

- HOME
- ASSOCIATION
- APRIORI
- FP GROWTH
- RULE GENERATION
- VISUALIZATION
- FAC
- REFERENCES

Association Rule Mining Algorithms?

- Apriori Algorithm.
- FP Growth Algorithm.

What is FP Growth Algorithm?

An efficient and scalable method to find frequent patterns. It allows frequent itemset discovery without candidate itemset generation.

Following are the steps for FP Growth Algorithm

- Scan DB once, find frequent 1-itemset (single item pattern)
- · Sort frequent items in frequency descending order, f-list
- · Scan DB again, construct FP-tree
- · Construct the conditional FP tree in the sequence of reverse order of F List generate frequent item set

Illustration:

Consider the below tansaction in which B = Bread, J = Jelly, P = Peanut Butter, M = Milk and E = Eggs. Given that minimum threshold support = 40% and minimum threshold confidence = 80% [13].

TID	Items Bought		
1	{B, J, P}		
2	{B, P}		
3	{B, M, P}		
4	{E, B}		
5	{E, M}		

Step-1: Scan DB once, find frequent 1-itemset (single item in itemset)

Items	Support	Support (in percentage) = (Support * 100) / No. of trans
В	4	(4 * 100) / 5 = 80%
J	1	(1 * 100) / 5 = 20%
Р	3	(3 * 100) / 5 = 60%
М	2	(2 * 100) / 5 = 40%
Е	2	(2 * 100) / 5 = 40%

Step-2: As minimum threshold support = 40%, So in this step we will remove all the items that are bought less than 40% of support or support less than 2.

Items	Support	
В	4 (80%)	
Р	3 (60%)	
M	2 (40%)	
E	2 (40%)	

Step-3: Create a F -list in which frequent items are sorted in the descending order based on the support.

F - list	{B,P,M,E}
----------	-----------

Step-4: Sort frequent items in transactions based on F-list. It is also known as FPDP.

FPDB			
TID	Items Bought		
1	{B, P}		
2	{B, P}		
3	{B, P, M}		
4	{B, E}		
5	{ M, E }		

Step-5: Construct the FP tree

• Read transaction 1: {B,P} -> Create 2 nodes B and P. Set the path as null -> B -> P and the count of B and P as 1 as shown below :

• Read transaction 2: {B,P} -> The path will be null -> B -> P. As transaction 1 and 2 share the same path. Set counts of B and P to 2.

• Read transaction 3: {B,P,M} -> The path will be null -> B -> P -> M. As transaction 2 and 3 share the same path till node P. Therefore, set count of B and P as 3 and create node M having count 1.

• Continue until all the transactions are mapped to a path in FP-tree.

Step-6: Construct the conditional FP tree in the sequence of reverse order of F - List {E,M,P,B} and generate frequent item set. The conditional FP tree is sub tree which is built by considering the transactions of a particular item and then removing that item from all the transaction.

Item set	Transactions	Conditional FP Tree	Frequent Item set
E	TID-4 = { B } TID-5 = { M }	1 B 1 M	Nil
М	TID-3 = {B, P}	1 B	Nil
Р	TID-1 = {B} TID-2 = {B} TID-3 = {B}	3 B	{B, P}

The above table has two items {B, P} that are bought together frequently.

As for items E and M, nodes in the conditional FP tree has a count(support) of 1 (less than minimum threshold support 2). Therefore frequent itemset are nil. In case of item P, node B in the conditional FP tree has a count(support) of 3 (satisfying minimum threshold support). Hence frequent itemset is

generated by adding the item P to the B.

Try Examples

7/10/2020