Réponses

Série 2

Syst. numération

Exercice 1

- $(3031)_4$ 1.
- **2.** $(10100100)_2$
- 3. $(111111110001)_2$

- 4. $(100041)_5$
- 5. $(101)_2$
- **6.** $(45433)_6$

- 7. $(30113)_7$
- 8. $(7; 10; 0; 3; 9)_{11}$

Exercice 2

On effectue la division en base 7. On effectue la division en base 2.

5621	32
-32	154
242	
-223	
161	
-161	
0	

1110111	1001
-1001	1101
1011	
-1001	
101	
1011	
-1001	
10	

Exercice 3

Pour
$$b = 3$$
.

$$\begin{array}{c|cc}
10101 & 111 \\
\hline
-222 & 21
\end{array}$$

$$\begin{array}{c|c}
-222 & 21 \\
\hline
111 & \\
-111 & \\
\hline
0 & \\
\end{array}$$

Pour
$$b = 5$$
.

$$\begin{array}{c|cc}
10101 & 111 \\
-444 & 41 \\
\hline
111 & \\
-111 & \\
\hline
0 & \\
\end{array}$$

Exercice 4

L'équation suivante doit être vérifiée:

$$(24)_b \cdot (42)_b = (1401)_b$$

En d'autres termes:

$$(4)_b \cdot (2)_b = (1)_b$$
. Donc $b = 7$.

Exercice 5

En passant par la base 10, on obtient les équations suivantes:

1. $b^2+2b+2=2^5+2^2+1$. Après simplification, on obtient: $b^2+2b-35=(b-5)(b+7)=0$. Donc b = 5 ou b = -7. Cette dernière solution est à exclure car $-7 \notin \mathbb{N}$.

2. 3b + 5 + b + 3 = 5b + 1. Donc b = 7.

Exercice 6

On transcrit A et B en base 10: $A = 6b^3 + 7b^2 + b + 7$ et B = 2b + 3. Puis on effectue la division:

Le quotient en base b est $(2; b-1; 2)_b$. En effet,

$$3b^2 - b + 2 = 2b^2 + (b^2 - b) + 2 = 2b^2 + (b - 1)b + 2 = (2; b - 1; 2)_b$$

Le reste vaut $(1)_b$.