四. 数据处理及作图

利用推导式 $H = \frac{N_1}{LR_1}U_x$, $B = \frac{R_2C}{N_2S}U_y$, 可得两个样品的 H, B 值。

样品 1 饱和磁滞回线 (单位: $H/A \cdot m^{-1}$, B/T, 下同)

	1	2	3	4	5	6	7	8	9	10
Н	858.46	403.85	127.62	-33.92	-149.31	-288.466	-426.92	-671.54	-888.46	-641.54
В	2.94	2.4	1.57	0.71	-0.02	-0.87	-1.63	-2.46	-2.84	-2.65
	11	12	13	14	15	16	17	18	19	20
Н	-440.77	-210.69	-33.92	43.15	112.38	204.69	343.85	459.23	620.77	851.54
В	-2.33	-1.76	-0.9	-0.43	-0.02	0.56	1.38	1.89	2.46	2.94

绘制得样品1的饱和磁滞回线如下图。

通过读取磁滞回线中的顶点和与 B 轴的交点,可得样品 1 的剩磁 $B_r=2.94\,T$,矫顽力 $H_m=112.4\,A\cdot m^{-1}$ 。

样品1基本磁化曲线

	1	2	3	4	5	6	7	8	9	10
Н	6576.92	5884.62	4084.62	3046.15	1806.92	1209.23	819.23	496.15	332.31	108.69
В	4.09	4.03	3.97	3.84	3.59	3.27	2.84	2.02	1.29	0.36

绘制得样品1的基本磁化曲线如下图。

同理,样品2的饱和磁滞回线

	14 = 7 11 HB = H4 / B 1: HBH / H H3 / H										
	1	2	3	4	5	6	7	8	9	10	
Н	459.74	353.25	257.14	161.82	57.92	-26.75	-132.47	-227.79	-309.09	-387.01	
В	0.63	0.55	0.47	0.37	0.25	0.15	0.0	-0.14	-0.28	-0.41	
	11	12	13	14	15	16	17	18	19	20	
Н	-477.92	-345.45	-197.40	-93.51	-8.57	109.87	205.19	283.12	381.82	464.94	
В	-0.63	-0.52	-0.39	-0.27	-0.17	0.0	0.14	0.27	0.45	0.64	

绘制得样品2的饱和磁滞回线如下图。

通过读取磁滞回线中的顶点和与 B 轴的交点,可得样品 2 的剩磁 $B_r=0.64\,T$,矫顽力 $H_m=121.17\,A\cdot m^{-1}$ 。

样品2的基本磁化曲线

	1	2	3	4	5	6	7	8	9	10
Н	5220.78	3584.42	2571.43	1859.74	1425.97	1028.57	664.94	464.94	185.19	90.13
В	10.2	8.96	7.72	6.20	4.75	3.10	1.32	0.69	0.18	0.08

绘制得样品2的基本磁化曲线如下图。

五. 实验结论及现象分析

结论: 样品 1 的剩磁为 $B_r=2.94\,T$,矫顽力 $H_m=112.4\,A\cdot m^{-1}$,磁滞回线较窄,属于 软磁材料; 样品 2 的剩磁 $B_r=0.64\,T$,矫顽力 $H_m=121.17\,A\cdot m^{-1}$,磁滞回线较宽,属于硬磁材料。

六. 讨论问题

1. 某两种材料的磁滞回线,一个很宽,一个很窄,它们各属于哪种磁性材料?分别可以应用于什么场合?

磁滞回线窄的为软磁材料,磁滞回线宽的为硬磁材料。软磁材料可以用于电工设备和电子设备,比如变压器、电动机和发电机的铁芯,无线电天线线圈、无线电中频变压器等;硬磁材料常用来制作各种永久磁铁、扬声器的磁钢和电路中的记忆元件等。

2. 一钢制部件不慎被磁化,请设计一种退磁方案。 通过外加反向磁场,使外加磁场强度达到部件的矫顽力,即可实现退磁。