数学2D演習第1回

担当: 加藤 康之 2020年4月15日

[1]

 θ を実数として, $e^{i\theta} = \exp(i\theta) = \cos\theta + i\sin\theta$ と定める. これを Euler の公式と呼ぶ.

- (1) α , β を実数として, $\exp(i\alpha)\exp(i\beta)=\exp(i\alpha+i\beta)$ を示せ. このように一般の複素数についても、指数法則が成立する.
- (2) (1) を用いて三角関数の 2 倍角、3 倍角の公式を導け、すなわち、 $(\cos 2\theta, \sin 2\theta), (\cos 3\theta, \sin 3\theta)$ をそれぞれ $(\cos \theta, \sin \theta)$ で表せ、
- (3) $z = \exp(3+1i)$ の実部,虚部を求め、複素平面上にzを図示せよ.
- (4) 複素数 z を $z = r \exp(i\theta)(r \ge 0, \theta, r)$ は実数) の形に表すことを極座標表示と言う. また, この時 r を z の絶対値, θ を z の偏角と呼び, |z| = r, $\arg z = \theta$ と表す.
- (4-1) r と θ は複素平面上でどのような意味を持つか.
- (4-2) 1+i を $r \exp(i\theta)$ の形に極座標表示せよ. (ただし $0 < \theta < 2\pi$ とする.)
- (4-3) $z_1 = r_1 \exp(i\theta_1)$, $z_2 = r_2 \exp(i\theta_2)$ について、 $z_1 z_2$ 及び z_1/z_2 の絶対値と偏角を求めよ.
- (5) A. B を複素数として, $e^A e^B = e^{(A+B)}$ が成り立つことを,両辺級数展開して確かめよ.

[2]

 α, β, γ を複素数平面上の異なる点とする.

- (1) 三角形 $\alpha\beta\gamma$ が正三角形となる必要十分条件は $\frac{\alpha-\gamma}{\beta-\gamma}=\frac{1\pm\sqrt{3}i}{2}$ であることを示せ.
- (2) (1) の条件は $\alpha^2 + \beta^2 + \gamma^2 \alpha\beta \beta\gamma \gamma\alpha = 0$ と同値であることを示せ.

[3]

次のべき級数の収束半径を求めよ.

(1)
$$1 + \frac{z}{1!} + \frac{z^2}{2!} + \cdots + \frac{z^n}{n!} + \cdots$$

(2)
$$z - \frac{z^2}{2} + \dots + (-1)^{n-1} \frac{z^n}{n} + \dots$$

(3)
$$1 + \alpha z + \frac{\alpha(\alpha - 1)}{2!}z^2 + \dots + \frac{\alpha(\alpha - 1)\cdots(\alpha - n)}{n!}z^n + \dots$$
 $(\alpha \neq 0, 1, 2\cdots).$

A 複素数の演算と幾何学的意味

公式

複素数 z_1, z_2 を極形式で表示した際に, $z_1=r_1\mathrm{e}^{i\theta_1}, z_2=r_2\mathrm{e}^{i\theta_2}$ とする.このとき, z_1z_2 を極形式で表示すると, $z_1z_2=r_1r_2\mathrm{e}^{i(\theta_1+\theta_2)}$ となる.

このことを複素平面上で幾何学的にとらえ直すと, 点 $z_1 \cdot z_2$ は原点 0 を中心に, 点 z_1 を r_2 倍して θ_2 だけ回転させた点であることを意味する.

B ベキ級数と収束半径について

複素数zのベキ級数に対して、次の定理が成立する.

定理

ベキ級数 $f(z)=\sum_{n=0}^{\infty}a_nz^n$ が $z=z_0$ で収束するなら $|z|< z_0$ である各点でこの級数は絶対収束 a する.

 $\frac{a}{a}$ 絶対収束: $\sum_{n=0}^{\infty}a_n$ の各項の絶対値を各項とする級数 $\sum_{n=0}^{\infty}|a_n|$ が収束するとき, $\sum_{n=0}^{\infty}a_n$ は絶対収束するという. $\sum_{n=0}^{\infty}a_n$ が 絶対収束するなら $\sum_{n=0}^{\infty}a_n$ は収束する=絶対値をとったものが収束するなら, 符号をいくら変えても収束する.

この定理より, $f(z) = \sum_{n=0}^{\infty} a_n z^n$ がその内部の全ての点で絶対収束して, 外部の点で発散する境界=円が存在する. この円の半径を収束半径という. 収束半径を求める代表的な方法を二つ以下述べる.

- d'Alembert の判定法 -

収束半径 r は $r=\lim_{n\to\infty}\left|rac{a_n}{a_{n+1}}\right|$ で与えられる.ただし、右辺の極限が振動する場合は使えない.

この方法は実用的だが、太字で示した付帯条件がついていることに注意.

- Cauchy-Hadamard の定理 ·

収束半径rは $\frac{1}{r} = \overline{\lim_{n \to \infty}} |a_n|^{\frac{1}{n}}$ で与えられる a

a 上極限 $\overline{\lim}_{n\to\infty}$ は次のように定義される: $\overline{\lim}_{n\to\infty} a_n = \lim_{n\to\infty} \sup \{a_k : k > n\}$.