Person Re-IDentification

Final presentation

Third milestone

Bonomi Andrea - Ismail Khouloud - Laiti Francesco Lobba Davide - Turri Evelyn

Trends and Applications of Computer Vision
Academic Year 2022/2023

Introduction

What is Person Re-ID?

(a) Pedestrian Detection

(b) Person Re-identification

Why Person Re-ID is relevant

Theoretical Background

Deep Person Re-ID

Bag of Tricks

Important baseline for Person Re-ID

Old baseline + 6 tricks

Main tricks: BNNeck and Center Loss

Bag of Tricks | Tricks

NFormer

Extraction of combined features

A new softmax that takes into account only the closest neighbors

Improve the performances in case of occlusions or problems as change color clothes

NFormer | LAA & RNS

Landmark Agent Attention

Reciprocal Neighbor Softmax

Vehicle Re-ID

Bag of Tricks architecture with some changes

Changes: ResNet101, Inference stage moved before and loss moved before BN layers

Results

Results | Person Re-ID with masked faces

Without mask

Results | Person Re-ID with masked faces

Without masked query

mAP	Rank-1	Rank-5	Rank-10
84.4 %	93.6 %	98.0 %	98.8 %

With masked query

mAP	Rank-1	Rank-5	Rank-10
84.4 %	93.6 %	98.0 %	98.8 %

Results | Person Re-ID with masked faces

Without masked query

mAP	Rank-1	Rank-5	Rank-10
84.4 %	93.6 %	98.0 %	98.8 %

With
masked query

mAP	Rank-1	Rank-5	Rank-10
84.4 %	93.6 %	98.0 %	98.8 %

Results | NFormer Vehicles Re-ID

Person Re-ID	Vehicles Re-ID
BoT-BS	 Multi-Domain Learning and Identity Mining for Vehicle Re-Identification
NFormer	 ?

Lack of vehicle datasets

Datasets on Vehicle-Reld are not many

A lot of datasets needs an agreement even if license plates are masked

Vehicle ReID				
Dataset	Public Availability			
VeRi-776	Not Available			
VehicleReId	Not Available			
VRIC	Available			

mAP	Rank-1	Rank-5	Rank-10
76.5 %	95.1 %	97.3 %	98.3 %

Description	mAP	Rank-1	Rank-5	Rank-10
ResNet-50 + Adam + S Triplet L. w/ Center	76.5 %	95.1 %	97.3 %	98.3 %
ResNet-101 + Adam + S Triplet L. w/ Center	76.1 %	94.5 %	97.6 %	98.4 %
ResNet-101 + Adam + Soft-Margin Triplet Loss	71.3 %	93.4 %	97.1 %	98.5 %
ResNet-101 + SGD* + Soft-Margin Triplet Loss	69.4 %	93.7 %	97.2 %	97.9 %
ResNet-50 + Adam + Soft-Margin Triplet Loss	73.1 %	93.9 %	97.7 %	98.7 %

NFormer without changes

* Learning rate adjusted accordingly

Description	mAP	Rank-1	Rank-5	Rank-10
ResNet-50 + Adam + S Triplet L. w/ Center	76.5 %	95.1 %	97.3 %	98.3 %
ResNet-101 + Adam + S Triplet L. w/ Center	76.1 %	94.5 %	97.6 %	98.4 %
ResNet-101 + Adam + Soft-Margin Triplet Loss	71.3 %	93.4 %	97.1 %	98.5 %
ResNet-101 + SGD* + Soft-Margin Triplet Loss	69.4 %	93.7 %	97.2 %	97.9 %
ResNet-50 + Adam + Soft-Margin Triplet Loss	73.1 %	93.9 %	97.7 %	98.7 %

ResNet-101 does not improve

Description	mAP	Rank-1	Rank-5	Rank-10
ResNet-50 + Adam + S Triplet L. w/ Center	76.5 %	95.1 %	97.3 %	98.3 %
ResNet-101 + Adam + S Triplet L. w/ Center	76.1 %	94.5 %	97.6 %	98.4 %
ResNet-101 + Adam + Soft-Margin Triplet Loss	71.3 %	93.4 %	97.1 %	98.5 %
ResNet-101 + SGD* + Soft-Margin Triplet Loss	69.4 %	93.7 %	97.2 %	97.9 %
ResNet-50 + Adam + Soft-Margin Triplet Loss	73.1 %	93.9 %	97.7 %	98.7 %

SGD vs Adam

NFormer without changes

* Learning rate adjusted accordingly

Description	mAP	Rank-1	Rank-5	Rank-10
ResNet-50 + Adam + S Triplet L. w/ Center	76.5 %	95.1 %	97.3 %	98.3 %
ResNet-101 + Adam + S Triplet L. w/ Center	76.1 %	94.5 %	97.6 %	98.4 %
ResNet-101 + Adam + Soft-Margin Triplet Loss	71.3 %	93.4 %	97.1 %	98.5 %
ResNet-101 + SGD* + Soft-Margin Triplet Loss	69.4 %	93.7 %	97.2 %	97.9 %
ResNet-50 + Adam + Soft-Margin Triplet Loss	73.1 %	93.9 %	97.7 %	98.7 %

No improvements with Soft-Margin Triplet Loss

NFormer without changes

* Learning rate adjusted accordingly

Description	mAP	Rank-1	Rank-5	Rank-10
ResNet-50 + Adam + S Triplet L. w/ Center	76.5 %	95.1 %	97.3 %	98.3 %
ResNet-101 + Adam + S Triplet L. w/ Center	76.1 %	94.5 %	97.6 %	98.4 %
ResNet-101 + Adam + Soft-Margin Triplet Loss	71.3 %	93.4 %	97.1 %	98.5 %
ResNet-101 + SGD* + Soft-Margin Triplet Loss	69.4 %	93.7 %	97.2 %	97.9 %
ResNet-50 + Adam + Soft-Margin Triplet Loss	73.1 %	93.9 %	97.7 %	98.7 %

No improvements with Soft-Margin Triplet Loss

NFormer without changes

* Learning rate adjusted accordingly

Drawbacks

Ethical problems

Mass surveillance

Stalking

End-to-end person Re-ID system from live cameras available to the public

Live webcam

Camera positions in Verona

Different live view of Verona from webcam.comune.verona.it/

Visual comparison with Market dataset

Visual comparison with Market dataset

Market dataset

Verona dataset created on the fly

Times Square dataset created on the fly

Outlook

Outlook | Open Issues

Federated average learning

Problem

Privacy Issues
Real-world applications' limitation

Solution

Training local models individually and averaging them to a global model, for deploying in unseen target domains

- 1- Local training
- **3** Server-side aggregation
- 2- Client-to-server updating
- 4- Redistributing

Domain Generalization

Problem

Local models overfit local data Poorly-generalized global model

Solution

Optimizing re-ID models with several source domains and locally fine-tuning or directly deploying the obtained model to target domain

(a) Typical setting (Supervised)

(b) Our setting (Unsupervised)

Source Domain

Target Domain

Disjoint label space in the training and testing set

Domain Generalization

Model Adaptation to New Domain/Camera Model Updating with Newly Arriving Data Domain and Feature Hallucinating (DFH)

Domain Adaptation

Transferring pre-trained deep representations to unseen domains

- Initialize the model
- 1. Extract features for unlabeled data
- 2. Clustering and assign pseudo-labels based on centers
- 3. Select reliable pseudo-labeled samples
- 4. Fine-tune the model with pseudo-labeled data
- 5. Repeat 1-4 until convergence.

Domain and Feature Hallucinating

Fast Re-ID

Lightweight model

Resource Aware Re-ID

Fast Re-ID Hashing Transform high-dim to compact-dim In study: mix of long and short binary codes

Lightweight model

Resource Aware Re-ID

Change the network

Model distillation (Teacher-student network)

Resource Aware Re-ID

Fast Re-ID

Lightweight model

Resource Aware Re-ID

Adjust model to the hardware in use

Multiple heterogeneous modalities

Visual and text modalities

Multiple visual modalities

Visual and audio modalities

Multiple heterogeneous modalities

Multi stream neural network

Feature-level fusion

Decision-level fusion

Demonstration of RGB, NI (Near Infrared) and TI (Thermal Infrared) multi-modality person re-identification.

Text-to-Image Person Re-ID (TIRe-ID)

Query

A young man with short black hair is wearing a blue hooded jacket over a white t-shirt. He is also wearing beige fitted pants and grey sneakers with a white design and soles, He is carrying a grey backpack with a black patch.

Dataset

CFine

CLIP-driven Fine-grained information excavation framework

Occlusions

Probe Gallery

Occlusions

Data augmentation

Smart features

Multiple views

Attention mechanisms

Clothes changing

Query

Cloth-Changing Gallery

Clothes changing

Part-based approach

Human pose estimation

Attributes-based approach

Active learning | human-in-the-loop

Learning from synthetic data

PersonX dataset

VehicleX dataset

References

- 1. He, T., Zhang, Z., Zhang, H., Zhang, Z., Xie, J., & Li, M. (2018). Bag of Tricks for Image Classification with Convolutional Neural Networks. arXiv. https://doi.org/10.48550/arXiv.1812.01187
- 2. Wang, H., Shen, J., Liu, Y., Gao, Y., & Gavves, E. (2022). NFormer: Robust Person Re-identification with Neighbor Transformer. arXiv. https://doi.org/10.48550/arXiv.2204.09331
- 3. He, S., Luo, H., Chen, W., Zhang, M., Zhang, Y., Wang, F., Li, H., & Jiang, W. (2020). Multi-Domain Learning and Identity Mining for Vehicle Re-Identification. arXiv. https://doi.org/10.48550/arXiv.2004.10547
- 4. Zheng, L., Yang, Y., & Hauptmann, A. G. (2016). Person Re-identification: Past, Present and Future. arXiv. https://doi.org/10.48550/arXiv.1610.02984
- 5. Wang, Z., Wang, Z., Zheng, Y., Wu, Y., Zeng, W., & Satoh, S. (2019). Beyond Intra-modality: A Survey of Heterogeneous Person Re-identification. arXiv. https://doi.org/10.48550/arXiv.1905.10048
- 6. Zheng, A., Wang, Z., Chen, Z., Li, C., & Tang, J. (2021). Robust Multi-Modality Person Re-identification. Proceedings of the AAAI Conference on Artificial Intelligence, 35(4), 3529-3537. https://doi.org/10.1609/aaai.v35i4.16467
- 7. Sun, X., & Zheng, L. (2018). Dissecting Person Re-identification from the Viewpoint of Viewpoint. arXiv. https://doi.org/10.48550/arXiv.1812.02162
- 8. Yao, Y., Zheng, L., Yang, X., Naphade, M., & Gedeon, T. (2019). Simulating Content Consistent Vehicle Datasets with Attribute Descent. arXiv. https://doi.org/10.48550/arXiv.1912.08855
- 9. "Open-reID." [Online]. Available: https://github.com/Cysu/open-reid
- 10. "Pytorch reid." [Online]. Available: https://github.com/layumi/Person_reID_baseline_pytorch
- 11. "Nformer." [Online]. Available: https://github.com/haochenheheda/NFormer
- 12. "Bag of tricks and a strong reid baseline." [Online]. Available: https://github.com/michuanhaohao/reid-strong-baseline