ALL SAINTS' COLLEGE

MATHEMATICS DEPARTMENT

Year 11 Methods - Test Number 3 2019

Relations, Function Transformations, Trig Functions & Counting

Resource Free

Name: Sour	770 NS Teacher:		
Time Allowed:	Reading: 2 minutes		
	Working: 43 minutes		
Instructions: You ARE NOT permitted any notes or calculator.			
The formula sheet will be provided.			

1. [3, 4 = 7 marks]

a) The graph of the relation $y^2 = x$ passes through the points (36, p) and (q, -9). Determine the values of p and q.

b) The graph of a relationship is circular, as shown below.

Determine the equation of this circle in the form $x^2 + y^2 = a + bx + cy$, where a, b and c are constants.

Centre (-2,1) V = 5 $(x_1 z)^2 + (y_{-1})^2 = 25$ $x^2 + y^2 + 4x + 4 - 2y + 1 = 25$ respand $x^2 + y^2 = 20 - 4x + 2y$ respand

2. [2, 3 = 5 marks]

a) Use an appropriate identity to show that $\cos(\pi - \theta) = -\cos\theta$

$$Cos(\Pi - Q) = Cos\Pi CosQ + SinTSiQ V$$

$$= (-1) LosQ + OSiiQ V must show$$

$$= - CosQ'$$

b) Evaluate: $\sin(250^{\circ})\cos(25^{\circ}) - \cos(250^{\circ})\sin(25^{\circ})$

3. [4 marks]

The sketch of the curve $y = a \sin(x + b) + c$ is shown in the diagram below. Given that a > 0, find the values of a, b and c

auplitude =
$$\frac{7-(-1)}{2}$$
 = $\frac{4}{3}$... $a=4$

At A, $y=7$... glaph has moved up 3, ie $c=3$

Graph has moved left 30° (point B) ... $b=30^{\circ}$
 $a=4$
 $b=30^{\circ}$
 $c=3$

4. [3, 3 = 6 marks]

Use the Binomial theorem to answer the following:

a) Find the sixth term in the expansion of $(2x - \frac{1}{2})^9$. Give your answer in simplified form.

b) Find the term independent of x (ie which contains no x) in the expansion of

$$[x + \left(\frac{1}{x^2}\right)]^{12}$$
5th term:
$$(4) x^{8} \left(\frac{1}{x^2}\right)^{4} = \frac{|a!}{8! 4!}$$

$$= \frac{|a \times 11 \times 10 \times 4}{4 \times 3 \times 3 \times 1}$$

5. [1, 1, 3 = 5 marks] (DO NOT SIMPLIFY YOUR ANSWERS)

An examination is divided into two sections, A and B, with 5 and 7 questions respectively. How many different combinations of questions are there if students are required to:

a) answer all the questions in each section?

b) answer all the questions in Section A and any two questions from Section B?

$$(5)\times(2) = (2)$$
 / either

c) answer a total of 5 questions with at least one question from each section?

$$1A,4B$$
 & $2A,3B$ & $3A,2B$ & $4A,1B$ passibilities = $\binom{5}{7} + \binom{5}{4} + \binom{5}{3} \binom{7}{3} + \binom{5}{3} \binom{7}{3} + \binom{5}{4} \binom{7}{1}$

6. [3 marks]

The graph of y = f(x) is shown in bold below. The graphs of y = -f(x), y = f(x + p) and y = f(x) + q are also shown, where p and q are constants.

Complete the table below, by identifying the defining equation of each graph:

Graph	Equation	
Α	y=f(x)+q	/
В	y = -f(x)	V
С	y = f(x+p)	/

7. [1, 2, 2 = 5 marks]

(a) Part of the graph of y = f(x) is shown below, where $f(x) = 3(x+b)^3 + c$, and b and c are constants.

(i) Determine the value of b.

(ii) Determine f(0).

$$f(0) = 3(0+3)^3 + 4$$
 Voub $x=0$

b) Another function, g(x), is a transformation of f(x), where g(x) = f(2x - 3).

Describe how to obtain the graph of y = g(x) from the graph of y = f(x).

Franslate 3 mits ingut them dilate 11 6

(-1 if wrong order)

8. [3, 3, 4 = 10 marks]

Solve the following trigonometric equations in the given domain:

a) $(\sin \theta - 2)(2\sin \theta - 1) = 0$, $0^{\circ} \le \theta \le 360^{\circ}$

b) $4\cos^2 x = 3$, $0 \le x \le 2\pi$

$$\cos^2 x = \frac{3}{4}$$

$$\cos^2 x = \pm \sqrt{3}$$

(if omit I, max 2 for contract anomes: 20ml

c) $2\sin 3x - 1 = 0$, $0 \le x \le \pi$

Sin
$$3x = \frac{1}{2}$$
 $0 \le 3x \le 3\pi$

Ref $C = \frac{\pi}{6}$

$$\alpha = \frac{11}{18}$$
, $\frac{511}{18}$, $\frac{1311}{18}$, $\frac{1711}{18}$