Normalization of Power Spectral Density

Andrew J. Barbour <andy.barbour@gmail.com> and Robert L. Parker January 25, 2013

Abstract

The purpose of this vignette is to provide an overview of the normalization used by rlpSpec and compare it to other estimators.

Contents

L	Background	
	1.1	stats::spectrum 1
	1.2	multitaper::spec.mtm
		SDF::sapa

1 Background

First load the package into the namespace:

> library(rlpSpec)

1.1 stats::spectrum

Included in the core distribution of R is stats::spectrum, which accesses stats::spec.ar or stats::spec.pgram for either parametric and non-parametric estimation, respectively. The user can optionally apply a single cosine taper, and/or a smoothing kernel. Our method is non-parametric; hence, we will compare to the latter.

> spec.pgram(X, pad=1, taper=0.2, detrend=FALSE, demean=FALSE, plot=FALSE)

However, the logical arguments detrend and demean to psdcore are passed to spec.pgram; they are, by default, both TRUE.

As a matter of bookkeeping, we must deal with the working environment accessed by rlpSpec functions. Specifically, we should ensure psdcore does not access any inappropriate information by setting refresh=TRUE. We can then re-calculate the multitaper PSD and the raw periodogram with plotpsd=TRUE. The results are shown in Figure 1.1.

1.2 multitaper::spec.mtm

1.3 SDF::sapa

- > data(magsat)
- > psdcore(magsat\$clean, ntaper=10, refresh=TRUE, plotpsd=TRUE)

Figure 1: Top: Comparison between naïve and multitaper PSD estimators for the clean MAGSAT data. The frequency axis is in units of \log_{10} km⁻¹, and power axis is in decibels. Bottom: The spatial series used to estimate the PSDs.