Problem 6

Algorithm countZerosAndOnes (A, start, end)	Count of operations
Input: sorted array A of zeros and ones, starting index, ending index	
Output: count of zeros, count of ones	
if (start \geq end) then	1
ones = $A.length - start - 1$	3
zeros = A.length - ones	2
return zeros, ones	2
mid = (start + end) / 2	3
if $(A[mid] = 1)$ then	2
return countZerosAndOnes (A, start, mid)	2 + T(n/2)
else	
return countZerosAndOnes (A, mid +1, end)	3 + T(n/2)
$T(n) = \begin{cases} 8, & n = 1\\ T\left(\frac{n}{2}\right) + 16, n > 1 \end{cases}$	

According to the master formula:

$$a = 1, b = 2, c = 16, k = 0$$

$$\therefore a = 1 = b^k = 2^0 = 1$$

$$\therefore T(n) \text{ is } \Theta(n^k \log n) \to T(n) \text{ is } \Theta(\log n)$$
Since
$$\lim_{n \to \infty} \frac{\log n}{n} = \lim_{n \to \infty} \frac{1}{n} \log e = 0$$

$$\therefore T(n) \text{ is } o(n).$$