Tabelle LR

Costruzione delle tabelle di parsing LR canoniche

Maria Rita Di Berardini

Dipartimento di Matematica e Informatica Universitá di Camerino mariarita.diberardini@unicam.it

Limite della metodologia SLR

- In uno stato s_i la tabella indica una riduzione con una produzione
 A → α se l'insieme di item I_i contiene l'item A → α• e il simbolo
 corrente è un a ∈ FOLLOW(A)
- Tuttavia, in alcune situazioni, quando lo stato s_i appare in testa allo stack, il viable prefix $\beta\alpha$ sullo stack non può essere seguito da a in nessuna forma sentenziale destra
- Quindi la riduzione $A \to \alpha$ sarebbe sbagliata in corrispondenza del simbolo in input a
- ullet Esempio: consideramo di nuovo la grammatica G'

$$S' \rightarrow S$$

$$S \rightarrow L = R$$

$$S \rightarrow R$$

$$L \rightarrow *R$$

$$L \rightarrow id$$

$$R \rightarrow L$$

Limite della metodologia SLR

• La collezione canonica di item LR(0) di G' contiene in insieme di items

$$I_2 = \{S \to L \bullet = R, R \to L \bullet\}$$

- La presenza di $R \to L$ in I_2 implica che nello stato s_2 il parser effettua una riduzione in base alla produzione $R \to L$ per ogni simbolo in $FOLLOW(R) = \{\$, =\}$
- Il problema è che, effettuando la suddetta riduzione, arriviamo in uno stato in cui il prossimo handle dovrebbe cominciare con R =
- ullet Ma nessuna produzione della grammatica che inizia per R=
- Quindi nello stato s₂ non dovrebbe essere indicata una riduzione in corrispondenza del simbolo =

Soluzione: aggiungiamo informazione agli stati

- Ogni stato deve contenere, oltre agli item validi, anche i simboli di input che possono seguire un handle α riducibile al non terminale A
- Gli item vengono ridefiniti: sono delle coppie $[A \to \alpha \bullet \beta, a]$ dove:
 - $A \to \alpha \beta$ è una produzione (quindi, $A \to \alpha \bullet \beta$ è un "vecchio" item LR(0)) ed
 - a è un terminale oppure il \$
- Questi item che contengono anche un simbolo terminale vengono chiamati item LR(1) (qui 1 indica che si considera un simbolo di lookahead, cioè la seconda componente è un solo simbolo)
- Il lookahead non ha effetti su items della forma $[A \to \alpha \bullet \beta, a]$ dove $\beta \neq \varepsilon$
- Se l'item è della forma $[A \to \alpha \bullet, a]$ allora si esegue una riduzione solo se il corrente simbolo in input è a: non riduciamo per tutti i simboli in FOLLOW(A), ma per un sottoinsieme (proprio) di questi

< ロ ト ← 配 ト ← 差 ト → 差 → りへ()

Items LR(1) validi

• Un item LR(1) $[A \to \alpha \bullet \beta, a]$ è valido per il viable prefix γ se e solo se esiste una derivazione rightmost

$$S \stackrel{*}{\Rightarrow}_{rm} \delta Aw \Rightarrow_{rm} \delta \alpha \beta w$$

tale che:

- $\mathbf{0}$ $\gamma = \delta \alpha$ e
- ② w = aw' ($w \neq \varepsilon$ ed a è il primo simbolo di w) oppure $w = \varepsilon$ ed a = \$

La condizione

- 1 ci dice come completare il viable prefix per formare il prossimo handle
- ② ci dice che il simbolo a deve seguire A nel momento in cui rimpiazziamo l'handle

Items LR(1) validi: un esempio

Consideramo la grammatica

$$S \rightarrow BB$$

 $B \rightarrow aB \mid b$

• E una possibile derivazione rightmost:

$$S \stackrel{*}{\Rightarrow}_{rm}$$
 aa B ab \Rightarrow_{rm} aa aB ab

• L'item $[B \to a \bullet B, a]$ è un item valido per il viable prefix $\gamma = aaa$ ponendo $\delta = aa$, A = B, $\alpha = a$ e $\beta = B$ nella definizione

Items LR(1) validi

• Un item LR(1) $[A \to \alpha \bullet \beta, a]$ è valido per il viable prefix γ se e solo se esiste una derivazione rightmost

$$S \stackrel{*}{\Rightarrow}_{rm} \delta Aw \stackrel{*}{\Rightarrow}_{rm} \delta \alpha \beta w$$

tale che: (1)
$$\gamma = \delta \alpha$$
 e (2) $w = aw'$ oppure $w = \varepsilon$ ed $a = \$$

Riscriviamo la condizione di validità per item della forma $[A \to \bullet \beta, a]$, ossia in casi in cui $\alpha = \varepsilon$

• Un item LR(1) $[A \to \bullet \beta, a]$ è valido per il viable prefix γ se e solo se esiste una derivazione rightmost

$$S \stackrel{*}{\Rightarrow}_{rm} \delta Aw \stackrel{*}{\Rightarrow}_{rm} \delta \beta w$$

tale che: (1) $\gamma = \delta$ e (2) w = aw' oppure $w = \varepsilon$ ed a = \$

◆ロト ◆部 ▶ ◆恵 ▶ ◆恵 ▶ ・恵 ・ 釣り○

Costruzione della collezione canonica

- La costruzione della collezione canonica di item LR(1) è la stessa vista per la collezione canonica LR(0)
- Chiaramente cambiano le definizioni delle funzioni closure e goto

```
function goto(I,X);
dove I è un insieme di item LR(1) ed X è un simbolo della gram.
begin
Sia J l'insieme di item LR(1) della forma [A \to \alpha X \bullet \beta, a]
tali che [A \to \alpha \bullet X\beta, a] \in I
return closure(J);
end:
```

 In realtà, l'unica modifica sostanziale è quella della funzione closure

Cosa sappiamo sulla *closure* di item LR(0)

- La collezione canonica di item LR(0) è un insieme $C = \{I_0, I_1, \dots, I_n\}$
- $I_0 = closure(\{S' \rightarrow \bullet S\})$
- Un generico $I_k = goto(I_j, X) = closure(J)$, dove

$$J = \{ A \to \alpha X \bullet \beta \mid A \to \alpha \bullet X \beta \in I_j \}$$

- Ciascuno degli insiemi I_j contiene tutti gli item validi per un qualche viable prefix γ (la stringa associata al cammino da I_0 a I_j nella DFA definito dalla funzione goto)
- Se $A \to \alpha \bullet B\beta \in closure(I)$ e $B \to \beta$ è una produzione per B allora $B \to \bullet \beta \in closure(I)$
- Il che significa che se $A \to \alpha \bullet B\beta \in closure(I)$ è valido per un qualche viable prefix γ e $B \to \beta$ è una produzione per B allora anche $B \to \bullet \beta$ è valido per γ

4□ > 4□ > 4 = > 4 = > = 900

closure di item LR(1)

• Sia a un terminale (quindi $a \neq \$$) e assumiamo $[A \to \alpha \bullet B\beta, a]$ valido per $\gamma = \delta \alpha$; dalla definizione di validità, esiste una derivazione

$$S \stackrel{*}{\Rightarrow}_{rm} \delta Aw \Rightarrow_{rm} \delta \alpha B \beta w$$

con w = aw' (a è il primo simbolo di w). Quindi: $S \stackrel{*}{\Rightarrow}_{rm} \delta \alpha B \beta aw'$

• Assumiamo che $\beta aw' \stackrel{*}{\Rightarrow}_{rm} by$ con by stringa di <u>terminali</u>; allora

$$S \stackrel{*}{\Rightarrow}_{rm} \delta \alpha B \beta aw' \stackrel{*}{\Rightarrow}_{rm} \delta \alpha B by$$

- Quindi, per ogni produzione $B \to \eta$ di B, $S \stackrel{*}{\Rightarrow}_{\it rm} \delta \alpha B b y \Rightarrow_{\it rm} \delta \alpha \eta b y$
- Per definizione, l'item $[B \to \bullet \eta, b]$ è valido per $\gamma = \delta \alpha$

closure di item LR(1)

- Chi è b; per il momento sappiamo che $\beta aw' \stackrel{*}{\Rightarrow}_{rm} by$
- Potrebbe essere il primo terminale della stringa di terminali derivati da β
- Oppure, nel caso in cui $\beta \stackrel{*}{\Rightarrow}_{rm} \varepsilon$, il terminale a
- In generale, $\beta \in \mathsf{FIRST}(\beta \mathsf{aw}') = \mathsf{FIRST}(\beta \mathsf{a})$

Calcolo della *closure(I)*

$$S' \to S$$
 e calcoliamo $I_0 = closure(\{[S' \to \bullet S, \$]\})$ $S \to CC$ $C \to cC \mid d$

- Inanzittuo, aggiungiamo l'item $[S' \to \bullet S, \$]$. Questo item matcha con il template $[A \to \alpha \bullet B\beta, a]$ ponendo $A = S', \alpha = \varepsilon, B = S, \beta = \varepsilon$ e a = \$. Poichè FIRST $(\beta a) = FIRST(\$) = \{\$\}$, aggiungiamo solo l'item $[S \to \bullet CC, \$]$
- L'item $[S \to \bullet CC, \$]$ matcha con il template $[A \to \alpha \bullet B\beta, a]$ ponendo A = S, $\alpha = \varepsilon$, B = C, $\beta = C$ e a = \$. Poichè FIRST (βa) = FIRST(C\$) = FIRST(C) = $\{c, d\}$, aggiungiamo i seguenti quattro items:

$$[C \to \bullet cC, c], [C \to \bullet cC, d]$$
$$[C \to \bullet d, c], [C \to \bullet d, d]$$

Ricapitolando:

```
 \begin{cases} S' \rightarrow \bullet S, \$], \\ [S \rightarrow \bullet CC, \$], \\ [C \rightarrow \bullet cC, c], \\ [C \rightarrow \bullet cC, d], \\ [C \rightarrow \bullet d, c], \\ [C \rightarrow \bullet d, d] \end{cases}
```

Abbreviazioni

$$[S' \rightarrow \bullet S],$$
\$
 $[S \rightarrow \bullet CC, \$],$
 $[S \rightarrow \bullet cC, c/d],$
 $[S \rightarrow \bullet d, c/d]$

La funzione goto

```
function goto(I,X); dove I è un insieme di item LR(1) ed X è un simbolo della gram. begin

Sia J l'insieme di item LR(1) della forma [A \to \alpha X \bullet \beta, a] tali che [A \to \alpha \bullet X\beta, a] \in I return closure(J); end:
```

Calcolo degli Items LR(1)

- Utilizziamo la stessa identica procedura che abbiamo visto per la collezione canonica LR(0), ma con le funzioni closure e goto nuove
- Anche in questo caso il risultato è un automa deterministico i cui stati sono insiemi di item LR(1)
- Continuiamo con l'esempio

$$goto(I_0, S) = closure(\{[S' \rightarrow S \bullet, \$]\}) = \{[S' \rightarrow S \bullet, \$]\} = I_1$$

$$goto(I_0, C) = closure(\{[S \rightarrow C \bullet C, \$]\}) = \{$$

$$[S \rightarrow C \bullet C, \$]$$

$$\}$$

Aggiungiamo un kernel item per ognuna della produzioni di C, e quindi qualcosa della forma $[C \to \bullet cC, ??]$ e $[C \to \bullet d, ??]$ in cui dobbiamo identicare i simboli di lookahead.

Dall'item
$$[S \to C \bullet C, \$]$$
, i simboli di lookahead appartengo all'insieme FIRST(βa) = FIRST($\$$) = $\{\$\}$. Aggiungiamo gli items $[C \to \bullet cC, \$]$ e $[C \to \bullet d, \$]$
$$goto(I_0, C) = closure(\{[S \to C \bullet C, \$]\}) = \{[S \to C \bullet C, \$], [C \to \bullet cC, \$]\}$$

 $= I_{2}$

```
goto(\mathit{I}_{0},\mathit{c}) = \mathit{closure}(\{[\mathit{C} \rightarrow \mathit{c} \bullet \mathit{C},\mathit{c}], \mathit{C} \rightarrow \mathit{c} \bullet \mathit{C},\mathit{d}]\}) = \{ \\ [\mathit{C} \rightarrow \mathit{c} \bullet \mathit{C},\mathit{c}], \mathit{C} \rightarrow \mathit{c} \bullet \mathit{C},\mathit{d}] \}
```

Aggiungiamo un kernel item per ognuna della produzioni di C, e quindi: $[C \to \bullet cC, ??], [C \to \bullet d, ??]$. Dobbiamo identicare i simboli di lookahead.

Dal primo item, $\begin{bmatrix} C \to c & \bullet & C \\ \hline C & \bullet & C \end{bmatrix}$, i simboli di lookahead sono in FIRST $(\beta a) = \text{FIRST}(c) = \{c\}$. Aggiungiamo gli items $\begin{bmatrix} C \to \bullet cC, c \end{bmatrix}$ e $\begin{bmatrix} C \to \bullet d, c \end{bmatrix}$

Per il secondo item, $\begin{bmatrix} C \rightarrow c & \bullet & C \\ \hline C & \bullet & C \end{bmatrix}$ i simboli di lookahead sono in FIRST $(\beta a) = \text{FIRST}(d) = \{d\}$. Aggiungiamo gli items $\begin{bmatrix} C \rightarrow \bullet cC, d \end{bmatrix}$ e $\begin{bmatrix} C \rightarrow \bullet d, d \end{bmatrix}$

Ricapitolando:

```
goto(I_0, c) = closure(\{[C \rightarrow c \bullet C, c], C \rightarrow c \bullet C, d]\}) = \{
[C \rightarrow c \bullet C, c], C \rightarrow c \bullet C, d],
[C \rightarrow \bullet cC, c], [C \rightarrow \bullet d, c]
[C \rightarrow \bullet cC, d], [C \rightarrow \bullet d, d]
\}
```

o in forma abbreviata

```
goto(I_0, c) = closure(\{[C \rightarrow c \bullet C, c/d]\}) = \{ \\ [C \rightarrow c \bullet C, c/d], \\ [C \rightarrow \bullet cC, c/d], [C \rightarrow \bullet d, c/d] \\ \} = I_3
```

4日 > 4回 > 4 回

In maniera del tutto simile:

$$goto(I_0, d) = closure(\{[C \rightarrow d \bullet, c/d]\}) = \{ [C \rightarrow d \bullet, c/d] \} = I_4$$

Questo conclude il calcolo della goto "uscenti" da I_0 ; $I_1=\{[S'\to Sullet,\$]\}$ Possiamo passare a I_2

$$goto(I_2, C) = closure(\{[S \rightarrow CC \bullet, \$]\}) = \{[S \rightarrow CC \bullet, \$]\} = I_5$$

```
goto(I_2, c) = closure(\{[C \rightarrow c \bullet C, \$]\}) = \{
      egin{aligned} [C &
ightarrow c ullet C, \$], \ [C &
ightarrow c C, \$], \ [C &
ightarrow ullet d, \$] \end{aligned}
  goto(I_2, d) = closure(\{[C \rightarrow d \bullet, \$]\}) = \{
  [C \to d \bullet, \$]
\} = I_7
```

$$goto(I_3, C) = closure(\{[C \rightarrow cC \bullet, c], C \rightarrow cC \bullet, d]\}) = \{$$

$$[C \rightarrow cC \bullet, c], C \rightarrow cC \bullet, d]$$

$$\} = I_8$$

$$goto(I_3, c) = closure(\{[C \rightarrow c \bullet C, c/d]\}) = I_3$$

$$goto(I_3, d) = closure(\{[C \rightarrow d \bullet, c/d]\}) = I_4$$

$$goto(I_6, C) = closure(\{[C \rightarrow cC \bullet, \$]\}) = \{[C \rightarrow cC \bullet, \$]\} = I_9$$

$$goto(I_6, c) = closure(\{[C \rightarrow c \bullet C, \$]\}) = I_6$$

$$goto(I_6, d) = closure(\{[C \rightarrow d \bullet, \$]\}) = I_7$$

Alcune considerazioni

- Consideramo gli insiemi di item LR(1) $I_4 = \{[C \to d \bullet, c/d]\}$ ed $I_7 = \{[C \to d \bullet, \$]\}$
- Questi insiemi sono molto particolari perchè differiscono solo per la seconda componente
- Questo fenomeno è tipico per gli insiemi di item LR(1)
- Un insieme della collezione canonica LR(0), ad esempio $\{C \to d \bullet\}$, può corrispondere in generale a più insiemi di item LR(1), in questo caso I_4 ed I_7
- È come se gli stati del parser SLR venissero sdoppiati

Costruzione di tabelle LR canoniche

- Il procedimento è analogo a quello visto per la costruzione di tabelle SLR, anzi, è più semplice
- Per le riduzioni dobbiamo guardare il simbolo di lookahead dell'item e non tutti i simboli in FOLLOW(A) dove A è la parte sinistra della produzione con cui ridurre

Algoritmo

- **①** Costruisci la collezione canonica $C = \{I_0, I_1, \dots, I_n\}$ per G'
- $oldsymbol{\circ}$ Lo stato s_j del parser corrisponde all'insieme di items I_j
- **3** La parte *goto* della tabella, per ogni stato s_j e per ogni non terminale A, è costruita dalla funzione *goto* come segue:

se
$$goto(I_j, A) = I_k$$
 (funzione) allora $goto[s_j, A] = s_k$ (tabella)

- La parte action della tabella è costruita come segue:
 - se $[A \to \alpha \bullet a\beta, b] \in I_j$ e $goto(I_j, a) = I_k$ allora $action[s_j, a] = shift s_k$ (qui $a \ni un terminale$)
 - se $[A \to \alpha \bullet, a] \in I_j$, allora poni $action[s_j, a] = reduce <math>A \to \alpha$
 - se $[S' \to S \bullet, \$] \in I_j$, allora poni $action[s_j, \$] = accept$
- Ogni entrata indefinita corrisponde ad un errore
- **1** Lo stato iniziale corrisponde all'insieme che contiene $[S' \to \bullet S, \$]$

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 9

Costruzione di tabelle LR canoniche

- Come nel caso SLR, la parte goto della tabella LR è definita dalla funzione goto
- Le entrate "shift" si costruiscono esattamente allo stesso modo
- Come detto, in caso di riduzione, guardiamo il simbolo di lookahead dell'item
- Lo stato iniziale corrisponde all'insieme che contiene $[S' \to \bullet S, \$]$
- Tutte le entrate vuote corrispondono a "error"
- La tabella così costruita si chiama tabella di parsing LR(1) canonica
- Se nella tabella non ci sono entrate multidefinite allora la grammatica è una grammatica LR(1)
- Un parser LR che utilizza questa tabella si chiama parser LR(1) canonico

Costruzione della tabella: un esempio

Numeriamo le produzioni della grammatica e costruiamo la tabella

$$(0) \ S' \to S \qquad (1) \ S \to CC \qquad (2) \ C \to cC \qquad (3) \ C \to d$$

$$goto(I_0, S) = \{[S' \to S \bullet, \$]\} = I_1$$

$$goto(I_0, C) = \{[S \to C \bullet C, \$], [C \to \bullet cC, \$], [C \to \bullet d, \$]\} = I_2$$

$$goto(I_0, c) = \{[C \to c \bullet C, c/d], [C \to \bullet cC, c/d], [C \to \bullet d, c/d]\} = I_3$$

$$goto(I_0, d) = \{[C \to d \bullet, c/d]\} = I_4$$

$$goto(I_2, C) = \{[S \to CC \bullet, \$]\} = I_5$$

$$goto(I_2, c) = \{[C \to c \bullet C, \$], [C \to \bullet cC, \$], [C \to \bullet \$, \$]\} = I_6$$

$$goto(I_2, d) = \{[C \to d \bullet, \$]\} = I_7$$

$$goto(I_3, C) = \{[S \to cC \bullet, c/d]\} = I_8$$

$$goto(I_3, c) = I_3, \quad goto(I_3, d) = I_4$$

$$goto(I_6, C) = \{[C \to cC \bullet, \$]\} = I_9$$

$$goto(I_6, C) = I_6, \quad goto(I_6, d) = I_7$$

La tabella

	С	d	\$	S	C
<i>s</i> ₀	<i>S</i> 3	<i>S</i> 4		1	2
s_1			ACC		
s ₂	S6	S7			5
s 3	S3	S4			8
<i>S</i> ₄	R3	R3			
<i>S</i> ₅			R1		
<i>S</i> ₆	S6	S7			9
<i>S</i> ₇			R3		
<i>S</i> ₈	R2	R2			
S 9			R2		

Parsing della stringa ccdcd

	C	d	\$	S	U
s 0	<i>S</i> 3	<i>S</i> 4		1	2
s_1			ACC		
s ₂	S6	S7			5
s 3	S3	S4			8
<i>S</i> ₄	R3	R3			
<i>S</i> ₅			R1		
<i>s</i> ₆	S6	S7			9
<i>S</i> ₇			R3		
<i>S</i> ₈	R2	R2			
S 9			R2		

Stack	Input	Azione
<i>S</i> ₀	ccdcd\$	shift S3
S ₀ C S ₃	cdcd\$	shift S3
S ₀ C S ₃ C S ₃	dcd\$	shift S4
s ₀ c s ₃ c s ₃ ds ₄	cd\$	red. $C \rightarrow d$
s ₀ c s ₃ c s ₃ Cs ₈	cd\$	red. $C \rightarrow cC$
s ₀ c s ₃ Cs ₈	cd\$	red. $C \rightarrow cC$
$s_0 C s_2$	cd\$	shift S6
s ₀ Cs ₂ c s ₆	d\$	shift S7
s ₀ Cs ₂ c s ₆ d s ₇	\$	red. $C \rightarrow d$
s ₀ Cs ₂ c s ₆ C s ₉	\$	red. $C \rightarrow cC$
$s_0 Cs_2 Cs_5$	\$	red. $S \rightarrow CC$
$s_0 S s_1$	\$	acc