MAY 2 5 2005 Europäisches Patentamt

!PO European Patent Office CENERAL ELECTRIC CO

Office européen des brevets

EP 0 800 041 A2

- (12)**EUROPEAN PATENT APPLICATION**
- (43) Date of publication; 08.10.1997 Bulletin 1997/41
- (51) Int Cl.6: F23R 3/34, F23R 3/50

(11)

- (21) Application number: 97301001.0
- (22) Date of filling: 17.02.1997
- (84) Designated Contracting States: DE FR GB
- (30) Priority 03.04,1996 GB 9607010
- (71) Applicant: ROLLS-ROYCE plc London, SW1E 6AT (GB)
- (72) Inventor: Richardson, John Stanley Bramcote Hills, Nottingham NG9 3FW (GB)
- Gas turbine engine combustion equipment (54)
- (57)A double annular combustor (10) for a gas turbine engine is provided with annular arrays of main (17) and pilot (18) fuel injection modules. The main fuel injection modules (17) are of the premix type so as to vaporise fuel. However, the pilot fuel injection modules (18) are configured so as to function as both premix and

airspray fuel injectors. During starting and low power conditions, the pilot fuel injectors (18) are operational alone in their airspray mode. However during high power conditions, both the main (17) and pilot (18) fuel injection modules function as premix injectors. The arrangement reduces noxious emissions.

EP 0 800 041 A2

Description

This invention relates to gas turbine engine combustion equipment and is particularly conderned with combustion equipment which produces reduced quantities of noxious emissions.

The combustion equipment of a typical gas turbine engine is required to operate efficiently over a wide range of conditions while at the same time producing minimal quantities of noxious emissions, particularly those of the oxides of nitrogen. This, unfortunately, presents certain problems in the design of suitable fuel injection devices for use as part of the combustion equipment. Thus the characteristics of a given fuel injector under light-up and low speed conditions are different to those under full power conditions. Consequently a fuel injector is often a compromise between two designs to enable it to operate under both of these conditions. This can result in combustion equipment which produces undesirably large amounts of the oxides of ni- 20 trogen, particularly when it is operating under one of these sets of conditions.

EP 0680038 describes one form of gas turbine engine fuel injector which is provided with two fuel supply
ducts. Fuel is supplied through one supply duct under
starting or low power conditions and through the other
or through both fuel supply ducts under high power conditions. The fuel from both ducts Is mixed with air in such
a way that ellifection, flow emission combustion takes
place under a wide range of engine operating condistons.

GB 2010408 describes a somewhat different approach to the reduction of noxious emissions in which a gas turbine engine annular combustion chamber of the type known as the double annular type is provided with 35 two concentric annular arrays of fuel injectors. The radially inward array is of pilot fuel injectors whereas the radially outward array is of main fuel injectors. During light up and low speed conditions, only the pilot fuel injectors are used whereas both the pilot and the main 40 fuel injectors are used under higher speed conditions. The pilot combustion stage is long in comparison with the main combustion stage. Consequently, the residence time in the pilot stage is comparatively long, thereby limiting the emissions of hydrocarbons and carbon monoxide. The residence time in the main stage is comparatively short, thereby limiting emissions of the oxides of nitrogen.

It is an object of the present invention to provide combustion equipment for a gas turbine engine having improved effectiveness in the reduction of poxious emissions.

According to the present invention, combustion equipment for a gas turbine engine compliese an annular combustion chamber defining primary and main combustion zones, an annular array of pitch fuel injection modules and an annular array of main fuel injection modules, said arrays of fuel injection modules, said arrays of fuel injection modules, said arrays of fuel injection modules.

axially disposed within said combustion chamber, each of said main fuel injection modules being operationally supplied with liquid fuel and configured to vaporise that fuel and to exhaust it into said main combustion zone. first and second fuel supply passages being provided to operationally supply said pilot fuel injection modules with fuel, each of said pilot fuel injection modules being configured to vaporise fuel from it's first fuel supply passage prior to the exhaustion thereof into said primary combustion zone and to atomise fuel from it's second tuel supply passage prior to the exhaustion thereof into said primary combustion zone, said combustion equipment additionally including fuel distribution means to selectively direct fuel to said main fuel injection modules and said first fuel supply passages to said pilot fuel injection modules simultaneously, or alternatively to direct fuel to said second fuel supply passages to said pilot fuel injection modules only.

Under engine light-up and low power conditions, (uel is applied only to the second fuel supply passages. The pilot fuel injection modules atomise that fuel prior to exhausting it into the primary combustion zone which leads to good too power stability. Under high power conditions, fuel is supplied to both the pilot and main fuel injection modules and is vaporised by them. This brings about low emissions of the oxides of nitrogen combustion equipment in accordance with the present invention and therefore provides low power stability and the production of low amounts of the oxides of nitrogen and other rundesigable combustion products at high power.

The present invention will now be described, by way of example, with reference to the accompanying drawings in which:

Figure 1 is a sectioned side view of part of a gas turbine engine having combustion equipment in accordance with the present invention.

Figure 2 is a view on section line A-A of Figure 1. Figure 3 is a diagrammatic view of part of the fuel distribution system of the combustion equipment in accordance with the present invention.

Relearing to Figure 1, a gas turbine engine, part of which can be seen at 10, includes combustion equipment 11 in accordance with the present invention. The combustion equipment 11 is opsicianced between the downstream end 12 of the engine's compression system and the upstream and 13 of list turbine system. The combustion equipment 11 comprises an annular combustion equipment 11 comprises an annular combustion chamber 14 that is attached at 18 downstream end (with respect to the general direction of gas flow through the chamber 14) of the upstream end of 13 of the turbine system. Additionally, the radially outer extent of the stream end of the combustion chamber 14 is attached to gar of the engine casing 15 by a plurality of radially extending attus 16.

The combustion chamber 14 is of the so-called double annular type, it encloses two concentric annular arrays of equally spaced apart main and pilot loel injection modules 17 and 18 as can be seen in Fig. 2. The pilot fuel injection modules 18 are positioned radially inwardly of the main I toel injection modules 17 although it will be appreciated that this relationship could be reversed if so desired with the pilot livel injection modules 18 being positioned radially outwardly of the main fuel injection modules 17. The array of radially inner pilot modules 18 is circumferentially offset from the array of tradially outer main modules 17 as can also be seen in Fig. 2. However, this is not absolutely essential so that under certain circumstances, it may be desirable to radially align each inner pilot module 18 with a main module 17.

The radially outer main fuel injection modules 17 are all of the premix type. They are configured so as to substantially completely vaporise liquid tuel before directing that fuel into the main combustion zone 19 of the combustion chamber 14.

Each main fuel module 17 consists of an annular external casing 19 within which a centre body 20 is coaxially positioned. The centre body 20 is maintained in radially spaced apart relationship with the casing 19 by means of a number of radially extending support struts 21. An annular passage 22 is thereby defined between the centre body 20 and the casing 19. The passage 22 also contains two coaxial annular arrays of swirler vanes 23 and 24 which are positioned a short distance downstream of the support struts 21. The radially outer array of vanes 23 are so inclined as to swirl air passing over them in a clockwise direction whereas the radially inner array of vanes 24 are so inclined as to swirl air passing over them in an anti-clockwise direction. A short cowl 25 is interposed between and extends downstream of the varies 23 and 24 to provide some degree of separation of the swirling air flows exhausted from them.

The centre body 20 contains a plurality of generally axially exchange passages 26. The passages 26 are supplied at their upstream ende with liquid fuel through tuel supply arms 27 which pass through the struts 16. Each passage 26 leminates with an orifice 28 in the external surface of the centre body 19 downstream of the swifer vares 23 and 24. Consequently fuel exhausted from the orifices 28 is directed in a radially outward direction across the annular passage 22.

The centre body 20 is hollow so as to deline an interior 29, the upstream part of which is constant crosssectional shape and the downstream part of which is of convergent/ divergent shape. The upstream end 30 of the centre body 20 is open but it's downstream and is partially blocked by a divergent cup-shaped portion 31. An annular array of swirler vanes 32 provide a radial interconnection between the centre body interior and the interior of the cup-shaped portion 31.

The pilot fuel modules 18 are axially shorter than the main fuel modules 17 so that their downstream ends terminate upstream of the downstream ends of the main fuel injection modules 17. Each pilot fuel module 18 has an annular casing 35 within which a centre body 34 is

ceaxially positioned. A ring member 35 inferconnects the upstream ends of the casing 3 and the centre body 34 so that an annular passage 36 is defined between the constraint passage 36 is defined between the constraint passage 37 and 38 are provided in the valid of the casing 33 immediately downstream of the ring member 35 The upstream array of swifter on 15 michined so as to rotate air passing thereover in a clockwise direction whereas the downstream array 30 are inclined so as to rotate air passing thereover in an afficiockwise direction. And expland cross-section deflector 39 positioned between the arrays of swifter vanes 7 and 38 cflored in a rotate air passage of the section 37 and 38 from the radial to a generally axial direction har passage 37 and 38 cflored the radial to a generally axial direction in the passage 35 and 38 received an array 30 and 38 from the radial to a generally axial direction through the passage 35.

Each pilot luel module 18 is provided with two supplies of liquid fuel, both of which are directed through a radial arm 40 which supports the module 18 from the engine casing 15. The first supply of tuol is delivered through a first fuel supply passage 14 which directs the fuel into a plurality of axially extending passages 42 in the centre body 34. The axially extending passages 42 terminate in orifices 43 in the radially outer surface of the centre body 34 so as to direct radial jets of fuel into the annular passages 35.

The second supply of fuel is delivered through a second fuel supply passage 44 defined by a conduit 45 which terminates within the centre body 34. The centre body 34 is of annular cross-sectional configuration in order to accommodate the conduit 45. The interior of the centre body 34 is of greater diameter than that of the conduit 45 so that an annular passage 46 is defined between the centre body 34 and the conduit 45. The downstream end of the centre body 34 is provided with a support member 47 which serves to support the downstream end of the conduit 45. The support member 47 is of generally tubular form and is itself supported from the internal surface of the centre body 34 by a plurality of struts 48 at it's upstream end and by an annular array of swirler vanes 49 at it's downstream end. The support member 47 carries an annular array of swirler vanes 50 immediately downstream of the downstream end of the conduit 45 to provide a radially inward path for the flow of air from the annular passage 46 into the interior of the support member 47.

Coparationally, compressed air exhausted from the downstream end 12 of the engine's compression system is divided by an annular flow divide 51 into two flows. both of which are directed observed the upstream end of the combustion chamber 14. The first flow has a radially outward component a bith all is directed towards the upstream end of the main fuel injection modules 17. Some of the air flows through an annular gap 52 defined between the engine casing 15 and the radially outer extent of the combustion equipment 11. This airflow serves to provide cooling of the combustion equipment 19 and also dilution air for the combustion process taking place within the combustion chamber 14. The dilution air flows within the combustion chamber 14. The dilution air flows

through small inlet holes (not shown) in the wall of the combustion chamber 14. The remainder of the air flows into the upstream ends of the main fuel injection modules 17.

Within each main fuel nijection module 17, the air 50m is divided with part flowing through the almular passage 22 between the centre body 20 and the casing 19, and the remainder flowing into the centre body intenor 25 through it's upstream end 30. The air flowing into the centre body intenor 25 through it's upstream end 30. The air flowing into the contract body intenor 25 flows over the swirlpt vanes 32 to to provide a rectally inward swilling flow of air into the divergent cup-shaped portion 31. That all flow them flows over the internal surface of the cup-shaped portion 31 to emerge as a swirling, divergent flow flow flow in the centre body portion 31 into the convolution challenger 14 in-

The air flow through the annular passage 22 is divided into two opposite handed swifting flowls by the two sets of swifer vanes 23 and 24. This creates a large degree of turbulence in the air flow which, in turn provides very efficient mixing of the air with liquid totel exhausted from the orifices 28. This mixing dontinues as the fuel and air flow along the annular passage 22 resulting eventually in the virtually complete yaporisation of the luel

The vaporised fuel and air are subsequently exhausted into the main combustion zone 14 of the combustion chamber 14 where combustion takes place. The downstream ends 50 and 54 of the main fuel module casing 19 and its centre body 20 respectifyely are outwardly flared so as to provide an effective distribution of the vaporised tule within the combustion 24n 14a. The air emerging from the centre body cup-shaped portion 31 assists in this distribution of 31 assists in this distribution process and insures that there are appropriate proportions of fuel and air present for officient combustion to take place.

The second flow of compressed air troy the annular flow divider 5 has a radially invard component so that it is directed towards the upstream end of the pilot fuel injection manifolds 18. Some of the air flows through the region 55 radially inwards of the combustion equipment 11. As in the case of the air flow through the gap 52 around the radially outset extent of the combustion equipment, the air flow through the region 55 provides both cooling of the combustion equipment 11 and dilution air for the combustion process taking place within the combustion chapter 14.

A further portion of the air flows into the combustion character 14 through small gaps 56 provided between each pitot fuel injector 18 and the upstream wall of the . so combustion character 14. Some of that air then flows radially inwardly through the swirt vanes 37 and 38 in the pitot fuel injector casing 33 and into the arriputar passage 35 between the centre body 34 and the outer casing 33 of the pitot fuel injector 18. The swirt vanes 37 and 38 sonaure that the air flow through the gap 95 is trubulent, thereby in turn providing efficient mixing 41 the air with liquid their exhausted from the ordiness 43. As in the case

of the main fuel injection module 17, this turbulent mixing, together with the subsequent flow through the passage 36, ensures that virtually all of the liquid fuel exhausted from the orifices 49 is vaporised.

The remainder of the air flows through the annular passage 46 between the centre body 34 and the conduit 45 to be swirled by the swirl vanes 49 before emerging from the downstream end of the centre body 34 into the primary combustion zone 55.

The vaporised fuel and air are finally exhausted into a primary combustion zone 56 within the radialty inner region of the combustion chamber 14, where they are mixed with the swifting airflow emerging from the centre body 34. There, the mixture of lued and air is combusted. As in the case of the main fuel injection module 17, the downstream ends 57 and 56 of the pilot Util module case. The second of the case of the main fuel injection with a case of the main fuel injection with a case of the main fuel injection module 17, the downstream ends 57 and 56 of the pilot Util module case. In the case of the main fuel injection module 17, the downstream ends 57 and 56 of the pilot the module case. In the case of the main fuel injection module 18, the case of the main fuel i

As can be seen from Fig. 1, the primary combustion zone 56 is upstream and radially inward of the main combustion zone 14a so that there is a general flow of combustion products from the primary combustion zone 56 into the main combustion zone 14a.

It will be seen that when operating in the manner that the plant is the main luel njection module 17 and the plant lue injection module 17 and the plant lue injection module 18 illunction as premix tuel njectors. Such injectors rely an aubastnalialy complete vaporiseliation of liguid fuel prior to the fuel being directed into the combustion zones. The resultant community is the plant in the combustion zones. The resultant community is the plant in the combustion zones is very efficient with low amassions of nosetion process is very efficient with low amassions of nosetion zones as such as the coldes or introgen. While this is highly desirable, premix fuel injection are not establisated with the complete fuel vaporisations and for power or establisated with these conditions, it is very difficult to achieve complete fuel vaporisation and the limits within which combustion is sustainable are narrow. Consequently, the main and glot fuel injection to coldisor 17 and 18 are only used in the above described premix mode

under engine cruise and high power conditions. In order to overcome these difficulties during engine starting and low power operation, the luel flow to the main fuel injector modules 24 is cut off, as is the fuel flow to the pilot fuel modules 18 through the fuel supply passage 41. The fuel supply to each pilot fuel module 18 is switched to being supplied through the second (ue) supply passage 44 in the conduit 45 so that a divergent spray of liquid fuel is exhausted from a nozzle 59 positioned on the downstream end of the conduit 45. That fuel is partially atomised by the turbulent air flow exhausted from the swirler vanes 50 located in the conduit support member 47. The remainder of the fuel is deposited upon and then flows along the radially inner surface of the support member 47 before reaching it's downstream lip 60. There the fuel is launched from the lip 60 whereupon it is acted upon by both the air flow from the swirler vanes 50 and the air flow from the annular passage 46 after it has been swirled by the vanes 49. This results in substantially complete atomisation of the fuel before it is finally directed into the primary combustion zone 56 where combustion takes place.

In this mode of operation, the pilot fuel injection module 18 functions as a conventional airspray type of fuel injector. Such fuel injectors are not as efficient as premix type fuel injectors in reducing noxious emissions. However, they are stable over a wide operating range and function well during engine starting. They are thus very effective during engine starting and low power conditions.

If desired, the nozzle 59 could be of the pressure jet type which would inject fuel as a jet into the primary combustion zone 56. Such injectors are generally as equally effective as airspray fuel injectors during engine starting and low power conditions.

In order to facilitate the transition between the two modes of combustor operation described above, the fuel distribution system shown schematically at 61 in Fig. 3 is utilised. The fuel distribution system 61 constitutes part of the combustion equipment 10. It comprises a fuel inlet duct 62 which directs liquid fuel into a fuel distributor 63. The fuel distributor 63 is controlled by the elec-Ironic control system which in turn controls the overall supply of fuel to the combustion equipment 10. Such 25 control systems are well known in the art and will not therefore be described.

The fuel distributor 63 directs fuel from the inlet duct 62 to one of two types of outlet ducts 64 and 65, only one of each of which are shown in Fig. 3. The first outlet 30 ducts 64 are bifurcated to direct fuel to the fuel supply arms 27 to the main fuel injection modules 17 and the first fuel supply passages 41 to the pilot fuel injection modules 18. Spring loaded valves 66 are positioned in the fuel supply arms 27 to ensure that under low fuel 35 flow conditions, fuel flows preferentially into the first fuel supply passages 41 and under high fuel flow conditions. fuel flows into both passages 27 and 41. The second outlet ducts 65 supply fuel directly to the second fuel supply passages 44 to the pilot luel injection modules 40 Claims

During engine starting, the fuel distributor 63 is set to direct fuel only through the second outlet ducts 65. That fuel then flows through the second fuel supply passages 44 to be subsequently directed from the fuel noz- 45 zles 59 in the pilot fuel injection modules 18 into the primary combustion zone 56 of the combustion chamber 14. There the fuel is ignited by a conventional electrical igniter (not shown). The resultant combustion products then flow through the main combustion zone 14a before 50 exhausting into the upstream end 13 of the engine's turbine. This mode of combustion is operated during both engine idle and low power operation in which it combines good combustion efficiency with operational sta-

When more power is required, the fuel distributor 63 is actuated to cause it to redirect fuel from it's inlet duct 62 to it's first outlet ducts 64. This causes a smooth

transition from the supply of fuel to the first outlet ducts 65 to the supply of fuel to the second outlet ducts 64. The fuel flow through the fuel supply duct 62 is then progressively increased. Initially, the presence of the valves 66 in the passages 27 ensures that the fuel flows only into the first fuel supply passages 41. The pilot fuel injection modules 18 thus change their mode of operation from one of luel atomisation to one of luel vaporisation. This has the immediate effect of reducing noxious emissions from the combustion equipment 10. When the primary combustion zone 56 has achieved an optimum stoichiometry and the fuel flow is increased still further to the levels necessary to provide sufficient power for gas turbine engine cruise conditions, the valve 66 opens against it's spring pressure to permit fuel to flow additionally into the fuel supply arms 27. This results in the supply of fuel to the main fuel injection modules 17. The main fuel injection modules 17 vaporise that fuel as described earlier and direct it into the main combustion zone 14a. There the vaporised fuel encounters the hot combustion products exhausted from the pilot fuel injection modules 18 and is ignited thereby. The combined combustion products from both the main and pilot fuel injection modules 17 and 18 are then exhausted into turbine upstream end 13.

It will be seen therefore that under cruise and other high power modes of engine operation, both of the main and pilot fuel injection modules 17 and 18 function as premix type fuel injectors providing low emissions of the oxides of nitrogen. However, this is not at the expense of poor low power performance and stability since this is when the pilot luel injection modules 18 operate as airspray fuel injectors. Combustion equipment 10 in accordance with the present invention therefore provides both low power stability and the production of low amounts of the oxides of nitrogen and other undesirable combustion products at high power,

1. Combustion equipment (11) for a gas turbine engine comprising an annular combustion chamber (14) defining primary and main combustion zones (56), (19), an annular array of pilot fuel injection modules (18) and an annular array of main fuel injection modules (17), said arrays of fuel injection modules (17) being coaxially disposed within said combustion chamber (14), each of said main tuel injection modules (17) being operationally supplied with liquid fuel and configured to vaporise that fuel and to exhaust it into said main combustion zone (14a), first and second fuel supply passages (41,44) being provided to operationally supply said pilot fuel injection modules with fuel, each of said pilot luel injection modules (18) being configured to vaporise tuel from it's first fuel supply passage (41) prior to the exhaustion thereof into said primary combustion zone (56)

and to atomise fuel from it's second fuelsupply passage (44) prior to the exhaustion thereof into said primary combustion zone (55), said combustion equipment (11) additionally including filed distribution means to selectively direct fuel to said man fuel s injection modules (17) and said first fuel supply passages to said pilot fuel injection modules (18) simullaneously, or alternatively to direct fuellio said second fuel supply passages to said pilot fuel injection modules (18) and

- Combustion equipment (11) for a gas turbine engine
 as claimed in claim 1 wherein each of skid main fuel
 injection modules (17) and said pild thei injection
 modules (18) defines an annular passage for the
 vaporisation of tipud fuel supplied thereto, each of
 said passages being operationally supplied with liquid fuel and with an air flow therethrough to vaporise
 said fuel.
- Combustion equipment (11) for a gas turbine engine as claimed in claim 2 wherein each of said passages is provided with swirter vanes (23,24) to swirt the air flow therethrough prior to the vaporisation of said fuel by said air.
- Combustion equipment (11) for a gas turbine engine as claimed in claim 2 or claim 3 wherein each of sald pilot fuel modules (18) additionally includes a fuel injection nozzle (59) to atomise said fuel supplied thereto through said second fuel supply passage (44).
- Combustion equipment (11) for a gas turbine engine as claimed in claim 4 wherein said fuel injection nozzle (59) is located radially inwardly of passage (46).
- Combustion equipment for a gas turbine engine as claimed in claim 5 wherein said fuel injection nozzle 40 (59) is of the airspray type.
- 7. Combustion equipment (11) for a gas whome engine as claimed in any one preseding claim wherein flow limiting means are provided to inhibit lihe supply of feel to said main fuel injection modules (17) unless the supply of fuel through said first supply passages to said pilot fuel injection modules (18) is greater than a predetermined value.
- Combustion equipment (11) for a gas turbine engine as claimed in claim 7 wherein said flow limiting means comprises a spring loaded valve.
- Combustion equipment (11) for a gas furbine engine as claimed in any one preceding claim wherein said primary and main combustion zones (56,14a) are so positioned that the combustion products from

said primary zone (56) flow through said main zone (14a) prior to the exhaustion thereof from said combustion chamber (14).

- 5 10. Combustion equipment (11) for a gas turbine engine as claimed in any one preceding claim wherein said main fuel injection modules (17) are positioned radially outwardly of said pilot fuel injection modules (18).
 - Combustion equipment for a gas turbine engine as claimed in any one preceding claim wherein said main fuel injection modules (18) are circumferentially offset from said pilot fuel injection modules (17).
- Combustion equipment (11) for a gas turbine engine as claimed in any one preceding claim wherein the outlets of said main fuel injection modules (17) are axially offset from the outlets of said pilot fuel injection modules (18).

c

ISDCCIO: <EP____0800041A2_L>

Europäisches Patentamt

European Patent Office Office européen des brevets

EP 0 800 041 A3

(12)

EUROPEAN PATENT APPLICATION

(88) Date of publication A3: 14.06.2000 Bulletin 2000/24

(51) Int CI7: F23R 3/34, F23R 3/50

- (43) Date of publication A2: 08.10.1997 Bulletin 1997/41
- (21) Application number: 97301001.0
- (22) Date of filing: 17.02.1997
- (84) Designated Contracting States; DE FR GB
- (30) Priority: 03.04.1996 GB 9607010
- (71) Applicant: ROLLS-ROYCE ptc London, SW1E 6AT (GB)
- (72) Inventor: Richardson, John Stanley
 Bramcote Hills, Nottingham NG9 3FW (GB)
- (54) Gas turbine engine combustion equipment
- (57) A double annular combustor (10) for a gas turbine engine is provided with annular arrays of main (17) and pilot (18) fuel injection modules. The main fuel injection modules (17) are of the premix type so as to vaportise fuel. However, the pilot fuel injection modules (18) are configured so as to function as both premix and

airspray fuel injectors. During starting and low power conditions, the pilot fuel injectors (18) are operational alone in their airspray mode. However during high power conditions, both the main (17) and pilot (18) fuel injectors modules function as premix injectors. The arrangement reduces noxious emissions.

EP 0 800 041 A3

European Pate

EUROPEAN SEARCH REPORT

Application Number EP 97 30 1001

	DOCUMENTS CONSID	ERED TO BE RELEVANT	-	1
Category	Citation of document with of relevant pas	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.CL6)	
Y	US 4 253 301 A (VOC 3 March 1981 (1981- * column 7, line 21 2,12 *	ST ROBERT L) -08-03) L line 42; figures	1-11	F23R3/34 F23R3/50
Y	US 5 257 502 A (NAF 2 November 1993 (19 * the whole documen	93-11-02)	1-11	
Y	EP 0 399 336 A (HIT 28 November 1990 (1 * the whole documen	990-11-28)	1-11	
A	US 4 292 801 A (HIL 6 October 1981 (198 * abstract *	T MILTON B ET AL)	1-11	
A	US 5 289 685 A (HOF 1 March 1994 (1994- * the whole documen	03-01)	1-11	
A	US 5 473 882 A (ZAR 12 December 1995 (1 * column 2, line 1		1	TECHNICAL FIELDS SEARCHED (Int.Cl.s) F23R
A	EP 0 488 556 A (GEN 3 June 1992 (1992-0	ELECTRIC) 6-03)		
	The present search report has			
	THE HAGUE	20 April 2008	Ivo	rus. D
X : parth Y : parth docu A : techs	TEGORY OF CITED DOCUMENTS builtery relevant if combined with anot ment of the same category ological background written claclosupe mediate document	T : theory or principle E : earlier patent dos	e underlying the intument, but public to the explication or other reasons	avection shed on, or

EP 0 800 041 A3

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 97 30 1001

This annex lists the patent family members relating to the potent documents chad in the above-mentioned European search report. The members are as continued in the European Patent Office in the Company Patent Office in the own and the Company of the Company of

The collegeon Patient Office is in no way race for these particulars which are merely given for the purpose of information.

20-04-2000

cited	tent document fin search repo	ent ont	Publication date	Patent family member(s)		Publication date
US 4	4253301	A	03-03-1981	CH	650582 A	31-07-198
				DE	2940431 A	30-04-198
				FR	2438798 A	09-05-198
				GB	2032092 A.B	30-04-198
				II	1163719 B	08-04-198
				JP	55077639 A	11-06-198
				NL.	7906127 A	15-04-198
				NO.	793290 A.B.	15-04-198
				US	4498288 A	
					4498288 A	12-02-198
US S	5257502	Α	02-11-1993	CA	2072275 A	13-02-199
				CN	1069561 A	03-03-199
				EP	0527629 A	17-02-199
				JP	5195820 A	03-08-199
				JP	6102994 B	14-12-199
				US	5261222 A	16-11-199
EP (0399336	Α	28-11-1990	JP	2040419 C	28-03-199
				JP	2309124 A	25-12-199
				JP	7072616 B	02-08-199
				DE	69028348 D	10-10-199
				DĒ	69028348 T	16-01-199
				US	5201181 A	13-04-199
us 4	1292801	Α	06-10-1981	CA	113865B A	04-01-198
				JP	1424896 C	15-02-198
				JP	56025622 A	12-03-198
				JP	62032370 B	14-07-198
US S	5289685	A	01-03-1994	NONE	E	
US S	5473882	Α	12-12-1995	DE	4318405 A	08-12-199
				FR	2706020 A	09-12-199
				GB	2278675 A,B	07-12-199
EP (0488556	Α	03-06-1992	DE	69126846 D	21-08-199
				DE	69126846 T	12-02-199
				JP	2651304 B	10-09-199
				JP	4283316 A	08-10-199
			•	NO	300240 B	28-04-199
				RU	2076276 C	27-03-199
				iis	5193346 A	16-03-199

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

INTERNATIONAL SEARCH REPORT

International Application No

Relevent to claim No.

1-3,5-7, 16,17

		PC1/EP2004/014//3	
A. CLASSIFICATION OF SUBJECT MATTER IPC 7 F23R3/28 F23R3/34	F23D14/72	F23D14/74	
According to International Patent Classification (IPC) or to	both national classification a	nd IPC	

B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols)

IPC 7 F23R F23D

Category . Citation of document, with indication, where appropriate, of the relevant passages

EP 0 670 456 A (NUOVOPIGNONE INDUSTRIE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Х

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal

[*]	MECCANICHE E FONDERIA S.P.A)	1-3,5-7, 16,17	
Υ	6 September 1995 (1995-09-06) column 4, line 15 - line 26;	4,8,13, 14	
х	US 5 885 068 A (DOEBBELING ET 23 March 1999 (1999-03-23) column 3, line 12 - column 4, figure	1	
Υ	EP 1 321 714 A (NUOVO PIGNONE S.P.A) 25 June 2003 (2003-06- paragraphs '0036!, '0042!; f	25)	4
		-/	
"Special cat "A" documer conside "E" earlier d filing de "L" documer whitch is citation "O" documer	at which may throw doubts on priority claim(s) or s cited to establish the publication date of another or other special reason (as specified) of referring to an oral disclosure, use, exhibition or	The later document published after the interpretation of policity date and not in conflict with invention of policity date and not in conflict with invention of policity date and not in conflict with invention of particular relevance, the cannot be considered novel or cannot be considered novel or cannot inventive an inventive sign which the different order of particular relevance, the office of the policity of document of particular relevance; the office of document of particular relevance; the office of document is possibled with one or rim	ernational filing date the application but cory underlying the claimed Invention to considered to cument is laternation taken at one taken at the properties of the pro-
other m P" documer later the	seans nt published prior to the international lilling date but an the priority date claimed	ments, such combination being obvio in the art. "&" document member of the same patent	us to a person skilled
	ctual completion of the international search	Date of mailing of the international sea	ich report
31	March 2005	15/04/2005	
Name and m	alling address of the ISA European Palent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Filisvijk: Tcl. (431-70) 340-2400, Tx. 31 651 epo nl, Fax: (431-70) 340-3016	Authorized officer Coquau, S	
orm PCT/ISA/2	10 (second sheet) (January 2004)		

INTERNATIONAL SEARCH REPORT

International Application No PCT/EP2004/014773

	CT/EP2004/014773
(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT	1-1-1-1
legory * Challon of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
EP 1 087 178 A (NUOVO PIGNONE HOLDING S.P.A) 28 March 2001 (2001-03-28) paragraphs '0009!, '0020!, '0036! - '0039!, '0043!, '0060!, '0062!; figure 2	8,13,14
EP 0 589 520 A (NUOVOPIGNONE INDUSTRIE MECCANTCHE E FONDERIA S.P.A; EMIRICERCHE S.P.A) 30 March 1994 (1994–03–30) figure	1-17
EP 0 800 041 A (ROLLS-ROYCE PLC) 8 October 1997 (1997-10-08) figure 1 column 3, line 54 - column 4, line 45 column 6, line 25 - column 7, line 11	8,9,11,

INTERNATIONAL SEARCH REPORT

Form PCT;(SA/210 (palent family annex) (January 2004)

International Application No
PCT/EP2004/014773

					FCI/EIZ	.004/014//3	
Patent document cited in search report		Publication date		Patent family member(s)		Publication date	
EP 0670456	A	06-09-1995	IT AT DE DE EP ES JP US	1273365 173809 69506142 69506142 0670456 2123842 7305846 5660044	T D1 T2 A1 T3 A	08-07-1997 15-12-1998 07-01-1999 17-06-1999 06-09-1995 16-01-1999 21-11-1995 26-08-1997	
US 5885068	А	23-03-1999	DE CN DE EP JP	19614001 1165937 59711087 0801268 10038275	A D1 A2	16-10-1997 26-11-1997 22-01-2004 15-10-1997 13-02-1998	
EP 1321714	A	25-06-2003	IT CA EP JP US	MI20012780 2413635 1321714 2003207130 2003121266	A1 A2 A	23-06-2003 21-06-2003 25-06-2003 25-07-2003 03-07-2003	
EP 1087178	A	28-03-2001	IT AT CA DE EP JP US	MI991980 284006 2320611 60016345 1087178 2001116257 6363725	T A1 D1 A1 A	23-03-2001 15-12-2004 23-03-2001 05-01-2005 28-03-2001 27-04-2001 02-04-2002	
EP 0589520	A	30-03-1994	IT DE DE DK EP ES GR JP JP US	1255613 69303448 69303448 589520 0589520 2089699 3020636 3398845 6221556 5381652	D1 T2 T3 A1 T3 T3 B2 A	09-11-1995 08-08-1996 23-01-1997 16-09-1996 30-03-1994 01-10-1996 31-10-1996 21-04-2090 17-01-1995	4.4
EP 0800041	A	08-10-1997	DE DE EP US	69721626 69721626 0800041 5862668	T2 A2	12-06-2003 06-11-2003 08-10-1997 26-01-1999	