# The Formalisation and Applications of the Stone-Weierstrass Theorem

Imperial College ondon

Kexing Ying

#### The Stone-Weierstrass Theorem

Let X be a compact metric space and Mthe set of all continuous function from X to  $\mathbb{R}$ , then the *Stone-Weierstrass theorem* states that,

Given an unital subalgebra of M,  $M_0$  (i.e. a subset of M that contains 1 and is closed under addition, multiplication and scalar multiplication) that is closed under the lattice operations and separates points,  $M_0 = M$ ; [2]

where we define the lattice operations  $\vee, \wedge : (X \rightarrow X)$  $\mathbb{R}$ )<sup>2</sup>  $\to$   $(X \to \mathbb{R})$  such that, for all  $f, g : X \to \mathbb{R}$ , where f, g are bounded continuous functions

$$f \vee g = \max\{f, g\}; \quad f \wedge g = \min\{f, g\};$$

 $\overline{M}_0$  the closure of  $M_0$  under uniform convergence to the *limit* and we say  $M_0$  separates points if and only if for  $\blacksquare$  then, for all  $\epsilon > 0$ , as  $f(x) : [0,1] \to \mathbb{R} := |\alpha x - \beta|$  is all distinct  $x, y \in X$ , there exists some  $f \in M_0$  such  $\square$  continuous on the compact interval [0, 1], it is unithat  $f(x) \neq f(y)$ .

#### Application: Weierstrass Theorem

The Weierstrass approximation theorem states

Let *f* be a real continuous function on a closed interval. Then for all  $\epsilon > 0$ , there exists a polynomial  $P_n$  such that

$$\sup_{x \in [0,1]} |f(x) - P_n(x)| < \epsilon.$$

This can be deduced straightaway by the Stone-Weierstrass theorem!

From the section |x| is in the Closure! we have shown that there exists a sequence of polynomials uniformly converging to |x| on any compact interval. Now, as

$$f \lor g = \frac{1}{2}(f + g + |f - g|);$$

$$f \wedge g = \frac{1}{2}(f + g - |f - g|),$$

we see that if  $\bar{\mathcal{P}}$  is the closure of the set of polynomials under uniform convergence to the limit,  $\mathcal{P}$ would also be closed under the lattice operations. Thus, as  $\bar{\mathcal{P}}$  form an unital subalgebra of all real to real functions, (as it contains 1, closed under addition, multiplication and scalar multiplication), and as  $\bar{\mathcal{P}}$  separates points trivially,  $\bar{\mathcal{P}} = \bar{\mathcal{P}} = [\alpha, \beta]^{\mathbb{R}}$  for all  $\alpha, \beta \in \mathbb{R}, \alpha < \beta$  As required!

# Lemma: |x| is in the Closure!

Let  $X_1, \dots X_n$  be a sequence of i.i.d. Bernoulli random variables with parameter x and let  $S_n =$  $\sum_{i=1}^n X_i$  so  $S_n \sim Bin(n,x)$ . Then by the law of the  $||f(x)-g(x)| < \epsilon$  and  $|f(y)-g(y)| < \epsilon$ . unconscious statistician, we see,

$$\mathbb{E}\left(\left|\alpha\frac{S_n}{n} - \beta\right|\right) = \sum_{k=0}^n \left|\alpha\frac{k}{n} - \beta\right| \Pr\left(S_n = nk\right)$$
$$= \sum_{k=0}^n \left|\alpha\frac{k}{n} - \beta\right| \binom{n}{i} x^i (1-x)^{n-i} =: P_n(x)$$

for all  $\alpha, \beta \in \mathbb{R}$ ,  $\alpha < \beta$ . Let us now define

$$A_n(\delta) = \left\{ \omega : \left| \frac{S_n(\omega)}{n} - x \right| \ge \delta \right\},$$

formly continuous on the same interval; so there is some  $\delta>0$  such that for all  $|x-y|<\delta$ ,  $\frac{\epsilon}{2}>1$  for all  $z\in X$  and  $i\in I$ . |f(x)-f(y)|. Now, by LLN,  $\Pr(A_n(\delta)) \to 0$ , so, choose N such that  $|\Pr(A_N(\delta))| < 0$ , then

$$\frac{\epsilon}{2} > \mathbb{E}\left[\mathbf{1}_{(A_N)^c} \left| f(x) - f\left(\frac{S_N}{N}\right) \right| \mid A_N(\delta)^c \right]$$

$$\geq \left| f(x) - \mathbb{E}\left[ f\left(\frac{S_N}{N}\right) \right] \right| \Pr((A_N(\delta))^c).$$

Now as  $\mathbb{E}\left[f\left(\frac{S_N}{N}\right)\right] = P_N(x)$ , we have  $\epsilon/2 >$  $|f(x) - P_N(x)| (1 - \Pr(A_N(\delta))) > |f(x) - P_N(x)| / 2,$ so  $P_n(x) \to f(x) = |\alpha x - \beta|$  uniformly for  $x \in [0, 1]$ and  $P_n(\frac{x+\beta}{\alpha}) \to |x|$  uniformly for all  $x \in [\alpha, \beta]$ .

### Application: Trig. Polynomials

Another set of functions we might be interested in are the trigonometric polynomials  ${\mathcal T}$  where trigonometric polynomials are functions of the form

$$f(x) = a_0 + \sum_{k=1}^{n} a_k \cos(kx) + b_k \sin(kx); \ a_i, b_i \in \mathbb{R}.$$

As the trigonometric polynomials  $\mathcal{T}$  form an unital subalgebra of the bounded continuous functions on  $[-\pi, \pi]$  (by considering the identities of multiplication between trigonometric functions), and by considering the Fourier series of |x|, by the same argument as presented above,  $\bar{\mathcal{T}}$  is closed under lattice operations and hence, by Stone-Weierstrass,  $\bar{\mathcal{T}} = \bar{\mathcal{T}} = [-\pi, \pi]^{\mathbb{R}}$ 

#### Proof Outline of Stone-Weierstrass

**Lemma 1.** For all  $f \in M$ , f is in  $\overline{M}_0$  if and only if for all  $x, y \in X$ ,  $\epsilon > 0$ , there exists  $g \in M_0$  such that

*Proof.* The forward direction is trivial so we will consider the reverse. Let us fix x and  $\epsilon$  and define a mapping  $S: X \to \operatorname{set} X$ ,

$$S(y) := \{ z \in X \mid f(z) - g_y(z) < \epsilon \},$$

where  $g_y$  was chosen such that  $|f(x) - g_y(x)| < \epsilon$ and  $|f(y) - g_y(y)| < \epsilon$ .

Then for all  $y \in X$ ,  $y \in S(y)$  so  $\bigcup_{y \in X} S(y) = X$ . But as X is compact,  $\bigcup_{y \in X} S(y)$  admits a finite subcover; so, there exists a finite index set I such that  $\blacksquare$  approximation.  $\bigcup_{i\in I} S(y_i) = X$ . Thus, by letting  $p_x = \bigvee_{i\in I} g_{y_i}$ , we have constructed a function  $p_x \in \overline{M}_0$  such that

$$p_x(z) \ge g_{y_i}(z) > f(z) - \epsilon$$
 and  $p_x(x) < f(x) + \epsilon$ 

Now, by defining a similar mapping to set of X,

$$T := \{ z \in X \mid p_x(z) < f(z) + \epsilon \},$$

we again create a finite subcover of X and thus can create the required function with  $\bigwedge_{i \in J} p_{x_i}$  where Jis the index set such that  $\bigcup_{i \in J} T(x_i) = X$ .

**Lemma 2.** Given S, a subalgebra of  $\mathbb{R}^2$ , S must be  $\{(0,0)\}, \{(x,0) \mid x \in \mathbb{R}\}, \{(0,y) \mid y \in \mathbb{R}\}, \{(z,z)\}$  $z \in \mathbb{R}$ }, or  $\mathbb{R}^2$  itself.

Lemma 2 was proved by evoking the law of the excluded middle on different propositions.

Given  $x, y \in X$ , define the boundary points of  $M_0$  lates the set of equidistant points from a to b. Usto be  $\{(f(x), f(y)) \mid f \in M_0\}$ . Let  $M_0$ ,  $M_1$  be closed subalgebras of M under lattice operations,  $\blacksquare$  this method results in a polynomial approximation by lemma 1, it is deduced  $\bar{M}_0 = \bar{M}_1$  iff. for distinct x, y,  $\overline{M}_0$  and  $\overline{M}_1$  have the same boundary points.

Now, as boundary points of  $M_0$  form an unital subalgebra of  $\mathbb{R}^2$ , the boundary points of  $ar{M}_0$  must be  $\mathbb{R}^2$  by lemma 2 (the first three options excluded as  $\in M_0$  and the fourth excluded as  $M_0$  separate points) hence, as the boundary points of M is  $\mathbb{R}^2$ is  $\mathbb{R}^2$ , it follows  $M_0=M$  as required!

The Stone-Weierstrass theorem was proved and formalised using the Lean, the source code of which can be found in my GitHub repository:

http://github.com/JasonKYi/stoneweierstrass/tree/master/srcs.

# Further Discussion & Interpolation

While the Stone-Weierstrass theorem proved the density of polynomial functions, the Bernstein polynomials provide a method for constructing a sequence of polynomials that uniformly converges to any continuous function.

Consider the approximation of  $x^2$  for  $x \in [0,1]$  using Bernstein polynomials,

$$B_n(x) = \frac{1}{n}x + \frac{n-1}{n}x^2.$$

By using calculus, we find  $\sup_{x \in [0,1]} |x^2 - B_n(x)| = |$  $(4n)^{-1}$ ; much worse than just using  $x^2$  as its own



Consider instead the interpolation theorem:

**Theorem.** Given  $\{(x_0, y_0), \cdots, (x_n, y_n)\} \subseteq \mathbb{R}^2$ , using Lagrange polynomials, we can construct polynomial that interpolates the set. [3]

Let  $f:[a,b] \to \mathbb{R}$  be a continuous function, we can approximate f using the polynomial that interpoing Python, we find that for n = 3 for  $x^2$  on [0.1], of  $L_3(x) = x^2$ .

However,  $||f - P_n||_{\infty}$  does not necessarily tends to 0 exemplified by Runge's function. To mitigate this, one can instead use Spline interpolation however this results in an approximant that is a piecewise polynomial instead of just a polynomial.

#### References

- [1] Stone, M.H. (1948) The Generalized Weierstrass Approximation Theorem. Mathematics Magazine 21, no. 5: 237-54.
- [2] Gaddy, P. The Stone-Weierstrass Theorem and its Applications to  $L^2$  Spaces.
- Humpherys, J. (2020) Foundations of Applied Mathematics Volume 2: Algorithms, Approximation, Optimization Society for Industrial and Applied Mathematics