## Балтийский государственный технический университет «Военмех» им. Д.Ф. Устинова Кафедра И7

Кафедра математической статистики и прикладной математики»

## «Математическая статистика»

Лабораторная работа № 2 Семейства вероятностных распределений в математических пакетах

Вариант 4

Выполнил:

Студент Васильев Н.А. Группа И967

Преподаватель:

Мартынова Т.Е.



Χ

## Poisson Distribution



ORIGIN := 1

$$\lambda := 4$$

|                             |    | 1 |
|-----------------------------|----|---|
| $x1 := rpois(m, \lambda) =$ | 1  | 5 |
|                             | 2  | 4 |
|                             | 3  | 5 |
|                             | 4  | 4 |
|                             | 5  | 4 |
|                             | 6  | 2 |
|                             | 7  | 3 |
|                             | 8  | 5 |
|                             | 9  | 5 |
|                             | 10 | 6 |
|                             | 11 | 2 |
|                             | 12 | 4 |
|                             | 13 | 5 |
|                             | 14 | 6 |
|                             | 15 | 6 |
|                             | 16 |   |

|                  |    | 1 |
|------------------|----|---|
| x1 := sort(x1) = | 45 | 4 |
|                  | 46 | 4 |
|                  | 47 | 4 |
|                  | 48 | 4 |
|                  | 49 | 4 |
|                  | 50 | 4 |
|                  | 51 | 4 |
|                  | 52 | 4 |
|                  | 53 | 4 |
|                  | 54 | 4 |
|                  | 55 | 4 |
|                  | 56 | 5 |
|                  | 57 | 5 |
|                  | 58 | 5 |
|                  | 59 | 5 |
|                  | 60 |   |

i := 0.1, 0.2.. 0.9

$$q_{i\cdot 10} := qpois(i, \lambda)$$



$$f(x) := dpois(x, \lambda)$$

$$F(x) := ppois(x, \lambda)$$





$$m := mean(x1) = 4.28$$
 $med := median(x1) = 4$ 
 $D := var(x1) = 3.722$ 

$$\sigma := stdev(x1) = 1.929$$

$$xmin := min(x1) = 1$$

$$xmax := max(x1) = 9$$

$$R := xmax - xmin = 8$$

$$m := 20$$
  $L := \frac{R}{m}$ 

$$i := 1..20$$

$$int_i := xmin + \frac{L}{2} \cdot (2 \cdot i - 1)$$

$$h := hist(int, x1)$$

$$\underset{\text{\tiny Mi}}{h} := \frac{h_{\hat{i}}}{100}$$