

Below are the link to the Github Repo, some additional readings shared by instructors, and links to papers and websites shared during the training.

2024 GitHub Repository for Lab Session: https://github.com/ContiLab-usc

Polygenic risk and summary statistics (Section 1)

- Visscher, P.M., Wray, N.R., Zhang, Q., Sklar, P., McCarthy, M.I., Brown, M.A. and Yang, J., 2017. 10 years of GWAS discovery: biology, function, and translation. The American Journal of Human Genetics, 101(1), pp.5-22.
- Pasaniuc, B. and Price, A.L., 2017. Dissecting the genetics of complex traits using summary association statistics. Nature reviews genetics, 18(2), pp.117-127.
- Khera, A.V., Chaffin, M., Aragam, K.G., Haas, M.E., Roselli, C., Choi, S.H., Natarajan, P., Lander, E.S., Lubitz, S.A., Ellinor, P.T. and Kathiresan, S., 2018. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nature genetics, 50(9), pp.1219-1224.
- Lambert, S.A., Gil, L., Jupp, S., Ritchie, S.C., Xu, Y., Buniello, A., McMahon, A., Abraham, G., Chapman, M., Parkinson, H. and Danesh, J., 2021. The Polygenic Score Catalog as an open database for reproducibility and systematic evaluation. Nature Genetics, 53(4), pp.420-425.
- Gamazon, E.R., Wheeler, H.E., Shah, K.P., Mozaffari, S.V., Aquino-Michaels, K., Carroll, R.J., Eyler, A.E., Denny, J.C., Nicolae, D.L., Cox, N.J. and Im, H.K., 2015. A gene-based association method for mapping traits using reference transcriptome data. Nature genetics, 47(9), pp.1091-1098.
- Gusev, A., Ko, A., Shi, H., Bhatia, G., Chung, W., Penninx, B.W., Jansen, R., De Geus, E.J., Boomsma, D.I., Wright, F.A. and Sullivan, P.F., 2016. Integrative approaches for large-scale transcriptome-wide association studies. Nature genetics, 48(3), pp.245-252.
- Sanderson, E., Glymour, M.M., Holmes, M.V., Kang, H., Morrison, J., Munafò, M.R., Palmer, T., Schooling, C.M., Wallace, C., Zhao, Q. and Davey Smith, G., 2022.
 Mendelian randomization. Nature Reviews Methods Primers, 2(1), pp.1-21.

GxE Interactions (Section 1)

Review paper

 Gauderman WJ, Mukherjee B, Aschard H, Hsu L, Lewinger JP, Patel CJ, et al. Update on the State of the Science for Analytical Methods for Gene-Environment Interactions. Am J Epidemiol. 2017;186(7):762-70.

Two-step GxE testing

Disease trait (case-control studies)

- <u>DG screening</u>: Kooperberg C, Leblanc M. Increasing the power of identifying gene x gene interactions in genome-wide association studies. Genet Epidemiol. 2008;32(3):255-63.
- <u>EG screening</u>: Murcray CE, Lewinger JP, Gauderman WJ. Gene-environment interaction in genome-wide association studies. Am J Epidemiol. 2009;169(2):219-26.
- <u>EDGE (DG+EG) screening</u>: Gauderman WJ, Zhang P, Morrison JL, Lewinger JP. Finding novel genes by testing G x E interactions in a genome-wide association study. Genet Epidemiol. 2013;37(6):603-13.
- Application to G x Alcohol for colorectal cancer: Jordahl KM, Shcherbina A, Kim AE, Su YR, Lin Y, Wang J, et al. Beyond GWAS of Colorectal Cancer: Evidence of Interaction with Alcohol Consumption and Putative Causal Variant for the 10q24.2 Region. Cancer Epidemiol Biomarkers Prev. 2022;31(5):1077-89.

Quantitative trait

- One trait: Zhang P, Lewinger JP, Conti D, Morrison JL, Gauderman WJ. Detecting Gene-Environment Interactions for a Quantitative Trait in a Genome-Wide Association Study. Genet Epidemiol. 2016;40(5):394-403
- Multivariate outcome: Majumdar A, Burch KS, Haldar T, Sankararaman S, Pasaniuc B, Gauderman WJ, et al. A two-step approach to testing overall effect of gene-environment interaction for multiple phenotypes. Bioinformatics. 2021.

Survival trait

• Kawaguchi ES, Li G, Lewinger JP, Gauderman WJ. Two-step hypothesis testing to detect gene-environment interactions in a genome-wide scan with a survival endpoint. Stat Med. 2022;41(9):1644-57.

Weighted (bin-based) testing

- Ionita-Laza I, McQueen MB, Laird NM, Lange C. Genomewide weighted hypothesis testing in family-based association studies, with an application to a 100K scan. Am J Hum Genet. 2007;81(3):607-14.
- Kawaguchi EK, Kim AK, Lewinger JP, Gauderman WJ. A novel significance-based approach to two-stage hypothesis testing for discovery of gene-environment interactions. https://www.biorxiv.org/content/10.1101/2022.06.14.496154v1

Joint tests of GxE interaction

- <u>2-df test</u>: Kraft P, Yen YC, Stram DO, Morrison J, Gauderman WJ. Exploiting geneenvironment interaction to detect genetic associations. Hum Hered. 2007;63(2):111-9.
- 3-df test: Gauderman WJ, Kim A, Conti DV, Morrison J, Thomas DC, Vora H, et al. A Unified Model for the Analysis of Gene-Environment Interaction. Am J Epidemiol. 2019;188(4):760-7.

 Application of 2-df test for GWIS of lipids: Noordam R, Bos MM, Wang H, Winkler TW, Bentley AR, Kilpelainen TO, et al. Multi-ancestry sleep-by-SNP interaction analysis in 126,926 individuals reveals lipid loci stratified by sleep duration. Nat Commun. 2019;10(1):5121.

Clustering (Section 3)

Consensus PCA

 Westerhuis, J. A.; Kourti, T.; Macgregor, J. F. Analysis of multiblock and hierarchical PCA and PLS moels J. Chemom. 1998, 12 (5) 301–21 DOI: 10.1002/(SICI)1099-128X(199809/10)12:5<301::AID-CEM515>3.0.CO;2-S

JIVE (like Consensus PCA)

- https://pubmed.ncbi.nlm.nih.gov/23745156/
- Lock EF, Hoadley KA, Marron JS, Nobel AB. JOINT AND INDIVIDUAL VARIATION EXPLAINED (JIVE) FOR INTEGRATED ANALYSIS OF MULTIPLE DATA TYPES. Ann Appl Stat. 2013 Mar 1;7(1):523-542. doi: 10.1214/12-AOAS597. PMID: 23745156; PMCID: PMC3671601.

mOcluster software for CPCA, RGCCA, MCIA:

- https://pubmed.ncbi.nlm.nih.gov/26653205/
- J. Proteome Res. 2016, 15, 3, 755–765 Publication Date:December 14, 2015
- https://doi.org/10.1021/acs.jproteome.5b00824

R.JIVE: Software for JIVE (~CPCA) (we didn't' study this variant, but it's used in the benchmark papers).

- https://pubmed.ncbi.nlm.nih.gov/27273669/
- Michael J. O'Connell, Eric F. Lock, R.JIVE for exploration of multi-source molecular data, *Bioinformatics*, Volume 32, Issue 18, 15 September 2016, Pages 2877– 2879, https://doi.org/10.1093/bioinformatics/btw324

RGCCA software (we didn't study this variant, but it's used in many of the benchmark papers)

- https://pubmed.ncbi.nlm.nih.gov/28536930/
- Tenenhaus M, Tenenhaus A, Groenen PJF. Regularized Generalized Canonical Correlation Analysis: A Framework for Sequential Multiblock Component Methods. Psychometrika. 2017 May 23. doi: 10.1007/s11336-017-9573-x. Epub ahead of print. PMID: 28536930.

Method Comparisons:

- https://pubmed.ncbi.nlm.nih.gov/30295871/
- Rappoport N, Shamir R. Multi-omic and multi-view clustering algorithms: review and cancer benchmark. Nucleic Acids Res. 2018 Nov 16;46(20):10546-10562. doi: 10.1093/nar/gky889. Erratum in: Nucleic Acids Res. 2019 Jan 25;47(2):1044. PMID: 30295871; PMCID: PMC6237755.
- https://pubmed.ncbi.nlm.nih.gov/31792509/

- Pierre-Jean M, Deleuze JF, Le Floch E, Mauger F. Clustering and variable selection evaluation of 13 unsupervised methods for multi-omics data integration. Brief Bioinform. 2020 Dec 1;21(6):2011-2030. doi: 10.1093/bib/bbz138. PMID: 31792509.
- 500

- https://pubmed.ncbi.nlm.nih.gov/33402734/
- Cantini L, Zakeri P, Hernandez C, Naldi A, Thieffry D, Remy E, Baudot A. Benchmarking joint multi-omics dimensionality reduction approaches for the study of cancer. Nat Commun. 2021 Jan 5;12(1):124. doi: 10.1038/s41467-020-20430-7. PMID: 33402734; PMCID: PMC7785750.
- https://pubmed.ncbi.nlm.nih.gov/34383739/
- Duan R, Gao L, Gao Y, Hu Y, Xu H, Huang M, Song K, Wang H, Dong Y, Jiang C, Zhang C, Jia S. Evaluation and comparison of multi-omics data integration methods for cancer subtyping. PLoS Comput Biol. 2021 Aug 12;17(8):e1009224. doi: 10.1371/journal.pcbi.1009224. PMID: 34383739; PMCID: PMC8384175.

Mediation (Section 4)

General Mediation and Multiple Mediators

- Daniel, R.M., De Stavola, B.L., Cousens, S.N., and Vansteelandt, S. (2015). Causal mediation analysis with multiple mediators. Biometrics 71, 1-14.
- Imai, K., Keele, L., and Tingley, D. (2010). A general approach to causal mediation analysis. Psychological Methods 15, 309-334.
- MacKinnon, D.P. (2008). Introduction to statistical mediation analysis. (New York: Lawrence Erlbaum Associates).
- Pearl, J. (2012). The Causal Mediation Formula—A Guide to the Assessment of Pathways and Mechanisms. Prev Sci 13, 426-436.
- Steen, J., Loeys, T., Moerkerke, B., and Vansteelandt, S. (2017). Flexible Mediation Analysis With Multiple Mediators. Am J Epidemiol 186, 184-193.
- VanderWeele, T.J., and Vansteelandt, S. (2014). Mediation Analysis with Multiple Mediators.
 Epidemiol Methods 2, 95-115.
- Vansteelandt, T.J.V., and Stijn. (2009). Conceptual issues concerning mediation, interventions and composition. 1-12.

High Dimensional Mediation

- Huang, Y.-T. (2014). Integrative modeling of multi-platform genomic data under the framework of mediation analysis. Stat Med 34, 162-178.
- Huang, Y.-T., Liang, L., Moffatt, M.F., Cookson, W.O.C.M., and Lin, X. (2015). iGWAS: Integrative Genome-Wide Association Studies of Genetic and Genomic Data for Disease Susceptibility Using Mediation Analysis. Genet Epidemiol, n/a-n/a.

- Kim, C., Daniels, M.J., Hogan, J.W., Choirat, C., and Zigler, C.M. (2019). Bayesian Methods for Multiple Mediators: Relating Principal Stratification and Causal Mediation in the Analysis of Power Plant Emission Controls. Ann Appl Stat 13, 1927-1956.
- Song, Y., Zhou, X., Zhang, M., Zhao, W., Liu, Y., Kardia, S.L.R., Roux, A.V.D., Needham, B.L., Smith, J.A., and Mukherjee, B. (2020). Bayesian shrinkage estimation of high dimensional causal mediation effects in omics studies. Biometrics 76, 700-710.
- Zhang, H., Zheng, Y., Zhang, Z., Gao, T., Joyce, B., Yoon, G., Zhang, W., Schwartz, J., Just, A., Colicino, E., et al. (2016). Estimating and testing high-dimensional mediation effects in epigenetic studies. Bioinformatics 32, 3150-3154.
- Perera, C., Zhang, H., Zheng, Y., Hou, L., Qu, A., Zheng, C., Xie, K., and Liu, L. (2022).
 HIMA2: high-dimensional mediation analysis and its application in epigenome-wide DNA methylation data. BMC Bioinformatics 23, 296.

Meet in the Middle

- Assi, N., Fages, A., Vineis, P., Chadeau-Hyam, M., Stepien, M., Duarte-Salles, T., Byrnes, G., Boumaza, H., Knüppel, S., Kühn, T., et al. (2015). A statistical framework to model the meetingin-the-middle principle using metabolomic data: application to hepatocellular carcinoma in the EPIC study. Mutagenesis 30, 743-753.
- Cadiou, S., Basagana, X., Gonzalez, J.R., Lepeule, J., Vrijheid, M., Siroux, V., and Slama, R. (2021). Performance of approaches relying on multidimensional intermediary data to decipher causal relationships between the exposome and health: A simulation study under various causal structures. Environ Int 153, 106509.

Latent Mediation

- Albert, J.M., Geng, C., and Nelson, S. (2016). Causal mediation analysis with a latent mediator. Biom J 58, 535-548.
- Derkach, A., Pfeiffer, R.M., Chen, T.H., and Sampson, J.N. (2019). High dimensional mediation analysis with latent variables. Biometrics 75, 745-756.
- Peng, C., Wang, J., Asante, I., Louie, S., Jin, R., Chatzi, L., Casey, G., Thomas, D.C., and Conti, D.V. (2019). A Latent Unknown Clustering Integrating Multi-Omics Data (LUCID) with Phenotypic Traits. Bioinformatics.

Websites and Papers Shared During Boot Camp

https://www.pgscatalog.org/

https://www.cog-genomics.org/plink/2.0/score

https://zzz.bwh.harvard.edu/plink/profile.shtml

Plink: https://www.cog-genomics.org/plink/2.0/

Plink Formats: https://www.cog-genomics.org/plink/2.0/formats

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9081195/

https://www.ijcaonline.org/research/volume134/number7/irani-2016-ijca-907841.pdf

https://learn.saylor.org/mod/book/view.php?id=55626&chapterid=41483

https://www.bioconductor.org/packages/release/bioc/vignettes/scPCA/inst/doc/scpca_intro.html#sparse-pca