Computing with Real Numbers

I. The LFT Approach to Real Number Computation

II. A Domain Framework for Computational Geometry

Abbas Edalat 1 and Reinhold Heckmann 2

Department of Computing, Imperial College 180 Queens Gate, London SW7 2BZ, UK ae@doc.ic.ac.uk

² AbsInt Angewandte Informatik GmbH Stuhlsatzenhausweg 69, D-66123 Saarbrücken, Germany heckmann@absint.com

Abstract. We introduce, in Part I, a number representation suitable for exact real number computation, consisting of an exponent and a mantissa, which is an infinite stream of signed digits, based on the interval [-1,1]. Numerical operations are implemented in terms of *linear fractional transformations* (LFT's). We derive lower and upper bounds for the number of argument digits that are needed to obtain a desired number of result digits of a computation, which imply that the complexity of LFT application is that of multiplying n-bit integers. In Part II, we present an accessible account of a domain-theoretic approach to computational geometry and solid modelling which provides a data-type for designing robust geometric algorithms, illustrated here by the convex hull algorithm.

Table of Contents

1	Intro	oduction
	1.1	Overview
2	Digi	t Streams
	2.1	The Failure of Standard Number Systems
	2.2	Signed Positional Systems
	2.3	Exponents
	2.4	Calculations with Digit Streams
3	Line	ar Fractional Transformations (LFT's)
	3.1	One-Dimensional LFT's (1-LFT's) and Matrices
	3.2	Two-Dimensional LFT's (2-LFT's) and Tensors
	3.3	Zero-Dimensional LFT's (0-LFT's) and Vectors
4		otonicity
5		nded and Refining LFT's
	5.1	Bounded 1-LFT's
	5.2	Bounded 2-LFT's
	5.3	Refining 1-LFT's
	5.4	Refining 2-LFT's

G. Barthe et al. (Eds.): Applied Semantics, LNCS 2395, pp. 193-267, 2002.

[©] Springer-Verlag Berlin Heidelberg 2002

6	LFT	's and Digit Streams	210
	6.1	Absorption of Argument Digits	210
	6.2	Emission of Result Digits	211
	6.3	Sketch of an Algorithm	212
	6.4	The Emission Conditions	213
	6.5	Examples	215
7	Cont	ractivity and Expansivity	217
	7.1	Functions of One Argument	
	7.2	Functions of Two Arguments	
8	The	Size of the Entries	
	8.1	Common Factors	221
	8.2	Affine Matrices	222
	8.3	Non-affine Matrices	
	8.4	Size Bounds for Tensors	
	8.5	Cancellation in Tensors	
9	Hand	dling Many Digits at Once	226
	9.1	Multi-digits	
	9.2	Multi-digit Computation	
	9.3	Multi-digit Emission	
10		braic Operations	
	_	Addition $x_1 + x_2 \dots$	
		Multiplication $x_1 * x_2 \dots$	
		Reciprocal $1/x$	
11		ite LFT Expressions	
		Infinite Matrix Products	
		Convergence Criteria	
		Transformation of Infinite Products	
		Infinite Products from Taylor Series	
		Infinite Products from Continued Fractions	
		The Evaluation of Infinite Products	
12		scendental Functions	
		Exponential Function	
		Logarithm	
13		oduction	
		Solid Domain	
		icates and Operations on Solids	
		The Minkowski Operator	
16		putability on the Solid Domain	
		sgue and Hausdorff Computability	
		Lebesgue Computability	
		Hausdorff Computability	
18		Convex Hull	
		orical Remarks and Pointers to Literature	
10		Real Number Computation	
			258