Simple Weather Station Using ESP32

Gautam Singh

April 20, 2023

Outline

- Introduction
- 2 Resources
- Working
- Demonstration

Aim

Use machine learning to build a simple weather station with a web interface using a PT-100 and ESP32.

Hardware

- SEP32 microcontroller with Type-B USB cable
- PT-100 RTD
- Breadboard and Jumper Wires
- 4 Android phone
- **(Optional) USB 2.0/3.0 Hub**

Software

Relevant platformio codes can be found here.

- In this directory, type pio run to generate the firmware to flash to the ESP32.
- ② Using ArduinoDroid, flash it to the ESP32 from your Android phone.
- On the server by typing flask run --host=<YOUR HOST IP>.

A more detailed manual is present here.

Setup for Experiment

Figure: Setup for Weather Station.

Underlying Principles

• The PT-100 is a resistance temperature detector (RTD),

Underlying Principles

- The PT-100 is a resistance temperature detector (RTD),
- It is governed by the Callendar van Dusen Equation

$$V(T) = V(0) (1 + AT + BT^{2})$$
 (1)

$$= V(0) \begin{pmatrix} 1 & A & B \end{pmatrix} \begin{pmatrix} 1 \\ T \\ T^2 \end{pmatrix}$$
 (2)

Underlying Principles

- The PT-100 is a resistance temperature detector (RTD),
- It is governed by the Callendar van Dusen Equation

$$V(T) = V(0) (1 + AT + BT^{2})$$
 (1)

$$= V(0) \begin{pmatrix} 1 & A & B \end{pmatrix} \begin{pmatrix} 1 \\ T \\ T^2 \end{pmatrix}$$
 (2)

We can use the least squares method to find the coefficients.

In-Class Demonstration

Thank You!

