NBA Basketball Analysis

By: Eoin Gawronski

Table of Contents

- Introduction/Objective
- 2. Dataset/Features
- 3. Correlation Matrix
- 4. Models: Linear Regression, Elastic Net, Lasso, or Random Forest
- 5. Feature Importance
- 6. Best Model
- 7. Conclusions

Introduction

<u>Objective</u>

 Provide a deeper understanding of what drives scoring in basketball through models and data analysis

<u>Goal</u>

 Understand and identify which specific game statistics are highly correlated with Points

Dataset/Features

- NBA dataset containing per game statistics for the 2022-2023 season
- Contains 540 observations and 17 features
 - -MP
 - -FG
 - -FGA
 - -2P
 - -2PA
 - -GS
 - -PER
- Regression problem
- All features are continuous

Age	GP	GS	MF)	FG	FGA	FG%	3P	3PA	3P%	2P	2PA	2P%	PF	PTS	Total Mini PE	ER .
	24	59	3	15	2.2	5	0.444		2.7	0.38	4 1	2 2.	0.515	1.5	6.2	884	11.6
	28	20	4	8.6	0.5	1.9	0.243	0.4	1.7	0.34	8 0	1 0.	7 0.07	0.9	1.3	172	2.7
	24	49	7	15.7	2.4	4.9	0.485		2.5	0.38	7 1	4 2.	4 0.59	2.1	6.6	769	15.7
	32	56	2	17.7	2.5	6.5	0.379	1.2	2 3.2	0.36	7 1	3 3.	0.391	1 1	6.8	993	10
	22	43	1	14.3	1.9	4.3	0.454	0.5	1.7	0.37	7 1	5	0.485	5 1	5.2	616	13.1
	26	81	27	25.8	4.6	11.6	0.395	2.9	8.1	0.35	7 1	7 3.	4 0.484	1.3	12.7	2093	10.9
	34	67	67	27.1	2.1	5.4	0.4	1.2	3.6	0.33	5	1 1.	0.529	2.8	6.2	1816	8.9
	23	77	37	27.6	4.6	10.9	0.422	2	5.4	0.36	1 2	6 5.	4 0.483	3 1.6	13.8	2129	14.6
	23	38	1	12	1.8	3.3	0.552	0.2	0.7	0.23	1 1	7 2.	0.636	1.7	4.4	457	17.1

Histograms

Box Plots

Boxplot of PTS against all Features

Correlation Analysis

- Correlation matrix heatmap gives an overview of every feature and how they correlate with each other
- Points and its dependents
 - -Points & GS = .74
 - -Points & MP = .88
 - -Points & FG = .99
 - -Points & FGA = .98
 - -Points & Two PA = .93
 - -Points & Two P = .91

Linear Regression

- Residuals vs Fitted plot to look at linear regression
- X-Axis(Fitted Values): Represents the predicted values of the dependent variable, which in this case is PTS.
- Y-axis(Residuals): the differences between the observed values and the fitted values from the model.
- Key aspects of the plot
 - -Random scatter
 - -Outliers

Elastic Net Regression

- Optimal lambda is just to the left of -1
- The increase to the right of this point shows potential overfitting
- All the different variables shows whether the coefficient is positive or negative
- MSE training= .48
- MSE testing= .48

(Intercept)

-3.113253e-01

Lasso Regression

- Optimal lambda to the left of -2
- MSE training=.47
- MSE testing= .50
- High R-squared at .99, similar to the Elastic net model

[1] RMSE =0.6126161 [1] R^2: 0.991315768291697

51 (Intercept) -0.21538668302 0.01022871320 GP G5 FG 2.13669251783 0.22588691950 FG_percentage -2.76738995230 Three P 0.40389705691 Three_PA ThreeP_percentage 0.23278634610 TWO P 0.00010772948 TWO_PA TwoP_percentage -0.02170665351 Total Minutes 0.00004614934 0.08049804532 PER

1 11 11 10 10 10 7 5 5 5 5 5 4 4 4 3 2 2 2 2 2 2 2 2 2 2 2 1 1 1

Random Forest

- Shows a training vs testing model of random forest
- Both errors decrease as more trees are added, but they level out, which shows that adding more does not significantly improve the model's performance
- MSE Training/Testing:

-Training: .13

-Testing: .59

Feature Importance

- Show the feature importance from a Random forest model
- Model shows highest importance values starting at FG at the top and goes in descending order to Age
- Narrows down the key features that impact PTS

Model Selection

- Elastic net regression showed to be a good fit for my analysis
- Models shows relatively low MSE at .48 for both the training and testing data
- Both the R squared for training and testing were high, .98 and .99

Conclusions

- The best model for analyzing the dataset was the Elastic Net regression
- The Feature importance suggested there may be more then one variable that affects PTS per game FG, FGA, Two_PA, and MP
- Deeper analysis could be done on a variety of different models to see relationships between different variables and its impact on PTS.