

Radar Systems

Lecture 8.

Clutter Rejection MTI and Pulse Doppler Processing

구 자 열

MTI and Doppler Processing

Naval Air Defense Scenario

차 례

- Introduction
- Moving Target Indicator (MTI) Techniques
- Pulse Doppler Processing Techniques

Terminology

Moving Target Indicator (MTI) Techniques

- Just separate moving targets from clutter
- Use short waveforms (two or three pulses)
- Do not provide target velocity estimation

Pulsed Doppler (PD) Techniques

- Separate targets into different velocity regimes in addition to canceling clutter
- Provide good estimates of target velocity
- Use long waveforms -- (many pulses, tens to thousands of pulses)

Block Diagrams of CW and Pulse Radars

Basic Continuous Wave (CW) Radar

Basic Pulse Radar

Clutter Rejection History

- 1960s to mid 1970s
 - Stability was a real problem
 - Delay line cancellers

Several milliseconds delay

Quartz and mercury

Velocity of acoustic waves is 1/10,000 that of electromagnetic waves

Disadvantages

Secondary waves

Large insertion waves

Dynamic range limitations of analog displays caused signals to be limited

- Mid 1970s to present
 - Revolution in digital technology

Memory capacity and processor speed continually increase, while cost spirals downward

Affordable complex signal processing more and more easy and less expensive to implement

Doppler Frequency

Example Clutter Spectra

- Clutter comes from same range/angle cell as a target
- Clutter RCS can be much larger than targets of interest (>50 dB)
- Characteristics vary with terrain (land/sea), weather, etc.

PPI Display of Heavy Rain

MTI and Pulse Doppler Waveforms

M usually much greater for Pulse Doppler

Data Collection for Doppler Processing

차 례

- Introduction
- Moving Target Indicator (MTI) Techniques
- Pulse Doppler Processing Techniques

Moving Target Indicator (MTI) Processing

- Notch out Doppler spectrum occupied by clutter
- Provide broad Doppler passband everywhere else
- Blind speeds occur at multiples of the pulse repetition frequency
 - When sample frequency (PRF) equals a multiple of the Doppler frequency

Two Pulse MTI Canceller

- Fixed Clutter echoes
 - If one pulse is subtracted from the previous pulse, fixed clutter echoes will cancel and will not be detected
- Moving targets
 - Moving targets change in amplitude from one pulse to the next because of their Doppler frequency shift.
 - If one pulse is subtracted from the other, the result will be an uncancelled residue

Block Diagram

MTI Improvement Factor

- S_{in} and C_{in} Input target and clutter power per pulse
- S_{out}(f_d) and C_{out}(f_d) Output target and clutter power from processor at Doppler frequency, f_d
- MTI Improvement Factor = $I(f_d) = \frac{(Signal / Clutter)_{out}}{(Signal / Clutter)_{in}}$

Two and Three Pulse MTI Canceller

Two Pulse Canceller

Three Pulse Canceller

MTI Improvement Factor Examples

2-Pulse MTI

$$V_{\text{output}} = V_i - V_{i-1}$$

3-Pulse MTI

$$V_{\text{output}} = V_i - 2V_{i-1} + V_{i-2}$$

Three-pulse canceller provides wider clutter notch and greater clutter attenuation

Staggered PRFs to Increase Blind Speed

MTI Frequency Response

- Staggering or changing the time between pulses will raise the blind speed
- Although the staggered PRF's remove the blind speeds that would have been obtained with a constant PRF, there will be a new much higher blind speed

차 례

- Introduction
- Moving Target Indicator (MTI) Techniques
- Pulse Doppler Processing Techniques

Data Collection for Doppler Processing

Pulse Doppler Processing

- Clutter rejection
- Resolving targets into different velocity segments and allowing for finegrain target radial velocity estimation

Moving Target Detector (MTD)

- Pulse Doppler filtering on groups of 8 or greater pulses with a fine grained clutter map.
- Aircraft are detected in ground clutter and / or rain with the Doppler filter bank & use of 2 PRFs.
- Birds and ground traffic are rejected in post processing, using Doppler velocity and a 2nd fine grained clutter map

ASR-9 8-Pulse Filter Bank

Courtesy of Northrop Grumman Used with permission.

MTD Performance in Rain

Unprocessed Radar Returns

Doppler Spectrum of Rain

Time History of Radar Tracker Output August 1975, FAA Test Center

Doppler Ambiguities

- Pulse Doppler waveform samples target with sampling rate = PRF
- Sampling causes aliasing at multiples of PRF
- Two targets with Doppler frequencies separated by an integer multiple of the PRF are indistinguishable
- Unambiguous velocity

$$V_u = \frac{\lambda f_r}{2}$$

Range Ambiguities

Unambiguous Range and Doppler Velocity

Sensitivity Time Control (STC)

 Deliberately reduce radar sensitivity at short ranges Why?

Both "Targets" Give Returns with Same Signal-to-Noise ratio

- Attenuation of radar return by R⁻⁴ will result in constant SNR as a function of range for a constant cross section target
- STC cannot be used if the radar's waveform is ambiguous in range
 - Targets which are beyond the ambiguous range of the radar will be attenuated, because they folded over to close ranges

Classes of MTI and Pulse Doppler Radars

8	Low PRF	Medium PRF	High PRF
Range Measurement	Unambiguous	Ambiguous	Very Ambiguous
Velocity Measurement	Very Ambiguous	Ambiguous	Unambiguous

Low PRF

- Wind blown clutter may be a problem
- Can use STC

Medium PRF

- Wind blown clutter may be a problem
- Range eclipsing losses
- Far out targets compete with near in clutter
- · Can't use STC
- Ambiguities hardest to remove

High PRF

- Range eclipsing losses
- Far out targets compete with near in clutter
- Can't use STC

Velocity Ambiguity Resolution

- Split dwell into multiple CPIs at different PRFs
 - Scan to scan, even pulse-to-pulse changes also possible
- Moves blind velocities to ensure detection of all non-zero velocity targets
- True target velocity is where best correlation across CPIs occurs
- Choose PRFs so that least common multiple occurs above desired maximum unambiguous velocity

Examples of Airborne Radar

Airborne Radar Clutter Characteristics

Illustrative example without Pulse-Doppler ambiguities

- Doppler frequency of mainbeam clutter depends on scan direction
- Doppler frequency of target depends on scan direction and target aspect angle

Airborne Radar Clutter Spectrum

Illustrative example without Pulse Doppler ambiguities

Airborne Radar Clutter Spectrum

Illustrative example without Pulse Doppler ambiguities

Displaced Phase Center Antenna (DPCA) Concept

If the aircraft motion is exactly compensated by the movement of the phase center of the antenna beam, then there will be no clutter spread due to aircraft motion, and the clutter can be cancelled with a two pulse canceller

Q & A

