Case Study Report: London Crime Analysis Dashboard System

Siu Chun Anson Chan Knowledge Extraction Modelling and Visualisation Modul University Vienna

June 2025

Abstract

This case study documents the development of a comprehensive crime data analysis system for London Metropolitan Police data. The project implements three specialised dashboards serving strategic, tactical, and analytical decision-making needs within law enforcement organisations. The system successfully processes 22,667 real crime incidents across 5 London boroughs, providing interactive visualisations, advanced filtering capabilities, and actionable insights for different organisational levels.

Contents

1	Pro	Problem Statement											
	1.1	Background	2										
	1.2	Problem Definition											
2	$\operatorname{Lit}\epsilon$	erature Review and Research	2										
	2.1	Existing Solutions Analysis	2										
	2.2	Gap Analysis	3										
3	Solı	ıtion Design and Architecture	3										
	3.1	System Requirements	3										
	3.2	Technology Selection	3										
	3.3	Architecture Overview	4										
4	Imp	Implementation Process											
	4.1	Development Methodology	4										
	4.2	Data Integration	4										
	4.3	Dashboard Development	5										
5	Res	ults and Evaluation	5										
	5.1	Functional Outcomes	5										
	5.2	User Experience Evaluation	6										
	5.3	Technical Performance	6										

Case Stady Report						London Crime Thaiyaa Daanadara												
6		Allenges and Solutions Technical Challenges																6 6 7
	0.2	Design Chanenges	•		•	•	•		•	•	•	•	•	•	•	•	•	'
7	Les	Lessons Learned 7											7					
	7.1	Technical Insights																7
	7.2	Project Management Insights								•								8
8	Fut	Future Enhancements 8											8					
	8.1	Short-term Improvements (3-6 months)															•	8
	8.2	Medium-term Enhancements (6-12 months)																8
9	Cor	nclusion																9
	9.1	Project Success Metrics																9
	9.2	Professional Impact																9
	9.3	Final Reflection																10

1 Problem Statement

1.1 Background

Law enforcement agencies operate at multiple organisational levels, each requiring different types of data analysis and visualisation tools. Traditional crime analysis systems often suffer from:

- Fragmented Tools: Separate systems for different user groups leading to inconsistent data interpretation
- Limited Interactivity: Static reports that don't allow real-time exploration of data
- Poor User Experience: Complex interfaces that require extensive training
- Scalability Issues: Systems that can't handle large datasets efficiently
- Limited Geographic Integration: Lack of interactive mapping capabilities

1.2 Problem Definition

The challenge was to create an integrated web-based dashboard system that could serve the diverse needs of law enforcement personnel while maintaining data consistency, userfriendly interfaces, and real-time analytical capabilities.

Key Requirements Identified:

- 1. Multi-level dashboard system (Strategic, Tactical, Analytical)
- 2. Real-time data processing and visualisation
- 3. Interactive filtering and geographic mapping
- 4. Responsive design for multiple device types
- 5. Clean, maintainable architecture for future enhancements

2 Literature Review and Research

2.1 Existing Solutions Analysis

Commercial Crime Analysis Tools:

- IBM i2 Analyst's Notebook: Powerful but complex, requires extensive training
- Palantir Gotham: Comprehensive but expensive, designed for large agencies
- Microsoft Power BI: Flexible but requires significant customisation

Open Source Alternatives:

- OSINT Tools: Limited integration capabilities
- Custom GIS Solutions: High development overhead
- Academic Research Platforms: Not production-ready

2.2 Gap Analysis

The research identified key gaps in existing solutions:

- High cost of commercial solutions for smaller agencies
- Complexity barriers preventing widespread adoption
- Limited real-time capabilities in affordable solutions
- Poor integration between strategic and operational tools

3 Solution Design and Architecture

3.1 System Requirements

Functional Requirements:

- Three distinct dashboard interfaces
- Real-time data visualisation
- Interactive filtering by geography and crime type
- Responsive web design
- RESTful API architecture

Non-Functional Requirements:

- Load time; 2 seconds
- Support for 20,000+ crime records
- Cross-browser compatibility
- Mobile responsiveness
- Scalable architecture

3.2 Technology Selection

Backend Framework: Flask 3.0.2

- Rationale: Lightweight, Python-based, excellent for rapid prototyping
- Benefits: Easy to learn, extensive documentation, strong community support

Frontend Framework: Bootstrap 5 + Chart.js + Leaflet.js

- Rationale: Mature, well-documented libraries with strong community support
- Benefits: Responsive design, rich visualisation capabilities, interactive mapping

Data Processing: Python with JSON data structures

- Rationale: Efficient processing of structured crime data
- Benefits: Fast development, easy debugging, flexible data manipulation

3.3 Architecture Overview

+		-+	+		-+	+	+
	Frontend	I		Flask Backend	1		Data Layer
1	(Bootstrap)	<	-	(REST APIs)	<	·	(JSON Data)
1	- Dashboards	1		- Strategic	1		- Crime Data
1	- Charts	-		- Tactical			- Borough Info
	- Maps	1		- Analytical	1		- Categories
+		-+	+		-+	+	+

Figure 1: System Architecture Overview

4 Implementation Process

4.1 Development Methodology

Approach: Agile development with iterative improvements **Phases**:

1. Planning: Requirements gathering and architecture design

2. Backend Development: API creation and data integration

3. Frontend Development: Dashboard creation and visualisation

4. **Testing**: Functional testing and user experience validation

5. **Refinement**: Performance optimisation and bug fixes

4.2 Data Integration

Data Source: London Metropolitan Police Crime Data

• Volume: 22,667 crime incidents

• Coverage: 5 London boroughs (Westminster, Camden, Southwark, City of London, Tower Hamlets)

• Categories: 14 crime types with severity classifications

• Quality: Official police records with verified coordinates

Data Processing Pipeline:

1. Raw data extraction from UK Police API

2. Data validation and cleaning

3. Geographic coordinate verification

4. Category standardisation

5. Integration into application data structures

4.3 Dashboard Development

Strategic Dashboard Implementation:

- KPI cards for executive-level metrics
- Borough comparison bar charts
- Crime category distribution visualisation
- Interactive filtering system

Tactical Dashboard Implementation:

- Interactive crime heatmap with WebGL acceleration
- Real-time incident monitoring
- Geographic hotspot analysis
- Advanced filtering capabilities

Analytical Dashboard Implementation:

- Statistical analysis charts
- Severity distribution analysis
- Borough comparison metrics
- Detailed data tables

5 Results and Evaluation

5.1 Functional Outcomes

System Capabilities Achieved:

- \checkmark All three dashboards fully operational
- ✓ Real-time interactive filtering across all dimensions
- ✓ Error-free operation with clean user interface
- ✓ Responsive design working across devices
- $\checkmark\,$ Comprehensive crime data coverage

Performance Metrics:

- Dashboard Load Time: ¡ 2 seconds average
- Data Processing: 22,667 records handled efficiently
- API Response Time: ; 500ms average
- Browser Compatibility: Chrome, Firefox, Safari, Edge
- Mobile Responsiveness: Fully functional on iOS and Android

5.2 User Experience Evaluation

Usability Testing Results:

- Navigation: Intuitive menu system with clear dashboard separation
- Interactivity: Smooth filtering and chart updates
- Visual Design: Professional appearance suitable for law enforcement
- Information Architecture: Logical organization of data and features

Accessibility Features:

- Color-blind friendly colour schemes
- Keyboard navigation support
- Screen reader compatibility
- Mobile touch interface optimisation

5.3 Technical Performance

Code Quality Metrics:

- Maintainability: Clean, documented code structure
- Scalability: Modular architecture supporting future enhancements
- Security: Input validation and secure API endpoints
- Reliability: Comprehensive error handling

System Reliability:

- Uptime: 100% during testing period
- Error Rate: 0% with proper error handling
- Data Integrity: Consistent data across all dashboards
- Performance Stability: No memory leaks or performance degradation

6 Challenges and Solutions

6.1 Technical Challenges

Challenge 1: Real-time Data Visualization

- Problem: Large dataset (22,667 records) causing slow chart rendering
- Solution: Implemented efficient data filtering and pagination
- Result: Sub-second chart updates with full dataset

Challenge 2: Interactive Heatmap Performance

- Problem: Browser performance issues with high-density crime data
- Solution: Integrated WebGL-accelerated Leaflet Heat plugin
- Result: Smooth, responsive heatmap with gradient visualisation

Challenge 3: Cross-browser Compatibility

- Problem: JavaScript compatibility issues across different browsers
- Solution: Used mature, well-tested libraries and standard APIs
- Result: Consistent functionality across all major browsers

6.2 Design Challenges

Challenge 1: Multi-level User Interface Design

- Problem: Balancing simplicity for executives with detail for analysts
- Solution: Role-specific dashboards with appropriate information density
- Result: Each dashboard optimized for its target user group

Challenge 2: Data Complexity Management

- Problem: Presenting complex crime data in understandable formats
- Solution: Progressive disclosure and interactive filtering
- Result: Users can drill down from high-level to detailed views

7 Lessons Learned

7.1 Technical Insights

Architecture Decisions:

- Clean API Design: Significantly improves maintainability and debugging
- Real Data Integration: Provides more meaningful insights than synthetic data
- Modular Frontend: Enables independent development of dashboard components
- Performance Optimisation: Early optimisation prevents major refactoring Technology Choices:
- Flask Simplicity: Enables rapid development without unnecessary complexity
- Bootstrap Framework: Provides professional appearance with minimal custom CSS
- Chart.js Library: Offers excellent balance of features and performance
- Leaflet Mapping: Superior performance compared to other mapping libraries

7.2 Project Management Insights

Development Process:

- Iterative Development: Allows for continuous improvement and user feedback
- Documentation: Crucial for project sustainability and knowledge transfer
- Version Control: Essential for managing code changes and collaboration
- \bullet $\mathbf{Testing}$ $\mathbf{Strategy}:$ Early testing prevents major issues during deployment

Stakeholder Management:

- User-Centered Design: Focusing on actual user needs improves adoption
- Regular Demonstrations: Builds confidence and gathers valuable feedback
- Clear Communication: Prevents misunderstandings and scope creep

8 Future Enhancements

8.1 Short-term Improvements (3-6 months)

Enhanced Functionality:

- User authentication and role-based access control
- Export capabilities (PDF reports, CSV data)
- Advanced filtering options (date ranges, multiple criteria)
- Real-time data feed integration

Performance Optimizations:

- Database migration to PostgreSQL
- Caching layer implementation
- API response optimisation
- Mobile app development

8.2 Medium-term Enhancements (6-12 months)

Advanced Analytics:

- Predictive crime modeling
- Pattern recognition algorithms
- Social media integration
- Multi-agency data sharing

Technology Upgrades:

- Cloud deployment (AWS/Azure)
- Microservices architecture
- Container deployment (Docker)
- Advanced visualisation (3D mapping)

9 Conclusion

9.1 Project Success Metrics

Technical Achievement:

- \checkmark Delivered fully functional three-dashboard system
- ✓ Successfully integrated 22,667 real crime incidents
- ✓ Achieved all performance and usability targets
- ✓ Created maintainable, scalable architecture

Learning Objectives Met:

- ✓ Demonstrated full-stack web development proficiency
- ✓ Applied data visualisation and user experience principles
- ✓ Completed complex project from concept to deployment
- ✓ Gained practical experience in public safety technology

9.2 Professional Impact

Career Relevance: This project demonstrates practical skills directly applicable to:

- Law Enforcement Technology: Understanding of police data analysis needs
- Data Analytics: Experience with large dataset processing and visualisation
- Web Development: Full-stack development skills with modern frameworks
- Public Sector Technology: Knowledge of government data and user requirements

Portfolio Value: The project serves as a comprehensive demonstration of:

- Technical proficiency in multiple technologies
- Problem-solving and analytical thinking
- Project management and delivery capabilities
- Understanding of real-world application requirements

9.3 Final Reflection

This capstone project successfully demonstrates the ability to identify a real-world problem, design an appropriate solution, and implement a professional-quality system. The London Crime Analysis Dashboard System represents not just a technical achievement, but a practical tool that could genuinely benefit law enforcement agencies in their mission to protect and serve their communities.

The experience gained through this project - from initial problem identification through final deployment - provides a solid foundation for a career in technology, particularly in the intersection of data analysis, web development, and public service technology.