1001ICT Introduction To Programming 1 2013-2 Laboratory 7

School of Information and Communication Technology Griffith University

September 4, 2013

When	Teaching week 8
Goals	In this laboratory you will write programs with loops, type casts,
	and methods.
Marks	5
Robots	Cyclops-NXT
Props	Bollard
Track	WhiteBlack Track

1 Preparation

Before your lab class:

- Print these lab notes. You need to refer to them a lot before the lab class and during it.
- Read up to section 17 of the lecture notes.
- Browse the console and nxt environment documentation available at http://www.ict.griffith.edu.au/arock/itp/students/mash/.
- You can start work before your lab class. If you can't write the complete programs, you could at least create the program files, with header comments, imports, and main method.

2 Pre-laboratory questions (0.5 marks)

Answer the following questions in the space provided, before your laboratory class.

1.	(a)	How many motors does the Cyclops robot have?				
	(b)	What do you need to do to make this robot move forward in a straight line?				
	(c)	What do you need to do to make this robot turn?				
2.	(a)	What method returns a random value?				
	(b)	What type does it return?				

- (d) To force a narrowing conversion explicitly, do you use coercion or casting?
- 3. If a method is a function, what kind of statement *must* it contain?

3 Activities

All programs must:

- have header comments showing the name of the file, the author's name, and the purpose of the program;
- be written with at least a main method; and
- use constants for motor and sensor ports;
- be neatly indented; and
- use either style of bracing, being consistent throughout the program.

3.1 MaSH nxt program 1 (1.5 marks)

- Write a program that drives the robot forward on the track. The robot should stop when *either* the robot runs into an obstacle (the bollard) or drives on to the dark area.
- Hint: You can't use waitForDarker and waitForPush at the same time. You will have to write your own loop that waits for either change.

3.2 MaSH console program 1 (1.5 marks)

- The function random() in all environments returns a number x such that $0.0 \le x < 1.0$.
- This function uses that to return a random integer i such that $a \leq i \leq b$.

```
// iRandom(a, b) returns a random integer between and inclusive of a and b.
// precondition: a < b
int iRandom(int a, int b) {
   return (int) (random() * (b - a + 1) + a);
}</pre>
```

• Write a program that includes this function and uses it to simulate 100 rolls of a 6-sided die. Like this

```
$ mash Die
mashc Die.mash
javac Die.java
java Die
6 3 1 4 4 6 3 1 1 5 1 5 6 2 5 4 6 2 5 4 2 6 3 4 6 6 5 4 6 5 4 6 5 5
4 4 1 2 4 4 5 6 1 1 2 6 1 5 5 1 5 5 1 2 3 5 2 3 2 2 4 4 6 3 6 4 6 3
4 1 4 1 1 4 2 6 2 1 2 6 6 5 4 5 3 4 1 4 1 5 6 2 1 2 4 5 2 6 1 3
$
```

3.3 MaSH nxt program 2 (1.5 marks)

- Write a program that makes the robot keep moving, backing off and turning away from obstacles as in this movie.
- Note that the amount of time the robot reverses from obstacles must be random, as must the amount of time it turns. (Reuse function iRandom(int, int))

3.4 MaSH console program 2 (no marks, just kudos)

- Write function that computes the *integer binary logarithm* of a positive whole number.
- The integer binary logarithm of a positive integral number may variously be defined as:
 - the position of the most significant (left-most) bit equal to 1 in the binary representation of the number;
 - the largest n such that 2^n is not bigger than the number;
 - How many times you need to divide the number by 2 to get 1.

3.5 MaSH console program 3 (no marks, just kudos)

- Write a program that tests how fair your die function is, by running it many (millions!) of times and printing the percentage of times each number results.
- This will be easier with arrays, but possible without.

3.6 MaSH console program 4 (no marks, just kudos)

• Write a program that reads an integer n, and keeps flipping a simulated coin until it flips n heads in a row, then prints the total number of flips it required.

4 After the Laboratory

• Organize the work you have done into folders on your network drive.