Inductive Step:

Proving Ser k+1, is drue

Proving Ser LHS to observin RHS:

ktl $\sum_{i=0}^{k} T_i = T_{k+1} + \sum_{i=0}^{k} T_i$ By our inductive hypedhesis we know that $\sum_{i=0}^{k} T_i = T_{k+1} - (k+1)$ will be done, such that $\sum_{i=0}^{k+1} T_{k+1} - (k+1)$ $\sum_{i=0}^{k+1} T_{k+1} - (k+1)$

=(2 Tk+1) - k-1-1

= Tk+2 -12-2

= Tkt2 - (k+2) V

Thus, by using needle induction we have shown that $\sum_{i=0}^{n} T_i = T_{n+1} - (n+1)$. Sor every $n \ge 0$. 6

3