OSU Mechanical Engineering

Smart Products Laboratory

Robot | Six

ME Course Number Spring 2019

Table of Contents

List of Figures	3
1 Overview	
2 Background	4
2.1 Background	4
3 References & Resources	
3.1 References	6
5 Laboratory	6
5.1 Requirements	6
5.2 Procedure	
5.3 Exercises	6
Appendix	7

List of Figures

Figure 1 – Robot model	. 4
Figure 2 – Robot coordinate frames	. 5
Figure 8 – Raspberry Pi 2/3 GPIO memory addressing information	. 7
Figure 9 – BCM2835 peripherals function descriptions	. 8

1 Overview

This lab we will be programming the different routine to control the Dobot robot.

2 Background

The information below should provide a basic introduction to the concepts.

2.1 Background

The key concepts for this lab are defined and demonstrated below

Figure 1 – Robot model

 $d_{z_{\rm sc}}^{EE}=76.96\,mm$

 $d_{Z_{\text{Dobot},Gnd}}^{Dobot} = 139.7 \ mm$

 $d_{z_{\rm Plate,Ball}}^{Dobot} = 37.59 \ mm$

 $d_{z_{\rm Gnd,Plate}}^{\it Dobot} = \begin{array}{l} \it will\ be\ given, \\ \it assume\ 0\ for \end{array}$ the lab

Figure 2 – Robot coordinate frames

3 References & Resources

3.1 References

The following references may be helpful to complete the lab.

- 1. https://en.cppreference.com/w/cpp/utility/functional/function
- 2. https://www.dobot.cc/dobot-magician/specification.html
- 3. https://www.dobot.cc/download/dobot-communication-protocol-v1-0-4/
- 4. https://www.dobot.cc/download/dobot-magician-api-v1-1-1/

5 Laboratory

Complete the exercises and save all code and follow the procedure to turn in your work.

5.1 Requirements

Bring your raspberry pi (RPI) so that you can develop your code Robot routine.

5.2 Procedure

- 1. Download the coding files and create your own header and implementation files for your class. Use the provided main file for your code.
- 2. You can test out your code using my example main function.
- 3. Save all work to be submitted in your final project.

5.3 Exercises

Develop a class that inherits the provided Robot class, I called mine Dobot. Within the class create a member of type std::function (see layout). Create a routine that can successfully pick up ping pong balls on the grate when their positions are known and place them into the rails. Use goToXYZ to move the robot to a XYZ coordinate. Use the setPump function to turn on and off the suction pump. Use the wait function to pause the routine for a certain time period. When finished, demonstrate your code to GTA. Use the setup function to setup the Dobot. Use the following command to compile.

sudo g++ -o lab6 lab6 main.cpp Message.h Message.cpp Packet.h Packet.cpp ProtocolDef.h Protocol.h Protocol.cpp ProtocolID.h RingBuffer.h RingBuffer.cpp Robot.h Robot.cpp Dobot.h command.h command.cpp -lwiringPi

Appendix

Figure 3 – Raspberry Pi 2/3 GPIO memory addressing information

Name	Function	See section
SDA0	BSC ⁶ master 0 data line	BSC
SCL0	BSC master 0 clock line	BSC
SDA1	BSC master 1 data line	BSC
SCL1	BSC master 1 clock line	BSC
GPCLK0	General purpose Clock 0	<tbd></tbd>
GPCLK1	General purpose Clock 1	<tbd></tbd>
GPCLK2	General purpose Clock 2	<tbd></tbd>
SPI0_CE1_N	SPI0 Chip select 1	SPI
SPI0_CE0_N	SPI0 Chip select 0	SPI
SPI0_MISO	SPI0 MISO	SPI
SPI0_MOSI	SPI0 MOSI	SPI
SPI0_SCLK	SPI0 Serial clock	SPI
PWMx	Pulse Width Modulator 01	Pulse Width Modulator
TXD0	UART 0 Transmit Data	UART
RXD0	UART 0 Receive Data	UART
CTS0	UART 0 Clear To Send	UART
RTS0	UART 0 Request To Send	UART
PCM_CLK	PCM clock	PCM Audio
PCM_FS	PCM Frame Sync	PCM Audio
PCM_DIN	PCM Data in	PCM Audio
PCM_DOUT	PCM data out	PCM Audio
SAx	Secondary mem Address bus	Secondary Memory Interface
SOE_N / SE	Secondary mem. Controls	Secondary Memory Interface
SWE_N/SRW_N	Secondary mem. Controls	Secondary Memory Interface
SDx	Secondary mem. data bus	Secondary Memory Interface
BSCSL SDA / MOSI	BSC slave Data, SPI salve MOSI	BSC ISP slave
BSCSL SCL / SCLK	BSC slave Clock, SPI slave clock	BSC ISP slave
BSCSL - / MISO	BSC <not used="">,SPI MISO</not>	BSC ISP slave
BSCSL - / CE_N	BSC <not used="">, SPI CSn</not>	BSC ISP slave
Name	Function	See section
SPI1_CEx_N	SPI1 Chip select 0-2	Auxiliary I/O
SPI1_MISO	SPI1 MISO	Auxiliary I/O
SPI1_MOSI	SPI1 MOSI	Auxiliary I/O
SPI1_SCLK	SPI1 Serial clock	Auxiliary I/O
TXD0	UART 1 Transmit Data	Auxiliary I/O
RXD0	UART 1 Receive Data	Auxiliary I/O
CTS0	UART 1 Clear To Send	Auxiliary I/O
RTS0	UART 1 Request To Send	Auxiliary I/O
SPI2_CEx_N	SPI2 Chip select 0-2	Auxiliary I/O
SPI2_MISO	SPI2 MISO	Auxiliary I/O
SPI2_MOSI	SPI2 MOSI	Auxiliary I/O
SPI2_SCLK	SPI2 Serial clock	Auxiliary I/O
ARM_TRST	ARM JTAG reset	<tbd></tbd>
ARM_RTCK	ARM JTAG return clock	<tbd></tbd>
ARM_TDO	ARM JTAG Data out	<tbd></tbd>
ARM_TCK	ARM JTAG Clock	<tbd></tbd>
	4514 174 : :	=-
ARM_TDI ARM_TMS	ARM JTAG Data in ARM JTAG Mode select	<tbd></tbd>

 $Figure\ 4-BCM2835\ peripherals\ function\ descriptions$