Corrigé 4 du jeudi 13 octobre 2016

Exercice 1.

Soit $(x_n)_{n=0}^{\infty}$ une suite bornée et désignons par E l'ensemble de ses points d'accumulation. Montrons que

$$\sup E = \lim_{n \to \infty} \sup x_n.$$

 $D\'{e}monstration:$

- (1) Comme $(x_n)_{n=0}^{\infty}$ est bornée, par le théorème de Bolzano-Weierstrass, il existe une sous-suite $(x_{n_j})_{j\geq 0} \subset (x_n)_{n\geq 0}$ convergente et donc il existe au moins un point d'accumulation. Ainsi $E\neq\emptyset$. De plus, comme $(x_n)_{n=0}^{\infty}$ est bornée, E l'est aussi.
- (2) Posons $\alpha = \sup E$, $\beta = \limsup_{n \to \infty} x_n$. On rappelle que

si
$$y_n = \sup\{x_n, x_{n+1}, \dots, x_{n+k}, \dots\}$$
, alors $\beta = \lim_{n \to \infty} y_n$.

On va montrer que $\beta \in E$:

(a) Pour tout $n \in \mathbb{N}$, par définition de y_n et du sup, il existe $k_n \in \mathbb{N}$, $k_n \geq n$ tel que

$$0 \le y_n - x_{k_n} \le \frac{1}{n}.$$

(b) On a $x_{k_n} = x_{k_n} - y_n + y_n$ et puisque

$$\lim_{n \to \infty} (x_{k_n} - y_n) = 0 \quad \text{et} \quad \lim_{n \to \infty} y_n = \beta,$$

on a bien

$$\lim_{n \to \infty} x_{k_n} = \beta.$$

Ainsi $\beta \in E$ et donc $\beta \leq \alpha$.

Remarquons que la suite d'entiers $(k_n)_{n=0}^{\infty}$ ainsi construite n'est pas nécessairement strictement croissante et donc que $\{x_{k_n}\}_{n=0}^{\infty}$ ne définit pas forcément une sous-suite de $(x_n)_{n=0}^{\infty}$. Cependant, puisque $\lim_{n\to\infty}k_n=\infty$, on peut en extraire une sous-suite de $(x_n)_{n=0}^{\infty}$ qui converge vers β .

(3) Soit $\lambda \in E$; il existe une sous-suite $(x_{n_j})_{j \geq 0} \subset (x_n)_{n \geq 0}$ qui converge vers λ , i.e. $\lim_{i \to \infty} x_{n_j} = \lambda$.

Rappelant que $y_{n_j}=\sup\{x_{n_j},x_{n_j+1},x_{n_j+2},\ldots\}$, on a $x_{n_j}\leq y_{n_j}$, pour tout $j\in\mathbb{N}$ ainsi

$$\beta = \lim_{j \to \infty} y_{n_j} \ge \lim_{j \to \infty} x_{n_j} = \lambda.$$

Vu le caractère arbitraire du choix de λ , on en déduit que

$$\beta > \alpha$$
.

Les étapes (2) et (3) montrent que $\alpha = \beta$.

Exercice 2.

La suite $(x_n)_{n=0}^{\infty}$ est donnée par

$$x_0 = 0,$$
 $x_{\frac{q(q-1)}{2} + p} = \frac{p}{q},$

pour $1 \le p \le q$, q = 1, 2, ...

(1) En prenant successivement q=1, p=1 puis q=2 avec p=1, 2, q=3 avec $p=1, 2, 3, \ldots$ etc, la suite $(x_n)_{n=0}^{\infty}$ s'écrit:

$$0, 1, \frac{1}{2}, 1, \frac{1}{3}, \frac{2}{3}, 1, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, 1, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, 1, \dots$$

- (2) Points d'accumulation de la suite:
 - Soit $\lambda \in \mathbb{Q} \cap]0,1]$. Alors, il existe $p,q \in \mathbb{N}^*$ tels que $p \leq q$ et $\lambda = \frac{p}{q}$. Si $k=1,2,3,\ldots$, posons

$$m_k = \frac{kq(kq-1)}{2} + kp.$$

Par définition de la suite, nous obtenons

$$x_{m_k} = \frac{kp}{kq} = \lambda.$$

Ainsi, la sous-suite $(x_{m_k})_{k=1}^{\infty}$ de la suite $(x_n)_{n=0}^{\infty}$ converge vers λ ce qui prouve que λ est un point d'accumulation.

• Si on pose

$$m_q = \frac{q(q-1)}{2} + 1$$

où $q=1,2,\ldots$, on obtient $x_{m_q}=\frac{1}{q}$ et la sous-suite $(x_{m_q})_{q=1}^{\infty}$ de la suite $(x_n)_{n=0}^{\infty}$ converge vers $\lambda=0$ ce qui montre que $\lambda=0$ est un point d'accumulation.

Conclusion 1: L'ensemble $\mathbb{Q} \cap [0,1]$ est un ensemble de points d'accumulation de la suite $(x_n)_{n=0}^{\infty}$.

• Soit $\lambda \in]0,1[$. Si $\lambda \in \mathbb{Q}$, alors on a vu que λ est un point d'accumulation de la suite $(x_n)_{n=0}^{\infty}$. Si $\lambda \notin \mathbb{Q}$, alors par densité de \mathbb{Q} dans \mathbb{R} il existe deux suites d'entiers $(p_k)_{k=1}^{\infty}$ et $(q_k)_{k=1}^{\infty}$ tels que $1 \leq p_k \leq q_k$ et $\lim_{k \to \infty} \frac{p_k}{q_k} = \lambda$. Posons

$$m_k = \frac{kq_k(kq_k - 1)}{2} + kp_k, \quad k = 1, \dots, \infty.$$

On a donc

$$x_{m_k} = \frac{p_k}{q_k}.$$

La suite des entiers $(m_k)_{k=1}^{\infty}$ ainsi construite n'est pas nécessairement strictement croissante, mais elle tend vers l'infini lorsque k tend vers l'infini. Ainsi, on peut extraire une sous-suite $(m_{k_j})_{j=1}^{\infty}$ de $(m_k)_{k=1}^{\infty}$ qui est strictement croissante et qui tend vers l'infini lorsque j tend vers l'infini. Ainsi donc, $(x_{m_{k_j}})_{j=1}^{\infty}$ est une sous-suite de $(x_n)_{n=0}^{\infty}$ qui converge vers λ puisque $x_{m_{k_j}} = \frac{p_{k_j}}{q_{k_j}}$, ce qui prouve que λ est un point d'accumulation de la suite $(x_n)_{n=0}^{\infty}$.

Conclusion 2: L'ensemble des points d'accumulation de la suite $(x_n)_{n=0}^{\infty}$ est donné par l'intervalle fermé [0,1].

(3) injection de $\mathbb{Q} \cap]0,1[$ dans \mathbb{N} : pour $x \in \mathbb{Q} \cap]0,1[$, il suffit de prendre le plus petit indice i de la suite tel que $x_i = x$.

Remarque : Si on considère l'ensemble

$$A = \{x_0, x_1, x_2, \dots, x_n, x_{n+1}, \dots\},\$$

alors l'adhérence de A (= l'ensemble des points adhérents à l'ensemble A) est aussi l'intervalle [0,1].

Exercice 3.

On utilise encore une fois la formule de la "série géométrique": pour 0 < r, on a

$$r^{0} + r^{1} + \ldots + r^{n} = \sum_{k=0}^{n} r^{k} = 1 + \sum_{k=1}^{n} r^{k} = \frac{1 - r^{n+1}}{1 - r}.$$

La limite lorsque $n \to \infty$ existe si 0 < r < 1 et vaut $\frac{1}{1 - \frac{r}{r}}$.

1.) Soit $a_k \in \{0, 1, 2, \dots, 9\}$ pour $k = 1, 2, \dots$ On définit la suite (x_n) par

$$x_n = \sum_{k=1}^n \frac{a_k}{10^k}.$$

Montrer que la suite x_n est de Cauchy.

La suite x_n est trivialement croissante. Montrons qu'elle est majorée. On a

$$x_n = \sum_{k=1}^n \frac{a_k}{10^k} \le \sum_{k=1}^n \frac{9}{10^k} = 9 \sum_{k=1}^n \frac{1}{10^k} = 9 \left(\frac{1 - \frac{1}{10}^{n+1}}{1 - \frac{1}{10}} - 1 \right) \le 9 \left(\frac{10}{9} - 1 \right) = 1.$$

La suite est donc convergente, donc de Cauchy.

On peut aussi le montrer directement. Pour n, m > 0, on a:

$$|x_n - x_{n+m}| = \sum_{k=n+1}^{n+m} \frac{a_k}{10^k} \le \frac{9}{10^n} \sum_{k=1}^m \frac{9}{10^k} \le 9 \frac{1}{10^n}.$$

Et donc, pour $\epsilon>0$ donné on peut trouver N tq si $n\geq N,$ $9\frac{1}{10^n}<\epsilon.$

2.) Soit $x \in [0,1[$. Montrer qu'il existe une suite de $a_k \in \{0,1,2,\ldots,9\}$ telle que la suite x_n formée comme en 1.) converge vers x.

On suit l'indication et on partitionne [0,1[en 10 intervalles égaux: $[0,\frac{1}{10}[,[\frac{1}{10},\frac{2}{10}[,\dots,[\frac{9}{10},1[$.

On choisit alors $a_1 = i$ si $x \in \left[\frac{i}{10}, \frac{i+1}{10}\right]$ (on a alors $i \le 10x < (i+1)$). Il suffit de procéder de même pour $\left[\frac{i}{10}, \frac{i+1}{10}\right]$ pour a_2 , etc. . . .

3.) Montrer que l'expansion décimale d'un nombre n'est pas toujours unique. Il suffit de vérifier que $x=\frac{1}{2}$ admet les deux expansions 0.5 et 0.4999999.