In [1]:	<pre>import numpy as np def generate_data_schema_1(a): n = 1000 y = np.random.binomial(1, 0.5, n) X = np.zeros((n, 2)) # Assign features based on the class for i in range(n): if y[i] == 0: X[i] = np.random.normal(0, 1, 2) else: X[i] = np.random.normal(a, 1, 2)</pre>
	<pre>return X, y def generate_data_schema_2(a,p): n= 1000 y = np.random.binomial(1, 0.5, n) rho = p X = np.zeros((n, 2)) # Covariance matrix for class 0 and class 1 cov_0 = np.array([[1, rho], [rho, 1]]) # Variance 1, correlation rho cov_1 = np.array([[1, -rho], [-rho, 1]]) for i in range(n): if y[i] == 0: X[i, :] = np.random.multivariate_normal([0,0], cov_0) else: X[i, :] = np.random.multivariate_normal([a, a], cov_1) return X, y</pre>
In [2]:	Generate data Scheme 1 import numpy as np
In [3]:	<pre>a = 0.1 p = 0.5 X, y = generate_data_schema_2(a, p) from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)</pre> LDA
In [4]:	<pre>from LDA import LDA lda = LDA() lda.fit(X_train, y_train) lda_res = lda.predict(X_test) print('Accuracy:', np.mean(lda_res == y_test)) Accuracy: 0.485</pre>
In [5]:	<pre>from QDA import QDA qda = QDA() qda.fit(X_train, y_train) qda_res = qda.predict(X_test) print('Accuracy:', np.mean(qda_res == y_test)) Accuracy: 0.59</pre>
In [6]:	<pre>from NB import NB nb = NB() nb.fit(X_train, y_train) nb_res = nb.predict(X_test) print('Accuracy:', np.mean(nb_res == y_test)) Accuracy: 0.44</pre>
In [7]:	Comparing sets with different "a" values schema 1 Obtain accuracies a_values = [0.1, 0.5, 1, 2, 3, 5] number_of_iterations = 20 res_schema1 = np.zeros((3, len(a_values), number_of_iterations)) #lda, qda, nb
In [8]:	<pre>for iterator_a, a_value in enumerate(a_values): for i in range(number_of_iterations): X, y = generate_data_schema_1(a_value) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) lda.fit(X_train, y_train) lda_res = lda.predict(X_test) res_schema1[0, iterator_a, i] = np.mean(lda_res == y_test) qda_fit(X_train, y_train) qda_res = qda.predict(X_test) res_schema1[1, iterator_a, i] = np.mean(qda_res == y_test) nb.fit(X_train, y_train) nb_res = nb.predict(X_test) res_schema1[2, iterator_a, i] = np.mean(nb_res == y_test)</pre>
	<pre>def plot_boxplots(res, labels, name): min_val = np.min(res) fig, axs = plt.subplots(1, 3, figsize=(15, 5)) # Plot data on each subplot axs[0].boxplot(res[0,:,:].T, labels=labels) axs[0].set_title('LDA', fontsize=16) axs[0].set_xlabel("a", fontsize=14) axs[0].set_ylabel("accuracy", fontsize=14)</pre>
	axs[0].grid() axs[1].boxplot(res[1,::].T, labels=labels) axs[1].set_xlabel("a", fontsize=16) axs[1].set_xlabel("a", fontsize=14) axs[1].set_xlabel("a", fontsize=14) axs[1].set_ylabel("accuracy", fontsize=14) axs[1].set_ylabel("accuracy", fontsize=14) axs[1].set_ylabel("accuracy", fontsize=14) axs[1].set_ylim(min_val-0.03,1+0.03) axs[2].boxplot(res[2,::].T, labels=labels) axs[2].set_xlabel("a", fontsize=16) axs[2].set_xlabel("a", fontsize=14) axs[2].set_ylabel("accuracy", fontsize=14) axs[2].grid() axs[2].set_ylim(min_val-0.03,1+0.03) plt.tight_layout() plt.savefig(f"{name}.pdf")
In [9]:	plt.show() plot_boxplots(res_schema1, a_values, "different_a_schema1") LDA QDA NB 1.0 1.0 1.0 1.0
	0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
In [10]:	Comparing sets with different "a" values schema 2 Obtain accuracies a_values = [0.1,0.5,1,2,3,5]
111 [10].	<pre>p = 0.5 number_of_iterations = 20 res_schema2 = np.zeros((3, len(a_values), number_of_iterations)) #lda, qda, nb for iterator_a, a_value in enumerate(a_values): for i in range(number_of_iterations): X, y = generate_data_schema_2(a_value, p) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) lda.fit(X_train, y_train) lda_res = lda.predict(X_test) res_schema2[0, iterator_a, i] = np.mean(lda_res == y_test) qda.fit(X_train, y_train)</pre>
In [11]:	<pre>qda_res = qda.predict(X_test) res_schema2[1, iterator_a, i] = np.mean(qda_res == y_test) nb.fit(X_train, y_train) nb_res = nb.predict(X_test) res_schema2[2, iterator_a, i] = np.mean(nb_res == y_test) plot_boxplots(res_schema2,a_values, "different_a_schema2") LDA QDA NB</pre>
	Comparing sets with different "p" values schema 2
In [12]:	<pre>a_value = 2 p_values = [0,0.1,0.3,0.5,0.7,0.9] number_of_iterations = 20 res_schema2_test_2 = np.zeros((3, len(p_values), number_of_iterations)) #lda, qda, nb for iterator_p, p_value in enumerate(p_values): for i in range(number_of_iterations): X, y = generate_data_schema_2(a_value, p_value) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) lda.fit(X_train, y_train)</pre>
In [13]:	<pre>lda_res = lda.predict(X_test) res_schema2_test_2[0, iterator_p, i] = np.mean(lda_res == y_test) qda.fit(X_train, y_train) qda_res = qda.predict(X_test) res_schema2_test_2[1, iterator_p, i] = np.mean(qda_res == y_test) nb.fit(X_train, y_train) nb_res = nb.predict(X_test) res_schema2_test_2[2, iterator_p, i] = np.mean(nb_res == y_test) plot_boxplots(res_schema2_test_2, p_values, "different_p_schema2")</pre>
	LDA QDA NB 1.025 1.000 0.975 0.950 QDA 0.975 0.950 0.950
	0.900 0.900
	<pre>a_value = 2 p_value = 0.5 X, y = generate_data_schema_2(a_value, p_value) lda.fit(X,y) qda.fit(X,y) qda.fit(X,y) plt.scatter(X[y == 1][:, 0], X[y == 1][:, 1], color="blue", label="Class 1") plt.scatter(X[y == 0][:, 0], X[y == 0][:, 1], color="red", marker="A", label="Class 0") xx, yy = np.meshgrid(np.arange(-3, 5, 0.01), np.arange(-4, 5, 0.01)) Z = qda.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) cont = plt.contour(xx, yy, Z, levels=[0.5], colors='#7b3294') #QDA x1,x2,y1,y2=lda.get_line()</pre>
	<pre>line = plt.plot([x1,y1], [x2,y2], color="#008837") #LDA plt.legend() plt.savefig("decision_boundary.pdf") plt.show()</pre> Class 1 A Class 0
	-1
In [16]:	External Data import pandas as pd #https://www.kaggle.com/datasets/vikasukani/diabetes-data-set diabetes_data = pd.read_csv("./datasets/diabetes-dataset.csv")
In [17]:	<pre>#https://www.openml.org/search?type=data&status=active&id=334 monkey_data = pd.read_csv("./datasets/monkey_dataset.csv") #https://www.kaggle.com/datasets/erdemtaha/cancer-data cancer_data = pd.read_csv("./datasets/cancer_data.csv") def create_boxplot_natural_data(X, y, test_sizes, name): lda_accuracy = np.zeros((10, len(test_sizes))) qda_accuracy = np.zeros((10, len(test_sizes))) ph_accuracy = np.zeros((10, len(test_sizes))) representation of the process of t</pre>
	<pre>nb_accuracy = np.zeros((10, len(test_sizes))) for j, test_size in enumerate(test_sizes): for i in range(10): Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size=test_size) lda.fit(Xtrain, ytrain) lda_accuracy[i,j] = np.mean(lda.predict(Xtest) == ytest) qda.fit(Xtrain, ytrain) qda_accuracy[i,j] = np.mean(qda.predict(Xtest)== ytest) nb.fit(Xtrain, ytrain) nb_accuracy[i,j] = np.mean(nb.predict(Xtest)== ytest) import matholollib pyplot as nlt</pre>
	<pre>import matplotlib.pyplot as plt fig, axs = plt.subplots(1, 3, figsize=(15, 5)) # LDA axs[0].boxplot(lda_accuracy, labels=["0.1", "0.3", "0.8"]) axs[0].set_title("LDA") axs[0].set_xlabel("Test Size") axs[0].set_ylabel("Accuracy") # QDA axs[1].boxplot(qda_accuracy, labels=["0.1", "0.3", "0.8"])</pre>
	<pre>axs[1].set_title("QDA") axs[1].set_xlabel("Test Size") axs[1].set_ylabel("Accuracy") # # NB axs[2].boxplot(nb_accuracy, labels=["0.1", "0.3", "0.8"]) axs[2].set_title("NB") axs[2].set_xlabel("Test Size") axs[2].set_ylabel("Accuracy") plt.tight_layout()</pre>
In [18]:	<pre>plt.savefig(f"{name}.pdf") plt.show() Diabetes dataset # Diabetes test_sizes = [0.1, 0.3, 0.8]</pre>
	y = diabetes_data["Outcome"].values X = diabetes_data.iloc[:, :-1].values create_boxplot_natural_data(X, y, test_sizes, "diabetes_boxplot") LDA QDA NB 0.86 - O 0.875 - T 0.675 - T
	0.84 0.82 0.80 0.80 0.650 0.625 0.600 0.575
	0.76 - 0.74 - 0.72 - 0.72 - 0.550 - 0.525 - 0.
In [19]:	<pre>Monkeys test_sizes = [0.1, 0.3, 0.8] y = monkey_data["'class'"].values X = monkey_data.iloc[:, 2:].values print(X.shape)</pre>
	Create_boxplot_natural_data(X, y, test_sizes, "monkeys_boxplot") Compared to the size of the size
	0.65 0.65 0.60 0.55 0 0.80 0 0.80 0 0.80 0 0.80 0 0.80 0 0.80 0 0.55 0 0.55
	0.50 - 0.45 - 0.1 0.3 0.8 0.8 0.1 0.3 Test Size Test Size Test Size Test Size
In [20]:	<pre># cancer test_sizes = [0.1, 0.3, 0.8] y = cancer_data["diagnosis"].values y = (y == "M").astype(int) X = cancer_data.iloc[:, 2:].values print(X.shape)</pre>
	Create_boxplot_natural_data(X, y, test_sizes, "cancer_boxplot") Comparison
	0.725 - 0.700 - 0.700 - 0.700 - 0.700 - 0.700 - 0.650
In []:	0.625 0.600 0.575 0.1 0.3 Test Size 0.625 0.600 0.575 0.1 0.3 Test Size 0.625 0.600 0.575 0.575 0.1 0.3 Test Size 0.8
In []:	