

1st International Conference on Hot Stamping of UHSS

Aug. 21-24, 2014, Chongqing, China

Nb alloyed press hardening steel with improved properties for crash performance

Bian Jian, Hardy Mohrbacher, Wang Li, Lu Hongzhou and Wang Wenjun

Reporter: Bian Jian

Content

- □ State of art in press hardening
 □ Why to develop new press hardening steels?
 □ Metallurgical concepts
- **□** Major results
- **□** Application examples

PHS has increased steadily in production capacity

PHS has increased steadily in BIW application

FIAT Alfa Romeo MiTo 2008 14% PHS Porsche
Panamera 2009
16% PHS

VOLVO V60 2010 18% PHS

Golf-VII-2012 **28% PHS**

VOLVO XC90-2015 **40% PHS**

PHS has high potential for future application

We must get ready for the challenge!

Why to develop new PHS?

PHS is mainly used to strengthen passenger compartment

Why to develop new PHS?

- **✓** Control the intrusion
- **✓** Protect passengers

	Constant sheet with patch 1.40 → ← 2.20	TRB ← 2.00 ← 2.50	CFK + TRB ← 1.10	
		← 2,50 ← 2,50 ← 2,00 ← 1,45	 2,00 2,20 1,80 2,00 1,45 	
weight [kg]	7.3 kg	6.3 kg	5.4 kg	
Δ weight/ vehicle[kg]	-	2.0 kg	3.8 kg (1.8 kg)*	
Δ weight [%]	-	14 %	26 % (14 %)*	

Due to limited formability PHS will fracture if the impact load is beyond the fracture resistance

Source: Mubea

Why to develop new PHS?

It is important to improve these material properties to make sure that B-pillar will not collapse in the crash situation under severe conditions (high speed, low temperature and [H] embrittlement)

Toughness property is important for the crash performance of press hardening steel

CBMM

Importance of bendability to crash behavior

Sufficient bending angle to absorb crash energy without fracture

COMPANHIA BRASILEIRA DE METALURGIA E MINERAÇÃO

INOVAR • RESPEITAR • COMPETIR

Hydrogen induced cracking can cause severe damages to PHS

Source: G. Lovicu, el. at

Metallurgical solutions to improve crash performance of PHS

- ✓ Grain refinement to improve the toughness
- ✓ [H] trapping to improve the cracking resistance

Metallurgical concepts for new press hardening steel

(max. wt.%)	C	Si	Mn	P	S	Cr + Mo	В	Ti	Nb
22MnB5	0.25	0.4	1.4	0.025	0.01	0.5	0.005	0.05	n.a.
Concept 1	A 31 ma4 4 a								Add >0.05
Concept 2	Adjust to target			As low as possible			No B	No Ti	Add >0.05
Concept 3	strength					Add Mo ~0.15	No B	No Ti	Add >0.05

Concept 1: to provide grain refinement

Concept 2: to avoid large inclusions

Concept 3: to strengthen grain boundaries of prior austenite

Target of development

- **✓** Improve the toughness by grain refinement
- **✓** Improve the bendability
- ✓ Improve [HIC] cracking by hydrogen trapping

Grain refinement by Nb microalloying for PH process

Evolution of prior austenite grain size with reheating temperature

Impact of Nb alloying on PAGS and impact toughness of PHS

Improvement of bendability of PHS by Nb microalloying

Hydrogen charging test under the constant load

Test target

Investigation of critical fracture stress against HIC induced cracking over 100h [H] charging

Nb microalloying increases resistance of PHS against [HIC] cracking under the test conditions

 σ_{HIC} : Critical fracture stress after 100h [H] charging under constant load

Nb addition makes PHS less susceptible to [H] embrittlement

Hydrogen permeation test

Influence of Nb microalloying on the diffusivity of hydrogen in PHS (22MnB5+Nb)

Hydrogen is trapped by Nb precipitates

COMPANHIA BRASILEIRA DE METALURGIA E MINERAÇÃO

INOVAR • RESPEITAR • COMPETIR

Mechanism of improvement to [HIC] cracking of PHS by Nb microalloying

Nb microalloying reduces the diffusivity of [H] in the PHS and prevents the segregation of [H] around inclusions and grain boundaries to cause damages

Local damage caused by [H] enrichment

Intergranular fracture caused by [H] embrittlement

COMPANHIA BRASILEIRA DE METALURGIA E MINERAÇÃO

INOVAR • RESPEITAR • COMPETIR

Overall improvement of crash relevant material properties by Nb microalloying

Nb alloyed press hardening steel has become reality

Mark	O	Si	Mn	В	others
1800	0.30	0.2	1.8	0.002	Nb: 0.08%

- 1800MPa Hot Stamped Steel (World's First Mass Production*)
 - 4.8kg weight reduction from current SUV

*according to our own research

1800MPa hot stamping is applied to front / rear bumper reinforcements

COMPANHIA BRASILEIRA DE METALURGIA E MINERAÇÃO

INOVAR • RESPEITAR • COMPETIR

Baosteel made industrial trials to produce Nb alloyed press hardening steels

Summary

- ☐ PHS has high potential in BIW application
- ☐ The conventional alloying concept (22MnB5) has high potential for further improvement
- Nb metallurgy can optimize the crash performance of PHS due to improvement in:

impact toughness bendability resistance to [HIC] cracking

Thank you for your attes

Dr. Bian Jian

Director
Consultant for CBMM in Brazil

Niobium Tech Asia Pte Ltd

8 Cross Street, #11-00 PWC Building Singapore 048424

Phone: +65 6303 0294 • Fax: +65 6303 0299

Mobile: +65 9459 2358

Email: jian.bian@niobiumtech.com