SUPPORT VECTOR MACHINES CONTINUED.

1. SVM FOR OVERLAPPING CLASSES

- In the previous case, $t_n(\mathbf{w}^t\phi(\mathbf{x}_n) + b) \ge 1$ is a constraint. It is required. What if the classes are not linearly separable in the kernel space? No solution may exist. So, we must allow for misclassification.
- We do this through slack variables, ξ
- The slack variables are $\xi_n \geq 0$
- If $\xi_n = 0$ if correctly classified on the boundary or farther away
- $\xi_n = |t_n y(\mathbf{x}_n)|$ for other points. Increases as the data point is more mis-classified.
- So, the new constraints are:

(1)
$$t_n y(\mathbf{x}_n) \ge 1 - \xi_n \quad \text{where } \xi_n \ge 0$$

• So the objective function become:

(2)
$$C\sum_{n=1}^{N} \xi_n + \frac{1}{2} \|\mathbf{w}\|^2$$

where C > 0 is a trade-off parameter

• So, our Lagrangian becomes:

(3)
$$\mathscr{L}(\mathbf{w}, b, \mathbf{a}) = C \sum_{n=1}^{N} \xi_n + \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{n=1}^{N} a_n \{t_n y(x_n) - 1 + \xi_n\} - \sum_{n=1}^{N} \mu_n \xi_n$$

where $a_n \geq 0$, $\mu_n \geq 0$ are Lagrange multipliers

- What is the meaning of each term?
- So, what are the resulting KKT conditions?
- We now need to optimize with respect to \mathbf{w} , b, and ξ_n . How do we do this?

(4)
$$\tilde{\mathscr{L}}(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n} \sum_{m} a_n a_m t_n t_m K(\mathbf{x}_n, \mathbf{x}_m)$$

where $0 \le a_n \le C$ and $\sum_n a_n t_n = 0$

• The constraints are:

(5)
$$t_n y(\mathbf{x}_n) \ge 1 - \xi_n \quad \text{where } \xi_n \ge 0$$

• So the objective function becomes:

(6)
$$C\sum_{n=1}^{N} \xi_n + \frac{1}{2} \|\mathbf{w}\|^2$$

where C > 0 is a trade-off parameter

• Our Lagrangian is then:

(7)
$$\mathscr{L}(\mathbf{w}, b, \mathbf{a}) = C \sum_{n=1}^{N} \xi_n + \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{n=1}^{N} a_n \{t_n y(x_n) - 1 + \xi_n\} - \sum_{n=1}^{N} \mu_n \xi_n$$

where $a_n \geq 0$, $\mu_n \geq 0$ are Lagrange multipliers

- What is the meaning of each term?
- So, what are the resulting KKT conditions?

(8)
$$a_n \ge 0$$

(9) $t_n y(x_n) - 1 + \xi_n \ge 0$
(10) $a_n (t_n y(x_n) - 1 + \xi_n) = 0$
(11) $\xi_n \ge 0$

$$\mu_n \ge 0$$

$$\mu_n \xi_n = 0$$

• We now need to optimize with respect to \mathbf{w} , b, and ξ_n . How do we do this?

(14)
$$\frac{\partial \mathcal{L}}{\partial \mathbf{w}} = 0 \to \mathbf{w} = \sum_{n=1}^{N} a_n t_n \phi(\mathbf{x}_n)$$

(15)
$$\frac{\partial \mathcal{L}}{\partial \mathbf{b}} = 0 \to \sum_{n=1}^{N} a_n t_n = 0$$

(16)
$$\frac{\partial \mathcal{L}}{\partial \xi} = 0 \to a_n = C - \mu_n$$

• Plug these into the Lagrangian to get the Dual form:

$$\mathscr{L}(\!\!(\mathbf{w},\!\!\!),\mathbf{a}) = C \sum_{n=1}^{N} \xi_n + \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{n=1}^{N} a_n \{t_n y(x_n) - 1 + \xi_n\} - \sum_{n=1}^{N} \mu_n \xi_n$$

(18)
$$= \sum_{n=1}^{N} \xi_n(C - \mu_n) + \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{n=1}^{N} a_n \left\{ t_n \left(\mathbf{w}^T \phi(\mathbf{x}_n) + b \right) - 1 + \xi_n \right\}$$

(19)
$$= \sum_{n=1}^{N} \xi_n a_n + \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{n=1}^{N} a_n \left\{ t_n \left(\mathbf{w}^T \phi(\mathbf{x}_n) \right) \right\} - b \sum_{n=1}^{N} a_n t_n + \sum_{n=1}^{N} a_n - \sum_{n=1}^{N} a_n \xi_n \right\}$$

(20)
$$= \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{n=1}^{N} a_n \left\{ t_n \left(\mathbf{w}^T \phi(\mathbf{x}_n) \right) \right\} + \sum_{n=1}^{N} a_n$$

(21)
$$= \sum_{n=1}^{N} a_n + \frac{1}{2} \left(\sum_{n=1}^{N} a_n t_n \phi(\mathbf{x}_n) \right)^T \left(\sum_{n=1}^{N} a_n t_n \phi(\mathbf{x}_n) \right)$$

(22)
$$-\sum_{n=1}^{N} a_n \left\{ t_n \left(\left(\sum_{m=1}^{N} a_m t_m \phi(\mathbf{x}_m) \right)^T \phi(\mathbf{x}_n) \right) \right\}$$

(23)
$$= \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n} \sum_{m} a_n a_m t_n t_m K(\mathbf{x}_n, \mathbf{x}_m)$$

(24)
$$\tilde{\mathscr{L}}(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n} \sum_{m} a_n a_m t_n t_m K(\mathbf{x}_n, \mathbf{x}_m)$$

where $0 \le a_n \le C$ and $\sum_n a_n t_n = 0$ • Why did we want it in this form?