Inbreeding Coefficient

F

- Normally it is 0 (zero)
- If it is > 0, that means that an individual's parents have a common ancestor (i.e., they are related to each other!)
- The inbreeding coefficient of an individual is equal to $\frac{1}{2}$ of the relationship between the two parents of the individual
- The Inbreeding Coefficient of "X" is defined as:

$$F_{X} = \frac{1}{2}(R_{X_{M}X_{F}})$$

= ½ of the relationship between X's Mother and X's Father

Rules for using the Tabular Method

to compute relationships

COMPLETE!

- · Draw a box for the number of individuals involved
- Write down the individuals along the top from OLDEST to YOUNGEST as well as down the side
- Write down the parents of each individual on the top row (use 0 for any unknown parents)
- Put 1 in each diagonal cell. Then add $\frac{1}{2}$ of any relationship that exists between the parents of the individual
- Finish each row by inserting $\frac{1}{2}$ of each of the relationships between the individual and each of the other individual's parents
- Copy the value for R_{AB} to R_{BA} since the Table is symmetric

So, the "Three Rules" are...

"A" and "B" are two different "Individuals"

"M" = "Mother" and "F" = "Father"

$$F_{X} = \frac{1}{2}(R_{X_{M}X_{F}})$$

$$= \frac{1}{2}(R_{AB})$$

$$= \frac{1}{2} \times \frac{1}{4} = 1/8$$

$$R_{XX} = 11/8$$
 (i.e., "the whole box")

$$F_X = 1/8$$
 (i.e., "the whole box" - 1)

$$R_{AB} = \frac{1}{2}(R_{AB_M} + R_{AB_F})$$

$$R_{AA} = 1 + \frac{1}{2}(R_{A_{\mathsf{F}}A_{\mathsf{M}}})$$

$$F_A = \frac{1}{2}(R_{A_F A_M})$$

- · Draw a box for the number of individuals involved
- Write down the individuals along the top from OLDEST to YOUNGEST as well as down the side
- Write down the parents of each individual on the top row (use 0 for any unknown parents)
- Put 1 in each diagonal cell. Then add $\frac{1}{2}$ of any relationship that exists between the parents of the individual
- Finish each row by inserting $\frac{1}{2}$ of each of the relationships between the individual and *each* of the other individual's parents
- Copy the value for R_{AB} to R_{BA} since the Table is symmetric

Another Example...

Comet has an inbreeding coefficient of almost 47%!!

	0 0 A	0 0 B	A B C	0 0 D	C D E	B D F	E F G	F G H	G H
A	1	0	1/2	0	1/4	0	1/8	1/16	3/32
В	0	1	1/2	0	1/4	1/2	3/8	7/16	13/32
C	1/2	1/2	1	0	1/2	1/4	3/8	5/16	11/32
D	0	0	0	1	1/2	1/2	1/2	1/2	1/2
Е	1/4	1/4	1/2	1/2	1	3/8	11/16	17/32	39/64
F	0	1/2	1/4	1/2	3/8	1	11/16	27/32	49/64
G	1/8	3/8	3/8	1/2	11/16	11/16	1+ 3/16	15/16	1+
Н	1/16	7/16	5/16	1/2	17/32	27/32	15/16	1+	1+ 9/64
!	3/32	13/32	11/32	1/2	39/64	49/64	1+ 1/16	1+ 9/64	1+

Selection Systems

(1) Mass Selection

(Selection based on the individuals' <u>own</u> phenotype)

Natural Selection

Evolution
Survival of the fittest

Method of Selection

(Selection Systems)

Artificial Selection

Practiced by humans

"Best" animals mated together

Hardy-Weinberg?

- It uses the individuals' own records and performance
- It's a good strategy when the trait has a high heritability
- It's good when the economic value can be determined early in the life of the animal
- It's good for traits that can be measured in both sexes
- The <u>accuracy</u> of <u>this method</u> of selection is equal to the square root of the heritability for that trait

Today
November 4, 2020

Selection Systems

(2) Pedigree Selection

(Selection based on the individual's ancestors and current relatives)

- Selection of an individual is based on the individual's pedigree (current or former relatives)
- It's based on the performance of *ancestors* and current *relatives* (*but not progeny*)
- It's useful for traits that are not measured on the individual when alive or traits that are expressed late in life
- It may be helpful to detect carriers of recessive genes
- It's generally complex and often has a low accuracy, especially if information on relatives is missing

Selection Systems

(3) Progeny Selection

(Selection based on the individual's progeny)

- It uses the records of the individual's progeny
- It's a useful strategy when the trait has a moderate heritability
- It's good when the species has a high reproductive potential
- The accuracy can be very high, especially with many progeny
- Its disadvantage is cost and time required

It may be useful to use all three together!

Today
November 4, 2020

How do we calculate the <u>Accuracy</u> of Genetic Progress (ΔG)?

- Accuracy is the <u>amount</u> of agreement between how well we predict that the animal will perform, and how well it *actually* does
- It ranges between 0 and 1 (or 100%)
 - 0 when we guess!
 - 1 when we predict perfectly
- It's affected by the *heritability* of the trait in question
- It's affected by the *number of observations* available
- It's affected by the quantity of information available on relatives of the animal being evaluated
- It's affected by the Method of Selection.

Examples of *Accuracy* for different situations

