Final Project Submission

Please fill out:

• Student name: Deztany Jackson

· Student pace: self paced

Scheduled project review date/time: July 1, 2022

• Instructor name: Claude Fried

Blog post URL: http://dmvinedata.com/blog/

Microsoft Movie Studio Analysis

Authors: Deztany Jackson

Overview

This analysis directs Microsoft's potential studio head with actionable insights for their movie studio development. These recommendations are determined from insights from box office movie "Ratings" and depends on other attributes such as "Genre", "Directors" and "Movie Budget" data. The datasets given were filtered to analyze movies and their associated attributes that have a minimum "8/10" ("B") rating. The analysis observed and extracted patterns from data of some of the "best" movies.

Business Problem

"Microsoft sees all the big companies creating original video content and they want to get in on the fun. They have decided to create a new movie studio, but they don't know anything about creating movies. You are charged with exploring what types of films are currently doing the best at the box office. You must then translate those findings into actionable insights that the head of Microsoft's new movie studio can use to help decide what type of films to create."

Ref: Phase 1 Project Description, 2022

Microsoft is in competition with current major studios who have been in business for many years and already have a wealth of experience. The questions driving the analysis, support Microsoft making choices based on direct data output from their competition as well as potential growth areas that may be overlooked. The analysis questions and main variable of success were chosen with the mindset that Microsoft is a major tech company that has influence and skillsets in other areas of tech. This analysis is for a movie studio which is a part of of a greater ecosystem.

Data Understanding

Box office related datasets (SQL and CSV) with the box office movie target "Rating" variable and associated independent "Genre, Director and Budget" variable information were taken from IMBD and the-numbers.

```
#Import libraries
In [1]:
         import pandas as pd
         import numpy as np
         import sqlite3
         import matplotlib.pyplot as plt
         from matplotlib.pyplot import figure
         %matplotlib inline
In [2]:
         #Connecting with databases
         conn = sqlite3.connect('data/im.db')
         #View the list of tables in the database
In [3]:
         df = pd.read_sql("""
         SELECT name
         FROM sqlite_master
         WHERE type = 'table'; """, conn)
                  name
Out[3]:
         0 movie_basics
         1
                directors
         2
              known_for
         3
             movie_akas
           movie_ratings
         4
         5
                persons
         6
               principals
         7
                 writers
         8 new_directors
```

IMBD Tables Used:

• movie_basics

■ The movie_basics dataset describes just over 146,000 movies with their associated genres, years.

movie_ratings

■ The movie_ratings dataset describes 73,856 movie's average rating (from average ratings that range from "1" to "10") and the number of votes the average is calculated (ranging from "5" to "1.84 Mil").

directors

The directors dataset describes 291,174 movies and their associated director's id.

persons

■ The persons dataset describes 606,648 people and their associated movie related profession(s).

IMBD Table: movie_basics

```
In [4]:
          #Looking at movie basic table
          q basics = '''
          SELECT
          FROM movie_basics;
          MovBasics_df = pd.read_sql(q_basics, conn)
          #What does the dataset include?
          MovBasics df.head()
             movie_id primary_title original_title start_year runtime_minutes
                                                                                         genres
Out[4]:
         0 tt0063540
                         Sunghursh
                                      Sunghursh
                                                      2013
                                                                      175.0
                                                                               Action, Crime, Drama
                           One Day
                                     Ashad Ka Ek
            tt0066787
                          Before the
                                                      2019
                                                                      114.0
                                                                                 Biography, Drama
                                            Din
                       Rainy Season
                          The Other
                                       The Other
         2 tt0069049
                                      Side of the
                         Side of the
                                                      2018
                                                                      122.0
                                                                                          Drama
                              Wind
                                           Wind
                         Sabse Bada
                                      Sabse Bada
            tt0069204
                                                      2018
                                                                       NaN
                                                                                   Comedy, Drama
                              Sukh
                                           Sukh
                               The
                                    La Telenovela
             tt0100275
                         Wandering
                                                      2017
                                                                            Comedy, Drama, Fantasy
                                         Errante
                         Soap Opera
         MovBasics df.info()
In [5]:
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 146144 entries, 0 to 146143
         Data columns (total 6 columns):
          #
              Column
                                 Non-Null Count
                                                    Dtype
              -----
                                 _____
          0
              movie id
                                 146144 non-null object
              primary title
                                 146144 non-null
                                                    object
          2
              original title
                                 146123 non-null
                                                    object
          3
              start year
                                 146144 non-null int64
```

114405 non-null float64

140736 non-null object

```
In [6]: MovBasics_df["genres"].value_counts()
```

dtypes: float64(1), int64(1), object(4)

runtime minutes

genres

memory usage: 6.7+ MB

4

5

```
Out[6]: Documentary
                                           32185
         Drama
                                           21486
         Comedy
                                             9177
         Horror
                                             4372
         Comedy, Drama
                                             3519
         Family, Fantasy, Western
                                                1
         Animation, Horror, Romance
                                                1
         Music, Musical, Reality-TV
                                                1
         Action, Horror, Music
```

```
Documentary, Mystery, Romance 1
Name: genres, Length: 1085, dtype: int64
```

```
MovBasics_df.isna().sum()
In [7]:
Out[7]: movie_id
                                0
                                0
        primary_title
        original_title
                               21
        start_year
                                0
        runtime_minutes
                            31739
                             5408
        genres
        dtype: int64
         #Looking to see if there are any duplicates
In [8]:
         q_basics = '''
         SELECT
             movie id,
             start_year,
             primary_title,
             genres,
             COUNT(*) AS CNT
         FROM movie basics
         GROUP BY movie_id
         HAVING COUNT(*) > 1
         ORDER BY movie_id;
         MovBasics_df = pd.read_sql(q_basics, conn)
         #Displays if there are duplicate movies
         MovBasics df
```

$\verb"Out[8]: movie_id start_year primary_title genres CNT"$

IMBD Table: movie_ratings

The average movie ratings are directly dependent on the "numvotes" column.

```
movie_id averagerating numvotes
Out[9]:
          0 tt10356526
                                   8.3
                                               31
          1 tt10384606
                                   8.9
                                             559
          2
              tt1042974
                                   6.4
                                               20
              tt1043726
                                   4.2
          3
                                           50352
              tt1060240
                                   6.5
                                               21
```

```
In [10]: MovRatings_df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 73856 entries, 0 to 73855
Data columns (total 3 columns):
#
                   Non-Null Count Dtype
    Column
    ----
                   -----
 0
    movie_id
                   73856 non-null object
    averagerating 73856 non-null float64
 1
 2
    numvotes
                   73856 non-null int64
dtypes: float64(1), int64(1), object(1)
memory usage: 1.7+ MB
```

In [11]: | MovRatings_df.describe()

```
averagerating
                                  numvotes
Out[11]:
          count 73856.000000 7.385600e+04
                     6.332729 3.523662e+03
          mean
            std
                     1.474978 3.029402e+04
            min
                     1.000000 5.000000e+00
           25%
                     5.500000 1.400000e+01
           50%
                     6.500000 4.900000e+01
                     7.400000 2.820000e+02
           75%
                    10.000000 1.841066e+06
           max
```

IMBD Table: directors

Multiple duplicates are found and need to be removed

```
Out[13]: movie_id person_id

0 tt0285252 nm0899854

1 tt0462036 nm1940585

2 tt0835418 nm0151540

3 tt0878654 nm0089502

5 tt0878654 nm2291498
```

movie_id

person_id

```
6 tt0878654
                        nm2292011
             tt0879859
                        nm2416460
             tt0996958
                        nm2286991
             tt0996958
                        nm2286991
In [14]: MovDirID_df.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 291174 entries, 0 to 291173
          Data columns (total 2 columns):
               Column
                           Non-Null Count
                                              Dtype
               movie id
           0
                           291174 non-null
                                              object
               person id 291174 non-null
                                              object
          dtypes: object(2)
          memory usage: 4.4+ MB
           MovDirID_df.describe()
In [15]:
                   movie_id
                             person_id
Out[15]:
                     291174
                                291174
           count
          unique
                     140417
                                109253
             top
                 tt4050462 nm6935209
                      3818
                                   238
            freq
In [16]:
           MovDirID df.isna().sum()
Out[16]: movie_id
          person id
                        0
          dtype: int64
         IMBD Table: persons
           #Looking at persons table for id and name
In [17]:
           q_basics = '''
           SELECT
           FROM persons; '''
           MovDir df = pd.read sql(q basics, conn)
           MovDir df.head()
Out[17]:
              person_id primary_name birth_year death_year
                                                                                       primary_profe
                             Mary Ellen
             nm0061671
          0
                                            NaN
                                                       NaN
                                                                   miscellaneous, production_manager, pro
                               Bauder
             nm0061865
                          Joseph Bauer
                                                       NaN
                                                                composer, music_department, sound_depar
                                            NaN
             nm0062070
                           Bruce Baum
                                            NaN
                                                       NaN
                                                                                  miscellaneous, actor
```

Axel Baumann

NaN

nm0062195

NaN camera_department, cinematographer, art_depar

	person_id	primary_name	birth_year	death_yea	r primary_profe
	4 nm0062798	Pete Baxter	NaN	NaN	N production_designer,art_department,set_dec
In [18]:	MovDir_df.ir	nfo()			
	<pre><class #="" 'panda="" @="" column<="" columns="" data="" pre="" rangeindex:=""></class></pre>	506648 entrie (total 5 col	s, 0 to 60	6647	уре
	0 person_i		606648 non		rject
	1 primary_ 2 birth ye		606648 non- 82736 non-		ject .oat64
	3 death ye		6783 non-n		
		_profession t64(2), objec	555308 non-		ject
In [19]:	MovDir_df["r	orimary_name"].isna().su	ım()	
Out[19]:	0				

Budget CSV:

movie_budgets

• This dataset describes the movie budget and movie gross from 5782 movies. The movie name values are the only link to joining with other movie datasets. This can potentially be a single point of failure or limitation in the data analysis.

```
In [20]: #Import CSV to a dataframe
Bud_df = pd.read_csv('data/movie_budgets.csv')
Bud_df.head()
```

Out[20]:	ut[20]: id release_date		release_date	e movie production_budg		domestic_gross	worldwide_gross	
	0	1	Dec 18, 2009	Avatar	\$425,000,000	\$760,507,625	\$2,776,345,279	
	1	2	May 20, 2011	Pirates of the Caribbean: On Stranger Tides	\$410,600,000	\$241,063,875	\$1,045,663,875	
	2	3	Jun 7, 2019	Dark Phoenix	\$350,000,000	\$42,762,350	\$149,762,350	
	3	4	May 1, 2015	Avengers: Age of Ultron	\$330,600,000	\$459,005,868	\$1,403,013,963	
	4	5	Dec 15, 2017	Star Wars Ep. VIII: The Last Jedi	\$317,000,000	\$620,181,382	\$1,316,721,747	

```
In [21]: #Note that the production_budget is a string and not a number
Bud_df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5782 entries, 0 to 5781
Data columns (total 6 columns):

```
Column
                          Non-Null Count Dtype
                          -----
                          5782 non-null int64
 0
     id
                         5782 non-null object
5782 non-null object
     release date
 1
     movie
 3
     production_budget 5782 non-null object
     domestic_gross 5782 non-null object worldwide_gross 5782 non-null object
 5
dtypes: int64(1), object(5)
memory usage: 271.2+ KB
```

Data Preparation

Data Cleaning

Merge movie_basic and movie_ratings on their shared movie_id primary key.

```
In [22]:
          #Joining movie_basics and ratings
          qB1 = """
          SELECT
              movie_id,
              start_year,
              primary_title,
              genres,
              averagerating,
              numvotes
          FROM movie_basics
          JOIN movie ratings
              USING (movie id)
          GROUP BY movie id
          ORDER BY numvotes DESC, averagerating
          ;
          Genre_Ratings= pd.read_sql(qB1,conn)
```

```
In [23]: movieG_df = pd.DataFrame(Genre_Ratings)
    movieG_df.head()
```

Out[23]:		movie_id	start_year	primary_title	genres	averagerating	numvotes
	0	tt1375666	2010	Inception	Action,Adventure,Sci- Fi	8.8	1841066
	1	tt1345836	2012	The Dark Knight Rises	Action,Thriller	8.4	1387769
	2	tt0816692	2014	Interstellar	Adventure,Drama,Sci- Fi	8.6	1299334
	3	tt1853728	2012	Django Unchained	Drama,Western	8.4	1211405
	4	tt0848228	2012	The Avengers	Action,Adventure,Sci- Fi	8.1	1183655

Split genres on seperate rows

Ref: Split Values on Rows on Stackoverflow By Dan Allen Jun, 2013

```
In [24]: #Spliting the genres into sep rows by ",". This will help support a cleaner anal
s = movieG_df["genres"].str.split(",").apply(pd.Series, 1).stack()
s.index = s.index.droplevel(-1) # align index
```

```
s.name = "genres" #name to join on
          s.head()
Out[24]: 0
                 Action
              Adventure
         0
                 Sci-Fi
         1
                 Action
         1
               Thriller
         Name: genres, dtype: object
          #delete old dataframe column with multiple values
In [25]:
          del movieG_df["genres"]
          #making it equal to the new dataframe
In [26]:
          movieG1_df = movieG_df.join(s)
          movieG1 df.head()
```

Out[26]:	movie_id		start_year	primary_title	averagerating	numvotes	genres
	0	tt1375666	2010	Inception	8.8	1841066	Action
	0 tt1375666		2010	Inception	8.8	1841066	Adventure
	0 tt1375666		2010	Inception	8.8	1841066	Sci-Fi
	1 tt1345836		2012	The Dark Knight Rises	8.4	1387769	Action
	1	tt1345836	2012	The Dark Knight Rises	8.4	1387769	Thriller

Missing Values

Drop missing values from dataframe.

Depending on the amount of missing data the missing rows will be dropped or filled in. If there is a negligent amount compared to the entire dataset, the data will be dropped.

```
In [27]: #Determine if there are missing data
    movieG1_df["genres"].isna().sum()

Out[27]: 804

In [28]: #Checking to see if any ratings values have missing data
    movieG_df["averagerating"].isna().sum()

Out[28]: 0

In [29]: #drop missing values since it is determined to be negligent to the number of val
    movieG1_df = movieG1_df.dropna()
```

Check similar genre values to see if any could be merged into one. This can be based on the similarity to the

```
In [31]: #Checking genres values movies to see if they are compatible to be merged
genCat = movieG1_df.loc[(movieG1_df["genres"] == "Music") | (movieG1_df["genres"]
genCat.head(20)
```

Out[31]:		movie_id	start_year	primary_title	averagerating	numvotes	genres
	33	tt2582802	2014	Whiplash	8.5	616916	Music
	88	tt3783958	2016	La La Land	8.0	436070	Music
	141	tt1727824	2018	Bohemian Rhapsody	8.0	345466	Music
	184	tt1707386	2012	Les Misérables	7.6	285971	Musical
	209	tt1981677	2012	Pitch Perfect	7.2	256565	Music
	218	tt1517451	2018	A Star Is Born	7.8	249245	Music
	230	tt2771200	2017	Beauty and the Beast	7.2	238325	Musical
	307	tt1485796	2017	The Greatest Showman	7.6	199663	Musical
	390	tt1226229	2010	Get Him to the Greek	6.4	161653	Music
	473	tt2848292	2015	Pitch Perfect 2	6.4	130692	Music
	476	tt1980929	2013	Begin Again	7.4	129884	Music
	500	tt2042568	2013	Inside Llewyn Davis	7.5	123759	Music
	556	tt0475290	2016	Hail, Caesar!	6.3	111422	Music
	569	tt1355630	2014	If I Stay	6.8	107625	Music
	678	tt4062536	2015	Green Room	7.0	90773	Music
	703	tt6412452	2018	The Ballad of Buster Scruggs	7.3	87418	Musical
	778	tt1859650	2012	To Rome with Love	6.3	79381	Music
	811	tt1702443	2011	Justin Bieber: Never Say Never	1.6	74978	Music
	813	tt1294226	2010	The Last Song	6.0	74914	Music
	817	tt3544112	2016	Sing Street	8.0	74651	Music

```
In [32]: movieG1_df["genres"].describe()
Out[32]: count   128490
```

unique 26
top Drama
freq 30788
Name: genres, dtype: object

The "Music" and "Musical" values have enough similarities where we can merge them. There isn't a clear distinction between them.

```
In [33]: # Rename values in genre to match
    movieG1_df["genres"].replace("Musical","Music", inplace = True)
```

Checking the statistical measures of the number of votes. I want to consider the average ratings that were made from a certain amount of votes. The mean number will be considered.

```
In [34]: #Check the mean amount of votes given.
movieG1_df.describe()
```

Out[34]:

	start_year	averagerating	numvotes
count	128490.000000	128490.000000	1.284900e+05
mean	2014.221021	6.302146	5.337769e+03
std	2.579176	1.457744	3.808942e+04
min	2010.000000	1.000000	5.000000e+00
25%	2012.000000	5.400000	1.600000e+01
50%	2014.000000	6.400000	6.600000e+01
75 %	2016.000000	7.300000	4.290000e+02
max	2019.000000	10.000000	1.841066e+06

Filter Ratings

Use data that is filtered by an average rating with a minimum value of "8" and with a minimum numvotes of the mean (5337). Rationale: The analysis goal was to extract patterns from some of the "best" movies. An "8/10" rating is equivalent to a "B" rating. I am confident that "8/10" rating will be a good rating even in the midst of other dataset sources (e.g. Rottentomatoes). Using the mean numvotes filters out a lot of lower outliers produced high rating values. The ratings used to be more credible.

```
In [35]: #Filters future dataset for a certain averagerating and numvote values
g = movieG1_df.loc[(movieG1_df["averagerating"] >=8) & (movieG1_df["numvotes"] >
g.head(25)
```

	g.	nead(25)						
Out[35]:		movie_id	start_year	primary_title	averagerating	numvotes	genres	
	0	tt1375666	2010	Inception	8.8	1841066	Action	
	0	tt1375666	2010	Inception	8.8	1841066	Adventure	
	0	tt1375666	2010	Inception	8.8	1841066	Sci-Fi	
	1	tt1345836	2012	The Dark Knight Rises	8.4	1387769	Action	
	1	tt1345836	2012	The Dark Knight Rises	8.4	1387769	Thriller	
	2	tt0816692	2014	Interstellar	8.6	1299334	Adventure	
	2	tt0816692	2014	Interstellar	8.6	1299334	Drama	
	2	tt0816692	2014	Interstellar	8.6	1299334	Sci-Fi	
	3	tt1853728	2012	Django Unchained	8.4	1211405	Drama	
	3	tt1853728	2012	Django Unchained	8.4	1211405	Western	
	4	tt0848228	2012	The Avengers	8.1	1183655	Action	
	4	tt0848228	2012	The Avengers	8.1	1183655	Adventure	
	4	tt0848228	2012	The Avengers	8.1	1183655	Sci-Fi	
	5	tt0993846	2013	The Wolf of Wall Street	8.2	1035358	Biography	
	5	tt0993846	2013	The Wolf of Wall Street	8.2	1035358	Crime	

	movie_id	start_year	primary_title	averagerating	numvotes	genres
5	tt0993846	2013	The Wolf of Wall Street	8.2	1035358	Drama
6	tt1130884	2010	Shutter Island	8.1	1005960	Mystery
6	tt1130884	2010	Shutter Island	8.1	1005960	Thriller
7	tt2015381	2014	Guardians of the Galaxy	8.1	948394	Action
7	tt2015381	2014	Guardians of the Galaxy	8.1	948394	Adventure
7	tt2015381	2014	Guardians of the Galaxy	8.1	948394	Comedy
8	tt1431045	2016	Deadpool	8.0	820847	Action
8	tt1431045	2016	Deadpool	8.0	820847	Adventure
8	tt1431045	2016	Deadpool	8.0	820847	Comedy
10	tt2488496	2015	Star Wars: Episode VII - The Force Awakens	8.0	784780	Action

```
In [36]: #View filtered data statisics with
g.describe()
```

Out[36]:		start_year	averagerating	numvotes
	count	522.000000	522.000000	5.220000e+02
	mean	2014.348659	8.251533	1.818726e+05
	std	2.487027	0.285624	3.110069e+05
	min	2010.000000	8.000000	5.406000e+03
	25%	2013.000000	8.100000	9.988000e+03
	50%	2014.000000	8.200000	2.937300e+04
	75%	2016.000000	8.300000	1.816010e+05
	max	2019.000000	9.700000	1.841066e+06

Remove Duplicates rows from Directors table

```
In [37]: #Database querying through SQL
    from pandasql import sqldf
    pysqldf = lambda q: sqldf(q, globals())

In [38]: #Checking Duplicates in directors table
    q = """
    SELECT
    *,
    COUNT (*) AS CNT
    FROM directors
    GROUP BY movie_id, person_id
    HAVING CNT >1;
    """
    Dir_Dup = pd.read_sql(q,conn)
    Dir_Dup
```

Out[38]:		movie_id	person_id	CNT
	0	tt0063540	nm0712540	4
	1	tt0069049	nm0000080	2
	2	tt0100275	nm0749914	2
	3	tt0100275	nm0765384	2
	4	tt0146592	nm1030585	2
	•••			
	54672	tt9916538	nm8185151	3
	54673	tt9916622	nm9272490	2
	54674	tt9916622	nm9272491	2
	54675	tt9916754	nm8349149	2
	54676	tt9916754	nm9272490	2

54677 rows × 3 columns

Ref: Remove Duplicates By Database Star

```
In [39]: #Create a new table with no duplicates
    #This is commented out now because table exists already
    #If table does not exist, remove comments below

#q = """
    #CREATE TABLE new_directors AS
    #SELECT
    # movie_id,
    # person_id
    #FROM directors
#GROUP BY movie_id, person_id;
#"""
    #pd.read_sql(q,conn)
```

```
In [40]: #Checking Duplicates in new table
    q = """
    SELECT
    *,
    COUNT (*) AS CNT
    FROM new_directors
    GROUP BY movie_id, person_id
    HAVING CNT >1;
    """
    newD_Dup = pd.read_sql(q,conn)
    newD_Dup
```

Out[40]: movie_id person_id CNT

```
In [41]: #Code to drop tables if wanting to run code again
#q = """
#DROP TABLE im.new_directors;"""
```

```
#pd.read_sql(q,conn)
```

```
#Joining of several tables to get movie id and their director
In [43]:
          qD = """
          SELECT
              movie_id,
              primary_name AS Director
          FROM movie_basics
          JOIN movie_ratings
              USING (movie id)
          JOIN new_directors
              USING (movie_id)
          JOIN persons
              USING(person_id);
          Dir_Sql = pd.read_sql(qD,conn)
          movieD2_df = pd.DataFrame(Dir_Sql)
          movieD2 df
```

Out[43]:	movie_id	Director
0	tt0063540	Harnam Singh Rawail
1	tt0066787	Mani Kaul
2	tt0069049	Orson Welles
3	tt0069204	Hrishikesh Mukherjee
4	tt0100275	Raoul Ruiz
	•••	
86025	tt9913084	Giancarlo Soldi
86026	tt9914286	Ahmet Faik Akinci
86027	tt9914642	Chris Jordan
86028	tt9914942	Laura Jou
86029	tt9916160	Joost van der Wiel

86030 rows × 2 columns

```
#Import Budget CSV in
In [44]:
         Bud df = pd.read csv('data/movie budgets.csv')
         Bud df.head()
         Bud df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 5782 entries, 0 to 5781
        Data columns (total 6 columns):
         #
             Column
                              Non-Null Count Dtype
                               _____
         0
             id
                               5782 non-null
                                              int64
                               5782 non-null object
         1
             release_date
         2
             movie
                               5782 non-null object
         3
             production budget 5782 non-null object
             domestic gross
                               5782 non-null
                                              object
```

5782 non-null

object

worldwide_gross

```
dtypes: int64(1), object(5)
memory usage: 271.2+ KB
```

Clean the production budget column. Convert to type int

```
#Remove necessary characters from string to prepare for conversion
In [45]:
          Bud df["production budget"]=Bud df["production budget"].str.strip("$")
          Bud_df["production_budget"]=Bud_df["production_budget"].str.replace(",", "")
          #Convert Budget from string to int necessary
In [46]:
          Bud df["production budget"]=Bud df["production budget"].astype(int)
          Bud df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 5782 entries, 0 to 5781
         Data columns (total 6 columns):
              Column
                                 Non-Null Count Dtype
                                 -----
              -----
          0
              id
                                 5782 non-null int64
              release_date
                               5782 non-null object
          1
          2
              movie
                                 5782 non-null
                                                 object
          3
              production_____

domestic_gross 5782 non-null

5782 non-null
              production budget 5782 non-null
                                                 int64
                                                object
          5
                                                object
         dtypes: int64(2), object(4)
         memory usage: 271.2+ KB
          #Join this table with Bud df table - 599 Rows
In [47]:
          q = """
          SELECT
             averagerating,
             numvotes,
             movie id,
             genres,
             Director,
             primary_title
          FROM g
          JOIN movieD2 df
              USING (movie id);
          BudMovie = pysqldf(q)
          BudMovie
```

Out[47]:		averagerating	numvotes	movie_id	genres	Director	primary_title
	0	8.8	1841066	tt1375666	Action	Christopher Nolan	Inception
	1	8.8	1841066	tt1375666	Adventure	Christopher Nolan	Inception
	2	8.8	1841066	tt1375666	Sci-Fi	Christopher Nolan	Inception
	3	8.4	1387769	tt1345836	Action	Christopher Nolan	The Dark Knight Rises
	4	8.4	1387769	tt1345836	Thriller	Christopher Nolan	The Dark Knight Rises
	•••	•••	•••	•••	•••	•••	
	594	8.1	5406	tt1572781	Animation	Yasuhiro Takemoto	The Disappearance of Haruhi Suzumiya

	averagerating	numvotes	movie_id	genres	Director	primary_title
595	8.1	5406	tt1572781	Comedy	Tatsuya Ishihara	The Disappearance of Haruhi Suzumiya
596	8.1	5406	tt1572781	Comedy	Yasuhiro Takemoto	The Disappearance of Haruhi Suzumiya
597	8.1	5406	tt1572781	Drama	Tatsuya Ishihara	The Disappearance of Haruhi Suzumiya
598	8.1	5406	tt1572781	Drama	Yasuhiro Takemoto	The Disappearance of Haruhi Suzumiya

599 rows × 6 columns

The budget data came from a different source than the baseic movie data. The tables can be joined on the name of the movie which are both strings. These two attributes make the join very error prone. From the original 5782 rows from the budget table, the join dropped the instances to 173. This is over 400 rows less than the IMDB movie and director joined table.

```
In [48]: #Join the tables
    #Joining by names narrowed the list to 173 entries
    q = """
    SELECT
    *
    FROM BudMovie AS bm
    JOIN Bud_df bd
        ON bm.primary_title = bd.movie;
"""
    bud_join= pysqldf(q)
    bud_join.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 173 entries, 0 to 172
Data columns (total 12 columns):
      Column
                            Non-Null Count Dtype
     _____
                            _____
     averagerating 173 non-null float64 numvotes 173 non-null int64
 0
     numvotes
 1
 2 movie id
                          173 non-null object
 3 genres 173 non-null object
4 Director 173 non-null object
5 primary_title 173 non-null object
6 id 173 non-null int64
7 release_date 173 non-null object
8 movie 173 non-null object
                            173 non-null object
      production_budget 173 non-null
                                               int64
 10 domestic_gross 173 non-null object
 11 worldwide gross
                           173 non-null
                                                object
dtypes: float64(1), int64(3), object(8)
memory usage: 16.3+ KB
```

Analysis

Count the number of movies each genre has with min a rating of "8" and min 5337 votes. Look at genres with high ratings and a large amount of votes - subjective but insightful Look at genres with not a lot of movies for potentia cases

Genre Questions:

- What are the top rated genres?
 Consider the number of votes to determine he average.
- What is the number of movies each genre contain.

Out[49]:		genres	MCNT	Avg_Votes	Avg_Rating
	0	Drama	124	156815.0	8.3
	1	Action	52	253171.0	8.3
	2	Documentary	44	19787.0	8.3
	3	Crime	43	93765.0	8.3
	4	Comedy	37	177859.0	8.2
	5	Thriller	36	166739.0	8.2
	6	Biography	34	193086.0	8.2
	7	Adventure	33	451840.0	8.2
	8	Animation	19	160027.0	8.2
	9	Mystery	17	185083.0	8.3
	10	Music	15	110056.0	8.3
	11	History	13	131130.0	8.3
	12	Sci-Fi	12	744291.0	8.3
	13	Romance	10	71304.0	8.3
	14	War	8	43235.0	8.5
	15	Fantasy	8	227803.0	8.2
	16	Sport	7	80928.0	8.2
	17	Family	4	40070.0	8.1
	18	Horror	3	13840.0	8.2
	19	News	2	15556.0	8.2
	20	Western	1	1211405.0	8.4

Director Questions:

- How many different type of genres does each director have?
- How many movies does each director have?
- Which directors does each genre have movies in?
- Who are the top 20 directors that have more than 2 movies with top ratings?

The filtered (averagerating and numvotes) dataframe "g" will be used throughout the queries.

```
In [50]: #Number of Directors in each genre
    q = """SELECT
        genres,
        COUNT (Director) AS DirCount
FROM g
    JOIN movieD2_df
        USING (movie_id)
    GROUP BY genres
    ORDER BY DirCount DESC;
    """
    Gen_Dir_Count = pysqldf(q)
    Gen_Dir_Count
```

Out[50]:		genres	DirCount
	0	Drama	134
	1	Action	58
	2	Documentary	53
	3	Crime	47
	4	Adventure	44
	5	Comedy	43
	6	Biography	40
	7	Thriller	37
	8	Animation	28
	9	Music	18
	10	Mystery	17
	11	History	15
	12	Sci-Fi	14
	13	Romance	10
	14	Fantasy	10
	15	Sport	9
	16	War	8
	17	Horror	5
	18	News	4
	19	Family	4
		147	4

1

Western

20

```
In [51]: #Director and Distinct Movie Count & Genre Count
    q = """
    SELECT
         director,
         COUNT ( DISTINCT movie_id) AS Movie_Count,
         COUNT (DISTINCT genres) AS Genre_Count
FROM g
    JOIN movieD2_df
         USING (movie_id)
    GROUP BY director
    ORDER BY Movie_Count DESC;
    """

Dir_Mov_Gen_Count = pysqldf(q)
    Dir_Mov_Gen_Count
```

Out[51]:		Director	Movie_Count	Genre_Count
	0	Martin Scorsese	3	7
	1	Denis Villeneuve	3	5
	2	Christopher Nolan	3	5
	3	Zoya Akhtar	2	3
	4	Sukumar	2	4
	•••			
	211	Advait Chandan	1	2
	212	Adrian Molina	1	3
	213	Aditya Dhar	1	3
	214	Adesh Prasad	1	3
	215	A.R. Murugadoss	1	2

216 rows × 3 columns

Want to look at directors who have done more than one movie. This looks at their experience and versatility.

```
In [52]: #Specific genres for Directors that have more one move
    q = """
    SELECT
          director,
          genres
    FROM g
    JOIN movieD2_df
          USING (movie_id)
    GROUP BY director, genres
    HAVING COUNT ( DISTINCT movie_id) > 1
    ORDER BY genres;
    """

    Dir_Gen = pysqldf(q)
    Dir_Gen
```

Out[52]:

	Director	genres
0	Anthony Russo	Action
1	Christopher Nolan	Action
2	Joe Russo	Action
3	S.S. Rajamouli	Action
4	Sukumar	Action
5	Anthony Russo	Adventure
6	Christopher Nolan	Adventure
7	Dragan Bjelogrlic	Adventure
8	Joe Russo	Adventure
9	Lee Unkrich	Adventure
10	Lee Unkrich	Animation
11	Martin Scorsese	Biography
12	Dragan Bjelogrlic	Comedy
13	Lee Unkrich	Comedy
14	Anurag Kashyap	Crime
15	Joshua Oppenheimer	Documentary
16	Alper Caglar	Drama
17	Anand Gandhi	Drama
18	Can Ulkay	Drama
19	Damien Chazelle	Drama
20	Denis Villeneuve	Drama
21	Nuri Bilge Ceylan	Drama
22	Quentin Tarantino	Drama
23	S.S. Rajamouli	Drama
24	Stephen Chbosky	Drama
25	Zoya Akhtar	Drama
26	Damien Chazelle	Music
27	Denis Villeneuve	Mystery
28	Sujoy Ghosh	Mystery
29	Anthony Russo	Sci-Fi
30	Christopher Nolan	Sci-Fi
31	Joe Russo	Sci-Fi
32	Neeraj Pandey	Thriller

#Genres with their Average Rating and Average votes & associated directors q = """

In [53]:

```
SELECT
    genres,
    ROUND (AVG(numvotes), 0) as Avg_Votes,
    ROUND (AVG(averagerating), 1) as Avg_Rating,
    COUNT(Director) AS Dir_Count
FROM g
JOIN movieD2_df
    USING (movie_id)
WHERE director IN (SELECT
    {\tt director}
FROM g
JOIN movieD2_df
    USING (movie_id)
GROUP BY director
HAVING COUNT ( DISTINCT movie_id ) > 1)
GROUP BY genres
ORDER BY Dir_Count DESC, genres ASC
0.00
Dir_Gen_C = pysqldf(q)
Dir_Gen_C
```

Out[53]:	genres	Avg_Votes	Avg_Rating	Dir_Count
0	Drama	235838.0	8.3	30
1	Action	434326.0	8.5	15
2	Adventure	581501.0	8.4	12
3	Comedy	193201.0	8.4	8
4	Crime	217793.0	8.2	8
5	Mystery	269043.0	8.1	8
6	Sci-Fi	795105.0	8.5	8
7	Thriller	325420.0	8.1	8
8	Biography	235866.0	8.2	6
9	Music	239015.0	8.2	6
10	Documentary	16883.0	8.2	3
11	War	83822.0	8.8	3
12	Animation	479706.0	8.4	2
13	History	18453.0	8.5	2
14	Horror	9872.0	8.2	2
15	Family	111632.0	8.0	1
16	Fantasy	14128.0	8.3	1
17	Western	1211405.0	8.4	1

Budget Questions:

- How does the different dataset impact the findings?
- What types of movies have the highest, medium and lowest budgets?
- Which directors and genres are associated with the highest budgets? Patterns?

```
In [54]:
          #Refine the joined budget list.
          #Look to see if the top genres are top and if the same directors for the same mo
          q ="""
          SELECT
              movie_id,
              movie,
              Director,
              genres,
              averagerating,
              numvotes,
              production_budget AS pbud
          FROM bud_join
          ORDER BY pbud DESC;
          budget_df= pysqldf(q)
          budget_df
```

Out[54]:		movie_id	movie	Director	genres	averagerating	numvotes	pbud
	0	tt4154756	Avengers: Infinity War	Anthony Russo	Action	8.5	670926	300000000
	1	tt4154756	Avengers: Infinity War	Joe Russo	Action	8.5	670926	300000000
	2	tt4154756	Avengers: Infinity War	Anthony Russo	Adventure	8.5	670926	300000000
	3	tt4154756	Avengers: Infinity War	Joe Russo	Adventure	8.5	670926	300000000
	4	tt4154756	Avengers: Infinity War	Anthony Russo	Sci-Fi	8.5	670926	300000000
	•••							
	168	tt2375605	The Act of Killing	Christine Cynn	Crime	8.2	31115	1000000
	169	tt2375605	The Act of Killing	Joshua Oppenheimer	Crime	8.2	31115	1000000
	170	tt2375605	The Act of Killing	Anonymous	Documentary	8.2	31115	1000000
	171	tt2375605	The Act of Killing	Christine Cynn	Documentary	8.2	31115	1000000
	172	tt2375605	The Act of Killing	Joshua Oppenheimer	Documentary	8.2	31115	1000000

173 rows × 7 columns

```
In [55]: #Look at average budget for genres
    q ="""
    SELECT
        genres,
```

```
ROUND (AVG(pbud), 0) as Avg_pbud,
   COUNT (genres) AS Gen_COUNT
FROM budget_df
GROUP BY genres
;
"""
budA_Gen_df= pysqldf(q)
budA_Gen_df
```

Out[55]:

	genres	Avg_pbud	Gen_COUNT
0	Action	122227273.0	22
1	Adventure	146557692.0	26
2	Animation	134500000.0	13
3	Biography	41136364.0	11
4	Comedy	118928571.0	14
5	Crime	23777778.0	9
6	Documentary	1771429.0	7
7	Drama	39854286.0	35
8	Family	20000000.0	1
9	History	15850000.0	4
10	Music	20575000.0	4
11	Mystery	75760000.0	5
12	Romance	23000000.0	1
13	Sci-Fi	166916667.0	12
14	Sport	25000000.0	1
15	Thriller	76166667.0	6
16	War	6800000.0	1
17	Western	100000000.0	1

Data Analysis

The data is modeled using scatter plots and colormaps. This modeling method allowed the use of 3 main variables depending. I could show the correlation between two independent variables as well as the a Rating (using color) on each visual.

The initial plan was to use a different type of graph for the different independent variables. Because of complexity and the ability to show the correlation between more than two variables a scatter plot with a colormap was used each time.

The three main independent variables chosen where "Genre, Director & Budget". When looking through the data, other variables impacted the interpretation of this data in relation to the Rating (e.g. number of votes).

Ref: Austin Animal Center Needs Project Example

```
#Create Plot
fig, genre_rating_ax = plt.subplots(ncols = 1, nrows = 1, figsize=(40, 30))
g.plot.scatter(x = "genres", y = "numvotes", c = "averagerating", fontsize = 15, s = 150, cmap = "rainbow",colorbar
genre_rating_ax.set_yscale('log', subs = [2,3,4,5,6,8])
cbar = plt.colorbar(orientation = "vertical")
cbar.set_label(label = "Trial Error", Size = 20)
```

Genre Analysis

```
In [56]:
          #Create Plot
          plt.figure(figsize=(40,30), dpi = 150, facecolor = "white" )
          #g is the dataframe
          plt.scatter(x = g["genres"], y = g["numvotes"], c = g["averagerating"], s = 150,
          plt.yscale('log', subs = [2,3,4,5,6,8])
          #ticks
          plt.xticks(fontsize = 14.75, fontweight = "bold")
          yl = np.arange(10000, 2000000, step=90000)
          plt.yticks(ticks = yl, labels = yl, fontsize = 20, fontweight = "bold")
          #Colorbar
          cbar = plt.colorbar(orientation = "vertical")
          cbar.set_label(label = "Average Rating per Movie", size = 25, fontweight = "bold
          cbar.ax.tick params(labelsize=35)
          #Background
          plt.grid()
          #Set titles
          plt.title("Distribution of Genre's Ratings", fontsize=50, fontweight = "bold")
          plt.ylabel('Number of Rating Votes', fontsize=25, fontweight = "bold")
          plt.xlabel('Movie Genres', fontsize=25, fontweight = "bold")
          #Save image in folder
          plt.savefig("images/genre ratings.png", dpi=200)
```


Director Analysis

```
In [57]:
          #Table for plotting Top Directs more than 1 movie and genre by ratings
          #Using only top genres with most directors Dir Gen C
          q = """
          SELECT
              director,
              genres,
              ROUND (AVG(numvotes), 0) as Avg Votes,
              ROUND (AVG(averagerating), 1) as Avg_Rating
          FROM q
          JOIN movieD2_df
              USING (movie_id)
          WHERE director IN (SELECT
              director
          FROM g
          JOIN movieD2 df
              USING (movie id)
          GROUP BY director
          HAVING COUNT ( DISTINCT movie_id ) > 1)
          AND genres IN (
          SELECT
              genres
          FROM Dir_Gen_C)
          GROUP BY genres, director
```

8.0

```
ORDER BY Avg_Rating DESC, Director

"""

Dir_Plot_df = pysqldf(q)
Dir_Plot_df
```

Out[57]:		Director	genres	Avg_Votes	Avg_Rating
	0	Quentin Tarantino	Comedy	5600.0	9.7
	1	Alper Caglar	War	100568.0	9.3
	2	Alper Caglar	Action	100568.0	9.3
	3	Quentin Tarantino	Drama	608503.0	9.1
	4	Alper Caglar	Drama	59006.0	8.7
	•••		•••		
	84	Neeraj Pandey	Drama	45299.0	8.0
	85	Neeraj Pandey	Crime	45299.0	8.0
	86	Neeraj Pandey	Action	48318.0	8.0
	87	Stephen Chbosky	Family	111632.0	8.0

Drama

267152.0

89 rows × 4 columns

88 Stephen Chbosky

```
#Create Plot
In [58]:
          figure(figsize=(95,50), dpi = 150, facecolor = "white")
          #Dir Plot df is the dataframe
          plt.scatter(x = Dir Plot df["genres"], y = Dir Plot df["Director"], c = Dir Plot
          #ticks
          plt.xticks(fontsize = 40, fontweight = "bold")
          plt.yticks(fontsize = 50, fontweight = "bold")
          #Colorbar
          cbar = plt.colorbar(orientation = "vertical")
          cbar.set label(label = "Average Rating Per Genre", size = 50, fontweight = "bold
          cbar.ax.tick params(labelsize=50)
          #Set titles
          plt.title("Top Rated Directors Popular Genres", fontsize=70, fontweight = "bold"
          plt.ylabel('Directors', fontsize=55, fontweight = "bold")
          plt.xlabel('Movie Genres', fontsize=55, fontweight = "bold")
          plt.grid()
          #Save image in folder
          plt.savefig("images/genre ratings Director.png", dpi=200)
```


Budget Analysis

```
In [59]:
          #Searching from directors identified in other data with budget data
          #Look at top 5-10 Directors and the movies
          q = """
          SELECT
              director,
              movie,
              genres,
              pbud
          FROM budget df
          WHERE director IN
              (SELECT
                  director
              FROM Dir Plot df)
          BudDir df= pysqldf(q)
          BudDir df.head()
```

```
Out[59]:
                    Director
                                           movie
                                                     genres
                                                                    pbud
           0 Anthony Russo
                              Avengers: Infinity War
                                                              30000000
                                                      Action
            1
                   Joe Russo
                            Avengers: Infinity War
                                                      Action
                                                              30000000
              Anthony Russo
                            Avengers: Infinity War Adventure
                                                             300000000
           3
                   Joe Russo
                             Avengers: Infinity War Adventure
              Anthony Russo Avengers: Infinity War
                                                       Sci-Fi 300000000
```

```
In [60]: #Plot the genres by the budget
q ="""
SELECT
    movie_id,
    genres,
    averagerating,
```

```
pbud
FROM budget_df
GROUP by movie_id, genres
ORDER BY pbud DESC
;
""""
budGen_df= pysqldf(q)
budGen_df
```

Out[60]:		movie_id	genres	averagerating	pbud
-	0	tt4154756	Action	8.5	300000000
	1	tt4154756	Adventure	8.5	300000000
	2	tt4154756	Sci-Fi	8.5	300000000
	3	tt1345836	Action	8.4	275000000
	4	tt1345836	Thriller	8.4	275000000
	•••		•••		
	137	tt2486682	Documentary	8.1	1900000
	138	tt2486682	Drama	8.1	1900000
	139	tt2486682	History	8.1	1900000
	140	tt2375605	Crime	8.2	1000000
	141	tt2375605	Documentary	8.2	1000000

142 rows × 4 columns

```
#Create Plot
In [61]:
          figure(figsize=(85,50), dpi = 150, facecolor = "white")
          #Dir Plot df is the dataframe
          plt.scatter(x = budGen df["genres"], y = budGen df["pbud"], c = budGen df["avera
          plt.yscale('log' )
          #ticks
          plt.xticks(fontsize = 30, fontweight = "bold")
          yl = np.arange(5000000, 310000000, step = 17500000)
          plt.yticks(yl,yl, fontsize = 30)
          #Colorbar
          cbar = plt.colorbar(orientation = "vertical")
          cbar.set_label(label = "Average Rating Per Genre", size = 50, fontweight = "bold")
          cbar.ax.tick params(labelsize=50)
          #Set titles
          plt.title("Budget of Movies by Genres", fontsize=70, fontweight = "bold")
          plt.ylabel('Budget ($ Million)', fontsize=55, fontweight = "bold")
          plt.xlabel('Movie Genres', fontsize=55, fontweight = "bold")
          plt.grid()
          #Save image in folder
          plt.savefig("images/genre ratings Budget.png", dpi=200)
```


Analysis Evaluation

Thoughts on the interpretation and confidence of the results:

- **1.** The results are interpreted by looking at common patterns and questions asked of the data related to the target variable and the specific independent variables.
- **2.** The results can generalize as more questions are asked of the data. More parameters would be need to analyzed and more specific genre analysis would be helpful.
- **3.** I am confident that the analysis will benefit the current business problem at hand by extracting and reviewing the similar patterns from semi recent data. The data sources are from some of the popular and widely used sites. It may not be complete, but will be a good intial start.

Conclusions

As a for profit company, high revenue is always a goal. The "rating" was chosen as a target variable because it can help support the goal of revenue, but also provide other insights that can be further explored and explained. The following are recommendations for Microsoft from the analysis:

- 1. Invest in at least one of high budget films in the category of "Action, Adventure or Sci-Fi".
 - If the action is taken, I highly recommend the one of the Russo brothers or Christopher Nolan directs this movie. They have some of the highest raitings in these categories

multiple times.

- Movie studios may have major movies that they can be associated with. If Microsoft wants to establish themself in the industry they need one (or more) as well.
- These directors are not only famous but have the movie ratings to prove it. The movies they directed in the mentioned genres had some of the highest number of votes. This is not a direct causation to movie gross, but it is correlated. However, having people watch the move in theatres is a good goal, but Microsoft you ultimately want people engaged in the brand. The high number of votes is a datapoint showing the people who view these type of movies can possibly be engaged with the movie brand online regardless of their view of the specific movie. Their engagement opens the oppurtunity for more areas of Microsoft engagement (e.g. games, advertisments, software, metaverse)
- 2. Invest in multiple movies in "Drama, Documentary and/or Crime". If one genre, choose "Drama". These types of movies are popular and lower cost risk.
 - From the movies that had at least a 8/10 averagerating, dramas ranked first(124/173 movies), 3rd was documentaries (53/173 movies) and 4th crime (50/173 movies).
 - All three of these genres were across the spectrum in terms of budget and the number of votes for the rating.
 - Most of the directors who had multiple movies credits had a movie categorized as "Drama."
 - "Documentaries and Crime" genres don't have the average number of voters as high as the "Action, Adventure and Sci-Fi". This may indicate Documentaries and Crime genres had a core fanbase that supports these movies. Therefore "Documentaries and Crime" may ultimately do the best on other platforms.
- 3. For the *intial* start of the movie studio, *DO NOT* invest resources in genres focused on "Family, Sports or News". These are higher risk due to lack of highly rated rates compared to the other genres.
 - There is a substantially lower level of movies in these genres "Family (4) and Sports (9) and News (4)"
 - Their budgets are a lot lower overall and pose a risk in the number of viewers leading to engagement and profit.
 - A lot of multi movie directors do not work in this genre.
 - The low amount of budgets, ratings, ratings and directors, increase the risk of their reception compared to other genres.

Limitations and Improvements

The following are analysis limitations and analysis future analysis ideas for Microsoft:

1. Microsoft needs to understand and communicate their constraints and vision for their movie experience. The results given were focused only a few parameters. For more fidelity, the recommendation is to add parameters and/or dive deeper into some of the recommendation's patterns. I would add parameters such as regions where the movive plays as well as languagess. These can give more information and nuances as to where to place theatres and certain movies

2. The data analysis was limited in term of the the methods, scope of the analysis and data parameter tuning. The problem given was a one paragraph statement. In a usual business analysis case, there would be more iterative communication with the stakeholder to clarify assumptions, considerations and the specific problem need. Even if Microsoft doesn't know the exact problem, continous communication would refine the vision, values, and initial needs. This analysis was an intial low fidelity partial solution to the problem.

3. Future impovements:

- Add more parameters to analysis (e.g. region, language). These can give more information
 and nuances such as where to place theatres and certain movies from the the genre
 recommendations.
- Use the recommendations and do more detailed work into the genres (causality and correlation).
- Analyze the combinations of genres with respect to the target variable and independent variables. For example, movies that were categorized as "Comedy and Animation or Sci-Fi" had higher budgets than "Comedies" that were not.
- Research more on Microsoft's current technical ecosystem and their holistic vision as a
 company. The protential movie studio is a part of a great system and it is impairative this
 node harmonizes with the rest of the ecosystem. For example, Microsoft recently invested
 millions of dollars into the metaverse. The movie studio and the metaverse have many
 connection points (e.g. brands, storylines, characters, stakeholders). Understanding these
 points, can help scope and clarify the analysis entities area for a better outcome.

Τn		-			
	L	1 .			