HEI Scheduling constraints problems

Abegà Razafindratelo

March 10, 2025

Notations

- G denotes the set of all group q.
- T denotes the set of all teacher t.
- C denotes the set of all course c.
- R the set of all room r.
- \bullet All element of the set of all awarded courses AC will be indexed. In other words :

$$ac_i \in AC, i \in \mathbb{N}$$

- Let $t(ac_i)$ and $c(ac_i)$ be the corresponding teacher and the corresponding course resp. to ac_i .
- Let $STC_{t,c} \subset AC$ be the set of all awarded course which has same teacher and course (Same Teacher and Course):

$$\forall i, j \in \mathbb{N} : (ac_i, ac_j \in STC_{t,c}) \Longleftrightarrow [t(ac_i) = t(ac_j) = t] \text{ and } [c(ac_i) = c(ac_j) = c]$$

Example:

 $t=DrToky,\ c=PROG1,\ {\rm and}\ G=\{K1,K2,K3\}.$ So, we can have $STC_{DrToky,PROG1}=\{a_1,a_2,a_3\}$

where :
$$\begin{cases} ac_1 = (PROG1, DrToky, K1) \\ ac_2 = (PROG1, DrToky, K2) \\ ac_3 = (PROG1, DrToky, K3) \end{cases}$$

• Let $STDC_t \subset AC$ be the set of all awarded course which has same teacher but different course (Same Teacher but Different Course):

$$\forall i, j \in \mathbb{N} : (ac_i, ac_j \in STDC_t) \iff [t(ac_i) = t(ac_j) = t] \text{ and } [c(ac_i) \neq c(ac_j)]$$

Example:

 $\overline{t = DrToky}$, and $G = \{K1, K2, K3\}$. So, we can have $STDC_{DrToky} = \{a_1, a_2, a_3, a_4\}$

where :
$$\begin{cases} ac_1 = (PROG1, DrToky, K1) \\ ac_2 = (WEB1, DrToky, K1) \\ ac_3 = (DONNEES1, DrToky, K2) \\ ac_4 = (PROG2, DrToky, K3) \end{cases}$$

• Let $AC_g \subset AC$, the set of all awarded course related to a group g. Which means that only ac_i that g as its group will be in the set AC_g .

About the Constraints

Constraint 1. A teacher can't teach two or more different groups at the same time for a same course if it is face-to-face session but can if it is a video conference session.

Let $pres(d, STC_{t,c})$ be the binary variable such as:

$$pres(d, STC_{t,c}) = \begin{cases} 1, & \text{if the course related to } STC_{t,c} \text{ is presential at a given } d \text{ day} \\ 0, & \text{otherwise} \end{cases}$$

Let $M \in \mathbb{N}^*$ be a constant limiting the number of allowed courses.

Therefore:

 $\forall s \in S, \ \forall \ d \in D, \forall \ t \in T, \ \forall \ c \in C:$

$$\sum_{r \in R} \left(\sum_{ac_i \in STC_{t,c}} o_{ac_i,d,r,s} \right) \le 1 + M(1 - pres(d, STC_{t,c}))$$
 (1)

Example:

Let's take an example for course c = PROG1 and teacher t = DrToky and all groups K1, K2, K3, K4, K5.

We define the set ac_i as follow:

$$\begin{cases} ac_1 = (PROG1, DrToky, K1) \\ ac_2 = (PROG1, DrToky, K2) \\ ac_3 = (PROG1, DrToky, K3) \\ ac_4 = (PROG1, DrToky, K4) \\ ac_5 = (PROG1, DrToky, K5) \end{cases}$$

Thus, the set $STC_{PROG1,DrToky}$ is:

$$STC_{PROG1,DrToky} = \{ac_1, ac_2, ac_3, ac_4, ac_5\}$$

Which means here that all elements of this $STC_{PROG1,DrToky}$ has the same teacher and same course.

Now, if we say that for a d day, the PROG1 course will be presential, we will have :

$$pres(d, STC_{t,c}) = 1 \implies \sum_{r \in R} \left(\sum_{ac_i \in STC_{t,c}} o_{ac_i,d,r,s} \right) \le 1 + M(1-1)$$

$$\iff \sum_{r \in R} \left(\sum_{ac_i \in STC_{t,c}} o_{ac_i,d,r,s} \right) \le 1$$

Which tells us that only one session of that course is allowed at that given time slot.

Now, if the course is online:

$$pres(d, STC_{t,c}) = 0 \implies \sum_{r \in R} \left(\sum_{ac_i \in STC_{t,c}} o_{ac_i,d,r,s} \right) \le 1 + M(1 - 0)$$

$$\iff \sum_{r \in R} \left(\sum_{ac_i \in STC_{t,c}} o_{ac_i,d,r,s} \right) \le 1 + M$$

which means that multiple session of that course (depending on M) is allowed

Constraint 2. A teacher cannot simultaneously teach two or more different courses.

 $\forall s \in S, \ \forall \ d \in D, \forall \ t \in T:$

$$\sum_{r \in R} \left(\sum_{ac_i \in STDC_t} o_{ac_i, d, r, s} \right) \le 1 \tag{2}$$

Example:

Let's take an example for courses $c_1 = PROG1$, $c_2 = WEB1$ and teacher

t = DrToky and all groups K1, K2.

Now, the statement is that DrToky cannot teach WEB1 and PROG1 at the same time. So, we have to make sure that **event if we have different courses**, DrToky don't teach both of those courses at a given slot s.

Let:
$$\begin{cases} ac_1 = (PROG1, DrToky, K1) \\ ac_2 = (WEB1, DrToky, K2) \end{cases}$$

It is clear that ac_1 , $ac_2 \in STDC_{DrToky}$ and we can only allow session for ac_1 or for ac_2 .

It is abvious that if the awarded courses don't have the same teacher but have the same course, we can allow both of them .

Constraint 3. Only one session is allowed in a room at a given time slot.

 $\forall r \in R, \ \forall \ s \in S, \ \forall \ d \in D:$

$$\sum_{ac_i \in AC} o_{ac_i,d,r,s} \le 1 \tag{3}$$

Constraint 4. A group cannot simultaneously have two or more different course sessions.

 $\forall q \in G, \ \forall s \in S, \ \forall d \in D$:

$$\sum_{r \in R} \left(\sum_{ac_i \in AC_g} o_{ac_i, d, r, s} \right) \le 1 \tag{4}$$

Example:

Let's take for example the group J1. This group has for example the MGT2, PROG3 courses.

Let:
$$\begin{cases} ac_1 = (MGT2, DrLou, J1) \\ ac_2 = (PROG3, MrRyan, J1) \end{cases}$$

It is abvious that this doesn't concern any other group and we can't allow J1 to have ac_1 and ac_2 at the same time.

Constraint 5. A group should have 2 hours of break per day.

 $\forall q \in G, \ \forall \ d \in D$:

$$\sum_{ac_i \in AC_a} \left(\sum_{r \in R} \sum_{s \in S} o_{ac_i, d, r, s} \right) \le 3 \tag{5}$$

It is clear that this does not concern at all the other groups apart from the given group g.

Constraint 6. Only one session per course in a day.

 $\forall ac_i \in AC, \ \forall \ d \in D:$

$$\left(\sum_{r \in R} \sum_{s \in S} o_{ac_i, d, r, s}\right) \le 1 \tag{6}$$

Constraint 7. Give one day without the same course after a session of this course.

 $\forall d \in D, \ \forall ac_i \in AC :$

$$\left(\sum_{r \in R} \sum_{s \in S} o_{ac_i, d+1_d, r, s}\right) + \left(\sum_{r \in R} \sum_{s \in S} o_{ac_i, d, r, s}\right) \le 1 \tag{7}$$

where 1_d is the unit of day. So, $d + 1_d$ means the next day of d

This inequality states that the number of occurences of an awarded course in day d and the following day $d+1_d$ should be at most one. Which means that whether the awarded course is scheduled the d day or it is scheduled in the next day.

Constraint 8. Suitable room for every course session.

• Let g_{ac_i} be the corresponding group to a ac_i .

- Let $size(g_{ac_i})$ be the group size of a group g_{ac_i} .
- Let capacity(r) be the room capacity of a room r.

 $\forall ac_i \in AC, \forall r \in R, \ \forall \ s \in S, \forall \ d \in D$

$$o_{ac_i,d,r,s} \cdot capacity(r) \ge size(g_{ac_i})$$
 (8)

Constraint 9. Finish the total hour of every course.

Let $D(ac_i, d_{start}, d_{end})$ be the needed total duration in hour of a ac_i within a time interval $[d_{start}, d_{end}] \subset D$, $d_{start} \leq d_{end}$.

 $\forall ac_i \in AC$:

$$2 \cdot \left(\sum_{d=d_{start}}^{d_{end}} \sum_{r \in R} \sum_{s \in S} o_{ac_i, d, r, s} \right) = D(ac_i, d_{start}, d_{end})$$
 (9)

Example:

 $ac_1 = (PROG1, DrToky, K1), d_{start} = 10 \text{ march } 2025 \text{ and } d_{end} = 17 \text{ march } 2025.$

If we need to have 10 hours of ac_1 , we have then : $D(ac_1, d_{start}, d_{end}) = 10$.

Therefore, we should have:

$$2 \cdot \left(\sum_{d=d_{start}}^{d_{end}} \sum_{r \in R} \sum_{s \in S} o_{ac_1,d,r,s} \right) = 10)$$

$$\iff \sum_{d=d_{etart}}^{d_{end}} \sum_{r \in R} \sum_{s \in S} o_{ac_1,d,r,s} = 5)$$

Which gives us that we should have 5 session of ac_1 during the interval of 10 march and 17 march to get those required 10 hours since $o_{ac_1,d,r,s}$ gives us 2 hours of sessions.