Estimating network-mediated causal effects via spectral embeddings

Alex Hayes ¹ Mark M. Fredrickson ² Keith Levin ¹

¹University of Wisconsin-Madison ²University of Michigan

Motivating example: smoking in adolescent social networks

Figure 1. Directed friendships in a secondary school in Glasgow, reported in the Teenage Friends and Lifestyle Study (wave 1). Each node represents one student. An arrow from node i to node j indicates student i claimed student j as a friend. Node size is proportional to in-degree. On the left, the network is colored by sex. On the right, the network is colored by self-reported smoking frequency.

Notation & inferential targets

We assume we have a (symmetric) network with nodes 1, ..., n.

Network $A \mathbb{R}^{n \times n}$ Treatment $T_i \{0,1\}$ Outcome $Y_i \mathbb{R}$ Confounders $C_i \mathbb{R}^p$ Friend group $X_i \mathbb{R}^d$

The average treatment effect Ψ_{ate} describes how much the outcome Y_i would change on average if the treatment T_i were changed from $T_i = t$ to $T_i = t^*$:

$$\Psi_{\text{ate}}(t, t^*) = \mathbb{E}[Y_i(t) - Y_i(t^*)].$$

The natural direct effect describes how much the outcome Y_i would change if the exposure T_i were set at level $T_i = t^*$ versus $T_i = t$ but for each individual the mediator X_i , were kept at the level it would have taken for that individual, had T_i been set to t^* :

$$\Psi_{\text{nde}}(t, t^*) = \mathbb{E}[Y_i(t, X_i(t^*)) - Y_i(t^*, X_i(t^*))],$$

The natural indirect effect describes how much the outcome Y_i would change on average if the exposure were fixed at level $T_i = t^*$ but the mediator X_i , were

Structural causal model

Figure 2. A directed acyclic graph (DAG) representing the causal pathways in a network with homophilous mediation, for node a network with two nodes called i and j. We are interested in the causal effect of T_i on Y_i as mediated by the latent position X_i .

Semi-parametric network model

Let $A \in \mathbb{R}^{n \times n}$ be a random symmetric matrix, such as the adjacency matrix of an undirected graph. Let $P = \mathbb{E}[A \mid X] = XX^T$ be the expectation of A conditional on $X \in \mathbb{R}^{n \times d}$, which has independent and identically distributed rows X_1, \ldots, X_n . That is, P has $\operatorname{rank}(P) = d$ and is positive semi-definite with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d > 0 = \lambda_{d+1} = \cdots = \lambda_n$. Conditional on X, the upper-triangular elements of A - P are independent (ν_n, b_n) -sub-gamma random variables.

The outcome regression functional is linear in T_i, C_i , and X_i and the mediator regression functional is linear in T_i, C_i , and $T_i \cdot C_i$.

$$\underbrace{\mathbb{E}[Y_i \mid T_i, C_i., X_i.]}_{\mathbb{R}} = \underbrace{\beta_0}_{\mathbb{R}} + \underbrace{T_i}_{\{0,1\}} \underbrace{\beta_t}_{\mathbb{R}} + \underbrace{C_i.}_{\mathbb{R}^{1 \times p}} \underbrace{\beta_c}_{\mathbb{R}^p} + \underbrace{X_i.}_{\mathbb{R}^{1 \times d}} \underbrace{\beta_x}_{\mathbb{R}^d}, \quad \text{(outcome model)}$$

$$\underbrace{\mathbb{E}[X_i. \mid T_i, C_i.]}_{\mathbb{R}^{1 \times d}} = \underbrace{\theta_0}_{\mathbb{R}^{1 \times d}} + \underbrace{T_i}_{\{0,1\}} \underbrace{\theta_t}_{\mathbb{R}^{1 \times p}} + \underbrace{C_i.}_{\mathbb{R}^{0 \times p}} \underbrace{\theta_c}_{\mathbb{R}^{1 \times p}} + \underbrace{T_i}_{\mathbb{R}^{p \times d}} \underbrace{C_i.}_{\mathbb{R}^{1 \times p}} \underbrace{\theta_{tc}}_{\mathbb{R}^{p \times d}}. \quad \text{(mediator model)}$$

Semi-parametric causal identification

Let u_c denote the mean of C_i . Then.

Estimation challenge: friend groups X unknown!

Given a network with adjacency matrix A, the d-dimensional adjacency spectral embedding (ASE) of A is defined as

$$\widehat{X} = \widehat{U}\widehat{S}^{1/2} \in \mathbb{R}^{n \times d},$$

where $\widehat{U}\widehat{S}\widehat{U}^T$ is the rank-d truncated singular value decomposition of A. That is, $\widehat{S} \in \mathbb{R}^{d \times d}$ is diagonal, with entries given by the d leading singular values of A, and $\widehat{U} \in \mathbb{R}^{n \times d}$ has the corresponding d orthonormal singular vectors as its columns.

Let
$$W = \begin{bmatrix} 1 \ T \ C \end{bmatrix} \in \mathbb{R}^{n \times (p+2)}$$
 and $L = \begin{bmatrix} W \ T \cdot C \end{bmatrix} \in \mathbb{R}^{n \times (2p+2)}$.

Define $\widehat{D} = \begin{bmatrix} W \ \widehat{X} \end{bmatrix} \in \mathbb{R}^{n \times (2+p+d)}$. We estimate β_W and β_X via ordinary least squares as follows

$$\begin{bmatrix} \widehat{\beta}_{\mathsf{W}} \\ \widehat{\beta}_{\mathsf{X}} \end{bmatrix} = (\widehat{D}^T \widehat{D})^{-1} \widehat{D}^T \mathbf{Y}$$

Similarly, we estimate Θ via ordinary least squares as

$$\widehat{\Theta} = (L^T L)^{-1} L^T \widehat{X}.$$

Theory

$$\sqrt{n}\,\widehat{\Sigma}_{\mathrm{vec}(\Theta)}^{-1/2}\left(\mathrm{vec}\left(\widehat{\Theta}\,Q_n^T\right) - \mathrm{vec}(\Theta)\right) \to \mathcal{N}\left(0, I_{pd}\right), \text{ and}$$

$$\sqrt{n}\,\widehat{\Sigma}_{\beta}^{-1/2}\left(\widehat{\beta}_{\mathsf{W}} - \beta_{\mathsf{W}}\right) \to \mathcal{N}(0, I_d).$$

Results applied to Glasgow data

