STAT-S 782 6 - KKT conditions 12 September 2017

LECTURER: PROF. McDonald Scribe: Arash Khodadadi

In what follows P and D stand for the primal and the dual problems, respectively.

6.1 Weak duality

We have:

$$f(x) \ge f(x) + u^T h(x) + v^T l(x) := L(x, u, v)$$

$$\ge \min_{x} L(x, u, v) := g(u, v)$$
(6.1)

and so:

$$f^* \ge g(u, v) \Longrightarrow f^* \ge g^*(u, v) \tag{6.2}$$

This is called the weak duality.

Note: The dual is always convex (even if P is not).

proof:

$$g(u,v) = \min_{x} L(x, u, v) = \min_{x} \{ f(x) + u^{T} h(x) + v^{T} l(x) \}$$

$$= -\max_{x} \{ f(x) + u^{T} h(x) + v^{T} l(x) \}$$
(6.3)

This is a pointwise maximization of convex functions of u, v, and so it is convex in u, v.

6.2 Strong duality

$$f^* = g^* \tag{6.4}$$

When does this hold?

Slater's conditions: If P is convex and there exists at least one strictly feasible x, i.e., $h_i(x) < 0$, then we have strong duality.

An important extension: We only need this condition for the non-affine $h_i(x)$.

6.2.1 Strong duality in LP

In LP we have:

- Dual of dual is P
- Strong duality if P is feasible
- Strong duality if D is feasible
- The previous two points imply that we have strong duality unless both P and D are infeasible.

Example 6.1 (SVM).

$$\min_{\zeta,\beta,\beta_0} \frac{1}{2} ||\beta||_2^2 + C \sum_i \zeta_i
s.t \ \zeta_i \ge 0, \ y_i(x_i^T \beta + \beta_0) \ge 1 - \zeta_i$$
(6.5)

The dual of this is:

$$\begin{aligned} \max_{w} -\frac{1}{2} w^T \tilde{X}^T \tilde{X} w + \mathbf{1}^T w \\ s.t \ 0 \leq w \leq C\mathbf{1} \ , \ w^T y = 0 \end{aligned} \tag{6.6}$$

where $\tilde{X} = diag(y)X$.

Clearly, w = 0 is dual feasible and so is primal feasible.

6.3 KKT conditions

1. Stationarity: $0 \in \partial (f(x) + u^T h(x) + v^T l(x))$

For some pair (u, v), x minimizes the Lagrangian.

- 2. Complementary slackness: $u_i h_i(x) = 0$, $\forall i$
- 3. Primal feasibility: $h_i(x) \leq 0$, $l_i(x) = 0$
- 4. Dual feasibility: $u \geq 0$

Theorem 6.2 (Necessity). If x^* and (u^*, v^*) are optimal and $f^* = g^*$, then they satisfy KKT conditions.

Proof: (i)

$$f(x^*) = g(u^*, v^*) \le \min_{x} f(x) + u^T h(x) + v^T l(x)$$

$$\le f(x^*) + u^{*T} h(x^*) + v^{*T} l(x^*)$$

$$\le f(x^*)$$
(6.7)

Now replace \leq with =. So from the second (in)equality we see that X^* is the minimizer of the Lagrangian. Also, from the last (in)equality we see that $u^{*T}h(x^*)=0$ and we have $u^*\geq 0$ and so we get the complementary slackness.

Theorem 6.3 (Sufficiency). If x^* and (u^*, v^*) satisfy KKT conditions then they are P and D optimal and $f^* = g^*$.

Example 6.4 (SVM). KKT conditions:

1. Stationarity: $w^T y = 0$, $\beta = w^T \tilde{X}$, w = C1 - v

2. CS:
$$v_i \zeta_i = 0$$
, $w_i (1 - \zeta_i - y_i (x_i^T \beta + \beta_0)) = 0$

Example 6.5 (constrained and Lagrangian forms). When are the two following forms equivalent?

constrained form (C):

$$\min f(x)
s.t. \ h(x) \le t$$
(6.8)

Lagrangian form (L):

$$\min f(x) + \lambda h(x) \tag{6.9}$$

When C is strictly feasible, strong duality holds. So there exists λ such that for each x that solves C those x minimize L.

Now, if x^* solves L, then KKT condition for C hold by taking $t = h(x^*)$ and so x^* is a solution of C.

References