Sentiment Analysis for Amazon Review Dataset & Drug Dataset

Rong Li, Xiongjie Dai, Zixing Deng

2022-12-08

Data Preprocessing

▶ Data before cleaning

^	Sentiment *	SentimentText
1	"2",	"Stuning even for the non-gamer","This sound track
2	"2",	"The best soundtrack ever to anything.","I'm reading a
3	"2",	"Amazing!","This soundtrack is my favorite music of a
4	"2",	"Excellent Soundtrack","I truly like this soundtrack an
5	"2",	"Remember, Pull Your Jaw Off The Floor After Hearing

Data after cleaning

^	Sentiment •	SentimentText
1	2	Stuning even for the non gamer This sound track was
2	2	The best soundtrack ever to anything I m reading a lo
3	2	Amazing This soundtrack is my favorite music of all ti
4	2	Excellent Soundtrack I truly like this soundtrack and I
5	2	Remember Pull Your Jaw Off The Floor After Hearing i

Model 1: Bag of Words(BoW) with Naive Bayes

- ▶ BoW: widely used in NLP and computer vision fields. It takes the occurrence of each word in the text regardless of grammar and makes it into "bags" to characterize the text.
- ► Final results:
 - ► Amazon Review dataset: 81.19%
 - Drug Review dataset: 74.77%

##	Docs	book	get	good	great	just	like	movi	one	read	time
##	34297	0	1	0	0	2	5	0	3	0	0
##	38984	6	0	0	1	1	0	0	1	0	1
##	42051	3	0	1	0	2	1	0	3	5	1

Positive words

Negative words

Model 2: Pretrained word2vec word embedding with random forest algorithm

- pretrained word embedding
- based on the Reuter_50_50 dataset
- calculated the review sentences embedding
- ► Final results:
 - ► Amazon Review dataset: 62.56%
 - Drug Review dataset: 70.99%

Model 3: GloVe word embedding with random forest algorithm

- combines the global statistics of matrix factorization techniques
- constructs an explicit word context or word co-occurrence matrix
- obtain word embeddings from our own training corpus
- Final results:
 - Amazon Review dataset: 72.72%
 - Drug Review dataset: 74.96%

Model 4: FastText word Embedding

- fastText: created by the Facebook's Al Research lab in 2016
 - breaking words into n-grams (subwords), and generating word embeddings by taking the sum of those subwords
 - e.g. 2-grams for word help will be "he, el, lp"
- fastTextR package:
 - ft_control: set hyperparameter for fastText
 - ft_train: train the model
 - ft_predict: predict values based on the trained model
 - ft_test: evaluate the model
- Final results:
 - ► Amazon Review dataset: 86.48%
 - Drug Review dataset: 78.96%

Conclusion & Discussion

Results in glance:

	Bow	word2vec	GloVe	FastText
Amazon Review Drug Review		62.88% 71.02%		

- Possible improvements for word2vec:
 - create specific word embeddings for the dataset to minimize the effect of pre-trained embeddings
- Future directions:
 - try more classification models such as XGBoost and AdaBoost
 - split the dataset into train, validation, test subsets

Thank you!