

Área de Aplicação: Engenharia de Normas e Padrões

Título do Documento: Caixa de Derivação com Barramento Trifásico 160 A

Sumário

1.	OBJETIVO	. 2
2.	ÂMBITO DE APLICAÇÃO	. 2
	2.1 Empresa	2
	2.2 Área	2
3.	DEFINIÇÕES	. 2
4.	DOCUMENTOS DE REFERÊNCIA	. 2
5.	RESPONSABILIDADES	. 2
6.	REGRAS BÁSICAS	. 2
	6.1 Caixa e Suporte de Fixação	
	6.2 Característica Construtivas do Barramento	
	6.3 Ensaios	
	6.3.1 Ensaios de Tipo	
	6.3.3 Ensaios de Recebimento	
	6.4 Requisitos e métodos dos ensaios	
	6.4.1 Inspeção visual e dimensional	
	6.4.3 Condutividade elétrica	6
	6.4.4 Ciclos térmicos	
	6.4.5 Tensão aplicada no barramento	
	6.4.7 Resistencia ao impacto	
	6.4.8 Grau de proteção	6
	6.4.9 Arrancamento da luva	
	6.4.10 Resistência à Tração	
	6.4.12 Condutores para Ensaios	
	6.5 Identificação	
7.	CONTROLE DE REGISTROS	. 7
8.	ANEXOS	. 8
9.	REGISTRO DE ALTERAÇÕES	. 8
	9.1 Colaboradores	
	9.2 Alterações	8

N.Documento:	Categoria:	Versão:	Aprovado por:	Data Publicação:	Página:
18562	Instrução	1.2	OSE CARLOS FINOTO BUEN	IO21/11/2022	1 de 8

Uso Interno CPFL

CPFL

ENERGIA

Público

Tipo de Documento: Especificação Técnica

Área de Aplicação: Engenharia de Normas e Padrões

Título do Documento: Caixa de Derivação com Barramento Trifásico 160 A

1. OBJETIVO

Definir os requisitos técnicos de caixas de derivação para clientes com barramentos trifásicos com capacidade de corrente até 160 A utilizadas para blindar redes secundárias de distribuição de desvios e furtos de energia nas redes de distribuição das distribuidoras do grupo CPFL Energia.

2. ÂMBITO DE APLICAÇÃO

2.1 Empresa

Distribuidoras do Grupo CPFL Energia.

2.2 Área

Engenharia, Operações de Campo, Obras e Manutenção, Suprimentos e Gestão de Ativos.

3. DEFINIÇÕES

ABNT – Associação Brasileira de Normas Técnicas

4. DOCUMENTOS DE REFERÊNCIA

ABNT NBR 5370 Conectores de cobre para condutores elétricos em sistema de

potência

ABNT NBR IEC 62208 Invólucros vazios destinado a conjuntos de manobra e controle de

baixa tensão - Requisitos Gerais

ABNT NBR IEC 60529 Grau de proteção por invólucros (códigos de IP)

UI 1050 Standard for terminal blocks

ANSI c 119.4 Connectors for use between aluminum-to-aluminum or aluminum-to-

copper.

5. **RESPONSABILIDADES**

A área de Engenharia de Normas e Padrões das distribuidoras do Grupo CPFL é a responsável pela publicação deste documento.

6. REGRAS BÁSICAS

6.1 Caixa e Suporte de Fixação

A caixa e o suporte de fixação deverão ser fabricados em polímero de alta resistência mecânica, resistente aos raios ultravioletas e não propagador de chamas, resistente aos ensaios previstos nesta especificação técnica.

Deverá ser fabricada pelo método de injeção em molde, não apresentando fissuras, escamas, rebarbas, asperezas, estrias e inclusões. As superfícies exteriores e interiores terão um acabamento liso e uniforme, tendo 3,0 mm de espessura média;

A caixa deverá possuir venezianas para ventilação para dissipação de calor gerado no interior dela.

N.Documento:	Categoria:	Versão:	Aprovado por:	Data Publicação:	Página:
18562	Instrução	1.2	OSE CARLOS FINOTO BUEN	NO21/11/2022	2 de 8

Área de Aplicação: Engenharia de Normas e Padrões

Título do Documento: Caixa de Derivação com Barramento Trifásico 160 A

Quando a caixa fizer uso de junta de vedação, o material deve ser submetido a ensaios de envelhecimento acelerado.

A caixa deverá ser fornecida com 2 parafusos com segredo. Para efeito de transporte, os parafusos deverão ser fornecidos já fixados na caixa.

Também deverá possuir mecanismo que mantenha a caixa aberta durante a execução de ligações na mesma.

Deverá possuir um dispositivo para a instalação do lacre de segurança.

Para passagem dos condutores de rede e do ramal, os furos deverão ser dotados de dispositivos de borracha ou elastômero para vedação, possuindo:

- 16 furos para passagem dos condutores;
- 3 furos com diâmetro de 24 mm para passagem das alimentações fase;
- 1 furo de 24 mm para passagem da alimentação do neutro;
- 12 furos de 24 mm para passagem das derivações fase e neutro;

Nota: Todos os dados são nominais e sujeitos às tolerâncias previstas nas especificações.

6.1.1 Barramento de Distribuição

- a. Deverá ser em liga de cobre estanhado, com camada mínima de 8 μm a 12 μm, com média de 10 μm, condutividade mínima de 95% IACS a 20 °C, e permitir a conexão de condutores com seções de 16 a 120 mm² na alimentação do barramento fase, 16 a 95 mm² na alimentação do barramento neutro e 2,5 a 35 mm² nas derivações dos barramentos fase e neutro sendo condutores de alumínio ou cobre, através de sistemas das molas, sendo as molas fabricadas em aço inoxidável AISI 316 ou 304 ou 302;
- b. Os barramentos deverão possuir identificador de fase através das seguintes cores; vermelho (fase A), amarelo (fase B), branco (fase C) e azul claro (neutro), conforme ABNT NBR 5410;
- c. Os condutores serão fixados nas alimentações das fases e neutro, com sistema de aperto com parafuso torquimétrico com valores de quebra do limitador de acordo com o projeto do fabricante, onde os parafusos e porcas deverão garantir uma classe de isolação de 0,6/1 kV e proteção contra contato acidental;
- d. Os condutores das derivações das fases e neutro serão fixados através de sistemas de cames mecânicos e molas, onde os cames mecânicos e molas deverão garantir uma classe de isolação de 0,6/1 kV e proteção contra contato acidental;
- e. Os barramentos devem proporcionar no mínimo 12 ligações monofásicas, 6 bifásicas e 4 trifásicas;
- f. A disposição dos barramentos das fases deve promover o balanceamento da rede evitando desequilíbrio e falhas no transformador.

6.2 Característica Construtivas do Barramento

Capacidade mínima de corrente: 160 Amperes

N.Documento:	Categoria:	Versão:	Aprovado por:	Data Publicação:	Página:
18562	Instrução	1.2	OSE CARLOS FINOTO BUEN	NO21/11/2022	3 de 8

Área de Aplicação: Engenharia de Normas e Padrões

Título do Documento: Caixa de Derivação com Barramento Trifásico 160 A

Tensão máxima: 1 kV

• Capacidade de Isolação: NBI 1,5 kV

Barramentos:

Fase: Trifásico / Fase 1 – Vermelho / Fase 2 – Amarelo / Fase 3 – Branco

Neutro: Monofásico / Azul

- Ligações: 12 Ligações Monofásicas / 8 Ligações Bifásicas / 6 Ligações Trifásicas
- Sistema: Liga-Desliga através do barramento da Fase
- Material: Polímero de alta resistência mecânica
- Faixa de Aplicação:
 - Alimentação Fase: 16 a 120 mm² CA/CU;
 - Derivações Fase: 2,5 a 35 mm² CA/CU;
 - Alimentação Neutro: 16 a 95 mm² CA/CU;
 - Derivações Neutro: 2,5 a 35 mm² CA/CU;
- Material do barramento: cobre estanhado com camada mínima de 12 µm
- Condutividade do barramento: mínimo 95% IACS
- Sistema de aplicação da alimentação fase e neutro: parafuso limitador de torque;
- Torque nominal: 20 Nm;
- Sistema de aplicação da derivação fase: came mecânico com giro de 90° e molas;
- Sistema de aplicação da derivação neutro: came mecânico com giro 180° e molas;
- Aplicação: chave 13 mm² catraca ou estrela para todas as aplicações;
- Cores dos botões do barramento fase e neutro: Fase A (Vermelho), Fase B (Amarelo), Fase C (Branco), Neutro (Azul).

6.3 Ensaios

6.3.1 Ensaios de Tipo

Ensaios nos barramentos e na caixa:

- a. Inspeção visual e dimensional, conforme item 6.4.1;
- b. Verificação da camada de estanho no barramento, conforme item 6.4.2;
- c. Condutividade elétrica mínima de 95% IACS, conforme item 6.4.3;
- d. Ciclos térmicos, conforme item 6.4.4;
- e. Tensão aplicada no barramento, conforme item 6.4.5;
- f. Elevação de temperatura, conforme item 6.4.6;

N.Documento:	Categoria:	Versão:	Aprovado por:	Data Publicação:	Página:
18562	Instrução	1.2	OSE CARLOS FINOTO BUEN	NO21/11/2022	4 de 8

Área de Aplicação: Engenharia de Normas e Padrões

Título do Documento: Caixa de Derivação com Barramento Trifásico 160 A

g. Resistência ao impacto IK 10, conforme item 6.4.7;

- h. Grau de proteção IP 54, conforme item 6.4.8;
- i. Arrancamento da luva, conforme item 6.4.9;
- j. Resistência a tração, conforme item 6.4.10;
- k. Névoa Salina (360 Horas), conforme item 6.4.11.

6.3.2 Ensaios realizados na matéria prima da caixa

- a. Verificação da resistência ao calor, conforme IEC 62208;
- b. Auto extinção, conforme IEC 62208 grau de severidade 650 °C verificação da resistência ao calor anormal e ao fogo;
- Flamabilidade e propagação de chamas, segundo a classificação V-1 da norma IEC 60695-11-10;
- Resistencia a ultravioleta, conforme IEC 62208 ou ASTM G155, teste 1, duração de 2000 horas.

6.3.3 Ensaios de Recebimento

- a. Inspeção visual e dimensional, conforme item 6.4.1;
- b. Verificação da camada de estanho no barramento, conforme item 6.4.2;
- c. Condutividade elétrica mínima de 95% IACS, conforme item 6.4.3;
- d. Tensão aplicada no barramento (1,5 kV, 1 min), entre seções do barramento;
- e. Elevação de temperatura, conforme ABNT NBR 5370;
- f. Resistencia ao impacto IK 10, conforme IEC 62262;
- g. Arrancamento da luva (40 daN);
- h. Resistência a tração, conforme ANSI C 119.4;
- Verificação do material utilizado. Se verificará, mediante documentação, que o material utilizado na fabricação do lote possui as mesmas características do material utilizado nos ensaios de tipo e conforme especificado neste padrão;
- j. Inspeção da embalagem.

6.4 Requisitos e métodos dos ensaios

6.4.1 Inspeção visual e dimensional

Devem ser avaliados todos os aspectos construtivos e acabamentos da caixa, onde não devem apresentar trincas, fissuras, cantos vivos ou qualquer falha que prejudique o correto funcionamento do material. Deverá também atender aos requisitos de identificação conforme item 6.5 e os aspectos construtivos do item **Erro! Fonte de referência não encontrada.** desta norma.

N.Documento:	Categoria:	Versão:	Aprovado por:	Data Publicação:	Página:
18562	Instrução	1.2	OSE CARLOS FINOTO BUEN	IO21/11/2022	5 de 8

Uso Interno CPFL

CPFL

ENERGIA

Público

Tipo de Documento: Especificação Técnica

Área de Aplicação: Engenharia de Normas e Padrões

Título do Documento: Caixa de Derivação com Barramento Trifásico 160 A

6.4.2 Verificação da camada de estanho no barramento

A medição da camada de estanho, deverá ser realizada conforme a norma ABNT NBR 5370, a camada mínima deve ser de 8 µm e a média mínima de 10 µm.

6.4.3 Condutividade elétrica

O ensaio de condutividade deve ser realizado utilizando o método da norma ASTM E 1004, devendo os barramentos apresentarem condutividade mínima de 95% IACS.

6.4.4 Ciclos térmicos

O ensaio de ciclos térmicos deverá ser realizado segundo a norma ANSI C119.4 em sua última versão. A montagem do circuito de ensaio deve ser realizada utilizando os condutores de maior capacidade de corrente aplicáveis pelos barramentos. O circuito de ensaio deve ser montado utilizando os bornes da alimentação e também os bornes das derivações. O ensaio deverá ser realizado em local abrigado, livre de correntes de ar e contaminações.

6.4.5 Tensão aplicada no barramento

O ensaio de tensão aplicada deve ser realizado nos barramentos das fases e também no barramento neutro. Deverão ser aplicados os condutores de maior e menor seção admissíveis pelos barramentos, onde o potencial de alta tensão deve ser aplicado nos cabos devidamente instalados ao barramento e o potencial terra deverá estar envolvido na parte polimérica do barramento através de um eletrodo. Deve-se aplicar uma tensão de forma gradual e constante até atingir o valor de 1,5 kV, na qual está deve ser mantida por 1 min. Não deverá ser observada corrente de fuga superior a 10 mA.

6.4.6 Elevação de temperatura

O ensaio de elevação de temperatura deverá ser realizado utilizando os condutores de maior capacidade de condução de corrente. Se o barramento utilizar combinações de cobre-cobre, alumínio-cobre e alumínio- alumínio, estas devem ser realizadas no ensaio de elevação de temperatura. A corrente de ensaio deve ser aplicada com base no cabo de menor capacidade de corrente instalado ao circuito, este também deve ser considerado o condutor de referência, onde deverá ser medida sua temperatura e comparada com as temperaturas das conexões. As correntes de ensaio estão definidas na tabela de corrente da norma ABNT NBR 5370. O ensaio deve ser considerado finalizado quanto as duas últimas leituras não apresentarem variação superior a 1 °C. Considera-se aprovado o ensaio de elevação de temperatura quando as temperaturas das conexões forem no máximo igual a temperatura do condutor de referência.

6.4.7 Resistencia ao impacto

O ensaio de resistência ao impacto deverá ser realizado na caixa devidamente fechada e com todas as borrachas de vedação. O ensaio deverá ser realizado conforme norma IEC 62262 ou NBR IEC 62262, devendo atender ao grau de impacto IK 10 (Joules). Considera-se aprovado o ensaio, não haver quebras, trincas ou fissuras no invólucro.

6.4.8 Grau de proteção

O ensaio de grau de proteção deve ser executado, conforme norma IEC 60529 ou NBR IEC 60529, devendo atender ao grau de proteção IP 54. A caixa deve ser ensaiada com a tampa devidamente fechada e com todos os componentes da caixa.

N.Documento:	Categoria:	Versão:	Aprovado por:	Data Publicação:	Página:
18562	Instrução	1.2	OSE CARLOS FINOTO BUEN	IO21/11/2022	6 de 8

Uso Interno CPFL

CPFL

ENERGIA

Público

Tipo de Documento: Especificação Técnica

Área de Aplicação: Engenharia de Normas e Padrões

Título do Documento: Caixa de Derivação com Barramento Trifásico 160 A

6.4.9 Arrancamento da luva

Deve-se realizar a tração nas buchas que fixam os parafusos na caixa. A tração deve ser feira no sentido longitudinal. Considera-se aprovado o ensaio de tração se a bucha suportar a tração mínima de 40 daN.

6.4.10 Resistência à Tração

O ensaio deve ser realizado utilizando as combinações mínimas e máxima aplicáveis ao barramento. O barramento deve suportar um esforço de tração mínimo de 20 kgf. Considerase aprovado o ensaio de tração se ele suportar sem escorregamento do condutor a tração indicada. O valor de tração especificado acima deve ser considerado tanto para as derivações quanto para as alimentações dos barramentos.

6.4.11 Névoa Salina

O ensaio de névoa salina deve ser executado conforme norma NBR 8094, devendo o barramento suportar uma exposição de 360 horas, sem apresentar quaisquer tipos de oxidação profunda ou oxidação vermelha nas partes metálicas. Após a exposição em névoa salina, o barramento deverá suportar as sequências de ensaios de elevação de temperatura e de condutividade elétrica mínima, respectivamente. O ensaio deverá ser executado com as combinações de maior capacidade de corrente.

6.4.12 Condutores para Ensaios

Para realização dos ensaios serão utilizados condutores de cobre e alumínio, condutores classe 2 e cabos concêntricos 10 mm², 16 mm² e 25 mm².

6.5 Identificação

Deverão ser gravadas em alto relevo, de forma legível e indelével, na superfície externa da caixa as seguintes informações:

- Nome do Fabricante;
- Data de Fabricação (Mês/Ano);
- Faixa de Aplicação das Alimentações;
- Faixa de Aplicação das Derivações;
- Torque Nominal dos Parafusos;
- Simbologia do Material Polimérico Utilizado;
- Logotipo do Cliente.

7. CONTROLE DE REGISTROS

Não se aplica.

N.Documento:	Categoria:	Versão:	Aprovado por:	Data Publicação:	Página:
18562	Instrução	1.2	OSE CARLOS FINOTO BUEN	IO21/11/2022	7 de 8

Área de Aplicação: Engenharia de Normas e Padrões

Título do Documento: Caixa de Derivação com Barramento Trifásico 160 A

8. ANEXOS

Figura 1 – Imagem ilustrativa para conexão do cabo armado e do cabo concêntrico à caixa de derivação

Código SAP	UNC	
50-000-040-004	94004	

9. REGISTRO DE ALTERAÇÕES

9.1 Colaboradores

Empresa	Área	Nome
CPFL Piratininga	REDN	Antônio Carlos de Almeida Cannabrava
CPFL Santa Cruz	REDN	Márcio de Castro Mariano da Silva

9.2 Alterações

Versão Anterior	Data da Versão Anterior	Alterações em relação à Versão Anterior
		Publicação do documento.
1.0	31/12/2020	Criar código SAP estocável da caixa com barramento trifásico 160 A. Formatação do documento conforme norma vigente.
1.1	24/08/2021	Inserida a informação de que os parafusos a serem fornecidos com a caixa devem possuir segredo específico a ser alinhado com a distribuidora.

N.Documento:	Categoria:	Versão:	Aprovado por:	Data Publicação:	Página:
18562	Instrução	1.2	OSE CARLOS FINOTO BUEN	IO21/11/2022	8 de 8