Ayudantía 2

Teoría Macroeconómica I - EAE4201 Profesor: Alexandre Janiak Ayudantes: Leonardo Montoya, Ignacio Rojas

1 Simulación de un proceso estocástico

Considere el siguiente proceso autorregresivo estacionario para y_t :

$$y_{t+1} = \phi y_t + \varepsilon_t \tag{1}$$

donde $|\phi| < 1$ y ε es un ruido blanco con distribución $N\left(0, \sigma_{\varepsilon}^2\right)$. La varianza incondicional de proceso para y_t es $\sigma_y^2 = \frac{\sigma_{\varepsilon}^2}{1-\phi^2}$. Para practicar loops, buscaremos simular la cantidad de periodos que tarda $|y_t|$ en exceder un umbral $k\sigma_y$, con k > 0.

Suponga inicialmente que $y_0=0,\,\phi=0.9,\,\sigma_\varepsilon=0.1$ y k=2.

- 1. Construya una función periodos que reciba como argumentos $(y_0, \phi, \sigma_{\varepsilon}, k)$ que entregue la cantidad de periodos t^* que tardó el proceso en satisfacer $|y_t| > k\sigma_y^{-1}$. Considere un horizonte máximo de T = 10.000 periodos.
- 2. Genere un vector de periodos ts que contenga el valor de t^* para N=10.000 simulaciones.
- 3. Repita el inciso anterior para valores de k = 1.5 y k = 2.5.
- 4. Grafique los histogramas de los tres vectores ${\tt ts}$ en un solo gráfico, indicando en este a cúal constante k corresponde cada histograma².

2 Funciones

A lo largo de esta sección estudiaremos las diferentes funciones de utilidad utilizadas en los problemas de macroeconomía.

$$u_1(c) = \begin{cases} \frac{c^{1-\sigma}-1}{1-\sigma} & \sigma > 0 \land \sigma \neq 1\\ ln(c) & \sigma = 1 \end{cases}$$
 (2)

$$u_2(c) = \sigma c - \frac{\sigma}{2}c^2 \tag{3}$$

$$u_3(c) = -\frac{1}{\alpha}(e)^{-\alpha c} \tag{4}$$

1. Considere un intervalo para los valores de consumo $c \in [0,5]$ y discretice el espacio en 10.000 puntos. Adicionalmente, considere los siguiente valores para $\sigma = 0, 1/3, 1/2, 0.75, 1.25, 2, 4$. Realice un loop y calcule el tiempo que toma matlab en obtener los valores.

 $^{^1}Hint$: esto es equivalente a la cantidad de iteraciones que realizaría un while adecuado.

²Para esto puede revisar el comando hold on.

- 2. Programe la función **CRRA**, **CARA** y cuadrática, las cuales reciben como inputs c como vectores y σ como valor y cree una matriz como los valores de utilidad.
- 3. Genere un gráfico que muestre la utilidad asociada a cada nivel de consumo para cada uno de los valores de σ y para cada una de las funciones.
- 4. Fije el sigma en 2. Grafique las utilidades marginales para cada una de las 3 funciones analizadas.

Seguimiento 2

Supongamos que el estado de desempleo sigue una cadena de Markov con la siguiente matriz de transición:

			Siguiente estado	
			Empleado	Desempleado
stado	ctual	Empleado	0.87	0.13
		Empleado Desempleado	0.6	0.4
r-7	cO.			

A continuación vamos a simular trayectorias para el desempleo de la economía.

- (a) Simule 53 periodos de trayectorias en el mercado del trabajo para un individuo inicialmente desempleado³. Denote el estado del agente como 1 si está empleado y 2 en caso contrario.
- (b) Grafique la trayectoria laboral del agente.
- (c) Calcule el porcentaje del tiempo que el individuo está desempleado.

 $^{^3}$ Recuerde que si X distribuye uniforme estándar, i.e. $U(0,1),\, P[X < x] = x$ si $x \in [0,1].$