1. Meios de cultivo celular

1.1 Antibióticos e antifúngicos

Os antibióticos e o antifúngico utilizados tem por objetivo controlar pequenas contaminações provenientes da manipulação dos cultivos. Porém, a manipulação cuidadosa, evitando a introdução de contaminantes, é o meio mais eficaz de previnir estas.

As quantidades utilizadas são referentes à <u>1 litro de meio</u>, independente do meio utilizado. Quando da utilização de meio contendo 2x ou 5x (antibiótico e anfigúngico), apenas multiplicar estes valores.

Reagentes	Quantidade
Penicilina (10.000UI/mL) e Estreptomicina (10mg/mL)	10 mL
Ciprofloxacina (1 comprimido de 500mg dissolvido em 50mL*)	1mL
Anfotericina B (250μg/mL)	2,25mL

^{*}Filtrar usando filtro de 0,22 µm

1.2 Meio Essencial Mínimo (MEM)

- 1. Pesar 9,77g de MEM; 2,2g de bicarbonato de sódio.
- 2. Acrescentar 1 litro de água destilada e agitar até dissolver por complete, utilizando agitador magnético.
- 3. Filtrar a solução resultante e separar uma alíquota para o exame bacteriológico.
- 4. Incubar na estufa (azul) por 72 horas à 37°C.
- 5. Acrescentar antibióticos e antifúngicos.
- 6. Distribuir em frascos menores e armazenar em geladeira (4°C).

1.3 Meio Essencial Mínimo 2X (MEM 2X)

- 1. Pesar 19,54g de MEM; 4,4g de bicarbonato de sódio.
- 2. Acrescentar 1 litro de ultra pura (Milli- Q®) e agitar até dissolver por completo.
- 3. Filtrar a solução resultante e separar uma alíquota para o exame bacteriológico.
- 4. Incubar na estufa (azul) por 48 horas à 37°C.
- 5. Acrescentar antibióticos e antifúngicos (deve-se adicionar <u>o dobro</u> do que seria utilizado no MEM).
- 6. Distribuir em frascos menores e armazenar em geladeira.

1.4 Meio RPMI

- 1. Pesar 10,4 de RPMI; 2g de bicarbonato de sódio.
- 2. Acrescentar 1 litro de água destilada e agitar até dissolver por completo.
- 3. Filtrar a solução resultante e separar uma alíquota para o exame bacteriológico.
- 4. Incubar na estufa (azul) por 48 horas à 37°C.
- 5. Distribuir em frascos menores e armazenar em geladeira.

OBS.:

- Acrescentar antibióticos e antifúngicos apenas se achar necessário ou se quem for usar solicitar.

1.5 Meios F10 e 199

- 1. Separar um balão volumétrico (estéril) e acrescentar 2L de Água ultra pura (Milli- Q®).
- 2. Acrescentar um frasco inteiro de F₁₀ ou MEIO 199
- 3. Acrescentar 2,4g de bicarbonato de sódio

- 4. Filtrar e separa uma amostra para o exame bacteriológico.
- 5. Incubar na estufa (azul) por 48 horas à 37°C.

1.6 Tripsina

- 1. Pesar e acrescentar NaCl, glicose, bicarbonato de sódio, KCl, tripsina e EDTA.
- 2. Acrescentar 1L de água ultra pura (Milli-Q®) e 1,4 mL de Vermelho de Fenol
- 3. Filtrar a solução resultante.
- 4. Incubar na estufa (azul) por 48 horas à 37°C.
- 5. Distribuir em frascos de aproximadamente 70mL e congelar

Reagentes	Quantidades
Cloreto de Sódio - NaCl	8g
Glicose	1g
Bicarbonato de Sódio - NaHCO3	0,35g
Cloreto de Potásio - KCl	0,4g
Tripsina	0,5g
EDTA	0,25g
Vermelho de Fenol 1%	1,4mL
Água ultra pura qsp	1L

1.7 PBS (Tampão fosfato-salino ou Phosphate buffered saline) – pH 7,4

Reagente	Concentração final (mmol)	Quantidade (gramas)
NaCl	137	8
KC1	2,7	0,2
Na ₂ HPO ₄ • 2 H ₂ O	8,1	1,44
$\mathrm{KH_{2}PO_{4}}$	1,76	0,24
Água qsp	-	1 litro

A solução de PBS deve ter um pH ajustado para 7,4. A fórmula descrita acima é para a preparação de PBS 1X, porém para facilitar a rotina laboratorial, este pode ser preparado na

concentração de 10X. Para isso, deve-se multiplicar a quantidade de todos os sais por 10, porém estes serão solubilizados em apenas 1 litro de água. Após a preparação, este pode ser ou não autoclavado para posterior armazenamento.

1.8 Soro Equino

Após a coleta do sangue equino, armazenar na geladeira até a separação do soro, armazenar em um frasco limpo. Adicionar antibiótico e antifúngicos.