

Prof. Dr. Anne Frühbis-Krüger M.Sc. Marco Melles

## Präsenzaufgaben 9 - Modul mat110

Keine Abgabe vorgesehen

**Präsenzaufgabe 9.4.** Finden Sie einen Körper K, welcher ein isomorphes Bild von k enthält und in dem f eine Nullstelle besitzt. Beschreiben Sie K, die Einbettung von k in K und das Bild dieser Einbettung explizit. Identifizieren Sie k mit seinem Bild in K. Finden Sie dann das Element  $\alpha \in K$ , sodass  $f(\alpha)=0$  und berechnen Sie die Darstellung von  $\alpha^5$  in K. Wieviele Elemente hat K?

(a). 
$$f = t^3 + 3t^2 + t + 2 \in \mathbb{Z}_5[t], k = \mathbb{Z}_5$$
.

**(b).** 
$$f = 12t^4 + 9t^2 + 6t + 5 \in \mathbb{Q}[t], k = \mathbb{Q}.$$

**Präsenzaufgabe 9.5.** Bestimmen Sie für die folgenden Polynome  $f_i \in \mathbb{Q}[t]$  jeweils eine algebraische Körpererweiterung  $K \supseteq \mathbb{Q}$  in dem  $f_i$  zerfällt und den Körpererweiterungsgrad  $[K : \mathbb{Q}]$ :

(a) 
$$f_1 = t^2 - 3$$

(a) 
$$f_1 = t^2 - 3$$
 (b)  $f_2 = t^4 - 2t^2 - 2$  (c)  $f_3 = t^6 + 1$  (d)  $f_4 = t^5 - 1$ 

(c) 
$$f_3 = t^6 +$$

(d) 
$$f_4 = t^5 - 1$$

Präsenzaufgabe 9.6. Sei  $f := t^8 + t \in \mathbb{Z}_2[t]$ .

- (a). Zerlegen Sie f in irreduzible Polynome aus  $\mathbb{Z}_2[t]$ .
- (b). Zeigen Sie, dass es einen irreduziblen Faktor  $h \in \mathbb{Z}_2[t]$  von f und eine Körpererweiterung  $K \supseteq \mathbb{Z}_2$  gibt, sodass h eine Nullstelle  $\alpha \in K$  hat mit  $\alpha^3 = \alpha + 1$ . Geben Sie eine Basis von K als  $\mathbb{Z}_2$ -Vektorraum an und bestimmen Sie  $[K:\mathbb{Z}_2]$ .
- (c). Stellen Sie  $\alpha^k \in K$  für alle  $k \in \mathbb{N}_0$  bezüglich der Basis aus (b) dar.
- (d). Zeigen Sie, dass f über K zerfällt indem Sie f in K[t] in Linearfaktoren zerlegen. Stellen Sie die Linearfaktoren mit Hilfe der Basis aus (b) dar.