WEIGHTED AVERAGE (WEIGHTED MEAN)

The average obtained by giving the importance to the quantities of a distribution is called **WEIGHTED AVERAGE**.

It is denoted by \overline{X}_{w} and weight is denoted by 'w'

FORMULA:-
$$X_w = \sum WX$$

QU-Find weighted mean of the following distribution

Subject	Marks	Weight
Maths	20	5
English	25	8
physics	35	6

Solution:-

Subject	Marks (x)	Weight(w)	w*x
Math's	20	5	100
English	25	8	200
physics	35	6	210
		∑w =19	$\sum w x = 510$

$$X_{w} = \frac{\sum W}{\sum W} = 510/19 = 26.8$$

Example: The performance of a student – manager in a business school was evaluated as follows:

Basis of Evaluation	Maximum Marks	Marks obtained	Weight
Class Tests	50	38	10
Presentations	50	36	15
Attendance	20	15	5
Class Participation	30	20	10
Final Examination	70	55	60

Calculate simple mean, weighted mean and conclude which of them is the appropriate answer.

Solution:

Basis	Marks Obtained (x)	Weights (W)	Wx	
Class Tests	38	10	380	
Presentations	36	15	540	
Attendance	15	5	75	
Class Participation	20	10	200	
Final Examination	55	60	3300	
n = 5	Σx= 164	$\Sigma w = 100$	$\Sigma Wx = 4495$	

Simple Mean
$$\bar{x} = \frac{\Sigma x}{n} = \frac{164}{5} = 32.8$$

Weighted Mean =
$$\frac{\Sigma Wx}{\Sigma W} = \frac{4495}{100} = 44.95$$

where W = weight of individual items

Weighted mean is the real index of performance

GEOMETRIC MEAN (G.M.)

Definition:-

This mean meant by multiplying numbers together and then finding the nth root of the numbers such that the nth root is equal to the amount of numbers you multiplied

"The nth root of the product of n values is called geometric mean of the variable and is denoted by 'G'

QU:- find G.M. for the following data-2,3,5,3,10,8

Solution-
$$G=\sqrt[6]{2*3*5*3*10*8}$$

$$=(2*3*5*3*10*8)^{1/6}$$

$$= 7200^{1/6}$$

$$G=4.39$$
QU:- find geometric mean

0.5,1,2,16 Solution:- $G = (0.5*1*2*16)^{1/4}$ $= (16)^{1/4}$ $= (2^4)^{1/4}$

G.M. = 2

```
Qu:- find G.M. for the following----- 42.7, 37.2, 23, 39.7, 45.3
Solution:-
               n=5
             applying formula-
                    \log G = 1/n \sum \log x
                 = 1/5 (log42.7 + log37.2 + log23 + log39.7 + log45.3)
                 =1/5(1.6304+1.5705+1.3617+1.5988+1.6561)
                                                    (from log table)
                 =1/5(7.8175)
                 =1.5 635
               G= Antilog 1.5635
```

(From antilog table)

G = 36.60

QU:- determine G.M. for the following distribution-

X: 135 231 352 430

f: 2 3 4 3

Solution:-

X	f	log x	f log x
135	2	2.1303	4.2606
231	3	2.3636	7.0908
352	4	2.5465	10.1860
430	3	2.6335	7.9005
	N = 12		$\sum f \log x = 29.4379$

$$\log G = 1/N \sum f \log x$$

Merits of G.M.:-

- It is rigidly defined
- it is based on all items
- it is suitable for further algebraic calculations
- it is not too much affected by sampling fluctuations

Demerits of G.M.:-

- it is difficult to calculate
- unfit when any value is zero or negative

Uses of G.M.:-

- it is used in averaging ratios, rates and percentages
- it is used in economics
- it is used in financial transaction
- it is used in interest rates
- it is used in personal finances

```
EXAMPLE- Log 42.7
   we read 42 \rightarrow 7
             =.6304
  Before decimal = 2
 so 2-1=1
 Answer = 1.6304
EXAMPLE- Log 135
     we read 13 \longrightarrow 5
                =.1303
Before decimal = 3
  so 3-1=2
 Answer =2.1303
```

```
rules for read to Log table –
           1. characteristic
           2. mantissa
Before decimal → characteristic (C)
After decimal mantissa (M)
Example: ANTILOG (2.6452)
    C = 2
    M = 6452
Then read on table 64 \longrightarrow 5 = 4416
        mean difference =2
So 4416+2=4418
```

decimal - c+1 = 2+1=3

Answer = 441.8

HARMONIC MEAN

This mean is the reciprocal of the arithmetic mean of the variables. It is denoted by H.M.

FORMULA:- 1.- individual series H.M. =
$$\frac{1}{X_1^+} \frac{1}{X_2^+} \frac{1}{X_3^+} \frac{1}{X_3^-}$$

2. -Discrete series
$$\longrightarrow$$
 H.M. = $\frac{f_1}{x_1} + \frac{f_2}{x_2} + \dots + \frac{f_n}{x_n}$

Calculate H. M. from the following data —

10, 13, 8, 4, 5

Solution—

H. M. =
$$\frac{1}{12} + \frac{1}{12} + \frac{1}{12$$

By	- Find	Har	non	oic	Mean	
	26	10	20	30	40	50
	[f]	6	11	16	10	7
Sol	ution -			2)	
		H.M.	= ;			fn
(n=	= £ f			+ +	212	fn
	20	f	1 20		-f/x	
	10	6	1/1	0	6/10	
	20	11	1/2	0	11/20	
1	30	16	1/3	0		
	40	10	1/4	0	10/4	10
	50	7	1/4		7/5	
		N=50			1	
	HIN	Л	50)		
$H \cdot M_{,} = \frac{30}{\frac{6}{10} + \frac{11}{20} + \frac{16}{30} + \frac{10}{40} + \frac{7}{50}}$						
50						
360 + 330 + 320 + 150 + 84						
1	$= \frac{50\times600}{1244} = [24.12]$					

Merits of Harmonic mean:-

- 1. it is based on all items.
- 2. it is rigidly defined.
- 3. it is least affected by sampling fluctuations
- 4. it is suitable for further mathematical treatment.

Demerits of Harmonic mean:-

- 1. it is difficult to calculate and understand.
- 2. it is unfit in case of zero or negative value.
- 3. it gives more weights to smaller value.

Uses of Harmonic mean:-

- 1. To determine the average speed which travel different time different distance and different speed.
- 2. To find mileage of a car.

RELATION BETWEEN A.M, G.M. & H.M.

A.M.
$$\geq$$
 G.M. \geq H.M.

$$G.M. = V A.M.*H.M.$$

Qu:- The A.M. and G.M. of two numbers are 15 and 10 respectively. Find the H.M. of the numbers.

Solution-

$$(G.M.)^2 = A.M. X H.M.$$

 $(10)^2 = 15 X H.M.$
 $100 = 15 X H.M.$
 $H.M. = 100/15$
 $= 20/3$
 $= 6.66$

QU -1. calculate G.M.-

salary in lacs : 1 2 3 4 5 6

no. of employees: 10 8 17 7 5 3

(ANS = 2.600)

QU-2. find G.M & H.M.-

5, 10,15,20, 25,30

(ANS - 14.63 & 12.24)

QU -3. if A.M. & G.M. of two values are 5 & 4 respectively then find H.M. (ANS = 3.2)

QU -4. Determine H.M. of the following distribution-

class : 10-14 15-19 20-24 25-29 30-34

frequency: 4 6 8 2 2 (ANS = 18.54)

Qu-5. Find G.M.-

X: 14 23 37 68 70

f: 3 9 16 10 2 (ANS = 37.15)

If a and b are postive numbers, then

Arithmetic Mean (AM) =
$$\frac{a+b}{2}$$

Harmonic Mean (HM) =
$$\frac{2ab}{a+b} = \frac{(GM)^2}{AM}$$