UNCLASSIFIED

AD NUMBER ADB069403 NEW LIMITATION CHANGE TO Approved for public release, distribution unlimited **FROM** Distribution authorized to U.S. Gov't. agencies only; Critical Technology; Test and Evaluation; FEB 1982. Other requests shall be referred to Air Force Aero Propulsion Laboratory [AFWAL/POTX], Wright-Patterson AFB, OH 45433. **AUTHORITY** 27 Jun 1990, ST-A per WRDC-IST notice

⇔ TRANSONIC FAN/COMPRESSOR **ROTOR DESIGN STUDY**

Volume III

D.E. Parker and M.R. Simonson **General Electric Company** Aircraft Engine Business Group **Advanced Technology Programs Dept.** Cincinnati, Ohio 45215

February 1982

Final Report for Period September 1980 - February 1982

SUBJECT TO EXPORT CONTROL LAWS

This document contains information for manufacturing or using munitions of war. Export of the information contained herein, or release to foreign nationals within the United States, without first obtaining an export license, is a violation of the International Traffic-in-Arms Regulations. Such violation is subject to a penalty of up to 2 years imprisonment and a fine of \$100,000 under 22 USC 2778.

Include this notice with any reproduced portion of this document.

Distribution limited to U.S. Government agencies only: Test and Evaluation, February 1982. Other requests for this docunent must be referred to Air Force Aero Propulsion Laboratory (AFWAL/POTX), Wright-Patterson AFB, OH 45433

Aero Propulsion Laboratory Air Force Wright Aeronautical Laboratories Air Force System Command Wright-Patterson Air Force Base, Ohio 45433

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in conjunction with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other persons or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This technical report has been reviewed and is approved for publication.

ARTHUR J. WENNERSTROM

Chief, Compressor Research Group

WALKER H. MITCHELL

Chief, Technology Branch

FOR THE COMMANDER

H. IVAN BUSH

Director, Turbine Engine Division

If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization, please notify AFWAL/POTX, WPAFB OH 45433 to help us maintain a current mailing list.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

REPORT DOCUMENT	ATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER		3. RECIPIENT'S CATALOG NUMBER
AFWAL-TR-82-2017	AD-B069403L	
4. TITLE (and Subtitle) Transonic Fan/Compressor R Volume III	otor Design Study	5. TYPE OF REPORT & PERIOD COVERED Final Technical Report September 1980 - July 1982 6. PERFORMING ORG. REPORT NUMBER R82AEB328, Volume III
7. AUTHOR(*) D.E. Parker M.R. Simonson		F33615-80-C-2059
PERFORMING ORGANIZATION NAME AND General Electric Company Aircraft Engine Business G Cincinnati, Ohio 45215		10. PPOGRAM ELEMENT, PROJECT, TASK ANEA & WORK UNIT NUMBERS Project 2307 Task S1 Work Unit 38
11. CONTROLLING OFFICE NAME AND ADDR Aero Propulsion Laboratory Air Force Wright Aeronauti Air Force System Command Wright-Patterson Air Force 14. MONITORING AGENCY NAME & ADDRESS	(AFWAL/POTX)	12. REPORT DATE Support 1982 13. NUMBER OF PAGES 116
14. MONITORING AGENCY NAME & ADDRESS	(Il dillerent from Controlling Office)	Unclassified 15. DECLASSIFICATION/DOWNLRADII.G
Distribution limited to U.	S. Government agencie	s only: Test and Evaluation

Force Aero Propulsion Laboratory (AFWAL/POTX), Wright-Patterson AFB, OH 45433.

17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Aircraft Engines

Compressor

Blade Thickness

Rotor

Camber Distribution

Aerodesign

Throat Margin

Aerodynamics 20. ABSTRACT (Cantinue on reverse side if necessary and identify by block number)

Volumes I through VI of this report describes the aerodynamic design cf a series of five transonic rotors all parametrically related to a baseline design documented in Technical Report AFAPL-TR-79-2078. Each of the five designs deviate from the base line, in so far as practical, by a variation of one parameter only. The parametric variations are specified at the rotor tip. The original hub characteristics were preserved to the maximum extent practical. The varied parameter was adjusted along the span. rotor.

aded months and the second of the second of

This volume describes the aerodynamic design details of the Phase II rotor. The Phase II rotor has the tip airfoil maximum thickness located at 55% of meanline length as compared with 70% for the baseline rotor. The location of maximum thickness varied linearly with stream function to 56% of meanline length at the hub, which is the same as the baseline

VOLUME, III

PHASE II ROTOR DESIGN

Foreword

This Final Technical Report was prepared by the Advanced Technology Programs Department, Aircraft Engine Business Group, General Electric Company, Evendale, Ohio for the United States Air Force Systems Command, Air Force Wright Aeronautical Laboratories Wright-Patterson Air Force Bare, Ohio under Contract F33615-80-C-2059. The work was performed over a period of one year starting in September 1980. Effren Strain (Captain USAF) was the Air Force Project Engineer for this program.

This report describes the results of an effort to aerodynamically define five rotor designs, all parametrically related to a base line design which could be evaluated by future testing in order to define the sensitivity of transonic blade rows to several design variables.

For the General Electric Company Mr. D.E. Parker was the Technical Program Manager for this program. Mr. M.R. Simonson was the principal investigator. Mr. A.J. Bilhardt was the overall Program Manager.

VOLUME III

TABLE OF CONTENTS

SECTION		PAGE
x.	DESIGN OF PHASE II ROTOR	1
	1. Introduction	1
	2. Design Procedure	1
XI.	DETAILS OF PHASE II ROTOR DESIGN	11
	1. Circumferential Average Flow Solution	11
	2. Streamsurface Blade Coordinates	41
	3. Plane Section Blade Coordinates	61
XII.	REFERENCES	116

VOLUME III

LIST OF ILLUSTRATIONS

FIGURE		PAGE
32.	Phase II Rotor Static Pressure Distribution	3
33.	Phase II Rotor Intrablade Work Distribution	4
34.	Phase II Rotor Incidence Angle Versus Fractional Immersion	6
35.	Phase II Rotor Deviation Angle Versus Fractional Immersion	6
36.	Phase II Rotor Intrablade Departure Angle Distribution	7
37.	Phase II Rotor Streamsurface Tip Section Compared with Baseline Design	8
38.	Phase II Rotor Deviation Angle Minus Reference Deviation Angle Compared with Data Match	9
39.	Phase II Stator Incidence Angle Compared with Data Match	9
40.	Phase II Rotor Throat Margin Compared with Data Match	10
41.	Compressor Flowpath with Calculation Stations	12
42.	Stacked Phase II Rotor Streamsurface Sections	42
43.	Stacked Phase II Rotor Plane Sections	43

LIST OF SYMDOLS AND ABBREVIATIONS

1. Used in Circumferential Average Flow Output Tables

STA	calculation station number	
WIF	total airflow	
PSIC	stream function (0 = tip (OD), 1 = hub (ID))	
2	axial location.	inches
R	radius	inches
PHI	streamline slope	degrees
CURV	streamline curvature — = neg., — pos.	1/inches
VM	meridional velocity	ft/sec
CU	absolute tangential velocity	ft/sec
ALPHAM	absolute flow angle on stream surface	degrees
M	meridional Mach number	
SL	calculation streamline number	
BLDBLK	flow blockage factor free area -	blocked area/free area
PS	static pressure	psia
PT	total pressure	psia
TT	total temperature	degrees
BETAM	relative flow angle on stream surface	degrees
UREL	relative velocity	ft/sec
MREL	relative Mach number	
VABS	absolute velocity	ft/sec
MABS	absolute Mach number	
GAMMA	specific heat ratio	
PT-RAT	total pressure/inlet total pressure	
TT-RAT	total temperature/inlet total temperature	
RCU	radius x tangential velocity	in-ft/sec
CZ	axial velocity	ft/sec
PCT IMM	percent annulus immersion from tip (OD)	
RAD	average of leading and trailing edge streamline radii	inches
ACC PT		
RATIO	cumulative total pressure ratio	
ACC TT RATIO	comulative total temperature ratio	

LIST OF SYMBOLS AND ABBREVIATIONS

1. Used in Circumferential Average Flow Output Tables (Cont'd) adiabatic efficiency AD. POLY polytropic efficiency axial velocity ratio across blade row Axial Used in Stream Surface Blade Coordinate Tables PT point number PCT X fraction of meridional distance from leading edge inches X meridional coordinate on meanline tangential coordinate on meanline inches B*M meanline angle on stream surface degrees thickness of blade perpendicular to meanline T(M) inches meridional coordinate on suction surface XS inches tangential coordinate on suction surface YS inches meridional coordinate on pressure surface XP inches YP tangential coordinate on pressure surface inches Used in Plane Section Coordinate Tables axial coordinate of stacking axis 2 inches radius of coordinate system origin R inches tilt angle in axial direction MU degrees **ETA** tilt angle in tangential direction degrees RHO section height inches PT point number **ALPHA** axial coordinate inches ZETA* meanline angle from axial degrees coordinate perpendicular to ALPHA and radius UPSILON inches

SOUTH AND SOUTH AND SOUTH AND SOUTH SOUTH

PCT AL

T/C

fraction of axial distance from leading edge

local thickness/chord ratio

SECTION X

DESIGN OF PHASE II ROTOR

1. INTRODUCTION

The specification of the chord-wise location of airfoil maximum thickness of transonic/compressor rotors has often been defined more on the basis of historical practice than on a knowledge of its aerodynamic effect. Research by NACA in the 1950's generally indicated that as relative inlet Mach numbers rose, it was desirable to move the location of maximum thickness aft on an airfoil.

The early work, however, was done with airfoils having significant positive camber. Today, many airfoils have little overall relative turning in the tip region, and frequently have S-shaped mean lines: negative camber followed by some positive camber. In some cases, a forward shift in maximum airfoil thickness may help achieve the desired airfoil suction surface shape, with a less S-shaped mean line. There is also incentive to move the maximum thickness forward to make the blade more capable of withstanding a bird strike without excessive damage.

To get more definitive aerodynamic data on the effect of the location of airfoil maximum thickness, the Phase I blade has been designed with the maximum thickness located at 40%; the Phase II blade with maximum thickness at 55%, to compare with the base line rotor which has its tip maximum thickness at 70% of mean line length.

2. DESIGN PROCEDURE

THE STREET OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE STREET OF THE STREET OF THE STREET OF THE STREET

The "data match" circumferential average flow solution, which was previously described in Volume I, was used as a starting point for the design of the Phase II rotor. The annulus blockage used in the internal blade calculation stations was adjusted to be consistent with the forward shift of the airfoil maximum thickness. The assumed chord-wise distribution of work was iteratively adjusted to obtain a calculated chordwise distribution of static pressure similar to that of the data match calculations of the baseline rotor. Also the blade meanline departure angle (the difference between the air angle and the meanline angle) were adjusted to maintain the same throat area, and flow induction capacity as the baseline blade. To adjust for the increased blade blockage in the forward half of the blade, and to better match the data match status pressure distribution in the hub, the hub contour internally within the rotor was modified

slightly relative to the baseline rotor. The Phase II rotor hub is .012 inches lower in radius at the 60 percent chord location and is faired into the baseline contour near the edge locations.

After each modification to the chordwise work distribution and/or departure angles, revised blade annulus blockage and blade lean angles were calculated and input to the circumferential Average Flow Determination (CAFD) computer program for the next iteration.

The rotor exit radial distribution of total pressure and temperature was maintained the same as the data match of the baseline rotor.

ASSOCIATION OF THE PROPERTY OF

The resulting streamline static pressure distribution for the Phase II blade is compared with the data match of the baseline rotor on Figure 32.

The assumed streamline work input (as a fraction of the total streamline work) is plotted versus percent axial projection in Figure 33. The tip streamline is the one on the left. Each subsequent streamline is indexed to the right by the value of its stream function (fraction of the total flow from the tip). The dotted lines are lines of constant percent axial projection.

A method of characteristics computer program was used to analyze the flow in the cascade flow induction region for streamlines 3 and 6 to assure that the rotor would achieve the design flow. For other streamlines, the difference between the suction surface angle and the "free flow" streamline angle was compared with similar data from the data match calculations of the baseline rotor. This then, was used as a guide in setting the suction surface angle in the flow induction region.

Somewhat larger incidence angles were used to help maintain the same flow induction capacity as the baseline rotor. Phase II blade incidence angles are shown on Figure 34.

A modified version of Carter's Rule was used to calculate a reference deviation angle for the baseline rotor. This procedure converts the vector diagrams (from the data match calculations) to an equivalent two-dimensional set of vectors which would produce the same circulation as the actual blade taking into account the change in streamline radius and meriodional velocity. The difference between the deviation angle implied by the data match calculations and the reference deviation angle was then added to the reference deviation

Western Consider Consider Consideration of the Cons

Figure 32. Phase II Rotor Static Pressure Distribution

gure 33. Phase II Rotor Intrablade Work Distribution

angle calculated from the modified Carter's Rule for the Phase II blade. Phase II Rotor deviation angles are shown on Figure 35. A plot of departure angles for each streamsurface section is shown in Figure 36. Once the intrablade work distribution was chosen these departure angles were required to satisfy the desired incidence angles, deviation angles, and passage area ratios. The resulting streamsurface tip section of the Phase II rotor is compared to that of the baseline rotor in Figure 37. The "deviation angle minus reference deviation angle" for the Phase II rotor was kept essentially the same as the data match analysis although there are some small differences. Figure 38 shows the "delta deviation" compared to the data match of the baseline design.

If the performance of a new rotor design is to be accurately evaluated by comparing overall stage performance with the baseline design then it is important that the stator have nearly the same entering conditions in both cases. Figure 39 shows a comparison of the Phase II stator incidence angles with the data match base. As can be seen the differences are small.

all the lateral and the second of the second

Figure 40 shows the radial distribution of Phase II rotor throat margin and compares it to the data match case. The throat margin for a streamsurface blade section is defined here as the percent of excess throat area over and above the minimum theoretical area required to pass the streamtube flow at a throat Mach number of 1.0 and assuming a total pressure loss equivalent to a normal shock at the upstream Mach number. In a rotor the effect of radius change (between the leading edge and throat) on the relative total enthalpy and pressure is included. As can be seen in Figure 40 the Phase II rotor throat margin is nearly identical to that of the data match of the baseline design.

Details of the Phase II rotor design are given in Section VIII.

Figure 34. Phase II Rotor Incidence Angle Versus Fractional Immersion

THE STATE OF THE S

Figure 35. Phase II Rotor Deviation Angle Versus Fractional Immersion

DEPARTURE ANGLE, 1 DIVISION = 4 DEGREES

FIGURE 36. Phase II Rotor Intrablade Departure Angle Distribution

FRACTION OF AXIAL PROJECTION

Figure 37 · Phase II Rotor Streamsurface Tip Section Compared with Baseline Design

MUNICIPALITY DESCRIPTION OF THE PROPERTY OF TH

Figure 38. Phase II Rotor Deviation Angle Minus Reference Deviation Angle Compared With Data Match

Figure 39 . Phase II Stator Incidence Angle Compared With Data Match

Figure 40. Phase II Rotor Throat Margin Compared With Data Match

SERVICE TO THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF SERVICE OF THE SERVICE OF

SECTION XI

DETAILS OF PHASE II ROTOR DESIGN

1. CIRCUMFERENTIAL AVERAGE FLOW SOLUTION

EMPERIOR CONTROL OF THE PROPERTY OF THE PROPER

The following tabulation presents the detail results of the Phase II Rotor circumferential average flow computation. Each page of the tabulation gives results for one calculation station. Figure 41 shows the calculation station locations within the flowpath. At each calculation station various aerodynamic parameters are given on each of thirteen calculation streamlines. Also given are several mass averaged station flow properties. The Phase II rotor blade forces are included at the end of this tabulation.

Figure 41. Compressor Flowpath With Calculation Stations

RADIUS, IN.

• • •	D+H=0.	ABH=O.	¥	0.135	0.163	0.176	0. 196	0.213	0.227	0.239	0.248	0.257	0.264	0.270	0.272	0.274	MABS	0.135	0.163	0 176	0.196	0.213	0.227	0.239	0.248	0.257	0.264	0.270	0.272	0.274	
FREE			ALPHAM	ö		o.				o.			o O	ö	ó		VABS	150.4	181.0	195.9	218.6	237.1	252.4	265,1	275.9	284.9	292.5	298.9	301.6	304.0	
	0+C=0.		25	o O	ċ	ö	o o	o.	o.	ó	ö	o.	o O	ö	ö	o o	MREL	2.095	1.997	1.913	1.760	1.617	1.477	1.337	1.190	1.031	0.850	0.629	0.484	0.274	
	478.12	O INBR=O	₹	150.4	181.0	195.9	218.6	237.1	252.4	265.1	275.9	284.9	292.5	298.9	301.6	304.0	VREL	2335.4	2224.5	2130.2	1958.1	1797.9	1641.9	1484.6	1320.6	1143.7	943.5	697.2	536.8	304.0	
	AFLOW=	ITYPE=0	CURV	0.0831													BETAM	86.31	85.33	84.72	83.59	82.42	81.16	79.71	77.94	75.58	71.94	64.61	55.81	°.8	
5,000		Y=FREE					70 07			78 0.		.68	. 19 0.	.35 0.	92 0.	0	11	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	,
STA	MTIP=			7 -50.10	4 -43.54		7 -34.70	9 -29.90				- 14	- 1	-		o o	ΡŢ	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	4.696	14.696	•	
	T .	OPTX=DPP	~	73.207	12	-	711.027	-				g	5.083		2.516		PS	9	•	Ī	305 1	1 237 1	·	14.124 1	·	·	•	.972	•	•	
		.365	7	- 18,800	-18.800	- 18.800	- 18.800	-18.800	-18.800	-18.800	-18.800	-18.800	-18.800	-18.800	-18.800	-18.800	BLDBLK	7	4	7	997 14	21 12	997 14	•	4	7	997 14	997 13	+3	-	
N FT		WTF= 61.	SIC		0.050	0.100	0.200	0.300	0.400	0.500	0.600	0.700	0.800	0.900	0.950	1.000	פר פרם	1 0.997	2 0.9	3 0.997	4 0.9	50.9	6.0 9	7 0.9	8 0.9	6.0	Ö	Ö	12 0.9	Ö	
Z	•	3																						1	3						

THE REPORT OF THE PARTY OF THE PROPERTY OF THE PARTY OF T

STA 5.000 MASS AVERAGED PROPERTIES
PT= 14.696 TT= 518.69 GAMMA=1.4015 PT-RAT= 1.000 TT-RAT= 1.000
RCU= 0. VM= 255.3 CZ= 233.4 MM=0.230 MABS=0.230 MREL=1.300

	D+H=0.	ABH=O.	Ī	0.471	0.464	0.458	0.447	0.436	0 426	0.416	0.406	0.395	0.383	0.369	0.361	0.351	MAS	0.47	0.434	0.458	0.447	0.436	0.426	0.416	0.406	0.395	0.383	0.369	0.361	0.351
FREE			ALPHAM	o O	ö	ó	ó	o .		ė,	°	o O	o O	o O	·	ö	VABS	514.6	507.6	501.0	489.3	478.4	467.7	457.2	446.4	434.9	422.1	407.0	398.2	387.6
	0+C=0.		3	ó	ó	ö	ó	o ·	o ·	o'	ó	ó	o O	o ·	ó	ö	MREL	1.601	1.564	1.525	1.445	1.361	1.271	1.174	1.066	0.945	0.803	0.624	0.508	0.351
	277.56	O INBR=O	¥	514.6	507.6	501.0	489.3	478.4	467.7	457.2	446.4	434.9	422.1	407.0	398.2	387.6	VREL	1750.4	1710.1	1668.8	1583.2	1492.2	1394.7	1288.9	1172.0	1039.7	884.1	687.7	560.3	387.6
	AFLOW=	ITYPE=0	CURV	-0.0952					-0.0614				-0.0330	-0.0257	-0.0190		BETAM	72.90	72.73	72.53	72.00	71.30	70.41	69.22	67.61	65.27	61.48	53.72	44.72	°.8
9.000	# 14	OPTY=FREE		96	<u>•</u>	-22.95 -0	-20.65 -0	38	5	88	. 59	. 23	74	.03 -0	.57 -0	0	Ħ	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7
STA	MTIP=		Hd	31 -24				10 -18.	446 -16.	29 - 13.	11 - 11	51 -9	6.	142 -4	34 -2	0	PT	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696
	1= 2	OPTX*D	œ	31 9.48		70 9.020				30 6.8 29	19 6.141	37 5.35	39 4.402	က	57 2.234	250 0.00	PS	12.624	12.677	12.726	. 812	12.892	. 968	1.042	13.116	13, 193	1.277	1.374	1.428	1.493
		.365	7	-14.431	-14.450	-14.47	-14.5	-14.55	-14.606	-14.660	-14.719	-14.787	-14.869	-14.978	-15.057	-15.25			•	0.997 12								997 13	997 13	997 13
INLET		WTF= 61	PSIC	ó	0.050	o. 100	0.300	0.300	0.400	0.500	0.600	0.700	0.800	0.900	0.950	4.000	St. BL		7	о 8	• •	5	9	7 0.	8	9	0.0	± 0	12 0.	13 0.

TO TOTAL OF THE SEASON WEREARDS INCHARD BY MODELED SOURCES SEASONED AND SEASON FOR SEASON FRANCISCO SEASON FOR SEASON FOR

STA 6.000 MASS AVERAGED PROPERTIES
PT= 14.696 TT= 518.69 GAMMA=1.4016 PT-RAT= 1.000 TT-RAT= 1.000
RCU= 0. VM= 455.5 CZ= 438.5 MM=0.415 MABS=0.415 MREL=1.120

	D+H=0.	ABH=O.	Ī	0.578	0.571	0.563	0.549	0.533	0.518	0.502	0.486	0.468	0.446	0.415	0.390	0.348	MABS	0.578	0.571	0.563	0.549	0.533	0.518	0.502	0.486	0.468	0.446	0.415	0.390	0.348
FRE		•	ALPHAM	ö	o'	ö	o.	ó	o.	ò	ö			o.	ó	ó	VABS	625.1	617.7	610.3	595.0	579.5	563.8	547.6	530.4	511.3	488.5	455.9	428.7	383.7
		O ABC=O	3	ó	o .	o.	ö	ö	ö	ö	ó	ö	ö	ö	ö	ö	MREL	1.560	1.525	1.490	1.415	1.337	1.253	1.162	1.061	0.948	0.815	0.644	0.526	0.348
	7	O INBR=0	¥ >	625.1	617.7	610.3	595.0	579.5	563.8	547.6	530.4	511.3	488.5	455.9	428.7	383.7	VREL	1687.2	1650.8	1613.5	1535.4	1452.3	1363.0	1265.9	1158.6	1036.9	893.0	707.2	579.1	383.7
_	•	ITYPE=0	CURV	-0.0952	-0.0872	-0.0849	-0.0794	-0.0736	-0.0679	-0.0628	-0.0586	-0.0539	-0.0558	-0.0633	-0.0759		BETAM	68.25	68.02	67.77	67.20	66.48	65.57	64.37	62.75	60.45	56.84	49.86	42.24	0.0
	MTIP= 27	OPTY=FREE	PHI		_	-13.90 -C	-12.40 -0	-10.87 -0	-9.280	-7.61 -0	_		-1.47 -0	1.51 -0	3.54 -0	0.	1	518.7	518.7	518.7		518.7	-	518.7		-	518.7		-	518.7
	I		<u>م</u> «	880	675	464	8.021 -1				837	112	236	.064	. 206	000.	1d	14.696	14.696	14.696	14.596	14.696	14.696	14.696	7	14.696	14.696	14.696	14.696	14.696
	I= 3		7	8008.	.8008	.800	808	800	800	800	.800 5.		.800	.800 3.	.800 2.	.800	PS	Ξ	11.780	11.844	11.975	12.105	12.235	12.366	12.502	•	12.819	13.050	13.234	13.516
		61.365		- 12	-12.	-12.	-12		- 12	_	- 12		-12.	-12		_	BLOBLK	966.0	966.0	0.998	0.998	0.998	966.	966.	866.0	966.0	966.0	966.0	866.	966.0
INLET		WTF= 6	PSIC	o O	0.050	o. 18	0.200	0.300	0.400	0.500	0.600	0.700	0.800	0.900	0.950	8	SL	-	8	<u>ო</u>	4	S	9	7	80	6	\$	Ī	42	13
• •		_																						•	=					

recompliant seasons over the contract of sample of the contract product of the contract of the contract of the

STA 7.000 MASS AVERAGED PROPERTIES
PT = 14.696 TT = 518.69 GAMMA*1.4017 PT-RAT = 1.000 TT-RAT = 1.000
RCU* 0. VM = 539.1 CZ * 532.1 MM=0.495 MABS=0.495 MREL*1.109

	D+H=0.	ABH=O.	I	0.665	0.656	0.646	0.628	0.611	0.595	0.578	0.559	0.538	0.509	0.467	0.427	0.395	MABS	0.665	0.656	0.646	0.628	0.611	0.595	0.578	0.559	0.538	0.509	0.467	0.427	0.395	
FREE			ALPHAM	ö	ö		·								Ö	ö	VABS	711.8	702.9	693.5	675.5	658.5	641.9	624.9	606.2	583.9	554.7	510.9	468.4	434.2	
	D+C=0.	ABC=0	رد در	o.	o o	ö	·	ö	o o	·	o.	o.	ö	ö	o.	o	MREL	1.567	1.532	1.497	1.424	1.349	1.269	1.184	1.091	0.987	0.866	0.711	•	0.456	
	224.06	INBR=0	- X	711.8	702.9	693.5	675.5	658.5	641.9	624.9	606.2	583.9	554.7	510.9	468.4	434.2	VREL	1677.5	1642.4	1606.3	1531.6	1453.2	1369.9	1280.4		1072.2		4.977	659.2	501.4	
	AFLOW=	ITYPE=0	CURV	-0.0953 7		_			-0.0693 6	-				933	1212	910	RETAM	64.89	64.66	64.42	63.83	63.05	62.06	60.19	59.16	57.00	53.95	48.89	•	30.01	
8	}	33										34 -0.			ó	99 0.	Ħ	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	
CTAE	MT1P= 40			1-8.21							Ö	ю С	9	_		47.	10	96		969							969		969		
	7	OPTX-DPP	~	8.608	80	8.211	7.790	7.341	6.858	6.333	5.753	5.095	4.319	n	~	<u>-</u>	v	60		1 460	262 14	417 1	566 1	717 1	879 1	990	309 14	_	•	-	
	-		~	11.499	11.461	11.421	=	11.250	~	•	-10.938	- 10,808	-10.656	-10.459	-10.323	10.086	3			-	-	=	=	++	-	12	12.	5	12	<u>t</u>	
	•	61.365	7		0.050	100	0.200	300	0.400 -1						250	8	7		700.0	7000		Ö	ó	_	Ó	Ó	c	c	Ö	Ö	
17.07		# H H	_	Ċ	Ó	Ċ	Ó	Ċ	Ó	c		Ċ	o	Ċ	c	; -	ō	ָרָרָרָרָרָרָרָרָרָרָרָרָרָרָרָרָרָרָר		. "	4	מי	y		. 6	· σ	Ç	-	. 5	. .	

is the control of the

STA 8.000 MASS AVERAGED PROPERTIES
PT= 14.696 TT= 518.69 GAMMA=1.4017 PT-RAT= 1.000 TT-RAT= 1.000
RCU= 0. VM= 612.1 CZ= 604.6 MM=0.566 MABS=0.566 MREL=1.140

ш	D+H=0.	ABH=O.	ĭ	0.712	0.705	0.697	0.683	0.668	0.653	0.635	0.614	0.586	0.550	0.502	0.472	0.468	MABS	0.712						0.635	0.614	0.586	0.550	0.502	0.472	0.468
FREE			ALPHAM	o O	ó	ó	ó	o O	ó	o'	ö	o.	ö	o O	ö	ó	VABS	757.7	750.8	742.8	729.1	715.2	700.0	682.5	661.0	633.4	596.9	546.7	516.0	512.0
	D+C=0.		2	ó	o.	ó	o O	o.	ó	ó	o.	ö	ó	ö	ó	ö	MREL	1.579	1.547	1.514	1.447	1.377	1.303	1.222	1, 133	1.032	0.912	0.762	0.667	0.570
	211.87	O INBR=0	¥>	757.7	750.8	742.8	729.1	715.2	700.0	682.5	661.0	633.4	596.9	546.7	516.0	512.0	VREL	1680.5	1648.3	1614.8	1546.3	1474.0	1396.9	1313.2	1220.6	1115.0	989.7	830.3	729.0	622.9
	AFLOW=	ITYPE=0	CURV		-0.0542	-0 0524	-0.0504		-0.0525		-0.0627	-0.0708	-0.0788	•	-0.0405	0. 1881	BETAM	63.20	62.90	62.61	61.87	60.98	59.93	58.69	57.21	55.38	52.91	48.81	44.95	34.73
	= 53			ە	•	0- 68.0-		0.57 -0	1.72 -0			.71 -0	11.13 -0	57	21.62 -0	.65 0	11	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7
STA			FHI									8	•	11 16.		11 38	ΡŢ	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	4.696	4.696
	I= 5	OPTX=DPP	œ	9 8.500	4 8.315	8 8.125				-		5 5.200		7 3.541		0 2.011	S	77			•	·	.033	•		•	•	•	.613	.644
			7	-9.999	-9.98	-9.968	-9.935	-9.900	-9.862	-9.821	-9.776	-9.725	-9.665	-9.587	-9.536	-9.460			·	·		₽	-	Ŧ	=	÷	-	*-	5	996 12
ET	į	E 61.365	PSIC	<i>-</i> :	0.050	0.100	0.200	0.300	0.400	.500	•	0.700	.800	0.900	0.950	.000	SL BLOBLK		2 0.996	3 0.996	4 0.996	5 0.996	966.0 9	7 0.996	8 0.996	966.0 6	0 0.996	1 0.996	2 0.996	3 0.9
INLET		WTF		J	V	J	J	J	U	0	0	Ų	J	J	v	•	V	'							1	7	_	_	_	•

MANAGEMENT OF THE PROPERTY OF

STA 9.000 MASS AVERAGED PROPERTIES
PT= 14.696 TT= 518.69 GAMMA=1.4018 PT-RAT= 1.000 TT-RAT= 1.000
RCU= 0. VM= 663.6 CZ= 655.2 MM=0.617 MABS=0.617 MREL=1.178

) : ب بب	D•H=0.	A 8H≈0.	Ī	0.726	0.727	0.727	0.724	0.718	0.708	0.692	0.669	0.635	0.588	0.530	0.492	0.500	MABS	0.726	0.727			0.718	0.708			0.635	0.588	0.530	0.492	0.500
FREE	o.	ö	ALPHAM	o.	Ö	o .	ö	ö	ó	Ö	o.	ò	ó	ö	ö	ö	VABS	771.6	771.9	771.9	769.5	763.5	753.7	738.6	715.8	682.2	635.3	575.8	536.7	544.7
(O ABC=O	2	ö	o.	ó	o O	ö	ö	ö	ó	ö	ó	ó	ö	ö	MREL	1.588	1.561	1.534	1.476	1.413	1.344	1.268	1.181	1.080	0.957	0.805	0.707	0.627
;	ဂ္ဂ	O INBR=0	¥>	771.6	771.9	771.9	789.5	763.5	753.7	738.6	715.8	682.2	635.3	575.8	536.7	544.7	VREL	1686.8	1658.3	1629.1	1567.9	1502.2	1431.1	1352.7	1264.0	1160.1	1034.1	874.8	771.4	683.5
	AFLOW=	ITYPE=0	CURV		0.0033	-0.0019	-0.0119	-0.0202	-0.0292	-0.0394		-0.0721	-0.0874	-0.0848	-0.0826	. 1922	BETAM	62.78	62.26	61.72	60.61	59.45	58.22	56.91	55.51	53.98	52.09	48.84	45.92	37.16
10.000	MIIP= 66	DPTY=FREE	_		32	0.61 -0	.38 -0	.39 -0	1.74 -0	.49 -0	7.79 -0	71	14.38 -0	19.50 -0		.46 0	11	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7
STA	Ī	_	Hd	500 0.	317 0	130 0	741 1	31 2	94 3	22 5		317 10.	623 14	732 19	•••	340 32	PT	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696
,) = 1	OPTX*DPP	œ	000 8.5	000	8.1	7.	000 7.331			9000	ĸ.	4	ю	000 3.140	000 2.3	PS	10.340	10.337	10.337	10.361	10.420	10.517	10.664	10.883	1.199	1.625	2.136	2.453	2.389
			PSIC Z	0.6-	٥.6-	ð.6-	٥. و	Ŏ.6-	-9.000	٥.6-	ō.6-	-9.0	٥. و	ð.6-	٥. و-	٥. ٥.	BLDBLK	0.994 10				_				0.994 1	994 1	.994 1;	994 1	.994 1;
INLET		WTF= 6	PSIC	ö	0.050	o. 100	0.200	0.300	0.400	0.500	0.600	0.700	0.800	0.900	0.950	1 .000	SL BI	•	7	о п		13 O		7		o o		÷	12 0.	13

SECTION OF THE PROPERTY OF THE

0R D+H=0.	ABH=O.	Ī	0.787	0.788	0.788	0.787	0.782	0.771	0.751	0.719	0.675	0.624	0.557	0.515	0.511	MABS	0.787	0.788	0.788	0.787	0.782	0.771	0.751	0.719	0.675	0.624	•	0.515	0.511
E ROT		ALPHAM	ö	ö	o.	o.	ö	ó	o O	ó	o.	ö	ö	ö	ö	VABS	829.3	830.3	830.4	829.2	824.3	814.0	795.4	764.5	722.2	671.4	603.4	560.3	556.2
b•C=0.		2	ó	ö	ö	ó	ö	ö	ö	ó	ó	o.	o o	ö	ö	MREL	1.627	1.601	1.575	1.520	1.459	1.392	1.314	1.223	1.117	0.996	0.845	0.749	0.563
197.53		¥>	829.3	830.3	830.4	829.2	824.3	814.0	795.4	764.5	722.2	671.4	603.4	560.3	556.2	VREL	1714.0	1687.0	1659.1	1600.9	1538.3	1469.5	1391.7	1300.8	1194.8	1071.5	915.6	815.7	727.0
AFLOW=	ITYPE=4	CURV	•	.0071	-0.0063				.0297	-0.0472	.0570	-0.0652	.0675	-0.0517	. 1541	BETAM	61.06	60.52	59.97	58.81	57.60	56.36	55.14	54.01	52.81	51.20	48.77	46.61	40.09
11.000	OPTY=FREE	- -	0	-	. 79	.67 -0	2.85 -0		6.42 -0	8	t.	17	9.	.67	. 14	#	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7	518.7
STA=		PHI	500	.322 0	139 0	_				64 9	94 12.	732 16.	02 21		653 31	F	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696	14.696
] = 7	GPTX=DPP	2	1.166 8.5	80	.243 8.1	.322 7.760	.397 7.360		532 6.471		.624 5.39	4	.548 3.902	'n	507 2.6	PS	9.759	9.749	9.748	9.761	9.810	9.914	10. 103	10.411	10.822	11.300	11.903	12.263	12.297
	61.365		-8	8 0	80	œ	80	80		8	80	80	8	8	8	BLDBLK	066.0	0.990	•	•	0.990	0.890	066	0.990	-	0.990	•	0.990	0.990
ROTOR 1	WTF= (PSIC	o O	0.050	o. .00	0.200	0.300	0.400	0.500	0.600	0.700	0.800	0.900	0.950	1 .000	35		~	n	4	N.	9	7	6 0	Ø	_	++	12	•

THE STATE OF THE S

STA 11.000 MASS AVERAGED PROPERTIES
PT= 14.696 TT= 518.69 GAMMA=1.4018 PT-RAT= 1.000 TT-RAT= 1.000
RCU= 0. VM= 753.8 CZ= 739.8 MM=0.709 MABS=0.709 MREL=1.259

481	
3	
§• j	
3.1	
25	
4.7-	
(2007) (2017)	
تان	
A	
7	
77	
N.	
3	
1	
£1.	
U	
1.	
4	
7	
2:	
.	
1	
ķ	
È.	
: 1	

D+H=0.	ABH=O.	Ŧ	0.800	0.803	0.812	0.827	0.840	0.844	0.837			0.730	•	0.627	0.607	MABS	0.801	0.804	0.813	0.827	0.841	0.845	0.838	0.815	0.777	0.733	0.665	0.630	0.611	.T= 1.017
		ALPHAM	3, 15	2.77	2.61	2.33	2.45	2.71	3.32	3.76	4 .06	4.59	5.07	5.48	5.98	VABS	852.1	853.3	860.9	873.4	886.3	890.1	885.1	863.1	827.3	784.4	717.3	-	651.6	\$
0+C=0.		23	46.8	41.3	39.3	35.5	37.8	42.1	51.2	56.6	58.5	62.7	63.4	65.1	68.9	MREL	1.584	1.567	1.549	1.511	1.464	1.406	1.334	1.249	1.151	1.037	0.894	0.809	0.725	4
180.37	5 INBR=3	Ž	850.9	852.3	860.0	872.7	885.5	889.1	883.6	861.2	825.3	781.9	714.5	678.4	658.0	VREL	1684.0	1662.6	1641.0	1595.1	1542.6	1481.5	1408.2	1323.0	1224.8	1110.4	963.8	875.3	785.0	MASS AVERAGED PROPFRIIES MMA=1.4018 PI-RAT= 1.05
AFLOW*	ITYPE=5	CURV		0.0273	0.0288	0.0171	0.0088	-0.0092	-0.0167	-0.0017	0.0038	0.0104	0.0234	0.0582	.0887	BETAM	59.65	59.16	58.39	56.83	54.97	53.12	51.14	49.39	47.64	45.24	42.15	39.19	33.05	VERAGED 4018 PT
MTIP= 92	OPTY=PT	_	· 0		0.65 0					7	9	29	22.01 0	.61	.87 0	11	530.4	528.8	528.1	526.8	526.9	527.3	528.5	528.7	528.1	527.6	526.2	525.4	524.4	MASS AVERA
MTIP			.500	.323 0	. 142 0				.504 6	.012 9	.460 12.			.503 25		14	15.501	15.427	15.407	15,359	15.410	15.482	15.626	15.667	15.623	15.582	15.439	15.354	15.248	1.500
I * 8	OPTX=TT	2	963 8.5	.9918.3	.020 8.1	7	7	Ψ	9	φ	ຜ	4	4	ო	7	S	10, 149	10.074	9.973	9.797	9.691	9.698	9.854	10.123	10.476	10.899	11.470	11.750	11.850	STA 1 TT= 527
	61.365		-7.	-7	æ	80	*		80	80	80	80	80	60-	8	BL DBLK	0.954	0.953	0.952	0.949		0.939	0.929	0.919		0.891	0.869	0.850	0.812	15.496
	WTF=	ij	ö	0.050	о Ф	0.70	0.300	0.400	0.500	0.600	0.700	0.800	006.0	0.950	- 000	Š	-	. 0	Ī		N.		7		თ	9		12	_	PŢ

98 08	D+H=0.	ABH=O.	¥	0.761	0.767	0.775	0.797	0.818	0.833	0.841	0.834	0.816	0.781	0.717	0.674	0.636	MABS	0.767	0.772		0.801	0.823	0.839	0.849	0.844				o	0.651
IN ROTOR		o.	ALPHAM	6.95	6.75	6.53	6. 16	6.27	6.87	7.78	8.51	9.27	10.01	11.02	11.48	12.26	VABS	829.5	833.8	840.6	859.3	880.0	896.0	906.6	901.6	885.4	851.6	789.0	745.6	706.7
	D+C=0.		25	100.3	98.0	92.6	92.2	96.2	107.2	122.7	133.5	142.6	148.0	150.9	148.4	150.0	MREL	1.501	1.483	1.466	1.434	1.394	1.343	1.281	1.210	1,127	1.029	0.896	0.814	0.723
	169.31	:5 INBR=3	¥>	823.4	828.1	835.2	854.4	874.7	889.6	898.2	891.6	873.9	838.7	774.4	730.6	9.069	VREL	1623.9	1601.6	1580.3	1538.5	1490.6	1433.3	1367.5	1292.7	1207.1	1104.8	967.9	882.1	785.3
•	AFLOW=	ITYPE=5	CURV		0.0311	0.0422	0.0365	0.0026	-0.009k	-0.0023	0.0084	0.0173	0.0133	0.0113	0.0156	0.0240	BETAM	59.53	58.87	58. 10	56.27	54.07	51.64	48.94	46.39	43.62	40.61	36.86	34.08	•
STA= 12.000	MT IP = 105	OPTY=PT	IHd	٥.	7						9.35	12.41	9	_	.92	.83	Ħ	1 543.8	_	_		-	-				540.1		٠.	
ST/				8.500	323		7.773	.385	6.976	6.538	.060	5.527		. 145			Į	16.454	16.468	•		•					16.889		16.292	15.
	6 *!	TT=XT40	7	.759 8	178	86/	844	889	931		-8.010 6			.946 4	. 936		P.S	-	11.097	11.010	10.782	10.609	10.564	10.605	10.714	10.885	11, 154	11.615		12.022
		61.365		-7	0			-							-7	-	BLOBLK	0.928	0.927	0.926	0.921	0.914	0.904	0.887	0.870	0.852	0.833	0.803	0.779	0.734
ROTOR		WTF	S	0	0.050	001	0.20	0.300	0.400	0.50	0.60	0.700	0.800	0.900	0.950	- 000	35	-	~ ~		4					σ	Ç	=	12	+

THE PARTY OF THE PROPERTY OF T

STA 12.000 MASS AVERAGED PROPERTIES

PT= 16.706 TT= 540.35 GAMMA=1.4018 PT-RAT= 1.137 TT-RAT= 1.042

RCU= 735.6 VM= 848.6 CZ= 831.3 MM=0.791 MABS=0.799 MREL=1.229

×	D+H=0.	ABH=0.	I	0.716	0.723	0.728	0.743	0.765	0.792	0.813	0.822	0.815	0.795	0.745	0.707	0.651	MABS	0.731	0.738	0.744	0.759	0.782		-		0.842	0.828	0.779	0.742	0.687
IN ROTOR		_	ALPHAM	11.54	11.65	11.69	11.67	11.80	12.14	12.62	13.47	14.63	16.05	16.88	17.53	18.43	VABS	805.6	812.9	817.9	831.7	853.8	881.9	903.8	915.0	911.5	896.8	845.2	806.3	748.3
	0+C=0.	=3 ABC=0	3	161.1	164.1	165.7	168.2	174.6	185.5	197.5	213.1	230.3	247.9	245.5	242.8	236.5	MREL	1.410	1.388	1.367	1.326	1.287	1.248	1.204	1.146	1.073	0.988	0.879	0.807	0.712
	160.72	5 INBR=3	¥>	789.4	796.1	801.0	814.5	835.7	862.1	882.0	6.688	882.0	861.9	808.8	768.9	6.60	VREL	1554.3	1528.3	1502.7	1453.8	1406.0	1358.1	1305.3	1240.8	1162.0	1070.5	954.5	878.0	776.1
	AFLOW=	ITYPE=5	CURV	٠.	-0.0065	0.0067	0.0173	0.0328	.0381	.0301	0.0105	0.0092	0.0263	0.0231	-0.0038	-0.0442	BETAM	59.48	58.61	57.79	55.93	53.53	50.60	47.49	44.18	40.63	36.38	32.08	28.86	23.83
STA= 12.500	MTIP=118	OPTY=PT	=	0.	22						19	8	_				11	559.0	558.9	558.4	557.2	556.7	556.9	556.9	557.0	556.6	555.2	549.5	545.7	540.4
STA	MTIF			200										•••	778 24	117 28	10	17.575	17.733	17.842	18.018	18, 199	18.409	18.549	18.656	18.684	18.570	17.919	17.476	16.873
	1=10	OPTX=TT	2	•	80	80	7777	7	9	9	ý		'n	4	ю С	က်	Sd	12,314	340	12,352	300	152	.945	.759	.685	.743	.844	2.000	124	•
		ĸ	Z	-7.556	-7.565	-7.576	-7.605	-7.635	-7.664	7.69	-7.719	-7.724	-7.690	-7.645	-7.641	7.658								Ξ	-	Ŧ	-	-	-	_
		61 365	;) •							1					_	•	RI DRI K	606.0	609	0.902	.897	888	376	.856	837	.817	. 794	759	732	.683
POTOR 1	!		U		0.050	9	200	0.300	0.400	0.500	0.600	0.700	0.800	006.0	0.950	8	e e			(n)	4	S	9	0	8	6	0	-	2 0	3
00)	ETF.		Ç	U		·	,	,		,				,	, +-	v	•						2	2		Ψ-	•	•	▼-

medical constant and the content of the content of

STA 12.500 MASS AVERAGED PROPERTIES
PT= 18.209 TT= 555.46 GAMMA=1.4017 PT-RAT= 1.239 TT-RAT= 1.071
RCU= 1249.0 VM= 839.3 CZ= 822.0 MM=0.771 MABS=0.794 MREL=1.159

OR D+H=0.	ABH=0.	Ī	0.675	0.687	0.697	0.720	0.745	0.773	0.794	0.811	0.820	0.814	0.768	0.736	0.668	MABS	0.702	0.715	0.725	0.749	0.775	0.805	0.830	0.851	0.866	0.868	0.825	0.796	0.729
N ROT		ALPHAM	15.99	16.05	16.05	16.05	16.00	16.27	16.79	17.58	18.67	20.32	21.40	22.45	23.67	VABS	786.6	799. 1	809.2	832.6	857.1	886.6	910.4	930.7	944.2	945.9	899.4	868.2	796.8
I D+C=0.		2	216.7	220.9	223.7	230.2	236.3	248.4	263.0	281.1	302.2	328.5	328.1	331.6	319.9	MREL	1.330	1.310	1.291	1.255	1.221	1.185	1.143	-			_		0.708
154.30	5 INBR=3	X X	756.2	767.9	777.6	800.2	823.9	851.1	871.6	887.2	894.5	887.0	837.4	802.4	729.8	VREL	1489.5	1465.0	1441.1	1395.0	1351.0	1305.5	1254.6	1197.9	1133.4	1054.2	948.2	879.1	773.9
AFLOW*	ITYPE=5	CURV	٥.	0.0240	0.0176	0.0282	0322	J. 0287	0.0190	0.0250	0.0187	0.0134	-0.0028	-0.0250	-0.1136	BETAM	59.49	58.39	57.34	55.00	52.42	49.31	45.99	42.22	37.89	32.71	27.98	24.12	19.43
STA= 13.000 MTIP=131	OPTY=PT	PHI	o.	33							1.94		6,	80	29.47 -(11	572.9	572.8	572.3	571.4	570.2		569.8	-			561.0	556.9	549.5
STA		<u>م</u> م	8.500			_				_	5.657 1	_	4.380 2	915	272 2	Fd	18.637	18.863	19.033	19.356	19.566	19.817	19.995	20.107	20.140	20.073	19.241	18.731	17.850
1.11	OPTX=TT	2	352	352	354	7.	7.			Ĭ	-	385	344	346 3.	375 3.	PS	13.403	13.416	13.410	13.335	13, 155	12.933	12.727	12.521	12.349	12.273	12.300	12.327	12.529
	61.365	0		0		.7- 0	-7				17	7	17		.7- 0	BLDBLK	0.885	0.885	0.884	0.879	0.871	0.358	0.837	0.817	0.795	0.769	734	0.705	0.652
ROTOR 1	WTF=	PSIC	ó	0.050	Q	0.230	O. 3Q	0.400	0.500	009 0	0.70	0.800	0.900	0.950	4.000	S		. 0	n	*	ß		7		o	_			13

THE PARTY OF THE P

STA 13.000 MASS AVERAGED PROPERTIES
PT= 19.562 TT= 568.33 GAMMA=1.4016 PT-RAT= 1.331 TT-RAT= 1.096
RCU= 1686.7 VM= 838.3 CZ= 820.8 MM=0.762 MABS=0.802 MREL=1.110

20	D+H=0.	ABH=O.	Į	0.631	0.648	0.659	0.681	0.708	0.735	0.759	0.780	0.793	0.794	0.767	0.741	0.689	MABS	0.672	0.691	0.704	0.727	0.757	0.786	0.813	0.839	0.861	0.872	0.855	0.833	0.781
IN ROTOR			ALPHAM	20.03	20.41	20.63	20.67	20.72	20.81	21.03	21.68	22.84	24.48	26.21	27.15	28.18	VABS	762.3	783.7	197.4	820.5	850.1	878.5	903.7	929.2	949.2	959.0	937.5	912.9	855.8
	D*C=0.		5	261.1	273.3	281.0	289.6	300.7	312.1	324.3	343.3	368.5	397.4	414.1	416.6	404.2	MREL	1.261	1.237	1.215	1.177	1.143	1.110	1.075	1.034	0.983	0.922	0.841	0.790	0.713
	150.60	5 INBR=3	¥ >	716.2	734.5	746.3	767.7	795.1	821.2	843.4	863.5	874.7	872.8	841.0	812.3	754.3	VREL	1431.0	1402.6	1375.7	1328.0	1283.6	1240.2	1194.9	1144.1	1084.4	1013.8	922.7	865.6	781.1
•	AFLOW=	ITYPE=5	CURV	۲,	0.0169	0.0046	0.0082	0.0212	0.0237	0.0327	0.0161	8600.0	-0.0019	-0.0246	-0.0422	. 1063	BETAM	59.97	58.42	57.15	54.68	51.73	48.54	45.10	41.8	36.23	30.59	24.29	20.20	15.04
= 13.500	MT I P = 144	OPTY=PT	PHI								8.55			1.44 -0	5.71 -0	1.60 -0	#	584.0	585.6	586.0									568.4	559.6
STA=	Ħ		<u>م</u>								6.199		175 1	497 2	.054 2	439 3	PT	19.512	19.942	20.255	20.697	21.066	21.320	21.433	21.524	21.585	21.481	20.756	20.084	18.981
	1=12	0PTX	2				.127 7.					_	.081 5.	4	.051 4.	.092 3.	PS	14.418	14.486	14.544	14.550	14.404	14.172	13.878	13.563	13,304	13.080	12.874		12.676
		1.365		-7	-7	-7	-7	-7	-7	-7	-7	-7	-7	-7	-7	-7	DBLK	0.880	0.881	880	874	866	854	833	813	790	764	729	78	949
187. 281		WTF= 6	PSIC	0	0.050	0.100	0.200	0.300	0.400	0.500	0.600	0.700	0.800	0.900	0.950	1.000	SL BI	-	7	Ö m	•	20	9	0	8	6	⊙	-	12 0	13 0

THE PARTY OF THE PROPERTY OF T

STA 13.500 MASS AVERAGED PROPERTIES
P1.20.943 TT= 580.83 GAMMA=1.4015 PT-RAT= 1.425 TT-RAT= 1.120
RCU= 2111.9 VM= 817.0 CZ= 799.2 MM=0.734 MABS=0.795 MREL=1.049

2 0	D+H=0.	A BH=0.	Ŧ	0.595	0.612	0.625	0.648	0.678	0.706	0.729	0.749	0.762	0.768	0.754	0.738	0.707	MABS	0.651	0.672	o	ó	o				0.852			o	0.837
IN ROTOR	· •	Ö	ALPHAM	24.01	24.36	24.67	24.80	24.83	24.83	25.00	25.59	26.60	28.35	30.52	31.63	32.38	VABS	748.0	770.7	787.4	815.3	848.7	879.4	904.3	929.2	949.5	967.5	967.0	955.3	918.7
		3 ABC=0	5	304.4	317.9	328.7	342.1	356.4	369.3	382.2	401.4	425.2	459.5	491.0	501.0	492.0	MREL	1.199	1.175	1.151	1.112	1.079	1.048	1.015	0.976	0.931	0.876	0.809	0.770	0.719
	148.19	5 INBR=3	X >	683.3	702.1	715.5	740.1	770.2	798.1	819.5	838.0	849.0	851.6	833.0	813.4	775.9	VREL	1377.1	1347.5	1318.8	1269.4	1225.5	1184.3	1140.6	1091.9	1036.8	972.1	893.7	848.0	789.7
	AFLOW*	ITYPE=5	CURV					0.0047					-0.0171	-0.0424	0608	0911	BETAM	60.25	58.60	57.14	54.34	51.06	47.63	44.07	39.88	35.02	28.84	21.24	16.44	10.71
14.000	157	OPTY=PT	_	ö	1 3							_			Ì	50 -0.	1.1	594.8	596.5	597.4	597.0	596.5	595.3	593.6	592.4	591.0	589.8	585.4	580.6	571.1
STA					.0-						60	Ξ	#		56	33.	14	20.386	20.889	21.308	21.928	22.425	2.742	22.864	22.932	22.917		22.274	1.595	20.328
	[=13	OPTX*TT	~	5 8.500	60	8.140	3 7.782	,-	7.051	Ψ.	φ	Ŋ	S	4	5 4.199	3.62	Sd	56	432	33	05		.237 2	930 2	14.584 2			519	220	840
	-		7	-6.945	-6.926	-6.910	-6.88	-6.873	-6.861	-6.852	-6.846	-6.824	-6.776	-6.742	-6.756	-6.809	BLOBLK	5	Ť		5	5	56 15	37 14	118 14	97 14	73 13	<u>+</u>	12 13	-
ROTOR 1		WTF* 61.365		0	0.050	001.0	0.200	0.300	0.400	0.500	0.600	0.700	0.800	006.0	0.950	1.000	Sign		0 0 88	3 0.880	4 0.875	5 0.867	6.0.8	7 0.8	8 0.818	9 0.797	_	11 0.740	12 0.712	_
8	!	5																												

SECRETARIOS PROFESSOR A CONTRACTOR ACCUMANTAMENTACION ACCULANCE A SECRETARIO DE CONTRACTOR DE CONTRACTOR DE CO

STA 14.000 MASS AVERAGED PROPERTIES
PT= 22.269 TT= 592.27 GAMMA=1.4014 PT-RAT= 1.515 TT-RAT= 1.142
RCU= 2501.1 VM= 795.1 CZ= 776.6 MM=0.708 MABS=0.791 MREL=0.996

STA 14.500 MASS AVERAGED PROPERTIES
PT= 23.808 TT= 605.13 GAMMa=1.4012 PT-RAT= 1.620 TT-RAT= 1.167
RCU= 2939.0 VM= 762.0 CZ= 742.7 MM=0.670 MABS=0.784 MREL=0.931

20	D*H=0.	ABH=O.	¥	0.557	0.570	0.582	609.0	0.641	0.670	0.689	0.705	0.717	0.726	0.728	0.724	0.715	MABS	0.642		0.673	0.702				0.815	0.836	0.861	0.889	0.896	0.894	
N ROT			ALPHAM	29.90	30.00	30.06	29.79	29.52	29.35	29.47	30.06	30.97	32.55	34.95	36.13	36.84	VABS	748.8	766.0	781.6	811.6	847.4	878.7	900.0	922.6	942.2	965.4	990.1	993.8	984.2	
	D*C±0.	=3 ABC=0	D C	373.3	383.0	391.5	403.3	417.5	430.7	442.8	462.1	484.8	519.4	567.1	586.0	590.2	MREL	1.115	1.093	1.071							0.818	0.768	0.742	0.719	
	147.21	5 INBR=3	X >	649.1	663.4	676.5	704.3	737.4	765.9	783.5	798.6	807.9	813.7	811.6	802.7	787.7	VREL	1300.3	1271.8	1244.9	1199.0	1158.3	1119.3	1076.0	1027.7	975.2	917.7	855.2	823.0	792.0	
_	AFLOW=	ITYPE=5	CURV		0.0136	0.0108	-0.0050	.0073	-0.0037	.0086	.0028	.0083	-0.0245	.0480	-0.0717	.0779	BETAM	60.05	58.56	57.08	54.03	50.46	46.82	43.27	39.01	34.06	27.54	18.38	12.77	6 .8	1
STA= 14.500	MT IP = 170	OPTY=PT	=			-0.12 0		0- 97.	3.16 -0	17	23	11.64 -0			27.94 -0	. 16 -0.	11	612.0	612.4	612.4	611.0	606.9	60e.2	605.8	604.1	602.0	4.009	597.8	593.7	584.9	
STA			H	500	319 -0	140 -0	784 0	428 1								13 35	PT	21.824	22.319	22.744	23.424	23.983	24.341	24.441	24.484	24.402	24.309	23.938	•	22.032	
	I=14	OPTX=TT	α	€0	œ	80	7.	7.	7.		-		Ŗ.	41 4.742	4	26 3.8	PS	16.535	16.686	16.793	6.857				15.823	5.432	4.981	4.323	13.832	3. 109	
		61.365	7	-6.741	-6.7	-6.688	-6.650	-6.6	-6.594				-6.4	-6.4	-6.4	-6.5	BLDBLK	0.888 1	•		0.882 1									.695 1	
ROTOR 1		WTF= 6	PSIC	ö	0.050	0. 100	0.200	0.300	0.400	0.500	0.600	0.700	0.800	0.900	0.950	4.000	SL BI	• •	8	о е		0		7	0 0	6	0	110	12 0	13 0	
		_																						2	26						

PERSONAL PROPERTY OF THE PROPERTY OF THE PERSONAL PROPERTY OF THE PERSO

OR	D*H*0.	ABH=O.	Ī	0.509	0.523	0.537	0.570	0.605	0.633	0.654	0.668	0.679	0.691	0.707	0.720	0.732	MABS	0.644			0.699		0.762	0.786	0.808		0.860		0.940	0.975
IN ROTOR	Ö	o.	ALPHAM	37.84	37.35	36.81	35.45	34.34	33.78	33.79	34.22	35.15	36.59	38.96	40.05	41.39	VABS	765.4	780.0	791.8	819.7	852.4	881.3	904.4	924.3	945.4	973.8	1020.2	1048.3	1076.4
	0+0=0.	3 ABC=0	2	469.5	473.2	474.4	475.4	480.9	489.9	502.9	519.9	544.3	587.4	641.5	674.5	711.7	MREL	1.006	0.990	0.976	0.955	0.936	0.913	0.883	0.847	0.808	O.768	0.733	0.728	0.732
	146.82	5 INBR=3	2 >	604.5	620.0	634.0	667.8	703.8			764.2	773.0	781.9	793.3	802.4	807.5	VREL	1194.7	1172.2	1152.0	1119.4	1089.C	1055.3	1015.0	969.5	919.4	869.0	822.8	811.6	807.5
	AFLOW=	ITYPE=5	CURV		0.0401						-0.0216					.0625	BETAM	59.60	58.06	56.61	53.38	49.74	46.04	42.22	37.97	32.78	25.86	15.38	8.62	-0.19
STA= 15.000	MTIP=183	OPTY=PT				-0.49								11	~	.58 -0	11	636.0	634.4	632.2	627.5	623.8	620.7	618.0	615.4	613.2	611.5	610.6	608.2	602.8
STA	MTIP		PHI	200							60	Ξ					PT	23,926	24.392	24.729	25.270	25.674	25.962	26.091	26.052	25.983	25.891	25.746	25.305	24.388
	1=15	OPTX=TT	~	80	80	60	7			9	9			4	4	*	8	80			226	968	.668	.342	.952	.524	.963	.072		
		61.365	7	-6.538	-6.49	-6.466	-6.4	-6.365	-6.33	-6.29	-6.26	-6.23	-6.16	-6.14	-6. 16	-6.243	אן אַנ			0.898 18	•	0.889 17	·	869 17	•	_	•	•	_	-
1 40100		WTF= 61	-	0	0.050	0. 100	0.500	0.300	0.400	0.500	0.600	0.700	0.800	006.0	0.950	1.000	7		. 0	6		5			8		0	0	_	13 0.
a	•	3																						9	27					

THE REPORT OF THE PARTY OF THE

STA 15.000 MASS AVERAGED PROPERTIES
PT= 25.566 TT= 619.32 GAMMA=1.4010 PT-RAT= 1.740 TT-RAT= 1.194
RCU= 3422.3 VM= 731.0 CZ= 710.6 MM=0.636 MABS=0.787 MREL=0.868

STA# 15.500 In RDTOR D*C=0. D*H=0.
I=16 MTIP=196 AFLOW= 147.10 D+C=0. DPTX=TT DPTY=PT ITYPE=5 INBR=3 ABC=0. 2 R PHI CURV VM CU ALPHAM CU CO
STA= 15.500 I=16
STA= 15.500 I=16
STA= 15.500 I=16 MTIP=196 AFLOW= Z R PHI CURV 334 8.500 0. 2246 8.316 -0.85 0.0321 244 8.136 -0.92 0.0225 172 7.785 0.13 -0.0424 058 7.098 3.97 -0.0553 012 6.74 6.30 -0.0561 972 5.37 9.09 -0.0561 924 5.97 12.58 -0.0561 863 5.507 24.34 -0.0168 871 4.678 29.64 -0.0252 960 4.231 37.01 0.0200 PS PT TT BETAM 19.207 25.455 652.7 59.64 19.288 25.960 650.3 57.67 19.317 26.313 647.3 55.96 19.256 26.920 641.6 52.40 18.437 27.659 626.5 37.00 18.437 27.659 626.5 37.00 18.437 27.659 626.5 37.00 14.853 27.110 620.6 6.10
STA= 15.5 I=16
1 = 16 0PTX=TT 2 R 234 8 500 244 8 136 172 7 785 111 7 442 058 7 098 0012 6 744 972 6 371 974 5 970 863 5 530 871 4 678 960 4 231 PS PS 25 19.207 25 19.208 25 19.207 25 19.207 25 19.208 25 19.208 25 19.208 25 19.207 25 19.208 25
1 = 16 0PTX#T 234 8 5 234 8 5 244 8 7 111 7 4 058 7 058 7 072 6 972 6 972 6 972 6 972 6 973 7 111 7 111 7 111 7 111 7 111 7 112 7 113 2 114 853 114 853 114 853 114 853
E
28 417 60 60 60 60 60 60 60 60 60 60

ERREST TRANSPORT THE PROPERTY OF THE PROPERTY

STA 15.500 MASS AVERAGED PROPERTIES
PT= 27.206 TT= 631.84 GAMMA=1.4008 PT-RAT= 1.851 TT-RAT= 1.218
RCU= 3849.2 VM= 703.6 CZ= 682.3 MM=0.607 MABS=0.793 MREL=0.815

0R 0.4H=0	ABH=0.	Ī	0.434	0.466	0.488	0.527	0.555	0.576	0.587	0.594	0.603	0.619	0.644	0.674	0.699	MABS	0.648			0.723		0.771	0.787	0.804	0.827	0.863	0.919	0.972	1.047	
TE ROTOR	် ဝ	ALPHAM	47.94	46.15	44.99	43.20	42.15	41.61	41.71	42.34	43.19	44.11	45.49	46.11	48.12	VABS	786.0	812.1	829.5	862.0	886.8	907.1	921.3	936.4	958.2	992.9	1047.2	1099.0	1169.0	
T 0=0=0		3	583.6	585.7	586.4	590.1	595.1	602.3	613.0	630.7	655.8	691.1	746.8	792.0	870.4	MREL	0.871	0.866	0.858	0.842	0.823	0.800	0.770	0.734	0.699	0.673	0.659	0.676	0.703	
148 34	6 INBR=3	×	526.5	562.6	586.7	628.3	657.5	678.2	687.7	692.2	698.6	713.0	734.1	761.8	780.4	VREL	1056.9	1045.5	1031.8	1004.7	975.0	942.1	901.6	855.1	809.9	774.2	751.5	764.4	785.2	
AFI DW:	ITYPE=6	CURV	°.	-0.0556	-0.0836	-0.1020		-0.0861		_		0.0231	0.0819	0.1715	. 1021	BETAM	60.12	57.45	55.34	51.29	47.59	43.95	40.29	35.96	30.40	22.95	12.35	4.72	-6.35	
STA* 16.000	OPTY=PT	PHI			-0.53 -0	Ī	2.93 -0	•	•	•	.21	17.48 C		22	5.78	1	664.4	661.7				644.7		637.7	_	633.0	•	_	632.3	
-		<u>م</u> د	500	312 -	133	787	452	119	6.778	_	.039	627 1	5.143 2	845	440 3	1d	26.560	27.120	27.560	28.390	28.940	29.280	29.380	29.350	29.280	29.160	28.920	28.770	28.650	
1=17	OPTX=TT	2	. 131 8.	-6.073 8.	-6.021 8.	-5.933 7.	.857 7.	791 7.		5.681 6.	φ	.559 5.	.537 5.	.576 4.	677 4.	PS	20.036	20.030	20.047	•	•	19.765	19.522		18.695	17.937	16.748	15.683	14.311	
	61.365	U	9				•	•	•	•	•	'n	, N	ů.	ų.	BLDBLK	0.926	0.927	0.927	0.927	0.928	0.928	0.928	0.928	0.928	0.928	0:670	9.914	5.875	
ROTOR 1	WTF= 61.3	PSI	ö	0.050	o. 18	0.200	0.300	0.40	0.50	0.600	0.700	0.800	0.900	0.950	- 000	SL	-	n	ო	₹	ស	9	7	ه 29	6	9	=	12	13	

STA 16.000 MASS AVERAGED FROPERTIES
PT= 28.783 TT= 643.26 GAMMA=1.4006 PT-RAT= 1.959 TT-RAT= 1.240
RCU= 423R.7 VM= 673.5 CZ= 653.5 MM=0.576 MABS=0.797 MREL=0.764

XIAL	ار 12	. 635	.678	0.707	. 758	.798	.832	. 863	. 903	. 963	.055	. 198	.329
IENCY A	POLY VE	0.683 0	0.719 0	0.752 0	0.814 0	0.864 0	0.906.0	0.937 0	6.957 0	0.973 0	0.984	0.983 1	0.976 1
EFF1C]	AD.	0.656	0.694	0.729 0.752	0.796	0.851	0.897	0.930	0.953	0.971	0.982	0.981	0.974
				1.2701									
ACC PT	RATIO	1.8073	1.8454	1.8753	1.9318	1.9692	1.9924	1.9992	1.9971	1.9924	1.9842	1.9679	1.9577
SPEED	OUT	1500.0	1466.9	1435.2	1374.1	1315.0	1256.2	1196.0	1132.9	1065.6	992.9	907.6	855.0
				1436.3									
RAGE	RAD	8.500	8.317	7.4 8.136	7.773	7.406	7.026	6.624	6.192	5.716	5.180	4.523	4.102
AVE	CT IMM	ö	3.7	7.4	14.7	22.1	29.8	37.9	46.6	56.2	67.0	80.3	88.8

•••	D+H=0.	ABH=0.	Ī	0.418	0.462	0.492	0.542	0.574	0.596	0.609	0.617	0.625	0.633	0.644	0.660	0.651	MABS	C 637		0.00	0.693					0.818	0.839	0.867	0.911	0.952	0.997
FREE	_		ALPHAM	48.95	46.39	44.73	42.35	41.13	40.52	40.49	41.8	41.82	43.13	45.01	46.11	49.18	VABS	777 8	0.00	200	832.8	874.2	901.0	921.5	936.3	951.1	970.9	997.0	1039.8	1079.4	1122.5
		O ABC=O	ລ	583.6	585.7	586.2	588.9	592.7	598.7	608.0	624.0	647.4	681.5	735.4	777.9	849.5	3300	653	0.862	0.863	0.861	0.856	0.842					0.693	0.664	0.665	0.653
	146.22	O INBR:	¥>	508.2	557.9	591.6	646.0	678.6	700.5	712.0	717.8	723.5	727.7	735.0	748.3	733.7	1407	2000	1047	1043.0	1035.3	1019.0	995.0	966.0	929.9	887.0	842.7	797.1	758.3	754.0	735.2
	AFLOW=	ITYPE=0	CURV		-0.0570	-0.0770	-0.0752	-0.0545				0.0343					DETAN		60.88	57.66	55. 15	50.66	47.00	43.52	40.03	35.97	30.85	24.09	14.22		-3.64
17,000	222	OPTY=FREE		Ó			3.14 -0			8.31 -0				22.46 0		8	;	- ;	664.4	661.7	658.8	653.7	649.0	644.7	640.8	637.7	635.1	633.0	631.6	631.5	632.3
STA	MTIP=222																,	- (26.533	27.093	27.532	28.390	28.940	9.280	9.380	29.350	280	29 160	000	770	8.564
	I = 18	OPTX=DPP	. α	8 500	00	.			7		9	φ	'n	N.	4	4	9			20.061 2		~			19.246			96.4	_	250	142
			^	-5 700	- 5	. 4.	867 8-	. A.	5 37	-5.331	30	-5.29	-5.30	-5.35	-5.405			¥										•		•	- •-
	ָּרָ יִּרָ	WIE A1 265	7	;	020				400	200	009	200			0.00	8		צר פרר	1 0.940	2 0.940			S 0 940		, ,	80	0		2;	- :	ó
Ü		2	B																						٠	, 0	,				

ARTHUR CORRECT OF THE CORRECT OF THE

STA 17.000 MASS AVERAGED PROPERTIES
PT= 28.777 TT= 643.26 GAMMA=1.4006 PT-RAT= 1.958 TT-RAT= 1.240
RCU= 4238.7 VM= 686.5 CZ= 667.6 MM=0.588 MABS=0.803 MREL=0.779

\BH±0.	Ī	0.453	0.489	0.516	0.566	0.598	0.622	0.638	0.649	0.660	0.671	0.680	0.670	0.718	MABS	0.662	0.689	0.710	0.751	0.780	0.803	0.821	0.839	0.862	0.891	0.930	0.949	1.034
	ALPHAM	46.73	44.79	43,36	41.12	39.88	39.20	39.06	39.40	٠	41.11	43.03	45.14	46.00	VABS	801.5	830.3	851.8	892.1	919.5	940.8	926.6	972.9	993.8	1020.9	1058.3	1076.7	1157.1
	3	583.6	584.9	584.9	586.6	589.5	594.5	602.8	617.5	639.3	671.2	722.1	763.2	832.3	MREL	0.882	0.881	0.880	0.876	0.866	0.850	0.827	0.798	0.768	0.738	0.706	0.678	0.718
_	¥ >	549.4	589.2	619.3	672.1	705.7	729.1	742.9	751.9	760.9	769.2	773.7	759.5	803.8	VREL	1068.5	1062.2	1055.0	1041.5	1021.1	995.7	963.5	925.5	886.1	845.6	803.4	769.5	803.9
ITYPE=	CURV		.0056		_	_						.0303	.0235	. 3397	BETAM	59.06	56.31	54.05	49.81	46.28	42.93	39.56	35.67	30.82	24.54	15.64	9.29	-0.92
TY=FREE		0							49		12	21	67 0	23 0	1:	664.4	661.7	658.8	653.7	649.0	644.7	640.8	637.7	635.1	633.0	631.6	631.5	632.3
	H	o Q						_	•			_			PT	6.533	7.093	7.532	066.8	8.940			9.350					•
OPTX=DP	α	80	æ	80	_	7	_	ø	9	9	ι.	'n.	R)	*	Sd	783											104	.493
.365	2	-5.25	-5.19	-5, 14	-5.06	-5.00	-4.96	-4.93	-4.93	-4.95	-5.00					-											_	•
	PSIC	o.	0.050	0.100	0.200	0.300	0.400	0.500	0.600	0.700	0.800	0.900	0.950	.000			2	י מ	ó	Ö	0	0	0	ó	0	o	12 0	13 0.
	61.365 OPTX=DPP OPTY=FREE ITYPE=1 INBR=4 ABC=0. AB	61.365 OPTX=DPP OPTY=FREE ITYPE=1 INBR=4 ABC=0. A SIC Z R PHI CURV VM CU ALPHAM	61.365	61.365	61.365 OPTX=DPP OPTY=FREE ITYPE=1 INBR=4 ABC=0. ABF SIC Z R PHI CURV VM CU ALPHAM R -5.250 8.500 0. 0. 549.4 583.6 46.73 0. 050 -5.192 8.323 1.49 -0.0056 589.2 584.9 44.79 0. 100 -5.143 8.154 2.60 -0.0121 619.3 584.9 43.36 0.	61.365 OPTX=DPP OPTY=FREE ITYPE=1 INBR=4 ABC=0. ABH SIC Z R PHI CURV VM CU ALPHAM M -5.250 8.500 0. 0. 549.4 583.6 46.73 0. 050 -5.192 8.323 1.49 -0.0056 589.2 584.9 44.79 0. 100 -5.143 8.154 2.60 -0.0121 619.3 584.9 43.36 0. 200 -5.062 7.833 4.32 -0.0191 672.1 586.6 41.12 0.	61.365 OPTX=DPP OPTY=FREE ITYPE=1 INBR=4 ABC=0. ABH SIC Z R PHI CURV VM CU ALPHAM N -5.250 8.500 0. 0. 549.4 583.6 46.73 0. 050 -5.192 8.323 1.49 -0.0056 589.2 584.9 44.79 0. 100 -5.143 8.154 2.60 -0.0121 619.3 584.9 43.36 0. 200 -5.062 7.833 4.32 -0.0191 672.1 589.5 39.88 0.	1.365 OPTX=DPP OPTY=FREE ITYPE=1 INBR=4 ABC=0. ABH 2 R PHI CURV VM CU ALPHAM R -5.250 8.500 0. 0. 549.4 583.6 46.73 0. 55.192 8.323 1.49 -0.0056 589.2 584.9 44.79 0. 5.143 8.154 2.60 -0.0121 619.3 584.9 43.36 05.062 7.833 4.32 -0.0191 672.1 586.6 41.12 05.003 7.522 5.73 -0.0191 672.1 589.5 39.88 04.961 7.212 7.13 -0.0189 729.1 594.5 39.20 0.	61.365 OPTX=DPP OPTY=FREE ITYPE=1 INBR=4 ABC=0. ABF SIC 2 R PHI CURV VM CU ALPHAM R -5.250 8.500 0. 0. 549.4 583.6 46.73 0. 050 -5.192 8.323 1.49 -0.0056 589.2 584.9 44.79 0. 100 -5.143 8.154 2.60 -0.0121 619.3 584.9 44.79 0. 200 -5.062 7.833 4.32 -0.0191 672.1 586.6 41.12 0. 300 -5.003 7.522 7.73 -0.0191 705.7 589.5 39.80 0. 400 -4.961 7.212 7.73 -0.0189 729.1 589.5 39.20 0.	61.365 OPTX=DPP OPTY=FREE ITYPE=1 INBR=4 ABC=0. ABH SIC 2 R PHI CURV VM CU ALPHAM N -5.250 8.500 0. 0. 549.4 583.6 46.73 0. 050 -5.192 8.323 1.49 -0.0056 589.2 584.9 44.79 0. 100 -5.143 8.154 2.60 -0.0121 619.3 584.9 43.36 0. 200 -5.062 7.833 4.32 -0.0191 672.1 589.6 41.12 0. 300 -5.003 7.522 5.73 -0.0191 672.1 589.5 39.88 0. 400 -4.961 7.212 0.0189 729.1 594.5 39.20 0. 500 -4.933 6.557 10.49 -0.0121 751.9 617.5 39.40 0.	61.365 OPTX=DPP OPTY=FREE ITYPE=1 INBR=4 ABC=0. ABH SIC 2 R PHI CURV VM CU ALPHAM B 52C -5.250 8.500 0. 0. 549.4 583.6 46.73 0.050 -5.192 8.323 1.49 -0.0056 589.2 584.9 44.79 0.100 -5.143 8.154 2.60 -0.0121 619.3 584.9 44.79 0.100 -5.143 8.154 2.60 -0.0121 619.3 584.9 43.36 0.300 -5.003 7.522 5.73 -0.0191 672.1 589.5 39.88 0.400 -4.961 7.212 7.13 -0.0189 729.1 594.5 39.20 0.050 -4.937 6.893 8.65 -0.0161 742.9 602.8 39.06 0.000 -4.953 6.557 10.49 -0.0121 751.9 617.5 39.40 0.000 -4.953 6.195 12.85 -0.0065 760.9 639.3 40.03 0.	61.365 OPTX=DPP OPTY=FREE ITYPE=1 INBR=4 ABC=0. ABH SIC 2 R PHI CURV VM CU ALPHAM N -5.250 8.500 0. 0. 549.4 583.6 46.73 0. 050 -5.192 8.323 1.49 -0.0056 589.2 584.9 44.79 0. 200 -5.62 7.833 4.32 -0.0191 672.1 586.6 41.12 0. 300 -5.003 7.522 5.73 -0.0191 672.1 586.6 41.12 0. 400 -4.961 7.212 7.13 -0.0189 729.1 594.5 39.28 0. 500 -4.937 6.893 8.65 -0.0161 742.9 602.8 39.06 0. 600 -4.953 6.155 10.49 -0.0121 751.9 617.5 39.40 0. 700 -4.953 6.156 12.85 -0.0065 760.9 639.3 40.03 0. 500 -5.004 5.794 16.12 0.0101 769.2 671.2 41.11 0.	61.365 OPTX=DPP OPTY=FREE ITYPE=1 INBR=4 ABC=0. ABH SIC 2 R PHI CURV VM CU ALPHAM N -5.250 8.500 0. 0. 549.4 583.6 46.73 0. 050 -5.192 8.323 1.49 -0.0056 589.2 584.9 44.79 0. 100 -5.143 8.154 2.60 -0.0121 619.3 584.9 44.79 0. 200 -5.062 7.833 4.32 -0.0191 672.1 586.6 41.12 0. 300 -5.063 7.522 5.73 -0.0191 672.1 586.6 41.12 0. 400 -4.961 7.212 7.13 -0.0189 729.1 594.5 39.20 0. 500 -4.937 6.893 8.65 -0.0161 742.9 602.8 39.06 0. 600 -4.937 6.893 8.65 -0.0161 742.9 602.8 39.06 0. 700 -4.933 6.557 10.49 -0.0121 751.9 617.5 39.40 0. 700 -5.004 5.794 16.12 0.0101 769.2 671.2 41.11 0. 800 -5.004 5.319 21.21 0.0303 773.7 722.1 43.03 0.	61.365 OPTX=DPP OPTY=FREE ITYPE=1 INBR=4 ABC=0. ABH SIC 2 R PHI CURV VM CU ALPHAM N C5.250 8.500 0. 0. 549.4 583.6 46.73 0. 050 -5.192 8.323 1.49 -0.0056 589.2 584.9 44.79 0. 100 -5.143 8.154 2.60 -0.0121 619.3 584.9 44.79 0. 200 -5.062 7.832 4.32 -0.0191 672.1 586.6 41.12 0. 300 -5.003 7.522 5.73 -0.0191 672.1 589.5 39.88 0. 400 -4.961 7.212 7.13 -0.0189 729.1 594.5 39.80 0. 500 -4.937 6.893 8.65 -0.0161 742.9 602.8 39.06 0. 500 -4.933 6.195 10.49 -0.0121 751.9 617.5 39.40 0. 700 -4.953 6.195 12.85 -0.0065 760.9 639.3 40.03 0. 900 -5.004 5.794 16.12 0.0033 773.7 722.1 43.03 0. 950 -5.202 5.028 24.67 0.0235 759.5 763.2 45.14 0.	61.365 OPTX=DPP OPTY=FREE ITYPE=1 INBR=4 ABC=0. ABF SIC 2 R PHI CURV VM CU ALPHAM N CU ALPHAM N CS 55.192 8.323 1.49 -0.056 589.2 584.9 44.79 0. 100 -5.142 8.154 2.60 -0.0121 619.3 584.9 44.79 0. 200 -5.062 7.833 4.32 -0.0191 672.1 586.6 41.12 0. 300 -5.063 7.522 5.73 -0.0191 672.1 586.6 41.12 0. 500 -4.961 7.212 7.13 -0.0189 729.1 594.5 39.20 0. 500 -4.937 6.893 8.65 -0.0161 742.9 602.8 39.06 0. 500 -4.937 6.893 8.65 -0.0161 742.9 602.8 39.06 0. 500 -4.937 6.893 8.65 -0.0161 742.9 602.8 39.06 0. 500 -5.004 5.794 16.12 0.0101 769.2 671.2 41.11 0. 900 -5.002 5.028 24.67 0.0235 773.7 722.1 43.03 0. 950 -5.375 4.643 31.23 0.3397 803.8 832.3 46.00 0.	61.365 OPTX=DPP OPTY=FREE ITYPE=1 INBR=4 ABC=0. ABH SIC 2 R PHI CURV VM CU ALPHAM M C5.250 8.500 0. 0. 549.4 583.6 46.73 0. 050 -5.192 8.323 1.49 -0.0056 589.2 584.9 44.79 0. 050 -5.042 7.833 4.32 -0.0121 619.3 584.9 44.79 0. 050 -5.042 7.833 4.32 -0.0121 619.3 584.9 44.79 0. 050 -5.062 7.833 4.32 -0.0191 672.1 586.6 41.12 0. 050 -4.961 7.212 7.13 -0.0191 672.1 586.5 39.88 0. 0. 050 -4.937 6.893 8.65 -0.0161 742.9 602.8 39.20 0. 0500 -4.937 6.893 8.65 -0.0161 742.9 602.8 39.06 0. 0500 -4.933 6.557 10.49 -0.0121 751.9 617.5 39.40 0. 0700 -4.953 6.195 12.85 -0.0065 760.9 639.3 40.03 0. 0700 -5.004 5.794 16.12 0.0101 769.2 671.2 41.11 0. 090 -5.004 5.794 16.12 0.0303 773.7 722.1 43.03 0. 000 -5.028 24.67 0.0235 759.5 763.2 45.14 0. 000 -5.375 4.643 31.23 0.3397 803.8 832.3 46.00 0.	61.365 OPTX=DPP OPTY=FREE ITYPE=1 INBR=4 ABC=0. ABH SIC 2 R PHI CURV VM CU ALPHAM M CS 5.192 8.323 1.49 -0.056 589.2 584.9 44.79 0. 550 -5.192 8.323 1.49 -0.056 589.3 584.9 44.79 0. 200 -5.143 8.154 2.60 -0.0121 619.3 584.9 44.79 0. 200 -5.062 7.833 4.32 -0.0191 672.1 586.6 41.12 0. 200 -5.063 7.522 5.73 -0.0191 672.1 589.5 39.20 0. 400 -4.961 7.212 7.13 -0.0189 729.1 594.5 39.20 0. 500 -4.933 6.557 10.49 -0.0161 742.9 602.8 39.06 0. 500 -4.933 6.557 10.49 -0.0121 751.9 602.8 39.06 0. 500 -5.004 5.794 16.12 0.0303 773.7 722.1 43.03 0. 500 -5.108 5.319 21.21 0.0303 773.7 722.1 43.03 0. 500 -5.375 4.643 31.23 0.3397 803.8 832.3 46.00 0. 6.340 19.783 26.533 664.4 59.06 1068.5 0.882 801.5 0.	SIC 2 R PHI CURV VM CU ALPHAM CO 0. 0. 0. 549.4 583.6 46.73 CO 0. 0. 0.0056 589.2 584.9 44.73 CO 0.5143 8.154 2.60 0.0121 619.3 584.9 44.73 CO 0.506 7.833 4.32 0.0121 619.3 584.9 44.73 CO 0.500 7.522 5.73 0.0121 672.1 589.5 39.88 CO 0.4.961 7.212 7.13 0.0189 729.1 594.5 39.88 CO 0.4.961 7.212 7.13 0.0189 729.1 594.5 39.88 CO 0.4.937 6.893 8.65 0.0161 742.9 602.8 39.06 CO 0.4.937 6.893 8.65 0.0161 742.9 602.8 39.06 CO 0.4.993 6.557 10.49 0.0121 751.9 617.5 39.40 CO 0.4.993 6.531 10.033 773.7 722.1 43.03 CO 0.940 5.794 16.12 0.0103 773.7 722.1 43.03 CO 0.940 19.783 26.533 664.4 59.06 1068.5 0.882 801.5 0.940 19.725 27.093 661.7 56.31 1062.2 0.881 830.3	SIC 255 0PTX=DPP 0PTY=FREE ITYPE=1 INBR=4 ABC=0. AE SIC 2 R PHI CURV VM CU ALPHAM CU ALPHAM -5.250 8.500 0. 0. 549.4 583.6 46.73 (050 -5.192 8.323 1.49 -0.0056 589.2 584.9 44.79 (100 -5.192 8.323 1.49 -0.0056 589.2 584.9 44.79 (100 -5.062 7.833 4.32 -0.0121 619.3 584.9 44.79 (100 -5.003 7.522 5.73 -0.0121 672.1 586.6 41.12 (100 -4.961 7.212 7.13 -0.0189 729.1 589.5 39.88 (100 -4.961 7.212 7.13 -0.0189 729.1 594.5 39.20 (100 -4.961 7.212 7.13 -0.0189 729.1 594.5 39.20 (100 -4.963 6.557 10.49 -0.0121 751.9 617.5 39.40 (100 -4.963 6.557 10.49 -0.0121 751.9 617.5 39.40 (100 -5.004 5.794 16.12 0.0005 769.2 671.2 41.11 (100 -5.004 5.794 16.12 0.0005 769.2 671.2 41.11 (100 -5.108 5.319 21.21 0.0303 773.7 722.1 43.03 (100 -5.375 4.643 31.23 0.3397 803.8 832.3 46.00 (10 940 19.783 26.533 664.4 59.06 1068.5 0.881 830.3 (10 940 19.783 26.532 658.8 54.05 1055.0 0.880 851.8	SIC 25 0PTX=DPP	SIC 25 R PHI CURV VM CU ALPHAM CO -5.192 8.323 1.49 -0.0056 589.2 584.9 44.79 0.050 -5.062 7.833 4.32 -0.0121 619.3 584.9 44.79 0.050 -5.062 7.833 4.32 -0.0121 619.3 584.9 44.79 0.050 -4.961 7.212 7.13 -0.0189 729.1 589.5 39.88 0.000 -4.961 7.212 7.13 -0.0189 729.1 594.5 39.20 0.000 -4.963 6.557 10.49 -0.0161 742.9 602.8 39.06 0.000 -4.953 6.557 10.49 -0.0161 742.9 602.8 39.06 0.000 -4.953 6.195 12.85 -0.0065 760.9 639.3 40.03 0.000 -5.004 5.794 16.12 0.0101 769.2 671.2 41.11 0.000 -5.004 5.394 16.20 0.033 773.7 722.1 43.03 0.000 -5.108 5.312 3 0.0335 759.5 763.2 45.14 0.000 0.000 19.783 26.533 64.4 59.06 1068.5 0.882 801.5 0.000 0.000 19.783 26.533 64.4 59.00 106.80 851.8 0.000 0.000 19.584 28.390 653.7 49.81 1041.5 0.886 919.5 0.000 0.000 19.588 28.940 649.0 46.28 1021.1 0.866 919.5	SIC 1365 OPTX=DPP OPTY=FREE ITYPE=1 INBR=4 ABC=0. AE SIC 2 R PHI CURV VM CU ALPHAM CU ALPHAM CU ALPHAM CS -5.192 8.323 1.49 -0.0056 589.2 584.9 44.79 (200 -5.192 8.323 1.49 -0.0056 589.2 584.9 44.79 (200 -5.062 7.833 4.32 -0.0121 619.3 584.9 43.36 (200 -5.062 7.833 4.32 -0.0121 619.3 584.9 43.36 (200 -4.961 7.212 7.13 -0.0189 729.1 594.5 39.88 (200 -4.961 7.212 7.13 -0.0189 729.1 594.5 39.20 (200 -4.937 6.893 8.65 -0.0161 742.9 602.8 39.06 (200 -4.933 6.557 10.49 -0.0121 751.9 617.5 39.40 (200 -4.933 6.557 10.49 -0.0121 751.9 617.5 39.40 (200 -4.953 6.195 12.85 -0.0065 760.9 639.3 40.03 (200 -5.004 5.794 16.12 0.0101 769.2 671.2 41.11 (200 -5.004 5.794 16.12 0.0101 769.2 671.2 41.11 (200 -5.004 5.375 4.643 31.23 0.3397 803.8 832.3 46.00 (200 -5.375 4.643 31.23 0.3397 803.8 832.3 46.00 (200 -5.375 4.643 31.23 0.3397 803.8 832.3 46.00 (200 -5.375 4.643 31.23 0.3397 803.8 832.3 46.00 (200 -5.375 4.643 31.23 664.4 59.06 1068.5 0.882 801.5 (200 -5.376 4.552 27.093 661.7 56.31 1062.2 0.881 830.3 (200 -5.376 4.553 6.553 6.537 49.81 1041.5 0.886 919.5 (200 -5.40 19.566 27.532 658.8 54.05 1055.0 0.880 851.8 (200 -5.40 19.566 27.532 658.8 54.05 1055.0 0.880 851.8 (200 -5.40 19.50 63.7 4.293 995.7 0.850 940.8 (200 -5.40 19.150 29.280 644.7 42.93 995.7 0.850 940.8	SIC 1365 OPTX=DPP OPTY=FREE ITYPE=1 INBR=4 ABC=0. AE SIC 2 R PHI CURV VM CU ALPHAM CU	SIC 1365 OPTX=DPP OPTY=FREE ITYPE=1 INBR=4 ABC=0. AE SIC 2 R PHI CURV VM CU ALPHAM SIC -5.250 8.500 0. 0. 6.99.4 583.6 46.73 CO -5.192 8.323 1.49 -0.0056 589.2 584.9 47.79 CO -5.192 8.323 1.49 -0.0056 589.2 584.9 47.79 CO -5.003 7.522 5.73 -0.0121 619.3 584.9 43.36 CO -5.003 7.522 5.73 -0.0121 672.1 589.5 39.88 CO -4.951 6.893 8.65 -0.0161 705.7 589.5 39.88 CO -4.953 6.893 8.65 -0.0161 705.7 589.5 39.06 CO -5.00 -4.953 6.195 10.03 773.7 722.1 43.03 CO -5.00 5.00 5.02 24.67 0.033 773.7 722.1 43.03 CO -5.108 5.319 21.21 0.0303 773.7 722.1 43.03 CO -5.108 5.319 21.21 0.0303 773.7 722.1 43.03 CO -5.108 5.319 21.21 0.0303 773.7 722.1 43.03 CO -5.00 6.940 19.783 26.533 664.4 59.06 1068.5 0.882 801.5 CO -9.940 19.725 27.093 661.7 56.31 1062.2 0.881 830.3 CO -9.940 19.725 27.093 661.7 56.31 1062.2 0.881 830.3 CO -9.940 19.534 28.390 653.7 49.81 1041.5 0.866 919.5 CO -9.940 19.150 29.280 644.7 42.93 395.7 0.856 0.950	61.365	61.365	SIC 2 R PHI CURV VM CU ALPHAM CU CO	61.365 OPTX=DPP OPTY=FREE ITYPE=1 INBR=4 ABC=0. AE SIC 2 R PHI CURV VM CU ALPHAM 51C 5.250 8.500 0. 0. 0.056 589.4 583.6 46.73 0.000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.0000 0.00000 0.0000

STA 18.000 MASS AVERAGED PROPERTIES
PT= 28.777 TT= 643.26 GAMMA=1.4007 PT-RAT= 1.958 TT-RAT= 1.240
RCU= 4238.7 VM= 718.9 CZ= 700.4 MM=0.617 MABS=0.822 MREL=0.809

TOR	0+H=0	ABH=O.	Ī	0.502	0.528	0.550	0.593	0.625	0.650	0.667	0.683	0.702	0.727	0.762	0.790	0.826	MABS		0.615					0.765	0.785	0.811	0.847	0.899	0.938	0.989
IN STATOR		0	ALPHAM	31.42	30.86	30.38	29.69	29.29	29.13	29.22	29.50	30.05	30.93	32.05	32.61	33.40	VABS	718.6	748.1	771.8	818.6	852.2	878.7	898.1	916.9	942.1	977.4	1028.0	1065.8	1115.6
	D+C=0.	#4 ABC#0	3	374.6	383.7	390.3	405.5	416.9	427.8	438.4	451.5	471.7	502.4	545.5	574.4	614.0	MREL	1.049	1.039	1.029	1.012	0.993	0.972	0.947	0.920	0.892	0.865	0.847	0.849	0.858
	126.01	2 INBR=	¥>	613.2	642.2	665.8	711.1	743.3	767.5	783.8	798.0	815.5	838.4	871.3	897.8	931.4	VREL	1281.6	1262.6	1245.2	1213.1	1181.5	1148.5	1112.4	1074.4	1035.8	998.4	0.696	964.5	968.0
	AFLOW=	ITYPE=2	CURV		0.0323	0.0519	9690.0	.0712	.0668	.0581	0.0500	0.0486	0.0529	0.0898	. 1182	. 1265	BETAM	61.42	59.43	57.68	54.11	51.01	48.07	45.20	42.04	38.07	32.88	25.95	21.44	15.82
19.000	MT1P=248	OPTY=BETM		•	. 13 0		3.67 0			_	05	-	_	_	.43 0.	.23 0	11	664.4	661.7	658.8	653.7	649.0	644.7	640.8	637.7	635.1	633.0	631.6	631.5	632.3
			FE	8	35 1											75 26	P	26.533		27.532	28.390	28.940	29.280	29.380	29.350	29.280	29.160	28.920	28.770	28.564
	1=20	OPTX=D		770 8.500	30						φ		565 5.918		696 5.253		PS				20.779								16.309	5.272
		1.365		-4.7	-4.723	7	*	7	*	4	7	-4.524	7	7	-4		BLDBLK				0.879 20							0.867 1		.837 1
STATOR		WTF* 61	PSIC	ö	0.050	0.100	0.200	0.300	0.400	0.500	0.600	0.700	0.800	0.900	0.950	-8	St. BI	o +	0	ဝ ဗ	•	2	9	7	o s	6	о	-	12 0.	1 3
		_																						_	_					

STA 19.000 MASS AVERAGED PROPERTIES
PT= 28.777 TT= 643.26 GAMMA=1.4005 FT-RAT= 1.240
RCU= 3074.8 VM= 776.7 CZ= 759.2 MM=0.662 MABS=0.767 MREL=0.943

T0R	D+H=0.	ABH=0.	Ĭ	0.535	0.562	0.583	0.623	0.649	0.669	0.682	0.693	0.707	0.726	0.752	0.770	0.792	MABS	0.576	0.605	0.627		Ö		0.730			0.781	0.813	•	0.860
IN STATOR			ALPHAM	21.82	21.64	21.49	21.24	21.03	20.90	20.86	20.93	21.15	21.59	22.20	22.52	22.91	VABS	704.4	735.8	759.1	802.2	829.8	849.3	861.0	871.6	886.8	8.606	941.2	962.3	989.2
	D+C=0.	4	ລ	261.9	271 4	278.0	290.6	297.8	303.0	306.6	311.3	319.9	334.8	355.7	368.6	385.1	MREL	1.144	1.135	1.126	1.108	1.089	1.067	1.042	1.014	0.985			0.923	0.916
	118.85		₹	653.9	683.9	706.3	747.7	774.5	793.4	804.5	814.1	827.1	846.0	871.4	889.0	911.2	VREL	1400.2	1381.7	1363.8	1331.1	1298.7	1265.2	1229.1	1191.2	1152.9	1115.2	1080.0	1065.7	1054.3
	AFLOW=	ITYPE=2	CURV		0048	0.0100	0.0191		_							. 1259	BETAM	62.16	60.33	58.81	55.83	53.39	51.17	49.11	46.89	44.16	40.66	36.21	33.47	30.20
20.000	61	OPTY=BETM		ö												0	11	664.4	661.7	658.8	653.7	649.0	144.7	8.07	37.7	35. 1	33.0	631.6	631.5	632.3
STA=	MT1P=261	OPT	HI	Ö	0.66	1.32	2.67	4	5.55	7.2	6	11.26	13.92	17.34	19.6	22.5	Þ	33			_	940	280	380					770	264
	+	OPTX=DPP	~	8.500	8.341	8.186	7.887	7.595	7.302	7.003	6.692	6.364	6.014	5.630	5.419	5.188	•	26	27			28	29	29	53	29	29	78	28	
	1=21		7	300	1.277	1.257	1,225	. 200	-4.184	1.174	1.173	. 180	199	. 233	. 261	300	Sd	2	2	2	7			20.615		20.010	19.483	18.729	18.242	17.62
		61,365		7-		- 0	4- 0	7-0		_		7			7	•	RI DRI K	849	0.851	0.852	0.855	0.857	0.859	0.860	0.860	0.858	0.855	0.847	0.840	
STATOR		= 51A	S	0	0.050	0.100	0.20	0.300	0.40	0.500	09.0	0.700	0.800	006.0	0.950	1.00	V		. 0	(1)	4			7		σ	ç	=	12	<u>t</u>

AND INVESTIGATION CONTROL TRANSPORTED LARGE CONTROL OF THE STATE OF TH

STA 2C.000 MASS AVERAGED PROPERTIES
PT = 28.777 TT = 643.26 GAMMA=1.4003 PT-RAT= 1.958 TT-RAT= 1.240
RCU= 2144.2 VM= 796.8 CZ= 783.2 MM=0.675 MABS=0.725 MREL=1.035

TOR	D•H=0.	ABH=O.	Ī	0.548	0.577	0.598	0.638	0.664	0.683	0.695	0.704	0.715	0.728	0.745	0.758	0.771	MABS	0.566	0.594	0.616				Ö	ó	0.734	0.749		0.780	0.795
N STA			ALPHAM	14.20	14.02	13.86	13.59	13.41	13.29	13.21	13.16	13.20	13.44	13.79	13.90	13.98	VABS	692.7	724.2	747.3	789.5	815.8	833.7	843.6	851.4	861.8	875.7	894.3	907.9	923.4
		4 ABC=0	3	169.9	175.4	179.0	185.6	189.3	191.6	192.8	193.8	196.9	203.6	213.2	218.1	223.0	MREL	1.217	1.211	1.204	1.191	1.174	1.153	1.128	1.101	1.073	1.043	1.015	1.003	0.992
!	=	2 INBR=	¥	671.5	702.6	725.5	767.4	793.6	811.4	821.3	829.1	839.0	851.7	868.5	881.3	0.968	VREL	1490.0	1475.4	1460.3	1432.4	1401.9	1369.4	1333.7	1296.7	1259.1	1220.5	1182.5	1166.9	1153.0
i	AFLOW=	:TYPE=2	URV		0031	0.0054				0.0350				0.0984	0.1118	1266	BETAM	63.21	61.56	60.21	57.61	55 52	53.66	51.99	50.26	48.21	45.74	42.74	40.96	39.00
STA= 21.000	274	OPTY=BETM	O	Ö	55	12 0.	31 0.	57 0.	63	-	8.08 0.				64 0.	63 0.	1	664.4	661.7	658.8	653.7	649.0	644.7	640.8	637.7	635.1	633.0	631.6	631.5	632.3
STA=		_	IHd	0	9	6 +.		1 3.		7 6.			7 12.	6 14.	0 16.	6 18.	PT	26.533	27.093	27.532	•	•	9.280	29.380	9.350	9.280	29.160			28.564
	I=22	OPTX=DPP	α	8.500	œ	8.196	7.905		7		_	ဖ	3 6.107	5.756	5.570	LD.	P.	51		-	.256 2									••
	_	61.365 (2	-3.800	-3.800	-3.800	-3.800	-3.800	-3.800	-3.800	-3.800	-3.800	-3.800	-3.800	-3.800	-3.800	BLDBLK	2	2	851 21	53 21	21	2					49	49	•
STATOR		WTF= 61.	PSIC		0.050	0.100	0.200	0.300	0.400	0.500	0.600	0.700	0.800	0.900	0.950	4.000	St BLD		2 0.850	3 0.8	4 0.8	5 0.8	6 0.856	7 0.8		9 0.859	_	11 0.8	12 0.8	13 0.8
51		3																												

WALLER CHOOSE CHESTONIA CHOOSE CHOOSE CHOOSE CHOOSE CHOOSE CHOOSE CHOOSE CHOOSE CHOOSE CONTINUES IN A CONTINUE CONTINUE

STA 21.000 MASS AVERAGED PROPERTIES
PT= 28.777 TF= 643.26 GAMMA=1.4003 PT-RAT= 1.958 TT-RAT= 1.240
RCU= 1351.3 VM= 809.3 CZ= 799.0 MM=0.683 MABS=0.703 MREL=1.119

10R	ABH=0.	ĭ	0.540	0.569	0.591	0.630	0.657	0.675	0.686	0.695	0.705	0.715	0.724	0.729	0.738	MABS	0.545	0.573		0.635				0.699	0.709	0.720	0.729	0.734	0.743
A STA		HAM	7.19	7.08	6.97	6.79	99.9	6.56	6.48	6.43	6.43	6.51	6.65	6.72	6.77	VABS	653.5	4.007	723.3	765.5	791.8	809.6	819.2	826.2	835.1	845.4	853.8	859.6	869.7
ć	.4 ABC=0.	ರ	83.7	86.3	87.8	90.6	91.8	92.5	92.5	92.5	93.5	95.8	6.86	100.5	102.5	MREL	1.274	1.271	1.265	1.255	1.239	1.220	1.196	1,168	1.141	1.111	1.079	1.062	1.048
;		3	663.2	695.0	717.9	760.1	786.4	804.3	813.9	821.0	829.9	840.0	848.0	853.7	863.6	VREL	1563.9	1551.8	1538.2	1513.1	1484.2	1452.8	1417.7	1380.7	1343,4	1305.1	1263.8	1243.7	1226.0
0	AFLUW: ITYPE=2	CURV	•	-0.0031	-0.0015	0.0069	0.0159	0.0247	.0333	0.0432	.0550	.0580	0.0644	0.0825	. 1249	BETAM	64.91	63.39	62.18	59.84	58.00	56.38	54.96	53.51	51.85	49.94	47.86	46.65	45.22
22.000	MIIPEZS/ OPTY=RFTM						3.04 0		38	6.76 0	35	37	2.74 0	66	23 0	11	664.4	661.7	658.8	653.7	649.0	644.7	640.8	637.7	635.1	633.0	631.6	631.5	632.3
	Ē		200				.653 3					•	.870 12	_	_	T d	26.533	27.093	27.532	28.390	•	29.280	•	29.350	29.280	29.160	28.920	•	28.564
•	1=23 OPTX=DPP		204 8.5	88	89	-	-	7.	7.	1.287 6.8	ø	ý	333 5.8	រវា	'n	Š	11.691	1.682	11.674	1.644	1.583	21.487	1.352	11.173	20.936	20.643	20.310	20.100	
	61 265	7	.9	٠.	e.	- 3	6	1	6	י ני	-	<u>ب</u>	.3	-3	٠ .	RI DRI K	0.880	880	0.881	0.882	0.883 2	.883	.884	.885	.886	.886	886		
STATOR	# # # # # # # # # # # # # # # # # # #	150	o.	0.020	0	0.200	0.300	0.400	0.500	0.600	0.700	0.800	0.900	0.950	4.000	ī	, -	. 0	, O	4	S.	9	7	8	6	5	=	12	£3

STA 22.000 MASS AVERAGED PROPERTIES PT= 28.777 TT= 643.26 GAMMA=1.4002 PT-RAT= 1.958 TT-RAT= 1.240 RCU= 653.6 VM= 798.6 CZ= 791.5 MM=0.672 MABS=0.676 MREL=1.184

```
AXIAL VEL R 1.198 1.169 1.096 1.083 1.087 1.087 1.087 1.087 1.087 1.146 1.146 1.169
     EFFICIENCY
AD. POLY
0.635 0.663
0.669 0.696
0.699 0.723
0.785 0.723
0.865 0.877
0.900 0.909
0.923 0.930
0.942 0.948
0.944 0.949
0.923 0.929
0.923 0.939
      RATIO
1.2809
1.2757
1.2757
1.2701
1.2563
1.2552
1.2354
1.2294
1.2204
1.2204
1.2204
1.2204
1.2204
      RATIO
1.7766
1.7766
1.8087
1.80311
1.8087
0.9236
1.9584
1.9584
1.9584
1.9563
1.9576
1.9576
1.9576
1.9576
      SPEED
OUT
       BLADE
In
AVERAGE

PCT IMM RAD

O. 8.500

4.8 8.340

9.3 8.186

18.1 7.890

26.7 .602

35.2 7.315

14.0 7.021

3.1 6.715

7.7 6.391

1 6.042

8 5.648
```

	RAT= 1.240	MREL=1.244
	1	657
<11C>	1.916	MABS=0.
SED TROPER	PT-RAT=	WH:=0.657
MANN AVEKA	GAMMA= 1.4001	CZ= 778.3
SIA 23.000	PT= 28.163 TT= 643.26 GAMMA=1.4001 PT-RAT= 1.916 TT-RAT= 1.240	VM= 782.5
	163	o.
	PT= 28.	RCU=

																		10	^	_	"	~	^	_	_	_		_	_	
OR	D+H=0.	ABH=O.	Ŧ	0.536	0.560	0.577	0.616	0.642	0.660	0.671	0.678	0.687	0.707	0.708	0.708	0.697	MABS	0.536	0.560	0.577	0.616	0.642	0.660	0.67	0.678	0.687	0.70	0.70	0.708	0.697
E STA			ALPHAM	o o	o.	·	o.	o O	ö	ö	Ö	ö	o o	o.	o O	ပ်	VABS	658.1	685.3	702.8	744.8	770.2	788.1	797.4	803.1	811.7	831.4	831.4	831.5	819.9
6		I ABC=0	20	ö	ö	ó	Ö	o o	o.	ó	o.	o.	ö	ö	ö	o O	MREL	1.333	1.330	1.323	1.314	1.299	1.280	1.256	1.228	1.200	1.179	1.143	1.124	1.094
•	Ξ	3 'NBR=4	¥>	658.1	685.3	702.8	744.8	770.2	788.1	797.4	803.1	811.7	831.4	831.4	831.5	819.9	VREL	1638.0	1626.3	1611.6	1587.9	1559.2	1528.0	1492.6	1454.8	1417.8	1386.9	1342.9	1319.9	1288.3
i	AFLOW=	ITYPE=3	CURV		2063	-						0.0655	0.0938	. 1248	1318	. 1267	BETAM	66.31	65.08	64.14	62.03	60.40	58.95	57.71	56.49	55.08	53.17	51.75	50.95	50.48
STA= 23.000	MTIP=300	OPTY=BETM	_	0	49	92	0 69.1	0 977	1.28 0	1.21	5.25 0	5.45	8.02 0	9.88 0.	10.79 0.	1.52 0	F	664.4	661.7	658.8	653.7	649.0	644.7	640.8	637.7	635.1	633.0	631.6	631.5	632.3
	X		BHI A	200	357	218 C	917 1	682 2	418	150	874 5	587 6	290 8		809 10	631 11	14	26.109	26.581	26.910	27.731	28.269	28.639	28.781	28.769	28.750	28.851	28.250	27.860	27.159
•	I=24	OPTX=	2	567 8.	581 8.	∞.	7.	7.	7.	7	728 6.	756 6.	785 6.	-2.816 5.	IJ.	850 5.	PS	21.480	21.482	21.478	21.461	21.430	21.375	21.285	21.148	20.960	20.669	20.223	19.940	19.638
		61.365			-5	-2	-2.	-2.648	-2.	-2.7	-2.	-5	.5			-2	BLOBLK	0.940	0.940	0.940	.940	0.940	0.940			0.940	0.940	0.940	0.940	.940
STA (OR		WTF= 6	PSIC	o.	0.050	0. 100	0.200	0.300	0.400	0.500	0.600	0.700	0.800	0.900	0.950	 80.	SL B	_	7	0	•	8	9	7	8	6	10	10	12 0	13 0
																									2	_				

AND THE SECOND OF THE PROPERTY OF THE PROPERTY

ш	D+H=0.	ARH=O.	¥	0.551	0.575	0.592	0.631	•	0.678	0.690	0.698	0.709	0.728	0.726	0.724	0.711	MABS	0.551	0.575	0.592	0.631	0.658	0.678	0.690	0.698	0.709	0.728	0.726	0.724	0.711	
FREE			ALPHAM	o O	ó	o.	ö	Ö	ö	ö	o o	ö	o .	ó	o.	o.	VABS	675.8	702.4	719.7	761.5	787.9	807.1	817.9	824.8	834.8	853.9	850.7	848.5	835.5	
	D+C=0		2	Ö	Ö	ö	ó	o.	o.	o.	o.	o O	ó	ö	o.	o O	MREL	1.341	1.338	1.332	1.325	1.312	1.295	1.273	1.248	1.223	1.204	1.168	1.148	1.120	
	116.57	O INBR=0	¥	675.8	702.4	719.7	761.5	787.9	807.1	817.9	824.8	834.8	853.9	850.7	848.5	835.5	VREL	1645.2	1634.2	1620.3	1598.3	1571.6	1542.7	1509.9	1474.6	1440.7	1412.0	1368.9	1346.0	1315.4	
	AFLOW=	ITYPE=0	CURV		0.0040	0.000.0	0.0159	0.0234	0.0313	.0402	0.0510	0.0644	0.0793	7660.0	0.1151	. 1260	BETAM	65.75	64.54	63.63	61.54	59.91	58.45	57.20	55.99	54.59	52.79	51.58	50.92	50.57	6
= 24.000	MT1P=313	OPTY=FREE	IHd	0.	0.32 0	0.63 0	1.18	1.68 0	2.16 0	2.64 0				4.60 0		5.28 0	E	664.4	661.7			649.0	644.7	640.8	637.7	635.1	633.0	631.6	631.5	632.3	
STA			<u>م</u>	500	361	8.226	7.963	706	450	. 192	6.927	6.654	6.373	6.077	321	757	PT	26.109	26.581	26.910	27.731	28.269	28.639	28.781	28.769	28.750	28.851	28.250	27.860	27.159	,
	1=25	OPTX=DPP		8 000	8 88			7.	7	7	ဖ		_	_	-		PS	11.247	1.244	1.236	21.203	21.144	21.058	20.939	20.778	20.562	20.274	19.892	19.653	9.382	į
		1.365	7	-2	-2.0	.5	•	•	•	•	-2.000	•	?	-2	-2	-2	BLDBLK	0.950 2	0.950 2	0.950 2	950	. 950	. 950	.950	.950	. 950	.950	. 950	. 950	•	
FXTT		WTF= 6	PSIC	o.	0.050	0.100	0.200	0.300	0.400	0.500	0.600	0.700		0.900	0.950	4.000	SL B	•	7	0	4	0	9	7	8	0	to 0	110	12 0	13 0	
																										_					

THE PARTY OF THE PROPERTY OF THE PARTY OF TH

STA 24.000 MASS AVERAGED PROPERTIES
PT= 28.163 TT= 643.26 GAMMA=1.4002 PT-RAT= 1.916 TT-RAT= 1.240
RCU= 0. VM= 801.9 CZ= 800.7 MM=0.674 MABS=0.674 MREL=1.261

444	D*H=0.	ABH=0.	Ī	0.566	0.590	909.0	0.644	0.668	0.686	969.0	0.700	0.706	0.718	0.705	0.695	0.676	MABS	0.566	0.590	0.606	0.644	0.668	0.686	0.696	0.700	0.706	0.718	0.705	0.695	0.676	
FREE			ALPHAM	o.	o O	o.	o'	o O	o .	ö	ó	ö	ó	o.	ن	ö	VABS	693.1	718.9	735.5	775.4	799.9	816.7	824.4	827.3	831.7	843.0	828.0	817.6	798.1	
	0+C=0.		- -	o.	o O	o O	ó	o.	o O	o O	ö	ö	o O	o.	o.	o	MREL	1.349	1.347	1.341	1.334	1.320	1.303	1.280	1.253	1.225	1.201	1.157	1.132	1.099	
	116.27	O INBR=0	¥ >	693.1	718.9	735.5	775.4	799.9	816.7	824.4	827.3	831.7	843.0	828.0	817.6	798.1	VREL	1652.4	1641.8	1628.3	1606.7	1580.0	1550.7	1516.9	1480.1	1443.3	1410.2	1359.7	1331.6	1296.6	
	AFLOW=		CURV		0025	0.0048	0.0092	0.0136	0.0181	0.0229	0.0280	0.0335	0.0398	0.0464	0.0493	. 1263	BETAM	65.20	64.03	63.15	61.14	59.59	58.22	57.08	56.01	54.81	53.28	52.49	52.12	52.01	
25,000	MT1P=326	OPTY=FREE	PHI	· •	19	0.36 0		0.91 0	1.13 0	1.32 0	1.47 0	1.58 0	1.62 0	1.54 0	1.41	0.00	H	664.4		658	653.7	_	_	640.8	_			_	631.5	632.3	
STA	# 1 W		<u>م</u>	. 500	.365	. 232	974	. 722	.470	7.216	6.954	.6/14	90.	6.112	5.956	. 790	PT	26.109	26.581	26.910	27.731	28.269		28.781	28.	28.		28.250	27.860	27.159	
	1=26	OPTX=DPP	2	270 8	.270 8	.270 8	7 072.	.270 7.	_	1-	v	.270 6.	.270 6	.270 6		.270 5	PS	21.014	21.011	21.006	20.985	20.950	20.898	20.827	20.734	20.615	20.466	20.281	20.173	19.989	
		61.365		-	7	7	ī	7	ī	-	ī	-	T	-	7	-	BLOBLK	0.956	.956	0.956	0.956	.956	926	.956	.956	956	.956	•	.956	.956	
FXIT		WTF= 6	PSIC	o O	0.050	0.100	0.200	0.300	0.400	0.500	0.600	0.700	0.800	0.900	0.950	1.000	15		0	0	•	3	9	7	8	6	0	-	12 0	13	
•	•	-																						2	0						

THE REPORT OF THE PROPERTY OF

STA 25.000 MASS AVERAGED PROPERTIES
PT= 28.163 TT= 643.26 GAMMA=1.4002 PT-RAT= 1.916 TT-RAT= 1.240
RCU= 0. VM= 803.2 CZ= 803.0 MM=0.675 MABS=0.675 MREL=1.264

E D+H=0.	ABH=O.	Ī	0.581	0.605	0.620	0.656	0.679	0.693	0.699	0.698	0.698	0.702	0.678	0.662	0.631	MARS	9	00.0	0.605	0.620	0.656	0.619	0.693	0.699	0.698	0.698	0.702	0.678	0.662	0.631
FRE		ALPHAM	o.	o.	ó	ö	o o	o'	o O	ó	ó	o.	ö	o O	ö	VAR			735.8	751.6	789.3	811.0	824.4	827.9	825.4	822.9	825.8	799.3	781.7	748.9
D+C=0.		2	o O	o O	o O	o O	o O	o O	ö	Ö	o o	ó	o O	o O	o.	202	1000	. 330	1.355	1.350	1.342	1.328	1.309	1.284	1.253	1.221	1.191	1.139	1.109	1.068
116.28		¥>	711.0	735.8	751.6	789.3	811.0	824.4	827.9	825.4	822.9	825.8	799.3	781.7	748.9	YDE	7000	2000	1649.7	1636.3	1614.5	1587.2	1556.6	1520.8	1481.0	1440.3	1401.6	1343.6	1310.6	1266.9
AFLOW=	ITYPE=0	CURV		-0.000	0000	0000	-0.000					0000	0000	0000		BETAM	E 4	04.04	63.51	62.65	60.73	59.27	58.02	57.02	56.13	55, 15	53.90	53.50	53.38	53.76
STA= 26.000 MTIP=339	OPTY=FREE						0.49 -0				.54 -0	.39 -0	0.11 -0	. 10 -0	· ·	ï		4.4	661.7	658.8	653.7	649.0	644.7	640.8	637.7			631.6		632.3
		IHd :	500		236 C											ż		26.109	26.581	26.910	27.731	28.269	28.639	28.781		28.750	28.851	28.250	27.860	27.159
1=27	OPTX=DPP	4	350 8.5	80	350 8.2	7.	7	7	7		φ	9	9	350 5.961		Ü	0 10	20.768	20.768	0.767	0.767	0.767	0.768	0.768	0.767	0.767	0.766	20.765	0.765	20.765
	61.365	2	ó	ò	Ģ	ó				-0.350			ó	ó	o O	2		926	0.956 2	926		926	926	926	926		.956 2			
EXIT	WTF= 6	PSIC	Ö	0.050	0 100	0.500	0.300	0.400	0.500	0.600	0.70	008.0	0.00	0.950	- 000		ינ	-	0	0	4	S O	9	7	о 8	တ စ	10	-	12 0	13 0

AND THE PARTY OF T

STA 26.000 MASS AVERAGED PROPERTIES
PT= 28.163 TT= 643.26 GAMMA=1.4002 PT-RAT= 1.916 TT-RAT= 1.240
RCU= 0. VM= 801.4 CZ= 801.3 MM=0.673 MABS=0.673 MREL=1.263

Phase II Rotor

RODULIS PRODUCTURA DE PRODUCTURA DE PRODUCTURA PRODUCTURA DE PRODUCTURA

BLADE FORCES

THE FORCE CALCULATIONS ARE 'PER BLADE ROW'.
TO FIND THE FORCE ON A SINGLE BLADE, DIVIDE BY 'NB'

THE FORCES ARE THAT OF THE AIR ON THE BLADES.
POSITIVE AXIAL IS AFT; POSITIVE TANGENTIAL IS IN ROTATION DIRECTION.
THE COLUMNS HEADED BY F-TAN*, F-AXL*, AND F-RAD* ARE THE TANGENTIAL,
AXIAL, AND RADIAL FORCES PER INCH OF CHANGE IN R-AVG.

A	₹ .	14.	31.	-19.3	19. 28.	38.	31.
-AXL LB/I	384.	394.	38.8. 357.	-328.7 -294.B	254. 286.	138.	4.4
-TAN	383.	3.89.	3.86.	-288.4	263.	214.	165.
H-AVG	.18	.36	189	1.876	. 78	.97	. 95
IN.	.31	.13	.82	6.624	.73	.52	. 54
รร	⊶ ~	m ⊿	(ດ ໝ	7 8	6		13

NET TOPOUE = -8081.5 IN-LB
NET TAN. FORCE = -1290.7 LB
NET AXIAL FORCE = -1288.9 LB
NET RADIAL FORCE = -86.0 LB

2. STREAMSURFACE BLADE COORDINATES

HERONGERMA GENERAL TO STATE AND HERONGER HERBERONS OF BEHADEBUNE OF SHIPP PARTY PART

Figure 42 shows the stacked Phase II rotor streamsurface sections. Each page of the following tabulation gives the coordinates for one of these sections. The streamline designation for these sections corresponds to the calculation streamlines of the circumferential average flow calculation. Streamline 1 is at the casing and streamline 13 is at the hub. Also given in the tabulations are coordinates for the section meanline, the meanline angle, and the section thickness at each point. Streamsurface section chord, camber angle, and stagger angle are also given. All dimensions in this tabulation are in inches or degrees.

esem productions — accessed to accessed the successed to the first of the contract of the cont

FIGURE 42. Stacked Phase II Rotor Streamsurface Sections

20 S

MERIDIONAL AIRFOIL GEOMETRY

MEANLINE INPUT DATA - STREAMLINE

THE REPORT ASSESSMENT ASSESSMENT OF THE PROPERTY OF THE PROPER

1(M) 0.01870 0.02368 0.03380 0.04401 0.05411 0.05481	0.09107 0.09504 0.09615 0.09439 0.08302 0.07378 0.06239 0.04896 0.03356	T(M) 0.01934 0.02460 0.03525 0.04597 0.05653	0.07855 0.08759 0.09824 0.09937 0.09761 0.08598 0.07644 0.06465 0.05065
B·M -55.012 -55.600 -56.762 -57.952 -59.111 -60.178	-60.315 -59.386 -59.386 -57.364 -55.508 -54.640 -53.762 -52.952 -52.397	B·M -53.815 -54.366 -55.470 -56.636 -57.746	-58.947 -58.650 -57.897 -55.986 -55.130 -54.321 -53.490 -57.601 -51.601 -50.863 -49.820
X -1.12970 -1.07880 -0.97700 -0.87530 -0.77350 -0.66150 -0.4130	-0.29510 -0.17300 -0.05090 0.07120 0.19340 0.43760 0.55980 0.68190 0.8190	. 1. 20603 -1. 15053 -1. 03942 -0. 92841 -0. 81731	-0.56191 -0.42871 -0.29540 -0.02890 0.10440 0.23760 0.37030 0.5741 0.77072 0.90394
I	1107 1504 1615 1639 1302 1302 1378 1378 1378 1378 1378 1356 1923 1356 1923 1356 1923 1356 1923	PHI 0.789 0.774 0.710 0.550 0.311	-0.096 -0.286 -0.352 -0.324 -0.116 -0.140 -0.335 -0.660 -0.912
T(Z) 0.01870 0.02368 0.03380 0.04401 0.05411 0.06481		T(2) 0.01934 0.02460 0.03525 0.04597 0.05653	0.07855 0.08759 0.09426 0.09334 0.09361 0.09761 0.08598 0.07644 0.06662 0.05065
8+ -55.012 -55.600 -56.762 -57.952 -59.111 -60.178 -60.877	02142 - 50.315 0.02142 - 59.386 0.0237 - 58.354 0.02524 - 57.364 0.04727 - 56.414 0.06854 - 55.508 0.08912 - 54.640 0.10904 - 53.762 0.12835 - 52.952 0.16263 - 52.074 0.06854	8+ -53.818 -54.369 -55.472 -56.638 -57.747	-58 .947 -58 .650 -57 .947 -56 .940 -55 .987 -54 .321 -53 .490 -52 .602 -51 .739 -50 .867 -49 .823
THETA 0.21035 0.20170 0.18383 0.16514 0.14557 0.09757 0.009757	0.04617 0.02142 -0.02524 -0.04727 -0.06854 -0.08912 -0.12835 -0.14718 -0.16263	THETA 0.20687 0.20687 0.18745 0.16719 0.14602	0.09476 0.06769 0.06119 0.01557 -0.03299 -0.07859 -0.10035 -0.12188
8 .50000 8 .50000 8 .50000 8 .50000 8 .50000 8 .50000 8 .50000	8.50000 8.50000 8.50000 8.50000 8.50000 8.50000 8.50000		8. 14370 8. 14340 8. 14200 8. 14020 8. 14020 8. 13960 8. 13840 8. 13650 8. 13550
2 -1.12970 -1.07880 -0.97700 -0.87530 -0.77350 -0.66150 -0.53940 -0.55940 -0.55940 -0.55940 -0.55940 -0.55940 -0.55940 -0.55940 -0.55940 -0.55940 -0.55940 -0.55940 -0.55940 -0.55940 -0.55940 -0.55940 -0.55940 -		2 -1.20600 -1.15050 -1.03940 -0.92840 -0.81730	n444-0-44600-00
T - 4 6 4 7 0 7 8 9	0 1 1 2 2 4 2 9 7 5 8 5	F ~ 4 W 4 R 0 t	/ m w 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

20

SZ SZ

the second of the second of

MERIDIONAL AIRFOIL GEOMETRY

MEANLINE INPUT DATA - STREAMLINE

	0.09453 0.08391 0.07071 0.05505 0.03714 0.02064	0.02022 0.02754 0.04233 0.05705 0.07132 0.08597 0.11965 0.11965 0.12444 0.1268 0.1268 0.12728 0.09578 0.09578
62.556 -52.556 -54.471 -55.53.226 -55.343 -56.343 -56.234 -55.336 -53.338 -53.338	-50.888 -50.083 -49.255 -47.086 -47.825	-51.24 -51.794 -53.797 -53.575 -53.575 -54.399 -54.235 -53.271 -50.678 -44.741 -46.920 -46.920 -46.920 -47.741 -47.741 -47.741
	0.41080 0.55411 0.69751 0.98431 1.10372	-1.36205 -1.29847 -1.17131 -1.04416 -0.91700 -0.62468 -0.47215 -0.14717 -0.01471 0.13775 0.29019 0.59499 0.74254 0.89992 1.05242
D	0.300 0.239 0.115 0.097 0.925 0.925	2.850 2.839 2.839 2.839 2.820 2.2529 1.944 1.549 1.549 1.549 1.521 1.612 2.362
	0.09453 0. 0.08391 0. 0.07071 0. 0.05505 0. 0.03714 0. 0.02064 0.	0.0220 0.02752 0.04230 0.05701 0.08591 0.10000 0.11140 0.12441 0.1236 0.12326 0.12326 0.09576 0.08028
8. -52.567 -53.238 -54.842 -55.546 -56.350 -56.818 -56.236 -56.236 -56.236 -56.236 -56.236 -56.236 -56.236 -56.236 -56.236	08433 -50.888 0 10666 -50.083 0 12836 -49.255 0 16967 -47.040 0 18576 -45.828 0	-51.279 -51.830 -52.831 -53.608 -54.429 -54.429 -51.917 -50.690 -49.608 -47.750 -46.929 -46.929 -45.258
	-0.08433 -0.10666 -0.12836 -0.16967 -0.18576 -0.18576	0.21786 0.21780 0.19546 0.17240 0.12248 0.09368 0.06550 0.01291 -0.01171 -0.01171 -0.08064 -0.10226 -0.10353 -0.10353
	7.78380 7.78460 7.78500 7.78510 7.78660	7.35960 7.36920 7.36920 7.37550 7.38840 7.40150 7.41240 7.42440 7.42440 7.42440 7.42440 7.42440 7.42440 7.42440
-1.28580 -1.28580 -1.10660 -0.98710 -0.86760 -0.73620 -0.59280 -0.4950 -0.16270 -0.16270 -0.16270	0.41080 0.55410 0.84090 0.98430 1.10370	-1.35080 -1.29730 -1.17030 -0.91630 -0.77660 -0.77660 -0.31950 -0.16710 -0.01470 0.13770 0.13770 0.29010 0.59480 0.59480 0.789960 1.05200
F - 4 2 4 2 6 7 8 9 5 - 5 5 5	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

PHASE II ROTOR

MERIDIONAL AIRFOIL GEOMETRY

50

Ë

MARIE TO CHARGO LA COURTE OF CONTROL C

MEANLINE INPUT DATA - STREAMLINE

T(M) 0.02033 0.02960 0.02960 0.04826 0.08427 0.19213 0.119212 0.14242 0.14931 0.14931 0.14931 0.12800 0.149931 0.00421	1 (M) 0.01995 0.03227 0.05690 0.05690 0.12699 0.14862 0.18479 0.18479 0.18635 0.18635 0.18635 0.15985 0.15985 0.06887
B+M -49.905 -50.348 -51.104 -51.536 -51.536 -51.536 -51.536 -49.831 -49.831 -49.831 -45.329 -43.151 -42.158 -42.158 -42.158 -42.158 -43.151 -42.158	B.M -48.534 -49.200 -49.398 -49.302 -47.744 -45.911 -42.292 -40.904 -35.538 -36.256 -36.414 -3
x -1.43381 -1.36671 -1.23250 -1.09827 -0.96412 -0.65539 -0.49441 -0.33350 -0.17264 -0.01182 -0.01182 -0.01182 -0.01182 -0.01182 -0.01182 -0.01182 -0.01182 -0.01182 -0.01182 -0.01182 -0.01182 -0.01183 -0.0183 -0.018	x -1.50486 -1.43441 -1.29348 -1.01156 -0.68722 -0.51818 -0.34913 -0.18015 -0.01126 0.15746 0.49500 0.66379 0.83252 1.00144
PHI 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	PHI 6.418 6.520 6.711 6.942 6.914 6.914 6.756 6.756 6.035 6.035 5.476 5.451 5.822 6.213 6.777 7.324
1 (24 0 . 02029 0 . 02955 0 . 04817 0 . 08652 0 . 1889 0 . 13251 0 . 14223 0 . 14223 0 . 14223 0 . 14917 0 . 14917 0 . 1291 0 . 1291 0 . 09414 0 . 07167	TA - STREAMLINE 1(2) P 0.01988 6. 0.03215 6. 0.05668 6. 0.12646 6. 0.12646 6. 0.14618 6. 0.148432 6. 0.18594 5. 0.18518 5. 0.18594 5. 0.18596 6. 0.1558 6.
849.989 -50.432 -51.192 -51.627 -51.627 -51.686 -51.686 -51.686 -49.910 -48.148 -46.642 -47.382 -41.303 -40.503 -39.087	MEANL INE INPUT DATA HETA 23569 -48.713 0 22332 -48.967 0 19833 -49.395 0 147311 -49.511 0 14052 -49.036 0 09155 -47.942 0 09155 -47.942 0 09165 -47.942 0 01469 -42.450 0 01469 -42.450 0 01469 -42.450 0 01469 -38.416 0 06934 -37.324 0 06981 -36.387 0 10628 -35.554 0 12387 -34.853 0 14103 -34.369 0
THETA 0.23286 0.22128 0.19763 0.17349 0.14917 0.09355 0.06559 0.06559 0.01441 -0.07488 -0.07488 -0.07488	MEANL IN THE TA 0. 23569 0. 22332 0. 19833 0. 17311 0. 12052 0. 06406 0. 03855 0. 01469 0. 03855 0. 01469 0. 04980 -0. 04980 -0. 04980 -0. 04980 -0. 0628 -0. 1987 -0. 10628
R 6.93260 6.93790 6.94840 6.94840 6.95910 6.98230 6.98230 7.00790 7.01940 7.04020 7.04970 7.06750 7.05750 7.05750 7.05750 7.05750 7.05750 7.05750	R 6.47130 6.47940 6.49570 6.52930 6.52930 6.58850 6.58850 6.60680 6.60680 6.67500 6.67500 6.77760
2 -1.42970 -1.36280 -1.22900 -1.22900 -0.96150 -0.81430 -0.49330 -0.49330 -0.17230 -0.17230 -0.17230 -0.17230 -0.17230 -0.17230 -0.17230 -0.17230 -0.17230 -0.17230 -1.1190 +1.1190	2 -1.49500 -1.28500 -1.18500 -1.10510 -0.68510 -0.68510 -0.51520 -0.34720 -0.1120 -0.01120 0.32470 0.49270 0.66070 0.99660 1.16460
F - 2 4 2 0 7 8 0 0 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	F- 26 4 20 0 C = 25 E 4 25 0 C = 8 E

MERIDIONAL AIRFOIL GEOMETRY

8

MEANLINE INPUT DATA - SIREAMLINE

T(M)	0.01902	0.03435	0.06481	0.09443	0.12234	0.15008	0.17568	0 19579	0 21009	0.01835	0 22025	0.21566	0 20479	0. 18781	0.16485	0.13592	0.10102	0.06002	0.02116		1(4)	0.01859	0.03674	0.07265	0.10725	0.13954	0.17132	0.20049	0.22347	0.24000	0.24970	0.25211	0.24700	0.23456	0.21500	0.18843	0.15487	0.11428	0.06650	0.000.0
∑	-47.190	-47.288	-47.424	-47.377	-46.940	-45,657	-43,453	-41 188	991 95	-37 501	-35 894	-34 328	-32 947	-31.725	-30 621	-29.759	-29, 169	-28.745	- 28 449		ä	-45.785	-45,700	-45.413	-44.779	-43.625	-41.635	-38.929	-36.558	-34.641	-32.872	-31, 105	-29:310	-27.570	-25.972	-24.594	-23,488	-22,669	- 22 ton	-21 748
	-1.57422		-1.35319	-1.20571	-1.05812	-0.89596	-0.71905	-0.54211	-0.36535	-0. 18869	-0.01213	0.16436	0.34080	0.51721	0.69365	0.87026	1.04694	1.22384	1.37148		×	-1.62875	-1.55202	-1.39833	-1.24453	-1.09075	-0.92170	-0.73739	-0.55317	-0.36905	-0.18504	-0.00112	0.18274	0.36659	0.55045	0.73449	0.91858	1.10292	1 28754	4 44 563
IHd	000.6	9.131	9.349	9.433	9.391	9.310	9.214	9,059	8.857	8.645	8.461	8.325	8.243	8.232				9.522	9.979	MLINE 9	PH?	12, 123	12.281	12.535	12.603	12.494	12.338	12.206	12.069	11,913	11.755	11.640	11.590	11.593	11.659	11,813	12.107	12.507	12,901	
1(2)	0.01889	0.03411	0.06434	0.09373	0.12146	0.14906	0.17460	0.19472	0.20908	0.21742	0.21942	0.21493	0.20416	0.18727	0.16439	0.13554	0.10072	0.05983	0.02109	ATA - STREAMLINE	1(2)	0.01837		0.07176	0.10594	0.13794	0.16954	0.19866	0.22168	0.23829	0.24812	0.25069	0.24576	0.23351	0.21413	0.18772	0.15431	0.11386	0.06625	00100
æ	-47.543	-47.652	-47.806	-47.766	-47.325	-46.037	-43.824	-41.545	-39.536	-37.818	-36.192	-34.611	-33.219	-31.991	-30.888	-30.039	-29.472	-29.081	-28.816	MEANLINE INPUT DATA	÷	-46.431	-46.362	-46.103	-45.478	-44.311	-42.301	-39.571	-37.173	-35.226	-33.428	-31.634	-29.816	-28.057	-26.445	-25.062	-23 963	-23.163	-22.623	. 22 202
THETA	0.23732	0.22397	0.19723	0.17053	0.14414	0.11605	9.08739	0.06108	0.03679	0.01416	.0.00108	-0.02701	-0.04578	-0.06357	-0.08051	-0.09673	-0.11243	-0.12777	-0.14033	ME ANL IN	THETA	0.23565	0.22106	0.19216	0.16386	0.13659	0.10837	0.08028	0.05487	0.03153	0.00988	-0.01022	-0.02882	-0.04620	-0.06191	-0.07671	-0.09060	-0.10380	-0.11651	19864 0-
						6.07460	6, 10310	6.13120	6.15880	6.18560	6.21190	6.23760	6.26290	6.28810	6.31350	6.33920	6.36600	6.39470	6.41970		α	5.39270		5.44270	5.47610	•		•	1		٠				•	•	5.92320	5.96240	6.00320	
2		-1.481/0			٠	w	-0.710EC	.17	7	Ξ.	9	Τ.	۲7	0.51180	686	86	035		355		2	÷.	Ť.	366	1.21	1.066	96	0.72	ហ	36	. 18		. 17	35	0.53920	7.	83	.0		7
PT *	- (7 (ŋ ·	♥ (ū	9	7	œ	6	\$	Ξ	12	13	7	1 5	16	11	8	6		Гd	_	8	ო	4	2	9	7	&	б	<u></u>				4		1 6		18	19

THE RECEIVED FROM THE PROPERTY OF THE PROPERTY

MERIDIONAL AIRFOIL GEOMETRY

		.072	.807	.032 0.	.525 0.	.264 0.	596 0.	971 0.	642 0.	.508 0.	.429 0.	o.	-22.974 0.27502		.328	.609	. 178 0. 17312	.246 0.12728	.519 0.07294	97		R+M T(M)	50 0.	0	.797 0.	.900	o.	Ö	o	308 0.	462 0	985 0.	525 0	962 0	o	ó	398 0.	.939 0	.719 0	. 565 0.08	•
	80	-1 63125 -44	. 55198	. 39315						-0.33034 -29	-27			0.42885 -20	0.61900 -18	0.80941 - 16	1.00015 - 15	1.19141 - 14	- 13	- 12		×	-1.62361 -41	m	- 39			-0.87712 -32		- 56	-23	. 10105 -20	. 60260	-	.48301 -1	. 67904 - 1	.87573 -	- 05870	e-		1.63454 0
STREAMLINE 10	IHa	16.174	16.341		•		16.348		15,901	15.711	15.631	15.656	15.775	15.976	16.224	16.508	16.892	17.282		17.480	STREAM.INE '1	IKa	21,609	21.757	21.978	21.985	•	21.576	21.398	21.242	21.189	21.319	21.598	21.992	22.477	23.000	23.517	24.027	24.335	24, 136	23.714
•	1(2)	0.02055	0.04056	0.07999	0.11777	0.15282	0.18724	0.21919	0.24482	0.26356	0.27488	0.27825	0.27336	0.26029	0.23916	0.20995	0.17258		0.07274	0.02103		1(2)	0.02498		0.08752	0.12735	0.16457	0.20147	0.23609	0.26425	0.28528	0.29854	0.30351	0.29971	0.28687	0.26485	0.23346	0.19240	0.14140		0.02159
MFANLINE INPUT DATA	8	-45.229	-44.988	-44.251	-42.750	-40,453	-37.734	-35.046	-32.649	-30.453	-28.321	-26.119	-23.775	-21.328	- 19.034	- 17, 178	- 15.828	-14.890	-14.146	-13.576	MEANLINE INPUT DATA	å	-43,630	-43, 150	-41.936	-40.014	-37.372	-34,300	-31, 124	-27.944	-24.962	-22.379	-19.818	-17,144	-14.559	-11.933	-9.146	-6,497	-4.081	-1.715	0.283
MFANLI	THETA	0.22884	0.21273	0.18124		0 12337	0.09570	0.06860	0.04421	0.02210	0.00201	-0.01616	-0.53244	-0.04682	-0.05940	-0.07048	-0.08041	-0.08953	-0.09805	-0.10475	MEANLI	THETA	0.22127	0.20310	0.16818	0.13558	0.10600	0.07716	0.04962	0.02573	0.00511	-0.01277	-0.02829	-0.04151	-0.05256	-0.06160	-0.06862	-0.07370	-0.07707	-0.07889	-0.07926
	α	•	4.75520		•		•	•	5.04680	5.09850	5.14960	5.20070	5.25200									٥	3 90290					4.18160	•	•	٠	•	•	•	•	٠	•	4.91350	•	5.07640	5.14450
	7	Ψ.	7.	E.	Ξ.	Ť.	•	•	•	-0.31810	•	•	•	•	•							,	G.			133	96.0	817	63	-0.45560	274	0	980	267	448	9	808	990	1711	351	5025
	ΡŢ	-	М	ო	4	ស	9	7	89	6	Ç	-	12		4	15	16	17		6		-	- -	. 0	ı m	4	ស	9	7	œ	o,	Q		12	13	4	15	16	17	18	19

MERIDIONAL AIRFOIL GEOMETRY

1

12

MEANLINE INPUT DATA - STREAMLINE

PT	2	α	THETA	æ	1(2)	ЬНІ	×	₩.	1 (M)
-	7.	3.35910	0.22137	-41.273	0.03344	25.674	-1.64725	-38.346	0.03490
8	•	•	0.20238	-40.745	0.05388	25.706	-1.56546	-37.820	0.05618
ო	1.26	3.46710	0.16616	-39.426	0.09436	25.696	-1.40175	-36.534	0.09815
4	4. +2	3.53770	0.13268	-37.411	0.13355	25.465	-1.23830	-34.628	0 13835
ហ	0.97		0.10257	-34.728	0.17052	25.084	-1.07530	-32, 120	0.17572
9	8	3.68220	0.07341	-31.778	0.20756	24.816	-0,89643	-29.349	0.21282
7	-0 63510	3.76390	0.04560	-28.877	0.24279	24.801	-0.70158	-26.594	0.24793
80	4.	•	0.02152	-25.805	0.27209	24.909	-0.50652	-23.679	0.27678
6	. 28	3.92800	0.00101	-22.737	0.29469	25.126	-0.31132	-20.777	0.29874
9	₽.		-0.01643	-20.029		25.482	-0.11567	-18.215	0.31315
-	6.	4.09660	-0.03123	- 17.408	0.31658	25.958	0.08067	-15.743	0.31933
12	. 24	4.18380	-0.04351	-14.592	0.31459	26.559	0.27802	- 13, 108	0.31661
1 3	.42	4.27350	-0.05322	-11.457	0.30344	27.302	0.47643	10.209	0.30471
4	9	4.36620	-0.06027	-8.024	0.28293	28.050	0.67619	-7.092	0.28354
15	. 78	4.46210	-0.06465	-4.434	0.25272	28.692	0.87725	-3.892	0.25289
16	Τ,	4.56060	-0.06649	-0.948	0.21254	29.324	1.07954	-0.826	0.21255
17	. 13	4.66060	-0.06596	2.611	0.16222	29.664	1.28300		0.16226
18	.31	4.76070	-0.06291	6.813	0.10169	29.136	1.48619	•	0.10186
19	.458	4.84410	-0.05819	10.698	0.04321	28.232	1.65425	•	0.04338
			MEANLIN	MEANLINE INPUT DATA	NTA - STREAMLINE	MLINE 13			
1 d	2	α	THETA	8	1(2)	PH1	×	€	(W) L
-	4.	2.65330	0.23827	-36.526	0.05039	31, 139	-1.68416	-32.373	0.05296
8		2.69460	0.21882	-36.125	0.06917	30.509	-1.60183	-32, 163	0.07249
ო		2.77620	0.18170	-35.141	0.10671	29.348	-1.43859	-31.531	0.11123
4	Ţ.	2.85490	0.14718	-33.745	0.14340	28.479	-1.27698	-30.422	0.14871
ស	יִיס	2.93070	0.11560	-31.862	0.17838	27.969	-1.11643	-28.764	0.18411
9	æ	3.01270	0.08457	-29.340	0.21417	27.754	-0.94047	-26.447	0.21997
7	Ψ.	3.10230	0.05521	-26.361	0.24915	27.933	-0.74851	-23.645	0.25472
œ	4	3.19340	0.03009	-23.624	0.27896	28.599	-0.55579	-21.008	0.28424
o	e,	3.28790	0.00851	-21.156	0.30296	29.667	-0.36156	-18.586	0.30791
ō	-0.14060	3.38720	-0.00996	- 18.710	0.32048	30.955	-0.16488	-16.195	0.32493
-	0.02920	3.49170	-0.02544	-16.015	0.33069	32.210	0.03447	-13.650	0.33432
12	0.19900		-0.03784	-12.931	0.33250	33.325	0.23643	- 10.860	0.33504
_	0.36880		-0.C4706	-9.438	0.32520	34.348	0.44088	-7.814	0.32660
4	0.53850	3.83300	-0.05289	-5, 115	0.30871	35.318	0.64763	-4.177	0.30912
15	0.70830		-0.05478	0.379	0.28281	36.212	0.85693	905.0	0.28281
16	0.87810		-0.05223	909.9	0.24708	36.868	1.06835	5.293	0.24767
11	1.04790	4.20930	-0.04512	13.141	0.20175	37.049	1.28100	10.555	0.20367
2	Ġ	4.33580	-0.03339	•	0.14773	•	1.49305	16.090	0.15081
6	29	4.44020	-0.02005	25.139	9.09622	35.780	1,66835	20.841	0.09933

PHASE II ROTOR

MERIDIONAL AIRFOIL GEOMETRY - STREAMLINE

NB 20

AY AX	-1.12970 1.	8145 -1.12203	7482 -1.11647 1.	-1.06904 1.7	-1.01600 1.	-0.96290 1.	47351 -0.90977 1.49450	39198 -0.85661 1.41533	.80344 1.	Ģ.	13639 -0.69713 1.16624	-0.63342	-0.56984 0	81097 -0.50644 0.84770	70000 -0.44328 0.73893	.38040 0.	.31783	36991 -0.25559 0.41501	P	-0.13212 0	0 880 0	0 96600.0-	0.05066 -0	0.11099 -0.	0. 17104 -0	0.23084 -0.	0.29040 -0.	0.34972 -0.	0.40882 -0.	Ö	0.52642 -0.			02624 0.64326 -0.99285	0.64326 -0.0	0.64326 -0. 0.70143 -1. 0.75946 -1.	0.64326 -0. 0.70143 -1. 0.75946 -1.	0.64326 -0. 0.70143 -1. 0.75946 -1. 0.81532 -1. C.86539 -1.	0.64326 -0. 0.70143 -1. 0.75946 -1. 0.81732 -1. 0.90782 -1.
S to	1.78	1.78	1.77	1.70	1.63	1.553	1.47:	1.39	1.308	1.22	1.136	1.029	0.92115	0.810	0.70				0.26	0.157	0.05	-0.04544		-0.240				-0.60	-0.69	-0.778	-0.86	-0.94	-1.026		-1.10				
XS	-1.12970	-1.13371	. 1322	.0885	- 1.03985	-0.99117	-0.94253	-0.89392	-0.84531	-0.79671	-0.74807	-0.68965	-0.63110	-0.57237	-0.51340	-0.45415	-0.39459	-0.33470	-0.27448	-0.21391	-0.15302	-0.09181		0.03150	0.09358	0.15591	0.21848	0.28129	0.34432	0.40755	0.47098	0.53460	0.59840		0.66236	0.66236	0.66236 0.72646 0.79073	0.66236 0.72646 0.79073 0.84444	0.66236 0.72646 0.79073 0.84444 0.89198
<u>-</u> '	-	~	m	7	ល	မ	7	œ	6	9	-	12	.	7	5	16	11	#	19	20	21	22	23	24	52	56	27	58	59	30	31	32	33		34	35	3.4 3.5 3.6	36 36 37	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	•				0.03891	0.04401	0.04909	0.05411	0.05905	0 06481	0.07031	0.07547	0.08020	0.08442	0.08806	0.09107	0.09340	0.09504	0.09596	0.09615	0.09562		0.09249						0.06835			0.04896	0.04152						
3. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	-55.012	-55.600	•		•	-57.952	-58.545	-59,112	-59.634	-60, 178	-60.605	-60.876	-60.966	-60.886	-60.660		-59.879	-59.386	-58.870	-58.354	-57.852		-56.884	-56.414	-55.955		-55.072	-54.639	-54.201		-53.336	-52.952	-52.642		•				
> t	1.78798	1.71447	1.63933	1.56254	1.48401	1.40365	1.32142	1.23729	1, 15132	1.04591	0.93840	0.82934	0.71946	0.60958	0.50038	0.39246	0.28625	0.18202	0.07987	-0.02022	•		•	ö	-0.49300		ö	ö	-0.84289	-0.92688		-1.09099	-1.17142		-1.25104	-1.25104	-1.25104 -1.31691 -1.38239	-1.25104 -1.31691 -1.38239	-1.25104 -1.3:691 -1.38239
×	1.1297	.0788	.0279	σ.				-0.77349			-0.60047	539		-0.41727		-0.29514		-0.17301	-0.11195	-0.05088	0.01018	0.07125		•	0.25444	0.31551		7		0.55977	•	•	0.74296		8040	α Θ. α Θ.	. 8040 . 8549 . 9058(. 8549 . 8549 . 9058	. 8549 . 8549 . 9058(
PCT X	0.	0.02500	•	Ö	Τ.	٣.		0.17500	ď	0.23000	0.26000		0.32000	0.35000	0.38000	0.41000	0.44000	0.47000	•	0.53000	•		•			0.71000	•			0.83000	0.86000	0.89000	0.92000	•	٠	ກຸຕຸ	ည်းစွာ ဝ	စ်စ်ဝ	စ်စ်ဝ <u>ဲ</u>
Ξ,	- 1	~ (m	4	ស	9	7	8	6	9	=	5	<u>.</u>	14	15	9;	17	18	6	20	21	22	23	24	25	56	27	28	29	30	31	32	33		34	35	335 36 36	35 36 36	33.4

STAGGER -57.298

2.938

CAMBER

3.76756

MERIDIONAL AIRFOIL GEOMETRY - STREAMLINE 3

NB 20

THE PARTY OF THE PROPERTY OF THE PROPERTY OF THE PARTY OF

	ΥP	1.76118	1.76289	1.75924	-	1.61484	1.53637	1.45615	1.37405	1.29002	1.20411	1.11649	11.00949	19 0.90104	Ċ	ö	0.57390	0.46638	17 0.36037	Ċ	36 0.15351	0	ó	53 -0.14427	ó	ó	ġ	50 -0.52263	Ġ.	o O	Ŷ	o	33 -0.96857	39 -1.05432	37 -1.13898	1.22246	24 -1.30464	92 - 1.37209	34 -1.43072	51 -1.43764	5 -1.44509
RDINATES .	×	-1.20603	-1.1981	-1.1923	- 1.1405	-1.0827	-1.02493	-0.96708	-0.90920	-0.8513	0.7934	-0.7356	.0.6663	-0.59719	-0.52827	-0.45962	-0.39125	-0.32320	-0.25547	-0.18805	-0.12096	-0 05417	0.01232	0.07853	0.14445	0.2100	0.27548	0.3406	0.4054	0.470	0.5345	0.5987	0.6628	0.7266	0.79037	0.8538	0.9172	0.9699	1.01634	1.0186	1.01505
SURFACE COORDINATES	۸۶	1.76118	1.75433	1.74752	1.67733	1.59765	1.51639	1.43346	1.34877	1.26225	1.17394	1.08398	0.97425	0.86313	0.75130	0.63946	0.52832	0.41845	0.31027	0.20405	0.09992	-0.00211	-0.10210	-0.20019	-0.29649	-0.39112	-0.48413	-0.57555	-0.66539	-0.75361	-0.84019	-0.92516	-1.00858	- 1.09051	-1.17096	-1.24983	-1.32701	.1.38996	-1.41444	-1.44761	-1.44509
; ; ; ; ; ;	s×	-1.20603	-1.21004	-1.20836	-1,16050	-1,10721	-1.05397	-1.00077	-0.94760	-0.89443	-0.84125		-0.72405	-0.65992	-0 59557	-0.53096	-0.46606	-0.40085	-0.33531	-0.26946	-0 20329		-0.07005	-0.00298	0.06436	0.13198	0.19986	0.26800	0.33638	0.40500	0.47383	0.54287	0.61209	0.68150	0.75108	0.82083	0.89075	0.94912	1.00062	1.00702	1.01505
;	PT	-	7	က	4	ស	9	7	6 0	6	-	=	12	<u>.</u>	7	£	16	11	48	19	20	5	22	23	24	22	56	27	28	29	ဗ္ဗ	3 6	35	33	34	32	36	37	38	39	40
1	T (M)	0	0.02460	0.02991	0.03525	0.04062	0.04597	0.05128	0.05653	0.06167	0.06764	0.07329	0.07855	0.08334	0.08759	0.09125	0.09426	0.09660	0.09824	0.09917	0.09937	0.09885		0.09568	0.09309	0.08985	0.08598	0.08150	0.07644	0.07081		•	0.05065	0.04292	0.03468	0.02742	0.01998				
1 1 1 1 1 1	æ.	-53.815	-54.366	-54.913	-55.470	-56.048	-56.637	-57.215	-57.746	-58, 195	-58.605	•	-58.947	-58.870		-58.315	-57.897	-57.429	-56.940	-56.454	-55.986	-55.547	-55, 130	-54.724	-54.321	-53.912	-53.490	-53.048	٠.		Ť.	-51.312	-50.863	-50.365	-49.820	-49.335	-48.831				
LINE DATA	>	1.76118	1.68450	1.60625	1.52638	1.44481	1.36141	1.27614	1.18902	1 10024	0.99187	0.88209	0.77156	0.66101	0.55111	0.44242	0.33532	0.23005	0.12672	0.02529	-0.07431	-0.17223		-0.36349	-0.45698	-0.54909	-0.63981	-0.72911	-0.81697	.0.90344	•	-1.07242	-1.15497	-1.23614	-1.31583	-1.38102	-1.44509				
MEANLIN	×	-1.20603	-1.15051	-1.09498		-0.98392	-0.92840	-0.87287	-0.81734					-0.49529				-0.22876	-0.16213	-0.09549	4	0 03777	0.10440		- 1				0.50420		0 63746		0.77073	0.83736	4	0 95952					
	PCT X	o.	0.02500	•	٣.	₹.	0.12500	٠.	0.17500		0 23000			0.32000							•		0.59000			٠.						•		•	•	0.97500	1.00000				
-	4	-	7	က	4	ស	9	7	œ	6	0	Ξ	12	13	4	1	16	17		0 19	50	21	22	23	24	25	56	27	28	53	30	31	35	33	34	32	36				

STAGGER

4.985

CAMBER

3.90043

MERIDIONAL AIRFOIL GEOMETRY - STREAMLINF

NB 20

		MEANLINE	INE DATA	1	;	;		SURFACE COOR	COORD INATES	1
μ	PCT X	×	>	æ ¥•	T(M)	PT	XS	۸۶	ď	ΑΑ
-	o.	-1.28603	1.73468	-52.556	0.01995	-	-1.28603	1.73468	-1.28603	1.73468
N	0.02500	•	1.65570	-53.227	0.02595	~	-1.29001	1.72754	-1.27791	1.73662
ო	0.05000	-1.16654	1.57481	m	0.03201	က	-1.28814	1.72053	-1.27182	1.73300
4	٠,	-1.10680	1.49206	-54.470	0.03813	4	-1.23668	1.64793	-1.21589	1.66347
ß	٣.		.40751	•	0.04425	ស	-1.17947	1.56538	-1.15361	1.58425
9	_	-0.98731	1.32127		0.05034	9	-1.12231	1.48098	-1.09129	1.50314
7	Τ,	-0.92757	1.23348		0.05637	7	-1.06518	1.39483	-1.02893	1.42019
œ			1.14434	-56.342	0.06230	∞	-1.00806	1.30702	-0.96656	1.33551
6			1.05413	-56.614		6	-0.95093	1.21771	-0.90421	1.24925
9	0.23000	-0.73639	0.94488		0.07471	ō	-0.89375	1.12708	-0.84190	1.16160
-	0.26000	-C.66470	0.83510	-56.869	0.08096	=	-0.83650	1.03540	-0.77966	1.07285
2	ņ	-0.59300	7253		0.08674	12	-0.76765	0.92443	-0.70513	0.96533
1 3	•	-0.52131	0.61629		0.09199	1 3	-0.69859	0.81298	-0.63080	0.85723
4	•	-0.44962	0.50835		0.09562	7		0.70162	-0.55672	0.74914
1 5	0.38000	-0.37793	0.40193	-55.815	0.10058	15	-0.55969	0.59095	-0.48293	0.64163
9	₹.	•		-55.337	0.10384	16	-0.48978	0.48150		0.53520
11	•	-0.23454	0.19460	-54.830	0.10636	17	-0.41953	0.37368	-0.33632	0.43019
18		-0.16285		-54.322	0.10814	.	-0.34894	0.26778	-0.26353	0.32684
19		-0.09116		-53.838	0.10914	19	-0.27801		-0.19107	0.22523
20	•	-0.01946			0.10935	20	-0.20677	٠.	-0.11893	0.12534
21	0.56000	0.05223		•		21	-0.13521	-0.0,3735	-0.04710	0.02705
22			. 2925		٠.	22	-0.06335	-0 13504		-0.06982
23					0.10528	23	0.00881	-0.23094	0.09565	-0 16544
24		7		•	0.10242	24		-0.32519		-0.25991
25	œ.	0.33900	-0.56731	-51.307	0.09883	25	0.15404	-0.41782	0.23718	-0.35323
56	0.71000		.6551		0.09454	26	0.22710	-0.50882	0.30751	-0.44540
27		•		-50.483	0.08956	27	0.30043	-0.59820	0 37757	-0.53642
28						28	0.37401	-0.68597	0.44737	-0.62633
59	0.80000	0.62577	٠		•	59	0.44784		•	-0.71520
ဓ္က	ω.	•	•	œ.	0.07071	ဗ္ဗ	0.52190	-0.85692	•	-0.80307
31	œ	•	-1.08149			31	0.59617	-0.94019		-0.88996
35	٠		-1.16266	. 28	٠	32	0.67067	-1.02200		-0.97585
33	٠	٠	-1.24228	•	0.04639	33	0.74539	-1.10229	0.79292	- 1.06068
34	. 95	.984	-1.32018	-47.040	0.03715	34	0.82030	-1.18098	•	-1.14434
32	0.97500	•		44	0.02901	32	0.89538	-1.25789	0.92969	-1.22667
36	1.00000	1.10372	-1.44584	-45.825	0.02064	36	0.97064	-1.33284	0.99782	-1.30752
						37	1.03346	-1.39367	1.05448	-1.37368
						38	1.08877	-1.44598	1.10431	-1 43092
						33	1.09554	-1.44889	1.10700	-1.43797
						9	1.10372	-1.44584	1.10372	-1.44584

STAGGER -53.080

6.731

CAMBER

3.97827

CHORD

NB 20

MERIDIONAL AIRFOIL GEOMETRY - STRFAMLINE

ល

SELECTION OF THE PROPERTY OF T

×								
<	>	æ•	T(M)	PT	XS	۸s	ď	٩×
36205	1.68972	-51.244	0.02022	-	-1.36205	1.68972	-1.36205	1.68972
. 29851	1.60978	-51.795	0.02754	7	-1.36594	1.68236	-1.35386	1.69190
23497	1.52827	-52,318	0.03491	က	-1.36390	1.67530	-1.34756	1.68839
17143	1.44528		0.04232	4	-1.30933	1.60126	-1.28769	1.61829
. 10789	1.36092	-53.217	0.04971	ស	-1.24878	1.51760	-1.22115	1.53895
.04435	1.27536	-53.574	0.05703	9	-1.18828	1.43249	-1.15457	1.45808
98081	1.18879	-53.865	0.06424	7	-1.12779	1.34604	-1.08798	1.37581
-0.91727	1, 10138	-54.096	0.07129	œ	-1.06729	1.25843	-1.02140	1.29230
.85373	1.01331	-54.272	0.07811	6	-1.00675	1.16984	-0.95486	1.20773
.77748	٠		0.08594	010	-0.94514	1.08048	-0.88840	1.12228
. 70123	0.80047	-54.406	0.09328	11	-0.88543	0.99051	-0.82202	1.03612
.62498		-54.236	0.10004	12	-0.81242	0.88202		0.93204
-0.54873	0.58904	•	0.10611	13	-0.73916	0.77332		0.82762
-0.47249	0.48573	-53.274	0.11143	14	-0.66557	0.66498	-0.58439	0.72344
-0.39624			0.11595	15	-0.59157	0.55774	-0.50590	0.62034
-0.31999		•	Τ.	16	-0.51714	0.45241		
-0.24374		•	0.12247	17	-0.44229		-0.35018	0.41997
-0.16749	0.09609	-50.680	0.12444	18	-0.36707		-0.27291	0.32319
-0.09125		-50.127	Τ,	19	-0.29151	0.15183		•
-0.01500	•	-49.599	Τ.	20	-0.21563	0.05666		0.13551
		•	Τ.	21	-0.13941	٠.	•	0.04415
	-0.26256	٠.	0.12329	22	-0.06285			-0.04578
	•		۳.	23	0.01404	-0.21620		-0.13440
			Τ,	24	⁻.	-0.30331	0.18375	-0.22181
	•	-47.330	0.11322	25	0.16875	-0.38869	0.25874	-0.30813
		-46.920	0.10820	26				-0.39347
0.51874	•			27				
. 5949	. 7591	•	0.09578	28		-0.63535		-0.56144
	•	•		29				-0.64411
0.74748	•	-45, 190	•	30	•		٠,	-0.72589
	-0.99118	-44.725	•	31		-0.86859	۲.	-0.80677
8999	-1.06608	-44.243	0.06186	32		-0.94334	0.77597	-0.88675
	-1,13969	-43.741	0.05161	33	0.79860	-1,01656		-0.96581
1.05248	-1 21201	-43.221	0.04062	34	0.87840	-1.08823	0.92156	-1.04392
1.11602	-1.27125	-42.774	0.03089	32	0.95839	-1,15833	0.99407	-1.12105
1.17956	-1.32958	-42.318	0.02088	36	1.03857	-1.22681	1.06638	-1.19721
				37	1,10553	-1,28259	1.12651	-1.25992
				38	1.16441	-1.33072	1.17930	-1.31440
				39	1.17149	-1,33319	1.18242	-1.32136
				40	1,17956	-1.32958	1.17956	-1.32958

-49.910

STAGGER

8.926

CAMBER

3.94663

PHASE 11 ROTOR

NB 20

MERIDIONAL AIRFOIL GEOMETRY - STREAMLINE 6

and the state of t

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	۵×	1 62645	<u>-</u>	1,62551	1.55563	1.47699	1.39722	1.31651	<u>-</u>	1,15331	_	0.98914	ó	0.79211	Ö	o.	Ö		Ö	0.23749		0.06979	o O	-0.09226	ó.	ġ	-0-	-0.40307	o O	o O	o o	o O	ġ.	O	-0.91618	-0.98730	-	1.7	-1.16	-1.17	-1 18319
COORDINATES	dX.	-1.43381	-1.42562	-1.41915	-1.35537	-1.28464	-1.21389	-1.14316	-1.07249	-1.00191			-0.77698			-0.52679			-0.28124	-0.20023		-0.03925	٠.	0.12030	•		0.35703	•	0.51331	•	0.66852	•	•	•	0.97601	1.05231	1.12836	1, 19154	1.24691	1.25046	1 24811
SURFACE COOL	٨٤	1.62645	1.61892	1.61185	1.53674	1.45237	1.36693	1.28061	1.19368	1.10640	1.01902	0.93170			0.61970	.5179		0.32216	٠.	0.13867	0.05114	-0.03396		-0.19759	-		-0.42838	-0.50169		.0.64327			-0.84420	-0.90841	-0.97134	-1.03303	-1.09345	-1.14283	-1.18551	-1.187.43	-1, 18319
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	xs		-1.43758	-1.43540	-1.37815	-1.31478	-1.25144	-1.18807	-1.12465	-1.06113	-0.99749	-0.93372	-0.85696	-0.77989	-0.70241		-0.54583	-0.46674	-0.38720	-0.30730	-0.22706	-0.14645	-0.06549	0.01583	0.09751	0.17952	0.26185		0.42739	0.51057	0.59401	0.67770		0.84579	0.93019	1.01480	1.09967	1.17058	1.23286	1.24023	1.24811
:	PT	-	~	က	4	ß	9	7	∞	6	9	Ξ	12	t,	7	ភិ	46	17	\$	1	20	21	22	23	24	22	56	27	28	53	ဗ္ဗ	3	32	33	34	32	36	37	38	33	40
1	T(M)	0.02033	0.02960	0.03892	0.04824	0.05749	0.05661	0.07555		0.09257	0.10207	0.11093	0.11905	0.12633	0.13267	-	•	Τ,	0.14798	0.14919	₩.	0.14835	-	0.14325	₹.	Ξ.	0.12801	Ξ.	0.11299				0.07171	0.05914	•	0.03351	0.02105				
	8. X.	-49.905	-50.347	-50.756	-51,104	-51.365	•	-51.619	•		-51.592	-51.458	-51.152	-50.596	•			-47.295		-45.939	-45.333	-44.761		-43.676		-42.646		-41.696	-41.257			-40.077	-39 715	-39,358	-39.002	-38.704	-38.404				
INE DATA	>	1.62645	1.54618	1.46468	1.38207	1.29856	1.21440	1.12985	0		•		0.65703	•	.4613	•	7	0.18808	0.10199	0.01792	-0.06434			-0.30150	•	.4523	-0.52585	. 5981	Θ.		-0.80835	•		-1.01017	-1.07574	-1.12975	-1.18319				
MEANLINE	×	-1.43381	6.3	-1.29971	-1.23266	-1.16562	-1.09857	-1.03152	-0.96447	-0.89742	-0.81697	-0.73651	-0.65605	-0.57559	-0.49514	-0.41468	-0.33422		-0.17331	-0.09285	-0.01239	0.06807		0.22898	0.30944		0.47035	0.55081	0.63127	•	0.79218	0.87264	0.95310	1.03356	1.11401	1.18106	1.24811				
	PCT X		0.02500	0.05000	0.07500	0.10000	0.12500	0.15000	0.17500	0.20000		ņ				ღ	4	٩.		0.50000	0.53000							۲.	0.77000		₽.	0.86000		0.92000	.95	0.97500	00000				
	ΡŢ	-	7	က	4	ហ	9	7	∞	6	5	Ξ	12	5	7	ž.	9	17	#	6	20	5	22	23	24	25	56	27	28	53	30	31	32	33	34	32	36				

-46,332

STAGGER

11.501

CAMBER

3.88416

NB 20

MERIDIONAL AIRFOIL GEOMETRY - STREAMLINE 7

THE PARTY OF THE P

	۸۶	1.54402	1.54662	1.54354	1.47462	1.39790	1.32055	1.24268	1.16447	1.08611	1.00782	0.92981	•		0.65502	0.56723	0.48218	0.39994	0.32026		0.16660	0.09196			-0.12436	-0.19420								-0.72786	-0.79273		-0.92228	-0.97640	-1.02377	-1.03041	-1.03925
COORDINATES	ď	-1.50486	-1.49687	-1.49036	-1.42232	-1.34721	-1.27210	-1.19704	-1.12206	-1.04724	-0.97261	-0.89821	-0.80932	-0.72092	-0 63312	-0.54602		-0.37380	-0.28849	-0.20354	-0.11896	-0.03481	0.04888	0.13211	0.21493	0.29740	0.37953	0.46136	0.54290	0.62417	7051	. 7858	0.86633	0.94652	1.02649	1.10622	1.18567	1.25163	1.30931	1.31333	1.31159
SURFACE COORE	٨s	1.54402	1.53648	1.52957	1.45336	1.36865	1.28338	1.19769	1.11177	1.02583	0.94009	0.85480	•	0.65331	•				0.19213		0.02994	-0.04731	-0.12220			-0.33315						-0.70145	-0.75708			•	-0.96615	-1.00736	-1.04301	-1.04422	-1.03925
	sx	-1.50486	-1.50843	-1.50618	-1.44659	-1.38087	-1.31516	-1.24940	-1.18355	-1.11755	-1.05136	-0.98493	•		-0.74306		-0.57861	•	-0.41174		-0.24330	-0.15846	-		0.09876	0.18528	_	_	0.44674			Γ.	•		0.97708	1.06633	1.15588	1.23073	1.29639	1.30401	1.31159
	ΡŢ	-	7	ო	4	ស	9	7	œ	6	5	=	42	1 3	7	15	16	17	48	1 9	20	21	22	23	24	22	56	27	28	58	30	31	32	33	34	32	36	37	38	39	9
1	T(M)	0.01995	0.03226	0.04459	0.05688	0.06904		0.09262	0.10387	Τ,	0.12689	Ξ.			0.16566	₹,	0.17779		0.18476	٠.	0.18635			Ψ,		0.16681	Τ.	٣.	~	~					0.05303	.0373	0.02115				
	₩•	-48.534	-48.782	-49.010	-49.200	•	-49.398	-49.389	-49.303	•			•	•	-45.922	-44.879	-43.889	-43.041	-42.300	-41.600	-40.911		-39.543	•	•		•	•			•	ι.	•	4	-34, 181	4.01	-33.854				
NE DATA	>	1.54402	1.46399	1.38328	1.30197	1.22019	1.13812	1.05597		0.89230	•	•	0.60509		0.42456			•	0.09827	0.02233	٠.	-0.12412	•	•	•	-0.39714		•	-0.58792			. 7695	•	•	•	-0.99188	-1.03925				
MEANLIN	×	-1.50486	-1.43445	-1.36404	-1.29363	÷.	-1.15281	-1.08239	-1.01198			-0.77258	•	-0.60360		-0.43461	-0.35012		-0.18113	-0.09663	-0.01214	0.07235	0.15685	0.24134	0.32583	0.41033	0.49482	5793	0.66381	_	0.83280	•	1.00178	1.08628	7	4	1.31159				
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PCT X	o.	0.02500		٠.	Τ.	Τ.	╼.																		0.68000	٠,			∞ '		0.86000	•	•	0.95000	•	1.00000				
;	PT	-	8	ო	4	ស	9	7	œ	თ	9	=	12	ნ	4	ស៊	16	17	2	6	50	21	22	23	24	22	56	27	28	53	၉		32	33	34	32	36				

STAGGER

14.680

CAMBER

3.82174

တ STREAML INE ٠ **GEOME TRY** AIRFOIL MERIDIONAL

11 ROTOR PHASE

DATA

MEANL INE

COORDINATES

SURFACE

PHASE II ROTOR

MERIDIONAL AIRFOIL GEOMETRY . STREAMLINE :

20

Ë

PCT X X Y B*M -1.62875 1.30554 -45.785 0.	Y B+M 5 1,30554 -45,785 0.	Y B+M 30554 -45,785 0.	785		T(M)	T -	XS -1,62875	YS 1.30554	XP - 1.62875	YP 1.30554
-1.55200	1.55200	• •	: 0	. 6		٠ ٨	-1.63181	1.29824	-1.62141	1.30839
.05000 -1.47524 1.	1.47524 1.	•			0.05479	က	-1.62950	1.29189	-1.61509	1.30591
39848 1	1.39848 1.			-45.413	0.07262	4 N	-1.56514	1.21393	- 1 53885	1.23959
. 12500 - 1,24496 0.	1,24496 0.			-44.781		ာဖ	: -	1.04463	-1.37262	1.09561
.15000 -1.16820 0.	1.16820 0.			-44.281		7	-1.35366	0.96080	-1.28977	1.02435
.17500 -1.09144 0.	.09144 0.	•		•		œ	-1.28270		-1.20722	•
.20000 -1.01468 0.	01468 0.	•				σ	-1.21135	٠.	-1.12504	
23000 -0.92257 0.	92257 0.			4.		<u>0</u> :	•			
. 26000 -0.83046	83046 0.			-40.310	0.18651	= :	-1.06715	0.63748		0.75073
32000 -0.73833 0.	73633 54673	•		- 27 587		<u>, c</u>	-0.9/944	0.04548	-0.86569	0.67439
.35000 -0.55412	55412 0.					4	-0.80131			
.38000 -0.46201 0.	46201 0.					15	-0.71124			
.41000 -0.36990 0.	.0 06698			-34.649	•	16	-0.62066	0.22196		0 40135
.44000 -0.27779	o.					17	-0.52963	0.15003		•
.47000 -0.18568 0.	Ö			-32.878		₹	-0.43811			0 27852
.50000 -0.09357 -0.	o O			-31.997		1	-0.34605			•
-0.00145 -0.	ġ,			•		50	-0.25345	-0.04817		
.56000 0.09066 -0.	o o			-30.208		7 6	-0.16029		•	•
0.59000 0.182// -0.165/0 0.5900 0.182// -0.50000 0.5488 -	o c		٠,	29.309	0.24699	22	-0.06658	-0.16636	0.06367	0.04949
.65000 0.36699 -0.	φ		•			24	0, 12231		0 24322	-0.05802
.68000 0.45910 -0.	o O	ö	٠		0.22560	25	0.21736		•	-0.11022
.71000 0.55121 -0.	o O					56	0.31272		•	
0.64332 -0	o			ů.	ņ	27	0.40834	-0.41342	•	-0.21195
77000 0.73544 -0.	ġ.	•				28	0.50417	-0.45492	•	
80000 0.82755 -0.	φ ·	•			┺.	59	0.60015			
.83000 0.91966 -0.	.91966 -0.			-23,482	ī.	30	965		•	
.86000 1.01177 -0.	.01177 -0.	•		•	₹.	31	0.79250		•	
.89000 1.10388 -0.	.10388 -0.	•		•	•	35	0.88885	-0.59822	0.95047	
.92000 1.19599 -0.	.19599 -0.	•		-22.360	0.09117	33	0.98531	-0.62303	1.03823	-0.50466
.95000 1.28810 -0.6815	.28810 -0.	•		-22.106	0.06634	34	1.08191	-0.65830	1.12585	-0.55306
.36486 -0.	.36486 -0.	•		-21.921	0.04411	32	1.17865	-0.68601	1.21333	-0.60169
1.00000 1.44162 -0.74328	.44162 -0.7432	.7432		-21.748	0.02111	36	1.27562	1	1.30059	-0.65077
						37	1.35663	-	1.37310	-0.69207
						38	1.42746	7	363	۲.
						33	1.43520	. 74	₹	.734
						40	1.44162	-0.74328	1.44162	-0.74328

STAGGER -33,715

24.038

CAMBER

3.69119

3.59373

CHORD

NB 20

	01
	- STREAMLINE
	GEOMETRY
	AIRFOIL
PHASE II ROIOR	MERIDIONAL AIRFOIL GEOMETRY

•	1 1 1 1 1 1	MEANLIN	INE DATA				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SURFACE COORDINATES	DINATES	
ΡT	PCT X	×	>	B+M	T(M)	ρŢ	xs	۲S	ά×	ć,
••	.0	-1.63125	1.12563	-44.072	0.02096	-	-1.63125	1, 12563	-1.63125	1,12563
8	0.02500	-1.55191	1.04917	-43.807	0.04141	8	-1.63448	1.11724	-1.62307	1, 12913
က	0.05000	-1,47257	0.97347	-43.483	0.06167	ო	-1.63171	1.11014	-1.61580	1.12660
4	0.07500	-1.39323	0.89878	-43.032	0.08161	4	-1.56624	1.03422	- 1.53758	1.06411
ຜ	0.10000	-1.31388	0.82549	-42 385	0.10110	ស	-1.49379	0.95110	-1.45135	0.99584
φ	0.12500	-1.23454	0.75410	-41.530	0.11998	9	-1.42107	0.86895	-1.36538	0.92860
7	0.15000	-1.15520	0.68510	-40.465	0.13812	7	-1.34796	0.78815	-1.27981	0.86283
80	0.17500	-1.07586	0 01882		0.15539	œ	-1.27432	0.70919	-1.19477	
6	0.20000	-0.99652	0.55534	-38.047	0.17171	6	-1.20002	0.63256	.1.11038	
ō	0.23000	-0.90131				0	-1.12504	0.55867	-1.02668	0.67896
-	0 26000	-0.80610		•	0.20674	-	-1.04943	0.48773	-0.94361	0.62295
12	0.29000	-0.71089			0.22196	42	-0.95795	0.40650	-0.84467	0.55900
13	0.32000	-0.61568	0.28536	-32.780	0.23558	13	-0.86575	0.32936	-0.74644	0.49819
14	0.35000			-31.644		4	-0.77291	0.25605	-0.64886	
15	0.38000	-0.42526				15	-0.67945	0.18633	-0.55190	•
16	0.41000	-0.33005	0.11291	-29.505		16	-0.58540	0.12002	-0.45554	0.33074
	0.44000	-0.23484	0.06017	-28.464		17	-0.49077	0.05699	-0.35974	0.27891
<u>∞</u> 57	0.47000	-0.13963	0.00966	-27.418	0.27719	1	-0.39558	-0.00288	-0.26452	0.22871
19	0.50000	-0.04442	•	•		19.	-0.29980	-0.05966	-0.16987	0.18000
20	0.53000	0.05079	-0.08465	-25.253		20	-0.20345	-0.11336	-0.07581	0.13269
21	0.56000	0.14600		-24.118		21	-C. 10650	-0.16395	0.01767	0.08673
22	0.59000	0.24121	-0.16989	-22.945	0.27490	22	-0.00898	-0.21137	0.11057	0.04207
23	0.62000	•	-0.20903	•		23	0.08908	-0.25556	0.20293	-0.00128
24	0.65000	•	-0.24584		0.26135	24	0.18763	-0.29647	0.29480	-0.04331
25	0.68000	•	-0.28041			25	0.28657	-0.33403	0.38627	-0.08403
26	0.71000	0.62205		- 18 . 295	0.23975	56	0.38579	-0.36821	0.47748	-0.12345
27	0.74000	0.71726		•		27	0.48511	-0.39906	0.56857	-0.16176
28	0.77000	0 81247	-0 37237	•	ď	28	0.58442	-0.42669	0.65968	-0.19906
59	0.80000	•	•	- 15.765	٠.	59	0.68362	-0.45130	0.75091	-0.23560
30	0.83000	•	.4261	•	٠.	30	0.78266	-0.47312	0.84229	
31	0 86000	٦.	-0.45154	•		,	0.88155		0.93381	
32	0.89000	1, 19331	-0.47606			35	0.98033		1.02546	
33	0.92000	٠	-0.49988	•		33	1.07904		1.11717	
34	٠	٠	-0.52307	•	-	34	1.17772	•	1.20891	
32	0.97500	630	•	٠	Š.	32	1.27644		1.30061	-0.45091
36	1.00000	1.54242	-0.56041	-12.971	0.02108	36	1.37524		1.39223	
						37	1.45766		1.46850	ທຸ
						38	1.52952	-0.56999	1.53503	•
						39	1.53706		1.54100	•
						40	1.54242	-0.56041	1.54242	-0.56041

MFRIDIONAL AIRFOIL GEOMETRY - STREAMLINE 11

٠,
~
80
.
0
_•
· ·
ლ :
24
25
56
27
28
29
ဓ္ဌ
31
32
33
4
ທູ
98
37
38
9 6

-21.435

STAGGER

41.810

CAMBER

3.50025

MERIDIONAL AIRFOIL GEOMETRY - STREAMLINE

Wild The William of the Wilder State of the World of the William of the Wilder of the William of

ьт	PCT X	×	>	B • M	T(M)	Ы	xs	* YS	ΑX	ΥP
_		-1.64725	0.79648	-38.346	0.03490	-	-1.64725	Ö	-1.64725	0 7964
0	0.02200	-1.56471	0.73180		0.05637	8	-1.65123		-1.63431	0.80370
ო	0.05000	-1.48217		•		ო	-1.64552	0.77063	-1.62173	0.8008
₩	0.07500	-1.39963			0.39869	4	-1.58199	0.70954	-1.54743	0.75407
TO.	0.10000	-1.31710	0.54632	-35.636	Ξ.	ß	-1.50567	0.63748	-1.45868	
ω	0.12500	-1.23456	٠.	•	Ξ.	9	- :		-1.37027	
_	*	-1.15202		-33.343	_	7	-1.35184	4	-1.28236	
80	-	-1.06949	_:		Τ,	80	-1.27407	0.43093	-1,19505	0.54558
6	0.20000	-0.98695	0.32935	•	0.19459	6	- 1, 19559	0.36643	-1.10846	0.4988
၁		-0.88790	_:		0.21448	5	•		-1.02255	
_		-0.78886	Ξ.	•	0.23294	=	-1.03665	0.24571	-0.93724	
~		-0.68981	0.16768	-26.425		12	-0.94026		-0.83555	•
ر		-0.59077	0.12002	•	0.26513	5	-0.84322	G. 11542		
4		-0.49172		-23.453	0.27870	14	-0.74541	0.05581	-0.63422	
ιΩ		-0.39268	0.03404	-21.956		15	φ.	-0.00017		
S	0.41000	-0.29363	-0.00444	-20.531	0.30037	46		-0.05235	-0.43626	
_	0.44000		-0.04023	-19.215	0.30829	17	-0.44698	-0.10066		
6 0	0.47000	-0.09555	-0.07354	-17.963	r.	2	-0.34631	-0.14509	-0.24096	•
cn.		0.00350	•			19	-0.24532	-0.18579	-0.14386	
0	0.52000	0.10254	-0.13305	-15 461		50	-0.14399	-0.22297		
_		0.20159	•	٠		21		-0 25671	0.04924	0.04777
~			-0.18298			22	Τ.	-0.28701		
~				-11.359		23		-0.31377		
*	0.65000			•		24		-0.33692	0.33558	
'n				•	٠	22		-0.35634		•
'n	0.71000	G. 69681	-0.25176	-6.763	0.28083	56	0.47277	-0.37191	0.52467	-0.07359
7		0.79586	٠.		•	27		-0.38356	•	-0.09370
6 0	0.77000	0.89490	٠.	-3.617	0.24976	28	6802	-0.39119	0.71335	
ത	0.80000	0.99395	_'	-2.103		59			0 80788	
0	0.83000	1.09299	0.27702	-0.628	ņ	ဓ္		-0.39435	•	
_	0.86000	1.19204	-0.27684	0.844		Ë	0.98971		0 99818	
~	0.89000	1.29108	٠.	40	0.16007	35	1.09184	-0.38178	1.09414	
m	0.92000	1.39013	-0.26843	4.124	0.13189	33	1,19341		1.19067	•
4		1.48917	-0.25967	6.017	0.10088	34	1.29444		1.28773	-0.19409
ίΩ	0.97500	1.57171	-0.24974	7.710	0.07271	35	1.39487	-0.33421	1.38538	•
9	•	1.65425		9.450	0.04338	36	1.49446		1.48388	•
						37	1.57659	-0.28577	1.56683	. 2 13
						38	1.63711	.2658	1.62921	. 215
						33	1.64968	-0.25656	1.64486	-0.2212

STAGGER

47.795

CAMBER

3.45956

- 12.547

STAGGER

50 E.

PHASE II ROTOR

13 MERIDIONAL AIRFOIL GEOMETRY - STREAMLINE

ΡĪ	PCT X	×	>	æ ¥.	(X)	PT	×S	۸S	ď	d٨
_	o	-1.68416	0.69934	-32.373	0.05296	_	-1.68416	0.69934	-1.68416	-
CA.		-1.60035	0.64642	-32.158	0.07285	~	-1.68790	0.67688	-1.66566	0.71228
(7)		-1.51654	0.59399	-31.881	0.09277	ო	-1.67747	•	-1.64634	•
4		-1.43273	0.54222	-31.500	0.11261	4	-1.61974	0.61558	-1.58097	
S		-1.34891	0.49136	-30.984	0.13220	ß	-1.54104	0.55460	- 1.49204	
9		-1.26510	0.44166		0.15140	9	Ť.	0.49422	-1.40331	
7	0.15000	-1.18129	0.39343	-29.496	0.17008	7	-1 38294	0.43469	-1.31488	0.54803
E		-1.09748	0.34692	-28.536	0.18813	a 0	-1.30331	0.37531	-1.22689	
ຫ		-1.01356	0.30234	-27.460	0.20548	6	-1.22316	0.31941		
₽		-0.9130g	0.25161	-26.054	0.22523	5	-1.14241	0.26428	-1 05254	
Ξ		0.81251	0.20402	-24.580	0.24369	Ξ	-1.06104	0.21118	9662	
7		-0.71194	0.15957	•	0.26076	12	-0.96255	0.15044	8636	
5	Ö		0.11806	-21.740	0.27631	5	-0.86319	0.09322	-0.76183	
14		-0.51079	0.07929	-20.431	0.29029	=	-0.76314	0.03966		
15		-0.41021	0.04307	- 19.179	0.30259	5	-0.66253	-0.01027		
16		-0.30964	0.00929	-17.957	0.31311	16	-0.56145	-0.05673	-0.46012	٠:
17	o.	-0.20906	-0.02213	- 16.737	0.32175	17	-0.45991	-0.09983		
6		-0.10848	-0.05119	- 15.494	0.32843	∞	-0.35790		. 2613	
	ö	-0.00791	-0.07787	-14.208	0.33303	19	-0.25539	-0.17619	-0.16273	0.13193
20	Ö	0.09267	-	- 12,867	0.33546	20	-0.15235			0.10705
21	Ö	0.19324	-		0.33565	21	-0.04878	-0.23929		0.08355
22	0	0.29382	-0.14290		0.33359	22	0.05532	-0.26561	0.13002	0.06142
23	0	0.39439	•		0.32931	23	0.15986	-0.28827		0.04068
24	0	0.49497	**	•	0.32287	24	0.26475	-0.30715		0.02134
25	Ö	0.59554	_	•		52	0.36994	-0.32220		0.00346
56	Ö	0.69612	-0.19113	-3.204	0.30378	56	0.47548	-0.33331	0.51445	-0.01280
27	o.	0.79669	•	-1.050		27	0.58139	-0.34027		-0.02721
28	o	0.89727	•	•	•	28	0.68763	-0.34279		-0.03948
56	ö	٠.	-	3.599		53	0.79403	-0.34049	0.79936	0.04929
ဗ္ဗ	o O	1.09842	-	6.023		ဓ္	0.90025	-0.33310	0.89429	-0.05639
9	o.	•	-0.16925	•	'n	31	1.00601	-0.32043	0.98967	-0.06059
32	Ö	1.29957	_		Τ,	32	1.1111		٠.	-0.06174
33	o.	1.40014		13.624	₹.	33	1.21537	-0.27884	1.18262	
34	Ö	1.50072	-0.10311		0.14869	34	1.31864		1.28050	
35		1.58453	-0.07679	18.574	0.12451	32	1.42079		1.37950	
36	1.00000	1.66835	0467	20.841	0.09933	36	1.52158	-0.17447	1.47986	-0.03176
						37	1.60436		1.56470	-0.01778
						38	1.64101	. 1172	1.60340	-0.01037
						33	1.66592	•	1.64079	
						40	1.66835	-0 04676	1.66835	-0.04676

3. PLANE SECTION BLADE COORDINATES

Figure 43 shows the stacked Phase I rotor plane sections. The following tabulation gives the coordinates for these sections. These sections are spaced one half inch apart, beginning at the tip height of 8.5 inches and progressing inward to 2.5 inches. These are the same section locations as given for the baseline rotor in Reference 1. Also included in the tabulation are coordinates for the section meanline, the meanline angle, and the section percent thickness at each point. Plane section chord, camber angle, and stagger angle are also given. These coordinates are intended to represent the blade under hot running conditions and do not include any corrections for blade untwist, meanline deformation, centrifugal growth or thermal growth.

Figure 43. Stacked Phase II kotor Plane Sections

20	E1A O.	8.5000		UPSILON	78982	.71814	. 56833	41134	24541	05332	61288	39384	. 18238	.02014	21408	40008	57872	000	91583	73967	35679	AXIS	ZETA+	57.389		58.303	•	59.277			•	•	•	٠		61 270		
NB	MU 0.	REFO		UPS1	1.78	1.7	1.50	•	•		6 6			.0.0		•	0.0		Ω τ	٠		I SECTION AXIS	UPSILON	. 78982	.71276	.63414	. 55385	47202	30383	21751	. 12977	.02279	91441			. 58836 48169		
ROIOR	0.	AA	INPUT DATA	THICKNESS	0.01872	•			٠	0.06492	0.07361			0.09615	•		•	•	0.06735			WITH ORIGIN AT		51	53	14	36	27		2.0	93							71
۶.	α	SECTION	MEANLINE INPI	ZETA•	7.161				4 (215				8.351					4.209				ALPHA	- 1.0906	-1.04153	0.99244			-0.84318		-0.69193	•				-0.40341	•	
STAGE	Z -7.03630	-	MEAN		51 57						24							ומ	ប្រ		- +-	COORDINATES	1/c	0.00505	0.00649	0.00794			0.01228					•	٠	0.02303	•	
	SYSIEM ORIGIN	SECTION NO		ALPHA	- 1.0906	-1.04493	-0.95244			0 65574	0.33714			-0 05100	Υ,				0.54865			ML ANL INE	1 AL	J	0220	0200			0671					_	-	3500		
		SFCI		14	-	2	ო	7	ر ا	۰ ی	~ a	: σ	. 5	-	<u>.</u>	+ 3	7	c i	<u>.</u> .		<u> </u>		PT PC1	0	2 0	3			9 19) C						14 14 0 0		17 0
	COORD																(63	3																			

20	E1A 0.	8.5000	AXIS	ZETA.	59.399	58.862	•		57 389	50.931		55.753	55.384	55.001			53.978	53.696	•	ო	٠	53.576	ER	114	AXIS		UPSILON	1.78982	1.79101	1.78715	1.71919		•	1.48228		1.31644	1.23122	1.14432	0.93153	0.82365
RN	M O 0.	RHO	AT SECTION	UPSILON	0.17329	0.07476	-0.02177			-0.3006			-0.65178	-0.73651			-0.98392		٠	-1.22389	- 1.29029	- 1.35679	CAMBER	3.814	SECT ION	LOWFR	AI PHA	-1.09061	-1.08289	-1.07745		-0.97991	-0.92846	-0.87700			-0.72270			-0.48738
2. ROTOR	30 R O.	SECTION AA	ES WITH ORIGIN	ALPHA	-0.16780				۳.	0.12071	. :	0.30342		•		•	0.59793	٠.	۲.	•	0 82372	0.87281	STAGGER	58.037	ES WITH ORIGIN AT	UPPER	UPSILON	1.78982	1.78343	1.77674	1.70634			1.46175		1.29122	1.20380	1.00694	0.89729	0.78710
STAGE	IN 2 -7.03630	-	INE COORDINATES	1/c	0.02566	•		•		0.02498	٠.,		0.02140		•			٠	•	•	0.00723	0.00517			ACE COORDINATES	J	ALPHA .	-1.09061	-1.09489	-1.09366	-1.05170	-1.00497		-0.91154			-0.77132	0.72430		-0.55506
	SYSIFM ORIGIN	SECTION NO	ME ANL INE	PCT AL	0 4700				0 5400	0079 0	_	0.7100										1.0000	CHORD	3 7089	SURFACE		1/0	0 00505	0 00505				•			•	0.01505			
	COORD			5	18	19	20	- (22	, c	25.	26	23	28	29	30	- n	32	၉ 64		33	ည်					PT	-	8	က	4	ហ	9	7	α (σ. (2:	- 2		7

PHASE II RUIUR

THE MERCHANISCHALL TEXTS SIGNATION TO THE THE THE TRANSPORT OF THE PROPERTY OF

	o.	8	
20	ETA 0.	8.5000	AX1S
NR 20	.0 D#	RHO	SECT 10N
	3		AT
ROIOR	o.	AA	ORIGIN
2	œ	SECTION AA	HIIA
STAGE 2	-7.03630	SFCI	SURFACE COORDINATES WITH ORIGIN AT SECTION AXIS
•	7	_	ວັ
	COOPD SYSTEM DRIGIN Z -7.03630 R 0.	SECTION NO	SURFACE

	UPSILON	0.71586	0.60889	0.50328	0.39939	0.29744	0.19752	0.09958	0 00345	-0.09102	-0, 18391	-0.27534	-0.36546	-0.45443	-0.54234	-0.62924	-0.71512	-0.79999	-0.88397	-0.96719	-1.04973	-1.13175	-1.21372	-1.28232	-1.34313	-1.34985	-1.35679		1./81/1	-1.34870
LOWER	AI PHA	-0.42652	-0.36597	-0.30572	-0.24578	-0. 18616	-0.12684	-0.06782	-0.00907	0.04939	0.10758	0.16552	0.22323	0.28071	0.33795	0.39497	0.45177	0.50836	0.56475	0.62094	0.67694	0.73276	0.78837	0.83451	0.87520	0.87682	0.87281			UPSILON
	UPSILON	0.67705	0.56783	0.46010	0.35422	0.25050	0.14906	0.04994	-0.04699	-0.14187	-0.23481	-0.32588	-0.41523	0.50303	-0.58937	-0.67432	-0.75790	-0.84009	-0.92096	-1.00065	-1.07928	-1.15695	-1.23406	-1.29825	-1.35504	-1.35858	-1.35679		1	HA 0.86684
UPPER	ALPHA	-0.49811	-0.44086	-0.38331	-0.32544	-0.26726	-0.20877	-0.14999	-0.09092	-0.03158	0.02803	.08789	. 14799	0.20832	. 26888	0.32966	0.39067	. 45189	0.51330	0.57492	0.63672	0.69871	0.76090	0.81293	0.85905	0.86501	0.87281	. :	A	CENTER AT ALPHA
	1/c	0.02196	0.72303	0 02394	0.02469	0 02527	0 02566	0 02588	0.02592	0 02578	0.02546	0 02498	0 02432	0.02351	0.02253	0 02140	0 0 0 0 1 1	0.01867	0.01708	0 01534	0 01345	0 01142	0.00922	0 00723	0 00517	0 00517	0 00517		0 00964	0 01005
	ρŢ	15	16	17 0		19		21 0			24		96						32 (36		38	39	40 0		LE RAD	TE RAD

	o.	Ω							
20	ETA 0.	8.5000	CAMBER 3.814	7.44936	NO.	122	907	100	
2		RHO	CA.	7	UPSILON	0.13422	0.12907	0.129	Ö
	n N			SURFACE ARC LENGTH	ALPHA	-0.11669	-0.11484	-0.11484	-0.00010
¥		_		ARC	ALI	0	0.	0	Ö.
2	ó	AA	ER 37	ACE		•	•	•	•
	œ	NOI	STAGGER 58.037	SURF			, <u>;</u>		
STAGE 2. RUIUK	03630	SECT ION	7.	U,			ON C.		AL.)
STAGE	-7.						SECTI		(RADI.
,	7	-		ខ្ម			30		SI
	COORD SYSTEM ORIGIN Z -7.03630 R O.	SECTION NO	CHORD 3,7089	ARFA 0.256045		SECTION C.G.	SIREAMSURFACE SECTION C.G.	RI ADF AXIS	STACKING AXIS (RADIAL)
	SVSIEN	SFC11	CHORD 3, 708	ARFA		SECT	STRE	R A	SIAC
	COORD								

THE DESCRIPTION OF THE PROPERTY OF THE PROPERT

NB 20	O. ETA O.	RH0 8.0000		UPSILON	1.75040	1.67461	1.51729	1.35171	1.17746	0.97764	0.75498	0.53340	0.31762	0.10974	-0.09020	-0.28332	-0.47036	-0.65139	-0.82624	-0.99483	-1.15717	-1.31282	-1.43692	
ROTOR	NO. MU	N 88	INPUT DATA	THICKNESS	0.01960	0.02492	0.03576	0.04679	0.05777	0.06940	0.08082	0.09027	0.09720	0.10129	0.10238	0.10045	0.09564	0.08814	0.07814	0.06581	0.05137	0.03505	0.02015	
STAGE 2.	-7.03630 R	SECTION	MEANL INE I	ZETA•	55,551	55.976	56.841	57.762	58.572	59.014	58.862	58, 149	57.110	26.000	55.029	54.249	53.549	52.874	52.202	51.571	50.916	50.085	49.332	
S	M ORIGIN Z	SECTION NO 2		ALPHA	-1,19539	-1 14383	-1 03927	-0.93303	0.82496	.0.70430	-0.57050	-0.43516	0.29854	-0.16127	0 02394	0.11314	0 24954	0.38507	0.51926	0 65171	0 78228	0.91070	1.01615	
	COORD SYSIEM ORIGIN	Sfri		14	-	~	က	4	ß	Ç	7	œ	σ	5	=	;	5.7	~	15	<u>پ</u> 67	•	£	19	

SECTION AXIS
AT S
ORIGIN
MI IN
COORDINATES
MEANLINE

ZETA•	55.551	56.001	56.432	56.927	57.422	57.887	58.313	58.693	58.942	59.042	58.996	58.828	58.525	58.079	57.568	57.033	56.498
UPSILON	1.75040	1.66908	1.58646	1.50237	1.41665	1,32933	1.24049	1.15024	1.05884	0.94838	0.83783	0.72775	0.61868	0.51120	0.40574	0.30238	0.20112
ALPHA	-1,19539	-1.14011	-1.08482	1 02953	-0.97424	0.91895	-0.86366	-0.80837	-0.75309	-0.68674	-0.62039	-0.55405	-0.48770	-0.42135	-0.35501	-0.28866	-0.22232
1/c	0 00505	0.00652	0.00800	0.00948	0.01096	0.01244	0.01389	0.01532	0.01671	0.01830	0.01979	0.02116	0.02240	0.02348	0.02440	0.02516	0.02573
PCF AL	С	0 0220	0 0500	0 0750	0.1000	0.1250	0 1500	0 1750	0.2000	0 2300	0 2600	0.2400	0 3200	0 3500	0.3800	0 4100	0.4400
P	-	٥	က	4	ហ	9	7	œ	6	0	-	12	13	14	15	16	1.7

HE WASHINGTON TO A STATE OF THE STATE OF THE

	ö	8
20	ETA 0.	8.0000
NB 20	MU 0.	RHO
	⊇ M	
010R	o.	88
œ	α	NO
STAGE 2. ROTOR	7.03630	SECTION BB
STA	7	8
	CUORD SYSTEM ORIGIN Z -7.03630 R O.	SECTION NO 2
	COORD	

PT PCT AL T/C ALPHA UPSILON ZETA* 18 0.4700 0.02613 -0.15597 0.10188 55.977 19 0.5000 0.02639 -0.08962 0.00451 55.487 20 0.5300 0.02639 -0.08962 0.00451 55.038 21 0.5000 0.02639 -0.02328 -0.09416 55.038 21 0.5000 0.02639 -0.02328 -0.09416 55.038 22 0.5900 0.02639 -0.02389 -0.036980 53.253 23 0.6700 0.02541 0.17576 -0.27815 54.631 24 0.6400 0.02390 0.10542 -0.246029 53.253 25 0.6400 0.02390 0.17576 -0.246029 53.253 26 0.7400 0.02289 0.37480 -0.64962 52.244 28 0.7700 0.02039 0.57384 -0.89619 51.574 29 0.8000 0.01891 0.57384

SURFACE COORDINATES WITH ORIGIN AT SECTION AXIS

STAGGER 55.245

CHORD 3 8794

68

CAMBER 6.219

		UPPER	ĒR	LOWER	
PT	1/ر	ALPHA	UPSILON	ALPHA	UPSILON
-	0 00505	-1,19539	1 75040	-1,19539	1.75040
0	0.00505	-1,19967	1.74357	-1.18736	1.75189
ဗ	0 00505	-1.19819	1.73662	-1.18154	1.74801
4	0 00652	-1.15059	1.66201	-1.12962	1.67616
ນ	0 00800	-1.09774	1.57788	-1.07189	1.59503
9	0.00948	-1.04494	1.49233	-1.01412	1.51240
7	0 01096	-0.99216	1.40520	-0.95632	1.42810
c c	0.01244	-0.93938	1.31651	-0.89852	1.34216
6	0 01389	-0.88659	1.22634	-0.84074	1.25465
01	0.01532	-0.83376	1.13480	-0.78299	1.16568
=	0 01671	-0.78085	1.04212	-0.72532	1.07556
12	0.01830	-0.71718	0.93012	-0.65630	0.96664
13	0.01979	-0.65330	0.81806	-0.58749	0.85761
14	0 02116	-0.58917	0.70651	-0.51893	0.74900

SURFACE COORDINATES WITH ORIGIN AT SECTION AXI

Ö 0000 ETA œ R+0 2 0 ₹ 88 Ö SECTION .03630 STAGE N ORIGIN ž SECTION SYSIFM

PHASE 1: ROTOR

PHASF II ROTOR

	0	8							
20	ETA	8.0000	AMBER 6.219	7.79324	Š	21	25	25	
88	o	RHO	CAMBER 6.219	7	UPSILON	0.06421	0.06025	0.06025	o.
	DW.			SURFACE ARC LENGTH	AI PHA	-0 09951	-0.09706	-0.09706	-0.00010
ROTOR	o.	88	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ACE AK		o.	o P	o	ç
_	α	SFCT 10N	S1AGGER 55.245	SURF			ri.		
E 2	.03630	SFCI	ıs ,	•			10N C.0		IAL)
STAGE	-7						SECT		(RAD
	7 -	7		28			CE		SI
	COURD SYSTEM URIGIN Z -7.03630 R O.	SECTION NO	CHORD 3 8794	0 283628		SECTION C G.	SIRFAMSURFACE SECTION C.G.	BLADE AXIS	STACKING AXIS (RADIAL)
	SYSTE	SFCT	Ξ٣	ARF A		SFC	SIR	81.A	VIS.
	COURD								

20	ETA O.	7.5000		LON	1046	63139	46696	. 29521	11791	91953	70267	49045	28729	09354	09254	44735	803	78571	800	11110	26813	39525	AXIS	ZETA•	53.992	4		ĸ.	•	56.117	56.319		•	•	•	ნ. ≀	54.240		52.093
82	MU O.	RHO		SS UPSILON	1.7	-	-	-	-	0	o.	o.	o ·	o o	ဝှဲ ငှ	ہ ج	, Ç	ó	o-	-	-	-	AT SECTION	UPSILON	1.71046	1.62553	1.53889	1.45079		1.27101		0.99694		•			0.46270 0.36346		
ROTOR	O	10N CC	INPUT DATA	THICKNE	0.02038	Ö	o.	0	ö	o.	Ö	o ,	o 0	0 0	o c		-	٣.		0.06067	.0404	0.02182	WITH ORIGIN	ALPHA	. 29938	. 23839	. 17740	. 11641	.05542	-0.93344	87245	81146	73828	66509	59190	51872	44553		
STAGE 2.	-7.03630	SECT I ON	MEANL INE	ZETA·		54.533					55 670		52.941	50.00	•			48.208	•	5	6.9	46.316	COORDINATES W		-	1	1	.	- (, O	O	O	ö,	•	ġ ¢	14 13 10	, c	00
S	RIGIN Z	e ON		AL PHA	1.29938	1.24256					-	0.46544	-0.31614	. ~		0.28475				0.87633		14019	MFANLINE COO	1/0	o.	o O	o ·	<u>်</u> (0.01221	ò	0	o.	o ·	o o	0.02455	<i>i</i> c	o o	0	Ö
	D SYSTEM ORIGIN	SECTION NO		5	-	٠		•	ın u								~				<u> </u>	-	MF.	PCT AL		o ·	0 (0.0750	0) C	С	0	O :	0.2500	-			0 4100	•
	COORD																		71					PI	-	2	, n	יי ד	: v	7	&	6	2∶	= \$	2 5	7	15	16	17

• 2PC •

allowables - College Market - Market British and College - And College and College Col

PHASE 11 ROTOR

51. 497 50. 962 50. 481 50. 053 49. 679 49. 077 48. 834 48. 420 48. 420 48. 420 47. 964 47. 964 47. 585	47.166 46.893 46.316 46.316 7.676 N AXIS	1.71046 1.71224 1.70838 1.63340 1.54866 1.46244 1.37474 1.19717 1.10758 1.01794 0.91060 0.80396
	26516 33068 39525 CAM 7. SECTION LOWER ALPHA	-1.29938 -1.29104 -1.29104 -1.22731 -1.09945 -1.09945 -1.09945 -0.90756 -0.90756 -0.90756 -0.90756 -0.90756 -0.90756
0.15278 0.07960 0.06641 0.06678 0.13996 0.21315 0.28634 0.35953 0.35953 0.43271 0.50590 0.57909 0.65227 0.72546 0.72546	1.07821 -1.1.07920 -1.1.1.4019 -1.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	1,71046 1,70325 1,69605 1,61766 1,52913 1,343914 1,34788 1,25561 1,16262 1,06928 0,97594 0,86424 0,75330
	.001035 .00797 .00552 .CDORDINA	-1.29938 -1.30364 -1.24947 -1.15139 -1.01737 -0.95932 -0.90119 -0.77288 -0.70254
	0 9500 0 0 9750 0 1 0000 0 0 1 0000 0 0 0 0 0 0 0 0 0	C 00516 0 00516 0 00516 0 00688 0 01042 0 01399 0 01749 0 01749 0 01749 0 01917 0 02109
	72	- 2 6 4 8 6 7 8 6 0 - 2 6 4

MEANLINE COORDINATES WITH ORIGIN AT SECTION AXIS

ZETA·

UPSILON

ALPHA

1/c

PCT AL

7

ö 7.5000 ETA 20 R2 +0 Σ ö 3 ROTOR SECTION CC ö -7.03630 R ς. STAGE 7 က COORD SYSTEM ORIGIN SECTION NO

PHASE II ROIDR

NB 20	ETA 0.	7.5000	AXIS
82	№	8HO	SECT ION
	3		SIN AT
ROTOR	ö	သ	H ORIC
	α	SECTION CC	NI T
STAGE 2. ROTOR	-7.03630	SEC	SURFACE COORDINATES WITH ORIGIN AT SECTION AXIS
SI	7	က	000
	COORD SYSTEM ORIGIN Z -7.03630 R O.	SECTION NO 3	SURFACE

	UPSILON	0.59524	0.49425	0.39586	0.29991	0.20616	0.11426	0.02391	-0.06511	-0.15302	-0.24001	-0.32624	-0.41187	-0.49704	-0.58180	-0.66625	-0.75046	-0.83450	-0.91839	-1.00211	-1.08553	-1.16854	-1.25126	-1.31992	-1.37862	-1.38640	-1.39525	1.70194	-1.38687
LOWER	ALPHA	-0.47663	-0.40173	-0.32721	-0 25305	-0.17921	-0.10567	-0.03244	0.04049	0.11312	0.18547	0.25755	0.32937	0.40093	0.47221	0.54323	0.61400	0.68451	0.75476	0.82473	0.89445	0.96394	1.03319	1.09069	1.14032	1.14377	1.14019	UPSILON	UPSILON
	UPSILON	0.53618 -	0.43116 -	0.32905 -	0.22983 -	0.13334 -	0.03931		0.14248	0.23065	-0.31725	-0.40248	-0.48649	-0.56944	-0.65141	-0 73250	-0.81277	-0.89233	-0.97121	1.04941	1.12685	1.20338	1.27905	1.34144	1,39528	1.39840	1.39525	A -1.29320	
UPPER	-	-								•										•	-	-	,	' 0	7	٠ د	œ.	AT ALPHA	AT ALPHA
	ALPHA	-0.5608	-0.48933	-0.41747	-0.34526	-0.27273	-0.19989	-0.12675	-0.05331	0.02043	0.09446	0.16875	0.24330	0.31813	0.39322	0.46857	0.54417	0.62004	0.69617	0.77256	0.84922	0.92611	1.00322	1.06770	1.12432	1, 13153	1.14019	CENTER	CENTER
	1/0	0.02604	0 02734	0.02843	0 02933	0 03001	0 03049	0.03075	0.03079	0 03061	0 03023	0 02964	0 02884	0.02785	0.02666	0.02%27	0/2/20/0		0 01997	0.01783	0.01551	0.01302	0 01035	0.00797	0 00552	0.00552	0 00552	0 0 01052	0.01155
	٦	15	16	17	18	19	20	21	22	23	24	25	56	27	28	6 7:		31	32	33	34	35	36	.37	38	39	40	LE RAD	TE RAD

COURD

	ö	Ω							
20	ETA	7.5000	.AMBER 7.676	7.93903	NG	31		=	
£		8 HQ	CAMBER 7.676	7.	UPSILON	0.04631	0 05711	0 05711	c
	3			SURFACE ARC LENGTH	ALPHA	3937	1151	5151	-0.00010
œ				ARC	ALF	-0 08937	-0.10151	-0 10151	Ö
ROTOR	0	SECTION CC	50 50	ACE		•	•	•	•
	α	10N	STAGGER 51.850	SURF			œ		
o,	630	SECI	is .	•					_
STAGE	-7.03						SECTION		CRADIAL
•	7	m		4			SE		7
	SYSTEM URIGIN Z -7.03630 R O	SECTION NO	СНОRD 3 9493	0.337014		SECTION C.G	SIREAMSURFACE SECTION C.G	RIADE AXIS	STACKING AXIS (RADIAL)
	SYSIFA	SFC11	žŕ	ARFA		SEC	SIR	P.I A	210

20	ETA O	7.0000		LON	64284	56207	39603	22530	.05245	.86233	45987	27474	10130	.06327	22068	37 198	51802	2982	93386	06721	17683	AXIS	ZETA•	52.546	-		53.477	53.620	53.568			52.903		.82	•	49.933	48.859	46.912
89 2	MU O.	вно		UPSILON	1.64	1.56	1,39	•	1.05	9.0					•		-0.51		•			SECTION AXIS	UPSILON	64284	.55617	46839	37969	29035 20073	1112	.02210	93364	.82841	72448			42736	33502	16006
9010R	·	QQ	UT DATA	THICKNESS	0.02064	.0288			0.08067			•	0.15019		0.15060		0. 13323					WITH ORIGIN AT		39 1.	-					-	0	o.	o	o o			ח מ	
6	.03630 р	SECTION	MEANLINE INPUT	ZETA•	52.546	•			53,445	52 081		48.148	•	4	ص	٠.	41.666			57	9		ALPHA	-1.38939	-1.32342	1	1. 19149	-1.12552	-0.99359					-0.62417	•	0.46585		
STAGE	2 -7	•	KE	ALPHA					95014				17285		•		63434	. ~	000	22	28	NE COURDINATES	1/c					0.01704		9				0.03103				
	SYSIFM ORIGIN	SECTION NO		ALF	-1.38				36 0			o O	o (0.4		9.0				1 24	MF ANL INE	rei AL				0 0750	0.1250					0 2000	3300				
	спояр sy	V.		PT	-	~	m ·	₹ 1	שת	, ,	œ	σ	<u>.</u>	= :	2 :		 - 1	9	17	1.8	19		PT	-	7	က	4 n	ာ ဖ	7	80	თ :	₽:	- :	7 5		, t	<u> </u>	11

THE TRANSPORT AND THE PROPERTY OF THE PROPERTY

PHASE II POIOR

	ö	8																									UPSILON	.64284	.64489	.64118	. 56505	78674	30716	22024	1.13343	.04705	96127	. 85919	75839	65958
20	ETA	7.0000	AXIS	ZETA•	46.119		44.718	44.097	43.535	•			41.266	40.931	40.642	40.409		39.939	39.732	39.622		39.254	BER	13.292	AXIS		ņ	÷	-	-	≟.					-	0	Ö	ö	Ö
N R	MO 0.	RHO	SECTION	UPSILON	0.07662	-0.00465	-0.08396	-0.16148	-0.23743	-0.38511	-0.45704	-0.52788	-0.59778	-0.66683	-0.73511			٠		-1.06814	-1.1726/	- 1, 17683	CAMBER	13.	AT SECTION AXIS	LOWER	ALPHA	-1.38939	•	-1.37460	-1.31168	-1.24207	-1.10270	- 1.03305	-0.96348	-0.89404	0.82473	-0.74178	-0.65919	-0.57706
2. ROTOR	30 R O.	SECTION DD	S WITH ORIGIN AT	ALPHA	-0.14921	-0.07005		•	0 16743	0 22575				0.64239	•	•	•		1.03819	1 11735	1.18332	1.24928	STAGGER	46.899	COORDINATES WITH ORIGIN AT	UPPER	UPSILON	1.64284	1.63538	٠	•		1.27354	1.18123	1.08899	0 99715		•		0.58552
STAGE	N Z -7.03630	4 SI	NE COORDINATES	1/c	9060.0	0.03944			0.03887													0.00582				5	ALPHA	-1.38939	-1.39354	-1.39164	-1.33516	-1.2/284	-1.14834			-0.96120	-0.89857	-0.82320	-0.74747	-0.67128
	SYSIFM ORIGIN	SECTION NO	ME ANL INE	PCT AL	0.4700	0 5000	_		0 2300	00/4 0			0.7400								03/20	1 0000	CHORD	3 8618	SURFACE		1/C	0 00535	•			0.00995	0 01458		-	0 02166			0 02883	0 03103
	cooko ,			P.	2	ţ	20	2.0	55	. 4	25	26	27	28	53	9		76		34	cs C	36					PI	-	7	ო	4 t	ר י	۰ ۲	œ	6	9	=	12	13	14

	ETA 0.	7.0000	s		UPSILON	0.56343	0.47056	0.38106	0.29459		0.12890	0.04883	٠.	-0.10693	-0. 18302	-0.25812	_	-0.40568	-0.47842	-0.55066		-0 69397	-0.76528	-0.83649	-0.90753	-0.97844	-1.04949	- 1.10889	-1.16036	-1.16771	-1.17683	1,63431	-1.16914	
NB 20	ċ	RHO	SECTION AXIS	LOWER	AL.PHA	0.49547	-0.41048	-0.33399	-0.25392	-0.17422		-0.01583			0.21912	0.29679	0.37414	0.45121	0.52803	•	•	•	•		0.98327	1.05818	1.13279	1.19467	1.24829	1,25195	1.24928	UPSILON	UPS11.0N	
2. ROTOR) R O. MU	SECTION DD	WITH ORIGIN AT	ER	NDTIFON	0.48316	0.38415	0.28897	. 19748	. 10941	.02434	05813	-0.13820	•		-0.36576	-0.43793	-0.50840	-0.57734	-0.64490	-0.71118	-0.77626			-0.96543	-1.02655	-1.08679	1.13644	-1.17911	-1.18126	-1.17683	AL PHA - 1, 38286	_	
STAGE	2 -7.03630	4 SEC	E COORDINATES	UPPER	ALPHA	-0.59455	-0.51722	-0.43939	-0.36114	-0.28252		-0.12427	-0.04461	Τ,			0.27736	0.35861		0.52189	•		0.76880	•	0.93479	1.01120	1.10191	1, 17 190	1.23293	1.24081	1.24928	CENTER AT A	A	
	COURD SYSTEM ORIGIN	SECTION NO	SURFACE		1/0	0.03302	0.03476	0 03624	0 03746		90660-0		0.03454	0 03934	0.03887		0.03710	0.03581	0 03427	0 03246	0 03040		-		٠,	0 01620	0 01254	0 00924		0 00582	0 00582	840 0 01074	C	
	ร ปสเวเวร				pı	15	16	11	2	19	20	2	22	23	24	25	96	27		62 77		31	32	33	34	35	36	37	38	39	40	u.		

PHASE 11 R010R

	ö	8							
20	ETA	7.0000	CAMBER 13.292	7.78701	NO.	92	68	68	
8	Ö	RHO	13.	7.	UPSILON	0.07392	0.08868	0.08868	ö
	₹			SURFACE ARC LENGTH	ALPHA	-0.08627	-0.11097	-0.11097	د.00010
ROTOR	o.	00	ER 99	ACE /		Ÿ	Y	Ÿ	Y
STAGE 2.	7.03630 R	SECTION DD	STAGGER 46.899	SURF			SECTION C.G.		(RADIAL)
	COORD STSIFM URIGIN Z -7.03630 R O.	SECTION NO 4	CHORD 3 8618	AREA 0 406486		SECTION C.G.	STREAMSURFACE SECTION C.G.	BLADE AXIS	STACKING AXIS (RADIAL)
	COORD S			⋖					

20

£

ROTOR

۶.

STAGE

THE RESIDENCE OF THE PROPERTY OF THE PROPERTY

ETA U.	6.5000		LON	327	47176	30597	794	96985	78717 59466	447	24897	09558	04843	392	43336	15 T	66093	857	319	861	AXIS	2E TA•	51.183	51.428	51.546	51.618	51.588			50.514	49.882	•	י ס	46.711	ກ່ ເ	7 0 0	4.82	:
MU O.	RHO		S UPSILON	1.55	.	-	-	o o	o c	o o	Ö	o.	ġ,	ġ,	ợ ç	,	φ	Ó	-0.87	-0 95	AT SECTION	UPSILON	1.55327	1.46578	1.37776		1.20104		0.93880			0.65392	0.55887	0.46763	0.38053		٧.	
. o	JN EE	INPUT DATA	THICKNESS	0.02050	•	.0548	.0785	0. 10213							0.18/98			.0983	0.06012	0.02261	WITH ORIGIN	ALPHA	46628	. 39624	. 32621	.25617	. 18614	. 04607	97603	00906	82196	73791				40175	31//0	0000
-7.03630	SECTION	MEANL INE	ZETA•	51.183	*	•	-	51.027	50.175	45.882	43.287	41.228	39.401		36.081		32.512	•	0.97	0	COORDINATES W		•	-	-	<u>-</u>			Ģ	φ̈	ġ.	o ·	φ ¢	٠ •	ġ ¢	9		
RIGIN Z	S CN		ALPHA	1.46628	•		•	1 00121	0 685125			•			0 32987	6731			1.19064	1.33512	MF ANI, TNE COO	1/0	0.00545	o.	Ö	ö	o o		Ö	ö	o ·	o .	0.04115	o (o o		> 0	5
SYSIEM ORIGIN	SECTION NO		PT	-	2 .1		•	ភ ប		•					13				18	19	MF	PCT AL	¢		С	0	0.1000	0	0	Ο.	0	0	၁	0 :	c (0 0		7
COORD																	7	9				7.4	~ -	0	e	4	ς v	٠,	.	6	5	Ξ	2 5	5.	Ξ.	ភូមិ	£ :	

	o.	8
20	E1A 0.	6.5000
NB 20	MU 0.	R# 10
	2	
OTOR	C	EE
α	α	NOI
STAGE 2. ROTOR	3630	SECTION EE
1 AGE	.7.0	
S	2	S
	COORD SYSTEM ORIGIN 2 -7.03630 R 0.	SECTION NO
	COORD	

AXIS	ZETA•	40.841	39,937	39.044	38.171	37, 324	36,535	35.816	35, 140	34,501	33,903	33,350	32.833	32.347	31.902	31.505	31, 138	30, 789	30.567	30.457
WITH DRIGIN AT SECTION AXIS	UPSILON	0.06775	-0.00375	-0.07301	-0.14011	-0.20517	-0.26833	-0.32977	-0.38967	-0.44811	-0.50523	-0.56111	-0.61588	-0.66960	-0.72236	-0.77426	-0.82540	-0.87582	-0.91735	-0.95861
TES WITH DRIG	ALPHA	-0.14962	.0.06558	0.01846	0.10251	0.18655	0.27059	0.35463	0.43867	0.52272	0.60676	0.69080	0.77484	0.85888	0.94293	1.02697	1,11101	1.19505	1.26509	1.33512
INE COORDINATES	1/c	0.05198	0.05251	0.05267	0.05244	0.05183	0.05086	0.04953	0.04783	0.04576	0.04336	0.04057	0.03742	0.03388	0 02995	0.02563	0.02091	0.01569	0.01095	0.00601
MEANLINE	PCT AL	0.4700	0.5000	0 5300		0 5400	0 6200	0069 0	0089 0	0 7 100	0 7400	0 7700	0 8000	0 8300	0 8600	0.8800		0 9500	0 9750	0000
	ь	81	19	20	21	22	23	24	25	56	27	28	53	30	31	32	33	34	32	36

SURFACE COORDINATES WITH ORIGIN AT SECTION AXIS

CAMBER 20.727

STAGGER 41.881

CHORD 3. 7626

	UPSILON	1.55327	1.55554	1.55205	1 47589	1 39166	1 307 18	1 22267	1 12853	1 05504	0 97235	0 80069	0 79454	0 70098	0.61071
LOWER	ALPHA	-1.46628	-1.45797	-1.45146	-1.38356	-1.30871	-1.23378	-1.15885	- 1.08401	-1.00929	-0.93474	-0.86046	-0 77178	-0.68371	-0.59638
8	UPSILON	1.55327	1.54570	1.53854	1.45566	1.36387	1.27170	1.17940	1.08734	0.99589	0.90525	0.81566	0.70997	0.60686	0.50703
UPPFR	ALPHA	-1.46628	-1.47028	-1.46828	-1.40893	-1.34371	-1.27857	-1.21343	-1.14820	-1.08285	-1.01732	-0.95153	-0.87214	-0.79212	-0.71137
	1/0	0 00545	0 00545	0 00545	0 00862	0 01188	0 01519	0 01851	0 02 182	0.02509	0.02828	0.03136	0 03488	0 03816	0.04115
	<u>-</u>	-	7	m	♥	ស	9	7	œ	σ	0	Ξ	5	13	-

CONTRACTOR LENGTHER ACCOUNT ACCOUNT ADVANCED LANGUAGE LANGUAGE LANGUAGE LANGUAGE LANGUAGE LANGUAGE LANGUAGE LA

PHASE IT ROTOR

	ETA 0.	0005.9	s		UPSILON	0.52416	0.44161	0.36269		0.21324	0.14173	0.07200	0.00395	-0.06256	-0.12763	-0.19144	0.25421	-0.31608	-0.37714	-0.43752	-0.49735	-0.55673		-0.67453			-0.85047		-0.94206	-0.94899	-0.95861	1.54485	-0.95219	
NB 20	MU O.	RIFO	AT SECTION AXIS	LOWER	ALPHA	-0.50981	-0.42403	-0.33882	-0.25403	-0.16965	-0.08567		0.08088	0.16347	0.24567	0.32756	0.40916		0.57149	0.65226	0.73276	0.81301	0.89298	0.97270	1.05216	1, 13135	1.21016	1.27556	1.33183	1.33646	1.33512	ST UPSTLON		
. ROTOR	٠. ٥	SECTION EE	WITH ORIGIN	ER	UPSILON	0.41109		0.23234	0.14933	0.06993	-0.00623	٠.	-0.14996	-0.21767	-0.28272	-0.34522	-0.40533	-0.46325	-0.51909	-0.57293	-0.62487	.0.67502	-0.72344		-0.81537	-0.85906	-0.90118	-0.93509	-0.96378	-0.96448	-0.95861	AI PHA - 1 45951	-	
STAGE 2	Z -7.03630	5 SEC	COORDINATES	UPPER	ALPHA	-0.62985	-0.54754	-0.46468	-0.38138	-0.29767	-0.21357	-0.12900	-0.04395	٠.	0.12742	0.21362	0.30010	0.38688	0.47394	0.56126	0.64884	0.73668	0.82478	0.91315	1.00177	1.09067	1.17994	1.25461	1.31905	1.32730	1.33512	CENTED AT A	AT	
	SYSIFM ORIGIN	SECTION NO	SURFACE		1/C	0 04383	0.04617	0 04816	0.04979	0 05107	0 05198	0 05251	0.05267	0 05244	0 05183	0 05086	0.04953	0 04783	0 04578	0.04336	0 04057	0.03742	0 03388		0 02563	0 02091	0.01569	0 01095	0 00601	0 00601	0 00601	18010 0 040		
	COORD				PT	15	16	17	18	19	20	2.1	22	53	40	25	96	27	8 58	67 1	30	31	32	33	34	35	36	37	38	39	40	-		

PHASE II ROIOR

	ETA 0.	6.5000		•					
50	ũ	9	CAMBER 20.727	7.62824	NO.	73	731	731	
Š	Ċ.	RI +C	CAN 20.	7	UPSILON	0.08773	0.09731	0.09731	Ċ
	MU			SURFACE ARC LENGIH	ALPHA	-0.08790	-0.12000	-0.12000	-0.00010
ROTOR	0	EE	α	CE AR	⋖	o O	o.	o O	Ç
ĕ	α	SECTION EE	STAGGER 41.881	SURFA			Ġ		
0	3630	SFC	S,	•			ON CO.		-
STAGE	-7.0						SECTIO		PANI
V,	7	ស		40			3		2
	NIGIA	0	ø	0.508640		SECTION C.G.	STREAMSURFACE SECTION C.G.	BLADE AXIS	CIACKING AXIS (PADIAL)
	Ĉ ¥	SECTION NO	CHIORD 3.7626	¢		110	2E AM	NOF	CK
	31215	SFC.1	ට m	ARFA		SF	511	BL/	717
	COURD SYSTEM ORIGIN Z -7.03630 R O								

AND RESIDENCE AND SOLD AND SOLD AND CONTRACTORS AND SOLD AND SOLD

	o.	8																																						
20	ETA	6.0000		NO	44860	36691	202 10	03633	87 184	69693	52005	35978	21323	01176	0 - 0	16501	23.43.5	3/422	٠ £	527	510	778	AXIS	ZE ſA•	49.999	50.027	50.009			49 594	49.212	•	47.897	46.589	43.083		40.580			
88	o.	RHO		UPSILON	1.44	1.36	1.20	•	•	•		•	•	0.07776		-0.16501				-0.63527	-0.71010	-0.76778	SECTION AXIS	LON	44860	36094	329	572	839	163	584	140	75888	66338	767/6	48651 40515	40515 32781	32781 25395	18325	11540
	₹		⋖	ESS	64	66	28	69	23	-	22	93	3	7.5	2 9	9 1	1	, C	5 6	5	24	20		UPSILON	1.44	1.36	1.27329	1.18572	1.09839	1.01163	0.92584					0 C	•		•	
ROTOR	o O	FF	TRPUT DATA	THICKNES	0.01964	0.03399								0.22912		0.23146	0.000	0.20003				•	4 ORIGI	¥	198	45848	38498	31148	23798	418	660	749	94399	85579	6101	6/940 59120	50300	50300 41480	32660	23840
2.	30 R	SECTION		2ETA.	666	.044	.007	700	902	.071	081	100.	553	326	101	32.085		766	496	822	157	665	ES WITH	ALPHA	-1.53198	- 1.45	- 1.38	÷.				٠.			0.70					
STAGE	-7.03630	S	ME ANL INE	32	49.				•	47.	•		•	98.		35.	è e	78.	•	•		· O	COORDINATES WITH ORIGIN AT	U	00533	00952	01374	01798	02220	02635	03041	03433	03809	04233	04623	04976	05292	05569	06001	06 155
S	Z NIS	9		ALPHA	53198	46348	32524	. 18548	04414	88725	71439	23996	36446	18792	00010	16773	2000	32530	88821	07049	25400	40796		1/0	8	•		٠,			•		•	0.0		0.0				
	SYSTEM URIGIN	SECTION NO		¥	- 1	-	÷	-							٠	o (: ·				•	MEANL INE	PCT AL		0250		0220						2300						
		SFC		<u>.</u>	-	8	ო	4	ດ	ပ	~	œ	6	♀;	- :	2 5	2 :	د د -		1,	<u> </u>	19		C.	0	0	С	С	၁	0	С	0 (C	0 0	0 0	00	> C	00	c	C
	COORD																		83	3				pt		~	~	4	S	φ '		6 0 (5 (₽:	- :	7 Ç	2 2	4 12	2 9	17

THE THE PERSONAL PROPERTY OF SECTIONS AND SECTION OF THE PERSONAL PROPERTY OF THE PERSONAL PROPE

	ó	Q
20	ETA 0.	6.0000
NB 20	MU 0.	RHO
	¥	
ROTOR	Ö	r r
_	œ	NO I
STAGE 2. ROTOR	03630	SECTION FF
rage	-7.	
Š	N	g
	COORD SYSTEM ORIGIN Z -7.03630 R O.	SECTION NO 6
	٧ > ۲	Ċ.
	COORE	

MEANLINE COORDINATES WITH ORIGIN AT SECTION AXIS

2F1A•	35.970	34.921	33.858	32.817	31.808	30.835	29.895	28.962	28.028	27.112	26.218	25.357	24.533	23 718	22.904	22.086	21.264	20.516	19.665	CAMBER	30, 334
UPSILON	0.05016	-0.01263	-0.07300	-0.13101	-0.18679	-0.24046	-0.29213	-0.34189	-0.38976	-0.43581	-0.48010	-0.52271	-0.56373	-0.60323	-0.64123	-0.67776	-0.71281	-0.74088	-0.76778	J	Ř
ALPHA	-0.15021	-0.06201	0.02619	0.11439	0.20259	0.29078	0.37898	0.46718	0.55538	0.64358	0.73177	0.81997	0.90817	0.99637	1.08457	1.17276	1.26096	1.33446	1.40796	STAGGER	37.012
1/c	0.06265	0.06330	0.06350	0.06324	0.06253	0.06138	0.05978	0.05775	0.05528	0.05235	0.04898	0.04514	0.04081	0.03597	0.03064	0.02478	0.01826	0.01232	0.00611		
PCT AL	0.4700	0 5000	0.5300	0.5600	0 5900	0069 0	0 6500	0 6800	0 7100	0 7400	0 7700	0 8000	0 8300	0.8600	0.8900	0026 0	0 9500	0 9750	1 0000	CHORD	3 68 18
<u>.</u>	81	19	20	21	22	23	24	25	56	27	28	53	30	31		€€ 4	34	ទិន	36		

SURFACE COORDINATES WITH ORIGIN AT SECTION AXIS

	UPSILON	1.44860	1.45099	1.44782	1.37220	1.28955	1.20701	1.12474	1.04308	0.96241	0.88313	0.80589	0.71693	0.63261	0.55300
LOWER	ALPHA	-1,53198	-1.52405	-1.51765	-1.44505	-1.36560	-1.28613	-1.20675	-1.12754	-1.04860	-0.97002	-0.89197	-0.79919	-0.70733	-0.61638
FR	UPSILON	1.44860	1.44120	1.43436	1.34969	1.25703	1.16443	1.07204	0.98019	0.88927	0.79967	0.71187	0.60983	0.51244	0.42002
UPPER	ALPHA	-1.53198	-1.53571	-1.53371	-1.47191	-1.40436	-1.33683	-1.26922	-1.20143	-1.13337	-1.06495	-0.99601	-0.91239	-0.82786	-0.74241
	1/1	0 00533	0 00533	0 00533	0 00952	0.01374	0.01798	0.02220	0 02635	0 03041	0 03433	0 03809	0.04233	0.04623	0.04976
	<u>.</u>	-	7	က	4	ស	9	7	α	6	Ç	-	12	13	7

NB 20	ETA 0.	6.0000	AXIS
<u>8</u>	0	R# 10	SECT ION
	₹		IN AT S
ROTOR	В 0.	SECTION FF	ITH ORIG
STAGE 2. ROTOR	.03630	SECTI	SURFACE COORDINATES WITH ORIGIN AT SECTION AXIS
STAG	L- Z 2	9	CE COORD
	COURD SYSIFM ORIGIN 2 -7.03630 R 0.	SECTION NO 6	SURFAC

	UPSILON	0.47762	0.40566	0.33663	0.27015	0.20587	0.14350	0.08292	0.02408	-0.03317	-0.08896	-0.14344	-0.19672	-0.24887	-0.29994	-0.35002	-0.39921	-0.44762	-0.49539	-0.54260	-0.58927	-0.63549	-0.68148	-0.71964	-0.75189	-0.75809	-0.76778	1.44055	-0.76337
LOWER	ALPHA	-0.52609	-0.43631	-0.34709	-0.25839	-0.17019	-0.08247	0.00470	0.09132	0.17748	0.26326	0.34870	0.43384	0.51866	0.60319	0.68750	0.771/51	0.85556	0.93936	1.02301	1.10652	1, 18992	1.27316	1.34241	1.40185	1.40761	1.40796	UPS11.0N	UPSILON
FR	UPSILON	0.33269	0.24995	0.17127	0.09635	0.02494	-0.04317	-0.10818	-0.17008	-0.22886	-0.28462	-0.33748	-0.38754	-0.43490	-0.47959	-0.52160	-0.56099	-0.59779	-0.63207	-0.66386	-0.69320	-0.72003	-0.74415	-0.76211	-0.77615	-0 77516	-0.76778	ALPHA -1.52523	ALPHA 1.39569
UPPER	ALPHA	-0.65630	-0.56968	-0.48251	-0.354P	-0.30662	-0.21794	-0.12872	-0.03894	0.05129	0.14191	0.23287	0.32413	0.41570	0.50756	0.59965	0.69194	0.78439	0.87698	0.96973	1.06261	1.15561	1.24877	1.32652	1.39311	1.40125	1.40796	CENTER AT A	CENTER AT A
	1/0	0 05292	0 05569	0.05805	0 06001	0 06155	0.06265	0.06330	0.06350	0 06324	0.06253	0 06138	0 05978	0 05/75	0 05528	0 05235	0.04898	0 04514	0 04081	0 03597	0.03064	0 02478	0.01826	0.01232	0 00611	0 00611	0.00611	RAU 0 01050	RAD 0.01303
	Ē	£	16	17	1	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40		TE RA

THE DESCRIPTION OF THE PROPERTY OF THE PROPERT

COURD

	o.	S							
20	ETA 0.	6.0000	CAMBER 30.334	7.51741	NO	17	60	60	
9 2	o.	SH2	30.	7.	UPSILON	0.08617	0 08909	0.08909	ö
	₹			SURFACE ARC LENGTH	HA.	1042	484	484	010
æ				ARC	ALPHA	-0.09042	-0.12484	-0.12484	-0.00010
ROTOR	o.	ü	8.2	CE		•	•	•	•
•	α	SECTION FF	STAGGER 37.012	JRF1					
~	30	FCT	33.	S			S.S		
STAGE	-7.036	S					CTION		(ADIAL)
S	2	y		~			SE		£
	SYSTEM DRIGIN Z -7.03630 R O.	SECTION NO	CHORD 3.6818	0.587748		SECTION C.G.	SIREAMSURFACE SECTION C.G.	BLADE AXIS	STACKING AXIS (RADIAL)
	SYSTEM	SECTI	CHORD 3.6818	ARFA		SECT	SIRE	Bt AD	STAC

THE PROPERTY OF THE PROPERTY O

O. ETA O.	RIIO 5.50CO		UPSILON	1.32840	1.24608	1.08132	0.91819	0.76011	0.59705	0.43631	0.29226	0.16118	0.04105	-0.06847	-0. 16722	-0.25461	-0.33033	-0.39489	-0.44919	-0.49392	-0.52871	-0.54873
7.03630 R O. MU	SECTION GG	MEANLINE INPUT DATA	ZETA* THICKNESS	48.747 0.01862	48.638 0.03567	48.242 0.07011	47.397 0.10419		43.184 0.16983	39.783 0.20092	36.830 0.22625						.680	. 720	14.874 0.17480	11.967 0.13120	8.690 0.07643	5.425 0.02110
2	SECTION NO 7		P. ALPHA	1 58083	2 -1.50877	3 -1.36315	4 -1 21579		O	•	•		o-	o O	Ö	С	Ö	15	16 0.	17 1.	18 1.33309	19 1 49117
	-7.03630 R O. MU O. ETA	Z -7.03630 R O. MU O. ETA 7 SECTION GG RHO 5.50K3	Z -7.03630 R O. MU O. ETA 7 SECTION GG RHO 5.50K3 MEANLINE INPUT DATA	Z -7.03630 R O. MU O. ETA 7 SECTION GG RHO 5.50C3 MEANLINE INPUT DATA A ZETA+ THICKNESS UPSILON	Z -7.03630 R O. MU O. ETA 7 SECTION GG RHO 5.50C3 MEANLINE INPUT DATA 8 ZETA* THICKNESS UPSILON 33 48.747 O.01862 1.32840	Z -7.03630 R O. MU O. ETA RECTION GG RIG 5.50¢3 MEANLINE INPUT DATA ZETA* THICKNESS UPSILON 4 ZETA* 0.01862 1.32840 77 48.638 0.03567 1.24608	Z -7.03630 R O. MU O. ETA SECTION GG RIIO 5.50C3 MEANLINE INPUT DATA A ZETA* THICKNESS UPSILON 33 48.747 0.01862 1.32840 77 48.638 0.03567 1.24608 15 48.242 0.07011 1.08132	Z -7.03630 R O. MU O. ETA SECTION GG RIIO 5.50C3 MEANLINE INPUT DATA A ZETA* THICKNESS UPSILON 33 48.747 0.01862 1.32840 77 48.638 0.03567 1.24608 15 48.242 0.07011 1.08132 79 47.397 0.10419 0.91819	Z -7.03630 R O. MU O. ETA SECTION GG RIIO 5.50C3 MEANLINE INPUT DATA A ZETA* THICKNESS UPSILON 33 48.747 0.01862 1.32840 77 48.638 0.03567 1.24608 15 48.242 0.07011 1.08132 79 47.397 0.10419 0.91819 35 45.834 0.13685 0.76011	Z -7.03630 R O. MU O. ETA SECTION GG RIIO 5.50C,0 MEANLINE INPUT DATA A ZETA* THICKNESS UPSILON 33 48.747 0.01862 1.32840 77 48.638 0.03567 1.24608 15 48.242 0.07011 1.08132 79 47.397 0.10419 0.91819 35 45.834 0.13685 0.76011 30 43.184 0.16983 0.59705	Z -7.03630 R O. MU O. ETA SECTION GG RIG 5.50C3 MEANLINE INPUT DATA A ZETA* THICKNESS UPSILON 33 48.747 0.01862 1.32840 77 48.638 0.03567 1.24608 15 48.242 0.07011 1.08132 79 47.397 0.10419 0.91819 85 45.834 0.16983 0.59705 84 39.783 0.20092 0.43631	Z -7.03630 R O. MU O. ETA SECTION GG RIG 5.50¢3 MEANLINE INPUT DATA ZETA* THICKNESS UPSILON 33 48.747 0.01862 1.32840 77 48.638 0.03567 1.24608 15 48.242 0.07011 1.08132 79 47.397 0.10419 0.91819 35 45.834 0.16983 0.20092 34 39.783 0.20092 0.43631 36.830 0.22625 0.29226	Z -7.03630 R O. MU O. ETA SECTION GG RIG 5.50¢3 MEANLINE INPUT DATA ZETA* THICKNESS UPSILON 48.747 0.01862 1.32840 77 48.638 0.03567 1.24608 77 48.638 0.07011 1.08132 79 47.397 0.10419 0.91819 85 45.834 0.16985 0.76011 85 45.834 0.16983 0.59705 86 34.240 0.22625 0.29226	Z -7.03630 R O. MU O. ETA SECTION GG RIO 5.50¢3 MEANLINE INPUT DATA ZETA* THICKNESS UPSILON 48.638 0.03567 1.22840 77 48.638 0.03567 1.24608 77 48.638 0.03567 1.24608 78 48.242 0.07011 1.08132 79 47.397 0.10419 0.91819 85 45.834 0.16983 0.59705 84 39.783 0.20092 0.43631 86 31.944 0.25800 0.04105	Z -7.03630 R O. MU O. ETA SECTION GG RIIO 5.50C3 MEANLINE INPUT DATA ZETA* THICKNESS UPSILON 48.737 0.01862 1.32840 77 48.638 0.03567 1.24608 77 48.638 0.03567 1.24608 78 47.397 0.10419 0.91819 79 47.397 0.10419 0.91819 79 47.397 0.10419 0.91819 70 43.184 0.16983 0.59705 71 48.240 0.22643 0.16118 72 34.340 0.25800 0.04105 73 29.449 0.25337 -0.06847	Z -7.03630 R O. MU O. ETA SECTION GG RIIO 5.50K3 MEANLINE INPUT DATA ZETA* THICKNESS UPSILON 48.538 0.03567 1.22840 77 48.638 0.03567 1.24608 15 48.242 0.07011 1.08132 79 47.397 0.10419 0.91819 85 45.834 0.16983 0.59705 84 39.783 0.20092 0.43631 86 34.240 0.22625 0.29226 86 34.240 0.226337 -0.06847 83 26.742 0.26119 -0.16722	Z -7.03630 R O. MU O. ETA SECTION GG RIIO 5.50K.3 MEANLINE INPUT DATA A ZETA* THICKNESS UPSILON 48.538 0.03567 1.24608 15 48.242 0.07011 1.08132 19 47.397 0.10419 0.91819 15 45.834 0.166983 0.59705 15 45.834 0.166983 0.29226 15 33.240 0.22625 0.29226 15 34.240 0.26337 -0.06847 15 29.442 0.25337 -0.25461 20 23.767 0.25147 -0.25461	Z -7.03630 R O. MU O. ETA SECTION GG RIG 5.50¢3 MEANLINE INPUT DATA ZETA* THICKNESS UPSILON 33 48.747 0.01862 1.32840 77 48.638 0.03567 1.24608 15 48.242 0.07011 1.08132 79 47.397 0.10419 0.91819 35 45.834 0.16983 0.59705 36 33.944 0.16983 0.20226 36 34.240 0.22625 0.29226 36 34.240 0.22625 0.29226 36 34.240 0.22635 0.16118 36 34.240 0.22635 0.16118 36 34.240 0.22637 0.06847 37 26.742 0.25147 -0.25461	SECTION NO 7 SECTION GG RIG 5.50¢3 MEANLINE INPUT DATA FI -158083 48.747 0.01862 1.32840 2 -1.50877 48.638 0.03567 1.24608 3 -1.36315 48.242 0.07011 1.08132 4 -1.21579 47.397 0.10419 0.91819 5 -1.06685 43.184 0.16983 0.20092 7 -7.1964 39.783 0.20092 0.2926 9 0.35266 34.240 0.25800 0.04106 10 -0.16796 31.944 0.25800 0.04106 11 0.01741 29.449 0.25800 0.04106 11 0.01741 29.449 0.25801 -0.06887 12 0.20333 26.742 0.26137 -0.25461 13 0.39000 23.762 0.20312 -0.39489 15 0.76529 17.720 0.20876 -0.39489	SECTION NO 7 SECTION GG RIG 5.50CO MEANLINE INPUT DATA PI -1 58083 48.747 0.01862 1.32840 2 -1.50877 48.638 0.03567 1.24608 3 -1.36315 48.242 0.07011 1.08132 4 -1 21579 47.397 0.10419 0.91819 5 -1.06685 45.834 0.13685 0.76011 6 -0.901696 31.944 0.25800 0.04105 10 -0 16796 31.944 0.25800 0.04105 11 0.01741 29.449 0.25800 0.04105 11 0.053296 34.240 0.25147 -0.26847 12 0.20333 26.742 0.25147 -0.25461 13 0.39000 22.767 0.20412 -0.39489 16 0.95394 14.874 0.17480 -0.44919	SECTION NO 7 SECTION GG RIG 5.50KJ MEANLINE INPUT DATA PI -158083 48.747 0.01862 1.32840 1 -158087 48.638 0.03567 1.24608 3 -1.36315 48.638 0.07011 1.08132 4 -1 21579 47.397 0.10419 0.91819 5 -1.06685 45.834 0.16983 0.59705 7 -1 21579 47.830 0.20522 6 -0.90150 43.184 0.16983 0.29226 9 -0.35266 34.240 0.26337 -0.06847 10 -0.1741 29.449 0.25800 0.04105 11 0.01741 29.449 0.25147 -0.25461 12 0.20333 26.742 0.26119 -0.16722 13 0.57729 20.680 0.20312 -0.39489 16 0.95394 14.735 0.13120 -0.49392	Z -7.03630 R O. MU O. ETA SECTION GG RIG 5.50KJ MEANLINE INPUT DATA ZETA* THICKNESS UPSILON 48.548 0.03567 1.24608 15 48.242 0.07011 1.08132 47.397 0.10419 0.91819 45.45.84 0.16983 0.59705 54 39.783 0.20092 0.43631 56 31.944 0.26983 0.66847 56 31.949 0.26337 -0.06847 50 23.767 0.25147 -0.25461 50 23.767 0.25147 -0.25461 51 14.874 0.17480 -0.49392 52 11.967 0.13120 -0.52871

MEANLINT COORDINATES WITH ORIGIN AT SECTION AXIS

ZETA+	48.747	48.755	48.503	48.229	47.837	47.269	46.502	45.519	44.337	42.658	40.920	39.229	37.675	36.301	35.027	33.827	32.629
UPSILON	1,32840	1.2.068	1,15,47	1.06706	0.98163	0.89761	0.81553	0.73592	0.65926	0.57174	0.48936	0.41183	0.33868	0.26930	0.20317	0.14001	0.07963
AL PHA	- 1.58083	-1.50403	-1.42723	1.35043	-1.27363	-1.19683	-1.12003	-1.04323	-0.96643	-0.87427	-0.78211	-0.68995	-0.59779	-0.50563	-0.41347	-0.32131	-0.22915
1/c	0.90517	0.01022	0.01527	0.02030	0.02527	0.03013	0.03485	0.03939	0.04371	0.04857	0.05302	0.05707	0.06068	0.06387	0.06661	0.06890	0.07072
PCI AL	0	0 0220	0 0500	0 0720	0 1000		0 1500	0 1750	0 2000	0.2300	0 2600	0 2900	0 3200		0.3800	0 4 100	0.4400
14	-	8	က	4	ល	ၒ	7	œ	σ	0	Ξ	12	£	7	15 2	91	17

RESEARCH CONTROL CONTROL OF THE PROPERTY OF THE

																											7	0	*	_	0		- (o -		. a			m	
	o.	8			_				_										_		_						UPS11 ON	32840	1,33084	.32801	.25280	. 17.169	.09141	0.77.0.0	0.9344 0.85871	78559	0.71553	0.63603	56148	49141
20	ETA	5.5000	AXIS	ZETA+	31.410	30, 163	28.882	27.541	26. 130	24.658	25.132	20.083	18.604	17.176	•		13, 108	11.738	•	•	٠	5.425	CAMBER	43.322	AXIS		3	- -	-	-	<u>-</u>	•	<u>.</u>	<u>-</u> c	o c	o c	ó	Ö	o.	i o
8	Ċ.	R++0	SECT ION	UPSILON	0.02199	-0.03292	-0.08512	-0.13458	18122	-0.22498	-0.26382	-0.33882	-0.37117	-0.40092	-0.42818	-0.45308	-0.47569	49599	. 0. 51395	52940	.≅√019	-0:5 1873	CA	43.	SECTION	LOWER	ALPHA	1.58083	-1.57335	-1.56717	-1.49020	-1.40664	-1.32317	1.23391	-1.13653	651.0.U	-0.91144	-0.81503	-0.71959	-0.62499
	¥			. UPS	0.0	0.0	0.0	-0.1	0	0.0	, c	9 0	-0.3	-0.4	4.0-	-O.	•	4.0			9.0	-0:5					_	٠												
ROTOR	ö	55	WITH ORIGIN AT	¥.	13699	483	.04733	13949	23165	32381	4 139 / 500 4 2	6000	69245	78461	,677	96893	.06109	. 15325	. 24541	.33757	41437	49117	ER	127	WITH ORIGIN AT		UPSILON	.32840	. 32127	.31481	. 22855	1.13525	1.04272	950108	0.660061	0.58624	60298	0.50744		
٥.	330 R	SECTION		ALPHA	-0.13	-0.04483	0.0			0.3	9 0		0.69		0.87677	96.0	٠. ٥.	- E	1.24	- 3	1,4	- 40	STAGGER	31.427	IES WIT	UPPER		•	_	_	-	- 1	- (, (, .	,	, 0		Ü
STAGE	Z -7.03630	V	CUORDINATES	1/c	07206	07289	07320	07299	07227	07105	0.06931	06429	66090	05713	05272	04769	04204	03573	02872	.02082	01352	00586			COORDINATES	***	ALPHA	-1.58083	-1.58426	-1.58227				- 1 . 30/34	- 1.23007	- 1 09381	-1.02142	-0.93351		-0.75491
		7		•	0	ö		Ö		0 0	5 0	ċ	0							0	•	0									·		•			•		·		•
	SYSTEM ORIGIN	SECTION NO	MF ANL INE	PC1 AL	0 4700	0.5000	0.5300				0050				0.8000	0 8300	0.8600					1.0000	CHORD	3.6001	SURFACE		1/0	0.00517	0 00517	0.00517			0.02030	77670 0					•	
	COORD			14	8	19	20	21	22	23	7.4	96	27	28	29	30	31		င် 88		32	36					PT		7	ო	♥ 1	· ع	1 0	~ 0	c o	e Ç	-	. 2	13	4

RECERTANDE AND PRODUCED PROGRESS OF THE PROGRE

20	ETA 0.	5.5000
NB 20	. O DM	RHO
	Ŋ.	
ROTOR	0	SECTION GG
STAGE 2. ROTOR	-7.03630	SECTI
S	7	7
	COORD SYSTEM ORIGIN Z -7.03630 R O.	SECTION NO 7

SURFACE COORDINATES WITH ORIGIN AT SECTION AXIS

	UPSILON	0.42514	0.36195	0.30136	0.24304	0 18685	0.13269	0.08051	0.03025	-0.01807	-0.06442	-0.10875	-0.15109	-0.19150	-0.23013	-0,26713	-0.30266	-0.33687	-0.36994	-0.40198	-0.43302	-0.46308	-0.49235	-0.51604	-0.53429	-0 53830	-0.54873	1.32082	-0.54722
LOWFR	ALPHA	0.53103	-0.43757	-0.34465	-0.25227	-0.16051	-0.06939	0.02109	0.11097	0.20024	0.28895	0.37716	0.46498	0.55256	0.64003	0.72747	0.81498	0.90259	0.99035	1.07825	1.16633	1.25464	1.34325	1.41743	1.47834	1.48769	1.49117	UPSILON	UPSILON
2	UPSILON	0.25223	0.17664	0.10498	0.03698	-0.02758	-0.08871	-0.14636	-0.20050	-0.25108	-0.29802	-0.34121	-0.38055	-0.41598	-0.44752	-0.47521	-0.49917	-0.51949	-0.53622	-0.54939	-0.55897	-0.56481	-0.56645	-0.56433	-0.56011	-0.55718	-0.54873	At PHA - 1,57421	
UPPER	ALPHA	-0.66455	-0.57369	-0.48229	-0.39035	-0.29779	-0.20459	-0.11075	-0.01631	0.07873	0.17435	0.27045	0.36696	0.46369	0.56055	0.65743	0.75424	0.85094	0.94750	1.04393	1.14016	1.23617	1.33188	1.41131	1.47934	1.48656	1,49117	CENTER AT A	A
	1/c	9 06068	0 06387	0.06661	0.06890	0 07072	0 07206	0.07289	0 07320	0.07299	0.07227	0.07105	0 06931	0 06706	0 06429	66090 0	0 05713	0 05272	0.04769	0 04204	0 03573	0.02872	0 02082	0.01352	0.00586	0.00586	0.00586	0.01006	
	P.1	ا ت	16	17	18	19	20	21	22	23	24	25	26	27	28	50	30	·.	32	33	34	35	36	37	38	39	40	יוב מעט	
															8	39)												

THE CONTRACT OF THE PROPERTY O

PIINSF 11 ROTOR

	ö	Q							
	ETA	5.5000		4					
20	_	4,	CAMBER 43.322	7.43904	NO	8	9	90	
88 88	o.	8HO	CAM	7.	UPSILON	0.07206	0.05906	0.05906	
				H		Ĭ	Ī	•	
	ž			SURFACE ARC LENGTH	¥	133	1174	1174	000
~				ARC	ALPHA	-0.07133	-0.10174	-0.10174	-0.00010
ROTOR	ö	99	ER 27	ACE		Ī	i	١	٠
	æ	NOI	STAGGER 31.427	URF/			, á		
5.	630	SECTION GG	S	V)			0.0		_
3E	7.03						STRFAMSURFACE SECTION C.G.		STACKING AXIS (RADIAL)
STAGE	1						SEC		(RA
	7	7		19			CE		2
	IGIN	2		6527		SECTION C.G.	URFA	BLADE AXIS	Q C
	Z C F	10N	CHORD 3.6001	o.		100	FAMS	DF A	CKIN
	/STE	SECTION NO	<u>.</u> .	ARFA 0.652761		SFC	SIR	B	VIV
	Š.	•		2					
	COORD SYSTEM ORIGIN Z -7.03630 F O.								

20	· ETA 0.	5.0000		UPSILON	18885	10657	94369	0.78586	63789	49008 24567	24507 24605	06660	.00544	09829	17887	24687	30262	34593	37543	38874	9	35455	AXIS	ZETA+	47.036	46.740		•	45.418		42.272	•		37.688		٠. '	4.	֡֟֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֡֓֓֓֓֓֡֓֓֡֡֓֡֡֡֓֡֡֓֡֡֡֡	30.798 29.477
82	MU 0.	RHO	T.	v	4	3	Ö		o O		o d	Ö	ė.	ġ.	٠	o ·			ġ.	ġ.		-0.	IN AT SECTION AXIS	UPSILON	1.18885		1.02533	0.94500	0.86606	0.71455		0.57473		0.42369	0.35427	0.28843	0.22590		0.05637
2. R010R	360 R 0.	SEC. ION HIS	INE INPUT DAT	ZETA+ THICKNES	.036 0.0192	· .	Ö	o O	o	. 164 0. 18	Ö	ó	Ö	ö	o ·		o (o ·	o (o (381 0.0286	ES WITH ORIGIN AT	ALPHA	-1.58945	<u>, </u>	<u>.</u>	-1.35863	-1.20475	_			-0.88160	-0.78927	-0.69695	-0.60462			
STAGE	IN Z -7.03639	0.	MEANL INE	ALPHA ZE	58945 47	46	46	44	42	8/305 39. 68516 36				24		~	7 ;	-			5.0	- 15.	NE COORDINATES	1/c	0.00559	•	.01677	0.02230				0.04789			0.06270	•	7,7,7,0	•	0.07884
	SYSTEM ORIGIN	SFCTION NO		PT ALF	1 -1.56	-	1	,	, (7 -0.65	, O	ė.	-0	o O	•	o (o o		•	- ,	13	-	MFANI INE	PCT AL	°.			0.0750		-				0 2800					
	COORD																ę	91						PT	-	8	ო •	4 K	9	7	œ	σ,	2;	: 2	<u>, c</u>	. 4	<u> </u>	9	17

SOCIAL DESIGNATION DE LA CONTRACTION DEL CONTRACTION DE LA CONTRACTION DEL CONTRACTION DE LA CONTRACTI

20	ETA 0.	5.0000	AXIS	ZETA•	28.124	•	25.269	23.740	22.146	18 854	17.201		13.787	11.906	9.854	7.576	5.032	2.116	-1.375	-5.898	38	- 15.381	ER	17	AXIS	,	UPSILON	1.18885	1.19165	1.18896	1.11988		0 97.166			0.69799	0.63705	0.56799	0.50292	0.44137
NB NB	MU O.	RHO	AT SECTION	UPSILON				12946	16856	-0.20461		29479	31895	34003			-0.38225	. 38806	. 38879	38306	-	-0.35455 -	CAMBER	62.417	SECTION	LOWER	ALPHA	-1.58945		-1.57528	-1.49849	-1.41466	-1.33101	00/12:1	- 1.08250	-1.00088	-0.91996	-0.82362	-0.72806	-0.63320
2. R010R	30 R O.	SECTION HH	ES WITH ORIGIN	ALPHA	.0.14298	-0.05065	0.04168			0.31866					0.87263	0.96495	1.05728	1.14961	1.24194	1.33426	1.41120	1.48814	STAGGER	26.634	COORDINATES WITH ORIGIN AT	UPPER	UPSILON	1, 18885	1. 18133	1.17471	1.09349	1.00544	0.91834	0.03234			0.51241			0.26717
STAGE	V Z -7.03630	8	NE COORDINATES	1/c	0.08063	0.08189				0.08140				0.06741	0.06261	0.05705	0 05065	0.04336			0.01735	0.00831				<i>3</i>	ALPHA	-1,58945	-1.59278	•	-1.52653		-1.38625		1 17210	-1,10086	-1.02789	-0.93958	-0.85049	-0.76070
	SYSTEM ORIGIN	SECTION NO	MF ANL INE	PCT AL	0.4700	0.5000	٠.			0 6500					0.8000	0.8300	0 8600	0.8900			0.9750	1 0000	CHORD	3 4429	SURFACE		1/c	0 00559					0 02230						•	0.06270
	COORD			G.	18	19	50	21	22	6 C	, c	5.2 5.0 7.0	2.1	28	59	30	3		ee 2	34	32	36					PI	-	6	ო	*	ស	9 1	۰ ۵	. 5	Č	? =	12	13	4

TO THE PARTY OF TH

	· 0	•			UPSILON	38291	32722	27402	22317	17452	12801	08359	04124	86000	.03721	.07335	10756	13994	17055	19943	22649	25161	.27464	. 29540	.31347	32828	33867	34273	34164	1489	35455	1, 18118	2002	*
20	FIA	5.0000	AXIS		UPSI	0.36	0.3						ŏ. o		0.0-	٠.						.0.25	-0.2	-0.25	-0.3	0.3		-0.3	-0.3		-0.3		ĭ	
89 X	ö	RHO	SECTION A	LOWER	AI, PHA	.O.5389B	0.44541		-0.26017			0.01275	0.10238	•	0.27979		0.45540				0.80424	0.89107	0.97790	1.06493	1.15236	1.24048	1.32968	1.40582	1.47038	1.48148	1.48814	UPSTLON	NOTISAN	,
ROTOR	O. MU	Ī	H ORIGIN AT		UPSILON	- 19395	. 12459		. 00350	.06178	11680	. 16823	. 21597	. 25990	-0.29991		36769	-0.39542	.41903	-0.43848	-0.45357	-0.46401	. 46935	. 46910	.46266		. 42744			. 36835	. 35455	- 1.58230	-	· · · · · ·
STAGE 2. F	-7.03630 R	SECTION	COORDINATES WITH ORIGIN	UPPER	ALPHA UI	.67026 0.			39510	30209 -0			.0- 60610					46377 -0	56114 -0.	65864 -0	75636 -0	85418 -0	95200 -0	04963 -0	14685 -0	o-	33885 -0	4 1659 -0	.47880 -0	48601 -0	48814 -0	CENTER AT AIPHA	Y 4	
ST	SIN Z	8	SURFACE COC			φ	· 0	o O	ó	0	o O	0-	o O	Ö	Ö	ó	Ö	ó	Ö	Ö	Ö	ö	Ö	-	*	-	<u>-</u>	-	-	.	-			
	SYSTEM DRIGIN	SECTION NO	SUR		1/0	0 06683	0 07052	0 07377	0 07654	0 07884	0.08063		0.08261	0 08278	0.08238	0 08140	0.07984	0.07768		0.07149	0 06741	0 06261	0 05705	0 02065	0 04336	0.03516	0 02592	0.01735	0 00834	0 00831	0.00831	77010 0 040		
	COORD 5				F	15	16	17	<u>8</u>	5	20	21	22	23	24	25	26	27	28		တ္က 3	31	32	33	34	35	36	37	38	39	40			

WEST AND THE PROPERTY OF THE P

NB 20	O. ETA O.	RH0 5.0000	CAMBER 62.417	7.22076	UPSILON	0.04915	0.02316	0.02316	0.
OR	Ð.	I		SURFACE ARC LENGTH	ALPHA	-0.04751	-0.05316	-0.05316	-0.00010
E 2 R010R	.03630 R O.	SECTION HH	S1AGGER 26.634	SURFACE			ION C.G.		IAL.)
STAGE	COURD SYSTEM ORIGIN Z -7.03630 R O.	SECTION NO 8	CHORD 3.4429	AREA 0.685861		SECTION C G.	SIRFAMSURFACE SECTION C.G.	RLADF AXIS	SIACKING AXIS (RADIAL)

CERT LECTION - PERSONAL CONTRACT PROTECT PROTE

20
Ξ
5
_
_
ų,
PHASE
Ŧ.
Č.

20	ETA O.	4.5000		LON	04206	96197	. 80502	65547	38184	24998	13394	.03286	05457	12935	24063	27590	452	. 29370	. 26842	20772	11926	AXIS	ZETA•	45.475	45.206	•	44.378	43.753		40.563	39.223	37.648	36.148	34.655	31.621			
82	MU 0.	RHO		UPSILON	1.04		•	0.65			0.13	0.03	٠,	0.12				-0.29		-0.20	-0.11	WITH ORIGIN AF SECTION AXIS	UPSILON	04206	96782	89438	82198	75094	61484	55065	48932	4 1947	35339	29083	17582	12326	07394	02773
ROTOR		50	INPUT DATA	THICKNESS	0.02123	0.04191	٣.	0.12214	0.19510				0.29430					0.21766		0.11713	0.07093	ORIGIN AF		1.	-	0	0	o c	o c	ö	Ö			o o	o c	; o	0	o.
2. RC	α	SECTION	MEANLINE INPL	ZETA	5.475		•	2.533 9.886		•	0.300	•	3.964					4.288		9.464	2.294	ATES WITH	AI, PHA	.1.55866	-1.48531	-1.41196	-1.33861	-1.26525	-1 11855		-0.97185	ö	٠	-0.70779				-0.26768
SFAGE	Z -7.03630	Ø	MEA					45 42					72 23					864	60 -14	31 -29	38 -42	E COORDINATES	1/c	0.00673				0.03074		0.04754		•	•	0.06938				0.08887
	SYSIFM ORIGIN	SECTION NO		ALPHA	-1.55866		1.32124	1 16345	0.83429			0 27774	0 09472		0.44258			0.94986	1.10760	1.25731	1.37538	MF ANL INE	PCI AI		.0250	0200	.0750	1000	1500	1750	2000	2300	. 2600	2400	3500	3800	.4100	.4400
	COORD SYST	SEC		10	-	8	۳.	₹ 6	ာဖ	7	œ	6	₽:	- ;	<u></u>	7	15	16	1.1	1	19		P1 P	0	2	3		9						2 2		15		17 0
	000																	95	5																			

THE PARTY OF THE P

	o.	ç
20	E1A 0.	4.5000
NB 20	MU O.	RHO
	₹	
ROTOR	o.	50
Œ	α	NOI
STAGE 2. ROTOR	3630	SFC110N JJ
STAGE	.7.0	
•	2	Ç
	COURD SYSTEM URIGIN 7 -7.03630 R O.	SECTION NO 9
	COORU	

MEANLINE COORDINATES WITH ORIGIN AT SECTION AXIS

ZETA•	25 408	23.930	22 423	20.821	19. 156	17.468	15.705	13.799	11.662	9.177	6.335	3.135	-0.596	-5.001	- 10.542	-17.463	-26.864	-35,399	-42.294	CAMBER	87.769
UPSILON	-0.01551	-0.05594	-0.09364	-0.12854	-0.16056	-0.18970	-0.21594	0.23914	-0.25407	-0 27531	-0.28735	-0.29469	-0.29672	-0.29251	-0.28066	-0.25893	-0.22332	-0.17875	-0.11926	Ö	æ
ALPHA	-0.17366	-0.09164	.0 03362	0 08440	0.17243	0.26045	0 34847	0.43649	0.52451	0.61253	0.70055	0.78857	0.87660	0.96462	1.05264	1.14066	1.22868	1.30203	1.37538	STAGGER	21.594
1/c	0.09135	0.09333	0.09476	0.09564	0.09593	0.09561	0.09467	0.09309	0.09085	0.08792	0.08423	0.07973	0.07430	0.06781	0.06011	0.05098	0.04063	0.03160	0.02248		
PCT AL	0 4700	0.5000	0 5300	0.5600	0.5400	0069 0	0.6500	0 6800	0.7100	0 7400	0 7700	0 8000	0 8300	0 8600	0.8300	0.9200	0 9500	0.9750	1 0000	CHORD	3, 1555
PT	48	13	20	21	22	23	24	25	96	2.7	28	99	30	31		ဗ္ဗ 96		32	36		

SURFACE COORDINATES WITH ORIGIN AT SECTION AXIS

,	UPPER		LOWER	
1/0	ALPHA .	UPSILON	ALPHA	UPSILON
00673	-1.55866	1.04206	-1.55866	1.04206
0.00673	-1.56213	1.03365	-1.55030	1.04540
0.00673	- 1.55950	1.02640	-1.54300	1.04266
0 01280	-1.49964	0.95359	-1.47097	0.98205
0.01885	-1.43293	0.87329	-1.39098	0.91546
0 02484	-1.36602	0.79397	-1.31119	0.84999
0.03374	-1.29879	0.71591	-1.23172	0.78597
0 03651	-1.23111	0.63951	-1.15270	0.72392
0 04212	-1.16284	0.56529	-1.07427	0.66438
0 04754	-1.09397	0 49367	-0.99643	0.60762
0 05274	-1.02446	0.42486	-0.91924	0.55377
0.05866	-0.94036	0.34620	-0.82730	0.49275
0 06421	-0.85557	0.27159	-0,73605	0.43520
0.06938	-0.77003	9.20079	-0.64554	0.38087

PHASE 11 ROTOR

20	ETA O.	4.5000	AXIS	UPSILON
NB NB	MU 0.	RHO	SURFACE COORDINATES WITH ORIGIN AT SECTION AXIS	LOWER ALPHA
2. R010R	. 0.	SECTION JJ	WITH ORIGIN	ER UPSILON
STAGE 2	7 -7.03630		COORDINATES	UPPER ALPHA
	COURD S/SIEM DRIGIN 7 -7.03630 R O.	SECTION NO 9	SURFACE	1/c
	COORD 5			P

	UPSILON	0.32960	0.28128	0.23582	0.19305	0.15274	0.11468	0.07867	0.04457	0.01250	-0.01760	-0.04580	-0.07215	-0 09651	-0.11869	-0.13837	-0.15526	-0, 16909	-0.17951	-0.18593	-0.18743	-0.18220	-0.16614	-0.13811	-0.11084	-0.10588	-0.11926	1.03377	-0.14629	
LOWER	ALPHA	-0.55579	-0.46681	-0.37861	-0.29110	-0.20419	-0.11782	-0.03191	0.05341	0.13804	0.22209	0.30573	0.38890	0.47152	0.55349	0.63465	0.71522	0.79545	0.87538	0.95529	1.03529	1.11652	1.19972	1,27315	1.32367	1,35185	1.37538	UPSILON	UPSILON	
JPPER	UPSILON	0.13372	0.07035	0.01071	-0.04516	-0.09728	-0.14571	-0.19052	-0.23184	-0.26958	-0.30353	-0.33360	-0.35973	-0.38177	-0.39946	-0.41225	-0.41944	-0.42028	-0.41394	-0.39909	-0.37390	-0.33566	-0.28050	-0.21938	-0.17369	-0.15355	-0.11926	AI PHA - 1.55050	ALPHA 1.34444	
3	ALPHA	-0.68374	-0.59668	-0.50883	-0.42030	-0.33117	-0.24150	-0.15136	-0.06065	0.03077	0.12276	0.21517	0.30804	0.40146	0.49554	0.59041	0.68589	0.78170	0.87782	0.97394	1.06999	1.16480	1.25764	1.33091	1.37506	1.38488	1.37538	CENTER AT	CENTER AT	
	1/c	0 07415	0.07850	0.08242	0 08588	0 08887	0 09135	0.09333	0.09476	0 09564	0 09593	0.09561	0 09467	0.09309	0.09085	0 08792	0.08423	0.07973	0 07430	0.06781	0.06011	0.05098	0 04063	0 03160	0.02248	0.02248	0.02248	0 0.01163	D 0.04109	
	1 d	1	16	1.7	2	19	50	21	22	23	24	25	56	27	96		30	31	32	33	34	32	36	37	38	39	40	LE RAD	TE RAD	

•ZPC•

PHASF II ROTOR

	Ġ.	8							
20	ETA O.	4.5000	CAMBER 87.769	6.86662	NO	43	56	56	
æ	ö	R 10	CAM 87.		UPSILON	0.01943	-0.01956	-0.01956	Ö
	æ			SURFACE ARC LENGTH	ALPHA	-0.02725	-0.01871	-0.01871	-0.00010
DIOR	ċ	نئ	α 4	CE ARC	AL	0.0	0.0	0.0	0.0
2. R010R	α	SECTION JJ	STAGGER 21.594	URFA			.:		
	03630	SECT	SI	V)			ON C. G		AL!
STAGE	.7.						SECTI		(RADI
	7	6		79			CE		15
	COORD SYSTEM ORIGIN Z -7.03630 R O.	ON NC	2D 555	AREA 0.697579		SECTION C.G.	SIRFAMSURFACE SECTION C.G.	BLADE AXIS	STACKING AXIS (RADIAL!
	SYSIFM	SECTION NO	CHORD 3, 1555	AREA		SECT	SIRF	B1 AD	STACE
	COURD								

	•	,
١		;
		;
١	2	:
•	-	•
•	•	۰
ı	ı,	
ļ	,	•
•	4	1
•	Ξ	٠
ĺ	7	

NB 20	O. FTA O.	RH0 4.0000		UPSILON	0.90540	0.82930	0.68224	0.54463	0.42006	0.29940	0. 18522	0.08719	0.00421	-0.06569	0.12395	-0.17061	-0.20446	-0.22346	-0.22400	-0.19849	-0.13479	-0.01822
ROTOR	O. MU	¥	VPUT DATA	THICKNESS	0.02360	0.04515	0.08746	0.12790	0.16566	0.20327	0.23898	0.26891	0.29260	0.30942	0.31900	0.32103	0.31553	0.30244	0.28098	0.24860	0.20287	0.15125
STAGE 2.	-7.03630 R	SECT ION	MEANLINE INPUT DATA	ZETA•	44.524	44.060	42.745	40.581	37.597	34.113	30.555	26.939	23.401	20.257	17.174	13.736	9.515	4.038	-3.831	-15.612	-31.445	-47.35C
Ý	M GRIGIN Z	SECTION NO 10		ALPHA	-1.52161	-1.44316	1.28718	-1.13275	-0.97981	-0 81316	-0.63318	-0.45508	n.27895	-0 10491	0.06674	0.23556	0.40065	0.56112	0.7:606	0.86434	1.00480	1.13688
	COORD SYSTEM ORIGIN	SFCT		<u>c</u>	-	7	~	~	ស	9	7	œ	σ	ţ	=	12	5	14	5	9	17	18

44.524 43.880 42.921 42.921 42.921 40.1265 33.986 33.986 33.327 30.689 22.327 24.016

0.90540 0.83834 0.77238 0.64408 0.58246 0.52308 0.41194 0.29289 0.23876 0.18797 0.09594

0.00823 0.01484 0.02142 0.02794 0.03436 0.04683 0.05283 0.05283 0.05862 0.05862 0.06527 0.07157 0.07157 0.09283

0 0250 0 0250 0 0500 0 1000 0 1750 0 1750 0 2260 0 2260 0 3200 0 3800 0 3400 0 4400

-0.96924 -0.88639 -0.72068 -0.63783 -0.55497 -0.47212 0.38926

-1.52161 -1.38352 -1.31447 -1.24543 -1.17638 -1.10734

AT SECTION AXIS

MEANLINE COORDINATES WITH ORIGIN

UPSILON

ALPHA

٦

4

0.13001

0.11714

-57.879

1.24022

19

· ZPC ·

A DESCRIPTION OF THE CASE OF T

House woman is a section of a local contract of the contract o

THE WHITE THE PROPERTY OF THE

PHASF 11 ROTOR

NB 20	MU O FTA O.	RHID 4.0000	AT SECTION AXIS	UPSILON ZETA+	3.01927 22.449	•	.08270 19	11075	13633 16	. 15932 14.), 1/952 12, 739), 19667 10, 606	21043	22032 5.	22570 1		.21842	. 20158	. 17 158	12544	.05696 -45.	.02683 -54.	0.13001 -57.046	CAMBER	101.570	AT SECTION AXIS	LOWER	ALPHA UPSILON	-1,52161 0.90540	ö	o O	.43781 0.	.36238 0.	-1.28/19 0./3685 -4.2123 0.680E0	0 62723	06405	. 090.28	91916	91010	74615	.66125 0.	
E 2. RUTOR	.03630 R O.	SECTION KK	COORDINATES WITH ORIGIN A	ALPHA L				02501	10787	0. 19072	0.27358 -0		52214	60500	0.68785 -0	07077	0.85356 -0			•		1.24022 (SIAGGER	15.682	COORDINATES WITH ORIGIN AT	UPPER	. •	52161 0.90540	Ö	Ċ	o.	o (0 0	o o	o c	i c	ċ	o c	o c	i c	;
STAGE	COORD SYSTEM ORIGIN Z -7.	SFC110N NO 10	MEANLINE COORD	PCI AL .T/C	0 4700 0.10412	٠.	5300 0.1	5600 0.1	.5900 0.1	6200 0.1	0 6800 0.11170	7100	7400 0.	7700 0.	0.09959		8600 0.	8900 0.	.9200	.9500 c.	9750 0.	1 0000 0.04084	CHORD	2 8686	SURFACE COORD		1/C ALPHA	0.00823 -1.52	00823 -1.	00823 -1.	01484 -1.	02142 -1.	0.02794 -1.34176	0.34.50	.04067	08080	05862 - 1.	.036627	0- /2007	0- 6770	
	COORD S	·		P1	81	19	20	21	22	23	24	90	2.7	28	56	30		10 6		34	32	36					P1	-	8	က	4	ម (9 1	- 0	0 0	n <u>C</u>	2 ‡	- 5	7 E	4	•

20	ETA O.	4.0000	AXIS		UPSILON	0.29035	0.25089	0.21420				0.09092	0.06475	0.04021	0.01729	-0.00391	-0.02325	-0.04051	-0.05547	-0.06780	-0.07710	-0.08283	-0.08434	-0.08038	-0.06821	-0.04339	0.00069	0.06735	0.12049	0.14010	0.13001	PC 896 0	0.07639) } }
£	O	RHO	SECTION A	LOWER	ALPHA	-0.57706	-0.49360	-0.41094	-0.32898	-0.24753	-0.16652	-0.08594	-0.00575	٣.	0.15295		0.30891	0.38567	0.46159	0.53641	0.61009	0.68206	0.75226		0.88950	0.96448	1.04353	1.11453	1.15844	1.19762	1.24022	NOTION	UPSILON	· · · · · · · · · · · · · · · · · · ·
ROTOR	R O MU	ON KK	WITH ORIGIN AT	~	UPSILON	0.08558	0.02986	-0.02232	-0.07089	11585	15730		-0.23016		-0.28995	-0.31472	-0.33579	-0.35283	-0.36539	-0.37285	-0 37430	-0.36828	-0.35250	-0.32279	-0.27496	-0.20748		-0.01369	0.04574	0.08330	0.13001	014A - 1 51230		
STAGF 2.	Z -7.03630	SECTION	COORDINATES W	UPPER	ALPHA	-0.69859	-0.61634	-0.53329	-0.44954		٠;				-			•	0.41698	0.50788	0.59990		•		0.98333	1.07406	1.16072	1.22781	1.26135	1.26878	1.24022	CENTED AT ALDIA	\ \	:
	COORD SYSTEM ORIGIN	SECTION NO 10	SURFACE		1/0	0.08301	0 08813	0.09283	•			٠.	-	0.11063	-			0 11077	0.10915	0 10681		0 09959					-		0.04084	0.04084	0 04084	RAD 0 01302		
	COORD S				b t	ខ្ម	16	17	48	19	20	<u>.</u>	22	23	24	25	56		28		30	31	32	33	34	32	36	37	38	39	40	<u>u</u>		

responding to the contract of the property of the contract of

20	ETA O.	RH0 4.0000	3ER 570	6.58000
NB 20	o.	S+10	CAMBER 101.570	
	MU O.			LENGTH
STAGE 2. ROTOR	-7.03630 R O.	SECTION KK	STAGGER 15.682	SURFACE ARC LENGTH
S	COORU SYSTEM ORIGIN Z -7.03630 R O.	SECTION NO 10	CHORD 2.8686	AREA .0. 707968

	6.58000	UPSILON 0.01549 -0.03053 -0.03053	Ö
V	SURFACE ARC LENGTH	ALPHA -0.01084 -0.00448 -0.00448	-0.00010
300.61	SURF	SECTION C.G.	(RADIAL)
00000	EA .0.707968	SECTION C.G. Sireamsurface Section C.G. Blade axis	STACKING AXIS (RADIAL)

THE THE PARTY OF T

20	ETA O.	3.5000		ron	78390	71535	58563	46726	36234	26187 16690	08551	01673	.04133	.08957	12719	15248	16277	15060	10227	00048	17153	37529	AXIS	ZETA+	42.238			40.133	39.187	38.057	35.277		32.077	•	29.015	27.523	ė.	•	22.995	
89	MU O.	RHO	44	NESS UPSILON	02978 0.78	o.	o.	o ·	o (210/8 0.26 24685 0.16	Ö	Ö	o-	ö	ġ	o,	Ö	0		.0.	7 0.	o	IN AT SECTION AXIS	UPSILON	0.78390		•		•	0.50591				•					0.06891	0.03694
2. POTOR	.03630 R O.	SECTION LL	MEANLINE INPUT DAT	ZETA+ THICKNESS	238 0.	440 0	.527 0.0	910 0.	735 0.	190	921 0.	875 0.	. 128 0.	. 178 0.	.546 0.	.050 0.	.684 0.	.897 0.	.764 0.	.801 0.	.112 0.	.281 0.	TES WITH DRIGIN	ALPHA	-1.49717	Ť.	-	1.30201	- 1.23695	08171.1								•		-0.35221
STAGE	L- Z	NO 11	MEAN	ALPHA Z	-1.49717 42	. 42129		12163	97.408	-0 81336 30	46870	. 29979	. 13345	•	18955	.34490	. 49485	. 63852	. 77417	89994	. 01597	1.10502 -66	MFANLINE COORDINATES	L 1/C	0.01131	Ö	0.02550	0.03249	o 0		ó	0.0654	o	Ö	ö	o.	ŏ	Ö	Ö	0 0.11200
	COORD SYSTEM ORIGIN	SECT TON		Id	-					9 1-					5			ភិ		17	6	5	MF	PT PCI AL	0		0	0		0021 0 9		C	C	C	0	C	Ö		Ö	17 0.4400

20	ETA O.	3.5000	AXIS	ZETA•	20.200	18.891		•	14.795	11.264		•	3.691	-0.375	-6.029	- 13, 558	-24.956	-36.074	•	•		-88.180	SER	118	NX I S		UPSILON	0.78390	0.78929	0.78611	0.74314			0.59811		0.51187	0.47255	0.43371	0.33430	0.32036
NB	MU O.	RHO	SECTION	UPSILON	0.00718	-0.02053	-0.04627	-0.07006	-0.09177				-0. 16038		15861	14537	. 11906		.00382	66760	0.22257		CAMBER	110.418	N AT SECTION AXIS	LOWER	ALPHA	-1.49717	-1.48573	-1.47514	-1.41592	-1.34502	-1.27443	-1.20419	-1.13444	05500.1-	-0.996/6 -0.996/6	0.94819	-0.76752	-0.68770
2. R010R	630 R O.	SECTION LL	TES WITH ORIGIN AT	ALPHA	-0.27414	-0.19608	-0 11801	-0.03994	0.03812		0.27232					٠.	0.74071	•	0.83684	•	1.03996		STAGGER	8.838	TES WITH ORIGIN AT	UPPER	UPSILON					0.64227			0.45806				0 17601	
STAGE	N Z -7.03630	=	NE COORDINATES	1/c	-	₩.	•	0.12449			0.12817			0.12378	٠. ١	0.11602	0.10960	. 1							CE COORDINATES	-	ALPHA	-1.49717	-1.50146	-1.49731	-1.44831	-1.38910	-1.32958	7602.1	-1 14838	1 0860		-0 94944		-0.79737
	SYSIFM ORIGIN	SECTION NO	ME ANL INE	PCT AL				0096 0			-					0000							-	2 6335	SURFACE		1/c	0.01131	0.01131	•			0.03749			•				
	COORD			PT	18	19	500		2 6	24	25	26	27	8 0	5.0	2			3.0		36))					-	-	8	, cu	4 1	ກເ	0 1	- α	ေတ	÷ Ç	-	12	13	7

REPORT OF THE PROPERTY OF THE

	ETA 0.	3.5000			UPSILON	0.28684	0.25557	0.22646	0.19938	0.17411	0.15037	0.12804	0.10700	0.08730	0.06903	0.05234	0.03741	0.02442	0.01354	0.00521	0.00021	-0.00073	0.00314	0.01273	0.03350	0.07633	0.15132	0.25893	0.34643	0.38158	0.37929	0 77975	0.777.3	0.30017
NB 20	MU O. E	RHO 3	SECTION AXIS	LOWER	ALPHA	-0.60854	-0.53003	-0.45217	-0.37490	-0.29803	-0.22146	-0.14524	-0.06936	0.00596	0.08059	0.15438	0.22722	0.29912	0.37012	0.43913	0.50545	0.56791	0.62684	0.68188	0.74074	0.81114	0.88990	0.95863	1.00019	1.04570	1.10502	NO 11 SQII		UPSILUN
ROTOR	η O.	ION LL	WITH ORIGIN AT	α	UPSILON	0.07217	0.02465	-0.01993	-0.06156	-0.10022	-0.13601	-0.16910	-0.19955	-0.22742	-0.25257	-0.27477	-0.29367		-0.31981	0.32598	-0.32574	-0.31648	-0.29387		-0.18075	-0.08396	0.04466	0.18611	0 27110	0.32518	0.37929	AF DIAM - 1 48493		ALPHA 1.0/225
STAGE 2.	z -7.03630	1 SECTION	COORDINATES WITH DRIGIN	UPPFR	ALPHA	-0.72040	-0.64278	-0.56451	-0.48564	-0.40638	-0.32683	-0.24691	-0.16666	-0.08584	-0.00435	0.07199			0.33065	0.41777	0.50758		0.69846	•	0.89682	0.98255	1.05992	1.12130	1.15280	1,15415	1.10502,	CENTED AT A		
	COORD SYSTEM ORIGIN	SECTION NO 1	SURFACE		1/c	0.09192	0 09758	n 10283	0 10754	0 11200	_	0 11926	0 122:3	0. 12449	Ξ,	Τ.	Τ.	_	0.12747	0.12602	0 12378	•				0 08912	0 07621	0 06768	0.06203	0 06203	0 06203	840 0 01656		0
	COORD				Ιd	15	16	17	2	19	50	21	22	23	24	25	26		8 10		30	31	32	33	34	32	36	37	38	39	40			

spessioners and accompany recognition of the popular products and the contract of the contract

NB 20	ETA 0.	RH0 3.5000	CAMBER 110.418	6.40285	UPSILON 0.04711	-0.00588	-0.00588 0
Z	o.	œ	-		50	ó	၀ ၀
_	Ð.			SURFACE ARC LENGTH	ALPHA O. OOSO6	-0 000 10	0.00010
ROTOR	ċ	ב	~ ~	Ę		Ť	ŸŸ
2. RO	α	SECTION LL	STAGGER 8.838	URFAC		, ii	
6	3630	SFCI	ST	U,		O. O. NO	(۲)
STAGE	-7.0					SECT 10	(RADI
Ο,	7	=		93		w C	15
	COORD SYSTEM URIGIN Z -7.03630 R O.	SFCIION NO 11	35 335	AREA 0.730463	e o Norto	SIREAMSURFACE SECTION C.G.	BLADE AXIS STACKING AXIS (RADIAL)
	Σ	1110	CHORD 2.6335		-	RE	ADE
	SYSI	SFC	CK	AREA	35	Š	8 IS
	COORD						

THE PARTY OF THE PROPERTY OF T

	ċ	3.0000																					•	2	7	-	6	ا ي	-	2 9	₹ .	2	ប្ច	4	က္	ğ.	0 -	<u>-</u> 4	2
20	ETA	3.0		UPSILON	68887	63195	52518	42796	25447	17287	10342	04379	00750	04988	08123	1056	10194	0000	13382	5129	62857	AXIS	ZETA	38.327	37.234		•		•	31 640						23.806	24.440	20. 106	
ŭ Ž	ö	R140		UPS	0.6		•) C						ŏ.	Ö. 6		9 9	•	, ,		•	SECTION AXIS	LON	68887	64142	59547	55085	50767	46599	42586 38730	35029	30788	26763	22957	373	16015	0.00	03929	r }
	Ŋ.		⋖	ESS	02	08	72	9 6	83.	57	39	8	37	42	63		27	. 6	84	49	57	AT	UPSILON		0.64			•	•	0.47						0.16	•	0.0992	•
ROTOR	Ö	ĭ	INPUT DAT	THICKNESS	0.04010	٠.		0.14326	. ";		0.28339				0.35363		0.35151		0 26384			WITH ORIGIN	₹	98	42106	35975	29845	23714	584	11453	99193	91836	84479	77123	99769	62410	55053	4/69/	}
2.	30 R	SECTION		ξĀ÷	327	416	453	153 660	86.1	909	565	080	209	537	515	500	644	200	571	840	328		AL PHA	-1.48236	-1.42	-1.359			•	- 1. 11453								-0-47	
STAGE	-7.03630	Š	MEANL INE	ZETA	38.		•	. c				19.0	9	•	•		12.				•	COORDINATES		59	84	60	13	4	80	ج 9	67	03	80	81	21	27) (C	119	ò
SI	2	12		Ą	. 48236	857	26226	11/81	8 1983	255	48756	32520	16560	00961	14198	5 4 6	42839 56098	2000	79508	89506	982		1/0	0.01659	0.02384				•	0.05876			0.08608		٠.		- •	0.11627	
	URIGI	ON NO		ALPHA	-1.48	-1.40857	1.26				•				. `		0.42					MF ANL INE	₹		0250	0200	0750	000	1250	1500	2000	2300	2600	2900	3200	3500	200	4100	>
	SISIEM URIGIN	SFCTION		٦.	-	۰	۰ ۳	ר נ	ာဖ		œ	6	č.	-	<u>~</u> ;	<u>.</u>	<u> </u>	. 4	2 5	8	6		PCI	C	0	0	_			 - c			0		C G			C C	
	COORD																	1	07				٦	-	8	က	₹	S.	ω ι	- α	0	5	=	12	13	7 1	2 9	0 1	:

œ
ROIOR
ĕ
_
L.
PHASE
Č.

	o.	8		
50	ETA 0.	3.0000	AXIS	,
89 89	MU O.	RH40	SECT 10N	
	2		14	
UTOR	o.	X	ORIGIN	
œ	~	NOI	WITH	:
STAGE 2. RUTOR	.7.03630	SECTION MM	MEANLINE COORDINATES WITH ORIGIN AT SECTION AXIS	
SI	7	7	8	;
	COORD SYSTEM ORIGIN Z -7.03630 R O.	SECTION NO 12	MEANL INE	
	COORE			

N AXIS	ZETA•	19.042	17.987	16.872	15.645	14.180	12.460	10.466	8. 195	5.664	2 632	-1.927	-8.439	-17.643	-30.086	-44,550	-56.353	-66.094	-73.245	-75.345
SIN AT SECTIO	UPSILON	0.04539	0.02074	-0.00236	-0.02384	-0.04346	-0.06091	-0.07586	-0.08798	-0.09695	-0.10241	-0.10303	-0.09665	.0.07984	-0.04770	96800.0	0.09983	0.23482	0.40441	0.62857
MEANLINE COURDINAIES WITH URIGIN AT SECTION AXIS	ALPHA	.0.32983	-0.25627	-0.18270	-0 10914	-0.03557	0.03799	0.11156	0. 18512	0.25869	0.33226	0.40582	0.47939	0.55295	0.62652	0.70008	0.77365	0.84721	0.90852	0.96982
INE COUKDIN	1/c	0.12570	0.12980	0.13348	0.13674	0.13954	0.14185	0.14362	0.14475	0.14520	0.14490	0.14381	0.14180	0.13842	0.13294	0.12426	0.11179	0.09697	0.08817	0.08544
MEAN	PCT AL	0.4700	0 5000	0 5300	0 5600	0068-0	0029 0	0 6500	0.6800	0.7100	0.7400	0.7700	0.8000	0.8300	0.8600	0.8900	0.9200	0 9500	0 9750	1.0000
	PT	18	61	20	21	22	23	2.4	25	26	27	28	29	30		35		34	35	36

0.68887 0.697427 0.66469 0.66469 0.55319 0.55319 0.48651 0.45550 0.36083

-1.48236 -1.46735 -1.45253 -1.40337 -1.20563 -1.14042 -1.07561 -1.0151 -0.94719 -0.79519

0.68887 0.67169 0.65852 0.56487 0.56487 0.46215 0.41291 0.31910 0.27463 0.17444

1,48236 1,5700 1,48838 1,38237 1,38237 1,26866 1,21126 1,09525 1,09525 1,09525 1,09525 1,09525 1,09525 1,09525

0.01659 0.01659 0.02381 0.02381 0.04514 0.05203 0.0531 0.05876 0.0531 0.07676 0.076876 0.05876

- 424744

UPSILON

LOWER ALPHA

UPSILON

ALPHA

UPPER

SECTION AXIS

AT

SURFACE COORDINATES WITH ORIGIN

CAMBER 113.672

STAGGER

CHORD 2 4529

STATES CHARLES CHARLES CHARLES AND SECOND CONTRACTOR CHARLES C

0	FIA O.	3.0000	IS		UPSILON		0.27828		٠	• •					0.12247					0.07513	•	0.07539	0.08195	Ξ.				0.43559	0.57157	0.62188	0.62857	0 0 1 1 0 0	0.67480	0.52530
NB 20	MU 0.	RHO	F SECTION AXIS	LOWER	ALPHA	-0.64573	-0.57198	-0.49857	-0.42532	-0.35231	-0.27954	-0.29711	-0.13519	-0.06391	0.00635			0.21043			C.39989	0.45386	0.50153			0.65951	0.73849	0.80497	0.84504	0.89505	0.96982			2 UPSILON
ROTOR	О я	NO MM	WITH ORIGIN AT	~	UPSILON	0.08369	0.04203	0.00297	-0.03364	0.06804	.0.10034	٠.	٠.		-0.20938	-0.23079	-0.24907	-0.26370	-0.27416	-0.27994	-0.27931	-0.26868	0.24162	-0.18878	.0.09964	0.02386	0.18662	0.37324	0.49965	0.56932	0.62857		•	ALPHA 0.94132
STAGE 2.	Z -7.03630	SECTION	COORDINATES	UPPER	ALPHA	-0.74959	-0.67621	-0.60249	-0.52861	-0.45450	0.38013	-0.30543	-0.23022	-0.15436	-0.07750	0.00046	0.07956	0.15982	0.24111		0.41175	0.50491	0.60441	0.70825	0.80699	0.88779	0.95594	1.01207	1.04460	1.03864	0.96982	. !	¥ :	CENTER AT ALF
	SYSTEM ORIGIN	SECTION NO 12	SURFACE		1/c	0.09921	0 10527	0.11096	0 11627	0 12119	0 12570	-	_	0.13674	0 13954	0.14185	0 14362	0 14475	0.14520	0. *4490	0.14381	0.14180	0 13842	0.13294	O. 12426	0 11179	0 09697	0.08817	0 08544	0.08544	0 08544			RAD 0.10656
	COORD S				ЬI	15	16	17	18	61	20	21	22	23	24	25	56	27		3 0.	တ္က 9	3	32	33	34	32	36	37	38	33	40		ינ נו	

COURD

	Ó	8							
20	£1A 0.	3.0000	BER 672	6.33389	NO	37	60	90	
S S	o.	RHO	CAMBER 113.672		UPSILON	0.10637	0.02560	0.02560	o O
	3			SURFACE ARC LENGTH	ALPHA	0.01879	0.00278	0.00278	0.00010
œ		_		ARC	AL	0.0	o.	Q.	o o
ROTOR	o.	Ĭ	æ æ	ICE					•
	¥	NOI	STAGGER 1.408	URF.					
	30	SFCT ION MM	ST	Ŋ			<u>ဂ</u>		
	036	S					Z		(AL)
STAGE	. 7						SIRFAMSURFACE SECTION C.G.		STACKING AXIS (RADIAL)
S	~	12		23			Š		S
	Z			853		9	Z V VC	S	VΧΙ
	ORIC	SFCIION NO	29	0.768532		SECTION C.G.	MSC	PLADE AXIS	ING
	Z.	110	CHORD 2.4529			10	RFA	ADF	AC.K
	SYSTEM URIGIN Z -7.03630 R O.	SFC	υ ભ	ARFA		S	S	ಪ	2

20

2 2

THE PROPERTY OF THE PROPERTY OF

0																																							
2.5000		NO	80	03	26	01	40	24	49	55	26	39	20	27	75	+ +	79	17	ត :	05	786	AXIS	ZE TA.	970	•	32.003	31.076	30.415	29.786	29.173	28.571	27.968	27.198	26.151	24.802	23,335	21.799	ö	200
RHO		UPSILON	0.61508	0.56903		0.40201	0.32740	0.2522	0.18149	0.12255	0.07126	0.02639	-0.01020	-0.03527	-0.04675	-0.04111		0.09017		. 55	0.877	SECTION A	NO	9	8 8	4	746								111	06:	818	5355	
	۲	VESS	05417	447	11408	15176	18692	22261	25805	28926	31599	33850	35666	36974	37632	37603	36706	34110	29433	361	579	AT	UPSILON	900	0.61308	•		0.47222	٠,	0.40630			0.30747	•	•	•	Τ.	Ξ.	
<u>2</u> 2	INPUT DAT	THICKNES	0.05	0.07					•		•	•	0.35		•		•			. 25	. 25	WITH ORIGIN	ALPHA	0.00	40043	.4.003 25.3.2	29570	23812	. 18055	2297	6239	0782	.93872	6963	80054	73145	66236	n	
SECTION	MEANLINE	ZETA+	ະເ		0			25.528			17.269		11.873	•	2.261	5.955	21.279	-41.640	80	9.3	4.648		AL		•			1.2	-1.1	1.1.	-1.0	0.1.	6.0	8.0	•				•
e	ME														10				•	-6	3 -7	COORDINATES	1/c	70000	02337	03042	04437	05123	.05798	.06460	.07 106	.07735	.08469	09179	.09865	10527	. 11162	-	
N 0		AL.PHA	•							-0.50675	-0.35073	•			0.23195	•	0.48344	.5938	65	.7741	0 8346	MF ANL INE	7	(250 0				8						
SECT ION		ы			ဗ	4	េះ	ၒ	7	æ			- (7.7	5	7	ច	9 :	17	18	19	Ī	PCT	:					0 12										*****
		-																					PT	•	٠,	۳ ۳	4	ស	9	7	6 0	o	₽:	= :	2		7 1	ţ	(

WASHINGTON TO THE STATE OF THE

PHASE 11 ROLOR

NB 20	MU 0. ETA 0.	RHD 2.5000
ROTOR	0.	Z
STAGE 2	-7.03630 R	SECTION NN
SIA	COORD SYSTEM URIGIN Z -7.03630 R 0.	SECTION NO 13

MEANLINE COORDINATES WITH ORIGIN AT SECTION AXIS

ZETA.	17.706	16.919	16.012	14.951	13.587	11.857	9.780	7.368	4,660	1.692	-2.759	-9.632	- 19.892	-33, 185	-49.647	-62.649	-71.442	-78.090	-80.199	CAMBER 113.137
UPSILON	0.08238	0.06084	0.04040	0.02124	0.00363	-0.01200	-0.02524	-0.03570	-0.04300	-0.04687	-0.04647	-0.03921	-0.02134	0.01289	0.07464	0.18101	0.34697	0.56468	0.87786	111
ALPHA	-0.38599	-0.31690	-0.24781	-0.17872	-0.10962	-0.04053	0.02856	0.09765	0.16674	0.23583	0.30493	0.37402	0.44311	0.51220	0.58129	0.65038	0.71948	0.77705	0.83463	STAGGER - 6, 509
1/c	0.13386	0.13860	0.14303	0.14713	0.15088	0.15426	0.15721	0.15961	0.16135	0.16238	0.16264	0.16205	0.16028	0.15642	0.14903	0.13645	0.11944	0. 10919	0.11035	
PCT AL	0.4700	0.5000	0.5300	0.5600	0 5900	0 6200	0 6500	0.6800	0 7 100	0 7400	0.7700	0.8000	0 8300	0.8600	0068 0	0 4200		0 9750	_	CH0RD 2.3180
14	.	61	50		22	0.0	24	20.00	26	2.6	80	53	9.0	3.6	. 6		12		36	

SURFACE COORDINATES WITH ORIGIN AT SECTION AXIS

,	UPSILON	0.61508	0.62827	0.62588	0.60764	0.57853	0.55051	0.52343	0.49717	0,47167	0.44688	0.42277	0.39477	0.36822	0.34356
LOWER	ALPHA	-1.46843	-1.44940	-1.42943	-1.39185	-1.33041	-1.26915	-1.20806	-1.14716	-1.08647	-1.02601	-0.96577	-0.89386	-0.82275	-0,75258
	UPSILON	0.61508	0.59183	0.57500	0.54824	0.50480	0.46242	0.42102	0.38052	0,34093	0.30223	0.26441	0.22018	0.17723	0.13598
UPPER	ALPHA	-1.46843	-1.47261	-1.46231	-1.42985	-1.37614	- 1.32225	-1.26818	-1.21393	-1.15947	-1.10478	-1.04986	-0.98359	-0.91652	-0.84850
	1/0	0 02337	0.02337	0.02337	0 03042	0 03743	0.04437	0.05123	0.05798	0.06460	0.07106	0.07735	0 08469	0.09179	0.09865
	p1	-		. 6	4	. ru	.	,	α	σ	, C	? =	: 2	4 5	2

ó 2.5000 ETA o. ₹ Ö SECTION α -7.03630 7 SECTION NO

0.32093 0.30029 0.28137 0.24552 0.24552 0.21453 0.17361 0.17361 0.16297 0.14338 0.14182 0.14182 0.14182 0.14182 0.14182 0.14183 0.14183 0.14183 0.14183 0.14183 0.14183 0.14183 0.14183 0.14183 0.14183 0.14183 0.14183 0.14183 0.14183 0.14183 0.14183 0.14183 0.59848 UPS110N AXIS UPSILON UPSILON LOWER At PHA SECT 10N -0.68312 -0.61432 -0.54573 -0.47685 -0.270181 -0.270182 -0.06854 -0.06854 -0.06854 -0.05951 0.18193 0.24139 0.34259 0.34259 0.34260 0.34260 0.34260 0.34260 AT -1,44284 SURFACE COORDINATES WITH ORIGIN -0.11894 -0.14350 -0.18698 -0.20480 -0.22939 -0.23499 -0.23499 -0.23499 -0.23499 -0.23499 -0.23499 -0.23499 -0.23499 -0.23499 -0.23499 -0.23499 -0.23499 -0.23499 -0.23499 -0.30291 -0.30291 -0.53856 -0.53856 -0.53856 0.09687 0.06006 0.02573 0.00633 -0.03659 -0.06541 UPSILON AL PHA ALPHA UPPER -0.77978 -0.71040 -0.64080 -0.50244 -0.43317 -0.29353 -0.22271 -0.0727 -0.07239 0.07393 0.15155 0.23028 0.31400 0.40544 0.50632 0.50632 0.79085 0.90087 0.93569 AT AT CENTER COORD SYSTEM DRIGIN 03050 0.11767 0.12339 0.12879 0.13386 0.13860 0.14303 0.14303 0.15088 0.15088 0.15721 0.15721 0 10527 0.11162 16135 16238 16205 16028 15642 14903 13645 11944 10919 16264 0 0 o c c c c RAD

ROTOR 0 STAGE

11 ROTOR PHASE

THE PARTY OF THE P

113

PHASE 11 R010R

20	ETA O.	2.5000	CAMBER 113, 137	6.34504	1.0N 549 708 708
<u>c</u>	o	RHO	113 113	ø	UPSILON 0.18549 0.05708 0.05708 0.
8	Û			SURFACE ARC LENGTH	ALPHA 0.02779 0.00565 0.00565
STAGE 2. ROTOR	-7.03630 R O.	SECTION NN	STAGGER -6.509	SURFACE	·
ST	COORD SYSTEM ORIGIN Z -7.03630 R O.	SECTION NO 13	CHORD 2.3180	AREA 0.820570	SECTION C.G. STRFAMSURFACE SECTION C.G. BLADE AXIS STACKING AXIS (RADIAL)

TOTALL STREET, PROCESSES, PROCESS

		œ	~	~	ın	10	7	6	m	6	'n	œ	រះ	0
	ZE 1 A 2	53.58	49 3:	46.3	39.5	30.4	19.6	5.43	- 15.38	-42.29	-57.05	-68.18	-75.35	-80 20
50	ZETA1. ZETA2.	57.39	55.55	53.99	52.55	51.18	50.00	48.75	47.04	45.48	44.52	42.24	38,33	32.94
8 2	1M/C	0.02592	0.02639	0.03079	0.03954	05267	0.06350	0.07320	0.08278	0 09593	0.11198	0 12819	0.14520	0.16264
~	CAMBER	3.81	6 22		13.29	20 73	30.33	43.32	62.42	87.77	101.57	110.42	113 67	113.14
ROTOR	STAGER CAMBER	58.04	55.24	51.85	46.90	41.88	37.01			21 59	15.68		1.41	-6.51
3£ 2.	CHORD	3.7089	3.8794	3.9493	3.8618	3.7626	3.6818	3.6001	3.4429	3, 1555	2.8686	2.6335	2.4529	2.3180
STAGE	RHO	8.50000	8.00000	7,50000	7.00000	6.50000	00000 9	5.50000	5.00000	4.50000	4.00000	3.50000	3.00000	2.50000
	NO	-	~	"	~	r.	ဖ	7	6 0	σ	<u>=</u>	=	2	Ę.
	SFCT	۷۷	38	i C	00	يا دا	. 11	95	Ī	P)	¥	1	Z	Z

THE COORDINATES FOR THIS BLADE WERE PUT ON TAPE

IN THE SAME ORDER AS PRINTED ABOVE

SECTION XII

REFERENCES

- A.J. Wennerstrom, and W.A. Buzzell, <u>Redesign of a Rotor for a 1500 ft/sec</u> <u>Transonic</u>, <u>High-Through-Flow</u>, <u>Single-Stage Axial-Flow Compressor with</u> <u>Low Hub/Tip Ratio</u>, Air Force Aero Propulsion Laboratory, Wright-Patterson AFB, Ohio 45433, AFAPL-TR-2078, September 1979.
- 2. George R. Frost, Richard M. Hearsey, Arthur J. Wennerstrom, A Computer Program for the Specification of Axial Compressor Airfoils, Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio 45433, ARL 72-0171,
- 3. Richard M. Hearsey, A Revised Computer Program for Axial Compressor Design Volume I, Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio 45433, ARL TF 75-0001, January 1975.
- 4. Arthur J. Wennerstrom, Personal Communication to L.H. Smith of General Electric Company, September 12, 1980.

and the second and compared and a compared the second compared the second and second s