ji}$ 。

(4) 模糊矩阵的 A - 截矩阵

定义: 设 $A = (a_{ij})_{m \times n}$,对任意的 $\lambda \in [0,1]$,称

 $A_{\lambda} = (a_{ij}^{(\lambda)})_{m \times n}$ 为模糊矩阵A的 $\lambda -$ 截矩阵,其中

$$a_{ij}^{(\lambda)} = \begin{cases} 1, & a_{ij} \ge \lambda \\ 0, & a_{ij} < \lambda \end{cases}$$

例: 设
$$A = \begin{pmatrix} 1 & 0.5 & 0.2 & 0 \\ 0.5 & 1 & 0.1 & 0.3 \\ 0.2 & 0.1 & 1 & 0.8 \\ 0 & 0.3 & 0.8 & 1 \end{pmatrix}$$
,则

$$A_{0.5} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix} \qquad A_{0.8} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

2.2.1.3 隶属函数的确定

1) 模糊统计法

模糊统计试验的四个要素:

- (1) 论域U;
- (2) U中的一个固定元素 u_0 ;
- (3) U中的一个随机运动集合 A^* ;
- (4) U中的一个以 A^* 作为弹性边界的模糊子集A,制约着 A^* 的运动。 A^* 可以覆盖 u_0 ,也可以不覆盖 u_0 ,致使 u_0 对A的隶属关系是不确定的。

 u_0 A

特点:在各次试验中,是固定的,而在随机变动。模糊统计试验过程:

(1)做n次试验,计算出

$$u_0$$
对 A 的隶属频率 = $\frac{u_0 \in A^*$ 的次数 n

(2)随着n的增大,频率呈现稳定,此稳定值即为 u_0 对A的隶属度:

$$A(u_0) = \lim_{n \to \infty} \frac{u_0 \in A^*$$
的次数

2)指派方法

这是一种主观的方法,但也是用得最普遍的一种 方法。它是根据问题的性质套用现成的某些形式的模 糊分布,然后根据测量数据确定分布中所含的参数。

3、其它方法

德尔菲法:专家评分法;

二元对比排序法: 把事物两两相比,从而确定顺序,由此决定隶属函数的大致形状。主要有以下方法: 相对比较法、择优比较法和对比平均法等。

2.2.2 模糊综合评判

2.2.2.1 一级模糊综合评判

设与被评价事物相关的因素有n个,记作

$$U = \{u_1, u_2, \cdots, u_n\}$$

称之为因素集。又设所有可能出现的评语有m个,记作

$$V = \{v_1, v_2, \cdots, v_m\}$$

称之为评语集。由于各种因素所处地们不同,作用也不一样,考虑用权重 $A = \{a_1, a_2, \dots, a_n\}$ 来衡量。

- (1) 确定因素集 $U = \{u_1, u_2, \dots, u_n\};$
- (2) 确定评判集 $V = \{v_1, v_2, \dots, v_m\}$;
- (3) 进行单因素评判得到 $r_i = (r_{i1}, r_{i2}, \dots, r_{im});$
- (4) 构造综合评价矩阵:

$$R = \begin{pmatrix} r_{11} & r_{12} & \cdots & r_{1m} \\ r_{21} & r_{22} & \cdots & r_{2m} \\ \vdots & \vdots & \vdots & \vdots \\ r_{n1} & r_{n2} & \cdots & r_{nm} \end{pmatrix}$$

(5) 综合评判:对于权重 $A = (a_1, a_2, \dots, a_n)$,计算 $B = A \circ R$,并根据隶属度最大原则作出评判。

根据运算。的不同定义,可得到以下不同模型:

模型 I
$$M(\land,\lor)$$
 一主因素决定型
$$b_j = \max\{(a_i \land r_{ij}), 1 \le i \le n\} \ (j = 1,2,\cdots,m);$$

其评判结果只取决于在总评价中起主要作用的那个因素,其余因素均不影响评判结果,此模型比较适用于 单项评判最优就能作为综合评判最优的情况。

最后得到一个评价向量 $(b_1, \cdots b_m)$

模型 II $M(\cdot,\vee)$ 一主因素突出型

$$b_j = \max\{(a_i \cdot r_{ij}), 1 \le i \le n\} \ (j = 1, 2, \dots, m);$$

它与模型 $M(\land,\lor)$ 相近,但比模型 $M(\land,\lor)$ 精细些,不仅突出了主要因素,。此模型适用于模型 $M(\land,\lor)$ 失效(不可区别),需要"加细"的情况。

模型III $M(\cdot,+)$ 一加权平均型

$$b_j = \sum_{i=1}^n (a_i \cdot r_{ij}) \ (j = 1, 2, \dots, m);$$

该模型依权重的大小对所有因素均衡兼顾,比较适用于要求总和最大的情形。

模型 \mathbb{N} $M(\land, \oplus)$ 一取小上界和型

$$b_j = \min\{1, \sum_{i=1}^n (a_i \wedge r_{ij})\} \ (j = 1, 2, \dots, m);$$

在使用此模型时,需要注意的是:各个 a_i 不能取得偏大,否则可能出现 b_j 均等于 1 的情形;各个 a_i 也不能取得太小,否则可能出现 b_j 均等于各个 a_i 之和的情形,这将使单因素评判的有关信息丢失。

模型 V $M(\land,+)$ 一均衡平均型

$$b_j = \sum_{i=1}^n (a_i \wedge \frac{r_{ij}}{r_j}) \ (j = 1, 2, \dots, m);$$

其中:
$$r_j = \sum_{k=1}^n r_{kj}$$
.

该模型适用于R中元素 r_{ij} 偏大或偏小的情形。

例:考虑一个服装的评判问题。

- (1) 建立因素集 $U = \{u_1, u_2, u_3, u_4\}$,其中 u_1 :花色; u_2 :式样; u_3 :耐穿程度; u_4 :价格。
- (2) 建立评判集 $V = \{v_1, v_2, v_3, v_4\}$,其中 v_1 :很欢迎; v_2 :较欢迎; v_3 :不太欢迎; v_4 :不欢迎。
- (3) 进行单因素评判得到:

$$u_1 \mapsto r_1 = (0.2, 0.5, 0.2, 0.1)$$

$$u_2 \mapsto r_2 = (0.7, 0.2, 0.1, 0)$$

$$u_3 \mapsto r_3 = (0,0.4,0.5,0.1)$$

$$u_4 \mapsto r_4 = (0.2, 0.3, 0.5, 0).$$

(4) 由单因素评判构造综合评判矩阵

$$R = \begin{pmatrix} 0.2 & 0.5 & 0.2 & 0.1 \\ 0.7 & 0.2 & 0.1 & 0 \\ 0 & 0.4 & 0.5 & 0.1 \\ 0.2 & 0.3 & 0.5 & 0 \end{pmatrix}$$

(5) 综合评判

设有两类顾客,他们根据自己的喜好对各因素所分配的权重分别为

$$A_1 = (0.1, 0.2, 0.3, 0.4)$$

$$A_2 = (0.4, 0.35, 0.15, 0.1)$$

用模型 $M(\land,\lor)$ 计算综合评判为

$$B_1 = A_1 \circ R = (0.2, 0.3, 0.4, 0.1)$$

$$B_2 = A_2 \circ R = (0.35, 0.4, 0.2, 0.1)$$

按最大隶属原则,第一类顾客对此服装不太欢迎,而第二类顾客对此服装比较欢迎。

对于类似于 B_2 的情形,在下结论前通常将其归一化为

$$B_2' = (\frac{0.35}{1.05}, \frac{0.4}{1.05}, \frac{0.2}{1.05}, \frac{0.1}{1.05}) = (0.33, 0.38, 0.19, 0.1)$$


```
输入数据:
```

 $R=[0.2\ 0.5\ 0.2\ 0.1;0.7\ 0.2\ 0.1\ 0;0\ 0.4\ 0.5\ 0.1;0.2\ 0.3\ 0.5\ 0]$

 $A1=[0.1\ 0.2\ 0.3\ 0.4]$

 $A2=[0.4\ 0.35\ 0.15\ 0.1]$

调用函数:

 $[B]=fuzzy_zhpj(1,A1,R)$

输出结果:

 $\mathbf{B} =$

调用函数:

0.2000 0.3000 0.4000 0.1000

[B]=fuzzy zhpj(1,A2,R)

输出结果:

 $\mathbf{B} =$

0.3500 0.4000 0.2000 0.1000

2.2.2.2 多级模糊综合评判(以二级为例)

问题:对高等学校的评估可以考虑如下方面

教学 - { 师资队伍教学设施学生质量

高等学校 {科研 …

- 二级模糊综合评判的步骤:
- (1) 将因素集 $U = \{u_1, u_2, \dots, u_n\}$ 划分成若干组得到 $U = \{U_1, U_2, \dots, U_k\},$

其中
$$U = \bigcup_{i=1}^k U_i, U_i \cap U_j = \Phi(i \neq j)$$

称 $U = \{U_1, U_2, \dots, U_k\}$ 为第一级因素集。

(2) 设评判集 $V = \{v_1, v_2, \dots, v_m\}$, 先对第二级因素集 $U_i = \{u_1^{(i)}, u_2^{(i)}, \dots, u_{n_i}^{(i)}\}$

的ni个因素进行单因素评判,得单因素评判矩阵

$$R_{i} = \begin{pmatrix} r_{11}^{(i)} & r_{12}^{(i)} & \cdots & r_{1m}^{(i)} \\ r_{21}^{(i)} & r_{22}^{(i)} & \cdots & r_{2m}^{(i)} \\ \vdots & \vdots & \vdots & \vdots \\ r_{n_{i}1}^{(i)} & r_{n_{i}2}^{(i)} & \cdots & r_{n_{i}m}^{(i)} \end{pmatrix}$$

设
$$U_i = \{u_1^{(i)}, u_2^{(i)}, \dots, u_{n_i}^{(i)}\}$$
的权重为
$$A_i = (a_1^{(i)}, a_2^{(i)}, \dots, a_{n_i}^{(i)})$$

求得综合评判为

$$B_i = A_i \circ R_i \quad (i = 1, 2, \dots, k)$$

(3) 再对第一级因素集 $U = \{U_1, U_2, \dots, U_k\}$ 作综合评判, 设其权重为 $A = (a_1, a_2, \dots, a_k)$,则总评判矩阵为

$$\boldsymbol{R} = \begin{pmatrix} \boldsymbol{B}_1 \\ \boldsymbol{B}_2 \\ \vdots \\ \boldsymbol{B}_k \end{pmatrix}$$

从而得综合评判为

$$B = A \circ R$$

按最大隶属度原则即得相应评语。

例:某企业生产一种产品,它的质量由 9 个指标 u_1,u_2,\dots,u_9 确定,产品的级别分为一级、二级、等外、 废品。由于因素较多,宜采用二级模型。

- (1) 将因素集 $U = \{u_1, u_2, \dots, u_9\}$ 分为3组: $U_1 = \{u_1, u_2, u_3\}, U_2 = \{u_4, u_5, u_6\}, U_3 = \{u_7, u_8, u_9\}.$
- (2) 设评判集 $V = \{v_1, v_2, v_3, v_4\}$, v_1 :一级; v_2 :二级; v_3 :等外; v_4 :废品。

(3) 对每个 U_i (i = 1,2,3)中的因素进行单因素评判,有 $U_1 = \{u_1, u_2, u_3\}$,取权重为 $A_1 = (0.3,0.42,0.28)$,单因素评判矩阵为

$$R_1 = \begin{pmatrix} 0.36 & 0.24 & 0.13 & 0.27 \\ 0.20 & 0.32 & 0.25 & 0.23 \\ 0.40 & 0.22 & 0.26 & 0.12 \end{pmatrix}$$

作一级模糊综合评判,得

$$B_1 = A_1 \circ R_1 = (0.3, 0.32, 0.26, 0.27)$$

其中。取模型 $M(\land,\lor)$ 计算,下同。

$$U_2 = \{u_4, u_5, u_6\}$$
,取权重为 $A_2 = (0.2, 0.5, 0.3)$,单因素评判矩阵为

$$R_2 = \begin{pmatrix} 0.30 & 0.28 & 0.24 & 0.18 \\ 0.26 & 0.36 & 0.12 & 0.20 \\ 0.22 & 0.42 & 0.16 & 0.10 \end{pmatrix}$$

作一级模糊综合评判,得

$$B_2 = A_2 \circ R_2 = (0.26, 0.36, 0.2, 0.2)$$

$$U_3 = \{u_7, u_8, u_9\}$$
,取权重为 $A_3 = (0.3, 0.3, 0.4)$,单因素评判矩阵为

$$R_3 = \begin{pmatrix} 0.38 & 0.24 & 0.08 & 0.20 \\ 0.34 & 0.25 & 0.30 & 0.11 \\ 0.40 & 0.28 & 0.30 & 0.18 \end{pmatrix}$$

作一级模糊综合评判,得

$$B_3 = A_3 \circ R_3 = (0.3, 0.28, 0.3, 0.2)$$

(4) 对第一级因素 $U = \{U_1, U_2, U_3\}$,设权重为 A = (0.2, 0.35, 0.45).

令总单因素评判矩阵为

$$R = \begin{pmatrix} B_1 \\ B_2 \\ B_3 \end{pmatrix} = \begin{pmatrix} 0.30 & 0.32 & 0.26 & 0.27 \\ 0.26 & 0.36 & 0.20 & 0.20 \\ 0.30 & 0.28 & 0.30 & 0.20 \end{pmatrix}$$

作二级模糊综合评判,得

$$B = A \circ R = (0.30, 0.35, 0.30, 0.20)$$

按最大隶属原则,此产品属二级品。

假定你是一个公司的财务经理,掌握了公司的 所有数据,比如固定资产、流动资金、每一笔借贷 的数额和期限、各种税费、工资支出、原料消耗、 产值、利润、折旧、职工人数、职工的分工和教育 程度等等。

如果让你向上面介绍公司状况,你能够把这些指标和数字都原封不动地摆出去吗?

当然不能。

你必须要把各个方面作出高度概括,用一两个指标简单明了地把情况说清楚。

每个人都会遇到有很多变量的数据。

比如全国或各个地区的带有许多经济和社会变量的数据;各个学校的研究、教学等各种变量的数据等等。

这些数据的共同特点是变量很多,在如此多的变量之中,有很多是相关的。人们希望能够找出它们的少数"代表"来对它们进行描述。

在引进主成分分析之前,先看下面的例子。

100个学生的数学、物理、化学、语文、历史、英语的成绩如下表(部分)。

学生代码	数学	物理	化学	语文	历史	英语
1	65	61	72	84	81	79
2	77	77	76	64	70	55
3	67	63	49	65	67	57
4	80	69	75	74	74	63
5	74	70	80	84	81	74
6	78	84	75	62	71	64
7	66	71	67	52	65	57
8	77	71	57	72	86	71
9	83	100	79	41	67	50
•••	•••	•••	•••	•••	•••	•••

目前的问题是,能不能把这个数据的6个变量用一两个综合变量来表示呢?

这一两个综合变量包含有多少原来的信息呢? 能不能利用找到的综合变量来对学生排序呢? 这一类数据所涉及的问题可以推广到对企业,对学 校进行分析、排序、判别和分类等问题。

选择越少的主成分,降维就越好。什么是标准呢?那就是这些被选的主成分所代表的主轴的长度之和占了主轴长度总和的大部分。有些文献建议,所选的主轴总长度占所有主轴长度之和的大约80%即可,其实,这只是一个大体的说法:具体选几个,要看实际情况而定。

主成分分析是一种通过降维技术把多个 变量化为少数几个主成分(即综合变量)的统计 分析方法。

一般来说,我们希望这些主成分能够反映原始变量的绝大部分信息(它们通常表示为原始变量的某种线性组合),并具有最大的方差。

主成分的求解步骤:

1.对原始数据矩阵进行标准化处理(相当于对原始变量进行坐标平移与尺度伸缩)

假设对p个变量进行n次观测得到的观测数据

可用下面的矩阵表示

$$X_{n \times p} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{np} \end{bmatrix}$$

将其进行标准化处理

$$\widetilde{x}_{ij} = (x_{ij} - \overline{x}_j) / S_j, (i = 1, 2, \dots, n; j = 1, 2, \dots, p)$$

- ii) 求协方差矩阵Z
- iii)特征分解得 $Z = U\Lambda U^t$ (相当于将原来的坐标轴进行旋转得到新的坐标轴U)

得Z的p个非负特征值 $\lambda_1, \lambda_2, \dots, \lambda_p$,这p个特征值 就是主成分的方差。

 Λ ——Z的特征值组成的对角阵

U——Z的特征向量按列组成的正交阵,它构成了新的矢量空间,作为新变量(主成分)的坐标轴,又称为载荷轴。

iv) 确定主成分个数(根据累积贡献率)

$$\eta_m = \lambda_1 + \lambda_2 + \cdots + \lambda_m / (\lambda_1 + \lambda_2 + \cdots + \lambda_p)$$

当 η_m 大于某个阈值时,可认为主成分数目为m。

v) 写出主成分表达式

$$\boldsymbol{Z}_{n \times m} = \boldsymbol{X}_{n \times p} \boldsymbol{U}_{p \times m}$$

2阵的每一行相当于原数据矩阵的所有行(即原始变量构成的向量)在主成分坐标轴(载荷轴)上的投影,这些新的投影构成的向量就是主成分得分向量。

Vi)构造评价函数

$$F = \alpha_1 Z_1 + \alpha_2 Z_2 + \dots + \alpha_m Z_m$$

$$\alpha_i = \frac{\lambda_i}{\sum_{i=1}^{p} \lambda_i}, i = 1, \dots, m$$

将每个样本的主成分带入评价函数,得到每个样本的综合得分,依据一定的准则可对样本进行排序。

例 以下是收集整理了的1990-2002年13年间影响中国蔬菜产量的若干因素数据,请你对这些影响因素作主成分分析,并分析结果。

年份₽	X_1^{ϕ}	X_2^{\wp}	X_3^{μ}	X_4^{ρ}	X_5^{ϑ}	$X_{i^{\theta}}$	X_7^{\wp}	$X_{\boldsymbol{S}^{p^3}}$	$X_{9}^{\iota^{j}}$	X ₁₀ ⁺³	X_{11}^{β}	X_{12}^{ρ}	X ₁₃ ^{p 4}
1990∉	6610₽	4620₽	792₽	100.00₽	121.2₽	725.95₽	26.41₽	22.6₽	8.49₽	1510∉	686₽	6.21₽	12.01-
1991₽	6916₽	4749₽	891₽	106.10₽	123.77∉	812.96₽	26.94₽	22.79₽	8.51₽	1701∉	709₽	6.58₽	18.59₽ ⁴
1992₽	7030₽	4189₽	821₽	116.29₽	89.00₽	938.29₽	27.46₽	23.43₽	8.93₽	2027∉	784₽	6.65₽	17.38₽ ⁴
1993₽	8084₽	5131₽	861₽	134.54₽	127.34∉	1051.5₽	27.99₽	24.58₽	9.41₽	2577∉	922₽	6.78₽	15.66₽ ⁴
1994₽	8921₽	6510₽	923₽	185.94₽	140.58∉	1357.1≠	28.51₽	25.72₽	9.85₽	3496∉	1221∉	6.88₽	21.17₽ ⁴
1995₽	9514₽	8582₽	1032∉	240.42₽	146.00∉	1702.4₽	29.04₽	26.86₽	10.2₽	4283∉	1578∉	7.02₽	14.86₽ ⁴
1996₽	10368₽	9036₽	795₽	284.65₽	104.10∉	2024.2₽	30.48₽	27.89₽	10.6₽	4839∉	1926∉	7.28₽	13.93₽ ⁴
1997₽	11278₽	9069₽	818₽	283.23₽	99.70₽	2208.2₽	31.91₽	28.29₽	10.3₽	5160∉	2090∉	7.41₽	19.68₽ ⁴
1998₽	12291₽	7464₽	694₽	284.08₽	102.59∉	2336.7₽	33.35₽	28.42₽	10.2₽	5425∉	2162∉	7.55₽	16.17₽ ⁴
1999₽	13346₽	7905₽	699₽	285.22₽	115.56∉	2475.2₽	34.78₽	28.32₽	10.3₽	5854∉	2210∉	7.71₽	17.09₽ ⁴
2000₽	15237₽	9669₽	705₽	303.19₽	92.72₽	2694.7₽	36.22₽	28.44₽	10.7₽	6280∉	2253∉	7.93₽	21.94
2001₽	16339₽	9794₽	680₽	312.89₽	113.72∉	2945.7₽	37.66₽	28.61₽	11.0₽	6860∉	2366∉	8.12€	20.42₽ ⁴
2002₽	17353₽	10000←	580₽	315.39₽	121.0₽	3184.9₽	39.09₽	28.72₽	11.5+	7703∉	2476∉	8.35₽	17.67+*


```
data ex;
input x1-x13;
cards;
/*数据省略*/
proc princomp out=prin;
var x1-x13;
run;
proc print data=prin;
var prin1-prin13;
run;
```


程序中对应运行结果为:

	Eigenvalues of the Correlation Matrix									
	Eigenvalue	Difference	Proportion	Cumulative						
1 2 3 4 5 6 7 8 9 10 11 12 13	10.1634873 1.2504811 0.8786006 0.5319630 0.0789128 0.0506640 0.0352751 0.0055486 0.0031118 0.0016750 0.0001745	8.9130062 0.3718805 0.3466376 0.4530502 0.0282488 0.0153889 0.0297266 0.0024368 0.0014368 0.0015006 0.0001062	0.7818 0.0962 0.0676 0.0409 0.0061 0.0039 0.0027 0.0004 0.0002 0.0000	0.7818 0.8780 0.9456 0.9865 0.9926 0.9992 0.9998 1.0000 1.0000						

从程序结果可以看出,第一、第二、第三主成分累计解释方差的比率已经超过了94%,所以只需要求 λ_1 、 λ_2 、 λ_2 所对应的正交化特征向量 α_i (i=1, i=1, i=1)

Eigenvectors									
	Prin1	Prin2	Prin3	Prin4	Prin5	Prin6	Prin7		
x2 x3 x4 x5 x6 x7 x8 x8 x9 x10 x11	1.305923 1.290491 1.290493 1.303059 1.303059 1.313002 1.303651 1.299108 1.299108	030245 0.229314 0.506586 0.113666 0.773456 0.009982 093289 0.133851 0.191451 0.070234 0.040416 025691	0.033632 026216 0.235580 078566 0.010433 033126 0.018558 057994 044118 030175 082388	269456 0.256522 0.496559 0.267547565612045281292412 0.294257 0.068978048472 0.143777143035	197110 566418 142694 0.228834 0.191530 0.019068 089899 0.522936 339437 0.021216 0.347351 059903	0.154691 0.441434 0.036155 0.143895 0.056548 0.119563 0.157016 183988 769999 060416 0.229396 184253	0.217163 394096 0.590332 118972 164373 0.142333 0.335570 052755 197841 0.090627 017911 0.426132		


```
可知 z_1 = \alpha_1 X^T, z_2 = \alpha_2 X^T, z_3 = \alpha_3 X^T

其中 X = (x_1, x_2, \dots, x_{13})

\alpha 1=(0.31, 0.29, -0.22, 0.30, -0.09, 0.31, 0.30, 0.30, 0.30, 0.31, 0.31, 0.31, 0.13), \alpha 2= (-0.03, 0.23, 0.51, 0.11, 0.77, 0.01, -0.09, 0.13, 0.19, 0.07, 0.04, -0.03, -0.09), \alpha 3= (0.03, -0.03, 0.24, -0.08, 0.01, -0.03, 0.02, -0.06, -0.04, -0.03, -0.08, 0.05, 0.96)
```


第一主成分与蔬菜种植面积、每公顷物质费用、 蔬菜零售物价指数、市场化程度、城市化水平1、 城市化水平2、交通、城镇居民可支配收入、农村 居民纯收入、农民文化素质等密切相关,表示的是 市场经济综合因素,着重反映的是市场经济的成熟 程度与国家现代化水平;

第二主成分与每公顷劳动投入、成本纯收益率等密切相关,表示的是劳动者动力因素;

第三主成分与气候条件密切相关,显然表示的是气候因素。

主成分得分

0bs	Prin1	Prin2	Prin3	Prin4	Prin	5 Prin6	Prin7
353	4 00000	0.54407					0.00404
1	-4.62302	-0.54437	-1.39674	-0.6262			-0.22464
2	-4.13641	-0.19889	0.96696	-0.4629			0.05448
3	-3.50353	-1.93012	0.36492	0.4155			0.23862
4	-2.98209	0.29422	-0.18285	-0.4372			0.09627
5	-1.71639	1.37707	1.59515	-0.2736	2 0.237	76 -0.23971	-0.31799
6	-0.93766	2.73105	-0.42394	0.5824	1 -0.172	80 0.11676	0.30925
3 4 5 6 7	0.79425	0.13430	-1.33503	1.1585	-0.217	72 -0.17201	-0.23792
8	1.41825	-0.20085	0.58957	1.1817	0.078	0.15015	-0.14819
8 9	1.61323	-0.69823	-0.77140	0.2359	0.576	26 -0.03204	0.07147
10	2.06723	-0.08963	-0.44997	-0.3438			0.12638
11	3.36698	-0.96860	1.09803	0.3835			0.01709
12	3.92298	-0.00976	0.53475	-0.5233			0.06615
13	4.71618	0.10382	-0.58944	-1.2905			-0.05096
0bs	Prin8	Prin9	Prin	10	Prin11	Prin12	Prin13
10	0.09824	0.02833	-0.009	270 (0.001156	0.000511	0
2	-0.16758	-0.03828	0.021	002 -0	0.003064	-0.005254	0
3	0.00344	0.08726	0.002	850 (0.002656	0.004291	0
2 3 4	0.04907	-0.13306	-0.039	432 (0.003900	0.000368	0
5	0.03881	0.04999	0.025		0.003133	0.000825	Ō
6	0.02814	0.03828	-0.001	294 -0	0.004194	-0.003408	Ō
5 6 7	-0.07880	-0.03437	0.055		0.000279	0.005972	Ō
8	-0.02891	0.00645	-0.098		0.010830	-0.000387	ñ
8 9	0.01479	0.00618	0.025		0.001141	-0.022610	0 0 0 0
1 <u>0</u>	-0.02001	0.00478	-0.002		0.009188	0.024758	
11	0.09993	-0.04950	0.020	The second secon	0.024055	-0.001887	0 0
iż	0.03526	-0.01022	0.041		0.034001	0.003231	Ŏ
13	-0.07238	0.04417	-0.041		0.009772	-0.006412	Ŏ
	3.01200	O LO I III	OROTI			0 1 0 0 0 1 1 2	