П	_
Дипломная	ทลดดาล
ATTITUD MITTUM	paooia

на тему:

Анализ суммы продаж алкогольной продукции в США

Автор: Полусмак Вячеслав Иванович

Руководитель: Шестакова Екатерина Андреевна

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	3
1 Знакомство с данными	4
1.1 Загрузка данных	4
1.2 Предобработка данных	4
1.3 Заключение	4
2 EDA (exploratory data analysis) или разведочный анализ данных	5
2.1 Выполнение расчёта основных статистических метрик	5
2.3 Заключение	5
3 Построение моделей	6
3.1 Подготовка данных для моделей	6
4 Модель 1. Sarimax	7
4.1 Построение модели	7
4.2 Выводы по работе модели	8
5 Модель 2. Prophet	9
5.1 Построение модели	9
5.2 Выводы по работе модели	10
6 Модель 3. Exponential Smoothing	11
6.1 Построение модели	11
6.2 Выводы по работе модели	13
7 Сравнение качества моделей	14
ВЫВОДЫ	15

ВВЕДЕНИЕ

Для анализа была выбрана выборка с сумами розничных продаж алкогольной продукции в США в период с 1992 года по 2018 год. Суммы указаны в миллионах долларах.

Целью дипломного проекта является проведение исследования данных и построение прогноза суммы продаж алкогольной продукции.

Для достижения поставленной цели необходимо решить следующие задачи:

- провести анализ данных о суммах продаж алкогольной продукции;
- построить прогнозы суммы продаж алкогольной продукции, используя различные методы прогнозирования и привести их сравнительную характеристику.

Для выполнения работы были выбраны и использованы следующие инструменты:

выборка с данными по суммам продаж алкогольной продукции в формате csv,
ссылка на файл:

https://github.com/poluslavik13/innopolis/blob/main/Retail_Sales_Beer_Liquor_2018-12-01.csv

— язык программирования Phyton на базе инструмента Google Colab, ссылка на файл: <a href="https://github.com/poluslavik13/innopolis/blob/main/%D0%94%D0%B8%D0%BF%D0%BB%D0%BB%D0%BE%D0%BD%D0%B0%D1%8F_%D1%80%D0%B0%D0%B1%D0%BE%D1%82%D0%B0_%D0%BE%D0%BE%D0%BB%D1%83%D1%81%D0%BC%D0%B0%D0%BA_%D0%98_ipynb

1 Знакомство с данными

1.1 Загрузка данных

- 1. Загрузка выполнялась с помощью методов pandas, файл расположен на github.com, при запуске не требуется дополнительно его подгружать в Google Colab;
 - 2. Выполнено проверка формата данных в датасете существует два поля:
 - a. «DATE»:
 - і. При загрузке определился формат object;
 - $ii.\ B$ поле указаны даты в формате ГГГГ-ММ-ДД, при этом для каждого значения указан день = 01, т.е. фактически поле обозначает месяц конкретного года.

b. «MRTSSM4453USN»:

- і. При загрузке определился формат int64;
- іі. В поле указано значение суммы продаж в миллионах долларах за месяц, соответствующий полю «DATE».

1.2 Предобработка данных

- 1. Поля переименованы в целях удобства дальнейшего использования:
 - а. «MRTSSM4453USN» переименовано в «rtlsls» (Retail sales).
 - b. «DATE» переименовано в «date»
- 2. Выполнена проверка на наличие пропусков в данных пропуски отсутствуют
- 3. Изменен формат данных поля «date» из object на datetime64[ns] для корректного считывания и отображения

1.3 Заключение

Выполнена первоначальная обработка данных, в качестве прогнозируемой метрики выбрана сумма розничных продаж. Возможно переходить к следующему этапу.

2 EDA (exploratory data analysis) или разведочный анализ данных

2.1 Выполнение расчёта основных статистических метрик

- 1. Индексом анализируемого pandas dataframe решено сделать поле «date»;
- 2. По полю «rtlsls» выполнен расчёт основных статистических метрик (таблица 1).

Таблица 1 – Расчет основных статистических метрик

	rtisis			
count	324.000000			
mean	2972.895062			
std	1010.218574			
min	1501.000000			
25%	2109.000000			
50%	2791.000000			
75%	3627.250000			
max	6370.000000			

3. Построен общий график сумм продаж алкогольной продукции по годам, рис 1.

Рисунок 1 – Общий график сумм продаж

2.3 Заключение

- 1. Наблюдается общий восходящий тренд: сумма продаж с каждым годом увеличивается;
- 2. Наблюдаются сезонные колебания суммы продаж с годовой периодичностью и пиками продаж в конце каждого года;

Выдвинута гипотеза: Увеличение суммы продаж в будущем с сохранением сезонности.

3 Построение моделей

3.1 Подготовка данных для моделей

- 1. Сформированы тестовая и обучающая выборки:
 - а. Тестовая: 1 год;
 - b. Обучающая выборка: остальные 26 лет.
- 2. Создана структура для будущего сравнительного анализа качества моделей, заполняемая в ходе построения моделей.
- 3. Выполнена декомпозиция временного ряда с использованием аддитивной модели, рис. 2.

Рисунок 2 – Модели

- а. Наблюдается положительный (восходящий) тренд;
- b. Наблюдается годовая сезонность.

4 Модель 1. Sarimax

4.1 Построение модели

- 1. Выполнен автоматический подбор параметров модели с входными настройками подбора на всем датасете с включением сезонности перидом в 1 год. В результате определена модель: SARIMAX(4, 1, 3)x(2, 1, [1], 12);
- 2. Модель обучена на обучающей выборке и построен прогноз на период, соответствующий тестовой выборке.
- 3. Построены графики для визуального сравнения прогнозных данных с тестовой выборкой, рис.3.

Рисунок 3 – Графики визуального сравнения прогнозных данных

- 4. Рассчитаны значения критериев оценки качества модели:
 - a. MAE: 66.06013915
 - b. MSE: 7896.543616
 - c. RMSE: 88.86249837
 - d. MAPE: 1.441353299
- 5. Указанные выше значения добавлены в структуру сравнительного анализа качества моделей.
 - 6. Построен и визуализирован прогноз на год вперед, рис.4.

Рисунок 4 — Визуализация прогноза на год вперед

4.2 Выводы по работе модели

Модель показала себя хорошо:

- RMSE=88.86 это очень хороший показатель.
- МАРЕ=1.44% это хороший результат.

Согласно графику, на будущее видим, что тренд и высота амплитуда были отображены корректно, общая динамика прослеживается.

5.1 Построение модели

- 1. Подготовлены данные для построения модели;
- 2. Выполнен автоматический подбор параметров модели с входными настройками мультипликативной сезонности. В результате алгоритм проигнорировал недельную и дневную сезонность, но обнаружил годовую сезонность и использовал её при настройке модели;
- 3. Модель обучена на обучающей выборке и построен прогноз на период, соответствующий тестовой выборке.
- 4. Построены графики для визуального сравнения прогнозных данных с тестовой выборкой, рис.5.

Рисунок 5 – Графики для визуального сравнения прогнозных данных

5. Временной ряд разложен на основные компоненты – тренд и сезонность (рис.6)

Рисунок 6 – Разложение временного ряда на компоненты

Наблюдается возрастающий тренд продаж и годовая сезонность.

6. Рассчитаны значения критериев оценки качества модели:

a. MAE: 98.73289647

b. MSE: 17973.33688

c. RMSE: 134.0646743

d. MAPE: 1.947700413

- 7. Указанные выше значения добавлены в структуру сравнительного анализа качества моделей.
 - 8. Построен и визуализирован прогноз на год вперед (рис.7).

Рисунок 7 – График прогноза на год вперед

5.2 Выводы по работе модели

Модель показала себя хорошо:

- -RMSE=134.06 хороший показатель.
- МАРЕ=1.95% хороший результат.

Согласно графику, на будущее видим, что тренд и высота амплитуда были отображены корректно, общая динамика прослеживается.

6 Модель 3. Exponential Smoothing

6.1 Построение модели

- 1. Рассмотрено 4 модели Хольта-Винтерса (т.к. они позволяют учесть тренд и сезонность) со следующими настройками:
 - a. Holt-Winters (add-add-seasonal):
 - і. Период сезонности = 12 месяцев,
 - іі. Тренд аддитивный,
 - ііі. Сезонность аддитивная,
 - іv. Использование преобразование Боса-Кокса
 - b. Holt-Winters (add-mul-seasonal) RMSE:
 - і. Период сезонности = 12 месяцев,
 - іі. Тренд аддитивный,
 - ііі. Сезонность мультипликативная,
 - iv. Использование преобразование Боса-Кокса
 - c. Holt-Winters (mul-add-seasonal) RMSE:
 - і. Период сезонности = 12 месяцев,
 - іі. Тренд мультипликативный,
 - ііі. Сезонность аддитивная,
 - іv. Использование преобразование Боса-Кокса
 - d. Holt-Winters (mul-mul-seasonal) RMSE:
 - і. Период сезонности = 12 месяцев,
 - іі. Тренд мультипликативный,
 - ііі. Сезонность мультипликативная,
 - іv. Использование преобразование Боса-Кокса
- 2. Каждая из моделей обучена на обучающей выборке и для каждой построен прогноз на период, соответствующий тестовой выборке.
- 3. Построены графики для визуального сравнения прогнозных данных с тестовой выборкой, рис.8.

Рисунок 8 – Графики визуального сравнения прогнозных данных

- 4. Рассчитаны значения критериев оценки качества модели:
 - a. Holt-Winters (add-add-seasonal):

i. MAE: 103.56

ii. MSE: 21686.45

iii. RMSE: 147.26

iv. MAPE: 2.02

b. Holt-Winters (add-mul-seasonal):

i. MAE: 100.31

ii. MSE: 19156.13

iii. RMSE: 138.41

iv. MAPE: 1.97

c. Holt-Winters (mul-add-seasonal):

i. MAE: 109.37

ii. MSE: 25021.60

iii. RMSE: 158.18

iv. MAPE: 2.13

d. Holt-Winters (mul-mul-seasonal):

i. MAE: 101.94

ii. MSE: 20312.10

iii. RMSE: 142.52

iv. MAPE: 2.00

- 5. Указанные выше значения добавлены в структуру сравнительного анализа качества моделей.
 - 6. Построены и визуализированы прогнозы на год вперед, рис.9.

Рисунок 9 – Визуализация прогноза на год вперед

6.2 Выводы по работе модели

Все 4 модели экспоненциального сглаживания показали себя неплохо:

- 1. Хорошие показатели RMSE:
 - a. Holt-Winters (add-add-seasonal) RMSE: 147.26
 - b. Holt-Winters (add-mul-seasonal) RMSE: 138.41
 - c. Holt-Winters (mul-add-seasonal) RMSE: 158.18
 - d. Holt-Winters (mul-mul-seasonal) RMSE: 142.52
- 2. Не высокие проценты рассчитанной ошибки МАРЕ:
 - a. Holt-Winters (add-add-seasonal) MAPE: 2.02
 - b. Holt-Winters (add-mul-seasonal) MAPE: 1.97
 - c. Holt-Winters (mul-add-seasonal) MAPE: 2.13
 - d. Holt-Winters (mul-mul-seasonal) MAPE: 2.00

Согласно графикам на будущее видим, что тренд и высота амплитуда были отображены корректно, общая динамика прослеживается.

7 Сравнение качества моделей

Построены данные для сравнения качества построенных моделей, таблица 2.
Таблица 2 – Сравнение качества моделей

model	mae_error	mse_error	rmse_error	mape_error
SARIMAX(4, 1, 3)x(2, 1, [1], 12)	66.060139	7896.543616	88.862498	1.441353
PROPHET	98.732896	17973.336882	134.064674	1.947700
Holt-Winters (add-add-seasonal)	103.564704	21686.456703	147.263223	2.020403
Holt-Winters (add-mul-seasonal)	100.308709	19156.133642	138.405685	1.968399
Holt-Winters (mul-add-seasonal)	109.370491	25021.595428	158.182159	2.125332
Holt-Winters (mul-mul-seasonal)	101.944204	20312.101779	142.520531	1.995114

2. На основании указанных выше данных сделан вывод, что модель SARIMAX является наиболее качественной, т.к. дает наилучшие показатели по каждому из оценочных критериев.

ВЫВОДЫ

- 1. Проведен анализ данных с использованием различных методов обработки статистической информации.
- 2. Рассчитаны основные статистические метрики, позволяющие судить о характере исследуемого явления.
- 3. Прогнозные модели позволили выявить тенденцию роста суммы розничных продаж по сравнению с предыдущим годом, а также сохранение характера амплитудных колебаний в разрезе каждого года с пиками продаж в период новогодних праздников.
- 4. Сравнительный анализ значений критериев качества построенных моделей показал, что наиболее качественной из построенных является модель SARIMAX.