Drift-diffusion model

20202041 Park, Nuri

Gauss law:

$$\nabla \cdot D = \rho = q(p - n + N^+), D = \epsilon E = -\epsilon \nabla \phi$$

(it can be casted into poisson eqn in the vacuum.)

Electron/hole continuity:

$$\begin{split} \frac{\partial n}{\partial t} &= -\nabla \cdot F_n = \frac{1}{q} \nabla \cdot J_n, \\ \frac{\partial p}{\partial t} &= -\nabla \cdot F_p = -\frac{1}{q} \nabla \cdot J_p \end{split}$$

Electron/hole current density:

$$J_n = q\mu_n nE + qD_n \nabla n,$$

$$J_p = q\mu_p pE - qD_p \nabla p$$

These 5 equations can be used to earn unknown 3 values: ϕ , n, p.

Electron current density + Electron continuity:

$$\frac{\partial n}{\partial t} = -\nabla \cdot F_n = \frac{1}{q} \nabla \cdot (q \mu_n n E + q D_n \nabla n)$$

(steady state)
$$\rightarrow \nabla \cdot (+q\mu_n nE + qD_n \nabla n) = 0$$

We need to calculate ϕ as we did before. Now we can use ϕ as fixed values to insert in the above eqn.

1D, steady-state case :

$$\frac{d}{dx}\left(-q\mu_n n\frac{d\phi}{dx} + qD_n \frac{dn}{dx}\right) = 0$$

(Einstein relation: $D_n = \frac{k_B T}{q} \mu_n = V_T \mu_n$)

We need to integrate them to solve. Integrating above eqn from $x_{i-0.5}$ to $x_{i+0.5}$. Remember that $J_{n,i+0.5}$ is defined as :

$$\begin{split} J_{n,i+0.5} &= -q \mu_n n_{i+0.5} \frac{d\phi}{dx_{i+0.5}} + q D_n \frac{dn}{dx_{i+0.5}} \\ &= -q \mu_n \left(n_{i+0.5} \frac{d\phi}{dx_{i+0.5}} - V_T \frac{dn}{dx_{i+0.5}} \right) \text{, with Einstein relation.} \end{split}$$

Now we could have integrated form:

$$J_{n,i+0.5} - J_{n,i-0.5} = 0$$

$$n_{i+0.5} \frac{d\phi}{dx_{i+0.5}} - V_T \frac{dn}{dx_{i+0.5}} - n_{i-0.5} \frac{d\phi}{dx_{i-0.5}} + V_T \frac{dn}{dx_{i-0.5}} = 0$$

We have to discretize to define values on the point i + 0.5.

$$n_{i+0.5} = \frac{n_{i+1} + n_i}{2}, \frac{d\phi}{dx_{i+0.5}} = \frac{\phi_{i+1} - \phi_i}{\Delta x}, \frac{dn}{dx_{i+0.5}} = \frac{n_{i+1} - n_i}{\Delta x}$$

HW14

PN junction

$$\begin{split} \frac{\epsilon_{si}(\phi_{i+1}+\phi_{i-1})-2\epsilon\phi_i}{\Delta x^2} &= qN_{acc}+2qsinh\left(\frac{\phi}{V_T}\right), \qquad \left(x<\frac{N}{2}\right) \\ &= 2qsinh\left(\frac{\phi}{V_T}\right), \qquad \left(x=\frac{N}{2}\right) \\ &= -qN_{acc}+2qsinh\left(\frac{\phi}{V_T}\right), \quad \left(x>\frac{N}{2}\right) \end{split}$$

Boundary conditions:

$$\phi_{N-1} = \frac{k_BT}{q}\log\left(\frac{N_{acc}}{n_i}\right), \phi_0 = -\frac{k_BT}{q}\log\left(\frac{N_{acc}}{n_i}\right), n_{N-1} = N^+, n_0 = \frac{n_i^2}{N^+}$$

This is the semi-classical result of density:

Now let's consider Drift-Diffusion model.

$$\begin{split} J_{n,i+0.5} &= -q \mu_n \left(n_{i+0.5} \frac{d\phi}{dx}_{i+0.5} - V_T \frac{dn}{dx}_{i+0.5} \right) \\ residue &= J_{n,i+0.5} - J_{n,i-0.5} = \frac{n_{i+1} + n_i}{2} \left(\frac{\phi_{i+1} - \phi_i}{\Delta x} \right) - V_T \frac{n_{i+1} - n_i}{\Delta x} - \frac{n_i + n_{i-1}}{2} \frac{\phi_i - \phi_{i-1}}{\Delta x} + V_T \frac{n_i - n_{i-1}}{\Delta x} \\ Jaco_{i-1} &= -\frac{1}{2} \frac{\phi_i - \phi_{i-1}}{\Delta x} - V_T \frac{1}{\Delta x} \\ Jaco_i &= \frac{1}{2} \left(\frac{\phi_{i+1} - \phi_i}{\Delta x} \right) + V_T \frac{1}{\Delta x} - \frac{1}{2} \frac{\phi_i - \phi_{i-1}}{\Delta x} + V_T \frac{1}{\Delta x} \\ Jaco_{i+1} &= \frac{1}{2} \left(\frac{\phi_{i+1} - \phi_i}{\Delta x} \right) - V_T \frac{1}{\Delta x} \end{split}$$

Star means the density is updated with drift-diffusion model. It looks similar adapting drift-diffusion model with not adapted model. The difference with them is shown below.

The difference is largest at the midpoint of densities (\sim 0.5).

Now we couple the Poisson equation and the continuity equation.

Poisson equation:

$$\begin{split} R_{\phi} &= \frac{\epsilon_{i+0.5}\phi_{i+1} - (\epsilon_{i+0.5} + \epsilon_{i-0.5})\phi_i + \epsilon_{i-0.5}\phi_{i-1}}{\epsilon_0} + \frac{\Delta x^2 q}{\epsilon_0}(N^+ - n_i) = 0 \\ &\frac{\partial R_{\phi}}{\partial \phi_{i+1}} = \frac{\epsilon_{i+0.5}}{\epsilon_0}, \qquad \frac{\partial R_{\phi}}{\partial \phi_i} = -\frac{\epsilon_{i+0.5} + \epsilon_{i-0.5}}{\epsilon_0}, \qquad \frac{\partial R_{\phi}}{\partial \phi_{i-1}} = \frac{\epsilon_{i+0.5}}{\epsilon_0}, \\ &\frac{\partial R_{\phi}}{\partial n_i} = -\frac{\Delta x^2 q}{\epsilon_0} \end{split}$$

Continuity equation:

$$\begin{split} R_n &= \left(\frac{n_{i+1} + n_i}{2}\right) \left(\frac{\phi_{i+1} - \phi_i}{\Delta x}\right) - V_T \frac{n_{i+1} - n_i}{\Delta x} - \left(\frac{n_i + n_{i-1}}{2}\right) \left(\frac{\phi_i - \phi_{i-1}}{\Delta x}\right) + V_T \frac{n_i - n_{i-1}}{\Delta x} = 0 \\ \frac{\partial R_n}{\partial n_{i+1}} &= \frac{1}{2} \frac{\phi_{i+1} - \phi_i}{\Delta x} - V_T \frac{1}{\Delta x}, \\ \frac{\partial R_n}{\partial n_i} &= \frac{1}{2} \frac{\phi_{i+1} - \phi_i}{\Delta x} + \frac{V_T}{\Delta x} - \frac{1}{2} \left(\frac{\phi_i - \phi_{i-1}}{\Delta x}\right) + \frac{V_T}{\Delta x}, \\ \frac{\partial R_n}{\partial n_{i-1}} &= -\frac{1}{2} \frac{\phi_i - \phi_{i-1}}{\Delta x} - \frac{V_T}{\Delta x} \\ \frac{\partial R_n}{\partial \phi_{i+1}} &= \frac{n_{i+1} + n_i}{2} \frac{1}{\Delta x}, \quad \frac{\partial R_n}{\partial \phi_i} &= -\frac{n_{i+1} + n_i}{2} \frac{1}{\Delta x} - \left(\frac{n_i + n_{i-1}}{2}\right) \frac{1}{\Delta x}, \quad \frac{\partial R_n}{\partial \phi_{i-1}} &= \frac{n_i + n_{i-1}}{2} \frac{1}{\Delta x} \end{split}$$

HW 15

 N^+NN^+ structure.

Boundary condition : $\phi_0 = \phi_{N-1} = V_T \log(5 \times 10^{23} m^{-3}/n_{int})$

600nm long structure : 0.5nm, 1nm, and 10nm spacing 60nm short structure : 0.2nm, 1nm and 5nm spacing

$$\frac{\partial R_{k_{1}}}{\partial \phi_{1}} \frac{\partial R_{k_{1}}}{\partial n_{1}} \frac{\partial R_{k_{1}}}{\partial \phi_{2}} \frac{\partial R_{k_{1}}}{\partial n_{2}} \cdots$$

$$\frac{\partial R_{n_{1}}}{\partial \phi_{1}} \frac{\partial R_{n_{1}}}{\partial n_{1}} \frac{\partial R_{n_{1}}}{\partial \phi_{2}} \frac{\partial R_{n_{1}}}{\partial n_{2}}$$

$$\frac{\partial R_{k_{1}}}{\partial \phi_{1}} \frac{\partial R_{n_{1}}}{\partial n_{1}} \frac{\partial R_{n_{1}}}{\partial \phi_{2}} \frac{\partial R_{n_{1}}}{\partial n_{2}}$$

$$\frac{\partial R_{k_{1}}}{\partial \phi_{1}} \frac{\partial R_{k_{2}}}{\partial n_{1}} \frac{\partial R_{k_{1}}}{\partial \phi_{2}} \frac{\partial R_{k_{2}}}{\partial n_{2}}$$

$$\frac{\partial R_{n_{1}}}{\partial \rho_{2}} \frac{\partial R_{n_{1}}}{\partial \rho_{2}} \frac{\partial R_{n_{1}}}{\partial \rho_{2}}$$

$$\frac{\partial R_{n_{1}}}{\partial \rho_{2}} \frac{\partial R_{n_{1}}}{\partial \rho_{2}} \frac{\partial R_{n_{1}}}{\partial \rho_{2}}$$

$$\frac{\partial R_{n_{1}}}{\partial \rho_{2}} \frac{\partial R_{n_{1}}}{\partial \rho_{2}} \frac{\partial R_{n_{1}}}{\partial \rho_{2}}$$

$$\frac{\partial R_{n_{1}}}{\partial \rho_{2}} \frac{\partial R_{n_{2}}}{\partial \rho_{2}}$$

$$\frac{\partial R_{n_{2}}}{\partial \rho_{2}} \frac{\partial R_{n_{2}}}{\partial \rho_{2}}$$

$$\frac{\partial R_{n_{1}}}{\partial \rho_{2}} \frac{\partial R_{n_{2}}}{\partial \rho_{2}}$$

$$\frac{\partial R_{n_{2}}}{\partial \rho$$

Result

1-1. L = 600nm, 0.5nm spacing

1-2. L = 600nm, 1nm spacing

1-3. L = 600nm, 10nm spacing

2-1. L=60nm, 0.5nm spacing

2-1. L=60nm, 1nm spacing

2-1. L=60nm, 10nm spacing

We found that more dense slicing makes more similar result.