FISEVIER

Contents lists available at ScienceDirect

Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb

Construction of urchin-like ZnIn₂S₄-Au-TiO₂ heterostructure with enhanced activity for photocatalytic hydrogen evolution

Guang Yang^a, Hao Ding^{a,*}, Daimei Chen^{a,*}, Jiejie Feng^a, Qiang Hao^a, Yongfa Zhu^b

^a Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Xueyuan Road, Haidian District, Beijing, 100083, China

ARTICLE INFO

Keywords: TiO₂ ZnIn₂S₄ Au Z-scheme system Water splitting

ABSTRACT

The ternary $ZnIn_2S_4$ -Au- TiO_2 Z-scheme heterostructure photocatalysts has been fabricated by selecting effectiveness Au NPs as a solid electron mediator, via a chemical-deposition process for water splitting under simulated solar light irradiation. The designed photocatalysts exhibit high surface area and wide light absorption range, which significantly enhance photocatalytic efficiency. At an optimal ratio of 24 wt% Au NPs and 60 wt% $ZnIn_2S_4$, the obtained $ZnIn_2S_4$ -Au- TiO_2 photocatalysts achieve the highest H_2 production with the rate of $186.3 \, \mu mol \, g^{-1} \, h^{-1}$, and the O_2 production rate is reached to $66.3 \, \mu mol \, g^{-1} \, h^{-1}$. It showed that the $ZnIn_2S_4$ - $ZnIO_2$ composite structures exhibit significantly better photocatalytic activity than $ZnIn_2S_4$ - $ZnIO_2$ and $ZnIO_2S_4$ - $ZnIO_2$ structure. Such an excellent performance should be attributed to the Au NPs in the Z-scheme system structure which favor to enhance the transfer rate of the photogenerated electrons and holes and remain strong redox ability of the photocatalysts. It is worth pointing out that the unique Z-scheme $ZnIO_2S_4$ - $ZnIO_2$ heterostructure shows great solar activity toward water splitting into renewable hydrocarbon fuel.

1. Instruction

Solar water splitting utilizing photocatalysts have attracted a tremendous amount of interest over the past decades becauses it presents highly promising alternative to provide clean hydrogen energy by using of sunlight [1-3]. It is widely known that TiO2 is one of the most effective photocatalysts in the field of environmental cleaning and hydrogen energy production due to its several major factors such as abundant morphologies, easy synthesis, chemical stability and higher photoreactivity (usually up to ζ (photonic efficiency) = 10%) [4–9]. However, more often than not, two main limitations hamper the photocatalytic activities of TiO2 including wide bandgap (≈3.2 eV for anatase TiO2) and fast recombination of the photogenerated electronhole pairs. The bandgap of TiO2 can only be motivated by ultraviolet (UV) light that restricts its utilization in visible light zone of the solar spectrum [10,11]. For achieving solar water splitting reaction, it is essential to develop visible-light responsive photocatalysts. Many metal sulfides can respond to visible light range because of the relatively higher valence band (VB) position than those of corresponding metal oxides, and more negative conductor conduction band (CB) position which is suitable for H₂O reduction [12-14]. Ternary sulfide ZnIn₂S₄ is one of the most attractive photocatalytic materials for the conversion of solar energy into hydrogen energy due to the narrow band gap $(2.4 \, \text{eV})$ [15–18]. Nevertheless, it is difficult to use ZnIn_2S_4 as a single photocatalyst for splitting water into H_2 and O_2 because the photogenerated holes can oxidize the ZnIn_2S_4 itself rather than water, which resulting in no O_2 evolution and photocorrosion [19,20]. Therefore, construction of heterostructure photocatalysts system seems to be a feasible strategy that can respond to visible light and improve the photoexcited electronhole separation, and it is important in the field of photocatalysis [21–23].

The artificial Z-scheme that mimic the natural photosynthesis is generally composed of two different photocatalysts and a suitable electron media [24,25]. The remarkable advantages of the Z-scheme systems include better separation efficiency of the photogenerated electron-hole pairs and stronger reduction/oxidation potentials on different active sites [26]. The reduction evolving photocatalyst as H_2 evolution system offers the reduction sites by CB electrons, and the oxidation evolving photocatalyst as O_2 evolution system provides the oxidation sites by VB holes. Reversible mediator (e.g., Fe^{3+}/Fe^{2+} , and IO_3^-/I^-) are applied to electron transport chain in Z-scheme systems for a long time [27,28]. Nevertheless, the ionic redox couples may result in relaying electrons in solution, and the all-solid-state Z-scheme system is more favorable by using of solid electron mediator [29].

E-mail addresses: dinghao113@126.com (H. Ding), chendaimei@cugb.edu.cn (D. Chen).

^b Department of Chemistry, Tsinghua University Beijing, 100084, China

^{*} Corresponding authors.

Noble metals (such as Au and Ag) and reduced graphene oxide (RGO) have often been used as electron mediators [30–32]. The electron mediators provide a pathway through which the photogenerated electrons in one semiconductor can travel and recombine with the holes in another semiconductor quickly, leaving more reductive electrons and more oxidative holes to participate in the redox reactions in the corresponding active sites. Tada and his coworkers first reported TiO₂-Au-CdS all-solid-state Z-scheme systems that pioneer the gold nanoparticles (Au NPs) as electron transfer mediator [33]. More recently, environmentally friendly ternary Z-scheme heterojunction was studied, and the results also demonstrated Au NPs could act as contact interface between electron accepting and donating photocatalyst [34–37]. Therefore, it is expected that Au NPs can be used to construct Z-scheme systems that consisting of metal sulfide photocatalysts with high H₂ evolution ability for water splitting.

Herein, we prepared an elegant all-solid-state urchin-like $\rm ZnIn_2S_4$ -Au-TiO₂ Z-scheme composite for improving photocatalytic water splitting activity under solar light irradiation. It is worth pointing out that the metallic Au species act as the solid state electron mediator can enhance the transfer rate of the photogenerated electrons and holes between the photocatalysts. The designed $\rm ZnIn_2S_4$ -Au-TiO₂ materials have greatly overcome the weakness of single-component and came true high charge-separation efficiency and strong redox ability. Moreover, the Au NPs and $\rm ZnIn_2S_4$ loadings are investigated and detailed mechanism toward the photocatalysis of this $\rm ZnIn_2S_4$ -Au-TiO₂ heterostructure has been further proposed.

2. Experimental

2.1. Synthesis of TiO2 microsphere

Typically, 1.6 mL KCl solution (0.1 M) was added in 400 mL ethanol in round bottom flask with three necks (placed in a mixture of ice and water). 10 mL tetrabutyl titanate (TBOT) was added dropwise into above solution under vigorously magnetic stirring. The resulting white ${\rm TiO_2}$ suspension was kept static at room temperature for 10 h, then the ${\rm TiO_2}$ microsphere were collected by centrifugation, washed with ethanol and water for three times and kept at 60 °C for 10 h in an electric oven. Finally, the as-synthesized sample was sintered at 550 °C for 4 h (10 °C /min).

2.2. Synthesis of TiO_2 microsphere decorated with Au nanoparticles (Au- TiO_2)

 $160\,mg$ of TiO_2 microsphere and $52\,mg$ of Polyvinylpyrrolidone (PVP) was added to $80\,mL$ of EG in a $250\,mL$ round-bottom flask. The obtained suspension was transferred to and kept under vigorous stirring at $90\,^{\circ}\text{C}$ for $20\,min$. Then, $1\,mL$ of a $120\,mM$ NaBH4 (aq) and $1\,mL$ of a $24\,mM$ HAuCl4 (aq) solutions were sequentially added to the reaction flask. This mixture was kept under vigorous stirring for another1 h to produce Au-TiO2, which were washed three times with ethanol and water by centrifugation.

2.3. Fabrication of ZnIn₂S₄-Au-TiO₂

The schematic of the preparation route of the ternary $ZnIn_2S_4$ -Au-TiO₂ heterostructure is given in Scheme 1. In detail, a chemical-deposition process leads to the formation of Au NPs on the TiO₂ microsphere surface (namely Au-TiO₂). The TiO₂ microspheres possess large surface-exposure area, which enabled the uniform deposition of monodisperse Au NPs over the entire surface of the support. Then $ZnIn_2S_4$ nanosheet directly deposited on the surface of the Au-TiO₂ with a solvothermal process, and the ternary $ZnIn_2S_4$ -Au-TiO₂ composite were formed. $ZnIn_2S_4$ -Au-TiO₂ samples with different weight percentages of $ZnIn_2S_4$ and Au (denoted as x%-ZIS-y%Au-TO; x = 30, 40, 50, 60, and 70; y = 12, 24, 36 and 48) were prepared by the solvothermal

method. A certain amount of ZnCl₂, InCl₃·4H₂O and TAA were dissolved in 100 mL ethylene glycol and stirred at room temperature, to which an appropriate amount of as-prepared Au-TiO₂ was dispersed by sonication for another 0.5 h. The above mixture was maintained in the autoclave and heated to 120 °C for 2 h. At last, the products were washed with water and absolute ethanol and dried at 70 °C. For comparation, Au-ZnIn₂S₄-TiO₂ composite was also prepared by desposition Au NPs on ZnIn₂S₄-TiO₂ in the same condition.

2.4. Characterizations

The crystallinity of the as-synthesized samples were measured by Xray diffraction (XRD) on a Bruker D8A A25X X-ray diffractometer system using Cu K α ($\lambda = 0.15406$ nm) radiation. The morphologies and structure of the prepared samples were tested by using a HITACHI S-4800 field emission scanning electron microscope (SEM) instrument at 10KV and 5 µA. High-resolution transmission electron microscopy (HR-TEM) and energy-dispersive X-ray spectroscopy (EDS) were applied to investigate the microstructure using a JEOL JEM-2010 instrument (HR-TEM operated at 200 kV). The UV-vis diffuse reflectance spectra (DRS) of the samples were tested on a TU-1901 double beam spectrophotometer and BaSO₄ was used as the reference. The photoluminescence (PL) spectra were measured at 25 °C under excitation by incident light of 375 nm using a Hitachi F-4600 fluorescence spectrometer. X-ray photoelectron spectroscopy (XPS) of the as-prepared samples was performed on a K-Alpha spectrometer (THERMO FISHER SCIENTIFIC). Nitrogen adsorption-desorption isotherms were determined by a Quadrasorb SI-MP. The specific surface area of the sample was calculated by the BETmethod.

2.5. Measurement of photocatalytic Water splitting

Photocatalytic water splitting was investigated under simulated solar light. A 300 W Xe lamp was used as light source with the electric current at 15 A. In a typical process for testing the photocatalytic hydrogen evolution, 0.05 g photocatalyst was dispersed in 100 mL water in a quartz reactor. The mixture was dispersed by ultrasonic stirring for 15 min, and then was irradiated under UV–vis light with magnetic stirring. The gas products from photocatalytic reactions were periodically monitored and analyzed using gas chromatography (GC-2014, Shimadzu Corp, Japan).

3. Results and discussion

The X-Ray Diffraction (XRD) pattern (Fig. 1 S1, Supporting Information) indicates that the precursor samples are amorphous and transform into anatase phase after calcination treatment. Fig. 1a shows the XRD data of as-prepared samples at various stages. The dominant peaks can be indexed to the anatase TiO₂ pattern (JCPDS, No 21-1272), while the diffraction peaks of the Au (200) at 44.4° and Au (111) at 77.8° are obviously detected over Au-TiO2. A typical XRD pattern of the ZnIn₂S₄-Au-TiO₂ products can be clearly identified the existence of TiO2, Au and ZnIn2S4 in the composite structures. Moreover, no other impurity-related diffraction peaks are detected, indicating the sample has high purity. The UV-vis spectra of TiO2, Au-TiO2 and ZnIn2S4-Au-TiO₂ composite are shown in Fig. 1b. The absorption edge of pristine TiO₂ microspheres is around 415 nm, which is larger than the TiO₂ nanoparticle (387 nm). This phenonmenon comes from the quantum effect of the larger size of TiO2 microspheres. With the introduction of Au NPs, the Au-TiO2 shows strong absorption in the visible region which could be attributed to the surface plasmon resonance (SPR) of Au NPs. The pure ZnIn₂S₄ nanosheets exhibit apparent visible absorption region. In comparison to the Au-TiO2, the absorption peak of the ZnIn₂S₄-Au-TiO₂ is obviously red-shifted due to the photosensitizing effect of the incorporated ZnIn₂S₄ nanosheets. Furthermore, the absorption intensity is also found to gradually increase, which exhibit the

Scheme 1. Schematic illustration of the fabrication process of ZnIn₂S₄-Au-TiO₂ photocatalyst: Au-TiO₂ is prepared by a chemical-deposition process and ZnIn₂S₄-Au-TiO₂ is synthisized by solvothermal process.

promoted charge-carrier separation rising from the SPR-coupling effect and enhanced utilization of solar light [38,39].

It can be seen from Fig. 2a that the TiO_2 samples are well-defined solid spheres with sizes of $400 \sim 500$ nm. As shown in Fig. S2 (Supporting information), there is no obvious morphology change between amorphous sample and crystal phase. After Au NPs loaded on TiO_2 , the surface of the TiO_2 spheres becomes obviously rough (Fig. 2b). Besides, Au NPs adsorbed onto the TiO_2 surface could be confirmed by the color change of the original TiO_2 suspension from white to purple after the reaction. The urchin-like $ZnIn_2S_4$ -Au- TiO_2 microstructure is obtained by $ZnIn_2S_4$ nanosheets self-organized onto the surface of Au- TiO_2 composite colloidal microspheres through solvothermal method (Fig. 2c). A more detailed structural analysis can be seen in Fig. 2d, the present $ZnIn_2S_4$ -Au- TiO_2 microspheres with a diameter of ~ 1 µm are comprised of large interleaving flakes.

The morphology of the as-prepared samples further characterized by TEM. Fig. 3a and b show the low and high magnification TEM images of the TiO₂ microspheres. The TiO₂ microspheres have a relatively uniform diameter of about 500 nm, which is composed of small

anatase TiO₂ nanoparticle with sizes of about 5-10 nm [40,41]. The TEM images of Au-TiO2 show that highly uniform Au NPs with an average diameter of 20 nm evenly distributed on the surface of TiO2 microspheres (Fig. 3c), indicating that the successful deposition of Au NPs (Fig. S3a, Supporting information). As seen from Fig. 3d, the Au NPs are firmly deposited on the anatase TiO2 surface with an orientation relationship of Au [111]// TiO_2 [101], which can be verified by the lattice spaces of 0.30 and 0.36 nm. The corresponding selected area electron diffraction (SAED) pattern also displayed two kinds of characteristic spots, further confirming the formation of Au NPs coating (Fig. S3d, Supporting information). The TEM and HRTEM images show that large number of ZnIn₂S₄ nanosheets have grown on the surface of TiO₂ microspheres to forming urchin-like ZnIn₂S₄-Au-TiO₂ nanojunction, possibly due to the strong interaction between ZnIn2S4 and TiO2 (Fig. 3e and f) [42]. The corresponding Energy dispersive X-ray (EDS) spectrum of the composite is shown in Fig. S4 (Supporting information), which revealed that the composite included five elements, Ti, O, Au, Zn, In and S. The ultrathin ZnIn₂S₄ nanosheets not only improve the light absorption of visible light, but also enhance the transfer rate of the

Fig. 1. (a) Crystalline structure and (b) UV-vis diffuse reflectance spectra of TiO2, Au-TiO2, ZnIn2S4-Au-TiO2 and ZnIn2S4 samples.

Fig. 2. SEM image of (a) TiO₂; (b) Au-TiO₂; (c) and (d) ZnIn₂S₄-Au-TiO₂ composite.

photogenerated charge carriers with minimum probability of recombination due to high carrier mobility [43]. The lattice structure of the $\rm ZnIn_2S_4$ assembled on the Au NPs as shown in Fig. 3g. Compared with $\rm ZnIn_2S_4$ -TiO₂ photocatalyst and $\rm ZnIn_2S_4$ -Au-TiO₂ samples, the Au NPs with the uniformed sizes are well dispersed and assembled between the $\rm ZnIn_2S_4$ nanosheets and TiO₂ microspheres (Fig. S5, Supporting information). The EDX elemental mapping of a single sphere (Fig. 3h) can be powerfully confirmed the expected sandwich structure. Besides, the TEM image of Au-ZnIn₂S₄-TiO₂ sample can be seen in Fig. S6 (Supporting information), and the selective distribution of Au NPs with a size of 5 nm onto the heterostructure of $\rm ZnIn_2S_4$ -TiO₂. These abovementioned results indicate that the three-phase $\rm ZnIn_2S_4$ -Au-TiO₂ composite photocatalysts with the ideal heterostructure are successfully obtained.

The determination of surface area and porosity of the as-fabricated TiO₂, Au-TiO₂, ZnIn₂S₄ and ZnIn₂S₄-Au-TiO₂ samples are then tested to understand how these quantities plays roles in changing light absorption and photocatalytic performances. As shown in Fig. S7a (Supporting information), the samples of N2 adsorption-desorption isothermal curve belong to II type curve, which demonstrates the pore structure formed by the aggregation of the particles. The pore size distribution by the Barrett-Joyner-Halenda (BJH) method is in the range of 2-20 nm (Fig. S7b). The feature of curve does not change after Au NPs loading which indicating the pore structure of TiO₂ is well maintained. However, there is a drastically decreases of the BET specific surface area (Table 1, Supporting Information), which may attributed to that Au NPs block the pore of the TiO₂ microsphere [44]. It should be noted that there is a significantly increased of BET specific surface area for ZnIn₂S₄-Au-TiO₂ $(63.53 \text{ m}^2 \text{ g}^{-1})$ compared with Au-TiO₂ microsphere $(5.53 \text{ m}^2 \text{ g}^{-1})$, suggesting that the nanosheet structure of ZnIn₂S₄ is favarable to increasing the specific surface area. A larger specific surface area may be conducive to enlarging the contact area between the catalysts and

reactants, so as to improve the photocatalytic performance.

The surface chemical compositions and states of the TiO₂, Au and ZnIn₂S₄ are investigated by X-ray photoelectron spectroscopy (XPS) in order to clarify the interactions of the as-fabricated photocatalyst. As shown in the survey scan XPS spectra (Fig. S8a), Ti2p and O1s peaks are observed for TiO2 and Au-TiO2, while S2p, In3d and Zn2p peaks are displayed for ZnIn₂S₄ and ZnIn₂S₄-Au-TiO₂ samples. Besides, the XPS peak of Au NPs is obvious at low resolution for Au-TiO2. However, the peak of Au is indistinguishable for ZnIn₂S₄-Au-TiO₂ due to Au NPs is capped with ZnIn₂S₄. The high-resolution Ti2p, O1s, Au4f, Zn2p, In3d and S2p XPS spectra of ZnIn₂S₄-Au-TiO₂ are shown in Fig. 4, which confirms the presence of these elements in the typical composite sample. The binding energies of Ti 2p3/2 and Ti 2p1/2 for TiO2 are located at 457.8 eV (main peak) and 463.7 eV with a splitting energy of 5.9 eV, presenting Ti⁴⁺ species in a tetragonal structure (Fig. 4a). The O1s located at about 529.2 eV corresponding to lattice oxygen of TiO2 (Fig. 4b) [45]. The XPS signals of Ti and O are relatively weak may due to the over coating of ZnIn₂S₄, which makes it difficult to identify the exact nature of TiO2. In Fig. 4c, the peak observed at a binding energy of 82.8 eV is ascribed to metallic Au 4f7/2, thus confirming that the Au species exist as metallic Au° in ZnIn₂S₄-Au-TiO₂ [46,47]. The binding energies of Zn2p3/2 and Zn2p1/2 for ZnIn2S4 are located at 1021.70 eV and 1044.72 eV, which are consistent with the values for Zn²⁺ (Fig. 4d). In Fig. 4e, the characteristic peak at 445.03 eV (3d 5/2) and 452.61 eV (3d 3/2) are confirmed that the chemical state of In in the samples is +3. The S 2p 1/2 peak at 161.80 eV is ascribed to S coordinated to Zn and In in ZnIn₂S₄ (Fig. 4f). Once Au is introduced onto the TiO2 core, the Ti 2p and O1s peak shifts to a higher binding energy of 458.2 eV (Fig. S8b and c). This shift is indicative of the interaction between Au and TiO2 [48,49]. Such a similar phenomenon is also observed from the XPS spectra of S2p (Fig. S8d), In3d (Fig. S8e) and Z2p (Fig. S8f) peaks. That is, the binding energies of S2p (161.0 eV), $In3d_{5/2}$

Fig. 3. (a-b) Typical TEM images of TiO_2 sphere; (c-d) TEM and HRTEM image taken at the interface between Au NPs and TiO_2 ; (e-h) TEM and HRTEM of $ZnIn_2S_4$ -Au- TiO_2 composite and the corresponding EDS element-mapping data of Zn, In, S, Au, Ti, and O of a single sphere.

Fig. 4. XPS spectra for the as-obtained ZnIn₂S₄-Au-TiO₂ photocatalyst: (a) Ti2p; (b) O1s; (c) Au4f; (d) Zn2p; (e) In3d; (f) S2p.

Fig. 5. (a) Time courses of photocatalytic H_2 evolution from water of x%ZIS-24 wt%Au-TO with different $ZnIn_2S_4$ mass ratios; (b) H_2 and O_2 evolution of 60 wt%ZIS-24 wt%Au-TO sample via photocatalytic water-splitting; (c) photocatalytic H_2 and O_2 evolution from water of 60 wt%ZIS-y%Au-TO with different Au NPs mass ratios and (d) comparsion of photocatalytic activity for H_2 and O_2 production over various photocatalysts.

(444.1 eV), $In3d_{3/2}$ (451.5 eV), $Z2p_{3/2}$ (1021.2 eV) and $Z2p_{1/2}$ (1044.7 eV) of $ZnIn_2S_4$ -Au-TiO $_2$ are lower than those of S2p (161.2 eV), $In3d_{5/2}$ (444.3 eV), $In3d_{3/2}$ (451.8 eV), $Z2p_{3/2}$ (1021.4 eV) and $Z2p_{1/2}$ (1044.9 eV) of pure $ZnIn_2S_4$. The XPS results implied the existence of chemical bonds in the $ZnIn_2S_4$ -Au-TiO $_2$ [50].

The constructed ternary ZnIn₂S₄-Au-TiO₂ sample is used for photocatalytic water splitting under simulated sun light irradiation in the absence of sacrificial agent. Fig. 5a shows the effect of loading amount ZnIn₂S₄ on the efficiency of photocatalytic hydrogen evolution (the Au NPs is fixed (24 wt %)). It can be seen that the optimal loading amount of ZnIn₂S₄ is 60 wt%, which achieve the highest photocatalytic activity for H_2 production with the rate of 186.3 μ mol g⁻¹ h⁻¹ (60 wt%ZIS-Au-TO). Further increasing the ZnIn₂S₄ loading amount led to a decreased H₂ evolution rate may due to the "light-shielding effect". [51] Thus, ZnIn₂S₄-Au-TiO₂ composite with 60 wt% ZnIn₂S₄ loading amount is chosen as the typical samples for further investigations. Meanwhile, the O2 production rate of 60 wt%ZIS-Au-TO sample is detected in the photoreaction proceeding, and the result reached to 66.3 μ mol g⁻¹ h⁻¹. Notably, the amount of generated hydrogen is approximate twice that of oxygen production ($H_2/O_2 = 2.8$), indicating 2:1 stoichiometric water splitting (Fig. 5b). It should be mentioned that the content of Au NPs showed considerable influence on the photocatalytic activities in this ternary ZnIn₂S₄-Au-TiO₂ system. As observed in Fig. 5c, the H₂ and O_2 evolution are $270\,\mu\text{mol}\,g^{-1}$ and $110\,\mu\text{mol}\,g^{-1}$ with the Au NPs content at 12 wt%. With increasing of Au NPs content, the H2 and O2 evolution rate are enhanced and reach the maximum value (ZIS-24%Au-TO). There is a decrease photocatalytic activity with further increase loading amount of Au NPs. Interesting, no O2 is detected may

due to that O_2 stops at the status of adsorbed $\cdot O_2^-$ (a form of Ti-O-O-Ti) [52], or Au NPs at higher coverages can compete for photogenerated holes at the interface of TiO_2 (TiO_2 (h) + $Au^{\circ} \rightarrow TiO_2 + Au^{+}$) [53]. Fig. 5d shows a comparison of H2 production rates of TiO2, Au-TiO2, pure ZnIn₂S₄ and ZnIn₂S₄-Au-TiO₂ composite. Water splitting did not proceed using either TiO2 or Au-TiO2 catalysts attribute to the low energy level of their conduction bands, which are close to the standard potential of H+/H2. Pure ZnIn2S4 shows a very low photocatalytic activity with the H_2 evolution of 558 μ mol g^{-1} , and with no O_2 evolution because of the photocorrosion. Importantly, there is an obvious increase of H2 and O2 production rate of ZnIn2S4-Au-TiO2 compared with ZnIn₂S₄-TiO₂ and Au-TiO₂ photocatalysts (Fig. S9, Supporting information). The results indicating that combination of ZnIn₂S₄ with Au-TiO₂ was indispensable for water splitting. In order to show that the Au NPs act as an efficient electron transfer in ZnIn₂S₄-Au-TiO₂ system, the photocatalytic hydrogen activities of ZnIn₂S₄-Au-TiO₂ sample and Au NPS modified ZnIn₂S₄-TiO₂ heterostructure (Au-ZnIn₂S₄-TiO₂) is compared. The H2 evolution rate of ZnIn2S4-Au-TiO2 photocatalysts is almost 2 times of Au-ZnIn₂S₄-TiO₂ photocatalysts, suggesting that the surface loading of Au NPs might have little contribution to the improvement photoactivity activity (Fig. S10) [54]. These results confirmed the positive role of Au NPs in ZnIn₂S₄-Au-TiO₂ system for enhancing the photoactivity of TiO2 and ZnIn2S4 catalysts under illumination. These results confirmed the Z-scheme model of ternary $ZnIn_2S_4$ -Au-TiO $_2$ system.

To further understand the mechanism of enhanced of photocatalytic activity of ZnIn₂S₄-Au-TiO₂ system, transient photocurrent response and electrochemical impedance spectroscopy (EIS) are conducted under

Fig. 6. Photoluminescence spectra of TiO_2 , $ZnIn_2S_4$ - TiO_2 and $ZnIn_2S_4$ -Au- TiO_2 measured at room temperature with a 325 nm excitation wavelength.

UV-vis light irradiation. As presented in Fig. S11, the pulsed photocurrent density of the ZnIn₂S₄-Au-TiO₂ sample is higher than other photocatalysts, suggesting more efficient separation of photoexcited electron-hole pairs happened. In addition, the impedance radius of ZnIn₂S₄-Au-TiO₂ is smaller than ZnIn₂S₄-TiO₂ (Fig. S12), indicating that Au NPs can enhance separation efficiency of the photogenerated charges and facilitate the interfacial charge transfer. Futhermore, the strengthened interface charge carrier transfer and separation efficiency can be evidenced by photoluminescence (PL) emission spectroscopy. Fig. 6 shows the PL spectra of TiO₂, ZnIn₂S₄-TiO₂ and Au-ZnIn₂S₄-TiO₂ heterostructure. The emission peak of these three photocatalysts is observed at around of 450 nm. Although the ZnIn₂S₄-TiO₂ heterostructure shows similar PL emission bands to TiO₂, the band intensity is much weakened. While the ZnIn₂S₄-Au-TiO₂ composite shows lower intensity by comparing with both of TiO₂ and ZnIn₂S₄-TiO₂. It is

established that the charge-carrier transfer between different parts of composites usually results in the weakening of PL emission bands [55]. The effective Z-scheme charge-carrier transfer process mediated by the Au NPs at the interface of $ZnIn_2S_4$ and TiO_2 can well explain the quenching of PL emission in $ZnIn_2S_4$ -Au- TiO_2 , and thus improve its photocatalytic activity.

The photocatalytic mechanism is tentatively proposed for the water splitting over present designed Z-scheme $ZnIn_2S_4$ -Au-TiO₂ heterostructure, as represented in Scheme 2. Under irradiation, both $ZnIn_2S_4$ and TiO_2 absorb light and generate photo-induced electron-hole pairs. The photo-induced holes are more likely remain in the VB of TiO_2 , whereas electrons can be quickly transferred to the VB of $ZnIn_2S_4$ through deposited Au NPs. Therefore, the photoinduced electrons with strong reducibility are left on the CB of $ZnIn_2S_4$, and the photoinduced holes with strong oxidizability are accumulated on the VB of TiO_2 . The holes stored in the VB of TiO_2 and enriched electrons in the CB of $ZnIn_2S_4$ are trapped by H_2O molecule near the surface to form O_2 and H_2 . This enhanced photocatalytic activity occurs because Z-scheme heterostructure not only facilitates an effective spatial separation of photo-induced electron-hole pairs but also enhances the redox ability of photocatalyst caused by an increase in redox potential.

4. Conclusion

In conclusion, a ternary $ZnIn_2S_4$ -Au-TiO₂ Z-scheme heterostructure photocatalyst has been successfully synthesized select Au NPs as a solid electron mediator. The deposit location of Au NPs shows great influence on the photocatalytic performance. The photocatalytic activity of obtained $ZnIn_2S_4$ -Au-TiO₂ photocatalysts achieve the highest for H₂ production with the rate of $186.3\,\mu\text{mol}\,g^{-1}\,h^{-1}$, and the O₂ production rate is reached to $66.3\,\mu\text{mol}\,g^{-1}\,h^{-1}$ for water splitting. The outstanding performance lies in the formation of effective vectorial Z-scheme charge-carrier transfer at the interface of the $ZnIn_2S_4$ -Au-TiO₂, which could improve the separation efficiency of photoinduced carriers and remain the strong redox ability of the photocatalyst. It is expected that such finding will provide new insight into the design and

Scheme 2. Proposed schematic of Z-scheme charge-carrier transfer process in the ZnIn₂S₄-Au-TiO₂ Z-scheme photocatalysis system for water splitting under solar light irradiation.

underlying Z-scheme based functional materials.

Acknowledgements

This work is supported by the National Natural Science Foundations of China (Grant No.21577132), the Fundamental Research Funds for the Central Universities (Grant No. 2652015225)

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.apcatb.2018.04.038.

References

- [1] A. Kudo, H. Kato, I. Tsuji, Chem. Lett. 33 (2004) 1534-1539.
- [2] A. Kudo, Y. Miseki, Chem. Soc. Rev. 38 (2009) 253-278.
- [3] X.B. Chen, S.H. Shen, L.J. Guo, S.S. Mao, Chem. Rev. 110 (2010) 6503-6570.
- [4] M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q.X. Mi, E.A. Santori, N.S. Lewis, Chem. Rev. 110 (2010) 6446–6473.
- [5] X. Chen, S.S. Mao, Chem. Rev. 107 (2007) 2891-2951.
- [6] M. Adachi, Y. Murata, J. Takao, J.T. Jiu, M. Sakamoto, F. Wang, J. Am. Chem. Soc. 126 (2004) 14943–14949.
- [7] K. Maeda, K. Domen, J. Phys. Chem. Lett. 1 (2010) 2655-2661.
- [8] M.D. Hernández-Alonso, F. Fresno, S. Suárez, J.M. Coronado, Energy Environ. Sci. 2 (2009) 1231–1257.
- [9] G. Yang, H. Ding, D.M. Chen, W.H. Ao, J. Wang, X.F. Hou, Appl. Surf. Sci. 376 (2016) 227–235.
- [10] J. Wang, D.N. Tafen, J.P. Lewis, Z.L. Hong, A. Manivannan, M.J. Zhi, M. Li, N.O. Wu, J. Am. Chem. Soc. 131 (2009) 12290–12297.
- [11] T. Butburee, Y. Bai, J. Pan, X. Zong, C. Sun, G. Liu, L. Wang, J. Mater. Chem. A 2 (2014) 12776–12784.
- [12] K. Zhang, L.J. Guo, Catal. Sci. Technol. 3 (2013) 1672-1690.
- [13] Y.Y. Zhang, Y.X. Tang, X.F. Liu, Z.L. Dong, H.H. Hng, Z. Chen, T.C. Sum, X.D. Chen, Small 9 (2013) 996–1002.
- [14] H.G. Yu, X. Huang, P. Wang, J.G. Yu, J. Phys. Chem. C 120 (7) (2016) 3722–3730.
- [15] G.P. Chen, N. Ding, F. Li, Y.Z. Fan, Y.H. Luo, D.M. Lia, Q.B. Meng, 2014, 160-161, 614–620.
- [16] W. Chen, T.Y. Liu, T. Huang, X.H. Liu, X.J. Yang, Nanoscale 8 (2016) 3711–3719.
- [17] L. Shang, C. Zhou, T. Bian, H.J. Yu, L.Z. Wu, C.H. Tung, T.R. Zhang, J. Mater. Chem. A 1 (2013) 4552–4558.
- [18] Z.B. Lei, W.S. You, M.Y. Liu, G.H. Zhou, T. Takata, M. Hara, K. Domen, C. Li, Chem. Commun. (2003) 2142–2143 0.
- [19] K. Iwashina, A. Iwase, Y.H. Ng, R. Amal, A. Kudo, J. Am. Chem. Soc. 137 (2015) 604–607.
- [20] L. Wei, Y.J. Chen, Y.P. Lin, H.S. Wu, R.S. Yuan, Z.H. Li, Appl. Catal. B 144 (2014) 521–527.
- [21] M. Ge, Y.F. Li, L. Liu, Z. Zhou, W. Chen, J. Phys. Chem. C 115 (2011) 5220-5225.
- [22] Y. Hou, F. Zuo, A. Dagg, P.Y. Feng, Nano Lett. 12 (2012) 6464–6473.
- [23] Y.J. Wang, Q.S. Wang, X.Y. Zhan, F.M. Wang, M. Safdar, J. He, Nanoscale 5 (2013) 8326–8339.
- [24] G.A. Ozin, Energy Environ. Sci. 8 (2015) 1682-1684.

- [25] H.J. Li, Y.Y. Gao, Y. Zhou, F.T. Fan, Q.T. Han, Q.F. Xu, X.Y. Wang, M. Xiao, C. Li, Z.G. Zou, Nano Lett. 16 (2016) 5547–5552.
- [26] X.W. Wang, L.C. Yin, G. Liu, Chem. Commun. 50 (2014) 3460-3463.
- [27] H. Kato, Y. Sasaki, N. Shirakura, A. Kudo, J. Mater. Chem. A 1 (2013) 12327–12333.
- [28] P.J. Yang, J.H. Zhao, J. Wang, B.Y. Cao, L. Li, Z.P. Zhu, J. Mater. Chem. A 3 (2015) 8256–8259.
- [29] A. Iwase, Y.H. Ng, Y. Ishiguro, A. Kudo, R. Amal, J. Am. Chem. Soc. 133 (2011) 11054–11057.
- [30] H.J. Li, Y.Y. Gao, Y. Zhou, F.T. Fan, Q.T. Han, Q.F. Xu, X.Y. Wang, M. Xiao, C. Li, Z.G. Zou, Nano Lett. 16 (2016) 5547.
- [31] A. Iwase, Y.H. Ng, Y. Ishiguro, A. Kudo, R. Amal, J. Am. Chem. Soc. 133 (2011) 11054.
- [32] P. Wang, Y. Sheng, F.Z. Wang, H.G. Yu, Appl. Catal. B Environ. 220 (2018)
- [33] H. Tada, T. Mitsui, T. Kiyonaga, T. Akita, K. Tanaka, Nat. Mater. 5 (2006) 782-786.
- [34] J. Li, S.K. Cushing, P. Zheng, T. Senty, F. Meng, A.D. Bristow, A. Manivannan, N. Wu, J. Am. Chem. Soc. 136 (2014) 8438–8449.
- [35] Z.B. Yu, Y.P. Xie, G. Liu, G.Q. Lu, X.L. Ma, H.M. Cheng, J. Mater. Chem. A 1 (2013) 2773–2776.
- [36] J.Q. Li, H. Yuan, Z.F. Zhu, J. Mol. Catal. A Chem. 410 (2015) 133-139.
- [37] H.J. Li, Y.Y. Gao, Y. Zhou, F.T. Fan, Q.T. Han, Q.F. Xu, X.Y. Wang, M. Xiao, C. Li, Z.G. Zou, Nano Lett. 16 (2016) 5547–5552.
- [38] L.Q. Liu, T.D. Dao, R. Kodiyath, Q. Kang, H. Abe, T. Nagao, J.H. Ye, Adv. Funct. Mater. 48 (2014) 7754–7762.
- [39] L.W. Zhang, H.B. Fu, Y.F. Zhu, Adv. Funct. Mater. 18 (2008) 2180-2189.
- [40] M. Ye, Q. Zhang, Y. Hu, J. Ge, Z. Lu, L. He, Z. Chen, Y. Yin, Chem. Eur. J. 16 (2010) 6243–6250.
- [41] S.Y. Chae, M.K. Park, S.K. Lee, T.Y. Kim, S.K. Kim, W.I. Lee, Chem. Mater. 15 (2003) 3326.
- [42] G. Yang, D.M. Chen, H. Ding, J.J. Feng, J.Z. Zhang, Y.F. Zhu, S. Hamid, D.W. Bahnemann, Appl. Catal. B Environ. 219 (2017) 611–618.
- [43] H.J. Li, Y.Y. Gao, Y. Zhou, F.T. Fan, Q.T. Han, Q.F. Xu, X.Y. Wang, M. Xiao, C. Li, Z.G. Zou, Nano Lett. 16 (2016) 5547–5552.
- [44] Y.J. Li, L.M. Yu, N. Li, W.F. Yan, X.T. Li, J. Colloid Interface Sci. 450 (2015) 246–253.
- [45] H. Zhao, M. Wu, J. Liu, Z. Deng, Y. Li, B.L. Su, Appl. Catal. B Environ. 184 (2016) 182–190.
- [46] K.M. Eblagon, M.F.R. Pereira, J.L. Figueiredo, Appl. Catal. B Environ. 184 (2016) 381–396.
- [47] J.Q. Li, H. Yuan, Z.F. Zhu, J. Mol. Catal. A Chem. 410 (2015) 133-139.
- [48] J. Wang, D.N. Tafen, J.P. Lewis, Z.L. Hong, A. Manivannan, M.J. Zhi, M. Li, N.O. Wu, J. Am. Chem. Soc. 131 (2009) 12290–12297.
- [49] Q. Zhang, D.Q. Lima, I. Lee, F. Zaera, M.F. Chi, Y.D. Yin, Angew. Chem. 123 (2011) 7226–7230.
- [50] H.F. Shi, G.Q. Chen, C.L. Zhang, Z.G. Zou, ACS Catal. 4 (2014) 3637–3643.
- [51] Z.Y. Zhang, Y.Z. Huang, K.C. Liu, L.J. Guo, Q. Yuan, B. Dong, Adv. Mater. 27 (2015) 5906–5914
- [52] V. Subramanian, E.E. Wolf, P.V. Kamat, Langmuir 19 (2003) 469–474.
- [53] D.W. Li, S.X. Ouyang, H. Xu, D. Lu, M. Zhao, X.L. Zhang, J.H. Ye, Chem. Commun. 52 (2016) 5989–5992.
- [54] J.W. Chiou, S.C. Ray, H.M. Tsai, C.W. Pao, F.Z. Chien, W.F. Pong, C.H. Tseng, J.J. Wu, M.H. Tsai, C.H. Chen, H.J. Lin, J.F. Lee, J.H. Guo, J. Phys. Chem. C 115 (2011) 2650–2655.
- [55] Y. Hu, H.H. Qian, Y. Liu, G.H. Du, F.M. Zhang, L.B. Wang, X. Hu, CrystEngComm 13 (2011) 3438–3443.