rRNA Gene Cluster

FIG. 1

AAAGTCGCAC CTTTCCCCAT AAACCCCCTC CCCACCCCCT TGGACATTGT 100 TCCACTTTTC ACTTGTATTG TGAAGCACCC AATGCTAGCC CATAGAACAG 150 TCCAGTAGTT CAATAGAGAG ACTAGTGAAC ATAGTTTATA ACATTGTCCA 200 AGGGGTGGAG GGGGATGCGC GAAATCGATG TGCACGTTTG GTCAAAGATG 250 CTCGCGAAAG CTGCACATCA ATTTCGCACA TGGGCGAAAT TGACTTGCAG 300 GTGGGTATAA AAGTTGATGT AGGCCATGTG GCTCGATTTC AACCATATGG GTATGCTTCT GAGGATGGGG TGTTACAGTG GACCATATGA GGTAGGTCAT 400 351 TTGGAGATGT CACCAAAATG GTCTAAATCT GCGCATTCCA TTTAAGTGAA 450 401 TTTAAGTGAA ATTTAAGTGA ATTTTACTTA AAATTGACCT TTTTCGTTGC 451 GCAGATTTGG GGTGGTGATG GGTGACGCGG CGAATTTTTT AAAAAAGAGG 500 TATATCGCGT GCTATTTGTA TTTTTGGTAT CACCGCGTCA CCAATCACCA 551 TTGACGGTTT CTTTTTCGAA GTTTTTCCGG ATTATTGCAT TTTTTATATA 650 ATTGTGGGTG GCTGATTCTT GCGAAAGGAC TGTTGTGATG TCCGAGTTCC CAAATTGGGA GTTTTTGGAC ATCACTCCTG ATCTGCCGGC GGCGATCAGG 700 ATGACTGACA TTTCGATATA TTTTGGGTAT TCGATAGCTG CCAAATCGGT CAGCGTCGAG TATTCCGGTT TATTCGAAGG ATTCATGATA TTGCAAAATA TCATTGATTT TCATGGGGTT TTGTATTAGT ACCCGCTCAT TGTGGGAAAG 900 TCGGGTGGAT TTATCTTACC CGCAAATCTA ATACAAGATT TGCATGATGC 900 AGCAATAGAC CAAGGTTAGT ATAGCAGTTG TATTTATACG ACTAGTTATG 951 CANACCOTT GTGTTTTTG TTGCGACTCT TGGCGTGAAC CGGAAGACCG 1050 GACCTCGCTT TCGACTATTC ATCTTTGATG GATATGAGAT CGCAAGGGTA 1100 1051 TCGCTTCGTG CGATATTTAG TGACCATCAG AGCACGCTAC GACTTTTGAT 1100 1150 TATATCCTTG GATTTAATCG GAAGCTCGCA AGCATTGCAT TGATGCAATC

FIG. 2

ttttcatttt tgctttcaca accccgcacc ccatgtacaa tgttgccaac CACTAGAGTT TCAACAACAT TCGGATTTGA CAACATGTCA ACAATTCACA #51 ACAGAAATTG ACAACATTGT CACAAATTCT CAAATTGGAC AACATTGGAC #101 AAAAATTCAC AACATACATT GGACAACAGT GGACAACGAA CCCAAACCCG #151 ACAACATTGT CCAGGGGGAT AGGGGGTGAA AAAGCAGTGC CGGCAAAGTC #201 GAAAGATGTC AAGTTGGAAT GCGGCTCAAA TTCGTCATTT GTGTAAATCC #251 GCAATTTTGC CAATGTGCAA TTTTGCAAAT GTGCAATTTT GCAAATGTGC #301 AATTTTGCCA ATGTGCAATT TTGCAAATGC GCAATTTTGC AAATCCGCAA #351 TTTTGCAAAT GTGCAATTTT GGAAAATCAC CAAATGAAAA TCGTCCAAGT #401 CGAATTGGAG GCGTGGTGAC ATGGTCCCGG GATCCCCTGG TTACAGTGGA #451 CAATATCCCA GCAATATTCG CTGTAATTTG GAGTTTCGCT GTTTTGGCAA #501 ATTTTGAGTC TGAAAAAAAA AATTGCAAAT GCGCAAAGGG GGTGAAGGAA #551 AAAAAAGCAC CCCCGAAGGT AAAATTCCCT TTAAGTCCCT TGCGCATTTG #601 CAAAATTTTC AAAAATTGTT GCAAATGCGC TTTTGTTATT TGGCCGGTTC #651 ATTGGTGTCA AAAGTTGCCT GGGGTGGTTA CACAATGCAC GGAATTGGTT #701 GGAAGTTGTG TGATTGAAAA TTGGTCGTGT CACACAATTT TGCGCATTTG #751 CAAAAATTCG CAAATTGGAC AAAAAAGGGT CGCGCACAGT CAAATTGCGC #801 AAATTTCACT TTGAAGTGAG TGCGCATTTG TGGGGCAGAA ATGTGGTGAC AGCATCGTTT TTTATAATAA ATATTCTATA TTTAGTATCT TTATTATAAT #901 TTGCTGTCAC CAATCACCAT TTTAGAATTT TTATTTTTTT ATGTTTTAGT #951 GACCGCGGGA TTTTTTGCAA AGTACTATYG TGATGTTTGA GTTGTTTGAA #1001 ATGGGCAATT TAGAACATCA TCAGAAATCG CTGAATAGTG ATTTTTGAGT #1051 TTGACTGTTT GAAGTGTTTT GGGTATTCGG CAGCTGCCAA ATCGGTCAGC #1101 GTCGAATATA ATAGCATTTT TGTGTGTATA TGATATTTAG CGATATCATT #1151 GGAATCATGG GGTTTTGTAT TAGTACCCGC TCATTGTGGG AATGTCGGGT #1201 GGTTCAATAT CACCTGCAAA TTTAATACAG GATTTGCATG ATGCAGCGAC #1251 TGACCGGGGT TGGTATAATA GCTGATTATT CGGCTTATTA TGCAGACCTA #1301 TCGTGTTAGT AGTTGCGACT CTTGGCGTGA ACCGGAAGAC CGGAACTTGA #1351 ATTCGACTAT TTACGTCCGT AAACAGGAGA TTTCAAGAAT ATTGCACATT #1401 TTGCGTGATA TAAACGTGAT CATCTGAGCA CGCTTCGACT CTTGGATATC TGCTAATCAG CCGTCATCTG AGAGCTCGCA AGCATTGCAA TTGATGCAAT #1501

FIG. 3

50 CGTGCCCTTT TCACGAATTC ACAGCCCCGC ACCCCATGTA CAATGTTGCC 51 100 CACCCGAAAT GCCTGCCTGC CCACCCGAAA TGCCCGAAAT GCCCGTTAGA 101 150 AAAAGTATGC GAAAAGTTCT TGTCAATTTT GACAGTGTGT GAAAAAACTG 200 151 AAAAAGTCCA CTCAACATTG CATTATGCAA TTTGCCACTC AACATTGTCC 250 201 AGGGGGATAG GGGGTGAAAA AGTATCGCAG TCCAACTGAA AAGATGCTAA 251 GTTGAAATGC GGCGCAAATT CATCACTTGA GTTGCGAAAA TCCCTAAAGT 301 CGAATTTGGC ACTCGGTGAC ATGATCGGGA ATTTCCCTGG TTACAGTGGT 351 CAAATCCCAG CAATTTTGGC AAAGTTTTTG AGTTTCGCAC TTTTCGCAAA TTTCGTGTCT GAAAAAAAA TTTCAACTTT GCGCAAAGGG GTCAAAGGGA 500 AAAAAAGCAC CCTCAAAAGG AAATTTCCCT TTAATCCCCT TTGAAAAAAA TGCGCAAAGT TAAATTTGCG AAAATTTCGA TTTTCTCATA TGACCGATTA GTTGGTGCCA GATGGTAGTC GGGATGGTTA CACGGTGCAC GGAACTCGTT GGAAGTTCTG GAGTTACGAA TTGGTCCCGT CACCACAATT TGCGCATTTT 700 TGAAATTGCG CAAATTTGCG AAAAAAGCAG CGCGCAAAGT TAAATTGTGC GAAAATTGAC TTTCAGGTCG GTGCGCAAAT TTGGGGTGAA AAAGTGGTGA CAGCATCAGA ATTATAATAA ATAATCTATA ATCTAGTTCT TTTATTATAA TTAGCTGTCA CCAATCACCA TTTGAGATTT TTTATTTTTT TATGTTTTAG TGACCGCGGT ATTTTTCCA GAGTACTATC GTGATGTCTG AGTTGTCTAA 950 AACGGCAATT TCAGAACATT ACCAGAAAAC ACTGAATAGT GGTTTCTGAG 1000 TCTGACTGTT TGAAGTGTTT TGGGTATTCG GCAGCTGCCA ATTCGGTCAG 1000 1050 GGTTGAATAT ACTAACATTT CTGTGTGTAT ATGGTATTTA GCGATATCAT 1051 TGGAATCATG GGGTTTTGTA TTAGTACCCG CTCATTGTGG GAAAGTCGGG 1150 TGGTTCAATA TCACCTGCAA ATTTAATACA GGATTTGCAT GATGCAGCGA CTGACCGGGG TTAGTATAAT AGCTGATTAT TCGGCTTATT ATGCAGACCT 1250 1200 ATCGTGTTAG TAGTTGCGAC TCTTGGCGTG AACCGGAAGA CCGGAACTTG 1251 ATTTCGACTA TTTACGTCCG TAACACGTCC GTAAACAGGA GATTTCAAGA ATATTGCACA TTTTGTGTGA TATAATCGTG ATCATCTGAG CACGCTTCGA 1400 CTCTTGAATA TTTGTTAAAC AACCGATATT CGGGAGCTCG CAAGCATTGC 1400 1450 AATTGATGCA ATC

FIG. 4

Primer	Sequence	Target
300 F	5'-CACTTGTATTGTGAAGCACCC-3'	
300 R	5'-TTG GTG ACA TCT CCA AAT GAC-3'	Perkinsus marinus
500 F	5'-ATGCTAGCCCATAGAACAGT-3'	r erkirisus maimus
500 R	5'-ATGCTAGCCCACATCACAGC-3'	
NTS7	5'-AAGTCGAATTGGAGGCGTGGTGAC-3'	
NTS6	5'-ATTGTGTAACCACCCCAGGC-3'	Perkinsus andrewsi
PM5	5'-ATGCTAGCCC ATAGAACAGT-3'	P. marinus type I
PM7	5'-CAT CTC CAA ATG ACC TAC CT-3'	P. marinus type l
PM6	5'-ATGCTAGCCC ACATCACAGC-3'	P. marinus type II
PM8	5"-CAT CTC CAA ATG ACC TAC CA-3'	P. marinus type II

FIG. 5

FIG. 7

Samples

1 2 3 4

M a b a b a b a b M

FIG. 9

Type-I Type-II					50 GTCCAGTAGT GCCCAGTAGT
Type-I	51 TCAATACACA	CACMACTCAA	CATAGTTTAT	A A CA TOTO COLOR	100
Type-II			CATAGITIAI		
	101				150
Type-I Type-II			GTGCACGTTT GTGCACGTTT		
	151				200
Type-I Type-II			ATGGGCGAAA ATGGGCGAAA		
	201				250
	AAAGTTGATG AAAGTTGATG				
	251				300
Type-I Type-II			GGACCATATG GGACCATATG		
	301				
Type-I Type-II	TCACCAA				

FIG. 11

FIG. 12

FIG. 15

Samples

1 2 3 4 5 6 7 8 9 10 11 12

13 14 15 16 17 18 19 20 1 - + -

	#1	.TETTITIAA TEGEACIENT EGETIGIEN TEGETEGENE
	>P. atlanticum #51	CCCCTGGACA ATGTTATCCC AGCTCAACAA CGAGCAACAG TGCTATGGCA
	>P. atlanticus #101	3.AGTAGTCCAC TAGAGAGCCA AGTCGACAAT CTCTACAACA TTGTCCAAGG
	>P. atlanticus #151	GGGAAAGGGG GGCGCGCAA GTTGACCTGC AGCAGAGGGA AAAGATGCTG
	>P. atlanticus #201	AGTTTTGCTG CACCCCAACT TTGCGCACTT GGCGAAGTTG ACTTGCAGGC
	>P. atlanticus >PA690F-Text #251	GAGGGTAAAA GATGCTATGG TTGGTTGCGG ACCAAGTTCG CCGTGTGGGT ATGCTATGG TTGGTTGCGG ACC
	>P. atlanticus #301	.CATCATTATC GAGGTCTGTG GTGACGATGG ACTAGTTTTT AGGGATTTTC
	>P. atlanticus #351	.CGGAGGTGTC ACCACGGACC CCCCAACTTT GCGCACGGGG GGTACTCAAT
	>P. atlanticus #401	.TTTAAGTGAA ATTTAAGTAA AATTTACTTA AAATTCACGT TTTTGGGTGC
	>P. atlanticus #451	GCAAAGTTGA GGTGGTGACT GGTGACACGA AAATTTTAAA AAAGAGAGAT
	>P. atlanticus #501	ATTAAAAAA TATTTATATT TTCTGTGTCA CCGTGTCACC AGTCACCACA
	>P. atlanticus #551	GGGCGTAATT TTCCGGGAAA TTTTCAGATT TTCCGGAAAA ATTGCATTTT
	>P. atlanticus #601	GGGGTAAATA GTGTCCGTCA GAATTTTGCC AAAGGACTGT CGTGATGTCC
	>P. atlanticus #651	GAGTTCCCAA ATTGAGGGTT TTTGGACATC GCTCTGAAAT CGCTAACGGC
	>P. atlanticus #701	GTTTCAGATT TCCGACTTTT CGACATATTC TGGGTATTTG ATAGCTGCCA
	>P. atlanticus #751	AATCGGTCAG CGTCGAATAT TCCAATATTT CGAAGGATAT ATGATATCGC
	>PER1-Text	GAGATATCAT TGGATTTCAT GGGGTTTTGT ATTAGTACCC GCTCATTGTG TAGTACCC GCTCATTGTG
•	#801	•••••
	>P. atlanticus >PER1-Text #851	GGAAAGTCGG GTGAATTTAT TCAACCCGCA AATCTAATAC AAGATTTGCA G
		,
	<pre>>P. atlanticus. <pa690r-text #901<="" pre=""></pa690r-text></pre>	TGATGCAGCG ACTGACCGGG GTGAGTGTAG CAGCTGTTCT ACGCCTTGCT GCTGTTCT ACGCCTTGCT
		ACGCAGACCT ATCGTGTTAG TAGTTGCGAC TCTTGGCGTG AACCGGAAGA
		ACGCAGACCT ATCGTGTTAG TAGTIGCGAC TCTTGGGGTG ACCGGAAGA
		CCGGACCTCG CTTTCGACTA TTCATTCCGA TGAATATGAG ATTGCAAGGG
	#1001	•
	#1051	TATCGCTTCG TGCGATATTT AGTGATCATC AGAGCACGCT ACGACTTCAG
	<per2-text< td=""><td>TATATCCTCG GATACACAGA AGCTCGCAAG CATTGCATGA TGCAATC AGCTCGCAAG CATTGCA</td></per2-text<>	TATATCCTCG GATACACAGA AGCTCGCAAG CATTGCATGA TGCAATC AGCTCGCAAG CATTGCA
	#1101	

>P. andrewsi-S #1	.ACCTGGTTGA TCCTGCCAGT AGTCATATGC TTGTCTCAAA GATTAAGCCA
>P. andrewsi-S #51	TGCATGTCTA AGTATAAGCT TTAAACGGCG AAACTGCGAA TGGCTCATTA
>P. andrewsi-S #101	.AAACAGTTAT AGTTTATTTG GTGATCGATT ACTATTTGGA TAACCGTAGT
>P. andrewsi-S #151	.AATTCTAGAG CTAATACATG CGTCAAGGCC CGACTTCGGA AGGGCTGCGT
>P. andrewsi-S #201	.TTATTAGATA CAGAACCAAC CTAGCTCCGC CTAGTCCTTG TTGGTGATTC
>P. andrewsi-S #251	.ATAATAACCC GGCGAATCGC ACGGCTTGTC CGGCGATGGA CCATTCAAGT
>P. andrewsi-S #301	.TTCTGACCTA TCAGCTATGG ACGGTAGGGT ATTGGCCTAC CGTGGCGTTG
>P. andrewsi-S #351	ACGGGTAACG GGGAATTAGG GTTCGATTCC GGAGAGGGAG CCTGAGAAAC
>P. andrewsi-S #401	.GACTACCACA TCTAAGGAAG GCAACAGGCG CGCAAATTAC CCAATCCTGA
#451	TACAGGGAGG TAGTGACAAG AAATAACAAT ACAGGGCAAT TCTGTCTTGT
>P. andrewsi-S #501	AATTGGAATG AGTAGATTTT AAATCTCTTT ACGAGTATCA ATTGGAGGGC
#551	.AAGTCTGGTG CCAGCAGCCG CGGTAATTCC AGCTCCAATA GCGTATATTA
>P. andrewsi-S >SSU3F-Text #601	AGGTTGTTGC GGTTAAAAAG CTCGTAGTTG GATTTCTGCC TTGGGCGACC AGTTG GATTTCTGCC TTGGGCG
>P. andrewsi-S #651	GGTCCACCTT TCCTACGGGT TAGGTTGGTA CCAGGTTTGA CCTTGGCTTT
>P. andrewsi-S #701	.TTCTTGGGAT TCGTGCTCAC GCACTTAACT GTGCGCTGAC CGTGTTCCAA
>P. andrewsi-S	GACTTTTACT TTGAGGAAAT TAGAGTGTTT CAAGCAGGCT TATGCCGTGA
#751 >P. andrewsi-S #801	ATACATTAGC ATGGAATAAT AGGATATGAC TTTGGTCATA TTTTGTTGGT
>P. andrewsi-S #851	TTCTAGGACT GAAGTAATGA TTAATAGGGA CAGTCGGGGG CATTCGTATT
>P. andrewsi-S #901	TAACTGTCAG AGGTGAAATT CTTGGATTTG TTAAAGACGA ACTACTGCGA

FIG.18A

>P. andrewsi-S #951	AAGCATTTGC CAAGGATGTT TTCATTGATC AAGAACGAAA GTTAGGGGAT
>P. andrewsi-S #1001	CGAAGACGAT CAGATACCGT CCTAGTCTTA ACCATAAACT ATGCCGACTA
>P. andrewsi-S #1051	.GGGATTGGGA GTCGTTAATT TTAGACGCTC TCAGCACCTC GTGAGAAATC
>P. andrewsi-S #1101	AAAGTCTTTG GGTTCCGGGG GGAGTATGGT CGCAAGGCTG AAACTTAAAG
>P. andrewsi-S #1151	GAATTGACGG AAGGGCACCA CCAGGAGTGG AGCCTGCGGC TTAATTTGAT
>P. andrewsi-S >SSU4F-Text #1201	TCAACACGGG AAAACTCACC AGGTCCAGAC ATAGGAAGGA TTGACAGATT ACC AGGTCCAGAC ATAGGAAGG
>P. andrewsi-S #1251	GATAGCTCTT TCTTGATTCT ATGGGTGGTG GTGCATGGCC GTTCTTAGTT
>P. andrewsi-S #1301	GGTGGAGTGA TTTGTCTGGT TAATTCCGTT AACGAACGAG ACCTTAACCT
>P. andrewsi-S. #1351	GCTAAATAGT TGCGTGAAAT CTTGTATTTC ACCGCTACTT CTTAGAGGGA
>P. andrewsi-S. #1401	CTTTGTGTGT TTAACACAAG GAAGCTTGAG GCAATAACAG GTCTGTGATG
>P. andrewsi-S. #1451	CCCTTAGATG TTCTGGGCTG CACGCGCGCT ACACTGACAC GATCAACGAG
>P. andrewsi-S. #1501	TATTTCCTTG CCCGGTAGGG TTAGGGTAAT CTTTTGAAAT CGTGTCGTGC
>P. andrewsi-S. #1551	TAGGGATAGA CGATTGCAAT TATTCGTCTT CAACGAGGAA TTCCTAGTAA
>P. andrewsi-S. #1601	ATGCAAGTCA TCAGCTTGCG TTGATTACGT CCCTGCCCTT TGTACACACC
>P. andrewsi-S. #1651	GCCCGTCGCT CCTACCGATT GAGTGATCCG GTGAGCTGTC CGGACTGCGA
>P. andrewsi-S. #1701	TTAGTTCAGT TTCTGTTCTT TTCGCGGGAA GTTCTGCAAA CCTTATCACT
>P. andrewsi-S. #1751	TAGAGGAAGG AGAAGTCGTA ACAAGGTTTC CGTAGGTGAA CCTGCAGAAG

>P. andrewsi-S.GATCATTC

#701

ACACCGATTC ATTCTCTGAG AAACCAGCGG TCTCTGTAAA AGGAGATGGG #1 ATCTCCGCTT TGTTTAGATC CCCACACCTG ACCGCTTTAA CGGGCCGGGT #51 AGGTGCATAA CTTCTATGAA CCAATTGTAC TAGTCTAAAG TATCCAATAT #101 CCTTTTGGAT TTTGGTATTT CAAAACGAAA TTCCAAACTC TCAACGATGG #151 ATGCCTCGGC TCGAGAATCG ATGAAGGACG CAGCGAAGTG CGATAAGCAC TGCGATTTGC AGAATTCCGT GAACCAGTAG AAATCTCAAC GCATACTGCA #251 CAAAGGGGAT TTATCCTCTT TGTACATACA TATCAGTGTC GCTCTTCTTC #301 CCGATACAAA CATTTTGTTG ATTTACAATC AACATTATGC TTTGTATCCC #351 GCTTGGATTC CTTTATTGGG ATCCGCTGTG TGCGCTTGCT GACACAGGCG #401 CATTAATTTG CAAGGCTATA ATACTACTGT ACTGTAGCCC CTTCGCAAGA #451 AGGACTGCGC TAGTGAGTAT CTTTGGATGC TCGCGAACTC GACTGTGTTG #501 TGGTTGATTC CGTGTTCCTC GATCACGCGA TTCATCGCTT CAACGCATTA #551 TGTCAAATTT GATGAATGCA GAGAGTTGTT TATGAATTAC GCGATCGCTT TGGTCTCAGA ATCGTTACTA TAGCACGCTT GTCGGTTTGC AACCTGGCAA #651 TATGTCATCA TT

FIG. 19

And the second s

						Primers to claim			
Perkinsus species	PCR	Name	Forward Primer (5'-3') Position ¹	Position ¹	Name	Reverse Primer (5'-3')	Position ¹	Amplicon Size (bp)	Publication
Perkinsus marinus	Species	300F	CAC TTG TAT TGT	08-09	300R	TTG GTG ACA TCT	346-366	307	Marsh et al.
	specific		GAA GCA CCC			CCA AAT GAC			J. Parasitol. 1995 81(4):577-83.
									J. Parasitol. 1999 85(4):650-6.
Perkinsus atlanticus	Species	PA690F	Perkinsus atlanticus Species PA690F ATG CTA TGG TTG	262-283	PA690R	PA690R GTA GCA AGC CGT	933-952	169	Robledo et al.
	specific		GTT GCG GAC C			AGA ACA GC			J. Parasitol. 2000 86(5):972-8
Perkinsus andrewsi ² Species	Species	NTS7	AAG TCG AAT	447-470	NTS6	ATT GTG TAA CCA	717-736	290	Coss et al.
	specific		TGG			CCC CAG GC			J. Buk. Microbiol. (In
			AGG CGT GGT						Press)
			GAC						
Perkinsus marinus	Generic	PER1	TAG TAC CCG CTC	827-845	PER2	TGC AAT GCT TGC	1123-1139	313	Coss et al.
			AT(TC) GTG G			GAGCT			J. Parasitol. (Submitted)
Perkinsus atlanticus Generic	Generic	PER1	TAG TAC CCG CTC	833-851	PER2	TGC AAT GCT TGC	1121-1137	305	Coss et al.
			ATT GTG G			GAG CT			J. Parasitol. (Submitted)
Perkinsus andrewsi Generic	Generic		TAG TAC CCG CTC	1221-1239	PER2		1523-1539	319	
			ATT GTG G			GAG CT			J. Parasitol. (Submitted)

'Relative to the NTS sequence

³Perkinsus sp. (Macoma balthica)

FIG. 20

					Primers	Primers to claim		
Perkinsus species	PCR	Name	Name Forward Primer (5'-3') Position	Position	Name	Name Forward Primer (5'-3')	Position ¹	Publication
Perkinsus andrewsi	Sequencing	SSU3F	erkinsus andrewsi Sequencing SSU3F AGT TGG ATT TCT	626-647	SSU4F	SSU4F ACC AGG TCC AGA	1218-1239	Coss et al.
			GCC TTG GGC G			CAT AGG AAG G		J. Buk. Microbiol (In
		,						Press)

FIG. 21