Deep Neural Network

Vimal Manohar¹, Daniel Povey ¹², Sanjeev Khudanpur¹²

¹Center for Language and Speech Processing ²Human Language Technology Center of Excellence The Johns Hopkins University, Baltimore, MD 21218, USA

CLSP Seminar, 2015

Outline

Introduction

- Introduction
- Unsupervised Training
- 3 Discriminative training
 - Maximum Mutual Information (MMI)
 - Lattice Entropy
 - Lattice computations
- Deep Neural Network
 - Baseline
 - Multilingual-inspired architecture
 - DNN Priors
- 5 Experiments

References

Experiments

Outline

Introduction

- Introduction
- 2 Unsupervised Training
- 3 Discriminative training
 - Maximum Mutual Information (MMI)
 - Lattice Entropy
 - Lattice computations
- Deep Neural Network
 - Baseline
 - Multilingual-inspired architecture
 - DNN Priors
- 5 Experiments

Experiments

References

Speech Data

Introduction

- Audio: Spectral features extracted from wav files
- Transcription: Word sequences (subtitles)

Speech Data

Introduction

- Audio: Spectral features extracted from wav files
- Transcription: Word sequences (subtitles)
- Why do we want to use untranscribed data?

References

Introduction

- Unsupervised Training
- - Maximum Mutual Information (MMI)
 - Lattice Entropy
 - Lattice computations
- - Baseline
 - Multilingual-inspired architecture
 - DNN Priors

Unsupervised Approaches - Motivations

Why do we want to use untranscribed data?

- Availability of exponentially large amounts of untranscribed acoustic data
- Interests in speech recognition in low-resource languages
- Test data changes with time.

Unsupervised Approaches - Self-training

 Self-training: Use a seed model trained on transcribed data to transcribe the audio

Unsupervised Approaches - Self-training

 Self-training: Use a seed model trained on transcribed data to transcribe the audio

Introduction

 Self-training: Use a seed model trained on transcribed data to transcribe the audio

Unsupervised Approaches - Self-training

Introduction

- Data selection can involve:
 - Confidence-based filtering to select 'good' data
 - Confidence-based weighting
- Sentence-level scores, word-level scores, frame-level scores etc.

Problem

The decision for using the data (filtering or weighting) is done before training, and not incorporated in the training process.

Solution

Incorporate confidences into the objective function

Problem

The decision for using the data (filtering or weighting) is done before training, and not incorporated in the training process.

Solution

Incorporate confidences into the objective function

Outline

- Introduction
- 2 Unsupervised Training
- 3 Discriminative training
 - Maximum Mutual Information (MMI)
 - Lattice Entropy
 - Lattice computations
- Deep Neural Network
 - Baseline
 - Multilingual-inspired architecture
 - DNN Priors
- 5 Experiments

Acoustic Model

Basic Speech Recognition problem:

• Given an acoustic feature sequence O, find the transcript (word sequence) W that best describes it.

$$\hat{W} = \arg \max_{W \in \mathcal{H}} P(W \mid O)$$

$$= \arg \max_{W \in \mathcal{H}} P_A(O \mid W) P_L(W) \tag{1}$$

where

 $P_A(O \mid W)$ is called the Acoustic Model, $P_I(W)$ is called the Language Model

Acoustic Model

- Labelled training data $(\mathcal{D}_{\mathcal{L}})$: L utterances with
 - Acoustic features $\mathbf{O}^{(1)}, \mathbf{O}^{(2)} \dots \mathbf{O}^{(L)}$
 - Corresponding transcripts $W^{(1)}, W^{(2)} \dots W^{(L)}$
- Maximum Likelihood Estimation

$$\mathcal{F}_{\mathrm{ML}}(\lambda) = \sum_{r=1}^{L} \log P_{A}(\mathbf{O}^{(r)} \mid W^{(r)}; \lambda)$$
 (2)

Maximum Mutual Information Estimation

$$\mathcal{F}_{\mathrm{MMI}}(\lambda) = \mathbb{I}(\mathbf{0}: W) \tag{3}$$

Maximum Mutual Information (MMI)

$$\begin{split} \mathcal{F}_{\mathrm{MMI}}(\lambda) = & \mathbb{I}(\mathbf{O}; W) \\ = & \frac{1}{L} \sum_{r=1}^{L} \log \frac{P(\mathbf{O}^{(r)}, W^{(r)})}{P(\mathbf{O}^{(r)})P(W^{(r)})} \quad \text{(Empirical MI)} \\ \propto & \frac{1}{L} \sum_{r=1}^{L} \log P(W^{(r)} \mid \mathbf{O}^{(r)}) \quad \text{(Conditional Likelihood)} \\ \propto & \frac{1}{L} \sum_{r=1}^{L} \log \frac{P_{A}(\mathbf{O}^{(r)} \mid W^{(r)})}{\sum_{W'} P_{A}(\mathbf{O}^{(r)} \mid W') P_{L}(W')} \end{split}$$

Log-likelihood under — Log-likelihood under the reference transcript — all possible transcripts.

Log-likelihood under the reference transcript

Log-likelihood under all possible transcripts.

Problem

Introduction

- Standard discriminative training is very sensitive to the accuracy of the transcripts (Mathias et al. [2005]).
- So self-training methods do not work very well with discriminative training.

Solution

As before, we modify the objective function

35

 Discriminative training tries to make the model maximally discriminative of the reference transcript against the competing hypotheses.

- Standard discriminative training is very sensitive to the

 Discriminative training tries to make the model maximally discriminative of the reference transcript against the competing hypotheses.

Problem

- Standard discriminative training is very sensitive to the accuracy of the transcripts (Mathias et al. [2005]).
- So self-training methods do not work very well with discriminative training.

Solution

As before, we modify the objective function.

 Discriminative training tries to make the model maximally discriminative of the reference transcript against the competing hypotheses.

Problem

- Standard discriminative training is very sensitive to the accuracy of the transcripts (Mathias et al. [2005]).
- So self-training methods do not work very well with discriminative training.

Solution

As before, we modify the objective function.

Introduction

Transcribed data – Conditional Likelihood

$$\mathcal{F}_{\mathrm{MMI}}(\lambda) = \frac{1}{L} \sum_{r=1}^{L} \log \mathbb{P}(W^{(r)} \mid \mathbf{O}^{(r)})$$

Introduction

Maximum Mutual Information (MMI)

Transcribed data – Conditional Likelihood

$$\mathcal{F}_{\mathrm{MMI}}(\lambda) = \frac{1}{L} \sum_{r=1}^{L} \log \mathbb{P}(W^{(r)} \mid \mathbf{O}^{(r)})$$

Automatically transcribed data – Conditional Likelihood

$$\mathcal{F}_{\mathrm{MMI}}(\lambda) = \frac{1}{U} \sum_{r=1}^{U} \sum_{W} \mathbb{P}(W \mid \mathbb{O}^{(r)}) \log \mathbb{P}(W^{(r)} \mid \mathbb{O}^{(r)})$$
$$= -\sum_{1}^{U} \mathbb{H}(W \mid \mathbb{O}^{(r)}; \lambda)$$

Deep Neural Network

Maximum Mutual Information (MMI)

Transcribed data – Conditional Likelihood

$$\mathcal{F}_{\mathrm{MMI}}(\lambda) = \frac{1}{L} \sum_{r=1}^{L} \log \mathbb{P}(W^{(r)} \mid \mathbf{O}^{(r)})$$

Untranscribed data – Negative Conditional Entropy

$$\mathcal{F}_{\text{NCE}}(\lambda) = \frac{1}{U} \sum_{r=1}^{U} \sum_{W} \mathbb{P}(W \mid \mathbf{O}^{(r)}) \log \mathbb{P}(W \mid \mathbf{O}^{(r)})$$
$$= -\sum_{r=1}^{U} \mathbb{H}(W \mid \mathbf{O}^{(r)}; \lambda)$$

Lattice Entropy

 Take weighted average over all possible hypotheses in the lattice

$$\mathcal{F}_{\text{NCE}}(\lambda) = \sum_{r=1}^{U} \sum_{W} \mathbb{P}(W \mid \mathbf{O}^{(r)}; \lambda) \log \mathbb{P}(W \mid \mathbf{O}^{(r)}; \lambda)$$
$$= -\sum_{r=1}^{U} \mathbb{H}(W \mid \mathbf{O}^{(r)}; \lambda)$$

- This is exactly minimizing the lattice entropy.
- Minimizing lattices entropy makes the model more confident of one of the hypotheses.

Lattice Entropy – Forward-Backward

Forward-backward algorithm¹ over the lattice using WFSTs

•
$$Z = \sum_{\pi \in \mathcal{L}} P(\pi)$$

Introduction

$$\alpha_p(s) = \sum_{s} \alpha_p(s') p_{s's}$$

$$\beta_{p}(s) = \sum_{s'} \beta_{p}(s') p_{s's}$$

Experiments

References

¹Li and Eisner [2009], Huang [2012]

$$\mathcal{F}_{\text{NCE}}(\lambda) = \sum_{r=1}^{U} \sum_{W} \mathbb{P}(W \mid \mathbf{O}^{(r)}; \lambda) \log \mathbb{P}(W \mid \mathbf{O}^{(r)}; \lambda)$$

Lattice Entropy – WFST

Introduction

$$\mathcal{F}_{\text{NCE}}(\lambda) = \sum_{r=1}^{U} \sum_{W} \mathbb{P}(W \mid \mathbf{O}^{(r)}; \lambda) \log \mathbb{P}(W \mid \mathbf{O}^{(r)}; \lambda)$$
$$H_{\mathcal{L}} = -\sum_{\pi \in \mathcal{L}} P(\pi) \log P(\pi)$$

35

Lattice Entropy – WFST

$$\mathcal{F}_{\text{NCE}}(\lambda) = \sum_{r=1}^{U} \sum_{W} \mathbb{P}(W \mid \mathbf{O}^{(r)}; \lambda) \log \mathbb{P}(W \mid \mathbf{O}^{(r)}; \lambda)$$
$$H_{\mathcal{L}} = -\sum_{\pi \in \mathcal{L}} P(\pi) \log P(\pi)$$

- Do forward-backward, but with a new semiring.
- Replace p_a with a pair $\langle p_a, p_a \log p_a \rangle$.

Operation	Value
$\langle p_1, p_1 \log p_1 \rangle \otimes \langle p_2, p_2 \log p_2 \rangle$	$< p_1 p_2, p_1 p_2 \log p_2 + p_2 p_1 \log p_1 >$
$ < p_1, p_1 \log p_1 > \oplus < p_2, p_2 \log p_2 >$	$< p_1 + p_2, p_1 \log p_1 + p_2 \log p_2 >$
Zero()	< 0,0 >
One()	< 1,0 >

Lattice Entropy – WFST

$$H_{\mathcal{L}} = -\sum_{\pi \in \mathcal{L}} P(\pi) \log P(\pi)$$

Operation	Value
$< p_1, p_1 \log p_1 > \otimes < p_2, p_2 \log p_2 >$	$< p_1 p_2, p_1 p_2 \log p_2 + p_2 p_1 \log p_1 >$
$< p_1, p_1 \log p_1 > \oplus < p_2, p_2 \log p_2 >$	$< p_1 + p_2, p_1 \log p_1 + p_2 \log p_2 >$
Zero()	< 0,0 >
One()	< 1,0 >

Lattice Entropy – Gradients

Introduction

$$H_{\mathcal{L}} = -\sum_{\pi \in \mathcal{L}} P(\pi) \log P(\pi)$$
 $\nabla H_{\mathcal{L}} = ??$

- We have used a Forward-Backward to compute the objective function.
- But we need derivatives of the objective function.
- The derivatives are aggregated over the arcs for each

Lattice Entropy – Gradients

$$H_{\mathcal{L}} = -\sum_{\pi \in \mathcal{L}} P(\pi) \log P(\pi)$$
 $\nabla H_{\mathcal{L}} = ??$

- We have used a Forward-Backward to compute the objective function.
- But we need derivatives of the objective function.
- Another pass over lattice.
- The derivatives are aggregated over the arcs for each context-dependent state and then backpropagated through the DNN.

Outline

Introduction

- Introduction
- 2 Unsupervised Training
- 3 Discriminative training
 - Maximum Mutual Information (MMI)
 - Lattice Entropy
 - Lattice computations
- Deep Neural Network
 - Baseline
 - Multilingual-inspired architecture
 - DNN Priors
- Experiments

Experiments

References

Deep Neural Network - CE Supervised training

- $\mathcal{D}_{\mathcal{L}} = \{(\mathbf{O}^{(r)}, W^{(r)})_{r=1}^{L}\}$
- Word sequences W^(r) are converted to frame-alignment using Viterbi alignment
- For each frame t, we have a context-dependent phone j
- $\bullet \ \mathcal{D}_{\mathcal{L}} = \{(\mathbf{o}_t, \mathbf{z}_t) : t \in \{1 \cdots N_L\}\}$

$$\mathcal{F}_{CE} = -\sum_{t} \sum_{j=1}^{K} z_{tj} \log p(j \mid \mathbf{o}_{t})$$
(4)

Deep Neural Network - CE Supervised training

• $\mathcal{D}_{\mathcal{L}} = \{ (\mathbf{O}^{(r)}, W^{(r)})_{r=1}^{L} \}$

Introduction

- Word sequences $W^{(r)}$ are converted to frame-alignment using Viterbi alignment
- For each frame t, we have a context-dependent phone i
- $\mathcal{D}_{\mathcal{L}} = \{(\mathbf{o}_t, \mathbf{z}_t) : t \in \{1 \cdots N_I\}\}$

$$\mathcal{F}_{CE} = -\sum_{t} \sum_{j=1}^{K} z_{tj} \log p(j \mid \mathbf{o}_{t})$$
(4)

Viterbi alignment

$$\mathcal{D}_{\mathcal{L}} = \{(\mathbf{o}_t, \mathbf{z}_t) : t \in \{1 \cdots N_L\}\}$$

$$\mathcal{F}_{\text{CE}} = -\sum_{t=1}^{N_L} \sum_{i=1}^K z_{tj} \log p(j \mid \mathbf{o}_t)$$

Viterbi decode

$$\mathcal{D}_{\mathcal{U}} = \left\{ (\mathbf{o}_{t}, \mathbf{z}_{t}) : t \in \{1 \cdots N_{U}\} \cap \left\{ t : \frac{\rho_{a}}{Z} \ge 0.7 \right\} \right\}$$

$$\mathcal{F}_{CE} = -\sum_{t=1}^{N_{U}} \sum_{j=1}^{K} z_{tj} \log p(j \mid \mathbf{o}_{t})$$

Viterbi decode

$$\mathcal{D}_{\mathcal{U}} = \left\{ (\mathbf{o}_{t}, \mathbf{z}_{t}) : t \in \{1 \cdots N_{U}\} \cap \left\{ t : \frac{\rho_{a}}{Z} \geq 0.7 \right\} \right\}$$

$$\mathcal{F}_{\text{CE}} = -\sum_{t=1}^{N_U} \sum_{j=1}^{K} z_{tj} \log p(j \mid \mathbf{o}_t)$$

Viterbi decode

$$\mathcal{D}_{\mathcal{U}} = \left\{ (\mathbf{o}_t, \mathbf{z}_t) : t \in \{1 \cdots N_U\} \cap \left\{ t : \frac{\rho_a}{Z} \ge 0.7 \right\} \right\}$$

$$\mathcal{F}_{\mathrm{CE}} = -\sum_{t=1}^{N_U} rac{p_a}{Z} \sum_{j=1}^K z_{tj} \log p(j \mid \mathbf{o}_t)$$

Viterbi decode

Introduction

$$\mathcal{D}_{\mathcal{U}} = \left\{ (\mathbf{o}_t, \mathbf{z}_t) : t \in \{1 \cdots N_U\} \cap \left\{ t : \frac{p_a}{Z} \ge 0.7 \right\} \right\}$$

$$\mathcal{F}_{\text{CE}} = -\sum_{t=1}^{N_U} \frac{p_a}{Z} \sum_{j=1}^K z_{tj} \log p(j \mid \mathbf{o}_t)$$

Input

Unsupervised Training

- Multi-task architecture²
- Final softmax layer corresponding to unlabelled data is discarded at the end of every iteration.
- Scaling down gradients
- Different objective functions

Figure: Baseline Architecture

35

⁴Heigold et al. [2013]

Multi-task architecture².

Figure: During an iteration

⁴Heigold et al. [2013]

- Multi-task architecture².
- Final softmax layer corresponding to unlabelled data is discarded at the end of every iteration.
- Scaling down gradients
- Different objective functions

Figure: After the iteration

35

⁴Heigold et al. [2013]

- Multi-task architecture².
- Final softmax layer corresponding to unlabelled data is discarded at the end of every iteration.

Figure: Before the next iteration

⁴Heigold et al. [2013]

- Multi-task architecture².
- Final softmax layer corresponding to unlabelled data is discarded at the end of every iteration.
- Scaling down gradients

Figure: Scaling down gradients

⁴Heigold et al. [2013]

Multi-task architecture².

- Final softmax layer corresponding to unlabelled data is discarded at the end of every iteration.
- Scaling down gradients
- Different objective functions

Figure: Different objectives

⁴Heigold et al. [2013]

Multi-task architecture².

- Final softmax layer corresponding to unlabelled data is discarded at the end of every iteration.
- Scaling down gradients
- Different objective functions

Figure: Different objectives

⁴Heigold et al. [2013]

Lattice Entropy

Deep Neural Network

Multi-task architecture².
 Final softmax layer corresponding to unlabelled data is discarded at the end of every iteration.
 Softmax (Labelled data)
 Hidden layer
 Hidden layer

 $\mathcal{F}_{ ext{MMI}}$

Scaling down gradients

 Different objective functions

Figure: Different objectives

Input

 \mathbf{o}_t

⁴Heigold et al. [2013]

Multi-task architecture - Advantages

- Reduces the tendency to learn degenerate distributions Since lattice entropy can arbitrarily be made zero
- Force the neural network to also be good on the supervised MMI objective.

Introduction

 The DNN outputs are converted into likelihoods by dividing by a "prior" term:

$$p(\mathbf{o}_i \mid j) = \frac{p(j \mid \mathbf{o}_i)}{P(j)}$$

- The usual way of computing priors is using HMM-GMM reference alignments.
- The prior P(j) is computed here by marginalizing the DNN outputs over the training data.

$$P(j) = \frac{1}{N} \sum_{i=1}^{N} p(j \mid \mathbf{o}_i).$$

The highest change in priors is observed for the silence pdfs.

- - Maximum Mutual Information (MMI)
 - Lattice Entropy
 - Lattice computations
- - Baseline
 - Multilingual-inspired architecture
 - DNN Priors
- **Experiments**

Experimental Setup

- Corpora:
 - Fisher English 100 hours labelled data + 250 hours unlabelled
 - Babel 4 languages in *limitedLP* condition (10 hours labelled data + 60 hours unlabelled data)
- Language model trained only on the labelled data.
- Acoustic model
 - DNN with p-norm non-linearities
 - fMLLR speaker-adapted LDA+MLLT features as input
- WER improvements also found to hold with using Time-delay neural networks (TDNN) and i-vector adaptation systems
- Tried 3-gram, 2-gram and unigram LMs for decoding unlabelled data. 3-gram gave the best performance.

Introduction

Table: WER (%) results on Fisher English

Type	Objective		dev	test	
	Sup	Unsup	uev	lest	
Supervised training	aining <i>CE</i> -		32.0	31.2	
(100hr)	sMBR ³	-	29.6	28.5	
Self-training	CE	CE ⁴	32.5		
(100hr + 250hr)	sMBR	sMBR			
Self-training in	CE	CE	30.5	29.8	
Multitask architecture	sMBR	sMBR	29.9	28.8	
Semi-supervised in Multitask architecture					
Oracle Supervised training (350hr)	sMBR				

 $^{^3}$ sMBR = state Minimum Bayes Risk

Vesely et al. [2013]

Introduction

Table: WER (%) results on Fisher English

Type	Objective		dev	test
туре	Sup	Unsup	uev	lest
Supervised training	CE	CE -		31.2
(100hr)	sMBR ³	sMBR ³ -		28.5
Self-training	CE CE ⁴		32.5	_
(100 hr + 250 hr)	sMBR	sMBR	_	_
Self-training in	CE	CE	30.5	29.8
Multitask architecture	sMBR	sMBR	29.9	28.8
Semi-supervised in Multitask architecture				
Oracle Supervised training (350hr)	sMBR			

³sMBR = state Minimum Bayes Risk

35

Experiments

⁴Vesely et al. [2013]

Introduction

Table: WER (%) results on Fisher English

Type	Objective		dev	test	
туре	Sup	Unsup	uev	lest	
Supervised training	CE	CE -		31.2	
(100hr)	sMBR ³ -		29.6	28.5	
Self-training	CE CE ⁴		32.5	_	
(100 hr + 250 hr)	sMBR sMBR		_	_	
Self-training in	CE	CE	30.5	29.8	
Multitask architecture	sMBR	sMBR	29.9	28.8	
Semi-supervised in	sMBR	Lattice Entropy	29.4	28.1	
Multitask architecture					
Oracle Supervised	sMBR				
training (350hr)					

³sMBR = state Minimum Bayes Risk

⁴Vesely et al. [2013]

Introduction

Table: WER (%) results on Fisher English

Type	Objective		dev	test	
туре	Sup	Unsup	uev	iesi	
Supervised training	CE -		32.0	31.2	
(100hr)	sMBR ³ -		29.6	28.5	
Self-training	CE CE ⁴		32.5	_	
$(100 {\sf hr} + 250 {\sf hr})$	sMBR	sMBR sMBR		_	
Self-training in	CE	CE CE		29.8	
Multitask architecture	sMBR sMBR		29.9	28.8	
Semi-supervised in	sMBR	BR Lattice Entropy	29.4	28.1	
Multitask architecture	SIVIDIN	Ганисе Еппору	29.4	20.1	
Oracle Supervised	sMBR	_	28.5	27.5	
training (350hr)					

³sMBR = state Minimum Bayes Risk

⁴Vesely et al. [2013]

Introduction

Table: WER (%) results on Fisher English

Type	Objective		dev	test
туре	Sup	Unsup	uev	lest
Supervised training	CE -		32.0	31.2
(100hr)	sMBR ³	sMBR ³ -		28.5
Self-training	CE CE ⁴		32.5	_
(100 hr + 250 hr)	sMBR	BR sMBR		_
Self-training in	CE	CE CE		29.8
Multitask architecture	sMBR	sMBR sMBR		28.8
Semi-supervised in	sMBR	Lattice Entropy	29.4	28.1
Multitask architecture	SIVIDIN	Гатисе Ептору		
Oracle Supervised	sMBR		28.5	27.5
training (350hr)	SIVIDI	_	20.5	21.5

³sMBR = state Minimum Bayes Risk

35

⁴Vesely et al. [2013]

Results - Babel

Table: WER (%) results on Babel – (10hr + 60hr)

Language		Objective	dev2h	dev10h	
Language	Sup	Unsup	uevzii		
Assamese	sMBR	-	63.9	62.2	
Assamese	sMBR	Lattice Entropy	63.4	61.6	
Bengali	sMBR	-	66.3	64.1	
Bengali	sMBR	Lattice Entropy	65.8	63.8	
Zulu	sMBR	-	65.9	67.3	
Zulu	sMBR	Lattice Entropy	65.7	67.2	
Tamil	sMBR	-	76.3	74.8	
Tamil	sMBR	Lattice Entropy	76.1	74.6	

Summary

- Conditional entropy is shown to be a good sequence-discriminative criterion for semi-supervised training.
- Without explicit filtering of data, the method is shown to outperform self-training methods.
- Multilingual-inspired DNN architecture used for semi-supervised training. This works better than sharing single output softmax layer.

Future work

Introduction

- While we can get small gains using lattice posterior confidences, we need to work on better confidence metrics to get larger improvements in semi-supervised training.
- Use sMBR-like criterion for training on unlabelled data.
- Study the effect of amount of unlablled data versus the labelled data and the effect of the quality of the unlabelled data.

Experiments

References

Introduction

G. Heigold, V. Vanhoucke, A. Senior, P. Nguyen, M. Ranzato, M. Devin, and J. Dean. In *ICASSP 2013*, pages 8619–8623, May 2013.

Discriminative training

- J. T. Huang. PhD thesis, 2012.
- Z. Li and J. Eisner. In Conf. on Empirical Methods in NLP, volume 1, pages 40-51. Association for Computational Linguistics, 2009.
- L. Mathias, G. Yegnanarayanan, and J. Fritsch. In ICASSP (1), pages 109-112, 2005.
- K. Vesely, M. Hannemann, and L. Burget. In ASRU 2013, pages 267-272. IEEE. 2013.

35