24 - Proprietà Notevoli dell'Integrale di Bochner

Proposizione 24.1: Linearità dell'integrale di Bochner

Sia $T \in \mathscr{L}_p$.

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Siano f,g:T o X due funzioni integrabili secondo Bochner.

Siano $\alpha, \beta \in \mathbb{R}$.

Si hanno i seguenti fatti:

- $\alpha f + \beta g$ è integrabile secondo Bochner;
- $\int_T (\alpha f + \beta g)(t) \, d\mu = \alpha \int_T f(t) \, d\mu + \beta \int_T g(t) \, d\mu$.

Dimostrazione

In virtù dell'ipotesi di integrabilità di f e g secondo Bochner, siano $\{f_n: T \to X\}_{n \in \mathbb{N}}$ e $\{g_n: T \to X\}_{n \in \mathbb{N}}$ due successioni di funzioni semplici, convergenti quasi ovunque in T a f e g rispettivamente, e tali che

$$\lim_n \int_T \|f_n(t) - f(t)\|_X \, dt = \lim_n \int_T \|g_n(t) - g(t)\|_X \, dt = 0.$$

La successione $\{\alpha f_n + \beta g_n\}_{n \in \mathbb{N}}$ è costituita da funzioni semplici, e converge quasi ovunque in T a $\alpha f + \beta g_n$

Per ogni $n \in \mathbb{N}$ si ha inoltre $\int_T \|(\alpha f_n + \beta g_n)(t) - (\alpha f + \beta g)(t)\| dt \le |\alpha| \int_T \|f_n(t) - f(t)\| dt + |\beta| \int_T \|g_n(t) - g(t)\| dt$ per monotonia e linearità dell'integrale di Lebesgue, essendo

$$\|(\alpha f_n + \beta g_n)(t) - (\alpha f + \beta g)(t)\| \le |\alpha| \|f_n(t) - f(t)\| + |\beta| \|g_n(t) - g(t)\|$$
 per ogni $t \in T$ per le proprietà delle norme.

Essendo $\lim_n \int_T \|f_n(t) - f(t)\|_X dt = \lim_n \int_T \|g_n(t) - g(t)\|_X dt = 0$ per costruzione di $\{f_n\}_{n \in \mathbb{N}}$ e $\{g_n\}_{n \in \mathbb{N}}$, segue per confronto che $\lim_n \int_T \|(\alpha f_n + \beta g_n)(t) - (\alpha f + \beta g)(t)\| dt = 0$.

Dunque, $\alpha f + \beta g$ è integrabile secondo Bochner per la [Proposizione 23.2].

Resta da mostrare che $\int_T (\alpha f + \beta g)(t) d\mu = \alpha \int_T f(t) d\mu + \beta \int_T g(t) d\mu$.

Dalla definizione di integrale di Bochner e per costruzione di $\{f_n\}_{n\in\mathbb{N}}$ e $\{g_n\}_{n\in\mathbb{N}}$ si ha $\int_T f(t)\,d\mu=\lim_n\int_T f_n(t)\,d\mu$ e $\int_T g(t)\,d\mu=\lim_n\int_T g_n(t)\,d\mu$.

Si ha allora che

$$\lim_n \int_T (lpha f_n + eta g_n)(t) \, d\mu$$

 $=\lim_n lpha \int_T f_n(t) \, d\mu + eta \int_T g_n(t) \, d\mu$ Per linearità dell'integrale di Bochner per funzioni semplici ([Proposizione 23.1])

 $= lpha \int_T f(t) \, d\mu + eta \int_T g(t) \, d\mu$ Per quanto osservato prima

Dalla definizione di integrale di Bochner segue allora che $\int_T (\alpha f + \beta g)(t) d\mu = \alpha \int_T f(t) d\mu + \beta \int_T g(t) d\mu$, come si voleva.

Proposizione 24.2: Integrale di Bochner della composizione di funzionali lineari continui con funzioni continue

Sia $T \in \mathscr{L}_p$.

Siano $(X, \|\cdot\|_X)$ e $(Y, \|\cdot\|_Y)$ due spazi di Banach.

Sia $f: T \to X$ una funzione integrabile secondo Bochner.

Sia $\varphi \in \mathcal{L}(X,Y)$.

Si hanno i seguenti fatti:

- $\varphi \circ f$ è integrabile secondo Bochner;
- $\int_T \varphi(f(t)) d\mu = \varphi(\int_T f(t) d\mu).$

Q Osservazioni preliminari

Sia $\eta: T \to X$ una funzione semplice.

Allora:

- $\varphi \circ \eta$ è una funzione semplice;
- $\int_{T} \varphi(\eta(t)) d\mu = \varphi(\int_{T} \eta(t) d\mu).$

Dimostrazione

In virtù dell'ipotesi di integrabilità di f secondo Bochner, sia $\{f_n: T \to X\}_{n \in \mathbb{N}}$ una successione di funzioni semplici convergente quasi ovunque in T a f, e tale che $\lim_n \int_T \|f_n(t) - f(t)\|_X \, dt = 0.$

Si provi che $\{\varphi \circ f_n : T \to Y\}_{n \in \mathbb{N}}$ è una successione di funzioni semplici, convergente quasi ovunque in T a $\varphi \circ f$, e tale che $\lim_{n}\int_{T}\left\|arphiig(f_{n}(t)ig)-arphiig(f(t)ig)
ight\|_{Y}dt=0;$

La funzione $\varphi \circ f_n$ è semplice per l'osservazione preliminare.

La convergenza di $\{\varphi \circ f_n\}_{n \in \mathbb{N}}$ quasi ovunque in T a $\varphi \circ f$ segue dalla convergenza di $\{f_n\}_{n \in \mathbb{N}}$ quasi ovunque in T a f, e dalla continuità di φ , essendo $\varphi \in \mathcal{L}(X,Y)$ per ipotesi.

Infine, si osserva che, per ogni $n \in \mathbb{N}$,

$$\int_T \left\| arphi ig(f_n(t) ig) - arphi ig(f(t) ig)
ight\|_Y dt$$

 $\leq \int_T \|\varphi\|_{\mathcal{L}(X,Y)} \cdot \|f_n(t) - f(t)\|_X dt$ Per monotonia dell'integrale di Lebesgue, essendo

$$\|\varphi(f_n(t)) - \varphi(f(t))\|_Y \le \|\varphi\|_{\mathcal{L}(X,Y)} \cdot \|f_n(t) - f(t)\|_X$$
 per ogni $t \in T$ per la disuguaglianza fondamentale delle norme di operatori lineari continui

 $\| = \| arphi \|_{\mathcal{L}(X,Y)} \int_T \| f_n(t) - f(t) \|_X dt$ Per linearità dell'integrale di Lebesgue e dunque, essendo $\lim_n \int_T \|f_n(t) - f(t)\|_X \, dt = 0$ per ipotesi, segue

 $\lim_n \int_T \left\| arphi ig(f_n(t) ig) - arphi ig(f(t) ig)
ight\|_Y dt = 0$ per confronto.

Allora, $\varphi \circ f$ soddisfa le proprietà che si volevano mostrare, che ne implicano per definizione l'integrabilità secondo Bochner.

Resta da mostrare che $\int_T \varphi(f(t)) d\mu = \varphi(\int_T f(t) d\mu)$.

Si ha

 $\int_T \varphi ig(f(t)ig) \, d\mu = \lim_n \int_T \varphi ig(f_n(t)ig) \, d\mu$ Per definizione di integrale di Bochner

 $=\lim_n arphi \left(\int_T f_n(t) \, d\mu
ight) \qquad \qquad \int_T arphi \left(\int_T f_n(t) \, d\mu
ight)$ per ogni $n \in \mathbb{N}$ per l'osservazione preliminare, essendo f_n semplice

 $=arphi\left(\int_T f(t)\,d\mu
ight)$ In quanto $\lim_n\int_T f_n(t)\,d\mu=\int_T f_n(t)\,d\mu$ per definizione di integrale di Bochner e per

costruzione di $\{f_n\}_{n\in\mathbb{N}}$, e φ è continua essendo $\varphi\in\mathcal{L}(X,Y)$ per ipotesi.

Proposizione 24.3: Coerenza dell'integrale di Bochner con l'integrale di Riemann

Sia $[a;b] \subseteq \mathbb{R}$.

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Sia $f:[a;b] o\mathbb{R}$ una funzione continua.

Allora:

• f è integrabile secondo Bochner;

• $\int_{[a;b]} f(t) d\mu = \int_a^b f(t) dt$.

🛱 Richiamo: Coincidenza tra l'integrale di Riemann e di Lebesgue

Sia $\eta:[a;b] o\mathbb{R}$ una funzione continua.

Allora, essa è sommabile secondo Lebesgue, e si ha

Si ha
$$\int_{[a;b]} \eta(t) \, dt = \int_a^b \eta(t) \, dt$$
.

si giustifichi soltanto la sommabilità di η secondo Lebesgue.

Intanto, η è limitata in quanto continua su un insieme compatto;

posti allora $M,m\in\mathbb{R}$ tali che $m\leq \eta(t)\leq M$ per ogni $t\in[a;b]$, per monotonia dell'integrale di Lebesgue si ha

$$\int_{[a;b]} m\,dt \leq \int_{[a;b]} \eta(t)\,dt \leq \int_{[a;b]} M\,dt$$
, ossia

 $m(b-a) \leq \int_{[a;b]} \eta(t) \, dt \leq M(b-a)$, per linearità dell'integrale di Lebesgue ed essendo $\int_{[a;b]} \, dt = \mu ig([a;b]ig) = b-a$.

Dimostrazione

Essendo f continua, essa è misurabile;

inoltre, dalla continuità di f e dalla compattezza di [a;b] segue che f([a;b]) è compatto, dunque totalmente limitato, dunque separabile.

Inoltre, la mappa $[a;b] \to \mathbb{R}: t \mapsto ||f(t)||$ è continua, dunque sommabile secondo Lebesgue per quanto richiamato.

Fissato $\varphi \in X^*$, per quanto richiamato si ha che $\varphi \circ f$ è sommabile secondo Lebesgue, e si ha

$$\int_{[a;b]} arphiig(f(t)ig)\,dt = \int_a^b arphiig(f(t)ig)\,dt.$$

D'altra parte, essendo a valori reali, la sommabilità di $\varphi\circ f$ equivale all'integrabilità secondo Bochner, e si ha

$$\int_{[a;b]} arphiig(f(t)ig)\,d\mu = \int_{[a;b]} arphiig(f(t)ig)\,dt.$$

Fatte queste osservazioni, si ha

$$\varphi\left(\int_{[a;b]}f(t)\,d\mu\right)=\int_{[a;b]}\varphiig(f(t)ig)\,d\mu$$
 Per la [Proposizione 24.2]

$$=\int_a^b arphiig(f(t)ig)\,dt$$
 Per le osservazioni fatte prima

$$=arphi\left(\int_a^b f(t)\,dt\right)$$
 Per la [Proposizione 21.4]

Dunque, si ha $\varphi\left(\int_{[a;b]}f(t)\,d\mu\right)=\varphi\left(\int_a^bf(t)\,dt\right)$ per ogni $\varphi\in X^*$; dal [Corollario 7.5] segue allora che $\int_{[a;b]}f(t)\,d\mu=\int_a^bf(t)\,dt$, come si voleva.

Proposizione 24.4: Maggiorazione della norma dell'integrale di Bochner

Sia $T \in \mathscr{L}_p$.

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Sia $f: T \to X$ una funzione integrabile secondo Bochner.

Si ha $\left\|\int_T f(t)\,d\mu\right\| \leq \int_T \|f(t)\|\,dt.$

Dimostrazione

In virtù dell'ipotesi di integrabilità di f secondo Bochner, sia $\{f_n: T \to X\}_{n \in \mathbb{N}}$ una successione di funzioni semplici convergente quasi ovunque in T a f, e tale che $\lim_n \int_T \|f_n(t) - f(t)\|_X dt = 0$.

Si osserva che $\lim_{n}\int_{T}\|f_{n}(t)\|\,dt=\int_{T}\|f(t)\|\,dt.$

Infatti, per ogni $n \in \mathbb{N}$ si ha

$$\left\|\int_{T}\left\|f_{n}(t)
ight\|dt-\int_{T}\left\|f(t)
ight\|dt
ight\|$$

$$=\left|\int_{T}\|f_{n}(t)\|-\|f(t)\|\,dt\right|$$
 Per linearità dell'integrale di Lebesgue

$$\leq \int_T \left| \|f_n(t)\| - \|f(t)\| \right| dt$$
 Per maggiorazione del valore assoluto dell'integrale di Lebesgue

$$\leq \int_T \|f_n(t) - f(t)\| dt$$
 Per monotonia dell'integrale di Lebesgue, essendo $\left| \|f_n(t)\| - \|f(t)\| \right| \leq \|f_n(t) - f(t)\|$ per ogni $t \in T$ per la seconda disuguaglianza triangolare

Essendo $\lim_n \int_T \|f_n(t) - f(t)\|_X dt = 0$ per costruzione di $\{f_n\}_{n \in \mathbb{N}}$ per ipotesi, ne segue che $\lim_n \int_T \|f_n(t)\| dt = \int_T \|f(t)\| dt$ per confronto.

Proposizione 24.5: Numerabile additività dell'integrale di Bochner rispetto all'insieme di integrazione

Sia $T \in \mathscr{L}_p$.

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Sia $f: T \to X$ una funzione integrabile secondo Bochner.

Sia $\{T_n \subseteq T\}_{n \in \mathbb{N}} \subseteq \mathscr{L}_p$ una successione di insiemi tale che $T_n \cap T_m = \emptyset$ per ogni $m, n \in \mathbb{N}$ con $m \neq n$.

Si hanno i seguenti fatti:

- La serie $\sum_{n=1}^{+\infty} \int_{T_n} f(t) d\mu$ converge;
- ullet Si ha $\int_{egin{subarray}{c} 1 \le N \ n \in \mathbb{N} \end{array}} T_n \, f(t) \, d\mu = \sum_{n \in \mathbb{N}} \int_{T_n} f(t) \, d\mu.$

Q Osservazioni preliminari

Sia $\{\mathbf{x}_n\}_{n\in\mathbb{N}}\subseteq X$ tale che $\sum_{n\in\mathbb{N}}\mathbf{x}_n$ converga.

Sia $\varphi \in X^*$.

Si hanno i seguenti fatti:

•
$$\sum_{n\in\mathbb{N}} \varphi(\mathbf{x}_n)$$
 converge;

• Si ha
$$=\sum_{n\in\mathbb{N}} \varphi(\mathbf{x}_n) = \varphi\left(\sum_{n\in\mathbb{N}} \mathbf{x}_n\right)$$
.

Infatti, si ha

$$\begin{split} &\sum_{n\in\mathbb{N}} \varphi(\mathbf{x}_n) = \lim_{N} \sum_{n=1}^{N} \varphi(\mathbf{x}_n) \quad \text{Per definizione di serie} \\ &= \lim_{N} \varphi\left(\sum_{n=1}^{N} \mathbf{x}_n\right) \quad \text{In quanto } \sum_{n=1}^{N} \varphi(\mathbf{x}_n) = \varphi\left(\sum_{n=1}^{N} \mathbf{x}_n\right) \text{ per ogni } N \in \mathbb{N}, \text{ per linearità di } \varphi \\ &= \varphi\left(\sum_{n\in\mathbb{N}} \mathbf{x}_n\right) \quad \text{In quanto } \lim_{N} \sum_{n=1}^{N} \mathbf{x}_n = \sum_{n\in\mathbb{N}} \mathbf{x}_n \text{ per ipotesi, e } \varphi \text{ è continua} \end{split}$$

Dimostrazione

Si mostri intanto la convergenza di $\sum_{n=1}^{+\infty} \int_{T_n} f(t) d\mu$.

Per la [Proposizione 24.4], si ha $\left\|\int_{T_n} f(t) d\mu\right\| \leq \int_{T_n} \|f(t)\| dt$ per ogni $n \in \mathbb{N}$; per numerabile additività dell'integrale di Lebesgue, la serie $\sum_{n \in \mathbb{N}} \int_{T_n} \|f(t)\| dt$ converge.

Allora, per confronto converge anche la serie $\sum_{n=1}^{+\infty} \left\| \int_{T_n} f(t) \, d\mu \right\|$, il che a sua volta implica la convergenza della serie $\sum_{n=1}^{+\infty} \int_{T_n} f(t) \, d\mu$.

Si fissi ora $\varphi \in X^*$; si ha

$$arphi\left(\int_{igcup_{n\in\mathbb{N}}T_n}f(t)\,d\mu
ight)=\int_{igcup_{n\in\mathbb{N}}T_n}arphiig(f(t)ig)\,d\mu$$
 Per la [Proposizione 24.2]

$$=\int_{igcup_{n\in\mathbb{N}}T_n}arphiig(f(t)ig)\,dt$$

Essendo $\varphi\circ f$ a valori reali, la sua integrabilità secondo Bochner equivale alla sua sommabilità secondo Lebesgue, e i due integrali coincidono

$$=\sum_{n\in\mathbb{N}}\int_{T_n}arphiig(f(t)ig)\,dt$$

Per numerabile additività dell'integrale di Lebesgue rispetto all'insieme di integrazione

$$=\sum_{n\in\mathbb{N}}\int_{T_n}arphiig(f(t)ig)\,d\mu$$

Essendo $\varphi\circ f$ a valori reali, la sua integrabilità secondo Bochner equivale alla sua sommabilità secondo Lebesgue, e i due integrali coincidono

$$=\sum_{n\in\mathbb{N}}arphi\left(\int_{T_n}f(t)\,d\mu
ight)$$

Per la [Proposizione 24.2]

$$=arphi\left(\sum_{n\in\mathbb{N}}\int_{T_n}f(t)\,d\mu
ight)$$

Per l'osservazione preliminare

Dunque, si ha
$$arphi\left(\int_{\substack{0\leqslant\mathbb{N}\\n\in\mathbb{N}}}f(t)\,d\mu
ight)=arphi\left(\sum_{n\in\mathbb{N}}\int_{T_n}f(t)\,d\mu
ight)$$
 per ogni $arphi\in X^*$;

dal [Corollario 7.5] segue allora che $\int_{\bigcup\limits_{n\in\mathbb{N}}T_n}f(t)\,d\mu=\sum\limits_{n\in\mathbb{N}}\int_{T_n}f(t)\,d\mu$, come si voleva.

П

Proposizione 23.6: Teorema della media per funzioni integrabili secondo Bochner

Sia $T \in \mathscr{L}_p \text{ con } 0 < \mu(T) < +\infty$.

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Sia $f: T \to X$ una funzione integrabile secondo Bochner.

Si ha $\frac{1}{\mu(T)}\int_T f(t)\,d\mu\in\overline{\mathrm{conv}}\,f(T).$

Dimostrazione

Si proceda per assurdo, supponendo che $\frac{1}{\mu(T)}\int_T f(t)\,d\mu \not\in \overline{\mathrm{conv}}\,f(T).$

Applicando il Teorema di Separazione ([Teorema 7.10]) all'insieme $\overline{\text{conv}} f(T)$, chiuso e convesso, e all'insieme $\left\{ \frac{1}{\mu(T)} \int_T f(t) d\mu \right\}$ compatto, convesso e disgiunto dal primo insieme per ipotesi di assurdo, esiste allora $\varphi \in Y^*$ tale che

$$\sup_{\mathbf{x} \in \overline{\operatorname{conv}} \, f(T)} arphi(\mathbf{x}) < arphi \left(rac{1}{\mu(T)} \, \int_T f(t) \, d\mu
ight).$$

Ne segue allora che $\sup_{t \in T} \varphi \big(f(t) \big) < \varphi \left(\frac{1}{\mu(T)} \int_T f(t) \, d\mu \right)$.

D'altra parte, si ha

$$arphi\left(rac{1}{\mu(T)}\int_T f(t)\,d\mu
ight) = rac{1}{\mu(T)}\int_T arphiig(f(t)ig)\,d\mu$$

Per linearità di φ e per la [Proposizione 24.2]

 $=rac{1}{\mu(T)}\int_T arphiig(f(t)ig)\,dt$

Essendo $\varphi \circ f$ a valori reali, la sua integrabilità secondo Bochner equivale alla sua sommabilità secondo Lebesgue, e i due integrali coincidono

$$\leq rac{1}{\mu(T)} \int_T \sup_{t \in T} arphiig(f(t)ig) \, dt$$

Per monotonia dell'integrale di Lebesgue, essendo $\sup_{t \in T} arphi ig(f(t)ig) < +\infty$ in quanto

 $\sup_{t \in T} arphiig(f(t)ig) < arphi\left(rac{1}{\mu(T)}\int_T f(t)\,d\mu
ight)$ per quanto dedotto prima, ed essendo $\varphiig(f(t)ig) \leq \sup_{t \in T} \varphiig(f(t)ig)$ per ogni $t \in T$

$$= \sup_{t \in T} arphiig(f(t)ig)$$

Per linearità dell'integrale di Lebesgue, ed essendo $\int_T dt = \mu(T)$

in contrasto con quanto dedotto prima.

Proposizione 23.7: Teorema della convergenza dominata per funzioni integrabili secondo Bochner

Sia $T \in \mathscr{L}_p$ con $0 < \mu(T) < +\infty$.

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Sia $\{f_n: T \to X\}_{n \in \mathbb{N}}$ una successione di funzioni fortemente μ -misurabili, convergente quasi ovunque in T;

sia f:T o X limite puntuale quasi ovunque di $\{f_n\}_{n\in\mathbb{N}}$. Si supponga che esista $g:T o\mathbb{R}_0^+$ sommmabile secondo Lebesgue, tale che $\|f_n(t)\|\leq g(t)$ per quasi ogni $t\in T$, per ogni $n\in\mathbb{N}$.

Allora, si hanno i seguenti fatti:

- f è integrabile secondo Bochner;
- ullet Per ogni $S\subseteq T$ misurabile, si ha $\lim_n \int_T f_n(t)\,d\mu = \int_T f(t)\,d\mu$

Dimostrazione

Per ipotesi, f_n è fortemente μ -misurabile per ogni $n \in \mathbb{N}$; poiché $\{f_n\}_{n\in\mathbb{N}}$ converge per ipotesi a f quasi ovunque in T, dalla [Proposizione 22.4] segue allora che f è fortemente μ -misurabile.

Inoltre, la funzione $T \to \mathbb{R}: t \mapsto \|f(t)\|$ è sommabile secondo Lebesgue.

Infatti, per ipotesi si ha $||f_n(t)|| \le g(t)$ per quasi ogni $t \in T$, per ogni $n \in \mathbb{N}$;

dall'ipotesi di convergenza di $\{f_n\}_{n\in\mathbb{N}}$ a f quasi ovunque in T e dalla continuità della norma, segue allora per confronto che $\|f(t)\| \leq g(t)$ per quasi ogni $t\in T$.

Ne viene quindi che la funzione $T \to \mathbb{R}: t \mapsto \|f(t)\|$ è sommabile secondo Lebesgue, essendo nonnegativa e maggiorata da g, sommabile secondo Lebesgue per ipotesi.

Allora, f è integrabile secondo Bochner.

Si provi ora il secondo punto.

Si consideri la successione di funzioni $\{\|f_n(\cdot) - f(\cdot)\|\}_{n \in \mathbb{N}}$, definite in T a valori in \mathbb{R} ; essa converge quasi ovunque a 0, per costruzione di $\{f_n\}_{n \in \mathbb{N}}$ e per continuità della norma.

Inoltre, per ogni $n \in \mathbb{N}$ e per quasi ogni $t \in T$ si ha

 $\|f_n(t)-f(t)\|\leq \|f_n(t)\|+\|f(t)\|$ Per sub-additività delle norme

$$\|f_n(t)\| \leq g(t)$$
 per quasi ogni $t \in T$ per ipotesi; $\|f(t)\| \leq g(t)$ per quasi ogni $t \in T$ per quanto osservato prima

e 2g è una funzione sommabile secondo Lebesgue, essendolo g per ipotesi.

È perciò possibile applicare a $\{\|f_n(\cdot)-f(\cdot)\|\}_{n\in\mathbb{N}}$ il teorema di convergenza dominata di Lebesgue, ricavando così che $\lim_n \int_T \|f_n(t)-f(t)\| \, dt = 0.$

Si fissino ora $S \subseteq T$ misurabile, e $n \in \mathbb{N}$; si ha

$$\left\|\int_{S}f_{n}(t)\,d\mu-\int_{S}f(t)\,d\mu
ight\|$$

 $= \left\| \int_S f_n(t) - f(t) \, d\mu \right\|$ Per linearità dell'integrale di Bochner ([Proposizione 24.1])

 $\leq \int_{S} \|f_n(t) - f(t)\| dt$ Per la maggiorazione della norma dell'integrale di Bochner ([Proposizione 24.4])

 $\leq \int_T \|f_n(t) - f(t)\| \, dt$ Per monotonia dell'integrale di Lebesgue rispetto all'insieme di integrazione, essendo $S \subseteq T$

Poiché è stato acquisito che $\lim_n \int_T \|f_n(t) - f(t)\| dt = 0$, segue per confronto che

 $\lim_n \int_S f_n(t) d\mu = \int_S f(t) d\mu$, come si voleva.