## **STAT 345/445 Lecture 2**

## Section 1.2: Basics of Probability Theory

Subsections 1.2.1 and 1.2.2

... and some considerations about proofs

# What probability is used for

- Experiments have uncertain (unpredictable) outcomes
- But, for repeated experiments we may expect a pattern

| Experiment      | Sample Space                                                      |
|-----------------|-------------------------------------------------------------------|
| Soccer game     | $S = \{ win, loose, draw \}$                                      |
| Roll a die      | $S = \{1,2,3,4,5,6\} \Leftrightarrow \mathcal{E}_{qually}$ likely |
| Sum of two dice | $S = \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$ equally well         |

We use probability distributions to describe the long term behavior of repeated experiments

# Probability - mathematically

- Want a rule that can assign a number between 0 and 1 to any event E in a sample space S.
- Easy for finite and countable sample spaces can enumerate all possible subsets of S.
- Technical problem: If S is an uncountable sample space, "every subspace" is too many to handle.
- Need the concept of  $\sigma$ -algebras.

# Sigma-algebra

### Definition: $\sigma$ -algebra

A collection of subsets of S is called a  $\sigma$ -algebra on S (or Borel field)  $\mathcal{B}$  if the following holds:

- (i)  $\emptyset \in \mathcal{B}$
- (ii) If  $A \in \mathcal{B}$  then  $A^c \in \mathcal{B}$  Closed under complement
- (iii) If  $A_1, A_2, A_3, \ldots \in \mathcal{B}$  then  $\bigcup_{i=1}^{\infty} A_i \in \mathcal{B}$  closed under unions

Mathematicians and Statisticians tend to be minimalist in definitions...

STAT 345/445 Theoretical Statistics I Lecture 2

### Theorem

If  $\mathcal{B}$  is a  $\sigma$ -algebra then

- (a)  $S \in \mathcal{B}$

(b) If 
$$A_1, A_2, A_3, \ldots \in \mathcal{B}$$
 then 
$$\bigcap_{i=1}^{\infty} A_i \in \mathcal{B}$$
 Closed also under intersections

Proof:
(a)  $\emptyset \in \mathcal{B}$  (i)  $\Rightarrow \emptyset^c \in \mathcal{B}$  (ii).

### **Theorem**

If  $\mathcal{B}$  is a  $\sigma$ -algebra then

- (a)  $S \in \mathcal{B}$
- (b) If  $A_1, A_2, A_3, \ldots \in \mathcal{B}$  then  $\bigcap_{i=1}^{\infty} A_i \in \mathcal{B}$

Proof:

(a) 
$$\emptyset \in \mathcal{B}$$
 (i)  $\Rightarrow \emptyset^c \in \mathcal{B}$  (ii). Since  $\emptyset^c = S$  we have that  $S \in \mathcal{B}$ 

### **Theorem**

If  $\mathcal{B}$  is a  $\sigma$ -algebra then

- (a)  $S \in \mathcal{B}$
- (b) If  $A_1, A_2, A_3, \ldots \in \mathcal{B}$  then  $\bigcap_{i=1}^{\infty} A_i \in \mathcal{B}$

#### Proof:

- (a)  $\emptyset \in \mathcal{B}$  (i)  $\Rightarrow \emptyset^c \in \mathcal{B}$  (ii). Since  $\emptyset^c = S$  we have that  $S \in \mathcal{B}$
- (b) Let  $A_1, A_2, A_3, \ldots \in \mathcal{B}$ . Then  $A_1^c, A_2^c, A_3^c, \ldots \in \mathcal{B}$  by (ii).

### **Theorem**

If  $\mathcal{B}$  is a  $\sigma$ -algebra then

- (a)  $S \in \mathcal{B}$
- (b) If  $A_1, A_2, A_3, \ldots \in \mathcal{B}$  then  $\bigcap_{i=1}^{\infty} A_i \in \mathcal{B}$

Proof:

- (a)  $\emptyset \in \mathcal{B}$  (i)  $\Rightarrow \emptyset^c \in \mathcal{B}$  (ii). Since  $\emptyset^c = S$  we have that  $S \in \mathcal{B}$
- (b) Let  $A_1,A_2,A_3,\ldots\in\mathcal{B}.$  Then  $A_1^c,A_2^c,A_3^c,\ldots\in\mathcal{B}$  by (ii). Therefore

$$\bigcup_{i=1}^{\infty} A_i^c \in \mathcal{B} \Rightarrow \left(\bigcup_{i=1}^{\infty} A_i^c\right)^c \in \mathcal{B} \qquad \text{by (iii) and (ii)}$$

STAT 345/445 Theoretical Statistics I Lecture 2

#### Theorem

If  $\mathcal{B}$  is a  $\sigma$ -algebra then

- (a)  $S \in \mathcal{B}$
- (b) If  $A_1, A_2, A_3, \ldots \in \mathcal{B}$  then  $\bigcap A_i \in \mathcal{B}$

#### Proof:

- (a)  $\emptyset \in \mathcal{B}$  (i)  $\Rightarrow \emptyset^c \in \mathcal{B}$  (ii). Since  $\emptyset^c = S$  we have that  $S \in \mathcal{B}$
- (b) Let  $A_1, A_2, A_3, \ldots \in \mathcal{B}$ . Then  $A_1^c, A_2^c, A_3^c, \ldots \in \mathcal{B}$  by (ii). Therefore

$$\bigcup_{i=1}^{\infty} A_i^c \in \mathcal{B} \Rightarrow \left(\bigcup_{i=1}^{\infty} A_i^c\right)^c \in \mathcal{B} \qquad \text{by (iii) and (ii)}$$
$$\Rightarrow \bigcap_{i=1}^{\infty} \left(A_i^c\right)^c = \bigcap_{i=1}^{\infty} A_i \in \mathcal{B} \qquad \text{by DeMorgan and compl.}$$

# Exmples of $\sigma$ -algebras

- The trivial  $\sigma$ -algebra:  $\mathcal{B} = \{\emptyset, S\}$
- If S is finite:

$$\mathcal{B} = \{ \text{all subsets of } S, \text{ including } S \text{ and } \emptyset \}$$

- If  $S = \{1, 2, 3, \dots, n\}$ , how many subsets are there?  $2^{\prime}$
- If  $S = \mathbb{R}$  the most common  $\sigma$ -algebra is the collection of all open and closed intervals, and their unions

$$\mathcal{B} = \text{all sets that can be written as a union of intervals}$$
  $[a,b],[a,b),(a,b], \text{ or } (a,b) \text{ where } a,b \in \mathbb{R}, a < b$ 

STAT 345/445 Theoretical Statistics I Lecture 2

## Probability function



### Definition: Probability fuction

Let S be a sample space and let  $\mathcal{B}$  be an associated  $\sigma$ -algebra. A probability function is a function  $P(\cdot)$  with domain  $\mathcal{B}$  that satisfies the Kolmogorov axioms:

- (i) P(A) > 0 + A & B prob. is not negative

  ii) P(b) = 1 "Prob. I that something happens"
- (ii) P(5) = 1
- (iii) If A, Az, Az, ... EB are mutually exhasive then  $P(\mathring{\mathcal{O}}A_i) = \overset{\text{grade}}{\underset{i=1}{\mathbb{Z}}} P(A_i)$

All probability theory is based on these Kolmogorov axioms

Kolus Ax. (üi):



mutually exclusive

# Probability model

The triple (S, B, P) is called a probability model

### Creating a probability model

- Say  $S = \{s_1, s_2, \dots, s_n\}$
- Let B be the collection of every subset of S
- Probability function?

$$P(A) = Z Pi$$

$$\{i: j: A\}$$

In the following: Let  $(S, \mathcal{B}, P)$  be a probability model

### Theorem 1

Let  $A \in \mathcal{B}$ . Then

- (a)  $P(A^c) = 1 P(A)$
- (b)  $P(\emptyset) = 0$
- (c)  $P(A) \leq 1$

### Proof:

(a) A and  $A^c$  are disjoint.  $\Rightarrow$  by axiom (iii):  $P(A \cup A^c) = P(A) + P(A^c)$ .

STAT 345/445 Theoretical Statistics I Lecture 2

In the following: Let  $(S, \mathcal{B}, P)$  be a probability model

### Theorem 1

Let  $A \in \mathcal{B}$ . Then

- (a)  $P(A^c) = 1 P(A)$
- (b)  $P(\emptyset) = 0$
- (c)  $P(A) \leq 1$

### Proof:

(a) A and  $A^c$  are disjoint.  $\Rightarrow$  by axiom (iii):  $P(A \cup A^c) = P(A) + P(A^c)$ .  $A \cup A^c = S$  so by axiom (ii):  $P(A \cup A^c) = 1$ .

STAT 345/445 Theoretical Statistics I Lecture 2

In the following: Let  $(S, \mathcal{B}, P)$  be a probability model

### Theorem 1

Let  $A \in \mathcal{B}$ . Then

- (a)  $P(A^c) = 1 P(A)$
- (b)  $P(\emptyset) = 0$
- (c)  $P(A) \leq 1$

#### Proof:

- (a) A and  $A^c$  are disjoint.  $\Rightarrow$  by axiom (iii):  $P(A \cup A^c) = P(A) + P(A^c)$ .  $A \cup A^c = S$  so by axiom (ii):  $P(A \cup A^c) = 1$ .  $\Rightarrow P(A^c) = 1 P(A)$
- (b)  $P(\emptyset) = P(S^c) = 1 P(S)$  by part (a).

In the following: Let  $(S, \mathcal{B}, P)$  be a probability model

#### Theorem 1

Let  $A \in \mathcal{B}$ . Then

- (a)  $P(A^c) = 1 P(A)$
- (b)  $P(\emptyset) = 0$
- (c)  $P(A) \leq 1$

#### Proof:

- (a) A and  $A^c$  are disjoint.  $\Rightarrow$  by axiom (iii):  $P(A \cup A^c) = P(A) + P(A^c)$ .  $A \cup A^c = S$  so by axiom (ii):  $P(A \cup A^c) = 1$ .  $\Rightarrow P(A^c) = 1 P(A)$
- (b)  $P(\emptyset) = P(S^c) = 1 P(S)$  by part (a).  $\Rightarrow P(\emptyset) = 1 1$  by axiom (ii)
- (c)  $1 = P(S) = P(A \cup A^c) = P(A) + P(A^c)$  by axioms (ii) and (iii). Since  $P(A^c) \ge 0$  (axiom (i)) we have  $1 \ge P(A)$ .

STAT 345/445 Theoretical Statistics I Lecture 2

### Theorem 2

Let  $A, B \in \mathcal{B}$ . Then

(a) 
$$P(A) = P(A \cap B) + P(A \cap B^c)$$

(b) 
$$P(A \setminus B) = P(A) - P(A \cap B)$$

(c) 
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

(d) If 
$$A \subseteq B$$
 then  $P(A) \le P(B)$ 

Proof: Homework 1

### Theorem 3: Law of total probability

Let  $A \in \mathcal{B}$  and let  $C_1, C_2, \ldots \in \mathcal{B}$  be a partition of S. Then

$$P(A) = \sum_{i=1}^{\infty} P(A \cap C_i)$$

proof...

roof...
$$P(A) = P(A \cap b) = P(A \cap (\bigcup_{i=1}^{\infty} C_i))$$

$$= P(\bigcup_{i=1}^{\infty} A \cap C_i)$$

$$= \sum_{i=1}^{\infty} P(A \cap C_i) \text{ since}$$

Anci, Anci, ... are disjoint:

$$(AnC_i)$$
  $n(AnC_j) = AnCinC_j = \emptyset$ 



Distributive law:

### Theorem 4: Boole's Inequality

Let  $A_1, A_2, A_3, \ldots \in \mathcal{B}$ . Then

(a) 
$$P\left(\bigcup_{i=1}^{n} A_{i}\right) \leq \sum_{i=1}^{n} P(A_{i})$$
, for  $n = 1, 2, 3, ...$ 

Upper bound for 0 of sels

(b) 
$$P\left(\bigcup_{i=1}^{\infty} A_i\right) \leq \sum_{i=1}^{\infty} P(A_i)$$

Proof:

(4) Follows from (b) but we can also use induction ...

proof on whiteboard

12/15

(b) STAT 445: Read proof in book

# Proof by induction

- Want to show that some property Q(n) holds for all n = 1, 2, 3, ...
  - Checking Q(n) for all n will literally take forever!

### Strategy:

- 1. Prove that Q(1) holds
  - Sometimes it is easier to also prove Q(2)
- 2. For an arbitrary integer k assume that Q(k) holds. Then prove that Q(k+1) holds.

## Theorem 5: Bonferroni Inequality

Let  $A_1, A_2, A_3, \ldots A_n \in \mathcal{B}$ . Then

(a) 
$$P\left(\bigcap_{i=1}^{n}A_{i}\right)\geq\sum_{i=1}^{n}P(A_{i})-(n-1)$$

(a) 
$$P\left(\bigcap_{i=1}^{n} A_i\right) \ge \sum_{i=1}^{n} P(A_i) - (II - 1)$$
(b)  $P\left(\bigcap_{i=1}^{n} A_i\right) \ge 1 - \sum_{i=1}^{n} P(A_i^c)$ 
(c)  $P\left(\bigcap_{i=1}^{n} A_i\right) \ge 1 - \sum_{i=1}^{n} P(A_i^c)$ 

Proof:

Going from Bool to Bonferroni
i.e. from U to 1 => Think DeMorgan

proof on whiteboard

## Use of Bonferroni

- Want  $P(A \cap B)$ .
  - Know that  $P(A) = p_1$  and  $P(B) = p_2$

A lower bound on  $P(A \cap B)$ :

$$P(A \cap B) \ge 1 - ((1 - p_1) + (1 - p_2))$$

- Example: Confidence intervals familywize confidence level
  - Say we have 95% confidence intervals based on the following probability statements

$$P(\overline{X}_1 - z_{\alpha/2}\sigma_1 \le \mu_1 \le \overline{X}_1 + z_{\alpha/2}\sigma_1) = 1 - \alpha$$

$$P(\overline{X}_2 - z_{\alpha/2}\sigma_2 \le \mu_2 \le \overline{X}_2 + z_{\alpha/2}\sigma_2) = 1 - \alpha$$

Then both (i.e. intersection) probability statements hold with probability at least  $1-2\alpha$