

Europäisches
Patentamt

EP0417745

European
Patent Office

Office européen
des brevets

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein.

The attached documents are exact copies of the European patent-application described on the following page, as originally filed.

Les documents fixés à cette attestation sont conformes à la version initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr. Patent application No. Demande de brevet n°

03015965.1

**PRIORITY
DOCUMENT**
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

Der Präsident des Europäischen Patentamts;
Im Auftrag

For the President of the European Patent Office
Le Président de l'Office européen des brevets
p.o.

R C van Dijk

THIS PAGE BLANK (USPTO)

Europäisches
Patentamt

European
Patent Office

Office européen
des brevets

PCT/EP2004/007745

Anmeldung Nr:
Application no.: 03015965.1
Demande no:

Anmelddatag:
Date of filing: 14.07.03
Date de dépôt:

Anmelder/Applicant(s)/Demandeur(s):

3M Espe AG
Espe Platz
82229 Seefeld
ALLEMAGNE

Bezeichnung der Erfindung/Title of the invention/Titre de l'invention:
(Falls die Bezeichnung der Erfindung nicht angegeben ist, siehe Beschreibung.
If no title is shown please refer to the description.
Si aucun titre n'est indiqué se référer à la description.)

Adhesive composition with decreased polarity upon polymerization

In Anspruch genommene Priorität(en) / Priority(ies) claimed /Priorité(s)
revendiquée(s)
Staat/Tag/Aktenzeichen/State/Date/File no./Pays/Date/Numéro de dépôt:

Internationale Patentklassifikation/International Patent Classification/
Classification internationale des brevets:

A61K6/00

Am Anmelddatag benannte Vertragstaaten/Contracting states designated at date of
filling/Etats contractants désignés lors du dépôt:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL
PT RO SE SI SK TR LI

58745EP002
BO-GLP/EP

Adhesive Composition with decreased Polarity upon Polymerization

The present invention relates to adhesive compositions that exhibit a significant
5 decrease in polarity upon polymerization. More specifically, it relates to curable self-
etching dental adhesive compositions that can be applied to the tooth hard substance
in one step and exhibit an decrease in polarity upon curing.

This can be reached by a formulation combining phosphoric acid esters bearing
substituents with one ethylenically unsaturated moiety on the phosphorus atom and
10 phosphoric acid esters bearing substituents with two or more ethylenically
unsaturated moieties on the phosphorus atom.

The present invention also relates to hydrophobic adhesive compositions with
improved film forming properties on hydrophilic substrates. More specifically, it
relates to curable self-etching hydrophobic dental adhesive compositions that can be
15 applied in one step with improved film forming properties on dental hard tissue.

Without impairing the hydrophobic character of the formulation, this can be reached
by adding optionally polymerizable monomers, polymers and/or prepolymers.

Dental compositions comprising ethylenically unsaturated phosphoric acid derivatives
are disclosed in numerous documents.

20 EP 0 712 622 B1 discloses dental primer compositions having a monomer with a
phosphorous group, a carboxylic acid containing monomer, and water as main
components.

US 5,256,447 discloses an adhesive composition comprising an ethylenically
unsaturated phosphorylated compound, a carboxylic acid functional polymer, and a
25 polymerization initiator, and optionally comprising a particulate metallic filler.

EP 0 074 708 B1 discloses an adhesive composition comprising a phosphoric acid
derivative either with one group directly bound to the P atom which is monofunctional

88745EP002
BO-GLP/EP

regarding methacryloxy, or with one group directly bonded to the P atom which is difunctional regarding methacryloxy. For the monofunctional derivatives, the methacryloxy residues are connected to the phosphorous atom via an alkylene group with at least 5 carbon atoms.

5 EP 1 051 961 A1 discloses a bonding composition for dental use comprising a mixture of acid group-having polymerizable compound, a water-soluble film forming agent (e.g. HEMA), water, and a curing agent.

US 5,264,513 A discloses a primer composition comprising water, a compound having hydroxyl group and polymerizable group (e.g., HEMA), a compound having acidic group and polymerizable unsaturated group (e.g., bis[2-(meth)acryloxyethyl]phosphoric acid, but also thiophosphoric acid derivatives and compounds with anhydride residues).

10 WO 01/10388 A1 discloses adhesive compositions in which, as cationic initiator systems, ethylenically unsaturated phosphoric acid esters are disclosed comprising compounds like ethylenically unsaturated phosphoric acid derivatives, comprising, on the one hand, derivatives having groups directly bonded to the phosphorous atom which are monofunctional regarding methacryloxy and, on the other hand, derivatives having groups directly bonded to the phosphorous atom which are difunctional regarding methacryloxy.

15 20 EP 0 842 651 A1 discloses a primer for preparing a surface of a tooth for adhering to a composite filling material which comprises, among others, mixtures of ethylenically unsaturated phosphoric acid derivatives. However, only compounds are disclosed having groups being directly bonded to the phosphorous atom which have one ethylenically unsaturated group.

25 US 4 719 149 (3M) discloses dental primer compositions containing an acid or water-soluble film former, which is soluble in water to at least 5 weight percent.

US 5 525 648 discloses dental primer compositions containing a film former which contains a polymer, and which is water-dispersible to at least 5 weight percent. The

58745EP002
BO-GLP/EP

polymers preferably contain functional groups that have an affinity for the hard tissue, such as β -dicarbonyl groups and carboxylic acid groups.

US 6 191 190 B1 discloses a bonding composition for dental use comprising a film forming agent which is water-soluble to at least 5 weight percent.

5 US 6 387 982 B1 discloses polymerizable surfactants having polyether chains that can be linked via a urethane moiety to a polymerizable group.

US 6 191 190 B1 discloses a method and composition for adhering to tooth structure, which can contain vinyl urethane or urethane-acrylate prepolymers.

10 US 5 554 669 discloses an emulsion of polymer having (meth)acrylate unit and adhesive compositions containing the emulsion. The polymer comprises a) a recurring unit derived from a (meth)acrylate and b) a recurring unit derived from a vinyl compound having a sulfonate moiety.

Self-etching dental adhesives of the state of the art contain usually at least one singly or repeatedly ethylenically unsaturated phosphoric acid ester as adhesion promoter.

15 Owing to the synthetic procedure and starting materials, some of these adhesion promoters are rather hydrophilic and therefore well suited for wetting and etching dental hard tissue. On the other hand, they are more susceptible to hydrolysis and water uptake in the oral environment than formulations containing less polar monomers. Typically, these compounds bear substituents with one ethylenically 20 unsaturated moiety on the phosphorus atom.

Other adhesion promoters bearing substituents with two or more ethylenically unsaturated moieties are less polar than those mentioned above and exhibit a higher degree of functionality. However, often the etching ability is not sufficient.

25 Known self-etching one-step dental adhesives ("sixth generation adhesives") consist mainly of rather hydrophilic ethylenically unsaturated phosphoric acid esters, which are suited for wetting and etching dental hard tissue. If one attempts to formulate less polar self-etching one-step dental adhesives, in some cases dewetting phenomena

58745EP002
BO-GLP/EP

4

are observed which result in the formation of small droplets instead of a homogeneous film of bonding agent.

It is thus an object of the present invention to avoid one or more of the problems
5 mentioned above.

A further object is to provide a dental composition with improved properties,
especially a dental composition with sufficient etching properties and decreased
hydrophilicity that can be applied in one step.

A further object is to provide a dental composition with improved film forming
10 properties on hydrophilic substrates.

A further object is to provide a dental composition which can be used for the
adhesive securing of materials based on methacrylates and/or epoxies to tooth or
bones.

Still a further object is to provide a dental composition which can be used as a pit and
15 fissure sealant or a desensitizer.

One or more objects can be achieved by providing a dental composition as described
in the text below.

In this respect a formulation is provided combining phosphoric acid esters bearing
20 substituents with one ethylenically unsaturated moiety on the phosphorus atom and
phosphoric acid esters bearing substituents with two or more ethylenically
unsaturated moieties on the phosphorus atom.

Adding prepolymers, especially urethane (meth)acrylate prepolymers to the
composition mentioned above helps to improve the film forming properties of the
25 composition.

THIS PAGE BLANK (USPTO)

58745EP002
BO-GLP/EP

5

In a preferred embodiment the invention therefore relates to a curable dental composition, comprising

a) one or a mixture of phosphoric acid esters bearing substituents with one ethylenically unsaturated moiety on the phosphorus atom according to formula

5

(I),

(I)

wherein R_1 = (i) alkylene having 1 to 4 carbon atoms, (ii) or a bivalent organic group having 1 to 4 carbon atoms composed of two or more hydrocarbon residues bonded to one another by one or more ether or thioether linkages, (iii) or aryl, each optionally substituted with OH;

10

wherein R_2 = H, CH_3 ;

wherein X_1 = OH or halogen; and

wherein X_2 = X_1 or $-\text{O}-\text{R}_1-\text{OOC}-\text{CR}_2=\text{CH}_2$,

15

b) one or a mixture of phosphoric acid esters bearing substituents with two or more ethylenically unsaturated moieties on the phosphorus atom according to formula (II),

(II)

68745EP002
BO-GLP/EP

6

wherein R₃, R₄, and R₅ = (i) H, (ii) linear or branched alkyl having 1 to 4 carbon atoms, optionally substituted with OH, (iii) aryl, optionally substituted with OH, (iv) organic group having 5 to 15 carbon atoms composed of 2 to 6 saturated or ethylenically unsaturated hydrocarbon residues bonded to one another by one or more ether, thioether, ester, thioester, thiocarbonyl, amide, urethane, carbonyl and/or sulfonyl linkages, each optionally substituted with OH,

5

wherein at least 2 of the groups R₃, R₄, and R₅ comprise at least 1 group according to formula (III)

or

10 at least 1 of the groups R₃, R₄, and R₅ comprises at least 2 groups according to formula (III)

(III)

and wherein X₂ = X₁ or -O-CR₃R₄R₅ or -O-R₁-OOC-CR₂=CH₂,

15 (b) being usually present in an amount of 1 – 500 parts by weight based on 100 parts by weight of (a), preferably 100 – 300 parts by weight based on 100 parts by weight of (a), more preferably 150 – 250 parts by weight based on 100 parts by weight of (a).

20

The total amount of (a) and (b) in the composition is usually 10 – 90 parts by weight, preferably 20 – 80 parts by weight, more preferably 30 – 70 parts by weight,

25

- c) initiators in an amount of 0.1 – 20 parts by weight, preferably 0.2 – 10 parts by weight, more preferably 0.3 – 5 parts by weight,
- d) stabilizers in an amount of 0 – 5 parts by weight, preferably 0.001 – 2 parts by weight, more preferably 0.01 – 1 parts by weight,

58745EP002
BO-GLP/EP

- e) unsaturated monomers in an amount of 5 – 90 parts by weight, preferably 10 – 80 parts by weight, more preferably 20 – 70 parts by weight,
- f) optionally unsaturated polymers and/or prepolymers in an amount of 0 – 30 parts by weight, preferably 1 – 20 parts by weight, more preferably 2 – 15 parts by weight,
- 5 g) optionally a solvent in an amount of 0 – 20 parts by weight, preferably 1 – 15 parts by weight; more preferably 3 – 10 parts by weight,
- h) optionally a fluoride releasing agent in an amount of 0 – 20 parts by weight, preferably 0.2 – 10 parts by weight, more preferably 0.3 – 5 parts by weight,
- 10 i) optionally a non reactive inorganic filler in an amount of 0 – 70 parts by weight, preferably 5 – 60 parts by weight, more preferably 10 – 50 parts by weight,
- j) optionally a photobleachable colorant in an amount of 0 – 5 parts by weight, preferably 0.05 – 3 parts by weight, more preferably 0.1 – 2 parts by weight.

15 The optional components mentioned above might be present in the composition alone or in combination with the other optional components.

The terms "comprise" and "contain" within the meaning of the invention introduce a non exhaustive list of features. Likewise, the word "one" is to be understood in the sense of "at least one".

20 The term "on the phosphorus atom" means that the ethylenically unsaturated moiety/moieties is/are present in one of the substituents bonded to the phosphorus atom. The preferred ethylenically unsaturated moieties are represented by formula (III).

25 Surprisingly, it has been found that using a combination of one or a mixture of phosphoric acid esters bearing substituents with one ethylenically unsaturated moiety on the phosphorus atom preferably according to formula (I) and one or a mixture of phosphoric acid esters bearing substituents with two or more ethylenically

58746EP002
BO-GLP/EP

8

unsaturated moieties on the phosphorus atom preferably according to formula (II), the composition obtained shows a decrease in polarity upon curing as well as good adhesion properties.

It is assumed that sufficient etching is provided by component (a), whereas the higher 5 functionality and the less polar character of component (b) allows for a higher degree of crosslinking and leads to a significant decrease in polarity upon polymerization.

Moreover, it has been found that the addition of urethane prepolymers leads to improved film forming properties on hydrophilic substrates without increasing the 10 polarity of the composition, as the urethane prepolymers preferably do not contain any hydroxy, acidic, or ionic groups.

The enamel adhesion of the inventive dental composition is usually in the range of 2 – 15 MPa, preferably in the range of 5 – 13 MPa, more preferably in the range of 7 – 12 MPa, measured as described below.

15 The dentin adhesion of the inventive dental composition is usually in the range of 2 – 10 MPa, preferably in the range of 4 – 8 MPa, more preferably in the range of 5 – 7 MPa, measured as described below.

The contact angle versus deionized water of the inventive dental composition is usually above 5°, preferably above 10°, more preferably above 15° if the composition 20 is cured in the presence of air, measured as described below.

If the composition is cured in the absence of air, the contact angle versus deionized water of the inventive dental composition is usually above 30°, preferably above 40°, more preferably above 50°, measured as described below.

25 Examples of phosphoric acid esters bearing substituents with one ethylenically unsaturated moiety on the phosphorus atom according to component (a) include, but are not limited to 2-methacryloyloxyethyl phosphate, 2-methacryloyloxypropyl

58745EP002
BO-GLP/EP

phosphate, 3-methacryloyloxypropyl phosphate, 2-methacryloyloxybutyl phosphate, 3-methacryloyloxybutyl phosphate, 4-methacryloyloxybutyl phosphate, 5-methacryloyloxy-3-oxa-pentyl phosphate, bis(2-methacryloyloxyethyl) phosphate, bis(2-methacryloyloxypropyl) phosphate, bis(3-methacryloyloxypropyl) phosphate, 5 bis(2-methacryloyloxybutyl) phosphate, bis(3-methacryloyloxybutyl) phosphate, bis(4-methacryloyloxybutyl) phosphate, bis(5-methacryloyloxy-3-oxa-pentyl) phosphate or mixtures thereof.

Examples of phosphoric acid esters bearing substituents with two or more ethylenically unsaturated moieties on the phosphorus atom according to component 10 (b) include, but are not limited to glycerol-1,3-dimethacrylate-2-phosphate, glycerol-1,2-dimethacrylate-3-phosphate, bis(glycerol-1,3-dimethacrylate) phosphate, bis(glycerol-1,2-dimethacrylate) phosphate, (glycerol-1,2-dimethacrylate)(glycerol-1,3-dimethacrylate) phosphate, (trimethylolpropane dimethacrylate) phosphate, bis(trimethylolpropane dimethacrylate) phosphate, (trimethylethane dimethacrylate) 15 phosphate, bis(trimethylethane dimethacrylate) phosphate, pentaerythritol trimethacrylate phosphate or mixtures thereof.

Initiators according to component (c) are photoinitiator systems for free radical polymerization known to the person skilled in the art dealing with dental materials. Typical examples are combinations of a sensitizing agent with a reducing agent.

20 As the sensitizing agent, those which can polymerize the polymerizable monomer by the action of a visible light having a wavelength of from 390 nm to 830 nm are preferred. Examples thereof include camphorquinone, benzil, diacetyl, benzyl dimethyl ketal, benzyl diethyl ketal, benzyl di(2-methoxyethyl) ketal, 4,4'-dimethylbenzyl dimethyl ketal, anthraquinone, 1-chloroanthraquinone, 2-chloroanthraquinone, 1,2-benzanthraquinone, 1-hydroxyanthraquinone, 1-methylanthraquinone, 2-ethylanthraquinone, 1-bromoanthraquinone, thioxanthone, 2-isopropyl thioxanthone, 2-nitrothioxanthone, 2-methyl thioxanthone, 2,4-dimethyl thioxanthone, 2,4-diethyl thioxanthone, 2,4-diisopropyl thioxanthone, 2-chloro-7-trifluoromethyl thioxanthone, thioxanthone-10,10-dioxide, thioxanthone-10-oxide,

58745EP002
BO-GLP/EP

10

benzoin methyl ether, benzoin ethyl ether, isopropyl ether, benzoin isobutyl ether,
benzophenone, bis(4-dimethylaminophenyl)ketone, 4,4'-
bisdiethylaminobenzophenone, acyl phosphine oxides such as (2,4,6-
trimethylbenzoyl)diphenylphosphine oxide, and azide-containing compounds. These
5 compounds may be used singly or in admixture.

As the reducing agent, tertiary amines and the like are generally used. Suitable
examples of the tertiary amines include N,N-dimethyl-p-toluidine, N,N-dimethyl-
aminoethyl methacrylate, triethanolamine, methyl 4-dimethylaminobenzoate, ethyl 4-
dimethylaminobenzoate, and isoamyl 4-dimethylaminobenzoate. As other reducing
10 agents, sodium sulfinate derivatives and organometallic compounds can also be
used. These compounds may be used singly or in admixture.

Further examples of suitable initiator systems can be found in the literature, e.g. J.-P.
Fouassier, Photoinitiation, Photopolymerization, and Photocuring, Hanser Publishers,
Munich, Vienna, New York, 1995, and J.-P. Fouassier, J.F. Rabek (eds.), Radiation
15 Curing in Polymer Science and Technology, Vol. II, Elsevier Applied Science,
London, New York, 1993.

Moreover, ternary photopolymerization initiating systems consisting of a sensitizer, an
electron donor and an onium salt as described in US 6,187,833, US 6,025,406, US
6,043,295, US 5,998,495, US 6,084,004 and US patent application Serial No.
20 10/050218 can be used and are included herein by reference.

Examples of stabilizers according to component (d) are butylated hydroxytoluene
(BHT), hydroquinone, hydroquinone monomethyl ether (MEHQ), 3,5-di-tert-butyl-4-
hydroxyanisole (2,6-di-tert-butyl-4-ethoxyphenol), 2,6-di-tert-butyl-4-
25 (dimethylamino)methylphenol or 2,5-di-tert-butyl hydroquinone, 2-(2'-hydroxy-5'-
methylphenyl)-2H-benzotriazole, 2-(2'-hydroxy-5'-t-octylphenyl)-2H-benzotriazole, 2-
hydroxy-4-methoxybenzophenone (UV-9), 2-(2'-hydroxy-4',6'-di-tert-pentylphenyl)-2H-
benzotriazole, 2-hydroxy-4-n-octoxybenzophenone, and 2-(2'-hydroxy-5'-
methacryloxyethylphenyl)-2H-benzotriazole. Such adjuvants may optionally comprise
reactive functionality so that they will be copolymerized with the resin.

58745EP002
BO-GLP/EP

Examples of unsaturated monomers according to component (e) are ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, 1,3-butylene glycol di(meth)acrylate, 1,6-hexane diol di(meth)acrylate, neopentyl glycol di(meth) acrylate, tripropylene glycol di(meth) acrylate, polypropylene glycol di(meth)acrylate, glycerol di(meth)acrylate, bisphenol A di(meth)acrylate, bisphenol A glycidyl di(meth)acrylate, bisphenol A propyl di(meth)acrylate, bisphenol A isopropyl di(meth)acrylate, ethylene oxide modified bisphenol A di(meth)acrylate, ethylene oxide modified bisphenol A glycidyl di(meth)acrylate, 2,2-bis(4-methacryloxypropoxyphenyl) propane, 7,7,9-trimethyl-4,13-dioxy-3,14-dioxa-5,12-diazahexadecane-1,16-diol di(meth)acrylate, neopentyl glycol hydroxypivalic acid ester di(meth)acrylate, caprolactone modified hydroxypivalic acid neopentyl glycol ester di(meth)acrylate, trimethylol ethane di(meth)acrylate, trimethylol propane di(meth)acrylate, trimethylol methane tri(meth)acrylate, trimethylol ethane tri(meth)acrylate, trimethylol propane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol tetra(meth)acrylate, dipentaerythritol hexa(meth)acrylate, the reaction product of 3-chloro-2-hydroxypropyl (meth)acrylate and methylcyclohexane diisocyanate, the reaction product of 2-hydroxypropyl (meth)acrylate and methylcyclohexane diisocyanate, the reaction product of 2-hydroxypropyl (meth)acrylate and methylene bis (4-cyclohexylisocyanate), the reaction product of 2-hydroxypropyl(meth)acrylate and trimethylhexamethylene diisocyanate, the reaction product of 2-hydroxyethyl (meth)acrylate and isophorone diisocyanate, and the reaction product of 3-chloro-2-hydroxypropyl (meth)acrylate and isophorone diisocyanate, methyl (meth)acrylate, ethyl (meth)acrylate, propyl methacrylate, isopropyl methacrylate, n-butyl (meth)acrylate, iso-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, lauryl (meth)acrylate, tridecyl (meth)acrylate, stearyl (meth)acrylate, cyclohexyl (meth)acrylate, benzyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, glycidyl (meth)acrylate, tetrahydrofurfuryl (meth)acrylate, allyl

58745EP002
BO-GLP/EP

12

(meth)acrylate, 2-ethoxyethyl (meth)acrylate, methoxydiethylene glycol (meth)acrylate, methoxytetraethylene glycol (meth)acrylate, methoxypolyethylene glycol (meth)acrylate, phenoxy-diethyleneglycol (meth)acrylate, phenoxyhexa-ethyleneglycol (meth)acrylate, glycerol (meth)acrylate, tetrahydrofurfuryl 5 (meth)acrylate, dicyclopentenyl (meth)acrylate, isobornyl (meth)acrylate, phenyl (meth)acrylate, pentaerythritol mono(meth)acrylate, dipentaerythritol mono(meth)-acrylate, and mixtures thereof.

Examples of polymers according to component (f) are (meth)acrylate functionalized copolymers of acrylic acid, (meth)acrylic acid, maleic acid, and itaconic acid as 10 described e.g. in EP 0 323 120 A1. This document is explicitly mentioned and its disclosure, especially the disclosure relating to the preparation of (meth)acrylate functionalized copolymers of acrylic acid, (meth)acrylic acid, maleic acid, and itaconic acid disclosed in the above mentioned location, is regarded as being part of the disclosure of the present invention.

15 Examples of prepolymers according to component (f) are especially described in WO 01/ 44338 A1. This document is explicitly mentioned also and its disclosure, especially the disclosure relating to the preparation of unsaturated urethane prepolymers disclosed in the above mentioned location, is regarded as being part of the disclosure of the present invention. The prepolymers preferably do not contain 20 hydroxy, acidic or ionic groups.

The urethane prepolymers as a preferred example for the unsaturated prepolymers according to component (f) can be obtained by reaction of (A) 15 to 85 wt.-% of one or more α , ω -terminated poly(meth)acrylate diols, (B) 0 to 30 wt.-% of one or more radically curable, polyhydroxy-functional compounds, (C) 14 to 60 wt.-% of one or 25 more polyisocyanates, (D) 1 to 40 wt.% or a monofunctional compound, reactive vis-à-vis isocyanate groups, which contain one or more radically curable groupings.

The prepolymers obtained have an average molecular weight (M_w) according to GPC measurements against polystyrene standards in the range between 400 and 200.000

58745EP002
BO-GLP/EP

13

g/mol, preferably between 500 and 100.000 g/mol and more preferably between 600 and 20.000 g/mol.

Examples of solvents according to component (g) are water, linear, branched or cyclic, saturated or unsaturated alcohols with 2 to 10 C atoms, ketones, esters or

5 mixtures of two or more of said type of solvents.

Especially preferred alcoholic solvents are methanol, ethanol, iso-propanol and n-propanol.

Other suitable organic solvents are THF, acetone, methylethyl ketone, cyclohexanol, toluene, alkanes and acetic acid alkyl esters, in particular acetic acid ethyl ester.

10 Generally, it is possible to use the above-mentioned solvents alone or as a mixture of two or more of any of these solvents, if the solvent mixtures do not impair the adhesive properties to such an extent that the desired result cannot be obtained.

Examples of a fluoride release agent according to component (h) are naturally occurring or synthetic fluoride minerals such as sodium fluoride, fluoride glass such as

15 fluoroaluminosilicate glass, simple and complex inorganic fluoride salts such as potassium zinc fluoride and potassium hexa fluorotitanate, simple and complex organic fluoride salts such as tetra ethyl ammonium tetra fluoroborate or combinations thereof. Optionally these fluoride sources can be treated with surface treatment agents. In certain instances, the fluoride source and the filler (i) can be one
20 and the same.

Examples of a nonreactive inorganic filler according to component (i) are naturally-occurring or synthetic materials such as quartz, nitrides (e.g., silicon nitride), glasses derived from, for example Ce, Sb, Sn, Zr, Sr, Ba or Al, colloidal silica, feldspar, borosilicate glass, kaolin, talc, titania, and zinc glass, zirconia-silica fillers; low Mohs

25 hardness fillers such as those described in U.S. Pat. No. 4,695,251; and submicron silica particles (e.g., pyrogenic silicas such as the "Aerosil" Series "OX 50", "130", "150" and "200" silicas sold by Degussa, and "Cab-O-Sil M5" silica sold by Cabot Corp.). Preferred filler particles are quartz, submicron silica, and non-vitreous

58745EP002
BO-GLP/EP

14

microparticles of the type described in US 4,503,169. Mixtures of these fillers are also contemplated, as well as combination fillers made from organic and inorganic materials.

5 Optionally, the surface of the filler particles may be treated with a surface treatment, such as a silane coupling agent, in order to enhance the bond between the filler and the polymerizable resin. The coupling agent may be functionalized with reactive curing groups, such as acrylates and/or methacrylates.

10 Examples of a photobleachable colorant according to component (I) are Rose Bengal, Methylene Violet, Methylene Blue, Fluorescein, Eosin Yellow, Eosin Y, Ethyl Eosin, Eosin bluish, Eosin B, Erythrosin B, Erythrosin Yellowish Blend, Toluidine Blue, 4',5'-Dibromo fluorescein and blends thereof. Further examples of photobleachable colorants can be found in US 6,444,725 and are included herein by reference. The color of the compositions of the present invention may be additionally imparted by a sensitizing compound.

15

The dental composition of the present invention does not necessarily comprise halogenated solvents and / or solvents with a boiling point larger than 150°C, intensely colored dyes or pigments which are not photobleachable, fillers with an average particle size larger than 50 µm, aldehydes, and/or monomers with free carboxylic acid groups.

20 The phosphoric acid esters (a) mentioned above usually do not comprise alkylene chains with more than four carbon atoms. The phosphoric acid esters (b) mentioned above usually do not comprise residues R₃, R₄, or R₅ with more than 15 carbon atoms.

25

These dental adhesive compositions can be used for the adhesive securing of dental filling materials based on methacrylates and epoxies, as self-adhesive dental pit and fissure sealants, and as self-adhesive dental desensitizers.

58745EP002
BO-GLP/EP

15

Suitable dental filling materials based on methacrylates are described e.g. In WO 01/30305 A1, WO 01/30306 A1, WO 01/30307 A1.

Suitable dental filling materials based on epoxies are described e.g. in US 6,254,828, US 6,084,004, WO 01/51540 A1, WO 02/66535 A1, WO 98/47046 A1, WO 98/47047

5 A1.

These dental adhesive compositions are especially useful for adhesive securing of dental-filling-materials-based on epoxies as described in WO 01/51540 A1 on pages 18 – 19. The above mentioned documents are explicitly mentioned, and their disclosure is regarded as being part of the disclosure of the present invention.

10 The dental composition of the present invention provides at least comparable adhesion values to state of the art self-adhesive dental materials. In addition they exhibit a significant decrease in polarity upon polymerization and are therefore less prone to hydrolysis, swelling and leakage of monomers. They exhibit also improved film forming properties on dental hard tissue, especially on dentin, along with a 15 reduced hydrophilicity.

If applied for the adhesive securing of dental filling materials, these compositions ensure a better wetting of the filling material during application, and therefore an easier handling and better marginal adaptation.

The inventive composition is usually applied to the tooth surface in an amount sufficient to etch and prime the dental tissue. In this respect the following steps are 20 applied:

- a) applying the composition to the surface of a tooth (enamel and / or dentin), preferably using a brush or a sponge,
- b) optionally dispersing the composition to a thin film, preferably using a stream 25 of air,
- c) light or redox initiated curing of the composition,
- d) optionally applying a dental filling composition.

58745EP002
BO-GLP/EP

16

The composition of the present invention can be provided as a kit of parts comprising at least two parts.

5 The composition can generally be provided in any type of package, e.g. tubes, or flasks. For the application of small amounts of liquids, however, the prior art discloses a number of alternatives which facilitate the application.

For dental application, multi chamber packaging devices as described in EP 0 895 943 B1, WO-02/38468 A1, WO 01/58869 A1 are preferred.

10 Therefore, the present invention also relates to a kit of parts, comprising at least two parts, wherein in one part preferably components (a), (b), (c), optionally (d), (e), optionally (f), optionally (h), optionally (i), optionally (j) and in another part components (c), optionally (d), (e), optionally (f), optionally (g) as described above are comprised. The partitioning of the components should prevent undesired reactions of the composition. Components comprising OH groups should preferably stored in one 15 part, phosphoric acid esters (a) and (b) in the other part.

The composition of the present invention usually is prepared by mixing the components, e.g. by stirring or shaking.

20 The following experiments and results are provided to exemplify the invention, without limiting the scope of the invention.

Abbreviations:

PM2	mixture of reaction products of 2-hydroxyethyl methacrylate (HEMA) with phosphorus pentoxide, commercially available from Nippon Kayaku as Kayamer PM2
PGDMA	mixture of reaction products of glycerol di(methacrylate) (GDMA) with phosphorus pentoxide

58745EP002
BO-GLP/EP

17

HEMA	hydroxyethyl methacrylate
UDMA	urethane dimethacrylate
PUMA	step growth polymerization product of Tego Diol BD-1000, TMHDI, and HEMA (preparative example 2 of WO 01/44338 A1)
5 BisGMA	bisphenol A diglycidyl methacrylate
CPQ	<u>camphorquinone</u>
EDMAB	ethyl 4-dimethylaminobenzoate
MEHQ	hydroquinone monomethyl ether
BHT	butylated hydroxytoluene

10

If not otherwise indicated, the term "parts" means "parts by weight".

Preparative Example 1

A liquid was prepared by combining PGDMA (40.0 parts), PM2 (19.1 parts), HEMA (12.0 parts), UDMA (10 parts), ethoxylated bisphenol A dimethacrylate (8.0 parts), deionized water (6.0 parts), BisGMA (2.0 parts), CPQ (1.6 parts), EDMAB (1.2 parts), MEHQ (0.05 parts), and BHT (0.05 parts).

The adhesion measurement on bovine teeth by adhesive securing of a filling material 20 with this liquid was performed by a tensile bond strength test as described in US 6,245,872 or WO 01/10388:

Five freshly extracted bovine teeth were ground down by abrasive paper to the point where a sufficiently large exposed enamel or dentine surface resulted. In each case, small wax discs with a 6 mm punched-out hole were glued onto these surfaces in 25 order to obtain a standardized adhesion surface. The liquid was applied to the entire surface and rubbed in with moderate finger pressure for 20 seconds by means of a

58745EP002
BO-GLP/EP

18

microbrush. Compressed air was then blown on briefly until a thin liquid film with a smooth glossy surface was obtained. Then the film was polymerized by application of a light polymerization apparatus (Elipar Trilight, 3M ESPE, light intensity: approx. 800 W/cm²) for 10 seconds. Then, a dental filling material was introduced in two layers 5 into the recesses of the small wax discs and each layer was thoroughly polymerized in accordance with the manufacturer's instructions. The small wax discs were removed and the specimens were stored for 24 hours at 36°C and 100% humidity. Finally, the test pieces were pulled off in a tensile test (Zwick Universal testing machine). The enamel and dentin adhesion values obtained are shown in Table 1.

10

The decrease in polarity upon polymerization of this material was examined as follows:

A thin film of the liquid was prepared on a glass slide and polymerized as described above in the presence of air. A 5 µl droplet of deionized water was placed on the 15 inhibition layer of the polymerized film, and the contact angle was observed by means of a contact angle microscope (Krüss DSA 10). After 5 seconds, a contact angle of 21° was measured. A second specimen was prepared by polymerizing the liquid under a polystyrene film in the absence of air. For this specimen, a much larger contact angle of 55° was observed indicating a significant decrease in polarity of the 20 material upon polymerization.

Preparative Example 2

A liquid was prepared by combining PGDMA 40.0 parts, PM2 19.1 parts, HEMA 12.0 parts, PUMA 10 parts, ethoxylated bisphenol A dimethacrylate 8.0 parts, DI water 6.0 25 parts, BisGMA 2.0 parts, CPQ 1.6 parts, EDMAB 1.2 parts, MEHQ 0.05 parts, and BHT 0.05 parts.

58746EP002
BO-GLP/EP

19

For all specimens, a smooth and glossy surface on both enamel and dentin was observed for the polymerized film of the adhesive before application of the dental filling material.

Adhesive securing of an epoxy based composite filling material as described in WO 5 01/10388, page 12, was performed according to the method described in Preparative Example 1. The adhesion values for enamel and dentine are given in Table 1.

For polymerized films of this liquid, contact angles versus deionized water were 21° for a specimen prepared in the presence of air, and 54° for a specimen prepared in the absence of air.

10

Reference Example 1

A liquid was prepared by combining PGDMA (59.1 parts), HEMA (12.0 parts), UDMA (10 parts), ethoxylated bisphenol A dimethacrylate (8.0 parts), deionized water (6.0 parts), BisGMA (2.0 parts), CPQ (1.6 parts), EDMAB (1.2 parts), MEHQ (0.05 parts), 15 and BHT (0.05 parts).

Adhesive securing of an epoxy based composite filling material as described in WO 01/10388, page 12, was performed according to the method described in Preparative Example 1. The adhesion values for enamel and dentine are given in Table 1.

For polymerized films of this liquid, contact angles versus deionized water were 22° 20 for a specimen prepared in the presence of air, and 54° for a specimen prepared in the absence of air.

Reference Example 2

A liquid was prepared by combining PM2 (59.1 parts), HEMA (12.0 parts), UDMA (10 parts), ethoxylated bisphenol A dimethacrylate (8.0 parts), deionized water (6.0 parts), BisGMA (2.0 parts), CPQ (1.6 parts), EDMAB (1.2 parts), MEHQ (0.05 parts), 25 and BHT (0.05 parts).

5874SEP002
BO-GLP/EP

20

Adhesive securing of an epoxy-based composite filling material as described in WO 01/10388 was performed according to the method described in Preparative Example 1. The adhesion values for enamel and dentine are given in Table 1.

5 For polymerized films of this liquid, a contact angle versus deionized water of less than 5° was observed for specimens polymerized in the presence and in the absence of air.

Table 1

10

	Example	Filling material	Enamel adhesion [MPa]	Dentine adhesion [MPa]
A	Prep. Example 1	epoxy-based composite	8.9	3.8
B	Prep. Example 1	Filtek™ Z250	8.3	5.0
C	Prep. Example 1	Filtek™ Supreme	8.2	4.5
D	Prep. Example 2	epoxy-based composite	8.2	4.1
E	Ref. Example 1	epoxy-based composite	4.1	3.4
F	Ref. Example 2	epoxy-based composite	6.2	2.7

The values given are the average of five measurements each.

The epoxy-based composite material is described in WO 01/10388 A1, page 12.

Filtek™ Z250 and Filtek™ Supreme are commercially available from 3M ESPE AG.

58745EP002
BO-GLP/EP

Claims:

5 1. A dental composition, comprising

a) one or a mixture of phosphoric acid esters bearing substituents with one ethylenically unsaturated moiety on the phosphorus atom,

b) one or a mixture of phosphoric acid esters bearing substituents with two or more ethylenically unsaturated moieties on the phosphorus atom,

10 c) Initiators.

d) optionally stabilizers,

e) unsaturated monomers

f) optionally unsaturated polymers and/or prepolymers

g) optionally a solvent.

15 h) optionally a fluoride release agent,

i) optionally a non reactive inorganic filler,

j) optionally a photobleachable colorant.

2. The dental composition according to claim 1, wherein component (a) is
20 represented by formula (I)

(1)

58745EP002
BO-GLP/EP

22

wherein R₁ = (i) alkylene having 1 to 4 C atoms, (ii) or a bivalent organic group having 1 to 4 carbon atoms composed of two or more hydrocarbon residues bonded to one another by one or more ether or thioether linkages, (iii) or aryl, each optionally substituted with OH;

5 wherein R₂ = H, CH₃;

 wherein X₁ = OH or halogen; and

 wherein X₂ = X₁ or -O-R₁-OOC-CR₂=CH₂,

and component (b) is represented by formula (II),

10 (II)

 wherein R₃, R₄, and R₅ = (i) H, (ii) linear or branched alkyl having 1 to 4 carbon atoms, optionally substituted with OH, (iii) aryl, optionally substituted with OH, (iv) organic group having 5 to 15 carbon atoms composed of 2 to 6 saturated or ethylenically unsaturated hydrocarbon residues bonded to one another by one or more ether, thioether, ester, thioester, thiocarbonyl, amide, urethane, carbonyl and/or sulfonyl linkages, each optionally substituted with OH,

15

 wherein at least 2 of the groups R₃, R₄, and R₅ comprise at least 1 group according to formula (III)

 or

20

 at least 1 of the groups R₃, R₄, and R₅ comprises at least 2 groups according to formula (III)

58745EP002
BO-GLP/EP

23

(III)

and wherein X₂ = X₁ or -O-CR₃R₄R₅ or -O-R₁-OOC-CR₂=CH₂.

- 5 3. The dental composition according to anyone of the preceding claims, wherein component (b) is present in an amount of 1 – 500 parts by weight based on 100 parts by weight of component (a).
- 10 4. The dental composition according to anyone of the preceding claims, wherein the total amount of components (a) and (b) in the composition is usually 10 – 90 parts by weight.
- 15 5. The dental composition according to anyone of the preceding claims, wherein the polymer and/or prepolymer of component (f) is present in an amount of 0 – 30 parts by weight.
6. The dental composition according to claim 5, wherein the prepolymer does not contain any hydroxy, acidic or ionic groups.
- 20 7. The dental composition according to claim 5 or 6, wherein the prepolymer has an Mw in the range of 600 to 20000.

58745EP002
BO-GLP/EP

24

8. The dental composition according to anyone of the preceding claims having a contact angle versus deionized water of more than 15°, if the composition is cured in the presence of air, and of more than 50°, if the composition is cured in the absence of air.

5

9. The dental composition according to anyone of the preceding claims having an adhesion-to-enamel and/or dentin in the range of 2 - 15 MPa.

10. The dental composition according to anyone of the preceding claims, wherein component (a) is selected from 2-methacryloyloxyethyl phosphate, 2-methacryloyloxypropyl phosphate, 3-methacryloyloxypropyl phosphate, 2-methacryloyloxybutyl phosphate, 3-methacryloyloxybutyl phosphate, 4-methacryloyloxybutyl phosphate, 5-methacryloyloxy-3-oxa-pentyl phosphate, bis(2-methacryloyloxyethyl) phosphate, bis(2-methacryloyloxypropyl) phosphate, bis(3-methacryloyloxypropyl) phosphate, bis(2-methacryloyloxybutyl) phosphate, bis(3-methacryloyloxybutyl) phosphate, bis(4-methacryloyloxybutyl) phosphate, bis(5-methacryloyloxy-3-oxa-pentyl) phosphate, phosphate, or mixtures thereof.

11. The dental composition according to anyone of the preceding claims, wherein component (b) is selected from glycerol-1,3-dimethacrylate-2-phosphate, glycerol-1,2-dimethacrylate-3-phosphate, bis(glycerol-1,3-dimethacrylate) phosphate, bis(glycerol-1,2-dimethacrylate) phosphate, (glycerol-1,2-dimethacrylate)(glycerol-1,3-dimethacrylate) phosphate, (trimethylolpropane dimethacrylate) phosphate, bis(trimethylolpropane dimethacrylate) phosphate, (trimethylolethane dimethacrylate) phosphate, bis(trimethylolethane dimethacrylate) phosphate, pentaerythritol trimethacrylate phosphate or mixtures thereof.

58745EP002
BO-GLP/EP

25

12. Kit of parts, comprising in one part components (a), (b), (c), (d), (e), (f), (h), (i), (j) and in another part components (c), (d), (e), (f), (g) as described in anyone of the preceding claims.

5 **13. Use of a dental composition according to anyone of claims 1 to 11 or the kit according to claim 12 for the adhesive securing of dental filling materials based on (meth)acrylates and/or epoxies, as self-adhesive_dental_pit_and_fissure_sealants, and/or as self-adhesive dental desensitizers.**

10 **14. Method for preparing a composition according to anyone of claims 1 to 11 comprising the step of mixing the components.**

58745EP002
BO-GLP/EP

Abstract

5 The present invention relates to adhesive compositions that exhibit a significant decrease in polarity upon polymerization. More specifically, it relates to curable self etching dental adhesive compositions that can be applied to the tooth hard substance in one step and exhibit this decrease in polarity upon curing.

10 In this respect a formulation is provided combining phosphoric acid esters bearing substituents with one ethylenically unsaturated moiety on the phosphorus atom and phosphoric acid esters bearing substituents with two or more ethylenically unsaturated moieties on the phosphorus atom.

PCT/EP2004/007745

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.