Inférences statistiques et test d'hypothèse

Par

Araar Abdelkrim

Estimateurs et inférence

- Les estimations distributives obtenues à partir des enquêtes ne sont pas des valeurs exactes comme celle obtenue à partir de toute la population.
- Les estimations suivent normalement une distribution asymptotique connue – telle que la distribution normale —, mais avec des paramètres inconnus. Les paramètres de cette distribution peuvent être estimés à l'aide de l'information contenue dans l'échantillon (y compris le plan d'échantillonnage).
- Sur cette base, on peut alors effectuer des tests d'hypothèses et établir des intervalles de confiance de nos valeurs estimées.

Distribution des estimateurs

Prenons l'exemple de l'estimation du revenu moyen. Lorsque la taille de l'échantillon est élevée, l'estimateur habituel de la moyenne suit une distribution asymptotiquement normale:

Distribution des estimateurs

Une distribution centrée et normalisée de notre variable aléatoire (revenu) peut être alors obtenue:

$$z = \frac{\hat{\mu} - \mu_0}{\hat{\sigma}_{\mu}} \sim N(0, 1)$$
$$z \to N(0, 1)$$

Test d'hypothèse

Il existe trois types d'hypothèses qui peuvent être testées :

- 1. Un «indice» est égal à une valeur donnée :
 - La différence de pauvreté est égale à 0;
 - L'inégalité est égale à 0.2.
- 1. Un «indice» est supérieur à une valeur donnée :
 - L'inégalité a augmenté entre deux périodes (dif_ineq> 0).
- 3. Un «indice» est inférieur à une valeur donnée :
 - La pauvreté a diminué entre deux périodes (dif_pov <0).

Résultats des tests d'hypothèses

- Le résultat d'un test d'hypothèse est une décision statistique
- La conclusion du test sera soit de rejeter une hypothèse nulle, H0, en faveur d'une alternative, H1, soit de ne pas la rejeter.
- La plupart des tests d'hypothèses, mettant en jeu un paramètre vrai, mais inconnu, se regroupent dans trois cas suivants :
 - 1. $H_0: \mu = \mu_0$ contre $H_1: \mu \neq \mu_0$
 - 2. $H_0: \mu \leq \mu_0$ contre $H_1: \mu > \mu_0$
 - 3. $H_0: \mu \ge \mu_0$ contre $H_1: \mu < \mu_0$

Aspects des tests d'hypothèses

La décision statistique ultime peut être correcte ou incorrecte. Deux types d'erreur peuvent se produire:

Erreur de type I: ce produit lorsque nous rejetons H0 quand elle est en fait vrai;

Erreur de type II: ce produit lorsque nous ne réussissons pas à rejeter H0 lorsque H0 est en fait faux.

Puissance du test: d'une hypothèse H0 par rapport à H1: la probabilité de rejeter H0 en faveur de H1 lorsque H1 est vrai.

Valeur P (P-Value): le plus petit niveau de signification pour lequel H0 serait rejeté en faveur de certains H1.

Règles de test des hypothèses

Rejeter H_0 : $\mu = \mu_0$ en faveur de H_1 : $\mu \neq \mu_0$ ssi:

$$\mu_0 < \hat{\mu}_0 - \hat{\delta}_{\mu} z (1 - \alpha / 2) \text{ or } \mu_0 > \hat{\mu}_0 - \hat{\delta}_{\mu} z (\alpha / 2)$$

Règles de test des hypothèses

Rejeter H_0 : $\mu_0 \ge \mu$ en faveur de H_1 : $\mu < \mu_0$ ssi: $\mu_0 < \hat{\mu}_0 - \hat{\delta}_{\mu} z (1 - \alpha)$

Lower Bounded H_1

Règles de test des hypothèses

Rejeter H_0 : $\mu \le \mu_0$ en faveur de H_1 : $\mu > \mu_0$ s.s.i : $\mu_0 > \hat{\mu}_0 - \hat{\delta}_{\mu} z_{\alpha}$

Upper Bounded H_1

Intervalle de confiance

- OUn intervalle de confiance contient toutes les valeurs de paramètre qui ne peuvent pas être rejetées dans une hypothèse nulle.
- Trois types d'intervalles de confiance peuvent être établis:

Case	Confidence interval	p-value	H ₁ is:
1	$[\hat{\mu}_0 - \hat{\sigma}_{\hat{\mu}}z(1 - \alpha/2), \hat{\mu}_0 - \hat{\sigma}_{\hat{\mu}}z(\alpha/2)]$	$2[1 - F(z_0)]$	two-sided
2	$[\hat{\mu}_0 - \hat{\sigma}_{\hat{\mu}}z(1-\alpha), +\infty]$	$1 - F(z_0)$	lower-bounded
3	$[-\infty, \hat{\mu}_0 - \hat{\sigma}_{\hat{\mu}}z(\alpha)]$	$F(z_0)$	upper-bounded

Test d'hypothèse avec DASP

Test d'hypothèse avec DASP

. datest 0.47, est(0.66) ste(0.10)

	Est. val.	Std. Err.	z	P>lzl	[95% Conf.	intervall
Estimates	.66	.1	6.6	1.0000	.4640036	.8559964
Sign. lev	el = 5 %				Z :	= 1.9000
HO: est. < .47 Against H1: est. >= .47		HO: est. == .47 Against H1: est. != .47			HO: est. > .47 Against H1: est. <= .47	
Pr(Z < z) = 0.0287 HO is rejected.		Pr(¦Z¦ > ¦z¦) = 0.0574 HD is not rejected.			Pr(Z > z) = 0.9713 HD is not rejected.	