

Eco-Office

Politecnico Di Milano

School Of Architettura Urbanistica Ingegneria Delle Costruzioni Sustainable Architecture and Landscape Design

Technical Environmental Systems

Marchesi Renzo Najafi Behzad

Ву

Alhumaid Shahla (907765) Haneef Yosra (918833) Koçak Melek (913675)

INTRODUCTION

Eco-Office is a project of a commercial building modelled using SketchUp 2016 and rendered using OpenStudio 2.3.1.

In this project, three different cities were used for parametric study of the annual Heating and Cooling Consumption regarding:

- The effect of weather by changing the location of the building among Roma, Las Vegas and Moscow.
- External wall construction. Three types of walls are used in these three different cities.
- External glazing characteristics where three designs of windows are applied on each one of the three cities.

OBJECTIVE

The aim of this project is to determine the best design characteristics concerning walls and windows of the same building that would be constructed in three different cities of different weather characteristics in order to minimize the energy used for heating and cooling services, which will result in minimizing the cost.

STEPS

1. Building Geometry

- Building Area = $29,672 ft^2$ (2756.62 m^2)
- Building height = 30 ft (9.14 m)
- Windows for all walls, and overhangs for all windows except the ones on northern side.
- It's a 3-floor Commercial Building, each floor is divided into two rooms
 - o First Floor: lobby and conference room.
 - o Second floor: open office and closed office.
 - o Third floor: mech./elect. room and breakroom.

Windows

Overhangs

Thermal Zones

The following figure shows the thermal zones. Each color represents a different zone attributed to each one of the 6 rooms.

The Final Model

2. OpenStudio Simulation

Weather Data

Moscow

Weather File	MOSCOW - RUS IWEC Data WMO#=276120
Latitude	55.75
Longitude	37.63
Elevation	512 (ft)

Rome

Weather File	ROME - ITA IWEC Data WMO#=162420
Latitude	41.80
Longitude	12.23
Elevation	10 (ft)

Las Vegas

Weather File	LAS_VEGAS NV USA TMY2-23169 WMO#=723860
Latitude	36.08
Longitude	-115.2
Elevation	2178 (ft)

The HVAC calculations are performed based on the weather data of these three cities taken from EnergyPlus Database: www.energyplus.net/weather to consider considers the monthly average outdoor Temperature as a reference of performing the annual simulation for optimum results.

Walls

Base Case

- o 1 in stucco
- o 8 in concrete
- o 0.03 m wall insulation
- o ½ in Gypsum

Case A

- Increased the stucco thickness to 2.36 in. (0.06 m).
- The others are the same as the base case.

Case B

- increasing the thickness
- o of wall insulation to
- o 2.76 in (0.07 m)
- by keeping the others
- o as the base case

Glazing

Base Case

- o Theoretical glass [167]
- Of thickness 0.003m

Case C

- o Theoretical Glass [221]
- o Of thickness 0.01 m

Case D

- Theoretical Glass [167]
- o Of thickness 0.01 m

3. Data Analysis for the Base Case

Yearly heating, cooling interior lighting and interior equipment consumption of the building for the base case in Las Vegas:

End Use	Consumption (kBtu)
Heating	137,708
Cooling	973,730
Interior Lighting	367,345
Exterior Lighting	0
Interior Equipment	521,110

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Average Outdoor Air Dry Bulb (F)	44.5	52.3	53.3	67.0	72.8	86.1	90.4	88.8	81.5	67.1	54.4	46.9
Cooling Load (MBtu)	7.34	15.37	23.0	55.6	96.01	161.25	194.24	191.74	132.45	65.94	21.15	9.64
Heating Load (MBtu)	49.04	15.68	17.48	2.02	0.91	0.02	0.0	0.0	0.04	1.8	11.97	38.73

Yearly heating, cooling interior lighting and interior equipment consumption of the building for the base case in Rome:

End Use	Consumption (kBtu)
Heating	183,877
Cooling	649,094
Interior Lighting	367,345
Exterior Lighting	0
Interior Equipment	521,110

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Average Outdoor Air Dry Bulb (F)	46.9	48.2	51.1	55.9	63.7	70.2	75.6	76.0	70.7	62.6	55.1	48.9
Cooling Load (MBtu)	4.38	6.9	12.76	21.21	57.39	96.39	133.45	142.23	93.07	55.29	17.82	8.21
Heating Load (MBtu)	50.56	32.46	25.15	9.5	2.45	0.43	0.05	0.1	0.46	7.51	16.37	38.82

Yearly heating, cooling interior lighting and interior equipment consumption of the building for the base case in Moscow:

End Use	Consumption (kBtu)		
Heating	1,119,874		
Cooling	217,202		
Interior Lighting	367,345		
Exterior Lighting	0		
Interior Equipment	521,110		

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Average Outdoor Air Dry Bulb (F)	19.8	18.3	30.4	45.1	56.2	61.8	66.4	60.7	51.7	42.2	27.2	21.7
Cooling Load (MBtu)	0.0	0.02	0.21	5.75	28.03	46.76	70.13	50.21	13.84	2.26	0.0	0.0
Heating Load (MBtu)	230.56	210.26	136.02	47.16	10.58	3.14	1.2	6.25	23.15	69.15	168.06	214.3

ANNUAL HVAC CONSUMPTION (Mbtu) (Walls)										
Cities	Cities Base Case		Cas	e A	Case B					
	Heating	Cooling	Heating	Cooling	Heating	Cooling				
Rome	183.9	649.1	186.9	632.2	180.9	640.4				
Moscow	1,119.9	217.2	1,125.3	207.6	1,082.3	213.2				
Las Vegas	137.7	973.7	140.3	950.5	138.7	951.5				

ANNUAL HVAC CONSUMPTION (Mbtu) (Windows cases)										
Cities	Base	Case	Cas	ee C	Case D					
	Heating	Cooling	Heating	Cooling	Heating	Cooling				
Rome	183.9	649.1	28.2	963.9	180.3	651.0				
Moscow	1,119.9	217.2	389.6	413.3	1,107.5	218.4				
Las Vegas	137.7	973.7	16.5	1,222.4	134.8	973.6				

4. Conclusion

By observing the above chart that shows the total annual consumption of the HVAC system of the building in three cities for the three different cases, then comparing the results, we can now design our building in each city regarding the best walls and windows characteristics as follows:

- o Rome: A combination of Case A (wall) & Case D (window).
- Moscow: A combination of Case B (wall) & Case C (window).
- o Las Vegas: A combination of Case B (wall) & Case D (window).