Grundzüge der Theoretischen Informatik Kapitel 21 und 22

Markus Bläser Universität des Saarlandes

12.1.2022

Berühmte letzte Worte

99

Der Akku hat noch 18% ...

Kapitel 22: P und NP

Definition (22.1)

$$\begin{aligned} & P \! := \bigcup_{i \in \mathbb{N}} \mathsf{DTime}(\mathrm{O}(\mathfrak{n}^i)) \\ & \mathsf{NP} \! := \bigcup_{i \in \mathbb{N}} \mathsf{NTime}(\mathrm{O}(\mathfrak{n}^i)) \end{aligned}$$

▶ P und NP sind robuste Klassen, d.h. unabhängig von konkreten Maschinenmodell.

$$\mathsf{NP} = \bigcup_{i \in \mathbb{N}} \mathsf{NTime}(\mathrm{O}(\mathfrak{n}^i)) \subseteq \bigcup_{i \in \mathbb{N}} \mathsf{DTime}(2^{\mathrm{O}(\mathfrak{n}^i)}) =: \mathsf{EXP},$$

Probleme in P

$$s\text{-}t\text{-}\mathrm{CONN} = \{(G,s,t) \mid G \text{ ist ein gerichteter Graph} \\$$

$$\text{der einen Pfad von } s \text{ nach } t \text{ hat}\}.$$

Theorem (22.2)

s-t-CONN $\in P$.

 $\mathsf{St\"{a}rker\ gilt}\colon s\text{-}t\text{-}\mathrm{CONN}\in\mathsf{NL}:=\mathsf{NSpace}(\log n)$

NP und Zertifikate

Definition (22.3)

Eine polynomialzeit-beschränkte DTM M heißt Polynomialzeit-Verifizierer für $L \subseteq \{0, 1\}^*$, falls es ein Polynom p gibt mit:

- 1. Für alle $x \in L$ gibt es ein $c \in \{0,1\}^*$ mit $|c| \le p(|x|)$, so dass M das Paar [x,c] akzeptiert.
- 2. Für alle $x \notin L$ und alle $c \in \{0, 1\}^*$ liest M auf Eingabe [x, c] höchstens p(|x|) Bits von c und verwirft [x, c] immer.

Die von M verifizierte Sprache L bezeichnen wir mit V(M).

Theorem (22.4)

 $L \in \mathsf{NP}$ genau dann wenn es einen Polynomialzeit-Verifizierer für L gibt.

Probleme in NP

▶ Eine *Clique* eines Graphs G = (V, E) ist eine Teilmenge $C \subseteq V$, so dass $\{u, v\} \in E$ für alle $u, v \in C$ mit $u \neq v$. C heißt k-*Clique*, falls zusätzlich |C| = k.

Clique =
$$\{(G, k) \mid G \text{ ist ein ungerichteter Graph mit einer } k\text{-Clique}\}.$$

► Ein *Vertex-Cover* von G = (V, E) ist eine Teilmenge $C \subseteq V$, so dass $e \cap C \neq \emptyset$ für alle $e \in E$.

$$VC = \{(G, k) \mid G \text{ ist ein ungerichteter Graph,}$$

der einen Vertex-Cover der Größe $\leq k$ hat $\}$.

► Subset-Sum ist das folgende Problem:

$$\begin{split} \mathrm{Subset\text{-}Sum} = & \{(x_1, \dots, x_n, b) \mid x_1, \dots, x_n, b \in \mathbb{N} \text{ und es gibt ein} \\ & I \subseteq \{1, \dots, n\} \text{ mit } \sum_{i \in I} x_i = b. \} \end{split}$$

Sei G = (V, E) ein Graph und $V = \{v_1, \ldots, v_n\}$. G hat einen *Hamiltonschen Kreis* falls es eine Permutation π gibt, so dass $\{v_{\pi(i)}, v_{\pi(i+1)}\} \in E$ für alle $1 \le i < n$ und $\{v_{\pi(n)}, v_{\pi(1)}\} \in E$.

 $HC = \{G \mid G \text{ hat einen Hamiltonschen Kreis}\}.$

Sei $G = (V, \binom{V}{2}, w)$ ein vollständiger kantengewichteten Graph, wobei $w: \binom{V}{2} \to \mathbb{N}$.

Das Gewicht eines Hamiltonschen Kreises ist $\sum_{i=1}^{n-1} w(\{v_{\pi(i)}, v_{\pi(i+1)}\}) + w(\{v_{\pi(n)}, v_{\pi(1)}\}).$

 $\mathrm{TSP} = \{(G,b) \mid G \text{ ist ein vollständiger kantengewichteter Graph}$ mit einem Hamiltonschen Kreis mit Gewicht $\leq b\}$.

HC.

$$T = \begin{pmatrix} 1 & 2 & 3 & 46 \\ 1 & 4 & 3 & 25 \end{pmatrix}$$

TSP

 $1 + 3 + 5 + 7 + 12 = 28$

Probleme in NP (3)

- ▶ Seien $x_1, ..., x_n$ Boolesche Variablen.
- ▶ Ein *Literal* ist eine Variable x_i oder ihre Negation \bar{x}_i .
- Eine Klausel ist eine Disjunktion von Literalen $\ell_1 \lor \cdots \lor \ell_k$. k ist die Länge der Klausel. $\times_{\Lambda} \lor \times_{\uparrow} \lor \times_{\Lambda}$
- ▶ Eine Formel in konjunktiver Normalform (CNF) ist eine Konjunktion von Klauseln $c_1 \wedge \cdots \wedge c_m$.
- ► Eine *Belegung* weist jeder Variablem eine Wert aus {0, 1} zu.
- Eine Belegung α erfüllt eine Formel F, falls F unter α zu 1 auswertet.
- Eine Formel φ heißt erfüllbar, falls es eine erfüllende Belegung für φ gibt.

 $SAT = \{ \phi \mid \phi \text{ ist eine erfullbare Formel in CNF} \}$

"Die Mutter aller NP-vollständigen Problemen"

Probleme in NP (4)

▶ Eine Formel in CNF ist in ℓ -CNF, falls alle Klauseln Länge $\leq \ell$ haben.

 $\ell SAT = \{ \phi \mid \phi \text{ is a satisfiable formula in } \ell\text{-CNF} \}.$

Theorem (22.5)

Clique, VC, Subset-Sum, HC, TSP, SAT, ℓ SAT \in NP.

Polynowabreil - Ver firerer 1) Vir nonhwerer liver fur Chique: Bavis ist are der agrope & Krolon C Evigale (G, 2), Verificaeier lestet, de alla Knober ni C virteriander verburder. Falls ja absenheit er, sont verwift er. Falls (6, 2) & Elique, dar har har run als C evi 2- blique angelon wood de Venifirmer vird absentais

Fallo (6, %) & lelique, denn het G revie &- Elique und egal veldes C de Verfiseer exhalt, er wird nie dorenhover Der Nerfinaer karr in Polynovialseit viplemen hit verden, da (CC) & n2 Faralist der Beveis E (a1)* Un die Details der Koderung

Survey vir ws nicht.

3) Suleet-Sun

Evigable: (XALT XM. b) & IN MAN

Bereis:
$$T \leq \{1_{1-1}h\}$$

wildoposition, $Z \times i = b$

interpretation: $Z \times i = b$

Unique: $Z \times i = b$

Evigable: $Z \times i = b$

Series: $Z \times i = b$

Unique: $Z \times i = b$

Unique: $Z \times i = b$
 $Z \times i = b$

6) SAT	
Engale	2: \$ wi CNF (wi Var Xn1-1 Xn) 5. erie {0,13-Belegne der Var.
Berei	s. evre {0,13-Belegns der Var.
iley	voiler, enfillt die Beleging die
	Forel.

Kapitel 23: Reduktion und Vollständigkeit

Polynomialzeit-Reduktionen

DTM

Definition (23.1)

Seien L, L' $\subseteq \Sigma_{-}^*$.

1. $f: \Sigma^* \to \Sigma^*$ ist eine many-one-Polynomialzeit-Reduktion von L auf L', falls f Polynomialzeit-berechenbar ist und

$$\text{für alle } x \in \Sigma^* \text{ gilt:} \quad x \in L \iff f(x) \in L'.$$

2. L ist (many-one-)Polynomialzeit-reduzierbar auf L' falls es so eine Reduktion f gibt. Wir schreiben: $L \leq_P L'$.

Polynomialzeit-Reduktionen (2)

Lemma (23.2)

Falls $L \leq_P L'$ und $L' \in P$, dann ist $L \in P$.

Lemma (23.3)

 \leq_{P} ist transitiv.

