```
In [1]:
```

```
import numpy as np
import pandas as pd
```

In [2]:

```
df = pd.read_csv('osic.csv')
```

In [3]:

```
df.head()
```

Out[3]:

	Patient	Weeks	FVC	Percent	Age	Sex	SmokingStatus
0	ID00007637202177411956430	-4	2315	58.253649	79	Male	Ex-smoker
1	ID00007637202177411956430	5	2214	55.712129	79	Male	Ex-smoker
2	ID00007637202177411956430	7	2061	51.862104	79	Male	Ex-smoker
3	ID00007637202177411956430	9	2144	53.950679	79	Male	Ex-smoker
4	ID00007637202177411956430	11	2069	52 063412	79	Male	Ey-smoker

In [4]:

```
df.tail()
```

Out[4]:

	Patient	Weeks	FVC	Percent	Age	Sex	SmokingStatus
1544	ID00426637202313170790466	13	2712	66.594637	73	Male	Never smoked
1545	ID00426637202313170790466	19	2978	73.126412	73	Male	Never smoked
1546	ID00426637202313170790466	31	2908	71.407524	73	Male	Never smoked
1547	ID00426637202313170790466	43	2975	73.052745	73	Male	Never smoked
1548	ID00426637202313170790466	59	2774	68.117081	73	Male	Never smoked

In [5]:

```
df.shape
```

Out[5]:

(1549, 7)

```
In [6]:
df.columns
Out[6]:
Index(['Patient', 'Weeks', 'FVC', 'Percent', 'Age', 'Sex', 'SmokingStatus'], d
type='object')
In [7]:
df.duplicated().sum()
Out[7]:
In [8]:
df.isnull().sum()
Out[8]:
Patient
Weeks
                0
FVC
                0
Percent
                0
Age
                0
Sex
                a
SmokingStatus
                0
dtype: int64
In [9]:
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1549 entries, 0 to 1548
Data columns (total 7 columns):
#
    Column
                 Non-Null Count Dtype
                   -----
    -----
    Patient
                  1549 non-null object
0
1
    Weeks
                  1549 non-null int64
    FVC
                   1549 non-null
                                 int64
 2
 3
    Percent
                  1549 non-null
                                 float64
 4
    Age
                   1549 non-null
                                  int64
 5
    Sex
                   1549 non-null
                                 object
6
    SmokingStatus 1549 non-null
                                   object
dtypes: float64(1), int64(3), object(3)
memory usage: 84.8+ KB
```

```
In [10]:
```

```
df.describe()
```

Out[10]:

	Weeks	FVC	Percent	Age
count	1549.000000	1549.000000	1549.000000	1549.000000
mean	31.861846	2690.479019	77.672654	67.188509
std	23.247550	832.770959	19.823261	7.057395
min	-5.000000	827.000000	28.877577	49.000000
25%	12.000000	2109.000000	62.832700	63.000000
50%	28.000000	2641.000000	75.676937	68.000000
75%	47.000000	3171.000000	88.621065	72.000000
max	133.000000	6399.000000	153.145378	88.000000

In [11]:

```
df.nunique()
```

Out[11]:

 Patient
 176

 Weeks
 112

 FVC
 1202

 Percent
 1536

 Age
 34

 Sex
 2

 SmokingStatus
 3

 dtype: int64

In [12]:

```
df1 = df.copy()
```

In [13]:

```
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings("ignore")
```

```
In [14]:
```

```
df['Sex'].unique()
```

Out[14]:

```
array(['Male', 'Female'], dtype=object)
```

```
In [15]:
```

```
df['Sex'].value_counts()
```

Out[15]:

Male 1224 Female 325

Name: Sex, dtype: int64

In [16]:

```
plt.figure(figsize=(20,8))
sns.countplot('Sex', data = df, palette = 'hls')
plt.show()
```


In [17]:

```
label data = df['Sex'].value counts()
explode = (0.1, 0.1)
plt.figure(figsize=(14, 10))
patches, texts, pcts = plt.pie(label_data,
                               labels = label data.index,
                               colors = ['blue', 'red'],
                               pctdistance = 0.65,
                               shadow = True,
                               startangle = 90,
                               explode = explode,
                               autopct = '%1.1f%%',
                               textprops={ 'fontsize': 25,
                                            'color': 'black',
                                            'weight': 'bold',
                                            'family': 'serif' })
plt.setp(pcts, color='white')
hfont = {'fontname':'serif', 'weight': 'bold'}
plt.title('Sex', size=20, **hfont)
centre circle = plt.Circle((0,0),0.40,fc='white')
fig = plt.gcf()
fig.gca().add_artist(centre_circle)
plt.show()
```


In [18]:

```
df['SmokingStatus'].unique()
```

Out[18]:

array(['Ex-smoker', 'Never smoked', 'Currently smokes'], dtype=object)

In [19]:

```
df['SmokingStatus'].value_counts()
```

Out[19]:

Ex-smoker 1038 Never smoked 429 Currently smokes 82

Name: SmokingStatus, dtype: int64

In [20]:

```
plt.figure(figsize=(20,8))
sns.countplot('SmokingStatus', data = df, palette = 'hls')
plt.show()
```


In [21]:

```
label data = df['SmokingStatus'].value counts()
explode = (0.1, 0.1, 0.1)
plt.figure(figsize=(14, 10))
patches, texts, pcts = plt.pie(label data,
                               labels = label data.index,
                               colors = ['blue', 'red', 'green'],
                               pctdistance = 0.65,
                               shadow = True,
                               startangle = 90,
                               explode = explode,
                               autopct = '%1.1f%%',
                               textprops={ 'fontsize': 25,
                                            'color': 'black',
                                            'weight': 'bold',
                                            'family': 'serif' })
plt.setp(pcts, color='black')
hfont = {'fontname':'serif', 'weight': 'bold'}
plt.title('Smoking Status', size=20, **hfont)
centre circle = plt.Circle((0,0),0.40,fc='white')
fig = plt.gcf()
fig.gca().add_artist(centre_circle)
plt.show()
```

Smoking Status Currently smokes 5.3% Never smoked 67.0% Ex-smoker

```
In [22]:
```

```
df = df.set_index('Patient')
```

```
In [23]:

df

Out[23]:
```

Weeks FVC Percent Age Sex SmokingStatus Patient ID00007637202177411956430 -4 2315 58.253649 79 Male Ex-smoker ID00007637202177411956430 5 2214 55.712129 79 Male Ex-smoker ID00007637202177411956430 7 2061 51.862104 79 Male Ex-smoker ID00007637202177411956430 2144 53,950679 79 Male Ex-smoker ID00007637202177411956430 2069 52 063412 79 Male Ex-smoker ID00426637202313170790466 13 2712 66.594637 73 Male Never smoked ID00426637202313170790466 2978 73.126412 Male Never smoked 73 ID00426637202313170790466 2908 71.407524 73 Male Never smoked 31 ID00426637202313170790466 2975 73.052745 73 Male Never smoked 43 ID00426637202313170790466 59 2774 68.117081 73 Male Never smoked

1549 rows × 6 columns

```
In [24]:
```

```
from sklearn import preprocessing
label_encoder = preprocessing.LabelEncoder()
df['Sex'] = label_encoder.fit_transform(df['Sex'])
df['SmokingStatus'] = label_encoder.fit_transform(df['SmokingStatus'])
```

```
In [25]:
```

```
df['Weeks'].unique()
```

Out[25]:

```
9,
array([ -4,
                5,
                      7,
                                11,
                                      17,
                                            29,
                                                  41,
                                                        57,
                                                                   13,
                                                                         15,
                                                                               22,
         33,
              45,
                    60,
                           0,
                                 1,
                                       3,
                                            25,
                                                  37,
                                                        54,
                                                               6,
                                                                   19,
                                                                         32,
                                                                               43.
                                                   4,
         58,
              35,
                    39,
                          47,
                                71,
                                      87,
                                             2,
                                                        14,
                                                                   12,
                                                                         21,
                                                                               31,
                                                             26,
         40,
              52,
                    69,
                          16,
                                18,
                                      20,
                                                             23,
                                                                   44,
                                                                         70,
                                            38,
                                                  53,
                                                        66,
                                                                               -3,
         27.
              55,
                    49.
                          51,
                                81.
                                      98.
                                            30.
                                                  34.
                                                        36,
                                                             42.
                                                                   65.
                                                                         59.
                                                                               24.
              10,
                    61,
                                                             46,
                                                                         83,
         63,
                          -1,
                                48,
                                      56,
                                            75,
                                                  28,
                                                       76,
                                                                   50,
                                                                               62,
              -5,
                                82,
                                      97, 100,
                                                                         72,
         79,
                    73, 102,
                                                  67,
                                                       91, 107,
                                                                   85,
                                                                               84,
                          89, 101, 116,
         78,
              64,
                    68,
                                            -2,
                                                  74,
                                                       92, 104, 117, 133,
         77,
              94,
                    86,
                          88,
                                95,
                                      93,
                                            80,
                                                  99], dtype=int64)
```

In [26]:

```
df['Weeks'].value_counts()
Out[26]:
 8
        45
 12
        44
 18
        42
 10
        41
 6
        40
 104
         1
 91
         1
 107
         1
-2
         1
 99
Name: Weeks, Length: 112, dtype: int64
```

In [27]:

```
plt.figure(figsize=(20,8))
sns.countplot('Weeks', data = df, palette = 'hls')
plt.xticks(rotation = 90)
plt.show()
```



```
In [28]:
```

```
plt.figure(figsize=(20,8))
sns.histplot(df['Weeks'], bins = 100, kde = True, palette = 'hls')
plt.xticks(rotation = 90)
plt.show()
```


In [29]:

```
plt.figure(figsize=(20,8))
sns.scatterplot(data = df, x="Weeks", y="Age", hue ='Sex')
plt.show()
```

In [30]:

```
df['FVC'].unique()
```

Out[30]:

array([2315, 2214, 2061, ..., 2712, 2978, 2774], dtype=int64)

```
In [31]:
```

```
df['FVC'].value_counts()
Out[31]:
2474
2965
        4
2889
        4
2095
        4
2708
        4
3906
        1
3780
        1
3925
        1
3907
        1
2774
Name: FVC, Length: 1202, dtype: int64
In [32]:
```

```
plt.figure(figsize=(20,8))
sns.histplot(df['FVC'], bins = 100, kde = True, palette = 'hls')
plt.xticks(rotation = 90)
plt.show()
```



```
In [33]:
```

```
plt.figure(figsize=(20,8))
sns.scatterplot(data = df, x="FVC", y="Percent", hue ='Age')
plt.show()
```

In [34]:

```
plt.figure(figsize=(20,8))
sns.scatterplot(data = df, x="FVC", y="Age", hue ='Sex')
plt.show()
```

```
In [35]:
```

```
plt.figure(figsize=(20,8))
sns.scatterplot(data = df, x="FVC", y="Weeks", hue ='SmokingStatus')
plt.show()
```

In [36]:

```
df['Percent'].unique()
```

Out[36]:

```
array([58.25364872, 55.71212884, 51.86210367, ..., 71.40752382, 73.05274531, 68.11708084])
```

In [37]:

```
df['Percent'].value_counts()
```

Out[37]:

```
87.795153
             2
83.282505
             2
80.474296
             2
57.897831
             2
94.644367
             2
69.492021
            1
49.475076
             1
55.840291
57.534926
             1
68.117081
Name: Percent, Length: 1536, dtype: int64
```

In [38]:

```
plt.figure(figsize=(20,8))
sns.histplot(df['Percent'], bins = 100, kde = True, palette = 'hls')
plt.xticks(rotation = 90)
plt.show()
```


In [39]:

```
for i in df.columns:
   plt.figure(figsize=(20,8))
   sns.boxplot(df[i], palette = 'hls')
   plt.xticks(rotation = 90)
   plt.show()
```


In [40]:

```
for i in df.columns:
   plt.figure(figsize=(20,8))
   sns.violinplot(df[i], palette = 'hls')
   plt.xticks(rotation = 90)
   plt.show()
```


In [41]:

In [42]:


```
In [43]:
```



```
In [44]:

df1['Patient'].unique()
```

Out[44]:

```
array(['ID00007637202177411956430',
                                    'ID00009637202177434476278',
       'ID00010637202177584971671'.
                                     'ID00011637202177653955184'
                                     'ID00014637202177757139317
       'ID00012637202177665765362'.
       'ID00015637202177877247924',
                                     'ID00019637202178323708467
                                     'ID00023637202179104603099
       'ID00020637202178344345685'
       'ID00025637202179541264076',
                                     'ID00026637202179561894768
       'ID00027637202179689871102',
                                     'ID00030637202181211009029
       'ID00032637202181710233084',
                                     'ID00035637202182204917484
       'ID00038637202182690843176'.
                                     'ID00042637202184406822975
       'ID00047637202184938901501'.
                                     'ID00048637202185016727717'
       'ID00051637202185848464638',
                                     'ID00052637202186188008618
       'ID00060637202187965290703'
                                     'ID00061637202188184085559
       'ID00062637202188654068490'
                                     'ID00067637202189903532242
       'ID00068637202190879923934'
                                     'ID00072637202198161894406
       'ID00073637202198167792918',
                                     'ID00075637202198610425520'
       'ID00076637202199015035026'.
                                     'ID00077637202199102000916'
       'ID00078637202199415319443',
                                     'ID00082637202201836229724'
                                     'ID00089637202204675567570
       'ID00086637202203494931510',
       'ID00090637202204766623410',
                                     'ID00093637202205278167493
                                     'ID00099637202206203080121
       'ID00094637202205333947361'
       'ID00102637202206574119190'
                                     'ID00104637202208063407045
       'ID00105637202208831864134',
                                     'ID00108637202209619669361
       'ID00109637202210454292264',
                                     'ID00110637202210673668310'
       'ID00111637202210956877205',
                                     'ID00115637202211874187958'
                                     'ID00119637202215426335765
       'ID00117637202212360228007'
       'ID00122637202216437668965'
                                     'ID00123637202217151272140
       'ID00124637202217596410344'
                                     ID00125637202218590429387
       'ID00126637202218610655908'
                                     'ID00127637202219096738943
       'ID00128637202219474716089',
                                     'ID00129637202219868188000
In [45]:ID00130637202220059448013',
                                     'ID00131637202220424084844'
        ID00132637202222178761324'
                                     'ID00133637202223847701934'
        160013463726<del>2</del>523873639688'
                                     'ID00135637202224630271439
       'ID00136637202224951350618'
                                     'ID00138637202231603868088
Out[45]:ID00139637202231703564336
                                     'ID00140637202231728595149
        ID00149637202232704462834'
                                     'ID00161637202235731948764'
ID0010563730269883286433420314458',
                                     'ID00167637202237397919352
ID0011963730368547603537852027833',
                                     'ID00169637202238024117706
ID0022963730276837434958379193844',
                                     'ID00172637202238316925179'
ID0014063730273637252538329754031'
                                     'ID00180637202240177410333
ID0038863730389393893241395351850
                                     'ID00184637202242062969203
       'ID00186637202242472088675'
                                     'ID00190637202244450116191
ID0005263730298639809863893238398'
                                     'ID00196637202246668775836
ID00344637303398594632748865691326',
                                     'ID00199637202248141386743
ID0018663730334647308843576026349',
                                     'ID00207637202252526380974'
ID002676373033737955259528694686',
                                     'ID00213637202257692916109'
ID0004763730318633800259820847990
                                     'ID00216637202257988213445
Name: Pati00218697562258796844790;
                                    'ID00221637202258717315571
                                     'ID00222637202259066229764
       'ID00224637202259281193413'
                                     'ID00225637202259339837603
       'ID00228637202259965313869'
                                     'ID00229637202260254240583
       'ID00232637202260377586117',
                                     'ID00233637202260580149633'
       'ID00234637202261078001846',
                                     'ID00235637202261451839085'
                                     'ID00241637202264294508775
       'ID00240637202264138860065'
       'ID00242637202264759739921'
                                     'ID00248637202266698862378
       'ID00249637202266730854017
                                     ID00251637202267455595113
       'TD00255637202267923028520'
                                     TD00264637202270643353440
       'ID00267637202270790561585',
                                     'ID00273637202271319294586'
       'ID00275637202271440119890',
                                     'ID00276637202271694539978'
       'ID00279637202272164826258'.
                                     'ID00283637202278714365037'
       'ID00285637202278913507108'
                                     'ID00288637202279148973731
                                     'ID00291637202279398396106
       'ID00290637202279304677843',
       'ID00294637202279614924243',
                                     'ID00296637202279895784347',
```

```
'ID00298637202280361773446', 'ID00299637202280383305867',
In [46]!ID00305637202281772703145', 'ID00307637202282126172865',
'ID00340637202287399835821'. 'ID00341637202287410878488'.
  1950
       'ID00411637202309374271828', 'ID00411637202310318891556',
       'ID00417637202310901214011', 'ID00419637202311204720264',
'ID00421637202311550012437', 'ID00422637202311677017371',
In [47]'ID00423637202312137826377', 'ID00426637202313170790466'],
dtype=object)
patient1 == 'ID00228637202259965313869']
plt.figure(figsize=(20,8))
sns.lineplot(data = patient1, y='Percent', x='Weeks', hue = 'SmokingStatus',
               palette = 'hls')
plt.show()
```

In [48]:

```
plt.figure(figsize=(20,8))
sns.histplot(df['Age'], bins = 10, kde = True, palette = 'hls')
plt.xticks(rotation = 90)
plt.show()
```


In [49]:

In [50]:

```
plt.figure(figsize=(16, 6))
sns.kdeplot(df1.loc[df1['Sex'] == 'Male', 'Age'], label = 'Male', shade=True)
sns.kdeplot(df1.loc[df1['Sex'] == 'Female', 'Age'], label = 'Female', shade=True)
plt.xlabel('Age (years)'); plt.ylabel('Density'); plt.title('Distribution of Ages');
plt.show()
```


In [51]:

In [52]:

```
corrmat = df.corr()
f, ax = plt.subplots(figsize =(9, 8))
sns.heatmap(corrmat, ax = ax, cmap = 'RdYlBu_r', linewidths = 0.5)
plt.show()
```

