My notes on cryptography

Omid Bodaghi

March 3, 2025

Contents

I	Pre	erequisites]			
1	Polynomial Functions					
	1.1	SZDL Lemma	٠			
		1.1.1 Zero Polynomial	2			
		1.1.2 Equality of Polynomial Functions				
2	Ploi	nk Proof System	,			
	9 1	Vanishing Polynomial				
	2.2	Zero Test				
	2.3	Product Check	(
	2.4	Premutation Check	(
			Ć			

iv CONTENTS

Part I Prerequisites

Chapter 1

Polynomial Functions

Definition 1.1. A polynomial function f of degree d is a function of the form

$$f(X) = c_0 + c_1 X + c_2 X^2 + \dots + c_d X^d$$

where $c_d \neq 0$. Each term $c_i x^i$ is called a monomial.

A polynomial function $f(X) \in \mathbb{F}^{(\leq d)}[X]$ is said to be of degree at most d, where the coefficients are taken from the finite field \mathbb{F} .

In such a polynomial, all arithmetic operations—such as addition and multiplication—are performed in \mathbb{F} . For example, to compute the expression $c_0 + c_2 x^2$, one first computes $x^2 = x \cdot x$ in \mathbb{F} , then multiplies by c_2 , and finally adds c_0 , with each operation carried out in \mathbb{F}_p .

Remark 1.1. Polynomials that have no roots in the real numbers may possess roots in a finite field, and conversely, polynomials that have real roots may have no roots in a finite field [rareskills finitefields].

Definition 1.2. A multivariate polynomial function $f(X_1, X_2, ..., X_n)$ is a polynomial function in more than one variable. A polynomial function in a single variable is called *univariate*.

In a multivariate polynomial function with ℓ variables, each term(monomial) has the form

$$c\,X_1^{d_1}X_2^{d_2}\cdots X_\ell^{d_\ell},$$

and its degree is given by $d_1 + d_2 + \cdots + d_\ell$. The *total degree* of the polynomial is the maximum degree among all its monomials. Multivariate polynomial functions over a filed \mathbb{F} are commonly denoted either as $f(x_1, x_2, \dots, x_\ell)$, with each $x_i \in \mathbb{F}$, or as f(x) where $x \in \mathbb{F}^\ell$.

Definition 1.3. In a polynomial function f(X), an element x is called a *root* (or *zero*) of f if f(x) = 0.

1.1 SZDL Lemma

Theorem 1.1. Let $f(X) \in \mathbb{F}^{(\leq d)}[X]$ be a polynomial of degree at most d over the finite field \mathbb{F} . Then f(X) has at most d distinct roots.

Proof. This an informal proof. Assume for the sake of contradiction that f(X) has d+1 distinct roots, say $x_1, x_2, \ldots, x_{d+1}$. Then f(X) is divisible by

$$(X-x_1)(X-x_2)\cdots(X-x_{d+1}),$$

which is a polynomial of degree d+1. This contradicts the assumption that f(X) is of degree at most d. Hence, f(X) cannot have more than d distinct roots.

Lemma 1.2. Schwartz-Zippel Lemma: Let $f(X_1, X_2, ..., X_\ell) \in \mathbb{F}[X_1, X_2, ..., X_\ell]$ be a nonzero multivariate polynomial with total degree d. If the variables $x_1, x_2, ..., x_\ell$ are chosen uniformly at random from \mathbb{F} , then

$$\Pr\Big[f(x_1, x_2, \dots, x_\ell) = 0\Big] \le \frac{d}{|\mathbb{F}|},$$

where $|\mathbb{F}|$ denotes the size of the field.

The univariate case follows by setting $\ell = 1$.

1.1.1 Zero Polynomial

Consider a nonzero ℓ -variate polynomial function f of total degree d over \mathbb{F}_p . For a randomly chosen point $r \in \mathbb{F}_p^{\ell}$, we have

$$\Pr[f(r) = 0] \le \frac{d}{|\mathbb{F}_p|}.$$

For example, if \mathbb{F}_p is such that $|\mathbb{F}_p| \approx 2^{256}$ and the total degree is 2^{20} , then by Lemma 1.2,

$$\Pr[f(r) = 0] \le \frac{2^{20}}{2^{256}} = \frac{1}{2^{236}},$$

which is an exceedingly small probability.

Consequently, if for a random r we find that f(r) = 0, we can conclude—with overwhelming probability— that f is the zero polynomial. Although there is a slight chance of error, it is negligible in practice.

1.1.2 Equality of Polynomial Functions

Consider two multivariate polynomial functions f(X) and g(X), each having total degree at most d. By the Schwartz-Zippel Lemma, if a randomly chosen point r satisfies f(r) = g(r), then with high probability f(X) and g(X) are identical. To see this, define

$$h(X) = f(X) - g(X).$$

Then h(X) has degree at most d, and if f(r) = g(r), we have h(r) = 0. Since a nonzero polynomial of degree at most d vanishes with probability at most $d/|\mathbb{F}|$, it follows that with high probability h must be the zero polynomial. Hence, f(X) = g(X).

Part II Zero Knowledge Proofs

Chapter 2

Plonk Proof System

This section provides an overview of the PLONK proof system for arithmetic circuits. In this chapter, we assume the existence of a polynomial commitment scheme (e.g., the KZG commitment scheme) and show how to use such a commitment to construct the PLONK proof system.

Throughout this chapter, we denote the commitment of polynomial function f as com_f .

2.1 Vanishing Polynomial

Let \mathbb{F}_p be a field of large prime order p, and let $\Omega \subseteq \mathbb{F}_p$ be a subset with $|\Omega| = k$. In the following sections, we define efficient polynomial IOPs (Interactive Oracle Proofs) for various tasks over Ω

Remark 2.1. Using a specific subset Ω rather than the entire field \mathbb{F}_p allows us to work with a manageable set of evaluation points. If the entire field were used, the corresponding vanishing polynomial would have degree p, which is impractical for computation.

Definition 2.1 (Vanishing Polynomial). The vanishing polynomial of Ω , denoted by $Z_{\Omega}(X)$, is the unique polynomial that evaluates to zero at every point in Ω . Thus, we have

$$Z_{\Omega}(X) = \prod_{a \in \Omega} (X - a),$$

which implies that the degree of $Z_{\Omega}(X)$ is $|\Omega|$.

For the specific case where w is a primitive kth root of unity (i.e., $w^k = 1$) and

$$\Omega = \{1, w, w^2, \dots, w^{k-1}\} \subset \mathbb{F}_p,$$

the vanishing polynomial simplifies to

$$Z_{\Omega}(X) = X^k - 1.$$

Remark 2.2. In the case where $\Omega=\{1,w,w^2,\ldots,w^{k-1}\}$, the vanishing polynomial can be evaluated efficiently using exponentiation by squaring, which requires approximately $\log_2 k$ multiplications; when counting both squaring and multiplication steps, the total comes to roughly $2\log k$ operations. In contrast, for a general subset Ω , directly computing

$$Z_{\Omega}(X) = \prod_{a \in \Omega} (X - a)$$

would require k-1 multiplications, making it much less efficient for large k.

This significant speedup is why, in the subsequent sections, we restrict ourselves to the case

$$\Omega = \{1, w, w^2, \dots, w^{k-1}\}.$$

2.2 Zero Test

Assume a prover P wants to prove to a verifier V that

$$f(a) = 0$$
 for all $a \in \Omega$,

and the verifier already holds a commitment com_f to the polynomial f. Let $\Omega \subset \mathbb{F}_p$ be a subset of size $|\Omega| = k$, and assume $\deg(f) \leq d$.

The naive approaches for the verifier are:

- 1. The verifier directly evaluates f on every point in Ω and checks if each evaluation is zero. This requires $\mathcal{O}(k)$ polynomial evaluations, which is inefficient for large k.
- 2. The verifier queries the prover to prove correctness of f(a) = 0 for each $a \in \Omega$. This yields $\mathcal{O}(k)$ individual proofs, also inefficient.

By using an Interactive Oracle Proof (IOP) and a vanishing polynomial, we can reduce the complexity significantly. The key observation is:

If
$$f(a) = 0$$
 for all $a \in \Omega$, then $f(X) = g(X) \cdot Z_{\Omega}(X)$,

where $Z_{\Omega}(X)$ is the vanishing polynomial over Ω .

Protocol Overview

- 1. Compute and Commit to q: The prover computes the polynomial q(X) such that $f(X) = q(X) Z_{\Omega}(X)$. Since $\deg(f) \leq d$, we have $\deg(q) \leq d$. The prover sends a commitment to q (denoted com_q) to the verifier.
- 2. Random Challenge: The verifier samples a random challenge $r \in \mathbb{F}_p$ (public-coin protocol). The verifier sends r to the prover.
- 3. Opening the Commitments: The prover returns:

along with proofs (in the polynomial commitment scheme) that these openings are consistent with the committed polynomials f and q. This ensures the prover cannot lie about the polynomial values.

4. Check the Factorization: The verifier locally computes $Z_{\Omega}(r)$. Then it checks the relation

$$f(r) \stackrel{?}{=} q(r) \cdot Z_{\Omega}(r).$$

If this holds, the verifier accepts; otherwise, it rejects.

Informal Security Argument. If f(X) truly vanishes on Ω , then there is a valid q(X) of degree at most d, and the relation $f(r) = q(r) Z_{\Omega}(r)$ holds for all r. The verifier accepts.

Conversely, define

$$h(X) = f(X) - q(X) Z_{\Omega}(X).$$

If f(X) does not vanish on Ω , then no polynomial q(X) of degree at most d can satisfy $f(X) = q(X) Z_{\Omega}(X)$. Consequently, h(X) is a nonzero polynomial. A nonzero polynomial of degree $\deg(h)$ over \mathbb{F}_p can have at most $\deg(h)$ roots. Hence, when the verifier selects a random $r \in \mathbb{F}_p$, the probability that h(r) = 0 is at most $\deg(h)/|\mathbb{F}_p|$. Therefore, except with negligible probability, the verifier's check

$$f(r) \stackrel{?}{=} q(r) Z_{\Omega}(r)$$

will fail, and the verifier will reject.

- 2.3 Product Check
- 2.4 Premutation Check
- 2.5 Prescribed Permutation Check