

IOPMP Task Group Meeting August 1, 2024

Video link

Minutes

- The vote:
 - Since we have a new proposal, the situation for the vote has been changed; let's discuss the new proposal first.
- PoC schedule sync-up:
- Interrupt suppressing inconsistency between multiple hit entries:
 - Agree the change
- New SRCMD format:
 - Andes and NVidia agree
 - Perrine will discuss this with the SiFive team and bring back the feedback before the Summit CN.
- The field of "version":
 - Bring the proposal on next meeting.

PoC Schedule Sync-up

- QEMU with IOPMP: postponed to 2024Q4
- M-mode library, lib-iopmp: still target to 2024Q3 (if we can stabilize the spec soon)
- C/C++ model and the corresponding stimulus: by 2024Q4
- To provide SBI?
 - Andes, NVidia, and SiFive don't provide SBI.
 - No plan to do it.

Interrupt suppressing Inconsistency

- Interrupt suppressing Inconsistency between multiple hit nonpriority entries, example:
 - A write transaction hits two non-priority entries, entry(0) and entry(1), and
 - both entries don't grant write permission; however
 - entry(0) suppresses the interrupt for write violation but entry(1) doesn't, that is, entry(0).swie=1 and entry(1).swie=0.
- Will the IOPMP trigger the interrupt for the transaction?
 - According to the current spec, all hit entry(*i*), their swie's are ORed together to obtain a final decision to suppress the interrupt. Thus, this example will not trigger any interrupt.
 - However, to trigger an interrupt is supposed to be more conservative from a security perspective.

Interrupt suppressing Inconsistency (cont.)

- The possible change if we update the spec according to
 - ERR_CFG.ie && !(entry(0).siwe | | entry(1).siwe) // old →
 - ERR_CFG.ie && (!entry(0).siwe | | !entry(1).siwe) // updated.
- That is, we OR all "to-trigger-intr" instead of "to-suppress-intr"

Alternative SRCMD Format

Example for proposed wgC-style program modeling

```
set entry(entry entry id, perm p, region r, cfg c) {
   SRCMD[entry id] = p;
                                                  "perm" and the other configurations are set
    ENTRY[entry_id].region = r;
                                                  in two parallel arrays: ENTRY and SRCMD
   ENTRY[entry id].cfg = c;
                            SRCMD
                                                               ENTRY
    entry id
                         PERM (of wgC)
                                                        region+cfg (of wgC)
```

The Current SRCMD layout (indexed by RRID)

The Alternative SRCMD layout (indexed by MD)

> ENTRY_CFG.r/w/a are ignored in this SRCMD layout

Proposed Tables

The association with RRID and MD(s), lookup MD by RRID, programmed by RRID or by MD:

- indexed by RRID
- indexed by MD
- fixed 1-1 mapping

Mapping an MD to entry(s);

The table is indexed by MD:

- full configurable
- 1 MD has k entries

The most wgC-style configuration

Association with RRID and MD(s)
The table is indexed by MD
e.g., SRCMD_FMT = 2

that is NO MD at all e.g., MDCFG_FMT=1

That is,

Example for proposed wgC-style program modeling

```
set entry(entry entry id, perm p, region r, cfg c) {
   SRCMD[entry id] = p;
                                                  "perm" and the other configurations are set
    ENTRY[entry_id].region = r;
                                                  in two parallel arrays: ENTRY and SRCMD
   ENTRY[entry id].cfg = c;
                            SRCMD
                                                              ENTRY
    entry id
                         PERM (of wgC)
                                                        region+cfg (of wgC)
```

Register Adjust, HWCFG0.model

Indicate the iopmp instance model

- OxO: Full model: the number of MDCFG registers is equal to HWCFGO.md_num, all MDCFG registers are readable and writable.
- Ox1: Rapid-k model: a single MDCFG register to indicate the k value, read only.
- Ox2: Dynamic-k model: a single MDCFG register to indicate the k value, readable and writable.
- Ox3: Isolation model: the number of MDCFG registers is equal to HWCFGO.md_num, all MDCFG registers are readable and writable.
- · Ox4: Compact-k model: a single MDCFG register to indicate the k value, read only.

SRCMD_FMT (HWCFG0[3:2]):

- 0: indexed by 1-1(isolation/compact)
- 1: indexed by RRID (full/rapid/dynamic)
- 2: indexed by MD (wgC)
- 3: reserved

MDCFG_FMT (HWCFG0[1:0]):

- > 0: programmable by MDCFG (full/isolation)
- ➤ 1: same size MD, fixed (rapid-k/compact-k), no MDCFG
- ≥ 2: same size MD, programmable (dynamic-k), no MDCFG
- > 3: reserved

HWCFG0 will be adjusted to

- Adjust the 4-bit field model (HWCFG[3:0])
 - > to 2-bit field SRCMD_FMT (HWCFG[3:2], RO):
 - ✓ 0: SRCMD is indexed by RRID (for full/rapid-*k* model)
 - √ 1: fixed 1-1 mapping (for isolation/compact-k model)
 - ✓ 2: SRCMD is indexed by MD (for wgC)
 - ➤ to 2-bit field MDCFG_FMT (HWCFG[1:0], RO):
 - √ 0: MD is configured by MDCFG (full/isolation); ignore field K
 - √ 1: same size MD, fixed (rapid-k/compact-k)
 - √ 2: same size MD, programmable (dynamic-k)
- Adjust the 8-bit field rsv (HWCFG0[23:16]), used on MDCFG_FMT=1 or 2
 - ➤ to 8-bit field K (WARL for MDCFG_FMT=2 and only when enable=0, otherwise RO):
 - ✓ the k value of rapid-k/compact-k/dynamic-k = K + 1.
 - ✓ For wgC-style model, K=0, that is, k value = 1.

SRCMD_FMT vs MDCFG_FMT

	SRCMD_FMT=0 (indexed by RRID)	SRCMD_FMT=1 (1-1 mapping)	SRCMD_FMT=2 (indexed by MD)
MDCFG_FMT=0 (by MDCFG)	full	isolation	no such model for now
MDCFG_FMT=1 (by fixed <i>K</i>)	rapid- <i>K</i>	compact-K	wgC (<i>K</i> =0)
MDCFG_FMT=2 (by programmable <i>K</i>)	dynamic- <i>K</i>	no such model for now	no such model for now

Adjust HWCFG0.rsv

rsv	23:16	ZERO	О	Must be zero on write, reserved for future
K	23:16	RW	IMP	

MDCFG_FMT:

- > 0: ZERO [0]; MD is configured by MDCFG
- > 1: RO [k value, IMP]; No MDCFG
- > 2: RW on enable=0; otherwise RO [k value, IMP] for dynamic-k; No MDCFG
- > 3: ZERO (0); No MDCFG

