Point Estimation

Up to this point, both the population and its parameters have been known. Now, suppose that only the population is known (or suspected); however, the parameters are not known. The use of sample statistics to make educated guesses of the parameters is known as *statistical inference*.

Definition: Point Estimate

A point estimate of a population parameter θ is a single number that can be regarded as a sensible value for θ . It is obtained by selecting a suitable statistic and computing its value from the given sample data. The selected statistic is called the *point estimator* of θ .

The notation $\hat{\theta}$ is used to represent either the estimator or the estimate, depending on context.

Example

Suppose that the weight of 12 eggs in a selected carton are as follows:

 $x_1 = 63.3$

 $x_2 = 63.4$

 $x_3 = 64.0$

 $x_4 = 63.0$

 $x_5 = 70.4$

 $x_6 = 65.7$

 $x_7 = 63.7$

a= 0

 $x_8 = 65.8$

 $x_9 = 67.5$ $x_{10} = 66.4$

 $x_{11} = 66.8$

 $x_{12} = 66.0$

Let \bar{X} be a point estimator for μ :

$$\hat{\mu} = 65.5$$

Note that since $\hat{\theta}$ is a random variable, different random samples will yield different point estimates.

There may also be multiple choices of estimator for θ .

Example

Suppose we draw a random sample X_i from the uniform distribution $\mathrm{Unif}(0,\theta)$. Then the sample maximum:

$$\hat{\theta} = \max_{1 \le i \le n} X_i$$

can be used as a point estimator for θ .

Alternatively,

$$\hat{\theta} = 2\bar{X}$$

is another possible estimator for θ .

The question of which estimator is best for a given θ involves the question of bias.