Liniowe dopasowanie dwóch sekwencji

Wiele informacji o działaniu genów i enzymów dostarcza wykrywanie "podobnych" sekwencji

- fragmenty podobne są zwykle skorelowane ewolucyjnie, mają wspólny rodowód,
- pełnią zbliżone funkcje w organizmie,
- białka o podobnej strukturze pierwszorzędowej przyjmują zbliżone konformacje przestrzenne,
- krótsze odcinki o znanej sekwencji z długiej nici DNA można łączyć wspólnymi końcami w dłuższą mapę itd. ...

Odległość edycyjna

Rozważamy słowa nad alfabetem Σ . Dodajemy nowy symbol spacji $\Sigma'=\Sigma\cup\{-\}$. Dla słów $u,w\in\Sigma^*$ ich **liniowym dopasowaniem** nazywamy parę słów $u^*,w^*\in(\Sigma')^*$ spełniających warunki:

- usunięcie spacji z u* i w* daje w wyniku odpowiednio u i w.
- $|u^*/=|w^*|$,
- $\forall_{i \le |u^*|} u^*[i] \ne '-` \lor w^*[i] \ne '-`.$

Przykład. *u*=ATAAGC, *w*= AAAAACG Dopasowaniem mogą być np.

$$u^* = -ATAAGC - w^* = AAAAA - CG$$

Liniowe dopasowanie przedstawia sposób przekształcenia jednego słowa w drugie przy zastosowaniu elementarnych operacji edytorskich: wstawienie—usunięcie litery (tzw. **indel**) oraz zamiana znaków.

Problem: jak znaleźć "najprostszą" drogę przekształcenia ciągów?

Definiujemy **metrykę** (miarę "odległości" między literami) $d: \Sigma^2 \to R^+$ (d(a,b) dla $a,b \in \Sigma$ – koszt zamiany litery a na b).

Warunki metryki (przypomnienie):

- $d(a,b)=0 \Leftrightarrow a=b$,
- d(a,b) = d(b,a) (symetria),
- $d(a,b)+d(b,c) \ge d(a,c)$ (warunek trójkata).

Następnie przedłużamy d na Σ^2 określając karę za indel:

$$\forall_{a \in \Sigma} d(a, '-') = d('-', a) > 0$$

Możemy teraz określić **koszt dopasowania** u^*, w^* :

$$d(u^*, w^*) = \sum_{i=1,...,|u^*|} d(u^*[i], w^*[i])$$

Przykład. Przyjmijmy funkcje kosztu d(a,a)=0 dla $a \in \Sigma$ i 1 w innych przypadkach. Rozważmy dopasowanie

$$u^* = -ATAAGC -$$

$$w^* = AAAAA-CG$$

mamy
$$d(u^*, w^*) = 4$$
.

<u>Odległość edycyjna</u> pomiędzy słowami *u,w* zdefiniujemy jako koszt ich najtańszego dopasowania

$$d(u,w) = \min_{(u^*,w^*) \in Dopasowania(u,w)} d(u^*,w^*)$$

– metryka d tym razem na *Σ**

Problem: jak znaleźć optymalne (tj. najtańsze) dopasowanie?

Spróbujmy policzyć dopasowania.

f(i,j) – liczba możliwych dopasowań słowa u (i–literowego) z w (j–literowym). Możliwości:

- ostatnie litery *u,w* są dopasowane,
- ostatnia litera *u* dopasowana ze spacją,
- ostatnia litera w dopasowana ze spacją.

Stad rekursja

$$f(i,j) = f(i-1,j-1) + f(i,j-1) + f(i-1,j)$$

Ale nawet równanie g(i,j)=g(i,j-1)+g(i-1,j) ma rozwiązanie $g(i,j)=\binom{i+j}{i}=\frac{(i+j)!}{i!\,j!}$, czyli $g(i,i)=\Theta(4^i i^{-1/2})$.

Wniosek. $f(i,i) = \Omega(4^i i^{-1/2})$.

Liczba dopasowań rośnie wykładniczo z długością słów.

Mimo to problem optymalnego dopasowania jest wielomianowy.

Algorytm. Dane są $u, w \in \Sigma^*$, |u| = n, |w| = m. Programowanie dynamiczne. Tworzymy tablicę liczb: D(i,j) = koszt najtańszego dopasowania przedrostków u[1..i] w[1..i].

1. Brzeg tabeli:

$$D(0,0)=0, D(0,j)=\Sigma_{k=1,...,j}d(`-`,w[k]), D(i,0)=\Sigma_{k=1,...,i}d(u[k], `-`)$$

2. Środek tabeli (*i,j*>0):

$$D(i,j)=\min \{D(i-1,j-1)+d(u[i],w[j]), D(i,j-1)+d(`-`,w[j]), D(i-1,j)+d(u[i],`-`)\}.$$

3. Odległość słów u,w odczytujemy z tabeli d(u,w)=D(n,m).

Złożoność czasowa i pamięciowa O(nm).

Znana jest implementacja rekurencyjna zużywająca tylko O(n+m) pamięci.

Jak odczytać najtańsze dopasowanie?

- w polach tabeli ustawiamy wskaźniki:
 - o na brzegu $D(0,i) \rightarrow D(0,i-1)$ i $D(i,0) \rightarrow D(i-1,0)$ dla i > 0
 - o w środku $D(i,j) \rightarrow$ te z $\{D(i-1,j-1), D(i,j-1), D(i-1,j)\}$, które realizują minimum w punkcie 2.
- odczytujemy dopasowanie "od końca" idąc po wskaźnikach wzdłuż dowolnej drogi z komórki D(n,m) do D(0,0).

Przykład. *u*='writers', *w*='vintnter', funkcja *d* jak poprzednio.

D(i,j)			w	r	i	t	e	r	s
		0	1	2	3	4	5	6	7
	0	0	← 1	← 2	← 3	← 4	← 5	← 6	← 7
ν	1	↑ 1	<u></u>	\ ← 2	~ ←3	<u> </u>		\ ← 6	\ ← 7
i	2	1 2	↑ ↑ 2	► 2	<u>∼</u> 2	← 3	← 4	← 5	← 6
n	3	↑ 3	^ ↑ 3	^ ↑ 3	^ ↑3	<u></u>	\ ← 4	\ ← 5	<u> </u>
t	4	↑ 4	^ ↑ 4	^ ↑ 4	↑ ↑4	^ 3	\ ← 4	\ ← 5	\ ← 6
n	5	↑ 5	^ ↑ 5	^ ↑ 5	^ ↑5	1 4	<u>~</u> 4		\ ← 6
e	6	↑ 6	\ ↑ 6	^ ↑ 6	^ ↑6	↑ 5	^ 4	\ ← 5	<u> </u>
r	7	↑ 7	\ ↑ 7	└ 6	\ ←↑7	1 6	1 5	^ 4	← 5

Jedno z optymalnych dopasowań:

writ-ers vintner-

"Grafowy" punkt widzenia:

- pary (0,0) ...(n,m) tworzą wierzchołki digrafu
- krawędzie postaci
 - \circ $(i,j) \rightarrow (i-1,j-1)$, waga d(u[i],w[j])
 - \circ $(i,j) \rightarrow (i,j-1)$, waga d('-',w[j])
 - \circ $(i,j) \rightarrow (i-1,j)$, waga d(u[i], '-')
- dopasowanie: dowolna ścieżka z (n,m) do (0,0).
- najtańsze dopasowanie: najkrótsza taka ścieżka.

Funkcja podobieństwa sekwencji

Słowa można dopasować tym lepiej im mniejsza odległość edycyjna między nimi. Z podobieństwem słów jest odwrotnie: im większe tym lepsze dopasowane jest możliwe.

Jak poprzednio najpierw definiujemy funkcję na pojedynczych literach $s:(\Sigma')^2 \rightarrow R$ (gdzie znów $\Sigma' = \Sigma \cup \{-\}$). Z reguły przyjmuje się, że:

- s(a,b) < s(a,a) > 0 dla $a \in \Sigma$,
- s(a,b)=s(b,a) (symetria),
- s(a, '-')=s('-',a)<0.

Definiujemy **podobieństwo dopasowania** u^*, w^* słów $u, w \in \Sigma^*$: $\mathbf{S}(u^*, w^*) = \sum_{i=1, \dots, |u^*|} \mathbf{S}(u^*[i], w^*[i])$

<u>Optymalnym dopasowaniem</u> słów *u,w* jest to, które maksymalizuje podobieństwo

$$\S(u,w) = \max_{(u^*,w^*) \in Dopasowania(u,w)} \S(u^*,w^*)$$

Jak znaleźć optymalne dopasowanie?

Algorytm. (podobny do poprzedniego).

Dane $u, w \in \Sigma^*$, |u| = n, |w| = m.

Tablica liczb:

S(i,j)=maksymalne podobieństwo dopasowania przedrostków u[1..i], w[1..i].

1. Brzeg tabeli:

$$S(0,0)=0$$
, $S(0,j)=\sum_{k=1,...,i} s('-',w[k])$, $S(i,0)=\sum_{k=1,...,i} s(u[k], '-')$

2. Środek tabeli (*i,j*>0):

$$S(i,j)=\max \{ S(i-1,j-1)+s(u[i],w[j]), S(i,j-1)+s('-',w[j]), S(i-1,j)+s(u[i],'-') \}.$$

3. Ostatecznie z definicji $\S(u,w)=S(n,m)$.

Złożoności (jak poprzednio) wynoszą O(nm).

Grafowo:

Digraf acykliczny (podobny do poprzedniego):

- pary (0,0) ...(*n*,*m*) wierzchołki
- krawędzie:
 - \circ $(i,j) \rightarrow (i-1,j-1)$, waga s(u[i],w[j])
 - \circ $(i,j) \rightarrow (i,j-1)$, waga s('-',w[j])
 - \circ $(i,j) \rightarrow (i-1,j)$, waga s(u[i], '-')

Optymalne dopasowanie: najdłuższa ścieżka z (n,m) do (0,0).

Algorytm wyznaczania najdłuższej ścieżki w digrafie acyklicznym (przypomnienie):

Obliczamy długości najdłuższych ścieżek prowadzących od z do innych wierzchołków.

- 1. Ponumeruj wierzchołki kolejnymi liczbami naturalnymi wg porządku topologicznego (istnienie łuku $v_i \rightarrow v_j$ implikuje i < j).
- 2. Wierzchołkowi z nadaj etykietę l(z)=0.
- 3. Wierzchołkom *v* o kolejnych numerach przypisuj etykiety według zasady:

$$l(v)=\max \{l(u)+w(e): \text{ tuk } e \text{ prowadzi z } u \text{ do } v\}$$

4. Etykiety określaja szukane długości ścieżek.

Przykład.

Problem Najdłuższego Wspólnego Podciągu (NWP).

Dany jest skończony zbiór słów $R \subseteq \Sigma^+$. Szukamy najdłuższego możliwego słowa $w=w_1...w_k \in \Sigma^*$, takiego że

$$\forall_{v \in R} \ v = x_0 w_1 x_1 w_2 \dots w_k x_k, \ x_i \in \Sigma^*.$$

NWP jest NP-trudny (pozostaje takim nawet dla alfabetu 2-literowego, redukcja z pokrycia wierzchołkowego), ale staje się wielomianowy dla dwóch słów (|R|=2).

Odległość edycyjna a podobieństwo

Niech d będzie metryką na alfabecie Σ , za pomocą której określamy odległość edycyjną d w Σ^* . Definiujemy funkcję podobieństwa

- s(a,b)=c-d(a,b) dla $a,b \in \Sigma$
- s(a, '-') = s('-', a) = c/2 d(a, '-')

gdzie c – stała.

Rozważamy słowa $u, w \in \Sigma^*$ (|u|=n, |w|=m) i pewne ich dopasowanie $u^*, w^* \in (\Sigma')^*$. Zauważmy, że:

$$n+m=2|\{i \le |u^*|: `-' \notin \{u^*[i], w^*[i]\}\}|+$$

+ $|\{i \le |u^*|: `-' \in \{u^*[i], w^*[i]\}\}|$

Stąd

$$\mathbf{g}(u^*, w^*) + \mathbf{d}(u^*, w^*) = \sum_{i=1, \dots, |u^*|} (s(u^*[i], w^*[i]) + d(u^*[i], w^*[i])) =$$

$$= \sum_{i=1, \dots, |u^*|, -' \notin \{u^*[i], w^*[i]\}} c + \sum_{i=1, \dots, |u^*|, -' \in \{u^*[i], w^*[i]\}} c/2 = c(n+m)/2$$

Równość jest prawdziwa dla każdego dopasowania, zatem minimalizacja odległości edycyjnej odpowiada maksymalizacji podobieństwa.

$$\varsigma(u,w) + \dot{\mathsf{q}}(u,w) = c(n+m)/2$$

Przykład. Poprzednio używaliśmy prostej metryki d(a,a)=0 dla $a \in \Sigma$ i 1 w innych sytuacjach. Przyjmując stałą c=1 i mnożąc wynik przez 2 uzyskujmy równoważną metryce d funkcję podobieństwa:

- s(a,a)=2, s(a,b)=0 dla $a\neq b\in \Sigma$,
- s(a, '-')=s('-',a)=-1.

Funkcja kary za przerwy w dopasowaniu

Lokalne insercje/delecje mają często inne przyczyny, niż punktowe podmiany pojedynczych liter – mogą dotyczyć dłuższych fragmentów sekwencji:

- polimeraza DNA może "poślizgnąć się" na nici gubiąc kilka nukleotydów,
- "nierówna" rekombinacja,
- efekt bardziej rozległych rearanżacji.

Proponuje się, uwzględniać długość odcinków leżących obok siebie indeli przy naliczaniu "kary" obniżającej podobieństwo sekwencji. Oddzielnie uwzględniamy składnik związany z zamienionymi literami, osobno zaś przerwy w dopasowaniu.

Przykład.

C-AGCCCTA--C CCTG---TACCC

Dopasowanie zawiera trzy przerwy o długościach 1, 3 i 2.

Niech dana będzie funkcja kary $p:N \rightarrow R$ (zwykle malejąca). Dla dopasowania u^*, w^* słów u, w redefiniujemy podobieństwo:

$$s(u^*, w^*) = \sum_{i=1,...,|u^*|, '-' \notin \{u^*[i], w^*[i]\}} s(u^*[i], w^*[i]) + \sum_{br \in Przerwy(u^*, w^*)} p(|br|)$$

$$s(u, w) = \max_{(u^*, w^*) \in Dopasowania(u, w)} s(u^*, w^*)$$

Problem. Jak znaleźć optymalne dopasowanie i wartość $\S(u,w)$ podobieństwa słów?

Rozważamy tablice:

- A(i,j) = maksymalne dopasowanie przedrostków u[1..i] w[1..i], przy warunku: w[j] połączono z '-'.
- B(i,j) = maksymalne dopasowanie przedrostków u[1..i]w[1..j], przy warunku: u[i] połączono z '-'.
- C(i,j) = maksymalne dopasowanie przedrostków u[1..i] w[1..j], przy warunku: u[i] połączono z w[j].
- S(i,j) = maksymalne dopasowanie u[1..i] z w[1..j].

Algorytm (programowanie dynamiczne). Dane $u, w \in \Sigma^+$, |u| = n, |w| = m.

1. Wypełniamy tabele (wartości początkowe: $-\infty$) S(0,0)=0, S(i,0)=S(0,i)=B(i,0)=A(0,i)=p(i) dla i>0 oraz

$$A(i,j) = \max_{k \in \{0,j-1\}} \{ \max\{B(i,k), C(i,k)\} + p(j-k) \}$$

$$B(i,j) = \max_{k \in \{0,i-1\}} \{ \max\{A(k,j), C(k,j)\} + p(i-k) \}$$

$$C(i,j) = S(i-1,j-1) + s(u[i], w[j])$$

$$S(i,j) = \max\{A(i,j), B(i,j), C(i,j) \}$$

– dla *i,j*>0

2. Odczytujemy podobieństwo słów $\varsigma(u,w)=S(n,m)$

Złożoność czasowa $O(nm \max\{n,m\})$ i pamięciowa jak poprzednio: O(nm).

Niekiedy rozważa się liniową funkcję kary:

$$p(x) = -\alpha - \beta x$$

gdzie $\alpha+\beta$ – koszt pojedynczego indelu, β – koszt przedłużenia przerwy o jedną pozycję $(\alpha,\beta>0)$.

Dla takiego modelu istnieje algorytm oparty na programowaniu dynamicznym o złożoności czasowej i pamięciowej O(nm).