Point Cloud Segmentation of Infrastructural Steel Elements

DISAL-SP 183

Dimitri Jacquemont

Enhancing Infrastructure Inspection

Current solutions risky, and time consuming

• Innovative approach using **UAV** equipped with **ToF camera**.

 Real-time segmentation pipeline capable of efficiently analyzing 3D point-cloud data, to monitor the integrity of steel infrastructures.

State of the Art in Point Cloud Segmentation

Iterative Hough Transform for Line Detection in 3D Point Clouds, Dalitz, Christoph, Tilman Schramke, and Manuel Jeltsch, 2017

(https://www.ipol.im/pub/art/2017/208/?utm_source=doi)

 Method detecting lines in 3D point clouds using the Hough Transform

Other solution explored (previous SP)

- RANSAC
- DBSCAN
- GMM

Algorithm output

```
nbpoints=78, a=(52.889395,52.335678,460.717949), b=(0.564829, -0.539195, 0.624689) nbpoints=70, a=(69.556691,28.172875,1018.697143), b=(0.126173, 0.064910, -0.989882) nbpoints=47, a=(54.826033,9.888771,818.893617), b=(0.116360, 0.020515, -0.992995) nbpoints=36, a=(75.600461,38.137831,1496.355556), b=(0.110137, 0.070930, -0.991382)
```

Key Achievements

- Pipeline creation/ROS node integration
- Adaptation of the C++ hough-3d-lines library
- Experimental testing & performances quantification

Global Node Graph

Point Cloud Pre-processing:

- Filtering thresholds within a specified window
- Voxel grid filter

Iterative Hough Transform:

- Creation of a function running the Hough Transform
- Hough Library modified for real time (Hough Space initialization)

Segments Sorting:

- Number of points
- Beam radius
- Segment points density
- PCA

Segments Frame Conversion:

- Transformation from drone frame to world frame
- Segments' parameters transformation

Segments Fusion:

- Similarity detection
- Weighted fusion

Segment Similarity Detection

Segment Weighted Fusion

Segments Intersection:

- Shortest distance between 2 segments
- Solving linear system to find intersection point

Segment Intersection

Testing & Results

Simulation Environment

Extracted beams

Testing & Results

Segment Comparison

Distance VS Angle Error

Processing Time Distribution by Number of Lines

Future Directions and Improvements

- Intersections with flat angles
- Intersection fusion
- Beam diversity
- Inexact drone pose
- Multiple radius segment detection
- Ground truth offset
- Segment division upon intersection

Intersection Example

Ground Truth Offset

Q&A

