Part IA - Analysis I Theorems with Proof

Lectured by W. T. Gowers

Lent 2015

Limits and convergence

Sequences and series in R and C. Sums, products and quotients. Absolute convergence; absolute convergence implies convergence. The Bolzano-Weierstrass theorem and applications (the General Principle of Convergence). Comparison and ratio tests, alternating series test.

Continuity

Continuity of real- and complex-valued functions defined on subsets of \mathbb{R} and \mathbb{C} . The intermediate value theorem. A continuous function on a closed bounded interval is bounded and attains its bounds.

Differentiability

Differentiability of functions from \mathbb{R} to \mathbb{R} . Derivative of sums and products. The chain rule. Derivative of the inverse function. Rolle's theorem; the mean value theorem. One-dimensional version of the inverse function theorem. Taylor's theorem from \mathbb{R} to \mathbb{R} ; Lagranges form of the remainder. Complex differentiation.

Power series

Complex power series and radius of convergence. Exponential, trigonometric and hyperbolic functions, and relations between them. *Direct proof of the differentiability of a power series within its circle of convergence*.

Integration

Definition and basic properties of the Riemann integral. A non-integrable function. Integrability of monotonic functions. Integrability of piecewise-continuous functions. The fundamental theorem of calculus. Differentiation of indefinite integrals. Integration by parts. The integral form of the remainder in Taylor's theorem. Improper integrals. [6]

Contents

1	The real number system	3
2	Convergence of sequences	4
	2.1 Sums, products and quotients	4

1 The real number system

Lemma. Let \mathbb{F} be an ordered field and $x \in \mathbb{F}$. Then $x^2 \geq 0$.

Proof. By trichotomy, either x < 0, x = 0 or x > 0. If x = 0, then $x^2 = 0$. So $x^2 \ge 0$. If x > 0, then $x^2 > 0 \times x = 0$. If x < 0, then x - x < 0 - x. So 0 < -x. But then $x^2 = (-x)^2 > 0$.

Lemma (Archimedean property v1)). Let \mathbb{F} be an ordered field with the least upper bound property. Then the set $\{1,2,3,\cdots\}$ is not bounded above. (Note that these need not refer to natural numbers. We simply define 1 to be the multiplicative identity, $2=1+1,\ 3=1+2$ etc.)

Proof. If it is bounded above, then it has a supremum x. But then x-1 is not an upper bound. So we can find $n \in \{1, 2, 3, \dots\}$ such that n > x-1. But then n+1 > x but x is supposed to be an upper bound.

2 Convergence of sequences

Lemma (Archimedean property v2). $1/n \rightarrow 0$.

Proof. Let $\varepsilon > 0$. We want to find an N such that $|1/N - 0| = 1/N < \varepsilon$. So pick N such that $N > 1/\varepsilon$. This exists such an N by the Archimedean property v1. Then for all n > N, we have $0 < 1/n \le 1/N < \varepsilon$. So $|1/n - 0| \to \varepsilon$.

Lemma. Every eventually bounded sequence is bounded.

Proof. Let C and N be such that $\forall n \geq N \ |a_n| \leq C$. Then $\forall n \in \mathbb{N}, \ |a_n| \leq \max\{|a_1|, \dots, |a_{n-1}|, C\}$.

2.1 Sums, products and quotients

Lemma (Sums of sequences). If $a_n \to a$ and $b_n \to b$, then

(i)
$$a_n + b_n \rightarrow a + b$$

Proof. Let $\varepsilon > 0$. We want to show that $\exists N$ such that $\forall n \geq N, |a_n + b_n - (a + b)| < \varepsilon$. We know that a_n is very close to a and b_n is very close to b. So their sum must be very close to a + b.

Formally, since $a_n \to a$ and $b_n \to b$, we can find N_1, N_2 such that $\forall n \geq N_1, |a_n - a| < \varepsilon/2$ and $\forall n \geq N_2, |b_n - b| < \varepsilon/2$.

Now let $N = \max\{N_1, N_2\}$. Then by the triangle inequality,

$$|(a_n + b_n) - (a + b)| \le |a_n - a| + |b_n - b| < \varepsilon.$$

Lemma (Scalar multiplication of sequences). Let $a_n \to a$ and $\lambda \in \mathbb{R}$. Then $\lambda a_n \to \lambda a$.

Proof. If $\lambda = 0$, then the result is trivial.

Otherwise, let $\varepsilon > 0$. Then $\exists N$ such that $\forall n \geq N$, $|a_n - a| < \varepsilon/|\lambda|$. So $|\lambda a_n - \lambda a| < \epsilon$.

Lemma. Let a_n be bounded $b_n \to 0$. Then $a_n b_n \to 0$.

Proof. Let $C \neq 0$ be such that $\forall n : |a_n| \leq C$. Let $\varepsilon > 0$. Then $\exists N$ such that $\forall n \geq N, |b_n| < \varepsilon/C$. Then $|a_n b_n| < \varepsilon$.

Lemma. Every convergent sequence is bounded.

Proof. Let $a_n \to l$. Then $\exists N : \forall n \ge N, |a_n - l| \le 1$. So $|a_n| \le |l| + 1$. So a_n is eventually bounded, and therefore bounded.

Lemma. Let $a_n \to a$ and $b_n \to b$. Then $a_n b_n \to ab$.

Product of sequences. Let $c_n = a_n - a$ and $d_n = b_n - b$. Then $a_n b_n = (a + c_n)(b + d_n) = ab + ad_n + bc_n + c_n d_n$.

But by "sum of sequences", $c_n \to 0$ and $d_n \to 0$. So $ad_n \to 0$ and $bc_n \to 0$. Since c_n is bounded, $c_n d_n \to 0$. Hence by sum of sequences, $a_n b_n \to ab$

Proof. (alternative) Observe that $a_nb_n-ab=(a_n-a)b_n+(b_n-b)a$. We know that $a_n-a\to 0$ and $b_n-b\to 0$. Since (b_n) is bounded, so $(a_n-a)b_n+(b_n-b)a\to 0$. So $a_nb_n\to ab$.