Contents

4	A data assimilating state-space model for algal growt				
	un	der co	ntrolled conditions within a photobioreactor	2	
	4.1	Introdu	ction	2	
	4.2	Method	s	2	
		4.2.1	Data Model: Data description and collection methods	2	
		4.2.2	Process model: Carbon chemistry	2	
		4.2.3	Process model: Gas transfer equilibrium concentrations for		
			O_2 and CO_2	3	
		4.2.4	Process model: Photosynthesis and respiration	5	
		4.2.5	Process model: Ordinary differential equations	6	
		4.2.6	Parameter Model: Priors	9	
	4.3	Results		10	
		4.3.1	Carbon chemistry iterative solution	10	
		4.3.2	Posteriors	15	
\mathbf{A}	Lil	Bbi mo	odel code	19	
	Bi	bliogra	aphy	2 9	

Chapter 4

A data assimilating state-space model for algal growth under controlled conditions within a photobioreactor

4.1 Introduction

Microalgae are tiny organisms..

4.2 Methods

4.2.1 Data Model: Data description and collection methods

 O_2 , pH, DIC and alk observations collected over 4 days.

Gas, temperature, light and dilution rate were used as forcings.

4.2.2 Process model: Carbon chemistry

To calculate the carbon chemistry of the photo-bioreactor, we would ideally use CO2SYS [4] to calculate HCO₃⁻, CO₂, CO₃ and pH. CO2SYS is a program developed for CO₂ system calculations (CO2SYS) that calculates and returns a detailed state of the carbonate system of oceanographic water samples in seawater and freshwater [4]. It uses two of the four measurable carbonate system parameters (total alkalinity, total inorganic CO₂, pH, and either fugacity fCO₂ or partial pressure of CO₂) to calculate the other two parameters at a set of input conditions (temperature and pressure).

To incorporate CO2SYS into LiBbi for solving carbon chemistry on the timescale of the microalgae model, we explicitly define 2 iterations of the Newton-Raphson method for finding approximations to roots of real valued functions. The Newton-Raphson method is an iterative process considering a function, its derivative and an initial starting value. Vital to the convergence of the Newton-Raphson method is a good starting value. To provide a good starting value, we randomly sample from a range of CO2SYS input parameters (temperature = 20-30, salinity = 30-40, DIC = 200-2500, and alkalinity = 1500-3000) and fit an approximating equation to pH as a function of DIC, S and T (alk?). This gives us a close initial starting value for the Newton-Raphson method.

Converges in 2-3 iterations

Choice of H2CO3 and HCO3- dissociation constants K1 and K2 was Mehrbach (refit BY DICKSON AND MILLERO) [BM: After the iterative approach is finalised, the K1 and K2 constants are adjusted based on measurements taken during the experiment, K1*1.23 and K2*0.53 measured during experiment] temperature: 2-35, salinity: 20-40, Seawater scale, Artificial seawater.

The CO2SYS Matlab version [6] was used to produce values of CO_2 and HCO_3^- across DIC range 200-2500. Approximating equations were fit

Total inorganic CO_2 (TCO_2) is the sum of the dissolved CO_2 , the carbonate (CO_{3-2}), and the bicarbonate (HCO_3^-).

4.2.3 Process model: Gas transfer equilibrium concentrations for O_2 and CO_2

The equilibrium concentration for CO_2 solubility in water CO_{2H} (μ mol/L) is calculated using Henry's law,

$$CO_{2H} = K0_{CO2} * fCO2 * 1.0220 * 1e6$$
 (4.1)

where fCO2 (atm) is the fugacity or approximately the partial pressure of CO_2 , 1.0220 is the density of seawater (kg/L) at salinity 34 ppt and temperature 27°C

[5] [2]. $K0_{CO2}$ (mol/kg_{soln}/atm) is the solubility of gas in seawater [BM: ask Chris: solubility of gas? is this right] and is calculated from the fitted van't Hoff equation and the logarithmic Setchenow salinity dependence [7],

$$K0_{CO2} = exp(-60.2409 + 93.4517(100/T_K) + 23.3585 * ln(T_K/100) +$$

$$S(0.023517 - 0.023656(T_K/100) + 0.0047036(T_K/100)^2))$$
(4.2)

where T_K is the temperature (K) and S is salinity (ppt).

Similarly the equilibrium concentration for O_2 solubility in water O_{2H} is calculated using Henry's law,

$$O_{2H} = K0_{O2} * fO2 * 1.0220 * 1e - 6 (4.3)$$

where fO2 (atm) is the fugacity or approximately the partial pressure of O_2 , 1.0220 is the density of seawater (kg/L) at salinity 34 ppt and temperature 27°C [5] [2], and KO_{O2} (mol/kg_{soln}/atm) is the solubility of oxygen in seawater with an adjusted salinity dependence [1],

$$K0_{O2} = (exp(-1282.8704 + 36619.96/T_K + 223.1396 * log(T_K) - 0.354707 * T_K + S * (5.957e - 3 - 3.7353/T_K) + 3.68e - 6 * S^2))/0.2094e - 6$$

$$(4.4)$$

where T_K is the temperature (K) and S is salinity (ppt).

The equilibrium concentrations for O_2 and CO_2 are modelled together with the gas turning on and off during the experiment, as

$$kLA_{O2}\xi(O_{2H} - O_2) \tag{4.5}$$

$$0.893kLA_{O2}\xi(CO_{2H} - CO_2) \tag{4.6}$$

where ξ is the gas state (1= on, 0= off), and kLA_{O2} is the mass transfer coefficient for air (d⁻¹), and 0.893 is the ratio between measured O₂ and CO₂ mass transfer constants [3].

4.2.4 Process model: Photosynthesis and respiration

Net photosynthesis

$$dDIC/dt = -P_1 * I * mm + R_1 \tag{4.7}$$

$$dO_2/dt = \frac{P_1 * I * mm - R_1}{R_Q} \tag{4.8}$$

Photosynthesis (P₁) and respiration (R₁) are both modelled as random walks, by taking P and R, previously constant parameters, and replacing them by $P_1(t)$ and $R_1(t)$. Here, we take $P_1(t)$ and $R_1(t)$ to be such that

$$P_1(t + \Delta t) = P_1(t) + r_P$$

$$R_1(t + \Delta t) = R_1(t) + r_R$$

where $r_P \sim N(0, \sigma_{r_P})$, $r_R \sim N(0, \sigma_{r_R})$, and Δt is the length of discrete time-step. For the purpose of the Bayesian analysis here, σ_{r_P} and σ_{r_R} are treated as a parameter to be inferred.

 R_Q is the respiratory quotient, the ratio of CO_2 produced and O_2 consumed by a cell.

PAC is Photosynthetically Active Carbon, this is the type of carbon that the microalgae use for photosynthesis. This can be CO_2 , HCO_3^- , or a combination of both, eg $PAC = CO_2 + HCO_3^-$ if the microalgae are using both carbon dioxide and bicarbonate for photosynthesis.

$$PAC = HCO_3^- \tag{4.9}$$

$$mm = \frac{PAC}{K_m + PAC} \tag{4.10}$$

4.2.5 Process model: Ordinary differential equations

Ode's:

Rate flux into cells gas transfer dilution
$$\frac{\partial DIC}{\partial t} = -(P - R) + \hat{Q}^{air}kLa^{air}_{CO_2}(CO_2^{air} - CO_2) + \frac{Q^M}{V}(DIC^M - DIC) \\
+ \hat{Q}^{co2}kLa^{co2}_{CO_2}(CO_2^{co2} - CO_2) + \frac{Q^M}{V}(O_2^M - O_2) \\
\frac{\partial O_2}{\partial t} = \frac{1}{R_Q}(P - R) + \hat{Q}^{air}kLa^{air}_{O_2}(O_2^{air} - O_2) + \frac{Q^M}{V}(O_2^M - O_2) \\
+ \hat{Q}^{co2}kLa^{co2}_{O_2}(O_2^{co2} - O_2) + \frac{Q^M}{V}(TA^M - TA) \\
\frac{\partial TA}{\partial t} = R_R(P) + \frac{Q^M}{V}(TA^M - TA)$$
(4.13)

	Symbol	Description	Prior / Value	Unit
State variable initial conditions	DIC^0	Dissolved inorganic carbon		$\mu\mathrm{M/L}$
	O_2^0	Oxygen		$\mu\mathrm{M/L}$
ial c	TA^0	Total alkalinity		$\mu\mathrm{M/L}$
e init	P^0	Rate of photosynthesis		$\mu \mathrm{M/L/day}$
riabl	\mathbb{R}^0	Rate of respiration		$\mu \mathrm{M/L/day}$
te va	pH^0	-		$\log_{10}(-\text{mol/L H+})$
Sta	$CO_2{}^0$	Carbon dioxide		$\mu\mathrm{M/L}$
	HCO_3^{-0}	Bicarbonate		$\mu\mathrm{M/L}$
	CO_3^{2-0}	Carbonate		$\mu\mathrm{M/L}$
erms	\hat{Q}^{air}	indicator for flow in air line	0 or 1	-
Gas transfer terms	$x_{CO_2}^{air}$	mole fraction of CO ₂ atmosphere	400	ppm
trans	CO_{2H}	Equilibrium CO ₂ concentration	Eq. 4.1	$\mu\mathrm{M/L}$
Gas 1	CO_2^{air}	sat CO ₂ conc with atmosphere	at CO_2 conc with atmosphere $x_{CO_2}^{air}CO_{2H}$	
	$kLa_{CO_2}^{air}$	$a_{CO_2}^{air}$ Mass transfer coefficient for CO_2 0.893 $kLa_{O_2}^{air}$		day^{-1}
	$x_{O_2}^{air}$	mole fraction of O_2 atmosphere	0.2094	atm

	O_{2H}	Equilibrium O_2 concentration	Eq. 4.3	$\mu\mathrm{M/L}$
	O_2^{air}	sat O_2 conc with atmosphere	$x_{O_2}^{air}O_{2H}$	
	au	half-life of $kLa^{air}_{O_2}$	range(2-20)	min^{-1}
	$kLa^{air}_{O_2}$	Mass transfer coefficient for O_2	$\ln(2) * 24 * 60/\tau$	day^{-1}
SU	Q^M	rate		ml/day
terr	V	Volume of the reactor	500	ml
Dilution terms	DIC^{M}	Media dissolved inorganic carbon	1724.20	$\mu\mathrm{M/L}$
Dil	O_2^M	Media oxygen concentration	226.65	$\mu\mathrm{M/L}$
	TA^{M}	Media total alkalinity	1797.90	$\mu\mathrm{M/L}$
rms	\hat{Q}^{CO2}	indicator for dilution	0 or 1	-
Other dilution terms	$x_{O_2}^{CO2}$	mole fraction of	0	-
liluti	O_2^{CO2}	sat CO_2 conc with CO_2	$x_{O_2}^{CO2}O_{2H}$	
her o	$kLa^{CO2}_{O_2}$	mass transfer coefficient		day^{-1}
Ot	O_2^{CO2}			
	$x_{CO_2}^{CO2}$	mole fraction of	1	ppm
	CO_2^{CO2}	sat CO_2 conc with CO_2	$x_{CO_2}^{CO2}CO_{2H}$	
	$kLa_{CO_2}^{CO2}$	mass transfer coefficient	$0.893kLa_{O_2}^{CO2}$	day^{-1}
	CO_2^{CO2}			

Symbol	Variable	Units
DIC	Dissolved inorganic carbon concentration	$\mu \mathrm{mol/L}$
O_2	Oxygen	$\mu \mathrm{mol/L}$
рН	-	$\log_{10}(-\text{mol/L H+})$
CO_2	Carbon dioxide	$\mu \mathrm{mol/L}$
HCO_3^-	Bicarbonate	$\mu \mathrm{mol/L}$
CO_3^{2-}	Carbonate	$\mu \mathrm{mol/L}$
PAC	Photosynthetically active carbon	$\mu \mathrm{mols/L}$
mm	-	-
kLA_{O2}	Mass transfer coefficient for \mathcal{O}_2	d^{-1}
CO_{2H}	Equilibrium CO_2 concentration	$\mu \mathrm{mols/L}$
$\mathrm{K0}_{O2}$	Solubility of gas	$mol/kg_{soln}/atm$
$K0_{CO2}$	Solubility of gas	$mol/kg_{soln}/atm$
TA	Total alkalinity	$\mu \mathrm{mols/L}$
S	Salinity	ppt
fCO2	Fugacity/CO ₂ partial pressure	atm
fO2	Fugacity/ O_2 partial pressure	atm
K_m	Carbon restriction	$\mu \mathrm{mols/L}$
P	Photosynthesis rate	μ mols/L/day
R	Respiration rate	μ mols/L/day
R_R	Redfield ratio	-
\mathbf{R}_Q	Respiratory quotient	-

Table 4.2 : Table of variables and parameters.

Symbol	Variable	Units
I	Light Intensity	normalised to 0-1
Τ	Temperature	• C
T_K	Temperature	K
ξ	gasflow	on/off (1,0)

Table 4.3: Table of Forcings

4.2.6 Parameter Model: Priors

Decide whether the parameters vary in time or not. |

Parameter	Prior	Proposal
S	34	*
fCO2	397e-6	*
fO2	0.21	*
kLA_{O2}	LogNormal(log(200.0), 0.5)	$\operatorname{LogNormal}(\operatorname{log}(kLA_{O2}), 0.5 \operatorname{prop}_{std})$
K_m	LogNormal(log(200.0), 0.8)	$LogNormal(log(K_m), 0.8prop_{std})$
R_R	Uniform(0.0001, 0.2)	$TrunNormal(R_R, 0.2prop_{std}, 0.0001, 0.2)$
R_Q	Uniform(0.66, 1)	$TrunNormal(R_Q, 0.2prop_{std}, 0.66, 1.0)$
σ_P	Normal(0.05, 0.01)	$Normal(\sigma_P, 0.01prop_{std})$
σ_R	Normal(0.01, 0.001)	$Normal(\sigma_R, 0.001prop_{std})$

Table 4.4 : Table of Parameters, their priors and proposal distributions. * indicates the parameter was held fixed. (prop_{std} =0.1)

4.3 Results

4.3.1 Carbon chemistry iterative solution

Total Sulfur

$$TS = \frac{0.14}{96.062} * \frac{S}{1.8065}$$

$$IS = 19.924 * \frac{S}{(1000.0 - 1.005 * S)}$$

$$KS_{int} = -\frac{4276.1}{T_K} + 141.328 - 23.093 * log(T_K) + (-\frac{13856.0}{T_K} + 324.57$$

$$-47.986 * log(T_K)) * \sqrt{IS} + (\frac{35474}{T_K} - 771.54 + 114.723 * log(T_K)) * IS$$

$$-\frac{2698}{T_K} * IS^{1.5} + \frac{1776}{T_K} * IS^2$$

$$KS = exp(KS_{int}) * (1 - 0.001005 * S)$$

Fluorine

$$TF = 0.000067 * S/18.9984/1.80655$$

$$KF = exp(-(-\frac{874.0}{T_K} - 0.111 * \sqrt{S} + 9.68))$$

$$SWS_{2_T} = \frac{(1 + \frac{TS}{KS})}{(1 + \frac{TS}{KS} + \frac{TF}{KF})}$$

$$Free_{2_T} = 1 + \frac{TS}{KS}$$

H2O dissoc

$$KW = exp(148.9802 - \frac{13847.26}{T_K} - 23.6521 * log(T_K)$$
$$+ (\frac{118.67}{T_K} - 5.977 + 1.0495 * log(T_K)) * \sqrt{S} - 0.01615 * S)$$

Boron

$$KB = exp((-8966.90 - 2890.53 * \sqrt{S} - 77.942 * S + 1.728 * S * \sqrt{S} - 0.0996 * S^2)/T_K + 148.0248 + 137.1942 * \sqrt{S} + 1.62142 * S - (24.4344 + 25.085 * \sqrt{S} + 0.2474 * S) * log(T_K) + 0.053105 * \sqrt{S} * T_K)$$

$$TB = 0.0004326 * \frac{S}{35}$$

Carbon eq constants

$$K1 = 10^{\left(-\left(\frac{3633.86}{T_K} - 61.2172 + 9.6777*log(T_K) - 0.011555*S + 0.0001152*S^2\right)\right)} * 1.23$$

$$K2 = 10^{\left(-\left(\frac{471.8}{T_K} + 25.9290 - 3.16967*log(T_K) - 0.01781*S + 0.0001122*S^2\right)\right)} * 0.53$$

1.23 and 0.53 were experiment specific and measured

Initial guess at the pH

$$pH_{init} = 12.26 - 0.0030605 * DIC - 0.043752 * T - 0.013625 * S + 0.00011315 * TA$$
$$+ 1.3463e - 5 * DIC * T + 5.2215e - 7 * DIC * TA$$

Iterations

$$\begin{split} h &= 10^{-pH_{init}} \\ h_{free} &= \frac{h}{Free_{2_T}} \\ f0 &= (DIC*1e - 6*\frac{K1*h + 2*K1*K2}{h*h + K1*h + K1*K2} \\ &- h_{free} + \frac{KW}{h} - Alk*1e - 6 + \frac{TB}{1 + \frac{h}{KB}})*1e6 \\ df0 &= (DIC*1e - 6*\frac{K1 + 2*K1*K2}{h^2 + K1*h + K1*K2} \\ &- DIC*1e - 6*\frac{(K1*h + 2*K1*K2)}{(h^2 + K1*h + K1*K2)^2}*(2*h + K1) \\ &- TB*\frac{1}{(1 + \frac{h}{KB})^2}/KB \\ &- \frac{KW}{h^2} - \frac{1}{Free_{2_T}})*1e6*(-log(10)*10^{-pH}) \\ pH &= pH - \frac{f0}{df0} \\ H &= 10^{-pH} \\ denom &= H^2 + K1*H + K1*K2 \\ CO2 &= \frac{DIC*H^2}{denom} \\ HCO3 &= \frac{DIC*K1*K2}{denom} \\ CO3 &= \frac{DIC*K1*K2}{denom} \end{split}$$

Figure 4.1 : Iterative vs exact solution for state variables $\mathcal{O}_2,\, DIC,\, \mathrm{and}\,\, TA.$

Variable	Iter. 1	Iter. 2	Iter. 3	Iter. 4	Iter. 5
O_2	0.308389964	0.016044284	4.18E-05	6.89E-05	7.59E-05
DIC	16.78775711	0.958511825	0.005229318	0.002305054	0.002333411
TA	2.607767674	0.160897272	0.000688102	0.001257725	0.001218981
pH	0.036092734	0.002355758	1.41E-05	6.93E-06	6.93E-06
CO2	2.109401968	0.145719349	0.001222812	0.000866728	0.000866727
HCO3	19.81869214	1.21021115	0.008016765	0.001025002	0.001025139
CO3	20.89660704	1.307061652	0.00867642	0.001102278	0.001102434

Table 4.5: RMSE for 5 iterations of the Newton-raphson carbon chemistry iterative solution.

Figure 4.2 : Iterative vs exact solution for carbon chemistry CO_2 , HCO_3 , CO_3 , and pH.

4.3.2 Posteriors

Figure 4.3 : Posteriors for O_2 and pH.

Figure 4.4: Posteriors for DIC and TA.

Figure 4.5 : Posteriors for carbon chem.

Figure 4.6: Posteriors for photosynthesis and respiration.

Figure 4.7 : Priors, posteriors and traces for model parameters.

Figure 4.8 : Priors, posteriors and traces for obs. error parameters.

Appendix A

LiBbi model code

Model file: micro_iterative.bi

```
/*
* Microalgae model.
* ode solver every minute, obs and input files are in days
st iterative solution using newton raphson for the CO2SYS solutions
*/
model micro_iterative {
const F02 = 0.2094
const FC02 = 397e-6
const S
        = 34
param kLAO2
param Km
param RR
param RQ
input I // light intensity
input T //temperature (C)
input gas //gas on/off
state DIC // state variables
```

```
state 0_2
state pH
state O2H_pr
state CO2H_pr
state R
state R1
state P
state P1
state alk
state CO2
state HCO3
state CO3
state 0_2H
state CO2H
{\tt noise}\ {\tt r\_R}
noise r_P
/* random walk parameter */
{\tt param \ sigma\_r\_R}
param sigma_r_P
obs 02_obs
obs pH_obs
obs DIC_obs
obs alk_obs
```

```
sub parameter {/* prior distribution over parameters */
Km ~ log_normal(log(200.0), 0.8)
kLA02 ~ log_normal(log(200.0), 0.5)
RR ~ uniform(0.0001, 0.2)
RQ ~ uniform(0.66, 1.0)
sigma_r_R ~ normal(0.01, 0.001)
sigma_r_P ~ normal(0.05, 0.01)
}
const prop_std = 0.1;
sub proposal_parameter {
Km ~ log_normal(log(Km), 0.8*prop_std)
kLA02 ~ log_normal(log(kLA02), 0.5*prop_std)
RR ~ truncated_normal(RR, 0.2*prop_std, lower = 0.0001, upper = 0.2)
RQ ~ truncated_normal(RQ, 0.2*prop_std, lower = 0.66, upper = 1.0)
sigma_r_R ~ normal(sigma_r_R, 0.001*prop_std)
sigma_r_P ~ normal(sigma_r_P, 0.01*prop_std)
}
sub initial {/* prior distribution over initial conditions, given parameters */
// specify the initial condition model
R ~ normal(log(500.0), 0.6)
R1 ~ log_normal(log(500.0), 0.6)
P ~ normal(log(5000.0), 0.8)
```

```
alk ~ log_normal(log(1700.0), 0.1)
DIC ~ log_normal(log(1200.0), 0.2)
0_2 ~ log_normal(log(230.0), 0.2)
pH ~ log_normal(log(8.5), 0.2)
CO2 ~ log_normal(log(3.0), 0.4)
HCO3 ~ log_normal(log(1000.0), 0.3)
CO3 ~ log_normal(log(300.0), 0.4)
0_2H ~ log_normal(log(200.0), 0.2)
CO2H ~ log_normal(log(10.0), 0.2)
}
sub transition(delta = 0.0023) { // obs are in days ie delta=1.0 for daily solving
/* processes */
inline TK = T + 273.0 // temp in kelvin
inline KO_CO2 = exp(-60.2409 + 93.4517*(100.0/TK) + 23.3585*log(TK/100.0) + S*(0.00) + C(0.00) + C(0.00)
CO2H
                                                                                                  <- K0_C02*FC02*1.0220*1e6
inline KO_02 = (exp(-1282.8704 + 36619.96/TK + 223.1396*log(TK) -0.354707*TK + 223.1396*log(TK) -0.35470*TK + 223.1396*log(TK) -0.35470*TK + 223.1396*log(TK
```

P1 ~ log_normal(log(5000.0), 0.8)

0_2H

<- K0_02*F02*1.0220*1e-6

```
inline PAC = HCO3 //PAC=photosynthetically active carbon. if the phyto are
inline mm
           = PAC/(Km+PAC)
// CO2SYS iterative solution
// set up all the constants
inline logTK = log(TK)
inline S2 = S*S
inline sqrtS = sqrt(S)
// total sulphur
inline TS = (0.14/96.062)*(S/1.80655)
inline IS = 19.924*S/(1000.0 - 1.005*S)
inline KS_int = -4276.1/TK + 141.328 - 23.093*logTK + (-13856.0/TK + 324.57 -
inline KS = exp(KS_int)*(1 - 0.001005*S)
// Fluorine
inline TF = 0.000067*S/18.9984/1.80655
inline KF = \exp(-(-874.0)TK - 0.111*sqrtS + 9.68))
inline SWS_2T = (1.0 + TS/KS)/(1.0 + TS/KS + TF/KF)
inline Free_2_T = 1.0 + TS/KS
// H2O dissoc
```

```
inline KW = \exp(148.9802 - 13847.26/TK - 23.6521*logTK + (118.67/TK - 5.977 + 1.66)
// Boron
inline KB = exp((-8966.90 - 2890.53*sqrtS - 77.942*S + 1.728*S*sqrtS - 0.0996*S2)
inline TB = 0.0004326*S/35.0
// Carbon eq constants
inline K1 = 10**(-(3633.86/TK - 61.2172 + 9.6777 *logTK - 0.011555*S + 0.0001152*
inline K2 = 10**(-( 471.8/TK + 25.9290 - 3.16967*logTK - 0.01781*S + 0.0001122*S
// end all the constants
// intial guess at the pH (use the approximating equation)
// inline pH_init = 9.5803 - 0.0027089*DIC - 0.018089*T - 0.012068*S + 0.0016329*DIC - 0.018089*T - 0.018089*T - 0.018089*T - 0.0016329*DIC - 0.018089*T - 0.018089*T - 0.0016329*DIC - 0.018089*T - 0.0016329*DIC - 0.018089*T - 0.018089*T - 0.0018089*T -
inline pH_init = 12.26 -0.0030605*DIC -0.043752*T -0.013625*S+ 0.00011315*alk + 3
// iteration 1
inline h_1 = 10.0**(-pH_init)
inline h_free_1 = h_1/Free_2_T
inline f0_1 = (DIC*1e-6*(K1*h_1 + 2.0*K1*K2)/(h_1*h_1 + K1*h_1 + K1*K2) - h_free form of the following of the following form of th
inline df0_1 = (DIC*1e-6*(K1 + 2.0*K1*K2)/(h_1**2.0 + K1*h_1 + K1*K2) - DIC*1e-6*(K1 + 2.0*K1*K2)/(h_1**2.0 + K1*h_1 + K1*K2)/(h_1**2.0 + K1*h_1 + K1
inline pH_1 = pH_init - f0_1/df0_1
```

```
// iteration 2
inline h = 10.0**(-pH_1)
inline h_free = h/Free_2_T
inline f0 = (DIC*1e-6*(K1*h + 2.0*K1*K2)/(h*h + K1*h + K1*K2) - h_free + KW/h - b_free + kW/
inline df0 = (DIC*1e-6*(K1 + 2.0*K1*K2)/(h**2.0 + K1*h + K1*K2) - DIC*1e-6*(K1*h))
pH <- pH_1 - f0/df0
// calculate the final concentrations
inline H = 10.0**(-pH)
inline H2 = H*H
inline denom = (H2 + K1*H + K1*K2)
CO2 <- DIC*H2/denom
HCO3 <- DIC*H*K1/denom
CO3 <- DIC*K1*K2/denom
// end CO2SYS iterative solution
/* R and P as random walks */
r_R ~ normal(0.0, sigma_r_R)
R \leftarrow R + r_R
```

R1 < -exp(R)

```
r_P ~ normal(0.0, sigma_r_P)
P \leftarrow P + r_P
P1 \leftarrow exp(P)
ode(h = 0.1, atoler = 1.0e-6, rtoler = 1.0e-6, alg = 'RK4(3)'){
dDIC/dt = -P1*I*mm + R1 + gas*0.893*kLA02*(CO2H - CO2) // DIC = Dissolved In
dO_2/dt = (P1*I*mm - R1)/RQ + gas*kLAO2*(O_2H - O_2)
// O_2 = Dissolved Oxygen
dalk/dt = RR*P1*I*mm
}
}
sub observation {
02_obs ~ log_normal(log(0_2), 0.3)
pH_obs ~ log_normal(log(pH), 0.3)
DIC_obs ~ log_normal(log(DIC), 0.3)
alk_obs \sim \log_{normal}(\log(alk), 0.3)
}
}
Prior sampling file: prior.conf
--target prior
--model-file micro_iterative.bi
--nsamples 500
--start-time 0.61304
```

```
--end-time 4.7866
--noutputs 6049
```

--input-file data/input_all_2018_normalised.nc $\,$

--output-file results/prior_micro_iterative.nc

Posterior sampling file: posterior.conf

```
--target posterior
```

- --model-file micro_iterative.bi
- --input-file data/input_all_2018_normalised.nc
- --obs-file data/obs_all_2018.nc
- --nsamples 500
- --nparticles 1024
- --start-time 0.61304
- --end-time 4.7866
- --noutputs 6049
- --output-file results/posterior_micro_iterative.nc
- --with-transform-initial-to-param

Figure A.1 : Directed Acyclic Graph of the LiBbi model file micro.bi

Bibliography

- [1] Rubin Battino, Timothy R Rettich, and Toshihiro Tominaga. The solubility of oxygen and ozone in liquids. *Journal of physical and chemical reference data*, 12(2):163–178, 1983.
- [2] Arnold E Greensberg, LS Clesceri, Andrew D Eaton, and MAH Franson. Standard methods for the examination of water and wastewater. American Public Health Association, Whashington, DC, 1992.
- [3] E Molina Grima, JA Sánchez Pérez, F Ía Garc Camacho, and A Robles Medina. Gas-liquid transfer of atmospheric co2 in microalgal cultures. *Journal of Chemical Technology & Biotechnology*, 56(4):329–337, 1993.
- [4] Ernie Lewis, Doug Wallace, and Linda J Allison. Program developed for co {sub 2} system calculations. Technical report, Brookhaven National Lab., Dept. of Applied Science, Upton, NY (United States ..., 1998.
- [5] Niels Ramsing and Jens Gundersen. Seawater and gases. *Limnol. Oceanogr*, 37:1307–1312, 2011.
- [6] SMAC Van Heuven, D Pierrot, JWB Rae, E Lewis, and DWR Wallace. Matlab program developed for co2 system calculations. ORNL/CDIAC-105b. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee, 530, 2011.
- [7] R_F Weiss. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. *Marine chemistry*, 2(3):203–215, 1974.