Лекция А9 КС-языки: лемма о накачке, операции на них

Бадим Пузаренко

Лемма о накачке

Операции на КС-языках

Лекция А9

КС-языки: лемма о накачке, операции на них

Вадим Пузаренко

30 октября 2023 г.

Высота дерева разбора

Лекция А9 КС-языки: лемма о накачке, операции на них

Вадим Пузаренко

Лемма о накачке

Операции на

Предложение А9.1.

Пусть дано дерево разбора, соответствующее НФХ-грамматике $\mathfrak{G}=(V,\Sigma,P,S)$, и пусть кроной дерева является терминальная цепочка α . Если n — наибольшая длина пути от корня к листьям, то $\mathrm{lh}(\alpha)\leqslant 2^{n-1}$.

Высота дерева разбора

Лекция А9 КС-языки: лемма о накачке, операции на них

Вадим Пузаренко

Лемма о накачке

Операции на КС-языках

Предложение А9.1.

Пусть дано дерево разбора, соответствующее НФХ-грамматике $\mathfrak{G}=(V,\Sigma,P,S)$, и пусть кроной дерева является терминальная цепочка α . Если n — наибольшая длина пути от корня к листьям, то $\mathrm{lh}(\alpha)\leqslant 2^{n-1}$.

Доказательство.

Простой индукцией по п.

Базис. Дерево с максимальной длиной пути 1 состоит из корня и листа, отмеченного терминалом. Цепочка α — терминал и $\mathrm{lh}(\alpha)=1=2^0=2^{1-1}.$

Индукция. Предположим, что самый длинный путь имеет длину n>1. Тогда корень дерева имеет продукцию вида $A\longrightarrow BC$. Все пути в поддеревьях с корнями, отмеченными B и C, имеют длину $\leqslant n-1$, поскольку в путях исключено ребро от корня A к сыну (B или C). По предположению индукции, эти поддеревья имеют кроны $\leqslant 2^{n-2}$. Таким образом, крона всего дерева имеет длину $\leqslant 2^{n-2}+2^{n-2}=2^{n-1}$.

Теорема А9.1.

Пусть L — КС-язык; тогда существует $n_0=n_0(L)\geqslant 1$ такое, что выполняется следующее: если $\zeta\in L$ таково, что $\mathrm{lh}(\zeta)\geqslant n_0$, то оно представляет собой $\zeta=\alpha\hat{}\beta\hat{}\gamma\hat{}\delta\hat{}\eta$, удовлетворяющее следующим условиям.

- **③** $\alpha \hat{\beta}' \hat{\gamma} \delta' \hat{\eta} \in L$ для всех $l \geqslant 0$.

Лемма о накачке

Операции на КС-языках

Теорема А9.1.

Пусть L- КС-язык; тогда существует $n_0=n_0(L)\geqslant 1$ такое, что выполняется следующее: если $\zeta\in L$ таково, что $\mathrm{lh}(\zeta)\geqslant n_0$, то оно представляет собой $\zeta=\alpha\hat{}\beta\hat{}\gamma\hat{}\delta\hat{}\eta$, удовлетворяющее следующим условиям.

- \circ $\alpha \hat{\beta}^{I} \hat{\gamma} \hat{\delta}^{I} \hat{\eta} \in L$ для всех $I \geqslant 0$.

Доказательство.

Если $L\subseteq\{\varepsilon\}$, то слово $\zeta\in L$ с $\mathrm{lh}(\zeta)>0$ отсутствует, поэтому можно считать, что $L\setminus\{\varepsilon\}\neq\varnothing$.

По теореме A8.9, существует HФX-грамматика $\mathfrak{G}=(V,\Sigma,P,S)$, порождающая язык $L\setminus\{\varepsilon\}$. Положим m=|V| и $n_0=2^m$.

Лемма о накачке

Лекция А9 КС-языки: лемма о накачке, операции на них

Вадим Пузаренко

Лемма о накачке

Операции н

Доказательство (продолжение).

Предположим, что $\zeta \in L$ имеет длину $\geqslant n_0$. По предложению A9.1, любое дерево разбора, в котором наибольшая длина пути $\leqslant m$, должно иметь крону $\leqslant 2^{m-1} = \frac{n_0}{2}$. Такое дерево разбора не может иметь крону ζ , поскольку $\mathrm{lh}(\zeta) \geqslant n_0 > \frac{n_0}{2}$. Тем самым, любое дерево T разбора с кроной ζ имеет путь длиной $k+1\geqslant m+1$. Пусть $S=A_0,\,A_1,\,\ldots,\,A_k$ — вершины данного пути, отмеченные переменными. Так как m=|V|, найдутся $k-m\leqslant i < j\leqslant k$ такие, что $A_i=A_j$. Определим представление ζ следующим образом.

- ullet γ крона дерева, корень которого помечен A_j .
- ullet $eta^\gamma\gamma^\delta$ крона дерева, корень которого помечен A_i .
- ullet ζ крона дерева, корень которого помечен S.

Докажем, что данное представление удовлетворяет всем требуемым условиям.

<u>Лемма о</u> накачке

Лекция А9 КС-языки: лемма о накачке, операции на них

Вадим Пузаренко

Лемма о накачке

Операции на КС-языках

Доказательство (окончание).

- 1) Действительно, $k-i\leqslant m$, поэтому самый длинный путь в поддереве с корнем A_i не превосходит m+1, а по предложению A9.1, длина кроны $\ln(\beta \hat{\ } \gamma \hat{\ } \delta) \leqslant 2^m = n_0$.
- 2) Дерево с корнем, помеченным A_i , содержит в качестве собственного поддерева дерево с корнем, помеченным A_j ; поэтому $\beta \hat{\ }\delta \neq \varepsilon.$
- **3)** При l=1 случай очевиден.

Пусть I=0; тогда достаточно рассмотреть дерево $T_{T(A_j)}^{T(A_i)}$.

Индукцией по $l\geqslant 1$ докажем, что $\alpha \hat{\ } \beta^{l} \hat{\ } \gamma \hat{\ } \delta^{l} \eta \in L.$ О базе сказано выше. Пусть T_0 — дерево разбора, кроной которого является $\alpha \hat{\ } \beta^{l} \hat{\ } \gamma \hat{\ } \delta^{l} \hat{\ } \eta$. Пусть также $A(=A_i)$ — вершина, кроной поддерева $T_0(A)$ для которой является цепочка γ . Тогда кроной дерева $T_0^{T_0(A)}$ будем цепочка $\alpha \hat{\ } \beta^{l+1} \hat{\ } \gamma \hat{\ } \delta^{l+1} \hat{\ } \eta$.

Лемма о накачке

Лекция А9 КС-языки: лемма о накачке, операции на них

Вадим Пузаренко

Лемма о накачке

Операции на КС-языках

- Мы выбираем язык L, желая доказать, что он не контекстно-свободный.
- ullet Наш "противник" выбирает заранее неизвестное $n_0\geqslant 1$, поэтому мы должны рассчитывать на любое возможное значение.
- ullet Мы выбираем слово ζ с $\mathrm{lh}(\zeta)\geqslant n_0$.
- "Противник" предоставляет разбиение $\zeta=\alpha\hat{\ }\beta\hat{\ }\gamma\hat{\ }\delta\hat{\ }\eta$, причём $\beta\hat{\ }\delta\neq\varepsilon$ и $\mathrm{lh}(\beta\hat{\ }\gamma\hat{\ }\delta)\leqslant \emph{n}_{0}$.
- ullet Мы "выигрываем", если можем выбрать $I\in\omega$ так, что $\alpha\hat{\ } \beta^I\hat{\ } \gamma\hat{\ } \delta^I\hat{\ } \eta
 ot\in L.$

Лемма о накачке

Лекция А9 КС-языки: лемма о накачке, операции на них

Вадим Пузаренко

Лемма о накачке

Операции на КС-языках

Пример А9.1.

Пусть $L=\{0^n1^n2^n|n\in\omega\}$. Допустим, что язык L контекстно-свободный. Тогда существует n_0 из леммы о накачке. Выберем $\zeta=0^{n_0}1^{n_0}2^{n_0}$. Пусть дано представление $\zeta=\alpha\hat{\ }\beta\hat{\ }\gamma\hat{\ }\delta\hat{\ }\eta$, где $\beta\hat{\ }\delta\neq\varepsilon$ и $\mathrm{lh}(\beta\hat{\ }\gamma\hat{\ }\delta)\leqslant n_0$. Так как $\mathrm{lh}(01^{n_0}2)=n_0+2>n_0$, цепочка $\xi=\beta\hat{\ }\gamma\hat{\ }\delta$ не содержит нулей или двоек.

- ξ не содержит нулей; тогда $\alpha \hat{\ } \gamma \hat{\ } \eta \not\in L$, поскольку количество нулей в нём равняется n_0 , а суммарное количество единиц и двоек $<2n_0$.
- ② ξ не содержит двоек; тогда $\alpha \hat{\ } \gamma \hat{\ } \eta \not\in L$, поскольку количество двоек в нём равняется n_0 , а суммарное количество единиц и нулей $< 2n_0$.

<u>Лем</u>ма о накачке

Лекция А9 КС-языки: лемма о накачке, операции на них

Вадим Пузаренко

Лемма о накачке

Операции н

Пример А9.2.

Пусть $L=\{0^i1^j2^i3^j|i,j\in\omega\}$. Допустим, что язык L контекстно-свободный. Тогда существует n_0 из леммы о накачке. Выберем $\zeta=0^{n_0}1^{n_0}2^{n_0}3^{n_0}$. Пусть дано представление $\zeta=\alpha^{\hat{}}\beta^{\hat{}}\gamma^{\hat{}}\delta^{\hat{}}\eta$, где $\beta^{\hat{}}\delta\neq\varepsilon$ и $\mathrm{lh}(\beta^{\hat{}}\gamma^{\hat{}}\delta)\leqslant n_0$. Как и выше, доказывается, что $\xi=\beta^{\hat{}}\gamma^{\hat{}}\delta$ не может содержать одновременно представителей трёх символов.

- ξ не содержит нулей и троек; тогда $\alpha \hat{\ } \gamma \hat{\ } \eta \not\in L$, поскольку количество нулей и троек в нём равняется n_0 , а суммарное количество единиц и двоек $<2n_0$.
- ② ξ не содержит двоек и троек; тогда $\alpha \hat{\ } \gamma \hat{\ } \eta \not\in L$, поскольку количество двоек и троек в нём равняется n_0 , а суммарное количество единиц и нулей $< 2n_0$.
- ullet не содержит нулей и единиц; тогда $\alpha\hat{\ }\gamma\hat{\ }\eta\not\in L$, поскольку количество нулей и единиц в нём равняется n_0 , а суммарное количество двоек и троек $<2n_0$.

<u>Лем</u>ма о накачке

Лекция А9 КС-языки: лемма о накачке, операции на них

Вадим Пузаренко

Лемма о накачке

Операции на КС-языках

Пример А9.3.

Пусть $L=\{\alpha ^{\smallfrown}\alpha | \alpha \in \{0;1\}^*\}$. Допустим, что L контекстно-свободный. Тогда существует n_0 из леммы о накачке. Выберем $\zeta=0^{n_0}1^{n_0}0^{n_0}1^{n_0}$. Пусть дано представление $\zeta=\alpha ^{\backprime}\beta ^{\backprime}\gamma ^{\backprime}\delta ^{\backprime}\eta$, где $\beta ^{\backprime}\delta \neq \varepsilon$ и $\mathrm{lh}(\beta ^{\backprime}\gamma ^{\backprime}\delta)\leqslant n_0$. Докажем, что $\alpha ^{\backprime}\gamma ^{\backprime}\eta \not\in L$. Так как $\mathrm{lh}(\beta ^{\backprime}\gamma ^{\backprime}\delta)\leqslant n_0$, имеем $\mathrm{lh}(\alpha ^{\backprime}\gamma ^{\backprime}\eta)\geqslant 3n_0$. Таким образом, если $\alpha ^{\backprime}\gamma ^{\backprime}\eta=\xi ^{\backprime}\xi$, то $\mathrm{lh}(\xi)\geqslant \frac{3n_0}{2}$. Возможны несколько случаев.

- Предположим, что $\beta \hat{\ } \gamma \hat{\ } \delta$ находится в пределах первых групп нулей и единиц (скажем, $\mathrm{lh}(\beta \hat{\ } \delta) = k > 0$). Тогда $\mathrm{lh}(\alpha \hat{\ } \gamma \hat{\ } \eta) = 4n_0 k$ и, следовательно, начало длины $2n_0 \frac{k}{2}$ заканчивается нулем, а само слово заканчивается единицей.
- Предположим, что $eta^{\gamma}\gamma^{\delta}$ находится в пределах последних групп нулей и единиц (скажем, $\ln(eta^{\delta}\delta)=k>0$). Тогда $\ln(\alpha^{\gamma}\gamma^{\eta})=4n_0-k$ и, следовательно, начало длины $2n_0-\frac{k}{2}$ начинается нулем, а конец слова той же длины начинается единицей.

Лемма о накачке

Операции на КС-языках

Пример А9.3 (окончание).

• Предположим, что $\beta \hat{\ } \gamma \hat{\ } \delta$ находится в пределах второй и третьей групп (скажем, $\beta \hat{\ } \delta = 1^{k_0}0^{k_1}$). Тогда $\alpha \hat{\ } \gamma \hat{\ } \eta = 0^{n_0}1^{n_0-k_0}0^{n_0-k_1}1^{n_0}$ и, следовательно, начало длины $2n_0 - \frac{k_0+k_1}{2}$ имеет n_0 нулей, а конец слова той же длины — $\leqslant n_0 - k_1 < n_0$ нулей.

Лекция А9 КС-языки: лемма о накачке, операции на них

Вадим Пузаренко

Лемма о накачке

Операции на

Замечание А9.1.

Хотя в общем случае леммы о накачке для КС- и регулярных языков содержат только необходимые условия, для однобуквенных алфавитов являются и достаточными.

Лекция А9 КС-языки: лемма о накачке, операции на них

Вадим Пузаренко

Лемма о накачке

Операции на

Замечание А9.1.

Хотя в общем случае леммы о накачке для КС- и регулярных языков содержат только необходимые условия, для однобуквенных алфавитов являются и достаточными.

Теорема А9.2.

Любой контекстно-свободный язык $L \subseteq \{0\}^*$ является регулярным.

Лекция А9 КС-языки: лемма о накачке, операции на них

Вадим Пузаренко

Лемма о накачке

Операции на КС-данках

Замечание А9.1.

Хотя в общем случае леммы о накачке для КС- и регулярных языков содержат только необходимые условия, для однобуквенных алфавитов являются и достаточными.

Теорема А9.2.

Любой контекстно-свободный язык $L \subseteq \{0\}^*$ является регулярным.

Доказательство.

Без ограничения общности можно считать, что L — бесконечный язык. По теореме A9.1 о накачке, существует $n_0 \geqslant 1$, для которого выполняется следующее:

Лекция А9 КС-языки: лемма о накачке, операции на них

Вадим Пузаренко

Лемма о накачке

Операции на

'Доказательство (продолжение).

- lacktriangle для всех $\zeta \in L$ таких, что $\mathrm{lh}(\zeta) \geqslant n_0$,
- $m{@}$ найдутся lpha, eta, γ , δ , η (\in {0}*), удовлетворяющие следующим условиям:
 - $\zeta = \alpha^{\hat{}} \beta^{\hat{}} \gamma^{\hat{}} \delta^{\hat{}} \eta$,
 - $\beta \hat{\delta} \neq \varepsilon$,
 - $lh(\beta^{\hat{}}\gamma^{\hat{}}\delta) \leqslant n_0$;
- ullet такие что $lpha\hat{eta}^l\hat{\gamma}\hat{\gamma}^l\hat{\gamma}_l\in L$ для всех $l\in\omega$.

Лекция А9 КС-языки: лемма о накачке, операции на них

Вадим Пузаренко

Лемма о накачке

Операции на КС-языках

Доказательство (продолжение).

- lacktriangle для всех $\zeta \in L$ таких, что $\mathrm{lh}(\zeta) \geqslant n_0$,
- f a найдутся lpha, eta, γ , δ , η (\in {0}*), удовлетворяющие следующим условиям:
 - $\zeta = \alpha^{\hat{}} \beta^{\hat{}} \gamma^{\hat{}} \delta^{\hat{}} \eta$,
 - $\beta \hat{\delta} \neq \varepsilon$,
 - $lh(\beta^{\hat{}}\gamma^{\hat{}}\delta) \leqslant n_0$;
- **3** такие что $\alpha \hat{\beta}^I \hat{\gamma} \hat{\delta}^I \hat{\eta} \in L$ для всех $I \in \omega$.

Положим

$$L_0 = \{\zeta \in L \mid \mathrm{lh}(\zeta) < n_0\}, \ L_1 = \{\zeta \in L \mid \mathrm{lh}(\zeta) \geqslant n_0\};$$
тогда $L = L_0 \uplus L_1.$

Лекция А9 КС-языки: лемма о накачке, операции на них

Вадим Пузаренко

Лемма о накачке

Операции н

Доказательство (продолжение).

- lacksquare для всех $\zeta\in L$ таких, что $\mathrm{lh}(\zeta)\geqslant n_0$,
- ② найдутся α , β , γ , δ , η (\in {0}*), удовлетворяющие следующим условиям:
 - $\zeta = \alpha^{\hat{}} \beta^{\hat{}} \gamma^{\hat{}} \delta^{\hat{}} \eta$,
 - $\beta \hat{\delta} \neq \varepsilon$,
 - $lh(\beta^{\hat{}}\gamma^{\hat{}}\delta) \leqslant n_0$;
- ullet такие что $lpha\hat{eta}^I\hat{\gamma}\hat{\gamma}^I\hat{\gamma}\in L$ для всех $I\in\omega$.

Положим

$$L_0 = \{\zeta \in L \mid \mathrm{lh}(\zeta) < n_0\}, \ L_1 = \{\zeta \in L \mid \mathrm{lh}(\zeta) \geqslant n_0\};$$
 тогда $L = L_0 \uplus L_1.$

Так как любой конечный язык является регулярным (см. следствие A1.2), L_0 является таковым. По теореме A4.2, достаточно показать, что L_1 представляется в виде объединения конечного числа языков, задаваемых арифметическими прогрессиями.

Доказательство (продолжение).

Пусть $\zeta \in L_1$; тогда найдутся слова α , β , γ , δ , η (\in {0}*), удовлетворяющие следующим условиям:

- $lack lpha \hat{eta}^{l+1}\hat{\gamma}^{\delta l+1}\eta = 0^{\mathrm{lh}(\zeta)+l\cdot\mathrm{lh}(eta^{\delta})}\in \mathcal{L}_1$ для всех $l\in\omega$.

Лекция А9 КС-языки: пемма о накачке. операции на них

Вадим Пузаренко

Леммао

Пусть $\zeta \in L_1$; тогда найдутся слова α , β , γ , δ , η ($\in \{0\}^*$), удовлетворяющие следующим условиям:

- \bullet lh(β ^ γ ^ δ) $\leq n_0$;
- \bullet $\beta \hat{\delta} \neq \varepsilon$:
- \circ $\alpha \hat{\beta}^{l+1} \hat{\gamma} \hat{\delta}^{l+1} \hat{\eta} = 0^{\ln(\zeta) + l \cdot \ln(\beta \hat{\delta})} \in L_1$ для всех $l \in \omega$.

Положим $d = \ln(\beta^{\hat{}}\gamma)$ и $L_{\zeta,d} = \{0^{\ln(\zeta) + d \cdot I} \mid I \in \omega\}$. Заметим, что $L_{\zeta,d}\subseteq L_1$ и для каждого $\zeta\in L_1$ существует d>0 такое, что язык $L_{C,d}$ определён и не пуст.

Если же $L_{\mathcal{C},d}$ не определён к этому моменту, положим $L_{\mathcal{C},d}=\varnothing$ (здесь $\zeta \in L_1$ и $0 < d \leqslant n_0$). Тем самым, $L_{\zeta,d} \subseteq L_1$ для всех $\zeta \in L_1$ и $0 < d \leqslant n_0$.

Лекция А9 КС-языки: лемма о накачке, операции на них

Вадим Пузаренко

Лемма о накачке

Операции на КС-языках Доказательство (продолжение).

Докажем, что
$$L_1 = \bigcup\limits_{\zeta \in L_1, \ 0 < d \leqslant n_0} L_{\zeta,d}.$$

Лекция А9 КС-языки: лемма о накачке, операции на них

> Вадим Пузаренко

Лемма о накачке

Операции на КС-языках Доказательство (продолжение).

Докажем, что
$$L_1 = \bigcup_{\zeta \in L_1, \, 0 < d \leqslant n_0} L_{\zeta,d}$$
.

(\subseteq) Пусть $\phi \in L_1$; тогда из вышесказанного следует существование $d_0 > 0$ ($d_0 \leqslant n_0$) такого, что $0^{\ln(\phi) + d_0 \cdot l} \in L_1$ для всех $l \in \omega$; в частности, $\phi = 0^{\ln(\phi) + d_0 \cdot 0} \in L_1$; таким образом, $\phi \in L_{\phi,d_0} \subseteq \bigcup_{\zeta \in L_1, \, 0 < d \leqslant n_0} L_{\zeta,d}$.

Лекция А9 КС-языки: лемма о накачке. операции на них

Вадим Пузаренко

Леммао накачке

Доказательство (продолжение).

Докажем, что
$$L_1 = \bigcup_{\zeta \in L_1, \ 0 < d \leqslant n_0} L_{\zeta,d}$$
.

- (\subset) Пусть $\phi \in L_1$; тогда из вышесказанного следует существование $d_0>0$ $(d_0\leqslant n_0)$ такого, что $0^{\mathrm{lh}(\phi)+d_0\cdot l}\in L_1$ для всех $I \in \omega$; в частности, $\phi = 0^{\ln(\phi) + d_0 \cdot 0} \in L_1$; таким образом. $\phi \in L_{\phi,d_0} \subseteq \bigcup_{\zeta \in L_1, \ 0 < d \leqslant n_0} L_{\zeta,d}.$
- (\supseteq) Так как $L_{\zeta,d} \subseteq L_1$ для всех $\zeta \in L_1$ и $0 < d \leqslant n_0$, имеем $L_{\zeta,d}\subseteq L_1$ $\zeta \in L_1, 0 < d \leq n_0$

Лекция А9 КС-языки: лемма о накачке, операции на них

Вадим Пузаренко

Лемма о накачке

Операции на КС-языках Доказательство (продолжение).

Докажем, что
$$L_1 = \bigcup_{\zeta \in L_1, \, 0 < d \leqslant n_0} L_{\zeta,d}$$
.

- (\subseteq) Пусть $\phi \in L_1$; тогда из вышесказанного следует существование $d_0 > 0$ ($d_0 \leqslant n_0$) такого, что $0^{\ln(\phi) + d_0 \cdot l} \in L_1$ для всех $l \in \omega$; в частности, $\phi = 0^{\ln(\phi) + d_0 \cdot 0} \in L_1$; таким образом, $\phi \in L_{\phi,d_0} \subseteq \bigcup_{\zeta \in L_1, \ 0 < d \leqslant n_0} L_{\zeta,d}$.
- (\supseteq) Так как $L_{\zeta,d} \subseteq L_1$ для всех $\zeta \in L_1$ и $0 < d \leqslant n_0$, имеем $\bigcup_{\zeta \in L_1, \, 0 < d \leqslant n_0} L_{\zeta,d} \subseteq L_1$.

Положим теперь $S_j^d = \{\zeta \in L_1 \mid \mathrm{lh}(\zeta) \equiv j \pmod{d}, \ L_{\zeta,d} \neq \varnothing \}$, где $0 < d \leqslant n_0$ и $0 \leqslant j < d$. Нетрудно видеть, что выполняется соотношение

$$L_1 = \bigcup_{d=1}^{n_0} \bigcup_{j=0}^{d-1} S_j^d.$$

Лекция А9 КС-языки: лемма о накачке, операции на них

Вадим Пузаренко

Лемма о накачке

Операции на КС-языках Доказательство (продолжение).

Выберем в каждом непустом множестве S_j^d слово μ_j^d наименьшей длины. Так как $\mu_j^d \in S_j^d$, выполняются следующие соотношения: $\mu_j^d \in L_1$, $\mathrm{lh}(\mu_j^d) \equiv j \pmod{d}$ и $L_{\mu_j^d,d} \neq \varnothing$. Докажем теперь, что $L_{\mu_j^d,d} = S_j^d$.

Лекция А9 КС-языки: лемма о накачке. операции на них

Вадим Пузаренко

Леммао

Доказательство (продолжение).

Выберем в каждом непустом множестве S_i^d слово μ_i^d наименьшей длины. Так как $\mu_i^d \in S_i^d$, выполняются следующие соотношения: $\mu_i^d \in \mathcal{L}_1$, $\mathrm{lh}(\mu_i^d) \equiv j \pmod{d}$ и $\mathcal{L}_{\mu_i^d,d}
eq \varnothing$. Докажем теперь, что $L_{\mu_i^d,d} = S_i^d$

 $ig(\subseteqig)$ Пусть $\phi\in L_{\mu_i^d,d}$; тогда $\phi\in L_1$ и $\phi=0^{\mathrm{lh}(\mu_j^d)+d\cdot l_0}$ для подходящего $l_0 \in \omega$; следовательно, $\ln(\phi) \equiv j \pmod{d}$. Остаётся проверить только, что $L_{\phi,d} \neq \varnothing$. В самом деле, если $\psi=0^{\mathrm{lh}(\phi)+d\cdot k}$, где $k\in\omega$, то $\psi=0^{\mathrm{lh}(\mu_j^d)+(b+k)\cdot d}\in L_{\mu_j^d,d}\subseteq L_1$. Таким образом, $\phi \in S_i^d$.

Лекция А9 КС-языки: лемма о накачке, операции на них

Вадим Пузаренко

Лемма о накачке

Операции на КС-языках

Доказательство (продолжение).

Выберем в каждом непустом множестве S_j^d слово μ_j^d наименьшей длины. Так как $\mu_j^d \in S_j^d$, выполняются следующие соотношения: $\mu_j^d \in L_1$, $\mathrm{lh}(\mu_j^d) \equiv j \pmod d$ и $L_{\mu_j^d,d} \neq \varnothing$. Докажем теперь, что $L_{\mu_j^d,d} = S_j^d$.

(\subseteq) Пусть $\phi \in L_{\mu_j^d,d}$; тогда $\phi \in L_1$ и $\phi = 0^{\operatorname{lh}(\mu_j^d) + d \cdot l_0}$ для подходящего $l_0 \in \omega$; следовательно, $\operatorname{lh}(\phi) \equiv j \pmod{d}$. Остаётся проверить только, что $L_{\phi,d} \neq \varnothing$. В самом деле, если $\psi = 0^{\operatorname{lh}(\phi) + d \cdot k}$, где $k \in \omega$, то $\psi = 0^{\operatorname{lh}(\mu_j^d) + (l_0 + k) \cdot d} \in L_{\mu_j^d,d} \subseteq L_1$. Таким образом, $\phi \in S_i^d$.

(\supseteq) Пусть теперь $\phi \in S_j^d$; тогда $\mathrm{lh}(\phi) \equiv j \pmod{d}$ и, следовательно, $\phi = 0^{\mathrm{lh}(\mu_j^d) + l \cdot d}$ для подходящего $l \in \omega$, поскольку μ_j^d имеет наименьшую длину в S_j^d . Таким образом, $\phi \in L_{\mu_j^d,d}$.

Лекция А9 КС-языки: лемма о накачке, операции на них

> Вадим Пузаренко

Лемма о накачке

Операции на КС-языках Доказательство (окончание).

В конечном итоге,
$$L_1 = \bigcup \{L_{\mu_i^d,d} \mid S_j^d
eq \varnothing \}.$$

Лекция А9 КС-языки: лемма о накачке, операции на них

Вадим Пузаренко

Лемма о накачке

Операции на КС-языках Пусть Σ_1 , Σ_2 — алфавиты и пусть каждому $a \in \Sigma_1$ сопоставляется КС-язык $s(a) \subseteq \Sigma_2^*$. Если $\alpha = a_1 a_2 \dots a_k \in \Sigma_1^*$, то полагаем конкатенацию языков $s(\alpha) = s(a_1)s(a_2)\dots s(a_k)$ (в случае, когда $\alpha = \varepsilon$, имеем $s(\alpha) = \varepsilon$). Выбор языков выше определяют функцию s (называемую подстановкой на (Σ_1, Σ_2)).

Лекция А9 КС-языки: лемма о накачке, операции на них

Вадим Пузаренко

Лемма с накачке

Операции на КС-языках Пусть Σ_1 , Σ_2 — алфавиты и пусть каждому $a \in \Sigma_1$ сопоставляется КС-язык $s(a) \subseteq \Sigma_2^*$. Если $\alpha = a_1 a_2 \dots a_k \in \Sigma_1^*$, то полагаем конкатенацию языков $s(\alpha) = s(a_1)s(a_2)\dots s(a_k)$ (в случае, когда $\alpha = \varepsilon$, имеем $s(\alpha) = \varepsilon$). Выбор языков выше определяют функцию s (называемую **подстановкой** на (Σ_1, Σ_2)).

Теорема А9.3.

Если L — KC-язык в алфавите Σ_1 и s — подстановка на (Σ_1, Σ_2) , то s(L) также KC-язык.

Лекция А9 КС-языки: лемма о накачке, операции на них

Вадим Пузаренко

накачке

Операции на КС-языках Пусть Σ_1 , Σ_2 — алфавиты и пусть каждому $a \in \Sigma_1$ сопоставляется КС-язык $s(a) \subseteq \Sigma_2^*$. Если $\alpha = a_1 a_2 \ldots a_k \in \Sigma_1^*$, то полагаем конкатенацию языков $s(\alpha) = s(a_1)s(a_2)\ldots s(a_k)$ (в случае, когда $\alpha = \varepsilon$, имеем $s(\alpha) = \varepsilon$). Выбор языков выше определяют функцию s (называемую подстановкой на (Σ_1, Σ_2)).

Теорема А9.3.

Если L — KC-язык в алфавите Σ_1 и s — подстановка на (Σ_1, Σ_2) , то s(L) также KC-язык.

<u>Док</u>азательство.

Пусть $\mathfrak{G}=(V,\Sigma_1,P,S)$ и $\mathfrak{G}_a=(V_a,\Sigma_2,P_a,S_a)$ $(a\in\Sigma_1)$ таковы, что $L(\mathfrak{G})=L$ и $L(\mathfrak{G}_a)=s(a)$ для любого $a\in\Sigma_1$. Без ограничения общности, будем предполагать, что множества переменных (нетерминальных символов) попарно не пересекаются. Определим грамматику $\mathfrak{G}'=(V',\Sigma_2,P',S)$ следующим образом.

Лекция А9 КС-языки: лемма о накачке. операции на них

Вадим Пузаренко

Операции на КС-языках

Доказательство (продолжение).

- $V' = V \cup \bigcup V_a$;
- P' содержит продукции P_a для любого $a \in \Sigma_1$;
- P' содержит результаты подстановок продукций из P, в которых $a \in \Sigma_1$ заменяется на S_a для любого терминального символа:
- \bullet P' не содержит других продукций, кроме описанных выше.

Докажем, что $\alpha \in L(\mathfrak{G}') \Leftrightarrow \alpha \in s(L)$ для всех $\alpha \in \Sigma_2^*$. (\Leftarrow) Пусть $\alpha \in s(L)$; тогда существует цепочка $a_1 a_2 \dots a_k \in L$ и $\alpha_i \in s(a_i), 1 \leq i \leq k$, таковы, что $\alpha = \alpha_1 \hat{\alpha}_2 \hat{\ldots} \hat{\alpha}_k$. Согласно конструкции, $S \Rightarrow_{\mathfrak{G}'}^* S_{a_1} S_{a_2} \dots S_{a_k}$ и, кроме того, $S_{a_i} \Rightarrow_{\mathfrak{G}'}^* \alpha_i$. Таким образом, $S \Rightarrow_{\sigma'}^* \alpha_1 \alpha_2 \ldots \alpha_k = \alpha$.

Лекция А9 КС-языки: лемма о накачке, операции на них

Вадим Пузаренко

Пузаренк

Операции на КС-языках Доказательство (окончание).

 (\Rightarrow) Пусть $\alpha \in L(\mathfrak{G}')$. Пусть T — дерево разбора для α в \mathfrak{G}' . Так как множества нетерминалов грамматик попарно не пересекаются, данное дерево может быть получено только как результат подстановки в дереве разбора для \mathfrak{G} с кроной $a_1a_2\ldots a_k(\in L)$ вместо листьев a_i деревьев с корнем S_{a_i} . Пусть их крона равняется α_i . Таким образом,

$$\alpha = \alpha_1 \hat{\alpha}_2 \hat{\ldots} \hat{\alpha}_k \in s(a_1)s(a_2) \ldots s(a_k) \subseteq s(L).$$

Операции

Лекция А9 КС-языки: лемма о накачке, операции на них

Вадим Пузаренко

накачке

Операции на КС-языках

Теорема А9.4.

Контекстно-свободные языки замкнуты относительно следующих операций:

- 💶 объединения;
- конкатенации;
- ullet звёздочки Клини и операции $\cdot \mapsto \cdot^+$;
- гомоморфных образов.

Операции

Лекция А9 КС-языки: пемма о накачке. операции на них

Вадим Пузаренко

Операции на КС-языках

Теорема А9.4.

Контекстно-свободные языки замкнуты относительно следующих операций:

- объединения;
- конкатенации;
- звёздочки Клини и операции $\cdot \mapsto \cdot^+$;
- гомоморфных образов.

Доказательство.

Воспользуемся теоремой А9.3.

- **1**. Пусть L_1 и L_2 КС-языки. Тогда $L_1 \cup L_2 = s(L)$, где $L = \{1, 2\}$ $u s(1) = L_1, s(2) = L_2.$
- **2**. Пусть L_1 и L_2 КС-языки. Тогда $L_1L_2=s(L)$, где $L=\{12\}$ и $s(1) = L_1, s(2) = L_2.$

Операции

Лекция А9 КС-языки: лемма о накачке, операции на них

Вадим Пузаренко

Леммао

Операции на КС-языках

Доказательство (окончание).

- **3.** Пусть L_1 КС-язык. Тогда $L_1^* = s(L)$, где $L = \{1\}^*$ и $s(1) = L_1$; $L_1^+ = s(L)$, где $L = \{1\}^+$ и $s(1) = L_1$.
- 4. Пусть L КС-язык над алфавитом Σ и пусть h гомоморфизм на Σ . Пусть также s подстановка, осуществляющая замену символа $a \in \Sigma$ на $\{h(a)\}$; тогда
- h(L) = s(L)

Обращение

Лекция А9 КС-языки: лемма о накачке, операции на них

Вадим Пузаренко

Леммао

Операции на КС-языках Теорема А4.17.

Если L — KC-язык, то и L^R также KC-язык.

Обращение

Лекция А9 КС-языки: лемма о накачке, операции на них

Вадим Пузаренко

Леммао

Операции на КС-языках

Теорема А4.17.

Если L — KC-язык, то и L^R также KC-язык.

Доказательство.

Пусть $\mathfrak{G}=(V,\Sigma,P,S)$ — грамматика такова, что $L=L(\mathfrak{G})$. Тогда $L^R=L(\mathfrak{G}^R)$, где грамматика $\mathfrak{G}^R=(V,\Sigma,P',S)$ определена следующим образом: $P'=\{(A,\alpha)|P(A,\alpha^R)\}$. Достаточно только доказать, что $\alpha\in L(\mathfrak{G})\Longrightarrow \alpha^R\in L(\mathfrak{G}^R)$ для всех $\alpha\in\Sigma^*$ (упражнение!!!).

Пересечение

Лекция А9 КС-языки: лемма о накачке, операции на них

Вадим Пузаренко

Пузаренко Замечап

накачке

Операции на КС-языках

Замечание А4.3.

КС-языки не замкнуты относительно операции пересечения.

Пересечение

Лекция А9 КС-языки: лемма о накачке. операции на них

Вадим

Операции на КС-языках

Замечание А4.3.

КС-языки не замкнуты относительно операции пересечения.

Пример А4.6.

 $L = \{0^{n}1^{n}2^{n} | n \in \omega\}$ не является контекстно-свободным, однако $L=L_1\cap L_2$, где

$$L_1 = \{0^n 1^n 2^i | n, i \in \omega\}$$
 in $L_2 = \{0^i 1^n 2^n | n, i \in \omega\}.$

При этом L_1 и L_2 контекстно-свободны.

Пересечение с регулярным языком

Лекция А9 КС-языки: лемма о накачке, операции на них

Вадим Пузаренко

Леммао

Операции на КС-языках Теорема А4.18.

Пусть $L-\mathsf{KC}$ -язык, а $R-\mathsf{pery}$ лярный язык; тогда $L\cap R$ также KC -язык.

Пересечение с регулярным языком

Лекция А9 КС-языки: лемма о накачке, операции на них

Вадим Пузаренко

Лемма о накачке

Операции на КС-языках

Теорема А4.18.

Пусть $L-\mathsf{KC}$ -язык, а $R-\mathsf{pery}$ лярный язык; тогда $L\cap R$ также KC -язык.

Доказательство.

Пусть $\mathcal{P} = (Q_P, \Sigma, \Gamma; \delta_P, q_P, Z_0, F_P)$ и $\mathcal{M} = (Q_M, \Sigma, \delta_M, q_M, F_M)$ — МП-автомат и ДКА соответственно таковы, что $L = L(\mathcal{P})$ и $R = L(\mathcal{M})$. Воспользуемся конструкцией произведения автоматов. А именно, определим МП-автомат $\mathcal{P}' = (Q_P \times Q_M, \Sigma, \Gamma; \delta_P \times \delta_M, \langle q_P, q_M \rangle, Z_0, F_P \times F_M)$, где $\delta_P \times \delta_M = \{((\langle q_1, q_2 \rangle, a, X), (\langle q'_1, q'_2 \rangle, a)) | \delta_P((q_1, a, X), (q'_1, a)), \delta_M((q_2, a), q'_2)\}$. Индукцией по числу переходов в МП-автоматах доказывается, что $(q_P, \beta, Z_0) \vdash_{\mathcal{P}}^* (q, \varepsilon, \gamma) \iff (\langle q_P, q_M \rangle, \beta, Z_0) \vdash_{\mathcal{P}'}^* (\langle q, \delta_M^*(q_M, \beta) \rangle, \varepsilon, \gamma)$ для всех $\beta \in \Sigma^*$ (упражнение !!!) Далее, $\beta \in L(\mathcal{P}')$, если и только если $\delta_M^*(q_M, \beta) \in F_M$ и $(q_P, \beta, Z_0) \vdash_{\mathcal{P}}^* (q, \varepsilon, \gamma)$ для некоторого $q \in F_P$ $(\Leftrightarrow \beta \in L(\mathcal{P}) \cap L(\mathcal{M}))$.

Дополнение

Лекция А9 КС-языки: лемма о накачке, операции на них

Вадим Пузаренко

накачке Операции на КС-языках

Теорема А4.19.

Пусть L_1 , L_2 и L — КС-языки, а R — регулярный язык. Тогда справедливы следующие условия:

- L \ R КС-язык;
- ② \overline{L} может не быть КС-языком;
- \bigcirc $L_1 \setminus L_2$ может и не быть КС-языком.

Дополнение

Лекция А9 КС-языки: лемма о накачке, операции на них

Вадим Пузаренко

Операции на КС-языках

Теорема А4.19.

Пусть L_1 , L_2 и L — KC-языки, а R — регулярный язык. Тогда справедливы следующие условия:

- lacksquare L\R КС-язык;
- lacksquare $L_1 \setminus L_2$ может и не быть КС-языком.

Доказательство.

- 1) $L \setminus R = L \cap \overline{R}$ и \overline{R} регулярный язык.
- 2) Если бы КС-языки были бы замкнуты относительно дополнения, то они были бы замкнуты относительно пересечения: $L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$.
- 3) $\overline{L}=\Sigma^*\setminus L$, при этом Σ^* и L КС-языки.

Дополнение

Лекция А9 КС-языки: лемма о накачке, операции на них

Вадим Пузаренко

Операции на КС-языках

Теорема А4.19.

Пусть L_1 , L_2 и L — KC-языки, а R — регулярный язык. Тогда справедливы следующие условия:

- \bigcirc $L \setminus R$ КС-язык;
- $oldsymbol{2}$ \overline{L} может не быть КС-языком;
- ullet ullet

Доказательство.

- 1) $L \setminus R = L \cap \overline{R}$ и \overline{R} регулярный язык.
- 2) Если бы КС-языки были бы замкнуты относительно дополнения, то они были бы замкнуты относительно пересечения: $L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$.
- 3) $\overline{L} = \Sigma^* \setminus L$, при этом Σ^* и L КС-языки.

Упражнение А4.7

Укажите явно пример КС-языка L, для которого \overline{L} не является КС-языком.

Лекция А9 КС-языки: лемма о накачке, операции на них

Пузарен

Лемма о накачке

Операции на КС-языках

Спасибо за внимание.