Name: Student University Roll No.:		Printed P	ages:
	School of Engineering Second Theory Sessional Examin Odd Semester (AS: 2024-25) Sech: All Branches [Year: II]	Seme	ster: III
Cour	rse Title: Complex Analysis and Integral Transforms rse Code: NBS 4301	Max Time	Marks: 30 1 <i>hrs</i>
	uctions if any: Read the question Carefully.	20 120 20 12 12 11 15 15	o Landaria
Name of the last	SECTION 'A' 1. Attempt all parts of the following:	Course Objective	
a)	Write the Z- Transform of sequence $\{f_k\}$.	CO 4	1
	Prove that $L\{1\} = \frac{1}{s}$.	CO.3	1
b)		CO 4	1
c)	State the Fourier Integral. Evaluate $L\{t^3e^{-3t}\}$.	CO 3	1
<u>d)</u>	Evaluate $L\{t^{-e} = s\}$. Evaluate $L^{-1}\{\frac{1}{s+a}\}$.	CO 3	1
e)	SECTION 'B'	Course Objective	Marks
Q.N.	2. Attempt any two parts of the following:		
a)	Using Convolution theorem evaluate $I^{-1} = \frac{s}{s}$	CO 3	7.5
b)/	Find the Laplace transform of $\frac{\cos at - \cos bt}{t}$.	CO 3	7.5
c)	Solve by Z- transform: $y_{k+1} + y_k = 1$ if $y_0 = 0$.	CO 4	7.5
O.N.	SECTION 'C' 3. Attempt any one part of the following:	Course Objective	Marks
a)	Express the function $f(x) = \begin{cases} 1 & x \le 1 \\ 0 & x > 1 \end{cases} \text{ as a Fourier Integral.}$ Hence evaluate $\int_0^\infty \frac{\sin \lambda \cos \lambda x}{\lambda} d\lambda$	CO4	10
b)	Solve using Laplace Transform $y''(t) + 4y'(t) + 4y(t) = 6e^{-t}$	CO3	10
c) ·	Find Fourier Sine Transform of function e^{-ax} .	CO4	10
c) COs	$y''(t) + 4y'(t) + 4y(t) = 6e^{-t}$ y(0) = -2, y'(0) = 8. Find Fourier Sine Transform of function e^{-ax} . Table 1: Mapping between COs and question (Number of COs.)	Cons	

COs COs may vary from co	ourse to course)
Questions Numbers T	otal Marks
1 1 0 1 1 (0) 2 () 2	28
CO 4 1(a) 1(c), 2(a), 2(b), 3(t)	20
1(a), 1(c), 2(c), 3(a), 3(c)	29.5