Module S Section S.1 Section S.2 Section S.3

Module S: Structure of vector spaces

Module S

Section S.1 Section S.2 Section S.3

What structure do vector spaces have?

At the end of this module, students will be able to...

- **S1. Linear independence.** ... determine if a set of Euclidean vectors is linearly dependent or independent.
- **S2.** Basis verification. ... determine if a set of Euclidean vectors is a basis of \mathbb{R}^n .
- **S3.** Basis computation. ... compute a basis for the subspace spanned by a given set of Euclidean vectors.
- **S4.** Dimension. ... compute the dimension of a subspace of \mathbb{R}^n .
- **S5. Abstract vector spaces.** ... solve exercises related to standards V3-S4 when posed in terms of polynomials or matrices.
- **S6. Basis of solution space.** ... find a basis for the solution set of a homogeneous system of equations.

Module S

Section S.2 Section S.3

Readiness Assurance Outcomes

Before beginning this module, each student should be able to...

- Add Euclidean vectors and multiply Euclidean vectors by scalars.
- Perform basic manipulations of augmented matrices and linear systems E1,E2,E3.
- Apply linear combinations and spanning sets V3,V4.

Module S

Section S.1 Section S.2 Section S.3

The following resources will help you prepare for this module.

- Adding and subtracting Euclidean vectors (Khan Acaemdy): http://bit.ly/2y8AOwa
- Linear combinations of Euclidean vectors (Khan Academy): http://bit.ly/2nK3wne
- Adding and subtracting complex numbers (Khan Academy): http://bit.ly/1PE3ZMQ
- Adding and subtracting polynomials (Khan Academy): http://bit.ly/2d5SLGZ

Module S

Section S.1

Module S Section 1

Module S

Section S.1 Section S.2 Section S.3

Activity S.1.1 (\sim 10 min)

Consider the two sets

$$S = \left\{ \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 4 \end{bmatrix} \right\} \qquad \qquad T = \left\{ \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 4 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ -11 \end{bmatrix} \right\}$$

Which of the following is true?

- (A) span S is bigger than span T.
- (B) span S and span T are the same size.
- (C) span S is smaller than span T.

Definition S.1.2

We say that a set of vectors is **linearly dependent** if one vector in the set belongs to the span of the others. Otherwise, we say the set is **linearly independent**.

You can think of linearly dependent sets as containing a redundant vector, in the sense that you can drop a vector out without reducing the span of the set.

Section S.1 Section S.2 Section S.3

Activity S.1.3 (\sim 10 min)

Suppose $3\mathbf{v}_1 - 5\mathbf{v}_2 = \mathbf{v}_3$, so the set $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly dependent. Which of the following is true of the vector equation $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + x_3\mathbf{v}_3 = \mathbf{0}$?

- (A) It is consistent with one solution
- (B) It is consistent with infinitely many solutions
- (C) It is inconsistent.

Fact S.1.4

The set $\{\mathbf{v}_1, \dots \mathbf{v}_n\}$ is linearly dependent if and only if $x_1\mathbf{v}_1 + \dots + x_n\mathbf{v}_n = \mathbf{0}$ is consistent with infinitely many solutions.

Module S

Section S.1 Section S.2 Section S.3

Activity S.1.5 (\sim 10 min)

Find

RREF
$$\begin{bmatrix} 2 & 2 & 3 & -1 & 4 & 0 \\ 3 & 0 & 13 & 10 & 3 & 0 \\ 0 & 0 & 7 & 7 & 0 & 0 \\ -1 & 3 & 16 & 14 & 2 & 0 \end{bmatrix}$$

and mark the part of the matrix that demonstrates that

$$S = \left\{ \begin{bmatrix} 2\\3\\0\\-1 \end{bmatrix}, \begin{bmatrix} 2\\0\\0\\3 \end{bmatrix}, \begin{bmatrix} 3\\13\\7\\16 \end{bmatrix}, \begin{bmatrix} -1\\10\\7\\14 \end{bmatrix}, \begin{bmatrix} 4\\3\\0\\2 \end{bmatrix} \right\}$$

is linearly dependent.

Module S

Section S.2 Section S.3

Fact S.1.6

A set of Euclidean vectors $\{\mathbf{v}_1, \dots \mathbf{v}_n\}$ is linearly dependent if and only if RREF $[\mathbf{v}_1 \dots \mathbf{v}_n]$ has a column without a pivot position.

Section S.3

Activity S.1.7 (\sim 5 min)

linearly independent?

Is the set of Euclidean vectors
$$\left\{ \begin{array}{c|ccc} -4 & 1 & 1 & 3 \\ 2 & 3 & , & 0 & , & 10 & , & 7 \\ 0 & 0 & 2 & 2 & 2 \\ -1 & 3 & 6 & 1 & 1 \end{array} \right\}$$
 linearly dependent or

Activity S.1.8 (\sim 10 min)

Is the set of polynomials $\{x^3+1, x^2+2x, x^2+7x+4\}$ linearly dependent or linearly independent?

Activity S.1.9 (\sim 5 min)

What is the largest number of vectors in \mathbb{R}^4 that can form a linearly independent set?

- (a) 3
- (b) 4
- (c) 5
- (d) You can have infinitely many vectors and still be linearly independent.

Activity S.1.10 (\sim 5 min)

What is the largest number of vectors in \mathcal{P}^4 that can form a linearly independent set?

- (a) 3
- (b) 4
- (c) 5
- (d) You can have infinitely many vectors and still be linearly independent.

Activity S.1.11 (\sim 5 min)

What is the largest number of vectors in \mathcal{P} that can form a linearly independent set?

- (a) 3
- (b) 4
- (c) 5
- (d) You can have infinitely many vectors and still be linearly independent.

Module S

Section S

Section S.2

Module S Section 2

Module S Section S.1 Section S.2 Section S.3

Definition S.2.1

A **basis** is a linearly independent set that spans a vector space.

Observation S.2.2

A basis may be thought of as a collection of building blocks for a vector space, since every vector in the space can be expressed as a unique linear combination of basis vectors.

Definition S.2.3

The **standard basis** of \mathbb{R}^n is the set $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ where

$$\mathbf{e}_1 = egin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{e}_2 = egin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{e}_n = egin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$

Activity S.2.4 (\sim 15 min)

Which of the following sets are bases for \mathbb{R}^4 ?

$$\begin{cases} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 3 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 4 \\ 3 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 6 \\ 1 \\ 3 \end{bmatrix}, \begin{bmatrix} 3 \\ 6 \\ 1 \\ 3 \end{bmatrix}, \begin{bmatrix} 3 \\ 6 \\ 1 \\ 3 \end{bmatrix}, \begin{bmatrix} 5 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 5 \\ 3 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \\ 0 \\ 3 \end{bmatrix}, \begin{bmatrix} 4 \\ 5 \\ 1 \\ 3 \end{bmatrix}, \begin{bmatrix} 4 \\ 5 \\ 1 \\ 3 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \\ 0 \\ 3 \end{bmatrix}, \begin{bmatrix} 4 \\ 5 \\ 1 \\ 3 \end{bmatrix}, \begin{bmatrix} 4 \\ 5 \\ 1 \\ 3 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \\ 0 \\ 3 \end{bmatrix}, \begin{bmatrix} 4 \\ 5 \\ 1 \\ 3 \end{bmatrix}, \begin{bmatrix} 4 \\ 5 \\ 5 \end{bmatrix}, \begin{bmatrix} 4 \\$$

Activity S.2.5 (\sim 10 min)

If $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ is a basis for \mathbb{R}^4 , that means RREF $[\mathbf{v}_1 \, \mathbf{v}_2 \, \mathbf{v}_3 \, \mathbf{v}_4]$ doesn't have a column without a pivot position, and doesn't have a row of zeros. What is RREF $[\mathbf{v}_1 \, \mathbf{v}_2 \, \mathbf{v}_3 \, \mathbf{v}_4]$?

Fact S.2.6

The set $\{\mathbf v_1,\ldots,\mathbf v_m\}$ is a basis for $\mathbb R^n$ if and only if m=n and

$$\mathsf{RREF}[\mathbf{v}_1 \dots \mathbf{v}_n] = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}.$$

That is, a basis for \mathbb{R}^n must have exactly n vectors and its square matrix must row-reduce to the **identity matrix** containing all zeros except for a downward diagonal of ones.

Module S Section S.1 Section S.2 Section S.3

Observation S.2.7

Recall that a **subspace** of a vector space is a subset that is itself a vector space.

One easy way to construct a subspace is to take the span of set, but if the set is linearly dependent it may contain redundant vectors.

Activity S.2.8 (\sim 10 min)

Consider the set
$$\left\{ \begin{bmatrix} 2\\3\\0\\1 \end{bmatrix}, \begin{bmatrix} 2\\0\\1\\-1 \end{bmatrix}, \begin{bmatrix} 2\\-3\\2\\-3 \end{bmatrix}, \begin{bmatrix} 1\\5\\-1\\0 \end{bmatrix} \right\}$$
.

Activity S.2.8 (\sim 10 min)

Consider the set
$$\left\{ \begin{bmatrix} 2\\3\\0\\1 \end{bmatrix}, \begin{bmatrix} 2\\0\\1\\-1 \end{bmatrix}, \begin{bmatrix} 2\\-3\\2\\-3 \end{bmatrix}, \begin{bmatrix} 1\\5\\-1\\0 \end{bmatrix} \right\}$$
.

Part 1: Use RREF
$$\begin{bmatrix} 2 & 2 & 2 & 1 \\ 3 & 0 & -3 & 5 \\ 0 & 1 & 2 & -1 \\ 1 & -1 & -3 & 0 \end{bmatrix}$$
 to identify which vector may be removed to

make the set linearly independent.

Activity S.2.8 (\sim 10 min)

Consider the set
$$\left\{ \begin{bmatrix} 2\\3\\0\\1 \end{bmatrix}, \begin{bmatrix} 2\\0\\1\\-1 \end{bmatrix}, \begin{bmatrix} 2\\-3\\2\\-3 \end{bmatrix}, \begin{bmatrix} 1\\5\\-1\\0 \end{bmatrix} \right\}.$$

Part 1: Use RREF
$$\begin{bmatrix} 2 & 2 & 2 & 1 \\ 3 & 0 & -3 & 5 \\ 0 & 1 & 2 & -1 \\ 1 & -1 & -3 & 0 \end{bmatrix}$$
 to identify which vector may be removed to

make the set linearly independent.

Part 2: Let
$$W = \operatorname{span} \left\{ \begin{bmatrix} 2 \\ 3 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 2 \\ -3 \\ 2 \\ -3 \end{bmatrix}, \begin{bmatrix} 1 \\ 5 \\ -1 \\ 0 \end{bmatrix} \right\}$$
. W is a subspace of \mathbb{R}^4 ;

find a basis for W.

Module S Section S.1 Section S.2 Section S.3

Fact S.2.9

To compute a basis for the subspace span $\{\mathbf{v}_1, \dots, \mathbf{v}_m\}$, simply remove the vectors corresponding to the non-pivot columns of RREF $[\mathbf{v}_1 \dots \mathbf{v}_m]$.

Activity S.2.10 (~10 min)

Let W be the subspace of \mathbb{R}^4 given by

$$W = \operatorname{span} \left\{ \begin{bmatrix} 1\\3\\1\\-1 \end{bmatrix}, \begin{bmatrix} 2\\-1\\1\\2 \end{bmatrix}, \begin{bmatrix} 4\\5\\3\\0 \end{bmatrix}, \begin{bmatrix} 3\\2\\2\\1 \end{bmatrix} \right\}$$

Find a basis for W.

Activity S.2.11 (\sim 10 min)

Let W be the subspace of \mathcal{P}^3 given by

$$W = \operatorname{span}\left\{x^3 + 3x^2 + x - 1, 2x^3 - x^2 + x + 2, 4x^3 + 5x^3 + 3x, 3x^3 + 2x^2 + 2x + 1\right\}$$

Find a basis for W.

Module S

. . .

Section S.1

Section S.3

Module S Section 3

Section S.1

Section S.2 Section S.3

Observation S.3.1

Recall from last class: to compute a basis for the subspace span $\{\mathbf{v}_1, \dots, \mathbf{v}_m\}$, simply remove the vectors corresponding to the non-pivot columns of $RREF[\mathbf{v}_1 \dots \mathbf{v}_m].$

Activity S.3.2 (\sim 10 min)

Let

$$S = \left\{ \begin{bmatrix} 2 \\ 3 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 2 \\ -3 \\ 2 \\ -3 \end{bmatrix}, \begin{bmatrix} 1 \\ 5 \\ -1 \\ 0 \end{bmatrix} \right\} \quad \text{and} \quad T = \left\{ \begin{bmatrix} 2 \\ 0 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 2 \\ -3 \\ 2 \\ -3 \end{bmatrix}, \begin{bmatrix} 1 \\ 5 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \\ 0 \\ 1 \end{bmatrix} \right\}$$

Activity S.3.2 (\sim 10 min)

Let

$$S = \left\{ \begin{bmatrix} 2 \\ 3 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 2 \\ -3 \\ 2 \\ -3 \end{bmatrix}, \begin{bmatrix} 1 \\ 5 \\ -1 \\ 0 \end{bmatrix} \right\} \quad \text{and} \quad T = \left\{ \begin{bmatrix} 2 \\ 0 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 2 \\ -3 \\ 2 \\ -3 \end{bmatrix}, \begin{bmatrix} 1 \\ 5 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \\ 0 \\ 1 \end{bmatrix} \right\}$$

Part 1: Find a basis for span S

Activity S.3.2 (\sim 10 min)

Let

$$S = \left\{ \begin{bmatrix} 2\\3\\0\\1 \end{bmatrix}, \begin{bmatrix} 2\\0\\1\\-1 \end{bmatrix}, \begin{bmatrix} 2\\-3\\2\\-3 \end{bmatrix}, \begin{bmatrix} 1\\5\\-1\\0 \end{bmatrix} \right\} \text{ and } T = \left\{ \begin{bmatrix} 2\\0\\1\\-1 \end{bmatrix}, \begin{bmatrix} 2\\-3\\2\\-3 \end{bmatrix}, \begin{bmatrix} 1\\5\\-1\\0 \end{bmatrix}, \begin{bmatrix} 2\\3\\0\\1 \end{bmatrix} \right\}$$

Part 1: Find a basis for span S

Part 2: Find a basis for span T

Section S.1

Section S.2 Section S.3

Fact S.3.3

A vector space has a lot of bases, but all bases for a given vector space must be the same size.

Module S

Module 5
Section S.1

Section S.2 Section S.3

Definition S.3.4

The **dimension** of a vector space is given by the cardinality/size of any basis for the vector space.

Section S.3

Activity S.3.5 (\sim 15 min)

Find the dimension of each subspace of \mathbb{R}^4 .

$$\mathsf{span}\left\{ \begin{bmatrix} 1\\0\\0\\0\end{bmatrix}, \begin{bmatrix} 0\\1\\0\\0\end{bmatrix}, \begin{bmatrix} 0\\0\\1\\0\end{bmatrix}, \begin{bmatrix} 0\\0\\1\\1\end{bmatrix} \right\}$$

$$\mathsf{span}\left\{ \begin{bmatrix} 2\\3\\0\\-1 \end{bmatrix}, \begin{bmatrix} 2\\0\\0\\3 \end{bmatrix}, \begin{bmatrix} 4\\3\\0\\2 \end{bmatrix}, \begin{bmatrix} -3\\0\\1\\3 \end{bmatrix} \right\}$$

$$\operatorname{span} \left\{ \begin{bmatrix} 2 \\ 3 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 0 \\ 3 \end{bmatrix}, \begin{bmatrix} 3 \\ 13 \\ 7 \\ 16 \end{bmatrix}, \begin{bmatrix} -1 \\ 10 \\ 7 \\ 14 \end{bmatrix}, \begin{bmatrix} 4 \\ 3 \\ 0 \\ 2 \end{bmatrix} \right\} \quad \operatorname{span} \left\{ \begin{bmatrix} 2 \\ 3 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 4 \\ 3 \\ 0 \\ 2 \end{bmatrix}, \begin{bmatrix} -3 \\ 0 \\ 1 \\ 3 \end{bmatrix}, \begin{bmatrix} 3 \\ 6 \\ 1 \\ 5 \end{bmatrix} \right\}$$

$$\operatorname{span} \left\{ \begin{bmatrix} 2 \\ 3 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 4 \\ 3 \\ 0 \\ 2 \end{bmatrix}, \begin{bmatrix} -3 \\ 0 \\ 1 \\ 3 \end{bmatrix}, \begin{bmatrix} 3 \\ 6 \\ 1 \\ 5 \end{bmatrix} \right\}$$

$$\operatorname{span}\left\{ \begin{bmatrix} 5\\3\\0\\-1 \end{bmatrix}, \begin{bmatrix} -2\\1\\0\\3 \end{bmatrix}, \begin{bmatrix} 4\\5\\1\\3 \end{bmatrix} \right\}$$

Section S.2 Section S.3

Fact S.3.6

Every vector space with finite dimension, that is, every vector space with a basis of the form $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is **isomorphic** to a Euclidean space \mathbb{R}^n :

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \cdots + c_n\mathbf{v}_n \leftrightarrow egin{bmatrix} c_1 \ c_2 \ dots \ c_n \end{bmatrix}$$

Observation S.3.7

Several interesting vector spaces are infinite-dimensional:

- The space of polynomials \mathcal{P} (consider the set $\{1, x, x^2, x^3, \dots\}$).
- The space of continuous functions $C(\mathbb{R})$ (which contains all polynomials, in addition to other functions like e^x).
- The space of real number sequences \mathbb{R}^{∞} (consider the set $\{(1,0,0,\dots),(0,1,0,\dots),(0,0,1,\dots),\dots\}$).

Section S.1 Section S.2 Section S.3

Definition S.3.8

A homogeneous system of linear equations is one of the form

$$x_1\mathbf{v}_1+\cdots+x_n\mathbf{v}_n=\mathbf{0}.$$

Note that if
$$\begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}$$
 and $\begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}$ are solutions, so is $\begin{bmatrix} a_1 + b_1 \\ \vdots \\ a_n + b_n \end{bmatrix}$ i.e. if $a_1 \mathbf{v}_1 + \dots + a_n \mathbf{v}_n = \mathbf{0}$

and

$$b_1\mathbf{v}_1+\cdots+b_n\mathbf{v}_n=\mathbf{0}$$

then

$$(a_1 + b_1)\mathbf{v}_1 + \cdots + (a_n + b_n)\mathbf{v}_n = \mathbf{0}.$$

Similarly, if
$$c \in \mathbb{R}$$
, $\begin{vmatrix} ca_1 \\ \vdots \\ ca_n \end{vmatrix}$ is a solution. Thus the solution set of a homogeneous

system is a subspace.

Activity S.3.9 (\sim 10 min)

Consider the homogeneous system of equations

$$x_1 + 2x_2 + x_4 = 0$$

 $2x_1 + 4x_2 - x_3 - 2x_4 = 0$
 $3x_1 + 6x_2 - x_3 - x_4 = 0$

Activity S.3.9 (\sim 10 min)

Consider the homogeneous system of equations

$$x_1 + 2x_2 + x_4 = 0$$

 $2x_1 + 4x_2 - x_3 - 2x_4 = 0$
 $3x_1 + 6x_2 - x_3 - x_4 = 0$

Part 1: Find the solution set.

Consider the homogeneous system of equations

$$x_1 + 2x_2 + x_4 = 0$$

 $2x_1 + 4x_2 - x_3 - 2x_4 = 0$
 $3x_1 + 6x_2 - x_3 - x_4 = 0$

Part 1: Find the solution set.

Part 2: Rewrite the solution set in the form

$$\left\{ a \begin{bmatrix} ? \\ ? \\ ? \\ ? \end{bmatrix} + b \begin{bmatrix} ? \\ ? \\ ? \\ ? \end{bmatrix} \middle| a, b \in \mathbb{R} \right\}$$

Activity S.3.9 (\sim 10 min)

Consider the homogeneous system of equations

$$x_1 + 2x_2 + x_4 = 0$$

 $2x_1 + 4x_2 - x_3 - 2x_4 = 0$
 $3x_1 + 6x_2 - x_3 - x_4 = 0$

Part 1: Find the solution set.

Part 2: Rewrite the solution set in the form

$$\left\{ a \begin{bmatrix} ? \\ ? \\ ? \\ ? \end{bmatrix} + b \begin{bmatrix} ? \\ ? \\ ? \end{bmatrix} \middle| a, b \in \mathbb{R} \right\}$$

Part 3: Find a basis for the solution set.

Activity S.3.10 (∼10 min)

Consider the homogeneous system of equations

$$x_1 - 3x_2 + 2x_3 = 0$$

$$2x_1 - 6x_2 + 4x_3 + 3x_4 = 0$$

$$-2x_1 + 6x_2 - 4x_3 - 4x_4 = 0$$

Find a basis for the solution set.

Activity S.3.11 (\sim 5 min)

Suppose W is a subspace of \mathcal{P}^8 , and you know that the set $\{x^3 + x, x^2 + 1, x^4 - x\}$ is a linearly independent subset of W. What can you conclude about W?

- (a) The dimension of W is no more than 3
- (b) The dimension of W is 3
- (c) The dimension of W is at least 3

Activity S.3.12 (\sim 5 min)

Suppose W is a subspace of \mathcal{P}^8 , and you know that W is spanned by the six vectors

$${x^4 - x, x^3 + x, x^3 + x + 1, x^4 + 2x, x^3, 2x + 1}$$

Without doing any calculation, what can you conclude about W?

- (a) The dimension of W is no more than 6
- (b) The dimension of W is 6
- (c) The dimension of W is at least 6