

Master in Innovation and Research in Informatics (MIRI) Computer Networks and Distributed Systems

Stochastic Network Modeling (SNM)

Llorenç Cerdà-Alabern llorenc@ac.upc.edu

Office: C6-213

Web page http://docencia.ac.upc.edu/master/MIRI/SNM

Parts

- Introduction
- ① Discrete Time Markov Chains (DTMC)
- Continuous Time Markov Chains (CTMC)
- Queuing Theory

Evaluation

- NF = 0.1 * NP + 0.30 * max(EF, C) + 0.60 * EF where:
 - NF = final mark
 - EF = final theory exam
 - NP = Problems delivered by the students
 - C = average assessments mark: C = 0.5*C1 + 0.5*C2

Master in Innovation and Research in Informatics (MIRI) Computer Networks and Distributed Systems

Stochastic Network Modeling (SNM)

Introduction

Stochastia

Part I

Introduction

Outline

- Probability
- Stochastic Process (SP)

Probability

Introduction

Probability
Ingredients of
Probability
Venn Diagrams
Random Variable
Probability Measure
Conditional
Probability and Bayes
Formula

Law of total probability Probability in \mathbb{R}^k

Stochastic Process (SP

Ingredients of Probability

- Random experiment, e.g. toss a die.
- Outcome, ω , e.g. tossing a die can be $\omega = 2$, choosing a fruit can be $\omega =$ orange.
- Sample space or Universal set, U, set of all possible outcomes. E.g. tossing a die $U = \{1,2,3,4,5,6\}$.
- Event, A, any subset of U (e.g. tossing a die $A = \{1,2,3\}$). We say the event A occurs if the outcome of the experiment $\omega \in A$. U is the sure event, and we represent by the empty set \emptyset an impossible outcome.

Probability

Introduction

Probability Ingredients of

Venn Diagrams

Random Variabl

Conditional

Probability and Baye Formula

probability

Probability in R*

Stochastic Process (SP)

Venn Diagrams

Graphical representation of events $\begin{bmatrix} v \end{bmatrix}$

Intersection $A \cap B$

Complement of A in U $A^{c} = U \setminus A$

source: wikipedia

Union $A \cup B$

Complement of A in B(B minus A) $A^c \cap B = B \setminus A$

Probability

Introduction

Random Variable

• For simplicity it is defined a random variable (RV), *X* as a function that assigns a real number to each outcome in the sample space *U*, i.e.:

$$X: U \to \mathbb{R}$$

- We will represent the experiment by a RV, X, and the possible outcomes by its values. $X = x_i$ is the outcome $X(\omega_i) = x_i$.
- Using RVs the sample space is mapped in a subset of \mathbb{R} . So, in terms of X, U is a set of points of \mathbb{R} . The same for any event.
- Normally the definition of X comes naturally from the experiment, e.g. tossing a die: X = {number in the toss}.
- RVs can be discrete (e.g. tossing a die) or continuous (e.g. waiting time of a packet in a queue).

Probability
Ingredients of
Probability
Venn Diagrams

Random Variable
Probability Measure
Conditional
Probability and Bayes
Formula
Law of total
probability

Stochastic Process (SP

Probability

Introduction

Probability

Ingredients of Probability Venn Diagrams

Probability Measure

Conditional Probability and Baye Formula

Law of total probability

Probability in ℝ^k

Stochastic

Probability Measure of Discrete RV

• If the sample space U of the RV X is finite (discrete RV), $U = \{x_1, \dots x_n\}$, a probability measure is an assignment of numbers $P(x_i)$, referred to as probabilities, to each outcome x_i such that:

$$0 \le P(x_i) \le 1$$

$$P(A) = \sum_{x_i \in A} P(x_i)$$

$$P(U) = 1$$

E.g. tossing a fair die,

$$P(x_i) = 1/6$$

$$P(X \in \{2,4,6\}) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{2}$$

Probability

Introduction

Probability
Ingredients of
Probability
Venn Diagrams
Random Variable

Conditional Probability and Bayes Formula

Law of total probability Probability in R

Stochastic Process (SP

Conditional Probability and Bayes Formula

• Given the the sample space U and the events $A, B \in U$ with P(B) > 0 the probability of A conditioned by B is defined as:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Intersection $A \cap B$

NOTE: It's common to use commas to denote set intersection, and write $P(A \cap B)$ as P(A,B).

· Bayes Formula

$$P(A|B) P(B) = P(B|A) P(A) \Rightarrow P(A|B) = \frac{P(B|A) P(A)}{P(B)}$$

Probability

Introduction

Probabilit

Probability
Venn Diagrams
Random Variable
Probability Measu

Conditional Probability and Bayes Formula Law of total

probability
Probability in 5

Stochastic Process (SP)

Law of total probability

• Let B_i a partition of the sample space $U (\cup_i B_i = U, B_i \cap B_i = \emptyset, \forall i \neq j)$, then

$$P(A) = \sum_{i} P(A|B_i) P(B_i)$$

For conditional probabilities:

$$P(A|C) = \sum_{i} P(A|C \cap B_i) P(B_i|C)$$

• If C is independent of any of the B_i

$$P(A|C) = \sum_{i} P(A|C \cap B_i) P(B_i)$$

Probability

Introduction

Probability Measure of Continuous RV

• If the sample space of the RV X is continuous (continuous RV), the events are intervals of \mathbb{R} . The probability measure is defined by means of the cumulative distribution function, CDF:

$$F(x) = P(X \in (-\infty, x]) = P(X \le x)$$

• *X* is called absolutely continuous^a if there exists the probability density function, PDF, such that for any interval $I = \{x \mid a \le x \le b\}$:

$$\int_{a}^{b} f(x) dx = P(X \in I) = F(b) - F(a)$$

Ingredients of
Probability
Venn Diagrams
Random Variable
Probability Measure
Conditional

Law of total probability Probability in F

Stochastic Process (SP

^aSome special distributions, called singular, do not have a PDF. One example is the Cantor distribution (see Wikipedia).

Probability

Introduction

Probability Ingredients of Probability Venn Diagrams

Random Variable Probability Measure Conditional Probability and Bayes Formula

Law of total probability

Probability in R

Stochastic Process (SP)

Expected value

• Given the discrete $N \in \mathbb{Z}$, respectively continuous $X \in \mathbb{R}$ RV, the expected value is:

$$E[N] = \sum_{k=-\infty}^{\infty} k P(N = k)$$
$$E[X] = \int_{-\infty}^{\infty} x f(x) dx$$

Variance

• The amount of dispersion of a RV X with expected value $\mu = E[X]$ is measured by the Variance:

$$Var(X) = \sigma^2 = E[(X - \mu)^2] = E[X^2] - \mu^2$$

• Often it is used the standard deviation $\sigma = \sqrt{\text{Var}(X)}$.

Probability

Introduction

Ingredients of

Ingredients of Probability

Random Variab

Probability Meas

Conditional
Probability and Baye

Law of total probability

Probability in

Stochastic

Indicator Function

$$I(A) = \begin{cases} 1, & \text{if } A \text{ occurs,} \\ 0, & \text{otherwise.} \end{cases}$$

Therefore:

$$E[I(A)] = 0 \times P(I(A) = 0) + 1 \times P(I(A) = 1) = P(A)$$

Probability

Introduction

Probability

Probability

Dandam Variabl

Probability Measure

Conditional Probability and Baye Formula

Law of total probability

Stochastic

Expected value of non negative RVs

• For non negative RVs, $N \ge 0$ discrete and $X \ge 0$ continous:

$$E[N] = \sum_{k=0}^{\infty} k P(N = k) = \sum_{k=0}^{\infty} P(N > k)$$

$$E[X] = \int_{0}^{\infty} x f(x) dx = \int_{0}^{\infty} P(X > x) dx = \int_{0}^{\infty} (1 - F(x)) dx$$

Proof

$$N = \sum_{k=0}^{N-1} 1 = \sum_{k=0}^{\infty} I(N > k)$$
$$X = \int_{0}^{X} dx = \int_{0}^{\infty} I(X > x) dx$$

and take expectations.

Probability

Introduction

Wald's Equation

• Definition: An positive integer RV N > 0 is a stopping time of a sequence X_1, X_2, \cdots if the event N = n is independent of X_{n+1}, X_{n+2}, \cdots .

E.g. toss a die until you get 6. Let *N* be the number of tosses. *N* does not depend on the values obtained after getting 6.

• Wald's Equation If X_1, X_2, \cdots are independent and identically distributed and N is a stopping time:

$$E\left[\sum_{n=1}^{N} X_n\right] = E[X] E[N]$$

Probability
Ingredients of
Probability
Venn Diagrams
Random Variable
Probability Measur
Conditional

Law of total probability

Probability in R

Stochastic Process (SP

Probability

Introduction

Probability
Ingredients of
Probability
Venn Diagrams

Random Variable
Probability Measure
Conditional
Probability and Bayes
Formula
Law of total

probability
Probability in 5

Stochastic Process (SP

Wald's Equation

• Wald's Equation If X_1, X_2, \cdots are independent and identically distributed and N is a stopping time:

$$\mathbb{E}\left[\sum_{n=1}^{N} X_n\right] = \mathbb{E}[X] \, \mathbb{E}[N]$$

Proof

$$E\left[\sum_{n=1}^{N} X_n\right] = E\left[\sum_{n=1}^{\infty} X_n I(n \le N)\right] = \sum_{n=1}^{\infty} E[X_n] E[I(n \le N)] =$$

$$E[X] \sum_{n=1}^{\infty} P(n \le N) = E[X] \sum_{n=0}^{\infty} P(N > n) = E[X] E[N]$$