

Specifica Tecnica

2025-02-27 V0.0.1

sweetenteam@gmail.com
https://sweetenteam.github.io

Destinatari | Prof. Tullio Vardanega

Prof. Riccardo Cardin

AzzurroDigitale

Redattori | Orlando Ferazzani

Verificatori | Mouad Mahdi

Registro delle modifiche

Versione	Data	Autori	Verificatori	Dettaglio
0.0.1	2025-02-27	Orlando Ferazzani	Mouad Mahdi	Prima stesura documento

Indice

1) Introduzione5
1.1) Scopo del documento
1.2) Scopo del prodotto
1.3) Miglioramenti e maturità 5
1.4) Glossario
1.5) Riferimenti
1.5.1) Riferimenti normativi
1.5.2) Riferimenti informativi
1.5.3) Riferimenti Tecnici
2) Tecnologie
2.1) Typescript
2.2) Langchain
2.3) Node.js
2.4) Nest.js
2.5) GroqCloud
2.6) Qdrant
2.7) NomicAi
2.8) PostgreSQL
2.9) Octokit
2.10) JiraJs
2.11) ConfluenceJs
2.12) Docker
2.13) React.js
2.14) ReactQuery9
2.15) TailwindCSS
2.16) Next.js
3) Analisi

Lista della immagini

Figura 1	Logo BuddyBot	. 5
Figura 2	Logo Typescript	. 7
Figura 3	Logo di Langchain	. 7
Figura 4	Logo di Node.js	. 7
Figura 5	Logo di Nest.js	. 7
Figura 6	Logo di GroqCloud	. 7
Figura 7	Logo di Qdrant	. 8
Figura 8	Logo di NomicAi	. 8
Figura 9	Logo di PostgreSQL	. 8
Figura 10	Logo di Octokit	. 8
Figura 11	Logo di JiraJs	. 8
Figura 12	Logo di ConfluenceJs	. 9
	Logo di Docker	
Figura 14	Logo di ReactJs	. 9
Figura 15	Logo di ReactQuery	. 9
Figura 16	Logo di TailwindCSS	. 9
_	Logo di Next.js	

1) Introduzione

1.1) Scopo del documento

Il presente documento ha lo scopo di fungere da risorsa esaustiva per la spiegazione e conseguente comprensione degli aspetti tecnici del progetto azzurrodigitale:

Figura 1: Logo BuddyBot

La sua finalità primaria è quella di fornire una panoramica dettagliata e approfondita delle scelte progettuali, architetturali e tecnologiche del sistema sviluppato. In particolare, si intende fornire un'analisi profonda estesa al livello di progettazione più basso, includendo spiegazione, definizione e motivazione delle scelte effettuate, e dei design pattern_G adottati.

Il documento ha quindi scopi molteplici:

- Motivare le scelte progettuali e di sviluppo adottate;
- Fungere da guida per il processo di sviluppo e manutenzione del sistema;
- Fornire una vista panoramica e monitorare la <u>Code Coverage</u>_G dei requisiti del progetto identificati nel documento Analisi dei Requisiti (visionabile <u>qui</u>);

L'adeguatezza e la completezza del documento (e del progetto) sono in costante evoluzione e miglioramento in base ai $feedback_G$ ricevuti e sulla base dell'aggiornamento dei requisiti.

1.2) Scopo del prodotto

L'obiettivo del progetto è la realizzazione di un $\underline{chatbot}_G$ sotto forma di $\underline{Web\ App_G}$ atto a fornire un supporto al team di $\underline{azzurrodigitale}$: nella gestione delle attività di un progetto in corso di sviluppo. Nella fattispecie, il chatbot utilizza delle $\underline{API_G}$ e un modello di $\underline{LLM_G}$ per, rispettivamente, reperire informazioni da sistemi esterni utilizzati dall'azienda (più specificatamente, Jira, GitHub e Confluence) e elaborare una risposta. Questa risposta può contenere del semplice testo, un link o un $\underline{code\ block_G}$. Il chatbot ha una singola sessione per ogni utente, e può essere utilizzato da più utenti contemporaneamente.

Il team è confidente che questo genere di prodotto migliorerà il workflow del team di azzurrodigitale; riducendo i tempi di risposta e migliorando la qualità del lavoro svolto.

1.3) Miglioramenti e maturità

Questo documento è redatto con approccio incrementale e modificato nel tempo per riflettere l'andamento del progetto e le decisioni prese. In particolare, il documento è soggetto a modifiche in base ai feedback ricevuti e all'evoluzione dei requisiti del progetto. Per questo motivo, il documento non è considerabile definitivo, esaustivo e completo fino al raggiungimento di una versione stabile dello stesso (1.0.0 o superiore).

1.4) Glossario

Per evitare ambiguità e incomprensione riguardanti la terminologia tecnica utilizzata nel documento, viene redatto e adottato un Glossario contenente le definizioni dei termini tecnici utilizzati. Il Glossario è consultabile <u>qui</u> e i termini presenti nel documento sono evidenziati con *questo stileg*.

1.5) Riferimenti

1.5.1) Riferimenti normativi

- Presentazione pdf del capitolato C9: C9p.pdf (versione disponibile al 2025-03-20)
- Norme di Progetto: Norme_di_Progetto_v1.0.0.pdf
- Piano di Qualifica: Piano di Qualifica v1.0.0.pdf

1.5.2) Riferimenti informativi

- Analisi dei Requisiti: Analisi dei Requisiti v1.1.0.pdf
- Glossario: Glossario
- I diagrammi dei casi d'uso: Use case
- Progettazione: I pattern architetturali Software Architecture Patterns
- Verifica e validazione: analisi statica (T10): analisi statica
- Verifica e validazione: analisi dinamica aka testing (T11): analisi dinamica
- Programmazione: SOLID programming principles

1.5.3) Riferimenti Tecnici

- Dpocumentazione ufficiale Typescript: <u>Typescript</u>
- Documentazione ufficiale Langchain: Langchain
- Documentazione ufficiale NodeJs: Node.js
- Documentazione ufficiale NestJs: Nest.js
- Documentazione ufficiale Groq: GroqCloud
- Documentazione ufficiale Odrant: Odrant
- Documentazione ufficiale NomicAi: NomicAi
- Documentazione ufficiale PostgreSQL: PostgresSQL
- Documentazione ufficiale Oktokit: Octokit
- Documentazione JiraJs: JiraJs
- Documentazione Confluence Js: Confluence Js
- Documentazione ufficiale Docker: Docker
- Documentazione ufficiale ReactJs: React
- Documentazione ufficiale ReactQuery (TanStack) ReactQuery
- Documentazione ufficiale TailwindCSS: Tailwind CSS
- Documentazione ufficiale NextJs Next.js

2) Tecnologie

In questo capitolo sono elencate tutte le tecnologie della <u>tech stack</u>_G che il team utilizza per lo sviluppo del progetto di <u>azzurrodigitale</u>; come linguaggi di programmazione, <u>framework</u>_G, <u>librerie</u>_G e <u>ambienti</u> <u>di sviluppo</u>_G.

2.1) Typescript

Typescript è un linguaggio di programmazione open-source. È un super-set di JavaScript, che aggiunge forte tipizzazione statica. Il team ha scelto di utilizzare Typescript per la sua tipizzazione statica, che permette di ridurre gli errori di programmazione e di rendere il codice più leggibile e manutenibile.

Figura 2: Logo Typescript

2.2) Langchain

Langchain è un framework open-source per la creazione di applicazioni basate sull'utilizzo *LLM_G*. Il team ha scelto di utilizzare Langchain per la sua facilità d'uso e per la sua integrazione con altri servizi come Qdrant e Groq, oltre che ad avere una libreria in Typescript, rendendolo compatibile con il nostro linguaggio.

Figura 3: Logo di Langchain

2.3) Node.js

Node.js è un ambiente di runtime open-source per l'esecuzione di codice JavaScript lato server. Il team ha scelto di utilizzare Node.js per la sua scalabilità e per la sua facilità di utilizzo.

Figura 4: Logo di Node.js

2.4) **Nest.js**

Nest.js è un framework per la creazione di applicazioni server-side in Node.js. Il team ha scelto di utilizzare Nest.js per la sua struttura modulare e per la sua scalabilità e per la facilità con cui è possibile creare i design pattern più opportuni.

Figura 5: Logo di Nest.js

2.5) GroqCloud

È una piattaforma AI basata su hardware specializzato (LPU) per inferenza ad alte prestazioni, supporta modelli LLM e integrazione con strumenti AI per elaborazione in tempo reale.

Figura 6: Logo di GroqCloud

2.6) Qdrant

Qdrant è un motore di ricerca e analisi di dati non strutturati, supporta l'indicizzazione e la ricerca di dati in tempo reale, oltre che la ricerca di dati basata su vettori.

Figura 7: Logo di Qdrant

2.7) NomicAi

NomicAi è un servizio di elaborazione del linguaggio naturale (NLP) basato su modelli LLM che permette l'embedding di testo. Il team ha scelto di utilizzare NomicAi per la sua facilità d'uso e per la sua integrazione con altri servizi come Langchain e Groq.

Figura 8: Logo di NomicAi

2.8) PostgreSQL

PostgreSQL è un sistema di gestione di database relazionale open-source. Il team ha scelto di utilizzare PostgreSQL per la sua affidabilità e per la sua estensiva documentazione.

Figura 9: Logo di PostgreSQL

2.9) Octokit

Octokit è un toolkit per l'interazione con le API di GitHub. Il team ha scelto di utilizzare Octokit per la sua estesa documentazione e per utilizzare un prodott ufficiale per interagire on GitHub stesso.

Figura 10: Logo di Octokit

2.10) JiraJs

JiraJs è un toolkit per l'interazione con le API di Jira. Il team ha scelto di utilizzare JiraJs per la sua documentazione affidabile e per la sua facilità d'uso.

Figura 11: Logo di JiraJs

2.11) ConfluenceJs

ConfluenceJs è un toolkit per l'interazione con le API di Confluence. Il team ha scelto di utilizzare ConfluenceJs per la sua documentazione affidabile e per la sua facilità d'uso.

Figura 12: Logo di ConfluenceJs

2.12) Docker

Docker è una piattaforma open-source per lo sviluppo, il deploy e l'esecuzione di applicazioni in container. Il team ha scelto di utilizzare Docker per la sua facilità di deploy e per la sua scalabilità.

Figura 13: Logo di Docker

2.13) React.js

ReactJs è una libreria open-source per la creazione di interfacce utente. Il team ha scelto di utilizzare ReactJs per la sua immediatezza nell'uso, per la sua scalabilità e per la sua estesa documentazione.

Figura 14: Logo di ReactJs

2.14) ReactQuery

ReactQuery è una libreria open-source per la gestione dello stato in React. Il team ha scelto di utilizzare ReactQuery per la sua integrazione con React.

Figura 15: Logo di ReactQuery

2.15) TailwindCSS

TailwindCSS è un framework CSS utilizzato per la creazione di interfacce utente. Il team ha scelto di utilizzare TailwindCSS per la sua facilità d'uso e per la sua documentazione dettagliata oltre che per utilizzare una tecnologia più compatibile con il resto.

Figura 16: Logo di TailwindCSS

2.16) Next.js

Next.js è un framework per la creazione di applicazioni web in React. Il team ha scelto di utilizzare Next.js per i metodi nativi a disposizione per le richieste alle API e per utilizzare una tecnologia più nuova rispetto al resto.

Figura 17: Logo di Next.js

3) Analisi