

84

Mathematical Solutions with Different Diode Abstraction Models Different abstractions can be used when analyzing diode circuits. Choice depends on the desired accuracy of your circuit calculations. These are also called Piecewise linear models

88 8

90

105 106

107 108

DIODES AND APPLICATIONS

RMS value $V_{\infty} = \sqrt{\frac{1}{T_{0}^{2}}} \int_{0}^{1/2} (t) dt$ $= -\frac{1}{2\pi T_{0}^{2}} \int_{0}^{1/2} (t) dt$ $= -\frac{1}{2\pi T_{0}^{2}} \int_{0}^{1/2} (t) dt dt (\varpi) + \int_{0}^{1/2} (\omega(\varpi))^{3/2}$ $= -\frac{1}{2\pi T_{0}^{2}} \int_{0}^{1/2} \sin^{2} \varpi t d(\varpi) dt (\varpi)^{3/2}$ $\sin^{2} \varpi t - \frac{1}{2} (1 - \cos 2\varpi t), \, \varpi^{2} = 2\pi, \, \theta = \varpi t$ $V_{\infty} = \frac{V_{\infty}^{2}}{4\frac{2}{4\pi}} (1 - \cos 2\varpi t) d\theta^{3/2}$ $= -\frac{V_{\infty}^{2}}{4\frac{2}{4\pi}} (-2 - \frac{1}{2} \cos 2\varpi t) d\theta^{3/2}$ $= -\frac{V_{\infty}^{2}}{4\frac{2}{4\pi}} (\varpi - \frac{1}{2} \sin 2(\varpi) - 0 + \frac{1}{2} \sin 2(\varpi))^{3/2}$ $= -\frac{V_{\infty}^{2}}{4\frac{2}{4\pi}} (\varpi - 0 - 0 + 0)^{3/2}$ $= \frac{V_{\infty}^{2}}{2}$

111 112

Form Factor $Form Factor(F) = \frac{rms \ value}{average \ value}$ $F = \frac{\frac{V_m}{2}}{\frac{V_m}{\pi}}$ $F = \frac{\pi}{2}$ F = 1.52

117 118

123 124

125 126

DIODES AND APPLICATIONS

129 130

Ex. Rectification Methods Comparison					
		HWR	FWR - Bridge	FWR - Transformer	
	No. of diodes	1	4	2	
	PIV rating of each diode	$V_{P(out)} + 0.7$	$V_{P(out)} + 0.7$	$2V_{P(out)} + 0.7$	
	Average out put voltage	$\frac{V_{P(out)}}{\pi}$	$\frac{2V_{P(out)}}{\pi}$	$\frac{2V_{P(out)}}{\pi}$	
	Average diode current	$\frac{V_{P(out)}}{\pi R_L}$	$\frac{2V_{P(out)}}{\pi R_L}$	$\frac{2V_{P(out)}}{\pi R_L}$	
					131

The Zener Diode

- 1) Some Zener diodes use Zener breakdown (< 5V)
- 2) Some Zener diodes use Avalanche breakdown (>5V)
- 3) Neither Zener nor avalanche breakdown are inherently destructive
- 4) The heat generated by the large current flowing can cause damage in both cases.