B.C.A./ 2nd Sem

Fundamentals of Mathematics

Subject Code :BMATO-204

Paper ID:

may 2018

Max Marks: 60

Time allowed: 3 Hrs Important Instructions:

- Attempt any fivequestions from section B and section C selecting at least two questions from each section.
- Assume any missing data
- Additional instructions, if any

PART A (2marks ×10)

Q. 1. Short-Answer Questions:

Define upper triangular matrix with an example (a)

(b) Find
$$(AB)^T$$
When $A = \begin{bmatrix} 2 & 1 & -3 \\ 1 & 2 & 1 \\ 1 & -1 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$

(c) Solve
$$2x + 5y = 1$$
, $x - 3y = 5$

What are the Demerits of median? (e)

(f) Find
$$\frac{dy}{dx}$$
 when $y = \frac{\log(2x+3)}{x^2}$

(g) Find
$$\frac{dy}{dx}$$
 when $y = x^{-3} + x^{-5}$

(h) Evaluate
$$\int_0^{\frac{\pi}{2}} \frac{\tan x}{\tan x + \cot x} dx$$

(i) Evaluate
$$\int \frac{(x+2)^3}{\sqrt{x}} dx$$

Write the formula for Trapezoidal method. (i)

PART B (8marks ×5)

Find the maximum and minimum value of Y = $(x + 1)(x - 2)^2$ - Q. 2. Compute $\int_0^1 \frac{dx}{1+x^2}$ using simpson's rule by dividing [0,1] into 4 equal parts.

Q. 3. Solve by matrix method
$$2x + 5y - z = 9$$

 $3x - 3y + 2z = 7$
 $2x - 4y + 3z = 1$

OR

Reduce the matrix to the normal form and hence, find its rank.

$$\begin{bmatrix} 2 & -1 & 3 & 4 \\ 0 & 3 & 4 & 1 \\ 2 & 3 & 7 & 5 \\ 2 & 5 & 11 & 6 \end{bmatrix}$$

Calculate mode and standard deviation.

X :	1-10	11-20	21-30	31-40	41-50	51-60
		16				

OR

The scores of 21 students in an intelligence test are shown in the frequency table below:

score	91	92	96	97	101	103	108
frequency	3	2	3	2	5	3	3

Calculate
$$\sigma^2$$
Q. 5. Evaluate $I = \int \frac{e^x(1+x)}{\sin^2 x} dx$

Evaluate $\int_0^{\frac{\pi}{4}} \log(1 + tanx) dx$

Q. 6. If siny = x sin(a+y), then prove that
$$\frac{dy}{dx} = \frac{\sin^2(a+y)}{\sin a}$$

OR

Find $\frac{dy}{dx}$ if $x = a(1 - \cos\theta)$, $y = a(1 + \sin\theta)$