Quiz

1. Prove termination of the following TRS using a monotonic algebra to \mathbb{N} :

$$\begin{array}{ccc} append(nil,z) & \rightarrow & z \\ append(cons(x,y),z) & \rightarrow & cons(x,append(y,z)) \end{array}$$

- (a) give (linear) parametric interpretations for all function symbols
 - Answer:
 - $[nil] = n_0$
 - $[cons] = \lambda x, y.c_0 + c_1 * x + c_2 * y$
 - $[append] = \lambda xy.a_0 + a_1 * x + a_2 * y$
- (b) compute the requirements (monotonicity and rule orientation)

Answer: first, we must impose the *monotonicity* requirements:

$$\begin{array}{ccccc} \underline{c_1} & \geq & 1 & & \underline{a_1} & \geq & 1 \\ \underline{c_2} & \geq & 1 & & \underline{a_2} & \geq & 1 \end{array}$$

For the first rule, we must have:

$$W(\underset{nil}{append}(nil, z))$$
= $\underline{a_0} + \underline{a_1} * W(\underset{nil}{nil}) + \underline{a_2} * W(z)$
= $\underline{a_0} + \underline{a_1} * \underline{n_0} + \underline{a_2} * z$
> z
= $W(z)$

For the second rule, we must have:

$$W(append(cons(x,y),z)) > W(cons(x,append(y,z)))$$

where:

and

$$W(append(cons(x,y),z)) = \underline{a_0} + \underline{a_1} * W(cons(x,y)) + \underline{a_2} * W(z)$$

$$= \underline{a_0} + \underline{a_1} * (\underline{c_0} + \underline{c_1} * x + \underline{c_2} * y) + \underline{a_2} * z$$

$$= \underline{a_0} + \underline{a_1} * \underline{c_0} + \underline{a_1} * \underline{c_1} * x + \underline{a_1} * \underline{c_2} * y + \underline{a_2} * z$$

$$W(cons(x, append(y, z)))$$

$$= \underline{c_0} + \underline{c_1} * W(x) + \underline{c_2} * W(append(y, z))$$

$$> \underline{c_0} + \underline{c_1} * x + \underline{c_2} * (\underline{a_0} + \underline{a_1} * y + \underline{a_2} * z)$$

$$= \underline{c_0} + \underline{c_1} * x + \underline{c_2} * \underline{a_0} + \underline{c_2} * \underline{a_1} * y + \underline{c_2} * \underline{a_2} * z$$

(c) use absolute positiveness to find SMT requirements

Answer: The monotonicity requirements are already SMT requirements. For the first rule, we must have:

$$(a_0 + a_1 * n_0) + a_2 * z > z = 0 + 1 * z$$

which by absolute positiveness yields the SMT requirements:

$$\underline{a_0} + \underline{a_1} * \underline{n_0} > 0$$
 $\underline{a_2} \ge 1$

For the second rule, we must have:

$$\begin{array}{l} (\underline{a_0} + \underline{a_1} * \underline{c_0}) + \underline{a_1} * \underline{c_1} * x + \underline{a_1} * \underline{c_2} * y + \underline{a_2} * z \\ > (\underline{c_0} + \underline{c_2} * \underline{a_0}) + \underline{c_1} * x + \underline{c_2} * \underline{a_1} * y + \underline{c_2} * \underline{a_2} * z \end{array}$$

which by absolute positiveness yields the SMT requirements:

Putting everything together, we thus end up with:

(d) solve them by hand and give the resulting interpretation functions, and check your result!

Answer: We observe:

- $a_2 \ge 1$ is required twice
- $a_1 * \underline{c_2} \ge \underline{c_2} * a_1$ is always satisfied
- given that $\underline{a_1} \geq 1$, we also know that $\underline{a_1} * \underline{c_1} \geq \underline{c_1}$ is satisfied
- given that $\underline{a_2}$ cannot be 0, the requirement $\underline{a_2} \ge \underline{c_2} * \underline{a_2}$ implies $\underline{c_2} \le 1$; since we also have $c_2 \ge 1$, we know that $c_2 = 1$
- hence, the requirement $\underline{a_0} + \underline{a_1} * \underline{c_0} > \underline{c_0} + \underline{c_2} * \underline{a_0}$ becomes $\underline{a_0} + \underline{a_1} * \underline{c_0} > \underline{c_0} + 1 * \underline{a_0}$; removing $\underline{a_0}$ on both sides, we end up with $\underline{a_1} * \underline{c_0} > \underline{c_0}$
- this requirement then implies that $\underline{c_0}$ must be at least 1 (since otherwise the requirement would simplify to 0 > 0), and that $\underline{a_1}$ must be larger than 1 (since $\underline{c_0} > \underline{c_0}$ also does not hold).

This leaves us with:

So now we can simply choose $\underline{c_1} := 1, \underline{c_2} := 1, \underline{a_1} := 2, \underline{a_2} := 1, \underline{c_0} := 1$ and $\underline{a_0} := 1$, ane leave $\underline{n_0} := 0$ and $\underline{c_0} := 0$ (though we could also have chosen $\underline{a_0} := 0$ and $\underline{n_0} := 1$). This gives the interpretation functions:

- [nil] = 0
- $[cons] = \lambda x, y.1 + x + y$
- $[append] = \lambda xy.1 + 2 * x + y$
- 2. Determine the dependency pairs of:

$$f(h(x), y) \rightarrow g(x, f(x, h(y)))$$

 $g(x, h(y)) \rightarrow g(h(x), y)$

Answer: The defined symbols are f and g (as these occur at the root of the left-hand sides of rules), not h. Thus, the DPs for the first rule are:

A.
$$f^{\sharp}(h(x), y) \rightarrow g^{\sharp}(x, f(x, h(y)))$$

B. $f^{\sharp}(h(x), y) \rightarrow f^{\sharp}(x, h(y))$

And the dependency pair for the second rule is:

C.
$$g^{\sharp}(x, \mathbf{h}(y)) \rightarrow g^{\sharp}(\mathbf{h}(x), y)$$

3. Split these dependency pairs up into one or more groups of DPs that can be analysed separately.

Answer option 1: In an infinite chain $s_1 \Rightarrow_{DP} t_1 \Rightarrow_{\mathcal{R}}^* s_2 \Rightarrow_{DP} t_2 \Rightarrow_{\mathcal{R}}^* s_3 \dots$,

- due to root symbols, if the step $s_i \Rightarrow_{\mathtt{DP}} t_i$ uses C, then so does the step $s_{i+1} \Rightarrow_{\mathtt{DP}} t_{i+1}$
- similarly, if the step $s_i \Rightarrow_{DP} t_i$ uses A, then step $s_{i+1} \Rightarrow_{DP} t_{i+1}$ uses C as well
- hence, an infinite chain either uses only dependency pair B, or it has an infinite tail using only dependency pair C

Therefore, the groups $\{B\}$ and $\{C\}$ can be analysed separately: if neither admits an infinite chain, then the original system is terminating.

Answer option 2: We use the dependency graph processor, using the following graph approximation (based on the root symbol of each DP):

The strongly connected components of this graph are $\{B\}$ and $\{C\}$, so these can be analysed separately.

4. Prove termination of the above TRS.

Answer option 1: It suffices to find a reduction pair such that:

$$\begin{array}{cccc} f(h(x),y) & \succeq & g(x,f(x,h(y))) \\ g(x,h(y)) & \succeq & g(h(x),y) \\ f^{\sharp}(h(x),y) & \succ & g^{\sharp}(x,f(x,h(y))) \\ f^{\sharp}(h(x),y) & \succ & f^{\sharp}(x,h(y)) \\ g^{\sharp}(x,h(y)) & \succ & g^{\sharp}(h(x),y) \end{array}$$

We can do this for instance using a weakly monotonic algebra with:

- $[f] = \lambda x, y.y$
- $[g] = \lambda x, y.0$
- $[h] = \lambda x.x + 1$
- $[f^{\sharp}] = \lambda x, y.2 * x + y$
- $[g^{\sharp}] = \lambda x, y.y$

Then the requirements evaluate to:

$$\begin{array}{rcl} y & \geq & 0 \\ 0 & \geq & 0 \\ 2*x+y+2 & > & y+1 \\ 2*x+y+2 & > & 2*x+y+1 \\ y+1 & > & y \end{array}$$

Answer option 2: As reasoned above, $\{B\}$ and $\{C\}$ can be analysed separately. First, we handle $\{B\}$. This can be done using the following weakly monotonic algebra:

Since this gives:

$$\begin{array}{lclcl} W(f(h(x),y)) & = & 0 & \geq & 0 & = & W(g(x,f(x,h(y)))) \\ W(g(x,h(y))) & = & 0 & \geq & 0 & = & W(g(h(x),y)) \\ W(f^{\sharp}(h(x),y)) & = & x+1 & > & x & = & W(f^{\sharp}(x,h(y))) \end{array}$$

Next, we handle $\{C\}$. This can be done using the following weakly monotonic algebra:

Since this orients the rules as before, and additionally gives:

$$W(g^{\sharp}(x, h(y))) = y+1 > y = W(g^{\sharp}(h(x), y))$$

Answer option 3:

As reasoned above, $\{B\}$ and $\{C\}$ can be analysed separately. Both are handled with the subterm criterion:

- B using projection function $\nu(f^{\sharp}) = 1$, since x is a strict subterm of h(x)
- C using projection function $\nu(g^{\sharp}) = 2$, since y is a strict subterm of h(y)