1. Jordan Canonical Form

1.1. Triangular Form.

<u>Definition</u>. let $T: V \to V$ be a linear operator, a subspace $W \subseteq V$ is said to be invariant under T if $T(W) \subseteq W$

Remark. $\{0\}, V, Ker(T), Im(T), E_{\lambda} \text{ are } T\text{-invarient}$

<u>Definition.</u> Let $T: V \to V$ be a linear operator on a finite dimension vector space we say that V is triangularizable $\Leftrightarrow \exists$ a order basis $\beta \ni [T]^{\beta}_{\beta}$ is upper triangular

Example(triangularizable matrix)

Consider $\mathbb{F} = =C$, $V = \mathbb{C}^4$, let β be a order basis of V, $\beta = \{e_1, e_2, e_3, e_4\}$

$$[T]_{\beta}^{\beta} = \begin{bmatrix} 1 & 1-i & 2 & 0 \\ 0 & 1 & i & 0 \\ 0 & 0 & 1-i & 3+i \\ 0 & 0 & 0 & 1-i \end{bmatrix}$$

Clearly $[T]^{\beta}_{\beta}$ is upper triangular, and let w_i be the subspace of \mathbb{C}^4 spanned by the first i vectors in the standard ordered basis, clearly, $T(w_i) \subseteq w_i = \{T(w) \mid w \in W\} = Im(T|w)$

Propos 1

let V be a finite vector space, let $T: V \to V$ be a linear operator and $\beta = \{x_1, \dots, x_n\}$ be a basis for V, then

 $[T]^{\beta}_{\beta}$ is upper triangle \Leftrightarrow the subspace $w_i = \operatorname{span}(x_1, \dots, x_i)$ is T-invariant

Note that the subspace w_i in **Prop 1** related follow

$$\{0\} \subseteq w_i \subseteq \cdots \subseteq w_{n-1} \subseteq w_n = V$$

we say that w_i forms an hands up sequence of subspaces.

on the other hand, a given linear operator can be a upper triangle, we must to construct the \nearrow sequence of T-invariant subspace

$$\{0\}\subseteq w_1\subseteq\cdots\subseteq w_n$$

 $T|_w:W\to W$ is a linear mapping, T_W where W is a T-invariant subspace

Propos 2

Let $T: V \to V, W \leq V$ is a T-invariant, where V is a finite dimension vector space. Then the character polynomial of $T|_W$ divides the c.p. of T

Proof. (Thm 5.21 from Friedberg) **not today**

Corollary. Every eigenvalue of $T|_W$ is also an eigenvalue of T, i.e. the eigenvalue of $T|_W$ is a subset of the eigenvalue of T on V,

Review(Diagonal's condition)

Let $T: V \to V$ be a linear operator, where V is a finite dimension vector space, $\lambda_1, \dots, \lambda_n$ are distinct eigenvalues, m_i be the multiplicity of λ_i , as a root number of the c.p. of T, Then

T is diagonal
$$\Leftrightarrow m_1 + \cdots + m_n = \dim(V), \dim(E_{\lambda_i}) = m_i$$

The proof is Thm. $5.9 \sim$ Thm. 5.11 from Friedberg It means that

- 1. $V = E_{\lambda_1} \oplus \cdots \oplus E_{\lambda_n}$ (From Exercise 5-2-20 Friberg)
- 2. m_i is algebraic multiplicity, $\dim(E_{\lambda_i})$ is geometric multiplicity.

Theorem (Schur). Let V be a finite dimensional vector space over \mathbb{F} and $T:V\to V$ be an linear operator, then T is triangular \Leftrightarrow the c.p. have $\dim(V)$ roots (counted with multiplicities) in \mathbb{F}

Remark.

- * if $F = \mathbb{C}$ (algebraic closure), then, by the Fundamental theorem of Algebra, every matrix $A \in M_{n \times n}(\mathbb{C})$ can be a triangularized
- * if $F = \mathbb{R}(x^2 + 1 \text{ does not split on } \mathbb{R})$ consider the rotation matrix R_{θ} where $0 < \theta < \pi$

Lemma. Let V be a finite dimensional vector space over \mathbb{F} and $T:V\to V$ be an linear operator, and assume that the characteristic polynomial of T has $n=\dim(V)$ roots in \mathbb{F} . If $W\subsetneq V$ is an invariant subspace under T, then there exists a vector $x\neq 0$ in V such that $x\notin V$ is an invariant subspace under T, then there exists a vector $x\neq 0$ in V such

★ we need to use this lemma to create \nearrow subspaces

Proof. Define the P and S first

let $\alpha = \{x_1, \dots, x_k\}$ be a basis for W, and extend α by adjoint $\alpha' = \{x_{k+1}, \dots, x_n\}$ to form a basis $\beta = \alpha \cup \alpha'$ for V, let $w' = \operatorname{span}(\alpha')$. Define a linear operator $P: V \to V$ by

$$P(a_1x_1 + \cdots + a_nx_n) = a_1x_1 + \cdots + a_kx_k \text{ (projection, } V = W \oplus W')$$

Clearly, W' = Ker(P), W = Im(P), $P^2 = P$, Moreover I - P is also the projection on W' with kernel W

$$(I - P)(a_1x_1 + \dots + a_nx_n) = I(a_1x_1 + \dots + a_nx_n) - P(a_1x_1 + \dots + a_nx_n)$$

$$= a_1x_1 + \dots + a_nx_n - a_1x_1 + \dots + a_kx_k = a_{k+1}x_{k+1} + \dots + a_nx_n$$
Further more $(I - P)^2 = (I - P)(I - P) = I - P^2 - P + P = I - P^2 = I - P$

if the basis is orthogonal basis, $W' = W^{\perp}(Gramm \text{ schmit})$, and P is an orthogonal projection let $S = (I - P) \circ T$, since Im(I - P) = W', so $Im(S) \subseteq Im(I - P) = W'$, i.e. W' is S-invariant subspace, $\therefore S(W') \subseteq W'$

Claim the set of eigenvalues of $S|_W$ is a subset of the root of eigenvalues of T

First, since W is T-invariant, then $[T]^{\beta}_{\beta} = \begin{pmatrix} A & B \\ O & C \end{pmatrix}$

Clearly, $A = [T|_W]^{\alpha}_{\alpha}$ is $k \times k$ block, $C = [S|_{W'}]^{\alpha'}_{\alpha'}$ is a $(n-k) \times (n-k)$ block, Hence

$$\det(T - \lambda I) = \det(T|_W - \lambda I) \cdot \det(S|_{W'} - \lambda I)$$

by prop.2 & corollary, we down since all the eigenvalue of T lie in F(the c.p. has n roots) by claim, same is true of all the eigenvalues of $S|_{W'}$ so $\exists x \neq 0, x \in W' \ni Sx = \lambda x$, for some $\lambda \in \mathbb{F}$, i.e.

$$(I-P)(Tx) = \lambda x \implies Tx - PTx = \lambda x \implies Tx = \lambda x + PTx \in \operatorname{span}(x) + W$$

Finally $W + \operatorname{span}(x)$ is T-invariant, i.e. $y \in W + \operatorname{span}(x) \Longrightarrow T(y) \in W + \operatorname{span}(x)$ Give $y \in W + \operatorname{span}(x)$, then, $\exists z \in W_1, \lambda \in F \Longrightarrow y = z + \lambda x$ $T(y) = T(z + \lambda x) = T(z) + \lambda T(x) = T(z) + \lambda (x) + \lambda PT(x)$

We finish this lemma, and we are going to proof Schur lemma

Proof. (\Rightarrow) T is triangular

 \implies \exists order basis β of $V \implies [T]_{\beta}$ is upper triangular \implies the eigenvalues of T are the diagonal entries in $F \implies$ the c.p. splits

Proof. (\Leftarrow) Suppose the condition holds let λ be eigenvalues of T, x_i is eigenvector of T correspond with λ , $W_1 = \operatorname{span}(\{x_i\})$ Clearly, W_1 is T-invariant by lemma, $\exists x \notin W, \ x \neq 0 \ni W_1 + \operatorname{span}(\{x_1\})$ is T-invariant. continue the processes $W_1 \subseteq \cdots \subseteq W_k$ with $W_i = \operatorname{span}(\{x_1, \cdots, x_i\}) \ \forall i$ By lemma, $\exists x_{k+1} \notin W_k \ni W_{k+1} = W_k + \operatorname{span}(x_{k+1})$ is also T-invariant \therefore By prop.1, we are done.

Corollary. if $T: V \to V$ is triangular with eigenvalues λ_i and m_i is its multiplicities, then \exists an order basis β for $V \ni [T]_{\beta}$ is upper triangular matrix, and the diagonal entries of $[T]_{\beta}$ are m_1, λ_1 followed by $m_2\lambda_2$'s and so on.

Recall

In Chapter 4, If T is a linear mapping (or matrix) and $p(t) = a_n t^n + a_{n-1} t^{n-1} T^{n-1} + \cdots + a_0$ is a polynomial, we can define a new linear mapping

$$p(T) = a_n T^n + a_{n-1} T^{n-1} + \dots + a_1 I$$

Theorem. Let $T: V \to V$ be a linear operator on V which is a finite dimension vector space and $p(t) = \det(T - tI)$ be its c.p Assume that p(t) has $\dim(V)$ roots in F over which V is defined, then p(T) = 0 (which is a zero transformation on V)

Proof. (Exercise 6-4-16 in Friedber) For all the vector S in some basis of $V \to p(T)(x) = 0$ (scalar), by Schur lemma, \exists order basis $\beta = \{x_1, \dots, x_n\}$ for $V \Longrightarrow w_i = \text{span}(\{x_1, \dots, x_i\})$ $\forall 1 \le i \le n$ is T-invariant, all the eigenvalues of T lie in F, so $p(t) = \pm (t - \lambda) \cdots (t - \lambda_n)$ for some $\lambda_i \in F$ (not necessary distinct), if the factors here are ordered in the same fashion as the diagonal entries of $[T]^{\beta}_{\beta}$, then

$$T(x_i) = \lambda_i x_i + y_{i-1}, \ y_i \in W_{i-1}, \ i \ge 2, \ T(x_1) = \lambda_1 x_1$$

Now, we use the induction on i

- · For i = 1, $p(T)(x_1) = \pm (T - \lambda_1 I) \cdots (T - \lambda_n I)(x_1) = \pm (T - \lambda_2 I) \cdots (I - \lambda_n I)(T - \lambda_1)(x_1) = 0$
- · Suppose that: $p(T)(x_i) = 0, \forall i \leq k$
- · Consider $p(T)(x_{k+1})$, clearly $(T \lambda_1 I) \cdots (T \lambda_k I)$ are needed to end x_i to 0, for $i \leq k$ $p(T)(x_{k+1}) = I(T \lambda_1 I) \cdots (T \lambda_n I)(T \lambda_{k+1} I)(x_{k+1})$ $= \pm (T \lambda_1 I) \cdots (T \lambda_n I)(y_k) = 0$ By induction, we are done

Suppose that $A \in M_{n \times n}(F)$ if A is invertible, i.e. $\det(A) \neq 0$, consider the c.p. of A

$$\det(A - tI) = (-1)^n t^n + \dots + a_1 t + a_0, \ t = 0 \implies a_0 = \det(A) \neq 0$$

by thm 4(Cayley-Hamilton), $p(A) = (-1)^n A^n + \cdots + \det(A)I = 0$

$$\left(\frac{-1}{\det(A)}\right)\left((-1)^n A^{n-1} + \dots + a_1 I\right) = A^{-1}$$

1.2. A Canonical form for nilpotent mappings.