Definitions

Exponential function. The **exponential function**, denoted exp, is defined as the inverse of the natural logarithm function. In other words, letting $f(x) = \ln x$, we have $f^{-1}(x) = \exp(x)$. We also write e^x for $\exp(x)$.

Exponential function with base a. Let a be a fixed positive number. The **exponential function with base** a, denoted $f(x) = a^x$, is the function with domain all real numbers defined as

$$a^x = e^{x \ln a}.$$

Logarithmic function with base a. Let a be a fixed positive number. The **logarathmic function with base** a, denoted $f(x) = \log_a(x)$ is defined as the inverse function of $g(x) = a^x$.

Theory

Properties of the exponential function. The following properties hold:

1. The exponential function is differentiable (hence also continuous) on all of \mathbb{R} and satisfies

$$\frac{d}{dx}e^x = e^x.$$

Equivalently, we have

$$\int e^x \, dx = e^x + C.$$

- 2. The exponential function is increasing and hence one-to-one. Its graph is always concave up.
- 3. We have

$$\lim_{x \to \infty} e^x = \infty$$
$$\lim_{x \to -\infty} e^x = 0$$

- 4. The domain of exp is $\mathbb{R} = (-\infty, \infty)$; the range of exp is $(0, \infty)$.
- 5. $e^0 = 1$.
- 6. We have

$$e^{x+y} = e^x e^y$$
 $e^{x-y} = e^x / e^y$ $e^{xy} = (e^x)^y$

for all $x, y \in \mathbb{R}$.

7. We have

$$\ln(e^x) = x$$
, for all x ; $e^{\ln x} = x$, for all $x \in (0, \infty)$.

Logarithmic and exponential compendium. The table below summarizes the important properties of our various families of logarithmic and exponential functions.

f(x)	$\ln x$	$\log_a x, a > 1$	$\left \log_a x, 0 < a < 1 \right $	e^x	$a^x, a > 1$	a^x , $0 < a < 1$
Domain	$(0,\infty)$			$(-\infty,\infty)$		
Range	$(-\infty,\infty)$			$(0,\infty)$		
Monotonicity	Increasing		Decreasing	Increasing		Decreasing
Limit as $x \to \infty$	∞		$-\infty$	∞		0
Limit as $x \to 0^+$	$-\infty$		∞	*		
$\overline{\text{Limit as } x \to -\infty}$	*			0 ∞		
Inverse	e^x	a^x		$\ln x$	l	$og_a x$
Relation to base-e	$\ln x = \log_e x$	$= \log_e x \qquad \qquad \log_a x = \frac{\ln x}{\ln a}$			$ * \qquad a^x = e^{x \ln a} $	
	$\log_a(xy) = \log_a x + \log_a y$			$a^{x+y} = a^x a^y$		
Algebra	bra $\log_a(x^y) = y \log_a x$ $\log_a(a^x) = x$			$a^{xy} = (a^x)^y$ $a^{\log_a x} = x$		

Derivative/antiderivative compendium. We collect here the new derivative formulas obtained via logarithms and exponential functions, along with their equivalent antiderivative formulas.

$$\frac{d}{dx}\ln|x| = \frac{1}{x} \iff \int \frac{1}{x}dx = \ln|x| + C$$

$$\frac{d}{dx}\ln|\cos x| = -\tan x \iff \int \tan x \, dx = -\ln|\cos x| + C = \ln|\sec x| + C$$

$$\frac{d}{dx}\ln|\sin x| = \cot x \iff \int \cot x \, dx = \ln|\sin x| + C$$

$$\frac{d}{dx}\ln|\sec x + \tan x| = \sec x \iff \int \sec x \, dx = \ln|\sec x + \tan x| + C$$

$$\frac{d}{dx}\ln|\csc x + \cot x| = -\csc x \iff \int \csc x \, dx = -\ln|\csc x + \cot x| + C$$

$$\frac{d}{dx}e^x = e^x \iff \int e^x \, dx = e^x + C$$

$$\frac{d}{dx}a^x = (\ln a)a^x \iff \int a^x \, dx = \frac{1}{\ln a}a^x + C$$

$$\frac{d}{dx}\log_a|x| = \frac{1}{(\ln a)x} \iff \int \frac{1}{(\ln a)x} \, dx = \log_a|x| + C$$

Examples

- 1. Find all t satisfying $2^{-t^2} = \frac{1}{16}$. Simplify your answer as much as possible.
- 2. Compute f'(x) for each of the following functions.

(a)
$$f(x) = \ln(\sin x)e^{\cos x}$$

(b)
$$f(x) = \log_3(2^x + 3^{x^2})$$

3. Compute the following definite indefinite integrals.

(a)
$$\int (e^t)^2 \sin(e^{2t}) dt$$

(b)
$$\int_0^{\pi} \sin(2^x) 2^{\cos(2^x) + x} dx$$