Modality Translation through Conditional Encoder-Decoder

Hyunsoo Lee, Yoonsang Lee, Maria Pak, Jinri Kim

Problem Formulation

Multimodal Feature Representation

- Recent models are designed and trained specifically for individual tasks
 - Need general-purpose model like CLIP
 - \circ However, cosine similarity between $\mathbf{z}_{\mathrm{txt}}$ and $\mathbf{z}_{\mathrm{img}}$ is only 0.3 😭

Lenhance cosine similarity and hope to perform better in general multi-modal downstream tasks

Conditional Denoising Diffusion Implicit Models

- Distribution modeling using diffusion process
- Forward process
 - Perturbation of data using **gaussian noise** with total *T* steps

- Backward process
 - **Denoising** step: recovering the original data
 - Defined as deterministic process

$$\circ \quad \mathbf{x}_{t-1} = \sqrt{\alpha_{t-1}} \left(\frac{\mathbf{x}_t - \sqrt{1 - \alpha_t} \epsilon_{\theta}(\mathbf{x}_t, t, \mathbf{c})}{\sqrt{\alpha_t}} \right) + \sqrt{1 - \alpha_t} \epsilon_{\theta}(\mathbf{x}_t, t, \mathbf{c})$$

- Training objectives
 - Maximizing the log-likelihood of estimated data distribution
 - $\mathbb{E}_{t,\mathbf{x}_0,\epsilon} \left[\|\epsilon \epsilon_{\theta} \left(\mathbf{x}_t, t, \mathbf{c} \right) \|^2 \right]$

Conditional Encoder-Decoder Architecture

Step 1: latent encoders $p_{\theta^{\mathbf{x}_{txt}}}$ and $p_{\theta^{\mathbf{x}_{img}}}$ extract the text and image embeddings \mathbf{z}_{txt} and \mathbf{z}_{img} respectively.

Step 2: conditional encoder-decoder enables bidirectional transformation between two latent vectors (**DDIM**).

Step 3: finally, the transformed embeddings are converted back to the image and text modalities using the latent decoders, $p_{\theta^{*}\text{txt}}$ and $p_{\theta^{*}\text{img}}$.

Sampling Strategy

- Notation
 - \circ Target vector : $\mathbf{z} \in \mathcal{H}_{\mathrm{target}}$ (e.g. text embedding)
 - Estimated target vector : â
 - \circ Condition vector : $\mathbf{c} \in \mathcal{H}_{\mathrm{cond}}$ (e.g. image embedding)
- Novel sampling method

$$\hat{\mathbf{z}} = \mathbf{cM} + \gamma \mathbf{F}(\mathbf{c}), \quad \mathbf{F}(\mathbf{c}) = \text{Normalize}(\text{CDIM}(\mathbf{c}))$$

- Justification (1)
 - After the optimization, first term predicts a **projection of target** vector (\mathbf{z}) onto the **column space** of the hyperplane \mathcal{H}_{cond} .
 - The second term is guided to predict a **residual term** which is perpendicular to the column space.

Sampling Strategy

Justification (2)

For a given value of hyperparameter $\gamma > 0$, our method ensures that **cosine similarity** between target vector \mathbf{z} and estimated target vector $\hat{\mathbf{z}}$ to be greater or equal than constant α with probability at least

$$P(Cosine-Sim(\mathbf{z}, \hat{\mathbf{z}}) \ge \alpha)$$

$$= 1 - \int_{-1}^{\beta} \frac{\Gamma(h_2/2 + 1/2)}{\sqrt{\pi}\Gamma(h_2/2)} (1 - u^2)^{h_2/2 - 1} du$$

• We empirically choose $\gamma = 1.0$.

Training Details

Training objectives

- Weighted sum of conditional DDIM loss and reconstruction loss
- Motivated from pix2pix

$$\min_{q_{\phi}, \mathbf{M}} \lambda_{1} \mathbb{E}_{\mathbf{z}, \mathbf{c}}[\|\mathbf{z} - \hat{\mathbf{z}}\|_{1}] + \lambda_{2} \mathbb{E}_{t, \mathbf{z}, \epsilon} \left[\|\epsilon - \epsilon_{\theta} \left(\mathbf{z}_{t}, t, \mathbf{c}\right)\|^{2}\right]$$

Details

- Applied classifier-free guidance
- Uses dropout and residual connections
- Adam optimizer with learning rate 10^{-4} , weight decay 10^{-2}
- $\lambda_1 = 1.0, \lambda_2 = 2.0$

Metric

- Modality translation task
 - Cosine similarity
- Downstream tasks
 - Widely used metrics for each task

Results

Modality Translation Results

Cosine similarity between **z** and $\hat{\mathbf{z}}$ compared with other baselines

Dataset	MS-COCO [16]		CC3M [29]	
Method	Sim_{txt}	$ $ Sim_{img}	$ $ Sim_{txt}	Sim_{img}
LAFITE [34]	0.0965	-	0.0912	_
CLIP-GEN [33]	0.3042	-	0.2896	-
VDLGAN [12]	0.6104	0.7655	0.6237	0.7105
Ours	0.8394	0.8233	0.7389	0.7443

Table 2. Results of cosine similarity between \mathbf{z} and $\hat{\mathbf{z}}$ from text, image modalities. We used CLIP ViT-B/32 [25] model for both $p_{\theta^{\mathbf{z}_{\text{txt}}}}$ and $p_{\theta^{\mathbf{z}_{\text{img}}}}$. Bold number indicates the best performance among the column and '-' indicates unavailability.

Using various type of latent encoders

Datase	et	MS-CO	CO [16]
$p_{ heta^{\mathbf{z}_{ ext{txt}}}}$	$ p_{ heta^{\mathbf{z}_{ ext{img}}}} $	$ $ Sim $_{txt}$	$ $ Sim $_{img}$
CLIP ViT-L/14 [25]	CLIP ViT-L/14	0.7765	0.8192
CLIP ViT-L/14	BERT [3]	0.9745	0.7796
DINOv2 [21]	CLIP-RNx50	0.7917	0.5207

Table 3. Results of cosine similarity between \mathbf{z} and $\hat{\mathbf{z}}$ from text, image modalities using various type of latent encoders.

Cross-domain modality translation result

Dataset		PCO [16] PebA [17]		М [<mark>29</mark>] -COCO
$p_{ heta^{\mathbf{z}_{ ext{txt}}}}, p_{ heta^{\mathbf{z}_{ ext{img}}}}$	$ $ Sim $_{txt}$	$ $ Sim $_{img}$	$ $ Sim_{txt}	Sim_{img}
CLIP ViT-B/32 [25] CLIP ViT-L/14	0.8237 0.6885	0.5974 0.5993	- 0.6817	0.7300

Table 4. Results of cross-domain experiments. We train our model on bigger dataset, and measure the cosine similarity between ground truth and predict target vector on a relatively small dataset.

Downstream Tasks (1)

Downstream Tasks (2)

Image Captioning

Encoder: CLIP RNx50

Decoder: ClipCap + CapDec

Method	B@1	B@4	R-L
ClipCap [19] CapDec [20]	74.7 69.2	33.5 26.4	51.8
Ours + ClipCap Ours + CapDec	65.9 67.7	23.6 25.5	47.7 48.7

Table 5. Results for image captioning on MS-COCO dataset.

Image Classification

Encoder: CLIP ViT-L/14 & B/32

Method	Accuracy (%)
CLIP ViT-L/14 [25]	85.05
CLIP ViT-B/32	69.69
Ours + CLIP ViT-L/14	77.11
Ours + CLIP ViT-B/32	60.74

Table 6. Results for image classification on CIFAR-10 dataset.

A man holding a tennis racquet on a tennis court Ours + CapDec Ours + ClipCap A man holding a tennis racquet on a tennis court A person holding a tennis racket in the air on a tennis court References

A man with a hat and sunglasses playing tennis A man holding a tennis racquet on a tennis court

A man in sunglasses and a hat is getting ready to hit a tennis ball A tennis player hits the ball back to his opponent

Ours + CapDec Ours + ClipCap

A little girl that is holding a toothbrush in her mouth A child is brushing her teeth with a toothbrush

References A small girl with long hair brushing her teeth A little girl brushing her teeth with an electric toothbrush

a close up of a small child brushing her teeth

A girl in pajamas brushing her teeth with an crayon toothbrush

A little girl brushing her teeth with a tooth brush

Ours + CapDec Ours + ClipCap

A cat laying on top of a laptop computer A cat laying on top of a laptop

References

A cat that is laying with its head down on a mouse A white cat laying on the computer mouse A white cat is taking a nap on a mouse a kitty sleeping on a mouse pad and a mouse

A cat is sleeping on a desk with its head on a computer mouse

Ours + CapDec Ours + ClipCap

A man is preparing food in a kitchen A person in a kitchen baking food in a oven

References

a person with a black oven mit is taking a pan out of the oven A person reaches into an oven to take out some muffins

A person getting muffins out of an oven

A man in black jacket removing tin of muffins from oven

A muffin tray that is inside of a oven

Limitations / Future Study

- Extend to other modalities
 - Using audio modality
- Exploit different pretrained models
 - Pretrained Encoder / Decoder
- Attack various downstream tasks
 - Visual Question Answering / Image-Document Retrieval / Text Retrieval
- Reduce time complexity
 - Lightweight models / Efficient sampling strategy

References

- DDIM (Song, Jiaming et al. "Denoising Diffusion Implicit Models." *ArXiv* abs/2010.02502 (2020): n. pag.)
- **Diffusion Autoencoders** (Preechakul, Konpat et al. "Diffusion Autoencoders: Toward a Meaningful and Decodable Representation." 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2021): 10609-10619.)
- CLIP (Radford, Alec et al. "Learning Transferable Visual Models From Natural Language Supervision." International Conference on Machine Learning (2021).)
- VDLGAN (Kang, Minsoo et al. "Variational Distribution Learning for Unsupervised Text-to-Image Generation." *ArXiv* abs/2303.16105 (2023): n. pag.)
- LAFITE (Zhou, Yufan et al. "Towards Language-Free Training for Text-to-Image Generation." 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2021): 17886-17896.)
- MS-COCO (Lin, Tsung-Yi et al. "Microsoft COCO: Common Objects in Context." European Conference on Computer Vision (2014).)