Microprocessor Lab-work #2.2

7-segment LEDs

100-11-14

[1] Subject and goals

- (a) The access of six 7-segment LED for ON/OFF and pattern control in the 7-segment LED module
- (b) Organized display patterns in static or dynamic form can be achieved as required.

[2] Preparations

- (a) Refer to the ckt schematic diagram:
 - (a.1) how the 7-segment LED module may operate (its inputs to module for individual 7-seg LED selection as well as display pattern)?
 - (a.2) functions of 7447 and BJT-2N3906 (discrete bipolar-transistor)?
 - (a.3) data path from 51CPU to the 7-seg LED module?
- (b) Datasheets reading:
 - (b.1) TTL7447
- (c) Readiness evaluation:

The 7-seg LED module physically consists of six 7-seg LED components, each being powered by a BJT acting as a power switch. Can you or can you not

- (c.1) check the 7-segment LED module to see if it's working or not by manual wiring the circuitry?
- (c.2) write the codes for any static/dynamic pattern display on the module?
- (c.3) describe the operational limits of the 7-seg LED module imposed by the circuitry?

[3] Lab-work for all:

The task here is to use the 7-seg LED module for the dynamic display sequence as graphically depicted below

(a) Operating Procedure

(a.1) **jumper-wiring for ckt setup** [refer to the schematic circuit diagram for wiring details]

(a.2) code preparation:

- ** edit the following sample 51 assembly code
- ** get the code ready for execution under IDE51 emulation

	org	0			djnz	R5, next11	
	mov	SP, #50H			mov	P1,#0FFH	
start:	mov	R7, #6			call	delay2	; ===LLL===
next1:					djnz	R7, next1	
	mov	R5, #250			mov	R7, #6	
next11:				next2:			
	mov	R6, #6			mov	P1, #0F8H	
	mov	R1, #0FEH			mov	P2, #5	
	mov	R2, #0			call	delay2	; === ===
next12:					mov	P1, #0C7H	
	mov	A, R1			mov	P2, #1	
	mov	P1, A			call	delay2	; ===JJJ===
	RL	Α			djnz	R7, next2	
	mov	R1, A			jmp	start	
	mov	A, R2		delay1	:		
	inc	R2			push	1	
	mov	P2, A			mov	R1, #200	
	call	delay1	; ===KKK===		djnz	R1,\$	
	djnz	R6, next12			рор	1	

	ret		djnz	R3, \$
delay2:		; appx. 0.5sec delay, why?	djnz	R2, dd21
	push	1	djnz	R1, dd22
	push	2	рор	3
	push	3	рор	2
	mov	R1, #100	рор	1
dd22:	mov	R2, #250	ret	
dd21:	mov	R3, #10	end	

(a.3) task execution:

- ** start IDE51, download sample code (in HEX file format) from code preparation step (a.2)
- ** start execution and trouble-shooting if necessary

(b) Observations

- (b.1) Is the code running well? Why or why not?
- (b.2) What may happen to the display if the instruction marked by ===**III**=== being omitted? Why so? And what about the consequence of omitting the line marked by ===**JJJ**===? And ===**LLL**===?
- (b.3) Is the delay provided by **delay1** appropriate considering execution time balance between the 4 phases? Too short? Too long?
- (b.4) What might happen if the *R1-push* and *R1-pop* instructions are omitted in **delay1**? And the omitting of *push-pop* instructions in **delay2**?
- (b.5) Can you modify the code so as to make it shorter, quicker, in better code structure or smoother execution?

^{**} The sample code guarantees neither syntax err-free nor runtime err-free. Fix all syntax errs due to typo or whatever causes.

[4] Comprehension evaluation:

- (a) If the code line marked by ===KKK=== are removed, do you still see the pattern 5-4-3-2-1-0 **VERY** clearly? Explain why so or not so. What would you expect to see if the delay offered by **delay1** is made 1000 times of the original value?
- (b) Do the code lines marked by ===KKK=== actually resolved the problem in [4](a)? With the circuitry unchanged, could the problem be solved purely by S/W measure alone? Suppose the problem could be really remedied by a small modification on the circuitry, what would it be?

[5] Designated Assignment

Let k=mod(T, 6), where T is the table# in the laboratory. Please fulfill the assignment given in Q (k).

- Q(0) Manually wire-up the circuit so that all 7-seg digits display "0", without code-driving. Rewire the circuit so that "0" appears on digit-0, and again without code-driving. Explain the difference in the display intensity perceived in the two cases.
- Q(1) Do the same as in (0), except for "1" appearing respectively on all digits and on digit-1 alone.
- Q(2) Do the same as in (0), except for "2" appearing respectively on all digits and on digit-2 alone.
- Q(3) Do the same as in (0), except for "3" appearing respectively on all digits and on digit-3 alone.
- Q(4) Do the same as in (0), except for "4" appearing respectively on all digits and on digit-4 alone.
- Q(5) Do the same as in (0), except for "5" appearing respectively on all digits and on digit-5 alone.