Boer Mulders Functions Notes

Dinupa

February 16, 2023

Drell-Yan Process

DY angular distribution;

$$\frac{d\sigma}{d\Omega} \propto 1 + \lambda cos^2\theta + \mu sin2\theta cos\phi + \frac{\nu}{2} sin^2\theta cos2\phi$$

- >> In "naive" DY model;
 - >> Transverse momentum of the quark is ignored
 - >> No gluon emission is considered.
 - **»** $\lambda = 1$, $\mu = \nu = 0$.
- » QCD effects and non-zero intrinsic transverse momentum of the quarks;
 - $\lambda \neq 1$, $\nu, \mu \neq 0$.
 - Satisfy Lam-Tung relation;

$$1 - \lambda = 2\nu$$

FIG. 1: Parameters λ,μ,ν and $2\nu-(1-\lambda)$ vs. p_T in the Collins-Soper frame. Solid circles are for E866 p+d at 800 GeV/c, crosses are for NA10 π^-+W at 194 GeV/c, and diamonds are E615 π^-+W at 252 GeV/c. The error bars include the statistical uncertainties only.

Drell-Yan Process

- E866 and E615 results on DY angular distribution strongly suggest that new effects beyond conventional perturbative QCD are present.
- Boer-Mulders function can explain this results;
 - ightarrow k_T dependent parton distribution function h_1^\perp .
 - ightharpoonup Characterizes the correlation of a quark's transverse spin and its transverse momentum k_T in an unpolarized nucleon.
 - >> E866 experiment;
 - >> 1st report on the azimuthal angular distributions for proton-induced DY.
 - Proton-induced Drell-Yan data provide a stringent test of theoretical models.
 - » $\cos2\phi$ dependence is expected to be much reduced in proton-induced DY if the underlying mechanism involves the Boer-Mulders functions; due to the expectation that the BM functions are small for the sea-quark.
 - » However, if the QCD vacuum effect is the origin of the $\cos2\phi$ angular dependence, then the azimuthal behavior of proton-induced DY should be similar to that of pion-induced DY.
 - >> 1st measurement of the validity of the LT relation for proton-induced DY.

source : arXiv:hep-ex/0609005

Drell-Yan Process

>> For NA10 data, Boer assumed that h_1^\perp proportional to the spin-averaged parton distribution function f_1 .

$$h_1^{\perp}(x, k_T^2) = C_H \frac{\alpha_T}{\pi} \frac{M_C M_H}{k_T^2 + M_C^2} e^{\alpha_T k_T^2} f_1(x)$$

>> The $\cos 2\phi$ dependence then results from the convolution of the pion h_1^\perp/f_1 term with the nucleon h_1^\perp/f_1 term, and the parameter ν ;

$$\nu = 16k_1 \frac{p_T^2 M_C^2}{(p_T^2 + 4M_C^2)^2}$$

Predict large $\cos 2\phi$ dependence originating from QCD vacuum effects, suggest that h_1^\perp for sea quarks are significantly smaller than those for valence quarks.

FIG. 2: Parameter ν vs. p_T in the Collins-Soper frame for three Drell-Yan measurements. Fits to the data using Eq. 3 and $M_C=2.4~{\rm GeV/c}^2$ are also shown.

>> Definition;

$$h_1^{\perp}(x, k_T^2) \epsilon_T^{ij} k_{T_j} = \frac{M}{2} F.T. \left\langle P | \bar{\psi}(0) \mathcal{L}_C(0, \epsilon) \gamma^i \gamma^+ \gamma_5 \psi(\epsilon) | P \right\rangle |_{\epsilon^+ = 0}$$

- Describes the net polarization of quarks inside an unpolarized proton.
- » If this function is nonzero, then it reflects the presence of a handedness inside the proton $\vec{P}\cdot(\vec{k}_T imes \vec{s}_T)$.
- >> For DY process;

$$\nu_{pD} = \frac{2\mathcal{F}[\chi(e_u^2 h_1^{\perp,u} + e_d^2 h_1^{\perp,d})(h_1^{\perp,\bar{u}} + h_1^{\perp,\bar{d}})] + q \leftrightarrow \bar{q}}{\mathcal{F}[(e_u^2 f_1^u + e_d^2 f_1^d)(f_1^{\bar{u}} + f_1^{\bar{d}})] + q \leftrightarrow \bar{q}}$$

ightharpoonup Parametrize $h_1^\perp(x, \vec{p}_T^2)$ in the factorized form as;

$$h_1^{\perp,q}(x,\vec{p}_T) = h_1^{\perp,q}(x) \frac{exp(-\vec{p}_T^2)/p_{bm}^2}{\pi p_{bm}^2}$$

 $\rightarrow h_1^{\perp,q}$ can be written as;

$$h_1^{\perp,q}(x) = H_q x^c (1-x) f_1^q(x)$$

>> TMD unpolarized distribution function

$$f_1^q(x, \vec{p}_T^2) = f_1^q(x) \frac{exp(-\vec{p}_T^2/p_{unp}^2)}{\pi p_{unp}^2}$$

 \Rightarrow Integrating over x_1 and x_2 ;

$$\nu_{pD}(Q_T) = \frac{p_{unp}^2}{2M^2} \frac{\int dx_1 \int dx_2 [\alpha] Q_T^2 exp(-Q_T^2/2p_{bm}^2)}{p_{bm}^2 \int dx_1 \int dx_2 [\beta] exp(-Q_T^2/2p_{unp}^2)}$$

where $x_1 x_2 s = Q^2 + Q_T^2$.

>> This expression is fitted to the E866 data.

TABLE I.	Best fit values of the Boer-Mulders functions.
$\overline{H_u}$	3.99
H_d	3.83
$H_{\bar{u}}$	0.91
$H_{\bar{d}}$	-0.96
$H_{ar{d}} \ p_{ m bm}^2$	0.161
c	0.45
χ^2 /d.o.f.	0.79

FIG. 1 (color online). Fits to the p_T , x_1 , x_2 -dependent $\cos 2\phi$ asymmetries ν_{pD} for Drell-Yan processes. Data are from the FNAL E866/NuSea collaboration.

FIG. 3 (color online). The Q-dependent $\cos 2\phi$ asymmetry ν_{pD} for Drell-Yan processes at FNAL E866/NuSea, presenting both the experimental data and the results we estimate with the best fit values of the Boer-Mulders functions in Table I (line).

>> We can get similar experssion for pp DY;

$$\nu_{pp}(x_1, x_2, Q_T) = \frac{p_{\text{unp}}^2[\kappa] Q_T^2 \exp(-\frac{Q_T^2}{2p_{\text{nup}}^2})}{2M^2 p_{\text{num}}^2[\lambda] \exp(-\frac{Q_T^2}{2p_{\text{nup}}^2})},$$
 (18)

where

$$\begin{split} \left[\kappa\right] &= x_1^c (1 - x_1) x_2^c (1 - x_2) (4 H_u f_1^u(x_1) H_{\bar{u}} f_1^{\bar{u}}(x_2) \\ &+ H_d f_1^d(x_1) H_{\bar{d}} f_1^{\bar{d}}(x_2)) \\ &+ (q \leftrightarrow \bar{q}), \\ \left[\lambda\right] &= (4 f_1^u(x_1) f_1^{\bar{u}}(x_2) + f_1^d(x_1) f_1^{\bar{d}}(x_2)) + (q \leftrightarrow \bar{q}) \end{split} \tag{19}$$

FIG. 4. The p_T -dependent $\cos 2\phi$ asymmetries ν in both pp (dotted curve) and pD (solid curve) Drell-Yan processes at FNAL E866/NuSea, calculated with the fitted Boer-Mulders functions presented in Table I.

Boer-Mulders Function $(p\vec{p})$

» To seperate H_q (valance quarks) and $H_{\bar q}$ (sea quark) we can introduce free coef. ω ;

$$h_{1}^{\perp,u}(x) = \omega H_{u}x^{c}(1-x)f_{1}^{u}(x), \qquad (20)$$

$$h_{1}^{\perp,d}(x) = \omega H_{d}x^{c}(1-x)f_{1}^{d}(x), \qquad (21)$$

$$\nu_{p\bar{p}}(x_{1}, x_{2}, Q_{T}) = \frac{p_{\rm unp}^{2}[s]Q_{T}^{2}\exp(-\frac{Q_{T}^{2}}{2p_{\rm bm}^{2}})}{2M^{2}p_{\rm bm}^{2}[\tau]\exp(-\frac{Q_{T}^{2}}{2p_{\rm bm}^{2}})},$$

$$h_{1}^{\perp,\bar{u}}(x) = \frac{1}{\omega}H_{\bar{u}}x^{c}(1-x)f_{1}^{\bar{u}}(x), \qquad (22)$$

$$h_{1}^{\perp,\bar{d}}(x) = \frac{1}{\omega}H_{\bar{d}}x^{c}(1-x)f_{1}^{\bar{d}}(x). \qquad (23)$$

$$\psi_{p\bar{p}}(x_{1}, x_{2}, Q_{T}) = \frac{p_{\rm unp}^{2}[s]Q_{T}^{2}\exp(-\frac{Q_{T}^{2}}{2p_{\rm bm}^{2}})}{2M^{2}p_{\rm bm}^{2}[\tau]\exp(-\frac{Q_{T}^{2}}{2p_{\rm bm}^{2}})},$$

$$\psi_{here}[s] = \omega^{2}x_{1}^{c}(1-x_{1})x_{2}^{c}(1-x_{2})(4H_{u}f_{1}^{u}(x_{1})H_{u}f_{1}^{u}(x_{2})$$

$$+ H_{d}f_{1}^{d}(x_{1})H_{d}f_{1}^{d}(x_{2})) + (q \leftrightarrow \bar{q}),$$

$$[\tau] = (4f_{1}^{u}(x_{1})f_{1}^{u}(x_{2}) + f_{1}^{d}(x_{1})f_{1}^{d}(x_{2})) + (q \leftrightarrow \bar{q})$$

Boer-Mulders Function $(p\vec{p})$

source: arXiv:0803.1692 [hep-ph], arXiv:hep-ph/9711485

FIG. 6 (color online). The p_T -dependent $\cos 2\phi$ asymmetries ν for $p\bar{p}$ Drell-Yan process at GSI, with the kinematics: c.m. energy s=45 GeV², and invariance mass square of the lepton pair $Q^2=2.5$ GeV². The solid, dashed, and dotted curves correspond to the free coefficient $\omega=1,0.5,0.25$, respectively.

Pipeline

- >> Start with MC data;
 - **>>** Get ϕ vs. $\cos\theta$ distributions in p_T , x_1 , x_2 , x_F , $m_{\mu\mu}$ bins.
 - >> Use unfolding to make the corrections.
 - **»** Fit the ϕ vs. $\cos\theta$ ditributions to extract λ , μ , ν .
 - ightharpoonup Use u values to extract BM function.
 - >> Cross-check (probably with Kei)
- >> Real data;
 - >> Understand the reco. cuts.
 - >> Background subtraction (Combinatorial Background, e906-root-ana)
 - >> Use the same steps as in MC data.