Self-Study Session 01

Question 1.

Algorithms and Data Structures (DAT2, SW2, DV2)

Instructions. You have to **work individually** on these questions from 8:15 to 10:00. From 10:00 to 12:00 you can join your group and discuss your solutions together.

- Read carefully the text of each exercise before solving it! Pay particular attentions to the terms in bold.
- If a question seems ambiguous, write under which assumptions you are solving it.
- You can use **CLRS** to refer to the textbook T.H. Cormen, Ch. E. Leiserson, R. L. Rivest, C. Stein, *Introduction to Algorithms* (3rd edition) in your answers.
- Make an effort to use a readable handwriting and to present your solutions neatly.
- The TAs will be available from 10:00 to 12:00. Use the digital trashcan to ask for help.
- The points relative to each question give an indication of their complexity relative to this exercise sheet. These points **may not** correspond to the amount of points you may get for a similar exercise at the exam.

20 Pts

Identifying asymptotic notation. (Note: lg means logarithm in base 2)									
(1.1) [5 Pts] Mark ALL the correct answers. $\lg n^2 + \lg 2^n + 1^n + \sqrt{n}$ is									
	\Box b) $\Theta(\lg n)$	\Box b) $\Theta(n)$	\Box c) $\Theta(\sqrt{n})$	\square d) $\Theta(n^2)$	\square e) $\Theta(1^n)$				
(1.2)	2) [5 Pts] Mark ALL the correct answers. $\lg n^2 + \lg 2^n + 1^n + \sqrt{n}$ is								
	\square a) $O(\lg n)$	\Box b) $O(n)$	\Box c) $O(\sqrt{n})$	\square d) $O(n^2)$	\square e) $O(1^n)$				
(1.3)) [5 Pts] Mark ALL the correct answers. $558 \cdot n \lg n^2 + 0.0001 \cdot n^3 + (n \lg n)^2$ is:								
	\Box a) $\Theta(n \lg n)$	\Box b) $\Theta(n^3)$	\square c) $\Theta(n^2)$	\Box d) $\Theta(n^2 \lg n)$	\square d) $\Omega(n^2 \lg n)$				
(1.4)	.4) [5 Pts] Mark ALL all the functions below that satisfy $\lg(f(n)) = \Theta(\lg n)$.								
a) a) $f(n) = n^2$ b) b) $f(n) = 2^n$ c) c) $f(n) = 2^n \cdot n^2$ d) d) $f(n) = \sum_{i=1}^n f(i)$									

Consider the following recurrences

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ T(n/2) + n^4 & \text{if } n > 1 \end{cases}$$

$$Q(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ 9 \cdot Q(n/3) + n^{1.9} & \text{if } n > 1 \end{cases}$$

(2.1) [5 Pts] Mark **ALL** correct answers.

- \square a) T(n) can be solved using Case 1 of the Master Theorem
- \Box b) T(n) can be solved using Case 2 of the Master Theorem
- \Box c) T(n) can be solved using Case 3 of the Master Theorem
- \Box d) T(n) cannot be solved using the Master Theorem

(2.2) [5 Pts] Mark **ALL** correct answers.

 \Box a) $T(n) = \Theta(n^4 \lg n)$

 \Box **b)** $T(n) = \Theta(n^2)$

 \Box **c)** $T(n) = \Omega(n^3)$

 \Box **d)** $T(n) = O(n^4)$

(2.3) [5 Pts] Mark **ALL** correct answers.

- \square a) The recurrence Q is in the form Q(n) = a Q(n/b) + f(n) for some a, b and f(n).
- \Box b) T(n) can be solved using Case 1 of the Master Theorem
- \Box c) T(n) can be solved using Case 4 of the Master Theorem
- \Box d) T(n) cannot be solved using the Master Theorem

(2.4) [5 Pts] Mark **ALL** correct answers.

 \square a) $Q(n) = \Theta(n^{1.9} \lg n)$

 \Box **b)** $Q(n) = \Omega(n^{1.9})$

 $\square \ \mathbf{c)} \ Q(n) = \Theta(n^2)$

 \square d) $Q(n) = O(n^3)$

(3.1)	[5 Pts] Consider the Insertion-Sort algorithm on the following input $A = [91, 71, 29, 43, 97, 59, 17, 93, 61, 13]$. Select among the followings, the configuration of the array after four iterations of the main loop of the Insertion-Sort algorithm have been performed.						
	\square a) [29, 43, 71, 91, 97, 59, 17, 93, 61, 13]		\square b) $[3, 17, 29, 43, 59, 61, 71, 91, 97, 93]$				
	\square c) [71, 29, 43, 59, 17, 61, 13, 91, 97, 93]		\square d) [29, 43, 91, 71, 97, 59, 17, 93, 61, 13]				
	\Box e) None of the above is correct.						
(3.2)	[5 Pts] Consider an execution of Merge-Sort($A, 1, A. length$) on the array $A = [7, 3, 5, 9, 8, 2]$. Select among the following options, the configuration of the array after three calls of the subroutine Merge have been performed.						
	\Box a) [5, 3, 7, 9, 8, 2]	\Box b) [7, 3, 5, 9]	, 8, 2]	\Box c) [3, 5, 7]	[7, 8, 9, 2]		
	\Box d) [2, 3, 5, 7, 8, 9]	\Box e) None of t	he above is	correct.			
(3.3)	Consider the algorithm STACKSTUFF, which takes as input an integer $n>2$ and performs some operations on a stack S which is initially empty.						
	STACKSTUFF (n)						
	1 Initialise an empty stack S						
	2 for $i = 1$ to $n - 2$						
	for $j = n$ downto i						
	4 PUSH(S, i)						
	5 for $k = 1$ to n^2 6 Pop(S)						
	6 POP(S)						
	(a) [5 Pts] What is the asymptotic running time of $STACKSTUFF(n)$? Justify your answer.						
(b) [5 Pts] What is the size of the stack S after the execution of STACKSTUFF (n) ?							
	\square a) $\Theta(1)$ \square b) $\Theta(1)$	$\Theta(n) \qquad \Box \mathbf{c}$	$\Theta(n \lg n)$	\Box d) $\Theta(n^2)$	\Box e) $\Theta(n^3)$		

Question 4. 40 Pts

The Fibonacci sequence is the series of numbers $1, 1, 2, 3, 5, 8, 13, 21, \ldots$ where the next number in the sequence is found by adding up the two numbers before it. The *n*-th Fibonacci number in the sequence is typically defined by the following recurrence (see CLRS pp. 99) for $n \in \mathbb{N}$

$$F(n) = \begin{cases} 1 & \text{if } n \in \{0, 1\}, \\ F(n-1) + F(n-2) & \text{if } n > 1 \end{cases}$$

(a) [15 Pts] Consider the following iterative algorithm Fib-ITER(n) which computes the n-th Fibonacci number. Prove that Fib-ITER(n) is correct.

```
FIB-ITER(n)

1 Initialise the array F[1..n+1]

2 F[1] = 1

3 F[2] = 1

4 for i = 3 to n+1

5 F[i] = F[i-2] + F[i-1]

6 return F[n+1]
```

- (b) [5 Pts] What is the asymptotic running time of Fib-Iter(n)? Justify your answer.
- (c) [20 Pts] Consider the recursive algorithm Fib-Rec(n) which computes F(n) by implementing its recurrence. Prove that the running time of Fib-Rec(n) is $O(2^n)$.

```
 \begin{aligned} & \text{Fib-Rec}(n) \\ & 1 & \text{if } n < 2 \\ & 2 & \text{return 1} \\ & 3 & \text{else} \\ & 4 & \text{return Fib-Rec}(n-1) + \text{Fib-Rec}(n-2) \end{aligned}
```