Comparing Two Proportions

Zaw Myo Tun IRD Global

1

Comparing two proportions

Statistical test of significance for the comparison of two proportions

• The Z-test for two proportions

95% confidence interval for the difference in two proportions

3 4

Example

Clinical trial for advanced breast cancer

Patients randomly assigned to a treatment

Tumour response = Shrinkage of tumour surface area by ≥50% for at least two weeks

		Trea	tment	
		CMF	L-PAM	Total
Tumour	Yes	49	18	67
Response		(53%)	(20%)	(37%)
Outcome	No	44	73	117
Response Dependent	Total	93	91	184
	e CMF is mo			am

5 6

The Null Hypothesis – H₀

 $\mathbf{H_0}$: the treatments are equally effective

If ${\rm H_0}$ were true then the true % response on CMF would be identical to the true % response on L-Pam

<u>Notation</u>

Group	Population	<u>Sample</u>
1	π_1	p ₁
2	π ₂	p ₂

 H_0 : $\pi_1 = \pi_2 = \pi$

Basically, we try to disprove the null hypothesis

Example

The question:

- If Ho were true, what is the chance of getting as big (or bigger) a difference in the two proportions/percentages as that observed?
- If CMF and L-Pam were truly equally effective, what is the chance (or probability) of observing in our sample a treatment difference as large as (or larger than) 53% vs 20%?
- This probability is denoted by P and is known as the P-value and is calculated from a significance test

7

Z-test for comparing two proportions

Example

H₀:
$$\pi_1 = \pi_2 = \pi$$

$$\pi_1 - \pi_2 = 0$$

Observed difference in percentages

$$p_1 - p_2 = 52.7 - 19.8 = 32.9\%$$

We need the standard error of the difference in the two percentages to determine how far, on average, we might expect $p_1 - p_2$ to differ from zero due to sampling variability

8

Sampling distribution of $p_1 - p_2$

9

10

To calculate the SE $(p_1 - p_2)$ - first need to make an estimate of the common response rate π

$$p = \frac{49 + 18}{93 + 91} = \frac{67}{184} = 36.4\%$$

SE
$$(p_1 - p_2) = \sqrt{\{p \times (100 - p) \times (1/n_1 + 1/n_2)\}}$$

=
$$\sqrt{36.4 \times (63.6) \times (1/93 + 1/91)}$$

We determine how many standard errors our observed difference (p₁ - p₂) is from 0

We compute

Z = <u>observed difference in percentages</u> Standard error of difference

$$=$$
 32.9 = 4.63

11

If the null hypothesis is true,

The larger value of Z, the smaller the probability P (the P-value)

In our example

Z = 4.63 and thus P < 0.001

If $\rm H_0$ were really true (ie if CMF and L-Pam were truly equally effective), the chance of observing such a large difference in tumour response (32.9%) is less than 1 in

The difference in percentages is statistically significant at 0.001 or 0.1% level.

There is very strong evidence that the CMF patients had a better response rate than the L-Pam patients.

Our chance of being wrong in drawing this conclusion is

13 14

A second example

Clinical trial for MI patients

	Anturane	Placebo	Total		
Dead	32 (4.1%)	44 (5.6%)	76		
Alive	743	739	1482		
Total	775	783	1558		

Observed difference in percentages 5.62% - 4.13% = 1.49%.

SE (difference) = 1.09%

Hence Z = 1.49 = 1.37

H₀ - death rates are the same

P = 0.17

If H_0 were true, the chance of getting such a difference in % dead are greater than 1 in 10

15 16

Interpretation of P value

- The larger the value of Z, the smaller the probability P (the Pvalue)
- The smaller the P-value, the less likely it is that we would observe a difference in percentages as large as the one we have, if the null hypothesis were true.
- As the P-value gets smaller and smaller, our evidence gets stronger that there is a difference in the true percentages/ proportions.

Interpretation of P value

- For small P-values, we tend to say that we reject the null hypothesis and assume that a true difference exists.
- For larger P-values, we say that we cannot reject the null hypothesis and that our observed difference probably arose by chance (due to sampling variability)

How small is small?!

- Many people use P=0.05 as their cut-off point for rejecting or not the null hypothesis
- Caution the "grey area"
- It is better, where possible, to present the actual P-value rather than simply say it is <0.05 or >0.05

How small is small?!

- Actual P-values (or almost) can be obtained from statistical tables or computer programs
- We will use R in today's exercise.

19 20

Exercise

Women aged 19-24

- 4893 vegetarian, of whom 1429 were anaemic p₁ = 29.2%
- 11031 non-vegetarian, of whom 3011 were anaemic p_2 = 27.3%
- Z-test to compare 2 proportions \rightarrow P=0.01
- Conclusion?

95% confidence interval for a difference in two percentages

Observed difference ± 1.96 x SE (difference)

Example 1 CMF vs L-Pam (P<0.001)

95%CI is 52.7% - 19.8% \pm 1.96 x6.65%

= 19.9% to 45.9%

Example 2 anturane trial (P=0.17)

95%CI is 5.6% - 4.1% <u>+</u> 1.96x1.1%

= -0.7% to 3.7%

Note: close link between significance testing and confidence intervals

21 22

Summary

- To compare results between two groups, must take account of sampling variability. Use a significance test.
- \bullet Formulate a null hypothesis, H_0 (no difference in the two true values) and try to disprove it.
- Today Z-test for the comparison of two proportions (or %s).
- Compute Z-statistic which depends on the magnitude of the difference in the proportions and the sample sizes.

Summary

- Calculate P-value from Normal distribution (in R or using statistical tables)
- \bullet P-value tells us how likely it is that we would observe a result like we have in our sample, if H_0 was true.
- Small P-values, reject H₀, true difference is likely.
- \bullet Large P-values, cannot reject H_0 and observed difference likely due to chance.
- Balance statistical significance with clinical/public health importance

23 24

More exercises

1. Peppermint Eases Pain?

26 25

The UK Medical Research Council Trial of Hypertension in Older Adults reported its findings in the British Medical Journal on 15 February 1992.

Active treatment				
	Diuretic	Beta-blocker	Placebo	
No. of patients	1081	1102	2213	
Strokes	45	56	134	
Coronary events	48	80	159	
Deaths	134	167	315	

- death between those taking diuretic and those taking placebo
 stroke between those taking beta-blocker and those taking placebo
 Optional
 - Assess the evidence for there being differences in the risk of each of:
 (f) stroke, (fi) coronary event (fif) death
 between those taking active treatment (i.e. bets-blocker and disretic groups
 combined) and those taking lacely.
- d) What issues in the design of this study need to be considered when interp these findings?