Термодинамика и структурные параметры при синглет-триплетном переходе $R-N_2^+(S) = R-N_2^+(T)$

N₂	Reaction	ΔE, kJ/mol	ΔG,	LUMO, Eh		Ring Deviation *, Å		Angle C-N-N		Dist. C-N, Å		Dist. N-N, Å	
145	Reaction	ΔE, KJ/IIIUI	kJ/mol	(S)	(T)	(S)	(T)	(S)	(T)	(S)	(T)	(S)	(T)
1	$CH_3 - N_2^+(S) = CH_3 - N_2^+(T)$	475.77	453.78	-0.326390	-0.541320			180	127	1.4558	1.3932	1.1029	1.2321
2	$C_2H_5-N_2^+(S) = C_2H_5-N_2^+(T)$	438.59	408.62	-0.309530	-0.500610			178	124	1.4893	1.4161	1.1032	1.2098
3	$1-CH_3-C_2H_4-N_2^+(S) = 1-CH_3-C_2H_4-N_2^+(T)$	406.37	384.37	-0.293210	-0.443500			178	122	1.5442	1.4319	1.1033	1.1949
4	$1,1-(CH_3)_2-C_2H_3-N_2^+(S) = 1,1-(CH_3)_2-C_2H_3-N_2^+(T)$	452.46	468.05	-0.314080	-0.415860			Break	121	Break	1.4623	Break	1.1881
5	Pyridine-2- $N_2^+(S)$ = Pyridine-2- $N_2^+(T)$	253.68	236.77	-0.312160	-0.411250	0.0003	0.2280	179	137	1.4249	1.4089	1.1090	1.1708
6	Pyridine-3- $N_2^+(S)$ = Pyridine-3- $N_2^+(T)$	235.64	220.73	-0.314260	-0.412520	0.0007	0.1537	178	124	1.3788	1.4357	1.1145	1.1854
7	Pyridine-4- $N_2^+(S)$ = Pyridine-4- $N_2^+(T)$	198.71	186.29	-0.324880	-0.385000	0.0000	0.0002	180	180	1.3961	1.3407	1.1108	1.1406
8	Pyrazine-2- $N_2^+(S)$ = Pyrazine-2- $N_2^+(T)$	217.44	202.88	-0.328560	-0.402910	0.0004	0.0193	178	166	1.4177	1.3487	1.1098	1.1446
9	Pyrimidine-2- $N_2^+(S)$ = Pyrimidine-2- $N_2^+(T)$	227.72	215.34	-0.322520	-0.402420	0.0003	0.0003	180	180	1.4750	1.3310	1.1050	1.1450
10	Pyrimidine-4- $N_2^+(S)$ = Pyrimidine-4- $N_2^+(T)$	189.93	181.12	-0.335000	-0.396630	0.0001	0.0005	178	179	1.4490	1.3436	1.1064	1.1393
11	Pyrimidine-5- $N_2^+(S)$ = Pyrimidine-5- $N_2^+(T)$	208.07	195.33	-0.329610	-0.394600	0.0003	0.0002	180	180	1.3745	1.3322	1.1148	1.1442
12	1,2,3-Triazine-4- $N_2^+(S) = 1,2,3$ -Triazine-4- $N_2^+(T)$	118.03	114.82	-0.354470	-0.384860	0.0005	0.0002	176	180	1.4319	1.3371	1.1073	1.1375
13	1,2,3-Triazine-5- $N_2^+(S) = 1,2,3$ -Triazine-5- $N_2^+(T)$	110.01	106.43	-0.360700	-0.382160	0.0002	0.0004	180	180	1.3883	1.3371	1.1125	1.1352
14	$1,2,4$ -Triazine- $3-N_2^+(S) = 1,2,4$ -Triazine- $3-N_2^+(T)$	137.11	129.96	-0.342270	-0.387590	0.0006	0.0009	178	180	1.4584	1.3332	1.1051	1.1403
15	1,2,4-Triazine-5- $N_2^+(S) = 1,2,4$ -Triazine-5- $N_2^+(T)$	94.75	92.06	-0.355380	-0.382590	0.0010	0.0001	176	180	1.4461	1.3449	1.1075	1.1353
16	$1,2,4$ -Triazine- $6-N_2^+(S) = 1,2,4$ -Triazine- $6-N_2^+(T)$	128.49	121.57	-0.348200	-0.387580	0.0003	0.0005	180	179	1.4036	1.3318	1.1102	1.1396
17	$1,3,5$ -Triazine- $2-N_2^+(S) = 1,3,5$ -Triazine- $2-N_2^+(T)$	209.32	200.26	-0.342070	-0.417670	0.0005	0.0006	180	180	1.5140	1.3517	1.1031	1.1343
18	N-O-Pyridine-2- $N_2^+(S) = N$ -O-Pyridine-2- $N_2^+(T)$	147.58	136.10	-0.317800	-0.374990	0.0003	0.0018	179	179	1.3630	1.3324	1.1160	1.1449

Таблица 2.

N₂	Reaction	ΔE, kJ/mol	ΔG,	LUMO, Eh		Ring Deviation *, Å		Angle C-N-N		Dist. C-N, Å		Dist. N	I-N, Å
142	Reaction	ΔL, KJ/IIIOI	kJ/mol	(S)	(T)	(S)	(T)	(S)	(T)	(S)	(T)	(S)	(T)
19	N-O-Pyridine-3- $N_2^+(S) = N$ -O-Pyridine-3- $N_2^+(T)$	126.62	115.65	-0.322550	-0.369880	0.0017	0.0003	180	178	1.3877	1.3399	1.1126	1.1441
20	N-O-Pyridine-4- $N_2^+(S) = N$ -O-Pyridine-4- $N_2^+(T)$	143.43	132.07	-0.311690	-0.370370	0.0001	0.0000	180	180	1.3635	1.3414	1.1193	1.1427
21	$Ph-N_2^+(S) = Ph-N_2^+(T)$	247.33	228.67	-0.300120	-0.406100	0.0000	0.0153	180	126	1.3832	1.4093	1.1138	1.1914
22	$4-NO_2-Ph-N_2^+(S) = 4-NO_2-Ph-N_2^+(T)$	186.81	178.10	-0.324090	-0.363560	0.0001	0.0000	180	180	1.3887	1.3651	1.1126	1.1220
23	$4-CH_3O-Ph-N_2^+(S) = 4-CH_3O-Ph-N_2^+(T)$	189.93	176.94	-0.274560	-0.368430	0.0003	0.0204	180	123	1.3636	1.4355	1.1193	1.1912
24	$Pyrrole-2-N_2^+(S) = Pyrrole-2-N_2^+(T)$	168.26	156.73	-0.291020	-0.387900	0.0015	0.0001	178	122	1.3369	1.3955	1.1243	1.2021
25	$Pyrrole-3-N_2^+(S) = Pyrrole-3-N_2^+(T)$	204.76	190.35	-0.282580	-0.388090	0.0006	0.0002	178	122	1.3494	1.4209	1.1179	1.1929
26	$Pyrazole-3-N_2^+(S) = Pyrazole-3-N_2^+(T)$	255.75	241.26	-0.308180	-0.422460	0.0003	0.0167	179	124	1.3684	1.3913	1.1129	1.1991
27	$Pyrazole-4-N_2^+(S) = Pyrazole-4-N_2^+(T)$	249.59	233.61	-0.300790	-0.421350	0.0010	0.0001	178	121	1.3493	1.3881	1.1171	1.2077
28	$Pyrazole-5-N_2^+(S) = Pyrazole-5-N_2^+(T)$	209.48	193.66	-0.320440	-0.426750	0.0010	0.0001	180	121	1.3486	1.3944	1.1191	1.2049
29	$1,3,5-(CH_3)_3$ -Pyrazole- $4-N_2^+(S) = 1,3,5-(CH_3)_3$ -Pyrazole- $4-N_2^+(T)$	225.32	208.78	-0.269760	-0.375320	0.0001	0.0034	178	124	1.3370	1.4357	1.1219	1.1864
32	Imidazole-2- $N_2^+(S)$ = Imidazole-2- $N_2^+(T)$	173.76	161.43	-0.312960	-0.406660	0.0019	0.0002	178	121	1.3516	1.3975	1.1200	1.2034
33	Imidazole-4- $N_2^+(S)$ = Imidazole-4- $N_2^+(T)$	220.81	206.47	-0.299360	-0.407200	0.0003	0.0119	179	121	1.3619	1.4083	1.1151	1.1963
34	Imidazole-5- $N_2^+(S)$ = Imidazole-5- $N_2^+(T)$	185.56	172.73	-0.308350	-0.408500	0.0003	0.0003	177	121	1.3387	1.3947	1.1225	1.2038
35	$1H-1,2,3-Triazole-4-N_2^+(S) = 1H-1,2,3-Triazole-4-N_2^+(T)$	256.99	239.10	-0.321380	-0.439210	0.0013	0.0002	177	121	1.3588	1.3841	1.1143	1.2080
36	$1H-1,2,3-Triazole-5-N_2^+(S) = 1H-1,2,3-Triazole-5-N_2^+(T)$	223.58	203.37	-0.340350	-0.440580	0.0013	0.0590	178	126	1.3472	1.3931	1.1186	1.1941
37	$1\text{H-1,2,4-Triazole-3-N}_2^+(S) = 1\text{H-1,2,4-Triazole-3-N}_2^+(T)$	262.64	248.17	-0.328560	-0.440390	0.0004	0.0200	179	126	1.3825	1.3858	1.1101	1.1955
38	$1\text{H-1,2,4-Triazole-5-N}_2^+(S) = 1\text{H-1,2,4-Triazole-5-N}_2^+(T)$	217.05	201.80	-0.344420	-0.446480	0.0003	0.0000	179	121	1.3654	1.3926	1.1151	1.2063
39	$2H-1,2,3-Triazole-4-N_2^+(S) = 2H-1,2,3-Triazole-4-N_2^+(T)$	330.77	314.00	-0.327940	-0.429380	0.0011	0.4585	178	178	1.3651	1.3256	1.1130	1.1393
40	$4H-1,2,4-Triazole-3-N_2^+(S) = 4H-1,2,4-Triazole-3-N_2^+(T)$	212.44	198.14	-0.337800	-0.439450	0.0021	0.0399	175	121	1.3551	1.3841	1.1173	1.2062

N₂	Reaction	ΔE, kJ/mol	ΔG, kJ/mol	LUMO, Eh		Ring Deviation *, Å		Angle C-N-N		Dist. C-N, Å		Dist. N-N, Å	
	Reaction			(S)	(T)	(S)	(T)	(S)	(T)	(S)	(T)	(S)	(T)
41	Tetrazole-5- $N_2^+(S)$ = Tetrazole-5- $N_2^+(T)$	251.40	232.09	-0.368930	-0.473020	0.0010	0.0003	177	121	1.3642	1.3767	1.1139	1.2129
42	Furan-2- $N_2^+(S) = Furan-2-N_2^+(T)$	184.79	172.42	-0.312500	-0.409290	0.0002	0.0010	179	123	1.3428	1.3808	1.1209	1.2070
43	Furan-3- $N_2^+(S) = Furan-3-N_2^+(T)$	210.50	196.49	-0.308260	-0.410160	0.0004	0.0201	179	124	1.3556	1.4155	1.1157	1.1903
44	Thiophene-2- $N_2^+(S)$ = Thiophene-2- $N_2^+(T)$	199.11	186.17	-0.304400	-0.400140	0.0003	0.0000	179	123	1.3457	1.3917	1.1204	1.2005
45	Thiophene-3- $N_2^+(S)$ = Thiophene-3- $N_2^+(T)$	219.71	205.43	-0.300420	-0.402750	0.0004	0.0262	179	124	1.3654	1.4221	1.1162	1.1905

^{*} Ring Deviation - суммарное отклонение атомов от плоскости цикла (ангстрем);

Синглет-триплетный переход характеризуется:

- 1. Энергия синглет-триплетного перехода лежит в диапазоне от +115 до +314 кДж/моль, переход в триплетное состояние для всех диазониевых катионов не выгоден.
- 2. Во многих системах переход в триплетное состояние приводит к нарушению плоскости цикла и изменению угла связи C-N-N от 180° до 120° и увеличению длины связи C-N.
- 3. Для всех диазониевых катионов при переходе в триплетное состояние происходит увеличение длины связи N-N.
- 4. В синглетном состоянии все диазониевые катионы имеют плоское строение и угол связи С-N-N имеет значения близкие к 180°.
- 5. При переходе в триплетное состояние происходит уменьшение значения LUMO для всех диазониевых катионов.

^{**} Break - разрыв цикла или связи C-NN;