FIT I 045: Algorithms and Programming Fundamentals in Python

Lecture | |

Computational Complexity

COMMONWEALTH OF AUSTRALIA Copyright Regulations 1969 WARNING

Assignment Part I

- Assignment due this Friday!
- Only part I (part 2 is due in week II)
- Changes in submission:
 - Do not submit zip with regression.py
 - Instead, submit regression.py
 - This would greatly help the marking team
 - (you won't be grilled if you submit a .zip, but please try to make it easy for your tutors)

Different algorithms can solve same problem but at vastly different costs

```
def gcd_brute_force(m, n):
    """Input : integers m and n such that not n==m==0
        Output: the greatest common divisor of m and n
    """
    x = min(m, n)
    while not (m % x == 0 and n % x == 0):
        x = x - 1
    return x
```

```
def gcd_euclid(m, n):
    """
    Input : integers m and n such that not n==m==0
    Output: the greatest common divisor of m and n
    """
    while n != 0:
        m, n = n, m % n
    return m
```

Objectives

Objectives of this lecture are to get familiar with:

- I. The concept of computational complexity
- 2. Asymptotic analysis of order of growth: Big-Oh Notation
- 3. Complexity analysis of simple algorithms
- The computational complexity of Selection Sort and Insertion Sort

This covers learning outcomes:

• 5 – Determine the computational cost and limitations of algorithms

Overview

- 1. Computational Complexity
- 2. Asymptotic Analysis (Big-Oh notation)
- 3. Application to Sorting Algorithms

How long does a program run?

Depends on:

- I. the machine used to execute the program
- 2. the input (runs longer for larger inputs)
- 3. the computational complexity of the algorithm

Definition

The <u>computational</u> (time) <u>complexity</u> of an algorithm is the <u>number of elementary steps</u> T(n) needed for computing its output for an input of a size n.

What is an elementary step?

Fix cost model for set of basic instructions

Cost model for basic instructions

Instruction	Examples	Cost
assignment	x = I, return x	0
int/float/bool creation*	I, -3.0, True	0
range creation*	range(i,j,s)	0
list/string creation	list(seq)	len(seq)

^{*}objects with fixed (in memory) size

Instruction	Examples	Cost
numerical arithmetic	1.0 + 324, -1**231	
Boolean operation	True or False	I
numerical comparison	10 >= -3.5	I

Instruction	Example	Cost
list/string slicing	a[i:j:s]	len(a[i:j:s])
list/string concatenation	a + b	len(a) + len(b)
list augmentation	a+=b	len(b)
getting size of str/list/set/range	len(a)	0

Fix cost model for set of basic instructions

```
x = 8 % 2

a = [10, 2, 10] + [5, 2, 27, 18]

len(a)

x == 0
```

Break down complex instructions to determine their cost

```
not (18 % 3 == 0 and 10 % 3 == 0) 6

price_with_gst(27+3) 3
```

Determine total cost of program line by analysing how often and in what states it is executed:

```
a = []
while len(a) < 5:
    a = a + [len(a)]</pre>
```

Quiz time (https://flux.qa)

Clayton: AXXULH
Malaysia: LWERDE

Model cost of elementary instructions

Break down complex instructions to determine their cost

Determine total cost of program line by analysing how often and in what states it is executed:

Model cost of elementary instructions

Break down complex instructions to determine their cost

Determine total cost of program line by analysing how often and in what states it is executed:

In general number of steps depend on input

```
def power(x, n):
    """I: number x and pos. integer n
       O: x to the power of n"""
    value = 1
    k = 1
    while k <= n:
        value *= x
                                   Quiz time (https://flux.qa)
        k += 1
                                   Clayton:
                                   Malaysia:
    return value
```

According to model, what is the number of steps for power(2, 5)?

AXXULH

LWERDE

15

16

19

In general number of steps depend on input

According to model, what is the number of steps for power(2, 5)?

In general number of steps depend on input

What is the number of steps in general for power(x, n)?

Time complexity of power: T(n) = 3n + 1

Disclaimer: here, we regarded parameter n as input size for sake of simplicity (usually other choices for numeric algorithms; see FIT 1008)

Next example: sequential search

```
def search(v, seq):
   """I: value v and sequence seq
      O: first index of seq with value v or None
         (if no such index exists)
   // // //
   n = len(seq)
   while i < n:
      <u>if</u> seq[i] == v: —
          return i ———
       i += 1 —
   return None -
```

What is the number of steps for search (2, range (5))?

Next example: sequential search

```
def search(v, seq):
   """I: value v and sequence seq
      O: first index of seq with value v or None
         (if no such index exists)
   // // //
   n = len(seq)
   while i < n:
       <u>if</u> seq[i] == v: —
          return i —
       i += 1 -----
   return None -
```

What is the number of steps in general for input v, seq? (consider input size n = len(seq))

Number of steps not equal for all inputs of size n!!

Best case analysis

```
def search(v, seq):
   """I: value v and sequence seq
      O: first index of seq with value v or None
         (if no such index exists)
   // // //
   n = len(seq)
   while i < n:
       <u>if</u> seq[i] == v: —
          return i ———
       i += 1 -----
   return None -
```

Best case (fewest steps): v==seq[0]

Worst case analysis

```
def search(v, seq):
   """I: value v and sequence seq
      O: first index of seq with value v or None
         (if no such index exists)
   // // //
   n = len(seq)
   while i < n:
                                         n+1
       <u>if</u> seq[i] == v: —
           return i —
       i += 1 —
   return None -
```

Best case (fewest steps): v==seq[0]
Worst case (most steps): v not in seq

Another example: repeated search

```
def disjoint(s1, s2):
                                      \rightarrow n = n1 + n2
   """I: sequences s1 and 2
      O: True is s1 and s2 have no common element
         (False otherwise)
   // // //
   n1, n2 = len(s1), len(s2)
   while i < n1:
       if search(s1[i], s2) is not None: \rightarrow 3n^2/2 + n/2
           return False ———
       i = i + 1 —
   return True -
                                  (3/2)n^2 + (3/2)n + 1
```

What is input size?

Worst case: no common element and n1=n2=n/2

Total cost of search:
$$\frac{n}{2}T_{\text{search}}\left(\frac{n}{2}\right) = \frac{n}{2}\left(\frac{3}{2}n+1\right) = \frac{3}{2}n^2 + \frac{n}{2}$$

Intermediate Summary

Computational complexity

- Express number of computational steps as function of input size (independent of computer and specific input)
- Need to decide how to measure input size (what is n?)
- Have to decide whether to analyse worst case or best case

Observations

- Model assumptions of what constitutes single step are either a bit complicated or a bit arbitrary
- Even with simplifying assumptions: analysis is quite tedious

Overview

- I. Computational Complexity
- 2. Asymptotic Analysis (Big-Oh notation)
- 3. Application to Sorting Algorithms

Let's plot time complexity of search function

Assume alternative algorithm

Assume alternative algorithm

Let's compare both to disjoint

Only coefficient of largest growth term is relevant for large input sizes

...but also negligible when comparing to higher order of growth

Let's try to narrow down what we mean by "order of growth"

Intuitively, simple function g(n) has same order of growth as T(n). Why?

We can simply "scale it up" by a constant c...

...and it dominates T(n) for all but a finite prefix of input sizes!

Could we also have used linear function as upper bound?

Could we also have used linear function as upper bound?

No! Eventually quadratic term of original function is "winning"

Order of growth: "Big O"-Notation

Definition [Levitin, p. 53]

A function T(n) is in O(g(n)) if there are positive numbers c and n_0 such for all $n \ge n_0$ it holds that $T(n) \le cg(n)$.

Different growth rates

Different growth rates

n	log(n)	n	Nlog(n)	n ²	2 ⁿ	n!
10	0.003 μs	0.01 μs	0.033 μs	0.1 μs	Iμs	3.63 ms
20	0.004 μs	0.02 μs	0.086 μs	0.4 μs	I ms	77.1 years
30	0.005 μs	0.03 μs	0.147 μs	0.9 μs	I sec	8.4×10 ¹⁵ years
40	0.005 μs	0.04 μs	0.213 μs	1.6 μs	18.3 min	
50	0.006 μs	0.05 μs	0.282 μs	2.5 μs	13 days	
100	0.007 μs	0.1 μs	0.644 μs	10 μs	4x10 ¹³ years	
1,000	0.010 μs	Iμs	9.966 μs	I ms		
10,000	0.013 μs	10 μs	130 μs	100 ms		
100,000	0.017 μs	100 μs	1.67 ms	10 sec		
1,000,000	0.020 μs	I ms	19.93 ms	16.7 min		
10,000,000	0.023 μs	10 ms	0.23 sec	1.16 days		
100,000,000	0.027 μs	0.1 sec	2.66 sec	115.7 days		
1,000,000,000	0.030 μs	l sec	29.90 sec	31.7 years		

Measured in nanoseconds (10⁻⁹ secs)

Different growth rates

n	log(n)	n	Nlog(n)	n²	2 ⁿ	n!	
10	0.003 μs	0.01 μs	0.033 μs	0.1 μs	lμs	3.63 ms	
20	0.004 μs	0.02 μs	0.086 μs	0.4 μs	I ms	77.1 years	
30	0.005 μs	0.03 μs	0.147 μs	0.9 μs	I sec	8.4×10 ¹⁵ years	
40	0.005 μs	0.04 μs	0.213 μs	1.6 μs	18.3 min		
50	0.006 μs	0.05 μs	0.282 μs	2.5 μs	13 days		
100	0.007 μs	0.1 μs	0.644 μs	10 μs	4x10 ¹³ years		
1,000	0.010 μs	Iμs	9.966 μs	I ms			
10,000	0.013 μs	10 μs	130 μs	100 ms		Our universe is only 13.8×10 ⁹ years old.	
100,000	0.017 μs	100 μs	1.67 ms	10 sec	15.0		
1,000,000	0.020 μs	I ms	19.93 ms	16.7 min			
10,000,000	0.023 μs	I0 ms	0.23 sec	1.16 days			
100,000,000	0.027 μs	0.1 sec	2.66 sec	115.7 days			
1,000,000,000	0.030 μs	I sec	29.90 sec	31.7 years			

Measured in nanoseconds (10⁻⁹ secs)

Points to keep in mind

- The input that produces the worst case may be very unlikely to occur in practice.
- Big-O ignores constants, which in practice may be very large.
- If a program is used only a few times, then the actual running time may not be a big factor in the overall costs.
- If a program is only used on small inputs, the growth rate of the running time may be less important than other factors.
- A complicated but efficient algorithm may be less desirable than a simpler algorithm.
- In numerical algorithms, accuracy and stability are just as important as efficiency.
- The average case complexity is always between the best and the worst cases.

Overview

- I. Computational Complexity
- 2. Asymptotic Analysis (Big-Oh notation)
- 3. Application to Sorting Algorithms

Complexity of Selection Sort

```
def selection_sort(lst):
    for i in range(len(lst)):
        j = min_index(lst[i:]) + i
        lst[i], lst[j] = lst[j], lst[i]
```

another advantage of decomposition: can reason about complexity per function!

Complexity of min_index

Simpler way to arrive at same conclusion

```
def min index(lst):
    k = 0 —
                                                    O(0)
                                           O(0)
    for i in range(1, len(lst)): \longrightarrow
                                                    O(n)
                                          O(n)
        if lst[i] < lst[k]:</pre>
                                          O(n)
                                                   O(n)
             k = i -----
                                           O(0)
                                                    O(n)
    return k —
 Involves
   check if last i
                         O(n)
   increment i
                         O(n)
                                          Asymptotically no
                                         difference between
 Total
                          O(n)
                                         best and worst case!
```

General Observation

If T_1 in $O(g_1(n))$ and T_2 in $O(g_2(n))$ then sum $T_1(n) + T_2(n)$ is in $O(\max\{g_1(n), g_2(n)\})$ Overall complexity is determined by step of highest complexity!!!

Complexity of overall Selection Sort

Total cost of min index calls

$$= (n+1)n/2 = (n^2 + n + 1)/2 = O(n^2)$$

Let's analyse Insertion Sort

```
def insertion_sort(lst): \longrightarrow n = len(lst)
for i in range(1, len(lst)): \longrightarrow O(n) O(n^2)
insert(i, lst) \longrightarrow O(n) O(n^2)
```

Total cost of insert calls

best case (sorted input):

$$\begin{array}{c}
n \text{ times} \\
1+1+1+\dots+1 \\
= O(n)
\end{array}$$

• worst case (inversely sorted input): $1+2+\cdots+(n-1)+n=O(n^2)$ = (n+1)n/2 as previously

Summary

Computational complexity of algorithm number of steps for input size (i.e., it is a function)

- needs to choose best-case or worst-case
- details depends on some computational model

Usually we are interested in order of growth of complexity only (Big-O notation)

Application to sorting algorithms

- Both Selection Sort and Insertion Sort have quadratic worst-case complexity
- Insertion Sort is adaptive (linear best-case)

Coming Up

- Logarithmic complexity and the decrease-andconquer paradigm
- More efficient search
- Analysis of Euclid's Algorithm