

Consider polyforms formed by facets of an n-dimensional hypercube. If such a polyform has k cells, call it a k-polyfacet. Count these up to symmetries of the cube.

Figure 1: On the left, the two 3-polyfacets on the cube, and on the right, the two 4-polyfacets on the cube. The 0-, 1-, 2-, 5-, and 6-polyfacets are unique on the cube.

Question. How many k-polyfacets live on the n-cube?

Note. The following table gives the number of k-polyfacets on an n-cube:

n\k 0 1	2																1-1		•
2 1, 1, 3 1, 1, 4 1, 1, 5 1, 1, 6 1, 1, 7 1, 1, 8 1, 1, 9 1, 1,	1, 2 1, 2 1, 2 1, 2 1, 2 1, 2	, , 3, , 3, , 3, , 3, , 3,	3, 3, 3, 3,	4, 4, 4,	4, 4,	5,				5,	4,	4, 4, 4,	3, 3, 3,	3, 3, 3, 3,	2, 2, 2, 2, 2,	2, 2, 2, 2, 2, 2,	1, 1, 1, 1, 1,	1 1 1 1 1 1	
10 1, 1,	1, 2	, 3,	3,	4,	4,	5,	5,	6,	5,	5,	4,	4,	З,	3,	2,	2,	1,	1	I

Notice that T(n,k) = T(n,n-k) for all $k \notin \{2,n-2\}$. In this case, T(n,2) = 1 and T(n,n-2) = 2.

Related.

- 1. What if (not necessarily connected) 2-colorings are considered instead of polyforms? k-colorings?
- 2. How many d-dimensional k-poly-d-faces live on the n-cube? n-simplex? n-orthoplex? n-demicube?
- 3. How many fixed polyforms? One-sided polyforms?
- 4. If we chop up the hypercube into an $\ell \times \cdots \times \ell$ "Rubik's" hypercube, how many polyfacets live on this subdivision?
- 5. Let T(n,k) denote the k-polyfacets on an n-cube. Which of the T(n,k) polyfacets has the most symmetry? The least?

References.

Problems 72, 101.

https://codegolf.stackexchange.com/q/201054/53884

OEIS Sequences A333333, A333362, and A333418.