Перманент

 Π ерманент квадратной матрицы $A=(a_{ij})$ размера $n \times n$ определяется формулой

$$\operatorname{Per}(A) := \sum_{\sigma \in S_n} \prod_{i=1}^n a_{i\sigma(i)}, \quad$$
где S_n — группа всех перестановок $\{1\dots,n\}.$

1. Найдите перманент матрицы $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

Подматрицей данной матрицы называется матрица, полученная из данной вычеркиванием некоторого количества строк и столбцов. Перманент прямоугольной матрицы $A^{m \times n}$ определяется как сумма перманентов всех квадратных подматриц максимального размера.

- Перманент не меняется при перестановке строк, а также при транспонировании.
- Формула разложения по строке. Если $m \le n$, то для любого $i \in \{1, ..., m\}$

$$Per(A) = \sum_{j=1}^{n} a_{ij} Per(A_{ij}),$$

где A_{ij} — матрица, получаемая из исходной вычеркиванием i-ой строки и j-ого столбца.

- **2.** Найдите перманент матрицы размера $m \times n$, состоящей из одних единиц.
- **3.** Докажите, что при $m \le n$ перманент прямоугольной матрицы размера $m \times n$ из нулей и единиц равен количеству с.р.п. для системы из m подмножеств множества $\{1, \dots n\}$, определяемых строками.
- **4.** Докажите формулу Райзера: $\operatorname{Per}(A) = (-1)^n \sum_{S \subseteq \{1,\dots,n\}} (-1)^{|S|} \prod_{i=1}^n \sum_{j \in S} a_{ij}.$

Размерность Вапника-Червоненкиса

Пусть $\mathcal{R} \subset \operatorname{Subsets}(X)$ — семейство подмножеств произвольного множества X. Множество $A \subset X$ называется *дробящимся* системой \mathcal{R} , если пересечения A с множествами из \mathcal{R} образуют все подмножества A. *Размерностью Ва́пника*—Червоне́нкиса $\operatorname{VC}(X,\mathcal{R})$ (или VC-размерностью) пары (X,\mathcal{R}) называется размер максимального (по мощности) подмножества $A \subset X$, дробящегося \mathcal{R} . Если максимального подмножества нет, то полагают $\operatorname{VC}(X,\mathcal{R}) = \infty$.

- **5.** Найдите VC-размерность семейства всех (двумерных замкнутых) прямоугольников на плоскости со сторонами, параллельными осям координат.
- **6.** Найдите VC-размерность следующих семейств множеств:
 - (a) $\{1,2,3\}, \{4,5,6\}, \{1,2,4\}, \{1,2,5\}, \{2,3,6\}, \{3,4,5\}, \{3,4,6\}, \{2,4,5,6\};$
 - (b) $\{\{1,\ldots,k\} \mid k \in \mathbb{N}\};$
 - (c) $\{\{k, 2k, 3k, \ldots\} \mid k \in \mathbb{N}\};$
 - (d) Можно ли добавить ещё одно множество к системе (a) так, чтобы VC-размерность увеличилась на 1?

Домашнее задание

- 1. Найдите перманент матрицы
 - (k) размера 4×4 , у которой k = 0, 1, 2, 3, 4 диагональных элементов нули, а все остальные (в т. ч. не диагональные) элементы единицы;
 - (n) размера $n \times n$, у которой на диагонали нули, а вне диагонали единицы.
- **2.** Найдите VC-размерность следующих семейств:
 - (a) $\{1,2,3\}, \{3,4,5\}, \{1,2,4\}, \{1,2,5\}, \{2,4,5\}, \{2,3,5\}, \{2,6,7\}, \{3,4,6,7\};$
 - (b) $\{1,2,3\}, \{4,5,6\}, \{7,8,9\}, \{1,4,7\}, \{2,5,8\}, \{3,6,9\}, \{1,6,9\};$
 - (c) $\{\{k, k+1, k+2, \ldots\} \mid k \in \mathbb{N}\};$
 - (d) $\{\{k, k^2, k^3, \ldots\} \mid k \in \mathbb{N}\};$
 - (e) Можно ли добавить еще одно множество к системам из пунктов (a) и (b) так, чтобы VC-размерность увеличилась на 1?