

IRIS: A Portable Runtime System Exploiting Multiple Heterogeneous Programming Systems

Jungwon Kim, Seyong Lee, Beau Johnston, and Jeffrey S. Vetter

Oak Ridge National Laboratory

20 September 2021 @ IEEE HPEC '21

No De Facto Standard for Heterogeneous Programming

ORNL Experimental Computing Laboratory (ExCL) systems*

Systems	Snapdragon	Jetson	Zynq	DGX	Osv	vald	Summit	Fron	tier
CPU	ARM	ARM	ARM	1 1 1	1	l I	IBM	AIV	1D
GPU	Qualcomm	NVIDIA		NVIDIA	NV	NV	NVIDIA	AMD	AMD
FPGA			Xilinx		Intel	Intel			
DSP	Qualcomm								

We Need Portability in Heterogeneous Programming

Not portable program across different HW configurations

Systems	Snapdragon	Jetson	Zynq	DGX	Oswald	Summit	Frontier
CPU	ARM	ARM	ARM	1 1 1	1 1 1	IBM	AMD
GPU	Qualcomm	NVIDIA		NVIDIA	NV NV	NVIDIA	AMD AMD
FPGA			Xilinx		Intel Intel		
DSP	Qualcomm						

Orchestrating Multiple Programming Systems

• The IRIS Architecture

Compilers

- High level application ->
 IRIS unified host code + native kernels
- Dynamic Platform Loader
 - Automatically discover all available accelerators and their programming systems
- Task Scheduler
 - Task: memory copy + kernel launch
 - DAG-style tasks graph across multiple devices
 - Device Selection Policies
- Shared Virtual Device Memory
 - An Illusion of single logical device memory across all physical device memories
 - Multiple local copies on multiple device memories (relaxed consistency model)

Unified Host + Multiple Native Kernels + Shared Virtual Device Memory = **Portable Tasks & Flexible Scheduling**

A task can be scheduled and run on any device. An IRIS application is portable across different heterogeneous systems.

Evaluation

Kernel Launch Overhead

LULESH (a) Snapdragon (b) AMD (c) Summit 8.0 8.0 Speedup 0.4 0.4 0.2 0.2 0.2 OpenCL IRIS HIP IRIS CUDA IRIS

Systems	Snapdragon	AMD	Summit	
СРИ	Qualcomm	AMD	IBM	
	OpenMP	OpenMP	OpenMP	
GPU	Qualcomm	AMD	NVIDIA	
	OpenCL	HIP	CUDA	
DSP	Qualcomm Hexagon			

Recap

Situation

Task

Activity

No de facto standard for heterogeneous programming

Achieving portability in heterogeneous programming

We introduce a new portable runtime system, IRIS

- Orchestrating multiple programming systems (CUDA, Hexagon, HIP, Level Zero, OpenCL, OpenMP)
- Unified Host + Multiple Native Kernels + Shared Virtual Device Memory → Portable Tasks & Flexible Scheduling

Result

IRIS achieves portability, programmability, and performance

IRIS will be freely available soon at

https://github.com/ORNL/iris

Acknowledgments

- This research used resources of the Experimental Computing Laboratory and the Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory, which are supported by the US Department of Energy's Office of Science of under contract no. DE-AC05-00OR22725.
- This research was supported by (1) the Defense Advanced Research Projects Agency's Microsystems Technology Office, Domain-Specific System-on-Chip Program and (2) the US Department of Defense, Brisbane: Productive Programming Systems in the Era of Extremely Heterogeneous and Ephemeral Computer Architectures.
- This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (https://energy.gov/downloads/doe-public-access-plan).

