Лекция 4

0371 Кузнецова Елизавета 28 September 2021

Степени

Рис. 1:

Определение 1. Путь в графе - посл-ть вершин $v_1e_1v_2e_2...v_{n+1}e_{n+1}v_n$ $v_i\in V; \qquad e_i\in E \qquad e_i=(v_i;\ v_{i+1})$

Пример

Рис. 2:

Определение 2. замкнутый путь - если $v_1 = v_n;$ не замкнутый, открытый $(v_1 \neq v_n)$

Определение 3. Простой путь, если $e_i \neq e_j$, при $(i \neq j)$

5) bedce простой, но не замкнутый

Пути		все ребра разные	все вершины разные (кроме V_1 и V_2
замкнутый	замк.путь	прост.замк.путь	цикл
открытый	откр.путь	прост.откр.путь	цепь

Рис. 3:

Теорема 1. Если \exists путь между вершинами u,v=> есть цепь от u до v.

Доказательство. рассмотрим путь

 $\underline{\mathbf{u}} \ \mathbf{e}_1 \ \mathbf{v}_1 \ \mathbf{e}_2 \ \mathbf{v}_2 ... \mathbf{e}_n \ \mathbf{v}_n$

рассмотрим все пути из этих рёбер и выберем min. Это будет цепь.

Пусть $v_i = v_i$ укоротим $u...v_i = v_i...$ v ??

Теорема 2. если есть простой путь черелз ребро e = > ecmь цикл через e.

Доказательство. : Аналогично ■ Замечание:

Рис. 4:

dbacbd - не простой путь (е повторяется) цикла через е нет.

Связность графа

Определение 4. *G-связен, если* \forall *u,v* \in *V* \exists *ueno* (*nymo*) из *U* в V = (V, U)

Примеры:

Рис. 5:

Введём отношение \equiv на вершине графа. и \equiv v, если \exists путь из U в V Пример:

Рис. 6:

 $a \equiv c$ $a \equiv d$ $e \equiv g$ $a \equiv e$

Проверим, что \equiv - это отношение эквивалентности

- 1) рефлексивно $u \equiv u$ верно путь u.
- 2) симметрично $u \equiv v =>(?) v \equiv u$

Путь и e1v1...v...

Путь v... v1e1 u

3) транзитивно $u \equiv v$,

 $v \equiv w$

путь ue1...v...w

путь u-w.

Определение 5. *Классы эквивалентности* \equiv *-это "комп. связности".*

Рис. 7:

Определение 6. G_1 - nodepa G=(V,E) ecnu V_1 c V E_1 c E

Пример:

Рис. 8:

Замечание G - свой подграф \oslash , \oslash - подграф чего угодно.

Определение 7. G=(V,E). Ребро е называется мостом, если количество комп. связности G<кол-во комп. связн. (V,E) е) Пример

Рис. 9:

Определение 8. Степень связности графа G - это тіп кол-во рёбер, которые надо выкинуть, чтобы G стал несвязным.

Определение 9. двусвязный граф.

Надо выкинуть хотя бы 2 ребра, чтобы он стал несвязным.

Замечание Двусвязный граф <=> нет мостов и связей. Пример

Рис. 10:

Определение 10. Вершина $v \in V$ называется точкой сочетания если кол-во компонент связности $G{<}$ кол-во компон. св-ти G=m (V {v}, E { (v,u) | $(u,v) \in E$ })

Пример

Рис. 11:

Считаем рёбра вершины.

Теорема 3. в графе G=(V,E) если deg(a) - степень вершины u. / $E \mid = \frac{1}{2} \sum_{v=V} deg(v)$

Пример

Рис. 12:

 $6 = \frac{1}{2} (3 + 2 + 2 + 4 + 1)$ верно

Док-во: deg(v)=кол-во рёбер, выход из вершины.

 $\sum_{v=V} deg(v) =$ все рёбра посчитаны дважды $= 2|\mathbf{E}|$ \blacksquare Следствие

- 1) сумма смежней вершин всегда чётна ■
- 2) вершин нечёт степени чётно

Задача 15 инопланетян по 3 руки у каждого могут ли они взяться за руки, чтобы не было свободных рук

Решение: нет, это граф из 15 (неч.) вершин степени 3(нечёт.)

Определение 11. Висячие вершины это вершины степени 1

Рис. 13:

Теорема 4. Если в графе есть рёбра, но нет висяч. вершин, то $\exists \ uu\kappa n$

Определение 12. Дерево - связный граф без циклов

Примеры

Рис. 14:

Определение 13. $B \ \forall \ dependence \geq 2 \ висяч.$ верш.

Доказательство. Берём \forall верш., если она не висяч., идём по ребру, если опять не висяч. есть ещё ребро и т.д. циклов нет => будет конец это в∕верш.

Чтоб найти вторую, нужно начать из первой

Теорема 5. Если G - дерево, то |V|=1+|E|

Пример:

Рис. 15:

Док-во: по индукции (кол-во вершин)

База: |V|=1

|E| = 0 |V| = |E| + 1

 Π : Пусть |V| = n + 1

Найдём висяч.

Удалим её и ребро.

Рис. 16:

 $G'{=}(V^*\{\ V\ \},\ E\ \{e\})$ -тоже дерево т.к. связен, нет циклов. => $|V'|{=}1{+}|E|$

$$\begin{array}{l} |V|{=}|V'|{+}1\\ |E|{=}|E'|{+}1\\ ={>}|V|{=}1{+}|E| \blacksquare \end{array}$$