

CLAIMS

1. An apparatus for correcting relative positional relationship between an actual video image captured by a camera and a virtual video image for use in a video image display device for superimposing the actual video image and the virtual video image on a monitor screen, comprising:

actual targets set in an actual coordinate system in an area captured by the camera;

coordinate conversion means for theoretically deriving monitor coordinates in a monitor coordinate system on the monitor screen by coordinate conversion of actual coordinates of the actual targets in the actual coordinate system based on reference values of coordinate conversion parameters including internal parameters of the camera itself and attachment parameters for attaching the camera to the vehicle;

recognition means for recognizing the monitor coordinates of the image of the actual targets actually captured by the camera; and

correction means for correcting at least values of the internal parameters of the camera itself of the coordinate conversion parameters based on deviations between the monitor coordinates of the image of the actual targets actually captured by the camera and the corresponding monitor coordinates in the monitor coordinate system of the actual targets which has been subjected to the coordinate conversion, and correcting relative positional relationship between the actual video image and the virtual video image based on the corrected values of the coordinate conversion parameters,

the correction means generating relational expressions the number of which is larger than the number of the coordinate conversion parameters based on the monitor coordinates of the image of the

actual targets and the monitor coordinates in the monitor coordinate system of the actual targets which have been subjected to coordinate conversion, the coordinate conversion parameters being corrected such that the square-sum of the deviations is the minimum;

the number of actual targets being determined such that the number of the relational expressions is larger than the number of the coordinate conversion parameters which require correction.

2. A video image positional relationship correction apparatus according to claim 1, wherein the recognition means provides a virtual target in the monitor coordinate system on the monitor screen based on the coordinate conversion parameters before modification using the coordinate conversion means, and carries out the recognition based on the difference between the monitor coordinate of the image of the actual target captured actually by the camera and the monitor coordinate of the virtual target.

3. A video image positional relationship correction apparatus according to claim 2, wherein the recognition means includes a controller for moving one of the actual target and the virtual target on the monitor screen to a position overlapped on the other of the actual target and the virtual target by manipulation of an operator.

4. A video image positional relationship correction apparatus according to claim 3, wherein the controller includes direction buttons for inputting a correction amount of one of the actual target and the virtual target on the monitor screen in an up direction, a down direction, a left direction and a right direction, a decision button for confirming a condition in which the actual target and the virtual target are overlapped with each other, and a calculation button for allowing the correction means to start correction

calculation.

5. A video image positional relationship correction apparatus according to claim 1, wherein the recognition means includes an image processing circuit for carrying out the recognition by image processing.

6. A steering assist apparatus having a video image positional relationship correction apparatus according to claim 1, wherein the actual video image and the virtual video image are a video image at the back of the vehicle and a steering assist guide, respectively.

7. A steering assist apparatus according to claim 6, wherein the actual target is set on a road surface.

8. A steering assist apparatus according to claim 6, wherein the actual target is set on a planar member attached to a rear portion of the vehicle.

9. A method of correcting relative positional relationship between an actual video image captured by a camera and a virtual video image when superimposing the actual image and the virtual video image on a monitor screen, comprising the steps of:

capturing actual targets in an actual coordinate system by the camera;

theoretically deriving monitor coordinates in a monitor coordinate system on the monitor screen by coordinate conversion of actual coordinates of the actual targets in the actual coordinate system based on reference values of coordinate conversion parameters including internal parameters of the camera itself and attachment parameters for attaching the camera to the vehicle;

recognizing the monitor coordinates of the image of the actual targets actually captured by the camera;

generating relational expressions based on deviations between the monitor coordinates of the image of the actual targets and the monitor coordinates in the monitor coordinate system of the actual targets which have been subjected to coordinate conversion, the number of relational expressions being larger than the number of the coordinate conversion parameters to be corrected including at least internal parameters of the camera itself of the coordinate conversion parameters;

correcting the coordinate conversion parameters such that the square-sum of the deviations is the minimum; and

correcting relative positional relationship between the actual video image and the virtual video image based on the corrected values of the coordinate conversion parameters.

10. A method for the video image positional relationship correction according to claim 9, wherein a virtual target is provided in the monitor coordinate system on the monitor screen based on the coordinate conversion parameters before modification, and the monitor coordinates of the image of the actual targets are recognized based on the difference between the monitor coordinate of the image of the actual target captured actually by the camera and the corresponding monitor coordinate of the virtual target.

11. A method for the video image positional relationship correction according to claim 10, wherein the difference between the monitor coordinate of the image of the actual target and the corresponding monitor coordinate of the virtual target is calculated by moving one of the actual target and the virtual target to a position overlapped on the other of the actual target and the virtual target

on the monitor screen by manipulation of an operator.

12. A method for the video image positional relationship correction according to claim 9, wherein the monitor coordinates of the image of the actual targets are recognized by image processing.