

Representação de Conhecimento

Lógica Proposicional

Representação de conhecimento

- O que é conhecimento?
- O que é representar?

Representação mental de **solidariedade**

Símbolo como CENTRO da representação

Desafios para representação de conhecimento

- O que é representar?
- Quem interpretará a representação?
 - Humano
 - Computador
- Que linguagem de representação utilizar?

Representação de conhecimento

- Lógica
 - Proposicional
 - 1ª Ordem
- Redes semânticas
- Frames
- Regras de produção

Lógica matemática

- Lógica matemática -> ciência do raciocínio e da demonstração (século XIX)
 - George Boole → matemático inglês (1815 1864)
 - Álgebra Boolean

 utiliza símbolos e operações algébricas para representar proposições e suas inter-relações.
 - As idéias de Boole -> Base da Lógica Simbólica
 - Aplicação -> computação e eletrônica.
 - Sentenças declarativas -> proposições
 - Pré-requisitos:
 - Princípio do terceiro excluído: uma proposição só pode ser verdadeira ou falsa, não havendo outra alternativa.
 - Princípio da não contradição: uma proposição não pode ser ao mesmo tempo verdadeira e falsa.

Conceitos básicos

- Exemplos de proposições:
 - 1. A terra é azul.
 - 2. Recife é a cidade do frevo.
 - 3. Glória Perez escreve a novela Salve Jorge.
 - 4. 2+2=5

 Uma proposição só pode ter um valor lógico: verdadeiro ou falso

Conceitos básicos

- Proposição
 - Simples: menor grão de significado
 - Flamengo é o atual campeão brasileiro (F)
 - Composta: constituída de proposições simples interligadas por conectivos lógicos
 - O Aviador não ganhou o Oscar de melhor filme.
 - Menina de Ouro levou o Oscar de melhor filme, de melhor atriz e de melhor ator coadjuvante.
 - Se chover hoje, vou ao cinema.

Conceitos básicos

- Conectivos:
 - NÃO (negação)
 - E (conjunção)
 - OU (disjunção)
 - SE-ENTÃO (condicional)
 - SE, E SOMENTE SE (bi-condicional)

A linguagem proposicional

Alfabeto

- Variáveis proposicionais: nomes que representam proposições simples.
- Conectivos lógicos:

¬ : Não

V : OU

•Λ : E

 \rightarrow : Se..Então

 $\bullet \leftrightarrow$: Se, e somente Se

Símbolos auxiliares: ()

A Linguagem proposicional

- Sentenças
 - Toda proposição é uma sentença
 - Se α é uma sentença, então $\neg \alpha$ também é
 - Se α e β são sentenças, então são:
 - α ^ β também é
 - α V β
 - $\alpha \rightarrow \beta$
 - $\alpha \leftrightarrow \beta$
- Exemplos:
 - (chuva→usar_capa)^(sol→ ¬usar_capa)

- ν :Variáveis proposicionais (V, F)
- Exemplos

Sejam as proposições simples:

- P: A Terra gira em torno do sol.
- Q: Salvador é a capital da Bahia.
- R: 3,2 é um número inteiro.
- Temos então:
 - v(P) = V
 - v(Q) = V
 - v(R) = F

Exemplo para n=3

Р	Q	R
Т	Т	Т
Т	Т	F
Т	F	Т
Т	F	F
F	Т	Т
F	Т	F
F	F	Т
F	F	F

- O valor lógico de uma sentença é dado pela função v, definida abaixo:
 - Para toda variável proposicional P, v(P) = v(P).
- Se α é uma sentença, então $\nu(\neg P) = \neg \nu(P) = \neg$, onde:

$$\neg V = F$$

$$\neg F = V$$

• Ou seja, $v(\neg \alpha)$ é definido pela

tabela verdade:

α	$\neg \alpha$
>	F
ш	V

$$v(\alpha \land \beta) = v(\alpha) \land v(\beta)$$

Onde → tabela verdade

Р	Q	¬P	P^Q	PvQ	P→Q	P↔Q
V	V	F	V	V	V	V
V	F	F	F	V	F	F
F	V	V	F	V	V	F
F	F	V	F	F	V	V

p	q	$p \to q$ $(= \neg p \lor q)$	$(= \neg q \lor p)$	$(=(p \to q) \land (q \to p))$
T	T	T	T	T
T	F	F	T	F
F	T	T	F	F
F	F	T	T	T

<u>Biconditional</u>: The statement $p \leftrightarrow q$ is true only when p and q have the same truth value.

The biconditional statement really means: "if p then q and if q then p" $(p \rightarrow q) \land (q \rightarrow p)$

	p	q	(p → g		(q → p)
Case 1	T	T	·T	1	T
Case 2	T	7	F	F	T
Case 3	F	T	T	F	F
Case 4	F	F	T	T	T

Biconditional				
	p	q	$p \leftrightarrow q$	
Case 1	T	T	T	
Case 2	T	F	K	
Case 3	F	T	F	
Case 4	F	F	T	

Do they match?

Exercícios

Construir as tabelas verdade para as seguintes proposições:

- a) $P(p,q,r) = p \vee \sim r \rightarrow q \wedge \sim r$
- b) $P(p,q) = \sim (p \land q) \lor \sim (q \leftrightarrow p)$
- c) $P(p,q,r) = (p \land q \rightarrow r) \lor (\sim p \leftrightarrow q \lor \sim r)$

- Supressão de parêntesis:
 - A ordem de precedência é:
 - 1. ¬
 - 2. ^
 - 3. v
 - 4. **→**
 - $5. \leftrightarrow$
 - Para conectivos idênticos, faz-se associação à esquerda.
 Exemplo:
 - P v Q ^ ¬R v S → T v U
 - denota
 - $((P \lor ((Q \land \neg R) \lor S)) \rightarrow (T \lor U))$

Definições

- Sentença
 - Verdadeira ou Falsa
- Interpretação
 - V ou F
- Modelo (sentença satisfazível)
 - Um contexto onde $v(\alpha) = V$

Definições

- Sentença válida
 - Sentença verdadeira para todas as interpretações
- Sentença contraditória (insatisfazível)
 - Sentença falsa para todas as interpretações
- Contingência
 - Nem contradição nem válida

Definições

• ν satisfaz $\alpha : \nu(\alpha) = V$

$$v = \alpha$$

- $\circ \alpha$ é **tautologia**, se e somente se, $^{v} \models = \alpha$ para todo v
- \circ α é **contradição**, se e somente se, não existe ν tal que $| \cdot | = \alpha$
- α é **satisfazível**, se e somente se, existe ν tal que α $|==\alpha$
- \circ α é **insatisfazível**, se e somente se, α é uma Contradição

Propriedades da equivalência lógica

- Reflexividade:
 - $\alpha = |\alpha|$
- Transitividade:
 - Se α |==| β e β |==| δ então α |==| δ
- Simetria:
 - Se α |==| β e β |==| α

•Um "argumento" é uma afirmação de que uma dada sentença α (a conclusão) é consequência de outras sentenças $\{\beta_{1,...,},\beta_{n,},n-1\}$ (as premissas).

Notação:

 $\frac{\beta_n}{\alpha}$

Para dizer que α é uma consequência de $\{\beta_{1,...},\beta_{n}\}$

Um argumento pode ser "válido" (correto, legítimo) ou "não válido" (incorreto, ilegítimo).

Dizemos ainda que um argumento não válido é um "sofisma".

Um argumento:

$$\begin{array}{c} \beta_1 \\ \cdot \\ \cdot \\ \beta_n \\ \hline \alpha \end{array}$$

é válido se, e somente se

$$\{\beta_{1,...},\beta_{n}\}\mid == \mathbf{C}$$

e, portanto, se e somente se

$$(\beta_1 \wedge \beta_n) \rightarrow \alpha$$

é tautologia.

 Uma regra de inferência é um argumento válido utilizado em deduções.

Se existe uma seqüência de sentenças

$$\beta_1, \beta_2, \beta_n$$

- Tal que:
- É β_n , α e
- Cada β_i é uma sentença de A, ou o resultado da aplicação de uma regra de inferência com premissas antes de β_i.

se A
$$\mid$$
- α então A \mid == α

Problema: Existe um conjunto de regras de inferência tal que:

se A
$$= \alpha$$
 então $-\alpha$

Observe que para toda **tautologia** , σ

$$\{\} \models = \sigma$$

logo, além das regras de inferência, precisamos de axiomas a partir dos quais as **tautologias** possam ser deduzidas: os chamados Axiomas Lógicos.

Representação de Conhecimento

Conhecimento pode ser representado de duas formas:

- explícita: por meio da formalização de sentenças
- implícita: por meio de consequência lógica (fatos derivados das sentenças)

Passos para formalização de sentenças

- Identificamos as palavras da sentença que correspondem a conectivos.
- Identificamos as partes da sentença que correspondem a proposições atômicas e associamos a cada uma delas um símbolo proposicional.
- Escrevemos a fórmula correspondente à sentença, substituindo suas proposições atômicas pelos respectivos símbolos proposicionais e seus conectivos lógicos pelos respectivos símbolos conectivos

Representação de Conhecimento

Exemplo

- Está chovendo.
- Se está chovendo, então a rua está molhada.
- Se a rua está molhada, então a rua está escorregadia.
- Vocabulário
 - c : "está chovendo"
 - m : "a rua está molhada"
 - e : "a rua está escorregadia"
- Formalização
 - $\Delta = \{c, c \rightarrow m, m \rightarrow e\}$

base de conhecimento

Formalização de Argumentos

Um argumento é uma seqüência de premissas seguida de uma conclusão

Exemplo

- Se neva, então faz frio.
- Está nevando.
- Logo, está fazendo frio.

Usando a sintaxe da lógica proposicional, formalize o argumento:

Se o time joga bem, então ganha o campeonato.

Se o time não joga bem, então o técnico é culpado.

Se o time ganha o campeonato, então os torcedores ficam contentes.

Os torcedores não estão contentes.

Logo, o técnico é culpado.

Validação de Argumentos

Um argumento é válido se a sua conclusão é uma conseqüência lógica de suas premissas, ou seja, a veracidade da conclusão está implícita na veracidade das premissas.

- Vamos mostrar três métodos de validação de argumentos:
 - Tabela-verdade (semântico)
 - Prova por dedução (sintático)
 - Prova por refutação (sintático)
- Métodos semânticos são baseados em interpretações
- Métodos sintáticos são baseados em regras de inferência (raciocínio)

Exercícios

- Sejam as proposições:
 - p : está frio
 - q : está chovendo

Traduzir para a linguagem natural as seguintes proposições:

- a) ~p
- b) $p \wedge q$
- c) p \vee q
- d) $q \leftrightarrow p$
- e) $p \rightarrow \sim q$
- f) p ∨ ~q
- g) ~p ∧ ~q
- h) $p \leftrightarrow \sim q$
- i) $p \land \neg q \rightarrow p$

Sejam as proposições:

- p : Sueli é rica
- q : Sueli é feliz

Traduzir para linguagem simbólica (lógica) as seguintes frases:

- a) Sueli é pobre, mas é feliz
- b) Sueli é rica o infeliz
- c) Sueli é pobre e infeliz
- d) Sueli é pobre ou rica, mas é feliz

Exercícios

Simbolizar, utilizando a lógica, as seguintes frases:

- a) X é maior que 5 e menor que 7 ou X não é igual a 6.
- b) Se X é menor que 5 e maior que 3, então X é igual a 4.
- c) X é maior que 1 ou X é menor que 1 e maior que 0.