Linear Algebra Home assignment 5: Matrix factorisation

- **Problem 1** (Rank of a matrix; 2 pt). (a) Assume that A is an $m \times n$ matrix of rank r. Without using the singular value decomposition, prove that A can be written as a sum of r summands $\mathbf{u}_j \mathbf{v}_i^{\mathsf{T}}$ of rank 1. Is such a representation unique?
- (b) For the matrices below, find their ranks r and represent them as the sum of r rank-one summands (do not use SVD yet!).

$$A = \begin{pmatrix} 1 & -2 & 3 & -4 \\ -2 & 4 & -6 & 8 \\ 3 & -6 & 9 & -12 \\ -4 & 8 & -12 & 16 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \\ 4 & 5 & 6 & 7 \end{pmatrix}.$$

Problem 2 (Singular values; 3 pt). (a) Prove that matrices A and A^{\top} have the same non-zero singular values.

(b) Find singular values of the following matrices:

$$(i) \quad \begin{pmatrix} 0 & 1 & 2 \end{pmatrix}; \qquad (ii) \quad \begin{pmatrix} 0 & 1 & 2 \end{pmatrix}^\top; \qquad (iii) \quad \begin{pmatrix} 1 & 2 & 2 \\ 1 & 3 & 3 \end{pmatrix}; \qquad (iv) \quad \begin{pmatrix} 2 & 0 \\ 1 & 2 \end{pmatrix}.$$

Hint: Use (a) in (i) and (iii)

Problem 3 (Singular value decomposition; 4 pt). (a) If $A = U\Sigma V^{\top}$ is the SVD of A, what is the SVD of A^{\top} ?

- (b) Assume that $A = \mathbf{u}\mathbf{v}^{\top}$ is an $m \times n$ matrix of rank 1. Find the SVD of A.
- (c) Find SVD of the following matrices:

(i)
$$(0 \ 1 \ 2);$$
 (ii) $(0 \ 1 \ 2)^{\top};$ (iii) $\begin{pmatrix} 2 \ 1 \ -2 \\ -2 \ -1 \ 2 \end{pmatrix}.$

Problem 4 (Singular value decomposition, 4 pt). Find the singular value decomposition of the matrix

$$A = \begin{pmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{pmatrix}$$

To this end, complete the following steps:

- (a) How many singular values σ_j does A have? How many of them are non-zero? Find the nonzero singular values $\sigma_1, \ldots, \sigma_r$.
- (b) find the right singular vectors $A\mathbf{v}_j = \sigma_j \mathbf{u}_j$, $j = 1, \dots, r$;
- (c) find the left singular vectors $A^{\top}\mathbf{u}_{j} = \sigma_{j}\mathbf{v}_{j}, j = 1, \dots, r;$
- (d) form the unitary matrices U and V and write the singular value decomposition of A.

(Hint: you may find it easier to work with A^{\top})

Problem 5 (Low-rank approximation; 2 pt). (a) For the matrix A in Problem 4, find a unit vector $\mathbf{x} \in \mathbb{R}^3$ for which $A\mathbf{x}$ has the maximal length α . What is α ? Justify your answer.

(b) Find the best rank one approximation for the matrix A of Problem 4 in the Frobenius norm. Justify your answer

Problem 6 (Low-rank approximation; 4 pt). Prove that the best rank k approximation A_k of an $m \times n$ matrix A in the Frobenius norm is given by the first k terms in the SVD of A, i.e.,

$$A_k = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^\top + \dots + \sigma_k \mathbf{u}_k \mathbf{v}_k^\top.$$

Problem 7 (SVD and image compression; 5 pt). Take a jpg-picture A of yourselves of reasonable size (say 1000×1000 pixels), perform the SVD (use Python or R or any other program of your choice) and find the best rank-k approximation of A with k = 1, 2, 5, 10, 20, 50. For what k can one recognize the picture? Comment on how much the quality and the size increase along with k.

(Hint: one can use the Frobenius distance to the original picture as a quality measure)

Problem 8 (Polar decomposition; 3 pt). Find the positive definite square root $S = V\Sigma V^{\top}$ of $A^{\top}A$ and its polar decomposition A = QS:

$$A = \frac{1}{\sqrt{10}} \begin{pmatrix} 10 & 6\\ 0 & 8 \end{pmatrix}$$

Problem 9 (Pseudo-inverse; 3 pt). (a) Assume that A has linearly independent columns. Show that the matrix $A^+ := (A^{\top}A)^{-1}A^{\top}$ is well defined and gives a left inverse of A. What is AA^+ ?

- (b) Show that the above matrix A^+ is the Moore–Penrose pseudo-inverse of A (i.e., that $AA^+A = A$, $A^+AA^+ = A^+$, and the matrices AA^+ and A^+A are symmetric)
- (c) Assume that A = QR is a QR-factorization of A. Express the above A^+ in terms of Q and R.

Problem 10 (Pseudo-inverse; 3 pt). Find the SVD and the Moore–Penrose pseudo-inverse $V\Sigma^+U^\top$ of the matrices

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \qquad C = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}.$$

Problem 11 (Shortest solution; 2 pt). When columns of a matrix A are linearly dependent and a vector \mathbf{b} is not in the column space of A, then the least square solution of $A\mathbf{x} = \mathbf{b}$ is not unique. Find the minimum-length least square solution $\mathbf{x}^+ = A^+\mathbf{b}$ of the equation $A\mathbf{x} = \mathbf{b}$ with

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}, \qquad \mathbf{b} = \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix}.$$

Problem 12 (Cholesky decomposition; 4 pt). Let

$$A = \begin{pmatrix} 4 & 2 & 2 \\ 2 & 10 & 10 \\ 2 & 10 & 14 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 1 & -4 & 2 \\ -4 & 1 & -2 \\ 2 & -2 & -2 \end{pmatrix}$$

- (a) Without computing the eigenvalues of A, show that A is positive definite.
- (b) Factor A into a product LDL^T where L is lower triangular with 1 on the diagonal and D is diagonal.

- (c) Compute the Cholesky factorization of A.
- (d) Without computing the eigenvalues of B, show that B is indefinite and thus does not possess a Cholesky decomposition. Then determine its generalized Cholesky decomposition $B = LDL^{\top}$ where L is lower triangular with 1 on the diagonal and D is diagonal.

Problem 13 (Principal component analysis; 3 pt). (a) Convert the matrix of observation A to the row zero-mean form and then construct the sample covariance matrix:

$$A = \begin{pmatrix} 19 & 22 & 6 & 3 & 2 & 20 \\ 12 & 6 & 9 & 15 & 13 & 5 \end{pmatrix}$$

- (b) Find the principal components of the data in matrix A.
- (c) Let x_1 , x_2 denote the variables for the two-dimensional data in (a). Find the new variable $y_1 = a_1x_1 + a_2x_2$ such that y_1 has maximum possible variance over the given data. How much of the variance in the data is explained by y_1 ?
- **Problem 14** (PCA; 5 pt). (a) Simulate N=100 data (x_k,y_k) from the two-dimensional Gaussian (normal) distribution $\mathcal{N}(\mu_1,\mu_2;\sigma_1^2,\sigma_2^2,\rho)$ with $\mu_1=1,\ \mu_2=2,\ \sigma_1=4,\ \sigma_2=9,\ \rho=\frac{1}{3}.$ Hint: Can you do this easily if $\rho=0$? If $(Z_1,Z_2)^{\top}\sim\mathcal{N}(0,0;1,1,0)$, show that $(X,Y)^{\top}$ with $X=\mu_1+\sigma_1Z_1$ and $Y=\mu_2+\sigma_2\rho Z_1+\sqrt{1-\rho^2}\sigma_2Z_2$ has the required distribution
 - (b) Form the empirical covariance matrix C for the data simulated and compare it with the theoretical covariance matrix. Find the eigenvalues and eigenvectors of C.
 - (c) Perform the PCA on the data generated. Calculate the variance along the first component; what fraction of the total variance does it include?
 - (d) Predict how the above fraction depends on ρ and confirm your reasoning numerically.