. Árca sombreada = α

Tabla A.7 Valores críticos para la distribución de ji cuadrada

								V		Eliment	
					α		0		λ_χ2,		
P	,995	.99 .	.975	.95	.90	.10	.05	.025	.01	.005	
1	0.000	0.000	0.001	0.004	0.016	2.706	3.843	5.025	6.637	7.882	
2	0.010	0.020	0.051	0.103	0.211	4.605	5.992	7.378	9.210	10.597	
3	0.072	0.115	0,216	0.352	0.584	6.251	7.815	9.348	11.344	12.837	
4	0.207	0.297	0,484	0.711	1.064	7.779	9.488	11,143	13.277	14.860	
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.832	15.085	16.748	
6	0.676	0.872	1.237	-1.635	2.204.	10.645	12.592	14.440	16.812	18.548	
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.012	18.474	20,276	
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.534	20.090	21.954	
9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.022	21.665	23.587	
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20,483	23.209	25.188	
11	2.603	3.053	3.816	4.575	5.578	17,275	19.675	21.920	24.724	26.755	
12	3.074	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.217	28.300	
13	3.565	4.107	5.009	5.892	7.041	19.812	22.362	24.735	27.687	29.817	
14	4.075	4.660	5.629	6.571	7.790	2L064	23.685	26.119	29.141	31.319	
15	4.600	5.229	6.262	7.261	8.547	(22.307)	24.996	27.488	30.577	32.799	
16	5.142	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.000	34,267	
17	5.697	6.407	7.564	8.682	10.085	24.769	27.587	30.190	33.408	35.716	
18	6.265	7.015	8.231	9.390	10.865	25.989	28.869	31.526	34.805	37.156	
19	6.843	7.632	8.906	10.117	11.651	27.203	30.143	32.852	36.190	38.580 ~	
20	7.434	8,260	9.591	10.851	. 12,443	28.412	31.410	34.170	37.566	39.997	
21	8.033	8,897	10.283	11.591	13,240	29,615	32.670	35.478	38.930	41.399	
22	8.643	9.542	10.982	12.338	14,042	30.813	33.924	36.781	40.289	42.796	
23	9.260		11.688	13.090	14.848	32.007	35,172	38.075	41.637	44.179	
24	9.886 .	10.856	12.401	13.848	15.659	33.196	36.415	39.364	42.980	45.558	
25	10.519	11.523	13,120	14.511	16,473	34.381	37.652	40.646	44.313	46.925	
26	11.160	12.198	13.844	15.379	17.292	35.563	38.885	41.923	45.642	48.290	
27	11.807	.12.878	14.573	16.151	18.114	36.741	40.113	43,194	46.962	49.642	
28	12.461	13.565	15.308	16.928	18.939	37.916	41.337	44.461	48.278	50.993	
29	13.120	14.256	16.147	17.708	19.768	39.087	42.557	45.772	49.586	52,333	
1.	13,787	14.954	16.791	18.493	20,599	40.256	43.773	46.979	50.892	53.672	
31	14.457	15.655	17.538	19.280	21.433	41,422	44.985	48.231	52.190	55.000	
32	15.134	16.362	18.291	20.072	22.271	42.585	46.194	49,480	53.486	56,328	
33	15.814	17.073	19.046	20.866	23.110	43.745	47,400	50,724	54.774	57.646	
34	16.501	17.789	19.806	21.664	23,952	44.903	48,602	51.966	56.061	58,964	
35	17.191	18.508	20.569	22.465	24.796	46.059	49.802	53.203	57.340	60.272	
36	17.887	19.233	21.336	23.269	25.643	47.212	50,998	54,437	58.619	61.581	
37	18.584	19.960	22.105	24.075	26.492	48.363	52,192	55.667	59.891	62.880	
38	19,289	20.691	22.878	24.884	27.343	49.513	53.384	56.896	61.162	64.181	
39	19.994	21.425	23.654	25.695	28.196	50.660	54.572	58.119	62.426	65.473	
40	20.706	22.164	24.433	, 26.509	29.050	51.805	55.758	59.342	63.691	66.766	

Para v > 40, $\chi^2_{\alpha, \nu} \approx v \left(1 - \frac{2}{9v} + z_{\alpha} \sqrt{\frac{2}{9v}}\right)^3$