ESC103F Engineering Mathematics and Computation: Tutorial #2

Question 1: Consider the points located at A(1,1,1), B(2,2,3) and C(6,1,10). Find the angle ABC where B is the vertex.

Question 2: Let \vec{u} and \vec{v} be nonzero vectors in 2- or 3-space, and let $k = ||\vec{u}||$ and $l = ||\vec{v}||$. Show that the vector $\vec{w} = l\vec{u} + k\vec{v}$ bisects the angle between \vec{u} and \vec{v} .

Question 3: Given a rectangular solid with sides of lengths 1, 1, and $\sqrt{2}$, use a vector approach to find the angle between a diagonal and one of the longest sides.

Question 4: Using cross product, find the area of the triangle having vertices A(1, 2), B(7, -2) and C(7, 20/3).

Question 5: Suppose you start with the standard Cartesian coordinate system for 2-D in terms of the unit vectors:

$$\vec{i} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 and $\vec{j} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

We are now going switch to a new coordinate system where the new x-axis, denoted by x', has been rotated 30 degrees counter clockwise from the original x-axis, and the new y-axis, denoted by y', has been rotated 15 degrees clockwise from the original y-axis.

- i) Make a sketch of the old and new coordinate systems.
- ii) Show that the new unit vector \vec{i} along x' can be expressed in terms of the original coordinate system as:

$$\vec{i}' = \begin{bmatrix} \cos 30^0 \\ \sin 30^0 \end{bmatrix}$$

- iii) Derive a similar expression for the new unit vector \vec{j} ' along y' in terms of the original coordinate system.
- iv) Express the vector $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ in the original coordinate system as a linear combination of the new unit vectors associated with the new coordinate system.

Question 6: Using projections, verify that the sum of the squares of the distances from a point $P = (x_1, y_1)$ to the perpendicular lines ax + by = 0 and bx - ay = 0 is equal to the square of the length of the vector $\overrightarrow{OP} = \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$.

Question 7: Prove that if \vec{u} and \vec{v} are vectors in \mathbb{R}^3 , then $\vec{u} \cdot (\vec{u} \times \vec{v}) = 0$.

Question 8: Prove that if \vec{u} and \vec{v} are vectors in \mathbb{R}^3 , then $\|\vec{u} \times \vec{v}\|^2 = \|\vec{u}\|^2 \|\vec{v}\|^2 - (\vec{u} \cdot \vec{v})^2$.

Question 9: True or false? If \vec{u} is orthogonal to $\vec{v} + \vec{w}$, then \vec{u} is orthogonal to \vec{v} and \vec{w} . Justify your answer with a proof (for true) or a counter example (for false).

Question 10: True or false? If \vec{u} and \vec{v} are nonzero vectors such that $\|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2$, then \vec{u} and \vec{v} are orthogonal. Justify your answer with a proof (for true) or a counter example (for false).

Question 11: True or false? If \vec{u} and \vec{v} are nonzero vectors, then $||\vec{u} + \vec{v}|| = ||\vec{u}|| + ||\vec{v}||$ if and only if \vec{u} and \vec{v} are parallel vectors. Justify your answer with a proof (for true) or a counter example (for false).