Topologia di \mathbb{R}

Andrea Canale

May 20, 2025

Contents

1	Val	ore assoluto	1
2	Intervalli		
	2.1	Intervalli aperti	2
	2.2	Intervalli chiusi	2
	2.3	Intervalli semi-aperti	2
3	3 Intorni		
1	Proprietà che vale definityamente per x che tende a c		2

1 Valore assoluto

La funzione valore assoluto è definita come:

$$|x| = \begin{cases} x & \text{se } x \ge 0\\ -x & \text{se } x < 0 \end{cases}$$

Viene usata per misurare distanza in quanto è una quantità simmetrica che non dipende dal segno: d(x,y)=d(y-x)

2 Intervalli

2.1 Intervalli aperti

Gli intervalli aperti sono definiti come $\{x \in \mathbb{R} | a < x < b\} = (a, b)$ cioè tutti i numeri compresi tra a e b esclusi gli estremi.

2.2 Intervalli chiusi

Gli intervalli chiusi sono definiti come $\{x \in \mathbb{R} | a \leq x \leq b\} = [a, b]$ cioè tutti i numeri compresi tra $a \in b$ inclusi gli estremi.

2.3 Intervalli semi-aperti

Gli intervalli semi-aperti sono definiti come $\{x\in\mathbb{R}|a\leq x< b\}=[a,b)$ o $\{x\in\mathbb{R}|a< x\leq b\}=(a,b]$ cioè tutti i numeri compresi tra a e b incluso solo uno dei due estremi

3 Intorni

Dato $c \in \mathbb{R}$ si dice intorno di centro c e raggio $\delta > 0$, l'intervallo $(c - \delta, c + \delta)$ cioè tutti i numeri che distano da c meno di δ :

$$\{x \in \mathbb{R} | d(c, x) < \delta\}$$

Notiamo che il numero che è distante $d(c,x)=\delta$ non appartiene all'intorno

4 Proprietà che vale definitvamente per x che tende a c

Si dice che una proprietà vale definitivamente per x che tende a c(vale def. $x \to \{c\}$) se $\exists \delta > 0$ tale che una proprietà vale $\forall x \in I_{\delta}(c) \setminus c$. Cioè se vale per tutti i punti di un interno c di raggio δ tranne nel punto c