Eigenvalues and Eigenvectors

Definition 1

If A is an $n \times n$ matrix, then a nonzero vector \mathbf{x} in R^n is called an **eigenvector** of A (or of the matrix operator T_A) if $A\mathbf{x}$ is a scalar multiple of \mathbf{x} ; that is,

$$A\mathbf{x} = \lambda \mathbf{x}$$

for some scalar λ . The scalar λ is called an *eigenvalue* of A (or of T_A), and \mathbf{x} is said to be an *eigenvector corresponding to* λ .

In general, the image of a vector \mathbf{x} under multiplication by a square matrix A differs from \mathbf{x} in both magnitude and direction. However, in the special case where \mathbf{x} is an eigenvector of A, multiplication by A leaves the direction unchanged. For example, in R^2 or R^3 multiplication by A maps each eigenvector \mathbf{x} of A (if any) along the same line through the origin as \mathbf{x} . Depending on the sign and magnitude of the eigenvalue λ corresponding to \mathbf{x} , the operation $A\mathbf{x} = \lambda \mathbf{x}$ compresses or stretches \mathbf{x} by a factor of λ , with a reversal of direction in the case where λ is negative (**Figure 5.1.1**).

EXAMPLE 1 | Eigenvector of a 2×2 Matrix

The vector $\mathbf{x} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ is an eigenvector of

$$A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$$

corresponding to the eigenvalue $\lambda = 3$, since

$$A\mathbf{x} = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 6 \end{bmatrix} = 3\mathbf{x}$$

Geometrically, multiplication by A has stretched the vector \mathbf{x} by a factor of 3 (Figure 5.1.2).

Theorem 5.1.1

If A is an $n \times n$ matrix, then λ is an eigenvalue of A if and only if it satisfies the equation

$$\det(\lambda I - A) = 0 \tag{1}$$

This is called the *characteristic equation* of A.

EXAMPLE 2 | Finding Eigenvalues

In Example 1 we observed that $\lambda = 3$ is an eigenvalue of the matrix

$$A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$$

but we did not explain how we found it. Use the characteristic equation to find all eigenvalues of this matrix.

Solution It follows from Formula (1) that the eigenvalues of A are the solutions of the equation $\det(\lambda I - A) = 0$, which we can write as

$$\begin{vmatrix} \lambda - 3 & 0 \\ -8 & \lambda + 1 \end{vmatrix} = 0$$

from which we obtain

$$(\lambda - 3)(\lambda + 1) = 0 \tag{2}$$

This shows that the eigenvalues of A are $\lambda = 3$ and $\lambda = -1$. Thus, in addition to the eigenvalue $\lambda = 3$ noted in Example 1, we have discovered a second eigenvalue $\lambda = -1$.

EXAMPLE 3 | Eigenvalues of a 3×3 Matrix

Find the eigenvalues of

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 4 & -17 & 8 \end{bmatrix}$$

Solution The characteristic polynomial of *A* is

$$\det(\lambda I - A) = \det\begin{bmatrix} \lambda & -1 & 0 \\ 0 & \lambda & -1 \\ -4 & 17 & \lambda - 8 \end{bmatrix} = \lambda^3 - 8\lambda^2 + 17\lambda - 4$$

The eigenvalues of A must therefore satisfy the cubic equation

$$\lambda^3 - 8\lambda^2 + 17\lambda - 4 = 0 \tag{5}$$

To solve this equation, we will begin by searching for integer solutions. This task can be simplified by exploiting the fact that all integer solutions (if there are any) of a polynomial equation with *integer coefficients*

$$\lambda^n + c_1 \lambda^{n-1} + \dots + c_n = 0$$

must be divisors of the constant term, c_n . Thus, the only possible integer solutions of (5) are the divisors of -4, that is, ± 1 , ± 2 , ± 4 . Successively substituting these values in (5) shows that $\lambda = 4$ is an integer solution and hence that $\lambda - 4$ is a factor of the left side of (5). Dividing $\lambda - 4$ into $\lambda^3 - 8\lambda^2 + 17\lambda - 4$ shows that (5) can be rewritten as

$$(\lambda - 4)(\lambda^2 - 4\lambda + 1) = 0$$

Thus, the remaining solutions of (5) satisfy the quadratic equation

$$\lambda^2 - 4\lambda + 1 = 0$$

which can be solved by the quadratic formula. Thus, the eigenvalues of A are

$$\lambda = 4$$
, $\lambda = 2 + \sqrt{3}$, and $\lambda = 2 - \sqrt{3}$

EXAMPLE 4 | Eigenvalues of an Upper Triangular Matrix

Find the eigenvalues of the upper triangular matrix

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & a_{22} & a_{23} & a_{24} \\ 0 & 0 & a_{33} & a_{34} \\ 0 & 0 & 0 & a_{44} \end{bmatrix}$$

Solution Recalling that the determinant of a triangular matrix is the product of the entries on the main diagonal (Theorem 2.1.2), we obtain

$$\det(\lambda I - A) = \det\begin{bmatrix} \lambda - a_{11} & -a_{12} & -a_{13} & -a_{14} \\ 0 & \lambda - a_{22} & -a_{23} & -a_{24} \\ 0 & 0 & \lambda - a_{33} & -a_{34} \\ 0 & 0 & 0 & \lambda - a_{44} \end{bmatrix}$$
$$= (\lambda - a_{11})(\lambda - a_{22})(\lambda - a_{33})(\lambda - a_{44})$$

Thus, the characteristic equation is

$$(\lambda - a_{11})(\lambda - a_{22})(\lambda - a_{33})(\lambda - a_{44}) = 0$$

and the eigenvalues are

$$\lambda = a_{11}$$
, $\lambda = a_{22}$, $\lambda = a_{33}$, $\lambda = a_{44}$

which are precisely the diagonal entries of A.

Theorem 5.1.2

If A is an $n \times n$ triangular matrix (upper triangular, lower triangular, or diagonal), then the eigenvalues of A are the entries on the main diagonal of A.

EXAMPLE 5 | Eigenvalues of a Lower Triangular Matrix

By inspection, the eigenvalues of the lower triangular matrix

$$A = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ -1 & \frac{2}{3} & 0 \\ 5 & -8 & -\frac{1}{4} \end{bmatrix}$$

are $\lambda = \frac{1}{2}$, $\lambda = \frac{2}{3}$, and $\lambda = -\frac{1}{4}$.

Finding Eigenvectors and Bases for Eigenspaces

EXAMPLE 6 | Bases for Eigenspaces

Find bases for the eigenspaces of the matrix

$$A = \begin{bmatrix} -1 & 3 \\ 2 & 0 \end{bmatrix}$$

Solution The characteristic equation of A is

$$\begin{vmatrix} \lambda + 1 & -3 \\ -2 & \lambda \end{vmatrix} = \lambda(\lambda + 1) - 6 = (\lambda - 2)(\lambda + 3) = 0$$

so the eigenvalues of A are $\lambda = 2$ and $\lambda = -3$. Thus, there are two eigenspaces of A, one for each eigenvalue. By definition,

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

is an eigenvector of A corresponding to an eigenvalue λ if and only if $(\lambda I - A)\mathbf{x} = \mathbf{0}$, that is,

$$\begin{bmatrix} \lambda + 1 & -3 \\ -2 & \lambda \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

In the case where $\lambda = 2$ this equation becomes

$$\begin{bmatrix} 3 & -3 \\ -2 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

whose general solution is

$$x_1 = t$$
, $x_2 = t$

(verify). Since this can be written in matrix form as

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} t \\ t \end{bmatrix} = t \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

it follows that

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

is a basis for the eigenspace corresponding to $\lambda=2$. We leave it for you to follow the pattern of these computations and show that

$$\begin{bmatrix} -\frac{3}{2} \\ 1 \end{bmatrix}$$

is a basis for the eigenspace corresponding to $\lambda = -3$.

Figure 5.1.3 illustrates the geometric effect of multiplication by the matrix A in Example 6. The eigenspace corresponding to $\lambda=2$ is the line L_1 through the origin and the point (1,1), and the eigenspace corresponding to $\lambda=3$ is the line L_2 through the origin and the point $\left(-\frac{3}{2},1\right)$. As indicated in the figure, multiplication by A maps each vector in L_1 back into L_1 , scaling it by a factor of 2, and it maps each vector in L_2 back into L_2 , scaling it by a factor of -3.

FIGURE 5.1.

Historical Note

Methods of linear algebra are used in the emerging field of computerized face recognition. Researchers are working with the idea that every human face in a racial group is a combination of a few dozen primary shapes. For example, by analyzing three-dimensional scans of many faces, researchers at Rockefeller University have produced both an average head shape in the Caucasian group—dubbed the *meanhead* (top row left in the figure to the left)—and a set of standardized variations from that shape, called *eigenheads* (15 of which are shown in the picture). These are so named because they are eigenvectors of a certain matrix that stores digitized facial information. Face shapes are represented mathematically as linear combinations of the eigenheads.

[Image: © Dr. Joseph J. Atick, adapted from Scientific American]

EXAMPLE 7 | Eigenvectors and Bases for Eigenspaces

Find bases for the eigenspaces of

$$A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$$

Solution The characteristic equation of A is $\lambda^3 - 5\lambda^2 + 8\lambda - 4 = 0$, or in factored form, $(\lambda - 1)(\lambda - 2)^2 = 0$ (verify). Thus, the distinct eigenvalues of A are $\lambda = 1$ and $\lambda = 2$, so there are two eigenspaces of A.

By definition,

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

is an eigenvector of A corresponding to λ if and only if x is a nontrivial solution of $(\lambda I - A)x = 0$, or in matrix form,

$$\begin{bmatrix} \lambda & 0 & 2 \\ -1 & \lambda - 2 & -1 \\ -1 & 0 & \lambda - 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
 (6)

In the case where $\lambda = 2$, Formula (6) becomes

$$\begin{bmatrix} 2 & 0 & 2 \\ -1 & 0 & -1 \\ -1 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Solving this system using Gaussian elimination yields (verify)

$$x_1 = -s$$
, $x_2 = t$, $x_3 = s$

Thus, the eigenvectors of A corresponding to $\lambda = 2$ are the nonzero vectors of the form

$$\mathbf{x} = \begin{bmatrix} -s \\ t \\ s \end{bmatrix} = \begin{bmatrix} -s \\ 0 \\ s \end{bmatrix} + \begin{bmatrix} 0 \\ t \\ 0 \end{bmatrix} = s \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} + t \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

Since

$$\begin{bmatrix} -1\\0\\1 \end{bmatrix}$$
 and $\begin{bmatrix} 0\\1\\0 \end{bmatrix}$

are linearly independent (why?), these vectors form a basis for the eigenspace corresponding to $\lambda = 2$.

If $\lambda = 1$, then (6) becomes

$$\begin{bmatrix} 1 & 0 & 2 \\ -1 & -1 & -1 \\ -1 & 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Solving this system yields (verify)

$$x_1 = -2s$$
, $x_2 = s$, $x_3 = s$

Thus, the eigenvectors corresponding to $\lambda = 1$ are the nonzero vectors of the form

$$\begin{bmatrix} -2s \\ s \\ s \end{bmatrix} = s \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix} \text{ so that } \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$$

is a basis for the eigenspace corresponding to $\lambda = 1$.

Eigenvalues and Invertibility

Theorem 5.1.4

A square matrix A is invertible if and only if $\lambda = 0$ is not an eigenvalue of A.