Teorema de Stone-Weierstrass

Jose Antonio Lorencio Abril

Vamos a ver el teorema de Stone-Weierstrass, un resultado que generaliza el teorema de Weierstrass de aproximación polinómica de aplicaciones continuas definidas en un intervalo cerrado. Necesitamos la siguiente definición y algunos resultados previos:

Definition 1. C(X) será el álgebra de las funciones reales con dominio en el espacio topológico X, con la subálgebra de las funciones acotadas en C(X) denotada por $C^*(X)$.

La topología con la que trabajaremos en $C^*(X)$ es la inducida por la métrica d(f,g) = $\sup_{x\in X} |f(x)-g(x)|$, que se denomina la **métrica uniforme**, porque induce en $C^*(X)$ la topología de la convergencia uniforme.

Esta última frase quiere decir que si X es compacto, entonces $C^*(X) = C(X)$ es completo en esta métrica.

Antes de poder probar el teorema de Stone-Weierstrass, necesitamos una versión débil del teorema clásico de Weierstrass:

Lemma 2. Para cada $\varepsilon > 0$, hay un polinomio $P_{\varepsilon}(x)$ tal que

$$||x| - P_{\varepsilon}(x)| < \varepsilon$$

para cada $x \in [-1, 1]$

Proof. Por inducción:

Definimos en $x \in [0, 1]$, $P_0(x) = 0$ y $P_{k+1}(x) = P_k(x) + \frac{x - P_k^2(x)}{2}$. Veamos que $\forall k \ge 0$, se tiene $0 \le P_k(x) \le \sqrt{x}$ y $P_k \le P_{k+1}$.

[k=0] Obvio

[k+1] Si es cierto para k, entonces $0 \le P_k(x)^2 \le x \implies x - P_k(x)^2 \ge 0$ y $P_{k+1}(x) = P_k(x) + P_k(x)$ $\frac{x - P_k(x)^2}{2} \ge P_k(x) \ge 0.$

$$P_{k+1}(x) = P_k(x) + \frac{1}{2} (\sqrt{x} + P_k(x)) (\sqrt{x} - P_k(x)) \stackrel{*}{\leq} P_k(x) + (\sqrt{x} - P_k(x)) = \sqrt{x}$$

Donde la designaldad * es cierta porque $0 \le P_k(x) \le \sqrt{x} \le 1$, por lo que $\frac{1}{2}(\sqrt{x} + P_k(x)) \le 1$.

Por tanto, para $x \in [0,1], (P_k(x))_k$ es monótona creciente y acotada por 1, $(P_k)_k$ converge puntualmente a cierta función $P \leq \sqrt{x}$.

Tomando límites en la ecuación recursiva, se tiene que

$$P(x) = P(x) + \frac{x - P(x)^{2}}{2} \implies P(x)^{2} = x$$

Como $P(x) \ge 0$, es $P(x) = \sqrt{x}$, continua y la convergencia es uniforme por el teorema de Dini. Dado ahora $\varepsilon > 0$, tomamos k tal qeu $|P_k(x) - \sqrt{x}| < \varepsilon, \ \forall x \in [0, 1]$.

Definimos $q(y) = P_k(y^2)$ para $y \in [-1, 1]$, como P_k es un polinomio, también lo es q, y para todo $y \in [-1, 1]$ se verifica

$$|q(y) - |y|| = |P_k(y^2) - \sqrt{y^2}| < \varepsilon$$

Este lema solo lo necesitamos para establecer el siguiente lema, crítico para la prueba del teorema general.

Lemma 3. Cualquier subálgebra uniformemente cerrada \mathcal{A} de $C^*(X)$ es un retículo. O sea, si $f, g \in \mathcal{A} \implies \min(f, g), \max(f, g) \in \mathcal{A}$

Proof. Se tiene que

$$\min(f,g) = \frac{1}{2}(f+g) - \frac{1}{2}|f-g|$$

$$\max(f,g) = \frac{1}{2}(f+g) + \frac{1}{2}|f-g|$$

y entonces basta ver que, siempre que $f \in \mathcal{A}$, se tiene $|f| \in \mathcal{A}$.

Supongamos, primero, que $|f| \le 1$ en X. Entonces, por el Lemma 2, para cada $\varepsilon > 0$, existe un polinomio P_{ε} tal que

$$|P_{\varepsilon}(f) - |f|| < \varepsilon$$

y entonces |f| puede aproximarse uniformemente por las funciones $P_{\varepsilon}(f)$, que todas están en \mathcal{A} por ser polinomios en $f \in \mathcal{A}$.

Si no es $|f| \leq 1$ en X, no importa, ya que sabemos que es acotada porque $\mathcal{A} \subset C^*(X)$, por lo que $|f| \leq A$. Podemos aplicar el razonamiento anterior a $\left|\frac{f}{A}\right| \in \mathcal{A}$.

Por tanto, $|f| \in \mathcal{A}$.

Definition 4. Si \mathcal{D} es una subcolección de $C^*(X)$, la subálgebra $\mathcal{A}(\mathcal{D})$ generada por \mathcal{D} es la menor subálgebra de $C^*(X)$ que contiene a \mathcal{D} . Siempre existe, pues la intersección de subálgebras conteniendo a \mathcal{D} es una subálgebra. Además, la clausura uniforme $\mathcal{B}(\mathcal{D})$ de $\mathcal{A}(\mathcal{D})$ es una subálgebra, llamada la subálgebra uniformemente cerrada generada por \mathcal{D} .

El teorema de Stone-Weierstrass proporciona un conjunto de condiciones para \mathcal{D} , bajo las cuales la subálgebra uniformemente cerrada generada por \mathcal{D} es todo $C^*(X)$.

Recordemos que una colección de funciones **separa puntos** si, y solo si, siempre que $x \neq y$ en X, entonces existe alguna función f tal que $f(x) \neq f(y)$.

Theorem 5. Stone-Weierstrass

Sea X un espacio Hausdorff compacto.

Si \mathcal{D} es una colección de funciones en $C^*(X)$ que separa puntos en X y contiene la función constante 1, entonces la subálebra uniformemente cerrada generada por \mathcal{D} es todo $C^*(X)$.

Proof. Vamos a ver que toda función $f \in C^*(X)$ puede ser aproximada uniformemente por funciones de $\mathcal{A}(\mathcal{D})$.

Para esto, sin pérdida de generalidad podemos asumir que

$$\inf_{x \in X} f\left(x\right) < \sup_{x \in X} f\left(x\right)$$

(Si no, f es constante, y como \mathcal{D} contiene a 1, entonces $f \in \mathcal{A}(\mathcal{D})$). De esta forma, podemos asumir, $\sin \text{ pérdida de generalidad que } \inf_{x \in X} f(x) = -1 \text{ y } \sup_{x \in X} f(x) = 1, \text{ de forma que } f: X \to [-1, 1].$ Sean $A_1 = \left\{x \in X | f(x) \le -\frac{1}{3}\right\}$ y $B_1 = \left\{x \in X | f(x) \ge \frac{1}{3}\right\}$. Para cada $a \in A_1$ y $b \in B_1$ existe una función h_{ab} con h_{ab} (a) $\neq h_{ab}$ (b) porque \mathcal{D} separa puntos. Definimos g_{ab} por

$$g_{ab}(x) = -\frac{4}{3} \frac{h_{ab}(x) - h_{ab}(b)}{h_{ab}(a) - h_{ab}(b)} + \frac{2}{3}$$

Entonces $g_{ab}\left(a\right)=-\frac{2}{3},\ g_{ab}\left(b\right)=\frac{2}{3}\ y\ g_{ab}\in\mathcal{A}\left(\mathcal{D}\right).$

Fijemos $a \in A_1$, para cada $y \in B_1$, $g_{ay}(y) = \frac{2}{3}$ por lo que $g_{ay}(z) \ge \frac{1}{3}$ para $z \in U_y \in \mathcal{E}(y)$. Una cantidad finita de estos entornos, digamos $U_{y_1},...,U_{y_n}$ cubre B_1 , y una función g_a puede ahora ser definida para cada $x \in X$ mediante

$$g_a(x) = \min \{g_{ay_1}(x), ..., g_{ay_n}(x)\}$$

Notemos que $g_a(a) = -\frac{2}{3}$ y que $g_a \ge \frac{1}{3}$ en B_1 , además $g_a \in \mathcal{B}(\mathcal{D})$. Repitiendo este procedimiento en A_1 , podemos encontrar una función $g \in \mathcal{B}(\mathcal{D})$ de tal forma que $g \le -\frac{1}{3}$ en A_1 y $g \ge \frac{1}{3}$ en B_1 . Se sigue que $|g(x) - g_a(x)| \le \frac{2}{3}$ para $x \in A_1 \cup B_1$ y si definimos

$$h_{0}\left(x\right) = \min\left\{g\left(x\right), \frac{1}{3}\right\}$$

$$h_{1}\left(x\right) = \max\left\{h_{0}\left(x\right), -\frac{1}{3}\right\}$$

Entonces $h_0 \in \mathcal{B}(\mathcal{D})$ y $|h_1(x)| \leq \frac{1}{3}$ en $X \setminus (A_1 \cup B_1)$, mientras que $|f(x)| \leq \frac{1}{3}$ en $X \setminus (A_1 \cup B_1)$. Esto, junto con el hecho de que $h_1(x) = g(x)$ en $A_1 \cup B_1$, nos proporciona la relación

$$||f - h_1|| \le \frac{2}{3}$$

Repitiendo el proceso a la función $f-h_1$ y el intervalo $\left[-\frac{2}{3},\frac{2}{3}\right]$, podemos obtener una función $h_2 \in \mathcal{B}(\mathcal{D})$ tal que

$$||f - h_1 - h_2|| \le \left(\frac{2}{3}\right)^2$$

Y, en general, encontraremos funciones $h_1, ..., h_n \in \mathcal{B}(\mathcal{D})$ tales que

$$||f - (h_1 + \dots + h_n)|| \le \left(\frac{2}{3}\right)^n$$

Y por último obtenemos el teorema clásico de Weierstrass como corolario de este teorema:

Corollary 6. Teorema de Weierstrass

de donde $f \in \mathcal{B}(\mathcal{D})$.

Toda función $f:[a,b] \to \mathbb{R}$ se puede aproximar uniformemente por polinomios.

Proof. La afirmación es que $C^*[a,b]$ es la clausura uniformemente cerrada del álgebra \mathcal{A} de los polinomios en [a,b]. Pero \mathcal{A} es el álgebra generada por el conjunto \mathcal{D} consistente en las funciones x (la identidad) y 1, por lo que \mathcal{D} satisface las condiciones del teorema de Stone-Weierstrass, y por lo tanto la clausura uniformemente cerrada de $\mathcal{A}(\mathcal{D})$ es, de hecho, todo $C^*[a,b]$, como queríamos ver.