Neural Data Analysis

URP 2024, CiCi Zheng, 07/10/24

Agenda Today

Part 1 (45 min):

• Explore multivariate data in neural behavioral experiments

Part 2 (45 min):

Introduce classical models for neural encoding

Some common problems in neuroscience

Stimulus, x

Neural response, y

Depending on the brain region and the input:

A common formulation

Multi-dimensional Input x

A common formulation

"How temporally precise is our early visual system at tracking/encoding the luminous signals?"

Input: "full-field flicker"

"How temporally precise is our early visual system at tracking/encoding the luminous signals?"

Focus on one retinal ganglion cells' center receptive field, input becomes roughly 1D

Input: "full-field flicker"

"How temporally precise is our early visual system at tracking/encoding the luminous signals?"

Focus on one retinal ganglion cells' center receptive field, input becomes roughly 1D

• Let's consider random discrete input for the demo:

"How temporally precise is our early visual system at tracking/encoding the luminous signals?"

Focus on one retinal ganglion cells' center receptive field, input becomes roughly 1D

• Let's consider random discrete input for the demo:

"How temporally precise is our early visual system at tracking/encoding the luminous signals?"

Focus on one retinal ganglion cells' center receptive field, input becomes roughly 1D

• Let's consider random discrete input for the demo:

"How temporally precise is our early visual system at tracking/encoding the luminous signals?"

Focus on one retinal ganglion cells' center receptive field, input becomes roughly 1D

Let's consider random discrete input for the demo:

Linear filter Vector of past stimuli in window d at time t

"How temporally precise is our early visual system at tracking/encoding the luminous signals?"

Focus on one retinal ganglion cells' center receptive field, input becomes roughly 1D

Let's consider random discrete input for the demo:

A slightly more sophisticated model would take into the account of output being 1) discrete; 2) non negative — the Poisson GLM model

$$y_t = \underline{\theta}^T \underline{x}_t = \sum_{i=0}^{d-1} \theta_i x_{t-i}$$

Poisson GLM

Let's look at some real neural data!

