- Transformer "VIT"
 - o Images were resized to 224×224.
 - Augmentations included:
 - Random horizontal and vertical flips
 - Color jittering
 - Random affine transformations

Include a screenshot or example of the dataset before and after augmentation if possible.

3. Model Description

- Model Used: Vision Transformer (ViT)
 - Base Architecture: vit_base_patch16_224 pretrained on ImageNet.
 - Customizations:
 - Replaced the classification head to match 18 animal classes.
 - Fine-tuned layers for improved performance.
- Key Components:
 - Patch Embedding
 - Multi-Head Attention
 - MLP Layers
 - Classification Head

4. Training and Evaluation

- Data Splits:
 - 80% for training, 20% for testing.
- Hyperparameters:
 - o Optimizer: Adam
 - o Learning Rate:
 - 1×10⁻³ for the classification head
 - 1×10^-5 for other layers
 - Scheduler: CosineAnnealingLR with Tmax=10
 - o Batch Size: 4
 - o Epochs: 5
 - o Gradient Clipping: 1.0
- Training Process:

The model was trained for 5 epochs with early stopping based on validation accuracy.

Include training and validation accuracy plots, as well as any screenshots of the process.

5. Results

- Performance Metrics:
 - Final Training Accuracy: 99.58%
 - Final Validation Accuracy: 99.86%
 - Best Validation Accuracy Achieved: 99.86%
- Confusion Matrix:

Optional: Include a confusion matrix to show class-wise performance.

• Training Curves:

Loss vs Epoch

Accuracy vs Epoch

6. Challenges and Solutions

Class Imbalance:

Balanced the dataset by augmenting underrepresented classes.

Overfitting:

- Used dropout layers.
- Applied data augmentations.

Computational Limitations:

Adjusted batch size to fit within memory constraints.

7. Conclusion

Summary:

The project successfully classified animal species using a Vision Transformer model, achieving a validation accuracy of 99.86%.

Architecture

Vision Transformer (ViT) Architecture

1. Input Features:

Images ((batch_size,H,W,C) are divided into P×PP \times PP×P patches. Each patch is flattened and projected to a vector of dimension dmodel, resulting in shape:(batch_size,seq_len,dmodel).

2. Positional Encoding:

Adds positional information to the patch embeddings. Output retains shape: (batch_size,seq_len,dmodel).

3. Transformer Encoder Layers:

Passes through #layers consisting of:

- Multi-Head Self-Attention (MHSA)
- Feedforward Neural Network (MLP)
- Residual connections and Layer Normalization (batch_size,seq_len,dmodel).

- 4. Global Average Pooling:
 Aggregates sequence representations into a single(batch_size,dmodel).
- Fully Connected Layer:
 Maps pooled features to class logits: (batch_size, #classes)

2-Resnet

Dataset

- Input Data: The dataset includes labeled images of animals categorized into 18 classes such as "beaver," "butterfly," and "elephant."
- Augmentation: To handle class imbalance, the dataset was augmented by oversampling underrepresented classes.
- Transformation: Applied the following:
 - Random horizontal and vertical flips.
 - o Random rotation, color jitter, and perspective distortion.
 - Resizing images to 224×22424 \times 224224×224, followed by normalization.
- Split: 80% of the data was used for training, and 20% for validation.

Model Architecture

- 1. Base Architecture: ResNet50.
 - Pretrained weights on ImageNet were used to initialize the network.

2. Modifications:

 The final fully connected layer was replaced with one tailored to predict 18 classes. Custom ResNet blocks were implemented using a bottleneck residual block structure.

Input Layer

Input Shape:

Images resized to 224×224 with 3 channels (RGB). Input tensor shape (batch size, 3, 224, 224).

2. Initial Convolution Block

Convolutional Layer:

A7×7 kernel with 64 filters, stride 2, and padding, extracting basic features from input images.

• Batch Normalization:

Applied to normalize feature maps for stable training.

Activation:

ReLU activation introduces non-linearity.

Max Pooling:

A3×3 max pooling operation with stride 2 reduces spatial dimensions.

3. Residual Blocks

ResNet50 is built using **bottleneck residual blocks**, which allow the model to learn identity mappings efficiently, mitigating the vanishing gradient problem. Each block comprises:

1. Bottleneck Design:

- 1x1 Convolution: Reduces the feature dimensionality.
- 3x3 Convolution: Extracts features with a spatial focus.
- 1x1 Convolution: Restores the dimensionality for compatibility with residual connections.

.Batch Normalization:

Follows each convolution to stabilize learning.

.ReLU Activation:

Adds non-linearity after each convolutional layer.

.Residual Connection:

- o Adds the input (identity) to the block's output if dimensions align.
- For mismatched dimensions, a downsample layer is used to align input and output shapes.

4. Block Configuration

The ResNet50 model has four main stages, each with an increasing number of filters and decreasing spatial dimensions:

5. Global Average Pooling

- Reduces each feature map into a single value by averaging its spatial dimensions.
- Output shape: (batch size,512×4=2048)(\text{batch size}, 512 \times 4 = 2048)(batch size,512×4=2048).

6. Fully Connected Layer

- The final layer maps the 2048-dimensional feature vector to 18 logits (one for each class).
- Softmax activation is implicitly applied during training via cross-entropy loss.

Training and Evaluation

Hyperparameters:

- o Optimizer: Adam with a learning rate of 1×10−51 \times 10^{-5}1×10−5.
- Loss Function: Cross-Entropy Loss.
- Scheduler: Learning rate decreased by a factor of 0.5 every 7 epochs.
- Batch Size: 4.

Training:

- Model trained for a maximum of 10 epochs.
- Early stopping was implemented based on validation accuracy and overfitting checks.

Metrics:

- Training loss and accuracy.
- Validation accuracy to monitor generalization.

Results

• Training Performance:

- Training loss consistently decreased, indicating proper learning by the model.
- Training accuracy steadily increased over epochs.

Validation Performance:

- Best validation accuracy achieved: GG.44%
- Average validation accuracy across all epochs: G7.47%

• Early Stopping:

 Training was stopped early due to no improvement in validation accuracy for 7 consecutive epochs or detection of overfitting.

```
Epoch [1/10], Loss: 1.9643, Training Accuracy: 62.74%, Validation Accuracy: 91.39% Epoch [2/10], Loss: 0.8478, Training Accuracy: 86.01%, Validation Accuracy: 95.83% Epoch [3/10], Loss: 0.4755, Training Accuracy: 92.19%, Validation Accuracy: 97.78% Epoch [4/10], Loss: 0.3268, Training Accuracy: 94.41%, Validation Accuracy: 97.64% Epoch [5/10], Loss: 0.2387, Training Accuracy: 95.56%, Validation Accuracy: 98.61% Epoch [6/10], Loss: 0.1855, Training Accuracy: 96.70%, Validation Accuracy: 99.17% Epoch [7/10], Loss: 0.1665, Training Accuracy: 97.40%, Validation Accuracy: 99.03% Epoch [8/10], Loss: 0.1427, Training Accuracy: 97.50%, Validation Accuracy: 99.03% Epoch [9/10], Loss: 0.1250, Training Accuracy: 97.88%, Validation Accuracy: 99.44% Epoch [10/10], Loss: 0.1064, Training Accuracy: 98.19%, Validation Accuracy: 99.44% Average Validation Accuracy: 97.74%
```

.

Key Observations

- 1. **Class Balancing:** Augmentation effectively balanced the dataset, leading to improved performance across all classes.
- 2. **Data Augmentation:** Improved robustness to transformations and prevented overfitting.
- 3. **Early Stopping:** Prevented overfitting, ensuring the model generalized well to unseen data.

Challenges

- 1. **Limited Batch Size**: A batch size of 4 may have led to slower convergence due to gradient noise.
- 2. **Overfitting Risk:** Overfitting was observed in some epochs, as indicated by the gap between training and validation accuracy.

Epoch 1/30 73/73	= 12s 73ms/step - accuracy; 0.0516 - loss: 2.8567 - val accuracy; 0.0379 - val loss; 2.9001 - learning rate; 1.0000e-05
Epoch 2/30	- 125 /3m3/step - accuracy, 0.0510 - 1055, 2.650/ - Val_accuracy, 0.05/5 - Val_1055, 2.5001 - 1carming_rate, 1.0000c-05
	- 4s 61ms/step - accuracy: 0.0586 - loss: 2.8533 - val_accuracy: 0.1034 - val_loss: 2.8828 - learning_rate: 1.0000e-05
Epoch 3/30 73/73	4s 61ms/step - accuracy: 0.0754 - loss: 2.8636 - val accuracy: 0.0517 - val loss: 2.8671 - learning rate: 1.0000e-05
Epoch 4/30	
	- 4s 61ms/step - accuracy: 0.0851 - loss: 2.7819 - val_accuracy: 0.0793 - val_loss: 2.8319 - learning_rate: 1.0000e-05
Epoch 5/30 73/73	45 61ms/step - accuracy: 0.0936 - loss: 2.7803 - val accuracy: 0.1103 - val loss: 2.7848 - learning rate: 1.0000e-05
Epoch 6/30	
	- 4s 61ms/step - accuracy: 0.1206 - loss: 2.7364 - val_accuracy: 0.0828 - val_loss: 2.7578 - learning_rate: 1.0000e-05
Epoch 7/30 73/73	4s 60ms/step - accuracy: 0.1059 - loss: 2.6729 - val accuracy: 0.1448 - val loss: 2.7270 - learning rate: 1.0000e-05
Epoch 8/30	43 0003/3 CCp - 0000 00/1 012030 - 10331 110/20 - 102_0000 00/1 012400 - 102_20331 11/2/0 - 10001019_0 0001 1100000-03
	- 4s 60ms/step - accuracy: 0.1688 - loss: 2.6415 - val_accuracy: 0.2000 - val_loss: 2.6915 - learning_rate: 1.0000e-05
Epoch 9/30 73/73	4s 61ms/step - accuracy: 0.1906 - loss: 2.6009 - val accuracy: 0.2310 - val loss: 2.6748 - learning rate: 1.0000e-05
73/73 Epoch 10/30	45 61MS/Step - accuracy: 0.1906 - 1055: 2.6009 - Val_accuracy: 0.2310 - Val_1055: 2.6748 - learning_rate: 1.00000e-05
	- 4s 59ms/step - accuracy: 0.1758 - loss: 2.5965 - val_accuracy: 0.1966 - val_loss: 2.6010 - learning_rate: 1.0000e-05
Epoch 11/30	4- CO-(-1
73/73 ——————————————————————————————————	- 4s 60ms/step - accuracy: 0.2310 - loss: 2.5518 - val_accuracy: 0.2172 - val_loss: 2.5993 - learning_rate: 1.0000e-05
	- 4s 60ms/step - accuracy: 0.2113 - loss: 2.6190 - val_accuracy: 0.2448 - val_loss: 2.5655 - learning_rate: 1.0000e-05
Epoch 13/30	
73/73 Epoch 14/30	- 4s 60ms/step - accuracy: 0.2112 - loss: 2.5817 - val_accuracy: 0.2241 - val_loss: 2.5482 - learning_rate: 1.0000e-05
	- 4s 60ms/step - accuracy: 0.2101 - loss: 2.5911 - val_accuracy: 0.2207 - val_loss: 2.5042 - learning_rate: 1.0000e-05
Epoch 15/30	
73/73 ——————————————————————————————————	- 2s 34ms/step - accuracy: 0.2555 - loss: 2.5866 - val_accuracy: 0.2483 - val_loss: 2.5340 - learning_rate: 1.0000e-05
	- 4s 61ms/step - accuracy: 0.2470 - loss: 2.4181 - val accuracy: 0.2655 - val loss: 2.4675 - learning rate: 1.0000e-05
Epoch 17/30	
73/73	- 5s 62ms/step - accuracy: 0.2416 - loss: 2.4878 - val_accuracy: 0.2586 - val_loss: 2.4561 - learning_rate: 1.0000e-05

73/73 —————— Epoch 16/30	2s 34ms/step - accuracy: 0.2555 - loss: 2.5866 - val_accuracy: 0.2483 - val_loss: 2.5340 - learning_rate: 1.0
73/73	4s 61ms/step - accuracy: 0,2470 - loss: 2,4181 - val accuracy: 0,2655 - val loss: 2,4675 - learning rate: 1.0
Epoch 17/30	43 Omis/Step - decardey, 0.2770 - 1033, 2.7401 - val_decardey, 0.2033 - val_1033, 2.7673 - 1carring_oct. 110
	5s 62ms/step - accuracy: 0.2416 - loss: 2.4878 - val accuracy: 0.2586 - val loss: 2.4561 - learning rate: 1.0
Epoch 18/30	
73/73	45 60ms/step - accuracy: 0.2057 - loss: 2.5763 - val accuracy: 0.2552 - val loss: 2.4386 - learning rate: 1.0
Epoch 19/30	
73/73	4s 60ms/step - accuracy: 0.2763 - loss: 2.4464 - val accuracy: 0.2655 - val loss: 2.4145 - learning rate: 1.0
Epoch 20/30	
73/73	45 61ms/step - accuracy: 0.2462 - loss: 2.5223 - val accuracy: 0.2586 - val loss: 2.4076 - learning rate: 1.0
Epoch 21/30	
73/73	4s 60ms/step - accuracy: 0.2362 - loss: 2.4940 - val_accuracy: 0.2552 - val_loss: 2.3858 - learning_rate: 1.0
Epoch 22/30	
73/73	2s 33ms/step - accuracy: 0.2708 - loss: 2.4287 - val_accuracy: 0.2793 - val_loss: 2.3925 - learning_rate: 1.0
Epoch 23/30	
73/73	4s 60ms/step - accuracy: 0.2618 - loss: 2.4522 - val_accuracy: 0.2759 - val_loss: 2.3687 - learning_rate: 1.00
Epoch 24/30	
73/73	2s 33ms/step - accuracy: 0.2643 - loss: 2.3594 - val_accuracy: 0.2552 - val_loss: 2.3945 - learning_rate: 1.00
Epoch 25/30	
73/73	2s 34ms/step - accuracy: 0.2661 - loss: 2.4544 - val_accuracy: 0.2690 - val_loss: 2.4061 - learning_rate: 1.00
Epoch 26/30	
	4s 61ms/step - accuracy: 0.2552 - loss: 2.4519 - val_accuracy: 0.2793 - val_loss: 2.3275 - learning_rate: 1.00
Epoch 27/30	
	2s 33ms/step - accuracy: 0.2635 - loss: 2.4130 - val_accuracy: 0.2897 - val_loss: 2.3281 - learning_rate: 1.0
Epoch 28/30	
	4s 60ms/step - accuracy: 0.3160 - loss: 2.2987 - val_accuracy: 0.2966 - val_loss: 2.3196 - learning_rate: 1.00
Epoch 29/30	
73/73	4s 60ms/step - accuracy: 0.2932 - loss: 2.3586 - val_accuracy: 0.2862 - val_loss: 2.2905 - learning_rate: 1.00
Epoch 30/30	
73/73	25 34ms/step - accuracy: 0.2897 - loss: 2.3475 - val_accuracy: 0.2862 - val_loss: 2.3505 - learning_rate: 1.0