ASAB – Week 5 Evolutionary sequence alignments (Dynamic Programming)

Algorithms for Sequence Analysis in Bioinformatics

Arnau Cordomí arnau.cordomi@esci.upf.edu

Substitution matrices

SCORING SYSTEM

match score = 1

mismatch score = 0

THEFASTCAT

THELASTCAT

THELASTRAT

THEFASTCAT

8

9

10

ACEFHLRST

A 100000000

C 010000000

E 001000000

H 000010000

L 000001000

R 000000100

S 000000010

T 000000001

ACEFHLRST

A 1 ? ? ? ? ? ? ? ?

C ? 1 ? ? ? ? ? ? ?

E ? ? 1 ? ? ? ? ? ?

H ????1????

R ??????1??

S ??????1?

T ? ? ? ? ? ? ? ? 1

Identity matrix. Only appropriate for very similar sequences

A much better matrix

To compare sequences, we need to compare residues

We need to know how much it costs to substitute

an **Alanine** into an **Isoleucine** a **Tryptophan** into a **Glycine**

...

The table that contains the costs for all the possible substitutions is called the **SUBSTITUTION MATRIX**

How to derive that matrix?

https://commons.wikimedia.org/wiki/File:Amino_Acids_Venn_Diagram.png

Using **knowledge**?

... But we do not know enough about structure and evolution.

Much better if we use data!!

Margaret Dayhoff (1970')
PAM substitution matrices

- Took 71 pairs of Protein Sequences, easy to align (85% identical).
- Aligned them
- Counted all mutations in the alignments
 - 25 Tryptophan into Phenylalanine
 - 30 Isoleucine into Leucine

...

- Computed all the scores

Which should be the MSA score of this column?

Model 1

How did this happen? In one mutation?

$$cost(A-G) = 1$$

 $cost (A \rightarrow G) = 6$

Easy to compute

Over-estimation of the substitutions

S1:	BABA
S2:	AAAC

S3: AACC

S4: AABA

S5: AACC

S6: AABC

	Observed frequencies
26 x 2 = 52	52/120
8 x 2 = 16	16/120
10 x 2 = 20	20/120 🛑
3 X 2 = 6	6/120
6 X 2 = 12	12/120
7 X 2 =14	14/120
60 x 2 = 120	
	8 x 2 = 16 10 x 2 = 20 3 X 2 = 6 6 X 2 = 12 7 X 2 = 14

Is this a lot?

BB: 1-4, 1-6, 4-6 4-1, 6-1, 6-4

BC: 1-3, 1-5, 3-4, 3-6, 4-5, 5-6 3-1, 5-1, 4-3, 6-3, 5-4, 6-5

For each mutation, set the substitution score to the log odds ratio:

$$\log\left(\frac{p_{ij}}{q_i*q_j}\right)$$

p_{ij} probability of aa_i -> aa_i transition

Hypothesis we wish to test; two amino acids are correlated because they are homologous.

score = log odds ratio = $s_{AB} \propto \log \left(\right)$

$$\frac{\text{observed}}{\text{expected}}$$

q_i probability of aa_i

q_i probability of aa_i

Null hypothesis; two amino acids occur independently (and are uncorrelated and unrelated).

log odds ratio of the likelihood of a point accepted mutation from one amino acid to another to the likelihood that these amino acids were aligned by chance.

If observed

= chance
$$\rightarrow$$
 0

$$log (10) = 1$$
 $log (0.1) = -1$
 $log (100) = 2$ $log (0.01) = -2$
 $log (1000) = 3$ $log (0.001) = -3$

Log space makes values symmetrical

1000x more likely vs. 1000x less likely

Compute a substitution matrix: expected frequencies

S1: BABA

S2: AAAC

S3: AACC

S4: AABA

S5: AACC

S6: AABC

X	Counts	Freqs
А	14	14/24
В	4	4/24
С	6	6/24
Total	24	1
d		

хх	Expected frequencies
AΑ	(14/24)*(14/24) = 0.34
A B = B A	(14/24)*(4/24) = 0.10
A C = C A	(14/24)*(6/24) = 0.15
ВВ	(4/24)*(4/24) = 0.03
B C = C B	(4/24)*(6/24) = 0.04
СС	(6/24)*(6/24) = 0.06

 Amino acid frequencies

			(
S1:	BABA	АА	52
S2:	AAAC	A B + B A	16
S3:	AACC	A C + C A	20
S4:	AABA	ВВ	6/
S5:	AACC	B C + C B	12
S6:	AABC	СС	14
	'		

XX	Observed Frequency (O)	Expected Frequency (E)	log (O / E) x 10				
АА	52/120	(14/24)*(14/24)	1.04				
A B + B A	16/120	(14/24)*(4/24)	-1.64				
A C + C A	20/120	(14/24)*(6/24)	-2.43				
ВВ	6/120	(4/24)*(4/24)	2.55				
BC+CB	12/120	(4/24)*(6/24)	0.79				
СС	14/120	(6/24)*(6/24)	2.71				

The substitution Matrix

S1: BABA

S2: AAAC

S3: AACC

S4: AABA

S5: AACC

S6: AABC

	Α	В	С
Α	1.04	-1.64	-2.43
В	-1.64	2.55	0.79
С	-2	0.79	2.71

	Α	В	С
Α	1	-2	-2
В	-2	3	1
С	-2	1	3

Cysteins form disulphide brid	dges	5			sm	all			acı po	aıc lar	/	ba	asio	3	al	iph	ati	С	a	roı	ma	tic
_	عرا		S	Т	Р	Α	G	N	D	Е	Q	Н	R	K	М	Ι	L	٧	F	Υ	W	
C	(9)																				С
S	-1		4																			S
Т			1	5																		Т
Р	-3	3	-1	-1	7																	Р
A			1	0	-1	4																A
G			0	-2	-2	0	6	_														G
N			1	0	-2 -1	-2 -2	0	6	6													N
D E		.	0	-I	-1	-2 -1	-1 -2	1 0	6 2	5												D
		.	0	-1 -1	_1	_1	-2 -2	0	0	2	_											E
Q	-3 -3	_	-1	-2	-2	-2	-2	1	-1	0	5 0	8										Q H
R			-1 -1	-1	-2	-1	-2	0	-2	0	1	0	5									R
K			0	-1	-1	-1	-2	0	-1	1	1	-1	2	5								ĸ
M	_	-	-1	-1	-2	-1	-3	-2	-3	-2	0	-2	-1	-1	5							М
I			-2	-1	-3	-1	-4	-3	-3	-3	-3	-3	-3	-3	1	4						I
L		.	-2	-1	-3	-1	-4	-3	-4	-3	-2	-3	-2	-2	2	2	4					L
V		L.	-2	0	-2	0	-3	-3	-3	-2	-2	-3	-3	-2	1	3	1	4				٧
F	-2	2	-2	-2	-4	-2	-3	-3	-3	-3	-3	-1	-3	-3	0	0	0	-1	6			F
Y	' -2	2	-2	-2	-3	-2	-3	-2	-3	-2	-1	2	-2	-2	-1	-1	-1	-1	3	7	_	Υ
W	1 -2	2	-3	-2	-4	-3	-2	-4	-4	-3	-2	-2	-3	-3	-1	-3	-2	-3	1	2	(11)	W
	(S	T	Р	Α	G	N	D	E	Q	Н	R	K	М	I	L	V	F	Υ	W	7

acidic/

Scoring an Alignment

Is it a lot?
Is it possible to get such a good alignment by chance only?

PAM is the unit of evolutionary distance between two sequences.

1PAM: 1 point accepted mutation in 100 aa.

$$\mathsf{PAM}n = (\mathsf{PAM}\ \mathbf{1})^n$$

Mutations could occur multiple times at any given position

PAM family of matrices:

Evolutive time - Sequence divergence

PAM200: 200 point mutations in 100 amino acids

- Developed by using multiple sequence alignments of conserved regions (BLOCKs database) in evolutionary divergent proteins
- Obtained from alignments created by clustering sequences that were more similar than a given % (indicated in the matrix)

BLOSUM90 - BLOSUM80 - BLOSUM62 - BLOSUM45

Evolutive time – Sequence divergence

- For closely related sequences: low PAM or high BLOSUM
- For distantly related sequences: high PAM or low BLOSUM
- BLOSUM matrices usually perform better than PAM matrices

Evolutionary parameters of the transcribed mammalian genome: an analysis of 2,820 orthologous rodent and human sequences.

Makalowski W, Boguski MS.

Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9407-12.

PMID: 9689093

Free PMC Article Paperpile

Similar articles

One particular **ADENINE**

- Coding vs. noncoding region
- Binding to the transcriptional machinery, regulatory elements.
- Binding to histones
- Hypersensitive sites
- DNA methylation, histone modifications
- Responsible for the 3D organization of the genome
- **.**..

Constrained genome positions evolve slowly

Every protein family has its own level of constraint

Different molecular clocks for different proteins

Protein sequence alignments: a strategy for the hierarchical analysis of residue conservation.

Livingstone CD, Barton GJ.
Comput Appl Biosci. 1993 Dec;9(6):745-56.
PMID: 8143162

Ignore non-local interactions

- Assume the evolution rate to be constant
 - Not the case in different proteins
 - Not the case in different regions of the same protein
- Substitution matrices only work well with similar sequences (> 30% id).

Global alignment Needleman and Wunsch

Alignments up to $|s_1| + |s_2|$ characters long

$$\begin{pmatrix} L_1 + L_2 \\ L_1 \end{pmatrix} = \frac{(L_1 + L_2)!}{L_1! L_2!}$$

$$L_1 = 10$$

$$L_2 = 9$$

alignments = 92378

THEFASTCAT THEFATCAT THEFATCAT THEFATCAT THEFATCAT THEFATCAT THEFATCAT THEFATCAT THEFATCAT THEFATCAT

THEFATCAT

9 letters

10 letters

• DP invented in the 50s by Bellman

Programming ⇔ Tabulation

- Has found applications in aerospace, engineering, economics
- Re-invented in 1970 by Needleman and Wunsch

It took 10 year to find out...

Dynamic programming usually refers to simplifying a decision by breaking it down into a sequence of decision steps over time

ALTLHYDRYTTSRRLDPIPQLKCVGGTAGCDSYTPKVIQCQNKGWDGYDVQWECKTDLDI
ALTLHYDRYTTSRRLDPIPQLKCVGGTAGCDSYTPKVIQCQNKGWDGYDVQWECKTDLDI
ALTLHYDRYTTSRRLDPIPQLKCVGGTAGCDSYTPKVIQCQNKGWDGYDVQWECKTDLDI
ALTLHYDRYTTSRRLDPIPQLKCVGGTAGCDSYTPKVIQCQNKGWDGYDVQWECKTDLDI
ALTLHYDRYTTSRRLDPIPQLKCVGGTAGCDSYTPKVIQCQNKGWDGYDVQWECKTDLDI
ALTLHYDRYTTSRRLDPIPQLKCVGGTAGCDSYTPKVIQCQNKGWDGYDVQWECKTDLDI
ALTLHYDRYTTSRRLDPIPQLKCVGGTAGCDSYTPKVIQCQNKGWDGYDVQWECKTDLDI

Makes foolish assumptions:

- The score of each column of the alignment is independent of the rest of the alignment
- It is possible to model the relationship between two sequences with a substitution matrix + a gap penalty

TLTLYRGRYTTARRSSPVPQLRCVGGSAGCQAFVPEVVQCQNRGWDGVDVQWECKTDMDN
ALTLYKNRYTTARRASPVPQLQCVGGSAGCQAFVPEVVQCQNKGWDGVDVQWECRTDMDN
VLTLYKGRYTTARRSSPVLQLQCAGGTAGCGSFVPEVVQCYNRGSDGIDTQWECKADMDN
AITLHKGKMTTGRRVSPTFQLKCVGG-SAKGAFTPKVVQCANQGFDGSDVQWRCDADLPH
AITLNKGKMTTGRRVAPTLQLKCVGG-SAKGAFTPKVVQCSNQGFDGSDVQWRCDADLPH

If you **optimally** extend an **optimal** alignment of two subsequences, the result remains an **optimal** alignment

Deletion/insertion in the second sequence relative to the first

Deletion

(gap

in seq 2)

the alignment

Three ways to finish

BACHELOR'S DEGREE IN

-Sequence 2:

$$F(i-1, j) + GEP$$

$$F(i-1, j-1) + Mat(i, j)$$

Formalizing the algorithm (II)

Delivering the alignment: Trace-back

T - A F T S A F

Optimal Aln Score: Score of FAT vs FAST

Needleman and Wunsch algorithm:

Global alignment without affine penalties

Adding affine penalties (Gotoh algorithm)

Indels (in proteins) involve more drastic changes than substitutions

AVT--GFTGH AVATAGFTGH GOP GOP

AV-T-GFTGH AVATAGFTGH

This requires one event

This requires two events

When a gap occurs, several adjacent residues may be involved

Hypothesis: Evolution follows maximum parsimony. The simplest path (fewer changes) is the most likely.

LMNTG----NT LMNTGGGGGNT

Gap open penalty + 3 x Gap extension penalty

GOP > GEP

In the context of BLOSUM62, typically:

Affine Gap Penalty

$$cost = GOP + L * GEP$$
or
 $cost = GOP + (L - 1) * GEP$

Which values of GEP and GOP should I use?

Global Alignments are very sensitive to gap Penalties

The same as Needlemann-Wunsch, but harder.

More than 3 ways to extend an alignment

M: Table that contains the score of every optimal alignment 1...l vs 1...J that finishes with an alignment between sequence X and Y

Ix: Table that contains the score of every optimal alignment 1...i vs 1...j that finishes with an Insertion in sequence X.

ly: Table that contains the score of every optimal alignment 1...l vs 1...J that finishes with an Insertion in sequence Y.

$$M(i,j) = best$$

$$\begin{cases}
M(i-1,j-1) + Mat(i,j) \\
Ix(i-1,j-1) + Mat(i,j) \\
Iy(i-1,j-1) + Mat(i,j)
\end{cases}$$

Three possible values!

$$Ix(i,j) = best$$

$$M(i-1,j) + gop$$

$$Ix(i-1,j) + gop$$

$$ly(i,j) = best \begin{cases} M(i,j-1) + gop \\ ly(i,j-1) + gep \end{cases}$$

Filing up a SW matrix

X **FAT**

FAAAT

Match = 1MisMatch = -1GOP = -3GEP = -1

** FAAAT

ALGORITHMS FOR SEQUENCE ANALYSIS IN BIOINFORMATICS

ly		F ₁	A ₂	A ₃	A ₄	T ₅
		-∞	-∞	-∞	-∞	-∞
F ₁	_	-8	-9	-10	-11	-12
A ₂	_	-3	-7	-8	-9	-10
T ₃	_	-4	-2	-6	-7	-8

From **BEST** ** FAAAT

Start

Local alignment Smith and Waterman

GLOBAL Alignment

- End-to-end alignment (contains all letters from both sequences)
- Suitable for closely related sequences (homologous genes; similar sequence of similar length)
- 5' ACTACTAGATTACTTACGGATCAGGTACTTTAGAGGCTTGCAACCA 3'
- 5' ACTACTAGATT----ACGGATC--GTACTTTAGAGGCTAGCAACCA 3

LOCAL Alignment

- Aligns a substring to a substring
- Finds local regions with the highest similarity (ignoring the rest)
- Suitable for aligning distantly related sequences

ANALYSIS IN BIOINFORMATICS

Smith And Waterman (1981) = variation of Needleman and Wunsch to do LOCAL alignment

Ignore the rest of the previous cells and start a local alignment

matrix

Filing up the SW matrix and traceback

THECATISFAST

AFASTCAT

Match = 1 MisMatch = -1 Gap = -2

Beginning of the trace-back: at the best local score

The matrix of scores only contains positive numbers and 0

Limits: local alignments NEVER start/end with a gap...

S		A ₁	F ₂	A ₃	S ₄	T ₅	C ₆	A ₇	T ₈
	0	0	0	0	0	0	0	0	0
T ₁	0	0	0	0	0	1	0	0	1
H ₂	0	0	0	0	0	0	0	0	0
E ₃	0	0	0	0	0	0	0	0	0
C ₄	0	0	0	0	0	0	1	0	0
A ₅	0	1	0	1	0	0	0	2	0
Т ₆	0	0	0	0	0	1	0	0	3
17	0	0	0	0	0	0	0	0	1
S ₈	0	0	0	0	1	0	0	0	0
F ₉	0	9	1	0	0	0	0	0	0
A ₁₀	0	1	0	2	0	0	0	1	0
S ₁₁	0	0	0	0	3	1	0	0	0
T ₁₂	0	0	0	0	1	4	2	0	1