TP3 - Números

Agustina Sol Rojas

Ejercicio 1.

Probar que no hay enteros simultáneamente pares e impares

- 1. Sea $a \in Z$, a es múltiplo de $b \in Z$ si $\exists c \in Z : a = b * c$
- 2. Un numero $x \in Z$ es par si es múltiplo de 2 ($\exists c \in Z : x = 2 * c$). Caso contrario es impar ($\nexists c \in Z : x = 2 * c$).

 $\exists n \in Z : n es par e impar$

Planteos auxiliares:

$$n \ es \ par \rightarrow \exists \ c \in Z : n = 2 * c$$

 $n \ es \ impar \rightarrow \not\exists \ c \in Z : n = 2 * c$

```
\therefore \exists \ c \in Z : n = 2 * c \ y \not\exists \ c \in Z : \ n = 2 * c \rightarrow absurdo.
```

 $\therefore \not\exists n \in Z : n es par e impar$

Ejercicio 2.

Analizar si las siguientes afirmaciones son verdaderas o falsas:

a) Si a \mid 1 entonces a = 1 o a = -1

Planteos auxiliares:

$$a|1$$
 $si \exists c \in Z : 1 = a * c$
 $Si \ a = -1 \rightarrow -1|1$
 $\exists \ d \in Z : 1 = -1 * d$

$$Si \ a = 1 \rightarrow 1|1$$
$$\exists \ e \in Z : 1 = 1 * e$$

Como
$$\exists$$
 $c \in Z$: $1 = a * c$
entonces $-1|1 \ o \ 1|1$
entonces \exists $d \in Z$: $1 = -1 * d \ o \ \exists$ $e \in Z$: $1 = 1 * e$

<u>Demostración</u>

$$1 = -1 * d$$

$$\frac{1}{-1} = d$$

$$-1 = d$$

$$1 = 1 * e$$

$$\frac{1}{1} = e$$

$$1 = e$$

$$\therefore \exists d = -1 \in Z : 1 = -1 * (-1) y \exists e = 1 \in Z : 1 = 1 * 1$$

 \therefore Si a|1 entonces a = 1 o a = -1

b) a|b y b|c entonces a|c

Planteos auxiliares:

$$a|b \ si \ \exists \ d \in Z : b = a * d$$

 $b|c \ si \ \exists \ e \in Z : c = b * e$
 $a|c \ si \ \exists \ f \in Z : c = a * f$
 $\vdots \ \exists \ f \in Z : c = a * f$?

Como
$$\exists d \in Z : b = a * d y \exists e \in Z : c = b * e$$

entonces $\exists f \in Z : c = a * f$

Demostración

$$b = a * d$$

$$c = b * e$$

$$c = b * e = (a * d) * e = a * (d * e) = a * f$$

$$\therefore \exists \ f \in Z : c = a * f \to a | c$$

c) a(a - 1) es par

Para poder demostrar que a(a-1) es par se demostrara primero que la multiplicación de un numero par con cualquier otro entero da un numero par:

Asumiendo que x es par, entonces $\exists y \in Z : x = 2 * y$ Sea z un entero cualquiera (sea par o no)

$$x * z es par si \exists f \in Z : x * z = 2 * f$$

 $x = 2 * y$
 $x * z = (2 * y) * z = 2 * (y * z) = 2 * f$
 $f = (y * z) \in Z$
 $\therefore \exists f \in Z : x * z = 2 * f$

Ahora se demostrará que a(a-1) es par considerando dos casos:

1. <u>a es par:</u>

Si a es par, entonces \exists $c \in Z$: a = 2 * c a = 2c a(a-1) = (2c) * (2c-1)Como 2c es par, (2c) * (2c-1) es par y por lo tanto a(a-1) es par

2. <u>a es impar:</u>

Si a es impar, entonces \nexists $c \in Z : a = 2 * c$

Como no existe entero que haga valer la igualdad se tratara de aproximar de la mejor manera posible a *a* por un multiplo de 2, haciendo uso de la diferencia entre a y dicho número, lo que se llama resto, siendo aquel en este caso 1. Reescribiendo quedaría:

Si
$$a$$
 es impar, entonces $\exists c \in Z : a = 2 * c + 1$
 $a = 2c + 1$
 $a(a - 1) = (2c + 1) * (2c + 1 - 1) = (2c + 1) * (2c)$
Como $2c$ es par (por 1.), $(2c + 1) * (2c)$ es par y por lo tanto $a(a - 1)$ es par

d) x|y y y|z entonces x|yz

Planteos auxiliares

$$x|y \text{ } si \exists t \in Z : y = x * t$$
$$y|z \text{ } si \exists w \in Z : z = y * w$$
$$x|yz \text{ } si \exists j \in Z : yz = x * j$$

Como
$$\exists t \in Z : y = x * t y \exists w \in Z : z = y * w$$

entonces $\exists j \in Z : yz = x * j$

<u>Demostración</u>

$$y = x * t$$

$$z = y * w$$

$$yz = (x * t) * (y * w) = x * (t * y * w) = x * j$$

$$j = (t * y * w) \in Z$$

$$\therefore \exists j \in Z : yz = x * j \rightarrow x | yz$$

Ejercicio 3.

Si a un número se lo divide por 5, el resto es 3 y si se lo divide por 7, el resto es 4. ¿Cuál es el resto si se lo divide por 35 ?

a.
$$N = 5q_1 + 3$$

b.
$$N = 7q_2 + 4$$

N = 35q + r ¿Cuál es el r si se divide al número por 35?

1. Se multiplican las ecuaciones (ambos lados de la igualdad) de tal forma que el primer término a la derecha de la igualdad tenga el valor de 35 * q_i :

Se hace uso de la propiedad distributiva.

a.
$$7N = 7 * 5q_1 + 3 * 7 = 35q_1 + 21$$

b.
$$5N = 5 * 7q_2 + 4 * 5 = 35q_2 + 20$$

2. Luego se multiplicarán ambas ecuaciones de tal forma que la resta entre ambas nos deje un solo N:

a.
$$3*(7N) = 3*35*q_1 + 21*3 \rightarrow 21N = 35*(3q_1) + 63$$

b.
$$4*5N = 4*35*q_2 + 20*4 \rightarrow 20N = 35*(4q_2) + 80$$

Se reordena un poco la ecuación haciendo uso de la propiedad asociativa de la multiplicación.

3. Se restan ambas ecuaciones:

$$-21N = 35 * (3q_1) + 63$$
$$-20N = 35 * (4q_2) + 80$$

$$N = 35(3q_1 - 4q_2) + (63 - 80)$$

Teniendo en cuenta que $q_3 = (3q_1 - 4q_2) \in \mathbb{Z}$ nos queda:

$$N = 35q_3 + (-17)$$

4. Esto nos deja con un resto negativo, lo cual no es válido (el resto debe tomar valores $0 \le r < |35|$), para tener un ecuación con resto valido se la debe reescribir, para ello se sumará y se restara a la ecuación el numero 35 (es como sumar 0, el elemento neutro de la suma):

$$N = 35q_3 + (-17) + 35 - 35$$

Reescribiendo la ecuacion quedaría:

$$N = 35q_3 - 35 + 18$$

Sacamos factor común de $35q_1 - 35$

$$N = 35(q_3 - 1) + 18$$

Teniendo en cuenta que $q = (q_3 - 1) \in \mathbb{Z}$ nos queda:

$$N = 35q + 18$$

∴ Si se divide a N por 35 el resto es 18

Ejercicio 4.

Sean a y b dos números enteros que tienen restos 4 y 7 respectivamente en la división por 11. Hallar los restos de la división por 11 de $(a + b^2)$

a.
$$a = 11 * q_1 + 4$$

b.
$$b = 11 * q_2 + 7$$

$$(a+b^2) = 11 * q + r$$
 ¿Cuál es el r si se divide $(a+b^2)$ por 11?

1. Se reemplaza en $(a + b^2)$ a a y a b por sus respectivas formulas y se aplican propiedades de la suma, la multiplicación y la regla del binomio:

$$(a + b^{2}) = (11q_{1} + 4) + (11q_{2} + 7)^{2} = 11q_{1} + 4 + 11q_{2} * 11q_{2} + 2 * 11q_{2} * 7 + 49$$
$$= (11q_{1} + 11q_{2} * 11q_{2} + 2 * 11q_{2} * 7) + 53$$
$$= 11 * (q_{1} + (q_{2})^{2} + 14q_{2}) + 53$$

2. Teniendo en cuenta que $q_3 = (q_1 + (q_2)^2 + 14q_2) \in \mathbb{Z}$ nos queda:

$$(a + b^2) = 11 * q_3 + 53$$

3. Esto nos deja con un resto mayor a |11|, lo cual no es válido (el resto debe tomar valores $0 \le r < |11|$), para tener un ecuación con resto valido se la debe reescribir, para ello escribirá a 49 como 11 + 11 + 11 + 11 + 9:

$$(a + b^2) = 11 * q_3 + 11 + 11 + 11 + 11 + 9$$

Sacamos factor común de $11 * q_3 + 11 + 11 + 11 + 11$

$$(a + b^2) = 11 * (q_3 + 4) + 9$$

Teniendo en cuenta que $q=(q_3+4)\in Z$ nos queda:

$$(a + b^2) = 11 * q + 9$$

 \therefore Si se divide a $(a+b^2)$ por 11 el resto es 9

Ejercicio 5.

Convertir los siguientes números de base 10 a base 8:

142

54

24

Ejercicio 6.

Calcular el máximo común divisor entre

Se descompone cada entero en producto de primos y se buscan los factores en común.

$$16 = 2 * 2 * 2 * 2$$

$$24 = 2 * 2 * 2 * 3$$

 $2 * 2 * 2 = 2^3 = 8$ es el mayor factor en común y por lo tanto es el mcd.

ii) (70, 50)

Se descompone cada entero en producto de primos y se buscan los factores en común.

$$70 = 2 * 5 * 7$$

$$50 = 2 * 5 * 5$$

2 * 5 = 10 es el mayor factor en común y por lo tanto es el mcd.

iii) (121, 88)

Se descompone cada entero en producto de primos y se buscan los factores en común.

$$121 = 11 * 11$$

$$88 = 2 * 2 * 2 * 11$$

11 es el mayor factor en común y por lo tanto es el mcd.

iv) (-90, 90)

Como el 90 es un divisor de -90 (y de el mismo) el mcd es 90.

v) (980, 224)

Se descompone cada entero en producto de primos y se buscan los factores en común.

$$980 = 2 * 2 * 5 * 7 * 7$$

$$224 = 2 * 2 * 2 * 2 * 2 * 7$$

2 * 2 * 7 = 28 es el mayor factor en común y por lo tanto es el mcd.

Ejercicio 7.

Probar que si a y b son enteros:

a) a + b es coprimo con a (tener en cuenta (a,b) = 1)

Se quiere probar (a + b, a) = 1

- 1. Dado (a + b, a) = d, por definicion de mcd se cumple:
 - d|a+b, es decir, $\exists m_1 \in Z : a+b=d*m_1$
 - d|a, es decir, $\exists m_2 \in Z : a = d * m_2$
- 2. Teniendo en cuenta que $a + b = d * m_1$ despejando b quedaría:

$$b = d * m_1 - a = d * m_1 - d * m_2 = d(m_1 - m_2)$$

3. Teniendo en cuenta que $c = m_1 - m_2 \in Z$:

$$b = d * c$$

- 4. Esto implica que d|b
- 5. Por lo tanto si d|a + b y d|a, entonces d|b y d|a entonces d|(a,b) pero por enunciado se sabe que (a,b) = 1, por lo tanto no queda otra opción que d = 1, entonces (a + b, a) = 1, es decir, a+b es coprimo con a.
- b) sí a es no nulo, (a, 0) = |a|

- 1. Dados a, $0 \in Z$ si a no es nulo, entonces d es el mcd de a y 0 si d > 0 y:
 - d|a y d|0.
 - Si existe otro numero D tal que D|a y D|0, entonces necesariamente D|d.
- 2. Como d|0 siempre se cumple, ya que 0 es divisible por todos los enteros, se debe buscar un d entero mayor a 0 tal que d|a cumpliéndose que exista otro número D tal que D|a y D|0, entonces D|d.
- 3. Para que $d \mid a$ debe existir un $c \in Z : a = d * c$

a. Si
$$a > 0$$
, $d = |a| y c = 1$ se cumple $a = |a| * 1$

b. Si
$$a < 0$$
, $d = |a| y c = -1$ se cumple $a = |a| * -1$

- 4. En ambos casos el valor de d es |a|, ya que para cualquier otra combinación de valores de d y c no se cumpliría la igualdad a = d * c a la vez que se cumple la definición de mcd.
- 5. Entonces necesariamente d = |a|, por lo tanto si a es no nulo (a, 0) = |a|.
- c) (a, b) = 1 entonces ma+nb=k, con m,n y k enteros.
 - 1. Dado que (a,b)=1, por la Identidad de Bézout existen enteros m_1 y n_1 tal que: $m_1a+n_1b=1$
 - 2. Multiplicando a ambos lados de la ecuación por *k* quedaría:

$$k * m_1 a + k * n_1 b = 1k \rightarrow (km_1)a + (kn_1)b = k$$

- 3. Teniendo en cuenta que $m=km_1\in Z$ y $n=kn_1\in Z$ nos queda: ma+nb=k
- 4. Por lo tanto queda demostrado que si (a, b) = 1 entonces ma + nb = k, con m, n y k enteros.

Ejercicio 8.

Hallar mcd(5k + 3, 3k + 2), para cualquier k entero

- 1. Dado (5k + 3, 3k + 2) se desea encontrar un entero d > 0 tal que para todo k se cumpla:
 - d|5k + 3, es decir, $\exists m_1 \in Z : 5k + 3 = d * m_1$
 - d|3k + 2, es decir, $\exists m_2 \in Z : 3k + 2 = d * m_2$
 - Existe otro numero D tal que D|5k + 3 y D|3k + 2, entonces necesariamente D|d.
- Para ello se multiplicarán ambas ecuaciones de tal forma que los coeficientes de k en ambas tengan el mismo valor para poder eliminar el término con k al restarlas.
 - $3*5k + 3*3 = 3*d*m_1 \rightarrow 15k + 9 = 3*d*m_1$
 - $5*3k+5*2=5*d*m_2 \rightarrow 15k+10=5*d*m_2$
- 3. Luego se restan ambas ecuaciones:

$$-15k + 9 = 3 * d * m_1$$

$$-15k + 10 = 5 * d * m_2$$

$$-1 = (3*d*m_1 - 5*d*m_2)$$

4. Teniendo en cuenta que $c = (3m_1 - 5m_2) \in \mathbb{Z}$ nos queda:

$$-1 = d(3m_1 - 5m_2) = d * c$$

- 5. Para que la igualdad se satisfaga d=1 y c=-1 o d=-1 y c=1, con cualquier otra combinación de valores de d y c no se cumple la igualdad.
- 6. Siguiendo la definición de mcd, d debe ser un valor positivo, por lo que necesariamente d=1.
- 7. Por lo tanto (5k + 3, 3k + 2) = 1 para todo k.
- 8. Por lo tanto 5k + 3y 3k + 2 son coprimos para todo k.

Ejercicio 9.

Sean a, $b \in Z$ y sea p primo. Demostrar que si p|ab entonces p|a o p|b.

Mostrar que esto no se cumple si p no es primo.

- 1. Suponiendo que p|ab por definicion de divisibilidad se cumple:
 - $\exists c \in Z : a * b = p * c$
- 2. Si p|a o p|b se cumple que:
 - $\exists x \in Z \ a = p * x \ o \ \exists w \in Z \ b = p * w$
- 3. Siguiendo el Teorema Fundamental de la Aritmética siendo a y b enteros (distintos a 0, 1, -1) estos son productos finito de números primos y esa factorización es única salvo el orden:
 - $a = \prod_{i=1}^n p_i^{\alpha^i}$
 - $\bullet \quad b = \prod_{j=1}^n q_j^{\alpha^j}$
- 4. Si p no es uno de los factores primos en la factorización de a entonces (a, p) = 1.
- 5. Siguiendo la Identidad de Bézout existen enteros *m* y *n* tales que:

$$1 = a * m + p * n$$

6. Multiplicamos ambos lados de la ecuación por *b* y la reescribimos un poco siguiendo las propiedades de la suma y la multiplicación para obtener:

$$b = a * b * m + p * n * b$$

7. Se sabe por hipótesis que a * b = p * c, por lo tanto se puede reemplazar a * b en la ecuación:

$$b = p * c * m + p * n * b$$

8. Usando algunas propiedades de la multiplicación y la suma, la ecuación se puede reescribir como:

$$b = p * (c * m + n * b)$$

9. Teniendo en cuenta que $w = (c * m + n * b) \in Z$:

$$b = p * w$$

- 10. Por lo tanto se cumple que p|b
- 11. Como se demostró que si p|ab y p no divide a a, entonces p necesariamente debe dividir a b, lo cual se termina demostrando. Por lo tanto la afirmación es verdadera.
- 12. Se puede demostrar de forma análoga si p|ab y p no divide a b, entonces p necesariamente debe dividir a a.

Si p no es primo, esto no se cumple:

Contraejemplo:

1. Sean:

- p = 6
- a = 2
- b = 3
- 2. a * b = 2 * 3 = 6, claramente 6|6, ya que $\exists c \in Z : 6 = 6 * c$, con c = 1.
- 3. No se cumple que 6|2 puesto que $\nexists c \in Z : 2 = 6 * c$
- 4. No se cumple que 6|3 puesto que $\nexists d \in Z : 3 = 6 * d$
- 5. Esto demuestra que si p no es primo, puede dividir a a*b sin dividir a ninguno de los factores individuales.

Ejercicio 10.

Hallar, si existe, un número entero q tal que 7290q es el cubo de un entero