

《编译原理与技术》 语法分析V

计算机科学与技术学院 李 诚 30/09/2019

□LR(k)分析技术

- ❖规范的LR方法(LR(1))
- ❖向前看的LR方法(LALR)
- ❖分析器的生成器(Bison) 课后Tutorial

□语法分析技术总结

SLR(1)文法的描述能力有限® 中国种学技术大学 University of Science and Technology of China

$$S \rightarrow V = E$$

$$S \rightarrow E$$

$$V \rightarrow *E$$

$$V \rightarrow id$$

$$E \rightarrow V$$

10/10/2019

SLR(1)文法的描述能力有限®中国种学技术大学University of Science and Technology of China

$$S \rightarrow V = E$$

$$S \rightarrow E$$

$$V \rightarrow *E$$

$$V \rightarrow id$$

$$E \rightarrow V$$

$$I_0: S' \to S$$

$$S \to V = E$$

$$S \to E$$

$$V \to *E$$

$$V \to *id$$

$$E \to V$$

$$\begin{array}{c}
V \\
\longrightarrow \\
S \to V := E \\
E \to V
\end{array}
=
\begin{array}{c}
I_6: \\
S \to V = \cdot E \\
E \to \cdot V \\
V \to \cdot *E \\
V \to \cdot id
\end{array}$$

生移进-归约冲突

action[2,=]=s6
项目
$$E \rightarrow V$$
 使得
action[2,=]=r5
因为Follow(E)={=,\$}

项目 $S \rightarrow V := E$ 使得

□目标:在识别活前缀DFA的状态中,增加信

息,排除一些不正确的归约操作

□目标:在识别活前缀DFA的状态中,增加信

息,排除一些不正确的归约操作

□方法:添加了前向搜索符

- ❖一个项目 $A \rightarrow \alpha \beta$,如果最终用这个产生式进行归约之后,期望看见的符号是a,则这个加点项的前向搜索符是a。
- ❖上述项目可以写成: $A \rightarrow \alpha \beta$, a

- □目标:在识别活前缀DFA的状态中,增加信息,
 - 排除一些不正确的归约操作
- □方法:添加了前向搜索符
 - ❖一个项目A→αβ,如果最终用这个产生式进行归约之后,期望看见的符号是a,则这个加点项的前向搜索符是a。
 - ❖上述项目可以写成: $A \rightarrow \alpha \beta$, a
- 口与SLR(1)分析的区别
 - ❖项目集的定义发生了改变
 - ❖closure(I) 和GOTO函数需要修改

□LR(1)项目:

 $[A \rightarrow \alpha \beta, a]$

- ❖当项目由两个分量组成,第一分量为SLR中的项, 第二分量为搜索符(向前看符号)
- ❖LR(1)中的1代表了搜索符a的长度

□LR(1)项目:

 $[A \rightarrow \alpha \beta, a]$

- ❖当项目由两个分量组成,第一分量为SLR中的项, 第二分量为搜索符(向前看符号)
- ❖LR(1)中的1代表了搜索符a的长度

□使用注意事项:

- ❖当β不为空时,a不起作用
- $\Rightarrow \beta$ 为空时,如果下一个输入符号是a,将按照 $A \rightarrow \alpha$ 进行归约

□LR(1)项目:

 $[A \rightarrow \alpha \beta, a]$

- ❖当项目由两个分量组成,第一分量为SLR中的项, 第二分量为搜索符(向前看符号)
- ❖LR(1)中的1代表了搜索符a的长度

$\Box LR(1)$ 项目 $[A \rightarrow \alpha \beta, a]$ 对活前缀 γ 有效:

❖如果存在着推导 $S \Rightarrow^*_{rm} \delta Aw \Rightarrow_{rm} \delta \alpha \beta w$, 其中:

$$> \gamma = \delta \alpha$$
;

 $\rightarrow a$ 是w的第一个符号,或者w是 ϵ 且a是\$

规范的LR分析: 举例

□例
$$S \rightarrow BB$$

$$B \rightarrow bB \mid a$$

从最右推导 $S \Rightarrow^*_{rm} bbBba \Rightarrow_{rm} bbbBba$ 看出:

 $[B \rightarrow b B, b]$ 对活前缀 $\gamma = bbb$ 是有效的

规范的LR分析: 举例

□例
$$S \rightarrow BB$$

$$B \rightarrow bB \mid a$$

从最右推导 $S \Rightarrow^*_{rm} bbBba \Rightarrow_{rm} bbbBba$ 看出:

$$\diamondsuit A = B$$
, $\alpha = b$, $\beta = B$, $\delta = bb$, $\gamma = \delta \alpha = bbb$, $w = ba$

 $[B \rightarrow b \, B, \, b]$ 对活前缀 $\gamma = bbb$ 是有效的

□构造LR(1)项目集规范族

❖也就是构造识别活前缀的DFA

□构造规范的LR分析表

❖状态之间的转换关系

构造LR(1)项目集规范族

□基础运算1: 计算闭包CLOSURE(I)

- ❖I中的任何项目都属于CLOSURE(I)
- ❖若有项目 $[A \rightarrow \alpha B \beta, a]$ 在CLOSURE(I)中,而 $B \rightarrow$ γ 是文法中的产生式,b是FIRST(βa)中的元素,则 [B→ y, b]也属于CLOSURE(I)

- 保证在用 $B \rightarrow \gamma$ 进行归约后, 出现的输入字符b是句柄 $\alpha B \beta$ 中B的后继符号 或者是 $\alpha B \beta$ 归约为A后可能出现的终结符。

构造LR(1)项目集规范族

□基础运算2:通过GOTO(I,X)算CLOSURE(J)

- ❖将J置为空集
- *若有项目 $[A \rightarrow \alpha X\beta, a]$ 在I中,那么将项目 $[A \rightarrow \alpha X\beta, a]$ 放入J中
- ❖计算并返回CLOSURE(J)

注意: GOTO(I,X)中的X可以是终结符或非终结符

构造LR(1)项目集规范族

□具体算法

- ❖初始项目集I₀:
 - $I_0 = CLOSURE(IS' \rightarrow S, \$I)$ 将\\$作为向前的搜索符
- ❖设C为最终返回的项目集族,初始为C={I₀}
- ❖重复以下步骤
 - ▶对C中的任意项目集I, 重复
 - 对每一个文法符号X(终结符或非终结符)
 - 如果GOTO(I,X) ≠ Ø 且 GOTO(I,X) ∉ C, 那么将 GOTO(I,X)放入C
 - · 注:上述GOTO(I,X)是上一页ppt中计算闭包的GOTO
 - ▶当C中项目集不再增加为止

 $S' \rightarrow S$, \$ I_0

步骤一: 从初始项开始

$$S \xrightarrow{S} S, \$ I_0$$

$$S \to BB$$

步骤二: 计算非核心项目 的第一个分量

 $S \xrightarrow{} S$, \$ I_0 $S \rightarrow BB$, \$

步骤三:通过FIRST(ε\$) 计 算非核心项目的第二个分量

 $S' \rightarrow S,$ I_0 $S \rightarrow BB,$ $B \rightarrow bB$ $B \rightarrow a$ 步骤二: 计算非核心项目 的第一个分量

 $S' \rightarrow S$, \$ I_0 $S \rightarrow BB$, \$ $B \rightarrow bB$, b/a $B \rightarrow a$, b/a

步骤三:通过FIRST(B\$) 计算非核心项目的第二个分量

构造规范的LR分析表

□构造识别拓广文法G′活前缀的DFA

❖基于LR(1)项目族来构造

□状态i的action函数如下确定:

- ◆如果 $[A \rightarrow \alpha \ a\beta, b]$ 在 I_i 中,且 $goto(I_i, a) = I_j$,那么 $\exists action[i, a]$ 为sj (此时,不看b)
- ❖如果[$A \rightarrow \alpha$ ·, a]在 I_i 中,且 $A \neq S'$,那么置action[i, a]为rj
- ❖如果[S'→S; \$]在 I_i 中,那么置action[i, \$] = acc

如果上述构造出现了冲突,那么文法就不是LR(1)的

构造规范的LR分析表

- □构造识别拓广文法G′活前缀的DFA
- □状态i的action函数如下确定:
 - ❖参见上页ppt
- □状态i的goto函数如下确定:
 - ❖如果 $goto(I_i, A) = I_j$, 那么goto[i, A] = j

构造规范的LR分析表

- □构造识别拓广文法G′活前缀的DFA
- □状态i的action函数如下确定:
 - ❖参见上页ppt
- □状态i的goto函数如下确定:
 - ❖如果 $goto(I_i, A) = I_j$, 那么goto[i, A] = j
- □分析器的初始状态是包含[$S' \rightarrow S$, \$]的项目集对应的状态

用上面规则未能定义的所有条目都置为error

$$S \rightarrow V = E$$

$$S \rightarrow E$$

$$V \rightarrow *E$$

$$V \rightarrow id$$

$$E \rightarrow V$$

$$\begin{array}{c}
I_{2}:\\ S \to V := E\\ E \to V
\end{array}
=
\begin{array}{c}
I_{6}:\\ S \to V = \cdot E\\ E \to \cdot V\\ V \to \cdot *E\\ V \to \cdot \text{id}
\end{array}$$

产生移进-归约冲突,但该文法不是二义的。

action[2,=]=s6
项目
$$E \rightarrow V$$
 使得
action[2,=]=r5
因为Follow(E)={=,\$}

项目 $S \rightarrow V := E$ 使得

非SLR(1)但是LR(1)文法

$$S \rightarrow V = E$$

$$S \rightarrow E$$

$$V \rightarrow *E$$

$$V \rightarrow id$$

$$E \rightarrow V$$

$$I_0:$$
 $S' \rightarrow S, \$$
 $S \rightarrow V = E, \$$
 $S \rightarrow E, \$$
 $V \rightarrow *E, =$
 $V \rightarrow id, =$
 $E \rightarrow V, \$$
 $V \rightarrow *E, \$$

无移进归约冲突

计算闭包:

定义里:

 $[A \rightarrow \alpha B \beta, a]$

 $FIRST(\beta a)$

这里:

 $[S \rightarrow E, \$]$

 $FIRST(\varepsilon)=\{ \} \}$

注:十分感谢王灿、范睿两位同学帮助我纠正对于该问题的讲解错误。

非SLR(1)但是LR(1)文法

$$S \rightarrow V = E$$

$$S \rightarrow E$$

$$V \rightarrow *E$$

$$V \rightarrow id$$

$$E \rightarrow V$$

$$I_0:$$
 $S \rightarrow S, \$$
 $S \rightarrow V = E, \$$
 $S \rightarrow E, \$$
 $V \rightarrow E, =/\$$
 $V \rightarrow id, =/\$$
 $E \rightarrow V, \$$

可通过合并搜索符简化

计算闭包:

定义里:

 $[A \rightarrow \alpha B \beta, a]$

这里:

 $[S \rightarrow E, \$]$

FIRST(βa)

 $FIRST(\varepsilon)=\{ \} \}$

非SLR(1)但是LR(1)文法

$$S \rightarrow V = E$$

$$S \rightarrow E$$

$$V \rightarrow *E$$

$$V \rightarrow id$$

$$E \rightarrow V$$

$$I_0:$$
 $S \rightarrow S, \$$
 $S \rightarrow V = E, \$$
 $S \rightarrow E, \$$
 $V \rightarrow E, =/\$$
 $V \rightarrow id, =/\$$
 $E \rightarrow V, \$$

$$V \longrightarrow \begin{bmatrix} I_2 : \\ S \to V := E, \$ \\ E \to V ; \$ \end{bmatrix}$$

可通过合并搜索符简化

计算闭包:

定义里: $[A \rightarrow \alpha B \beta, a]$

FIRST(βa)

这里:

 $[S \rightarrow E, \$]$

 $FIRST(\varepsilon)=\{\$\}$

每一个SLR(1)文法都是LR(1)的

□LR(k)分析技术

- ❖规范的LR方法(LR(1))
- ❖向前看的LR方法(LALR)
- ❖分析器的生成器(Bison) 课后Tutorial

□语法分析技术总结

□研究LALR的原因

规范LR分析表的状态数偏多

□LALR特点

- ❖LALR和SLR的分析表有同样多的状态,比规范 LR分析表要小得多
- ❖LALR的能力介于SLR和规范LR之间
- ❖LALR的能力在很多情况下已经够用

□LALR分析表构造方法

❖通过合并规范LR(1)项目集来得到

- □合并识别 LR(1)文法的活前缀的DFA中的相同核心项目集(同心项目集)
- □同心的LR(1)项目集
 - ❖核心:项目集中第一分量的集合
 - ❖略去搜索符后它们是相同的集合
 - **⋄例:** $[B \rightarrow bB, \$]$ 与 $[B \rightarrow bB, b/a]$

识别活前缀的DFA

合并同心项目集

合并同心项目集

合并同心项目集

2、构造LALR(1)分析表

- ❖构造LR(1)项目集规范族 $C = \{I_0, I_1, ..., I_n\}$
- 构造LALR(1)项目集规范族 $C' = \{J_0, J_1, ..., J_k\},$ 其中任意项目集 $J_i = I_n \cup I_m \cup ... \cup I_t$
 - $\triangleright I_n, I_m, ..., I_t \in C$ 且具有共同的核心
- ❖按构造规范LR(1)分析表的方式构造分析表

如没有语法分析动作冲突,那么给定文法就是 LALR(1)文法

口合并同心项目集可能会引起冲突

❖同心集的合并不会引起新的移进-归约冲突

项目集1

 $[A \rightarrow \alpha ; a]$

 $[B \rightarrow \beta a \gamma, c]$

项目集2

 $[B \rightarrow \beta a \gamma, b]$

 $[A \rightarrow \alpha ; d]$

如果有移进归约冲突,则合并前就有冲突

口合并同心项目集可能会引起冲突

- ❖同心集的合并不会引起新的移进-归约冲突
- ❖同心集的合并有可能产生新的归约-归约冲突

$$S' \rightarrow S$$

$$S \rightarrow aAd / bBd / aBe / bAe$$

$$A \rightarrow c$$

$$B \rightarrow c$$

对ac有效的项目集 对bc有效的项目集

$$A \rightarrow c ; d$$

$$B \rightarrow c ; e$$

$$A \rightarrow c ; e$$

$$B \rightarrow c ; d$$

合并同心集后

$$A \rightarrow c ; d/e$$

$$B \rightarrow c ; d/e$$

该文法是LR(1)的 但不是LALR(1)的

□LR(k)分析技术

- ❖规范的LR方法(LR(1))
- ❖向前看的LR方法(LALR)
- ❖分析器的生成器(Bison) 课后Tutorial

□语法分析技术总结

		SLR	LALR	LR(1)
初始状态		$[S' \rightarrow S]$	$[S' \rightarrow S, \$]$	$[S' \rightarrow S, \$]$
项目集		LR(0) CLOSURE(I)	合并LR(1)项目集 族的同心项目集	LR(1), CLOSURE(I) 搜索符考虑FISRT(βa)
动作	移进	$[A \rightarrow \alpha a \beta] \in I_i$ $GOTO(I_i, a) = I_j$ $ACTION[i, a] = sj$	与LR(1) 一致	$[A \rightarrow \alpha a\beta, b] \in I_i$ $GOTO(I_i, a) = I_j$ $ACTION[i, a] = sj$
	归约	$[A \rightarrow \alpha] \in I_{i}, A \neq S'$ $a \in \text{FOLLOW}(A)$ ACTION[i, a] = rj	与LR(1) 一致	$[A \rightarrow \alpha; a] \in I_i$ $A \neq S'$ ACTION[i, a] = rj
	接受	$[S' \rightarrow S \cdot] \in I_i$ ACTION[i, \$] = acc	与LR(1) 一致	$[S \hookrightarrow S ; \$] \in I_i$ ACTION[$i, \$$] = acc
	出错	空白条目	与LR(1) 一致	空白条目
GOTO		$\begin{aligned} & \textbf{GOTO}(\boldsymbol{I}_i, A) = \boldsymbol{I}_j \\ & \textbf{GOTO}[i, A] = j \end{aligned}$	与LR(1) 一致	$\begin{aligned} \mathbf{GOTO}(I_i, A) &= I_j \\ \mathbf{GOTO}[i, A] &= j \end{aligned}$
状态量019		少(几百)	与SLR一样	多(几千)

语法分析技术总结

语法分析技术总结

	LR(1)方 法	LL(1)方 法
建立分析树	自底而上	自顶而下
归约or推导	规范归约	最左推导
决定使用产生 式的时机	看见产生式整个右部 推出的串后(句柄)	看见产生式推出的第一个 终结符后
对文法的限制	无	无左递归、无公共左因子
分析表	状态×文法符号,大	非终结符×终结符,小
分析栈	状态栈,信息更多	文法符号栈
确定句柄	根据栈顶状态和下一 个符号便可以确定句 柄和归约所用产生式	无句柄概念
语法错误	决不会将出错点后的 符号移入分析栈	和LR一样,决不会读过 出错点而不报错

- 回颁奖词: For significant contributions in the design and theory of compilers, the architecture of large systems and the development of reduced instruction set computers (RISC); for discovering and systematizing many fundamental transformations now used in optimizing compilers including reduction of operator strength, elimination of common subexpressions, register allocation, constant propagation, and dead code elimination.
 - https://amturing.acm.org/award_winners/cocke_ 2083115.cfm

□演讲:

- **❖**THE SEARCH FOR PERFORMANCE IN SCIENTIFIC PROCESSORS
- https://dl.acm.org/ft_gateway.cfm?id=1283945
 &type=pdf

杜克大学学士、博士 供职于IBM T.J. Watson Research Center

《编译原理与技术》 语法分析V

谋定而后动,知止而有得!

—— 孙子兵法 计篇