BESIII Oxford Group Meeting

Martin Tat

Oxford LHCb

30th April 2021

Introduction

- $D \to K^+K^-\pi^+\pi^-$ analysis
- Previously:
 - Obtained ST yield from fit to $m_{\rm BC}$
 - *KK*ππ, *KK*, ππ
- Current progress:
 - Obtained ST yield for $K\pi$, $K\pi\pi^0$, $\pi\pi\pi^0$, $K_S\pi^0$, $K_S\pi^0\pi^0$, $K_S\eta$
 - Obtained DT yield for KK, $K_S\pi^0$, $K\pi$ using sideband background subraction

$\pi\pi\pi^0$ and $K_S\pi^0$ ST yield

$K_S \pi^0 \pi^0$ and $K_S \eta$ ST yield

$K\pi$ and $K\pi\pi^0$ ST yield

Peaking backgrounds

• Shape and yield fixed from inclusive MC

Tag mode	Main peaking backgrounds(Yields)
$\pi\pi\pi^0$	$K_{S}\pi^{0}$ (1402), $K\pi$ (669), $K\pi\pi^{0}$ (153)
$K_S\pi^0$	$\pi\pi\pi^{0}$ (227)
$K_S\pi^0\pi^0$	$K_S K_S$ (249), $K_S \pi^0 \gamma$ (198), $K_S \eta$ (244)
	$\pi\pi\pi^{0}\pi^{0}$ (149), $K_{S}\pi^{0}$ (93), $K_{S}\pi\pi$ (57), $K\pi\pi^{0}$ (32)
$K_S\eta$	-
$K\pi$	Other (95), $Ke\nu$ (84), $K\mu\nu$ (72), $\pi\pi\pi^0$ (62)
$K\pi\pi^0$	$\pi\pi\pi^{0}$ (807), $K_{S}\pi\pi$ (483), $K\mu\nu\pi^{0}$ (169)
	$\textit{Ke}\nu\pi^0$ (155), $\textit{K}\pi\gamma^{FSR}$ (139)

Single tag yields

Tag mode	Yield	Result from K_SKK analysis
$\pi\pi\pi^0$	97862 ± 530	99981 ± 618
$K_S\pi^0$	62357 ± 255	65072 ± 281
$K_S\pi^0\pi^0$	19259 ± 195	19882 ± 233
$K_{\mathcal{S}}\eta$	8732 ± 106	9524 ± 134
$K\pi$	513561 ± 725	$261221\pm525/266086\pm525$
$K\pi\pi^0$	914620 ± 1044	$496202 \pm 788/499481 \pm 792$

Double tag yields

- $KK\pi\pi$ vs KK (CP even tag)
- $KK\pi\pi$ vs $K_S\pi^0$ (CP odd tag)
- $KK\pi\pi$ vs $K\pi$ (flavour tag)

Sideband background subtraction method

$$B = \frac{a_S}{a_D} Y_D + \sum_{i=A,B,C} \frac{a_S}{a_i} \left(Y_i - \frac{a_i}{a_D} Y_D \right) \tag{1}$$

$KK\pi\pi$ binning scheme

- δ_D : Strong phase
- r_D : Ratio of D^0 to $\bar{D^0}$ decay amplitude

KK double tag yield

Figure 4: KK double tag yield in $KK\pi\pi$ bins

$K_S\pi^0$ double tag yield

Figure 5: $K_S\pi^0$ double tag yield in $KK\pi\pi$ bins

$K\pi$ double tag yield

Double Tag Flavour yields

Figure 6: $K\pi$ double tag yield in $KK\pi\pi$ bins

Next steps

- Yields of other ST modes
- Yields of other DT modes