1 杨梅一入口段

该段隧道断面定位在 SZK1-1、SZK1-2 地质钻孔,岩层主要为强风化碳质灰岩、中风化碳质灰岩,上覆全风化页岩和粉质粘土。

(1)原始模型

根据工程地质横断面图在 CAD 中等比例绘制隧道断面图,根据断面图等比例生成的章庄隧道入口段离散元模型如图 1 所示,地层从上到下主要为粉质黏土、强风化碳质灰岩、中风化碳质灰岩。图 2 给出了相关量测点位置信息,测量点顺序按照顺时针标记。

图 1 初始模型

图 2 测量圆分布

(2)力链分布及调整

西边隧道围岩强度普遍偏低,因此整体力链数值都是偏小,分布差异受重力 影响较大,方向以竖直为主。左右两隧道皆位于风化程度较高岩体内,开挖后调 整不明显。

图 3 初始力链

图 4 力链调整

(3)开挖过程应力调整及位移场

表 1 初始地应力

量测点	水平应力/MPa	垂直应力/MPa
1	0.1	0.3
2		
3	0.1	0.95
4	0.23	0.4
5	0.087	0.13
6		
7	0.065	0.078
8	0.24	0.3

图 5 和图 6 给出了开挖过程中应力调整具体信息, 1 号测量点水平应力在波

动中先卸载后加载,竖直应力先加载后平稳。3号测量点水平应力缓慢卸载,

图 5 左侧隧道应力调整

图 6 右侧隧道应力调整

图 7 位移及裂纹扩展

竖直应力缓慢加载。4号测量点水平应力变化规律不显著,竖直应力急剧卸载。5号测量点水平应力变化不明显,竖向应力变化加载。7号测量点水平应力卸载,竖向应力变化不明显。8号测量点水平应力基本不变,竖向应力显著卸载。

从图 7 中可以看出两侧隧道开挖过程中左侧隧道变形显著,由于埋深较浅,岩层风化严重,因此扰动过程中容易发生坍塌,位移量均超过了 30cm,且有块体脱落,有裂纹扩展。