Total No.	of Questions: 8]	SEAT No.:					
P-7858		[Total	No. of Pages : 3				
	[6190] 16 1						
	[6180]-46A	•					
T.E. (Computer Engineering) THEORY OF COMPUTATION							
Time: 21/		[M]	lax. Marks: 70				
	ns to the candidates :						
1)	Answer Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8.						
2)	Neat diagrams must be drawn wherever necessary.	3					
3)	Figures to the right side indicate full marks.						
4)	Assume suitable data, if necessary.						
Q1) a)	Check whether the string 10010 is a member	of the langi	190e generated				
2 1/ u)	by following grammar by using Cocke-Young	(\ \ \"					
7		3	8 13				
	$S \rightarrow AB BC$						
	$A \rightarrow BA 0$						
	$B \rightarrow CC 1$						
	$C \rightarrow AB 0$						
b)	Obtain grammar to generate the following lan	guage:	[8]				
,	$L = \{w : n_a(w) \text{ mod } 2=0 \text{ where } w \in \{a, b\}^*\}$						
	· T	umber of a's	in the string is				
	either zero or in multiple of 2 only.						
	OR						
Q2) a)	Ø.*		. [9]				
~ / /	G DILA		8.				
	$S \rightarrow aB bA$	2					
	$A \rightarrow a aS bAA$	0,00					
	$B \rightarrow b bS aBB$		in the string is [9]				
	Derive using Leftmost Derivation and Rightm	ost Derivatio					
	i) bbaaba ii) aaabbb.	90					
	Draw parse tree for the same.						
	i) bbaaba ii) aaabbb. Draw parse tree for the same.						
	29.		P.T.O.				

	b)	Find context Free Grammar generating each of these languages.				
		i) $L1=\{a^ib^jc^k \text{ such that } i=j+k \text{ where } I, j, k>=1\}$				
		ii) L2= $\{a^i b^j c^k \text{ such that } j = i + k \text{ where } I, j, k > = 1\}$				
Q3)	a)	Construct a PDA equivalent to following CFG [10]				
		i) $X \to 0$ $X \to 0X$ $X \to 1XX$ $X \to XX1$ $X \to X1X$				
		ii) S BD BC				
		D→SC				
		$C \rightarrow AA$ $B \rightarrow 0$				
	1					
	1 _)	$A \rightarrow 1$ Design a DDA for a language $A = (anh 2nR > -1)$				
	b)	Design a PDA for a language $L=\{a^nb^{2n} n>=1\}$ [8]				
<i>Q4</i>)	a)	Construct a PDA accepting the language $L=\{a^nb^ma^n \mid n,m>=0\}$ by null				
		store. [6]				
	b)	Design a DDA for a language I (X X/IXC(1) * and atming VI is the				
		reverse of string X}.				
	c)	Obtain a PDA to accept the language -				
		Design a PDA for a language $L = \{XcX^* X \in \{a,b\}^* \text{ and string } X^* \text{ is the reverse of string } X \}$. Obtain a PDA to accept the language - $L = \{w w \in \sum^*, \sum = \{a,b\} \text{ and } n_a(w) = n_b(w)\} \text{ by final state} $ [6]				
Q 5)	a)	Design a Turing machine for well formed parenthesis [6]				
	b)	Design a TM that accepts all strings over {1,0} with even number of 0's and even number of 1's. [8]				
	c)	Construct TM that recognizes language over alphabet 0,1 such that string ends in 10. OR [4]				

[6180]-46A

Q6)	a)	onstruct a TM to accept the language over $\{0,1\}$ containing the substring 01.			
	b)	Design a TM to multiply a unary number by 2. [8]			
	c)	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	[4]		
Q 7)	a)	What is post correspondence problem? Explain PCP with followinstance of the set of the strings A and B.	wing [8]		
		State and explain with suitable example Decidable Problem ii) Undecidable Problem iii) Church-Turing Thesis.			
	b)	State and explain with suitable example	[9]		
		Decidable Problem			
		ii) Undecidable Problem			
		iii) Church-Turing Thesis.			
Q8)	a)	What is reducibility in Computability Theory? Explain in detail			
		polynomial - time reduction approach for proving that a problem is	polynomial - time reduction approach for proving that a problem is NP-		
	L)	Complete.	[8]		
	b)	Explain with suitable example and diagrams [9]			
		ii) Multitane TM	9		
		iii) Universal TM	~		
		i) Halting problem of TM ii) Multitape TM iii) Universal TM			
0000					
		Complete. Explain with suitable example and diagrams i) Halting problem of TM ii) Multitape TM iii) Universal TM			