#### Curs 12

January 11, 2022

## Timp si spatiu polinomial

$$\mathbf{P} = \bigcup_{i \geq 1} DTIME(n^i)$$

$$\mathbf{NP} = \bigcup_{i \geq 1} NTIME(n^i)$$

$$\mathbf{PSPACE} = \bigcup_{i \geq 1} DSPACE(n^i)$$

$$\mathbf{NSPACE} = \bigcup_{i \geq 1} NSPACE(n^i)$$

$$\mathbf{L} = DSPACE(\log n).$$

#### $L \subseteq P \subseteq NP \subseteq NSPACE = PSPACE$ .

Cel putin o incluziune este stricta: CARE?



Curs 12

#### Reduceri

**Definitie.** Masina Turing folosita in reduceri (similar unui translator): o masina determinista M care se opreste pe fiecare intrare a.i. pentru un input w produce un sir  $f_M(w)$ .

Un limbaj L' este Turing-reductibil la L daca exista o mT M a.i.  $w \in L'$  ddaca  $f_M(w) \in L$ .

**Definitie.** L' este reductibil in timp polinomial la L ( $L' \leq_{tp} L$  daca exista o mT M cu timp de lucru polinomial care reduce L' la L.

Translator off-line: o mT M care se opreste pe fiecare intrare, are o banda de intrare care se poate doar citi, o banda auxiliara, si o banda de iesire pe care se poate doar scrie fara a se putea intoarce.

**Definitie.** L' este reductibil in spatiu logaritmic la L ( $L' \leq_{sl} L$  daca exista un translator off-line M cu spatiu de lucru logaritmic care reduce L' la L.

rs 12 January 11, 2022 3 / 18

## Proprietati ale reducerilor

**Teorema.** Fie  $L' \leq_{tp} L$ . Daca L este in **(N)P** atunci L' este in **(N)P**. **Dem.** Demonstram pentru  $L \in \mathbf{P}$ . Fie  $p_1(n)$  (polinom) timpul in care M reduce L' la L. Atunci pentru fiecare |x| = n, rezulta  $|f_M(x)| \leq p_1(n)$ . Pentru ca  $L \in \mathbf{P}$ ,  $f_M(x) \in L$  se poate face in timp  $p_2(|f_M(x)|) \leq p_2(p_1(n))$ . Asadar,  $x \in L'$  se poate decide in timp  $p_1(n) + p_2(p_1(n))$ .

#### **Teorema.** Fie $L' \leq_{sl} L$ .

- 1. Daca L este in  $\mathbf{P}$  atunci L' este in  $\mathbf{P}$ .
- 2. Daca  $L \in (N)(D)SPACE(\log^k n)$  atunci  $L' \in (N)(D)SPACE(\log^k n)$ .
- $\mbox{\bf Dem.}\ 1.$  Imediat, pentru ca orice reducere in spatiu logaritmic se poate face in timp polinomial.
- Fie  $L \in DSPACE(\log^k n)$ . Fie  $M_1$  translatorul care reduce L' la L is  $M_2$  mT care accepta L in spatiu marginit de  $\log^k n$ . Lungimea iesirii lui  $M_1$  pe intrarea |x| = n este cel mult  $s(n+2)t^{\log^k n}$ , unde s este numarul de stari si t numarul de simboluri ale lui  $M_1$ . Exista o constanta c a.i.  $s(n+2)t^{\log^k n} < (2^c)^{\log^k n}$ .

◆ロト ◆母ト ◆草ト ◆草ト ■ かくぐ

s 12 January 11, 2022 4 / 18

# Proprietati ale reducerilor

#### **CONTINUARE DEM.** Construim $M_3$ astfel:

- Pe banda de intrare are x, |x| = n.
- Are o banda auxiliara pe care simuleaza banda lui  $M_1$ .
- Are o banda auxiliara pe care simuleaza banda lui  $M_2$ .
- Are o banda auxiliara pe care va pastra pozitia i a capului de citire al lui  $M_2$  pe banda sa de intrare, numar scris in baza  $2^c$ . Deci spatiul folosit pe aceasta banda va fi cel mult  $\log^k n$ .
- Pentru fiecare astfel de i,  $M_3$  restarteaza simularea lui  $M_1$  pe intrarea x si numara simbolurile scrise la iesire de  $M_1$  pana ajunge la i.
- Al *i*-lea simbol produs la iesire de  $M_1$  este dat lui  $M_2$  ca simbol curent pe banda sa de intrare.
- Simuleaza miscarea lui  $M_2$  pentru acest simbol si actualizeaza i la i-1 sau i+1, si reia procesul.
- Cazuri particulare: (1) i = 0 inseamna ca  $M_2$  citeste marginea stanga a benzii sale de intrare.
  - (2) Simularea lui  $M_1$  se opreste fara a produce al *i*-lea simbol, inseamna ca  $M_2$  citeste marginea dreapta a benzii sale de intrare.

3 12 January 11, 2022 5 / 18

# Probleme dificile si complete

**Teorema.** Compunerea a doua reduceri de acelasi tip este o reducere de acelasi tip.

Fie  $\mathcal{L}$  o clasa de limbaje.

- **Def.** 1. Un limbaj L este *dificil* pentru  $\mathcal{L}$  ( $\mathcal{L}$ -dificil) in raport cu reducerea  $\leq_{tp}$  sau  $\leq_{sl}$  daca pentru orice limbaj  $L' \in \mathcal{L}$  avem  $L' \leq_{tp} L$  sau  $L' \leq_{sl} L$ .
- 2. Un limbaj L este *complet* pentru  $\mathcal{L}$  ( $\mathcal{L}$ -complet) in raport cu reducerea  $\leq_{tp}$  sau  $\leq_{sl}$  daca  $L \in \mathcal{L}$  si L este  $\mathcal{L}$ -dificil in raport cu reducerea  $\leq_{tp}$  sau  $\leq_{sl}$ .
- 3. Un limbaj este **NP**-complet daca este **NP**-complet in raport cu reducerea  $\leq_{tp}$  sau  $\leq_{sl}$ .

Curs 12

**Teorema.** (Cook-Levin) *Problema satisfiabilitatii (SAT) este* **NP**-completa.

SAT: Input: o formula in forma normala conjunctiva din calculul propozitional

$$\alpha = C_1 \wedge C_2 \wedge \cdots \wedge C_m, \text{ unde}$$

$$C_i = (x_{i_1}^{e_1} \vee x_{i_2}^{e_2} \vee \dots \times_{i_{k_i}}^{e_{k_i}}),$$

$$x^1 = x \text{ si } x^0 = \bar{x}.$$

Output: YES/NO daca exista/nu exista o asignare a variabilelor care o satisfac.

Limbajul  $L_{SAT}$  se defineste astfel:  $L_{SAT} = \{ <\alpha > | \alpha \text{ este satisfiabila } \}.$ 

Daca 
$$\alpha = C_1 \wedge C_2 \wedge \cdots \wedge C_m$$
, atunci

$$<\alpha>=<\mathcal{C}_1>\wedge<\mathcal{C}_2>\wedge\cdots\wedge<\mathcal{C}_m>.$$

Daca 
$$C_i = (x_{i_1}^{e_1} \vee x_{i_2}^{e_2} \vee \dots x_{i_{k_i}}^{e_{k_i}})$$
, atunci

$$< C_i> = (< x_{i_1}^{e_1} > \lor < x_{i_2}^{e_2} > \lor \cdots < x_{i_{k_i}}^{e_{k_i}} >).$$
  
 $< x_i> = x_{i(2)}, < \bar{x}_i> = \bar{x}_{i(2)}.$ 

 $\langle x_1 \rangle = \chi_1(2), \langle x_1 \rangle = \chi_1(2).$ 

7/18

**Exemplu.**  $\alpha = (x_1 \lor x_2) \land (x_1 \lor \bar{x}_3)$   $< \alpha >= (x_1 \lor x_10) \land (x_1 \lor \bar{x}_11).$ 

**Obs.** Daca  $|\alpha| = n$ , atunci  $|<\alpha>| \le n \log n$ . Decarece vom lucra cu reduceri in spatiu logaritmic, vom considera ca  $|<\alpha>| = n$ , pentru ca  $\log(n \log n) \le 2 \log n$ .

 $L_{SAT} \in \mathbf{NP}$ : De ce? Se poate verifica in timp polinomial daca o asignare satisface formula. Cum?

8 / 18

12 January 11, 2022

**Exemplu.** 
$$\alpha = (x_1 \lor x_2) \land (x_1 \lor \bar{x}_3)$$
  $< \alpha >= (x_1 \lor x_10) \land (x_1 \lor \bar{x}_11).$ 

**Obs.** Daca  $|\alpha| = n$ , atunci  $|<\alpha>| \le n \log n$ . Decarece vom lucra cu reduceri in spatiu logaritmic, vom considera ca  $|<\alpha>| = n$ , pentru ca  $\log(n \log n) \le 2 \log n$ .

 $L_{SAT} \in \mathbf{NP}$ : De ce? Se poate verifica in timp polinomial daca o asignare satisface formula. Cum?

- Se determina variabilele care apar in formula. (determinist)
- 2 Se genereaza nedeterminist o asignare. (Nedeterminist)
- Se verifica daca asignarea satisface formula. (determinist)
- Omplexitate?



8 / 18

s 12 January 11, 2022

**Exemplu.** 
$$\alpha = (x_1 \lor x_2) \land (x_1 \lor \bar{x}_3)$$
  $< \alpha >= (x_1 \lor x_10) \land (x_1 \lor \bar{x}_11).$ 

**Obs.** Daca  $|\alpha| = n$ , atunci  $|<\alpha>| \le n \log n$ . Decarece vom lucra cu reduceri in spatiu logaritmic, vom considera ca  $|<\alpha>| = n$ , pentru ca  $\log(n \log n) \le 2 \log n$ .

 $L_{SAT} \in \mathbf{NP}$ : De ce? Se poate verifica in timp polinomial daca o asignare satisface formula. Cum?

- Se determina variabilele care apar in formula. (determinist)
- 2 Se genereaza nedeterminist o asignare. (Nedeterminist)
- Se verifica daca asignarea satisface formula. (determinist)
- Complexitate?  $O(n^2)$ .



8 / 18

rs 12 January 11, 2022

 $L_{SAT}$  este **NP**-dificil (schita).

Fie M o mT nedetrminista oarecare care decide L in timp polinomial p(n). Construim o formula  $\alpha$  a.i.  $w \in L(M)$  ddaca  $\alpha$  este satisfiabila.

#### Variabile:

- $T_{k,i,j}$ : la pasul k, celula i contine simbolul j;  $(p^2(n))$
- $RW_{k,i}$ : la pasul k, capul R/W citeste celula i;  $(p^2(n))$
- $Q_{k,s}$ : la pasul k, starea curenta este s. (p(n))

#### Formula:

$$\alpha = U \wedge I \wedge D \wedge N \wedge E,$$

- U: la orice pas, M se afla intr-o singura stare, capul R/W acceseaza o singura celula, si fiecare celula are o singura litera;
- I: confi guratia initiala a masinii, deci pasul k = 0;
- D: tranzitiile posibile, conform functiei de tranzitie;
- N: toate celulele neprocesate pastreaza litera de la un pas la altul;
- E: conditia de acceptare.

9/18

**Teorema.** Problema 3 - SAT este **NP**-completa.

**Dem.** Fie o clauza  $C = l_1 \vee \cdots \vee l_k$ ,  $k \geq 1$ .

- Cazul 1. k > 3. Inlocuim C cu  $C' = (I_1 \lor I_2 \lor y_1) \land (I_3 \lor \bar{y}_1 \lor y_2) \land \cdots \land (I_{k-2} \lor \bar{y}_{k-4} \lor y_{k-3}) \land (I_{k-1} \lor I_k \lor \bar{y}_{k-3})$ . C este satisfiabila ddaca C' este satisfiabila. De ce?
- Cazul 2. k=2. Inlocuim C cu  $C'=(I_1\vee I_2\vee y)\wedge (I_1\vee I_2\vee \bar{y})$ .
- Cazul 3. k=1. Inlocuim C cu  $C'=(l_1\vee y_1\vee y_2)\wedge(l_1\vee \bar{y}_1\vee y_2)\wedge(l_1\vee \bar{y}_1\vee \bar{y}_2)\wedge(l_1\vee \bar{y}_1\vee \bar{y}_2)$ .

Transformarile se pot face in spatiu logaritmic.

Problema. Care este statutul problemei 2-SAT?



10 / 18

5 12 January 11, 2022

**Teorema.** Problema VERTEX COVER este **NP**-completa.

VERTEX COVER: Un graf neorientat G = (V, E); |V| = n, |E| = m, o acoperire a lui G este o submultime  $X \in V$  a.i.  $\{u, v\} \cap X \neq \emptyset$ , pentru orice  $\{x, y\} \in E$ .

**Problema**: Pentru un graf G si  $k \ge 1$ , exista o acoperire a lui G de cardinal maxim k?

Codificarea unei intrari:

Curs 12

**Teorema.** Problema VERTEX COVER este **NP**-completa.

VERTEX COVER: Un graf neorientat G = (V, E); |V| = n, |E| = m, o acoperire a lui G este o submultime  $X \in V$  a.i.  $\{u, v\} \cap X \neq \emptyset$ , pentru orice  $\{x, y\} \in E$ .

**Problema**: Pentru un graf G si  $k \ge 1$ , exista o acoperire a lui G de cardinal maxim k?

Codificarea unei intrari:

 $k_{(2)} \# v1_{(2)} \# v2_{(2)} \# \dots \# vn_{(2)} \# (vi1_{(2)}, vj1_{(2)}) \# \dots \# (vim_{(2)}, vjm_{(2)}).$   $L_{VC}$  contine multimea tuturor codificarilor pentru care raspunsul este DA.  $L_{VC}$  este in **NP**? De ce ?

Curs 12

 $L_{VC}$  este **NP**-dificil? Reducem 3-SAT la VERTEX COVER.

**Ex.**  $\alpha = (x_1 \lor x_2 \lor x_3) \land (\bar{x}_1 \lor x_2 \lor x_4) \land (\bar{x}_2 \lor x_3 \lor x_5) \land (\bar{x}_3 \lor \bar{x}_4 \lor \bar{x}_5).$  k = 8



#### Problema clicii este NP-completa

Problema clicii: Pentru un graf G si  $k \ge 1$ , exista un subgraf complet al lui G (clica) de cardinal minim k?

Problema VERTEX COVER se poate reduce in spatiu logaritmic/timp polinomial la problema clicii. Cum?

#### Problema clicii este NP-completa

Problema clicii: Pentru un graf G si  $k \ge 1$ , exista un subgraf complet al lui G (clica) de cardinal minim k?

Problema VERTEX COVER se poate reduce in spatiu logaritmic/timp polinomial la problema clicii. Cum? Se construieste graful complementar al grafului dat.

Alte probleme **NP**-complete:

- **1** SUBSET SUM: Se dau numerele naturale  $a_1, a_2, \ldots, a_n$  si b. Exista o submultime de suma b?
- 2 PARTITION: Se dau numerele naturale  $a_1, a_2, \ldots, a_n$ . Se pot partitiona in doua submultimi avand aceeasi suma?
- **Solution** BIN PACKING: Se dau numerele naturale  $a_1, a_2, \ldots, a_n$ , toate mai mici decat b si k > 2. Se pot partitiona in cel mult k submultimi fiecare avand suma cel mult b?
- Problema drumului (circuitului) hamiltonian.
- Problema 3-colorarii unui graf (planar).
- SET COVER.

**Problema 1.** Pentru doua expresii regulate date  $R_1$ ,  $R_1$ , este  $L(R_1) = L(R_2)$ ?

• Este problema in **NP**?

14 / 18

s 12 January 11, 2022

**Problema 1.** Pentru doua expresii regulate date  $R_1$ ,  $R_1$ , este  $L(R_1) = L(R_2)$ ?

- Este problema in **NP**? Nu se stie.
- Schimbam problema in complementara sa: Sunt doua expresii date non-echivalente? Este in NP?

14 / 18

rs 12 January 11, 2022

**Problema 1.** Pentru doua expresii regulate date  $R_1$ ,  $R_1$ , este  $L(R_1) = L(R_2)$ ?

- Este problema in NP? Nu se stie.
- Schimbam problema in complementara sa: Sunt doua expresii date non-echivalente? Este in **NP**? Nu se stie.  $(w \in L(R_1) \setminus L(R_2)$  sau  $w \in L(R_2) \setminus L(R_1)$ .)
- Particularizam problema: Expresii regulate \*-libere (expresii regulate fara operatia de inchidere Kleene). NEER: Este problema non-echivalentei a doua expresii regulate \*-libere in NP?

14 / 18

5 12 January 11, 2022

**Problema 1.** Pentru doua expresii regulate date  $R_1$ ,  $R_1$ , este  $L(R_1) = L(R_2)$ ?

- Este problema in NP? Nu se stie.
- Schimbam problema in complementara sa: Sunt doua expresii date non-echivalente? Este in **NP**? Nu se stie.  $(w \in L(R_1) \setminus L(R_2)$  sau  $w \in L(R_2) \setminus L(R_1)$ .)
- Particularizam problema: Expresii regulate \*-libere (expresii regulate fara operatia de inchidere Kleene). NEER: Este problema non-echivalentei a doua expresii regulate \*-libere in **NP**? Da: R = ((a+b)aa(a+b) + aba(a+b)b).
- $SAT \leq_{tp} NEER$ .

4□ > 4□ > 4 = > 4 = > = 90

14 / 18

ırs 12 January 11, 2022

# $SAT \leq_{tp} NEER$

Fie  $\alpha = C_1 \wedge C_2 \wedge \cdots \wedge C_p$  cu variabilele  $x_1, x_2, \dots, x_n$ ; construim doua expresii regulate \*-libere peste  $\{0, 1\}$ :

 $R_1 = (0+1)^n$ 

$$R_2 = Z_1 + Z_2 + \dots + Z_p,$$

$$Z_i = Z_i^1 \cdot Z_i^2 \cdot \dots \cdot Z_i^n \text{ si } Z_i^j = \begin{cases} 0, \text{ daca } x_j \text{ apare in } C_i \\ 1, \text{ daca } \bar{x}_j \text{ apare in } C_i \\ (0+1), \text{ altfel} \end{cases}$$

 $Z_i$  descrie asignarile care invalideaza  $C_i$ .

4□ > 4□ > 4 = > 4 = > = 90

15 / 18

urs 12 January 11, 2022

#### Probleme complete pentru alte clase

- Problema satisfiabilitatii unei formule din calculul cu predicate (logica de ordinul intai) fara variabile libere este PSPACE-completa.
- Problema apartenentei pentru o gramatica dependenta de context (monotona) este PSPACE-completa. (Surprinzator pentru ca este in NSPACE(n)).
- Problema trivialitatii limbajului generat de o gramatica independenta de context este P-completa.
- Problema reachabilitatii este **NL**-completa.

$$\begin{split} \mathbf{EXP} &= \bigcup_{i \geq 1} DTIME(2^{n^i}) \\ \mathbf{NEXP} &= \bigcup_{i \geq 1} NTIME(2^{n^i}). \\ \mathbf{L} \subseteq \mathbf{P} \subseteq \mathbf{NP} \subseteq \mathbf{NSPACE} = \mathbf{PSPACE} \subseteq \mathbf{EXP} \subseteq \mathbf{NEXP}. \end{split}$$

**Teorema** Daca P = NP atunci EXP = NEXP.

s 12 January 11, 2022

16 / 18

O problema este in **co-NP** daca complementara sa este in **NP**. Definitie cu masini Turing?

O problema este in **co-NP** daca complementara sa este in **NP**. Definitie cu masini Turing?

Exemplu de problema: TAUT=este tautologie o formula data?

**Teorema.** TAUT este **co-NP**-completa.

**Dem.** 1. TAUT este in **co-NP**. De ce?

Curs 12

O problema este in **co-NP** daca complementara sa este in **NP**. Definitie cu masini Turing?

Exemplu de problema: TAUT=este tautologie o formula data?

**Teorema.** TAUT este **co-NP**-completa.

Dem. 1. TAUT este in co-NP. De ce?

Pentru ca  $\overline{TAUT}$  este in **NP**.

2. TAUT este co-NP dificila. De ce?

Orice problema NP-completa are complementara co-NP-completa. Fie L NP-complet, atunci  $\bar{L} \in \mathbf{co} - \mathbf{NP}$ . Fie  $L' \in \mathbf{co} - \mathbf{NP}$ , deci  $\bar{L}' \in \mathbf{NP}$ ; prin urmare  $\bar{L}' \leq_{tp} L$ . Rezulta ca  $L' \leq_{tp} \bar{L}$ .

Dar  $SAT \leq_{tp} \overline{TAUT}$ .

17 / 18

rs 12 January 11, 2022



#### Relatii.

- P=co-P.
- **2**  $P \subseteq NP \cap co NP$ . Sunt egale? (Conjectura NU). Extrem de important in criptografie.
- NP=co-NP? (Conjectura: NU) Ar fi egale ddaca complementul unei probleme NP-complete are fi in NP. De ce?

18 / 18



#### Relatii.

- P=co-P.
- ② P ⊆ NP ∩ co − NP. Sunt egale? (Conjectura NU). Extrem de important in criptografie.
- **NP=co-NP**? (Conjectura: NU) Ar fi egale ddaca complementul unei probleme **NP**-complete are fi in **NP**. De ce? Daca  $L' \leq_{sl} L$  atunci  $\bar{L}' \leq_{sl} \bar{L}$ .

s 12 January 11, 2022

18 / 18