SOLUÇÃO DE UM MODELO DE MINIMIZAÇÃO

- A ozark farms usa no mínimo 800lb de ração especial por dia. Essa ração especial é uma mistura de milho e soja com as composições elencadas na tabela:
- Os requisitos nutricionais da ração especial são de no mínimo 30% de proteína e de no máximo 5% de fibra. A Ozark Farms quer determinar a mistura que gera a ração de mínimo custo diário.

Ração	lb por l raçã	Custo (\$/lb)	
	Proteína	Fibra	
Milho	0.09	0.02	0.3
Soja	0.6	0.06	0.9

PLANEJAMENTO DE SESSÕES DE RADIOTERAPIA

- Mary acaba de receber um diagnóstico de câncer em um estágio relativamente avançado.
 Mais especificadamente, ela tem um tumor maligno na área da bexiga (uma "lesão integral da bexiga").
- Mary está por receber o tratamento médico mais avançado mais disponível oferecendolhe todas as chances disponíveis de sobrevivência. Esse tratamento incluirá radioterapia.

PLANEJAMENTO DE SESSÕES DE RADIOTERAPIA

Área	Fração da Dose de Entrada Absorvida por Área (Média)		Restrição sobre a dosagem Média Total, em	
	Fluxo I	Fluxo 2	kilorads	
Anatomia	Tranco I	Tranco 2		
Saudável	0.4	0.5	Minimizar	
Tecidos				
Críticos	0.3	0.1	<=2.7	
Região do				
Tumor	0.5	0.5	=6	
Núcleo do				
Tumor	0.6	0.4	>=6	

• Formulação como um Problema de Programação Linear: as duas variáveis de decisão xI e x2 representam, respectivamente, a dose (em kilorads) no ponto de entrada para os fluxos I e 2. Pelo fato de a dosagem total atingindo a anatomia saudável ter de ser minimizada, façamos que Z simbolize essa quantidade. Os dados abaixo podem ser então usados diretamente para formular o seguinte modelo de PL.

EXERCÍCIOS

• Uma empresa fabrica dois produtos A e B. O volume de vendas de A é de no mínimo 80% do total de vendas de ambos (A+B). Contudo, a empresa não pode vender mais do que 100 unidades de A por dia. Ambos os produtos usam uma matéria-prima cuja disponibilidade máxima diária é 240 lb. As taxas de utilização da matéria-prima são 2 lb por unidade de A e 4lb por unidade de B. Os lucros unitários para A e B são \$20 e \$50, respectivamente. Determine o mix de produto ótimo para a empresa.