Volume Rendering Based on Distribution Data

Yuxiang Kou

Advisor: Professor Han-Wei Shen

Introduction

- We implemented a way of interactively querying and visualizing large scale dataset
- Our query and visualization is based on histograms of the block regions of the raw data
- We can render distribution data by statistic measures, such as mean, variance, entropy
- We applied similarity-based coding algorithm to reduce the data size

- GPU based volume rendering
 - Direct volume ray casting with 3D texture

• GPU based volume rendering with histogram

Measures of distribution data

• Mean:
$$H(x) = -\sum_{i=1}^{n} p_i \times \log(p_i)$$

• Variance:
$$Var(x) = \sum_{i=1}^{n} p_i \times (x_i - \mu)^2$$

• Entropy:
$$H(x) = -\sum_{i=1}^{n} p_i \times \log(p_i)$$

- Similarity-based coding algorithm
 - The idea is from fractal image compression
 - Based on the fact of self-similarity
 - Encode the volume data into templates with transformations

Input data:

- CUDA 5.0
 - Parallel computing
 - cuda_kernel<<<nBlock, nThreads>>>();
 - Graphics features
 - volume rendering

Similarity-based Coding Algorithm

- histogram → template + transformation
- A template is a histogram.
 - number of histograms >> number of templates
- <u>Transformation</u>: circular shift and flip.
 - right shift each bin
 - flip the histogram if necessary
 - number of histogram bins >> (tempateID, shift, flip)
- Error control (optional): error information of histograms

Pipeline of Volume Rendering Based on Distribution Data

Query Flexible Block Size Distribution

- If we allow user to query distribution of arbitrary block size, things become much more complex
- Integral Distribution: the distribution from origin to each data point (similar to summed area table)
- Reconstruct integral distribution from <u>a</u> hierarchy of block-level distributions (reducing storage cost)

Integral Distribution

$$H(ABCDEFGH) = H(A) + H(D) + H(E) + H(H)$$

- $H(B) - H(C) - H(F) - H(G)$

a Hierarchy of Block Level Distribution

- An octree of distributions
- Each block has size power-of-two

Decompose a block into sub-blocks

- Use bitwise operation to decompose query range into power-of-two sub-range
- Assume each dimension has N sub-ranges, then the block has N*N*N sub-ranges

Pipeline of Volume Rendering Based on Distribution Data

Pipeline of Volume Rendering Based on Distribution Data With Flexible Block Size

Platform

- Windows 7 64 bit
- Intel i7-3770 3.40 GHz CPU
- 16.0 GB RAM
- Nvidia Quadro K5000 Graphics Card
- Visual Studio 2010
- CUDA 5.0
- OpenGL and GLUT

Result and Comparison

	raw data	block histogram	encoded block histogram
data size	I00MB	3.2MB	I.5MB (codebook) + I89 KB (templates)
resolution	500×500×100	50x50x10, 32bins	50x50x10, 32bins

- Isabel Hurricane Dataset
- Histogram is a good choice for data reduction, flexible to change number of bins
- Similarity-based coding algorithm is effective to compress histogram data
- Frame rate: 60 fps

Comparing Mean Query

Comparing Variance Query

Comparing Entropy Query

Flexible Block Size of Fuel Dataset

- This is entropy query
- Raw data resolution: 64*64*64

Analysis

- Only a few blocks has high errors
- Error is prominent in blank area

Future Work

- Optimize program
 - currently it is not fully parallel
- Reduce error
 - some errors will affect the blank area

Acknowledgement

- Professor Han-Wei Shen and Professor Huamin Wang
- Abon
- All group members

Actual Blockwise Entropies

Approximate (Decoded) Blockwise Entropies

L2-Error of Blockwise Entropies

Blocks where L2 of Entropy > 0.9

