

NUS AI SUMMER EXPERIENCE

2 0 1 0

DATA CLEANING

PAN BINBIN

NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF ISEM

OUTLINE

COMMON DATA PROBLEMS

KNOWING YOUR DATA

FIXING MISSING DATA

NORMALISING DATA

CLEAN BEFORE USE

SOURCES OF DATA

- Collated data in files
- Application Programming Interface (API)
 - · Provided by owner of data for you to download
 - · Usually with proper format of data
- Scraping the web
 - · Write a program to get data off website for yourself

NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF ISEM

CLEANING NEEDED

CLEANING NEEDED

DUPLICATE ROWS

Observations that are redundant

WRONG FORMAT

- Not errors per se
- Need to transform into correct format before processing (e.g, date-time data)

NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF ISEM

02

KNOWING YOUR DATA

INSPECT THE DATA: WHAT IS IN THERE?

INSPECT THE DATA: FIRST FEW LINES

df	df.head()												
	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S	
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	C	
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S	
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S	
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S	

Always output first few lines of data to see what it looks like. Can see that there are a number of missing data in the "Cabin" column)

In this training dataset, we are told which passenger survived ("1") and which did not ("0").

Also, since there are a lot of data missing from the "Cabin" column, may be difficult to use as a predictor of who survived.

INSPECT THE DATA: VISUAL

Plotting charts are a good way to understand your data and to see if there are any unusual data points. For example, there is nothing unusual about age data – nothing less than 0 or significantly more than 100.

For Parch, the distribution is very different. Most are of value 0, with significant minority of value 1.

[©] Parch: Number of children/parent aboard

NATIONAL UNIVERSITY OF SINGAPORE

DEPARTMENT OF ISEM

INSPECT THE DATA: DUPLICATES

We only concerned about duplicates of a passenger record

DEALING WITH DUPLICATES

First Method: Create a new dataframe without the duplicated data

df_nodup = df_duplicateCheck.loc[df_duplicateCheck["is_duplicated"]==False]

df_nodup = df_duplicateCheck.drop_duplicates(subset=None, keep='first', inplace=False)

Copy the non-duplicated rows to df_nodup

Second Method: Drop duplicates from existing dataframe

 $\label{thm:condition} df_duplicateCheck.drop_duplicates(subset=None, keep='first', inplace=True)$

NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF ISEM

Drop the duplicated rows from the current dataframe

MISSING DATA?

- DELETE ROWS WITH MISSING DATA
- DEFAULT VALUE FOR MISSING DATA
- DELETE COLUMNS WITH HIGH INCIDENCE OF MISSING DATA

NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF ISEM

DELETE ROWS WITH MISSING DATA?

dfl.info()

Survived

Pclass

Name

dfl = df.dropna().copy()

- Missing data can mess up the analysis.
- Best to deal with it as soon as possible.
- One way to remove observations (rows) with missing data

```
<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 891 entries, 0 to 890
 Data columns (total 12 columns):
 PassengerId 891 non-null int64
Survived 891 non-null int64
 Pclass
              891 non-null int64
              891 non-null object
891 non-null object
 Name
 Sex
              714 non-null float64
 Age
 SibSp
              891 non-null int64
               891 non-null int64
 Parch
               891 non-null object
 Ticket
 Fare
               891 non-null float64
              204 non-null object
 Cabin
 Embarked
               889 non-null object
 dtypes: float64(2), int64(5), object(5)
memory usage: 83.6+ KB
```

```
183 non-null object
183 non-null object
Sex
Age
               183 non-null float64
SibSp
              183 non-null int64
Parch
               183 non-null int64
Ticket
               183 non-null object
Fare
               183 non-null float64
Cabin
               183 non-null object
Embarked
               183 non-null object
dtypes: float64(2), int64(5), object(5) memory usage: 18.6+ KB
```

<class 'pandas.core.frame.DataFrame'>

183 non-null int64

183 non-null int64

Int64Index: 183 entries, 1 to 889

Data columns (total 12 columns):

PassengerId 183 non-null int64

· A row is dropped as long as there is one missing value in any of the columns

 Resulted in reduction from 891 observations to 183 observations

NATIONAL UNIVERSITY OF SINGAPORE **DEPARTMENT** Before dropping

After dropping

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	1
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	(
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	

Before dropping, first five rows

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	C
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	5
6	7	0	1	McCarthy, Mr. Timothy J	male	54.0	0	0	17463	51.8625	E46	9
10	11	1	3	Sandstrom, Miss, Marguerite Rut	female	4.0	1	1	PP 9549	16.7000	G6	S
11	12	1	1	Bonnell, Miss. Elizabeth	female	58.0	0	0	113783	26.5500	C103	S

After dropping, first five rows

Note those rows with Cabin = NaN are deleted and no longer in the new dataframe that contains the cleaned data

DELETE ROWS WITH SPECIFIED MISSING DATA?

- Avoid eliminating so many observations d (708 eliminated)
- Deal only with missing data on columns that are of interest
- Age, Cabin and Embarked has missing data.
- You think Age has some effect on survival but not Cabin and Embarked.
- So only deal with observations with missing data in Age

dropna(subset = ['Age'])
1. not dropped
2. not dropped
5. dropped

31. dropped

61. not dropped

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	C
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
5	6	0	3	Moran, Mr. James	male	NaN	0	0	330877	8.4583	NaN	Q
31	32	1	1	Spencer, Mrs. William Augustus (Marie Eugenie)	female	NaN	1	0	PC 17569	146.5208	B78	С
61	62	1	1	Icard, Miss. Amelie	female	38.0	0	0	113572	80.0000	B28	NaN

NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF ISEM

DEFAULT VALUES WITH MISSING DATA?

- You may want to replace the missing data with default values instead of deleting the observations.
- For string data, you may want to replace it with the most likely choice for that group or even a blank" "
- For numeric data, common replacement is with the mean of that data, maximum or minimum depending on the context
- In this example, we want to replace the missing value of Age with a default value of the mean of the Age

	Name	Age
0	Braund, Mr. Owen Harris	22.0
5	Moran, Mr. James	NaN
17	Williams, Mr. Charles Eugene	NaN
19	Masselmani, Mrs. Fatima	NaN
26	Emir, Mr. Farred Chehab	NaN

NATIONAL Data before the replacement DEPARTMENT OF ISEM

Same set of data after the replacement of missing age data with average value of the age

DROPPING COLUMNS FROM DATA?

- You may just want to drop the Cabin column from the dataset as it has too many NAs.
- · You are unlikely to use it for analysis because of the lack of data

NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF ISEM

The Cabin column is not present anymore

NORMALISING DATA

- Column names meaningless
- Wrong data format

NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF ISEM

RENAMING COLUMN NAMES

- Sometimes column names are assigned by the program (e.g. col1, col2). Difficult to understand
- · Simple .rename function to change to column name that is more meaningful

REFORMATTING DATA TYPES (1/2)

NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF ISEM

REFORMATTING DATA TYPES (2/2)

REFORMATTING DATA TYPES TO NUMERIC AND DATETIME TYPE

- "coerce" change data that cannot be converted to NaN
- Absent this, errors will be raised if nonconvertible data is encountered and execution halted
 - From http://strftime.org

· Know what your data is like

from datetime import datetime stuns['Time of Incident'], format='%H:%M:%S' errors='coerce')

NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF ISEM

REFORMATTING HEIGHT DATA TO NUMERIC

	Incident Case Number	Height	Weight	Date of Incident	Time of Incident
0	NaN	NaN	NaN	NaT	NaN
1	2015-055	5'10"	220	2015-01-01	15:13:00
2	15-19	5'8"	150	2015-01-01	03:48:00
3	15-00010	5'10"	175	2015-01-01	00:32:00
4	1500006763	5'10"	150	2015-01-04	11:41:00

- COMPLICATION: UNLIKE WEIGHT WHICH LOOKS LIKE NUMBERS, HEIGHT LOOKS LIKE STRINGS
- 5' 10" MUST IDENTIFY LOCATION OF 'AND "TO EXTRACT THE NUMBERS
- IDENTIFY NUMBERS AS FEET AND AS INCHES
- NA'

 DEF LEARN TO USE REGULAR EXPRESSIONS TO CONVERT STRINGS THAT MATCH KNOWN PATTERN

SEARCHING FOR PATTERNS

You must understand how the data in your dataset is represented

How the data may be represented	Our desired data representation (inches)
5′ 10″	7 0
5′ 10	7 0
5″	60
Any other that does not fit above three patterns (e.g. 5 10, 5' 100)	None

NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF ISEM

REGULAR EXPRESSION (re) TO SEARCH FOR PATTERNS

- re.match(pattern,string,flags)
- pattern: regular expression to be matched
- string: searched to match pattern at beginning of pattern
- flags: modifiers (e.g, ignore cases)

REGULAR EXPRESSION

5'10" 5'10 5'

Everything inside parenthesis should be extracted as a group that we can access later (?P<feet>[0-9]+)'(?P<inches>[0-9]{0,2}?)[\"]?\Z", prime_str) re.match(r Rest of The ?P<feet> {0,2}?means VZ matches the expressio stores the to look for up end of the string. n in raw group under to 2 No trailing notation the name numerals: characters are "feet" not more. allowed, e.g., 5'6"LOL [0-9]+ is the actual pattern to match. The prime_str is the numerals 0-9 in the bracket are valid string to be match. The + signifies that there should matched. at least be one of these values

NATIONAL UNIVERSITY OF SIN

Reference: Regular expression HOWTO https://docs.python.org/3/howto/regex.html#regex-howto

```
# import the re module
import re
#Convert prime-notation height to inches
  # Convert prime-notation height to inches
def inches(prime_str):
   ## Wrap the function in try/except
     # Extract feet and inches from the string,
    result = re.match(r"(?P<feet>[0-9]+)'(?P<inches>[0-9]\{0,2\}?)[\"]?\Z", prime_str)
     #Access the extracted values using the .group() method
     feet = int(result.group("feet"))
     if result.group("inches") == "":
       inches = 0
     else:
       inches = int(result.group("inches"))
     # This code will only be called if the code within the try: block
     #throws an exception
     return None
  # We won't get to this point unless the code in the try block was successful
  # Convert feet and inches to inches
```

return feet * 12 + inches

USING APPLY FUNCTION TO CONVERT HEIGHT

stuns['Heights_numeric'] = stuns['Height'].apply(inches) stuns.head(10)

		Incident Case Number	Height	Weight	Date of Incident	Time of Incident	Heights_numeric
	0	NaN	NaN	NaN	NaT	NaN	NaN
	1	2015-055	5'10"	220.0	2015-01-01	15:13:00	70.0
	2	15-19	5'8"	150.0	2015-01-01	03:48:00	68.0
	3	15-00010	5'10"	175.0	2015-01-01	00:32:00	70.0
	4	1500006763	5'10"	150.0	2015-01-04	11:41:00	70.0
	5	2015-0379	6'	153.0	2015-01-05	12:52:00	72.0
	6	2015-341	5'8"	260.0	2015-01-06	18:07:00	68.0
	7	15-16-AR	6'2"	200.0	2015-01-06	23:54:00	74.0
	8	1500001035	5'10"	177.0	2015-01-07	09:00:00	70.0
DEPARTMEN.	9	15-000071	5'2"	120.0	2015-01-08	10:18:00	62.0

 The new variable that is a numeric variable showing the height in inches

PAN BINBIN

BINBIN.PAN@NUS.EDU.SG

0

NUS AI SUMMER EXPERIENCE 2019

DATA CLEANING

34

NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF ISEM