CHE 576 - Assignment 1

Winter 2011

Due 11:00 a.m., January 25, Wednesday

Q.1: Select the sampling period for the following transfer functions:

1.
$$\frac{y(s)}{u(s)} = \frac{e^{-2s}}{s+0.01}$$

$$2. \ \frac{y(s)}{u(s)} = \frac{e^{-2s}}{s+0.1}$$

3.
$$\frac{y(s)}{u(s)} = \frac{e^{-0.1s}}{(0.3s+1)(s+0.1)}$$

4.
$$\frac{y(s)}{u(s)} = \frac{e^{-3s}}{(s+2)(s+0.25)}$$

$$5. \ \frac{y(s)}{u(s)} = \frac{e^{-2s}}{s + 0.5s + 0.5}$$

Q.2: For the physical processes given in the Figure below

- 1.) Provide the model description in the form of the physical law that govern the process (Hint: Mass Balance)
- 2.) Find the state space representation $\Sigma(A, B, C, D)$
- 3.) Input is flow in the tank $f_{in}(t)$, output is height h(t)
- 4.) Find the corresponding discrete system state space representation $\Sigma(\Phi, \Gamma, \Theta, D)$ when the sample time is $\Delta t = 0.1$
- 5.) Find a sampling time if K = 10, $\bar{A} = 0.1$ (tank base), $\rho = 1$.
- Q.3: Consider the first-order differential equation

$$\frac{dy(t)}{dt} - 0.5y(t) = 1.5u(t), \quad y(0) = 3 \tag{1}$$

1.) Find an integral form solution for Eq.1.

- 2.) Find the difference equation when sample time is $\Delta t = 0.1$ by exact discretization.
- 3.) Find the difference equation with time derivative approximated at $\Delta t = 0.1$ by finite difference method.
- 4.) Find a difference equation using MATLAB
- 5.) Plot the sequence of numbers obtained by the exact difference equation and by finite difference method and applied piecewise constant input given as follows

$$u(0) = -2$$

$$u(1\triangle t) = -2e^{-2*1\triangle t}$$

$$u(2\triangle t) = -2e^{-2*2\triangle t}$$

$$\cdots = \cdots$$

$$u(k\triangle t) = -2e^{-2*k\triangle t}$$

with k=20.

Q.4: Find a state space representation (that is $\sum_{c}(A, B, C, D)$) of the system described by the following differential equations:

$$M_1\ddot{x}_1 + C\dot{x}_1 + k_1x_1 - k_2x_2 = f(t)$$

$$M_2\ddot{x}_2 + k_2x_2 = 0$$
(2)

 $x_1(0)=x_0,\,\dot{x}_1(0)=x_{10},\,x_2(0)=x_{20},\,\dot{x}_2(0)=x_{30}.$ Obtain the discrete state space representations by exact discretization method (that is $\sum_d=(\Phi,\Gamma,\Theta,D)$), and $\Delta t = 0.1$, $M_1 = 1$, $M_2 = 2$, $k_1 = 0.5$, $k_2 = 0.2$, c = 0.1. (Hint: Example 1.3 and 2.1 in notes).