Feature Extraction

Cláudia Antunes

Instituto Superior Técnico - Universidade de Lisboa

FEATURE EXTRACTION

$$\mathcal{F} = \{v_1, v_2, \dots, v_d\}$$

$$f_1(\mathcal{F}), f_2(\mathcal{F}), \dots, f_{\delta}(\mathcal{F})$$
with $\delta \leq d$

PRINCIPAL COMPONENT ANALYSIS

PCA ALGORITHM

1. Center the dataset

$$X = X - 1 \times \mu^T$$

2. Compute covariance matrix

$$\Sigma = \begin{pmatrix} var(v_1) & \cdots & cov(v_1, v_d) \\ \vdots & \ddots & \vdots \\ cov(v_1, v_d) & \cdots & var(v_d) \end{pmatrix}$$

3. Compute eigen values and vectors

$$\lambda_1$$
, \vec{v}_1 , λ_2 , \vec{v}_2 , ..., λ_d , \vec{v}_d
 $\lambda_1 > \lambda_2 > ... \lambda_n$

PCA Interpretation

PC1 = 0.36 x sepallength - 0.08 x sepalwidth + 0.86 x petallength + 0.36 x petalwidth

PCA Interpretation

PC1 = 0.36 x sepallength - 0.08 x sepalwidth + 0.86 x petallength + 0.36 x petalwidthPC2 = 0.66 x sepallength + 0.73 x sepalwidth - 0.18 x petallength - 0.07 x petalwidth

Data Science by Cláudia Antunes

PCA Interpretation

PC1 = 0.36 x sepallength - 0.08 x sepalwidth + 0.86 x petallength + 0.36 x petalwidth PC2 = 0.66 x sepallength + 0.73 x sepalwidth - 0.18 x petallength - 0.07 x petalwidth PC3 = -0.58 x sepallength + 0.59 x sepalwidth + 0.07 x petallength + 0.55 x petalwidth

PCA - DIMENSIONALITY REDUCTION

PCA - CHOOSING DIMENSIONALITY

PC

PCA REMARKS

Data Science by Cláudia Antunes

PCA - SEMANTICS RECOVERY

Thank you!

