Fundamentals of Computer Systems Combinational Logic

Harris and Harris Chapter 2.8-2.9

Combinational Circuits

Combinational circuits are stateless.

Their output is a function *only* of the current input.

Circuit Timing

Critical and Shortest Paths

Glitches

Basic Combinational Circuits

Encoders and Decoders

Multiplexers

Shifters

Arithmetic Circuits

Ripple Carry Adder

Adder/Subtractor

Carry Lookahead Adder

Computation Always Takes Time

There is a delay between inputs and outputs, due to:

- Limited currents charging capacitance
- · The speed of light

The Simplest Timing Model

- Each gate has its own propagation delay t_p.
- When an input changes, any changing outputs do so after t_p.
- Wire delay is zero.

A More Realistic Timing Model

It is difficult to manufacture two gates with the same delay; better to treat delay as a range.

- Each gate has a minimum and maximum propagation delay t_{p(min)} and t_{p(max)}.
- Outputs may start changing after $t_{p(min)}$ and stablize no later than $t_{p(max)}$.

Critical Paths and Short Paths

How slow can this be?

Critical Paths and Short Paths

How slow can this be?

The critical path has the longest possible delay.

$$t_{p(\mathsf{max})} = t_{p(\mathsf{max},\;\mathsf{AND})} + t_{p(\mathsf{max},\;\mathsf{OR})} + t_{p(\mathsf{max},\;\mathsf{AND})}$$

Critical Paths and Short Paths

How fast can this be?

The shortest path has the least possible delay.

$$t_{p(\min)} = t_{p(\min, AND)}$$

A glitch is when a single change in input values can cause multiple output changes.

A glitch is when a single change in input values can cause multiple output changes.

A glitch is when a single change in input values can cause multiple output changes.

A glitch is when a single change in input values can cause multiple output changes.

Preventing Single Input Glitches

Additional terms can prevent single input glitches (at a cost of a few extra gates).

Preventing Single Input Glitches

Additional terms can prevent single input glitches (at a cost of a few extra gates).

Overview: Decoder

A decoder takes a k-bit input and produces 2^k single-bit outputs.

The input determines which output will be 1, all others 0. This representation is called *one-hot encoding*.

1:2 Decoder

The smallest decoder: one bit input, two bit outputs

2:4 Decoder

Decoder outputs are simply minterms. Those values can be constructed as a flat schematic (manageable at small sizes) or hierarchically, as below.

3:8 Decoder

Applying *hierarchical design* again, the 2:4 DEC helps construct a 3:8 DEC.

Priority Encoder

An encoder designed to accept any input bit pattern.

					<i>O</i> ₁	
0	0	0	0	0	Χ	Χ
0	0	0	1	1	0	0
0	0	1	Χ	1	0	1
0	1	Χ	Χ	1	1	0
1	Χ	Χ	Χ	1	X 0 0 1 1	1

$$V = I_3 + I_2 + I_1 + I_0$$

$$O_1 = I_3 + \overline{I_3}I_2$$

$$O_0 = I_3 + \overline{I_3}I_2I_1$$

Overview: Multiplexer (or Mux)

A mux has a k-bit selector input and 2^k data inputs (multi or single bit).

It outputs a single data output, which has the value of one of the data inputs, according to the selector.

There are a handful of implementation strategies.

E.g., a truth table and k-map are feasible for a design of this size.

S	11	10	0
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

There are a handful of implementation strategies.

E.g., a truth table and k-map are feasible for a design of this size.

S	11	10	0
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

There are a handful of implementation strategies.

E.g., a truth table and k-map are feasible for a design of this size.

5	<i>I</i> ₁	10	0
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Muxing Wider Values (Overview)

Muxing Wider Values (Components)

Overview: Shifters

A shifter shifts the inputs bits to the left or to the right.

There are various types of shifters.

- Barrel: Selector bits indicate (in binary) how far to the left to shift the input.
- ► L/R with enable: Two control bits (upper enables, lower indicates direction).

In either case, bits may "roll out" or "wraparound"

Example: Barrel Shifter with Wraparound

Arithmetic: Addition

Adding two one-bit numbers: A and B

Produces a two-bit result: C and S (carry and sum)

Α	В	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Half Adder

Full Adder

In general, due to a possible carry in, you need to add three bits:

C_iAB	C _o S
000	0 0
001	0 1
010	0 1
011	1 0
100	0 1
101	1 0
110	1 0
111	1 1

A Four-Bit Ripple-Carry Adder

A Two's Complement Adder/Subtractor

To subtract B from A, add A and -B. Neat trick: carry in takes care of the +1 operation.

Overflow in Two's-Complement Representation

When is the result too positive or too negative?

+	–2	-1	0	1
-2	10 10 +10 00			
-1	10 10 +11 01	11 11 +11 10		
0	10 +00 10	00 11 +00 11	00 00 +00 00	
1	00 10 +01 11	11 11 +01 00	$00 \\ 00 \\ +01 \\ \hline 01$	01 01 +01 10

Overflow in Two's-Complement Representation

When is the result too positive or too negative?

The result does not fit when the top two carry bits differ.

Ripple-Carry Adders are Slow

The *depth* of a circuit is the number of gates on a critical path.

This four-bit adder has a depth of 8.

n-bit ripple-carry adders have a depth of 2*n*.

Carry Generate and Propagate

The carry chain is the slow part of an adder; carry-lookahead adders reduce its depth using the following trick:

K-map for the carry-out function of a full adder

For bit *i*.

$$C_{i+1} = A_iB_i + A_iC_i + B_iC_i$$

= $A_iB_i + C_i(A_i + B_i)$
= $G_i + C_iP_i$

Generate $G_i = A_i B_i$ sets carry-out regardless of carry-in.

Propagate $P_i = A_i + B_i$ copies carry-in to carry-out.

Carry Lookahead Adder

Expand the carry functions into sum-of-products form:

$$C_{i+1} = G_i + C_i P_i$$

$$C_{1} = G_{0} + C_{0}P_{0}$$

$$C_{2} = G_{1} + C_{1}P_{1}$$

$$= G_{1} + (G_{0} + C_{0}P_{0})P_{1}$$

$$= G_{1} + G_{0}P_{1} + C_{0}P_{0}P_{1}$$

$$C_{3} = G_{2} + C_{2}P_{2}$$

$$= G_{2} + (G_{1} + G_{0}P_{1} + C_{0}P_{0}P_{1})P_{2}$$

$$= G_{2} + G_{1}P_{2} + G_{0}P_{1}P_{2} + C_{0}P_{0}P_{1}P_{2}$$

$$C_{4} = G_{3} + C_{3}P_{3}$$

$$= G_{3} + (G_{2} + G_{1}P_{2} + G_{0}P_{1}P_{2} + C_{0}P_{0}P_{1}P_{2})P_{3}$$

$$= G_{3} + G_{2}P_{3} + G_{1}P_{2}P_{3} + G_{0}P_{1}P_{2}P_{3} + C_{0}P_{0}P_{1}P_{2}P_{3}$$

Carry-Lookahead Adder Size and Timing

The 74283 Binary Carry-Lookahead Adder (From National Semiconductor)

Carry out i has i + 1 product terms, largest of which has i + 1 literals.

If wide gates don't slow down, delay is independent of number of bits.

More realistic: if limited to two-input gates, depth is $O(\log_2 n)$.