Autómatas y Lenguajes Formales, 2022-1 Tarea 6

Noé Salomón Hernández S. Alan Ernesto Arteaga Vázquez

Fecha de entrega: viernes 10 de diciembre

Nota 1: La tarea se entrega por equipos de dos integrantes.

Nota 2: El puntaje máximo de esta tarea es 11 pts.

1. (2 pts.) Describa el lenguaje que es aceptado por el PDA dado por la tabla de transición siguiente, donde q_0 es el estado inicial y q_3 es el estado de aceptación.

Estado	Símbolo de en-	Símbolo de la	Movimientos
	trada	pila	
q_0	a	Z_0	(q_0, Z_0)
q_0	arepsilon	Z_0	(q_1, Z_0)
q_1	b	Z_0	(q_1, bZ_0)
q_1	b	b	(q_1,bb)
q_1	c	b	$(q_2,arepsilon)$
q_1	arepsilon	Z_0	$(q_3,arepsilon)$
q_2	c	b	$(q_2,arepsilon)$
q_2	arepsilon	Z_0	(q_3, Z_0)
	cualquier otra combina	ación	ninguno

- 2. (2 pts.) Obtenga el PDA determinista, DPDA, para el lenguaje $L = \{w \in \{a,b\}^* \mid n_a(w) = 2n_b(w)\}$. Muestre la secuencia de configuraciones, relacionadas por \vdash , para la ejecución de aceptación de dicho PDA sobre la cadena *ababaa*.
- 3. (2 pts.) Suponga que M_1 y M_2 son PDAs que reconocen los lenguajes L_1 y L_2 , respectivamente. Describa un método para construir un PDA que acepte el lenguaje L_1L_2 . Asegúrese de precisar cómo es que la pila funciona en el nuevo PDA.
- 4. (2 pts.) Suponga que $L \subseteq \Sigma^*$ es aceptado por un PDA M. Suponga también que existe una k (fija), tal que para toda $x \in L$ se tiene una ejecución de aceptación en M, de modo que la pila jamás contenga más de k elementos. Demuestre que L es regular, para lo cual describa cómo construir un autómata finito que reconozca a L, y explique porqué su autómata funciona.
- 5. (1.5 pts.) A partir de la gramática que aparece abajo, obtenga el respectivo PDA que reconoce el mismo lenguaje, y muestre una ejecución de aceptación de tal PDA para la cadena *abba*.

$$S \rightarrow aB \mid bA \mid \varepsilon$$

$$A \rightarrow aS \mid bAA$$

$$B \rightarrow bS \mid aBB$$

6. (1.5 pts.) Transforme la siguiente gramática a su Forma Normal de Greibach

$$\begin{array}{ccc} S & \longrightarrow & AB \,|\, AC \,|\, SS \\ C & \longrightarrow & SB \end{array}$$

$$C \longrightarrow SB$$

$$\begin{array}{ccc} A & \longrightarrow & a \\ B & \longrightarrow & b \end{array}$$

$$B \longrightarrow b$$