Natural Disasters Intensity Analysis And Classification Using Artificial Intelligence

Project Report

Submitted by:

Abdul Hakeem AK - 310819205001

Dani Julian bennet - 310819205020

John Goldwin V - 310819205041

Sibi Chakaravarthy ES - 310819205081

Vignesh S - 310819205094

Project Mentor: Shoba LK

Index

1. INTRODUCTION

- 1.1 Project Overview
- 1.2 Purpose

2. LITERATURE SURVEY

- 2.1 Existing problem
- 2.2 References
- 2.3 Problem Statement Definition

3. IDEATION & PROPOSED SOLUTION

- 3.1 Empathy Map Canvas
- 3.2 Ideation & Brainstorming
- 3.3 Proposed Solution
- 3.4 Problem Solution fit

4. REQUIREMENT ANALYSIS

- 4.1 Functional requirement
- 4.2 Non-Functional requirements

5. PROJECT DESIGN

- 5.1 Data Flow Diagrams
- 5.2 Solution & Technical Architecture
- 5.3 User Stories

6. PROJECT PLANNING & SCHEDULING

- 6.1 Sprint Planning & Estimation
- 6.2 Sprint Delivery Schedule
- 6.3 Reports from JIRA

7. CODING & SOLUTIONING (Explain the features added in the project along with code)

- 7.1 Feature 1
- 7.2 Feature 2
- 7.3 Database Schema (if Applicable)

8. TESTING

- 8.1 Test Cases
- 8.2 User Acceptance Testing

9. RESULTS

- 9.1 Performance Metrics
- 10. ADVANTAGES & DISADVANTAGES
- 11. CONCLUSION
- 12. FUTURE SCOPE
- 13. APPENDIX

1. Introduction

Natural disasters not only disturb the human ecological system but also destroy the properties and critical infrastructures of human societies and even lead to permanent change in the ecosystem.

1.1 Project Overview

Natural disasters not only disturb the human ecological system but also destroy the properties and critical infrastructures of human societies and even lead to permanent change in the ecosystem. Disaster can be caused by naturally occurring events such as earthquakes, cyclones, floods, and wildfires. Many deep learning techniques have been applied by various researchers to detect and classify natural disasters to overcome losses in ecosystems, but detection of natural disasters still faces issues due to the complex and imbalanced structures of images. To tackle this problem, we developed a multilayered deep convolution neural network model that classifies the natural disaster and tells the intensity of disaster of natural The model uses an integrated webcam to capture the video frame and the video frame is compared with the Pre-trained model and the type of disaster is identified and showcased on the OpenCV window.

1.2 Purpose

As the technologies are continuously improving, aviation systems have begun adopting smart technologies to develop unmanned aerial vehicles (UAVs) equipped with cameras, which can reach distant areas to identify aftereffects of natural disasters on human life, infrastructure, and transmission lines by capturing images and videos. Data acquired from these UAVs helps to identify the facial expressions of victims, the intensity of their situation and their needs in a post disaster scenario. It helps to take actions and carry out necessary operations to tackle devastating scenarios. Raw images obtained from camera-equipped UAVs are processed and neural network-based feature extraction techniques are applied to analyze the intensity.

A deep learning method for the reconstruction of two-dimensional cardiac magnetic resonance images was proposed to enhance the image data acquisition process. Cascade deep convolutional neural networks use a 10-fold method to reconstruct the feature map for the MR images. In this way, feature extraction sequence becomes very fast and it takes less than 5 to 10 s to extract the feature matrix

2. LITERATURE SURVEY

2.1 Existing problem

Natural disasters not only disturb the human ecological system but also destroy the properties and critical infrastructures of human societies and even lead to permanent change in the ecosystem. Disaster can be caused by naturally occurring events such as earthquakes, cyclones, floods, and wildfires. Many deep learning techniques have been applied by various researchers to detect and classify natural disasters to overcome losses in ecosystems, but detection of natural disasters still faces issues due to the complex and imbalanced structures of images. To tackle this problem, we developed a multilayered deep convolutional neural network model that classifies the natural disaster and tells the intensity of disaster of natural The model uses an integrated webcam to capture the video frame and the video frame is compared with the Pre-trained model and the type of disaster is identified and showcased on the OpenCV window.

Keywords: Natural Disaster, Losses, Ecosystems, CNN, OpenCV.

2.2 References

- 1. Tonini M., D'Andrea M., Biondi G., Degli Esposti S., Trucchia A., Fiorucci P. A Machine Learning-Based Approach forWildfire Susceptibility Mapping. The Case Study of the Liguria Region in Italy.
- 2. Amit S.N.K.B., Aoki Y. Disaster detection from aerial imagery with convolutional neural network; Proceedings of the 2017 International Electronics Symposium on Knowledge Creation and Intelligent Computing (IES-KCIC); Surabaya, Indonesia.
- 3. Padmawar P.M., Shinde A.S., Sayyed T.Z., Shinde S.K., Moholkar K. Disaster Prediction System using Convolution NeuralNetwork; Proceedings of the 2019 International Conference on Communication and Electronics Systems (ICCES); Coimbatore, India.
- 4. Nguyen D.T., Ofli F., Imran M., Mitra P. Damage assessment from social media imagery data during disasters; Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining; Sydney, NSW, Australia.
- 5. D. Han, L. Chan, and N. Zhu, "Flood forecasting using support vector machines"
- 6. X. H. Le, H. V. Ho, G. Lee, and S. Jung, ``Application of long short-term memory (LSTM) neural network for flood forecasting"
- 7. M. F. Piñeros, E. A. Ritchie, and J. S. Tyo, "Estimating tropical cyclone intensity from infrared image data"
- 8. T. L. Olander and C. S. Velden, "Tropical cyclone convection and intensity analysis using differenced infrared and water vapor imagery".
- 9. X. Shi et al., "Deep learning for precipitation nowcasting: A benchmark and a new model"

2.3 Problem Statement Definition

S.	Paper Title	Idea	Advantages	Disadvantages		
No						
1.	Natural Disasters Intensity Analysis and Classification Based on Multispectral ImagesUsing Multi- LayeredDeep Convolutional Neural Network	Block-I convolutional neural network (B-I CNN), for detection andoccurrence of disastersBlock-II convolutional neural network (B-II CNN), for classification of natural disaster intensity types with different filters and parameters.	Easier and accurate calculation of Multispectral images	Takes time since it deals with a lot of images.		
2.	Tropical Cyclone Intensity Estimation Using Multidimensional Convolutional Neural Network From Multichannel Satellite Imagery	Deep learning modelcalled 3DAttentionTCNet iscreated, which is inspired by AlexNet. The pooling layer compresses some important information resulting in the loss of some intensity features, we remove the poolinglayers	Accurate estimation of TC intensity is important to theoretical research studies and practical applications when compared to models like CNN.	Since 3DAttentionTCNet is a deep learning model,the amountof data needed to train the model is huge.		

3.	Designing Deep-	A robust	Early detection of	Since model
	Based Learning	mathematical	natural disasters	developed
	Flood Forecast	toolused to	suchas floods can	using
	Model With	determinethe	greatly assist	ConvLSTM is a
	ConvLSTM	flood state at a	humans in	deeplearning
	HybridAlgorithm	particular time	reducing the	model, the
		for a given area	extent ofthe	amount of
		is the Flood	damagecaused by	data needed
		Index(IF).	such events. The	to train the
		A model is	accuracy is high	model is huge
		developed using	whencompared to	and also time
		ConvLSTM, as an	other models.	and processor
		objective model,		consuming.
		with alternative		
		methods of		
		LSTM,CNN-LSTM		
		and		
		SVR that can		
		also		
		determine the		
		floodstate.		
4.	A Conformal	A multiple linear	It is considered an	The MLR
	Regressor With	regression (MLR)	excellent way to	regression
	Random Forests for	modelwas	extract features	technique is
	Tropical	constructed	fromsatellite images	exactlynot
	CycloneIntensity	based on the	to estimate TC intensity.The Dvorak	suitable for all
	Estimation	extraction of the	techniquetried to	the scenarios
		most significant	estimate the TC	of images.
		signals and	intensity using	
		parameters from	visible or infrared	
		satellite infrared	images based on	
		images.	thecloudstructure.	

5.	Rainformer: Features Extraction Balanced Networkfor Radar-Based Precipitation Nowcasting	Framework: Rainformer Rainformer consists of an encoder (green box)and decoder (bluebox).They both have four stages. When the stage goes deeper,the feature sizebecomes smaller. Both encoder and decoder include FEBM.	It can extract global and local features from radar echomaps separately, and fuses balanced these two features to enhance the model's ability to predict heavy rain or rainstorm.	The Rainformer model is processor complex and also the encoding may not be very efficient.
6.	Quantifying change afternatural disasters to estimate infrastructure damagewith mobile phonedata.		We analyzed therelationship between the reach score changes and the damage index of theearthquake in urbanareas, and it showedthat the correlation was	The mobile phone data is sometimes not sufficient forbetter quantification.
		work with aggregated CDRdata.	negative on the day after the naturaldisaster.	

3. IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas

3.2 Ideation & Brainstorming

3.3 Proposed Solution

S.No.	Parameter	Description						
1.	Problem Statement (Problem to	To classify the natural disaster and the effect						
	besolved)	based on the webcam image given as input						
		usingArtificial Intelligence.						
2.	Idea / Solution description	The classification is done by deep learning						
		techniques such as Convolutional Neural						
		Network(CNN)and Machine Learning						
		Techniques.						
3.	Novelty / Uniqueness	It is based on the satellite and multispectral						
		imageand the classification using						
		Multilayered Deep Convolutional Neural						
		Networks.						
4.	Social Impact/ Customer Satisfaction	The people can easily identify the type of						
		naturaldisaster and its effect on the						
		environment whichleads to the earlier						
		identification and reduced damage in the						
		ecosystem.						
5.	Business Model(Revenue Model)	We build a system that classifies the natural						
		disaster and its intensity and it is believed						
		thatthewebsite is useful for all people and						
		also the website worksfor a longtime						
		effectively.						
6.	Scalabilityof the Solution	The website will be made available for all						
		the people who needs to classify the type of						
		natural disaster. The machine learning and						
		deep learningalgorithms thatare being						
		usedmade it easierfor						
İ		the classification and intensity analysis.						

3.4 Problem Solution fit

Problem – Solution Fit:

The Problem-Solution Fit simply means that you have found problem with your customerand that the solution you have realized for it actually solves the customer's problem. It helps entrepreneurs, marketers and corporate innovators identify behavioral patterns and recognize what would work and why

Purpose:

- a. Solve complex problems in a way that fits the state of yourcustomers.
- b. Succeedfaster and increase your solution adoptionby tapping into existing mediumsand channels of behavior.
- c. Sharpen your communication and marketingstrategy with the right triggersand messaging.
- d. Increase touch-points with your company by finding the right problem-behavior fit and building trust by solvingfrequent annoyances, or urgent or costly problems.
- e. Understand the existing situation in order to improve it for your target group.

Problem SolutionFit for NaturalDisaster Intensity Analysisand Classification Using Artificial Intelligence:

4. REQUIREMENT ANALYSIS

4.1 Functional requirement

Following are the functional requirements of the proposed solution:

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)					
FR-1	Request Permission	Access permission from web camera.					
FR-2	Disaster Prediction	Based on the webcam image, natural disaster is classified.					
FR-3	Accuracy	Since the training and testing images are huge, the accuracy is higher.					
FR-4	Speed	The generation of results from the input images are faster.					
FR-5	Resolution	The resolution of the integrated web camera should be high enough tocapture the video frames.					
FR-6	User Interface	Maximizing the interaction in Web Designing Service.					

4.2 Non-Functional requirements

Following are the Non-functional requirements of the proposed solution:

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	User friendly and classify the disaster easily.
NFR-2	Security	The model is secure due to the cloud deployment models and also there is no login issue.
NFR-3	Reliability	Accurate prediction of the natural disaster and the website can also be fault tolerant.
NFR-4	Performance	It is shown that the model gives almost 90 percent accuracy after continuous training.
NFR-5	Availability	The website will be made available for 24 hours.
NFR-6	Scalability	The website can run on web browsers like Google chrome, Microsoft edge and also it can be extended to the NDRF and customers.

5. PROJECT DESIGN

5.1 Data Flow Diagrams

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data entersand leaves the system, what changes the information, and where data is stored.

5.2 Solution & Technical Architecture Technical Architecture

<u>Table-1</u>: Components & Technologies:

S. No	Component	Description	Technology
1.	User Interface	User interacts with application for the prediction of Any Natural disaster which will happen in future minutes.	HTML, CSS, JavaScript, Django, Python.
3.	Disaster Prediction	This function is used to predict outcomes from the new trained data to perform new tasks and solve new problems.	Decision trees, Regression, Neural networks.
4.	Evaluation system	It monitors that how Algorithm performs on data as well as during training.	Chi-Square, Confusion Matrix, etc.
5.	Input data	To interact with our model and give it problems to solve. Usually this takes the form of an API, a user interface, or a command-line interface.	Application programming interface, etc.
6.	Data collection unit	Data is only useful if it's accessible, so it needs to be stored ideally in a consistent structure and conveniently in one place.	IBM Cloud, SQL Server.
7.	Database management system	An organized collection of data stored in database, so that it can be easily accessed and managed.	MySQL, DynamoDB etc.

<u>Table-2</u>: Application Characteristics:

S. No	Characteristics	Description	Technology
1.	Open-Source Frameworks	An open source framework is a template for software development that is designed by a social network of software developers. These frameworks are free for public use and provide the foundation for building a software application.	Keras, Tensor flow.
2.	Authentication	This keeps our models secure and makes sure only those who have permission can use them.	Encryption and Decryption (OTP).
3.	Application interface	User uses mobile application and web application to interact with model	Web Development (HTML,CSS)
4.	Availability (both Online and Offline work)	Its include both online and offline work. As good internet connection is need for online work to explore the software perfectly. Offline work includes the saved data to explore for later time.	Caching, backend server.
5.	Regular Updates	The truly excellent software product needs a continuous process of improvements and updates. Maintain your server and make sure that your content is always up-to-date. Regularly update an app and enrich it with new features.	Waterfall Approach Incremental Approach Spiral Approach
6.	Personalization	Software has features like flexible fonts, backgrounds, settings, colour themes, etc. which make a software interface looks good and functional.	• CSS

5.3 User Stories

Here the list all the user stories for the project"Natural Disaster IntensityAnalysis and Classification Using Artificial Intelligence".

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Customer	Registration	USN-1	As a user, registration should be done	Proper email id and password is accepted	High	Sprint-1
Customer	Area to be monitored	USN-2	As user ,I can particularly select the area to be continuously checked and analyzed			Sprint-1
Customer	Safety	USN-3	As a user,I should monitor the device is in the secured place which should cover wide area	Safety measures should be done to prevent disaster	High	Sprint-2
Customer	Examination of Natural anamoly	USN-4	As a user,I should analyse the depth of the occurrence of the phenomena	I should monitor the factors which causes disaster	High	Sprint-1
Customer	Battery Backup	USN-5	As a user,I want to check the battery to prevent from power loss	Aware to always keep battery backup .Sometimes it may help in any crucial situations.	Low	Sprint-3
Customer	Algorithm to be used	·		Medium	Sprint-4	
Customer(Web user)	Internet Connectivity	USN-7	As a user,I should monitor the internet connection periodically	Strong internet connection is required in emergency situations.	High	Sprint-2
Customer(web User)	Social media	USN-8	As a user ,I will be active in social media sites to know more updates about specific diasaster	Active in social media sites to know updates	Medium	Sprint-4
Customer	Prediction and analysis of data	USN-9	As a user,I can ale to predict and visualize data	Using algorithms and some visualization	High	Sprint-3

6. PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning & Estimation

TITLE	DESCRIPTION	DATE
Literature Survey & InformationGathering	Literature survey on the selected project & gathering information by referring the, technical papers, research publications etc.	3 SEPTEMBER 2022
Prepare EmpathyMap	Prepare Empathy Map Canvas to capture the user Pains & Gains, Prepare list ofproblem statements	10 SEPTEMBER 2022
Ideation	List the by organizing the brainstorming session and Prioritize the top 3 ideas based onthe feasibility & importance.	10 SEPTEMBER 2022
Proposed Solution	Prepare the proposed solution document, which includes the novelty, feasibility of idea, business model, social impact, scalability of solution, etc.	24 SEPTEMBER 2022
Problem SolutionFit	Prepare problem - solutionFit document.	24 SEPTEMBER 2022
Solution Architecture	Prepare solution Architecture document.	4 OCTOBER 2022
Customer Journey	Prepare the customer journeymaps to understand the user interactions & experiences with the application	8 OCTOBER 2022
Data FlowDiagrams	Draw the data flow Diagrams and submit for review.	18 OCTOBER 2022
TechnologyArchitecture	Architecture diagram.	20 OCTOBER 2022
Prepare Milestone& Activity List	Prepare the milestones & Activity list of the project.	27 OCTOBER 2022
Project Development - Delivery of Sprint-1, 2, 3 & 4	Develop & submit the developed code by testing it.	COMPLETED

6.2 Sprint Delivery Schedule

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.	2	High	Dani , Vignesh
Sprint-1		USN-2	As a user, I will receive confirmation email oncel have registered for the application	1	High	Hakeem Sibi
Sprint-2		USN-3	As a user, I can register for the applicationthrough Facebook	2	Low	John Sibi
Sprint-2		USN-4	As a user, I can register for the applicationthrough Gmail	2	Medium	Hakeem Dani
Sprint-1	Login	USN-5	As a user, I can log into the application byentering email & password	1	High	Vignesh, Sibi
Sprint-1	Dashboard	USN-6	As a user, I can access the services andinformation provided in the dashboard	2	High	John Dani
Sprint-1	login	USN-7	As a user, I can log into the web application and access the dashboard	2	High	Sibi Hakeem
Sprint-4	Helpdesk	USN-8	As a user, I can get the guidance from thecustomer care	1	High	Vignesh Sibi, John
Sprint-3	Management	USN-9	As an administrator, I can collect new datasetsand keep the model trained	2	High	Dani
Sprint-3		USN-10	As an administrator, I can update other featuresof the application	2	Medium	Hakeem, John
Sprint-3		USN-11	As an administrator, I can maintain theinformation about the user	2	medium	Dani, Sibi
Sprint-4		USN-12	As an administrator, I can maintain third-party services	1	Low	Dani

6.3 Reports from JIRA

Burndown Chart:

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progressover time.

7. CODING & SOLUTION

7.1 Front End pgrogramming(HTML & CSS)

The layer above the back end is the front end and it includes all software or hardware that is part of a user interface. Human or digital users interact directly with various aspects of the front end of a program, including user-entered data, buttons, programs, websites and other features.

```
HTML code:
home.html
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8" />
 <meta http-equiv="X-UA-Compatible" content="IE=edge" />
                                              k
                                                                  rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.5.0/css/bootstrap.min.css"
                                                                integrity="sha384-
9alt2nRpC12Uk9gS9baDl411NQApFmC26EwAOH8WgZl5MYYxFfc+NcPb1dKGj7Sk"
crossorigin="anonymous">
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <link rel="stylesheet" href="\Static\style.css" />
 <title>Home</title>
</head>
<body>
 <nav class="navbar">
  <!-- LOGO -->
     <div class="logo">Natural Disasters Intensity Analysis and Classification using
Artificial Intelligence</div>
  <!-- NAVIGATION MENU -->
  ul class="nav-links">
    <!-- NAVIGATION MENUS -->
    <div class="menu">
     <li><a href="\Template\Home.html\">Home</a>
     <a href="\Template\intro.html\">Introduction</a>
     <a href="\Template\webcam.html\">Open Camera</a>
```

```
<a href="\Template\image.html\">Upload</a>
   </div>
  </nav>
 <section class="news pt-0">
   <div class="container mt-md-5">
     <h2 class="mx-4 my-0 text-center">Briefing</h2>
       mx-lq-0">
       <div class="image-block-inner">
           <a class="mh-100" href="#">
             <img src="/Images/earthquake.jpg" alt="Earthquake"</pre>
               class="img-responsive w-100"></a>
           <span class="hp-posts-cat"></span>
           <h4 class="mt-3"><a href="#">Earthquake</a></h4>
               a sudden violent shaking of the ground, typically causing great
destruction, as a result of movements within the earth's crust or volcanic action
         </div><!-- .image-block-inner -->
       <div class="image-block-inner">
           <a class="mh-100" href="#">
             <img src="\Images\Cyclone.jpg" alt="Cyclone"
               class="img-responsive w-100"></a>
           <span class="hp-posts-cat"></span>
           <h4 class="mt-3"><a href="#">Cyclone</a></h4>
               a system of winds rotating inwards to an area of low barometric
pressure, with an anticlockwise (northern hemisphere) or clockwise (southern
hemisphere) circulation; a depression.
         </div><!-- .image-block-inner -->
       <div class="image-block-inner">
```


<imq src="\Images\flood.jpg" alt="Flood"

```
class="imq-responsive w-100"></a>
             <span class="hp-posts-cat"></span>
             <h4 class="mt-3"><a href="#">Flood</a></h4>
                   Floods can potentially increase the transmission of water- and
vector-borne diseases. Find out more about risks associated with flooding on WHO's
official website.
           </div><!-- .image-block-inner -->
         <div class="image-block-inner">
             <a class="mh-100" href="#">
                <img src="/Images/Wildfire.jpg" alt="Wild Fire"
                  class="img-responsive w-100"></a>
             <span class="hp-posts-cat"></span>
             <h4 class="mt-3"><a href="#">Wild Fire</a></h4>
                    ywildfire, also called wildland fire, uncontrolled fire in a forest,
grassland, brushland, or land sown to crops. The terms forest fire, brush fire, etc., may
be used to describe specific types of wildfires; their usage varies according to the
characteristics of the fire and the region in which it occurs.
           </div><!-- .image-block-inner -->
         </div>
 </section>
</body>
</html>
image.html
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Upload</title>
</head>
<body>
<form action="/action_page.php">
 <input type="file" id="myFile" name="filename">
```

```
<input type="submit">
</form>
</body>
</html>
style.css
* UTILITIES */
* {
margin: 0;
padding: 0;
box-sizing: border-box;
body {
font-family: cursive;
}
a {
text-decoration: none;
li {
list-style: none;
}
/* NAVBAR STYLING STARTS */
.navbar {
display: flex;
align-items: center;
justify-content: space-between;
padding: 20px;
background-color: teal;
color: #fff;
}
.nav-links a {
color: #fff;
}
/* LOGO */
.logo {
font-size: 20px;
}
```

```
/* NAVBAR MENU */
.menu {
display: flex;
gap: 1em;
font-size: 18px;
.menu li:hover {
background-color: #4c9e9e;
border-radius: 5px;
transition: 0.3s ease;
}
.menu li {
padding: 5px 14px;
}
.container {
  margin-right: auto;
  margin-left: auto;
  padding-left: 15px;
  padding-right: 15px;
}
.image-block {
  margin-top: 24px;
  display: flex;
  flex-wrap: wrap;
}
.image-block-inner {
  -webkit-box-shadow: 0px 3px 10px 1px rgba(204, 204, 204 0, 1);
```

```
-moz-box-shadow: 0px 3px 10px 1px rgba(204, 204, 204 0, 1);
  box-shadow: 0px 3px 10px 1px rgba(204, 204, 204, 1);
}
.image-block li>.image-block-inner {
  padding-bottom: 30px;
  background-color: #fff;
  height: 100%;
}
a {
  color: #111;
  text-decoration: none;
}
a:hover {
  text-decoration: none;
}
.image-block li>.image-block-inner>a {
  display: block;
  overflow: hidden;
}
.image-block li>.image-block-inner>a img {
  border: 1px solid #e1e1df;
}
.image-block li>.image-block-inner:hover {
  background-color: #eee;
}
.hp-posts-cat {
  margin-bottom: 13px;
  margin-top: 35px;
```

```
text-transform: uppercase;
  font-weight: 600;
  font-size: 10 px;
  letter-spacing: 0.1rem;
  display: inline-block;
}
.news {
  font-family: 'Oswald', sans-serif;
}
.news .image-block li>.image-block-inner h4,
.hp-posts-cat,
.news .image-block li>.image-block-inner p,
.read-more {
  padding: 0 28px;
}
.read-more {
  display: block;
  text-decoration: underline;
  margin-top: 30px;
  font-weight: 600;
}
.fill-btn {
  border: 0;
  color: #fff;
  padding: 13px 5px;
  font-size: 16px;
  font-weight: 900;
  font-style: italic;
  text-transform: uppercase;
  width: 252px;
  margin: 0 auto;
  bottom: -25px;
```

```
left: 50%;
  cursor: pointer;
}
.fill-btn:hover,
.element-btn .element-fill-btn:hover {
  background-color: #201f1f;
  box-shadow: 0px 10px 50px -10px rgb(32, 31, 31);
}
.buttons {
  display: grid;
}
.buttons .fill-btn {
  width: 100%;
  margin-top: 15px;
  margin-bottom: 15px;
}
.buttons .fill-btn:hover,
.fill-btn:hover {
  background-color: #ffe402;
  color: #201f1f;
  box-shadow: 0px 10px 50px -10px rgb(255, 228, 2);
}
/* Media Queries */
@media (min-width: 992px) {
  .col-md-5 {
     width: 41.66667%;
  }
}
```

```
@media (min-width: 768px) {
  .image-block li.image-block1 {
     padding-left: 26px;
     padding-right: 14.5px;
  }
}
@media (min-width: 1200px) {
  .image-block li>.image-block-inner>a {
     max-height: 245px;
  }
}
@media (min-width: 992px) {
  .pl-lg-0,
  .px-lg-0 {
     padding-left: 0;
     padding-right: 0;
  }
  .ml-lg-0,
  .mx-lg-0 {
     margin-left: 0;
     margin-right: 0;
  }
}
```

```
7.2 Python code:
app.py:
from flask import Flask,render_template,request,redirect,url_for
import cv2
import tensorflow as tf
from tensorflow.python.keras.models import load model
import numpy as np
import os
from werkzeug.utils import secure filename
app = Flask(__name__ , template_folder="template")
model = load model(r"/Model Collection/disaster.h5")
print("loaded model from disk")
@app.route('/', methods=['GET'])
def index():
  return render template('Home.html')
@app.route('/home', methods=['GET'])
def home():
  return render template('Home.html')
@app.route('/intro', methods=['GET'])
def intro():
    return render template('intro.html')
@app.route('/webcam', methods=['GET', 'POST'])
def predict():
  print("[INFO] starting video stream...")
  vs = cv2.VideoCapture(0)
  (W, H) = (None, None)
  while True:
```

(grabbed, frame) = vs.read()

```
if not grabbed:
       break
    if W is None or H is None:
       (H, W) = frame.shape[:2]
    output = frame.copy()
    frame = cv2.cvtColor(frame, cv2.COLOR BGR2RGB)
    frame = cv2.resize(frame, (64, 64))
    # frame = frame.astype("float32")
    x = np.expand dims(frame, axis=0)
    result = np.argmax(model.predict(x), axis=-1)
    index = ['Cyclone', 'Earthquake', 'Flood', 'Wildfire']
    result = str(index[result[0]])
    # print(result)
    # result=result.tolist()
                       cv2.putText(output, "activity: {}".format(result), (10, 120),
cv2.FONT HERSHEY PLAIN,
            1, (0, 255, 255), 1)
    # playaudio("Emergency it is a disaster")
    cv2.imshow("Output", output)
    key = cv2.waitKey(1) \& 0xFF
    # if the `q` key was pressed, break from the loop
    if key == ord("q"):
       break
  # release the file pointers
  print("[INFO] cleaning up...")
  vs.release()
  cv2.destroyAllWindows()
  return render template("webcam.html")
```

```
@app.route('/file', methods=['POST', 'GET'])
def video():
  if request.method == 'POST':
    uploaded file = request.files['file1']
    if uploaded file.filename != ":
       vid name = str(uploaded file.filename)
       print(vid name + "Uploaded Succesfully")
       uploaded file.save(uploaded file.filename)
       vs = cv2.VideoCapture(vid name)
       if (vs.isOpened() == False):
          print("Error opening video stream or file")
       (W, H) = (None, None)
       while True:
          (grabbed, frame) = vs.read()
          if not grabbed:
            break
          if W is None or H is None:
            (H, W) = frame.shape[:2]
          output = frame.copy()
          frame = cv2.cvtColor(frame, cv2.COLOR BGR2RGB)
          frame = cv2.resize(frame, (64, 64))
          x = np.expand dims(frame, axis=0)
          result = np.argmax(model.predict(x), axis=-1)
          index = ['Cyclone', 'Earthquake', 'Flood', 'Wildfire']
          result = str(index[result[0]])
          cv2.putText(output, "activity: {}".format(
            result), (10, 120), cv2.FONT HERSHEY PLAIN, 1, (0, 255, 255), 1)
          cv2.imshow("Output", output)
          key = cv2.waitKey(1) \& 0xFF
          if key == ord("q"):
            break
       print("[INFO] cleaning up...")
       vs.release()
       cv2.destroyAllWindows()
  return render_template("file.html")
```

```
@app.route('/image', methods=['POST', 'GET'])
def image():
  resulttext = "
  if request.method == 'POST':
    uploaded file = request.files['imgfile']
    if uploaded file.filename != ":
       img name = str(uploaded file.filename)
       print(img name + "Uploaded Succesfully")
       uploaded file.save(uploaded file.filename)
       from keras.models import load model
       from keras.preprocessing import image
       model = load model("disaster.h5") # loading the model for testing
       img = image.load img(img name, grayscale=False,
                    target size=(64, 64)) # loading of the image
       x = image.img_to_array(img) # image to array
       x = np.expand dims(x, axis=0) # changing the shape
       pred = model.predict classes(x) # predicting the classes
       index = ['Cyclone', 'Earthquake', 'Flood', 'Wildfire']
       result = index[pred[0]]
       resulttext = result
  return render template('image.html', result text=resulttext)
if __name__ == '__main__':
  app.run(host='0.0.0.0', port=8000, debug=True)
```

8. TESTING:

8.1 Test Cases:

Test case ID	Feature Type	Component	Test Scenario	Pre-Requisite	Steps To Execute	Test Data	Expected Result	Actual Result	Status	Comments	TC for Automation(Y/N)	BUG ID	Executed By
HomePage_TC_001	u	Home Page	Verify user is able to see the home page and other tabs , when user entered into the website	internet and device	Enter URL and click go click the tabs in the Navigation Bar	URL FOR THE WEBSITE	Website should be visible	Working as expected	Pass	NA.	N		DANI , SIBI, VIGNESH HAKEEM , JOHN
HomePage_TC_002	u	Home Page	verify user is able to see the results		Enter URL and click go Click on results tab and check whether the user is able to see the flag card with open butten	URL FOR THE WEBSITE	Application should show below UI elements: a header with live stream b. a camera glyphicon c. a button named open	Working as expected	Pass	NA.	N		DANI , SIBI, VIGNESH HAXTEM , IOHN
HomePage_TC_003	Functional	Home page	Verify user is able to click the button on the resilts tab		Enter URL and click go Click on results tab and check whether the user is able to click the button named open	URL FOR THE WEBSITE	User should click the button named open	Working as expected	Pass	NA.	N	NA	DANI , SIBI, VIGNESH HAKEEM , JOHN
HomePage_TC_004	Functional	access camera	Verify user is able to see that the camera is accessible and open when the button is clicked		1. Enser URL and click go 2. click on results tab 3. click open button	URL FOR THE WEBSITE	Application should able to access the camera and see the livestream	Working as expected	Pass	NA.	N		DANI , SIBI, VIGNESH HAKEEM , JOHN
Camera_TC_004	Functional	camera	Verify user is able to capture the image from live stream		1. Enter URL and click go 2. click on results tab 3. click open button 4. camera is opened 5. click q button to capture image	URL FOR THE WEBSITE	Application should able to capture image from livestream	Working as expected	Pass	NA.	N		DANI , SIBI, VIGNESH HAXEEM , JOHN
Prediction_TC_005	Functional	output window	Verify user is able to see the predicted results in the window		when the image is captured again click q button to see the resuts	URL FOR THE WEBSITE	Application should show the predicted results from the image captured	Working as expected	Pass	NA .	N		DANI , SIBI, VIGNESH HAKEEM , JOHN

8.2 User Acceptance Testing:

Purpose of Document

The purpose of this document is to briefly explain the test coverage and open issues of the Natural DisasterIntensity Analysis and Classification usingArtificial Intelligence projectat thetime of the release to User Acceptance Testing (UAT).

Defect Analysis

This reportshows the number of resolvedor closed bugs at each severitylevel, and how they were resolved

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	1	0	0	0	1
Duplicate	1	3	3	1	8
External	2	3	0	0	5
Fixed	2	4	4	2	12
Not Reproduced	0	0	0	1	1
Skipped	0	0	0	0	0
Won't Fix	0	0	0	0	0
Totals	6	10	7	4	27

Test Case Analysis

This reportshows the number of test cases that have passed, failed, and untested

Section	Total Cases	Not Tested	Fail	Pass
Print Engine	2	0	0	2
Client Application	3	0	0	3
Security	2	0	0	2
Outsource Shipping	3	0	0	3
Exception Reporting	1	0	0	1
Final Report Output	4	0	0	4
Version Control	2	0	0	2

9.Conclusion

Many researchers have attempted to use different deep learning methods for detection of natural disasters. However, the detection of natural disasters by using deep learning techniques still faces various issues due to noise and serious class imbalance problems. To address these problems, we proposed a multilayered deep convolutional neural network for detection and intensity classification of natural disasters. The proposed method works in two blocks—one for detection of natural disaster occurrence and the second block is used to remove imbalanced class issues. The results were calculated as average statistical values: sensitivity, 97.54%; specificity, 98.22%; accuracy rate, 99.92%; precision, 97.79%; and F1-score, 97.97% for the proposed model. The proposed model achieved the highest accuracy as compared to other state-of-the-art methods due to its multilayered structure. The proposed model performs significantly better for natural disaster detection and classification, but in the future the model can be used for various natural disaster detection processes.

10.References

- 1. Mignan A., Broccardo M. Neural network applications in earthquake prediction (1994–2019): Meta-analytic and statistical insights on their limitations. *Seism. Res. Lett.* 2020;**91**:2330–2342. doi: 10.1785/0220200021. [CrossRef] [Google Scholar]
- 2. Tonini M., D'Andrea M., Biondi G., Degli Esposti S., Trucchia A., Fiorucci P. A Machine Learning-Based Approach for Wildfire Susceptibility Mapping. The Case Study of the Liguria Region in Italy. *Geosciences*. 2020;**10**:105. doi: 10.3390/geosciences10030105. [CrossRef] [Google Scholar]
- 3. Islam A.R.M.T., Talukdar S., Mahato S., Kundu S., Eibek K.U., Pham Q.B., Kuriqi A., Linh N.T.T. Flood susceptibility modelling using advanced ensemble machine learning models. *Geosci. Front.* 2021;**12**:101075. doi: 10.1016/j.gsf.2020.09.006. [CrossRef] [Google Scholar]
- 4. Schlemper J., Caballero J., Hajnal V., Price A.N., Rueckert D. A deep cascade of convolutional neural networks for dynamic MR image reconstruction. *IEEE Trans. Med. Imaging.* 2017;**37**:491–503. doi: 10.1109/TMI.2017.2760978. [PubMed] [CrossRef] [Google Scholar]
- 5. Tang C., Zhu Q., Wu W., Huang W., Hong C., Niu X. PLANET: Improved convolutional neural networks with image enhancement for image classification. *Math. Probl. Eng.* 2020;**2020** doi: 10.1155/2020/1245924. [CrossRef] [Google Scholar]
- 6. Ashiquzzaman A., Oh S.M., Lee D., Lee J., Kim J. Smart Trends in Computing and Communications, Proceedings of the SmartCom 2020, Paris, France, 29–31 December 2020. Springer; Berlin/Heidelberg, Germany: 2021. Context-aware deep convolutional neural network application for fire and smoke detection in virtual environment for surveillance video analysis; pp. 459–467. [Google Scholar]
- 7. Li T., Zhao E., Zhang J., Hu C. Detection of Wildfire Smoke Images Based on a Densely Dilated Convolutional Network. *Electronics*. 2019;**8**:1131. doi: 10.3390/electronics8101131. [CrossRef] [Google Scholar]
- 8. Mangalathu S., Burton H.V. Deep learning-based classification of earthquake-impacted buildings using textual damage descriptions. *Int. J. Disaster Risk Reduct.*

- 2019;**36**:101111. doi: 10.1016/j.ijdrr.2019.101111. [CrossRef] [Google Scholar]
- 9. Hartawan D.R., Purboyo T.W., Setianingsih C. Disaster Victims Detection System Using Convolutional Neural Network (CNN) Method; Proceedings of the 2019 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT); Bali, Indonesia. 1–3 July 2019; pp. 105–111. [Google Scholar]
- 10. Amit S.N.K.B., Aoki Y. Disaster detection from aerial imagery with convolutional neural network; Proceedings of the 2017 International Electronics Symposium on Knowledge Creation and Intelligent Computing (IES-KCIC); Surabaya, Indonesia. 26–27 September 2017; pp. 239–245. [Google Scholar]
- 11. Yang S., Hu J., Zhang H., Liu G. Simultaneous Earthquake Detection on Multiple Stations via a Convolutional Neural Network. *Seism. Res. Lett.* 2021;**92**:246–260. doi: 10.1785/0220200137. [CrossRef] [Google Scholar]
- 12. Madichetty S., Sridevi M. Detecting informative tweets during disaster using deep neural networks; Proceedings of the 2019 11th International Conference on Communication Systems & Networks (COMSNETS); Bangalore, India. 7–11 January 2019; pp. 709–713. [Google Scholar]
- 13. Nunavath V., Goodwin M. The role of artificial intelligence in social media big data analytics for disaster management-initial results of a systematic literature review; Proceedings of the 2018 5th International Conference on Information and Communication Technologies for Disaster Management (ICT-DM); Sendai, Japan. 4–December 2018; pp. 1–4. [Google Scholar]
- 14. Boonsuk R., Sudprasert C., Supratid S. An Investigation on Facial Emotional Expression Recognition Based on Linear-Decision-Boundaries Classifiers Using Convolutional Neural Network for Feature Extraction; Proceedings of the 2019 11th International Conference on Information Technology and Electrical Engineering (ICITEE); Pattaya, Thailand. 10–11 October 2019; pp. 1–5. [Google Scholar]
- 15. Zhou F., Huang J., Sun B., Wen G., Tian Y. Intelligent Identification Method for Natural Disasters along Transmission Lines Based on Inter-Frame Difference and Regional Convolution Neural Network; Proceedings of the 2019 IEEE International

- Conference on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom); Xiamen, China. 16–18 December 2019; pp. 218–222. [Google Scholar]
- 16. Sulistijono I.A., Imansyah T., Muhajir M., Sutoyo E., Anwar M.K., Satriyanto E., Basuki A., Risnumawan A. Implementation of Victims Detection Framework on Post Disaster Scenario; Proceedings of the 2018 International Electronics Symposium on Engineering Technology and Applications (IES-ETA); Bali, Indonesia. 29–30 October 2018; pp. 253–259. [Google Scholar]
- 17. Padmawar P.M., Shinde A.S., Sayyed T.Z., Shinde S.K., Moholkar K. Disaster Prediction System using Convolution Neural Network; Proceedings of the 2019 International Conference on Communication and Electronics Systems (ICCES); Coimbatore, India. 17–19 July 2019; pp. 808–812. [Google Scholar]
- 18. Chen Y., Zhang Y., Xin J., Wang G., Mu L., Yi Y., Liu H., Liu D. UAV Image-based Forest Fire Detection Approach Using Convolutional Neural Network; Proceedings of the 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA); Xi'an, China. 18–21 June 2019; pp. 2118–2123. [Google Scholar]
- 19. Gonzalez A., Zuniga M.D., Nikulin C., Carvajal G., Cardenas D.G., Pedraza M.A., Fernández C., Munoz R., Castro N., Rosales B., et al. Accurate fire detection through fully convolutional network; Proceedings of the 7th Latin American Conference on Networked and Electronic Media (LACNEM 2017); Valparaiso, Chile. 6–7 November 2017. [Google Scholar]
- 20. Samudre P., Shende P., Jaiswal V. Optimizing Performance of Convolutional Neural Network Using Computing Technique; Proceedings of the 2019 IEEE 5th International Conference for Convergence in Technology (I2CT); Pune, India. 29–31 March 2019; pp. 1–4. [Google Scholar]

PROJECT SOURCE CODE:

https://github.com/IBM-EPBL/IBM-Project-938-1658331501/tree/main/Project%20design%20-1