itle: RICE MLH1 ORTHOLOG AND USES THEN. Inventor(s): Pramod B. Mahajan Application No: Not yet assigned Atty Dkt No: 35718/238971 (5718-142)

Complete Nucleotide and Deduced Amino Acid Sequence of Rice homolog of MLH1

1	CGGCACGAGATTTTGCAGTCTCCTCCTCCTCCGCTCGAGCGAG	60
61	TCGCTGCCTCGCCTCACCGCCGGCCAACCGCCGTGACGAGAGATCGAGCAGGGCGGGC	120
,121	ATGGACGAGCCTTCGCCGCGGGAGGTGGGTGCGCCGGGGAGCCGCCCCGCATCCGGAGG MetAspGluProSerProArgGlyGlyGlyCysAlaGlyGluProProArgIleArgArg	180
181	TTGGAGGAGTCGGTGAACCGCATCGCGGCGGGGGGGGGG	240
241	GCGGTGAAGGAGCTCATCGAGAACAGCCTCGACGCTGGCGCCTCCAGCGTCTCCGTTGCGAlaValLysGluLeuIleGluAsnSerLeuAspAlaGlyAlaSerSerValSerValAla	300
301	GTGAAGGACGGTGGCCTCAAGCTCATCCAGGTCTCCGATGACGGCCATGGCATCAGGTTT ValLysAspGlyGlyLeuLysLeuIleGlnValSerAspAspGlyHisGlyIleArgPhe	360
361	GAGGATTTGGCAATATTGTGCGAAAGGCATACTACCTCAAAGTTATCTGCATACGAGGAT GluAspLeuAlaIleLeuCysGluArgHisThrThrSerLysLeuSerAlaTyrGluAsp	420
421	CTGCAGACCATAAAATCGATGGGGTTCAGAGGGGAGGCTTTGGCTAGTATGACTTATGTT LeuGlnThrIleLysSerMetGlyPheArgGlyGluAlaLeuAlaSerMetThrTyrVal	480
481	GGCCATGTTACCGTGACAACGATAACAGAAGGCCAATTGCACGGCTACAGGGTTTCTTACGlyHisValThrValThrThrIleThrGluGlyGlnLeuHisGlyTyrArgValSerTyr	540
541	AGAGATGGTGTAATGGAGAATGAGCCTAAGCCTTGCGCTGCGGTGAAAGGAACTCAAGTC ArgAspGlyValMetGluAsnGluProLysProCysAlaAlaValLysGlyThrGlnVal	600
601	ATGGTTGAAAATCTATTTTACAACATGGTAGCCCGCAAGAAAACATTGCAGAACTCCAAT MetValGluAsnLeuPheTyrAsnMetValAlaArgLysLysThrLeuGlnAsnSerAsn	660
661	GATGACTACCCCAAGATCGTAGACTTCATCAGTCGGTTTGCAGTCCATCACATCAACGTT AspAspTyrProLysIleValAspPheIleSerArgPheAlaValHisHisIleAsnVal	720
		•
721	ACCTTCTCTTGCAGAAAGCATGGAGCCAATAGAGCAGATGTTCATAGTGCAAGTACATCC ThrPheSerCysArgLysHisGlyAlaAsnArgAlaAspValHisSerAlaSerThrSer	780
781	TCAAGGTTAGATGCTATCAGGAGTGTCTATGGGGCTTCTGTCGTTGTCATAGAA	0.4.0
. • •	SerArgLeuAspAlaIleArgSerValTurGluAlaSerValValArgAcal outleCtu	840

		•	
	841	ATAAAGGTTTCATATGAGGATGCTGCAGATTCAATCTTCAAGATGGATG	900
	901	AATGCAAATTATGTGGCAAAGAAGATTACAATGATTCTTTTCATAAATGATAGGCTTGTA AsnAlaAsnTyrValAlaLysLysIleThrMetIleLeuPheIleAsnAspArgLeuVal	960
	961	GACTGTACTGCTTTGAAAAGAGCTATTGAATTTGTGTACTCTGCAACATTGCCTCAAGCA AspCysThrAlaLeuLysArgAlaIleGluPheValTyrSerAlaThrLeuProGlnAla	1020
1	021	TCCAAACCTTTCATATACATGTCCATACATCTTCCATCAGAACACGTGGATGTTAATATA SerLysProPheIleTyrMetSerIleHisLeuProSerGluHisValAspValAsnIle	1080
10	081	CACCCAACCAAGAAAGAGGTTAGCCTTTTGAATCAAGAGCGTATTATTGAAACAATAAGA HisProThrLysLysGluValSerLeuLeuAsnGlnGluArgIleIleGluThrIleArg	1140
1	141	AATGCTATTGAGGAAAAACTGATGAATTCTAATACAACCAGGATATTCCAAACTCAGGCA AsnAlaIleGluGluLysLeuMetAsnSerAsnThrThrArgIlePheGlnThrGlnAla	1200
12	201	TTAAACTTATCAGGGATTGCTCAAGCTAACCCACAAAAGGATAAGGTTTCTGAGGCCAGT LeuAsnLeuSerGlyIleAlaGlnAlaAsnProGlnLysAspLysValSerGluAlaSer	1260
12	61	ATGGGTTCTGGAACAAATCTCAAAAAATTCCTGTGAGCCAAATGGTCAGAACAGATCCA MetGlySerGlyThrLysSerGlnLysIleProValSerGlnMetValArgThrAspPro	1320
13	21	CGCAATCCATCTGGAAGATTGCACACCTACTGGCACGGGCAATCTTCAAATCTTGAAAAG ArgAsnProSerGlyArgLeuHisThrTyrTrpHisGlyGlnSerSerAsnLeuGluLys	1380
13	81	AAATTTGATCTTGTATCTGTAAGAAATGTTGTAAGATCAAGGAGAAACCAAAAAGATGCT LysPheAspLeuValSerValArgAsnValValArgSerArgArgAsnGlnLysAspAla	1440
14	41	GGTGATTTGTCAAGCCGTCATGAGCTCCTTGTGGAAATAGATTCTAGCTTCCATCCTGGC GlyAspLeuSerSerArgHisGluLeuLeuValGluIleAspSerSerPheHisProGly	1500
15	0,1	CTTTTGGACATTGTCAAGAACTGCACATATGTTGGACTTGCCGATGAAGCCTTTGCTTTG LeuLeuAspIleValLysAsnCysThrTyrValGlyLeuAlaAspGluAlaPheAlaLeu	1560
15	61	ATACAACACAATACCCGCTTATACCTTGTAAATGTGGTAAATATTAGTAAAGAACTTATG IleGlnHisAsnThrArgLeuTyrLeuValAsnValValAsnIleSerLysGluLeuMet	1620
162	21	TACCAGCAAGCTTTGTGCCGTTTTGGGAACTTCAATGCTATTCAGCTCAGTGAACCAGCT TyrGlnGlnAlaLeuCysArgPheGlyAsnPheAsnAlaIleGlnLeuSerGluProAla	-1680

1681	CCACTTCAGGAGTTGCTGGTGATGGCACTGAAAGACGATGAATTGATGAGTGATGAAAAG ProLeuGlnGluLeuLeuValMetAlaLeuLysAspAspGluLeuMetSerAspGluLys	1740
1741	GATGATGAGAAACTGGAGATTGCAGAAGTAAACACTGAGATACTAAAAGAAAATGCTGAG AspAspGluLysLeuGluIleAlaGluValAsnThrGluIleLeuLysGluAsnAlaGlu	1800
1801	ATGATTAATGAGTACTTTTCTATTCACATTGATCAAGATGGCAAATTGACAAGACTTCCT MetIleAsnGluTyrPheSerIleHisIleAspGlnAspGlyLysLeuThrArgLeuPro	1860
1861	GTTGTACTGGACCAGTACACCCCTGATATGGACCGTCTTCCAGAATTTGTGTTGGCTTTA ValValLeuAspGlnTyrThrProAspMetAspArgLeuProGluPheValLeuAlaLeu	1920
1921	GGAAATGATGTTACTTGGGATGACGAGAAAGAGTGCTTCAGAACAGTAGCTTCTGCTGTA GlyAsnAspValThrTrpAspAspGluLysGluCysPheArgThrValAlaSerAlaVal	1980
1981	GGAAACTTCTATGCACTTCATCCCCCAATCCTTCCAAATCCATCTGGGAATGGCATTCATGlyAsnPheTyrAlaLeuHisProProIleLeuProAsnProSerGlyAsnGlyIleHis	2040
2041	TTATACAAGAAAATAGAGATTCAATGGCTGATGAACATGCTGAGAATGATCTAATATCA LeuTyrLysLysAsnArgAspSerMetAlaAspGluHisAlaGluAsnAspLeuIleSer	2100
2101	GATGAAAATGACGTTGATCAAGAACTTCTTGCGGAAGCAGAAGCAGCATGGGCCCAACGT AspGluAsnAspValAspGlnGluLeuLeuAlaGluAlaGluAlaAlaTrpAlaGlnArg	2160
2161	GAGTGGACCATTCAGCATGTCTTGTTTCCATCCATGCGACTTTTCCTCAAGCCCCCGAAGGluTrpThrIleGlnHisValLeuPheProSerMetArgLeuPheLeuLysProProLys	2220
2221	TCAATGGCAACAGATGGAACGTTTGTGCAGGTTGCTTCCTTGGAGAAACTCTACAAGATT SerMetAlaThrAspGlyThrPheValGlnValAlaSerLeuGluLysLeuTyrLysIle	2280
2281	TTTGAAAGGTGTTAGCTCATAAGTGAGAAAATGAAGGCAGAGTAAGATCATGATTCATGG PheGluArgCysEnd	2340
2341	AGTGTTTTTGAAAATGTGTATAATTTCACCGTATTATGTACTTTGATAGTGTCTGTAGAA	2400
2401	ACTGAAGAAAGAAGATGGCTTTACTTCTGAATTGAAAGTTAACGATGCCAGCAATTGTA	2460
2461	ТАТТСТGАТСААССААААААААААААААААААААААА 2501	

TimeRICE MLH1 ORTHOLOG AND USES THEREO Inventor(s): Pramod B. Mahajan Application No: Not yet assigned Atty Dkt No: 35718/238971 (5718-142)

AminoAcid Sequence of Rice Homolog of MLH1.

1	MDEPSPRGGG	CAGEPPRIRR	LEESVVNRIA	AGEVIQRPSS	AVKELIENSI
51	DAGASSVSVA	VKDGGLKLIQ	VSDDGHGIRF	EDLAILCERH	TTSKLSAYE
101	LQTIKSMGFR	GEALASMTYV	GHVTVTTITE	GQLHGYRVSY	RDGVMENEP
151	PCAAVKGTQV	MVENLFYNMV	ARKKTLQNSN	DDYPKIVDFI	SRFAVHHINV
201	TFSCRKHGAN	RADVHSASTS	SRLDAIRSVY	GASVVRDLIE	IKVSYEDAAD
251	SIFKMDGYIS	NANYVAKKIT	MILFINDRLV	DCTALKRAJE	FVYSATLPQA
301	SKPFIYMSIH	LPSEHVDVNI	HPTKKEVSLL	NQERIIETIR	NAIEEKLMNS
351	NTTRIFQTQA	LNLSGIAQAN	PQKDKVSEAS	MGSGTKSQKI	PVSQMVRTDP
401	RNPSGRLHTY	WHGQSSNLEK	KFDLVSVRNV	VRSRRNQKDA	GDLSSRHELL
451	VEIDSSFHPG	LLDIVKNCTY	VGLADEAFAL	IQHNTRLYLV	NVVNISKELM
501	YQQALCRFGN	FNAIQLSEPA	PLQELLVMAL	KDDELMSDEK	DDEKLEIAEV
551	NTEILKENAE	MINEYFSIHI	DQDGKLTRLP	VVLDQYTPDM	DRLPEFVLAL
601	GNDVTWDDEK	ECFRTVASAV	GNFYALHPPI	LPNPSGNGIH	LYKKNRDSMA
651	DEHAENDLIS	DENDVDQELL	AEAEAAWAQR	EWTIQHVLFP	SMRLFLKPPK
701	SMATDGTFVQ	VASLEKLYKI	FERC*		

mutL/PMS1 signature sequence is shown in bold.

Time ICE MLH1 ORTHOLOG AND USES THEREOF In r(s): Pramod B. Mahajan Application No: Not yet assigned Atty Dkt No: 35718/238971 (5718-142)

Amino Acid Sequence Comparison of Rice and Arabidopsis mutL Homologs

2 DEPSPRGGGCAGEPPRIRRLEESVVNRIAAGEVIQRPSSAVKELIENSLD 5	1
13 EEESPATTIVPREPPKTOPI EESVUNDI ARGENTOP PROFESSIONAL	2
52 AGASSVSVAVKDGGLKLIQVSDDGHGIRFEDLAILCERHTTSKLSAYEDL 1	01
ADSSSISVVVKDGGLKLIQVSDDGHGIRREDLPILCERHTTSKLTKFEDL 1	12
102 QTIKSMGFRGEALASMTYVGHVTVTTITEGQLHGYRVSYRDGVMENEPKP 1	51
113 FALANDAMURK KI-KALASMUVUN UUMUMMTMVAATRAARAA	62
152 CAAVKGTQVMVENLFYNMVARKKTLQNSNDDYPKIVDFISRFAVHHINVT 20)1
163 CAAVKGTQIMVENLFYNMIARRKTLQNSADDYGKIVDLLSRMAIHYNNVS 21	12
202 FSCRKHGANRADVHSASTSSRLDAIRSVYGASVVRDLIEIKVSYEDAADS 25	51
213 FSCRKHGAVKADVHSVVSPSRLDSIRSVYGVSVAKNLMKVEVSSCDSSGC 26	52
252 IFKMDGYISNANYVAKKITMILFINDRLVDCTALKRAIEFVYSATLPQAS 30	1
: : . :: : .	2
302 KPFIYMSIHLPSEHVDVNIHPTKKEVSLLNQERIIETIRNAIEEKLMNSN 35	1
: . :	2
352 TTRIFQTQALNLSGIAQANPQKDKVSEASMGSGTKSQKIPVSQMVRTDPR 40	1
	1
402 NPSGRLHTYWHGQSSNLEKKFDLVS.VRNVVRSRRNQKDAGDLSSRHELL 450	0
412 DPAGRLHAFLQPKPQSLPDKVSSLSVVRSSVRQRRNPKETADLSSVQELI 46:	1
451 VEIDSSFHPGLLDIVKNCTYVGLADEAFALIQHNTRLYLVNVVNISKELM 500)
: : : : : : 300 462 AGVDSCCHPGMLETVRNCTYVGMADDVFALVQYNTHLYLANVVNLSKELM 511	L
501 YQQALCRFGNFNAIQLSEPAPLQELLVMALKDDELMSDEKDDEKLEIA 548	}
	٠,
549 EVNTEILKENAEMINEYFSIHIDQDGKLTRLPVVLDQYTPDMDRLPEFVL 598	}

Title CE MLH1 ORTHOLOG AND USES THEREOF Invested in Spirit Spirit

Deduced amino acid sequences of Oryza sativa and Arabidopsis thaliana (Genbank ID, SP_PL:Q9ZRV4) were compared using the Bestfit program of GCG.

Comparison of cDNA sequences of MLH1 orthologs from A. thaliana and O. sativa

	GGGAGCCGCCCCGCATCCGGAGGTTGGAGGAGTCGGTGGACCGCATC 207
	GAGAGCCACCGAAGATTCAACGCTTAGAAGAATCAGTAGTCAACCGTATC 122
	GCGGCGGGGAGGTGATCCAGCGGCCGTCGTCGGCGGTGAAGGAGCTCAT 257
	CGAGAACAGCCTCGACGCTGGCGCCTCCAGCGTCTCCGTTGCGGTGAAGG 307
	ACGGTGGCCTCAAGCTCATCCAGGTCTCCGATGACGGCCATGGCATCAGG 357
	TTTGAGGATTTGGCAATATTGTGCGAAAGGCATACTACCTCAAAGTTATC 407
	TGCATACGAGGATCTGCAGACCATAAAATCGATGGGGTTCAGAGGGGAGG 457
	CTTTGGCTAGTATGACTTATGTTGGCCATGTTACCGTGACAACGATAACA 507
	GAAGGCCAATTGCACGGCTACAGGGTTTCTTACAGAGATGGTGTAATGGA 557
	GAATGAGCCTAAGCCTTGCGCTGCGGTGAAAGGAACTCAAGTCATGGTTG 607
	AAAATCTATTTTACAACATGGTAGCCCGCAAGAAAACATTGCAGAACTCC 657
	AATGATGACTACCCCAAGATCGTAGACTTCATCAGTCGGTTTGCAGTCCA 707
708	TCACATCAACGTTACCTTCTTGCAGAAAGCATGGAGCCAATAGAGCAG 757
	ATGTTCATAGTGCAAGTACATCCTCAAGGTTAGATGCTATCAGGAGTGTC 807

Title: PICE MLH1 ORTHOLOG AND USES THEREOF Invention: Pramod B. Mahajan Applitation No: Not yet assigned Atty Dkt No: 35718/238971 (5718-142)

	TATGGGGCTTCTGTCGTTCGTGATCTCATAGAAATAAAGGTTTCATATGA	
858 773	GGATGCTGCAGATCAATCTTCAAGATGGATGGTTACATCTCAAATGCAA	•
908	. ATTATGTGGCAAAGAAGATTACAATGATTCTTTTCATAAATGATAGGCTT	
823		872
958	GTAGACTGTACTGCTTTGAAAAGAGCTATTGAATTTGTGTACTCTGCAAC	1007
•	GTGGAATGCTCTGCCTTAAAAAGAGCCATTGAAATTGTTTATGCTGCAAC	922
	ATTGCCTCAAGCATCCAAACCTTTCATATACATGTCCATACATCTTCCAT	1057 972
1058	CAGAACACGTGGATGTTAATATACACCCAACCAAGAAAGA	1107
973	GGGAACATGTTGATATCAATATTCACCCAACAAAGAAAGA	1022
	TTGAATCAAGAGCGTATTATTGAAACAATAAGAAATGCTATTGAGGAAAA	
	ACTGATGAATTCTAATACAACCAGGATATTCCAAACTCAGGCATTAAACT	
	ACTGAGAAACGCAAATGATACTAGGACGTTTCAAGAGCAGAAAGT	1117
	TATCAGGGATTGCTCAAGCTAACCCACAAAAGGATA	*
1244	AGGTTTCTGAGGCCAGTATGGGTTCTGGAACAAAATCTCAAAAAATTCCT	1293
1162		1205
1294	GTGAGCCAAATGGTCAGAACAGATCCACGCAATCCATCTGGAAGATTGCA	1343
1206	GTGAACAAAATGGTGAGAACAGATTCATCAGATCCAGCTGGAAGGTTACA	1255
1344	CACCTACTGGCACGGGCAATCTTCAAATCTTGAAAAGAAATTTGATC	1390
1256	TGCCTTTTTGCAACCCAAGCCACAAGTCTCCCTGACAAGGTTTCTAGTT	1305
	TTGTATCTGTAAGAAATGTTGTAAGATCAAGGAGAAACCAAAAAGATGCT	
	TGAGTGTAGTAAGGTCTTCTGTAAGGCAAAGAAGAAACCCAAAGGAAACT	
	GGTGATTTGTCAAGCCGTCATGAGCTCCTTGTGGAAATAGATTCTAGCTT_	
1356	GCTGATCTTTCTAGTGTCCAGGAACTTATTGCTGGAGTTGACAGCTGCTG	1405

	CCATCCTGGCCTTTTGGACATTGTCAAGAACTGCACATATGTTGGACTTG	
	CCGATGAAGCCTTTGCTTTGATACAACACAATACCCGCTTATACCTTGTA	
	CAGATGATGTTTTGCTTTAGTTCAGTATAACACCCATCTATATCTAGCA	
	AATGTGGTAAATATTAGTAAAGAACTTATGTACCAGCAAGCTTTGTGCCG	
	AATGTGGTGAATCTCAGCAAAGAGCTAATGTATCAGCAAACTCTTCGTCG	
	TTTTGGGAACTTCAATGCTATTCAGCTCAGTGAACCAGCTCCACTTCAGG	
	AGTTGCTGGTGATGGCACTGAAAGACGATGA.ATTGATGAGTGAT	
	GAAAAGGATGATGAGAAACTGGAGATTGCAGAAGTAAACACTGAGATACT	
1656	ACAAAAGATGATCTGAAAGAACTCCT	1705
1785	AAAAGAAAATGCTGAGATGATTAATGAGTACTTTTCTATTCACATTGATC	1834
	CAAGGAAAAGCAGAAATGTTAGAGGAGTATTTCAGCGTGCACATTGACT	
	AAGATGCCAAATTGACAAGACTTCCTGTTGTACTGGACCAGTACACCCCT	
	GATATGGACCGTCTTCCAGAATTTGTGTTGGCTTTAGGAAATGATGTTAC	
1935	TTGGGATGACGAGAAGAGTGCTTCAGAACAGTAGCTTCTGCTGTAGGAA	1984
1856		1905
	ACTTCTATGCACTTCATCCCCCAATCCTTCCAAATCCATCTGGGAATGGC	
1906	ACTTTTACGCCATGCATCCTCCTCTTTTGCCAAACCCATCGGGTGACGGT	1955
2035 1956	ATTCATTTATACAAGAAAATAGAGATTC:	2063
	AATGGCTGATGAACATGCTGAGAATGATCTAATATCAGATGAAAATGACC	
2006	AGAGGGTAACGTCGATATGGAGGACAATC	2034
2114	TTGATCAAGAACTTCTTGCGGAAGCAGAAGCAGCATGGGCCCAACGTGAG-2	2163 2084

2164	TGGACCATTCAGCATGTCTTGTTTCCATCCATGCGACTTTTCCTCAAGCC	2212
2085	TGGTCAATCCAACACGTGTTGTTTCCGTCAATGAGATTGTTCTTGAAGCC	2134
		•
2214	CCCGAAGTCAATGGCAACAGATGGAACGTTTGTGCAGGTTGCTTCCTTGG	2262
2135	ACCAGCTTCCATGGCTTCAAATGGGACTTTTGTAAAGGTAGCATCCCTTG	2184
		2104
2261	ACA A A CIDOMA CIA A CIA MINIMINA A A CIDOMA CIA A CIA MINIMINIMINA A CIA MINIMINIMINA A A CIDOMA CIA CIA CIA CIA CIA CIA CIA CIA CIA CI	
2204	AGAAACTCTACAAGATTTTTGAAAGGTGTTAGCTCATA 2301	
2185	AAAAGCTGTACAAGATATTCGAACGATGCTAACTGAAA 2222	
	2222	•