

Research Article

Three new species of *Pestalotiopsis* (Amphisphaeriales, Sporocadaceae) were identified by morphology and multigene phylogeny from Hainan and Yunnan, China

Changzhun Yin¹, Zhaoxue Zhang², Shi Wang¹, Liguo Ma³, Xiuguo Zhang^{1,2}

- 1 College of Life Sciences, Shandong Normal University, Jinan, 250358, China
- 2 Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, China
- 3 Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, 250100, China Corresponding author: Xiuguo Zhang (zhxg@sdau.edu.cn)

Abstract

Pestalotiopsis fungi are widely distributed all over the world, mainly as plant pathogens, endophytes or saprobes from multiple hosts. In this study, the sequence data analysis based on internal transcribed spacer (ITS), partial beta-tubulin (*tub2*) and partial regions of translation elongation factor 1 alpha (*tef1a*) combined with morphological characteristics was used to identify strains isolated from the diseased leaves of *Aporosa dioica* and *Rhaphiolepis indica*, as well as some rotted leaves from Yunnan and Hainan Provinces in China as three new species, viz., *Pestalotiopsis aporosae-dioicae* sp. nov., *P. nannuoensis* sp. nov. and *P. rhaphiolepidis* sp. nov.

Key words: New species, *Pestalotiopsis*, taxonomy

Academic editor: Ning Jiang Received: 1 March 2024 Accepted: 2 July 2024 Published: 11 July 2024

Citation: Yin C, Zhang Z, Wang S, Ma L, Zhang X (2024) Three new species of *Pestalotiopsis* (Amphisphaeriales, Sporocadaceae) were identified by morphology and multigene phylogeny from Hainan and Yunnan, China. MycoKeys 107: 51–74. https://doi.org/10.3897/mycokeys.107.122026

Copyright: © Changzhun Yin et al. This is an open access article distributed under terms of the Creative Commons Attribution License (Attribution 4.0 International – CC BY 4.0).

Introduction

Pestalotiopsis was separated from Pestalotia by Steyaert in 1942 and belongs to the Sporocadaceae, Amphisphaeriales, Ascomycota (Steyaert 1949). At present, a total of 420 records of *Pestalotiopsis* have been recorded in the Index Fungorum (http://www.indexfungorum.org/, accessed on 26 Jun 2024). Pestalotioid fungi are a cosmopolitan group of fungi, which have important relationships with different plants as plant pathogens, saprobes or endophytes, and are widely distributed in temperate and tropical regions (Maharachchikumbura et al. 2011, 2012, 2014). As important plant pathogens, pestalotioid species can cause many plant diseases and great economic losses to people (Zhang et al. 2012a; Maharachchikumbura et al. 2013; Jayawardena et al. 2016; Liu et al. 2017; Yang et al. 2017; Diogo et al. 2021; Prasannath et al. 2021). In the past, gray blight disease of tea trees caused by pestalotioid species had caused huge yield losses in southern India (Joshi et al. 2009). In addition, pestalotioid species can also cause the leaf spot of Taxus chinensis in China, leaf blight of Elettaria cardamomum in India, and dieback and stem girdling in young eucalyptus plants in Portugal (Biju et al. 2018; Li et al. 2021;

Wang et al. 2021). Therefore, the study of pathogenic pestalotioid species can provide research basis for the treatment and inhibition of diseases and avoid significant economic losses.

At first, Pestalotiopsis resembling those taxa having a relationship with Pestalotia were also referred to as pestalotioid fungi. Pestalotioid fungi are characterized by multiseptate and fusiform conidia with appendages at one end or both, frequently with some melanized cells. (Bonthond et al. 2018; Liu et al. 2019). Traditionally, pestalotioid species have been classified mainly according to color intensity of the median conidial cell and the hosts (Maharachchikumbura et al. 2014). But the development of DNA based phylogenetic analysis has brought the traditional classification system into dispute. Maharachchikumbura et al. (2014) applied molecular data to the classification of *Pestalotiopsis*. By the difference of multilocus phylogenetic analyses, conidial pigment color, and conidiophores, this group was divided into three genera, Pestalotiopsis, Pseudopestalotiopsis, and Neopestalotiopsis. Neopestalotiopsis differs from Pestalotiopsis and Pseudopestalotiopsis in that two upper median cells are darker than the lowest median cell of the conidia, and its indistinct conidiophores. Pseudopestalotiopsis can be easily distinguished from Pestalotiopsis due to its three darker median cells. In recent years, many novel species have been introduced into this group by the use of phylogeny approaches together with morphology (Akinsanmi et al. 2017; Liu et al. 2017; Nozawa et al. 2017; Ariyawansa and Hyde 2018; Jiang et al. 2018; Tibpromma et al. 2018; Tsai et al. 2018).

We conducted extensive sampling in southern China to investigate fungal diversity and explore fungal resources. This study aimed to identify *Pestalotiopsis* which was isolated from diseased leaves of *Aporosa dioica* and *Rhaphiolepis indica*, as well as some rotted leaves collected from Hainan and Yunnan Provinces by morphological characters and molecular phylogeny, and three new species of *Pestalotiopsis* were described and illustrated.

Materials and methods

Sample collection and isolation

The isolates used in this study were obtained from diseased or rotted leaves collected in Yunnan and Hainan Provinces from March to May 2023. Cut 5 × 5 mm small square leaves from the fungal infection part of each sample of diseased or rotted leaves and put them into sterile containers respectively. First, immerse all the small square leaves of each sample in 75% ethanol for disinfection for 1 min, and rinse with sterilized water one time after pouring out the ethanol. Then immerse all the small square leaves of each sample in 5% sodium hypochlorite solution for disinfection for 30s, and pour out the sodium hypochlorite solution, rinse them repeatedly with sterilized water three times. After pouring out the sterilized water, pick them up with sterilized tweezers and put them on sterilized filter paper to dry. The sterilized leaves were plated on PDA plates (PDA: 20 g agar, 20 g dextrose, 200 g potato, 1000 ml distilled water, pH 7.0) with sterilized tweezers, then 4 small leaves were placed symmetrically on the surface of each medium, with the disease spot facing down,

close to the medium, and the serial number and date were marked on the medium after sealing with a sealing film. The PDA plate was cultured in a constant temperature incubator at 25 °C and the growth of fungi was observed and recorded every day. After 2 to 3 days of culture, the agar with mycelium on the edges of the colony was purified onto a new PDA plate and cultured for 1 to 2 weeks.

Morphological and cultural characterization

The PDA plates were photographed on days 7 and 14 with a digital camera (Canon Powershot G7X). The morphological characteristics of fungi were observed with Olympus SZX10 stereomicroscope and Olympus BX53 microscope, then the fungal structures such as conidiomata, conidiophores, conidiogenous cells, conidia, and appendages, were photographed with an Olympus DP80 high-definition color digital camera. The microstructures are measured with the Digimizer software (https://www.digimizer.com/), and the number of samples measured is generally 20–30. All strains were stored in sterilized 10% glycerol at 4 °C. Voucher specimens have been preserved in the Herbarium of the Department of Plant Pathology, Shandong Agricultural University, Taian, China (HSAUP) and Herbarium Mycologicum Academiae Sinicae, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China (HMAS). Ex-holotype living cultures have been preserved in the Shandong Agricultural University Culture Collection (SAUCC). A taxonomy and description of the new species has been uploaded to MycoBank (http://www.mycobank.org/).

DNA extraction, PCR amplification, and sequencing

The genomic DNA was extracted from the colonies cultured on PDA by CTAB (cetyl trimethyl ammonium bromide) method and BeaverBeads Plant DNA Kit (Cat. No.: 70409-20; BEAVER Biomedical Engineering Co., Ltd.) (Guo et al. 2000; Wang et al. 2023). Fungal DNA was amplified using polymerase chain reaction (PCR) using three pairs of primers including internal transcribed spacer (ITS), partial beta-tubulin (tub2) and partial regions of translation elongation factor 1 alpha (tef1a) (White et al. 1990; Glass and Donaldson 1995; O'Donnell et al. 1998; Carbone and Kohn 1999). The reaction was amplified at 25 μL reaction volume, including 12.5 μL 2× Hieff Canace® Plus PCR Master Mix (Shanghai, China) (with dye) (Yeasen Biotechnology, Shanghai, China, Cat No. 10154ES03), 1 μL forward primer, 1 μL reverse primer, and 1 μL genomic DNA template, add distilled deionized water to a total volume 25 µL. The PCR amplification products were detected by electrophoresis in 2% agarosegels and the amplification effect was determined by observing the fragments with UV light (Zhang et al. 2022). Then use a Gel Extraction Kit (Cat: AE0101-C) (Shandong Sparkjade Biotechnology Co., Ltd.) for gel recovery. DNA sequencing and primer synthesis were completed by Tsingke Biotechnology Co., Ltd. (Qingdao, China). The bidirectional sequencing results of the three primers were examined and spliced using MEGA v. 7.0 (Kumar et al. 2016). The sequences of all three new species have been uploaded to GenBank, and the Genebank numbers of all strain sequences used in this study are shown in Table 1.

Table 1. GenBank numbers used in the phylogenetic analysis of *Pestalotiopsis*.

Species	Isolate	Origin	Substrate	Ge	nBank access	References	
	issiate		Jubstrate	ITS	tub2	tef1a	Note: Glices
Neopestalotiopsis magna	MFLUCC 12-0652*	France	Pteridium sp.	KF582795	KF582793	KF582791	(Maharachchikumbura et al. 2014)
Pestalotiopsis abietis	CFCC 53013	China	Abies fargesii	MK397015	MK622282	MK622279	(Gu et al. 2021)
	CFCC 53011*	China	Abies fargesii	MK397013	MK622280	MK622277	
	CFCC 53012	China	Abies fargesii	MK397014	MK622281	MK622278	
P. adusta	MFLUCC 10-146	Thailand	Syzygium sp.	JX399007	JX399038	JX399071	(Maharachchikumbura
	ICMP 6088*	Fiji	Refrigerator door	JX399006	JX399037	JX399070	et al. 2012)
P. aggestorum	LC8186	China	Camellia sinensis	KY464140	KY464160	KY464150	(Liu et al. 2017)
	LC6301*	China	Camellia sinensis	KX895015	KX895348	KX895234	
P. anhuiensis	CFCC 54791*	China	Cyclobalanopsis glauca	ON007028	ON005056	ON005045	(Jiang et al. 2022b)
P. anacardiacearum	IFRDCC 2397*	China	Mangifera indica	KC247154	KC247155	KC247156	(Sajeewa et al. 2013)
P. arengae	CBS 331.92*	Singapore	Arenga undulatifolia	KM199340	KM199426	KM199515	(Maharachchikumbura et al. 2014)
P. arceuthobii	CBS 434.65*	USA	Arceuthobium campylopodum	KM199341	KM199427	KM199516	(Maharachchikumbura et al. 2014)
P. aporosae-dioicae	SAUCC224004*	China	Aporosa dioica	OR733506	OR912985	OR912988	This study
	SAUCC224005	China	Aporosa dioica	OR733505	OR912986	OR912989	
P. appendiculata	CGMCC 3.23550*	China	Rhododendron decorum	OP082431	OP185516	OP185509	(Gu et al. 2022)
P. australis	CBS 114193*	New South Wales	Grevillea sp.	KM199332	KM199383	KM199475	(Maharachchikumbura et al. 2014)
	CBS 111503	South Africa	Protea neriifolia	KM199331	KM199382	KM199557	
P. australasiae	CBS 114141	New South Wales	Protea sp.	KM199298	KM199410	KM199501	(Maharachchikumbura et al. 2014)
	CBS 114126*	New Zealand	Knightia sp.	KM199297	KM199409	KM199499	
P. biciliata	CBS 236.38	Italy	Paeonia sp.	KM199309	KM199401	KM199506	(Maharachchikumbura
	CBS 124463*	Slovakia	Platanus hispanica	KM199308	KM199399	KM199505	et al. 2014)
P. brachiata	LC2988*	China	Camellia sp.	KX894933	KX895265	KX895150	(Liu et al. 2017)
	LC8188	China	Camellia sp.	KY464142	KY464162	KY464152	
P. brassicae	CBS 170.26*	New Zealand	Brassica napus	KM199379	NA	KM199558	(Maharachchikumbura et al. 2014)
P. camelliae	MFLUCC 12-0277*	China	Camellia japonica	JX399010	JX399041	JX399074	(Zhang et al. 2012b)
P. camelliae-oleiferae	CSUFTCC08*	China	Camelliae oleiferae	OK493593	OK562368	OK507963	(Li et al. 2021)
	CSUFTCC09	China	Camelliae oleiferae	OK493594	OK562369	OK507964	
P. cangshanensis	CGMCC 3.23544*	China	Rhododendron delavayi	OP082426	OP185517	OP185510	(Gu et al. 2022)
P. castanopsidis	CFCC 54430*	China	Castanopsis lamontii	OK339732	OK358508	OK358493	(Jiang et al. 2022b)
P. chamaeropis	CBS 186.71*	Italy	Chamaerops humilis	KM199326	KM199391	KM199473	(Maharachchikumbura et al. 2012)
P. changjiangensis	CFCC 54314*	China	Castanopsis tonkinensis	OK339739	OK358515	OK358500	(Jiang et al. 2022b)
	CFCC 52803	China	Cyclobalanopsis sp.	OK339741	OK358517	OK358502	
	CFCC 54433	China	Castanopsis hainanensis	OK339740	OK358516	OK358501	
P. chiangmaiensis	MFLU 22-0164*	Thailand	Phyllostachys edulis	OP497990	OP752137	OP753374	(Sun et al. 2023)
P. chiaroscuro	BRIP 72970*	Australia	Sporobolus natalensis	OK422510	OK423752	OK423753	(Crous et al. 2022)
P. chinensis	MFLUCC 12-0273	China	Taxus sp.	JX398995	NA	NA	(Maharachchikumbura et al. 2012)
P. clavata	MFLUCC 12-0268*	China	Buxus sp.	JX398990	JX399025	JX399056	(Maharachchikumbura et al. 2012)
P. colombiensis	CBS 118553*	Colombia	Eucalyptus urograndis	KM199307	KM199421	KM199488	(Maharachchikumbura et al. 2014)

Species	Isolate	Origin	Substrate	GenBank accession			References
			Gusotiate	ITS	tub2	tef1a	References
P. cyclobalanopsidis	CFCC 54328*	China	Cyclobalanopsis glauca	OK339735	OK358511	OK358496	(Jiang et al. 2022b)
	CFCC 55891	China	Cyclobalanopsis glauca	OK339736	OK358512	OK358497	
P. daliensis	CGMCC 3.23548*	China	Rhododendron decorum	OP082429	OP185518	OP185511	(Gu et al. 2022)
P. dianellae	CPC 32261	Australia	Dianella sp.	MG386051	MG386164	NA	(Crous et al. 2017)
P. digitalis	MFLU 14-0208*	New Zealand	Digitalis purpurea	KP781879	KP781883	NA	(Liu et al. 2015)
P. dilucida	LC3232*	China	Camellia sinensis	KX894961	KX895293	KX895178	(Liu et al. 2017)
	LC8184	China	Camellia sinensis	KY464138	KY464158	KY464148	
P. diploclisiae	CBS 115449	China	Psychotria tutcheri	KM199314	KM199416	KM199485	(Maharachchikumbura
	CBS 115587*	China	Diploclisia glaucescens	KM199320	KM199419	KM199486	et al. 2014)
P. disseminata	CBS 143904	New Zealand	Persea americana	MH554152	MH554825	MH554587	(Liu et al. 2017)
P. diversiseta	MFLUCC 12-0287*	China	Rhododendron sp.	JX399009	JX399040	JX399073	(Maharachchikumbura et al. 2012)
P. doitungensis	MFLUCC 14-0090*	Thailand	Dendrobium sp.	MK993574	MK975837	MK975832	(Ma et al. 2019)
P. dracontomelonis	MFLU 14-0207*	Thailand	Dracontomelon sp.	KP781877	NA	KP781880	(Liu et al. 2015)
P. dracaenae	HGUP 4037*	China	Dracaena fragrans	MT596515	MT598645	MT598644	(Ariyawansa et al. 2015
P. dracaenicola	MFLUCC 18-0913*	Thailand	Dracaena sp.	MN962731	MN962733	MN962732	(Chaiwan et al. 2020)
P. eleutherococci	HMJAU 60189*	China	Eleutherococcus brachypus	NR182556	NA	NA	(Tian et al. 2022)
P. endophytica	MFLU 20-0607*	Thailand	Magnolia garrettii	MW263946	NA	MW417119	(De Silva et al. 2021)
P. ericacearum	IFRDCC 2439*	China	Rhododendron delavayi	KC537807	KC537821	KC537814	(Zhang et al. 2013)
P. etonensis	BRIP 66615*	Australia	Sporobolus jacquemontii	MK966339	MK977634	MK977635	(Crous et al. 2020)
P. ficicola	SAUCC230046*	China	Ficus microcarpa	OQ691974	OQ718749	OQ718691	(Zhang et al. 2023)
P. foliicola	CFCC 57359	China	Castanopsis faberi	ON007030	ON005058	ON005047	(Jiang et al. 2022b)
	CFCC 57360	China	Castanopsis faberi	ON007031	ON005059	ON005048	
	CFCC 54440*	China	Castanopsis faberi	ON007029	ON005057	ON005046	
P. furcata	MFLUCC 12-0054*	Thailand	Camellia sinensis	JQ683724	JQ683708	JQ683740	(Watanabe et al. 2018)
P. fusoidea	CGMCC 3.23545*	China	Rhododendron delavayi	OP082427	OP185519	OP185512	(Gu et al. 2022)
P. formosana	NTUCC 17-009*	China	Poaceae sp.	MH809381	MH809385	MH809389	(Akinsanmi et al. 2017)
P. gaultheriae	IFRD 411-014*	China	Gaultheria forrestii	KC537805	KC537819	KC537812	(Maharachchikumbura et al. 2014)
P. gibbosa	NOF 3175*	Canada	Gaultheria shallon	LC311589	LC311590	LC311591	(Watanabe et al. 2018)
P. grandis-urophylla	E-72-02	Brazil	Eucalyptus sp.	KU926708	KU926716	KU926712	(Carvalho et al. 2019)
	E-72-03	Brazil	Eucalyptus sp.	KU926709	KU926717	KU926713	
	E-72-04	Brazil	Eucalyptus sp.	KU926710	KU926718	KU926714	
	E-72-06	Brazil	Eucalyptus sp.	KU926711	KU926719	KU926715	
P. guangdongensis	ZHKUCC 22-0016*	China	Arenga pinnata	ON180762	ON221548	ON221520	(Xiong et al. 2022)
P. guangxiensis	CFCC 54308*	China	Quercus griffithii	OK339737	OK358513	OK358498	(Jiang et al. 2022b)
	CFCC 54300	China	Quercus griffithii	OK339738	OK358514	OK358499	
P. grevilleae	CBS 114127*	Australia	Grevillea sp.	KM199300	KM199407	KM199504	(Maharachchikumbura et al. 2014)
P. guizhouensis	CFCC 54803	China	Cyclobalanopsis glauca	ON007035	ON005063	ON005052	(Jiang et al. 2022b)
	CFCC 57364	China	Cyclobalanopsis glauca	ON007036	ON005064	ON005053	
P. hawaiiensis	CBS 114491*	USA	Leucospermum sp.	KM199339	KM199428	KM199514	(Maharachchikumbura et al. 2014)
P. hispanica	CBS 115391	Portugal	Eucalyptus globulus	MH553981	MH554640	MH554399	(Maharachchikumbura

Species	Isolate	Origin	Substrate	GenBank accession			References
				ITS	tub2	tef1a	
P. hollandica	CBS 265.33*	The Nethelands	Sciadopitys verticillata	KM199328	KM199388	KM199481	(Maharachchikumbura et al. 2014)
P. humicola	CBS 336.97*	Papua New Guinea	Soil	KM199317	KM199420	KM199484	(Maharachchikumbura et al. 2014)
P. hunanensis	CSUFTCC18	China	Camellia oleifera	OK493600	OK562375	OK507970	(Li et al. 2021)
	CSUFTCC15*	China	Camellia oleifera	OK493599	OK562374	OK507969	
P. hydei	MFLUCC 20-0135	Thailand	Litsea elliptica	MW266063	MW251112	MW251113	(Huanaluek et al. 2021
P. iberica	CAA 1005	Spain	Pinus sylvestris	MW732250	MW759034	MW759037	(Monteiro et al. 2021)
	CAA 1006	Spain	Pinus radiata	MW732249	MW759036	MW759039	,
	CAA 1004*	Spain	Pinus radiata	MW732248	MW759035	MW759038	
P. intermedia	MFLUCC 12-0259*	China	Unidentified tree	JX398993	JX399028	JX399059	(Maharachchikumbura et al. 2012)
P. inflexa	MFLUCC 12-0270*	China	Unidentified tree	JX399008	JX399039	JX399072	(Maharachchikumbura et al. 2012)
P. italiana	MFLU 14-0214*	Italy	Cupressus glabra	KP781878	KP781882	KP781881	(Liu et al. 2015)
P. jesteri	CBS 109350*	Papua New Guinea	Fragraea bodenii	KM199380	NA	KM199554	(Maharachchikumbura et al. 2014)
P. jiangxiensis	LC4399*	China	Camellia sp.	KX895009	KX895341	KX895227	(Liu et al. 2017)
P. jiangsuensis	CFCC 59538	China	Pinus massoniana	OR533577	OR539191	OR539186	(Li et al. 2024)
P. jinchanghensis	LC8190	China	Camellia sinensis	KY464144	KY464164	KY464154	(Liu et al. 2017)
	LC6636*	China	Camellia sinensis	KX895028	KX895361	KX895247	
P. kandelicola	NCYUCC 19-0354	China	Kandelia candel	MT560723	MT563100	MT563102	(Hyde et al. 2020)
	NCYUCC 19-0355*	China	Kandelia candel	MT560722	MT563099	MT563101	
P. kaki	KNU-PT-1804*	Korea	Diospyros kaki	LC552953	LC552954	LC553555	(Das et al. 2020)
P. kenyana	LC6633	China	Camellia sinensis	KX895027	KX895360	KX895246	(Maharachchikumbura
	CBS 442.67*	Kenya	Coffea sp.	KM199302	KM199395	KM199502	et al. 2014)
P. knightiae	CBS 114138*	New Zealand	Knightia sp.	KM199310	KM199408	KM199497	(Maharachchikumbura et al. 2014)
	CBS 111963	New Zealand	Knightia sp.	KM199311	KM199406	KM199495	
P. krabiensis	MFLUCC 16-0260*	Thailand	Pandanus sp.	MH388360	MH412722	MH388395	(Tibpromma et al. 2018
P. leucadendri	CBS 121417*	South Africa	Leucadendron sp.	MH553987	MH554654	MH554412	(Liu et al. 2019)
? licualicola	HGUP 4057*	China	Licuala grandis	KC492509	KC481683	KC481684	(Geng et al. 2013)
? lijiangensis	CFCC 50738*	China	Castanopsis carlesii	KU860520	NA	NA	(Zhou et al. 2018)
P. linearis	MFLUCC 12-0271*	China	Trachelospermum sp.	JX398992	JX399027	JX399058	(Maharachchikumbura et al. 2012)
P. linguae	ZHKUCC 22-0159	China	Pyrrosia lingua	OP094104	OP186108	OP186110	(Li et al. 2023)
P. lithocarpi	CFCC 55893	China	Lithocarpus chiungchungensis	OK339743	OK358519	OK358504	(Jiang et al. 2022b)
	CFCC 55100*	China	Lithocarpus chiungchungensis	OK339742	OK358518	OK358503	
P. longiappendiculata	LC3013*	China	Camellia sinensis	KX894939	KX895271	KX895156	(Liu et al. 2017)
P. loeiana	MFLU 22-0167*	Thailand	Unidentified tree	OP497988	OP713769	OP737881	(Sun et al. 2023)
? lushanensis	LC8182	China	Camellia sp.	KY464136	KY464156	KY464146	(Liu et al. 2017)
	LC8183	China	Camellia sp.	KY464137	KY464157	KY464147	
	LC4344*	China	Camellia sp.	KX895005	KX895337	KX895223	
? macadamiae	BRIP 63739b	Australia	Macadamia integrifolia	KX186587	KX186679	KX186620	(Akinsanmi et al. 2017
	BRIP 63741a	Australia	Macadamia integrifolia	KX186586	KX186678	KX186619	
	BRIP 63738b*	Australia	Macadamia integrifolia	KX186588	KX186680	KX186621	
P. malayana	CBS 102220*	Malaysia	Macaranga triloba	KM199306	KM199411	KM199482	(Maharachchikumbura et al. 2014)
P. manyueyuanensis	NTUPPMCC 18- 165*	Taiwan	Ophocordyceps sp.	OR125060	OR126306	OR126313	(Hsu et al. 2024)

Species	Isolate	Origin	Substrate		nBank access	References	
				ITS	tub2	tef1a	References
P. menhaiensis	CGMCC 3.18250*	China	Ophocordyceps sp.	KU252272	KU252488	KU252401	(Li et al. 2024)
P. microspora	SS1-033I	Canada	Cornus canadensis	MT644300	NA	NA	(Zhao and Li 1995)
P. montellica	MFLUCC 12-0279	China	dead plant material	JX399012	JX399043	JX399076	(Maharachchikumbura et al. 2012)
P. monochaeta	CBS 144.97*	The Nethelands	Quercus robur	KM199327	KM199386	KM199479	(Maharachchikumbura et al. 2014)
	CBS 440.83	The Nethelands	Taxus baccata	KM199329	KM199387	KM199480	
P. multicolor	CFCC59981	China	Taxus chinensis	OQ626676	OQ714336	OQ714341	(Wang et al. 2024)
P. nanjingensis	CSUFTCC16*	China	Camellia oleifera	OK493602	OK562377	OK507972	(Li et al. 2021)
P. nanningensis	CSUFTCC10*	China	Camellia oleifera	OK493596	OK562371	OK507966	(Li et al. 2021)
P. nannuoensis	SAUCC232203*	China	Unknown host	OR733504	OR863909	OR912991	This study
	SAUCC232204	China	Unknown host	OR733503	OR863910	OR912992	
P. novae-hollandiae	CBS 130973*	Australia	Banksia grandis	KM199337	KM199425	KM199511	(Maharachchikumbura et al. 2014)
P. neolitseae	NTUCC 17-011*	China	Neolitsea villosa	MH809383	MH809387	MH809391	(Akinsanmi et al. 2017)
P. oryzae	CBS 171.26	Italy	Unknown host	KM199304	KM199397	KM199494	(Maharachchikumbura
,	CBS 353.69*	Denmark	Oryza sativa	KM199299	KM199398	KM199496	et al. 2014)
	CBS 111522	USA	Telopea sp.	KM199294	KM199394	KM199493	
P. pallidotheae	MAFF 240993*	Japan	Pieris japonica	AB482220	NA	NA NA	(Watanabe et al. 2010)
P. pandanicola	MFLUCC 16-0255*	Thailand	Pandanus sp.	MH388361	MH412723	MH388396	(Tibpromma et al. 2018)
P. papuana	CBS 331.96*	Papua New	Coastal soil	KM199321	KM199413	KM199491	(Maharachchikumbura et al. 2014)
	CBS 887.96	Guinea Papua New	Cocos nucifera	KM199318	KM199415	KM199492	
		Guinea					
P. parva	CBS 278.35	Thailand	Delonix regia	KM199313	KM199405	KM199509	(Maharachchikumbura et al. 2014)
	CBS 265.37*	Thailand	Delonix regia	KM199312	KM199404	KM199508	
P. phoebes	SAUCC230093*	China	Phoebe zhennan	OQ692028	OQ718803	OQ718745	(Zhang et al. 2023)
P. pini	MEAN 1092	Portugal	Pinus pinea	MT374680	MT374705	MT374693	(Silva et al. 2020)
P. photiniicola	GZCC 16-0028*	China	Photinia serrulata	KY092404	KY047663	KY047662	(Chen et al. 2017)
P. pinicola	KUMCC 19-0183*	China	Pinus armandii	MN412636	MN417507	MN417509	(Tibpromma et al. 2019)
P. portugallica	CBS 393.48*	Portugal	Unknown host	KM199335	KM199422	KM199510	(Maharachchikumbura et al. 2014)
P. rhaphiolepis	SAUCC367701*	China	Rhaphiolepis indica	OR733502	OR863906	OR912994	This study
	SAUCC367702	China	Rhaphiolepis indica	OR733501	OR863907	OR912995	
P. rhizophorae	MFLUCC 17-0416*	Thailand	Rhizophora mucronata	MK764283	MK764349	MK764327	(Norphanphoun et al. 2019
P. rhodomyrti	HGUP4230*	China	Rhodomyrtus tomentosa	KF412648	KF412642	KF412645	(Song et al. 2013)
P. rhododendri	IFRDCC 2399*	China	Rhododendron sinogrande	KC537804	KC537818	KC537811	(Zhang et al. 2013)
P. rosea	MFLUCC 12-0258*	China	Pinus sp.	JX399005	JX399036	JX399069	(Maharachchikumbura et al. 2012)
P. rosarioides	CGMCC 3.23549*	China	Rhododendron decorum	OP082430	OP185520	OP185513	(Gu et al. 2022)
P. sabal	ZHKUCC 22-0035*	China	Sabal mexicana	ON180775	ON221561	ON221533	(Xiong et al. 2022)
P. sequoiae	MFLUCC 13-0399*	Italy	Sequoia sempervirens	KX572339	NA	NA	(Li et al. 2016)
P. scoparia	CBS 176.25*	China	Chamaecyparis sp.	KM199330	KM199393	KM199478	(Maharachchikumbura et al. 2014)
P. shaanxiensis	CFCC 57356	China	Quercus variabilis	ON007027	ON005055	ON005044	(Jiang et al. 2022b)
	CFCC 54958*	China	Quercus variabilis	ON007026	ON005054	ON005043	
P. shoreae	MFLUCC 12-0314*	Thailand	Shorea obtusa	KJ503811	KJ503814	KJ503817	(Song et al. 2014)
P. sichuanensis	CGMCC 3.18244*	China	Camellia sinensis	KX146689	KX146807	KX146748	(Wang et al. 2019)
					Ţ-		

Species	Isolate	Origin	Substrate	Ge	nBank access	Deferences	
				ITS	tub2	tef1a	References
P. silvicola	CFCC 55296*	China	Cyclobalanopsis kerrii	ON007032	ON005060	ON005049	(Jiang et al. 2022b)
	CFCC 54915	China	Cyclobalanopsis kerrii	ON007033	ON005061	ON005050	
P. smilacicola	MFLU 22-0165*	Thailand	Smilax sp.	OP497991	OP762673	OP753376	(Sun et al. 2023)
P. sonneratiae	CFCC 57394*	China	Sonneratia apetala	ON114184	ON086816	ON086812	(Jiang et al. 2022a)
P. spatholobi	SAUCC231201*	China	Spatholobus suberectus	OQ692023	OQ718798	OQ718740	(Zhang et al. 2023)
P. spathuliappendiculata	CBS 144035*	Australia	Phoenix canariensis	MH554172	MH554845	MH554607	(Liu et al. 2019)
P. spathulata	CBS 356.86*	Chile	Gevuina avellana	KM199338	KM199423	KM199513	(Maharachchikumbura et al. 2014)
P. suae	CGMCC 3.23546*	China	Rhododendron delavayi	OP082428	OP185521	OP185514	(Gu et al. 2022)
P. taxicola	CFCC59976	China	Taxus chinensis	OQ626673	OQ714333	OQ714338	(Wang et al. 2024)
P. telopeae	CBS 113606	Australia	Telopea sp.	KM199295	KM199402	KM199498	(Maharachchikumbura et al. 2014)
	CBS 114161*	Australia	Telopea sp.	KM199296	KM199403	KM199500	
	CBS 114137	Australia	Protea sp.	KM199301	KM199469	KM199559	
P. thailandica	MFLUCC 17-1616*	Thailand	Rhizophora mucronata	MK764285	MK764351	MK764329	(Norphanphoun et al. 2019)
P. terricola	CBS 141.69*	Pacific islands	Soil	MH554004	MH554680	MH554438	(Liu et al. 2019)
P. trachicarpicola	OP068*	China	Trachycarpus fortunei	JQ845947	JQ845945	JQ845946	(Zhang et al. 2012a)
P. trachycarpicola	BJFUCC42	China	Taxus chinensis	OQ626674	OQ714334	OQ714339	(Zhang et al. 2012a)
P. tumida	CFCC 55158*	China	Rosa chinensis	OK560610	OM158174	OL814524	(Peng et al. 2022)
P. unicolor	MFLUCC 12-0275	China	Unidentified tree	JX398998	JX399029	JX399063	(Maharachchikumbura
	MFLUCC 12-0276*	China	Rhododendron sp.	JX398999	JX399030	NA	et al. 2012)
P. verruculosa	MFLUCC 12-0274*	China	Rhododendron sp.	JX398996	NA	JX399061	(Maharachchikumbura et al. 2012)
P. yunnanensis	HMAS 96359*	China	Podocarpus macrophyllus	AY373375	NA	NA	(Wei et al. 2013)
P.yanglingensis	LC3412	China	Camellia sinensis	KX894980	KX895312	KX895197	(Liu et al. 2017)
	LC4553*	China	Camellia sinensis	KX895012	KX895345	KX895231	

Notes: New species established in this study are shown in bold. Those marked "*" in the table are represented as ex-type or ex-epitype strains. NA: Not available.

Phylogenetic analyses

According to the latest publication of this genus, the reference sequences used in this study (Table 1) were obtained from the National Center for Biotechnology Information (NCBI) (Li et al. 2024). Reference sequences and sequences obtained from the sequenced strains were aligned and manually corrected by MAFFT 7 online service with the Auto strategy (http://mafft.cbrc.jp/alignment/ server/) (Katoh et al. 2019). Based on maximum likelihood (ML) and Bayesian inference (BI) algorithms, the phylogenetic analysis of multilabel data was carried out. Run ML and BI on the CIPRES Science Gateway portal (https://www. phylo.org/) (Miller et al. 2012). ML was performed on RaxML-HPC2 of XSEDE (8.2.12) (Stamatakis 2014), 1000 fast bootstrap repeats were performed using GTRGAMMA model of nucleotide evolution. MrModeltest v.2.3 (Nylander 2001) is used to screen the optimal evolutionary model, and BI was performed on XSEDE (3.2.7a) (Huelsenbeck and Ronquist 2001; Ronquist and Huelsenbeck 2012; Ronquist et al. 2012). When the mean standard deviation of separation frequency is less than 0.01, output the topology. View and adjust phylogenetic trees in FigTree v. 1.4.4 (http://tree.bio.ed.ac.uk/software/figtree) and beautify the phylogenetic trees with Adobe Illustrator CC 2019. The names of the isolates in this study are marked in red in the phylogenetic tree.

Result

Phylogenetic analyses

By analyzing the sequence data sets of ITS, tub2 and $tef1\alpha$, the interspecific relationships of *Pestalotiopsis* were inferred. The phylogenetic analysis of *Pestalotio*psis strains contained 183 sequences, using Neopestalotiopsis magna (MFLUCC 12-0652) as the outgroup. A total of 1579 characters including gaps (523 of ITS, 530 of tub2 and 526 of tef1 α) were included in the phylogenetic analysis. There were 915 constant, 185 variable but parsimony non-informative, and 479 parsimony informative characters. In Bayesian inference, GTR + I + G is used as the optimal evolutionary model of ITS and tub2, and HKY + I + G is used as the optimal evolutionary model of tef1a. The final ML optimization likelihood was -15175.820563. The trees obtained by the ML and BI methods are similar, and the ML tree with the best score was shown in Fig. 1, the Maximum Likelihood Bootstrap Values and Bayesian Inference Posterior Probabilities (MLBS/BIPP) are marked at the node position of the phylogenetic tree. On the basis of previous studies, six strains of Pestalotiopsis were imported into the phylogenetic analysis in this study. The six new strains introduced in this study were divided into three monophyletic branches in the phylogenetic tree, representing three new species of Pestalotiopsis, P. aporosae-dioicae sp. nov., P. nannuoensis sp. nov. and P. rhaphiolepidis sp. nov. Finally, the 183 strains were divided into 135 species clades in the phylogenetic map.

Taxonomy

Pestalotiopsis aporosae-dioicae C.Z. Yin, Z.X. Zhang & X.G. Zhang, sp. nov. MycoBank No: 851279
Fig. 2

Type. CHINA, Yunnan Province, Jinghong City, Sancha River (22°10'10"N, 100°51'49"E), from diseased leaves of *Aporosa dioica*, 19 Mar 2023, C.Z. Yin, Z.X. Zhang and X.G. Zhang, holotype HMAS 352667, ex-type living culture SAUCC224004.

Etymology. Referring to the name of the host plant *Aporosa dioica*.

Description. Conidiomata in culture on PDA, 600–1000 μm diam, globular, solitary, black conidial masses permeated above the mycelium. Conidiophores mostly degenerated into conidiogenous cells, hyaline. Conidiogenous cells smooth, clavate, hyaline, aggregative, $16.1-22.2 \times 3.9-5.5$ μm. Conidia fusiform, 4-septate, slightly curved or straight, $25.6-35.2 \times 5.0-7.1$ μm; basal cell conical, hyaline, rough, thin-walled, 3.9-9.7 μm; three median cells subcylindrical, light brown or brown, rough, thick-walled, the first median cell from base 4.9-7.0 μm, the second median cell 4.8-7.0 μm, the third median cell 4.6-6.9 μm, together 14.9-20.2 μm; apical cell subcylindrical, hyaline, smooth, thin-walled, 4.7-8.3 μm; basal appendage tubular, single, centric, straight or slightly bent, unbranched, 4.0-13.2 μm; apical appendages tubular, 2-4, straight or bent, unbranched, 8.8-31.7 μm. Sexual morph not observed.

Culture characteristics. After 14 days of dark cultivation at 25 °C on PDA, the colony diameter reached 90 mm, and the growth rate is 6.2–6.6 mm/day. Colonies filamentous to circular, aerial mycelium on surface raised, white, dense, forms multiple rings from the middle to the edge, fruiting bodies black; reverse yellow, brown in parts.

Figure 1. A Maximum Likelihood phylogram of *Pestalotiopsis* based on ITS, *tub2* and *tef1a* gene sequences, and MFLUCC 12-0652 of *Neopestalotiopsis magna* as the tree root of *Pestalotiopsis*. The Maximum Likelihood Bootstrap Value (left, MLBV \geq 70%) and Bayesian Inference Posterior Probability (right, BIPP \geq 0.90), separated by a slash line, are marked at the node. The scale bar at the top left represents 0.1 nucleotide changes at each site. Some shortened branches are represented by double slashes and the number of fold times. The strains in this study are shown in red.

Figure 2. Pestalotiopsis aporosae-dioicae (holotype: HMAS 352667) a leaves of host Aporosa dioica b, c the front and back of the colony after 14 days of culture on PDA d conidiomata on PDA e, f conidiophores and conidiogenous cells g-m conidia. Scale bars: 10 μm (e-m).

Additional specimen examined. CHINA, Yunnan Province, Jinghong City, Sancha River, from diseased leaves of *Aporosa dioica*, 19 Mar. 2023, C.Z. Yin, Z.X. Zhang and X.G. Zhang, living culture SAUCC224005.

Notes. According to phylogenetic trees based on ITS, *tub2* and *tef1a*, *Pestalotiopsis aporosae-dioicae* sp. nov. was closely related to *P. arengae* in a well support branch (ML/BI = 100/1). *P. aporosae-dioicae* was different from *P. arengae* by 14/508 bp in ITS, 51/529 bp in *tub2*, and 10/465 bp in tef1a. Morphologically, *P. aporosae-dioicae* was different from *P. arengae* by having thinner conidia (*P. aporosae-dioicae*: $25.6-35.2 \times 5.0-7.1$ vs. *P. arengae*: $25.0-32.0 \times 7.0-9.5 \mu m$) and longer basal appendages (*P. aporosae-dioicae*: 4.0-13.2 vs. *P. arengae*: $1.5-3.0 \mu m$) (Maharachchikumbura et al. 2014). Therefore, *Pestalotiopsis aporosae-dioicae* was identified as a new species of *Pestalotiopsis* by morphological and phylogenetic comparison.

Pestalotiopsis nannuoensis C.Z. Yin, Z.X. Zhang & X.G. Zhang, sp. nov.

MycoBank No: 851280

Fig. 3

Type. CHINA, Yunnan Province, Menghai County, Nannuo Mountain (21°55'25"N, 100°35'41"E), from rotted leaves, 18 Mar 2023, C.Z. Yin, Z.X. Zhang and X.G. Zhang, holotype HMAS 352668, ex-type living culture SAUCC232203.

Etymology. Referring to the collection site of the holotype, Nannuo Mountain. **Description.** Conidiomata in culture on PDA, 750–900 μm diam, subsphaeroidal, solitary, black conidial masses permeated above the mycelium. Conidiophores mostly degenerated into conidiogenous cells, hyaline, simple. Conidiogenous cells oval, hyaline, rough, aggregative, $10.6-19.4 \times 2.2-3.4 \mu m$. Conidia fusiform or subcylindrical, straight or slightly curved, 4-septate, $21.7-27.2 \times 3.6-5.0 \mu m$; basal cell conical, hyaline, rough, thinwalled, $3.9-5.4 \mu m$; three median cells subcylindrical, brown, rough, thickwalled, the first median cell from base $4.4-6.2 \mu m$, the second median cell $4.1-5.3 \mu m$, the median third cell $4.5-5.7 \mu m$, together $13.0-17.2 \mu m$; apical cell conical or subcylindrical, hyaline, smooth, thin-walled, $2.9-4.6 \mu m$; basal appendage tubular, single, centric, straight or slightly bent, unbranched, $6.8-9.2 \mu m$; apical appendages tubular, 1-2, straight or bent, unbranched, $15.6-26.2 \mu m$. Sexual morph not observed.

Culture characteristics. After 7 days of dark cultivation at 25 °C on PDA, the colony diameter reached 75 mm, and the growth rate is 9.5–11.5 mm/day. Colonies filamentous to circular, with filiform margin, aerial mycelium on surface rugged, white, dense, fruiting bodies black; reverse white.

Additional specimen examined. CHINA, Yunnan Province, Menghai County, Nannuo Mountain, from rotted leaves, 18 Mar 2023, C.Z. Yin, Z.X. Zhang and X.G. Zhang, living culture SAUCC232204.

Notes. Pestalotiopsis nannuoensis sp. nov. formed an independent clade (ML/BI = 100/1) in the phylogenetic tree based on ITS, tub2 and tef1a, and was closely related to P. diversiseta. P. nannuoensis was different from P. diversiseta by 46/508 bp in ITS, 83/529 bp in tub2, and 59/465 bp in tef1a. Morphologically, P. nannuoensis was different from P. diversiseta by having shorter and thinner conidia (P. nannuoensis: 21.7–27.2 × 3.6–5.0 vs. P. diversiseta: 27.0–34.0 × 5.5–8.0 µm), and the number of apical appendages (P. nannuoensis: 1–2 vs. P. diversiseta: 3–5). (Maharachchikumbura et al. 2012). Therefore, P estalotiopsis nannuoensis was identified as a new species of P estalotiopsis by morphological and phylogenetic comparison.

Pestalotiopsis rhaphiolepidis C.Z. Yin, Z.X. Zhang & X.G. Zhang, sp. nov.

MycoBank No: 851281

Fig. 4

Type. CHINA, Hainan Province, Jianfeng Town (18°42'35"N, 108°52'35"E), from diseased leaves of *Rhaphiolepis indica*, 11 Apr 2023, C.Z. Yin, Z.X. Zhang and X.G. Zhang, holotype HMAS 352669, ex-type living culture SAUCC367701.

Etymology. Referring to the name of the host plant *Rhaphiolepis indica*.

Figure 3. Pestalotiopsis nannuoensis (holotype: HMAS 352668) **a, b** the front and back of the colony after 14 days of culture on PDA **c** conidiomata on PDA **d**–**f** conidiophores and conidiogenous cells \mathbf{g} – \mathbf{k} conidia. Scale bars: 10 μ m (\mathbf{d} – \mathbf{k}).

Description. Conidiomata in culture on PDA, 600–1000 μm diam, globular, solitary, black conidial masses permeated above the mycelium. Conidiophores mostly degenerated into conidiogenous cells, simple, hyaline. Conidiogenous cells fusiform, rough, discrete, $9.8-17.1 \times 2.4-3.3$ μm. Conidia fusiform, straight or slightly curved, 4-septate, $18.0-23.1 \times 3.8-5.1$ μm; basal cell conical, hyaline, rough, thin-walled, 3.3-5.1 μm; three median cells subcylindrical, light brown or brown, rough, thick-walled, the first median cell from base 3.0-4.7 μm, the second median cell 3.4-5.3 μm, the third median cell 3.7-5.6 μm, together 10.1-15.6 μm; apical cell subcylindrical or conical, hyaline, smooth, thin-walled, 2.8-4.7 μm; basal appendage tubular, single, centric, straight or slightly bent, unbranched, 4.7-9.8 μm; apical appendages tubular, 2-3, straight or bent, unbranched, 5.2-18.5 μm. Sexual morph not observed.

Figure 4. Pestalotiopsis rhaphiolepidis (holotype: HMAS 352669) **a** leaves of host Rhaphiolepis indica **b**, **c** the front and back of the colony after 14 days of culture on PDA **d** conidiomata on PDA **e**–**g** conidiogenous cells and conidia **h**–**n** conidia. Scale bars: $10 \, \mu m \, (e-n)$.

Culture characteristics. After 7 days of dark cultivation at 25 °C on PDA, the colony diameter reached 90 mm, and the growth rate is 11.8–13.5 mm/day. Colonies filamentous to circular, flat, center raised, aerial mycelium on surface, with irregular edges, white, medium dense, fruiting bodies black; reverse white, multilayer rings from the middle to the edge.

Additional specimen examined. CHINA, Hainan Province, Jianfeng Town, from diseased leaves of *Rhaphiolepis indica*, 11 Apr 2023, C.Z. Yin, Z.X. Zhang and X.G. Zhang, living culture SAUCC367702.

Notes. According to phylogenetic trees based on ITS, tub2 and tef1a, Pestalotiopsis rhaphiolepidis sp. nov. was closely related to P. inflexa in a well support branch (ML/BI = 98/1). P. rhaphiolepidis was different from P. inflexa

by 9/508 bp in ITS, 30/529 bp in tub2, and 16/465 bp in tef1a. Morphologically, *P. rhaphiolepidis* was different from *P. inflexa* by having shorter and thinner conidia (*P. rhaphiolepidis*: $18.0-23.1 \times 3.8-5.1$ vs. *P. inflexa*: $24.0-31.0 \times 6.0-9.0 \mu m$) and shorter apical appendages (*P. rhaphiolepidis*: 5.2-18.5 vs. *P. inflexa*: $20.0-30.0 \mu m$) (Maharachchikumbura et al. 2011). Therefore, *Pestalotiopsis rhaphiolepidis* was identified as a new species of *Pestalotiopsis* by morphological and phylogenetic comparison.

Discussion

Pestalotiopsis fungi are widely distributed and have been found all over the world, with 12,072 samples and 59,207 sequences were included in the Global-Fungi database (https://globalfungi.com/, accessed on 26 Jun 2024; Asia, 58.81%, North America, 20.84%, Europe, 5.86%, Africa, 5.38%, South America, 4.49%, Australia, 3.59%, Pacific Ocean, 0.78%, Atlantic Ocean, 0.21%, Antarctica, 0.05%). In this study, we obtained six strains of *Pestalotiopsis* from diseased and rotted leaves collected from Yunnan and Hainan Provinces in China. Based on phylogenetic analysis and morphological characteristics, we identified six strains as three new species of Pestalotiopsis, P. aporosae-dioicae, P. nannuoensis and P. rhaphiolepidis. It is worth noting that the plant hosts of Pestalotiopsis fungi are abundant, such as Theaceae, Arecaceae, and Fagaceae (Maharachchikumbura et al. 2014; Jiang et al. 2022b). We first reported the new hosts of Aporosa dioica (Phyllanthaceae) and Rhaphiolepis indica (Rosaceae) by identifying the *Pestalotiopsis* fungi. This suggests that there were more potential new species of *Pestalotiopsis* to be discovered in these two host plants. Pestalotiopsis nannuoensis was found on rotted leaves and its host is unknown. Pestalotiopsis fungi are mostly plant pathogens, and the relationship between the three newly discovered species and their hosts and their effects on cash crops needs further study (Zhang et al. 2012a; Maharachchikumbura et al. 2013; Jayawardena et al. 2016; Liu et al. 2017; Yang et al. 2017; Diogo et al. 2021; Prasannath et al. 2021).

Since Steyaert introduced *Pestalotiopsis* into Sporocadaceae (Amphisphaeriales, Ascomycota) in 1949, more and more species of *Pestalotiopsis* have been discovered (Steyaert 1949; Akinsanmi et al. 2017; Liu et al. 2017; Nozawa et al. 2017; Ariyawansa and Hyde 2018; Jiang et al. 2018; Tibpromma et al. 2018; Tsai et al. 2018). However, due to the similarity of the spore structure, the classification of Pestalotiopsis is unclear, and the traditional identification method was very complicated work. With the development of molecular technology, the identification method combining morphology and phylogeny has been accepted by more and more taxonomists. Maharachchikumbura et al. (2014) applied phylogenetic analysis in the classification of Pestalotiopsis to make the classification more clearly. Therefore, phylogenetic analyses based on ITS, tub2 and tef1a, including maximum likelihood (ML) and Bayesian inference (BI), have been widely used. Meanwhile, the size of spores, length, position, origin and number of branches of apical appendages and basal appendages are important for the classification of Pestalotiopsis fungi. Taking several subjects in this study as examples, Pestalotiopsis aporosae-dioicae and P. rhaphiolepidis can be identified as new species by morphological comparison with other species in a well-supported clade (Maharachchikumbura et al. 2011, 2014). Although Pestalotiopsis nannuoensis was an independent clade, it had the basic characteristics of *Pestalotiopsis*, and was significantly different from several closely related species in spore size and number of apical appendages, so it was also identified as a new species (Maharachchikumbura et al. 2012). Based on the results of this study, we believe that we will isolate more potential *Pestalotiopsis* fungi in the future. With the development of biotechnology and the deepening of the research on *Pestalotiopsis* fungi, it has become an important research focus and direction to sequence the genome of *Pestalotiopsis* fungi, annotate its structure and function, and explore the types and applications of secondary metabolites.

Additional information

Conflict of interest

The authors have declared that no competing interests exist.

Ethical statement

No ethical statement was reported.

Funding

This research was funded by National Natural Science Foundation of China (nos. 31400019, U2002203, 32300011, 32370001).

Author contributions

Conceptualization: CY. Data curation: CY. Formal analysis: ZZ. Funding acquisition: XZ. Investigation: CY. Methodology: CY. Project administration: XZ. Resources: CY. Software: CY. Supervision: LM, SW. Validation: ZZ. Visualization: CY. Writing - original draft: CY. Writing - review and editing: CY.

Author ORCIDs

Changzhun Yin https://orcid.org/0009-0000-0034-2199
Zhaoxue Zhang https://orcid.org/0000-0002-4824-9716

Data availability

All of the data that support the findings of this study are available in the main text or Supplementary Information.

References

Akinsanmi OA, Nisa S, Jeff-Ego OS, Shivas RG, Drenth A (2017) Dry flower disease of macadamia in Australia caused by *Neopestalotiopsis macadamiae* sp. nov. and *Pestalotiopsis macadamiae* sp. nov. Plant Disease 101(1): 45–53. https://doi.org/10.1094/PDIS-05-16-0630-RE

Ariyawansa HA, Hyde KD (2018) Additions to *Pestalotiopsis* in Taiwan. Mycosphere 9(5): 999-1013. https://doi.org/10.5943/mycosphere/9/5/4

Ariyawansa HA, Hyde KD, Jayasiri SC, Buyck B, Chethana KWT, Dai DQ, Dai YC, Daranagama DA, Jayawardena RS, Lücking R, Ghobad-Nejhad M, Niskanen T, Thambugala KM, Voigt K, Zhao RL, Li G-J, Doilom M, Boonmee S, Yang ZL, Cai Q, Cui Y-Y, Bahkali AH, Chen J, Cui BK, Chen JJ, Dayarathne MC, Dissanayake AJ, Ekanayaka AH, Hashimoto A, Hongsanan S, Jones EBG, Larsson E, Li WJ, Li Q-R, Liu JK, Luo

- ZL, Maharachchikumbura SSN, Mapook A, McKenzie EHC, Norphanphoun C, Konta S, Pang KL, Perera RH, Phookamsak R, Phukhamsakda C, Pinruan U, Randrianjohany E, Singtripop C, Tanaka K, Tian CM, Tibpromma S, Abdel-Wahab MA, Wanasinghe DN, Wijayawardene NN, Zhang J-F, Zhang H, Abdel-Aziz FA, Wedin M, Westberg M, Ammirati JF, Bulgakov TS, Lima DX, Callaghan TM, Callac P, Chang C-H, Coca LF, Dal-Forno M, Dollhofer V, Fliegerová K, Greiner K, Griffith GW, Ho H-M, Hofstetter V, Jeewon R, Kang JC, Wen T-C, Kirk PM, Kytövuori I, Lawrey JD, Xing J, Li H, Liu ZY, Liu XZ, Liimatainen K, Lumbsch HT, Matsumura M, Moncada B, Nuankaew S, Parnmen S, de Azevedo Santiago ALCM, Sommai S, Song Y, de Souza CAF, de Souza-Motta CM, Su HY, Suetrong S, Wang Y, Wei S-F, Wen TC, Yuan HS, Zhou LW, Réblová M, Fournier J, Camporesi E, Luangsa-ard JJ, Tasanathai K, Khonsanit A, Thanakitpipattana D, Somrithipol S, Diederich P, Millanes AM, Common RS, Stadler M, Yan JY, Li XH, Lee HW, Nguyen TTT, Lee HB, Battistin E, Marsico O, Vizzini A, Vila J, Ercole E, Eberhardt U, Simonini G, Wen H-A, Chen X-H, Miettinen O, Spirin V, Hernawati (2015) Fungal diversity notes 111–252—Taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 75(1): 27–274. https://doi.org/10.1007/s13225-015-0346-5
- Biju CN, Peeran MF, Gowri R (2018) Identification and characterization of *Neopestalotiopsis* clavispora associated with leaf blight of small cardamom (*Elettaria cardamomum* Maton). Journal of Phytopathology 166(7–8): 532–546. https://doi.org/10.1111/jph.12715
- Bonthond G, Sandoval-Denis M, Groenewald J, Crous PW (2018) *Seiridium* (Sporocadaceae): An important genus of plant pathogenic fungi. Persoonia 40(1): 96–118. https://doi.org/10.3767/persoonia.2018.40.04
- Carbone I, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91(3): 553–556. https://doi.org/10.1080/0027 5514.1999.12061051
- Carvalho DCC, Oliveira RM, Marques MG, Milan MD, Pinho DB, Dianese ÉC (2019) Molecular, morphophysiological and pathogenic characterization of eucalypt *Pestalotiopsis grandis-urophylla* isolates, a new species. Tropical Plant Pathology 44(2): 132–139. https://doi.org/10.1007/s40858-019-00277-0
- Chaiwan N, Wanasinghe DN, Mapook A, Jayawardena RS, Norphanphoun C, Hyde KD (2020) Novel species of *Pestalotiopsis* fungi on *Dracaena* from Thailand. Mycology 11(4): 306–315. https://doi.org/10.1080/21501203.2020.1801873
- Chen YY, Maharachchikumbura SSN, Liu JK, Hyde KD, Nanayakkara RR, Zhu GS, Liu ZY (2017) Fungi from Asian Karst formations I. *Pestalotiopsis photinicola* sp. nov., causing leaf spots of *Photinia serrulata*. Mycosphere 8(1): 103–110. https://doi.org/10.5943/mycosphere/8/1/9
- Crous PW, Wingfield MJ, Burgess TI, Hardy GESTJ, Barber PA, Alvarado P, Barnes CW, Buchanan PK, Heykoop M, Moreno G, Thangavel R, Van der spuy S, Barili A, Barrett S, Cacciola SO, Cano-Lira JF, Crane C, Decock C, Gibertoni TB, Guarro J, Guevara-Suarez M, Hubka V, Kolařík M, Lira CRS, Ordoñez ME, Padamsee M, Ryvarden L, Soares AM, Stchigel AM, Sutton DA, Vizzini A, Weir BS, Acharya K, Aloi F, Baseia IG, Blanchette RA, Bordallo JJ, Bratek Z, Butler T, Cano-Canals J, Carlavilla JR, Chander J, Cheewangkoon R, Cruz RHSF, Da silva M, Dutta AK, Ercole E, Escobio V, Esteve-Raventós F, Flores JA, Gené J, Góis JS, Haines L, Held BW, Horta jung M, Hosaka K, Jung T, Jurjević Ž, Kautman V, Kautmanova I, Kiyashko AA, Kozanek M, Kubátová A, Lafourcade M, La spada F, Latha KPD, Madrid H, Malysheva EF, Manimohan P, Manjón JL, Martín MP, Mata M, Merényi Z, Morte A, Nagy I, Normand A-C, Paloi S, Pattison N, Pawłowska J, Pereira OL, Petterson ME, Picillo B, Raj KNA, Roberts A, Rodríguez A, Rodríguez-Campo FJ, Romański M, Ruszkiewicz-Michalska M, Scanu B, Schena L,

Semelbauer M, Sharma R, Shouche YS, Silva V, Staniaszek-Kik M, Stielow JB, Tapia C, Taylor PWJ, Toome-Heller M, Vabeikhokhei JMC, van Diepeningen AD, Van Hoa N, Van Tri M, Wiederhold NP, Wrzosek M, Zothanzama J, Groenewald JZ (2017) Fungal Planet description sheets: 558–624. Persoonia 38(1): 240–384. https://doi.org/10.3767/003158517X698941

- Crous PW, Wingfield MJ, Chooi YH, Gilchrist CLM, Lacey E, Pitt JI, Roets F, Swart WJ, Cano-Lira JF, Valenzuela-Lopez N, Hubka V, Shivas RG, Stchigel AM, Holdom DG, Jurjević Ž, Kachalkin AV, Lebel T, Lock C, Martín MP, Tan YP, Tomashevskaya MA, Vitelli JS, Baseia IG, Bhatt VK, Brandrud TE, De Souza JT, Dima B, Lacey HJ, Lombard L, Johnston PR, Morte A, Papp V, Rodríguez A, Rodríguez-Andrade E, Semwal KC, Tegart L, Abad ZG, Akulov A, Alvarado P, Alves A, Andrade JP, Arenas F, Asenjo C, Ballarà J, Barrett MD, Berná LM, Berraf-Tebbal A, Bianchinotti MV, Bransgrove K, Burgess TI, Carmo FS, Chávez R, Čmoková A, Dearnaley JDW, Santiago ALCMA, Freitas-Neto JF, Denman S, Douglas B, Dovana F, Eichmeier A, Esteve-Raventós F, Farid A, Fedosova AG, Ferisin G, Ferreira RJ, Ferrer A, Figueiredo CN, Figueiredo YF, Reinoso-Fuentealba CG, Garrido-Benavent I, Cañete-Gibas CF, Gil-Durán C, Glushakova AM, Gonçalves MFM, González M, Gorczak M, Gorton C, Guard FE, Guarnizo AL, Guarro J, Gutiérrez M, Hamal P, Hien LT, Hocking AD, Houbraken J, Hunter GC, Inácio CA, Jourdan M, Kapitonov VI, Kelly L, Khanh TN, Kisło K, Kiss L, Kiyashko A, Kolařík M, Kruse J, Kubátová A, Kučera V, Kučerová I, Kušan I, Lee HB, Levicán G, Lewis A, Liem NV, Liimatainen K, Lim HJ, Lyons MN, Maciá-Vicente JG, Magaña-Dueñas V, Mahigues R, Malysheva EF, Marbach PAS, Marinho P, Matočec N, McTaggart AR, Mešić A, Morin L, Muñoz-Mohedano JM, Navarro-Ródenas A, Nicolli CP, Oliveira RL, Otsing E, Ovrebo CL, Pankratov TA, Paños A, Paz-Conde A, Pérez-Sierra A, Phosri C, Pintos A, Pošta A, Prencipe S, Rubio E, Saitta A, Sales LS, Sanhueza L, Shuttleworth LA, Smith J, Smith ME, Spadaro D, Spetik M, Sochor M, Sochorová Z, Sousa JO, Suwannasai N, Tedersoo L, Thanh HM, Thao LD, Tkalčec Z, Vaghefi N, Venzhik AS, Verbeken A, Vizzini A, Voyron S, Wainhouse M, Whalley AJS, Wrzosek M, Zapata M, Zeil-Rolfe I, Groenewald JZ (2020) Fungal Planet description sheets: 1042-1111. Persoonia 44(1): 301–459. https://doi.org/10.3767/persoonia.2020.44.11
- Crous PW, Boers J, Holdom D, Steinrucken TV, Tan YP, Vitelli JS (2022) Fungal Planet description sheets: 1383–1435. Persoonia 48(1): 261–371. https://doi.org/10.3767/persoonia.2022.48.08
- Das K, Lee SY, Jung HY (2020) *Pestalotiopsis kaki* sp. nov., a novel species isolated from persimmon tree (*Diospyros kaki*) bark in Korea. Mycobiology 49(1): 54–60. https://doi.org/10.1080/12298093.2020.1852703
- De Silva NI, Maharachchikumbura SSN, Thambugala KM, Bhat DJ, Karunarathna SC, Tennakoon DS, Phookamsak R, Jayawardena RS, Lumyong S, Hyde KD (2021) Morpho-molecular taxonomic studies reveal a high number of endophytic fungi from *Magnolia candolli* and *M. garrettii* in China and Thailand. Mycosphere 12(1): 163–237. https://doi.org/10.5943/mycosphere/12/1/3
- Diogo E, Gonçalves CI, Silva AC, Valente C, Bragança H, Phillips AJL (2021) Five new species of *Neopestalotiopsis* associated with diseased *Eucalyptus spp.* in Portugal. Mycological Progress 20(11): 1441–1456. https://doi.org/10.1007/s11557-021-01741-5
- Geng K, Zhang B, Hyde KD, Kang JC, Wang Y (2013) A new species of *Pestalotiopsis* from leaf spots of *Licuala grandis* from Hainan, China. Phytotaxa 88(3): 49–54. https://doi.org/10.11646/phytotaxa.88.3.2
- Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology 61(4): 1323–1330. https://doi.org/10.1128/aem.61.4.1323-1330.1995

- Gu M, Hu DW, Han B, Jiang N, Tian CM (2021) *Pestalotiopsis abietis* sp. nov. from *Abies fargesii* in China. Phytotaxa 509(1): 93–105. https://doi.org/10.11646/phytotaxa.509.1.4
- Gu R, Bao DF, Shen HW, Su XJ, Li YX, Luo ZL (2022) Endophytic *Pestalotiopsis* species associated with *Rhododendron* in Cangshan Mountain, Yunnan Province, China. Frontiers in Microbiology 13: 1016782. https://doi.org/10.3389/fmicb.2022.1016782
- Guo LD, Hyde KD, Liew ECY (2000) Identification of endophytic fungi from *Livistona chinensis* based on morphology and rDNA sequences. The New Phytologist 147(3): 617–630. https://doi.org/10.1046/j.1469-8137.2000.00716.x
- Hsu SY, Xu YC, Lin YC, Chuang WY, Lin SR, Stadler M, Tangthirasunun N, Cheewangkoon R, AL-Shwaiman HA, Elgorban AM, Ariyawansa HA (2024) Hidden diversity of *Pestalotiopsis* and *Neopestalotiopsis* (Amphisphaeriales, Sporocadaceae) species allied with the stromata of entomopathogenic fungi in Taiwan. MycoKeys 101: 275–312. https://doi.org/10.3897/mycokeys.101.113090
- Huanaluek N, Jayawardena RS, Maharachchikumbura SSN, Harishchandra DL (2021) Additions to pestalotioid fungi in Thailand: *Neopestalotiopsis hydeana* sp. nov. and *Pestalotiopsis hydei* sp. nov. Phytotaxa 479(1): 23–43. https://doi.org/10.11646/phytotaxa.479.1.2
- Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogeny. Bio-informatics (Oxford, England) 17(8): 754–755. https://doi.org/10.1093/bioinformatics/17.8.754
- Hyde KD, Jeewon R, Chen YJ, Bhunjun CS, Calabon MS, Jiang HB, Lin CG, Norphanphoun C, Sysouphanthong P, Pem D, Tibpromma S, Zhang Q, Doilom M, Jayawardena RS, Liu J-K, Maharachchikumbura SSN, Phukhamsakda C, Phookamsak R, Al-Sadi AM, Thongklang N, Wang Y, Gafforov Y, Gareth Jones EB, Lumyong S (2020) The numbers of fungi: Is the descriptive curve flattening? Fungal Diversity 103(1): 219–271. https://doi.org/10.1007/s13225-020-00458-2
- Jayawardena RS, Liu M, Maharachchikumbura SSN, Zhang W, Xing QK, Hyde KD, Nilthong S, Li XH, Yan JY (2016) *Neopestalotiopsis vitis* sp. nov.causing grapevine leaf spot in China. Phytotaxa 258(1): 63–74. https://doi.org/10.11646/phytotaxa.258.1.4
- Jiang N, Bonthond G, Fan XL, Tian CM (2018) *Neopestalotiopsis rosicola* sp. nov. causing stem canker of *Rosa chinensis* in China. Mycotaxon 133(2): 271–283. https://doi.org/10.5248/133.271
- Jiang N, Tian LY, Xue H, Piao CG, Li Y (2022a) *Pestalotiopsis sonneratiae* sp. nov. from China. Mycotaxon 137(4): 725–735. https://doi.org/10.5248/137.725
- Jiang N, Voglmayr H, Xue H, Piao CG, Li Y (2022b) Morphology and Phylogeny of *Pestalotiopsis* (Sporocadaceae, Amphisphaeriales) from Fagaceae Leaves in China. Microbiology Spectrum 10(6): e03272–e22. https://doi.org/10.1128/spectrum.03272-22
- Joshi SD, Sanjay R, Baby UI, Mandal A (2009) Molecular characterization of *Pestalotio-psis* spp. associated with tea (*Camellia sinensis*) in southern India using RAPD and ISSR markers. Indian Journal of Biotechnology 8: 377–383. https://doi.org/10.1089/hyb.2009.0056.MAb
- Katoh K, Rozewicki J, Yamada KD (2019) MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20(4): 1160–1166. https://doi.org/10.1093/bib/bbx108
- Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution 33(7): 1870–1874. https://doi.org/10.1093/molbev/msw054
- Li GJ, Hyde KD, Zhao RL, Hongsanan S, Abdel-Aziz FA, Abdel-Wahab MA, Alvarado P, Alves-Silva G, Ammirati JF, Ariyawansa HA, Baghela A, Bahkali AH, Beug M, Bhat DJ, Bojantchev D, Boonpratuang T, Bulgakov TS, Camporesi E, Boro MC, Ceska O,

Chakraborty D, Chen JJ, Chethana KWT, Chomnunti P, Consiglio G, Cui BK, Dai DQ, Dai YC, Daranagama DA, Das K, Dayarathne MC, De Crop E, De Oliveira RJV, de Souza CAF, de Souza JI, Dentinger BTM, Dissanayake AJ, Doilom M, Drechsler-Santos ER, Ghobad-Nejhad M, Gilmore SP, Góes-Neto A, Gorczak M, Haitjema CH, Hapuarachchi KK, Hashimoto A, He MQ, Henske JK, Hirayama K, Iribarren MJ, Jayasiri SC, Jayawardena RS, Jeon SJ, Jerônimo GH, Jesus AL, Jones EBG, Kang JC, Karunarathna SC, Kirk PM, Konta S, Kuhnert E, Langer E, Lee HS, Lee HB, Li WJ, Li XH, Liimatainen K, Lima DX, Lin CG, Liu JK, Liu XZ, Liu ZY, Luangsa-ard JJ, Lücking R, Lumbsch HT, Lumyong S, Leaño EM, Marano AV, Matsumura M, McKenzie EHC, Mongkolsamrit S, Mortimer PE, Nguyen TTT, Niskanen T, Norphanphoun C, O'Malley MA, Parnmen S, Pawłowska J, Perera RH, Phookamsak R, Phukhamsakda C, Pires-Zottarelli CLA, Raspé O, Reck MA, Rocha SCO, de Santiago ALCMA, Senanayake IC, Setti L, Shang QJ, Singh SK, Sir EB, Solomon KV, Song J, Srikitikulchai P, Stadler M, Suetrong S, Takahashi H, Takahashi T, Tanaka K, Tang LP, Thambugala KM, Thanakitpipattana D, Theodorou MK, Thongbai B, Thummarukcharoen T, Tian Q, Tibpromma S, Verbeken A, Vizzini A, Vlasák J, Voigt K, Wanasinghe DN, Wang Y, Weerakoon G, Wen HA, Wen TC, Wijayawardene NN, Wongkanoun S, Wrzosek M, Xiao YP, Xu JC, Yan JY, Yang J, Da Yang S, Hu Y, Zhang JF, Zhao J, Zhou LW, Peršoh D, Phillips AJL, Maharachchikumbura SSN (2016) Fungal diversity notes 253–366: Taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 78(1): 1-237. https://doi.org/10.1007/s13225-016-0366-9

- Li LL, Yang Q, Li H (2021) Morphology, phylogeny, and pathogenicity of pestalotioid species on *Camellia oleifera* in China. Journal of Fungi (Basel, Switzerland) 7(12): 1080. https://doi.org/10.3390/jof7121080
- Li H, Manawasinghe IS, Zhang YX, Senanayake IC (2023) Taxonomic and phylogenic appraisal of *Pestalotiopsis linguae* sp. nov., and a new record of *P. nanjingensis* from *Pyrrosia lingua* (Polypodiaceae) in Southern China. Phytotaxa 587(3): 229–250. https://doi.org/10.11646/phytotaxa.587.3.3
- Li H, Peng BY, Xie JY, Bai YQ, Li DW, Zhu LH (2024) *Pestalotiopsis jiangsuensis* sp. nov. causing needle blight on *Pinus massoniana* in China. Journal of Fungi 10(3): 230. https://doi.org/10.3390/jof10030230
- Liu JK, Hyde KD, Jones EG, Ariyawansa HA, Bhat DJ, Boonmee S, Maharachchikumbura S, McKenzie EHC, Phookamsak R, Phukhamsakda C, Shenoy BD, Abdel-Wahab MA, Buyck B, Chen J, Chethana KWT, Singtripop C, Dai DQ, Dai YC, Daranagama DA, Dissanayake AJ, Doilom M, D'souza MJ, Fan XL, Goonasekara ID, Hirayama K, Hongsanan S, Jayasiri SC, Jayawardena RS, Karunarathna SC, Li WJ, Mapook A, Norphanphoun C, Pang KL, Perera RH, Peršoh D, Pinruan U, Senanayake IC, Somrithipol S, Suetrong S, Tanaka K, Thambugala KM, Tian Q, Tibpromma S, Udayanga D, Wijayawardene NN, Wanasinghe D, Wisitrassameewong K, Zeng XY, Abdel-Aziz FA, Adamčík S, Bahkali AH, Boonyuen N, Bulgakov T, Callac P, Chomnunti P, Greiner K, Hashimoto A, Hofstetter V, Kang JC, Lewis D, Li XH, Liu XZ, Liu ZY, Matsumura M, Mortimer PE, Rambold G, Randrianjohany E, Sato G, Sri-Indrasutdhi V, Tian CM, Verbeken A, von Brackel W, Wang Y, Wen TC, Xu JC, Yan JY, Zhao RL, Camporesi E (2015) Taxonomic and phylogenetic contributions to fungal species. Fungal Diversity 72(1): 1–197. https://doi.org/10.1007/s13225-015-0324-y
- Liu F, Hou LW, Raza M, Cai L (2017) *Pestalotiopsis* and allied genera from *Camellia*, with description of 11 new species from China. Scientific Reports 7(1): 1–19. https://doi.org/10.1038/s41598-017-00972-5
- Liu F, Bonthond G, Groenewald JZ, Cai L, Crous PW (2019) Sporocadaeceae, a family of coelomycetous fungi with appendage bearing conidia. Studies in Mycology 92(1): 287–415. https://doi.org/10.1016/j.simyco.2018.11.001

- Ma XY, Maharachchikumbura SS, Chen BW, Hyde KD, Mckenzie EH, Chomnunti P, Kang JC (2019) Endophytic pestalotiod taxa in *Dendrobium orchids*. Phytotaxa 419(3): 268–286. https://doi.org/10.11646/phytotaxa.419.3.2
- Maharachchikumbura SSN, Guo LD, Chukeatirote E, Ekachai C, Bahkali AH, Hyde KD (2011) *Pestalotiopsis*—Morphology, phylogeny, biochemistry and diversity. Fungal Diversity 50(1): 167–187. https://doi.org/10.1007/s13225-011-0125-x
- Maharachchikumbura SSN, Guo LD, Cai L, Chukeatirote E, Wu WP, Sun X, Hyde KD (2012) A multi-locus backbone tree for *Pestalotiopsis*, with a polyphasic characterization of 14 new species. Fungal Diversity 56(1): 95–129. https://doi.org/10.1007/s13225-012-0198-1
- Maharachchikumbura SSN, Guo LD, Chukeatirote E, McKenzie EHC, Hyde KD (2013) A destructive new disease of *Syzygium samarangense* in Thailand caused by the new species *Pestalotiopsis samarangensis*. Tropical Plant Pathology 38(3): 227–235. https://doi.org/10.1590/S1982-56762013005000002
- Maharachchikumbura SSN, Hyde KD, Groenewald JZ, Xu J, Crous PW (2014) *Pestalotiopsis* revisited. Studies in Mycology 79(1): 121–186. https://doi.org/10.1016/j.simyco.2014.09.005
- Miller MA, Pfeiffer W, Schwartz T (2012) The CIPRES science gateway: Enabling high-impact science for phylogenetics researchers with limited resources. Association for Computing Machinery 8: 1–8. https://doi.org/10.1145/2335755.2335836
- Monteiro P, Gonçalves MFM, Pinto G, Silva B, Martín-García J, Diez JJ, Alves A (2021) Three novel species of fungi associated with pine species showing needle blight-like disease symptoms. European Journal of Plant Pathology 162(1): 183–202. https://doi.org/10.1007/s10658-021-02395-5
- Norphanphoun C, Jayawardena RS, Chen Y, Wen TC, Meepol W, Hyde KD (2019) Morphological and phylogenetic characterization of novel pestalotioid species associated with mangroves in Thailand. Mycosphere 10(1): 531–578. https://doi.org/10.5943/mycosphere/10/1/9
- Nozawa S, Yamaguchi K, Van Hop D, Phay N, Ando K, Watanabe K (2017) Identification of two new species and asexual morph from the genus *Pseudopestalotiopsis*. Mycoscience 58(5): 328–337. https://doi.org/10.1016/j.myc.2017.02.008
- Nylander JAA (2001) MrModelTest v. 2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.
- O'Donnell K, Kistler HC, Cigelnik E, Ploetz RC (1998) Multiple evolutionary origins of the fungus causing Panama disease of banana: Concordant evidence from nuclear and mitochondrial gene genealogies. Proceedings of the National Academy of Sciences of the United States of America 95(5): 2044–2049. https://doi.org/10.1073/pnas.95.5.2044
- Peng C, Crous PW, Jiang N, Fan XL, Liang YM, Tian CM (2022) Diversity of Sporocadaceae (pestalotioid fungi) from *Rosa* in China. Persoonia 49(1): 201–260. https://doi.org/10.3767/persoonia.2022.49.07
- Prasannath K, Shivas RG, Galea VJ, Akinsanmi OA (2021) *Neopestalotiopsis* species associated with flower diseases of *Macadamia integrifolia* in Australia. Journal of Fungi 7(9): 771. https://doi.org/10.3390/jof7090771
- Ronquist F, Huelsenbeck JP (2012) MrBayes 3: Bayesian Phylogenetic Inference under Mixed Models. Bioinformatics 19(12): 1572–1574. https://doi.org/10.1093/bioinformatics/btg180
- Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3): 539–542. https://doi.org/10.1093/sysbio/sys029

- Sajeewa SN (2013) *Pestalotiopsis anacardiacearum* sp. nov. (Amphisphaeriaceae) has an intricate relationship with *Penicillaria jocosatrix* the mango tip borer. Phytotaxa 99(2): 49–57. https://doi.org/10.11646/phytotaxa.99.2.1
- Silva AC, Diogo E, Henriques J, Ramos AP, Sandoval-Denis M, Crous PW, Bragança H (2020) *Pestalotiopsis pini* sp. nov., an emerging pathogen on stone pine (*Pinus pinea* L.). Forests 11(8): 805. https://doi.org/10.3390/f11080805
- Song Y, Geng K, Hyde KD, Zhao W, Wei JG, Kang JC, Wang Y (2013) Two new species of *Pestalotiopsis* from Southern China. Phytotaxa 126(1): 22–30. https://doi.org/10.11646/phytotaxa.126.1.2
- Song Y, Tangthirasunun N, Maharachchikumbura SNN, Jiang YL, Xu JJ, Hyde KD, Wang Y (2014) Novel *Pestalotiopsis* species from Thailand point to the rich undiscovered diversity of this chemically creative genus. Cryptogamie. Mycologie 35(2): 139–149. https://doi.org/10.7872/crym.v35.iss2.2014.139
- Stamatakis A (2014) RAxML Version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9): 1312–1313. https://doi.org/10.1093/bioinformatics/btu033
- Steyaert RL (1949) Contribution a l'étude monographique de *Pestalotia* de Not. et *Monochaetia* Sacc. (*Truncatella* gen. nov. et *Pestalotiopsis* gen. nov.). Bulletin du Jardin botanique de l'État a Bruxelles 19: 285–354. https://doi.org/10.2307/3666710
- Sun YR, Jayawardena RS, Sun JE, Wanga Y (2023) Pestalotioid species associated with medicinal plants in southwest China and Thailand. Microbiology Spectrum 11(1): e0398722. https://doi.org/10.1128/spectrum.03987-22
- Tian S, Xu R, Bhunjun CS, Su W, Hyde KD, Li Y, Fu YP, Phukhamsakda C (2022) Combination of morphological and molecular data support *Pestalotiopsis eleutherococci* (Sporocadaceae) as a new species. Phytotaxa 566(1): 105–120. https://doi.org/10.11646/phytotaxa.566.1.6
- Tibpromma S, Hyde KD, McKenzie EHC, Bhat DJ, Phillips AJL, Wanasinghe DN, Samarakoon MC, Jayawardena R, Dissanayake AJ, Tennakoon DS, Doilom M, Phookamsak R, Tang AMC, Xu J, Mortimer PE, Promputtha I, Maharachchikumbura SSN, Khan S, Karunarathna SC (2018) Fungal diversity notes 840–928: Microfungi associated with Pandanaceae. Fungal Diversity 93(1): 1–160. https://doi.org/10.1007/s13225-018-0408-6
- Tibpromma S, Mortimer PE, Karunarathna SC, Zhan F, Xu J, Promputtha I, Yan K (2019) Morphology and multi-gene phylogeny reveal *Pestalotiopsis pinicola* sp. nov. and a new host record of *Cladosporium anthropophilum* from edible pine (*Pinus armandii*) seeds in Yunnan province, China. Pathogens (Basel, Switzerland) 8(4): 285. https://doi.org/10.3390/pathogens8040285
- Tsai I, Maharachchikumbura SSN, Hyde KD, Ariyawansa HA (2018) Molecular phylogeny, morphology and pathogenicity of *Pseudopestalotiopsis* species of Ixora in Taiwan. Mycological Progress 17(8): 941–952. https://doi.org/10.1007/s11557-018-1404-7
- Wang YC, Xiong F, Lu QH, Hao XY, Zheng MX, Wang L, Li NN, Ding CQ, Wang XC, Yang YJ (2019) Diversity of *Pestalotiopsis*-Like Species Causing Gray Blight Disease of Tea Plants (*Camellia sinensis*) in China, Including two Novel *Pestalotiopsis* Species, and Analysis of Their Pathogenicity. Plant Disease 103(10): 2548–2558. https://doi.org/10.1094/PDIS-02-19-0264-RE
- Wang RB, Chen SZ, Zheng BW, Liu PQ, Li B, Weng QY, Chen QH (2021) Occurrence of leaf spot disease caused by *Neopestalotiopsis clavispora* on *Taxus chinensis* in China. Forest Pathology 49(5): e12540. https://doi.org/10.1111/efp.12540

- Wang S, Liu X, Xiong C, Gao S, Xu W, Zhao L, Song C, Liu X, James TY, Li Z, Zhang X (2023) ASF1 regulates asexual and sexual reproduction in *Stemphylium eturmiunum* by DJ-1 stimulation of the PI3K/AKT signaling pathway. Fungal Diversity 123(1): 159–176. https://doi.org/10.1007/s13225-023-00528-1
- Wang Y, Tsui KM, Chen S, You C (2024) Diversity, pathogenicity and two new species of pestalotioid fungi (Amphisphaeriales) associated with Chinese Yew in Guangxi, China. MycoKeys 102: 201–224. https://doi.org/10.3897/mycokeys.102.113696
- Watanabe K, Motohashi K, Ono Y (2010) Description of *Pestalotiopsis pallidotheae*: A new species from Japan. Mycoscience 51(3): 182–188. https://doi.org/10.1007/S10267-009-0025-Z
- Watanabe K, Nozawa S, Hsiang T, Callan B (2018) The cup fungus *Pestalopezia brunneo-pruinosa* is *Pestalotiopsis gibbosa* and belongs to Sordariomycetes. PLOS ONE 13(6): e0197025. https://doi.org/10.1371/journal.pone.0197025
- Wei JG, Phan CK, Wang L, Xu T, Luo JT, Sun X, Guo LD (2013) *Pestalotiopsis yunnanensis* sp. nov., an endophyte from *Podocarpus macrophyllus* (Podocarpaceae) based on morphology and ITS sequence data. Mycological Progress 12(3): 563–568. https://doi.org/10.1007/s11557-012-0863-5
- White TJ, Bruns TD, Lee SB (1990) Taylor JM Amplification and direct sequencing of fungal ribosomal rna genes for phylogenetics. PCR Protocols-A Guide to Methods and Applications: 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
- Xiong YR, Manawasinghe IS, Maharachchikumbura SSN, Lu L, Dong ZY, Xiang MM, Xu B (2022) *Pestalotioid* species associated with palm species from Sothern China. Current Research in Environmental & Applied Mycology 12(1): 285–321. https://doi.org/10.5943/cream/12/1/18 [Journal of Fungal Biology]
- Yang LN, Miao XY, Bai QR, Wang MQ, Gu ML, Zhao TC (2017) *Neopestalotiopsis clavispora* causing leaf spot on *Phedimus aizoon* var. *latifolius*, a new disease in China. Plant Disease 101(11): 1952. https://doi.org/10.1094/PDIS-03-17-0422-PDN
- Zhang YM, Maharachchikumbura SSN, Mckenzie EHC, Hyde KD (2012a) A novel species of *Pestalotiopsis* causing leaf spots of *Trachycarpus fortunei*. Cryptogamie. Mycologie 33(3): 311–318. https://doi.org/10.7872/crym.v33.iss3.2012.311
- Zhang YM, Maharachchikumbura SSN, Wei JG, McKenzie EHC, Hyde KD (2012b) *Pestalotiopsis camelliae*, a new species associated with grey blight of *Camellia japonica* in China. Sydowia 64(2): 335–344. https://doi.org/10.3109/13693786. 2012.695458
- Zhang YM, Maharachchikumbura SSN, Tian Q, Hyde KD (2013) *Pestalotiopsis* species on ornamental plants in Yunnan Province, China. Sydowia 65: 113–128. https://doi.org/10.1016/j.riam.2013.01.005
- Zhang ZX, Liu RY, Liu SB, Mu TC, Zhang XG, Xia JW (2022) Morphological and phylogenetic analyses reveal two new species of Sporocadaceae from Hainan, China. MycoKeys 88: 171–192. https://doi.org/10.3897/mycokeys.88.82229
- Zhang ZX, Zhang J, Li DH, Xia JW, Zhang XG (2023) Morphological and phylogenetic analyses reveal three new species of *Pestalotiopsis* (Sporocadaceae, Amphisphaeriales) from Hainan, China. Microorganisms 11(7): 1627. https://doi.org/10.3390/microorganisms11071627
- Zhao GC, Li N (1995) Thirty-four species of *Pestalotiopsis* in Yunnan. Journal of Northeast Forestry University 23(4): 21–27.
- Zhou YK, Li FP, Hou CL (2018) *Pestalotiopsis lijiangensis* sp. nov., a new endophytic fungus from Yunnan, China. Mycotaxon 133(3): 513–522. https://doi.org/10.5248/133.513

Supplementary material 1

Original and spliced sequences of three genes of all strains of the genus Pestalotiopsis for phylogenetic analysis

Authors: Changzhun Yin, Zhaoxue Zhang, Shi Wang, Liguo Ma, Xiuguo Zhang

Data type: zip

Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.

Link: https://doi.org/10.3897/mycokeys.107.122026.suppl1