

1604C023 - Statistics

Uji Hipotesis Uji Varians – Uji Proporsi

Week 14

Program Studi Teknik Informatika

Fakultas Teknik – Universitas Surabaya

Tujuan Pembelajaran

Mahasiswa

- 1. mengenal distribusi chi square dan distribusi f
- 2. mampu melakukan uji varians baik 1 populasi maupun 2 populasi
- 3. mampu melakukan uji proporsi baik 1 populasi maupun 2 populasi

Uji Varians 1 Populasi

Syarat

- Data populasi yang diambil sebagai sample harus berdistribusi normal
- Statistik uji menggunakan distribusi *Chi-Square*
- Uji *chi-square* untuk varians sangat sensitif terhadap penyimpangan dari asumsi normalitas. Oleh karena itu, jika populasi tidak berdistribusi normal, khususnya untuk ukuran sampel yang kecil, keakuratan pengujian dapat sangat terpengaruh.

Hipotesis Uji Varians 1 Populasi

$$H_0: \sigma^2 = \sigma_0^2$$
 atau $H_0: \sigma^2 \ge \sigma_0^2$

$$H_1:\sigma^2<\sigma_0^2$$

$$H_0: \sigma^2 = \sigma_0^2$$
 atau $H_0: \sigma^2 \le \sigma_0^2$

$$H_1: \sigma^2 > \sigma_0^2$$

$$H_0: \sigma^2 = \sigma_0^2$$

$$H_1: \sigma^2 \neq \sigma_0^2$$

 σ_0^2 = konstanta yang menyatakan parameter dari suatu populasi

Uji Varians 1 Populasi

Statistic Uji

$$\chi^2_{hitung} = \frac{(n-1)s^2}{\sigma_0^2}$$

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$$

$$df = n - 1$$

$$s^2$$
 = varians sample

$$n =$$
banyaknya anggota sample

$$df$$
 = derajat kebebasan

$$x_i$$
 = sample ke- i

$$\bar{x}$$
 = rata-rata sample

Penentuan Daerah Penolakan

$$H_0: \sigma^2 = \sigma_0^2$$
 atau $H_0: \sigma^2 \ge \sigma_0^2$ Tolak Ho: $\chi^2_{hitung} < \chi^2_{1-\alpha}$

$$H_1: \sigma^2 < \sigma_0^2$$

$$H_0: \sigma^2 = \sigma_0^2$$
 atau $H_0: \sigma^2 \le \sigma_0^2$ Tolak Ho: $\chi^2_{hitung} > \chi^2_{\alpha}$

$$H_1: \sigma^2 > \sigma_0^2$$

$$H_0: \sigma^2 = \sigma_0^2$$

$$H_0: \sigma^2 = \sigma_0^2$$
$$H_1: \sigma^2 \neq \sigma_0^2$$

Tolak Ho:

$$\chi^{2}_{hitung} > \chi^{2}_{\frac{\alpha}{2}}$$

$$\chi^{2}_{hitung} < \chi^{2}_{1-\frac{\alpha}{2}}$$

Kurva Chi Square

Tabel Distribusi- χ^2 : Luas ujung kurva (*curve tail areas*)

2			
χ^2_{α}	~ ~ /	1.0	_
$N\alpha$ =	: 5% .	, dt =	=5

l						α				
ν	0.995	0.990	0.975	0.950	0.900	0.100	0.050	0.025	0.010	0.005
1	0.000	0.000	0.001	0.004	0.016	2.706	3.841	5.024	6.635	7.879
2	0.010	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345	12.838
4	0.207	0.297	0.484	0.711	1.064	7.779	9 488	11 143	13.277	14.860
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.832	15.086	16.750
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	18.548
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475	20.278
8	1.344	1.647	2.180	2.733	3.490	13.362	15.507	17.535	20.090	21.955
9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666	23.589

Contoh

Selama ini, perusahaan minyak goreng memiliki mesin pengisi minyak goreng dengan keseragaman isi botol sama dengan 10 ml². Perusahaan ingin mengetahui apakah terjadi perubahan keseragaman isi botol. Untuk itu diambil sampel acak dan diperoleh hasilnya sebagai berikut:

Botol ke	1	2	3	4	5	6	7	8	9	10
Isi (ml)	1602	1597	1596	1601	1599	1603	1604	1602	1601	1600

Dengan α = 5%, bantulah perusahaan untuk melakukan pengujian apakah terjadi perubahan keseragaman isi botol?

Latihan

Berdasarkan data masa lampau diketahui bahwa standar deviasi dari air limun dalam botol yang pengisiannya dilakukan oleh mesin adalah 0.25 cc. Akhir-akhir ini diduga bahwa mesin telah berjalan tidak sebagaimana mestinya, oleh karena variansi isi botol diduga telah menjadi besar. Untuk menentukan apakah perlu atau tidak melakukan pengecekan terhadap mesin, diteliti sebanyak 20 botol yang telah diisi dan dihitung standar deviasinya dan didapat hasilnya s = 0.32 cc. Lakukan pengujian apakah perlu melakukan pengecekan terhadap mesin dengan $\alpha = 5\%$.

Uji Varians - 2 Populasi

Syarat

- Uji perbedaan varians 2 populasi independent didasarkan pada rasio kedua varians sample
- Data di kedua populasi yang diambil sebagai sample harus terdistribusi normal
- Sumber data pada populasi pertama harus independen terhadap sumber data di populasi kedua (*independent sample*)
- Statistik uji menggunakan distribusi F

Distribusi F (Fisher - Snedecor)

Distribusi F (Fisher - Snedecor)

1

Titik Persentase Distribusi F untuk Probabilita + 0,05

3

		2	ing (N1)	pembila	df untuk	0						df untuk
12	11	10	9	8	7	6	5	4	3	2	1	penyebut (N2)
244	243	242	241	239	237	234	230	225	216	199	161	1
19.41	19.40	19.40	19,38	19.37	19,35	19.33	19.30	19.25	19.16	19.00	18,51	2
8.74	8.76	8.79	8.81	8.85	8.89	8.94	9.01	9.12	9.28	9.55	10.13	3
5.91	5.94	5.96	6.00	6.04	6.09	6.16	6.26	6.39	6.59	6.94	7.71	4
4.68	4.70	4.74	4.77	4.82	4.88	4.95	5.05	5.19	5.41	5.79	6.61	5
4.00	4.03	4.06	4.10	4.15	4.21	4.28	4.39	4.53	4.76	5.14	5.99	6
3.57	3.60	3.64	3.68	3.73	3.79	3.87	3.97	4.12	4.35	4.74	5.59	7

$$X \sim F(\alpha = 5\%, df_1 = 5, df_2 = 7)$$

Hipotesis Uji Varians 2 Populasi

$$H_0: \sigma_1^2 = \sigma_2^2$$
 atau $H_0: \sigma_1^2 \ge \sigma_2^2$ **Tolak Ho:** $\frac{S_1^2}{S_2^2} < F_{1-\alpha, n_1-1, n_2-1}$

$$H_0: \sigma_1^2 = \sigma_2^2$$
 atau $H_0: \sigma_1^2 \le \sigma_2^2$ **Tolak Ho:** $\frac{S_1^2}{S_2^2} > F_{\alpha, n_1 - 1, n_2 - 1}$

$$H_0: \sigma_1^2 = \sigma_2^2$$
 $H_1: \sigma_1^2 \neq \sigma_2^2$
 $Tolak Ho: \frac{S_1^2}{S_2^2} > F_{\alpha/2, n_1 - 1, n_2 - 1}$ atau $\frac{S_1^2}{S_2^2} < F_{1 - \alpha/2, n_1 - 1, n_2 - 1}$

Statistik Uji

$$F_{Hitung} = \frac{s_1^2}{s_2^2}$$

$$df_1 = n_1 - 1$$
$$df_2 = n_2 - 1$$

$$s_1^2$$
 = varians dari kelompok sample ke-1

$$s_1^2$$
 = varians dari kelompok sample ke-2

$$n_1$$
 = banyaknya anggota kelompok sample ke-1

$$n_2$$
 = banyaknya anggota kelompok sample ke-2

$$df_1$$
 = derajat kebebasan kelompok sample ke-1

$$df_2$$
 = derajat kebebasan kelompok sample ke-2

Contoh

Sebuah eksperimen dilakukan untuk mengetahui besarnya pengurangan kebisingan oleh bahan peredam suara pada kompartemen mobil. Bahan yang digunakan untuk uji coba adalah bahan A dan B. Hasil eksperimen sebagai berikut:

Bahan A: 8 kompartemen

41, 43, 60, 56, 85, 79, 51, 49 (dB)

Bahan B: 9 kompartemen

73, 67, 83, 70, 66, 68, 92, 76, 59 (dB)

Lakukan pengujian apakah varian dari bahan A lebih kecil dari bahan B. Gunakan $\alpha = 5\%$.

Latihan

Karyawan bank X menduga bahwa gaji untuk karyawan baru baik wanita maupun pria berdistribusi normal. Karyawan tersebut ingin menguji dengan H₀: varian gaji karyawan baru pria sama dengan varian gaji karyawan baru wanita. Untuk itu dilakukan pengambilan sample sebanyak 10 karyawan baru pria dan 7 karyawan baru wanita. Didapatkan varian dari karyawan baru pria = 275 dan wanita = 225. Gunakan α = 10% dan H₁: varian gaji karyawan baru pria TIDAK sama dengan varian gaji karyawan baru wanita.

Uji Proporsi

- Uji ini digunakan untuk mengetahui kebenaran dari pernyataan terkait dengan proporsi populasi
- Uji proporsi dengan menggunakan Z test dapat dilakukan apabila:

```
X \ge 5 dan (n - X) \ge 5 dengan:
```

X = the number of events of interest

n =banyaknya sample

Hipotesis Uji Proporsi 1 Populasi

Ada 3 macam hipotesis

$$H_0: p = p_0$$
 atau $H_0: p \ge p_0$
 $H_1: p < p_0$

$$H_0: p = p_0$$
 atau $H_0: p \le p_0$
 $H_1: p > p_0$

$$H_0: p = p_0$$
$$H_1: p \neq p_0$$

p₀ = konstanta yang menyatakan besarnya proporsi dari suatu populasi

Statistik Uji

$$Z_{hitung} = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0 * q_0}{n}}}$$

$$\hat{p} = \frac{X}{n}$$

$$n = jumlah sample$$

$$\hat{p} = \text{proporsi sample}$$

$$q_0 = 1 - p_0$$

Penentukan penolakan H₀

$$H_0: p = p_0$$
 atau $H_0: p \ge p_0$ Tolak Ho: $\mathbf{Z}_{\mathbf{hitung}} < -\mathbf{Z}_{\alpha}$

$$H_1: p < p_0$$

$$H_0: p = p_0$$
 atau $H_0: p \le p_0$ Tolak Ho: $\mathbf{Z}_{\mathbf{hitung}} > \mathbf{Z}_{\alpha}$

$$H_1: p > p_0$$

$$H_0: p = p_0$$
 Tolak Ho: $\mathbf{Z}_{hitung} < -\mathbf{Z}_{\alpha/2}$ atau $\mathbf{Z}_{hitung} > \mathbf{Z}_{\alpha/2}$

$$H_1: p \neq p_0$$

Contoh

Bagian pemasaran menyatakan bahwa selama ini sebuah survey memiliki tingkat respon hanya 4%. Untuk mengetahui kebenaran dari informasi tersebut, dilakukan pengujian dengan mengambil *random sample* dari 500 objek yang disurvey. Ternyata survey hanya direspon oleh 25 responden. Lakukan pengujian pada signifikan level = 0.05.

Latihan

Hasil sensus 5 tahun yang lalu mencatat bahwa 20% penduduk hidup di bawah rata-rata. Untuk mengetahui apakah % tersebut sudah berubah atau tidak, diambil sample sebanyak 500 keluarga dan diperoleh hasil bahwa 91 keluarga hidup di bawah rata-rata. Lakukan pengujian untuk menentukan apakah taraf hidup penduduk sudah berubah atau belum!

Uji ini digunakan untuk menentukan apakah ada perbedaan proporsi yang menyolok antara 2 populasi independen.

Hipotesis Uji Proporsi 2 Populasi

Ada 3 macam hipotesis

1.
$$H_0: p_1 - p_2 = D_0$$
 atau $H_0: p_1 - p_2 \ge D_0$ $H_1: p_1 - p_2 < D_0$

2.
$$H_0: p_1 - p_2 = D_0$$
 atau $H_0: p_1 - p_2 \le D_0$
 $H_1: p_1 - p_2 > D_0$

3.
$$H_0: p_1 - p_2 = D_0$$

 $H_1: p_1 - p_2 \neq D_0$

Variabel acak akan mendekati distribusi normal apabila:

 n_1 dan n_2 besar

• $X_1 = \text{jumlah sukses}$ dalam sample n_1 dari populasi 1 dengan proporsi p_1 $\hat{p}_1 - \frac{x_1}{2}$

- $X_2 = \text{jumlah sukses}$ dalam sample n_1 dari populasi 2 dengan proporsi p_2 $\hat{p}_2 = \frac{x_2}{n}$
- Proporsi sukses dalam sample gabungan dikenal dengan nama *pooled estimator p* didefinisikan : $\hat{p} = \frac{x_1 + x_2}{n_1 + n_2}$

Statistik Uji

$$Z_{hitung} = \frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{\hat{p}(1-\hat{p})}\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

Penentukan penolakan H₀

$$H_0: p_1 - p_2 = D_0$$
 atau $H_0: p_1 - p_2 \ge D_0$

$$H_1: p_1 - p_2 < D_0$$

Tolak Ho :
$$\mathbf{Z}_{\text{hitung}} < -\mathbf{Z}_{\alpha}$$

$$H_0: p_1 - p_2 = D_0$$
 atau $H_0: p_1 - p_2 \le D_0$

$$H_1: p_1 - p_2 > D_0$$

Tolak Ho:
$$\mathbb{Z}_{hitung} > \mathbb{Z}_{\alpha}$$

$$H_0: p_1 - p_2 = D_0$$

$$H_1: p_1 - p_2 \neq D_0$$

Tolak Ho :
$$\mathbf{Z}_{\text{hitung}} < -\mathbf{Z}_{\alpha/2}$$
 atau $\mathbf{Z}_{\text{hitung}} > \mathbf{Z}_{\dot{\alpha}/2}$

Contoh

Seorang direktur personalia ingin mengevaluasi kelayakan pakai dua metode evaluasi kinerja. Untuk itu, Ia meminta karyawan dari 2 divisi yang berbeda untuk memberikan pendapatnya mengenai kedua metode tersebut. 63 dari 78 karyawan divisi 1 menilai bahwa metode 1 lebih layak untuk digunakan. Sedangkan 49 dari 82 karyawan divisi 2 menilai bahwa metode 1 lebih layak untuk digunakan. Pada tingkat signifikansi 0,01, apakah ada perbedaan pendapat antara kedua divisi tersebut?

Asumsi: Berdistribusi normal

Latihan

1. Berdasarkan penelitian yang dilakukan di sebuah kota diketahui bahwa dari 100 ibu-ibu, 68 diantaranya lebih menyukai tepung A dibandingkan tepung B. Penelitian di kota lain diketahui bahwa 216 dari 300 ibu-ibu lebih menyukai tepung A dibandingkan tepung B. Lakukan pengujian apakah ada perbedaan persentase kaum ibu di kedua kota tersebut yang lebih menyukai tepung A dibandingkan tepung B.

Latihan

Kelas Inggris dilakukan dengan dua metode pengajaran yaitu metode audiovisual dan konvensional. Untuk mengetahui metode mana yang lebih berhasil, 250 siswa dilibatkan, 100 diantaranya diajar dengan metode audio-visual dan 150 dengan metode konvensional. Hasil yang diperoleh sebagai berikut:

	Audio visual	Kelas pengajaran
Pass	63	107
Fail	37	43
Total	100	150

Lakukan pengujian apakah ada perbedaan tingkat kelulusan dari kedua metode diatas! Apakah data mendukung bahwa tingkat kelulusan metode kelas pengajaran lebih besar dari metode audio-visual?