MODULE 19

GOODNESS-OF-FIT TEST

Objectives:

- 1. Identify when a Goodness-of-Fit Test is appropriate.
- 2. Perform the 11 steps of a significance test in a Goodness-of-Fit Test situation.

Contents

19.1	Goodness-of-Fit Test Specifics	 . 227	
19.2	Goodness-of-Fit Test in R	 233	

T is common to determine if the frequency of individuals in the levels of a categorical response variable follow frequencies suggested by a particular theory or distribution. The simplest of these situations occurs when a researcher is making a hypothesis about the percentage or proportion of individuals in one of two categories. The "distribution" of individuals in two categories comes from the proportion in the hypothesis for one group and one minus the proportion in the hypothesis for the other group. In situations with more than two levels, the "distribution" of individuals into the categories likely comes from the hypothesis that a particular theoretical distribution holds true. For example, a researcher may want to determine if frequencies predicted from a certain genetic theory are upheld by the observed frequencies found in a breeding experiment, if the frequency that a certain animal uses habitats in proportion to the availability of those habitats, or if the frequency of consumers that show a preference for a certain product (over other comparable products) is non-random.

In each of these cases, the theoretical distribution articulated in the research hypothesis must be converted to statistical hypotheses that will then be used to generate expected frequencies for each level. These expected frequencies will then be statistically compared to the observed frequencies to determine if the theoretical distribution represented in the null hypothesis is supported by the data. The method used for comparing the observed to expected frequencies, where the expected frequencies come from a hypothesized theoretical distribution, is a Goodness-of-Fit Test, the subject of this module.

19.1 Goodness-of-Fit Test Specifics

19.1.1 The Hypotheses

A Goodness-of-Fit Test is used when a single categorical variable has been recorded and the frequency of individuals in the levels of this variable are to be compared to a theoretical distribution. In its most general form the statistical hypotheses for the Goodness-of-Fit Test will be "wordy," relating whether the "distribution" of individuals into the levels of the response variable follows a specific theoretical distribution or not. The null hypothesis will generally be like H_0 : "the distribution of individuals into the levels follows the 'theoretical distribution'", where 'theoretical distribution' will likely be replaced with more specific language. For example, the research hypothesis that states that "50% of students at Northland are from Wisconsin, 25% are from neighboring states, and 25% are from other states" would be converted to H_0 : "the proportion of students from Wisconsin, neighboring states, and other states is 0.50, 0.25, and 0.25, respectively" with an H_A : "the proportion of students from Wisconsin, neighboring states, and other states is NOT 0.50, 0.25, and 0.25, respectively."

The statistical hypotheses for a Goodness-of-Fit Test are "wordy" and relate the observed distribution of individuals into levels of the categorical variable to those expected from a theoretical distribution.

The hypotheses are simpler, but you must be more careful, when there are only two levels of the response variable. For example, a research hypothesis of "less than 40% of new-born bear cubs are female" would be converted to H_0 : "the proportion of bear cubs that are female and male is 0.40 and 0.60, respectively" with an H_A : "the proportion of bear cubs that are female and male is NOT 0.40 and 0.60, respectively." However, these hypotheses are often simplified to focus on only one level as the other level is implied by subtraction from one. Thus, these hypotheses are more likely to be written as H_0 : "the proportion of bear cubs that are female is 0.40" with an H_A : "the proportion of bear cubs that are female is NOT 0.40."

The statistical hypotheses for a Goodness-of-Fit Test with only two levels of the categorical variable often relate only to the proportion or percentage of individuals in one level.

One may also have expected, from the wording of the research hypothesis about the sex of bear cubs, that the alternative hypothesis would have been H_A : "the proportion of bear cubs that are female is LESS THAN 0.40." Recall from Section 18.1, however, that the chi-square test statistic always represents a two-tailed situation. Thus, the H_A here reflects that constraint. The researcher will ultimately be able to determine if the proportion is less than 0.40 if the p-value from the Goodness-of-Fit Test indicates a difference and the observed proportion of female bear cubs is less than 0.40.

19.1.2 The Tables

For a Goodness-of-Fit Test, the data are summarized in an observed frequency table as in Module 6. Additionally, a table of expected frequencies must be constructed from the theoretical distribution in the null hypothesis and the total number of observed individuals (n). Specifically, the expected frequencies are found by multiplying the expected proportions from the theoretical distribution in the null hypothesis by n. For example, consider this situation,

Bath and Buchanan (1989) surveyed residents of Wyoming by distributing a mailing to random residents and collecting voluntarily returned surveys. One question asked of the respondents was, "Do you strongly agree, agree, neither agree or disagree, disagree, or strongly disagree with this statement? – 'Wolves would have a significant impact on big game hunting opportunities near Yellowstone National Park'." The researchers hypothesized that more than 50% of Wyoming residents would either disagree or strongly disagree with the statement. Of the 371 residents that returned the survey, 153 disagreed and 43 strongly disagreed with the statement.

At first glance it may seem that this variable has five levels – i.e., the levels of agreement offered in the actual survey. However, the researcher's hypothesis collapsed the results of the survey question into two levels: (1) strongly disagree or disagree combined and (2) all other responses. Thus, the statistical hypotheses for this situation are H_0 : "the proportion of respondents that disagreed or strongly disagreed is 0.50" and H_A : "the proportion of respondents that disagreed is NOT 0.50."

The expected frequencies in each level are derived from the total number of individuals examined and the specific null hypothesis. For example, if the null hypothesis is true, then 50% of the 371 respondents would be expected to disagree or strongly disagree with the statement. In other words, 371*0.50=185.5 individuals would be expected to disagree or strongly disagree. Furthermore, the other 50%, or 371*(1-0.50)=185.5 would be expected to "not" disagree or strongly disagree. The expectations for the two levels of this variable are summarized in Table 19.1.

Table 19.1. Expected and observed frequency of respondents that disagreed or strongly disagreed (i.e., labeled as "Disagree") with the given statement in the Wyoming survey example.

	Frequency		
Category	Expected	Observed	
"Disagree"	185.5	196	
not "Disagree"	185.5	175	
Total	371	371	

The expected table should maintain at least one decimal in each cell even though the values represent frequencies.

Consider the following situation where construction of expected frequencies is bit more complex.

Mendel's law of independent assortment predicts that the genotypes (i.e., how they look) of the offspring from mating the offspring of a dihybrid cross of homozygous dominant and homozygous recessive parents should follow a 9:3:3:1 ratio. In an experiment to test this, Mendel crossed a pea plant that produces round, yellow seeds (i.e., all dominant alleles, YYWW) with a pea plant that produces green, wrinkled seeds (i.e., all recessive alleles, yyww) such that only round, yellow heterozygous offspring (i.e., YyWw) were produced. Pairs of these offspring were then bred. Mendel's theory says that $\frac{9}{16}$ of these offspring should be round, yellow; $\frac{3}{16}$ should be wrinkled, yellow; and $\frac{1}{16}$ should be wrinkled, green. Of 566 seeds studied in this experiment, Mendel found that 315 were round, yellow; 108 were round, green; 101 were wrinkled, yellow; and 32 were wrinkled, green. Use these results to determine, at the 5% level, if Mendel's law of independent assortment is supported by these results.

The statistical hypotheses are as follows,

 H_0 : "the proportion of RY, RG, WY, and WG individuals will be $\frac{9}{16}$, $\frac{3}{16}$, $\frac{3}{16}$, and $\frac{1}{16}$, respectively"

 H_A : "the proportion of RY, RG, WY, and WG individuals will NOT be $\frac{9}{16}$, $\frac{3}{16}$, $\frac{3}{16}$, and $\frac{1}{16}$, respectively"

where RY="round, yellow", RG="round, green", WY="wrinkled, yellow", and WG="wrinkled, green". If these proportions are applied to the n=566 observed offspring, then the following frequencies for each genotype would be expected:

- $\frac{9}{16} \cdot 566 = 318.375$ would be expected to be round, yellow. $\frac{3}{16} \cdot 566 = 106.125$ would be expected to be round, green. $\frac{3}{16} \cdot 566 = 106.125$ would be expected to be wrinkled, yellow.

- $\frac{1}{16} \cdot 566 = 35.375$ would be expected to be wrinkled, green.

These expected frequencies, along with the observed frequencies, are summarized in Table 19.2.

	Frequency		
Category	Expected	Observed	
round, yellow	318.375	314	
round, green	106.125	108	
wrinkled, yellow	106.125	101	
wrinkled, green	35.375	32	
Total	566	566	

Table 19.2. Expected and observed frequency of 566 pea seeds in four types.

The hypothesis test method developed in the following sections will be used to determine if the differences between the expected and observed frequencies is "large" enough to suggest that the observed frequencies do not support the distribution represented in the null hypothesis.

19.1.3 **Specifics**

The Goodness-of-Fit Test is characterized by a single categorical response variable. The hypotheses tested usually cannot be converted to mathematical symbols and are thus "wordy." Specifics of the Goodness-of-Fit Test are in Table 19.3.

It is cumbersome to produce a confidence interval in a Goodness-of-Fit Test because there generally is not a single parameter (i.e., there are as many parameters as levels in the response variable). Confidence intervals can be calculated for the proportion in each level as shown below. However, confidence intervals will only be "hand"-calculated when there are two levels. When using R (as discussed in a subsequent section), confidence intervals will be computed for all levels, no matter the number of levels.

Let p be the population proportion in a particular level and \hat{p} be the sample proportion in the same interval. The \hat{p} is computed by dividing the frequency of individuals in this level by the total number of individuals in the sample (i.e., n). The \hat{p} is a statistic that is subject to sampling variable with that sampling variability measured by $SE_{\hat{p}} = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$ for "large" values of n. For "large" values of n the \hat{p} will follow a normal distribution such that a confidence interval for p is computed using the general confidence interval formula found in Section 14.2 and repeated below:

Table 19.3. Characteristics of a Goodness-of-Fit Test.

• **Hypotheses:** H_0 : "the observed distribution of individuals into the levels follows the 'theoretical distribution'"

 ${\cal H}_A$: "the observed distribution of individuals into the levels DOES NOT follow the 'theoretical distribution' "

• Statistic: Observed frequency table.

• Test Statistic:
$$\chi^2 = \sum_{cells} \frac{(Observed - Expected)^2}{Expected}$$

- df: Number of levels minus 1.
- Assumptions: Expected value in each level is ≥ 5 .
- Confidence Interval (for one level): $\hat{p} \pm Z^* \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$
- When to Use: Categorical response, one population, comparing to a theoretical distribution.

"Statistic" + "scaling factor"
$$*SE_{statistic}$$

where the scaling factor is the familiar Z^* . Thus, the confidence interval for p is constructed with

$$\hat{p} \pm Z^* \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Note that one does not need to worry about lower and upper bounds, only confidence intervals will be computed, because of the two-tailed nature of the chi-square test statistic.

In the Wyoming survey example, the proportion of respondents in the sample that either disagreed or strongly disagreed was $\hat{p} = \frac{196}{371} = 0.528$. The standard error for this sample proportion is $\sqrt{\frac{0.528(1-0.528)}{371}} = 0.026$. For a 95% confidence interval, $Z^* = \pm 1.960.^1$ Thus, the confidence interval is $0.528 \pm 1.960 * 0.026$ or 0.528 ± 0.051 or (0.477, 0.579). Therefore, one is 95% confident that the population proportion that either disagreed or strongly disagreed is between 0.477 and 0.579. Because there are only two levels in this example it can also be said with 95% confidence that the population proportion that did not either disagree or strongly disagree is between 0.421 and 0.523.

19.1.4 Example - \$1 Coins

Consider the following situation,

USA Today (June 14, 1995) reported that 77% of the population opposes replacing \$1 bills with \$1 coins. To test if this claim holds true for the residents of Ashland a student selected a sample of 80 Ashland residents and found that 54 were opposed to replacing the bills with coins. Develop a hypothesis test (at the 10% level) to determine if the proportion of Ashland residents that are opposed to replacing bills with coins is different from the proportion opposed for the general population.

¹This Z^* is computed with distrib(0.975,type="q")

The 11-steps (Section 15.1) for completing a full hypothesis test for this example are as follows:

- 1. $\alpha = 0.10$.
- 2. H₀: "the proportion of Ashland residents that oppose replacing the \$1 bill with the \$1 coin is 0.77" vs. H_A : "The proportion of Ashland residents that oppose replacing the \$1 bill with the \$1 coin is NOT 0.77.
- 3. A Goodness-of-Fit Test is required because (a) a single categorical variable was recorded (opinion about \$1 coing), (ii) a single population was sampled (Ashland residents), and (iii) the frequency of responses is being compared to a hypothesized distribution in the null hypothesis.
- 4. The data appear to be part of an observational study with no clear indication of random selection of individuals.
- 5. The expected number in the "oppose" level is 80 * 0.77 = 61.6. The expected number in the "do not oppose category is 80 * 0.23 = 18.4. These expectations are shown in the table in the next step. The assumption of more than five individual in all cells of the expected table has been met.
- 6. The observed table is shown below (along with the expected table).

	Frequency		
Level	Expected	Observed	
"Oppose"	61.6	54	
"Do Not Oppose"	18.4	26	
Total	80	80	

- 7. $\chi^2 = \frac{(61.6 54)^2}{55} + \frac{(18.4 26)^2}{25} = 0.938 + 3.139 = 4.077$ with 2 1 = 1 df. 8. p-value=0.0435.
- 9. H_0 is rejected because the $p-value < \alpha = 0.10$).
- 10. The proportion of Ashland residents that oppose replacing the \$1 bill with the \$1 coin does appear to be different from the proportion (0.77) reported for the general population.
- 11. I am 90% confident that the proportion of all Ashland residents opposed to the \$1 coin is between 0.596 and 0.767. $\left[\frac{54}{80}\pm1.645*\sqrt{\frac{0.68125*0.31875}{80}}=0.68125\pm1.645*0.0521=0.68125\pm0.0857=(0.5956,0.7670).\right]$

R Appendix:

```
( distrib(4.077, distrib="chisq", df=1, lower.tail=FALSE) )
( distrib(0.95, type="q") )
```

Review Exercises

- 19.1 In the same study used in the example of this module, Bohall-Wood (1987) more closely examined the habitat use of the shrikes observed in the open habitat by looking at four "sub-habitats" within these areas. Of the 1456 shrike observations in this habitat, 149 were in "settled" areas, 944 were in improved pastures, 192 were in overgrown pastures, and 171 were in crop fields. In addition, 20.5% of this habitat was considered to be "settled", 58.6% was improved pasture, 10.3% was overgrown pasture, and 10.6% was crop fields. Use these results to determine, at the 5% level, if shrikes found in open areas use the sub-habitats in proportion to their availability. Answer
- Between June 11 and 15, 1993, the Times Mirror Center for People and the Press interviewed 1006 adults concerning their views on media treatment of the then newly inaugurated President Clinton. They found 433 of those sampled felt that news organizations were "criticizing Clinton unfairly." Test the hypothesis (with $\alpha=0.10$) that more than 45% of all adults feel that Clinton has been criticized unfairly. Answer
- (19.3) A random selection of consumers present at the Mall of America were allowed to taste three types of cola (Pepsi, Coke, and a generic brand). After tasting each type (which were supplied to each person in a random order) the person was to select which cola they preferred. The results indicated that 57 people preferred Pepsi, 63 preferred Coke, and 34 preferred the generic brand. Is there evidence, at the 5% level, that these customers prefer one brand over the others? (Answer)
- 19.4 A particular type of corn is known to have one of four types of kernels: purple-smooth, purple-wrinkled, yellow-smooth, and yellow-wrinkled (see figure below). The purple (P) and smooth (S) alleles are dominant. The cross between heterozygous individuals (i.e., PpSs) should produce a 9:3:3:1 ratio of purple-smooth, purple-wrinkled, yellow-smooth, and yellow-wrinkled individuals. Of the kernels shown in the graphic below (a random picture location but not a random selection of each individual) 32 are purple-smooth, 14 are purple-wrinkled, 8 are yellow-smooth, and 4 are yellow-wrinkled. Use the results to determine, at the 5% level, if the theoretical 9:3:3:1 ratio is upheld with these data. Answer

19.2 Goodness-of-Fit Test in R.

19.2.1 Data Format

A Goodness-of-Fit Test is conducted in R with chisq.test(), which requires an observed table as the first argument. This observed table is entered from summarized data using c() or raw data is summarized to a frequency table with xtabs() as in Module 6.

For example, suppose that the frequencies of shrike observations in the "mid-successional", "open", "scattered trees", "woods", and "wetland" habitats shown previously are known to be 43, 1456, 112, 44 and 6, respectively. These summarized values are entered directly into a named vector below

```
> ( obs <- c(MidSucc=43,Open=1456,ScatTree=112,Woods=6,Wetland=44) )
MidSucc Open ScatTree Woods Wetland
43 1456 112 6 44</pre>
```

However, instead of having summarized frequencies, suppose that the recorded habitats in a variable called hab.use in the df data frame. These raw data must be summarized into a frequency table.

♦ If raw un-summarized data are in a data.frame, then the variable in that data.frame must be summarized with xtabs() and assigned to an object before performing the Goodness-of-Fit Test.

19.2.2 Goodness-of-Fit Test

The Goodness-of-Fit Test is computed with chisq.test() with a observed frequencies as the first argument and the following arguments:

- p=: a vector of expected proportions for the levels of the theoretical distribution.
- rescale.p=TRUE: rescales the values in p= to sum to 1. Rescaling is useful if the proportions in p= were rounded or are expected frequencies.
- correct=FALSE: indicates to not use a "continuity correction".²

The results from chisq.test() should be assigned to an object so that useful information can be extracted. The chi-square test statistics and p-value are extracted by typing the name of the saved object, the expected values are extracted by appending \$expected to the object, and a visual of the p-value is obtained by submitting the object to plot(). In addition, confidence intervals for the proportions of individuals in each level are constructed by submitting the saved object to gofCI().

♦ The results from chisq.test() should be assigned to an object.

²Some statisticians argue that small chi-square tables with small sample sizes should be corrected for the fact that the chi-square distribution is a continuous distribution. This correction is applied by simply subtracting 0.5 from each observed-expected calculation. We will not use the continuity correction in this course so that R calculations will match hand calculations.

19.2.3 Example - Loggerhead Shrikes

Consider this situation:

Bohall-Wood (1987) constructed 24 random 16-km transects along roads in counties near Gainesville, FL. Two observers censused each transect once every 2 weeks from 18 October 1981 to 30 October 1982, by driving 32 km/h and scanning both sides of the road for perched and flying shrikes (Lanius ludovicianus). The habitat, whether the bird was on the roadside or actually in the habitat, and the perch type were recorded for each shrike observed. Habitats were grouped into five categories. The number of shrikes observed in each habitat was 1456 in open areas, 43 in midsuccessional, 112 in scattered trees, 44 in woods, and 6 in wetlands. Separate analyses were used to construct the proportion of habitat available in each of the five habitat types. These results were as follows: 0.358 open, 0.047 midsuccessional, 0.060 scattered trees, 0.531 woods, and 0.004 wetlands. Use these data to determine, at the 5% level, if shrikes are using the habitat in proportion to its availability.

The 11-steps (Section 15.1) for a hypothesis test for this example are below:

- 1. $\alpha = 0.05$.
- 2. H_0 : "distribution of habitat use by shrikes is the same as the proportions of available habitat" vs. H_A : "distribution of habitat use by shrikes is NOT the same as the proportions of available habitat."
- 3. A Goodness-of-Fit Test is required because (i) a categorical variable was recorded (habitat use), (ii) a single population was sampled (shrikes in this area), and (iii) the observed distribution is compared to a theoretical distribution.
- 4. The data appear to be part of an observational study where the individuals were not randomly selected but the transects upon which they were observed were.
- 5. There are more than five individuals expected in each habitat level (Table 19.4).
- 6. The statistic is the observed frequency table in Table 19.4.
- 7. $\chi^2 = 2345$ with 4 df (Table 19.5).
- 8. p-value < 0.00005 (Table 19.5).
- 9. H_0 is rejected because the p-value $< \alpha$.
- 10. The shrikes do not appear to use habitats in the same proportions as the availability of the habitat.
- 11. The 95% confidence intervals for the proportion of use in each habitat level are in (Table 19.6). From these results it appears that the shrikes use the "open" habitat much more often and the "woods" habitat mush less often than would be expected if they used all habitats in proportion to their availability.

R Appendix:

```
( obs <- c(Open=1456,MidSucc=43,ScatTree=112,Woods=6,Wetland=44) )
( p.exp <- c(Open=0.358,MidSucc=0.047,ScatTree=0.060,Woods=0.531,Wetland=0.004) )
( shrike.chi <- chisq.test(obs,p=p.exp,rescale.p=TRUE) )
data.frame(obs=shrike.chi$observed,exp=shrike.chi$expected)
gofCI(shrike.chi,digits=3)</pre>
```

Table 19.4. Observed and expected frequencies for the Goodness-of-Fit Test for shrike habitat use.

	obs	exp
Open	1456	594.638
MidSucc	43	78.067
${\tt ScatTree}$	112	99.660
Woods	6	881.991
Wetland	44	6.644

Table 19.5. Results from the Goodness-of-Fit Test for shrike habitat use.

```
X-squared = 2345.071, df = 4, p-value < 2.2e-16
```

Table 19.6. Observed proportions, 95% condidence intervals for the proprtions, and expected proportions for shrike habitat use.

```
p.obsp.LCIp.UCIp.expOpen0.8770.8600.8920.358MidSucc0.0260.0190.0350.047ScatTree0.0670.0560.0810.060Woods0.0040.0020.0080.531Wetland0.0260.0200.0350.004
```

19.2.4 Example - Modes of Fishing

Consider the following:

Herriges and King (1999) examined modes of fishing for a large number of recreational saltwater users in southern California. One of the questions asked in their Southern California Sportfishing Survey was what "mode" they used for fishing – "from the beach", "from a fishing pier", "on a private boat", or "on a chartered boat." The results to this question, along with other data not used here, are found in FishingModes.csv. One hypothesis of interest states that two-thirds of the users will fish from a boat, split evenly between private and charter boats, while the other one-third will fish from land, also split even between those fishing on the beach and those from a pier. Use the data in the mode variable of the data file to determine if this hypothesis is supported at the 10% level.

The 11-steps (Section 15.1) for a hypothesis test for this example is below:

- 1. $\alpha = 0.10$.
- 2. H₀: "The distribution will follow the proportions of \(\frac{1}{3}\), \(\frac{1}{3}\), \(\frac{1}{6}\), and \(\frac{1}{6}\) for private boat, charter boat, beach, and pier modes of fishing, respectively" vs. H_A: "The distribution will NOT follow the proportions of \(\frac{1}{3}\), \(\frac{1}{6}\), and \(\frac{1}{6}\) for private boat, charter boat, beach, and pier modes of fishing, respectively." [These fractions were found with the following thought process the two-thirds for "boat" fishing is split in half for one-third each for private and charter boats; the one-third, or two-sixths, for "land" fishing is split in half for one-sixth each for beach and pier fishing.]
- 3. A Goodness-of-Fit Test is required because (i) a categorical variable was recorded (mode), (ii) a single population was sampled (Southern California Sportfishers), and (iii) the obseved distribution is compared to a theoretical distribution.
- 4. The data appear to be part of an observational study where the individuals were not obviously (probably were not) randomly selected.
- 5. There are more than five individuals expected in each mode (Table 19.7).

- 6. The statistic is the observed frequency table in Table 19.7.
- 7. $\chi^2 = 32$ with 3 df (Table 19.8).
- 8. p-value < 0.00005 (Table 19.8).
- 9. H_0 is rejected because the p-value $< \alpha$.
- 10. The modes of fishing do not appear to match the distribution outlined in the null hypothesis.
- 11. The 95% confidence intervals for the proportion of use of each mode is in (Table 19.9). From these results it is apparent that the users use the beach slightly less than expected and use the charter boats slightly more than expected. The use of the pier and private boats are not different from what was expected.

R Appendix:

```
sf <- read.csv("data/FishingModes.csv")
obs <- xtabs(~mode,data=sf)
p.exp <- c(beach=1/6,boat=1/3,charter=1/3,pier=1/6)
( sf.chi <- chisq.test(obs,p=p.exp,rescale.p=TRUE) )
data.frame(obs=sf.chi$observed,exp=sf.chi$expected)
gofCI(sf.chi,digits=3)</pre>
```

Table 19.7. Observed and expected frequencies for the Goodness-of-Fit Test for modes of fishing.

```
        obs.mode
        obs.Freq
        exp

        beach
        134
        197

        boat
        boat
        418
        394

        charter
        charter
        452
        394

        pier
        pier
        178
        197
```

Table 19.8. Results from the Goodness-of-Fit Test for modes of fishing.

```
X-squared = 31.9797, df = 3, p-value = 5.285e-07
```

Table 19.9. Observed proportions, 95% condidence intervals for the proportions, and expected proportions for modes of fishing.

```
p.obs p.LCI p.UCI p.exp
beach 0.113 0.097 0.133 0.167
boat 0.354 0.327 0.381 0.333
charter 0.382 0.355 0.410 0.333
pier 0.151 0.131 0.172 0.167
```

19.2.5 Example - Mendelian Genetics II

Consider the following situation:

Geneticists hypothesized that three of every four progeny from a cross between two parent fruitflies known to possess both a dominant and recessive allele would have red eyes. In a carefully controlled experiment, 82 of 151 randomly selected progeny had red-eyes. Test at the 1% level if the percentage of red-eyed progeny in the population of progeny is different than what the researchers hypothesized. The 11-steps (Section 15.1) for a hypothesis test for this example is below:

- 1. $\alpha = 0.01$.
- 2. H_0 : "The proportion of progeny with red-eyes is 0.75" vs. H_A : "The proportion of progeny with red-eyes is NOT 0.75."
- 3. A Goodness-of-Fit Test is required because (i) a categorical variable was recorded (eye color), (ii) a single population was used in the experiment, and (iii) the observed distribution is compared to a theoretical distribution.
- 4. The data appear to be quasi-experimental in that a specific cross was made but there are very little controls. Selected progeny were randomly selected.
- 5. There are more than five individuals expected in each eye level (Table 19.10).
- 6. The appropriate statistic is the observed frequency table in Table 19.10.
- 7. $\chi^2 = 34.49$ with 1 df (Table ??)
- 8. p-value < 0.00005 (Table ??).
- 9. H_0 is rejected because the $p-value < \alpha$.
- 10. The proportion of red-eyed progeny appears to be different than 0.75. Thus, the Mendelian theory is not supported by these results.
- 11. The 95% confidence intervals for the proportion of progeny in each eye level is in (Table 19.12) From these results it appears that the proportion of progeny with red-eyes was between 0.464 and 0.620, which indicates that there were many fewer red-eyed progeny than would be expected from the Mendelian theory.

R Appendix:

```
obs <- c(red=82,nonred=151-82)
p.exp <- c(red=0.75,nonred=0.25)
( m.chi <- chisq.test(obs,p=p.exp,rescale.p=TRUE) )
data.frame(obs=m.chi$observed,exp=m.chi$expected)
gofCI(m.chi,digits=3)</pre>
```

Table 19.10. Observed and expected frequencies for the Goodness-of-Fit Test for the genetic cross experiment.

```
obs exp
red 82 113.25
nonred 69 37.75
```

Table 19.11. Results from the Goodness-of-Fit Test for the genetic cross experiment.

```
X-squared = 34.4923, df = 1, p-value = 4.279e-09
```

Table 19.12. Observed proportions, 95% condidence intervals for the proprtions, and expected proportions for eye colors in the genetic cross experiment.

```
p.obs p.LCI p.UCI p.exp
red 0.543 0.464 0.620 0.75
nonred 0.457 0.380 0.536 0.25
```

Review Exercises

- 19.5 The leader of a local lake association conducted a survey of all members of the association. One question on the survey was, "What is your preferred method of receiving notices from the lake association: by regular mail, by e-mail, by phone, by poster (at the local boat landing), or other?" Of the surveys returned, 47 respondents preferred regular mail, 63 e-mail, 17 phone, 73 by poster, and 8 some other method. OF THE RESPONDENTS WHO DID NOT PREFER SOME OTHER METHOD, is there evidence, at the 5% level, of a difference in the preferred method of contact? Answer
- 19.6 Philcox et al. (1999) examined patterns in the road-related mortalities of otters (Lutra lutra) in Britain from 1971 to 1996. One aspect of their analysis was to examine the sex ratio of road-killed otters. The sex of all otters for which sex could be identified are recorded in OtterMort.csv. Use these data to determine if there is a significant (at the 1% level) bias in the sex ratio of road-killed otters. Answer
- 19.7 While imprisoned by the Germans during World War II, the English mathematician John Kerrich tossed a coin 10000 times and obtained 5067 heads. Use his results to determine (at the 1% level) whether the coin was fair or not (i.e., equal chance of heads and tails). Answer
- 19.8 Fisher claims that the randomization function of its "Studio-Standard" 60-disc CD changer is completely random. To test this assertion, the owner of one of these units randomly filled the CD changer with 20 copies of "The Best of Taj Mahal" and 40 copies of "Beethoven's Greatest." Each CD had 20 songs on it. The owner set out to test the randomness of the CD player by listening to 100 songs chosen by the CD changer. The owner recorded whether a song came from the Taj Mahal (T) CD or the Beethoven (B) CD. The data collected are listed below (organized into rows of 25 for convenience). Test, at the 5% level, the hypothesis that the randomization function on the CD changer is indeed random. *Answer*

- 19.9 Repart data suggest that of the patients that a hospital serves 44% have type O, 45% have type A, 8% have type B, and 3% have type AB blood. In a more recent survey they found that 67 patients had type O, 83 had type A, 29 had type B, and 8 had type AB. Use the more recent results to determine, at the 5% level, if the past results still hold. Answer
- 19.10 A county district attorney would like to run for the office of state district attorney. She has decided that she will give up her county office and run for state office if more than 65% of her party constituents support her. As her campaign manager, you collected data on 950 randomly selected party members and find that 660 party members support the candidate. Test at the 5% significance level whether she should give up her county office and run for the state office. Answer
- 19.11 Suppose that you know that a population of deer is at a stable age distribution and stable population size. In addition, it is hypothesized that the survival rate from year-to-year is 50%. Through a random sample of animals from this population you determine that 134 are in the 0-1 age group, 66 are aged 1-2, 30 are aged 2-3, 13 are aged 3-4, 4 are aged 4-5, and 6 are aged 5-6. Use these results to determine, at the 10% level, if the survival rate is indeed 50%. [Hint: Find the expected number of animals in each age category. The expected number in the first age category, X, is found by solving the following equation

 $X + (0.5^1 + 0.5^2 + 0.5^3 + 0.5^4 + 0.5^5)X = n$ where n is the total number of observed animals. The expected values in the remaining categories are determined from the value of X and the hypothesized survival rate.] Answer

- 19.12 Repeat Review Exercise 19.1 using R. Answer
- 19.13 Repeat Review Exercise 19.2 using R. Answer
- 19.14 Repeat Review Exercise 19.3 using R. Answer
- 19.15 Repeat Review Exercise 19.4 using R. Answer
- (19.16) An Alaskan pollock (*Theragra chalcogramma*) trawling boat will discontinue trawling in an area if the by-catch of king salmon (*Oncorhynchus tshawytscha*) caught in that area exceeds 10% of the catch. In a very large trawl catch the independent observer on the boat randomly sampled 1256 fish and found that 145 were king salmon. Is there evidence, at the 10% level, that the boat should discontinue trawling in that area? *Answer*

APPENDICES