Álgebra Lineal I Tarea 05

Rubén Pérez Palacios Profesor: Rafael Herrera Guzmán

02 Marzo 2020

Problemas

1. Sea $T, U : \mathbb{R}^2 \to \mathbb{R}^2$ tales que

$$T((x,y)) = (x+y, -(x+y))$$
 y $U((x,y)) = (x+y, x+y)$,

por lo tanto

$$U(T((x,y))) = 0$$
 y $T(U((x,y))) = (2(x+y), -2(x+y)).$

Sea $\alpha = \{(1,0),(0,1)\}$ una base ordenada de \mathbb{R}^2 , entonces

$$[T]_{\alpha} = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}$$
 y $[U]_{\alpha} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$

y además

$$[U]_{\alpha}[T]_{\alpha} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \quad \mathbf{y} \quad [T]_{\alpha}[U]_{\alpha} = \begin{pmatrix} 2 & 2 \\ -2 & -2 \end{pmatrix}.$$

2. Sea $T(v) \in R(T)$.

Si $T^2 = T_0$ entonces T(T(v)) = 0, por definición $T(v) \in N(T)$, por lo tanto

$$R(T) \subset N(T)$$
.

Si $R(T) \subset N(T)$ entonces $T(v) \in N(T)$, por definición T(T(v)) = 0, por lo tanto

$$T^2 = T_0$$
.

- 3. Sean V, W y Z especies vectoriales y sean $T: V \to W y U: W \to Z$ lineales.
 - a) Supongamos que T no es inyectiva entonces existen $x,y \in V$ tales que $T(x) = T(y), x \neq y$. Entonces UT(x) = UT(y), lo cual es una contradicción ya que UT es inyectiva. Por lo tanto concluimos que T es inyectiva.
 - b) Como UT es sobreyectiva entonces $\forall z \in Z$ existe $v \in V$ tal que UT(v) = z entonces existe $T(v) \in W$ tal que U(T(v)) = z, por lo tanto U es sobreyectiva.

El contra ejemplo a las preguntas de los dos anteriores incisos es $T: \mathbb{R}^2 \to \mathbb{R}^3$ dada por

T((x,y)) = (x,y,0), la cual es inyectiva y no suprayectiva,

y $U: \mathbb{R}^3 \to \mathbb{R}^2$ dada por

U((x, y, z)) = (x, y) la cual es suprayectiva y no inyectiva,

entonces podemos ver que UT(x,y) = (x,y) la cual es biyectiva.

- c) Al ser T invectiva entonces $\forall v_1, v_2 \in V$ tal que $v_1 \neq v_2$ y se cumple que $T(v_1) \neq T(v_2)$, al ser U invectiva entonces $U(T(v_1)) \neq U(T(v_2))$, por lo tanto UT es invectiva. Al ser U suprayectiva entonces para todo $z \in Z$ existe $w \in W$ tal que U(w) = z, y al ser T suprayectiva entonces existe $v \in V$ tal que T(v) = w, entonces UT(v) = z por lo tanto UT es suprayectiva.
- 4. Sea V un espacio vectorial de dimensión finita y $T:V\to V$ una transformación lineal.
 - a) Como $T:V\to V$ entonces $T(R(T))\subset R(T)$. Sea $U:R(T)\to R(T)$ dada por U(x)=T(x), entonces

$$\dim(R(T)) = \dim(R(T^2)) = \dim(R(T(R(T)))) = \dim(R(U)).$$

Entonces U es suprayectiva, y al ser V es de dimensión finita entonces R(T) también lo es, por lo que U también es inyectiva. Al ser T(0) = 0, entonces $N(T) = \{0\}$, luego por definición tenemos que $N(U) = R(T) \cap N(T)$, por lo tanto concluimos que

$$R(T)\cap N(T)=\{0\}.$$

Ahora como $N(T), R(T) \subset V$, entonces N(T) + R(T)subset V. Por lo obtenido anteriormente y por el teorema de la dimensión tenemos que

$$\dim(N(T) + RT)) = \dim(N(T)) + \dim(R(T)) - \dim(N(T) \cap R(T)) = \dim(V),$$

por lo tanto concluimos

$$V = N(T) \oplus R(T)$$
.

b) Como $T^{l+1}(V) = T^l(T(R)) \subset T^l(V)$, entonces

$$\dim(R(T^{l+1})) \le \dim(R(T^l)).$$

Al ser V de dimensión finita y que $0 \leq \dim(R(T^l)) \leq \dim(V)$ entonces existe un k tal que

$$\dim(R(T^{k+1})) = \dim(R(T^k)).$$

Por lo que $T^{k+1} = T^k$, esto por el ejercicio anterior e inducción; también por inducción podemos ver que $\forall l \geq k$ se cumple que $T^s = T^k$, en particular $T^{2k} = T^k$. Por el inciso anterior concluimos que

$$V = R(T^k) \oplus N(T^k).$$

5. Llamemos $W = \{v | T(v) = v\}$. Sea $v \in V$ podemos expresar a este como v = T(v) + (v - T(v)). Debido a que T(T(v)) = T(v) entonces $T(v) \in W$, y T(v - T(v)) = T(v) - T(T(v)) = T(v) = 0 entonces $v - T(v) \in N(T)$; entonces $v \in W + N(T)$, por lo tanto $V \subset W + N(T)$. Es claro que $W + N(T) \subset V$, por lo tanto

$$V = W + N(T).$$

Sea $v \in W \cap N(T)$, entonces

$$v = T(x) = 0,$$

por lo que $W \cap N(T) = \{0\}$ y por lo tanto

$$V = W \oplus N(T)$$
.

Concluimos que T es un proyección de W_1 a W_2 , para algunos W_1, W_2 tales que $W_1 \oplus W_2 = V$, esto pues $T(v) = T(w_1 + w_2) = w_1$, cuando $T^2 = T$.