Ejercicio 13. Dado un intervalo [a,b] decidir como tienen que estar distribuidos n+1 nodos $x_0 < x_1 < x_2 < \cdots < x_n$ en el intervalo de modo que exista un $x \in [a,b]$ tal que

$$|(x-x_0)(x-x_1)\cdots(x-x_n)| \sim (b-a)^{n+1}$$

Solución: Por definición $f(n) \sim g(n)$ si

$$f(n) = O(g(n)),$$
 $g(n) = O(f(n)).$

Sabemos que para cualquier distribución de puntos $\{x_i\}_{i=0,\dots,n}$ se cumple que para cualquier x fijo

$$f(n) = |(x - x_0)(x - x_1) \cdots (x - x_n)| \le (b - a)^{n+1}$$

esto porque para cada i: $|(x-x_i)| \leq (b-a)$. Es decir f(n) = O(g(n)) con la constante C=1.

Para probar que g(n) = O(f(n)) queremos ver que hay un $x \in [a,b]$ tal que existe una constante K tal que

$$(b-a)^{n+1} \le K|(x-x_0)(x-x_1)\cdots(x-x_n)|$$

La idea intuitiva es que los nodos $\{x_i\}$ deberían estar acumulados (o arrinconados) en uno de los extremos del intervalo. Asi, si x=a, los $x_i's$ deberían estar muy "pegados" a b. Para encontrar dicha distribución de puntos consideremos lo siguiente:

Sean la siguiente sucesión de productos de números entre 0 y 1: $\{P_n\}_{n\geq 0}$ con

$$P_n = \prod_{i=0}^n t_i \quad \text{con los } t_i \in (0,1)$$

buscamos los números t_i de tal forma que la sucesión de los P_n converja a una constante. Un ejemplo de tales números t_i es:

$$t_i = \exp(-2^{-i}), \quad i = 0, 1, 2, \dots$$

En este caso:

$$P_n = \prod_{i=0}^n t_i = \prod_{i=0}^n \exp(-2^{-i}) = \exp\left(\sum_{i=0}^n 2^{-i}\right) \to \exp(-2)$$
 si $n \to \infty$

donde usamos que $\lim_{n\to\infty}\sum_{i=0}^n 2^{-i}=2.$

Una vez que tenemos esta suceción de numeros $t_i^\prime s$ que nos dan un producto convergente definamos los nodos como

$$x_i = t_i b + (1 - t_i)a, \quad i = 0, 1, 2, \dots, n$$

como los $t_i \in (0,1)$ entonces los $x_i \in [a,b]$ para todo i. De esta forma, si tomamos x=a:

$$|x - x_i| = |a - t_i b - (1 - t_i)a| = t_i (b - a), \quad i = 0, 1, 2, \dots, n$$

entonces

$$|(a-x_0)(a-x_1)\cdots(a-x_n)| = (b-a)^{n+1}\prod_{i=0}^n t_i$$

para rematar el ejercicio notemos que los productos $\prod_{i=0}^{n} t_i$ van siendo cada vez mas chicos a medidad que crece n, es decir la sucesión $\{P_n\}_n$ es decreciente y converge a un valor constante, en nuestro caso a $\exp(-2)$, entonces en particular

$$\prod_{i=0}^{n} t_i \ge \exp(-2), \text{ para el caso en que los } t_i = \exp(-2^{-i})$$

entonces tenemos que:

$$|(a-x_0)(a-x_1)\cdots(a-x_n)| = (b-a)^{n+1}\prod_{i=0}^n t_i \ge \exp(-2)(b-a)^{n+1}$$

o equivalentemente:

$$(b-a)^{n+1} \le \exp(2)|(a-x_0)(a-x_1)\cdots(a-x_n)|.$$

En definitiva lo que tenemos es que, si elegimos los nodos como

$$x_i = t_i b + (1 - t_i)a, \quad i = 0, 1, 2, \dots, n$$

tenemos que

$$\exp(-2)(b-a)^{n+1} \le |(a-x_0)(a-x_1)\cdots(a-x_n)| \le (b-a)^{n+1}$$