Schemat rekursji

Aneta Szumowska (iriz@mat.uni.torun.pl)

19 czerwca 2009

1 Definicja funkcji rekurencyjnych

Częściowe funkcje liczbowe $f^n(x_1,...,x_n)$ (dla n=1,2,...), to funkcje określone na pewnym podzbiorze zbioru \mathbb{N}^n o wartościach będących liczbami naturalnymi.

Dla dowolnych liczb $a_1, ..., a_n \in \mathbb{N}$ oraz funkcji f^k i g^s piszemy

$$f^k(a_{j_1},...,a_{j_k}) = g^s(a_{j_1},...,a_{j_s}),$$

jeśli: albo wartości $f^k(a_{j_1},...,a_{j_k})$ oraz $g^s(a_{j_1},...,a_{j_s})$ są nieokreślone, albo obie są określone i identyczne.

n-argumentowa funkcja $f^n(x_1,...,x_n)$ jest **całkowita**, jeśli jej dziedziną jest cały zbiór \mathbb{N}^n , czyli gdy $D_{f^n} = \mathbb{N}^n$.

2 Funkcje proste, złożenie i podstawienie

Następujące funkcje całkowite nazywami prostymi:

- $s^1(x) = x + 1$,
- $o^1(x) = 0$,
- $l_m^n(x_1, ..., x_n) = x_m \text{ (dla } 1 \leqslant m \leqslant n).$

Funkcja $h^n(x_1,...,x_n)=g^m(x_1,...,x_n),...,f^n_m(x_1,...x_n)$ otrzymywana jest z funkcji $g^m,f^n_1,...,f^n_m$ przez operację **złożenia**.

Funkcję $h^n(x_1,...,x_n) = g^m(t_1,...,t_m)$ otrzymujemy z pomocą operacji **podstawienia** z funkcji $g^m, f_1,...,f_k$, gdy $t_i = f_j(x_{j_1},...,x_{j_s})$, gdzie każde x_{j_l} jest jedną ze zmiennych $x_1,...,x_n$ lub t_i jest jedną ze zmiennych $x_1,...,x_n$.

3 Schemat rekursji prostej

Funkcję $f^{n+1}(x_1,...,x_n,y)$ otrzymujemy z funkcji $g^n(x_1,...,x_n)$ oraz $h^{n+2}(x_1,...,x_n,y,z)$ za pomocą **operatora rekursji prostej**, gdy może ona być określona następującym **schematem rekursji prostej**:

- $f^{n+1}(x_1,...,x_n,0) = g^n(x_1,...,x_n),$
- $f^{n+1}(x_1,...,x_n,y+1) = h^{n+2}(x_1,...,x_n,y,f^{n+1}(x_1,...,x_n,y)).$

Dla n=0 schemat rekursji prostej przyjmuje następującą postać:

- f(0) = a,
- f(y+1) = g(y, f(y)),

gdzie a jest jednoargumentową funkcją stałą o wartości a.

4 Minimum efektywne

Funkcję $f^n(x_1,...,x_n)$ otrzymujemy z funkcji $g^{n+1}(x_1,...,x_n,y)$ za pomocą operacji **minimum efekty-wnego** (za pomocą μ -operatora), co zaznaczamy następująco:

$$f^{n}(x_{1},...,x_{n}) = \mu y[g^{n+1}(x_{1},...,x_{n},y) = 0],$$

gdy spełniony jest warunek:

 $f^n(x_1,...,x_n)$ jest określone i równe y wtedy i tylko wtedy, gdy $g(x_1,...,x_n,0),...,g(x_1,...,x_n,y-1)$ są wszystkie określone i różne od 0, zaś $g(x_1,...,x_n,y)=0$.

5 Funkcje: pierwotnie, częściowo i ogólnie rekurencyjne

- Funkcja $f(x_1, ..., x_n)$ jest **pierwotnie rekurencyjna** (prf), jeśli może być otrzymana z funkcji prostych za pomocą skończonej liczby zastosowań operacji złożenia oraz rekursji prostej.
- Funkcja $f(x_1,...,x_n)$ jest **częściowo rekurencyjna** (crf), jeśli może być otrzymana z funkcji prostych za pomocą skończonej liczby zastosowań operacji złożenia, rekursji prostej oraz minimum efektywnego.
- Funkcja $f(x_1,...,x_n)$ jest **ogólnie rekurencyjna** (orf), gdy jest ona całkowitą funkcja rekurencyjną. Każda funkcja pierwotnie rekurencyjna jest też ogólnie rekurencyjna (lecz nie na odwrót).

6 Ograniczony μ -operator

Funkcję $f^n(x_1,...,x_n)$ otrzymujemy z funkcji

$$g^{n+1}(x_1,...,x_n,y)$$
 oraz $h^n(x_1,...,x_n)$

za pomocą **ograniczonego** μ -operatora, jeśli dla wszystkich $x_1, ..., x_n$:

$$\mu y[g^{n+1}(x_1,...,x_n,y)=0]$$

jest określone i nie większe niż $h^n(x_1,...,x_n)$ oraz

$$f^{n}(x_{1},...,x_{n}) = \mu y[q^{n+1}(x_{1},...,x_{n},y) = 0]$$

7 Inne schematy rekursji

7.1 Rekursja zwrotna

Funkcję f^{n+1} otrzymujemy z $g^n, h^{n+s+1}, t_1^1, ..., t_s^1$ z pomocą schematu **rekursji zwrotnej**, gdy może ona być określona schematem:

$$\begin{split} f^{n+1}(x_1,...,x_n,0) &= g^n(x_1,...,x_n), \\ f^{n+1}(x_1,...,x_n,y+1) &= h^{n+s+1}(x_1,...,x_n,f(x_1,...,x_n,t_1(y+1)),...,f(x_1,...,x_n,t_s(y+1))), \\ \text{gdzie } t_1(y+1) \leqslant y,...,t_s(y+1) \leqslant y. \end{split}$$

Jeśli funkcje $g, h, t_1, ..., t_s$ są pierwotnie rekurencyjne, to funkcja f jest pierwotnie rekurencyjna.

7.2 Rekursja jednoczesna

Niech $f_1^{n+1},...,f_k^{n+1}$ będą zdefiniowane przez **rekursję jednoczesną**, tzn. za pomocą następującego schematu:

$$\begin{cases} f_i^{n+1}(x_1, ..., x_n, 0) = g_i^n(x_1, ..., x_n) \\ f_i^{n+1}(x_1, ..., x_n, y + 1) = h_i^{n+k+1}(x_1, ..., x_n, y, f_1(x_1, ..., x_n, y), ..., f_k(x_1, ..., x_n, y)) \end{cases}$$

dla wszystkich $1 \leqslant i \leqslant k$.

Można udowodnić, że jeśli funkcje $g_1, ..., g_k, h_1, ..., h_k$ są pierowtnie rekurencyjne, to funkcje $f_1, ..., f_k$ są pierwotnie rekurencyjne.

7.3 Rekursja ograniczona

Schemat rekursji ograniczonej ma postać następującą:

$$f(x_1, ..., x_n, 0) = g(x_1, ..., x_n)$$

$$f(x_1, ..., x_n, x + 1) = h(x_1, ..., x_n, x, f(x_1, ..., x_n, x))$$

$$f(x_1, ..., x_n, x) \le f(x_1, ..., x_n, x).$$

Możliwe są różne dalsze schematy rekursji.

Definiowanie przez rekursję to ważne narzędzie w językach programowania.