Отчёт по лабораторной работе №6

Арифметические операции в NASM.

Кичигина Полина Евгеньевна

Содержание

1	Цель работы Задание Выполнение лабораторной работы		5
2			6
3			7
	3.1	Символьные и численные данные в NASM	7
	3.2	Выполнение арифметических операций в NASM	10
	3.3	Ответы на вопросы по программе	13
	3.4	Задание для самостоятельной работы	14
4	Выв	воды	16

Список иллюстраций

3.1	создаем каталог с помощью команды ткогг и фаил с помощью ко-	
	манды touch	7
3.2	Заполняем файл	7
3.3	Запускаем файл и смотрим на его работу	8
3.4	Изменяем файл	8
3.5	Запускаем файл и смотрим на его работу	8
3.6	Создаем файл	8
3.7	Заполняем файл	9
3.8	Смотрим на работу программы	9
3.9	Изменяем файл	9
3.10	Смотрим на работу программы	10
3.11	Смотрим на работу программы	10
3.12	Создаем файл	10
3.13	Заполняем файл	11
3.14	Смотрим на результат работы программы	11
3.15	Редактируем файл	12
3.16	Смотрим на результат работы программы	12
3.17	Создаем файл	12
	Заполняем файл	13
3.19	Проверяем результат работы программы	13
3.20	Создаем файл	14
3.21	Заполняем файл	15
3.22	Проверяем работу программы	15

Список таблиц

1 Цель работы

Освоить арифметических инструкций языка ассемблера NASM и написать программы для вычисления арифметических выражений с неизвестной.

2 Задание

Написать программы для решения выражений.

3 Выполнение лабораторной работы

3.1 Символьные и численные данные в NASM

Создаем каталог для программ ЛБ6, и в нем создаем файл (рис. fig. 3.1)

```
pekichigina@fedora:~$ mkdir ~/work/arch-pc/lab06
pekichigina@fedora:~$ cd ~/work/arch-pc/lab06
pekichigina@fedora:~/work/arch-pc/lab06$ touch lab6-1.asm
pekichigina@fedora:~/work/arch-pc/lab06$ [
```

Рис. 3.1: Создаем каталог с помощью команды mkdir и файл с помощью команды touch

Открываем файл в Midnight Commander и заполняем его в соответствии с листингом 6.1 (рис. fig. 3.2)

```
pekichigina@fedora:~

GNU nano 7.2 /home/pekichigina/work/arch-pc/lab06/lab6-1.asm

include 'in_out.asm'
SECTION .bss
buf1: RESB 80
SECTION .text
GLOBAL _start _
start:
mov eax,'6'
mov ebx,'4'
add eax,ebx
mov [buf1],eax
mov eax,buf1
call sprintLF

call quit
```

Рис. 3.2: Заполняем файл

Создаем исполняемый файл и запускаем его (рис. fig. 3.3)

```
pekichigina@fedora:~/work/arch-pc/lab06$ nasm -f elf lab6-1.asm
pekichigina@fedora:~/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-1 lab6-1.o
pekichigina@fedora:~/work/arch-pc/lab06$ ./lab6-1
j
pekichigina@fedora:~/work/arch-pc/lab06$ []
```

Рис. 3.3: Запускаем файл и смотрим на его работу

Снова открываем файл для редактирования и убиравем кавычки с числовых значений (рис. fig. 3.4)

```
\oplus
                                pekichigina@fedora:~
                                                                     Q
 GNU nano 7.2
                   /home/pekichigina/work/arch-pc/lab06/lab6-1.asm
 include 'in_out.asm'
       .bss
            80
        _start
mov eax,6
mov ebx,4
add eax,ebx
mov [buf1],eax
mov eax,buf1
call sprintLF
call quit
```

Рис. 3.4: Изменяем файл

Создаем исполняемый файл и запускаем его (рис. fig. 3.5)

```
pekichigina@fedora:~/work/arch-pc/lab06$ nasm -f elf lab6-1.asm
pekichigina@fedora:~/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-1 lab6-1.o
pekichigina@fedora:~/work/arch-pc/lab06$ ./lab6-1

pekichigina@fedora:~/work/arch-pc/lab06$ [
```

Рис. 3.5: Запускаем файл и смотрим на его работу

Создаем новый файл в каталоге (рис. fig. 3.6)

```
pekichigina@fedora:~/work/arch-pc/lab06$ touch ~/work/arch-pc/lab06/lab6-2.asm pekichigina@fedora:~/work/arch-pc/lab06$
```

Рис. 3.6: Создаем файл

Заполняем файл в соответствии с листингом 6.2 (рис. fig. 3.7)

```
pekichigina@fedora:~ Q = х

GNU nano 7.2 /home/pekichigina/work/arch-pc/lab06/lab6-2.asm Изменён
%include 'in_out.asm'
SECTION .text
GLOBAL _start
_start:
mov eax,'6'
mov ebx,'4'
add eax,ebx
call iprintLF

call quit
```

Рис. 3.7: Заполняем файл

Создаем исполняемый файл и запускаем его (рис. fig. 3.8)

```
pekichigina@fedora:~/work/arch-pc/lab06 Q  

pekichigina@fedora:~$ cd ~/work/arch-pc/lab06
pekichigina@fedora:~/work/arch-pc/lab06$ nasm -f elf lab6-2.asm
pekichigina@fedora:~/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-2 lab6-2.o
pekichigina@fedora:~/work/arch-pc/lab06$ ./lab6-2
106
pekichigina@fedora:~/work/arch-pc/lab06$ [
```

Рис. 3.8: Смотрим на работу программы

Снова открываем файл для редактирования и убиравем кавычки с числовых значений (рис. fig. 3.9)

```
pekichigina@fedora:~

GNU nano 7.2 /home/pekichigina/work/arch-pc/lab06/lab6-2.asm
include 'in_out.asm'

SECTION .text
GLOBAL _start
_start:
mov eax,6
mov ebx,4
add eax,ebx
call iprintLF

call quit
```

Рис. 3.9: Изменяем файл

Создаем исполняемый файл и запускаем его (рис. fig. 3.10)

```
pekichigina@fedora:~/work/arch-pc/lab06

Q

pekichigina@fedora:~$ cd ~/work/arch-pc/lab06

pekichigina@fedora:~/work/arch-pc/lab06$ nasm -f elf lab6-2.asm

pekichigina@fedora:~/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-2 lab6-2.o

pekichigina@fedora:~/work/arch-pc/lab06$ ./lab6-2

10

pekichigina@fedora:~/work/arch-pc/lab06$ []
```

Рис. 3.10: Смотрим на работу программы

Снова открываем файл для редактирования и меняем iprintLF на iprint Создаем исполняемый файл и запускаем его (рис. fig. 3.11)

```
pekichigina@fedora:~/work/arch-pc/lab06

Q

pekichigina@fedora:~$ cd ~/work/arch-pc/lab06

pekichigina@fedora:~/work/arch-pc/lab06$ nasm -f elf lab6-2.asm

pekichigina@fedora:~/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-2 lab6-2.o

pekichigina@fedora:~/work/arch-pc/lab06$ ./lab6-2

10pekichigina@fedora:~/work/arch-pc/lab06$ []
```

Рис. 3.11: Смотрим на работу программы

Вывод функций iprintLF и iprint отличаются только тем, что LF переносит на новую строку.

3.2 Выполнение арифметических операций в NASM

Создаем новый файл в каталоге (рис. fig. 3.12)

```
pekichigina@fedora:-/work/arch-pc/lab06$ touch ~/work/arch-pc/lab06/lab6-3.asm
pekichigina@fedora:-/work/arch-pc/lab06$ []
```

Рис. 3.12: Создаем файл

Открываем файл и редактируем в соответствии с листингом 6.3 (рис. fig. 3.13)

```
\oplus
                                                                     a =
                                pekichigina@fedora:~
GNU nano 7.2 /h
include 'in_out.asm'
                 /home/pekichigina/work/arch-pc/lab06/lab6-3.asm
                                                                         Изменён
         'Результат: ',0
         'Остаток от деления: ',0
mov eax,5
mov ebx,2
mul ebx
add eax,3
xor edx,edx
mov ebx,3
div ebx
mov edi,eax
mov eax,div
call sprint
mov eax,edi
call iprintLF
mov eax,edx
call quit
```

Рис. 3.13: Заполняем файл

Создаем исполняемый файл и запускаем его (рис. fig. 3.14)

```
pekichigina@fedora:~/work/arch-pc/lab06

pekichigina@fedora:~$ cd ~/work/arch-pc/lab06

pekichigina@fedora:~/work/arch-pc/lab06$ nasm -f elf lab6-3.asm

pekichigina@fedora:~/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-3 lab6-3.o

pekichigina@fedora:~/work/arch-pc/lab06$ ./lab6-3

Результат: 4

Остаток от деления: 1

pekichigina@fedora:~/work/arch-pc/lab06$ []
```

Рис. 3.14: Смотрим на результат работы программы

Открываем файл и редактируем его для вычисления выражения f(x) = (4 * 6 + 2)/5 (рис. fig. 3.15)

```
%include 'in_out.asm'
          'Результат: ',0
         'Остаток от деления: ',0
        _start
 mov ebx,6
 mul ebx
 add eax,2
 xor edx,edx
 mov ebx,5
 div ebx
 mov edi,eax
 mov eax,div
 call sprint
 mov eax,edi
 mov eax,rem
 call sprint
 mov eax,edx
 call quit
```

Рис. 3.15: Редактируем файл

Компилируем файл и запускаем программу (рис. fig. 3.16)

```
pekichigina@fedora:~/work/arch-pc/lab06 Q = ×

pekichigina@fedora:-$ cd ~/work/arch-pc/lab06

pekichigina@fedora:-/work/arch-pc/lab06$ nasm -f elf lab6-3.asm

pekichigina@fedora:-/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-3 lab6-3.o

pekichigina@fedora:-/work/arch-pc/lab06$ ./lab6-3

Peayльтат: 5

Остаток от деления: 1

pekichigina@fedora:-/work/arch-pc/lab06$ []
```

Рис. 3.16: Смотрим на результат работы программы

Создаем новый файл в каталоге (рис. fig. 3.17)

```
pekichigina@fedora:~/work/arch-pc/lab06$ touch ~/work/arch-pc/lab06/variant.asm pekichigina@fedora:~/work/arch-pc/lab06$
```

Рис. 3.17: Создаем файл

Открываем файл и редактируем в соответствии с листингом 6.4 (рис. fig. 3.18)

```
GNU nano 7.2
                 /home/pekichigina/work/arch-pc/lab06/variant.asm
%include 'in_out.asm'
       'Введите № студенческого билета: ',0
        'Ваш вариант: ',0
       start
mov eax, msg
call sprintLF
mov ecx, x
mov edx, 80
call sread
mov eax,x
call atoi
xor edx,edx
mov ebx,20
div ebx
inc edx
mov eax,rem
call sprint
mov eax,edx
call iprintLF
call quit
```

Рис. 3.18: Заполняем файл

Компилируем файл и запускаем его (рис. fig. 3.19)

```
pekichigina@fedora:~/work/arch-pc/lab06

pekichigina@fedora:~$ cd ~/work/arch-pc/lab06

pekichigina@fedora:~/work/arch-pc/lab06$ nasm -f elf variant.asm

pekichigina@fedora:~/work/arch-pc/lab06$ ld -m elf_i386 -o variant variant.o

pekichigina@fedora:~/work/arch-pc/lab06$ ./variant

Введите № студенческого билета:

1132246845

Ваш вариант: 6

pekichigina@fedora:~/work/arch-pc/lab06$ □
```

Рис. 3.19: Проверяем результат работы программы

3.3 Ответы на вопросы по программе

- 1. Строка "mov eax,rem" и строка "call sprint" отвечают за вывод на экран сообщения 'Ваш вариант:'.
- 2. Эти инструкции используются для чтения строки с вводом данных от пользователя. Начальный адрес строки сохраняется в регистре есх, а количество символов в строке (максимальное количество символов, которое может

быть считано) сохраняется в регистре edx. Затем вызывается процедура sread, которая выполняет чтение строки.

- 3. Инструкция "call atoi" используется для преобразования строки в целое число. Она принимает адрес строки в регистре еах и возвращает полученное число в регистре еах.
- 4. Строка "xor edx,edx" обнуляет регистр edx перед выполнением деления. Строка "mov ebx,20" загружает значение 20 в регистр ebx. Строка "div ebx" выполняет деление регистра eax на значение регистра ebx с сохранением частного в регистре eax и остатка в регистре edx.
- 5. Остаток от деления записывается в регистр edx.
- 6. Инструкция "inc edx" используется для увеличения значения в регистре edx на 1. В данном случае, она увеличивает остаток от деления на 1.
- 7. Строка "mov eax,edx" передает значение остатка от деления в регистр eax. Строка "call iprintLF" вызывает процедуру iprintLF для вывода значения на экран вместе с переводом строки.

3.4 Задание для самостоятельной работы

Создаем новый файл в каталоге (рис. fig. 3.20)

pekichigina@fedora:~/work/arch-pc/lab06**\$ touch ~/work/arch-pc/lab06/lab6-6.asm** pekichigina@fedora:~/work/arch-pc/lab06**\$**

Рис. 3.20: Создаем файл

Открываем его и заполняем, чтобы решалось выражение $f(x)=(x^3)/2+1$ (рис. fig. 3.21)

```
GNU nano 7.2 /h
%include 'in_out.asm'
                    /home/pekichigina/work/arch-pc/lab06/lab6-6.asm
         'Введите х: ',0
         'Результат: ',0
         80
        _start
  mov eax,msg
  call sprintLF
  mov ecx,x
  mov edx,80
  call sread
  mov eax.x
  call atoi
  mov ebx,eax
  mul eax
  mul ebx
  mov edx,0
  mov ecx,2
  add eax,1
  mov [rez],eax
  mov eax,div
  call sprint
  mov eax,[rez]
  call iprintLF
```

Рис. 3.21: Заполняем файл

Компилируем программу и проверяем для x=2 Компилируем программу и проверяем для x=5 (рис. fig. 3.22).

```
pekichigina@fedora:~$ cd ~/work/arch-pc/lab06
pekichigina@fedora:~/work/arch-pc/lab06$ nasm -f elf lab6-6.asm
pekichigina@fedora:~/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-6 lab6-6.o
pekichigina@fedora:~/work/arch-pc/lab06$ ./lab6-6
Введите х:
2
Результат: 5
pekichigina@fedora:~/work/arch-pc/lab06$ nasm -f elf lab6-6.asm
pekichigina@fedora:~/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-6 lab6-6.o
pekichigina@fedora:~/work/arch-pc/lab06$ ./lab6-6
Введите х:
5
Результат: 63
pekichigina@fedora:~/work/arch-pc/lab06$
```

Рис. 3.22: Проверяем работу программы

4 Выводы

Мы приобрели навыки создания исполнительных файлов для решения выражений и освоили арифметические инструкции в NASM.