Machine Learning Foundation HW1

B04902004 王佑安

1.

- 2. 音樂分類可以用 active learning,因為聽完一首歌需要耗費很多時間,可以先讓機器先全部聽完一次做 clustering,在用人耳從每群相似的音樂中挑出幾個上 label,就能知道整個群集的音樂是什麼分類。
- 3. If N is odd, L is even, $E_{OTS}(g,f) = \frac{1}{L} * (\lfloor \frac{N+L}{2} \rfloor \frac{L}{2})$ If N is odd, L is odd, $E_{OTS}(g,f) = \frac{1}{L} * (\frac{N+L}{2} - \lfloor \frac{L}{2} \rfloor)$ If N is even, L is odd, $E_{OTS}(g,f) = \frac{1}{L} * (\lfloor \frac{N+L}{2} \rfloor - \lfloor \frac{L}{2} \rfloor)$ If N is even, L is even, $E_{OTS}(g,f) = \frac{1}{L} * (\frac{N+L}{2} - \frac{L}{2})$ thus, $E_{OTS}(g,f) = \frac{1}{L} * (\lfloor \frac{N+L}{2} \rfloor - \lfloor \frac{L}{2} \rfloor)$
- 4. f generate D, 所以 $f(x_1)$ $f(x_N) = y_1$ y_N , 只有 $f(x_{N+1})$ $f(x_{N+L})$ 可以是任意組合,因此答案為 2^L
- 5. E_{OTS} 只跟 x_{N+1} x_{N+L} 有關,而 A_1 跟 A_2 的 input 只有 x_1 x_N ,因此 E_{OTS} 跟選擇哪個演算 法是獨立事件,所以期望值相同。

6. A 跟 D 的 1 是綠色,B 跟 C 是橘色,因此隨機拿一顆骰子 1 是綠色的機率是 $\frac{2}{4}$,拿 5 顆都是綠色的機率為 $(\frac{2}{4})^5 = \frac{8}{256}$

7. 1 全是綠的: A+D 2 全是綠的: B+D 3 全是綠的: A+D

> 4 全是綠的: B+C 5 全是綠的: A+C 6 全是綠的: B+C

總共有 (A+C)(A+D)(B+C)(B+D)4 種組合,扣掉分別只有 (A)(B)(C)(D) 的情況被多算一次, $\frac{4*2^5-4}{4^5}=\frac{31}{256}$

跟上一題的答案比較後發現,每個數字是相同顏色的機率其實都是 $\frac{8}{256}$,但每個數字是相同顏色並不是獨立事件,會互相影響。

8.

9. 不會。update 次數的 upper bound $T \leq \frac{R^2}{\rho^2}$, $R^2 = \max_n \|x_n\|^2$, $\rho = \min_n y_n \frac{w_f^T}{\|w_f\|} x_n$, 因此將全部 x_n 除以 20, R 跟 ρ 會同時被除以 20, upper bound T 不變。