DM2 | GAVRILOV MISHA

Опять же альтернативная ссылка на просмотр <u>решений</u> (из-за проблем с форматом при конвертации из notion в pdf).

Task 1

1. For each given regular expression P, construct a DFA (Deterministic Finite Automaton), and find the number of accepted word of length at most 5, i.e. the size of the set $\mathcal{L}' = \{w \in \mathcal{L}(P) \mid |w| \leq 5\}$. For "any" (.) and "negative" ([^.]) matches, assume that the alphabet is $\Sigma = \{a, b, c, d\}$.

a)

(a)
$$P_1 = ab*$$

$$ab^* = \{a, ab, abb, abbb, abbbb\}$$
 Size = 5

b)

(b)
$$P_2 = a+b?c$$

 $a + b?c = \{ac, aac, aaac, aaac, abc, aabc, aaabc\}$ Size = 7

c)

(c)
$$P_3 = [^cd] + c\{3\}$$

d)

(d)
$$P_4 = [^a] (.|ddd)?$$

 $P4 = \{b, ba, bb, bc, bd, bddd, c, ca, cb, cc, cd, cddd, d, da, db, dc, dd, ddddd\}$

Size = 18

e)

(e)
$$P_5 = d(a|bc)*$$

 $P5 = \{d, da, daaa, daaaa, dbc, dbcbc, dabc, dbca, dabca, dbcaa, daabc\}$ Size = 11

f)

(f)
$$P_6 = ((a|ab)[cd]){2}$$

 $P6 = \{acac, adad, acad, adac, abcac, abcad, abdac, abdad, acabc, acabd, adabc, adabd\}$ Size = 12

Task 2

. Describe the set of strings defined by each of these sets of productions in EBNF[™] (extended Backus-Naur form).

a)

(a)
$$\langle string \rangle$$
 ::= $\langle L \rangle + \langle D \rangle$? $\langle L \rangle + \langle L \rangle$::= a | b | c $\langle D \rangle$::= 0 | 1

$$(a|b|c) + (0|1)?(a|b|c) +$$

Строка состоящая из одной или нескольких букв a или b или c, за которыми может следовать или не следовать двоичная цифра, за которой следует одна или несколько букв a или b или c.

b)

(b)
$$\langle string \rangle$$
 ::= $\langle sign \rangle$? $\langle N \rangle$
 $\langle sign \rangle$::= '+' | '-'
 $\langle N \rangle$::= $\langle D \rangle$ ($\langle D \rangle$ | 0)*
 $\langle D \rangle$::= 1 | ... | 9

$$(+|-)?(1|...|9)(1|...|9|0)^*$$

Строка, которая может начинаться с символа + или -(а может и не начинаться с этого), далее следует какое-то десятичное положительное число(не начинается с нуля).

c)

(c)
$$\langle string \rangle ::= \langle L \rangle^* (\langle D \rangle +)? \langle L \rangle^*$$

 $\langle L \rangle ::= x \mid y$
 $\langle D \rangle ::= 0 \mid 1$

$$(x|y)^*((0|1)+)?(x|y)^*$$

Строка состоит из любого количества букв из $\{x,y\}$, за которыми возможно следует одна или несколько цифр из $\{0,1\}$, за которыми следует любое количество букв из $\{x,y\}$.

d)

(d)
$$\langle string \rangle ::= \langle C \rangle \langle R \rangle^*$$

 $\langle C \rangle ::= a \mid ... \mid z \mid A \mid ... \mid Z$
 $\langle D \rangle ::= 0 \mid ... \mid 9$
 $\langle R \rangle ::= \langle C \rangle \mid \langle D \rangle \mid '_'$

$$(a|...|z||A|...|Z)(a|...|z|A|...|Z|0|...|9|_|)^*$$

Строка, которая начинается с большой или маленькой буквы латинского алфавита (a...z A...Z), после которой идет любое количество символов из $\{0...9$ a...z A...Z $_{-}\}$.

Task 3

3. Let $\mathcal{G} = \langle V, T, S, P \rangle$ be the phrase-structure grammar with vocabulary $V = \{A, S\}$, terminal symbols $T = \{0, 1\}$, start symbol S = S, and set of productions $P: S \to 1S$, $S \to 00A$, $A \to 0A$, $A \to 0$.

a)

(a) Show that 111000 belongs to the language generated by G.

$$S \rightarrow 1S \rightarrow 11S \rightarrow 111S \rightarrow 11100A \rightarrow 111000$$

Значит 111000 принадлежит языку, порожденному G

(b) Show that 11001 does not belong to the language generated by G.

Рассмотрим множество продукций : S o 1S, S o 00A, A o 0A, A o 0

Заметим, что любое слово оканчивается на 0. Значит 11001 не принадлежит языку, порожденному G.

c)

(c) What is the language generated by G?

S o 1S продуцирует строки 1^nS S o 00A совместно с A o 0A и A o 0 продуцирует строки 000A Тогда $L(G)=\{1^n0^m|n\geq 0, m\geq 3\}$

Task 4

- 4. Find the output generated from the input string 01110 for each of the following Mealy machines.
- a) 10101
- **b)** 00000
- c) 00000

Task 5

- 5. Construct a Moore machine for each of the following descriptions.
- a)
 - (a) Determine the residue modulo 3 of the input treated as a binary number. For example, for input ε (which corresponds to "value" 0) the residue is 0; 101 (5 in decimal) has residue 2; and 1010 (value 10) has residue 1.

b)

(b) Output the residue modulo 5 of the input from $\{0, 1, 2\}^*$ treated as a ternary (base 3) number.

c)

(c) Output A if the binary input ends with 101; output B if it ends with 110; otherwise output C.

Task 6

Show that regular languages are *closed* under the following operations.

a)

(a) Union, that is, if L_1 and L_2 are regular languages, then $L_1 \cup L_2$ is also regular.

Если L_1 и L_2 - регулярные языки, то $L_1 \cup L_2$ - регулярный, по определению регулярного языка

b)

(b) Concatenation, that is, if L_1 and L_2 are regular languages, then $L_1 \cdot L_2$ is also regular.

Если L_1 и L_2 - регулярные языки, то L_1L_2 - регулярный, по определению регулярного языка

c)

(c) Kleene star, that is, if L is a regular language, then L^* is also regular.

Если L - регулярный язык, то L^{st} - регулярный, по определению регулярного языка

d)

(d) Complement, that is, if L is a regular language, then $\overline{L} = \Sigma^* - L$ is also regular.

Пусть $M = \{Q, \Sigma, \delta, q_0, F\}$ - автомат для L.

Если $\omega \in L$, то M допускает ω , то есть результирующее состояние $\in F$.

Если $\omega \notin L$, то M не допускает ω , то есть результирующее состояние $\notin F$.

Обозначим $\overline{M}=\{Q,\Sigma,\delta,q_0,Qackslash F\}$ и $L(\overline{M})$ это \overline{L} .

Если $\omega \in L$, то M допускает ω , то есть результирующее состояние $\in F$, значит \overline{M} не допускает $\omega.$

Если $\omega \notin L$, то M не допускает ω , то есть результирующее состояние $\notin F$, значит \overline{M} допускает ω .

Таким образом \overline{L} - регулярный язык.

e)

(e) Intersection, that is, if L_1 and L_2 are regular languages, then $L_1 \cap L_2$ is also regular.

Если L_1 и L_2 - регулярные языки, а $L_1\cap L_2=\overline{\overline{L_1}\cup \overline{L_2}}$, то $L_1\cap L_2$ - регулярный(так как в пунктах a-d мы доказали замкнутость остальных операций).

Task 7

7. Determine whether the following languages are regular or not. For non-regular languages, use Pumping lemma to prove that they are not regular. For each regular language, provide a regular expression and construct an ε -NFA.

a)

(a)
$$L_1 = \{ w \in \{0, 1\}^* \mid \text{length of } w \text{ is odd} \}$$

Этот язык регулярный : $(0|1)((0|1)(0|1))^*$.

Построим $\epsilon-NFA$ с помощью Thompson's construction.

b)

(b)
$$L_2 = \{0^n 1^n \mid n \in \mathbb{N}\}$$

Допустим язык L_2 - регулярный.

Тогда существует такое n, что для любого слова $\omega\in L_2$ длины не меньше n найдутся слова $x,y,z\in\Sigma^*$, для которых верно: $xyz=\omega,y\neq\varepsilon,|xy|\leqslant n$ и $\forall i\geqslant 0$ $xy^iz\in L_2$ (pumping).

Тогда возьмем $0^n1^n=xyz$, при этом $|xy|\leq n$. Значит $y=0^k$, где $0< k\leq n$. Но тогда $xz=0^{n-k}1^n$, то есть получилось, что $xz\notin L_2$, а это противоречие, так как xz должно принадлежать L_2 ($\forall i\geqslant 0$ $xy^iz\in L_2$). Следовательно L_2 - не регулярный.

c)

$$L_3 = \{ w \in \{0, 1\}^* \mid w \text{ contains an even number of 1s} \}$$

Этот язык регулярный : $0^*(10^*10^*)^*$.

d)

(d)
$$L_4 = \{1^{n^2} \mid n \in \mathbb{N}\}$$

Допустим язык L_4 - регулярный.

Проделаем аналогичные рассуждения пункту b, используем Pumping Lemma.

Тогда рассмотрим $\omega=1^{k^2}$, $\omega=xyz$. Тогда $x=1^\lambda,y=1^\beta,z=1^{k^2-\lambda-\beta}$, при этом $\lambda+\beta\leq k$ и $\beta>0$, $\lambda\geq 0$, значит $k-\beta\geq 0$, то есть $\beta\leq k$. Так как $\forall i\geqslant 0$ $xy^iz\in L_4$, то возьмем i=2.

Рассмотрим $xy^2z=1^{k^2+\beta}\in L_4$. Так как $\beta>0$, то $k^2+\beta>k$. А так как $\beta\leq k$, то $k^2+\beta\leq k^2+k< k^2+2k+1=(k+1)^2$. То есть $k^2< k^2+\beta<(k+1)^2$, при этом $k^2+\beta$ должно быть точным квадратом. Заметим, что это невозможно, так как $k^2+\beta$ зажато между двумя последовательными точными квадратами, то есть мы пришли к противоречию и L_4 не является регулярным.

Task 8

8. Consider a finite-state automaton $M=(\Sigma,Q,q_0,F,\delta)$ and a non-negative integer k. Let R_k be the relation on the set of states of M such that s R_k t if and only if for every input string $w \in \Sigma^*$ with $|w| \le k$, $\delta(s,w)$ and $\delta(t,w)$ are both final states or both not final states. Furthermore, let R^* be the relation on the set of states of M such that s R^* t if and only if for every input string $w \in \Sigma^*$, regardless of length, $\delta(s,w)$ and $\delta(t,w)$ are both final states or both not final states.

a)

(a) Show that for every nonnegative integer k, R_k is an equivalence relation on S. Two states s and t are called k-equivalent if s R_k t.

Отношение эквивалентности : рефлексивно, симметрично, транзитивно.

1) Рефлексивность

 $orall \omega \ |\omega| \le k, \delta(s,\omega)$ - либо допускающее, либо нет состояние, значит : $sR_k s$ для $orall \omega \ |\omega| \le k$, то есть рефлексивно.

2) Симметричность

Если sR_kt , значит $orall \omega |\omega| \leq k$, $\delta(s,\omega)$ и $\delta(t,\omega)$ - оба являются допускающими состояниями или оба не являются допускающими состояниями, значит $\delta(t,\omega)$ и $\delta(s,\omega)$ - оба являются допускающими состояниями или оба не являются допускающими состояниями, значит tR_ks для $orall \omega |\omega| \leq k$, то есть симметрично.

3) Транзитивность

Если sR_km , то $\forall \omega \ |\omega| \leq k$, $\delta(s,\omega)$ и $\delta(m,\omega)$ - оба являются допускающими состояниями или оба не являются допускающими состояниями.

Если mR_kt , то $orall \omega \mid \leq k$, $\delta(m,\omega)$ и $\delta(t,\omega)$ - оба являются допускающими состояниями или оба не являются допускающими

состояниями.

Тогда $\delta(s,\omega)$, $\delta(m,\omega)$ и $\delta(t,\omega)$ - единовременно являются допускающими состояниями или не являются допускающими состояниями для $orall \omega \mid \omega \mid \leq k$, значит sR_kt , то есть мы получили транзитивность.

(b) Show that R^* is an equivalence relation on S. Two states s and t are called *-equivalent if s R^* t.

Доказательство для R^* следует той же логике, что и для R_k , но без ограничения на длину входной строки ω . Таким образом, R^* также удовлетворяет рефлексивности, симметричности и транзитивности.

c)

(c) Show that if two states s and t are k-equivalent (k > 0), then they are also (k - 1)-equivalent.

Если sR_kt , то это значит, что не существует ω , $|\omega| \leq k$, при котором $\delta(s,\omega)$ и $\delta(t,\omega)$ - не оба являются допускающими состояниями или не оба не являются допускающими состояниями, то есть не существует ω' , $|\omega'| \leq k-1$, при котором $\delta(s,\omega')$ и $\delta(t,\omega')$ - не оба являются допускающими состояниями или не оба не являются допускающими состояниями, значит $sR_{k-1}t$.

d)

(d) Show that the equivalence classes of R_k are a refinement of the equivalence classes of R_{k-1} .

Если sR_kt для некоторого k, то для $\forall \omega$, $|\omega| \leq k$, $\delta(s,\omega)$ и $\delta(t,\omega)$ оба допускающие или оба не допускающие. Это означает, что s и t находятся в одном классе эквивалентности над R_k . Если s и t также находятся в одном классе в R_{k-1} , то для любого ω при $|\omega| < k$, $\delta(s,\omega)$ и $\delta(t,\omega)$ также оба допускающие или оба не допускающие, однако если они не в одном классе эквивалентности для R_{k-1} , то они не могут находится в одном классе эквивалентности для R_k , так как в R_{k-1} существует ω' $|\omega'| \leq k-1$, такое что $\delta(s,\omega')$ и $\delta(t,\omega')$ - оба не является допускающими или не допускающими.

e)

(e) Show that if two states *s* and *t* are *k*-equivalent for every non-negative integer *k*, then they are *-equivalent.

Если s и t k-эквивалентны для $\forall k \geq 0$, то для любой входной строки ω , независимо от ее длины, $\delta(s,\omega)$ и $\delta(t,\omega)$ оба допускающие или оба не допускающие. Это означает, что s и t находятся в одном классе эквивалентности R^* по определению, поэтому s и t *-эквивалентны.

f)

(f) Show that all states in a given R^* -equivalence class are final or all are not final.

Допустим это утверждение не верно и нашелся R^* -эквивалентный класс, в котором есть как допускающие, так и не допускающие состояния. Рассмотрим *-эквивалентный класс порядка 0, в таком случае наши исходные состояния поделятся на 2 множества, в каждом из которых будут либо только допускающие, либо только не допускающие. Но так как мы знаем, что если два состояния s и t не находились в одном классе эквивалентности на шаге меньше k, то они не могут находиться в одном классе эквивалентности на шаге k (мы можем взять ω' длины меньше k для которого не верно что $\delta(s,\omega')$ и $\delta(t,\omega')$ - оба допускающие или не допускающие), тогда мы пришли к противоречию, а это значит что данное утверждение верно.

g)

(g) Show that if two states s and t are *-equivalent, then $\delta(s,a)$ and $\delta(t,a)$ are also *-equivalent for all $a \in \Sigma$.

Если s и t *-эквивалентны, то для $\forall \omega$, $\delta(s,\omega)$ и $\delta(t,\omega)$ оба допускающие или оба не допускающие(не зависимо от длины $|\omega|$). Тогда рассмотрим все ω с начальным символом a(так как нам нужно пройти через $\delta(s,a)$ и $\delta(t,a)$), мы знаем, s и t *-эквивалентны, то есть $\delta(s,\omega)$ и $\delta(t,\omega)$ приводят оба либо в допускающие, либо не допускающие, при этом мы пройдем через состояния $s'=\delta(s,a)$ и $t'=\delta(t,a)$. Тогда так как мы из s' и t' при любом $\omega'=\omega$ без начального символа a придем в те же состояния, что при $\delta(s,\omega)$ и $\delta(t,\omega)$, а мы знаем, что они оба либо допускающие, либо не допускающие, то s' и t' - *-эквивалентные.

Task 9

9. Consider the finite-state automaton $M = (\Sigma, Q, q_0, F, \delta)$ depicted below.

a)

(a) Find the k-equivalence classes of M for k = 0, 1, 2, 3.

k = 0

$$\{s_0, s_1, s_2, s_4, s_5\}, \{s_3, s_6\}$$

k = 1

Будем строить деревья, показывающие состояния по определенному переходу, тогда два состояния будут в одном классе эквивалентности, если при отбрасывании номера вершины в дереве они будут равны, то есть мы смотрим на то, является ли состояние допускающим или нет.

$$\{s_0\}, \{s_1, s_5\}, \{s_2, s_4\}, \{s_3\}, \{s_6\}$$
 k = 2

$$\{s_0\}, \{s_1, s_5\}, \{s_2, s_4\}, \{s_3\}, \{s_6\}$$

k = 3

Мы знаем, что если s_i и s_j не были в одном классе эквивалентности на шаге k-1, то они не могут оказаться в одном классе эквивалентности на шаге k. Поэтому проверим останутся ли $\{s_1,s_5\}$ и $\{s_2,s_4\}$ в одном классе эквивалентности.

Рассмотрим s_1 и s_5 . Заметим, что при шаге k=1 и k=2, деревья с корнем в вершинах s_1 и s_5 были равны(кроме самого корня), поэтому на шаге k=3, они также будут равны.

Аналогично с s_2 и s_4 .

Тогда мы получаем классы аналогичные шагу $k=2\,.$

$$\{s_0\}, \{s_1, s_5\}, \{s_2, s_4\}, \{s_3\}, \{s_6\}$$

b)

(b) Find the *-equivalence classes of M.

Аналогично шагу при k=3 мы можем проделывать такие же заключения и получим следующее разбиение на классы:

$$\{s_0\}, \{s_1, s_5\}, \{s_2, s_4\}, \{s_3\}, \{s_6\}$$

c)

- (c) Construct the quotient automaton \overline{M} of M.
 - ▶ The quotient automaton \overline{M} of the deterministic finite-state automaton $M = (\Sigma, S, s_0, F, \delta)$ is the finite state automaton $\overline{M} = (\Sigma, \overline{S}, [s_0]_{R^*}, \overline{F}, \overline{\delta})$, where the set of states \overline{S} is the set of R^* -equivalence classes of S; the transition function $\overline{\delta}$ is defined by $\overline{\delta}([s]_{R^*}, a) = [\delta(s, a)]_{R^*}$ for all states $[s]_{R^*}$ of \overline{M} and input symbols $a \in \Sigma$; and \overline{F} is the set consiting of R^* -equivalence classes of final states of M.

$$\{s_0\}=\overline{S_1}, \{s_1,s_5\}=\overline{S_2}, \{s_2,s_4\}=\overline{S_3}, \{s_3\}=\overline{S_4}, \{s_6\}=\overline{S_5}$$

Task 10

10. Solve the following regex crosswords. Fill each cell with a single ASCII character (an uppercase letter, a digit, a punctuation mark, or a space). Each row/column, when read left to right or top to bottom must match the regular expression(s) given for that row/column.

