Gas leakage monitoring and alerting system for Industries

TEAM ID: PNT2022TMID04334

TEAM LEAD	HARISH M	737819CSR055
TEAM MEMBER 1	GOMANISHWARAN S	737819CSR045
TEAM MEMBER 2	BHARANI S	737819CSR015
TEAM MEMBER 3	BHARANIDHARAN M	737819CSL234

INDEX

1. INTRODUCTION

- 1.1 Project Overview
- 1.2 Purpose

2. LITERATURE SURVEY

- 2.1 Existing problem
- 2.2 References
- 2.3 Problem Statement Definition

3. IDEATION & PROPOSED SOLUTION

- 3.1 Empathy Map Canvas
- 3.2 Ideation & Brainstorming
- 3.3 Proposed Solution
- 3.4 Problem Solution fit

4. **REQUIREMENT ANALYSIS**

- 4.1 Functional requirement
- 4.2 Non-Functional requirements

5. PROJECT DESIGN

- 5.1 Data Flow Diagrams
- 5.2 Solution & Technical Architecture
- 5.3 User Stories

6. PROJECT PLANNING & SCHEDULING

- 6.1 Sprint Planning & Estimation
- 6.2 Sprint Delivery Schedule
- 6.3 Reports from JIRA

7. CODING & SOLUTIONING (Explain the features added in the project along with code)

- 7.1 Feature 1
- 7.2 Feature 2
- 7.3 Database Schema (if Applicable)

8. TESTING

- 8.1 Test Cases
- 8.2 User Acceptance Testing

9. RESULTS

9.1 Performance Metrics

10. ADVANTAGES & DISADVANTAGES

- 11. CONCLUSION
- 12. FUTURE SCOPE

13. APPENDIX

Source Code

GitHub & Project Demo Link

1.INTRODUCTION

1.1 Project Overview

IoT is an expanding network of physical devices that are linked with different types of sensors and with the help of connectivity to the internet, they are able to exchange data. Through IoT, internet has now extended its roots to almost every possible thing present around us and is no more limited to our personal computers and mobile phones. Safety, the elementary concern of any project, has not been left untouched by IoT. Gas Leakages in open or closed areas can prove to be dangerous and lethal. The traditional Gas Leakage Detector Systems though have great precision, fail to acknowledge a few factors in the field of alerting the people about the leakage. Therefore, we have used the IoT technology to make a Gas Leakage Detector having Smart Alerting techniques involving calling, sending text message and an e-mail to the concerned authority and an ability to predict hazardous situation so that people could be made aware in advance by performing data analytics on sensor readings.

1.2 Purpose

Fire accidents have been taking place frequently and the threat to human lives and properties is growing in recent years. Some gases are highly inflammable and can burn even at some distance from the source of leakage. Most fire accidents are caused because of a poor-quality rubber tube or the regulator is not turned off when not in use. Therefore, developing the gas leakage alert system is very essential.

2. LITERATURE SURVEY

2.1 Existing problem

In the existing method, gas sensing technology is used. The LPG leakage is detected by the semiconductor sensor. The leakage of gas may happen due to the human error, false chemical reaction, lack of service done in the gas valve. In the existing method, periodic check done by manually and partial sensing methodology is used. When the leakage was happened, it leads to major fire accident Before controlling the fire major accident may happen which leads to heavy loss in industry as well as human life. In addition to that the leak of gas may spread in the atmosphere, it may affect all the living things in an around them. In the existing system MQ5 sensor is used to detect gas leakage. Exhaust fans are used to suck out the gases when the leakage occurs. In the existing method, it raises only alarm whenever Gas leaked or fire is detected at any place in a factory. Due to this alarm, people could start to run haphazardly. Fire Service truck vehicle only control the fire accident.

2.2 References

- [1] Rajeev B. Ahuja, Jayant K. Dash, Prabhat Shrivastava, "A comparative analysis of liquefied petroleum gas (LPG) and kerosene related burns", Burns, Volume 37, Issue 8, December 2011.
- [2] Prof. Pankaj C. Warule, Shivam Upadhyay, Snehal S. Shelke, Sumitra K. Khandade, "LPG Detection, Metering and Control System Using Microcontroller", IJARIIE, Volume 2, Issue 2, 2016.
- [3] Ankit Sood, Babalu Sonkar, Atul Ranjan, Mr. Ameer Faisal, "Microcontroller Based LPG Gas Leakage Detector Using GSM Module", International Journal of Electrical and Electronics Research, Volume 3, Issue2, April- June 2015.

[4] Ashish Shrivastava, Ratnesh Prabhakar, Rajeev Kumar, Rahul Verma, "GSM Based Gas Leakage Detection System", International Journal of Technical Research and Applications", Volume 1, Issue2, May-June 2013.

2.3 Problem Statement Definition

The risk of firing, explosion, suffocation all are based on their physical properties such flammability, toxicity etc. The number of deaths due to the explosion of gas cylinders has been increasing in recent years. The reason for such explosion is due to substandard cylinders, old valves, worn out regulators and lack of awareness using gas cylinders add to the risks. Inspections by oil companies found that many LPG consumers are unaware of safety checks of gas cylinders. Another reason is illegal filling of gas cylinder also causes accidents. There is a need for a system to detect and also prevent leakage of LPG.

Problem Statement (PS)	I am (Customer)	I'm trying to	But	Because	Which makes me feel
PS-1	worker	Periodic checking of gas leakage	Unable to detect odourless gases and less leakage gases	Because we could not able to identify odourless gases	anxious
PS-2	Industry owner	Protect my industry from accidents	Don't have proper monitoring technology	Because of high initial setup cost	Fear

3. IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas

3.2 Ideation & Brainstorming

Frequent check for gas leakage

be shared through Cloud

Harish M Bharani S through Messages Prevention of Explosion Safety Measures Using IOT devices leakage of gas can be detected Alerting through sound Alarm Ignitions and Explosion Bharani Dharan M Gomanishwaran S Supply of gas should be monitered Frequent monitering of data precautions should be taken recognition of particular gas Alerting 24/7 based on Toxicity in detection monitering

chances in failure of sensor coverage of sensors

3.3 Proposed Solution

S.No.	Parameter	Description			
1.	Problem Statement (Problem to be solved)	 To create the system and an application that are effective in detecting gas and alerting the appropriate parties. 			
2.	Idea / Solution description	 The gas sensors will be fitted at different locations to track gas leaks. This IOT devices helps in keeping track of dangerous gas emissions. If a gas leakage is sensed in any region, it will be alerted along with the location. Users can view the information on the web application. 			
3.	Novelty / Uniqueness	 Works 24/7. Accurate detecting with level of harmful gases. Immediate attention/alarm to the workers and people. 			
4.	Social Impact / Customer Satisfaction	 Fault tolerance Easy operational Avoids major accidents 			
5.	Business Model (Revenue Model)	 The item is heavily promoted across all mediums. It even protects small-scale industries against calamities because it is affordable. Everyone can understand how to use the product, therefore it's simple for them to use it correctly for their safest organisation. 			
6.	Scalability of the Solution	 Can be used for small and large industries Can be used not only in industries but also in home for LPG leakage detection and other places. 			

3.4 Problem Solution fit

Define CS, fit into CL	1. CUSTOMER SEGMENT(S) Who is your customer? eg. working parents of 0-5 y.o. kids	CS	6. CUSTOMER LIMITATIONS EG. BUDGET, DEVICES What limits your customers to act when problem occurs? Spending power, budget, no cash in the pocket? Network connection? Available devices?	5. AVAILABLE SOLUTIONS PLUSES & MINUSES Which solutions are available to the customer when he/she is facing the problem? What had he/she tried in the past? Pluses & minuses?	
Focus on PR, tap into BE, understand RC	2. PROBLEMS / PAINS + ITS FREQUENCY Which problem do you solve for your customer? There could be more than one, explore different sides. ege, existing solar solutions for private houses are not considered a good investment (1). How ofte does this problem occur?		9. PROBLEM ROOT / CAUSE What is the root of every problem from the list? eg. People think that solar panels are bad investment right now, because they are too expensive (1.1), and possible changes to the law might influence the return of investment significantly and diminish the benefits (1.2).	7. BEHAVIOR + ITS INTENSITY What does your customer do about / around / directly or indirectly related to the problem? eg. directly related the sid freent "green energy" calculators in search for the best deal (1.1), usually chooses for 100% green provider (1.2), indirectly related: volunteering work (Greenpeace etc)	
Identify strong TR & EM	What triggers customer to act? eg. seeing their neighbor installing solar panels (1.1), reading about innovative, more beautiful and efficient solution (1.2)	TR	If you are working on existing business - write down existing solution first, fill in the carnvas and check how much does it fit reality. If you are working on a new business proposition then keep it blank until you fill in the carnvas and come up with a solution that fits within customer limitations, solves a problem and matches customer behaviour.	8. CHANNELS of BEHAVIOR ONLINE Extract channels from Behavlor block OFFLINE Extract channels from Behavlor block and use for customer development	

4. REQUIREMENT ANALYSIS

4.1 Functional requirement

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User alert	Warnings must be sent to the user. Send the message as soon as possible
FR-2	User Understanding	The user could understand the amount and type of gas leaked and detect the location
FR-3	User controls	The user shall be able to turn off the electricity and other gadgets.
FR-4	User feasible	The user shall be able to notify the nearby fire station if gas leakage level is high.
FR-5	User location	The user shall be able to view the location of the gas leaked.

4.2 Non-Functional requirements

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	Easy to operate and can be used effectively even by the uneducated people.
NFR-2	Security	The communication between the sensors and the simulator are secured using encryption.
NFR-3	Reliability	0% false alarming rate and able to get notifications through SMS, e-mail, or even through call.
NFR-4	Performance	Low latency and immediate response to the user and make immediate decision.
NFR-5	Availability	The system should work 24/7.
NFR-6	Scalability	The system can be used for domestic houses or even for large industry.

5. PROJECT DESIGN

5.1 Data Flow Diagrams

5.2 Solution & Technical Architecture

5.3 User Stories

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Customer (Mobile user)	Registration	USN-1	User can install the mobile application	I can access my account / dashboard	High	Sprint-1
		USN-2	User can register their details like email and mobile number	I can receive confirmation email & click confirm	High	Sprint-1
	Login	USN-3	User can log on to the application using email and password.	I can Login into my application	High	Sprint-1
	Dashboard	USN-4	User can update their details like alternative mobile number etc	I can view and change my details.	High	Sprint-2
		USN-5	User can view the gas level and the working condition of the sensors.	I can view the data given by the device	High	Sprint-2
Customer (Web user)	Usage	USN-1	User can register through the web	I can receive confirmation	High	Sprint-3

			page with e-mail or phone number.	email & click confirm		
		USN-2	User can log on to the web page using email and password.	I can Login into my application	High	Sprint-3
Customer	Working	USN-1	User can view the details	Act according to the alarm	Medium	Sprint-3
		USN-2	User can view the alert and turn off the power supply.	Act according to the alarm	High	Sprint-4
Customer Care Executive	Action	USN-1	Executer solves the user's problem	I can solve the issues	High	Sprint-4
Administrator	Administration	USN-1	Periodic check the condition of sensors and Stores the user's information	I can maintain the fault tolerance and error rate	High	Sprint-4

6.PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning & Estimation

TITLE	DESCRIPTION	DUE DATE
Literature survey & Information gathering	Literature survey on the selected topic and collect information by referring to the related papers and research projects, journals etc.	3 September 2022
Prepare Empathy Map	Prepare empathy map canvas to understand about the user problems, pains and gains. From the empathised details, prepare the problem statements to be solved.	10 September 2022
Ideation	Conduct a brainstorming session with the teammates and discuss ideas to solve the problem. Prioritize the top 3 ideas based on feasibility.	17 September 2022
Proposed Solution	Prepare the proposed solution	24 September 2022

	which includes the novelty, feasibility, revenue, social impact, scalability etc.	
Problem Solution Fit	Prepare the problem solution fit which includes the causes, problems and solutions of the problem.	1 October 2022
Solution Architecture	Prepare solution architecture that indicates the data flow from the user, model and the website.	1 October 2022
Customer Journey	Prepare the customer journey map to understand the user needs and experience with the application.	8 October 2022
Functional Requirement	Prepare the functional requirement which includes all the features that will be available in the application.	15 October 2022
Technology Architecture	Prepare the technology architecture that defines about the technologies and the IBM cloud features used in the application.	15 October 2022
Data Flow Diagrams	Draw the data flow diagram to indicate the data flow from the user, during the model building and while predicting the result,	15 October 2022
Prepare Milestone & Activity List	Split the entire project into simpler tasks and prepare milestones and activity list of the project.	22 October 2022
Sprint Delivery Plan	Prepare a delivery plan of the project with specific due dates to complete each sprint consisting of a set of functional	22 October 2022

	requirements.	
Project Development - Delivery of Sprint-1, 2, 3 & 4	Develop, test and submit the code.	19 November 2022

6.2 Sprint Delivery Schedule

Sprint	Functional Requireme nt (Epic)	User Story Numb	User Story / Task	Stor y	Priorit y	Team Members
	nt (Epic)	er		Poi nts		
Sprint-1	Objective	USN-1	The gas sensor should detect the gas	8	High	Bharani, Bharanidharan
Sprint-1	Features	USN-2	The values from the sensor should be displayed in the LCD screen		Medium	Bharani, Bharanidharan
Sprint-1	Features	USN-3	Once the detected gas reaches the threshold level, the red color LED should be turned ON.	5	High	Bharani, Bharanidharan
Sprint-1	Features	USN-4	As soon as the detected gas reaches the threshold level, the siren should be turned ON.	5	High	Bharani, Bharanidharan
Sprint-2	Focus	USN-5	The system should send the location where the gas is detected		High	Harish, Gomanishwaran
Sprint-2	Focus	USN-6	The system should also send the alerting SMS to the registered phone number	2	High	Harish, Gomanishwaran
Sprint-2	Features	USN-7	The gas leakage pipe should be closed automatically once it attains the threshold value		High	Harish, bharani
Sprint-2	Features	USN-8	The system will indicate that the gas leakage pipe is closed in the LCD screen and send SMS to the registered mobile number.	5	Medium	Gomanishwa ran,Bharani

Sprint-3	Data Transfer	USN-9	The system should send the data of sensor values along with latitudes and longitudes to the IBM cloud	5	Medium	Harish, Bharanidharan
Sprint-3	Data Transfer	USN-10	The IBM cloud should send the data to Node-Red	5	Medium	Harish, Gomanish
Sprint-3	Data Transfer	USN-11	Data should be collected from the Node-Red and should be sent to the backend of the MIT app.	4	Medium	Harish, Gomanish
Sprint-3	Data Transfer	USN-12	The application should display the details of the gas level and other details to the user through the frontend of the MIT app.	7	High	Harish, Gomanish
Sprint-4	Registration	USN-13	User must first register their email and mobile number in the website		High	Gomanishwaran, Bharani
Sprint-4	Registration	USN-14	User should receive confirmation mail and SMS on registration	2	Medium	Gomanishwaran, Bharani
Sprint-4	Login	USN-15	User can login into the web application through email and password.	3	High	Harish, Bharanidharan

Sprint-4	Dashboard	USN-16	User can access the dashboard and make use of available resources.		Medium	Harish, Bharanidharan, Bharanidharan
Sprint-4	Focus	USN-17	User should receive an SMS once the leakage is detected.		High	Gomanishwaran, Bharani
Sprint-4	Allocation	USN-18	Admin must receive information about the leakage along with location and share exact location and route to the person.	3	High	Harish, Gomanish
Sprint-4	Allocation	USN-19	Admin must allot particular person to look after the leakage in a particular location.		High	Harish, Gomanish

6.3 Reports from JIRA

7. CODING & SOLUTIONING

7.1 Feature 1

Fire alert using red light and web alert.

```
8 #include <WiFi.h>
9 #include <PubSubClient.h>
10 #include "DHTesp.h"
11 #include<stdio.h>
12 #include <stdlib.h>
13 #define LED 2
14 const int DHT PIN = 15;
15 DHTesp dhtSensor;
16 int gas;
17 void callback(char* subscribetopic, byte* payload, unsigned int
   payloadLength);
18 #define ORG "oyi7sh"
19 #define DEVICE TYPE "Gas_leakage"
20 #define DEVICE_ID "154555"
21 #define TOKEN "WoOgbWlz4q-F4KQKc-"
22 String data3;
23 IPAddress myDns(127, 0, 0, 53);
24 char server[]= ORG ".messaging.internetofthings.ibmcloud.com";
25 char publishTopic[] = "iot-2/evt/Data/fmt/json";
26 char subscribetopic[] = "iot-2/cmd/test/fmt/String";
27 char authMethod[] = "use-token-auth";
28 char token[] = TOKEN;
29 char clientId[] = "d:" ORG ":" DEVICE_TYPE ":" DEVICE_ID;
30 WiFiClient wificlient;
31 PubSubClient client (server, 1883, callback, wificlient);
32
33 void setup()
34 {
35
    Serial.begin(115200);
36 dhtSensor.setup(DHT_PIN, DHTesp::DHT22);
37
    pinMode(LED, OUTPUT);
38
    delay(10);
39
    wificonnect();
40
    mqttconnect();
41 }
42 void loop()
43 {
44
       TempAndHumidity data = dhtSensor.getTempAndHumidity();
45
       gas=random(10000);
       Serial.println("Temp: " + String(data.temperature, 2) + "°C");
46
47
       Serial.println("Humidity: " + String(data.humidity, 1) + "%");
```

```
48
       Serial.println("gas_val " + String(gas));
49
       PublishData(String(data.temperature,2),String(data.humidity,
   1),String(gas),int(data.temperature),int(data.humidity),int(gas));
50
       delay(1000);
51
       if (!client.loop()) {
52
         mqttconnect();
53
       }
54 }
55 void PublishData(String temp, String hum, String gas1, int temp1, int hum1, int
   gas2)
56 {
57
     mqttconnect();
58
     if (gas2>2000)
59
60
       digitalWrite(LED, HIGH);
61
       Serial.println("Fire alert");
62
63
64
65
       digitalWrite(LED, LOW);
66
       Serial.println("Normal");
67
68
     String payload = "{\"temperature\":";
69
     payload += temp;
70
     payload += "," "\"humidity\":\"";
71
     payload += hum;
72
     payload += "\"";
73
     payload += "," "\"gas_level\":\"";
74
     payload += gas1;
75
     payload += "\"}";
76
77
     Serial.print("Sending payload: ");
78
     // Serial.println(payload);
79
     if (client.publish(publishTopic, (char*) payload.c_str()))
80
81
       Serial.println("Data sent successfully");
82
83
     else
84
85
       Serial.println("Data sent failure");
86
87
     Serial.println("---");
88 }
89 void mqttconnect()
```

```
if (!client.connected())
91
92
93
       Serial.print("Reconnecting client to ");
94
       Serial.println(server);
95
       while (!!!client.connect(clientId, authMethod, token))
96
97
         Serial.print(".");
98
         delay(500);
99
100
       initManagedDevice();
101
       Serial.println();
102 }
103}
104void wificonnect()
105{
106 Serial.println();
107 Serial.print("Connecting to ");
108 WiFi.begin("Wokwi-GUEST", "", 6);
109 while (WiFi.status() != WL CONNECTED)
110
111
    delay(500);
112
      Serial.print(".");
113 }
114 Serial.println("");
115 Serial.println("WiFi connected");
116 Serial.println("IP address: ");
117 Serial.println(WiFi.localIP());
118}
119void initManagedDevice()
121 if (client.subscribe(subscribetopic))
122 {
123
      Serial.println((subscribetopic));
124
       Serial.println("subscribe to cmd OK");
125 }
126 else
127
128
      Serial.println("subscribe to cmd FAILED");
129 }
130}
131void callback(char* subscribetopic, byte* payload, unsigned int
   payloadLength)
132{
133 Serial.print("callback invoked for topic: ");
134 Serial.println(subscribetopic);
```

```
135 for (int i = 0; i < payloadLength; i++)
136 {
137    data3 += (char)payload[i];
138 }
139    data3="";
140}</pre>
```

7.2 Feature 2 Mobile app notification

8.TESTING

8.1 Test Cases

Test case ID	Feat ure Typ e	Com pone nt	Test Scen ario	Pre- Req uisit e	Steps To Execute	Expec ted Resul t	Act ual Res ult	St at us	links	Execut ed By
TC_ OO 1	Func tion al	IBM cloud	Creat e the IBM Clou d servi ces whic h are being used in this proje ct.	IBM Clou d Logi n ID & Pass wor d	1.Go to IBM Cloud signup page 2.Enter e-mail id and other credenti als 3.Enter a passwor d	User shoul d sign up IBM cloud and detail s shoul d be verifie d	Wo rkin g as exp ect ed	Pa ss	https://cloud.ibm.com/login	Bharan idhara n
TC_ 00 2	Func tion al	IBM Clou d	Confi gure the	IBM Clou d	1.Go to Cloud login	User login to	Wo rkin g as exp	Pa ss	https://cloud.ibm.com/login	Bharan i

			IBM Clou d servi ces whic h are being used in com pleti ng this proje ct.	Logi n ID & Pass wor d	2.Enter user ID & Passwor d 3.Verify login by the popup display	IBM Cloud and shoul d be navig ated to IBM Cloud dashb oard page	ect ed			
TC_ OO 3	Func tion al	IBM Wats on IoT Platf orm	IBM Wats on IoT platf orm acts as the medi ator to conn ect the web appli catio n to IoT devic es,	IBM Wat son IoT Platf orm Logi n ID & Pass wor d	1.Login to IBM Cloud 2.Click Catalog 3.Searc h IoT and click create 4.Go to resourc e list and search Internet of Things platfor m 5.Press Launch	User shoul d be navig ated to IBM IoT Wats on Platform	Wo rkin g as exp ect ed	Pa ss	https://oyi7sh.internetofth ings.ibmcloud.com/dashb oard/	Harish

			60		and					
			so .		and					
			creat		click					
			e the		Sign in					
			IBM		IBM					
			Wats		Watson					
			on		Platfor					
			IoT		m					
			platf							
			orm.							
TC_			In		1.Login	Temp	Wo	Pa	Temperature, Humidity	Bharan
00			order		to IBM	eratur	rkin	SS	and Gas sensor values	idhara
4			to		Watson	e,	g as		are generated randomly	n
			conn		Platfor	Humi	exp		in simulation	
			ect		m	dity	ect ed			
			the		2. Click	and	eu			
			IoT		Add	Gas				
			devic		Device	senso				
			e to		3.Enter	r				
			the		the	value				
			IBM	IBM	details	S				
			cloud	Wat	and	shoul				
				son	click	d be				
			, creat	IoT	Finish.	rando				
			e a	Platf	Create	mly				
	Func	IBM	devic	orm	Device	gener				
	tion	Wats	e in	Logi	ID &	ate				
	al	on	the	n ID	Device	ate				
			IBM	& &						
					type					
			Wats	Pass	4.Turn					
			on	wor	on					
			IoT	d	Device					
			platf		Simulat					
			orm		or and					
			and		click					
			get		simulati					
			the		on					
			devic		running.					
			е		Enter					
			cred		the					
			entia		values					
			ls.		of gas,					

					temper ature & humidit					
					y level 5.Click					
					Send & Save.					
					Verify the					
					displaye					
					d result of the					
TC_			Confi		levels 1.Install	User	Wo	Pa	https://cloud.ibm.com/d	Bharan
00 5			gure the		node red and	shoul d be	rkin g as	SS	eveloper/appservice/cre ate-	i
			conn ectio		open node	able to see	exp ect		<u>app?starterKit=59c9d5bd</u> <u>-4d31-3611-897a-</u>	
			n		red in	the	ed		f94eea80dc9f&defaultLa nguage=undefined	
			secur		comma	Node				
			ity and		nd prompt	Red page				
			creat		2.Select	1 0				
			e API		IBM					
		IBM	keys that	Nod e	input in IoT					
	Func	Clou	are	Red	101					
	tion al	d(No de	used	Insta						
	a i	Red)	in	llatio						
			the Node	n						
			-RED							
			servi							
			ce for							
			acces							
			sing							
			the							
			IBM IoT							
			Platf							

			orm.							
t	Func tion al	Node Red	Creat e a Node -RED servi ce.	Nod e Red Insta Ilatio n	1.Select IBM IoT input in Node. In IBM IoT Watson Platfor m, go to apps and click on generat e API keys. 2.Copy & paste generat ed API key and token in the IBM IoT input. After entering all details, click the done button. 3.Add debug to the IBM IoT and rename as Msg.pay load and	Value s of senso rs and butto n for Alarm & Sprink ler ON/O FF shoul d be displa yed	Wo rkin g as exp ect ed	Pa ss	Values of sensors and button for Alarm & Sprinkler ON/OFF is displayed	Harish

click on	
done.	
Click	
gauge	
from	
the	
dashboa	
rd and	
fill the	
details	
& add	
function	
s to the	
gauge.	
Check	
the	
generat	
ed	
values	
from	
the	
debug	
messag	
e.	
4.Edit	
function	
node,	
connect	
them,	
add	
another	
gauge	
and	
function	
s, name	
them as	
"Tempe	
rature",	
"Gas"	
&"Humi	
dity"	

					5.Finally add alarm ON/OFF and Sprinkle r ON/OFF buttons to the IBM IoT and debug. Verify the output from NODE RED using Local host link					
TC_ OO 7	Func tion al	Pyth on 3.7.0	Devel op a pytho n script to publis h rando m senso r data such as temp eratu re, humi dity level and	Pyth on 3.7.0 (64 bit) insta Ilatio n	1.Downl oad and install Python 3.7.0 2.Devel op python code	User shoul d be able to devel op a pytho n code	Wo rkin g as exp ect ed	Pa ss	https://www.python.org /downloads/release/pyth on-370/	Harish

			Gas level to the IBM IoT platfo rm							
TC_ OO 8	Func tion al	Pyth on 3.7.0	After devel oping pytho n code, com mand s are receiv ed just print the state ment s which repre sent the contr ol of the devic es.	Pyth on 3.7.0 (64 bit) insta Ilatio n	1.Downl install Python 3.7.0 2.After python code	User shoul d be able to get the result s from the devel oped code	Wo rkin g as exp ect ed	Pass	Get the output from the code	Goman ishwar an
TC_ OO 9	Func tion al	IBM Clou dant DB	Publis h Data to The IBM Cloud	IBM Clou d Logi n ID & Pass wor d	1.Run the python code 2.Verify the displaye d output	User shoul d be able to publis h the code	Wo rkin g as exp ect ed	Pa ss	Publishment of python code	Goman ishwar an
TC_ OO 10	Web UI	Node Red	Creat e Web	MIT Inve	1.Go to Node	Senso rs	Wo rkin g as	Pa ss	Sensors values and command values can be seen in the mobile	Goman ishwar an

&	UI in	ntor	Red.	value	exp	application	
MIT	Node	Logi	Select	s and	ect		
Inve	- Red	n ID	http in	comm	ed		
ntor		&	& http	and			
		pass	respons	value			
		wor	e. Add	S			
		d	function	shoul			
			s and	d be			
			select	seen			
			another	in the			
			http in	mobil			
			and	е			
			http	applic			
			respons	ation			
			e.				
			Connect				
			them to				
			IBM IoT				
			output				
			and				
			function				
			.Print				
			the				
			comma				
			nd				
			stateme				
			nts such				
			as				
			Sprinkle				
			r				
			ON/OFF				
			, Alarm				
			ON/OFF				
			and				
			sensor				
			2.Go to				
			MIT app				
			inventor				
			and				
			create				
			fronten				

TC_ OO 11		Confi gure the		d using buttons, horizont al arrange ment, text bar, etc. Add blocks and so on to create back end. Verify the output	User shoul d be	Wo rkin g as	Pa ss	Cloudant is connected by NODE RED	Harish
Func tion al	IBM Clou dant DB	Node -RED flow to receiv e data from the IBM IoT platfo rm and also use Cloud ant DB nodes to store the receiv	IBM Clou d Logi n ID & Pass wor d	I.Go to IBM cloud, search Cloudan t in Catalog, Add new dashboa rd, go to Node Red 2.Conne ct to cloudan t and verify the results	able to conne ct the Cloud ant and Node Red	exp ect ed			

	ed				
	senso				
	r data				
	in the				
	cloud				
	ant				
	DB				

8.2 User Acceptance Testing

1. Defect Analysis

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	6	3	2	2	13
Duplicate	1	0	3	0	4
External	2	2	0	1	5
Fixed	7	3	4	5	19
Not Reproduced	0	0	1	0	1
Skipped	0	0	1	1	2
Won't Fix	0	5	2	1	8
Totals	16	13	13	10	52

2. Test Case Analysis

This report shows the number of test cases that have passed, failed, and untested

Section	Total Cases	Not Tested	Fail	Pass
Print Engine	5	0	0	5
Client Application	9	0	0	9
Security	3	0	0	3

Outsource Shipping	1	0	0	1
Exception Reporting	2	0	0	2
Final Report Output	4	0	0	4
Version Control	2	0	0	2

9.RESULTS

9.1 Performance Metrics

S.N o	Projec t Name	Scope/feat ure	Functio nal Changes	Hardwar e Changes	Softwa re Chang es	Load/Volu me Changes	Risk Score	Justificati on
	Alarm							
	ON/O			No				Changes
1	FF	Existing	Low	Changes	Low	>5 to 10%	GREEN	occurs less
								Some
	Sensor		Moderat	No	Modera			changes
2	values	Existing	e	Changes	te	>10 to 30%	ORANGE	occurs

S.N	Project	NFT Test approach	Approvals/SignOff			
0	Overview			Assumptions/Depen		
				dencies/Risks		
1	.ino(ardunio)	ino coding	wokwi.com	Depend on the		
				delivered code		
2	Node Red	Sensor & command	https://nodered.org/	Sensor values		
		values				
3	MIT Inventor	Alarm/Sprinkler/Senso	https://appinventor.mit.edu/ab	Notifications		
		rs notification	out/termsofservice			

S.	Proje	NFT Test	NF	Test	GO/	Identified	Recomm	Approvals/SignOff
N	ct	approach	R -	Outco	NO-	Defects	endation	
0	Overv		Me	me	GO	(Detected/C	s	
	iew		t		deci	losed/Open)		
					sion			
1	.ino(ar	ardunio	Me	Pass	GO	Closed	Efficient	wokwi.com
	dunio)	coding	t				code	
2	Node	Sensors&co	Me	Pass	GO	Closed	Sensing	https://nodered.org/
	Red	mmand	t				the	
		values					values	
							perfectly	
3	MIT	Alarm/Sprin	Me	Pass	GO	Closed	Notifies	https://appinventor.mit.e
	Invent	kler/Sensors	t				the users	du/about/termsofservice
	or	notification					at correct	
							time	

10.ADVANTAGES & DISADVANTAGES

Advantages:

- Detect the concentration of the gases
- The sensor-enabled solution helps prevent the high risk of gas explosions and affecting any casualties within and outside the premises.
- Get real-time alerts about the gaseous presence in the atmosphere
- Prevent fire hazards and explosions
- Supervise gas concentration levels
- Ensure worker's health
- Real-time updates about leakages
- Cost-effective installation
- Data analytics for improved decisions
- Measure oxygen level accuracy
- Get immediate gas leak alerts

Disadvantages:

- Only one gas can be measured with each instrument.
- When heavy dust, steam or fog blocks the laser beam, the system will not be able to take measurements

11.CONCLUSION

Gas leaks cause serious disasters that result in property damage and human injuries. The main causes of gas leaks are poor equipment upkeep and a lack of public awareness. As a result, detecting LPG leaks is critical for avoiding accidents and saving human lives. This paper discussed a system for detecting and alerting LPG leaks. Whenever LPG leakage is detected, this device activates an LED and a buzzer to inform people. This approach is straightforward but dependable. Internet of Things has gained its wide popularity in recent days due to its various streams of applications which has paved way for smooth, safe and easier mode of living style for human beings. One such area of applications includes gas booking and gas leakage detection for both domestic and commercial purposes. Though, several techniques is existing for the same, yet gas leakage detection is one major concern and a challenge.

12.FUTURE SCOPE

In the future, instead of using AC power, the gas leakage detecting system might be created using photovoltaic panels with a battery as a backup power supply to give a continuous supply, as opposed to the current use of AC power. The protection system employs a combination of MQ6 gas sensors, DHT22 temperature sensors, load sensors, smoke and flame sensors, and PIR sensors. A number of sensors must be calculated, taking into account the room's volume, installation position, and other factors. This system assures that if a gas leak happens, it can be tracked more effectively and that occupants may be notified ahead of time, regardless of whether the leak is visible or not, whether the house is vacant or occupied. The best recommendation for a monitoring system is to utilize a WiFi module that allows the user to monitor the gas level in real-time and automate direct management of the safety device system if an unanticipated occurrence occurs. Finally, the safety device employed was the most vital and important aspect. We also suggested that a tripper circuit be built, which would automatically turn off the (MSB) in the event of a fire, and turn off the gas regulator valve via a solenoid valve either from the cylinder from the main switchboard, If an incident occurs, it automatically can switch on the exhaust fan to suck gas to the outside house and sound an alarm and audio buzzer to inform the user or persons around and the user can opening the window, This device monitors the gas and detects any leaks in order to keep people safe.

13.APPENDIX

Source Code

```
#include <WiFi.h>
#include <PubSubClient.h>
#include "DHTesp.h"
#include<stdio.h>
#include <stdlib.h>
#define LED 2
const int DHT_PIN = 15;
DHTesp dhtSensor;
int gas;
void callback(char* subscribetopic, byte* payload, unsigned int payloadLength);
#define ORG "oyi7sh"
#define DEVICE_TYPE "Gas_leakage"
#define DEVICE ID "154555"
#define TOKEN "WoOgbWlz4q-F4KQKc-"
String data3;
IPAddress myDns(127, 0, 0, 53);
```

```
char server[]= ORG ".messaging.internetofthings.ibmcloud.com";
char publishTopic[] = "iot-2/evt/Data/fmt/json";
char subscribetopic[] = "iot-2/cmd/test/fmt/String";
char authMethod[] = "use-token-auth";
char token[] = TOKEN;
char clientId[] = "d:" ORG ":" DEVICE_TYPE ":" DEVICE_ID;
WiFiClient wificlient;
PubSubClient client (server, 1883, callback,wificlient);
void setup()
  Serial.begin(115200);
  dhtSensor.setup(DHT_PIN, DHTesp::DHT22);
  pinMode(LED, OUTPUT);
  delay(10);
 wificonnect();
  mqttconnect();
void loop()
    TempAndHumidity data = dhtSensor.getTempAndHumidity();
    gas=random(10000);
    Serial.println("Temp: " + String(data.temperature, 2) + "°C");
    Serial.println("Humidity: " + String(data.humidity, 1) + "%");
    Serial.println("gas_val " + String(gas));
    PublishData(String(data.temperature,2),String(data.humidity,
1),String(gas),int(data.temperature),int(data.humidity),int(gas));
    delay(1000);
    if (!client.loop()) {
      mqttconnect();
void PublishData(String temp,String hum,String gas1,int temp1,int hum1,int gas2)
 mqttconnect();
 if (gas2>2000)
   digitalWrite(LED, HIGH);
    Serial.println("Fire alert");
  }
 else
    digitalWrite(LED, LOW);
    Serial.println("Normal");
```

```
String payload = "{\"temperature\":";
  payload += temp;
  payload += "," "\"humidity\":\"";
  payload += hum;
  payload += "\"";
  payload += "," "\"gas_level\":\"";
  payload += gas1;
  payload += "\"}";
 Serial.print("Sending payload: ");
 // Serial.println(payload);
 if (client.publish(publishTopic, (char*) payload.c_str()))
   Serial.println("Data sent successfully");
  {
   Serial.println("Data sent failure");
  Serial.println("---");
void mqttconnect()
 if (!client.connected())
   Serial.print("Reconnecting client to ");
   Serial.println(server);
   while (!!!client.connect(clientId, authMethod, token))
      Serial.print(".");
      delay(500);
    initManagedDevice();
   Serial.println();
void wificonnect()
 Serial.println();
  Serial.print("Connecting to ");
 WiFi.begin("Wokwi-GUEST", "", 6);
 while (WiFi.status() != WL_CONNECTED)
   delay(500);
   Serial.print(".");
```

```
Serial.println("");
 Serial.println("WiFi connected");
 Serial.println("IP address: ");
 Serial.println(WiFi.localIP());
void initManagedDevice()
 if (client.subscribe(subscribetopic))
   Serial.println((subscribetopic));
   Serial.println("subscribe to cmd OK");
  }
   Serial.println("subscribe to cmd FAILED");
void callback(char* subscribetopic, byte* payload, unsigned int payloadLength)
 Serial.print("callback invoked for topic: ");
 Serial.println(subscribetopic);
 for (int i = 0; i < payloadLength; i++)</pre>
   data3 += (char)payload[i];
 data3="";
```

14.GitHub & Project Demo Link

Github Link: https://github.com/IBM-EPBL/IBM-Project-23363-1659880680

Demonstration video Link: https://drive.google.com/file/d/1csUbOcnjt-c4oyDLuFJHyAQO-
JrOvd6P/view?usp=sharing