Lecture 21: 21 June, 2021

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning April–July 2021

- Perceptrons define linear separators $w \cdot x + b$
 - $w \cdot x + b > 0$, classify Yes (+1)
 - $w \cdot x + b < 0$, classify No (-1)

- Perceptrons define linear separators $w \cdot x + b$
 - $w \cdot x + b > 0$, classify Yes (+1)
 - $w \cdot x + b < 0$, classify No (-1)
- What if we cascade perceptrons?

2/30

Madhavan Mukund Lecture 21: 21 June, 2021 DMML Apr-Jul 2021

- Perceptrons define linear separators $w \cdot x + b$
 - $w \cdot x + b > 0$, classify Yes (+1)
 - $w \cdot x + b < 0$, classify No (-1)
- What if we cascade perceptrons?
- Result is still a linear separator

- Perceptrons define linear separators $w \cdot x + b$
 - $\mathbf{w} \cdot \mathbf{x} + \mathbf{b} > 0$, classify Yes (+1)
 - $\mathbf{w} \cdot \mathbf{x} + \mathbf{b} < \mathbf{0}$, classify No (-1)
- What if we cascade perceptrons?
- Result is still a linear separator
 - $f_1 = w_1 \cdot x + b_1, f_2 = w_2 \cdot x + b_2$

Lecture 21: 21 June. 2021

- Perceptrons define linear separators $w \cdot x + b$
 - $\mathbf{w} \cdot \mathbf{x} + \mathbf{b} > 0$, classify Yes (+1)
 - $w \cdot x + b < 0$, classify No (-1)
- What if we cascade perceptrons?
- Result is still a linear separator
 - $f_1 = w_1 \cdot x + b_1, f_2 = w_2 \cdot x + b_2$

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

- Perceptrons define linear separators $w \cdot x + b$
 - $w \cdot x + b > 0$, classify Yes (+1)
 - $\mathbf{w} \cdot \mathbf{x} + \mathbf{b} < \mathbf{0}$, classify No (-1)
- What if we cascade perceptrons?
- Result is still a linear separator
 - $f_1 = w_1 \cdot x + b_1, f_2 = w_2 \cdot x + b_2$

Madhavan Mukund Lecture 21: 21 June, 2021 DMML Apr-Jul 2021 2/30

- Perceptrons define linear separators $w \cdot x + b$
 - $w \cdot x + b > 0$, classify Yes (+1)
 - $w \cdot x + b < 0$, classify No (-1)
- What if we cascade perceptrons?
- Result is still a linear separator
 - $f_1 = w_1 \cdot x + b_1, f_2 = w_2 \cdot x + b_2$

 - $f_3 = \sum_{i=1}^4 (w_{3_1}w_{1_i} + w_{3_2}w_{2_i}) \cdot x_i$ $+ (w_{3_1}b_1 + w_{3_2}b_2 + b_3)$

Madhavan Mukund Lecture 21: 21 June, 2021 DMML Apr-Jul 2021 2/30

- Cannot compute *exclusive-or* (XOR)
- $XOR(x_1, x_2)$ is true if exactly one of x_1, x_2 is true (not both)

- Cannot compute exclusive-or (XOR)
- $XOR(x_1, x_2)$ is true if exactly one of x_1, x_2 is true (not both)
- Suppose $XOR(x_1, x_2) = ux_1 + vx_2 + b$

#1 <□ > <□ > <□ > < □ > < □ > < □ > < □ > < □ < ○ < ○

Madhavan Mukund Lecture 21: 21 June, 2021 DMML Apr–Jul 2021 3/30

- Cannot compute exclusive-or (XOR)
- $XOR(x_1, x_2)$ is true if exactly one of x_1, x_2 is true (not both)
- Suppose $XOR(x_1, x_2) = ux_1 + vx_2 + b$
- $x_2 = 0$: As x_1 goes from 0 to 1, output goes from 0 to 1, so u > 0

- Cannot compute *exclusive-or* (XOR)
- $XOR(x_1, x_2)$ is true if exactly one of x_1, x_2 is true (not both)
- Suppose $XOR(x_1, x_2) = ux_1 + vx_2 + b$
- $x_2 = 0$: As x_1 goes from 0 to 1, output goes from 0 to 1, so u > 0
- $x_2 = 1$: As x_1 goes from 0 to 1, output goes from 1 to 0, so u < 0

#1 <□ ▷ <□ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ ○ ○

- Cannot compute exclusive-or (XOR)
- $XOR(x_1, x_2)$ is true if exactly one of x_1, x_2 is true (not both)
- Suppose $XOR(x_1, x_2) = ux_1 + vx_2 + b$
- $x_2 = 0$: As x_1 goes from 0 to 1, output goes from 0 to 1, so u > 0
- $x_2 = 1$: As x_1 goes from 0 to 1, output goes from 1 to 0, so u < 0
- Observed by Minsky and Papert, 1969, first "Al Winter"

- Transform linear output z through a non-linear activation function
- Sigmoid function $\frac{1}{1+e^{-z}}$

- Acyclic
- Input layer, hidden layers, output layer

- Acyclic
- Input layer, hidden layers, output layer
- Assumptions

- Acyclic
- Input layer, hidden layers, output layer
- Assumptions
 - Hidden neurons are arranged in layers

- Acyclic
- Input layer, hidden layers, output layer
- Assumptions
 - Hidden neurons are arranged in layers
 - Each layer is fully connected to the next

- Acyclic
- Input layer, hidden layers, output layer
- Assumptions
 - Hidden neurons are arranged in layers
 - Each layer is fully connected to the next
 - Set weight to zero to remove an edge

- Transform linear output *z* through a non-linear activation function
- Sigmoid function $\frac{1}{1 + e^{-z}}$
- Step is at z = 0
 - z = wx + b, so step is at x = -w/b
 - lacktriangle Increasing w makes step steeper

• Create a step at x = -w / b / w

Madhavan Mukund Lecture 21: 21 June, 2021 DMML Apr-Jul 2021 7/

- Create a step at x = -w/b
- Cascade steps

- Create a step at x = -w/b
- Cascade steps
- Subtract steps to create a box

Madhavan Mukund Lecture 21: 21 June, 2021 DMML Apr-Jul 2021 7/30

- \blacksquare Create a step at x = -w/b
- Cascade steps
- Subtract steps to create a box

Create many boxes

$$h = 0.0$$

DMML Apr-Jul 2021

- Create a step at x = -w/b
- Cascade steps
- Subtract steps to create a box
- Create many boxes
- Approximate any function

- Create a step at x = -w/b
- Cascade steps
- Subtract steps to create a box
- Create many boxes
- Approximate any function
- Need only one hidden layer!

 With non-linear activation, network of neurons can approximate any function

- With non-linear activation, network of neurons can approximate any function
 - Can build "rectangular" blocks

- With non-linear activation, network of neurons can approximate any function
 - Can build "rectangular" blocks
 - Combine blocks to capture any classification boundary

Related Observation

 $0,1 = \frac{1}{3}$ $0 = \frac{3}{1}$ $0 = \frac{1}{1}$ $0 = \frac{1}{1}$

2 = -2-x, -2x2+3

Ine: >0 Falou > < 0 Universality NAND alone is universal f(x1,x2) - sooleen funtion 4 imbinations - 2 choices per ionsmation 24 boolean funch 2×2×2×2 0,0 0,1 1,0 1,1 AND, NOT -> landefre any broken for OR, NOT UNIVERSAL

AND, OR is not universal

MNIST data set

- MNIST data set
- 1000 samples of 10 handwritten digits
 - Assume input has been segmented

- MNIST data set
- 1000 samples of 10 handwritten digits
 - Assume input has been segmented
- Each digit is 28 × 28 pixels
 - Grayscale value, 0 to 1
 - 784 pixels

- MNIST data set
- 1000 samples of 10 handwritten digits
 - Assume input has been segmented
- Each digit is 28 × 28 pixels
 - Grayscale value, 0 to 1
 - 784 pixels
- Input $x = (x_1, x_2, \dots, x_{784})$

■ Input layer $(x_1, x_2, ..., x_{784})$

Madhavan Mukund Lecture 21: 21 June, 2021 DMML Apr-Jul 2021

- Input layer $(x_1, x_2, ..., x_{784})$
- Single hidden layer, 15 nodes

- Input layer $(x_1, x_2, ..., x_{784})$
- Single hidden layer, 15 nodes
- Output layer, 10 nodes
 - Decision a_j for each digit $j \in \{0, 1, ..., 9\}$

- Input layer $(x_1, x_2, ..., x_{784})$
- Single hidden layer, 15 nodes
- Output layer, 10 nodes
 - Decision a_j for each digit $j \in \{0, 1, ..., 9\}$
- Final output is best a;

- Input layer $(x_1, x_2, ..., x_{784})$
- Single hidden layer, 15 nodes
- Output layer, 10 nodes
 - Decision a_j for each digit $j \in \{0, 1, ..., 9\}$
- Final output is best a;
 - Naïvely, $\underset{i}{\operatorname{arg max}} a_{j}$

- Input layer $(x_1, x_2, ..., x_{784})$
- Single hidden layer, 15 nodes
- Output layer, 10 nodes
 - Decision a_j for each digit $j \in \{0, 1, ..., 9\}$
- Final output is best a_i
 - Naïvely, $\underset{i}{\operatorname{arg max}} a_{j}$
 - Softmax, $\arg \max_{j} \frac{e^{a_{j}}}{\sum_{i} e^{a_{j}}}$
 - "Smooth" version of arg max

- Hidden layers extract features
 - For instance, patterns in different quadrants

- Hidden layers extract features
 - For instance, patterns in different quadrants
- Combination of features determines output

- Hidden layers extract features
 - For instance, patterns in different quadrants
- Combination of features determines output
- Claim: Automatic identification of features is strength of the model

- Hidden layers extract features
 - For instance, patterns in different quadrants
- Combination of features determines output
- Claim: Automatic identification of features is strength of the model
- Counter argument: implicitly extracted features are impossible to interpret
 - Explainability

