1 Notation de Landau

Soient E et F deux espace normés sur le corps $\mathbb{K}=\mathbb{R}$ ou \mathbb{C} et $R:E\to F$ une application quelconque. On dit

• R(h) est un petit o de norme de h puissance k, écrit $R(h) = o(\|h\|^k)$, si pour tout $\epsilon > 0$ il existe $\delta > 0$ tel que

$$||h||_E < \delta$$
 entraı̂ne $||R(h)||_F \le \epsilon ||h||_E^k$

• R(h) est un grand O de norme de h puissance k, écrit $R(h) = O(\|h\|^k)$, s'il existe C > 0 et $\delta > 0$ tels que

$$||h||_E < \delta$$
 entraı̂ne $||R(h)||_F \le C||h||_E^k$

En particulier, on a

$$R(h) = o(\|h\|^k) \implies R(h) = O(\|h\|^k)$$

puisqu'il suffit de choisir n'importe quelle paire (ϵ, δ) et de la prendre pour (C, δ) . Ou bien, si l'on se permet de prendre $o(\|h\|^k)$ et $O(\|h\|^k)$ pour des ensembles des fonctions satisfaisant les conditions ci-dessus, alors on a

$$o(\|h\|^k) \subseteq O(\|h\|^k)$$

On parle aussi de petit o, grand O pour les fonctions définies sur les entiers positifs. Cf. github.com/phunc20/algorithms/.../01-asymptotic_notation