Numerical Analysis

Lusine Poghosyan

AUA

October 8, 2018

How to choose the nodes x_0, x_1, \ldots, x_n belonging to the interval [a, b] in a way that

$$\max_{a \le x \le b} |(x - x_0)(x - x_1) \dots (x - x_n)|$$

will be minimized?

To find those nodes we need to consider Chebyshev polynomials of the first kind.

Chebyshev Polynomials

$$T_0(x) = 1$$
 $T_1(x) = x$ $T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x), \quad n = 1, 2, \cdots$:

Example

Find the algebraic representation of the Chebyshev Polynomial $T_3(x)$.

Prop. Chebyshev Polynomials obey the following formula

$$T_n(x) = \cos(n \arccos x), \quad \forall x \in [-1, 1], \quad n = 0, 1, \dots$$

Example

Express $cos(3\alpha)$ in terms of $cos \alpha$.

Example

Calculate the roots of the third order Chebyshev polynomial.

Prop. The Chebyshev polynomial $T_n(x)$ of degree $n \ge 1$ has n real roots belonging to the interval (-1,1) and those roots are given by the following formula

$$x_k = \cos \frac{\pi(2k+1)}{2n}, \quad n = 0, 1, \dots, n-1.$$

Interpolation on Chebyshev nodes

If nodes are placed at the roots of n+1 order Chebyshev polynomial $T_{n+1}(x)$, i.e.,

$$x_i = \cos \frac{\pi(2i+1)}{2(n+1)}, \quad n = 0, 1, \dots n.$$

then we will have the smallest possible value for

$$\max_{-1 < x < 1} |(x - x_0)(x - x_1) \dots (x - x_n)|.$$

The corresponding set of nodes on an arbitrary interval [a, b]:

$$x_i = \frac{a+b}{2} + \frac{b-a}{2} \cos\left(\frac{2i+1}{2n+2}\pi\right), \quad i = 0, 1, \dots, n.$$

Example

Write a MatLab program that constructs the Interpolating Polynomial of degree $\leq n$ for the function $f(x) = \frac{1}{1+x^2}$ at Chebyshev nodes x_i , i = 0, 1, ..., n in interval [-5, 5], and then plots the function f, the Interpolating Polynomial P_n , the points $(x_i, f(x_i))$ on the same figure, when n = 10, n = 20, n = 30.