CH 3 - Proving Mathematical Statements

Luke Lu • 2025-09-15

Definitions

- 1. **Proposition** − a statement to be proved true
- 2. **Theorem** a significant proposition
- 3. **Lemma** a subsidiary proposition
- 4. **Corollary** a proposition that follows almost immediately from a theorem

Proving Universally Quantified Statements

- 1. Choose a representative object $x \in S$ (let x be arbitrary in S)
- 2. Show the open sentence is true for this x using facts about S

Example

Prove
$$\forall x,y \in \mathbb{R}, x^4 + x^2y + y^2 \ge 5x^2y - 3y^2$$

Discovery

If
$$x^4 + x^2y + y^2 \ge 5x^2y - 3y^2 \Rightarrow x^4 - 4x^2y + 4y^2 \ge 0 \Rightarrow (x^2 - 2y)^2 \ge 0$$

This is a discovery, not a proof

Proof

Let $x, y \in \mathbb{R}$ be arbitrary

Then
$$\left(x^2-2y\right)^2\geq 0$$

So
$$x^4 - 4x^2y + 4y^2 \ge 0$$

Hence
$$x^4 + x^2y + y^2 - 5x^2y + 3y^2 \ge 0$$

$$\forall x, y \in \mathbb{R}, x^4 + x^2y + y^2 \ge 5x^2y - 3y^2$$

Disprove Universally Quantified Statement

To disprove $\forall x \in S, P(x), \text{ find } x \in S \text{ with } \neg, P(x)$

Example

Disprove $\forall x \in \mathbb{R}, x^2 = 5$

Proof

Let
$$x = 0$$

Then
$$x^2 = 0 \neq 5$$

$$\exists x \in \mathbb{R} \text{ with } x^2 \neq 5, \text{ so } \forall x \in \mathbb{R}, x^2 = 5 \text{ is false}$$

Prove Existentially Quantified Statement

Find a specific $x \in S$ that makes the sentence true

Example 1

Prove
$$\exists m \in \mathbb{Z} \text{ s.t. } \frac{m-7}{2m+4} = 5$$

Proof

$$m-7=5(2m+4) \Rightarrow m-7=10m+10 \Rightarrow -27=9m \Rightarrow m=-3$$

Let m=-3 and note $2m+4=-2\neq 0$

Then
$$\frac{m-7}{2m+4} = \frac{-3-7}{2(-3)+4} = \frac{-10}{-6+4} = \frac{-10}{-2} = 5$$

$$\exists m \in \mathbb{Z} \text{ with } \frac{m-7}{2m+4} = 5$$

Example 2

Prove there exists a perfect square k s.t. $k^2 - \frac{31}{2}k = 8$

Proof

Let
$$k = 16 = 4^2$$

Then
$$k^2 - \frac{31}{2}k = 256 - 248 = 8$$

There exists a perfect square k with $k^2 - \frac{31}{2}k = 8$

Disprove Existentially Quantified Statement

To disprove $\exists x \in S, P(x)$, prove $\forall x \in S, \neg, P(x)$

Example

Disprove
$$\exists x \in \mathbb{R} \text{ s.t. } \cos(2x) + \sin(2x) = 3$$

Proof

For all
$$x \in \mathbb{R}$$
, we have $-1 \le \cos(2x) \le 1$ and $-1 \le \sin(2x) \le 1$

So
$$-2 \le \cos(2x) + \sin(2x) \le 2$$

Thus
$$\cos(2x) + \sin(2x) \neq 3$$
 since $3 \notin [-2, 2]$

$$\forall x \in \mathbb{R}, \cos(2x) + \sin(2x) \neq 3 \text{ i.e. } \neg, (\exists x \in \mathbb{R}, \cos(2x) + \sin(2x) = 3)$$

Prove/Disprove Nested Quantified Statement

Consider examples

1.
$$\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x^3 - y^3 = 1$$

2.
$$\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, x^3 - y^3 = 1$$

1. True

Let
$$x \in \mathbb{R}$$
 and set $y = \sqrt[3]{x^3 - 1}$

Then
$$x^3 - y^3 = x^3 - \left(\sqrt[3]{x^3 - 1}\right)^3 = x^3 - (x^3 - 1) = 1$$

$$\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x^3 - y^3 = 1$$

2. False

The negation is $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} \text{ with } x^3 - y^3 \neq 1$ Let $x \in \mathbb{R}$ and choose y = xThen $x^3 - y^3 = x^3 - x^3 = 0 \neq 1$ $\neg (\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, x^3 - y^3 = 1)$

Prove/Disprove Implication

IMPORTANT

- 1. To prove the implication $A \Rightarrow B$, assume that the hypothesis A is true, and use this assumption to show that the conclusion B is true. The hypothesis A is what you start with. The conclusion B is where you must end up.
- 2. To prove the universally quantified implication $\forall x \in S, P(x) \Rightarrow Q(x)$:

Let x be an arbitrary element of S, assume that the hypothesis P(x) is true, and use this assumption to show that the conclusion Q(x) is true.

Example:

Prove that \forall integers K, if K^5 is a perfect square, then $9K^{19}$ is a perfect square.

Proof

Let $K \in \mathbb{Z}$.

Assume that K^5 is a perfect square.

Then $\exists l \in \mathbb{Z}$ such that $K^5 = l^2$.

Now,
$$9K^{19} = 9(K^5)^3K^4 = 9(l^2)^3K^4 = 3^2(l^3)^2(K^2)^2 = (3l^3K^2)^2$$

Since 3, l, and K are integers, we have $3l^3K^2 \in \mathbb{Z}$ so $\left(3l^3K^2\right)^2$ is a perfect square, that is, $9K^{19}$ is a perfect square.

 $: K \in \mathbb{Z}$, if K^5 is a perfect square, then $(9K^{19})$ is a perfect square.

Divisibility of Integers

IMPORTANT

An integer m divides an integer n, and we write $m \mid n$, if there exists an integer k so that $n = k \cdot m$ If $m \mid n$ then we say that m is a divisor of n, n is the multiple of m

Examples

7 | 56 since $56 = 7 \cdot 8$ 7 | -56 since $-56 = 7 \cdot . - 8$

 $56 \nmid 7$ we need to write $7 = 56k, k \in \mathbb{R}$

 $a \mid 0$ where $a \in \mathbb{Z}$ since $0 = a \cdot 0, \forall z \in \mathbb{Z} \ 0 \nmid a \forall a \in \mathbb{Z}$ except a = 0, we can write $0 = 0 \cdot 0$

Prove $\forall m \in \mathbb{Z}$, if $14 \mid m$, then $7 \mid m$

Assume $14 \mid n$, Then (by definition), $\exists k \in \mathbb{Z}, n = 14k$

Then $m = 7 \cdot 2 \cdot k = 7 \cdot 2k$

Since $k \in \mathbb{Z}$, so is $2k \in \mathbb{Z}$

 $\therefore 7 \mid m$

1. Transivity of Divisibility (TD)

IMPORTANT

 $\forall a,b,c,\in\mathbb{Z}, \text{ if }a\mid b \text{ and }b\mid c, \text{ then }a\mid c$ Something maybe useful $\forall a,b,c\in\mathbb{Z}, \text{ if }a\mid b \text{ or }a\mid c, \text{ then }a\mid bc$

Proof

Let $a,b,c,\in\mathbb{Z}$ Suppose $a\mid b,b\mid c$ Then, $\exists n\in\mathbb{Z},b=a\cdot n\\ \exists n\in\mathbb{Z},b=c\cdot m$ Now, $c=b\cdot m=a\cdot n\cdot m=a(nm)$ Since $n,m\in\mathbb{Z}$ then $n\cdot m\in\mathbb{Z}$, and so $a\mid c$