Лабораторная работа №2.

Построение интерполирующего кубического сплайна

Выполнил(а): Суслова Виктория

Группа: <u>382003_4</u> Вариант: <u>14</u>

1. Постановки задач

(укажите функции, отрезки и граничные условия)

Сплайн-интерполяция функции $F(x) = \phi(x)$ (тест)

$$\varphi(x) = \begin{cases} x^3 + 3x^2, & x \in [-1; 0] \\ -x^3 + 3x^2, & x \in [0; 1] \end{cases}$$
$$S''(a) = \varphi''(-1) = 0$$
$$S''(b) = \varphi''(1) = 0$$

Сплайн-интерполяция функции F(x) = f(x),

$$f(x) = \sqrt{1 + x^4}, \quad x \in [0; 1]$$
$$S''(0) = 0$$
$$S''(1) = 0$$

Сплайн-интерполяция функций

$$F(x) = f(x) + \cos 10x$$

$$f(x) = \sqrt{1 + x^4} + \cos(10x), \quad x \in [0; 1]$$

$$S''(0) = 0$$

$$S''(1) = 0$$

2. Краткие сведения по теории сплайн-интерполяции

(определение кубического сплайна, каноническая форма записи, постановка задач сплайн-интерполяции, типы граничных условий; описание способа построения сплайна, используемого в программе)

Определение:

Кубическим сплайном на сетке x_i , i=0..n отрезка [a;b] называют функцию S(x), дважды непрерывно дифференцируемую на отрезке и представляющую собой полином степени не выше 3 на каждом его участке

Каноническая форма записи:

$$S(x) = \begin{cases} S_i(x) = a_i + b_i(x - x_i) + \frac{c_i}{2}(x - x_i)^2 + \frac{d_i}{6}(x - x_i)^3 \\ x \in [x_{i-1}; x_i], & i = 1..n \end{cases}$$

Типы граничных условий:

1) Естественные ГУ (ЕГУ)

$$S''(a) = 0; S''(b) = 0$$

2) Совпадение 1-х производных функции и сплайна

$$S'(a) = f'(a) = M_1; S'(b) = f'(b) = M_2$$

3) Совпадение 2-х производных функции и сплайна

$$S''(a) = f''(a) = v_1; S''(b) = f''(b) = v_2$$

Нахождение коэффициентов сплайна:

$$a_i = f_i$$
, $i = 1...n$

$$\begin{cases} c_0 = \mu_1 \\ h_i c_{i-1} + 2(h_i + h_{i+1})c_i + h_{i-1}c_{i+1} = 6\left(\frac{f_{i+1} - f_i}{h_{i+1}} - \frac{f_i - f_{i-1}}{h_i}\right) & i = 1..n - 1 \\ c_n = \mu_2 \end{cases}$$

$$b_i = \frac{f_i - f_{i-1}}{h_i} + c_i \frac{h_i}{3} + c_{i-1} \frac{h_i}{6}, \quad i = 1..n$$

$$d_i = \frac{c_i - c_{i-1}}{h_i}$$

3. Tecm

(приведите таблицу коэффициентов сплайна, график тестовой функции $F(x) = \varphi(x)$ и сплайна S(x) при n=4; выкладки, подтверждающие, что сплайн построен правильно)

i	<i>xi-1</i>	x_i	a_i	b_i	c_i	d_i
1	-1	-0,5	0,625	-2,25	3	6
2	-0,5	0	0	0	6	6
3	0	0,5	0,625	2,25	3	-6
4	0,5	1	2	3	0	-6

Каноническая запись (от руки):

$$S(x) = \begin{cases} 0.625 - 2.25(x + 0.5) + \frac{3}{2}(x + 0.5)^2 + 1(x + 0.5)^3, x \in [-1; -0.5] \\ 0 + 0(x - 0) + 3(x - 0)^2 + 1(x - 0)^3, & x \in [-0.5; 0] \\ 0.625 + 2.25(x - 0.5) + \frac{3}{2}(x - 0.5)^2 - 1(x - 0.5)^3, x \in [0; 0.5] \\ 2 + 3(x - 1) + 0(x - 1)^2 - 1(x - 1)^3, & x \in [0.5; 1] \end{cases}$$

График:

Выкладки:

$$f_0 = 2$$
, $f_1 = 0.625$, $f_2 = 0$, $f_3 = 0.625$, $f_4 = 2$

1) Коэффициенты а:

$$a_1 = 0.625$$
, $a_2 = 0$, $a_3 = 0.625$, $a_4 = 2$

2) Коэффициенты с:

2) Коэффициенты c:
$$c_0 = 0$$

$$0.5c_0 + 2c_1 + 0.5c_2 = 6\left(\frac{0 - 0.625}{0.5} - \frac{0.625 - 2}{0.5}\right)$$

$$0.5c_1 + 2c_2 + 0.5c_3 = 6\left(\frac{0.625 - 0}{0.5} - \frac{0 - 0.625}{0.5}\right) => c = \begin{pmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \\ c_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 3 \\ 6 \\ 3 \\ 0 \end{pmatrix}$$

$$c_4 = 0$$

3) Коэффициенты d:

$$d_1 = \frac{3}{0.5} = 6$$
, $d_2 = \frac{3}{0.5} = 6$, $d_3 = -\frac{3}{0.5} = -6$, $d_4 = -\frac{3}{0.5} = -6$

4) Коэффициенты b:

$$b_1 = \frac{0.625 - 2}{0.5} + 3\frac{0.5}{3} + 0 = -2.25$$

$$b_2 = -\frac{0.625}{0.5} + 6\frac{0.5}{3} + 3\frac{0.5}{6} = 0$$

$$b_3 = \frac{0.625}{0.5} + 3\frac{0.5}{3} + 6\frac{0.5}{6} = 2.25$$

$$b_4 = \frac{2 - 0.625}{0.5} + 0\frac{0.5}{3} + 3\frac{0.5}{6} = 3$$

Все значения полученные вручную совпадают со значениями, полученными в результате работы программы.

4. Анализ порядка сходимости

Граничные условия: S''(a) = 0, S''(b) = 0

(для функций f(x), $f(x) + cos\ 10x$ заполните следующие таблицы, последний столбец с заливкой — опция)

 $F(x) = \sqrt{1 + x^4}$, [a, b] = [0; 1]

	· /	7 L - 7	
n	$\max_{j=0,\dots N} F(x_j) - S(x_j) $	$\max_{j=0,N} F'(x_j) - S'(x_j) $	$\max_{j=0,N} F''(x_j) - S''(x_j) $
$n_1=10$	$1,3 \cdot 10^{-3}$	$8 \cdot 10^{-2}$	2.82
$n_2 = 100$	$1,3 \cdot 10^{-5}$	$8 \cdot 10^{-3}$	2.82
$n_3 = 1000$	$1,3 \cdot 10^{-7}$	$8 \cdot 10^{-4}$	2.82
$n_4 = 10000$	$1,3 \cdot 10^{-9}$	$8 \cdot 10^{-5}$	2.82
Порядок	2	1	
сходимости			

$$F(x) = \sqrt{1 + x^4} + \cos(10x)$$
 , $[a, b] = [0; 1]$

n	$\max_{j=0,N} F(x_j) - S(x_j) $	$\max_{j=0,N} F'(x_j)-S'(x_j) $	$\max_{j=0,N} F''(x_j) - S''(x_j) $
$n_1=10$	$5 \cdot 10^{-2}$	3	100
$n_2 = 100$	$5 \cdot 10^{-4}$	$3 \cdot 10^{-1}$	100
$n_3 = 1000$	$5 \cdot 10^{-6}$	$3 \cdot 10^{-2}$	100
$n_4 = 100000$	$5 \cdot 10^{-8}$	$3 \cdot 10^{-3}$	100
Порядок	2	1	
сходимости			

5. Итоговая таблица

Граничные условия: S''(a) = 0, S''(b) = 0

$f(x) = \sqrt{1 + x^4} \qquad , [a,$	[b] = [0; 1] (cr	роки и столбцы с залив	кой – опция)
	Вы	бор функции $F(x)$	
	f(x)	f(x)+cos 10x	φ (<i>x</i>)
При <i>n = «100»</i>			1
$\max_{j=0,N} F(x)-S(x) $	$1.3 \cdot 10^{-5}$	5 · 10 ⁻⁴	
$\max_{j=0,N} F'(x)-S'(x) $	8 · 10 ⁻³	3 · 10 ⁻¹	
$\max_{j=0,N} F''(x)-S''(x) $	2.82	100	
При достижении п	огрешности сплайн-ин	герполяции не более 8	= 10 -6
Число участков сетки сплайна <i>n</i>	1000	3000	
$\max_{j=0,N} F(x)-S(x) $	$1,3 \cdot 10^{-7}$	$5 \cdot 10^{-7}$	
$\max_{j=0,N} F'(x)-S'(x) $	8 · 10 ⁻⁴	$9.6 \cdot 10^{-3}$	
$\max_{j=0,N} F''(x)-S''(x) $	2.82	100	
Оценка порядка сходимо	сти		
Сходимость к функции (оценка порядка)	2	2	
Сходимость к производной (оценка порядка)	1	1	
Сходимость к второй производной (оценка порядка)			
«Остановка» сходимости вычислительной погреш			накопления
n*	Спорт	() ()	

6. Графики функций, сплайнов и производных Естественные граничные условия

Сплайн-интерполяция функции F(x) = f(x)

$$S''(a) = 0$$
, $S''(b) = 0$

Графики (скрин)

рис. 2 График решений

рис. 3 График первых производных

Фрагмент таблицы коэффициентов (скрин)

i	x[i-1]	x[i]	a[i]	b[i]	c[i]	d[i]
1	0	0.001	1	2.08E-09	4.73E-06	0.004732
2	0.001	0.002	1	1.60E-08	2.31E-05	0.01834
3	0.002	0.003	1	5.40E-08	5.30E-05	0.029909
4	0.003	0.004	1	1.28E-07	9.50E-05	0.042024
5	0.004	0.005	1	2.50E-07	0.000149	0.053993
6	0.005	0.006	1	4.32E-07	0.000215	0.066002
7	0.006	0.007	1	6.86E-07	0.000293	0.077999
8	0.007	0.008	1	1.02E-06	0.000383	0.09
9	0.008	0.009	1	1.46E-06	0.000485	0.102001
10	0.009	0.01	1	2.00E-06	0.000599	0.113999
11	0.01	0.011	1	2.66E-06	0.000725	0.126
12	0.011	0.012	1	3.46E-06	0.000863	0.137999
13	0.012	0.013	1	4.39E-06	0.001013	0.150001
14	0.013	0.014	1	5.49E-06	0.001175	0.161999

993	0.992	0.993	1.40438	1.39442	2.8285	0.420473
994	0.993	0.994	1.40578	1.39724	2.82723	-1.27123
995	0.994	0.995	1.40718	1.40007	2.83223	5.00077
996	0.995	0.996	1.40858	1.4029	2.81378	-18.448
997	0.996	0.997	1.40998	1.40574	2.8828	69.0228
998	0.997	0.998	1.41139	1.4085	2.62534	-257.464
999	0.998	0.999	1.4128	1.4116	3.5863	960.96
1000	0.999	1	1.41421	1.4134	0	-3586.3

Фрагмент таблицы сравнения (скрин)

	X	f(x)	S(x)	f(x)-S(x)	f'(x)	S'(x)	f'(x)-S'(x)	f"(x)	S"(x)	f"(x)-S"(x)
1	0	1	1	0	0	-2.89E-10	2.89E-10	0	0	C
2	0.0005	1	1	7.68E-14	2.50E-10	3.03E-10	5.29E-11	1.50E-06	2.37E-06	8.66E-07
3	0.001	1	1	0	2.00E-09	2.08E-09	7.74E-11	6.00E-06	4.73E-06	1.27E-06
4	0.0015	1	1	1.89E-14	6.75E-09	6.74E-09	1.42E-11	1.35E-05	1.39E-05	4.02E-07
5	0.002	1	1	0	1.60E-08	1.60E-08	2.07E-11	2.40E-05	2.31E-05	9.28E-07
6	0.0025	1	1	3.44E-14	3.13E-08	3.13E-08	3.80E-12	3.75E-05	3.80E-05	5.26E-07
7	0.003	1	1	0	5.40E-08	5.40E-08	5.56E-12	5.40E-05	5.30E-05	1.02E-06
1993	0.996	1.40858	1.40858	0	1.4029	1.4029	4.21E-06	2.82836	2.81378	0.014579
1994	0.9965	1.40928	1.40928	2.49E-09	1.40431	1.40431	2.87E-06	2.82837	2.84829	0.019916
1995	0.997	1.40998	1.40998	2.22E-16	1.40573	1.40574	1.57E-05	2.82839	2.8828	0.054414
1996	0.9975	1.41069	1.41069	9.29E-09	1.40714	1.40715	1.07E-05	2.8284	2.75407	0.07433
1997	0.998	1.41139	1.41139	0	1.40856	1.4085	5.86E-05	2.82841	2.62534	0.203071
1998	0.9985	1.4121	1.4121	3.47E-08	1.40997	1.40993	4.00E-05	2.82842	3.10582	0.277401
1999	0.999	1.4128	1.4128	2.22E-16	1.41139	1.4116	0.000219	2.82842	3.5863	0.757876
2000	0.9995	1.41351	1.41351	1.29E-07	1.4128	1.41295	0.000149	2.82843	1.79315	1.03528
2000	1	1.41421	1.41421	0	1.41421	1.4134	0.000816	2.82843	0	2.82843

Справка

Контрольная сетка N = 2000 Погрешность сплайна на контрольной сетке max|F(x)-S(x)| = 1.2941e-07 при x = 0.9995 Погрешность производной на контрольной сетке

max|F'(x)-S'(x)| = 0.000816497 при x = 1

Сетка сплайна n = 1000

Погрешность второй производной на контрольной сетке $\max |F''(x)-S''(x)| = 2.82843$ при x=1

Сплайн-интерполяция функции $F(x) = f(x) + cos \ 10x$ S''(a) = 0 , S''(b) = 0

Графики (скрин)

рис. 5 График решений

рис. 6 График первых производных

рис. 7 График вторых производных

Фрагмент таблицы коэффициентов (скрин)

i	x[i-1]	x[i]	a[i]	b[i]	c[i]	d[i]
1	0	0.000333	1.99999	-0.03075	-126.794	-380383
2	0.000333	0.000667	1.99998	-0.06736	-92.8182	101929
3	0.000667	0.001	1.99995	-0.09981	-101.919	-27302.1
4	0.001	0.001333	1.99991	-0.13338	-99.4757	7329.49
5	0.001333	0.001667	1.99986	-0.16665	-100.124	-1945.78
6	0.001667	0.002	1.9998	-0.19999	-99.9431	543.749
7	0.002	0.002333	1.99973	-0.23331	-99.9828	-119.088
8	0.002333	0.002667	1.99964	-0.26664	-99.9618	62.749
9	0.002667	0.003	1.99955	-0.29996	-99.9558	18.2561
10	0.003	0.003333	1.99944	-0.33327	-99.9443	34.4077
2992	0.997	0.997333	0.557174	6.62122	88.154	-528.775
2993	0.997333	0.997667	0.559386	6.65058	87.9907	-490.137
2994	0.997667	0.998	0.561607	6.67987	87.7747	-647.802
2995	0.998	0.998333	0.563839	6.70913	87.7505	-72.8279
2996	0.998333	0.998667	0.56608	6.73825	87.0064	-2232.07
2997	0.998667	0.999	0.568331	6.76758	88.9441	5812.96
2998	0.999	0.999333	0.570592	6.79588	80.8691	-24224.9
2999	0.999333	0.999667	0.572862	6.82772	110.157	87864.5
3000	0.999667	1	0.575142	6.84608	0	-330472

Фрагмент таблицы сравнения (скрин)

i	x	f(x)	S(x)	f(x)-S(x)	f'(x)	S'(x)	f'(x)-S'(x)	f"(x)	S"(x)	f"(x)-S"(x)
1	0	2	2	0	0	-0.00962	0.009623	-100	0	100
2	0.000167	2	2	5.08E-07	-0.01667	-0.01491	0.001761	-99.9999	-63.3972	36.6026
3	0.000333	1.99999	1.99999	0	-0.03333	-0.03075	0.002578	-99.9994	-126.794	26.795
4	0.0005	1.99999	1.99999	1.36E-07	-0.05	-0.05047	0.000472	-99.9987	-109.806	9.80758
5	0.000667	1.99998	1.99998	0	-0.06667	-0.06736	0.000691	-99.9978	-92.8182	7.17959
6	0.000833	1.99997	1.99997	3.65E-08	-0.08333	-0.08321	0.000126	-99.9965	-97.3685	2.62799
7	0.001	1.99995	1.99995	0	-0.1	-0.09981	0.000185	-99.995	-101.919	1.92388
8	0.001167	1.99993	1.99993	9.78E-09	-0.11666	-0.1167	3.39E-05	-99.9932	-100.697	0.70411
9	0.001333	1.99991	1.99991	0	-0.13333	-0.13338	4.96E-05	-99.9911	-99.4757	0.515385
5992	0.9985	0.564958	0.564958	2.27E-09	6.72371	6.72372	7.87E-06	87.5421	87.3784	0.16369
5993	0.998667	0.56608	0.56608	1.11E-16	6.7383	6.73825	4.30E-05	87.4535	87.0064	0.447024
5994	0.998833	0.567204	0.567204	8.48E-09	6.75287	6.75284	2.94E-05	87.3645	87.9753	0.610715
5995	0.999	0.568331	0.568331	2.22E-16	6.76742	6.76758	0.000161	87.2754	88.9441	1.66869
5996	0.999167	0.56946	0.56946	3.17E-08	6.78196	6.78207	0.00011	87.186	84.9066	2.2794
5997	0.999333	0.570592	0.570592	1.11E-16	6.79648	6.79588	0.000599	87.0964	80.8691	6.22726
5998	0.9995	0.571726	0.571726	1.18E-07	6.81099	6.81058	0.000409	87.0065	95.5132	8.50667
5999	0.999667	0.572862	0.572862	1.11E-16	6.82548	6.82772	0.002236	86.9165	110.157	23.2408
6000	0.999833	0.574001	0.574001	4.41E-07	6.83996	6.84149	0.001527	86.8261	55.0786	31.7475
6000	1	0.575142	0.575142	0	6.85442	6.84608	0.008346	86.7356	0	86.7356

Справка

Сетка сплайна n = 3000 Контрольная сетка N = 6000

Погрешность сплайна на контрольной сетке $\max |F(x)-S(x)| = 5.08369e-07$ при x = 0.000166667

Погрешность производной на контрольной сетке

 $\max |F'(x)-S'(x)| = 0.00962251$ при x = 0

Погрешность второй производной на контрольной сетке $\max |F''(x)-S''(x)| = 100$ при x=0

7. Наблюдения и выводы

Для основной и осциллирующей функций мы видим, что при увеличении шага в 10 раз норма погрешности сплайна на контрольной сетке уменьшается в 100 раз (со вторым порядком), норма погрешности первой производной уменьшается в 10 раз (с первым порядком), а норма погрешности второй производной почти не меняется. На концах отрезка наблюдается самая большая погрешность второй производной сплайна. Это происходит потому, что заданы ЕГУ. Уменьшить разницу можно заменив ГУ на значения второй производной на концах отрезка [a;b].

8. Код программы (основные алгоритмы)

Вычисление коэффициента а:

```
for (int i = 0; i <= n; i++)
{
    X[i] = a + i * h;
    A[i] = function(X[i]);
}
Вычисление коэф
```

Вычисление коэффициента с:

```
vector<double> Alpha(n + 1);
vector<double> Beta(n + 1);

Alpha[1] = 0;
Beta[1] = mu1;
for (int i = 1; i <= n - 1; i++)
{
    Alpha[i + 1] = (-1.0) * h / (Alpha[i] * h + 4 * h);
    Beta[i + 1] = ((-6.0 / h) * (A[i + 1] - 2 * A[i] + A[i - 1]) + Beta[i] * h) / (-4 * h - Alpha[i] * h);
}

C[n] = mu2;
for (int i = n; i >= 1; i--)
{
    C[i - 1] = Alpha[i] * C[i] + Beta[i];
}

Вычисление коэффициента b, d:
for (int i = 1; i <= n; i++)
}</pre>
```

Сплайн:

D[i] = (C[i] - C[i - 1]) / h;

```
double Spline::spline(double x)
{
    for (int i = 1; i <= n; i++)
        {
            if ((x >= X[i - 1]) && (x <= X[i]))
            {
                return (A[i] + B[i] * (x - X[i]) + C[i] / 2 * pow((x - X[i]), 2) + D[i] / 6 * pow((x - X[i]), 3));
            }
            return 0.0;
}</pre>
```

Первая производная сплайна:

B[i] = (A[i] - A[i - 1]) / h + h * (2 * C[i] + C[i - 1]) / 6;

```
\label{eq:continuous_spline} \begin{split} & \text{double Spline::spline\_first\_derivative(double \ x)} \ \{ & \quad \text{for (int } i=1; \ i <=n; \ i++) \\ & \quad \{ & \quad \text{if ((x >= X[i-1]) \&\& (x <= X[i]))} \\ & \quad \{ & \quad \  \  \end{split}
```

```
return (B[i] + C[i] * (x - X[i]) + D[i] / 2 * pow((x - X[i]), 2));
}
return 0.0;
}
```

Вторая производная сплайна: