PROVA (PARTE 2)

Universidade Federal de Jataí (UFJ) Bacharelado em Ciência da Computação Lógica para Ciência da Computação Esdras Lins Bispo Jr.

09 de julho de 2019

ORIENTAÇÕES PARA A RESOLUÇÃO

- A avaliação é individual, sem consulta;
- A pontuação máxima desta avaliação é 10,0 (dez) pontos, sendo uma das 06 (seis) componentes que formarão a média final da disciplina: quatro minitestes (MT), uma prova final (PF), exercícios em formato de *Quizzes* (QZ) e questões conceituais (QC) aplicadas em sala de aula pelo método de Instrução pelos Colegas;
- \bullet A média final (MF) será calculada assim como se segue

$$MF = MIN(10, S)$$

 $S = [(\sum_{i=1}^{4} max(MT_i, SMT_i) + PF].0, 2 + QC + QZ$

em que

- -S é o somatório da pontuação de todas as avaliações, e
- $-SMT_i$ é a substitutiva do mini-teste i.
- O conteúdo exigido desta avaliação compreende o seguinte ponto apresentado no Plano de Ensino da disciplina: (3) Demonstrações.

TA T			
Nome:			
TIOIIIC.			

Terceiro Teste

- 1. (5,0 pt) [Alencar 9.3 Adaptado] Indicar a Regra de Inferência que justifica a validade dos seguintes argumentos:
 - (a) $p \to q$, $r \lor q \vdash (p \to q) \land (r \lor q)$
 - (b) $q \rightarrow \sim r, \sim \sim r \vdash \sim q$
 - (c) $(u \leftrightarrow x) \rightarrow z \vdash (u \leftrightarrow x) \rightarrow (u \leftrightarrow x) \land z$
 - (d) $3 < 5 \rightarrow 4^2 \neq 16, \sqrt{3} \geq 1 \rightarrow \pi = 22/7, 4^2 = 16 \lor \pi \neq 22/7 + 3 \geq 5 \lor \sqrt{3} < 1$
 - (e) $z < 8 \ \lor \ t = 5, t \neq 5 \ \vdash \ z < 8$
- 2. (5,0 pt) Verificar que são **válidos** os seguintes argumentos, por meio de **regras de inferência**.
 - (a) (2,0 pt) [Alencar 11.8 (e)]

$$p \to q, \sim q, \sim p \to r \vdash r$$

(b) (3,0 pt) [Alencar 11.15 (e)]

$$\sim p \vee \sim q, \sim q \rightarrow \sim r, \sim p \rightarrow t, \sim t \vdash \sim r \wedge \sim t$$

Quarto Teste

- 3. (5,0 pt) Usar a Regra DC (Demonstração Condicional) para mostrar que são **válidos** os seguintes argumentos: por meio de **regras de inferência** e **regras auxiliares**.
 - (a) (2,0 pt) [Alencar 13.3 (c)]

$$p \land q \rightarrow \sim r \lor \sim s, r \land s \vdash p \rightarrow \sim q$$

(b) (3,0 pt) [Alencar 13.3 (e)]

$$(p \to q) \lor r, s \lor t \to \sim r, s \lor (t \land u) \vdash p \to q$$

- 4. (5,0 pt) Usar a Regra DI (Demonstração Indireta) para mostrar que são válidos os seguintes argumentos: por meio de regras de inferência e regras auxiliares.
 - (a) (2,0 pt) [Alencar 13.6 (a)]

$$(p \to q) \lor (r \land s), \sim q \vdash p \to s$$

(b) (3,0 pt) [Alencar 13.6 (c)]

$$\sim p \rightarrow \sim q \lor r, s \lor (r \rightarrow t), p \rightarrow s, \sim s \vdash q \rightarrow t$$

Regras de Inferência

- Regra da Adição (AD)
 - (i) $p \vdash p \lor q$ (ii) $p \vdash q \lor p$
- $\bullet\,$ Regra da Simplificação (SIMP)
 - (i) $p \wedge q \vdash p$ (ii) $p \wedge q \vdash q$
- Regra da Conjunção (CONJ)
 - (i) $p, q \vdash p \land q$ (ii) $p, q \vdash q \land p$
- Regra da Absorção (ABS) $p \to q \vdash p \to (p \land q)$
- Regra Modus Ponens (MP) $p \rightarrow q, p \vdash q$
- Regra Modus Tollens (MT) $p \rightarrow q, \sim q \vdash \sim p$
- Regra do Silogismo Disjuntivo (SD) (i) $p \lor q$, $\sim p \vdash q$ (ii) $p \lor q$, $\sim q \vdash p$
- Regra do Silogismo Hipotético (SH) $p \to q, q \to r \vdash p \to r$
- Regra do Dilema Construtivo (DC) $p \to q, r \to s, p \lor r \vdash q \lor s$
- Regra do Dilema Destrutivo (DD) $p \to q, \ r \to s, \ \sim q \ \lor \sim s \ \vdash \sim p \ \lor \sim r$

Regras Auxiliares

- $\bullet\,$ Regra da Dupla Negação (DN)
 - (i) $p \vdash \sim \sim p$ (ii) $\sim \sim p \vdash p$
- Regra do Bicondicional (BIC)
 - (i) $p \leftrightarrow q \vdash (p \to q) \land (q \to p)$ (ii) $(p \to q) \land (q \to p) \vdash p \leftrightarrow q$
- Regra de De Morgan (DM)
 - (i) $\sim (p \lor q) \vdash \sim p \land \sim q$ (ii) $\sim p \land \sim q \vdash \sim (p \lor q)$ (iii) $\sim (p \land q) \vdash \sim p \lor \sim q$ (iv) $\sim p \lor \sim q \vdash \sim (p \land q)$
- Regra do Condicional (COND)
 (i) p → q ⊢ ~ p ∨ q
 (ii) ~ p ∨ q ⊢ p → q
- Regra Distributiva (DIST)
- (i) $p \lor (q \land r) \vdash (p \lor q) \land (p \lor r)$ (ii) $(p \lor q) \land (p \lor r) \vdash p \lor (q \land r)$