Stochastic Modelling and Random Processes

Example sheet 5

1. Contact process [14]

Consider the CP $(\eta_t : t \ge 0)$ on the complete graph $\Lambda = \{1, ..., L\}$ (i.e. $q(i, j) = \lambda$ for all $i \ne j$) with state space $S = \{0, 1\}^L$ and transition rates

$$c(\eta, \eta^i) = \eta(i) + \lambda (1 - \eta(i)) \sum_{j \neq i} \eta(j)$$
,

and generator given by $(\mathcal{L}f)(\eta) = \sum_{i \in \Lambda} c(\eta, \eta^i) (f(\eta^i) - f(\eta)).$

Recall that $\eta, \eta^i \in S$ are connected states such that the state of individual i is flipped:

$$\eta^{i}(k) = \begin{cases} 1 - \eta(k) &, k = i \\ \eta(k) &, k \neq i \end{cases}$$

(a) Let $N(\eta) := \sum_{i \in \Lambda} \eta(i) \in \{0, \dots, L\}$ be the number of infected individuals in configuration η . For any function $f : \{0, \dots, L\} \to \mathbb{R}$ show that we can write for the composed function $f \circ N : S \to \mathbb{R}$

$$(\mathcal{L}f \circ N)(\eta) = \lambda(L - N)N[f(N+1) - f(N)] + N[f(N-1) - f(N)]$$

for all $\eta \in S$, where we use the simplified notation $N = N(\eta)$ on the right-hand side. Hint: Use $N(\eta^i) = N(\eta) \pm 1$ if $\eta(i) = 0, 1$, respectively, and $(1 - \eta(i))\eta(i) = 0$. Convince yourself that this implies that $(N_t : t \ge 0)$ with $N_t := N(\eta_t)$ is a Markov chain on $\{0, \ldots, L\}$ and write down its generator $\mathcal{L}f(n)$.

- (b) Is the process $(N_t : t \ge 0)$ irreducible, does it have absorbing states? Give all stationary distributions. Is the process ergodic?
- (c) Assume that $\mathbb{E}(N_t^k) = \mathbb{E}(N_t)^k$ for all $k \geq 1$. This is called a **mean-field assumption**, meaning basically that we replace the random variable N_t by its expected value. Use this assumption and the usual evolution equation for functions of Markov chains to derive the **mean-field rate equation** for $\rho(t) := \mathbb{E}(N_t)/L$,

$$\frac{d}{dt}\rho(t) = h(\rho(t)) := -\rho(t) + L\lambda(1 - \rho(t))\rho(t).$$

(d) Analyze this equation by finding the stable and unstable stationary points via $h(\rho^*) = 0$, and give the limiting behaviour of $\rho(t)$ as $t \to \infty$ depending on the parameter $\lambda > 0$. What is the prediction for the stationary density ρ^* depending on λ ?

2. Simulation of Contact Processes

Consider again the contact process $(\eta_t: t \geq 0)$, but now with connections only between nearest neighbours, i.e. $q(i,j) = q(j,i) = \lambda \delta_{j,i+1}$, and periodic boundary conditions. The critical infection rate λ_c can be defined such that the infection on the infinite lattice $\Lambda = \mathbb{Z}$ started from the fully infected lattice dies out for $\lambda < \lambda_c$, and survives for $\lambda > \lambda_c$. It is known numerically up to several digits, depends on the dimension, and is around 1.65 in our case. All simulations of the process should be done with initial condition $\eta_0(i) = 1$ for all $i \in \Lambda$.

You should use the Gillespie algorithm or the random sequential update from handout 4.

- (a) Simulate the process for L=128,256,512,1024 and parameters $\lambda=1.62,\ldots,1.68$ with 0.01 increments (7 values) with at least 500 realizations each.
 - i. For each L, plot the number of infected individuals $N_t = \sum_{i \in \Lambda_L} \eta_t(i)$ averaged over realizations as a function of time up to time $10 \times L$ for all values of λ as above in a single double-logarithmic plot. Use the curvature of the plots to estimate $\lambda_c(L)$.
 - ii. Plot your estimates of $\lambda_c(L)$ with error bars ± 0.01 against 1/L. Extrapolate to $1/L \to 0$ to get an estimate of $\lambda_c = \lambda_c(\infty)$ with a reasonable error bar.

This approach is called **finite size scaling**, in order to correct for systematic **finite size effects** which influence the critical value.

(b) Let T be the hitting time of the absorbing state $\eta=0$, i.e. the lifetime of the infection. Measure the lifetime of the infection for $\lambda=1$ and $\lambda=1.8$ by running the process until extinction of the epidemic.

For $\lambda = 1 < \lambda_c$ we expect $T \propto C \log L + \text{small fluctuations for some } C > 0$.

- i. Use large system sizes e.g. L=128, 256, 512, 1024 (or larger), confirm that $\mathbb{E}(T)$ scales like $\log L$ and determine C by averaging at least 200 realizations of T for each L.
- ii. Then shift your data T_i for each L by $T_i \mathbb{E}(T)$ and plot the 'empirical tail' of the distribution of the shifted data, comparing to the **Gumbel distribution** (all in one plot with log-scale on the y-axis). Look up the Gumbel distribution on Wikipedia, with mean 0 only one parameter needs fitting. Discuss why this could be a good model for the noise here (check google for **extreme value statistics**)
- (c) For $\lambda=1.8>\lambda_c$ we expect $T\sim Exp(1/\mu)$ to be an exponential random variable with mean $\mu=\mathbb{E}(T)\propto e^{CL}$ for some C>0.
 - i. Use *small* system sizes e.g. L=8,10,12,14 (see how far you can go), and confirm that $\mathbb{E}(T)$ scales like e^{CL} . Determine C by averaging at least 200 realizations of T.
 - ii. Then rescale your data T_i for each L by $T_i/\mathbb{E}(T)$ and plot the 'empirical tail' of the distribution of the rescaled data, comparing to the theoretical tail e^{-t} (all in one plot with log-scale on the y-axis).

Recall: The empirical tail of data $T=(T_1,\ldots,T_M)$ is the statistic $\operatorname{tail}_t(T)=\frac{1}{M}\sum_{i=1}^M \mathbbm{1}_{T_i>t}$. This decays from 1 to 0 as a (random) function of time t.