

Machine Learning and Intelligent Systems

Decision Trees

Maria A. Zuluaga

Dec 8, 2023

EURECOM - Data Science Department

Table of contents

Recap

Improving K Nearest Neighbors

KD Trees

Decision Trees

Impurity functions

The Algorithm

Stopping Criterion

Limitations

Regression Trees

Wrap-up

Recap

K Nearest Neighbors

- Assume this is how your training data looks like
- You have chosen K = 3
- A new test point arrives
- What do you do?

Source: adapted from scikit-learn

K Nearest Neighbors

- Assume this is how your training data looks like
- You have chosen K = 3
- A new test point arrives
- What do you do?

Anything wrong with that?

Source: adapted from scikit-learn

K Nearest Neighbors

- Assume this is how your training data looks like
- You have chosen K=3
- A new test point arrives
- What do you do?

Anything wrong with that?

- ullet Testing time complexity: $\mathcal{O}(\textit{ND})$
- Ideally, $N > \!\! > 0$

Source: adapted from scikit-learn

Motivation: Improving k-NN

Goal: How can we make k-NN faster at test time?

Motivation: Improving k-NN

Goal: How can we make k-NN faster at test time?

Imagine the following setup: The orange points represent the training points (no labels). We want to predict \hat{y} for the yellow point.

Motivation: Improving k-NN

Goal: How can we make k-NN faster at test time?

Imagine the following setup: The orange points represent the training points (no labels). We want to predict \hat{y} for the yellow point.

Intuition: Partition of the D-dimensional feature space to make the search of the K nearest neighbors faster

Algorithm (D=2)

Training step:

- 1. Divide the data along one feature by setting a threshold t_1
- 2. Divide again along the remaining feature by setting a threshold t_2
- 3. Record the quadrant each x belongs to

Algorithm (D=2)

- 1. Find the quadrant Q of \mathbf{x}'
- 2. d_x : distance of \mathbf{x}' to closest point in Q
- 3. $d_{t_1} = d(\mathbf{x}', t_1)$
- 4. $d_{t_2} = d(\mathbf{x}', t_2)$

Algorithm (D=2)

- 1. Find the quadrant Q of \mathbf{x}'
- 2. d_x : distance of \mathbf{x}' to closest point in Q
- 3. $d_{t_1} = d(\mathbf{x}', t_1)$
- 4. $d_{t_2} = d(\mathbf{x}', t_2)$
- 5. Case 1: $d_x < d_{t_1} \& d_x < d_{t_2}$ closest point in quadrant

Algorithm (D=2)

- 1. Find the quadrant Q of \mathbf{x}'
- 2. d_x : distance of \mathbf{x}' to closest point in Q
- 3. $d_{t_1} = d(\mathbf{x}', t_1)$
- 4. $d_{t_2} = d(\mathbf{x}', t_2)$
- 5. Case 1: $d_x < d_{t_1} \& d_x < d_{t_2}$ closest point in quadrant
- 6. Case 2: $d_x < d_{t_1} \& d_x > d_{t_2}$ check neighbor quadrant (via t_2)

Algorithm (D=2)

- 1. Find the quadrant Q of \mathbf{x}'
- 2. d_x : distance of \mathbf{x}' to closest point in Q
- 3. $d_{t_1} = d(\mathbf{x}', t_1)$
- 4. $d_{t_2} = d(\mathbf{x}', t_2)$
- 5. Case 1: $d_x < d_{t_1} \& d_x < d_{t_2}$ closest point in quadrant
- 6. Case 2: $d_x < d_{t_1} \& d_x > d_{t_2}$ check neighbor quadrant (via t_2)
- 7. Case 3: $d_x > d_{t_1} \& d_x < d_{t_2}$ check neighbor quadrant (via t_1)

Algorithm (D=2)

Test step (K=1):

- 1. Find the quadrant Q of \mathbf{x}'
- 2. d_x : distance of \mathbf{x}' to closest point in Q
- 3. $d_{t_1} = d(\mathbf{x}', t_1)$
- 4. $d_{t_2} = d(\mathbf{x}', t_2)$
- 5. Case 1: $d_x < d_{t_1} \& d_x < d_{t_2}$ closest point in quadrant
- 6. Case 2: $d_x < d_{t_1} \& d_x > d_{t_2}$ check neighbor quadrant (via t_2)
- 7. Case 3: $d_x > d_{t_1} \& d_x < d_{t_2}$ check neighbor quadrant (via t_1)

8. Case 4: $d_x > d_{t_1} \& d_x > d_{t_2}$ check all other quadrants

Case 4 is as bad as standard kNN

KD Trees

KD Trees

- The number of elements in a leaf node (leaf size) is a hyper-parameter
- Question: What is the leaf size in the example?

6

• Q: How should the data be split during training?

A: Split the data in half recursively by rotating through the features.

When rotating, choosing the feature with maximum variance is a good heuristic

• Q: How should the data be split during training?

A: Split the data in half recursively by rotating through the features.

When rotating, choosing the feature with maximum variance is a good heuristic

• Q: How to define the threshold for the split?

A: Use the median over the range of values of the feature to be split

• Q: How should the data be split during training?

A: Split the data in half recursively by rotating through the features.

When rotating, choosing the feature with maximum variance is a good heuristic

• Q: How to define the threshold for the split?

A: Use the median over the range of values of the feature to be split

• **Q**: How to extend the algorithm to K > 1?

A: Instead of considering the distance to the closest point, take K closest distances

- Q: How should the data be split during training?
 - **A:** Split the data in half recursively by rotating through the features.
 - When rotating, choosing the feature with maximum variance is a good heuristic
- Q: How to define the threshold for the split?
 - A: Use the median over the range of values of the feature to be split
- **Q**: How to extend the algorithm to K > 1?
 - A: Instead of considering the distance to the closest point, take K closest distances
- Q: How often we may fall into a situation like case 4?
 - **A:** Let's answer to this question by recalling Lab 1

Summary

Advantages

- Easy to build
- Accelerates inference

Disadvantages

ullet Curse of dimensionality makes it impractical for high values of D

Can we do better?

- Ball trees follow a different principle to space partitioning that makes them better for high dimensional spaces (not covered)
- We will exploit the idea behind KD trees to build decision trees

Decision Trees

An Example

	Mask	Cape	Tie	Pointy Ears	Smokes	Height	Label			
Training set										
Batman	Υ	Υ	N	Υ	N	185	Good			
Robin	Υ	Υ	Ν	N	N	175	Good			
Alfred	N	N	Υ	N	N	180	Good			
Penguin	N	N	Υ	N	Υ	145	Evil			
Catwoman	Υ	N	Ν	Y	N	170	Evil			
Joker	N	N	Υ	N	N	177	Evil			
Test set										
Batgirl	Υ	Υ	N	Υ	N	165	?			
Riddler	Y	N	N	N	N	178	?			

A first decision tree

A first decision tree

Does it classify properly the training data?

Step 1: All samples at the root node

Step 2: Split according to the root node

Step 3: Split according to second level nodes

Step 4: Split according to the last node

Step 4: Split according to the last node

Alfred has been misclassified

Exercise: The smallest tree

Exercise: What is the smallest tree you can construct that properly classifies all the data? How many nodes?

	Mask	Cape	Tie	Pointy Ears	Smokes	Height	Label			
Training set										
Batman	Υ	Υ	N	Y	N	185	Good			
Robin	Y	Υ	Ν	N	N	175	Good			
Alfred	N	N	Υ	N	N	180	Good			
Penguin	N	N	Υ	N	Υ	145	Evil			
Catwoman	Y	N	Ν	Y	N	170	Evil			
Joker	N	N	Υ	N	N	177	Evil			
Test set										
Batgirl	Y	Y	N	Υ	N	165	?			
Riddler	Υ	N	N	N	N	178	?			

Exercise: The smallest tree

Decision Trees

- Learning the simplest (smallest) decision tree is an NP-complete problem [Hyafil & Rivest '76]
- Solution Resort to a greedy approach:
 - Start from empty decision tree
 - Split on next best feature
 - Recurse

Decision Trees

- Learning the simplest (smallest) decision tree is an NP-complete problem [Hyafil & Rivest '76]
- Solution Resort to a greedy approach:
 - Start from empty decision tree
 - Split on next best feature
 - Recurse

Goal: Build a maximally compact tree with only pure leaves

Impurity Functions

Greedy strategy: We keep splitting the data to minimize an impurity function that measures label purity among the children.

Impurity Functions

Greedy strategy: We keep splitting the data to minimize an impurity function that measures label purity among the children.

Formalization & Definitions

- Data $\mathcal{D} = \{(\mathbf{x}_1, \mathbf{y}_1), \dots, (\mathbf{x}_N, \mathbf{y}_N)\}, \quad \mathbf{y}_i \in \{1, \dots, K\}$
- K: Total number of classes

Impurity Functions

Greedy strategy: We keep splitting the data to minimize an impurity function that measures label purity among the children.

Formalization & Definitions

- Data $\mathcal{D} = \{(\mathbf{x}_1, \mathbf{y}_1), \dots, (\mathbf{x}_N, \mathbf{y}_N)\}, \quad \mathbf{y}_i \in \{1, \dots, K\}$
- K: Total number of classes
- $\mathcal{D}_k \subset \mathcal{D}$, where $\mathcal{D}_k = \{(\mathbf{x}, \mathbf{y}) \in \mathcal{D} : \mathbf{y} = k\}$

Impurity Functions

Greedy strategy: We keep splitting the data to minimize an impurity function that measures label purity among the children.

Formalization & Definitions

- Data $\mathcal{D} = \{(\mathbf{x}_1, \mathbf{y}_1), \dots, (\mathbf{x}_N, \mathbf{y}_N)\}, \quad \mathbf{y}_i \in \{1, \dots, K\}$
- K: Total number of classes
- $\mathcal{D}_k \subset \mathcal{D}$, where $\mathcal{D}_k = \{(\mathbf{x}, \mathbf{y}) \in \mathcal{D} : \mathbf{y} = k\}$
- $\bullet \ \mathcal{D} = \mathcal{D}_1 \cup \mathcal{D}_2 \cup \ldots \cup \mathcal{D}_K$

Gini impurity

Given the previous definitions, the fraction of inputs in \mathcal{D} with label k is:

$$p_k = \frac{|\mathcal{D}_k|}{|\mathcal{D}|}$$

Gini impurity:

$$G(\mathcal{D}) = \sum_{k=1}^{K} \rho_k (1 - \rho_k) \tag{1}$$

Note 1: Often in the literature, they will use S to denote the data, rather than \mathcal{D} . Note 2: The Gini impurity is not the same as the Gini coefficient. The latter measures the level of inequality in a country.

Gini Impurity: Analysis

Let us consider the case where K=2

$$G(\mathcal{D}) = p_1(1 - p_1) + p_2(1 - p_2)$$
$$= p_1(1 - p_1) + (1 - p_1)p_1$$
$$= 2p(1 - p)$$

Gini Impurity: Analysis

Let us consider the case where K=2

$$G(\mathcal{D}) = p_1(1 - p_1) + p_2(1 - p_2)$$

= $p_1(1 - p_1) + (1 - p_1)p_1$
= $2p(1 - p)$

Interpretation:

- Maximum impurity at p=0.5 since there is 50-50 for both classes (root node case)
- Our goal is to make the Gini impurity zero
- Low gini: Dominated by one class.
 High gini: There is no dominating class

Let us recall p_k the fraction of inputs for a given label, what is the worst case scenario for the leave of a tree?

Let us recall p_k the fraction of inputs for a given label, what is the worst case scenario for the leave of a tree?

Answer:
$$q_1 = q_2, = \ldots = q_k = \frac{1}{K}$$
. We do not want to have a uniform distribution

Idea: Let us measure impurity as how close we are to the uniform distribution. We will use the Kullback-Liebler divergence to measure the closeness.

Let us recall p_k the fraction of inputs for a given label, what is the worst case scenario for the leave of a tree?

Answer:
$$q_1 = q_2, = \ldots = q_k = \frac{1}{K}$$
. We do not want to have a uniform distribution

Idea: Let us measure impurity as how close we are to the uniform distribution. We will use the Kullback-Liebler divergence to measure the closeness.

Kullback-Liebler (KL-)divergence):

$$\mathit{KL}(p||q) = \sum_{k=1}^{K} p_k \log \frac{p_k}{q} \ge 0$$

$$KL(p||q) = \sum_{k=1}^{K} p_k \log \frac{p_k}{q}$$

$$= \sum_{k=1}^{K} p_k \log p_k - p_k \log q$$

$$KL(p||q) = \sum_{k=1}^{K} p_k \log \frac{p_k}{q}$$
$$= \sum_{k=1}^{K} p_k \log p_k - p_k \log q$$

Our goal is to measure how far p_k are from the uniform distribution. Let us then replace accordingly for such a case

$$KL\left(p||\frac{1}{K}\right) = \sum_{k=1}^{K} p_k \log p_k - p_k \log \frac{1}{K}$$

$$= \sum_{k=1}^{K} p_k \log p_k + p_k \log K$$

$$= \sum_{k=1}^{K} p_k \log p_k + \log K \sum_{k=1}^{K} p_k$$

We can disregard the term $\log K$ because it is a constant. Moreover, we know that

$$\sum_{k=1}^K p_k = 1$$

which leads to

$$KL\left(p||\frac{1}{K}\right) = \sum_{k=1}^{K} p_k \log p_k$$

We can disregard the term $\log K$ because it is a constant. Moreover, we know that

$$\sum_{k=1}^K p_k = 1$$

which leads to

$$KL\left(p||\frac{1}{K}\right) = \sum_{k=1}^{K} p_k \log p_k$$

Our goal is to make sure that p_k is as far as possible from the uniform distribution. This means

$$\max_{p} KL\left(p||\frac{1}{K}\right) = \max_{p} \sum_{k=1}^{K} p_k \log p_k \tag{2}$$

Along the course we have preferred minimization to maximization. We can transform the problem easily

$$\max_{p} KL\left(p||\frac{1}{K}\right) = \max_{p} \sum_{k=1}^{K} p_k \log p_k$$

to

$$\min_{p} KL\left(p||\frac{1}{K}\right) = \min_{p} -\sum_{k=1}^{K} p_k \log p_k \tag{3}$$

This quantity represents the entropy H(S):

$$\min_{p} KL\left(p||\frac{1}{K}\right) = \min_{p} H(\mathcal{D}) \tag{4}$$

Estimating the entropy of a tree

The entropy of a tree can be estimated as:

$$H(\mathcal{D}) = \rho^L H(\mathcal{D}_L) + \rho^R H(\mathcal{D}_R) \tag{5}$$

where:

$$p^{L} = \frac{|\mathcal{D}_{I}|}{|\mathcal{D}_{I}|}$$
$$p^{R} = \frac{|\mathcal{D}_{I}|}{|\mathcal{D}_{I}|}$$

The Algorithm

- 1. Compute the impurity function for every **attribute** of dataset $S = \mathcal{D}$
- 2. Split the set *S* into subsets using the attribute for which the resulting impurity function is minimal after splitting (greedy approach)
- 3. Make a decision tree node containing that attribute
- 4. Recurse on subsets with remaining attributes

A stopping criterion is required to determine when to stop

Iterative Dichotomiser 3 (ID3) Algorithm

The ID3 algorithm follows the scheme previously presented and uses the following set of rules to decide when to stop:

- **Rule 1** Every element in the subset belongs to the same class. Node becomes a leaf node
- Rule 2 There are no more attributes to be selected, but the examples still do not belong to the same class. Node becomes leaf node labeled with the majority class
- **Rule 3** There are no examples in the subset, as no example in the parent set matches a specific value of the selected attribute. Create leaf node labeled with the majority class of the parent

ID3 Algorithm: Splits

The greedy approach to splitting a parent node into sub-nodes requires to try all features/attributes and all possible splits.

The chosen attribute a is the one that will minimize the impurity for a given threshold t defining the split. More formally,

$$S^{L} = \{ (\mathbf{x}, \mathbf{y}) \in S : \mathbf{x}^{(a)} \le t \}$$

 $S^{R} = \{ (\mathbf{x}, \mathbf{y}) \in S : \mathbf{x}^{(a)} > t \}$

An Example: The Tree

see O6_trees.ipynb

An Example: Decision Boundary

Let us have a look at the XOR and try to train a decision tree that learns to classify its samples properly

Root node:
$$S = D$$

 $H(S) = -(0.5 \log(2/4) + 0.5 \log(2/4)) = 0.69$

Let us have a look at the XOR and try to train a decision tree that learns to classify its samples properly

Root node:
$$S = D$$

 $H(S) = -(0.5 \log(2/4) + 0.5 \log(2/4)) = 0.69$

Try split with feature a:

$$S^{L} = \{ (\mathbf{x} = [0, 0], \mathbf{y} = 0), (\mathbf{x} = [0, 1], \mathbf{y} = 1) \}, P^{L} = 0.5$$

 $S^{R} = \{ (\mathbf{x} = [1, 0], \mathbf{y} = 1), (\mathbf{x} = [1, 1], \mathbf{y} = 0) \}, P^{R} = 0.5$
 $H(S^{L}) = -(0.5 \log(1/2) + 0.5 \log(1/2)) = 0.69$
 $H(S^{R}) = 0.69$

Let us have a look at the XOR and try to train a decision tree that learns to classify its samples properly

Root node:
$$S = D$$

 $H(S) = -(0.5 \log(2/4) + 0.5 \log(2/4)) = 0.69$

Try split with feature a:

$$S^{L} = \{ (\mathbf{x} = [0,0], \mathbf{y} = 0), (\mathbf{x} = [0,1], \mathbf{y} = 1) \}, P^{L} = 0.5$$

 $S^{R} = \{ (\mathbf{x} = [1,0], \mathbf{y} = 1), (\mathbf{x} = [1,1], \mathbf{y} = 0) \}, P^{R} = 0.5$
 $H(S^{L}) = -(0.5 \log(1/2) + 0.5 \log(1/2)) = 0.69$
 $H(S^{R}) = 0.69$

Try split with feature b:

It leads to the same case as with feature a: No improvement

- Decision trees suffer from myopia
- They cannot see further beyond the current node
- Therefore, in practice, it is recommended to "keep trying" and let the tree grow
- Once the tree has grown, tree pruning is done

Example: XOR solution

Limitations: Overfitting

Limitations: Overfitting

Overfitting: How to fix it

- Must use tricks to find simple trees
- Fixed depth/Early stopping
- Pruning
- Use ensembles of different trees: Random forests

CART: Classification and Regression Trees

Decision trees can also be used for regression, i.e. $y \in \mathbb{R}$. In such a case, the impurity needs to change

Impurity: Squared Loss

$$L(R) = \frac{1}{|R|} \sum_{(\mathbf{x}, \mathbf{y}) \in R} (\mathbf{y} - \bar{\mathbf{y}}_R)^2$$
 (6)

where R denotes a region

$$\bar{\mathbf{y}}_R = \frac{1}{|R|} \sum_{(\mathbf{x}, \mathbf{y}) \in R} \mathbf{y}$$

is the average label of the region R.

CART: Classification and Regression Trees

Decision trees can also be used for regression, i.e. $y \in \mathbb{R}$. In such a case, the impurity needs to change

Impurity: Squared Loss

$$L(R) = \frac{1}{|R|} \sum_{(\mathbf{x}, \mathbf{y}) \in R} (\mathbf{y} - \overline{\mathbf{y}}_R)^2$$
 (6)

where R denotes a region

$$\bar{\mathbf{y}}_R = \frac{1}{|R|} \sum_{(\mathbf{x}, \mathbf{y}) \in R} \mathbf{y}$$

is the average label of the region R.

Important: Finding the best binary partition in terms of minimum sum of squares is generally computationally infeasible. A greedy approach is preferred, using the same principle as for classification.

Wrap-up

Wrap-up

- We introduced decision trees
- These are light-weight classifiers that can be very fast
- They are not competitive in accuracy and prone to overfitting
- Using ensemble techniques allows them to become strong and competitive

Key Concepts

- Gini Impurity
- Entropy
- KL-Divergence
- Prunning
- Decision trees

Further Reading and Useful Material

Source	Notes
The Elements of Statistical Learning	Sec. 9, 10, 15, 16