ODE 45 non-linearized pendulum

$$\theta'' + \omega^2 * \sin(\theta) = 0$$
 let θ be represented as $\theta = \begin{bmatrix} \theta \\ \theta' \end{bmatrix} = \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix}$ then let $\dot{\theta}$ be represented as $\dot{\theta} = \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix}' = \begin{bmatrix} \theta' \\ \theta'' \end{bmatrix} = \begin{bmatrix} \theta_2 \\ -\omega^2 * \sin(\theta_1) \end{bmatrix}$ the initial conditions are defined as:
$$\theta(0) = \pi/2 \\ \theta'(0) = 0$$
 ... $\theta = \begin{bmatrix} \pi/2 \\ 0 \end{bmatrix}$

% note: theta referred to above is represented by v_theta, indicating virtual

[t,theta] = ode45(@(t,theta) odePendulum(t,theta,w2),span,initial);
function thetaDot = odePendulum(t,v_theta)

$$let \ \theta = \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix}$$
 thetaDot = zeros(2,1); thetaDot(1) = v_theta(2); thetaDot(2) = -9.81*sin(v_theta(1));
$$\dot{\theta} = \begin{bmatrix} \theta_2 \\ -\omega^2 * \sin(\theta_1) \end{bmatrix}$$

end

function inherits a virtual variable/parameter in matrix form (in this case: v_{theta}) it then returns the differential as **thetaDot** with respect to the members of v_{theta}

ode45 takes that thetaDot parameter, and a span, and integrates each row with respect to the span, the function then returns the array of numerically calculated values, ode45 returns the values in a column in the n^{th} position of **theta_soln** that correspond, to the m^{th} position of **thetaDot**

$$v_theta = \begin{bmatrix} \theta \\ \theta' \end{bmatrix} = \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix}$$

$$thetaDot = \begin{bmatrix} \theta_2 \\ -\omega^2 * \sin(\theta_1) \end{bmatrix}$$

$$theta_soln = \begin{bmatrix} \theta & \theta' \\ \vdots & \vdots \end{bmatrix}$$

ODE45 solver is accurate to approximately ≤ 1 % error with a timestep of 0.000001 until approximately 10 seconds