VERSION WITH MARKINGS TO SHOW CHANGES MADE

For the convenience of the Examiner, the changes made are shown below with deleted text in strikethrough and added text in underline.

In the specification:

The paragraph beginning on page 2, line 4, was amended as follows:

Examples of La₂O₃ or Nd₂O₃ doped Pb(Zr,Ti)O₃ ceramics are documentated in the literature, including by G.H. Haertling in the <u>American Ceramic Society Bulletin</u> (43(12), 113-118 875-879 (1964) and <u>Journal of the American Ceramic Society</u> 54, 1-11 (1971) as well as in <u>Piezoelectric Ceramics</u>, Academic Press, London and New York (1971) of B. jaffe, W.R. Cook and H. Jaffe. Additional discussion may be found in Y. Xu in <u>Ferroelectric Materials and their Applications</u>, pages 101-163, Elsevier Science Publishers, Amsterdam (1991).

The paragraph beginning on page 3, line 19, was amended as follows:

The publication DE 9700463 WO 97/40537 discloses the production of green foils for piezoceramic multilayer devices. The green foils are based on a piezoceramic powder of the type PZT, to which a stochiometric surplus of a heterovalent rare earth metal (up to a content from 1 to 5 molar-%) and a stochiometric surplus of an additional 1-5 molar-% lead oxyde is added. In addition, it is disclosed in above publication that Ag⁺ - ions from the area of Ag/Pd internal electrodes diffuse into the ceramic layers of the multilayer devices such that the heterovalent doping produced cation vacancies are occupied and accordingly result in a filled up Perovskite structure. This structure may be: Pb_{0.99}Ag_{0.01}La_{0.01}[Zr_{0.30}Ti_{0.36}(Ni_{1/3}Nb_{2/3})_{0.34}]O₃ or Pb_{0.96}Ag_{0.02}Nd_{0.02}(Zr_{0.54}, Ti_{0.46})O₃. Herein, a piezoceramic is produced with a comparatively high Curie temperature for applications of up to 150°C. Furthermore, solidity between the Ag/Pd internal electrode (70/30) and the ceramic, as well as growth during the sintering, are positively influenced by building silver into the ceramic.--