

Arora V Digital Signal Processing (DSP)

User Guide

UG305-1.0E, 04/20/2023

Copyright © 2023 Guangdong Gowin Semiconductor Corporation. All Rights Reserved.

GOWIN is the trademark of Guangdong Gowin Semiconductor Corporation and is registered in China, the U.S. Patent and Trademark Office, and other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders. No part of this document may be reproduced or transmitted in any form or by any denotes, electronic, mechanical, photocopying, recording or otherwise, without the prior written consent of GOWINSEMI.

Disclaimer

GOWINSEMI assumes no liability and provides no warranty (either expressed or implied) and is not responsible for any damage incurred to your hardware, software, data, or property resulting from usage of the materials or intellectual property except as outlined in the GOWINSEMI Terms and Conditions of Sale. GOWINSEMI may make changes to this document at any time without prior notice. Anyone relying on this documentation should contact GOWINSEMI for the current documentation and errata.

Revision History

Date	Version	Description
04/20/2023	1.0E	Initial version published.

Contents

Contents	i
List of Figures	i
List of Tables	ii
1 About This Guide	
1.1 Purpose	1
1.2 Related Documents	
1.3 Terminology and Abbreviations	
1.4 Support and Feedback	2
2 Overview	3
3 DSP Architecture	4
4 DSP Primitive	8
4.1 MULT	
4.1.1 MULT12X12	
4.1.2 MULT27X36	15
4.2 MULTALU	25
4.2.1 MULTALU27X18	25
4.3 MULTADDALU	50
4.3.1 MULTADDALU12X12	50
5 IP Generation	69
5.1 MULT	69
5.2 MULTALU	72
5.3 MULTADDALU	76

List of Figures

Figure 3-1 DSP Architecture	5
Figure 4-1 MULT12X12 Logic Structure Diagram	9
Figure 4-2 MULT12X12 Port Diagram	9
Figure 4-3 MULT27X36 Logic Structure Diagram	15
Figure 4-4 MULT27X36 Port Diagram	16
Figure 4-5 MULT27X18 Logic Structure Diagram	26
Figure 4-6 MULT27X18 Port Diagram	26
Figure 4-7 MULTADDALU12X12 Logic Structure Diagram	51
Figure 4-8 MULTADDALU12X12 Port Diagram	51
Figure 5-1 IP Customization of MULT	70
Figure 5-2 IP Customization of MULTALU	73
Figure 5-3 IP Customization of MULTADDALU	76

UG305-1.0E ii

List of Tables

Table 1-1 Terminology and Abbreviations	1
Table 3-1 Description of the DSP Ports	5
Table 3-2 DSP Internal Registers Description	6
Table 4-1 MULT12X12 Port Description	10
Table 4-2 MULT12X12 Parameter Description	10
Table 4-3 MULT27X36 Port Description	16
Table 4-4 MULT12X12 Parameter Description	17
Table 4-5 MULT27X18 Port Description	27
Table 4-6 MULTALU27X18 Parameter Description	28
Table 4-7 MULTADDALU12X12 Port Description	52
Table 4-8 MULTADDALU12X12 Parameter Description	52

UG305-1.0E iii

1 About This Guide 1.1 Purpose

1 About This Guide

1.1 Purpose

This manual provides a description of the GOWINSEMI Arora V DSP architecture, signal definition, and user calling methods, etc., to help you make the most use of the Arora V DSP and enhance design efficiency.

1.2 Related Documents

The latest user guides are available on the GOWINSEMI Website. You can find the related documents at www.gowinsemi.com:

- DS981, GW5AT series of FPGA Products Data Sheet
- DS1103, GW5A series of FPGA Products Data Sheet
- DS1104, GW5AST series of FPGA Products Data Sheet
- SUG100, Gowin Software User Guide

1.3 Terminology and Abbreviations

The terminology and abbreviations used in this manual are as shown in Table 1-1.

Table 1-1 Terminology and Abbreviations

Terminology and Abbreviations	Meaning	
CFU	Configurable Function Unit	
DSP	Digital Signal Processing	
FIR	Finite Impulse Response	
FFT	Fast Fourier Transformation	
MULT	MULT	
PADD	PADD	
48-bit ALU	48-bit Arithmetic Logic Unit	

UG305-1.0E 1(77)

1.4 Support and Feedback

Gowin Semiconductor provides customers with comprehensive technical support. If you have any questions, comments, or suggestions, please feel free to contact us directly by the following ways.

Website: www.gowinsemi.com
E-mail: support@gowinsemi.com

UG305-1.0E 2(77)

2 Overview

GOWINSEMI Arora V FPGA products have abundant DSP resources to meet customers' needs for high performance digital signal processing, such as FIR and FFT design. DSP blocks deliver the advantages of stable timing performance, high-usage, and low-power. This manual is designed to help you quickly understand the structure and use of Arora V DSP.

The functions and features of the DSP blocks are as follows:

- Multiplier with three widths: 12X12, 27X18, 27X36
- 26-bit pre-adder
- 48-bit ALU
- Supports Shift function
- Multiple multipliers can achieve multiply of larger data widths by cascading
- Supports the accumulation and multiply-add functions of the 27X18 multiplier
- Supports the accumulation after summation function of two 12X12 multipliers
- Supports the pipeline and bypass functions of registers
- All operands for arithmetic operation are signed numbers

UG305-1.0E 3(77)

3 DSP Architecture

The DSP of GOWINSEMI Arora V FPGA products are distributed in FPGA arrays in the form of rows. And the DSP includes MULT, PADD, and 48-bit ALU function modules, which can implement multiplication, pre-addition, accumulation, shift functions, etc. Each DSP occupies 3 CFUs, and each DSP has 2 independent clock signals, 2 independent clock enable signals, and 2 independent reset signals. Register hierarchy has up to 4 levels, i.e. input reg, pipe reg, out reg, and fb preg.

UG305-1.0E 4(77)

Figure 3-1 DSP Architecture

Table 3-1 presents DSP ports description. The internal staged registers are as shown in Table 3-2. In addition, input signals CLK, CE, and RESET are used to control the registers.

Table 3-1 Description of the DSP Ports

Port Name	I/O	Description		
A[26:0]	1	27-bit data input A		
B[17:0]	1	18-bit data input B		
C[47:0]	1	48-bit data input C		
D[25:0]	1	26-bit data input D		
SIA[26:0]	1	26-bit data input D Shift data input A, used for cascade connection. The input signal "SIA" is directly connected to the output signal "SOA" of the previously adjacent DSP.		

UG305-1.0E 5(77)

Port Name	I/O	Description	
CASI[47:0]	1	CASO from previous DSP, 48-bit ALU cascading input for cascade connection.	
CASISEL	I	48-bit ALU input CASI/O control signal	
ASEL	I	Input A selection of pre-adder	
PSEL	1	Input A selection of multiplier	
PADDSUB	1	Operation control signal of pre-adder for pre-adder logic addition/subtraction selection	
CLK[1:0]	ı	Clock input	
CE[1:0]	I	Clock enable signal, active-high.	
RESET[1:0]	ı	Reset signal, supports synchronous/asynchronous mode, active-high	
ADDSUB[1:0]	ı	Operation control signal of 48-bit ALU for addition/subtraction selection of M0/0, M1/C/0	
CSEL	I	48-bit ALU input C/0 control signal	
ACCSEL	ı	48-bit ALU input PRE_LOAD/DOUT control signal	
MOSEL	ı	48-bit ALU input M0/0 control signal	
SOA[26:0]	0	Shift data output A	
DOUT[47:0]	0	DSP output data	
CASO[47:0]	0	48-bit ALU output to next DSP block for cascade connection	

Table 3-2 DSP Internal Registers Description

Register	Description and Associated Attributes		
AREG	A input register		
BREG	B input register		
C_IREG	C input register		
DREG	D input register		
ADDSUB_IREG	ADDSUB input register		
PADDSUB_IREG	PADDSUB input register		
PSEL_IREG	PSEL input register		
M0SEL_IREG	M0SEL input register		
CASISEL_IREG	CASISEL input register		
CSEL_IREG	CSEL input register		

UG305-1.0E 6(77)

Register	Description and Associated Attributes	
ACCSEL_IREG	ACCSEL input register	
C_PREG	C pipeline input register	
ADDSUB_PREG	ADDSUB pipeline input register	
M0SEL_PREG	M0SEL pipeline input register	
CASISEL_PREG	CASISEL pipeline input register	
CSEL_PREG	CSEL pipeline input register	
ACCSEL_PREG	ACCSEL pipeline input register	
OREG	DOUT output register	
PREG0	Left multiplier pipeline output register	
PREG1	Right multiplier pipeline output register	
FB_PREG	Feedback output pipeline register	
SOA_PREG	SOA pipeline shift output register	

UG305-1.0E 7(77)

4 DSP Primitive

4.1 MULT

MULT is the multiplier unit of DSP. The multiplier input signal is defined as A and B; The multiplier output signal is defined as DOUT, which can implement multiplication:

$$DOUT = A * B$$

 $DOUT = (A \pm D) * B$

Each DSP macro unit has two multipliers to implement multiplication. To meet the needs of different multiplication bit widths, MULT mode can be configured to 12x12 and 27x36 multipliers depending on the data width, corresponding to MULT12x12 and MULT27x36 primitives, respectively. The 27x36 multiplier requires 2 DSP blocks to configure.

4.1.1 MULT12X12

Primitive Introduction

MULT12X12 (12x12 Multiplier) implements 12-bit multiplication.

UG305-1.0E 8(77)

Logic Structure Diagram

Figure 4-1 MULT12X12 Logic Structure Diagram

Port Diagram

Figure 4-2 MULT12X12 Port Diagram

UG305-1.0E 9(77)

Port Description

Table 4-1 MULT12X12 Port Description

Port	I/O	Description	
A[11:0]	Input	12-bit data input signal A	
B[11:0]	Input	12-bit data input signal B	
CLK[1:0]	Input	Clock input signal	
CE[1:0]	Input	Clock enable signal, active-high	
RESET[1:0]	Input	Reset input signal, active-high	
DOUT[23:0]	Output	Data output signal	

Parameter Description

Table 4-2 MULT12X12 Parameter Description

Parameter	Range	Default Value	Description
AREG_CLK	BYPASS, CLK0, CLK1	BYPASS	 A input register clock control signal BYPASS: bypass mode; CLK0: Register mode, register clock control signal is from CLK[0]; CLK1: Register mode, register clock control signal is from CLK[1].
AREG_CE	CE0, CE1	CE0	A input register clock enable control signal CE0: Register clock enable control signal is from CE[0]; CE1: Register clock enable control signal is from CE[1].
AREG_RESET	RESET0, RESET1	RESET0	 A input register reset control signal RESET0: Register reset control signal is from RESET[0]; RESET1: Register reset control signal is from RESET[1].
BREG_CLK	BYPASS, CLK0, CLK1	BYPASS	 B input register clock control signal BYPASS: bypass mode; CLK0: Register mode, register clock control signal is from CLK[0]; CLK1: Register mode, register clock control signal is from CLK[1].

UG305-1.0E 10(77)

Parameter	Range	Default Value	Description
BREG_CE	CE0, CE1	CE0	 B input register clock Enable control signal CE0: Register clock enable control signal is from CE[0]; CE1: Register clock enable control signal is from CE[1].
BREG_RESET	RESETO, RESET1	RESET0	 B input register reset control signal RESET0: Register reset control signal is from RESET[0]; RESET1: Register reset control signal is from RESET[1].
PREG_CLK	BYPASS, CLK0, CLK1	BYPASS	 Pipeline register clock control signal BYPASS: bypass mode; CLK0: Register mode, register clock control signal is from CLK[0]; CLK1: Register mode, register clock control signal is from CLK[1].
PREG_CE	CE0, CE1	CE0	 Pipeline register clock enable control signal CE0: Register clock enable control signal is from CE[0]; CE1: Register clock enable control signal is from CE[1].
PREG_RESET	RESET0, RESET1	RESET0	 Pipeline register reset control signal RESET0: Register reset control signal is from RESET[0]; RESET1: Register reset control signal is from RESET[1].
OREG_CLK	BYPASS, CLK0, CLK1	BYPASS	 Output register clock control signal BYPASS: bypass mode; CLK0: Register mode, register clock control signal is from CLK[0]; CLK1: Register mode, register clock control signal is from CLK[1].
OREG_CE	CE0, CE1	CE0	Output register clock enable control signal CE0: Register clock enable control signal is from CE[0]; CE1: Register clock enable control signal is from CE[1].

UG305-1.0E 11(77)

Parameter	Range	Default Value	Description
OREG_RESET	RESET0, RESET1	RESET0	 Output register reset control signal RESET0: Register reset control signal is from RESET[0]; RESET1: Register reset control signal is from RESET[1].
MULT_RESET _MODE	SYNC, ASYNC	SYNC	Reset configuration modeSYNC: synchronized resetASYNC: asynchronous reset

Primitive Instantiation

The primitives can be instantiated directly, or generated by the IP Core Generator. For the details, you can refer to <u>Chapter 5 IP Generation</u>.

Verilog Instantiation:

```
MULT12X12 mult12x12_inst (
    .DOUT(dout),
   .A(a),
   .B(b),
   .CLK(clk),
   .CE(ce),
    .RESET(reset)
);
defparam mult12x12 inst.AREG CLK = "BYPASS";
defparam mult12x12_inst.AREG_CE = "CE0";
defparam mult12x12_inst.AREG_RESET = "RESET0";
defparam mult12x12 inst.BREG CLK = "BYPASS";
defparam mult12x12 inst.BREG CE = "CE0";
defparam mult12x12_inst.BREG_RESET = "RESET0";
defparam mult12x12_inst.PREG_CLK = "BYPASS";
defparam mult12x12_inst.PREG_CE = "CE0";
defparam mult12x12 inst.PREG RESET = "RESET0";
```

UG305-1.0E 12(77)

```
defparam mult12x12 inst.OREG CLK = "BYPASS";
  defparam mult12x12 inst.OREG CE = "CE0";
  defparam mult12x12 inst.OREG RESET = "RESET0";
  defparam mult12x12_inst.MULT_RESET_MODE="SYNC";
VhdI Instantiation:
COMPONENT MULT12X12
   GENERIC (
         AREG CLK: string:="BYPASS";
         AREG CE: string:="CE0";
         AREG RESET: string := "RESET0";
         BREG CLK: string:="BYPASS";
         BREG CE: string:="CE0";
         BREG RESET: string := "RESET0";
         PREG CLK: string:="BYPASS";
         PREG CE: string:="CE0";
         PREG RESET: string := "RESET0";
         OREG CLK: string:= "BYPASS";
         OREG CE: string:="CE0";
         OREG RESET: string := "RESET0";
         MULT RESET MODE:string:="SYNC"
   );
   PORT(
       DOUT: out std logic vector(23 downto 0);
       A: in std_logic_vector(11 downto 0);
       B: in std logic vector(11 downto 0);
       CLK: in std logic vector(1 downto 0);
       CE: in std logic vector(1 downto 0);
       RESET: in std_logic_vector(1 downto 0)
   );
end COMPONENT;
mult12x12 inst: MULT12X12
```

UG305-1.0E 13(77)

```
GENERIC MAP(
   AREG_CLK => "BYPASS",
   AREG_CE => "CE0",
   AREG_RESET => "RESET0",
   BREG_CLK => "BYPASS",
   BREG CE => "CE0",
   BREG RESET => "RESETO",
   PREG CLK => "BYPASS",
   PREG_CE => "CE0",
   PREG_RESET => "RESET0",
   OREG_CLK => "BYPASS",
   OREG_CE => "CE0",
   OREG_RESET => "RESET0",
   MULT_RESET_MODE=>"SYNC"
)
PORT MAP (
   DOUT => dout,
   A=>a,
   B=>b,
   CLK => CLK i,
   CE \Rightarrow CE_i,
   RESET => RESET_i
);
```

UG305-1.0E 14(77)

4.1.2 MULT27X36

Primitive Introduction

MULT27X36 (27x36 Multiplier) implements 27bit x 36bit multiplication.

Logic Structure Diagram

Figure 4-3 MULT27X36 Logic Structure Diagram

UG305-1.0E 15(77)

Port Diagram

Figure 4-4 MULT27X36 Port Diagram

Port Description

Table 4-3 MULT27X36 Port Description

Port	I/O	Description
A[26:0]	Input	27-bit data input signal A
B[35:0]	Input	36-bit data input signal B
D[25:0]	Input	26-bit data input signal D
PSEL	Input	A input source selection of multiplier
PADDSUB	Input	Operation control signal of pre-adder for pre-adder logic addition/subtraction selection
CLK[1:0]	Input	Clock input signal
CE[1:0]	Input	Clock enable signal, active-high
RESET[1:0]	Input	Reset input signal, active-high
DOUT[62:0]	Output	Data output signal

UG305-1.0E 16(77)

Parameter Description

Table 4-4 MULT12X12 Parameter Description

Parameter	Range	Default Value	Description
AREG_CLK	BYPASS, CLK0, CLK1	BYPASS	 Input A register clock control signal BYPASS: bypass mode; CLK0: Register mode, register control signal clk is from CLK[0]; CLK1: Register mode, register control signal clk is from CLK[1].
AREG_CE	CE0, CE1	CE0	 Input A register clock enable control signal CE0: Register clock enable control signal is from CE[0]; CE1: Register clock enable control signal is from CE[1].
AREG_RESET	RESET0, RESET1	RESET0	 Input A register reset control signal RESET0: Register reset control signal is from RESET[0]; RESET1: Register reset control signal is from RESET[1].
BREG_CLK	BYPASS, CLK0, CLK1	BYPASS	 Input B register clock control signal BYPASS: bypass mode; CLK0: Register mode, register control signal clk is from CLK[0]; CLK1: Register mode, register control signal clk is from CLK[1].
BREG_CE	CE0, CE1	CE0	 Input B register clock Enable control signal CE0: Register clock enable control signal is from CE[0]; CE1: Register clock enable control signal is from CE[1].
BREG_RESET	RESET0, RESET1	RESET0	 Input B register reset control signal RESET0: Register reset control signal is from RESET[0]; RESET1: Register reset control signal is from RESET[1].
DREG_CLK	BYPASS, CLK0, CLK1	BYPASS	Input D register clock control signal BYPASS: bypass mode;

UG305-1.0E 17(77)

Parameter	Range	Default Value	Description
			 CLK0: Register mode, register control signal clk is from CLK[0]; CLK1: Register mode, register control signal clk is from CLK[1].
DREG_CE	CE0, CE1	CE0	 Input D register clock enable control signal CE0: Register clock enable control signal is from CE[0]; CE1: Register clock enable control signal is from CE[1].
DREG_RESET	RESET0, RESET1	RESET0	 Input D register reset control signal RESET0: Register reset control signal is from RESET[0]; RESET1: Register reset control signal is from RESET[1].
PADDSUB_IR EG_CLK	BYPASS, CLK0, CLK1	BYPASS	 Input PADDSUB register clock control signal BYPASS: bypass mode; CLK0: Register mode, register control signal clk is from CLK[0]; CLK1: Register mode, register control signal clk is from CLK[1].
PADDSUB_IR EG_CE	CE0, CE1	CE0	Input PADDSUB register clock enable control signal CE0: Register clock enable control signal is from CE[0]; CE1: Register clock enable control signal is from CE[1].
PADDSUB_IR EG_RESET	RESET0, RESET1	RESET0	 Input PADDSUB register reset control signal RESET0: Register reset control signal is from RESET[0]; RESET1: Register reset control signal is from RESET[1].
PSEL_IREG_C LK	BYPASS, CLK0, CLK1	BYPASS	 Input PSEL register clock control signal BYPASS: bypass mode; CLK0: Register mode, register control signal clk is from CLK[0]; CLK1: Register mode, register control signal clk is from CLK[1].

UG305-1.0E 18(77)

Parameter	Range	Default Value	Description
PSEL_IREG_C E	CE0, CE1	CE0	Input PSEL register clock enable control signal CE0: Register clock enable control signal is from CE[0]; CE1: Register clock enable control signal is from CE[1].
PSEL_IREG_R ESET	RESET0, RESET1	RESET0	 Input PSEL register reset control signal RESET0: Register reset control signal is from RESET[0]; RESET1: Register reset control signal is from RESET[1].
PREG_CLK	BYPASS, CLK0, CLK1	BYPASS	 Mult Pipeline register clock control signal BYPASS: bypass mode; CLK0: Register mode, register control signal clk is from CLK[0]; CLK1: Register mode, register control signal clk is from CLK[1].
PREG_CE	CE0, CE1	CE0	Mult Pipeline register clock enable control signal CE0: Register clock enable control signal is from CE[0]; CE1: Register clock enable control signal is from CE[1].
PREG_RESET	RESET0, RESET1	RESET0	 Mult Pipeline register reset control signal RESET0: Register reset control signal is from RESET[0]; RESET1: Register reset control signal is from RESET[1].
OREG_CLK	BYPASS, CLK0, CLK1	BYPASS	 Output register clock control signal BYPASS: bypass mode; CLK0: Register mode, register control signal clk is from CLK[0]; CLK1: Register mode, register control signal clk is from CLK[1].
OREG_CE	CE0, CE1	CE0	Output register clock enable control signal CE0: Register clock enable control signal is from CE[0];

UG305-1.0E 19(77)

Parameter	Range	Default Value	Description
			CE1: Register clock enable control signal is from CE[1].
OREG_RESET	RESET0, RESET1	RESET0	 Output register reset control signal RESET0: Register reset control signal is from RESET[0]; RESET1: Register reset control signal is from RESET[1].
MULT_RESET _MODE	SYNC, ASYNC	SYNC	Reset configuration mode
P_SEL	1'b0, 1'b1	1'b0	Static control to select to directly connect A or A +/- D 1'b0: select to directly connect INA 1'b1: select pre-adder
DYN_P_SEL	FALSE, TRUE	FALSE	 Dynamic control selection, INA or INA +/- D FALSE: P_SEL static control mult0 to select INA or INA +/- D TRUE: Input PSEL dynamic control mult0 to select INA or INA +/- D
P_ADDSUB	1'b0, 1'b1	1'b0	Static control pre-adder to select addition/subtraction 1'b0: addition 1'b1: subtraction
DYN_P_ADDS UB	FALSE, TRUE	FALSE	Dynamic control pre-adder to select addition/subtraction FALSE: P_ADDSUB static control pre-adder to select addition/subtraction TRUE: Input PSEL to dynamic control pre-adder to select addition/subtraction

Primitive Instantiation

The primitives can be instantiated directly, or generated by the IP Core Generator. For the details, you can refer to <u>Chapter 5 IP Generation</u>.

Verilog Instantiation:

MULT27X36 mult27x36_inst (.DOUT(dout),

UG305-1.0E 20(77)

```
.A({gw_gnd,a[25:0]}),
    .B(b),
    .D(d),
    .PSEL(gw_gnd),
    .PADDSUB(gw gnd),
   .CLK({gw gnd,clk}),
   .CE({gw gnd,ce}),
   .RESET({gw gnd,reset})
);
defparam mult27x36 inst.AREG CLK = "CLK0";
defparam mult27x36 inst.AREG CE = "CE0";
defparam mult27x36 inst.AREG RESET = "RESET0";
defparam mult27x36 inst.BREG CLK = "CLK0";
defparam mult27x36 inst.BREG CE = "CE0";
defparam mult27x36 inst.BREG RESET = "RESET0";
defparam mult27x36 inst.DREG CLK = "CLK0";
defparam mult27x36 inst.DREG CE = "CE0";
defparam mult27x36 inst.DREG RESET = "RESET0";
defparam mult27x36 inst.PADDSUB IREG CLK = "BYPASS";
defparam mult27x36 inst.PADDSUB IREG CE = "CE0";
defparam mult27x36 inst.PADDSUB IREG RESET = "RESET0";
defparam mult27x36 inst.PREG CLK = "BYPASS";
defparam mult27x36_inst.PREG_CE = "CE0";
defparam mult27x36_inst.PREG_RESET = "RESET0";
defparam mult27x36 inst.PSEL IREG CLK = "BYPASS";
defparam mult27x36 inst.PSEL IREG CE = "CE0";
defparam mult27x36_inst.PSEL_IREG_RESET = "RESET0";
defparam mult27x36 inst.OREG CLK = "CLK0";
defparam mult27x36 inst.OREG CE = "CE0";
defparam mult27x36 inst.OREG RESET = "RESET0";
```

UG305-1.0E 21(77)

```
defparam mult27x36 inst.MULT RESET MODE="SYNC";
defparam mult27x36 inst.DYN P SEL = "FALSE";
defparam mult27x36 inst.P SEL = "1'b1";
defparam mult27x36_inst.DYN_P_ADDSUB = "FALSE";
defparam mult27x36 inst.P ADDSUB = "1'b0";
VhdI Instantiation:
  COMPONENT MULT27X36
         GENERIC (AREG CLK:string:="CLK0";
                   AREG CE:string:="CE0";
                   AREG RESET:string:="RESET0";
                   BREG CLK:string:="CLK0";
                   BREG CE:string:="CE0";
                   BREG RESET:string:="RESET0";
                   DREG CLK:string:="CLK0";
                   DREG CE:string:="CE0";
                   DREG RESET:string:="RESET0";
                   PADDSUB IREG CLK:string:="CLK0";
                   PADDSUB IREG CE:string:="CE0";
                   PADDSUB IREG RESET:string:="RESET0";
                   PREG CLK:string:="CLK0";
                   PREG CE:string:="CE0";
                   PREG RESET:string:="RESET0";
                   PSEL IREG CLK:string:="CLK0";
                   PSEL_IREG_CE:string:="CE0";
                   PSEL_IREG_RESET:string:="RESET0";
                   OREG_CLK:string:="CLK0";
                   OREG CE:string:="CE0";
                   OREG_RESET:string:="RESET0";
                   MULT RESET MODE:string:="ASYNC";
                   DYN P SEL:string:="FALSE";
                   P SEL:bit:='0';
```

UG305-1.0E 22(77)

```
DYN_P_ADDSUB:string:="FALSE";
                 P ADDSUB:bit:='0';
      );
       PORT(
            DOUT:OUT std logic vector(62 downto 0);
            A:IN std logic vector(26 downto 0);
            B:IN std logic vector(35 downto 0);
            D:IN std logic_vector(25 downto 0);
            PSEL: IN std logic;
            PADDSUB: IN std logic;
            CLK:IN std logic vector(1 downto 0);
            CE:IN std logic vector(1 downto 0);
            RESET:IN std_logic_vector(1 downto 0)
       );
END COMPONENT;
uut:MULT27X36
      GENERIC MAP (AREG_CLK=>"CLK0",
                     AREG CE=>"CE0",
                     AREG RESET=>"RESET0",
                     BREG_CLK=>"CLK0",
                     BREG CE=>"CE0",
                     BREG RESET=>"RESET0",
                     DREG_CLK=>"CLK0",
                     DREG_CE=>"CE0",
                     DREG_RESET=>"RESET0",
                     PADDSUB_IREG_CLK=>"CLK0",
                     PADDSUB_IREG_CE=>"CE0",
                     PADDSUB IREG RESET=>"RESET0",
                     PREG CLK=>"CLK0",
                     PREG_CE=>"CE0",
```

UG305-1.0E 23(77)

```
PREG_RESET=>"RESET0",
              PSEL_IREG_CLK=>"CLK0",
              PSEL_IREG_CE=>"CE0",
              PSEL_IREG_RESET=>"RESET0",
              OREG CLK=>"CLK0",
              OREG CE=>"CE0",
              OREG RESET=>"RESET0",
              MULT RESET MODE=>"ASYNC",
              DYN_P_SEL=>"FALSE",
              P SEL=>'1',
              DYN_P_ADDSUB=>"FALSE",
              P ADDSUB=>'0'
)
PORT MAP (
   DOUT => dout,
   A=>A i,
   B=>b,
   D=>d,
   PSEL=>gw_gnd,
   PADDSUB=>gw_gnd,
   CLK=>clk,
   CE=>ce,
   RESET=>reset
);
```

UG305-1.0E 24(77)

4.2 MULTALU

4.2.1 MULTALU27X18

The MULTALU mode implements a multiplier output after 48-bit ALU operations, corresponding to MULTALU27X18 primitive. The MULTALU27X18 has sixteen operation modes:

```
DOUT = \pm (A * B)
DOUT = \pm (A * B) \pm C
DOUT = \pm (A * B) + DOUT
DOUT = \pm (A * B) \pm C + DOUT
DOUT = \pm ((A \pm D) * B)
DOUT = \pm ((A \pm D) * B) \pm C
DOUT = \pm ((A \pm D) * B) + DOUT
DOUT = \pm ((A \pm D) * B) \pm C + DOUT
DOUT = \pm (A * B) + CASI
DOUT = \pm (A * B) + CASI \pm C
DOUT = \pm (A * B) + CASI + DOUT
DOUT = \pm (A * B) + CASI + DOUT \pm C
DOUT = \pm (SIA * B)
DOUT = \pm (SIA * B) \pm C
DOUT = \pm (SIA * B) + DOUT
DOUT = \pm (SIA * B) + DOUT \pm C
```

Primitive Introduction

The MULTALU27X18 (27x18 Multiplier with ALU) implements multiplication, multiply-add, accumulation, multiply-accumulate, shift based on multiplication/multiply-add/accumulation/multiply-accumulate, cascade based on multiplication/multiply-add/accumulation/multiply-accumulate, pre-addition and pre-subtraction based on multiplication/multiply-add/accumulation/multiply-accumulate, etc.

UG305-1.0E 25(77)

Logic Structure Diagram

Figure 4-5 MULT27X18 Logic Structure Diagram

Port Diagram

Figure 4-6 MULT27X18 Port Diagram

UG305-1.0E 26(77)

Port Description

Table 4-5 MULT27X18 Port Description

Port	I/O	Description	
A[26:0]	Input	27-bit data input signal A	
B[17:0]	Input	18-bit data input signal B	
D[25:0]	Input	26-bit pre-adder data input signal D	
C[47:0]	Input	48-bit ALU data input signal C	
CASI[47:0]	Input	48-bit ALU cascade input signal	
SIA[26:0]	Input	27-bit shift data input signal for shifting The input signal "SIA" is directly connected to the output signal "SOA" of the previously adjacent DSP.	
CLK[1:0]	Input	Clock input signal	
CE[1:0]	Input	Clock enable signal, active-high	
RESET[1:0]	Input	Reset input signal, active-high	
ADDSUB[1:0]	Input	Dynamic addition/subtraction control input signal	
CSEL	Input	48-bit ALU input C, the control selection input signal of 0	
CASISEL	Input	48-bit ALU input CASI, the control selection input signal of 0	
ACCSEL	Input	48-bit ALU input DOUT, the control selection input signal of PRE_LOAD	
ASEL	Input	A of pre-adder or multiplier, the control selection input signal of SIA	
PSEL	Input	INA of multiplier, the control selection input signal of INA +/- D	
PADDSUB	Input	Operation control signal of pre-adder for pre-adder logic addition/subtraction selection	
SOA[26:0]	Output	Shift data output signal	
DOUT[47:0]	Output	Data output signal	
CASO[47:0]	Output	48-bit cascading output signal	

UG305-1.0E 27(77)

Parameter Description

Table 4-6 MULTALU27X18 Parameter Description

Parameter	Range	Default Value	Description
AREG_CLK	BYPASS, CLK0, CLK1	BYPASS	 Input A (A or SIA) register clock control signal BYPASS: bypass mode; CLK0: Register mode, register clock control signal is from CLK[0]; CLK1: Register mode, register clock control signal is from CLK[1].
AREG_CE	CE0, CE1	CE0	Input A (A or SIA) register clock enable control signal CE0: Register clock enable control signal is from CE[0]; CE1: Register clock enable control signal is from CE[1].
AREG_RESET	RESET0, RESET1	RESET0	 Input A (A or SIA) register reset control signal RESET0: Register reset control signal is from RESET[0]; RESET1: Register reset control signal is from RESET[1].
BREG_CLK	BYPASS, CLK0, CLK1	BYPASS	 Input B register clock control signal BYPASS: bypass mode; CLK0: Register mode, register clock control signal is from CLK[0]; CLK1: Register mode, register clock control signal is from CLK[1].
BREG_CE	CE0, CE1	CE0	Input B register clock Enable control signal CE0: Register clock enable control signal is from CE[0]; CE1: Register clock enable control signal is from CE[1].
BREG_RESET	RESET0, RESET1	RESET0	 Input B register reset control signal RESET0: Register reset control signal is from RESET[0]; RESET1: Register reset control

UG305-1.0E 28(77)

Parameter	Range	Default Value	Description
			signal is from RESET[1].
DREG_CLK	BYPASS, CLK0, CLK1	BYPASS	 Input D register clock control signal BYPASS: bypass mode; CLK0: Register mode, register clock control signal is from CLK[0]; CLK1: Register mode, register clock control signal is from CLK[1].
DREG_CE	CE0, CE1	CE0	Input D register clock enable control signal CE0: Register clock enable control signal is from CE[0]; CE1: Register clock enable control signal is from CE[1].
DREG_RESET	RESETO, RESET1	RESET0	 Input D register reset control signal RESET0: Register reset control signal is from RESET[0]; RESET1: Register reset control signal is from RESET[1].
C_IREG_CLK	BYPASS, CLK0, CLK1	BYPASS	 Input C register clock control signal BYPASS: bypass mode; CLK0: Register mode, register clock control signal is from CLK[0]; CLK1: Register mode, register clock control signal is from CLK[1].
C_IREG_CE	CE0, CE1	CE0	 Input C register clock enable control signal CE0: Register clock enable control signal is from CE[0]; CE1: Register clock enable control signal is from CE[1].
C_IREG_RESET	RESETO, RESET1	RESET0	 Input C register reset control signal RESET0: Register reset control signal is from RESET[0]; RESET1: Register reset control signal is from RESET[1].
C_PREG_CLK	BYPASS, CLK0, CLK1	BYPASS	Input C pipeline register clock control signal

UG305-1.0E 29(77)

Parameter	Range	Default Value	Description
			 BYPASS: bypass mode; CLK0: Register mode, register clock control signal is from CLK[0]; CLK1: Register mode, register clock control signal is from CLK[1].
C_PREG_CE	CE0, CE1	CE0	Input C pipeline register clock enable control signal CE0: Register clock enable control signal is from CE[0]; CE1: Register clock enable control signal is from CE[1].
C_PREG_RESET	RESET0, RESET1	RESET0	 Input C pipeline register reset control signal RESET0: Register reset control signal is from RESET[0]; RESET1: Register reset control signal is from RESET[1].
ADDSUB0_IREG _CLK	BYPASS, CLK0, CLK1	BYPASS	 Input ADDSUB[0] register clock control signal BYPASS: bypass mode; CLK0: Register mode, register clock control signal is from CLK[0]; CLK1: Register mode, register clock control signal is from CLK[1].
ADDSUB0_IREG _CE	CE0, CE1	CE0	Input ADDSUB[0] register clock enable control signal CE0: Register clock enable control signal is from CE[0]; CE1: Register clock enable control signal is from CE[1].
ADDSUB0_IREG _RESET	RESET0, RESET1	RESET0	Input ADDSUB[0] register reset control signal RESET0: Register reset control signal is from RESET[0]; RESET1: Register reset control signal is from RESET[1].
ADDSUB1_IREG _CLK	BYPASS, CLK0, CLK1	BYPASS	Input ADDSUB[1] register clock control signal

UG305-1.0E 30(77)

Parameter	Range	Default Value	Description
			 BYPASS: bypass mode; CLK0: Register mode, register clock control signal is from CLK[0]; CLK1: Register mode, register clock control signal is from CLK[1].
ADDSUB1_IREG _CE	CE0, CE1	CE0	 Input ADDSUB[1] register clock enable control signal CE0: Register clock enable control signal is from CE[0]; CE1: Register clock enable control signal is from CE[1].
ADDSUB1_IREG _RESET	RESET0, RESET1	RESET0	 Input ADDSUB1[1] register reset control signal RESET0: Register reset control signal is from RESET[0]; RESET1: Register reset control signal is from RESET[1].
ADDSUB0_PREG _CLK	BYPASS, CLK0, CLK1	BYPASS	 Input ADDSUB[0] pipeline register clock control signal BYPASS: bypass mode; CLK0: Register mode, register clock control signal is from CLK[0]; CLK1: Register mode, register clock control signal is from CLK[1].
ADDSUB0_PREG _CE	CE0, CE1	CE0	Input ADDSUB[0] pipeline register clock enable control signal CE0: Register clock enable control signal is from CE[0]; CE1: Register clock enable control signal is from CE[1].
ADDSUB0_PREG _RESET	RESET0, RESET1	RESET0	Input ADDSUB[0] pipeline register reset control signal RESET0: Register reset control signal is from RESET[0]; RESET1: Register reset control signal is from RESET[1].
ADDSUB1_PREG _CLK	BYPASS, CLK0, CLK1	BYPASS	Input ADDSUB[1] pipeline register clock control signal

UG305-1.0E 31(77)

Parameter	Range	Default Value	Description
			 BYPASS: bypass mode; CLK0: Register mode, register clock control signal is from CLK[0]; CLK1: Register mode, register clock control signal is from CLK[1].
ADDSUB1_PREG _CE	CE0, CE1	CE0	 Input ADDSUB[1] pipeline register clock enable control signal CE0: Register clock enable control signal is from CE[0]; CE1: Register clock enable control signal is from CE[1].
ADDSUB1_PREG _RESET	RESET0, RESET1	RESET0	 Input ADDSUB[1] pipeline register reset control signal RESET0: Register reset control signal is from RESET[0]; RESET1: Register reset control signal is from RESET[1].
PADDSUB_IREG _CLK	BYPASS, CLK0, CLK1	BYPASS	 Input PADDSUB register clock control signal BYPASS: bypass mode; CLK0: Register mode, register clock control signal is from CLK[0]; CLK1: Register mode, register clock control signal is from CLK[1].
PADDSUB_IREG _CE	CE0, CE1	CE0	Input PADDSUB register clock enable control signal CE0: Register clock enable control signal is from CE[0]; CE1: Register clock enable control signal is from CE[1].
PADDSUB_IREG _RESET	RESET0, RESET1	RESET0	Input PADDSUB register reset control signal RESET0: Register reset control signal is from RESET[0]; RESET1: Register reset control signal is from RESET[1].
PSEL_IREG_CLK	BYPASS, CLK0, CLK1	BYPASS	Input PSEL register clock control signal

UG305-1.0E 32(77)

Parameter	Range	Default Value	Description
			 BYPASS: bypass mode; CLK0: Register mode, register clock control signal is from CLK[0]; CLK1: Register mode, register clock control signal is from CLK[1].
PSEL_IREG_CE	CE0, CE1	CE0	Input PSEL register clock enable control signal CE0: Register clock enable control signal is from CE[0]; CE1: Register clock enable control signal is from CE[1].
PSEL_IREG_RES ET	RESET0, RESET1	RESET0	 Input PSEL register reset control signal RESET0: Register reset control signal is from RESET[0]; RESET1: Register reset control signal is from RESET[1].
CSEL_IREG_CLK	BYPASS, CLK0, CLK1	BYPASS	 Input CSEL register clock control signal BYPASS: bypass mode; CLK0: Register mode, register clock control signal is from CLK[0]; CLK1: Register mode, register clock control signal is from CLK[1].
CSEL_IREG_CE	CE0, CE1	CE0	Input CSEL register clock enable control signal CE0: Register clock enable control signal is from CE[0]; CE1: Register clock enable control signal is from CE[1].
CSEL_IREG_RES ET	RESET0, RESET1	RESET0	 RESET0: Register reset control signal RESET0: Register reset control signal is from RESET[0]; RESET1: Register reset control signal is from RESET[1].
CSEL_PREG_CL K	BYPASS, CLK0, CLK1	BYPASS	Input CSEL pipeline register clock control signal BYPASS: bypass mode; CLK0: Register mode, register clock

UG305-1.0E 33(77)

Parameter	Range	Default Value	Description
			control signal is from CLK[0]; CLK1: Register mode, register clock control signal is from CLK[1].
CSEL_PREG_CE	CE0, CE1	CE0	 Input CSEL pipeline register clock enable control signal CE0: Register clock enable control signal is from CE[0]; CE1: Register clock enable control signal is from CE[1].
CSEL_PREG_RE SET	RESET0, RESET1	RESET0	Input CSEL pipeline register reset control signal RESET0: Register reset control signal is from RESET[0]; RESET1: Register reset control signal is from RESET[1].
CASISEL_IREG_ CLK	BYPASS, CLK0, CLK1	BYPASS	 Input CASISEL register clock control signal BYPASS: bypass mode; CLK0: Register mode, register clock control signal is from CLK[0]; CLK1: Register mode, register clock control signal is from CLK[1].
CASISEL_IREG_ CE	CE0, CE1	CE0	Input CASISEL register clock enable control signal CE0: Register clock enable control signal is from CE[0]; CE1: Register clock enable control signal is from CE[1].
CASISEL_IREG_ RESET	RESET0, RESET1	RESET0	Input CASISEL register reset control signal RESET0: Register reset control signal is from RESET[0]; RESET1: Register reset control signal is from RESET[1].
CASISEL_PREG_ CLK	BYPASS, CLK0, CLK1	BYPASS	Input CASISEL pipeline register clock control signal BYPASS: bypass mode; CLK0: Register mode, register clock

UG305-1.0E 34(77)

Parameter	Range	Default Value	Description
			control signal is from CLK[0]; CLK1: Register mode, register clock control signal is from CLK[1].
CASISEL_PREG_ CE	CE0, CE1	CE0	 Input CASISEL pipeline register clock enable control signal CE0: Register clock enable control signal is from CE[0]; CE1: Register clock enable control signal is from CE[1].
CASISEL_PREG_ RESET	RESET0, RESET1	RESET0	Input CASISEL pipeline register reset control signal RESET0: Register reset control signal is from RESET[0]; RESET1: Register reset control signal is from RESET[1].
ACCSEL_IREG_ CLK	BYPASS, CLK0, CLK1	BYPASS	Input ACCSEL register clock control signal BYPASS: bypass mode; CLK0: Register mode, register clock control signal is from CLK[0]; CLK1: Register mode, register clock control signal is from CLK[1].
ACCSEL_IREG_ CE	CE0, CE1	CE0	Input ACCSEL register clock enable control signal CE0: Register clock enable control signal is from CE[0]; CE1: Register clock enable control signal is from CE[1].
ACCSEL_IREG_ RESET	RESET0, RESET1	RESET0	Input ACCSEL register reset control signal RESET0: Register reset control signal is from RESET[0]; RESET1: Register reset control signal is from RESET[1].
ACCSEL_PREG_ CLK	BYPASS, CLK0, CLK1	BYPASS	Input ACCSEL pipeline register clock control signal BYPASS: bypass mode; CLK0: Register mode, register clock

UG305-1.0E 35(77)

Parameter	Range	Default Value	Description
			 control signal is from CLK[0]; CLK1: Register mode, register clock control signal is from CLK[1].
ACCSEL_PREG_ CE	CE0, CE1	CE0	 Input ACCSEL pipeline register clock enable control signal CE0: Register clock enable control signal is from CE[0]; CE1: Register clock enable control signal is from CE[1].
ACCSEL_PREG_ RESET	RESET0, RESET1	RESET0	Input ACCSEL pipeline register reset control signal RESET0: Register reset control signal is from RESET[0]; RESET1: Register reset control signal is from RESET[1].
PREG_CLK	BYPASS, CLK0, CLK1	BYPASS	 M0 Pipeline register clock control signal BYPASS: bypass mode; CLK0: Register mode, register clock control signal is from CLK[0]; CLK1: Register mode, register clock control signal is from CLK[1].
PREG_CE	CE0, CE1	CE0	 M0 Pipeline register clock enable control signal CE0: Register clock enable control signal is from CE[0]; CE1: Register clock enable control signal is from CE[1].
PREG_RESET	RESET0, RESET1	RESET0	 M0 Pipeline register reset control signal RESET0: Register reset control signal is from RESET[0]; RESET1: Register reset control signal is from RESET[1].
FB_PREG_EN	FALSE, TRUE	FALSE	Feedback output pipeline register control parameter FALSE: Bypass mode; TRUE: Register mode, control signal clk/ce/reset is consistent with OREG

UG305-1.0E 36(77)

Parameter	Range	Default Value	Description
SOA_PREG_EN	FALSE, TRUE	FALSE	Shift output SOA pipeline register control parameter FALSE: Bypass mode; TRUE: Register mode, control signal clk/ce/reset is consistent with AREG
OREG_CLK	BYPASS, CLK0, CLK1	BYPASS	 Output register clock control signal BYPASS: bypass mode; CLK0: Register mode, register clock control signal is from CLK[0]; CLK1: Register mode, register clock control signal is from CLK[1].
OREG_CE	CE0, CE1	CE0	Output register clock enable control signal CE0: Register clock enable control signal is from CE[0]; CE1: Register clock enable control signal is from CE[1].
OREG_RESET	RESETO, RESET1	RESET0	 Output register reset control signal RESET0: Register reset control signal is from RESET[0]; RESET1: Register reset control signal is from RESET[1].
MULT_RESET_M ODE	SYNC, ASYNC	SYNC	Reset mode configuration SYNC: synchronized reset ASYNC: asynchronous reset
PRE_LOAD	48'h000000000000 ~48'hFFFFFFFFF F	48'h0	PRE_LOAD initialization value
A_SEL	1'b0, 1'b1	1'b0	Static control A, SIA source selection 1'b0: select A 1'b1: select SIA
DYN_A_SEL	FALSE, TRUE	FALSE	 Dynamic control A, SIA source selection FALSE: A_SEL static control A, SIA source selection; TRUE: Input ASEL to dynamic control A, SIA source selection
P_SEL	1'b0, 1'b1	1'b0	Static control INA, INA +/- D selection

UG305-1.0E 37(77)

Parameter	Range	Default Value	Description
			1'b0: select INA
			• 1'b1: select INA +/- D
DYN_P_SEL	FALSE, TRUE	FALSE	 Dynamic control INA, INA +/- D selection FALSE: P_SEL static control INA, INA +/- D selection TRUE: Input PSEL to dynamic control INA, INA +/- D selection
P_ADDSUB	1'b0, 1'b1	1'b0	Static control pre-adder addition/subtraction selection 1'b0: addition 1'b1: subtraction
DYN_P_ADDSUB	FALSE, TRUE	FALSE	Dynamic control pre-adder addition/subtraction selection FALSE: P_ADDSUB static control pre-adder addition/subtraction selection TRUE: Input PADDSUB to dynamic control pre-adder, addition/subtraction selection
ADD_SUB_0	1'b0, 1'b1	1'b0	Static control the addition/subtraction selection of M0/0 1'b0: addition 1'b1: subtraction
DYN_ADD_SUB_ 0	FALSE, TRUE	FALSE	Dynamic control the addition/subtraction selection of M0/0 FALSE: ADD_SUB_0 static control the addition/subtraction selection of M0/0 TRUE: Input ADDSUB[0] dynamic control the addition/subtraction selection of M0/0
ADD_SUB_1	1'b0, 1'b1	1'b0	Static control the addition/subtraction selection of C/0 1'b0: addition 1'b1: subtraction
DYN_ADD_SUB_ 1	FALSE, TRUE	FALSE	Dynamic control the addition/subtraction selection of C/0

UG305-1.0E 38(77)

Parameter	Range	Default Value	Description
			 FALSE: ADD_SUB_1 static control the addition/subtraction selection of C/0 TRUE: Input ADDSUB[1] dynamic control addition/subtraction of M1/C/0 selection
CASI_SEL	1'b0, 1'b1	1'b0	Static control CASI/0 selection 1'b0: select 0 1'b1: select CASI
DYN_CASI_SEL	FALSE, TRUE	FALSE	 Dynamic control CASI/0 selection FALSE: CASI_SEL static control CASI/0 source selection TRUE: Input CASISEL to dynamic control CASI/0 source selection
ACC_SEL	1'b0, 1'b1	1'b0	Static control PRE_LOAD, DOUT selection 1'b0: select PRE_LOAD 1'b1: select output feedback
DYN_ACC_SEL	FALSE, TRUE	FALSE	Dynamic control PRE_LOAD, DOUT selection • FALSE: ACC_SEL static control PRE_LOAD, output feedback source selection • TRUE: Input ACCSEL to dynamic control PRE_LOAD, output feedback source selection
C_SEL	1'b0, 1'b1	1'b0	Static control C, 0 selection 1'b0: select 0 1'b1: select C
DYN_C_SEL	FALSE, TRUE	FALSE	 Dynamic control C, 0 selection FALSE: C_SEL static control C/0 source selection TRUE: Input CSEL to dynamic control C/0 source selection
MULT12X12_EN	FALSE, TRUE	FALSE	Control M0 Mode ■ FALSE: 27X18 mode ■ TRUE: 12X12 mode

UG305-1.0E 39(77)

Primitive Instantiation

The primitives can be instantiated directly, or generated by the IP Core Generator. For the details, you can refer to <u>Chapter 5 IP Generation</u>.

Verilog Instantiation:

```
MULTALU27X18 multalu27x18 inst (
     .DOUT(dout),
     .CASO(caso),
     .SOA(soa),
     .A({a[25],a[25:0]}),
     .B(b),
     .C(c),
     .D(d),
     .SIA({gw gnd,gw gnd,gw gnd,gw gnd,gw gnd,gw gnd,gw gnd,gw
w gnd,gw gnd,gw gnd,gw gnd,gw gnd,gw gnd,gw gnd,gw gn
d,gw gnd,gw gnd,gw gnd,gw gnd,gw gnd,gw gnd,gw gnd,gw
gnd,gw_gnd,gw_gnd}),
     .CASI(casi),
     .ACCSEL(gw gnd),
     .CASISEL(gw gnd),
     .ASEL(gw_gnd),
     .PSEL(gw_gnd),
     .CSEL(gw gnd),
     .ADDSUB({gw gnd,gw gnd}),
     .PADDSUB(gw_gnd),
     .CLK({gw_gnd,clk}),
     .CE({gw gnd,ce}),
     .RESET({gw_gnd,reset})
 );
 defparam multalu27x18 inst.AREG CLK = "CLK0";
 defparam multalu27x18 inst.AREG CE = "CE0";
 defparam multalu27x18 inst.AREG RESET = "RESET0";
 defparam multalu27x18 inst.BREG CLK = "CLK0";
```

UG305-1.0E 40(77)

```
defparam multalu27x18 inst.BREG CE = "CE0";
defparam multalu27x18 inst.BREG RESET = "RESET0";
defparam multalu27x18 inst.DREG CLK = "CLK0";
defparam multalu27x18_inst.DREG_CE = "CE0";
defparam multalu27x18 inst.DREG RESET = "RESET0";
defparam multalu27x18 inst.C IREG CLK = "CLK0";
defparam multalu27x18 inst.C IREG CE = "CE0";
defparam multalu27x18 inst.C IREG RESET = "RESET0";
defparam multalu27x18 inst.PSEL IREG CLK = "BYPASS";
defparam multalu27x18 inst.PSEL IREG CE = "CE0";
defparam multalu27x18 inst.PSEL IREG RESET = "RESET0";
defparam multalu27x18 inst.PADDSUB IREG CLK = "BYPASS";
defparam multalu27x18 inst.PADDSUB IREG CE = "CE0";
defparam multalu27x18 inst.PADDSUB IREG RESET = "RESET0";
defparam multalu27x18 inst.ADDSUB0 IREG CLK = "BYPASS";
defparam multalu27x18 inst.ADDSUB0 IREG CE = "CE0";
defparam multalu27x18 inst.ADDSUB0 IREG RESET = "RESET0";
defparam multalu27x18_inst.ADDSUB1_IREG_CLK = "BYPASS";
defparam multalu27x18 inst.ADDSUB1 IREG CE = "CE0";
defparam multalu27x18 inst.ADDSUB1 IREG RESET = "RESET0";
defparam multalu27x18 inst.CSEL IREG CLK = "BYPASS";
defparam multalu27x18 inst.CSEL IREG CE = "CE0";
defparam multalu27x18 inst.CSEL IREG RESET = "RESET0";
defparam multalu27x18_inst.CASISEL_IREG_CLK = "BYPASS";
defparam multalu27x18_inst.CASISEL_IREG_CE = "CE0";
defparam multalu27x18 inst.CASISEL IREG RESET = "RESET0";
defparam multalu27x18 inst.ACCSEL IREG CLK = "BYPASS";
defparam multalu27x18_inst.ACCSEL_IREG_CE = "CE0";
defparam multalu27x18 inst.ACCSEL IREG RESET = "RESET0";
defparam multalu27x18 inst.PREG CLK = "BYPASS";
defparam multalu27x18 inst.PREG CE = "CE0";
```

UG305-1.0E 41(77)

```
defparam multalu27x18 inst.PREG RESET = "RESET0";
defparam multalu27x18 inst.ADDSUB0 PREG CLK = "BYPASS";
defparam multalu27x18 inst.ADDSUB0 PREG CE = "CE0";
defparam multalu27x18_inst.ADDSUB0_PREG_RESET = "RESET0";
defparam multalu27x18 inst.ADDSUB1 PREG CLK = "BYPASS";
defparam multalu27x18 inst.ADDSUB1 PREG CE = "CE0";
defparam multalu27x18 inst.ADDSUB1 PREG RESET = "RESET0";
defparam multalu27x18 inst.CSEL PREG CLK = "BYPASS";
defparam multalu27x18 inst.CSEL PREG CE = "CE0";
defparam multalu27x18 inst.CSEL PREG RESET = "RESET0";
defparam multalu27x18 inst.CASISEL PREG CLK = "BYPASS";
defparam multalu27x18 inst.CASISEL PREG CE = "CE0";
defparam multalu27x18 inst.CASISEL PREG RESET = "RESET0";
defparam multalu27x18 inst.ACCSEL PREG CLK = "BYPASS";
defparam multalu27x18 inst.ACCSEL PREG CE = "CE0";
defparam multalu27x18 inst.ACCSEL PREG RESET = "RESET0";
defparam multalu27x18 inst.C PREG CLK = "CLK0";
defparam multalu27x18 inst.C PREG CE = "CE0";
defparam multalu27x18 inst.C PREG RESET = "RESET0";
defparam multalu27x18 inst.FB PREG EN = "FALSE";
defparam multalu27x18 inst.SOA PREG EN = "FALSE";
defparam multalu27x18 inst.OREG CLK = "CLK0";
defparam multalu27x18 inst.OREG CE = "CE0";
defparam multalu27x18_inst.OREG_RESET = "RESET0";
defparam multalu27x18_inst.MULT_RESET_MODE="SYNC";
defparam multalu27x18 inst.PRE LOAD=48'h0000000000000;
defparam multalu27x18 inst.DYN P SEL = "FALSE";
defparam multalu27x18_inst.P_SEL=1'b0;
defparam multalu27x18 inst.DYN P ADDSUB = "FALSE";
defparam multalu27x18 inst.P ADDSUB=1'b0;
defparam multalu27x18 inst.DYN A SEL = "FALSE";
```

UG305-1.0E 42(77)

```
defparam multalu27x18 inst.A SEL=1'b0;
defparam multalu27x18 inst.DYN ADD SUB 0 = "FALSE";
defparam multalu27x18 inst.ADD SUB 0=1'b0;
defparam multalu27x18_inst.DYN_ADD_SUB_1 = "FALSE";
defparam multalu27x18 inst.ADD SUB 1=1'b0;
defparam multalu27x18 inst.DYN C SEL = "FALSE";
defparam multalu27x18 inst.C SEL=1'b1;
defparam multalu27x18 inst.DYN CASI SEL = "FALSE";
defparam multalu27x18 inst.CASI SEL=1'b1;
defparam multalu27x18 inst.DYN ACC SEL = "FALSE";
defparam multalu27x18 inst.ACC SEL=1'b0;
defparam multalu27x18 inst.MULT12X12 EN = "FALSE";
VhdI Instantiation:
    COMPONENT MULTALU27X18
       GENERIC (
             AREG CLK: string:="BYPASS";
             AREG CE: string:= "CE0";
             AREG RESET: string:= "RESET0";
             BREG CLK: string:="BYPASS";
             BREG CE: string := "CE0";
             BREG RESET: string := "RESET0";
             DREG CLK : string := "BYPASS";
             DREG CE:string:="CE0";
             DREG RESET : string := "RESET0";
             C_IREG_CLK : string := "BYPASS";
             C IREG CE:string:="CE0";
             C IREG RESET: string := "RESET0";
             PSEL_IREG_CLK : string := "BYPASS";
             PSEL IREG CE:string:="CE0";
             PSEL IREG RESET:string:="RESET0";
             PADDSUB IREG CLK: string:= "BYPASS";
```

UG305-1.0E 43(77)

```
PADDSUB IREG CE:string:="CE0";
PADDSUB IREG RESET:string:="RESET0";
ADDSUB0 IREG CLK: string:= "BYPASS";
ADDSUB0_IREG_CE:string:="CE0";
ADDSUB0 IREG RESET:string:="RESET0";
ADDSUB1 IREG CLK: string:= "BYPASS";
ADDSUB1 IREG CE:string:="CE0";
ADDSUB1 IREG RESET:string:="RESET0";
CSEL IREG CLK: string:= "BYPASS";
CSEL IREG CE:string:="CE0";
CSEL IREG RESET:string:="RESET0";
CASISEL IREG CLK: string:= "BYPASS";
CASISEL IREG CE:string:="CE0";
CASISEL IREG RESET:string:="RESET0";
ACCSEL IREG CLK: string:= "BYPASS";
ACCSEL IREG CE:string:="CE0";
ACCSEL IREG RESET:string:="RESET0";
PREG CLK: string:="BYPASS";
PREG CE: string:= "CE0";
PREG RESET: string := "RESET0";
ADDSUB0 PREG CLK: string:="BYPASS";
ADDSUB0 PREG CE:string:="CE0";
ADDSUB0 PREG RESET:string:="RESET0";
ADDSUB1_PREG_CLK : string := "BYPASS";
ADDSUB1_PREG_CE:string:="CE0";
ADDSUB1_PREG_RESET:string:="RESET0";
CSEL PREG CLK: string:="BYPASS";
CSEL_PREG_CE:string:="CE0";
CSEL PREG RESET:string:="RESET0";
CASISEL PREG CLK: string:= "BYPASS";
CASISEL PREG CE:string:="CE0";
```

UG305-1.0E 44(77)

```
CASISEL PREG RESET:string:="RESET0";
ACCSEL PREG CLK: string:= "BYPASS";
ACCSEL PREG CE:string:="CE0";
ACCSEL_PREG_RESET:string:="RESET0";
C PREG CLK: string:="BYPASS";
C PREG CE:string:="CE0";
C PREG RESET:string:="RESET0";
FB PREG EN:string:="FALSE";
SOA PREG EN:string:="FALSE";
OREG CLK: string:="BYPASS";
OREG CE: string:= "CE0";
OREG RESET: string:= "RESET0";
MULT RESET MODE:string:="SYNC";
PRE LOAD: bit vector := X"000000000000";
DYN P SEL: string := "FALSE";
P SEL: bit := '0';
DYN P ADDSUB : string := "FALSE";
P ADDSUB : bit := '0';
DYN A SEL: string := "FALSE";
A SEL: bit := '0';
DYN_ADD_SUB_0 : string := "FALSE";
ADD SUB 0:bit:='0';
DYN ADD SUB 1: string := "FALSE";
ADD_SUB_1:bit:='0';
DYN_C_SEL : string := "FALSE";
C SEL: bit := '0';
DYN CASI SEL : string := "FALSE";
CASI\_SEL : bit := '0';
DYN ACC SE: string := "FALSE";
ACC SEL: bit := '0';
MULT12X12 EN: string:="FALSE"
```

UG305-1.0E 45(77)

```
);
          PORT(
              DOUT: out std logic vector(47 downto 0);
              CASO: out std_logic_vector(47 downto 0);
              SOA: out std logic vector(26 downto 0);
              A: in std logic vector(26 downto 0);
              B: in std logic vector(17 downto 0);
              C: in std logic vector(47 downto 0);
              D: in std logic vector(25 downto 0);
              SIA: in std logic vector(26 downto 0);
              CASI: in std logic vector(47 downto 0);
              ACCSEL: in std logic;
              CASISEL: in std logic;
              ASEL: in std logic;
              PSEL: in std logic;
              CSEL: in std logic;
              ADDSUB: in std logic vector(1 downto 0);
              PADDSUB: in std logic;
              CLK: in std logic vector(1 downto 0);
              CE: in std logic vector(1 downto 0);
              RESET: in std logic vector(1 downto 0)
          );
      end COMPONENT;
 begin
      gw gnd <= '0';
      A i \le a[25] \& a(25 \text{ downto } 0);
      SIA_i <= gw_gnd & gw_gnd & gw_gnd & gw_gnd & gw_gnd &
gw gnd & gw gnd & gw gnd & gw gnd & gw gnd & gw gnd & gw gnd &
gw gnd & gw gnd & gw gnd & gw gnd & gw gnd & gw gnd & gw gnd &
gw gnd & gw gnd & gw gnd & gw gnd & gw gnd & gw gnd & gw gnd &
gw gnd;
```

UG305-1.0E 46(77)

```
ADDSUB_i <= gw_gnd & gw_gnd;
CLK i \le gw gnd \& clk;
CE i <= gw gnd & ce;
RESET_i <= gw_gnd & reset;
multalu27x18 inst: MULTALU27X18
   GENERIC MAP(
       AREG CLK => "CLK0",
       AREG CE => "CE0",
       AREG RESET => "RESETO",
       BREG CLK => "CLK0",
       BREG CE => "CE0",
       BREG_RESET => "RESET0",
       DREG_CLK => "CLK0",
       DREG CE => "CE0",
       DREG_RESET => "RESET0",
       C_IREG_CLK => "CLK0",
       C IREG CE => "CE0",
       C IREG RESET => "RESETO",
       PSEL IREG CLK => "BYPASS",
       PSEL_IREG_CE => "CE0",
       PSEL IREG RESET => "RESET0",
       PADDSUB IREG CLK => "BYPASS",
       PADDSUB_IREG_CE => "CE0",
       PADDSUB_IREG_RESET => "RESET0",
       ADDSUB0_IREG_CLK => "BYPASS",
       ADDSUB0_IREG_CE => "CE0",
       ADDSUB0_IREG_RESET => "RESET0",
       ADDSUB1 IREG CLK => "BYPASS",
       ADDSUB1 IREG CE => "CE0",
       ADDSUB1 IREG RESET => "RESETO",
```

UG305-1.0E 47(77)

```
CSEL IREG CLK => "BYPASS",
CSEL IREG CE => "CE0",
CSEL IREG RESET => "RESET0",
CASISEL_IREG_CLK => "BYPASS",
CASISEL IREG CE => "CE0",
CASISEL IREG RESET => "RESETO",
ACCSEL IREG CLK => "BYPASS",
ACCSEL IREG CE => "CE0",
ACCSEL IREG RESET => "RESETO",
PREG CLK => "BYPASS",
PREG CE => "CE0",
PREG RESET => "RESETO",
ADDSUB0_PREG_CLK => "BYPASS",
ADDSUB0 PREG CE => "CE0",
ADDSUB0 PREG RESET => "RESET0",
ADDSUB1_PREG_CLK => "BYPASS",
ADDSUB1_PREG_CE => "CE0",
ADDSUB1 PREG RESET => "RESET0",
CSEL PREG CLK => "BYPASS",
CSEL PREG CE => "CE0",
CSEL PREG RESET => "RESET0",
CASISEL PREG CLK => "BYPASS",
CASISEL PREG CE => "CE0",
CASISEL_PREG_RESET => "RESET0",
ACCSEL_PREG_CLK => "BYPASS",
ACCSEL PREG CE => "CE0",
ACCSEL PREG RESET => "RESETO",
C_PREG_CLK => "CLK0",
C PREG CE => "CE0",
C PREG RESET => "RESET0",
FB PREG EN => "FALSE",
```

UG305-1.0E 48(77)

```
SOA_PREG_EN => "FALSE",
   OREG_CLK => "CLK0",
   OREG CE => "CE0",
   OREG_RESET => "RESET0",
   MULT RESET MODE => "SYNC",
   PRE LOAD => X"000000000000",
   DYN P SEL => "FALSE",
   P SEL => '0',
   DYN P ADDSUB => "FALSE",
   P ADDSUB => '0',
   DYN A SEL => "FALSE",
   A SEL => '0',
   DYN_ADD_SUB_0 => "FALSE",
   ADD_SUB_0 => '0',
   DYN_ADD_SUB_1 => "FALSE",
   ADD_SUB_1 => '0',
   DYN_C_SEL => "FALSE",
   C SEL => '1',
   DYN CASI SEL => "FALSE",
   CASI SEL => '1',
   DYN_ACC_SEL => "FALSE",
   ACC SEL => '0',
   MULT12X12 EN => "FALSE"
PORT MAP (
   DOUT => dout,
   CASO=>caso,
   SOA => soa,
   A=>A i,
   B=>b,
   C => c
```

UG305-1.0E 49(77)

)

```
D=>d,
SIA => SIA_i,
CASI=>casi,
ACCSEL => gw_gnd,
CASISEL => gw_gnd,
ASEL => gw_gnd,
PSEL=>gw_gnd,
CSEL => gw_gnd,
ADDSUB => ADDSUB_i,
PADDSUB=>gw_gnd,
CLK => CLK_i,
CE => CE_i,
RESET => RESET_i
);
```

4.3 MULTADDALU

4.3.1 MULTADDALU12X12

The MULTADDALU mode implements two 12 x 12 multiplier outputs after the 48-bit ALU operation, corresponding to MULTADDALU12x12 primitive.

The MULTADDALU12X12 has four operation modes:

```
DOUT = A0 * B0 \pm A1 * B1
DOUT = DOUT \pm (A0 * B0 \pm A1 * B1)
DOUT = CASI \pm A0 * B0 \pm A1 * B1
DOUT = CASI \pm (A0 * B0 \pm A1 * B1) + DOUT
```

Primitive Introduction

The MULTADDALU12x12 (The Sum of Two 12x12 Multipliers with ALU) implements 12-bit accumulation operation after summing up the multiplication.

UG305-1.0E 50(77)

Logic Structure Diagram

Figure 4-7 MULTADDALU12X12 Logic Structure Diagram

Port Diagram

Figure 4-8 MULTADDALU12X12 Port Diagram

UG305-1.0E 51(77)

Port Description

Table 4-7 MULTADDALU12X12 Port Description

Port	I/O	Description
A0[11:0]	Input	12-bit data input signal A0
B0[11:0]	Input	12-bit data input signal B0
A1[11:0]	Input	12-bit data input signal A1
B1[11:0]	Input	12-bit data input signal B1
CASI[47:0]	Input	48-bit cascading input signal of previous DSP
CASISEL	Input	CASI/O control Input signal of 48-bit ALU
ADDSUB[1:0]	Input	Dynamic +/- control input signal
ACCSEL	Input	DOUT/PRE_LOAD control input signal of 48-bit ALU
CLK[1:0]	Input	Clock input signal
CE[1:0]	Input	Clock enable signal
RESET[1:0]	Input	Reset input signal
DOUT[53:0]	Output	Data output signal
CASO[54:0]	Output	48-bit cascading output signal

Parameter Description

Table 4-8 MULTADDALU12X12 Parameter Description

Parameter	Range	Default Value	Description
A0REG_CLK	BYPASS, CLK0, CLK1	BYPASS	 Input A0 register clock control signal BYPASS: Bypass Mode CLK0: Register mode, register clock control signal is from CLK[0] CLK1: Register mode, register clock control signal is from CLK[1]
A0REG_CE	CE0, CE1	CE0	Input A0 register clock enable control signal CE0: Register clock enable control signal is from CE[0] CE1: Register clock enable control signal is from CE[1]
A0REG_RESET	RESET0, RESET1	RESET0	Input A0 register reset control signal

UG305-1.0E 52(77)

Parameter	Range	Default Value	Description
			 RESET0: Register reset control signal is from RESET[0] RESET1: Register reset control signal is from RESET[1]
B0REG_CLK	BYPASS, CLK0, CLK1	BYPASS	Input B0 register clock control signal BYPASS: Bypass mode CLK0: Register mode, register clock control signal is from CLK[0] CLK1: Register mode, register clock control signal is from CLK[1]
B0REG_CE	CE0, CE1	CE0	Input B0 register clock enable control signal CE0: Register clock enable control signal is from CE[0] CE1: Register clock enable control signal is from CE[1]
B0REG_RESET	RESET0, RESET1	RESET0	 Input B0 register reset control signal RESET0: Register reset control signal is from RESET[0] RESET1: Register reset control signal is from RESET[1]
A1REG_CLK	BYPASS, CLK0, CLK1	BYPASS	 Input A1 register clock control signal BYPASS: Bypass Mode CLK0: Register mode, register clock control signal is from CLK[0] CLK1: Register mode, register clock control signal is from CLK[1]
A1REG_CE	CE0, CE1	CE0	Input A1 register clock enable control signal CE0: Register clock enable control signal is from CE[0] CE1: Register clock enable control signal is from CE[1]
A1REG_RESET	RESET0, RESET1	RESET0	 Input A1 register reset control signal RESET0: Register reset control signal is from RESET[0] RESET1: Register reset control signal

UG305-1.0E 53(77)

Parameter	Range	Default Value	Description	
			is from RESET[1]	
B1REG_CLK	BYPASS, CLK0, CLK1	CLK0	 Input B1 register clock control signal BYPASS: Bypass Mode CLK0: Register mode, register clock control signal is from CLK[0] CLK1: Register mode, register clock control signal is from CLK[1] 	
B1REG_CE	CE0, CE1	CE0	Input B1 register clock enable control signal CE0: Register clock enable control signal is from CE[0] CE1: Register clock enable control signal is from CE[1]	
B1REG_RESET	RESET0, RESET1	RESET0	 Input B1 register reset control signal RESET0: Register reset control signal is from RESET[0] RESET1: Register reset control signal is from RESET[1] 	
ADDSUB0_IREG _CLK	BYPASS, CLK0, CLK1	BYPASS	Input ADDSUB[0] register clock control signal BYPASS: Bypass Mode CLK0: Register mode, register clock control signal is from CLK[0] CLK1: Register mode, register clock control signal is from CLK[1]	
ADDSUB0_IREG _CE	CE0, CE1	CE0	Input ADDSUB[0] register clock enable control signal CE0: Register clock enable control signal is from CE[0] CE1: Register clock enable control signal is from CE[1]	
ADDSUB0_IREG _RESET	RESET0, RESET1	RESET0	Input ADDSUB[0] register reset control signal RESET0: Register reset control signal is from RESET[0] RESET1: Register reset control signal is from RESET[1]	

UG305-1.0E 54(77)

Parameter	Range	Default Value	Description		
ADDSUB1_IREG _CLK	BYPASS, CLK0, CLK1	BYPASS	Input ADDSUB[1] register clock control signal BYPASS: Bypass Mode CLK0: Register mode, register clock control signal is from CLK[0] CLK1: Register mode, register clock control signal is from CLK[1]		
ADDSUB1_IREG _CE	CE0, CE1	CE0	Input ADDSUB[1] register clock enable control signal CE0: Register clock enable control signal is from CE[0] CE1: Register clock enable control signal is from CE[1]		
ADDSUB1_IREG _RESET	RESET0, RESET1	RESET0	Input ADDSUB[1] register reset control signal RESET0: Register reset control signal is from RESET[0] RESET1: Register reset control signal is from RESET[1]		
ADDSUB0_PREG _CLK	BYPASS, CLK0, CLK1	BYPASS	Input ADDSUB[0] pipeline register clock control signal BYPASS: Bypass Mode CLK0: Register mode, register clock control signal is from CLK[0] CLK1: Register mode, register clock control signal is from CLK[1]		
ADDSUB0_PREG _CE	CE0, CE1	CE0	Input ADDSUB[0] pipeline register clock enable control signal CE0: Register clock enable control signal is from CE[0] CE1: Register clock enable control signal is from CE[1]		
ADDSUB0_PREG _RESET	RESET0.RESET1	RESET0	Input ADDSUB[0] pipeline register reset control signal RESET0: Register reset control signal is from RESET[0] RESET1: Register reset control signal is from RESET[1]		

UG305-1.0E 55(77)

Parameter	Range	Default Value	Description		
ADDSUB1_PREG _CLK	BYPASS, CLK0, CLK1	BYPASS	 Input ADDSUB[1] pipeline register clock control signal BYPASS: Bypass Mode CLK0: Register mode, register clock control signal is from CLK[0] CLK1: Register mode, register clock control signal is from CLK[1] 		
ADDSUB1_PREG _CE	CE0, CE1	CE0	Input ADDSUB[1] pipeline register clock enable control signal CE0: Register clock enable control signal is from CE[0] CE1: Register clock enable control signal is from CE[1]		
ADDSUB1_PREG _RESET	RESET0, RESET1	RESET0	Input ADDSUB[1] pipeline register reset control signal RESET0: Register reset control signal is from RESET[0] RESET1: Register reset control signal is from RESET[1]		
CASISEL_IREG_ CLK	BYPASS, CLK0, CLK1	BYPASS	 Input CASISEL register clock control signal BYPASS: Bypass Mode CLK0: Register mode, register clock control signal is from CLK[0] CLK1: Register mode, register clock control signal is from CLK[1] 		
CASISEL_IREG_ CE	CE0, CE1	CE0	Input CASISEL register clock enable control signal CE0: Register clock enable control signal is from CE[0] CE1: Register clock enable control signal is from CE[1]		
CASISEL_IREG_ RESET	RESET0, RESET1	RESET0	 Input CASISEL register reset control signal RESET0: Register reset control signal is from RESET[0] RESET1: Register reset control signal is from RESET[1] 		
CASISEL_PREG_	BYPASS, CLK0,	BYPASS	Input CASISEL pipeline register clock		

UG305-1.0E 56(77)

Parameter	Range	Default Value	Description		
CLK	CLK1		 control signal BYPASS: Bypass Mode CLK0: Register mode, register clock control signal is from CLK[0] CLK1: Register mode, register clock control signal is from CLK[1] 		
CASISEL_PREG_ CE	CE0, CE1	CE0	Input CASISEL pipeline register clock enable control signal		
CASISEL_PREG_ RESET	RESET0, RESET1	RESET0	Input CASISEL pipeline register reset control signal RESET0: Register reset control signal is from RESET[0] RESET1: Register reset control signal is from RESET[1]		
ACCSEL_IREG_ CLK	BYPASS, CLK0, CLK1	BYPASS	 Input ACCSEL register clock control signal BYPASS: Bypass Mode CLK0: Register mode, register clock control signal is from CLK[0] CLK1: Register mode, register clock control signal is from CLK[1] 		
ACCSEL_IREG_ CE	CE0, CE1	CE0	Input ACCSELSEL register clock enable control signal CE0: Register clock enable control signal is from CE[0] CE1: Register clock enable control signal is from CE[1]		
ACCSEL_IREG_ RESET	RESET0, RESET1	RESET0	 Input ACCSEL register reset control signal RESET0: Register reset control signal is from RESET[0] RESET1: Register reset control signal is from RESET[1] 		
ACCSEL_PREG_ CLK	BYPASS, CLK0, CLK1	BYPASS	Input ACCSEL pipeline register clock control signal		

UG305-1.0E 57(77)

Parameter	Range	Default Value	Description
			 BYPASS: Bypass Mode CLK0: Register mode, register clock control signal is from CLK[0] CLK1: Register mode, register clock control signal is from CLK[1]
ACCSEL_PREG_ CE	CE0, CE1	CE0	Input ACCSEL pipeline register clock enable control signal CE0: Register clock enable control signal is from CE[0] CE1: Register clock enable control signal is from CE[1]
ACCSEL_PREG_ RESET	RESET0, RESET1	RESET0	Input ACCSEL pipeline register reset control signal RESET0: Register reset control signal is from RESET[0] RESET1: Register reset control signal is from RESET[1]
PREG0_CLK	BYPASS, CLK0, CLK1	BYPASS	 Mult0 pipeline register clock control signal BYPASS: Bypass Mode CLK0: Register mode, register clock control signal is from CLK[0] CLK1: Register mode, register clock control signal is from CLK[1]
PREG0_CE	CE0, CE1	CE0	Mult0 Pipeline register clock enable control signal CE0: Register clock enable control signal is from CE[0] CE1: Register clock enable control signal is from CE[1]
PREG0_RESET	RESET0, RESET1	RESET0	 Mult0 Pipeline register reset control signal RESET0: Register reset control signal is from RESET[0] RESET1: Register reset control signal is from RESET[1]
PREG1_CLK	BYPASS, CLK0, CLK1	BYPASS	 Mult1 Pipeline register clock control signal BYPASS: Bypass Mode CLK0: Register mode, register clock

UG305-1.0E 58(77)

Parameter	Range	Default Value	Description	
			control signal is from CLK[0] CLK1: Register mode, register clock control signal is from CLK[1]	
PREG1_CE	CE0, CE1	CE0	 Mult1 Pipeline register clock enable control signal CE0: Register clock enable control signal is from CE[0] CE1: Register clock enable control signal is from CE[1] 	
PREG1_RESET	RESET0, RESET1	RESET0	 Mult1 Pipeline register reset control signal RESET0: Register reset control signal is from RESET[0] RESET1: Register reset control signal is from RESET[1] 	
FB_PREG_EN	FALSE, TRUE	FALSE	Feedback output pipeline register mode control parameter FALSE: Bypass mode: TRUE: Register enable, control signal clk/ce/reset is consistent with OREG	
OREG_CLK	BYPASS, CLK0, CLK1	BYPASS	 Output register clock control signal BYPASS: Bypass mode: CLK0: Register mode, register clock control signal is from CLK[0] CLK1: Register mode, register clock control signal is from CLK[1] 	
OREG_CE	CE0, CE1	CE0	Output register clock enable control signal CE0: Register clock enable control signal is from CE[0] CE1: Register clock enable control signal is from CE[1]	
OREG_RESET	RESET0, RESET1	RESET0	Output register reset control signal RESET0: Register reset control signal is from RESET[0] RESET1: Register reset control signal is from RESET[1]	
MULT_RESET_M ODE	SYNC, ASYNC	SYNC	Synchronous or asynchronous	

UG305-1.0E 59(77)

Parameter	Range	Default Value	Description		
PRE_LOAD	48bits value	48'h0	PRE_LOAD instantiation value		
ADD_SUB_0	1'b0, 1'b1	1'b0	Static control addition/subtraction selection of M0/0 1'b0: Addition 1'b1: Subtraction		
DYN_ADD_SUB_ 0	FALSE, TRUE	FALSE	Dynamic control addition/subtraction selection of M0/0 FALSE: ADD_SUB_0 static control addition/subtraction selection of M0/0 TRUE: Input ADDSUB[0] dynamic control addition/subtraction selection of M0/0		
ADD_SUB_1	1'b0, 1'b1	1'b0	Static control addition/subtraction of M1/0 1'b0: Addition 1'b1: Subtraction		
DYN_ADD_SUB_ 1	FALSE, TRUE	FALSE	Dynamic control addition/subtraction selection of M1/0 FALSE: ADD_SUB_1 static control addition/subtraction selection of M1/0 TRUE: Input ADDSUB[1] dynamic control addition/subtraction selection of M1/0		
CASI_SEL	1'b0, 1'b1	1'b0	Static control CASI/0 selection 1'b0: 0 1'b1: CASI		
DYN_CASI_SEL	FALSE, TRUE	FALSE	Dynamic control CASI/0 selection FALSE: CASI_SEL static control CASI/0 selection TRUE: Input CASISEL dynamic control CASI/0 selection		
ACC_SEL	1'b0, 1'b1	1'b0	Static control PRE_LOAD/DOUT selection 1'b0: PRE_LOAD 1'B1: DOUT of feedback		
DYN_ACC_SEL	FALSE, TRUE	FALSE	Dynamic control PRE_LOAD/DOUT selection • FALSE: ACC_SEL static control PRE_LOAD/DOUT selection		

UG305-1.0E 60(77)

Parameter	Range	Default Value	Description	
			•	TRUE: Input ACCSEL dynamic control
				PRE_LOAD/DOUT selection

Primitive Instantiation

The primitives can be instantiated directly, or generated by the IP Core Generator. For the details, you can refer to Chapter 5 IP Generation.

Verilog Instantiation:

```
MULTADDALU12X12 multaddalu12x12 inst (
    .DOUT(dout),
    .CASO(caso),
    .A0(a0),
    .B0(b0),
    .A1(a1),
    .B1(b1),
    .CASI(casi),
    .ACCSEL(gw_gnd),
    .CASISEL(gw gnd),
    .ADDSUB({gw_gnd,gw_gnd}),
    .CLK({gw_gnd,clk}),
    .CE({gw gnd,ce}),
    .RESET({gw gnd,reset})
);
defparam multaddalu12x12 inst.A0REG CLK = "CLK0";
defparam multaddalu12x12 inst.A0REG CE = "CE0";
defparam multaddalu12x12 inst.A0REG RESET = "RESET0";
defparam multaddalu12x12_inst.A1REG_CLK = "CLK0";
defparam multaddalu12x12 inst.A1REG CE = "CE0";
defparam multaddalu12x12 inst.A1REG RESET = "RESET0";
defparam multaddalu12x12 inst.B0REG CLK = "CLK0";
```

UG305-1.0E 61(77)

```
defparam multaddalu12x12 inst.B0REG CE = "CE0";
defparam multaddalu12x12 inst.B0REG RESET = "RESET0";
defparam multaddalu12x12 inst.B1REG CLK = "CLK0";
defparam multaddalu12x12_inst.B1REG_CE = "CE0";
defparam multaddalu12x12 inst.B1REG RESET = "RESET0";
defparam multaddalu12x12 inst.ACCSEL IREG CLK = "BYPASS";
defparam multaddalu12x12 inst.ACCSEL IREG CE = "CE0";
defparam multaddalu12x12_inst.ACCSEL IREG RESET = "RESET0":
defparam multaddalu12x12 inst.CASISEL IREG CLK = "BYPASS";
defparam multaddalu12x12 inst.CASISEL IREG CE = "CE0";
defparam multaddalu12x12 inst.CASISEL IREG RESET = "RESET0";
defparam multaddalu12x12 inst.ADDSUB0 IREG CLK = "BYPASS";
defparam multaddalu12x12 inst.ADDSUB0 IREG CE = "CE0";
defparam multaddalu12x12 inst.ADDSUB0 IREG RESET = "RESET0";
defparam multaddalu12x12 inst.ADDSUB1 IREG CLK = "BYPASS";
defparam multaddalu12x12 inst.ADDSUB1 IREG CE = "CE0";
defparam multaddalu12x12 inst.ADDSUB1 IREG RESET = "RESET0";
defparam multaddalu12x12 inst.PREG0 CLK = "BYPASS";
defparam multaddalu12x12 inst.PREG0 CE = "CE0";
defparam multaddalu12x12 inst.PREG0 RESET = "RESET0";
defparam multaddalu12x12 inst.PREG1 CLK = "BYPASS";
defparam multaddalu12x12 inst.PREG1 CE = "CE0";
defparam multaddalu12x12 inst.PREG1 RESET = "RESET0";
defparam multaddalu12x12_inst.FB_PREG_EN = "FALSE";
defparam multaddalu12x12_inst.ACCSEL_PREG_CLK = "BYPASS";
defparam multaddalu12x12 inst.ACCSEL PREG CE = "CE0";
defparam multaddalu12x12 inst.ACCSEL PREG RESET = "RESET0";
defparam multaddalu12x12_inst.CASISEL_PREG_CLK = "BYPASS";
defparam multaddalu12x12 inst.CASISEL PREG CE = "CE0";
defparam multaddalu12x12 inst.CASISEL PREG RESET = "RESET0";
defparam multaddalu12x12 inst.ADDSUB0 PREG CLK = "BYPASS";
```

UG305-1.0E 62(77)

```
defparam multaddalu12x12 inst.ADDSUB0 PREG CE = "CE0";
 defparam multaddalu12x12 inst.ADDSUB0 PREG RESET =
"RESET0":
 defparam multaddalu12x12 inst.ADDSUB1 PREG CLK = "BYPASS";
 defparam multaddalu12x12 inst.ADDSUB1 PREG CE = "CE0";
 defparam multaddalu12x12 inst.ADDSUB1 PREG RESET =
"RESET0":
 defparam multaddalu12x12 inst.OREG CLK = "CLK0";
 defparam multaddalu12x12 inst.OREG CE = "CE0";
 defparam multaddalu12x12 inst.OREG RESET = "RESET0";
 defparam multaddalu12x12 inst.MULT RESET MODE="SYNC";
 defparam multaddalu12x12 inst.PRE LOAD=48'h000000000000;
 defparam multaddalu12x12 inst.DYN ADD SUB 0 = "FALSE";
 defparam multaddalu12x12 inst.ADD SUB 0=1'b0;
 defparam multaddalu12x12 inst.DYN ADD SUB 1 = "FALSE";
 defparam multaddalu12x12 inst.ADD SUB 1=1'b0;
 defparam multaddalu12x12 inst.DYN CASI SEL = "FALSE";
 defparam multaddalu12x12_inst.CASI SEL=1'b1;
 defparam multaddalu12x12 inst.DYN ACC SEL = "FALSE";
 defparam multaddalu12x12 inst.ACC SEL=1'b0;
 VhdI Instantiation:
 COMPONENT MULTADDALU12X12
         GENERIC (
              A0REG CLK : string := "BYPASS";
              A0REG CE:string:="CE0";
              A0REG RESET:string:="RESET0";
              A1REG CLK: string:="BYPASS";
              A1REG CE:string:="CE0";
              A1REG RESET:string:="RESET0";
               B0REG CLK : string := "BYPASS";
               B0REG E:string:="CE0";
```

UG305-1.0E 63(77)

```
BOREG RESET:string:="RESET0";
B1REG CLK: string:="BYPASS";
B1REG CE:string:="CE0";
B1REG_RESET:string:="RESET0";
ACCSEL IREG CLK: string:= "BYPASS";
ACCSEL IREG CE:string:="CE0";
ACCSEL IREG RESET: string:= "RESET0";
CASISEL IREG CLK: string:= "BYPASS";
CASISEL IREG CE:string:="CE0";
CASISEL IREG RESET:string:="RESET0";
ADDSUB0 IREG CLK: string:= "BYPASS";
ADDSUB0 IREG CE:string:="CE0";
ADDSUB0 IREG RESET:string:="RESET0";
ADDSUB1 IREG CLK: string:= "BYPASS";
ADDSUB1 IREG CE:string:="CE0";
ADDSUB1 IREG RESET:string:="RESET0";
PREG0 CLK: string:="BYPASS";
PREG0 CE:string:="CE0";
PREG0 RESET:string:="RESET0";
PREG1 CLK: string:="BYPASS";
PREG1 CE:string:="CE0";
PREG1 RESET:string:="RESET0";
FB PREG EN:string:="FALSE";
ACCSEL_PREG_CLK : string := "BYPASS";
ACCSEL_PREG_CE:string:="CE0";
ACCSEL PREG RESET:string:="RESET0";
CASISEL PREG CLK: string := "BYPASS";
CASISEL_PREG_CE:string:="CE0";
CASISEL PREG RESET:string:="RESET0";
ADDSUB0 PREG CLK: string:= "BYPASS";
ADDSUB0 PREG CE:string:="CE0";
```

UG305-1.0E 64(77)

```
ADDSUB0_PREG_RESET:string:="RESET0";
      ADDSUB1 PREG CLK: string:="BYPASS";
      ADDSUB1 PREG CE:string:="CE0";
      ADDSUB1_PREG_RESET:string:="RESET0";
      OREG CLK: string:= "BYPASS";
      OREG CE: string:="CE0";
      OREG RESET: string:= "RESET0";
      MULT RESET MODE:string:="SYNC";
      PRE LOAD: bit vector := X"000000000000";
      DYN ADD SUB 0: string := "FALSE";
      ADD_SUB_0:bit:='0';
      DYN ADD SUB 1: string := "FALSE";
      ADD SUB 1:bit:='0';
      DYN CASI SEL: string := "FALSE";
      CASI SEL: bit := '0';
      DYN_ACC_SE : string := "FALSE";
      ACC SEL: bit := '0';
);
PORT(
    DOUT: out std logic vector(47 downto 0);
    CASO: out std logic vector(47 downto 0);
   A0: in std logic vector(11 downto 0);
   B0: in std logic vector(11 downto 0);
   A1: in std_logic_vector(11 downto 0);
    B1: in std_logic_vector(11 downto 0);
   CASI: in std_logic_vector(47 downto 0);
   ACCSEL: in std logic;
    CASISEL: in std_logic;
   ADDSUB: in std logic vector(1 downto 0);
    CLK: in std logic vector(1 downto 0);
    CE: in std logic vector(1 downto 0);
```

UG305-1.0E 65(77)

```
RESET: in std_logic_vector(1 downto 0)
       );
   end COMPONENT;
begin
   gw gnd <= '0';
   ADDSUB i <= gw gnd & gw gnd;
   CLK i <= gw gnd & clk;
   CE i <= gw gnd & ce;
   RESET i <= gw gnd & reset;
   multaddalu12x12 inst: MULTADDALU12X12
       GENERIC MAP(
           A0REG_CLK => "CLK0",
           A0REG_CE => "CE0",
           A0REG_RESET => "RESET0",
           A1REG_CLK => "CLK0",
           A1REG_CE => "CE0",
           A1REG RESET => "RESET0",
           BOREG CLK => "CLKO",
           B0REG_CE => "CE0",
           BOREG RESET => "RESETO",
           B1REG CLK => "CLK0",
           B1REG_CE => "CE0",
           B1REG_RESET => "RESET0",
           ACCSEL_IREG_CLK => "BYPASS",
           ACCSEL_IREG_CE => "CE0",
           ACCSEL_IREG_RESET => "RESET0",
           CASISEL IREG CLK => "BYPASS",
           CASISEL IREG CE => "CEO",
           CASISEL IREG RESET => "RESETO",
```

UG305-1.0E 66(77)

4 DSP Primitive 4.3 MULTADDALU

```
ADDSUB0_IREG_CLK => "BYPASS",
ADDSUB0 IREG CE => "CE0",
ADDSUB0 IREG RESET => "RESET0",
ADDSUB1_IREG_CLK => "BYPASS",
ADDSUB1 IREG CE => "CE0",
ADDSUB1 IREG RESET => "RESETO",
PREGO CLK => "BYPASS",
PREG0 CE => "CE0",
PREG0 RESET => "RESET0",
PREG1 CLK => "BYPASS",
PREG1_CE => "CE0",
PREG1 RESET => "RESET0",
FB_PREG_EN => "FALSE",
ACCSEL_PREG_CLK => "BYPASS",
ACCSEL PREG CE => "CE0",
ACCSEL PREG RESET => "RESETO",
CASISEL_PREG_CLK => "BYPASS",
CASISEL PREG CE => "CE0",
CASISEL PREG RESET => "RESETO",
ADDSUB0 PREG CLK => "BYPASS",
ADDSUB0_PREG_CE => "CE0",
ADDSUB0 PREG RESET => "RESET0",
ADDSUB1 PREG CLK => "BYPASS",
ADDSUB1_PREG_CE => "CE0",
ADDSUB1_PREG_RESET => "RESET0",
OREG CLK => "CLK0",
OREG CE => "CE0",
OREG RESET => "RESETO",
MULT RESET MODE => "SYNC"
PRE LOAD => X"000000000000",
DYN ADD SUB 0 => "FALSE",
```

UG305-1.0E 67(77)

4 DSP Primitive 4.3 MULTADDALU

```
ADD_SUB_0 => '0',
    DYN_ADD_SUB_1 => "FALSE",
    ADD_SUB_1 => '0',
    DYN_CASI_SEL => "FALSE",
    CASI SEL => '1',
    DYN ACC SEL => "FALSE",
   ACC SEL => '0',
)
PORT MAP (
    DOUT => dout,
    CASO => caso,
    A0 => a0,
    B0 => b0,
    A1 => a1,
    B1 => b1,
    CASI => casi,
    ACCSEL => gw_gnd,
    CASISEL => gw_gnd,
    ADDSUB => ADDSUB_i,
    CLK => CLK i,
    CE \Rightarrow CE_i,
    RESET => RESET_i
);
```

UG305-1.0E 68(77)

5 IP Generation 5.1 MULT

5 IP Generation

DSP block in IP Core Generator supports three types of Gowin Primitives: MULT, MULTALU, and MULTADDALU.

5.1 MULT

MULT implements multiplication operation based on the pre-addition and pre-subtraction of multiplication. Click "MULT" on the IP Core Generator, and a brief introduction to the MULT will be displayed.

IP Configuration

Double-click "MULT" to open the "IP Customization" window, as shown in Figure 5-1. This window includes the "File", "Multiplier", and port diagram.

UG305-1.0E 69(77)

5 IP Generation 5.1 MULT

Figure 5-1 IP Customization of MULT

- 1. The File Configuration: Configure the information about the generated IP design file.
 - Device: Display information about the configured Device.
 - Part Number: Display the configured Part Number.
 - Language: Hardware description language used to generate the IP design files. Click the drop-down list to select the language, including Verilog and VHDL.
 - Module Name: The module name of the generated IP design files. Enter the module name in the text box. Module name cannot be the same as the primitive name. If it is the same, an error will be reported.
 - File Name: The name of the generated IP design files. Enter the file name in the text box.
 - Create In: The path in which the generated IP files will be stored.
 Enter the target path in the box or select the target path by clicking the option.
- The Multiplier Configuration: Configure IP by users, as shown in Figure 5-1.
 - Data Options: Configure data

UG305-1.0E 70(77)

5 IP Generation 5.1 MULT

- The maximum data width of the input ports (Input A Width) is
 27
- The maximum data width of the input ports (Input B Width) is
 36
- The maximum data width of the input ports (Input D Width) is
 26
- Output width adjusts automatically according to input width and generates MULT12X12 and MULT27X36 according to the width during the instance.
- Pre-addition Options: Configure pre-addition options
 - Enable PADD: Configure PADD
 - PADD SEL: Configure PADD to enable dynamic control or static control
 - PADD ADDSUB: Configure PADD to pre-add and pre-subtract as dynamic control or static control
 - Output width adjusts automatically according to input width and generates MULT12X12 and MULT27X36 according to the width during the instance.
- Register Options: Configure register operation mode.
 - Reset Mode: Configure MULT reset mode, supporting synchronous mode and asynchronous mode
 - Input A Register: Configure clk, ce, and reset signal source of Input A Register CLK: Configure as Bypass, CLK0, or CLK1 CE: Configure as CE0 or CE1 RESET: Configure as RESET0 or RESET1
 - Input B Register: Configure clk, ce, and reset signal source of Input B Register Configuration options are as above
 - Input D Register: Configure clk, ce, and reset signal source of Input D Register Configuration options are as above
 - PSEL Input Register: Configure clk, ce, and reset signal source of PSEL Input Register Configuration options are as above
 - PADDSUB Input Register: Configure clk, ce, and reset signal source of PADDSUB Input Register Configuration options are as above
 - Pipeline Register: Configure clk, ce, and reset signal source of Pipeline Register Configuration options are as above
 - Output Register: Configure clk, ce, and reset signal source of Output Register Configuration options are as above

UG305-1.0E 71(77)

3. Ports Diagram: Display current IP Core configuration. The input/output number and its bit-width update in real time based on the "Multiplier" configuration, as shown in Figure 5-1.

IP Generation Files

After configuration, it will generate three files that are named after the "File Name".

- "gowin_mult.v" file is a complete Verilog module to generate instance MULT, and it is generated according to the IP configuration;
- "gowin_mult_tmp.v" is the instance template file;
- "gowin_rpll.ipc" file is IP configuration file. You can load the file to configure the IP.

Note!

If VHDL is selected as the hardware description language, the first two files will be named with .vhd suffix.

5.2 MULTALU

The MULTALU implements multiplication, multiply-add, accumulation, multiply-accumulate, shift based on multiplication/multiply-add/accumulation/multiply-accumulate, cascade based on multiplication/multiply-add/accumulation/multiply-accumulate, pre-addition and pre-subtraction based on multiplication/multiply-add/accumulation/multiply-accumulate, etc. Click "MULTALU" on the IP Core Generator, and a brief introduction to the MULTALU will be displayed.

IP Configuration

Double-click "MULTALU" to open the "IP Customization" window. This window includes "File", "Mode", "Multiplier", "C Operation", "Cascade", "Accumulation", "Common", as shown in Figure 5-2.

UG305-1.0E 72(77)

Figure 5-2 IP Customization of MULTALU

- File Configuration: Configure the information about the generated IP design file. The file configuration MULTALU is similar to that of MULT. For the details, refer to <u>5.1 MULT</u> File Configuration.
- Mode: Configure the operation mode of MULTALU27X18
 - Mode Options: Configure the operation mode of MULTALU27X18
 - ± (A*B)
 - ± ((A±D)*B)
 - ± (A*B) ± C
 - ± ((A±D)*B) ± C
 - Accum ± (A*B)
 - Accum ± ((A±D)*B)
 - Accum ± (A*B) ± C
 - Accum ± ((A±D)*B) ± C
 - CASI ± (A*B)

UG305-1.0E 73(77)

- CASI \pm ((A \pm D)*B)
- CASI ± (A*B) ± C
- CASI ± ((A±D)*B) ± C
- Accum ± (A*B) +CASI
- Accum ± ((A±D)*B) + CASI
- Accum ± (A*B) ± C + CASI
- Accum ± ((A±D)*B) ± C + CASI
- Multiplier: Configure multiplier, including Data Options, Pre-addition Options, ASEL Option, ADDSUB0 Option, Shift Option, and Register Options
 - The Data Options, Pre-addition Options, and Register Options configuration of MULTALU is similar to that of MULT. For the details, please refer to <u>5.1 MULT</u>.
 - ASEL Option: Configure A, control mode of SIA source selection
 - Supports dynamic control "Dynamic" and static control "Static".
 - Dynamic: AESL input port enable
 - Static: Configure "Parallel" (select A) and "Shift" (select SIA)
 - ADDSUB0 Option: Configure control mode of Addition/Subtraction selection of M0/0
 - Supports dynamic control "Dynamic" and static control "Static".
 - Dynamic: ADDSUB0 input port enable
 - Static: Configure "add" (select Addition) and "sub" (select Subtraction)
 - Shift Option: enable shift out function
- 4. C Opreation: Configure input C, including Data Options, CSEL Option, ADDSUB1 Option, and Register Options
 - The Data Options and Register Options configuration of MULTALU is similar to that of MULT. For the details, please refer to 5.1 MULT.
 - CSEL Option: Configure the control mode of C/0 source selection
 - Supports dynamic control "Dynamic" and static control "Static".
 - ADDSUB1 Option: Configure the control mode of Addition/Subtraction selection of M1/C/0
 - Supports dynamic control "Dynamic" and static control "Static".
 - Dynamic: ADDSUB1 input port enable
 - Static: Configure "add" (select Addition) and "sub" (select

UG305-1.0E 74(77)

Subtraction)

- Cascade: Configure cascading input CASI, including CASISEL Option and Register Options
 - The Register Options configuration of MULTALU is similar to that of MULT. For the details, refer to <u>5.1 MULT</u>.
 - CASISEL Option: Configure the control mode of CASI/0 source selection
 - Supports dynamic control "Dynamic" and static control "Static".
 - Dynamic: CASISEL input port enable
- 6. Accumulation: Configure ACCSEL and PRE_LOAD, including ACCSEL Option, Initialization Option, and Register Options
 - The Register Options configuration of MULTALU is similar to that of MULT. For the details, refer to 5.1 MULT.
 - ACCSEL Option: Configure PRE_LOAD, control mode of feedback source selection
 - Supports dynamic control "Dynamic" and static control "Static".
 - Dynamic: ACCSEL input port enable
 - Static: Configure "PRE_LOAD" (select PRE_LOAD) and "DOUT" (select output feedback)
 - Initialization Option: set the initialization value of PRE LOAD
 - Preload Value range:48'h00000000000000~48'hFFFFFFFFFFFF
- 7. Common: Configure output and reset mode, including Data Options and Register Options
 - The Data Options and Register Options configuration of MULTALU is similar to that of MULT. For the details, please refer to <u>5.1 MULT</u>.
- 8. Ports Diagram: Display current IP Core configuration. The input/output port and its bit-width update in real time based on the "Options" configuration, as shown in Figure 5-2.

IP Generation Files

After configuration, it will generate three files that are named after the "File Name".

- "gowin_multalu.v" file is a complete Verilog module to generate instance MULTALU, and it is generated according to the IP configuration;
- "gowin multalu tmp.v" is the instance template file;
- "gowin multalu.ipc" file is IP configuration file. You can load the file to

UG305-1.0E 75(77)

configure the IP.

Note!

If VHDL is selected as the hardware description language, the first two files will be named with .vhd suffix.

5.3 MULTADDALU

MULTADDALU implements the multiplier quadratic summation or accumulation function. Select DSP in Hard Module in IP Core Generator. Click "MULTADDALU", a brief introduction to the MULTADDALU will be displayed.

IP Configuration

Double-click the "MULTADDALU" to open the "IP Customization" window. This window includes the "File", "Options", port diagram, as shown in Figure 5-3.

Figure 5-3 IP Customization of MULTADDALU

1. File Configuration: Configure the information about the generated IP

UG305-1.0E 76(77)

design file. The MULTADDALU File configuration is similar to that of MULT. For the details, refer to <u>5.1 MULT</u>.

- 2. Mode Option: Configure the operation modes of MULTADDALU.
 - ± (A0 * B0) ± (A1 * B1)
 - CASI ± (A0 * B0) ± (A1 * B1)
 - Accum ± (A0 * B0) ± (A1 * B1)
 - Accum ± CASI ± (A0 * B0) ± (A1 * B1)
- 3. The parameter configuration of Multiplier Sum, Cascade, Accumulation, and Common is similar to that of MULTALU. For the details, refer to <u>5.2</u> MULTALU.
- 4. Ports Diagram: Display current IP Core configuration. The input/output port and its bit-width update in real time based on the "Options" configuration, as shown in Figure 5-2.

IP Generation Files

After configuration, it will generate three files that are named after the "File Name".

- "gowin_multaddalu.v" file is a complete Verilog module to generate instance MULTADDALU, and it is generated according to the IP configuration;
- "gowin multaddalu tmp.v" is the instance template file;
- "gowin_multaddalu.ipc" file is IP configuration file. You can load the file to configure the IP.

Note!

If VHDL is selected as the hardware description language, the first two files will be named with .vhd suffix.

UG305-1.0E 77(77)

