

Regularizing Neural Networks via Adversarial Model Perturbation

Yaowei Zheng¹ Richong Zhang¹ Yongyi Mao²

 $^{1}\mathsf{BDBC}$ and SKLSDE, Beihang University, Beijing, China

²School of EECS, University of Ottawa, Ottawa, Canada

CVPR 2021

Outline

- 1 Background
- 2 AMP: Adversarial Model Perturbation
- 3 Theoretical Justifications of AMP
- 4 Experiments
- 5 Conclusion

Regularization Alleviate Overfitting

Effective regularization schemes alleviate overfitting and improve generalization.

■ Some researchers have found the modern neural networks may have a different behaviour, *i.e.*, the *Double Descent* (Nakkiran *et al.*, 2020). Nevertheless, well-regularized neural networks consistently achieve better performance in practice.

Flat Minima Helps Generalization

- Flat minima correspond to low-complexity networks. (Hochreiter et al., 1997)
- Small-batch SGD produces flat minima that generalize well. (Keskar et al., 2017)
- Better minimizers of loss function are flatter in visualization. (Li et al., 2018)
- A PAC-Bayes based generalization guarantee for flat minima. (Foret *et al.*, 2020)

(a) ResNet without skip connections

(b) ResNet with skip connections (Li et al., 2018)

From Empirical Risk to AMP Loss

The AMP loss is derived from empirical risk by applying the "worst" perturbation on the model parameters.

$$\mathcal{L}_{\mathrm{ERM}}(\boldsymbol{\theta}) := \frac{1}{|D|} \sum_{(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{D}} \ell(\boldsymbol{x}, \boldsymbol{y}; \boldsymbol{\theta})$$
 (1)

$$\mathcal{L}_{\mathrm{AMP}}(\boldsymbol{\theta}) := \max_{\Delta: \|\Delta\| \le \epsilon} \mathcal{L}_{\mathrm{ERM}}(\boldsymbol{\theta} + \Delta)$$
 (2)

As sketched in the figures, it applies a "max-pooling" operation on the empirical risk to seek a flatter minima.

Training Algorithm

A mini-batch SGD is used for solving the "min-max" problem.

$$\min_{\boldsymbol{\theta}} \max_{\Delta: \|\Delta\| \le \epsilon} \mathcal{L}_{ERM}(\boldsymbol{\theta} + \Delta) \tag{3}$$

Algorithm 1: Adversarial Model Perturbation Training

```
1 while \theta not converged do
2 Initialize perturbation \Delta with 0;
3 for n \leftarrow 1 to N do
4 Update \Delta to maximize \mathcal{L}_{ERM}(\theta + \Delta) via gradient ascent with learning rate \zeta;
5 if \|\Delta\|_2 > \epsilon then
6 Normalize \Delta to restrict its norm \|\Delta\|_2 to \epsilon;
7 Update \theta to minimize \mathcal{L}_{ERM}(\theta + \Delta) via gradient descent with learning rate \eta;
```

Implementation

```
Source code: https://github.com/hiyouga/AMP-Regularizer
   from amp import AMP
   optimizer = AMP(model.parameters(), lr=0.1, epsilon=0.5, momentum=0.9)
   for inputs, targets in dataset:
       def closure():
           optimizer.zero_grad()
5
           outputs = model(inputs)
           loss = loss_fn(outputs, targets)
           loss backward()
           return outputs, loss
9
       outputs, loss = optimizer.step(closure)
10
```

AMP Finds Flatter Local Minima

We assume that the loss surface of each local minimum in \mathcal{L}_{ERM} can be *locally* approximated as an inverted Gaussian surface γ with a mean vector μ and a covariance matrix κ .

Theorem (informal)

Under the locally Gaussian assumption, the empirical risk $\gamma(\theta; \mu, \kappa, A, C)$ is minimized when $\theta = \mu$ and the minimum value is $\gamma^*(\mu, \kappa, A, C) = C - A$. The minimum value of the AMP loss is the empirical risk at the location in the narrowest principal direction of the cross-section of the loss surface:

$$\gamma_{\text{AMP}}^*(\boldsymbol{\mu}, \boldsymbol{\kappa}, A, C) = C - A \exp\left(-\frac{\epsilon^2}{2\sigma^2}\right)$$
 (4)

where σ^2 is the smallest eigenvalue of κ .

Figure: The minimum values of γ and γ_{AMP} .

AMP Regularizes Gradient Norm

Theorem (informal)

Consider that N = 1, which is in fact used in our experiments. The AMP training is equivalent to ERM training with an additional term:

$$\widetilde{\mathcal{J}}_{\mathrm{ERM}}(\boldsymbol{\theta}) := \mathcal{J}_{\mathrm{ERM}}(\boldsymbol{\theta}) + \Omega(\boldsymbol{\theta})$$
 (5)

where

$$\Omega(\boldsymbol{\theta}) := \begin{cases} \zeta \| \nabla_{\boldsymbol{\theta}} \mathcal{J}_{ERM}(\boldsymbol{\theta}) \|_{2}^{2}, & \| \zeta \nabla_{\boldsymbol{\theta}} \mathcal{J}_{ERM}(\boldsymbol{\theta}) \|_{2} \leq \epsilon \\ \epsilon \| \nabla_{\boldsymbol{\theta}} \mathcal{J}_{ERM}(\boldsymbol{\theta}) \|_{2}, & \| \zeta \nabla_{\boldsymbol{\theta}} \mathcal{J}_{ERM}(\boldsymbol{\theta}) \|_{2} > \epsilon \end{cases}$$
(6)

Experimental Setup

Image classification datasets:

- SVHN (10-way)
- CIFAR-10 (10-way)
- CIFAR-100 (100-way)

Compared methods:

- ERM (Vapnik *et al.*, 1998)
- Dropout (Srivastava *et al.*, 2014)
- Label smoothing (Szegedy *et al.*, 2016)
- Flooding (Ishida *et al.*, 2020)
- MixUp (Zhang et al., 2018)
- Adversarial Training (Goodfellow et al., 2015)

Model architectures:

- PreActResNet18 (He et al., 2016)
- VGG16 (Simonyan *et al.*, 2015)
- WideResNet-28-10 (Zagoruyko *et al.*, 2016)
- PyramidNet-164-270 (Han et al., 2017)

Loss Curves

(a) CIFAR-10 Training Set

(b) CIFAR-10 Test Set

Results on Image Classification Benchmarks

PreActResNet18	Test Error (%)	Test NLL	PreActResNet18	Test Error (%)	Test NLL	PreActResNet18	Test Error (%)	Test NLL
PreActivesivetto	Test Error (%)	Test NLL	Preactresivetto	Test Error (%)	Test NLL	Preactivesivetto	Test Error (%)	Test INLL
ERM	$2.95{\pm}0.063$	$0.166{\pm}0.004$	ERM	5.02 ± 0.212	0.239 ± 0.009	ERM	24.31 ± 0.303	1.056 ± 0.013
Dropout	2.80 ± 0.065	0.156 ± 0.012	Dropout	4.86 ± 0.148	0.223 ± 0.009	Dropout	24.48 ± 0.351	1.110 ± 0.021
Label Smoothing	2.78 ± 0.087	0.998 ± 0.002	Label Smoothing	4.85 ± 0.115	1.038 ± 0.003	Label Smoothing	22.07 ± 0.256	2.099 ± 0.005
Flooding	2.84 ± 0.047	0.130 ± 0.003	Flooding	4.97 ± 0.082	0.166 ± 0.003	Flooding	24.50 ± 0.234	0.950 ± 0.011
MixUp	2.74 ± 0.044	0.146 ± 0.004	MixUp	4.09 ± 0.117	0.198 ± 0.004	MixUp	21.78 ± 0.210	0.910 ± 0.007
Adv. Training	2.77 ± 0.080	0.151 ± 0.018	Adv. Training	4.99 ± 0.085	0.247 ± 0.006	Adv. Training	25.23 ± 0.229	1.110 ± 0.012
RMP	2.93 ± 0.066	0.161 ± 0.010	RMP	4.97 ± 0.167	0.239 ± 0.008	RMP	24.28 ± 0.138	1.059 ± 0.011
AMP	$2.30 {\pm} 0.025$	0.096 ± 0.002	AMP	$3.97{\pm}0.091$	0.129 ± 0.003	AMP	21.51 ± 0.308	0.774 ± 0.016
VGG16	Test Error (%)	Test NLL	VGG16	Test Error (%)	Test NLL	VGG16	Test Error (%)	Test NLL
ERM	3.14±0.060	0.140±0.027	ERM	6.32±0.193	0.361±0.012	ERM	27.84±0.297	1.827±0.209
Dropout	2.96 ± 0.049	0.134 ± 0.027	Dropout	6.22 ± 0.147	0.314 ± 0.009	Dropout	27.72 ± 0.337	1.605 ± 0.062
Label Smoothing	3.07 ± 0.070	1.004 ± 0.002	Label Smoothing	6.29 ± 0.158	1.076 ± 0.003	Label Smoothing	27.49 ± 0.179	2.310 ± 0.005
Flooding	3.15 ± 0.085	0.128 ± 0.003	Flooding	6.26 ± 0.145	0.234 ± 0.005	Flooding	27.93 ± 0.271	1.221 ± 0.037
MixUp	3.09 ± 0.057	0.160 ± 0.003	MixUp	5.48 ± 0.112	0.251 ± 0.003	MixUp	26.81 ± 0.254	1.136 ± 0.013
Adv. Training	2.94 ± 0.091	0.122 ± 0.003	Adv. Training	6.49 ± 0.130	0.380 ± 0.010	Adv. Training	29.12±0.145	1.535 ± 0.389
RMP	3.19 ± 0.052	0.134 ± 0.004	RMP	6.30 ± 0.109	0.363 ± 0.010	RMP	27.81 ± 0.327	1.873 ± 0.035
AMP	2.73 ± 0.015	0.116 ± 0.006	AMP	5.65 ± 0.147	0.207 ± 0.005	AMP	25.60 ± 0.168	1.049 ± 0.049

(a) SVHN

(b) CIFAR-10

(c) CIFAR-100

Table: Top-1 classification errors and test neg-log-likelihoods.

Improvement over Data Augmentation

		WideRes	Net-28-10	PyramidNet-164-270		
		ERM	AMP	ERM	AMP	
SVHN	Vanilla	$2.57{\pm}0.067$	$2.19{\pm}0.036$	$2.47{\pm}0.034$	$2.11{\pm}0.041$	
	Cutout	$2.27{\pm}0.085$	$1.83{\pm}0.018$	2.19 ± 0.021	$1.82{\pm}0.023$	
	AutoAug	$1.91 {\pm} 0.059$	$1.61 {\pm} 0.024$	$1.80 {\pm} 0.044$	$1.35{\pm}0.056$	
	Vanilla	3.87 ± 0.167	$3.00{\pm}0.059$	3.60 ± 0.197	2.75±0.040	
CIFAR-10	Cutout	$3.38 {\pm} 0.081$	$2.67{\pm}0.043$	$2.83{\pm}0.102$	$2.27{\pm}0.034$	
	AutoAug	$2.78 {\pm} 0.134$	$2.32{\pm}0.097$	$2.49{\pm}0.128$	$1.98{\pm}0.062$	
	Vanilla	19.17±0.270	17.33±0.110	17.13±0.210	15.09±0.092	
CIFAR-100	Cutout	$18.12 {\pm} 0.114$	$16.04{\pm}0.071$	$16.45{\pm}0.136$	$14.34 {\pm} 0.153$	
	AutoAug	17.79 ± 0.185	$14.95{\pm}0.088$	15.43 ± 0.269	$13.36 {\pm} 0.245$	

Table: Top-1 classification errors and test neg-log-likelihoods.

Calibration Results

Expected Calibration Error: (lower is better)

$$\mathsf{ECE} = \sum_{m=1}^{M} \frac{|B_m|}{n} \bigg| \underbrace{\frac{1}{|B_m|} \sum_{i \in B_m} 1(\hat{y}_i = y_i)}_{\mathsf{accuracy}} - \underbrace{\frac{1}{|B_m|} \sum_{i \in B_m} \hat{p}_i}_{\mathsf{confidence}}$$

Loss Values with Varying Perturbation Size

(a) CIFAR-10 Training Set

(b) CIFAR-10 Test Set

Flatness of the Selected Minima

(a) ERM Training Loss

(c) AMP Training Loss

(b) ERM Test Loss

(d) AMP Test Loss

Conclusion

- Motivated by the understanding that flat minima help generalization, we propose adversarial model perturbation (AMP) as an efficient regularization scheme.
- We theoretically justify that AMP is capable of finding flatter local minima, thereby improving generalization.
- Extensive experiments on the benchmark datasets demonstrate that AMP achieves the best performance among the compared regularization schemes on various modern neural network architectures.

ArXiv: https://arxiv.org/abs/2010.04925

Code: https://github.com/hiyouga/AMP-Regularizer