10

1 1

Fecha entrega: 05.09.2020 carné 19249

Resolución de la tabla en Logic Friday y simplificación de las ecuaciones

Sa	Sb	Α	В	=>	Sf_a	Sf_b	Υ	Entered by truthtable:
X	1	Х	1		1			Sf_a = Sa' Sb A' B + Sa' Sb A B + Sa Sb' A B;
0	0	1	X			1		Sf_b = Sa' Sb' A B' + Sa' Sb' A B;
1	X	X	1		1		1	Y = Sa Sb' A B;
								Minimized: Sf_a = Sb B + Sa B; Sf_b = Sa' Sb' A; Y = Sa B;

Tabla original

Sa	Sb	Α	В	=>	Sf_a	Sf_b	Υ
0	0	1	0			1	
0	0	1	1			1	
0	1	0	1		1		
0	1	1	1		1		
1	0	0	1		X	X	X
1	0	1	0		X	X	X
1	0	1	1		1		1
1	1	0	0		X	X	X
1	1	0	1		X	X	X
1	1	1	0		X	X	X
1	1	1	1		X	X	X

Ejercicio 02.

Ejercicio 03.

1. Diagrama de transición de estados

2. Caja negra

3. Tablas de transiciones

3.	Tabla	Q.	tra	nie		no.s	< 2.	0 6	A: C					1
	C	· Yer	1	da	1	1		hpu		60	Ne	,		100
			5	1.00				P	1		S		-	
			E o	T				P		1	₹Λ		-	1
			€0					F			Ε٦		7	1
			EA					8			E2			
			11					F			ŧο			
			10					8			€3		-	
			Ez					P			E1			
			13					P			Eu			
			Es	20				Þ			E2			
			1	4				P			Es.	-		
			E	1				P			T3	-	Ē.,	
			Į.	5-	4			P			E6	-	8	
			E	5	_			P			E4	-	-	
			E	0	4		_	7		-	€>	-		
			Ŧ	6	-			P			£s	-		
1 5.	_		Ł	ā_	_		8	1			E.o.	-		
_		-	E	4_		_	_	P		C Cons	E6		- 201	1
	ŧ	ncec	line	(1
		Ł			0	0	0			-	*		1	1
		ŧ	100		0	D	1	-	-	-	1	-	-	
		ŧ	2		0	1	0			-	-	1-	1	
			2,		0	4	4			1		-	1	
		-E			4	0.	D					-	1	
		E			1	b	1				1		1	
-		1	-	_	î	1	1						1	
					ř.	4	1							
							la.						1	
	V	= 1		P.	- 7									

4. Tuble de to	ansiciones	codifi	coc	10	-	+-		
Current St		Impat		Ne	et	-	-	
S				3'				
000		1	Ð	t)	4			
0.00		0	1	4	4			10
00	1 1	1	0	1	0			1
000		0	b	0	0		-	
011	W. 1.	4	0	i	1	Ŀ		1
011		Ü	0	0	1			
0.1	1	1	1	0	0			
0 1	1	0	0	1	0			
10	0	1	1	0	1			
10	0	0	D					
10	1	A	d		1200			
1 0		0	1					
- l - l - l	10	1	1	- 3	1			
	0	0	1	0	1		-7	
	1	1	D.		0		-	
1 1 1		0	-1	_1	0			
Table d	salida	2						
Canen	t State	2		bui	put			1
5 - 3			Y	63_	YED_	Tr	E	
	0 0	-	0	-	D	T	}	-
0 0	1 0		-0		P	/	1	-
0	0 1		-0		1		1	-
J. J.	1 1		C)	1	-	0	-
P	0 0		1		1	-	0	-
	0 1		1	-	1		1	1-
1	1 0		1		()	1	-
	1 4		1		E		0	1

4. Ecuaciones minimizadas y tablas resueltas en Logic Friday

```
Minimized:

Sf_0 = S0' S1 S2 P + S0' S1' S2' P' + S0 S2 P' + S0 S1' P + S0 S1 S2';

Sf_1 = S1 S2 P' + S1' S2 P + S1' S2' P' + S1 S2' P;

Sf_2 = S2';
```

Tabla minimizada

S0	S1	S2	Р	=>	Sf_0	Sf_1	Sf_2
0	1	1	1		1		
0	0	0	0		1		
1	X	1	0		1		
1	0	X	1		1		
X	1	1	0			1	
X	0	1	1			1	
1	1	0	X		1		
X	0	0	0			1	
X	1	0	1			1	
X	X	0	X				1

Tabla original

S0	S1	S2	Р	=>	Sf_0	Sf_1	Sf_2
0	0	0	0		1	1	1
0	0	0	1				1
0	0	1	1			1	
0	1	0	0				1
0	1	0	1			1	1
0	1	1	0			1	
0	1	1	1		1		
1	0	0	0			1	1
1	0	0	1		1		1
1	0	1	0		1		
1	0	1	1		1	1	
1	1	0	0		1		1
1	1	0	1		1	1	1
1	1	1	0		1	1	

Tabla de salidas simplificada

S0	S1	S2	=>	Y[0]	Y[1]	Y[2]
0	1	X			1	
X	1	0				1
X	0	1				1
1	0	X			1	
1	X	X		1		

Tabla de salidas originales

S0	S1	S2	=>	Y[0]	Y[1]	Y[2]
0	0	1				1
0	1	0			1	1
0	1	1			1	
1	0	0		1	1	
1	0	1		1	1	1
1	1	0		1		1
1	1	1		1		

Ecuaciones de lógica de salidas simplificada

```
Minimized:

Y[0] = S0;

Y[1] = S0' S1 + S0 S1';

Y[2] = S1 S2' + S1' S2;
```

- Implementación en CircuitVerse

Ejercicio 04

Non-blocking assignment (<=)

Asigna valores registrando tipos de datos, pero en el proceso no impide que otros assign se lleven a cabo, inicia en un tiempo dado y actualiza sus valores al final de ese tiempo. A diferencia de los **blocking assignments** (=) que no permiten que otras instrucciones se ejecuten al mismo tiempo hasta que se haya dado el valor al assign, no lo interrumpe otra instrucción.

Cuando utilizarlos

<u>Blocking:</u> cuando se hace un bloque always; para modelar lógica combinacional <u>Non-blocking:</u> para secuencia lógica; latches; en un bloque always que tenga secuenciales y combinacionales

Ejemplo de non-blocking para modelar secuencia lógica síncrona:

```
always\_ff \ @(posedge \ clk) \\ begin \\ n1 <= d; // \ nonblocking \\ q <= n1; // \ nonblocking \\ end
```

Ejemplo de blocking para lógica combinacional simple:

```
assign y = s ? d1 : d0;
```

Ejercicio 06

```
//Primero se modula el ff_D con asynchronus reset
module ff_Dl(input wire D, clk, reset, output reg Q);
always @ (posedge clk or posedge reset)
begin
    if (reset == 1'b1) begin;
        | Q <= 1'b1;
        end
        else begin
        | Q <= D;
        end
endmodule

// Ejercicio01
module FSM1(
    input wire clk, inA, inB, reset, output wire out1);

wire D0, D1; //son los cables que van a entrar como D a mis ff_D
wire Q0, Q1; //son los que salen de mis ff_D

assign D0 = (Q1 & inB) | (Q0 & inB);
assign D1 = (~D0 & ~D1 & inA);

//llamo los dos ff_D que necesito
ff_D1 al(D0, clk, reset, Q0);
ff_D1 a2(D1, clk, reset, Q1);

//ahora ya utilizo estos nuevos cables
assign Y = D0 & inB;

endmodule</pre>
```

```
module testbench();
   reg clk, reset, A, B;
   wire Y;
   always
       #5 clk = ~clk;
   FSM1 E01(clk, A, B, reset, Y);
    initial begin
       $display("\n");
       $display("clk reset A B | Y");
       $display("----");
       $monitor("%b %b %b %b %b", clk, reset, A, B, Y);
           //entradas comienzan en 0
           clk = 0; reset = 0; A = 0; B = 0;
       #1 reset = 1;
       #1 reset = 0;
       #10 A = 1; B = 0;
       #10 A = 0; B = 1;
       #10 A = 1; B = 1;
       #48 $finish;
    //GTK Wave
    initial begin
       $dumpfile("FSM06_tb.vcd"); //nombre del archivo
       $dumpvars(0, testbench); //nombre del modulo
endmodule
```

```
//Ejercicio03
module FSM2 (
   input wire clk, P, reset, output Y0, Y1, Y2);
   //declaro los cables que van a salir de mis ff D
   wire Q0, Q1, Q2;
   wire D0, D1, D2;
   //ecuaciones de los estados futuros
   assign D0 = (~D0 & D1 & D2 & P) | (~D0 & ~D1 & ~D2 & ~P)
    | (D0 & D2 & ~P) | (D0 & ~D1 & P) | (D0 & D1 & ~D2);
   assign D1 = (D1 & D2 & ~P) | (~D1 & D2 & P) | (~D1 & ~D2 & ~P) | (D1 & ~D
   assign D2 = ~D2;
   ff_D1 b1(D2, clk, reset, Q2);
   ff D1 b2(D1, clk, reset, Q1);
   ff_D1 b3(D0, clk, reset, Q0);
   //ecuacion de las salidas
   assign Y0 = Q0;
   assign Y1 = (\sim Q0 \& Q1) | (Q0 \& \sim Q1);
   assign Y2 = (Q1 & ~Q2) | (~Q1 & Q2);
endmodule
```

```
reg P;
   wire Y0, Y1, Y2;
   FSM2 E03(clk, P, reset, Y0, Y1, Y2);
   initial begin
       $display("\n");
       $display("clk reset P | Y0 Y1 Y2");
       $display("----");
       $monitor("%b %b %b | %b %b %b", clk, reset, P, Y0, Y1, Y2);
           //entradas comienzan en 0
           clk = 0; reset = 0; P = 0;
       #1 reset = 1;
       #1 reset = 0;
       #10 P = 1;
       #10 P = 0;
   end
   initial
       #48 $finish;
   //GTK Wave
   initial begin
       $dumpfile("FSM06_tb.vcd"); //nombre del archivo
       $dumpvars(0, testbench); //nombre del modulo
endmodule
```

Ejercicio 05

```
//Jonathan Pu c. 19249
     //Ejercicio05 FF D con R asinc. y S sinc.
     module FF_D (input [0:3]D, CLK, set, reset, output [0:3]Q);
     always @ (posedge CLK or posedge reset)
         if reset == 1'b 1 begin
             [0:3]Q <= 4'b 0000;
11
12
         end else begin [0:3]Q <= 4'b 0000;
13
             [0:3]Q \leftarrow [0:3]D;
14
         if reset == 0;
15
16
         if set ==1'b begin
17
             Q<= 4'b 1111;
18
         else
19
              [0:3]Q \leftarrow [0:3]D;
20
21
22
     endmodule
```

REPOSITORIO

https://github.com/pu19249/Repositorio-D1-19249.git