Working Title

November 1, 2024

Contents

1	Toy	model: 0d GLSM	1
	1.1	Setup	1
	1.2	Manifold Deformation	2
	1.3	Action along the Deformed Manifold	3
	1.4	Integration Domain	4

1 Toy model: 0d GLSM

1.1 Setup

We start with a 0d GLSM toy model, i.e. we consider the source manifold $\Sigma = \{pt\}$ to be an abstract point and the target manifold to be $X = \mathbb{CP}^1$. The space of fields is then simply given by points on the target manifold X, namely

$$\mathcal{F} = \mathbb{CP}^1 \tag{1}$$

As the action of the model we consider

$$S(z_0, z_1) = \beta \Big(|z_0|^2 - |z_1|^2 \Big)$$
 (2) {eq:toy_S}

where $[z_0:z_1] \in \mathbb{CP}^1$. As written, the partition function explicitly shows the U(1) gauge freedom (which here is simply a global U(1) symmetry, acting as

$$e^{i\theta} \colon (z_0, z_1) \mapsto (e^{i\theta} z_0, e^{i\theta} z_1) \tag{3}$$

and defines indeed a function on \mathbb{CP}^1 if we implicitly assume the constraint

$$|z_0|^2 + |z_1| = 1$$
 (4) {eq:toy_constr}

The path integral of the model is thus defined by

$$Z = \int dz_0 dz_1 \delta(|z_0|^2 + |z_1 - 1)e^{-S(z_0, z_1)}$$
 (5) {eq:toy_Z}

In order to evaluate (5), we want to embed \mathbb{CP}^1 into a higher dimensional complex space such that

- 1. the new action \tilde{S} is holomorphic in the new variables (fields)
- 2. when we restrict to \mathbb{CP}^1 , \tilde{S} reduces to S

We think of this embedding as an analytic continuation of the space of fields in an appropriate sense.

Going to real fields, $z_k = x_k + iy_k$ for k = 0, 1, the action (2) becomes

$$S = \beta \left(x_0^2 + y_0^2 - x_1^2 - y_1^2 \right)$$
 (6) {eq:toy_S_real}

while the constraint becomes

$$x_0^2 + y_0^2 + x_1^2 + y_1^2 = 1$$
 (7) {eq:toy_constr_real}

1.2 Manifold Deformation

Suppose that we now complexify in the sense that we consider $x_k, y_k \in \mathbb{C}$. For simplicity, let us rename the variables according to

$$x_0 = u_0$$
 , $x_1 = u_1$, $y_0 = u_2$, $y_1 = u_3$ (8) {eq:toy_us}

where now $u_i \in \mathbb{C}$. This slightly unusual renaming is done for later convenience.

The constraint (7) now becomes

$$\sum_{i=0}^{3} u_i^2 = 1 \tag{9}$$

which can be seen as a complex hypersurface inside \mathbb{CP}^4 , as follows: Let us introduce the complex variable $t \in \mathbb{C}$ and consider the equation

$$\sum_{i=0}^{3} u_i^2 = t^2 \tag{10}$$

This equation describes the zero set of a homogeneous quadratic polynomial

$$P(t, u_i) = t^2 - \sum_{i=0}^{3} u_i^2$$
(11)

Notice that for any $\lambda \in \mathbb{C}^* = \mathbb{C} - \{0\},\$

$$P(\lambda t, \lambda u_i) = \lambda^2 P(t, u_i) \tag{12}$$

Therefore, the solution space of

$$P(u_i, t) = 0 (13)$$

is invariant under the action of \mathbb{C}^* (by multiplication) and hence descends to an equation on \mathbb{CP}^4 whose coordinates are $[t:u_0:u_1:u_2:u_3]$

The important observation is that the constraint surface (7) coincides with $P(t, u_i) = 0$ for t = 1. But t = 1 simply defines the $U_{t\neq 0} \subset \mathbb{CP}^4$ whose coordinates are given by $\left[1 : \frac{u_0}{t} : \frac{u_1}{t} : \frac{u_2}{t}\right]$. Hence, the constraint surface can be embedded into \mathbb{CP}^4 :

$$[u_0:u_1:u_2:u_3]\mapsto [t(u_i):u_0:u_1:u_2:u_3]\quad,\quad t(u_i)=\sqrt{\sum_{i=0}^3 u_i^2}\qquad (14)\quad \{\texttt{eq:toy_emb}\}$$

Notice that $[t(u_i): u_0: u_1: u_2: u_3]$ simply describes a point in $P(t, u_i) = 0$ and the original surface is reproduced in the chart $t(u_i) = 1$.

This embedding comes with a natural family of holomorphic deformations parametrised by a vector $\omega \in \mathbb{C}^4 - \{0\}$. Namely, instead of considering zeros of $P(t, u_i)$, one could consider zeros of a general homogeneous quadratic polynomial

$$P_{\omega}(t, u_i) = t^2 - \sum_{i=0}^{3} \omega_i u_i^2$$
 (15)

which for $\omega = (1, 1, 1, 1) \in \mathbb{C}^4$ coincides with P.

Remark 1. Note that the hypersurface \mathcal{C}_{ω} defined by $P_{\omega}(t, u_i) = 0$ defines a $\mathbb{CP}^3 \subset \mathbb{CP}^4$. Indeed, zeros of $P_{\omega}(t, u_i)$ are given by points

$$[t(u_i): u_0: u_1: u_2: u_3]$$
 , $t(u_i) = \sqrt{\sum_i u_i^2}$ (16)

and hence parametrised by $(u_0, \ldots, u_3) \in \mathbb{C}^4 - \{0\}$. However, we may freely scale the u_i by the same $\lambda \in \mathbb{C}^*$ simultaneously, since $t(\lambda u_i) = \lambda t(u_i)$. Hence, the hypersurface C_{ω} is parametrised by $(u_0, \ldots, u_3) \in \mathbb{C}^4 - \{0\}$ only up to the action of \mathbb{C}^* , that is by a \mathbb{CP}^3 with coordinates $[u_0 : u_1 : u_2 : u_3]$.

1.3 Action along the Deformed Manifold

In the chart t = 1, the action (6) becomes

$$S(u) = \beta \left(u_0^2 + u_1^2 - u_2^2 - u_3^2 \right) \tag{17}$$

If we were to reinstate t, we would have to do it in a way that ensures that S(u) is a function on \mathbb{CP}^4 , i.e. invariant under the \mathbb{C}^* action $\lambda \colon (t, u_i) \mapsto (\lambda t, \lambda u_i)$. An obvious candidate is

$$S(t,u) = \frac{\beta \left(u_0^2 + u_1^2 - u_2^2 - u_3^2\right)}{t^2}$$
 (18)

On the constraint surface (inside \mathbb{CP}^4) we now replace t^2 by $\sum_i \omega_i u_i^2$ for some non-zero $\omega \in \mathbb{C}^4$. We obtain

$$S(t,u)|_{\mathcal{C}_{\omega}} = \frac{\beta \left(u_0^2 + u_1^2 - u_2^2 - u_3^2\right)}{\sum_{i} \omega_i u_i^2}$$
(19) {eq:toy_S_deformed}

where we recall that we denote the (generalised) constraint surface by

$$C_{\omega} = \{ P_{\omega}(t, u) = 0 \} \tag{20}$$

Note that (19) is invariant under simultaneous scaling $u_i \mapsto \lambda u_i$ for any $\lambda \in \mathbb{C}^*$ and thus is indeed a function on $\mathbb{CP}^3 \cong \mathcal{C}_{\omega}$.

1.4 Integration Domain

So far we have just discussed how the "complexified" space of fields embeds nicely as a \mathbb{CP}^3 into \mathbb{CP}^4 . However, the original integration domain was a \mathbb{CP}^1 and the correct deformation domain of the path integral should be a deformation of this \mathbb{CP}^1 possibly embedded into $\mathbb{CP}^3 \subset \mathbb{CP}^4$. Here, we present *one way* to do it.

Let us briefly recall the first steps of "complexifying" the space of fields: Starting with $[z_0:z_1]\in\mathbb{CP}^1$, we rewrite it into real fields, $z_k=x_k+iy_k$ for k=0,1 and then promoted x_k,y_k to complex fields u_i for $i=0,\ldots,3$ and ultimately we found that the resulting space is forms a $\mathbb{CP}^3\subset\mathbb{CP}^4$ with coordinates $[u_0:u_1:u_2:u_3]$.

It is left to discuss how the \mathbb{CP}^1 embeds into this \mathbb{CP}^3 , i.e. how we have to extend the coordinates x_k, y_k to u_i . One way to do this is by *scaling*: for some $\alpha = (\alpha_1, \ldots, \alpha_3) \in \mathbb{C}^4$ we set

$$u_0 = \alpha_0 x_0$$
 , $u_1 = \alpha_1 x_1$, $u_2 = \alpha_2 y_0$, $u_3 = \alpha_3 y_1$ (21)

{eq:tov_deform_contor

This scaling has the advantage that it preserves the polynomial degree of x_k, y_k , and hence of the original complex coordinates z_0, z_1 , as well as the homogeneity. In turn, this implies that we preserve the action of \mathbb{C}^* . Put differently, the deformation (or analytical continuation) of x_k, y_k to u_i is equivariant, namely for any $\lambda \in \mathbb{C}^*$

$$u_i(\lambda x, \lambda y) = \lambda u_i(x, y) \tag{22}$$

Due to this equivariance, the deformation $z_k \rightsquigarrow u_i$ can be seen as a deformation of \mathbb{CP}^1 inside $\mathbb{CP}^3 \subset \mathbb{CP}^4$, since

$$u: \mathbb{C}^2 \to \mathbb{C}^4$$

$$(z_0, z_1) \mapsto u(z_0, z_1) \equiv (u_0(z_0, z_1), u_1(z_0, z_1), u_2(z_0, z_1), u_3(z_0, z_1))$$
(23)

descends to a map from \mathbb{CP}^1 to \mathbb{CP}^3 due to its equivariance property

$$u(\lambda z_0, \lambda z_1) = \lambda u(z_0, z_1) \tag{24}$$

which simply means that we can consider the quotient by \mathbb{C}^* on both sides (domain and codomain).

The full path integral domain would then be deformed as follows:

$$\mathcal{E}_{\alpha,\omega} \colon \mathbb{CP}^1 \xrightarrow{\iota^{u_{\alpha}}} \mathbb{CP}^3 \xrightarrow{P_{\omega}} \mathbb{CP}^4 \tag{25} \quad \{eq:toy_E\}$$

The first map is given by

$$u_{\alpha} \colon [z_0 : z_1] = [x_0 + iy_0 : x_1 + iy_1] \mapsto [\alpha_0 u_0 : \dots : \alpha_3 u_3]$$
 (26) {eq:toy_cont_deform1}

with $u_i = u_i(z_0, z_1)$ given by (8). The second map is given by

$$P_{\omega} \colon [u_0 : u_1 : u_2 : u_3] \mapsto [P_{\omega}(u_i) : u_0 : u_1 : u_2 : u_3]$$
 (27)

where $P_{\omega}(u_i) = \sqrt{\sum_i \omega_i u_i^2}$. The full embedding $\mathcal{E}_{\alpha,\omega}$ is hence parametrised by two complex vectors, $\alpha \in \mathbb{C}^4$ and $\omega \in \mathbb{C}^4$, which gives 8 complex or equivalently 16 real parameters which can be tuned to maximize the StN.

Remark 2. For $x_k + iy_k$ for k = 0, 1, the embedding $\mathcal{E}_{\alpha,\omega}$ can be explicitly expressed as

$$\mathcal{E}_{\alpha,\omega}(x,y) = \left[\sqrt{\omega_0 \alpha_0^2 x_0^2 + \omega_1 \alpha_1^2 x_1^2 + \omega_2 \alpha_2^2 y_0^2 + \omega_3 \alpha_3^2 y_1^2} : \alpha_0 x_0 : \alpha_1 x_1 : \alpha_2 y_0 : \alpha_3 y_1\right]$$
(28)