	Question. 4–09
	2 개의 D ataset \mathcal{D}_1 과 \mathcal{D}_2 가 다음과 같이 주어졌다.
	$\mathcal{D}_1 = \{(-0.5, 2.5), (0.5, 3.5)\}$
	$\mathcal{D}_2 = \{(-1,2), (1,4)\}$
	$\mathcal{D}_1,\mathcal{D}_2$ 모두 $y=x+3$ 에서부터 만들었기 때문에, 모델을 $\hat{y}=\theta_1x+\theta_0$ 로 설정하였다.
	initial $\vec{\theta}$ =(θ_1 , θ_0) =(-1 , -1)이고, learning rate α =0.1로 주어졌을 때 다음 질문에 답하시오.
	1) Loss에 대한 Update Equation을 이용하여 1번의 epoch동안 \mathcal{D}_1 , \mathcal{D}_2 각각 $\vec{ heta}$ 의 변화를 구하시오.
	2) \mathcal{D}_1 과 \mathcal{D}_2 중 어느 Dataset이 $\vec{ heta}$ 를 target $\vec{ heta}^*$ 에 더 가깝게 하였는지 판단하고 이유를 설명하시오.
1)	$1 = (A - A)^{2} = (A - B(X + B))^{2} o(B) = \frac{4A}{4A} = 2(A - B(X + B) \cdot (-X)) = -2x(A - B(X - B))$
	# = 2(4-0,x+00)(-1)=-2(4-0,x+00)oft.
	: θ:=θ-4. 36 = θ + 74x (A-θ × - Θ =)
	θ.:= θ α+ = θ.+ 2α(4-θ.α-θ.) ο/4.
	D1= ((-0.5,2.5), (0.5,3.5)) 의 학생은 전쟁을 진행하는 중무
	(1,4)= (05,25) on ==+ A:=-1+2·(0.1)(-0.5)(2.5-(-1)(-0.5)+1)=-1.3
	0:=-1+2-(0.1)(2.5-0.5+1)=-0.4
	$(\chi_{4}) = (0.5, 3.5)$ on of $\theta_{1} : = -1.3 + 0.2(0.5)(3.5 - (-1.3)(0.5) + 0.4) = -0.845$
	$\theta : = -0.4 + 0.2(3.5 + (1.3)(0.5) + 0.4) = 0.51$
	(O1, O0) = (-0.84,0.51) 03 update 512
	OITH total 07 2179 12-Norm? (1-(0.84))2+(3-6.51)2 = 3.10
	D2= [H2],((A)] 03 始 徳怡 37
	(x,y)=(-1,2) on = + + 2.(0,1).(-1).(2-(-1)(-1))=-1.4
	θ_0 : = -1 + 2 (0.1) (2-1+1) = -0.6
	$(\theta_1, \theta_6) = (-1.4, -0.6) \stackrel{\circ}{\sim} \text{ uplate 512}$
	(24)=(1,4)可學 月: =-1.4+2·(0,土)・1·(4-(-1.4)(土)-(-0.6))=-0.2
	$\theta_{\circ} := -0.6 + 2 \cdot (0.1) \cdot (4+2) = 0.6$
	(A1,A3) = (-0,2,0.6) o(5th.
	OLEH target 1 7/2/21 1)- norm: ([1-(-0.2))2+(3-0.6)2= 2.68 OLT.
2)	D_= [(-0.5,2,5),(0.5,3.5)] on =34 update & Bel A= 274 norm = 3.10
	D== {(-1,2),(1,4) \ o1) === uplate== B=1 B=1 P=1744 norn=2683
	Dealer By Daly 好中中日日日 Be 己酸叶
	이는 O(1XK1인 D.의 Data pointed 약계 X의 당한에 위한 원의 Whate 환가 나라지 때문에다.