BLG 311E – FORMAL LANGUAGES AND AUTOMATA SPRING 2016 HOMEWORK 4

1) Use pumping lemma to prove that the language defined below is non-regular (i.e. cannot be accepted by any finite automaton).

$$L = cc^r | c \in \{0,1\}^*$$

- **2)** For the language $L = \{a^i b^{i+j} a^j \mid i > 0, j \ge 0 \}$,
 - a) Write the grammar production rules.
 - b) Design a PDA for this language.
 - c) Show how the strings aabbba and aaabbb are accepted by the PDA you designed.

IMPORTANT: You must do this homework by hand and submit it using the box in the secreteriat.

SOLUTIONS:

1) Assumptions:

- Suppose that there exists a finite automaton M having n states and accepting L
- We choose the string $x = 0^n 1^n 1^n 0^n$ so $x \in L$ and $|x| \ge n$

By pumping lemma:

- x = uvw, |v| > 0 and $|uv| \le n$
- For all possible splits that satisfy these rules: $v = 0^m$ where $1 \le m \le n$
- Lemma states that for a regular language all uv^iw must also belong to the language $(i \ge 0)$
- Consider the string uv^2w (i = 2)
- $uv^2w = 0^{n+m}1^n1^n0^n$
- The string does not belong to *L*
- This is a contradiction so *L* is not regular

a)
$$L = \{a^i b^{i+j} a^j \mid i > 0, j \ge 0 \} \Rightarrow L = \{a^i b^i b^j a^j \mid i > 0, j \ge 0 \}$$

 $~~::=~~$
 $::= ab \mid ab$
 $::= ba \mid A$ Chomsky Type 2.

b)
$$M = (S, \Sigma, \Gamma, \delta, s_0, F)$$

 $S = \{q_0, q_1, q_2, q_3, f\}, \Sigma = \{a, b\}, \Gamma = \{a, b, c\}, s_0 = q_0, F = f\}$

$$\delta = \{ \underbrace{[(q_0, a, \Lambda), (q_1, ac)]}_{a}, \rightarrow \text{push } c \text{ to be able to check if the stack is empty}$$

$$\underbrace{[(q_1, a, \Lambda), (q_1, a)]}_{a^{i-1}}, \underbrace{[(q_1, b, a), (q_2, \Lambda)]}_{b}, \underbrace{[(q_2, b, a), (q_2, \Lambda)]}_{b^{i-1}}, \underbrace{[(q_2, \Lambda, c), (f, \Lambda)]}_{accept \ a^i b^i}, \underbrace{[(q_2, b, b), (q_2, bb)]}_{b^{i-1}}, \underbrace{[(q_2, a, b), (q_3, \Lambda)]}_{a}, \underbrace{[(q_3, a, b), (q_3, \Lambda)]}_{a^{j-1}}, \underbrace{[(q_3, \Lambda, c), (f, \Lambda)]}_{accept \ a^i b^{i+j} a^j} \}$$

c)

•							
State	Tape	Stack	Transition Rule	State	Tape	Stack	Transition Rule
q_0	aabbba	Λ	$[(q_0, a, \Lambda), (q_1, ac)]$	q_0	aaabbb	Λ	$[(q_0, a, \Lambda), (q_1, ac)]$
q_1	abbba	ас	$[(q_1,a,\Lambda),(q_1,a)]$	q_1	aabbb	ас	$[(q_1, a, \Lambda), (q_1, a)]$
q_1	bbba	aac	$[(q_1,b,a),(q_2,\Lambda)]$	q_1	abbb	aac	$[(q_1, a, \Lambda), (q_1, a)]$
q_2	bba	ас	$[(q_2,b,a),(q_2,\Lambda)]$	q_1	bbb	aaac	$[(q_1,b,a),(q_2,\Lambda)]$
q_2	ba	С	$[(q_2, b, c), (q_2, bc)]$	q_2	bb	aac	$[(q_2,b,a),(q_2,\Lambda)]$
q_2	а	bc	$[(q_2,a,b),(q_3,\Lambda)]$	q_2	b	ас	$[(q_2,b,a),(q_2,\Lambda)]$
q_3	Λ	С	$[(q_3, \Lambda, c), (f, \Lambda)]$	q_2	Λ	С	$[(q_2,\Lambda,c),(f,\Lambda)]$
f	Λ	Λ		f	Λ	Λ	