Assignment 1 (Linear Regression)

- 1. Explain the following terms with suitable examples.
 - a. Machine Learning
 - b. Supervised Learning
 - c. Regression
 - d. Classification
- 2. What is Learning Rate? What is the effect of high and low value of learning rate on Gradient Descent?
- 3. Suppose you have a dataset of houses with their respective sizes (in square feet) and prices (in thousands of dollars). So, build a Linear regression model to predict house prices based on their sizes (use the normal equation method as well as gradient descent method).

The hypothetical dataset is:

House Size (x)	Price (y)
1500	300
2000	400
1600	320
1200	250
1800	360

4. Consider the following data set. Based upon the data set build a Linear regression model to predict output (use the normal equation method as well as gradient descent method). Consider the hypothesis is $h_{\theta}(x) = \theta_1 x$.

Input(x)	Output(y)
1	1
2	2
3	2

- 5. Define the problem related with Underfitting and Overfitting and how we handle the problem of Underfitting and Overfitting.
- 6. Consider the following data set. Based upon the data set build a Linear regression model to predict output (use the normal equation method as well as gradient descent method.

Input(x)		Output(y)
x_1	x_2	
1	1	2
1	2	3

2	2	4
2	3	5
3	3	6

7. Consider the following data set. Based upon the dataset, build a Ridge regression (L1 Regularization) model to predict output (use the normal equation method as well as gradient descent method). Assume the value of $\lambda = 1$.

Input(x)		Output(y)
x_1	x_2	
1	1	2
1	2	3
2	2	4
2	3	5
3	3	6

8. Consider the following data set. Based upon the dataset build a Lasso regression (L2 Regularization) model to predict output. Assume the value of $\lambda = 1$.

Input(x)		Output(y)
x_1	x_2	
1	1	2
1	2	3
2	2	4
2	3	5
3	3	6

9. Consider the following data set. Based upon the dataset, build a Ridge regression (L1 Regularization) model to predict output (use the normal equation method as well as gradient descent method). Assume the value of $\lambda = 0.2$.

Input(x)		Output(y)
x_1	x_2	
1	2	3
2	3	5
3	4	7
4	5	9

10. Consider the following data set. Based upon the dataset built a Lasso regression (L2 Regularization) model to predict output. Assume the value of $\lambda = 0.2$.

Input(x)		Output(y)
x_1	x_2	
1	2	3
2	3	5
3	4	7
4	5	9