Mohó algoritmusok ***

Olimpiai staféta

Az olimpiai lángot egy kiindulási városból a cél városba kell eljuttatni. A két város távolsága K kilométer. Sok futó jelentkezett, mindegyikről tudjuk, hogy hányadik kilométertől hányadik kilométerig vállalja a futást. Ha egy futó az x kilométertől az y kilométerig vállalja a futást, akkor minden olyan futó át tudja venni tőle a lángot, aki olyan z kilométertől vállalja a futást, amire $x \le z \le y$.

Készíts programot, amely kiszámítja, hogy legkevesebb hány futó kell ahhoz, hogy a láng eljusson a cél városig!

Bemenet

A standard bemenet első sorában a két város távolsága (10≤K≤1000) és a jelentkezett futók száma (2≤N≤20000) van. A további N sor mindegyike két egész számot tartalmaz (0≤I<E≤K), ami azt jelenti, hogy egy futó az I-edik kilométertől az E-edik kilométerig vállalja a láng továbbítását.

Kimenet

A standard kimenet első sorába a láng célba juttatásához minimálisan szükséges futók M számát kell írni! A második sor pontosan M számot tartalmazzon (egy-egy szóközzel elválasztva), azon futók sorszámait, akik teljesítik a feladatot: a felsorolásban a j-edik futó a j+1-edik futónak adja át a lángot! Több megoldás esetén bármelyik megadható. Ha a láng nem juttatható el a cél városig a jelentkezett futókkal, akkor a kimenet első és egyetlen sorába 0-t kell írni!

Példa

Bemenet	Kimenet
40 7 2 21 25 35	4 4 1 3 7
20 34 0 10	
5 18	
3 7 ——— 34 40	

Korlátok

Időlimit: 0.1 mp.

Memórialimit: 32 MB