1/7 IAP11 Rec'd PCT/PTO 04 AUG 2006

```
Sequence Listing
```

- <110> University of Georgia Research Foundation, Inc.
- <120> NOVEL TELEOST DERIVED ANTIMICROBIAL POLYPEPTIDES
- · <130> G25-085PCT
 - <150> US60/545,370
- ' <151> 2004-02-18
 - <150> US60/623,909
 - <151> 2004-11-01
 - <160> 31
 - <210> 1
 - <211> 30
 - <212> PRT
 - <213> Artificial Sequence
 - <220>
 - <223> Synthetic Peptide
 - <400> 1

GGGGGGGGGGGGGGGGGGGGGG

- <210> 2
- <211> 12
- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> Synthetic Peptide
- <400> 2

GGGGGGGGGG

- <210> 3
- <211> 201
- <212> PRT
- <213> Ictalurus punctatus
- <400> 3

MSAQAEETAPEAAAPQPSQPAAKKKGPASKAKPASAEKKNKKKKGKGPGKYSQLVINAIQTLGERNGSSLFKIYNEAKKV NWFDQQHGRVYLRYSIRALLQNDTLVQVKGLGANGSFKLNKKKFIPRTKKSSVKPRKTAKPTKKPAKKAAKKKKRVSGVK KATPPPEKTSKPKKADKSPASAKKASKPKKAKQTKKTAKKT

- <210> 4
- <211> 1146
- <212> DNA
- <213> Ictalurus punctatus
- <400> 4
- CGGCACGAGG GTTCAATAGC ATCTCAAGGC GCTTCAGAAC TTAAAGTTGA
 ACCATGTCTG CTCAGGCTGA GGAAACTGCA CCAGAAGCAG CAGCACCAGT
 120

ACAACCATCA CAACCAGCGG CCAAAAAGAA GGGACCCGCC AGTAAAGCAA	180
AGCCTGCCTC TGCAGAAAA AAGAACAAAA AGAAGAAAGG GAAAGGGCCC	240
GGAAAGTACA GCCAGCTGGT GATCAATGCT ATCCAAACGC TGGGAGAGAG	300
AAACGGCTCG TCTCTTTTTA AGATCTACAA CGAGGCGAAG AAAGTGAACT	360
GGTTTGACCA GCAGCACGGG CGCGTGTACC TCCGCTACTC CATCCGCGCG	420
CTGCTGCAGA ACGACACGCT CGTGCAGGTG AAGGGTCTGG GCGCCAACGG	480
CTCCTTCAAG CTCAACAAAA AGAAGTTCAT CCCCAGAACC AAGAAGAGCT	540
CTGTAAAGCC GAGAAAGACT GCGAAACCGA CCAAAAAGCC AGCCAAAAAA	600
GCAGCGAAGA AGAAGAAAAG GGTCAGCGGC GTGAAGAAGG CGACTCCCCC	660
CCCAGAGAAA ACCTCCAAAC CCAAGAAAGC GGATAAAAGT CCAGCCGTCT	720
CTGCCAAGAA GGCGAGCAAG CCCAAGAAAG CTAAACAGAC AAAAAAGACT GCTAAGAAGA CTTAAAACGT TTATATTCTG CATGCTTTGT GCATTAAGCA	780 840
TTGCACTGCG GGTAAACTGC ACGCTTTCTG ATCGCAGTTC ATTAAGTAGG	900
ATATGCACAG TGTTTAACCA AGTGTGCAAG TCACTCTGGT CTCAATGTTT	960
TACTGATGTA ACCACATGTA AATAACTGTA CAAAGAAGGA AACAATCACT	1020
TTTGTAACGT CTGCTTTGTT ATTATTTCTT TTCTACTAGT TAGCTAAAAT	1020
AACTGCTTAT GGCTTCTTT AAAATAAAAT GATAAAAGAA AAAAAAAAAA	1140
AAAAAA	1146
nnnna	
<210> 5	
<211> 951	
<212> DNA	
<213> Ictalurus punctatus	
•	
<220>	
<221> CDS	
<222> (1)(615)	
<223> ncamp-1 nucleic acid and protein sequence	
<pre><400> 5 1 CGGCACGAGGGTTCAATAGCATCTCAAGGCGCTTCAGAACTTAAAGTTGA</pre>	
	16
M S A Q A E E T A P E A A A P V 51 ACCATGTCTGCTCAGGCTGAGGAAACTGCACCAGAAGCAGCAGCACCAGT	10
O P S Q P A A K K K G P A S K A	32
101 ACAACCATCACAACCAGCGGCCAAAAAGAAGGACCCGCCAGTAAAGCAA	
K P A S A E K K N K K K G K G P	49
151 AGCCTGCCTCTGCAGAAAAAAAGAACAAAAAGAAGAAAGGGAAAGGGCCC	
G K Y S Q L V I N A I Q T L G E R	66
201 GGAAAGTACAGCCAGCTGGTGATCAATGCTATCCAAACGCTGGGAGAGAG	
NGSSLFKIYNEAKKVN	82
251 AAACGGCTCGTCTCTTTTTAAGATCTACAACGAGGCGAAGAAAGTGAACT	
W F D Q Q H G R V Y L R Y S I R A	99
301 GGTTTGACCAGCAGCACGGGCGCGTGTACCTCCGCTACTCCATCCGCGCG	
LLQNDTLVQVKGLGANG	116
351 CTGCTGCAGAACGACACGCTCGTGCAGGTGAAGGGTCTGGGCGCCAACGG	
SFKLNKKFIPRTKKS	132
401 CTCCTTCAAGCTCAACAAAAAGAAGTTCATCCCCAGAACCAAGAAGAGCT	
SVKPRKTAKPTKKPAKK	149
451 CTGTAAAGCCGAGAAAGACTGCGAAAACCGACCAAAAAGCCAGCC	•
AAKKKRVSGVKKATPP	
501 GCAGCGAAGAAGAAAAAGGGTCAGCGGCGTGAAGAAGGCGACTCCCCC	
PEKTSKPKKADKSPAV	182
551 CCCAGAGAAAACCTCCAAACCCAAGAAAGCGGATAAAAGTCCAGCCGTCT	
SAKKASKPKKAKQTKKT	199
601 CTGCCAAGAAGGCGAGCAAGCCCAAGAAAGCTAAACAGACAAAAAAAGACT	1

A K K T *

203

651 GCTAAGAAGACTTAAAACGTTTATATTCTGCATGCTTTGTGCATTAAGCA 701 TTGCACTGCGGGTAAACTGCACGCTTTCTGATCGCAGTTCATTAAGTAGG 751 ATATGCACAGTGTTTAACCAAGTGTGCAAGTCACTCTGGTCTCAATGTTT 801 TACTGATGTAACCACATGTAAATAACTGTACAAAGAAGGAAACAATCACT 851 TTTGTAACGTCTGCTTTGTTATTATTTCTTTTCTACTAGTTAGCTAAAAT 951 AAAAAA <210> 6 <211> 20 <212> PRT <213> Artificial Sequence <220> <223> Synthetic Peptide <400> 6 GGGGGGGGGGGGGG <210> 7 <211> 20 <212> PRT <213> Artificial Sequence <223> Synthetic Peptide <400> 7 ${\tt TCGTCGTTGTCGTT}$ <210> 8 <211> 20 <212> PRT <213> Artificial Sequence <220> <223> Synthetic Peptide <400> 8 CCCCCCCCCCCCCCCCCC <210> 9 <211> 20 <212> PRT <213> Artificial Sequence <220> <223> Synthetic Peptide <400> 9 АААААААААААААААА <210> 10 <211> 20

<212> PRT

<213> Artificial Sequence

```
<220>
<223> Synthetic Peptide
<400> 10
TTTTTTTTTTTTTTTTT
<210> 11
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 11
TGCTGCTTGTGCTT
<210> 12
<211> 247
<212> PRT
<213> Danio rerio
<400> 12
----MPAVVEESAPAPAPAP------AEKKAKPAVAASPAKK----KKKKSKGPGKYSKLVTDAI
{\tt RTLGEKNGSSLFKIYNEAKKVSWFDQKNGRMYLRASIRALVLNDTLVQVKGFGANGSFKLNKKKLEKKPKK-}\\
AASKKATKKTEKPTSKKAVT----KKVSAKKSAKKSPVKKKTPKKT----SVKKATAKPKKTASKK
PKAAAKKKTKSK--
<210> 13
<211> 247
<212> PRT
<213> Xenopus laevis
<400> 13
----MALELEENLHSTEEEDEEEEEEGDEMRSRSTRNKGGAASSSGNKKKKK--KKNQPGRYSQLVVDTIR
KLGERNGSSLAKIYSEAKKVSWFDQQNGRTYLKYSIKALVQNDTLLQVKGVGANGSFRLNKKKLEGLPYDKKP
PPAKPSSSSSNKKQQQ-----GPSSSPSKSHKKAKPKAKAEKEKPKTSSAKAKSPKKSAAKG-KKMKKGAKP
SVRKAPKSKKA
<210> 14
<211> 247
<212> PRT
<213> Mus
----MSVELEEALPPTSADG------TARKTAKAGGSAAPTQPKRRKN-RKKNQPGKYSQLVVETIR
KLGERGGSSLARIYAEARKVAWFDQQNGRTYLKYSIRALVQNDTLLQVKGTGANGSFKLNRKKLEGGAERR-
GASAASSPAPKAR-----TAAADRTPARPQ-PERRAHKS-----KKAAAAASAKKVKKAAK
PSVPKVPKGRK-
<210> 15
<211> 247
<212> PRT
<213> Homo sapiens
```

```
<400> 15
----MSVELEEALPVTTAEG------MAKKVTKAGGSAALSPSKKRKNSKKKNQPGKYSQLVVETIRR
{\tt LGERNGSSLAKIYTEAKKVPWFDQQNGRTYLKYSIKALVQNDTLLQVKGTGANGSFKLNRKKLEGGGERRGAPAAATAPA}
PTAHKAKKAAPGAAGSRRADKKPARGQKPEQRSHKKGAGAKKDKGGKAKKTAAAGGKKVKKAAKPSVPKVPKGRK-
<210> 16
<211> 15
<212> PRT
<213> Mus
<400> 16
SETAPAEKPAPAKAE
<210> 17
<211> 25
<212> PRT
<213> Homo sapiens
<400> 17
KLNKKAASGEAKPKAKAKSPKKAKA
<210> 18
<211> 17
<212> PRT
<213> Trout
<400> 18
KAVAAKKSPKKAKKPAT
<210> 19
<211> 19
<212> PRT
<213> Catfish
<400> 19
KGRGKQGGKVRAKAKTRSS
<210> 20
<211> 20
<212> PRT
<213> Trout
<400> 20
PDPAKTAPKKGSKKAVTKXA
```

<210> 21

<211> 17

<212> PRT

<213> Bass

<400> 21

PEPAKSAPKKGSKKAVT

<210> 22

<211> 22

<212> PRT

```
<213> Bass
```

<400> 22

PDPAPKTAPKKGSKKAVTKTAG

<210> 23

<211> 26

<212> PRT

<213> Trout

<400> 23

AEVAPAPAAAAPAKAPKKKAAAKPKK

<210> 24

<211> 4

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Peptide

<400> 24

AKKA

<210> 25

<211> 11

<212> PRT

<213> Ictalurus punctatus

<400> 25

GASGSFKLNKK

<210> 26

<211> 21

<212> PRT

<213> Bacteria

<400> 26

AYSLQMGATAIKQVKKLFKKW

<210> 27

<211> 28

<212> PRT

<213> Moth

<400> 27

PKWKLFKKIEKVGQNIRDGIIKAGPAVA

<210> 28

<211> 22

<212> PRT

<213> Spider

<400> 28

FKFLAKKVAKTVAKQAAKQGAK

```
<210> 29
```

<211> 22

<212> PRT

<213> Toad

<400> 29

, AGRGKQGGKVRAKAKTRSSRAG

. <210> 30

- <211> 23

<212> PRT

<213> Frog

<400> 30

GIGKFLHSAKKFGKAFVGEIMNS

<210> 31

<211> 30

<212> PRT

<213> Homo sapiens

<400> 31

KAPRKQLATPEPAKSAPAPKKGXKKXVTKA