Kann Malware in Android-Apps automatisch gefunden werden? (Verschiedene Analysemethoden für Android-Apps)

Cöllen, Markus Hochschule Mannheim Fakultät für Informatik Paul-Wittsack-Str. 10, 68163 Mannheim

Zusammenfassung—An dieser Stelle steht eine kurze Zusammenfassung des Inhaltes des Dokuments.

Inhaltsverzeichnis

3.1.1. Data Flow.

1	Emien	ung	1
2	Grund 2.1 2.2 2.3	Android und Sicherheitslücken	1 1 1 1 1
3	Analysemethoden 1		
	3.1	Statische Analyse	1 1
	3.2	3.1.2 Control Flow	1 1
4	FlowD	roid	1
5	Crowdroid		
6	Fazit		1
Abki	ürzunger	1	1
Liter	atur		1
1. E	Einleitu	ng	
2. (Grundla	agen	
2.1.	Androi	d und Sicherheitslücken	
2.2.	App St	ore	
2.3.	Malwai	re	
2.3.1	. Androi	id als Ziel.	
2.3.2	. Klassif	fizierung.	
3. A	analyse	methoden	
3.1.	Statisch	ne Analyse	

- 3.1.2. Control Flow.
- 3.2. Dynamische Analyse
- 4. FlowDroid
- 5. Crowdroid
- 6. Fazit

Eine Abkürzung = Application-to-Application (A2A) [6, S.1] [3] [8] [2] [5] [7] [4] [1] [9]

Abkürzungen

A2A Application-to-Application

Literatur

- [1] Steven Arzt u.a. "FlowDroid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware Taint Analysis for Android Apps". In: *SIGPLAN Not.* 49.6 (Juni 2014), S. 259–269. ISSN: 0362-1340. DOI: 10. 1145/2666356.2594299. URL: http://doi.acm.org/10. 1145/2666356.2594299.
- [2] Steffen Bartsch u.a. "Zertifizierte Datensicherheit für Android-Anwendungen auf Basis statischer Programmanalysen." In: *Sicherheit*. 2014, S. 283–291.
- [3] Iker Burguera, Urko Zurutuza und Simin Nadjm-Tehrani. "Crowdroid: behavior-based malware detection system for android". In: *Proceedings of the 1st ACM workshop on Security and privacy in smart-phones and mobile devices*. ACM. 2011, S. 15–26.
- [4] Silvio Cesare und Yang Xiang. "Classification of Malware Using Structured Control Flow". In: *Proceedings of the Eighth Australasian Symposium on Parallel and Distributed Computing Volume 107*. AusPDC '10. Brisbane, Australia: Australian Computer Society, Inc., 2010, S. 61–70. ISBN: 978-1-920682-88-0. URL: http://dl.acm.org/citation.cfm? id=1862294.1862301.
- [5] Jianwei Ding u.a. "MGeT: Malware Gene-Based Malware Dynamic Analyses". In: Proceedings of the 2017 International Conference on Cryptography, Security and Privacy. ICCSP '17. Wuhan, China: ACM, 2017, S. 96–101. ISBN: 978-1-4503-4867-6. DOI: 10.1145/3058060.3058065. URL: http://doi. acm.org/10.1145/3058060.3058065.

- [6] Yu Feng u.a. "Apposcopy: Semantics-based Detection of Android Malware Through Static Analysis". In: Proceedings of the 22Nd ACM SIGSOFT International Symposium on Foundations of Software Engineering. FSE 2014. Hong Kong, China: ACM, 2014, S. 576–587. ISBN: 978-1-4503-3056-5. DOI: 10.1145/2635868.2635869. URL: http://doi.acm.org/10.1145/2635868.2635869.
- [7] Michael Spreitzenbarth u.a. "Mobile-Sandbox: combining static and dynamic analysis with machine-learning techniques". In: *International Journal of Information Security* 14.2 (2015), S. 141–153. ISSN: 1615-5270. DOI: 10.1007/s10207-014-0250-0. URL: https://doi.org/10.1007/s10207-014-0250-0.
- [8] Lok-Kwong Yan und Heng Yin. "DroidScope: Seamlessly Reconstructing the OS and Dalvik Semantic Views for Dynamic Android Malware Analysis." In: *USENIX security symposium.* 2012, S. 569–584.
- [9] Z. Yang und M. Yang. "LeakMiner: Detect Information Leakage on Android with Static Taint Analysis". In: 2012 Third World Congress on Software Engineering. 2012, S. 101–104. DOI: 10.1109/WCSE.2012. 26.