비트코인의 기반 기술

블록체인의 원리

김석원 skimaza@spri.kr

2016.01.20

왜 또 블록체인인가?

- 비트코인의 기술 기반인 블록체인에 대한 원리를 다룬 자료의 부족
 - 블록체인의 가능성에 대한 판단이 어려움
- IBM, Goldman Sachs, JP Morgan 등 해외에서는 블록체인의 혁신성을 인식하고 활용하려는 움직임이 있음
 - 국내에도 스타트업 중심으로 활동이 있으나 소규모

- 비트코인은 거품이 있었으나 고비를 넘기고 여전히 확산 중
 - 비트코인은 죽을지 모르나 블록체인은 살아남을 것

가트너 Hype cycle 2015

비트코인 통계

주요 개념의 관계

블록체인은 **분산**되고, **독립**적이며, **개방**된 공통 장부(원장, ledger) 관리 기술 비트코인은 이 공통 장부를 거래기록 용도로 활용한 애플리케이션

Hash 함수

한 방향 계산은 쉬우나 역방향 계산은 매우 어려운 수식

간단한 예) 특정 소수로 나눈 값의 나머지 함수 (modular)
가령 7로 나눈 나머지 함수 MOD7
X=19일 때, Y=MOD7(19) = 5 간단히 계산
Inverse-MOD7(5) = 5, 12, 19, ... 등 무수히 많음
(단순 나머지함수는 X를 정확히 찾아내는 것이 불가능하지만 개념 이해를 위해 제시)

얼마나 어려운가?

해쉬값(Y)에서 원래 입력값(X)을 알아내는 방법 (SHA-1이라는 해쉬함수를 쓰는 경우)

정확한 Y가 나오는 X를 찾으려면 Y가 160비트일 때 최대 2¹⁶⁰번 시도

> SHA: Secure Hash Algorithm 공개 표준 해쉬 함수로 결과값은 160비트로 고정

Hash 함수

- 입력에서 출력으로 한 방향 계산은 쉬우나 역으로 출력값에서 입력값을 계산하는 것은 불가능하거나 매우 어려운 함수. 역함수 계산은 대입법 뿐
- 출력값은 미리 정해진 길이(비트수)의 데이터로 규정. 모든 출력값은 같은 길이
- Y는 X의 요약. 주로 X의 무결성을 검증하는 용도로 사용
- Hashcash는 160비트 SHA-1, 비트코인은 256비트 SHA-2를 사용

Hashcash

SHA-1(X) = Y인 X 찾기에서 SHA-1(X) ≤ K 인 X 찾기로 완화

- 해쉬를 거꾸로 생각해 보자
 - 한쪽 방향 계산은 아주 많은 계산을 해야 하나, 반대 방향은 금방 계산할 수 있다
- 역방향 계산에 대한 제약을 조금 풀면?
 - 원래의 해쉬는 정확한 Y값을 계산하는 X를 찾아야 하기 때문에 어려움
 - Y가 주어지고 대응하는 X를 찾기 위해 모든 X값을 대입하는 과정을 완화
- 어떤 수(K) 보다 작은 Y가 나오는 X값을 찾기
 - K = 000...001111111...111 라면?

해쉬 제약 완화

2160 중 하나에서 220 중 하나로!

완화된 해쉬 조건

● 한쪽 방향 계산은 쉽고 역방향 계산은 적절한 난이도

- 역방향 계산하는 쪽은 어느정도 노력 소모
 - X값 찾기
- 정방향 계산하는 쪽은 단번에 계산하여 정답인지 확인이 가능
 - X값을 해쉬하여 제약을 만족하는지 확인

- 스팸메일 필터로서의 용도!
 - 메일을 보내기 위해 노력(계산)을 들여야 함 (역방향)
 - 메일 받은 사람이 보낸 사람의 노력을 들였는지 확인하는 것은 단번에 함 (정방향)

Hashcash 스팸메일 필터링

메일 보낼 때 노력을 했다는 증거를 함께 보내자 Proof of Work

Hashcash 구성

X-Hashcash 상세

X값

1:20:130303:adam@cypherspace.org::McMybZlhxKXu57jd:FOvXX

ver bits date 수신자 주소 Random Counter

Counter

- "일일이 대입"을 구현하기 위해 counter값이 있음
- 입력값(X)의 제일 뒤에 counter값 필드를 두고 그 값을 차례로 증가하여 (즉 입력값을 바꿔가며) 조건에 맞는 Y가 나올 때까지 Hash 계산을 반복

Random

- 같은 해쉬값의 반복적 이용을 막기위해 수신인은 한번 받은 해쉬값을 보관
- 메일을 받으면 이미 받은 해쉬인지 확인

Hashcash 개념 요약

- 해쉬를 역으로 활용하여 메일보내는 노력(Proof-of-work)을 증명
 - 노력이 신뢰를 높인다
- 검증은 간편
- 제3자 개입 없이 개인 대 개인간의 검증

블록체인

Hashcash 아이디어를 공통 장부 관리에 응용

분산

독립

개방

Hashcash 메일헤더를 블록형태로 표현하면

블록에 Hashcash 아이디어 적용

내용의 추가 - 블록 연결

블록 0 블록 1 쉽다 블록 0의 해쉬값 해쉬 SHA(블록0) Nonce(블록0) Nonce(블록1)

블록의 연결은 현재 블록에 이전 블록의 해쉬값을 포함 → 블록0를 알 때 새 블록1을 만들기는 어렵다. 블록0를 알 때 새 블록1을 받은 후 검증하기는

블록1은 블록0의 신뢰도를 강화 → 노력이 신뢰를 높인다!

> 기술발전 속도로 봐 서 적절한 난이도의 해쉬함수와 해쉬값 제약은?

블록체인에서 난이도 강화

● 스팸메일 필터보다 중요한 응용을 위해 난이도 강화

● 해쉬함수는 공개 표준 해쉬함수 중 256-bit SHA-2 (SHA-256) 사용

- K값 강화
 - 해쉬결과 범위 조정
 - 256비트 중 선행0비트 수는 40개 → 앞의 40자리는 0, 나머지 216자리는 튜닝 가능

블록의 연결 - Chain of Hash values

전체 블록을 해쉬할 필요가 있을까?

블록헤더만 해쉬한다 - 효율성

블록체인의 구조

블록크기 블록크기 블록크기 버전 버전 버전 이전블록해쉬 이전블록해쉬 이전블록해쉬 현재 블록의 현재 블록의 현재 블록의 트랜잭션 요약 트랜잭션 요약 트랜잭션 요약 및 기타 정보 및 기타 정보 및 기타 정보 nonce nonce nonce 현재 블록의 현재 블록의 현재 블록의 트랜잭션 정보 트랜잭션 정보 트랜잭션 정보

블록체인 구조 요약

- 블록은 이전블록의 해쉬값을 포함
 - 새 블록을 만들기 위해 이전 블록을 가지고 충분한 노력을 들인 증거 Proof-of-work
 - 다른 곳에서 만든 블록이 정당한지 검증이 용이
- 체인이 길어질 수록 블록의 신뢰도 증가
- 블록의 내용은 따로 해쉬하여 헤더에 저장
 - 블록의 검증을 헤더만 가지고 할 수 있음
 - 실제 비트코인은 단순해쉬가 아니고 좀 더 복잡한 방법(이진 해쉬 트리)을 이용하나 여기서 는 생략
- 새 블록은 누가 만드나?

블록체인 네트워크

P2P 네트워크 구성

- 각 노드, 즉 컴퓨터는 독자적으로 블록체인의 내용을 검증할 수 있다
 - 아무도 믿지 않아도 됨
- 각 노드는 독자적으로 블록체인에 블록을 추가할 수 있다
 - 그러나 1등만 전파됨 → 다른 노드가 인정해 줌
- 모든 노드는 정해진 규칙하에서 동작
 - 자신의 이익을 극대화하는 방향으로 규칙이 설계

- 참여를 유인하는 인센티브가 있어야 한다
 - 비트코인은 1등에게 신규 발행 비트코인과 블록내 거래의 수수료 지급
 - 이 과정이 채굴(mining)임
 - 다른 응용에서도 적절한 인센티브를 설계해야 함

블록체인 요약

- 블록을 만드는데 노력을 들였다는 것을 객관적으로 증명하는 방법
 - 누구나 블록을 만들 자격이 있다
 - 누구나 블록이 정당한지 검증할 수 있다
- Distributed Ledger Management
 - 블록을 연결하여 하나의 공통 문서(기록 혹은 장부, ledger)를 축적해 가는 방법
 - 블록이 연결될 수록 이전 블록의 신뢰는 점점 커짐
 - 위에 쌓이는 새 블록은 아래에 놓인 이전 블록이 옳다는 것을 검증하고 쌓인 것이기 때문
 - 체인의 구조에 의해 직전 블록의 해쉬값만 검증해도 모든 블록이 옳다는 것을 검증한 것임
 - (주의) 여기서 검증했다는 것은 많은 노력을 들여 블록체인을 만들었다는 의미이며 완전무결하다는 의미는 아님
- 중앙집중적인 관리 주체 없이 블록체인의 동작과 검증이 가능
- 완전 분산화된 Peer-to-peer 네트워크에서 운영이 가능한 아키텍처
 - 피어가 많을 수록 더 안전해 짐

비트코인 기본 개념

- 블록체인을 통화에 적용한 응용 사례
 - 블록의 payload에 거래 내역 보관
- Hashcash의 proof-of-work는 정체가 뭔가?
 - 이메일을 보내기 위해 노력한 증거, 즉 신뢰
- 통화의 정체는 뭔가?
 - 같은 가치의 다른 것으로 교환할 수 있다는 신뢰
 - 신뢰는 제3자에 의해 보증됨 발행 국가
 - 이 신뢰는 절대 100%가 아님
 - 신뢰가 가치임
- 일정한 노력을 들여 획득했다는 신뢰를 줄 수 있으면 통화로 쓸 수 있다는 아이디어

비트코인 채굴

- 채굴, Mining은 새 블록을 만드는 작업
 - 이전 블록의 해쉬값을 찾아낸 것이 Proof-of-work
 - 채굴은 조금씩 코인을 쌓아가는 과정이 아니라 10분에 한번씩 벌어지는 달리기 경주나 로또와 유사
 - 전세계에서 채굴에 참여한 모든 컴퓨터가 평균 10분에 한번씩 전세계의 거래(트랜잭션)를 모아 조건을 만족하는 Hash값을 구하여 새 블록 생성
- 새 Block이 만들어지면 즉시 다른 노드에 전송
 - 계산 중에 다른 노드가 만든 블록이 입수되면 즉시 계산 중단하고 그 다음 블록을 만드는 계산에 착수
 - 새 블록이 블럭체인에 추가된 노드만 채굴 보상금 수령 (신규발행 + 거래 수수료 : 코인베이스 거래)
 - 평균 10분에 한 노드만 비트코인을 받도록 지속적으로 튜닝
- 동시에 여러 노드가 채굴에 성공하면?
 - 긴 블록 선호 정책
 - 채굴보상금은 즉시 사용할 수 없음 (수령후 100 블록 추가된 이후)

블록체인 분기

긴 블록 선호 정책으로 해소

각 노드의 이익을 극대화하는 정책 짧은 블록에 노력을 투자하면 손해

블록체인 분기 (계속)

- 각 블록체인은 모두 정당한 기록임
 - 다른 채굴자가 만들어서 서로 다른 거래가 들어 있고, 해쉬값도 다른 형태

● 분기의 수렴

- 노드가 같은 높이인데 서로 다른 블록체인을 받으면 길이가 긴 것을 택함
- 시간이 지나면서 짧은 블록체인은 점차 사라지게 됨
- 실제로 깊이가 1인 분기는 1주에 1번꼴로 발생하나 2인 경우는 거의 없음
 - 버그(2013년 3월)를 제외하면 최장 분기는 4 블록 (2번 발생)

정산

- 거래에는 영향이 없음 거래를 블록으로 묶을 때 서로 다르게 묶은 것일 뿐
- 짧은 블록체인에 포함되었던 거래는 채굴자가 다시 검증
- 코인베이스 거래는 영향을 받음 분기된 블록을 만든 채굴자 중 하나에게만 보상금 제공
 - 100 block maturation time
 - 비트코인에서는 100단계까지 늘어난 후에 실제 발급된 비트코인을 사용하도록 하라는 제안(규정?)을 하고 있음 10분에 하나 씩 추가되면 100단계가 되는데 1000분 = 16시간 40분이 걸림. 즉 하루정도 후에 사용할 수 있게 됨.

거래

- 블록체인의 payload에 거래 기록 보관
 - 전 세계에 오직 하나의 거래 장부(ledger)만 존재 (궁극적으로는)
- 각 비트코인은 거래내역이 아니라 실세계의 화폐(코인)와 유사
 - 화폐인데 액면가가 미리 정해진 것이 아니라 거래의 결과에 의해 결정됨
 - 예) 100원 내고 30원을 쓰고 70원을 거슬러 받으면
 - 내 100원이 사라지고
 - 새로 내 70원이 생기고
 - 상대방의 30원도 새로 생긴다

● 디지털 서명과 지급할 주소 표현은 비대칭키 이용

거래

UTXO: Unspent Transaction Output 아직 소비되지 않고 내 지갑에 남아있는 비트코인 화폐

거래 세부 구성

출력값은 한번 쓰면 사라짐 → 검증 단순

수수료 = 총 입력값 - 총 출력값 (자동 지정) 수수료가 높으면 채굴에서 우선 순위가 높아짐

비대칭 키

두가지 키의 쌍으로 생성 (PrivateKey, PublicKey) 혹은 (개인키, 공유키) 개인키로 암호화한 것은 공유키로, 공유키로 암호화한 것은 개인키로 풀 수 있음 개인키는 자신이 보관하고 공유키는 공개함

내 공유키로 풀리면 내 개인키로 암호화한 것임

내 공유키로 암호화한 것은 내 개인키로만 풀 수 있음

거래 비교

	구매자		결과	비고	
		판매자	구매자	수수료	0177
화폐	10,000	7,000	3,000	0	수수료 없음
비트코인	10,000	7,000	2,750	250	채굴 수수료(가변)
신용카드	10,000	7,000-a	3000-b	a+b	수수료

- 각 비트코인은 화폐와 유사
 - 사용자는 지갑이 있고 여기에 여러 주소(공개키) 보관
 - 한 주소에 여러 비트코인을 보관
 - 사용하면 폐기되고 대신 그 가치와 같은 여러 개의 비트코인이 새로 생김
- 거래는 신용카드와 유사
 - 각 거래에는 수수료를 정할 수 있음
 - 수수료는 이 거래를 검증해 준 제3자(채굴자)가 가져감
 - 높을 수록 빨리 채굴

비트코인의 거래 요약

• 거래 기록

- 신뢰는 불특정 다수의 채굴(Proof of Work) 과정에서 온다
- 검증은 각 채굴자의 개별적 검증
- 화폐와 대응
 - 화폐는 물리적 이동
 - 비트코인에서는 이동한 기록
- 거래 행위
 - 지불할 때 내가 가진 화폐를 주고 잔액을 받는다
 - 비트코인에서는 내가 가진 코인을 없애고 수신인의 새 코인을 만들고, 잔액만큼의 내 코인도 새로 만든다

이것이 성립하려면?

- 구매자가 사용하려는 비트코인에 대한 보증
- 거래에 대한 검증
- 이중거래 방지

• 위험과 효율의 균형을 제3자가 아닌 이용자가 선택

비트코인을 사용하는 거래 시나리오

수집된 거래의 노드별 독립 검증

- 모든 노드는 전달된 거래의 형식과 내용을 검증
 - 검증된 거래만 다른 노드에 전파
- 검증 내용
 - 형식
 - 구문, 합법적 필드값, 값의 범위
 - 거래 유효성
 - 거래의 입력이 Unspent TX Output (UTXO) 인가
 - 즉 사용하려는 코인이 유효한가
 - 입력값 ≥ 출력값 확인
 - 코인베이스 거래 확인
 - 코인베이스 출력을 사용하려면 최소 100블록 싸이클 후에 사용 가능 블록 분기 문제 대처

거래의 상태별 신뢰도

- 거래 전파 직후
 - 구매자가 거래를 전송하면 수초 이내에 전세계 대부분 노드에 전파
 - 이 거래는 아직 블록체인에 포함되지 않았음 승인 전 단계
 - 전파된 거래를 받은 노드는 각자 독립적으로 거래를 검증
 - 형식과 내용에 대한 약 20여 가지 체크리스트
 - 거래가 전파된다는 것은 다른 거래에서 같은 UTXO를 이용할 수 없게 되었다는 뜻
- 블록체인에 포함되었을 때 평균 10분 후(우선순위가 높은 경우)
- 내가 지정한 깊이에 도달했을 때
- 100 block maturation time rule
 - 코인베이스 거래

안전한 거래 규모

		블록깊이										
단순화한 모델로 확	q	1	2	3	4	5	6	7	8	9	10	
·_ ·	2%	2400	42K	644K	9370K	$\approx \infty$						
률을 계산한 예	4%	1150	10K	82K	615K	4437K	$\approx \infty$					
(공격비용, 성공확률	6%	733	4722	25K	127K	626K	3018K	14M	$\approx \infty$	$\approx \infty$	$\approx \infty$	
등을 고려. 채굴비	8%	525	2650	10K	42K	159K	588K	2144K	7749K	$\approx \infty$	$\approx \infty$	
·	10%	400	1685	5741	18K	56K	168K	503K	1486K	4361K	12M	
=25BTC 경우)	12%	316	1158	3391	9212	24K	62K	157K	396K	990K	2460K	
	14%	257	837	2172	5200	11K	27K	60K	132K	290K	632K	
불변의 절대적 수치	16%	212	628	1474	3178	6580	13K	26K	52K	102K	200K	
	18%	177	484	1043	2061	3901	7202	13K	23K	42K	74K	
는 아님	20%	150	380	763	1399	2453	4190	7039	11K	19K	31K	
	해쉬파워 $^{22\%}$	127	303	571	983	1615	2582	4053	6288	9671	14K	
	24%	108	244	436	710	1103	1665	2467	3608	5229	7525	
	26%	92	198	337	523	775	1113	1570	2182	3005	4106	
1 DTC 0401	28%	78	161	263	392	556	766	1035	1377	1815	2372	
1 BTC=\$431	30%	66	131	206	296	406	539	701	899	1141	1435	
01/16/2016 일 때	32%	56	106	162	225	299	385	485	602	740	901	
*	34%	47	86	127	172	221	277	340	411	491	582	
\$10,000(≈23BT	36%	38	69	99	130	164	200	240	283	331	383	
C) 규모의 거래도	38%	31	54	76	98	121	144	169	196	224	254	
큰 위험은 없음	40%	25	42	57	72	87	102	118	134	151	168	
	42%	19	31	41	51	61	70	80	90	99	109	
전체의 40% 계산	44%	13	21	28	34	40	46	51	57	62	68	
능력을 지배해야	46%	8	13	17	21	24	27	30	32	35	38	
	48%	4	6	8	9	10	12	13	14	15	16	
함	50%	0	0	0	0	0	0	0	0	0	0	

BTC: 비트코인 단위 작은 단위로 satoshi도 있음 1BTC = 100,000,000 satoshi

Table 2: The maximal safe transaction value, in BTC, as a function of the attacker's hashrate q and the number of confirmations n.

블록의 확산 요인

- 각 노드가 자신의 이익을 극대화하려는 활동에 의해 전파되어 전체 블록체인이 동기화
 - 분산, 독립, 효율
- 노드 작업의 우선 순위
 - 외부에서 전달된 새 블록 검증과 전파
 - 다음 블록 채굴
 - 이것이 자신의 이익을 위해 가장 유리한 선택임
 - 새 블록 검증하지 않으면 -> 다른 노드에 의해 검증되므로 의미없는 노력의 낭비
 - 전파하지 않고 계속 채굴하면 -> 어차피 전파되고 있음. 최악의 경우 나만 최신 블록에 대한 정보에 뒤져서 손해 볼 수 있음. (예. 이미 채굴되고 검증된 과거 블록에 대한 채굴)

● 절차

- 채굴이 성공하면 즉시 모든 이웃 노드에게 해당 블록 전송
- 각 노드는 새 블록을 전송받아 검증한 후 전파
- 각 노드는 새 블록을 자신의 블록체인 복사본에 추가
- 각 노드는 다음번 블록에 대한 채굴 시작
- 대략 수 초 내에 전세계로 퍼짐

이중 거래

- 소액 거래는 편의상 거래가 블록체인에 포함되기 전에 완료
 - 판매자의 재량이나 커피살 때 10분 이상 기다린 후에 서비스받으려고 하지 않을 것임
 - 보통 거래가 전파되고 있는 것만 확인하고 정상 거래로 취급
 - 거래가 전파된다는 것은 거래 내역에 대한 검증은 마쳤다는 의미
 - 블록체인에 포함되고 그 뒤에 다른 블록이 쌓인다는 것은 점점 더 그 거래가 무효화되기 어려워진다는 의미
- 규모가 큰 거래는 일정한 깊이 이상 블록체인이 쌓였을 때 승인
 - 깊이의 결정은 미리 정해진 것이 아니라 거래 당사자가 정함
 - 유연성, 거래별로 따로 계산하는 자동화 가능
 - 충분한 깊이에 이르면 채굴된 블록의 proof-of-work가 축적되어 신뢰 확보
- 전세계 채굴 계산 능력의 51%를 확보하면 조작 가능

비트코인의 진화

노드의 전문화

- Full blockchain node는 수십 GB 블록을 저장
- 모든 블록을 저장하지 않는 노드
 - 거래만 하는 Lightweight Wallet
 - 채굴만 하는 채굴노드
- 이런 노드를 블록저장 노드에 연결시키는 게이트웨이 노드
 - Pool server
 - Stratum server

- 채굴 집단의 탄생
 - https://blockchain.info/blocks

위협 - 비트코인

• 양자컴퓨터

- Full 노드 수
- 거래 건수 제약
- 중국의 채굴 능력 확대
 - 집중화에 의한 집단 행동 위험
- 채굴풀 집단 채굴
 - 국가 혹은 집단의 공격
 - 바이러스를 통한 분산채굴
- 지갑 분실, 도난, 해킹

BTCC Deploys 100 Full Bitcoin Nodes Across Five Continents

Bitcoin has 'failed,' says one of its most prominent developers

A disillusioned high-profile developer has quit bitcoin claiming in an explosive blog post that the "experiment ... has failed."

Mike Hearn has been a prominent part of the controversial digital

기회 - 블록체인

R3CEV

- JP Morgan Chase, Goldman Sachs, Barclays
- 제3자가 관여하는 분산 기록 관리

Open Ledger Project

- IBM, Intel, JP Morgan, Linux Foundation, etc.
- Redefining supply chains, contracts, etc.

Ethereum

- Non-profit
- Smart contracts

ADEPT

- IBM, Samsung
- IoT 장치 기록

주요 참고 자료

- 비트코인, 블록체인과 금융의 혁신, 최은실 외 옮김, 2015. (원본은 Mastering Bitcoin: Unlocking Digital Cryptocurrencies, A. M. Antonopoulos, 2015. chimera.labs.oreilly.com/books/1234000001802/index.html)
- Bitcoin: A Peer-to-Peer Electronic Cash System, Satoshi Nakamoto, bitcoin.org/bitcoin.pdf, 2008.
- Analysis of hashrate-based double-spending, M. Rosenfeld, arxiv.org/pdf/1402.2009.pdf, 2012.
- Hashcash A Denial of Service Counter-Measure, www.hashcash.org/papers/hashcash.pdf, 2002.
- Have a Snack, Pay with Bitcoins, T. Bamert et al., 2013. www.tik.ee.ethz.ch/file/ 848064fa2e80f88a57aef43d7d5956c6/P2P2013_093.pdf
- Themes, Dreams and Flying Machines, Goldman Sachs, 2015. www.goldmansachs.com/our-thinking/pages/macroeconomic-insights-folder/what-if-i-told-you/report.pdf
- www.wikipedia.org
- Blockchain info, blockchain.info
- Bitcoin Wiki, en.bitcoin.it/wiki/Main_Page
- CoinDesk, www.coindesk.com
- HashCash, www.hashcash.org.