Reg. No.	R	A	2	0	1	(0	D	4	0	1	0	0	5	1	-
----------	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

B.Tech. DEGREE EXAMINATION, DECEMBER 2022

Fourth and Fifth Semester

18EEO301T - SUSTAINABLE ENERGY

(For the candidates admitted from the academic year 2020-2021 and 2021-2022)

(i) (ii)			 A should be answered in OMR sl to hall invigilator at the end of 40th r B should be answered in answer b 	miniife	rithin first 40 minutes and OMR sheet.	t shou	ld be	han	ded
ime	21/	4 Hou	ırs			Max.	. Ma	rks:	75
			PART – A (25 × 1 =	= 25 N	Marks)	Marks	BL	со	РО
	1.	Diff	Answer ALL Question	uesno	ons			1	
			Has no unique direction	(B)	Has an unique direction			,	1
		(C)		(D)	Has larger magnitude as compared to beam radiation				
	2.	Wha	it is the standard value of solar co	onetar	nt?	,	1		
		(A)	$1kW.m^2$		$1.367 \ kW \ / \ m^2$	1	1	1	1
			$1.5kW.m^2$		$5kWm^2$				
		,-,	1.3KW M	(D)	5kWm ²				
	3.	norn	rertical angle between suns razontal plane through the pint is _ Zenith angle		nd a line perpendicular to the Solar azimuth angle	1	Ì	1	1
		(C)	Hour angle		Altitude angle				
	4.		pical open circuit voltage of a so			1	1	1	1
			12 V 1.5 V		1 V				
		(C)	1.3 V	(D)	0.5 V				
	5	In Ir	dia the standard meridian crosse	90		,			
			Delhi	- Annual Contract of the Contr	Calcutta	1	1	1	1
			Mumbai	-	Alagabhat				
		, ,		(D)	Magaonat				
	6.	The	maximum theoretical power coe	efficie	ent of a wind turbine is	1	1	2	1
		(A)	0.35		0.59				
		(C)	0.65	11.00	0.95				
	7.	nave			ostantial amount of power should	d 1	1	2	1
			Small rotor and be located in area of high wind speeds						
		(C)	Large rotor diameter and be mounted on the lower tower	e (D)	Large rotor and be located i	n			

Note:

8.	Darrieus type wind turbine is an examp (A) Vertical axis wind turbine (C) Radial turbine		1	1	2	1
9.	(0)	een cut in speed and the rated speed? (B) Square (D) Exponentially	1	1	2	1
10.	A wind turbine extracts maximum pow wind speed reduces to		1.	1	2	1
	(A) One third that of upstream (wind(C) Two third that of upstream (
11.		piogas is B) (35-65)%	1	1	3	1
	(C) (70-80)%	D) (0-5)%				
12.	Which among the following is not digestion?	an essential part of for anaerobic	1	1	3	1
		B) Oxygen D) Uniform feed rate				
13.	is a process of temperature of	decomposition of organic material in	2	1	3	1
	the absence of oxygen.	or organic material in				
		B) Energy forming D) Cofiring				
14.	Biodiesel is		1	1	2	1
	(A) Obtained from fermentation of (I sugars	process		4		
	(C) Exudates of plants (1	D) An upgraded vegetable oil				
15.	Liquefiction of biomass is carried out a	t	1			
	(A) High temperature and low (I	B) Relatively low temperature and		1	3	1
16	(C) Relatively low temperature (land normal pressure	pressure				
16.	Difference in water levels between cons (A) Tidal movement (I (C) Tidal basin (I	secutive high tide and low tide is B) Tidal range D) Ebb tide	1	1	3	1
	The kinetic energy that results from the (A) Wave energy (C) Ocean thermal energy (D)	e oscillation of water is called B) Tidal energy D) Hydro energy	1	1	3	1
18.	Compared to an open cycle system a cle (A) Has higher working pressure in (boiler/turbine and lower specific volume of working fluid	osed cycle OTEC system B) Has lower working pressure in boiler/turbine and higher specific volume of working fluid	1	1	4	1

	(0)	boiler/turbine and higher specific volume of working fluid		has lower working pressure in boiler/turbine and lower specific volume of working fluid	r			
19.	In tr	ophic regions the ocean surface t	empe	erature may be as high as	1	1	4	1
	(A)	80°C		40°C				
	(C)	17°C	(D)	27°C				
20.	a pra	actical heat engine is	e bet	ween source and sink required by	1	1	4	1
	(A)	540°C	(B)	120°C				
	(C)	10°C	(D)	20°C				
21	. Whi	ch fuel cell has the lowest operat	ing te	emperature?	1	1	5	1
		PAFC .	(B)	PEMFC				
	(C)	SOFC	(D)	MCFC				
22	. For of th	proper operation of a fuel cell the ne VI characteristics	e ope	rating point is set in which region	1	1	5	1
		In the low load region In the high load region		In the middle near flat region In any region irrespective of load				
23	. Hyd	lrogen can be used			1	1	5	1
	(A) (C)	As primary energy source only Both as primary energy source as well as energy carrier	(D)	As an energy carrier only Neither as primary energy source nor as energy carrier				
24	. The	most mature technology available	e for	hydrogen storage is	1	1	5	1
	(A)	Liquid hydrogen storage at low temperature	(B)	Metal hydride				
	(C)	Carbon nano tubes	(D)	Compressed hydrogen gas in steel tank or cylinder				
25.	Whi	ch one of the following is supplie	d to t	he cathode of a fuel cell?	1	1	5	1
	(A)	Hydrogen	(B)	Nitrogen				
	(C)	Oxygen	(D)	Chlorine				
		$PART - B (5 \times 10 = Answer ALL Qu$			Marks	BL	СО	PO
26. a.	powe	er point and 0.5 V at maximum	powe circui	rives 3.1 A current at maximum er at STC. The cell gives 3.5 A. t voltage. What is the maximum at the efficiency of the cell.	10	3	1	2

(OR)

b.	Explain the solar grid connected photovoltaic system for large scale power plant.	10	2	1	1
27. a.	Prove that the maximum power is generated from ideal horizontal axis wind turbine system is equal to $P_{\text{max}} = \frac{1}{2} [0.59] \rho A V i^3$.	10	1	2	1
	(OR)				
b.	With neat sketch, explain the types of generators used in HAWT.	10	1	2	1
28. a	With neat sketch, explain how the power is generated in variable dome type gas plant.	10	1	3	1
	(OR)				
b	. With neat sketch, explain the various types of biomass plant.	10	1	3	1
29. a	. Draw and explain with neat sketch about single basin tidal power plant.	10	1	4	1
	(OR)				
b	Explain about the ocean thermal energy conversion with neat sketch.	10	1	4	. 1
30. a	Describe with a neat sketch the fuel cell power plant.	10	1	5	1
	(OR)				
b	o. Write short notes on				
	(i) Challenges and trends in fuel cell	5			
	(ii) Applications of fuel cell	5	1	5	1

* * * * *