Chapter 1

1.1

Exercise 1A

- $2p^2$ $3x^{-2}$ $6x^5$ y^{10} p^2 e k^5 $5x^8$ $6a^{-9}$ $2p^{-7}$ $3a^2b^{-2}$ $2a^3$ **n** $24x^{11}$ $63a^{12}$ **p** $32y^6$ **m** $27x^8$
- \mathbf{q} $4a^6$ \mathbf{r} $6a^{12}$ **2** \mathbf{a} x^5 \mathbf{b} x^{-2}
 - **a** x^5 **b** x^{-2} **c** x^4 **d** x^3 **e** x^5 **f** $12x^0 = 12$ **g** $3x^{\frac{1}{2}}$ **h** 5x **i** $6x^{-1}$
- 3 **a** ± 5 **b** ± 9 **c** 3 **d** $\frac{1}{16}$ **e** $\pm \frac{1}{3}$ **f** $\frac{1}{125}$ **g** 1 **h** ± 6 **i** $\pm \frac{125}{64}$ **j** $\frac{9}{4}$ **k** $\frac{5}{6}$ **l** $\frac{64}{49}$

1.2

Exercise 1B

 $2\sqrt{7}$ $6\sqrt{2}$ $5\sqrt{2}$ $4\sqrt{2}$ **5** 3√10 **6** $\sqrt{3}$ **7** √3 $6\sqrt{5}$ $7\sqrt{2}$ $12\sqrt{7}$ $-3\sqrt{7}$ $9\sqrt{5}$ $23\sqrt{5}$ **14** 2 $19\sqrt{3}$ $\frac{\sqrt{11}}{11}$ $\frac{\sqrt{2}}{2}$ $\frac{1}{2}$ $\frac{1}{4}$

1.3

Exercise 1C

- 1 **a** $\log_4 256 = 4$ **b** $\log_3 (\frac{1}{9}) = -2$ **c** $\log_{10} 10000000 = 6$ **d** $\log_{11} 11 = 1$ 2 **a** $2^4 = 16$ **b** $5^2 = 25$ **c** $9^{\frac{1}{2}} = 3$ **d** $5^{-1} = 0.2$
- **c** $9^{2} 3$ **d** $5^{2} 0.2$ **e** $10^{5} = 100000$ **3 a** 3 **b** 2 **c** 7 **d** 1 **e** 6 **f** $\frac{1}{2}$ **g** -1 **h** 10

 4
 a
 625
 b
 9
 c
 7
 d
 2

 5
 a
 1.30
 b
 0.602
 c
 3.85
 d
 -0.105

 6
 a
 1.04
 b
 1.55
 c
 -0.523
 d
 3.00

1.4

Exercise 1D

- 1a $\log_2 21$ b $\log_2 9$ c $\log_5 80$ d $\log_6 (\frac{68}{81})$ e $\log_{10} 120$ 2a $\log_2 8 = 3$ b $\log_6 36 = 2$ c $\log_{12} 144 = 2$ d $\log_8 2 = \frac{1}{3}$
- **e** $\log_{10} 10 = 1$ **3 a** $3 \log_a x + 4 \log_a y + \log_a z$
 - **b** $5 \log_a x 2 \log_a y$ **c** $2 + 2 \log_a x$
 - $\mathbf{d} \quad \log_a x + \frac{1}{2} \log_a y \log_a z$
 - $\mathbf{e} \quad \frac{1}{2} + \frac{1}{2} \log_a$

1.5

Exercise 1E

1a2.460b3.465c4.248d0.458e0.7742a1.27b2.09c0.721a $\frac{1}{2}$, 512e $\frac{1}{16}$, $\frac{1}{4}$ 3a6.23b2.10c0.431d1.664a $\frac{1}{2}$, 512b $\frac{1}{16}$, $\frac{1}{4}$ c2.52

1.6

Exercise 1F

1 $y = \left(\frac{1}{4}\right)^{x}$ $y = 6^{x}$ $y = 4^{x}$ (b) (a) (c) x

2

NB $y = \log_3 x$ is a reflection of $y = 3^x$ in the line y = x. $y = \left(\frac{1}{3}\right)^{x}$ is $y = 3^{-x}$

3

- **a** $y = 1^x = 1$
- $y = \log_3 x = 1$ $\Rightarrow x = 3^1 = 3$

So coordinates of intersection are (3, 1)

Exercise 1G

- **b** $6x^{7}$
- 32^x
- **d** $12b^9$

- $6x^2$

- **6 a** $2 \log_d p + \log_d q$
- **b** $\log_a p = 4$, $\log_d q = 1$

- 7 a
- $5^x = 80$

So
$$x = \log_5 80$$

$$\left(=\frac{\log_{10}80}{\log_{10}5}\right)$$

i.e. x = 2.72270...

$$= 2.72 3 sf$$

b
$$7^x = 123$$

$$\Rightarrow x = \log_7 123$$

$$\left(=\frac{\log_{10}123}{\log_{10}7}\right)$$

i.e. x = 2.47297...

$$= 2.47 3 sf$$

- **8 a** 9
- **b** 12

Chapter 2

2.1

Exercise 2A

- 1 x(x + 4)
- 3 (x + 8)(x + 3)
- **5** (x+8)(x-5)
- 7 (x+2)(x+3)
- 9 (x-5)(x+2)
- 11 (2x + 1)(x + 2)
- **13** (5x 1)(x 3)**15** (2x - 3)(x + 5)
- 17 (x+2)(x-2)
- **19** (2x + 5)(2x 5)
- **21** 4(3x+1)(3x-1)
- **23** 2(3x-2)(x-1)

- **2** 2x(x+3)
- **4** (x + 6)(x + 2)
- **6** (x-8)(x-2)
- 8 (x-6)(x+4)
- 10 (x + 5)(x 4)
- **12** (3x-2)(x+4)
- **14** 2(3x + 2)(x 2)
- **16** $2(x^2 + 3)(x^2 + 4)$
- **18** (x + 7)(x 7)
- **20** (3x + 5y)(3x 5y)
- **22** 2(x+5)(x-5)
- **24** 3(5x-1)(x+3)

2.2

Exercise 2B

- 1 $(x+2)^2-4$
- 3 $(x-8)^2-64$
- **5** $(x-7)^2-49$
- 7 $3(x-4)^2-48$
- 9 $5(x+2)^2-20$
- 11 $3(x+\frac{3}{2})^2-\frac{27}{4}$

- **2** $(x-3)^2-9$
- **4** $(x + \frac{1}{2})^2 \underline{1}$
- **6** $2(x+4)^2 \frac{4}{3}$ 32
- 8 $2(x-1)^2-2$
- **10** $2(x-\frac{5}{4})^2-\frac{25}{8}$
- **12** $3(x-\frac{1}{6})^2-\frac{1}{12}$

Exercise 2C

1	χ	=	0	or	x	=	4	

3
$$x = 0$$
 or $x = 2$

$$x = 0 \text{ or } x = 2$$

5
$$x = -1$$
 or $x = -2$
7 $x = -5$ or $x = -2$

9
$$x = 3$$
 or $x = 5$

11
$$x = 6$$
 or $x = -1$

11
$$x - 6$$
 or $x - -1$

13
$$x = -\frac{1}{2}$$
 or $x = -3$

15
$$x = -\frac{2}{3}$$
 or $x = \frac{3}{2}$

17
$$x = \frac{1}{3}$$
 or $x = -2$

19
$$x = 13$$
 or $x = 1$

21
$$x = \pm \frac{\sqrt{5}}{2}$$

23
$$x = 1 \pm \frac{\sqrt{11}}{3}$$

25
$$x = -\frac{1}{2}$$
 or $x = \frac{7}{3}$

27
$$x = -3 \pm 2\sqrt{2}$$

29
$$x = 5 \pm \sqrt{30}$$

31
$$x = \frac{3}{2} \pm \frac{\sqrt{29}}{2}$$

33
$$x = \frac{1}{8} \pm \frac{\sqrt{129}}{8}$$

35
$$x = -\frac{3}{2} \pm \frac{\sqrt{39}}{2}$$

2
$$x = 0$$
 or $x = 25$

4
$$x = 0$$
 or $x = 6$

6
$$x = -1$$
 or $x = -4$

8
$$x = 3$$
 or $x = -2$

10
$$x = 4$$
 or $x = 5$

12
$$x = 6$$
 or $x = -2$

14
$$x = -\frac{1}{3}$$
 or $x = \frac{3}{2}$

16
$$x = \frac{3}{2}$$
 or $x = \frac{5}{2}$

16
$$x = \frac{1}{2}$$
 or $x = \frac{1}{2}$

18
$$x = 3 \text{ or } x = 0$$

20
$$x = 2$$
 or $x = -2$

22
$$x = 3 \pm \sqrt{13}$$

24
$$x = 1$$
 or $x = -\frac{7}{6}$

26
$$x = 0$$
 or $x = -\frac{11}{62}$

28
$$x = -6 \pm \sqrt{33}$$

30
$$x = -2 \pm \sqrt{6}$$

32
$$x = 1 \pm \frac{3}{2}\sqrt{2}$$

36
$$x = -\frac{4}{5} \pm \frac{\sqrt{26}}{5}$$

2.4

Exercise 2D

1
$$b^2 - 4ac = (-2)^2 - 4 \times 1 = 0$$

 $x^2 - 2x + 1 = 0 \Rightarrow (x - 1)^2 = 0$

so equal roots $\therefore x = 1$

2
$$b^2 - 4ac = (-2)^2 - 4(-1) = 8$$

so two real roots

$$x = \frac{2 \pm \sqrt{8}}{2} = 1 \pm \sqrt{2} \text{ or }$$
 2.41, -0.414 3sf

3
$$b^2 - 4ac = (-3)^2 - 4(-2) = 17$$
 so two real roots

$$x = \frac{3 \pm \sqrt{17}}{2}$$

= 3.56 or -0.562 3sf

4
$$b^2 - 4ac = (-3)^2 - 4 \times 4 = 9 - 16 = -7$$
 so no real roots

5
$$b^2 - 4ac = (1)^2 - 4 \times 2 \times (-2) = 17$$
 so two real roots

$$x = \frac{-1 \pm \sqrt{17}}{4}$$

= 0.781, -1.28 3sf

6
$$b^2 - 4ac = (-1)^2 - 4 \times 3 \times 3 = -35$$
 so no real roots

$$3x^2 = 7 - x$$

$$\Rightarrow 3x^2 + x - 7 = 0$$

$$\Rightarrow 3x^2 + x - 7 = 0$$

$$b^2 - 4ac = 1^2 - 4 \times 3 \times (-7) = 1 + 84 = 85$$

$$x = \frac{-1 \pm \sqrt{85}}{6}$$

$$x = 1.37 \text{ or } -1.70 \text{ 3sf}$$

$$2x^2 = x + 4$$

$$\Rightarrow 2x^2 - x - 4 = 0$$

$$b^2 - 4ac = (-1)^2 - 4 \times (2) \times (-4) = 33$$

so two real roots

$$x = \frac{1 \pm \sqrt{33}}{4}$$

$$x = 1.69 \text{ or } -1.19 \text{ 3sf}$$

9
$$-3 \pm \frac{\sqrt{5}}{2}$$
, -0.38 or -2.62

10
$$\frac{+3 \pm \sqrt{17}}{2}$$
, -0.56 or 3.56

11
$$-3 \pm \sqrt{3}$$
, -1.27 or -4.73

12
$$\frac{5 \pm \sqrt{33}}{2}$$
, 5.37 or -0.37

13
$$5 \pm \frac{\sqrt{31}}{3}$$
, -3.52 or 0.19

14
$$\frac{1 \pm \sqrt{2}}{2}$$
, 1.21 or -0.21

15
$$9 \pm \frac{\sqrt{53}}{14}$$
, -0.12 or -1.16

16
$$\frac{-2 \pm \sqrt{19}}{5}$$
, 0.47 or -1.27

17 2 or
$$-\frac{1}{4}$$

18
$$\frac{-1 \pm \sqrt{78}}{11}$$
, 0.71 or -0.89

2.5

Exercise 2E

1
$$x^{2} + 5x + 2 = 0$$
$$\alpha + \beta = -5$$
$$\alpha\beta = 2$$

a
$$2\alpha + 1 + 2\beta + 1 = 2(\alpha + \beta) + 2 = -10 + 2 = -8$$

 $(2\alpha + 1)(2\beta + 1) = 4\alpha\beta + 2(\alpha + \beta) + 1$
 $= 8 - 10 + 1 = -1$

$$\therefore$$
 new equation is $x^2 + 8x - 1 = 0$

b
$$\alpha\beta + \alpha^2\beta^2 = \alpha\beta(1 + \alpha\beta) = 2(1 + 2) = 6$$

 $(\alpha\beta)(\alpha^2\beta^2) = (\alpha\beta)^3 = 2^3 = 8$

 \therefore new equation is $x^2 - 6x + 8 = 0$

$$x^{2} + 6x + 1 = 0$$

$$\alpha + \beta = -6$$

$$\alpha\beta = 1$$

a

$$(\alpha + 3) + (\beta + 3) = (\alpha + \beta) + 6 = 0$$

 $(\alpha + 3)(\beta + 3) = \alpha\beta + 3(\alpha + \beta) + 9$

$$= 1 - 18 + 9 = -8$$

 \therefore new equation is $x^2 - 8 = 0$

b
$$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha\beta} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta}$$
$$= \frac{36 - 2}{1} = 34$$
$$\frac{\alpha}{\beta} \times \frac{\beta}{\alpha} = 1$$

 \therefore new equation is $x^2 - 34x + 1 = 0$

3
$$x^{2} - x + 3 = 0$$
$$\alpha + \beta = 1$$
$$\alpha\beta = 3$$

a
$$(\alpha + 2) + (\beta + 2) = (\alpha + \beta) + 4 = 1 + 4 = 5$$

 $(\alpha + 2)(\beta + 2) = \alpha\beta + 2(\alpha + \beta) + 4$
 $= 3 + 2 + 4 = 9$

 \therefore new equation is $x^2 - 5x + 9 = 0$

b
$$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$$

= $1^2 - 6 = -5$
 $\alpha^2 \times \beta^2 = (\alpha\beta)^2 = 3^2 = 9$

 \therefore new equation is $x^2 + 5x + 9 = 0$

 $x^2 + x - 1 = 0$

$$\alpha + \beta = -1$$

$$\alpha\beta = -1$$

$$\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\beta + \alpha}{\alpha\beta} = \frac{-1}{-1} = 1$$

$$\frac{1}{\alpha} \times \frac{1}{\beta} = \frac{1}{\alpha\beta} = \frac{1}{-1} = -1$$

 \therefore new equation is $x^2 - x - 1 = 0$

b
$$\frac{\alpha}{\alpha\beta} + \frac{\beta}{\alpha+\beta} = \frac{\alpha+\beta}{\alpha+\beta} = 1$$

$$\frac{\alpha}{\alpha+\beta} \times \frac{\beta}{\alpha+\beta} = \frac{\alpha\beta}{(\alpha+\beta)^2} = \frac{-1}{1} = -1$$

 \therefore new equation is also $x^2 - x - 1 = 0$

Mixed Exercise 2F

1 a
$$x(3x+4)$$

b 2y(2y + 5)

$$\mathbf{c} \quad x(x+y+y^2)$$

d 2xy(4y + 5x)

2 a
$$(x+1)(x+2)$$

b 3x(x+2)

c
$$(x-7)(x+5)$$

d (2x-3)(x+1)

e
$$(5x+2)(x-3)$$

f (1-x)(6+x)

3 **a**
$$y = -1 \text{ or } -2$$

b
$$x = \frac{2}{3}$$
 or -5

c
$$x = -\frac{1}{5}$$
 or 3

d
$$5 \pm \frac{\sqrt{7}}{2}$$

4 a
$$\frac{-5 \pm \sqrt{17}}{2}$$
, -0.44 or -4.56

b
$$2 \pm \sqrt{7}$$
, 4.65 or -0.65

$$\mathbf{c} = \frac{-3 \pm \sqrt{29}}{10}$$
, 0.24 or -0.84

d
$$\frac{5 \pm \sqrt{73}}{6}$$
, 2.25 or -0.59

5 a
$$p = 3, q = 2, r = -7$$
 b $-2 \pm \frac{\sqrt{7}}{3}$

7 **a**
$$\alpha\beta = t$$
, $\alpha^2 + \beta^2 = 2t(2t - 1)$

b
$$t = 1 + \frac{\sqrt{577}}{2}$$

$$\mathbf{c} \quad x^2 - 2\sqrt{577}x + 1 = 0$$

8
$$2x^{2} - 7x + 3 = 0$$
$$x^{2} - \frac{7}{2}x + \frac{3}{2} = 0$$
$$\alpha + \beta = \frac{7}{2}$$
$$\alpha\beta = \frac{3}{2}$$

a
$$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = \frac{49}{4} - 2 \times \frac{3}{2} = \frac{37}{4}$$

b
$$\alpha - \beta = \sqrt{(\alpha - \beta)^2} = \sqrt{\alpha^2 + \beta^2 - 2\alpha\beta}$$

= $\sqrt{\frac{37}{4} - 2 \cdot \frac{3}{2}} = \sqrt{\frac{25}{4}} = \frac{5}{2}$

$$\mathbf{c} \qquad \alpha^3 - \beta^3 = (\alpha - \beta)(\alpha^2 + \beta^2 + \alpha\beta)$$
$$= \frac{5}{2} \left(\frac{37}{4} + \frac{3}{2}\right) = \frac{5}{2} \times \frac{43}{4} = \frac{215}{9}$$

9
$$x^2 - 2tx + t = 0$$

$$\alpha + \beta = 2t$$

$$\alpha\beta = t$$

$$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4t^2 - 2t$$

$$= 2t(2t - 1)$$

b
$$\alpha + \beta = 2t$$

$$\alpha - \beta = 24$$

$$\Rightarrow 2\alpha = 2t + 24$$

$$\alpha = t + 12, \beta = t - 12$$

$$\therefore \alpha \beta = t \Rightarrow (t+12)(t-12) = t$$

i.e. $t^2 - 144 = t$ or $0 = t^2 - t - 144$

$$\therefore t = \frac{1 \pm \sqrt{1 + 576}}{2} \therefore t = \frac{1 + \sqrt{577}}{2} (t > 0)$$

$$\mathbf{c} \quad \frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha\beta} = \frac{2t(2t - 1)}{t} = 2(2t - 1)$$
$$\frac{\alpha}{\beta} \times \frac{\beta}{\alpha} = 1$$
$$\therefore \text{ equation is } x^2 - 2(2t - 1)x + 1 = 0$$

equation is
$$x^2 - 2(2t - 1)x + 1 = 0$$

or $x^2 - 2\sqrt{577}x + 1 = 0$

Chapter 3

3.1

Exercise 3A

- 1 a $x^2 + 5x + 3$
 - **b** $x^2 + x 9$ **d** $x^2 - 3x + 2$
 - **c** $x^2 3x + 7$ **e** $x^2 - 3x - 2$
- **2 a** $6x^2 + 3x + 2$
- **b** $3x^2 + 2x 2$
- c $2x^2 2x 7$
- **d** $-3x^2 + 5x 7$
- $e -5x^2 + 3x + 5$
- 3 a $2x^3 + 5x^2 5x + 1 = (2x 1)(x^2 + 3x 1)$ $\therefore \frac{2x^3 + 5x^2 - 5x + 1}{2x - 1} = x^2 + 3x - 1$
 - **b** $3x^3 + 2x^2 3x 2 = (3x + 2)(x^2 1)$ $\therefore \frac{3x^3 + 2x^2 - 3x - 2}{(3x + 2)} = x^2 - 1$
 - **c** $6x^3 + x^2 7x + 2 = (3x 1)(2x^2 + x 2)$
 - $\therefore \frac{6x^3 + x^2 7x + 2}{3x 1} = 2x^2 + x 2$
 - **d** $4x^3 + 4x^2 + 5x + 12 = (2x + 3)(2x^2 x + 4)$
 - $\therefore \frac{4x^3 + 4x^2 + 5x + 12}{2x + 3} = 2x^2 x + 4$
 - \mathbf{e} $2x^3 + 7x^2 + 7x + 2 = (2x + 1)(x^2 + 3x + 2)$
 - $\therefore \frac{2x^3 + 7x^2 + 7x + 2}{2x 1} = x^2 + 3x + 2$

3.2 Exercise 3B

- 1 (x-1)(x+3)(x+4)
- 2 (x+1)(x+7)(x-5)
- 3 (x-5)(x-4)(x+2)
- 4 (x-2)(2x-1)(x+4)
- **5 a** (x+1)(x-5)(x-6)
 - **b** (x-2)(x+1)(x+2)
 - **c** (x-5)(x+3)(x-2)
- **6 a** (x-1)(x+3)(2x+1)
 - **b** (x-3)(x-5)(2x-1)
 - **c** (x+1)(x+2)(3x-1)**d** (x+2)(2x-1)(3x+1)
 - **e** (x-2)(2x-5)(2x+3)
- **7** 2
- 8 16
- **9** p = 3, q = 7

3.3

Exercise 3C

- **1 a** 27 **b** −6 **c** 0

- **d** 1

- **2** 27
- **3** 18
- **4** 30
- **6** −9
- $7 \quad 8\frac{8}{27}$
- 8 a = 5, b = -8
- **9** p = 8, q = 3

3.4

Exercise 3D

- **1 a** x = 5, y = 6 or x = 6, y = 5
 - **b** $x = 0, y = 1 \text{ or } x = \frac{4}{5}, y = \frac{3}{5}$
 - \mathbf{c} x = -1, y = -3 or x = 1, y = 3
 - **d** $x = 4\frac{1}{2}, y = 4\frac{1}{2} \text{ or } x = 6, y = 3$
 - **e** a = 1, b = 5 or a = 3, b = -1
- **f** $u = 1\frac{1}{2}$, v = 4 or u = 2, v = 3 **2** (-11, -15) and (3, -1)
- 3 $\left(-1\frac{1}{6}, -4\frac{1}{2}\right)$ and (2, 5)
- **4 a** $x = -1\frac{1}{2}$, $y = 5\frac{3}{4}$ or x = 3, y = -1
 - **b** $x = 3, y = \frac{1}{2}$ or $x = 6\frac{1}{3}, y = -2\frac{5}{6}$
- **5 a** $x = 3 + \sqrt{13}$, $y = -3 + \sqrt{13}$ or $x = 3 \sqrt{13}$, $y = -3 - \sqrt{13}$
 - **b** $x = 2 3\sqrt{5}, y = 3 + 2\sqrt{5} \text{ or } x = 2 + 3\sqrt{5}.$ $v = 3 - 2\sqrt{5}$

3.5

Exercise 3E

- **1 a** x < 4 **b** $x \ge 7$ **c** $x > 2\frac{1}{2}$

- **d** $x \le -3$ **e** x < 11 **g** x > -12 **h** x < 1

- **k** $x > 1\frac{1}{7}$

- **2 a** $x \ge 3$

- **d** x < 18
- **e** x > 3

- $\mathbf{g} \quad x < 4$

- $\mathbf{j} \quad \mathbf{x} \geqslant \frac{3}{4}$
- 3 **a** $x > 2\frac{1}{2}$
- **b** 2 < x < 4 **c** $2\frac{1}{2} < x < 3$
- **d** No values

Exercise 3F

1 a 3	< x < 8
--------------	---------

c
$$x < -2, x > 5$$

c
$$x < -2, x > 5$$
 d $x \le -4, x \ge -3$
e $-\frac{1}{2} < x < 7$ **f** $x < -2, x > 2\frac{1}{2}$

e
$$-\frac{1}{2} < x < 7$$

f
$$x < -2, x > 2$$

b -4 < x < 3

g
$$\frac{1}{2} < x < 1\frac{1}{2}$$
 h $x < \frac{1}{3}, x > 2$

$$1 -3 < x < 3$$

i

$$-3 < x < 3$$
 j
 $x < -2\frac{1}{2}, x > \frac{2}{3}$

 k
 $x < 0, x > 5$
 l
 $-1\frac{1}{2} < x < 0$

 a
 $-5 < x < 2$
 b
 $x < -1, x > 1$

 c
 $\frac{1}{2} < x < 1$
 d
 $-3 < x < \frac{1}{4}$

$$\mathbf{k} \quad x < 0, x > 3$$

$$1 - 1\frac{1}{2} < x < 0$$

$$\frac{1}{2} < x < 1$$

d
$$-3 < x < \frac{1}{4}$$

3.7

Exercise 3G

1
$$-3 \le x < 4$$

2
$$y < 2$$
 or $y \ge 5$

3
$$2y + x \ge 10 \text{ or } 2y + x \le 4$$

4
$$-2 \le 2x - y \le 2$$

5
$$4x + 3y \le 12, y \ge 0$$
 and $y < 2x + 4$

6
$$y > \le \frac{3x}{4} - 3$$
, $y \le 0$ and $y \ge -\frac{3x}{2} - 3$

6
$$y > \le \frac{3x}{4} - 3$$
, $y \le 0$ and $y \ge -\frac{3x}{2} - 3$
7 $x \ge 0$, $y \ge 0$, $y < -\frac{3x}{2+9}$ and $y \le -\frac{2x}{3+6}$

8
$$y \ge 0, y \le x + 2, y \le 2x - 2$$
 and $y \le 18 - 2x$

12

13 a Let a = no. of adults, and

$$a + c \leq 14$$

$$12a + 8c \ge 72$$

c > a

 $a \ge 2$

c = no. of children.(no more than 14 passengers) (money raised must cover

cost of £72) (more children than

adults)

(at least 2 adults)

NB $12a + 8c \ge 72$ requires line 3a + 2c = 18

- **b** To find smallest sized group you need to consider points close to M and N M(2, 6) is 2 adults and 6 children Points close to N are (3, 5) and (4, 5)So the smallest sized group is 8: 2 adults and 6 children or 3 adults and 5 children.
- **c** To find the maximum amount of money that can be made you need to consider points close to P and Q P(2, 12) raises $2 \times 12 + 12 \times 8 = £120$ Q(7, 7) is not in the region (:: c > a) but (6, 8) is on d(6.8) raises $6 \times 12 + 8 \times 8 = £136$ So the maximum amount available for refreshments is £64 from taking 6 adults and 8 children

a = no. of machine ALet b = no. of machine B

4a + 5b≤100 (floor area is 100m²)

2a + 3b≤40 (no. of operators is 40)

Profit would be P = 100a + 140b(this is parallel to 10a + 14b)

The maximum profit wil run along RQ

Nearest to Point R (0, 13) will raise £1820

Point (1, 12) will raise £1780

Point Q (20, 0) will raise £2000

So maximum profit is from 20 Machine A

Let
$$x = \text{no. of ornament A}$$

 $y = \text{no. of ornament B}$
 $3x + 2y \leq 48$ (machine time is 48 h)
 $1.5x + 2.5y \leq 45$ (craftsman's time is 45 h)
Profit $P = 12x + 15y$ (e.g. $12x + 15y = 120$ is drawn)

To find maximum profit drag the profit line towards the edges R, S, T. It will first cross at T, then R and finally S.

T (16, 0) gives a profit of

R (0, 18) gives a profit of £270

S is not a point giving whole numbers for *x* and *y* but the nearby points are (6, 14) and (7, 13)

(6, 14) gives a profit of $6 \times 12 + 14 \times 15 = £282$

(7, 13) gives a profit of $7 \times 12 + 13 \times 15 = £279$

So maxmimum profit is £282 from making 6 ornament A and 14 ornament B.

Mixed Exercise 3H

- 1 $x = 4, y = 3\frac{1}{2}$
- 2 (3, 1) and $(-2\frac{1}{5}, -1\frac{3}{5})$
- **3** $x = -1\frac{1}{2}$, $y 2\frac{1}{4}$ and x = 4, $y = -\frac{1}{2}$ **4 a** $x > 10\frac{1}{2}$ **b** x < -2, x > 7

- **5** 3 < x < 4
- **6 a** $x < 2\frac{1}{2}$ **b** $\frac{1}{2} < x < 5$
 - **c** $\frac{1}{2} < x < 2\frac{1}{2}$
- 7 x < 0, x > 1
- **8** A = 2, B = 4, C = -5
- **9** p = 1, q = 3
- **10** (x-2)(x+4)(2x-1)
- **11** 7
- 12 $7\frac{1}{4}$
- **13 a** p = 1, q = -15**13 a** p = 1, q = -15 **b** (x + 3) **14 a** r = 3, s = 0 **b** $1\frac{13}{27}$
 - **b** (x+3)(2x-5)

- **15 a** (x-1)(x+5)(2x+1) **b** $-5, -\frac{1}{2}, 1$

- **16** -2
- **17** -18

18	2 -	3 _	$\sqrt{5}$
10	۷, -	2 -	2

- **19** $\frac{1}{2}$, 3
- **20** A: y > 2x + 2, 4y + 3x + 12 > 0B: y < 2x + 2, 4y + 3x + 12 > 0C: y < 2x + 2, 4y + 3x + 12 < 0

D: y > 2x + 2, 4y + 3x + 12 < 0

21 $\{y \ge 3 \text{ and } 2x + y \le 6\}$

y = -2x - 4= 3x - 4

Chapter 4

4.1

Exercise 4A

a

c

d

g

h

i

j

2 a

b

 \mathbf{c}

d

e

g

h

i

j

c
$$y = x(x+1)^2$$

d
$$y = x(x+1)(3-x)$$

e
$$y = x^2(x - 1)$$

f
$$y = x(1 - x)(1 + x)$$

g
$$y = 3x(2x - 1)(2x + 1)$$

g
$$y = 3x(2x - 1)(2x + 1)$$
 h $y = x(x + 1)(x - 2)$

i
$$y = x(x - 3)(x + 3)$$

Exercise 4B

1 a

e

2 a

c

d

e

4.3 **Exercise 4C**

1

2

3

5

4.4

Exercise 4D

1 a i

$$y = x(x^2 - 1)$$

$$y = x(x^2 - 1)$$

ii 3
iii $x^2 = x(x^2 - 1)$

b i

ii 1

iii
$$x(x+2) = -\frac{3}{x}$$

ii 3

iii
$$x^2 = (x+1)(x-1)^2$$

d i

ii 2

iii
$$x^2(1-x) = -\frac{2}{x}$$

i e

ii 1
iii
$$x(x-4) = \frac{1}{x}$$

f i

iii
$$x(x-4) = -\frac{1}{x}$$

g i

iii
$$x(x-4) = (x-2)^3$$

h i

$$iii \quad -x^3 = -\frac{2}{x}$$

i

ii 2 **iii**
$$-x^3 = x^2$$

j i

iii
$$-x^3 = -x(x+2)$$

2 a

b
$$(0,0); (4,0); (-1,-5)$$

3 a

b
$$(0,0)$$
; $(2,18)$; $(-2,-2)$

4 a

5 a

b
$$(-3, 9)$$

6 a

b (0, 0); (2, 0); (4, 8)

7 a

b Only 2 intersections

8 a

b Only 1 intersection

9 a

b Graphs do not intersect

10 a

b 1, since graphs only cross once

11 a

b (0, 0); (-2, -12); (5, 30)

12 a

b (0, 2); (-3, -40); (5, 72)

13 a

b (0, -8); (1, -9); (-4, -24)

4.5

Exercise 4E

1

2

3

4

5

6

7 $y = 3 + \frac{1}{x+1}$ Start with $y = \frac{1}{x}$

Transformation f(x + 1) gives

$$y = \frac{1}{x+1}$$

Finally transformation f(x) + 3 gives

$$y = 3 + \frac{1}{x+1}$$

Asymptotes x = -1, y = 3

8
$$y = \frac{1}{x-2} - 1$$
 Start with $y = \frac{1}{x}$

Transformation f(x-2) gives

$$y = \frac{1}{x - 2}$$

Finally f(x) - 1 gives

$$y = \frac{1}{x - 2} - 1$$

9 $y = 2 + \frac{1}{x - 1}$

Asymptotes
$$x = 2$$
, $y = -1$
Vertical asymptote is $x = 1$

(put denominator = 0)

Horizontal asymptote is y = 2 (let $x \Rightarrow \infty$)

$$x = 0, y = 1$$

Asymptotes x = 1 and y = 2

10
$$y = \frac{3+2x}{1+x} = \frac{2(1+x)+1}{1+x} = 2 + \frac{1}{1+x}$$

$$x = 0, y = 3$$

Asymptotes $x = -1, y = 2$

11 $y = 2 + \frac{3}{1-x}$

Vertical asymptote x = 1Horizontal asymptote y = 2

Let x = 0 and y = 2 + 3 = 5

NB This is a series of transformations of $y = -\frac{3}{x}$

12 $y = 5 - \frac{2}{3 + x}$

Vertical asymptote x = -3Horizontal asymptote y = 5

Let x = 0 and $y = 5 - \frac{2}{3} = 4\frac{1}{3}$

13 $y = \frac{3}{2-x} - 4$

Vertical asymptote x = 2Horizontal asymptote y = -4

Let
$$x = 0$$
 and $y = \frac{3}{2} - 4 = -2\frac{2}{3}$

This is a series of transformations

of
$$y = -\frac{3}{x}$$

4.6

Exercise 4F

1 a

 \mathbf{c}

d

 $y = 3\ln(x - 2) \qquad x > 2$

Start with $y = \ln x$

Use transformation f(x-2)

Now use transformation 3f(x)

 $y = 3\ln(x - 2)$

Exercise 4G

1 a x = 1, y = 4.21; x = 5, y = 3.16

b

c $e^{-\frac{1}{2}x} = 0.5 \Rightarrow 3 + 2e^{-\frac{1}{2}x} = 3 + 2 \times 0.5 = 4$ Draw y = 4 and intersection is at ≈ 1.35

$$\mathbf{d} \quad x = -2 \ln \left(\frac{x - 2}{2} \right)$$

$$\Rightarrow e^{-\frac{x}{2}} = \frac{x - 2}{2}$$

$$\Rightarrow 2e^{-\frac{x}{2}} = x - 2 \therefore 3 + 2e^{-\frac{1}{2}x} = 1 + x$$

Draw y = 1 + x and intersection at $x \approx 2.55$

.

2 a
$$x = 0, y = 2 + \frac{1}{3} = 2.33; x = 2.5, y = 6.06$$

b

$$e^x = 12 \Rightarrow 2 + \frac{1}{3}e^x = 2 + \frac{1}{3} \times 12 = 6$$

Draw line y = 6 and intersection is at ≈ 2.45

$$\mathbf{d} \quad x = \ln (6 - 6x)$$
$$\Rightarrow e^x = 6 - 6x$$

$$\Rightarrow \frac{1}{3}e^x = 2 - 2x$$

$$\therefore 2 + \frac{1}{3}e^x = 4 - 2x \text{ so draw } y = 4 - 2x$$

and intersection at ≈ 0.65 or 0.7 to 1sf

3 **a**
$$x = 1, y = 2 + \ln 1 = 2; x = 4, y = 3.39$$

b

c $\ln x = 0.5$ $\Rightarrow 2 + \ln x = 2.5$ so draw y = 2.5Intersection ≈ 1.60

4 a x = 30, y = 2.60; x = 75, y = 1.98

h

c
$$2 + 2 \cos x = 5 \sin 2x$$

 $\Rightarrow 2 = 5 \sin 2x - 2 \cos x$
Draw $y = 2$
and intersections at ≈ 25.1 and 74.6
or 25 and 75 to 2sf

Mixed Exercise 4H

x = 0, -1, 2; points (0, 0), (2, 0), (-1, -3)

2

b A(-3, -2) B(2, 3)

c
$$y = x^2 + 2x - 5$$

3 **a** $y = x^2 - 2x - 3$ =(x-3)(x+1)

b $y = x^2 - 2x + 4$ $=(x-1)^2+3$

4 a $y = -(x^2 - 4x + 3)$ =(3-x)(x-1)

b $y = -(x^2 - 4x + 5)$ = $-[(x - 2)^2 + 1]$

$$= -[(x-2)^2 + 1]$$
$$= -1 - (x-2)^2$$

$$-[(x-2)^2+1]$$

$$-1-(x-2)^2$$

5 **a** $y = \frac{1}{2}e^x + 4$

$$(x = 0, y = 4.5)$$

b $y = \ln(x+1) + 2$

$$(x = 0, y = 2)$$

$$y = 0 \implies \ln(x+1) = -2$$

 $\Rightarrow x + 1 = e^{-2}$

$$\therefore x = e^{-2} - 1 \approx -0.86$$
6 a $x = 5$ $y = 1 - \ln 4 = -0.39$

$$x = 6$$
 $y = 1 - \ln 5 = -0.61$

 $\mathbf{c} \quad \ln(x-1) = 0$

 $\Rightarrow 1 - \ln(x - 1) = 1$

so draw y = 1

Intersection at x = 2

 $x = 1 + e^{1 + \frac{x}{4}}$ d

$$\ln(x-1) = 1 + \frac{x}{4}$$

$$\Rightarrow x - 1 = e^{1 - \frac{x}{4}}$$

 $\Rightarrow 1 - \ln(x - 1) = 1 - (1 + \frac{x}{4}) = \frac{x}{4}$ so draw $y = \frac{x}{4}$ and intersection at ≈ 2.5

Chapter 5

5.1

Exercise 5A

1 Arithmetic sequences are **a**, **b**, **c**, **h**, **l**

2 a 23, 2n + 3

b 32, 3n + 2

c -3, 27 - 3n **d** 35, 4n - 5

e 10x, nx

f a + 9d, a + (n - 1)d

3 a £5800

b £(3800 + 200m)

a 22

d 46

b 40 **e** 18

39 \mathbf{f} n

5.2

Exercise 5B

1 a 78, 4n-2

b 42, 2n + 2

c 23,83-3n

d 39.2n - 1

e -27, 33 - 3n

f 59, 3n - 1

g 39p, (2n-1)p

h -71x, (9-4n)x

2 a 30 **b** 29

d 31

221

f 77

4 a = 36, d = -3, 14th term

5 24

6 x = 5; 25, 20, 15

7 $7 \times \frac{1}{2}, x = 8$

Exercise 5C

- **a** 820 **b** 450 -1140d -2941440 1425
 - g -1155**h** 21(11x + 1)
- 25 65 2 **a** 20
 - **d** 4 or 14 (2 answers)
- 2550 3
- ii £347500 **4** i £222 500
- 1683, 32674
- **6** £9.03, 141 days
- 7 $d = -\frac{1}{2}, -5.5$
- 8 a = 6, d = -2

5.4

Exercise 5D

- $\sum_{r=1}^{10} (3r+1)$ **b** $\sum_{r=1}^{30} (3r-1)$
 - $\sum_{r=1}^{11} 4(11-r)$

2

- 1010 C
- 112

- 3 19
- 49

5.5

Exercise 5E

- **a** Geometric r = 2

 - Not geometric
 - Geometric $r = \frac{1}{2}$
 - **g** Geometric r = 1
- **2 a** 135, 405, 1215
 - **c** 7.5, 3.75, 1.875
 - **e** p^3, p^4, p^5
- Geometric r = -1

b Not geometric

d Geometric r = 3

- Geometric $r = \frac{1}{4}$
- -32, 64, -128
- $\frac{1}{64}$, $\frac{1}{256}$, $\frac{1}{1024}$ $-8x^4$, $16x^5$, $-32x^6$
- 3 **a** $3\sqrt{3}$ h $9\sqrt{3}$

5.6

Exercise 5F

- **1 a** 486, 39 366, $2 \times 3^{n-1}$
 - **b** $\frac{25}{8}, \frac{25}{128}, \frac{100}{2^{n-1}}$
 - **c** $-32, -512, (-2)^{n-1}$
 - **d** 1.610 51, 2.357 95, $(1.1)^{n-1}$

- **2** 10, 6250
- 3 a = 1, r = 2
- 4 $\pm \frac{1}{8}$
- -6 (from x = 0), 4 (from x = 10)

5.7

Exercise 5G

1 a 255 c

- **b** 63.938 (3 dp)
- **d** $546\frac{2}{3}$ -728
- 19680 5460
- **h** 44.938 (3 dp) 5.994 (3 dp)
- $264 1 = 1.84 \times 1019$
- **a** £49 945.41
- **b** £123876.81
- 5 **a** 2.401
- 48.8234

- **6** 19 terms
- **7** 22 terms
- **8** 26 days, 98.5 miles on the 25th day
- **9** 25 years

5.8

Exercise 5H

- 1 a
- Doesn't exist $4\frac{1}{2}$
- **e** Doesn't exist
- **g** Doesn't exist $\frac{1}{1} - r$ if |r| < |
- **h** 90
- **j** $\frac{1}{1} + 2x$ if $|x| < \frac{1}{2}$

b Doesn't exist

- $2^{\frac{2}{3}}$
- **4** 20
- **5** $\frac{40}{3} = 13\frac{1}{3}$ **6** $\frac{23}{99}$
- 7 4
- **8** 40 m
- **9** r < 0 because $S \infty < S_3$, a = 12, $r = -\frac{1}{2}$
- 10 $r = \pm \sqrt{\frac{2}{3}}$

Mixed Exercise 51

- **1 a** Add 6 to the previous term, i.e. $U_{n+1} = U_n + 6$ $(\text{or } U_n = 6n - 1)$
 - **b** Add 3 to the previous term, i.e. $U_{n+1} = U_n + 3$ (or $U_n = 3n$)
 - **c** Multiply the previous term by 3, i.e. $U_{n+1} = 3U_n$ (or $U_n = 3^{n-1}$)

d Subtract 5 from the previous term,

i.e.
$$U_{n+1} = U_n - 5$$
 (or $U_n = 15 - 5n$)

c 1.5

e The square numbers $(U_n = n^2)$

f Multiply the previous term by 1.2, i.e. $U_{n+1} = 1.2U_n$ (or $U_n = (1.2)^{n-1}$)

Arithmetic sequences are:

a a = 5, d = 6

a
$$a = 5, a = 6$$

b
$$a = 3, d = 3$$

$$\mathbf{c}$$
 $a = 10, d = -5$

81 2 a

b 860

3 32

4 a £13780

b £42198

5 a a = 25, d = -3

b -3810

26733

b 53467

b 45

8 a d = 5

59

9 b $11k - \frac{9}{3}$

d 415

10 a Not geometric

b Geometric r = 1.5

b Geometric $r = \frac{1}{2}$

c Geometric r = -2

d Not geometric

 \mathbf{e} Geometric r = 1

11 a $0.8235 (4 dp), 10x (0.7)^{n-1}$

b 640, $5 \times 2^{n-1}$

c $-4, 4 \times (-1)^{n-1}$

d $\frac{3}{128}$, $3 \times (-\frac{1}{2})^{n-1}$

b 19.98 (2 dp)

C 50 3.33 (2 dp)

13 a 9

c Doesn't converge

d $\frac{16}{3}$

14 b 60.72

c 182.25

d 3.16

15 b 200

c $333\frac{1}{3}$

d 8.95×10^{-4}

16 a 76, 60.8

0.876

c 367

380

17 a $1, \frac{1}{3}, -\frac{1}{9}$

18 a 0.8

10

c 50

d 0.189 (3sf)

19 a $-\frac{1}{2}$ **b** $\frac{3}{4}$, -2

c 14

Chapter 6

6.1

Exercise 6A

1
$$1 + 8x + 28x^2 + 56x^3$$

2
$$1-12x+60x^2-160x^3$$

$$3 \quad 1 + 5x + \frac{45}{4}x^2 + 15x^3$$

4
$$1-15x+90x^2-270x^3$$

5 a
$$p = 5$$
 b -10

c - 80

6 $1 - 0.6x + 0.15x^2 - 0.02x^3$, 0.94148, accurate to 5 dp

b $120x^3$

7 **a**
$$-20x^3$$

c $1140x^3$

8 b = -2

6.2

Exercise 6B

1 **a**
$$1 + 6x + 12x^2 + 8x^3$$
, valid for all x

b
$$1 + x + x^2 + x^3$$
, $|x| < 1$

c
$$1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3, |x| < 1$$

d
$$1 - 6x + 24x^2 - 80x^3$$
, $|x| < \frac{1}{2}$

e
$$1 - x - x^2 - \frac{5}{3}x^3$$
, $|x| < \frac{1}{3}$

f
$$1 - 15x + \frac{75}{2}x^2 + \frac{125}{2}x^3$$
, $|x| < \frac{1}{10}$

g
$$1 - x + \frac{5}{8}x^2 - \frac{5}{16}x^3$$
, $|x| < 4$

h
$$1 - 2x^2 + ..., |x| < \frac{\sqrt{2}}{2}$$

2
$$|x| < \frac{1}{2}$$

3
$$1 + \frac{3x}{2} - \frac{9}{8}x^2 + \frac{27}{16}x^3$$
, 10.148 891 88, accurate to 6 d.p.

4
$$a = \pm 8, \pm 160x^3$$

6
$$1 - \frac{9x}{2} + \frac{27x^2}{8} + \frac{27x^3}{16}$$
, $x = 0.01, 955.339(1875)$

Mixed Exercise 6C

1 **a**
$$p = 16$$

b 270

c - 1890

2 a
$$1 - 20x + 180x^2 - 960x^3$$

b
$$0.81704, x = 0.01$$

3 **a**
$$n = 8$$

b
$$\frac{3}{8}$$

4 a
$$1 + 24x + 264x^2 + 1760x^3$$

5 a
$$1 - 12x + 48x^2 - 64x^3$$
, all x

b
$$1 + 2x + 4x^2 + 8x^3$$
, $|x| < \frac{1}{2}$

c
$$1 - 2x + 6x^2 - 18x^3$$
, $|x| < \frac{1}{3}$

$$6 \quad 1 - \frac{x}{4} - \frac{x^2}{32} - \frac{x^3}{128}$$

7
$$1 - \frac{3}{2}x^2 + \frac{27}{8}x^4 - \frac{135}{16}x^6$$

$$8 \quad 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16}, \frac{1145}{512}$$

9 a
$$n = -2, a = 3$$

b
$$-108$$

c
$$|x| < \frac{1}{3}$$

Chapter 7

7.1

Exercise 7A

- $\sqrt{569} \approx 23.9$
- 4 a d-a
- $\mathbf{b} \quad \mathbf{a} + \mathbf{b} + \mathbf{c}$
- $c \quad a+b-d$
- $\mathbf{d} \quad \mathbf{a} + \mathbf{b} + \mathbf{c} \mathbf{d}$

7.2

Exercise 7B

- **a** 2**a**+ 2**b**
 - $\mathbf{b} \quad \mathbf{a} + \mathbf{b}$
- c b a
- **a b** $-\frac{1}{2}$ **a c** $\frac{3}{2}$ **a** - **b**
- b 3a
 d 2a b
- 3 a Yes $(\lambda 2)$
- **b** Yes $(\lambda 4)$
- No
- **d** Yes $(\lambda 1)$ **e** Yes $(\lambda 3)$
- No
- **4 a** $\lambda = \frac{1}{2}, \mu = -3$ **b** $\lambda = -2, \mu = 1$
 - **c** $\lambda = \frac{1}{4}, \mu = 5$ **d** $\lambda = -2, \mu = -1$
 - **e** $\lambda = 4, \mu = 8\frac{1}{2}$
- 5 **a b a**, $\frac{5}{6}$ (**b a**), $\frac{1}{6}$ **a** + $\frac{5}{6}$ **b**
 - **b** $-\frac{1}{6}$ **a** + $(\lambda \frac{5}{6})$ **b**
 - $\mathbf{c} \mu \mathbf{a} + (\mu \lambda) \mathbf{b}$
 - $\mathbf{d} \quad \lambda = \frac{1}{2}, \, \mu = \frac{1}{6}$

- **b** $(\frac{2}{3}\lambda \mu)\mathbf{a} + (\frac{3}{4} \frac{7}{4}\lambda + \mu)\mathbf{b} = 0$
- $e = \frac{6}{13}a + \frac{7}{13}b$
- $7 \quad a \quad -a + b$
- **b** $\frac{1}{2}$ **a** $+\frac{1}{2}$ **b**
- c $\frac{3}{8}a^{\frac{3}{8}}b$
- **d** $-\frac{5}{8}$ **a** $+\frac{3}{8}$ **b**
- e -a + kb
- **f** 5:3, k=35

- 8 a $\frac{1}{3}$ a
 - **b** $\frac{1}{4}$ **a** $+\frac{3}{4}$ **b**
 - c $-\frac{1}{12}a + \frac{3}{4}b$
 - **d** 2**b**
 - $e \frac{1}{4}a + \frac{1}{4}b$
 - $f \frac{1}{4}a + \frac{9}{4}b$

 - $\mathbf{h} \frac{1}{3}\mathbf{a} + \mathbf{b}, -\mathbf{a} + 3\mathbf{b}, \overrightarrow{AG} = 3\overrightarrow{EB} \Rightarrow \text{parallel}$

7.3

Exercise 7C

- 1 $\frac{5}{6}$ **a** $+\frac{1}{6}$ **b**
- 2 $-\frac{1}{2}a \frac{1}{2}b + c$
- 3 $\overrightarrow{OC} = -2\mathbf{a} + 2\mathbf{b}, \overrightarrow{OD} = 3\mathbf{a} + 2\mathbf{b}, \overrightarrow{OE} = -2\mathbf{a} + \mathbf{b}$

7.4

Exercise 7D

- **1 a** $\binom{12}{3}$ **b** $\binom{-1}{16}$
- 2 a 3i j, 4i + 5j, -2i + 6j
 - $\mathbf{b} \quad \mathbf{i} + 6\mathbf{j}$
 - c -5i + 7j
 - **d** $\sqrt{40} = 2\sqrt{10}$
 - **e** √37
 - f $\sqrt{74}$
- 3 a $\frac{1}{5} \binom{4}{3}$

Mixed Exercise 7E

- 1 m = 3, n = 1
- 2 m = -2, n = 5
- 3 a $\overrightarrow{XM}\begin{pmatrix} -1\\ 3 \end{pmatrix}$

$$\overrightarrow{XZ} = \begin{pmatrix} -10 \\ 6 \end{pmatrix}$$

- **b** $v\binom{7}{3}$
- $\mathbf{c} = \begin{pmatrix} 8 \\ 0 \end{pmatrix} + w \begin{pmatrix} -10 \\ 6 \end{pmatrix}$
- **d** $v = \frac{2}{3}, w = \frac{1}{3}$
- 4 a $\overrightarrow{AC} = x + y$; $\overrightarrow{BE} = \frac{1}{2}y x$
 - **b** i $\overrightarrow{BF} = v(\frac{1}{2}y x)$
 - ii $\overrightarrow{AF} = x + \overrightarrow{BF} = x + v(\frac{1}{3}y x)$
 - **iii** $v = \frac{3}{4}$
- 5 $\mathbf{v} + \mathbf{w} = \begin{pmatrix} 4 \\ 5 \end{pmatrix}, \sqrt{41}$
 - $2\mathbf{v} \mathbf{w} = \begin{pmatrix} 5 \\ -2 \end{pmatrix}, \sqrt{29}$
 - $\mathbf{v} 2\mathbf{w} = \begin{pmatrix} 1 \\ -7 \end{pmatrix}, \sqrt{50}$

- **6** $p+q=\binom{5}{4}, \sqrt{41}$
 - $3p + q = \binom{9}{2}, \sqrt{85}$
 - $p 3q = \begin{pmatrix} -7 \\ -16 \end{pmatrix}, \sqrt{305}$
- 7 **a** Chloe $\binom{5}{7}$; Leo $\binom{4}{5}$; Max $\binom{3}{2}$
 - **b** Chloe: 74 km, 2.9 km/h Leo: 41 km, 2.1 km/h Max: 13 km, 1.2 km/h

Chapter 8

8.1

Exercise 8A

- -1

- 3 **a** 4x y + 3 = 0
 - **c** 6x + y 7 = 0
 - **e** 5x 3y + 6 = 0
 - $\mathbf{g} = 14x 7y 4 = 0$
 - \mathbf{i} 18x + 3y + 2 = 0
 - $\mathbf{k} \quad 4x 6y + 5 = 0$
- **4** y + 5x + 3
- 2x + 5y + 20 = 0
- 6 $y + -\frac{1}{2}x + 7$
- 7 $y = \frac{2}{3}x$
- **8** (3, 0)
- 9 $(\frac{5}{2},0)$
- **10** (0, 5), (-4, 0)

8.2

Exercise 8B

h 8

b 3x - y - 2 = 0

d 4x - 5y - 30 = 0

7x - 3y = 0

h 27x + 9y - 2 = 0

6x - 10y + 5 = 0

2x + 6y - 3 = 0

- 2 7

- 3 12
- $4\frac{1}{3}$ 4
- 5 $2\frac{1}{4}$
- 7 26
- -5

8.3

Exercise 8C

- 1 **a** y = 2x + 1
 - **c** y = -x 3
 - **e** $y = \frac{1}{2}x + 12$
 - $\mathbf{g} \quad \mathbf{v} = 2\mathbf{x}$
- **2** y = 3x 6
- 3 y = 2x + 8
- 4 2x 3y + 24 = 0
- **6** $y = \frac{2}{5}x + 3$
- $7 \quad 2x + 3y 12 = 0$
- 9 $y = \frac{4}{3}x 4$
- **10** 6x + 15y 10 = 0

8.4

Exercise 8D

- 1 a Perpendicular
 - Neither
 - e Perpendicular
 - Parallel
 - Perpendicular
 - k Neither
- 2 $y = -\frac{1}{3}x$
- $3 \quad 4x y + 15 = 0$
- **4 a** $y = -2x + \frac{1}{2}$
 - **c** y = -x 3
- **5 a** y = 3x + 11
 - **c** $y = \frac{2}{3}x + 2$
- 3x + 2y 5 = 0
- 7x 4y + 2 = 0

- Parallel
- Perpendicular

b y = 3x + 7

f $y = \frac{2}{3}x - 5$

d y = -4x - 11

h $y = -\frac{1}{2}x + 2b$

- Parallel
- Perpendicular
- Parallel
- Perpendicular
- **b** $y = \frac{1}{2}x$
- **d** $y = \frac{1}{2}x 8$
- **b** $y = -\frac{1}{3}x + \frac{13}{3}$ **d** $y = -\frac{3}{2}x + \frac{17}{2}$

Exercise 8E

- **1** 10
- **2** 13
- **3** 5

- **4** $\sqrt{5}$ **7** √113
- **5** $2\sqrt{10}$ **8** $a\sqrt{53}$
- **6** √106

- **9** $3b\sqrt{5}$

- **10** 5*c*
- **11** $d\sqrt{61}$
- **12** $2e\sqrt{5}$

8.6

Exercise 8F

1 a (0, 6); (4, 10) is ratio 3:1

$$\left(\frac{3 \times 4 + 1 \times 0}{4}, \frac{3 \times 10 + 1 \times 6}{4}\right) = (3, 9)$$

b (1, 5); (-2, 8) is ratio 1:2

$$\left(\frac{2 \times 1 + 1 \times (-2)}{3}, \frac{(2 \times 5 + 1 \times 8)}{3}\right) = (0, 6)$$

$$\left(\frac{2\times3+3x\times(-2)}{5}, \frac{2\times(-7)+3\times8}{5}\right) = (0, 2)$$

$$\left(\frac{4\times 5+3\times (-2)}{7}, \frac{4\times 2+3\times 5}{7}\right) = (2, 3\frac{2}{7})$$

- **2 a** (4,2);(6,8) midpoint $\left(\frac{4+6}{2},\frac{2+8}{2}\right)$
 - $midpoint \left(\frac{0+12}{2}, \frac{6+2}{2}\right)$ **b** (0, 6); (12, 2)
 - **c** (2, 2); (-4, 6) midpoint $(\frac{2-4}{2}, \frac{2+6}{2})$
 - **d** (-6, 4); (6, -4) midpoint $\left(\frac{-6+6}{2}, \frac{4-4}{2}\right)$

Mixed Exercise 8G

- 1 a y = -3x + 14
- **b** (0, 14)
- **2** a $y = -\frac{1}{2}x + 4$
- **b** $y = -\frac{1}{2}x + \frac{3}{2}$, (1, 1)
- **3 a** $y = \frac{1}{7}x + \frac{12}{7}, y = -x + 12$ **b** (9, 3)
- **4** a $y = -\frac{5}{12}x + \frac{11}{6}$ **5 a** $y = \frac{3}{2}x - \frac{3}{2}$
- **b** -22**b** (3, 3)
- **6** 11x 10y + 19 = 0
- **7 a** $y = -\frac{1}{2}x = 3$ **b** $y = \frac{1}{4}x + \frac{9}{4}$ **8 a** $y = \frac{3}{2}x 2$ **b** (4, 4) **c** 20

- **9 a** 2x + y = 20
- **b** $y = \frac{1}{3}x + \frac{4}{3}$

- 10 a $\frac{1}{2}$
- **b** 6 **c** 2x + y 16 = 0

11 a (-1, 1); (4, 11) in ratio 3:2

is
$$\left(\frac{2 \times (-1) + 3 \times 4}{5}, \frac{2 \times 1 + 3 \times 11}{5}\right)$$

b $M_{AB} = \frac{11-1}{4-1} = \frac{10}{5} = 2 : m_i = -\frac{1}{2}$

Equation of 1 is $y - 7 = -\frac{1}{2}(x - 2)$

$$2y - 14 = -x + 2$$

or
$$x + 2y - 16 = 0$$

 \mathbf{c} $x = 0 \Rightarrow y = 8$: D is (0, 8)

d ΔABD

$$CD = \sqrt{2^2 + 1^2} = \sqrt{5}$$

 $AB = \sqrt{(4 - 1)^2 + (11 - 1)^2} = \sqrt{5^2 + 10^2} = 5\sqrt{5}$

.... Area of \triangle ABD = $\frac{1}{2}$ AB.CD = $\frac{1}{2} \times \sqrt{5} \times 5\sqrt{5}$

12 a $y = \frac{1}{3}x + \frac{1}{3}$

Chapter 9

9.1

Exercise 9A

- 1 $7x^6$
- **2** $8x^7$

- 4 $\frac{1}{3}x^{-\frac{2}{3}}$
- 5 $\frac{1}{4}x^{-\frac{4}{3}}$

- $7 3x^{-4}$
- 8 $-4x^{-5}$
- 9 $-2x^{-3}$

- 10 $-5x^{-6}$
- 11 $-\frac{1}{2}x^{-\frac{4}{3}}$
- 12 $-\frac{1}{2}x^{-\frac{3}{2}}$

- 13 $-2x^{-3}$
- **14** 1
- **15** $3x^2$

- **16** $9x^8$
- 17 $5x^4$
- **18** $3x^2$

9.2

Exercise 9B

- **1 a** $4x^3 x^{-2}$ **b** $-x^{-3}$ **c** $-x^{-\frac{3}{2}}$ **2 a** 0 **b** $11\frac{1}{2}$

- **3 a** $(2\frac{1}{2}, -6\frac{1}{4})$ **b** (4, -4) and (2, 0)
- - **c** (16, -31) **d** $(\frac{1}{2}, 4), (-\frac{1}{2}, -4)$

4 a
$$x^{-\frac{1}{2}}$$

b
$$-6x^{-3}$$
 c $-x^{-4}$

d
$$\frac{4}{3}x^3 - 2x^2$$

d
$$\frac{4}{3}x^3 - 2x^2$$
 e $-6x^{-4} + \frac{1}{2}x^{-\frac{1}{2}}$

f
$$\frac{1}{3}x^{-\frac{2}{3}} - \frac{1}{2}x^{-2}$$
 g $-3x^{-2}$ **h** $3 + 6x^{-2}$

$$g -3x^{-2}$$

h
$$3 + 6x^{-2}$$

i
$$5x^{\frac{3}{2}} + \frac{3}{2}x^{-\frac{1}{2}}$$
 j $3x^2 - 2x + 2$

$$3x^2 - 2x + 3$$

$$\mathbf{k} = 12x^3 + 18x^2$$

k
$$12x^3 + 18x^2$$
 l $24x - 8 + 2x^{-2}$

5 a 1 **b**
$$\frac{2}{9}$$

b
$$\frac{2}{9}$$

c
$$-4$$
 d 4

Exercise 9C

1 **a**
$$y = e^{2x} \Rightarrow \frac{dy}{dx} = 2e^{2x}$$

b
$$y = e^{-6x} \Rightarrow \frac{dy}{dx} = -6e^{-6x}$$

$$\mathbf{c}$$
 $y = e^x + 3x^2 \Rightarrow \frac{dy}{dx} = e^x + 6x$

$$\mathbf{d} \quad y = \sin 2x \Rightarrow \frac{dy}{dx} = 2\cos 2x$$

$$\mathbf{e} \quad y = \cos 3x \Rightarrow \frac{dy}{dx} = -3\sin 3x$$

$$\mathbf{f} \qquad y = 3\sin 4x + 4\cos 3x \Rightarrow \frac{dy}{dx} = 12\cos 4x - 12\sin 3x$$

2 **a**
$$y = \sin 5x \Rightarrow \frac{dy}{dx} = 5\cos 5x$$

b
$$y = 2\sin\frac{1}{2}x \Rightarrow \frac{dy}{dx} = 2 \times \frac{1}{2}\cos\frac{1}{2}x = \cos\frac{1}{2}x$$

$$\mathbf{c} \quad y = \sin 8x \Rightarrow \frac{dy}{dx} = 8\cos 8x$$

$$\mathbf{d} \quad y = 6\sin\frac{2}{3}x \Rightarrow \frac{dy}{dx} = 6 \times \frac{2}{3}\cos\frac{2}{3}x = 4\cos\frac{2}{3}x$$

$$\mathbf{e}$$
 $y = 2 \cos x \Rightarrow \frac{dy}{dx} = -2 \sin x$

$$\mathbf{f} \qquad y = 6\cos\frac{5}{6}x \Rightarrow \frac{dy}{dx} = 6 \times \frac{5}{6}\sin\frac{5}{6}x = -5\sin\frac{5}{6}x$$

$$\mathbf{g}$$
 $y = \cos 4x \Rightarrow \frac{dy}{dx} = -4 \sin 4x$

h
$$y = 4\cos(\frac{x}{2}) \Rightarrow \frac{dy}{dx} = -4 \times \frac{1}{2}\sin(\frac{x}{2}) = -2\sin(\frac{x}{2})$$

3
$$y = 2e^{-x} \Rightarrow \frac{dy}{dx} = -2e^{-x} @ (0, 2)$$

4
$$y = 3 \sin x \Rightarrow \frac{dy}{dx} = 3 \cos x \ (a) \left(\frac{\pi}{3} = x\right)$$

Remember x is in radians

:.
$$m = 3 \cos\left(\frac{\pi}{3}\right) = \frac{3}{2} \left[\cos\frac{\pi}{3} = \cos 60^{\circ} = \frac{1}{2}\right]$$

5
$$y = 4 \cos 2x \Rightarrow \frac{dy}{dx} = -8 \sin 2x @ (x = \frac{\pi}{4})$$

$$\therefore m = -8 \sin\left(2 \times \frac{\pi}{4}\right)$$

$$= -8 \sin \frac{\pi}{4} \left[\sin \frac{\pi}{2} = \sin 90^{\circ} = 1 \right]$$

= -8

9.4

Exercise 9D

1 **a**
$$y = (1 + 2x)^4 \Rightarrow y' = 4(1 + 2x)^3 \times 2 = 8(1 + 2x)^3$$

b
$$y = (1 + x^2)^3 \Rightarrow y' = 3(1 + x^2)^2 \times 2x = 6x(1 + x^2)^2$$

c
$$y = (3 + 4x)^{\frac{1}{2}} \Rightarrow y' = \frac{1}{2}(3 + 4x)^{-\frac{1}{2}} \times 4 = \frac{2}{\sqrt{3 + 4x}}$$

d
$$y = (x^2 + 2x)^3 \Rightarrow y' = 3(x^2 + 2x)^2 \times (2x + 2)$$

= $6(x + 1)(x^2 + 2x)^2$

2 **a**
$$y = 4e^{3x^2} \Rightarrow y' = 4e^{3x^2} \times 6x = 24x e^{3x^2}$$

8(1 + 2x)³

b
$$y = 9e^{3-x} \Rightarrow y' = 9e^{3-x} \times -1 = -9e^{3-x}$$

$$y = e^{-6x} \Rightarrow y' = e^{-6x} \times -6 = -6e^{-6x}$$

d
$$y = e^{x^2 + 2x} \Rightarrow y' = e^{x^2 + 2x} \times (2x + 2)$$

= $2(x + 1) e^{x^2 + 2x}$

3 **a**
$$y = \sin(2x + 1) \Rightarrow y' = \cos(2x + 1) \times 2 = 2\cos(2x + 1)$$

b
$$y = \cos(2x^2 + 4) \Rightarrow y' = -\sin(2x^2 + 4) \times 4x \Rightarrow -4x\sin(2x^2 + 4)$$

c
$$y = \sin^3 x \Rightarrow y' = 3 \sin^2 x \cos x$$

 $3 \sin^2 x \cos x$

d
$$y = \cos^2 2x \Rightarrow y' = 2 \cos 2x \times (-\sin 2x) \times 2$$

= $-4 \sin 2x \cos 2x$

4 a
$$y = x (1 + 3x)^5 \Rightarrow y' = (1 + 3x)^5 + x.5(1 + 3x)^4 \times 3$$

= $(1 + 3x)^4 [1 + 3x + 15x]$
= $(1 + 3x)^4 (1 + 18x)$

b
$$y = 2x (1 + 3x^2)^3 \Rightarrow y' = 2(1 + 3x)^3 + 2x \times 3(1 + 3x^2)^3 \times 6x$$

$$= 2(1+3x^2)^2 [1+18x^2]$$

$$= 2(1+3x^2)^2 [1+18x^2]$$

$$= 3x^2 (2x+6)^4 \rightarrow y' = 3x^2 (2x+6)^4$$

c
$$y = x^3 (2x+6)^4 \Rightarrow y' = 3x^2 (2x+6)^4 + x^3 \times 4(2x+6)^3 \times 2$$

= $x^2 (2x+6)^3 [6x+18+8x]$
= $2x^2 (2x+6)^3 (7x+9)$

5 a
$$y = xe^{2x} \Rightarrow y' = e^{2x} + x.2 e^{2x} = e^{2x}(1 + 2x)$$

b
$$y = (x^2 + 3) e^{-x} \Rightarrow y' = 2x \times e^{-x} + (x^2 + 3)(-e^{-x})$$

= $e^{-x}(2x - x^2 - 3)$

c
$$y = (3x - 5) e^{x^2} \Rightarrow y' = 3 \times e^{x^2} + (3x - 5)e^{x^2} \times 2x$$

= $e^{x^2}(6x^2 - 10x + 3)$

6 a
$$y = x \sin x \Rightarrow y' = \sin x + x \cos x$$

b
$$y = \sin^{2x} \cos x$$

 $\Rightarrow y' = 2 \sin x \cos x \times \cos x + \sin^{2}x (-\sin x)$

$$y' = \sin x \left(2\cos^2 x - \sin^2 x \right)$$

$$y = e^x \cos x \Rightarrow y' = e^x \cos x - e^x \sin x$$

$$= e^{x} (\cos x - \sin x)$$

7 **a**
$$y = \frac{5x}{x+1} \Rightarrow y'$$
 $= \frac{(x+1) \times 5 - 5x \times 1}{(x+1)^2}$
 $= \frac{5x+5-5x}{(x+1)^2}$
 $= \frac{5}{(x+1)^2}$

b
$$y = \frac{2x}{3x - 2} \Rightarrow y' = \frac{(3x - 2) \times 2 - 2x \times 3}{(3x - 2)^2}$$

= $\frac{6x - 4 - 6x}{(3x - 2)^2}$
= $\frac{-4}{(3x - 2)^2}$

$$\mathbf{c} \quad y = \frac{3x^2}{(2x-1)^2} \Rightarrow y'$$

$$= \frac{(2x-1)^2 \times 6x - 3x^2 \times 2(2x-1) \times 2}{(2x-1)^4}$$

$$= \frac{6x(2x-1)[2x-1-2x]}{(2x-1)^4}$$

$$= \frac{-6x}{(2x-1)^3}$$

8 **a**
$$y = \frac{x}{e^{2x}} \Rightarrow y'$$
 $= \frac{e^{2x} \times 1 - x \times 2e^{2x}}{e^{4x}} = \frac{1 - 2x}{e^{2x}}$

b
$$y = \frac{e^x}{x+1} \Rightarrow y' = \frac{(x+1)e^x - e^x \times 1}{(x+1)^2} = \frac{xe^x}{(x+1)^2}$$

$$\mathbf{c}$$
 $y = \frac{e^{x^2}}{x} \Rightarrow y'$ $= \frac{x \times 2xe^{x^2} - e^{x^2} \times 1}{x^2} = \frac{e^{x^2}(2x^2 - 1)}{x^2}$

9 **a**
$$y = \frac{\sin x}{x} \Rightarrow y' = \frac{x \cos x - \sin x \times 1}{x^2}$$

$$\mathbf{b} \quad y = \frac{e^x}{\cos x} \Rightarrow y' \quad = \frac{\cos x \times e^x + e^x \sin x}{\cos^2 x}$$
$$= \frac{e^x (\sin x + \cos x)}{\cos^2 x}$$

$$\mathbf{c} \quad y \frac{\sin^2 x}{e^2 x} \Rightarrow y' \quad = \frac{e^{2x} \times 2 \sin x \cos x - \sin^2 x \times 2e^{2x}}{e^{4x}}$$
$$= \frac{2 \sin x e^{2x} (\cos x - \sin x)}{e^{4x}}$$

$$= \frac{2\sin x(\cos x - \sin x)}{e^{2x}}$$

10 a
$$y = x^2 (3x - 1)^3 \Rightarrow y' = 2x (3x - 1)^3 + x^2 \times 3 (3x - 1)^2 \times 3 \text{ when } x = 1$$

 $m = 2 \times 2^3 + 1 \times 9 \times 2^2 = 16 + 36 = 52$

b
$$y = (2x + 3)e^{2x} \Rightarrow y' = 2(2x + 3)e^{2x} + 2 \times e^{2x}$$

when $x = 0$

$$m = 6e^0 + 2e^0 = 8$$

c
$$y = 3 \sin^2 x \Rightarrow y' = 6 \sin x \cos x$$
 when $x = \frac{\pi}{4}$

$$m = 6 \times \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}} = 3$$

d
$$y = x \cos x \Rightarrow y' = \cos x - x \sin x \text{ when } x = \frac{\pi}{2}$$

$$m = \cos\frac{\pi}{2} - \frac{\pi}{2}\sin\frac{\pi}{2} = 0 - \frac{\pi}{2} \times 1$$
$$= -\frac{\pi}{2}$$

Exercise 9E

1 **a**
$$y + 3x - 6 = 0$$

b
$$4y - 3x - 4 = 0$$

$$\mathbf{c}$$
 $y = x$

2 a
$$7y + x - 48 = 0$$
 b $17y + 2x - 212 = 0$

3
$$y = -8x + 10, 8y - x - 145 = 0$$

4 $y = 2ex - \frac{e}{2}$

4
$$y = 2ex - \frac{e}{2}$$

5
$$y = \frac{1}{3}e$$

6
$$y = x \sin x$$
 $\Rightarrow y' = \sin x + x \cos x @ (\pi, 0)$
 $\therefore m = \sin \pi + \pi \cos \pi = -\pi$

$$y - 0 = -\pi (x - \pi)$$

or
$$y = \pi^2 - x\pi$$

7
$$y = 2\cos^2 x \implies y' = 4\cos x (-\sin x) @(\frac{\pi}{4}, 1)$$

$$\therefore m = -4.\frac{1}{\sqrt{2}}.\frac{1}{\sqrt{2}} = -2$$

normal has gradient = $\frac{1}{2}$

∴ equation of normal is:

$$y-1=\frac{1}{2}\left(x-\frac{\pi}{4}\right)$$

or
$$8y - 8 = 4x - \pi$$

or
$$8y - 4x = 8 - \pi$$

9.6

Exercise 9F

$$1 \frac{1}{4}x^4 + x^2 + c$$

$$2 - 2x^{-1} + 3x + c$$

- 3 $2x^{\frac{5}{2}} x^3 + c$
- 4 $\frac{4}{3}x^{\frac{3}{2}} 4x^{\frac{1}{2}} + 4x + c$
- 5 $x^4 + x^{-3} + rx + c$
- **6** $t^3 + t^{-1} + c$
- $7 \frac{2}{3}t^3 + 6t^{-\frac{1}{2}} + t + c$
- 8 $\frac{1}{2}x^2 + 2x^{\frac{1}{2}} 2x^{-\frac{1}{2}} + c$
- 9 $\frac{p}{5x^5} + 2tx 3x^{-1} + c$
- 10 $\frac{p}{4}t^4 + q^2t + px^3t + c$
- **11 a** $\frac{1}{2}x^4 + x^3 + c$
 - **b** $2x \frac{3}{x} + c$
 - $\mathbf{c} = \frac{4}{3}x^3 + 6x^2 + 9x + c$
 - **d** $\frac{2}{3}x^3 + \frac{1}{2}x^2 3x + c$
 - $e^{\frac{4}{5}x^{\frac{5}{2}}+2x^{\frac{3}{2}}+c}$
- **12 a** $\int 2 \sin 3x \, dx = -\frac{2}{3} \cos 3x + c$
 - **b** $\int 3e^{4x} dx = \frac{3}{4}e^{4x} + c$
 - $\mathbf{c} \qquad \int 2\cos 3x \, \mathrm{d}x \qquad = \frac{2}{3}\sin 3x + c$
 - **d** $\int 2e^{-x} dx = -2e^{-x} + c$
- **13 a** $5e^x + 4\cos x + \frac{x^4}{2} + c$
 - **b** $-2\cos x 2\sin x + x^2 + C$
 - c $5e^{x} + 4\sin x + \frac{2}{x} + c$
 - **d** $e^x \cos x + \sin x + C$

Exercise 9G

- **1** 10*t*
- 2 48 32t
- **b** 70 m/s
- 3 a 40 + 10t**4 a** 30 – 1*t*
- **b** 0 m/s
- **5 a** a = 32
 - **b** v = 32t + 100
 - \Rightarrow $s = 16t^2 + 100t + d$; when t = 0, $s = 0 \Rightarrow d = 0$
 - $s = 16t^2 + 100t$
- **a** a = -32
 - **b** v = 160 32t
 - $\Rightarrow s = 160t 16t^2 + d$;
 - $t = 0, s = 384 \Rightarrow d = 384$
 - \therefore $s = 384 + 160t 16t^2$
 - $s = 0 \Rightarrow 16(t^2 10t 24) = 0$ i.e. 16(t-12)(t+2)=0
 - \therefore passes through origin when t = 12

- 7 **a** $3t^2 + 8t 5$ **b** 6t + 8
 - \mathbf{c} $v = 6 \text{ m/s}, a = 14 \text{ m/s}^2$
- **8 a** $v = 3t^2 4t + 3$ **b** a = 6t 4
- **9 a** a = 2t + 10 **b** $a = 14 \text{ m/s}^2$
- - \mathbf{c} $v = t^2 + 10t + 5$
 - ⇒ $s = \frac{t^3}{3} + 5t^2 + 5t + d$; s = 0 when t = 0 ⇒ d = 0∴ when t = 2 $s = \frac{8}{3} + 20 + 10 = 32\frac{2}{3}$
- **10 a** 6-2t
- **a** 6-2t **b** 2 m/s **c** $v = 24+6t-t^2$
 - $\Rightarrow \qquad s = 24t + 3t^2 \frac{t^3}{3} + d$
- $s = 100, t = 3 \implies 100 = 24 \times 3 + 3 \times 9 \frac{27}{3} + d$ i.e. 100 = 72 + 27 9 + d $\therefore d = 10$ $\therefore s = 10 + 24t + 3t^2 \frac{t^3}{3}$

9.8

Exercise 9H

- **1 a** -28 **b** -17 **c** $-\frac{1}{5}$ **2 a** 10 **b** 4 **c** 12.25

- **3 a** $\left(-\frac{3}{4}, -\frac{9}{4}\right)$ **b** $\left(\frac{1}{2}, 9\frac{1}{4}\right)$

 - $\mathbf{c} = (-\frac{1}{3}, 1\frac{5}{27}), (1, 0) \quad \mathbf{d} = (3, -18), (-\frac{1}{3}, \frac{14}{27})$
 - **e** (1, 2), (-1, -2) **f** (3, 27)
- 5 $\left(\frac{3\pi}{8}, \frac{1}{\sqrt{2}}e^{\frac{3\pi}{4}}\right)$ maximum, $\left(\frac{7\pi}{8}, -\frac{1}{\sqrt{2}}e^{\frac{7\pi}{4}}\right)$ minimum

9.9

Exercise 91

- **a** 8 **b** $9\frac{3}{4}$ **c** $19\frac{2}{3}$ **d** 21 1 a 8
- **e** $8\frac{5}{12}$

- **3 a** A(1, 3), B(3, 3) **b** $1\frac{1}{3}$

- 4 $6\frac{2}{3}$
- **5 a** (2, 12)
- **b** $13\frac{1}{2}$

6 $3\frac{3}{8}$

9.10

Exercise 9

- $1 \frac{8}{9}\pi$
- $2 6\pi$
- 3 $15e^2$ 4 $y = 5x^4 \Rightarrow \frac{dy}{dx} = 20x^3$
 - $\therefore \delta y \approx 20x^3 \, \delta x \qquad = 20x^3 \times \frac{x}{200} \quad \left[0.5\% \text{ of } x = \frac{x}{200} \right]$

- i.e. $\delta y = \frac{20x^4}{200} = \frac{x^4}{10}$
- $\therefore \% \text{ change in } y = \frac{\delta y}{y} \times 100 = \frac{x^4}{10 \times 5x^4} \times 100 = 2\%$
- $5 y = 3x^2 \Rightarrow \frac{dy}{dx} = 6x$
 - $\therefore \delta y \approx 6x \, \delta x \qquad = 6x \times \frac{x}{100} = \frac{6x^2}{100}$
 - $\therefore \% \text{ change in } y = \frac{\delta y}{y} \times 100 = \frac{6x^2}{3x^2 \times 100} \times 100$
- **6** For a sphere: $V = \frac{4}{3} \pi r^3 = \frac{dv}{dr} = 4 \pi r^2$
 - - $\delta v \approx 4\pi r^2 dr$
 - Use $r = 1 \Rightarrow$
 - $\delta v \approx 4\pi \times 0.02$
 - $= 0.25 \text{ cm}^3$

Exercise 9K

- 1 $20 \text{ m} \times 40 \text{ m}$; 800 m^2
- $2000\pi \text{ cm}^2$
- **3** 40 cm
- 4 $\frac{800}{4+\pi}$ cm²
- **5** 27 216 mm²

Mixed Exercise 9L

- 1 a x = 4, y = 20
 - **b** $\frac{d^2y}{dx^2} = \frac{15}{8} > 0$: minimum
- 2 (1, -11) and $(\frac{7}{3}, -12\frac{5}{27})$
- 3 a $7\frac{31}{32}$
 - **b** $\frac{x^3}{3} 2x \frac{1}{x} 2\frac{2}{3}$
 - **c** $f'(x) = \left(\frac{x-1}{x}\right)^2 > 0$ for all values of x
- **4** (1, 4)
- **5** a $y = 1 \frac{x}{2} \frac{\pi x}{4}$
 - $\mathbf{c} = \frac{2}{4 + \pi} \mathbf{m}^2 (0.280 \,\mathrm{m}^2)$
- **6 b** $\frac{10}{3}$

- $\mathbf{c} \quad \frac{\mathrm{d}^2 v}{\mathrm{d} v^2} < 0 :: \text{maximum}$
- **d** $\frac{2300\pi}{27}$
- e $22\frac{2}{9}\%$
- 7 **a** $\frac{250}{x^2} 2x$
 - **b** (5, 125)
 - **8 b** $x = \pm 2\sqrt{2}$ or x = 0

- c OP = 3; f''(x) > 0 so minimum when $x = \pm 2\sqrt{2}$ (maximum when x = 0
- **9 b** A is (-1, 0); B is $(\frac{5}{3}, 9\frac{13}{27})$
- **10** $3x^2 \cos 3x + 2x \sin 3x$
- 12 $\frac{x \cos x \sin x}{x}$
- **13 b** y = 2x + 1
- **14 a** $-(x^3-2x)e^x+(3x^2-2)e^x$

Chapter 10

10.1

Exercise 10A

- 90 **b** 12°
 - **d** 90° **e** 140°
- **g** 225° **h** 270° **2 a** 26.4° **b** 57.3°
- **c** 65.0° 179.9° **d** 99.2° **e** 143.2°
 - **g** 200°
- **b** 0.156 **3 a** 0.479 1.74
 - e -0.897**d** 0.909
- 4 a $\frac{2\pi}{45}$

 - $\mathbf{m} = \frac{4\pi}{3}$
- **5 a** 0.873 **b** 1.31 **c** 1.75
 - 2.79 4.01
- 5.59

c 75°

i 540°

210°

10.2

Exercise 10B

- 1 a i 2.7 ii 2.025 iii $7.5\pi(23.6)$
 - **b** i $16\frac{2}{3}$ **iii** 3.6 **ii** 1.8
- **ii** 0.8 **iii** 2
- **c i** $1\frac{1}{3}$ **2** $\frac{10\pi}{3}$ cm
- $3 2\pi$
- **4** $5\sqrt{2}$ cm **5 a** 10.4 cm **b** $1\frac{1}{4}$
- **6** 7.5
- 7 0.8
- **b** $\left(6 + \frac{4\pi}{3}\right)$ cm
- **9** 6.8 cm
- **10 a** (R r) cm **c** 2.43

Exercise 10C

- 1 a 19.2 cm^2 **b** $6.75\pi \,\mathrm{cm}^2$ $1.296\pi\,{\rm cm}^2$ $38.3 \, \text{cm}^2$ **e** $5\frac{1}{3}\pi \text{ cm}^2$ $5 \, \text{cm}^2$ f **2 a** 4.47 **b** 3.96
- **c** 1.98
- $3 12 \text{ cm}^2$
- **4 b** $120 \, \text{cm}^2$
- 5 $40\frac{2}{3}$ cm
- **6 a** 12 $c = 1.48 \text{ cm}^2$ $7 8.88 \text{ cm}^2$
- 8 a $1.75 \, \text{cm}^2$
 - **b** 25.9 cm^2
- $c = 25.9 \text{ cm}^2$

- 9 $4.5 \, \text{cm}^2$
- **10 b** 28 cm
- 11 78.4 cm
- **12 b** 28 cm

10.4

Exercise 10D

 $\mathbf{k} - 1$

 $\mathbf{n} - \sqrt{3}$

10.5

Exercise 10E

- **1 a** x = 84, y = 6.32
 - **b** x = 13.5, y = 16.6
 - \mathbf{c} x = 85, y = 13.9
 - **d** x = 80, y = 6.22 (Isosceles \triangle)
 - **e** x = 6.27, y = 7.16
 - **f** x = 4.49, y = 7.49 (right-angled
- **b** 45.6 **2 a** 48.1 **d** 48.7
 - **e** 86.5

14.8

77.4

c

f

- 3 a x = 74.6, y = 65.4
 - x = 105, y = 34.6
 - **b** x = 59.8, y = 48.4
 - x = 120, y = 27.3 \mathbf{c} x = 56.8, y = 4.37

- x = 23.2, y = 2.06
- **4 a** 3.19 cm **b** 1.73 cm ($\sqrt{3}$ cm)
 - **d** 4.31 cm **c** 9.85 cm
- **e** 6.84 cm (isosceles) **f** 9.80 cm
- 90° **c** 60° **5 a** 108(.2)° **d** 52.6° **e** 137° f 72.2° **6 a** $23.7 \, \text{cm}^3$ **b** $4.31 \, \text{cm}^3$ 20.2 cm^3
- **7 a** 155° **b** 13.7 cm
- **8 a** x = 49.5, area = 1.37 cm²
 - **b** x = 55.2, area = 10.6 cm²
 - \mathbf{c} x = 117, area = 6.66 cm²
- $9 6.50 \,\mathrm{cm}^2$
- **10 a** $36.1 \,\mathrm{cm}^3$ **b** $12.0 \, \text{cm}^3$

10.6

Exercise 10F

- **1 a** 11.7 cm **b** 14.2 cm 34.4°
 - **d** 63.4°
- **2 a** 18.6 cm 28.1 cm 48.6° **3 a** 14.1 cm **b** 17.3 cm 35.4°
- **4 a** 28.3 cm **b** 34.6 cm 35.1°
 - **c** 19.5°
- **5 a** 4.47 m **b** 4.58 m 29.2°
 - **d** 12.6° **e** 26.6°
- **6 a** 407 m **b** 402 m 8.57°
 - **c** 13.3°
- **7 a** 43.3 cm **b** 68.7 cm 81.2 cm
- **b** 75.7 cm 22.4° **8 a** 28.9 cm 67.9° 55.3 cm^2 9 a 16.2 cm
- **d** 71.6°
- **10 a** 26.5 cm **b** 61.8° $1530 \, \text{cm}^2$ 68.9° **11 a** 30.3° **b** 31.6°
- **12 a** 36.9° **b** $828 \, \text{cm}^2$
- **13 a** 15 m 47.7° **c** €91 300 b
- **14 a** 66.4° 32.9°
- **15** 46.5 m
- **16 a** OW = 4290 m. OS = 2760 m
 - **b** 36.0°
- c 197 km/h

10.7

Exercise 10G

- $\underline{\sin^2 \theta}$ **b** 5 $\mathbf{c} = -\cos^2 A$ e $\tan x^0$ d $\cos \theta$ **f** $\tan 3A$
- **h** $\sin^2 \theta$
- **2** a LHS = $\sin^2 \theta + \cos^2 \theta + 2 \sin \theta \cos \theta$
 - $= 1 + 2 \sin \theta \cos \theta$

b LHS
$$=\frac{1-\cos^2\theta}{\cos\theta} = \frac{\sin^2\theta}{\cos\theta} = \sin\theta \times \frac{\sin\theta}{\cos\theta}$$

 $= \sin \theta \tan \theta = RHS$

c LHS
$$= \frac{\sin x^{\circ}}{\cos x^{\circ}} + \frac{\cos x^{\circ}}{\sin x^{\circ}} = \frac{\sin^{2} x^{\circ} + \cos^{2} x^{\circ}}{\sin x^{\circ} \cos x^{\circ}}$$
$$= \frac{1}{\sin x^{\circ} \cos x^{\circ}} = \text{RHS}$$

d LHS =
$$\cos^2 A - (1 - \cos^2 A) = 2 \cos^2 A - 1$$

= $2 (1 - \sin^2 A) - 1 = 1 - 2 \sin^2 A = \text{RHS}$

e LHS =
$$(4 \sin^2 \theta - 4 \sin \theta \cos \theta + \cos^2 \theta)$$

+ $(\sin^2 \theta + 4 \sin \theta \cos \theta + 4 \cos^2 \theta)$
= $5 (\sin^2 \theta + \cos^2 \theta) = 5 = \text{RHS}$

f LHS =
$$2 - (\sin 2\theta - 2\sin\theta\cos\theta + \cos^2\theta)$$

= $2 (\sin^2\theta + \cos 2\theta)$
 $- (\sin^2\theta - 2\sin\theta\cos\theta + \cos^2\theta)$
= $\sin^2\theta + 2\sin\theta\cos\theta + \cos^2\theta$
= $(\sin\theta + \cos\theta)^2 = \text{RHS}$

g LHS =
$$\sin^2 x (1 - \sin^2 y) - (1 - \sin^2 x) \sin^2 y$$

= $\sin^2 x - \sin^2 y = \text{RHS}$

$$\mathbf{g} = \sin 3\theta$$

e
$$\cos \theta$$
 h $\tan 5\theta$

f
$$\cos 7\theta$$
 i $\sin A$

$$\cos 3x$$

$$\mathbf{c} = \frac{\sqrt{3}}{2}$$

d
$$\frac{\sqrt{2}}{2}$$

$$e^{-\frac{\sqrt{2}}{2}}$$

$$f -\frac{1}{2}$$

$$\mathbf{g} = \sqrt{3}$$

$$h \quad \frac{\sqrt{3}}{3}$$

j
$$\sqrt{2}$$

5 **a** LHS =
$$\sin A \cos 60^{\circ} + \cos A \sin 60^{\circ}$$

+ $\sin A \cos 60^{\circ} - \cos A \sin 60^{\circ}$
= $2 \sin A \cos 60^{\circ}$
= $2 \sin A (\frac{1}{2}) = \sin A = \text{R.H.S.}$

b LHS =
$$\frac{\cos A \cos B - \sin A \sin B}{\sin B \cos B} = \frac{\cos (A + B)}{\sin B \cos B}$$

= R.H.S.

c LHS =
$$\frac{\sin x \cos y + \cos x \sin y}{\cos x \cos y}$$
$$= \frac{\sin x \cos y}{\cos x \cos y} + \frac{\cos x \sin y}{\cos x \cos y}$$
$$= \tan x + \tan y = \text{R.H.S.}$$

d LHS =
$$\frac{\cos x \cos y - \sin x \sin y}{\sin x \sin y} + 1$$
$$= \cot x \cot y - 1 + 1 = \cot x \cot y = \text{R.H.S.}$$

e LHS =
$$\cos \theta \cos \frac{\pi}{3} - \sin \theta \sin \frac{\pi}{3} + \sqrt{3} \sin \theta$$

= $\frac{1}{2} \cos \theta - \frac{\sqrt{3}}{2} \sin \theta + \sqrt{3} \sin \theta$
= $\frac{1}{2} \cos \theta - \frac{\sqrt{3}}{2} \sin \theta$

$$= \sin \frac{\pi}{6} \cos \theta + \cos \frac{\pi}{6} \sin \theta$$
$$= \sin \left(\frac{\pi}{6} + \theta\right) = \text{R.H.S.}$$

10.8

Exercise 10H

- 270° **b** 60°, 240° **d** 15°. 165° 60°, 300° 140°, 220° 135°, 315° 90°, 270° 230°, 310° $45.6^{\circ}, 134.4^{\circ}$ 135°, 225° **2 a** -120, -60, 240, 300 **b** -171, -8.63-327, -32.9-144, 144150, 330, 510, 690 251.431
- 3 $-\pi$, 0, π , 2π
 - $-\frac{7\pi}{4},\,-\frac{5\pi}{4},\frac{\pi}{4},\frac{3\pi}{4}$ **d** -0.14, 3.00, 6.14

c
$$22\frac{1}{2}^{\circ}$$
, $112\frac{1}{2}^{\circ}$, $202\frac{1}{2}^{\circ}$, $292\frac{1}{2}^{\circ}$

5 a
$$-\frac{7\pi}{12}$$
, $-\frac{\pi}{12}$ **b** 1.48, 5.85

10.9

Exercise 101

- 30°, 210° 135°, 315°
- 2 a π , 2π
 - 0.59, 3.73
- 60°, 120°, 240°, 300°
 - 0° , 180° , 199° , 341° , 360°
 - c 60°, 300°
 - 30°, 60°, 120°, 150°, 210°, 240°, 300°, 330°
 - 270°
 - 0°, 18.4°, 180°, 198°, 360°
 - 194°, 270°, 346°

4 a
$$\frac{5\pi}{12}$$
, $\frac{11\pi}{12}$, $\frac{17\pi}{12}$, $\frac{23\pi}{12}$
b 0.841 , $\frac{2\pi}{3}$, $\frac{4\pi}{3}$, 5.44

b 0.841,
$$\frac{2\pi}{3}$$
, $\frac{4\pi}{3}$, 5.44

Mixed Exercise 10J

- 1 a $\cos^2 \theta \sin^2 \theta$
 - **b** $\sin^4 3\theta$
 - **c** 1
- **2 a** 1

- $\mathbf{b} \quad \tan y = \frac{4 + \tan x}{2 \tan x 3}$
- 3 **a** $2 \sin 2\theta = \cos 2\theta \Rightarrow 2 \sin 2\theta \setminus \cos 2\theta = 1$ \Rightarrow 2 than $2\theta = 1 \Rightarrow$ than $2\theta = 0.5$
 - **b** 13.3, 103.3, 193.3, 283.3
- **4 a** 225, 345
 - **b** 22.2, 67.8, 202.2, 247.8
- **a** $\frac{11\pi}{12}, \frac{23\pi}{12}$
- **b** $\frac{2\pi}{3}, \frac{5\pi}{6}, \frac{5\pi}{3}, \frac{11\pi}{6}$
- **6** 0°, 131.8°, 228.2°
- 7 0, π , 2π
- **8 a** Max 1, $\theta = 100^{\circ}$; Min = -1, $\theta = 280^{\circ}$
 - **b** Max 1, $\theta = 330^{\circ}$; Min = -1, $\theta = 150^{\circ}$
- **9 a** i $\frac{1}{2}$ ii $\frac{1}{2}$ iii $\sqrt{3} \setminus 3$
- **b** 23.8°, 203.8°

Review exercise

- **1** a $A = 5, B = -\frac{5}{2}, C = -28\frac{1}{4}$
 - **b** $f_{\min} = -\frac{113}{4}, \chi = \frac{5}{2}$

- **3 a** 3 **b** $2\frac{1}{2}$ **c** $125\frac{1}{2}$
- **4** 814
- **5 a b** $P = 126.8^{\circ}, Q = R = 26.6^{\circ}$
- **6 a** i $\frac{1}{4}$ **b a** ii $\frac{1}{3}$ **a** + $\frac{1}{6}$ **b** iii $\frac{1}{3}$ **a** $\frac{5}{6}$ **b**

- **b** $\frac{2}{5}$ **c** $\frac{2}{3}$
- **7 a b** 54.5°, 234.5°
- 8 $4\frac{1}{2}$ m
- **9** 21.8°, 38.2°,120°
- **10 a** 3.18, 6.69, 13.04
- **b** –
- **c** 2.3
- **d** 0.6 (0.5 acceptable)
- 11 $x^6 18x^4 + 135x^2$
- **12** -3
- 13 -

- **14 a** (3.14), (5, 24) **b** $1\frac{1}{3}$
- **15 a b** 12 cm **c** $6\sqrt{3}$

d 54.7°

e 109.5°

- 16 $\frac{1}{2}$ x%
- **17 a-b** $(-3, -\frac{5}{3}), (2, \frac{5}{2})$ **c** $y = -\frac{6}{5}(x-1)$

- **18 a** 0.253, 2.89
- **b** 1.11, 2.68
- **c** 1.91, 2.30
- **19 a** 625

- **b** 2.64
- **c** x = 2, y = 3
- 20 -
- **21** 82.8°
- **22 a** 8i j

- **23** $449\frac{2}{5}\pi$
- **24 a** $\cos 2\theta = 2 \cos^2 \theta 1$ **b** $\sin 2\theta = 2 \sin \theta \cos \theta$

- **26 a** (2, 4), (5, 16) **b** $x \le 2, x \ge 5$
- **27 a** -i 11j **b** $\frac{13}{5}i \frac{2}{5}j$

- **28** 73.9°
- 29 a -

b 12 791

- **30** 15 200
- **31 a** $r = \frac{1}{2}, r = -3$
- **b** 10
- **32** 46.5°, 133.5°
- 33 $\frac{1}{2}$
- **34 a** 2y + x = 25 **b** (25, 0) **c** (10, 0)
- **35 a** 4 m/s^2 **b** $25\frac{1}{3}\text{ m}$
- **36 a** 4y = x + 23 **b** y = -4x + 26
 - \mathbf{c} (-3, 38)
 - **d** $6\frac{16}{17}$

- e $12\frac{28}{51}$
- **37 a** -2p + q = 28, 3p + q = 18
 - **b** -2.24
 - c (x+2)(x-3)(x-4)

 - $e -\frac{12}{5}, 2$
- 38 -
- **39 a** 2y = 3x 18 **b** 3y = -2x + 51 **c** 156 **d** 216π

c 156

- **d** 216π
- **40 a** $1 + \frac{x}{2p} \frac{x^2}{8p^2} + \frac{x^3}{16p^3}$
 - **b** $p = \pm \frac{1}{2}$
- 41 a -
- **b c** 4.76
- **e** 408
- **b** 4000

- **43 a** $1-2x-4x^2$ **b** 2.76132 **c** 0.087% **d** a=1,b=-5,c=8

- **e** $|x| < \frac{1}{6}$
- **44** 2y = x 2
- **45** $\pi[\frac{1}{4}e^8 + 4e^4 + 27\frac{3}{4}]$
- **c** 15, 75, 105, 165
- **47 a** i y = 2 ii x = -1
- - **b** $(0,3), (-\frac{3}{2},0)$

- **48 a** 4 m/s^2
- **b** 90 m
- **49 a** $\frac{1}{2}$ **b** $-\frac{1}{3}$ **a b** 2**b** $-\frac{4}{3}$ **a**

- **50 a** $\frac{dy}{dx} = 10x \cos 3x 15x^2 \sin 3x$
 - **b** $\frac{dy}{dx} = \frac{3e^{3x}(x^2+3) 2xe^{3x}}{(x^2+3)^2}$
- **51** 0.212 m/s
- **52 a** 1.39

- **b** 28.7°
- **53** p < -5, p > 2
- **54 a** 1, 3.75, 5.89, 6.92

c 0.79

- **55 a** $A = -\frac{7}{2}, B = -\frac{9}{4}$ **b** $-\frac{9}{4}, x = \frac{7}{2}$

 - **c** (1, 4), (7,10)
- **d** (2, 0), (5, 0)
- e –
- **f** 24
- **56** (−2, 1), (−1, 3)
- **57 a** i $\frac{p^2}{4} + 6$ ii 9 **b** $p = \pm 4$
- $\mathbf{c} \quad x^2 10x + 9 = 0$
- **58 a** $-\frac{9}{11}$, 5

- **d** 16 380
- **59 a** $\frac{dy}{dx} = 10xe^{2x} + 2(5x^2 2)e^{2x}$
 - **b** $\frac{dy}{dx} = \frac{2x^3 x^4 + 4x 2}{(x x^2)^2}$
- **60** ln 4
- **61** 91.1°
- **62** $23\frac{2}{5}$
- **63 a** $1 + \frac{x}{12} \frac{x^2}{144}$ **b** $1 + \frac{x}{12} \frac{x^2}{72}$

- c |x| < 4
- **d** $1 + \frac{x}{6} \frac{x^2}{72}$
- **e** 0.308

- **64 a** $\cos 2A = 2\cos^2 A 1$
 - **b** $\sin 2A = 2 \sin A \cos A$

 - **d** 17.7°, 102.3°, 137.7°
- **65** (6, -1), (1,4)
- **66 a** $p^5 + 5p^4qx + 10p^3q^2x + 10p^2q^3x + 5pq^4x^4 + q^5x^5$
 - **b** $p = \frac{6}{5}$, $q = \frac{12}{5}$ or p = -2, q = 4
- **67 a** 3
- **b** q = 20
- **c** a = 2, b = 1
- **d** 9
- **68 a** i $\sqrt{20}$ ii $\sqrt{40}$
 - iii $\sqrt{20}$
 - **b** $\angle A = 90^{\circ}, \angle B = \angle C = 45^{\circ}$
 - c (5, 5)
- **69** ±60°
- **70** 67.4°
- **71 a** 2
- **c** r = n 1, s = n

- **c** r = n 1, s = n **d b** $x^2 \frac{12}{p}x + \frac{12}{p} = 0$
- **73** -4

Practice examination papers

Paper 1

- 1 80.4° or 99.6°
- 2 a -
- **b** p = -10, q = 33
- $3 \ 20 \, \text{cm}^2/\text{s}$
- **4** x = 2 y = 3, x = 3 y = 2
- **5 a** p = 6, q = -4 **b** $5\mathbf{i} + \frac{4}{3}\mathbf{j}$ **6 a** $(\frac{1}{3}, 2\sqrt{\frac{5}{3}})$ **b** $\frac{25}{3}\pi$

- **7 a** 5 **b** $\frac{7r}{2} + \frac{3}{2}$ **c** $3\frac{1}{2}$ **d** 11

- **8 a** $a^6 + 6a^5bx + 15a^4b^2x^2 + 20a^3b^3x^3 + 15a^2b^4x^4$ $+6ab^5x^5+b^6x^6$
 - **b** a=2 $b=\frac{4}{3}$, a=-2 $b=-\frac{4}{3}$

c 40.1°

- **10 a** (2, 4)
- **b** y = 4x 4
- $\mathbf{c} \quad y = 4$
- **b** 8 units^2
- **11 a** 11.0 cm **b** 11.9 cm **d** 101.4° **e** 61.9°

Paper 2

1
$$2e^{2x} \sin 3x + 3e^{2x} \cos 3x$$

3 **a i**
$$y =$$

ii
$$x = 2$$

3 a i
$$y = 3$$
 ii $x = 2$ b i $(2\frac{2}{3}, 0)$ ii $(0, 4)$

4	a

		0.5							
у	1	0.649	-1.28	-4.52	-8.61	-12.8	-15.9	-15.9	-9.40

- **b** graph drawn **c i** 1.9
 - - **ii** 1.3
- **5 a** 0, 3, 4
- **b** –
- **c** 11.8 m

- 6 a $\pm \frac{1}{2}$
- **b** a = 120x
- **c** 4
- **7 a** (ln 3, 36), (0, 4) **b** 32.02
- \mathbf{c} 82.2 units²

- **8 a b** 2.71 **c d** 138

- 9 a –

- **a b** -280 **c** 37 **d** $46\sqrt{37}$ **e** $9x^2 + 280 + 3 = 0$

- **10 a b i** $\frac{\sqrt{3}+1}{\sqrt{3}-1}$ **ii** $\frac{\sqrt{3}-1}{\sqrt{3}+1}$

$$\mathbf{c} \quad \tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta}$$

- d $\sqrt{2} - 1$
- **e** $\frac{20}{29}$