Homework set #5

- 1. For each of the following families: (i) verify it is an exponential family, (ii) describe whether this is a curved family (iii) describe and sketch the graph of which the curved parameter space.
 - (a) $N(\theta, \theta)$, with $\theta > 0$ unknown/
 - (b) $N(\theta, a\theta^2)$, with a > 0 known.
 - (c) Gamma(α, α^{-1}) with $\alpha > 0$ unknown.
 - (d) $f(x|\theta) \propto e^{-(x-\theta)^4}$ with θ unknown.
- 2. Let X_1, \ldots, X_n be an i.i.d. sample from Uniform $(-\theta, \theta^2)$ distribution, $\theta > 0$. Find a one-dimensional sufficient statistics.
- 3. Let X_1, \ldots, X_n be an i.i.d. sample from $N(0, \sigma^2)$. Find a one-dimensional sufficient statistics.
- 4. Let X_1, \ldots, X_n be an i.i.d. sample from Pareto distribution. (i.e. $f(x;\theta) = \frac{\theta}{(1+x)^{\theta+1}} I_{(0,\infty)}(x)$). Find a one-dimensional sufficient statistics.
- 5. Let X_1, \ldots, X_n be an i.i.d. sample from a distribution with density. $f(x; a, b) = \frac{1}{b} e^{-\left(\frac{x-a}{b}\right)} I_{(a,\infty)}(x)$.
 - (a) Show that $(X_{(1)}, \sum_{i=1}^{n} X_i)$ is sufficient.
 - (b) Show that $(X_{(1)}, \sum_{i=2}^{n} (X_{(i)} X_{(1)}))$ is sufficient.
- 6. Let X_1, \ldots, X_n be an i.i.d. sample from exponential(β) distribution censored at a > 0. Find a sufficient statistics. (Hint: Use the "mixed" density $f(x; a, \beta) = \frac{1}{\beta} e^{-x/\beta} I_{(0,a)}(x) + e^{-a/\beta} I_{\{a\}}(x)$.)
- 7. A famous example in genetics modeling is a genetic linkage multinomial model, where we observe the multinomial vector (X_1, X_2, X_3, X_4) with probabilities given by $(\frac{1}{2} + \frac{\theta}{4}, \frac{1}{4} \frac{\theta}{4}, \frac{1}{4} \frac{\theta}{4}, \frac{\theta}{4})$.
 - (a) Show that this is a curved exponential family.
 - (b) Find a minimal sufficient statistics for θ .