Théorie de l'information et mesures d'entropie

Damien Nouvel

Plan

1. Quantification de données

- 2. Calculs d'entropie
- 3. Arbres de décision

Mesures sur des corpus

- ▶ Taille pour stocker un corpus :
 - Nombre de fichiers (80jours : 1)
 - Nombre de mots (80jours : 85K)
 - Espace disque requis (80jours : 776Ko)
 - ⇒ Quelles mesures pour l' « information »?
- ► **Information** contenue dans un corpus :
 - Compression de fichier (80jours : zip 192 Ko, bz2 117 Ko...)
 - Nombre de mots distincts (80jours : 9412)
 - ...?
- ⇒ Nombreuses **mesures** pour **quantifier** un corpus
 - Lien entre taille et **information** :
 - Comment stocker un document de manière optimale?
 - Combien de temps pour lire et comprendre un texte?
 - ⇒ Compromis entre stockage et accessibilité

Plan

1. Quantification de données

2. Calculs d'entropie

3. Arbres de décision

Théorie de l'information de Shannon

▶ Claude Shannon : entropie, théorie de l'information

Entropie de Shannon

- Mesure thermodynamique adaptée aux télécoms
- Répandue en sciences (néguentropie)
- Définition :
 - Formule : $H(X) = -\sum_{X} P(X = x) * log(P(X = x))$
- Propriétés :
 - Positive : $H(X) \geqslant 0$
 - Entropie **jointe** : $H(X, Y) \leq H(X) + H(Y)$
 - Entropie conditionnelle : H(X, Y) = H(X) + H(Y|X)
- Comportement :
 - Augmente avec le nombre d'évènements équiprobables :
 - Deux évènements (P(X=i)=0.5): H(X)=1
 - Quatre évènements (P(X=i)=0.25): H(X)=2
 - Augmente avec l'équilibre des probabilités :
 - Déséquilibrée (P(X=1)=0.1, P(X=2)=0.9): H(X)=0.47
 - Équilibrée (P(X=1)=0.4, P(X=2)=0.6): H(X)=0.97

Fonction d'entropie

Interprétation de l'entropie

- ⇒ L'entropie comme **mesure** de...
 - Incertitude...
 - Indécidabilité?!
 - Désorganisation #§!:/
 - Chaos :s
 - Information?
 - ⇒ difficile à interpéter...
 - Intérêt de l'entropie
 - Mesure la quantité d'information :
 - Un signal peu informatif est redondant
 - Un signal informatif est très diversifié et peu prédictible
 - ⇒ En télécommunications : quelle bande passante est nécessaire ?
 - ⇒ Relation entre données et modèle statistique
 - ► Se mesure en nombre de **bits** (logarithme base 2)

Calcul de l'entropie en python

⇒ Utilisation de la fonction log de la librairie math

```
import math
probas = [0.2, 0.3, 0.5]
entropie = 0
for proba in probas:
   entropie -= proba*math.log(proba, 2)
print 'Entropie:', entropie
```

Information mutuelle

- ⇒ Mesure de la **corrélation** entre deux variables
 - Définition :
 - Formule : $I(X, Y) = \sum_{x \in X, y \in Y} P(X = x, Y = y)$ $y) * log \left(\frac{P(X = x, Y = y)}{P(X = x) * P(Y = y)} \right)$
 - Propriétés :
 - **Positive** : $I(X, Y) \ge 0$
 - En cas d'indépendance : I(X, Y) = 0
 - Lien avec l'entropie : H(X, Y) = H(X) + H(Y) + I(X, Y)
 - Lien avec l'entropie conditionnelle : I(X, Y) = H(X) H(X|Y)

Divergence de Kullback-Leibler

- ⇒ Mesure la perte d'information par **approximation** d'une loi
 - Définition :

• Formule:
$$D_{KL}(P||Q) = \sum_{x \in X} P(X=x) * log\left(\frac{P(X=x)}{Q(X=x)}\right)$$

- Propriétés :
 - Positive : $D_{KL}(P, Q) \geqslant 0$
 - Les lois ne divergent pas si $D_{KL}(P||Q) = 0$
 - Avec cette formulation, comparaison sur les **mêmes**données
- ⇒ Aussi appelée gain d'information ou entropie relative

Plan

- 1. Quantification de données
- 2. Calculs d'entropie
- 3. Arbres de décision

Critères sur des données

- ▶ Tâche de classification :
 - Recueil et examen des données
 - Recherche de critères « utiles »
 - Focalisation sur les **sous-ensembles** de données
- ⇒ Quelle importance accorder à chaque **critère**
- ⇒ Prise de décision

jour	$temp\'erature$	pluie	travail	sortir
lundi	27	non	oui	oui
jeudi	15	oui	non	non
samedi	10	oui	non	non
mercredi	23	non	oui	non
lundi	27	non	non	oui
mercredi	15	oui	non	oui

Critères sur des données

- ⇒ L'arbre de décision évalue les critères pour classifier
 - ▶ Structure de l'arbre :
 - Les nœuds contiennent les variables
 - Les arcs contiennent une décision sur les valeurs
 - Les feuilles contiennent les données
 - Évaluation de l'apport d'une décision par **entropie** :
 - Pour chaque feuille, pour chaque critère différence entre :
 - Entropie du nœud n $-\sum_{x \in X} P(X = x|n) * log(P(X = x|n))$
 - Somme pondérée des entropie des nœuds enfants $e \in child(n)$

-
$$\sum_{e \in enfant(n)} \frac{|e|}{|n|} \sum_{x \in X} P(X = x|e) * log(P(X = x|e))$$

- ⇒ Choix du critère qui diminue le plus l'entropie
- ⇒ Séquence de **décisions** guidées par l'**entropie**
- → Possibilité de visualiser les décisions sous forme d'arbre

weekend	temp.	pluie	travail	sortir
non	chaud	non	oui	oui
non	froid	oui	non	non
oui	froid	oui	oui	oui
non	chaud	non	oui	non
non	chaud	oui	non	oui
non	doux	oui	non	oui

$$H(sortir)$$

= $-4/6 * log(4/6) - 2/6 * log(2/6)$
= 0.91

weekend	temp.	pluie	travail	sortir
non	chaud	non	oui	oui
non	froid	oui	non	non
oui	froid	oui	oui	oui
non	chaud	non	oui	non
non	chaud	oui	non	oui
non	doux	oui	non	oui

$$\begin{array}{l} \textit{H(sortir)} \\ = \ 1/6*(-1*log(1)) \\ + \ 5/6*(-3/5*log(3/5) - 2/5*log(2/5)) \\ = \ 0.80 \end{array}$$

weekend	temp.	pluie	travail	sortir
non	chaud	non	oui	oui
non	froid	oui	non	non
oui	froid	oui	oui	oui
non	chaud	non	oui	non
non	chaud	oui	non	oui
non	doux	oui	non	oui

weekend	temp.	pluie	travail	sortir
non	chaud	non	oui	oui
non	froid	oui	non	non
oui	froid	oui	oui	oui
non	chaud	non	oui	non
non	chaud	oui	non	oui
non	doux	oui	non	oui

$$\begin{array}{l} \textit{H(sortir)} \\ = & 4/6*(-3/4*\log(3/4) - 1/4*\log(1/4)) \\ + & 2/6*(-1/2*\log(1/2) - 1/2*\log(1/2)) \\ = & 0.87 \end{array}$$

weekend	temp.	pluie	travail	sortir
non	chaud	non	oui	oui
non	froid	oui	non	non
oui	froid	oui	oui	oui
non	chaud	non	oui	non
non	chaud	oui	non	oui
non	doux	oui	non	oui

$$H(sortir) = 3/6 * (-2/3 * log(2/3) - 1/3 * log(1/3)) + 3/6 * (-2/3 * log(2/3) - 1/3 * log(1/3)) = 0.91$$

weekend	temp.	pluie	travail	sortir
non	chaud	non	oui	oui
non	froid	oui	non	non
oui	froid	oui	oui	oui
non	chaud	non	oui	non
non	chaud	oui	non	oui
non	doux	oui	non	oui

weekend	temp.	pluie	travail	sortir
non	chaud	non	oui	oui
non	froid	oui	non	non
oui	froid	oui	oui	oui
non	chaud	non	oui	non
non	chaud	oui	non	oui
non	doux	oui	non	oui

