Probabilistic Topic Models: Mixture of Unigram Language Models

Probabilistic Topic Models: Mixture of Unigram LMs

Factoring out Background Words

Generate d Using Two Word Distributions

What's the probability of observing a word w?

The Idea of a Mixture Model

As a Generative Model...

Mixture of Two Unigram Language Models

- Data: Document d
- Mixture **Model**: parameters $\Lambda = (\{p(w | \theta_d)\}, \{p(w | \theta_B)\}, p(\theta_B), p(\theta_d))$
 - Two unigram LMs: θ_d (the topic of d); θ_B (background topic)
 - Mixing weight (topic choice): $p(\theta_d)+p(\theta_B)=1$
- **Likelihood** function:

$$\begin{split} p(d \mid \Lambda) &= \prod_{i=1}^{|d|} p(x_i \mid \Lambda) = \prod_{i=1}^{|d|} [p(\theta_d) p(x_i \mid \theta_d) + p(\theta_B) p(x_i \mid \theta_B)] \\ &= \prod_{i=1}^{M} [p(\theta_d) p(w_i \mid \theta_d) + p(\theta_B) p(w_i \mid \theta_B)]^{c(w,d)} \end{split}$$

• ML Estimate: $\Lambda^* = \arg \max_{\Lambda} p(d \mid \Lambda)$

Subject to
$$\sum_{i=1}^{M} p(w_i | \theta_d) = \sum_{i=1}^{M} p(w_i | \theta_B) = 1$$
 $p(\theta_d) + p(\theta_B) = 1$

Probabilistic Topic Models: Mixture Model Estimation

Probabilistic Topic Models: Mixture Model Estimation

Back to Factoring out Background Words

Estimation of One Topic: $P(w \mid \theta_d)$

Adjust θ_d to maximize $p(d | \Lambda)$ text? θ_{d} (all other parameters are known) mining? $p(\theta_d) + (\theta_B) = 1$ association? Would the ML estimate demote clustering? background words in θ_d ? $P(\theta_d)=0.5$ the? **Topic** the 0.03 Choice θ_{B} a 0.02 ... text mining... $P(\theta_B)=0.5$ is 0.015 is... clustering... we 0.01 we.... Text.. the food 0.003 text 0.000006

Behavior of a Mixture Model

Likelihood:

```
P(\text{"text"}) = p(\theta_d)p(\text{"text"} | \theta_d) + p(\theta_B)p(\text{"text"} | \theta_B)
= 0.5*p(\text{"text"} | \theta_d) + 0.5*0.1
P(\text{"the"}) = 0.5*p(\text{"the"} | \theta_d) + 0.5*0.9
p(d | \Lambda) = p(\text{"text"} | \Lambda) p(\text{"the"} | \Lambda)
= [0.5*p(\text{"text"} | \theta_d) + 0.5*0.1] x
[0.5*p(\text{"the"} | \theta_d) + 0.5*0.9]
```


How can we set $p(\text{"text"}|\theta_d)$ & $p(\text{"text"}|\theta_d)$ to maximize it?

Note that
$$p(\text{"text"}|\theta_d) + p(\text{"the"}|\theta_d) = 1$$

"Collaboration" and "Competition" of θ_d and θ_B

$$p(d|\Lambda)=p("text"|\Lambda) p("the"|\Lambda)$$

$$= [0.5*p("text"|\theta_d) + 0.5*0.1] x$$

$$[0.5*p("the"|\theta_d) + 0.5*0.9]$$

Note that
$$p(\text{"text"}|\theta_d) + p(\text{"the"}|\theta_d) = 1$$

```
\frac{\text{text ?}}{\text{the ?}} \theta_{d}
```

If x + y = constant, then xy reaches maximum when x = y.

$$0.5*p("text" | \theta_d) + 0.5*0.1 = 0.5*p("the" | \theta_d) + 0.5*0.9$$

⇒ p("text"
$$|\theta_d$$
)=0.9 >> p("the" $|\theta_d$) =0.1!

$$P(\theta_{\rm B})=0.5$$

the 0.9 text 0.1 θ_B

Behavior 1: if $p(w1|\theta_B) > p(w2|\theta_B)$, then $p(w1|\theta_d) < p(w2|\theta_d)$

 $P(\theta_d)=0.5$

Response to Data Frequency

$$\mathbf{d} = \begin{bmatrix} p(d|\Lambda) = [0.5*p("text"|\theta_d) + 0.5*0.1] \\ \times [0.5*p("the"|\theta_d) + 0.5*0.9] \end{bmatrix}$$

$$\times p("text"|\theta_d) = 0.9 \quad \Rightarrow p("the"|\theta_d) = 0.1!$$

$$p(d'|\Lambda) = [0.5*p("text"|\theta_d) + 0.5*0.1] \\ \times [0.5*p("the"|\theta_d) + 0.5*0.9] \\ \times [0.5*p("the"|\theta_d) + 0.5*0.9] \\ \times [0.5*p("the"|\theta_d) + 0.5*0.9]$$

$$\text{What if we increase } p(\theta_B)? \quad \times [0.5*p("the"|\theta_d) + 0.5*0.9]$$

What's the optimal solution now? $p("the" | \theta_d) > 0.1$? or $p("the" | \theta_d) < 0.1$?

Behavior 2: high frequency words get higher $p(w|\theta_d)$

Summary

- General behavior of a mixture model:
 - Every component model attempts to assign high probabilities to highly frequent words in the data (to "collaboratively maximize likelihood")
 - Different component models tend to "bet" high probabilities on different words (to avoid "competition" or "waste of probability")
 - The probability of choosing each component "regulates" the collaboration/competition between the component models
- Fixing one component to a background word distribution (i.e., background language model):
 - Helps "get rid of background words" in other component
 - Is an example of imposing a prior on the model parameters (prior = one model must be exactly the same as the background LM)

Probabilistic Topic Models: Expectation-Maximization Algorithm

Probabilistic Topic Models: Expectation-Maximization (EM) Algorithm

Estimation of One Topic: $P(w \mid \theta_d)$

How to set θ_d to maximize p(d | Λ)? (all other parameters are known)

d

... text mining... is... clustering... we.... Text.. the

If we know which word is from which distribution...

Given all the parameters, infer the distribution a word is from...

The Expectation-Maximization (EM) Algorithm

Hidden Variable: $z \in \{0, 1\}$

the paper presents⁻ text mining algorithm___ for clustering –

Initialize $p(w|\theta_d)$ with random values.

Then iteratively improve it using E-step & M-step. Stop when likelihood doesn't change.

$$p^{(n)}(z = 0 \mid w) = \frac{p(\theta_d)p^{(n)}(w \mid \theta_d)}{p(\theta_d)p^{(n)}(w \mid \theta_d) + p(\theta_B)p(w \mid \theta_B)} \quad \text{E-step}$$

$$p^{(n+1)}(w \mid \theta_d) = \frac{c(w,d)p^{(n)}(z = 0 \mid w)}{\sum_{w' \in V} c(w',d)p^{(n)}(z = 0 \mid w')} \quad \text{M-step}$$

M-step

EM Computation in Action

E-step
$$p^{(n)}(z=0 | w) = \frac{p(\theta_d)p^{(n)}(w | \theta_d)}{p(\theta_d)p^{(n)}(w | \theta_d) + p(\theta_B)p(w | \theta_B)}$$

$$\text{M-step } p^{(n+1)}(w \mid \theta_d) = \frac{c(w,d)p^{(n)}(z=0 \mid w)}{\sum_{w' \in V} c(w',d)p^{(n)}(z=0 \mid w')} \\ \begin{array}{l} \text{p(θ_d)=p(θ_B)= 0.5} \\ \text{and p(w \mid θ_B) is known} \end{array}$$

Assume

Word	#	$p(w \theta_B)$	Iteration 1		Iteration 2		Iteration 3	
			$P(w \theta)$	p(z=0 w)	$P(w \theta)$	P(z=0 w)	$P(w \theta)$	P(z=0 w)
The	4	0.5	0.25	0.33	0.20	0.29	0.18	0.26
Paper	2	0.3	0.25	0.45	0.14	0.32	0.10	0.25
Text	4	0.1	0.25	0.71	0.44	0.81	0.50	0.93
Mining	2	0.1	0.25	0.71	0.22	0.69	0.22	0.69
Log-Likelihood			-16.96		-16.13		-16.02	

Likelihood increasing

"By products": Are they also useful?

EM As Hill-Climbing -> Converge to Local Maximum

Summary

- Expectation-Maximization (EM) algorithm
 - General algorithm for computing ML estimate of mixture models
 - Hill-climbing, so can only converge to a local maximum (depending on initial points)
- E-step: "augment" data by predicting values of useful hidden variables
- M-step: exploit the "augmented data" to improve estimate of parameters ("improve" is guaranteed in terms of likelihood)
- "Data augmentation" is probabilistic → Split counts of events probabilistically

Probabilistic Latent Semantic Analysis (PLSA)

Probabilistic Latent Semantic Analysis (PLSA)

Document as a Sample of Mixed Topics

Topic θ₁

government 0.3 response 0.2

•••

Topic θ₂

. . .

city 0.2 new 0.1 orleans 0.05

Topic θ_k

donate 0.1 relief 0.05 help 0.02

Background θ_{B}

the 0.04 a 0.03 Blog article about "Hurricane Katrina"

[Criticism of government response to the hurricane primarily consisted of criticism of its response to the approach of the storm and its aftermath, specifically in the delayed response] to the [flooding of New Orleans. ... 80% of the 1.3 million residents of the greater New Orleans metropolitan area evacuated] ... [Over seventy countries pledged monetary donations or other assistance]. ...

Many applications are possible if we can "decode" the topics in text...

Mining Multiple Topics from Text

Generating Text with Multiple Topics: p(w)=?

Probabilistic Latent Semantic Analysis (PLSA)

Percentage of background words Background (known)

LM (known)

$$p_{d}(w) = \lambda_{B} p(w | \theta_{B}) + (1 - \lambda_{B}) \sum_{j=1}^{k} \pi_{d,j} p(w | \theta_{j})$$

$$\log p(d) = \sum_{w} c(w,d) \log[\lambda_{B} p(w | \theta_{B}) + (1 - \lambda_{B}) \sum_{j=1}^{k} \pi_{d,j} p(w | \theta_{j})]$$

$$\log p(C \mid \Lambda) = \sum_{d \in C} \sum_{w \in V} c(w, d) \log[\lambda_B p(w \mid \theta_B) + (1 - \lambda_B) \sum_{j=1}^k \pi_{d,j} p(w \mid \theta_j)]$$

Unknown Parameters: $\Lambda = (\{\pi_{d,i}\}, \{\theta_i\}), j=1, ..., k$

How many unknown parameters are there in total?

ML Parameter Estimation

$$p_d(w) = \lambda_B p(w \mid \theta_B) + (1 - \lambda_B) \sum_{i=1}^k \pi_{d,i} p(w \mid \theta_i)$$

$$\log p(d) = \sum_{w \in V} c(w, d) \log[\lambda_B p(w | \theta_B) + (1 - \lambda_B) \sum_{j=1}^{k} \pi_{d,j} p(w | \theta_j)]$$

$$\log p(C \mid \Lambda) = \sum_{d \in C} \sum_{w \in V} c(w, d) \log [\lambda_B p(w \mid \theta_B) + (1 - \lambda_B) \sum_{j=1}^k \pi_{d,j} p(w \mid \theta_j)]$$

Constrained Optimization: $\Lambda^* = \arg \max_{\Lambda} p(C \mid \Lambda)$

$$\forall j \in [1, k], \sum_{i=1}^{M} p(w_i \mid \theta_j) = 1$$

$$\forall d \in C, \sum\nolimits_{j=1}^k \pi_{d,j} = 1$$

EM Algorithm for PLSA: E-Step

Hidden Variable (=topic indicator): $z_{d,w} \in \{B, 1, 2, ..., k\}$

Probability that **w** in doc d is generated from topic
$$\theta_j$$
 Use of Bayes Rule
$$p(z_{d,w} = j) = \frac{\pi_{d,j}^{(n)} p^{(n)}(w \mid \theta_j)}{\sum_{j'=1}^k \pi_{d,j'}^{(n)} p^{(n)}(w \mid \theta_{j'})}$$

$$p(z_{d,w} = B) = \frac{\lambda_B p(w \mid \theta_B)}{\lambda_B p(w \mid \theta_B) + (1 - \lambda_B) \sum_{j=1}^k \pi_{d,j}^{(n)} p^{(n)}(w \mid \theta_j)}$$

Probability that ${\bf w}$ in ${\bf doc}$ ${\bf d}$ is generated from ${\bf background}$ ${\bf \theta}_{\bf B}$

EM Algorithm for PLSA: M-Step

Hidden Variable (=topic indicator): z_{d.w} ∈{B, 1, 2, ..., k}

Re-estimated probability of doc d covering topic
$$\theta_j$$
 allocated" word counts to topic θ_j
$$\pi_{d,j}^{(n+1)} = \frac{\displaystyle\sum_{w \in V} c(w,d)(1-p(z_{d,w}=B))p(z_{d,w}=j)}{\displaystyle\sum_{j'} \displaystyle\sum_{w \in V} c(w,d)(1-p(z_{d,w}=B))p(z_{d,w}=j')}$$

$$p^{(n+1)}(w \mid \theta_j) = \frac{\displaystyle\sum_{d \in C} c(w,d)(1-p(z_{d,w}=B))p(z_{d,w}=j)}{\displaystyle\sum_{w' \in V} \displaystyle\sum_{d \in C} c(w',d)(1-p(z_{d,w}=B))p(z_{d,w}=j)}$$

Re-estimated **probability** of word w for topic θ_{j}

Computation of the EM Algorithm

- Initialize all unknown parameters randomly
- Repeat until likelihood converges

$$\begin{split} - \, \text{E-step} \quad & p(z_{d,w} = j) \propto \pi_{d,j}^{(n)} p^{(n)}(w \, | \, \theta_j) \\ & p(z_{d,w} = B) \propto \lambda_B p(w \, | \, \theta_B) \blacktriangleleft \end{split}$$

M-step

$$\sum\nolimits_{j=1}^{k} p(z_{d,w}=j) = 1$$

What's the normalizer for this one?

$$\begin{split} & \pi_{d,j}^{(n+1)} \propto \sum\nolimits_{w \in V} c(w,d) (1 - p(z_{d,w} = B)) p(z_{d,w} = j) & \forall d \in C, \sum\nolimits_{j=1}^k \pi_{d,j} = 1 \\ & p^{(n+1)}(w \mid \theta_j) \propto \sum\nolimits_{d \in C} c(w,d) (1 - p(z_{d,w} = B)) p(z_{d,w} = j) & \forall j \in [1,k], \sum_{w \in V} p(w \mid \theta_j) = 1 \end{split}$$

In general, accumulate counts, and then normalize

Summary

- PLSA = mixture model with k unigram LMs (k topics)
- Adding a pre-determined background LM helps discover discriminative topics
- ML estimate "discovers" topical knowledge from text data
 - k word distributions (k topics)
 - proportion of each topic in each document
- The output can enable many applications!
 - Clustering of terms and docs (treat each topic as a cluster)
 - Further associate topics with different contexts (e.g., time periods, locations, authors, sources, etc.)

Latent Dirichlet Allocation (LDA)

Latent Dirichlet Allocation (LDA)

Extensions of PLSA

- PLSA with prior knowledge
 User-controlled PLSA
- PLSA as a generative model

 Latent Dirichlet Allocation

PLSA with Prior Knowledge

- Users may have expectations about which topics to analyze:
 - We expect to see "retrieval models" as a topic in IR
 - We want to see aspects such as "battery" and "memory" for opinions about a laptop
- Users may have knowledge about what topics are (or are NOT) covered in a document
 - Tags = topics → A doc can only be generated using topics corresponding to the tags assigned to the document
- We can incorporate such knowledge as priors of PLSA model

Maximum a Posteriori (MAP) Estimate

$$\Lambda^* = \underset{\Lambda}{\operatorname{arg \, max}} \ p(\Lambda) p(Data \mid \Lambda)$$

- We may use $p(\Lambda)$ to encode all kinds of preferences and constraints, e.g.,
 - $-p(\Lambda)>0$ if and only if one topic is precisely "background": $p(w|\theta_B)$
 - p(Λ)>0 if and only if for a particular doc d, $\pi_{d,3}$ =0 and $\pi_{d,1}$ =1/2
 - $p(\Lambda)$ favors a Λ with topics that assign high probabilities to some particular words
- The MAP estimate (with conjugate prior) can be computed using a similar EM algorithm to the ML estimate with smoothing to reflect prior preferences

EM Algorithm with Conjugate Prior on $p(w | \theta_i)$

$$p(z_{d,w} = j) = \frac{\pi_{d,j}^{(n)} p^{(n)}(w|\theta_{j})}{\sum_{j'=1}^{k} \pi_{d,j'}^{(n)} p^{(n)}(w|\theta_{j'})}$$

$$p(z_{d,w} = B) = \frac{\lambda_{B} p(w|\theta_{B})}{\lambda_{B} p(w|\theta_{B}) + (1 - \lambda_{B}) \sum_{j=1}^{k} \pi_{d,j}^{(n)} p^{(n)}(w|\theta_{j})}$$

$$\pi_{d,j}^{(n+1)} = \frac{\sum_{w \in V} c(w,d)(1 - p(z_{d,w} = B)) p(z_{d,w} = j)}{\sum_{j'} \sum_{w \in V} c(w,d)(1 - p(z_{d,w} = B)) p(z_{d,w} = j')}$$

$$p^{(n+1)}(w|\theta_{j}) = \frac{\sum_{d \in C} c(w,d)(1 - p(z_{d,w} = B)) p(z_{d,w} = j')}{\sum_{w' \in V} \sum_{d \in C} c(w',d)(1 - p(z_{d,w} = B)) p(z_{d,w} = j)} + \mu p(w|\theta'_{j})$$
What if μ =0? What if μ =+ ∞ ?

Sum of all pseudo counts

We may also set any parameter to a constant (including 0) as needed

Deficiency of PLSA

- Not a generative model
 - Can't compute probability of a new document
 - Heuristic workaround is possible, though
- Many parameters
 high complexity of models
 - Many local maxima
 - Prone to overfitting
- Not necessarily a problem for text mining (only interested in fitting the "training" documents)

Latent Dirichlet Allocation (LDA)

- Make PLSA a generative model by imposing a Dirichlet prior on the model parameters →
 - LDA = Bayesian version of PLSA
 - Parameters are regularized
- Can achieve the same goal as PLSA for text mining purposes
 - Topic coverage and topic word distributions can be inferred using Bayesian inference

PLSA → LDA

Likelihood Functions for PLSA vs. LDA

PLSA $p_d(w | \{\theta_j\}, \{\pi_{d,j}\}) = \sum_{i=1}^k \pi_{d,j} p(w | \theta_j)$ **Core assumption** in all topic models $\log p(d | \{\theta_j\}, \{\pi_{d,j}\}) = \sum_{w \in V} c(w, d) \log[\sum_{j=1}^k \pi_{d,j} p(w | \theta_j)]$ $\log p(C | \{\theta_j\}, \{\pi_{d,j}\}) = \sum \log p(d | \{\theta_j\}, \{\pi_{d,j}\})$ LDA **PLSA** component $p_d(w | \{\theta_j\}, \{\pi_{d,j}\}) = \sum_{i=1}^k \pi_{d,j} p(w | \theta_j)$ $\log p(d \mid \vec{\alpha}, \{\theta_j\}) = \int \sum_{w \in V} c(w, d) \log \left[\sum_{j=1}^{k} \pi_{d,j} p(w \mid \theta_j) \right] p(\vec{\pi}_d \mid \vec{\alpha}) d\vec{\pi}_d$ $\log p(C \mid \vec{\alpha}, \vec{\beta}) = \int \sum \log p(d \mid \vec{\alpha}, \{\theta_j\}) \prod_{i=1}^{k} p(\theta_j \mid \vec{\beta}) d\theta_1 ... d\theta_k$ Added by LDA

Parameter Estimation and Inferences in LDA

Parameters can be estimated using ML estimator

$$(\hat{\vec{\alpha}}, \hat{\vec{\beta}}) = \underset{\vec{\alpha}, \vec{\beta}}{\operatorname{arg max}} \log p(C \mid \vec{\alpha}, \vec{\beta})$$

How many parameters in LDA vs. PLSA?

- However, $\{\theta_j\}$ and $\{\pi_{d,j}\}$ must now be computed using posterior inference
 - Computationally intractable
 - Must resort to approximate inference
 - Many different inference methods are available

Summary of Probabilistic Topic Models

- Probabilistic topic models provide a general principled way of mining and analyzing topics in text with many applications
- Basic task setup:
 - Input: Text data
 - Output: k topics + proportions of these topics covered in each document
- PLSA is the basic topic model, often adequate for most applications
- LDA improves over PLSA by imposing priors
 - Theoretically more appealing
 - Practically, LDA and PLSA perform similarly for many tasks

Suggested Readings

- Blei, D. 2012. "Probabilistic Topic Models." *Communications of the ACM* 55 (4): 77–84. doi: 10.1145/2133806.2133826.
- Qiaozhu Mei, Xuehua Shen, and ChengXiang Zhai. "Automatic Labeling of Multinomial Topic Models." *Proceedings of ACM KDD* 2007, pp. 490-499, DOI=10.1145/1281192.1281246.
- Yue Lu, Qiaozhu Mei, and Chengxiang Zhai. 2011. Investigating task performance of probabilistic topic models: an empirical study of PLSA and LDA. *Information Retrieval*, 14, 2 (April 2011), 178-203. DOI=10.1007/s10791-010-9141-9.