

PSD 传感器位移值与输出电压值

位移量/mm	0.00	0.50	1.00	1.50	2.00	2.50	3.00
输出电压/V	3.12	1.88	1.07	0.70	0.40	0.25	0.03
位移量/mm	4.50	5.00	5.50	6.00	6.50	7.00	4.50
输出电压/V	-0.46	-0.71	-1.11	-1.65	-2.70	-3.61	-0.46

k = 0.70V / mm

思考题:

1. 试分析一维 PSD 的工作原理

其材料为具有 pin 二极管的平板半导体硅片,在有光照射时会产生光电流,该电流由两端流出,因为产生光电流的地方距两端的距离不一样,距离不同电阻就不同,而且电阻与该硅片的长度成正比,流出的电流可以被检测到,这样就可以将光点在 PSD 上的位置信息转化为电流的大小,通过其相关的数学关系(见 三,实验原理),在 PSD 的线性区域通过明显的电流数据确定其难以测量的位置信息。

2. 用一维 PSD 测量位移的主要误差有哪些? 怎样下这些误差?

主要误差: 在两端的非线性区域测量不准;

减小方法:尽量保持在其线性区域内进行测量。