IEE239 - Procesamiento de Señales e Imágenes Digitales Laboratorio 1 - Aplicación Primer Semestre 2018

Martes, 27 de marzo del 2018

Horario 08M1

- Duración: 1 hora.
- La evaluación es **estrictamente** personal.
- Está permitido el uso de material adicional.
- Está prohibido copiar código externo (ejemplos de clase, material en línea, etc.).

(5 puntos) Un sistema con propiedades desconocidas T_u ha sido implementado en la rutina sys01()¹. Se pide analizar si el sistema puede ser lineal e invariante en el tiempo (LTI) y su efecto sobre la versión discreta de $x_c(t) = 1 + \cos(t - \pi) + \cos(t - 5)$.

- a. Generar $x[n] \triangleq x_c(nT_s)$, para $n \in \{0,1,\ldots,255\}$ y $T_s = \frac{\pi}{80}$ s. Graficar la secuencia resultante usando stem() y rotularla adecuadamente. Es x[n] periódica? Justificar su respuesta.
- b. Crear las secuencias $\{r_1[n], r_2[n]\} \sim \mathcal{N}(2,5)$ para $n \in \{0, 1, ..., 31\}$ y analizar si la siguiente igualdad se cumple graficando ambos miembros en una misma ventana usando subplot(). T_u puede ser lineal? Justificar su respuesta:

$$2 \cdot T_u\{r_1[n]\} + 3 \cdot T_u\{r_2[n]\} = T_u\{2 \cdot r_1[n] + 3 \cdot r_2[n]\}.$$

c. Crear $y_1[n] = T_u\{\alpha_1[n]\}$ e $y_2[n] = T_u\{\alpha_2[n]\}$ para $n \in \{0, 1, ..., 255\}$, donde:²

$$\alpha_1[n] = \begin{cases} r_1[n] & , 0 \le n < 32 \\ 0 & , \text{ otros casos} \end{cases}, \qquad \alpha_2[n] = \begin{cases} 0 & , 0 \le n < 128 \\ r_1[n] & , 128 \le n < 160 \\ 0 & , \text{ otros casos} \end{cases}$$

Luego, generar la secuencia con atraso $\hat{y}_1[n]$ para $n \in \{0, 1, \dots, 383\}$. Graficar $\hat{y}_1[n]$ e $y_2[n]$ en una misma ventana. T_u puede ser invariante en el tiempo? Justificar su respuesta:

$$\hat{y}_1[n] = \begin{cases} 0 & , 0 \le n < 128 \\ y_1[n] & , \text{ otros casos} \end{cases}.$$

d. Asumiendo que T_u es **LTI**, crear $\delta[n]$ para $n \in \{0, 1, ..., 255\}$ y a partir de ello $h[n] \triangleq T_u\{\delta[n]\}$. Luego, calcular $T_u\{x[n]\}$ por convolución usando conv().³ Graficar y rotular h[n] y $T_u\{x[n]\}$ en una misma ventana Cuál es el efecto sobre x[n]? Incluir su respuesta en comentarios.

¹La rutina en sys01.p recibe la secuencia de entrada x y genera la secuencia de salida y: y=sys01(x).

²Los desplazamientos en $\alpha_1[n]$ y $\alpha_2[n]$ pueden realizarse creando un vector de 0 de tamaño 1×256 e insertando la secuencia $r_1[n]$ en la posición adecuada a partir de operaciones de indexado.

³Descartar los últimos 256 elementos para mantener la longitud original de la entrada. Adicionalmente, descartar los primeros 51 elementos para reducir los efectos por condiciones de frontera.