# HANDBOOK OF AVIAN ANATOMY: NOMINA ANATOMICA <u>AVIUM</u>

Second Edition

QL 691 .W79 1993

HARVARD UNIVERSITY

S.

Library of the

Museum of

Comparative Zoology





# HANDBOOK OF AVIAN ANATOMY:

# NOMINA ANATOMICA AVIUM Second Edition

Edited by

## Julian J. Baumel

and

Anthony S. King, James E. Breazile, Howard E. Evans, and James C. Vanden Berge

Consultant for Taxonomy: Richard L. Zusi Consultant for Classical Languages: Lubomir Malinovský

Prepared by the International Committee on Avian Anatomical Nomenclature, a committee of the World Association of Veterinary Anatomists.

CAMBRIDGE, MASSACHUSETTS
Published by the Club
1993

11 B B A B Y 12 D S. COMP. 2 D Ö F B B Y. 11 B B A B Y QL 691 .W79 1993

> MCZ LIBRARY

SEP 2 9 1993

HARVARD UNIVERSITY

# HANDBOOK OF AVIAN ANATOMY



# Publications of the Nuttall Ornithological Club

- 1. The Comparative Biology of the Meadowlarks (*Sturnella*) in Wisconsin. Wesley E. Lanyon. 1957. viii + 67 pg., 31 pls.
- 2. Comparative Breeding Behavior of Four Species of North American Herons. Andrew J. Meyerriecks. 1960. viii + 158 p., 15 pls.
- 3. Structural Adaptations of the Head and Neck in the Black Skimmer, *Rynchops nigra* Linneaus. Richard L. Zusi. 1962. viii + 101 p.; 44 figs.
- 4. The Rough-winged Swallow *Stelgidopteryx ruficollis* (Vieillot). A Study Based on Its Breeding Biology in Michigan. William A. Lunk. 1962. viii + 155 p., 19 figs., 3 pls.
- 5. Ecology and Bioenergetics of the Long-billed Marsh Wren. *Telemato-dytes palustris griseus* (Brewster), in Georgia Salt Marshes. Herbert W. Kale, II. 1965. xvi + 142 p., 61 tables, 22 figs.
- 6. Communication and Relationships in the Genus *Tyrannus*. W. John Smith. 1966. x + 250 p., 3 tables, 51 figs.
- 7. Life Histories of Central American Highland Birds. Alexander F. Skutch. 1967. vi + 213 p., 1 table, 6 figs.
- 8. Breeding Biology of the Blue-faced Booby, *Sula dactylatra personata*, on Green Island, Kure Atoll. Cameron B. Kepler. 1969. viii + 97 p., 42 tables, 32 figs.
- Species Taxa of North American Birds. A Contribution to Comparative Systematics. Ernst Mayr and Lester L. Short. 1970. vi + 127 pg., 8 tables.
- 10. Studies of Tropical American Birds. Alexander F. Skutch. 1972. vi + 228 p., 2 tables, 15 figs.
- 11. Communication and Other Social Behavior in *Parus carolinensis*. Susan T. Smith. 1972. x + 125 p., 6 tables, 22 figs.
- 12. Avifauna of the Eastern Highlands of New Guinea. Jared M. Diamond. 1972. viii + 438 p., 19 tables, 42 figs., 4 maps.
- 13. Geographical Differentiation in the Genus *Accipiter*. Jan Wattel. 1973. vi + 231 p., 82 tables, 21 figs., 27 maps.
- 14. Avian Speciation in Tropical South America. With a Systematic Survey of the Toucans (Ramphastidae) and Jacamars (Galbulidae). Jürgen Haffer. 1974. viii + 390 p., 31 tables, 85 figs., 2 pls.
- 15. Avian Energetics. Raymond A. Paynter, Jr., (editor), 1974. viii + 334 p., 48 tables, 57 figs.

- 16. Comparative Study of Todies (Todidae), with Emphasis on the Puerto Rican Tody. *Todus mexicanus*. Angela Kay Kepler. 1977. xiv + 206 p., 37 tables, 67 figs., 7 maps.
- 17. Relationships of the Superorders Alectoromorphae and Charadriomorphae (Aves): A Comparative Study of the Avian Hand. Boris C. Stegmann. 1978. vi + 119 p., 37 figs.
- 18. Geographic Variation in Social Behavior and in Adaptations to Competition Among Andean Birds. Martin Moynihan. 1979. vi + 162 p., frontispiece, 42 tables, 16 figs., 1 map.
- 19. New Studies of Tropical American Birds. Alexander F. Skutch. 1981. vi + 281 p., 7 tables, 11 figs.
- 20. Life History Studies of Woodpeckers of Eastern North America. Lawrence Kilham. 1983. viii + 240 p., frontispiece, 58 figs.
- 21. Newfoundland Birds: Exploitation, Study, Conservation. William A. Montevecchi and Leslie M. Tuck. 1987. x + 273 p., frontispiece, 23 tables, 40 figs.
- 22. Paleognathous Birds from the Early Tertiary of the Northern Hemisphere. Peter W. Houde. 1988. viii + 148 p., 27 tables, 41 figs.
- 23. Handbook of Avian Anatomy: Nomina Anatomica Avium. Second Edition. Julian J. Baumel (editor), 1993. xxiv + 779 pp., 2 tables, 191 figs.

#### © Copyright 1993

#### By Nuttall Ornithological Club

Publications of the Nuttall Ornithological Club may be obtained from the Nuttall Ornithological Club, c/o Museum of Comparative Zoology, Harvard University

Cambridge, Massachusetts 02138

### **CONTENTS**

| ACKNOWLEDGEMENTSxi                                          |
|-------------------------------------------------------------|
| INTRODUCTION                                                |
| A. S. King                                                  |
| Historical Backgroundxiii                                   |
| General Objectives of Nomina Anatomica Avium                |
| The Second Editionxv                                        |
| Readership                                                  |
| Title                                                       |
| Terminology                                                 |
| Variations in Latin usage in the various Nominaxvi          |
| Annotationsxviii                                            |
| Bibliography                                                |
| Illustrations                                               |
| Index                                                       |
| Information on using the Nomina Anatomica Avium             |
| Taxonomic nomenclature                                      |
| Abbreviationsxx                                             |
| Recommended form of citationsxxii                           |
| Organization of ICAAN                                       |
| Generalxxii                                                 |
| Functions of General Chairman and Secretary Generalxxiii    |
| Functions of subcommittee chairmen and                      |
| subcommittee members                                        |
| Functions of Executive Committee                            |
| Functions of Editorial Committee                            |
| Controversial termsxxiv                                     |
| 1. TERMINI SITUM ET DIRECTIONEM PARTIUM CORPORIS INDICANTES |
| G. A. Clark, Jr 1                                           |
| 2. ANATOMIA TOPOGRAPHICA EXTERNA                            |
| G. A. Clark, Jr                                             |
| 3. INTEGUMENTUM COMMUNE                                     |
| G A CLARK ID                                                |

| 4.  | OSTEOLOGIA  J. J. BAUMEL AND L. M. WITMER                                                                           |
|-----|---------------------------------------------------------------------------------------------------------------------|
| 5.  | ARTHROLOGIA  J. J. BAUMEL AND R. J. RAIKOW                                                                          |
| 6.  | MYOLOGIA  J. C. VANDEN BERGE AND G. A. ZWEERS                                                                       |
| 7.  | PERICARDIUM, PLEURA ET PERITONEUM  J. McLelland                                                                     |
| 8.  | APPARATUS RESPIRATORIUS [SYSTEMA RESPIRATORIUM] A. S. KING                                                          |
| 9.  | APPARATUS DIGESTORIUS [SYSTEMA ALIMENTARIUM]  J. McLelland                                                          |
| 10. | APPARATUS UROGENITALIS [SYSTEMA UROGENITALE]  A. S. KING                                                            |
| 11. | GLANDULAE ENDOCRINAE A. EPPLE                                                                                       |
| 12. | SYSTEMA CARDIOVASCULARE       407         J. J. BAUMEL       409         Arteriae       416         Venae       443 |
| 13. | SYSTEMA LYMPHATICUM ET SPLEN [LIEN]  D. BERENS V. RAUTENFELD                                                        |
| 14. | SYSTEMA NERVOSUM CENTRALE  J. E. Breazile and W. J. Kuenzel                                                         |

contents ix

| SYSTEMA NERVOSUM PERIPHERICUM       |     |  |  |  |  |
|-------------------------------------|-----|--|--|--|--|
| J. L. Dubbeldam                     | 555 |  |  |  |  |
| Nervi craniales                     | 557 |  |  |  |  |
| Nervi spinales                      |     |  |  |  |  |
| Divisio craniosacralis              |     |  |  |  |  |
| Divisio thoracolumbalis             | 563 |  |  |  |  |
| 16. organa sensum [organa sensoria] |     |  |  |  |  |
| H. E. Evans and G. R. Martin        | 585 |  |  |  |  |
| Organum visus [Oculus]              | 588 |  |  |  |  |
| Organum vestibulocochleare [Auris]  | 591 |  |  |  |  |
| APPENDIX A: LATIN GRAMMAR           |     |  |  |  |  |
| A. S. King                          | 613 |  |  |  |  |
| APPENDIX B: MEMBERS OF ICAAN        | 619 |  |  |  |  |
| REFERENCES                          | 625 |  |  |  |  |
| INDEX                               |     |  |  |  |  |



### **ACKNOWLEDGEMENTS**

Preparation of the first edition of the *Nomina Anatomica Avium* was supported in part by a generous grant from the U.S. National Library of Medicine; however, assistance from this source was unavailable for the second edition. Consequently, most of the very considerable support for readying the second edition has been indirect, provided by the departments of the universities or institutes of the subcommittee chairmen which have absorbed much of the cost of travel, word processing, secretarial help, postage, long-distance communication, photocopying, artwork, etc. My own Division of Anatomy of the Department of Biomedical Sciences, Creighton University School of Medicine, has borne an extraordinary share of these expenses. Certain of the individual subcommittee chairmen have contributed toward the costs of the project from personal resources.

We are quite grateful for assistance provided by two direct grants. The grant from the Directors of the Poultry Science Association of Champaign, Ill. (through W.J. Kuenzel) was of greatest benefit in the latter stages of the revision, especially the optical scanning and word processing involved in compilation of the bibliography and the general index. The grant from the World Veterinary Poultry Association (through L.N. Payne) was used in defraying expenses incurred by the Secretary General of ICAAN.

We gratefully acknowledge the criticism and advice on Latin of F.M.A. Jones, Department of Classics and Archaeology, University of Liverpool, and of B. Stuart King.

In the preparation of the manuscript, the contribution of Mary Anne Keefe, Division of Anatomy, Creighton University, cannot be overstated. We appreciate her skill in word processing as well as her utmost willingness, interest, and meticulous attention to detail in organizing and collating the manuscript. Gerald Schneider most capably and patiently managed our problems with word processing and optical scanning.

We are indebted to the Council of the Nuttall Ornithological Club and to Raymond A. Paynter, Jr., editor of the Publications series of the NOC, for undertaking the publication of the second edition of the *Nomina Anatomica Avium*. Praiseworthy is Dr. Paynter's recognition of the need for standardized names of the anatomical parts of birds and the value of such an anatomical reference work to scientists of many specialized fields of ornithology. Admirable is his tolerance in enduring a succession of elapsed deadlines for submission of the completed manuscript.

—J. J. B.

### INTRODUCTION

#### ANTHONY S. KING

#### HISTORICAL BACKGROUND

The International Committee on Avian Anatomical Nomenclature (ICAAN) was founded by the World Association of Veterinary Anatomists (WAVA) in 1971. The details of the background to this event were summarized in the General Introduction to the first edition of the Nomina Anatomica Avium (NAA) (1979). The first General Chairman was Alfred M. Lucas; it was his untiring devotion to the advancement of avian morphology that led to the formation of ICAAN. Under his active leadership the membership was rapidly augmented to include about 70 international authorities, representing all branches of avian morphology. Within two years draft lists for all the systems of the body had been prepared, and these were considered in 1973 at the First General Meeting of ICAAN in Omaha, Nebraska. At this meeting A. M. Lucas relinquished the post of General Chairman, and was replaced by A. S. King. In 1974 ICAAN received provisional lists at its Second General Meeting in Liverpool, England. At this meeting A. S. King resigned from the General Chairmanship and J. J. Baumel was elected General Chairman, an office he has held to the present. After meetings of the Editorial Committee in Liverpool in 1976 and in Ithaca, New York in 1977, the first edition of the Nomina Anatomica Avium was published in 1979.

The nomenclatures of mammalian anatomy (human, Nomina Anatomica, NA; veterinary, Nomina Anatomica Veterinaria, NAV; histology, Nomina Histologica, NH; and embryology, Nomina Embryologica, NE) have all been revised periodically. Regular updating is even more necessary for the NAA than the other Nomina, because it contains extensive reviews of the literature. Consequently, at a meeting of ICAAN in 1985 at the Royal Veterinary College, London, in association with the XIIth International Congress of Anatomy, plans for the preparation of a second edition of the NAA were initiated. At that meeting it was decided to harmonize the NAA with the NAV for anatomical terms and with the NH for histological terms. A great many of the terms were already the same. Obviously, some terms in the NAA relate to structures which are strictly avian, and these will always constitute differences between the NAA and the other Nomina. Some other terms in the NAA are synonyms of NAV and NH terms, but were selected because they

xiv A. S. KING

are in common use in avian literature. Also some minor differences arose through the manner in which Latin terms are constructed (see below, Variations in Latin Usage in the Various *Nomina*). Such terms have been brought into line with the NAV in the second edition of the NAA.

ICAAN next met (1986) at the Zoologisch Laboratorium of the University of Leiden. There it was proposed that the second edition of the NAA should be ready by mid-1989 and that it would have to be largely rewritten, with expansion of the text by about 15%, 25 to 30 additional illustrations, and several more pages of references.

Since the understanding of structure requires the integration of all its aspects, it was resolved to complete the histological terms for the visceral systems (Splanchnologia), but not to include the terms for the cell or basic tissues since these are likely to be standard for vertebrates and covered by the NH. An important goal was to keep the price of the book as low as possible in order that it would be readily available to the individual worker.

In his search for a publisher, the General Chairman of ICAAN, Julian Baumel, approached the Smithsonian Institution, which declared its interest in publishing the book for an affordable price, but only if a substantial subvention of was received. This would be similar to the subvention provided by the National Library of Health toward the publication by Academic Press for the first edition. The search for a subvention for the second edition now became urgent.

ICAAN met again in August 1987 in Montreal, in association with the International Congress of the World Veterinary Association (WAVA). The meeting was largely occupied by financial problems. Despite favorable assessments of the academic value of the NAA by several university publishing houses, progress was at a standstill from lack of supporting funds if the price of the book were to be moderate. Private publication by desktop methods was rejected as not doing justice to the work. An interest free loan was offered by the WAVA, but the cost of publication and uncertainties about repaying the loan discouraged acceptance. The search for funds was extended to other foundations and scientific societies in the US and UK.

In early 1989, with the assistance of George Clark of the University of Connecticut, the General Chairman approached the Nuttall Ornithological Club (NOC). At the end of that year the Publications Committee of the NOC authorized Raymond A. Paynter, Jr., editor of the Nuttall Ornithological Club Publications, to accept the second edition of the NAA for publication in its series.

In the light of this welcome decision, ICAAN convened in Antwerp in August 1989, at the Prince Leopold Institute of Tropical Medicine, to finalize the objectives and format of the new edition. In August of the following year, the subcommittee chairmen of ICAAN met at Tufts University, Boston, and in discussion with the NOC, agreed to complete a manuscript by April 1991.

The preparation of the 16 chapters of the new edition has been primarily the work of the individual subcommittee chairmen, as indicated in the preamble to each chapter. The final collation and integration of the lists of terms, annotations, and illustrations of all chapters, the unification of the bibliography, and the preparation of the index, have been the work of the General Chairman.

# GENERAL OBJECTIVES OF NOMINA ANATOMICA AVIUM

The principal objective of the second edition of the *Nomina Anatomica Avium* is the same as that of the first, namely to promote international scientific communication by establishing an agreed terminology in a universally accepted language. Other general objectives are to survey the literature and to provide a bibliography and illustrations. Thus the *Nomina Anatomica Avium* is unique among the several *Nomina* by being not only a list of terms but also an anatomical reference book. In practice, achieving the objective of standardizing the nomenclature for avian anatomy involved choosing one term where two or more were in use, replacing terms that were obviously defective, and devising new terms in Latin when none existed.

In selecting terms the following principles, which are common to the other *Nomina*, were followed: (1) as few changes as possible should be made in well established terms; (2) with few exceptions, each structure should bear only one name; (3) each term should be in Latin; (4) each term should be as short and simple as possible; (5) each term should be easy to remember, and should above all be informative; (6) eponyms should not be used; (7) every minor structure need not be named.

#### THE SECOND EDITION

Readership. The work is designed for all biologists who teach or research with normal or pathological avian material. However, it cannot meet the needs of those who lack a general grounding in vertebrate morphology, since limitations of space preclude the definition of many basic structures (e.g.,

xvi A. S. KING

Carpometacarpus, Mesencephalon). The annotations do define structures requiring specialized knowledge (e.g. Corpus vasculare phalli), but for full descriptive details the standard works on avian anatomy and physiology, and/or the original papers cited in the annotations, are required.

Title. The title of the book has been changed to Handbook of Avian Anatomy: Nomina Anatomica Avium, 2nd Edition, in order better to represent its contents. "Handbook" is used in the sense of a reference book concisely covering the important features of a whole field of knowledge. The relationship between the title and the subtitle of the first edition reflected the historical origin of the work. Nomina Anatomica Avium (anatomical names of birds) was conceived as a list of names of anatomical parts like the other (mammalian) Nomina, but gradually annotations, references, and illustrations were developed. The previous subtitle, "An Annotated Anatomical Dictionary of Birds", sought to include such accessions but was somewhat misleading since the contents were not comprehensive or in alphabetical order. The updating and augmentation of the annotations in the new edition enhance its significance as a source book of information on avian morphology. Therefore, the title and subtitle have now been reversed, giving priority to the more general title of Handbook of Avian Anatomy.

Terminology. One change already mentioned is the harmonization of the terms with those of the NAV and NH. Errors in the Latin in the first edition have been corrected. Histological terms have been systematically added to the visceral systems and included in some other systems (e.g., Integument, Systema lymphaticum). Some groups of terms that were fragmentary in the first edition (e.g., Juncturae laryngis) have been completed. Rarely (e.g., nephron, phallus) a set of terms has been replaced by fresh terms based on new knowledge. In general, as few terms as possible have been changed. Terms in brackets following the primary recommended terms are secondary official alternatives. Italicized terms are ontogenetic.

Variations in Latin usage in the various Nomina. In the Introduction to the fourth edition of the Nomina Anatomica (NA) (1977:8) the International Committee on Anatomical Nomenclature (IANC) advocated a liberal approach to the use of Latin in anatomy, in an attempt to simplify complex or unfamiliar terms. Several conservative usages were discussed, such as the insistence on anulus; this was replaced in the fourth edition of the NA by annulus, thus agreeing with the familiar "annular" and "annulaire", though the NH in the same volume still used anulus in the Spermatozoon. It was also pointed out that in the newer Nomina Embryologica and Nomina Histologica, adjectives rather than genitives were preferred in many of the newly Latinized embryological and histological terms, and that some existing terms in the NA itself were similarly altered. For example, "renal cortex" can be presented as Cortex renis, as in the Paris Nomina Anatomica of 1955, and

this usage has been retained in the NAV (1983). However, "renal cortex" can also be directly translated into Cortex renalis, and this term was adopted by the fourth edition of the NA and the first edition of the NH (published together in 1977); this has been retained in the sixth edition of the NA and the third edition of the NH (published together in 1989). Other new adjectival forms occurred in the fourth and sixth editions of the NA, usually as official alternatives [in brackets]; examples are Ossa cranii [cranialia] and Ossa carpi [carpalia], and others appeared in the sixth edition such as Cavitas thoracis [thoracica]. The NH (1989) went somewhat further, for example, with Cavitas oris [oralis] whereas the NA retained Cavitas oris.

It was further argued in the fourth edition of the Nomina Anatomica (p.A8) and the first edition of the Nomina Anatomica Avium (pp.x-xi) that the more a Latin term resembles its vernacular equivalent, the easier it is to interpret it. This can be illustrated by the term Cavum nasi of the Basle Nomina Anatomica of 1895 (BNA), the Jena Nomina Anatomica of 1936 (JNA), and the Paris Nomina Anatomica of 1955 (PNA). In the fourth edition of the NA in 1977 this became Cavitas nasi, and has finally yielded to Cavitas nasi [nasalis] in the sixth edition of the NA (1989). The 1983 edition of the NAV has retained Cavum nasi. Cavitas nasalis closely resembles "nasal cavity" of English, and "cavité nasale", "cavità nasale", and "cavidad nasal" of the Romance languages. This similarity helps biologists, such as those from Arabic, African, or Asian nations, who may have little or no knowledge of Latin but use English or a Romance language as a second language. This substitution of Cavitas for Cavum was evidently initiated by the NH. In its footnote 99, the fourth edition of the NA (1977) noted that it had "followed the Histology Subcommittee in substituting Cavitas for Cavum throughout this section" (Splanchnologia), thus changing 12 terms, these changes being carried forward into the sixth edition of the NA (1989). The NAV (1983) retained Cavum throughout Splanchnologia.

One reason for defending old terms is that they belong to classical Latin, new terms being resisted because they are late Latin or even recent Latin neologisms. For example, it is possible to object to Cavitas because it is new Latin, whereas Cavum is classical Latin. But linguistic arguments can be difficult to sustain. For example, the third edition of the NAV requires Arbor bronchalis, without the familiar i, and justifies it in annotation 219 by claiming that this is the correct Latin spelling. However, the Latin Dictionary of Lewis and Short (1969) and the Oxford Dictionary derive bronchia from  $\beta$ poyxi $\alpha$ —Greek, with an *iota* before the alpha. Another reason for resisting changes of old into new terms is that this infringes the first of the seven principles for selecting terms (mentioned above), i.e., that as few changes as possible should be made in well established terms. The authors of standard anatomical textbooks naturally object particularly strongly to changes in ter-

xviii A. S. KING

minology. On the other hand, new terms may well satisfy the fifth and sixth principles, in being more simple and informative.

In general, the second edition of the NAA continues to support the attitude of the IANC, reaffirming the view expressed in the first edition that Latin should be "the servant and not the master of anatomists" (NAA, 1979:xi). Despite this, however, in the second edition of the NAA the NAV terms are given priority, in the interests of harmonization. Nevertheless, some of the NA and NH terms are given as official alternatives. In this way the second edition of the NAA forms a bridge between the NA and NH on the one hand and the NAV on the other. The wind of change is detectable in anatomical terminology, but the trend is slow. Further evolution must be left to future editions of the various *Nomina*.

Annotations. As in the first edition, annotations are indicated in the lists of terms by a superscript number and follow the lists in each chapter. Because of the increased importance of the annotations, their objectives were thoroughly reconsidered and defined as follows: (1) to list synonyms, citing the first and other major sources; (2) to analyse homologies; (3) to justify the choice of a term; (4) to provide an anatomical definition or illustration of any term that might not be readily understood; (5) to summarize (within obvious limitations of space) the essentials of the site, organization, and function of complex structures; (6) to cite major descriptive and review articles published since the first edition; and (7) to rectify omissions and errors of the first edition.

Some reviewers of the first edition found the Latin difficult. For example, a nonanatomist might not know that the kidney is Ren and the liver Hepar. Where the English form of a term is not easily recognizable from the Latin (e.g., Palpebra ventralis) the annotations usually now give the English form (lower eyelid) at least once. It is generally accepted that biologists may translate the official Latin terms of the various *Nomina* into their own vernacular. However, it is recommended that the Latin version be used when the term is first introduced into a publication. Economy of space precludes the systematic conversion into languages in addition to English.

Bibliography. As in the first edition, the references show the authorities for the selection of a term and for the anatomical data in the annotations. Newly added references remedy omissions from the first edition; they also include citations of major review articles, as well as papers presenting new findings, published after the first edition.

*Illustrations*. The main objective of the illustrations remains unchanged, i.e., to clarify complex structures and identify their parts. However, lesser structures that are not the prime purpose of a figure are sometimes included in order to substitute for a textual definition or to elucidate an annotation. Measurements are not given, as is standard procedure in classical reference

works on vertebrate morphology (for example, see Goodrich, 1958; Marshall, 1962; Romer, 1962). Some figures have been redrawn or relabeled, and many new illustrations have been added.

*Index*. In the first edition the index included many English versions of terms, but without doing so consistently. Therefore, it was sometimes difficult for nonanatomists, unfamiliar with Latin, to find the name of a particular structure. The new index contains the Latin terms, the English equivalents of terms not readily recognizable from the similarity of the Latin to the English, and many of the commonly used synonyms of the recommended terms.

# INFORMATION ON USING NOMINA ANATOMICA AVIUM

Taxonomic nomenclature. Most of the anatomical structures that are listed are common to birds generally, but important structures or variations of features peculiar to individual species or larger taxa are included if the necessary anatomical facts are known. The scientific taxonomic nomenclature is that of Morony, Bock, and Farrand (1975); common names in English have been selected from widely used field guides and faunal references; the common names have been standardized throughout the volume. In certain instances both the common name and the scientific name of a bird is given. When published works are cited, often only the generic name is given; the full binomial name of the species (if known) may be obtained from the cited references. Scientific names of orders and families are often converted into their informal equivalents (e.g., gruids for Gruidae, or passeriforms for Passeriformes). The common names of the ordinary laboratory and domestic forms always refer to the species of genera indicated below. It is recognized that the derivation of these birds has not, in fact, always been conclusively established, but for convenience the relationships are assumed to be as stated:

Duck: forms of Anas platyrhynchos

Goose: forms of *Anser anser*Pigeon: forms of *Columba livia* 

Turkey: forms of Meleagris gallopavo

Chicken: forms of Gallus gallus

Ouail: forms of Coturnix

Canary: forms of *Serinus canarius*Guinea Fowl: forms of *Numida meleagris* 

Budgerigar: forms of Melopsittacus undulatus

XX A. S. KING

Abbreviations. For each of the General Abbreviations the first is singular and the second (in parenthesis) is plural. Thus "A." stands for the nominative singular Arteria, and "Aa." stands for the nominative plural Arteriae. Then the nominative and genitive singular forms of the term are given in full, e.g., Arteria, arteriae, followed (for nouns only) by the nominative and genitive plural cases, e.g., arteriae, arteriarum. For an explanation of nominative and genitive, singular and plural, see Appendix A, Latin Grammar. The abbreviations in the Key to Main Headings represent the titles of the major subdivisions of the terminology, e.g., Myol. represents Myologia.

#### General Abbreviations

A. (Aa.) =Arteria, arteriae; arteriae, arteriarum Anast. (Anastt.) =Anastomosis, anastomosis; anastomoses, anastomosium Annot. (Annott.) =Annotation(s) Ant. =Anterior =Apterium, apterii; apteria, apteriorum Apt. (Aptt.) =Articulatio, articulationis; articulationes, Artc. (Artcc.) articulationum Caps. (Capss.) =Capsula, capsulae; capsulae, capsularum Cart. (Cartt.) =Cartilago, cartilaginis; cartilagines, cartilaginorum Caud. =Caudalis Corp. (Corpp.) =Corpus, corporis; corpora, corporum =Decussatio, decussationis; decussationes, Decuss. (Decuss.) decussationum Fac. (Facc.) =Facies, faciei; facies, facium Fasc. (Fascc.) = Fasciculus, fasciculi; fasciculi, fasciculorum For. (Forr.) =Foramen, foraminis; foramina, foraminum =Ganglion, ganglii; ganglia, gangliorum G. (Gg.) Gl. (Gll.) =Glandula, glandulae; glandulae, glandularum =Lateralis Lat. Lig. (Ligg.) =Ligamentum, ligamenti; ligamenta, ligamentorum = Musculus, musculi; musculi, musculorum M. (Mm.) Maj. =Maior Med. =Medialis Mem. (Memm.) =Membrana, membranae; membranae, membranarum Min. = Minor

= Nervus, nervi; nervi, nervorum

= Nucleus, nuclei; nuclei, nucleorum

N. (Nn.)

Nuc. (Nucc.)

Pedunc. (Peduncc.) = Pedunculus, pedunculi; pedunculi, pedunculorum

Plx. (Plxx.) = Plexus, plexus; plexus, plexuum

Post. = Posterior

Pt. (Ptt.) = Pteryla, pterylae; pterylae, pterylarum

Proc. (Procc.) = Processus, processus, processuum

Prof. = Profundus

R. (Rr.) = Ramus, rami; rami, ramorum

Rdx. (Rdxx.) = Radix, radicis; radices, radicum

Rec. (Recc.) = Rectrix, rectricis; rectrices, rectricum

Reg. (Regg.) = Regio, regionis; regiones, regionum

Rostr. = Rostralis

Rmx. (Rmxx.) = Remex, remigis; remiges, remigum

Superf. = Superficialis

Sut. (Sutt.) = Sutura, suturae; suturae, suturarum

Sync. (Syncc.) = Synchondrosis, synchondroses,

synchondrosium

Synd. (Syndd.) = Syndesmosis, syndesmosis; syndesmoses,

syndesmosium

Synos. (Synoss.) = Synostosis, synostosis; synostoses, synostosium

Tec. (Tecc.) = Tectrix, tectricis; tectrices, tectricum
Tr. (Trr.) = Tractus, tractus; tractus, tractuum
V. (Vv.) = Vena, venae; venae, venarum

Vas 1. (Vasa 1.) = Vas lymphaticum, vasis lymphatici; vasa

lymphatica, vasorum lymphaticorum

Ventr. = Ventralis

### Key to Main Headings

Art. = Arteriae Arthr. = Arthrologia

Cardvas. =Systema cardiovasculare

Cloaca =Cloaca

CNS = Systema nervosum centrale

Cor = Cor

Diges. = Apparatus digestorius [Systema digestorium]

Endoc. =Glandulae endocrinae
Fem. =Organa genitalia feminina
Integ. =Integumentum commune

Lym. =Systema lymphaticum et Splen [Lien]

Masc. =Organa genitalia masculina

Myol. = Myologia Osteo. = Osteologia xxii A. S. KING

Pericar. = Pericardium, Pleura, et Peritoneum PNS = Systema nervosum periphericum

Resp. = Apparatus respiratorius [Systema respiratorium]

Sens. = Organa sensuum [Organa sensoria]

Term. sit. = Termini situm et directionem indicantes—Termini generales

Topog. = Anatomia topographica externa

UG. = Apparatus urogenitalis [Systema urogenitale]

Urin. =Organa urinaria

Ven. = Venae

#### Recommended Form of Citations

1) Book citation in body of text:

Baumel, et al. (1993)

2) Chapter citation in body of text: Evans (1993)

3) Book citation in bibliography:

Baumel, J. J., King, A. S., Breazile, J. E., Evans, H. E., and Vanden Berge, J. C. (eds.) 1993. *Handbook of Avian Anatomy: Nomina Anatomica Avium*, Second Edition. Publication No. 23, Publications of Nuttall Ornithological Club, Cambridge, Mass.

4) Chapter citation in bibliography:

Evans, H. E., and Martin, G. R. 1993. Organa sensuum. In: *Handbook of Avian Anatomy: Nomina Anatomica Avium*, Second Edition. Publication No. 23, Publications of Nuttall Ornithological Club, Cambridge, Mass.

Authors are requested to employ the Latin terms in scientific articles and books, at least on the first occasion when a term is used.

#### ORGANIZATION OF ICAAN

General. The International Committee for Avian Anatomical Nomenclature (ICAAN) comprises: General Chairman, Vice-chairman, Secretary General, Chairmen of subcommittees, Consultant for Avian Taxonomy, Consultant for Classical Languages. The Committee is organized into subcommittees related to the body systems, each subcommittee having its own Chairman (and in some instances, Vice-chairman). The Executive Committee consists of the General Chairman and Vice-chairman, and Secretary General of ICAAN, subcommittee Chairmen, and the Editorial Committee.

At the time of publication of the second edition of the *Nomina Anatomica Avium* the holders of these offices were: General Chairman, J. J. Baumel; Vice-chairman, M. Yasuda; Secretary General, A. S. King; Consultant for Avian Taxonomy, R. L. Zusi; Consultant for Classical Languages, L. Malinovský. The Chairman of the Editorial Committee is J. J. Baumel; its members are J. E. Breazile, H. E. Evans, A. S. King, and J. C. Vanden Berge.

The Subcommittee Chairmen are:

- J. J. Baumel and L. M. Witmer (Osteologia).
- J. J. Baumel and R. J. Raikow (Arthrologia).
- J. J. Baumel (Systema cardiovasculare).
- J. E. Breazile and W. J. Kuenzel (Systema nervosum centrale).
- G. A. Clark (Termini situm et directionem indicantes, Termini generales; Anatomia topographica externa; Integumentum commune).
- J. L. Dubbeldam (Systema nervosum periphericum).
- A. Epple (Glandulae endocrinae).
- H. E. Evans and G. R. Martin (Organa sensuum).
- A. S. King (Apparatus respiratorius; Apparatus urogenitalis).
- J. McLelland (Pericardium, pleura et peritoneum; Apparatus digestorius).
- D. Berens von Rautenfeld (Systema lymphaticum).
- J. C. Vanden Berge and G. A. Zweers (Myologia).

Functions of General Chairman and Secretary General. The General Chairman and Secretary General work together to manage the general policy of ICAAN, to select subcommittee chairmen and members of subcommittees, to organize general meetings of ICAAN, meetings of the Executive Committee, and meetings of the Editorial Committee, to arrange for the production of lists of terms, and to settle controversial terms (see below).

Although the General Chairman is responsible for the approval of additional subcommittee members, any member of a committee may propose new subcommittee members. Such a proposal is sent to the General Chairman. The General Chairman consults the subcommittee Chairman in the appropriate field. If the subcommittee chairman approves of the proposal, the General Chairman obtains from the proposed new subcommittee member a curriculum vitae and a list of his avian publications. If the General Chairman now approves of the proposal, he notifies the new member of his decision and sends him the relevant documents.

XXIV A. S. KING

Functions of subcommittee chairmen and subcommittee members. The subcommittees are responsible for the various anatomical systems. It is the duty of the chairman of each subcommittee to prepare the list of terms for that system, with the help of his subcommittee members.

Functions of the Executive Committee. The Executive Committee formulates and implements ICAAN policy (see above for composition of this Committee).

Functions of the Editorial Committee. The Editorial Committee is responsible for the publication of the Nomina Anatomica Avium (see above for composition of this Committee).

Controversial Terms. In general, controversial terms are settled through discussion at General Meetings of ICAAN. However, in difficult cases the decision rests with the best qualified person, i.e., the subcommittee chairman, after appropriate discussion at a General Meeting. If all else fails, the decision is made by the General Chairman in consultation with the Secretary General.

# TERMINI SITUM ET DIRECTIONEM PARTIUM CORPORIS INDICANTES

#### GEORGE A. CLARK, JR.

With contributions by subcommittee members: J. J. Baumel and A. S. King.

The following account is an expansion of that in NAA (1979). We are greatly indebted to A. M. Lucas, V. Komárek, and V. Simic for their contribution in the previous edition. We appreciatively acknowledge M. J. Spring who prepared the figures for this chapter.

Terms of orientation. Cranial and caudal are used throughout the Handbook of Avian Anatomy, except that rostral replaces cranial within the head from the level of the occipital condyles. Superior and inferior are entirely avoided, but the prefixes supra- and infra- are retained for convenience and because of long usage, e.g., Nervus infraorbitalis. Anterior and posterior are used only in the eye and ear (see Organa Sensoria), but again the prefix post- has occasionally been used in terms which are well established, such as Ligamentum postorbitale. The prefix pro- has generally been preferred to pre-, although both have been used. That some anatomists strongly prefer anterior and posterior as general alternatives to cranial and caudal is recognized, because these are time-honored terms in the literature of vertebrate morphology. However, these terms can be confused through their entirely different meaning in human anatomy, where they refer to ventral and dorsal. Anyone not convinced of this potential confusion should examine the anatomical writings of the eminent nineteenth century prosectors of the Zoological Society of London, W. A. Forbes, A. H. Garrod, and F. E. Beddard. Although writing as zoologists in zoological journals, these authors commonly used anterior and posterior in the human sense. Sometimes the usage of human anatomy and the zoological usage were both employed in the same paper (e.g., Beddard, 1896). Even so, it is not realistic to expect the instant and universal adoption of cranial and caudal; nevertheless, it is hope that eventually this will be achieved.

Anatomical position of a bird. In order to apply adjectives to designate the relative positions of body parts, their locations, or relationships, or to designate

planes, axes, or surfaces, it is necessary to specify the standard anatomical position of a bird. This position is arbitrarily defined as one in which: (1) the bird stands erect with femorotibial and intertarsal joints slightly flexed, (2) the wings are outstretched laterally, and (3) the neck is fully extended rather than in the S-shaped curve of the living bird (NAA, 1979).

The upper surface of the wing, regardless of its position, is designated as dorsal, even when it is folded against the side of the trunk; its lower surface is termed ventral. Moreover, the wing has cranial and caudal margins. In the pelvic limb, caudal and cranial surfaces apply proximal to the intertarsal joint, and dorsal and plantar surfaces are used in the foot distal to that joint. See Figs. 1.1, 1.2, and **Introduction.** Terms of orientation.

#### **TERMINI GENERALES<sup>48</sup>**

Aboralis<sup>1</sup>
Afferens<sup>2</sup>

Ascendens<sup>3</sup>

Caudalis [Posterior]4

Centralis<sup>5</sup>

Centrifugalis<sup>6</sup> Centripetalis<sup>6</sup>

Coronalis<sup>7</sup>

Cranialis [Anterior]8

Descendens<sup>9</sup>

Dexter<sup>10</sup> Distalis<sup>11</sup>

Dorsalis<sup>12</sup>

Efferens<sup>13</sup>

Externus<sup>14</sup>

Fibularis<sup>15</sup>

Frontalis<sup>16</sup>

Horizontalis<sup>17</sup> Intermedius<sup>18</sup>

Internus<sup>19</sup> Lateralis<sup>20</sup>

Longitudinalis<sup>21</sup>

Medialis<sup>22</sup>

Medianus<sup>23</sup>

Medius<sup>24</sup>

Occipitalis<sup>25</sup>

Oralis<sup>26</sup>

Paramedianus [Sagittalis]<sup>27</sup>

Plantaris<sup>28</sup>

Periphericus, Peripheralis<sup>29</sup>

Perpendiculus<sup>30</sup> Profundus<sup>31</sup>

Proximalis<sup>32</sup>

Radialis<sup>33</sup>

Rostralis<sup>34</sup>

Sinister<sup>35</sup>

Superficialis<sup>36</sup>

Tibialis<sup>37</sup>

Transversalis, Transversus<sup>38</sup>

Ulnaris<sup>39</sup>

Ventralis<sup>40</sup>

Verticalis<sup>41</sup>

## **AXES, LINEAE ET PLANA**

Axis rostrocaudalis<sup>42</sup>
Axis proximodistalis<sup>43</sup>
Linea mediania dorsalis<sup>44</sup>
Linea mediania ventralis<sup>44</sup>

Planum medianum<sup>45</sup> Plana paramediana [P. sagittalia]<sup>27 45</sup> Plana transversalia<sup>46</sup> Plana dorsalia<sup>47</sup>

#### **ANNOTATIONS**

- (1) Aboralis. Aboral, away from the mouth. Contrast with Oralis.
- (2) Afferens. Afferent, to bring or carry toward a structure or point. Contrast with Efferens.
- (3) Ascendens. Ascending, directed cranially. Contrast with Descendens. (See Cardvas, Intro.).
- (4) Caudalis [Posterior]. Caudal, of, or in the direction of, the tail (Fig. 1.2). Contrast with Cranialis. The term Posterior is used in the eye and ear (see Intro. Terms of orientation).
- (5) Centralis. Central. In, at, near, or towards the center. Contrast with Peripheralis.
- (6) Centrifugalis. Centrifugal, departing or turning away from the center or axis. Centripetalis. Centripetal, approaching or turning toward the center or axis.
- (7) Coronalis. Coronal, pertaining to the crown (Corona).
- (8) Cranialis [Anterior]. Cranial, of, or in the direction of the head (Fig. 1.2). Contrast with Caudalis. The term Anterior is used in the eye (see Intro. Terms of orientation).
- (9) Descendens. Descending, directed downwards or caudally. Contrast with Ascendens. See Cardyas. Intro.
- (10) **Dexter.** On, or pertaining to, the right. Contrast with Sinister.
- (11) **Distalis.** Distal. Distant or farthest from a central point, plane (Fig. 1.2). For limbs the trunk is the reference point; for example, the manus is distal to the antebrachium. With arteries the heart is the ultimate site of reference. Contrast with Proximalis.
- (12) **Dorsalis.** Dorsal. Toward or near the back (Figs. 1.1, 2) (see **Intro.** Terms of orientation). Contrast with Ventralis.
- (13) **Efferens.** Efferent, conducting or carrying away from or outward. Contrast with Afferens.
- (14) **Externus.** External, or outward. Contrast with Internus.
- (15) **Fibularis.** Fibular, pertaining to the fibula, a bone on the lateral or fibular side of the limb. Contrast with Tibialis.
- (16) Frontalis. Frontal, designating the forehead or Frons (Topog. Annot. 5.).
- (17) **Horizontalis.** Horizontal, pertaining to the planes parallel to the back or dorsal surface of the body and lying at right angles to both median and transverse planes.
- (18) Intermedius. Intermediate, situated between two points, parts, or planes of reference.
- (19) Internus. Internal, inner or inward. Contrast with Externus.
- (20) Lateralis. Lateral, pertaining to the side (Fig. 1.1). Contrast with Medialis.
- (21) Longitudinalis. Longitudinal, along the long axis of the body or a part.

- (22) **Medialis.** Medial, toward the middle; situated closer to the midline of the body or a part. Contrast with Lateralis.
- (23) **Medianus.** Situated or extending in the axial plane; located in the middle of the body or of a structure (e.g. a limb).
- (24) **Medius, Media, Medium.** Middle, e.g., the middle item of three related structures (e.g. A. renalis media).
- (25) Occipitalis. Occipital, pertaining to the occipital complex of bones at the back of the head. (Topog. Annot. 7).
- (26) Oralis. Oral, pertaining to, or directed toward, the mouth. Contrast with Aboralis.
- (27) Paramedianus [Sagittalis]; Plana paramediana [P. sagittalia]. Synonymy: Parasagittalis. These terms designate positions or planes lateral and parallel to the median plane of the body. Any plane to the side of, and parallel to the median sagittal (interparietal) suture (plane) of the skull.
- (28) **Plantaris.** Plantar, designating the sole of the Pes (foot). In most birds when standing the metatarsal part of the Pes is elevated, but in some, such as podicipediforms, the entire plantar surface of the Pes rests on the ground. See Figs. 1.1, 2).
- (29) **Periphericus, Peripheralis.** Peripheral. Distant from the center; near the circumference. Contrast with Centralis.
- (30) **Perpendicularis.** Perpendicular, pertaining to lines or planes running at right angles to other lines or planes.
- (31) Profundus. Deep. Contrast with Superficialis.
- (32) **Proximalis.** Proximal, toward or nearer a central point, plane, or point of origin. For limbs the trunk is the reference point; for example, the humerus is proximal to the ulna. Contrast with Distalis.
- (33) **Radialis.** Radial, pertaining to the radius, hence indicating the leading edge of the antebrachium (forearm) or other parts of the thoracic limb (wing). Contrast with Ulnaris.
- (34) **Rostralis.** Rostral means directed towards the tip of the Rostrum (beak), and is used in the head in place of Cranialis. See Fig. 1.2.
- (35) Sinister. On or pertaining to the left. Contrast with Dexter.
- (36) Superficialis. Superficial; pertaining to the surface. Contrast with Profundus.
- (37) **Tibialis.** Tibial, pertaining to the tibia, hence indicating the medial side of the limb. Contrast with Fibularis.
- (38) Transversalis, Transversus. Transversal or transverse. Lying across the long axis of the body or a part.
- (39) Ulnaris. Ulnar, pertaining to the ulnar side or trailing edge of the thoracic limb. Contrast with Radialis.
- (40) **Ventralis.** Ventral. Pertaining to the belly or lower side of the abdomen (Figs. 1.1, 1.2). (See Terms of orientation.) Contrast with Dorsalis.

- (41) Verticalis. Vertical, designating any line or plane that passes vertically through the body.
- (42) Axis rostrocaudalis. Rostrocaudal axis. The longitudinal axis of the body from the tip of the rostrum to the tip of the tail.
- (43) Axis proximodistalis. Proximodistal axis. The longitudinal axis of a limb from the center of the shoulder to the tip of the Digitus major of the Manus or from the center of the hip joint to the claw of Digitus III of the Pes.
- (44) Linea mediana dorsalis/ventralis. Middorsal and midventral lines. Lines projected onto the dorsal and ventral surfaces, respectively, of the body representing the surface edges of Planum medianum.
- (45) Planum medianum. Median plane, the middle dorsoventral plane that bisects the body longitudinally into right and left halves.
- (46) **Plana transversalia.** Planes that cut across the body from side to side, at right angles to the rostrocaudal axis of the body. Transverse planes of limbs or other appendages are at right angles to the proximodistal axes.
- (47) **Plana dorsalia.** Synonymy: horizontal planes, frontal planes. Dorsal planes are parallel to the dorsal surface of the body and perpendicular to the median and transverse planes.
- (48) **Termini generales.** Comprehensive lists of general terms are found in the human *Nomina Anatomica* (NA, 1989) and the *Nomina Anatomica Veterinaria* (NAV, 1983). Word roots among these terms have been used to construct anatomical names for all vertebrates including birds. In the present volume, several of the sections on avian organ systems are preceded by brief lists of general terms.



Fig. 1.1. General nomenclature for body surfaces. (See Anatomical position of a bird.)



Fig. 1.2. Terms of position and direction for a bird. The term rostral refers to the direction towards the tip of the beak and is used in the head only. (See Terms of orientation.)

## ANATOMIA TOPOGRAPHICA EXTERNA

#### GEORGE A. CLARK, JR.

With contributions from subcommittee members: E. H. Burtt, Jr.; M. H. Clench; D. W. Johnston; Vl. Komárek; P. Stettenheim. Helpful suggestions and/or information have been given by J. J. Baumel, H. Berkhoudt, H. E. Evans, Gy. Fehér, A. S. King, A. M. Lucas, J. McLelland, G. Michel, and G. A. Zweers. M. J. Spring prepared the figures. This chapter is contribution number 681 of the New York State Science Service.

This chapter on external topographic anatomy provides names for the parts and regions, and combines coverage traditionally separated in anatomical nomenclatures as Partes Corporis and Regiones Corporis (e.g., in NAV, 1983). The name of a part can be used to designate a region that is an external surface area having arbitrary boundaries. Names given in the subsequent chapters on Integumentum Commune, Osteologia, and other systems may also be useful in describing aspects of external topography. Internal structures are not visible externally; nonetheless, for certain purposes external regions may be designated most usefully in terms of underlying structures such as bones. Although coining of new names may be necessary at times, efforts should be made to determine whether suitable terms exist already in the published literature.

In the following list, terms recommended for mammals in the NAV (1983) are used for birds where such use does not severely contradict current ideas on homology. A goal here is to provide terms applicable over a wide range of taxa. Unfortunately, it is not possible to list all available terms in this necessarily brief account. In selecting specialized terms useful for only a limited range of bird taxa, we have emphasized terms applicable to widely encountered birds, including poultry. Coues (1872) extensively reviewed avian topographic anatomy including details for many terms used here. Additional terms are available in the exceptionally thorough presentations of external topographic anatomy for particular species by Komárek (1958, 1979) on the chicken and goose and by Lucas and Stettenheim (1972) for the chicken, turkey, quail, duck, and pigeon. Campbell and Lack (1985) provided a general summary of the major taxonomic groups of birds of the world, including many differences in external topographic anatomy.

#### TERMINOLOGY

#### FACIES ET MARGINES<sup>1</sup>

Facies/Margo dorsalis Facies dorsalis alae<sup>2</sup> Facies/Margo ventralis Facies ventralis alae<sup>2</sup> Facies/Margo lateralis Facies/Margo medialis Facies/Margo cranialis Facies/Margo caudalis Facies/Margo rostralis Facies plantaris

#### CAPUT<sup>3</sup>

Regio cranialis [Cranium]<sup>3</sup> Pileum<sup>4</sup> Frons [Regio frontalis]<sup>5</sup> Corona [Vertex]<sup>6</sup> Occiput [Regio occipitalis]<sup>7</sup> Crista pennae<sup>8</sup> Regio auricularis<sup>9</sup> Apertura auris externae<sup>9</sup> Angulus craniofacialis [A. frontonasalis]<sup>3</sup> Regio facialis [Facies]<sup>3</sup> Regio oralis  $Os^{10}$ Rima oris [Apertura oris]<sup>10</sup> Angulus oris<sup>11</sup> Rostrum<sup>3</sup> 12 Rostrum maxillare<sup>12</sup> Culmen<sup>13</sup> Tomium maxillare<sup>14</sup> Unguis maxillaris (Integ.

Annot. 82)

Rostrum mandibulare<sup>12</sup> Gonvs<sup>13</sup> Tomium mandibulare<sup>14</sup> Unguis mandibularis (Integ. Annot. 82) Lamellae rostri<sup>15</sup> Regio malaris [Mala]<sup>16</sup> Rictus<sup>17</sup> Pars maxillaris Pars mandibularis Regio interramalis<sup>18</sup> Mentum<sup>19</sup> Regio gularis [R. submalaris]<sup>20</sup> Regio nasalis Naris<sup>21</sup> Operculum nasale<sup>21</sup> Cera<sup>22</sup> Lorum<sup>23</sup> Regio orbitalis Oculus<sup>24</sup> Palpebra dorsalis<sup>24</sup> Palpebra ventralis<sup>24</sup> Membrana nictitans [Palpebra tertial<sup>25</sup> Projectio pennarum<sup>26</sup>

Saccus protrudens<sup>27</sup>

### COLLUM<sup>28</sup>

Nucha<sup>28</sup> Jugulum<sup>28</sup> Regio ingluvialis<sup>29</sup>

### TRUNCUS<sup>30</sup>

Regio omalis [Omus]31

Axilla<sup>32</sup>

Dorsum trunci<sup>33</sup>

Dorsum<sup>33</sup>

Pyga<sup>33</sup>

Latus trunci<sup>33</sup>

Axilla<sup>32</sup>

Ilia33

Ventrum trunci

Regio ingluvialis<sup>29</sup>

Pectus<sup>34</sup>

Venter<sup>34</sup>

Pars infrapubica

Pars suprapubica

Facies subcaudalis

Ventus cloacae<sup>35</sup>

Eminentia venti<sup>35</sup>

Crissum<sup>35</sup>

### CAUDA<sup>36</sup>

Dorsum caudae<sup>36</sup>

Ventrum caudae<sup>36</sup> Rectrices<sup>36</sup>

Uropygium<sup>36</sup>
Bulbus rectricium<sup>36</sup>

Glandula uropygialis (Integ.

Annot. 13)

# ALA [MEMBRUM THORACICUM]37

Regio omalis [Omus]31

Axilla<sup>32</sup>

Brachium<sup>37</sup>

Cubitus<sup>37</sup>

Antebrachium<sup>37</sup>

Calcar alae (Integ. Annot. 88)

## MEMBRUM PELVICUM<sup>38</sup>

Coxa<sup>38</sup>

Femur<sup>38</sup>

Genu<sup>38</sup>

Crus<sup>38</sup>

Articulatio intertarsalis<sup>38</sup>

Tarsometatarsus<sup>38</sup> 39

Junctura metatarsophalangealis<sup>38</sup> Calcar metatarsale (Fig. 2.4; **Integ.** 

(Annot. 89; Osteo. Annot. 296)

(continued)

# MEMBRUM PELVICUM 38 (cont.)

Pulvinus hypotarsalis (Integ.

Annot. 85)

Pulvinus metatarsalis<sup>40</sup> Plica metatarsalis<sup>40</sup> Digiti<sup>38,41</sup>

Digitus pedis I [Hallux]<sup>41</sup> Digiti pedis II-IV<sup>41</sup> Phalanges
Pulvinus digitalis (Fig. 2.4;
Integ. Annot. 86)
Unguis digiti pedis<sup>41</sup>

Juncturae interphalangeales<sup>38</sup> Tela interdigitalis<sup>42</sup>

### **ANNOTATIONS**

- (1) Facies et Margines. The listed terms for the surfaces and margins of the head, trunk, limbs, and other appendages suffice for many descriptions. Synonymous terms may be substituted, e.g., tibial and fibular or radial and ulnar as borders or surfaces of a limb. Thus surfaces and margins can often be named for prominent underlying structures.
- (2) Facies dorsalis alae; Facies ventralis alae. Dorsal (upper) and ventral (lower) surfaces of the wing. Facies ventralis alae is also referred to as Facies volaris or F. palmaris.
- (3) Caput. The head is arbitrarily divided into the Regio cranialis (cranial region, an upper part; synonymy: Cranium), Regio facialis (sides and throat; synonymy: Facies), and Rostra (jaws; Annot. 12; see also Osteo. Annot. 40, 53 for definitions of upper and lower jaws and parts of jaws).

Angulus craniofacialis [A. frontonasalis]. The angle at the junction of the culmen with the slope of the frontal region. See Arthr. Zonae flexoriae of the skull.

- (4) Pileum. The forehead, crown, and occiput together (Thomson, 1964: 827).
- (5) Frons (Fig. 2.1). The forehead extends from the bill to about the transverse level of the nasal (rostral) margin of the eye.
- (6) Corona (Fig. 2.1). The crown extends over the top of the head (Caput) from the Frons to the Occiput (Annot. 7). A boundary between the crown and occiput is sometimes distinguishable by feather coloration, but is more often indefinite.
- (7) Occiput (Fig. 2.1). A region on the rear of the head, between the crown (Corona) and the nuchal region. Some writers have considered the occiput to be the rear part of the crown.
- (8) Crista pennae. A crest or tuft of lengthened feathers on the head (Van Tyne and Berger, 1959). This definition, unlike that of Newton and Gadow (1896), does not include the fleshy combs of chickens and the horny casques in hornbills and cassowaries.
- (9) **Regio auricularis.** The ear region about the auditory aperture (**Apertura auris externae**) is typically caudal and slightly ventral to the eye (Fig. 2.1). It is sometimes marked by distinctive auricular feathering. See **Org. Sens.** Annot. 55, 56.

(10) Os. The mouth.

**Rima oris.** (Komárek, 1958). Synonymy: Apertura oris (NAA, 1979). Rima, L. cleft or fissure. The opening of the mouth is frequently called the "gape" in ornithological literature.

- (11) Angulus oris. Synonymy: commissural point or rictal commissure. The corner or angle of the mouth.
- (12) **Rostrum.** The beak or bill (Fig. 2.2). Skeletal parts of the upper jaw or maxilla (**Rostrum maxillare**) and lower jaw or mandible (**Rostrum mandibulare**) are covered by the integumental Rhamphotheca (**Integ.** Annot. 81). See **Osteo.** Annot. 40, 53 for closely related terms.
- (13) Culmen. The middorsal ridge of the Rostrum maxillare extending from the tip of the bill to the base of the feathers on the forehead at or near the craniofacial angle.

Gonys. The midventral ridge of rhamphotheca lying superficial to the Rostrum [Symphysis] mandibulae (Osteo. Annot. 40, 53; Arthr. Annot. 21). Coues (1872) reviewed the history of this term and suggested that the proper term should have been Genys, meaning lower jaw or chin, but "Gonys" (which correctly refers to the knee) has been so widely used in the ornithological literature that a change seems impractical.

- (14) **Tomium maxillare; Tomium mandibulare.** The cutting edge of the rhamphotheca on each ramus of the upper and lower jaws (Fig. 2.2). The tomia form the borders of the forward part of the opening of the mouth (**Rima oris;** Annot. 10, 12).
- (15) Lamellae rostri. A series of small, closely set vertical ridges of rhamphotheca along the outer margin of the lower tomia and/or the inner margin of the upper tomia used for straining or grasping food as in the phoenicopterids (flamingos) and anatids.
- (16) **Regio malaris [Mala].** The malar region ("cheek") lies on the side of the head and superficially covers the caudal end of the jaws (Fig. 2.1). The malar region is ventral to the auricular region (Annot. 9) and dorsal to the throat (Annot. 20).
- (17) **Rictus.** A fleshy border of the mouth (Os) from its corner or angle (**Angulus oris**) grading rostrally into the maxillary and mandibular tomia (Coues, 1872). This definition is more restricted than one that considers the rictus to be the Rima oris (commissural line) along which the mandibles close (Fig. 2.2).
- (18) **Regio interramalis.** Synonymy: Regio intermandibularis. This triangular area lies between the two mandibular rami caudal to the Rostrum [Symphysis] mandibulae (gonys). See Annot. 12.
- (19) **Mentum.** The Mentum is the soft rostral part of the interramal region (Annot. 18) caudal to the Gonys (Annot. 13) and hard interramal space (Coues, 1872). The Mentum is caudally continuous with the gular (submalar) region. The Mentum is thus the area, usually feathered between the exposed mandibular rami, i.e., the rostral part of the interramal region in the fork on the underside of the bill.
- (20) **Regio gularis [R. submalaris].** The gular region, the caudal part of the interramal region, forms the throat and extends from the mentum caudally to an imaginary line between the caudal ends of the mandibles (**Osteo.** Annot. 43).

- (21) Naris. Synonymy: nostril or external nasal aperture. The nares, commonly round or elongate in shape, penetrate the bone and rhamphotheca of the maxilla usually near its caudal end (Fig. 2.2; Resp. Annot. 1). A projecting shelf termed the Operculum nasale (operculum, L.lid or cover) partially or completely covers the naris in some birds including chickens, pigeons, and starlings (Sturnus vulgaris). See Fig. 2.2; Resp. Annot. 2.
- (22) Cera. The cere, a thickened part of the integument, either naked or feathered, straddles or encircles the base of the nasal region as in accipitrids, falconids, columbids, psittacids, and strigids. (Integ. Annot. 81).
- (23) **Lorum.** (L. a strap). The lore (pl. lores; adj. loral) is the area between the eye and the upper jaw (Coues, 1872) (Fig. 2.1).
- (24) Oculus. The eye.

Palpebra dorsalis; Palpebra ventralis. In birds the dorsal eyelid is typically immobile and the ventral one mobile (Newton and Gadow, 1896: 234), but in certain owls, part or all of the upper eyelid can move (Lucas and Stettenheim, 1972: 14, 31). (Fig. 2.2; Sens. Annot. 34).

- (25) Membrana nictitans [Palpebra tertia]. When drawn caudally from its folded position at the medial angle of the eye, the translucent or opaque nictitating membrane protectively moistens and covers the eye (Sens. Annot. 40).
- (26) **Projectio pennarum.** This new term designates a projection of feathers on the head and neck as illustrated by the crests (Annot. 8) in many birds, hackles on the dorsal side of the neck, and "ear" tufts in certain owls.
- (27) Saccus protrudens. This new term designates a variety of diverticula that when inflated protrude externally from the head or neck and originate from either the digestive or respiratory tract. Examples of such diverticula occur in the gular region of frigate birds (Fregatidae), in the respiratory tract in the Marabou Stork (*Leptoptilos crumeniferus*), and along the esophagus of the Sage Grouse (*Centrocercus urophasianus*) and bustards (Otididae). These diverticula are covered with bare or feathered skin (Resp. Annot. 21; Digest. Annot. 3, 27, 29-30).
- (28) Collum. Synonymy: Cervix. On the neck (Collum), the dorsal region adjacent to the skull is termed the Nucha (nape of the neck or nuchal region). Caudally the root of the neck lying between the shoulders has been termed the "interscapular" portion. The **Jugulum** is the ventral side of the neck (Fig. 2.1).
- (29) **Regio ingluvialis.** In those avian species that possess a crop this term designates the region of the crop at the front of the breast and thoracic inlet at the root or the base of the neck.
- (30) **Truncus.** The trunk is the entire body between neck and tail excluding the limbs.
- (31) **Regio omalis [Omus].** The shoulder is the arbitrarily delimited region of junction of the wing and trunk. The Greek term Omos is used (**Osteo.** Annot. 164) in its Latin transliteration, Omus.
- (32) **Axilla.** The armpit, an arbitrarily delimited region on the underside of the wing and immediately adjacent trunk. The so-called "axillary" feathers are attached on the ventral surface of the upper arm (Lucas and Stettenheim, 1972: 80). See Fig. 2.3.

(33) **Dorsum trunci.** Synonymy: Notaeum (Coues, 1872: 15). The term **Dorsum trunci** designates the entire upper part of the trunk of a bird including the back and rump.

**Dorsum.** The back, not including the rump (Fig. 2.1).

**Pyga.** The rump, the caudal part of the Dorsum trunci together with the base of the uropygium, externally differentiated only by feathering ("rump patch") of contrasting color or texture. The pyga does not include most of the uropygium (Fig. 2.1).

Latus trunci. The side of the trunk includes cranial and caudal areas. Cranially, the Latus trunci merges with the neck (Collum). The caudal boundary of the Latus trunci follows the cranial border of the preacetabular ilium and the cranial margin of the thigh. Most of the caudal part of the trunk is located deep to the thigh which covers all except a small area next to the tail (see Annot. 34). Dorsal and ventral boundaries for the Latus trunci are arbitrarily delimited.

Ilia (Fig. 2.3). The flank lies between the caudal part of the abdomen and the rump. The ilia is not the same as the ilium. See Osteo. Annot 245.

(34) **Pectus.** The breast (Figs. 2.1, 3).

**Venter.** The abdomen or belly. The boundary between the breast and the abdomen roughly coincides with the caudal border of the sternum and the last rib (Figs. 2.1, 3)

Venter, Pars infrapubica/suprapubica. Facies subcaudalis. The uropygium and caudal vertebrae form the moveable *dorsal* wall of the rearmost part of the abdomen; the skin covering the part of the dorsal wall directly under the uropygium is referred to as the subcaudal surface of the abdomen. The suprapubic part of the *lateral* abdominal wall extends from the uropygium to the pubis and upper border of the rear half of the ischium. The infrapubic part of the abdominal wall is partially lateral and partially ventral, and extends from pubis to the last rib and caudal border of the sternum. See Baumel (1988; 1990).

(35) Crissum. The term crissum designates the region surrounding the Ventus cloacae (opening of the cloaca) (Cloaca Annot. 18; Figs. 2.1, 2.3)

Eminentia venti (Baumel, 1988). The protruding elevation bearing the vent (orifice of the cloaca). See Masc. Annot. 27, Promontorium cloacale.

(36) Cauda. The tail, including its dorsal side (Dorsum caudae), ventral side (Ventrum caudae), the tail flight feathers (Rectrices), their coverts (Tectrices caudales), and the Uropygium, the fleshy tail mass (Baumel, 1988: 5). See Integ. Annot. 62.

**Bulbus rectricium.** The paired rectricial bulbs are major components of the Uropygium. Each bulb is a fibro-adipose structure which has a partially surrounding capsule of striated muscle in which are embedded the calami of the rectrices and their major coverts (Campbell and Lack, 1985: 579; Baumel, 1988). A rectricial bulb lies on each side of the pygostyle to which it is loosely attached.

- (37) Ala (Membrum thoracicum). The wing includes the upper arm (Brachium), elbow (Cubitus), forearm (Antebrachium), wrist (Carpus), hand (Manus), (carpometacarpus, feathered forefinger (Alula), and major and minor digits) (See Integ. Annot. 65).
- (38) Membrum pelvicum. The pelvic limb includes the hip (Coxa), thigh (Femur), knee (Genu), shank or leg (Crus), intertarsal joint (Artc. intertarsalis), and foot (Pes). The last includes the Tarsometatarsus, metatarsophalangeal joints (Juncturae metatarsophalangeales), the toes (Digiti), and toe joints (Juncturae interphalangeales). See Arthr. Annot. 182, 183.

- (39) **Tarsometatarsus.** The part of the limb enclosing the tarsometatarsal bones is commonly called the "tarsus" in the ornithological literature and erroneously referred to as the shank (Coues, 1927). The shank or crus in mammals and birds lies between the knee and the ankle (see **Osteo.** Annot. 284).
- (40) **Pulvinus metatarsalis.** The metatarsal pad is a fat body covered with podotheca at the distal end of the Tarsometatarsus on its plantar surface and on the bases of digits II to IV. (Fig. 2.4; **Integ.** Annot. 16; **Arthr.** Annot. 179).

Plica metatarsalis. A narrow transverse fold in the skin between the first digit and metatarsal pad.

- (41) **Digiti.** Synonymy: Hallux [I] = Digitus primus; I-IV = Digitus secundus/tertius/quartus. The four toes of most birds correspond to digits I-IV in ancestral vertebrates. Some birds have undergone evolutionary reduction in number of toes with the Ostrich having the extreme of only 2 toes. In most birds the terminal phalanx in each toe is a claw (**Unguis**) having a bony core and an integumental rhamphothecal cover (**Integ.** Annot. 87). In typical birds **Digitus I** is the hind toe or hallux. **Digiti II** through **IV** are most commonly forwardly directed and are numbered from medial to lateral (Van Tyne and Berger, 1959: 50.). See Figs. 2.1, 4; and **Osteo.** Annot. 299, 300, numbering of phalanges.
- (42) **Tela interdigitalis.** See Fig. 2.4. The skin webbing between the toes, the extent of which differs considerably among different kinds of birds. Many species lack such webbing.



Fig. 2.1. External topography of a bird in lateral view.



Fig. 2.2. Rostral part of the head of a single comb White Leghorn chicken (Gallus gallus); right lateral view. After Lucas and Stettenheim, 1972.



Fig. 2.3. External topography of the underparts of a bird in flight (Modified after P. Grant, 1986, *Gulls, a Guide to Identification*, 2nd ed., with permission of Academic Press, London).



Fig. 2.4. Foot of a single comb White Leghorn chicken (Gallus gallus); plantar view, right side.

# INTEGUMENTUM COMMUNE

### GEORGE A. CLARK, JR.

With contributions from subcommittee members: E. H. Burtt, Jr.; M. H. Clench; D. W. Johnston; Vl. Komárek; M. Morlion; R. I. C. Spearman; P. Stettenheim. Helpful suggestions and/or information have been given by J. J. Baumel, H. Berkhoudt, R. E. Brown, A. H. Brush, H. E. Evans, Gy. Fehér, A. S. King, A. M. Lucas, J. McLelland, G. Michel, and G. A. Zweers. M. J. Spring prepared the figures. This chapter is contribution number 682 of the New York State Science Service.

Good general introductions to the literature on the integument can be found in Lucas and Stettenheim (1972), Stettenheim (1972), Spearman (1983), and Spearman and Hardy (1985). In the following account, the terminology of the feathers is in three sections: (1) parts of a feather, (2) structural kinds of feathers, and (3) names of feathers, individually or collectively, on different parts of the body. The subject of molt is not covered here, but Palmer (1972) has provided a useful introduction.

### **TERMINOLOGY**

#### CUTIS1

Epidermis<sup>2</sup>
Stratum corneum<sup>3</sup>
Stratum intermedium<sup>4</sup>
Stratum basale<sup>5</sup>
Membrana basalis<sup>6</sup>
Dermis [Corium]<sup>7</sup>
Stratum superficiale<sup>8</sup>
Stratum profundum<sup>9</sup>
Stratum compactum<sup>9</sup>
Stratum laxum<sup>9</sup>
Lamina elastica<sup>10</sup>
Mm. nonstriati dermatis<sup>11</sup>

Mm. pennarum<sup>11</sup>
Tendo elastica<sup>11</sup>
Mm. apteriales<sup>11</sup>
Folliculus<sup>11</sup>
Collum folliculi<sup>11</sup>
Paries folliculi<sup>11</sup>
Mm. pennarum
Tendo elastica<sup>11</sup>
Glandulae auriculares<sup>12</sup>
Glandula uropygialis<sup>13</sup>
Lobus glandulae uropygialis
Septum interlobare

(continued)

## CUTIS<sup>1</sup> (cont.)

Capsula glandulae uropygialis
Papilla uropygialis
Ductus glandulae uropygialis
Porus ductus glandulae
uropygialis

Circulus uropygialis<sup>13</sup> 62 Glandulae externae labii venti<sup>14</sup> Area incubationis<sup>15</sup>

# **TELA SUBCUTANEA [SUBCUTIS]**

Mm. pterylarum<sup>11</sup> Corpora adiposa [Panniculus adiposus116 Corpus adiposum abdominale laterale Corpus adiposum abdominale transversum Corpus adiposum abdominale medioventrale Corpus adiposum coracoclaviculare Corpus adiposum dorsocervicale Corpus adiposum femorale craniale Corpus adiposum femorale caudale Corpus adiposum iliocaudale [C. a. caudofemorale] Corpus adiposum ischiopubicum

Corpus adiposum laterocervicale
Corpus adiposum mesenteriale<sup>16</sup>
Corpus adiposum orbitae
Corpus adiposum ophthalmicum
Corpus adiposum pectorale
Corpus adiposum paracloacale<sup>16</sup>
Corpus adiposum plantare
profundum<sup>16</sup>
Corpus adiposum plantare
superficiale<sup>16</sup>
Corpus adiposum spinale
Corpus adiposum spinale
Corpus adiposum subalare
Corpus adiposum synsacrale
Corpus adiposum thoracicum
laterale
Corpus adiposum tracheale

### PARTES PENNAE<sup>17</sup>

Folliculus<sup>11</sup>
Collum<sup>11</sup>
Paries<sup>11</sup>
Vagina pennae<sup>18</sup>
Scapus pennae<sup>19</sup>
Calamus pennae<sup>19</sup>
Umbilicus proximalis<sup>20</sup>
Umbilicus distalis<sup>20</sup>

Galerus pulposus<sup>21</sup>
Hypopenna<sup>43</sup>
Hyporhachis<sup>43</sup>
Hypovexillum<sup>43</sup>
Barbae umbilicales<sup>43</sup>
Rhachis pennae<sup>19</sup>
Cortex<sup>22</sup>

## PARTES PENNAE<sup>17</sup> (cont.)

Medulla<sup>22</sup> Sulcus ventralis<sup>23</sup> Vexillum pennae<sup>24</sup> Vexillum internum<sup>24</sup> Vexillum externum<sup>24</sup> Pars plumacea<sup>25</sup> Pars pennacea<sup>25</sup> Barba pennae<sup>26</sup> Ramus<sup>26</sup> Cortex<sup>22</sup> Medulla<sup>22</sup> Petiolus<sup>27</sup> Incisura rami<sup>27</sup> Crista dorsalis<sup>28</sup> Crista ventralis<sup>28</sup> Tegmen<sup>28</sup> Villi<sup>28</sup> Ruga proximalis<sup>29</sup> Ruga distalis<sup>29</sup> Vexillum barbae<sup>30</sup> Vexillum barbae proximale Vexillum barbae distale

Barbula rami<sup>31</sup> Barbula proximalis<sup>31</sup> Barbula distalis31 Barbula rhachidialis<sup>32</sup> Barbula stylosa<sup>33</sup> Barbicella34 Basis barbulae35 Arcus dorsalis36 Dens ventralis36 Stylus dorsalis<sup>36</sup> Flexura<sup>37</sup> Pennula<sup>38</sup> Nodus<sup>38</sup> Internodus<sup>38</sup> Dens nodosus<sup>38</sup> Cilium dorsale<sup>39</sup> Cilium ventrale<sup>39</sup> Hamulus<sup>39</sup> Apex<sup>40</sup> Margo<sup>40</sup> Incisura vexilli41 Zona impendens<sup>42</sup>

### PENNAE<sup>44</sup>

Pluma<sup>45</sup>
Plumula<sup>45</sup>
Neossoptilus<sup>45</sup>
Prepenna<sup>45</sup>
Preplumula<sup>45</sup>
Semipluma<sup>46</sup>
Penna contorna<sup>47</sup>
Penna volatus<sup>47</sup>
Remex<sup>48</sup>
Rectrix<sup>48</sup>
Tectrix<sup>63</sup>

Pennae contornae generales<sup>47</sup> Pulvipenna [Pulvipluma]<sup>49</sup> Seta<sup>50</sup> Semiseta<sup>50</sup> Filopluma<sup>51</sup>

(continued)

#### PLICA ET PATAGIA CUTIS<sup>52</sup>

Patagia alae<sup>52</sup>
Propatagium<sup>53</sup>
Patagium alulae<sup>55</sup>
Patagium cervicale [Plica cervicalis]<sup>52</sup>

Postpatagium<sup>54</sup> Metapatagium<sup>53</sup> Tela interdigitalis<sup>86</sup>

Remiges secundarii<sup>67</sup>

#### PTERYLAE<sup>56</sup>

Pteryla capitalis<sup>57</sup> Ptervla dorsalis<sup>58</sup> Pars cervicalis Pars interscapularis Pars spinalis Pars pelvica Circulus uropygialis<sup>59</sup> Ptervla lateralis<sup>60</sup> Ptervla ventralis<sup>61</sup> Pars cervicalis Pars pectoralis Pars axillaris Pars sternalis Pars abdominalis Pars venti<sup>61</sup> Pteryla caudalis<sup>62</sup> Rectrices<sup>48</sup> 62 Tectrices caudae<sup>63</sup> Tectrices dorsales caudae<sup>63</sup> Tectrices caudales dorsales majores<sup>63</sup> Tectrices caudales dorsales minores Tectrices ventrales caudae<sup>63</sup> Tectrices caudales ventrales majores<sup>63</sup> Tectrices caudales ventrales

Diastema remigum secundarium<sup>67</sup> Remiges tertiarii [R. humerales]<sup>68</sup> Remex carpalis<sup>69</sup> Remiges alulae [R. alulares]<sup>70</sup> Tectrices alae<sup>63</sup> 71 Tectrices marginales manus<sup>71</sup> Tectrices marginales propatagii<sup>71</sup> Tectrices dorsales Tectrices dorsales alulae Tectrices dorsales propatagii<sup>71</sup> Tectrices primariae dorsales majores Tectrices primariae dorsales mediae Tectrices primariae dorsales minores Tectrix carpalis dorsalis Tectrices secundariae dorsales majores Tectrices secundariae dorsales mediae Tectrices secundariae dorsales minores Tectrices tertiariae dorsales

Tectrices ventrales

Pteryla scapulohumeralis<sup>64</sup>

minores

Pteryla alae<sup>65</sup>
Remiges
Remiges primarii<sup>66</sup>

# PTERYLAE<sup>56</sup> (cont.)

Tectrices primariae
ventrales majores
Tectrices primariae
ventrales mediae

Tectrices primariae

ventrales minores Tectrices secundariae

ventrales majores Tectrices secundariae

ventrales mediae

ventrales minores
Tectrices ventrales propatagii
Tectrices tertiariae ventrales

Pteryla membri pelvici<sup>72</sup>

Tectrices secundariae

Pars femoralis

Pars cruralis

Pars tarsometatarsalis

Pars digitalis

### APTERIA56 73

Apteria capitalia<sup>74</sup>

Apteria dorsalia<sup>75</sup>
Apterium scapulare
Apterium spinale

Apteria lateralia<sup>76</sup>
Apterium cervicale laterale
Apterium truncale laterale

Apterium ventrale<sup>77</sup>
Pars cervicalis ventralis
Pars sternalis
Pars pectoralis
Pars abdominalis mediana
Pars abdominalis lateralis

Apterium caudale<sup>78</sup>

Apteria alae<sup>79</sup>
Apterium humerale

Apterium subhumerale Apterium antebrachiale ventrale Apterium propatagiale ventrale

Apterium membri pelvici80

### INTEGUMENTUM SPECIALE

Rhamphotheca81

Cera<sup>81</sup>

Unguis maxillaris<sup>82</sup> Unguis mandibularis<sup>82</sup>

Podotheca<sup>83</sup>

Scuta<sup>84</sup>

Scutella84

Acrotarsium<sup>84</sup>

Acropodium<sup>84</sup>

Pulvinus hypotarsalis<sup>85</sup>

Pulvinus metatarsalis (Topog.

Annot. 40)

Pulvinus digitalis<sup>86</sup> Pulvinus ungualis<sup>86</sup>

(continued)

#### INTEGUMENTUM SPECIALE

Areae interpulvinares<sup>86</sup>
Tela interdigitalis<sup>86</sup>
Ungues
Unguis digiti manus<sup>87</sup>
Unguis digiti alulae
Unguis digiti majoris
Unguis digiti pedis<sup>87</sup>

Scutum dorsale
Processus pectinatus
Scutum plantare
Calcaria
Calcar alae<sup>88</sup>
Calcar metatarsale<sup>89</sup>

### **ANNOTATIONS**

- (1) The terminology for the layers of the Cutis (skin) was extensively reviewed by Lucas and Stettenheim (1972: 485-489 and Figs. 338, 367, 375, 381). Spearman (1983) and Sawyer, et al.(1986) have summarized studies on skin keratinization.
- (2) **Epidermis.** Outermost, nonvascular, epithelial layer of the skin (Spearman and Hardy, 1985). See Fig. 3.1.
- (3) **Stratum corneum.** This outer horny layer of nonliving cells, produced by the underlying living cells, provides a protective barrier between the environment and the body. As the laminae of the Stratum corneum are pushed to the surface, the bonding between the laminae weakens (dehiscence), and the outermost cells are sloughed off (desquamation). The Stratum lucidum of mammals cannot be distinguished in birds (Hodges, 1974).
- (4) Stratum intermedium. A middle epidermal layer of generally polyhedral cells with signs of keratinization and vacuolization (Fig. 3.1). Stratum granulosum, a name applied in mammals, could be used to designate a thin outer layer of the avian Stratum intermedium, but it does not occur in plantar skin and is elsewhere reported to be distinguishable only with electron micrographs (Hodges, 1974). The term Stratum transitivum has also been applied to this thin layer in birds, but Sawyer, et al. (1986) on the basis of their studies of scales, included this layer as the superficial part of the Stratum intermedium. The term Stratum intermedium is preferred to "Stratum spinosum" which is used for mammals. In birds the "spiny cells" are not limited to the intermediate layer. In mammalian epidermal histogenesis the term "Stratum intermedium" has been used to designate a "middle" layer that eventually becomes the spiny layer (Sengel, 1976: 11).
- (5) **Stratum basale.** The deepest epidermal layer (Fig. 3.1), usually only one cell thick and containing cuboidal or columnar cells which are dividing and unkeratinized.
- (6) Membrana basalis. The basement membrane lies between the plasma membrane of the basal cells and the dermis (Fig. 3.1). Electron microscopy reveals at least two layers and a space. Lucas and Stettenheim (1972: 486, 491, 495) reviewed terms that have been applied to this structure.

- (7) **Dermis [Corium].** This inner layer of the skin is composed mainly of connective tissue. Avian dermis typically lacks the papillary superficial layer and reticulate inner layer that characterize mammalian dermis; hence different names are used for layers of the dermis in birds. The appearance of the avian dermal layers is highly varied, depending on species, location, and age (Stettenheim, 1972). See Figs. 3.1, 2.
- (8) Stratum superficiale. This outer layer of dermis contains collagenic connective tissue and is generally less dense than that of the underlying Stratum compactum.
- (9) Stratum profundum. This deep layer of the dermis contains a Stratum compactum, which is an outer dense feltwork of elastic fibers and collagenic fiber bundles, and a looser deeper Stratum laxum which includes smooth muscles and the bases of the follicles of the contour feathers.
- (10) Lamina elastica. This very thin dermal layer of elastic fibers forming a horizontal lattice sometimes separates dermis from subcutis. Feather follicles lie superficial to the Lamina elastica and hence within the dermis, whereas the basal ends of hair follicles are generally described as located in the subcutis.
- (11) Musculi nonstriati dermatis. These smooth muscles in the dermal layer consist of two types: feather muscles and apterial muscles. See Myol. Annot. 4.

Musculi pennarum. These nonstriated feather muscles are attached at each end to an elastic tendon (Tendo elastica) which is fastened to the connective tissues of the external follicle walls of contour, semiplume, bristle, and body down feathers. See Lucas and Stettenheim (1972) for illustrations of the arrangements of feather muscles.

Mm. apteriales. Lange (1931) designated the apterial muscles as the "Stratum musculo-elasticum", but these muscles are part of the loose layer (Stratum laxum) and not a distinct layer of dermis. Where apterial muscles are contiguous with feather muscles, elastic bundles connect the two types.

Musculi pterylarum. Dermal slips of striated skeletal muscles that move or tense an entire feather tract (Petry, 1951). See Myol. Annot. 4.

**Folliculus.** The follicle is a cutaneous tubular invagination surrounding a cavity within which a feather develops and remains seated. The follicular wall contains epidermal and dermal layers, and thus the epidermis of the contained feather faces the epidermis of the follicle (Lucas and Stettenheim, 1972: Figs. 239, 306, 307). Parts of the follicle include the neck (**Collum**) and the wall (**Paries**). Associated with the follicle are numerous blood vessels, a complex innervation, and nonstriated feather muscles (**Mm. pennarum**), each of which is attached to the follicle by an elastic tendon (see Annot. 11.

- (12) Glandulae auriculares. Numerous small holocrine auricular glands in the wall of the external acoustic canal (Meatus acusticus externus) occur in at least some birds, and consist in the chicken of sac-shaped organs that open by short ducts directly into the canal of the outer ear (Lucas and Stettenheim, 1972; Menon and Salinukul, 1989).
- (13) Glandula uropygialis. Uropygial gland (Fig. 3.3). Synonymy: oil gland, preen gland. This subcutaneous, holocrine gland on the uropygium occurs in most birds (Jacob and Ziswiler, 1982; see Johnston, 1988, for an extensive comparative survey of this gland). The lobes (singular: Lobus glandulae uropygialis) are separated by an interlobar septum (Septum interlobare) and covered by an external capsule (Capsula glandulae uropygialis). A caudally or dorsocaudally projecting gland papilla (Papilla uropygialis) contains one or two ducts. Each duct (Ductus glandulae uropygialis) terminates at an exterior opening (Porus ductus glandulae

uropygialis). In many birds the papilla bears a tuft of feathers (Circulus uropygialis (see Annot. 59).

- (14) Glandulae externae labii venti. Mucus secreting glands open on the external surface of the labia of the vent and surrounding featherless skin in certain species of birds including at least some charadriiforms and passeriforms (Quay, 1967). See Cloaca. Annot. 21.
- (15) Area incubationis. Synonymy: brood patch. An incubation patch is a modification of ventral skin around the time of incubation, marked by a loss of feathers and increased vascularity of the skin (Kern and Coruzzi, 1979). Used for warming of eggs (Drent, 1975), the patch is single in most species, but paired or even triple in some. It occurs in either or both sexes, associated with incubation habits. The most widespread pattern among the taxonomic orders is that both sexes share the incubation with each sex developing an incubation patch (Drent, 1975), e.g., in the podicipedi-, procellari-, grui-, charadrii-, pici-, most columbi-, some of the falconiand passeriforms.
- (16) Corpora adiposa [Panniculus adiposus]. Subcutaneous fat bodies, organ-like structures holding lipid reserves. Fat bodies are not part of the integument or any other commonly recognized organ system, but are arbitrarily included here, because many of them are near the skin (Fig. 3.4). Subcutaneous fat deposits are patchy in distribution. Names for 16 fat bodies in the chicken embryo were provided by Liebelt and Eastlick (1954) and used by King and Farner (1965) for the White-crowned Sparrow (Zonotrichia leucophrys) (Fig. 3.4). Latin versions of fat body names were provided in NAA (1979). Additional fat bodies have been observed in birds: (1) in the orbit (H. E. Evans, pers. comm.), (2) between the postacetabular ilium and tail (iliofemoral), (3) both superficially and deep in the sole of the foot, and (4) extraperitoneally (J. J. Baumel, 1988 and pers. comm.). English names for the fat bodies listed with Latin names are, in the same sequence, orbital, ophthalmic, dorsocervical, laterocervical, tracheal, claviculo-coracoid, spinal, synsacral, iliocaudal (the caudofemoral of Baumel, 1988: 7), lateral thoracic, lateral abdominal, pectoral, transverse abdominal, medioventral abdominal, ischio-pubic, subalar, cranial femoral (synonym: sartorial), caudofemoral (synonym: femoral), deep plantar, superficial plantar, mesenteric, and paracloacal. The mesenteric is incorporated in the posthepatic septum, while the paracloacal lies on each side of the cloaca (Baumel, 1988).
- (17) **Partes pennae** (Figs. 3.5, 6, 7). In designating the position of parts on a feather of the trunk, "dorsal" signifies the external (outer) side of the feather, and ventral specifies the internal (inner) side. See Lucas and Stettenheim (1972: Chaps. 5, 6, 7) for details and illustrations of feather parts.
- (18) Vagina pennae (new term). This is the sheath that encloses a newly formed and growing natal or regenerating feather. Composed of epidermal cells derived from the outer layer of a feather blastema, it is lost by flaking and splitting as the feather matures.
- (19) **Scapus.** The central shaft of a typical feather has two parts, the proximal **Calamus**, which is tubular and embedded in the follicle, and the more distal **Rhachis**, which is essentially a solid extension of the wall of the calamus on the dorsal side (Lucas and Stettenheim, 1972: 237-238). The rachis is that portion of the shaft which bears barbs, if any are present, and which is above the skin. The Greek term Rhachis is usually spelled as rachis in English. See Figs. 3.5, 6.

- (20) Umbilicus proximalis; Umbilicus distalis. The proximal umbilicus (synonym: inferior umbilicus) is a pit on the basal end of the calamus and is the remnant of the opening through which the pulp core entered a developing feather. The distal umbilicus (synonym: superior umbilicus) is a pit on the ventral side of the calamus at the level where the vanes begin and is the remnant of the upper opening through which the pulp core passed from inside the wrapped up vanes of a developing feather into the calamus. The distal umbilicus marks the distal end of the calamus (Fig. 3.5).
- (21) Galerus pulposus. Pulp cap. Within the cavity of the calamus of a mature feather the pulp caps are a continuous series of downward (proximally) opening cups, stacked to form a thin-walled tube with transverse partitions. Pulp caps developmentally first appear alongside the rachis and then later are formed through the distal umbilicus into the calamus (Lucas and Stettenheim, 1972: 236-337, 381-383; Fig. 159).
- (22) Cortex; Medulla. The rachis is largely solid and contains a dense outer layer, the Cortex, resembling the wall of the calamus and a pithy core, the Medulla. The terms cortex and medulla are general and applied to a variety of structures including the ramus of a barb (Fig. 3.7).

Medulla. Synonymy: Substantia medullaris (Purslow and Vincent, 1978).

- (23) Sulcus ventralis. A groove on the ventral side of the rachis is most prominent in large flight feathers of the wing and tail, less distinct in coverts and contour feathers on the body, and faint or absent in other feathers.
- (24) Vexillum; Vexillum internum; Vexillum externum. Vexilla are vanes of contour feathers and semiplumes. Vexilla consist of more or less flexible sheets on opposite sides of the rachis, composed of narrow, flattened, parallel, and closely spaced plates called barbs. For flight feathers the terms Vexillum internum (inner vane) and Vexillum externum (outer vane) refer, respectively, to vanes on the medial and lateral sides of the rachis of the rectrices (with tail folded) and the secondaries and proximal primary rectrices (with wing extended). For the distal primaries that are oriented parallel to the longitudinal axis of the wing (wing extended), the Vexillum externum is on the cranial edge of the rachis. In many flight feathers the outer vane is narrower with a more acute angle between its barbs and the rachis (see Feduccia and Tordoff, 1979; Baumel, 1988: 47).
- (25) **Pars plumacea; Pars pennacea.** The fluffy or plumaceous zone of a contour or semiplume feather is near the basal end, whereas the pennaceous zone is in the relatively flat, distal portion of the vane. In the Pars pennacea the barbs are flat, parallel, and interlocking, whereas in the Pars plumacea they are downy and noninterlocking (Fig. 3.5).
- (26) **Barba pennae.** (Chandler, 1916). A barb is an inclusive term for a primary branch (**Ramus**) of the rachis plus the secondary branches (**Barbulae**) of that ramus. Some authors have used the term barb as a synonym of ramus. Pennaceous barbs are cohesive or interlocking, whereas plumaceous barbs are not. (Figs. 3.6, 7)
- (27) **Petiolus; Incisura rami.** The petiole is the base of a ramus of a pennaceous barb in which the base is narrower than the portion immediately distal. A notch, if present, in the ventral margin of the ramus immediately distal to the petiole is called the **Incisura rami.**
- (28) Crista dorsalis; Crista ventralis. (Figs. 3.7, 8). Synonymy: dorsal and ventral ridges (Chandler, 1916). Dorsal and ventral crests of the long, laterally compressed,

filamentous, ramus of a pennaceous barb. The Crista dorsalis rises above the level of the roots of the barbules. The ventral crest in the wing feathers of many nonpasserines is expanded and curved to form a thin shelf known as the **Tegmen** (pl. tegmina), which projects almost parallel to the distal barbules (Fig. 3.8). The **Villi** are a fringe of projections on the edge of the tegmen (Gladstone, 1918; Lucas and Stettenheim, 1972: 258-259).

- (29) Ruga proximalis; Ruga distalis. A proximal and distal series of ridges (rugae) on each side of the ramus of a pennaceous barb at the attachment of the barbules (Lucas and Stettenheim, 1972: 245-246 and Fig. 164).
- (30) **Vexillum barbae.** The vanule is a vane composed of interlocking barbules on one side of a pennaceous barb. Vexillum barbae proximale is the vanule pointing towards the base of the feather, while the Vexillum barbae distale points towards the apex of the feather.
- (31) **Barbula rami.** A barbule is a secondary branch of the rachis of a feather and is generally an offshoot of a ramus. It is a long slender projection, even a filament. Barbules are of two major types: plumaceous (noninterlocking) and pennaceous (interlocking). Plumaceous-type barbules are alike on both sides of a barb, whereas pennaceous-type barbules are different on proximal and distal sides of a barb.

**Barbula proximalis** is a barbule on the proximal side of the ramus and thus points towards the base of the feather (Fig. 3.7).

**Barbula distalis** is a barbule pointing towards the apex of the feather (Figs. 3.6, 7).

- (32) **Barbula rhachidialis.** (new term). This designates a rachidial barbule that attaches to the side of the rachis between the attachments of pennaceous-type rami. Rachidial barbules form a continuous row with those on the proximal side of each ramus but they are much simpler in structure.
- (33) **Barbula stylosa.** A stylet barbule on a ramus is a small, stiff, slender barbule with a simple shape, i.e. few or no projections.
- (34) **Barbicella.** A latinized form of barbicel, a specialized process of a barbule. (Synonymy: Processus barbulae (NAA, 1979)).
- (35) **Basis barbulae.** The base (basal plate) of a barbule is its narrow strap- or plate-like proximal portion with few or no projections (Fig. 3.7).
- (36) Arcus dorsalis. The dorsal flange. This lip along the dorsal border of the base of a proximal pennaceous-type barbule projects toward the ramus. This flange engages the hooklets of the pennula of a distal barbule so as to unite barbs and hold together the surface of the vane of the feather (Fig. 3.7).

**Dens ventralis.** The ventral tooth is a long, triangular projection from the apical end of the base of a pennaceous-type barbule. The Dens is more elaborate in distal barbules than in proximal barbules, especially on the flight feathers. (Fig. 3.7)

Stylus dorsalis. The dorsal spine is any of 3 to 5 low triangular projections at the free end of the dorsal border of the base of a proximal pennaceous-type barbule.

- (37) Flexura. Flexules (Chandler, 1916) are special, distally curved, fiber-like processes that arise from the dorsal border of the Basis, in place of dorsal spines, in pennaceous-type barbules of the body contour feathers of many water birds.
- (38) **Pennula.** The slender, distal, part of a barbule formed of jointed segments, termed cells, each of which is often furnished with projections at its distal end. The

term "pennulum", although used by several authors, is incorrect, having no basis in Latin (Fig. 3.7).

**Nodus.** A swelling or node at the distal portion of a cell (Annot. 38) along the pennula of a plumaceous barbule (Lucas and Stettenheim, 1972: 244).

Internodus. The main portion of a cell in the pennula of a plumaceous barbule.

**Dens nodosus.** A nodal prong (dens, L.tooth) is a rounded or conical projection from a node; 2 to 4 commonly occur. The size and shape of the prongs vary along the pennula of a downy barbule. The character of the prongs is fairly consistent throughout downy feathers from different parts of a bird yet differs among kinds of birds (Chandler, 1916). Nodal prongs are hence the most useful microscopic feature for taxonomic identification of feathers (Day, 1966).

(39) Cilium dorsale. A dorsal cilium is a spine-like barbicel on the external side of the pennula of a pennaceous-type barbule. One or more such projections are usually present on distal barbules, but rarely present on proximal barbules (Fig. 3.7).

Cilium ventrale. A ventral cilium is a straight or gently recurved barbicel on the ventral side of the pennula of a pennaceous-type barbule. Several such projections are present on distal barbules, but they are short or absent on proximal barbules (Fig. 3.7).

**Hamulus** (pl.: hamuli). A hooklet (Hamulus) is a barbicel with a hooked tip on the distal ventral side of the proximal portion of the pennula; it arises from a distal barbule. In a series of projections along a barbule, the hooklets are immediately behind the ventral teeth (Dens ventrale) and they grade into the ventral cilia. The number of hooklets varies from 2 to 9, depending on the kind of bird and the location of feathers on the body (Fig. 3.7).

- (40) Apex; Margo. The apex is the distal tip of the feather, whereas the margin is the edge of the vane (Fig. 3.5).
- (41) **Incisura vexilli.** Synonymy: emargination. An indentation in the margin may be present on either or both the inner or outer vanes of the primaries. The commonly used term "notch" may be misleading in possibly suggesting that the vane width is similar on either side of the indentation.
- (42) **Zona impendens.** A friction zone is a special region of the inner vane, within areas of overlap of adjacent flight feathers of the wing and tail, which helps to prevent these feathers from slipping too far apart (Lucas and Stettenheim, 1972: 260-261). Within this zone, the distal barbules have enlarged dorsal barbicels, which rub against the barbs and rachides of the overlying feathers.
- (43) **Hypopenna.** (Fig. 13.5). Synonymy: afterfeather, aftershaft, hypoptile, accessory plume. The term afterfeather designates any group of structures attached to the rim (Ora) of the distal umbilicus on the underside of a feather. The term includes barbs arising directly from the rim (**Barbae umbilicales**) as well as tufts and feather-like structures with barbs attached to a median shaft, the **Hyporhachis**. The term Hyporhachis (also spelled hyporachis) and its equivalent, aftershaft, should not be used to designate the Hypopenna as a whole; **Hypovexillum** designates a vane of the Hypopenna.
- (44) **Pennae.** A general term for feathers of all kinds.

(45) **Pluma.** A down feather has completely fluffy (plumaceous) vanes, with its rachis, if any, shorter than its longest barbs. In many birds, body downs (**Plumulae**) arise from a set of follicles independent of those that produce contour feathers (Golliez, 1967; Lucas and Stettenheim, 1972: 266). The body downs of wing, tail, and vent are arranged in distinct, organized patterns, and names are available for these regions (Lucas and Stettenheim, 1972: Figs. 119, 20). However, on other regions of the body, the body downs are more variable and less well arranged, and thus far no names have been suggested.

A different category of downs, the natal down (Neossoptilus; synonymy: neossoptile, neoptile) occurs at hatching to some extent in nearly all avian orders. Natal downs include (1) Preplumulae, downs that are predecessors of the adult body downs, and (2) Prepennae, downs that arise from follicles that subsequently produce adult semiplumes and pennaceous feathers. The feathers (Pennae and Plumulae) of the adult plumage are termed teleoptiles (singular: Teleoptilus).

- (46) **Semipluma.** A semiplume feather possesses completely plumaceous barbs; the length of its rachis exceeds that of its longest barbs (Lucas and Stettenheim, 1972: 263). Because downs, semiplumes, and contour feathers intergrade, it is sometimes difficult to classify intermediate forms.
- (47) **Penna contorna.** A contour feather has relatively flat, closely knit (pennaceous) vanes, although the basal part of the vanes can be variably plumaceous. The main types of contour feathers are the flight feathers of the wing and tail (**Pennae volatus**), the coverts (**Tectrices**) of wing and tail, and the common, ordinary, relatively pennaceous feathers of the head, neck, trunk, and limbs (**Pennae contornae generales**).
- (48) **Penna volatus.** (Fig. 3.9). The flight feather include the remiges (sing. **Remex**) of the wing and the rectrices (sing. **Rectrix**) of the tail. These feathers are ordinarily the largest on the wing and tail (Osteo. Annot. 205; Arthr. Annot. 189).
- (49) **Pulvipenna [Pulvipluma].** Synonymy: powder down. Powder feathers are modified to produce an extremely fine white powder. Powder feathers are highly varied in both structure and pterylography (Schüz, 1927; Eiselen, 1939; Lucas and Stettenheim, 1972). Examples of birds with marked development of powder feathers include tinamids, ardeids, and columbids. The term powder feather is a more general term than "powder down" because powder-shedding feathers can have the basic structure of contour feathers, semiplumes, or downs in different kinds of birds.
- (50) **Seta.** A bristle is a feather generally having a stiff tapered rachis with barbs, if any, only at the base. A bristle is almost invariably heavily melanic in part (Stettenheim, 1974). Bristles most commonly occur around the mouth and eyes (compare Annot. 51.

**Semiseta.** A semibristle, a feather intermediate between a bristle and a contour feather. Because these feather types intergrade, their classification may sometimes be difficult.

(51) Filopluma. A filoplume is a slender, often hair-like, feather that typically possesses barbs, if any, only at the distal end. In contrast, another hair-like kind of feather, the bristle, has its barbs at the proximal end of the rachis. Although the follicle of a filoplume is always near that of a contour feather or body down, a filoplume is a distinct feather and not part of another feather. Unlike contour feathers

and body downs, filoplumes lack feather muscles. Filoplumes are believed to serve a sensory function (Necker, 1985).

(52) **Patagium.** Membranous expansion of skin, supported by ligaments and muscles, that span a joint in the wing. Patagia are covered with feathers, forming a smooth contoured airfoil when the wing is extended, yet allow the wing to be freely flexed in its folded position.

Plica. A skin fold. See Tela interdigitalis of the podotheca (Annot. 86).

Patagium cervicale. (Synonymy: Plica cervicalis). The fold of skin extending laterally from the base of the neck to the leading edge of the Propatagium. Where present, as in psittaciform, piciform, and passeriform birds, it appears to be the cranio-medial extension of the Propatagium and is supported by the M. cucullaris, pars propatagialis, with its insertion upon the Lig. propatagiale (Arthr. Annot. 141; Myol. Annot. 9.

(53) **Propatagium.** A broad fold of skin filling in the angle between arm and forearm of the avian wing from the shoulder to the carpus, forming the cranial (leading) edge and camber of the wing. Between the two layers of skin of the propatagium are the Lig. propatagiale in the leading edge, the Lig. limitans cubiti (see **Arthr.** Annot. 141), propatagial parts of several muscles in different birds (see **Myol.**), as well as nerves and vessels.

**Metapatagium.** A triangular skin fold reaching from the side of the trunk to the caudal margin of the brachium.

- (54) **Postpatagium.** A double thickness of skin projecting caudally from the antebrachium and manus, extending the length of the wing from the elbow to the tip of the manus. The calami of the secondary and primary remiges are embedded in, and are aligned and partially supported by, the Postpatagium.
- (55) Patagium alulae. A fold of skin connecting the Digitus alularis to the cranial border of the Digitus major. (Topog. Annot. 37)
- (56) **Pterylae; Apteria.** Pterylae are feather tracts, areas of skin bearing contour feathers. Birds have their feathers grouped into pterylae which are usually separated by mainly featherless spaces, **Apteria** (see Clench, 1970). Down feathers can occur among the contour feathers as in many waterbirds, but an area bearing only down feathers or no contour feathers is considered to be an apterium. An apterium may bear occasional semiplumes.

It is doubtful that any one nomenclatural system for pterylosis can adequately cover all kinds of birds. The objective here is to provide general terms that can be applied to a great variety of birds, but adjustments may be necessary for application to particular species.

Lucas and Stettenheim (1972) and others have used the term "tracts" in the plural for major feather groups and the singular "tract" for individual components. In contrast, Nitzsch (1867), Clench (1970), Komárek, et al. (1982), and others have referred to each of the major feather groups as a "tract" (**Pteryla**) and individual components of a tract have been designated differently by different authors using terms such as "regions", "elements", or parts (**Pars**). Because the term "regions" is commonly used to designate external topographic portions of the body that do not correspond with the pterylosis, it seems best, as recommended by Lucas and Stettenheim (1972: 74), not to use the term regions for the parts of the pterylae. Komárek, et al. (1982) avoided such possible confusion by referring to a subdivision of a pteryla or apterium as a part ("pars"). Their usage is followed here; this account therefore

differs from NAA (1979), which followed Lucas and Stettenheim (1972). See also Annot. 73.

- (57) **Pteryla capitalis** (Fig. 3.9). Capital tract, the inclusive term for the arrangement of feathers on the head. As many as 12 parts of the capital tract have been distinguished, but such parts have often been arbitrarily delimited on the basis of their locations or the relative abundance and types of feathers rather than a clear separation by apteria (Lucas and Stettenheim, 1972: 76-77).
- (58) **Pteryla dorsalis.** The dorsal tract (Clench, 1970) extends from the base of the head caudally to the level of the caudal end of the pelvis, just caudal to the uropygial gland. The dorsal tract may be subdivided as follows: a cervical part on the neck, an interscapular part between the wings, a spinal part on the back, and in some birds a separate pelvic part (Fig. 3.9).
- (59) Circulus uropygialis. The uropygial tuft, a group of small feathers on the tip of the uropygial gland (Johnston, 1988).
- (60) **Pteryla lateralis.** This paired tract, particularly notable in many nonpasserines, lies on the side of the body ventral to the axillary region.
- (61) **Pteryla ventralis.** The ventral tract reaches from the head to the base of the uropygium and may be subdivided, often rather arbitrarily, as follows: a cervical part on the neck, a pectoral part on the breast, a paired axillary part extending from the caudolateral corner of the pectoral part to the axilla, a sternal part on either side of the keel, and a paired abdominal part behind the caudal margin of the sternum. (Fig. 3.9)

Pars venti. The part of the ventral feather tract in the region of the vent of the cloaca.

- (62) Pteryla caudalis. Feathers of the tail and their coverts (Tectrices caudae). The most conspicuous feathers of the caudal tract are usually the major tail feathers, the Rectrices (sing. Rectrix). These are numbered from medial to lateral starting at the midline. The rectrices are overlapped both above and below by rows of major coverts (Tectrices caudales majores). The major coverts are cranially overlapped by one or more rows of minor coverts (Tectrices caudales minores) (Annot. 63; Arthr. Annot. 198).
- (63) **Tectrix.** Synonymy: covert; deck feather. A covert is usually a small feather overlying the base of a flight feather (remex or rectrix) or located between the base of a remex and the cranial edge of the wing. Coverts overlying, dorsally or ventrally, the bases of remiges or rectrices may be aligned in several rows and are named according to their placement (dorsal [superior]/ventral [inferior]), their row (greater [major], median [middle], lesser [minor], and the feathers they cover (e.g. primary, secondary, rectrix). The major dorsal and ventral caudal tectrices are implanted in the Bulbus rectricium, whereas the minor ones are in the skin (Baumel, 1988). See Annot. 71; **Topog.** Annot. 36.
- (64) **Pteryla scapulohumeralis.** The scapulohumeral tract covers the shoulder and base of the wing. It includes the feathers termed scapulars which originate above the dorsal side of the shoulder and the proximal part of the humerus (Fig. 3.9).
- (65) **Pteryla alae.** The alar tract includes the remiges and the dorsal and ventral coverts of the wing (Annot. 48, 63, 67, 71).
- (66) **Remiges primarii.** Primary remiges are attached to the caudodorsal side of the manus. Primaries are numbered from the wrist to the wingtip (Morlion, 1971) (**Topog.** Figs. 2.1, 3; 3.10, 11).

(67) **Remiges secundarii.** Synonymy: Remiges cubitales. The secondary remiges are flight feathers along the caudal edge of the forearm (antebrachium) including the region of the elbow. Secondaries are numbered from the wrist to the elbow (**Topog.** Figs. 2.1, 2.3; Figs. 3.10, 11).

Diastema remigum secundarium. In some genera and families of birds an extra wide space or gap occurs between the 4th secondary remex and the next secondary proximal to it (Stephan, 1970; Lucas and Stettenheim, 1972; Jeikowski, 1974). When a gap is present the wing is termed diastataxic, as exemplified by an anatid. A wing without a gap is eutaxic, as in most galliforms and all passerines.

- (68) Remiges tertiarii [R. humerales]. Synonymy: tertials, tertiaries, posthumeral quills. Tertiary or humeral remiges are flight feathers overlying the humerus as found in some large, long-winged birds such as the Andean Condor (*Vultur gryphus*) (Van Tyne and Berger, 1959). These flight feathers are not aligned in series with the primaries and secondaries (Lucas and Stettenheim, 1972: 80-83). Sometimes distinct-appearing proximal secondaries have incorrectly been called "tertials".
- (69) **Remex carpalis.** A relatively small flight feather which, if present, is located on the dorsal surface of the wing in the gap on the wrist between the primaries and secondaries.
- (70) **Remiges alulae.** An alular quill, usually relatively small, borne on the alular digit (**Osteo.** Annot. 216). The alular quills have been numbered from proximal to distal (e.g., in Van Tyne and Berger, 1959) and in the opposite direction (e.g., in Lucas and Stettenheim, 1972). Lucas and Stettenheim (1972: 89-90) summarized some of the arguments in favor of each of these methods of counting, but there is not yet a standard method.
- (71) Tectrices alae. Coverts (Tectrices) overlap the remiges on both the dorsal and ventral surfaces of the wing. Rows of coverts are numbered to coincide with those of the remiges. Where three or more rows of coverts adjoin the remiges, the coverts in the row immediately adjacent to the remiges are termed the greater (major) coverts, the next row constitutes the middle (median) coverts, and the remaining row or rows are the lesser (minor) coverts. Some rows of wing coverts can be partially (Tectrices primariae ventrales mediae) or completely (Tectrices secundariae ventrales majores) absent (Morlion, 1971). The feathers termed "axillaries" originate from the undersurface of the wing immediately distal to the axilla and are part of the Tectrices tertiariae ventrales. The Tectrices marginales manus/propatagii are exceedingly dense on the leading edge of the manus and propatagium with their follicles embedded in the connective tissue surrounding Lig. propatagiale (R. E. Brown, pers. comm.). Other tectrices (Tectrices dorsales manus/propatagii) cover the remaining area of the upper surface of the manus and propatagium and are less densely arrayed. Most of the lower surface of the propagagium is usually an apterium (Annot. 79); however certain birds exhibit some irregular ventral propatagial tectrices (R. E. Brown, pers. comm.). Lucas and Stettenheim (1972) designate all of the upper and lower propatagial tectrices as "marginal". See Figs. 3.10, 11.
- (72) **Pteryla membri pelvici.** The tract of the pelvic limb contains a femoral part including all the feathering on the thigh, a crural part, and a tarsometatarsal part for the distal part of the limb. A digital part occurs only in those birds with feathering extending distally onto the toes, e.g. in ptarmigans (*Lagopus*).

- (73) Apteria. An apterium is an area of skin lacking pennaceous feathers. An apterium can occur between and within the feather tracts. Apteria, whether bare or covered with down feathers (Annot. 56), are named according to their position on the body or by their relationship with the pterylae. Arbitrary decisions must sometimes be made as to whether a gap in feathering constitutes an apterium or simply exceptional spacing between feather rows. Throughout birds as a whole, major differences occur in the arrangement of apteria, but no comprehensive survey of the taxonomic differences is available. Consequently, the names provided here are general ones that may be applicable in a broad range of taxa. Lucas and Stettenheim (1972: 93) provided a more extensive list of potential terms. See Annot. 56.
- (74) Apteria capitalia. Apteria on the head.
- (75) **Apteria dorsalia.** Apteria on or near the middorsal line (Clench, 1970; Morlion, 1971; Lucas and Stettenheim, 1972). Dorsal apteria can be located bilaterally rather than in the midline as in the case of the Apterium scapulare which, when present, lies between the interscapular part of the dorsal tract and the scapulohumeral tract (Fig. 3.9).
- (76) Apteria lateralia. Apteria on the side of the neck (A. cervicale) or trunk (A. truncale).
- (77) Apterium ventrale. Parts of the ventral apterium can occur both in a midventral space and bilaterally, the latter in association with bilateral feather tracts. A cervical part occurs on the underside of the neck. The sternal part is the space covering the keel, whereas the pectoral parts lie bilaterally on the breast. Abdominal parts may occur medially and bilaterally (Fig. 3.9).
- (78) **Apterium caudale.** A caudal apterium includes any nonfeathered area of or near the uropygium. Special parts may be designated for particular taxa.
- (79) Apteria alae. Among apteria of the wing, the humeral apterium lies between the scapulohumeral tract and the feathers on the propatagium. The subhumeral apterium lies on the ventral side of the brachium. The propatagial apterium lies in a triangular space between the lesser ventral ("under") secondary coverts and the ventral coverts of the propatagium (see Annot. 71).
- (80) Apterium membri pelvici. The apterium of the pelvic limb may be subdivided into parts as necessary for different species.
- (81) **Rhamphotheca.** The horny covering of the beak, both inside and outside surfaces of the bones of the jaws. The rhamphotheca is hard in most birds, but leathery, for example, at the tip (nail) in flamingos and anatids. The shape of the rhamphotheca is basically that of the underlying bone, but modified by outgrowths and local thickenings (**Topog.** Annot. 12-15). **Cera.** A soft, thick portion of the rhamphotheca at the proximal end of the upper bill in certain birds including falconiforms, some cracids, columbids, psittacids, and strigiforms (**Topog.** Annot. 22).
- (82) Unguis maxillaris; Unguis mandibularis. The thickened areas of rhamphotheca, "nails", at the tips of the maxillary and mandibular rostra and delimited by a difference in color or by a groove in procellariiform, most pelecaniform, and anseriform birds.
- (83) **Podotheca.** The nonfeathered, scale-covered integument of the avian ankle, tarsometatarsus, and digits (see Annot. 84).

(84) **Scutum.** A scale is a flat, rounded, or conical raised area of highly keratinized epidermis, separated from other scales by inward folds of thinner, less keratinized epidermis. Scales vary in size, shape, amount of overlap, and degree of fusion, even on parts of the same foot.

Scutella (sing. Scutellum) are small scales of the podotheca including the reticulate scales on the soles of the feet.

Acrotarsium; Acropodium. Scaly covering (part of the podotheca) of the dorsal side of the tarsometatarsus and digits, respectively.

- (85) **Pulvinus hypotarsalis.** Synonymy: Pulvinus calcaneus. A thick heel pad on the plantar surface of the hypotarsus (**Osteo.** Annot. 288) just distal to the intertarsal joint in the nestlings of certain hole-nesting birds such as alcedinids, bucerotids and picids. **Pulvinus metatarsalis** (**Topog.** Annot. 40).
- (86) **Pulvinus digitalis.** A toe pad (see Lennerstedt, 1975, for detailed structure of digital pads).

Pulvinus ungualis. The digital pad that lies under the base of the unguis and distal interphalangeal joint. Quinn and Baumel (1990) have discussed the function of this pad.

Areae interpulvinares. Regions on the plantar surface of a toe between the pads. Tela interdigitalis. Webbing between toes occurs in many birds (e.g. sphenisci, pelecani-, anseri-, and charadriiforms). The interdigital tela is continuous with the podotheca of the digits (Topog. Annot. 42).

(87) Unguis digiti manus. The horny part of the claw at the tip of a digit that encloses the terminal phalanx. The Hoatzin (*Opisthocomus*) is a notable example of a bird with claws on the wing; many other birds bear inconspicuous alular claws. (Osteo. Annot. 224; Arthr. Annot. 137.)

Unguis digiti pedis. A claw on a toe (pedal digit). See Osteo. Annot. 300. Processus pectinatus. A comb-like expansion of the Scutum dorsale on the medial edge of digit III in ardeids, caprimulgids, and other birds (Coues, 1927: 138).

Scutum plantare. The plantar podothecal portion of a claw on a toe.

- (88) Calcar alae (new term). This term designates wing spurs in general. A horny sheath invests a bony core which is a part of the skeleton other than a digit (Coues, 1872), specifically on the radial side of the carpus or carpometacarpus. Birds with wing spurs include cassowaries, screamers, jacanas, sheathbills, and certain geese and plovers; the sites of the spurs differ among these birds.
- (89) Calcar metatarsale. A metatarsal spur, consisting of a pointed horny sheath over a bony core, occurs on the caudal or medial surface of the tarsometatarsus in males of certain galliform species and is usually reduced or absent in females (Lucas and Stettenheim, 1972: 609-612) (Topog. Fig. 2.4; Osteo. Annot. 296).



Fig. 3.1. Microscopic section of the epidermis of a chicken (Gallus gallus). From Lucas and Stettenheim, 1972.



Fig. 3.2. Microscopic section of the skin and subjacent tissues of a chicken (Gallus gallus). From Lucas and Stettenheim, 1972.



Fig. 3.3. Schematic frontal section of the uropygial gland of a chicken (*Gallus gallus*). The section is parallel to the long axis of the gland; the accumulated secretion has been removed from the left lobe. Note that only one feather has been illustrated from the tuft on the papilla. Modified from Lucas and Stettenheim, 1972.



Fig. 3.4. Major subcutaneous fat bodies (Corpora adiposa) in the White-crowned Sparrow (*Zonotrichia leucophrys*). Top: ventral view; bottom: lateral view. From J. R. King and D. S. Farner, 1965, Ann. N. Y. Acad. Sci. **131**: 429; used with permission of the publisher, New York Academy of Sciences.



Fig. 3.5. Ventral view of parts of a contour feather of a chicken (*Gallus gallus*). From Lucas and Stettenheim, 1972.



Fig. 3.6. Diagrammatic representation of the barbs attached to the rachis of a feather. After R. Nickel, A. Schummer, and E. Seiferle, 1977, *Anatomy of Domestic Birds*. Used with permission of the publisher, Verlag Paul Parey, Berlin.



Fig. 3.7. Microscopic detail of the barbs and barbules of a flight feather. Short portions of two barbs from the pennaceous part of the vane of the remex of a chicken (Gallus gallus) showing the interlocking of the proximal and distal barbules. From Lucas and Stettenheim, 1972 with permission of the author.



Fig. 3.8. Tegmen (expanded ventral ridge) on the pennaceous barbs of a primary remex from a Mute Swan (*Cygnus olor*). A, Whole feather, indicating location of barbs; B, section of barb from the inner vane with plain tegmen, in oblique view of distal side; C, sections of two barbs from outer vane with fringed tegmen, in oblique view of distal side. After Lucas and Stettenheim, 1972 with permission of author.



Fig. 3.9. Diagrammatic positions of pterylae on the trunk of a generalized passerine bird. Note that pterylae of the wings and legs are not shown. After Ames, et al.1968.



Remiges secundarii, Tectrices dorsales alulae, Tectrices dorsales propatagii, Tectrices marginales dorsales manus, Tectrices primariae dorsales majores/mediae, Tectrices secundariae dorsales majores/mediae/minores; Tectrices tertiariae Fig. 3.10. Dorsal view of the pteryla of the wing in the Red-throated Bee-eater (Merops bulock). Full names for abbreviated terms listed here in alphabetical order: Pteryla scapulohumeralis, Remex carpalis, Remiges alulae, Remiges primarii, dorsales, Tectrix carpalis dorsalis. After an original illustration by M. L. Morlion.



Fig. 3.11. Ventral view of the pteryla of the wing in the Red-throated Bee-eater (Merops bulocki). Full names for abbreviated terms listed here in alphabetical order: Remiges alulae, Remiges primarii/secundarii, Tectrices marginales manus, Tectrices primariae ventrales majores, Tectrices secundariae ventrales majores/minores, Tectrices tertiariae ventrales, Tectrices ventrales propatagii, Tectrix primaria ventralis media. After an original illustration by M. L. Morlion.

#### JULIAN J. BAUMEL and LAWRENCE M. WITMER

With contributions from subcommittee members: P. Ballmann, D. Hogg, V. Komárek, R. Landolt, R. J. Raikow, E. I. Saiff, R. W. Storer, J. C. Vanden Berge, R. L. Zusi, G. Zweers.

Among contemporary workers in avian osteology, Peter Ballmann for years has been concerned with standardization of anatomical terminology. His scholarly and painstaking assistance in the compilation of the postcranial osteological terminology is most commendable. In the first and second editions of *Nomina Anatomica* (NAA, 1979) R. L. Zusi, J. Vanden Berge, and R. Landolt have made important contributions in codifying the nomenclature of the skull and vertebral column. The dissertation of Butendieck (1980) provided a worthy review and critique of the osteology terminology of the NAA (1979).

The highly detailed nomenclature of the skeleton of birds presented here will be particularly useful to avian paleontologists, myologists, arthrologists, and systematists who use osteological characters. In the compilation of terms the major works most heavily drawn upon were those of Fürbringer (1888), Lambrecht (1933), and Ballmann (1969a) for the limb bones; Barkow (1856), Boas (1929, 1933), Komárek (1970, 1979), Landolt and Zweers (1985), and Zweers, et al. (1987) for the vertebral column; Hofer (1945, 1949, 1955) and Müller (1963) for the skull.

Nomenclature of digits of wing. The matter of homologies of the digits of the avian thoracic limb has long been a debatable point among avian morphologists. There is still no indisputable evidence for deciding if the elements of the avian manus represent digits I, II, III or II, III, IV. Berger (1966) summarized the controversy on the subject, citing the principal literature up to that time. Seichert and Rychter (1972) discussed and further reviewed the literature on this topic. Recently Hinchliffe (1985) and Müller and Alberch (1990), using more precise techniques than the older embryo-staining methods, have determined that the persisting digits in one species of modern birds

(chicken) are II, III, and IV. On the other hand, most workers regard birds as derivatives of theropod dinosaurs; in these dinosaurs, the evolutionary sequence clearly points to the presence of digits I-II-III as being the components of the tridactyl manus (Ostrom, 1976). Thus the problem is still unresolved.

Rather than perpetuate names of the skeleton and musculature of the manus based on the controversial numbering of the digits by arbitrarily choosing one of the systems in use, an alternative, less equivocal scheme was adopted in the first edition of the NAA (1979): P. Brodkorb originally suggested reviving the proposal of Milne-Edwards (1867-71), designating the digits and their skeletal elements by the descriptive names: Digitus alularis (the so-called pollex), Digitus major, and Digitus minor; Os metacarpale alulare, Os metacarpale majus, and Os metacarpale minus. This terminology has been well accepted, and continues in the present edition. See Annot. 214 and Myol. Intro.

Format for listing terms. The skeletal parts that are listed and described are mostly those of the *dried bones of mature individuals* from which the cartilaginous and ligamentous structures have been removed. Most of the anatomical names for skeletal features are listed under the name of the individual bone of which they are parts. For example, Foramen n. ophthalmici and Proc. postorbitalis are parts of Os laterosphenoidale.

On the other hand, numerous features of the skull, pelvis, and vertebral column are not limited to a single bone, but extend over two or more different, adjacent bones (e.g., crests, fissures, fossae, etc.). Extensive fusion of individual bones of the adult avian skeleton often makes it difficult or impossible to identify adjacent bones from one another; however, many of them can be readily distinguished in immature skeletons.

Names of such *compound shared features* in the mature skull involving more than one bone are listed under the headings **Facies** and **Cranium**; subheadings are Cavum nasi, Orbita, Cavum tympanicum, Cavitas cranialis, and Mandibula. In the adult skull *features confined to individual bones* are to be found under the headings: **Ossa faciei** and **Ossa cranii**; in some instances the same term may be listed in more than one place.

In the postcranial skeleton, other complexes of shared elements are: the Notarium and Synsacrum (parts of Columna vertebralis), the Carpometacarpus, Os coxae, Tibiotarsus, and Tarsometatarsus; these receive treatment similar to that of Facies and Cranium.

# **TERMINOLOGY**

#### TERMINI GENERALES

Aditus | Angulus | Antrum
Ala | Anulus [Annulus] | Apertura

#### **TERMINI GENERALES (cont.)**

ApexExcavatioOs compactumApophysisExtremitasOs spongiosum6ArcusFaciesOs medullare6AreaFacies articularisOs pneumaticumBasisFenestraOs sesamoideum

CalvariaFissuraOstiumCanalisFonticulusPhalanxCanalis nutriensForamenPila4CanaliculusForamen nutriensPorus

Caput Foramen pneumaticum<sup>3</sup> Pori pneumatici<sup>3</sup>

Cellulae Fossa Processus Cervix Fossula Radix Collum Fovea Ramus Cartilago epiphysialis<sup>2</sup> Foveola Recessus Cavitas Hiatus Rostrum Cavum medullare Incisura Scapus<sup>5</sup> [Cavitas medullaris]<sup>6</sup> Impressio Septum Sinus Carina Intumescentia Concavitas Jugum Spina Condvlus Labium Squama Corpus Labrum Stylus Cortex Lacuna Synostosis Cornu Lamina Torus

Cotyla<sup>1</sup> Linea Trabeculae ossis Crista Meatus Trochanter Crus Margo Trochlea Diaphysis<sup>2</sup> Medulla Tuber Discus Metaphysis<sup>2</sup> Tuberculum Tuberositas<sup>7</sup> Diverticulum Orificium

Eminentia Os, ossis Zona flexoria (Arthr.)
Epicondylus Os planum Zona elastica (Arthr.)

Epiphysis<sup>2</sup> Os longum Zygapophysis

# SKELETON AXIALE CRANIUM<sup>8</sup>

Zona flexoria [Ginglymus] craniofacialis (Arthr. Annot. 46)

CALVARIA<sup>16</sup> (Figs. 4.1, 2, 5, 6)

Lamina externa Depressio frontalis<sup>14</sup>
Frons Fossa temporalis<sup>104</sup>

(continued)

#### CALVARIA<sup>16</sup> (Figs. 4.1, 2, 5, 6) (cont.)

Meatus acusticus externus<sup>19</sup> Fossa glandulae nasalis15 Occiput Prominentia cerebellaris<sup>16</sup> Crista [Linea] nuchalis sagittalis<sup>17</sup> Crista [Linea] nuchalis

transversa<sup>17</sup>

Facies nuchalis Foramen rami occipitalis ophthalmicae externae

Lamina interna Crista vallecularis 106 Crista frontalis interna14 Tuberculum pineale<sup>37</sup> Fossa cerebelli<sup>36</sup>

Crista maginalis<sup>36</sup> Impressio eminentiae sagittalis<sup>106</sup> Sulcus sinus sagittalis dorsalis

(Ven. Annot. 31)

Cellulae pneumaticae<sup>6</sup>

#### BASIS CRANII EXTERNA<sup>28</sup> (see Figs. 4.4) and Ossa cranii)

Lamina parasphenoidalis

[L. basitemporalis]96

Ala parasphenoidalis Basis rostri parasphenoidali

Proc. basipterygoideus<sup>93</sup>

Proc. lateralis parasphenoidalis<sup>97</sup> Proc. medialis parasphenoidalis<sup>97</sup>

Os basioccipitale

Canales n. hypoglossi

Condylus occipitalis<sup>83</sup> Tuberculum basilare83

Os exoccipitale

Fossa parabasalis<sup>86</sup>

Crista fossae parabasalis<sup>86</sup>

Proc. paroccipitalis [P. paroticus]85

Foramen magnum<sup>18</sup> Os laterosphenoidale

[O. pleurosphenoidale]<sup>88</sup>

#### CAVUM CRANII [CAVITAS CRANIALIS] (see Fig. 4.6; Cranium and Ossa cranii for additional terminology)

#### BASIS CRANII INTERNA

Eminentia aqueductus vestibuli

Fossa cranii caudalis

Canales n. hypoglossi

Eminentia canalis semicircularis

Foramen magnum<sup>18</sup>

Fossa acustica interna<sup>101</sup>

Fossa medullae oblongatae

Fovea ganglii

vagoglossopharyngealis39

Fossa cranii media<sup>35</sup>

Fossa tecti mesencephali (CNS)

Fossa ganglii trigemini

Crista tentorialis

Fossa cranii rostralis

Crista frontalis interna<sup>14</sup>

Foramen ethmoidale<sup>34</sup>

Foramen n. olfactorii

Foramen opticum<sup>32</sup>

Fossa bulbi olfactorii

Septum osseum fossae bulbi<sup>33</sup>

Fossa cerebelli<sup>36</sup>

Crista marginalis<sup>36</sup>

Fossa auriculae cerebelli<sup>38</sup>

Sulcus v. semicircularis

#### OSSA CRANII<sup>8</sup> (see Intro. Figs. 4.1-6)

Os basioccipitale Condylus occipitalis83 Incisura mediana condyli<sup>83</sup> Tuberculum basilare<sup>83</sup> Facies externa Facies medullae oblongatae Fossa subcondylaris Fovea ganglii vagoglossopharyngealis<sup>39</sup> Os exoccipitale Canalis semicircularis posterior Facies cerebralis Facies externa (see Cav. cran.) Fossa parabasalis<sup>86</sup> Crista fossae parabasalis86 Foramen n. glossopharyngealis<sup>39</sup> Foramen n. vagi<sup>39</sup> Ostium canalis carotici Ostium canalis ophthalmici externi<sup>27</sup> 86 Incisura foraminis magni Proc. condylaris<sup>83</sup> Canales n. hypoglossi Proc. paroccipitalis [P. paroticus 185 20 Os supraoccipitale Crista [Linea] nuchalis transversa<sup>17</sup> Facies cerebellaris (see Cav. cran.) Facies nuchalis

Fonticulus occipitalis<sup>87</sup> Foramen v. occipitalis externae Os laterosphenoidale [Os

pleurosphenoidale188

Facies orbitalis

Area muscularis aspera<sup>89</sup> Proc. postorbitalis<sup>30a</sup>

Facies cerebralis

Canalis n. maxillomandibularis<sup>90</sup> Foramen n.

maxillomandibularis<sup>90</sup>

Foramen n. abducentis Foramen n. oculomotorii Foramen n. trochlearis Foramen n. ophthalmici<sup>90</sup> Incisura n. optici Facies tecti mesencephali Fossa ganglii trigemini Sulcus n. ophthalmici Sulcus n. trochlearis Facies temporalis Os basisphenoidale (Fig. 4.6)

Facies cerebralis Canalis n. abducentis Sella turcica<sup>91</sup> (Fig. 4.6) Dorsum sellae91 Fossa hypophysialis Foramen ophthalmicum internum91

> Ostium canalis carotici (Canalis craniopharyngealis)<sup>92</sup>

Os parasphenoidale (Figs. 4.4, 5) Rostrum parasphenoidale

[R. sphenoidale]<sup>96</sup> Canalis orbitalis95 Facies articularis palatina Facies articularis pterygoidea Facies articularis vomeralis Basis rostri parasphenoidalis<sup>94</sup> Proc. basipterygoideus<sup>93</sup> Canalis orbitalis<sup>95</sup>

Lamina parasphenoidalis [L. basitemporalis]96 Ala parasphenoidalis84 20 Proc. lateralis parasphenoidalis<sup>97</sup> Proc. medialis parasphenoidalis<sup>97</sup> 49 Canalis caroticus cranialis<sup>99</sup> 121 Crista basilaris transversa Crista fossae parabasalis<sup>86</sup>

Tuba auditiva [pharyngotympanica]

communis<sup>94</sup> 98

(continued)

#### OSSA CRANII<sup>8</sup> (see Intro. Figs. 4.1-6) (cont.)

Tuba auditiva

[pharyngotympanica]<sup>98</sup>

Ostium pharyngeale

Ostium tympanicum

Os squamosum [Squamosum]<sup>102</sup>

Facies cerebralis

Facies externa

Cotyla quadratica squamosi<sup>100</sup>

Fossa temporalis<sup>104</sup>

Crista temporalis<sup>104</sup>

Fossa subtemporalis<sup>104</sup>

Proc. postorbitalis<sup>30</sup>

Proc. suprameaticus<sup>103</sup>

Proc. zygomaticus<sup>102</sup>

Ossa otica<sup>105</sup> (see Cav. tymp.)

Os epioticum

Os opisthoticum

Os prooticum<sup>24</sup>

Os metoticum

Cotyla quadratica otici<sup>24</sup>

Pila otica<sup>24</sup>

Proc. paroccipitalis [P. parotica]<sup>85</sup>

Vestibulum

Canales semicirculares ossei

(Sens. Intro.)

Canalis semicircularis anterior
Canalis v. semicircularis

anterioris (Ven. Annot.

32, 36)

Canalis semicircularis lateralis Canalis v. semicircularis

lateralis (Ven. Annot.

32, 36)

Canalis semicircularis posterior Cochlea (Sens. Annot. 40-43)

Lagena (Sens. Annot. 55)

Fossa acustica interna<sup>101</sup>

Foramen n. ampullaris caudalis

Foramen n. ampullaris lateralis

Foramen n. ampullaris rostralis

Foramen n. cochlearis

Foramen n. facialis

Os parietale

Crista [Linea] nuchalis

transversa<sup>17</sup>

Facies externa

Facies interna

Os frontale<sup>14</sup>

Facies cerebralis

Crista vallecularis<sup>106</sup>

Impressio eminentiae sagittalis

(CNS Annot. 78)

Crista frontalis interna<sup>14</sup>

Sulcus sinus sagittalis dorsalis

(Ven. Annot. 31)

Facies dorsalis

Fossa glandulae nasalis<sup>15</sup>

Foramina neurovascularia

Facies orbitalis

Impressio glandulae nasalis

Margo supraorbitalis

Proc. lacrimalis

[P. prefrontalis]<sup>107</sup>

Os mesethmoidale<sup>108</sup>

Lamina dorsalis<sup>108</sup>

Septum nasale osseum<sup>55</sup> 108

Sulcus n. olfactorii<sup>31</sup>

Os ectethmoidale [Os

latero-ethmoidale]<sup>109</sup>

Facies nasalis

Facies orbitalis

Os lacrimale [Os prefrontale]<sup>110</sup>

Facies articularis frontonasalis<sup>111</sup>

Incisura ductus nasolacrimalis

(Sens. Annot. 38)

Proc. orbitalis

Proc. supraorbitalis

#### CAVUM TYMPANICUM [CAVITAS TYMPANICA]21 19

Canalis ophthalmicus externus<sup>27</sup> 86 Cotylae quadratica otici<sup>24</sup> 100 Cotyla quadratica squamosi<sup>24</sup> 100 Ostium canalis tubae auditivae

[pharyngotympanicae]

Columella (**Sens.** Annot. 55) Foramen m. columellae

Hiatus subtympanicus<sup>20</sup> Pila otica [P. prootica]<sup>24</sup>

Recessus columellae

[R. antevestibularis]<sup>22</sup>

Fenestra vestibuli<sup>22</sup>

Fenestra cochleae

[F. pseudorotunda]<sup>22</sup>

Recessus pneumatici

paratympanici<sup>23</sup> <sup>49</sup>

Recessus tympanicus caudalis<sup>26</sup>

Foramen pneumaticum caudale

Recessus tympanicus dorsalis<sup>25</sup>

Foramen pneumaticum dorsale Recessus tympanicus rostralis<sup>26</sup>

Foramen pneumaticum rostrale

Cellulae pneumaticae

Siphonium<sup>49</sup>

#### ORBITA<sup>29</sup> (Figs. 4.1, 2)

Paries caudalis orbitae Os laterosphenoidale [Os

pleurosphenoidale 188

Proc. postorbitalis<sup>30a</sup>

Paries dorsalis orbitae

Impressio gl. nasalis<sup>15</sup>

Os frontale

Paries medialis orbitae

Septum interorbitale<sup>29</sup>

Paries rostralis orbitae<sup>109</sup>
Os ectethmoidale<sup>109</sup>

Fonticuli interorbitales<sup>29</sup>

Fonticuli orbitocraniales<sup>29</sup>

Foramen n. maxillomandibularis<sup>90</sup>

Foramen n. olfactorii

Foramen n. ophthalmici<sup>90</sup>

Foramen opticum<sup>32</sup> (see Os

lat. sphen.)

Foramen orbitonasale laterale<sup>31</sup>

Foramen orbitonasale mediale<sup>31</sup>

Margo supraorbitalis

Margo infraorbitalis

Arcus suborbitalis<sup>30b</sup>

Sulcus n. olfactorii<sup>31</sup>

#### FACIES8

# MAXILLA (see Ossa max. et palati) (Fig. 4.4)

Fenestra antorbitalis

[F. orbitonasalis]<sup>9</sup>

Hiatus craniofacialis septi<sup>10</sup>

Arcus jugalis<sup>11</sup>

Arcus suborbitalis<sup>30</sup>

Rostrum maxillae<sup>40</sup>

Palatum osseum Concavitas palati

Fissura interpalatina

Fenestra palatina<sup>13</sup>

(continued)

#### MAXILLA (see Ossa max. et palati) (Fig. 4.4) (cont.)

Canalis neurovascularis maxillae<sup>57</sup>
Canaliculi neurovasculares<sup>57</sup>
Foramina neurovascularia<sup>57</sup>

Foveae corpusculorum nervosorum<sup>41</sup> Dentes<sup>82</sup>

## **CAVUM NASI [CAVITAS NASALIS]**

Apertura nasi [nasalis] ossea<sup>12</sup>
Pila supranasalis<sup>12</sup>
Septum nasi [nasale] osseum<sup>55</sup>
Conchae nasales<sup>55</sup> (**Resp.**)
Recessus pneumatici paranasales (**Resp.**)
Fossa antorbitalis<sup>9</sup>
Os ectethmoidale<sup>109</sup>

#### MANDIBULA (see Ossa mand.) (Figs. 4.1, 2)

Rostrum [Symphysis] mandibulae<sup>40</sup>
Ramus mandibulae
Pars caudalis<sup>42</sup>
Pars intermedia<sup>42</sup>
Pars symphysialis<sup>42</sup>
Angulus mandibulae<sup>43</sup>
Crista tomialis<sup>56</sup>
Facies lateralis
Facies medialis
Proc. coronoideus<sup>44</sup>
Proc. lateralis mandibulae<sup>49d</sup> 84 96
Proc. medialis mandibulae<sup>49d</sup> 84 96
Facies articularis

parasphenoidalis<sup>49d</sup>
Fenestra caudalis mandibulae<sup>46</sup>
Fenestra rostralis mandibulae<sup>46</sup>

Fossa aditus canalis

neurovascularis<sup>48</sup> Fossa lateralis mandibulae<sup>48</sup>

Canalis neurovascularis

mandibulae47

Canaliculi neurovasculares<sup>57</sup>

Foramina neurovascularia<sup>57</sup>

Foveae corpusculorum nervosorum<sup>41</sup> 57

Tuberculum pseudotemporale<sup>45</sup>

Fossa articularis quadratica<sup>49a</sup> Cotylae fossae articularis<sup>49a</sup>

Cotyla caudalis

Cotyla lateralis<sup>72</sup>

Cotyla rostralis<sup>72</sup>

Cotyla medialis (see Quadr.)

Sulcus intercotylaris<sup>49a</sup>

Tuberculum intercotylare [Crista intercotylaris]<sup>49a</sup>

Foramen pneumaticum

articulare49c

Proc. retroarticularis<sup>49b</sup>

Incisura retroarticularis<sup>49b</sup>

Fossa caudalis<sup>51</sup>

Crista transversa fossae<sup>51</sup>

Recessus conicalis<sup>50</sup>

Dentes<sup>82</sup>

# OSSA FACIEI<sup>8</sup> (Intro.)

### OSSA MAXILLAE ET PALATI (Figs. 4.4, 7)

Os nasale

Proc. frontalis
Proc. maxillaris<sup>54</sup>
Proc. premaxillaris<sup>54</sup>

Os premaxillare

Corpus ossis premaxillare

Proc. frontalis Proc. maxillaris<sup>54</sup> Proc. palatinus Crista tomialis<sup>56</sup>

Canalis neurovascularis

maxillae<sup>57</sup>

Canaliculi neurovasculares Foramina neurovascularia<sup>57</sup> Foveae corpusculorum

nervosorum<sup>41</sup>

nervosoru 11 40

Rostrum maxillae<sup>40</sup> Os maxillare<sup>53</sup>

Crista tomialis<sup>56</sup> Proc. jugalis<sup>59</sup> 11

Proc. nasalis

Proc. maxillopalatinus

[P. palatinus]<sup>58</sup>

Proc. premaxillaris Canalis neurovascularis<sup>57</sup>

Canaliculi neurovasculares Foramina neurovascularia<sup>57</sup>

Foveae corpusculorum

nervosorum<sup>41</sup>

Os palatinum [Os

pterygopalatinum]60

Pars choanalis<sup>60</sup>

Angulus caudomedialis<sup>64</sup> Crista dorsolateralis<sup>62</sup> Crista medialis<sup>62</sup>

Crista medians<sup>62</sup>

Facies articularis

parasphenoidalis<sup>62</sup>

Facies articularis vomeralis

Fossa choanalis<sup>60</sup>
Lamella choanalis<sup>64</sup>

Lamella dorsalis<sup>62</sup>

Proc. caudomedialis<sup>64</sup>

Proc. rostralis<sup>63</sup>

Pars lateralis [Lamella

caudolateralis]<sup>60</sup>

Angulus caudolateralis<sup>66</sup>

Crista lateralis<sup>65</sup>

Facies articularis pterygoidea

Fossa ventralis<sup>67</sup> Proc. maxillaris<sup>60</sup>

Proc. pterygoideus<sup>60</sup> 61

Vomer<sup>68</sup> 69

Corpus vomeris

Facies articularis palatina<sup>68</sup> 69

Facies articularis

parasphenoidalis<sup>69</sup>

Facies articularis pterygoidea<sup>68</sup> 69

Facies articularis maxillaris<sup>68</sup> <sup>69</sup>

Facies articularis premaxillaris<sup>68</sup> <sup>69</sup> Proc. pterygoideus

Os pterygoideum<sup>61</sup> (Figs. 4.2, 4)

Facies articularis basipterygoidea<sup>93</sup>

Facies articularis quadratica

Pes pterygoidei<sup>69</sup>

Facies articularis palatina<sup>69</sup>

Facies articularis

parasphenoidalis<sup>69</sup>

Pars palatina<sup>61</sup>

Proc. dorsalis<sup>70</sup>

Proc. quadraticus

Os jugale

Tuberculum lacrimale [T.

prefrontale] (Arthr. Annot. 19)

Os quadratojugale<sup>11</sup>

Condylus quadraticus<sup>73</sup>

(continued)

#### OSSA MAXILLAE ET PALATI (Figs. 4.4, 7) (cont.)

Os quadratum [Quadratum]<sup>71</sup>

Corpus ossis quadrati

Facies tympanica

Crista tympanica<sup>19</sup>

Foramen pneumaticum

Sulcus pneumaticus

Proc. mandibularis<sup>72</sup>

Condylus caudalis<sup>72</sup>

Condylus lateralis

Cotyla quadratojugalis<sup>73</sup>

Condylus rostralis<sup>72</sup>

Condylus medialis

Condylus pterygoideus

Sulcus intercondylaris

Proc. orbitalis

Proc. oticus<sup>71</sup> <sup>24</sup>

Capitulum [Condylus] oticum<sup>24</sup>

Capitulum [Condylus]

squamosum<sup>71</sup>

Crista tympanica<sup>19</sup>

Incisura intercapitularis<sup>71</sup>

Sulcus pneumaticus

#### OSSA MANDIBULAE (see also Mand.)

Os dentale<sup>52</sup>

Pars dorsalis

Pars ventralis

Pars symphysialis

Os angulare<sup>49b</sup>

Proc. retroarticularis

Os articulare<sup>49c</sup>

Foramen pneumaticum articulare<sup>49</sup> Proc. medialis mandibulae<sup>49d</sup> 84 96

Os coronoideum<sup>52</sup>

Os prearticulare<sup>52</sup>

Os spleniale<sup>52</sup>

Os supra-angulare<sup>52</sup>

Proc. lateralis mandibulae<sup>49d</sup> <sup>84</sup> <sup>99</sup>

#### OSSA ACCESSORIA CRANII75

Anulus [Annulus] tympanicus<sup>77</sup>

Os nuchale<sup>76</sup>

Ossa sclerae (Sens. Annot. 8)

Os siphonium [Siphonium]<sup>49c</sup>

Os suprajugale

Ossa supraorbitalia<sup>74</sup>
Os lacrimopalatinum
Ossa suturarum<sup>78</sup>

Os uncinatum<sup>78</sup>

#### LARYNX

Skeleton laryngis (Resp. Larynx)

#### SYRINX

Skeleton syringis (Resp. Syrinx)

## APPARATUS HYOBRANCHIALIS [A. HYOLINGUALIS]79

Paraglossum<sup>80</sup>
Cornua
Basihyale [Basibate Crista dorsalis

Basihyale [Basibranchiale rostrale]<sup>81</sup>

Proc. parahyalis<sup>81</sup> Arcus parahyalis<sup>81</sup> Urohyale [Basibranchiale caudale]<sup>81</sup>
Cornu branchiale
Ceratobranchiale
Epibranchiale
Pharyngobranchiale

#### **COLUMNA VERTEBRALIS**<sup>112</sup> <sup>113</sup> <sup>129</sup> <sup>139</sup> <sup>141</sup>

### PARTES VERTEBRAE<sup>113</sup> (Figs. 4.8, 9)

Corpus vertebrae<sup>113</sup>

Facies articularis caudalis Facies articularis cranialis

Facies lateralis corporis

Concavitas lateralis

Sulcus lateralis<sup>115</sup>

Eminentia costolateralis<sup>116</sup>

Fovea costalis<sup>117</sup>

Proc. costalis<sup>118</sup>

Tuberositas lig. collateralis

(Arthr. Annot. 60)

Foramina pneumatica

Facies ventralis corporis

Proc. postlateralis<sup>121</sup>

Proc. caroticus<sup>121</sup>

Sulcus caroticus<sup>121</sup>
Crista [Proc.] ventralis

corporis<sup>119</sup>

Alae cristae ventralis<sup>120</sup>

Crista ventrolateralis<sup>122</sup>

Fovea cranioventralis<sup>114</sup>

Facies dorsalis corporis<sup>113</sup>

Arcus vertebrae [A. neuralis]<sup>127a</sup>

Lamina lateralis arcus [Pediculus arcus1127a

Incisura cranialis arcus<sup>128a</sup>

Incisura caudalis arcus<sup>128a</sup>

Lamina dorsalis arcus<sup>127a</sup>

Area lig. elastici<sup>126</sup>

Proc. spinosus [arcus]

Proc. transversus vertebrae<sup>123</sup> 127a

Facies dorsalis

Facies ventralis

Fovea costalis<sup>117</sup>

Zygapophysis [Proc. articularis]

caudalis 132

Crista transverso-obliqua<sup>124</sup>

Facies articularis

Torus dorsalis<sup>125</sup>

Zygapophysis [Proc. articularis]

cranialis<sup>132</sup>

Facies articularis

Ansa costotransversaria<sup>135</sup>

Foramen transversarium<sup>134a</sup> <sup>138</sup>

Tuberculum ansae<sup>135</sup>

Cristae laterales ansae<sup>135</sup>

Proc. costalis

Lamina arcocostalis<sup>127b</sup> <sup>134a</sup>

Foramen laterale arcus

Lamina corporocostalis<sup>127c</sup>

Foramen vertebrale<sup>113</sup>

Canalis vertebralis<sup>113</sup>

Canalis caroticus cervicalis<sup>121</sup>

Hiatus interarcualis<sup>128b</sup>

Lacuna interzygapophysialis<sup>128c</sup>

Foramen intervertebrale<sup>128a</sup>

Foramen transversarium<sup>134a</sup>

Canalis vertebrarterialis<sup>134b</sup>

# VERTEBRAE CERVICALES SPECIALES<sup>129</sup> (see above for parts of a generalized free vertebra)

Atlas<sup>130</sup> (Fig. 4.8)

Corpus atlantis

Facies articularis axialis

Fossa condyloidea<sup>131</sup>

Facies articularis dentalis

Foramen fossae<sup>130</sup>

Incisura fossae<sup>130</sup>

Tuberositas lig. transversi

Proc. ventralis corporis

Arcus atlantis

Ansa costotransversaria<sup>135</sup>

Foramen transversarium<sup>134a</sup>

Incisura caudalis arcus<sup>136a</sup>

Zygapophysis [Proc. articularis] caudalis 132

Facies articularis

Proc. spinosus [P. dorsalis]

Axis<sup>130</sup> (Fig. 4.8)

Corpus axis

Dens<sup>136b</sup>

Fovea aspera

Facies articularis atlantica

Fovea lig. collateralis

atlantoaxialis (Arthr.)

Proc. ventralis corporis<sup>119</sup>

Arcus axis

Lamina dorsalis arcus

Ansa costotransversaria<sup>135</sup>

Foramen transversarium<sup>134</sup> 138

Proc. costalis axis<sup>138</sup>

Proc. spinosus [P. dorsalis]<sup>137</sup>

Lacuna interzygapophysialis 128c

Lamina lateralis arcus<sup>127a</sup>

Incisura caudalis arcus<sup>128a</sup>

Incisura cranialis arcus<sup>128a</sup>

Zygapophysis [Proc. articularis] caudalis 132

Facies articularis

Zygapophysis [Proc. articularis]

cranialis<sup>132</sup>

Facies articularis

#### VERTEBRAE THORACICAE, [LUMBICALES], ET SACRALES<sup>139</sup> 141b

(see above for parts of a typical free vertebra)

#### NOTARIUM [Os dorsale]140a (Fig. 4.9)

Canalis notarii [C. vertebralis]<sup>140b</sup>
Crista spinosa [dorsalis] notarii<sup>140b</sup>
Lamina transversa notarii<sup>141c</sup>
Fenestros intertronguerospinol<sup>141c</sup>

Fenestrae intertransversariae<sup>141c</sup> Corpus notarii<sup>142a</sup> Crista ventralis notarii<sup>119</sup>
Fenestrae intercristales<sup>119</sup>
Foramina intervertebralia<sup>128</sup>
Eminentia costolateralis<sup>116</sup>

# VERTEBRAE SYNSACRALES<sup>141a</sup> (Fig. 4.9)

SYNSACRUM<sup>141a</sup> (see Os coxae)

Canalis synsacri [C. vertebralis]<sup>143b</sup> Extremitas cranialis synsacri Facies dorsalis synsacri Crista spinosa [C. dorsalis] synsacri<sup>142c</sup> Lamina transversa synsacri<sup>141c</sup>

#### SYNSACRUM<sup>141a</sup> (see Os coxae) (cont.)

Margo lateralis laminae

transversae141c

Fenestrae intertransversariae<sup>141c</sup>

Facies lateralis synsacri

Foramina intervertebralia<sup>143a</sup> <sup>128a</sup>

Eminentia costolateralis<sup>116</sup>

Facies visceralis synsacri<sup>142b</sup>

Corpus synsacri<sup>142a</sup>

Crista ventralis synsacri<sup>119</sup> Sulcus ventralis corporis

Vertebra acetabularis<sup>141b</sup> Proc. costalis

Proc. transversus

Fossae renales (see Pelvis)

Extremitas caudalis synsacri

# VERTEBRAE CAUDALES (Figs. 4.9, 15) (see above for parts of a typical vertebra)

Vertebrae caudales stabiles<sup>141a</sup>

Vertebrae caudales liberae<sup>144</sup> Proc. haemalis<sup>144</sup>

Pygostylus [Coccyx]<sup>145</sup>

Apex pygostyli

Basis pygostyli<sup>146</sup>

Corpus pygostyli

Crista ventralis

Facies articularis cranialis

Proc. haemalis<sup>144</sup>

Canalis vascularis

Lamina pygostyli<sup>146</sup>

Proc. transversus 146

Canalis pygostyli [C. vertebralis]

Margo cranialis

Margo caudalis

Discus pygostyli<sup>146</sup>

#### **CAVUM THORACIS [CAVITAS THORACICA]**

Apertura thoracica caudalis Apertura thoracica cranialis

Facies visceralis sterni (see Sternum)

Spatium intercostale Sulcus pulmonalis<sup>148</sup> (**Resp.** 

Annot. 49)

#### COSTAE<sup>147</sup> (see Cav. thor.)

Costa vertebralis

Extremitas dorsalis costae

Capitulum costae<sup>116</sup>

Collum costae

Tuberculum costae<sup>117</sup>

Incisura capitulotubercularis<sup>148</sup>

Angulus costae

Corpus costae

Facies medialis [F. pulmonalis]

Facies lateralis

Margo caudalis

Margo cranialis

Proc. uncinatus<sup>148</sup> (Fig. 4.9)

Extremitas ventralis costae

Facies articularis intercostalis

(Arthr. Annot. 81)

Costa sternalis

Extremitas dorsalis costae

(continued)

#### COSTAE<sup>147</sup> (see Cav. thor.) (cont.)

Facies articularis intercostalis
(Arthr. Annot. 81)

Extremitas ventralis costae Facies articularis sternalis<sup>157</sup>

#### SKELETON APPENDICULARE

#### OSSA CINGULI MEMBRI THORACICI

STERNUM<sup>149</sup> (Fig. 4.11)

Corpus sterni<sup>149</sup>

Facies muscularis sterni<sup>152</sup>

Linea intermuscularis<sup>153</sup>

Planum postcarinale<sup>154</sup>

Facies visceralis sterni<sup>152</sup>

Pars cardiaca

Pars hepatica

Foramen pneumaticum

Pori pneumatici

Sulcus medianus sterni

Margo costalis [lateralis] sterni<sup>157</sup>

Incisurae costales<sup>157</sup>

Loculus costalis<sup>157</sup>

Pila costalis<sup>155</sup>

Proc. articularis sternocostalis<sup>157</sup>

Facies articularis costalis<sup>157</sup>

Margo cranialis sterni

Pila coracoidea<sup>158</sup>

Sulcus articularis

coracoideus<sup>156</sup> 175a

Labrum externum

Tuberculum labri externi

(Arthr. 89, 90)

Labrum internum

Proc. craniolateralis sterni<sup>150</sup>

Impressio m. sternocoracoidei

Rostrum sterni<sup>159</sup> (Arthr. Annot. 86)

Foramen rostri<sup>160</sup>

Spina externa rostri<sup>159</sup>

Alae spinae sternae

Spina interna rostri<sup>159</sup>

Spina communis<sup>159</sup>

Septum interarticulare<sup>159</sup>

Spatium intercoracoidale<sup>160</sup>

Margo caudalis sterni<sup>157</sup>

Fenestra lateralis<sup>151</sup>

Fenestra medialis<sup>151</sup>

Incisura lateralis<sup>151</sup>

Incisura medialis<sup>151</sup>

Trabecula intermedia<sup>151</sup>

Trabecula lateralis<sup>151</sup>

Trabecula mediana<sup>151</sup>

Proc. caudolateralis sterni<sup>150</sup>

Carina sterni<sup>161</sup> (Fig. 4.11)

Apex carinae

Facies articularis furculae

Tuberositas lig. sternoclavicularis

(Arthr. Annot. 85)

Facies lateralis carinae

Linea intermuscularis<sup>153</sup>

Margo cranialis carinae

Crista lateralis carinae<sup>161</sup>

Crista mediana carinae

Pila carinae<sup>161</sup>

Tha Carmae

Sulcus carinae<sup>161</sup>

Margo ventralis carinae

#### CLAVICULA [FURCULA]162 (Fig. 4.10)

Extremitas omalis claviculae [Epicleideum]<sup>164</sup>

Proc. acrocoracoideus claviculae<sup>165</sup>
Facies articularis acrocoracoidea
Proc. acromialis claviculae<sup>165</sup>
Facies articularis acromialis

Extremitas sternalis claviculae Apophysis furculae

[Hypocleideum]<sup>163</sup>

Scapus [Corpus] claviculae Proc. interclavicularis<sup>163</sup>

#### SCAPULA<sup>166</sup> (Fig. 4.10)

Extremitas cranialis [Caput] scapulae Acromion<sup>166</sup>

Crista lig. acrocoracoacromiali<sup>166</sup>
Facies articularis clavicularis
Sulcus supracoracoideus<sup>172</sup>
Proc. glenoidalis scapulae<sup>167b</sup>

Facies articularis humeralis<sup>167a</sup> Labrum glenoidale

Facies articularis coracoidea<sup>168</sup> 173a

Tuberculum coracoideum<sup>168</sup> 173a Collum scapulae<sup>170</sup>

Corpus scapulae<sup>170</sup>

Facies medialis [F. costalis]<sup>166</sup>

Facies lateralis<sup>166</sup>

Margo dorsalis [M. vertebralis]

Margo ventralis

Tuberculum m. scapulotricipitis<sup>169</sup> Extremitas caudalis [Spinal scapulae

#### CORACOIDEUM [OS CORACOIDEUM] (Fig. 4.10)

Extremitas omalis coracoidei<sup>171a</sup>

Proc. acrocoracoideus<sup>171a</sup>

Facies articularis clavicularis Impressio lig.

ssio iig.

acrocoracohumeralis

Tuberculum brachiale<sup>171b</sup>

Proc. glenoidalis coracoidei<sup>167b</sup> Facies articularis humeralis<sup>167a</sup>

Labrum glenoidale

Facies articularis scapularis<sup>173a</sup>

Cotyla scapularis<sup>173b</sup>

Proc. procoracoideus<sup>172</sup>

Facies articularis scapularis 173a

Sulcus supracoracoideus<sup>172</sup> 177

Corpus coracoidei

Facies dorsalis

Cotyla scapularis<sup>173b</sup>

Facies ventralis

Margo lateralis

Margo medialis

Foramen [Incisura] n.

supracoracoidei

Linea intermuscularis

ventralis<sup>174</sup>

Extremitas sternalis coracoidei

Crista articularis sternalis<sup>175a</sup>

Facies externa

Crista intermedia

Facies interna

Facies articularis

intercoracoidea<sup>175b</sup>

Angulus medialis

Proc. lateralis<sup>176</sup>

Angulus lateralis

Margo supra-angularis<sup>176</sup>

Impressio m. sternocoracoidei

Canalis triosseus<sup>177</sup>

Cavitas glenoidalis<sup>167</sup>

# OSSA ALAE [MEMBRI THORACICI]<sup>178</sup> SKELETON BRACHII

#### **HUMERUS**<sup>178</sup> (Fig. 4.12)

Extremitas proximalis humeri Caput humeri<sup>178</sup> <sup>179</sup>

Incisura capitis humeri<sup>180</sup>

Crista incisurae capitis

Tuberculum dorsale<sup>182</sup>

Crista deltopectoralis<sup>184</sup>

Angulus cristae

Impressio m. pectoralis

Crista m. supracoracoidei<sup>183</sup>

Tuberculum ventrale<sup>187</sup>

Crista bicipitalis<sup>184</sup>

Fossa pneumotricipitalis

[F. tricipitalis]<sup>188</sup>

Foramen pneumaticum<sup>189</sup>

Crus dorsale fossae<sup>188</sup>

Crus ventrale fossae<sup>188</sup>

Margo caudalis<sup>188</sup>

Planum intertuberculare<sup>181</sup>

Sulcus [Canalis] n.

coracobrachialis<sup>181</sup>

Intumescentia humeri<sup>190</sup>

Sulcus transversus<sup>185</sup>

Impressio coracobrachialis<sup>186</sup>

Corpus humeri

Facies caudalis<sup>178</sup>

Margo caudalis<sup>188</sup>

Facies cranialis<sup>178</sup>

Margo caudalis<sup>188</sup>

Margo dorsalis

Margo ventralis

Linea m. latissimi dorsi Sulcus n. radialis<sup>191</sup>

Extremitas distalis humeri

Extremitas distans numeri

Condylus dorsalis humeri<sup>192</sup>

Condylus ventralis humeri<sup>192</sup>

Incisura intercondylaris<sup>193</sup>

Fossa m. brachialis

Epicondylus dorsalis

[Ectepicondylus]<sup>194</sup> 178

Epicondylus ventralis

[Entepicondylus]<sup>194</sup> 178

Proc. flexorius<sup>195</sup>

Tuberculum supracondylare

dorsale<sup>196</sup>

Proc. supracondylaris dorsalis<sup>196</sup>

Tuberculum supracondylare

ventrale<sup>196</sup>

Fossa olecrani

Sulcus scapulotricipitalis<sup>200</sup>

Sulcus humerotricipitalis<sup>200</sup>

Os sesamoideum m.

scapulotricipitis<sup>202</sup>

# **SKELETON ANTEBRACHII** (Fig. 4.13)

ULNA<sup>198</sup> (Fig. 4.13)

Extremitas proximalis ulnae Proc. cotylaris dorsalis<sup>197</sup> Cotyla dorsalis<sup>198</sup> Cotyla ventralis<sup>198</sup> Crista intercotylaris Impressio m. brachialis Impressio m. scapulotricipitis Incisura radialis<sup>199</sup> Olecranon<sup>201</sup> Sulcus tendinosus<sup>203</sup>

#### ULNA<sup>198</sup> (Fig. 4.13) (cont.)

Tuberculum bicipitale ulnae<sup>210</sup> Tuberculum lig. collateralis

ventralis<sup>203</sup>

Corpus ulnae

Facies caudodorsalis<sup>204</sup> Facies caudoventralis<sup>204</sup> Facies cranialis<sup>204</sup> Lineae intermusculares Margo caudalis Margo dorsalis

Margo interosseus [M. cranialis] Papillae remigales caudales<sup>205</sup>

Papillae remigales ventrales<sup>205</sup> Extremitas distalis ulnae Trochlea carpalis<sup>206</sup>

> Condylus dorsalis ulnae<sup>206</sup> Labrum condyli dorsalis Condylus ventralis ulnae<sup>206</sup>

Sulcus intercondylaris<sup>206</sup> Tuberculum carpale<sup>207</sup>

Incisura tuberculi carpalis<sup>207</sup>

Depressio radialis<sup>208</sup>

Incisura tendinosa<sup>209</sup>

#### **RADIUS** (Fig. 4.13)

Extremitas proximalis radii Caput radii Cotyla humeralis Facies articularis ulnaris Tuberculum bicipitale radii<sup>210</sup> · Corpus radii Lineae intermusculares

Margo dorsalis Margo interosseus [caudalis]

Margo ventralis Extremitas distalis radii Facies articularis radiocarpalis<sup>211</sup> Facies articularis ulnaris<sup>211</sup> Depressio ligamentosa<sup>212</sup> Sulcus tendinosus<sup>211</sup> Tuberculum aponeurosis ventralis<sup>213</sup>

#### SKELETON MANUS

#### OSSA CARPI 214 (Fig. 4.14)

(Ossa carpi proximalia)<sup>214</sup> (Ossa carpi centralia)<sup>214</sup> (Ossa carpi distalia)<sup>214</sup> Os carpi radiale<sup>215</sup> Facies articularis metacarpalis<sup>215</sup> Facies articularis radialis Facies articularis ulnaris Os carpi ulnare<sup>215</sup>

Corpus Crus longum<sup>215</sup> Crus breve<sup>215</sup> Incisura metacarpalis<sup>215</sup> Proc. muscularis<sup>215</sup> Facies articularis ulnaris Facies articularis metacarpalis<sup>215</sup> Os prominens<sup>216</sup>

# CARPOMETACARPUS (Fig. 4.14) (Osteo. Intro.; Arthr. Annot. 128)

Extremitas proximalis carpometacarpi

Os metacarpale alulare<sup>216</sup>

Proc. alularis

Facies articularis alularis

Proc. extensorius Trochlea carpalis<sup>215</sup>

Facies articularis radiocarpalis

Facies articularis ulnocarpalis

Fossa infratrochlearis<sup>218</sup>

Fossa supratrochlearis<sup>219</sup>

Fovea carpalis caudalis<sup>217</sup>

Fovea carpalis cranialis<sup>217</sup>

Proc. pisiformis<sup>220</sup> Corpus carpometacarpi

Facies dorsalis

Facies ventralis

Margo caudalis

Margo cranialis

Os metacarpale majus

Sulcus tendinosus

Proc. intermetacarpalis<sup>221</sup>

Protuberantia metacarpalis<sup>221</sup>

Os metacarpale minus

Spatium intermetacarpale

Extremitas distalis carpometacarpi

Symphysis metacarpalis distalis<sup>222</sup> Sulcus interosseus<sup>223</sup>

Facies articularis digitalis major

Facies articularis digitalis minor

#### OSSA DIGITORUM MANUS 224 (Osteo. Intro.)

Phalanx digiti alulae Phalanx proximalis digiti majoris Facies articularis metacarpalis Facies articularis phalangealis Fossa dorsalis

Fossa ventralis
Pila cranialis phalangis<sup>225</sup>
Phalanx distalis digiti majoris
Facies articularis metacarpalis
Phalanx digiti minoris

#### OSSA CINGULI MEMBRI PELVICI

**PELVIS ET OS COXAE** <sup>226</sup> (Figs. 4.9, 15) (For synsacrum see Columna vertebrale; see below for elements of Os coxae).

Acetabulum<sup>226</sup>
Foramen acetabuli<sup>226</sup>
Antitrochanter<sup>232</sup>
Canalis [Sulcus] iliosynsacralis<sup>234</sup>
Crista iliosynsacralis<sup>233</sup>
Concavitas infracristalis<sup>235</sup>
Fenestra ischiopubica<sup>229</sup> <sup>227</sup>
Foramen ilioischiadicum<sup>230</sup>

Foramen obturatum<sup>227</sup> 252 Fossa renalis<sup>237</sup> 250 Pars ischiadica fossae<sup>237</sup> Pars pudenda fossae<sup>237</sup> Recessus caudalis fossae<sup>250</sup>

Incisura caudalis pelvis<sup>238</sup> Incisura marginis caudalis<sup>231</sup>

Proc. marginis caudalis<sup>231</sup>

#### OS COXAE 226 (Figs. 4.9, 15)

OSTEOLOGIA

#### ILIUM (Figs. 4.9, 15)

Ala [Pars] preacetabularis ilii<sup>245</sup>

Facies dorsalis

Fossa iliaca dorsalis

Crista iliaca dorsalis<sup>245</sup>

Crista iliaca lateralis<sup>247</sup>

Facies ventralis

Areae articulares vertebrales<sup>246</sup>

Margo cranialis

Margo lateralis

Margo medialis [M. vertebralis]

Ala [Pars] postacetabularis ilii<sup>245</sup>

Facies dorsalis

Fossa iliocaudalis<sup>249</sup>

Crista dorsolateralis ilii<sup>248</sup>

Spina dorsolateralis ilii<sup>248</sup>

Facies lateralis<sup>235</sup>

Crista dorsolateralis ilii<sup>248</sup>

Lamina infracristalis ilii<sup>251</sup> <sup>235</sup>

Concavitas infracristalis<sup>235</sup>

Margo foraminis ilioischiadici

Facies ventralis

Facies renalis ilii

Crista caudalis fossae renalis

Margo caudalis<sup>238</sup>

Margo lateralis<sup>247</sup>

Pila postrenalis<sup>241</sup>

Recessus caudalis fossae<sup>250</sup>

Spina dorsolateralis ilii<sup>248</sup>

Corpus ilii<sup>239</sup>

Crista iliaca obliqua<sup>242</sup>

Pila ilioischiadica<sup>236</sup>

Crista iliaca intermedia<sup>243</sup>

Facies renalis ilii

Incisura acetabularis<sup>240</sup>

Antitrochanter<sup>232</sup>

Facies articularis femoralis

Sulcus antitrochantericus<sup>232</sup>

Tuberculum preacetabulare [Proc.

pectinealis]<sup>244</sup>

#### **ISCHIUM** (Figs. 4.9, 15)

#### Corpus ischii

Incisura acetabularis<sup>240</sup>

Margo [Incisura] foraminis

ilioischiadici

Incisura foraminis obturatorii

Margo ventralis [M. pubica]

Pila ilioischiadica<sup>236</sup>

Proc. antitrochantericus<sup>232</sup>

Facies articularis femoralis

Proc. obturatorius<sup>252</sup>

Ala ischii

Facies lateralis

Facies medialis (Arthr.

Annot. 150)

Margo ventralis [M. pubica]

Proc. terminalis ischii<sup>253</sup>

Sulcus obturatorius<sup>228</sup>

# PUBIS 254 (see Os coxae)

#### Corpus pubis

Incisura acetabularis

Tuberculum preacetabulare [Proc.

pectinealis]<sup>244</sup>

Scapus pubis<sup>5</sup> 254

Apex pubis (Arthr. Annot. 149)

#### OSSA MEMBRI PELVICI

#### FEMUR [OS FEMORIS] (Fig. 4.16)

Extremitas proximalis femoris

Caput femoris

Facies articularis acetabularis

Fovea lig. capitis

Collum femoris

Facies articularis

antitrochanterica<sup>255</sup>

Trochanter femoris<sup>256</sup>

Crista trochanteris

Fossa trochanteris

Impressiones musculares

trochanteris<sup>257</sup>

Impressiones ligamentosae

trochanteris<sup>257</sup>

Corpus femoris<sup>258</sup>

Facies caudalis

Linea intermuscularis

Facies cranialis

Linea intermuscularis

Facies lateralis

Facies medialis

Extremitas distalis femoris

Condylus lateralis<sup>259</sup> <sup>261</sup>

Fovea tendinis m. tibialis

cranialis

Impressio lig. cruciati

caudalis<sup>263</sup>

Impressio lig. cruciati

cranialis<sup>263</sup>

Trochlea fibularis<sup>261</sup>

Crista tibiofibularis<sup>262</sup>

Crista supracondylaris lateralis
Tuberculum m.

gastrocnemialis lateralis

Condylus medialis<sup>259</sup> <sup>264</sup>

Crista supracondylaris

medialis<sup>264</sup>

Tuberculum m.

gastrocnemialis medialis

Epicondylus lateralis

Impressio lig. collateralis

lateralis

Epicondylus medialis

Impressio lig. collateralis

medialis

Fossa poplitea

Impressiones ansae m.

iliofibularis<sup>260</sup>

Sulcus intercondylaris

Impressio lig. cruciati cranialis

Sulcus patellaris<sup>259</sup>

Facies articularis patellaris

Crista lateralis sulci patellaris<sup>259</sup>

Crista medialis sulci patellaris<sup>259</sup>

Patella<sup>265</sup>

Facies articularis femoralis

Facies cranialis

Sulcus [Canalis] m. ambientis<sup>265</sup>

#### TIBIOTARSUS (Fig. 4.17) (Arthr. Annot. 167)

Extremitas proximalis tibiotarsi Caput tibiae<sup>266</sup>

Area interarticularis

Crista cnemialis cranialis<sup>269</sup> 270

Crista cnemialis lateralis

Crista patellaris<sup>269</sup>

Facies articularis lateralis<sup>266</sup>

Facies articularis medialis<sup>266</sup>

Facies articularis fibularis<sup>267</sup>

Facies gastrocnemialis<sup>271</sup>

#### TIBIOTARSUS (Fig. 4.17) (Arthr. Annot. 167) (cont.)

OSTEOLOGIA

Fossa flexoria<sup>274</sup>
Fossa retropatellaris<sup>268</sup>
Impressio lig. collateralis
medialis

Incisura tibialis<sup>273</sup>
Sulcus intercnemialis<sup>272</sup>
Corpus tibiotarsi<sup>275</sup>
Crista fibularis (**Arthr.** 

Annot. 162)

Facies caudalis
Facies cranialis
Facies medialis
Linea extensoria<sup>276</sup>
Lineae m. fibularis [peronei]
Margo lateralis [M. fibularis]
Margo medialis
Tuberositas poplitea<sup>274</sup>
Extremitas distalis tibiotarsi
Condylus lateralis<sup>280</sup>

Condylus medialis<sup>280</sup>

Epicondylus lateralis Depressio epicondylaris lateralis<sup>281</sup> Epicondylus medialis Depressio epicondylaris medialis<sup>281</sup> Incisura intercondylaris Area intercondylaris (Arthr. Annot. 171) Impressio lig. intercondylaris Sulcus m. fibularis [peronei]<sup>282</sup> Trochlea cartilaginis tibialis<sup>279</sup> Cristae trochleae<sup>279</sup> Tuberculum retinaculi m. fibularis [peronei]<sup>282</sup> Sulcus extensorius

Tuberositas retinaculi extensori<sup>278</sup>
(Arthr. Annot. 187)
Pons supratendineus<sup>277</sup>
Canalis extensorius<sup>278</sup>

#### **FIBULA** (Fig. 4.17)

Caput fibulae<sup>261</sup>
Facies articularis femoralis
Facies articularis tibialis<sup>267</sup>
Fovea m. poplitei
Tuberositas lig. collateralis lateralis
Corpus fibulae

Crista articularis tibialis (**Arthr.**Annot. 161, 162)
Tuberculum m. iliofibularis
Spina fibulae
Os sesamoideum intertarsale (**Arthr.**Annot. 164)

# OSSA PEDIS OSSA TARSI 283

Ossa proximalia tarsi
Tibiale [Astragalus]<sup>283</sup>
Fibulare [Calcaneum]<sup>283</sup>
Os tarsi distale<sup>283</sup>

#### OSSA METATARSALIA (Fig. 4.18) (Arthr. Annot. 173, 174)

Os metatarsale I [primum] [hallucis] (Arthr. Fig. 5.9)

Proc. articularis tarsometatarsalis Trochlea metatarsi I [primi]

Tuberculum laterale Tuberculum mediale Os metatarsale II [secundum] Os metatarsale III [tertium] [hallucis] Os metatarsale IV [quartum]

#### TARSOMETATARSUS<sup>284</sup> (Fig. 4.18) Arthr. Annot. 173, 174)

Extremitas proximalis tarsometatarsi

Area intercotylaris<sup>285</sup>

Fovea menisci lateralis

Sulcus ligamentosus<sup>286</sup>

Cotyla lateralis

Cotvla medialis

Eminentia intercotylaris

(Arthr. Annot. 171)

Impressio lig. collateralis lateralis Impressiones retinaculi extensorii Sulcus m. fibularis [peronei]

longus

Tuberculum m. fibularis

[peronei] brevis

Hypotarsus<sup>288</sup> (Fig. 4.18)

Canales hypotarsi<sup>288</sup>

Crista lateralis hypotarsi<sup>289</sup>

Crista intermedia hypotarsi<sup>289</sup>

Crista medialis hypotarsi<sup>289</sup>

Fossa parahypotarsalis lateralis

Fossa parahypotarsalis medialis Sulci hypotarsi<sup>288</sup>

Corpus tarsometatarsi

Facies dorsalis<sup>292</sup>

Facies plantaris<sup>292</sup>

Crista medianoplantaris<sup>290</sup>

Facies subcutanea lateralis<sup>293</sup>

Facies subcutanea medialis<sup>293</sup>

Fossa metatarsi I [hallucis]

(Arthr. Annot. 174, 175, 180)

Proc. calcaris<sup>296</sup>

Fossa infracotylaris dorsalis<sup>291</sup>

Foramen vasculare proximale

(Art. Annot. 79)

Tuberositas m. tibialis cranialis<sup>291</sup> Sulcus extensorius<sup>295</sup>

Arcus extensorius<sup>287</sup>

Impressiones retinaculi extensorii

Tuberositas m. tibialis cranialis Sulcus flexorius<sup>294</sup>

Crista plantaris lateralis<sup>294</sup>

Crista plantaris medialis<sup>294</sup>

Extremitas distalis tarsometatarsi

Canalis interosseus distalis<sup>298</sup>

Foramen vasculare distale<sup>298</sup>

Fossa supratrochlearis plantaris

Incisura intertrochlearis lateralis Incisura intertrochlearis medialis

Trochlea metatarsi II [secundi]

Foveae ligg. collateralium

Trochlea metatarsi III [tertii]

Foveae ligg. collateralium

Trochlea metatarsi IV [quarti] Foveae ligg. collateralium

Trochlea accessoria<sup>297</sup>

Os cuneatum (Arthr. Annot. 182)

#### OSSA DIGITORUM PEDIS 299

Phalanges proximales et intermediae
Basis phalangis
Cotyla articularis
Corpus phalangis
Facies dorsalis
Facies plantaris

Capitulum phalangis

Trochlea articularis
Fovea lig. collateralis

Phalanx ungualis [terminalis]<sup>300</sup>

Basis phalangis
Cotyla articularis
Tuberculum extensorium

(Arthr. Annot. 183)

Tuberculum flexorium (Arthr.

Annot. 182)

Corpus phalangis Sulcus neurovascularis<sup>300</sup> Apex phalangis

#### ANNOTATIONS

- (1) Cotyla. (Cotyla, Gk. cup). In this work "cotyla" is used for a shallow concave articular surface (Howard, 1929; Lambrecht, 1933).
- (2) Cartilago epiphysialis; Epiphysis; Diaphysis; Metaphysis. During development and growth of a long bone, ossification begins in the middle of the shaft (Diaphysis), and extends proximally and distally by growth of ossifying zones (Metaphysis) into the cartilaginous end (Epiphysis). The epiphyses of birds, unlike mammals, do not ossify endochondrally from separate centers of ossification, but only by extension from the metaphysial centers.
- (3) Os pneumaticum. Bone invaded by air sacs; the sacs are outgrowths of the lungs, tympanic cavity, or nasal cavity.

Foramen pneumaticum; Pori pneumatici. In the paleontological literature the foramina are commonly known as "pneumatopores". The skull, vertebrae, and bones of limb girdles are usually pneumatic; limb bones are variably pneumatic in different taxa of birds. Pneumaticity usually involves only the proximal elements of the limb, but in some forms may extend into its distal extremity. Since pneumaticity is so widespread in the skeleton, the foramina and smaller pores are listed only for the bones in which they form especially distinctive features. See Annot. 6 and Resp. Annot. 70, 75-77.

- (4) Pila (L. pillar or column). Pila refers to a reinforcing element of a bone that may form a distinct, prominent bar, or may be a thickening that blends almost imperceptibly into the bone of which it is a part.
- (5) Scapus (L. shaft, stem). Used in this work to refer to a slender, attenuated bone or part of a bone in the instances that "corpus" (body) is not applicable (e.g., clavicle, pubis). See Integ. Partes pennae for another usage of Scapus.
- (6) Os medullare. Female birds are unique in possessing a special system of highly labile, secondary (medullary) bone within the marrow cavities of much of the skeleton during the reproductive period. This bone grows as spicules into the medullary cavity from the endosteal surface, serving as a labile reserve of mineral that can be mobilized to provide calcium for egg shell formation. Taylor, et al. (1971) present an extensive review of medullary bone (see also Hodges, 1974).

Os spongiosum. Spongy bone (also known as trabecular or cancellous bone) is found throughout the avian skeleton. In early postnatal life the spongy bone of the Calvaria (Diploë), vertebrae, limb bones, etc. is filled with red marrow (see Hodges, 1974). Later the red marrow is replaced by fatty marrow or by pneumatic mucosal diverticula invading the bones from the nasal or tympanic cavities (Stork, 1972; Warnke and Stork, 1977; Witmer, 1990) or lungs and air sacs.

The Cellulae pneumaticae are cavities or spaces, lined with mucosa, that are smooth-walled, e.g., long bones and skulls of nestlings, or highly strutted as in the skulls of adult birds. See Annot. 189; Resp. Annot. 21, 70, 72, 75-77.

- (7) **Tuberositas.** (L. tuberosus, full of lumps). In anatomical usage "Tuberositas" usually refers to a roughened or knobby area of bone for attachment of tendons or ligaments (Donath and Crawford, 1969).
- (8a) Facies; Cranium. Following the *Nomina Anatomica Veterinaria* (ICVGAN, 1983), "Facies" is used in this work for the facial skeleton ("splanchnocranium"), and "Cranium" refers to the part of the head skeleton enclosing the brain ("neurocranium").
- (8b) Ginglymus craniofacialis [G. nasofrontalis]. This term is treated with the flexible zones of the skull in Arthr. Annot. 46.
- (9) Fenestra antorbitalis (Heilmann, 1926). Synonymy: antorbital vacuity (Shufeldt, 1909); Hiatus orbitonasalis (NAA, 1979). When the skull is viewed from the side, this is the pronounced gap, often triangular, bounded by the nasal process of the maxillary bone, the maxillary process of the nasal bone, the jugal and lacrimal bones, closed by skin laterally (Fig. 4.1). It represents the antorbital vacuity of archosaurian reptiles (Witmer, 1987).

Fossa antorbitalis [F. infraorbitalis]. The antorbital fossa is the space medial or deep to the Fenestra antorbitalis which houses the Sinus antorbitalis [Sinus infraorbitalis] (see Resp. Annot. 17), an evagination of the nasal cavity. The osseous walls of the Fossa are variable; often the palatine process of the maxilla, the palatine bone, and the ectethmoid contribute to its walls (Witmer, 1987). Witmer maintains that the antorbital fenestra and fossa are completely homologous with those of non-avian archosaurs. Fossa infraorbitalis is retained as an alternative term because of its widespread use.

- (10) **Hiatus craniofacialis septi.** Synonymy: Fissura craniofacialis (Hofer, 1955). In the dried skull, the hiatus is the interval between the rostral edge of the interorbital septum and the caudal border of the osseous nasal septum in birds having such a septum (e.g., *Anser*). The hiatus is completed by a septum of cartilage in intact specimens (Butendieck, 1980). Bühler, et al. (1988) state that this hiatus is characteristic of all modern prokinetic birds as well as many neognathine rhynchokinetic birds. Paleognathines have a continuous nasal/interorbital septum. See Annot. 55.
- (11) Arcus jugalis. Synonymy: Arcus zygomaticus. The jugal arch is a slender, generally straight, bar that connects the upper jaw with the quadrate bone (Figs. 4.2, 4); exceptions include a strongly sigmoid shape in some penguins and a laterally bowed shape in *Nyctibeus* and *Caprimulgus*. The arch consists of three ankylosed elements: Proc. jugalis of Os maxillare, Os jugale proper, and Os quadratojugale. See Arthr. Intro.
- (12) Apertura nasi [nasale] ossea. Synonymy: Naris. The shape of the nasal aperture (schizorhinal, holorhinal) is related to kinesis of the upper jaw (see Garrod,

1873; Hofer, 1955; Bock, 1964; Yudin, 1965; the reviews of Bühler 1981 and Zusi 1984). Some pelecaniform, sphenisciform, and other birds have paired, minute osseous apertures of the nasal cavity. See **Resp.** Annot. 1; **Arthr.** Zonae flexoriae.

**Pila supranasalis.** The median column of bone making up the dorsal border of the external nares; formed by processes of the nasal and premaxillary bones. See **Arthr.** Fig. 2.

- (13) **Fenestra palatina.** Synonymy: Fonticulus palatinus (Hofer, 1949). Oval or elongate opening in the rostral part of the bony palate between the two premaxillae. In birds such as *Strix*, *Gallinula*, and anseriforms, the fenestra is set off distinctly from the more caudal **Fissura interpalatina**. The two are confluent in, e.g., *Diomedea*, *Cathartes*, and *Larus*.
- (14) **Depressio frontalis.** The frontal region (forehead) of the skull in some birds (e.g., *Ardea, Anser*) is indented by this shallow, longitudinal concavity (Fig. 4.6); in other birds the frontal region may be flat or dorsally convex.

Crista frontalis interna. Median crest on the interior of the vault of the calvaria extending from the fossa of the olfactory bulb to the upper end of the cerebellar fossa.

- (15) **Fossa glandulae nasalis.** In certain birds the Glandula nasalis (so-called "salt gland") occupies a pronounced depression on the dorsal aspect of the supraorbital margin of the orbit, involving mostly the frontal bone (e.g., penguins, albatrosses loons, gulls). In others (e.g., pelecaniforms, grebes) the gland is intraorbital, i.e., ventral to the supraorbital wall of the orbit there occupying the shallow **Impressio gl. nasalis** (see Siegel-Causey (1990).
- (16) Calvaria. The so-called cap or dome of the skull.

**Prominentia cerebellaris** (Shufeldt, 1909). The external, median convexity of Os supraoccipitale and Os parietale in the nuchal region of the skull dorsal to the Foramen magnum (Figs. 4.4, 5). The prominence overlies the dorsum of the Cerebellum, reflecting its contour externally, e.g., *Buteo*, *Columba*, *Corvus*, and trochilids. See Annot. 17.

(17) Crista [Linea] nuchalis sagittalis. This median crest is dorsal to the Foramen magnum, and provides attachment for the sheet of deep fascia separating the right and left columns of dorsal neck muscles. The Crista surmounts the Prominentia cerebellaris in some forms (e.g., *Gavia, Morus*).

Crista [Linea] nuchalis transversa. Synonymy: Crista temporalis (Hofer, 1945); Crista occipitalis (Davids, 1952). Arched, usually distinct, crest separating the nuchal plane of the supraoccipital bone (for attachment of the neck muscles) from the smoother part of the calvaria (parietal and squamosal bones) farther rostrally (Figs. 4.1, 5). This crest may extend caudolaterad to reach Proc. paroccipitalis (Annot. 85) (Figs. 4.2, 3).

- (18) Foramen magnum. Synonymy: Foramen occipitale magnum. The opening in the base of the skull that transmits the spinal cord and its meninges; it is bounded by the supra-, ex-, and basioccipital bones. Duijm (1951) reviewed the position and plane of the Foramen magnum in the major skull types of birds.
- (19) **Meatus acusticus externus.** Synonymy: Fossa auricularis cutanea (Freund, 1926). The wall of the Meatus is formed mostly by cutaneous, fibrous, and cartilaginous tissues. The osseous wall of the Meatus is formed by the parasphenoid ala (Annot. 20), lateral margin of the paroccipital process, and **Crista tympanica** of the body of the quadrate bone (see **Arthr.** Annot. 37).

- (20) **Hiatus subtympanicus.** Synonymy: Hiatus alae tympanicae (NAA, 1979). Deficiency (notch or fenestra) in the junctional area between the Ala parasphenoidalis and the margin of Proc. paroccipitalis that partially bounds the external acoustic meatus. See Annot. 19, 84.
- (21) Cavum tympanicum [Cavitas tympanica]. The middle ear cavity consists of a shallow, open concavity in the dried skull. Owing to the placement of Membrana tympanica, only the ventral part of the osseous concavity is tympanic cavity proper; the caudodorsal part is Meatus acusticus externus (Freund, 1926). See Annot. 19.
- (22) Recessus columellae (new term). [Recessus antevestibularis] (NAA, 1979); Synonymy: Antivestibulum (Magnus, 1870); Recessus cavi tympani (Hasse, 1871); Recessus stapedialis (Stresemann, 1934). "Recessus columellae" replaces Recessus antevestibularis which is retained as an alternative. "Recessus columellae" is a more descriptive memory aid since this evagination of the tympanic cavity houses the basal portion of the ear ossicle (Columella) (Fig. 4.3) in the complex of otic bones. Fenestra vestibuli, Fenestra cochleae, and Recessus tympanicus caudalis open into the recess of the columella (see Annot. 26); the recess is lacking in certain birds, e.g., diomedeids, Mesozoic birds (Witmer, 1990); shallow in Larus, but relatively deep in others (e.g., Gallinula, Gallus, Strix, Ceryle).

Fenestra cochleae [F. pseudorotunda]. Synonymy: Fenestra rotunda. Opening within Os opisthoticum (Fig. 4.3), closed in life by Membrana tympanica secundaria. The avian and mammalian fenestrae are considered nonhomologous (de Beer, 1937); hence the term Fenestra pseudorotunda.

**Fenestra vestibuli.** Synonymy: Fenestra ovalis. This opening into the vestibule of the osseous labyrinth is occupied by the footplate (base) of the Columella (see **Sens.** Fig. 16.7).

- (23) Recessus pneumatici paratympanici (Resp. Annot. 21). Collective term for the three major, consistently occurring, air filled evaginations of the tympanic cavity into the surrounding bones; namely, the rostral, caudal, and dorsal tympanic recesses. The openings or ostia by which the sinuses communicate with the tympanic cavity are called Foramina pneumatica (see Witmer, 1990). Among the several putative functions of the pneumatization of the skull of birds, Warnke and Stork (1977) suggest thermoregulation and insulation.
- (24) **Pila otica** (new term). Synonymy: opisthotic columella (Lowe, 1926); Pila prootica (NAA, 1979). This usually short pillar of bone articulates with the quadrate bone (see below); since it ossifies with varying contributions from the opisthotic and prootic bones, its name has been simplified to Pila otica. The pila intervenes between the foramen of the dorsal tympanic recess and Recessus columellae (Fig. 4.3; Annot. 22).

Cotyla quadratica otici. Cup-shaped surface of the otic complex for articulation with the otic capitulum of the quadrate bone (Fig. 4.3). The cotyla is largely prootic in most birds with some contribution from the opisthotic. In some birds, the cotyla is partly located on the free end of the Pila otica. See paragraph above and Annot. 100.

(25) Recessus tympanicus dorsalis (Resp. Annot. 21). Synonymy: Recessus tympanicus superior (Suschkin, 1899; Pycraft, 1902;, Müller, 1963); Antrum pneumaticum dorsale (NAA, 1979). The Foramen pneumaticum dorsale leading to the dorsal tympanic recess is located near the squamosal and otic articular facets for the quadrate bone (Fig. 4.3). Diverticula from this recess invade the prootic, squamosal, parietal and occipital bones.

(26a) Recessus tympanicus rostralis (Resp. Annot. 21). Synonymy: Recessus tympanicus anterior (Parker, 1869; Suschkin, 1899; Pycraft, 1902; Müller, 1963); presphenoid sinus (Saiff, 1974); Antrum pneumaticum rostrale (NAA, 1979).

Foramen pneumaticum rostrale of the rostral recess is located in the rostroventral part of the tympanic cavity, dorsal to the ostium of the auditory tube, and dorsolateral to the bony Canalis caroticus cranialis (see Figs. 4.2, 3, 5; Annot. 99). Diverticula from this recess invade the base of the skull (parasphenoid bone).

- (26b) Recessus tympanicus caudalis. (Resp. Annot. 21) Synonymy: Recessus tympanicus inferior (Müller, 1963); Antrum pneumaticum caudale (NAA, 1979). The Foramen pneumaticum caudale connects this recess with the columellar recess or the caudal part of the tympanic cavity. The Recess is ventrolateral to the rostral semicircular canal, and sends diverticula into the exoccipital bone.
- (27) Canalis ophthalmicus externus. Synonymy: Canalis facialis; Canalis stapedialis. The canal conducts the A. et V. ophthalmica externa, and in some forms, the Chorda tympani of N. facialis. The caudal ostium of the canal is located in the Fossa parabasalis on the external skull base (Figs. 4, 5). The canal arches dorsal to the Columella then rostrally; its lateral wall may project in relief into the tympanic cavity, or may be incompletely ossified so that the lumen of the canal is visible in the dried skull. The rostral opening of the canal is medial to the otic process of the quadrate, lateral to Foramen n. maxillomandibularis.
- (28) Basis cranii externa. Synonymy: basicranium. In this work "Basis cranii externa" is defined as limited to the exterior aspect of the bones forming the floor of the cranial cavity proper; thus Basis interna and externa of the cranium are opposites that correspond in area to one another. In some birds the cerebral surface of the base of the cranium is widely separated from the external surface by pneumatic spaces, evaginations of the tympanic cavity.
- (29) **Orbita.** The osseous orbit of birds is bounded mainly by cranial bones. In most birds the floor of the orbit is not bone, but consists mainly of jaw muscles. Exceptions are the snipes and woodcocks (Scolapacidae) in which the orbit is almost completely enclosed by bone (Hofer, 1955). See Annot. 30.

Fonticuli interorbitales; Fonticuli orbitocraniales. Synonymy: Fonticuli orbitales, Barkow (1856); Foramina obturata orbitalia. In the dried skull these are unpaired deficiencies in the bone of the interorbital septum or paired ones in the caudal wall of the orbit; the latter communicate with the cranial cavity (Figs. 2, 3, 6). In intact specimens the fonticuli are closed by fibrous membranes.

(30a) **Proc. postorbitalis.** Synonymy: Proc. orbitalis posterior; Proc. postfrontalis. In most carinate birds, and the ratite *Rhea*, the postorbital process is formed largely by Os laterosphenoidale; Os squamosal (e.g., some galliforms) or Os frontale (*Struthio*) contribute to the base of the Proc. postorbitalis. Consult Müller (1963: 81) for discussion of the postorbital process.

The postorbital process commonly forms the caudoventral border of the orbit (Figs. 4.2, 5); however, in certain birds (e.g., anseriforms) it projects rostrally and contributes to the ventral margin of the orbit (see below, Arcus suborbitalis). The tips of Proc. postorbitalis and Proc. zygomaticus are joined in some birds (e.g., psittaciforms and galliforms). See below and Annot. 108.

- (30b) Arcus suborbitalis (Portmann, 1950). A complete osseous arch bounds the orbit ventrally in some psittaciforms, scolopacids (Gadow and Selenka, 1891), and the anatid, *Dendrocygna* (Shufeldt, 1909). This arch is formed by junction of a lengthy caudal extension of Os lacrimale and the rostral extension of the Proc. postorbitalis or the postorbital/zygomatic complex; in other birds these structures form an arch connected by Lig. suborbitale (Arthr. Annot. 30).
- (31) Foramen orbitonasale laterale/mediale. Longitudinal opening(s) between the orbital surface of Os frontale and the dorsal border of Os ectethmoidale. A single slit-like foramen is present in some birds (e.g., Ardea, Aythya); both medial and lateral foramina are found in other birds (e.g., Columba, Gallus, Coragyps, Corvus.) The medial foramen (Fig. 4.1) conducts N. olfactorius and the medial ramus of N. ophthalmicus from orbit to nasal cavity; the lateral foramen conducts the lateral ramus of N. ophthalmicus and duct(s) of Glandula nasalis.

Sulcus n. olfactorii. Longitudinal groove for the olfactory nerve and ethmoid artery; located in the angle between the upper part of the interorbital septum and the Lamina dorsalis of Os mesethmoidalis which is applied to the roof of the orbit (see Fig. 4, 1; Annot. 108).

- (32) Foramen opticum. Located in the boundary zone between the caudal edge of the interorbital septum and the caudal wall of the orbit (Figs. 6, 2, 3). The foramen in carinates is usually a single opening inside the cranial cavity, but the foramen is divided by the relatively thin interorbital septum into a pair of closely related foramina, one in each orbit. In some psittaciforms (pers. obs.) and cardueline finches (Zusi, 1978) the two optic foramina are widely separated from one another by a thick septum. In other birds the optic foramina may be continuous with the Fonticuli orbitocraniales and other foramina (Annot. 29, 88).
- (33) **Septum osseum fossae bulbi.** The fossa for the olfactory bulb is divided by a bony septum in *Apteryx* (Starck, 1955) and in the albatross (*Diomedea* sp.) and psittacids.
- (34) Foramen ethmoidale. Transmits A. et V. ethmoidalis into the orbit from the cranial cavity; separate openings for the artery and vein are present in some birds. See Annot. 31.
- (35) Fossa cranii media. Synonymy: Fossa mesencephalica. The middle cranial fossa houses the Diencephalon and Chiasma opticum medially and the Tectum mesencephali on each side. The Fossa is not homologous with the middle cranial fossa of mammals. See Os basisphenoidale and Os laterosphenoidale for additional terms.
- (36) Crista marginalis. This crest separates each side of the Fossa cerebelli from the general chamber of the vault of the calvaria that houses the telencephalic hemispheres of the brain.
- (37) **Tuberculum pineale.** On the internal surface of the Calvaria the Tuberculum pineale is a triangular eminence at the junction of Crista frontalis interna with the marginal crests of the cerebellar fossa. The dorsal expanded end of the body of Glandula pinealis is closely related to the Tuberculum.
- (38) Fossa auriculae cerebelli. Synonymy: Fovea hemispherii cerebelli; Fossa sub-arcuata. The fossa in birds contains the cerebellar auricle (Fig. 4, 6). "Subarcuate fossa" is inappropriate, since in mammals it lodges the endolymphatic sac; therefore the avian and mammalian fossae are non-homologous. See Ven. Annot. 35.

- (39) Fovea ganglii vagoglossopharyngealis. In the floor of the caudal fossa of the cranium, the fovea (pit) is located in the suture between the exoccipital and opisthotic bones; the fovea houses the combined proximal [root] ganglia of the X and IX cranial nerves (Fig. 4.6). Separate foramina for each nerve are found in the bottom of the fovea that lead to the parabasal fossa on the external skull base (Figs. 4.4, 5). See Annot. 86; and PNS.
- (40) Rostrum [Symphysis] mandibulae (new term). (Rostrum, L. beak or prow). The rostrum is the pointed, apical region of the mandible formed by the union of the symphysial segments of the right and left mandibular rami. Although this region of ankylosis of the mandibular rami is commonly called the "mandibular symphysis", in the strict sense, the symphysis is the actual joint connecting the two. See Annot. 42; Arthr. Annot. 21. and Topog. Annot. 12.

Rostrum maxillae (new term, R. Zusi, pers. comm.). This is the pointed, apical region of the upper jaw formed by the ankylosis of the bodies of right and left premaxillary bones that corresponds to the Rostrum mandibulae (Fig. 4.2). See Topog. Annot 12.

- (41) **Foveae corpusculorum nervosorum.** In the bones of the maxilla and mandible these small pits deep to the rhamphotheca house sensory corpuscles (Fig. 4.2); the foveae are especially numerous and conspicuous in the rostra of the upper and lower jaws of *Apteryx*, ibis and spoonbills, anseriforms, and sandpipers and snipes (Scolopacidae). See Annot. 57 and Sens. Annot. 66.
- (42) Pars symphysialis/intermedia/caudalis (Lebedinsky, 1920). The symphysial part of the mandibular ramus is the rostral segment that unites with the opposite ramus at the Symphysis mandibularis (see Annot. 40 and Arthr. Annot. 21 and Fig. 4.4). Pars intermedia extends caudally to Zona flexoria intramandibularis caudalis which is often marked by the Fenestra rostralis mandibulae. Pars caudalis extends from the caudal flexion zone to the retroarticular process, and includes the area of attachment of the jaw muscles, facets for articulation with Os quadratum, and Fenestra caudalis mandibulae in birds that have dual fenestrae on each side (Annot. 46). See Arthr. Annot. 46-48.

The Ramus mandibulae is peculiar in caprimulgids in that the rostral, attenuated one-third is set off by an oblique, moveable syndesmotic joint from the bowed, stronger rear two-thirds.

- (43) **Angulus mandibulae.** This is the point on the dorsal border of the Ramus mandibulae where the ramus becomes angulated or curved ventrally (e.g., charadriiforms, caprimulgiforms, columbiforms, falconiforms, and passerines). See Annot. 56. The angle marks the caudal extent of the rhamphothecal sheath covering the exposed part of the mandible.
- (44) **Proc. coronoideus.** Synonymy: Proc. pseudocoronoideus; Proc. m. adductoris mandibulae. Any process of Pars caudalis of the mandible to which is attached the strong "aponeurosis" of M. adductor mandibulae externus, pars rostralis (**Myol.** Annot. 18). In different birds it is commonly found on the dorsal margin of the mandible, often coincident with the Angulus mandibulae (Johnson, 1984); it may, however, be located on the lateral surface of the mandible as in anseriforms (Zweers, 1974). See Figs. 4.1, 2.

In finches, processes for the insertion of aponeuroses of M. adductor mandibulae externus "profundus" also occur caudal to Proc. coronoideus (Richards and Bock, 1973) (see Myol. Annot. 18).

- (45) **Tuberculum pseudotemporale.** Synonymy: Proc. pseudotemporalis. The pseudotemporal tubercle which is located slightly rostral to the quadratomandibular joint near the base of Proc. medialis mandibulae (Fig. 4.1) is the point of insertion of the tendon of M. pseudotemporalis superficialis (**Myol.** Annot. 19). The tubercle is prominent in heavy-billed finches.
- (46) Fenestrae mandibulae. Synonymy: Foramen mandibulare anterior; Foramen mandibulare posterior (Lebedinsky, 1920); Foramen ovale; interangular vacuity or fenestra (Shufeldt, 1909). Fenestra rostralis mandibulae is found in the region of the caudal intramandibular flexion zone (Arthr. Fig. 2); Fenestra caudalis mandibulae occurs in Pars caudalis of the mandibular ramus (see Annot. 42, 48). The fenestrae may be completely lacking in some taxa. Other birds may possess only one of the fenestrae (e.g., Columba). Two fenestrae occur in certain birds (e.g., some charadriiforms, gruiforms, psittaciforms, and strigiforms). Consult Lebedinsky (1920) for details.
- (47) Canalis neurovascularis mandibulae. Synonymy: The canal conducts vessels and the intramandibular ramus of the mandibular nerve from the region of the coronoid process to the symphysial region of Ramus mandibulae. See Annot. 48.
- (48) Fossa aditus canalis neurovascularis. Synonymy: Fossa medialis mandibulae (Johnson, 1984). Depression on the internal aspect of Pars caudalis of the mandibular ramus that leads to the aditus or opening of the mandibular canal. The floor of the fossa often consists of thin bone, and may exhibit an opening(s), Fenestra caudalis mandibulae. The fossa is pronounced and extensive in many birds (e.g., *Pygoscelis, Gavia, Cathartes, Anser*).

Fossa lateralis mandibulae (Johnson, 1984). Shallow depression on the lateral aspect of the mandibular ramus at or near its rostral fenestra, e.g., *Diomedea, Larus*.

(49a) Fossa articularis quadratica. Area of the mandible for articulation with the condyles of Proc. mandibularis of Os quadratum (see Fig. 4.3; Annot. 72).

Cotylae fossae articularis. These are the facets for articulation with the condyles of the Os quadratum. The medial cotyla is separated from the others (see below); however, the lateral and caudal cotylae are merged into a common articular surface in some birds (e.g., Larus); distinct in others (e.g., Ardea, Morus).

Sulcus intercotylaris; Tuberculum intercotylare (Johnson, 1984); [Crista intercotylaris] (Zusi, 1987). The groove, boss of bone, or bony crest in the articular fossa of the mandible of different birds; these structures separate the medial and lateral cotylae (Fig. 4.3). The tuberculum is especially prominent in psittacids.

(49b) **Proc. retroarticularis.** Synonymy: Proc. mandibularis posterior (Lebedinsky, 1920); Proc. angularis posterior (Hofer, 1945); postarticular process. This process projects caudally past the articular fossa of the mandible; formed mainly by the **Os angulare** to the rear of Proc. lateralis mandibulae. Weakly developed, pointed, or stubby in most birds, the retroarticular process is prominent, e.g., in galliforms, ciconiiforms, psittaciforms, anseriforms and phoenicopterids (**Arthr.** Fig. 5.2D); in the last two taxa the process is attenuated and blade-like. The Proc. retroarticularis is also well developed in birds that forcefully open the jaws while foraging, probing into flowers or fruit (Zusi, 1967). Well developed in *Aechmophorus*, but not in other grebes (R. W. Storer, pers. comm.). See Annot. 50, 51.

Incisura retroarticularis (Johnson, 1984). In lateral view of the caudal segment of the mandibular ramus, this is a notch between the Proc. lateralis mandibulae and the retroarticular process; the incisure is the notched edge of the lateral cotyla.

(49c) Foramen pneumaticum articulare. An opening in the upper surface of Proc. medialis mandibulae (formed by **Os articulare**) that leads to pneumatic spaces in the caudal segment of the mandibular ramus (Figs. 4.1, 3); the lower jaw of some birds is extensively pneumatic (e.g., flamingos, hornbills, toucans).

The **Siphonium** is a connective tissue tube, ossified in some birds (e.g., *Corvus*), that connects the pneumatic foramen of Os articulare with the mandibular diverticulum of the tympanic cavity. See Cavum tympanicum; and Witmer (1990).

(49d) **Proc. medialis/lateralis mandibulae.** Both of these are processes of Pars caudalis of the mandible (mainly Os articulare); Proc. medialis mandibulae (Figs. 4.1, 3) is much the stronger of the two; it projects medially with its tip curved dorsally (exception: psittaciforms)(see below). The weak lateral process forms part of the cotyla for the lateral condyle of the quadrate bone; in some birds it is the attachment of Lig. postorbitale (**Arthr.** Annot. 42). See also **Arthr.** Annot. 32.

Facies articularis parasphenoidalis. In certain birds this articular surface near the tip of the Proc. medialis mandibulae forms a joint with the lateral or medial parasphenoidal process of Lamina parasphenoidalis of the external base of the skull (see Annot. 96 and Arthr. Annot. 32).

- (50) Recessus conicalis. Synonymy: Fossa conicalis (Shufeldt, 1909). Recessus posterior (Lebedinsky, 1920); Cavum mandibulare (Zweers, 1974). In anseriform birds this is an unusual, deep recess ventral to the medial cotyla of the quadratomandibular joint. Its opening is located between the blade-like Proc. retroarticularis and Proc. medialis mandibulae. A somewhat similar deep recess is present in certain psittaciforms, however its opening faces dorsally rather than caudally. See Annot. 51.
- (51) Fossa caudalis. Synonymy: Fossa posterior (Lebidinsky, 1920); postarticular surface (Milne-Edwards, 1867-71). In birds of many different taxa this term refers to the shallow concavity of the caudal surface of Proc. mandibulae medialis, located medial to the retroarticular process (Fig. 4.1). This is the area for insertion of M. depressor mandibulae (Myol. Annot. 24); (Arthr. Annot. 37). See Lebidinsky (1920) for a detailed, comparative account of Fossa caudalis in numerous avian taxa.

Crista transversa fossae (new term). This distinct transverse crest extends from the Proc. medialis mandibulae to Proc. lateralis mandibulae Fig. 4.3). The crest separates two different fossae; it forms the caudal wall of the articular fossa for Os quadratum, and its rear surface is the upper part of Fossa caudalis (see above). The crest, which exhibits a distinct tubercle in some birds, is an attachment of Membrana postmeatica and Lig. occipitomandibulare. See Arthr. Annot. 37.

(52) Ossa mandibulae. Each ramus of the mandible is considered to consist of seven separate bones. Different names for the various elements abound in the literature. The tabular synonymy compiled by Müller (1963) is summarized below; terms selected by him are followed in this present terminology with one exception. Os coronoideum is not ordinarily present in birds.

Os dentale. Synonymy: dentary; dentosplenial; mentomandibulare. This is the principal element of each mandibular ramus (Fig. 4.1); it articulates with the supraangular and splenial elements by squamous sutures at the junction of intermediate and caudal segments of the ramus. Os articulare forms most of Fossa articularis quadratica. See Lebedinsky (1920) and Jollie (1957) dealing with the mandible of carinates, and Müller (1963) regarding the ratite mandible.

Os prearticulare. Synonymy: Os goniale; Os coronoideum, Synonymy: Os complementare; Os spleniale, Synonymy: Os operculare; Os supra-angulare, Synonymy:

ymy: surangulare. **Os mentomandibulare.** According to Romanoff (1960:995) paired mentomandibular elements replace the cartilage at the mandibular symphysis, then ankylose with one another.

- (53) Os maxillare; Maxilla. As an individual bone, Os maxillare is one of the components of the avian upper jaw. As a general term, "Maxilla" refers to the entire complex of structures that make up the upper jaw; i.e., the opposite of "Mandibula", the lower jaw (see Annot. 40 and Topog. Annot. 8).
- (54) **Proc. maxillaris** Synonymy: Proc. postnarialis or P. subnarialis. **Proc. premaxillaris.** Synonymy: Proc. dorsonarialis. Process of the nasal bone.
- (55) **Septum nasi [nasale] osseum; Conchae nasales.** These structures may be supported in part by the vomer, maxilla, and ectethmoid bones. The rostral part of the nasal septum and nasal conchae in the caudal part of the nasal cavity vary in the extent that they ossify in different birds, usually remaining more or less cartilaginous. These structures characteristically ossify extensively in, for example, *Diomedea*, some parrots, birds of prey (*Buteo, Strix*), herons and ibis (*Ardea, Eudocimus*), pelecaniforms, trochilids, *Coccyzis*, some coraciiforms, and passeriforms. See Annot. 10; **Resp.** Annot. 6-9.
- (56) Crista tomialis. Synonymy: tomial shelf (Johnson, 1984). The paired sharp edges of the upper and lower jaws (Figs. 4.2, 4). Hard keratinized rhamphotheca invests the crests from the tips of the rostra of mandible and maxilla caudally to the level of the Angulus mandibulae. See Annot. 43, 44; Integ.
- (57) Canalis neurovascularis maxillae. Paired longitudinal canal that conducts the terminal branch of N. ophthalmicus and accompanying vessels from the rostral end of the nasal cavity into the Rostrum maxillae (Annot. 40) of the upper jaw (mainly in Os premaxillae). The canal is relatively long, e.g., in a heron or duck, quite short in a gull or vulture.

In birds with large maxillary bones (e.g., Anas, Anser, Larus, and Hesperornis) a separate neurovascular canal enters the maxilla near its junction with the jugal arch; this canal conducts parts of the nasopalatine branch of N. maxillaris to openings on both medial and lateral sides of the caudolateral maxillary tomial crest and adjacent palate (see below).

Foramina [Pori] neurovascularia. The ramifications of the branches of the ophthalmic and nasopalatine nerves (and companion vessels) leave their neurovascular canals (Fig. 4.2) via smaller Canaliculi neurovasculares that open on the surface of the bone of the upper jaw via foramina (pores) deep to the rhamphotheca (especially in the Rostrum maxillae). The foramina often open into Foveae corpusculorum nervorsorum, pits or hollows beneath the rhamphotheca which house sensory corpuscles; the foveae are remarkably abundant in Capella. See Annot. 41; and Sens. Annot. 70.

(58) **Proc. maxillopalatinus [Proc. palatinus].** This process of Os maxillare in many birds arises from the maxilla near its junction with Proc. maxillaris of Os palatinum (Figs. 4.1, 4; Annot. 64). The maxillopalatine process of different birds exhibits a variety of orientations and configurations largely due to variation in the form of the maxillary diverticulum of the antorbital sinus (Witmer, 1990); it contributes to the formation of the nasal cavity in most birds and to the palate in the birds such as anseriforms, ciconiiforms, and passeriforms (see Hofer, 1949). In anseriforms the right and left maxillopalatines are synostosed in the median plane.

- (59) **Proc. jugalis.** This process of Os maxillare has also been called Proc. labialis (see Annot. 11).
- (60) Os palatinum [Os pterygopalatinum] (see Annot. 61 and Fig. 4.4, 7). Four features of the palatine bone are common to most birds: Pars choanalis which is associated with the Fossa choanalis (see below, this annot.); (2) Pars lateralis (see next paragraph) which is generally lateral to Pars choanalis, is associated mainly with the attachment of M. pterygoideus; (3) Proc. maxillaris (synonymy: Proc. premaxillaris, NAA, 1979; prepalatine, Parker, 1879), connected to the maxilla, is usually a slender bar which, in all neognathines, has a bending zone (Zona flexoria palatina, see Arthr.); (4) Proc. pterygoideus (synonymy: postpalatine, Parker, 1879) connects the palatine with the pterygoid bone, and may include a fused portion of Os pterygoideus (see Annot. 61). Certain features listed under Pars choanalis and Pars lateralis are absent in some birds; Parker (1879), Hofer (1945), and Richards and Bock (1979) discuss the variety of shapes and relationships of palatine bones in different avian taxa, and include other palatine features not presented in this terminology. Ziswiler (1985) provides a concise summary on types of avian palates; see Witmer and Martin (1987) for a critique of palatal typology.

Pars lateralis (Fig. 4.7) in part replaces the term "Lamella caudolateralis" of the NAA (1979), a term derived from Proc. posterolateralis of (Beddard, 1898; Hofer, 1945; and Bühler, 1970); Lamella caudolateralis is retained as an alternative (bracketed) term in the present edition. Pars lateralis is usually a flared plate facing ventrally in some birds, obliquely ventromedially in others, and medially as in psittacids (Beddard, 1898). Pars lateralis is convoluted in *Fulica*, and extremely expanded laterally in caprimulgids.

Fossa choanalis (Fig. 4.7). Synonymy: Fossa medialis (NAA, 1979). Paired, shallow furrow between the medial and ventral crests of **Pars choanalis** of Os palatinum (Fig. 4.4); the furrow faces medially, forming the lateral wall of the chamber of the Choana which connects nasal cavity with oropharynx (see Annot. 64; and **Resp.** Annot. 5).

- (61) Os pterygoideum (Figs. 4.4, 2, 5). Pars palatina of Os pterygoideum that joins Os palatinum (Annot. 60) is also known as the antero-, hemi-, or mesopterygoid (Parker, 1879; Pycraft, 1900; Jollie, 1957). Bühler, et al. (1988) indicate that most modern prokinetic neognathines have this palatal ontogeny wherein an "intrapterygoid" joint forms between Pars palatina and the rest of the pterygoid bone from which it was detached in early postnatal life (see Arthr. Annot. 17). In paleognathine birds and some neognaths, no part of the pterygoid splits off (Jollie, 1957). According to Hofer (1945) Os pterygoideum may be arched (e.g., Mergus), bent (e.g., Vanellus), or extended (e.g., Ardea). See Annots. 69, 70, 93.
- (62) Facies articularis parasphenoidalis. The surface at the zone of contact between the palatine bone and parasphenoid rostrum. Such contact and articulation are absent in some birds. In some passerines and a few other taxa, a winglike portion of the parasphenoid facies, the Lamella dorsalis (synonymy: palatine hasp, Richards and Bock, 1973), extends up alongside the lateral surface of the rostrum; the edge of Lamella dorsalis is Crista dorsolateralis (synonymy: Cr. dorsalis, NAA, 1979).

Crista medialis (Fig. 4.7). This is the medial edge of the border of the surface of Pars choanalis that articulates with the Rostrum parasphenoidale. In some birds the right and left medial crests fuse in the midline on the lower surface of the parasphenoid rostrum and exhibit an unpaired median crest (most pelecaniforms, Capella, Steatornis, Podargus).

- (63) **Proc. rostralis** (Jollie, 1958). Synonymy: Proc. choanalis rostralis (Bühler, 1970; NAA, 1979); ethmo-palatine bar (Parker, 1879). This is a rostral extension of the Crista medialis or Lamella dorsalis of Pars choanalis of the palatine bone for articulation with the Vomer; well exemplified in *Anser, Ardea, Caprimulgus, Corvus*).
- (64) Lamella choanalis (Fig. 4.7). Synonymy: wall of palatine trough (Richards and Bock, 1973). A curved plate, often deeply concave, of Pars choanalis forming the lateral and dorsal wall of the Fossa choanalis of each palatine bone. In caprimulgids, the dorsal part of the lamella is curved medially and fused with its counterpart in the midline ventral to the parasphenoid rostrum, forming a palatine roof of the Pars caudalis of the choana (see **Resp.** Annot. 5). In some birds the plate is extended vertically ventrally forming the **Crista ventralis** which deepens the caudal part of the choana, pronounced, e.g., in *Larus* and *Diomedea*. In birds whose palatines are apposed or fused in the median plane, the right and left Cristae ventrales together form an unpaired, median ventral palatine crest (e.g., *Morus*).

Angulus caudomedialis. The angle formed by the caudal border of Lamella choanalis with its Crista ventralis.

**Proc. caudomedialis.** Synonymy: mediopalatine process (Richards and Bock, 1973). A caudal projection of Crista ventralis of some birds.

- (65) Crista lateralis. The thickened lateral edge of the Pars lateralis of the palatine bone to which the aponeurosis of M. pterygoideus is attached.
- (66) Angulus caudolateralis. Angle at the intersection of caudal and lateral margins of Pars lateralis of the palatine bone. In some forms (some passerines and a few other taxa) the angle is prolonged caudally as a pointed process which has been called the "transpalatine process", not an apt descriptive term.
- (67) Fossa ventralis. Synonymy: Fossa muscularis. A usually shallow excavation on the ventral surface of Pars lateralis of the palatine bone between its Crista lateralis and Crista ventralis for attachment of part of M. pterygoideus. The fossa is deep in birds with prominent ventral crests of, e.g., *Diomedea, Cathartes, Larus, Capella*.
- (68) Vomer. Synonymy: Prevomer. Paired elements, in adults most often fused into a single median structure that typically articulates with the parasphenoid rostrum and/ or the Pars choanalis of the palatine bone (see below, this paragraph); not present in all birds; weakly developed in galliforms. The (fused) vomer varies in shape, ranging from a horizontally flattened plate, strongly V-shaped in cross section, to a laterally compressed, vertical plate. In passerine birds the vomer extends into the "ethmoid tissue" (Fig. 4.4), a condition unique to this group (see Hofer, 1949). In palaeognaths the vomer and pterygoids exclude the paired palatines from contact with one another and with the parasphenoid rostrum. In paleognaths the vomer has articular surfaces for pterygoid, palatine, maxillary, and premaxillary bones in addition to the Rostrum parasphenoidale.
- (69) Facies articularis parasphenoidalis. In many neognathine birds the pterygoid, palatine bones, and the Vomer have surfaces for articulation with Rostrum parasphenoidale (Arthr. Annot. 29, 15, 16, 23).

**Pes pterygoidei** (Johnson, 1984). The "foot of the pterygoid", i.e., the expanded rostral end of the pterygoid bone (Fig. 4.4) that has articular surfaces for the parasphenoid rostrum and the palatine bone.

(70) **Proc. dorsalis.** Dorsal muscular process of Os pterygoideum of many birds, especially prominent in woodpeckers (Picidae) (Hofer, 1945). See **Myol.** Annot. 21.

(71) Os quadratum. Synonymy: Quadratum. Walker (1888) presented a comparative description (1888) of the variable form of the avian quadrate bone. **Proc. oticus** of the quadrate articulates with the prootic/opisthotic and squamosal (and sometimes laterosphenoid) elements by means of often separate otic and squamosal capitula. In some birds (e.g., *Hesperornis*, ratites, some neognaths; Witmer, 1990) the **Incisura intercapitularis** is indistinct and the capitula merge, lending the appearance of being "single-headed". See Annot. 24, 100; and Figs. 4.2, 3, 5).

Facies tympanica. The tympanic surface of the otic process and upper body of the quadrate bone forms with Ala parasphenoidea the rostral wall of the tympanic cavity; the tympanic membrane is attached to the crest of this surface. See Annot. 19.

(72) Condylus caudalis. Synonymy: Proc. postmandibularis. The **Proc. mandibularis** of the quadrate bone of most taxa of birds possess three condyles (see Bock, 1960; and **Arthr.** Annot. 35). The three condyles are arranged in a somewhat triangular configuration, the caudal condyle projecting toward the rear.

Condylus pterygoideus. In most birds the condyle of Os quadratum for articulation with the lateral end of Os pterygoideum has a rounded, convex articular facet (Fig. 4.3). In ratites, tinamous, and the hesperornithiforms the facet is broad and flattened (Witmer, 1990).

Condylus lateralis. In most birds the lateral condyle of the quadrate bears only the articular facet on its ventral surface for the Cotyla lateralis of the mandible (Fig. 4.5); however, most endemic New World jays (e.g., Aphelocoma) possess an additional condyle (Condylus rostralis) on the rostral surface of the lateral condyle of the quadrate. This condyle fits into a caudally-facing Cotyla rostralis on the mandible directly above the lateral cotyla. This forms the "buttress complex" (Zusi, 1987), anchoring the mandible to the quadrate when the open lower jaw is used in pounding.

- (73) Cotyla quadratojugalis. The cotyla of the quadrate bone for articulation with the Condylus quadraticus of Os quadratojugale is located on the root of the lateral condyle of the mandibular process of Os quadratum.
- (74) Ossa supraorbitalia (Beddard, 1898). Synonymy: Os supraciliare.
- (75) Ossa accessoria cranii. See Jollie (1957) for a discussion of the accessory bones of the avian head.
- (76) Os nuchale. Synonymy: Stylus postoccipitalis. Apparently unique to cormorants (*Phalacrocorax*) and the Anhinga in which it forms a moveable joint with a rounded protuberance of the occipital region of the skull (Dullemeijer, 1951).
- (77) Anulus [Annulus] tympanicus. An osseous ring to which the periphery of the tympanic membrane is attached occurs in strigiforms and *Gallus* (Stellbogen, 1930). The ring is formed by parts of the exoccipital and parasphenoid bones (Kühne and Lewis, 1985).
- (78) Ossa suturarum. Supernumerary bones developed in sutures between cranial bones; seen readily in young turkeys and ducks.

Os uncinatum (Burton, 1970). Located between the ventral end of Os lacrimale and the jugal bar in examples of musophagids.

(79) Apparatus hyobranchialis (Goodrich, 1958). Synonymy: Apparatus hyolingualis (consult Myol. Annot. 25); Apparatus hyoideus. The avian "tongue skeleton" is made up principally of elements from the hyoid arch and other more caudal branchial arches. The terminology adopted is that of McLelland (1968). Müller (1963:56)

provides a comprehensive synonymy. Zweers (1974, 1982) described the hyobranchial apparatus in *Anas* and *Columba*; he noted that the hyobranchial elements are commonly cartilage rather than bone.

- (80) **Paraglossum.** Synonymy: Entoglossum. The paraglossum of most birds has the shape of an arrow head, bearing short, caudolaterally directed cornua. Psittaciforms possess a wide, flat paraglossum with a central foramen, or, more commonly, paired paraglossals united rostrally by a cartilaginous or bony isthmus (Beddard, 1898). In *Psittacus* (Homberger, 1986) each of the paired paraglossals is bifurcate rostrally.
- (81) **Basihyale.** Synonymy: Basibranchiale rostrale; Basihyoideum; Pars basihyalis copulae; Copula I (Müller, 1963). This element is a derivative of the hyoid arch. See below.

**Proc. parahyalis; Arcus parahyalis.** In parrots (Mivart, 1895; Homberger, 1986) the Basihyale possesses a caudal enlargement from which the dorsolateral Proc. parahyalis arises on each side. These processes unite mid-dorsally to form the paraglossal arch in several Australian and Indopacific genera (*Melopsittacus*, *Eos*, *Vini*, *Lorius*, and *Nestor*).

Urohyale. [Basibranchiale caudale]; Synonymy: Urohyoideum; Pars urohyalis copulae; Basibranchiale I; copula II (Müller, 1963). The Basihyale and Urohyale are separate in young birds, but fused to one another in adults.

- (82) **Dentes.** True teeth are known only from the fossil birds *Archaeopteryx*, *Parahesperornis*, *Hesperornis*, and *Ichthyornis* (Gingerich, 1972; Martin, 1984). Martin, et al. (1980) reviewed the morphology of avian dentitions. In *Osteodontornis* (Pseudodontornithidae) and its relatives the "teeth" are bony projections of the jaws, covered by rhamphotheca (Howard, 1957).
- (83) Condylus occipitalis. The main part of the condyle is formed by Os basioccipitale; lateral contributions are from Os exoccipitale on each side. For a comprehensive comparative study of the avian occipital condyle see Goedbloed (1958).

Incisura mediana condyli. This is the median notch, usually present on the dorsum of the occipital condyle (Fig. 4.5); the tip of the Dens of the Axis rides in the incisure during dorsiflexion of the atlanto-occipital joint (Landolt and Zweers, 1985; Weisgram and Zweers, 1987). See Arthr. Annot. 64.

**Tuberculum basilare.** Synonymy: mamillary proc. (Pycraft, 1902; Saiff, 1974; Witmer, 1990). The basal tubercles originate as paired swellings at the rostral corners of the basioccipital bone; in later development they become sheathed ventrally by Lamina parasphenoidalis (Fig. 4.3). The tubercles serve for insertion of cervical muscles, principally M. rectus capitis dorsalis. They are best developed in long-skulled birds, e.g., *Morus, Hesperornis*. In some cases, the tubercles may coincide with Proc. medialis parasphenoidalis (see Annot. 97). Tuberculum basilare is an appropriate name in that it is clearly homologous with the "basal tubera" of nonavian archosaurs.

(84) Ala parasphenoidalis. Synonymy: Ala tympanica (NAA, 1979); alaparasphenoidalis (Jollie, 1957). Although this part appears to be a lateral extension of Lamina parasphenoidalis (Erdmann, 1940), it is actually formed as a separate center of ossification that merges with the lamina in certain birds, remaining separate in others (Figs. 4.4). In some birds the Ala parasphenoidalis is flared and wing-like, forming part of the margin of the external acoustic meatus (Annot. 20). In others the ala is not wing-like, but a boss of bone, the Proc. lateralis parasphenoidalis (Annot. 97) that

OSTEOLOGIA 81

forms a joint with the Proc. medialis mandibulae (as in *Diomedea*, *Morus*, and *Larus*). See **Arthr.** Annot. 32.

(85) **Proc. paroccipitalis** (Shufeldt, 1909) [**P. paroticus**] (NAA, 1979). Synonymy: Ala posttympanica; Proc. occipitalis lateralis (Davids, 1952); Proc. opisthoticus (Zusi, 1962). Proc. exoccipitalis (Richards and Bock, 1973; Johnson, 1984). The paraoccipital process forms the caudal wall of Cavum tympanicum and Meatus acusticus, and provides attachment for Lig. occipitomandibularis (**Arthr.** Annot. 37) and M. depressor mandibulae (Figs. 4.4, 3, 5). The paroccipital processes of Mesozoic birds are directed more or less laterally (Witmer, 1990, whereas those of most neornithine birds project ventrolaterally. These processes are especially prominent in *Gavia*, *Pelecanus*, *Anser*, and *Caprimulgus*.

The paroccipital process is a compound bone formed by three elements: (1) the opisthotic medially; (2) the metotic laterally (see Annot. 105); and (3) the exoccipital which forms a caudal sheath of variable lateral extent.

(86) Fossa parabasalis (Kesteven, 1925). Synonymy: Fossa jugularis. Depression on the exterior of the skull base, just medial to the ventral margin of the tympanic cavity. Canals for cranial nerves VII, IX, X, (X), the cerebral carotid and the external ophthalmic arteries open into the fossa (Fig. 4.5). Not present in all birds.

Crista fossae parabasalis. This crest forms the prominent raised medial margin of the parabasal fossa as in examples of anseriforms and phoenicopterids (flamingos).

- (87) Fonticulus occipitalis. Synonymy: Fonticulus occipitalis lateralis (Barkow, 1829); occipital fontanelle. Large paired openings lateral or dorsolateral to the Foramen magnum as in the anseriforms, some alcids, scolopacids, gruids and aramids, threskiornithids, and phoenicopterids (Beddard, 1898). These openings, like the orbital fonticuli (Annot. 29), are closed by fibrous membranes in intact specimens. Olson and Feduccia (1980) discuss the taxonomic significance of the fonticuli.
- (88) Os laterosphenoidale [Os pleurosphenoidale]). Synonymy: Os orbitosphenoidale (NAA, 1979); Os alisphenoidale. This bone forms much of the ventral part of the caudal wall of the orbit, and extends from the interorbital septum (where it is notched or perforated for cranial nerves II, III, IV, and VI) laterally to the temporal fossa and the postorbital process (see Annot. 30) and tympanic cavity; it forms part of the margin of Foramen n. maxillomandibularis (Lang, 1956). In addition to the large laterosphenoid ossification, there is often a separate late-appearing ossification, the orbitosphenoid, a dorsomedial element that fuses with its counterpart and the mesethmoid (Hogg, 1978; Goodrich, 1958; and Müller, 1963).
- (89) Area muscularis aspera. The orbital surface of Os laterosphenoidale of many large birds exhibits a roughened area for attachment of the jaw muscles; extremely pronounced in *Phoenicopterus* (Myol. Annot. 19).
- (90) Foramen n. maxillomandibularis. Synonymy: Foramen prooticum spurium (Müller, 1963). Single opening between the prootic and laterosphenoid bones in birds and other archosaurs that transmits the N. maxillomandibularis (Figs. 4.1, 3, 6). Apparently only a small proportion of birds possesses separate foramina for the maxillary and mandibular nerves, e.g., *Tyto, Buteo, Cathartes* (Barnikol, 1953), *Columba*, some *Gallus* (pers. obs.).

Canalis n. maxillomandibularis. In some forms (e.g., *Columba*) the maxillomandibular nerve traverses a relatively lengthy canal to exit the cranial cavity, whereas in others (e.g., *Corvus*) the opening is simply a hole in thin bone, a foramen.

**Foramen n. ophthalmici.** Synonymy: Foramen rami profundi V. This foramen is located between the laterosphenoid and the basisphenoid/parasphenoid/interorbital septum complex.

(91) Sella turcica; Dorsum sellae. Consult Jollie (1957) and Hogg (1978) for the development of the base of the skull in the chicken; Müller (1963) in *Rhea*. For the anatomy of the Sella turcica in different birds see Wingstrand (1951), Starck (1955), and Baumel (1968). The Sella houses the hypophysis. The rostral end of the cranial carotid canal is an opening in the rear wall of the Sella, the Dorsum sellae, which is completely osseous in some birds, fibrous in others (Baumel, 1968).

Foramen ophthalmicum internum. Conducts the internal ophthalmic vessels into the orbit from the Sella turcica.

- (92) (Canalis craniopharyngealis). This vestige of the embryonic Rathke's pouch may be seen in a median section of the skull base. The canal connects the Sella turcica to a median foramen on the Basis cranii exterma (Wingstrand, 1951; Müller, 1963; Witmer, 1990).
- (93) **Proc. basipterygoideus.** Synonymy: Proc. pterygoideus. A process on each side of Rostrum parasphenoidale (see Annot. 96) for articulation with the pterygoid bone. Occurs in ratites, procellariiforms, anseriforms, and galliforms; many charadriiforms and cathartid vultures; some caprimulgiforms and strigiforms; and trogoniforms (see Beddard, 1898). The homologies of the basipterygoids in extant birds, Cretaceous fossil birds, as well as non-avian archosaurs are discussed by Witmer and Martin (1987) and Olson and Feduccia (1980).
- (94) Tuba auditiva [pharyngotympanica] communis. In most birds, the common auditory tube or chamber is formed by the confluence of the right and left tubes (see Annot. 98 for exceptions). The common tube is located on the ventral aspect of the base of Rostrum parasphenoidale (Fig. 4.4) (Basis rostri parasphenoidalis), where it is well delineated (e.g., in *Anser*). The common tube opens into the Infundibulum tubarum, a chamber which itself passes through a median slit in the roof of the oropharynx. See Annot. 98; and Digest. Annot. 19. 22
- (95) Canalis orbitalis. This short canal opens on each side of the base of Rostrum parasphenoidale (Fig. 4.3); it is an offshoot of the cranial carotid canal that transmits the carotid branch, A. sphenoidea (Art. Annot. 18).
- (96) Lamina parasphenoidalis [L. basitemporalis]. Synonymy: basitemporal plate; Lamina basiparasphenoidalis (NAA, 1979). On the Basis cranii externa, this lamina is located rostral to the area where the ventral neck muscles insert on the basioccipital bone in front of the occipital condyle (Figs. 4.4, 5). The lamina assumes markedly different configurations in various birds (see Annot. 98), moreover, the lamina of certain birds exhibits processes (see below) that articulate with the medial process of the mandible, forming the so-called "mandibular brace" of Bock (1960). See Annot. 83 regarding Tuberculum basilare and Arthr. Annot. 32.

"Basitemporal" is inappropriate since the Lamina is not related to a "temporal" bone (see synonymy of Os squamosum) or region; it is retained as a bracketed alternative term because of its widespread use. "Lamina parasphenoidalis" is an abbreviated form that does not reflect its origin from the basiparasphenoid center of ossification.

OSTEOLOGIA 83

Rostrum parasphenoidale [R. sphnoidale]. Synonymy: sphenoidal rostrum (Shufeldt, 1909; Os rostroparasphenoidale). Attenuated prolongation of the Basis cranii externa to which the lower border of the interorbital septum is joined and with which the pterygoid and palatine bones articulate. See Figs. 4.6, 3, 5.

- (97) **Proc. lateralis parasphenoidalis; Proc. medialis parasphenoidalis.** Synonymy: medial and lateral basitemporal processes (Bock, 1960). Bock has described these processes of the parasphenoid lamina in detail for representatives of numerous avian taxa; Kozlova (1961) described them in alcids. See **Arthr.** Annot. 32 for particulars; see also Annot. 83 concerning Tuberculum basilare.
- (98) **Tuba auditiva [T. pharyngotympanica].** Synonymy: Eustachian tube. This paired osseous tube is lined with mucosa continuous with that of the tympanic cavity and the oropharynx. The tube parallels the usually oblique, rostrolateral border of Lamina parasphenoidalis (nearly transverse in *Phoenicopterus*). The tube extends from the tympanic cavity to the base of Rostrum parasphenoidale, and most often joins the opposite tube (Annot. 94). The rostral openings of the tubes in ratites and the Cretaceous hesperornithiforms (Witmer, 1990) are widely separated. In some birds (e.g., albatrosses, flamingos) the lateral osseous wall is lacking, completed by connective tissue (Saiff, 1974).
- (99) Canalis caroticus cranialis. Synonymy: parabasal canal (Müller, 1963, p. 76); vidian or basipterygoid canal (Goodrich, 1930); carotid canal (Shufeldt, 1909:283). Here it is qualified as the "cranial carotid canal" to distinguish it from the cervical carotid canal (Annot. 121). The cranial carotid canal extends from the parabasal fossa through the skull base medial to the auditory tube, then into the Sella turcica (Annot. 91); not only does it conduct the carotid vessels, but branches of cranial nerve VII. See Wingstrand (1951), Jollie (1957), Müller (1963: 76); and Baumel (1968) for particulars.
- (100) Cotyla quadratica squamosi. Cup-shaped surface of Os squamosum for articulation with the squamosal capitulum of the quadrate bone (see Fig. 4.3; Annot. 24, 103). In some birds (e.g., *Anas*) the laterosphenoid bone makes a substantial contribution to the squamosal coytyla.
- (101) Fossa acustica interna. Located on the lateral wall of the caudal fossa of the cranial cavity near the fossa for the auricle of the cerebellum, this depression contains the exit foramina for the branches of the vestibulocochlear and facial nerves. See Ossa cranii for more terms.
- (102) Os squamosum [Squamosum]. Synonymy: Os temporale.
- **Proc. zygomaticus** Synonymy: Proc. lateralis. This process of Os squamosum is situated ventral to the postorbital process and is strongly developed in some birds, e.g., ratites, gaviiforms, galliforms, piciforms, and passeriforms (Figs. 4.4, 5). The tip of Proc. zygomaticus is fused with the postorbital process in some birds (e.g., galliforms). See Annot. 30b.
- (103) **Proc. suprameaticus.** This process of Os squamosum forms part of the cotyla for the squamosal capitulum of the quadrate bone; and contributes to the upper boundary of the external acoustic meatus.
- (104) Fossa temporalis. Excavation on the lateral aspect of the cranium dorsal to the external acoustic meatus and caudal to the postorbital process (Figs. 4.1, 5). In some birds (e.g., larids and ardeids) the fossa is strongly etched into the cranium (mainly Os squamosum). In some birds its sharp border, Crista temporalis nearly

reaches the median plane dorsally (Fig. 4.5). A tough fibrous membrane invests the the jaw muscles occupying the fossa (Arthr. Annot. 31).

**Fossa subtemporalis.** In some birds (e.g., *Morus, Gallus, Haematopus, Ardea, Fulica*) this is a shallow concavity between the caudal margin of the temporal fossa and the lateral part of the transverse nuchal crest (Fig. 4.1; Annot. 17).

- (105) Ossa otica. In early postnatal development the three major otic elements (Os prooticum, Os epioticum, Os opisthoticum) coalesce with one another and adjacent surrounding bones. This complex contains the osseous labyrinth of the inner ear (Sandoval, 1963; Hogg, 1978). Os metoticum is an additional element lateral to the auditory capsule and forms much of the paroccipital process (see Toerien, 1971; and Annot. 85). The metotic cartilage is a neomorph of embryonic birds, and perhaps other archosaurs, that attaches to the basal plate, occipital arch, and auditory capsule (de Beer and Barrington, 1934). See Cavum tympanicum.
- (106) Crista vallecularis. Crest of bone on the inner aspect of the calvaria that marks the lateral border of the Eminentia sagittalis of the cerebrum (CNS Annot. 78). The crest occupies the longitudinal groove in the brain surface known as the Vallecula telencephali.
- (107) **Proc. lacrimalis [P. prefrontalis].** Lateral flared projection of the lateral margin of the frontal bone immediately caudal to its articulation with Os lacrimale; present, e.g., in *Larus, Morus, Cathartes*. See Annot. 110.
- (108) Os mesethemoidale. This bone forms much of the rostral osseous part of the interorbital septum and, in some birds, part of the nasal septum (Fig. 4.1); it also forms the Lamina dorsalis (see below).

Lamina dorsalis (Shufeldt, 1909). The transverse plate of Os mesethmoidale that lies perpendicular to the interorbital septum. The Lamina articulates with the ventral surface of the frontal bone; prior to fusion of these two elements it is seen readily in skulls of young chickens and ducks (e.g., Aythya). In rhynchokinetic skulls the Lamina dorsalis extends rostrad to the level of the craniofacial flexion zone. See Arthr. Sut. front. eth.

- (109) Os ectethmoidale. [Os lateroethmoidale]; Synonymy: Proc. or (Planum) antorbitalis(e); Aliethmoid and Pars plana (Shufeldt, 1909). Vertical, transverse plate of bone forming part of the rostral wall of the orbit, separating it from the nasal cavity (Figs. 4.1, 2). In certain birds the lacrimal is fused with the ectethmoid forming the lacrimal-ectethmoid complex (Cracraft, 1968), e.g., in some charadriiforms (*Larus, Haematopus*) (Johnson, 1984).
- (110) Os lacrimale [Os prefrontale]. Müller (1963) reviewed the controversy over the homology of the lacrimal/prefrontal bone. Witmer notes that most evidence points to the homology of the lacrimal bone of birds with that of the nonavian archosaurs: (1) the lacrimal always forms the caudal margin of the antorbital fenestra in all archosaurs, including birds; and (2) in the dinosaurs leading to birds the prefrontal is progressively reduced in size and the lacrimal is enlarged. See Cracraft (1968) for a comprehensive review on variation of the lacrimal bone. See Annot. 107, 111.
- (111) Facies articularis frontonasalis. This is the surface of Os lacrimale that articulates with both Os frontale and Os nasale; in some birds the lacrimal bone articulates medially with the ectethmoid and occasionally with Os jugale. See Arthr. Fig. 5.2.

- (112) Columna vertebralis. The total number of vertebrae as well as the number of regional vertebrae varies in different avian taxa. The total number ranges from 39-64 (pygostyle counted as one vertebra). Fewest vertebrae occur in passerine birds; most occur in the swans and ratites. Most interspecific variation in numbers occurs in the cervical series of vertebrae (see Annot. 129). Individual variation in number of vertebrae within taxa is common.
- (113) **Partes vertebrae.** See the review papers of Komárek (1970), and Zweers, et al. (1987) for a detailed treatment of the nomenclature of the features of avian vertebrae. Following Boas (1929) the names of the parts of a vertebra listed herein are based mainly on a hypothetical "typical" cervical vertebra of Boas' Segment II (see Annot. 129); however, the cervical vertebrae lack distinct, prominent transverse processes such as possessed by the thoracic, synsacral, and caudal vertebrae.

Dorsally each vertebra consists of an arch (Arcus vertebrae) and a ventral body (Corpus vertebrae). The opening enclosed by the two is the **Foramen vertebrale**. Collectively the entire series of the vertebral foramina produce the **Canalis vertebralis** that houses the spinal cord, its meninges, and the internal vertebral venous sinus (**Ven.** Annot. 46). The arch and body bear several processes which are lever arms for muscle attachment or articular surfaces connecting vertebrae (see Annot. 127a; and **Arthr.** Annot. 60).

Corpus vertebrae. The Corpus of typical cervical and thoracic vertebrae has expanded cranial and caudal ends, with a constricted midsection, the Concavitas lateralis. The Facies dorsalis corporis (the spinal cord surface of the vertebral body) is not flat, but forms a longitudinal sulcus.

Birds are the only vertebrate animals in which most of the intercorporal articular surfaces are heterocoelus or saddle-shaped (Fig. 4.8). Of infrequent occurence (e.g., penguins, auks, gulls) the vertebrae in the thoracic region are opisthocoelous, having concave caudal articular surfaces (Beddard, 1898). Martin (1987) notes that certain modern birds (e.g., charadriiforms) still retain amphicoelous vertebrae in the region "just anterior to the sacrum" (see **Arthr.** Annot. 60). The vertebrae of *Archaeopteryx* and *Ichthyornis* are amphicoelous, although hesperornithiformes are heterocoelous.

- (114) Fovea cranioventralis. Synonymy: Fovea anteroventralis (Boas, 1929). This pit (Fig. 4.8) accommodates the ventral lip of the articular surface of the body of the vertebra cranial to it upon ventral flexion of the neck.
- (115) Sulcus lateralis. The groove on the side of the body of a cervical vertebra (Facies lateralis) accommodating the ascending vertebral artery and vein.

**Tuberositas lig. collateralis.** Synonymy: Tuberositas lateralis corporis (Landolt and Zweers, 1985). The caudal end of each vertebral body exhibits on its lateral side a distinct marking for attachment of Lig. collaterale. See **Arthr.** Annot. 60.

- (116) Eminentia costolateralis. Synonymy: Proc. costolateralis (Boas, 1929); parapophysis; Tuberculum costarium (Komárek, 1979). The costolateral eminence is a small prominence of the lateral surface of the bodies of thoracic vertebrae that bears an articular facet, Fovea costalis, for the head of a rib, Capitulum costae. The fovea occurs on free thoracic vertebrae as well as those of the notarium and synsacrum. Replacement of Komárek's term "tuberculum costarium" avoids confusion with the tuberculum of a rib (see below, Annot. 117 and Arthr. Annot. 79.
- (117) Fovea costalis. Articular surface on the lateral end of a transverse process of a vertebra for the tubercle of the rib, **Tuberculum costae**. The costal fovea also occurs on the Eminentia costolateralis (see Annot. 116; and Arthr. 79).

- (118) **Proc. costalis.** Synonymy: Spina laminae ventralis (Komárek, 1970); Pleurapophysis. A rudimentary rib with its proximal end ankylosed to the Corpus and Proc. transversus of a cervical vertebra, its free caudal end forming an attenuated style or spine (Fig. 4.8). See Annot. 141b regarding the costal processes of sacral vertebrae.
- (119) Crista [Proc.] ventralis corporis. Synonymy: Hypapophysis; Proc. latus (Boas, 1929); Crista ventralis (Komárek, 1979). These median, ventral crests (processes) display interspecific variablity in shape and relative development. "Crest" is descriptively apt for laterally compressed, plate-like processes. The crests are present on the ventral side of the bodies of the cranial and caudal series of cervical vertebrae, but lacking in the intermediate series (see Annot. 129). The size of the ventral crest on the Atlas of different avian taxa is variable; that of the Axis is quite strong in many birds (see Boas, 1929).

Ventral crests are most strongly developed on the cranial series of thoracic vertebrae and the cervicothoracic transitional vertebrae of spheniscids, *Gavia*, alcids, and some anseriforms (Beddard, 1898). They are considered adaptations for powerful underwater use of the neck (Kuroda, 1954). See below Annot. 122; and **Arthr.** Annot. 72. The paired ventral longus colli muscles are attached to the crests (**Myol.** Annot. 56).

Fenestrae intercristales. Synonymy: Foramina intercristales (Komárek, 1979). The ventral crests of cranial thoracic vertebrae (including those of the Notarium) of some taxa are ankylosed to one another. The fenestrae are windows (openings) of variable size and shape where the ventral intercristal ligaments are incompletely ossified, in other words, incomplete fusion of adjacent ventral crests (see Annot. 140); Arthr. Annot. 63).

- (120) Alae cristae ventralis. Paired wing-like lateral extensions of the ventral edge of the Crista ventralis; seen in the cranial series of thoracic vertebrae of certain diving birds, e.g., *Gavia* (Kuroda, 1954); slightly developed in *Anas* (Landolt and Zweers, 1985) and alcids (Strauch, 1985). According to R. W. Storer (pers. comm.) the alae are best developed in the loons, next in some penguins (*Aptenodytes*), present in all alcids, and fairly well developed in the larger alcid species (*Alca, Uria, Pinguinus, Fratercula*) and the diving ducks (e.g., *Clangula*).
- (121) **Proc. caroticus.** Synonymy: Catapophysis (Beddard, 1898); Proc. sublateralis (Boas, 1929); Proc. hemalis (Komárek, 1970a). Paired incurved processes on the ventral side of vertebral bodies of the intermediate group of cervical vertebrae (Fig. 4.8B; Annot. 129). The carotid processes are not homologous with the haemal processes of the tail region of birds and other vertebrates (Annot. 144).

Each of the carotid processes forms the lateral wall of the Sulcus caroticus. Slips of M. longus colli ventralis (Myol. Annot. 56) are attached to the carotid processes.

In most birds the free ends of a pair of carotid processes are connected by a ligamentous bridge producing a short canal. In certain birds, e.g., *Pelecanus*, *Ardea*, *Dendrocopos*, the paired processes become ankylosed, forming a complete osseous canal (see below). Fused processes are thought to be convergent features in species having the ability to throw the head forward (Jenni, 1981). In *Dendrocopos* the fused carotid processes are equipped with a ventral median crest; Jenni (1981) considers that the crests are adaptations for drilling and drumming (see Annot. 119).

Canalis caroticus cervicalis. Synonymy: subvertebral canal. On the ventral surface of the intermediate segment of the cervical vertebral column the internal carotid arteries course in this osseo-fibrous canal that is partially formed by the carotid processes (Annot. 121a, 99). See Art. Annot. 15.

OSTEOLOGIA 87

- **Proc. postlateralis** (Zusi and Storer, 1969). Synonymy: Proc. inferolateralis (Boas, 1929); Proc. ventrolateralis (Landolt and Zweers, 1985). Seen in ventral view of cervical vertebrae, this process in grebes is a paired caudolateral projection of the vertebral body; for attachment of M. longus colli ventrales (Zusi and Storer, 1969). Present also in *Morus* and *Phoenicopterus*.
- (122) Crista ventrolateralis. Synonymy: Proc. inferolateralis (Boas, 1929); Proc. ventrolateralis (NAA, 1979). Ventrolaterally oriented, paired projections attached to the ventrolateral border of the body of certain thoracic vertebra; the ventrolateral crests flank the Crista ventralis on each side; present, e.g., in *Larus*, and the owls, *Strix*, *Nyctea*. See Fig. 4.8A.
- (123) **Proc. transversus vertebrae.** Synonymy: Diapophysis. Paired process that projects laterally from each side of the vertebral arch. During postnatal maturation of the skeleton the transverse processes of cervical vertebrae become fused with cervical ribs (see Annot. 134, 138). The transverse process of most of the cervical vertebrae is not a pronounced feature as in the thoracic, synsacral, and caudal regions (see Annot. 134, 135); it is often indistinguishable from the Ansa costotransversaria of cervical vertebrae in mature birds (Annot. 135).
- (124) Crista transverso-obliqua (Boas, 1929). The cervical vertebrae of long-necked birds best exhibit this crest on the dorsal surface of the vertebral arch. The crest of each side extends obliquely caudolaterally onto its caudal zygapophysis.
- (125) **Torus dorsalis.** Synonymy: Hyperapophysis (Beddard, 1898); Processus dorsalis (Boas, 1929). This boss of bone is found on the Crista transverso-obliqua of the dorsum of the caudal zygapophysis (Fig. 4.8D); for attachment of Mm. ascendentes (see Myol. Annot. 46-49). The location of the torus varies from the base to near the tip of the zygapophysis; it is strongly developed on cervical vertebrae of some forms (e.g., *Alca, Haliaëtus, Morus*). The use of "Torus" is preferable since it avoids confusion with the spinous [dorsal] process of the vertebral arch.
- (126) Area lig. elastici. Synonymy: Facies lig. elastici (Komárek, 1970). Interlaminar and interspinous elastic ligaments are usually attached cranially and caudally on the dorsal lamina of the vertebral arch at the base of Proc. spinosus [dorsalis]. Bony markings of the ligaments are variously developed as roughened tuberosities, facies, fossae, or foveae that are here designated generically as "areae". See Arthr. Annot. 63.
- (127a) Arcus vertebrae. Each end of the vertebral arch is attached to the dorsolateral border of its vertebral body; the arch forms the lateral wall (Lamina lateralis arcus) and the dorsal wall (Lamina dorsalis arcus) of the vertebral canal (see below). The transverse process is a lateral projection of the arch; its base marks the dividing line between lateral lamina and dorsal lamina, best exhibited in thoracic vertebrae since cervical vertebrae lack prominent transverse processes. The level of the zygapophyses indicates the dividing line between dorsal and lateral laminae in cervical vertebrae.

Lamina lateralis arcus [Pediculus arcus]. Lamina lateralis is a substitute name for the mammalian "Pediculus". In birds the lateral part of the vertebral arch is plate-like rather than a constricted stalk (pedicle) as in mammals; this lamina is especially expansive in the "long vertebrae" of birds (Komárek, 1970a). See Annot. 128a.

Lamina dorsalis arcus is the segment of the vertebral arch that extends from the base of the transverse process of one side to that of the opposite side; it bears the Proc. spinosus on the midline of its dorsal aspect. See Annot. 128 b, c.

- (127b) Lamina arcocostalis (Landolt and Zweers, 1985). This lamina is a thin shelf of bone continuous with the caudal margin of Ansa costotransversaria (Fig. 4.8D); the lamina extends lateroventrad from the vertebral arch often over the entire length of the spine of the costal process in anserids and anatids. In *Gallus* and *Phoenicopterus* the arcocostal lamina is less extensive, not reaching the tip of the costal process. The lamina may be considered as an extension of the Ansa which forms the dorsolateral wall of a craniocaudally-attenuated transverse foramen whereby the foramen becomes converted into a canal (see Annot. 127c).
- (127c) Lamina corporocostalis (new term; well illlustrated, but not named by Komárek, 1979:106). In conjunction with the occurrence of the arcocostal lamina, another lamina, the corporocostal lamina, extends medially from the costal spine to the vertebral body. It forms the ventral floor of the attenuated transverse foramen (canal) in the birds noted in the paragraph above. Both the arco- and corporocostal laminae are derived by ossification of intermuscular aponeuroses or fascial sheaths (see Myol.).
- (128a) Incisura caudalis/cranialis arcus. Synonymy: Incisura vertebralis (Komárek, 1979). These are notches in the cranial and caudal borders of the Lamina lateralis arcus. The cranial notch of one vertebra and the caudal notch of the vertebra in front of it together form the boundaries of a Foramen intervertebrale for passage of the spinal nerve and vessels into and out of the vertebral canal. The caudal incisure is generally markedly the deeper of the two (Annot. 143a).
- (128b) **Hiatus interarcualis.** The opening or gap between the dorsal laminae of the arches of adjacent (articulated) vertebrae as seen in dorsal view (see Zusi, 1962; Komárek, 1979). The hiatus is closed by the interlaminar elastic ligaments and membranes (see **Arthr.**). The hiatus is bounded by the Lacunae interzygapophysiales of the dorsal laminae of the arches of two adjoining vertebrae (see below), most pronounced in the cervical region (see below).
- (128c) Lacuna interzygapophysialis (new term). "Incisura arcualis" (Komárek, 1970), has been replaced to avoid confusion with the Incisurae cranialis/caudalis arcus (of Lamina lateralis) that are boundaries of the intervertebral foramina. The Lacuna is the V-shaped or often broadly U-shaped indentation of the Lamina dorsalis of the vertebral arch, located between the right and left zygapophyses (Fig. 4.8C) at each end of a vertebra (see paragraph above); two adjoining lacunae form the cranial and caudal boundaries of the Hiatus interarcualis.
- (129) Vertebrae cervicales. The greatest number of cervical vertebrae are found in ratites (ca. 20) and in swans (23-25); fewest in coraciiforms and passeriforms. Boas (1929) characterized the cervical vertebral column as consisting of three morphologically and functionally distinct sections: Segment I, the most cranial series, Segment II, the intermediate series, and Segment III, the most caudal series. Zusi (1962) noted that the joints within and between the segments permit I and III to be flexed ventrally, but Segment II can be flexed only dorsally; this arrangement allows the neck to be held in its characteristic S-shaped retracted position.

In birds generally, most of the cervical vertebrae are invaded by diverticula of the cervical system of air sacs (see below); however Boas (1929) reported that all of the cervical vertebrae were apneumatic in the following diving birds: *Colymbus (Gavia)*, *Plotus (Anhinga)*, *Podiceps, Alca*, and *Spheniscus*.

- (130) Atlas; Axis. These are the specialized first and second cervical vertebrae, respectively. The Axis is also known as Epistropheus. The Atlas is apneumatic in all birds examined, the Axis being apneumatic in many birds (Boas, 1929).
- (131) **Fossa condyloidea.** Synonymy: ventral semi-ring (Boas, 1929). Cupped-shaped or semicircular concave surface of the Atlas for articulation with the occipital condyle of the base of the skull.

**Incisura fossae; Foramen fossae.** The condyloid fossa on the cranial aspect of the Atlas may be perforated (Foramen fossae) or have an open dorsal notch (Incisura fossae) in which the apex of the dens rides. See **Arthr.** Fibrocartilago atlantis.

(132) **Zygapophysis caudalis [Proc. articularis caudalis].** Synonymy: postzygapophysis. **Zygapophysis cranialis [Proc. articularis cranialis.** Synonymy: prezygapophysis. The zygapophysis is one of four processes of each vertebra that project from the vertebral arch or the base of the transverse process. The pair of cranial zygapophyses of one vertebra and the pair of caudal zygapophyses of the vertebra in front form freely moveable synovial joints on each side. The free caudal vertebrae of most birds lack zygapophyses; exception: the albatross *Diomedea* (see Annot. 128c; **Arthr.** Annot. 65).

Caudal zygapophyses are present on the Atlas of most birds studied by Boas (1929), thus paired atlantoaxial zygapophysial articulations exist. See Arthr. Annot. 68.

- (133) **Proc. costalis atlantis.** A rudimentary rib is not evident on the Atlas of most birds (Boas, 1929); therefore the Atlas of relatively few birds exhibits transverse foramina (see Annot. 134, 135). Boas (1929) depicted well developed, complete transverse foramina of the Atlas in *Rhea* and *Cygnus*, incomplete ones in other forms. See Annot. 118, 123, 134, 138.
- (134a) Foramen transversarium. Synonymy: Foramen costotransversarium. The transverse foramen characterizes most of the cervical vertebrae of birds (for exception, see Annot. 133). Even though the avian transverse foramina may have considerable length and might be referred to as canals (Annot. 127b, c), the term "Foramen transversarium" is retained for consistency with the mammalian nomenclatures. See below, Annot. 135 for the fetal derivation of the foramen.
- (134b) Canalis vertebrarterialis (Boas, 1929). On each side of the cervical vertebral column the series of transverse foramina forms this canal that extends the length of the cervical column and conducts the ascending vertebral artery and companion vein(s) (Art. Annot. 11).

The cervical transverse foramen is the equivalent of the opening formed in the angle between the tuberculum and capitulum of each rib and the transverse process of a thoracic vertebra (see Fig. 4.8A, B; Annot. 148). Thus the series of thoracic costovertebral openings is morphologically equivalent to the cervical vertebrarterial canal; moreover, it carries the descending vertebral vessels (Art. Annot. 11) as well as loops of the paravertebral autonomic nerve trunk.

(135) Ansa costotransversaria (Boas, 1929). Synonymy: Lamina ventralis (Komárek, 1970). The Ansa (L. loop) is formed by postnatal ankylosis of the rudimentary cervical rib (Costa cervicalis) with the transverse process and vertebral body of a vertebra. Thus the ansa represents part of the external wall of a transverse foramen, and the body (and lateral lamina of the vertebral arch) form the medial wall (Fig. 4.8B) The ansa demonstrates surface features: a knob-like **Tuberculum ansae** (Knopffortsatz, Boas, 1929) and a series of linear **Cristae laterales** (Langskanten,

- Boas, 1929). These features mark the attachment of tendons of lateral cervical musculature (Myol. Annot. 53, 54).
- (136a) **Incisura caudalis arcus.** The caudal notch of the arch of the Atlas forms the rostral boundary of the atlanto-axial intervertebral foramen for the second cervical spinal nerve (see Annot. 128a).
- (136b) **Dens axis.** Synonymy: Proc. odontoideus. The joints between the avian Axis and Atlas differ from those of mammals: in addition to the articulation of the Dens with the Atlas, an Artc. intercorporea and paired zygapophysial articulations are present. The atlas and axis are ankylosed in adult hornbills (Bucerotidae) (Kemp, 1985).
- (137) **Proc. spinosus [P. dorsalis] axis.** Although commonly present, the spinous process is lacking from the Axis of some forms (e.g., the scolapacid, *Gallinago delicata*).
- (138) **Proc. costalis axis.** The rudiment of a rib is present on the Axis of many, but not all, birds that have been studied; occasionally weak projecting tips of the costal processes are found (Boas, 1929). When present, Proc. costalis forms an arch and completes the transverse foramen. See Annot. 133, 135.
- (139) **Vertebrae thoracicae.** Synonymy: Vertebrae dorsales. The first thoracic vertebra is defined as the cranialmost vertebra with a complete rib (i.e., having vertebral and sternal segments) that articulates directly or indirectly with the sternum (see Annot. 147). The vertebrae at the root of the neck that bear moveable ribs, not reaching the sternum, have been called "Vertebrae cervicodorsales" (Newton, 1896; Zusi, 1962); these are transitional in configuration between cervical and thoracic vertebrae. See Annot. 141a; and **Arthr.** Fig. 5.10).
- (140a) **Notarium.** Synonymy: Os dorsale. The Notarium (Gk. noton, back) is a unit of several (2-6) (Barkow, 1856; Storer, 1982) thoracic vertebrae that are coalesced rather completely in adults, but not fused with the synsacrum (see **Arthr.** for significance of the joint between the notarium and synsacrum). The Notarium (Fig. 4.9) is characteristically present in at least 17 families of birds, occasional in several others: tinamous, *Pelecanus*, threskiornithids (ibis and spoonbills), galliforms, columbiforms, as well as all podicipediforms and most falconids (Storer, 1982). The Mesozoic birds *Archaeopteryx* and *Gobipteryx* possess several "fused anterior dorsal (thoracic) vertebrae" (Martin, 1987).

In certain birds (e.g., larids, rhynchopids, gruids, Branta and Anser) consolidation of the thoracic vertebral column is achieved by ossification or calcification of the epaxial muscle tendons that interdigitate and may fuse to one another and to the transverse and spinous processes of adjacent vertebrae. This sort of consolidation as well as the rather complete synostotic coalescence (above) are both found in some groups (e.g., grebes and cranes; R. W. Storer, pers. comm.). See Arthr. Annot. 71.

- (140b) Canalis notarii. The segment of the vertebral canal that traverses the Notarium (see Annot. 144). Crista spinosa [dorsalis] notarii. Synonymy: Crista dorsalis notarii (NAA, 1979). Crest formed by the ankylosed spinus processes.
- (141a) **Synsacrum.** Synonymy: Os lumbosacrale; Os pelvicum. A rigid unit consisting of ankylosed vertebrae in mature birds (Figs. 4.9, 11). The preacetabular part of the Synsacrum incorporates one or several thoracic vertebrae and the "lumbar series" (synsacral segment II of Boas, 1933) that are attached to the preacetabular ilium; the proper sacral vertebrae are opposite the acetabulum (see below); several more of the proximal caudal vertebrae caudales (urocaudals, Parker, 1888) comprise

the postacetabular series. Interspecific variation exists in the number of vertebrae forming the synsacrum. See Barkow (1856), Boas, (1933), and van Oort (1905) for detailed comparative studies of the synsacrum in different taxa.

The synsacrum is synostosed on each side with the Os coxae, the three elements forming the bony pelvis; the pelvis and uropygium (Topog. Annot. 36) together form the dorsal abdominal wall (Baumel, 1988). See Arthr. Artcc. synsacri.

- (141b) **Vertebrae sacrales.** One or two "true" sacral vertebrae (Segment III vertebrae of Boas, 1933) are identified by their conspicuous costal processes, lacking in the vertebrae to the front and rear of them. In some birds the costal processes of the sacral vertebra(e) extend laterally to the hip bone near the acetabulum, thus the name, **Vertebra acetetabularis** (Du Toit, 1912-13; Komárek, 1979; Radu, 1975) which is well exemplified in the pelvis of *Larus*, *Strix*, *Gallinula*. See Fig. 4.9.
- (141c) Lamina transversa notarii/synsacri. During skeletal maturation the transverse processes of the notarial and synsacral vertebrae become coalesced, producing on each side a continuous transverse lamina. In mature birds the lateral border of each Lamina of the synsacrum becomes firmly ankylosed with the hip bone (Os coxae) of its side. In instances where the fusion between the transverse processes is incomplete, the persistent windows are known as Fenestrae intertransversariae. The fenestrae as well as smaller foramina are traversed by nerves and vessels. See Figs. 4.9, 11.
- (142a) **Corpus notarii/synsacri.** This is the unit of consolidated vertebral bodies (corpora) that form the median, ventral column of bone of the notarium and that of the synsacrum.
- (142b) **Facies visceralis synsacri.** Synonymy: Facies abdominalis. See Barkow (1856) and Boas (1933) for features of this ventral (internal) surface of the synsacrum which is in contact with abdominal organs (viscera).
- (142c) Crista spinosa [dorsalis] synsacri. The crest formed by the ankylosed spinous processes of the synsacral vertebrae.
- (143a) Foramina intervertebralia. Dual intervertebral foramina may exist in some birds over part of the length of the synsacrum, especially immature ones; these are separate openings for the dorsal and ventral roots of the spinal nerve, the roots uniting external to the vertebral canal (e.g., Struthio, Rhea, Somateria, Porphyrio, Alca, Corvus) (Boas, 1933).
- (143b) Canalis synsacri [vertebralis]. See Annot. 140b. The part of the vertebral canal of the synsacrum. The canal is enlarged along the middle of its length; the enlarged chamber contains the lumbosacral intumescence of the spinal cord which is known as the Cranium inferior (or ischiadicus) by older authors (Barkow, 1856).
- (144) **Proc. haemalis.** Synonymy: intercentrum; chevron bones. Found only on the rear three or so caudal vertebrae on their ventral surfaces, including the pygostyle. Prominent in large birds (e.g., albatross, penguin, heron, pelican) and in some smaller forms (e.g., *Crotophaga*, *Dendrocopos*); inconspicuous and vestigial, e.g., in the pigeon and chicken. The haemal processes are usually ankylosed to the cranial ends of the vertebral bodies, projecting ventrocranially and underlying the intervertebral discs and rear of the vertebra ahead. In *Crotophaga* the processes are fused at their bases with the vertebral body, and also articulate firmly with the body of the vertebra cranial to it.

In some mature birds certain of the haemal processes occur as distinct nodular elements attached by ligaments to the discs and/or to the vertebral bodies (*Diomedea* sp.). The haemal processes are persistent intercentra (Piiper, 1928), an element of embryonic vertebrae; absent in other vertebral regions except the atlas and axis. Archosaurs closest to birds lack intercentra in the vertebral column except in the tail and C1, C2. See Annot. 121 for comparison with cervical carotid processes.

- (145) **Pygostylus.** Synonymy: Urostylus; Coccyx. Compound bone formed by postnatal ankylosis of 3-6, commonly 5-6, of the terminal free caudal vertebrae. The fetal development of the pygostyle is reviewed by Steiner (1938) and van Oort (1905). Holmgren (1955) contended that the Ostrich pygostyle is not homologous with that of carinate birds, a claim refuted by de Beer (1956). See Baumel (1988) for the structures attached to the pygostyle, its relationships, and remarks on its evolutionary significance.
- (146) Basis pygostyli. Derived from fusion of the several vertebral bodies incorporated into the pygostyle. Lamina pygostyli. Blade-like portion of pygostyle derived from vertebral spinous processes and arches. Rudimentary transverse processes are present on the pygostyle of certain piciforms (Burt, 1930: 478). Discus pygostyli: In woodpeckers (piciforms) especially, and other scansorial birds, the pygostyle is distinguished by a strong transverse, shield-like disc on its caudal margin (Burt, 1930), the disc serving as an expanded area of attachment for the extraordinarily well developed muscles that depress the tail.
- (147) Costae. The freely moveable ribs of different avian taxa vary in number. Ribs of the cervicothoracic transitional region of the vertebral column are short "floating ribs" that fail to reach the sternum (Costae incompletae). The so-called "true ribs" (Costae completae verae) consist of vertebral and sternal elements; the sternal segments articulate with Margo costalis sterni (see Annot. 157). In some instances the sternal part of one or more of the ribs do not articulate directly with the sternum (Costae completae spuriae), but with the sternal parts of true complete ribs cranial to them. Caudal to the true ribs a variable number of floating vertebral ribs may occur; the last of the series of true ribs often articulates with the ventral side of the preacetabular ilium in various birds (Arthr. Annot. 80).
- (148) **Proc. uncinatus.** Synonymy: Appendix epipleuralis (Shufeldt, 1890). Dorso-caudally oriented process attached to the caudal border of the vertebral ribs. Screamers (Anhimidae) and megapodids lack uncinate processes (R. W. Storer, pers. comm.). See **Myol.** Annot. 59.

Incisura capitulotubercularis. The neck region (collum) of a vertebral rib exhibits this notch between its capitulum and tubercle. The interval between the neck and the transverse process of the vertebral rib corresponds to the transverse foramen of the cervical vertebrae. See Fig. 4.9; Annot. 134.

Sulcus pulmonalis. The elongated sulcus between the dorsal parts of adjacent ribs. The sulcus is occupied by lung tissue, the Torus intercostalis (Resp. Annot. 49); each Torus is in contact with the ribs cranial and caudal to it, as well as with the intercostal muscles and parietal pleura.

(149) **Sternum.** See Fürbringer (1888) for a detailed synonymy for the parts of the avian sternum. He distinguished a cranial part, the "Costosternum", to which the ribs are attached, and a caudal part, the "Xiphosternum", also referred to as Metasternum.

Corpus sterni. Synonymy: Tabula sterni.

- (150) **Proc. craniolateralis sterni.** Synonymy: Proc. sternocoracoideus; Proc. precostalis.
- **Proc. caudolateralis sterni.** Synonymy: Proc. posterior lateralis sterni or Proc. xiphoideus lateralis sterni (Fürbringer, 1888). Fürbringer noted that some galliforms possess this distinctive, extraordinarily elongated, lateral process of the sternum that branches into strong lateral and medial trabeculae. See Annot. 151.
- (151) **Incisurae et fenestrae sterni.** The caudal part of the sternum is notched (incisurae) or perforated (fenestrae) in a variety of ways in different avian taxa (Fig. 4.11). Bars of bone between incisurae/fenestrae are referred to as "trabeculae"; the openings in the sternum are closed by fibrous membranes. See Fürbringer (1888) for illustrations of the various patterns.
- (152) Facies muscularis sterni. Synonymy: Facies ventralis or externa. The surface of Corpus sterni lateral to the base of the carina to which the pectoralis and supracoracoid muscles are attached.

Facies visceralis sterni. Synonymy: Facies dorsalis or interna. Inner surface of sternum related to heart and liver.

- (153) **Linea intermuscularis.** M. supracoracoideus is attached to the ventral surface of the Corpus sterni and to the adjacent lateral aspect of the Carina sterni (**Myol.** Annot. 76). The intermuscular lines on each surface mark the bony attachment of the dense fascia that invests the muscle and separates it from M. pectoralis.
- (154) **Planum postcarinale.** Synonym: Planum postpectorale (Fürbringer, 1902). The Carina sterni does not reach the caudal margin of the sternum in some forms (e.g., pelecaniforms). The planum is therefore the continuous bilateral flat surface of Facies muscularis of the sternum caudal to the carina.
- (155) **Pila costalis.** The column of bone that reinforces the costal margin of the sternum, prolonged onto the Trabecula lateralis in some birds (Fig. 4.11).
- (156) Sulcus articularis coracoideus. Synonymy: coracoid groove or depression. Located at the cranial margin of the Corpus sterni, this is the surface for articulation with the coracoid. The sulcus is a narrow, attenuated, curved groove on each side of the sternum; it extends from the base of the craniolateral process medially to the side of Rostrum sterni or onto its dorsal surface (e.g., Larus, Branta). In some birds the Sulcus is directed caudolaterally from the midline Rostrum; however in others it is oriented nearly transversely (e.g., Gallus, Coccyzus, Dendrocopos, Progne). In several groups the coracoidal sulci overlap in the median plane (see Arthr. Annot. 89, 90). Commonly the length of the Sulcus is nearly perpendicular to the median plane, but its lateral end is depressed or elevated in some birds. See Fig. 4.11.
- (157) The Margo costalis sterni, when viewed from the side, exhibits a series of notches (Incisurae costales) separated from one another by partitions, each known as a **Proc. articularis sternocostalis** (Komárek, 1979). Between two adjacent processes is a small compartment called the **Loculus costalis** (new term); the head of the sternal rib partly occupies a locule, and articulates with the caudal surface of a sternocostal articular process, **Facies articularis costalis**. In some avian taxa dual articular facets exist for the corresponding facets on the dual-headed sternal ribs (see **Arthr.** Annot. 83).

Margo caudalis sterni. The caudal margin of the sternum is highly variable in shape; it may be squared, rounded, intact, or notched. See Fürbringer (1888) for characteristic shapes of sterna of numerous taxa.

- (158) **Pila coracoidea.** The transversely oriented, curved pillar of bone along the cranial margin of the Corpus sterni (Fig. 4.11) that strengthens the articular sulcus for Os coracoideum.
- (159) Rostrum sterni. Synonymy: Manubrium sterni; Spina intercoracoidea sterni (see Fürbringer, 1888, for complete synonymy and descriptions and summary of variation of the Rostrum). Serves as an attachment of parts of Membrana sternocoracoclavicularis (Arthr. Annot. 86). The spines of the Rostrum are designated Spina externa and Spina interna because of their continuity with the external and internal labra of the Sulcus articularis coracoideus. Spina externa is usually present; in some psittacines, picids, and most passerines, including the Menurae, the external spine is forked, its processes are called the Alae spinae externae. The Spina interna is of much less frequent occurrence (occurring in, e.g., galliforms, cuculids, meropids, upupids, and bucerotids), and is frequently represented by a tubercle(s) between the two Labra interna of the coracoidal articular sulcus. The external and internal spines may coalesce producing the Spina communis (see Fig. 4.11; Annot. 160).
- (160) Foramen rostri. Synonymy: Foramen interspinale. The foramen is an opening at the base of the ankylosed external and internal spines of the sternal rostrum (e.g., galliform and coraciiform birds). In some birds the Septum interarticulare connects the external and internal spines, and separates the right and left coracoidal sulci in the midline by bone or membrane; in birds having side-to-side or overlapping contact between the two coracoids the Spatium intercoracoidale is open (Arthr. Annot. 90).
- (161) Carina sterni. Synonymy: Crista sterni (Fürbringer, 1888); (Carina, L. keel). The vertical plate of bone attached to the median line of the Corpus sterni found in most birds (thus "carinate birds"). In the psittaciform, *Strigops*, the carina is lacking. Ratites generally lack a distinct, well developed carina, e.g., *Struthio*. The sternum of *Apteryx*, *Casuarius*, and *Rhea* exhibits a slight crest (Beddard, 1898).

Crista lateralis carinae. A paired crest on each side of the dorsal, thick part of the cranial margin of the carina (e.g., *Gallus*, *Cathartes*). The **Sulcus carinae** is the shallow groove between the two lateral crests; the Sulcus is an elongated triangle in *Gallus*. The **Pila carinae** (Fig. 4.11) is the thick reinforcing pillar of bone of the cranial margin of the carina.

(162) Clavicula [Furcula]. (Fig. 4.10. (Furcula, L. fork). Furcula refers to the united, paired clavicles. When not ankylosed at their ventral ends, the clavicles may be joined by cartilage or fibrous tissue (many parrots, owls, *Buceros, Alcedo;* Newton, 1896). Glenny and Friedmann (1954) discussed the reduction or suppression of the clavicle in various birds (e.g., Australian parrots). According to Austin (1961) the scrub bird *Atrichornis* is the only passerine with noncoalesced clavicles (see Rich, et al., 1985). The clavicles are absent in all ratites except for the emu (Elzanowski, 1989).

Fürbringer (1888) describes subcoracoid, acrocoracoid, and supracoracoid segments of the clavicle, the last extending to the scapula, and presented a summary of the form of the clavicle. See Stegmann (1964) for the functional implications of the configuration of the clavicle. Jenkins, et al. (1988) have observed cineradiographically movements of the clavicle during flight. See **Arthr.** Annot. 85.

(163) Apophysis furculae [Hypocleideum]. Synonymy: Lamina interclavicularis. In most birds the ventral part of the Furcula is drawn out into a median projecting blade, rod, or knob that is attached to the Apex carinae directly or indirectly (see

- Arthr. Annot. 85). Fürbringer (1888) describes three varieties of the **Proc. inter-**clavicularis, one of which projects proximally into the angle formed by the junction of the two furcular rami.
- (164) Extremitas omalis claviculae [Epicleidium]. Synonymy: Extremitas scapularis. (Omos, Gk. shoulder). This is the dorsal expanded end of each clavicle at the shoulder (see below, Annot. 165; and Topog. Annot. 32).
- (165) Proc. acromialis claviculae; Proc. acrocoracoideus claviculae. Clavicles of certain birds possess distinct processes for articulation with the cranial tip of the scapula (Proc. acromialis) and the upper, pointed end of the coracoid bone (Proc. acrocoracoideus). In diomedeids, ciconiiforms, and falconiforms only the caudally directed Proc. acromialis of the clavicle is well developed. Both processes are present, e.g., in Alcedo, Merops, Ramphastos, and Sturnus (Fürbringer, 1888).
- (166) Scapula. See Fürbringer (1888) for additional terms and comparative descriptions of the avian scapula not listed here. His illustrations depict the range of shapes of avian scapulae. Facies lateralis. Synonymy: Facies externa or dorsolateralis of the scapula. Facies medialis [costalis]. Synonymy: Facies interna or ventromedialis of the scapula.

**Acromion.** (Omion, Gk. small shoulder). The pointed cranial end of the scapula, near its glenoid process. In *Menura* and *Atrichornis* (passerine suborder Menurae) the acromion is bifurcate, having two blunt knob-like processes (Rich, et al., 1985).

Crista lig. acrocoracoacromiali. In some birds this short crest on the dorsum of the acromion is continuous with the dorsal margin of the scapula; for attachment of the acrocoracoacromiale ligament (Fig. 4.10; Arthr. Annot. 95). The crest is pronounced, e.g., in *Cathartes, Ardea, Branta, Phoenicopterus*, and *Columba*.

- (167a) Facies articularis humeralis. Synonymy: Pars scapulae fossae glenoidalis; Pars coracoidea fossae glenoidalis (Fürbringer, 1888). The humeral articular facet of the glenoid process of the scapula adjoins the humeral articular facet of the glenoid process of the coracoid, the two surfaces together forming the Cavitas glenoidalis for articulation with the head of the humerus. The coracoid generally contributes much the larger area to the humeral articular surface (e.g., Strix varia). The slightly concave articular facets of both bones are invested with the thick elastic cartilage (J. Baumel and R. Brown, pers. obs.), Lig. coracoscapulare interosseum, with which the humerus actually articulates; the elevated margins (labra) of this ligament deepen the shallow glenoid cavity (Arthr. Annot. 93).
- (167b) **Proc. glenoidalis scapulae.** Set off somewhat perpendicular to the body of the scapula, the glenoid process of the scapula bears the surface for articulation with the head of the humerus; the glenoid process in certain birds also articulates directly with the procoracoid process of the coracoid. See Fig. 4.10.

**Proc. glenoidalis coracoidei.** This is the low, lateral offset of the shaft of the coracoid bone that bears the humeral articular surface, usually continuous with the base of the procoracoid process.

(168) Facies articularis coracoidea. Linear articular surface on the cranial extremity of the scapula extending between the acromion and the glenoid process; forms a joint with the procoracoid and adjacent glenoid process of the coracoid bone.

**Tuberculum coracoideum.** Some birds (e.g., Ardea, Larus, Branta) possess this convex spherical or ellipsoidal boss of the cranial surface of the Proc. glenoidalis of the scapula; the Tuberculum fits into a cupped surface on the coracoid together forming the coracoscapular joint (see Fig. 4.10; and below, Annot. 173b). The

coracoscapular joint surfaces in most birds are less elaborate than those just described (see above paragraph).

- (169) **Tuberculum m. scapulotricipitis.** In some birds this distinct tubercle for attachment of the scapulotriceps muscle is located on the ventral border of the scapula directly caudal to its Proc. glenoidalis (Fig. 4.10).
- (170) Corpus scapulae. The neck (Collum scapulae) and cranial half of the body (Corpus) of the scapula is generally a rounded cylinder in cross section; its caudal half is flattened and usually blade-like, straight, or curved. The caudal half of the atypical scapula of penguins (spheniscids) is a wide paddle-shape.
- (171a) Extremitas omalis coracoidei. The shoulder or dorsal end of the coracoid bone (Omos, Gk. shoulder).

**Proc. acrocoracoideus.** (Acro-, Gk. combining form, an extremity or highest point of a structure). This is the dorsal end of the coracoid bone that projects past its glenoid process.

- (171b) **Tuberculum brachiale.** Synonymy: Tuber brachialis (Ballmann, 1969a); Tuberositas brachialis (Lambrecht, 1933; Howard, 1929); Tuberositas humeralis. This term refers to the low projection on the medial side of the acrocoracoid process of the coracoid of some forms which is directed ventrally, overhanging the supracoracoid sulcus to some degree. In the birds in which it exists, the tuberculum is the attachment of the acrocoraco-acromial ligament which forms part of the medial wall of the triosseal canal (Annot. 177) in some birds. Although "Tuberculum brachialis" (sic) is used frequently in avian paleontology, it is not descriptively apt, as the tubercle has no direct relationship to the brachium or humerus.
- (172) **Proc. procoracoideus** (Sabatier, 1880). Synonymy: see Fürbringer (1888: 41). This is a projection of the medial border of the coracoid, its upper edge roughly perpendicular to the coracoid shaft, its medial border gradually merging with the shaft ventrally. In some birds its tip is curved abruptly dorsally forming the medial boundary of the smoothly curved Sulcus supracoracoideus. See **Arthr.** Annot. 87, 97.

Sulcus supracoracoideus (Ballmann, 1969a). Groove for the tendon of M. supracoracoideus on the base of Proc. procoracoideus and adjacent part of the upper shaft of the coracoid bone that forms a pulley for the tendon of M. supracoracoideus (Fig. 4.10).

- (173a) Facies articularis scapularis. In some birds this narrow, linear facet is on the internal surface of the upper edge of the procoracoid process, and is prolonged laterally onto the base of Proc. glenoidalis (Annot. 168); the continuous surface makes contact with a corresponding surface on the scapula, producing a simple coracoscapular joint (Arthr. Annot. 93). Other birds possess a more complicated joint (see Annot. 173b).
- (173b) Cotyla scapularis. Synonymy: Facies scapularis (Ballmann, 1969a). Occurring in some birds (e.g., Ardea, Larus, Branta), this is the spherical or ellipsoidal concavity on the glenoid process/procoracoid process of Os coracoideum adjacent to its glenoid facet (Fig. 4.10). The cotyla receives the corresponding Tuberculum coracoideum of the scapula, the two forming the coracoscapular joint (Arthr. Annot. 93). In most birds the joint surfaces of the coracoscapular joint are less elaborate than those described here (see Annot. 168 and 173a). The Cretaceous birds Ambiortus and Apatornis exhibit the Cotyla/Tuberculum type of coracoscapular joint that Martin (1987) considers primitive for modern birds.

- (174) Linea intermuscularis ventralis (Lambrecht, 1933). Synonymy: anterior intermuscular line (Fisher, 1945). These intermuscular lines on the coracoid are illustrated by Ballmann (1969a). See Myol. Annot. 74, 76.
- (175a) Crista articularis sternalis. This surface of the coracoid for articulation with the sternum is divided into ventral and dorsal facets (Facies externa and F. interna). In some birds (e.g., Ardea, Columba, Corvus) they are not continuous with one another. The margins of each of the facets are sharply defined where they meet the superficial and deep surfaces of the coracoid. The external and internal articular facets are set off from one another by a slightly curved ridge (Crista intermedia) that articulates with a corresponding groove at the bottom of the coracoidal articular sulcus of the sternum. In some birds the sternal articular facets of the coracoid are subdivided into medial and lateral parts by a non-articular segment. See Arthr. Annot. 89, 90.
- (175b) Facies articularis intercoracoidea. Articular facet located on the medial angle of the sternal end of the coracoid in birds whose coracoids articulate with one another in the median plane. See Annot. 160; Arthr. Annot. 90.
- (176) **Proc. lateralis.** Synonymy: Proc. lateralis posterior; Proc. externus; Proc. sternocoracoideus. In many birds this process of the sternal end of the coracoid is drawn out into a point, the **Angulus lateralis.** The upper border of the lateral process is known as the **Margo supra-angularis** (E. N. Kurochkin, pers. comm.).
- (177) Canalis triosseus. Synonymy: Foramen triosseum; Canalis supracoracoideus (Fürbringer, 1888). The canal transmits, and serves as a pulley for, the tendon of M. supracoracoideus. In some birds the canal is produced by only two bones, the procoracoid process of the coracoid and the scapula, with no contribution from the clavicle; the canal may be formed completely by the coracoid alone in birds having an ossified bridge connecting the acrocoracoid and procoracoid processes (e.g., Musophagidae, Meropidae, Upupidae, Bucerotidae, Columba livia, and trochilids). See Arthr. Annot. 87, 95, 171.
- (178) Ossa alae [Ossa membri thoracici]. Bones of the wing or thoracic limb. Terms of direction of the wing bones are based on the defined anatomical position of the avian wing, i.e., extended and abducted (see Gen. Intro.). In this anatomical position the extensor (dorsal) aspect of the humerus faces caudally and the flexor (ventral or palmar) aspect faces cranially. The long axis of the ellipsoidal articular surface of the Caput humeri is nearly vertical with the wing outstretched (Fürbringer, 1888); the epicondyles at the distal end of the humerus are situated dorsally and ventrally.

Of special interest to paleontologists is the work of Ballmann (1969a) which contains a comprehensive terminology for all the skeletal elements of the wing, including attachments of ligaments and muscles. See also Komárek (1979).

**Humerus.** Consult Fürbringer (1888) for a synonomy of terms on parts of the humerus. **Facies caudalis** of the humerus is also known as its anconal surface; **Facies cranialis** is also known as its volar or palmar surface.

- (179) Caput humeri. Synonymy: Caput articulare humeri (Fürbringer, 1888). The head of the proximal end of the humerus, specifically its articular surface.
- (180) Incisura capitis humeri. Synonymy: capital groove (Howard, 1929); Incisura collaris. The pronounced notch of the head of the humerus, located between the articular surface of the Caput humeri and Tuberculum ventrale (Fig. 4.12A). With the

wing folded against the trunk, the incisure accommodates the scapular labrum of Cavitas glenoidalis.

Crista incisurae capitis. The crest or ridge of bone that connects the head of the humerus with the ventral tubercle; the crest separates the proximal end of the incisure of the head of the humerus from the Sulcus transversus (see Annot. 185).

(181) **Planum intertuberculare** (Fürbringer, 1888). Synonymy: Planum [Facies] bicipitale. The intertubercular plane refers to much of the cranial surface of the expanded proximal end of the humerus distal to its Caput, i.e., the area between the dorsal and ventral tubercles and part of the surface between the bicipital and deltopectoral crests. Features included in this plane are: Sulcus transversus, Impressio coracobrachialis, and Intumescentia humeri. The Planum in most birds is covered by the tendon and aponeurosis of origin of M. biceps brachii.

Sulcus [Canalis] n. coracobrachialis. In many different birds this is a shallow transverse groove at the distal margin of the intertubercular plane of the humerus (see above) which conducts N. coracobrachialis from the distal end of the bicipital crest to the ventral border of the Impressio coracobrachialis (Fig. 4.12).

Characteristic of charadriiforms (Ballmann, 1979), the nerve is transmitted by an osseous canal deep to the distal part of the surface of the Intumescentia humeri.

- (182) **Tuberculum dorsale.** Synonymy: Tuberculum minus or laterale; Tuberculum m. supracoracoidei. Located at the proximal end of the deltopectoral crest, for insertion of the principal part of the tendon of M. supracoracoideus. See Fig. 4.12; Annot. 183.
- (183) Crista m. supracoracoidei (Fürbringer, 1888). This crest is an accessory insertion of the tendon of the supracoracoideus muscle, its main insertion being the Tuberculum dorsale. The crest extends distally from the Tuberculum to the base of Crista deltopectoralis. Well displayed in examples of phasianids, alcids, psittacids, and columbids. See Annot. 182.
- (184) Crista deltopectoralis. Synonymy: Crista deltoidea; Crista pectoralis; Crista tuberculi minoris, or lateralis, or dorsalis. "Crista deltopectoralis" is used in the paleontological literature (e.g., Ostrom, 1979), and is a reasonable name inasmuch as both M. pectoralis and the cranial head of M. deltoideus major are attached to opposite surfaces of the crest.

Crista bicipitalis. Synonymy: Crista tuberculi majoris, or medialis, or ventralis. Origin of the aponeurosis of the humeral head of M. biceps brachii.

- (185) Sulcus transversus (Lambrecht, 1933). Synonymy: Ligamental furrow (Howard, 1929). Located on the cranial surface of the humerus just distal to Caput humeri (Fig. 4.12); for attachment of the Lig. acrocoracohumerale. The sulcus is strongly defined in, e.g., *Larus*.
- (186) Impressio coracobrachialis. An impression for insertion of M. coracobrachialis cranialis. The impression is a fairly distinct shallow excavation in many birds, e.g., *Branta*, *Chordeiles*, *Aegolius*, *Crotophaga*; a deeply etched triangular fossa in larids and charadriids (Fürbringer, 1888).
- (187) **Tuberculum ventrale.** Synonymy: Tuberculum mediale or majus (Fürbringer, 1888). The ventral tubercle of the humerus is continuous with the proximal end of Crista bicipitalis (Fig. 4.12), and is much stronger than Tuberculum dorsale. The ventral tubercle is extraordinarily prominent in ratite birds (Fürbringer,

1888); it is a common point of insertion of several of the short muscles of the shoulder region arising from the scapula and coracoid.

(188) Fossa pneumotricipitalis [Fossa tricipitalis]. Synonymy: Fossa pneumoanconaea (Fürbringer, 1888); Fossa pneumatica. This excavation in the proximal humerus varies in its form and development in different avian groups. Its name indicates that parts of the triceps muscle complex and the pneumatic foramen of the humerus are housed in the fossa. The name M. triceps brachii has replaced the term M. anconaeus, requiring a change in Fürbringer's name of the fossa. The humerus is hardly, or not at all, pneumatic in some avian groups (Fürbringer, 1888) (e.g., Gavia, Pygoscelis, Alca); in the forms having apneumatic humeri the fossa is present none-theless, thus "Fossa tricipitalis" is appropriate as suggested by Fürbringer's term, Fossa anconaea.

Well developed pneumotricipital fossae extend into the Caput humeri and Tuberculum ventrale (e.g., *Larus*). In most birds the fossa is a single continuous excavation, bounded ventrally and dorsally by **Crus ventrale fossae** and **Crus dorsale fossae** (Fig. 4.12) which converge on the apex of the ventral tubercle. The single fossa is occupied by both heads of M. humerotriceps, the insertion of M. scapulohumeralis cranialis and the pneumatic foramen. See **Myol.** 71-74, 82).

In other birds (also well exemplified by *Larus*) a second or additional fossa is formed between the Crus dorsalis fossae (medial bar of Bock (1962); Crista coracoidea of Komárek (1979) and the Caput humeri. This second fossa is bounded dorsally by the **Margo caudalis** of the humerus (Fig. 4.12) that extends from the Caput distally onto the caudal aspect of the shaft of the humerus; the Margo caudalis is a pronounced ridge in many birds, lacking in others. The second fossa is occupied by the dorsal head of M. humerotriceps. Consult Bock (1962) for a comprehensive treatment of this topic in passerine birds; see below, Annot. 189.

- (189) Foramen pneumaticum. When present, this foramen (or multiple foramina) is located in the Fossa pneumotricipitalis of the humerus (Annot. 188). The pneumatic foramen is not found in the humeri of all birds; humeri of birds with dual fossae generally are not pneumatised. The pneumatic foramen is lacking in: penguins, procellariiforms (except albatrosses), loons, grebes, cormorants and anhingas, several tribes of ducks (mainly the diving ones); most charadriiforms, rallids, and many oscine passerines (S. Olson, P. Ballmann, pers. comms.).
- (190) **Intumescentia humeri.** Term used by Fürbringer (1888) and Buri (1900) for the convex, smooth swelling distal to, and continuous with, the intertubercular plane (Annot. 181) of the cranial aspect of the proximal end of the humerus; the intumescence is directly opposite Fossa pneumotricipitalis on the caudal side (see Fig. 4.12).
- (191) **Sulcus n. radialis.** A distinct sulcus on the dorsal surface of the shaft of the humerus for N. radialis occurs only rarely: *Casuarius*, hummingbirds and swifts (Apodiformes).
- (192) Condylus dorsalis humeri. Synonymy: Condylus [Trochlea] radialis, or medialis, or internus. With the limb in the anatomical position this condyle on the dorsal (radial) side of the distal end of the humerus articulates with both Radius and Ulna. Condylus ventralis humeri. Synonymy: Condylus [Trochlea] ulnaris, medialis, or internus; this condyle articulates only with the ulna (see Arthr. Fig. 5.4).
- (193) **Incisura intercondylaris.** Synonymy: Vallis intertrochlearis (Fürbringer, 1888); Vallis intercondylica (Ballmann, 1969a). Notch separating the dorsal and ventral condyles of the humerus.

- (194) **Epicondylus dorsalis. [Ectepicondylus];** Epicondylus radialis, or lateralis, or externus. **Epicondylus ventralis. [Entepicondylaris];** Epicondylaris ulnaris, or medialis, or internus (see Fig. 4.12; Annot. 178; **Myol.** Annot. 91, 92).
- (195) **Proc. flexorius.** Process at distal end of humerus, ventral to Condylus ventralis of the distal humerus for attachment of the tendinous head of M. flexor carpi ulnaris (Ballmann, 1969a). See Fig. 4.12; **Arthr.** Annot. 110 (Trochlea humeroulnaris).
- (196) Tuberculum supracondylare dorsale. Synonymy: Eminentia m. extensoris metacarpi radialis (E. N. Kurochkin, pers. comm). Most birds possess a relatively compact tubercle on the dorsal border of the distal humerus, a short distance from the dorsal epicondyle (Fig. 4.12) for the origin of M. extensor carpi [metacarpi] radialis (see Myol. Annot. 87). In some birds the Tuberculum is displaced distally, thus so close to the dorsal epicondyle that the two are nearly indistinguishable. In some birds (e.g., diomedids, charadriiforms, passeriforms) the muscle is attached to a stout, pointed Proc. supracondylaris dorsalis. Swifts and hummingbirds are unusual in having the tubercle for M. extensor carpi [metacarpi] radialis displaced far proximally on the humeral shaft (Zusi and Bentz, 1982). See Arthr. Annot. 141; Myol. Annot. 77, 78.

Tuberculum supracondylare ventrale. Attachment of Lig. collaterale ventrale of the elbow joint (Arthr. Annot. 105).

- (197) **Proc. cotylaris dorsalis.** Prominent dorsal extension of the proximal Ulna that bears the Cotyla dorsalis on its cranial surface and Impressio m. scapulotriceps on its dorsal surface.
- (198) Cotyla dorsalis; Cotyla ventralis. Synonymy: Cotyla externa/interna (Lambrecht, 1933); Facies glenoidalis externa et interna (Ballmann, 1969a). The concave articular surfaces of the ulna for the dorsal and ventral condyles of the humerus. The ventral cotyla is the larger of the two, and is located at the base of the Olecranon (see above and Fig. 4.13).
- (199) **Incisura radialis.** Synonymy: Depressio radialis proximalis (Howard, 1929; Ballmann, 1969a). The concave facet on the proximal ulna for articulation with Caput radii; situated just past the distal margin of Cotyla dorsalis (Fig. 4.12).
- (200) Sulcus scapulotricipitalis. Synonymy: Sulcus m. scapulotricipitis; Sulcus dorsalis m. tricipitis. Sulcus humerotricipitalis. Synonymy: Sulcus m. humerotricipitis; Sulcus ventralis m. tricipitis. Located on the dorsal aspect of the distal humerus, the sulci for the two tendons of the triceps brachii complex are separated by a low ridge; the Sulcus humerotricipitalis is the larger of the two.
- (201) Olecranon. Synonymy: Proc. coronoideus ulnaris (Lambrecht, 1933). Strong, pointed process of the proximal end of the ulna for attachment of M. humerotriceps and Trochlea humeroulnaris (Arthr. Annot. 110). Barnett and Lewis (1958) note that the olecranon is lacking in some birds, e.g., the swift *Micropus*, the penguin *Aptenodytes*; however this process appears to be replaced by sesamoid bones in the tendons of the triceps muscles in these forms. See Annot. 202.

OSTEOLOGIA 101

- (202) Os sesamoideum m. scapulotricipitis. Synonymy: Patella ulnaris (Fürbringer, 1888). This is a sesamoid bone in the tendon of M. scapulotriceps of some species; unusually well developed in the hummingbirds (Zusi and Bentz, 1984) and in spheniscids.
- (203) **Tuberculum lig. collateralis ventralis** (Fig. 9). Synonymy: Facies lig. interni (Ballmann, 1969a). Point of attachment to the ulna of the ventral collateral ligament of the elbow joint (see Fig. 4.13).

**Sulcus tendinosus.** In some birds this sulcus is a well delineated feature on the ventral surface of the proximal Ulna, located between the Olecranon and the edge of the ventral cotyla; the tendon of M. flexor carpi ulnaris glides in this sulcus, separated from the sulcus by part of Trochlea humeroulnaris (see **Arthr.** Fig. 5.4).

- (204) Facies corporis ulnae. Of the three surfaces of the body of the ulna, Facies caudodorsalis is subcutaneous; the caudodorsal surface is separated from Facies caudoventralis by the row of Papillae remigiales caudales (Annot. 205). Facies cranialis is shallowly concave; its proximal half exhibits pronounced intermuscular crests in some of the larger birds. The flattened ulna (and radius) in spheniscids possesses only dorsal and ventral surfaces.
- (205) Papillae remigales caudales; Papillae remigales ventrales. Synonymy: Papillae ulnares anconales (Lambrecht, 1933); quill knobs (Edington and Miller, 1941). Markings on the ulna for attachment of the ligaments of the follicles of the secondary flight feathers. See Fig. 4.13; and Arthr. Annot. 199, 204.
- (206) Condylus dorsalis ulnae. Synonymy: Condylus externus or caudalis. Condylus ventralis ulnae. Synonymy: Condylus internus, or cranialis, or metacarpalis. As a result of the torsion of the ulnar shaft, the dorsal condyle is located somewhat more caudally than the ventral condyle. At the distal end of the ulna the two condyles and the groove between them form the Trochlea carpalis. On the ventral surface of the distal ulna the trochlea is markedly deepened in some birds (e.g., *Phoenicopterus*) forming the Sulcus intercondylaris (Fig. 4.13) between the two condyles. Os carpi radiale and Meniscus intercarpalis articulate with both condyles; Os carpi ulnare articulates mainly with the dorsal condyle. See Arthr. Annot. 117-119.
- (207) **Tuberculum carpale.** Synonymy: Tuberositas carpalis (Lambrecht, 1933). The carpal tubercle is a conspicuous, in some birds pointed, process (e.g., *Larus*) on the ventral aspect of the distal end of the ulna, closely related to the ventral condyle of its trochlea, for the attachment of the Lig. ulno-ulnocarpale distale and Lig. ulno-metacarpale ventrale (see Fig. 4.13).

Incisura tuberculi carpalis (new term). This notch between the ventral condyle of the ulna and the Tuberculum carpale is pronounced in some forms (e.g., the vultures *Cathartes* and *Coragyps*); in these forms the notch contains pneumatic pores. The deep part of Lig. ulno-ulnocarpale distale occupies much of the incisura (*Columba*).

(208) **Depressio radialis.** Synonymy: Depressio radialis distalis (Lambrecht, 1933; Ballmann, 1969a); Sulcus radialis (NAA, 1979). This surface of the distal end of the ulna is involved in the distal radioulnar joint, the counterpart of the proximal radioulnar joint. Located on the dorsal surface of the ulna near the carpal tubercle, this surface is the ulnar attachment of Lig. interosseum radioulnare which prevents direct contact of the two bones; the radius glides against the ligament in flexion and extension of the wrist joints. See Fig. 4.12; **Arthr.** Annot. 116.

- (209) Incisura tendinosa (Lambrecht, 1933; Ballmann, 1969a). Situated on the distal end of the ulna near its dorsal condyle, the curved Incisura acts as a pulley for the tendons of Mm. extensor metacarpi ulnaris and extensor digitorum communis as they change direction and enter the manus. The tendons are held in the incisure by a fibrous retinaculum (ossified in *Gavia*). See Fig. 4.13.
- (210) Tuberculum bicipitale radii (Howard, 1929). Synonymy: Tuberculum externum (Lambrecht, 1933). Tubercle on the proximal radius for insertion of M. biceps brachii. In most birds the tendon of M. biceps brachii bifurcates, the main branch inserting on the proximal end of the radius, the other to the proximal ulna Tuberculum bicipitale ulnae (Berger, 1966). In the higher passeriforms the radial tendon of the biceps inserts into a fovea (pit), considered by Ballmann (1969a) to be a diagnostic feature. See Fig. 4.13.
- (211) Facies articularis radiocarpalis. Synonymy: Articulatio scapholunaris (Lambrecht, 1933). Surface on the distal radius for articulation with Os carpi radiale. Facies articularis ulnaris. The distal ends of radius and ulna do not directly articulate; the two are closely related but separated by Lig. radioulnare interosseum (see Annot. 208; and Arthr. Annot. 116).

Sulcus tendinosus. A single wide groove, or two parallel grooves (e.g., gaviiforms, McKitrick, 1991), on the dorsum of the distal end of the radius occupied by tendons of extensor muscles of the wrist joint passing across the carpus into the hand.

- (212) **Depressio ligamentosa.** Synonymy: ulnar depression (Howard, 1929). Located on the caudal surface of the distal radius this depression is occupied by the Lig. interosseum radioulnare distale (see Annot. 208; and **Arthr.** Annot. 116).
- (213) **Tuberculum aponeurosis ventralis.** Synonymy: Ligamental process (Howard, 1929). The Tuberculum is located on the distal end of the radius ventral to the articular surface for Os carpi radiale. The tubercle serves as the attachment of the Aponeurosis ventralis that fans out onto the remiges in the wrist region (**Arthr.** Annot. 113 and Fig. 4.13).
- (214) **Ossa carpi.** Recently Hinchliffe (1985) has restudied the embryological development of the carpal bones and metacarpals in *Gallus*, using more precise techniques than those of earlier works. He contends that of the five embryonic carpal elements, the "radiale" becomes the definitive Os carpi radiale. The embryonic "ulnare" regresses and disappears; it is replaced by carpal 'x'. The "pisiform", however, becomes Os carpi ulnare, the definitive adult proximal carpal bone; the latter name is retained because of familiarity.

In early postnatal life the three remaining carpals become incorporated with the proximal ends of the metacarpals, forming the compound bone, the Carpometacarpus. For details of the development of the avian wrist and hand and homologies of the digits see Steiner (1922), Montagna (1945), Holmgren (1955), Romanoff (1960), Berger (1966), Seichert and Richter (1972), and Hinchliffe (1985). See Osteo. Intro. "Nomenclature of digits of wing"; and Arthr. Annot. 112, 122, 128.

(215) Os carpi ulnare (Arthr. Annot. 112, 122). Synonymy: Os cuneiform (Lambrecht, 1933); ulnare. U-shaped carpal bone in the caudal angle of the wrist region; unusual triangular-shaped in spheniscids. Crus longum et Crus breve. These are the two limbs of Os carpi ulnare; Crus longum is situated ventrally, Crus breve dorsally. Proc. muscularis. At the proximal end of the Os carpi ulnare the muscular process projects from the body of the ulnare that connects its two crura; M. flexor carpi

ulnaris, Retinaculum ulnocaroremigiale and Lig. humerocarpale attach to the muscular process. See Mvol. Annot. 85.

**Incisura metacarpalis** is the U-shaped notch between the two crura of Os carpi ulnare which clasp the proximal end of the Carpometacarpus. **Facies articularis metacarpalis** is the surface of the Os carpi ulnare that articulates with the caudal part of the Trochlea carpalis of the Carpometacarpus.

Os carpi radiale. Synonymy: Os scapholunare (Lambrecht, 1933). On the cranial aspect of the wrist, the radial carpal bone articulates with the distal end of the radius, carpal trochlea of the distal ulna, and the **Trochlea carpalis** of the Carpometacarpus (see **Arthr.** Annot. 112, 122).

(216) Os metacarpale alulare. Synonymy: Metacarpus pollicis; Proc. metacarpalis pollicis [digiti I or II]. See Osteo. Intro. for remarks on the nomenclature of digits of the manus.

**Extremitas proximalis carpometacarpi.** The proximal end of this compound bone is formed by ankylosis of some of the distal carpal bones with the fused proximal ends of the three metacarpal bones (see Annot. 214).

Os prominens. Sesamoid bone in the propatagial ligament (see Arthr. Annot. 141) near its attachment to the extensor process of the carpometacarpus; it is *not* a carpal bone, but is listed with the carpals because of its topographic proximity to them. Os prominens occurs, e.g., in buteos, falconids, and strigids.

- (217) Fovea carpalis caudalis. Synonymy: Fossa carpalis posterior; Fovea carpalis cranialis. Fossa carpalis anterior (Ballmann, 1969a). The foveae are located at the cranial and caudal ends of the articular surfaces of Trochlea carpalis of the Carpometacarpus (Fig. 4.14). With the wrist joint in extension, the edge of the Os carpi radiale fits into the Fovea cranialis; with the joint flexed the Fovea caudalis accommodates the distal edge of the Os carpi ulnare.
- (218) **Fossa infratrochlearis.** Synonymy: Fossa carpalis interna (Ballmann, 1969a). The depressed area of attachment of the Lig. radiocarpo-metacarpale ventrale at the proximal end of the ventral side of the Carpometacarpus. See Fig. 4.14; and **Arthr.** Fig. 5.5.
- (219) Fossa supratrochlearis. Synonymy: Facies ligamentalis externa (Ballmann, 1969a). At the proximal end of the dorsal side of the Carpometacarpus this is the depression for attachment of the dorsal ulnocarpo-metacarpal ligament. See Fig. 4.14; and Arthr. Fig. 5.5.
- (220) **Proc. pisiformis.** Synonymy: Apophysis pisiformis (Lambrecht, 1933). Stubby process of the ventral surface of the proximal end of the Carpometacarpus (Fig. 4.14); serves for attachment of the Retinaculum flexorum, and as a pulley changing the direction of the tendon of M. flexor digitorum profundus.
- (221) **Proc. intermetacarpalis** (Milne-Edwards, 1867-71). Synonymy: Tuberositas muscularis (Ballmann, 1969a). This is a process of the major metacarpal bone that projects caudally overlapping, and often fusing with, the dorsum of the minor metacarpal bone (Fig. 4.14); it receives the insertion of M. extensor metacarpi ulnaris. Not present in all birds, it occurs in examples of galli-, pici-, coracii-, and passeriform birds, as well as coliiforms (Ballmann, pers. comm.).

**Protuberantia metacarpalis** (new term). Synonymy: carpometacarpal process (Harrison, 1968); carpometacarpal protuberance (Feduccia and Olson, 1982). In certain birds the cranial border of the major metacarpal bone bears this hump-like process at about its middle, e.g., in the oscine passerines *Menura* and *Chlamydera* 

(Feduccia and Olson, 1982); in yet other passerines, *Progne* and *Sturnus* (pers. obs.), the protuberance is situated farther distally than the above examples.

- (222) Symphysis metacarpalis proximalis/distalis (Lambrecht, 1933; Ballmann, 1969a). The regions of ankylosis of the proximal and distal ends of the major and minor metacarpal bones to one another in early postnatal maturation. These so-called "symphyses" are in reality synchondroses which when ankylosed become synostoses. See Arthr. Annot. 129.
- (223) Sulcus interosseus. Longitudinal groove on the dorsal aspect of the region of the distal metacarpal symphysis (Fig. 4.14); the sulcus is occupied by tendons of Mm. interossei.
- (224) Ossa digitorum manus. The most common phalangeal formula of birds: one alular phalanx, two phalanges of Digitus major, and one phalanx of Digitus minor. In a number of avian orders the alular digit possesses two phalanges, the terminal phalanx often bearing a claw (hoatzins and turacos, R. W. Storer, pers. comm.); Digitus major often has a third phalanx in anatids (R. W. Storer, pers. comm). See Integ. Annot. 87 for comment on supernumerary digital claws (phalanges); Arthr. Annot. 137.
- (225) **Pila cranialis phalangis.** This is the thickened leading edge of the large proximal phalanx of Digitus major that forms a strong reinforcing bar of bone (Fig. 4.14). The caudal border of the phalanx is thin and fenestrate in some avian taxa.
- (226) Os coxae (Coxa, L. hip). Each hip bone is formed by the postnatal ankylosis of Ilium, Ischium, and Pubis. The Pelvis is formed by consolidation of the two hip bones with the synsacrum (see Arthr.).

Acetabulum. The socket in the Os coxae into which the head of the femur fits. Foramen acetabuli. The opening in the floor of the Acetabulum varies in size in different birds. See Arthr. Annot. 151.

- (227) Foramen obturatum. This oval opening situated caudoventral to the Acetabulum transmits the tendon of M. obturatorius medialis and N. obturatorius. The foramen is the detached cranial part of Fenestra ischiopubica (Boas, 1933). See Fig. 4.15; Annot. 252.
- (228) Sulcus obturatorius. Long, wide, shallow groove on the medial surface of Ala ischii. M. obturatorius medialis lies in the Sulcus as well as on the adjacent medial surface of the pubis and Membrana ischiopubica.
- (229) Fenestra ischiopubica. Synonymy: Foramen obturatorium, pars caudalis; Foramen oblongum. This gap between the shaft of the pubis and the ischium is of variable shape: from slit-like to elongated oval or triangular; very wide in some forms, e.g., Gavia, Diomedea, Dendrocopus; it is open at its caudal end in Apteryx.
- (230) Foramen ilioischiadicum. Situated just caudal to the acetabulum, the foramen is bounded dorsally by the ilium and ventrally by the ischium (Fig. 4.15). The foramen transmits the ischiadic nerves and vessels (Arthr. Mem. ilio. isch.). Generally round or short oval shape; at its caudal end the foramen is incompletely enclosed by bone in tinamous and Apteryx, and extends caudally most of the length of the postacetabular ilium in Rhea, Struthio, and Casuarius.
- (231) Incisura marginis caudalis (Fig. 4.9). In lateral view the caudal border of the hip bone (Os coxae) of many birds is indented between Spina dorsolateralis ilii

and the tip of Proc. terminalis ischii; this notch is in the region of the ilioischiadic synostosis (see Annot. 230; and Arthr. 148).

**Proc. marginis caudalis.** Synonymy: Spina iliocaudalis (Boas, 1933). This projection of the caudal margin of the Os coxae of the pelvis between Spina dorsolateralis ilii and the Proc. terminalis ischii is present in some birds (e.g., *Gallus, Ardea*); not to be confused with the Spina dorsolateralis ilii itself (see Annot. 249).

(232) Antitrochanter. Located caudodorsal to the Acetabulum, this projection of Os coxae bears an articular surface which is in contact with the neck and trochanter of the Femur; formed mainly by the ischium and to a lesser degree by the ilium.

Sulcus antitrochantericus (Fig. 4.15). Usually a relatively narrow groove dorsal to the Antitrochanter which is the caudal prolongation of the extensive, shallow Fossa iliaca dorsalis of the preacetabular ilium. The sulcus is especially prominent in loons (R. W. Storer, pers. comm).

- (233) Crista iliosynsacralis. A median ridge formed by fusion of the right and left dorsal iliac crests with the Crista dorsalis of the synsacrum (see Annot. 143, and below, Annot. 234).
- (234) Sulcus iliosynsacralis. In birds in which the dorsal synsacral crest and the dorsal iliac crests remain separate a furrow, the iliosynsacral sulcus, is present on each side of the synsacral crest; the Sulcus contains epaxial muscles. This condition is seen for example in *Columba*, *Ceryle*, *Corvus*.

Canalis iliosynsacralis (Fig. 4.15). Synonymy: Canalis iliosacralis (Nauk, 1938); subiliac space (Howard, 1929); canalis ilioneuralis (Shufeldt, 1888). Paired canals occur in the pelvis of birds having an iliosynsacral crest (Annot. 233) (see Komárek, 1979, for illustrations). The paired canals are separated by the dorsal synsacral crest; each is roofed dorsally by the Ala preacetabularis of the ilium; the ventral wall of each canal is the Lamina transversa of the synsacrum (Annot. 141). The canal contains epaxial muscles, occurring, e.g., in *Diomedea, Cathartes, Strix, Gallus, Branta, Phoenicopterus*.

- (235) Concavitas infracristalis. The shallow, wide depression on the lateral surface of the pelvis caudal to the ilioischiadic foramen in many birds; formed largely by the infracristal lamina of the ilium (Annot. 251). The depth of the concavity is exaggerated by the overhanging Crista dorsolateralis ilii (Fig. 4.15). M. ischiofemoralis arises from this surface. Consult Boas (1933).
- (236) **Pila ilioischiadica.** This is the reinforcing pillar of bone along the ventral border of each side of the pelvis extending from the level of the cranial end of the Fossa renalis toward Proc. terminalis ischii. The cranial part of the Pila forms Crista iliaca obliqua (Annot. 242); caudally it contributes to the ventral acetabular wall and ilioischiadic foramen, merging with Ala ischii. See Fig. 4.9.
- (237) Fossa renalis (Fig. 4.9). The Fossa renalis is the paired deep fossa on each side of the Corpus synsacri which accommodates the kidney; formed partly by the Synsacrum and partly by the Os coxae (mainly ilium). In general, the cranial division of the kidney is not housed in the fossa, but occupies the shallow depression on the ventral surface of the preacetabular ilium.

Pars ischiadica fossae is the smaller cranial part of the Fossa renalis that contains the middle division of the kidney and the ischiadic (lumbosacral) nerve plexus; the acetabular foramen is an opening in the side of Pars ischiadica. Pars pudenda fossae is the larger, wider caudal part of the renal fossa that contains the caudal division of the kidney and the pudendal nerve plexus; the ilioischiadic foramen is an opening in the lateral wall of Pars pudenda. See Annot. 250; consult Radu (1975) for comparison of Fossa renalis in galliforms and anseriforms.

- (238) Incisura caudalis pelvis. When viewed from its dorsal or ventral aspect, the intact bony pelvis of many birds demonstrates just past its Margo caudalis a wide, semilunar, or rectangular indentation, bounded on each side by the Spina dorsolateralis ilii (Annot. 248). The incisure is notably deep in falconiform, ciconiiform and strigiform pelves; its middle part is occupied by the basal part of the free caudal vertebral column; laterally it is completed by the iliocaudal membrane (Arthr. Annot. 185).
- (239) Corpus ilii. This is the strongly developed central part of the Ilium, cranial and dorsal to the Acetabulum, from which its pre- and postacetabular alae (wings) emanate.
- (240) **Incisura acetabularis.** The body of each of the three elements (ilium, ischium, and pubis) of the Os coxae contributes a segment of the circumference of the acetabulum; each part thus displays a C-shaped Incisura acetabularis prior to synostosis of the three elements (see **Arthr.** Annot. 146).
- (241) **Pila postrenalis.** The transverse pillar of bone that strengthens the caudal border of the pudendal part of the renal fossa. Well exemplified in *Strix*, *Larus*, and *Columba*. See Annot. 250.
- (242) Crista iliaca obliqua (Boas, 1933). The heavy oblique bar of bone that forms the ventrolateral border of Pars ischiadica of Fossa renalis; the Crista extends between the ventral surface of Ala preacetabularis ilii to the ventral wall of the Acetabulum (see Fig. 4.9; Annot. 236).
- (243) Crista iliaca intermedia (Boas, 1933; synsacral strut, Strauch, 1985). Slightly developed in most birds. In some birds this transverse crest is formed on the ventral surface of Ala postacetabularis ilii, within the renal fossa, at the level of the acetabular foramen. The costal process(es) of the so-called true sacral or "acetabular" vertebrae (see Fig. 4.9 and Annot. 141) articulate with the medial end of the crest. The crest is well developed in most charadriiforms (Strauch, 1985); exhibited also, e.g., in *Morus, Cathartes*, and *Columba*. See Arthr. Annot. 76.
- (244) Tuberculum preacetabulare [Proc. pectinealis]. Synonymy: Proc. preacetabularis; Proc. prepubica. The name, Tuberculum preacetabulare (Boas, 1933), indicates its location at the ventrocranial margin of the acetabulum. It serves as the rear attachment of the Lig. inguinale (Arthr. Annot. 184) which bounds the neurovascular lacuna for the the external iliac vessels and branches of the lumbar nerve plexus. In most birds the Tuberculum is formed by the ilium, in ratites primarily by the pubis (Beddard, 1898). The Tuberculum preacetabulare is generally a stubby torus of bone; however, it is an elongated process in *Struthio*, tinamous, galliforms (Beddard, 1898), and the cuculiform *Geococcyx* (Larson, 1930). See Fig. 4.15.
- (245) Ala [Pars] preacetabularis ilii; Ala [Pars] postacetabularis ilii. Synonymy: pre-ilium; post-ilium (Parker, 1888).

Crista iliaca dorsalis. Synonymy: Crista iliaca superior (Milne Edwards, 1867-71); Linea iliodorsalis (Lambrecht, 1933). The dorsal (or dorsomedial) border of the preacetabular ilium (see Fig. 4.15 and Annot. 234).

OSTEOLOGIA 107

- (246) Areae articulares vertebrales. Several areas of the ventral surface of the preacetabular ilium that articulate with the transverse processes of the cranialmost series of synsacral vertebrae. These areas can be seen only in immature birds in which the synsacrum and ilium may be disarticulated (see illustrations in Boas, 1933); most frequently the synsacrum and ilium are ankylosed (synostoses) in mature individuals.
- (247) Crista iliaca lateralis (Milne-Edwards, 1867-71). [Margo lateralis] (NAA, 1979). In dorsal view this is the lateral free edge of the preacetabular ilium that in some birds forms a pronounced ledge (Fig. 4.9) (see Annot. 245).
- (248) Crista dorsolateralis ilii. Synonymy: Crista dorsolateralis (Boas, 1933); Linea iliolateralis (Lambrecht, 1933); Crista iliaca dorsolateralis (NAA, 1979). Lateral ledge of the postacetabular ilium that marks the boundary between its dorsal and lateral surfaces; indistinct or lacking in some birds, e.g., in the pelecaniforms (*Morus, Pelecanus*) and anseriforms (*Branta, Athyia*). The crest serves as an attachment of the aponeurosis of origin of M. iliotibialis (see Fig. 4.15 and Myol. Annot 100).

Spina dorsolateralis ilii. Synonymy: Proc. iliolateralis (Boas, 1933); Spina iliaca dorsalis (NAA, 1979). This is the caudal prolongation of the Crista dorsolateralis ilii (Fig. 4.15). In *Columba* (Baumel, 1988) the base of the spine forms part of the pulley for change of direction of M. caudofemoralis as the latter enters the lower surface of the uropygium.

- (249) Fossa iliocaudalis. This depression on the dorsal surface of the caudal part of the postacetabular ilium on either side of the caudal end of the synsacrum serves as a point of attachment of M. levator caudae (Fig. 4.15).
- (250) Recessus caudalis fossae. Synonymy: Recessus iliacus (Boas, 1933); obturator depression (Harvey, et al., 1968). This is the recess of the renal fossa that invaginates the caudalmost junctional region of the postacetabular ilium and ischium. The recess is deep in *Gallus* and *Meleagris*, some strigids and gruiforms (e.g., *Gallinula*); it does not enclose part of the kidney, but is filled by the origin of M. obturator medialis (Butendieck, 1980). See Fig. 4.9 and Annot. 237.
- (251) Lamina infracristalis ilii (Fig. 4.15). Synonymy: Superficies infracrista (Boas, 1933); Lamina ischiadica ilii (NAA, 1979). The vertical lamina of the postacetabular ilium just ventral to Crista dorsolateralis ilii; the lower margin of the Lamina ankyloses with the Ala ischii caudal to the Foramen ilioischiadica (exception: some ratites). See Annot. 235.
- (252) **Proc. obturatorius** (Fig. 4.15). Synonymy: Proc. ventralis. This ventrally directed process of the ischium separates the obturator foramen from the ischiopubic fenestra; formed by ossification of Lig. ischiopubicum.
- (253) **Proc. terminalis ischii.** Synonymy: Proc. terminalis ischiadicus (Boas, 1933); Angulus ischiadicus (Lambrecht, 1933). This process is the most caudal extent of the ischium, often pointed; its lower border articulates with the pubis (Fig. 4.15). See Annot. 231.

- (254) **Pubis.** The shaft (**Scapus pubis**) of the rather delicate pubis of most birds closely parallels the ventral border of Ala ischii. The two are separated by the obturator foramen and the ischiopubic fenestra (see Fig. 4.15; Annot. 229). In some birds the free ends of the pubes curve inward and closely approximate one another.
- (255) Facies articularis antitrochanterica. Synonymy: Articulatio iliacalis (Lambrecht, 1933); Facies glenoidea proximalis (Ballmann, 1969b). Articular surfaces located on the dorsal aspect of the Collum femoris and the medial surface of the Trochanter femoris. See Fig. 4.16; Annot. 232, 262; Arthr. Annot. 152.
- (256) **Trochanter femoris.** Synonymy: Trochanter major. On the proximal end of the femur this structure is the elevated, expanded part of the femur continuous with its neck (Annot. 257). Ametov (1971) observed that certain saltatorial birds (e.g., *Passer domesticus, Parus major*, and *Sitta europaea*), birds that progress by leaping, lack the femoral trochanter. See Fig. 4.16; **Arthr.** Annot. 182.

Fossa trochanteris. The concavity of the medial surface of the elevated trochanter of the femur; often deepened by the overhang of the Crista trochanteris (e.g., Larus, Gallus, Phoenicopterus).

- (257) Impressiones mm. trochanteris; Impressiones ligg. trochanteris (Fig. 4.16). Markings on the lateral aspect of the Trochanter femoris for the obturator and iliotrochanteric muscles and certain ligaments which are detailed by Ballmann (1969b).
- (258) Corpus femoris. The body or shaft of the avian femur is commonly circular in cross section; no sharply defined borders are present except in atypical femora (e.g., *Gavia*) which has a laterally compressed, truncated femur, somewhat quadrate in cross section.
- (259) Sulcus patellaris (Fig. 4.16). Synonymy: Fossa patellaris (Lambrecht, 1933); rotular groove (Howard, 1929). Articular groove for the Patella at the distal end of the femur.

Crista lateralis/medialis sulci patellaris. The crests of the patellar sulcus are sharply defined in some taxa.

Condylus medialis; Condylus lateralis. These articular condyles of the distal femur are also known as Condylus internus and Condylus externus. See Annot. 261.

- (260) Impressiones ansae m. iliofibularis. Synonymy: impressions of the biceps loop. The ligamentous ansa (L. loop) for M. iliofibularis has two femoral attachments: one on the caudal surface of the distal femur just proximal to the lateral condyle, the other a distinct scar on the cranial surface of the femur proximal to the lateral crest of the patellar sulcus; a third attachment is the fibula just distal to its neck. See Berger (1966); Myol. Annot. 102; Arthr. Annot. 186.
- (261) Trochlea fibularis (Fig. 4.16). Synonymy: Sulcus fibularis. The spool-shaped joint surface on the lateral femoral condyle for articulation with the Caput fibulae. See Arthr. Fig. 5.7.
- (262) Crista tibiofibularis (Howard, 1929). Synonymy: Crista peroneo-tibialis (Ballmann, 1969b). Crest on the lateral condyle of the femur that separates its tibial articular surface from that for the fibula; the Crista forms the medial wall of the Trochlea fibularis (see Annot. 261; and Arthr. Fig. 5.7; Annot. 154). See Fig. 4.16.

OSTEOLOGIA 109

- (263) **Impressio lig. cruciati caudalis/cranialis.** The impression for the caudal cruciate ligament is located on the caudal aspect of the distal end of the femur just proximal to the lateral condyle; the impression for the cranial cruciate ligament is farther distal, in the intercondylar sulcus (see Fig. 4.16 and **Arthr.** Fig. 5.7).
- (264) Crista supracondylaris medialis. Synonymy: Adductor crest. This sharp crest extends proximally from the medial condyle of the femur, and is continuous with the caudal intermuscular line of the Corpus femoris (see Fig. 4.16).
- (265) **Patella.** Sesamoid bone in the common tendon of the Mm. femorotibiales and M. iliotibialis. Barnett and Lewis (1958) contend that the elongated patellar crest of some birds (e.g., the common diving petrel *Pelecanoides urinatrix*) represents fusion of the patella with the patellar crest of the tibiotarsus to which the patellar ligament is attached in most birds (see Annot. 269).
- Sulcus [Canalis] m. ambientis. Generally the tendon of M. ambiens perforates or grooves the patellar ligament; in a few birds it perforates or grooves the patella (see Berger, 1966).
- (266) Facies articularis medialis/lateralis (Fig. 4.17B). Neither of these articular facets on caput tibiae of the proximal end of the Tibiotarsus is concave; therefore, "cotyla" or "glenoid fossa" are inappropriate; however, well developed intra-articular menisci intervene between the femur and head of the tibia, deepening the surfaces in contact with the femoral condyles (see Arthr. Artcc. genus). The smaller lateral facet faces laterodorsally (see Annot. 262); the larger medial facet lies in a nearly transverse plane.
- (267) Facies articularis tibialis. Just distal to its surface for articulation with the femur, the medial surface of the Caput fibulae bears another surface that articulates with the lateral surface (Facies articularis fibularis) of the proximal tibiotarsus. See Fig. 4.17B; Annot. 262, 263; and Arthr. Annot. 157, 159.
- (268) Fossa retropatellaris (Fig. 4.17). Synonymy: Fossae synoviales (Ballmann, 1969a); Fossa retrocristalis (NAA, 1979). The retropatellar fossa is situated between the Crista patellaris and the femoral articular facets on the proximal surface of the head of the Tibiotarsus. The Fossa in certain birds appears to be subdivided by a low ridge. In the intact joint the fossa contains the retropatellar fat body (Arthr. Annot. 158). See Ballmann, 1969a.
- (269) Crista patellaris (Lambrecht, 1933). Synonymy: Crista rotularis (Milne-Edwards, 1867-71; Howard, 1929). Crest connecting the proximal ends of the two cnemial crests of the Tibiotarsus. The patellar crest varies in different birds from transverse to oblique depending on the elevation of the cranial cnemial crest above the articular plane of the head of the tibiotarsus; the Lig. patellae is attached to the crest. See Fig. 4.17; Apnot. 265; and Arthr. Annot. 158.
- (270) Crista cnemialis cranialis (Fig. 4.17). Synonymy: Crista cnemialis anterior (Ballmann, 1969a); Crista cnemialis interna or medialis (Cnemial, Gk. tibial). The cranial cnemial crest is elevated well above the level of the knee joint in some aquatic birds (R. W. Storer, pers. comm.) e.g., grebes, herons, flamingos, the diving petrels (Pelecanoididae), and shearwaters (*Puffinus*); enormously long in the loons. In footpropelled diving birds the elongation of the crest is associated with shortening of the femur (R. W. Storer, pers. comm.)

- (271) Facies gastrocnemialis (Ballmann, 1969a). The medial surface of Crista cnemialis cranialis and the area of the Tibiotarsus caudal to the crest (Fig. 4.17); origin of the medial head of M. gastrocnemius.
- (272) Sulcus intercnemialis (Kolda and Komárek, 1958). Synonymy: Sulcus intercristalis (NAA, 1979). Wide longitudinally-oriented sulcus between the cranial and lateral cnemial crests (Fig. 4.17); for origin of M. extensor digitorum longus.
- (273) **Incisura tibialis.** (Fig. 4.17). Seen from proximal or lateral view, this is the groove between the caudal surface of the lateral cnemial process and the Facies articularis fibularis of the Tibiotarsus; for passage of the tendon of the Caput femorale of M. tibialis cranialis (Ballmann, 1969a).
- (274) Fossa flexoria (Fig. 4.17A). Synonymy: Fossa flexoris digitorum longi (Ballmann, 1969a). Depression on the caudal aspect of the proximal end of the Tibiotarsus distal to Facies articularis lateralis extending to the proximal edge of the fibular crest; serves as origin for M. flexor digitorum longus.

**Tuberositas poplitea** (Fig. 4.17). Linear scar on the caudal surface of the tibial shaft just distal to Fossa flexoria; for attachment of M. popliteus (P. Ballmann, pers. comm.). The tuberosity is pronounced in larger birds, e.g., *Ardea, Branta, Phoenicopterus*.

- (275) **Corpus tibiotarsi.** The proximal two-thirds of the shaft of the Tibiotarsus is for the most part three-sided, with cranial, medial, and caudal surfaces (Ballmann, 1969a).
- (276) Linea extensoria (Ballmann, 1969a). The intermuscular line of the cranial surface of the Tibiotarsus is prolonged from Crista cnemialis cranialis along the length of the shaft of the bone; continuous with the medial margin of Sulcus extensorius.
- (277) **Pons supratendineus** (Fig. 4.17D). Synonymy: supratendinal bridge (Howard, 1929); Lig. transversum ossificatum (Lambrecht, 1933). (Pons, L. bridge). The supratendinal bridge is located at the distal end of the cranial surface of the Tibiotarsus proximal to its condyles. The bridge is ligamentous in *Bubo*, *Otus* (Berger, 1966), parrots, and ratites (Martin, 1987). See below, Annot. 278.
- (278) Canalis extensorius (Fig. 4.17D). The passage deep to the Pons supratendineus at the distal end of the Tibiotarsus that transmits the tendon of M. extensor digitorum longus. See Arthr. Annot. 164.

Tuberositas retinaculi extensoris. Scar at each margin of the Sulcus extensorius of the distal tibiotarsus just proximal to Pons supratendineus (Annot. 277); for attachment of the extensor retinaculum (Arthr. Annot. 187). Since the retinaculum is oriented obliquely the two scars are at different levels.

- (279) Trochlea cartilaginis tibialis (Fig. 4.17A). The trochlea is the wide furrow on the caudal surface of the distal end of the Tibiotarsus, serving as the articular surface for Cartilago tibialis. The sharp Cristae on either side of the trochlea are continuous with the tibiotarsal condyles (see Annot. 280; and Arthr. Annot. 164).
- (280) Condylus lateralis/medialis tibiotarsi. The surfaces of these condyles of the Tibiotarsus that articulate with the Tarsometatarsus face cranially and distally, and caudally are continuous with the crests of the trochlea for the tibial cartilage (see Annot. 279).

- (281) **Depressio epicondylaris lateralis/medialis.** Shallow depression on both lateral and medial sides of the lower end of the tibiotarsus just proximal to the distal articular surfaces of its condyles.
- (282) **Tuberculum retinaculi m. fibularis [peronei].** On the cranial surface of the distal tibiotarsus the Tuberculum is separated from the proximal part of the lateral condyle by the **Sulcus m. fibularis [peronei]** (Fig. 4.17C); the tuberculum is the upper point of attachment of the retinaculum which bridges the sulcus and restrains the tendon of M. fibularis brevis in the Sulcus.
- (283) Ossa tarsi. The proximal tarsals consist of two elements, the Tibiale [Astragulus] and the Fibulare [Calcaneum], which fuse to each other and to the tibia, producing the condyles of the distal end of the compound bone, the tibiotarsus. "Tibiale" is preferred over Astragalus because in fetal birds there is only one condensation (Cartilago tibiale) that articulates medially with the tibia, whereas the Astragulus of other amniotes is a compound element composed of additional elements (e.g., intermedium and centralia) that have been lost in birds (Müller and Alberch, 1990). The fibulare does not ossify in most ratites and tinamous; in the exceptions (Struthio and some Dromaius) the cartilaginous lateral condyle ossifies with the tibiale.

The avian ankle is characterized by an additional element, "Os pretibiale", that McGowan (1985) maintains is associated with the tibiale, whereas Martin and Stewart (1985) associate it with both tibiale and fibulare condensations (although more so with the latter). The pretibiale begins ossifying before either tibiale or fibulare; as a result, it is very unlikely that the pretibiale is homologous to the intermedium of other tetrapods (G. Müller, pers. comm.).

The single distal tarsal bone (Os tarsi distale) fuses with the metatarsals forming the proximal end, including the Hypotarsus, (Annot. 288) of the compound bone, the Tarsometatarsus. Although some workers (see Romanoff, 1960) identified up to four distal tarsals in birds, most recent workers have been able to identify only one (Hinchliffe, 1977; McGowan, 1985; Müller and Alberch, 1990). See Arthr. Annot. 167.

- (284) Tarsometatarsus. Metatarsal bones II, III, IV of modern birds ankylose extensively with one another and the distal tarsal bone, forming the definitive Tarsometatarsus. Os metatarsale I is not involved in the ankylosis; instead it has a ligamentous junction with the medial border of the Tarsometatarsus. See Annot. 283; Topog. Annot. 43; and Arthr. Fig. 5.9 & Annot. 167, 173, 174.
- (285) Area intercotylaris (Fig. 4.18D). This is the relatively flat area between the plantar parts of the two cotylae of the proximal tarsometatarsus, in other words, the area between the Eminentia intercotylaris and the Hypotarsus. See Arthr. Annot. 171.
- (286) Sulcus ligamentosus. In some birds (e.g., *Pelecanus*, and the vulture *Cathartes*) this is a transverse groove at the junction of the proximal Hypotarsus and Area intercotylaris; the ligament from the distal end of Cartilago tibialis is attached in the groove. See Fig. 4.18; and **Arthr.** Annot. 166.
- (287) Arcus extensorius. In certain birds an osseous arch is found on the cranial aspect of the proximal Tarsometatarsus that restrains, and acts as a pulley for, the tendon of M. extensor digitorum longus (e.g., strigids, picids, rallids, Fulica, Chaetura, et al.) (see Berger, 1966). The arch is in fact the ossified ligamentous Retinaculum extensorium tarsometatarsi of most birds. See Annot. 277, 295; and Arthr. Annot. 188.

- (288) Hypotarsus (Fig. 4.18). Synonymy: Calcaneus. This process on the plantar aspect of the proximal Tarsometatarsus is formed mostly by the distal tarsal element (Annot. 283) capping the proximal end of Os metatarsale III. The Hypotarsus is simple in some birds, consisting of a wide sulcus between low crests (e.g., falconiforms, strigids). In most birds it is complex, having sulci and high crests, and perforated by one or more canals (Newton, 1896). The Sulci and Canales hypotarsi conduct flexor tendons of the pedal digits; consult Berger (1966), Simpson and Cracraft (1981), and Strauch (1985) for details in different taxa. See Fig. 4.18; Integ. Annot. 68; and Arthr. Fig. 8.
- (289) Cristae hypotarsi (Fig. 4.18). Synonymy: Crista externa/interna hypotarsi (Ballmann, 1969a; Crista ecto-/entogastrocnemialis, (Lambrecht, 1933); calcaneal ridges (Howard, 1929). Lateral, intermediate, and medial crests of hypotarsus.
- (290) Crista medianoplantaris (Fig. 4.18). Synonymy: Crista plantaris (Neugebauer, 1845); Crista plantaris mediana (NAA, 1979); hypotarsal ridge. Median, curved crest that forms a buttress from the middle of the Hypotarsus, gradually merging distally into the plantar shaft of the tarsometatarsus. The tendon of the gastrocnemius muscle extends past its main attachment on the hypotarsus to blend with the superficial border of the Crista (see Annot. 294 and Myol. Annot. 126), creating a septum. The septum forms the medial wall of an osseo-fibrous compartment enveloping the bundle of long flexor tendons for the digits (see Arthr. Annot. 176, Canalis flexorius metatarsi).
- (291) Fossa infracotylaris dorsalis (Fig. 4.18A). Synonymy: Depressio antinterossealis (Lambrecht, 1933); Fossa anterior (Ballmann, 1969a). An excavation on the dorsum of the proximal end of the tarsometatarsus immediately distal to its cotylae. The Foramina vascularia proximalia open into the Fossa (Art. Annot. 79); the tuberosity for insertion of M. tibialis cranialis in some birds is situated in the distal part of the Fossa, or in the upper part of Sulcus extensorius of those birds lacking a distinct Fossa.
- (292) Facies corporis tarsometatarsi. The surfaces of the shaft of the Tarsometatarsus vary in their configurations in different taxa. In cross section the shaft may be: (1) rectangular, laterally compressed (e.g., *Gavia*); (2) rectangular, compressed in its dorsoplantar dimension (e.g., *Coragyps*); (3) triangular, Facies plantaris flat (e.g., *Ardea*); (4) triangular, Facies dorsalis flat (e.g., *Pelecanus*); U-shaped, concave plantar surface (e.g., *Strix*) (Annot. 294).
- (293) Facies subcutanea lateralis/medialis (Fig. 4.18A). Generally the medial and lateral surfaces (see Annot. 295) of the Tarsometatarsus are covered only with the scaly Podotheca (see Integ). By contrast, the plantar and dorsal surfaces of the Tarsometatarsus have bundles of flexor and extensor tendons interposed between podotheca and bone (Ballmann, 1969a).
- (294) Sulcus flexorius (Fig. 4.18C). Synonymy: Sulcus longitudinalis plantaris. In certain birds (e.g., *Buteo, Aquila, Strix*) the plantar (flexor) surface of the Tarsometatarsus is strongly grooved longitudinally by the Sulcus flexorius which is bounded by the prominent, sharp Crista plantaris medialis and Crista plantaris lateralis (Fig. 4.18C). The sulcus forms the floor of the Canalis flexorius metatarsi that accommodates the bundle of tendons of the flexor muscles of the digits (Arthr. Annot. 178).
- (295) Sulcus extensorius (Fig. 4.18A). Synonymy: Sulcus longitudinalis dorsalis. In some taxa a shallow, longitudinal sulcus indents the dorsal (extensor) surface of the

Tarsometatarsus, and contains the intrinsic extensor muscles of the digits (see Annot. 287, 290, 294).

- (296) **Proc. calcaris** (Komárek, 1979). This is the osseous core of the metatarsal spur (Calcar metatarsale). The Proc. calcaris is ankylosed to the medial or caudal aspect of the tarsometatarsus in males of some galliform birds. See **Integ.** Annot. 89.
- (297) **Trochlea accessoria.** In piciform, cuculiform, and psittaciform birds the trochlea of the metatarsal bone of the fourth digit possesses an accessory trochlea (Milne-Edwards, 1867-71; Steinbacher, 1935). See Ballmann (1969a) for diagrams of atypical forms of the tarsometatarsal trochleae in several major taxa of birds including those listed above as well as coliiforms.
- (298) Canalis interosseus distalis. Synonymy: Canalis m. add. dig. ext. (Lambrecht, 1933). Longitudinally oriented canal that conducts the tendon of M. extensor brevis digiti IV and vessels into the lateral intertrochlear incisure. The upper end of the canal (Fig. 4.18C) is continuous with the Foramen vasculare distale (Art. Annot. 79); in some birds the canal is replaced by a groove.
- (299) Ossa digitorum pedis. The general avian phalangeal formula is: Hallux, two phalanges; Digitus secundus, three phalanges; Digitus tertius, four phalanges; Digitus quartus, five phalanges. (The hallux is lacking in most ratites).

The recommended scheme of numbering the phalanges is that of Berger (1966) and Lucas and Stettenheim (1972). This consists of designating: the most proximal phalanx of a digit as number 1, the next most distal number 2, etc.; in digit IV with five phalanges, the most distal (ungual) phalanx is number 5. The paper of Quinn and Baumel (1990), on the tendon-locking mechanism of the avian foot, follows their scheme. The scheme of Lennerstedt (1975) who designates the ungual phalanx as number 1, the next most proximal phalanx as number 2, etc. is less satisfactory.

(300) **Phalanx ungualis.** Synonymy: Phalanx terminalis or distalis. This usually claw-shaped phalanx (flattened in grebes, R. W. Storer pers. comm.) forms the bony core of the heavily keratinized claw (Unguis). See **Arthr.** Annot. 182, 183.

Sulcus neurovascularis (new term). The curved groove on each side of the Corpus of the ungual phalanx that carries nerves and vessels; located just beneath the podotheca of the claw.



Fig. 4.1. Cranium and mandible of the gull *Larus argentatus*. Drawing by Wm. P. Hamilton. A, cranium, right lateral aspect; B, ramus of mandible, right lateral aspect; C, mandible, dorsal aspect; D, left ramus of mandible, medial aspect. Observe that: (1) the Fossa temporalis of this form is subdivided by a pronounced crest (Annot. 104); (2) in the dried skeleton of gulls the region of the Fenestra rostralis mandibulae often demonstrates several of the individual components that form the mandible (see Annot. 52, Ossa mandibulae; Arthr. Annot. 48); (3) Proc. retroarticularis is not a prominent feature in gulls (see Arthr. Fig. 5.2D, mandible of *Anas*); however the Fossa caudalis is distinct; (4) Crista transversa fossae is the partition separating the caudal fossa from the articular fossa. With permission of Academic Press.

Abbreviations: mand., mandibulae; max. mand., maxillomandibularis; ophth., ophthalmici; orb., orbitalis; quad., quadrati; transv., transversa.



Fig. 4.2. Craniofacial skeleton and mandible of the Evening Grosbeak, Coccothraustes vespertina; left lateral view. Modified with permission from Witmer and Rose (1991).

Abbreviations: coron., coronoideus; Cr. nuch. transv., Crista nuchalis transversa; Cr. tom., Crista tomialis.; Fen. antorb., Fenestra antorbitalis; For., foramen; lacr., lacrimale; parocc., paroccipitalis; Rec., Recessus.



Fig. 4.3. Closeups of parts of the skull of a Greater Frigatebird, *Fregata minor.* A, Ear region and adjacent base of the cranium; left ventrolateral view. B, Quadratum, left side, medial view. C, Pars caudalis of left ramus of the mandible, dorsal view. Modified with permission from Witmer (1990).



Fig. 4.4. Base of the skull, palate, and maxillary jaw of the Crow, *Corvus brachy-rhynchos*; ventral aspect. Redrawn from Bock (1964). The leader for Lamina parasphenoidalis crosses the Proc. oticus of the quadrate bone. The depression in which the openings for the A. carotis cerebralis and A. ophthalmica externa are located is the Fossa parabasalis. The Foramen n. glossopharyngealis is just caudomedial to the Ostium canalis carotici. Tip of arrow rests on Ala parasphenoidalis.



Fig. 4.5. Occipital region of skull of the Great Blue Heron, *Ardea herodias*; caudal (occipital) view. Original drawing of L. M. Witmer.

Abbreviations: Cond. occ., Condylus occipitalis; Cr. nuc. sag./transv., Crista nuchalis sagittalis/transversus; For. n. hypogl./vagi, Foramen n. hypoglossi/vagi; For. pneu., Foramen pneumaticum; Incis. med. cond., Incisura mediana condyli; Lam., Lamina; Ost. can. carot., Ostium canalis carotici; Prom., Prominentia; Rec., Recessus.



Fig. 4.6. Cranial cavity of the pigeon, *Columba livia*. Caudal view; transverse section through the Foramen magnum, plane of section inclined rostrally. Redrawn from Baumel (1968). Observe: (1) the Fossa cranii rostralis (perforated by Fonticuli cranio-orbitales) houses the telencephalic hemispheres; (2) at its ventral end the carotid canal opens into Fossa parabasalis on the base of the skull and at its rostral end into Fossa hypophysialis (Annot. 99); (3) the proximal ganglia of cranial nerves X and IX occupy a common depression, Fovea ganglii vagoglossopharyngealis, in the floor of Fossa cranii caudalis (Annot. 39). With permission of Academic Press.



Fig. 4.7. Principal features of Os palatinum. A, *Diomedea nigripes*; B, *Crax fasciolata*; C, *Corvus brachyrhynchos*. Two views of each example are presented: the three figures in the left column depict the lateral view of the palatine bone; those in the right column are ventral views. See also Fig. 4.4 (maxillary jaw, palate, and skull base of the crow, *Corvus*).

Abbreviations: Ang., Angulus; Cr., Crista; Fen., Fenestra; Fos., Fossa. Redrawn from originals of R. L. Zusi with permission.



Fig. 4.8. Features of the cervical and thoracic vertebrae (see Figs. 4.9, 15 for notarial, synsacral, and caudal vertebrae).

- A, Thoracic vertebra 2, Larus, cranial aspect; redrawn from Boas (1929).
- B, Cervical vertebra 9, Gavia, cranial aspect; redrawn from Boas (1929).

#### Fig. 4.8. (cont.)

- C, Cervical vertebra 9, Meleagris, dorsal aspect; redrawn from Ghetie, et al. (1976).
- D, Generalized cervical vertebra, craniolateral oblique view, left side. Redrawn from Ghetie, et al. (1976).
- E, Atlas, Meleagris; cranial aspect; redrawn from Harvey, et al. (1968).
- F, Atlas, Meleagris; caudal aspect; redrawn from Harvey, et al. (1968).
- G, Axis, Meleagris; right lateral aspect; redrawn from Ghetie, et al. (1979). Arrows in C, D and G traverse the vertebral and transverse foramina. With permission of Academic Press.



Fig. 4.9. Notarium, Synsacrum, and Os coxae of the turkey, *Meleagris gallapavo;* ventral view. Redrawn from Harvey, et al. (1968). The dashed lines represent the Sync. ilioischiadica (see Fig. 4.15. On the left side of the figure the arrow inserted into Recessus caudalis fossae passes dorsal to the ledge of bone, Pila postrenalis (**Annot. 241**). With permission of Academic Press.



Fig. 4.10. Bones of the girdle of the thoracic limb of the eagle, *Aquila chrysaetos*. Redrawn from Howard (1929). A, Clavicula, caudal aspect; B, Coracoideum, left shoulder extremity, medial aspect. C, Coracoideum, left dorsal surface; D, Scapula, left cranial extremity, medial (costal) surface; E, Scapula, left lateral surface. The ankylosed left and right clavicles form the Furcula (see Annot. 162). With permission of Academic Press.

Abbreviations: acrocor, acrocoracoideus; acrocoracohum., acrocoracohumeralis; acrocor, acrocoracoacromiali; artic., articularis; glen. scap., glenoidalis scapulae; procor, procoracoideus.



Fig. 4.11. Sternum of the pigeon, *Columba livia*. Redrawn from original of J. J. Baumel. A. left lateral aspect; B. visceral (dorsal) aspect. Abbreviation: artic., articularis. With permission of Academic Press.



Fig. 4.12. Humerus of the gull, *Larus argentatus*. Original drawing of Wm. P. Hamilton. A. caudal surface; B. cranial surface. In *Larus* the impression for M. coracobrachialis cranialis is strongly etched and the pneumotricipital fossa is the dual type, non-pneumatic (see Annot. 188, 189).

Abbreviations: cor. brach., coracobrachialis; delt. pect., deltopectoralis; hum. tricep., humerotricipitalis; scap. tricep., scapulotricipitalis. With permission of Academic Press.



Fig. 4.13. Radius and Ulna of the vulture, *Cathartes aura;* right side. A. Ulna, dorsal aspect; B. Radius, dorsal aspect; C. Radius, ventral aspect; D. Ulna, ventral aspect. Original drawing of J. J. Baumel. Note that the terminology of these bones is based on the wing in the anatomical position (see Annot. 178 and **Gen. Intro.**).

Abbreviations: apon., aponeurosis; artc., articularis; bicep., bicipitale; collat., collateralis; cotyl., cotylaris; interos., interosseus; lig. ligamenti(-osa); remig., remigalis; tend., tendinosa(-us); tub. (tuber.), tuberculum(-i); uln., ulnaris.



Fig. 4.14. Carpal and metacarpal bones, and phalanges of the turkey, *Meleagris galla-pavo*; from left wing. Redrawn from Ghetie, et al. (1976). A. Dorsal aspect; B. ventral aspect. Note that the alular digit of the turkey has two phalanges (see Annot. 224). With permission of Academic Press.



Fig. 4.15. Pelvis (Os coxae + Synsacrum) and caudal vertebrae of the turkey, *Meleagris gallapavo*. Redrawn from Harvey, et al. (1968). A. lateral aspect, right side; B. dorsal aspect. In B the arrow traverses Canalis iliosynsacralis (Annot. 234.). In A notice the dual intervertebral foramina in the synsacral part of the vertebral column (see Annot. 144). With permission of Academic Press.



Fig. 4.16. Femur of the gull, *Larus argentatus;* right side. Original drawing of Wm. P. Hamilton. A. cranial aspect; B. caudal aspect. With permission of Academic Press. Abbreviations: antitroch., antitrochanterica; artic., articularis; gastroc., gastrocnemialis; iliotroch., iliotrochantericae; intermus., intermuscularis.



Fig. 4.17. Tibiotarsus and Fibula of the goose, *Branta canadensis;* left side. Original drawing of Wm. P. Hamilton. A. caudal aspect; B. proximal articular surfaces of both bones; C. distal extremity of tibiotarsus, lateral aspect; D. cranial aspect. With permission of Academic Press.

Abbreviations: artic., articularis; collat., collateralis.



Fig. 4.18. Features of the Tarsometatarsus of the eagle, *Aquila chrysaetos* (A-C) and the goose, *Anser caerulescens* (Chen hyperborea) (D); all bones from the left limb. Redrawn from Howard (1929). A, dorsal aspect; B, proximal end; C, plantar aspect; D. proximal end. At the distal end of C, the arrow traverses Canalis interosseus distalis (not labelled) (see Annot. 298) which conducts the tendon of M. ext. digiti IV. The Eminentia intercotylaris in the articulated intertarsal joint projects between the tibiotarsal condyles and is the distal attachment of Lig. intercondylare tibiometatarsale (**Arthr.** Annot. 171). With permission of Academic Press.

Abbreviations: impress., impressiones; intertroch., intertrochlearis; med. plant., medianoplantaris; par. hyp. tars., parahypotarsalis.

# **ARTHROLOGIA**

### JULIAN J. BAUMEL and ROBERT J. RAIKOW

With contributions from subcommittee members: P. Ballman, P. Bühler, D. A. Hogg, J. Kaman, P. Stettenheim, J. Vanden Berge, R. L. Zusi, G. A. Zweers.

This section in the first edition of NAA (1979) is entitled Arthrologia rather than Syndesmologia, the heading used in both the older editions of the human *Nomina Anatomica* (NA) (IANC, 1966) and *Nomina Anatomica Veterinaria* (NAV) (ICVGAN, 1973). The more recent editions of NA and NAV (IANC, 1983; ICVGAN, 1983) have also adopted the designation, Arthrologia. Trotter and Peterson (1966) pointed out that "Syndesmology" means the study of ligaments and, in the literal sense, is less comprehensive than the term "Arthrology", which encompasses the consideration of all joint structures and functions. They commented that anatomical terminology includes numerous structures in the body called ligaments (e.g., atrophied fetal blood vessels, thickenings of mesenteries, meninges, etc.) that are excluded from the category of syndesmology.

Feather ligaments. Avian arthrological terminology differs in a major respect from that of mammals owing to the presence of feathers. The large flight feathers of wing and tail constitute an exoskeleton of sorts. An elaborate system of ligaments connect these feathers to one another and to the bony skeleton. Not only do these ligaments anchor the feathers, but some are so disposed as to produce (passively) movements of opening and closing of the flight feathers (see Annot. 113, 115, 189-200 and terms under Ligamenta pennarum).

Flexion zones of the jaw apparatus (Fig. 2.). Avian skulls are characterized by several types of cranial kinesis that involve bending zones (**Zonae flexoria**) within bony elements. These are included here rather than with Osteologia for the sake of convenience. Strictly speaking, these features are not joints (Juncturae) in the usual sense because they are specialized regions within individual elements rather than places where separate elements are

conjoined. For this reason they are classified as Zonae rather than Juncturae (see Annot. 46).

The term "flexoria" replaces "elastica" of the NAA, 1979. Elasticity is a mechanical term used when elastic energy or resilience is involved, especially if an extension is directly proportional to a force or load. While these principles seem to play a role in the bendable bars of the avian skull, they are not necessarily a critical feature of these zones. Zona flexoria more accurately conveys the bending nature of the mechanism.

Naming of ligaments and joints; Hyphenation of names. Ligaments are named generally by indicating their osseous attachments (e.g., Lig. iliofemorale) or some aspect of their topography relative to the joint (e.g., Lig. collaterale ventrale).

Joints are often named by the bones or parts of bones that are united at the joint (e.g., Sut. vomeropalatina). In order to make clear what osseous elements are involved in the joint, some anatomical names must be hyphenated (e.g., Artc. quadrato-quadratojugalis, a term in which the hyphen clarifies that the joint connects Os quadratum with Os quadratojugale.

Juncturae ossium; Articulationes. Junctura(e) ossium (literally: junction of bones) is adopted in this work as the general term for all joints, i.e., fibrous, cartilaginous, osseous, and synovial. This term was used in the Basle Nomina Anatomica (BNA, 1895) and Jena Nomina Anatomica (JNA, 1936) terminologies (see Intro.). This usage, however, disagrees with the contemporary NA (IANC, 1983) and the NAV (ICVGAN, 1983); in both of these nomenclatures the former terms, "Diarthrosis", "Articulus", and "Junctura synovialis" are set aside, and "Articulationis" was adopted as the general term for all sorts of joints. In practice, however, the human and veterinary terminologies use "Articulationis" primarily to refer to synovial joints; this practice has been continued in this present NAA-2. See Annot. 1.

Types of joints. See Annot. 1 for a discussion of categories of joints. Cartilaginous, fibrous, and synovial joints are the only types of joints listed in the Nomina Anatomica Veterinaria (ICVGAN, 1983). A number of bones in the avian skeleton that are connected by means of cartilage and fibrous tissue in early postnatal life become secondarily united in later life by osseous fusion (ankylosis). In this work some of these modified primary joints in mature, adult birds are listed as "synostoses" in order to direct particular attention to them, since certain of them are important structural specializations peculiar to birds. For example, in such distinctively avian (among extant archosaurian forms) structures such as the notarium, synsacrum, pygostyle, furcula, carpometacarpus, and tarsometatarsus. These are of functional and evolutionary significance in avian structural design. Synchondroses refer to joints that were primarily cartilaginous, later modified, or that persist as cartilaginous joints in adult, mature birds.

Simplification of terms. In a number of instances the combining form of the names of various skeletal elements has been abbreviated in order to simplify and make more manageable the anatomical names of articulations and ligaments, and to clearly differentiate terms having a degree of similarity. For example, terms involving articulations between Radius and Ulna with Os carpi radiale and Os carpi ulnare (see Annot. 111) must be distinguished.

In the limbs, owing to the incorporation of carpal and tarsal bones with the bones of the hand, crus, and foot, compound names have been given to the skeletal elements. In order to avoid at least some of the cumbersome arthrological terms, abbreviated combining forms are used. For example, "tibio-" for "tibiotarso-" (see Annot. 155); "radiocarpo-" and "ulnocarpo-" for Os carpi radialis and Os carpi ulnaris (see Annot. 112).

In the literature the existing names for the various wrist (carpal) joints and their ligaments are confusing, difficult to learn and remember. The nomenclatural precepts of making anatomical names descriptive, meaningful, and an aid to memory were applied in developing the terminology of the wrist joints in the previous and present editions of the NAA. This terminology may be employed for birds generally, notwithstanding interspecific variation in the occurrence, attachments, and configuration of the ligaments of the wrist region. See Annot. 112.

In the head the combining form "jugo-" refers to any part of the jugal arch, not necessarily Os jugale proper (see Annot. 38, 40). The form "rostro-" refers to the Rostrum parasphenoidale (see Annot. 22, 23); "otico-" is used to refer to the otic complex of bones (see Annot. 9).

### TERMINOLOGY

#### TERMINI GENERALES

Aponeurosis Articulatio<sup>1</sup> (Intro.) Bursa synovialis Cartilago Discus Fibrocartilago Zona flexoria ossea<sup>45</sup> Junctura fibrosa<sup>1</sup> Syndesmosis Sutura Sutura serrata

Sutura squamosa

Sutura plana Gomphosis<sup>2</sup> Junctura cartilaginea<sup>4</sup> (Intro.) Synchondrosis **Symphysis** Juncturae ossium<sup>1</sup> **Synostosis** Junctura synovialis (Intro.) Articulatio simplex

Articulatio composita

Sutura foliata

Articulatio plana

## **TERMINI GENERALES (cont.)**

Articulatio spheroidea Articulatio ellipsoidea Articulatio condylaris Articulatio trochoidea Articulatio sellaris<sup>2</sup>

Ginglymus<sup>46</sup>

Cartilago articularis Cavitas articularis Discus articularis Meniscus articularis Capsula articularis

Membrana fibrosa Membrana synovialis Plica synovialis Villi synoviales Synovia Vasa articularia Nervi articulares

Ligamenta

Ligamentum collaterale Ligamentum interosseum Ligamentum extracapsulare Ligamentum intracapsulare Ligamentum elasticum<sup>3</sup>

Membrana Retinaculum<sup>114</sup> 144 165

# JUNCTURAE OSSIUM 1

(see Intro.)

# JUNCTURAE CAPITIS 4 (Osteo. Figs. 4.1-6)

#### SUTURAE CRANII<sup>4</sup>

Sut. supraoccipitoparietalis<sup>5</sup>

Sut. interparietalis<sup>6</sup>
Sut. interfrontalis<sup>7</sup>
Sut. frontoparietalis<sup>8</sup>
Sut. exoccipitosquamosa
Sut. parietosquamosa

Sut. frontosquamosa

Sut. laterospheno-squamosa Sut. laterospheno-frontalis

Sut. oticosquamosa Sut. oticoparietalis

Sut. supraoccipitosquamosa

### SYNCHONDROSES CRANII 4

Syncc. interoticae9

Sync. exoccipito-prootica

Sync. supraoccipito-exoccipitalis

Sync. prootico-laterosphenoidalis

Sync. otico-supraoccipitalis

Sync. prootico-basioccipitalis

Sync. basioccipito-parasphenoidalis

Sync. basioccipito-exoccipitalis Sync. exoccipito-parasphenoidalis

Sync. otico-parasphenoidalis

Sync. laterospheno-parasphenoidalis

Sync. basiparaspheno-

rostroparasphenoidalis

Sync. basispheno-parasphenoidalis

Sync. basispheno-

rostroparasphenoidalis

Sync. mesethmo-laterosphenoidalis

(Osteo. Annot. 88)

Sync. [Artc.]

interlaterosphenoidalis<sup>10</sup>

#### SUTURAE FACIEI MAXILLARIS 4 11

Sutt. faciei maxillaris<sup>11 4</sup>

Sut. frontopremaxillaris

Sut. frontonasalis

Sut. frontomesethmoidalis<sup>12</sup> Sut. fronto-ectethmoidalis Sut. lacrimo-ectethmoidalis<sup>13</sup>

Sut. lacrimofrontalis Sut. lacrimonasalis Sut. mesethmonasalis

Sut. mesethmoparasphenoidalis Sut. mesethmopremaxillaris

Sut. nasopremaxillaris
Sut. nasomaxillaris

Sut. internasalis<sup>14</sup>
Sut. intermaxillaris

Sut. interpremaxillaris

Sut. maxillopremaxillaris

Sut. vomeropalatina<sup>15</sup> <sup>23</sup>

Sut. vomeromaxillaris<sup>16</sup> Sut. palatomaxillaris

Sut. rostromaxillaris (Intro.)

Sut. palatopremaxillaris

Sut. interpterygoidea<sup>17</sup> Sut. interpalatina<sup>17</sup>

Sut. pterygopalatina<sup>17</sup>

Sut. intervomeralis<sup>18</sup>

Sut. jugomaxillaris

Sut. jugolacrimalis<sup>19</sup>

Sut. jugo-quadratojugalis

### SUTURAE FACIEI MANDIBULARIS (Osteo. Annot. 40, 42)

Sut. angulosplenialis

Sut. angulosuprangularis

Sut. articuloangularis

Sut. articulo-prearticulo-angularis

Sut. articulo-prearticulo-

supraangularis

Sut. articulosupraangularis

Sut. articuloprearticularis

Sut. dentosplenialis

Sut. dentoangularis

Sut. dentosupraangularis

Sut. supraangulosplenialis

Symphysis mandibularis<sup>21</sup>

#### SYNCHONDROSES FACIEI

Sync. rostromesethmoidalis<sup>22</sup>

Sync. mesethmo-ectethmoidalis

# ARTICULATIONES MAXILLAE ET PALATI 11 (Fig. 5.1; Osteo. Figs. 4.1, 4.7)

Artc. jugolacrimalis<sup>19</sup>

Lig. jugolacrimale<sup>20</sup>

Artc. vomerorostralis<sup>23</sup>

Lig. mesethmovomerale

[L. vomerale]<sup>23</sup>

Artc. quadrato-quadratojugalis<sup>24</sup>

Lig. interosseum<sup>24</sup>

Artc. quadrato-squamoso-otica<sup>25</sup>

Lig. quadratosphenoidale<sup>25</sup>

Lig. quadratotemporale<sup>25</sup>

Artc. quadratopterygoidea<sup>26</sup>

Artc. palatorostralis<sup>29</sup> <sup>23</sup>

# ARTICULATIONES MAXILLAE ET PALATI 11 (Fig. 5.1: Osteo. Figs. 4.1, 4, 7) (cont.)

Artc. pterygorostralis<sup>27</sup> <sup>23</sup>

Artc. pterygobasipterygoidea<sup>27</sup>

Artc. pterygopalatina<sup>28</sup>

Lig. mesethmopalatinum

[L. orbitale]<sup>29</sup>

Lig. palatomaxillare<sup>47</sup>

Lig. palatolacrimale

Lig. suborbitale<sup>30</sup> Lig. maxillomandibulare<sup>30</sup>

Membrana circumorbitalis<sup>31</sup>

Septum orbitale<sup>31</sup>

Membrana temporalis<sup>31</sup>

## ARTICULATIONES MANDIBULI ET OSSIS QUADRATI

(see Sutt. faciei mand.)

Artc. [Synd.]

mandibulosphenoidalis<sup>32</sup>

Lig. mandibulosphenoidale<sup>32</sup>

Lig. occipitomandibulare<sup>37</sup>

Membrana postmeatica<sup>37</sup>

Lig. intramandibulare<sup>34</sup>

Synd. mandibulo-occipitalis<sup>33</sup>

Lig. mandibulo-occipitale<sup>33</sup>

Lig. postorbitale<sup>42</sup>

Lig. orbitoquadratum<sup>42</sup>

Lig. zygomaticomandibulare<sup>43</sup>

Artc. ectethmomandibularis44

Artc. quadratomandibularis<sup>35</sup>

Lig. quadratomandibulare

caudale36

Lig. quadratomandibulare

rostrale36

Lig. quadratomandibulare

laterale36

Lig. jugomandibulare mediale<sup>38</sup>

Lig. jugomandibulare laterale<sup>40</sup>

Lig. lacrimomandibulare<sup>41</sup>

Lig. laterospheno-jugale<sup>34</sup>

Meniscus articularis<sup>39</sup>

Ligamenta columellae (Sens.

Auris media)

# **ZONAE FLEXORIAE OSSIUM FACIEI 45** (Fig. 5.2)

Zona flexoria craniofacialis<sup>46</sup> Zona flexoria craniofacialis

lateralis46

Zona flexoria craniofacialis medialis46

Zonae flexoriae maxillares<sup>47</sup> 11

Zona flexoria rostrodorsalis<sup>47</sup>

Zona flexoria rostroventralis<sup>47</sup> Zona flexoria dorsomedialis<sup>47</sup> Zona flexoria nasalis dorsalis<sup>46</sup> Zona flexoria nasalis ventralis<sup>46</sup> Zona flexoria arcus jugalis<sup>47</sup> Zona flexoria palatina<sup>47</sup> Lig. palatomaxillare<sup>47</sup>

## ZONAE FLEXORIAE OSSIUM FACIEI 45 (Fig. 5.2) (cont.)

Zonae flexoriae mandibulares<sup>48</sup>
Zona flexoria intramandibularis
rostralis<sup>48</sup>
Zona flexoria intramandibularis
caudalis<sup>48</sup>

Synd. intramandibularis caudalis<sup>49</sup> Lig. intramandibulare

# JUNCTURAE APPARATUS HYOBRANCHIALIS [HYOLINGUALIS]<sup>50</sup> (see Myol. Fig. 2b; and Annot. 25)

Synd. interparaglossalis<sup>51</sup> Artc. paraglosso-basihyalis<sup>51</sup>

Lig. paraglosso-basihyale ventrale

Lig. paraglosso-basihyale dorsale

Sync. [Artc.] basihyo-urohyalis<sup>52</sup>

Artc. cerato-basihyalis<sup>53</sup>

Sync. [Artc.] epi-ceratobranchialis<sup>54</sup>

Synd. urohyocricoidea<sup>57</sup> Lig. arytenoparaglossale<sup>58</sup>

# JUNCTURAE LARYNGIS 55 (see Resp. Larynx and Figs. 8.2-7)

# JUNCTURAE COLUMNAE VERTEBRALIS<sup>59</sup> JUNCTURAE INTERVERTEBRALES GENERALES (Fig. 5.10)

Artc. intercorporalis<sup>60</sup>
Capsula articularis
Lig. collaterale<sup>60</sup>
Meniscus intervertebralis<sup>61</sup>
Fenestra centralis
Anulus [Annulus] fibrosus<sup>61</sup>
Discus intervertebralis<sup>62</sup>
(Lig. suspensorium corporum

Ligg. dorsalia vertebrae
Lig. elasticum interspinale
Lig. elasticum interlaminare<sup>63</sup>

Lig. elasticum obliquum

Lig. elasticum transversum Membrana interlaminaris

Lig. interspinosum

Ligg. lateralia vertebrae

Lig. laterodorsale Lig. interansale<sup>63</sup>

Ligg. ventralia vertebrae

Lig. ventrolaterale<sup>63</sup>

Lig. intercristale ventrale<sup>63</sup>

Artc. zygapophysialis<sup>65</sup>

Capsula articularis

Meniscus articularis<sup>66</sup>

# JUNCTURAE SPECIALES REGIONIS CERVICALIS Osteo. (Fig. 4.8)

vertebralium)62

Artc. atlanto-occipitalis<sup>64</sup>
Membrana atlanto-occipitalis
ventralis<sup>67</sup>

Membrana atlanto-occipitalis dorsalis<sup>67</sup>

Fibrocartilago atlantis<sup>64</sup>

### JUNCTURAE SPECIALES REGIONIS CERVICALIS Osteo. (Fig. 4.8) (cont.)

Artcc. atlantoaxiales<sup>68</sup> Artc. atlantodentalis<sup>68</sup> Artc. intercorporea<sup>68</sup> Artc. zygapophysialis<sup>65</sup> Membrana atlantoaxialis

Lig. apicis dentis Lig. transversum atlantis<sup>69</sup> Lig. collaterale atlantoaxiale<sup>69</sup> Synos. costotransversaria<sup>70</sup> Artc. costotransversaria<sup>70</sup>

# JUNCTURAE NOTARII 71 (Osteo. Fig. 4.9)

Synos. intercorporalis Synos. intertransversaria Synos. [Sut.] interspinalis Lig. intercristale ventrale<sup>72</sup> Artc. notariosynsacralis<sup>71</sup>

## JUNCTURAE SYNSACRI 73 (Osteo. Fig. 4.9)

Synos. intercorporalis<sup>74</sup> Synos. intertransversaria Synos. interspinalis<sup>74</sup> Symphysis postsynsacralis<sup>75</sup>

Sut. [Synos.] iliosynsacralis<sup>76</sup> Ligg. iliosynsacralia<sup>76</sup> Synos. interiliospinalis<sup>77</sup>

### JUNCTURAE CAUDAE<sup>75</sup> (Osteo. Figs. 4.9, 15)

Lig. intertransversarium Synoss, pygostyli<sup>78</sup>

Artc. propygostylaris<sup>75</sup> Symphysis postsynsacralis

# JUNCTURAE COSTARUM<sup>79</sup> (Osteo. Figs. 4.8, 9)

Sync. capitis costae<sup>79</sup> Lig. collaterale<sup>79</sup> Artc. costotransversaria<sup>79</sup> Sut. iliocostalis<sup>80</sup>

Sync. intercostalis<sup>81</sup> (Fig. 4.9) Sut. costouncinata<sup>82</sup> Lig. triangulare<sup>82</sup> Artc. sternocostalis<sup>83</sup>

# JUNCTURAE CINGULI MEMBRI THORACICI JUNCTURAE STERNI (Osteo. Fig. 4.11)

Membranae incisurarum

cisurarum Lig. corpus claviculae<sup>85</sup> [fenestrarum] sterni<sup>84</sup> | Synd. sternoclavicularis<sup>85</sup>

#### JUNCTURAE STERNI (Osteo. Fig. 4.11) (cont.)

Lig. sternoclaviculare

Synos. interclavicularis (Osteo.

Annot. 162-163)

Membrana sternocoracoclavicularis<sup>86</sup>

Lig. sternoprocoracoideum<sup>86</sup>

Lig. sternocoracoideum mediale<sup>86</sup>

Lig. intercoracoideum<sup>86</sup>

Lig. sternocoracoideum longum<sup>86</sup>

Lig. sterno-acrocoracoideum86

Lig. sternoclaviculare longum<sup>86</sup>

Lig. sternoacromiale<sup>86</sup>

Lig. coracoideum<sup>86</sup>

Lig. acrocoraco-procoracoideum<sup>87</sup>

Membrana cristoclavicularis<sup>88</sup>

Artc. sternocoracoidea89

Capsula articularis

Artc. intercoracoidea90

Ligg. collateralia sternocoracoidea<sup>91</sup>

Lig. sternocoracoideum internum

Lig. sternocoracoideum externum<sup>91</sup> 89

Lig. sternocoracoideum laterale<sup>92</sup> 89

### **JUNCTURAE REGIONIS OMALIS (Fig. 5.3)**

Synd. [Artc.] coracoscapularis<sup>93</sup> Cavitas glenoidalis<sup>93</sup> 100

Lig. coracoscapulare interosseum<sup>93</sup>

Labra cavitatis glenoidalis<sup>93</sup>

Labrum coracoideum Labrum scapulare

Lig. coracoscapulare dorsale<sup>94</sup>

Lig. coracoscapulare ventrale<sup>94</sup>

Lig. acrocoraco-acromiale<sup>95</sup>

Synd. [Artc.]

acrocoracoclavicularis<sup>96</sup>

Lig. acrocoracoclaviculare

superficiale

Lig. acrocoracoclaviculare

profundum

Synd. procoracoclavicularis<sup>97</sup>

Lig. procoracoclaviculare<sup>97</sup> Synd. acromioclavicularis<sup>98</sup>

Lig. acromioclaviculare

Lig. scapuloclaviculare dorsale<sup>99</sup>

# JUNCTURAE ALAE (Figs. 5.3-5)

ARTICULATIO OMALIS [Artc. coraco-scapulo-humeralis]<sup>100</sup> (see Symph. coracoscap.; and Osteo. Annot. 167-171)

Capsula articularis Cavitas glenoidalis

Lig. coracoscapulare interosseum<sup>93</sup> Fibrocartilago humeroscapularis<sup>100</sup>

Lig. acrocoracohumerale<sup>101</sup>

Bursa acrocoracoidea<sup>101</sup>

Lig. coracohumerale dorsale<sup>102</sup>

Lig. scapulohumerale dorsale<sup>102</sup>

Lig. scapulohumerale caudale

Lig. scapulohumerale laterale

Lig. humeroscapulare transversum

Bursa supracoracoidea<sup>101</sup>

# ARTICULATIO OMALIS [Artc. coraco-scapulo-humeralis]<sup>100</sup> (see Symph. coracoscap.; and Osteo. Annot. 167-171) (cont.)

Plicae synoviales et Ligg.
intracapsularia<sup>103</sup>
Plica synovialis coracoidea
Plica synovialis scapularis
Plica synovialis transversa

Lig. intracapsulare coracoideum craniale
Lig. intracapsulare coracoideum caudale

## JUNCTURAE CUBITI<sup>104</sup> (see Fig. 5.4 and Ligg. acces. alae)

Artc. humeroulnaris<sup>104</sup>

Artc. humeroradialis<sup>104</sup>

Artc. radioulnaris proximalis<sup>104</sup>

Capsula articularis

Lig. collaterale ventrale<sup>105</sup>

Lig. collaterale dorsale<sup>106</sup>

Lig. craniale cubiti<sup>107</sup>

Lig. limitans cubiti<sup>141</sup>

Lig. radioulnare transversum<sup>109</sup>

Meniscus radioulnaris<sup>108</sup>

Trochlea humeroulnaris<sup>110</sup> (Fig. 5.4)

Pars humeralis<sup>110</sup>

Pars ulnaris<sup>110</sup>

Pars humeralis accessoria<sup>110</sup>

Lig. tricipitale<sup>111</sup>

## JUNCTURAE CARPI ET MANUS<sup>112</sup> (Fig. 5.5)

Aponeurosis ventralis<sup>113-115</sup>

Retinaculum flexorium<sup>114</sup>

Aponeurosis ulnocarporemigalis<sup>115</sup>

Digitationes remigales<sup>196</sup>

Synd. radioulnaris distalis

Lig. radioulnare interosseum<sup>116</sup>

Artcc. ulnocarpalis et

radiocarpalis<sup>112</sup>

Artc. ulnocarpalis

Lig. ulno-ulnocarpale

proximale<sup>117</sup>

Lig. ulno-ulnocarpale distale<sup>117</sup>

Lig. ulno-radiocarpale

ventrale<sup>118</sup>

Lig. ulno-radiocarpale

interosseum<sup>119</sup>

Lig. ulno-metacarpale

ventrale<sup>120</sup>

Artc. radiocarpalis<sup>121</sup>

Lig. radio-radiocarpale craniale

Lig. radio-radiocarpale ventrale

Lig. radio-radiocarpale dorsale<sup>121</sup>

Artcc. intercarpales (Osteo.

Annot. 214)

Meniscus intercarpalis<sup>122</sup>

(Syncc. intercarpales)<sup>123</sup>

Lig. menisco-metacarpale Artcc. carpo-carpometacarpales<sup>124</sup> 112

Lig. radiocarpo-metacarpale

craniale

Lig. radiocarpo-metacarpale

dorsale

Lig. radiocarpo-metacarpale

ventrale<sup>125</sup>

Lig. ulnocarpo-metacarpale

ventrale<sup>126</sup>

Lig. ulnocarpo-metacarpale

dorsale<sup>127</sup>

### JUNCTURAE CARPI ET MANUS<sup>112</sup> (Fig. 5.5) (cont.)

Juncturae carpometacarpi

Synoss. carpometacarpales<sup>128</sup> Synos, intermetacarpalis

proximalis<sup>129</sup>

Synos. intermetacarpalis distalis<sup>129</sup>

Artcc. metacarpophalangeales 130

Artc. metacarpophalangealis

 $alulae^{131}\\$ 

Lig. obliquum alulae<sup>131</sup>

Lig. collaterale caudale

Artc. metacarpophalangealis digiti maioris

Lig. collaterale ventrale<sup>132</sup>

Lig. collaterale caudale<sup>133</sup>

Lig. obliquum intra-articulare<sup>134</sup>

Meniscus articularis<sup>135</sup>

Artc. metacarpophalangealis digiti minoris

Lig. collaterale ventrale

Lig. collaterale dorsale

Juncturae interphalangeales manus

Artc. interphalangealis lateralis 136

Lig. interosseum

Artc. interphalangealis digiti

majoris<sup>137</sup>

Lig. collaterale ventrale

Lig. collaterale craniale

Lig. collaterale caudale<sup>138</sup>

Meniscus articularis

Lig. interphalango-

remigale<sup>139</sup> 113

#### LIGAMENTA ACCESSORIA ALAE140

Aponeurosis ventralis carpalis<sup>113-115</sup> Aponeurosis dorsalis

antebrachii 194

Digitationes remigales 194

Aponeurosis ventralis antebrachii 194

Lig. propatagiale<sup>141</sup>

Pars elastica<sup>141</sup> Lig. limitans cubiti<sup>141</sup>

Lig. humerocarpale<sup>143</sup> 195

Lig. m. extensoris longi digiti

majoris<sup>145</sup>

Lig. m. ulnometacarpalis dorsalis<sup>145</sup>

Lig. m. extensoris metacarpi

ulnaris<sup>145</sup>

Membrana interossea antebrachii

Retinaculum m. scapulo-

tricipitis<sup>142</sup> 111

Retinaculum m. extensoris metacarpi

ulnaris<sup>144</sup>

Septum humerocarpale<sup>195</sup>

Trochlea humeralis (see Junct. cubiti)

# JUNCTURAE CINGULI MEMBRI PELVICI 146

(see Juncturae synsacri)

### JUNCTURAE OSSIS COXAE (Osteo. Fig. 4.15)

Sut. iliosynsacralis<sup>73</sup> Sync. ischiopubica Sut. ischiopubica<sup>147</sup> Membrana ischiopubica<sup>147</sup>
Lig. ischiopubicum<sup>147</sup>
Sync. ilioischiadica<sup>148</sup>

### JUNCTURAE OSSIS COXAE (Osteo. Fig. 4.15) (cont.)

Membrana ilioischiadica<sup>148</sup> Sync. iliopubica (Symphysis pubica)<sup>149</sup> (Symphysis ischiadica)<sup>150</sup> Membrana acetabuli<sup>151</sup>

# JUNCTURAE MEMBRI PELVICI JUNCTURA COXAE 152 (Fig. 5.6)

Artc. coxocapitalis<sup>152</sup>
Artc. coxotrochanterica<sup>152</sup>
Capsula articularis
Labrum acetabulare

Lig. iliofemorale<sup>153</sup> Lig. pubofemorale Lig. ischiofemorale<sup>153</sup> Lig. capitis femoris

# JUNCTURAE GENUS 154 (Fig. 5.7)

Artc. femorotibialis<sup>155</sup>
Artc. femorofibularis<sup>156</sup>
Artc. femoropatellaris
Capsula articularis
Lig. patellae<sup>158</sup>
Retinacula patellae
Lig. collaterale mediale
Lig. collaterale laterale
Corpus adiposum retropatellare<sup>158</sup>
Meniscus medials

Cornu caudale Lig. meniscotibiale caudale

Lig. meniscofemorale
Meniscus lateralis<sup>159</sup>

Lig. meniscotibiale craniale
Lig. meniscofibulare caudale
Lig. meniscocollaterale<sup>160</sup>
Lig. meniscofemorale
Lig. transversum genus
Lig. cruciatum craniale
Lig. cruciatum caudale

# JUNCTURAE ET LIGAMENTA INTRACRURALES (see Artc. tib-fib.)

Artc. tibiofibularis<sup>157</sup> Lig. tibiofibulare craniale<sup>157</sup> Lig. tibiofibulare obliquum<sup>157</sup>

Synd. tibiofibularis

Cornu craniale

Lig. tibiofibulare interosseum<sup>161</sup>

Foramen interosseum proximale<sup>162</sup> Foramen interosseum distale<sup>162</sup> Membrana interossea cruris Retinaculum extensorium tibiotarsi<sup>187</sup>

#### JUNCTURAE TARSI ET PEDIS (Figs. 5.8, 9)

Artc. cartilago-tibiotarsalis<sup>163</sup> Cartilago tibialis<sup>164</sup> Os sesamoideum intertarsale<sup>166</sup> Lig. cartilago-sesamoideum

### JUNCTURAE TARSI ET PEDIS (Figs. 5.8, 9) (cont.)

Retinaculum flexorium<sup>165</sup>
Retinaculum laterale<sup>165</sup>
Retinaculum mediale<sup>165</sup>
Lig. metatarso-sesamoideum<sup>166</sup> <sup>169</sup>
Lig. cartilago-metatarsale<sup>166</sup> <sup>169</sup>
Articulatio intertarsalis<sup>167</sup>
Capsula articularis<sup>165</sup>
Meniscus medialis<sup>168</sup>
Cornu craniale
Cornu caudale

Cornu craniale
Cornu caudale
Lig. meniscosesamoideum<sup>169</sup> <sup>166</sup>
Lig. meniscotibiale<sup>170</sup> <sup>168</sup>
Crus mediale
Crus laterale
Lig. tibiometatarsale intercondylare<sup>171</sup>
Lig. intercondylare transversum
Lig. collaterale mediale<sup>172</sup>
Lig. collaterale laterale<sup>172</sup>
Lig. accessorium<sup>172</sup>

#### JUNCTURAE TARSOMETATARSALES ET INTERMETATARSALES<sup>173</sup>

Synos. tarsometatarsalis<sup>173</sup> Synos. intermetatarsalis<sup>173</sup>

Meniscus lateralis<sup>168</sup>

Synos. intermetatarsalis hallucis<sup>174</sup>

Lig. interosseum<sup>175</sup>

Lig. elasticum metatarsi I<sup>175</sup> Lig. transversum metatarsale<sup>176</sup>

Canalis flexorius metatarsi<sup>178</sup>

Vagina fibrosa flexoria<sup>178</sup> Canalis flexorius plantae<sup>178</sup>

Artcc. metatarso-

phalangeales<sup>180</sup> 182 179

Aponeurosis plantaris<sup>179</sup>

Corpus adiposum plantare

profundum<sup>179</sup>

Corpus adiposum plantare

superficiale<sup>179</sup>

Lig. collaterale<sup>181</sup>

Lig. plantare<sup>182</sup> (Fig. 9)

Vagina fibrosa<sup>182</sup>

Os cuneatum<sup>182</sup>

Lig. obliquum hallucis<sup>177</sup>

Lig. rectum hallucis

Artcc. interphalangeales

Lig. collaterale Lig. plantare<sup>182</sup>

Vagina fibrosa<sup>182</sup>

Lig. elasticum extensorium

unguis<sup>183</sup>

Lig. elasticum tendinis flexoris<sup>183</sup>

### LIGAMENTA ACCESSORIA MEMBRI PELVICI

Ansa m. iliofibularis<sup>186</sup>
Pars femoralis distalis
Pars femoralis proximalis
Pars fibularis
Lig. inguinale<sup>184</sup>
Membrana iliocaudalis<sup>185</sup>

Retinaculum m. fibularis

[peronei]<sup>188</sup>

Retinaculum extensorium

tibiotarsi<sup>187</sup>

Retinaculum extensorium

tarsometatarsi<sup>188</sup>

#### LIGAMENTA PENNARUM<sup>189</sup>

Ligg. remigium primariorum Lig. elasticum interremgale major<sup>190</sup> Aponeurosis ventralis<sup>113</sup> Retinaculum flexorium<sup>114</sup> Aponeurosis ulnocarporemigalis<sup>115</sup> 113

Digitationes remigales Retinacula ulnocarpo-remigalia<sup>191</sup> Aponeurosis interphalangoremigalis<sup>192</sup> 139 Digitationes remigales Lig. interphalango-remigale<sup>139</sup> 192 Ligg. phalangoremigalia distalia<sup>193</sup> Lig. elasticum intertectricale

Lig. elasticum intertectricale carpale 198

Ligg. remigium secondariorum

Aponeurosis ventralis antebrachii 194 Digitationes remigales Aponeurosis dorsalis antebrachii 194 Digitationes remigales Lig. elasticum interremigale major<sup>190</sup> Lig. elasticum interremigale minor<sup>197</sup> Digitationes remigales Septum humerocarpale<sup>195</sup> 143 Digitationes remigales<sup>196</sup> Lig. cubiti<sup>199</sup> Trochlea humeroulnaris<sup>110</sup> (see Artc. cubiti) Pars humeralis 110 Pars ulnaris<sup>110</sup> Pars humeralis accessoria<sup>110</sup>

Lig. elasticum interrectricale<sup>200</sup>

#### **ANNOTATIONS**

Ligg. rectricium

- (1) Juncturae ossium; Junctura(e); Articulatio(nes). "Juncturae ossium" is the general term for all types of joints between bones. Some of the flexion zones of the skull are located between bones, others within bones (see Annot. 45 ff.). As a part of a heading for a group of joints the simple, shortened form "Juncturae" is used (e.g., Juncturae columnae vertebralis). The term "Junctura ossea" (literally "bony joint") refers in the strict sense to a synostosis or the nonmoveable fusion of bones to one another. "Articulatio" refers to a freely moveable synovial joint. See Arthr. Intro. and Annot, 4 for a discussion of these terms.
- (2) Gomphosis. Examples of the peg and socket joint in birds are the Artc. quadrato-quadratojugalis and Artc. ectethmomandibularis. See Annot. 24, 25.

Artc. sellaris. This is a synovial joint whose articular surfaces have the configuration of a saddle. Each of the two apposing bones making up the joint has two surfaces at right angles to each other, one concave, the other convex. See, for example, intercorporal joints of cervical vertebrae.

- (3) Lig. elasticum. Elastic ligaments are found in many parts of the avian body; e.g., in the propagaial skin fold, vertebral column, phallus (Masc. Annot. 46), and pedal digits, in certain joint capsules and ligaments of limb joints, as well as those connecting the flight feathers of both wing and tail. See Annot. 93, 141, 183, 190, 197, 198, 200.
- (4) Juncturae capitis; Suturae et Synchondroses cranii. The avian skull is characterized by a high degree of fusion (synostosis) of its separate elements that occurs in early life; most often the fibrous joints (suturae and syndesmoses) and cartilaginous

- joints (synchondroses) of many parts of the skull, in particular, and other parts of the postcranial skeleton (see **Intro.**), become ankylosed, often so completely, that traces of the joints are obliterated in mature individuals.
- (5) Sut. supraoccipitoparietalis. Synonymy: Sutura lambdoidea. A pronounced Crista nuchalis transversa occurs along this suture in certain birds (e.g., Gavia, Morus, Ardea, Anser, Ceryle.) See Osteo. Annot.17.
- (6) Sut. interparietalis. Synonymy: Sutura sagittalis.
- (7) Sut. interfrontalis. Synonymy: Sutura metopica.
- (8) Sut. frontoparietalis. Synonymy: Sutura coronalis.
- (9) Syncc. interoticae. The so-called "periotic" complex of otic bones (Os prootica, Os epiotica, and Os opisthotica) coalesce into a unit that contains most of the inner ear structures. See Jollie (1957); Sandoval (1963); Müller (1963); Osteo. Annot. 105.
- (10) Sync. interlaterosphenoidalis. In addition to the joint between the paired laterosphenoid bones, other paired "sphenoid" elements of the base of the fetal skull are connected by cartilage in earlier development; therefore several different "Syncc. intersphenoidales" exist (Jollie, 1957; Müller, 1963) that later become ankylosed. See Osteo. Annot. 88.
- (11) Sut. faciei maxillaris; Artcc. maxillae et palati; Zonae flexoriae maxillae. "Maxillary" in this sense refers to the entire upper jaw/palatal skeleton (Osteo. Annot. 35).
- (12) **Sut. frontomesethmoidalis.** The rostral end of the mesethmoid plate possesses a horizontal Lamina dorsalis, perpendicular to the interorbital septum, that articulates broadly with the ventral surface of the frontal bones, just caudal to the craniofacial hinge (seen readily in, for example, *Cathartes, Gallus, Anser, Ardea*) (Annot. 46; and **Osteo.** Annot. 109).
- (13) Sut. lacrimo-ectethmoidalis. Synonymy: Sut. prefronto-ectethmoidalis. The lacrimal and ectethmoid bones are joined along much of their dorsoventral extents in some birds (e.g., Columba, Corvus, Crotophaga); whereas only their ventral ends are joined in such forms as Larus delawarensis and Buteo lineatus. See Newton (1896: 876) and Osteo. Annot. 110, 111 regarding the use of "lacrimal/prefrontal".
- (14) **Sut. internasalis.** The side-to-side apposition of the nasal bones in the median plane is apparently of rare occurrence. An internasal suture does occur in *Falco tinnunculus* near the craniofacial hinge (Suschkin, 1899) and in the spoonbill, *Platalea* (Hofer, 1945).
- (15) **Sut. vomeropalatina.** In neognathous birds the vomer is commonly fused to the rostral end of Os palatinum which rides along the ventrum of Rostrum parasphenoidale; e.g., *Larus*, anseriforms (see Hofer, 1949). Actually the part of the palatine with which the vomer articulates is the so-called antepterygoid (Jollie, 1957; Bock, 1964) which is incorporated into the palatine in adult neognathous birds. See Annot. 17, 28 for vomeropalatine relationships of paleognathous birds; and **Osteo**. Annot. 60.
- (16) **Sut. vomeromaxillaris.** This paired joint is located between the maxillopalatine process of the maxilla and the vomer as in passerine and ciconiiform birds. See **Osteo.** Fig. 4.4.

(17) **Sut. interpalatina.** Located between the choanal parts of the right and left palatine bones in the region where they articulate with the parasphenoid rostrum (e.g., *Gavia, Anser*, and *Corvus*). The interpalatine suture becomes ankylosed in some neognathine birds (e.g., *Eudocimus, Morus, Caprimulgus*); in most ratites the palatines are separated from one another by the vomer and the pterygoids. See Hofer (1945, 1954) and Bock (1963) for different palatal configurations. See also Annot. 28 and **Osteo.** Figs. 4.4, 7. Sut.pterygopalatina.

Sut. interpterygoidea. At their articulations with the parasphenoid rostrum, the paired pterygoid bones also articulate with one another in certain birds, e.g., psittacids.

(18) **Sut. intervomeralis.** In mature birds in which the vomer is present it is a single midline structure related to the distal part of the parasphenoid rostrum; however, in fetal life the vomers are paired. The right and left vomers ultimately fuse except in woodpeckers (e.g., *Picus minor*; Coues, 1927) in which they persist as separate elements on either side of the mesethmoid septum. In mature dried skulls of forms such as *Gallinago*, *Larus*, and *Corvus* some evidence of the original paired elements can be distinguished in the form of a notch or cleft at either the rostral or caudal end of the vomer. See **Osteo.** Annot. 68, 69.

Sut. intrapterygoidea; Sut. pterygopalatina. See Osteo. Annot. 60, 61 for discussion of these terms.

- (19) Artc. jugolacrimalis; Sut. jugolacrimalis. Synonymy: Sut. [Artc.] jugopre-frontalis. The lacrimal bone is firmly anchored by ligaments (occasionally synostosed) to the jugal arch in some forms: penguins (Zusi, 1974), Pelecanus, Balaeniceps; however, this does not hinder kinesis since the lacrimal moves with the arch as an integral part of the upper jaw (Bühler, 1970). In other birds (e.g., Cathartes, Pelecanus, Corvus) the lacrimal articulates with the jugal arch via a lengthy ligament (Annot. 20) that allows movement between the two bones, hence a syndesmosis rather than a suture. The ligament is attached to the prominent Tuberculum lacrimale on the jugal arch in, e.g., Pelecanus, Rhamphastos. In other taxa the joint between lacrimal and jugal arch is a synovial articulation (e.g., Gavia, Morus, and tinamous; Beddard, 1898). See Osteo. Annot. 111; Davids (1952).
- (20) Lig. jugolacrimale (Zweers, 1974). Synonymy: Lig. jugoprefrontale (NAA, 1979). Connects Tuberculum lacrimale of Arcus jugalis (Osteo. Annot. 11) with the ventral tip of Os lacrimale (e.g., anseriform birds). Ghetie, et al. (1976) describe Membrana lacrimomaxillaris rostral to Lig. jugolacrimale in *Anser*; the membrane should be called Membrana jugolacrimale.
- (21) Symphysis mandibularis. Synonymy: Sut. intermandibularis; Sut. interdentalis. This is actually a synchondrosis between the right and left Ossa dentalia; these bones have overgrown and covered the cartilaginous joint of earlier development. Ultimately the symphysis is ossified, producing a synostosis in adults of most birds. See Osteo. Fig. 4.1.
- (22) Sync. rostromesethmoidalis. Synonymy: Sync. mesethmo-rostroparasphenoidalis. Originally a cartilaginous joint between the parasphenoid rostrum and the mesethmoid plate which later become synostosed.
- (23) Artc. vomerorostralis. Synonymy: Artc. vomero-rostroparasphenoidalis (NAA, 1979). All birds that have been studied so far show a movable articulation between the vomer and the ventral edge of Rostrum parasphenoidale. See Hofer (1949) for discussion of articulations of the vomer in different taxa.

In many birds the palatine and pterygoid bones as well as the vomer contact the parasphenoid rostrum; such contact takes the form of a sliding joint that is part of the kinetic mechanism of the skull.

**Lig. mesethmovomerale** [Lig. vomerale] (Fig. 5.1). Extends from ventrocranial edge of the interorbital septum to the vomer; occurs in anseriforms (Fisher and Goodman, 1962; Zweers, 1974).

(24) Artc. quadrato-quadratojugalis. Often a synovial joint in which a peg or condyle of Os quadratojugale fits into a cotyla in the lateral aspect of the quadrate bone. In *Sturnus* (De Kock, 1955) and in *Caprimulgus* (Bühler, 1970) this joint is a syndesmosis, not a synovial joint. See Osteo. Fig. 4.4.

**Lig. interosseum.** This is a strong ligament connecting the condyle of the quadratojugal to the bottom of its socket in the quadrate bone (e.g., *Anser, Cairina*).

(25) Artc. quadrato-squamoso-otica. In certain avian taxa each of the two condyles of Proc. oticus of the Quadratum articulates independently of the other; therefore, two separate joint cavities are present: Art. quadratosquamosa and Artc. quadrato-otica (e.g., Columba). In other taxa both condyles of the quadrate and their receiving surfaces on the otic and squamosal bones are enclosed within one common articular capsule (e.g., Gallus, Corvus).

**Lig. quadratosphenoidale.** In the pigeon this is a short, broad ligament which connects the caudomedial side of the quadrate to the Os parasphenoidale at the point where the latter forms the rostrodorsal border of the tympanic cavity (van Gennip, 1986).

Lig. quadratotemporale. Lig. quadratotemporale connects Proc. suprameaticus to the caudal border of the otic process of the quadrate of the pigeon (van Gennip, 1986).

- (26) Artc. quadratopterygoidea. A common configuration of this joint among birds is a single cotyla of the proximal end of Os pterygoideum articulating with the Condylus pterygoideus near the mandibular process of the quadrate bone. The pterygoid articulates via two facets in the grouse, *Tympanuchus*, and the pheasant, *Phasianus*; located between the two facets is the pneumatic foramen of the Os quadratum in *Tympanuchus*. See Hofer (1945) for differences in this joint related to the degree of kinesis of the upper jaw. See Osteo. Annot. 72.
- (27) Artc. pterygorostralis; Artc. pterygobasipterygoidea. Synonymy: Artc. pterygo-rostroparasphenoidalis. (1) In some avian forms (e.g., Ardea, Fulica, Thalasseus, Coccyzus, Corvus) the rostral end of Os pterygoideum (Pes pterygoidii) articulates with the palatine bone (see Annot. 28) and Rostrum parasphenoidale (Osteo. Annot. 69, 96.). (2) In other birds (e.g., Cathartes, Gallinago, Caprimulgus, Columba) the middle of the length of Os pterygoideum also articulates with the Proc. basipterygoideus of Rostrum parasphenoidale. (3) In Rhea the basipterygoid process articulates with the caudal end of Os pterygoideum (Bock, 1963). (4) In the anseriforms Anser and Cairina the basipterygoid process is located rostrally near the pterygopalatine articulation, and is the only articulation of Os pterygoideum with the Rostrum. See Annot. 23; Osteo. Fig. 4.4 and Annot. 60.
- (28) Artc. pterygopalatina. Synonymy: Sut. intrapterygoidea. The pterygopalatine synovial joint is actually the Sutura intrapterygoidea in many neognathous birds in which a rostral part of the developing fetal Os pterygoideum ("antepterygoid") unites with the caudal end of Os palatinum; the "postpterygoid" remains as the definitive

Os pterygoideum (Jollie, 1957); this division and reattachment of part of the pterygoid does not occur in *Rhea* (Müller, 1963). In ratites the palatine is united to the lateral side of the pterygoid (**Synd. pterygopalatina**) instead of its rostral end as in neognaths (Bock, 1963). See Annot. 15 and 29; and **Osteo.** Fig. 4.4 and Annot. 60-61.

(29) Artc. palatorostralis. In neognathous birds this is the synovial joint between the palatine bone and the lower border of the parasphenoid rostrum (see Osteo. Annot. 62). In ratites the pterygoid is interposed between the rostrum and the palatine bone. See Annot. 28, 23.

Lig. mesethmopalatinum [L. orbitale]. Passes from the interorbital septum to the articulation between pterygoid and palatine bones as in anseriforms (Fisher and Goodman, 1962; Zweers, 1974).

(30) Lig. suborbitale (Fig. 5.1). Synonymy: Lig. suboculare (Bock, 1964). This thin fascial/ligamentous band stretches from the ventral tip of Os lacrimale to Proc. postorbitalis and the upper end of Lig. postorbitale. The suborbital ligament participates in the formation of the ventrolateral wall of the orbit. See Fig. 5.1; and Osteo. Annot. 30.

Lig. maxillomandibulare. Located at the corner of the mouth, it extends from the rostral end of the jugal bar to the upper border of the mandible near its coronoid process. This ligament is known only in caprimulgids (Bühler, 1981); it functions to prevent excessive opening of the mouth.

(31) **Membrana circumorbitalis.** The thickened fibrous rim of the orbit is attached to its supraorbital margin, the Os lacrimale, the jugal arch, and suborbital ligament; the membrane may be continuous with the orbital septum (Elzanowski, 1987).

**Septum orbitale.** The attenuated, thin extension of Membrana circumorbitalis that forms the connective tissue framework of the eyelids (palpebrae).

Membrana temporalis. Synonymy: Lig. temporale (Bas, 1955). Spans the temporal fossa, and serves as partial origin of the underlying muscles that fill the fossa (Bas, 1955; Zusi, 1975). See Osteo. Fig. 4.1 and Annot. 104; Myol. Annot. 18.

(32) Artc. [Synd.] mandibulosphenoidalis. Synonymy: Artc. parasphenoidalis; Artc. articulo-parasphenoidalis; Artc. articulo-basitemporalis. The mandible of some birds possesses these direct articulations of the mandible with the parasphenoid bone of the base of the skull in addition to its indirect articulation via the quadrate bone. In these mandibulosphenoid joints, each Proc. mandibularis medialis abuts a process of the parasphenoid lamina forming the so-called "medial brace" of the mandible (Bock, 1960). In birds having the brace (e.g., Rynchops nigra, Pygoscelis adeliae) the medial process of the mandible articulates with either the medial or lateral parasphenoid (basitemporal) processes of the lamina (varying in different taxa; Osteo. Annot. 96-97). Bock contends that the brace supports the open mandible, preventing its caudal dislocation in birds wherein the condyles of the quadrate and the receiving cotylae of the mandible do not form a strongly interlocked joint, a viewpoint with which Zusi (1967) disagrees. See Bock and Morioka (1971) for a discussion of the functional properties of the mandibulosphenoid joint. See Annot. 33 and Osteo. Annot. 84.

Lig. mandibulosphenoidale. Synonymy: Lig. mandibulo-basiparasphenoidale. This ligament strengthens the mandibulosphenoid joint which is a syndesmosis in some species (e.g., *Charadrius*, Bock, 1960), a synovial joint in others (e.g., *Rynchops*).

- (33) **Synd. mandibulo-occipitalis.** Synonymy: Synd. occipito-mandibularis (NAA, 1979). Caprimulgids exhibit this unusual incidence of a direct junction of the mandible with the braincase; this syndesmosis connects the paraoccipital process of the exoccipital with the Proc. medialis mandibulae (Bühler, 1981) by means of the **Lig. mandibulo-occipitale**. The name of the ligament has been changed to avoid confusing it with the omnipresent occipitomandibular ligament in the retroarticular region (see Annot. 37).
- (34) Lig. intramandibulare. Connects the two elements of the oblique hinged flexion zone of the Ramus mandibulae at the junction of its rostral and middle thirds in *Caprimulgus* (Bühler, 1970). See Zonae flex. mand.; Fig. 5.2; and Osteo. R. mandibulae.

Lig. laterospheno-jugale. In hornbills (Bucerotidae) this ligament connects the postorbital process of Os laterosphenoidale with the jugal bar (Starck, 1940).

- (35) Artc. quadratomandibularis. Synonymy: Artc. quadrato-articularis. See Zusi (1967) for a thorough discussion of the avian quadratomandibular joint. The quadrate bone articulates mostly with Os articulare of the mandible usually by means of three articular condyles (Bock, 1960), four in the New World jays (Zusi, 1987). See Osteo. Annot. 72.
- (36) Lig. quadratomandibulare caudale. This ligament extends from Proc. pterygoideus of the quadrate to the mandible near the base of its medial process. The ligament is stretched during opening of the jaws; relaxation of M. depressor mandibulae causes the jaws to snap shut by elastic recoil of the ligament (Bock and Morony, 1972). Present in most passerines; particularly well developed in tyrannid flycatchers.

Lig. quadratomandibulare rostrale (Elzanowski, 1987). This ligament is fastened to the rostral surface of the body of Os quadratum between its pterygoid and quadratojugal articular facets, and is attached to the mandible just forward of its quadrate cotylae. Lig. quadratomandibular rostrale is elastic in *Columba* and *Tinamus*, nonelastic in bucerotids (Elzanowski, 1987); present also in passerines (Bock and Morony, 1972).

Lig. quadratomandibulare temporale. This ligament in the pigeon connects the Proc. suprameaticus to the quadrate on its edge between the dorsal and caudolateral surfaces. It restricts medially directed movements of the quadrate, relative to the cranium (van Gennip, 1986).

Lig. quadratomandibulare laterale. In the pigeon this broad, short ligament is attached to the Proc. lateralis mandibulae just caudal to the Lig. postorbitale and extends to the Proc. mandibularis of the quadrate (van Gennip, 1986).

(37) Lig. occipitomandibulare (Bock, 1964). Synonymy: Lig. exoccipitomandibulare; Lig. depressor mandibulae (Rooth, 1953); Lig. neurocranio-mandibulare (Fuchs, 1955; Davids, 1952). The band-like occipitomandibular ligament is continuous with the medial edge of Membrana postmeatica (see below); it spans the quadratomandibular and quadrato-squamoso-otic joints, and connects the medial part of the Crista transversa fossae (Osteo. Annot 51) of the mandible to the Proc. paroccipitalis that partially bounds the tympanic cavity. The superficial surface of the ligament serves as partial origin of the deep part of M. depressor mandibulae (Myol. Annot. 24) and contributes to the caudoventral wall of the Meatus acusticus externus. See Fig. 5.1; and Osteo. Annot. 19, 21.

Membrana postmeatica (Elzanowski, 1987). Thick, fibrous sheet attached to the dorsal, ventral, and caudal margins of the osseous external acoustic meatus; also

attached to the lateral border of the Lig. occipitomandibulare and the lateral part of the Crista transversa fossae (Osteo. Annot. 51) of the mandible (Osteo. Annot. 51). The membrane forms much of the caudoventral wall of the acoustic meatus (see above) where it is lined with skin; it is covered caudally by M. depressor mandibulae. See Osteo. Annot. 19, 21, 51, 85.

- (38) Lig. jugomandibulare mediale. Synonymy: Lig. jugomandibular internum; Lig. jugale (Fuchs, 1955); Lig. jugo-mandibulare caudale (Bas, 1955); Lig. quadrato-jugo-mandibulare mediale. This ligament actually connects the quadratojugal part of the jugal arch with the caudal end of the mandible; the ligament is attached near the apex of the medial process of the mandible (see Lebedinsky, 1921, who discusses the medial point of attachment of this ligament). Two medial jugomandibular ligaments are present in the hornbill, *Tockus* (Rawal and Bhatt, 1973); the ligament is absent in *Rynchops* (Zusi, 1962) and in tinamous (Elzanowski, 1987). See Intro. Annot. 39, 40 and Fig. 5.1.
- (39) Meniscus articularis. In anseriforms (Hofer, 1945; Zweers, 1974) this distinct wedge-shaped meniscus is found in the caudal part of the quadratomandibular joint where it is attached to the internal aspect of the transverse part of the Lig. jugomandibulare mediale.
- (40) **Lig. jugomandibulare laterale.** Synonymy: Lig. jugo-mandibulare rostrale (Bas, 1955); Lig. quadratojugo-mandibulare laterale. This short ligament is attached to the caudolateral end of the jugal arch just opposite the quadratojugo-quadrate joint, and extends to the lateral process of the mandible. See **Intro.** Annot. 38 and Fig. 5.1.
- (41) Lig. lacrimomandibulare (Davids, 1952; Goodman and Fisher, 1962). Synonymy: Lig. prefrontomomandibulare (NAA, 1979). Typical of anseriforms, this subcutaneous ligament extends caudoventrad from the ventral tip of Os lacrimale, passes lateral to the quadratojugal bone, and is attached to the rostrodorsal tip of the Proc. mandibularis lateralis. According to Davids (1952) this ligament resists retraction of the mandible upon contraction of its adductor muscles. In *Anser* it forms a distinct wide band that contributes to the rostroventral wall of the orbit; in *Mergus* it is absent (Goodman and Fisher, 1962). See Fig. 5.1; Osteo. Annot. 110, 111; and illustration in Zweers (1974).
- (42) Lig. postorbitale. The term, Lig. postorbitale is almost universally employed, the term reflecting one of its attachments, namely, the apex of Proc. postorbitalis of Os laterosphenoidale (Osteo. Annot. 30). At its ventral end the ligament is affixed to the Proc. lateralis mandibulae or to a tubercle somewhat rostral to Proc. lateralis (Diomedea, Larus). In some birds, where the ligament crosses the caudal end of the jugal arch, it produces a notch. In others Lig. postorbitale may have different attachments: in tinamous (Elzanowski, 1987) and Balaeniceps it is fastened to the Arcus jugalis; in Podilymbus the zygomatic process is an accessory attachment (Zusi and Storer, 1969). Lig. postorbitale assists in supporting the quadratojugo-quadrate articulation, and plays a role in kinesis of the upper jaw (Bock, 1964; Zusi, 1967). See Osteo. Annot. 30.
- Lig. orbitoquadratum (Elzanowski, 1987). Unique to tinamous, this ligament extends from the orbital process of Os quadratum to the dorsal wall of the orbit, dorsal and rostral to the Foramen n. maxillomandibulare.
- (43) Lig. zygomaticomandibulare. Synonymy: Lig. squamosomandibulare (Lebedinsky, 1921). This ligament connects the zygomatic process of Os squamosum to the coronoid process of the mandible.

- (44) Artc. ectethmomandibularis. Bock and Morioka (1971) described this unusual peg and socket synovial joint between the dorsal border of the mandible and the ventral tip of Os ectethmoidale in the meliphagids.
- (45) **Zonae flexoriae ossium faciei** (Arthr Intro). Substitute term for the "Zonae elasticae ossium faciei" (NAA, 1979). These are bending zones of the bones of the facial skeleton. See Bock (1964), Zusi (1967, 1984), and Bühler (1981) for reviews dealing with kinesis of the avian skull.
- (46) Zona flexoria craniofacialis (Fig. 5.2). Synonymy: Ginglymus craniofacialis or frontonasalis (see Bühler, 1970 for comments on the usage of these terms); Zona elastica craniofacialis (NAA, 1979). In birds the bending zone between neurocranium and the facial skeleton is a transverse band of limited rostrocaudal extent consisting of thinned parts of the Proc. premaxillaris of Os nasale and the Proc. frontalis of Os premaxillare at their junction with the rostral ends of Os frontale and Lamina dorsalis of Os mesethmoidale. The cranio-facial connection occurs only rarely as a syndesmosis or as a synovial joint (large parrots, e.g., Ara).

The craniofacial flexion zone has been commonly known in the literature as the craniofacial or frontonasal hinge. Although "ginglymus" (Ginglymos, Gk. hinge) is descriptively apt, in widespread use, and easily understood, there has been objection to its use. In a general sense a hinge may be jointed or flexible; however, in its anatomical sense ginglymus pertains strictly to a hinge-type, synovial articulation. Another reason for adoption of "Zona flexoria craniofacialis" is for the sake of consistency with the names of the other flexion zones of the facial skeleton.

The craniofacial flexion zone is a transverse axis of bending that permits movements of elevation and depression of the upper jaw (kinesis) (see Annot. 23). The zone may be undifferentiated in dorsal view, it may be visible as a narrow, flat, transverse band, or it may be sharply diffentiated caudally by inflated bone of the cranium and rostrally by inflation of the maxilla. In some birds the zone is a long, indefinite region; in others it is marked dorsally by a distinct, transverse sulcus floored by thin bone (Morus, Rynchops, Strix, Cacatua, Ceryle). In other forms, the flexion zone is a narrow, transverse seam flush with the dorsal surfaces of bones rostral and caudal to it (Gavia, Cathartes, Ardea, Aix, Coccyzus).

The craniofacial zone is short (in its rostro-caudal dimension) in birds with holorhinal nostrils; the entire upper jaw rotates (elevation-depression) as a unit about the zone at the base of the upper jaw; this is the prokinetic condition common to most birds. See Hofer (1954), Bühler (1981), and Zusi (1984) for discussions of the different types of craniofacial flexion zones.

Zona flexoria craniofacialis lateralis; Zona flexoria craniofacialis medialis. Schizorhinal birds with long attenuated nostrils have two craniofacial axes of the craniofacial bending zone (Fig. 5.2). The two axes are some distance apart, the axis of the lateral zone located more caudally than the axis of the medial zone (e.g., Larus, Pluvialis). Zona lateralis is formed by the lateral portions of the nasal bones near their fusion with the frontal bones. The other, Zona medialis, consists of the frontal processes of the premaxillary bones and, with a few exceptions, the medial portions of the nasals (Zusi, 1984). See Fig. 5.2.

(47) **Zonae flexoriae maxillares.** (see Fig. 5.2; Annot. 11; **Osteo.** Annot. 53). Synonymy: Zonae elastica maxillares (NAA, 1979). These are the flexion zones of the upper jaw exclusive of the craniofacial hinge. In rhynchokinetic birds, which are usually schizorhinal, kinetic movements include bending of the upper jaw at one or more locations other than the craniofacial zone (e.g., the paleognaths, some

gruiforms, some charadriiforms, pigeons, and a few other birds) (see Fig. 5.2); and Zusi (1967, 1984), Bock (1964), Bühler (1981).

Zona flexoria rostrodorsalis (Fig. 5.2). Synonymy: Zona elastica premaxillonasalis distalis (NAA, 1979). A bending zone just caudal to the maxillary rostrum (Osteo. Annot. 40) on the dorsal bar of the upper jaw. Zona flexoria rostroventralis. Synonym: Zona elastica premaxillomaxillaris (NAA, 1979). A bending zone (sometimes extensive) caudal to the maxillary rostrum Osteo. Annot. 40) on the ventral bars of the upper jaw.

**Zona flexoria dorsomedialis** (Fig. 5.2). Synonymy: Zona elastica premaxillonasalis proximalis (NAA, 1979). A bending zone near the middle of the length of the dorsal bar of the upper jaw, typical of ratites.

**Zona flexoria arcus jugalis.** The flattened flexion zone at the thinned rostral end of the jugal arch (Fig. 5.2) has become specialized into a syndesmosis in cardueline finches.

**Zona flexoria palatina** (Fig. 5.2). The flexion zone of the premaxillary process of Os palatinum is represented by a syndesmosis in parrots. Upward bending of this zone in *Columba* is limited by **Lig. palatomaxillare** (van Gennip, 1986).

(48) **Zonae flexoriae mandibulares** (Fig. 5.2). Certain birds, especially those that swallow large food items (sphenisci-, procellari-, pelecani-, ciconii-, anseri-, and charadriiforms) possess two zones of bending in each ramus of the mandible that permit widening of the interramal distance.

Zona flexoria intramandibularis rostralis. Synonymy: Zona elastica intramandibularis distalis. The rostral intramandibular zone is near Rostrum mandibulae (Osteo. Annot. 40). Zona flexoria intramandibularis caudalis. Synonymy: Zona elastica intramandibularis proximalis. In general the caudal intramandibular zone is situated at the junction of the middle and caudal thirds of the ramus of the mandible in the vicinity of the rostral mandibular fenestra; the caudal zone is elongated in *Pelecanus*. See Osteo. Annot. 42, 46. Consult Yudin (1961), Zusi (1962, 1974), and Bühler (1981).

- (49) **Synd. intramandibularis caudalis.** In *Caprimulgus* (and probably in Nyctibiidae) the bending zone of the mandible is developed as a distinct, oblique, mobile, syndesmotic joint situated between the rostral and intermediate thirds of the length of the mandibular ramus (Bühler, 1970). See **Osteo.** Ramus mandibulae, Fig. 4.1.
- (50) Juncturae apparatus hyobranchialis [hyolingualis]. Names for these joints are based mostly on the terminology that McLelland (1968) adopted for the elements of the hyobranchial apparatus. Zweers (1974, *Anas*) and Homberger (1986, *Psittacus*) designate several ligaments associated with joints between the basihyal, urohyal, and ceratobranchial elements that are mainly capsular ligaments rather than discrete collateral ligaments. See **Osteo.** Annot. 79.
- (51) **Synd. interparaglossalis.** The paired paraglossal elements in some parrots are joined by cartilage rostrally and a fibrous connection caudally (Beddard, 1898; Homberger, 1986).
- Artc. paraglosso-basihyalis. Synonymy: Artc. basihyoentoglossalis; Artc. basihyoparaglossalis; Artc. entoglosso-basibranchialis (NAA, 1979). This is a saddle-type joint (Artc. sellaris; Annot. 2) in *Anas* (Zweers, 1974). For the most part only side to side movements are permitted in others: e.g., *Columba*, *Fulica*).

- (52) Sync. [Artc.] basihyo-urohyalis. Synonymy: Sync. basihyobasibranchialis; Sync. [Artc.] intrabasibranchialis (NAA, 1979). Usually a cartilaginous joint between the rostral and caudal basibranchial elements in *Gallus* (McLelland, 1968); and *Columba* (Zweers, 1982). The rostral element represents the basihyal and the caudal element represents basibranchiale I. See Osteo. Annot. 81.
- (53) Artc. ceratobasihyalis. Synonymy: Artc. basihyoceratobranchialis; Artc. ceratobasibranchialis (NAA, 1979). Os ceratobranchiale is the proximal element of the branchial cornu; in certain birds the ceratobranchial articulates with both the basihyal and the urohyal. See Homberger (1986).
- (54) **Sync. [Artc.] Epi-ceratobranchialis.** Synonymy: Artc. ceratohyo-epibranchialis; Sync. intracornualis (NAA, 1979).
- (55) (56) These annotations have been withdrawn. See Resp. Juncturae laryngis.
- (57) **Synd. urohyocricoidea.** Synonymy: Synd. cricobasibranchialis (NAA, 1979). In some birds (*Columba*, *Strix*) the caudal basibranchial element is connected by fibrous tissue to the ventral surface of the body of Cartilago cricoidea of the larynx.
- (58) Lig. arytenoparaglossale. Paired cords of elastic tissue in *Gallus* that connect the rostral processes of the arytenoids with the cornua of the paraglossal bones. The ligaments are longer and thicker in males than in females (White, 1975).
- (59) **Juncturae columnae vertebralis.** Consult Barkow (1856) for an extensive review of interspecific variation in the arthrology of the avian vertebral column. See Fig. 5.10 and **Osteo.** Fig. 4.15.
- (60) Artc. intercorporalis (Barkow, 1856). The joints between adjacent vertebral bodies in the cervical region and the cranial part of the thoracic region are synovial joints, some with intra-articular menisci (see Annot. 61-64, 71, 74, 78). In the caudal thoracic region of some taxa, and the synsacral region universally, these joints become ankylosed, forming synostoses; the joints between the bodies of the free caudal vertebrae are symphyses (*Columba*, Baumel, 1988) or synovial joints (*Gallus*, du Toit, 1912-13).

In birds generally, the intercorporal joints throughout the length of the presynsacral vertebral column are mostly Artcc. sellares (Annot. 2) (heterocoelous; saddle-shaped) (Beddard, 1898). The vertebral bodies of the thoracic vertebrae are opisthocoelous in penguins, in Charadrii, and in some parrots (Parker, 1888). See Osteo. Annot. 113b; Figs. 4.8, 9.

**Lig. collaterale** (Fig. 5.10). This strong paired collateral ligament connects vertebral bodies; it is continuous with the articular capsule of the intercorporal joints. The caudal end of the lateral surface of each vertebral body exhibits a distinct tuberosity for attachment of this ligament (**Osteo.** Fig. 4, 8D) (see Barkow, 1856).

(61) Meniscus intervertebralis. Synonymy: Fibrocartilago intercalaris corpum vertebralium (Jäger, 1858). The synovial joints between bodies of cervical vertebrae are incompletely divided by intra-articular menisci, attached at their periphery to the inner aspect of the articular capsule (e.g., the ibis *Eudocimus* and the owl *Strix* (pers.

obs.); Anas (Landolt and Zweers, 1985); Gallus, (Zweers, et al., 1987). The menisci are thin toward their centers, having openings, (Fenestrae centrales, (Landolt and Zweers, 1985) of variable shape (Jäger, 1858). According to Jäger in Anas the menisci in the thoracic region are attached to the margins of adjacent vertebral bodies as well as to articular capsules.

Anulus [Annulus] fibrosus. In certain birds (e.g., Columba, Gallus) instead of a proper meniscus the intervertebral connective tissue consists merely of a thickened ring attached to the inner surface of the articular capsule. In Anas the Anulus fibrosus is variably attached to the circumference of adjacent vertebral bodies and to the articular capsule (Jäger, 1858).

(62) **Discus intervertebralis.** A complete articular disc connects the bodies of the free caudal vertebrae. Lacking a synovial cavity, these joints are symphyses (Barkow, 1856), consisting in large birds (*Meleagris*, *Branta*) of elastic cartilage (J. Baumel and R. E. Brown, pers. obs.).

(Lig. suspensorium corporum vertebralium). Vestige of the notochord that persists in some adult birds (Jäger, 1858). In *Anas* with vertebrae separated, the point of attachment of the suspensory ligament to the center of the articular surfaces of adjacent vertebral bodies is marked by small, rough indentations (Zweers, 1974); Landolt and Zweers, 1985).

(63) Lig. elasticum interlaminare (Fig. 5.10). Synonymy: Lig. flavum; Lig. interarcuale. Present mostly in cervical and thoracic regions; these ligaments are unpaired narrow bundles that connect laminae of adjacent vertebrae (see **Osteo**. Annot. 126 for bony attachments; and Boas, 1929). Boas notes that the ligaments are strongest in the caudal cervical region.

Lig. elasticum interspinale. Boas (1929) described an additional system of elastic ligaments spanning the dorsal concavity of the root of the neck in *Rhea;* these are the Ligg. elasticae interspinales profunda et superficiales of Barkow (1856). Landolt and Zweers (1985) describe elastic tissue connections between the spinous processes of the caudalmost cervical and cranial thoracic vertebrae in *Anas* and *Gallus* as well as those between the axis and the third cervical vertebra. An elastic ligament connects the cranial margin of the pygostyle with the caudal vertebra cranial to it in *Columba* (Baumel, 1988).

Lig. interansale. Synonymy: Lig. laterale (Zweers, et al., 1987). A serial ligament found over the length of the cervical vertebral column connecting the caudal edge of the Ansa costotransversaria (Osteo. 4.8) with the cranial border of the Ansa of the next most caudal vertebra (Zweers, et al., 1987).

Lig. ventrolaterale. In *Anas* this ligament connects the Proc. caroticus (Osteo. 4.8B) of one vertebra with the Crista ventrolateralis of the vertebra cranial to it (Zweers, et al., 1987). See Osteo. Annot. 121.

**Lig. intercristale ventrale.** Synonymy: Lig. interspinale ventrale (Zweers, et al., 1987). In *Anas* this ligament connects the ventral crests (processes) of cervical vertebrae 12–16 with one another in *Anas* (Zweers, et al., 1987), and is well developed in the thoracic vertebrae of other birds. See **Osteo.** Annot. 119.

(64) Artc. atlanto-occipitalis; Fibrocartilago atlantis. The occipital condyle fits into Fossa condyloidea of the Atlas. In some taxa the fossa is a complete osseous cup; in others it is an osseous semiring ventrally, completed dorsally by Fibrocartilago atlantis (intercartilago atlantis, Boas, 1929). The floor of the fossa is perforated by a foramen that transmits the Lig. apicis dentis (see Goedbloed, 1958 and Osteo. Fig. 4.8E).

- (65) Artc. zygapophysialis (see Osteo. Columna vertebralis). In order to remain consistent with the human and veterinary nomenclatures, "Proc. articularis" is designated as an alternative term for the osseous Proc. zygapophysialis (Osteo. Annot. 132). "Artc. zygapophysialis" is widely used in comparative vertebrate anatomy as a term applying only to the synovial joints between zygapophyses of adjacent vertebrae, whereas "processus articularis" is nonspecific as to its location and confusing when referring to joints.
- (66) Meniscus articularis. According to Barnett (1954b) the zygapophysial joints of the cervical vertebral column of *Columba palumbus* possess thin, fibrous menisci containing scattered cartilage cells.
- (67) **Membrana atlanto-occipitalis.** Synonymy: Lig. capsularis atlanto-occipitalis (Goedbloed, 1958). The continuity between the ventral and dorsal membranes (connecting the atlas with the margin of the foramen magnum) is interrupted on each side by the exit from the cranial cavity of the huge V. occipitalis interna.
- (68) Artcc. atlantoaxiales. In certain avian taxa the atlas and axis articulate by means of two separate synovial joints, one between the Dens and the Corpus atlantis and the second between Corpus atlantis and Corpus axis. In most birds two additional zygapophysial synovial joints connect the vertebral arch of the atlas with that of the axis. See Boas (1929), Goedbloed (1958), and Weisgram and Zweers (1987) for details of the atlantoaxial joints and several other ligaments in Anas; Osteo. Annot. 130-133.
- (69) Lig. transversum atlantis. Ossified in some birds (e.g., *Phalacrocorax*, *Numenius*, and *Corvus*, Goedbloed, 1958), this transverse ligament of the atlas holds the dens of the Axis against Facies articularis dentalis of the Atlas. Weisgram and Zweers (1987) describe the nonossified ligament in *Anas*.
- **Lig. medianum atlantoaxiale.** Boas (1929) describes this ligament that extends from the ventral surface of the root of the Dens to the dorsal aspect of Corpus atlantis at a point just caudal to the Artc. atlantodentalis.
- Lig. collaterale atlantoaxiale. Strong paired ligaments corresponding to the alar ligaments of mammals in that they limit rotatory movements between atlas and axis; these ligaments extend transversely from foveae on each side of the root of the dens to impressions on the inner surface of the atlas lateral to Facies articularis dentalis. Each Lig. collaterale is fused with the ventral surface of Lig. transversum atlantis.
- (70) Synos. costotransversaria; Artc. costotransversaria. With the exception of the atlas, most cervical vertebrae of adult birds have costal processes ankylosed to transverse processes and to vertebral bodies; The Foramen transversarium (for the vertebral artery) is partly bounded by the costal process (Boas, 1929) (see Osteo. Annot. 134, 135, Ansa costotransversa). In the root of the neck a variable number of short, movable cervical ribs are found in most birds.
- (71) **Juncturae notarii.** The Notarium is a rigid, consolidated unit of vertebrae formed by ankylosis of the bodies and the transverse and spinous processes of the intermediate group of thoracic vertebrae. In some taxa lacking the Notarium some rigidity is brought about by mortising of adjacent vertebral spines. Some stiffening of the thoracic vertebral column is produced in other birds (e.g., pelecaniforms, charadriiforms, and anseriforms) by ossification of the tendons of epaxial muscles that ankylose with the transverse processes and spinous processes of the vertebrae. See **Osteo.** Annot. 73, 140 and Fig. 4.9.

- Artc. notariosynsacralis. In taxa possessing the notarium one or two freely moveable synovial (or cartilaginous) joints are present between the notarium and the synsacrum (exception: *Pelecanus* Barkow, 1856). Baumel, et al. (1990) have determined that ventilatory movements of the entire pelvis (plus uropygium) occur at the notarial/synsacral joint(s) (Osteo. Fig. 4.9).
- (72) Lig. intercristale ventrale. The series of thoracic and cervical vertebrae at the root of the neck are characterized by prominent ventral crests that are connected by these unpaired longitudinal ligaments. In some adult birds Ligg. intercristalia are partially ossified. See Osteo. Annot. 119.
- (73) **Juncturae synsacri.** The Synsacrum is formed by a variable number of the caudalmost thoracic vertebrae, the lumbar, sacral, and the cranialmost series of caudal vertebrae that are ankylosed in varying degree in different taxa. The synsacrum becomes united with the pelvic girdles on each side (see Annot. 76). This topic is covered for large comparative series of birds by Barkow (1856) and Boas (1933). See **Osteo.** Annot. 141a and Fig. 4.9.
- (74) Synos. intercorporalis. In postnatal life the fibrocartilaginous joints connecting bodies (corpora) of the synsacral vertebrae are completely converted to synostoses in adults. Along the middle of its length the ventral surface of the consolidated unit of synsacral vertebral bodies demonstrates a fusiform enlargement. The enlargement reflects externally the lumbosacral intumescence (swelling) of the spinal cord occupying that part of the vertebral canal. Seen in longitudinal section, the vertebral bodies opposite the intumescence are dorsoventrally compressed compared to those cranial and caudal to them. See Osteo. Fig. 4.9 and Annot. 142A, Corpus synsacri).

**Synos.** interspinalis. The synostosed spinous processes of the synsacral vertebrae form a continuous crest, Crista spinosa synsacri, that extends either the partial or full length of the synsacrum. See Osteo. Annot. 134, 143 and Fig. 4.15.

(75) Symphysis postsynsacralis. This is the joint between the last element of the synsacrum with the first free caudal vertebra (see Annot. 60).

Artc. propygostylaris. Joint between the last free caudal vertebra and the Pygostylus. In *Columba* (Baumel, 1988) this is usually a synovial joint; functionally it is primarily a hinge joint allowing cranial and caudal rocking of the pygostyle. The transverse hemicylinder of the last typical caudal vertebra fits into the matching concave notch of the pygostyle. An elastic ligament connects the cranial border of the pygostyle with the spinous process of the vertebra ahead of it.

**Juncturae caudae.** In *Columba* the joints between the free caudal vertebrae are symphyses, the elastico-fibrocartilaginous disks uniting adjacent vertebral bodies. See Annot. 63.

- (76) Sut. [Synos.] iliosynsacralis; Ligg. iliosynsacralia. The lateral ends of the transverse processes of the synsacral vertebrae fuse with the medial border of the acetabular and postacetabular ilium by an elongated linear suture. Cranial to Fossa renalis of the pelvis the transverse processes of the synsacral vertebrae ankylose extensively with Facies ventralis of the preactabular ilium. In some taxa (e.g., Morus, Buteo, Eudocimus, Thalasseus) the costal processes of the "sacral" vertebrae opposite the acetabulum form prominent lateral bracing struts that articulate with the side wall of the pelvis. See Osteo. Annot. 243 and Fig. 4.15.
- (77) Synos. interiliospinalis. In certain birds (e.g., Morus, Eudocimus, Buteo, Gallus, Aythya) the cranial end of the Crista spinosa of the synsacrum is fused with the paired dorsal crests of the adjacent preacetabular ilia producing the Crista iliosynsa-

- cralis; this produces iliosynsacral sulci or canals that contain epaxial muscles on each side of the crest of the spines and ventral to the preacetabular ilia. See Osteo. Annot. 233-234 and Fig. 4.15.
- (78) **Synoss. pygostyli.** The pygostyle is formed by ankylosis of several terminal caudal vertebrae: *Columba* (6), *Fulica, Cygnus, Strix* (5) (Steiner, 1938). See **Osteo.** Annot. 146.
- (79) **Juncturae costarum.** The junction of the Capitulum costae with the Corpus vertebrae (**Sync. capitis costae**) is a cartilaginous joint, i.e., a persistent synchondrosis. On the ventrocranial aspect of this joint is a thickening of the perichondrium which forms a collateral ligament. The joint connecting Proc. transversus and the Tuberculum costae is the synovial type (**Artc. costotransversaria**). See Fig. 5.10 and **Osteo.** Fig. 4.8.
- (80) **Sut. iliocostalis.** In some birds the cranial synsacral (thoracic) vertebrae possess ribs. Each of these ribs (the part of the rib just distal to its Tuberculum) often forms a fibrous joint with the ventral surface of the preacetabular ilium (e.g., *Morus, Aythya, Rynchops, Corvus*). In other birds these ribs synostose with this part of the ilium (*Gavia, Ardea*). See **Osteo.** Fig. 4.9.
- (81) Sync. intercostalis. The junction between each vertebral and sternal rib is a persistent cartilaginous joint (e.g., in *Columba, Gallus*).
- (82) Sut. costouncinata; Lig. triangulare. In some birds the joint between the vertebral rib and its uncinate process is a synostosis. Ghetie, et al. (1976) illustrate a triangular ligament in the angle between the upper border of uncinate process and adjacent caudal border of its rib.
- (83) Artc. sternocostalis. The joint between the sternal rib and its articular facet on the costal margin of the sternum is a synovial joint. The articular facets are single in some birds (e.g., *Gallus*) and double in others (e.g., *Gavia*, *Aythya*, *Buteo*, and *Corvus*). See Osteo. Annot. 157 and Fig. 4.11.
- (84) Membranae incisurarum [fenestrarum] sterni. Synonymy: Membrane intertrabeculares (Fürbringer, 1902). The notches and fenestrae of the sternum are separated by trabeculae; these openings are spanned by strong fibrous membranes which are continuous with the periosteum of both surfaces of the Corpus sterni. See Osteo. Annot. 151 and Fig. 4.11.
- (85) Lig. corpus claviculae. In birds exhibiting a reduced clavicle this is the ligamentous vestige of its shaft. The ligament may be thread-like or a strong ligamentous cord; the persistent bony part of the clavicle consists of only the Extremitas omalis [Epicleideum] (See Glenny and Friedmann, 1954).
- **Synd. sternoclavicularis.** The apex of Carina sterni is usually situated near the Apophysis furculae, joined to it by the sternoclavicular ligament of variable length. In some species the union is transformed into a synovial joint (several procellariiforms and most pelecaniforms, e.g., *Morus*; in extreme cases the joint is synostosed (e.g., *Pelecanus*, *Sagittarius* (Fürbringer, 1888, *Fregata*). See **Osteo.** Annot. 161, 163.

(86) Membrana sternocoracoclavicularis. Synonymy: Lamina lateralis; membrana coracoclavicularis (Fürbringer, 1888). Stretches between the inner border of the clavicle, the medioventral border of the coracoid, and the sternum dorsal to Carina sterni (see Fig. 5.3). Many variations in the form and development of its parts occur throughout Aves.

A number of specialized thickenings of the Membrana sternocoracoclavicularis have been described as ligaments in different taxa; these extend from the cranial border (especially Rostrum sterni) of the sternum to various parts of the coracoid, to the clavicles, to the scapula; some connect right and left coracoids, etc. In the list of terms the most important of these (Fürbringer, 1888) are listed as subordinate items under Membrana sternocoracoclavicularis, one of which is defined below.

- **Lig. sternoprocoracoideum.** Thickened, distinct band of Memb. sternocoracoclavicularis that extends from the Rostrum sterni to the ventral border of Proc. procoracoideus of the coracoid (e.g., *Columba*) (Fig. 5.3). Part of this ligament in some birds (e.g., *Meleagris, Branta*) is attached along the medial border of the coracoid, extending between the medial angle of the coracoid to the procoracoid.
- (87) Lig. acrocoraco-procoracoideum. In birds that lack a distinct Proc. procoracoideus, Membrana sternocoracoclavicularis continues uninterruptedly toward the shoulder where it is attached to Proc. acrocoracoideus of the coracoid bone.
- (88) Membrana cristoclavicularis. Synonymy: Lig. cristoclaviculare; Lig. sternoclaviculare; Lamina mediana or Laminae laterales of Membrana sternocoracoclavicularis; Crista membranacea (Fürbringer, 1888). This median bilaminar membrane is formed by the side-to-side adhesion of the ventral ends of the paired Membranae sternocoracoclaviculares; it connects the ventral end (Apophysis) of the furcula to the Apex and Crista mediana of the cranial margin of Carina sterni, extending dorsally to the level of Rostrum sterni (Osteo. Fig. 4.11). M. supracoracoideus and M. pectoralis arise from each side of Memb. cristoclavicularis. The most cranial part of the membrane is a band-like ligament rather than a membrane. Sy (1936) illustrates Memb. cristoclavicularis in the anatid, Bucephala.
- (89) Artc. sternocoracoidea. An elongated saddle-type (Artc. sellaris) synovial joint that permits combinations of hinge-type movements and mediolateral gliding between the ventral end of the coracoid and the generally obliquely disposed, horizontal Sulcus articularis coracoideum of the sternum.

The sternal end of the coracoid is concave on its deep aspect, the concavity articulates with the convex Sulcus articularis coracoideus of the sternum (Osteo. Fig. 4.11); the articular surfaces of both elements in some birds are subdivided into medial and lateral parts. The sulcus is concavo-convex, i.e., concave in the dorso-ventral dimension with a short radius of curvature; the sulcus is convex in its medio-lateral dimension, having a long radius of curvature. See Fürbringer (1888: 185) for discussion of the variation in configuration of this joint. See also Osteo. Annot. 156.

- (90) Artc. intercoracoidea. In most birds the medial borders of the sternal ends of the coracoids lie closely adjacent (but separate) to one another. In fact, the two sternocoracoid joints of certain birds abut or overlap one another forming synovial joints; in Ardeidae and Musophagidae the right coracoid in part lies ventral to the left one (Fürbringer, 1888). The overlapping also occurs in some procellariiforms (Kuroda, 1954), and in *Buteo*, falconids, *Bubo*, and *Ichthyornis*.
- (91) Ligg. collateralia sternocoracoidea. Synonymy: Ligg. accessoria sternocoracoidea (Fürbringer, 1888). Fürbringer described collateral ligaments, of varying con-

figuration and position, in different taxa that connect the base and shaft of the coracoid with the internal and external labra of Sulcus articularis coracoideus of the sternum. The external sternocoracoid ligament in some birds is attached to the Tuberculum labri externum of the coracoid sulcus of the sternum (**Osteo.** Fig. 4.11A).

- (92) Lig. sternocoracoideum laterale. A fascia-like ligament in *Casuarius*, *Tinamus*, and galliforms (Fürbringer, 1888) that extends from the lateral edge of Proc. craniolateralis of the sternum to the lateral border of Proc. lateralis of the sternal end of the coracoid.
- (93) Synd. [Artc.] coracoscapularis; Lig. coracoscapulare interosseum. The coracoid and scapula are united mainly by the Lig. coracoscapulare interosseum consisting of elastic cartilage (J. Baumel and R. E. Brown, pers. obs) (see next paragraph). The ligament itself forms the articular surface (Cavitas glenoidalis) that receives the head of the humerus (see Annot. 100).

The coracoscapular interosseous ligament and articular capsules also connect the two bones: The glenoid process and acromion of the scapula join the base of the procoracoid process and adjacent shaft of the coracoid bone. In some birds the joints are simple syndesmoses connecting irregular surfaces by short ligaments that permit little movement between the bones. In other birds (e.g., *Branta, Pelecanus*) the joints are elaborate, partially synovial, partially syndesmotic. The synovial parts are spheroidal/ellipsoidal articulations that are more mobile than the simple syndesmoses (Osteo. Annot. 167a, b). In the elaborate joints the coracoid possesses the concave receiving surface (Cotyla) and the scapula bears the convex Tuberculum (Osteo. Annot. 173a, b). In the ratite birds, *Struthio, Rhea,* and *Apteryx,* the coracoid and scapula are fused (Feduccia, 1985). See Osteo. Annot. 167a, 168.

(94) Lig. coracoscapulare dorsale. Synonymy: Lig. coracoscapulare accessorium dorsale (Fürbringer, 1888). This ligament occurs in certain large birds in which the Lig. acrocoraco-acromiale is not strongly developed (e.g., Ciconia, Egretta, Cathartes, Haliaeetus, Fürbringer, 1888).

**Lig. coracoscapulare ventrale.** Synonymy: Lig. coracoscapulare accessorium internum (Fürbringer, 1888). This ligament is conspicuous in *Egretta*, *Haliaeetus*, and others; however it is not as well developed as Lig. coracoscapulare dorsale.

Both the above ligaments are accessory to Lig. coracoscapulare interosseum, which is the strongest ligament uniting the scapula and coracoid. Lig. coracoscapulare dorsale connects the cranial surface of the scapular glenoid process with the adjacent coracoid in the floor of the triosseal canal. Lig. coracoscapulare ventrale connects the ventral border of the scapular glenoid process with the inner surface of the neck of the coracoid.

- (95) Lig. acrocoraco-acromiale. Forms the fibrous medial wall of the Canalis triosseus, extending from the Tuberculum brachiale (Osteo. Annot. 171b) of the acrocoracoid ventrally to Crista lig. acrocoraco-acromiali (Osteo. Annot. 166). See Fürbringer (1888) for discussion of the relative development of this ligament in different birds. See Osteo. Annot. 177, 166.
- (96) **Synd.** [Artc.] acrocoracoclavicularis. The shoulder extremity of the clavicle is attached principally to the medial surface of Proc. acrocoracoideus of the coracoid bone. In some species Proc. acromialis of the clavicle is prolonged caudally, and articulates also with the Acromion of the scapula (see Annot. 98; and **Osteo.** Annot. 165).

The acrocoracoclavicular joint is a syndesmosis, modified as a symphysis in some forms of birds. In other avian groups the junction is a typical synovial joint

- (Spheniscus, Alca, Pelecanus, Ciconia, Haliaeëtus, Buceros). In Fregata this joint is a synostosis (see Fürbringer, 1888).
- (97) **Synd. procoracoclavicularis.** Occurs in birds whose coracoid bones possess well developed procoracoid processes (e.g., *Buteo, Columba*).
- (98) **Synd. acromioclavicularis.** The dorsal end of the clavicle does not directly join the acromion of the scapula in some birds; instead the two are connected by a long Lig. acromioclaviculare. A synovial joint connects the two elements in *Picus and Ramphastos*; a symphysis is present in some taxa (Fürbringer, 1888). See **Osteo.** Annot. 165.
- (99) Lig. scapuloclaviculare dorsale. This distinct collateral ligament of the scapuloclavicular joint occurs in podicipediforms and anseriforms; it is more or less distinct from Lig. acromioclaviculare.
- (100) Artc. omalis. Synonymy: Artc. coraco-scapulo-humeralis; Artc. humeralis. The avian (synovial) shoulder joint differs from the mammalian since the humerus articulates not only with the scapula, but with scapula and coracoid bones, both of which contribute to the osseous Cavitas glenoidalis. In fact, the head of the humerus articulates not with the so-called humeral articular facets of the glenoid processes of scapula and coracoid, but with the Lig. coracoscapulare interosseum which invests both these facets, and forms Cavitas glenoidalis. Sy (1936) notes that the floor of the cavity is deformable, its shape changing in response to contact with different aspects of Caput humeri as the latter rotates about its long axis. See Annot. 93; and Osteo. 167, 168.

**Fibrocartilago humerocapsularis.** Synonymy: Os humeroscapulare (Jäger, 1857). A fibrocartilaginous or osseous mass developed in the dorsal part of the articular capsule of the shoulder joint in certain avian taxa, deep to the origin of M. deltoideus major, pars cranialis (**Myol.** Annot. 79) (see Fürbringer, 1888; Jäger, 1857).

(101) Lig. acrocoracohumerale (Fig. 5.3). This is the principal collateral ligament of the shoulder joint, and usually quite independent of the articular capsule (Sy, 1936). The ligament extends from the apex and lateral surface of the acrocoracoid process of the coracoid to the Sulcus transversus of the cranial surface of the proximal extremity of the humerus. Sy discusses the function of this ligament. See Osteo. Annot. 185; and Fig. 4.12.

**Bursa acrocoracoidea; Bursa supracoracoidea.** These synovial bursae between Lig. acrocoracohumerale and the underlying bone and that deep to the tendon of M. supracoracoideus are usually in open communication with the general cavity of the shoulder joint.

(102) Lig. coracohumerale dorsale. Fürbringer (1888) noted that the dorsal coracohumeral ligament is lacking in many birds, but is very strongly developed in others. In columbiforms, particularly, the ligament is independent of the capsule, and is grooved where it is crossed by the overlying tendon of M. supracoracoideus.

Lig. scapulohumerale dorsale. Varies in its relative development in different taxa, but is only rarely lacking.

(103) Plicae synoviales et Ligg. intracapsularia. Fürbringer (1888) describes the interspecific variation in occurrence and strength of these intra-articular structures of the shoulder joint. In general the synovial folds and the ligaments are attached proximally to the scapular and coracoid labra of the glenoid cavity and distally to the humerus, articular capsule, or other ligaments. See Fig. 5.3.

(104) **Juncturae cubiti** (Fig. 5.4). The parts of Junctura cubiti (elbow joint) are named with the wing in the defined avian anatomical position: abducted and fully extended laterally (see **Intro.** and **Osteo.** Annot. 178); in the older literature descriptive terms were based on the wing in the folded position against the side of the trunk. The surface of the distal end of the humerus to which the M. triceps brachii is applied is its morphological dorsal or extensor (formerly "anconal") surface.

The compound elbow joint consists of three articulations: (1) radius and ulna with the humeral condyles and (2) the proximal radioulnar joint; the ulna of birds articulates with both humeral condyles. The synovial cavities of all three communicate.

- (105) Lig. collaterale ventrale. This distinct, prominent triangular ligament connects the Tuberculum supracondylare ventrale of the humerus with the ventral aspect of ulna near the margin of its Cotyla ventralis. See Fig. 5.4; and Osteo. Annot. 203 and Fig. 4.13D.
- (106) **Lig. collaterale dorsale.** Variable in its strength and extent in different avian taxa this dorsal collateral ligament of the elbow may be attached directly onto the humerus or to tendons near the Epicondylus dorsalis of the humerus; its distal attachment is onto the caudal border of the ulna near the proximal remigeal papillae (Stettenheim, 1959). See Fig. 5.4.
- (107) **Lig. craniale cubiti** (Fig. 5.4A). This strong, poorly defined cranial part (flexor aspect) of the articular capsule of the elbow is attached to the intercondylar region of the humerus. Lig. craniale cubiti appears to consist partly of elastic tissue (*Gallus*, *Columba*) that may assist in the first stage of flexion of the fully extended elbow joint.
- (108) **Meniscus radioulnaris.** The common synonym, Lig. anulare radii, is not an apt descriptive term; following Alix (1874) and Sy (1936) this distinct, intracapsular ligament is called a meniscus. The meniscus unites the proximal ends of radius and ulna (Fig. 5.4). The thick dorsal edge of the meniscus is not attached to the joint capsule; the thin deep portion of the meniscus is partly interposed between the dorsal humeral condyle and the cotyla of the ulna.
- (109) **Lig. radioulnare transversum.** The common synonym, Lig. teres cubiti, is not appropriate for this flat, band-like ligament located on the dorsal aspect of the elbow (see Fig. 5.4).
- (110) Trochlea humeroulnaris (Shufeldt, 1890) (Fig. 5.4). The comparative study of Bentz and Zusi (1982) of this ligamentous pulley examined examples of forty avian families. The pulley crosses the ventral aspect of the elbow joint, changing the direction of pull of the tendon of M. flexor carpi ulnaris (FCU) (Myol. Annot. 85, 88). They described a generalized form of the pulley and variants of the basic plan from which parts are deleted or modified. The names of the parts of the trochlea in the NAA (1979) have been replaced by the terms set down below.

The basic ancestral humeroulnar pulley consists of three main parts: (1) Pars humeralis arises from the dorsal surface of the medial epicondyle of the humerus; it descends across the superficial aspect of the FCU tendon; (2) Pars ulnaris is the continuation of Pars humeralis, which spirals over the cranial border of the tendon and passes to its deep surface where it becomes affixed to the proximal ulna; and (3) Pars humeralis accessoria extends distally from the ventral aspect of the medial epicondyle to join the main part of the pulley between its ulnar and humeral parts. In some forms (e.g., tinamous and trochilids) Pars humeralis is completely lacking.

- (111) **Lig. tricipitale** (Stettenheim, 1959). Anchors the ventral edge of the tendon of M. scapulotriceps to the ventral margin of Sulcus m. humerotricipitis on the distal end of the humerus (**Osteo.** Fig. 4.12). The ligament is intracapsular, lying deep to the tendon of M. humerotriceps.
- (112) Juncturae carpi et manus. The complicated arrangements and configurations of the articulating elements at the carpus add to the problems of applying meaningful descriptive names for the various ligaments by providing topographical connotations and/or indicating the bones connected by the ligaments. In order to avoid confusion of the names, the following usage has been adopted: (1) "metacarpo-" is the combining form used for Carpometacarpus; (2) "radiocarpo-" and "ulnocarpo-" refer to the carpal bones, Os carpi radiale and Os carpi ulnare; (3) the conventional combining forms, "ulno-" and "radio-" are used in referring to the long bones of the antebrachium, Ulna and Radius; (4) hyphenation is used in certain names to avoid confusion concerning the bones involved in formulation of the names of the ligaments; (5) names are applied so that terms of position and direction refer to the limb in its anatomical position (see Annot. 104, 155). See also Arthr. Intro.

Most of the terms on the wrist and hand articulations are based on dissections of *Gallus* and *Columba* that closely agree with the accounts of Stettenheim (1959) in several charadriiform birds and that of Sy (1936) in *Corvus* and other species. See Ghetie, et al. (1976) for illustrations of these joints in *Meleagris*.

- (113) Aponeurosis ventralis (Pelissier, 1923). Synonymy: Lig. radiale metacarpi (Stettenheim, 1959); Lig. ulni metacarpale mediale (Kolda and Komarek, 1958). A fibrous fan-like structure, with its handle attached to the distal end of the radius, its main part radiating from the Os carpi ulnare to the metacarpus and the follicles of the primary flight feathers (remiges). Its proximal edge is continuous with the ventral antebrachial aponeurosis and its distal edge with the dense fascia investing the ventral (palmar) muscles of the manus; its two main parts are described below (Annot. 114, 115). See Figs. 5.5, 11; Osteo. Annot. 213.
- (114) **Retinaculum flexorium.** This band-like, transverse "handle"-segment of Aponeurosis ventralis restrains the tendons of the flexor muscles (**Myol.** Annot. 86) passing deep to it, and is anchored to underlying ligaments and Os carpi radiale. The retinaculum extends caudally from the distal, ventral end of the radius (**Osteo.** Fig. 4.13) to the Crus longum of Os carpi ulnare where it blends with the distal end of the humerocarpal ligament (*Columba*, *Buteo*, pers. obs), and is continuous with the fan of the Aponeurosis in the angle of the wrist. See **Osteo.** Annot. 213.
- (115) Aponeurosis ulnocarporemigalis. This is the distal radiate segment of Aponeurosis ventralis carpalis (see Annot. 114) that crosses ventral to the Crus longum of Os carpi ulnare and fans out in the area caudal to the angle of the wrist and along the caudal border of Os metacarpale minus. It is rather slightly attached to the Crus longum, and may have a synovial bursa between it and the Os carpi ulnare. The ulnocarporemigal aponeurosis radiates, sending digitations to the follicles of the proximal series of the primary remiges. Its proximal half flares toward the follicles of the distalmost two or three secondary remiges and to the carpal segment of the elastic interremigal ligament (*Columba*, *Gallus*, *Buteo*); the superficial collagenous bundles cross Os carpi ulnare and are continuous with Retinaculum flexorium (Annot. 114, 191; and Fig. 5.11).
- (116) Lig. radioulnare interosseum. This is the only ligament that directly connects the distal ends of radius and ulna; it is interposed between the radius and the

- ulna, preventing their direct contact, and is continuous with Lig. ulno-radiocarpale interosseum. Lig. radioulnare interosseum is situated so that it limits distal movement of the radius relative to the ulna as in folding the wing. See Fig. 5.5B Annot. 119.
- (117) Lig. ulno-ulnocarpale proximale. Synonymy: Lig. posticum ulnare carpi ulnaris (Stettenheim, 1959). Lig. ulno-ulnocarpale distale. Synonymy: Lig. obliquum carpi ulnaris. Both these ligaments are distinct in *Gallus* and *Columba*; in *Corvus* (Sy, 1936), and in several charadriiforms (Stettenheim, 1959). Both are situated on the ventral side of the joint, in part deep to the Aponeurosis ventralis. In *Pteroglossus*, a piciform, these two ligaments are represented by a single ligament. See Fig. 5.5B.
- (118) **Lig. ulno-radiocarpale ventrale.** Thickened part of Capsula articularis of the ulno-radiocarpal joint (Fig. 5.5B).
- (119) Lig. ulno-radiocarpale interosseum. Synonymy: Lig. ulnare carpi radialis. This intra-articular ligament extends ventrally from the Sulcus intercondylaris of the ulna to the Os carpi radiale. It is the major ligament connecting the ulna to the carpals; it limits distal movement of the radius. See Fig. 5.5B and Annot. 116.
- (120) Lig. ulno-metacarpale ventrale. Synonymy: Lig. ulnare internum metacarpi (Stettenheim, 1959). This ligament is independent of Lig. radiocarpo-metacarpale ventrale in certain charadriiforms (Stettenheim, 1959) and *Columba*; in *Gallus* the two ligaments are combined distally (Fig. 5.5B).
- (121) **Lig. radio-radiocarpale dorsale** (Fig. 5.5A). Synonymy: Lig. radiale externum carpi radialis (Stettenheim, 1959). In *Gallus* two digitations from the radius merge to form this ligament that is attached to the dorsal surface of Os carpi radiale.
- (122) Meniscus intercarpalis. Synonymy: Lig. carpi interni. The intercarpal meniscus connects Os carpi ulnare with Os carpi radiale; it is said to represent the embryonic carpal, centrale III (Romanoff, 1960). Attachments of the meniscus to Os carpi ulnare are only at dorsal and ventral points; the intervening thin caudal border of the meniscus next to Os carpi ulnare is free. The slit-like opening between the free border and the ulnar carpal permits communication between the joint cavities proximal and distal to the meniscus. Its cranial attachment to the caudal, sharp border of Os carpi radiale forms the thick dorsal part of the wedge-like meniscus. See Fig. 5.5A; and Osteo. Annot. 214.
- (123) **Syncc. intercarpales.** Each of the definitive carpal bones is formed during fetal development by coalescence of several carpal anlagen (Romanoff, 1960; Hinchliffe, 1985). See **Osteo.** Annot. 214.
- (124) Artcc. carpo-carpometacarpales. The ulna and radius do not articulate directly with the Carpometacarpus; carpal bones and Meniscus intercarpalis are interposed. See Annot. 128 for an explanation of the development of the Os carpometacarpale and formation of the "intercarpal" joints.
- (125) **Lig. radiocarpo-metacarpale ventrale.** Synonymy: Lig. internum ossis carpi radialis et metacarpi (Annot. 120; Fig. 5.5).

- (126) Lig. ulnocarpo-metacarpale ventrale. Synonymy: Lig. internum ossis carpi ulnaris et metacarpi. Consists of two separate parts in *Gallus* (Fig. 5.5).
- (127) Lig. ulnocarpo-metacarpale dorsale. Synonymy: Lig. externum ossis carpi ulnaris et metacarpi (Fig. 5.5).
- (128) **Synoss. carpo-metacarpales.** The carpo-carpometacarpal articulations, as indicated by their names, are actually synovial joints between both of the free carpal bones and those carpals that coalesced with the proximal ends of the fused alular, major, and minor metacarpal bones in fetal and postnatal life (Hogg, 1982), forming the compound bone, Os carpometacarpale; therefore, the joints between the carpometacarpus and free carpals are actually intercarpal articulations. Compare with the ankle (intertarsal) joint: Annot. 167, 173. See **Osteo.** Annot. 214.
- (129) Synos. intermetacarpalis proximalis/distalis. In postnatal life the three metacarpal elements are originally joined by cartilage, and in late postnatal maturation become ankylosed with one another. At their proximal ends the metacarpals also undergo synostosis with the carpals (see Annot. 128 and Osteo. Fig. 4.14). Distally the major and minor metacarpals fuse (see Osteo. Annot. 222). Romanoff (1960) points out how the development of the manus in ratites and penguins differs from the general avian pattern (consult Hinchliffe, 1985). See Osteo. Annot. 222.
- (130) Artcc. metacarpophalangeales. Ligaments of the metacarpophalangeal synovial joints participate in guiding and limiting movements as well as strengthening the distal part of the wing, since the primary remiges are attached to the Carpometacarpus and phalanges. In general the ligaments of the ventral side of the joints are stronger than those of the dorsal side since they must resist more powerful forces against the ventral surface of the wing during flight.
- (131) Lig. obliquum alulae (Fig. 5.5B). Synonymy: Lig. pollicare. Extends from distal edge of Proc. extensorius of the alular metacarpal to the base of the ventral surface of the alular phalanx.
- Artc. metacarpophalangealis alulae. In most birds this is a synovial joint; however, in the penguin (*Pygoscelis adeliae*) the alular phalanx is fused (synostosed) at its base with the Os metacarpale alulare and the cranial margin of Os metacarpale major (see Integ. Annot. 70).
- (132) Lig. collaterale ventrale. On the ventral side of the metacarpophalangeal joint of the major digit, this ligament consists of a broad, flat part and an elongate, cord-like part. The cord-like part is attached along the caudal crest of the proximal phalanx of Digitus major.
- (133) Lig. collaterale caudale. The caudal collateral ligament of the metacarpophalangeal joint of Digitus major is variable in occurrence in different taxa, e.g., present in *Columba*, absent in *Gallus*.
- (134) **Lig. obliquum intra-articulare.** This ligament of the metacarpophalangeal joint of Digitus major is present in *Columba* and *Gallus*; it appears to limit rotation about the long axis of Digitus major brought about by elevation of the caudal border of the wing.
- (135) Meniscus articularis. Loosely organized fatty-fibrous intra-articular structure located in the dorsal part of the cavity of the metacarpophalangeal joint of Digitus major, attached to the inner surface of the joint.

(136) Juncturae interphalangeales manus. The phalanx of Digitus minor is attached along most of its length to the caudal edge of the proximal phalanx of Digitus major by an interosseous ligament (Pelissier, 1923); therefore, movements of the minor digit follow those of the major digit. Each of the two digits has an individual synovial cavity at its articulation with the Carpometacarpus.

In the penguin (*Pygoscelis adeliae*) the alular phalanx is fused with the cranial margin of Os metacarpale major and at its base with Os metacarpale alulare (**Synos. metacarpophalangealis alulae**). See **Integ.** Annot. 70.

- (137) Artc. interphalangealis digiti majoris. The Digitus major of most birds usually possesses two phalanges; therefore, only one interphalangeal joint is present. In some groups of birds supernumerary phalanges in the form of inconstantly or regularly occurring wing claws are found on the alular and major digits (Fisher, 1940); Digitus major has three phalanges in certain birds, e.g., *Gavia* and the anatids (Berger, 1966); members of several avian orders possess two alular phalanges (see Osteo. Annot. 224; Integ. Annot. 70; and Topog. Annot. 40).
- (138) Lig. collaterale caudale. The caudal collateral ligament of the interphalangeal articulation of Digitus major is a strong, but poorly defined, part of its articular capsule in *Gallus* and *Columba*.
- (139) Lig. interphalango-remigale. This is a part of Aponeurosis interphalango-remigalis consisting of a tough ligamentous band; it strengthens the ventral side of Artc. interphalangealis of Digitus major. Distally the ligament is attached to the follicle of a remex rather than to bone (see Annot. 192).
- (140) **Ligg. accessoria alae.** The accessory ligaments of the wings are those ligaments not associated with articulations of bones with one another per se, but with tendons or feathers (cf., retinacula of Cartilago tibialis). See Annot. 145.
- (141) Lig. propatagiale (Fig. 5.11). Synonymy: Lig. elasticum propatagiale (NAA, 1979); elastic tendon of M. tensor propatagialis (Berger, 1966). The structure of the propatagium and its ligaments has been elucidated in recent comparative studies (R. E. Brown, 1991, pers. comm.; Brown, et al., 1989). The propatagial ligament is found in the cranial free edge of the propatagial skin fold; in different birds its proximal attachment is commonly from one or a combination of: (1) deltopectoral crest of the humerus, (2) tendons of insertion of Mm. pectoralis or deltoideus major near the crest, (3) fascia of M. pectoralis. Distally the ligament is attached to the extensor process of Os carpometacarpale and Digitus alularis. Although the propatagial ligament has been considered as the tendon of Caput craniale of M. deltoideus, pars propatagialis (M. tensor propatagialis), this muscle in fact inserts into the medial part of the ligament.

The structure of the propatagial ligament is variable. For example, in some birds (e.g., passeriforms) Lig. propatagiale is constructed of collagenous tissue in its medial and lateral segments with an intermediate segment of elastic tissue (**Pars elastica**). In *Diomedea* the ligament is almost entirely collagenous tissue. In some falconiforms the entire length of the ligament is made of a slender continuous collagenous band paralleled by an elastic band spanning its intermediate two-thirds. See **Myol.** Annot. 78-80.

Lig. limitans cubiti (R. E. Brown, 1991, pers. comm). Synonymy: tendon of M. propatagis brevis. This is the ligament in the propatagium that limits extension of the elbow joint, determining the maximum degree of its extension. It may share completely or partially the proximal attachment of Lig. propatagiale, or it may be

totally separate as in passeriforms. In different birds its distal attachments are: dorsal antebrachial fascia of the proximal forearm (Annot. 194), tendon of origin of M. extensor metacarpi radialis, dorsal capsule of elbow joint, etc. The elbow-limiting ligament varies in its form: single band, two ligamentous bands, a broad fascial sheet. The Caput caudale of M. deltoideus (so-called M. propatagialis brevis) inserts on the proximal part of this ligament (Annot. 194; see also **Myol.** Annot. 78-80 regarding propatagtial muscles.

- (142) **Retinaculum m. scapulotricipitis.** A flat, wide ligamentous band that anchors the cranial edge of M. scapulotriceps to the proximal shaft of the humerus. This condition occurs widely among birds (Berger, 1966). See Annot. 111.
- (143) **Lig. humerocarpale** (Fig. 5.11). Alix (1874) and Pelissier (1923) referred to this distinct, band-like ligament as "Lig. du petit palmaire"; it extends from the Epicondylus ventralis of the Humerus to the wrist region where it is attached to Crus longum of Os carpi ulnare. Berger (1966) equates the ligament with the entire ventral antebrachial aponeurosis; in fact, the humerocarpal ligament is generally independent of the more superficial Aponeurosis ventralis antebrachii. Lig. humerocarpale is closely related to M. flexor digitorum superficialis and Septum humerocarpale (see legend of Fig. 5.11 and Annot. 195, 114).
- (144) **Retinaculum m. extensoris metacarpi ulnaris.** Berger (1966) discusses the occurrence of this retinaculum ("ulnar anchor") that holds the proximal tendon of M. extensor metacarpi ulnaris against the ulna. See Bentz and Zusi (1982) for the relationship of the retinaculum to the humeroulnar pulley.
- (145) **Ligg. accessoria musculi.** On the dorsal side of the wrist (carpal) region these accessory ligaments are connected proximally to the distal end of the ulna, and join or envelop certain tendons of muscles (**Myol.** Annot. 88, 90) that cross the joints of the wrist. The accessory ligaments are arranged mechanically so that they passively contribute to the actions produced by the muscles with which they are associated (*Columba*, Berger, 1966).
- (146) **Juncturae cinguli membri pelvici** (see Artcc. synsacri). The joints of the pelvic limb girdle include those of the hip bone (Os coxae) which is formed by coalescence of ilium, ischium, and pubis, as well as the joints between the synsacrum and Os coxae. These elements develop embryologically as separate cartilaginous anlagen in the acetabular region, subsequently undergoing complete ossification in postnatal life, and ultimate synostosis. All three elements contribute to the formation of the acetabulum. See Annot. 148.
- (147) **Sut. ischiopubica.** In many carinate birds the caudal end of the ischium (Proc. terminalis ischii) (**Osteo.** Fig. 4.15) articulates by sutural ligaments with the dorsal border of the shaft of the pubis. In some passeriforms and piciforms this joint is ankylosed (Boas, 1933). In the dried skeleton of ratites the end of the ischium is synostosed to the pubis; however, the ilium does not join the ischium caudally. In tinamous and the Emu (*Dromaius*) there is no bony union of the caudal ends of the pubis, ischium, and ilium. See **Osteo.** Fig. 4.15.

**Membrana ischiopubica.** This membrane closes off the elongate Fenestra ischiopubica. See **Osteo.** Annot. 227, 229 and Fig. 4.15.

**Lig. ischiopubicum.** Extends from Proc. obturatorius of the ischium to the pubis, and forms the caudal border of the Foramen obturatum; in some avian taxa this ligament becomes ossified (Boas, 1933). See **Osteo.** Annot. 227 and Fig. 4.15.

(148) **Sync. ilioischiadica.** The ilium and ischium articulate at the acetabulum in all birds. In young carinate birds the postacetabular ilium and ischium are also joined by cartilage that ossifies caudal to the Fenestra ilioischiadica in older birds. In some ratites they remain separated or joined incompletely (Nauck, 1938). See Annot. 147 and **Osteo.** Annot. 231, 251 and Fig. 4.15.

Membrana ilioischiadica. This connective tissue sheet stretches across the caudal two-thirds of the Fenestra ilioischiadica. Muscles are attached to its superficial and deep surfaces; nerves and vessels traverse only the cranial part of the fenestra.

- (149) **Symphysis pubica.** The two hip bones of the bony pelvis are connected to one another by junction of right and left pubes only in *Struthio* and *Archaeopteryx* (Heilmann, 1926) by the junction of right and left pubes.
- (150) Symphysis ischiadica. Union of the right and left ischial bones occurs only in *Rhea;* the two ischia meet in a long median symphysis ventral to the synsacrum and kidneys; this partition separates these structures from the abdominal viscera (Barkow, 1856; Newton and Gadow, 1896).
- (151) **Membrana acetabuli.** Closes the Foramen acetabuli in the deepest part of the Acetabulum; its ventral part blends with the acetabular attachment of Lig. capitis femoris (Fig. 5.6). See Osteo. Annot. 226.
- (152) Juncturae coxae. Two distinct articulations are included within the single synovial cavity of the hip joint: (1) Artc. coxocapitalis, the articulation of Caput femoris with the Acetabulum; (2) Artc. coxotrochanterica, the articulation of the Trochanter and dorsal surface of the femoral neck with the Antitrochanter of Os coxae. See Fig. 5.6; and Osteo. Annot. 255.
- (153) **Lig. iliofemorale** (Fig. 5.6). On the cranial aspect of the hip joint, the thick dorsal edge of the iliofemoral ligament is distinct from the thin dorsal part of the joint capsule.
- Lig. ischiofemorale. Proximally this ligament is attached to the cranial border of the ilioischiadic foramen and the caudal border of the Antitrochanter; it extends distally to the caudal part of the trochanteric crest of the femur (see Fig. 5.6).
- (154) **Junctura genus** (Fig. 5.7). The knee joint is formed of four separate articulations whose synovial cavities all intercommunicate: (1) the medial femoral condyle articulates with the medial meniscus and the tibiotarsus; (2) the lateral femoral condyle articulates with the lateral meniscus and fibula; (3) the femoral patellar sulcus articulates with the patella; (4) the proximal tibiotarsus articulates with the head of the fibula. The lateral femoral condyle has little direct articulation with the tibiotarsus since the lateral meniscus is interposed between them. The proximal tibiofibular articulation is a synovial joint (see Annot. 161).
- (155) Artc. femorotibialis. The major bone of the crus is the Tibiotarsus, the distal end of the tibia being capped by tarsal elements (Annot. 167). For simplification of the terminology of the knee region, the combining form "tibio-" instead of "tibiotarso-" is used. See Annot. 156-157.
- (156) Artc. femorofibularis (Fig. 5.7). The proximal and medial articular facets of the Caput fibulae articulate with the Trochlea fibularis of the lateral condyle of the femur (see Annot. 154).
- (157) Artc. tibiofibularis. The Caput fibulae articulates directly with the lateral surface of the tibiotarsus just distal to the point of attachment of the lateral meniscus

to Caput fibulae laterally (see Annot. 159) and to the tibial plateau medially. At this level the fibula is also fastened to the tibiotarsus by two ligaments: (1) the obliquely disposed extracapsular **Lig. tibiofibulare obliquum** (*Meleagris*, Ghetie, 1976; and *Columba*, pers. obs.) which forms the upper boundary of the proximal tibiofibular foramen; and (2) the nearly transverse, intracapsular **Lig. tibiofibulare craniale** which is located just beneath, and adherent to, the Lig. transversum genus (see Fig. 5.7 and Annot. 154, 162).

(158) Lig. patellae. This so-called ligament is actually the tendon of Mm. femorotibiales that extends from the distal border of the Patella to Crista patellaris of the Tibiotarsus. Lig. patellae forms much of the cranial wall of the articular cavity of Artc. femorotibialis.

Corpus adiposum retropatellare. Intracapsular fat body of the knee joint located behind the patella. See Osteo. Annot. 268.

(159) Meniscus lateralis (Fig. 5.7). Synomymy: Femoro-fibular disc (Haines, 1942). This meniscus is an oblong disc attached at its medial end to the interarticular area of the head of the tibia. The lateral end of this meniscus is affixed to the inner surface of the Caput fibulae. The lateral menicus separates the lateral condyle of the femur from the lateral articular facet of the tibia. During flexion/extension of the knee joint the head of the fibula protracts and retracts alongside the tibia, pivoting about the attachment of the medial end of the meniscus.

Meniscus medialis. This C-shaped meniscus has an open central part that permits direct articulation of the medial femoral condyle with the tibiotarsus. See Fig. 5.7.

- (160) Lig. meniscocollaterale (Fig. 5.7). Connects the cranial edge of Meniscus lateralis with the cranial border of Lig. collaterale laterale of the knee (Haines, 1942; Cracraft, 1971).
- (161) Synd. tibiofibularis; Lig. tibiofibulare interosseum (Fig. 5.7). This slightly moveable joint connects the Crista fibularis of the proximal shaft of the Tibiotarsus with Corpus fibulae and Spina fibulae. See Müller and Streicher (1989) for a discussion of the ontogeny of the Synd. tibiofibularis, as well as interspecific variation and biomechanics of this joint.
- (162) Foramen interosseum proximale; Foramen interosseum distale. These are openings between the Tibiotarsus and the Fibula proximal and distal to Synd. tibiofibularis (see above). The foramina transmit nerve and vessels that pass between the flexor and extensor compartments of the crus. See Osteo. Fig. 4.17; Art. Annot. 76; and Ven. Annot. 71.
- (163) Artc. cartilago-tibiotarsalis. Cartilago tibialis articulates with Trochlea cartilaginis tibialis on the caudal surface of the distal end of the Tibiotarsus; the joint cavity of this articulation is continuous with that of the intertarsal joint. Cartilago tibialis forms the caudal wall of Artc. intertarsalis (see Fig. 5.8; and Osteo. Annot. 279).
- (164) Cartilago tibialis (Fig. 5.8). Synonymy: Cartilago semilunaris; Sustentaculum (Fujioka, 1962); Sustentaculum tarsi (Komárek, 1979). Shufeldt (1890) described the tibial cartilage as the fibrocartilaginous block that lies on the caudal aspect of the Trochlea cartilaginis tibialis at the distal end of the Tibiotarsus. The tendons of M. gastrocnemius and superficial flexors ride in the wide sulcus on the superficial surface of Cartilago tibialis, and the deep flexor tendons of the pedal digits glide through canals within it. Hudson (1937) noted the presence of Cartilago tibialis in many different avian taxa. See Osteo. Annot. 279.

(165) **Retinaculum mediale; Retinaculum laterale** (Barnett, 1954a). Tough, ligamentous sheets that bind the sides of Cartilago tibialis to the tibiotarsal epicondyles caudal to the collateral ligaments of the intertarsal joint; the retinacula contribute to the articular capsule (Fig. 5.8; and Annot. 164). The tendinous expansion of M. fibularis longus is also fastened to the lateral border of the cartilage.

**Retinaculum flexorium.** This transverse fibrous arch is attached to the curved lateral and medial margins of Cartilago tibialis; it restrains tendons (mainly M. gastrocnemius) that lie in the sulcus on the caudal surface of Cartilago tibialis.

(166) Os sesamoideum intertarsale. In certain birds the mediodistal angle of Cartilago tibialis forms this distinct ossified process (Cracraft, 1971); this sesamoid articulates extensively with the Tarsometatarsus.

**Lig. metatarso-sesamoideum.** The strong Lig. metatarso-sesamoideum connects Os sesamoideum intertarsale with the Tarsometatarsus distal to the rim of its medial cotyla, caudal to the attachment of Lig. collaterale mediale of the intertarsal joint; in some birds it is continuous with the medial collateral ligament itself (e.g., *Columba*, Cracraft, 1971; *Gallus*). See Annot. 169.

Lig. cartilago-metatarsale. Unites the middle of the distal end of Cartilago tibialis to Sulcus ligamentosus on the proximal surface of the Tarsometatarsus just caudal to its articular cotylae. See Annot. 164, 169; and Osteo. Annot. 286.

- (167) Artc. intertarsalis. Synonymy: Artc. tibiotarso-tarsometatarsalis; Artc. mesotarsalis. The joint between the proximal and distal rows of tarsal bones, found in birds, dinosaurs, and pterosaurs (McGowan, 1985). This joint is not homologous to the mammalian ankle joint (Artc. tarsocruralis). The Fibula does not take part in the formation of the avian intertarsal joint. No independent tarsal elements are found in adult birds, since during fetal and postnatal development the proximal row of tarsal elements cap the distal end of the tibia, forming its condyles, the distal element fusing with the metatarsals (Hogg, 1980). See Annot. 163, 164 and Osteo. Annot. 283 for literature citations.
- (168) Meniscus medialis; Meniscus lateralis. According to the comparative study of Stolpe (1932) only the lateral meniscus of the intertarsal joint is well developed. The medial meniscus is absent or poorly developed in some taxa: Gallus, Acryllium (Stolpe, 1932); Columba, Cyanocitta, Asio; well developed in Ara (Stolpe, 1932) and Meleagris (Barnett, 1954a). Meniscus lateralis is strongly attached to Lig. collaterale laterale in many birds. Both menisci are absent in flamingos (phoenicopterids); two complete menisci exist in psittaciforms (Stolpe, 1932). See Fig. 5.8 and Annot. 169, 170.
- (169) Lig. meniscosesamoideum. Connects Cornu caudalis of Meniscus lateralis with the intertarsal sesamoid (*Columba*, *Gallus*). See Annot. 166.
- (170) Lig. meniscotibiale. Synonymy: Kreuzband (Stolpe, 1932). Attached to the intercondylar incisure of the the Tibiotarsus proximocranial to the attachment of Lig. tibiometatarsale intercondylare. Distally the meniscotibial ligament bifurcates, its medial crus usually better developed than the lateral one. The crura become continuous with the cranial edges of the menisci (see Stolpe, 1932: 171). See Fig. 5.8 and Annot. 168).
- (171) Lig. tibiometatarsale intercondylare. Synonymy: Lig. anticum (Gadow and Selenka, 1890; Stolpe, 1932); Lig. tibiometatarseum mediale (Ghetie, et al., 1976). This strong intracapsular ligament extends upward from Eminentia intercondylaris of the Tarsometatarsus to a distinct impression on Incisura intercondylaris of the distal

- end of the Tibiotarsus. This ligament appears to be twisted on itself; its proximal part may be blended with ligamentous bands from the menisci of the joint (see Fig. 5.8; and Annot. 170).
- (172) **Lig. collaterale mediale/laterale** (Fig. 5.8). Stolpe (1932) stated that one collateral ligament on each side of the intertarsal joint is the usual avian condition, however, he mentions that the flamingo has two clear-cut collateral ligaments on each side of the joint: one short, one long. Barnett (1954a) described an accessory band of Lig. collaterale in *Meleagris*.
- (173) Juncturae tarsometatarsales et intermetatarsales. Metatarsal bones II, III, and IV ossify separately perichondrally, then ankylose with each other near the middle of their length. The distal tarsal elements form the "hypotarsal cap" that fuses with the common metatarsal bone, producing the definitive Tarsometatarsus of the adult (Hamilton, 1952). Persistent markings on the tarsometatarsus of adult birds of different taxa provide evidence of the fusion of the separate metatarsal bones. See Annot. 167; and Osteo. Annot. 284, 288.
- (174) **Synd. intermetatarsalis hallucis.** This slightly moveable joint between metatarsal I and the shallow, elongate depression on metatarsal II shows no evidence of a synovial cavity in *Gallus* or *Columba*. See Annot. 175 and Fig. 5.9; **Osteo.** Fig. 14.
- (175) Lig. interosseum. At its proximal end the articular surface of Os metatarsale I is held in the Fossa metatarsi I on metatarsal bone II by the Lig. interosseum. In the dried Tarsometatarsus conspicuous roughened areas at each end of the fossa indicate the attachment of the proximal and distal thickened parts of this ligament (*Columba*, *Gallus*) (see below).
- Lig. elasticum metatarsi I. This ligament extends from the distal part of Os metatarsale I to the medial aspect of the distal end of Os metatarsale II near its trochlea. This elastic ligament permits the distal end of Os metatarsale I to be drawn away from the plantar surface of the Tarsometatarsus and assists in its return movement. See Fig. 5.9.
- (176) Lig. transversum metatarsale. Synonymy: Lig. a (Cracraft, 1971). The transverse metatarsal ligament unites Tuberositas lateralis of the distal end of Os metatarsale I and the adjoining proximal phalanx of the hallux with the lateral epicondyle of Os metatarsale IV (*Columba*, *Gallus*) (see Fig. 5.9). The ligament spans the plantar flexor canal (Annot. 178), acting as a retinaculum to hold the flexor tendons of the digits against the plantar surface of the Tarsometatarsus.
- (177) Lig. obliquem hallucis. Synonymy: Lig. c (Cracraft, 1971). The oblique ligament of the hallux extends from the plantar side of the base of the proximal phalanx of the Hallux distad to the medial side of the base of the proximal phalanx of Digitus II (*Columba*, *Gallus*); it appears to limit hyperextension of the hallux. See Fig. 5.9.
- (178) Canalis flexorius metatarsi (new term). This is an osseo-fibrous tunnel that contains the compact bundle of tendons of the long flexor muscles of the digits and the bellies of short intrinsic muscles of the hallux. The bundle is enveloped and held in place against the plantar surface of the body of the tarsometatarsus (see Osteo. Annot. 292, 294) by the fibrous flexor sheath, Vagina fibrosa flexoria, which is attached to the medial and lateral borders of the tarsometatarsus. The canal extends from the distal end of the hypotarsus to the level of the metatarsophalangeal joints where the long flexor tendons enter the flexor canal of the sole (see below).

Canalis flexorius plantae (see legend of Fig. 5.9). This is the flexor canal of the sole (L. planta) of the foot. Tendons of the flexor muscles of the toes pass through this short passageway into the distal foot where they splay out to the individual digits. The plantar aspect of the canal is formed by Lig. transversum metatarsale and Tuberositas lateralis of Os metatarsale I; the dorsal aspect of the canal is formed by the surface of the Tarsometatarsus just proximal to its trochleae (Fossa supratrochlearis plantaris). See Osteo. Fig. 4.18).

(179) Aponeurosis plantaris. Synonymy: Lig. b. (Cracraft, 1971). Consists of a distal, tough connective tissue sheet that covers the plantar aspect of metatarsophalangeal joints II, III, and IV. The strongest attachments of the aponeurosis are to the bases of the proximal phalanges of digit II (medial), digit III and digit IV (lateral). The proximal thin part of the Aponeurosis plantaris is attached mainly to Lig. transversum metatarsale and to the lateral border of Os metatarsale I. See Fig. 5.9.

Corpus adiposum plantare profundum. An organized fat pad occupies the compartment deep to Aponeurosis plantaris, cushioning the more deeply situated tendons and joints.

Corpus adiposum plantare superficiale. This fat body lies superficial to Aponeurosis plantaris, forming much of the mass of Pulvinus metatarsalis (Topog. Annot. 46).

(180) Artcc. metatarsophalangeales. In most birds the hallux is rotated so that its plantar surface opposes the plantar surfaces of digits II, III, IV; however, in piciforms, cuculiforms, and psittaciforms the lateral digit (IV) is reversed, its plantar surface facing forward. Modifications of the metatarsophalangeal joint of digit IV in these groups are not included in this present terminology (see Steinbacher, 1935).

Birds which possess an "elevated" hallux wherein the metatarsophalangeal joint of the Hallux is situated more proximally than the metatarsophalangeal joints of the other digits are unable to use the hallux in grasping a perch or prey.

In some taxa, the hallux is rudimentary or lacking. See Coues (1927), and Campbell and Lack (1985) for thorough accounts of the feet of birds; and Osteo. Annot. 297.

- (181) Lig. collaterale. Proximally the collateral ligaments of the metatarsophalangeal joints are attached bilaterally to a Fovea lig. collaterale (Osteo. Fig. 4.14A) of the metatarsal trochleae and distally to the base of the proximal phalanx and to Lig. plantare (Fig. 5.9). See Annot. 182.
- (182) Lig. plantare. Synonymy: Lig. subarticulare (Cracraft, 1971). A well-developed fibrocartilaginous plantar ligament forms the plantar wall of each of the metatarso-phalangeal articulations, and is firmly attached to the bases of the proximal phalanges and the collateral ligaments of the joints. A deep sulcus in the plantar surface of each plantar ligament transmits the flexor tendons which are held against the plantar ligament by the fibrous flexor sheath (Vagina fibrosa) that stretches across the sulcus. The plantar ligament of the metatarsophalangeal joint of the hallux is poorly developed by comparison with the others (Columba, Gallus) (Myol. Annot. 3, 121).

Plantar ligaments also occur at all interphalangeal joints except those that involve the ungual phalanges. See Annot. 181 and Fig. 5.9; Osteo. Ossa digitorum pedis.

Os cuneatum (Ametov, 1971). These wedge-shaped cuneate bones occupy the metatarsophalangeal (MP) joint cavities of digits II, III, and IV of certain birds that progress by leaping or hopping (e.g., *Passer domesticus, Parus major, Sitta europaea*) rather than walking with alternating strides. Each joint contains a dorsal and a

plantar cuneate bone, each articulating with the proximal phalanx and trochlea of its metatarsal bone. On both sides of the joint each cuneate bone is connected to the proximal phalanx and the metatarsal bone by four oblique collateral ligaments, independent of the principal MP collateral ligaments. See Osteo. Annot. 256.

(183) Lig. elasticum extensorium unguis (new term: Quinn and Baumel, 1990). Hudson (1937), Berger (1952) have described in *Corvus* and in cuculids elastic extensor ligaments on the dorsal aspects of the pedal digits that are attached to the distal ends of the penultimate phalanges and the bases of the distal (ungual) phalanges; these elastic ligaments extend the distal interphalangeal joints automatically when not resisted by contraction of M. flexor digitorum/hallucis longus. See Osteo. Ossa digitorum pedis.

Lig. elasticum tendinis flexoris (new term: Quinn and Baumel, 1990). The elastic ligaments of the flexor tendons were noted by Schaffer (1903); Cracraft (1971). They are located within the digital flexor tendon sheath between the plantar surface of the phalanges and the dorsal surfaces of the tendons of M. flexor digitorum/hallucis longus. Proximally the bundle(s) of each elastic ligament is continuous with the collagenous bundles of the tendon itself. Distally each ligament is attached mainly to the plantar ligament of the interphalangeal joint. In those birds in which the elastic ligament has been studied, it is found opposite the next-to-last phalanx of each digit; in some birds additional ligaments are present at more proximal levels (e.g., Corvus and penguins in which they are strongly developed). See Quinn and Baumel (1990) for the function of these ligaments.

- (184) **Lig. inguinale.** This fibrous band (quite distinct in larger birds) stretches caudally from the lateral margin of the preacetabular ilium to the Tuberculum preacetabulare (**Osteo.** Fig. 4.15B). Lig. inguinale forms the ventral boundary of the neuro-vascular hiatus for passage of the femoral nerve and vessels; abdominal muscles arise from its ventral convex edge.
- (185) **Membrana iliocaudalis** (Baumel, 1988). Fibrous sheet connecting the transverse processes of free caudal vertebrae on each side with the dorsolateral process of the ilium and the caudal margin of Os coxae. The paired membranes help to form the dorsal wall of the abdominal cavity (**Osteo.** Annot. 231 and Fig. 4.15B).
- (186) Ansa m. iliofibularis (Ansa, L. loop). Synonymy: Ansa bicipitalis. The Ansa has two femoral bands and one fibular band; caudal to the knee the ansa acts as a fibrous pulley for the tendon of M. iliofibularis (M. biceps femoris). See Myol. Annot. 102; consult Zusi and Bentz (1984) and Raikow (1985).
- (187) **Retinaculum extensorium tibiotarsi.** Synonymy: Lig. transversum. The tendon of M. tibialis cranialis is restrained by this tough fibrous arch that is located on the distal end of cranial surface of Tibiotarsus just proximal to the osseous Pons supratendineus. The tibiotarsal retinaculum is obliquely disposed, not transversely as its older name indicates. On a deeper level the tendon of M. extensor digitorum longus also passes deep to this retinaculum. See Fig. 5.8B; **Myol.** Fig. 6.17; and **Osteo.** Annot. 278.
- (188) **Retinaculum extensorium tarsometatarsi.** Located on the dorsal (cranial) aspect of the proximal Tarsometatarsus, this fibrous arch holds the tendon of M. extensor digitorum longus against the bone and acts as its pulley. The Retinaculum is an osseous arch in certain avian taxa (see Fig. 5.8B; and **Osteo.** Annot. 287).

- Retinaculum m. fibularis [peronei]. Fibrous band that spans the sulcus for the tendon of M. fibularis brevis on the lateral condyle of the distal tibiotarsus (see Osteo. Annot. 282).
- (189) **Ligg. pennarum.** Specialized ligamentous connections of wing and tail flight feathers other than the general connective tissue attachment of the follicles of remiges, rectrices, and major tectrices to bones, integument, and fascias. The ligaments interconnect adjacent flight feathers, others passing from parts of the skeleton to the feathers, either concerned with their movements or their stabilization. See Pelissier (1923) for a comparative study of the feather ligaments of the wing; see also Robin and Chabray (1884), Stettenheim (1959), and Raikow (1985).
- (190) Lig. elasticum interremigale major. Synonymy: Grand ligament palmaire superieur (Alix, 1874); grand ligament marginale (Pelissier, 1923); interremigeal lig. (Stettenheim, 1959); Lig. elasticum interremigiale (NAA, 1979). This elastic ligament is found in the free caudal edge of the postpatagial skin fold between adjacent remiges. The part of the ligament between feathers splits and passes around each feather follicle on its dorsal and ventral aspects (Astur, Pelissier, 1923). Sy (1936) illustrates differences in form and relationship of the ligament to the follicles of the remiges in representatives of five different orders. The elastic ligament of the primary remiges is continuous with that of the secondary remiges in the carpal region (see Annot. 197; and Fig. 5.11).
- (191) **Retinacula ulnocarpo-remigalia.** Variable bands from Os carpi ulnare or from Aponeurosis ventralis that extend to follicles of the remiges and major ventral tectrices (coverts) of the carpal region (see Pelissier, 1923). See Annot. 113, 115; and Fig. 5.11.
- (192) Aponeurosis interphalango-remigalis (Fig. 5.11). Located on the ventral side of Digitus major. The Aponeurosis is attached to the skeleton in the region of interphalangeal joint of the major digit; it radiates to the follicles of several adjacent remiges.
- (193) Ligg. phalangoremigalia distalia. Individual ligamentous slips from the ventral surface of the terminal phalanx of Digitus major to several of the most distal primary remiges.
- (194) Aponeurosis ventralis antebrachii (see Annot. 143); Aponeurosis dorsalis antebrachii (Pelissier, 1923). Dense fascial sheets covering the flexor and extensor muscles of the forearm. The Lig. limitans cubiti (see Annot. 141) blends with the proximal end of the Aponeurosis dorsalis antebrachii to a variable degree in birds of different taxa.

**Digitationes remigales** from the caudal margin of dorsal antebrachial aponeurosis pass to the follicles of the secondary remiges.

- (195) **Septum humerocarpale.** This well defined intermuscular fascial sheet passes dorsally from the humerocarpal ligament to the ventral aspects of the secondary remiges. The septum is described in detail by Alix (1874) and Pelissier (1923). See Annot. 143, Lig. humerocarpale; and Fig. 5.11.
- (196) **Digitationes remigales.** Synonymy: Ligg. sous-remigien (Pelissier, 1923). These ligamentous slips from Septum humerocarpale and from the elastic ligament of M. flexor carpi ulnaris are attached to the follicles of the secondary remiges. See Annot. 197; and Fig. 5.11.

- (197) Lig. elasticum interremigale minor. Synonymy: Lig. elasticum m. flexoris carpi (NAA, 1979). This continuous elastic ligament stretching the length of the antebrachium is cranial to, and parallels, the major elastic interremigal ligament which is found in the margin of the postpatagium (see Annot. 190); not present in the manus. The minor interremigal ligament receives the insertion of Pars remigalis [caudalis] of M. flexor carpi ulnaris (Fig. 5.11). Alix (1874) noted the elastic structure of this ligament, and referred to the part of the muscle inserting on it as "rotateur des remiges" inasmuch as it sends digitations to each secondary feather. Pelissier (1923) called it the "lig. du cubital anterieur", noting that it is not continuous in the coraciiform bird, *Tockus* (formerly *Lophoceros*), but consists of a series of individual digitations to the secondaries.
- (198) Lig. elasticum intertectricale. Synonymy: intercovertal lig. (Stettenheim, 1959). Connects adjacent major ventral tectrices (covert feathers) (see Integ. of the antebrachium, carpus, and manus. Lig. elasticum intertectricale is strongest and best developed in the carpal region (Lig. elasticum intertectricale carpale), e.g., Columba and charadriiforms (Stettenheim, 1959) and tapers proximally and distally in the wing. See Fig. 5.11.
- (199) Ligg. cubiti (Pelissier, 1923). Short ligaments that run from the follicles of the secondary remiges to the series of Papillae remigales caudales of the shaft of the Ulna; the ligaments are not attached to the apices of the follicles, but slightly distal to them.
- (200) Lig. elasticum interrectricale. Synonymy: "lig. elastique souscaudal ou inferior" (Robin and Chabry, 1884). This elastic ligament is placed just deep to the fold of integument that connects the collars of follicles of the rectrices where they protrude from the rectrical bulbs. The form of this ligament varies markedly between different birds, e.g., in *Columba* it consists of a thin, wide transverse band stretching between the follicles of the rectrices on their dorsal and ventral aspects (Baumel, 1988); in *Gallus* the ligament consists of strong separate segments in the spaces between adjacent retrices; and in *Larus* the ligament consists of a cylindrical elastic bar dorsal to the rectrices, a flat band ventrally with no elements of the ligament in the interrectrical spaces. See Baumel (1988) Figs. 10, 14.



Fig. 5.1. Ligaments of the skull. A, *Corvus;* lateral view, right side of the skull showing the superficial ligaments; B and C, *Anser,* lateral view, right side of the skull. In B the superficial ligaments are shown; the more deeply disposed ligaments are shown in C. Redrawn from Bock (1964). With permission of Academic Press.

Abbreviation: paroccip., paroccipital.



Fig. 5.2. Flexion (bending) zones of the avian skull; examples of the major types. A, B, and C: upper (maxillary) jaw bending zones, redrawn from Zusi (1984); D, lower (mandibular) jaw bending zones, after Komarek (1979). Note: not all of the different flexion zones shown appear in any one species.

A, the plover, *Pluvialis squatarola*. Rhynchokinetic skull, schizorhinal nostril (charadriiform type). B, the jay, *Cyanocitta stelleri*; Prokinetic skull, holorhinal nostril. C, the Ostrich, *Struthio camelus*; Rhynchokinetic skull, schizorhinal nostril (ratite type). D, the duck, *Anas platyrhynchos*; Mandible. Each mandibular ramus of this form demonstrates both rostral and caudal intramandibular flexion zones. See **Osteo**. Fig. 4.1 for lateral view of the caudal intramandibular zone of the mandibular ramus of a gull (*Larus*).

Abbreviation: intermand., intermandibularis.



Fig. 5.3. The shoulder joint (Artc. omalis) of the pigeon, *Columba livia*. Right shoulder, ventral aspect; the general articular capsule is not depicted. Original drawing, J. J. Baumel. With permission of Academic Press.

Abbreviations: acrocor.clav., acrocoraco-claviculare; acrocor. procor., acrocoraco-procoracoideum; cor. scap., coracoscapulare; inteross. cor. scap., interosseum coracoscapulare; procor., procoracoideus.



Fig. 5.4. The elbow joint (Junctura cubiti) of the pigeon, *Columba livia*; Right side. Original drawing, J. J. Baumel. A, ventral aspect; B, dorsal aspect. Note: (1) Lig. craniale cubiti splits into two slips, one attached to the radius, the other attached to the ulna; the latter intervenes between the two bones. (2) in A the well developed articular capsule has been removed between the three distinct ligaments. (3) in B the articular capsule is quite delicate (not shown). (4) the Meniscus radioulnaris has strong attachments to radius and ulna. (5) the dorsal and caudal aspects of the humeroulnar joint are strengthened by the tendons of the triceps muscles and possess no collateral ligaments. With permission of Academic Press.

Abbreviations: M. ext. metac. rad., M. extensor metacarpi radialis; Memb. inteross. antebrach., Membrana interossea antebrachialis; Tub. supracondy., Tuberculum supracondylare.



Fig. 5.5. The joints of the wrist (Juncturae carpi) of the chicken, *Gallus gallus*. Original drawing, J. J. Baumel. A, dorsal aspect; B, ventral aspect. Note: (1) The bones are drawn apart slightly to demonstrate the interosseous ligaments and meniscus; the joint spaces are depicted in solid black. (2) The Lig. interosseum radiolnare and Lig. ulno-radiocarpale interosseum are continuous with one another. (3) the Aponeurosis ventralis is superficial to many of the ventral ligaments of the joint; the main part of the aponeurosis is depicted (see Annot. 114, 115 and Fig. 5.11). (4) the Lig. radioulnare interosseum is interposed between the distal extremities of the radius and ulna, so that the two bones articulate directly with one another only slightly, if at all. With permission of Academic Press.

Abbreviations: Lig. ulno-rad. carp, Lig. ulno-radiocarpale.



Fig. 5.6. The hip joint (Junctura coxae) of the pigeon, *Columba livia*. Right side, cranial aspect. Original drawing, J. J. Baumel. The pelvis is sectioned approximately transversely, opening a window into the Acetabulum and exposing the head of the femur and its ligament. The femur is rotated laterally and withdrawn slightly from the Acetabulum. The two arrows indicate the upper and lower margins of Foramen acetabuli.

Note: (1) the cranial and dorsal parts of the articular capsule are delicate; the remainder of the capsule consists of the strong, thick ilio-, pubo-, and ischiofemoral ligaments (see Annot. 153). (2) the joint between the neck of the Femur and the Antitrochanter (Artc. coxotrochanterica) in addition to those of the head of the femur with the acetabulum (Artc. coxocapitalis). Modified with permission of Academic Press.

Abbreviations: antitroch., antitrochanterica; M. fem. tib., M. femorotibialis.



Fig. 5.7. The joint of the knee (Junctura genus) of the pigeon, Columba livia. Original drawing, J. J. Baumel. A, caudal aspect of right knee, hyperextended. B, cranial aspect of right knee; fully flexed. Note: (1) the tendon of M. tibialis cranialis perforates the Meniscus lateralis. (2) in B, that Meniscus lateralis sends a dorsal extension between Caput fibulae and the lateral surface of the lateral condyle of the femur. (3) the attachment of both menisci to collateral ligaments of the joint. With permission of Academic Press.

Abbreviations: For inteross. prox., Foramen interosseum proximale; menisc. collat., meniscocollaterale; menisc. fem., meniscofemorale; menisc. ib. caud., meniscofibulare caudale; menisc. tib., meniscotibiale.



Fig. 5.8. The joints of the ankle (Juncturae intertarsales) of the pigeon, Columba livia. Original drawing, J. J. Baumel. A, lateral aspect, right limb; B, cranial aspect, right limb.

Note: (1) in A, the attachments of M. plantaris and M. fibularis longus to Cartilago tibialis. (2) in A, the tibial cartilage drawn caudally out of its articular sulcus on the distal extremity of the Tibiotarsus. (3) the Artc. cartilago-tibiotarsalis communicating with the Artc. intertarsalis. (4) in A, the distal part of the Retinaculum laterale serving as the articular capsule of the intertarsal joint. (5) the tendon of M. tibialis cranialis (cut) traverses the Retinaculum extensorium tibiotarsi. (6) the medial crus of Lig. meniscotibiale is attached to the margin of the medial cotyla of the Tarsometatarsus since no medial meniscus is present (see Annot. 168). With permission of Academic Press.

Abbreviations: intercondy, tib. metatars., intercondylare tibiometatarsale; meniscotib, meniscotibialis; M. flex. perf. II, III, IV; M. flexor perforatus digiti II, III or IV; M. flex. p. et p. dig. II, III, M. flexor perforatus et perforatus digiti II or III; Retinac. ext. tars. metatars., Retinaculum extensorium arsometatarsi; Retinac. ext. tib. tars., Retinaculum extensorium tibiotarsi; Sulc. cart. tib., Sulcus cartilaginis tibialis; tend. exp., tendinous expansion.



Fig. 5.9. Joints of the foot (Juncturae pedis) of the pigeon, *Columba livia*; plantar aspect; right foot. Original drawing of J. J. Baumel. Digitus I [Hallux] is hyperextended and drawn medially; the arrow is situated in Canalis flexorius plantaris through which pass the long flexor tendons to the digits. With permission of Academic Press.

Note: (1) the deep part of the Lig. obliquum hallucis is attached to the medial aspect of the trochlea of metatarsal II; its superficial part is attached to the proximal phalanx of Digitus II. (2) on the fourth digit the Vagina fibrosa is intact, attached to the margins of the plantar ligament and to the proximal phalanx. On the third digit the flexor sheath and tendons are removed showing the plantar ligament and its attachment to the base of the proximal phalanx. On the second digit the plantar ligament is elevated from its trochlea and reflected distally showing its dorsal surface. (3) a strong part of Aponeurosis plantaris (only partially depicted) extends transversely across the metatarsophalangeal joints; a thin portion (not shown) extends proximally to become continuous with the transverse metatarsal ligament and the lateral tuberosity of the first metatarsal bone.

Abbreviations: M. abd. dig. IV, M. abductor digiti IV; M. flex. perf. dig. IV, M. flexor perforatus digiti IV.



Fig. 5.10. Ligaments of the joints of the vertebral column (Juncturae columnae vertebralis) of the pigeon, *Columbia livia.* This segment of the column is from the cervicothoracic transitional region at the root of the neck. A, lateral view, left side; B, dorsal view. Original drawing, J. J. Baumel. With permission of Academic Press.

Note: (1) the arch of the cranialmost vertebra in both A and B is cut away. (2) only the lateral margin of Lig. elasticum obliquum is depicted, the deeper part of the ligament being situated on the ventral surface of Proc. articularis caudalis of the vertebra which forms the cranial attachment of the ligament. (3) Lig. elasticum obliquum assists Lig. elasticum interlaminare in maintaining the dorsal concavity of this part of the neck. (4) both the transverse and the oblique elastic ligaments of one side are tensed when the vertebral column is flexed to the contralateral side. (5) most of the joints between vertebral bodies are synovial joints having a meniscus. (6) the exceptionally large intervertebral foramina of this vertebral segment transmit the roots of the brachial plexus and huge veins.

Abbreviation: intercorp., intercorporalis.



Fig. 5.11. Ligaments of the feathers (Ligg. pennarum) of the wing of the pigeon, Columba livia; ventral aspect, right wing. Original drawing, J. J. Baumel. Arrows indicate lower major coverts of the secondary remiges (Tectrices secundariae ventrales majores); Roman numerals indicate Re-Note: (1) the Diastema or hiatus in the series of secondary remiges (see Integ. Annot. 53). (2) the digitations to the remiges from the ventral antebrachial aponeurosis, from the Lig. elasticum interremigale minor and from the Septum humerocarpale. (3) the Lig. humerocarpale spliting to enclose M. flex. dig. superf., the cranial and caudal laminae blending on the dorsal side of the muscle and becoming continuous with the Septum humerocarpale. (4) the space deep to the reflected parts of Aponeurosis ventralis that houses the belly of M. ulnometacarpalis dorsalis (removed to miges primarii; Arabic numerals indicate Remiges secundarii. With permission of Academic Press.

Abbreviations: Apon. antebr. ventr., Aponeurosis antebrachialis ventralis; Apon. ventr. carp., Aponeurosis ventralis carpalis; Lig. m. ulnometac. dors., Lig. m. ulnometacarpalis dorsalis; Lig. elast. m. flex. carp. uln., Lig. elasticum m. flexoris carpi ulnaris; Lig. elast. propatag., Lig. propatagiale, display the calami of the primary feathers).

pars elastica; M. ext. metac. rad., M. extensor metacarpi radialis; M. flex. carp. uln., M. flexor carpi ulnaris; M. pron. prof., M. pronator profundus;

Retin. flex., Retinaculum flexorum; Septum hum. carp., Septum humerocarpale.

#### JAMES C. VANDEN BERGE and GART A. ZWEERS

With contributions from subcommittee members: J. J. Baumel, B. Bhattacharyya, T. Fujioka, E. Kurochkin, R. J. Raikow, R. L. Zusi.

Comments on nomenclature and homology. The subcommittee acknowledges the continuing inherent difficulties in adopting a standardized nomenclature for the musculature when a proposed term may imply a homology between muscles in different taxa for which the homology is unknown. In the same manner, a different term may imply nonhomology between muscles whose nonhomology is also unknown. Raikow and his co-workers (1975, 1979), Vanden Berge (1970, 1979, 1982), Hall (1984), Homberger (1986), and Schroeter and Tosney (1990) have commented on this common problem in comparative anatomy. In most cases this difficulty may not present a major concern for most systematic studies, except for those dealing with higher taxa.

In this revision, the subcommittee has continued to cite references to original comprehensive works presented in the NAA, 1979, to cite comprehensive tables of synonymy in more recent literature (e.g., Zweers, 1982; Homberger, 1986; Baumel, 1988; Homberger and Meyers, 1989), and to propose new terms only when such structures were considered to be well described and clearly representative of recently discovered musculoskeletal relationships of functional, evolutionary, or systematic significance. Previous annotations have been expanded for selected structures; new annotations have been added as needed for clarification of originally proposed terms as well as for new terms. Zusi and Bentz (1984) presented a list of abbreviations for the musculature in birds, based on the standardized terminology of the previous edition (NAA, 1979). We have continued the use of a descriptive nomenclature for the musculature of the avian wing without enumeration of the digits (see Osteo, Intro. Nomenclature of digits of wing). Similarly, we have continued the use of the nomenclature for the musculature of the avian hip and thigh as previously adopted, even though we are aware of related studies of the reptilian musculoskeletal system (Walker, 1977; Rowe, 1986) which have

suggested a different terminology for certain muscles. In all instances we have attempted to follow the criteria which we established in compilation of the first edition (see NAA, 1979).

Muscles of the pelvic limb and the Garrod formula. In the previous edition (NAA, 1979:176-177) we have discussed and listed the so-called "formula muscles of Garrod" which constitute a set of anatomical variations in the musculature of the pelvic limb once thought to be characteristic of major taxa of birds. There is considerable doubt that the "formula" muscles of the pelvic limb are of any value, phylogenetically or taxonomically, in view of numerous other character variations in the musculature which are now known in birds. For this reason, in this edition we have eliminated all reference to the muscle symbols in the annotations and refer the reader to the NAA, 1979 edition.

#### **TERMINI GENERALES**

Musculus skeleti1

Origo<sup>1</sup>
Caput
Venter
Fascia
Epimysium

Insertio<sup>1</sup> Perimysium Fasciculus muscularis

Musculus subcutaneus<sup>4</sup>
Musculus striatus<sup>1</sup>

Musculus nonstriatus<sup>1</sup>

Musculus unipennatus Musculus bipennatus

Musculus multipennatus

Musculus fusiformis

Musculus planus

Musculus quadratus

Musculus abductor Musculus adductor

Musculus adductor
Musculus articularis

Musculus constrictor

Musculus depressor

Musculus dilator

Musculus expansor

Musculus extensor

Musculus flexor

Musculus levator

Musculus protractor

Musculus retractor

Musculus rotator

Musculus pronator

Musculus supinator

Musculus sphincter

Musculus tensor

Tendo

Aponeurosis

Area tuberculata tendinis<sup>124</sup>

Intersectio tendinea<sup>2</sup>
Manica flexoria<sup>121</sup>

Vagina tendinis<sup>3</sup> 121 124

Plica vagina tendinis<sup>124</sup>

Vincula tendinum

Vinculum breve

Vinculum longum

Bursa synovialis

Tendo ossificans<sup>1</sup>

#### **TERMINOLOGY**

#### MUSCULI NONSTRIATI DERMATIS 4

M. adductor retricium<sup>67</sup>

M. expansor secundariorum<sup>5</sup>

Mm. pennarum<sup>4</sup>

Tendo elastica<sup>4</sup> Mm. apteriales<sup>4</sup>

M. orbicularis palpebrarum<sup>15</sup>

## MUSCULI PTERYLARUM [SUBCUTANEI] 4

M. constrictor colli6

Pars intermandibularis

M. cucullaris

M. cucullaris capitis<sup>7</sup>

Pars interscapularis<sup>8</sup>

Pars propatagialis<sup>9</sup>

Pars clavicularis<sup>10</sup>

M. cucullaris cervicis<sup>7</sup>

Pars nuchalis

Pars clavicularis<sup>10</sup>

M. latissimus dorsi

Pars interscapularis<sup>8</sup> 77

Pars metapatagialis<sup>77</sup>

Pars scapulohumeralis<sup>11</sup> 77

M. serratus superficialis

Pars metapatagialis<sup>70</sup>

Pars scapulohumeralis<sup>11</sup> 70

M. pectoralis

Pars subcutanea thoracica<sup>12</sup> <sup>75</sup>

Pars subcutanea abdominalis 12 75

Pars propatagialis<sup>9</sup> 75

M. biceps brachii

Pars propatagialis<sup>9</sup> 83

M. deltoideus

Pars propatagialis<sup>79</sup>

#### **MUSCULI CAPITIS**

### MUSCULI BULBI OCULII 13

M. rectus dorsalis

M. rectus ventralis

M. rectus lateralis

M. rectus medialis

M. obliquus dorsalis

M. obliquus ventralis

Musculi membranae nictitantis<sup>14</sup>

M. quadratus membranae

nictitantis

Vagina tendinis

M. pyramidalis membranae

nictitantis

Tendo m. pyramidalis

Musculi palpebrarum et periorbitae<sup>15</sup>

M. levator palpebrae dorsalis

M. depressor palpebrae ventralis

M. tensor periorbitae

M. columellae<sup>16</sup>

#### MUSCULI MANDIBULAE 17

M. adductor mandibulae externus<sup>18</sup>

Pars rostralis [temporalis]

Pars ventralis [medialis]

Pars profunda

M. pseudotemporalis superficialis<sup>19</sup>

M. pseudotemporalis profundus<sup>20</sup>

M. adductor mandibulae ossis

quadrati [caudalis]<sup>20</sup>

M. pterygoideus<sup>21</sup>

M. ethmomandibularis<sup>22</sup>

M. protractor pterygoidei

et quadrati<sup>23</sup>

M. depressor mandibulae<sup>24</sup>

## MUSCULI APPARATUS HYOBRANCHIALIS [HYOLINGUALIS]<sup>25</sup>

M. intermandibularis ventralis<sup>26</sup>

Pars rostralis Pars caudalis

M. intermandibularis dorsalis<sup>26</sup>

M. serpihyoideus<sup>27</sup>

M. stylohyoideus<sup>28</sup>

M. branchiomandibularis<sup>29</sup>

Pars rostralis Pars caudalis M. interceratobranchialis

[ceratohyoideus]<sup>30</sup>

M. ceratoglossus<sup>31</sup>

M. hyoglossus rostralis [medialis]<sup>32</sup>

M. hyoglossus transversus<sup>34</sup>

M. mesoglossus<sup>34</sup>

M. hyoglossus obliquus [lateralis]<sup>33</sup>

M. supraglossus<sup>34</sup>

M. genioglossus<sup>35</sup>

# MUSCULI LARYNGIS [LARYNGEALES] 37 (see Resp.)

M. constrictor glottidis<sup>38</sup>

M. dilator glottidis<sup>38</sup>

M. cleidohyoideus

M. cricohyoideus dorsalis<sup>36</sup>

M. cricohyoideus ventralis<sup>36</sup>

M. hyovalvularis<sup>36</sup>

M. tracheolateralis

M. tracheovalvularis<sup>36</sup>

# MUSCULI TRACHEALES 37 (see Resp.)

M. cleidotrachealis

M. sternotrachealis

M. cleidohyoideus

M. tracheolateralis

### MUSCULI SYRINGEALES 39 (see Resp.)

M. obliquus ventralis

M. obliquus lateralis

Mm. syringeales

M. syringealis dorsalis

M. syringealis ventralis

M. syringealis superficialis

(continued)

## MUSCULI SYRINGEALES 39 (see Resp.) (cont.)

M. syringealis profundus

M. syringealis caudalis

M. tracheobronchialis dorsalis

M. tracheobronchialis brevis

M. tracheobronchialis ventralis

M. vocalis dorsalis

M. vocalis ventralis

#### MUSCULI VERTEBRALES 40

Aponeurosis transversa<sup>40</sup>

M. biventer cervicis<sup>41</sup>

Pars cranialis

Pars caudalis

Mm. craniocervicales<sup>40</sup>

M. complexus<sup>42</sup>

M. splenius capitis<sup>43</sup>

M. rectus capitis dorsalis<sup>44</sup>

M. rectus capitis lateralis<sup>44</sup>

M. rectus capitis ventralis44

Pars lateralis

Pars medialis

Mm. cervicales dorsales<sup>40</sup>

M. longus colli dorsalis<sup>47</sup>

Pars cranialis<sup>48</sup>

Pars caudalis<sup>49</sup>

Tendo axialis48 49

Pars profunda<sup>50</sup>

Pars thoracica<sup>51</sup>

Mm. ascendentes

M. ascendens cervicalis<sup>4046</sup>

M. ascendens thoracicus<sup>46</sup>

M. intercristalis<sup>52</sup>

Mm. interspinales<sup>52</sup>

Mm. iliocostalis et longissimus

dorsi<sup>45</sup>

Mm. cervicales laterales<sup>40</sup>

Mm. intertransversarii<sup>53</sup>

Mm. inclusi<sup>54</sup>

Mm. inclusi dorsales

Mm. inclusi ventrales

Mm. cervicales ventrales<sup>40</sup>
M. flexor colli lateralis

alis [brevis]<sup>55</sup>

M. flexor colli medialis

[profundus]<sup>55</sup>

M. longus colli ventralis<sup>56</sup>

Pars cranialis

Pars caudalis

#### **MUSCULI TRUNCI ET REGIONIS CAUDALIS**

#### MUSCULI TRUNCI 57

M. scalenus<sup>58</sup>

Mm. levatores costarum<sup>58</sup>

Mm. intercostales externi<sup>59</sup>

Mm. intercostales interni<sup>59</sup>

M. costosternalis<sup>60</sup>

Pars major

Pars minor

M. costoseptalis<sup>61</sup>

M. sternocoracoideus<sup>62</sup>

M. rectus abdominis<sup>63</sup>

M. obliquus externus abdominis<sup>63</sup>

M. obliquus internus abdominis<sup>63</sup>

M. transversus abdominis<sup>63</sup>

#### MUSCULI CAUDAE ET CLOACAE 64

M. bulbi rectricium<sup>67</sup>

Tendo centralis

M. adductor rectricium<sup>67</sup>

M. levator caudae<sup>65</sup>

Pars vertebralis

Pars rectricalis

M. depressor caudae<sup>65</sup>

Aponeurosis cruciata<sup>65</sup>

Pars proximalis

Pars distalis

Pars profunda

M. lateralis caudae<sup>65</sup>

M. caudofemoralis<sup>66</sup> 110

Pars caudalis

M. pubocaudalis externus<sup>66</sup>

M. pubocaudalis internus<sup>66</sup>

Pars pelvica

Pars caudalis

Mm. cloacales<sup>68</sup>

M. sphincter cloacae

Septum supracloacale<sup>68</sup>

M. transversus cloacae

M. contractor cloacae

M. depressor anguli venti

M. levator cloacae [M. retractor

phalli caudalis]

M. dilator cloacae [M. retractor phalli cranialis]

## MUSCULI ALAE [MEMBRI THORACICI]

M. rhomboideus superficialis<sup>69</sup>

M. rhomboideus profundus<sup>69</sup>

M. serratus superficialis<sup>70</sup>

Pars cranialis

Pars caudalis

Pars metapatagialis<sup>70</sup>

M. serratus profundus<sup>70</sup>

M. scapulohumeralis cranialis<sup>71</sup>

M. scapulohumeralis caudalis<sup>71</sup>

Mm. subcoracoscapulares<sup>72</sup>

M. subscapularis<sup>73</sup>

Caput laterale

Caput mediale

M. subcoracoideus

M. coracobrachialis cranialis<sup>74</sup>

M. coracobrachialis caudalis<sup>74</sup>

M. pectoralis<sup>75</sup>

Pars propatagialis<sup>9</sup>

Pars sternobrachialis

Pars costobrachialis

Aponeurosis [Membrana]

intramuscularis<sup>75</sup>

M. supracoracoideus<sup>76</sup>

M. latissimus dorsi<sup>77</sup>

Pars cranialis

Pars caudalis

Pars metapatagialis

M. deltoideus [Complexus m.

deltoideus]<sup>78</sup>

Pars propatagialis [M.

propatagialis]<sup>79</sup>

Caput craniale [Pars longa]

Caput caudale [Pars brevis]

Pars major [M. deltoideus major]80

Caput craniale

Caput caudale

Caput proximale

Pars minor [M. deltoideus minor]80

Caput dorsale

Caput ventrale

M. triceps brachii

M. scapulotriceps<sup>81</sup>

M. humerotriceps<sup>82</sup>

M. coracotriceps<sup>82</sup>

(continued)

### **MUSCULI ALAE [MEMBRI THORACICI] (cont.)**

M. biceps brachii<sup>83</sup>

Caput coracoideum

Caput humerale

Pars propatagialis9

M. expansor secundariorum<sup>5</sup>

M. brachialis (Figs. 6.11, 12)

M. pronator superficialis<sup>84</sup>

M. pronator profundus<sup>84</sup>

M. flexor carpi ulnaris<sup>85</sup>

Pars remigalis<sup>85</sup>

M. flexor digitorum superficialis<sup>86</sup>

M. flexor digitorum profundus<sup>86</sup>

M. extensor carpi radialis<sup>87</sup>

Caput dorsale Caput ventrale

M. extensor carpi ulnaris<sup>88</sup>

M. extensor digitorum communis<sup>88</sup> 90

M. extensor longus alulae90

M. extensor longus digiti majoris<sup>90</sup>

Pars proximalis

Pars distalis

M. supinator (Fig. 6.11)

M. ectepicondylo-ulnaris<sup>91</sup>

M. entepicondylo-ulnaris<sup>92</sup>

M. ulnometacarpalis dorsalis<sup>89</sup>

M. ulnometacarpalis ventralis<sup>89</sup>

M. interosseus dorsalis<sup>93</sup>

M. interosseus ventralis<sup>93</sup>

M. extensor brevis alulae<sup>94</sup>

M. abductor alulae95

M. flexor alulae<sup>96</sup>

M. adductor alulae<sup>97</sup>

M. abductor digiti majoris<sup>98</sup>

M. flexor digiti minoris<sup>99</sup>

#### MUSCULI MEMBRI PELVICI

Mm. iliotibiales 100

M. iliotibialis cranialis<sup>101</sup>

M. iliotibialis lateralis<sup>101</sup>

Pars preacetabularis

Pars postacetabularis

Hiatus acetabularis<sup>101</sup> M. iliotibialis medialis<sup>101</sup>

M. iliofibularis<sup>102</sup>

Ansa m. iliofibularis (Arthr.

Annot. 186)

M. ambiens<sup>103</sup>

Mm. iliotrochanterici<sup>104</sup>

M. iliotrochantericus caudalis

M. iliotrochantericus cranialis

M. iliotrochantericus medius

M. iliofemoralis externus<sup>105</sup>

M. iliofemoralis internus<sup>106</sup>

Mm. femorotibiales<sup>107</sup>

M. femorotibialis lateralis

[externus]

M. femorotibialis intermedius

[medius]

M. femorotibialis medialis

[internus]

M. flexor cruris lateralis<sup>108</sup>

Pars pelvica Pars accessoria

M. flexor cruris medialis<sup>109</sup>

M. caudofemoralis<sup>110</sup>

Pars caudalis (see Mm. caudae) Pars pelvica

M. ischiofemoralis (Fig. 6.16)

M. obturatorius lateralis<sup>111</sup> 112

Pars dorsalis

Pars ventralis

M. obturatorius medialis<sup>111</sup>

M. pubo-ischio-femoralis<sup>113</sup>

Pars lateralis [cranialis]

Pars medialis [caudalis]

us] Pars accessoria

(continued)

### **MUSCULI MEMBRI PELVICI (cont.)**

M. tibialis cranialis<sup>114</sup>

Caput femorale

Caput tibiale

M. extensor digitorum longus<sup>115</sup>

M. fibularis [peroneus] longus<sup>116</sup>

M. fibularis [peroneus] brevis<sup>117</sup>

Caput fibulare

Caput tibiale

M. gastrocnemius<sup>118</sup>

Pars lateralis [externa]

Pars intermedia

Pars medialis [interna]

Pars supramedialis

M. plantaris<sup>119</sup>

M. popliteus<sup>120</sup>

M. flexor perforans et perforatus

digiti II<sup>121</sup>

M. flexor perforans et perforatus

digiti III<sup>121</sup>

M. flexor perforatus digiti II<sup>121</sup>

M. flexor perforatus digiti III<sup>121</sup>

Vinculum tendinum flexorum<sup>122</sup>

M. flexor perforatus digiti IV121

M. flexor hallucis longus<sup>123</sup>

M. flexor digitorum longus<sup>123</sup>

Vinculum tendinum flexorum<sup>122</sup>

Area tuberculata tendinis<sup>124</sup>

Plicae vaginae tendinis<sup>124</sup>

Lig. elasticum tendinis flexoris<sup>124</sup>

M. extensor hallucis longus<sup>125</sup>

Pars proximalis

Pars distalis

Lig. elasticum extensorium

unguis 124

M. flexor hallucis brevis<sup>126</sup>

M. abductor digiti II<sup>127</sup>

M. adductor digiti II<sup>127</sup>

M. extensor proprius digiti III<sup>128</sup>

M. extensor brevis digiti III

M. extensor proprius digiti IV<sup>129</sup>

M. extensor brevis digiti IV129

M. abductor digiti IV130

M. adductor digiti IV<sup>130</sup>

M. lumbricalis

### **ANNOTATIONS**

(1) Musculus skeleti. At present considerable evidence supports the development of the avian skeletal muscle fibers from somites. The basis for patterning of skeletal and connective tissues resides within the neural crest cell population in the head and in the somatopleure of the body wall (Chevallier, 1979; Jacob, et al. 1979; Christ, et al., 1983; Noden, 1983; McClearn and Noden, 1988).

Musculus striatus; M. nonstriatus. "Striated" and "nonstriated" refer to the histological profile of the respective muscle cell types (NAV, 1983:H12). Since a striated profile is also characteristic of myocardium, use of "M. striatus" as a synonym for M. skeleti is not recommended; however, M. nonstriatus is equivalent to smooth muscle.

**Tendo ossificans.** In some avian taxa, the long tendons of the wing and leg muscles, and some of the flattened aponeuroses and long tendons of the muscles of the vertebral column (see **Osteo.** Annot. 140a) develop ossified areas *within* tendon. These areas are discrete and nonpathologic, characterized by the appearance of a new intratendinous cell population, increased vascularization, initial mineralization of the intercellular matrix, and later ossification.

The terms **Origo** [Synonymy: Insertio proximale, Punctum fixum; NA, 1977:A37, footnote 78] and **Insertio** [Synonymy: Insertio distale, Terminatio, Punctum mobile] have not been problematical in the avian literature in contrast to other Nomina (IANC; NA, 1977:A26, footnote 34). Although some skeletal muscles have no well-defined skeletal attachments, descriptive, and/or functional relationships are usually sufficient for adequate identification of these muscles, e.g., M. supraglossus and M. mesoglossus in psittacine birds (Annot. 34; see Homberger, 1986).

- (2) Intersectio tendinea. Synonymy: Inscriptio tendinea. A complete tendinous band between two or more parts of the same muscle (Annot. 66), or between different muscles (Annot. 8), generally without continuity of the fleshy bundles. In some muscles (Annot. 42), however, short muscle fibers attach on incomplete bands within a single belly, but other longer muscle fibers extend through the tendinous band.
- (3) Vagina tendinis. Schaffer (1903) was apparently the first to accurately describe the general structure and structural adaptations of the fibrous/synovial sheath of the avian pedal digital tendon. Recently, these were more fully characterized by Quinn and Baumel (1990); see also Annot. 121 and 124; Frewein (1967) and Greenlee, et al. (1975).
- (4) **Musculi nonstriati dermatis** is a collective term for smooth muscles within the dermis (as defined by Lucas and Stettenheim, 1972:483, Fig. 294). These muscles consist of two principal types: feather muscles and apterial muscles.

Feather muscles (**Musculi pennarum**; Synonymy: Mm. pennales (NAA, 1979) are attached at each end by an elastic tendon (**Tendo elastica**) to the connective tissues of the external wall of follicles of contour, semiplume, bristle, and body down feathers (Lucas and Stettenheim, 1972, Chap. 8). Filoplumes lack feather muscles. Basically, feather muscles have a simple to complex parallelogram arrangement and function as erectors, depressors, retractors, and rotators (Langley, 1904:242). See Fig. 6.1.

Lange (1931) designated the apterial muscles (Mm. apteriales) as a "Stratum musculo-elasticum"; these muscles lie within loose connective tissue of the dermis (Stratum laxum), but do not form a distinct layer. In *Gallus*, they are most abundant in the following apteria: scapular (caudal part), pectoral, and lateral areas of the trunk, pelvis, and tail. Elastic tendons also connect apterial muscles with feather muscles.

Musculi pterylarum [subcutanei]. Synonymy: Musculi cutanei, after NAV, 1983:A41; "dermal muscles" (Lucas and Stettenheim, 1972:505). After Petry (1951), they are named "muscles of the feather tracts". Thin sheets or narrow bands of striated muscle lie in both the transverse (circular) and longitudinal planes of the neck within the superficial fascia (Tela subcutanea). They lie adjacent to or beneath large cervical feather tracts (e.g., M. constrictor colli, Annot. 6; M. cucullaris, Annot. 7, 8, 10) and abdominal feather tracts (Pars subcutanea, M. pectoralis, Annot. 12). Others may attach on the innermost lamina of a feather tract itself (Pars scapulohumeralis of Mm. latissimus dorsi and serratus superficialis, Annot. 11), but not to individual feather follicles. They position one feather tract relative to an adjacent tract, smoothing out the surface contour of the body (Osborne, 1968).

(5) M. expansor secundariorum. Synonymy: M. dermo-ulnaris (Owen, 1842). This nonstriated muscle may consist of a proximal tendon, and an intermediate fanshaped belly associated with a distal tendon. Tendo proximalis is variably inserts onto muscle fascia (especially M. scapulohumeralis caudalis), or directly onto the scapula and coracoid, extending as far as the sternocoracoidal articulation in some taxa. In other taxa the tendon extends distally into the wing beneath the subhumeral

apterium, being continuous with attachments of the scapulohumeral slips from Mm. serratus superficialis and latissimus dorsi (Annot. 11).

**Tendo distalis** (T. humeralis) is attached to the ventral epicondyle of the humerus or to the Trochlea humeroulnaris (**Arthr.** Annot. 110), and directly on the follicles of two to six of the most proximal secondaries in the elbow region. See Fig. 6.12; and descriptions of Berger (1966), and Vanden Berge (1970).

- (6) M. constrictor colli (Fig. 6.3). Synonymy: M. cutaneus colli (Fujioka, 1963; Zweers, 1982); M. dermohyoideus (Zweers, 1982); M. dermodorsalis (Burt, 1930); see also Homberger and Meyers (1989). M. constrictor colli is the most superficial of the muscles underlying the cervical pterylae, and is typically a thin sheet of muscle, oriented circumferentially, usually opposite the cranial half or less of the neck, in some taxa more extensive caudally. Separated muscle bundles are best organized ventrally where they attach to each side of a median ventral raphe, but more widely spaced dorsally and caudally where they end in superficial fascia and a dorsal median raphe. The most rostral bundles may be attached to the cranium, especially on the caudal and dorsal rim of the external acoustic meatus where they blend with the attachment of M. cucullaris capitis (Annot. 7). The entire muscle receives its innervation from R. cervicalis, N. hyomandibularis of the facial nerve (PNS Annot. 24).
- M. constrictor colli, pars intermandibularis (Figs. 6.3, 7). Synonymy: M. basibranchialis mandibularis, pars superficialis (Vanden Berge, 1975); M. intermandibularis ventralis, pars caudalis (Zweers, 1974, 1982); see Homberger and Meyers (1989). Two major variations of this muscular slip occur. One is a fleshy band or sheet of muscle, forming the rostralmost bundles of the constrictor colli. In another the slip is attached to the lateral surface of Proc. retroarticularis of the mandible (Osteo. Annot. 49). In either case, it meets its counterpart in a midventral raphe, united with the caudal edge of M. intermandibularis ventralis (Annot. 26) and/or with the deeper hybranchial muscles (Annot. 26, 27). Pars intermandibularis should be used for either variant based on evidence that the craniocervical part of M. constrictor colli, M. serpihyoideus, and M. stylohyoideus have a common basis in development (Noden, 1983) and innervation (N. facialis).
- (7) M. cucullaris capitis (Fig. 6.3) Cucullus, L. hood or cowl. Synonymy: M. dermotemporalis (Homberger and Meyers, 1989). An extensive sheet of fasciculi oriented longitudinally between M. constrictor colli and M. cucullaris cervicis, deep to the lateral cervical apterium, resembling a hood over the caudal aspect of the head and neck. The cranial attachments include: Membrana temporalis (Arthr. Annot. 31; Osteo. Annot. 104), the rim of Meatus acusticus externus (Osteo. Annot. 19) and Os squamosum, dorsal to these; the caudal extension of the belly typically consists of a middorsal and midventral raphe and three slips, Pars interscapularis, Pars propatagialis, and Pars clavicularis (Annot. 8-10); innervation from accessory nerve via its external ramus (PNS Annot. 27). See Vanden Berge (1975).
- M. cucullaris cervicis. Pars nuchalis typically consists of three to six widely spaced, oblique, ribbon-like fasciculi, some of which attach on Proc. costalis of the most caudal series of cervical vertebrae (Osteo. Annot. 118). Pars clavicularis is a more or less separate sheet of muscle attached to the clavicle. Both parts are attached to Pars interscapularis of the Pteryla dorsalis (Integ. Annot. 58) intermingling with the interscapular parts of M. cucullaris and M. latissimus dorsi (Annot. 8).

199

- (8) M. cucullaris capitis, pars interscapularis. Synonymy: M. dermospinalis (Owen, 1842). Dorsal terminal part of M. cucullaris capitis inserting into Pars interscapularis of the Pteryla dorsalis (Integ. Annot. 58) where it may overlap, or unite by means of a tendinous intersection (Annot. 2), with M. latissimus dorsi, pars interscapularis, and M. cucullaris cervicis (Annot. 7; Berger, 1966; Osborne, 1968).
- (9) Pars propatagialis: M. cucullaris capitis, M. pectoralis, and M. biceps brachii. All three are fleshy slips which insert, together with Pars propatagialis, M. deltoideus (Annot. 78), on Lig. propatagiale (Arthr. Annot. 141). The propatagial slip of M. cucullaris capitis is well developed in psittacines, picids, and passerines. That of M. biceps brachii also inserts on Lig. limitans cubiti (Arthr. Annot. 141). In other avian taxa, muscle bundles from M. cucullaris capitis ("Pars omocutaneus", Osborne, 1968) insert on Pars scapulohumeralis of the Pteryla alaris (Integ. Annot. 64, 65) and one or more of the slips may attach on dense fascia of the shoulder. In some taxa these slips may be partly aponeurotic or even absent (see, e.g., "biceps slip", Hudson and Lanzillotti, 1964; Vanden Berge, 1970).

For other patagial muscles see M. serratus superficialis, M. latissimus dorsi. See also Annot. 70, 75, 77 and 83; and Fig. 6.13

- (10) M. cucullaris capitis, pars clavicularis. Synonymy: Mm. claviculohyoideus and claviculoglandularis mandibularis externus anterior (Zweers, 1982). A ventral terminal part of cucullaris capitis inserts principally on the clavicle. In those birds which have a pendulant crop (Ingluvies, **Digest.** Annot. 24), e.g., tinamous, galliforms, hoatzin, sandgrouse, pigeons/doves, and psittacines, Pars clavicularis may form superficial and deep sheets which ensheath this organ and support it in a sling-like fashion ("M. levator ingluviei", Fürbringer, 1888).
- (11) Pars scapulohumeralis ("dermo-iliacus", "dermo-costalis", Owen, 1842) is a fleshy slip from M. latissimus dorsi and M. serratus superficialis, respectively. Both slips attach to the caudal end of Pteryla scapulohumeralis (Integ. Annot. 61) where they merge with the interscapular slip of M. cucullaris capitis. The slip from M. serratus superficialis is the more common of the two and typically the larger (see Vanden Berge, 1970). In certain taxa (Gavia, Colaptes, and some passerines, Berger, 1966), the attachment on the scapulohumeral feather tract is prolonged as a fibroelastic tendon which ends on the tendon of M. expansor secundariorum (Annot. 5). See Fig. 6.11.
- (12) M. pectoralis, pars subcutanea thoracica/abdominalis. Synonymy: the principal name, after Osborne, 1968; M. dermohumeralis (Owen, 1842); M. pectoralis abdominalis (Vanden Berge, 1970). P. subcutanea thoracica attaches on the tendon of insertion of M. pectoralis to the humerus, and extends caudad beneath the lateral body apterium, ending beneath the caudal rows of Pars axillaris [pectoralis] of the Pteryla ventralis (Integ. Annot. 60). Pars subcutanea abdominalis is connected to the thoracic slip by an intermediate tendon, but extends farther caudally over the pectoral apterium, lateral to Pars sternalis and Pars abdominalis of the ventral feather tract, and terminates on the fascial sheath over M. obliquus externus abdominis at its pubic attachment. See Annot. 75, Osborne (1968), and Vanden Berge (1970) for examples of variation.
- (13) Musculi bulbi oculi. There are six extrinsic muscles of the avian eyeball, arranged as three opposing pairs: Mm. rectus dorsalis/ventralis; Mm. rectus lateralis/; Mm. obliquus dorsalis/ventralis. All six muscles arise from the Septum interorbitale, and insert on the Sclera. They are innervated like their mammalian

counterparts (PNS Fig. 15.2; Bubien-Waluszewska, 1981) and function in direct movements (positioning) of the eyeball. Although no trochlea is associated with it, **M. obliquus dorsalis** is probably a homologue of the mammalian M. obliquus superior. See Fig. 6.2.

For a review of eye muscles in several birds, see Abraham and Stammer (1966), Zusi and Bentz (1984), Elzanowski (1987); McVean, et al. (1987) describe their fiber types in *Columba*.

- (14) Musculi membranae nictitantis. Two muscles concerned with movement of the nictitating membrane originate from the eyeball. The aponeurosis of M. quadratus membranae nictitantis is reflected on itself to form a fibrous sheath (Vagina tendinis) for passage of the tendon of M. pyramidalis membranae nictitantis as the latter arches over N. opticus (Slonaker, 1918; Simic and Jablan-Pantic, 1959; Elzanowski, 1987). The innervation of these muscles from N. abducens is reviewed by Bubien-Waluszewska (1981); see PNS Annot. 16; PNS Fig. 15.2; and Martin (1985).
- (15) Musculi palpebrarum et periorbitae. In addition to the six extrinsic eye muscles (Annot. 14) the interorbital septum serves as origin of a striated muscle for the upper and lower eyelids and one of the floor of the orbit. M. levator palpebrae dorsalis inserts in the Plicae marginales dorsales (Sens. Annot. 36) of the upper eyelid; its innervation is the dorsal ramus of the oculomotor nerve (PNS Fig. 15.2; Bubien-Waluszewska, 1981). M. depressor palpebrae ventralis inserts on the proximal edge of the fibrous tarsus of the lower eyelid. M. tensor periorbitae forms a muscular sling separating the orbital contents from the jaw muscles (Elzanowski, 1987). The latter two muscles are innervated by the mandibular nerve (Bubien-Waluszewska, 1981). Nonstriated muscle fibers arranged approximately parallel to the free margins of the eyelids form M. orbicularis palpebrarum.
- (16) M. columellae. This is the only muscle of the avian middle ear (see Sens. Annot. 52). See Sens. Fig. 16.3.
- (17) Musculi mandibulae. A collective term for those muscles which are involved in opening and closing the jaws (Fig. 6.4; Bhattacharyya, 1982); individual muscles are named after Lakjer (1926). These have been described in several ways: (1) on the arrangement of their fasciculi to their constituent aponeuroses (after Gans and Bock, 1965); (2) on their position relative to the facial and craniofacial articulations (Bock, 1968), and (3) on their causal role in kinetics of the avian skull (Bock, 1964; Zweers, 1974) (Fig. 6.5). With the exception of M. depressor mandibulae (Annot. 24), they are derived from the mandibular arch muscle primordium (McClearn and Noden, 1988), innervated by N. mandibularis (PNS Annot. 13).
- (18) M. adductor mandibulae externus (Fig. 6.5). Synonymy: M. masseter superficialis, medius and profundus (Fujioka, 1963). This muscle complex consists of several aponeuroses attached to the cranium, and another series of aponeuroses attached to the mandible (Zweers, 1974; van Gennip, 1986). Three main subdivisions are described, one or more of which may also be subdivided. The muscle functions to elevate the lower jaw (Bühler, 1981).

Pars rostralis [temporalis]. Synonymy: Pars superficialis, (Lakjer, 1926); P. superficialis or lateralis (Dzerzhinsky and Yudin, 1982). This part of M. add. mand. ext. is often described as having temporal and orbital origins. The temporal subdivision is the more extensive and attaches to Proc. zygomaticus and areas caudal and dorsal to it (see Fossa temp. Osteo. Annot. 102, 104; Memb. temp. Arthr. Annot. 31). In some taxa (e.g., *Phalacrocorax, Anhinga*) this subdivision is hypertrophied,

and has an occipital attachment (Crista nuchalis transversa (Osteo. Annot. 17) with a separately derived head, Caput nuchale, attached to the upper dorsal cervical region by a fibrous septum in which is embedded the Os nuchale (Osteo. Annot. 76; Dullemeijer, 1951; Owre, 1967).

The orbital subdivision extends rostrad to the caudal wall of the orbit (Osteo. Annot. 29; van Gennip, 1986). Pars rostralis inserts on Proc. coronoideus (Osteo. Annot. 44) of the mandible.

Pars ventralis [medialis, Lakjer, 1926] is the "central" and, in some cases the largest, division of M. add. mand. ext. A complex aponeurosis of origin attaches on Proc. postorbitalis, as well as on Lig. postorbitale and Proc. zygomaticus. Pars ventralis inserts on the caudolateral face of the mandible (van Gennip, 1986).

Pars profunda [caudalis] (Lakjer, 1926; "profundus", including "caudalis," Dzerzhinsky and Yudin, 1982) is typically the smallest division, variable in development (e.g., Zusi and Bentz, 1984). When present as a separate division (McClearn and Noden, 1988), it attaches to the body and otic process of the quadrate, lateral to attachments of M. add. mand. caud. except for a fibrous gap through which passes Ramus pterygoideus of the mandibular nerve (PNS Annot. 13; Lakjer, 1926; Barnikol, 1953). The insertion of Pars profunda on the mandible, between Fossa articularis quadrati and Proc. coronoideus (Osteo. Annot. 44), is independent of the insertion of M. adductor mandibulae caudalis (Annot. 20).

- (19) M. pseudotemporalis superficialis. Synonymy: M. temporalis (Fujioka, 1963; Watanabe and Yasuda, 1970). This muscle has been considered the most lateral (at its origin) of the so-called "adductor mandibulae internus" subsystem of muscles (including Mm. pseudotemporalis profundus, adductor mandibulae caudalis, pterygoideus and ethmomandibularis, Annot. 20-22). In some taxa M. pseudotemporalis superficialis attaches primarily on Area muscularis aspera (Osteo. Annot. 89) of Os laterosphenoidale. It is separated from M. adductor mandibulae externus, pars rost. by N. maxillaris and Rete ophthalmicum (Dzerzhinsky and Yudin, 1982) and, in part, also by R. pterygoideus (PNS Annot. 13) of N. mandibularis (van Gennip, 1986). The muscle inserts on Tuberculum pseudotemporale (Osteo. Annot. 45). See Fig. 6.5.
- (20) M. pseudotemporalis profundus. Synonymy: M. quadratomandibularis (Hofer, 1950), Fujioka (1963). M. adductor mandibulae caudalis. Synonymy: M. pseudotemporalis (Dubale, 1969; Rawal, 1971). M. adductor mandibulae "posterior" of many authors; not to be confused with pars profunda of M. adductor mandibulae externus (Annot. 18). These two muscles form a "quadrate" portion of an "adductor mandibulae internus" muscle subsystem.

The relative development of M. pseudotemporalis profundus is proportional to that of Proc. orbitalis quadrati on which it has a primary attachment (Hofer, 1950). The quadrate attachment is rostral to that of M. adductor mandibulae caudalis from which it is separated by a fibrous gap through which passes the pterygoid ramus of the mandibular nerve (PNS Annot. 13; Lakjer, 1926; Barnikol, 1953). The attachment on the mandible is rostral to Proc. coronoideus and to the attachments of the other jaw muscles (*Columba*, van Gennip, 1986); see Burton (1974c) and Bhattacharyya (1989) for other taxa.

M. adductor mandibulae ossis quadrati [caudalis] has a primary attachment on the body of the quadrate, rostral and deep to the attachments of M. add. mand. ext, pars prof. (see Annot. 18). The mandibular attachment lies between Tuberculum pseudotemporale (Osteo. Annot. 45), laterally, and M. pterygoideus medially (Annot. 21).

M. pseudotemporalis profundus should be considered functionally independent from M. adductor mandibulae caudalis (see Annot. 21; Bock, 1964; Bühler, 1981) (Fig. 6.5).

- (21) M. pterygoideus (Fig. 6.5). Synonymy: M. adductor mandibulae internus (Hofer, 1950). M. pterygoideus is the "palatopterygoid" portion of an "adductor mandibulae internus" subsystem, i.e., defined by its attachments on the palatine and pterygoid bones (see Osteo. 61, 67). Various subdivisions have been described: (1) pars dorsalis and pars ventralis, each of which has lateral and medial subdivisions (Lakjer, 1926); (2) three principal aponeuroses and pars lateralis, pars centralis medialis, pars dorsalis medialis (Zusi, 1962; Burton, 1974a, c), or (3) pars centralis, pars dorsalis lateralis, pars dorsalis medialis, and pars retractor, the latter a separate slip which attaches on the braincase (Richards and Bock, 1973). In many taxa Pars dorsalis medialis (Zusi and Bentz, 1984), which is also described as pars dorsalis rostralis (van Gennip, 1986), is the only portion which seems well defined. The muscle inserts primarily on the caudomedial aspect of the mandible and Proc. medialis mandibulae. See Fig. 6.5.
- M. pterygoideus and M. pseudotemporalis profundus (Annot. 20) simultaneously close both the upper and lower jaws, functioning via the force lever arm of the quadrate/pterygoid/palatine/jugal bar axis, in addition to other functions (Bühler, 1981).
- (22) M. ethmomandibularis. Derived from M. pterygoideus and characteristic of psittaciforms, it has an extensive attachment on the interorbital septum and on the medial face of the mandible. It is important in generating biting forces during elevation of the lower jaw, as well as chewing forces by forward translation of the lower jaw, distinctive of the feeding system of psittacines (Hofer, 1950; Burton, 1974c; Homberger, 1980, 1986).
- (23) M. protractor pterygoidei et quadrati. Synonymy: M. craniopterygoquadratus (Fujioka, 1963); M. sphenopterygoquadratus (Dubale, 1969; Rawal, 1971). Although Lakjer (1926) described two muscles, M. protractor pterygoidei sensu stricto and M. protractor quadrati, both attached to the base of the interorbital septum; these are best considered as one muscle with two parts, defined by their insertions to Os pterygoideum and Quadratum (Figs. 6.4, 5). The muscle forces are exerted on the "palatoquadrate bridge" to protract and elevate the upper jaw (Bühler, 1981; see Bock, 1966 for the configuration in woodpeckers). See Figs. 6.4, 5.
- (24) M. depressor mandibulae (Figs. 6.4, 5, 6). Synonymy: M. occipitomandibularis (Fujioka, 1963); M. digastricus (Berger, 1966). The cranial attachment largely fills the Fossa subtemporalis (Osteo. Annot. 104) between Crista nuchalis transversa and Fossa temporalis above the ear opening. It extends ventrally over the lateral surface of Proc. paroccipitalis. The muscle also has an extensive attachment on Memb. postmeatica and Lig. occipitomandibulare. The muscle inserts in Fossa caudalis of the mandible (Osteo. Annot. 51), including Fossa conicalis and Proc. retroarticularis in birds having these features. It may consist of distinct parts, with different functions (Bock, 1964; Zusi, 1967; Zweers, 1974). Bühler (1970, and pers. comm.) suggests that in caprimulgids an internal head, fused with Lig. occipitomandibulare (Arthr. Annot. 37 may not be part of this muscle set. The muscle is innervated by the hyomandibular branch of the facial nerve (PNS Annot. 23). See Figs. 6.4, 5, 6.
- (25) Musculi apparatus hyobranchialis [hyolingualis]. The new alternative term "hyolingualis" (Richards and Bock, 1973; Bhattacharyya, 1982) is more indicative of the functional role of this musculature in support and movement of the tongue and hyoid apparatus in feeding, food and water transport, and related movements (see Zweers, 1982).

Several subgroups of hyolingual musculature are described (Zweers, 1982; Homberger, 1986; Homberger and Meyers, 1989). One, the "external hyolingual muscles" (Annot. 6, 26), consists of subcutaneous cervical and "gular" muscles which connect hyolingual elements, other than bones, with nonlingual elements. These muscles, which typically lie between the tip of the beak and the floor of the pharynx, may extend caudally as far as the trachea and pectoral girdle. They have a major influence on positioning food in the floor of the mouth.

A second, the "extrinsic hyolingual muscles" (Annot. 27, 28, 29, 35, and 37), connects skeletal elements of the hyoid apparatus with nonhyobranchial structures (e.g., mandible, larynx, trachea, clavicle), and directly influences positioning of the lingual apparatus, glottis, and pharyngeal valves. A third, the "intrinsic hyolingual muscles" (Annot. 30, 34), connect two or more elements within the hyolingual apparatus and directly influence positional changes of hyobranchial elements relative to each other.

See Homberger (1986), as well as Homberger and Meyers (1989), for recent descriptions of laminae and attendant fascial musculoskeletal and/or glandular compartments, associated with the hyolingual apparatus in *Psittacus* and *Gallus*, respectively.

- (26) Mm. intermandibulares. May be single or two independent muscles that differentiate by day 12 of development (*Coturnix*; McClearn and Noden, 1988). The muscles arise from the medial surface of Pars caudalis of the mandible, and insert on a midventral raphe which may extend from the level of the Rostrum mandibulae (M. intermand. ventr.) to the level of Os urohyale of the hyoid apparatus (M. intermand. dors.). Both muscles are innervated by R. intermandibularis of N. mandibularis.
- M. intermandibularis ventralis. Synonymy: M. mylohyoideus (in many studies, see Homberger and Meyers, 1989). The ventral intermandibular muscle is the more superficial and rostral of the two muscles (Fig. 6.7). Pars rostralis is oriented rostromedially toward a midventral raphe, and only its most caudal bundles are transversely oriented. Pars caudalis is oriented caudomedially toward a midventral raphe. It may insert directly on Os urohyale (Osteo. Annot. 81) or on a nodule ("sesamoid plate", Evans, 1969, Figs. 5-9; "nodulus", Homberger, 1986) which articulates with the hyobranchial skeleton. Pars rostralis and Pars caudalis may be continuous with one another at the attachment on the mandible.
- M. intermandibularis dorsalis. Synonymy: M. mylohyoideus anterior, "anterior" belly (Mudge, 1903); M. hyomandibularis transversus (Kallius, 1905); M. suspensor hyoideus (Ghetie and Atanasiu, 1962). M. intermandibularis dorsalis is independently developed in some taxa (*Anser* and *Anas*; Ghetie and Atanasiu, 1962; Zweers, 1974) but absent in others (e.g., *Columba*; Zweers, 1982). It is apparently derived from a horizontal splitting of the muscle primordium associated with the mandibular arch (Kallius, 1905) and lies dorsocaudal to M. intermandibularis ventralis, in part or entirely covered superficially by the latter. This muscle also inserts with its counterpart on a median raphe, separate from that of M. intermand. ventr.
- (27) M. serpihyoideus Synonymy: M. basibranchialis mandibularis, pars medialis (Vanden Berge, 1975; see Homberger and Meyers, 1989). The prefix "serpi" appears to be derived from the Latin serpo, "to creep", "serpiginous" pertaining to a "creeping eruption" that extends with an arciform border. "Serpi-" may refer to: (1) the topographic position of this muscle as it develops by a medial invagination between M. intermand., M. interceratobranchialis, and the hyolingual musculature or (2) its variable proximal attachments (including Pars caudalis of the mandible, extending medially to Lamina parasphenoidalis in some taxa; see Berger, 1966, Richards and Bock, 1972, and Burton, 1974, for examples) or (3) its arciform rostral border in some taxa. The name has been in common use for many years (Figs. 6.6, 7).

- M. serpihyoideus is innervated by R. hyoideus of N. facialis (PNS Annot. 23; Baumel, 1975); it inserts on a median raphe ventral to the Urohyale, concerned with support of the gular region. It is part of the "external hyolingual musculature" (Zweers, 1982).
- (28) M. stylohyoideus (Figs. 6.6, 7). Synonymy: M. basibranchialis mandibularis, pars lateralis (Vanden Berge, 1975; see Homberger and Meyers, 1989). Its development from the muscle primordium associated with the hyoid arch; Kallius (1905) indicated its homology with the same muscle in mammals, and its innervation by R. hyoideus of N. facialis (PNS Annot. 24). By way of (1) origin on the lateral and ventral aspects of Pars caudalis of the mandible, including Proc. retroarticularis, and (2) insertion on the hyolingual apparatus (Os basihyale), M. stylohyoideus is functionally an "extrinsic hyolingual muscle" (Zweers, 1982).
- (29) M. branchiomandibularis. Synonymy: M. mandibularis epibranchialis (Vanden Berge, 1975; see Homberger and Meyers, 1989). A complex muscle in psittaciforms (Homberger, 1986); derived from the primordium of the third pharyngeal arch, and innervated by N. glossopharyngeus (PNS Annot. 60). Pars rostralis and Pars caudalis are both present in many taxa. Bhattacharyya (pers. comm.) reports that an attachment on the lateral aspect of the ramus of the mandible, though less common, occurs in a number of passerines as well as nonpasserines. Both parts ensheath the horn branchial on which they insert.
- (30) M. interceratobranchialis [ceratohyoideus]. Considered to be derived from the mandibular muscle primordium (Kallius, 1905, but see McClearn and Noden, 1988); although topographically distinct from M. intermandibularis, it is associated primarily with the hyolingual musculature. It is innervated by R. intermandibularis of N. mandibularis (PNS Annot. 14; Baumel, 1975a). Although Zweers (1982) considered the muscle to be part of the functional "external hyolingual musculature," it may be an element of the "intrinsic" musculature, connecting the branchial horns (Cornua) to each other by way of a midline raphe.
- (31) M. ceratoglossus. This muscle connects the ceratobranchiale with the Paraglossum (Fig. 6.8). Homberger (1986) completely describes this muscle in the psittacines and discusses its synonymy. See Homberger and Meyers (1989).
- (32) M. hyoglossus rostralis [medialis] (Fig. 6.8). Synonymy: M. paraglossobasi-branchialis medialis (Vanden Berge, 1975). An intrinsic hyolingual muscle attached to most of the ventral surface of the Paraglossum and Os basihyale (Osteo. Annot. 80, 81) just caudal to the paraglossum. "Rostralis" or "medialis" refers to its position relative to M. hyoglossus obliquus (Annot. 33).
- (33) M. hyoglossus obliquus [lateralis]. Synonymy: M. paraglossobasibranchialis lateralis (Vanden Berge, 1975). The obliquity of its muscle fasciculi extending from Os basihyale to the cornua of the paraglossum (Osteo. Annot. 80) is the basis for the term "obliquus" (Fig. 6.8); "lateralis" refers to the position of the muscle relative to M. hyoglossus rostralis [medialis] (Annot. 33).
- (34) M. hyoglossus transversus; M. mesoglossus; M. supraglossus. Considered unique to psittaciforms, these muscles have been described and characterized by Homberger (1986). She suggests a derivation of M. hyoglossus ("hypoglossus") transversus and M. mesoglossus from M. hyoglossus rostralis ("anterior") and derivation of M. supraglossus from M. hyoglossus obliquus.

- (35) M. genioglossus. M. genioglossus has one attachment on Rostrum mandibulae, but its other attachment varies: (1) on the hyobranchial skeleton or the fascia of associated muscle ("geniohyoideus") (Fig. 6.8) and (2) on the connective tissue underlying the oral mucosa lateral to the tongue ("genioglossus" and "geniopharyngealis"; Zweers, 1982). The insertion may extend as far caudally as the cricoid cartilage. Zweers (1982) considers the muscle a protractor of the hyolingual apparatus and part of the "external hyolingual musculature". Absent in adult Gallus (Homberger and Meyers, 1989), it is said to be present in the foetus (Noden, 1983).
- (36) M. cricohyoideus dorsalis; M. cricohyoideus ventralis. These muscles are described in Resp. Annot. 45; they connect Os basihyale with Cartilago cricoidea. With M. hyovalvularis and M. tracheovalvularis, they are integrated into the functional apparatus directly governing movements of the "ventral pharyngeal valves" and "pharyngeal scrapers", independent of lingual, glottal and beak movements (Columba; Zweers, 1982; Zweers and Berkhoudt, 1987; Heidweiller and Zweers, 1990).
- (37) Musculi laryngis [laryngeales]; Musculi tracheales. Differences in the construction of the passeriform larynx (*Corvus* sp.) from that of the nonpasseriform larynx (*Columba livia*), and the attendant kinematic possibilities, suggest that there are at least two different types of operational laryngeal systems in birds (Zweers, et al., 1981; Zweers and Berkhoudt, 1987). The mechanism of the larynx of *Columba* has been incorporated into elements of the feeding system (Zweers, 1982). For description of both of these muscle systems see Resp. Annot. 30, 45.
- (38) M. dilator glottidis; M. constrictor glottidis. The attachments, functional role, and related terminology for these two muscles is fully described in Resp. Annot. 30. See, also, Resp. Annot. 25, 27, 28, 29, and 45; PNS Annot. 53.
- (39) **Musculi syringeales.** For an extensive review of the variation in the syringeal muscles in passerine and nonpasserine birds, see **Resp.** Annot. 45, 46; for innervation, see **PNS** Annot. 30, 31, 63.
- (40) Musculi vertebrales. Most studies of the intrinsic cervical musculature of birds (Palmgren, 1949; Zusi, 1962; Burton, 1971, 1974a, b; Jenni, 198; Zusi and Bentz, 1984) adopt the terminology of Boas (1929) although Kuroda (1962) used a slightly different set of names. Zusi and Storer (1969) suggested that in complex serially arranged muscles, the functional units ("unit criterion" of Landolt and Zweers, 1985), are those fasciculi inserting on a given vertebra rather than those originating from a vertebra. Their suggestions are adopted here. According to Zweers, et al. (1987), four subsystems are recognized as follows:

Musculi craniocervicales. This subsystem of muscles positions the head relative to the cranial end of the cervical column. All muscles in this subsystem have a primary attachment on the more cranial series of cervical vertebrae ("first division" of Boas, 1929; see Osteo. Annot. 129) but frequently extend caudally over additional cervical vertebrae. All insert on the cranium.

Mm. cervicales dorsales, laterales, and ventrales. These three subsystems position the cranial end of the cervical column relative to the trunk region of the body. The dorsal and lateral subsystems are continuous caudally with a large muscle mass often known as Mm. iliocostalis et longissimus dorsi (Annot. 45). The ventral subsystem consists of a cranial set of short flexors of the head and neck and a very long and complex series of muscle units collectively known as M. longus colli ventralis (Annot. 56).

Aponeurosis transversa (Landolt and Zweers, 1985). The muscles of the craniocervical system, and those of the first part of the dorsal and lateral cervical

systems, often are attached to this common aponeurosis. According to Landolt and Zweers (1985) it is attached to low crests on the dorsal edge of the Ansa costotransversaria (**Osteo.** Annot. 123, 127b, 135) and adjacent base of the cranial zygapophysis, and may extend to the caudal zygapophysis of the first series of cervical vertebrae. On the 2-3 cervical vertebrae caudal to the Axis, the aponeurosis is attached to the bony pillar which connects the cranial and caudal zygapophysis of each vertebra (see Boas, 1929, Tab. 3, Figs. 1, 3). Muscles attached to this aponeurosis include M. complexus (Annot. 42), M. rectus capitis dorsalis (Annot. 44), and M. ascendens cervicalis (Annot. 46). See **Arthr.** 

- (41) **M. biventer cervicis.** The only muscle of the cervical vertebral column which connects Notarium (**Osteo.** Annot. 140) with the Cranium (see Landolt and Zweers, 1985; Zweers, et al., 1987); it is well separated from other epaxial muscles within a separate fascial sheath (Kuroda, 1962) (Fig. 6.9). Typically two bellies are present, the caudal belly longest, extending from Notarium to the seventh (*Gallus*) or eighth (*Anas*) cervical vertebra; the cranial belly is short, typically extending from the level of the third cervical vertebra to its cranial attachment (Crista nuchalis transversa, **Osteo.** Annot. 17). An intermediate tendon connects the two bellies; a single, elongated, fleshy belly exists in the penguin *Pygoscelis* (Kuroda, 1962). According to Boas (1929) and Kuroda (1962) the muscle is absent in some taxa (e.g., *Anhinga, Nannopterum, Ardea*).
- (42) M. complexus. (Fig. 6.9). Synonymy: "hatching muscle" (Fisher, 1966). "M. complexus" is an unfortunate term, referring to the obsolete name for the mammalian M. semispinalis capitis considered homologous with the avian complexus. Its contractile properties and other internal changes may not be directly related to the actual "pipping" of the shell (Bock and Hikida, 1968, 1969; Brooks and Garrett, 1970; Hayes and Hikida, 1976). Two or so fleshy slips are attached to Apon. transversa (Annot. 40) beginning on cervical vertebra 3; the 2-3 tendinous intersections, corresponding to the fusion of the slips, are incomplete. Either the medial or lateral bundles of the common belly extend the length of the muscle to the cranium (Crista nuchalis transversa; (Osteo. Annot. 17).
- (43) M. splenius capitis. Synonymy: M. obliquus capitis cranialis or M. rectus capitis dorsalis major, or both (Fujioka, 1963). Description, variability, and general occurrence of this muscle in many taxa of birds are summarized by Burton (1971). Decussation of the attachments of the muscle from either side on Proc. spinosus of the Axis has been described in several birds (Burton, 1971; Zusi and Bentz, 1984; Landolt and Zweers, 1985; Zweers, et al., 1987; Fritsch and Schuchmann, 1988) and may be more common in other taxa than presently known. See Fig. 6.9.
- (44) M. rectus capitis dorsalis. Synonymy: M. rectus capitis superior (Boas, 1929); M. trachelomastoideus (Fujoika, 1963). A series of fleshy slips (five in *Anas*; Landolt and Zweers, 1985) arise from the ventral surface of Aponeurosis transversa, and extend to the occipital bone near M. rectus capitis ventralis.
- M. rectus capitis lateralis and M. rectus capitis ventralis attach by a series of fleshy slips on Crista ventralis corporis (Osteo. Annot. 119) of the first series of cervical vertebrae. Pars lateralis and Pars medialis of M. rectus capitis ventralis have been described in *Anas platyrhynchos* (Landolt and Zweers, 1985). M. rectus capitis lateralis is attached to the ventral-lateral part of Crista nuchalis transversa (Osteo. Annot. 17) extending onto the caudal border of Proc. paroccipitalis. M. rectus capitis ventralis is attached to the basioccipital bone near M. rectus capitis dorsalis. See Fig. 6.9.

myologia 207

- (45) M. longissimus dorsi. In mammals the equivalent muscle system consists of two sets of muscle, "iliocostalis" and "longissimus", typically separable from each other on the basis of attachments; in birds such a separation is not so readily apparent. The caudalmost fleshy attachments of M. longus colli dorsalis, pars thoracica, and Mm. intercristales presumably form a "longissimus dorsi"; M. ascendens thoracicus and Mm. intertransversarii, an "iliocostalis" (Zusi and Bentz, 1984), but it seems best to consider the muscle system as a single unit awaiting further clarification. According to Baumel, et al. (1990), the longissimus is functionally inspiratory during ventilation of the lungs since it elevates the pelvis at the notarial-synsacral articulation (Arthr. Annot. 71), increasing the volume of the thoracoabdominal cavity.
- (46) M. ascendens cervicalis; M. ascendens thoracicus (Fig. 6.9). Synonymy: Mm. ascendentes; M. obliquus colli (Gadow and Selenka, 1891; Kuroda, 1962); Mm. obliquotransversales (Shufeldt, 1890; Harvey, et al., 1968). A single structural/functional unit (see Annot. 41) consists of numerous, serially arranged, fleshy slips attached near the base of the Zygapophysis cranialis (Osteo. Annot. 132) and Ansa costotransversaria (Osteo. Annot. 123, 134, 135), the first slips also attaching on Aponeurosis transversa. A structural unit of this muscle is formed typically from two to four slips from the second through fourth cervical vertebrae, caudal to the terminal aponeurosis (on Crista transverso-obliqua and/or Torus dorsalis, Osteo. Annot. 124, 125). R. dorsalis of each cervical spinal nerve enters the muscle on its medial side.
- (47) **M. longus colli dorsalis.** At least four separate muscle units form this muscle complex which appears to be the avian equivalent of the spinalis muscle system in mammals. Kuroda (1962) described it as one muscle complex, M. longus colli posticus. The several parts are variously joined and/or interdigitate with other cervical muscles, particularly M. ascendens cervicalis and Mm. intercristales.
- (48) M. longus colli dorsalis, pars cranialis. Synonymy: pars anterior (Kuroda, 1962); M. splenius colli, including "splenius capitis" and "splenius accessorius" (Boas, 1929). The primary unit consists of multiple fleshy slips, varying in relative size and length, but characterized by their attachments on Proc. spinosus (Osteo. Annot. 137) of several cervical vertebrae of the most cranial series. All slips converge on a single long tendon (Tendo axialis), in common with the longest slip of Pars caudalis, and attach to Torus dorsalis of the Axis. This long tendon ascends in a sulcus on the lateral aspect of the Torus dorsalis of a few cervical vertebrae just caudal to the Axis.

Boas (1929) also described a deeper series of similar, but "accessory", fleshy slips as "splenius anticus" if attaching on Torus dorsalis of the Atlas, and "splenius accessorius" if attached to Torus dorsalis of cervical vertebrae just caudal to the Axis (Fig. 6.9). Landolt and Zweers (1985) review the occurrence of the unit which connects Proc. spinosus of the third cervical vertebra to the Atlas, perhaps the most frequent of the accessory slips to have been described. In this edition of the NAA, all unit slips defined by the above criteria are elements of this muscle system (Landolt and Zweers, 1985; Zweers, et al., 1987).

- (49) M. longus colli dorsalis, pars caudalis (Fig. 6.9). Synonymy: pars posterior (Kuroda, 1962); M. spinalis cervicis (Boas, 1929). Several fleshy slips attach on an aponeurosis from the notarium (Zweers, et al., 1987) and spinous processes of the most caudal cervical vertebra. The more lateral slips end as tendons inserting on Torus dorsalis of neck vertebrae of the second and third series (Boas, 1929); the longest slip, medial to the others, ends as a tendon (Tendo axialis) attached to Torus dorsalis of the Axis with slips of Pars cranialis (Annot. 48).
- (50) M. longus colli dorsalis, pars profunda. Synonymy: M. dorsales pygmaei (Boas, 1929); M. profundus colli posticus (Kuroda, 1962). Of inconstant occurrence in avian taxa generally (see Zusi and Storer, 1969); when present consists of a series of fleshy slips similar to M. longus colli, pars caudalis but attached to the caudal series of cervical vertebrae.
- (51) M. longus colli dorsalis, pars thoracica. Synonymy: M. spinalis thoracis (Boas, 1929). Not always separable from other muscles in the subsystem; includes those fleshy slips inserting on the arches of thoracic vertebrae similar to the attachments of other parts of the longus colli dorsalis system; see Annot. 45.
- (52) Mm. intercristales and Mm. interspinales. Mm. intercristales are intersegmental muscles which typically extend craniad from the Crista transverso-obliqua (Osteo. Annot. 124) of one cervical vertebra to that of the next cervical vertebra in the series. In the most cranial series of cervical vertebrae, Mm. intercristales are sometimes difficult to separate from the fleshy slips known as "splenius accessorius" (M. longus colli dorsalis, pars cranialis, Annot. 48). Dorsal rami of spinal nerves enter the epaxial muscles between M. ascendens cervicalis (laterally) and M. intercristalis (medially).

More or less discrete medial slips connecting adjacent spinous processes of vertebrae are considered to be **Mm. interspinales.** The latter are not as clearly developed as **Mm.** intercristales.

- (53) Mm. intertransversarii. Synonymy: M. colli lateralis (Kuroda, 1962). Mm. intertransversarii and Mm. inclusi (Annot. 54) constitute the lateral subsystem of cervical muscles. The intertransverse muscles consist of a series of intersegmental, multipennate muscles, attached by flat aponeuroses on Tuberculum ansae and Cristae laterales of Ansa costotransversaria (Osteo. Annot. 135) of one cervical vertebra to these features next in the series, forming the principal lateral musculature of the neck (Zusi and Storer, 1969; Landolt and Zweers, 1985).
- (54) **Mm. inclusi.** Inclusi are usually considered derivatives of Mm. intertransversarii, but form a muscle system uniting Lamina lateralis arcus (**Osteo.** Annot. 127) with Proc. costalis.

Mm. inclusi dorsales unite Corpus vertebrae with the Proc. costalis. Mm. inclusi ventrales in some taxa these ventral fleshy slips form the muscular "floor" of Canalis vertebrarterialis between successive transverse foramina (Osteo. Annot. 134; Landolt and Zweers, 1985).

- (55) **M. flexor colli lateralis/medialis** (Fig. 6.9). Synonymy: "lateralis" and "medialis" are somewhat more descriptive than the alternate terms "brevis" and "profundus", respectively (Boas, 1929).
- M. flexor colli lateralis lies ventrolateral to, and partly concealed by, M. rectus capitis dorsalis (Annot. 44), with which it shares attachments on the cranial series of

cervical vertebrae. A serial arrangement of fleshy slips inserts as a tendon on Proc. costalis of the Atlas.

- M. flexor colli medialis appears to be the continuation of certain more cranial elements of M. longus colli ventralis (Annot. 56; Zusi and Storer, 1969). Usually described as an independent muscle consisting of fleshy slips extending from Proc. caroticus (Osteo. Annot. 121) and the attenuated spine of Proc. costalis of the more caudal series of vertebrae that insert as a tendon on Crista ventralis corporis (Osteo. Annot. 119) of a more cranial series of cervical vertebrae. Each slip typically spans at least two intercorporeal articulations between attachments (Zweers, Vanden Berge, and Koppendraier, 1987).
- (56) M. longus colli ventralis (Fig. 6.9). The major muscle mass consists of a series of muscular slips attached to Crista ventralis corporis (Osteo. Annot. 119) of the most caudal series of cervical vertebrae and to Proc. caroticus (Osteo. Annot. 121) of the intermediate series. The terminal tendon of each unit is attached to the attenuated spine of Proc. costalis of the vertebra immediately cranial to the last fleshy slip. This subsystem lies between the two sets of Mm. intertransversarii (Annot. 53); attachments on the first series of cervical vertebrae interdigitate with similar attachments of M. flexor colli lateralis and M. flexor colli medialis (Annot. 55). For additional information on the slips, see Landolt and Zweers (1985) and Zweers, Vanden Berge, and Koppendraier (1987).
- (57) **Musculi trunci.** Collective term for the muscles of the thoracic and abdominal walls. See Fedde (1987) for a recent review on the descriptive morphology and innervation of the trunk muscles; George and Berger (1966), Zusi and Bentz (1984), and Baumel (1988) illustrate the abdominal musculature.
- M. quadratus lumborum was described in *Rhea americana* by Gadow and Selenka (1891), but this muscle is apparently greatly reduced (vestigal) or absent in birds generally.
- (58) M. scalenus. Fedde (1987) describes a pars cranialis and pars caudalis in *Gallus*, both slips attaching cranially on the transverse processes of the lowest one or two cervical vertebrae; each slip inserts caudally, and separately, on the lateral surface of the first and second vertebral rib (Osteo. Annot. 147).
- **Mm. levatores costarum.** These fleshy slips have the same basic attachments as the scalenus muscle, i.e., from the transverse process of a vertebra to the vertebral rib of the next caudal vertebra caudal, dorsal to the uncinate process of that rib. These two muscle sets form a continuous series, the scalenus lying most cranial to all vertebral ribs and the first levator inserts to the first vertebral rib with an uncinate process. The levators are accessory muscles of ventilatory inspiration.
- (59) Mm. intercostales externi. The fleshy bellies of the external intercostal muscles are most prominent in the more cranial intercostal spaces while those of Mm. intercostales interni, reciprocally, are most prominent in the more caudal series (Fedde, 1987). These muscles lie ventral to the uncinate processes in the intercostal space, attached to the ventral half of each vertebral rib, the fleshy part giving way to an aponeurosis, at the level of the uncinate process, extending dorsad toward the vertebral column. Kirby (1980) described the fleshy slips of external intercostals dorsal to the uncinates of the first two vertebral ribs in some piciforms, but these appear to correspond to the scalene-levator costarum series (Annot. 58).

Attachments of fleshy parts of external intercostal muscles to uncinate processes are (Osteo. Annot. 148) sometimes extensive, and may appear as separate "appendicocostales" muscles (Shufeldt, 1890; "intercostales superficiales" of Harvey, 1968).

- Fedde (1987) postulates that the length of the uncinate proc. is proportional to effectiveness of the external intercostal muscle to set the rib into motion. Attachments of the muscles on the ventromedial surface of an uncinate process improve the mechanical advantage in cranial shift of the ribs (Sync. intercostalis, **Arthr.** Annot. 81, 82), increasing coelomic volume. The external intercostal muscles are generally inspiratory in function, the internal intercostals expiratory (Fedde, 1987).
- (60) M. costosternalis. Synonymy: M. subcostalis; M. "triangularis sterni"; M. transversus thoracis. This muscle is attached to Proc. craniolateralis sterni and by fleshy slips on one or more sternal ribs, ventral to the intercostal muscles (Annot. 59). The intercostals extend ventrally to the joint between sternal and vertebral ribs; therefore the costosternalis slips are visible through the thin aponeurosis of the overlying intercostal muscles. The costosternalis may represent a discontinuous innermost intercostal muscle. According to de Wet, et al. (1967) and Fedde (1987) in *Gallus* Pars major is functionally distinct from Pars minor, viz., inspiratory vs. expiratory, respectively.
- (61) M. costoseptalis. Synonymy: M. costopulmonaris (de Wet, et al. 1967). This muscle consists of four striated intrathoracic slips attached to the medial surface of sternal ribs 3-6 opposite Sync. intercostalis, and insert on the lateral margin of Septum horizontale (Pericar. Annot. 2, 3; King, 1966, 1975) that separates the pleural cavity from the remainder of the thoracoabdominal cavity (Gallus, deWet, et al., 1967).
- (62) M. sternocoracoideus. This muscle is usually described with muscles of the thoracic limb. It has no known function in ventilation (Fedde, 1987) and none beyond the obvious positioning of the coracoid relative to the sternum. For further information, see Arthr. Annot. 89, 91.
- (63) M. obliquus externus abdominis; M. obliquus internus abdominis; M. transversus abdominis. These ventrolateral subpubic abdominal muscles are the primary muscles of expiratory ventilation (Fedde, 1987). Attachments of the external oblique muscle include the uncinate processes and lateral surface of vertebral rib elements, and the ventral border of the shaft of the pubis, Lig. inguinale (Arthr. Annot. 184), and Tuberculum preacetabulare (Osteo. Annot. 244); it inserts on the sternum and a ventral median raphe. The internal abdominal oblique extends cranioventrad from the ventral border of the pubis and ilium to the caudal border of the last rib.
- M. rectus abdominis. The rectus abdominis is attached to to the ventral border of Scapus pubis (Osteo. Annot. 254) and to the trabeculae of the sternum (Osteo. Annot. 150, 151). The fasciculi that parallel those of the internal oblique and rectus abdominis make up the so-called "anterior" belly of the internal oblique (Fedde, 1987). The aponeuroses of the oblique and transverse abdominal muscles do not form a rectus sheath such as that of mammals. What has been called a tendinous intersection opposite the last ribs is actually a vestige of yolk sac resorption.
- (64) Musculi caudae. Baumel (1988) presents a comprehensive, topographical description of the entire tail apparatus in *Columba livia*, which includes a functional analysis of the movements of the entire tail (uropygium) and its appended flight feathers. Other descriptive material is given in Vanden Berge (1975); Bentz (1983); Zusi and Bentz (1984); and Raikow (1985a).
- (65) M. levator caudae; M. lateralis caudae. M. levator caudae may consist of a Pars vertebralis and Pars rectricalis, differentiated on the basis of insertion. The proximal fasciculi insert on Proc. spinosus of the most caudal vertebrae; the distal

fasciculi attach to the rectricial bulb, including the follicles of the major coverts and rectrices. **M. lateralis caudae** inserts on the superior and lateral surfaces of the collar of the follicle of the outermost rectrix (rectrix 6 in *Columba livia*, Baumel, 1988). See Fig. 6.10A.

- M. depressor caudae (Fig. 6.10B). M. depressor caudae is the ventral counterpart of M. levator caudae in general structure, position, and function. Three separate subdivisions, Pars proximalis, P. distalis, P. profunda, are described in *Columba livia* (Baumel, 1988). A large proportion of the flattened tendon of **Pars proximalis** from each side decussate obliquely to form an interwoven construction, the **Aponeurosis cruciata** (Baumel, 1988) This aponeurosis is an attachment for some of the ventral, extrinsic muscles of the tail, M. pubocaudalis internus (Annot. 66) and M. caudofemoralis, Pars caudalis (Annot. 110). **Pars distalis** is attached in part to the cruciate aponeurosis and partly to the rectricial bulb (Annot. 67). **Pars profunda** inserts on the most caudal vertebrae and pygostyle. The hypaxial depressor caudae is more complex than its epaxial counterpart.
- (66) M. pubocaudalis externus; M. pubocaudalis internus; M. caudofemoralis, pars caudalis (Fig. 6.10). These (Annot. 110) are the extrinsic ventral muscles of the uropygium. The pubocaudalis muscles originate from the pubis and adjacent ischium and insert on tail structures. Both are structural components of the suprapubic lateral abdominal wall and are plastered together in their lower parts. All three muscles are functionally expiratory during ventilation (Baumel, et al., 1990).
- M. pubocaudalis internus is digastric, consisting of Pars pelvica and Pars caudalis, the two parts separated by a tendinous intersection, each part having an independent innervation. Fascia of pubocaudalis internus is continuous with Membrana iliocaudalis (Arthr. Annot. 185) and Septum supracloacale (Annot. 68).
- (67) M. bulbi rectricium; M. adductor rectricium. M. bulbi rectricium is a striated muscle which ensheaths a well organized fibro-adipose mass known as the rectricial bulb, concerned with spreading the rectrices. M. adductor rectricium, on the other hand, is a nonstriated muscle associated primarily with the inner aspect of the ventral elastic ligament of the rectrices; it connects adjacent rectricial follicles. For a detailed description of both muscles see Baumel (1988). See Fig. 6.10A.
- (68) Musculi cloacales (Fig. 6.10A). A collective term for those muscles which interdigitate in the wall of the proctodeum and the eminence of the vent. See Cloaca. Annot. 26, and Baumel (1988) for description of their functional roles.
- M. sphincter cloacae (Cloaca. Annot. 27) is an intrinsic striated muscle of the cloacal wall, extending into the dorsal and ventral lips bordering the external opening or vent, its fascia continuous with Septum supracloacale. The dorsal sheetlike portion bridges the space between the tendinous intersections of M. pubocaudalis internus, better developed than the subcutaneous ventral portion. M. sphincter cloacae is the hypertrophied muscular element of the phalloid organ in the Buffalo Weaver, Bubalornis albirostris (Bentz, 1983).
- M. transversus cloacae (Cloaca Annot. 28) consists of one or two separate heads of origin and/or separate bellies in some taxa, e.g., apodiforms (Zusi, pers. comm.; Vanden Berge, pers. obs.). It originates mainly from fascia of the caudal border of the thigh muscles, ischium, pubis, and iliocaudal membrane (Arthr. Annot. 185) (Baumel, 1988; Zusi and Bentz, 1984). It inserts into the fascia of M. sphincter cloacae above and below the vent of the cloaca. The muscle lies superficial to M. pubocaudalis ext. and M. pubocaudalis int. to which it is closely related both

topographically and functionally; it is an important expiratory muscle (Baumel, et al., 1990). See Fig. 6.10A.

Septum supracloacale (Baumel, 1988). This membranous partition separates the dorsal wall of the cloaca, duct of the cloacal bursa, and the dorsum of the bursa from the lower surface of the uropygium. It is prolonged cranially from sphincter cloacae, and is attached to the tendinous intersection of M. pubocaudalis internus (Annot. 66) on each side.

For additional information on other cloacal muscles, see M. contractor cloacae (Cloaca. Annot. 29); M. depressor anguli venti (Cloaca. Annot. 30); M. levator cloacae [M. retractor phalli caudalis] (Cloaca. Annot. 31; Masc. Annot. 51); M. dilator cloacae [M. retractor phalli cranialis] (Cloaca. Annot. 32; Masc. Annot. 51).

- (69) M. rhomboideus superficialis; M. rhomboideus profundus. Fürbringer (1886; 1902) suggested that Mm. rhomboideus superficialis, rhomboideus profundus, and serratus profundus (Annot. 70) are derived from the same muscle primordium; they are innervated by Plexus brachialis accessorius (PNS Annot. 36). These two muscle sheets originate from spinous processes of the last few cervical vertebrae and the thoracic vertebrae, extending in some taxa as far caudally as the cranial margin of the pelvis. Both muscles attach on the vertebral margin and medial surface of the scapula, the superficial sheet sometimes extending as far as the adjacent shaft of the clavicle. See Fig. 6.12.
- (70) M. serratus superficialis. Synonymy: M. serratus ventralis cranialis et caudalis (Nagamura, Nishida, and Nomura, 1974). Pars cranialis and Pars caudalis are typically present, often contiguous at their origins from the ribs at the level of the uncinate processes; each part has a separate fleshy insertion on the ventral margin of the scapula, separated by a common aponeurosis. Its innervation is independent of that of M. serratus profundus (PNS Fig. 4). Pars scapulohumeralis of M. serr. superf. is a separate, striated, subcutaneous slip (see Annot. 11; Hikida, 1972; Hikida and Bock, 1974, 1976) (Fig. 6.12).

Pars metapatagialis is a slip of M. serratus superficialis in the metapatagial fold of skin (Integ.) that inserts into the caudal end of the humeral feather tract. Present in most birds that have been examined, Pars metapatagialis is sometimes associated with a short, thin band of elastic tissue in the metapatagial fold (R. E. Brown, pers. comm.).

- M. serratus profundus. Usually consists of one to several fasciculi which originate on the caudalmost cervical vertebrae and the cervical ribs, and one or more of the succeeding thoracic ribs, inserting along a continuous line on the medial surface of the scapula. Fedde (1987) indicates that this is an accessory muscle of ventilatory inspiration in contrast to M. serratus superficialis which is an accessory expiratory muscle.
- (71) M. scapulohumeralis cranialis. Synonymy: M. dorsalis scapulae (Nagamura, Nishida, and Nomura, 1974); M. proscapulohumeralis (Berger, 1966, 1968). M. scapulohumeralis caudalis. Synonymy: M. teres major et infraspinatus (Fujioka, 1959; Sullivan, 1962); M. dorsalis scapulae (Berger, 1966; Nagamura, Nishida, and Nomura, 1974). M. scap. hum. cran. is absent in some birds; when present, it is attached to the neck (Collum) of the scapula, immediately behind the glenoid process, and cranial to the attachment of M. scapulohumeralis caudalis (on the lateral face of the body of the scapula). M. scap. hum. cran. is usually deep to a retinaculum which attaches M. scapulotriceps (Annot. 81) to the neck and body of the scapula; it inserts in Fossa pneumotricipitale (Osteo. Annot. 18) near the distal end of Crus dorsale fossae. M. scapulohumeralis caudalis inserts on the terminal end of Crus ventrale fossae. See Fig. 6.12.

- (72) Mm. subcoracoscapulares. A collective name for a muscle set which attaches on the medial face of the cranial end of the scapula, extending to the medial face of the coracoid. In many taxa, four heads are described (Fürbringer, 1888, 1902). Most recent authors describe two separate muscles, M. subscapularis, typically having two heads, and M. subcoracoideus which may be two-headed (Berger, 1966). The muscle complex is innervated by the N. subcoracoscapularis (PNS Fig. 15.4).
- (73) M. subscapularis. The well defined heads, Caput laterale ("Pars externa") and Caput mediale ("Pars interna", Hudson and Lanzillotti, 1964) form a common tendon that inserts on Tuberculum ventrale (Osteo. Annot. 187) of the proximal humerus along with M. subcoracoideus.
- (74) M. coracobrachialis cranialis. This muscle originates on Proc. acrocoracoideus (Osteo. Annot. 171a) of the coracoid, and inserts in a distinct fossa on the Planum intertuberculare of the humerus (in some taxa). See Osteo. Annot. 181.
- M. coracobrachialis caudalis. Synonymy: M. flexor coracobrachialis (Simic and Andrejevic, 1964). Attached proximally to the shaft of the coracoid, it contributes to formation of Linea intermuscularis ventralis (Osteo. Annot. 174; see Annot. 76). It inserts on Tuberculum ventr. (Osteo. Annot. 187) of humerus, dorsal to insertions of Mm. subcoracoscapulares (Annot. 72).
- (75) M. pectoralis. Simic and Andrejevic (1963, 1964) recognize Pars sternobrachialis and Pars. costo ("thoraco-") brachialis with separate proximal attachments on the sternum and thoracic ribs, respectively, but a common insertion on Crista deltopectoralis (Osteo. Annot. 184). Other studies of these parts indicate different fiber orientations and innervation patterns by two distinct branches from the ventral cord of the brachial plexus (see Rosser and George, 1986; Dial, et al., 1987; Kaplan and Goslow, 1989; Sokoloff, et al., 1989).

**Aponeurosis (Membrana) intramuscularis** is an intramuscular extension of the aponeurosis of insertion; muscle fasciculi from Pars costobrachialis attach to it. See Fisher (1946), Kuroda, (1960; 1961a, b) and Vanden Berge (1970) for further description.

Pars propatagialis, and Partes subcutanea thoracica et abdominalis are fleshy slips of M. pectoralis which are listed and annotated under Mm. pterylarum (see Annot. 9, 12; Fig. 6.11).

- (76) M. supracoracoideus. Synonymy: "deep head" of M. supracoracoideus. This muscle is most probably a derivative of M. deltoideus minor (Annot. 80) as originally suggested by Fürbringer (1902; M. deltoideus minor, pars ventralis) and substantiated by Sullivan (1962; "M. coracobrachialis anterior, pars ventralis"). Deep to the origins of M. pectoralis, M. supracoracoideus is attached to the sternocoracoclavicular membrane, sternum (Osteo. Annot. 153) and coracoid (Osteo. Annot. 174), resulting in the formation of discrete linear scars on the bones. The tendon lies in Sulcus supracoracoideus (Osteo. Annot. 172) on the base of the Proc. procoracoideus and traverses the Canalis triosseus (Osteo. Annot. 177). Insertion is on Tuberculum dorsale of the humerus (Osteo. Annot. 182, 183). N. supracoracoideus perforates Memb. sternocoracoclavicularis (Arthr. Annot. 86, 88) or the body of the coracoid (Osteo. Annot. 172), entering the deep face of the muscle.
- (77) M. latissimus dorsi. Pars cranialis and Pars caudalis, as well as the two parts attaching on feather tracts (Pars interscapularis, Annot. 8; Pars scapulohumeralis, Annot. 11), arise by cleavage in a single muscle primordium (Sullivan, 1962). Pars cranialis and Pars caudalis have separate insertions on the humerus (Fig. 6.12). In

penguins, the tendons of both parts pass over a fibrous loop (Retinaculum m. scapulotricipitis, Arthr. Annot. 142) on which is also attached M. scapulotriceps (Schreiweis, 1982, Fig. 8). Variation exists with respect to the presence or absence of one or the other of the slips to the humerus, as well as in either or both of the slips to the feather tracts in avian taxa generally (Berger, 1966, 1969).

Pars metapatagialis of M. latissimus is of uncommon occurrence. In certain birds it inserts into the caudal end of the humeral feather tract with Pars metapatagialis of M. serratus superficialis (R. E. Brown, pers. comm.) (see Annot. 70).

- (78) M. deltoideus [Complexus m. deltoidei]. Buri (1900) in his comprehensive study of the musculature of the shoulder joint in birds, and more recent studies of Brown, et al. (1989) on the Propatagium (Arthr. Annot. 141) indicate that this muscle complex consists of three principal sudivisions, based on distal attachments:
- (1) Pars propatagialis which attaches to Lig. propatagiale and Lig. limitans cubiti;
- (2) Pars major which attaches to Crista deltopectoralis; and (3) Pars minor which attaches to Tuberculum dorsale of the humerus. All three subdivisions attach proximally to bones of the shoulder. See Figs. 6.11-13 and Annots. 79-80.
- (79) M. deltoideus, pars propatagialis [M. propatagialis]. Synonymy: M. tensor propatagialis, Pars longa/brevis (NAA, 1979). This subdivision of the deltoid complex can occur in three forms: (1) a single muscle having a single head of origin, a single belly, and two insertions: Lig. propatagiale and Lig. limitans cubiti, respectively; (2) two heads of origin with a single belly, having the same two insertions; and (3) two anatomically separate parts, Pars cranialis (formerly M. propatagialis brevis), on Lig. propatagiale, and Pars caudalis (formerly M. tensor propatagials brevis), on Lig. limitans cubiti. Associated with one or both parts are fleshy propatagial slips derived from other muscles, including M. cucullaris capitis, M. pectoralis, and M. biceps brachii (Annot. 9). Variations in the morphology and attachments of Pars caudalis on M. extensor carpi radialis (Annot. 87) and the dorsal antebrachial fascia at the elbow, have been described in several taxa (Fürbringer, 1888; Buri, 1900; Berger, 1966; Hudson, et al. 1969; Vanden Berge, 1970; Zusi and Bentz, 1982; Brown, et al. (1989). See Fig. 6.11.
- M. deltoideus, pars major [M. deltoideus major]. Caput craniale, attaching on Fibrocartilago humerocapsularis (Arthr. Annot. 100), and Caput caudale, attaching on bones of the shoulder joint, but only a single belly with a suggestion of internal division is present in others (Fig. 6.12; also Berger, 1966, 1969; Raikow, 1977). Raikow (1985b, Fig. 4) has described and illustrated a third separate head Caput proximale in Atrichornis and Menura. Variation occurs in the number of heads present and their relative development, presence or absence of a "scapular anchor" (retinaculum) (Fig. 6.12), and extent of insertion on Crista deltopectoralis (humerus) (Osteo. Annot. 184). In some taxa, Pars major is reduced while Pars propatagialis is markedly more developed (R. E. Brown, pers. comm.).
- (80) M. deltoideus, pars minor [M. deltoideus minor]. Synonymy: M. coracobrachialis anterior (Sullivan, 1962). Caput ventrale is a separate slip arising from Membrana sternocoracoclavicularis (Arthr. Annot. 86), inserting more or less in common with Caput dorsale on the proximal end of Crista deltopectoralis, often overlapping the insertion of M. supracoracoideus (Annot. 76) on Tuberculum dorsale of the humerus. (Hudson and Lanzillotti, 1964; Berger, 1966; Hudson, et al., 1969; Vanden Berge, 1970, and Raikow, 1978). See Fig. 6.12.
- (81) M. scapulotriceps (Fig. 6.11). This muscle arise from the scapula (Osteo. Annot. 169) by a retinaculum superficial to M. scapulohumeralis cranialis (Annot.

- 71), and from the humerus (Retinaculum m. scapulotricipitis, Arthr. Annot. 142; Hudson, Schreiweis, and ChenWang, 1972). In penguins, these attachments unite into a single fibrous band (Retinaculum scapulohumerale) which extends from the scapula to the humerus, and over which pass the tendons of M. latissimus dorsi (Annot. 77; Schreiweis, 1982). Distally, the muscle has an additional attachment on the humerus (Lig. tricipitale, Arthr. Annot. 111). A large Os sesamoideum m. scapulotricipitis (Osteo. Annot. 202) is present in the tendon of insertion of some taxa (Schreiweis, 1982; Zusi and Bentz, 1984). Its insertion is on the dorsal aspect of Proc. cotylaris dorsalis of the ulna (Osteo. Annot. 198)
- (82) M. humerotriceps. The proximal origin on the humerus may be partially subdivided into "caput mediale", "caput posticum" and "caput breve" by the insertions of other muscles (M. scapulohumeralis cranialis; M. scapulohumeralis caudalis; M. latissimus dorsi) near the Fossa pneumotricipitalis (Osteo. Annot. 188; Buri, 1900), but these are not usually considered important subdivisions. The insertion is on the Olecranon of the ulna (Osteo. Annot. 201).
- M. coracotriceps. Synonymy: Caput coracoideum m. anconei (Fürbringer, 1886); M. anconeus coracoideus (Berger, 1966). It has been assumed that this muscle is "vestigial" in birds generally (NAA, 1979; Berger, 1966; in ciconiiforms, Vanden Berge, 1970). Rosser and George (1985) suggest that in *Columba* the histochemical characteristics of the extrafusal fibers and density of muscle spindles indicate that the muscle is tonic in function, serving as an active and sensitive mechanoreceptor, capable of slow and sustained contraction, i.e., a "kinesiological monitor" of the state of contraction in M. triceps brachii (Annot. 81, 82), and/or M. expansor secundariorum.
- (83) M. biceps brachii (Figs. 6.11, 13). This muscle corresponds to the biceps brachii in mammals. The avian biceps lacks a scapular head, its heads arising from the coracoid and humerus, producing an aponeurosis that covers the intumescence of the humerus (Osteo. Annot. 190). The humeral head from Crista bicipitalis (Osteo. Annot. 184) is the larger and more conspicuous. Variation includes a single belly and tendon (*Baleniceps*) or two bellies and two tendons of insertion (herons), Vanden Berge, 1970), variation in radial and ulnar insertions (Osteo. Annot. 210), and variation in the propatagial slip (Annot. 9). In *Chaetura* and other swifts the muscle is absent (Berger, 1966).
- (84) M. pronator superficialis; M. pronator profundus (Fig. 6.13). Synonymy: "brevis" = superficialis and "longus" = profundus do not necessarily apply since the so-called "pronator longus" is not always the longer of the two muscles. Both muscles arise from the humerus, M. pronator superf. on Tuberculum supracondylare ventrale (Osteo. Annot. 196) and M. pronator profundus on Epicondylus ventralis (Osteo. Annot. 178, 194 in common with the attachment of M. entepicondyo-ulnaris (Annot. 92). See Berger (1966); Raikow (1978), and Bentz (1979) for variation.
- (85) M. flexor carpi ulnaris. Its tendon of origin passes from Proc. flexorius of the humerus (Osteo. Annot. 195), glides through Sulcus tendinosus (Osteo. Annot. 203) on the proximal ulna, and crosses the Trochlea humeroulnaris (Bentz and Zusi, 1982; Arthr. Annot. 110); the tendon may enclose a sesamoid. The fusiform belly is invested by the intermuscular Septum humerocarpale (Arthr. Annot. 143, 195). Pars remigalis (new term) consists of a series of fleshy slips obliquely oriented to their insertion on Lig. elasticum interremigale minor (Arthr. Annot. 197). The principal part of the muscle inserts on Proc. muscularis of Os carpi ulnare (Osteo. Annot. 215).

The muscle has at least two functions: (1) flexion of the wrist via Lig. ulnocarpometacarpale ventrale (Arthr. Annot. 120) on Proc. pisiformis (Osteo. Annot. 215a)

of the carpometacarpus, and (2) movement and positioning of the flight feathers by way of the attachments of Pars remigalis to the elastic ligament and indirectly, distally, to the Retinacula ulnocarpo-remigalia and/or Aponeurosis ulnocarporemigalis (Arthr. Fig. 5.11 and Annot. 115), both of which attach on Os carpi ulnare. See Buri (1900) and Berger (1966) for examples of variation. See Fig. 6.13.

(86) M. flexor digitorum superficialis. Synonymy: M. flexor digitorum sublimis. M. flexor digitorum profundus. Both muscles develop from a common muscle primordium from which is also derived M. flexor carpi ulnaris (Annot. 85; Sullivan, 1962; Shellswell and Wolpert, 1977). The superficial flexor is separated from the other two muscles by Septum humerocarpale (Arthr. Annot. 195). See Fig. 6.13.

M. flexor digitorum superficialis varies in birds generally. At its origin, it is related to Lig. humerocarpale (**Arthr.** Annot. 143), and may show a reciprocal development relative to that of the ligament (see review in Berger, 1966). The tendons of M. flexor digitorum superficialis and profundus pass under the Retinaculum flexorium (Fig. 6.12; and **Arthr.** Annot. 114) in a common sheath on the ventral side of Os carpi ulnare. The tendon of the deep flexor passes about Proc. pisiformis (**Osteo.** Annot. 215a), which acts as a pulley, the tendon terminating on Phalanx distalis digiti majoris. The tendon of the superficial flexor inserts on Phalanx proximalis. A vinculum between the tendons is described in melanerpine woodpeckers and sapsuckers (Goodge, 1972).

- (87) M. extensor carpi radialis. Synonymy: M. extensor metacarpi radialis. The name "extensor carpi" for both the radial and ulnar extensor muscles is more appropriate than "extensor metacarpi" since these muscles extend the carpal *joints* at the wrist. Typically present are dorsal and ventral heads of origin (Berger, 1966), in some taxa, from different areas of the humerus (see Zusi and Bentz, 1982), receiving one or more attachments from Lig. limitans cubiti (see M. deltoideus, Pars propatagialis, Annot. 79; Arthr. Annot. 141). One or two tendons insert on Proc. extensorius of Os metacarpale alulare. See Fig. 6.12
- (88) M. extensor carpi ulnaris. Synonymy: M. extensor metacarpi ulnaris (NAA, 1979); M. flexor metacarpi ulnaris (Stegmann, 1978), but see Annot. 87 and Berger (1966). Two proximal attachments of this muscle are: (1) the distal end of the humerus (Epicondylus dorsalis, Osteo. Annot. 178, 194), and (2) the proximal end of the ulna ("ulnar anchor", Retinaculum m. extensoris carpi ulnaris, Arthr. Annot. 144). In hummingbirds, swifts, and suboscines Bentz and Zusi (1982) describe a second retinaculum-like structure, containing a large sesamoid continuous with Trochlea humeroulnaris (Arthr. Annot. 110).

The distal tendon of extensor carpi ulnaris, with that of M. extensor digitorum communis, lies in a fibro-osseous canal (Incisura tendinosa, Osteo. Annot. 209) on the distal end of the ulna. On the dorsum of the wrist the tendons pass under a retinaculum (Lig. m. extensoris carpi ulnaris, Arthr. Annot. 144; Lig. digitometacarpale, Stegmann, 1978; Lig. ossis metacarpi et primae phalangis digiti secundi, Stettenheim, 1959) which redirects the force of the tendons toward their attachments: M. extensor carpalis ulnaris on Proc. intermetacarpalis (Osteo. Annot. 221), and M. extensor digitorum communis on the cranial aspect of Phalanx proximalis digiti majoris. See Fig. 6.12.

(89) M. ulnometacarpalis dorsalis arises from the ulna (Lig. m. ulnometacarpalis dorsalis, Arthr. Annot. 145) and overlies Incisura tendinosa (Osteo. Annot. 209) and its extensor tendons (Mm. extensor carpi ulnaris and extensor dig. communis, Annot. 88). The insertion on Os metacarpale minor is sometimes divided by proximal fasci-

- culi of M. flexor digiti minoris (Annot. 99) (Fig. 6.12). The tendon of M. ulnometacarpalis ventralis traverses a sulcus between Tuberculum carpale and Condylus ventralis on the distal ulna (Osteo. Annot. 206, 207; Butendieck, 1980, Fig. 40) and ventrad over Os carpi radiale ("Sulcus tendineus", Butendieck, 1980; Fig. 42), deep to the tendons of M. extensor carpi radialis (Annot. 87), proximal to its insertion on the dorsal face of the base of Proc. extensorius, Os metacarpale alulare. See Fig. 6.12.
- (90) M. extensor longus alulae. Synonymy: M. extensor pollicis longus; M. extensor longus digiti II. An ulnar and a radial head of origin have been described (Rosser, 1980).
- M. extensor longus digiti majoris. Synonymy: M. extensor indicis longus; M. extensor longus digiti III. Pars distalis is topographically located in the manus proper and unites with the tendon of Pars proximalis. This distal head has been designated M. flexor metacarpi brevis (Fisher and Goodman, 1955; Berger, 1966) but, according to Sullivan (1962), Pars distalis ("M. extensor medius brevis") is derived from M. extensor longus digiti majoris ("M. extensor medius longus") in which case it would represent "M. extensor brevis digiti majoris". The tendon inserts on the distal phalanx of the major digit; the corresponding tendon of M. extensor digitorum communis inserts on the proximal phalanx.
- (91) M. ectepicondylo-ulnaris (Fig. 6.12). Synonymy: M. anconeus (Berger, et al., 1966). The muscle has its origin on the Epicondylus dorsalis ("ectepicondyle", Osteo. Annot. 194) of the humerus; its origin is opposite that of M. entepicondylo-ulnaris (Annot. 92). Although "M. anconeus" has been widely used for this muscle, "anconeus" also has been used for M. triceps brachii.
- (92) M. entepicondylo-ulnaris. Synonymy: M. anconeus medialis (Fujioka, 1959); known to many avian anatomists as the "gallinaceous muscle." It has been described only in the Kiwi (*Apteryx*), in Tinamiformes (Hudson, et al., 1972), in Galliformes (Hudson and Lanzillotti, 1964), and in some Anatidae (Sy, 1936; Zusi and Bentz, 1978). Beddard (1884) described an "anconeus internus" in *Scopus* which suggests M. entepicondylo-ulnaris, but this has never been substantiated. This muscle arises from Epicondylus ventralis of the humerus, in common with the origin of M. pronator profundus (Annot. 84); see also Butendieck (1980, Fig. 36, "Fossa muscularis"). It inserts on the proximal caudoventral face of the ulna.
- (93) M. interosseous dorsalis; M. interosseous ventralis. Synonymy: "ventralis" also known as "palmaris" or "volaris". The two muscles largely fill the intermetacarpal space; the M. interosseous ventralis is sometimes unipennate (Vanden Berge, 1970).
- (94) M. extensor brevis alulae. Synonymy: M. extensor pollicis brevis; M. extensor brevis digiti II.
- M. levator alulae. Livezey (pers. comm.) has described and illustrated this small muscle on the dorsum of the alula in the Galapagos Cormorant, *Compsohelieus harrisi*. It has not been described in other taxa.
- (95) M. abductor alulae. Synonymy: M. abductor pollicis; M. abductor digiti II.
- (96) M. flexor alulae. Synonymy: M. flexor pollicis; M. flexor digiti II.
- (97) M. adductor alulae. Synonymy: M. adductor pollicis; M. adductor digiti II.
- (98) M. abductor digiti majoris. Synonymy: M. abductor indicis; M. abductor digiti III.

- (99) M. flexor digiti minoris. Synonymy: M. flexor digiti III or IV.
- (100) Mm. iliotibiales. The developmental studies in *Gallus* (Schroeter and Tosney, MS.) indicate that the iliotibialis group of muscles consists of M. iliotibialis cranialis and lateralis, M. ambiens (Annot. 103), and M. iliofibularis. M. iliotibialis medialis is most probably a derivative of this group.
- (101) M. iliotibialis cranialis. Synonymy: M. sartorius (Hudson, 1937); M. extensor iliotibialis anterior (Fisher, 1946). Variation exists in the proximal attachments of this muscle to the caudal thoracic vertebrae, synsacrum, and preacetabular ilium. More than one head may be present (see review in Berger, 1966; Vanden Berge, 1975; and others). See Fig. 6.14.
- M. iliotibialis lateralis. This muscle is attached along the lateral margin of Ala preacetabularis and Ala postacetabularis of the ilium. Two subdivisions, Pars preacetabularis and Pars postacetabularis are recognized. The two parts may be essentially continuous, or there may be an intermediate gap, Hiatus acetabularis. The hiatus is a derived state resulting from the loss of the central portion of the muscle (Raikow, 1987).
- M. iliotibialis medialis. A separate muscle, lying deep to the preacetabular part of the iliotibialis lateralis, has been described in the flamingos (Vanden Berge, 1970), and in the stilt, *Cladorhynchus leucocephalus* (Olson and Feduccia, 1980).

All three muscles terminate distally with Mm. femorotibiales (Annot. 107) in a common tendon (Lig. patellae, Arthr. Annot. 158; Osteo. Annot. 265; PNS Annot. 46) on the patellar crest.

- (102) M. iliofibularis. Synonymy: M. biceps femoralis. M. iliofibularis, together with Mm. flexor cruris lateralis and flexor cruris medialis (Annot. 108, 109), have been considered homologs of the mammalian "hamstring" muscles. Which of these three, if any, is the counterpart of which mammalian muscle is unclear (for synonymy, see Vanden Berge, 1975). M. iliofibularis is apparently derived from the iliotibialis muscle group, independent from the other two muscles (Schroeter and Tosney, MS.). The tendon of insertion passes through a fibrous loop (Ansa m. iliofibularis, Arthr. Annot. 186), with N. paraperoneus and N. peroneus (PNS Annot. 51), and inserts on Tuberculum m. iliofibularis, Corpus fibulae. See Figs. 6.15, 16.
- (103) **M. ambiens** (Fig. 6.17) arises on Tuberculum preacetabulare (**Osteo.** Annot. 244) on the body of the ilium. The distal tendon merely grooves or sometimes perforates the patellar ligament or patella (**Osteo.** Annot. 265), then inserting on the proximal aponeurosis of the digital flexor muscles in the popliteal fossa.
- (104) Mm. iliotrochanterici. Synonymy: Gadow and Selenka (1891) considered this muscle group to be peculiar to birds, without homology in mammals, but others, following Fisher (1946), refer to M. iliotrochantericus caudalis as "gluteus profundus", M. iliotrochantericus cranialis as "iliacus", and retain the name M. iliotrochantericus medius. Recently, Rowe (1986) has suggested homology with a similar set of muscles in reptiles but with differing views in the associated terminology. The three muscles derive from a deep proximal group of thigh muscles, including also M. iliofemoralis externus (Annot. 105) and M. iliofemoralis internus (Annot. 106) (Schroeter and Tosney, MS.). All three muscles originate on the preacetabular ilium and insert on the lateral aspect of Trochanter femoris; details in Ballmann, 1969b). According to Vanden Berge (1982), statements about the presence/absence of M. iliotrochantericus medius, as a distinct muscle element in the avian thigh, should also characterize the passage of a neurovascular bundle (N. coxalis cranialis; A. cranialis

coxae, see Art. Annot. 70) proximally between Mm. iliotrochantericus medialis and cranialis (Rosser, et al., 1982, and Schulin, 1987). See Figs. 6.15, 16).

- (105) M. iliofemoralis externus (Gadow and Selenka, 1891). Synonymy: M. gluteus medius et minimus (Hudson, 1937); M. piriformis (Fisher, 1946). This muscle originates on a caudal prolongation of the Fossa iliaca dorsalis of the preacetabular ilium (Osteo. Annot. 232), and inserts on the lateral surface of the Trochanter femoris. The degree of separation of this muscle from M. iliotrochantericus caudalis (Annot. 104) is variable (Fig. 6.15); the muscle is absent in some taxa, but reappears as a developmental anomaly or even as a re-established feature (Raikow, et al., 1979).
- (106) M. iliofemoralis internus (Gadow and Selenka, 1891). Synonymy: M. iliacus; M. psoas. Originates on the ilium, deep to the origin of the iliotrochantericus medius, and inserts on the caudomedial surface of the proximal end of the femur (Fig. 6.17).
- (107) Mm. femorotibiales. The chief variations in M. femorotibialis lateralis [externus] pertain to the origin of Pars proximalis and the presence or absence of a discrete Pars distalis (Berger, 1966). The proximal part inserts on Lig. patellae (Arthr. Annot. 158); the distal part, on Crista cnemialis lateralis of the tibia. The three subdivisions, Mm. femorotibialis lateralis [externus]/intermedius/and medialis [internus], form a common tendon (in which the patella develops) on which Mm. iliotibiales insert (Annot. 101).
- (108) M. flexor cruris lateralis (Fisher, 1946). Synonymy: M. caudilioflexorius (Gadow, 1891); M. semitendinosus (Hudson, 1937). Two parts have been long recognized: Pars pelvica, the main belly which is attached to the caudal end of the pelvis and Membrana iliocaudalis (Arthr. Annot. 185), and Pars accessoria (pars femoralis, or "accessory semitendinosus") which is attached to the distal femur. The latter, however, is part of the insertion, not a second head of origin; it joins with the pelvic part in a distal raphe with additional tendinous variations in certain groups (McKitrick, 1986; Raikow, 1987). See Fig. 6.16.

Among the variants: Pars pelvica may be present without pars accessoria, but the latter apparently is never present alone. In some major avian taxa, both parts are absent (e.g., in accipiter hawks and owls; see Berger, 1966 and Hoff, 1966).

- (109) M. flexor cruris medialis (Fisher, 1946). Synonymy: M. ischioflexorius; M. semimembranosus. This muscle is deep to M. flexor cruris lateralis, its origin typically on the lateral surface of the ischium. The tendon of insertion may attach directly on the proximal portion of the tibia, or it may form a common aponeurosis with the tendon of M. flexor cruris lateralis (Annot. 108) and the proximal aponeurosis of M. gastrocnemius, Pars intermedia (Annot. 118. See examples in Goodge, 1972; Swierczewski and Raikow, 1981; Schulin, 1987). See Fig. 6.17.
- (110) M. caudofemoralis. Synonymy: M. piriformis. This is a homolog of the coccygeofemorales muscle system in reptiles (Romer, 1927). Differentiation of the muscle during development (Gallus) (Schroeter and Tosney, MS.), suggests that it is a single muscle having two parts, Pars caudalis and Pars pelvica, rather than two independent muscles (NAA, 1979; Vanden Berge, 1982). Pars caudalis is the part most frequently described, rarely absent in the presence of Pars pelvica. Both parts may be absent (see Table IX. 2, Berger, 1966). See Fig. 6.16.

During avian evolution the relative length of the skeleton of the tail became reduced, however, the **Pars caudalis** (formerly M. caudofemoralis, NAA, 1979) persists and has a strong insertion on the uropygium. Pars caudalis produces movements

of the uropygium rather than acting on the pelvic limb; it also acts as an expiratory ventilatory muscle in the pigeon (Baumel, et al., 1990).

Pars pelvica (formerly M. iliofemoralis, NAA, 1979) is a secondarily derived belly which is attached chiefly to the ilium, but to the ischium in some taxa. Pars caudalis and Pars pelvica may have a common femoral tendon of insertion, without continuity of their respective fleshy parts, but in some taxa (e.g., ratites) their femoral attachments are separate.

- (111) **Mm. obturatorius lateralis and medialis.** Lateralis is sometimes known as "externus"; medialis, as "internus". According to Romer (1927), the obturator muscles differentiate from a common primordium which appears to be equivalent to the obturatorius externus in mammals, not obturator internus. Substitution of the terms lateralis and medialis are consistent with the positional relationships between them.
- (112) M. obturatorius lateralis. Pars dorsalis and Pars ventralis are clearly defined parts of this muscle in passerines (Raikow, 1976; 1978, Fig. 5; 1987) and some other avian taxa (Berger, 1966, 1969).
- (113) M. pubo-ischio-femoralis. The synonym "M. adductor", with several qualifying terms ("longus et brevis", "superficialis et profundus", "longus et magnus") has been in common use. Cracraft (1971) indicated that the muscle probably has no significant functional role in adduction of the femur, but is more likely a postural muscle (Helmi and Cracraft, 1977). The term of Gadow and Selenka (1891), "M. pubo-ischio-femoralis", is descriptive in terms of the origin (pubis and/or ischium) and insertion (femur) of this muscle. In nonpasserines, its two subdivisions are Pars lateralis and Pars medialis; in passerines, Pars cranialis is equivalent to the lateral subdivision and Pars caudalis to the medial subdivision (Raikow, 1976). The two main subdivisions are separable by the orientation of their respective fasciculi and/or by the passage of a branch of N. obturatorius between them. In the mousebirds (Coliiformes), a third part, Pars accessoria, is attached distally on the tibiotarsus (Berman and Raikow, 1982); it may be unique to this group of birds. See Fig. 6.16.
- (114) M. tibialis cranialis (Fig. 6.15). In strigid owls Caput femorale and Caput tibiale may remain independent, forming two bellies and two tendons of insertion (Hoff, 1966). The proximal tendon of Caput femorale arises from Condylus lateralis of the femur, perforates or grooves Meniscus lateralis (Arthr. Annot. 159), and passes distally across Incisura tibialis (Osteo. Annot. 273). Crossing the knee, the tendon is restrained by a retinaculum in some birds (Berman and Raikow, 1982); its tendon of insertion traverses Retinaculum extensorium tibiotarsi (Arthr. Annot. 187), and inserts on the tarsometatarsus (Tuberositas m. tibialis cranialis (see Osteo. Annot. 291). In some taxa, a neurovascular bundle passes under the bifurcation of the tendon at its insertion (Vanden Berge, 1970; see Midtgård, 1982).
- (115) M. extensor digitorum longus. The proximal attachment is in Sulcus intercnemialis of the tibiotarsus (Osteo. Annot. 272); the distal tendon is restrained, along with with that of M. tibialis cranialis (Annot. 114) by the fibrous Retinaculum extensorium tibiotarsi (Arthr. Annot. 187). Distally, the tendon enters Canalis extensorius (Osteo. Annot. 278) and passes beneath the osseous Pons supratendineus (Osteo. Annot. 277), crosses the intertarsal joint, then passes beneath the fibrous Retinaculum extensorium tarsometatarsi (Arthr. Annot. 188) (Osteo. Annot. 287). The tendon typically gives rise to branchings to the second, third, and fourth toes, and rarely to the hallux (for exceptions, see Berman and Raikow, 1982 and Berman, 1984).

(116) M. fibularis [peroneus] longus. Variation in the Mm. fibularis longus and brevis in many taxa was described by Mitchell (1913). Hudson (1937) and Berger (1966) did not consider the wide variation in relative development of the two muscles significant in terms of avian systematics; for a differing opinion, cf., Kurochkin (1968). See Fig. 6.16.

Typically, the tendon inserts on the tibial cartilage by an aponeurosis, grooves the proximal end of the Tarsometatarsus (Sulcus m. fibularis [peronei] longus) between the insertion of M. fibularis brevis (Annot. 117; Tuberculum retinaculi m. fibularis, **Osteo.** Annot. 282) and the attachment of Lig. collaterale laterale (**Arthr.** Annot. 172), and terminates on the tendon of M. flexor perforatus digiti III (Annot. 121).

- (117) M. fibularis [peroneus] brevis. This muscle varies among avian taxa. In New World nine-primaried oscine passeriforms, a derivative head, Caput tibiale, distinct from the primary head, Caput fibulare, is said to be an important taxonomic character (Kurochkin, 1968; Raikow, 1976, 1978). The tendon lies in a sulcus on the distal end of the tibiotarsus where it is restrained by a retinaculum Osteo. Annot. 282). Insertion is on the proximal tarsometatarsus (Tuberculum m. fibularis brevis), plantar to the sulcus for M. fibularis longus (Annot. 116).
- (118) M. gastrocnemius. Typically consists of three parts: Pars lateralis (= externa), Pars intermedia, and Pars medialis (= interna). A separate fourth part, Pars supramedialis, has been described in some species of the suboscine passerine families Eurylaimidae and Philepittidae (Raikow, 1987). These subdivisions are referred to as "Pars" rather than "Caput" since they may have separate bellies, sharing in the formation of a common tendon of insertion. The presence or absence of accessory heads associated with Pars lateralis (Vanden Berge, 1970) or Pars medialis (Raikow, 1970, 1978, 1987) may serve as taxonomic characters.
- (119) M. plantaris. No homology with the mammalian plantaris has been established. Its presence or absence was once a part of the technical taxonomic diagnosis of avian taxa. Raikow (pers. comm.) indicated that the tendon of insertion in dendrocolaptid passerines is regularly in common with that of M. gastrocnemius, Pars intermedia. A similar insertion has been described in other birds (Vanden Berge, 1970). See Arthr. Fig. 5.8.
- (120) M. popliteus. Homology with the mammalian popliteus is not established. The muscle originates in Fossa flexoria (Osteo. Annot. 274) of the proximal tibia, near the origin of M. flexor digitorum longus, resembling the site of the popliteus muscle in mammals. It inserts on the caudal surface of Caput fibuli.
- (121) Mm. flexores perforantes et perforati digiti II et III. (Figs. 6.16, 19). Synonymy: M. flexor digitorum medius (Frewein, 1967). Mm. flexores perforati digiti II, III, et IV. Synonymy: M. flexor digitorum superficialis (Frewein, 1967). M. flexor hallucis longus; M. flexor digitorum longus. Synonymy: M. flexor digitorum profundus (Frewein, 1967). See Topog. for numbering and names of pedal digits.

A "perforans" (perforating) tendon is one which passes between the decussating medial and lateral phalangeal insertions of the "perforatus" (perforated) tendon at metatarsophalangeal and/or interphalangeal joints. The "sleeve" formed by the so-called "bifurcation" of each perforated tendon around the perforating tendon, is known as **Manica flexoria** (ICVGAN, 1983). In the avian foot, the second and third toes typically have three sets of flexor tendons, one of which is both perforating as well as perforated. Therefore, these two toes each have one "proximal" flexor tendon

(M. flexor perforatus digiti II or III) perforated by two others, one of which ("intermediate" M. flexor perforans et perforatus digiti II or III) is itself perforated by the "distal" digital flexor tendon (M. flexor digitorum longus). In some taxa, M. flexor perforatus digiti II attaches on both the medial and lateral side of Phalanx proximalis and is perforated by the tendons of M. flexor perforans et perforatus digiti II and M. flexor digitorum longus (for examples see Schreiweis, 1982; Vanden Berge, 1970; and Zusi and Bentz, 1984). In many other taxa, the same tendon has been described as "not perforated", but the descriptions do not necessarily indicate that the tendon is inserting *only* on the lateral, or *only* on the medial aspect of the phalanx in a *primary*, i.e., "non-perforated" state. See Berman and Raikow, 1982; Schreiweis, 1982; McKitrick, 1985; and Raikow, 1987, for descriptions of this relationship.

The hallux typically has a "superficial" flexor tendon (M. flexor hallucis brevis, Annot. 126) which is perforated by the tendon of the "deep" M. flexor hallucis longus. A "superficial" (M. flexor perforatus digiti IV) of digit four is perforated by the tendon of M. flexor dig. long.

Most of these long flexor tendons also pass through Cartilago tibialis (Arthr. Annot. 164) and Hypotarsus (Osteo. Annot. 288) to enter Sulcus flexorius on the plantar aspect of the foot. The position of these long tendons, and their positional relationships to one another, are usually definite for different taxa (see Hudson, 1937, and Vanden Berge, 1970). The tendons also pass through Canalis flexorius plantae (Arthr. Annot. 178) and sulci on the plantar surfaces of the Ligg. plantare (Arthr. Annot. 182, and Fig. 9) of the metatarsophalangeal and interphalangeal (except the terminal one) joints of the toes.

Mm. flexores perforantes et perforati digiti II et III are considered "intermediate" flexors in the sense that their tendons "perforate" those of the "superficial" flexors (Mm. flexores perforati digiti II et III), but are, in turn, perforated by corresponding digital tendons of M. flexor digitorum longus.

Mm. flexores perforati digiti II, III, et IV. One or more of these three muscles may have two proximal attachments or "heads". The long flexors of the second and fourth toes arise on the aponeurosis of M. flexor perforatus digiti III (see Cracraft, 1971) which is attached to Fossa poplitea of the femur. A second, lateral, or "fibular" attachment may be continuous with the tendon of M. ambiens (Annot. 103) when present. Raikow (1987) described variations in the heads and tendon(s) of M. flexor perforatus digiti IV in several passerines. A M. flexor perforans et perforatus digiti IV has never been described.

- (122) Vinculum tendinum flexorum. The fibroelastic band (Fig. 6.19) which connects the tendons of M. flexor perforans et perforatus digiti III and M. flexor perforatus digiti III in the foot is highly variable among birds generally (Hudson, 1937). A second fibroelastic band unites the tendons of Mm. flexor hallucis longus and flexor digitorum longus in some birds. The tendons of these muscles may be totally independent in some birds, partially or completely fused in others. Raikow (1985a, 1987) has reviewed the various degrees and patterns of fusion and interconnections between the deep digital flexors in association with different functional and adaptive specializations of the feet (Raikow, 1985a, Tables V, VII, VIII).
- (123) M. flexor hallucis longus; M. flexor digitorum longus. Origins of M. flexor hallucis longus are distinctly separate from those of M. flexor digitorum longus. There may be multiple heads of origin, one or more of which may have a variable relationship to the tendon of insertion of M. iliofibularis (Annot. 102; Raikow and Cracraft, 1983; McKitrick, 1985; Raikow, 1987). The relationship between these two deep flexor muscles and their tendons, distally, has been classified into at least eight

different types, including subtypes in certain groups. Raikow (1985a, Tables V, VII, VIII) discusses and illustrates these types, and presents in tabulated form a concise summary of the distribution of each type among avian groups, related to the foot type and relative development of the hallux. The tendons insert on Tuberculum flexorium of each ungual phalanx.

(124) Area tuberculata tendinis; Plicae vaginae tendinis; Lig. elasticum tendinis flexoris; Lig. elasticum extensorium unguis. These terms are fully described and illustrated in Quinn and Baumel (1990); see Arthr. Annot. 183.

Area tuberculata tendinis. Roughened patches on the digital plantar surface of tendons of Mm. flexor hallucis longus and flexor digitorum longus opposite transverse semicircular folds (Plicae vaginae tendinis) (see Annot. 3) on the apposing surface of the tendon sheath. The sheath plicae when pressed against the tuberculate areas form a locking mechanism holding the distal interphalangeal joints in the flexed position. First thought to be an adaptation peculiar to "perching" birds (Schaffer, 1903), this "tendon-locking mechanism" occurs in birds of many foot types (e.g., Gavia, Pelecanus, Ardea, Larus, Cygnus, Buteo, Upupa). It is differentiated in the 15 day fetal Gallus.

- (125) M. extensor hallucis longus. Pars proximalis and Pars distalis are well defined in some taxa (Hudson, Lanzillotti and Edwards, 1959), but the entire muscle is one of the more variable of the group of short muscles of the toes (Berger, 1966; Raikow, 1976; Berman and Raikow, 1982; Berman, 1984). Since there is but one short extensor of the hallux, the use of the qualifier, "longus", may seem unnecessary. However, Pars proximalis may represent the "long" extensor and Pars distalis, the short ("brevis"). In addition, there may be an additional head present (pars accessoria; Berman and Raikow, 1982).
- (126) M. flexor hallucis brevis. The muscle is attached on the shaft of the tarsometatarsus (Fossa parahypotarsalis medialis) and is separated from Sulcus flexorius (Osteo. Annot. 294) by a ligamentous intermuscular septum extending distally from Crista medianoplantaris (Osteo. Annot. 290) in some taxa (e.g., Larus). Distally, the tendon is perforated by the tendon of M. flexor hallucis longus (Annot. 121).
- (127) M. abductor digiti II; M. adductor digiti II. M. abductor digiti II probably functions as an extensor (Cracraft, 1971); it arises from the medial side of the distal half of the tarsometatarsus and inserts on the base of the proximal phalanx (Fig. 6.18). M. adductor digiti II is attached in the Sulcus flexorius, deep to the flexor tendons, and inserts on the lateral face of the base of the first phalanx; absent in some taxa (e.g., Tetraonidae; Hudson, et al., 1959; Berger, 1966).
- (128) M. extensor proprius digiti III. In most taxa of birds, this muscle is of rare and irregular occurrence (Fig. 6.18). Hudson, Schreiweis, and ChenWang (1972) state that it has been seen in five living genera of ratites and tinamiforms. Berman (1984) describes accessory muscle slips in *Amazona*. See Holmes (1962).
- (129) M. extensor proprius digiti IV; M. extensor brevis digiti IV. The tendon of insertion of M. extensor brevis digiti IV passes through Canalis interosseus tendineus (Osteo. Annot. 295, 298). A second short toe muscle, M. extensor proprius digiti IV, is described and illustrated by Berman and Raikow (1982, Fig. 8A). See also Trochlea accessoria, Osteo. Annot. 297.

(130) **M. abductor digiti IV.** Present in most groups of birds (Berger, 1966), but often minute and identified only by staining techniques (Bock and Shear, 1972).

M. adductor digiti IV has been described (Gadow and Selenka, 1891), Hudson (1937), but is insignificant and extremely rare in occurrence.



Fig. 6.1. Musculi nonstriati dermatis in the chicken, *Gallus gallus:* muscles of feather follicles and of the apterium. From Lucas and Stettenheim (1972:483).



Fig. 6.2. Generalized pattern of attachment of Mm. bulbi oculi et Membrana nictitantis on the eyeball. (Redrawn with modification after Elzanowski (1987).



Fig. 6.3. Musculi subcutanei, lateral view in the pigeon, Columba livia. From Zweers (1982).



Fig. 6.4. Generalized pattern of selected Musculi mandibulae. From Bühler (1981). Thin arrows indicate bill opening; thicker arrows, bill closing.



Fig. 6.5. Schematic of the attachments of jaw muscles in a grebe, *Podilymbus podiceps*. From Zusi and Storer (1969).

A. Lateral view of the skull; B. Lateral view of mandible; C. Medial view of mandible; D. Ventral view of skull; E. medial view of the quadrate bone; F. Dorsal view of the caudal end of the mandible.



Fig. 6.6. M. depressor mandibulae in the Mallard, *Anas platyrhynchos.* From Zweers (1974); redrawn with permission.



Fig. 6.7. Superficial ventral view of the hyobranchial musculature. A. the Mallard, Anas platyrhynchos (Zweers, 1974); B, the pigeon, Columba livia (Zweers, 1982). Redrawn with permission of the author.



Fig. 6.8. Hyoid musculature in a sandpiper, *Tringa totanus*. Adapted from Burton (1974).

10



Fig. 6.9. Lateral view of the cervical muscles in a grebe, *Podilymbus podiceps*. Redrawn from Zusi and Storer (1969), with permission.



Fig. 6.10. Muscles of the tail in the pigeon, *Columba livia*. From Baumel (1988). A. caudal view. B. ventral view. Note the M. depressor caudae and Aponeurosis cruciata. With permission of Springer-Verlag, Heidelberg.



Fig. 6.11. Propatagial muscles and Lig. propatagiale of ibis, *Eudocimus albus*. Original drawings (J. C. Vanden Berge).



Fig. 6.12. Muscles of the wing in the night heron, Nycticorax nycticorax; dorsal view. From Nomina Anatomica Avium (1979), with permission of Academic Press.



Fig. 6.13. Muscles of the wing in the night heron, Nycticorax nycticorax, ventral view. From Nomina Anatomica Avium (1979), with permission of Academic Press.



Fig. 6.14. Muscles of the pelvic limb of the gull, *Larus delawarensis*. Lateral view, superficial layer. After Hudson, et al. (1969). From Nomina Anatomica Avium (1979), with permission of Academic Press.



Fig. 6.15. Muscles of the pelvic limb of the gull, *Larus delawarensis*, second layer, lateral view. After Hudson, et al. (1969). From Nomina Anatomica Avium (1979), with permission of Academic Press.



Fig. 6.16. Muscles of the pelvic limb of the gull, *Larus delawarensis*. Lateral view, third layer. After Hudson, et al. (1969). From Nomina Anatomica Avium (1979), with permission of Academic Press.



Fig. 6.17. Muscles of the pelvic limb of the gull, *Larus delawarensis*, medial view. After Hudson, et al. (1969). From Nomina Anatomica Avium (1979), with permission of Academic Press.



Fig. 6.18. Muscles of the foot of a tinamou, *Crypturellus tataupa*. Dorsal view. After Hudson, et al. (1972). From Nomina Anatomica Avium (1979), with permission of Academic Press.



Fig. 6.19. Major types of arrangement of the deep plantar tendons in birds. After Hudson (1937). From Nomina Anatomica Avium (1979), with permission of Academic Press.

## List of Abbreviations for Muscles

### **Abbreviation**

M. abd. alu.

M. abd. dig. II

M. abd. dig. maj.

M. add. alu.

M. add. mand. ext. rostr.

ext. ventr. ext. prof.

M. add. mand. oss. qd.

M. ascend. cerv.

M. bic./bic. propat.

M. biv. cerv.

M. brach.

M. br. mand.

M. bulbi rectr.

M. caudofem. caud.

M. cergi.

M. clhy.

M. constr. col.

constr. col. intermand.

M. cuc. cap.

M. delt. maj./delt. min.

M. depr. caud.

M. depr. mand.

M. ectepicon.

M. exp. sec.

M. ext. brev. alu.

M. ext. brev. dig. III, IV

M. ext. dig. com.

M. ext. dig. long.

M. ext. long. alu.

M. ext. long. dig. maj.

M. ext. car. rad.

M. ext. car. ul., Retinac.

M. ext. hal. long. prox./dist.

### Muscle

M. abductor alulae

M. abductor digiti II

M. abductor digiti majoris

M. adductor alulae

M. adductor mandibulae externus,

Pars rostralis [temporalis], Pars ventralis [medialis], and Pars

profunda

M. adductor mandibulae ossis quadrati [caudale or posterior]

M. ascendens cervicalis

M. biceps brachii/Pars propatagialis

M. biventer cervicis

M. brachialis

M. branchiomandibularis

M. bulbi rectricium

M. caudofemoralis, Pars caudalis

M. ceratoglossus

M. cleidohyoideus

M. constrictor colli, including Pars intermandibularis

M. cucullaris capitis

M. deltoideus complex, Pars major/ Pars minor

M. depressor caudae

M. depressor mandibulae

M. ectepicondyloulnaris

M. expansor secundariorum

M. extensor brevis alulae

M. extensor brevis digiti III or IV.

M. extensor digitorum communis

M. extensor digitorum longus

M. extensor longus alulae

M. extensor longus digiti majoris,

Pars proximalis

M. extensor carpi radialis

M. extensor carpi ulnaris, including

the retinaculum

M. extensor hallucis longus, Pars proximalis or distalis, respectively

### **Abbreviation**

M. ext. prop. dig. III

M. fem. tib. lat./intermed., med.

M. fib. brev./fib. long.

M. flex. alu.

M. flex. car. ul.

M. flex. cru. lat. acc./lat.peiv.

M. flex. cru. med.

M. flex. col. lat.

M. flex. dig. long.

M. flex. dig. min.

M. flex. dig. prof.

M. flex. dig. superf.

M. flex. hal. brev., hal. long.

M. flex. p. et p. dig. II, III

M. flex. perf. dig. II, III, IV

M. gastroc. intermed./lat./med.

M. humtri.

M. hygl. obl.

M. hygl. rostr.

M. iliofem. ext./int.

M. iliofib.

M. iliotib. cran./lat.

M. iliotroc. caud./cran./med.

M. intercr.

M. intermand. dors.,

M. inteross. dors./ventr.

M. intertr.

M. ischiofem.

M. lat. caud.

M. lat. dors. cran./caud./scaphum.

#### Muscle

M. extensor proprius digiti III

M. femorotibialis lateralis.

intermedius and medialis

M. fibularis brevis and M. fibularis longus, respectively

M. flexor alulae

M. flexor carpi ulnaris

M. flexor cruris lateralis, Pars accessoria and Pars pelvica

M. flexor cruris medians

M. flexor colli lateralis

M. flexor digitorum longus

M. flexor digiti minoris

M. flexor digitorum profundus

M. flexor digitorum superficialis

M. flexor hallucis brevis and flexor hallucis longus

M. flexor perforans et perforatus digiti II and III

M. flexor perforatus digiti II, III and IV

M. gastrocnemius, Pars intermedia/ Pars lateralis/Pars mediana

M. humerotriceps

M. hyoglossus obliquus

M. hyoglossus rostralis

M. iliofemoralis externus/internus,

M. iliofibularis

M. iliotibialis cranialis/lateralis,

M. iliotrochantericus caudalis/ cranialis, and medialis

M. intercristalis

M. intermandibularis dorsalis/ ventralis/Pars rostralis and Pars caudalis

M. interosseus dorsalis/ventralis,

M. intertransversarius

M. ischiofemoralis

M. lateralis caudae

M. latissimus dorsi, Pars cranialis, Pars caudalis, Pars scapulohumeralis

### **Abbreviation**

M. lev. caud.

M. lev. clo.

M. long. col. dors. cran., dors. caud.

M. long. col. ventr.

M. obl. ext. abd.

M. obl. dors., vent.

M. obt. lat., med.

M. pect., pect. propat.

M. pron. superf.

M. propat.

P.1, P.2, P.3

M. protr. ptyg. qd.

M. pstem. superf./prof.

M. ptyg.

M. pubcaud. extn.

M. pubcaud. int./caud./pelv.

M. pub. isch. fem. lat., med.,

M. pyr. memb. nict. & Ten.,

M. quad. memb. nict. & Vag.

M. rect. cap. dors., lat. ventr.

M. rect. dors./lat./med./ventr.

M. rhom. superf.

M. scap. hum. caud.

M. scaptri.

M. serr. superf. caud./scaphum.

M. serphy.

M. sph. clo.

M. spl. cap.

M. styhy.

### Muscle

M. levator caudae

M. levator cloacae

M. longus colli dorsalis, Pars cranialis/Pars caudalis

M. longus colli ventralis

M. obliquus externus abdominis

M. obliquus dorsalis and ventralis

M. obturatorius lateralis and medialis, respectively

M. pectoralis/Pars propatagialis,

M. pronator superficialis

M. deltoideus complex, Pars propatagialis. Three portions of Lig. propatagiale, including Pars elastica

M. protractor pterygoidei et quadrati

M. pseudotemporalis superficialis/ profundus

M. pterygoideus

M. pubocaudalis externus

M. pubocaudalis internus, Pars caudalis and Pars pelvica

M. pubo-ischio-femoralis lateralis/medialis

M. pyramidalis membranae nictitantis and tendon of insertion

M. quadratus membranae nictitantis and Vagina tendinis

M. rectus capitis dorsalis, lateralis, and ventralis, respectively

M. rectus dorsalis, lateralis, medialis and ventralis

M. rhomboideus superficialis

M. scapulohumeralis caudalis

M. scapulotriceps

M. serratus superficialis, Pars caudalis/Pars scapulohumeralis

M. serpihyoideus

M. sphincter cloacae

M. splenius capitis

M. stylohyoideus

**Abbreviation** 

M. sup. cor.

M. supin.

M. tib. cran.

M. trachlat.

M. transv. clo.

M. tri. hum.

M. ul. metac. dors.

### Muscle

M. supracoracoideus

M. supinator

M. tibialis cranialis

M. tracheolateralis

M. transversus cloacae

M. humerotriceps

M. ulnometacarpalis dorsalis

## List of Abbreviations for Other Structures

### **Abbreviations**

Apon. cruc.

Apon. antebr. dors.

Apon. fib. long. Ansa iliofib.

Esoph.

Esopn.

For. ilioisch. Lig. jug. mand.

Lig. lim. cub.

Lig. propat., P. elas.

Os occ.

Proc. mand. lat.

Proc. retroartc.

Proc. supram.

Lig. occ. mand.

Proc. zyg.

Od.

Retinac, flex.

Sept. supracl.

Vag. Vinc.

### **Structures**

Aponeurosis cruciata, M. depressor

caudae

Aponeurosis antebrachialis dorsalis

Aponeurosis m. fibularis longi

Ansa m. iliofibularis

**Esophagus** 

Foramen ilioischiadicum Lig. jugomandibulare

Lig. limitans cubiti

Lig. propatagiale and Pars elastica

Os occipitale

Proc. lateralis mandibulae

Proc. retroarticularis

Proc. suprameaticus, Os squamosum

Lig. occipitomandibulare

Proc. zygomaticus, Os squamosum

Os quadratum

Retinaculum flexorium

Septum supracloacale

Vagina tendinis or tendon sheath

Vinculum

## PERICARDIUM, PLEURA ET PERITONEUM

### JOHN MCLELLAND

With contributions from subcommittee members: H.-R. Duncker and A. S. King.

## TERMINOLOGY PERICARDIUM

Basis pericardii<sup>1</sup>
Pericardium fibrosum
Lig. hepatopericardiacum<sup>1</sup>
Pericardium serosum
Lamina parietalis

## **PLEURA**

Pleura parietalis (Fig. 7.1) Septum horizontale<sup>2</sup> Mm. costoseptales<sup>3</sup> Pleura visceralis [P. pulmonalis] Cavum pleurae [Cavitas pleuralis]<sup>4</sup>

### **PERITONEUM**

Tunica serosa
Tela subserosa
Peritoneum parietale
Septum obliquum<sup>2</sup>
M. septi obliqui<sup>5</sup>
Peritoneum viscerale (Figs. 7.1, 2)
Cavum peritonei [Cavitas
peritonealis]

[Cavitas peritonealis hepatica]<sup>6</sup>
Cavum hepaticum ventrale
peritonei [Cavitas peritonealis
hepatica ventralis]<sup>6</sup>
Cavum hepaticum dorsale
peritonei [Cavitas peritonealis

hepatica dorsalis<sup>6</sup>

Cavum hepaticum peritonei

## **PERITONEUM** (cont.)

Cavum intestinale peritonei [Cavitas peritonealis intestinalis]<sup>6</sup>

Lig. hepaticum<sup>7</sup> Septum posthepaticum<sup>8</sup>

(Fig. 7.2)

Mesenterium dorsale (Fig. 7.2)

Radix mesenterii Mesoduodenum

Lig. gastroduodenale<sup>9</sup>

Lig. duodenohepaticum<sup>10</sup>

Lig. duodenocecale<sup>11</sup>

Mesojejunum

Mesoileum

Lig. ileocecale<sup>12</sup>
Mesorectum
Mesenterium ventrale

(Figs. 7.1, 2)

Lig. falciforme hepatis Lig. ileodiverticulare<sup>13</sup>

Mesorchium

Mesovarium (Fig. 7.2)

Mesoviductus

Lig. dorsale oviductus (Fem.

Annot. 32)

Lig. ventrale oviductus (Fem.

Annot. 32)

Funiculus musculosus

## **ANNOTATIONS**

- (1) Basis pericardii; Lig. hepatopericardiacum. The pericardial base is the surface of the pericardial sac that rests dorsally against the bifurcation of the trachea, the esophagus, and the horizontal septum on each side. The hepatopericardial ligament is the caudal part of the fibrous pericardium which is drawn out into a pointed bilaminar sheet that becomes continuous with the part of the ventral mesentery between the hepatic lobes (Gallus, Columba). Wolf (1967) describes lateral pericardial ligaments that attach to the abdominal wall at the level of the caudal border of the liver.
- (2) **Septum horizontale; Septum obliquum.** During development two gross partitions, one dorsal and the other ventral, are formed on each side of the body by penetration of the cranial and caudal thoracic air sacs into the pulmonary fold. The Septum horizontale (Fig. 7.1), the dorsal partition, is composed of parietal pleura. Among the many different names by which it has been referred are: diaphragme pulmonaire (Sappey, 1847:21-26); diaphragmite anterieur (Milne-Edwards, 1865); pulmonary aponeurosis (Huxley, 1882; Butler, 1889; Goodrich, 1930:633; Goodchild, 1970); horizontal septum (Beddard, 1896; 1898:37; Poole, 1909; Duncker, 1971, 1979); horizontal diaphragm (Juillet, 1912); septum pulmonale (Kern, 1963:50); bronchopleural membrane (McLelland and King, 1970); saccopleural membrane (McLelland and King, 1975).

The Septum obliquum (Fig. 7.1), the ventral partition, which consists of parietal peritoneum, has been known by various names: diaphragme-thoracoabdominal (Sappey, 1847:21-26; Juillet, 1912); diaphragmite thoracoabdominal (Milne-Edwards, 1865); oblique septum (Huxley, 1882; Beddard, 1885; 1888; 1896; 1898:38; Butler, 1889; Goodrich, 1930:633; Goodchild, 1970; Duncker, 1971, 1979); septum thoraco-abdominale (Kern, 1963:50; abdominal diaphragm (Salt and Zeuthen, 1960); bronchoperitoneal membrane (McLelland and King, 1970); saccoperitoneal membrane (McLelland and King, 1975).

Much ambiguity surrounds the terms applied to these dorsal and ventral partitions since only a few authors defined their terms precisely, e.g., Duncker (1971, 1979) restricted his terms to the serosal component of each partition; Juillet (1912) and McLelland and King (1970, 1975) explicitly included both the serosal component and the air sac component in their terms. The terms Septum horizontale and Septum obliquum are now restricted to the serosal derivatives in each of the two partitions, the horizontal septum being derived from the parietal pleura of the dorsal partition, and the oblique septum being derived from the parietal peritoneum of the ventral partition. The term "saccopleural membrane" has recently been used in the literature by Cook, et al. (1986a).

- (3) Mm. costoseptales. The striated costoseptal muscles (Fig. 7.1) insert into the lateral part of the horizontal septum (Fedde, et al., 1964). See Myol. Annot. 61.
- (4) Cavum pleurae [Cavitas pleuralis]. A fully developed pleural cavity only occurs in early ontogeny (Duncker, 1979), and it seems likely that in all birds a certain amount of obliteration, sometimes total, of the cavity takes place during embryonic development. Nevertheless, extensive areas of cavity are known to persist in the adult in a number of taxa including *Gallus* (Groebbels, 1932:45; Kern, 1963:49-50; McLelland and King, 1975). In *Gallus* the pleural cavity is best developed on the dorsolateral aspect of the lung (Fig. 7.1) where the filaments uniting the parietal pleura to the visceral pleura are relatively delicate; in contrast the parietal and visceral pleurae on the ventromedial surface of the lung are extensively fused together.
- (5) **M. septi obliqui.** The muscle of the oblique septum is nonstriated (smooth), and lies in the medial part of the oblique septum (Fig. 7.1). It is absent in certain taxa, e.g., *Apteryx* (Huxley, 1882).
- (6) Cavum hepaticum peritonei [Cavitas peritonealis hepatica]; Cavum hepaticum dorsale/ventrale peritonei [Cavitas peritonealis hepatica dorsalis/ventralis]; Cavum intestinale peritonei [Cavitas peritonealis intestinalis]. The terminology for the subdivisions of the peritoneal cavity is based on Grau (1943a). The four hepatic peritoneal cavities (Figs. 7.1, 2), right and left dorsal and right and left ventral, lie cranial and lateral to the posthepatic septum (Annot. 8).

Synonymy of the right and left dorsal hepatic cavities: pulmohepatic recesses (Butler, 1889:43; Beddard, 1889; Poole, 1909); dorsalen Bauchfellhohlen (Bittner, 1925); pulmonary recesses (Goodrich, 1930:636); Goodchild, 1970); dorsalen Leberbauchfellsacken (Kern, 1963:29). Synonymy of the right and left ventral hepatic cavities: ventral liver sacs (Butler, 1889; Poole, 1909); ventralen Bauchfellhohlen (Bittner, 1925); liver sacs (Goodrich, 1930:636); compartiments abdominaux inferieurs (Petit, 1933); ventralen Leberbauchfellsacken (Kern, 1963:29). In almost half the domestic fowl examined by Kajigaya, et al. (1987) a tunnel was present between the right and left dorsal hepatic peritoneal cavities.

Synonomy of the Cavum intestinale peritonei: posthepatic intestinal cavity (Poole, 1909); intestinal coelomic chamber (Goodrich, 1930:636; Goodchild, 1970); compartiment abdominal superieur (Petit, 1933); Eingeweidebauchfellsack (Kern, 1963:50). The intestinal peritoneal cavity (Fig. 7.2) is a midline space lying between the left and right partitions of the posthepatic septum (see Annot. 8). The left dorsal hepatic peritoneal cavity and intestinal peritoneal cavity connect with each other, but otherwise the peritoneal cavities are blind.

- (7) Lig. hepaticum. Synonymy: pulmohepatic ligament (Butler, 1889); horizontal hepatic ligament (Goodrich, 1930:636; Goodchild, 1970; McLelland and King, 1975). Right and left hepatic ligaments (Fig. 7.1) extend between the oblique septum and the visceral peritoneum of the liver and separate the dorsal and ventral hepatic peritoneal cavities.
- (8) **Septum posthepaticum.** The term posthepatic septum was used by Butler (1889) for the right and left double-layered partitions (Fig. 7.2) separating the intestinal peritoneal cavity from the hepatic peritoneal cavities. The left partition extends between the dorsolateral parietal peritoneum and the left surface of the Ventriculus (gizzard). The right partition extends between the dorsolateral parietal peritoneum and the right surface of the Ventriculus.
- (9) Lig. gastroduodenale. A short gastroduodenal peritoneal ligament extends between the proximal part of the mesoduodenum and the posthepatic septum on the right face of the ventriculus (gizzard) (Bittner, 1924; Pilz, 1937; Grau, 1943a; Kern, 1963:17; McLelland, 1990).
- (10) **Lig. duodenohepaticum.** The short duodenohepatic peritoneal ligament extends between the proximal part of the mesoduodenum and the peritoneum on the visceral surface of the liver close to the Porta hepatis (**Digest.** Annot. 94) (Bittner, 1924; Pilz, 1937; Kern, 1963:18; McLelland (1990).
- (11) **Lig. duodenocecale.** The short duodenocecal peritoneal ligament extends between the proximal part of the mesoduodenum and the mesentery near the base and body of the left cecum (McLelland, 1990).
- (12) Lig. ileocecale. The ileocecal peritoneal ligament extends between the ileum and the mesentery close to the right cecum (McLelland, 1990).
- (13) Lig. ileodiverticulare. The short ileodiverticular peritoneal ligament extends between the vitelline diverticulum and the ileum.



Fig. 7.1. Pleural and peritoneal cavities of Gallus. Schematic transverse sections through the trunk at the level of the lungs and liver (Hepar). From McLelland and King (1970), reproduced by permission of Gustav Fischer Verlag,

The left side of the figure (based on Goodrich, 1930) shows how the pleural cavity is separated from the peritoneal cavity in the embryo by extension of the pulmonary fold ventrolaterally to the lateral body wall and to the iver (dashed lines); the three large arrows indicate the direction in which these extensions grow. The single small abelled "Saccus pneumaticus et Septum obliquum" indicates a two layered structure: the cranial thoracic air sac arrow near the ventral end of the bronchus indicates the subsequent penetration by the air sacs. The leader plastered to the oblique septum itself (see Annot. 2). "Paries" refers to the body wall which is lined with the parietal peritoneum.



Fig. 7.2. Subdivisions of the peritoneal cavity of Gallus. Schematic transverse section through the trunk at the level of the ovary and Ventriculus (muscular stomach). From McLelland and King (1970), reproduced by permission of Gustav Fischer Verlag, Jena.

# APPARATUS RESPIRATORIUS [SYSTEMA RESPIRATORIUM]

### ANTHONY S. KING

With contributions from subcommittee members: A. S. Gaunt, J. N. Maina, and G. A. Zweers.

The main developments in the terminology and annotations for the Apparatus Respiratorius in this second edition of the Nomina Anatomica Avium relate to the muscles and joints of the Larynx, and the muscles, cartilages, and membranes of the Syrinx, by far the most difficult aspect being the muscles of these organs. This progress has been made possible by extensive original research on the larynx published during the last decade, and reviews in Vol. 4 of Form and Function in Birds of studies on the syrinx published during the 19th and 20th centuries. G. A. Zweers and A. S. Gaunt have made outstanding contributions on the larynx and syrinx, respectively, through both their numerous original publications and their invaluable advice and criticism during the preparation of my drafts; Zweers drafted the material on laryngeal arthrology. My thanks are due to J. N. Maina for his careful survey of the drafts. Any factual errors remaining in the Annotations are my responsibility.

Other advances in this new chapter include the completion of the terms for mesoscopic and microscopic structures, the systematic listing of vessels and nerves, and the inclusion of components of the air sacs.

I gratefully acknowledge the help of Steve Walsh, whose computer expertise made possible my operation of the word processor without which this work would not have been produced.

## **TERMINOLOGY**

## **CAVUM NASI [CAVITAS NASALIS]**

Naris<sup>1</sup>
Operculum nasale<sup>2</sup>
Lamella verticalis naris<sup>3</sup>

Choana (**Diges.** Fig. 1)
Pars rostralis<sup>4</sup>
Pars caudalis<sup>5</sup>

## **CAVUM NASI [CAVITAS NASALIS] (cont.)**

Cilium

Septum nasale (Osteo. Annot. 55) Concha nasalis rostralis<sup>6</sup> Concha nasalis media<sup>7</sup> Concha nasalis caudalis<sup>8</sup> Concha nasalis septalis<sup>9</sup> Meatus nasalis<sup>10</sup> Valvula nasalis<sup>11</sup> Crista nasalis<sup>12</sup> Regio vestibularis<sup>13</sup> Epithelium stratificatum squamosum noncornificatum Regio respiratoria<sup>14</sup> Tunica mucosa respiratoria<sup>38</sup> Epithelium pseudostratificatum columnare ciliatum Epitheliocytus ciliatus Exocrinocytus caliciformis<sup>38</sup> Epitheliocytus basalis Glandulae mucosae Regio olfactoria<sup>15</sup> Epithelium olfactorium

Axon Epitheliocytus sustenans Epitheliocytus basalis Glandula olfactoria Cisterna vestibularis<sup>16</sup> Sinus septalis<sup>16</sup> Sinus infraorbitalis [Sinus antorbitalis]17 Sinus conchoinfraorbitalis [S. conchoantorbitalis]<sup>18</sup> Apertura sinus infraorbitalis [A.s. antorbitalis]<sup>19</sup> Ostium ductus nasolacrimalis Glandula nasalis<sup>20</sup> Lobus medialis<sup>20</sup> Ductus lobi medialis Lobus lateralis<sup>20</sup> Ductus lobi lateralis Diverticula cervicocephalica<sup>21</sup> Recessus pneumatici paratympanici Recessus pneumatici paranasales

Dendritum

### LARYNX

olfactorius

Mons laryngealis<sup>22</sup>
Cavum laryngis [Cavitas laryngealis]
Glottis<sup>23</sup>
Sulcus laryngealis<sup>24</sup>
Crista ventralis<sup>26</sup>
Tunica mucosa respiratoria<sup>38</sup>
Epithelium pseudostratificatum
columnare ciliatum
Epitheliocytus ciliatus
Exocrinocytus caliciformis<sup>38</sup>
Epitheliocytus basalis
Glandulae mucosae

Epitheliocytus neurosensorius

Cartt. laryngis [Cartt.laryngeales]
Cart. cricoidea
Proc. rostralis<sup>25</sup>
Corpus<sup>25</sup>
Ala<sup>27</sup>
Cart. cricoidea dorsalis<sup>27</sup>
Cart. procricoidea<sup>28</sup>
Corpus<sup>28</sup>
Cauda<sup>28</sup>
Cart. arytenoidea
Corpus
Proc. rostralis
Proc. caudalis<sup>29</sup>

## LARYNX (cont.)

Juncturae laryngis [J. laryngeales]<sup>30</sup>
Juncturae procricoideae<sup>31</sup>

Artc. procrico-cricoidea<sup>31</sup> Lig. procrico-cricoideum<sup>31</sup>

Artc. procrico-cricoidea dorsalis<sup>31</sup> Lig. procrico-cricoideum

dorsale<sup>31</sup>

Artc. procrico-arytenoidea<sup>31</sup>

Juncturae arytenoideae<sup>32</sup> Synd. aryteno-cricoidea<sup>32</sup>

Lig. aryteno-cricoideum<sup>32</sup>

Synd. aryteno-cricoidea dorsalis<sup>32</sup> Lig. aryteno-cricoideum

dorsale<sup>32</sup>

Synd. intra-arytenoidea<sup>32</sup>

Synd. interarytenoidea $^{32}$ 

Lig. interarytenoideum caudale<sup>32</sup>

Lig. interarytenoideum

rostrale<sup>32</sup>

Juncturae cricoideae<sup>33</sup>

Artc. crico-cricoidea dorsalis<sup>33</sup>

Synd. crico-cricoidea dorsalis<sup>33</sup>

Lig. crico-cricoideum dorsale<sup>33</sup>

Synd. intercricoidea<sup>33</sup>

Artc. intercricoidea dorsalis<sup>33</sup>

Lig. intercricoideum dorsale<sup>33</sup>

Lig. tracheo-cricoideum<sup>34</sup>

Lig. tracheo-cricoideum dorsale<sup>34</sup> Synd. cricobasibranchialis<sup>34</sup>

Lig. cricobasihyale<sup>34</sup>

Lig. arytenoglossale<sup>34</sup>

Mm. laryngis [Mm. laryngeales]

M. dilator glottidis<sup>35</sup>

M. constrictor glottidis<sup>35</sup>

M. cleidohyoideus<sup>50</sup>

M. tracheolateralis<sup>50</sup>

M. cricohyoideus dorsalis<sup>50</sup>

M. cricohyoideus ventralis<sup>50</sup>

M. tracheovalvularis<sup>50</sup>

M. hyovalvularis<sup>50</sup>

Vasa Sanguinea et Nervi Laryngis

Aa. hyobranchiales

A. laryngea propria (Art.

Annot. 33)

V. mandibularis

V. lingualis

V. laryngea

N. glossopharyngeus

N. laryngopharyngealis (PNS

Annot. 63)

N. laryngealis

Rr. musculares (PNS

Annot. 63)

Rr. laryngotracheales (PNS

Annot. 63)

### **TRACHEA**

Cartt. tracheales<sup>36</sup>

Tunica mucosa respiratoria<sup>38</sup>

Epithelium pseudostratificatum columnare ciliatum

Epitheliocytus ciliatus

Exocrinocytus caliciformis<sup>38</sup>

Epitheliocytus microvillosus<sup>38</sup>

Epitheliocytus basalis

Endocrinocytus respiratorius<sup>38</sup>

Glandulae mucosae

Ansa trachealis<sup>36</sup>

Saccus trachealis<sup>36</sup>
Bulbus trachealis<sup>36</sup>

Mm. tracheales<sup>50</sup>

viiii. tracheales

M. sternotrachealis<sup>50</sup> M. tracheolateralis<sup>50</sup>

M. cleidotrachealis<sup>50</sup>

M. cleidohyoideus<sup>50</sup>

## TRACHEA (cont.)

Vasa Sanguinea et Nervi Tracheae

A. carotis communis

A. esophagotracheobronchialis

R. trachealis

A. carotis externa

A. trachealis descendens

V. esophagotrachealis

V. trachealis descendens

V. jugularis

V. trachealis descendens

Vv. tracheales

V. trachealis ascendens

N. glossopharyngeus

N. laryngealis

Rr. tracheales

N. vagus

N. recurrens

Rr. musculorum tracheae

N. hypoglosscervicalis

R. cervicalis descendens (PNS

Annot. 30)

R. tracheosyringealis

Rr. tracheales (PNS

Annot. 31)

### SYRINX<sup>37</sup>

Cavum syringis [Cavitas syringealis] Tunica mucosa respiratoria<sup>38</sup>

Epithelium pseudostratificatum columnare ciliatum

Epitheliocytus ciliatus

Exocrinocytus caliciformis<sup>38</sup>

Epitheliocytus basalis

Glandulae mucosae

Epithelium simplex columnare

ciliatum

Epithelium stratificatum squamosum noncornificatum Epithelium simplex squamosum

Tympanum<sup>39</sup>

Bulla syringealis<sup>40</sup>

Cartt. syringeales

Cartt. tracheosyringeales<sup>41</sup>

Cartt. bronchosyringeales<sup>42</sup>

Pessulus<sup>43</sup>

Mem. semilunaris<sup>44</sup>

Cartt. accessoriae<sup>45</sup>

Cartt. membranosae

Cart. membranosa dorsalis<sup>45</sup>

Cart. membranosa ventralis<sup>45</sup>

Proc. vocalis<sup>45</sup>

Lig. interbronchiale<sup>46</sup> Foramen interbronchiale<sup>46</sup>

Lig. syringeale<sup>46</sup>

Mem. tympaniformis lateralis<sup>47</sup>

Mem. tracheosyringealis<sup>47</sup>

Mem. tympaniformis medialis<sup>48</sup>

Labium laterale<sup>49</sup>

Labium mediale<sup>49</sup>

Valvula syringealis<sup>49</sup>

Mm. syringeales<sup>50</sup> 51

M. tracheobronchialis dorsalis<sup>51</sup>

M. tracheobronchialis brevis<sup>51</sup>

M. tracheobronchialis ventralis<sup>51</sup>

M. syringealis dorsalis<sup>51</sup>

M. syringealis ventralis<sup>51</sup>

M. vocalis dorsalis<sup>51</sup>

M. vocalis ventralis<sup>51</sup>

M. obliquus ventralis<sup>51</sup>

M. obliquus lateralis<sup>51</sup>

M. syringealis superficialis<sup>51</sup>

M. syringealis profundus<sup>51</sup>

M. syringealis caudalis<sup>51</sup>

M. syringealis<sup>51</sup>

Vasa Sanguinea et Nervi Syringis

A. carotis communis

## SYRINX<sup>37</sup> (cont.)

A. esophagotracheobronchialis

R. syringealis

V. jugularis

V. esophagotracheobronchialis

Vv. syringeales

N. hypoglossocervicalis

R. tracheosyringealis (PNS

Annot. 31)

R. syringealis (PNS

Annot. 31 32)

## BRONCHUS PRIMARIUS, PARS EXTRAPULMONALIS52

Cartt. bronchiales<sup>52</sup>
Memm. interanulares<sup>52</sup>
Lig. bronchiale mediale<sup>52</sup>
Tunica mucosa respiratoria<sup>38</sup>
Epithelium pseudostratificatum
columnare ciliatum

Epitheliocytus ciliatus Exocrinocytus caliciformis<sup>38</sup> Epitheliocytus basalis Endocrinocytus respiratorius<sup>38</sup> Glandulae mucosae

### **PULMO**

Neopulmo<sup>57</sup>
Paleopulmo<sup>57</sup>
Facies costalis<sup>53</sup>
Facies vertebralis<sup>53</sup>
Facies septalis<sup>53</sup>
Sulci costales<sup>54</sup>
Tori pulmonales<sup>54</sup>
Tori intercostales<sup>54</sup>
Tori marginales<sup>54</sup>
Torus marginalis cranialis
Torus marginalis caudalis
Margo costovertebralis<sup>55</sup>

Margo costoseptalis<sup>55</sup>
Margo vertebroseptalis<sup>55</sup>
Margo cranialis<sup>55</sup>
Margo caudalis<sup>55</sup>
Margo caudalis<sup>55</sup>
Angulus craniodorsalis<sup>55</sup>
Angulus caudodorsalis<sup>55</sup>
Angulus cranioventralis<sup>55</sup>
Angulus caudoventralis<sup>55</sup>
Hilus pulmonalis
Planum anastomoticum<sup>56</sup>
Linea anastomotica<sup>56</sup>

## BRONCHUS PRIMARIUS, PARS INTRAPULMONALIS58

Tunica mucosa respiratoria<sup>38</sup>
Epithelium pseudostratificatum
columnare ciliatum
Epitheliocytus ciliatus
Exocrinocytus caliciformis<sup>38</sup>
Epitheliocytus basalis
Endocrinocytus respiratorius<sup>38</sup>

Glandulae mucosae
Bronchi secundarii<sup>59</sup>
Bronchi medioventrales<sup>60</sup>
Bronchi mediodorsales<sup>61</sup>
Bronchi lateroventrales<sup>62</sup>
Bronchi laterodorsales<sup>63</sup>
Epitheliocytus cuboideus<sup>38</sup>
Epitheliocytus squamosus<sup>38</sup>

## BRONCHUS PRIMARIUS, PARS INTRAPULMONALIS<sup>58</sup> (cont.)

Parabronchus<sup>64</sup>

Epitheliocytus squamosus<sup>38</sup>

Atrium<sup>65</sup>

Epitheliocytus squamosus<sup>38</sup>

Epitheliocytus granularis<sup>69</sup>

M. atrialis<sup>66</sup>

Septum interatriale<sup>67</sup>

Infundibulum<sup>68</sup>

Epitheliocytus squamosus<sup>38</sup>

Pneumocapillaris<sup>71</sup> (Fig. 22)

Epitheliocytus respiratorius<sup>72</sup>

Septum interparabronchiale<sup>70</sup>

Ostium<sup>73</sup>

Saccobronchus<sup>74</sup>

Vasa Sanguinea et Lymphatica et Nervi Pulmonis

Arteria pulmonalis (Art.)

Rr. cranialis/caudomedialis/ caudolateralis/accessorius

Aa. interparabronchiales<sup>75</sup>

Arteriolae

intraparabronchiales<sup>75</sup>

A. carotis communis

A. esophagotracheobronchialis

R. bronchialis<sup>75</sup>

V. pulmonalis (Ven.)

Rdxx. cranialis/caudomedialis/

caudolateralis

Vv. interparabronchiales<sup>75</sup>

Vv. intraparabronchiales<sup>75</sup>

Vv. atriales<sup>75</sup>

Venulae septales<sup>75</sup>

Venulae

intraparabronchiales<sup>75</sup>

Vv. bronchiales<sup>75</sup>

V. esophagotrachealis

V. esophagealis

Vv. bronchiales<sup>75</sup>

Truncus thoracoabdominalis

Vasa l. thoracica interna (Lym.

Annot. 27)

Vasa 1. pulmonalia

superficialia

Vas 1. pulmonale commune

(Lym. Annot. 29)

Vas l. pulmonale profundum dextrum

Vas 1. pulmonale profundum

sinistrum

N. vagus

Rr. pulmonales (PNS

Annot. 70)

N. recurrens

Rr. bronchiales

N. pulmoesophagealis (PNS

Annot. 79)

R. pulmonalis

Plexus pulmonalis

## SACCI PNEUMATICI76

Saccus cervicalis<sup>77</sup>

Diverticula vertebralia<sup>78</sup>

Diverticula intermuscularia<sup>79</sup>

Diverticula subcutanea<sup>80</sup>

Saccus clavicularis81

Pars medialis<sup>82</sup>

Pars lateralis<sup>82</sup>

Diverticula intrathoracica<sup>83</sup>

Diverticula cardiaca<sup>83</sup>

Diverticula sternalia<sup>83</sup>

Diverticula extrathoracica<sup>84</sup>

Diverticulum subscapulare<sup>84</sup>
Diverticula subcutanea<sup>84</sup>

Diverticulum axillare<sup>84</sup>

## SACCI PNEUMATICI76 (cont.)

Diverticulum humerale
Diverticula subcutanea
Diverticulum subpectorale
Diverticula subcutanea
Diverticulum suprahumerale
Saccus thoracicus cranialis<sup>85</sup>
Saccus thoracicus caudalis<sup>85</sup>

Saccus abdominalis<sup>86</sup>
Diverticula perirenalia<sup>87</sup>
Diverticula femoralia<sup>87</sup>
Ossa pneumatica<sup>88</sup> (**Osteo.**Annot. 23 88)
Foramen pneumaticum<sup>89</sup>
Pori pneumatici<sup>89</sup>

## **ANNOTATIONS**

- (1) Naris. The external aperture of the Cavum nasi. Terms for the form of the nostril are: Nares gymnorhinales, exposed nares; Nares perviae, open nares as in most birds; Nares imperviae, nares closed secondarily by growth of the horny beak as in some pelecaniforms, though these species breathe by secondary nares at the angle of the mouth (MacDonald, 1960). In sulids even the bony aperture is closed (Thompson, 1964:505; Topog. Annot. 21). Terms for the shape of the bony aperture (taxonomically significant) are: holorhinal, caudal margin rounded; schizorhinal, caudal margin a slit; amphirhinal, two bony openings on each side.
- (2) **Operculum nasale.** The nasal operculum (Fig. 8.1a) is a horny flap dorsal to the nares in *Gallus* and some other species (Bang, 1971), and ventral to the nares in wrynecks (*Jynx*) (Bang and Wenzel, 1985:200) (**Topog.** Annot. 21).
- (3) Lamella verticalis naris. Synonymy: Atrial concha (Bang, 1971). The vertical lamella of the nostril (Fig. 8.1a) is a cartilaginous sheet arising from the ventral border of the Naris in *Gallus* (Bang, 1971; King, 1975:1886) and a few other species e.g., members of Apodiformes and *Turnix* (Bang, 1971).
- (4) **Choana, Pars rostralis.** A narrow rostral slit, possibly homologous to the median palatine suture of mammals (Heidrich, 1908).
- (5) Choana, Pars caudalis. Synonymy: interpalatine cleft, Choana I (Lucas and Stettenheim, 1972: Fig. 362). The triangular opening, caudal to the maxillopalatine processes, between the palatine bones, and divided dorsally in the midline by the Vomer and Septum nasale (see Osteo. Fig. 4.7). Possibly homologous to the mammalian Choanae.
- (6) Concha nasalis rostralis. Synonymy: Concha ventralis. Rostralis is preferred because in birds with a long nasal cavity (e.g., *Hydrophasianus*; Bang, 1971), there is no room for a ventrodorsal relationship between the conchae. The rostral nasal concha (Fig. 8.1a) varies in form and is sometimes absent as in Sulidae (Bang, 1971).
- (7) Concha nasalis media. Synonymy: maxillary concha (Bang, 1971); maxilloturbinal (Bellairs and Jenkin, 1960:285). Maxillary implies homology to the maxillary concha of mammals and other vertebrates, but this is uncertain and, therefore, the topographical term, middle nasal concha, is preferred. Its form varies (Fig. 8.1b). It is absent in very few birds, among them certain phalacrocoracids (Bang and Wenzel, 1985:203).

- (8) Concha nasalis caudalis. Probably homologous with the single Concha of most reptiles (Bellairs and Jenkin, 1960:285). Very variable in form (Fig. 8.1c). In *Gallus* the caudal nasal concha is a hollow dome, its only exit being to the infraorbital [antorbital] sinus. It is typically covered with olfactory epithelium, and has a relatively great surface area in the highly olfactory *Apteryx* and *Pagodroma*. It is absent in only a few taxa, e.g., *Sula*, and *Collocalia* (Bang, 1971), and *Psittacus* (Pohlmeyer and Kummerfeld, 1989). In *Collocalia* the roof of the nasal cavity has an extensive olfactory epithelium (Bang and Wenzel, 1985; Osteo. Fig. 4.11).
- (9) Concha nasalis septalis. Unique to petrels (e.g., *Pagodroma*), the septal nasal concha arises from the Septum nasale and interdigitates with the Concha nasalis caudalis (Fig. 8.1c), its epithelium being olfactory (Bang, 1971).
- (10) **Meatus nasalis.** The airway between the Conchae and the nasal walls (Figs. 8.1b, c). Since the three Conchae nasales lie in a rostrocaudal series, the mammalian terms, Meatus nasi dorsalis, medius, and ventralis are inapplicable.
- (11) Valvula nasalis. The nasal valve is a paired crescentic mucosal fold attached to the Septum nasale or to the adjoining roof of the nasal cavity, level with the caudal end of the Concha media. Occurs in all water-feeding and diving birds with patent nostrils except *Cinclus*, and in a few land species. It is forced into position by water pressure and then passively deflects water from the Regio olfactoria (Bang and Wenzel, 1985:205).
- (12) Crista nasalis. Synonymy: Schwelle. The nasal crest is a ridge between the vestibular and respiratory regions in birds generally, but reduced or lacking in some species (Bang, 1971). It directs inspired air to the most rostral extension of the olfactory membrane (Bang and Wenzel, 1985:201).
- (13) **Regio vestibularis.** Synonymy: nasal vestibule (Bang, 1971); vestibular zone, anterior zone (Sandoval, 1964). The vestibular region contains the Concha nasalis rostralis when this concha is present; it is lined by stratified squamous epithelium, and receives the secretion of the Glandula nasalis. It warms and humidifies the inspired air (Bang and Wenzel, 1985:200).
- (14) **Regio respiratoria.** Synonymy: middle or respiratory area of Bang (1971) and Sandoval (1964). The respiratory region of the nasal cavity contains the Concha nasalis media. Its mucociliary epithelium is the primary defence against infection of the lower respiratory tract (Bang and Wenzel, 1985:203).
- (15) **Regio olfactoria.** Synonymy: olfactory chamber (Bang, 1971); inner zone (Sandoval, 1964). The olfactory region contains the Concha nasalis caudalis and is lined by olfactory epithelium.
- (16) Cisterna vestibularis. The vestibular cistern is a trough on the floor of the Regio vestibularis in many species. It catches secretion of the Glandula nasalis, thus humidifying the inspired air (Bang and Wenzel, 1985:200).

Sinus septalis. The septal sinus (Fig. 8.1b) consists of bony spaces in the Septum nasale which are continuous with the nasal cavity, occurring in a few species such as *Rhea* (Bang, 1971).

(17) Sinus infraorbitalis [Sinus antorbitalis]. Synonymy: orbital sac; subocular sac (Romanoff, 1960:537; Bellairs and Jenkin, 1960:290); maxillary sinus (Bang, 1971). The term "infraorbital sinus" is widely used in veterinary literature, the sinus being often infected. In *Cacatua Ara*, and *Amazona* the sinus has a capacious

extension into the upper beak, a transverse canal connecting the left and right sinuses, and a paired blind-ending cervical diverticulum (Pohlmeyer and Kummerfeld, 1989). The alternative term, Sinus antorbitalis, arises from homology with archosaurian reptiles and is widely used in paleontology (Osteo. Annot. 9).

- (18) Sinus conchoinfraorbitalis [S. conchoantorbitalis]. The conchoinfraorbital sinus occurs in the many species (e.g., *Gallus*) in which the Sinus infraorbitalis connects with the interior of the Concha nasalis caudalis (Bang, 1971).
- (19) Apertura sinus infraorbitalis [A.s antorbitalis]. The opening of the Sinus infraorbitalis into the Cavum nasi.
- (20) Glandula nasalis; Lobus medialis; Lobus lateralis. Synonymy: supraorbital gland (Beddard, 1898); salt gland. The nasal gland secretes salt in marine birds and in some desert species and raptors, but not in the large majority of terrestrial species (Peaker and Linzell, 1975:220). Therefore salt gland is not appropriate in birds generally. Typically there is an independent Lobus lateralis and medialis (Technau, 1936). In *Gallus*, and closely related forms, only the Lobus medialis is present (Marples, 1932). See Osteo. Annot. 15.
- (21) **Diverticula cervicocephalica.** Diverticula pneumatizing the skull, and sometimes other parts of the head and neck (Bignon, 1889; Groebbels, 1932:59; Coe, 1960; Bellairs and Jenkins, 1960:290; Romanoff, 1960:537; King, 1966:217). The cervicocephalic diverticula that invade the skull come from both the tympanic cavity and the nasal cavity (**Osteo.** Annot. 23,25). The cervical diverticulum of the psittacid infraorbital sinus (Annot. 17) is included; this extends as paired sacs nearly enclosing the vertebral column, surrounding the crop, and resting like a saddle over the shoulders (Walsh and Mays, 1984). In some birds, e.g., *Leptoptilos*, there are apparently major connexions between the nasal cavity and the air pouches of the neck (Coe, 1960; Akester, et al., 1973) (which are examples of Sacci protrudentes (**Topog.** Annot. 28), and **Osteo.** Annot. 9, 23.
- (22) Mons laryngealis. The conspicuous laryngeal mound carrying the opening into the larynx (Fig. 9.1).
- (23) Glottis. The slit-like opening into the Cavum laryngis (Fig. 9.1). There were many synonyms in the early literature (White, 1970:7), but this term is now used in amphibians and reptiles as well as birds (e.g., Marshall, 1962:403, 478, 585; Bock, 1978).
- (24) Sulcus laryngealis. The prominent laryngeal sulcus, continuing the glottis caudally. Present in *Anser* and *Gallus* (White, 1970:8; 1975:1891), and *Corvus brachrhynchos* (Bock, 1978).
- (25) **Proc. rostralis; Corpus.** The rostral process and body of the cricoid cartilage (Fig. 8.3). Incomplete, fused tracheal cartilages are attached ventrocaudally to the body in *Columba* (Zweers, et al., 1981) and *Corvus* (Bock, 1978; White, pers. comm.).
- (26) Crista ventralis. Synonymy: Proc. cricoideus medianus (Zweers and Berkhoudt, 1987). A median ossified ridge projecting dorsally from the Corpus of the Cart. cricoidea in *Apteryx*, Spheniscidae, *Anas*, *Gallus*, and *Corvus* (White, 1975:1892; Zweers and Berkhoudt, 1987; McLelland, 1989:72).
- (27) Ala; Cart. cricoidea dorsalis. In Accipitridae and Gallus (Fig. 8.3) each paired Ala (cricoid wing) is a cartilaginous plate attached dorsolaterally to the Corpus of the Cart. cricoidea by a strip of flexible cartilage; in Fulica and Pica attachment is

by a bony suture (see McLelland, 1989:72). In Corvus corax, C. orru and C. brachy-rhynchos (Shufeldt, 1890:Fig. 10; White, pers. comm.; Bock, 1978) the Ala is represented by a separate, fully ossified, rod-like Cart. cricoidea dorsalis (Figs. 8.4, 7). In Corvus corone and C. monedula the dorsal cricoid cartilage is not totally separate, but rostrally has a small cartilaginous connexion to the rest of the cricoid cartilage (Zweers and Berkhoudt, 1987). The partial or complete separation of the dorsal cricoid cartilage may make the passeriform larynx more mobile, justifying a functional distinction between passeriform and non-passeriform larynges (Zweers and Berkhoudt, 1987).

- (28) Cart. procricoidea. The small median procricoid cartilage intervenes between the two arytenoids, and between the two cricoid alae (Figs. 8.3, 6) or between the two dorsal cricoid cartilages (Figs. 8.4, 7). In *Gallus* (White, 1970; 1975:1892) and *Columba* (Zweers, et al., 1981) it is comma-shaped with a bony body (corpus) and a cartilaginous tail (cauda) (Fig. 8.2). In *Corvus* species (Fig. 8.4) it has no tail and is cuboidal (Bock, 1978; White, pers. comm.) or almost spherical (Zweers and Berkhoudt, 1987). According to White (1970:12) the term Cart. procricoidea was adopted by most earlier authors, but others regarded it as a part of the cricoid cartilage.
- (29) **Proc. caudalis.** Synonymy: dorsal arytenoid (Bock, 1978). The caudal process of the arytenoid cartilage is variable, or even absent as in ratites and penguins (see McLelland, 1989:74). It forms a separate dorsal arytenoid cartilage in *Corvus brachyrhynchos* (Bock, 1978) as shown on the left side of Fig. 8.7, but not in *Corvus orru* and *C. corax* (White, pers. comm.) or in *C. monedula* and *C. corone* (Zweers and Berkhoudt, 1987).
- (30) Juncturae laryngis [J. laryngeales]. There are four groups of articular structures of the larynx: (1) procricoid joints; (2) arytenoid joints; (3) cricoid joints; and (4) extrinsic structures. Most of the laryngeal joints occur in all species studied, but in passerines the independent Cart. cricoidea dorsalis produces six additional joints (Zweers and Berkhoudt, 1987), all with names ending in "dorsalis". The terms are hyphenated to distinguish the two osteological constituents. For review see McLelland (1989:72-76).
- (31) **Juncturae procricoideae.** The Cart. procricoidea articulates with the Cart. cricoidea and Cart. arytenoidea.

Artc. procrico-cricoidea. Synonymy: Artc. cricoprocricoidea (Zweers, et al., 1981). A synovial procrico-cricoid joint (Fig. 8.2) appears to be typical in nonpasserine species (spheniscids, Watson, 1883:201; *Eudocimus albus*, Baumel, pers. comm.; *Gallus*, White, 1975), but in *Columba* it is a syndesmosis, the elements connected by the Lig. procrico-cricoideum (Fig. 8.6). Artc. procrico-cricoidea dorsalis. This synovial joint (Fig. 8.4) occurs in corvids between the procricoid and the dorsal cricoid cartilage (Bock, 1978; Zweers and Berkhoudt, 1987), being the homologue of the nonpasserine Artc. procrico-cricoidea. The joint is supported by the Lig. procrico-cricoideum dorsale (Fig. 8.7).

Artc. procrico-arytenoidea. Synonymy: Artc. arytaenoprocricoidea (Zweers and Berkhoudt, 1987). A synovial procrico-arytenoid joint (Figs. 8.2, 4, 6, 7) occurs in spheniscids (Watson, 1883:202), *Gallus* (White, 1975:1893), *Columba* (Zweers, et al., 1981), and several corvids (Bock, 1978; Zweers and Berkhoudt, 1987).

(32) **Juncturae arytenoideae.** The Cart. arytenoidea articulates with the Cart. procricoidea (Annot. 31), with the Ala of the Cart. cricoidea or with the homologous Cart. cricoidea dorsalis, and within its own components.

**Synd. aryteno-cricoidea.** Synonymy: Artc. arytaenocricoidea (Zweers and Berkhoudt, 1987); Artc. cricoarytenoidea (NAA, 1979; McLelland, 1989:73). An aryteno-cricoid syndesmosis is formed in nonpasserines (spheniscids, Watson, 1883:202; *Gallus*, White, 1975:1892; *Columba*, Zweers, et al., 1981; *Strix*, Baumel, pers. comm.), and corvids (Zweers and Berkhoudt, 1987), where the body of the arytenoid lies along the body and (in nonpasserines) the wing of the cricoid cartilage. The two cartilages are held together by the **Lig. aryteno-cricoideum** (Figs. 8.6, 7).

**Synd. aryteno-cricoidea dorsalis.** In corvids, the preceding syndesmosis is continued caudally by this additional syndesmosis, which is formed between the body of the arytenoid cartilage and the dorsal cricoid cartilage by the **Lig. aryteno-cricoideum dorsale** (Fig. 8.7) (Zweers and Berkhoudt, 1987).

**Synd.** intra-arytenoidea. The intra-arytenoid syndesmosis (Fig. 8.7) is a fibrous joint between the body and caudal process of the arytenoid cartilage in *Corvus brachyrhynchos* (Bock, 1978), but not in *C. corax* and *C. orru* (S. S. White, pers comm.) or *C. corone* and *C. monedula* (Zweers and Berkhoudt, 1987). See Annot. 29.

**Synd. interarytenoidea.** In *Strix varia* the caudal ends of the left and right Corpora arytenoidea articulate directly by fibrous tissue (see next paragraph), the interarytenoid syndesmosis (Baumel, pers. comm.).

Lig. interarytenoideum caudale. Synonym: arytenoarytenoid ligament (White, 1975:1893). In *Gallus* (White, 1975) and *Columba* a strong unpaired caudal interarytenoid ligament (Fig. 8.6) joins the caudal ends of the left and right arytenoid cartilages (Zweers, et al., 1981). Presumably this ligament is the homologue of the fibrous tissue of the Synd. interarytenoidea.

**Lig. interarytenoideum rostrale.** Synonymy: Lig. intracricoideum rostrale (Zweers and Berkhoudt, 1987). In certain corvids the rostral tips of the arytenoid cartilages are connected (Fig. 8.7) by a sheet of elastic fibres (Zweers and Berkhoudt, 1987).

(33) **Juncturae cricoideae.** The Cart. cricoidea articulates with the Cart. arytenoidea (Annot. 32), with the Cart. cricoidea dorsalis in passerines, and within its own components.

Art. crico-cricoidea dorsalis. Synonymy: Artc. intracricoidea (Bock, 1978; NAA, 1979; McLelland, 1979:72). The term Art. crico-cricoidea dorsalis comes from Zweers and Berkhoudt (1987). Since it specifies the two components (Fig. 8.7), it is preferred to the synonym. This synovial joint was recorded in several corvids (Bock, 1978; White, pers. comm.; Zweers and Berkhoudt, 1987), but note the direct cartilaginous connection mentioned in Annot. 27.

**Synd. crico-cricoidea dorsalis.** A syndesmosis in corvids between the caudal end of the body of the cricoid cartilage and the dorsal cricoid cartilage, formed by the **Lig. crico-cricoideum dorsale** (Fig. 8.7) (Zweers and Berkhoudt, 1987).

Synd. intercricoidea. In *Strix varia* (Baumel, pers. comm.), though not *Columba* (Zweers, et al., 1981), the caudal tips of the left and right Alae cricoideae articulate directly in the midline.

Artc. intercricoidea dorsalis. A synovial joint in corvids formed by contact in the midline of the caudal tips of the dorsal cricoid cartilages, bound by a strong Lig. intercricoideum dorsale (Fig. 8.7) (Zweers and Berkhoudt, 1987). This joint is the homologue of the preceding joint.

- (34) Lig. tracheo-cricoideum; Lig. tracheo-cricoideum dorsale; Synd. cricobasibranchialis; Lig. cricobasihyale; Lig. arytenoglossale. The Ligg. tracheo-cricoideum and tracheo-cricoideum dorsale (synonym: Ligg. annulo trachealis cricoideum and annulo trachealis cricoideum dorsale, Zweers and Berkhoudt, 1987) connect the first three tracheal cartilages with the caudal border of the cricoid and dorsal cricoid cartilages in corvids (Fig. 8.6) (Zweers and Berkhoudt, 1987). In Columba and Strix varia the urohyal element of the hyoid bone is connected to the ventral surface of the body of the cricoid cartilage by fibrous tissue, forming the Synd. cricobasibranchialis (Baumel, 1979:145). In some corvids an (elastic) cricobasihyal ligament (Lig. cricobasihyale, synonym: Lig. hyocricoideum of Zweers and Berkhoudt, 1987) connects the Crista dorsalis of the basihyal to the dorsal surface of the cricoid cartilage. The Lig. arytenoglossale is a paired cord of elastic tissue in Gallus, connecting the rostral process of the arytenoid cartilage with the cornu of the paraglossal bone (White, 1975:1894).
- (35) M. dilator glottidis; M. constrictor glottidis. The dilator and constrictor muscles of the glottis are the intrinsic muscles of the larynx (Annot. 50). In *Gallus* (White, 1975:1894) and birds generally (Yarrell, 1833; Gadow and Selenka, 1891; Groebbels, 1932; White, pers. comm.) the dilator of the glottis is lateral and superficial, running essentially from the wing and body of the cricoid to the arytenoid cartilage (Fig. 8.5). The constrictor runs from the caudal midline of the larynx (typically from the procricoid cartilage) to the arytenoid and cricoid cartilages (Fig. 8.5), and has several divisions. In *Gallus* White (1975) distinguished three, i.e., medial, lateral, and middle divisions, though their fibres intermingle.

In *Columba* the fibres of the constrictor muscle are attached not to the procricoid but to the interarytenoid ligament (immediately dorsal to the procricoid) (Zweers, et al., 1981). Bock (1978) distinguished three parts in the constrictor complex of *Corvus brachyrhynchos*, and Zweers, et al. (1981) analysed the homologies of Bock's three parts to the three divisions in *Gallus* of White (1975). Zweers, et al. (1981), and Zweers and Berkhoudt (1987) identified five discrete muscles within the constrictor complex of *Columba* (Fig. 8.5) and *Corvus* species, and established their homologies within these two genera and in *Gallus*. In so doing, they suggested ten different names for these two sets of five muscles.

These new studies of the two intrinsic laryngeal muscles have not altered the original interpretation of their function, which had been shown by electrical stimulation in *Gallus* to dilate and constrict the glottis respectively (White and Chubb, 1967). These functions have been confirmed cinematographically and electromyographically in other species by Zweers, et al. (1981). Therefore it is proposed to retain dilation/constriction of the glottis as the basis of the nomenclature. With detailed knowledge of these muscles in a wider range of species it may become advantageous to name the individual components of the constrictor muscle (see Myol. Annot. 38).

(36) Cartt. tracheales. The tracheal cartilages are complete rings, closely interlocked, with minimal intervals between them (McLelland, 1965), and therefore the Ligg. anularia of mammals are lacking; also there is no counterpart of the M. trachealis of mammals. In sphenisciforms the trachea is divided into left and right channels by a median septum containing cartilaginous bars which are continuous with the tracheal rings (Watson, 1883; Zeek, 1951). A septum also occurs in certain procellariiforms (Beddard, 1898:439, 499). A longitudinal dorsal ridge resembling an incomplete septum, occurs in *Casuarius* sp. (Forbes, 1981).

Ansa trachealis. A tracheal loop or coil. One or several such loops occupy an excavation in the sternum in *Cygnus* and gruids (see Johnsgard, 1961, for anseriforms, and McLelland, 1989:83, for review). In some other taxa the coils lie between the skin and pectoral muscles, as in *Platalea, Anseranas, Crax,* and *Aramus*. Among passerine birds, a coiled trachea occurs in the paradisaeid *Manucodia* (Ames, 1971:137) and *Phonygammus* (Rüppell, 1933; Clench, 1978).

Saccus trachealis. In a few birds such as *Dromaius* (Murie, 1867) and *Oxyura jamaicensis* (Wetmore, 1918) a tracheal sac opens from the trachea (McLelland, 1989:87).

**Bulbus trachealis.** An expansion of the trachea, the tracheal bulb, occurs a short distance rostral to the syrinx in the males of many anseriform species. A second tracheal bulb occurs just caudal to the larynx in *Melanitta fusca* (see McLelland, 1989:88, for review).

(37) Syrinx. Huxley (1877) introduced this term to replace "upper" and "lower" larynx. Three types of syrinx, tracheobronchial, tracheal, and bronchial, were recognized by nineteenth century anatomists, according to the gross anatomical (not embryological) distinction between the tracheal and the bronchial elements (Gadow, 1896:940; King, 1989:109). The tracheal elements are the direct continuation of the trachea, and therefore lie in the *midline* and *cranial to the bifurcation of the airway*; their skeletal components, i.e., the tracheosyringeal cartilages, typically are complete rings. The bronchial elements lie *caudal to the bifurcation of the airway* and are therefore *paired*; their skeletal components, i.e., the bronchosyringeal cartilages, constitute the skeleton of the most cranial part of the left and right primary bronchi and are typically C-shaped half-rings.

The tracheobronchial syrinx (Fig. 8.8) has both tracheal and bronchial elements. It occurs in the great majority of birds (Fürbringer, 1888:1088; Gadow, 1896:941; Beddard, 1898:61; King, 1989:110). In the tracheal syrinx, specialization of the tracheal elements dominates, as in the suboscine superfamily Furnarioidea. In this taxon the wall of the tracheal part of the syrinx is largely membranous, the tracheosyringeal cartilages being reduced to thin circlets embedded in the tracheosyringeal membrane (Fig. 8.17) or absent (Fig. 8.18). Tracheal forms of syrinx occur in other orders (King, 1989:112). In the bronchial syrinx the bronchial elements are modified, the syrinx of Steatornis being an extreme form (Fig. 8.9). Bronchial types of syrinx also occur in sphenisciform and strigiform species (King, 1989:115).

Ames (1971:14) classified the passeriform syringeal cartilages into "A" and "B" types according to their shape. This system has proved its value in passeriform taxonomy (e.g., Ames, 1971; Lanyon and Lanyon, 1989), but does not lend itself to the general anatomical analysis of syrinxes. Although flawed (King, 1989:117), the historical method offers a simple anatomical basis for classifying the syrinx of many, if not all, birds.

(38) Tunica mucosa respiratoria. The epithelial lining of the airways was reviewed by King (1966), King and Molony (1971), Duncker (1971), Hodges (1974), Bang and Wenzel (1985), and McLelland (1989). The nasal cavity (except the Regio vestibularis), larynx, trachea, syrinx, extrapulmonary primary bronchus, and intrapulmonary primary bronchus have a basically similar respiratory epithelium, i.e., pseudostratified with ciliated columnar cells, goblet cells (Exocrinocyti caliciformes), basal cells, and simple alveolar mucous glands embedded in the epithelium. The trachea also possesses a non-ciliated columnar cell characterised by microvilli (Epitheliocytus microvillosus) (McLelland, 1989:93), and in a few species the mucous glands penetrate beneath the epithelium (Duncker, 1971:96). Where there is

contact between membranes or movement, as in the larynx and syrinx, the epithelium is modified. Thus, in the passerine syrinx (Setterwall, 1901), it changes to cuboidal or stratified squamous on the lateral labium and simple squamous on the medial tympaniform membrane (the primary vibrating membrane). In the roots of the secondary bronchi the typical respiratory epithelium of the primary bronchus changes abruptly to a cuboidal epithelium without mucous elements, and then almost immediately to a simple squamous epithelium which continues into the parabronchi.

Endocrinocyti respiratorii. Synonymy: neurite-receptor cell complex, Cook and King, 1969; granular cell, King, et al., 1974; granule-containing cell, McLelland and Molony, 1983; neuroendocrine cell, Smith, et al., 1986; neuroepithelial cell, Cook, et al., 1986a). Respiratory endocrine cells occur in the trachea and primary bronchus. They contain membrane-bound dense-cored granules suggesting amine-handling characteristics, and sometimes form synapses with presumptive afferent axonal endings; they may therefore have a dual endocrine and receptor function (Cook and King, 1969; King, et al., 1974; McLelland and MacFarlane, 1986; Cook, et al., 1986a). In the intrapulmonary primary bronchus of *Streptopelia risoria* (McLelland and MacFarlane, 1986), but not *Gallus* (King, et al., 1977), the endocrine cells form large clusters resembling the pulmonary neuroepithelial bodies of other vertebrate classes.

- (39) **Tympanum.** Synonymy: Trommel (Wunderlich, 1884); tracheal box (Gadow, 1896:941; Forbes, 1881; Beddard, 1898:289); drum (Ames, 1971:15); tympanic box or tympanic chamber (Warner, 1972b). The tympanum (King, 1989:125) is the rigid cylinder formed by the close apposition or fusion of tracheosyringeal cartilages. Typically its diameter exceeds that of the trachea. The Tympanum is a characteristic of the tracheobronchial type of syrinx (Fig. 8.8). In most birds the most cranial cartilage of the tympanum forms the cranial limit of the syrinx (Haecker, 1900). A tympanum is also present in some tracheal types of syrinx (Figs. 8.17, 18). In the most specialized bronchial types of syrinx, as in *Steatornis*, the Tympanum is absent (Fig. 8.9).
- (40) **Bulla syringealis.** Synonymy: Bulla tympanica. The typical syringeal bulla is an asymmetrical dilation of the *left* side of the tympanum (Figs. 8.12, 13) in males of the subfamily Anatinae, except the Oxyurini (Johnsgard, 1961); in *Tadorna tadorna* the dilation is greater on the right side (Gadow and Selenka, 1891:727; King, 1989:133). In the males of most Anatini the bulla is largely or entirely osseous, but in all Aythyini (Fig. 8.13) and most Mergini it is partly or extensively membranous (Johnsgard, 1961; Warner, 1971).
- (41) Cartt. tracheosyringeales. The most cranial of the tracheosyringeal cartilages usually form the Tympanum. In a few taxa the cartilages become incomplete dorsally and/or ventrally, as in Columbidae (Fig. 8.14), Psittacidae (Fig. 8.15), and Furnarioidea (Figs. 8.17, 8.18) (King, 1989:128). Gaps thus created in the syringeal wall are closed by Memm. tracheosyringeales.
- (42) Cartt. bronchosyringeales. Synonymy: intermediary bars (Owen, 1866:331; Miskimen, 1951); Halbringe. The bronchosyringeal cartilages are usually paired and C-shaped. Compared with the true bronchial cartilages which follow them caudally, they are broader, more irregular with expanded ends, and of greater diameter, but the transition is gradual (King, 1989:138). Their free ends typically support the Mem. tympaniformis medialis. In a few species bronchosyringeal cartilages immediately caudal to the trachea are complete rings (King, 1989:138). The latter occur especially in the bronchial type of syrinx, where 10 or more complete bronchosyringeal rings

may follow the bifurcation of the trachea, as *Steatornis* (Fig. 8.9) (King, 1989:138); the complete rings are followed by several C-shaped cartilages bearing the Mem. tympaniformis medialis.

- (43) **Pessulus.** Synonymy: Steg (Haecker, 1900). This median cartilage (Fig. 8.11) splits the airway of the syrinx in most birds. It is absent in various taxa (King, 1989:141), including the oscine Alaudidae (Mayr, 1931), this being one of the two significant deviations in the homogeneous structure of the oscine syrinx (Ames, 1971:148).
- (44) **Mem. semilunaris.** A projection of the mucosa (Fig. 8.11) extending the Pessulus cranially. Although often regarded as a component of the basic syrinx, the semilunar membrane is erratically absent in both passeriform and non-passeriform species (King, 1989:165).
- (45) Cartt. accessoriae. The accessory cartilages are small paired structures attached to the medial tympaniform membrane or the tracheosyringeal and bronchosyringeal cartilages.

Cart. membranosa dorsalis; Cart. membranosa ventralis. Synonymy: Cartt. arytenoideae (Müller, 1878; Owen, 1866:223); Cartt. tensores (Wunderlich, 1884); Stellknorpel (Haecker, 1900); internal cartilages (Ames, 1971:104, 144; Lanyon, 1984). These thin, paired, membrane cartilages of irregular shape nearly always lie in the left and right medial tympaniform membranes, especially in Tyrannidae (Ames, 1971:104, 144). Haecker (1900) illustrated a dorsal cartilage in the oscine *Pica* (Fig. 8.10). Köditz (1925) believed that the ventral cartilage occurs in all oscines, a dorsal cartilage being present in only some. A dorsal membrane cartilage was illustrated by Müller (1878:Plate V) in *Anthracothorax dominicus* (Trochilidae); Beddard (1898:191) described one at the ventral aspect of the first and second bronchosyringeal cartilages of ramphastid species. These appear to be the only reports outside the Passeriformes.

**Proc. vocalis.** This rather obscure term originated from Müller (1878:33), was adopted by Garrod (1877) and Beddard (1898:69, 423), and reestablished by Ames (1971:143). The term refers to a small paired cartilage rod or plate (Figs. 8.17, 18) that appears to occur almost exclusively in the Furnarioidea (Garrod, 1877; Ames, 1971:143). It gives attachment to M. sternotrachealis, and in some genera also to M. tracheolateralis and to the M. vocalis ventralis and/or dorsalis. Beddard (1898:69, 423) described a rudimentary Proc. vocalis in two species of Ciconiidae.

(46) **Lig. interbronchiale.** Synonymy: Bronchidesmus (Garrod, 1879; Myers, 1917). The term used by Wunderlich (1884) for the connective tissue bridge (Fig. 8.11) joining the left and right primary bronchi. The interbronchial ligament is present in most but not all birds (King, 1989:166).

**Foramen interbronchiale.** Synonymy: Subpessular air space (Warner, 1971, 1972a). The space between the bifurcation of the trachea and the Lig. interbronchiale (Figs. 8.8, 11).

Lig. syringeale. The syringeal ligament is a loose fascial sheath originating from the strong septum between the clavicles in *Gallus* (Youngren, et al., 1974; Gaunt and Gaunt, 1977). Contraction of the sternotrachealis muscle tenses the ligament and rotates the pessulus, thus modifying the tension in the lateral tympaniform membrane (Gaunt and Gaunt, 1977; Brackenbury, 1989:196).

- (47) **Mem. tympaniformis lateralis.** Synonymy: Mem. tympaniformis externa (Gadow, 1896:937; Greenewalt, 1968:27). One of the most difficult components of the syrinx to define, the lateral tympaniform membrane is a membrane or series of membranes between the lateral aspects of either the last tracheosyringeal cartilages (Fig. 8.14) or the most cranial bronchosyringeal cartilages (Fig. 8.8b). Variants are shown in Figs. 8.9, 16. In a few species such as *Gallus* it is well developed and a major source of sound production. It appears to be absent in about as many nonpasseriform species as it is present (King, 1989:153). In oscines it is supposed to be the region indicated in Fig. 8.11, but this is particularly controversial (King, 1989:150-159). Although authors have named this region the lateral tympaniform membrane, Ames (1971:16) and Warner (1972b) considered there to be *no* true membranous areas in the lateral wall of the passeriform syrinx. Gaunt, et al. (1973) pointed out the proximity of the membrane to the lateral labium (Fig. 8.11); both components consist of a thickened area of loose connective tissue in the lateral wall, so the anatomical distinction between them is almost negligible (King, 1989:157, 165).
- **Mem. tracheosyringealis.** The tracheosyringeal membrane or membranes contribute to the dorsal and/or ventral wall of the tracheal element of the syrinx. They are always associated with thinning or loss of tracheosyringeal cartilages in the midline. They occur especially in Columbidae (Fig. 8.14), Psittacidae (Fig. 8.15), and Furnarioidea (Figs. 8.17, 8.18) (King, 1989:160).
- (48) **Mem. tympaniformis medialis.** Synonymy: Mem. tympaniformis interna (Gadow, 1896:937; Ames, 1971:16; Warner, 1972b). The paired medial tympaniform membrane (Figs. 8a, 11, 12, 14) seems to be present in the great majority of species, being without question the primary vibrating membrane in many taxa (Greenewalt, 1968:28). The membrane is suspended between the free ends of the bronchosyringeal cartilages. It is apparently absent in those few ciconiiform species which have a tracheal type of syrinx wherein the bronchial rings are complete (King, 1989:144). Its presence in some psittacids has been questioned (Nottebohm, 1976; Gaunt and Gaunt, 1985), but it is present in *Ara ararauna* (King, 1989:144).
- (49) Labium laterale; Labium mediale. Synonymy: labium externum, internum (Haecker, 1900); "inner and outer vocal cords", Setterwall, 1901; Stimmpolster or Stimmlippen (Rüppell, 1933). Paired connective tissue pads, projecting respectively from the lateral and medial wall into the airway of the oscine syrinx (Fig. 8.11). The lateral labium is one of the three "invariable features of the songbird syrinx", the other two being the medial tympaniform membrane and perhaps the membrane cartilages (Greenewalt, 1968). It is virtually indistinguishable from the lateral tympaniform membrane (Annot. 47). Non-passerine species in general lack the lateral labium (King, 1989:164). The medial labium seems to occur only in passeriforms (King, 1989:165).

Valvula syringealis. A crescentic syringeal valve projecting caudally from the lateral wall of the right side of the tympanum in *Anas* (King, 1989:149) and *Aythya fuligula* (Fig. 8.12) (Warner, 1971). A paired syringeal valve projects into the narrowest part of the syringeal airway in *Myiopsitta monachus* (A. S. Gaunt, pers. comm.).

(50) Mm. laryngeales; Mm. tracheales; Mm. syringeales. The muscles of the airway between the larynx and lung are usually categorised as laryngeal, tracheal, and syringeal muscles. A muscle that has extensive contact with the trachea could reasonably be called a tracheal muscle; by pulling on the trachea such a muscle will almost certainly act indirectly on the larynx at one end and on the syrinx at the other, and could therefore be regarded also as a laryngeal or a syringeal muscle. Sometimes the

muscles of the larynx, trachea, and syrinx are classified as extrinsic and intrinsic muscles. An extrinsic muscle should have an attachment beyond the organ concerned, whereas an intrinsic muscle should have all its attachments on the organ itself. This distinction can be upheld for the larynx, the dilator and constrictor muscles being clearly intrinsic and any other muscles extrinsic. However, in many species there can be no truly intrinsic tracheal muscles, and unequivocal intrinsic syringeal muscles are uncommon even in passeriforms (King, 1989:168, 172).

In the literature of the last two centuries many muscles have been associated with the upper airways of birds. The same name has often been applied to nonhomologous muscles, and different names have been applied to homologous muscles (George and Berger, 1966:262). The basic problems are the small size of many of these muscles and the occurrence of detailed interspecific variations. It can be difficult to decide whether a fascicle of muscle fibres is a new muscle, a minor variant of a muscle previously known, or a dissection artefact.

M. cleidohyoideus. In the NAA (1979), this muscle was named M. sternohyoideus. Zweers (1982) established from the literature that, in birds examined so far, there is a muscle that attaches to the *clavicle* at its caudal end, runs cranially in close relationship to the skin of the neck and the trachea (though not directly attached to the trachea), and attaches at its cranial end to the larynx or in some species the hyoid bone; this is well attested in Tetrao urogallus by Yarrell (1833) (his furculo-tracheal muscle), in Grus by Fisher and Goodman(1955) (their M. tracheohyoideus), in Nucifraga by Bock, et al. (1973) (their M. tracheohyoideus), in Calidridinae by Burton (1974) (his M. cleidohyoideus), in Gallus by Gaunt and Gaunt (1977) (their M. tracheohyoideus), and in Columba livia by Zweers (1982) (his M. claviculohyoideus). The term M. sternohyoideus, as in the first edition of the NAA, is a misnomer for this muscle, because it has no attachment to the sternum. M. tracheohyoideus is equally a misnomer, because it is not known to arise from the trachea in any species of bird. Gaunt and Gaunt (1977) suggested that the best name would be M. cleidohyoideus, which expresses the correct caudal attachment. An alternative would be M. cleidolaryngeus, which would also describe the correct cranial attachment not only in Gallus but in passeriforms as well (so far as is known). However, workers on the passeriform larynx (e.g., Bock and his coworkers) have hitherto been content with the suffix "-hyoideus" when naming this muscle. The adoption of M. cleidohyoideus rather than cleidolaryngeus will therefore minimize disturbance among established terms.

M. sternohyoideus. Gadow and Selenka (1891:307) used the expression "System des m. sterno-hyoideus" to cover a list of about 10 muscles. Most of these appear to be synonyms for one muscle, but their use of "System" implied that some of these names might relate to separate muscles. They then stated (p. 308) that a true M. sterno-hyoideus, as seen in its primitive condition in reptiles, does still occur in *Apteryx*. They also suggested (pp. 310, 730) that parrots possess a similar "sterno-hyoid" muscle (except that it fails to reach the sternum). M. sternohyoideus will not be listed in the NAA until its existence in birds is confirmed.

M. tracheohyoideus. The M. tracheohyoideus was not formally listed in the NAA (1979), but Vanden Berge included it in his Table 1. Zweers (1982) pointed out that the M. tracheohyoideus of Fisher and Goodman (1955) in *Grus americana* and of Bock, et al. (1973) in *Nucifraga* are the same muscle as the cleidohyoideus of Burton (1974) in charadriiforms and his own M. claviculohyoideus in *Columba livia*; thus these muscles are in fact the M. cleidohyoideus discussed two paragraphs above. Zweers (1982) also revealed that at least one other group of recent authors has applied the term tracheohyoideus to the M. tracheolateralis. M. tracheohyoideus will not be listed in this edition of the NAA.

M. cricohyoideus. Zweers (1982) reported this muscle in Columba livia as running between the cricoid and the hyoid bone; presumably it is an extrinsic laryngeal muscle (McLelland, 1989:76). In C. livia it consists of a small dorsal and a large ventral component, the M. cricohyoideus dorsalis and ventralis, which arise respectively from the dorsal and ventral aspects of the Os basibranchiale and insert together on the ventral and ventrolateral aspect of the cricoid cartilage. Zweers interpreted the dorsal component as representing the M. thyrohyoideus of George and Berger (1966:262) in birds generally, of Fisher and Goodman (1955) in Grus, and of Bock, et al., (1973) in Nucifraga, and representing the M. thyreohyoideus of Burton (1974) in Charadrii and of Zweers et al. (1977) in Anas. In other species, apparently only one component is present. Thus the dorsal component of this muscle, but not the ventral, was found by Zweers and Berkhoudt (1987) in Corvus corone and C. monedula, and by Heidweiller and Zweers (1990) in the estrildids Poephila guttata and Lonchura striata; in these species the authors referred to it as either "M. cricohyoideus", or "M. cricohyoideus (dorsalis)". Homberger and Meyers (1989) also used the term M. cricohyoideus in Gallus. However, they interpreted their muscle as representing the combined M. cricohyoideus ventralis and M. hyovalvularis of Zweers (1982) in Columba. In a Table of synonymies and homologies, Homberger and Myers identified in the literature nine other names that had been applied to their M. cricohyoideus. This illustrates the difficulty of codifying the terminology for such muscles with justice to all authors. Moreover, the terminology is still in active evolution—see, e.g., the use of M. thyreohyoideus in Anas by Zweers, et al. (1977), followed by the substitution of M. cricohyoideus dorsalis for an apparently homologous muscle in Columba by Zweers (1982). The selection of names in the NAA must inevitably be arbitrary, and subsequent changes will probably be necessary as further knowledge becomes available. For the pharyngeal functions of these muscles see Myol. Annot. 36.

**M. tracheovalvularis.** A very small muscle in *Columba livia* passing between the first tracheal rings and the pharyngeal wall, and represented by Bock's (1978) cricohyoideus posterior in *Corvus*, (Zweers, et al., 1981); an extrinsic laryngeal muscle (McLelland, 1989:76).

M. hyovalvularis. A muscle in *Columba livia* running along the dorsolateral aspect of the larynx, between the hyoid bone and the pharyngeal wall (Zweers, et al., 1981), and also present in *Poephila guttata* and *Lonchura striata* (Heidweiller and Zweers, 1990). Interpreted by Zweers (1982) as represented by the M. dermoglossus and M. thyrohyoideus of *Grus* (Fisher and Goodman, 1955), the M. cricohyoideus superior of *Nucifraga* (Bock, et al., 1973), and the M. thyrohyoideus superior of *Loxops* (Richards and Bock, 1973). Homberger and Meyers (1989) regard it as part of their M. cricohyoideus in *Gallus*; this is an extrinsic laryngeal muscle (McLelland, 1989;76). See Myol. Annot. 36.

M. sternotrachealis (Fig. 8.6). Owen (1886:224) regarded this as "the most constant of all the muscles affecting the lower larynx", and George and Berger (1966:263) believed that it "has apparently been found in all birds studied". Ames (1971:109) confirmed that it occurs in passerines generally. Beddard (1898:258) claimed its absence in some psittaciforms, but Gaunt and Gaunt (1985) and King (1989:168) found it in six psittacid species; feeble in oscines (Ames, 1975; Warner, 1972b).

M. cleidotrachealis (Fig. 8.13). Synonymy: M. ypsilotrachealis (Gadow and Selenka, 1891:730; Rüppell, 1933; Lockner and Youngren, 1976). This synonym has been very widely employed, but M. cleidotrachealis has also been used for a long time (e.g., Beddard, 1898:292). German veterinary anatomists have applied M. ypsilotrachealis to the M. sternotrachealis; this term has therefore been used for two entirely different muscles, and for this reason M. cleidotrachealis is preferred. This

muscle has been described in many members of the Anseriformes (Gadow, 1896:938; Beddard, 1898:464; Rüppell, 1933; Lockner and Youngren, 1976; King, 1989:168). It has also been reported in representatives of four other orders, e.g., *Crypturellus, Crax*, and *Tockus* by Beddard (1898:222, 292, 487), and sphenisciforms by Watson (1883). The essential characteristics of this muscle are its origin from the clavicle and its direct insertion on the trachea, cranial to the insertion of M. sternotrachealis.

M. tracheolateralis (Fig. 8.8). Synonymy: M. contractor tracheae (Watson, 1883); M. tracheobronchialis (Haecker, 1900); M. laryngosyringeus (Köditz, 1925); M. bronchotrachealis (Rüppell, 1933); M. trachealis lateralis (Zweers, 1982); M. cricotrachealis lateralis (Zweers and Berkhoudt, 1987). This paired muscle occurs in the great majority of avian orders, if not all (Fürbringer, 1888:1089; Beddard, 1898:62; Gadow, 1896:938; Ames, 1971:105, 133). Complete loss of this muscle has been claimed in some ratites, most ciconiids and cathartids, and some galliforms, but sometimes the loss is "complete" only in the sense that the muscle ends well cranial to the syrinx (King, 1989:169). Typically it attaches caudally to the syrinx, forms a lateral band along the whole of the trachea, and attaches cranially to the larynx. It is sometimes divided into a dorsal and a ventral part, the former attaching cranially to the larynx and the latter to the hyoid (respectively, M. trachealis lateralis, pars cricoidea and pars hyoidea of Zweers, 1982); or both parts attach to the larynx (the M. cricotrachealis lateralis of Zweers and Berkhoudt, 1987). For further discussion see McLelland (1989:98) and King (1989:169).

(51) Mm. syringeales. The principal sources on the passeriform syringeal muscles are Ames (1971, 1975) and Warner (1972b), with contributions from Miskimen (1951). The anatomy of the syringeal muscles in subpasseriforms is less well known. However, the 19th century literature contains much information on the muscles of subpasseriforms (see Fürbringer, 1888:1087; Gadow, 1896:937; and particularly Beddard, 1898). For review see King (1989:169).

The syringeal muscles are very small, and not always sharply distinguished from each other anatomically. This no doubt accounts for the different numbers of syringeal muscles claimed by various authors in oscines, even though this taxon is noted for the anatomical uniformity of these muscles (Ames, 1971:94; 1975); for example, the maximum total number of paired muscles (excluding M. sternotrachealis and M. tracheolateralis) is four according to Ames (1971:89), five according to Warner (1972b), seven according to Fürbringer (1888:1091), and eight according to Köditz (1925).

As noted by George and Berger (1966:268), Ames (1971:10), and Warner (1972b), the nomenclature most commonly used for the passeriform syringeal muscles originated with Owen (1866:223); Ames employed this terminology. Fürbringer's (1888) nomenclature, however, was adopted by Gadow (1896:939) and Haecker (1900), and has been closely followed by Warner (1972b) also. Among other major terminologies are those of Wunderlich (1884), Setterwall (1901), and Köditz (1925). Synonymy was worked out by Köditz (1925), Ames (1971:90), and Warner (1972b), essentially as in Table 8.1. The terminology adopted here is based on that of Fürbringer (1888).

M. tracheobronchialis dorsalis/brevis/ventralis; M. syringealis dorsalis and ventralis. Synonyms: see Table 8.1. These syringeal muscles are present in oscines as in Fig. 8.20. Ames (1971:89-94) interpreted the M. tracheobronchialis dorsalis and brevis as two parts of the same muscle, and considered the M. syringealis

ventralis to consist of medial and lateral parts (Fig. 8.18). The M. tracheobronchialis dorsalis and ventralis, and the M. syringealis dorsalis also occur in the suborder Menurae (Ames, 1971:85, 87).

- M. vocalis dorsalis and ventralis; M. obliquus ventralis and lateralis. These occur in suboscine passeriforms as in Figs. 8.15, 16 and 17 (Ames, 1971:20-79).
- M. syringealis superficialis/profundus; M. syringealis caudalis; M. syringealis. The non-passeriform groups usually have no intrinsic syringeal muscles and only a single paired (clearly) extrinsic syringeal muscle, the M. tracheolateralis, which typically inserts on the tracheal or bronchial elements of the syrinx. This is the basic tracheobronchial syrinx which is generally agreed to occur in the majority of nonpasserine orders (Fürbringer, 1888:1089; Gadow, 1896:938; Beddard, 1898:61; Ames, 1971:133; King, 1989:175); it also occurs in several families of suboscine Passeriformes as in Psarisomus (Eurylaimidae) (Ames, 1971:133). However, there are certainly two pairs of short syringeal muscles in some psittacids (Gadow, 1896; Evans, 1969:70; Nottebohm, 1976; Gaunt and Gaunt, 1985; King, 1989:176); it is proposed to name these according to their topographical position, i.e., M. syringealis superficialis and M. syringealis profundus (Figs. 8.15, 16). There is also a fully authenticated single pair of true syringeal muscles in Steatornis caripensis (Suthers and Hector, 1985, their M. broncholateralis), which can reasonably be distinguished by the term M. syringealis caudalis because of its unique position caudal to the division of the airway (Fig. 8.7). The presence of one additional pair of short specialized syringeal muscles in Gallinago and Falco was mentioned by Wunderlich (1884), Fürbringer (1888:1089), and Gadow (1896:939), but without full documentation. Forbes (1881) reported with an illustration a very convincing single pair of true syringeal muscles in Rhea. Any such single pairs of muscles would now be called simply M. syringealis, until authenticated details of their topography and attachments justify adding a descriptive adjective to the name. Hasty commitment to homologies or functions should be avoided.
- (52) Bronchus primarius, Pars extrapulmonalis; Cartt. bronchiales; Memm. interanulares; Lig. bronchiale mediale. The term Bronchus primarius was introduced by Juillet (1912). The extrapulmonary part of the primary bronchus lies between the syrinx and the lung. Its bronchial cartilages are C-shaped, except in Hirundinidae where they are complete rings (Warner, 1972b). The thin interannular membranes connect adjacent bronchosyringeal and/or bronchial cartilages (Figs. 8.8b, 10). The thicker medial bronchial ligament completes the gap between the ends of the bronchial cartilages (Fig. 8a) (King, 1989:23).
- (53) Facies costalis; Facies vertebralis; Facies septalis. The costal surface of the lung adjoins the thoracic wall, its vertebral surface relates to the vertebrae, and its septal surface faces the Septum horizontale (see Chap. 7).
- (54) Sulci costales; Tori pulmonales; Tori intercostales; Tori marginales. The ribs make costal sulci on the costal and vertebral surfaces of the lung. Between two Sulci costales (Fig. 8.22) there is a Torus intercostalis (Quitzow, 1970) an approximately transverse strip of lung tissue. Together, the intercostal and marginal tori constitute the Tori pulmonales. The term Torus pulmonis was used by Schulze (1908) and Groebbels (1932:44).
- (55) Margo costovertebralis; Margo costoseptalis; Margo vertebroseptalis; Margo cranialis; Margo caudalis; Angulus craniodorsalis; Angulus caudodorsalis; Angulus cranioventralis; Angulus caudoventralis. Figure 8.21 shows the relationships between the borders, angles, and surfaces (Quitzow, 1970) of the essentially

quadrilateral lung of most birds. In primitive species with a poorly developed Neopulmo (Annot. 57) the cranioventral and the caudoventral angles are indistinct, making the lung triangular with the apex pointing ventrally (Duncker, 1972).

- (56) **Planum anastomoticum; Linea anastomotica.** Terms introduced by Locy and Larsell (1916a). Synonymy: Linea serpta, Quitzow, 1970. The anastomotic plane and its superficial Linea are caused mainly by the terminal anastomoses of the Parabronchi of: (a) the medioventral and mediodorsal secondary bronchi (Figs. 8.22, 23), and (b) the medioventral and lateroventral secondary bronchi (Fig. 8.23). The line is visible on the surface (Fig. 8.21).
- (57) Paleopulmo; Neopulmo. Terms proposed by Duncker (1971), to indicate a phylogenetic relationship between the two main components of the lung. The Paleopulmo is present in all birds. It consists (Fig. 8.23) of: (a) Bronchi medioventrales and mediodorsales, and their Parabronchi; (b) the large Bronchus lateroventralis which connects directly to the Saccus thoracicus caudalis; and (c) two or three intermediate-sized Bronchi lateroventrales, which medially form Parabronchi joining Parabronchi from the fourth Bronchus medioventralis at the Planum anastomoticum. In supposedly primitive birds (e.g., sphenisciform species) the Paleopulmo forms the whole of the lung.

In most birds the Neopulmo forms about one tenth of the lung. It is a network (Fig. 8.23) of anastomosing bronchi consisting of: (a) the Bronchi laterodorsales and their Parabronchi; (b) laterally directed Parabronchi of the Bronchi lateroventrales; and (c) the connexions of this network to the caudal air sacs. It was named the reseau anastomotique by Campana (1875) and Locy and Larsell (1916a). McLelland (1989:234-236) has summarized the progressive development of the neopulmo in various taxa.

- (58) **Bronchus primarius, Pars intrapulmonalis.** The part of the primary bronchus that lies within the lung is its intrapulmonary part (Juillet, 1912). It ends caudally by opening into the Saccus abdominalis (Fig. 8.22). A dilated mid-region, the "Vestibulum" was described by Huxley (1882) and mentioned by many others, but is not present in *Gallus* (Juillet, 1912; Payne and King, 1959; Akester, 1960; Quitzow, 1970) or in *Anas* and *Columba* (Akester, 1960). The term Vestibulum has also been applied to the region of the Bronchus primarius where the Bronchi medioventrales arise (Juillet, 1912; Groebbels, 1932:7), and even to the region of the Bronchus primarius which is *devoid* of branchings (Duncker, 1971). The term Mesobronchus was used by Huxley (1882) and a number of later authors for the region of the Bronchus primarius which lies caudal to the supposed Vestibulum. In view of its uncertain characteristics the term Vestibulum should not be used.
- (59) **Bronchi secundarii.** These are the bronchi of the second order, and therefore include all those that arise from the primary bronchus (Campana, 1875:31; Locy and Larsell, 1916a). The earlier authors (e.g., Campana, 1875; Schulze, 1908) named them according to either the orientation of their origin from the primary bronchus, or their subsequent direction, or both their origin and their direction. At that time, both their orientation and their direction had been erroneously described (see Annot. 57 of NAA, 1979), and so the resulting terminology was misleading. A further complication has been the use of the same term for two or more different groups of secondary bronchi, as with "ventrobronchi", "dorsobronchi", and "laterobronchi" (Table 8.2). The resulting confusion pervaded the literature on the anatomy and physiology of the avian lung. The NAA (1979) produced a new terminology, on the two following principles: (1) all terms for the Bronchi secundarii should be based on the lung territory which they supply, as in Figure 8.23 (a relatively neglected precept,

- Quitzow, 1970); (2) Terms which have already been in use, but with various meanings, should be avoided. The following new terms for the secondary bronchi resulted: Bronchi medioventrales, mediodorsales, lateroventrales, and laterodorsales. In the decade following the NAA (1979) these terms have been widely adopted by anatomists and physiologists. The same terms are listed here.
- (60) **Bronchi medioventrales.** Synonymy: See Table 8.2. The medioventral bronchi are the four (or five) secondary bronchi which supply the medial and ventral regions of the lung (Fig. 8.23). They arise from the dorsomedial wall of the cranial region of the Bronchus primarius (Fig. 8.22) (Fischer, 1905; King, 1966:181; Quitzow, 1970). Many of their main branches pass in the medial direction over the Facies septalis to end by turning dorsally onto the Facies vertebralis.
- (61) **Bronchi mediodorsales.** Synonymy: Table 8.2. The mediodorsal secondary bronchi supply the medial and dorsal regions of the lung (Fig. 8.23). They arise from the dorsal wall of the caudal part of the Bronchus primarius (Fig. 8.22), and then travel dorsally (Duncker, 1971).
- (62) **Bronchi lateroventrales.** Synonymy: Table 8.2. The lateroventral secondary bronchi supply the lateral and ventral regions of the lung (Fig. 8.23). Their origins are directly opposite to those of the Bronchi mediodorsales (Fig. 8.22), i.e., from the ventral wall of the caudal part of the Bronchus primarius, and their course is ventral or caudoventral (Payne and King, 1960; King, 1966:181; Quitzow, 1970; Duncker, 1971). In birds generally, the large first or second bronchus connects with the Saccus thoracicus caudalis. The subsequent two or three intermediate sized bronchi contribute parabronchi to the Paleopulmo in all species; in species in which the Neopulmo is developed these intermediate sized Bronchi lateroventrales, and yet other more caudal and smaller ones, contribute parabronchi to the Neopulmo (Fig. 8.23).
- (63) **Bronchi laterodorsales.** Synonymy: Table 8.2. These supply the lateral and dorsal regions of the lung (Fig. 8.23). They form a large part of the Neopulmo; since the degree of development of the Neopulmo varies greatly, the position, diameter, and number of the Bronchi laterodorsales also vary (Campana, 1875; Locy and Larsell, 1916a; Groebbels, 1932; King, 1966; Quitzow, 1970). They arise from the lateral wall of the caudal part of the Bronchus primarius and extend mainly laterally. The first two or three are of large diameter (certainly in *Gallus*, see King, 1966:182, and in *Cygnus*, see Fig. 30b of Duncker, 1971). The more caudal of these secondary bronchi are similar in diameter to Parabronchi; because of this, some authors (e.g., Akester, 1960; Duncker, 1971) excluded the whole of this group of bronchi from those of the Bronchi secundarii and classified them as Parabronchi.
- (64) **Parabronchus.** Synonymy: Bronchus tertiarius (Campana, 1875; Akester, 1960; King, 1966; Lasiewski, 1972); Lungenpfeife (Krause, 1922); Bronchi fistularii (Quitzow, 1970; Gerisch, 1971). The Parabronchi are bronchi of the third or subsequent orders of branching, i.e., they arise from the Bronchi secundarii or from the subdivisions of the Bronchi secundarii (Fig. 8.22). The term Parabronchus is long established, having been introduced by Huxley (1882), and is now in general use by anatomists and physiologists. It includes both the parabronchial airway and the mantle of exchange tissue which surrounds that airway; the boundary of the Parabronchus is the Septum interparabronchiale (Annot. 70).
- (65) **Atrium.** Synonymy: bronchiolus, vestibulum, fossa (see King, 1966:195; Gerisch, 1971:6). The term atrium was introduced by Krause (1922:295). The atria are the polygonal chambers (Fig. 8.24) leading towards the air capillaries from the

Parabronchi and from many secondary bronchi. The term is in general use, the many alternatives having fallen into disuse. For species variations see Annot. 70.

- (66) **M. atrialis.** The atrial muscles form a network of smooth muscle bundles (Fig. 8.24) around the openings into the atria (King and Cowie, 1969; Gerisch and Schwarz, 1972; West, et al., 1977; McLelland, 1989:237). See Annot. 70.
- (67) **Septum interatriale.** The thin interatrial septa (Fig. 8.24) are the atrial walls, separating adjacent atria (Gerisch, 1971). See also Annot. 70.
- (68) **Infundibulum.** The term Infundibulum apparently originated from Krause (1922:292). It refers to the funnel-shaped ducts that open from the floor of an Atrium (Fig. 8.24) and lead to air capillaries. According to Gerisch (1971) the infundibula also give rise to Rami respiratorii, which are intermediate in size between Infundibulum and Pneumocapillaris.
- (69) **Epitheliocytus granularis.** Synonymy: Epitheliocytus magnus, Cellula granularis (NAA, 1979; McLelland, 1989:246). The granular epithelial cell lines the Atrium and contains osmiophilic laminated bodies (for review see King and Molony, 1971:119). It is probably homologous to the the septal cell, great alveolar cell, type 2 epithelial cell, or granular pneumocyte of mammals.
- (70) **Septum interparabronchiale.** The interparabronchial septa separate the exchange tissue of adjacent Parabronchi. According to Duncker (1971), these septa, and also the Atria and the Mm. atriales, are best developed in birds which fly poorly or not at all. Maina, et al. (1982) found that all these structures are well developed in anseriforms, galliforms, and charadriiforms, and poorly developed in columbiforms, psittaciforms, cuculiforms, and passeriforms, the septa often being entirely lost. See McLelland (1989:236) for review.
- (71) **Pneumocapillaris.** Synonymy: Tubulus respiratorius, Ductulus respiratorius. The term air capillary or Luftkapillaren has been widely used since the beginning of the 20th century. Gerisch (1971) suggested Ductulus respiratorius, because he believed that anastomoses are not sufficiently common to justify the term air capillary. Smith, et al. (1986) proposed "respiratory labyrinth" because anastomoses are so profuse, but this term would be inapplicable to the *individual* tubules within the complex. The profuse anastomoses and fluctuating calibres of the air capillaries, and their interlocking relationships with the narrower and more uniform blood capillaries, were established by Maina (1982, 1988), with observations also by West, et al. (1977) and Fujii, et al. (1981). The quantitative morphology of the blood gas barrier and many other pulmonary components has been reviewed by Maina (1989:307-368) and Maina, et al. (1989).
- (72) **Epitheliocytus respiratorius.** The respiratory epithelial cell which lines the Pneumocapillaris is homologous to the similar cell in the mammalian alveolar wall (the small alveolar cell, or type 1 epithelial cell), but it is much thinner than in mammals and is also the only cell lining the barrier, thus minimizing barrier thickness (Maina and King, 1982).
- (73) Ostium. A term widely used but seldom defined. Muller (1908) and Schulze (1908) applied it to the general zone of attachment of the air sac to the lung, enclosing one or several actual orifices which open into the bronchi; King (1966:224) defined it explicitly in this way. Campana (1875:27) used Infundibulum for this general zone. Quitzow (1970) introduced the term "Area saccopulmonalis" for the same region; like Groebbels (1932) she restricted the term Ostium to the single opening from an air

sac into a secondary (or the primary) bronchus. The older meaning of Muller (1908) and Schulze (1908) was adopted in the NAA (1979), and is retained here (Fig. 8.22).

Within an Ostium there are two types of opening: (1) "Indirect connexion" which connects the air sac to Parabronchi (the Bronchi recurrentes of Schulze, 1910; Juillet, 1912; and other authors, and the indirect connexions of King, 1966:223), and (2) "Direct connexion" which connects the air sac to a secondary, or to the primary, bronchus (the "bronche directe" and "orifice direct" of Juillet, 1912; the "direkt Bronchen" and "direct Ostien" of Groebbels, 1932, and the "direct connexion" of King, 1966:223). Terms that indicate the direction of air flow in these connexions should be avoided, in view of the actual complexity of the flow (see Scheid and Piiper, 1989:376-381 for review). This excludes Bronchi recurrentes, and probably also the Bronchi pulmosaccales and saccopulmonales of Quitzow (1970). The terms "direct" and "indirect connexions" do not suggest direction of flow, and have been established for a long time. They are recommended for descriptive purposes, but not listed as official terms. For a review of the Ostia and their connexions see McLelland (1989:265-269).

(74) **Saccobronchus.** This is an old term adapted to a new meaning by Duncker (1971). It now refers to a single large funnel-like bronchus which collects many parabronchi and connects with an air sac. The old meaning was applied (e.g., by Schulze, 1910) to the many small parabronchial connexions of an air sac, the term thus being synonymous with Bronchus recurrens; this older usage was retained by some more recent authors (e.g., Quitzow, 1970).

A Saccobronchus (in the new sense) occurs only in the Saccus abdominalis and Saccus thoracicus caudalis. The Saccus abdominalis has been found to possess one such Saccobronchus in birds generally, except in Dromaiidae and Spheniscidae (Duncker, 1971). A Saccobronchus is particularly well developed in both the Saccus abdominalis and the Saccus thoracicus caudalis of *Ciconia, Anas,* and *Pluvialis* (Duncker, 1971: Figs. 24-26, 32).

(75) Aa. interparabronchiales; Arteriolae intraparabronchiales. The general architecture of the pulmonary circulation was established by Abdalla and King (1975). The microanatomy of the vasculature and the terminal airways was described by Maina (1982, 1988) and West, et al. (1981), with contributions by Akester (1974) and Fujii, et al. (1981). Radu and Radu (1971) provided information on the rami of the left and right pulmonary arteries (Art. Annot. 2).

Each ramus of the pulmonary artery gives rise to many interparabronchial arteries. These lie in the interparabronchial septa, and give off intraparabronchial arterioles which give rise to blood capillaries (Fig. 8.24). The blood capillaries form an anastomosing network interlocking with the network of air capillaries. The deoxygenated blood from the pulmonary trunk is delivered at right angles to the long axis of each parabronchus, causing a cross-current relationship between bulk parabronchial gas flow and blood flow (Scheid and Piiper, 1970).

Vv. interparabronchiales; Vv. intraparabronchiales; Vv. atriales; Venulae septales; Venulae intraparabronchiales. Some of the blood capillaries drain into septal venules and then via atrial veins into intraparabronchial veins; most of them empty via intraparabronchial venules into intraparabronchial veins, and thence into interparabronchial veins (Fig. 8.24). See Ven. Annot. 1, 2). There is no anatomical evidence for arteriovenous anastomoses in the avian lung (Abdalla and King, 1976a).

**R. bronchialis; Vv. bronchiales.** The paired bronchial rami arise from the A. esophagotracheobronchialis (Abdalla and King, 1976b, 1977). In anseriform, galliform, and columbiform species the bronchial veins of the extrapulmonary part of the

primary bronchus drain via esophageal veins into the V. esophagotrachealis and thence into the cranial vena cava; the intrapulmonary part, and in *Gallus* the caudal region of the extrapulmonary part, drain into the pulmonary vein. For reviews of the pulmonary and bronchial circulation see West, et al. (1981:287-298) and Abdalla (1989:281-306).

- (76) Sacci pneumatici. In all birds air sacs arise from the lungs. The literature on their anatomy is vast, much of it from the 19th century and not all of it reliable. Good general surveys were made by Baer (1896), Schulze (1910), and especially Groebbels (1932:54-76). More recent reviews are by King (1966:207-221) and McLelland (1989:258-271). There are six primordial pairs of sacs, but in nearly all birds two pairs fuse to form the median clavicular sac. The anatomy of the sacs varies greatly between species.
- (77) Saccus cervicalis. Synonymy: superior-posterior sac, Campana (1875); thoracocervical sac, McLeod and Wagers (1939). The cervical sac consists of a pair of main chambers and diverticula. The main chambers fuse to form a median compartment in several orders (King, 1966:209), and rarely (e.g., Meleagris, King and Atherton, 1970) also fuse with the Pars lateralis of the clavicular sac to form a cervicoclavicular sac. The sac is absent in Gavidae and Podicipedidae (Gier, 1952; Duncker, 1971).
- (78) **Diverticula vertebralia.** The vertebral diverticula of the Saccus cervicalis pass cranially and caudally along the vertebral column in birds generally (Groebbels, 1932:56; King, 1966:209; Duncker, 1971:50).
- (79) **Diverticula intermuscularia.** In some birds intermuscular diverticula of the Saccus cervicalis penetrate between the cervical muscles and accompany branches of the brachial plexus (Duncker, 1971:50).
- (80) **Diverticula subcutanea.** Extensive subcutaneous diverticula of the Saccus cervicalis have been reported in Pelecaniformes and a few other species from other orders (Groebbels, 1932:62-64; King, 1966:211) probably including *Leptoptilos* (Akester, et al., 1973).
- (81) Saccus clavicularis. Synonymy: thoracic sac (Sappey, 1847; superior-anterior sac (Campana, 1875); ant. thoracic sac (McLeod and Wagers, 1939). The rival terms Saccus clavicularis (Schulze, 1910) and Saccus interclavicularis (Juillet, 1912) have had similar usage, but the shorter S. clavicularis is preferred.
- (82) Pars medialis; Pars lateralis. The Pars medialis and Pars lateralis of the Saccus clavicularis are the primordial paired medial and lateral components of Locy and Larsell (1916a, b). These four primordial sacs fuse in most species, to form a single unpaired Saccus clavicularis. In *Meleagris* the Pars medialis persists as a pair of very small separate sacs (King and Atherton, 1970) (see also Annot. 77). It has been claimed that among the Ciconiiformes and Laridae the paired Pars medialis and Pars lateralis remain separate, giving four separate Sacci claviculares in the adult (King, 1966:214).
- (83) **Diverticula intrathoracica.** The intrathoracic diverticula of the Saccus clavicularis extend variably around the heart (several **Diverticula cardiaca**) and along the sternum (several **Diverticula sternalia**) (Groebbels, 1932:57, 74-76; King, 1966: 212; Duncker, 1971; King, 1975:1910).

- (84) **Diverticula extrathoracica.** The extrathoracic diverticula of the clavicular sac spread around the thoracic (pectoral) girdle (Groebbels, 1932:58, 74; King, 1966:212; Duncker, 1971; King, 1975:1911). Groebbels (1932:58) recognized four main extrathoracic diverticula: **Diverticulum subscapulare**, between the scapula and the thoracic cage; **Diverticulum axillare**, between the muscles around the shoulder region, and forming the **Diverticulum humerale** that invades the humerus in many species (**Osteo.** Annot. 188, 189); **Diverticulum subpectorale**, under the pectoral muscles; **Diverticulum suprahumerale**, covering the head of the humerus. Extensive subcutaneous diverticula have been reported in pelecaniforms, ciconiiforms, and coraciiforms (King, 1966:213). There is no agreement in the literature about the terminology for these diverticula; very little is known about species variations, so revision may be needed later.
- (85) Saccus thoracicus cranialis/caudalis. Synonymy: ant./post. diaphragmatic sacs (Sappey, 1847; Juillet, 1912; Groebbels, 1935); middle-superior, middle-inferior sacs (Campana, 1875); ant., post. intermediate sacs (Locy and Larsell, 1916a, b); pre-postthoracic sacs (Schulze, 1910; Stresemann, 1934); ant., post. thoracic sacs (Akester, 1960). The thoracic sacs (paired) are essentially intrathoracic. The cranial sac is typically about one third the volume of the caudal sac, as in passeriforms; in this group the cranial sac connects with the clavicular (Duncker, 1971). The caudal thoracic sac is absent in *Meleagris* (King and Atherton, 1970). The thoracic sacs typically have no diverticula, but in phalacrocoracids diverticula of the cranial thoracic sac extend along the esophagus (Duncker, 1971).
- (86) Saccus abdominalis. Synonymy: inferior sac (Campana, 1875); greater abdominal sac, McLeod and Wagers, 1939). The abdominal sac typically lies in the dorsocaudal region of the coelom. In many taxa (e.g., Fratercula) it is the largest sac, but in others (e.g., the closely related Fulica, and particularly Apteryx and spheniscids) it is one of the smallest (for reviews see King, 1966:216, and McLelland, 1989:264).
- (87) **Diverticula perirenalia; Diverticula femoralia.** In many birds, the abdominal sacs give off several perirenal diverticula that extend along the kidneys, invading the adjacent vertebrae and pelvic girdle. Several femoral diverticula invade the bones and muscles of the pelvic limb (Groebbels, 1932:59; King, 1966:216; Duncker, 1971; King, 1975:1912).
- (88) Ossa pneumatica. The air sacs invade the postcranial skeleton in most species, but the extent is extremely variable between species and even within species. Moreover, it is difficult to prove that a bone is not pneumatic at all, and errors have occurred in the voluminous literature (King, 1966:223). In general the cervical sac pneumatizes the vertebral ribs, and cervical and thoracic vertebrae; the clavicular sac aerates the sternum, sternal ribs, thoracic girdle, and wing bones; and the abdominal sac aerates the pelvis, synsacrum, and bones of the pelvic limb (King, 1966:222). No bones are pneumatized by the thoracic sacs. The pneumatic bones of the postcranial skeleton of *Gallus* have been thoroughly reinvestigated (Hogg, 1984), but the facts for other species remain uncertain.
- (89) Foramen pneumaticum; Pori pneumatici. The air sacs invade the skeleton through either a large pneumatic foramen or small pneumatic pores.

Table 8.1. Synonyms of syringeal muscles in oscine species Based on the text of Fürbringer (1886:p1091), and the Tables of Köditz (1925:140), Ames (1971:90), and Warner (1972b).

| NAA                             | Owen, 1866<br>Shufeldt, 1890<br>Miskimen, 1951 | Ames, 1971                                      | Fürbringer, 1888<br>Gadow, 1896<br>Haecker, 1900 |
|---------------------------------|------------------------------------------------|-------------------------------------------------|--------------------------------------------------|
| Mm.                             |                                                |                                                 |                                                  |
| tracheolateralis                | tracheo-lateralis                              | tracheolateralis                                | tracheobronchialis<br>or trachealis              |
| Mm.                             |                                                |                                                 |                                                  |
| tracheobronchialis<br>dorsalis  | bronchotrachealis<br>posticus                  | bronchotrachealis<br>posticus                   | tracheobronchialis<br>dorsalis                   |
| Mm.                             |                                                |                                                 |                                                  |
| tracheobronchialis<br>brevis    | bronchotrachealis<br>brevis                    | part of<br>bronchotrachealis<br>posticus        | tracheobronchialis<br>dorsalis brevis            |
| Mm.                             |                                                |                                                 |                                                  |
| tracheobronchialis<br>ventralis | bronchotrachealis<br>anticus                   | bronchotrachealis<br>anticus                    | tracheobronchialis<br>ventralis                  |
| Mm.                             |                                                |                                                 |                                                  |
| syringealis                     | bronchialis                                    | bronchialis                                     | syringeus                                        |
| dorsalis                        | posticus                                       | posticus                                        | dorsalis                                         |
| Mm.                             |                                                |                                                 |                                                  |
| syringealis                     | bronchialis                                    | bronchialis                                     | syringeus                                        |
| ventralis                       | anticus                                        | anticus, pars<br>medialis and<br>pars lateralis | ventralis                                        |
| Mm.                             |                                                |                                                 | syringeus<br>ventrolateralis                     |
| Mm.                             |                                                |                                                 | tracheobronchialis<br>obliquus*                  |
|                                 |                                                |                                                 |                                                  |
| Mm.                             |                                                |                                                 |                                                  |
| Mm.                             |                                                |                                                 |                                                  |
|                                 |                                                |                                                 |                                                  |

Table 8.1. Synonyms of syringeal muscles in oscine species (cont.)

| Warner, 1972b                   | Köditz, 1925                                      | Wunderlich, 1884                             | Setterwall, 1901                                                        |
|---------------------------------|---------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------|
| tracheolateralis                | laryngosyringeus                                  |                                              |                                                                         |
| tracheobronchialis<br>dorsalis  | laryngosyringeus<br>dorsolateralis                | levator longus<br>posterior<br>arcus secundi | dorsolateralis<br>longus                                                |
| tracheobronchialis<br>brevis    | laryngosyringeus<br>dorsalis (longus)             | tensor mem.<br>tympaniformis<br>internae     | dorsalis longus                                                         |
| tracheobronchialis<br>ventralis | laryngosyringeus<br>ventralis<br>(longus)         | levator longus<br>anterior<br>arcus secundi  | ventralis longus                                                        |
| syringeus<br>obliquus           | syringeus<br>dorsolateralis                       | levator brevis<br>posterior<br>arcus secundi | dorsolateralis<br>brevis                                                |
| syringeus<br>ventralis          | syringeus<br>ventralis<br>(brevis)                | levator brevis<br>anterior<br>arcus secundi  | ventralis<br>brevis                                                     |
|                                 | syringeus<br>ventrilateralis<br>internus (brevis) | laxator mem.<br>tympaniformis<br>externae    | ventrilateralis<br>brevis<br>internus                                   |
|                                 | laryngosyringeus<br>ventrilateralis<br>(longus)*  | rotator arcus<br>tertii*                     | ventrilateralis<br>brevis externus<br>and<br>ventrilateralis<br>longus* |
|                                 | syringeus<br>dorsalis*                            |                                              | dorsalis brevis*                                                        |
|                                 | syringeus<br>ventrilateralis<br>externus*         |                                              |                                                                         |

<sup>\*</sup>Synonomy uncertain.

Table 8.2. Some of the synonyms for the Bronchi secundarii.

| Source           | Bronchi<br>medioventrales | Bronchi<br>mediodorsales | Bronchi<br>lateroventrales | Bronchi<br>laterodorsales |
|------------------|---------------------------|--------------------------|----------------------------|---------------------------|
| Campana (1875)   | Divergent                 | Internal                 | External                   | Posterior or dorsal       |
| Huxley (1882)    | Entobronchia              | Ectobronchia             |                            |                           |
| Schulze (1908)   | Ventral                   | Dorsal                   | Lateral                    | Intermediate              |
| Juillet (1912)   | Entobronchi               | Ectobronchi              |                            |                           |
| Locy and Larsell |                           |                          |                            |                           |
| (1916a, b)       | Entobronchi               | Ectobronchi              | Laterobronchi              | Dorsobronchi              |
| Groebbels (1932) | Ventral                   | Dorsal                   | Lateribronchi              | Dorsolateral              |
| Vos (1934)       | Ventrobronchi             | Dorsobronchi             | Laterobronchi              |                           |
| McLeod and       |                           |                          |                            |                           |
| Wagers (1939)    | Ventrobronchi             | Dorsomedial              | Dorsolateral               | Dorsal                    |
| Grau (1943)      | Ventrobronchi             | Dorsobronchi             |                            |                           |
| Akester (1960)   | Anterior                  | Posterior                | Posterior                  |                           |
|                  | dorsal                    | dorsal                   | ventral                    |                           |
| King (1966)      | Craniomedial              | Caudodorsal              | Caudoventral               | Caudolateral              |
| Quitzow (1970)   | Mediobronchi              | Dorsobronchi             | Ventrobronchi              | Laterobronchi             |
| Duncker (1971)   | Ventrobronchi             | Dorsobronchi             | Laterobronchi              |                           |

Terms in italics have different meanings to different authors.



Fig. 8.1a. Transverse sections through the Concha nasalis rostralis of: (a) *Merops orientalis*, (b) *Nectarinia zeylonica*, (c) *Gallus gallus (domesticus)*, and (d) *Steatornis caripensis*. Main airways black. The rich vascular plexus under the epithelium of the concha is shown in (d) only. Not to scale. From Bang and Wenzel (1985), with permission of the authors and Academic Press, London.



Fig. 8.1b. Transverse sections through the Concha nasalis media of (a) *Dromaius novaehollandiae*, (b) *Rhea americana*, (c) *Gallus gallus (domesticus)*, and (d) *Fregata magnificens*. The concha in (c) typifies birds generally. Main airway black, other air spaces unshaded. Not to scale. From Bang and Wenzel (1985), with permission of the authors and Academic Press, London.



Fig. 8.1c. Transverse sections through the Concha nasalis caudalis of (a) *Apteryx australis*, (b) *Pagodroma nivea*, and (c) *Gallus gallus (domesticus*), and through the comparable region in (d) *Collocalia esculenta*. This concha has a relatively great surface area in the highly olfactory *Apteryx* and *Pagodroma*. The concha is absent in *Collocalia*, but the roof of the nasal cavity has olfactory epithelium. Nasal meatus black, other air spaces unshaded. Not to scale. From Bang and Wenzel (1985), with permission of the authors and Academic Press, London.



Fig. 8.2. Dorsal view of the left Cart. arytenoidea and the Cart. procricoidea of *Gallus*, rotated to display the surfaces of the Artc. procrico-arytenoidea (A) and a facet of the Artc. procrico-cricoidea (B). From White (1975), with permission of the author and Saunders, Philadelphia.



Fig. 8.3. Cartilagines laryngis of *Gallus*, left lateral view. From White (1975), with permission of the author and Saunders, Philadelphia.



Fig. 8.4. Cartilagines laryngis of *Corvus corone* or *C. monedula*, medial view of the right half. The Ala of the Cart. cricoidea (Fig. 8.3) is represented in *Corvus* by the Cart. cricoidea dorsalis. Facet 1 on Cart. procricoidea is for Cart. cricoideus dorsalis, forming the Artc. procricoidea dorsalis; facet 2, two facets on Cart. procricoidea for Cart. arytenoidea, forming the Artc. procrico-arytenoidea. From Zweers and Berkhoudt (1987), with permission of the authors and Netherlands Journal of Zoology.



Fig. 8.5. The intrinsic laryngeal muscles of *Columba livia*, dorsocaudolateral view. Beneath the M. dilator glottidis, five components (1-5) of the M. constrictor glottidis are exposed. From Zweers, et al. (1981), with permission of the authors and Springer-Verlag.



Fig. 8.6. Juncturae laryngis of *Columba livia*, dorsocaudolateral view. From Zweers, et al. (1981), with permission of the authors and Springer-Verlag.



Fig. 8.7. Juncturae laryngis of corvid species, dorsal view. The left half shows the Synd. intra-arytenoidea between the body and caudal process of the arytenoid cartilage, found in *Corvus brachyrhynchos* only. The right half represents other corvids.



Fig. 8.8. Syrinx of female gull, *Larus argentatus*, (a) dorsal view; (b) ventral view. This is a typical, basic syrinx, of the tracheobronchial type. Five or six Cartt. tracheosyringeales are fused dorsally to form the Tympanum. There is a fairly distinct Mem. tympaniformis lateralis; Cart. bronchosyr. 1 is the most cranial bronchosyringeal cartilage; Cart. bronch. 1 is the first true bronchial cartilage; Mem. tympanif. med. is the medial tympaniform membrane. From King (1989), with permission of Academic Press, London.



Fig. 8.9. Syrinx of the caprimulgiform *Steatornis caripensis*, ventral view. This is an extreme bronchial type of syrinx; having no Tympanum, the cranial boundary of the syrinx is the bifurcation of the airway. Both the left and the right elements of the syrinx carry a lateral (Mem. tympaniformis lat.) and a medial tympaniform membrane (latter not visible here). The syrinx is asymmetrical, with several more bronchosyringeal cartilages (Cart. bronchosyr.) on the left side than on the right. A single (paired) true syringeal muscle, M. syringealis caudalis, is present. From Garrod (1873).



Fig. 8.10. Syringeal cartilages of the oscine *Pica pica*, dorsal view. The four Cartt. tracheosyringeales are fused to form the Tympanum. From Haecker (1900).



Fig. 8.11. Syrinx of the oscine *Turdus merula*, section in horizontal plane. The (stippled) soft tissue labelled "Mem. tympaniformis lateralis?" was so named by Haecker and others, but is too thick to be a true membrane; note its virtual continuity with the Labium laterale (also stippled). The four Cartt. tracheosyringeales form the Tympanum. From Haecker (1900).



Fig. 8.12. Syrinx of a male anatid *Aythya fuligula*, section in horizontal plane. Abbreviations: bronchosyr., bronchosyringeales; tracheosyring., tracheosyringeales; tympanif., tympaniformis. From Warner (1971), with permission of the author and the Zoological Society of London.



Fig. 8.13. Syrinx of a male anatid *Aythya fuligula*, ventral view. The Bulla syringealis is fenestrated by many irregular membranes. The M. cleidotrachealis is typical of anseriforms. From King (1989), with permission of Academic Press, London.



Fig. 8.14. Syrinx of the columbid *Streptopelia capicola*, dorsomedial view. The Cartt. tracheosyringeales (14 in this specimen) are reduced dorsally to thin bracelets embedded in the narrow elongated Mem. tracheosyringealis. As in columbids generally, the lateral wall of the Tympanum is completed by Mem. tympaniformis lateralis; M. tracheolateralis inserts directly on this membrane. Cart. bronchosyr. 1?, presumably is the most cranial Cart. bronchosyringealis. Redrawn from Rüppell (1933).



Fig. 8.15. Syrinx of the psittacid *Myiopsitta monachus*, ventral view. Cartilages 1 to 12 lie cranial to the bifurcation of the airway, and are therefore Cartt. tracheosyringeales. The increased diameter of rings 1, 2, and 3 shows that they are part of the Tympanum. The next cartilage, which also forms part of the Tympanum, is interpreted as three fused cartilage rings (4, 5, 6). Cartilages 7, 8, and 9-12 are paired, the median gap between them being closed by Mem. tracheosyringealis which is continuous laterally with the Mem. tympaniformis lateralis. There are two pairs of syringeal muscles, M. syringealis superficialis/ profundus. From Gaunt and Gaunt (1985), with permission of the authors and Springer-Verlag.



Fig. 8.16. Syrinx of the psittacid *Ara ararauna*; lateral view. Of the eleven Cartt. tracheosyringeales (1-11) 1 to 4 are fused to form the Tympanum. Cartilage 5-6 is paired and interpreted as two fused elements. Five more paired elements (7-11) occur cranial to bifurcation of the airway. The three cartilages immediately caudal to the bifurcation are C-shaped Cartt. bronchosyringeales (the first being Cart. bronchosyr. 1), supporting between them a Mem. tympaniformis medialis (not visible here); they form the entire skeleton of the Pars extrapulmonalis of the Bronchus primarius, which is therefore very short. From King (1989), with permission of Academic Press, London.



Fig. 8.17. Syrinx of the suboscine *Melanopareia maximiliani* (Rhinocryptidae), ventrolateral view. About 10 Cartt. tracheosyringeales altogether are present, the first three being fused ventrally to form the Tympanum (stippled). The three single lines which cross the (unstippled) Mem. tracheosyringealis are Cartt. tracheosyringeales reduced to delicate bracelets. One pair of syringeal muscles, M. vocalis dorsalis, is present. Cart. bronchosyr. 1 is the first bronchosyringeal cartilage. From Ames (1971), with permission of the author and the Peabody Museum of Natural History.



Fig. 8.18. Syrinx of the suboscine *Campylorhamphus trochilirostris* (Dendrocolaptidae), ventrolateral view. The Tympanum is formed from about nine fused Cartt. tracheosyringeales. The unstippled area caudal to the Tympanum is the Mem. tracheosyringealis, crossed cranially by three delicate Cartt. tracheosyringeales. Two pairs of syringeal muscles: M. vocalis dorsalis and ventralis. From Ames (1971), with permission of the author and the Peabody Museum of Natural History.



Fig. 8.19. Syrinx of the suboscine *Nuttalornis borealis* (Tyrannidae), ventrolateral view. This syrinx has virtually no Tympanum, having minimal fusion of Cartt. tracheosyringeales. Present are two pairs of syringeal muscles, M. obliquus ventralis/lateralis. From Ames (1971), with permission of the author and the Peabody Museum of Natural History.



Fig. 8.20. Syrinx of the oscine *Corvus brachyrhynchos*, ventrolateral view. The Tympanum (visible in the midline) is formed from four fused Cartt. tracheosyringeales. Of the five pairs of syringeal muscles four are shown, M. tracheobronchialis ventralis/dorsalis, and M. syringealis ventralis/dorsalis. Ames (1971) interpreted M. syringealis ventralis as comprising a medial and lateral component (as shown). M. tracheobronchialis brevis is not illustrated. Abreviations: syr., syringealis. From Ames (1971), with permission of the author and the Peabody Museum of Natural History.



Fig. 8.21. Semidiagrammatic medial view of the right lung of *Gallus*. The broken line along the Facies vertebralis represents the Linea anastomotica. The Pars extrapulmonalis of the Bronchus primarius projects cranially from the Facies septalis. From King (1979), with permission of Academic Press, London.



Fig. 8.22. Medial view of the right lung of *Gallus*, drawn as though transparent to show the main bronchi. Abbreviations: MV, Bronchi medioventrales; MD, Bronchi mediodorsales; LV, Bronchi lateroventrales. The four Ostia along the Margo costoseptalis are indicated by rings. *Arrow*, direct connection of Saccus thoracicus cranialis to bronchus MV3. From King (1966), with permission of Academic Press, London.



Fig. 8.23. Caudal view of a diagrammatic transverse section of the right lung of a bird with a well developed Neopulmo (e.g., *Gallus*), showing the approximate regions supplied by the four groups of Bronchi secundarii. From H.-R. Duncker, unpublished.



Fig. 8.24. Diagram of part of a Parabronchus (*Gallus*), showing the architecture of the wall of the Parabronchus and its blood vessels. For orientation see inset of transverse section of a Parabronchus. From King (1979), with permission of Academic Press, London.

# APPARATUS DIGESTORIUS [SYSTEMA ALIMENTARIUM]

#### JOHN MCLELLAND

With contributions from subcommittee members: M. H. Clench, G. Duke, Gy. Fehér, Vl. Komárek, R. Landolt, G. Michel, T. Nishida, E. Pastea, U. M. Rawal, V. Simic, V. Ziswiler, G. Zweers.

I should like to take the opportunity of thanking the members of the Sub-Committee for their contributions to this chapter. In particular, I express my gratitude to Ruth Landolt who spent considerable time reviewing the Terminology and text and who made many valuable suggestions, and to Gart Zweers for his suggestions on the terminology of the oral cavity and and pharnyx and for making available Fig. 9.1.

#### **TERMINOLOGY**

# CAVUM ORIS [CAVITAS ORALIS]1

OS (Topog. Annot. 10)

Bucca

Rostrum (Topog. Annot. 12)

Rostrum maxillare (Osteo.

Annot. 40)

Rostrum mandibulare (Osteo.

Annot, 40)

Dentes (Osteo. Annot. 82)

Rima oris (Topog. Annot. 10)

Angulus oris

**Palatum** 

Pars rostralis (Resp. Annot. 6)

Pars caudalis (Resp. Annot. 5)

Choana (Fig. 9.1)

Saccus oris<sup>3</sup>

Torus palatinus<sup>22</sup>

Tunica mucosa oris (see Tun.

muc. ling.)

Papillae palatinae<sup>4</sup>

Rugae palatinae<sup>5</sup>

Rugae palatinae laterales<sup>5</sup>

Rugae palatinae

intermediales<sup>5</sup>

Ruga palatina mediana<sup>5</sup>

Ruga palatina transversalis<sup>5</sup>

Sulci palatini<sup>6</sup>

Sulci palatini laterales<sup>6</sup>

### OS (Topog. Annot. 10) (cont.)

Sulcus palatinus medianus<sup>6</sup> Epithelium stratificatum

squamosum<sup>7</sup>

Caliculus gustatorius [Gemma gustatoria] (Sens. Annot. 6)

Tela submucosa oris

Corpus cavernosum palatae<sup>8</sup>

Glandulae oris99

Gl. maxillaris<sup>10</sup>

Gll. palatinae<sup>11</sup>

Gl. anguli oris

Gll. mandibulares rostrales<sup>12</sup>

Gll. mandibulares caudales<sup>13</sup>

Gll. mandibulares externae<sup>14</sup>

Gll. mandibulares intermediae<sup>14</sup>

Gll. mandibulares internae<sup>14</sup>

Gll. linguales<sup>15</sup>

Ductuli glandularum oralium<sup>16</sup>

#### LINGUA<sup>17</sup>

Alae linguae<sup>18</sup>

Apex linguae

Corpus linguae

Dorsum linguae Torus linguae<sup>19</sup>

Margo linguae

Radix linguae

Ventrum linguae

Frenulum linguae [F. lingualis]

Papillae linguales<sup>4</sup>

Papillae linguae caudales<sup>4</sup>

Sulci linguae<sup>20</sup>

Rugae linguae

Tunica mucosae linguae

Epithelium stratificatum

squamosum<sup>7</sup>

Cuticula cornificata linguae<sup>21</sup>

Tela submucosa linguae

Corpus cavernosum linguae<sup>8</sup>

Musculi linguae (see Myol.)

# APPARATUS HYOBRANCHIALIS [A. HYOLINGUALIS] (see Osteo. Arthr. Myol.)

#### PHARYNX<sup>1</sup>

Cavum pharyngis [Cavitas

pharyngealis]

Infundibulum<sup>22</sup>

Rima infundibuli<sup>22</sup>

Sulcus medianus infundibuli

Sulcus lateralis infundibuli

Plica infundibuli

Tuba auditiva (Osteo. Annot. 98)

Tuba auditiva communis<sup>22</sup> (Osteo.

Annot. 94)

Ostium infundibulare tubae auditivae

Glottis (Fig. 9.1)

Tunica mucosa pharyngis

Papillae choanales<sup>4</sup>

Papillae pharyngis<sup>4</sup>

Papillae pharyngis caudoventrales<sup>4</sup>

Papillae pharyngis caudodorsales<sup>4</sup>

Plicae pharyngis<sup>23</sup>

Lymphonoduli pharyngis [Tonsilla pharyngea]

Epithelium stratificatum

squamosum<sup>7</sup>

### PHARYNX<sup>1</sup> (cont.)

Mons laryngealis (**Resp.** Annot. 22)
Caliculus gustatorius [Gemma
gustatoria] (**Sens.** Annot. 60)
Tela submucosa pharyngis
Tunica muscularis pharyngis
Glandulae pharyngis<sup>9</sup> (see Gll. oris)

Gll. sphenopterygoideae<sup>24</sup>
Gll. mandibulares caudales<sup>13</sup>
Gll. cricoarytenoideae<sup>25</sup>
Ductuli glandularium
pharyngealium<sup>26</sup>

# CANALIS ALIMENTARIUS ESOPHAGUS [OESOPHAGUS]

Pars thoracica
Pars cervicalis
Saccus esophagi<sup>27</sup>
Ingluvies<sup>28</sup>
Ostium ingluviei
Fundus ingluviei
Diverticulum dextrum
ingluviei<sup>29</sup>
Diverticulum sinistrum
ingluviei<sup>29</sup>
Diverticulum medianum
ingluviei<sup>29</sup>
Tunica adventitia<sup>30</sup>
Tunica muscularis

Stratum circulare
Tela submucosa
Tunica mucosae ingluviei
Lamina muscularis mucosae
Plicae esophagi<sup>32</sup>
Plicae ingluviei<sup>32</sup>
Rugae ingluviei<sup>33</sup>
Epitheliocytus squamosus
Gll. esophageae [Gll.
esophageaeles]<sup>34</sup>
Gll. ingluviei<sup>35</sup>
Mucocytus
Lymphonoduli esophageales<sup>36</sup>

Junctura esophagoproventricularis<sup>37</sup>

## GASTER37

## PROVENTRICULUS GASTRIS [PARS GLANDULARIS]38

Regio glandularis<sup>39</sup>
Diverticulum proventriculi<sup>39</sup>
Tunica serosa
Tela subserosa
Tunica muscularis
Stratum longitudinale
Stratum circulare
Tela submucosa
Tunica mucosa proventriculi

Stratum longitudinale<sup>31</sup>

Papillae proventriculi<sup>41</sup>
Rugae proventriculi<sup>42</sup>
Sulci proventriculi<sup>42</sup>
Mucocytus
Endocrinocytus gastrointestinalis<sup>43</sup>
Gll. proventriculares superficiales<sup>44</sup>
Gll. proventriculares profundae<sup>41</sup>
Mucocytus<sup>45</sup>

Plicae proventriculi<sup>40</sup>

# PROVENTRICULUS GASTRIS [PARS GLANDULARIS]<sup>38</sup> (cont.)

Epitheliocytus columnaris<sup>45</sup> Epitheliocytus oxynticopepticus<sup>46</sup> Endocrinocytus gastrointestinalis<sup>43</sup> Lamina muscularis mucosae<sup>47</sup> Zona intermedia gastris<sup>48</sup> Isthmus gastris<sup>48</sup>

## VENTRICULUS GASTRIS [PARS MUSCULARIS]49

Facies tendinea<sup>50</sup>

Facies anularis [annularis]<sup>51</sup>

Curvatura minor<sup>52</sup>

Incisura angularis<sup>53</sup>

Curvatura major<sup>52</sup>

Corpus ventriculi<sup>54</sup>

Saccus cranialis<sup>54</sup>

Saccus caudalis<sup>54</sup>

Sulcus cranialis<sup>55</sup>

Sulcus caudalis<sup>55</sup> Plica angularis<sup>56</sup>

Tunica serosa

Tela subserosa

Tunica muscularis

Stratum longitudinale<sup>57</sup>

Stratum circulare<sup>58</sup>

M. crassus cranioventralis<sup>59</sup>

M. crassus caudodorsalis<sup>59</sup>

M. tenuis craniodorsalis<sup>59</sup>

M. tenuis caudoventralis<sup>59</sup>

Centrum tendineum<sup>60</sup>

Tela submucosa

Tunica mucosae ventriculi

Lamina muscularis mucosae<sup>61</sup>

Plicae ventriculi<sup>62</sup>

Rugae ventriculi<sup>63</sup>

Sulci ventriculi<sup>63</sup>

Exocrinocytus columnaris<sup>64</sup>

Endocrinocytus gastrointestinalis<sup>43</sup>

Gll. ventriculares

Epitheliocytus nondifferentiatus

Exocrinocytus columnaris<sup>64</sup>

Cuticula gastris<sup>65</sup>

Procc. conicales<sup>66</sup>

Procc. dentales<sup>66</sup>

Ostium ventriculopyloricum

(Figs. 9.7, 9)

### PARS PYLORICA GASTRIS<sup>67</sup>

Bulbus pyloricus<sup>68</sup>

Torus pyrloricus<sup>69</sup>

**Pylorus** 

Tunica serosa

Tela subserosa

Tunica muscularis

Stratum longitudinale

Stratum circulare

Tela submucosa

Tunica mucosa

Plicae pyloricae<sup>71</sup>

Exocrinocytus columnaris

Endocrinocytus gastrointestinalis<sup>43</sup>

Gll. pyloricae

Exocrinocytus columnaris

Cuticula gastris<sup>65</sup>

Papillae filiformes pyloricae<sup>72</sup>

Ostium pyloricoduodenale<sup>70</sup>

#### INTESTINUM

#### INTESTINUM TENUE<sup>73</sup>

Duodenum

Ansa duodeni<sup>74</sup>

Pars descendens

Flexura duodeni

Pars ascendens

Flexura duodenojejunalis

Papilla duodeni [Papilla

duodenalis]<sup>75</sup>

Gll. duodeni<sup>90</sup>

Jejunum<sup>76</sup>

Ansae jejuni<sup>77</sup>

Ansa axialis<sup>77</sup>

Diverticulum vitellinum<sup>78</sup>

Saccus vitellinus

Ductus vitellinus

Papilla ductus vitellini<sup>79</sup>

M. sphincter diverticuli

vitellini87

Ileum<sup>76</sup>

Ansae ilei<sup>77</sup>

Ansa supraduodenalis<sup>77</sup>

Ansa supracecalis<sup>77</sup>

Papilla ilealis<sup>80</sup>

M. sphincter ilei<sup>88</sup>

Ostium ileocecale

#### INTESTINUM CRASSUM

Cecum<sup>81</sup>

Basis ceci82

Corpus ceci<sup>82</sup>

Apex ceci82

Diverticula ceci83

Haustra ceci<sup>83</sup>

Ruga spiralis<sup>83</sup>

Ostium ceci84

M. sphincter ceci<sup>88</sup>

Rectum [Colon]85

Tunica serosa

Tela subserosa

Tunica muscularis

Stratum longitudinale

Stratum circulare

Pars externa<sup>86</sup>

Pars interna<sup>86</sup>

M. sphincter rectocoprodei<sup>89</sup>

Tela submucosa

Tunica mucosa

Lamina muscularis mucosae

Villi intestinales<sup>91</sup>

Plicae intestinales villosae<sup>91</sup>

Plicae intestinales submucosae<sup>91</sup>

Epitheliocytus columnaris

Exocrinocytus caliciformis

Endocrinocytus

gastrointestinalis<sup>43</sup>

Gll. [Cryptae] intestinales<sup>91</sup>

Epitheliocytus nondifferentiatus

Epitheliocytus columnaris

Exocrinocytus caliciformis

Exocrinocytus cum granulis

acidophilicis<sup>92</sup>

Lymphonoduli solitarii (see Lym.)

Lymphonoduli cecales (see Lym.)

Lymphonoduli rectales (see Lym.)

Anuli [Annuli] lymphatici

jejunales (see Lym.)

Anuli [Annuli] lymphatici ileales

M. sphincter rectocoprodei<sup>89</sup> (see

Cloaca

# CLOACA (see Urogen. Section on Cloaca) HEPAR

Facies parietalis

Facies visceralis

Margo cranialis (Fig. 9.13)

Margo caudalis Porta hepatis<sup>94</sup>

Fossa vesicae biliaris [F. v. felleae]

Impressio cardiaca

Impressio proventricularis

Impressio ventricularis (Fig. 9.13)

Impressio duodenalis<sup>95</sup>

Impressio jejunalis

Impressio splenalis

Impressio testicularis<sup>96</sup>

Incisura cranialis<sup>97</sup>

Incisura interlobaris<sup>97</sup> Incisura caudalis<sup>97</sup>

Margo dexter (Fig. 9.13)

Margo sinister

Margo cranialis (Fig. 9.13)

Margo caudalis

Lobus dexter hepatis (Fig. 9.13)

Proc. dorsalis dexter<sup>98</sup>

Lobus sinister hepatis (Fig. 9.13)

Incisura lobaris<sup>99</sup> Pars lateralis<sup>100</sup>

Pars medialis<sup>100</sup> Proc. dorsalis sinister<sup>98</sup>

Proc. papillaris<sup>101</sup>

Pars interlobaris (Fig. 9.13)

Proc. ventralis dexter<sup>101</sup> Proc. ventralis medius<sup>101</sup>

Proc. cranialis<sup>101</sup> Canales portales<sup>102</sup>

Capsula fibrosa perivascularis<sup>102</sup>

Trias hepatica<sup>102</sup>

Tunica fibrosa<sup>93</sup>

Tunica serosa<sup>93</sup>

Aa. interlobulares 102 (see Art.)

Vv. interlobulares  $^{102}$  (see Ven.)

Ductuli interlobulares<sup>102</sup>

Lobuli hepatis<sup>103</sup>

Lamina hepatica<sup>104</sup>

Epitheliocytus hepatis [Hepatocytus]

Canaliculi biliferes<sup>104</sup>

Lacuna hepatis<sup>105</sup> Vasa sinusoidea<sup>106</sup>

Macrophagocytus stellatus<sup>106</sup>

Spatium perisinusoideum<sup>106</sup>

Lipocytus perisinusoideus<sup>106</sup>

Vv. centrales<sup>106</sup> (see **Ven.**) Vv. sublobulares<sup>106</sup>

Ductuli biliferes 107

Ductus hepaticus dexter<sup>107</sup>

Ductus hepaticus sinister<sup>107</sup>

Ductus hepatocysticus<sup>107</sup>

Ductus hepatoentericus dexter<sup>107</sup>

Ductus hepatoentericus communis 107

Ductus hepatoentericus accessorius<sup>107</sup>

Vesica biliaris [V. fellea]<sup>108</sup>

Ductus cysticoentericus<sup>109</sup>

Tunica serosa

Tela subserosa

Tunica muscularis

Tela submucosa

Tunica mucosa vesicae

Plicae tunicae mucosae

Exocrinocytus columnaris

# PANCREAS<sup>110</sup> (see Endoc. Annot.<sup>7</sup>)

Lobus pancreatis dorsalis Lobus pancreatis ventralis Lobus pancreatis tertius

Lobus pancreatis splenalis

# PANCREAS<sup>110</sup> (see Endoc. Annot.<sup>7</sup>) (cont.)

Ductus pancreaticus dorsalis
Ductus pancreaticus ventralis<sup>110</sup>
Ductus pancreaticus tertius<sup>110</sup>
Tunica adventitia
Tunica mucosa
Tunica muscularis
M. sphincter ductus pancreatici<sup>111</sup>
Pars exocrina pancreatis
Acini pancreatici

Lobuli pancreatici
Septa interlobularia
Exocrinocytus pancreaticus
Epitheliocytus centroacinosus
Ducti intercalati
Ducti intralobulares
Ducti interlobulares
Pars endocrina pancreatis (Endoc.

Annot. 7)

#### **ANNOTATIONS**

- (1) Cavum oris; Pharynx; Cavum pharyngis; Esophagus [Oesophagus]. Synonomy for Cavum oris and Cavum pharyngis: Cavitas oralis and Cavitas pharyngealis. Because in most birds there is no soft palate or oropharyngeal isthmus, the oral and pharyngeal cavities of birds together form a common chamber often referred to as the "oropharynx" (Fig. 9.1). On the basis of the embryology of the visceral arches, Lucas and Stettenheim (1972: 18) proposed that the dorsal transverse boundary between the oral and pharyngeal cavities lies between the Choana and the Rima infundibuli, extending laterally to the angles of the jaws. They suggested that the ventral transverse boundary between the two cavities lies between the paraglossal and basihyal bones (see Osteo.). In relation to surface features Zweers, et al. (1977) described the boundary in *Anas* as occurring at the level of the caudal lingual papillae (Fig. 9.1). Similarly they placed the junction of the pharynx and esophagus at the level of the caudodorsal and caudoventral pharyngeal papillae (Fig. 9.1).
- (2) **Torus palatinus.** This term covers a variety of swellings of the palate like the highly vascular palatal cushion or pad of many psittacids (Evans, 1969) and the relatively broad elevations on the palate of many anseriform and passeriform (Fig. 9.1) species (Ziswiler, 1965; Kooloos, et al., 1989).
- (3) Saccus oris. This term refers to the inflatable type of oral sac of some bustards (Otididae) (Fig. 9.2) described by Murie (1868, 1869) and Garrod (1874a, b) which is used during courtship for display or as a resonating chamber, as well as the various forms of food-carrying oral sacs such as the paired pouches of the Rosy Finch (Leucosticte arctoa) (Miller, 1941).
- (4) Papillae palatinae; Papillae linguales; Papillae linguae caudales; Papillae pharyngis; Papillae choanales; Papillae pharyngis caudoventrales; Papillae pharyngis caudoventrales; Papillae pharyngis caudoventrales. The papillae of the palate, tongue, and pharynx (Fig. 9.1) show a wide range of interspecific differences in their shape and distribution. Because of the enormous variation in the anatomy of the oropharynx, attempts in the literature to name individual papillae according to their position have in general not proved

- successful. However, most birds have a transverse row of lingual papillae at the base of the tongue (Papillae linguae caudales) (Fig. 9.1) and rows of pharyngeal papillae at the margin of the choana (Papillae choanales) (Fig. 9.1) caudal to the larynx (Fig. 9.1) (Papillae pharyngis caudoventrales) (Fig. 9.1) and caudal to the Rima infundibuli (Papillae pharyngis caudodorsales) (Zweers, et al., 1977; Zweers, 1982; Zweers and Berkhoudt, 1987; Kooloos, et al., 1989; Heidweiller and Zweers, 1990). Unlike in mammals, there has been little attempt to name papillae according to their shape, although Komárek, et al. (1982) in domestic birds were able to distinguish lenticular papillae and major and minor conical papillae.
- (5) Rugae palatinae; Rugae palatinae laterales; Ruga palatinae intermediales; Ruga palatina mediana; Ruga palatina transversalis. Ridging of the palate (Fig. 9.1) is widespread in birds. Individual ridges may be named according to their position on the palate and whether they arise directly from the roof or indirectly from another ridge. A lateral palatine ridge on each side of the choana appears to be relatively common in birds (Göppert, 1903). In some species, e.g. *Gallus* and *Anser*, there is also a median ridge. Lateral, intermediate, and median palatine ridges occur in granivorous passerines, a variable number of secondary and tertiary ridges arising from the sides of the intermediate and lateral ridges (Ziswiler, 1965; Heidweiller and Zweers, 1990). In *Anas* Zweers, et al. (1977) described a transverse palatine ridge at the rostral part of the choana.
- (6) Sulci palatini; Sulci palatini laterales; Sulcus palatinus medianus. Palatine grooves (Fig. 9.1) have been described in many species and may be individually named according to their position or orientation. For example, in most seed-eating passerines a lateral groove occurs between the lateral palatine ridge and the Tomium (Topog. Annot. 14) of the beak (Ziswiler, 1965), while a median transversely-oriented V-shaped groove is present in the palate of the Budgerigar (*Melopsittacus*) (Feder, 1969).
- (7) **Epithelium stratificatum squamosum.** The stratified squamous epithelium of the oral cavity and pharynx is keratinized in areas subject to abrasion.
- (8) Corpus cavernosum palatae; Corpus cavernosum linguae. Corpora cavernosa of the palate and tongue have been described in the Zebra Finch (*Poephila guttata*) by Heidweiller and Zweers (1990).
- (9) Gll. oris; Gll. pharyngis. The terminology for the oral and pharyngeal salivary glands does not cover the subdivisions of the glands which show many interspecific variations (see Antony, 1920; Groebbels, 1932; Farenholz, 1937; McLelland, 1979; Homberger and Meyers, 1989; and Fig. 9.3). See Annot. 15, Gll. linguales.
- (10) Gl. maxillaris. Synonymy: Gll. palatine maxillares (Antony, 1920). The maxillary gland is present in the rostral part of the palate (Fig. 9.3).
- (11) Gll. palatinae. Synonymy: Gll. palatinae posteriores (Antony, 1920). In Gallus there are Gll. palatinae mediales and Gll. palatinae laterales (Saito, 1966). In Columba Zweers (1982) observed posterior external and internal palatine glands.
- (12) Gll. mandibulares rostrales. Synonymy: Gll. inframaxillares (Cholodkowski, 1892); Gll. submaxillares anteriores (Heidrich, 1908); Gl. sublingualis (Homberger and Meyer, 1989). See Fig. 9.3. In *Caprimulgus* the rostral and caudal mandibular glands are represented by a single group of glands, the submandibular glands of Antony (1920).

- (13) **Gll. mandibulares caudales.** Synonymy: Gll. submaxillares posteriores (Heidrich, 1908); Gll. mandibulares posteriores (Antony, 1920); Gl. mandibularis (Homberger and Meyer, 1989). The part of the Gll. mandibulares caudales in woodpeckers (Picidae), which produces the extremely sticky fluid that coats the tongue, is called the Gl. picorum by Antony (1920). In *Gallus* (Fig. 9.3) the caudal mandibular glands consist of medial, intermediate, and lateral groups (Saito, 1966). See Annot. 12.
- (14) Gll. mandibulares externae; Gll. mandibulares intermediae; Gll. mandibulares internae. In many granivores and insectivores the mandibular glands consist of external, intermediate, and internal groups (Antony, 1920; Foelix, 1970).
- (15) **Gll. linguales.** Rostral and caudal lingual glands (Fig. 9.3) occur in *Gallus* (Saito, 1966). Homberger and Meyer (1989) named the rostral gland Gl. lingualis rostralis and the caudal gland Gl. praeglottalis. In *Columba* Zweers (1982) observed inferior, anterior superior and posterior superior lingual glands.
- (16) **Ductuli glandularum oralium.** The palatine, rostral mandibular, and lingual salivary glands have numerous openings, whereas the maxillary gland and the Gl. anguli oris have generally one opening each.
- (17) Lingua. The nomenclature of the tongue is general and does not cover detailed interspecific variations (see Lucas, 1897; Gardner, 1926; McLelland, 1979; and Fig. 9.1).
- (18) Alae linguae. The wings of the tongue are the bilateral caudally directed projections which occur at the root of the tongue in a number of taxa. See Heidweiller and Zweers (1990).
- (19) Torus linguae. The lingual torus is the raised caudal part of the tongue in anatids.
- (20) Sulci linguae. Grooves on the dorsal surface of the tongue have been described in many species and may be individually named according to their position (Fig. 9.1).
- (21) Cuticula cornificata linguae. The heavily keratinized epithelium forming the nail-like plate on the ventral surface of the tongue of some species, e.g. *Gallus* (Susi, 1969).
- (22) Infundibulum; Rima infundibuli; Tuba auditiva communis. The paired auditory tubes join one another at their median ends within the Basis cranii near the base of the Rostrum parasphenoidale. Here they form the Tuba auditiva communis; rostrally the common tube (e.g., in *Gallus* and *Columba*) opens into the dorsocaudal part of the Infundibulum, a laterally compressed, median chamber located caudal to the nasal cavity. A common tube is not present in ratites. The expanded, ventral end of the Infundibulum is connected with the pharynx via a short median cleft, the Rima infundibuli, located just caudal to the Pars caudalis of the Choana. See Fig. 9.4 and consult Heidrich (1908) for details of the Infundibulum. See also **Osteo.** Os parasphenoidalis and Annot. 94, 98.
- (23) **Plicae pharyngis.** Both transverse and longitudinal pharyngeal folds have been described (see, e.g., Zweers and Berkhoudt, 1987).
- (24) Gll. sphenopterygoideae. Synonymy: Gll. pterygoideae (Antony, 1920). The sphenopterygoid glands are distributed in the roof of the oral and pharyngeal cavities around the choanal and infundibular openings (Fig. 9.3).

- (25) **Gll. cricoarytenoideae.** Synonymy: Gll. laryngeales (Homberger and Meyer, 1989). The cricoarytenoid glands are distributed in the laryngeal mound (Fig. 9.3).
- (26) **Ductuli glandularium pharyngealium.** All the pharyngeal salivary glands have numerous multiple openings.
- (27) Saccus esophagi. The esophageal sac is an inflatable enlargement of the cervical esophagus (Fig. 9.2) which functions during the breeding season in "showing off", or as a resonating chamber for the production of mating calls. Among the species possessing this sac are the Sage Grouse (*Centrocercus urophasianus*) (Clarke, et al., 1942; Honess and Allred, 1942), the Australian Bustard (*Ardiotis australis*) (Garrod, 1874a, b), and the Painted Snipe (*Rostratula benghalensis*) (Niethammer, 1966).
- (28) Ingluvies. The Ingluvies or crop (Fig. 9.5) is in many taxa an expansible portion of the esophagus in which food is stored. Usually situated in the neck, it may be spindle-shaped as in *Casuarius*, *Anas*, and *Otis* and the emberizids and fringillids, or pendulant and sac-like as in tinamiform, falconiform, galliform, columbiform, and psittaciform species (Gadow, 1879a, b; 1891a: 671); Swenander, 1899, 1902; Niethammer, 1933; Ziswiler, 1967). The crop of *Opisthocomus* is unusual in consisting of both cervical and thoracic parts (Gadow, 1891; Boker, 1929). In addition to its storage function the crop of pigeons and doves (Columbidae) produces the nutritive "crop milk", while in *Opisthocomus*, in which the stomach is very reduced, the crop plays a unique role in the processing and bacterial fermentation of tough plant material (Grajal, et al., 1989). Among forms without a crop are penguins (Spheniscidae) and gulls (Laridae).
- (29) **Diverticulum dextrum/sinistrum ingluviei; Diverticulum medianum ingluviei.** Right, left, and median diverticula occur in the crop of the columbids (Fig. 9.5d) (see Landolt, 1987a).
- (30) **Tunica adventitia.** In the adventitial tunic of the pendulant type of crop like that of galliform species, striated muscle fibres of the M. cucullaris capitis, pars clavicularis may be present (see **Myol.** Annot. 9).
- (31) **Stratum longitudinale.** A longitudinal layer of muscle is found in the esophagus of species of only a small number of families (Swenander, 1902; Hanke, 1957). Among pigeons it occurs in only a few species and is restricted to the thoracic part of the esophagus (Landolt, 1987a).
- (32) **Plicae esophagi; Plicae ingluviei.** Longitudinal esophageal folds are present when the esophagus is contracted and disappear when the tube dilates. Similar ingluvial folds occur in the crop, although they are less regularly arranged (Landolt, 1987a).
- (33) **Rugae ingluviei.** The mucous membrane of the exceptionally large crop of *Opisthocomus hoazin* is raised into approximately 20 roughly parallel ridges (Gadow, 1891; Boker, 1929). In columbiforms the caudal part of the crop has two to six ridges which are packed with glands (Landolt, 1987a).
- (34) Gll. esophageae [Gll. esophageales]. Wide variations in the structure and density of the esophageal glands occur in different species (Ziswiler, 1967; Landolt, 1987a). In *Melopsitacus* glands are totally absent from the cervical esophagus (Feder, 1969).
- (35) **Gll. ingluviei.** The ingluvial glands are limited in number in the more sac-like forms of crop (Swenander, 1902).

- (36) **Lymphonoduli esophageales.** Synonymy: Tonsilla esophagealis. Nodules of lymphoid tissue are frequently associated with the esophageal glands in the wall of the esophagus (Hodges, 1974: 46). See **Lym.** Annot. 18.
- (37) Gaster. Synonymy: Ventriculus (Schummer, 1973: 48). The stomach consists basically of three compartments which may or may not be extremely distinguishable from each other. The cranial chamber is the Proventriculus which is continuous cranially with the Esophagus (Junctura esophagoproventricularis) and secretes gastric juice. The caudal chamber is the Ventriculus which in many species is the organ of mechnical digestion. Arising from the side of the Ventriculus is the small Pars pylorica gastris which connects the Ventriculus with the Duodenum.

Two basic types of stomach can usually be distinguished depending on whether the organ is adapted primarily for storage or has an important role in the physical preparation of food (McLelland, 1979). The first type characteristic of fish- and meateaters is a relatively undifferentiated, poorly-muscled sac-like structure (see Figs. 9.8, 10), the junction between the Proventriculus and Ventriculus being difficult to identify externally. In the second type, characteristic of omnivores, insectivores, herbivores, and granivores the Proventriculus and Ventriculus are clearly distinguishable from each other, the muscle tunic of the Ventriculus being massively developed (see Fig. 9.6). The form of the stomach in many birds, e.g. testacivores, is intermediate to these two types.

- (38) **Proventriculus gastris [Pars glandularis].** Synonymy: Vormagen, Infundibulum, cardiac cavity, ventricule pepsique, ventricle succenturie, jabot (Schepelmann, 1906). See Figs. 9.6-10.
- (39) **Regio glandularis; Diverticulum proventriculi.** The deep glands of the proventriculus (Annot. 41) are not distributed uniformly throughout the Proventriculus in some taxa, but are restricted to certain glandular regions (Fig. 9.8) as in *Buteo* and *Grus* (Swenander, 1902), *Struthio* (Cazin, 1887), *Chauna* (Mitchell, 1895), and *Eudyptula* (Pernkopf and Lehner, 1937), or to a diverticulum of the proventriculus as in *Anhinga* (Garrod, 1876) (Fig. 9.9).
- (40) **Plicae proventriculi.** In some species, e.g., fish- and meat-eaters, proventricular folds serve to increase the storage capacity of the organ (Cazin, 1887; Swenander, 1902; Magnan, 1912). In certain procellariiforms, however, the folding of the proventricular wall has been described as an arrangement which allows an increase in the number of deep glands (Matthews, 1949).
- (41) **Papillae proventriculi; Gll. proventriculares profundae.** In some species e.g., *Gallus* the inner surface of the proventriculus has numerous papilla-like elevations of the mucous membrane. The deep proventricular compound glands, which are the source of gastric juice, open on the apices of the papillae. For a description of the glands in *Anas* and *Gallus* see Michel (1971) and Hodges (1974: 51).
- (42) Rugae proventriculi; Sulci proventriculi. The low merging ridges and grooves between the openings of the deep proventricular glands. In columbids the ridges form species-specific surface relief patterns, which are flattened when the proventricular wall dilates (Landolt, 1987a).
- (43) **Endocrinocytus gastrointestinalis.** Gastrointestinal endocrine cells are scattered throughout the stomach and gut epithelium. They appear to be most concentrated in the pyloric part of the stomach. For a review see Hodges (1981) and **Endoc.** Annot. 6.

- (44) **Gll. proventriculares superficiales.** Some taxa, e.g. *Gallus*, columbiforms, and *Melopsittacus* are reported to have no true superficial proventricular glands (Joos, 1941; Hodges, 1974; Landolt, 1987a).
- (45) Mucocytus; Epitheliocytus columnaris. Although the ducts of the deep proventricular glands are lined by columnar epithelium, in *Gallus* only the cells of the largest ducts contain mucous granules.
- (46) **Epitheliocytus oxynticopepticus.** In birds one cell type of the proventriculus combines the functions of the mammalian chief and parietal cells, and secretes both hydrochloric acid and pepsinogen.
- (47) Lamina muscularis mucosae. In the proventriculus the muscularis mucosae is split by the deep glands into inner and outer layers.
- (48) **Zona intermedia gastris; Isthmus gastris.** Synonymy for Zona intermedia gastris: cardia, Schalstück, Zwischenschlund (Schepelmann, 1906). The intermediate zone is the variably developed region (Figs. 9.7, 10) between the Proventriculus and Ventriculus which has histological features intermediate between the two. The zone sometimes marked off from the Proventriculus by a constricted Isthmus (Fig. 9.6).
- (49) **Ventriculus gastris [Pars muscularis].** Synonymy: Kaumagen, Reibmagen, Pylorusraum, estomac proprement dit, ventricule charnu (Schepelmann, 1906) (Figs. 9.6-10). The common English name for this part of the stomach is "gizzard".
- (50) Facies tendinea. Synonymy: Facies parietalis and Facies visceralis (Komárek, et al., 1982). The term used by Groebbels (1932: 472) for paired, relatively flat surfaces of the Ventriculus each of which contains a tendinous centre (Annot. 60 and Fig. 9.6). In the well-muscled Ventriculus, e.g., the chicken, the surfaces clearly face to the left and right.
- (51) Facies anularis [F. annularis]. Synonymy: Margo dorsalis, Margo ventralis, Margo cranialis and Margo caudalis (Komárek et al. 1982). The annular facies are the two relatively narrow surfaces of the well-muscled type of stomach which dorsally and ventrally unite the left and right tendinous surfaces (Fig. 9.6).
- (52) Curvatura minor; Curvatura major. The lesser and greater curvatures are the short and long lengths of the circumference of the ventriculus between Proventriculus and Duodenum (Fig. 9.8).
- (53) **Incisura angularis.** In some birds with a sac-like stomach e.g., *Phalacrocorax carbo* and *Ardea cinerea*, the lesser curvature of the Ventriculus is strongly angled (Pernkopf and Lehner, 1937).
- (54) Corpus ventriculi; Saccus cranialis; Saccus caudalis. Synonymy for Saccus cranialis/caudalis of the ventriculus: superior/inferior sac (Garrod, 1872); poche superieur and cul-de-sac inferieur (Cazin, 1887); craniodorsal/caudoventral sac (Dziuk and Duke, 1972); kranialer/kaudaler Blindsack (Schummer, 1973: 54). The body (Corpus), cranial sac, and caudal sac (Fig. 9.7) can be identified in the well-muscled type of Ventriculus, but cannot be distinguished in the less developed types like those of most fish- and meat-eaters.

- (55) Sulcus cranialis; Sulcus caudalis. Synonymy: sillon antero-superieur and sillon postero-inferieur (Cazin, 1887). The transverse grooves between the cranial and caudal sacs and the body of the Ventriculus (Fig. 9.6).
- (56) **Plica angularis.** The openings of the ventriculus to the Proventriculus and Pars pylorica in certain birds, e.g., *Apteryx* and *Podiceps cristatus* appear to be separated by this angular fold (Pernkopf and Lehner, 1937).
- (57) **Stratum longitudinale.** According to Pernkopf (1930) a longitudinal layer of muscle is usually absent in the Ventriculus except at the minor curvature. However, in the columbiform species examined by Landolt (1987a) the layer is totally absent except in *Treron* and *Phapitreron* in which it is restricted to the region of the craniodorsal thin muscle (see Annot. 59).
- (58) **Stratum circulare.** In the well-muscled type of stomach as well as in the better developed intermediate forms of stomach, the circular muscle layer of the Ventriculus is clearly differentiated into four semi-autonomous masses (see Annot. 59 and Figs. 9.6, 7.
- (59) M. crassus cranioventralis, M. crassus caudodorsalis; M. tenuis craniodorsalis; M. tenuis caudoventralis. Synonymy: vorderer/hinterer Hauptmuskel; oberer/unterer Zwischenmuskel (Groebbels, 1932: 472); M. lateralis dorsalis/ventralis, M. intermedius caudalis/cranialis (Schummer, 1973: 51). The terminology of the semi-autonomous smooth thick (crassus) and thin (tenuis) muscles of the Ventriculus (Figs. 9.6, 7) is that suggested by Dziuk and Duke (1972). In some fruit-eating pigeons including *Ptilinopus* and *Drepanoptila* the thick muscles form four rounded pads which narrow the gizzard lumen, an adaptation for separating fruit flesh from seeds and stones (Landolt, 1985, 1987a). In the small forms of *Ducula* there are 12-16 pads.
- (60) **Centrum tendineum.** Synonymy: Operculum (Newton and Gadow, 1896: 917); Tendo intermuscularis (Komárek, et al., 1982). The tendinous centres on each side of the ventriculus (Fig. 9.6) provide the attachments of the circular muscle (see Annot. 50).
- (61) Lamina muscularis mucosae. While a Lamina muscularis mucosae is absent in the Ventriculus of most taxa, Landolt (1987a) observed its presence in thirty-two columbiform species in the region of the thin muscles (Annot. 59).
- (62) **Plicae ventriculi.** When the primary function of the Ventriculus is that of a storage organ for large items of food as in fish- and meat-eaters, its inner surface is strongly folded (Fig. 9.8), the folds usually disappearing when the chamber dilates with food (Swenander, 1902).
- (63) Rugae ventriculi; Sulci ventriculi. The permanent mucosal ridges and grooves of the well-muscled type of Ventriculus.
- (64) **Exocrinocytus columnaris.** The columnar exocrine cells of the surface epithelium and glands secrete the Cuticula which lines the inner surface of the gizzard. See Annot. 65.
- (65) Cuticula gastris. Synonymy: couche cornee, revetement coriace (Cazin, 1887); keratinoid layer (Hedonius, 1892); koilin (Hofmann and Pregl, 1907). The gastric cuticle (Fig. 9.7) is the variably developed internal lining of the Ventriculus and the Pars pylorica, consisting of a carbohydrate/protein complex secreted by the ventricular and pyloric glands. In the well-muscled type of stomach the cuticle is

made up of clusters of hard vertical rods separated by softer horizontal matrix. For a recent description of the structure of the cuticle in *Gallus* see Akester (1986). In the poorly-muscled type of Ventriculus the cuticle is relatively soft and has much less internal organization (Groebbels, 1932: 492).

- (66) **Procc. conicales; Procc. dentales.** The ventricular cuticle in certain fruiteating pigeons, e.g., large forms of *Ducula*, is raised into a number of hard pointed conical processes (Garrod, 1878a; Wood, 1924; Cadow, 1933; Landolt, 1985). Since the cones alternate longitudinally, during contraction they meet like a toothed wheel which acts to peel off the flesh from seeds and stones. In some fruit-eating pigeons, e.g., *Treron* and *Phapitreron*, the cuticle over the enlarged craniodorsal thin muscle (Annot. 59) is raised into horizontal rows of tooth-like processes (Landolt, 1985).
- (67) Pars pylorica gastris. Synonymy: Nebenmagen, Endstuck (Pernkopf and Lehner, 1937). The pyloric part of the stomach (Figs. 9.6, 8-10) is the variably developed portion between the Ventriculus and Duodenum which forms a distinct chamber in some taxa, e.g., Struthio, Anhinga, Phalacrocorax, Ardea, and Botauris, but in domestic birds is very reduced (Hodges, 1974: 63; Larsson, et al., 1974).
- (68) **Bulbus pyloricus.** In *Ardea cinerea* a constriction divides the pyloric part of the stomach into proximal and distal portions, the smaller distal portion was named "pyloric bulb" by Pernkopf and Lehner (1937).
- (69) **Torus pyloricus.** This pyloric torus is the conical protuberance in the pyloric part of the stomach of *Anhinga rufa* (Garrod, 1878b).
- (70) Ostium pyloricoduodenale. The opening of the Pars pylorica of the stomach into the Duodenum.
- (71) **Plicae pyloricae.** Frequently, as in many birds of prey, the mucosa of the pyloric part is strongly folded (Pernkopf and Lehner, 1937). In some taxa, annular folds of the mucosa subdivide the pyloric part as in *Ardea cinerea* (Cazin, 1887), or separate it from adjacent regions of the digestive tract as in *Pelecanus* (Pernkopf and Lehner, 1937).
- (72) **Papillae filiformes pyloricae** (Fig. 9.9). The hair-like cuticular papillae project into the pyloric part of the stomach in darters (Anhingidae) (Garrod, 1876; Cazin, 1887) (Fig. 9.9).
- (73) **Intestinum tenue.** Different patterns of arrangement of the convolutions and coiling of the small intestine are described by Gadow (1889) and have been used in taxonomy (see Annot. 74, 77).
- (74) **Ansa duodeni.** The duodenal loop (Figs. 9.11, 16) is a "closed" loop of intestine as described by Gadow (1889) with both of its limbs held closely together by mesentery. In a few birds, e.g., *Spheniscus demersus*, the primary duodenal loop is thrown into a series of secondary folds, while in *Morus bassanus* it is compound (Mitchell, 1901). A duodenal loop is reported to be absent in certain fruit-eating pigeons (Beddard, 1911).
- (75) **Papilla duodeni [P. duodenalis].** The duodenal papilla protrudes into the lumen of the duodenum, and carries the openings of the pancreatic and bile ducts into the duodenum and has been described in domestic birds by Batojeva and Batojev (1972) and Paik, et al. (1974).

- (76) **Jejunum; Ileum.** While there is no morphological justification in birds for adopting the terms Jejunum and Ileum, they have still been retained for descriptive purposes such as for the naming of blood vessels etc., the junction between the two regions being at the Diverticulum vitellinum. See **Art.** Annot. 60.
- (77) Ansae jejuni; Ansa axialis; Ansae ilei; Ansa supraduodenalis; Ansa supracecalis. The jejunum and ileum in most taxa are arranged in one or more closed jejunal and ileal loops (see Annot. 74) (Fig. 9.11). The axial loop (Mitchell, 1901) (Fig. 9.11) carries the Diverticulum vitellinum and therefore has both jejunal and ileal components. The supraduodenal loop (Mitchell, 1901) is usually the most distal loop of the Ileum (Fig. 9.11). In a relatively small number of taxa, one or more supracecal loops are present distal to the supraduodenal loop (Beddard, 1911).
- (78) **Diverticulum vitellinum.** Synonymy: Meckel's diverticulum. The vitelline diverticulum (Fig. 9.11) is the permanent remnant of the yolk stalk which contributes in *Gallus* to extramedullary myelopoiesis after hatching (Olah and Glick, 1984) and for which a lymphoepithelial function has been suggested (Olah, et al., 1984). It is reported to be consistently absent in some species (Mitchell, 1901). According to Branton, et al. (1988) the position of the diverticulum in *Gallus* is constant (Annot. 76).
- (79) **Papilla ductus vitellini.** The small papilla described in *Gallus* by Fehér and Gyuru (1971) on the inner wall of the gut which carries the opening of the yolk sac duct.
- (80) **Papilla ilealis.** The ileal papilla is the protrusion of the terminal part of the ileum into the rectal lumen which occurs in some taxa including *Gallus*, *Meleagris* and *Anas* (Mahdi and McLelland, 1987). The term replaces "valva ileorectalis" of the NAA(1979) which may imply a flap-like closure.
- (81) Cecum. In most groups of birds right and left ceca (Fig. 9.11) open into the cranial part of the Rectum. Ceca are absent in some species from at least seven orders including the Piciformes, Apodiformes, Coraciiformes, Columbiformes, Coliiformes, Cuculiformes, and Psittaciformes. A single unpaired cecum occurs in many herons and bitterns (Ardeidae) (Corti, 1923). Two pairs of ceca have been reported in the Secretary Bird (Saggitarius serpentarius) (Maumus, 1902). For a classification of ceca see McLelland (1989).
- (82) Basis ceci; Corpus ceci; Apex ceci. These terms refer to the regions which can be identified externally in the well-developed type of ceca found in anseriform and galliform species. Typically there is a short, narrow, proximal zone or base in which the villi are especially well-developed, a long relatively wide, middle zone or body, and short distal zone or apex (McLelland, 1989).
- (83) **Diverticula ceci; Haustra ceci; Ruga** spiralis. Outpouchings are present in the ceca of a small number of taxa including some ratites (*Struthio*, *Rhea*, and *Apteryx*), the tinamous (*Rhynchotus* and *Eudromia*), the loon (*Gavia*), screamers (Anhimidae), *Tragopan*, the bustard (*Otis*), and the sandgrouse (*Pterocles*). For a review see McLelland (1989). In the tinamou, *Eudromia elegans*, the ceca exhibit numerous

minute papilliform outgrowths or diverticula (Fig. 9.12) which correspond internally to a network of ridges like those of the ruminant reticulum (Beddard, 1890). By contrast, in *Struthio* the ceca have haustra-like outpouchings which are arranged in a helical manner and which correspond internally to a spiral valve-like ridge (Bezuidenhout, 1986).

- (84) **Ostium ceci.** Usually the right and left ceca open separately into the rectum, but in *Struthio* and the sandgrouse (*Pterocles*) they share a common cecal orifice (Jacobshagen, 1937).
- (85) **Rectum [Colon];** Haustra recti. The rectum or colon (Fig. 9.11) is the straight portion of the intestinal tract between the Ileum and the Cloaca. In *Struthio* the rectum is enormously elongated and can be divided into a proximal thin-walled portion with sacculations or haustra and a distal thick-walled portion free of haustra (Bezuidenhout, 1986).
- (86) Pars externa; Pars interna. The circular muscle tunic of the small intestine in *Gallus* (Gabella, 1985) and *Anas* (Mahdi and McLelland, 1987) is clearly divisible into a thick outer portion and a thin inner portion.
- (87) M. sphincter diverticuli vitellini. This sphincter was described in *Gallus* by Olah and Glick (1984) at the base of the diverticulum.
- (88) M. sphincter ilei; M. sphincter ceci. Mahdi and McLelland (1987) found in *Anas* an ileal sphincter at the base of the Papilla ilealis and a cecal sphincter at the opening of each cecum.
- (89) **M. sphincter rectocoprodei.** The presence of a rectocoprodeal sphincter 1-2 mm cranial to the junction of the rectum and coprodeum was described in *Anas* by Mahdi and McLelland (1989). See also **Cloaca.** Annot. 3.
- (90) **Gll. duodeni.** The avian equivalent of Brunner's glands of mammals. Evidence for duodenal glands at the junction of the ventriculus (gizzard) and small intestine is provided by Clara (1934) and Patzelt (1936) in examples of a number of species.
- (91) Villi intestinales; Plicae intestinales villosae; Plicae intestinales submucosae; Gll. [Cryptae] intestinales. The intestinal mucosa is arranged into villi or folds which show great interspecific variations (Muller, 1922; Ziswiler, 1967). The term Plicae intestinales submucosae refers to the relatively uncommon type of intestinal fold which is based on a core of submucosa (Muller, 1922; Jacobshagen, 1937; Fenna and Boag, 1974; Johnson and Skadhauge, 1975; Landolt, 1987b). The intestinal glands extend down into the mucous membrane between the villi. For accounts of the intestinal epithelial cells see Michel and Gutte (1971), Michael and Hodges (1973) and Hodges and Michael (1975).
- (92) Exocrinocytus cum granulis acidophilicis. Formerly called the Paneth cell, there is only limited evidence for this type of cell in the intestinal glands of birds (Ziswiler, 1967).
- (93) **Tunica serosa; Tunica fibrosa.** Most of the surface of the liver is invested with a single layer of serosal mesothelial cells below which is a layer of dense fibrous connective tissue (Glisson's capsule) which is relatively much thinner than that of mammals.

- (94) **Porta hepatis.** Synonymy: Fossa transversa (Komárek, et al., 1982). See Fig. 9.13. The hepatic porta (L. gate or entrance) is the transverse groove stretching across the visceral surface of both liver lobes where the hepatic arteries and portal veins enter the liver and the hepatic ducts emerge.
- (95) **Impressio duodenalis.** The descending and ascending parts of the duodenal loop make separate impressions (Fig. 9.13) on the visceral surface of the liver.
- (96) Impressio testicularis. The impression formed on the liver by the right testis.
- (97) Incisura cranialis; Incisura interlobaris; Incisura caudalis. These terms refer to deep notches in the liver. See Fig. 9.13. They were used by Komárek, et al. (1982), and replace Incisura interlobaris cranialis and Incisura interlobaris caudalis of the NAA (1979).
- (98) **Proc. dorsalis dexter/sinister.** These terms were used by Komárek, et al. (1982) and replace "Proc. intermedius dexter/sinister" of the NAA (1979). See Figs. 9.13, 14a, c. Among the domestic birds the left process only occurs in *Gallus* and *Meleagris*. Both processes are absent in *Columba*.
- (99) **Incisura lobaris.** Synonymy: Incisura intralobaris (Komárek et al. 1982). See Fig. 9.13.
- (100) Pars lateralis; Pars medialis. These parts of the left lobe of the liver were used by Komárek et al. (1982), and replace "Pars caudodorsalis/caudoventralis" of the NAA (1979). In many taxa one or both of the liver lobes are partly subdivided. Among domestic species the division of the left lobe into two parts by a deep incision extending cranially from the caudal margin occurs only in *Gallus* and *Meleagris* (Fig. 9.13).
- (101) Proc. papillaris; Proc. ventralis dexter; Proc. ventralis medius; Proc. cranialis. The presence of these processes of the left lobe and Pars interlobaris of the liver shows great intraspecific variation. The terminology is that adopted by Komárek, et al. (1982). Amongst domestic species Proc. papillaris (Fig. 9.14a) has been described in *Anas*; Proc. ventralis dexter (Fig. 9.14b) in *Anser* and *Gallus*; and Proc. cranialis (Fig. 9.14c) in *Anser*. The Proc. ventralis medius arises from the caudal margin of the parietal surface of the Pars interlobaris and has been described in *Anas*, *Anser*, and *Meleagris*.
- (102) Canales portales; Capsula fibrosa perivascularis; Trias hepatica; Arteriae interlobulares; Venae interlobulares; Ductuli interlobulares. At some sites the liver lobules are demarcated by portal canals of connective tissue containing blood vessels and bile ducts. The connective tissue or perivascular fibrous capsule is continuous with the fibrous capsule of the liver and supports the hepatic triads. Each triad contains an interlobular artery which is a branch of the hepatic artery, an interlobular vein which is a branch of the portal vein, and an interlobular bile ductule.
- (103) **Lobuli hepatis.** Classic hepatic lobules (see Annot. 102) are difficult to identify in birds except near the Porta hepatis.
- (104) **Lamina hepatica; Canaliculi biliferes.** Abdelwahab (1987) has shown with the scanning electron microscope that the sheets of hepatocytes in *Anas* are in the form of branching cords, each cord consisting of 4-6 cells arranged around a central bile canaliculus. The bile canaliculi join at the periphery of the hepatic lobule to form interlobular bile ductules.

- (105) Lacuna hepatis. Between the hepatic laminae are spaces or lacunae containing venous sinusoids.
- (106) Vasa sinusoidea; Macrophagocytus stellatus; Spatium perisinusoideum; Lipocytus perisinusoideus; Venae centrales; Venae sublobulares. The sinusoids of the laminae drain into the central vein of the hepatic lobule. The sinusoids are lined by a flattened endothelial cell and a protuberant phagocytic cell, the stellate macrophage (Purton, 1969). They are separated from the sheets of hepatocytes by the perisinusoidal space. Within this space lie the perisinusoidal fat cells (Purton, 1976). Central veins of adjacent lobules anastomose to form sublobular veins which join to form hepatic veins.
- (107) Ductuli biliferes; Ductus hepaticus dexter/sinister; Ductus hepatocysticus; Ductus hepatoentericus dexter; Ductus hepatoentericus communis; Ductus hepatoentericus accessorius. Synonomy for Ductus hepatocysticus and Ductus hepatoentericus: Ductus cysticus and Ductus choledochus (Komárek, et al. 1982). In Gallus, bile ductules (Fig. 9.15) from the right lobe of the liver are drained by the right hepatic duct, and those from the left lobe by the left hepatic duct (Miyaki, 1973). The hepatocystic duct (Fig. 9.15) branches from the right hepatic duct and enters the gall bladder. In birds, e.g., Columba, which have no gall bladder, the branch from the right hepatic duct, the right hepatoenteric duct, opens directly into the duodenum. This duct is absent in Struthio (Newton and Gadow, 1896: 299). In the majority of birds the right and left hepatic ducts unite on the visceral surface of the right lobe of the liver to form a common hepatoenteric duct (Figs. 9.13, 15, 16) which opens into the duodenum. An accessory hepatoenteric duct formed by the right and left hepatic ducts, and additional to the common hepatoenteric duct, was observed in cracids by Gadow (1891: 683) and in Anser by Simic and Jankovic (1959).
- (108) **Vesica biliaris [V. fellea].** The gall bladder (Figs. 9.13, 14) is absent in some birds (Gorham and Ivy, 1938) (see Annot. 107 and **Art.** Annot. 58).
- (109) **Ductus cysticoentericus.** The cysticoenteric duct (Figs. 9.13, 15, 16) connects the gall bladder with the duodenum. In contrast to mammals, a common bile duct is absent in birds.
- (110) Pancreas. The terminology of the lobes of the Pancreas (Fig. 9.16) is that used for *Coturnix* and *Gallus* by Mikami and Ono (1962) and Mikami, et al. (1985), and replaces the nomenclature of the NAA (1979). The accessory pancreatic duct of the NAA (1979) has been renamed **Ductus pancreaticus tertius**. The major change is the division of the ventral lobe of Paik, et al. (1974) into the **Lobus pancreatis ventralis** and the **Lobus pancreatis tertius** on the basis of the distribution of the islets (see **Endoc**. Annot. 7). The gross morphology of the pancreatic lobes shows considerable interspecific variation. The number of pancreatic ducts varies from one to three depending on the species (Groebbels, 1932: 487).
- (111) **M. sphincter ductus pancreatici.** Sphincter-like arrangements of the muscle at the openings of the pancreatic ducts into the intestine were described by Fehér and Fancsi (1971).



Fig. 9.1. Oral cavity and pharynx of Anas. The left side of the figure depicts the palate and the dorsal wall of the pharynx; the right side of the figure depicts the tongue and the floor of the pharynx. From Kooloos, et al. (1989), reproduced by permission of Springer-Verlag, Berlin.



Fig. 9.2. Lateral view of the oral and esophageal sacs in the adult male Great Bustard (Otis tarda). From Garrod (1874a).



Fig. 9.3. Salivary glands of the oral cavity and pharynx of *Gallus*. The left side of the figure depicts the salivary glands of the palate and dorsal wall of the pharynx; the right side of the figure depicts the glands of the tongue, of the ventral wall of the oral cavity, and of the pharynx. From Saito (1966), reproduced by permission of the University of Miyazaki.



Fig. 9.4. Transverse section through the Infundibulum of *Gallus*. From Heidrich (1908). The bottom of the figure represents the dorsal wall of the pharynx, with its opening into the chamber called the Infundibulum. In its caudodorsal part the Infundibulum communicates with the auditory tubes and ventrally communicates with the Pharynx via a slit, the Rima infundibuli.



Fig. 9.5. Examples of the crop (Ingluvies). (a) Great Cormorant (*Phalacrocorax carbo*); (b) Peafowl (*Pavo cristatus*); (c) Budgerigar (*Melopsittacus undulatus*); and (d) *Columba*. Ventral views except (d) which is a dorsal view. (a) and (b) from Pernkopf and Lehner (1937); (c) and (d) from McLelland (1979), reproduced by permission of Academic Press, London and New York.



Fig. 9.6. Exterior of the Gaster (stomach) of *Gallus*. Lateral aspect, right side. In this species the Ventriculus is well-muscled. From McLelland (1975a), reproduced by permission of W. B. Saunders Company, Philadelphia.



reproduced by permission of W. B. Saunders Company, Philadelphia.



Fig. 9.8. Interior of the Gaster (stomach) of the Little Blue Penguin (*Eudyptula minor*). In this species the Proventriculus has a Regio glandularis and the Ventriculus is a poorly-muscled sac-like structure. From Pernkopf and Lehner (1937).



Fig. 9.9. Interior of the Gaster (stomach) of *Anhinga anhinga*. From Garrod (1876). This species possesses a Diverticulum proventriculi (see Annot. 38 for the significance of this structure) and a well developed Pars pylorica gastris (see Annot. 66). Note the probe passing from the Ventriculus through the Pars pylorica and into the duodenum.



Fig. 9.10. The interior of the Gaster (stomach) of the Little Owl (*Athene noctua*). In this species the Ventriculus is a poorly-muscled sac-like structure. From Pernkopf and Lehner (1937).



Fig. 9.11. Ventral view of the gastrointestinal tract of *Anser.* From McLelland (1975a) after Grau (1943b), reproduced by permission of W. B. Saunders Company, Philadelphia.



Fig. 9.12. Ceca of the Elegant Crested Tinamou (*Eudromia elegans*). The walls of the ceca consist of numerous small diverticula. From Beddard (1890).



Fig. 9.13. Liver (Hepar) of *Gallus*, caudal view. From McLelland (1979), reproduced by permission of Academic Press, London and New York.



Fig. 9.14. Views of the liver (Hepar) of anatids: (a) *Anas*, caudal view; (b) *Anser*, cranial view; and (c) *Anser*, caudal view. Redrawn from Komárek, et al. (1982), reproduced by permission of Piroda, Bratislava.



Fig. 9.15. Biliary system of *Gallus*. Caudal view of the liver showing the major intraand extra-hepatic bile passages. From Miyaki (1973), reproduced by permission of the Japanese Society of Veterinary Science.



Fig. 9.16. Ventral view of the pancreas of the Japanese Quail (*Coturnix japonica*). From Mikami, et al. (1985), reproduced by permission of the Japanese Society of Veterinary Science.



# APPARATUS UROGENITALIS [SYSTEMA UROGENITALE]

#### ANTHONY S. KING

With contributions from subcommittee members: M. R. Bakst, D. Berens v. Rautenfeld, K.-D. Budras, Gy Fehér, V. Komárek, P. E. Lake, T. Nishida, M. D. Tingari, R. F. Wideman, Jr., M. Yasuda.

As in the first edition of the NAA (1979), this part has four sections, namely Organa urinaria, Organa genitalia masculina, Organa genitalia feminina, and Cloaca. All four have undergone similar general developments, i.e., microscopic structures have been included, the terminology has been brought into line with the NAV (1983) and NH (1989) wherever appropriate, and the annotations have been revised to include important references omitted in the first edition and papers published since 1979. In the first three sections there have been some major changes in the terminology, which are summarized immediately below. Because of retirements and changing research interests, several of the original subcommittee members have withdrawn, but new members (see above) have replaced them. Any factual errors in the annotations must be attributed to me, not to them.

The literature on the macro-, meso-, and microscopic anatomy of the Organa urinaria in many avian species has been thoroughly reviewed by Siller (1971), Hodges (1974), Johnson (1979), Siller (1983), and Wideman (1988); all of these authors added many original observations. These reviews provide the general basis for the Annotations on the urinary organs. Notable developments in knowledge of nephronal microarchitecture have come during the last decade from the reconstructions by Wideman and Morild and coworkers; these have made it possible to evolve a new terminology for the components of the nephron which portrays the fundamental differences between the nephrons of birds and mammals. I am greatly indebted to Robert F. Wideman, Jr. for his assistance in the preparation of this and all other aspects of the list for Organa urinaria.

The principal changes in the section on the Organa genitalia masculina lie in the Nomina for the spermatozoon, the duct system of the testis, and the components of the phallus. The general revision of the Annotations has drawn extensively on the review by Lake (1981). Generous assistance in the preparation of the manuscript, and particularly in the development of the Terminology and Annotations on the spermatozoon, was given by P. E. Lake (now retired from the Agricultural Research Council's Poultry Research Centre, Roslin, Midlothian, Scotland), M. D. Tingari (presently Vice-Chancellor of the University of Khartoum, Sudan), and Murray R. Bakst. I am particularly grateful to K.-D. Budras, Freie Universität Berlin, for his assistance with the Nomina and Annotations for the duct system of the testis and his valuable criticisms on testicular structure in general. The Terminology and Annotations on the phallus have been have been completely redesigned (the most difficult task in the entire chapter) in collaboration with Berens von Rautenfeld, Medizinische Hochschule Hannover. Helpful comments on the phallic musculature were received from Takao Nishida, University of Tokyo.

The general revision of the Annotations on the Organa genitalia feminina has been based mainly on the extensive review and researches by Gilbert (1979). Some new developments have been introduced in the terminology for the shelled egg and the shell itself. Valuable advice on the Nomina and Annotations, and especially those relating to microscopic anatomy, has been given by K.-D. Budras and Murray R. Bakst.

I am grateful to Berens von Rautenfeld for assistance with the revision of the Nomina and Annotations for the Cloaca.

The elegant artwork in Figs. 10.2, 5, 7, 10, 11, 12, 15, and 19 was executed by Alan Bannister, University of Liverpool, and for this I record my sincere gratitude. I also thank the following for generously allowing me to use their resplendent drawings: Robert F. Wideman Jr., Figs. 10.3 and 4; K.-D. Budras, Fig. 10.8; and V. Komárek, Figs. 10.13 and 14.

# TERMINOLOGY ORGANA URINARIA

### REN

Margo lateralis<sup>1</sup>
Margo medialis<sup>2</sup>
Facies ventralis<sup>3</sup>
Facies dorsalis
Extremitas cranialis
Extremitas caudalis
Divisio renalis cranialis<sup>4</sup>
Divisio renalis media<sup>4</sup>

Divisio renalis caudalis<sup>4</sup>
Lobus renalis<sup>5</sup>
Lobulus renalis<sup>6</sup>
Regio lobuli corticalis<sup>6</sup>
Regio lobuli medullaris<sup>6</sup>
Cortex renis [renalis]<sup>7</sup>
Medulla renis [renalis]<sup>7</sup>

#### **CORPUSCULUM RENALE**

Polus vascularis Polus tubularis Glomerulus<sup>8</sup>

Rete capillare glomerulare<sup>8</sup>
Vas capillare glomerulare
Endotheliocytus fenestratus
Membrana basilaris
Mesangium intraglomerulare<sup>8</sup>
Mesangiocytus

intraglomerularis<sup>8</sup>

Capsula glomerularis
Paries externus
Paries internus
Podocytus<sup>9</sup>
Cytotrabecula<sup>9</sup>
Cytopodium<sup>9</sup>

Lumen capsulae

#### **TUBULUS RENALIS**

Nephron <sup>10</sup>
Nephron corticale <sup>10</sup>
Nephron juxtamedullare <sup>10</sup>

Nephron corticale<sup>11</sup>
Tubulus proximalis<sup>12</sup>
Epitheliocytus microvillosus<sup>12</sup>
Tubulus intermedius<sup>13</sup>
Tubulus distalis<sup>14</sup>
Epithelium simplex
cuboideum<sup>14</sup>
Macula densa<sup>29</sup>

Nephron juxtamedullare<sup>15</sup>
Tubulus contortus proximalis<sup>16</sup>
Tubulus rectus proximalis<sup>17</sup>
Epitheliocytus microvillosus<sup>18</sup>
Tubulus attenuatus<sup>19</sup>
Epithelium simplex
cuboideum<sup>20</sup>

Tubulus rectus distalis<sup>21</sup>
Epithelium simplex cuboideum<sup>21</sup>
Macula densa<sup>29</sup>
Ansa nephrica<sup>22</sup>
Tubulus contortus distalis<sup>23</sup>
Tubulus conjungens<sup>24</sup>
Epithelium simplex cuboideum<sup>24</sup>
Tubulus colligens<sup>25</sup> [Tubulus renalis colligens]

coll Tubulus colligens corticalis<sup>26</sup> Epithelium simplex

cuboideum<sup>26</sup> Tubulus colligens medullaris<sup>26</sup>

Epithelium simplex

cuboideum/columnare<sup>26</sup>

Ductus colligens<sup>27,43</sup>

Epithelium stratificatum cuboideum/pseudostratificatum

columnare<sup>27</sup>

### **COMPLEXUS JUXTAGLOMERULARIS<sup>28</sup>**

Macula densa<sup>29</sup>
Epitheliocytus maculae densae
Tunica media arteriolae glomerularis
Endocrinocytus myoideus
[Juxtaglomerularocytus]<sup>30</sup>

Mesangium extraglomerulare [Insula juxtavascularis]<sup>31</sup>
Mesangiocytus extraglomerularis<sup>31</sup>

#### **VASA et NERVI RENIS**

A. renalis cranialis<sup>32</sup>

A. renalis media<sup>32</sup>

A. renalis caudalis<sup>32</sup>

Aa. intralobulares<sup>33</sup>

Arteriola glomerularis afferens<sup>34</sup> Rete capillare glomerulare<sup>8</sup>

Arteriolae glomerularis efferens<sup>35</sup>
Arteriolae rectae<sup>36</sup>

Systema portale renale (Ven.

Annot. 59)

Circulus venosus portalis

V. portalis renalis cranialis<sup>37</sup>

V. portalis renalis caudalis<sup>37</sup>

Rr. renales afferentes<sup>37</sup>

Vv. interlobulares<sup>37</sup>

Rete capillare

peritubulare corticale<sup>38</sup>

Vas capillare

sinusoideum<sup>39</sup>

Valva portalis renalis<sup>40</sup>

Vv. renales craniales<sup>37</sup> (Ven.

Annot. 58)

V. renalis caudalis<sup>37</sup> (Ven.

Annot. 58)

Rdxx. renales efferentes<sup>37</sup>

Vv. intralobulares<sup>37</sup>

Venulae rectae<sup>41</sup>

Truncus thoracoabdominalis

Vasa 1. renalia (Lym. Fig. 13.6)

Plexus aorticus (PNS Annot. 81)

Plexus adrenalis

Gg. adrenalia

Plexus renales

#### URETER

Pars renalis<sup>42</sup>

Rr. ureterici primarii<sup>43</sup>

Rr. ureterici secundarii<sup>43</sup>

Rr. ureterici tertiarii<sup>43</sup>

Pars pelvica<sup>42</sup>

Ostium cloacale ureteris (Cloaca)

Tunica mucosa<sup>44</sup>

Epithelium pseudostratificatum

columnare

Lamina propria mucosae<sup>44</sup>

Tunica muscularis<sup>44</sup>

Stratum longitudinale internum

Stratum circulare

Stratum longitudinale externum

Tunica adventitia

Tunica serosa

Vasa et Nervi Ureteris

A. renalis cranialis

Rr. ureterodeferentiales craniales

A. ischiadica

Rr. ureterodeferentiales medii

A. pudenda

Rr. ureterodeferentiales caudales

Vv. testiculares

Vv. ureterodeferentiales craniales

V. renalis caudalis

Vv. ureterodeferentiales mediae

V. pudenda

Vv. ureterodeferentiales caudales

Truncus thoracoabdominalis

Vasa 1. ureterodeferentialia (Lym.

Figs. 13.6, 7)

N. pudendus

Rr. ureterales

### **ANNOTATIONS**

- (1) Margo lateralis. The lateral border of the kidney (Ren) is deeply indented by major blood vessels (e.g., A. iliaca externa, A. ischiadica) (Fig. 10.1).
- (2) Margo medialis. In many taxa the left and right kidneys fuse along the medial border, particularly in the Divisio caudalis (Johnson, 1968).
- (3) Facies ventralis. The ventral surface has deep grooves caused by the vessels that cross it (Fig. 10.1). Varying depths of these grooves probably account for claims of more than three divisions in some species (Annot. 4).
- (4) **Divisio renalis cranialis/media/caudalis** (Fig. 10.1). The cranial, middle, and caudal divisions are typical, being supplied respectively by the cranial, middle, and caudal renal arteries (as in *Gallus*), although the relative sizes of the divisions vary greatly with the species (Johnson, 1968). Boundaries are: between the cranial and middle divisions, A. and V. iliaca externa; between the middle and caudal divisions, A. and V. ischiadica (King, 1975: 1919; Johnson, 1979: 186). The three divisions are not homologous to the lobes of the mammalian kidney (Goodchild, 1956) and should not be called "lobes". Four divisions have been reported in Ciconiiformes and Charadrii and five in *Apteryx* (Francis, 1964), but the boundaries may be illusory (Annot. 3) (Johnson, 1979: 186). There are also reports of two entirely separate divisions (Das, 1924; Van Tyne and Berger, 1959; Feinstein, 1962); Johnson (1979: 186) confirmed this in Bucerotidae, but attributed other accounts to overlooking thin connections between the divisions.
- (5) Lobus renalis. Medullary cones (Annot. 6) belonging to several adjacent lobules become grouped together, enclosed by a connective tissue sheath (Fig. 10.2). Typically the collecting ducts (Ductus colligentes) of the group converge into a secondary branch of the ureter (Fig. 10.2). The avian renal lobe is defined as such a group of medullary cones draining into a secondary branch of the ureter, plus the cortex that is associated with these cones (Johnson, 1979: 197). In teased preparations, a group of medullary cones is visible to the naked eye as a ragged tuft attached to a secondary branch of the ureter, as in Fig. 10.1 (see Lindgren, 1868; Goodchild, 1956; Siller, 1971: 202; Johnson, 1974). The group of medullary cones is probably homologous to the mammalian medullary pyramid; the avian renal lobe is probably homologous to the lobe of the multilobar type of mammalian kidney (King, 1975: p. 1922).
- (6) Lobulus renalis; Regio lobuli medullaris/corticalis. In histological sections (Spanner, 1925; Feldotto, 1929; von Möllendorff, 1930: Fig. 201; Sperber, 1960: 470-478) the lobule is often pear-shaped (Fig. 10.2). It is enclosed by the (afferent) Vv. interlobulares (Fig. 10.3). The tapering part of the pear contains collecting tubules, and also the medullary loops (Ansae nephricae) of the juxtamedullary nephrons, all these being enclosed by a connective tissue capsule thus forming the medullary region of the lobule (Fig. 10.2); being cone-shaped, the medullary region of the lobule was named the "medullary cone" by Johnson (1979: 189), a term widely adopted (e.g., Siller, 1983: 92; Goldstein and Braun, 1989). The Tubuli colligentes typically empty into a single Ductus colligens (Fig. 10.2) which emerges from the lobule as the stalk of the pear. The wide part of the pear is the cortical region of the lobule (Fig. 10.2), containing cortical and juxtamedullary nephrons (except for the Ansae of the juxtamedullary nephrons). Three-dimensional studies by Johnson and

his co-workers in many species have shown that the cortical region of the lobule is not really pear-shaped, but more like an elongated loaf of bread (Johnson, et al., 1972; Johnson, 1974). This elongated cortical region typically contributes Tubuli colligentes to several independent medullary regions (Fig. 10.2); moreover any one medullary region may receive Tubuli colligentes from several independent cortical regions. Since a Lobulus renalis shares its drainage with its neighbours it can be argued that the term Lobulus is not strictly applicable; nevertheless the Lobulus renalis is a convenient structural concept.

- (7) Cortex renis; Medulla renis. The renal cortex is formed by the cortical regions of the Lobuli renales, and the renal medulla by the medullary regions (medullary cones) (Annots. 5, 6). However, the Lobuli are embedded at varying depths in the kidney, so that the Cortex and Medulla do not form the continuous strata which typify most mammalian kidneys. The avian kidney does resemble the extreme renculus type of Cetaceae (Sperber, 1944: 401), with many lobes at varying depths. The cortex forms about 77% and the medulla 10% of the kidney volume of birds, depending on the order, body size, and habitat (Warui, 1989).
- (8) Glomerulus; Rete capillare glomerulare; Mesangium intraglomerulare; Mesangiocytus intraglomerularis. Siller (1971: 203) and Johnson (1979: 203) reviewed these structures. The glomerular of cortical and juxtamedullary nephrons are similar but the former are smaller. The glomerular capillary rete is much simpler in birds than in mammals, ranging from several simple capillary loops to a single loop. The intraglomerular mesangium forms the supporting framework of the capillary rete; in mammals the intraglomerular mesangiocytes are scattered between the capillary loops, but in birds they form a compact mass in the centre of the glomerulus (contrast the polar disposition of the Mesangiocyti extraglomerulares, Annot. 31). Avian glomeruli are much smaller than mammalian, but their greater number and the tubular secretion of urates compensate functionally.
- (9) Podocytus; Cytotrabecula; Cytopodium. The podocyte is similar in birds and mammals. The cell body gives rise to long branching primary processes, the trabeculae (Cytotrabeculae). These form numerous pedicels (Cytopodia) which interdigitate with the pedicels of adjacent podocytes. Podocytes and intraglomerular mesangiocytes change their shape with fluctuations in water supply (Schwarz and Radke, 1981).
- (10) Nephron. The structural and functional unit of the kidney. The kidney possesses two types of nephron. The Nephron corticale is restricted to the cortex and has no Ansa nephrica (Fig. 10.3). The Nephron juxtamedullare (Fig. 10.3) lies deep in the cortex adjacent to the medullary part of the lobule, and has an Ansa nephrica which descends into the medulla. The cortical nephron is regarded as reptilian in type, and the juxtamedullary as mammalian. However, ontogeny (in Gallus) fails to recapitulate the presumed phylogeny, since the "mammalian" type develops before the "reptilian" (Wideman, 1989). Intermediate types of nephron with very short loops have been reported (Huber, 1917; Feldotto, 1929; Sperber, 1960; Braun and Dantzler, 1972). In birds generally the great majority of nephrons are cortical (Huber, 1917; Feldotto, 1929; von Möllendorff, 1930; Sperber, 1960: 470-474; Siller, 1971: 203; Johnson, 1979: 199). A survey of seven species revealed no significant relationship between the proportion of juxtamedullary nephrons and urinary concentrating ability although the proportion of juxtamedullary nephrons ranged as widely as 7 to 30% (Goldstein and Braun, 1989), but other evidence from xeric and marine birds suggests that such a relationship may exist (Johnson and Ohmart, 1973; Goldstein and Braun, 1986; Braun, 1984).

- (11) **Nephron corticale.** Synonym: reptilian type of nephron. Reconstructions of cortical nephrons of *Gallus* by Morild, et al. (1985a) showed the absence of a proximal convoluted part. Since they also lack an Ansa nephrica they cannot have any straight part either. Therefore the mammalian terms (Tubulus contortus proximalis, rectus proximalis, and rectus distalis) are inappropriate. Consequently Morild, et al. followed Wideman, et al. (1981) in using two general terms for the avian Nephron corticale, i.e., Tubulus proximalis and Tubulus distalis, and these have been adopted here. The proximal and distal tubules form four basic bends (Fig. 10.5), but additional loops and coils may occur particularly at bend 1.
- (12) **Tubulus proximalis.** The NAA (1979) listed Pars tenuis (small diameter part) and Pars crassa (large diameter part) as components of the proximal tubule of the cortical nephron. This was based on reports (Siller, 1971: 210; Johnson, 1979: 204) that the proximal part of the proximal tubule is relatively thin, and the distal part relatively thick; these parts were supposed to correspond respectively to the convoluted and straight parts of the mammalian proximal tubule. However, Wideman, et al. (1981) found no such variations in tubular diameter or cell height. Nevertheless, Morild, et al. (1985a) did note conspicuous changes in diameter at all levels of the cortical nephrons. Pars tenuis and crassa have now been withdrawn, pending clarification.

The whole length of the Tubulus proximalis is lined by Epitheliocyti microvillosi (with brush border, etc., Annot. 18), like the mammalian proximal convoluted tubule (Siller, 1971: 210; Hodges, 1974: 513).

- (13) **Tubulus intermedius.** A short and often ill-defined intermediate tubule, between the Tubulus proximalis and distalis in most cortical nephrons (Fig. 10.5), was described by Huber (1917), Feldotto (1929), Marshall (1934), Sperber (1960), and Oelofsen (1973). Johnson (1979: 208) interpreted it as probably a primitive nephronal loop. Siller (1971: 217) reported that some proximal tubules definitely end abruptly in a short narrow tubule with a low epithelium and no brush border, though these are difficult to identify. Siller (1983: 99) added nothing new on this subject. Wideman, et al. (1981) observed no intermediate tubule, but Morild, et al. (1985a) reported that the junction of the proximal and distal tubule is usually but not always abrupt. The evidence indicates a short but variable Tubulus intermedius.
- (14) **Tubulus distalis.** Morild, et al. (1985a) showed that, basically, the distal tubule of the Nephron corticale begins at the surface of the cortex (after bend 3, in Fig. 10.5), travels to the V. intralobularis, and then returns towards the cortex to continue into a Tubulus colligens corticalis. However, it is extremely variable, ranging from a U-shaped loop (as just described) to a labyrinth of folds concentrated mainly around the V. intralobularis (Siller, 1971: 220). Its external diameter is about half that of the Tubulus proximalis (Morild, et al., 1985a).

The Tubulus distalis is lined by an Epithelium simplex cuboideum (Hodges, 1974: 517). Since the cells lack both a brush border and mucopolysaccharide granules they are easily distinguished from those of the Tubulus proximalis and Tubulus colligens respectively (Siller, 1971: 220). Regional variations have been observed in the height and shape (Morild, et al., 1985a) and ultrastructure and histochemistry (Nicholson, 1982) of this epithelium.

- (15) **Nephron juxtamedullare.** Synonym: medullary nephron, mammalian type of nephron. The conformation of the juxtamedullary nephron of birds has not been precisely established (Wideman, 1988: 140). However, it does have convoluted and straight components, and a definite Ansa nephrica, and therefore a common terminology for mammals (NH, 1989) and birds is adopted here.
- (16) **Tubulus contortus proximalis.** The proximal convoluted tubule is coiled (Morild, et al., 1985a), in the cortex of the lobule.
- (17) **Tubulus rectus proximalis.** The transition between the Tubulus contortus proximalis and the Tubulus rectus proximalis occurs in the juxtamedullary cortex (Johnson, 1979: 205) or some way into the medulla (Siller, 1971: 211). The proximal straight tubule descends into the medulla (Fig. 10.5). In various species (Berger, 1966), but not *Anas* and *Gallus* (Michel and Junge, 1972), its cells seem to decrease progressively in size and the nuclei elongate (possibly artifacts, Johnson, 1979: 205). However, the external diameter certainly gets gradually smaller in histological preparations, obscuring the precise junction with the Tubulus attenuatus (Siller, 1971: 215). See Annot. 19.
- (18) **Epitheliocytus microvillosus.** The whole length of the Tubulus contortus proximalis and Tubulus rectus proximalis is lined by these columnar to cuboidal cells. The brush border, terminal web, and apical tubules are present even in the cuboidal epithelium of the narrow part of the Tubulus rectus proximalis (Siller, 1971: 215).
- (19) **Tubulus attenuatus.** Synonymy: thin segment of medullary loop; Pars descendens ansae of Segmentum intermedium (NAA, 1979). Once formed (Annot. 17), the Tubulus attenuatus (thin tubule) continues with uniform diameter (Johnson, 1979: 206). It connects Tubulus rectus proximalis to Tubulus rectus distalis (Fig. 10.5). In the mammalian *juxtamedullary* nephron the Tubulus attenuatus has a Pars descendens and a Pars ascendens; these terms are not appropriate here because in birds the loop turns in the Tubulus rectus distalis, the thin tubule having no Pars ascendens (Fig. 10.5). At the transition of the Tubulus attenuatus into the Tubulus rectus distalis in birds there is generally an abrupt increase in external diameter (Fig. 10.5) (Johnson, 1979: 206), but in *Gallus* the transition is gradual (Siller, 1971: 215). The loop of the *cortical* type of nephron in mammals (about 80% of all nephrons, Krstic, 1984), turns in the Tubulus rectus distalis, as in birds. See Annot. 22.
- (20) **Epithelium simplex cuboideum.** The epithelium of the Tubulus attenuatus is much thicker in birds than in mammals, being simple cuboidal or low cuboidal instead of simple squamous, with brush border, apical tubules, and terminal web, but no folding of the basal and lateral membranes (Siller, 1971: 215; Johnson, 1979: 207).
- (21) **Tubulus rectus distalis.** Synonymy: thick segment of medullary loop; Pars ascendens ansae (NAA, 1979). The distal straight tubule begins at the end of the Tubulus attenuatus (Fig. 10.5), continues to descend through the medulla, turns at the bottom of the Ansa nephrica, ascends the medulla, and enters the cortex to make contact with its parent juxtamedullary glomerulus, where it forms the Macula densa (Johnson, 1979: 207). Distal to the Macula densa, it becomes the Tubulus contortus distalis.

The distal straight tubule is lined by an Epithelium simplex cuboideum (Hodges, 1974: 517), with few or no microvilli but increasingly complex basal folds (Siller, 1971: 216).

- (22) Ansa nephrica. Synonymy: medullary loop; loop of Henle; Ansa nephroni (NH, 1983; NAA, 1979). The descending limb of the avian medullary loop (Fig. 10.5) comprises the Tubulus rectus proximalis, the Tubulus attenuatus, and the first part of the Tubulus rectus distalis. The ascending limb is formed by the remainder of the Tubulus rectus distalis. The loop turns in the Tubulus rectus distalis. For the detailed disposition of the loops in the medulla of various avian taxa, see Johnson (1979: 209).
- (23) **Tubulus contortus distalis.** The distal convoluted tubule begins immediately distal to the Macula densa. It is narrower and shorter than the Tubulus contortus proximalis. It runs towards the V. intralobularis, makes a few convolutions, and then turns abruptly to the periphery of the cortex to empty into the Tubulus conjungens (Fig. 10.5) (Johnson, 1979: 207). The cells of the Epithelium simplex cuboideum lack a brush border, but have deep lateral and basal folds (Siller, 1971: 220). Ultrastructural and histochemical variations have been observed along the distal convoluted tubule (Nicholson, 1982). Previously the Macula densa in both mammals and birds (Siller, 1971: 221; Johnson, 1979: 207) was generally considered to belong to the beginning of the distal convoluted tubule, but see Annot. 29.
- (24) **Tubulus conjungens.** Synonmy: junctional tubule (Huber, 1917); initial collecting duct (Sperber, 1960); collecting tubule (Siller, 1971: 221); pars conjungens of Tubulus convolutus distalis (NAA, 1979); connecting tubule (Wideman, 1988). The Tubulus conjungens (connecting tubule) lies in the periphery of the cortex, and connects the distal end of both the cortical and the juxtamedullary type of nephron with the Tubulus colligens corticalis (Fig. 10.5) (Wideman, et al., 1981). Siller (1971: 221) regarded it as a part of the nephron, but this depends on embryological evidence which is lacking (Johnson, 1979: 199).

The cells of its Epithelium simplex cuboideum (sometimes low columnar) contain mucopolysaccharide granules (Hodges, 1974: 519) and are therefore clearly distinguishable from those of the Tubulus contortus distalis. Mucin is characteristic of collecting ducts but not the nephron. As Johnson (1979: 208) pointed out, this indicates a developmental origin from the metanephric diverticulum (like collecting tubules in general) and not from the Blastema metanephrogenicum (like nephrons). The avian Tubulus conjungens would presumably then be homologous to the mammalian Tubulus renalis arcuatus, which joins the distal convoluted tubule to the Tubulus colligens rectus in the medullary ray.

- (25) **Tubulus colligens.** The collecting tubules of birds are named according to their site. The Tubulus colligens corticalis lies in the cortex (Fig. 10.4), and is continued in the medulla by the Tubulus colligens medullaris (Fig. 10.3).
- (26) Tubulus colligens corticalis. Cortical collecting tubules lie a short distance below the surface of the cortex (Figs. 10.3, 4) (Wideman, et al., 1981). Each tubule drains a number of nephrons (Siller, 1971: 225; Wideman, 1988: Fig. 5A). The cortical type of nephron has no Ansa nephrica and therefore lacks the capacity for countercurrent multiplication for concentrating urine; however, the urine in the collecting tubules is concentrated by the medullary concentration gradient in the medullary cones (Wideman, et al. 1981). The **Epithelium simplex cuboideum** is characterized by mucopolysaccharide granules (Hodges, 1974: 519).

**Tubulus colligens medullaris.** The medullary collecting tubules descend through the medullary region of the Lobulus renalis, fusing to form progressively larger tubules (Fig. 10.3) (Wideman, 1988: Fig. 5A). They are a major constituent of

- the medullary cone (Annot. 6), with species variations (Johnson, 1979: 209). As the tubules become larger, their lining changes from **Epithelium simplex cuboideum** to **Epithelium simplex columnare**, but all these cells are characterized by mucopoly-saccharide granules (Hodges, 1974: 519).
- (27) **Ductus colligens.** At the apex of the medullary part of the renal lobule (medullary cone), the collecting tubules typically converge into a single collecting duct, the Ductus colligens (Fig. 10.3); this represents the third order of branching of the ureter (Fig. 10.2) (see Annot. 43 for termination of ducts). The epithelium becomes more complex as the collecting tubules converge, ranging from **Epithelium stratificatum cuboideum to Epithelium pseudostratificatum columnare**, with mucopolysaccharide granules throughout (Johnson, 1979: 219).
- (28) Complexus juxtaglomerularis. Despite doubts (Ogawa and Sokabe, 1971; Sokabe and Ogawa, 1974; Wideman, et al. 1981), evidence assembled by Johnson (1979: 208), Siller (1983: 96), and Wideman (1988: 155) established that the juxtaglomerular complex is present in birds, comprising the Macula densa, Endocrinocyti myoidei, and Mesangium extraglomerulare. The complex is complete in both cortical and juxtamedullary nephrons (Morild, et al., 1985b).
- (29) Macula densa (Fig. 10.5). Always present in birds, in both Nephrona corticalia and Nephrona juxtamedullaria (Morild, et al. 1985a). The Macula densa is histologically similar to that of mammals (Siller, 1971: 221), but ultrastructural differences may exist (Siller, 1983: 96). Also it varies greatly in development (height, crowding of cells) even within the same kidney (for review see Wideman, 1988: 155). The Nomina Histologica (1983, 1989) regards the mammalian Macula densa as belonging to the Tubulus rectus distalis, and this has been adopted here for the avian Nephron juxtamedullare. In the avian Nephron corticale the Macula densa belongs to the Tubulus distalis, occurring after a short preglomerular segment (Fig. 10.5) (Morild, et al., 1985a).
- (30) Endocrinocytus myoideus [Juxtaglomerularocytus]. Synonymy: granular epithelioid cell (Ogawa and Sokabe, 1971; JG cell. The myoid endocrine cell is the renin-secreting, modified myocyte of the tunica media of the afferent glomerular arteriole at the vascular pole of the glomerulus. Siller (1971: 210) found the granules that typify these cells in mammals to be very difficult to demonstrate, but their presence has been confirmed electron microscopically (Ogawa and Sokabe, 1971; Morild, et al., 1985b).
- (31) Mesangium extraglomerulare [Insula juxtavascularis]; Mesangiocytus extraglomerularis. The extraglomerular mesangiocyte is also known as the Polkissen, Goormaghtigh, or Lacis cell. The extraglomerular mesangium is formed by an aggregation of extraglomerular mesangiocytes at the vascular pole of the glomerulus. Ogawa and Sokabe (1971) failed to find these cells by either light or electron microscopy, but Siller (1971: 210) and Johnson (1979: 209) established their presence. See Annot. 8.
- (32) A. renalis cranialis/media/caudalis. The cranial renal artery arises from the aorta, whereas the middle and caudal arteries arise from the A. ischiadica (Fig. 10.6) often by a common trunk (Goodchild, 1956; Siller and Hindle, 1969; Kurihara and Yasuda, 1975). The cranial artery distributes three or four primary branches to the Divisio cranialis of the kidney, the middle artery sends two to the middle division, and the caudal artery four or five to the caudal division (Kurihara and Yasuda, 1975). Despite the generalization that the A. iliaca externa supplies the kidney (Spanner,

- 1925; Sperber, 1960), Siller and Hindle (1969) showed from the very old literature that only an *Ardea* species gets blood from that source.
- (33) Aa. intralobulares. The interlobular arteries arise from branches of the renal arteries. Siller and Hindle (1969) believed that Aa. interlobares have not yet been identified, but see Kurihara and Yasuda (1975) though their definition of "lobe" may differ from that used here. There are many intralobular arteries in each renal lobule (Fig. 10.4). They run parallel with each other and with the lateral border of the lobule, only slightly deeper than the glomeruli that they supply (Fig. 10.3) (Kurihara and Yasuda, 1975; Siller, 1983). They form afferent glomerular arterioles. Various authors reported that other arterioles arise from the intralobular arteries and connect directly with, e.g., the Vv. interlobulares or intralobulares, thus providing arteriovenous shunts (West, et al., 1981: 299), but Wideman, et al. (1981) were unable to find them.
- (34) Arteriola glomerularis afferens. Because the Aa. intralobulares lie only a little deeper than the Glomeruli, the afferent glomerular arterioles are very short (Fig. 10.3) (Siller and Hindle, 1969; Kurihara and Yasuda, 1975).
- (35) Arteriola glomerularis efferens. The efferent glomerular arteriole is longer than the afferent (Kurihara and Yasuda, 1975). It runs towards the periphery of the lobule and gives off two to five terminal branches that empty abruptly into Vasa capillaria sinusoidea of the Rete capillare peritubulare corticale, thus forming portal-arterial anastomoses (Fig. 10.4) (Kurihara and Yasuda, 1975; Wideman, et al., 1981).
- (36) Arteriolae rectae. The arteriolae rectae descend in the medullary region (cone) of each lobule (Fig. 10.3). They arise near the medulla as in mammals (Siller and Hindle, 1969), being derived solely from efferent arterioles belonging to the juxtamedullary type of nephron (Wideman, et al., 1981). They open into a rich capillary network extending throughout the medullary cone (Johnson, 1979: 217).
- (37) Rr. renales afferentes; Vv. interlobulares; Rdxx. renales efferentes; Vv. intralobulares. The afferent renal venous rami are the branches of the Vv. portalis renalis cranialis and caudalis; they end by forming the Vv. interlobulares. The efferent renal venous radices are formed by union of the Vv. intralobulares, and they discharge into the Vv. renales craniales and the V. renalis caudalis (Fig. 10.6). For the main channels of portal flow see Ven. Annot. 59.
- (38) Rete capillare peritubulare corticale. The richly anastomosing cortical peritubular capillary network, which ramifies among the renal tubules within the cortex of each lobule. At the periphery of the lobule the rete receives venous blood from the venules of the Vv. interlobulares and arterial blood from the Arteriolae efferentes (Fig. 10.4). Wideman, et al. (1981) established that all renal tubules have access to this mixture of portal and arterial blood, except for the Ansae nephricae of the juxtamedullary nephrons. For other possible arteriovenous shunts see Annot. 33.
- (39) Vas capillare sinusoideum. The vessels of the Rete capillare peritubulare corticale are not true capillaries but sinusoidal capillaries similar to those in the liver (Wideman, et al., 1981).
- (40) Valva portalis renalis. The renal portal valve appears to be unique in being the only vascular valve containing innervated smooth muscle fibres in any vertebrate (Oelofsen, 1977). Essentially the valve is cone-shaped, with its the apex opening into the V. iliaca communis (Fig. 10.6) (Akester, 1964). In some species such as *Gallus* the valve has a single orifice, but in others it has multiple openings (Sperber, 1949).

In Struthio camelus there are evidently three cone shaped valves, side by side, at the usual site (Oelofsen, 1977). The valve is regulated by contraction of innervated smooth muscle cells at its base (Gilbert, 1961; Akester and Mann, 1969) or swelling of epithelioid cells at its apex (Spanner, 1939), the former perhaps for coarse and the latter for fine adjustment (Schwarz, et al., 1981).

- (41) **Venulae rectae.** Presumably these drain the blood from the medullary cone of each lobule (Fig. 10.3). However, the Venulae rectae seem to be indistinguishable histologically from the Arteriolae rectae in birds, in contrast to those of mammals (Johnson, 1979: 217), and their drainage has not yet been established (Wideman, 1988: 140). The Venulae rectae and Arteriolae rectae together constitute the Vasa recta.
- (42) Pars renalis; Pars pelvica. These terms were introduced by Goodchild (1956) and King (1975: p1925). The renal part of the ureter is the segment related to the kidney (Fig. 10.1). The pelvic part runs from the Extremitas caudalis of the kidney to the Urodeum.
- (43) **Rr. ureterici primarii/secundarii/tertiarii.** The primary rami of the ureter are the direct tributaries of the ureter (Fig. 10.1). A secondary ramus of the ureter drains a group of collecting ducts and their medullary cones (Fig. 10.2), thus forming the basis of a Lobus renalis (Annot. 5). Each Ductus colligens is equivalent to a tertiary ramus of the ureter; it drains a single medullary cone and forms the basis of a Lobulus renalis (Fig. 10.2). Species variations in the numbers and patterns of primary rami were reviewed by Johnson (1979: 217).
- (44) **Tunica mucosa; Tunica muscularis.** According to the reviews and original observations of Hodges (1974: 519) and Johnson (1979: 219) in a wide range of species, the epithelium of the ureter is a tall columnar pseudostratified type in which lie many vacuoles filled with mucopolysaccharides (Annot. 27). Columnar, bistratified, and transitional variants have been reported by other authors. Beneath the epithelium is a thick, gland-free Lamina propria mucosae. The Tunica muscularis contains three layers, the middle circular layer being much the best developed.



Fig. 10.1. Ventral view of the male urogenital system of *Gallus*. The right kidney is drawn as though transparent to show the primary and secondary rami of the ureter. Most of the cranial half of the left Ductus deferens has been removed. From King (1975), with permission from W. B. Saunders, Philadelphia.



Fig. 10.2. Schematic diagram of the lobar and lobular architecture of the avian kidney. The Lobus renalis is based on a secondary ramus of the ureter. The diagram shows a secondary ramus draining a group of five Lobuli renales, 1-5, together constituting one renal lobe. Each of these five lobules is drained by its own collecting duct (Ductus colligens), which is equivalent to a tertiary ramus of the ureter. The five collecting ducts are enclosed in a common connective tissue coat (cut transversely at X-Y).

A renal lobule has a cortical region and a medullary region. The cortical region has an intralobular vein at its center. The medullary region of a lobule is also known as a medullary cone. It contains collecting tubules (Tubuli colligentes), transected in Lobuli 3 and 4 as small circles. The medullary region of each lobule is surrounded by its own connective tissue sheath, which blends with the connective tissue coat transected at X-Y. The cortical region of a lobule is not bounded by connective tissue, and therefore the cortex of adjacent lobules is blended. However, the lobules lie at irregular depths in the kidney, and consequently neither the cortex nor the medulla forms a uniform stratum. A given medullary region often drains the cortical regions associated with adjacent Vv. intralobulares. For example, two independent cortical regions blend at the arrow; medullary region 5 would receive collecting tubules from both of these cortical regions. Not drawn to scale. Based on Johnson (1974).



Fig. 10.3. Schematic longitudinal section through an avian renal lobule. Renal portal blood arrives (black arrows) in the afferent renal rami (R. renalis afferens) and thence interlobular veins (V. interlobularis). Arterial blood (white arrows) arrives in the intralobular arteries (A. intralobularis). Relatively small cortical glomeruli lie in a semicircle in the more superficial (upper) part of the cortical region of the lobule, and larger juxtamedullary glomeruli (Glom.) lie in the deeper part. The Arteriola glomerula afferens are very short. Efferent glomerular arterioles end by discharging (small open arrows) into the cortical peritubular capillary rete (not shown). In the centre of the lobule, blood from the rete (black arrows) drains into the V. intralobularis. Three cortical nephrons are shown in the upper part of the lobule; two juxtamedullary nephrons, each with an Ansa nephrica, lie in the lower part. The Tubulus conjungens is hatched. The Venula recta is speculative. From Wideman (1988) with permision of the author and CRC Press.



Fig. 10.4. Schematic transverse section through the cortical region of an avian renal lobule. Renal portal blood (arrow) arrives in the interlobular veins (Vv. interlobulares), passes through the Vasa capillaria sinusoidea, and drains out via the centrally placed intralobular vein (V. intralobularis). The sinusoidal capillaries form a profusely anastomosing network of vessels surrounding the nephronal tubules, the Rete capillare peritubulare corticale, much more extensive than shown here. The Aa. intralobulares should be slightly more peripheral in the lobule than shown, being only a little deeper than the glomeruli that they supply; the Arteriolae glomerulares afferentes are therefore shorter than shown. The Arteriolae glomerulares efferentes discharge into the sinusoidal capillaries at the periphery of the lobule, forming portal-arterial anastomoses. The cortical collecting tubules (Tubulus coll. cort.) lie a short distance below the interlobular veins, thus leaving room at the surface of the lobule for the most peripheral loops of the nephronal tubules. From Wideman, et al. (1981) with permission of the authors and the Journal of Morphology.



Fig. 10.5. Diagrams showing the main parts of two avian Nephrona corticalia (top), and one Nephron juxtamedullare (bottom); not drawn to scale. The arrangement of the two cortical nephrons is based on Morild, et al. (1985a), and shows four basic bends (1-4). Extra loops and coils may occur, particularly at bend 1 lying parallel with the surface of the lobule. In the highly schematic diagram at top left, the four bends and the loops connecting them have been separated to show the basic pattern more clearly. The Tubulus intermedius may be absent or difficult to see. The disposition of the juxtamedullary nephron is based on Wideman (1988: 140).



Fig. 10.6. Semidiagrammatic ventral view of the kidneys of *Gallus*, drawn as though transparent to show their blood vessels. \*, site of Valva portalis renalis. Redrawn from King (1975), with permission from W. B. Saunders, Philadelphia.

# TERMINOLOGY ORGANA GENITALIA MASCULINA TESTIS

Extremitas cranialis Extremitas caudalis Facies lateralis Facies medialis Margo liber Margo epididymalis Mesorchium

Tunica albuginea<sup>1</sup>
Interstitium testis
Endocrinocytus interstitialis
Parenchyma testis

Tubulus seminifer convolutus<sup>2</sup>
Epithelium spermatogenicum
Epitheliocytus sustenans<sup>3</sup>
Cellulae spermatogenicae
Lamina limitans<sup>3</sup>

Membrana basalis<sup>3</sup>
Stratum fibrosum<sup>3</sup>
Stratum myoideum<sup>3</sup>
Tubulus seminifer rectus<sup>2</sup>

Rete testis<sup>4</sup>

Cisterna intracapsularis<sup>4</sup> Cisterna intratesticularis<sup>4</sup> Cisterna extratesticularis<sup>4</sup>

Vasa sanguinea et nervi testis
A. testicularis<sup>5</sup>
Vv. testiculares<sup>5</sup>
Truncus thoracicoabdominalis
Vasa 1. testicularis (**Lym.**Fig. 13.6

Fig. 13.6)
Plexus aorticus (PNS Annot. 81)
Plexus adrenalis
Gg. adrenalia
Plexus testicularis

Spermatogonium<sup>6</sup>
Spermatocytus primarius

Spermatocytus secundarius Spermatidium

Proacrosoma<sup>7</sup>

Vesicula proacrosomatica<sup>7</sup>
Granulum proacrosomaticum<sup>7</sup>

Acrosoma<sup>8</sup>

Membrana acrosomatica externa<sup>12</sup>

Membrana acrosomatica interna<sup>12</sup>

Substantia acrosomatica<sup>8</sup> Perforatorium<sup>7,12</sup>

Corpusculum chromatoideum<sup>9</sup> Flagellum<sup>10</sup>

Vagina cytoplasmatica

Spermatozoon<sup>11</sup>

Caput<sup>11</sup>

Acrosoma<sup>12</sup>

Membrana acrosomatica

externa<sup>12</sup>

Membrana acrosomatica interna<sup>12</sup>

Substantia acrosomatica<sup>12</sup>

Perforatorium<sup>12</sup>

Substantia subacrosomatica<sup>12</sup>

Substantia postacrosomatica<sup>12</sup>

Nucleus

Fossula articularis<sup>13</sup>

 $Flagellum^{11,14}$ 

Pars conjungens<sup>14</sup>

Capitulum<sup>14</sup>

Centriolum proximale<sup>14</sup>

(continued)

#### **TESTIS** (cont.)

Pars intermedia<sup>14</sup>
Centriolum distale<sup>14</sup>
Axonema<sup>15</sup>
Microtubulus centralis<sup>15</sup>
Diplomicrotubulus
periphericus<sup>15</sup>

Vagina mitochondrialis<sup>16</sup>
Anulus [Annulus]<sup>17</sup>
Pars principalis<sup>14</sup>
Axonema<sup>15</sup>
Vagina amorpha<sup>18</sup>
Pars terminalis<sup>14</sup>
Axonema<sup>15</sup>

#### **EPIDIDYMIS**

Extremitas cranialis<sup>19</sup>
Extremitas caudalis<sup>19</sup>
Ductulus efferens proximalis testis<sup>20</sup>
Ductulus efferens distalis testis<sup>20</sup>
Ductulus conjungens<sup>21</sup>
(Ductulus paradidymidis)<sup>22</sup>

(Appendix epididymidis)<sup>22</sup>
(Ductus aberrans)<sup>22</sup>
(Ductulus aberrans)<sup>22</sup>
Ductus epididymidis<sup>21</sup>

A. testicularis Rr. epididymales

#### **DUCTUS DEFERENS**

Ansae ductus deferentis<sup>23</sup>
Pars recta ductus deferentis<sup>24</sup>
Receptaculum ductus deferentis<sup>25</sup>
Papilla ductus deferentis<sup>26</sup>
Ostium ductus deferentis<sup>26</sup>
Glomus seminale<sup>27</sup>
Promontorium cloacale<sup>27</sup>

Vasa sanguinea et lymphatica et nervi ductus deferentis

A. renalis cranialis

Rr. ureterodeferentiales craniales

A. ischiadica

Rr. ureterodeferentiales medii

A. pudenda

Rr. ureterodeferentiales caudales

Vv. testiculares

Rr. ureterodeferentiales craniales

V. renalis caudalis

Vv. ureterodeferentiales mediae

V. pudenda

Vv. ureterodeferentiales caudales

Truncus thoracoabdominalis

Vasa 1. ureterodeferentialia

N. pudendus

Rr. ductus deferentis

Plexus aorticus (PNS Annot. 81)

(Lym.)

Plexus adrenalis

Gg. adrenalia

Rr. ductus deferentis

#### APPARATUS COPULATIONIS

Phallus masculinus<sup>28</sup> Phallus nonprotrudens<sup>29</sup> Corpus phallicum medianum<sup>30</sup> Corpus phallicum laterale<sup>30</sup>

(continued)

## **APPARATUS COPULATIONIS (cont.)**

Plicae lymphaticae<sup>31</sup> Fossa ejaculatoria<sup>32</sup> Sulcus ejaculatorius<sup>32</sup> Lymphobulbus phalli dexter/sinister<sup>33</sup> Corpus vasculare phalli<sup>33</sup> Glomera corporis vascularis phalli<sup>33</sup> Sinus lymphatici<sup>33</sup> Vasa 1. cloacalia<sup>34</sup> Phallus protrudens<sup>35</sup> Basis phalli<sup>36</sup> Corpus fibrocartilagineum<sup>37</sup> Lymphobulbus phalli<sup>38</sup> Corpus vasculare phalli<sup>38</sup> Glomera corporis vascularis phalli<sup>38</sup> Sinus lymphaticus<sup>38</sup> Cisterna lymphatica basis phalli<sup>39</sup> Vasa 1. cloacalia<sup>40</sup>

Rugae phalli<sup>43</sup> Cisterna lymphatica corporis phalli44 Flexura phalli nonerecti/Apex phalli erecti<sup>45</sup> Sacci phalli36,46 Saccus cutaneus phalli<sup>46</sup> Ostium sacci cutanei phalli46 Rugae phalli43 Lamina epithelialis<sup>47</sup> Lamina propria<sup>47</sup> Saccus glandularis phalli<sup>46</sup> Ostium sacci glandularis phalli46 Lamina epithelialis<sup>47</sup> Lamina propria<sup>47</sup> Lig. elasticum phalli<sup>48</sup> Suspensorium phalli<sup>49</sup> Involucrum phalli<sup>36</sup> Fossa eiaculatoria<sup>50</sup> Sulcus ejaculatorius<sup>50</sup>

Vasa I. cloacatia<sup>40</sup>
Corpus phalli<sup>36</sup>
Sulcus phalli<sup>41</sup>
Labium sulci phalli
dextrum/sinistrum<sup>42</sup>

M. retractor phalli caudalis [M. levator cloacae]<sup>51</sup> M. retractor phalli cranialis [M. dilator cloacae]<sup>51</sup>

#### VASA et NERVI APPARATI COPULATIONIS

(see Vasa et Nn. cloacae and Cloaca Annots. 22-25)

## **ANNOTATIONS**

- (1) **Tunica albuginea.** An extremely thin fibrous layer covering the testis (Lake, 1981: 12) (Fig. 10.8). Septula testis and mediastinum testis are absent in birds (Tingari, 1971; Budras and Sauer, 1975; Budras and Schmidt, 1976).
- (2) **Tubulus seminifer convolutus; Tubulus seminifer rectus.** The convoluted seminiferous tubule (Fig. 10.8) is equivalent to the Tubulus seminifer contortus of the NAV (1983) and the Tubulus seminifer convolutus of the NH (1989).

Tubulus seminifer rectus. The absence (Tingari, 1971) or presence (Osman, 1980) of the straight seminiferous tubule in birds was reviewed by Budras and Meier (1981). A dispute arises in defining where a Tubulus seminifer ends and the Rete testis begins. This is largely because the junction between the two is much shorter in birds than in mammals (Lake, 1981: 23). In the rat, the Tubulus seminifer convolutus is usually a closed loop which opens at both ends into a Tubulus seminifer rectus, and thence into the rete testis (generally accepted for man also (Williams and Warwick, 1980: 1411). In man the first part of the Tubulus seminifer rectus is lined by modified Epitheliocyti sustenantes and the rest by simple cuboidal epithelial cells with irregular microvilli and occasional cilia, the entire tubule being surrounded by a dense connective tissue sheath (Krstic, 1984: 431). The Tubulus seminifer rectus is said to be present in domestic mammals (e.g., Nickel, et al., 1973: 305; Banks, 1981: 478), but Trautmann and Fiebiger (1957: 260) state that the mammalian Tubuli seminiferi convoluti may open directly into the Rete testis. In birds the end of the Tubulus seminifer convolutus changes abruptly (Fig. 10.8) giving a short length of tubule that is lined by modified Epitheliocyti sustenantes; this short segment has been classically named the "Tubulus rectus" (e.g., Lake, 1957; Budras and Schmidt, 1976; NAA, 1979; Barker and Kendall, 1984; see Lake, 1981: 24 for review of the earlier literature). Budras and Meier (1981) argued that, because this short segment is lined by modified Epitheliocyti sustenantes, it belongs to the terminal segment of the Tubulus seminifer convolutus. They proposed to call it simply the terminal segment of the Tubulus seminifer convolutus. A further complication is that this terminal segment runs directly into a short duct that becomes an intratesticular cistern of the Rete testis (Annot. 4) (Fig. 10.8). This short duct has been named Tubulus rectus by some authors (e.g., Aire, 1979a). Its epithelium, however, is low cuboidal or simple squamous, i.e., identical to that of the Rete testis in most birds (Lake, 1981: 24: Budras and Meier, 1981), and therefore it can reasonably be regarded simply as an initial segment of the Rete testis (Budras, pers. comm., 1990).

- (3) Epitheliocytus sustenans; Lamina limitans; Membrana basalis; Stratum fibrosum; Stratum myoideum. The Epitheliocytus sustenans (sustentacular cell) was formerly known as the Sertoli cell. Its intercellular junctions form a blood-testis barrier which prevents foreign proteins, produced by haploid germ cells, from reaching the blood and provoking an autoimmune reaction. The Lamina limitans has been regarded as part of this barrier. Its structure is similar to that of mammals (Rothwell and Tingari, 1973). The Membrana basalis is a classic basement membrane. The Stratum fibrosum comprises typical fibroblasts and collagen fibrils. The Stratum myoideum produces the rhythmic contractions that force the spermatozoa towards the epididymis.
- (4) Rete testis; Cisterna intracapsularis; Cisterna intratesticularis; Cisterna extratesticularis. The rete testis has been found in species of several avian orders (Alverdes, 1924; Gray, 1937; Bailey, 1953; Stoll and Maraud, 1955; Tingari, 1971; Budras and Schmidt, 1976; Aire, 1979a; Budras and Meier, 1981; Tetzlaff, 1983; Barker and Kendall, 1984; Nasu, et al., 1985). In the domestic form of *Gallus gallus* its main component is a longitudinal intracapsular cistern which is embedded in the Tunica albuginea. This connects with transversely orientated intratesticular and extratesticular cisterns (Fig. 10.8) (Budras and Schmidt, 1976). The concept of a major intracapsular component and minor intratesticular and extratesticular components of the rete in *Gallus* was also supported by Stoll and Maraud (1955) and Aire (1979a), but Tingari (1971) and Nasu, et al. (1985) believed the main component in *Gallus* to

be extratesticular. It is possible that the Rete testis may not be a universal feature of birds (Traciuc, 1967, 1969; Lake, 1981: 23).

- (5) A. testicularis; Vv. testiculares. The A. testicularis arises from the cranial renal artery, and an accessory testicular artery occasionally arises from the aorta. The several testicular veins drain into the caudal vena cava (Nishida, 1964). See Art. Annot. 66; Ven. Annot. 56.
- (6) **Spermatogonium.** Lin, et al. (1990) distinguished three types of spermatogonia in *Coturnix*, classifying them into dark type A, pale type A, and Type B, according to the mammalian terminology.
- (7) Proacrosoma; Vesicula proacrosomatica; Granulum proacrosomaticum; Perforatorium. In the spermatid the proacrosome is the precursor of the acrosome. It is first seen as an elliptical body, the proacrosomatic vesicle, formed from the Golgi complex of the spermatid. This body then becomes attached to the nuclear membrane of the early spermatid (Tingari, 1973). The proacrosomatic granule is a small dense granule that arises in the proximal nuclear invagination of the early spermatid (Nagano, 1962). It then develops rapidly (Tingari, 1973) into the Perforatorium.
- (8) Acrosoma; Substantia acrosomatica. At the late stage of development of the spermatid of the domestic fowl, when the nucleus elongates and condenses, the acrosome already shows the shape that characterizes the ejaculated spermatozoon (unlike mammals). The acrosomatic substance develops as an electron-lucent homogeneous material attached to the nucleolemma of the early spermatid (Tingari, 1973).
- (9) Corpusculum chromatoideum. The chromatoid body is an electron-dense granule close to the nucleus of the spermatid, visible in histological preparations. It is evidently the "alveolar body" or "membrane body" of electron microscopy, which is an aggregate of proteinaceous vacuoles and granular material (Gunawardana and Scott, 1977; Xia, et al., 1986).
- (10) **Flagellum.** The entire Flagellum of the spermatid is enclosed within a loose plasmalemma, and contains nine doublets and a central pair of microtubules (McIntosh and Porter, 1967; Tingari, 1973).
- (11) **Spermatozoon.** The Spermatozoon consists of a Caput (head) and a Flagellum (tail). Reviews of the literature by McFarlane (1969) and Lake (1981: 40) established two general types of spermatozoon in birds. The simpler type (Fig. 10.7) is relatively short and plain, occurs throughout the non-passerine orders (except some charadriiforms), and resembles that of reptilia; the passerine type is relatively much longer, typically having a complex spiral shape which is considered to indicate higher evolutionary development (McFarlane, 1969).
- (12) Acrosoma; Substantia acrosomatica; Membrana acrosomatica externa/interna; Perforatorium; Substantia subacrosomatica; Substantia postacrosomatica. The acrosome fits like a cone over the proximal end of the head of the spermatozoon (Fig. 10.7). It comprises the acrosomatic substance enclosed between the external and internal acrosomatic membranes (Bakst and Howarth, 1975) (Fig. 10.7). The Substantia acrosomatica, which is presumed to contain the enzymes that hydrolyse the path through the Lamina perivitellina, appears homogeneous (Lake, et al., 1968) and thus lacks the regional differences into the acrosomal cap and collar of mammals (Bakst and Howarth, 1975). The Perforatorium (synonymy: Spina acrosomae, NAA, 1979; acrosomal spine, Lake, et al., 1968; Tingari, 1973) is homogeneous and not membrane-bound (Bakst and Howarth, 1975) but is embedded in the

subacrosomatic substance (Fig. 10.7). The latter is a fine granular homogeneous material appearing confluent with the similar material of the postacrosomatic substance (Tingari, 1973). Since the Perforatorium is outside the acrosomatic membranes it is not strictly a part of the acrosome, and therefore the term Perforatorium is preferred to the Spina acrosomae of NAA (1979). However, the avian "acrosomal spine" differs from the mammalian perforatorium in the timing of its development (Tingari, 1973) and its definitive structure (Lake, 1981: 40). The homology of these structures is uncertain, and the use of "perforatorium" in birds should therefore be kept under review.

- (13) **Fossula articularis.** The articular fossa is an irregular invagination of the head (Fig. 10.7), shaped to receive the articular facet(s) of the Capitulum (Thurston and Hess, 1987).
- (14) **Flagellum.** The tail of the flagellum is divided into the Pars conjungens, Pars intermedia, Pars principalis, and Pars terminalis (Fig. 10.7) (Lake, et al., 1968).

Pars conjungens. Synonymy: Collum spermatozoi, NAA, 1979; neck. Separate masses of dense material arise in the space between the Centriolum proximale and the nuclear membrane (Nucleolemma) (Fig. 10.7). These fuse with dense material of the proximal centriole to form the several articular facets of the Capitulum (Lake, et al., 1968; Tingari, 1973; Bakst and Howarth, 1975).

Pars intermedia. Synonymy: Pars media (NAA, 1979); middle piece. The proximal boundary of the middle piece (Fig. 10.7) is formed by the line of fusion of the Centriolum proximale with the Centriolum distale (Bakst and Howarth, 1975). In mammals the distal centriole is a component of the Pars conjungens; in birds it forms part of the middle piece (Fig. 10.7), lying axially within the Vagina mitochondrialis (Lake, 1981: 45).

Pars principalis. The lengthy principal piece of the flagellum (Fig. 10.7) begins at the Anulus.

**Pars terminalis.** The short end piece of the flagellum (Fig. 10.7) consists only of the axonemal complex surrounded by the plasmalemma (Lake, et al., 1968; Thurston and Hess, 1987).

- (15) Axonema; Microtubulus centralis; Diplomicrotubulus periphericus. The Axonema is the axial filament complex, extending throughout the Pars principalis and Pars terminalis of the flagellum (Fig. 10.7). It consists of two central single "fibres" or microtubules, the central microtubules, which are surrounded by nine doublet "fibres" or microtubules known as the Diplomicrotubuli peripherici (peripheral diplomicrotubules) (Nagano, 1962; Lake, et al., 1968; Tingari, 1973). The term "fibre" is unsuitable, as each of these structures possesses a dense rim and lighter interior thus resembling a microtubule.
- (16) Vagina mitochondrialis. In the Pars intermedia of the flagellum, the Axonema is surrounded by the mitochondrial sheath (Fig. 10.7). This consists of mitochondria arranged as roughly rectangular plates curved along the longitudinal axis (Lake, et al., 1968). In passerine spermatozoa, the mitochondria according to Fawcett, et al. (1971) are arranged in a spiral series, but according to McFarlane (1971: 20) and Humphreys (1972) there is typically only a single elongated mitochondrion which winds spirally around the Pars intermedia.

- (17) Anulus [Annulus]. The anulus is formed at an indentation of the plasmalemma at the distal end of the Vagina mitochondrialis (Fig. 10.7). Electron-dense material is deposited here on the inner surface of the plasmalemma, thus thickening the plasmalemma where it directly invests the escaping Axonema (Nagano, 1962; Lake, et al., 1968; Tingari, 1973).
- (18) Vagina amorpha. A sheath of amorphous material surrounding the Axonema distal to the Vagina mitochondrialis. It becomes thinner towards the end of the Pars principalis (Lake, et al., 1968; Tingari, 1973; Thurston and Hess, 1987), and is absent from the Pars terminalis (Lake, 1981: 48) (Fig. 10.7).
- (19) Extremitas cranialis; Extremitas caudalis. These terms replace the mammalian Caput, Corpus, and Cauda epididymidis, which are inappropriate in birds since the Ductuli efferentes testis occur throughout the whole length of the epididymis (Fig. 10.8).
- (20) **Ductulus efferens proximalis/distalis testis.** The proximal ductules in *Gallus* and ratite species (Budras and Sauer, 1975; Budras and Meier, 1981) are generally much wider than the distal (Fig. 10.8). Both are lined by ciliated cells and cells with a brush border (microvilli). The proximal ductules arise from the glomerular capsules of the mesonephros, and the distal from the proximal and distal tubules and intermediate segments of the mesonephros (Budras and Sauer, 1975).
- (21) **Ductulus conjungens; Ductus epididymidis.** Connecting ductules (Fig. 10.8) have been reported in ratites (Budras and Meier, 1981), *Anas* (Tetzlaff, 1983), and galliform species (Budras and Schmidt, 1976; Aire, 1979a, b). They are initially narrower than the Ductuli efferentes testis, but as they approach the Ductus epididymidis they join one another and become wider. The Ductuli conjungentes end by joining the Ductus epididymidis. Their epithelial lining is the same as the Ductus epididymidis. In the embryo they arise from the collecting tubules of the mesonephros (Budras and Sauer, 1975).
- (22) Ductulus paradidymidis: Appendix epididymidis; Ductus aberrans; Ductulus aberrans. These vestigial structures are present in *Gallus* (Stoll and Maraud, 1955; Tingari, 1971). The paradidymal ductules, blind at both ends, are rare, but can be found in all parts of the epididymis. The Appendix epididymidis of *Gallus* is a cranial continuation of the epididymis (Fig. 10.8), and is attached to the adrenal gland (Budras and Sauer, 1975). It consists of the Ductus aberrans which develops from the mesonephric duct, and of Ductuli aberrantes which arise from the mesonephric tubules. The aberrant ductules open into the aberrant duct. Most of them are in the appendix of the epididymis, a few also in the main part of the epididymis.
- (23) Ansae ductus deferentis. The sinuous curves of the main part of the Ductus deferens (Fig. 10.1).
- (24) Pars recta ductus deferentis. The short straight caudal end of the Ductus deferens (Marvan, 1969).
- (25) Receptaculum ductus deferentis. Synonymy: Ampulla ductus deferentis (Marvan, 1969; Kudo, et al., 1975). The receptaculum is the spindle-shaped terminal dilation of the deferent duct. The term Ampulla is descriptively accurate, but incorrectly suggests homology to the mammalian ampulla.

- (26) Papilla ductus deferentis; Ostium ductus deferentis. Each Ductus deferents opens into the Urodeum via the Ostium of the caudally pointed papilla of the deferent duct (Figs. 10.2, 13, 14). *Cloaca* Annot. 6.
- (27) Glomus seminale. Synonymy: seminal vesicle, seminal sac. Promontorium cloacale. The seminal glomus comprises knot-like convolutions of the caudal end of the Ductus deferens in passerines (Wolfson, 1952, 1954; Bailey, 1953; Middleton, 1972) and in the psittaciform *Melopsittacus undulatus* (Samour, et al., 1986). During the resting phase it is small, but in the breeding phase it enlarges and may enable storage and maturation of sperm. In passerines the enlargement causes the external body wall adjacent to the vent to bulge caudoventrally as the cloacal promontory, enabling the male to be sexed (Wolfson, 1952; Salt, 1954), but in some passerines a similar bulge occurs in the female in the nuptial phase (Nakamura, 1990). In *M. undulatus* the promontory is relatively inconspicuous but can be palpated (Samour, et al., 1986).
- (28) **Phallus masculinus.** Synonomy: penis, Kopulationsorgane. The term Phallus for the vertebrate copulatory organ was proposed by comparative anatomists of the nineteenth century, and adopted by Gerhardt (1933: 297). The avian phallus is not homologous to the mammalian penis (King and McLelland, 1984: 198); the mechanism of erection is lymphatic in birds and blood vascular in mammals; the semen travels by the external surface of the organ in birds and the internal urethra in mammals; and the phallus is solely reproductive in birds and both urinary and reproductive in mammals. The copulatory organs of birds and mammals should therefore have different names. The term masculinus differentiates the male organ from its female homologue.
- (29) **Phallus nonprotrudens.** The non-intromittent type of avian phallus has been extensively studied in domestic galliform species. The nineteenth century literature repeatedly mentions an apparently similar semi-vestigial phallus in Ciconiiformes, Cracidae, Otidae, and "manche Sumpfvögel", but the sources of this information are lost. Wolfson (1954) described phallic structures, possibly similar to those of the domestic fowl, in passerines, especially Emberizidae. See King (1981: 138) for a review. According to Berens v. Rautenfeld and Budras (1978) there is no copulatory erectile body at all in *Fulica atra* and the "pigeon".
- (30) (Phallus nonprotrudens): Corpus phallicum medianum. Synonymy: White body (Nishiyama, 1955; Lake, 1971: 1420); Colliculus phalli (Berens v. Rautenfeld, 1973). The median phallic body is a single midline structure (Fig. 10.9). It enlarges somewhat in erection, thus contributing to the distended phallic region that overhangs the ventral lip of the vent during ejaculation (see King, 1981: 130). According to Burrows and Quinn (1937), *Meleagris* has a paired median phallic body, but this structure is totally absent (Komárek, 1970; Feder, 1970; King, 1981: 133; Bakst and Cecil, 1983, 1986; Knight, et al., 1984).

Corpus phallicum laterale. Synonymy: Round folds (Nishiyama, 1955; Lake, 1971: 1420); Crus phalli (Berens v. Rautenfeld, 1973). Crus phalli suggests homology with the mammalian Crus penis; but the Crus contains blood vascular erectile tissue and is anchored to the ischium, whereas the avian lateral phallic body contains lymphatic erectile tissue and is not attached to bone. During ejaculation in *Gallus* and *Meleagris* the enlarged left and right lateral phallic bodies meet in the midline, thus contributing to the Sulcus ejaculatorius.

- (31) Plicae lymphaticae (of Phallus protrudens). Synonymy: Lymph folds (Nishiyama, 1955; Lake, 1971: p1420; Plicae lymfaceae (Komárek, 1970). In Gallus and Meleagris the lymphatic folds lie on the ventrolateral floor of the proctodeum (Fig. 10.9). They consist of a connective tissue core with lymphatic channels (Knight, 1967: 89). In erection the folds contribute to the Sulcus ejaculatorius. Nishiyama and coworkers proposed that the folds add fluid to the semen of Gallus during ejaculation. Berens v. Rautenfeld and Budras (1978) confirmed active transudation from lymph formed by the Corpus vasculare phalli. Transudation also occurs from the urodeal wall in Anas, Fulica atra, and Columba, directly from the capillary beds of the A. pudenda (Fujihara and Nishiyama, 1976; Berens v. Rautenfeld and Budras, 1978; Berens v. Rautenfeld, 1985). Transudation zones in the urodeal wall in Meleagris and Numida, and their possible significance in avian morphology, were discussed by Fujihara, et al. (1986, 1988).
- (32) Fossa ejaculatoria; Sulcus ejaculatorius (of Phallus nonprotrudens). The ejaculatory fossa is the region of the proctodeal floor in *Gallus* and *Meleagris* into which the papillae of the deferent ducts are directed (Komárek, 1970). In the erect phallus, the ejaculatory sulcus is the median groove between the enlarged left and right Corpora phallica lateralia and left and right Plicae lymphaticae, conveying semen from the ejaculatory fossa to the exterior of the vent (King, 1981: 128, 132, 133; Knight, et al., 1984). The Sulcus ejaculatorius of the Phallus nonprotrudens may well be homologous to that of the avian Phallus protrudens (Annot. 50) and that of the chelonian and crocodilian phallus (see King, 1981: 140-141 for review).
- (33) Lymphobulbus phalli dexter/sinister; Corpus vasculare phalli; Glomera corporis vascularis phalli; Sinus lymphatici (of Phallus nonprotrudens). Synonymy of Lymphobulbus phalli: Corpus cavernosum, Tannenberg's body, vascular body, Gefässkörper, gefässreicher Körper (for historical review see Berens v. Rautenfeld, 1973; NAA, 1979). Corpus vasculare paracloacale. The term Gefässkorper (vascular body) originated from J. Müller's classic paper of 1836, and has been widely used. Consequently it was adopted by the NAA (1979). Berens v. Rautenfeld (1973) introduced the term Lymphobulbus phalli; in his usage, the vascular body itelf is no longer named, but is simply an integral part of the Lymphobulbus phalli. Schalkház, et al. (1982) suggested the term Lymphobulbus cloacae, but retained the term Corpus vasculare and also named the Sinus lymphaticus within which the Corpus vasculare is contained. Schalkház, et al. based these terms on the anseriform phallus, but the structures are similar enough in Gallus and Anas for the same terms to be used. The terms in this edition of the NAA combine the suggestions of Berens v. Rautenfeld and Schalkház, et al. (1982). Lymphobulbus phalli is preferred to Lymphobulbus cloacae, since this structure is primarily associated with the lymphatic erection of the phallus.

The Corpus vasculare phalli (vascular body of the phallus) of *Gallus* (Fig. 10.9) and *Meleagris* is an obvious red oval structure, 7-12 mm long (Nishiyama, 1955; Kudo, et al., 1975; Knight, et al., 1984). It consists of tufts of arterial capillaries, the Glomera corporis vascularis phalli (glomera of the vascular body of the phallus), enmeshed within a network of lymphatic capillaries (Knight, 1970; Sugimura, et al., 1975; Knight, et al., 1984). The lymphatic capillaries empty into subcapsular lymphatic sinuses enclosing the surface of the Corpus vasculare phalli. In *Gallus* and *Meleagris* these sinuses are not a single continuous subcapsular sinus as in *Anas* (Annot. 38), but a network of channels (Nishiyama, 1955; Knight, 1970; Sugimura, et al., 1975; Knight, et al., 1984). Corpus vasculare phalli receives blood from the A. pudenda. Many of the blood capillaries of the Glomera of *Gallus* have

ultrastructural adaptations for the transudation of lymph into the lymphatic capillaries (Berens v. Rautenfeld and Budras, 1975; Sasaki, et al., 1984).

The Corpus vasculare phalli is known to produce lymph for erection in *Gallus* and *Meleagris* (Nishiyama, 1950, 1955; Knight, 1970; Feder, 1970; Kudo, et al., 1975; Sugimura, et al., 1975; Berens v. Rautenfeld and Budras, 1975), and presumably in birds generally (King, 1981: 138, 142) (for anseriform and ratite species see Annot. 38); however, note the view of Berens v. Rautenfeld and Budras (1978) that there is no copulatory erectile body in *Fulica atra* and the pigeon (Annot. 29). In *Gallus* the lymph is collected into the subcapsular lymphatic sinuses on the surface of the vascular body, and is carried thence into the lymphatic spaces of the phallic bodies and lymphatic folds by a network of small lymphatic channels (Knight, 1970; Knight, et al., 1984); the component that is delivered to the lymphatic folds also contributes fluid (by transudation) to the semen in *Gallus* (Annot. 31). (See King, 1981: 129 for a review of controversies on these subcapsular and drainage channels, and p. 134 for other structural details.) See also Cloaca Annots. 22-24.

- (34) Vasa I. cloacalia (of Phallus nonprotrudens). In *Gallus* all the lymphatics of the cloaca, including the phallus and its left and right Lymphobulbi phalli, drain into the Vas iliacum internum (Lym. Fig. 13.7) via a complex of Vasa I. pudenda accompanying the pudendal artery (Knight, 1970; Knight, et al., 1984). See Cloaca Annot. 24.
- (35) **Phallus protrudens.** The true intromittent copulatory organ of the ratites, tinamids, and anseriforms (King, 1981: 112).
- (36) Basis phalli; Corpus phalli; Sacci phalli; Involucrum phalli of Phallus protrudens. The Phallus protrudens has four basic components, i.e., the base of the phallus, the body of the phallus (Corpus phalli), the phallic sacs, and the phallic pouch (Involucrum phalli). The Basis phalli forms part of the ventral wall of the cloaca, in *Anas* much of it being enclosed by the Corpus fibrocartilagineum (Fig. 10.10). The Corpus phalli is invaginated in detumescence (Figs. 10.10, 11) but becomes the shaft of the phallus during erection (tumescence) (Fig. 10.12). The Sacci phalli form the hollow interior of the resting (detumescent) phallus, like an inverted finger of a glove (see Annot. 46). The Involucrum phalli is the connective tissue wrap enclosing the resting phallus (Figs. 10.10, 12).
- (37) Corpus fibrocartilagineum (of Phallus protrudens). The fibrocartilaginous body is a gutter-shaped plate of fibrocartilage in *Anas* (Fig. 10.10) (Liebe, 1914; Guzsal, 1974; Berens v. Rautenfeld et al., 1974; Fujihara, et al., 1976). Its floor strengthens the ventral wall of the urodeum and proctodeum, and its wings reinforce the lateral walls. Dorsally it supports the unpaired Cisterna lymphatica basis phalli (Fig. 10.10). The Lig. elasticum (Annot. 48, Fig. 10.10) is attached to it ventrally (Berens v. Rautenfeld, et al., 1974). The blind end of the Saccus glandularis phalli is also attached to it ventrally (Fig. 10.10) (Guzsal, 1974), and this prevents evagination of the glandular sac during erection.
- (38) Lymphobulbus phalli; Corpus vasculare phalli; Glomera corporis vasculare phalli; Sinus lymphaticus of Phallus protrudens. Synonomy of Sinus lymphaticus: Cavitas lymphatica (NAA, 1979). For other synonyms, see Annot. 33. In *Anas*, the Lymphobulbus phalli (dexter/sinister) consists of paired elongated sacs (Fig. 10.10) about 4 x 1 cm in the erect phallus, the left being larger than the right; they lie along each side of the urodeum between the cloacal sphincter and the urodeal wall (Müller, 1908; Liebe, 1914; Guzsal, 1974). Caudally the Sinus lymphaticus (lymphatic sinus) of each Lymphobulbus phalli opens directly into the median Cisterna

lymphatica basis phalli (Fig. 10.10) (Liebe, 1914; Berens v. Rautenfeld, et al., 1974), this being the channel for erecting the phallus. Schalkház, et al. (1982) suggested Lymphobulbus cloacae, but phalli is preferred because the structure is essentially phallic rather than cloacal. The Corpus vasculare phalli (vascular body of the phallus) (Fig. 10.10) is plum-shaped, red, compact, and about 2 x 1 cm in *Anas* (Guzsal, 1974). The Glomera corporis vascularis phalli (glomera of the vascular body) consist of tufts of small arteries and arterioles forming dense networks of blood capillaries (Guzsal, 1974). The surface of the Corpus vascularis phalli is surrounded by the Sinus lymphaticus, which (in contrast to *Gallus*, Annot. 33) is a single continuous subcapsular space although the lumen is traversed by many thin elastic trabeculae (Eckhard, 1876; Müller, 1908; Liebe, 1914; Guzsal, 1974).

In erection in *Anas* the lymph comes from the vascular body of the phallus (Eckhard, 1876; Müller, 1908; Liebe, 1914; Berens v. Rautenfeld, et al., 1974). On anatomical grounds Grimpe (1930) suggested that erection is lymphatic in *Struthio* (confirmed in ratites by Berens von Rautenfeld, 1989, pers. comm.).

- (39) Cisterna lymphatica basis phalli of Phallus protrudens. Synonomy: Crus phalli (Berens v. Rautenfeld, et al., 1974); sinus lymphaticus (Guzsal, 1974); Cavitas lymphatica (NAA, 1979); the base (caudal part) of the (paired) Corpus fibrolymphaticum (King, 1981: 123). The lymphatic cistern of the base of the phallus is a median lymphatic chamber, lying on the dorsal aspect of the Corpus fibrocartilagineum (Fig. 10.10). A dorsal median septum partly divides it into left and right compartments, but these connect freely with each other ventrally (Fig. 10.10); caudally they continue directly into the Cisterna lymphatica corporis phalli (Figs. 10.10, 12). Cranially, the Cisterna lymphatica basis phalli connects with the Sinus lymphaticus of the left and right Lymphobulbus phalli (Fig. 10.10).
- (40) Vasa lymphatica cloacalia (of Phallus protrudens). During detumescence in anseriforms, and apparently also in ratites, each Lymphobulbus phalli drains cranially via Vasa l. cloacalia (Fig. 10.10) into the Vas l. iliacum internum (Budras and Berens v. Rautenfeld, 1984). In these species a paired lymph heart (Cor lymphaticum) propels lymph (10 ml in *Anas*) from the detumescent phallus to the venous system (Berens v. Rautenfeld and Budras, 1981; Budras, et al., 1987). See Lym Fig. 13.7; Annot. 6.
- (41) Sulcus phalli (of Phallus protrudens). Synonomy: Sulcus ejaculatorius. The phallic sulcus lies on the external surface of the erect Corpus phalli (Fig. 10.12). In *Rhea* (Müller, 1836) and *Anas*, and more feebly in *Struthio* (Grimpe, 1930), it winds spirally around the whole length of the erect phallus (Fig. 10.13). In the detumescent (invaginated) phallus the sulcus lies on the *internal* surface of the Saccus cutaneus phalli (Annot. 46). "Sulcus ejaculatorius" implies that it carries semen; Berens v. Rautenfeld, et al. (1974) and King (1981: 124) questioned this.
- (42) Labium sulci phalli dextrum/sinistrum (of Phallus protrudens. Synonymy: rechte Basalwulst or Rinnenwulst, linke Basalwulst or Hauptwulst (Liebe, 1914). The right and left labia of the phallic sulcus form the boundaries of the sulcus throughout its whole length. The left Labium is larger than the right, especially at the base of the erect phallus, and this gave rise to the earlier term "Hauptwulst" (Liebe, 1914). The NAA (1979) adopted the term Corpus fibrolymphaticum (left and right), but the simpler term, Labium, is now preferred.

- (43) **Rugae phalli** (of Phallus protrudens). Ridges on the external surface of the erect phallus (Figs. 10.12, 13, 15b). In the invaginated phallus they project into the lumen of the Saccus cutaneus phalli (Figs. 10.10, 11, 15a). In *Anser* various papillae are associated with the Labia sulci phalli and Rugae phalli (Schalkház, et al., 1982).
- (44) Cisterna lymphatica corporis phalli (of Phallus protrudens). Synonomy: fibröse Körper (Müller, 1836); cavernae penis (Guzsal, 1974); Cavitas lymphatica (NAA, 1979); the peripheral part of the corpora fibrolymphatica (King, 1981: 123). The lymphatic cistern of the body of the phallus extends throughout the whole length of the erect organ (Fig. 10.12). In the invaginated phallus the cistern surrounds the Saccus cutaneus phalli (Figs. 10.10, 11). At the base of the phallus it is directly continuous with the Cisterna lymphatica basis phalli (Fig. 10.11).
- (45) Flexura phalli non-erecti/Apex phalli erecti (of Phallus protrudens). The flexure of the non-erect phallus occurs at the junction of the Saccus glandularis phalli with the Saccus cutaneus phalli (Figs. 10.10, 11), and is strongly curved when the phallus is invaginated (Fig. 10.14) (Komárek, 1969). In erection it becomes the Apex of the phallus (Fig. 10.13); here the Saccus glandularis phalli becomes continuous with the (now everted) Saccus cutaneus phalli, via the Ostium sacci glandularis phalli (Fig. 15b) (Komárek, 1969). The Apex penis of Guzsal (1974) is the deeply invaginated "root" of the phallus, and is not the Apex phalli here.
- (46) Sacci phalli; Saccus cutaneus phalli; Saccus glandularis phalli; Ostium sacci cutanei phalli; Ostium sacci glandularis phalli (of Phallus protrudens). Synonomy: in the NAA (1979) the first four of these terms were respectively, Cavitas phalli, Pars cutanea phalli, Pars glandularis phalli, and Aditus ad cavitatem phalli. The body of the resting (detumescent) phallus of Rhea, Casuarius, Dromaius and anseriforms, resembles the invaginated finger of a glove (King, 1981: 118-125). Thus it consists of a tube, which ends blindly at the deep end and opens at the superficial end on the proctodeal floor (via the Ostium sacci cutanei phalli) (Figs. 10.10, 11). The two phallic sacs form the interior of this tube; the Saccus cutaneus phalli and Saccus glandularis phalli (the cutaneous and glandular sacs of the phallus) are of about equal length and in series with each other via the Ostium sacci glandularis phalli (Fig. 10.15a).

The glandular sac secretes mucus which presumably makes the phallus slippery when erect (Liebe, 1914), but the sac is devoid of erectile lymphatic tissue (Figs. 10.10, 11) (Komárek and Marvan, 1969; Guzsal, 1974). The cutaneous sac is lined by a non-secretory keratinized epithelium, and is backed by the erectile spaces of the Cisterna lymphatica corporis phalli (Figs. 10.10, 11, 12). Where the glandular sac continues into the cutaneous sac of the invaginated phallus (at the Flexura phalli) there is an abrupt increase in the diameter of the tube (Fig. 10.11) (Berens v. Rautenfeld, et al., 1974). The internal surface of the Saccus cutaneus of the invaginated phallus carries the Rugae phalli (Figs. 10.11, 15a) and a deep groove, the phallic sulcus; the groove runs to the Ostium sacci cutanei phalli on the proctodeal floor (Fig. 10.10), where it becomes continuous with the Sulcus ejaculatorius (Fig. 10.14).

When the phallus is erect the Saccus cutaneus phalli is everted, just as the invaginated finger of a glove can be everted. But the Saccus glandularis is prevented from everting by its anchorage to the Corpus fibrocartilagineum (Fig. 10.10). Therefore the detumescent phallus of *Rhea*, *Casuarius*, *Dromaius*, and *Anas* resembles the *totally* invaginated finger of a glove, but in the erect phallus only *half* of the finger has been evaginated. Although a Phallus protrudens also occurs in *Struthio*, apterygids,

and tinamids, the Sacci phalli are absent; the phallus is intromittent but more primitive, resembling that of Chelonia and Crocodilia (King, 1981: 113).

In Anser Schalkház, et al. (1982) found that in the detumescent phallus the Ostium sacci glandularis phalli projected a short distance into the Saccus cutaneus phalli. They therefore suggested the term Praeputium phalli in place of Sacci phalli, but the lack of homology with the mammalian prepuce argues against this proposal. They also proposed "Ductus excretorius communis" for the tubular lumen of the Saccus glandularius, but this suggests that this tube has an excretory function.

- (47) Lamina epithelialis; Lamina propria (of Phallus protrudens). The Saccus cutaneus phalli and Saccus glandularis phalli have an epithelial lining (Lamina epithelialis) supported by a connective tissue layer (Lamina propria) (Berens v. Rautenfeld, et al., 1974).
- (48) **Ligamentum elasticum phalli** (of Phallus protrudens). A strong elastic ligament in all birds with the Phallus protrudens except *Apteryx* and tinamids (Gerhardt, 1933: 305-311), which runs axially throughout the length of the erect Phallus (Fig. 10.12). In *Anas* it is attached at one end to the Corpus fibrocartilagineum and at the other to Flexura phalli nonerecti (Figs. 10.10, 11). It helps to invaginate the detumescent phallus.
- (49) Suspensorium phalli (of Phallus protrudens). In the non-erect phallus, this sleeve of elastic and collagenous connective tissue (Komárek, 1969) encloses the Saccus glandularis phalli (Fig. 10.15a); embedded in it is the Lig. elasticum phalli (Fig. 10.10). In the erect phallus it still encloses the whole length of the Saccus glandularis phalli (Fig. 10.15b); it is now itself largely enclosed by the Cisterna lymphatica corporis phalli (Figs. 10.12, 15b), with the Lig. elasticum phalli still embedded in it but fully extended (Fig. 10.12). During detumescence, the Lig. elasticum phalli and the elastic tissue of the Suspensorium phalli retract the Corpus phalli into its invaginated condition (Fig. 10.10). This is essentially the same as invaginating the finger of a glove by means of two elastic bands, both of which are inside the glove.
- (50) Fossa ejaculatoria; Sulcus ejaculatorius (of Phallus protrudens). Synonomy: ejaculatory groove (Fujihara, et al. 1976). The ejaculatory fossa (in *Anas*) is a broad depression in the proctodeal floor, into which the openings of the papillae of the left and right deferent ducts are directed (Fig. 10.14). It leads to the narrow ejaculatory sulcus, a median groove in the proctodeal floor, which becomes continuous with the Sulcus phalli in both the resting (Fig. 10.14) and the erect phallus (Fig. 10.13). In the nonerect state the boundary between the Sulcus ejaculatorius and the Sulcus phalli occurs at the Ostium sacci cutanei phalli (Fig. 10.14).
- (51) M. retractor phalli caudalis; M. retractor phalli cranialis. These muscles occur in males of *Struthio* (Müller, 1836: 146; Gadow and Selenka, 1891: 857), *Anas* (Liebe, 1914; Guzsal, 1974; Berens v. Rautenfeld, et al., 1974), and *Gallus* (Nishiyama, 1950, 1955). All these authors named them retractor phalli (or retractor penis), because both muscles attach to the *ventral* lip of the vent, close to or actually on the phallus, and they pull this attachment dorsocranially.

Two similar muscles have been described by other authors in *Gallus* (e.g., Knight, 1967: 61-62) and *Columba* (Baumel, 1988: 28) under the names M. levator cloacae and M. dilator cloacae. It has been assumed (Vanden Berge, 1979: 198; King, 1981: 98) that the M. levator cloacae is the same as M. retractor phalli caudalis (though with a trace of hesitation); (see Cloaca Annot. 31), and that M. dilator cloacae is the same as M. retractor phalli cranialis (less doubtful, since each is a

slender band of *non-striated* muscle (see Cloaca Annot. 32). Because the terms M. retractor phalli caudalis and cranialis have been used since the 19th century, and have been the subject of increasingly active research throughout this century, these names should be retained. However, they are only meaningful in the male bird. In the female, M. levator cloacae and dilator cloacae are more suitable. Moreover M. levator cloacae has been widely used (e.g., George and Berger, 1966: 283; Vanden Berge, 1979: 181; Baumel, 1988: 28). Consequently both sets of terms are retained as official alternates, giving priority to the phallic names under Masc. and the cloacal names under Cloaca.

The NAA (1979: 181, 332) listed only the M. retractor phalli, not specifying cranialis and caudalis. This omission has now been rectified. Müller (1836) also described in ratites a levator of the phallus (Heber der Ruthe), but its existence has not been confirmed; it is therefore omitted.

M. retractor phalli caudalis [M. levator cloacae]. Synonomy: M. retractor penis posterior (Nishiyama, 1950, 1955; Komárek, 1969; Guzsal, 1974); caudal retractor of the penis (King, 1975: 1932). The caudal retractor of the phallus is a slender paired muscle, stronger than the cranial retractor, arising from the dermis of the ventral aspect of the tail in *Anas* (Liebe, 1914). It inserts on the median phallic body in *Gallus* (Nishiyama, 1950, 1955), on the ventral aspect of the lateral phallic body in *Meleagris* (Knight, et al. 1984), and near the ventral surface of the Corpus fibrocartilagineum in *Anas* (Liebe, 1914; Komárek, 1969; Guzsal, 1974). In *Anas* it is a striated muscle (Komárek, 1969; Berens v. Rautenfeld, et al., 1974). For further details of attachments see Cloaca Annot. 31.

M. retractor phalli cranialis [M. dilator cloacae]. Synonymy: M. retractor penis anterior, Nishiyama (1950, 1955); cranial retractor of the penis (King, 1975: p1932). The cranial retractor of the phallus is a very slender paired band of smooth muscle (Berens v. Rautenfeld, et al., 1974; Nishida, et al., 1987; Ohsawa, et al., 1989). It inserts on the lateral aspect of the *ventral* lip of the vent close to the phallus in *Gallus* (Nishiyama, 1950, 1955), and on the Corpus fibrocartilagineum and Basis phalli in *Anas* (Liebe, 1914). In *Anas* it helps to invaginate the detumescent phalli (Liebe, 1914; Guzsal, 1974). For further details of attachments see Cloaca Annot. 32.



Fig. 10.7. Diagrams of a non-passerine spermatozoan in longitudinal section, with transverse sections at levels 1 to 6, to show the basic structural components.



Fig. 10.8. Diagram of the Rete testis and its connections with the Epididimys and Testis in a sexually mature male *Gallus*. The main component of the Rete testis is the longitudinally orientated Cisterna intracapsularis, embedded in the Tunica albuginea. This connects with transversely orientated intra- and extratesticular cisterns. The junction of Tubuli seminiferi with the Rete testis is so abrupt that the Tubuli recti are almost indistinguishable from the intratesticular cisterns. From Budras and Schmidt (1976), with permission of the authors and Verlag Paul Parey, Berlin.



Fig. 10.9. Diagram of the interior of the left ventral quarter of the cloaca and vent of male *Gallus*; caudodorsal view; showing the cloacal compartments and the components of the non-erect Phallus nonprotrudens. From King (1975) with permission of W. B. Saunders, Philadelphia.



Fig. 10.10. Diagram of the left side of the non-erect Phallus protrudens of Anas; caudolateral view. The body of the phallus (Corpus phalli) is within its connective tissue envelope (Involucrum phalli) along with the Suspensorium phalli, consisting of elastic connective tissue, and the Lig. elasticum. The spiral form of the Corpus phalli is not shown (cf., Fig. 10.11). The left side of the two Sacci phalli has been opened, showing their lumen, Lamina epithelialis, and Lamina propria, and the lymphatic erectile space (Cisterna lymphatica corporis phalli) of the Saccus cutaneus phalli. In the erect Phallus the Flexura phalli nonerecti becomes the Apex phalli erecti (Fig. 10.12). The Basis phalli is supported by the trough-shaped Corpus fibrocartilagineum, which is embedded in the ventral wall of the urodeum and proctodeum. During erection, each Corpus vasculare phalli discharges lymph into the surrounding Sinus lymphaticus of the (paired) Lymphobulbus phalli. From there the lymph flows into the (unpaired) Cisterna lymphatica basis phalli, thence into the Cisterna lymphatica corporis phalli. The left Lymphobulbus phalli is larger than the right (not shown). In detumescence, the lymph drains from the Sinus lymphaticus of the Lymphobulbus phalli into Vasa lymphatica cloacalia (represented by Vas lymphaticum), and thence into the general lymphatic circulation. Based on Fig. 2A of Berens v. Rautenfeld, et al. (1974).



Fig. 10.11. Highly schematic left lateral view of the Corpus phalli of the non-erect Phallus protrudens of *Anas*, to show its spiral arrangement. The Saccus glandularis phalli and Saccus cutaneus phalli are shown as though cut in longitudinal section, thus revealing their internal lumen, Lamina epithelialis, and Lamina propria, and the lymphatic erectile space (Cisterna lymphatica corporis phalli) which encloses the Saccus cutaneus phalli. During erection, this space is filled with lymph flowing from the Cisterna lymphatica basis phalli (arrow). Erection has just started, since the Saccus cutaneus phalli has begun to evert through the Ostium sacci cutanei phalli, thus causing two or three Rugae phalli to appear outside the Ostium. Flexura phalli = Flexura phalli nonerecti. Based on Fig. 2B of Berens v. Rautenfeld, et al. (1974).



Fig. 10.12. Diagram of the erect Phallus protrudens of *Anas*; caudolateral view; left side. Flow of lymph from the Cisterna lymphatica basis phalli into the Cisterna lymphatica corporis phalli has everted the Corpus phalli from its Involucrum phalli. The Saccus cutaneus phalli is entirely externalized, so that its Rugae phalli cover the outer surface of the Corpus phalli. The left wall of the Corpus phalli has been partly removed. This shows the lumen of the Saccus glandularis phalli alongside the Ligamentum elasticum and the elastic connective tissue of the Suspensorium phalli, both of which are fully stretched from the Corpus fibrocartilagineum to the Apex phalli erecti. Fine trabeculae (not shown) span the lumen of the Cisterna lymphatica corporis phalli. The Labium sinistrum is relatively large, and overhangs the right Labium (not shown). Redrawn from Fig. 2C of Berens v. Rautenfeld, et al. (1974).



Fig. 10.13. Interior of the ventral half of the Cloaca of *Anas*, with erect Phallus; dorsal view. From Komárek (1969), with permission of the author and Anatomischer Anzeiger.



Fig. 10.14. Interior of the right half of the Cloaca of *Anser,* with non-erect phallus; left lateral view. This figure suggests the presence of a Plica rectocoprodealis (*arrow*) at the junction of the rectum and coprodeum, but a true rectocoprodeal fold is known to occur only in *Struthio*. However, in anseriforms generally there is an abrupt and conspicuous change in the mucosa at this point. From Komárek (1969), with permission of the author and Anatomischer Anzeiger.



Fig. 10.15. Diagrams showing the relationships of the Saccus glandularis phalli and Saccus cutaneus phalli in (A) the resting, non-erect state, and (B) the erect state. In (A) both of the sacs are invaginated. In (B) the cutaneous sac is totally evaginated through the Ostium sacci cutanei phalli, thus externalizing the Rugae phalli. Therefore in the resting Phallus, the two Sacci resemble the totally invaginated finger of a glove; in the erect Phallus, half of the invaginated finger (the Saccus cutaneus phalli) has been evaginated, but the other half (the Saccus glandularis phalli) remains invaginated.

## **TERMINOLOGY** ORGANA GENITALIA FEMININA OVARIUM SINISTRUM

Lobi ovarii1 Facies dorsalis1 Hilus ovarii<sup>2</sup> Facies ventralis1 Extremitas cranialis<sup>1</sup> Extremitas caudalis1 Margo lateralis<sup>1</sup>

Margo medialis1 Mesovarium<sup>3</sup> Epithelium superficiale<sup>4</sup> Mesotheliocytus cuboideus Tunica albuginea<sup>4</sup> Cortex ovarii4 Zonae parenchymatosae<sup>4</sup> Medulla ovarii4 Zonae vasculosae4 Endocrinocytus interstitialis<sup>5</sup>

#### **FOLLICULUS OVARICUS<sup>6</sup>**

Pedunculus folliculi<sup>7</sup> Musculi pedunculares<sup>7</sup> Plasmalemma ovocyti8 Zona radiata<sup>8,9</sup> Lamina perivitellina<sup>8,11</sup> Stratum granulosum<sup>10</sup> Cellulae strati granulosi<sup>10</sup> Lamina basalis folliculi<sup>12</sup> Thecae folliculi Theca interna<sup>13</sup> Theca externa<sup>13</sup> Cellulae thecales<sup>13</sup> Tunica superficialis<sup>14</sup> Musculi intramurales<sup>7</sup> Epithelium superficiale<sup>4</sup> Stigma folliculare<sup>14</sup> Folliculus postovulatorius<sup>15</sup> Folliculus atreticus<sup>16</sup> Corpus aureum<sup>16</sup>

Epoöphoron<sup>17</sup> Ductus epoöphorontis longitudinalis<sup>17</sup>

Ductuli epoöphorontis

transversi<sup>17</sup>

Paroöphoron<sup>17</sup>

Ovogonium Ovocytus primarius Ovocytus secundarius

Polocytus primarius Polocytus secundarius

Ovum<sup>18</sup>

Vasa et Nervi Ovarii Sinistri

Arteriae ovaricae<sup>19</sup>

Aa, contortae<sup>19</sup> Aa. pedunculares<sup>19</sup>

Aa. intramurales 19

Rete capillare terminale<sup>19</sup>

Venae ovaricae<sup>20</sup>

Vv. pedunculares<sup>20</sup>

Vv. intramurales externae<sup>20</sup>

Vv. intramurales mediae<sup>20</sup>

Vv. intramurales internae<sup>20</sup>

Truncus thoracoabdominalis

Vasa 1. ovarica<sup>21</sup>

(continued)

## FOLLICULUS OVARICUS<sup>6</sup> (cont.)

Plexus aorticus (PNS Annot. 81)

Plexus adrenalis

Gg. adrenalia

Plexus ovaricus<sup>22</sup>

Nn. ovarici<sup>22</sup>

Nn. folliculares<sup>22</sup>

Nn. pedunculares<sup>22</sup>

Nn. intramurales<sup>22</sup>

## GONADUM DEXTRUM<sup>23</sup> OVIDUCTUS SINISTER<sup>24</sup>

Tunica mucosa<sup>25</sup>

Plicae primariae<sup>25</sup>

Plicae secundariae<sup>25</sup>

Epitheliocytus ciliatus<sup>25</sup>

Exocrinocytus caliciformis<sup>25</sup>

Lamina propria mucosae<sup>25</sup>

Tela submucosa<sup>25</sup>

Tunica muscularis

Stratum circulare<sup>25</sup>

Tela intermuscularis<sup>25</sup>

Stratum longitudinale<sup>25</sup>

Tunica serosa<sup>25</sup>

Mesothelium

Lamina propria serosae

Infundibulum<sup>26</sup>

Ostium infundibulare<sup>26</sup>

Fimbriae infundibulares<sup>26</sup>

Tubus infundibularis<sup>26</sup>

Fossae glandulares infundibuli<sup>26</sup>

Glandulae tubi infundibularis<sup>26</sup>

Magnum<sup>27</sup>

Glandulae magni<sup>27</sup>

Isthmus<sup>28</sup>

Pars translucens isthmi<sup>28</sup>

Glandulae isthmi<sup>28</sup>

Uterus<sup>29</sup>

Pars cranialis uteri<sup>29</sup>

Pars major uteri<sup>29</sup>

Recessus uterinus<sup>29</sup>

Glandulae uterinae

Lamellae uterinae<sup>29</sup>

Vagina<sup>30</sup>

M. sphincter vaginae<sup>30</sup>

Tubuli spermatici<sup>31</sup>

Ostium cloacale oviductus sinistri

(Cloaca Annot. 7)

Lig. dorsale oviductus<sup>32</sup>

Lig. ventrale oviductus<sup>32</sup>

Funiculus musculosus<sup>32</sup>

Vasa Sanguinea Oviductus

Aa, oviductales<sup>33</sup>

A. oviductalis cranialis<sup>34</sup>

A. anastomotica<sup>35</sup>

A. oviductalis marginalis

ventralis<sup>35</sup>

A. oviductalis marginalis

dorsalis<sup>35</sup>

Aa. infundibuli<sup>34</sup>

Aa. magni<sup>34</sup>

A. oviductalis cranialis

accessoria<sup>34</sup>

A. anastomotica<sup>35</sup>

A. oviductalis marginalis

ventralis<sup>35</sup>

A. oviductalis marginalis

dorsalis<sup>35</sup>

## **OVIDUCTUS SINISTER (cont.)**

Aa. magni<sup>35</sup>
Aa. isthmi<sup>35</sup>
Aa. uteri<sup>35,37,39</sup>
A. uterina medialis<sup>38</sup>
A. uterina lateralis<sup>38</sup>
A. oviductalis caudalis<sup>39</sup>
A. oviductalis marginalis
ventralis<sup>35</sup>

A. oviductalis marginalis dorsalis<sup>35</sup>

Aa. uteri<sup>37</sup> A. vaginalis<sup>40</sup>

Aa. infundibuli<sup>35</sup>
Aa. magni<sup>35</sup>

A. oviductalis media<sup>36</sup>
A. anastomotica<sup>35</sup>

A. oviductalis marginalis

ventralis<sup>35</sup>
A. oviductalis marginalis

dorsalis<sup>35</sup>

Venae oviductales<sup>41</sup>
V. oviductalis cranialis
V. oviductalis marginalis

ventralis

V. oviductalis marginalis

dorsalis

Vv. infundibuli

Vv. magni

V. oviductalis media<sup>41</sup>

Vv. magni

Vv. isthmi

Vv. uteri

V. uterina lateralis

V. uterina medialis

V. oviductalis caudalis

Vv. uteri

V. vaginalis

Nervi Oviductus<sup>42</sup>

Plexus aorticus (PNS 81)

Plexus adrenalis

Gg. adrenalia

Plexus renales

Plexus ovaricus

Plexus oviductales

N. pudendus

Rr. uterini

Rr. vaginales

# OVIDUCTUS DEXTER<sup>43</sup> OVUM TESTACEUM<sup>44</sup>

Polus acutus<sup>65</sup>
Polus obtusus<sup>65</sup>
Discus germinalis<sup>45</sup>
Membranae vitelli<sup>46</sup>
Plasmalemma ovocyti<sup>47</sup>
Lamina perivitellina<sup>48</sup>
Lamina continua<sup>49</sup>
Lamina extravitellina<sup>50</sup>
Vitellus<sup>51</sup>
Vitellus albus<sup>52</sup>
Latebra<sup>52</sup>
Centrum latebrae<sup>52</sup>

Discus latebrae<sup>52</sup>
Vitellus aureus<sup>53</sup>
Albumen<sup>54</sup>
Stratum chalaziferum<sup>55</sup>
Chalaza<sup>55</sup>
Albumen rarum<sup>56</sup>
Stratum internum<sup>56</sup>
Stratum externum<sup>56</sup>

Collum latebrae<sup>52</sup>

Albumen densum<sup>57</sup>
Albumen polare<sup>57</sup>

## **OVUM TESTACEUM (cont.)**

Membranae testae<sup>58</sup>
Membrana testae externa<sup>58</sup>
Membrana testae interna<sup>58</sup>
Cella aeria<sup>58</sup>
Testa<sup>59</sup>
Stratum mamillarium<sup>60</sup>
Mamilla<sup>60</sup>

stratum mamillarium<sup>60</sup>
Mamilla<sup>60</sup>
Nucleus mamillae<sup>60</sup>
Galerum basale mamillae<sup>60</sup>
Conus mamillae<sup>60</sup>

Stratum spongiosum<sup>61</sup> Stratum vallatum<sup>61</sup> Stratum superficiale<sup>62</sup> Cuticula<sup>63</sup> Porus testae<sup>64</sup> Canaliculus testae<sup>64</sup>

#### **ANNOTATIONS**

- (1) Lobi ovarii; Facies dorsalis; Facies ventralis; Extremitas cranialis; Extremitas caudalis; Margo lateralis; Margo medialis. These terms can be applied to the immature ovary. Until the onset of laying, in *Gallus* the ventral surface is divided into ovarian lobes by 7 or 8 deep transverse fissures in the cortex (Procházková and Komárek, 1970; Oribe, 1983). These lobes may be recognisable in the sexually active ovary (Oribe, 1976), but the extremities, surfaces, and borders are not clear. However, in seasonal birds the ovary becomes small and compact during the eclipse period (Witschi, 1961), and these terms again become meaningful.
- (2) **Hilus ovarii.** Synonymy: Ovarian stalk (Gilbert, 1969). The broad and ill-defined area of entry of the ovarian blood vessels and nerves into the Facies dorsalis.
- (3) **Mesovarium.** The peritoneal fold attaching the Facies dorsalis of the immature ovary to the dorsal wall of the coelom (King, 1975: p1937). At maturity the Mesovarium is greatly reinforced by connective tissue, smooth muscle, and the blood vessels and nerves of the Hilus ovarii.
- (4) Epithelium superficiale; Tunica albuginea; Cortex ovarii; Zonae parenchymatosae; Medulla ovarii; Zonae vasculosae. In the immature ovary a distinct ovarian cortex covers the whole of the separate ovarian medulla except at the Hilus (Benoit, 1950; Marshall, 1961; Gilbert, 1979: 273). Oögonia and Oöcyti are confined to the cortex. The medulla consists mainly of connective tissue with blood vessels, nerves, and smooth muscle (Gilbert, 1971a). During sexual activity the cortex and medulla are not distinct strata but are replaced by irregular areas: (1) Zonae parenchymatosae containing mainly oöcytes and developing follicles; (2) Zonae vasculosae containing primary sex cords, blood vessels, nerves, smooth muscle, and Endocrinocyti interstitiales (Procházková and Komárek, 1970; Gilbert, 1979: 273).

The "primary" Tunica albuginea is a thin layer of connective tissue, separating the outer covering of cuboidal Epithelium superficiale from the primary sex cords; it disappears during the second half of incubation (Romanoff, 1960: 833). The "defini-

tive" Tunica albuginea is a connective tissue layer that forms beneath the superficial epithelium, persisting in the mature ovary (Hodges, 1974: 330). The superficial epithelium covers all of the mature ovary, including each Folliculus ovaricus (Fig. 10.17) where it becomes flatter (Guzsal, 1966; Fujii, et al., 1980).

- (5) Endocrinocytus interstitialis. Ovarian interstitial endocrine cells are large, round or polygonal, steroidogenic cells (Gilbert, 1979: 266). "Medullary" interstitial cells may arise from the primary (medullary) sex cords (Benoit, 1926; 1950: 391; Budras and Preuss, 1973). "Cortical" interstitial cells may come from the secondary (cortical) sex cords (Benoit, 1950: 391), or fibroblasts (Dahl, 1971; Budras and Preuss, 1973). "Thecal" interstitial cells occur within the Theca interna and externa of developing follicles (Marshall, 1961: 194; Hodges, 1974: 342), as "thecal glands" (Dahl, 1970; Gilbert, 1979: 286). Since these cells may be only different stages of the same cell (Narbaitz and De Robertis, 1968), it is inadvisable to name each individually.
- (6) Folliculus ovaricus. The ovarian follicle supplies the oöcyte with yolk material from the liver, supports it as it grows, and releases it at ovulation.
- (7) Pedunculus folliculi; Musculi pedunculares; Musculi intramurales. The growing follicle extrudes from the ovarian surface, forming the peduncle (pedicle, stalk) of the follicle. The peduncle carries small "parasitic" follicles. Peduncular arteries, veins, lymphatics, and nerves are drawn into the developing stalk (Nalbandov and James, 1949; Oribe, 1976; Gilbert, 1965). The peduncle also contains bundles of smooth muscle, the Musculi pedunculares (peduncular muscles), which enter the Tunica superficialis and Theca externa (Guzsal, 1966), thus forming the Musculi intramurales (intramural muscle bundles). Contrary to earlier views, Guzsal (1966) and Fujii, et al. (1980) found them only in the peduncular hemisphere of the follicle.
- (8) Plasmalemma ovocyti; Zona radiata; Lamina perivitellina. The older and very confused terminology for these innermost layers of the wall of the follicle was evolved with the light microscope, but some layers are only distinguishable with the electron microscope (King, 1975: 1939). The terms listed here are based on ultra-structural observations (e.g., Perry, et al., 1978a, b, and for review, Gilbert, 1979: 279).

As recommended by Wyburn, et al. (1965), the classification of egg "membranes" of Boyd and Hamilton (1952) is adopted here: a primary egg membrane is formed by the cytoplasm of the Ovocytus, and a secondary by the cells of the Stratum granulosum (Annot. 11, 48); a tertiary egg membrane is added by the cells of the Oviductus (Annot. 49, 40). The Plasmalemma ovocyti (oöcyte plasmalemma) (Fig. 10.16) is a primary egg membrane.

- (9) **Zona radiata.** Interdigitations (Fig. 10.16) between the Plasmolemma ovocyti and the Cellulae strati granulosi (Wyburn, et al., 1965; Wyburn and Baillie, 1966; Gilbert, 1971b; Rothwell and Solomon, 1977), in *Gallus* first appearing when the follicle is somewhat enlarged and disappearing at a diameter of about 15 mm (Gilbert, 1979: 281). Birds have no homologue of the mammalian corona radiata (Gilbert, 1979: 281).
- (10) Stratum granulosum (synonym: Epithelium folliculare, Bellairs, 1965; Guzsal, 1966; Hodges, 1974; Nickel, et al., 1977); Cellulae strati granulosi. The mammalian term, follicular epithelium, is confusing in birds, since the avian follicle is also covered by the Epithelium superficiale (Gilbert, 1979: 285). The term Stratum granulosum was used by the NAA (1979) and by Rothwell and Solomon (1977), Perry, et al. (1978a), and Gilbert (1979). Apical processes of the Cellulae strati granulosi (granulosa cells) interdigitate with the oöcyte (Fig. 10.16); lateral processes

establish contacts between adjacent granulosa cells (Perry, et al. 1978a). The precise functions of the granulosa cells in the deposition of yolk is unknown, but they may transport (and perhaps modify) materials into the oöcyte (see Gilbert, 1979: 286, for review).

- (11) Lamina perivitellina. Synonomy: vitelline membrane (Bellairs, 1965); vitelline layer (Bain and Hall, 1969); perivitelline membrane (King, 1975). The term Lamina perivitellina was used by the NAA (1979), and by Rothwell and Solomon (1977), Perry, et al. (1978a), and Gilbert (1979). The perivitelline lamina (or layer) is a narrow zone, between the Ovocytus and Stratum granulosum (Fig. 10.16), of ground substance and electron dense aggregates which finally form a meshwork of electron dense rods. It is almost certainly secreted by the Cellulae strati granulosi (Wyburn, et al. 1965), and is then a secondary membrane. It is analogous (Bakst and Howarth, 1977b) or even homologous (King, 1975: p1940) to the mammalian Zona pellucida. See also Annot. 48.
- (12) Lamina basalis folliculi. A distinct boundary (Figs. 10.16, 17) between the Stratum granulosum and Theca interna (Wyburn, et al. 1965; Aitken, 1966). Atypical of a true basal lamina are its exceptional thickness, uncertainty whether it arises from the cells of the Stratum granulosum or from some other source, and its physical properties (NAA, 1979). For example, it allows the passage of complex lipoprotein particles, unlike typical basal laminae (Gilbert, 1979: 286).
- (13) **Theca interna.** Forms about 25% of the Thecae folliculi (Fig. 10.17). It comprises a narrow inner layer of collagen fibres, a middle layer mainly of fibroblasts (Wyburn, et al., 1965; Aitken, 1966), and an outer layer of vacuolated cells (presumably Endocrinocyti interstitiales, Hodges, 1974: 336; Annot. 5). The structure varies with the size of the follicle (Hodges, 1974: 336). Perry, et al. (1978a) found many loosely packed fibroblast-like cells in a single discontinuous layer over the Lamina basalis folliculi; the spaces between the cells were filled by collagen fibres and a fine granular material that might be yolk going to the oocyte. It is very vascular (Annot. 19).

**Theca externa.** This layer (Fig. 10.17) consists of concentric alternating layers of collagen fibres and fibroblasts (Aitken, 1966) with a few elastic fibres (Guzsal, 1966; Hodges, 1974: 335). There are probably some smooth muscle fibres (Musculi intramurales) (for review see Hodges, 1974: 335, and Gilbert, 1979: 287). Endocrinocyti interstitiales are present (Annot. 5).

Cellulae thecales. Thecal cells include the fibroblast-like cells of the Theca interna and the fibroblasts of the Theca externa, but not the Endocrinocyti interstitiales of the two Thecae.

(14) **Tunica superficialis.** The whole follicle except the stigma (Guzsal, 1966; Fujii and Yoshimura, 1979; Fujii, et al., 1980) is enclosed by this superficial tunic of loose connective tissue, itself continuously covered by the Epithelium superficiale (Fig. 10.17). The Musculi intramurales lie mainly in this layer.

Stigma folliculare. The follicular stigma in *Gallus*, a relatively avascular white meridional line, is formed by fusion of the Epithelium superficiale with the Theca externa (Fujii and Yoshimura, 1979). Shortly before ovulation, the stigma thins by disintegration of the Stratum granulosum and Thecae folliculi, becomes transparent, and then splits (Yoshimura and Fujii, 1979; Fujii, et al., 1980). Pressure caused by the Mm. intramurales in the pedicular hemisphere of the follicle may help the splitting (Guzsal, 1966; Fujii, et al., 1980). In some species there is no stigma (Kern, 1963). For reviews see King (1975a: 1941) and Gilbert (1979: 289).

- (15) Folliculus postovulatorius. The postovulatory follicle is the cup shaped remnant of a follicle after ovulation. Gilbert (1979: 292) has reviewed its structure and function. In *Gallus*, and most other species examined, regression is rapid (7-10 days). Cellulae granulosae and Endocrinocyti interstitiales persist during this period, and may be functional. In *Gallus* the postovulatory follicle affects the timing of oviposition of the egg derived from that follicle, and nesting behaviour. Such activity lasts for only 24 h, estrogen, progesterone, and prostaglandins being possibly involved.
- (16) Folliculus atreticus. The elimination of follicles (atresia) has been reviewed by Gilbert (1979: 295). Atretic follicles occur in all investigated avian species, up to five types being described. "Bursting atresia", in which the Thecae folliculi rupture and release the yolk into the ovary or body cavity, is widespread in birds and lower vertebrates, yet is the least common form of atresia in birds. "Invasion atresia", mainly affecting smaller less yolky follicles, is the other well known variant; granulosa or thecal cells invade the follicle and the yolk is reabsorbed *in situ*.

Corpus aureum. The "yellow bodies", scattered throughout the ovary (Aitken, 1966), which may be late stages of regressing postovulatory follicles or remnants of atretic follicles.

- (17) **Epoöphoron; Ductus epoöphorontis longitudinalis; Ductuli epoöphorontis transversi; Paroöphoron.** The Epoöphoron (synonym, Nebeneierstock) is the homologue of the Epidydimis. The Ductus epoöphorontis longitudinalis (longitudinal epoöphoront duct) develops from the mesonephric duct and is the homologue of the Ductus deferens. The Puctuli epoöphorontis transversi (transverse epoöphoront ductules) develop from the tubules and intermediate segments of the mesonephros, and are firmly attached to the adrenal gland by connective tissue. Parts of the mesonephros and its vestiges form steroidogenic cells of the gonads and adrenal gland (Budras, 1972; Carlson, et al., 1983; Busse, 1985). The Paroöphoron is a rudiment of the nonsexual part of the mesonephros, between the ovary and kidney in the lateral part of the mesovarium (Hamilton, 1952: 497).
- (18) **Ovum.** The Ovum is the female gamete, resulting from the second maturation division. The same term is traditionally used for the shelled egg, but see Annot. 44. For a review of oögenesis, progressing through Ovogonium, Ovocyti, Polocyti, and Ovum, see Gilbert (1979: 277).
- (19) Arteriae ovaricae. In Gallus there are typically 2 to 4 ovarian arteries (Oribe, 1977). These arise: (a) quite often from the left cranial renal artery only (Art. Fig. 12.8) (Dang-quan-Dien, 1951); or (b) from both the cranial renal artery and the aorta (Fig. 10.18) (Mauger, 1941; Westphal, 1961), much the most common pattern (Oribe, 1977); or (c) directly from the aorta (Nalbandov and James, 1949), the rarest form (Oribe, 1977). In Anas and Meleagris they arise directly from the left renal artery (Hodges, 1965). The ovarian arteries form many Aa. contortae, strongly undulating or spiral in the immature but straightening in the mature ovary (Oribe, 1976). These give rise to the Aa. pedunculares, which form the Aa. intramurales (Fig. 10.17) in the Tunica superficialis of the ovarian follicle (Nalbandov and James, 1949; Nishida, et al., 1977; Oribe, 1980). Other smaller intramural arteries (Oribe, 1980) form the Rete capillare terminale (Fig. 10.17), adjacent to the Lamina basalis folliculi, thus contributing to the great vascularity of the Theca interna (Nishida, et al., 1977). See Art. Annot. 66.
- (20) Venae ovaricae. In Gallus (Nalbandov and James, 1949) the cranial ovarian veins join the left adrenal vein and enter the caudal vena cava, and the caudal veins

- drain into the caudal vena cava, or may first join the cranial oviductal vein (Ven. Fig. 12.16). The ovarian veins are formed by the Vv. pedunculares. These drain the external, middle, and internal Vv. intramurales (Fig. 10.17) (Fujii and Yoshimura, 1979; Oribe, 1981), the internal intramural veins being sinusoidal (Nishida, et al., 1977).
- (21) Vasa lymphatica ovarica. In *Gallus* many lymphatics, with mural lymphoreticular formations, lie in the Zonae vasculosae along the main veins, but there are only a few in the Zonae parenchymatosae (Oribe, 1985). Drainage is directly into the Truncus thoracoabdominalis (see Lym).
- (22) Nervi ovarici. The left ovary of adult Gallus is profusely innervated, particularly the mature follicles (Johnson, 1925; Mauger, 1941; Hsieh, 1951; Gilbert, 1965, 1969; Freedman, 1968; Bennett and Malmfors, 1970; Oribe and Fujii, 1978; for reviews, King, 1975: 1944; Gilbert, 1979: 273, 289). The sympathetic supply is derived from the Plexus ovaricus on the Hilus ovarii, and a parasympathetic contribution is suspected. From several large ganglia in the plexus, about 10 Nn. ovarici (ovarian nerves) supply the ovary. Nn. folliculares innervate a mature follicle, entering as Nn. pedunculares and continuing as Nn. intramurales in the Tunica superficialis, with branches into all layers external to the Lamina basalis folliculi. There are many ganglion cells in the follicular wall; functions of the intramural nerves are unknown, but most of them relate to blood vessels.
- (23) Gonadum dextrum. In the genetic female of birds generally, the term Ovarium dextrum is not appropriate for the right gonad, which is usually arrested at a testis-like stage of development (Romanoff, 1960: 835). Only in *Apteryx* is a fully functional Ovarium dextrum regularly present (Kinsky, 1971). According to Brode (1928), in the normal mature female *Gallus* the right gonad is an ill-defined strip of tissue about 5 mm long and 1 mm wide, on the right ventral aspect of the caudal vena cava. If the adult left ovary is destroyed the right gonad develops into a testis or ovotestis (see King, 1975: 1945; Gilbert, 1979: 303).
- (24) **Oviductus sinister.** The left oviduct is divided into infundibulum, magnum, isthmus, uterus, and vagina, these terms now being in almost universal use. Reviews by King (1975) and Gilbert (1979) of the extensive literature supply much of the following account. The structure of the left oviduct is singularly uniform throughout Aves (Marshall, 1961: 203), with only minor differences of largely unknown functional significance (Gilbert, 1979: 305). On functional grounds, Schwarz (1969) suggested abandoning the five classical subdivisions, substituting simply a cranial and a caudal region, the boundary at junction of magnum and isthmus.
- (25) The wall of the oviduct consists of seven main layers, with minimal regional variations (Hodges, 1974: 348; King, 1975: p1946). (1) The Tunica mucosa, lined by more or less alternating Exocrinocyti caliciformes (goblet cells, possibly of several functional types) and Epitheliocyti ciliati (Aitken and Johnston, 1963; Fujii, et al., 1965; Guzsal, 1966; Draper, et al., 1968; Fujii, 1975). The mucosa has longitudinal spiral Plicae primariae carrying Plicae secundariae. The size of the Plicae varies with the regions of the oviduct (Surface, 1912; Blom, 1973). In sexually inactive hens the population of ciliated cells is greatly reduced (Fujii, 1981). (2) The Lamina propria mucosae, the loose connective tissue immediately underlying the epithelium and containing glands in most regions of the oviduct. (3) The Tela submucosa, a layer of well

vascularized and innervated connective tissue separating the mucosa from the muscular tunic. (4) The Stratum circulare of smooth muscle. (5) The connective tissue Tela intermuscularis between the two muscle layers, containing the larger blood vessels. (6) The Stratum longitudinale of smooth muscle. (7) The peritoneal Tunica serosa.

- (26) Infundibulum. Synonym: Trichter. Comprises a funnel followed by a tubular region. The funnel opens by an elongated slit, the Ostium infundibulare, with thin flared lips, the Fimbriae infundibulares which are lined by ciliated cells only (Bakst and Howarth, 1975; Fujii, 1981). The Tubus infundibularis is the narrow tubular region (synonym: chalaziferous region, Richardson, 1935); its Glandulae tubi infundibularis secrete the Stratum chalaziferum and Chalazae of the shelled egg. Fossae glandulares infundibuli (glandular grooves) occur in the infundibular tube only (Surface, 1912; Aitken and Johnston, 1963); some spermatozoa may be stored here, constituting the "infundibular sperm host glands" (Drimmelen, 1946; Lorenz, 1964; Koyanagi and Nishiyama, 1981) (see Annot. 31). The role of the smooth muscle, vascularity, and innervation of the Infundibulum in capturing the ovulated secondary oöcyte were considered by Fujii, et al. (1981).
- (27) Magnum. Synonym: Eiweissteil. The longest part of the oviduct. The Glandulae magni, crammed into the massive Plicae primariae, secrete the Stratum internum of the Albumen rarum. The region of the Magnum immediately preceding the Isthmus has a different glandular structure (Richardson, 1935; Aitken, 1971) and secretes the Albumen densum. The cells responsible for the many albumen proteins have not been identified with certainty (Gilbert, 1979: 321; Solomon, 1983: 389). See Annot. 54-57.
- (28) **Isthmus.** A short region, with a slightly smaller calibre and weaker Plicae than the Magnum. The Pars translucens isthmi is a macroscopically distinct, constricted (1-3 mm wide), glandless zone at the beginning of the Isthmus. The **Glandulae isthmi** form the Membranae testae, and add some protein and water to the Albumen. Despite earlier controversy, it appears that the first deposits of calcium (but not calcium carbonate) occur in the Isthmus.
- (29) Uterus. Synonymy: Schalendrüse, Eihälter, Kalkkammer, Camera calciferra. shell gland. The term "uterus" has been much criticised for implying an unjustifiable homology with the mammalian structure (e.g., Richardson, 1935; Marshall, 1961: 204; Gilbert, 1979: 305), "shell-gland" being preferred. However, "uterus" has been widely used in avian anatomy for over 150 years (e.g., Barkow, 1829: 444). Moreover "uterus" is extensively used throughout Amniota (e.g., Romer, 1962) and in Selachia (Marshall, 1962: 277), and even in Invertebrata as in Platyhelminthes (Llewellyn, 1972: 219) and the arthropod Peripatus (Ettershank, 1972: 406). Several criteria have influenced the choice of "uterus" in these animals. One has been the embryonic source of the oviduct; "uterus" is not applied to the teleost oviduct, which is not derived from the paramesonephric (Müllerian) duct, whereas the selachian oviduct is (Marshall, 1962: 349). Since all female tetrapods possess the paramesonephric duct (Goodrich, 1958: 696), the use of "uterus" in birds is no more offensive to homology than is its use in selachians. Another criterion is the fusion of two oviducts in the midline as in many mammals. The absence of this feature in reptiles apparently deterred Bellairs and Attridge (1975: 51) from using "uterus" in Reptilia. On the other hand the platyhelminths have only one oviduct, and *Peripatus* has two unfused oviducts, yet "uterus" is used. Marshall (1961: 204) realistically concluded that the term "uterus" in birds is "possibly irredeemably entrenched". Certainly any substitute term converting shell-gland into Latin (e.g., Camera calciferra) would

stand little chance of adoption. Moreover the single term "uterus" is convenient when applied to the vessels, nerves, etc. of the oviduct.

Pars cranialis uteri (synonym: red region) is the initial short, relatively tubular, portion (Johnston, et al., 1963) of the uterus. According to Solomon (1983: 396) "red region" is misleading, since it only applies during the phase of calcium transfer when the uterine vasculature is engorged. That this be regarded as part of the Isthmus (Davidson, et al., 1968; Draper, et al., 1972) was rejected by Aitken (1971) because its glands are characteristically uterine. The first deposit of calcium carbonate occurs here. Pars major uteri is the pouch-like portion of the Uterus that holds the egg during most of the period of shell formation (Johnston, et al., 1963). Recessus uterinus is the funnel-shaped, caudal region with a distinctive pink or greyish white colour and abundant cholesterin ester lipids in the ciliated cells (Fujii, 1963). The longitudinal primary folds of the uterus are intersected by transverse or oblique furrows, forming leaf-like Lamellae uterinae (Blom, 1973; Bakst, 1978a; King, 1979: 1948). Tunica muscularis extends into these transverse folds, helping to expel the egg (Schwarz, 1969).

- (30) Vagina. A short muscular S-shaped tube connecting the uterus to the cloaca. M. sphincter vaginae is a thickening of Tunica muscularis of the first segment of the Vagina, though Aitken (1971) questioned the existence of a true sphincter.
- (31) **Tubuli spermatici.** Synonymy: Fossulae spermaticae (NAA, 1979); sperm nests (Drimmelen, 1946); utero-vaginal glands (Bobr, et al. 1964); sperm-host glands (Pal, 1977); utero-vaginal sperm host glands (Friess, et al., 1978); sperm glands (Koyanagi and Nishiyama, 1981); sperm-storage tubules (Bakst, 1987); sperm-storage glands (Shugart, 1988). The term proposed by the NAA (1979) has not been adopted in the subsequent literature, possibly because the meaning of Fossula (L. little ditch) is not obvious or apposite. "Tubuli spermatici" is more informative; "tubuli" is preferred to "glandulae", since these may not be true glands (Hatch, 1983; Bakst, 1987). These structures are branched, or in some taxa unbranched, tubules definitely vaginal, being confined to the region of M. sphincter vaginae (Fujii, 1963; Shugart, 1988), and lined by tall columnar epithelial cells. They are the main storage site for spermatozoa in the oviduct (Bobr, et al., 1964) (see Annot. 26). They have been found in galli-, anseri-, and columbiform species by various authors, and more recently in charadriform, passerine, and probably falconiform species (Hatch, 1983; Bakst and Bird, 1987; Shugart, 1988). Evidence of secretory activity has been found in Gallus and Anas (Pal, 1977; Friess, et al., 1978; Gilbert, 1979; 331). How spermatozoa enter and survive in the tubules, and when and how they are released is still unknown. Deterioration in the fecundity of turkey hens could not be related to any microscopic changes in the tubules (Schuppin, et al., 1984).
- (32) Lig. dorsale oviductus; Lig. ventrale oviductus; Funiculus musculosus. The dorsal oviductal ligament suspends the oviduct and continues ventrally as the fan-like ventral oviductal ligament, the free edge of which is reinforced by smooth muscle; caudally the latter increases to a muscular cord, the Funiculus musculosus, attaching to the Uterus and Vagina (Curtis, 1910; Kar, 1947).
- (33) Aa. oviductales. The blood vessels of the left oviduct (Fig. 10.18 and Art. Fig. 12.8) have been studied in *Gallus*, *Meleagris*, and *Anas*, by Freedman and Sturkie (1963) and Hodges (1965), in *Anser* by Gertner (1969), and in *Columba* by Baumel (pers. comm.). See King (1975: p1950, 1958) and Baumel (1975: p1973) for details of these vessels in domestic species. It is not known how far these patterns apply to birds generally. See also Art. Annot. 67.

- (34) A. oviductalis cranialis; A. oviductalis cranialis accessoria. The cranial oviductal artery arises from the left A. renalis cranialis; the accessory cranial oviductal artery arises from the left A. iliaca externa. In *Gallus* (Fig. 10.18) the cranial oviductal is typically present, and sometimes also the accessory (Hodges, 1965). *Meleagris* and *Anas* usually possess only the accessory (Hodges, 1965). In *Anser* both the cranial and the accessory are usually present (Gertner, 1969, respectively his R. infundibularis of the A. renovarica, and the A. oviductalis cranialis). In general, these two oviductal arteries supply the infundibulum and the cranial end of the magnum. In *Columba* (Baumel, pers. comm.) sometimes neither of them is present, and then the A. oviductalis media takes over the cranial part of the oviduct.
- (35) A. anastomotica; A. oviductalis marginalis ventralis/dorsalis; Aa. infundibuli; Aa. magni; Aa. uteri. The anastomotic artery joins the A. oviductalis cranialis to the A. oviductalis cranialis accessoria and A. media in *Gallus* (Fig. 10.18), but is absent in *Meleagris* and *Anas*. In *Gallus* it contributes to the dorsal and ventral marginal oviductal arteries (Art. Annot. 72), which form Aa. infundibuli, magni, and uteri.
- (36) A. oviductalis media. Synonymy: hypogastric artery (Freedman and Sturkie, 1963; Hodges, 1965). The middle oviductal artery arises from the left A. ischiadica or from the left A. renalis media, and supplies the caudal end of the magnum, the isthmus, and the uterus (Fig. 10.18). In *Columba* it is occasionally the only oviductal artery, and then supplies also the cranial end of the magnum and the infundibulum (Annot. 34).
- (37) Aa. uteri. The uterine arteries arise from the middle and caudal oviductal arteries, via Aa. oviductales marginales dorsalis/ventralis. The vessels are better developed on the lateral (left) side of the uterus than the medial (right).
- (38) A. uterina medialis; A. uterina lateralis. The medial and lateral uterine arteries arise from the middle and caudal oviductal arteries and supply the two sides of the uterus (Fig. 10.18). (They were respectively named the right lateral uterine artery and left lateral uterine artery by King, 1975a: 1950, and the medial lateral uterine artery and lateral lateral uterine artery by Hodges, 1965.) Although they are relatively large and constant, their origins, courses, and branches vary even within the same species. The many other medium-sized uterine arteries are so variable that they are not named here, but owing to their physiological importance attempts have been made to name them as follows. The A. uterina cranialis (left and right) of King (1975: 1950) is the anterior uterine artery (lateral and medial) of Freedman and Sturkie (1963) and Hodges (1965). The A. uterina ventralis of King (1975) is the inferior uterine artery of Freedman and Sturkie (1963) and Hodges (1965); this artery prolongs the A. oviductalis marginalis ventralis. The A. uterina dorsalis of King (1975) is the superior uterine artery of Freedman and Sturkie (1963) and Hodges (1965). The right and left caudal uterine aa. of King (1975a: 1950) are the middle uterine aa. of Freedman and Sturkie (1963) and the medial and lateral posterior uterine aa, of Hodges (1965).
- (39) A. oviductalis caudalis. Synonymy: the intestinal branch of the internal pudendal (Westpfahl, 1961); the pelvic branch of the internal iliac (Freedman and Sturkie, 1963; Hodges, 1965). The caudal oviductal a. is a branch of the left pudendal a. (Figs. 10.18); see also Art. Annot. 67 and Fig. 12.8. It supplies variable Aa. uteri to both sides of the caudal part of the uterus, and may also supply the vagina (Baumel, 1975c: 1993).

- (40) **A. vaginalis.** In *Gallus* the vaginal artery may arise as a separate branch of the left A. pudenda (Fig. 10.18), or be incorporated into the A. oviductalis caudalis as vaginal rami (Baumel, 1975c: 1993). When present as a separate artery it supplies both sides of the vagina; its branches are the vaginal arteries of Hodges (1965), and apparently also the posterior uterine aa. of Freedman and Sturkie (1963).
- (41) **Vv. oviductales; V. oviductalis media.** With a few exceptions (King, 1975a: 1950), the oviductal veins (**Ven.** Fig. 12.16) are satellites of the arteries. See **Ven.** Annot. 61. The middle oviductal vein drains the region supplied by the A. oviductalis media, but the two vessels do not typically run in parallel and the vein is much more elaborate than the artery. In *Gallus* it generally drains into the left caudal renal vein (Baumel, 1975c: 2008).
- (42) Nervi oviductus. The nerves of the oviduct have not been thoroughly investigated, except those of the uterus by Freedman and Sturkie (1963). The following data are based on reviews by Hodges (1974: 350), King (1975a: 1951), and Baumel (1975c: 2052). The sympathetic supply is from the left Plexus subvertebralis synsacralis, via its aortic plexus and thence the subsidiary renal, ovarian, and oviductal plexuses, using the oviductal arteries as roadways. The oviductal plexus associated with the middle oviductal artery (the hypogastric plexus of Freedman and Sturkie, 1963) especially supplies the magnum, isthmus, amd uterus. The term "adrenal" ganglia is misleading, since they are mainly concerned with reproductive structures (Baumel, 1975c: 2059). The parasympathetic supply is from the pudendal nerve, using particularly the caudal oviductal and vaginal arteries to reach the uterus.
- (43) **Oviductus dexter.** The presence of a right oviduct as well as a left has been reported in various orders, particularly Falconiformes. It is usually only vestigial, even in *Apteryx* where the Gonadum dextrum is a functional ovary (Kinsky, 1971). In *Gallus* rudiments of the right oviduct can generally be found at the Cloaca (Webster, 1948; Winter, 1958; Williamson, 1965), usually resembling the Magnum histologically (Winter, 1958). Occasionally a full-sized right oviduct occurs in *Gallus*. None of the earlier accounts proved such oviducts fully functional (Sell, 1959), but Bickford (1965) and Gilbert (1975: 337) reported fully functional right and left oviducts in *Gallus*. The histological structure of the Oviductus dexter is not constant enough to warrant a list of components.
- (44) **Ovum testaceum.** The term Ovum has long been applied to both the cell which arises solely from the ovary via the second reduction division (see Annot. 18) and the shelled egg which is derived from both the ovary and the oviduct (to the Romans, who usually began their meals with eggs, "ovum" meant the shelled egg). This double definition was used in the NAA (1979), and subsequently critized. The shelled egg is now Ovum testaceum. Although bird's eggs vary greatly in size, shape, and colour their basic structure is remarkably similar.
- (45) **Discus germinalis.** In the laid egg, the germinal disc (Fig. 10.19) is a greyish area about 3 mm in diameter, just beneath the Cytolemma ovocyti; it contains the oöcyte nucleus (also called the germinal vesicle), and cytoplasm forming a thin layer covering the entire surface of the yolk. It may be called the blastoderm if fertilized, and blastodisc if unfertilized (Gilbert, 1971b).

- (46) Membranae vitelli. King (1975a: 1953) proposed this term, yolk membranes, for the four layers that together separate the yolk from the albumen. This convenient concept was adopted by Hodges (1974: 393) and Gilbert (1979: 247). However, it must be distinguished from an older, similar term, "vitelline membrane". The new term, yolk membranes (Membranae vitelli), is in the plural: the old term, "vitelline membrane" (singular), was in general use by light microscopists (e.g., Romanoff and Romanoff, 1949: 135), who could not resolve the structural components. Electron microscopists continued to use the same term, but applied it to several different components. Consequently the term "vitelline membrane" had many different meanings and caused unacceptable confusion; it has rightly fallen into disuse, and should not be revived.
- (47) **Plasmalemma ovocyti.** The plasmalemma of the oöcyte becomes discontinuous just before ovulation (Bellairs, 1965), except at the Discus germinalis (Bakst and Howarth, 1977a).
- (48) Lamina perivitellina. Synonymy: inner layer of vitelline membrane (Bellairs, et al., 1963). Shortly before ovulation the electron dense rods of the perivitelline lamina (Annot. 11; Fig. 10.16) change rapidly into a meshwork of collagen-like fibres with intervening pores (Bellairs, et al., 1963; Fujii, 1976; Bakst and Howarth, 1977a; Bakst, 1978b; Perry, et al., 1978b).
- (49) Lamina continua. The continuous layer first appears in oviductal eggs, and is therefore a tertiary egg membrane (Annot. 8). It is a narrow granular layer about 50 to 100 nm thick (Bellairs, et al., 1963).
- (50) Lamina extravitellina. Synonymy: outer layer of vitelline membrane (Bellairs, et al., 1963); outer perivitelline layer (Bakst and Howarth, 1977b). The extravitelline layer, 3-8 μm thick, consists of many layers of fine fibrils, again, a tertiary egg membrane.
- (51) Vitellus. The yolk. There are two types: Vitellus albus containing about twice as much protein as fat, and Vitellus aureus containing about twice as much fat as protein (Boyd and Hamilton, 1952).
- (52) Vitellus albus. The mass of white yolk (Latebra) (Fig. 10.19) consists of a central ball, the Centrum latebrae (Latebra, L. a hidden recess), which connects by a neck, the Collum latebrae, to the disc of the latebra, Discus latebrae (synonym: Nucleus of Pander). Romanoff and Romanoff (1949: 207) regarded the Latebra as the migration path of the nucleus from the centre of the oöcyte to the periphery during the final stage of rapid accumulation of yolk.
- (53) Vitellus aureus. The yellow yolk (Fig. 10.19), consisting essentially of yolk spheres tightly packed within an aqueous continuous phase (Gilbert, 1979: 250). Sometimes about six concentric wide dark strata alternate with narrow pale strata. This is an artifact depending on the diet, the pale strata being deficient in carotinoid pigment. True stratification of the Vitellus aureus has been found in several species (Grau, 1976), but little is known about its structural basis. (For review, see Gilbert, 1979: 250.) The structure and arrangement of the yolk spheres was studied by Perry and Gilbert (1985).
- (54) **Albumen.** Unlike the yolk, the albumen has little intrinsic structure, but is nevertheless divided into three main components with different amounts of water and ovomucin (Gilbert, 1979: 251).

- (55) **Stratum chalaziferum; Chalaza.** The chalaziferous layer is the thin innermost layer of dense albumen (Fig. 10.19). Rotation of the egg as it descends the oviduct twists some of the strands of fibrous ovomucin of the Stratum chalaziferum, forming two Chalazae at the sharp end and one at the blunt end of the egg (Fig. 10.19). (From chalaza, Gk. a hail stone or tubercle, an obscure etymology.) Chalazae are absent in reptilian eggs (Bellairs and Attridge, 1975: 52).
- (56) Albumen rarum. Commonly called the liquid albumen, but renamed the thin albumen (hence rarum, L. thin) by Gilbert (1971b). It consists of a structureless fluid, apparently free of fibres but containing mucin, in an inner and outer layer (Stratum internum, Stratum externum) (Fig. 10.19).
- (57) Albumen densum; albumen polare. Synonym: thick white (Gilbert, 1971b). The dense albumen contains relatively more ovonucin than the thin albumen. At each end of the egg the Albumen densum is strongly connected to the Membrana testae interna by the Albumen polare (Fig. 10.19), polar albumen (synonym: ligament of the dense albumen).
- (58) Membranae testae. Reviews by Simons (1971), Hodges (1974: 297), and Gilbert (1979: 251) provide the following account. The Membrana testae interna (internal shell membrane) lies on the surface of the Albumen (Fig. 10.19). It is penetrated by mucin fibres of the Albumen (Fig. 10.20), especially of the Albumen polare. It may be composed of three layers of fibres, alternating at right angles. The more complex Membrana testae externa may have six alternating layers of fibres in Gallus (Fig. 10.20). In galliforms there may be a very thin third layer adjacent to the Albumen. As the egg cools after laying, the internal membrane separates from the external at the Polus obtusus, forming the Cella aeria (Fig. 10.20), under which the head of the embryo lies. It is absent in reptiles (Bellairs and Attridge, 1975: 52).
- (59) Testa. Since the first description of the structure of the Testa (egg shell) by Purkinje in 1830 (Simons, 1971: 10) two sets of terms have been developed from its two basic parts: (1) the organic matrix, and (2) the interstitial inorganic mass deposited throughout the organic matrix. The architecture of the organic part is mirrored by that of the inorganic part. The nomenclature can be based on the organic part (e.g., Gilbert, 1979: 253), the inorganic part (Simons, 1971: 13), or partly on the organic and partly on the inorganic part (Hodges, 1974: 402). The nomenclature adopted here is based on the organic part (Stratum mamillarium and Stratum spongiosum), since this is the primary biological element. The reviews of the literature, with original observations, by Romanoff and Romanoff (1949: 159), Simons (1971), Hodges (1974: 402), and Gilbert (1979: 253) supply the following account.
- (60) **Stratum mamillarium.** The mamillary layer is formed by cone-shaped **Mamillae**, each mamilla consisting of a meshwork of very fine fibres (Fig. 10.20). The apices of the mamillae are embedded in the Membrana testae externa; their bases fuse together (except at the Canaliculi testae). Each Mamilla contains a small protein mass, the Nucleus mamillae (Romanoff and Romanoff, 1963: 164; synonym, mamillary core, Gilbert, 1979; Hodges, 1974), which receives fibres from the Membrana testae externa (Fig. 10.20). A cap-like deposit of calcite crystals, the **Galerum basale mamillae** (mamillary basal cap), infiltrates the apex of each Mamilla (Fig. 10.20). The **Conus mamillae** (mamillary cone) is an infiltration of similar crystals into the remainder of the Mamilla (Fig. 10.20).

- (61) **Stratum spongiosum.** The spongy layer forms about two thirds of the shell. It consists of fibres running parallel with the surface (Fig. 10.20). Its inorganic component, the **Stratum vallatum** or palisade layer (synonym: column layer), is formed by calcite crystals arising at the Nucleus mamillarum and lying perpendicular to the surface.
- (62) **Stratum superficiale.** Synonym: surface crystal layer. Descriptions emphasise the calcite crystals of this thin (3-8  $\mu$ m) superficial layer, but a rich organic matrix has been reported (Simons, 1971: 19).
- (63) Cuticula (Fig. 10.20). The cuticle is organic. It is sometimes called the true cuticle, to distinguish it from a powdery calcified deposit (the "cover") on the outer surface of the cuticle in some species. In other species the cover lies deep to the cuticle. Such profound species variations indicate that the outermost layer of the shell may not be homologous throughout birds, so that additional terms may become necessary (Gilbert, 1979: 257). "Shell accessory materials" has been suggested (Board, 1982).
- (64) **Porus testae; Canaliculus testae.** In most taxa (exception: casuariiforms) small funnel-shaped pores open on the shell surface, covered only by the Cuticula (Fig. 10.20). The pores are plugged with material resembling that of the Cuticula, but cracks in this material allow diffusion of respiratory gases and water vapor; in some species the pores are not plugged (Board, 1982). Each pore continues into a **Canaliculus testae** which leads between adjacent Mamillae testae to the outer surface of the Memb. testae ext. (Fig. 10.20).
- (65) **Polus acutus; Polus obtusus.** Respectively, the "sharp" and "blunt" ends of eggs of pyriform shape. In some taxa the egg is spherical (e.g., certain strigiforms), and in others (e.g., Pteroclididae and Podicipedidae) the two ends have a similar curvature (Pitman, 1964: 238-240).



Fig. 10.16. Diagrammatic section through the innermost layer of the wall of the follicle of *Gallus*, at the square inset in Fig. 10.17. Redrawn from King (1975), with permission of W. B. Saunders, Philadelphia.



Fig. 10.17. Diagrammatic section through the wall of a follicle of *Gallus*, showing its layers and blood supply, based on Nalbandov and James (1949). Redrawn from King (1975), with permission of W. B. Saunders, Philadelphia.



Fig. 10.18. Ventral view diagram of the arteries to the ovary and the main arteries to the oviduct of *Gallus*. Two to four Aa. ovaricae arise from the A. renalis cranialis and/or aorta (Annot. 19). The A. oviductalis cranialis accessoria is not always present in this species (Annot. 34). Redrawn from King (1975), with permission of W. B. Saunders, Philadelphia.



Fig. 10.19. Diagrammatic longitudinal section of an egg. From King and McLelland (1975), with permission of Bailliere Tindall, London.



Fig. 10.20. Diagrammatic section through the egg shell (Testa) and shell membranes (Membranae testae) of *Gallus*. The left half shows the organic components of the shell, i.e., Stratum spongiosum and Stratum mamillarium, and the right shows the inorganic components. Mucin fibres of the Albumen penetrate the Membrana testae interna. The lines and dots in the Membrana testae interna and externa represent, respectively, three and six possible layers of fibres, alternating at right angles to each other. Fibres of the Membrana testae externa penetrate the apex of each Mamilla and become associated with the protein of the Nucleus mamillae.

The lines and dots in the Mamillae and Stratum spongiosum represent fibres; the lines in the right half of the diagram represent the long axes of calcite crystals. Crystals infiltrating the apex of each Mamilla form the cap-like Galerum basale mamillae; those infiltrating the rest of each Mamilla form the Conus mamillae. Crystals infiltrating the Stratum spongiosum form the Stratum vallatum (palisade layer). The thin Stratum superficiale has organic and inorganic constituents. The Porus testae (short arrow) is covered only by the organic Cuticula and leads into the Canaliculus testae (long arrow). Based on Hodges (1974, Fig. 165) and Gilbert (1979, Fig. 5.6a).

## TERMINOLOGY CLOACA

#### COPRODEUM1

Plica rectocoprodealis<sup>2</sup>

| Junctura rectocoprodealis<sup>3</sup>

#### **URODEUM<sup>1</sup>**

Plica coprourodealis<sup>4</sup>
Ostium cloacale ureteris<sup>5</sup>
Papilla ductus deferentis<sup>6</sup>
Ostium ductus deferentis<sup>6</sup>
Corpus vasculare phalli (Masc.

Annot. 33, 38)

Ostium cloacale oviductus sinistri<sup>7</sup> Ostium cloacale oviductus dextri<sup>8</sup> Fossa oviductalis<sup>8</sup> Plica uroproctodealis<sup>9</sup> Corpus para-ampullare<sup>10</sup>

#### PROCTODEUM1

Bursa cloacalis<sup>11</sup>

Collum bursae cloacalis<sup>12</sup>

Ostium bursae cloacalis<sup>13</sup>

Glandula proctodealis dorsalis<sup>14</sup>

Glandulae proctodeales laterales<sup>15</sup>

Plicae lymphaticae (Masc.

Annot, 32)

Plicae proctodeales<sup>16</sup> Sinus proctodeales<sup>16</sup> Phallus masculinus (Masc.

Annot. 28)

Phallus nonprotrudens (Masc.

Annot. 29)

Phallus protrudens (Masc.

Annot. 35)

Ostium sacci cutanei phalli

(Masc. Annot. 50)

Phallus femininus<sup>17</sup>

Fossa ejaculatoria (Masc.

Annot. 50)

Sulcus ejaculatorius (Masc.

Annot. 50)

#### VENTUS<sup>18</sup>

Eminentia venti<sup>18</sup>

Labia venti

Commissurae venti<sup>19</sup>

Labium venti dorsale<sup>19</sup>

Labium venti ventrale<sup>19</sup>

Pars rugosa<sup>20</sup>

Pars plana<sup>20</sup>

Glandulae externae labii venti

(Integ. Annot. 14)

Glandulae internae labii venti<sup>21</sup>

Orificium venti

Promontorium cloacale (Masc.

Annot. 27)

Vasa Cloacae

A. pudenda

Aa. cloacales<sup>22</sup>

Rr. corporis vascularis phalli

A. bursocloacalis<sup>22</sup>

Rr. bursales

Rr. cloacales<sup>22</sup>

#### VENTUS<sup>18</sup> (cont.)

A. mesenterica caudalis<sup>22</sup>

R. caudalis<sup>22</sup>

Rr. cloacales<sup>22</sup>

Rr. bursocloacales<sup>22</sup>

V. pudenda

V. bursocloacalis

Vv. bursales

Vv. cloacales<sup>23</sup>

V. mesenterica caudalis

V. bursalis

Vv. cloacales<sup>23</sup>

Vas 1. iliacum internum

Vasa 1. cloacalia<sup>24</sup>

Vas 1. sacrale medianum

Vasa 1. bursae cloacalis<sup>24</sup>

Nervi Cloacae<sup>25</sup>

Plexus pudendus

N. lateralis caudae

Rr. venti<sup>25</sup> (PNS Fig. 15.6)

Rr. musculares<sup>25</sup> (PNS

Fig. 15.6)

N. pudendus (PNS)

Gg. cloacalia<sup>25</sup>

Plexus cloacalis<sup>25</sup>

Nn. cloacales<sup>25</sup>

Rr. cloacales

Rr. bursae cloacalis

Rr. vaginales

Rr. corporis vascularis

phalli

#### MUSCULI CLOACALES<sup>26</sup>

M. sphincter cloacae<sup>27</sup>

M. transversus cloacae<sup>28</sup>

M. contractor cloacae<sup>29</sup>

M. depressor anguli venti<sup>30</sup>

M. levator cloacae [M. retractor

phalli caudalis<sup>131</sup>

M. dilator cloacae [M. retractor

phalli cranialis]32

Tunica mucosa<sup>33</sup>

Plica cloacalis<sup>33</sup>

Villi cloacalis<sup>33</sup>

Epithelium<sup>33</sup>

Epitheliocytus columnaris

Exocrinocytus caliciformis<sup>33</sup>

Glandula [Crypta] intestinalis<sup>33</sup>

Lamina propria mucosae

Lamina muscularis mucosae<sup>34</sup>

Tela submucosa

Tunica muscularis<sup>34</sup>

Stratum circulare

Stratum longitudinale

Tunica fibrosa<sup>35</sup>

Tela subserosa

Tunica serosa<sup>35</sup>

Lamina propria serosae

Mesothelium

## **ANNOTATIONS**

(1) Coprodeum; Urodeum; Proctodeum. Gadow (1887) described the Cloaca (L. sewer or drain) of reptiles and birds as divided by folds of mucous membrane into these three compartments, but conceded that, especially in birds, ". . . the determination of the various chambers is beset with difficulties because of the extreme variability of the separating folds." In fact neither the folds nor the compartments are always distinct (Gerhardt, 1933: 277-280; King, 1981: 63-70). Nevertheless, Gadow's compartments and terminology are the foundation of cloacal morphology.

- (2) Plica rectoproctodealis. Gadow (1887) proposed that the interior of the Coprodeum is separated from the Rectum by a macroscopically distinct annular rectocoprodeal fold containing a circular sphincter muscle. Such a fold has often been illustrated and described in *Gallus*, but it is not present (Jolly, 1915; Lillie, 1952: 388; Komárek, 1970; King, 1975a: 1960). Among the ratites the fold is well developed in *Struthio*, doubtful in *Casuarius* and *Rhea*, and absent in *Dromaius* (King, 1981: 71); in carinates it is very rare, having been reliably reported in *Falco tinnunculus* only (King, 1981: 75). In anseriforms including *Anas* (Komárek, 1969) a distinct fold has often been indicated (Fig. 10.14), but there is only a slight ridge where the epithelium changes to stratified squamous (King, 1981: 72).
- (3) **Junctura rectocoprodealis.** In birds generally the rectocoprodeal junction is marked macroscopically solely by the beginning of the bell-shaped enlargement (Fig. 10.9) of the Coprodeum (King, 1981: 75). In anseriforms the junction is also macroscopically obvious at the abrupt change from the reddish rectal to the white (stratified squamous) cloacal mucosa. There is histological and radiographic evidence of a muscular sphincter at the junction in *Gallus* (King, 1981: 73). In *Anas* a sphincter occurs in the rectal wall 1-2 mm cranial to the mucosal change (**Diges.** Annot. 89).
- (4) **Plica coprourodealis.** The coprourodeal fold is a prominent annular ridge between Coprodeum and Urodeum in most birds, but absent in some (King, 1981: 79). When well developed as in *Gallus* and *Anas* (Figs. 10.9, 14) it enables feces to be delivered directly through the vent, and prevents defecation during egg laying and ejaculation (Komárek, 1970; King, 1981: 79).
- (5) Ostium cloacale ureteris. The claim that the Ureter opens on a papilla (Pilz, 1937) has been confirmed for only a few species e.g., *Struthio*, some sphenisciforms, *Columba livia*, and anseriforms (Figs. 10.13, 14) (King, 1981: 81). It is certainly incorrect for *Gallus* (Fig. 10.9) (King, 1975: p1962).
- (6) Papilla ductus deferentis; Ostium ductus deferentis. In the adult male of all investigated birds the ductus deferens ends caudally on the ventrolateral wall of the urodeum at the conical papilla of the ductus deferens (Figs. 10.9, 13, 14), opening via its Ostium. In the juvenile female a very small homologous papilla has been found on both sides in spheniscids (Sladen, 1978) and anseriforms (Komárek, 1971), consistent with the claim (Witschi, 1961: 124; Fig. 21) that the ductus deferens persists in adult female birds and enlarges during the nuptial phase.
- (7) Ostium cloacale oviductus sinistri. The opening of the left oviduct into the urodeum. In immature anseriforms and *Gallus* the ostium is closed by a membrane which breaks down at the onset of sexual maturity (see Gilbert, 1979: 307, and King, 1981: 85).
- (8) Ostium cloacale oviductus dextri; Fossa oviductalis. In adult female birds the right oviduct occasionally has a true cloacal opening, the ostium of the right oviduct, but in the domestic anseriforms and galliforms there is usually only a pit-like depression, the oviductal fossa (Komárek, 1971). See King, 1975: 1952, and 1981: 85.
- (9) Plica uroproctodealis. In all of the many avian species so far examined the urodeum is separated from the proctodeum by a distinct semicircular fold, which is best developed dorsally and fades out ventrally (Figs. 10.9, 14) (King, 1981: 86).

- (10) Corpus para-ampullare. A globular, fluid-containing, structure about 2 mm diameter embedded near the Papilla ductus deferentis in about 2 per cent of male *Gallus*, usually on one side only. Considered to be a remnant of the Ductus paramesonephricus (Marvan, 1969).
- (11) **Bursa cloacalis.** Synonymy: Bursa Fabricii. A pouch-like median dorsal diverticulum of the proctodeum. Involutes by the time of sexual maturity and except in ratites (Annot. 13) disappears entirely. Shape and internal structure vary (King, 1981: 87). See **Lym.** Annot. 12.
- (12) Collum bursae cloacalis. The stalk of the Bursa cloacalis, running cranially along the dorsal wall of the urodeum to which it is attached. In *Struthio, Dromaius*, and *Rhea* the bursa is so far incorporated into the proctodeal wall that it lacks the stalk (Berens v. Rautenfeld and Budras, 1982).
- (13) Ostium bursae cloacalis. The opening of the Bursa cloacalis through the dorsal wall of the Proctodeum. In nearly all birds studied this is a transverse slit close to the Plica uroproctodealis. In *Struthio* and *Dromaius* the lumen of the proctodeum and Bursa together form a single large cavity (Berens v. Rautenfeld and Budras, 1982) which in the early literature was mistaken for a true urinary bladder (King, 1981: 89). In the male *Struthio* the huge Phallus masculinus occupies this cavity, which persists after the lymphoid tissue in the bursal wall has involuted (Berens v. Rautenfeld and Budras, 1982).
- (14) Glandula proctodealis dorsalis. Synonymy: bourrelet lympho-glandulaire (Jolly, 1915); foam gland, cloacal gland, paracloacal gland (see Klemm, et al., 1973); triangular fold (Fujihara, et al., 1985a). In Coturnix coturnix (Coil and Wetherbee, 1959; Klemm, et al., 1973) the dorsal proctodeal gland forms a prominent mound-like projection from the dorsal midline of the male and female Proctodeum. It comprises an encapsulated aggregation of glandular units, partly embedded in the M. sphincter cloacae. A similar glandular aggregation, though heavily infiltrated with lymphoid tissue, occurs in Gallus (Jolly, 1915; Komárek, 1970) and in males of Meleagris where it probably secretes a mucosubstance (Bakst and Cecil, 1985), and is presumably homologous to the gland in Coturnix. In Coturnix the secretion, which is a mucosubstance, is evidently squeezed from the gland by contraction of the M. sphincter cloacae. In the male it is released from the vent during coitus as a white froth (Tamura and Fujii, 1967; McFarland, et al., 1968). The froth also mixes with feces, and is therefore not restricted to sexual activity (Klemm, et al., 1973). Very small quantities of froth are also ejected from the Glandula proctodealis dorsalis by males of Gallus and Meleagris during ejaculation (Fujihara and Nishiyama, 1984; Fujihara, et al., 1985b; Bakst and Cecil, 1985). The effects of the froth on the fertilizing capacity and storage of sperm were surveyed by Fujihara, et al. (1987). Berens v. Rautenfeld (pers. comm.) doubts whether the glandular structure in Coturnix is homologous with the lymphoid structures in other species, and interprets the latter as a "dorsal proctodeal tonsil".
- (15) Glandulae proctodeales laterales. Synonymy: tonsillae proctodeales (Berens v. Rautenfeld and Budras, 1982). The lateral proctodeal glands lie in the ventrolateral wall of the cloaca in both sexes of many birds (Forbes, 1877; Gadow, 1887; Komárek, 1970, 1971). In ratites, anseriforms (Figs. 10.13, 14), and the turkey the three to six

openings on each side are large and pore-like. In *Gallus* the openings are inconspicous and much more numerous (see King 1981: 90, for review). The histology of these glands has not been reported, but Berens v. Rautenfeld and Budras (1982) claim that the term Tonsillae proctodeales would be more correct thus suggesting histological evidence for non-glandular tubes with lymphoid infiltration.

- (16) Plicae proctodeales; Sinus proctodeales. The Plicae proctodeales are craniocaudal folds of the mucosa of the proctodeum in *Gallus* and *Meleagris*, but not *Anas* and *Anser*, the proctodeal sinuses being depressions between the folds (Komárek, 1970, 1971).
- (17) **Phallus femininus.** A prominent structure on the proctodeal floor of female ratites, but weakly developed in anseriforms (King, 1981); also visible in females of taxa with Phallus nonprotrudens including *Gallus* and *Meleagris* (Komárek, 1971), especially in immature birds. In *Gallus* all the main components (Corpus vasculare phalli, Corpus phallicum medianum/laterale, and Plicae lymphaticae) are recognisable in the female (Preuss and Berens v. Rautenfeld, 1974).
- (18) **Ventus.** The vent is the external opening of the cloaca (Gadow, 1896: 90; Berger, 1961: 300; Marshall, 1962: 585; King, 1975: 1963). The term anus has often been used in birds, but strictly should be confined to the external opening of the alimentary tract when separate from the urogenital openings (Berger, 1961: 300; Romer, 1962: 4), as in *Amphioxus*, Teleostei, and the higher mammals. Seen from the outside, the closed vent is not circular like the mammalian anus but a horizontal slit. For review see King (1981: 92).

**Eminentia venti.** The protrusion on which the vent is mounted in both sexes (**Topog.** Annot. 35).

- (19) Labium venti dorsale/ventrale; Commissurae venti. The vent is closed by a dorsal and ventral lip (Fig. 10.14). At the left and right commissures of the vent the junction of the dorsal and ventral lips is deeply invaginated. The dorsal lip is smaller, but overhangs the ventral lip externally (Bakst, 1986).
- (20) Pars rugosa. Synonymy: Pars externa (Komárek, 1970). The region of each Labium that is externally visible when the vent is closed. A cutaneous zone devoid of feathers but marked by numerous radial furrows (hence "rugosa", corrugated) (King, 1981: 92). The furrows enable the vent to dilate during defection and copulation (Komárek, 1970).

Pars plana. Synonymy: Pars interna (Komárek, 1970). The mucous zone of each labium, only slightly furrowed (hence "plana", flat). The caudal (external) surface of the Labium ventrale has a Pars rugosa ventrally, which transforms dorsally into the Pars plana (overlaid by the Labium dorsale); the Pars plana continues over the rim of the lip to line the cranial (internal) surface. The caudal (external) surface of the Labium dorsale consists almost entirely of Pars rugosa; the Pars plana forms only a narrow ventral zone, which continues over the rim to line the cranial (internal) surface. The Pars plana is a stratified squamous cutaneous epithelium. When the proctodeum is lined mainly by a columnar epithelium (as in *Gallus*), the transition from stratified squamous into columnar epithelium occurs at the base of the inner surface of each Labium (Calhoun, 1954: 70). In other taxa the stratified squamous epithelium typically extends over the whole of the proctodeum (Annot. 33).

(21) Glandulae internae labii venti. The internal, mucus secreting, glands of the labia of the vent opening on the internal surfaces of the Labia, in most of 72 species but not anatids and phasianids (Quay, 1967). See Topog. Annot. 14.

- (22) Aa. cloacales. In Gallus (Pintea, et al., 1967; Knight, 1970; Baumel, 1975c: p1997) and Meleagris (Knight, et al., 1984) the main arterial supply to the cloaca is from the A. pudenda. In Columba some Rr. cloacales and Rr. bursocloacales also arise from the R. caudalis of the A. mesenterica caudalis (Art. Annot. 80), but the main supply is from the visceral branch of the A. pudenda by the A. bursocloacalis (Baumel, 1988: 62).
- (23) **Vv. cloacales.** The venous drainage of the cloaca of *Gallus* is mainly into the V. pudenda, but a few venules also drain into the V. mesenterica caudalis (Pintea, et al., 1967). *Columba* has both of these pathways (Baumel, 1988: 66), but the flow through the V. mesenterica caudalis is larger (Ven. Annot. 63).
- (24) Vasa l. cloacalia; Vasa l. bursae cloacalis. The cloacal lymphatic vessels (Lym. Fig. 13.7), including those draining the entire phallic complex, empty into the Vas l. iliacum internum (Budras and Berens v. Rautenfeld, 1984). See Masc. Annot. 34, 40). The lymphatic vessels of the Bursa cloacalis drain into the Vas l. sacrale medianum (Lym. Fig. 13.7).
- (25) **Nn. cloacae.** The gross anatomy of the cloacal nerves was established in *Gallus* by Hsieh (1951: 108), Pintea, et al., (1967), Knight (1970), Watanabe (1972), and Baumel (1975c: 2052, 2059), and in *Columba* by Baumel (1988: 49), and was reviewed by King (1981: 96). The basic source of cloacal nerves is the pudendal plexus.

The somatic pathways to the cloaca from the N. lateralis caudae include Rr. venti to the vent and Rr. musculares to the cloacal muscles. Degeneration studies suggested that some of these axons to the cloacal muscles may actually come from the N. tibialis via the Connexus caudalis (PNS Annot. 41). The N. pudendus may also provide some somatic cloacal fibres, presumably afferent, via many delicate rami to the cloacal wall (Knight, 1970: 68).

In Gallus the visceral cloacal fibres of the craniosacral system travel in the N. pudendus to the one large and several small Gg. cloacalia (synonymy: pelvic ganglion, Freedman and Sturkie, 1963; bursocloacal ganglion, Pintea, et al., 1967) that are formed on the pudendal nerve, on the dorsolateral aspect of the cloaca. These ganglia, with their connections to those of the opposite side and to the rectal ganglia, comprise the Plexus cloacalis. The cloacal plexus gives rise to small cloacal nerves (Nn. cloacales) supplying branches to all parts of the cloaca. The cloacal ganglia connect via the rectal ganglia with the N. intestinalis, which in turn connects with the Divisio thoracolumbaris of the visceral nervous system; therefore there are many routes for visceral fibres from both the thoracolumbar and the craniosacral system to reach the cloaca (Bennett, 1974: 37). In Meleagris, peripheral to the main G. cloacale, the N. pudendus also forms a G. paracloacale, which lies on and innervates the Corporis vasculare phalli (Knight, et al., 1984).

- (26) Mm. cloacales. Earlier studies of these six, essentially extrinsic, cloacal muscles (Myol. Annot. 68) have been enhanced by Baumel's (1988: 25) observations on *Columba*, and his terminology is used here. The first four muscles (Annots. 27-30) are no longer difficult, but the last two are complicated by having two different sets of names. See King (1981:98, 125, 131) for a review of the earlier literature.
- (27) M. sphincter cloacae. Synonymy: M. sphincter ani (Gadow and Selenka, 1891: 848). The cloacal sphincter is a striated muscle encircling the vent and proctodeum, much thicker dorsally than ventrally (Knight, 1967: 59; Baumel, 1988: 25).

- (28) M. transversus cloacae. Synonymy: M. transversus perinei (Shufeldt, 1890: 312; Harvey, et al., 1968); M. transversoanalis (Beddard, 1898: 108; Gadow and Selenka, 1891: 129; George and Berger, 1966: 284); M. retractor ani (Ghetie, et al., 1976). This striated muscle arises from the caudal margin of the pelvis and inserts into the ventrolateral aspect of the cloacal sphincter (Knight, 1967: 60; Baumel, 1988: 26). In some taxa (e.g., Apodiformes) it may have two origins and bellies (Vanden Berge, 1979: 198). It has a ventilatory function, compressing the thoracoabdominal cavity at expiration (Baumel, 1990) and presumably also the cloaca. In *Anas* it may direct the erect phallus cranioventrally at coitus (Liebe, 1914).
- (29) M. contractor cloacae. Synonymy: M. transversus perinei (Harvey, et al., 1968; Ghetie, et al., 1976). Vanden Berge (1979: 198) interpreted this infrequently-occurring striated muscle as a slip of M. pubocaudalis internus. Baumel (1988: 27) confirmed its absence as a discrete muscle in *Columba*, but observed corresponding bundles in M. pubocaudalis internus and M. sphincter cloacae. In *Gallus* it is a small but distinct muscle passing transversely across the craniodorsal aspect of M. sphincter cloacae, between the caudal ends of the pubic bones (Knight, 1967: 60).
- (30) M. depressor anguli venti. This muscle has been described only by Baumel (1988: 27) in *Columba*, where it arises from the ventral midline beneath the vent and diverges dorsally on each side of the vent to insert into the M. transversus cloacae.
- (31) M. levator cloacae [M. retractor phalli caudalis]. Synonymy: M. levator ani (Gadow and Selenka, 1891: 848; Ghetie, et al., 1976); M. eversor urodeum (Harvey, et al., 1968). In Gallus this is a long narrow muscle arising from the ventral surface of the tail, inserting in the ventral midline on the phallus (Knight, 1967: 61). In Columba it is a long slender bundle running from the follicle of the outermost rectrix of the tail, splitting to insert both on the dorsal lip of the vent and on the phallic bodies on the *ventral* lip (Baumel, 1988). The M. levator ani (Müller, 1836; Gadow and Selenka, 1891: 848) inserts on the dorsal lip. The M. retractor phalli caudalis (Masc. Annot. 51) is a slender band inserting on the phallus (i.e., the ventral lip of the vent) in Gallus, Meleagris, and Anas. On the basis of their own observations on several ratite species and Anas and Cygnus, Gadow and Selenka (1891: 848, 857) described both M. levator ani and the two pairs of retractor muscles of the phallus; this, and the dorsal and ventral discrepancies in the insertions, raise the disturbing possibility that these might not all be the same muscle, but it is supposed that they probably are (Masc. Annot. 51). This conclusion is particularly supported by the observations of Liebe (1914) who described the pelvic musculature very thoroughly in Anas; he included the cranial and caudal retractor muscles of the phallus, but made no mention of a levator cloacae or levator ani muscle.
- (32) M. dilator cloacae [M. retractor phalli cranialis]. Synonymy: M. dialator cloacae (Knight, 1967: 62). A less known muscle than the levator cloacae, not formally listed in NAA, 1979 but mentioned in Myol. Annot. 68 of NAA, 1979. It has been clearly described in Gallus and Columba; in both it is a very delicate band. In Gallus (Knight, 1967: 62) it arises from the ischium and inserts on the ventrolateral aspect of the vent, and was distinguished by its light brown colour (smooth muscle?). In Columba (Baumel, 1988: 28) this nonstriated muscle arises from the the M. pubocaudalis internus and inserts on the dorsal lip of the vent. The M. retractor phalli cranialis (Masc. Annot. 51) inserts essentially on the ventral lip of the vent, and is nonstriated muscle. The differences in the insertions are again disquieting, but the

- M. dilator cloacae and the M. retractor phalli cranialis are presumed to be the same muscle.
- (33) Tunica mucosa. In most birds the mucosa of the coprodeum resembles that of the rectum, but is more or less elaborate depending on the species, probably reflecting water resorption (Johnson and Skadhauge, 1975). Many circular Plicae cloacales (cloacal folds) carrying Villi cloacales (cloacal villi) occur in the coprodeum of Dromaius. The xerophilic passerine *Poephila* has no folds but abundant tall, dense villi. Gallus also has many finger-like villi (Calhoun, 1954: 70). The columbid Streptopelia has some low broad villi and flat areas without villi. The coraciiform Dacelo and psittaciform *Eolophus* have no villi. In all these taxa (Johnson and Skadhauge, 1975; Hodges, 1974; 86) the coprodeal epithelium is simple columnar with goblet cells (Exocrinocyti caliciformes), and intestinal crypts (Cryptae intestinales) open between the villi or on the flat surfaces devoid of villi. In Anas and Anser the entire cloaca is lined by stratified squamous epithelium (Komárek and Marvan, 1969). The urodeal mucosa varies, being simple columnar with small villi in Gallus (Calhoun, 1954: 70). and a mixture of simple columnar and various compound epithelia without villi in other species (see King, 1981: 86 for review). The lining of the proctodeum is stratified squamous epithelium without villi in all taxa so far examined, except Gallus where the inner aspects of the labia of the vent are stratified squamous (Annot. 21). the lining of the rest of proctodeum columnar (King, 1981: 91).
- (34) Lamina muscularis mucosae; Tunica muscularis. The muscularis mucosae and muscle tunic are recognisable in the cranial regions of the cloaca, but indistinct caudally where the extrinsic cloacal muscles predominate.
- (35) Tunica fibrosa; Tunica serosa. The cranial part of the coprodeum is peritoneal (Fig. 10.8), having a serous coat. The rest of the cloaca is intrapelvic and has a fibrous coat.



## **GLANDULAE ENDOCRINAE**

#### **AUGUST EPPLE**

#### **TERMINOLOGY**

#### GLANDULA THYROIDEA1

Capsula thyroidea Colloidum thyroideum Folliculus thyroideus Parenchyma thyroidea Stroma thyroidea

#### GLANDULA PARATHYROIDEA<sup>2</sup>

Capsula parathyroidea
Parenchyma parathyroidea
Stroma parathyroidea
Gll. parathyroideae accessoriae<sup>3</sup>

## GLANDULA ULTIMOBRANCHIALIS<sup>4</sup>

Parenchyma ultimobranchialis Stroma ultimobranchialis Vesiculae ultimobranchiales

#### GLANDULA PINEALIS<sup>5</sup>

Corpus gl. pinealis
Parenchyma pinealis
Pedunculus gl. pinealis<sup>5</sup>

#### SYSTEMA ENDOCRINUM MUCOSAE DIGESTORIUM<sup>6</sup>

Cellulae endocrinae mucosae digestorium

#### **INSULAE PANCREATICAE**<sup>7</sup>

Parenchyma insularum
Cellulae insularum
Cellulae A
Cellulae B
Cellulae D

Cellulae F

#### **GLANDULA ADRENALIS8**

Capsula adrenalis
Partes corticales gl. adrenalis
Partes medullares gl. adrenalis
Glandulae adrenales accessoriae<sup>9</sup>
Paraganglia<sup>10</sup>

## HYPOPHYSIS [GLANDULA PITUITARIA]11

Adenohypophysis<sup>12</sup>
Pars tuberalis
Pars distalis<sup>12</sup>
Zona rostralis partis distalis
Zona caudalis partis distalis
Neurohypophysis<sup>13</sup> (CNS)
Sulcus tuberoinfundibularis<sup>14</sup>

Eminentia mediana<sup>14</sup> 15 Zona rostralis eminentiae

medianae<sup>15</sup>

Zona caudalis eminentiae

medianae<sup>15</sup>

Infundibulum

Lobus nervosus

Recessus neurophypophysialis<sup>16</sup> Tractus hypothalamohypophysialis

#### **VASA SANGUINEA HYPOPHYSIS**

A. carotis cerebralis<sup>18</sup>
A. infundibularis<sup>18</sup>

A. neurohypophysialis

Anastomosis intercarotica<sup>18</sup>

A. hypophysialis caudalis<sup>17</sup>

A. eminentiae rostralis

A. eminentiae caudalis

A. retrochiasmatica

## **VASA SANGUINEA HYPOPHYSIS (cont.)**

Aa. hypothalamicae ventrales<sup>18</sup>
R. rostralis a. carotis cerebralis
A. cerebralis rostralis
Aa. preopticae<sup>19</sup>
Systema portale hypophysiale<sup>20</sup>
Vy. portales caudales<sup>21</sup>

Vasa sinusoidea portalia<sup>22</sup> Vv. portales rostrales<sup>21</sup> Vasa sinusoidea portalia Sinus cavernosus<sup>23</sup> Vv. adenohypophysiales<sup>24</sup>

#### **ANNOTATIONS**

- (1) Glandula thyroidea. The avian thyroid tissue develops in the usual vertebrate pattern from pharyngeal endoderm (Romanoff, 1960). In contrast to mammals, all birds seem to have two separate glands (one on each side) that lie usually close to the common carotid artery and the jugular vein (Astier, 1980). The Parenchyma thyroidea of many birds seems to be of the follicular type only; however, parathyroid tissue and C cells (see Annot. 4) invade the glands of some species (see below). The connective tissue capsule is thin. The histophysiological variations of the follicular epithelium seem to be the same as in other vertebrates (Astier, 1980).
- (2) Glandula parathyroidea. Birds have a total of two to four parathyroids which are typically located along the jugular vein between the thyroid and the ultimobranchial glands (Forsyth, 1908; Bargmann, 1939). It is assumed that the cranial and caudal parathyroids develop from the third and fourth pharyngeal pouches, respectively. In some taxa, e.g., Gallus, the capsules of two parathyroids are attached to each other, or the parenchyma is even fused within the same capsule (Abdel-Magied and King, 1978). In a number of species, the carotid body is either located close to, or embedded in the parathyroid (Watzka, 1933; DeKock, 1959). At least in some species, the parenchyma contains two types of chief cells; however, in contrast to mammals, oxyphil cells are absent. The strong innervation of the glands is mainly, but not exclusively, associated with blood vessels (Clark, et al., 1986).
- (3) Glandulae parathyroideae accessoriae. These structures are not universally present in birds, or, if so, have not been identified. However, positive identification within the ultimobranchial gland has been made in several species, such as *Gallus* (Hodges, 1974: 444), *Corvus*, Strigidae, and *Columba* (Watzka, 1933). Their occasional presence outside the ultimobranchial gland, in thymus tissue and the thyroid gland has been described in the fowl by Nonidez and Goodale (1927).
- (4) Glandula ultimobranchialis. The avian ultimobranchial gland develops from two different components: (l) endodermal, pharyngeal outpocketings, which (2) are invaded by calcitonin-producing C cells of neural crest origin (Le Douarin, et al., 1974). The resulting picture varies with the species (Watzka, 1933; Hodges, 1979), and mingling of both components with adjacent structures adds to the difficulties of defining the organ. Hence, the synonym "ultimobranchial body" appears to be misleading. In columbids, C cells have been found in the thyroid, which resembles the mammalian situation (Stoeckel and Porte, 1970). Immunocytochemistry may be the safest way to identify the C cells (Kameda, 1984), which in turn represent two subtypes (cf., Robertson, 1986). It remains to be seen if, or to what extent,

"parenchymal" and "vesicular" components can be related to endocrine and non-endocrine functions.

- (5) Glandula pinealis. Synonymy: Corpus pineale; Epiphysis cerebri. The avian pineal is an endocrine organ that shows great species variations (Quay and Renzoni, 1967; Hartwig, 1980; Collin and Oksche, 1981; Binkley, 1989). Its predominent cell types are modified photoreceptors that produce the hormone melatonin. There are also glia- or ependyma-related supportive elements, and intrinsic neurons that project via the pineal tract to hypothalamic regions (Korf, et al., 1982). The intrinsic neurons tend to concentrate in the proximal (stalk) region of the pineal (Pedunculus gl. pinealis); according to Sato and Wake (1983), their number varies in adult birds from zero in the chicken to about 360 in the Golden Pheasant (Chrysolophus pictus). The avian pineal receives sympathetic innervation from the superior cervical ganglion (see PNS); this innervation is also subject to considerable interspecific variation (Ueck, 1979).
- (6) Systema endocrinum mucosae digestorium. As in all vertebrates, the mucosal epithelium of the avian gut contains a large variety of endocrine cells. In birds, they are scattered from proventriculus to rectum. Immuno-cytochemically, there are at least ten different types, but it is likely that their number is larger. Morphologically, these cells can be assigned to two different categories: (1) "open cells" that seem to receive chemical stimuli from the gut lumen via apical microvilli; and (2) "closed-cells" that seem to occur mainly or exclusively in the Proventriculus. Closed cells seem to respond to humoral messages and or pressure. The limited data so far available show already many differences between birds and mammals, as well as between different avian species (Yamada, et al., 1983; Rawdon, 1988). The endocrine cells of the avian respiratory tract (McLelland and Macfarlane, 1986) can be considered phylogenetically as descendents of the mucosal endocrines of the gut.
- (7) Insulae pancreaticae: Cellulae insularum. The bulk of the avian pancreas is located in a loop of the duodenum, but a fine extension, the splenic lobe, is always present near the spleen. In many species, the bulk of the pancreas consists of a dorsal and a ventral lobe; however, in phasianids there is an additional third lobe (see Digest. Annot. 110). In the chicken, the splenic and third lobe develop from the dorsal pancreas primordium, the dorsal lobe from the right and the ventral lobe from the left ventral primordium; intermingling of ventral and third lobe material occurs during the development (Ono, 1967). This terminology is confusing since in non-phasianids the large accumulation of islet tissue in the dorsal and splenic lobe (Guha and Ghosh, 1978) suggests that these pancreas regions of the birds are of dorsal primordium origin.

There are four major cell types: A cells, B cells, D cells, and F cells (Cellulae A, B, D, F)), producing the respective hormones glucagon, insulin, somatostatin and pancreatic polypeptide (Andrew, 1984; Rawdon, 1988; Hazelwood, 1989). However, birds are unique in that their islets occur largely in two different forms: large A islets (also called "dark" islets), consisting mainly of A and D cells; and smaller B islets (also called "light" islets), consisting mainly of B and D cells. At least in some species, including the chicken, there are also "mixed" islets, containing mainly A, B, and D cells (Iwanaga et al. 1983). F cells are scattered over the whole pancreas, either as single elements or as small groups; they tend to be more common in the derivatives of the ventral primordia (Andrew, 1984; Tomita, et al., 1985). On the other hand, A islets tend to be more common in the derivatives of the dorsal primordium, which is particularly obvious in the phasianids (Iwanaga, et al., 1983; Mikami, et al., 1985; Tomita et al. 1985). The highest concentration of islet tissue occurs

always in the splenic lobe. Due to its small size and variability, the latter may have been overlooked in earlier pancreatectomies, which might explain differing results of the operation (Mialhe, 1958).

- (8) Glandula adrenalis. Synonymy: Suprarenal gland. Birds have usually two discrete adrenals. These glands are often bilaterally asymmetric, both in size and shape; and in a few species, the glands are fused in the midline (Bachmann, 1954). The adrenals develop from two different germ layers: the steroidogenic "inter-renal" tissue (the equivalent of the mammalian cortex) from mesoderm, and the catecholaminergic, chromaffine tissue (the equivalent of the mammalian medulla) from neural crest cells. Both components intermingle greatly, and the chromaffin tissue occurs usually as islets between cords of steroidogenic cells. However, in some birds the chromaffin tissue tends to concentrate towards the outer region of the glands (Hartman and Brownell, 1949). In the duck (Anas), the cortex shows cytological differences which have led to the suggestion that, similar to mammals, an outer zone produces aldosterone, and an inner zone corticosterone (Holmes and Cronshaw, 1984). The chromaffine cells can be divided histochemically into norepinephrine and epinephrine cells. As in mammals, the percentage of these cell types varies greatly with the species; e.g., the cormorant (Phalacrocorax niger) has 100% norepinephrine cells, while some passeriforms have 95% epinephrine cells (Ghosh, 1980). See Art. Ven, for adrenal vessels.
- (9) Glandulae adrenales accessoriae. In the Jackdaw (*Corvus monedula*) 1-3 accessory adrenal glands are embedded in the epididymis (Tracuic, 1969), but information on other taxa is lacking. The accessory glands should not be regarded as paraganglia; only tissue masses shown to contain chromaffin material should be termed paraganglia.
- (10) Paraganglia. Extra-adrenal chromaffin tissue has been identified in various species in various locations. For several reasons, the carotid bodies also may be considered paraganglia (Böck, 1982).
- (11) Hypophysis cerebri [Glandula pituitaria]. The nomenclature for the components of this organ is clouded by doubtful anatomical distinctions, a wealth of alternative names for the same structure, and the fact that physiological function often overlaps more than one anatomically-distinct area. Structurally and functionally, it is difficult to consider the "hypophysis" separately from the aldehyde fuchsin-positive and aldehyde fuchsin-negative neurosecretory systems of the diencephalon. Since this chapter only considers the classical neurohypophysis and adenohypophysis, the reader is referred to key references which cover much of the literature on the nuclei that give rise to the axons terminating in the neurohypophysis: For aldehyde fuchsinpositive systems (producing mesotocin and vasotocin) see Blähser (1981) and Tolivia, et al. (1987); for the other systems that can be identified more or less by immunocytology only (i.e., the producers of releasing and inhibiting hormones of the adenohpophysial secretions), see Mikami and Yamada (1983) and Blähser (1984). Unfortunately, most of the avian hypothalamic nuclei are inhomogeneous entities, and their structure is as confusing as some of the terminologies (Oksche, 1983; Korf, 1984; Blähser, 1988).
- (12) Adenohypophysis; Pars distalis. Synonymy: Pars anterior. The two distinct regions of the avian Pars distalis of the hypophysis (Zona rostralis and Zona caudalis) are commonly called cephalic and caudal lobes, respectively. They are characterized by different cell populations (Mikami, 1983; Mikami and Yamada, 1984).

- (13) Neurohypophysis. Synonymy: Lobus posterior. The term "posterior lobes" of the hypophysis in birds differs from that in mammals because birds lack a Pars intermedia; this may lead to misunderstanding. The complex structural organization of the avian neurohypophysis has been reviewed by Mikami (1980) and Oksche (1980). See CNS, Sectiones hypothalami.
- (14) Sulcus tuberoinfundibularis. This furrow, particularly in species with a strongly thickened median eminence, delineates the **Eminentia mediana** from the surrounding hypothalamus (Wingstrand, 1966). The term was defined for mammals by Spatz, et al. (1948), though Sulcus hypothalamo-hypophyseus was used by Kuhlenbeck and Haymaker (1949). See CNS, Annot. 94.
- (15) Zona rostralis eminentiae medianae; Zona caudalis eminentiae medianae. The two zones of the avian median eminence of the neurohypophysis differ in innervation, histological/histochemical properties that reflect different secretions, and drainage via the hypophysial portal system (Annot. 20). Both zones secrete hypophysiotropic hormones. The rostral zone supplies the cephalic lobe of the Pars distalis, and it usually contains also many aldehyde-positive neurosecretory terminals that secrete vasotocin; the caudal zone supplies the caudal lobe of the Pars distalis (Mikami, 1980; Oksche, 1980; Blähser, 1981).
- (16) **Recessus neurohypophysialis.** This is the extension of the third ventricle into the neurohypophysis.
- (17) **A. hypophysialis caudalis.** In some birds, such as the pigeon *Columba*, caudal hypophysial arteries from the intercarotid anastomosis supply the neurohypophysis; in others the neurohypophysis is supplied by a branch of the infundibular artery, the A. neurohypophysialis.
- (18) A. infundibularis. A. infundibularis is usually a branch of A. carotis cerebralis rostral to the Anastomosis intercarotica (Art. Annot. 17), near its bifurcation into the Rami rostralis and caudalis. Vitums, et al. (1964) state, "Each infundibular artery (right and left) usually originates as a single artery from the anterior ramus just rostral to the origin of the posterior ramus. In a few cases, the infundibular artery originates directly from the carotid artery at the point just caudal to the origin of the posterior ramus". Wingstrand (1951: 274) states that the blood supply to the primary plexus of the median eminence comes exclusively from the infundibular arteries. The vessels are fairly small and variable, but always start from the A. carotis cerebralis somewhere between the Diaphragma sellae (CNS Meninges) and its point of division into rostral and caudal rami. Because Wingstrand discussed 25-30 different species, his description should be accepted as the usual condition.
- Aa. hypothalamicae ventrales. The hypothalamohypophysial tract is supplied by these arteries (Vitums, et al., 1964).
- (19) Aa. preopticae. These arteries supply the supraoptic and paraventricular (neurosecretory) hypopthalamic nuclei (Vitums et al. 1964).
- (20) Systema portale hypophysiale. The system starts from capillary beds in the median eminence and ends in the adenohypophysis. In *Zonotrichia*, *Columba*, and other birds Vv. portales form the sole afferent blood supply to the adenohypophysis (Vitums, et al., 1964; Wingstrand, 1951). In *Gallus* (Hasegawa, 1956) and *Anas* (Assenmacher, 1953) the Pars distalis also receives a limited part of its supply from caudal and rostral hypophysial arteries (Vitums, et al., 1964).

- (21) **Vv. portales rostrales: Vv. portales caudales.** The rostral and caudal groups of veins are derived from capillary plexuses of the rostal and caudal zones of the median eminence, respectively (Vitums, et al., 1964; Singh and Dominic, 1970; Sharp and Follett, 1969) (see Annot. 16).
- (22) Vasa sinusoidea portalia. According to Mikami, et al. (1970), these sinusoids in the portal zone of Pars distalis have a structure resembling postcapillary venules.
- (23) **Sinus cavernosus.** The cavernous sinus of birds is a complicated structure subdivided into several separate components. It has not been determined that the separate components have interconnections and consequently the portal drainage from the neurohypophysis may be entirely separate from adenohypophysial drainage. See **Ven.** Annot. 18.
- (24) **Vv. adenohypophysiales.** In *Zonotrichia* three main groups of veins drain from the portal sinusoids of the adenohypophysis into different parts of the cavernous sinus (Vitums, et al., 1964). A similar drainage occurs in the chicken (Green, 1951).



## SYSTEMA CARDIOVASCULARE

#### JULIAN J. BAUMEL

With contributions from subcommittee members: A. J. Bezuidenhout, J. Kaman, A. S. King, L. Malinovský, U. Midtgård, T. Miyaki, T. Nishida.

The efforts of Jiri Kaman and Takao Nishida in formulating the original cardiovascular terminology in the first edition of the *Nomina Anatomica Avium* (NAA, 1979) deserve acknowledgement. In preparing this edition we have relied heavily on Dr. Midtgård's extensive series of papers on the vasculature of the pelvic limb of the past 10 years.

In the NAA (1979) "Systema Cardiovasculare" was adopted as a more meaningful heading for this section rather than "Angiologia". Systema Cardiovasculare is a more inclusive term, since Angiologia literally connotes vessels only. More recent editions of the *Nomina Histologica*, 2nd ed. (IANC, 1983) and the human *Nomina Anatomica*, 6th ed. (IANC, 1989) have followed the lead of the NAA (1979); however the *Nomina Anatomica Veterinaria*, 3d ed. (ICVGAN, 1983) still retains Angiologia.

Intrinsic vessels of viscera. Blood vessel terminology is found in chapters other than this cardiovascular chapter. In general, the names of vessels of macroscopic dimensions that supply or drain viscera are presented here. Vessels that make up the meso- and microscopic, intrinsic angioarchitecture of the major viscera are named elsewhere: consult Apparatus respiratorius, Apparatus urogenitalis, and Apparatus digestorius for intrapulmonary, intrarenal, and intrahepatic vessels and Glandulae Endocrinae for hypophysial blood vessels.

Spinal cord vasculature is presented in this chapter; neither of the mammalian nomenclatures includes this terminology.

*Heart.* The terminology of the avian heart differs from the mammalian nomenclatures in that the names of the parts of the atrial myocardium and ventricular myocardium are presented here.

The 6th edition of the human *Nomina Anatomica* (IANC, 1989) has been followed in naming the veins of the heart. Both "cor" (L.) and "cardia" (Gk.) are used to refer to the heart in anatomical terminology. Instead of the genitive form "cordis" the adjectival form "cardiaca" has been adopted, thus: V. cardiaca sinistra instead of V. cordis sinistra. By using the term "cardiac" the vessel terminology is consistent with that of the heart nerves, N. cardiacus and Plexus cardiacus, as well as Pericardium, Myocardium, Impressio cardiaca of the liver, etc.

Nomenclature of branches of A. celiaca and associated venous radices. The terminology for the celiac artery recommended by Malinovský (1965) has been adopted. In this scheme "proventricular" refers to the glandular stomach and "gastric" refers to the muscular stomach (ventriculus, gizzard). Malinovský defined various surfaces, margins, and parts of the muscular stomach on which the names of vessels are based in the definitive, adult individuals; he also presents recommendations on the reconciliation of vessel terminology of branches of A. celiaca in various species of several avian orders.

Nishida, Paik, and Yasuda (1969) based their terms on "muscular" and "glandular" stomach (example: A. gastrica glandularis sinistra). These authors name the primary subdivisions of A. celiaca as A. gastrica dextra and A. gastrica sinistra. Malinovský pointed out the difficulties in using this nomenclature in that the stomach is only one of several major organs supplied by A. celiaca.

Splenic-lienal. Nomina Anatomica Avium follows the human Nomina Anatomica (IANC, 1989) in adopting Splen for the spleen rather than Lien which has been retained as an official alternative name. This requires that the vessels be named accordingly; therefore, Aa. et Vv. splenicae.

Ascending-descending. Usage of the adjectives "ascendens" and "descendens" with respect to names of blood vessels require definition. These terms refer to the direction of blood flow in arteries. For example, blood in A. vertebralis ascendens flows cranially; that in A. vertebralis descendens flows caudally. The companion vein(s) of an artery designated ascendens takes the same name as its artery even though its blood drains caudally. For example, V. cutanea cervicalis ascendens parallels A. cutanea cervicalis ascendens (see Baumel, et al., 1983).

### **TERMINOLOGY**

#### TERMINI GENERALES

(See *Nomina Histologica* IANC, 1989 for a more extensive list of general terms for the heart and vessels.)

Arteria

Arteriola

Anastomosis arterioarteriosa Anastomosis arteriovenosa Anastomosis venovenosa

Anastomosis lymphovenosa

Arcus arteriosus Arcus venosus Capillaris

Circulus arteriosus Circulus venosus

Circuius venosus Cisterna Lumen vasis Plexus arteriosus Plexus vascularis

Plexus venosus Lympha

Pulvinar luminalis

Rete venosum

Sanguis

Valvula venosa

Valvula lymphatica

Vas anastomoticum

Vas afferens [advehens]

Vas deferens [rehevens]

Vas capillare Vas collaterale Vas lymphaticum Vasa nervorum

Vena

Vena comitans

Vasa vasorum

Venula

Rete arteriosum Rete mirabile

## COR (see Chapter Introduction) (Figs. 12.1, 2)

Basis cordis [Facies pulmonalis]<sup>1</sup>

Facies sternalis [Facies

ventrocranialis]<sup>1</sup>

Facies hepatica [Facies

dorsocaudalis1

Apex cordis

Fovea apicis cordis

Sulcus interventricularis paraconalis<sup>2</sup>

Sulcus interventricularis

subsinuosus<sup>2</sup>

Sulcus coronarius

[S. atrioventricularis]

Septum interatriale<sup>3</sup> (see Annot. 15)

Perforationes interatriales<sup>3</sup>

Pars cavopulmonalis<sup>3</sup>

Septum interventriculare

Chordae tendineae

Mm. papillares<sup>4</sup>

- · · · pupinures

Trigona fibrosa<sup>5</sup>

Anulus [Annulus] fibrosus<sup>5</sup>

## **EPICARDIUM** (see Pericardium)

#### MYOCARDIUM (see Nom. Hist., 1989)

Mm. atriales<sup>6</sup>

Arcus longitudinalis dorsalis<sup>6</sup>

Arcus transversus dexter<sup>6</sup>

Arcus transversus sinister<sup>6</sup>

(Fig. 12.2)

Mm. pectinati<sup>6</sup>

M. basianularis atrii<sup>6</sup> (Fig. 12.2)

Mm. ventriculares<sup>7</sup>

Lamina superficialis<sup>7</sup>

M. longitudinalis ventriculi

sinistri<sup>7</sup>

M. longitudinalis ventriculi dextri<sup>7</sup>
 M. valvae atrioventricularis

dextrae<sup>7</sup>

M. sinuspiralis

M. bulbospiralis

Pars superficialis

Pars profunda

Trabeculae carneae

Mm. papillares

#### **ENDOCARDIUM**

## SYSTEMA CONDUCENS CARDIACUM8 (Fig. 12.3)

Nodus sinuatrialis<sup>9</sup> 10

Rr. nodi sinuatrialis<sup>10</sup>

Rr. myofibrarum conducentes atrii

Rr. subepicardiales atriales<sup>8</sup>

Rr. periarteriales atriales

Rr. subendocardiales atriales

Nodus atrioventricularis<sup>11</sup> Fasciculus [Truncus]

atrioventricularis<sup>11</sup>

Connexus cum fasciculo

truncobulbari<sup>12</sup>

Crus dextrum fasciculi

Crus sinistrum fasciculi

Rr. cruris<sup>10</sup>

Rr. myofibrarum conducentes

ventriculi<sup>8</sup>

Rr. periarteriales

Rr. subendocardiales

ventriculares

Rr. subepicardiales

ventriculares<sup>8</sup>

Pars accessoria systematis

conducentis

Anulus [Annulus]

atrioventricularis dexter<sup>12</sup>

Nodus truncobulbaris<sup>12</sup>

Fasciculus truncobulbaris<sup>12</sup>

Connexus cum fasciculo

atrioventriculari

#### SINUS VENOSUS<sup>13</sup>

Valva sinuatrialis<sup>13</sup>
Valvula sinuatrialis dextra
Valvula sinuatrialis sinistra

M. pectinati valvae<sup>14</sup>
Septum sinus venosi<sup>17</sup>
Ostium venae cavae caudalis<sup>13</sup>

## SINUS VENOSUS<sup>13</sup> (cont.)

Ostium venae cavae cranialis

dextrae<sup>13</sup>

Ostium venae cavae cranialis sinistrae<sup>13</sup>

## ATRIUM DEXTRUM (Fig. 12.2)

Auricula dextra
Cavitas atrii dextri
Recessus sinister atrii dextri<sup>15</sup>
Ostium sinus venosi<sup>13</sup>
Ostium venae cavae cranialis

sinistrae

Ostium venae proventricularis cranialis<sup>16</sup> Ostia venarum cardiacarum Foramina venarum minimarum<sup>25</sup> Septum sinus venosi<sup>17</sup>

## **VENTRICULUS DEXTER** (Fig. 12.2)

Cavitas ventriculi dextri Ostium atrioventriculare dextrum Valva atrioventricularis dextra<sup>18</sup> Conus arteriosus [Infundibulum] Ostium trunci pulmonalis

Valva trunci pulmonalis<sup>19</sup>
Valvula semilunaris sinistra
Valvula semilunaris dextra
Valvula semilunaris dorsalis
Foramina venarum minimarum<sup>25</sup>

## ATRIUM SINISTRUM (Fig. 12.2)

Auricula sinistra
Cavitas atrii sinistri
Ostium venae pulmonalis dextrae<sup>20</sup>
Ostium venae pulmonalis sinistrae<sup>20</sup>

Camera pulmonalis<sup>21</sup> Valva venae pulmonalis<sup>22</sup> Foramina venarum minimarum<sup>25</sup>

## **VENTRICULUS SINISTER** (Fig. 12.2)

Cavitas ventriculi sinistri
Ostium atrioventriculare sinistrum
Valva atrioventricularis sinistra<sup>23</sup>
Cuspis sinistra
Cuspis dextra<sup>23</sup>
Cuspis dorsalis
Vestibulum aortae

Ostium aortae Bulbus aortae<sup>24</sup> Valva aortae<sup>24</sup>

Valvula semilunaris sinistra Valvula semilunaris dextra ventralis

Valvula semilunaris dextra dorsalis

## **ANNOTATIONS**

(1) Basis cordis [Facies pulmonalis]. The base of the heart is defined as its dorsal or pulmonary surface that consists mostly of the walls of the left and right atria. Pericardium intervening, the dorsal surface of the heart is related to the trachea, bronchi, and proventriculus (near the midline) and the ventral surface of the Septum horizontale (Pericar. Annot. 2) on each side of the median plane.

Facies sternalis; Facies hepatica. Synonymy: Facies ventralis and Facies ventrocranialis; Facies dorsalis and Facies dorsocaudalis. The sternal and hepatic surfaces of the heart are terms of Baum (1930), and indicate structures in contact with the heart (enclosed by its pericardial sac). These terms pertain no matter what the orientation of the sternum. The dorsal or visceral surface of the sternum in most birds is nearly parallel with the vertebral column, whereas the sternum of the Ostrich (Struthio) has a vertical segment (Bezuidenhout, 1981).

- (2) Sulci interventriculares. Synonymy: right and left longitudinal sulci. In the avian heart the indistinct interventricular sulci are obliquely disposed, and do not parallel the axis of the heart. The terms adopted here follow the *Nomina Anatomica Veterinaria* (ICVGAN, 1983). The adjectives "paraconalis" and "subsinuosus" refer to the interventricular sulci that are related to the Conus arteriosus and Sinus venosus, respectively (Fig. 12.1).
- (3) **Septum interatriale.** Only the cranioventral part of the adult interatrial septum represents the foetal septum; this part separates the left atrium from the Recessus sinister atrii dextri (Annot. 14), and was pierced by multiple **Perforationes interatriales** during foetal and neonatal life. The caudodorsal part (Pars cavopulmonalis) of the adult interatrial septum is formed by contributions from the embryonic pulmonary veins and the left cranial vena cava which become incorporated into the definitive left atrium and interatrial septum (Quiring, 1933-34). Functionally, the perforations correspond to the mammalian foetal Foramen ovale; in birds there is no vestigial adult equivalent of the mammalian fossa ovalis (Annot. 15).
- (4) Mm. papillares. Papillary muscles are columns of myocardium projecting into the ventricular chamber to which are connected to the Chordae tendinae which anchor the cusps of the atrioventricular valve. Found only in the left ventricle of the avian heart; in the hearts of smaller birds they are poorly differentiated from the general myocardium, distinguished only as the point of attachment of the Chordae tendineae.
- (5) Anulus [Annulus] fibrosus; Trigona fibrosa. The fibrous rings are elements of the "skeleton" of the heart; they support the attachment of the cusps of the four heart valves. The annuli are best developed about the left atrioventricular ostium and root of the aorta. The fibrous rings of the pulmonary trunk and the right atrioventricular ostium are relatively weakly developed except in large birds. The right fibrous trigone is the thickest, most rigid part of the heart skeleton, located directly dorsal to the root of the aorta. The left trigone is between the left side of the aortic annulus and the ventromedial part of the left atrioventricular annulus.
- (6) Mm. atriales. Avian atrial musculature has distinctive parts. Most of the terminology is that of Quiring (1933-34). The muscular arches break up into definite, internally prominent fascicles, the Mm. pectinati, that merge into M. basianularis (Fig. 12.2) (Baumel, 1975c:1970), which is the circular layer of muscle around the

bases of the atria that bounds the coronary sulcus and rests in contact with the ventricles.

Arcus longitudinalis dorsalis. (Fig. 12.2) Synonymy: median dorsal arch (Quiring, 1933-34). In some galliforms this a prominent arch of the atrial musculature that appears to be derived from M. basianularis just dorsal to the roots of the pulmonary trunk and aorta; the arch sweeps dorsally somewhat parallel to the cranial attachment of the interatrial septum, and subdivides on approaching the ostia of the pulmonary veins (Baumel, 1975c). The arch is doubled in the Ostrich heart (Bezuidenhout, pers. comm.).

Arcus transversus dexter/sinister. These are stout lateral offshoots of the longitudinal arch in the roof of the right and left atria; laterally each transverse arches splits, becoming continuous with the general pectinate muscles.

(7) Mm. ventriculares. Names of the parts of the ventricular myocardium are mostly based on the terms of Shaner (1923).

Lamina superficialis (Baumel, 1975c) is a thin superficial sheet of muscle just beneath the epicardium that invests the deeper ventricular musculature in the chicken (Baumel, 1975c) and Ostrich (*Struthio*) heart (Bezuidenhout, 1981).

- **M.** longitudinalis ventriculi sinistri. Bezuidenhout (1981) noted that in the Ostrich (*Struthio*) heart this muscle plays a major role in the formation of the left ventricular wall, making little contribution to the wall of the right ventricle.
- M. valvae atrioventricularis dextrae. (Fig. 12.2) This muscular right atrioventricular valve in the chicken (*Gallus*) and Ostrich (*Struthio*) heart was shown by Bezuidenhout (1983) to be formed by the cranial part of the M. longitudinalis ventriculi dextri.
- (8) Systema conducens cardiacum. (Fig. 12.3) The cardiac impulse generating and conduction system is formed from modified cardiac muscle cells: Myocytus nodalis and Myocytus conducens cardiaca (purkinjiensis); a series of myocytes juxtaposed end-to-end are known as a Myofibrum (Nomina Histologica, IANC, 1989). The terminal ramifications of the subepicardial, subendocardial, and periarterial conducting tissue are also known as Myofibra purkinjiensis (Nomina Histologia, IANC, 1989); these make contact with typical cardiac muscle cells in the atria and ventricles.

**Rr. subepicardiales.** The presence of these ramifications of conducting tissue were noted in the Ostrich by Bezuidenhout (1981) immediately deep to the epicardial serous membrane on the surface of the heart. See West, et al. (1981) for a review of the conducting system.

- (9) Nodus sinuatrialis. Contemporary consensus holds that a discrete sinuatrial (S-A) node does exist in the avian heart, verified in *Gallus* by Kim and Yasuda (1979) and, more recently by Murakami, et al. (1981, 1985) in procellariid, ciconiid, anatid, falconid, columbid, gruid, psittacid, and passerine birds Both groups of the above authors remark that there are no direct conducting-tissue connections between the S-A and atrioventricular (A-V) nodes. The S-A node lies between the right atrial myocardium and epicardium at the right caudal region of the orifice of the right cranial vena cava (Fig. 12.3), where the caudal ends of the two valvules of the sinuatrial valve meet one another or actually occur within the valvules and sinus septum.
- (10) Rr. nodi sinuatrialis; Rr. cruris. These are ramifications of nodal myofibers and myofibers of the A-V fasciculus and its main limbs (crura). In addition to the subendocardial and subepicardial ramifications, parts of the conducting tissue penetrate the myocardium. Some of these are distributed as cords within the periarterial connective tissue of the coronary arteries; in some instances the cords form circular

"muffs" of conducting cells (**Rr. periarteriales**) that surround the intramyocardial rami of Aa. coronariae (Davies, 1930; Chiodi and Bortolami, 1967).

- (11) Nodus atrioventricularis; Fasciculus [Truncus] atrioventricularis. (Fig. 12.3) The atrioventricular part of the impulse conducting system has been investigated in representatives of twelve or more avian orders. Most recently the comparative study of Murakami, et al. (1985) presents a thorough review of the literature. Generally the A-V node is embedded in the connective tissue between the right atrial myocardium and and the right fibrous trigone on the caudodorsal part of the interventricular septum near the ostium of the left cranial vena cava (Kim and Yasuda, 1979). The A-V bundle (fasciculus) is prolonged from the A-V node deep in the interventricular (I-V) septum. One quarter of the distance to the apex, the bundle divides into right and left crura. As each crus descends in the septum it gradually surfaces under the endocardium on each side of the I-V septum; there its branches spread out as the subendocardial ramifications. The avian A-V bundle is relatively longer than the mammalian bundle which divides abruptly near its A-V node (Murakami, et al. 1985). This account does not agree with that of Chiodi and Bortolami, 1967) who contended that an A-V trunk is lacking in the hearts of some birds, the trunk being represented by multiple crura which depart directly from the A-V-node.
- (12) Anulus [Annulus] atrioventriculus dexter. This ring-like component of the conducting system was first described in the bird by Ohmori (1928) and confirmed by Davies (1930). The right A-V annulus passes about the right A-V ostium between the two muscular components of the right A-V valve (Annot. 18), and is concerned with the contraction of the valve.

Nodus truncobulbaris; Fasciculus truncobulbaris. (Fig. 12.3) Synonymy for T-B fasciculus: recurrent branch of A-V bundle (Davies, 1930). Kim and Yasuda (1979) were the first to describe in detail the truncobulbar conducting system (*Gallus*) (see also Murakami, et al., 1985). The T-B node lies close to the left side wall of the aortic root, under the origin of the left coronary artery. The T-B node becomes attenuated as the T-B fasciculus; this bundle runs ventrally through the aortic Anulus fibrosus, and turns caudally to the right in the septal myocardium, finally ending by joining the A-V fasciculus at its point of bifurcation. Kim and Yasuda recognized the reciprocal relationship in size between the A-V and T-B nodes in different individuals, i.e., when the T-B node is large the A-V node is poorly developed, and vice versa.

(13) Sinus venosus. Synonymy: Sinus venarum cavarum. The Sinus venosus is a chamber of the heart that appears in certain birds; in different taxa of birds it is variously incorporated into the right atrium (Gasch, 1888). A distinct Sinus venosus is present in the heart of Apteryx (Adams, 1937), Gallus (Quiring, 1933-34), Corvus, Struthio, and others (Romanoff, 1960); its right boundary is usually set off from the right atrium by a prominent external groove. Internally it is demarcated from the right atrium by the sinuatrial valve.

Valva sinuatrialis. (Fig. 12.2) See Murakami, et al. (1978) for a comparative review of the opening between the two valvules of the sinuatrial valve (Ostium sinus venosi). The ostium of the sinus venosus is partially subdivided in some forms: one part serves as the opening to transmit blood from the right cranial vena cava and the caudal vena cava; blood from the the left cranial vena cava usually flows into the cavity of the right atrium via an opening separated from the cranial part of the ostium of the Sinus venosus by the Septum sinus venosi (see Annot. 17).

(14) Mm. pectinati valvae. Certain of the pectinate muscles are continuous with the bases of the valvules of the sinuatrial valve (Kolda and Komárek, 1958).

- (15) Recessus sinister atrii dextri. Typical of the avian heart is this tubular "left recess of the right atrium" that extends to the left past the median plane of the heart and dorsal to the aortic bulb in the "duck" (Rigdon and Frolich, 1970); and in the chicken (Kern, 1926). This recess is separated from the left atrium by a part of the interatrial septum that represents the remnant of the foetal septum (Annot. 3).
- (16) Ostium venae proventricularis cranialis. V. proventricularis cranialis (Fig. 12.17) drains venous blood from the glandular stomach; the vein may join the left cranial vena cava near its termination (Malinovský, 1965) or empty into the right atrium directly via this ostium (Ven. Annot. 51).
- (17) **Septum sinus venosi.** Birds in which the left cranial vena cava opens directly into the right atrium possess the Septum sinus venosi, a muscular sheet that separates the orifice of the left cranial vena cava from the opening of the main part of the sinuatrial valve (see Annot. 13).
- (18) Valva atrioventricularis dextra. (Fig. 12.2) This muscular valve closes the right atrioventricular ostium during ventricular contraction. It is formed of both atrial and ventricular musculature. A distinct band of M. sinuspiralis makes up the thicker external lamina of the valve; a fibrous layer separates the external lamina from the thinner internal lamina that is derived from an invagination of right atrial musculature (Shaner, 1923). At its thicker cranial border this valve contains the right fibrous annulus of the cardiac skeleton (see Annot. 5).
- (19) Valva trunci pulmonalis. This valve of the pulmonary trunk is listed with the names of the parts of the right ventricle even though it is located in the root of the trunk of the pulmonary artery and not in the heart proper. This follows the convention of the mammalian NA(1989) and NAV(1983) anatomical nomenclatures (see Art. Annot. 1).
- (20) Ostium venae pulmonalis dextrae/sinistrae. In some avian forms the right and left pulmonary veins empty into the left atrium via separate ostia (e.g., *Columba*, *Gallus*, *Anas*); in others the two pulmonary veins become confluent outside the heart, and produce a common pulmonary vein (*Melopsittacus*, Szabo, 1958). See Ven. Vv. pulmonales.
- (21) Camera pulmonalis. (Fig. 12.2) On entering the left atrium, the pulmonary veins coalesce into a single, short vessel; this vessel invaginates the left atrium, extending to the left atrioventricular ostium (Quiring, 1933-34). The invaginated vein is called the pulmonary chamber (camera) which forms a subcavity of the left atrium. The left side of the subcavity has a free margin that directs blood into the left ventricle and separates the Camera from the general cavity of the left atrium (Annot. 22).
- (22) Valva venae pulmonalis. (Fig. 12.2) The valve of the pulmonary vein is the left free margin of the Camera pulmonalis that seems to have a flap-valve action preventing regurgitation of blood from the left atrium into the Camera (Annot. 21).
- (23) Valva atrioventricularis sinistra. Certain authors have called this the "tricuspid" valve of the avian heart. Although this valve possesses three cusps in some birds (two in others), the term should not be used with the bird heart in order to avoid confusion with the *right* atrioventricular valve (Valva tricuspidalis, NAV, 1983) of the mammalian heart.

Cuspis dextra. This cusp of the left A-V valve has been referred to in the literature as its "septal cusp".

- (24) Valva aortae. The aortic valve is located in the root of the ascending aorta, its position is marked externally by the Bulbus aortae, the expanded proximal part of the ascending aorta that houses the aortic valve. The valve and its parts are listed with the terms of the left ventricle instead of those of the aorta following the convention of the mammalian anatomical nomenclatures (see Annot, 19). The ostia of the coronary arteries are dealt with in Art. Annot. 4.
- (25) Foramina venarum minimarum. See Ven. Annot. 9 for comments on these openings of the Vv. cardiacae minimae.

## **TERMINOLOGY** ARTERIAE

## TRUNCUS PULMONALIS<sup>2</sup> (Fig. 12.1C)

Bulbus trunci pulmonalis Sinus trunci pulmonalis<sup>1</sup> Valva trunci pulmonalis (Cor. Bifurcatio trunci pulmonalis<sup>2</sup>

Annot. 19)

Arteria pulmonalis<sup>2</sup>

R. cranialis<sup>1</sup>

R. caudomedialis<sup>1</sup>

R. caudolateralis<sup>1</sup>

R. accessorius<sup>2</sup>

Aa. interparabronchiales<sup>3</sup> Lig. arteriosum<sup>50</sup>

## **AORTA** (Figs. 12.6, 8)

## AORTA ASCENDENS (Figs. 12.1, 8

Bulbus aortae (Cor. Annot. 24) Sinus aortae<sup>4</sup> (Fig. 12.8) Sinus sinister<sup>4</sup> Sinus dexter ventralis4

Sinus dexter dorsalis4 Valva aortae (Cor. Annot. 24) Corpora para-aortica<sup>5</sup>

## ARTERIAE CORONARIAE (Cor Fig. 12.1C)

A. coronaria sinistra<sup>4</sup>

R. interatrialis

R. atrialis dextra

R. atrialis sinistra

R. superficialis

R. interventricularis

paraconalis<sup>4</sup>

Rr. conales

Rr. ventriculares

R. circumflexus

Rr. atriales

Rr. ventriculares

R. profundus

Rr. septales

Rr. ventriculares

## **ARTERIAE CORONARIAE (cont.)**

A. coronaria dextra<sup>4</sup> (Fig. 12.1C)

R. superficialis

R. interventricularis

subsinuosis<sup>4</sup>

Rr. ventriculares

R. circumflexus

Rr. atriales

Rr. ventriculares

R. profundus

Rr. septales

Rr. ventriculares

## ARCUS AORTAE (Figs. 12.6, 8)

# TRUNCUS BRACHIOCEPHALICUS<sup>6</sup> (Fig. 12.8) ARTERIA CAROTIS COMMUNIS<sup>7</sup>

Sinus caroticus<sup>7</sup>

A. esophagotracheobronchialis<sup>8</sup>

R. esophagealis

R. trachealis

R. syringealis

R. bronchialis<sup>2</sup> (Resp. Annot. 70)

Aa. thyroideae<sup>9</sup>

A. esophagealis ascendens<sup>10</sup>

Truncus vertebralis (Fig. 12.6)

A. vertebralis ascendens<sup>11</sup>

Aa. segmentales cervicales<sup>51</sup> 65

R. ventralis

R. dorsalis<sup>84</sup>

A. vertebromedullaris<sup>84</sup>

Anastomoses cum arteria carotis interna<sup>11</sup>

Anastomosis cum arteria

occipitali

A. vertebralis descendens<sup>11</sup>

Aa. segmentales truncales

A. intercostalis dorsalis<sup>52</sup>

R. dorsalis84

A. vertebromedullaris<sup>84</sup>

A. comes nervi vagi<sup>12</sup> (Fig. 12.6)

Aa. ingluviales<sup>12</sup>

A. suprascapularis<sup>13</sup>

A. esophagealis ascendens<sup>10</sup>

A. transversa colli

R. acromialis

Rr. cutanei colli

Rr. thymici

A. cutanea cervicalis ascendens

(Ven. Annot. 41b)

Glomus caroticum<sup>14</sup>

## ARTERIA CAROTIS INTERNA<sup>15</sup> (Figs. 12.4, 6)

Anastomoses cum arteria vertebrali ascendenti<sup>11</sup>

A. occipitalis<sup>16</sup> 12

A. occipitalis profunda<sup>11</sup>

A. occipitalis superficialis

## A. CAROTIS CEREBRALIS<sup>17</sup> (Figs. 12.4, 5)

A. sphenoidea<sup>18</sup>
R. palatinus<sup>18</sup>

R. sphenomaxillaris<sup>18</sup>

Anastomosis intercarotica<sup>17</sup>

## A. CAROTIS CEREBRALIS<sup>17</sup> (cont.)

A. hypophysialis caudalis (Endoc.

Annot. 18)

A. ophthalmica interna<sup>19</sup>

A. infundibularis (Endoc.

Annot. 19)

Ramus rostralis a. carotidis

cerebralis (Fig. 12.5)

A. ventralis tecti mesencephali

A. cerebroethmoidalis

A. cerebralis rostralis

Aa. preopticae

A. ethmoidalis18

Anastomosis cum arteria

supraorbitali

Anastomosis cum arteria

ophthalmotemporali

Rr. orbitales

Rr. nasales

Rr. glandulae nasalis<sup>18</sup>

A. cerebralis media (Fig. 12.5)

Rr. laterales hemispherici

A. cerebralis caudalis

A. dorsalis cerebelli

Aa. dorsales tecti mesencephali

Rr. ventrales hemispherici

Rr. occipitales hemispherici

Rr. dorsales diencephali

A. choroidea ventriculi lateralis

et tertii<sup>20</sup>

A. interhemispherica<sup>20</sup>

Rr. dorsales hemispherici

A. meningealis caudalis

R. pinealis

Ramus caudalis a. carotidis

cerebralis

A. trigeminalis

Rr. medullares

A. interpeduncularis

A. basilaris<sup>21</sup> (Fig. 12.5)

A. ventralis cerebelli<sup>22</sup>

A. lateralis medullae oblongatae Rete medullae oblongatae<sup>22</sup>

A. caudalis labyrinthi<sup>23</sup>

A. rostralis labyrinthi<sup>23</sup>

A. choroidea ventriculi quarti

# ARTERIA OPHTHALMICA EXTERNA [A. STAPEDIA]<sup>24</sup> (Fig. 12.4)

A. occipitalis16

A. occipitalis profunda<sup>11</sup>

A. occipitalis superficialis

Rete ophthalmicum<sup>24</sup>

A. temporalis

A. intramandibularis<sup>25</sup>

Rr. mentales

A. supraorbitalis

Rr. glandulae nasalis<sup>18</sup>

Aa. palpebrales dorsotemporales

Aa. ciliares anteriores<sup>26</sup>

A. infraorbitalis

Aa. palpebrales ventrales

A. ophthalmotemporalis<sup>27</sup>(Fig. 1) (Fig. 12.4)

A. ciliaris posterior longa

temporalis<sup>26</sup> 28

Rr. choroidei<sup>29</sup>

Aa. parallelae choroideae<sup>28</sup>

A. ciliaris posterior longa nasalis<sup>26</sup> <sup>28</sup>

Rr. choroidei<sup>29</sup>

Aa. parallelae choroideae<sup>28</sup>

Circulus iridicus<sup>28</sup> (Sens. Fig. 16.2)

Circulus ciliaris<sup>28</sup>

# ARTERIA OPHTHALMICA EXTERNA [A. STAPEDIA]<sup>24</sup> (cont.)

Anastomosis cum circulo iridico Aa. ciliares posteriores breves<sup>26</sup>

Rr. choroidei

Aa. musculares bulbi oculi

Aa. glandulae membranae nictitantis (see Sens.)

A. pectinis oculi<sup>29</sup>

Anastomosis cum a. ethmoidali Anastomosis cum a. ophthalmica

interna

## ARTERIA CAROTIS EXTERNA<sup>30</sup> 12 (Figs. 12.4, 6)

A. cutanea cervicalis descendens

(Ven. Annot. 41b)

A. comes nervi vagi<sup>12</sup>

A. occipitalis<sup>16</sup>

A. occipitalis profunda<sup>11</sup>

A. occipitalis superficialis

A. auricularis caudalis<sup>31</sup>

A. auricularis rostralis<sup>31</sup>

A. mandibularis<sup>32</sup>

A. esophagealis descendens

A. trachealis descendens

Aa. hyobranchiales [Aa. hyoideae]

A. laryngea<sup>33</sup>

Rr. pharyngeales

A. lingualis

A. lingualis propria

A. sublingualis<sup>34</sup>

A. submandibularis superficialis<sup>35</sup>

A. submandibularis profunda

A. maxillaris<sup>38</sup> (Fig. 12.4)

A. palatina<sup>38</sup>

R. palatinus lateralis

R. palatinus medialis

A. palatina mediana<sup>38</sup>

A. pterygopharyngealis

Rr. pharyngeales

Plexus pterygoideus<sup>36</sup>

R. nasalis

A. facialis (Fig. 12.4)

Rr. palpebrales ventrales

Rr. frontales

A. palpebralis dorsonasalis

R. nasalis<sup>37</sup>

A. pterygoidea dorsalis

## ARTERIA SUBCLAVIA (Figs. 12.6, 8)

A. sternoclavicularis<sup>39</sup>

A. sternalis interna<sup>40</sup>

A. clavicularis

A. sternalis externa

A. coracoidea dorsalis41

A. esophagotrachealis<sup>42</sup>

A. thoracica interna

R. ventralis

R. dorsalis

Aa. intercostales ventrales<sup>53</sup>

Truncus pectoralis<sup>43</sup> (Fig. 12.8)

A. pectoralis cranialis

A. pectoralis media<sup>44</sup>

A. pectoralis caudalis

A. infrascapularis

A. cutanea thoracoabdominalis<sup>44</sup>

## ARTERIA AXILLARIS (Figs. 12.6, 8)

A. subscapularis

A. supracoracoidea<sup>45</sup>

A. brachialis

A. profunda brachii

A. circumflexa dorsalis humeri

A. antebrachialis dorsalis cranialis | A. collateralis ulnaris

Rr. propatagiales
A. circumflexa ventralis humeri
A. nutricia humeri

## ARTERIA RADIALIS<sup>47</sup> (Fig. 12.7)

A. recurrens radialis

A. cubitalis dorsalis

A. radialis profunda

Aa. interosseae dorsales<sup>48</sup>

A. antebrachialis dorsalis caudalis

Rr. postpatagiales

A. postpagagialis marginalis

Rr. carpales dorsales

Rr. carpales ventrales

Rr. metacarpales dorsales

Rr. digitales dorsales

A. radialis superficialis

Rr. propatagiales

## ARTERIA ULNARIS (Fig. 12.7)

A. cutanea brachialis

A. recurrens ulnaris

A. cubitalis ventralis

A. ulnaris profunda<sup>49</sup>

Rr. metacarpales ventrales

A. postpatagialis marginalis

Rr. digitales dorsales

A. ulnaris superficialis
A. metacarpalis interossea
Rr. postpatagiales

A. postpatagialis marginalis

Rr. digitales ventrales

## **AORTA DESCENDENS** (Figs. 12.8, 6)

Lig. arteriosum<sup>50</sup>

Lig. aortae<sup>50</sup>

Aa. segmentales truncales<sup>51</sup>

Aa. intercostales dorsales<sup>52</sup>

Rr. dorsales
A. esophagealis<sup>54</sup>
A. musculorum colli

## ARTERIA CELIACA [COELIACA] (see Chap. Intro.)

A. esophagealis<sup>54</sup>

A. proventriculus dorsalis<sup>55</sup>

Rr. esophageales

A. gastrica dorsalis<sup>55</sup>

## ARTERIA CELIACA [COELIACA] (cont.)

Ramus sinister arteriae celicae

(Fig. 12.9)

A. proventricularis ventralis

A. gastrica sinistra<sup>63</sup>

Rr. sacci<sup>55</sup>

A. gastrica ventralis

A. hepatica sinistra<sup>56</sup>

A. gastroduodenalis<sup>60</sup>

Ramus dexter arteriae celicae

(Fig. 12.9)

Aa. splenicae [Aa. lienales]<sup>59</sup>

A. hepatica dextra<sup>56</sup>

A. vesicae biliaris [A.v.

felleae158

A. ileocecalis<sup>61</sup>

A. pancreaticoduodenalis<sup>62</sup>

A. duodenojejunalis<sup>60</sup>

A. gastrica dextra dorsalis<sup>63</sup>

A. gastrica dextra ventralis<sup>63</sup>

Rr. sacci<sup>55</sup>

Anastomosis arteriarum

hepaticarum<sup>57</sup>

Rr. mediani<sup>57</sup>

#### ARTERIA MESENTERICA CRANIALIS

A. duodenojejunalis

Aa. ieiunales<sup>60</sup>

Aa. ileae<sup>60</sup>

A. ileocecalis<sup>61</sup>

A. marginalis intestini tenuis<sup>64</sup>

Aa. segmentales synsacrales<sup>65</sup> 51

R. ventralis

R. dorsalis

A. vertebromedullaris<sup>84</sup>

## **ARTERIA RENALIS CRANIALIS** (Fig. 12.8)

Aa. intralobulares (Urin. Annot. 33)

A. testicularis<sup>66</sup>

Rr. epididymales

A. ovarica<sup>66</sup>

A. adrenalis [A. pararenalis]

Rr. ureterodeferentiales craniales

(**Ven.** Annot. 57)

Rr. ureterici craniales

A. oviductalis cranialis<sup>67</sup> 72

Rr. ovarii

Aa. infundibuli

Aa. magni

## ARTERIA ILIACA EXTERNA<sup>68</sup> (Fig. 12.8)

A. oviductalis cranialis accessoria<sup>67</sup>

A. pubica<sup>68</sup>

A. umbilicalis<sup>68</sup>

A. femoralis (Figs. 12.8, 10)

A. cranialis coxae<sup>70</sup>

A. femoralis medialis

A. femoralis caudalis<sup>73</sup>

A. circumflexa femoris<sup>71</sup>

A. femoralis cranialis

A. cutanea femoralis cranialis Anastomosis ischiofemoralis<sup>69</sup>

## ARTERIA ISCHIADICA (Figs. 12.8, 10)

A. renalis media (**Urin.** Annot 32)
Aa. intralobulares (**Urin.** 

Annot. 33)

A. renalis caudalis (Urin.

Annot. 32)

Aa. intralobulares (Urin.

Annot, 33)

Rr. ureterodeferentiales medii

Rr. ureterici medii

A. oviductalis media<sup>67</sup> <sup>72</sup> (Fig. 12.8)

A. magni

Aa. isthmi

Aa. uterinae (Fem. Annot. 37)

A. oviductalis marginalis ventralis<sup>72</sup>

A. oviductalis marginalis dorsalis<sup>72</sup>

A. caudalis coxae<sup>70</sup>

A. obturatoria

A. trochanterica

A. circumflexa femoris<sup>71</sup>

A. femoralis caudalis<sup>73</sup>

A. nutricia proximalis femoris

A. cutanea femoralis caudalis

A. suralis<sup>74</sup> (Fig. 12.10)

A. suralis medialis

A. suralis lateralis

A. cutanea femoralis lateralis

A. cutanea cruralis caudalis

## ARTERIA POPLITEA75 (Fig. 12.10)

A. genicularis lateralis

A. nutricia distalis femoris

A. tibialis medialis

A. genicularis medialis

A. cruralis medialis

A. tibialis caudalis

A. fibularis [A. peronea]

R. fibularis [peroneus]

superficialis<sup>78</sup> <sup>77</sup>

R. fibularis [peroneus]

profundus<sup>78</sup> 77

Rete tibiotarsale<sup>77</sup>

A. tibialis cranialis<sup>76</sup> (Fig. 12.10)

A. nutricia tibiae

A. recurrens tibialis cranialis

A. interossea

Rete tibiotarsale<sup>77</sup>

A. epicondylaris medialis

A. epicondylaris lateralis

A. metatarsalis dorsalis communis<sup>79</sup>

Aa. intermetatarsales plantares<sup>79</sup>

Aa. tarsales plantares<sup>79</sup>

A. metatarsalis plantaris

medialis<sup>79</sup>

A. metatarsalis plantaris

lateralis<sup>79</sup>

Arcus plantaris

Rr. pulvinares

Rr. digitales<sup>79</sup>

A. metatarsalis dorsalis I<sup>79</sup>

A. metatarsalis dorsalis II<sup>79</sup>

A. metatarsalis dorsalis III<sup>79</sup>

Aa. digitales<sup>79</sup>

## PARS SYNSACRALIS AORTAE<sup>51</sup> (Fig. 12.11)

Aa. segmentales synsacri<sup>51</sup> 65

R. ventralis

R. dorsalis

A. vertebromedullaris<sup>84</sup>

## ARTERIA MESENTERICA CAUDALIS (Fig. 12.8, 11)

R. cranialis

Rr. ilei<sup>61</sup>

R. caudalis (Fig. 12.11)

Rr. rectales

Rr. cloacales (Cloaca Annot. 22)

Rr. bursocloacales<sup>80</sup>(Cloaca

Annot. 22)

## ARTERIA ILIACA INTERNA<sup>81</sup> 68 (Figs. 12.8, 11)

A. pudenda<sup>82</sup>

A. ventralis bulbi rectricium

Aa. oviductales caudales<sup>67</sup> 72

Aa. uterinae (Fem. Annot. 37)

A. vaginalis (Fem. Annot. 40)

Aa. cloacales (Cloaca Annot. 22) Rr. corporis vascularis phalli

(Cloaca)

A. bursocloacalis<sup>80</sup>

Rr. bursales

Rr. cloacales (Cloaca

Annot. 22)

R. ureterodeferentiales

A. lateralis caudae<sup>83</sup>

A. lateralis venti (Fig. 12.11)

A. superficialis dorsalis bulbi

rectricium

A. cutanea dorsolateralis

caudae83

A. cutanea abdominalis44

## ARTERIA MEDIANA CAUDAE (Fig. 12.11)

Aa. segmentales caudales<sup>51</sup>

R. ventralis

R. dorsalis

A. cutanea dorsomedialis

caudae83

A. profunda dorsalis bulbi [rectricium]<sup>83</sup>

A. glandulae uropygialis<sup>83</sup>

A. vertebromedullaris<sup>84</sup>

## ARTERIAE MEDULLAE SPINALIS

Aa. segmentales (Ven. Annot. 60)

R. ventralis

R. dorsalis

A. vertebromedullaris<sup>84</sup>

A. radicularis ventralis

A. spinalis ventralis<sup>85</sup>

Rr. marginales<sup>86</sup>

Rr. sulci

Rr. sulcocommissurales

A. radicularis dorsalis

Aa. spinales dorsales

Aa. dorsolaterales85

Rr. marginales<sup>86</sup>

Rr. fissurae

#### **ANNOTATIONS**

- (1) Sinus trunci pulmonalis. Pulmonary sinuses are less well developed and thinner-walled than the aortic sinuses (see Annot. 4). Names of sinuses are based on their positions *in situ*.
- (2) Truncus pulmonalis; Bifurcatio trunci pulmonalis. The pulmonary trunk bifurcates into right and left pulmonary arteries; the intrapulmonary branching patterns of the paired pulmonary arteries are similar. Rami of A. pulmonalis closely correspond to tributaries of V. pulmonalis; neither arteries nor veins correspond in their intrapulmonary branching pattern to that of the bronchial tree. Rr. caudomedialis and caudolateralis of the artery are generally dorsal to the two caudal venous radices. R. cranialis of the artery is lateral to the cranial radix of V. pulmonalis; this is based on the observations of Radu and Radu (1971) and Abdalla and King (1975) in Gallus, Meleagris, Anser, and in Columba. See Resp.
- **R.** accessorius. In *Gallus* the medial aspect of each undivided pulmonary artery releases a distinct R. accessorius that supplies lung tissue cranial and medial to the hilus of the lung.
- (3) Aa. interparabronchiales. Interparabronchial arteries are branches of each of the main rami of A. pulmonalis. See Resp. Vasa sanguinea intrapulmonalia for terminology of the microvasculature of the lung. For details of intrapulmonary architecture see Abdalla and King (1975). See Resp. Annot. 70.
- (4) **Aorta.** The avian aorta is derived from the embryonic right fourth aortic arch. See Annot. 50 for comment on the vestigial remnant of the left fourth aortic arch.

Sinus aortae. Each of the three aortic sinuses is an evaginated, bulging segment of the bulb of the aorta at the root of the ascending aorta (Cor. Annot. 24). Each of the sinuses is occupied by a cusp of the aortic valve during ejection of blood (systole). Names of the sinuses are based on their *in situ* positions. Two of the sinuses, Sinus sinister and Sinus dexter ventralis, are "coronary"; i.e., they contain ostia of the coronary arteries.

Aa. coronariae. Each coronary artery commonly branches into superficial and deep rami near its origin (Figs. 12.1, 8). Differing from the mammalian condition, most of the blood supply to the avian heart is distributed to the myocardium from deep rather than surface arteries (see Baumel, 1975c, for details of distribution in Gallus). The superficial ramus of A. coronaria sinistra or other aberrant coronary artery may arise from the right dorsal sinus. See Petren (1926) and Lindsay and Smith (1965) for coronary aa. of Gallus; Bezuidenhout (1984) Ostrich Struthio; and Murakami, et al. (1986) for coronary aa. of representatives of nine different avian orders.

R. interventricularis paraconalis/subsinualis (see Fig. 12.1A, B and Cor. Annot. 2).

(5) Corpora para-aortica. Synonymy: Glomera aortica; Glomera pulmonalia (NAA, 1979). Intramural baroreceptors have been identified physiologically (Jones, 1969; West, et al., 1981: 262) and ultrastructurally (Taha, et al. (1983) in the wall of the avian aortic arch and pulmonary trunk. Groups of granular cells lie in the wall of these great arteries and in discrete encapsulated aggregations between the vascular trunks. The cells have innervation and secretory characteristics like the cells of the carotid body, therefore are probably chemoreceptors, thus constituting para-aortic bodies (Taha, et al. (1986).

- (6) **Truncus brachiocephalicus.** Both right and left brachiocephalic trunks arise from the left side of the Aorta ascendens; each trunk divides into the subclavian and common carotid arteries. See Fig. 12.8.
- (7) A. carotis communis. (Fig. 12.6) The common carotid artery is a short vessel that breaks up in the root of the neck into A. carotis interna, Truncus vertebralis, and A. comes n. vagi (Annot. 12). Variation of the arteries in the heart region in most orders of birds is thoroughly treated in the series of papers of Glenny cited in the bibliography of his monograph (Glenny, 1955).

Sinus caroticus. In mammals the baroreceptor zone of the carotid sinus is well known. As pointed out by earlier workers, a homologue of the mammalian carotid sinus ought to be located in the region of the avian common carotid artery; in fact, its presence at the level of the esophagotracheobronchial artery has been confirmed ultrastructurally in *Gallus* by Abdel-Magied, et al. (1982).

- (8) A. esophagotracheobronchialis. (Fig. 12.6) Synonymy: A. syringotracheobronchialis (Bhaduri, et al., 1957); ductus shawi (Glenny, 1955). An artery or complex of arteries usually arising from: (1) the medial side of the common carotid artery (Gavia, Larus, Phoenicopterus, Gallus, Branta, Trogon, Alcedo); (2) the vertebral trunk (Perisoreus); or (3) the common carotid of one side and the contralateral vertebral trunk (Spheniscus, Corvus). The general distribution of A. esophagotracheobronchialis is to the caudal trachea and its bifurcation (syrinx), main bronchi (see Resp. Annot. 70), pericardium, Septum horizontale dorsal to the heart, and esophagus from the origin of the artery caudally to the esophago-proventricular junction. In some species the artery supplies the thyroid, parathyroid and ultimobranchial glands (see Endoc.) and the carotid bodies (see Annot. 42). Consult West, et al. (1981) and Hodges (1981) for further information.
- (9) Aa. thyroideae. The arterial supply of the thyroid gland varies both in number of arteries to the gland and the site of origin of the thyroid arteries. From a review of the numerous papers of Glenny (cited in Glenny, 1955) in which he systematically surveyed the main arteries in the region of the heart, it appears that the majority of species have but a single artery to each gland (e.g., Rhea, Spheniscus, Gavia, Podiceps, Cygnus, Fulica, Apus, Trogon, and Corvus).

Two thyroid arteries to the gland are found in several columbid species, several galliform species, Larus, and Phoenicopterus; three thyroid arteries supply the thyroid gland of ducks (Anatidae) according to Assenmacher (1953). Usually the origin of single thyroid arteries and the caudal thyroid artery of the dual-artery condition is directly from the common carotid artery. Other sites of origin are: A. vertebralis, proximal part of A. esophagotracheobronchialis, A. comes n. vagi, terminal part of brachiocephalic trunk, or subclavian artery. Cranial thyroid arteries arise from A. comes n. vagi, common carotid, or ascending esophageal artery. Aa. thyroideae also supply the carotid body, parathyroid and ultimobranchial glands, and the distal ganglion of the vagus nerve (see Abdel-Magied and King, 1978; and Hodges, 1981).

(10) A. esophagealis ascendens. (Fig. 12.6) In certain species of unicarotid birds (Annot. 15), the artery that corresponds to the single persistent carotid of the other side is a superficial artery, modified to serve as the A. esophagealis ascendens in *Rhea, Apteryx, Casuarius*, some coraciiforms, *Trogon*, piciforms, and passeriforms (Glenny, 1955).

In *Phoenicopterus*, an unicarotid form having the single internal carotid fed by both common carotids, the A. esoph. asc. springs from the proximal part of A. comes

- n. vagi (Bhaduri, et al., 1965). In bicarotid forms the ascending esophageal artery arises from the common carotids (*Grus*), or from the vertebral trunk (*Alcedo*) (Glenny, 1955), or from A. comes n. vagi.
- (11) Truncus vertebralis. (Fig. 12.6) Synonymy: A. cervicovertebralis (Glenny, 1955). This is a short branch of A. carotis communis arising in the root of the neck that abruptly divides into the Aa. vertebrales ascendens et descendens. These branches of the Truncus vertebralis travel in the vertebrarterial canal (see Osteo. Annot. 134b), and supply the vertebral column, axial muscles, and the cervical spinal cord. The ascending vertebral artery anastomoses with the cervical parts of A. carotis interna and A. occipitalis profunda (Baumel, 1964). The descending vertebral artery anastomoses with the dorsal intercostal branches of the aortic system (Annot. 52).
- (12) A. comes nervi vagi (Fig. 12.6). Synonymy: A. cervicalis superficialis (Glenny, 1955). This companion artery of the vagus nerve artery is usually a direct branch of A. carotis communis arising in the root of the neck, or may share a common stem with the vertebral trunk. A. comes n. vagi is the adult vessel derived from the foetal A. carotis externa; the definitive adult external carotid is a branch of the internal carotid arising near the base of the skull.

At its origin from the terminal part of the common carotid, the A. comes n. vagi courses craniad in a bundle with N. vagus and V. jugularis, and anastomoses with a branch(es) of the external carotid or occipital arteries in the upper neck.

- Aa. ingluviales. These branches of A. comes n. vagi supply the region of the esophagus that is expanded to form the crop (see Digest.).
- (13) A. suprascapularis (Fig. 12.6). Synonymy: A. cephalica humeri (Neugebauer, 1845; Bodrossy, 1938). This branch of the A. comes n. vagi supplies muscles and integument of the dorsal shoulder region and proximal brachium.
- (14) Glomus caroticum. Synonymy: carotid body. Hodges (1981: 167) and West, et al. (1981: 262) reviewed the literature on the structure and function of the Glomus caroticum, a chemoreceptor sensitive to blood gas concentrations. De Kock (1958) surveyed the location of the carotid body and distribution of disseminated carotid body tissue in examples of passeriform, charadriiform, anseriform, and podicepediform birds. Some of the disseminated tissues were probably Corpora para-aortica (Abdel-Magied and King, 1978)(Annot. 5), but aberrant carotid body tissue definitely does occur in *Gallus* (Abdel-Magied and King, 1984). The carotid body proper lies between the terminal division of the Truncus brachiocephalicus and the thyroid gland, and is closely related to the parathyroid and ultimobranchial glands and vagus nerve, and supplied by local arteries. Its topographical anatomy, innervation, and blood supply in *Gallus* were established by Abdel-Magied and King (1978).
- (15) A. carotis interna. Most birds are bicarotid; the two internal carotids ascend the neck side-by-side in the middle segment of the neck (Fig. 12.6) where they pass through an osseomuscular canal, Canalis caroticus cervicalis (new term) on the ventral aspect of the cervical vertebral column (Osteo. Annot. 121a, b). In most unicarotid forms the left carotid persists as the principal artery to the head. In certain unicarotid forms the single vessel represents the fused or conjugate right and left carotids; in some of these birds the basal portion of both carotids remains, while in others only the basal part of one of the conjugate vessels is present (Glenny, 1955). No matter how it be formed, the single carotid divides into right and left internal carotids near the base of the skull. In some unicarotid birds the fetal carotid that does not persist as a definitive carotid simply regresses, becoming a ligamentous vestige or

- a small regional artery; in others it becomes modified into a superficial vessel of the neck. See Annot. 17 and 10.
- (16) A. occipitalis. Near the base of the skull A. occipitalis generally rises from the external carotid (e.g., *Gallus*, *Columba*, *Larus*) or from the internal carotid (*Sturnus*, Cralley, 1965). Its deep branch communicates with A. vertebralis.
- **R. occipitalis** of **A. ophthalmica** externa arises in the tympanic region, takes an intraosseous course caudally and emerges from an opening in the occipital bone near the nuchal crest. This occipital ramus is of widespread occurrence in fossil and recent birds (Elzanowski and Galton, 1991, J. vert. Paleont. 11 (1): 90-107). See Figs. 1, 2 of Midtgård (1984a).
- (17) A. carotis cerebralis. This is the prolongation of the A. carotis interna past the origin of A. ophthalmica externa; in other words, it consists of the intrasphenoid segment of the internal carotid in its canal in the base of the cranium plus its intracranial segment (Stresemann, 1927-34; Kitoh, 1962).

Anastomosis intercarotica. This is the communication between the intracranial segments of the right and left cerebral carotids by means of a transverse connecting vessel or a side-to-side anastomosis (Fig. 12.4) (Wingstrand, 1951; Baumel and Gerchman, (1968). Functionally, this anastomosis is the equivalent of the mammalian Circulus arteriosus cerebri (Circle of Willis). The earliest mention of the intercarotid anastomosis in the literature is that of Barkow (1829) who described it in *Podiceps subcristatus*, Fulica atra, and Ciconia alba.

The intercarotid anastomosis gives off the principal arteries to the hypophysis (see **Endoc.** Annot. 17-19).

- (18) A. sphenoidea (Fig. 12.4). This artery springs from the intrasphenoid part of the cerebral carotid artery found in the Canalis caroticus cranialis (see Osteo. Annot. 99) of the base of the skull; it leaves the canal via Foramen orbitale at the side of Rostrum parasphenoidale. In some forms the sphenoid artery is represented by R. palatinus and R. sphenomaxillaris that arise from the internal carotid as independent arteries. Rr. glandulae nasales. The arterial supply to the nasal (salt) gland is usually derived from A. supraorbitalis. In the duck, Anas platyrhynchos, the rami are mainly derived from the A. ethmoidalis as the latter course in the roof of the orbit (Hossler and Olson, 1984).
- (19) A. ophthalmica interna. Arises from the segment of A. carotis cerebralis that lies at the side of the hypophysis within the Sella turcica, and passes into the orbit; this artery does not persist as a substantial vessel in the adults of some avian taxa (Wingstrand, 1951).
- (20) A. cerebralis caudalis (Fig. 12.5). Synonymy: A. cerebri posterior.
- A. choroidea ventriculi lateralis et tertii. Synonymy: A. choroidea anterior (Ariens-Kappers, 1933).
- A. interhemispherica (Baumel, 1967). Synonymy: A. cerebri posterior communis. A. interhemispherica is usually an unpaired asymmetrical artery that arises from either the left or right A. cerebralis caudalis, and is distributed to both cerebral hemispheres (Baumel, 1967).
- (21) A. basilaris (Fig. 12.5). A. basilaris is usually the prolongation of the R. caudalis of either the left or right A. carotis cerebralis; its counterpart persists as a vestigial local vessel. In a few taxa both Rr. caudales anastomose to form A. basilaris (e.g., galliforms, falconiforms, and strigiforms (Baumel and Gerchman, 1968; Kitoh, 1962). The smaller terminal branches of A. basilaris anastomose with branches of A. occipitalis profunda, A. spinalis ventralis, and A. vertebralis ascendens (T. Nishida, pers. comm.) (see Annot. 11).

(22) A. ventralis cerebelli. (Fig. 12.5) Represented on each side by two separate ventral cerebellar arteries in *Gallus* (Kitoh, 1962). In the passerine *Zonotrichia* the single stem of the ventral cerebellar artery divides into rostral and caudal branches (Vitums, et al., 1965). See also Baumel (1967) for a discussion of the relative territories of distribution of dorsal and ventral cerebellar arteries in different species of birds.

Rete medullae oblongatae. Synonymy: Rete mirabile medullae (Freedman and Kriebel, 1990). In the chicken this is a dense plexus of parallel arterioles in the subarachnoid space at the lateral surface of the medulla oblongata near the fossa for the combined ganglia of the IX and X cranial nerves. The rete is fed by the lateral artery of the medulla, a branch of the ventral cerebellar artery (Freedman and Kreibel, 1990).

- (23) Aa. labyrinthi. Rostral and caudal labyrinthine arteries (Schmidt, 1964) spring directly from A. cerebellaris ventralis or A. lateralis medullae oblongatae (*Columba*), and enter the inner ear region via foramina that conduct branches of N. vestibulo-cochlearis (Osteo. Fossa acustica interna).
- (24) A. ophthalmica externa [A. stapedia]. (Fig. 12.4) Homologue of A. stapedia of other vertebrates (Hafferl, 1933; Goodrich, 1930).

Rete ophthalmicum. Synonymy: Rete mirabile ophthalmicum or temporale. For sake of brevity, it has been suggested by Midtgard (pers. comm.) that "Rete ophthalmicum" only be used. The rete actually consists of two components: arterial and venous retia enmeshed with one another. The numerous small arteries that form the arterial rete arise from the A. ophth. ext itself or from its branches. See West, et al. (1981) for diagrams of the ophthalmic rete in representatives of five different avian orders. It has been established that the Rete ophthalmicum is a countercurrent heat exchanger concerned with cooling of the arterial blood to the brain and the eye, and with reducing heat loss from the relatively large eyes of birds (Midtgard, 1984b). See Annot. 77 for more on retia.

- (25) A. intramandibularis. Term provided as a substitute for A. alveolaris inferior, a mammalian term inappropriate in modern birds, all of which lack teeth. See Osteo. Annot. 82 regarding teeth in fossil birds).
- (26) Aa. ciliares anteriores et posteriores. Following usage in the human *Nomina Anatomica* (IANC, 1989) and *Nomina Anatomica Veterinaria* (ICVGAN, 1983) the poles of the Bulbus oculi are arbitrarily defined as anterior and posterior even though in most birds the Axis bulbi is directed rostrolaterally rather than rostrally. Aa. ciliares are named according to the region of the eye that they enter. Other terms of direction and position with respect to the eye and orbit are: dorsal/ventral and nasal/temporal (see Sens. Intro.).

Aa. ciliares posteriores breves are direct branches of the A. ophthalmotemporalis; they enter the eyeball near the optic nerve. Aa. ciliares anteriores are branches of the palpebral arteries. In *Columba* (pers. obs.) and in *Anas platyrhynchos* (Hossler and Olson, 1984) the A. ciliaris posterior longa temporalis arises from the A. ophthalmotemporalis near the Rete ophthalmicum; the prolongation of A. ophthalmotemporalis on the medial aspect of the eyeball becomes a distinct A. ciliaris posterior longa nasalis in both forms.

Aa. parallelae choroideae. This is the term of Hossler and Olson (1984). These arteries are the multiple closely packed branches of the long posterior ciliary arteries that course parallel to one another and to similar parallel radices of the dorsal and ventral ciliary veins in the vascular tunic of the eye.

- (27) A. ophthalmotemporalis. (Fig. 12.4) Following Wingstrand and Munk (1965) this artery is regarded as the main continuation of A. ophthalmica externa, and is the principal artery of supply to the Bulbus oculi. In the caudomedial region of the orbit around the optic nerve, a rich, plexiform system of anastomoses occurs between branches of A. ophth. ext., A. ophth. int., and A. ethmoidalis. (Fig. 12.5). See Annot. 26.
- (28) Circulus iridicus (Oehme, 1969a). Formed mainly by A. ciliaris posterior longa temporalis that bifurcates on reaching the peripheral margin of the iris; the Circulus also receives branches of A. infraorbitalis and A. ethmoidalis (Hossler and Olson, 1984).

Circulus ciliaris (Oehme, 1969a). The ciliary arterial circle is peripheral to the iridial circle. In *Anas* (Hossler and Olson, 1984) the ciliary circle receives its blood primarily from ciliary branches of the infraorbital and ethmoidal arteries.

- (29) A. pectinis oculi. Birds do not possess an artery comparable to the A. centralis retinae of mammals. The Pecten oculi is a vascular body that projects from the interior of the floor of the eye into the chamber of the vitreous humor (see Sens.). According to Wingstrand and Munk (1965), the Pecten supplies nutrients to the inner retinal layers; the Rr. choroidei of the Aa. ciliares longae et breves supply the capillary bed of the Lamina choriocapillaris that nourishes the external retinal layers. See Annot. 26.
- (30) A. carotis externa. The external carotid is a branch of the internal carotid arising near the rear of the mandible. The pattern of branching of the external carotid demonstrates interspecific variation; the listed branches are consistently present in one configuration or another in all examples of taxa of birds that have been studied with any degree of completeness (see Fig. 12.4 and Annot. 12).
- (31) Aa. auriculares. The origin of these arteries in the region of the external ear is variable; in different forms they arise from A. carotis externa, A. maxillaris, or A. mandibularis.
- (32) A. mandibularis. (Fig. 12.4) Synonymy: A. lingualis; A. facialis externa.
- (33) A. laryngea. Synonymy: A. laryngea propria. In the literature this artery has been qualified as "superior" to distinguish it from the artery to the syrinx, erroneously referred to as the "inferior larynx". The term "A. laryngea" has been used for the common stem of A. esophagealis, A. trachealis descendens, Rr. pharyngeales, and the laryngeal artery itself.
- (34) A. sublingualis. (Fig. 12.4) A branch of A. lingualis in certain birds (see Annot. 32).
- (35) A. submandibularis superficialis. (Fig. 12.4) This artery is especially strong in *Gallus* which possess highly vascularized skin appendages (such as wattles) in the intermandibular region.
- (36) **Plexus pterygoideus.** This plexus is located on both ventral and dorsal aspects of the pterygoid bone and its attached muscles in the caudal part of the floor of the orbit. The plexus is formed by anastomoses among rami of A. sphenoidea, A. maxillaris, and A. palatina.
- (37) **R. nasalis.** An extensive system of anastomoses connect nasal rami of A ethmoidalis, A. maxillaris, and A. palatina.

- (38) A. palatina. (Fig. 12.4) This is the rostral prolongation of A. maxillaris. Right and left Rr. palatini mediales flank the nasal choana, and are confluent rostral to the choana, forming the unpaired A. palatina mediana. See Ven. Annot. 13, 14.
- (39) A. sternoclavicularis. Synonymy: A. coracoidea (Glenny, 1951). See Fig. 12.6.
- (40) A. sternalis interna. Often this artery is unpaired, arising from the A. sterno-clavicularis of one side; it courses on the visceral aspect of the sternum near its median line.
- (41) A. coracoidea dorsalis. Synonymy: A. acromialis. The A. coracoidea dorsalis is a branch of A. sternoclavicularis that parallels the dorsal (inner) aspect of Os coracoideum, and extends to the caudal part of the shoulder joint.
- (42) A. esophagotrachealis. In galliform birds this artery springs directly from A. subclavia, sending branches craniad that supplement esophageal and tracheal branches from A. esophagotracheobronchialis (Glenny, 1951). In the turkey, *Meleagris*, A. esophagotrachealis gives off Rr. pericardii. See Annot. 8.
- (43) **Truncus pectoralis.** (Fig. 12.6) Synonymy: A. thoracica externa. Both the *Nomina Anatomica* (IANC, 1983) and the *Nomina Anatomica Veterinaria* (ICVGAN, 1983) use "pectoral" for nerves and vessels (Pectus, L. breast). Usually bifurcates into cranial and caudal branches; most of its distribution is the pectoralis and supracoracoideus muscles (see Annot. 44 for other branches).
- (44) **A. pectoralis media.** Present in some forms (e.g., *Columba*); absent in others (e.g., *Gallus*).
- A. cutanea thoracoabdominalis. Synonymy: A. abdominopectoralis (Neugebauer, 1845). In *Gallus* this artery replaces A. pectoralis media; it supplies the skin of the caudal breast region and adjacent abdomen, and is the principal artery to the incubation (brood) patch. A. cutanea abdominalis from A. lateralis caudae also contributes to the supply of the incubation patch. See Ven. Annot. 49, 65.
- (45) A. supracoracoidea. In some forms this artery shares a common stem with A. subscapularis. The A. supracoracoidea (and vein) accompanies N. supracoracoideus, both piercing the Membrana sternocoracoclavicularis (Arthr.) to enter M. supracoracoideus.
- (46) A. bicipitalis. Accompanies N. bicipitalis into the M. biceps brachii, from there continuing into the Propatagium (see Integ.).
- (47) **A. radialis.** For the most part this artery supplies structures in the antebrachium; it has little or no distribution in the wrist and hand (see Fig. 12.7).
- (48) Aa. interosseae dorsales (Fig. 12.7). These arteries pass dorsad through the radio-ulnar interosseous space, and supply the extensor muscles and dorsal integument of the antebrachium.
- (49) **A. ulnaris profunda.** (Fig. 12.7) This is the companion artery of the V. ulnaris profunda, a consistently prominent, subcutaneous vein on the ventral surface of the elbow region, commonly used for venipuncture. The deep ulnar artery is substantial in some birds, but is a minor artery in *Gallus* and *Columba*.

(50) Lig. aortae. (Fig. 12.6) The aortic end of this vestige of the foetal left Radix aortae (left dorsal aorta) is readily found and often partly patent in adult birds. Its aortic attachment is located just cranial to the origin of A. celiaca from the aorta.

Lig. arteriosum. Synonymy: Lig. botalli. This is the vestige of the right foetal ductus arteriosus that shunts blood from the pulmonary artery to the aorta.

(51) Pars synsacralis aortae. This is the part of the aorta generally between the origins of the external and internal iliac arteries, approximating the extent of the Synsacrum.

Aa. segmentales. Synonymy: Aa. intersegmentales. These paired somatic arteries for purposes of convenience are called "segmental". Actually they are intersegmental in their embryonic placement between adjacent somites. The segmentals occur over the entire length of the vertebral column, and are designated regionally: Aa. segmentales cervicales/truncales/synsacrales and caudales. The parent arteries of the segmentals are Aa. vertebrales ascendens et descendens, Aorta descendens, and A. mediana caudae (see Annot. 65).

- (52) A. intercostalis dorsalis. The dorsal intercostal arteries are derived from the Rr. ventrales of the segmental arteries (see Annot. 53). Segmental branches of A. vertebralis descendens give off the dorsal intercostal arteries to the cranialmost intercostal spaces; farther caudally the dorsal intercostals are offshoots of segmental branches of the Aorta.
- (53) A. intercostalis ventralis. These branches of A. thoracica interna supply the lower (sternal) parts of the intercostal spaces.
- (54) A. esophagealis. (Fig. 12.9) This artery is a branch of A. celiaca (*Gallus* and *Columba*), a direct branch of the aorta (*Buteo*), or a branch of A. proventricularis dorsalis (*Larus*, *Pteroglossus*). In *Coturnix* esophageal arteries arise from both the aorta and the celiac artery. The A. esophagealis supplies the caudal part of the esophagus, sharing this role with Rr. esophageales of A. esophagotracheobronchialis and the dorsal proventricular artery.
- (55) A. gastrica dorsalis. The dorsal gastric artery is the prolongation of A. proventricularis dorsalis onto the Ventriculus (muscular stomach). (Fig. 12.9)

**Rr. sacci.** In different species the arterial supply to the Sacci cranialis et caudalis of the Ventriculus is variably derived from the several gastric arteries.

- (56) Aa. hepaticae. The left lobe of the liver often receives multiple left hepatic arteries from different branches of the left ramus of A. celiaca; more often the right hepatic artery tends to be a single branch of the right ramus of the A. celiaca (Malinovský, 1965; Malinovský, et al., 1973; and Malinovský and Visnanska, 1975). The hepatic arteries enter the Porta hepatis in company with the hepatic portal veins (Ven. Annot. 75, 76, 80). See Pavaux and Jolly (1968) and Miyaki (1978) for descriptions of the intrahepatic vessels of birds; and Digest. Hepar.
- (57) Anastomosis arteriarum hepaticarum. Synonymy: R. communicans (Mi-yaki, 1973). This is the intrahepatic anastomosis that connects the right and left hepatic arteries. It runs along with the left ramus of the right hepatic portal vein (*Columba* and *Gallus*, Miyaki, 1973). **Rr. mediani** are branches of the Anastomosis that supply the dorsal interlobar liver substance.

- (58) A. vesicae biliaris [A. cystica]. (Fig. 12.9) Synonymy: A. vesicae felleae. The latest editions of the human *Nomina Anatomica* (IANC, 1989) and the *Nomina Histologica* (IANC, 1989) adopt the term Vesica biliaris for the gall bladder; the *Nomina Anatomica Veterinaria* (ICVGAN, 1983) retains Vesica fellea. The NA and the NAV continue to use A. cystica for the artery to the gall bladder, here listed as as a secondary, alternative name. The gall bladder is present in most orders of birds (**Digest.** Annot. 107, 108; its artery is usually a branch of the right hepatic artery.
- (59) Aa. splenicae. (Fig. 12.9) Synonymy: Aa. lienales (see Cardvas. Intro.). The splenic arteries usually originate from the right ramus of A. coeliaca, occasionally from the undivided trunk of A. coeliaca (e.g., Sturnus, Cralley, 1965). For variability of Aa. splenicae see Malinovský (1965) (Buteo); Malinovský, et al., (1973) (Anas); Malinovský and Visnanska (1975) (Anser); Fukuta, et al. (1969a) (Gallus), who also describe accessory splenic arteries.
- (60) Aa. duodenales, jejunales, ileae. The duodenum is the only differentiated part of the avian small intestine; "jejunal" and "ileal" in birds are arbitrary terms used in a regional sense only. The avian jejunum and ileum do not possess distinct morphological characteristics as in mammals; they correspond to the intermediate and terminal segments of the mammalian small intestine. The use of these terms facilitates the naming of vessels for these parts of the gut. See **Digest.** Annot. 76).
- (61) Aa. ileae; Aa. ileocecales. Ileal branches of the right ramus of A. celiaca rather than ileocecal branches of this artery are present in species of birds that lack long caeca paralleling the terminal ileum (see **Digest.**). The ileum is also vascularized by branches of both the cranial and caudal mesenteric arteries.
- **A. ileocecalis.** Both. A. celiaca and A. mesenterica cranialis send ileal branches to the suproduodenal loop of the ileum. Anastomoses between the cranial and caudal mesenteric arterial systems are found in the ileorectal junctional region where the roots of the intestinal cecae are located. See Fig. 12.11.
- (62) A. pancreaticoduodenalis. (Fig. 12.9) This artery is usually the principal continuation of the right ramus of A. celiaca. Some species of birds possess long, parallel left and right Aa. pancreaticoduodenales. Rr. pancreatici are collaterals of rami that pass to the duodenum.
- (63) Aa. gastricae. (Fig. 12.9) Several gastric arteries supply the muscular stomach (see Intro.). The arterial supply to the thick muscular body as well as to the thin Sacci cranialis et caudalis and the pyloric region are served in a variable fashion in different birds by these several gastric arteries and branches of the gastroduodenal artery. Nishida, et al. (1969) offered the generality (based on Gallus) that the main gastric arteries to the muscular stomach perforate the left and right tendinous surfaces, whereas the venous radicles from the muscular stomach emanate from the annular (marginal) surfaces. See Cardyas. Intro.
- (64) A. marginalis intestini tenuis. This prominent, irregular "marginal artery" of the small intestine consists of a chain of anastomosing arteries that extends along the mesenteric border of the small intestine from the duodenal ansa (loop) to the supraduodenal ansa. The marginal artery is fed proximally from branches of the celiac system and distally from the system of the cranial mesenteric artery.
- (65) Aa. segmentales synsacrales. (Fig. 12.8) A variable number of paired somatic branches of the aorta and its caudal extension arise from the level of the root of A. mesenterica cranialis to the caudal end of the synsacrum. The lumbar, sacral, and

caudal vertebral elements that coalesce to make up the synsacrum are not clearly defined (Boas, 1929); therefore, the more general term, synsacral segmental arteries, seems preferable to attempting to apply more specific regional terms. See Annot. 51; Osteo. Annot. 141; and PNS Annot. 38.

- (66) A. ovarica; A. testicularis. (Fig. 12.8) The ovarian artery occurs on the left side only in most avian species (see Fem. Annot. 19). Accessory ovarian arteries and testicular arteries (Masc. Annot. 5) may stem directly from the aorta or other adjacent arteries (Nishida, 1964). The ovarian vessels undergo enormous hypertrophy during egg-laying (Fem. Annot. 19; Masc. Annot. 5).
- (67) Aa. oviductales. (Fig. 12.8) Oviductal arteries occur on the left side only, and, like the ovarian vessels, hypertrophy during egg-laying. As with most elongate viscera the oviduct acquires its blood supply from several arteries along its length. Longitudinal anastomoses occur between branches of these arteries near, or on, the oviduct similar to anastomoses along the intestine. See Annot. 72 and Fem. Annot. 35-42, 45.

The origin of the oviductal arteries varies between the different taxa that have been studied; individual variation within the same species is also exhibited by these arteries. In general **A. oviductalis cranialis** (Fem. Annot. 34) springs from the left cranial renal artery, directly from the aorta, or from A. iliaca externa. **A. oviductalis media** (Fem. Annot. 36) arises from the left A. ischiadica or its branch, A. renalis media. **Aa. oviductales caudales** spring from the left A. iliaca interna and A. pudenda. One of the major oviductal arteries may be absent, being replaced by branches from adjacent oviductal arteries in the series.

(68) **A. iliaca externa.** (Fig. 12.8) On leaving the pelvis and entering the thigh the name of this artery changes to A. femoralis. A common iliac artery is not present in birds; A. iliaca interna et A.i. externa spring independently from the aorta (Annot. 81).

A. pubica (Baumel, 1975c). Synonymy: A. epigastrica (Neugebauer, 1845); A. pelvica interna (Gadow and Selenka, 1891); A. umbilicalis (Hafferl, 1933; Nishida, 1963). The term, A. pubica, has topographic significance; i.e., the artery arises from the ext. iliac. a., courses with its companion vein and nerve along the ventral border of the pubis, sending rami into the ventral abdominal muscles and peritoneum. See Fig. 12.10 and Midtgård (1982).

**A. umbilicalis.** The proper umbilical artery branches off the A. pubica, and courses in the extraperitoneal fat of the ventral abdominal wall to the umbilical scar. See **Ven.** Annot. 74).

(69) A. femoralis. (Fig. 12.10) (Synonym: A. cruralis); A. ischiadica. (Synonym: A. sciatica). The ischiadic artery constitutes the main supply to the pelvic limb in most birds; this artery is known to be reduced only in the penguins, turacos (*Musophaga, Gallirex, Tauroco*) and in members of the passerine families Pipridae and Cotingidae. In these birds the limb is supplied instead by the femoral artery, the blood being diverted from the femoral to the ischiadic/popliteal artery by the highly developed A. femoralis medialis and the Anastomosis ischiofemoralis (Midtgard, 1982).

Anastomosis ischiofemoralis. Synonomy: Anastomosis arteriosa ischiofemoralis (Midtgård, 1982). The anastomotic segment connecting the femoral artery with the ischiadic artery (see above) represents the arterial counterpart of the similar venous anastomosis (Midtgård, 1982). See Ven. Annot. 66; Fig. 12.18.

- (70) A. cranialis coxae; A. caudalis coxae (Baumel, 1975c). These names replace "Aa. gluteae cranialis et caudalis"; the coxal arteries supply muscles and integument over the pre- and postacetabular parts of the ilium. The adjective "gluteal" (Gr.) refers to the buttock. The postacetabular ilium is not comparable at all to the mammalian gluteal region; no gluteal region is described for birds, only a "coxal" region (Coxa, L. hip). Contemporary avian myologists do not use "gluteal" for muscles of the hip region. See Fig. 12.10; and Myol. Annot. 104.
- (71) A. circumflexa femoris. This artery is a transverse branch of the femoral or ischiadic artery that "bends around" the proximal part of the femur as in mammals. Midtgard (1982) has studied the variable origin of this artery in different birds.

This term has been used erroneously for the longitudinal, spiral continuation of A. femoralis toward the knee within M. femorotibialis (Grzimek, 1963; Westpfahl, 1961), and also for a cranial branch of the proximal part of the femoral artery (Cralley, 1965).

- (72) Aa. oviductales marginales. The ventral and dorsal marginal arteries of the oviduct are channels produced by anastomoses between asc- and descending rami of major branches of the three regional arteries of the oviduct. The longitudinally oriented marginal arteries parallel the oviduct and are located within the ventral and dorsal ligaments of the oviduct, generally accompanied by satellite veins. See Fem. Annot 34.
- (73) A. femoralis caudalis. Synonymy: A. profunda femoris (Westfahl, 1961; Nishida, 1963); A. fem. proximocaudalis (NAA, 1979). This is a substitute name for A. prof. fem.; the latter term has been avoided to do away with comparison with the mammalian A. prof. fem., a branch of the femoral artery which courses longitudinally in the limb. Midtgård (1982) found only single caudal femoral arteries in his series, commonly arising from A. ischiadica; in most chararadriiforms and passeriforms, plus *Picus*, *Falco*, and *Fulica* the caudal femoral a. originates from A. femoralis medialis of the femoral artery system.
- (74) A. suralis (Barkow, 1829). The use of the term "sural" (Sura, L. calf of the leg) for the nerves and vessels of the upper crus simplifies the terminology of the flexor compartment by limiting the number of terms using "tibialis" in this region. Branches of the sural artery and vein accompany the sural rami of N. tibialis to muscles of the distal thigh and proximal calf and the overlying integument (Midtgard, 1982). See Fig. 12.10.
- (75) A. poplitea. (Fig. 12.10) This vessel is the continuation of A. ischiadica in the popliteal region behind the knee; its extent is from the level of the root of A. suralis to the point of origin of A. fibularis. Midtgard (1982) treats the variable relationship of the popliteal a. to M. popliteus in different birds.
- (76) A. tibialis cranialis. (Fig. 12.10) This artery is the prolongation of A. poplitea distal to the origin of A. fibularis. A. tibialis cranialis leaves the flexor compartment of the crus via the distal interosseous foramen (Arthr. Annot. 162) and enters the extensor compartment. The course of the A. tibialis cranialis at the distal end of the tibiotarsus shows much interspecific variation; in the typical arrangement (e.g., Tringa) A. tib. cran. gives off a small superficial ramus and a deep ramus; the latter passes under the extensor retinaculum (Arthr. Annot. 187) in company with N. fibularis profundus. Consult Midtgård (1982) for a complete account of this artery.

(77) Rete tibiotarsale (Midtgård, 1981). Synonymy: Rete mirabile tibiotarsale (Hyrtl, 1864). Many taxa of birds possess the Rete tibiotarsale, a mixed network of arteries and veins on the cranial aspect of the tibiotarsus usually extending distally to the level of its extensor retinaculum. The network forms a countercurrent system involved in temperature regulation. The following summary is extracted from the comprehensive study of Midtgård (1981):

The tibiotarsal rete may be derived from the fibular artery, cranial tibial artery, or both, and may vary in complexity from simple to elaborate: Simple retia generally have 4-5 collateral arteries in contact with a larger number of veins; these are characteristic of the gruiform species investigated. Others occur in the gannet *Morus*, the penguin *Spheniscus*, the stork *Ciconia*, the tinamou *Crypturellus*, and the owl *Asio*. Elaborate retia consist of as many as 15-19 small arteries enmeshed with a larger number of veins, occurring in some pelecaniforms, anseriforms, galliforms, ciconiiforms, and the flamingo *Phoenicopterus*. See Annot. 24, Rete ophth.

- (78) **Rr. fibulares.** (Fig. 12.10) The superficial and deep fibular rami of A. fibularis accompany the superficial and deep fibular [peroneal] nerves; near the intertarsal joint the two rami usually anastomose with the cranial tibial artery (Midtgård, 1982).
- (79) A. metatarsalis dorsalis communis. In most groups of birds this artery is the prolongation of the deep ramus of A. tibialis cranialis that passes deep to the extensor retinaculum (Arthr. Annot. 188) and then into the foot where it divides (Annot. 77).

Aa. intermetatarsales plantares. These two arteries arise from the common dorsal metatarsal artery and pass from the dorsal surface to the plantar aspect of the foot by traversing the Foramina vascularia proximales of the Tarsometatarsus. There each of these arteries divides into a proximally directed (recurrent) A. tarsalis plantaris and the distally directed A. metatarsalis plantaris. (Fig. 12.10) A metatarsalis plantaris lateralis is usually dominant to its medial counterpart (Midtgård, 1982).

Aa. metatarsales dorsales. In his series of 43 avian species Midtgård (1982) found that the dorsal metatarsal aa. varied in number from one to three. In most species the A. metatars. dors. III is the only large artery of the foot; usually A. metatarsalis dorsalis II is present as a slender companion artery of the dorsal metatarsal nerve. All three arteries were present only in *Columba* and *Asio* of his series. The Foramen vasculare distale (Osteo. Fig. 4.18) of the Tarsometatarsus transmits either the entire A. metatarsalis dorsalis III or a branch of the latter to the plantar aspect of the foot. See Annot. Osteo. Annot. 298.

Aa. digitales. The digital arteries may arise from the plantar aspect of the foot or as the direct prolongation of the dorsal metatarsal arteries. Midtgård (1982) notes that each toe has a digital artery on both sides; however one member of each pair is prominent, the other much smaller. In all species studied the main digital arteries are: Digit I, medial; Digit II, lateral; Digit III, lateral; Digit IV, medial. Digital arteries may arise from plantar or dorsal metatarsal arteries as summarized by Midtgård. See Ven. Annot. 70 for the venous patterns of digital veins and the reciprocal asymmetry in their size to that of the arteries.

(80) **R. bursalis; A. bursocloacalis.** (Fig. 12.11) In *Columba* one of the arteries the cloacal bursa originates from R. caudalis of A. mesenterica caudalis; the blood supply of the bursa is also partly derived from A. bursocloacalis that springs from A. pudenda (Baumel, 1988). See Pintea, et al. (1967) and Zamojska (1975) for the pattern in *Gallus*. See also **Cloaca.** Annot. 22.

- (81) A. iliaca interna. (Fig. 12.11) Synonymy: A. pudenda communis (Gadow and Selenka, 1891); A. hypogastrica (Barkow, 1829). In birds and other higher vertebrates the A. iliaca interna is distributed to the terminal parts of the digestive tract, reproductive tract, and urinary system (Annot. 68).
- (82) A. pudenda. Synonymy: A. pudenda interna (Barkow, 1829). See below: Annot. 83, Aa. bulbi rectricium.
- (83) A. lateralis caudae. (Fig. 12.11) Synonymy: A. musculocutanea caudae lateralis (Neugebauer, 1845); A. pudenda externa (Gadow and Selenka, 1891). "A. lateralis caudae" is a simplification of the term of Neugebauer, descriptive of its distribution, and that of its companion vein and nerve (PNS Annot. 74), to the dorso-lateral tail region where it supplies the bulb of the rectrices, the muscles, and integument of the uropygium. Consult du Toit (1912-13) and Baumel (1988) for descriptions of the vessels of the uropygium and the adjacent structures. See Fig. 12.11.
- Aa. bulbi rectricium. (Fig. 12.11) Arteries to the bulb of the rectrices (Baumel, 1988) are derived from several sources (see branches of the A. pudenda, A. lateralis caudae, and A. mediana caudae). Baumel described the relative hypertrophy of dorsal rami of two pairs of segmental branches of a. mediana caudae in the pigeon Columba livia. These vessels are the A. profunda dorsalis bulbi [rectricium] and the A. cutanea dorsomedialis caudae; they course between vertebral transverse processes to reach the rectricial bulb and skin on the dorsum of the uropygium. The extraordinary enlargement of certain of the caudal segmental arteries for supply of the uropygium was first noted by Barkow (1829) in the curlew Bhurinus oedicnemius.
- A. glandulae uropygialis. In the pigeon (Baumel, 1988) the artery to the uropygial gland is an unpaired, enlarged dorsal ramus of a caudal segmental artery. See Zamojska (1975) for vascularization of the gland in the chicken.
- (84) Aa. vertebromedullares (Sterzi, 1903). Synonymy: Aa. spinales (Kitoh, 1964); Aa. nervomedullares (Lob, 1967). These arteries are derived regionally from dorsal rami of segmental branches of the Aa. vertebrales, most of the length of Aorta descendens, and A. mediana caudae. The use of the name "A. spinalis" for the vertebromedullary arteries leads to confusion with the dorsal and ventral spinal arteries on the spinal cord (Medulla spinalis) itself (see Annot. 85).
- See "Aa. medullae spinalis" for names of branches of the Aa. vertebromedullares (mostly after Lob, 1967). Vertebromedullary arteries supply spinal nerve roots, dorsal root ganglia and paravertebral ganglia, spinal dura mater, the spinal cord, the vertebrae, and the ligaments and joint capsules of the vertebral column.
- (85) A. spinalis ventralis; Aa. spinales dorsales; Aa. dorsolaterales. Longitudinal arteries on the spinal cord that are formed by anastomoses between asc- and descending rami of Aa. radiculares ventrales et dorsales. At the foramen magnum A. spinalis ventralis communicates by means of weak anastomoses with terminal rami of A. basilaris (Annot. 21).
- (86) **Rr. marginales.** Synonymy: Aa. perphericae (Sterzi, 1903). These rami form an irregular surface network of arteries that send radially penetrating branches into the lateral funiculi of the spinal cord, reaching the gray matter. Rr. marginales supply that part of the spinal cord not served by vessels entering the ventral and dorsal sulci of the cord (see Lob, 1967).

## **TERMINOLOGY**

#### VENAE

## VENAE PULMONALES<sup>1</sup> (see Resp.)

V. pulmonalis communis
V. pulmonalis

Rdx. cranialis1

Rdx. caudomedialis Rdx. caudolateralis

Vv. interparabronchiales<sup>2</sup>

## VENAE CARDIACAE3 (Cor. Fig. 12.1A, B)

V. cardiaca sinistra<sup>4 3</sup>

Pars basilaris<sup>4</sup>

Pars interventricularis<sup>4</sup>

Vv. conales (Cor. Annot. 2)

Vv. septales<sup>5</sup>

Vv. atriales

V. interatrialis

Vv. ventriculares

V. cardiaca circumflexa sinistra<sup>6 4 3</sup>

Vv. atriales

Vv. ventriculares

V. cardiaca media [dorsalis]<sup>7 3</sup>

Vv. apicis cordis<sup>7</sup>

Vv. septales<sup>5</sup>

Vv. ventriculares

Vv. cardiacae dextrae [ventrales]<sup>8</sup>

Vv. conales (Cor. Annot. 2)

Vv. atriales

Vv. ventriculares

V. cardiaca circumflexa dextra<sup>6</sup>

Vv. cardiacae minimae<sup>9</sup>

V. proventriculus cranialis<sup>51</sup>

## VENA CAVA CRANIALIS<sup>10</sup> (Fig. 12.14)

## VENA CEPHALICA ROSTRALIS<sup>12</sup> <sup>13</sup> (Fig. 12.12)

V. maxillaris<sup>13</sup> (Fig. 12.12)

V. palatina lateralis<sup>14</sup>

V. nasalis ventralis<sup>15</sup>
 V. nasalis caudalis

V. nasalis dorsalis<sup>15</sup>

V. mandibularis interna

V. mandibularis externa

Anastomosis maxillofacialis<sup>21</sup>

Anastomosis cum rete

ophthalmico

V. ophthalmica (Fig. 12.12)

V. ethmoidalis

V. nasalis lateralis<sup>15</sup>

V. nasalis medialis<sup>15</sup>

Vv. frontales<sup>16</sup>

V. frontalis profunda

V. frontalis superficialis

V. palpebralis dorsonasalis<sup>23</sup>

V. anastomotica cum sinu

olfactorio31

V. ciliaris dorsalis (see V.

facialis)

Vv. choroideae

Vv. parallelae choroideae

(Art. Annot. 29)

V. ophthalmotemporalis<sup>39</sup>

V. supraorbitalis<sup>39</sup>

## VENA CEPHALICA ROSTRALIS<sup>12</sup> (Fig. 12.12) (cont.)

V. infraorbitalis

V. ophthalmica interna

R. anastomoticus cum rete

ophthalmico

Vv. musculares bulbi oculi

Vv. ciliares ventrales (see

V. facialis)

Vv. choroideae

Vv. parallelae choroideae

(Art. Annot. 29)

V. pectinis oculi

Vv. glandulae membranae

nictitantis

Anastomosis cum sinu

cavernoso18

Vv. comitantes a. maxillaris 13

V. palatina medialis<sup>14</sup>

V. palatina mediana<sup>19</sup>

V. submandibularis<sup>20</sup>

V. submandibularis superficialis

V. submandibularis profunda

Rete pterygopharyngeale

V. pterygopharyngealis

V. facialis<sup>21</sup> (Fig. 12.12)

V. nasalis dorsalis<sup>15</sup>

V. nasalis lateralis<sup>15</sup>

Vv. frontales 16

V. intermandibularis

V. palpebralis dorsonasalis<sup>23</sup>

Vv. ciliares anteriores

Sinus venosus sclerae<sup>17</sup>

Anastomosis maxillofacialis<sup>21</sup>

Vv. mandibulares caudales

V. palpebralis communis<sup>22</sup>

V. palpebralis ventralis<sup>23</sup>

Vv. ciliares anteriores

Sinus venosus sclerae<sup>17</sup>

V. palpebralis dorsotemporalis<sup>23</sup>

Vv. ciliares anteriores

Sinus venosus sclerae<sup>17</sup>

V. intramandibularis<sup>24</sup>

Vv. temporales

Anastomosis cum v.

ophthalmica externa

Rete quadratopterygoideum

V. intramandibularis<sup>24</sup>

Vv. temporales

V. mandibularis<sup>25</sup> (Fig. 12.12)

V. lingualis

V. lingualis propria

V. sublingualis

V. laryngea

V. pharyngealis

V. esophagotrachealis

V. esophagealis descendens

V. trachealis descendens

Vv. hyobranchiales [hyoideae]

Rete palatopharyngeale<sup>26</sup>

Anastomosis interjugularis<sup>27</sup>

Vv. pharyngeales dorsales

Vv. musculares ventrales colli

V. occipitalis ventromediana<sup>28</sup>

## VENA CEPHALICA CAUDALIS<sup>29</sup> (Fig. 12.12)

## VENAE ENCEPHALICAE ET SINUS DURAE MATRIS<sup>30</sup>

(Fig. 12.13)

Sinus olfactorius

V. cerebralis dorsorostralis Sinus sagittalis olfactorius V. rostralis diencephali Sinus sagittalis dorsalis<sup>31</sup> V. emissaria mediana

## VENAE ENCEPHALICAE ET SINUS DURAE MATRIS<sup>30</sup>

(Fig. 12.13) (cont.)

V. cerebralis dorsomedialis

V. cerebralis dorsocaudalis

V. cerebralis interna

V. choroidea ventriculi lateralis

V. cerebralis magna

V. cerebralis caudalis

Sinus transversus

V. lateralis diencephali

Sinus sphenotemporalis

V. cerebralis media

V. cerebralis rostralis

V. lateralis corporis striati

V. lateralis tecti mesencephali

Sinus petrosus rostralis

V. intercruralis

V. caudalis tecti mesencephali

V. rostralis tecti mesencephali

V. ventralis tecti mesencephali

V. nervi trigemini

V. cerebralis basilaris

V. myelencephali basilaris

V. rostralis cruris cerebellaris

V. cerebellaris rostromediana

V. cerebellaris rostroventralis

V. rostrodorsalis myelencephali

Sinus cavernosus<sup>18</sup> (Fig. 12.12)

V. carotis cerebralis

Vv. adenohypophysiales<sup>18</sup>

V. choroidea ventriculi tertii

Sinus petrosus caudalis<sup>32</sup>

V. dorsalis tecti mesencephali

V. semicircularis rostralis<sup>32</sup>

Sinus occipitalis (Fig. 12.13)

Vv. meningeales

Vv. dorsales cerebelli

V. dorsalis labyrinthi<sup>33</sup>

V. occipitalis dorsomediana<sup>34</sup>

Sinus foraminis magni<sup>46</sup>

Sinus fossae auriculae cerebelli<sup>35</sup>

V. choroidea ventriculi quarti

V. nervi glossopharyngealis

Vv. dorsales myelencephali

V. cerebellaris lateralis

V. semicircularis lateralis<sup>36</sup>

V. occipitalis communis<sup>37</sup>

V. occipitalis interna<sup>28</sup> 37

V. occipitalis externa<sup>32</sup> <sup>37</sup>

V. vertebralis ascendens<sup>38</sup>

V. occipitocollaris<sup>38</sup>

V. occipitalis profunda<sup>41a</sup>

V. occipitalis superficialis<sup>41a</sup>

V. cutanea cervicalis descendens<sup>41b</sup>

V. carotis cerebralis

V. sphenoidea (Art. Annot. 18)

V. palatina

V. sphenomaxillaris

V. ventralis labyrinthi<sup>33</sup>

V. ophthalmica externa<sup>39</sup> (Art.

Annot. 24)

V. cutanea cervicalis

descendens<sup>41b</sup>

Rete ophthalmicum<sup>39</sup> (Art.

Annot. 24)

Anastomosis cum v. faciali<sup>21</sup>

V. auricularis rostralis<sup>40</sup>

V. auricularis caudalis<sup>40</sup>

Anastomosis cum v. faciali<sup>21</sup>

## VENA JUGULARIS<sup>11</sup> 27 (Figs. 12.12, 13)

V. occipitalis profunda<sup>41a</sup>
 V. occipitalis superficialis<sup>41a</sup>

V. mandibularis<sup>25</sup>

Vv. musculares craniales colli

## VENA JUGULARIS<sup>11</sup> <sup>27</sup> (cont.)

Vv. cutaneae colli

V. trachealis descendens

V. esophagealis ascendens

V. esophagealis descendens

Vv. ingluviales

Rdxx. esophageales

Vv. tracheales

Vv. esophageales

V. cutanea cervicalis ascendens<sup>41b</sup>

V. cutanea cervicalis descendens<sup>41b</sup>

Plexus subcutaneus collaris<sup>41b</sup>

V. transversa colli

V. suprascapularis<sup>42</sup>

Vv. thyroidea

V. vertebralis communis<sup>43</sup> 38

V. vertebralis ascendens<sup>43</sup>

V. vertebralis descendens<sup>43</sup>

Vv. vertebromedullares

Vv. intercostales dorsales<sup>44</sup>

V. esophagotracheobronchialis<sup>45</sup>

V. trachealis ascendens

Vv. musculares caudales colli

# SINUS [VENOSUS] VERTEBRALIS INTERNUS [PARS CERVICOTHORACICA]<sup>46</sup> 82 (Fig. 12.14)

Vv. segmentales

cervicales/truncales<sup>82</sup>

Vv. intercostales dorsales
Vv. vertebromedulares

Anastomosis cum sinu foraminis magni

Anastomosis cum v. occipitali interna

Anastomoses sinujugulares<sup>43</sup> Anastomoses sinurenales<sup>46</sup>

Anastomosis cum v. portali renali craniali<sup>46</sup> (**Urin.** Fig. 5)

Anastomosis cum v. portali renali caudali<sup>46</sup>

Anastomosis cum v. iliaca interna

## VENA SUBCLAVIA (Fig. 12.14)

Truncus pectoralis<sup>47</sup> (Figs. 12.14, 15)

V. pectoralis cranialis

V. pectoralis media<sup>47</sup>

V. pectoralis caudalis

V. thoracica interna<sup>48</sup> <sup>44</sup> (Fig. 12.13)

Rdx. dorsalis

Rdx. ventralis

V. sternalis interna

Vv. intercostales ventrales<sup>48</sup>

V. sternoclavicularis

V. clavicularis

V. coracoidea dorsalis

V. sternalis externa

V. subscapularis

V. supracoracoidea

## VENA AXILLARIS (Figs. 12.14, 15)

V. cutanea thoracoabdominalis<sup>49</sup>

V. infrascapularis

Vv. brachiales<sup>50</sup>

V. bicipitalis

#### **VENA AXILLARIS (cont.)**

V. circumflexa humeri ventralis

V. cutanea brachialis

V. profunda brachii

V. circumflexa humeri dorsalis

V. collateralis ulnaris

V. collateralis radialis

V. basilica (Fig. 12.15)

V. radialis

V. cutanea propatagialis

V. antebrachialis dorsalis

cranialis

V. radialis profunda

Vv. interosseae dorsales

V. cubitalis dorsalis

V. antebrachialis dorsalis

caudalis

Rdxx. postpatagiales V. radialis superficialis

. radians superficians

V. cutanea propatagialis

V. propatagialis marginalis

V. ulnaris (Fig. 12.15)

V. cubitalis ventralis

V. ulnaris superficialis<sup>50</sup>

V. ulnaris recurrens

V. ulnaris profunda<sup>50</sup>

Rdxx. postpatagiales

Anastomosis cum v. ulnari

superficiali

Vv. carpales dorsales

Vv. carpales ventrales

Vv. metacarpales dorsales

Vv. metacarpales ventrales

V. metacarpalis interossea Vv. digitales dorsales

Vv. digitales ventrales

V. postpatagialis marginalis

## VENA CAVA CAUDALIS<sup>52</sup> (Figs. 12.16, 17)

V. hepatica dextra<sup>52</sup> (Fig. 12.17)

Rdx. dorsocaudalis

Rdx. dorsocranialis

Rdx. ventralis

Vv. sublobulares

Vv. centrales<sup>53</sup>

Vv. hepaticae medianae<sup>53</sup>

V. hepatica sinistra<sup>53</sup> (Fig. 12.17)

Rdx. dorsocaudalis

Rdx. dorsocranialis

Rdx. ventralis

V. umbilicalis

V. hepatica accessoria<sup>54</sup>

V. adrenalis (Fig. 12.16)

Vv. portales adrenales<sup>55</sup>

Vv. ovaricae<sup>56</sup> (Fig. 12.16)

Vv. contortae

Vv. pedunculares

Vv. intramurales

Vv. testiculares

Vv. ureterodeferentiales

craniales<sup>57</sup>

Vv. uretericae

## VENA ILIACA COMMUNIS (Fig. 12.16)

Valva portalis renalis<sup>59</sup>

Vv. renales craniales<sup>58</sup>

Rdxx. renales efferentes<sup>58</sup> 59

Vv. intralobulares<sup>58</sup>
V. oviductalis cranialis<sup>61</sup>
Vv. ovaricae<sup>56</sup>

## **VENA ILIACA COMMUNIS (cont.)**

Vv. infundibuli

Vv. magni

V. renalis caudalis<sup>58</sup> (Fig. 12.16)

Vv. segmentales synsacrales<sup>60</sup>

Vv. intervertebrales<sup>60</sup>

Rdxx. renales efferentes

Vv. intralobulares<sup>58</sup>

V. oviductalis media<sup>61</sup> (Fig. 12.16)

Vv. magni

Vv. isthmi

Vv. uterinae (Fem.)

Vv. ureterodeferentiales mediae

Vv. uretericae

## VENA ILIACA INTERNA62 (Figs. 12.11, 16)

Anastomosis interiliaca<sup>59</sup> 62

Anastomosis cum v. mesenterica

caudali

V. pudenda<sup>63</sup> (Fig. 12.11)

Vv. ureterodeferentiales caudales

Vv. uretericae

V. oviductalis caudalis<sup>61</sup>

Vv. uterinae (Fem.)

V. vaginalis

V. oviductalis marginalis

dorsalis<sup>61</sup>

V. oviductalis marginalis

ventralis<sup>61</sup>

V. bursocloacalis<sup>63</sup>

Vv. bursales

Vv. cloacales (Cloaca

Annot. 26)

V. ventralis bulbi [rectricium]<sup>65</sup>

V. lateralis caudae<sup>64</sup> (Fig. 12.11)

V. cutanea abdominalis<sup>65</sup> 49

V. cutanea dorsolateralis caudae

V. dorsalis superficialis bulbi [rectricium]<sup>65</sup>

V. lateralis venti

V. efferens sinus vertebralis

interni

V. mediana caudae $^{62}$  (Fig. 12.11)

V. cutanea dorsomedialis caudaeV. dorsalis profunda bulbi

[rectricium]<sup>65</sup>

V. uropygialis

Vv. segmentales caudales<sup>60</sup>

Vv. intervertebrales<sup>60</sup>

Vv. efferentes sinus vertebralis

interni<sup>82</sup>

# SINUS [VENOSUS] VERTEBRALIS INTERNUS, [PARS CAUDALIS]<sup>46</sup> 82 (Fig. 12.19)

Vv. segmentales

Vv. vertebromedullares

V. profunda dorsalis bulbi

[rectricium]

Vv. efferentes sinus vertebralis

interni

Vv. afferentes sinus vertebralis interni

V. supraspinosa

Vv. interspinosae

# VENA ILIACA EXTERNA (Fig. 12.16)

V. pubica<sup>74</sup>

V. femoralis (see V. isch.)

V. coxae cranialis<sup>67</sup>

V. femoralis cranialis

V. cutanea femoralis cranialis

Anastomosis ischiofemoralis<sup>66</sup>

# SYSTEMA PORTALE RENIS<sup>59</sup> (Fig. 12.16) (Urin.)

Circulus [venosus] portalis renalis<sup>59</sup>

Vena iliaca communis

V. portalis renalis cranialis Rr. renales afferentes<sup>59</sup>

Anastomoses sinurenales

[Anastomosis cum sinu vertebrali internol<sup>46</sup>

Vv. renales craniales

V. renalis caudalis

Vena iliaca interna<sup>62</sup> (Fig. 12.16)

V. portalis renalis caudalis<sup>62</sup>

Anastomosis interiliaca<sup>59</sup> 62

V. ischiadica<sup>66</sup>

Rr. renales afferentes<sup>59</sup>

Anastomoses sinurenales

[Anastomoses cum sinu vertebrali interno]<sup>46</sup>

Vv. segmentales caudales<sup>60</sup>

Vv. segmentales synsacrales<sup>60</sup>

# **VENA ISCHIADICA<sup>66</sup>** (Figs. 12.16, 18)

V. coxae caudalis<sup>67</sup>

V. femoralis medialis

V. circumflexa femoris medialis

V. circumflexa femoris lateralis<sup>68</sup>

Anastomosis ischiofemoralis<sup>66</sup>

V. femoralis caudalis<sup>68</sup>

V. nutricia femoris proximalis

V. suralis<sup>69</sup>

V. cutanea femoralis caudalis

V. cutanea femoralis lateralis

V. cutanea cruralis caudalis

V. suralis lateralis

V. suralis medialis

V. poplitea<sup>66</sup> 71 (Fig. 12.18)

V. lateralis genus

V. nutricia femoris distalis

V. tibialis medialis

V. medialis genus

V. cruralis medialis

V. tibialis caudalis<sup>71</sup> (Fig. 12.18)

Vv. tarsales plantares

Vv. metatarsales plantares<sup>70</sup>

V. metatarsalis plantaris superficialis medialis<sup>70</sup>

V. metatarsalis plantaris

superficialis lateralis<sup>70</sup>

V. metatarsalis plantaris

profunda

Arcus plantaris superficialis<sup>70</sup>

Vv. pulvinarum (see Integ).

Vv. digitales

V. fibularis [peronea]<sup>73</sup>

V. proximalis genus

V. fibularis [peronea]

superficialis<sup>73</sup>

V. fibularis [peronea] profunda<sup>73</sup>

Rete tibiotarsale<sup>72</sup>

V. tibialis cranialis<sup>71</sup> (Fig. 12.18)

(continued)

# VENA ISCHIADICA<sup>66</sup> (Figs. 12.16, 18) (cont.)

V. metatarsalis dorsalis

communis<sup>70</sup>

V. metatarsalis dorsalis medialis

V. metatarsalis dorsalis lateralis

Vv. pulvinarum

Vv. digitales

# SYSTEMA PORTALE HEPATIS<sup>75</sup> (Fig. 12.17)

# VENA PORTAE DEXTRAE HEPATIS<sup>76</sup> (Fig. 12.17)

V. mesenterica communis<sup>78</sup>

V. mesenterica cranialis<sup>78</sup>

Vv. jejunales

Vv. ileae

V. ileocecalis

V. mesenterica caudalis

[V. coccygomesenterica]<sup>78</sup> 62

Rdx. cranialis

Vv. ileocecales

Rdx. caudalis

Vv. rectales

V. bursalis<sup>63</sup>(Cloaca

Annot. 23)

Vv. cloacales (Cloaca

Annot. 23)

Anastomosis cum anastomose

interiliaca<sup>78</sup> 62

V. marginalis intestini tenuis

(**Art.** Annot. 64)

V. proventriculosplenica<sup>79</sup>

V. proventricularis dorsalis<sup>79</sup> 51

V. gastrica dorsalis (Art.

Annot. 63)

V. proventricularis dextra<sup>79</sup> 51

Vv. splenicae<sup>79</sup>

V. gastropancreaticoduodenalis

V. duodenojejunalis

V. gastrica dextra (Art.

Annot. 63)

Vv. sacci caudalis

V. sacci cranialis

V. pylorica

V. pancreaticoduodenalis

V. ileocecalis

Vv. duodenales

Vv. pancreaticae

Rr. intrahepatici v. portae dextrae

Ramus dexter v. portae dextrae<sup>76</sup>

Rr. dorsales

Rr. ventrales

Ramus sinister v. portae dextrae

Pars transversa<sup>77</sup>

Rr. mediani dorsales

Rr. mediani ventrales

Pars anastomotica

# VENA PORTAE SINISTRAE HEPATIS<sup>80</sup> (Fig. 12.17)

Vv. proventriculares caudales<sup>79</sup>

V. proventricularis ventralis<sup>79</sup>

V. gastrica sinistra (Art. Annot. 63) V. gastrica ventralis (Art. Annot. 63)

Vv. sacci caudalis

Vv. sacci cranialis

(continued)

# VENA PORTAE SINISTRAE HEPATIS<sup>80</sup> (cont.)

V. pylorica

Rr. intrahepatici v. portae sinistrae

Rr. dorsales

Rr. ventrales

Vv. portales hepaticae propriae<sup>81</sup>

# VENAE COLUMNAE VERTEBRALIS ET MEDULLAE SPINALIS

Sinus [venosus] vertebralis

internus<sup>46</sup> 82

Vv. segmentales<sup>82</sup>

Rdx. ventralis

Rdx. dorsalis V. vertebromedullaris<sup>83</sup>

Vv. radiculares dorsales<sup>88</sup>

Vv. radiculares propriae

Vv. radiculares ventrales<sup>88</sup>

Vv. radiculares propriae

V. spinalis ventralis<sup>84</sup>

Vv. sulci85

Vv. sulcocommissurales

Vv. marginales<sup>86</sup>

Vv. ventrolaterales<sup>87</sup>

V. spinalis dorsalis<sup>89</sup>

Vv. dorsolaterales<sup>90</sup>

Vv. fissurae<sup>91</sup>

#### **ANNOTATIONS**

- (1) **Vv. pulmonales.** The intrapulmonary tributaries of each V. pulmonalis correspond closely to the intrapulmonary rami of A. pulmonalis. The two caudal radices and their larger radicles lie generally ventral to corresponding rami of A. pulmonalis; the cranial radix is medial to its artery, e.g., *Gallus*, *Columba* (Cor. Annot. 20).
- (2) **Vv. interparabronchiales.** These veins are tributaries of each of the three main radices of V. pulmonalis. Consult Radu and Radu (1971) for patterns of intrapulmonary vessels in several avian species, and Abdalla and King (1975) for angioarchitectural detail in *Gallus*. See **Resp.** Annot. 70 for tributaries.
- (3) Vv. cardiacae. Synonymy: Vv. cordis. Generally cardiac veins are not satellites of coronary arteries and their rami; veins are commonly located subepicardially (exception: Vv. septales and the terminal segment of Pars basilaris of the left cardiac vein). The terminology of the cardiac veins is based mainly on the works of Lindsay (1967) in *Gallus* and Bezuidenhout (1984) in *Struthio*. Their studies indicate that many of the cardiac veins empty independently into the right atrium, therefore differing from the mammalian condition in this respect. Bezuidenhout (1984) notes that in the *Struthio* V. cardiaca sinistra, V. cardiaca circumflexa sinistra, and V. cardiaca media flow into a common sinus which opens into the right atrium near the ostium of the left cranial vena cava. See remarks regarding cardiac veins in Cardvas. Intro. and Fig. 12.1.
- (4) V. cardiaca sinistra. Synonymy: V. cordis magna. The left cardiac vein of birds is usually not the largest of Vv. cardiacae; therefore the synonym, V. cordis magna, is

- a misnomer. Lindsay (1967) describes two parts of this vein in *Gallus*: **Pars interventricularis** and **Pars basilaris** (see Annot. 6). In *Struthio* Pars basilaris passes to the right in the interval between the left auricle and the pulmonary trunk/aorta, receives septal veins from the dorsal part of the interventricular septum, penetrates the floor of the left recess of the right atrium and empties into the common sinus mentioned in Annot. 3 (Bezuidenhout, 1984).
- (5) **Vv. septales.** In *Gallus*, the cranial part of Septum interventriculare is sometimes drained by left and right Vv. septales that empty into V. cardiaca sinistra and Vv. cardiacae ventrales, respectively (Lindsay, 1967) (see Annot. 4).
- (6) V. cardiaca circumflexa sinistra. In *Gallus* Pars interventricularis of V. cardiaca sinistra occasionally continues directly as V. cardiaca circumflexa sinistra. Ordinarily the left circumflex cardiac vein is an independent vein (Lindsay, 1967) (Fig. 12.1B).
- V. cardiaca circumflexa dextra. This vein is present in the Ostrich; it accompanies the circumflex branch of the right cornary artery (Bezuidenhout, 1984).
- (7) V. cardiaca media [dorsalis]. Synonymy: V. cordis media; V. cardiaca dorsalis. Usually the largest of the cardiac veins, the cranial segment (Lindsay, 1967) of the middle cardiac vein lies in Sulcus interventricularis subsinuosus [dorsalis]. It is formed by tributaries (Vv. apicis cordis) which spiral about the apex of the heart, one or more of which may anastomose with tributaries of the left circumflex cardiac vein. The V. cardiaca media receives septal veins from the interventricular septum, both ventricles, the right atrioventricular valve and right atrium.
- (8) Vv. cardiacae dextrae [ventrales]. (Fig. 12.1A) Synonymy: Vv. cordis minores; Vv. cardiacae ventrales. The system of right cardiac veins is located mostly in the subepicardial tissues of the ventral wall of Ventriculus dexter; the two or three main tributaries of the system span the coronary sulcus, and empty directly into Auricula dextra via separate ostia.
- (9) **Vv. cardiacae minimae.** Synonymy: Vv. luminalia; Vv. thebesii. Vv. minimae drain blood from the myocardium directly into the heart chambers. The foramina of these veins are abundant in the right and left atria and right ventricle; in the left ventricle they occur infrequently (Uchiyama, 1929).
- (10) V. cava cranialis. (Fig. 12.14) V. subclavia, V. jugularis, and Truncus pectoralis all converge to form V. cava cranialis of each side; consequently a V. brachiocephalica is not present in birds.
- (11) **V. jugularis.** (Fig. 12.14) The paired jugular vein is formed by the confluence of V. cephalica rostralis and V. cephalica caudalis. In most birds V. jugularis dextra is significantly larger in caliber than V. jugularis sinistra. In certain taxa the **Anastomosis interjugularis** (Annot. 27) is obliquely disposed; it appears that part of the venous blood from the left side of the head is shunted to the right jugular system. Neugebauer (1845) discussed the anastomosis and asymmetry of jugular veins in different avian taxa. Wade (1876) noted that the left jugular is atrophied and nonfunctional in several passerine species. See Annot. 46, 82.
- (12) V. cephalica rostralis. (Fig. 12.12) Synonymy: V. cephalica anterior; V. facialis communis (Neugebauer, 1845). See below (Annot. 13) concerning the origin of the rostral cephalic vein.

- (13) V. maxillaris. (Fig. 12.12) Synonymy: V. facialis interna. V. maxillaris does not accompany A. maxillaris; the artery courses in the roof of the pharynx just deep to the mucosa, flanked by small paired or plexiform Vv. comitantes a. maxillaris. The prominent V. maxillaris courses in the floor of the orbit, turns ventrad between the caudal wall of the orbit and Os pterygoideum, and reaches the roof of the pharynx where its name changes to V. cephalica rostralis.
- (14) **V. palatina medialis; V. palatina lateralis.** The medial palatine vein drains into the system of V. maxillaris; it may also have connections with the Vv. comitantes a. maxillaris, the lateral palatine vein, and Rete palatopharyngeum. In different species V. palatina lateralis is a tributary of either V. maxillaris or V. facialis.
- (15) **Vv. nasales.** In different species the nasal veins may be tributaries of V. facialis, V. ethmoidalis, or both. In *Gallus* the medial and lateral nasal veins are confluent, forming a common nasal vein that drains into V. ethmoidalis. In *Columba* blood from V. nasalis lateralis flows into the system of V. facialis.
- (16) **Vv. frontales.** The frontal veins are quite large in birds having prominent fleshy crests (e.g., galliforms); they drain either into the system of V. facialis or that of V. ethmoidalis.
- (17) Sinus venosus sclerae. Synonymy: Canal of Schlemm. This sinus receives excess aqueous humor from the anterior chamber of the eye, and is drained by the several Vv. ciliares anteriores. See Sens. Annot. 11, 12.
- (18) Sinus cavernosus. (Fig. 12.12) Synonymy: Sinus anuli basilaris (Kaku, 1959); Sinus perihypophysialis (Hasegawa, 1956). The paired cavernous sinuses are situated on either side of the Fossa hypophysialis in the floor of the cranial cavity; the two sinuses communicate with one another rostral and caudal to the fossa, forming a circular sinus (see synonyms above). The cavernous sinuses receive venous blood from the base of the hypothalamic region and hypophysis from the hypophysial portal system (Vv. adenohypophysiales) (see Endoc. Annot. 20-24). The cavernous sinus also has communications with V. carotis cerebralis, V. ophthalmotemporalis, and V. ophthalmica interna (Wingstrand, 1965). Consult Vitums, et al. (1964) for a detailed account of the blood supply and venous drainage of hypophysis. See Endoc. Annot. 20-23 for comments on systema portale hypophysiale.
- (19) **V. palatina mediana.** Rostral to the nasal choana in the roof of the oral cavity this is an unpaired vein; reaching the choana it splits into paired Vv. palatinae mediales that flank the choana.
- (20) V. submandibularis. Generally this vein is a tributary of V. cephalica rostralis; however in some birds it is a tributary of V. mandibularis.
- (21) V. facialis. Common synonym: V. facialis externa. For the most part the facial vein is situated subcutaneously. Its terminal part courses medially just rostral to the external acoustic meatus, where in different birds it empties either into V. cephalica rostralis, the terminal part of V. cephalica caudalis, or into V. mandibularis.
- (22) V. palpebralis communis; V. palpebralis dorsotemporalis (V. palpebralis dorsocaudalis (NAA, 1979)), joins V. palpebralis ventralis to form the common palpebral vein in some birds (Neugebauer, 1845). Not only do Vv. palpebrales drain blood from the eyelids (palpebrae) but they receive anterior ciliary veins and venous radicles from the nictitating membrane, bulbar conjunctiva, and the iridial region of the Bulbus oculi.

- (23) V. palpebralis dorsonasalis. Synonymy: V. palpebralis dorsorostralis (NAA, 1979). The dorsonasal palpebral vein may drain into the ethmoid system of veins as in *Gallus* or into the system of V. facialis (e.g., *Columba*).
- (24) **V. intramandibularis.** This vein courses in the neurovascular canal of the mandible with A. intramandibularis and the prolongation of N. mandibularis. See **Art.** Annot. 25.
- (25) V. mandibularis. (Fig. 12.12) Synonymy: V. lingualis. V. mandibularis is the main vein from the region of the lower jaw; it empties into V. cephalica rostralis near the Anastomosis interjugularis (e.g., *Gallus*), further caudally as in *Columba* and *Milvus* (Neugebauer, 1845) near the junction of the rostral and caudal cephalic veins, or into V. jugularis itself.
- (26) **Rete palatopharyngeale.** Synonymy: Rete mirabile basilaris (Neugebauer, 1845). A rich meshwork of interconnecting veins in the submucosa of the roof of the oropharynx.
- (27) Anastomosis interjugularis. This name is a substitute name for Anastomosis venarum cephalicarum anteriorum (Neugebauer, 1845). Other synonyms: Ramus communicans pharyngicus (Bodrossy, 1938); and V. transversa (Matsumoto, 1955). The interjugular anastomosis actually joins the two rostral cephalic veins rather than the jugular veins themselves (see Figs. 12.12, 14 and Annot. 11).
- (28) V. occipitalis ventromediana (Richards, 1968) (Fig. 12.12). The name of this vein is shorter and more descriptive than its synonym: R. anticus annuli venosi occipitalis (Neugebauer, 1845). The ventromedian occipital vein emanates from the right and left columns of the ventral neck musculature, passes rostroventrad and empties into the interjugular anastomosis. Within the neck musculature its right and left radicles anastomose with the cranial ends of the vertebral veins and the internal occipital veins as the latter emerge from the atlanto-occipital interval.
- (29) V. cephalica caudalis. (Fig. 12.12) The caudal cephalic vein drains blood mostly from the veins of the brain via the cranial dural sinuses and from the inner ear and suboccipital regions (Neugebauer, 1845; Matsumoto, 1955; Richards, 1968). Most of the dural sinuses send blood dorsocaudally to sinuses in the occipital region; the latter flow into the common occipital veins, thence to the caudal cephalic vein as well as to the internal vertebral sinus (see Annot. 37). V. cephalica caudalis is not well developed in *Gallus* and *Meleagris*; in these forms it appears to be partly replaced by the large V. occipitalis ventromediana (Annot. 28).
- (30) Sinus durae matris; Vv. encephalicae. (Fig. 12.13) The dural venous sinuses and the veins of the brain are named mostly according to Kaku (1959); for synonyms, see Neugebauer (1845) and Matsumoto (1955). Only the principal tributaries of the dural sinuses are listed; minor named radicles are not included.
- (31) Sinus sagittalis dorsalis. Synonymy: Sinus longitudinalis. In some birds blood in the dorsal sagittal sinus flows predominantly caudad into Sinus occipitalis; in others it flows rostrad into Sinus olfactorius then via ethmoid veins into the ophthalmic veins in the orbit.
- (32) Sinus petrosus caudalis. The caudal petrosal sinus is prolonged as V. semicircularis rostralis; the latter courses in its osseous canal along the rostral semicircular canal of the osseous labyrinth, and emerges from the occipital region of the skull via a foramen lateral to the Foramen magnum where it becomes designated as V. occipitalis externa.

- V. semicircularis rostralis. A term substituting for Sinus semicircularis or Sinus petrosus posterior (Neugebauer, 1845). For details of relationships of veins that parallel the semicircular canals see Neugebauer (1845) and Ewald (1892). See also Annot. 36; and Sens. Labyrinthus osseus.
- (33) V. dorsalis labyrinthi; V. ventralis labyrinthi. Named following Schmidt (1964). These veins of the inner ear drain into V. dorsalis cerebelli and V. occipitalis communis.
- (34) **V. occipitalis dorsomediana.** This extracranial vein communicates with Sinus foraminis magni by way of an emissary foramen. In *Columba livia* a single foramen in the skull, just dorsal to the Foramen magnum, transmits the emissary vein. The veins are paired and situated near one another on each side of the median plane in certain birds (e.g., *Ceryle alcyon, Progne subis*). See **Osteo.** Annot. 87.
- (35) Sinus fossae auriculae cerebelli. (Fig. 12.13) This term is more meaningful than its synonym, Sinus foveae hemispherii cerebelli (Neugebauer, 1845; Matsumoto, 1955; Kaku, 1959). See (Osteo. Annot. 38). Sinus occipitalis is situated over the dorsum of the cerebellum (Fig. 12.13).
- (36) V. semicircularis lateralis. Synonymy: V. auris interna (Neugebauer, 1845). This vein courses in a bony tube attached to the osseous lateral semicircular canal; dorsal to the external acoustic meatus it joins V. ophthalmica externa.
- (37) V. occipitalis communis. A substitute term for V. occipitalis lateralis (Neugebauer, 1845); this vessel is formed by the confluence of Vv. occipitalis interna et externa and leaves the cranial cavity via the atlanto-occipital interval. The common occipital vein should be considered the commencement of V. cephalica caudalis (Annot. 29). According to Romanoff (1960), V. occipitalis communis [lateralis] is believed to represent the true (primitive) jugular vein of embryonic birds.
- (38) V. vertebralis ascendens; V. occipitocollaris. (Fig. 12.12) Just below the base of the skull the cranialmost ends of both these veins anastomose with V. occipitalis communis. V. occipitocollaris receives muscular and cutaneous radicles from the upper neck where it communicates with V. cephalica caudalis, V. vertebralis ascendens, V. jugularis, and Sinus vertebralis internus. Consult Neugebauer (1845), and see Annot. 43.
- (39) V. ophthalmica externa. (Fig. 12.12) Synonymy: V. stapedia. The venous part of Rete ophthalmicum appears able to drain caudally into the external ophthalmic vein or rostrally into V. ophthalmotemporalis in the orbit. V. ophthalmotemporalis itself, although listed as a tributary of V. maxillaris, could be treated as a tributary of V. ophthalmica externa (see V. ophthalmica).

Rete ophthalmicum. Synonymy: Rete mirabile ophthalmicum or temporale. Arterial and venous ophthalmic retia are enmeshed with one another, forming a vascular heat exchange system that is important in cooling the brain (Kilgore, et al., 1979), and in reducing heat loss from the eye (Midtgard, 1984) (see Art. Annot. 24). The mixed rete is located in the caudal wall of the orbit between the quadrate and laterosphenoid bones (see above), and communicates with V. ophthalmica externa caudally and V. ophthalmotemporalis rostrally. See Fig. 12.12.

(40) **Vv. auriculares.** In *Columba* the rostral and caudal auricular veins (and occasionally a ventral auricular vein) are tributaries of V. cephalica caudalis. In *Gallus* the auricular veins are tributaries of the V. facialis as depicted in Fig. 12.12.

- (41a) V. occipitalis profunda; V. occipitalis superficialis. Both of these veins are companion veins of the same named arteries (see A. carotis externa). The termination of these veins is variable, emptying either into V. cephalica caudalis or V. jugularis.
- (41b) Plexus subcutaneus collaris (Baumel, et al., 1983). In the subcutis of the neck of columbiform birds this extremely dense network of veins is drained by the Vv. cutanea cervicalis ascendens/descendens that empty into the jugulars. These erectile veins are similar to those of the avian and mammalian nasal cavity and external genitalia of mammals, and are capable of rapid engorgement, being filled via arteriovenous anastomoses. The plexus is involved in evaporative heat dissipation by gular flutter and panting.
- (42) V. suprascapularis. Synonymy: V. cephalica humeri (Bodrossy, 1938; Szabo, 1958). Conducts venous blood from the dorsal shoulder region and proximal brachium into V. jugularis. According to Szabo this is a particularly strong vein in *Melopsitacus*.
- (43) V. vertebralis ascendens; V. vertebralis descendens. The asc- and descending vertebral veins form longitudinal chains that are connected with Vv. segmentales at each level in the neck and cranial thoracic regions. In *Gallus* at the root of the neck the asc- and descending veins of each side flow together, forming the V. vertebralis communis (actually an enlarged segmental vein) that discharges into its jugular; smaller segmental veins may also serve as accessory channels conducting blood from the vertebral veins to the jugular. In *Columba* the asc- and descending vertebrals do not form a common trunk, but empty individually into two or three greatly enlarged, transversely oriented Vv. segmentales that connect V. jugularis with the Sinus vertebralis internus; these Anastomoses sinujugulares (new term) conduct blood from the Sinus into the jugulars, then to the cranial caval veins. See Fig. 12.14 and Annot. 38.
- (44) **Vv. intercostales dorsales.** Two or three of the cranialmost dorsal intercostal veins anastomose with V. vertebralis descendens and with Sinus vertebralis internus. The more caudal series of dorsal intercostal veins drain into Sinus vertebralis internus. See V. thoracica interna and Annot. 48.
- (45) V. esophagotracheobronchalis. This vein empties into the most caudal portion of the jugular vein. The companion artery of this vein is discussed in Art. Annot. 8.
- (46) Sinus [venosus] vertebralis internus. Synonymy: Sinus columnae vertebralis (Szabo, 1958); epidural sinus (plexus). The internal vertebral sinus is present on the dorsal aspect of most of the length of the cervical, thoracic, and caudal spinal cord; (Figs. 12.14, 19); it is lacking in the region of the lumbar enlargement of the cord in the synsacral part of the vertebral canal, but present in the caudal vertebral canal (Fig. 12.19) (Baumel, 1988).

At all levels where it is located, the Sinus vertebralis internus *receives* blood from the intervertebral veins. Most of this blood from the neck and trunk regions is collected by the Sinus and flows toward the root of the neck mainly into the jugular veins (Annot. 43; Fig. 12.14), thence into the system of the cranial venae cavae. The segment of the Sinus in the caudal region drains ultimately into the internal iliac system of veins (Baumel, 1988). In other words the jugulars and caudal vena cava do not receive venous blood directly from segmental intervertebral veins (Baumel, 1975a). Other communications of the internal vertebral sinus are with the Sinus foraminis magni at the Foramen magnum (Fig. 12.13); the Vv. vertebrales; Vv. portalis renalis cranialis et caudalis (Mouchett and Cuypers (1959), V. renalis cauda-

lis, V. iliaca interna, and V. mediana caudae. See Annot. 43, 52, 60, 82, Fig. 12.16; and Urin. Fig. 10.6.

Anastomoses sinurenales (new term). These are the connections between the internal vertebral sinus and the renal/renal portal veins (see Annot. 43 and Kurihara and Yasuda, 1975).

- (47) **Truncus pectoralis.** Synonymy: V. thoracica externa. A common pectoral vein is lacking in some birds; in these instances the Vv. pectorales, instead of joining one another, empty individually into V. subclavia, e.g., *Melopsittacus* (Szabo, 1958).
  - V. pectoralis media is not present in all species.
- (48) **Vv. thoracicae internae.** These veins course on the inner surface of the sternal ribs where they receive the Vv. intercostales ventrales; the internal thoracic veins flow craniad into V. axillaris, Vena cava cranialis, or both.
- (49) V. cutanea thoracoabdominalis (Neugebauer, 1845). Drains the integument of the ventrolateral breast and abdomen, particularly the incubation (brood) patch (see Integ.) where it communicates with radicles of V. cutanea abdominalis, a tributary of V. lateralis caudae. Its companion, A. cutanea thoracoabdominalis, is a branch of the pectoral artery; however the vein empties into V. axillaris rather than into pectoral veins. See Annot. 65; and Art. Annot. 44.
- (50) **Vv. brachiales.** (Fig. 12.15) Paired (or plexiform) satellite veins of A. brachialis that anastomose with each other and with radial and ulnar veins in the cubital region.
- V. ulnaris superficialis. This vein frequently consists of paired venae comitantes that flank the strong, subcutaneous A. ulnaris superficialis.
- V. ulnaris profunda is the largest of the veins draining the manus, carpus, and antebrachium; it accompanies the weak A. ulnaris profunda (Art. Annot. 49). The artery and vein course distally on a plane deep to M. flexor carpi ulnaris (Fig. 12.15).
- (51) V. proventricularis cranialis. Nishida and Mochizuki (1976) compared the cranial proventricular vein of *Anas* with that of *Gallus;* Malinovský (1965) described this vein in *Columba*. Blood from the cranial segment of the proventriculus drains directly toward the heart rather than caudally into the hepatic portal system, and discharges into the right atrium or left cranial vena cava (Miyaki, 1978, Fig. 8). See Fig. 12.17 and Cor. Annot. 16.
- (52) Vena cava caudalis. The short trunk of this vein does not parallel the vertebral column, but passes in a cranioventral direction to reach the right atrium of the heart; consequently the caudal vena cava does not receive dorsal intercostal or other segmental body wall veins (see Annot. 48, 58, 60; Figs. 12.16, 17).
- (53) **Vv. hepaticae.** Intrahepatic radices of Vv. hepaticae have been named on the basis of dissections in *Gallus*. Miyaki (1973) designated the main radices of the left lobe of the liver, but not those of the right lobe. In *Anser* the larger radices of left and right hepatic veins are more numerous than in *Gallus*; they were not named by Pavaux and Jolly (1968). Vv. hepaticae medianae drain blood from Pars interlobaris of the liver; these have been observed in *Anser*, *Gallus*, and *Columba* (Pavaux and Jolly, 1968). The microscopic **Vv. centrales** collect blood from the liver sinusoids and themselves drain into **Vv. sublobulares**; the central and sublobular veins are tributaries of all the intrahepatic radices of the hepatic veins. See Fig. 12.17.

- (54) V. hepatica accessoria. Miyaki (1973) describes in *Gallus* one or more accessory hepatic veins that drain the cranial part of the right lobe of the liver directly into the caudal vena cava.
- (55) **Vv. portales adrenales.** (Fig. 12.16) Synonymy: Vv. adrenales afferentes. An adrenal portal system does exist in birds (Neugebauer, 1845; Szabo, 1958; Goodchild, 1969). Blood collected in body wall veins passes to the adrenal gland and through its system of microscopic portal venules; the latter reform into efferent adrenal venules that flow together to form **V. adrenalis** that discharges into the caudal vena cava.
- (56) **Vv. ovaricae; (Fig. 12.16) Vv. testiculares.** These gonadal veins may form a common stem with the adrenal vein. Multiple left ovarian veins may exist; one or more ovarian veins may drain into V. oviductalis cranialis (*Gallus*); small right ovarian veins return venous blood from the rudimentary right ovary.
- (57) **Vv. ureterodeferentiales.** Term introduced by Nishida (1964). These veins drain the ureter and Ductus deferens which closely accompany one another as they course toward the cloaca.
- (58) **Vv. renales.** (Fig. 12.16) Vv. renales craniales are efferent from the cranial division of the kidney; blood from the middle and caudal divisions of the kidney drains into V. renalis caudalis. Several **Vv. intralobulares** of the kidney may become confluent to form one **Rdx. renalis efferens** or a single V. intralobularis may be a direct tributary of the proper V. renalis (Johnson et al., 1972). See **Urin.** Fig. 10.16).
- (59) Systema portale renis; V. portalis renalis caudalis/ cranialis. The presence of a functional renal portal system is a basic feature of the avian kidney of importance in excretion of uric acid by tubular secretion (Johnson, 1978). The principal right and left renal portal veins of the system communicate, forming a venous ring designated the Circulus [venosus] portalis renalis by Kurihara and Yasuda (1975b). The components of this ring are: (1) cranial and caudal renal portal veins; (2) anastomoses of the cranial renal portal veins with the internal vertebral sinus, and (3) the interiliac anastomosis (Urin. Fig. 5).

According to Akester (1967), blood from V. iliaca interna and V. mesenterica caudalis may flow craniad in V. portalis renalis caudalis directly into V. iliaca communis, thence into Vena cava caudalis. Alternatively, venous blood from the pelvic limb may be diverted from V. iliaca externa by Valva portalis renalis into V. portalis renalis caudalis, then into V. mesenterica caudalis that leads to the hepatic portal system; Miyaki (1978) also calls attention to this communication of the two systems. Blood diverted by the renal portal vein also may flow craniad in the V. portalis renalis cranialis via its communications with the Sinus vertebralis internus (Fig. 12.16).

- Rr. renales afferentes; Rdxx. renales efferentes. Rr. renales afferentes of Vv. portales renales may conduct venous blood into the kidney parenchyma, and mix there with arterial blood in the peritubular network of capillary sinuses (Siller, 1971); this mixed blood then drains into Rdxx. renales efferentes that empty into Vv. renales, leading ultimately into the system of V. cava caudalis. See Urin. Vasa sang. intraren.; Annot. 19; and Fig. 10.6.
- (60) Vv. segmentales synsacrales. In the tail region local veins from the ventral surface of the uropygium empty on each side into the paired Vv. medianae caudae that flank the A. mediana caudae. Some of the tail segmental veins pass via afferent Vv. intervertebrales into the internal vertebral sinus, pars caudalis; more cranially

the sinus empties into the median caudal veins or interiliac anastomosis via efferent Vv. intervertebrales (Baumel, 1988). Cranial to this level efferent intervertebral veins from the sinus empty into the trunk of V. renalis caudalis that is located just lateral to the vertebral column (*Gallus*) or into the caudal renal portal vein (*Columba*). See Annot. 46 regarding internal vertebral sinus; Annot. 52 regarding V. cava caudalis; Annot. 62 regarding V. med. caud. and Art. Annot. 51).

- (61) **Vv. oviductales marginales ventralis et dorsalis.** These marginal veins consist of longitudinal anastomoses between ascending and descending radices of the cranial, middle, and caudal oviductal veins. The marginal oviductal veins course in the ventral and dorsal ligaments of the oviduct with companion arteries., see **Art.** Annot. 67; and **Fem.** Annot. 35-44.
- (62) V. iliaca interna (Neugebauer, 1845); V. portalis renalis caudalis (Fig. 12.16). Synonymy: V. hypogastrica; V. pudenda communis. The embryonic V. iliaca interna (Miller, 1903; Hamilton, 1952; Romanoff, 1960) is derived from the posterior cardinal vein. In the adult bird, the caudal renal portal vein is defined as the segment of V. iliaca interna cranial to the interiliac anastomosis (embryonic postcardinal anastomosis).

Anastomosis interiliaca. Synonymy: Arcus hypogastrica (Neugebauer, 1845) (see above and Figs. 12.11, 16).

- V. mediana caudae. (Fig. 12.11) May be single or dual, flanking the A. mediana caudae. The medial caudal vein(s) may discharge into the interiliaac anastomosis (*Columba*) or join the V. pudenda (*Gallus*).
- (63) V. pudenda (Neugebauer, 1845). The drainage territory of this vein from terminal parts of the urogenital and gastrointestinal tracts corresponds closely to that of the mammalian V. pudenda interna. The term, V. bursocloacalis, is taken from the study of Pintea, et al., 1967). Most of the venous drainage from the cloacal bursa in *Columba* is via V. bursalis of the V. mesenterica caudalis. See Fig. 12.11.
- (64) V. lateralis caudae. (Fig. 12.11) Synonymy: V. musculocutanea caudae lateralis (Neugebauer, 1845); V. pudenda externa. V. lateralis caudae is a concise version of Neugebauer's term. This vein drains blood from the rectricial bulb (Baumel, 1988), its associated muscles, and integument of the dorsum of the uropygium; the vein (and its companion artery) passes cranioventrad, piercing the iliocaudal membrane behind the bony pelvis to enter the pelvic cavity.

V. cutanea abdominalis. (Bodrossy, 1938). This tributary of V. lateralis caudae partly drains the incubation patch (see Annot. 49) in *Columba*. In *Gallus* and *Meleagris* blood carried by V. cutanea abdominalis flows into V. femoralis caudalis, usually a tributary of V. ischiadica (see Fig. 12.18).

- (65) **Vv. bulbi rectricium.** (Fig. 12.11) The three principal arteries to the bulb of the rectrices (tail flight quills) are accompanied by three veins: **V. dorsalis superficialis bulbi, V. dorsalis profunda bulbi, and V. ventralis bulbi.** These veins empty into the V. mediana caudae and V. lateralis caudae.
- (66) V. ischiadica. (Figs. 12.16, 18) Caudal to the knee V. poplitea is the continuation of the caudal tibial vein; the popliteal vein is joined by the cranial tibial and fibular arteries. The prolongation proximally of the popliteal vein as it courses behind the femur is known as V. ischiadica. Just distal to the hip joint most of the blood from V. ischiadica is diverted to V. femoralis via the Anastomosis ischiofemoralis (Fig. 12.18) (Anastomosis venosa ischiofemoralis (Midtgård, 1982) which joins the femoral vein in the extensor compartment of the thigh. Consequently most of the venous

return from the hind limb enters the pelvis via the external iliac vein. Proximal to the ischiofemoral anastomosis the reduced part of V. ischiadica extends into the pelvis via the ilio-ischiadic foramen along with A. ischiadica, and terminates in V. portalis renalis caudalis. According to Midtgård (1982) this plan of venous drainage is present in most birds he has examined. See Fig. 12.18.

- (67) **Vv. coxae.** These "veins of the hip" are substitute names for Vv. gluteae cranialis et caudalis. The cranial coxal vein empties into V. iliaca externa, the caudal coxal vein into V. ischiadica. See **Art.** Annot. 70.
- (68) V. femoralis caudalis. A substitute term for V. profunda femoris (see Ven. Annot 65). This tributary of the ischiadic vein in the flexor musculature of the thigh is usually single in most species examined (Midtgard, pers. comm.) Consult Art. Annot. 71 for remarks relating to V. circumflexa femoris lateralis. See Fig. 12.18.
- (69) V. suralis. (Fig. 12.18) Term of Neugebauer (1845) and Bodrossy (1938). Discussion of use of "sural" for vessels of the crus is found in Art. Annot. 74.
- (70) **Vv. metatarsales.** Terminology of the vessels of the foot is from the comprehensive comparative studies of Midtgård (1978;1982) and the highly detailed work of Volmerhaus and Hegner (1963). The main digital veins drain into the **Arcus plantaris superficialis** in nearly all birds that have been studied. Like the arteries, the main digital veins may pass the metatarsal trochleae on either the dorsal or plantar side of the foot. Two superficial metatarsal veins (**V. metatarsalis plantaris superficialis (medialis/lateralis))** extend up the tarsus from the plantar arch; usually the medial vein is much more prominent, and continues up the crus as V. tibialis caudalis (see Annot. 71). (The medial superficial vein is the V. metatarsea interna or magna of Neugebauer, 1845). The lateral vein joins the caudal tibial vein above the intertarsal joint. See **Art.** Annot. 79.
- The V. metatarsalis plantaris profunda travels with its artery, and traverses the vascular foramen at the proximal end of the tarsometatarsus to join the cranial tibial vein.

The small **Vv. dorsales metatarsales** are companion veins of the dorsal metatarsal arteries. In *Gallus* they drain into the **V. metatarsalis dorsalis communis** which itself empties into the medial superficial plantar metatarsal vein (Volmerhaus and Hegner, 1963).

- (71) **V. tibialis cranialis.** The cranial tibial vein does not accompany A. tibialis cranialis through the distal tibio-fibular interosseous foramen, but runs with A. fibularis through the proximal interosseous foramen where it joins V. tibialis caudalis just distal to the knee joint (see **Arthr.** Fig. 5.7).
- V. tibialis caudalis. This vein carries most of the venous blood of the foot and leg centrally; in the knee region the caudal tibial vein changes its name to V. poplitea which itself becomes the V. ischiadica in the lower thigh (Annot. 66) (see Midtgård, 1978).
- (72) **Rete tibiotarsale.** Synonymy: Rete mirabile tibiotarsale. In many different birds this is a network of anastomosing veins that parallels the cranial tibial artery opposite the cranial surface of the distal tibiotarsal, tarsal, and proximal metatarsal regions. The venous rete is intermingled with an arterial rete derived from multiple small branches of the fibular and cranial tibial arteries. The mixed rete varies from simple to elaborate in different taxa, and functions as a counter-current mechanism concerned with heat retention or dissipation (Midtgard, 1981; Art. Annot. 24, 77).

- (73) **Vv. fibulares [peroneae] superficialis/profunda.** These fibular veins derive their names from the fact that they accompany the superficial and deep rami of the fibular nerve and their companion branches of the fibular artery (Baumel, 1975c; Midtgård, 1982). Multiple, plexiform counter-current veins that contribute to the Rete tibiotarsale are derived from fibular and cranial tibial veins (Midtgård, 1981).
- (74) **V. pubica** (Baumel, 1975c). This tributary of the femoral vein courses within the attachments of the abdominal muscles to the pubis; they parallel the ventral border of the pubis. For synonymy see **Art.** Annot. 69. See Fig. 12.18.
- (75) **Systema portale hepatis.** Inasmuch as birds also possess renal, adrenal, and hypophysial portal systems, the designation "hepatic portal" must be employed for the afferent veins conducting venous blood to the liver from the digestive viscera (proventriculus to rectum) and the spleen. Not only does the liver have afferent veins (most birds have a major right portal vein and a lesser left portal vein), but also receives arterial blood from the hepatic arteries, mainly via branches of the celiac artery. Veins that drain blood from the liver into the caudal vena cava are referred to simply as "hepatic veins" (see **Digest.** Annot. 106).
- (76) V. portae dextrae hepatis. This "vein of the right entrance of the liver" is formed by the confluence of the common mesenteric vein with the gastropancreaticoduodenal and pancreaticosplenic veins. In *Buteo* (Malinovský, 1965) and *Gallus* (Miyaki, 1978) a common intrahepatic distribution of the short trunk of this vein is to the lateral part of the right lobe of the liver and via branches of an elongated, transverse left ramus to the medial region of the right liver lobe (see Annot. 77). This left ramus in some individuals extends to the left lobe to which it may contribute. In the junctional region of left and right lobes the left ramus anastomoses with V. portae sinistrae hepatis. Each ramus gives off three principal branches to its lobe. See Digest. Annot. 94.
- (77) Pars transversa. This transverse part of Ramus sinister of the right hepatic portal vein yields numerous smaller dorsal and ventral rami and one or more substantial Rr. mediani dorsales et ventrales into Pars interlobaris of the liver (Pavaux and Jolly, 1968; Miyaki, 1973, 1978).
- (78) **Vv. mesentericae cranialis/caudalis; [V. coccygomesenterica].** "V. coccygomesenterica" is firmly established in the literature, and is retained as an alternative term for **V. mesenterica caudalis.** The radices of this vein accompany the rami of A. mesenterica caudalis, and require the corresponding names. Near the junction of its cranial and caudal radices, V. mesenterica caudalis is confluent with Anastomosis interiliaca (see Figs. 12.11, 16).

Near the liver V. mesenterica caudalis joins V. mesenterica cranialis forming the V. mesenterica communis.

- (79) **Vv. proventriculares.** These veins join Vv. splenicae in *Buteo* and *Gallus* (Malinovský, 1965), and produce the **V. proventriculosplenica**, a substantial tributary of V. portalis hepatica dextra; in other birds (e.g., *Columba*) proper Vv. splenicae drain directly into V. portalis hepatica dextra (see Annot. 51).
- (80) V. portae sinistrae hepatis. A small, distinct V. portalis hepatica sinistra is formed by confluence of V. proventricularis caudalis, V. proventricularis ventralis, V. gastrica ventralis, and V. gastrica sinistra in *Buteo* (Malinovský, 1965) and *Gallus* (Miyaki, 1978). In other taxa, e.g., *Sturnus* (Cralley, 1965) and *Melopsittacus*) (Szabo, 1958), the gastric and proventricular veins empty individually into Ramus

sinister of the right hepatic portal vein. In *Gallus* V. portae sinistrae hepatis is distributed into the entire the left lobe, or a portion of it, in about one-fourth of the series investigated by Miyaki (1978); in the remainder of the series the left hepatic portal vein joins the R. sinister of the right hepatic portal or one of its branches. See Fig. 12.17 and **Digest.** Annot. 94.

- (81) **Vv. portales hepaticae propriae** (Neugebauer, 1845). These small veins convey blood from the abdominal air sacs and adjacent peritoneum, and enter the ipsilateral lobe of the liver independent of Vv. portalis hepatica sinistra or dextra (Pavaux and Jolly, 1968; Miyaki, 1978); Miyaki suggested that these afferent veins be referred to as air sac veins rather than hepatic portal veins.
- (82) **Vv. segmentales.** Vv. segmentales of neck, trunk, and tail drain to a great extent into Sinus vertebralis internus. For other connections of Vv. segmentales see **Ven.** Annot. 46, 52, 60. In the region of the lumbar intumescence of the spinal cord Sinus vertebralis internus is lacking; in this region Vv. segmentales empty into Vv. renales. Some of the segmental veins in the caudal region also flow via intervertebral veins into the internal vertebral sinus (*Columba*, Baumel, 1988) which then drains via **Vv. efferentes sinus vertebralis interni** (Annot. 82) into V. iliaca interna (Fig. 12.19)
- (83) **Vv. vertebromedullares.** Synonymy: Vv. spinales. The alternate term, Vv. vertebromedullares, was introduced by Sterzi (1903); names for the tributaries of Vv. vertebromedullares follow the terminology of Lob (1967) in *Gallus*; as the name indicates, these veins drain venous blood from the spinal cord, meninges, bone, and joints of the vertebral column itself. See **Art.** Annot. 84.
- (84) V. spinalis ventralis. The ventral spinal artery on the spinal cord is doubled along part(s) of the its length. Both V. spinalis ventralis and V. radicularis ventralis are best developed opposite the Corpus gelatinosum of the lumbar intumescence of the spinal cord (Medulla spinalis).
- (85) Vv. sulci. These veins in the ventral sulcus of the spinal cord receive drainage from the ventral commissure and most of the gray matter of the cord (Lob, 1967).
- (86) **Vv. marginales.** Synonymy: Vv. periphericae (Sterzi, 1903). Drain via short radial radicles into surface veins (vasocorona) that receive blood from the dorsolateral white matter of the spinal cord to the level of the apposition of white and gray matter (Lob, 1967).
- (87) Vv. ventrolaterales. Weakly developed longitudinal veins along the line of attachment of the ventral nerve rootlets to the spinal cord.
- (88) Vv. radiculares ventrales. Stronger than Vv. radiculares dorsales (Lob, 1967).
- (89) V. spinalis dorsalis. This longitudinal vein courses in the median dorsal sulcus of the spinal cord, and is somewhat weaker than its ventral counterpart.
- (90) **Vv. dorsolaterales.** These longitudinal veins course along the line of attachment of the dorsal nerve rootlets to the spinal cord.
- (91) **Vv. fissurae.** These veins drain into Vv. dorsolaterales; Vv. fissurae drain blood from the white matter located dorsal to the dorsal commissure of the gray matter of the spinal cord.



Fig. 12.1. Heart, coronary arteries, and cardiac veins; *Gallus*. A, B redrawn from Baumel (1975) after Lindsay (1967); C, redrawn from Baumel (1975c). A, Facies ventrocranialis of heart; B. Facies dorsocaudalis; C, Facies ventrocranialis. In the ventricles the cross-hatched lines represent the parts of the deep rami of the coronary arteries that are embedded in the myocardium of the ventral and right side of the Septum interventriculare. With permission of Academic Press.

Abbreviations: A, Aorta ascendens; AD, Atrium dextrum; AS, Atrium sinistrum; circumf., circumflexa; dex., dextra; interventr., interventricularis; P, Truncus pulmonalis; sin., sinistra; VD, Ventriculus dexter; VS, Ventriculus sinister.



Fig. 12.2. Interior features of heart; *Gallus*. Heart sectioned in the dorsal plane; ventrocranial view. Redrawn from Baumel (1975c) after Quiring (1933-34). With permission of Academic Press.

Abbreviations: atrioventr., atrioventricularis (arum); dex., dextra(um); longit., longitudinalis; sin., sinistra(um).



Fig. 12.3. Cardiac impulse conducting system of the avian heart. Adapted from Kim and Yasuda (1979). *Bottom left,* cranial view, atria removed; *Top right,* longitudinal section in a dorsal plane with the cranioventral part of the heart removed.

Abbreviations: AVD, atrioventriculare dextrum; AVS, atrioventricularis sinistra; IV, interventriculus; V. pulm., V. pulmonalis; TB, truncobulbaris; trc. pulm., trunci pulmonalis.



Fig. 12.4. Arteries of head, extracranial; *Gallus*. Dorsal view. Redrawn from Baumel (1975c). The right side of the drawing emphasizes the details of the more ventrally situated arteries, while the left side features the more dorsally situated arteries. With permission of Academic Press.

Abbreviations: Anast. i.c., Anastomosis intercarotica; auric., auricularis; car., carotis; cutan., cutanea; esoph., esophagealis; intramand., intramandibularis; L., A. lingualis propria; occip., occipitalis; prof., profunda; pter. phar., pterygopharyngealis; Rete ophth., Rete ophthalmica; submand., submandibularis; superf., superficialis; trach., trachealis.



Fig. 12.5. Encephalic arteries; *Gallus*. Ventral view. Redrawn from Baumel (1975c) after Shiina and Miyata (1932). Note the asymmetry in: (1) the roots of A. basilaris; (2) A. interhemispherica; and (3) A. cerebellaris dorsalis. See **Art.** Annot. 20, 21 for details. With permission of Academic Press.

Abbreviations: cerebell., cerebellaris; mesenceph., mesencephali.



Fig. 12.6. Arteries of cervical region; *Columba livia*. Ventral view; foreshortening indicated by the white transverse band across the figure. Redrawn from Baumel (1964) and Bhaduri and Biswas (1954). With permission of Academic Press.

A. carotis communis consists of a short trunk in the root of the neck; its principal branch is A. carotis interna. A. carotis externa branches from the cranial end of A. carotis interna in adult birds; see **Art.** Annot. 15) regarding the foetal condition.

In many bicarotid birds (**Art.** Annot. 15) the two internal carotids converge as they ascend cranially; they course side by side in the Canalis caroticus cervicalis (**Osteo.** Annot. 121) of the middle segment of the neck.

Note the hexagonal configuration produced by the brachiocephalic arteries, the common carotids and the proximal parts of the internal carotids (Bhaduri and Biswas, 1954).

Abbreviations: cutan., cutanea; cerv., cervicalis; esoph. trach. bronch., esophagotracheobronchialis; occip., occipitalis; ophth., ophthalmica; vert., vertebralis.



Fig. 12.7. Arteries of wing, ; *Columba livia*. Right side, ventral view. Original drawing, J. J. Baumel. Broken lines represent vessels dorsal to the skeleton. With permission of Academic Press.

Abbreviations: antebr., antebrachialis; circumf., circumflexa; collat., collateralis; cutan., cutanea; hum., humeri; inteross., interossea; marg., marginalis; metacarp., metacarpalis; postpatag., postpatagialis(es); propatag., propatagialis(es).



Fig. 12.8. Main branches of Aorta; *Gallus*, female; ventral view. Note on left side of specimen the prominent ovarian and oviductal arteries springing from A. renalis cranialis, A. ischiadica, and A. iliaca interna (see **Art.** Annot. 66, 67, 72 for details). With permission of Academic Press.

Abbreviations: dex., dextra; intercost., intercostalis; seg., segmentales; mesent., mesenterica; oviduct., oviductalis(es).



Fig. 12.9. Pattern of branching of A. celiaca in the goose, *Anser anser;* ventral view. Redrawn from Malinovský and Visnanska (1975). The A. celiaca supplies the glandular and muscular stomachs, liver, pancreas, spleen and small intestine (see **Art.** Annot. 54-64). With permission of Academic Press.

Abbreviations: dex., dextra(er); duodenojejun., duodenojejunalis; proventr., proventricularis; sin., sinistra(e).



Fig. 12.10. Arteries of pelvic limb; *Columba livia*. Left side, lateral view. Original drawing, J. J. Baumel. With permission of Academic Press.

Abbreviations: cutan., cutanea; dist. caud., distocaudalis; fem., femoralis; genic., genicularis; metatars., metatarsalis; plant., plantaris; prof., profunda; prox. caud., proximocaudalis; superf., superficialis.



Fig. 12.11. Arteries and veins of tail region, *Columba livia;* ventral view. From Baumel (1975c). By courtesy of Springer-Verlag.

Tributaries of V. iliaca interna are shown on the *right side* of the figure; branches of A. iliaca interna on the *left side*. Arteries *hatched;* veins *solid black*. Note: (1) communication of V. mesenterica caudalis with the transverse Anastomosis interiliaca; (2) the prolongation of the internal iliac vein cranially past the anastomosis courses within kidney substance, this part being designated the caudal renal portal vein (see **Ven.** Annot. 62).

Abbreviations: abd., abdominalis; cutan., cutanea; eff., efferentes; mesent., mesenterica; rectr., rectricium; synsac., synsacralis.



Fig. 12.12. Veins of head, extracranial; *Gallus*. Dorsal view. Redrawn from Baumel (1975). Black veins are located *closer* to the viewer (more dorsally) than the *more distant* hatched veins. With permission of Academic Press.

Abbreviations: ophth., ophthalmica; palp., palpebralis; Rete ophth., Rete ophthalmicum; Sinus cav., Sinus cavernosus; vert., vertebralis.



Fig. 12.13. Dural venous sinuses and encephalic veins; *Gallus*. A., ventral aspect of the brain; B., dorsal aspect of brain; C., left lateral aspect of brain; D., medial aspect of left telencephalic hemisphere. Redrawn from Kaku (1959) with modifications. With permission of Academic Press.

Most of the encephalic venous blood leaves the cranial cavity via, or in the vicinity of, the Foramen magnum where the dural sinuses empty into the jugular veins and the internal vertebral sinus. See Fig. 12.12; consult Baumel (1975c) for a brief account of the dural sinuses and the veins of brain.



Fig. 12.14. Venous channels of cervical region; *Gallus*. Ventral view; foreshortening indicated by the white transverse band across the figure. Original drawing of J. J. Baumel. With permission of Academic Press.

Three longitudinal venous channels drain venous blood of the head and neck. Note the asymmetry of the jugular veins, the right jugular vein larger than the left one. The Anastomosis interjugularis actually connects the two cranial cephalic veins, not the jugulars per se. Sinus vertebralis internus communicates with the cranial dural sinuses via the Foramen magnum (see Fig. 12.13); the sinus drains at the root of the neck into the jugular veins on each side via several Anastomoses sinujugulares (*arrows*). The sinus lies in the epidural space of the vertebral canal dorsal to the spinal cord (see Baumel, 1975c).

Abbreviations: Anast. i-j., Anastomosis interjugularis; cerv., cervicalis; com., comitantes; cutan., cutanea; max., maxillaris; occip., occipitalis; Rete pteryg. pharyng., Rete pterygopharyngeale; esoph. trach. bronch., esophagotracheobronchialis; vert., vertebralis.



Fig. 12.15. Veins of wing; Columba livia. Right side, ventral view. Broken lines represent vessels dorsal to the skeleton of the wing. Note that: (1) V. ulnaris profunda is the strongest antebrachial vein, whereas its corresponding artery is rather weak; (2) V. basilica is the main vein of the brachium; (3) the confluence of V. subclavia and V. jugularis and Truncus pectoralis produces V. cava cranialis on each side (Fig. 12.14); hence brachiocephalic veins are not present in birds. With permission of Academic Press.

Abbreviations: antebr., antebrachialis; circumf., circumflexa; collat., collateralis; cutan., cutanea; hum., humeri; inteross., interossea; marg., marginalis; metacarp., metacarpalis; postpatag., postpatagialis(es); propatag., propatagialis; thor. abd., thoracoabdominalis.



Fig. 12.16. Caudal vena cava and renal portal system of veins; *Gallus*. Ventral view. Redrawn from Baumel (1975c). See **Ven.** Annot. 62 that deals with the development of V. iliaca interna and explains the apparent inconsistency in the naming of V. iliaca communis. See also **Urogen**. Fig. 10.6. With permission of Academic Press.

Abbreviations: Aff., afferentes; anast., anastomosis; com., communis; eff., efferentes; mesent., mesenterica; oviduct., oviductalis; port., portalis; ren., renalis; ven., venosus; vert., vertebralis.



Fig. 12.17. Hepatic portal system and hepatic veins; *Gallus*. Ventral view. Redrawn from Baumel (1975c). At upper right of drawing observe V. proventricularis cranialis which is not a tributary of Systema portale hepatis; see **Ven.** Annot. 51 for details. With permission of Academic Press.

Abbreviations: com. mes. v., V. mesenterica communis; dex., dextra; duod(en)., duodenalis; gastr. pancr. duoden., gastopancreaticoduodenalis; hep., hepatica; jejun., jejunalis; l. hep. v., V. hepatica sinistra; mesent., mesenterica; pancr. duoden., pancreaticoduodenalis; port., portae; proventr., proventricularis; sin., sinistra.



Fig. 12.18. Veins of pelvic limb; *Columba livia*. Left side, lateral view. Original drawing, J. J. Baumel. Although V. ischiadica is the main vein of the pelvic limb, most of the blood from the territory drained by V. ischiadica enters the pelvis via V. femoralis. This is accomplished by means of the huge Anastomosis ischiofemoralis (**Ven.** Annot. 66) on the medial side of the femur connecting the two veins at a level slightly distal to the hip joint. With permission of Academic Press.

Abbreviations: cutan., cutanea; fem., femoralis; genic., genicularis; metatars., metatarsalis; plant., plantaris; prof., profunda; superf., superficialis.



Fig. 12.19. Tail segment of the internal vertebral (epidural) sinus and its venous communications in the pigeon. A Dorsal view; B right lateral view. From Baumel (1988). With permission of Springer-Verlag.

The caudal part of the internal vertebral sinus is located on the dorsum of the spinal cord, within the vertebral canal of the tail; its cranial extremity is near the rear end of the synsacrum. The sinus is lacking in most of the synsacral part of the vertebral canal. See **Ven.** Annot. 46, 82 for remarks on the thoracic and cervical segments of the sinus.

Much of the venous blood from the dorsal side of the uropygium drains via afferent (intervertebral) veins into the caudal part of the sinus; the blood flows forward in the sinus, leaving the sinus via efferent sinus (intervertebral) veins which themselves empty into the main veins on the ventral side of the uropygium. *Arrows* alongside, or on, the afferent and efferent veins indicate the direction of blood flow. The supraspinous vein is not shown on A; the interspinous veins are indicated by small circles on the dorsum of the sinus in A. The longitudinal anastomosing veins that connect adjacent intervertebral veins are not depicted on B.

Abbreviations: anast., anastomosis; cutan., cutaneae; eff. efferens; intervert., interverte-bralis; longit., longitudinal; port, portalis; pygostyl, pygostylaris; ren, renalis; vert., vertebral.

# SYSTEMA LYMPHATICUM ET SPLEN

#### D. BERENS V. RAUTENFELD

With contributions from subcommittee members: I. Bázantová, G. Fehér, W. Lippert-Burmester, L. N. Payne, K. Pohlmeyer, J. Schlüns.

# **TERMINOLOGY**

Rete lymphaticum initiale Vas lymphaticum initiale<sup>1</sup> Sinus lymphaticus initialis [Vas lymphocapillare]<sup>2</sup>

Fibrae basilares<sup>3</sup>
Fibrae fixationes<sup>3</sup>
Accessus interendothelialis<sup>3</sup>
Ponticulus endothelialis<sup>3</sup>

Vas 1. precolligens [Vas 1.

precollectorium]<sup>4</sup>

Vas 1. fibrotypicum<sup>4</sup>
Valvula lymphatica
Fibrae basilares<sup>3</sup>
Fibrae fixationes<sup>3</sup>
Accessus interendothelialis
Ponticulus endothelialis<sup>3</sup>
Trabecula fibroendothelialis<sup>4</sup>
Vas 1. colligens [Vas 1.

collectorium]<sup>5</sup>

Vas 1. colligens superficiale<sup>5</sup>
Vas 1. colligens profundum<sup>5</sup>
Vas 1. myotypicum<sup>5</sup>
Valvula lymphatica
Plexus lymphaticus colligens
Cor lymphaticum<sup>6</sup>

Trabecula
myofibroendothelialis<sup>6, 4</sup>
Lymphonodulus solitarius
[Nodulus lymphaticus solitarius]<sup>7</sup>
Centrum germinale<sup>7</sup>
Lymphonodulus aggregatus
[Nodulus lymphaticus aggregatus]
Lymphonodus [Nodus
lymphaticus]<sup>8</sup>
Vas 1, afferens<sup>8</sup>

Vas 1. afferens<sup>8</sup>
Capsula<sup>8</sup>
Sinus lymphaticus intranodalis<sup>8</sup>
Chorda lymphoreticularis<sup>8</sup>
Lymphonodulus solitarius
Venula postcapillaris<sup>8</sup>
Vas 1. efferens<sup>8</sup>
Formatio lymphoreticularis
muralis interna<sup>6</sup>

muralis interna<sup>9</sup>
Formatio lymphoreticularis
muralis externa<sup>9</sup>
Sinus lymphaticus intramuralis<sup>9</sup>
Venula postcapillaris<sup>9</sup>
Formatio lymphoreticularis
parenchymatosa<sup>10</sup>

Venula postcapillaris

#### **THYMUS**

Lobus thymicus
Capsula thymica
Septum interlobulare thymicum
Trabecula thymica

Lobulus thymici
Cortex thymicus
Medulla thymica
Corpuscula thymica<sup>11</sup>

#### BURSA CLOACALIS<sup>12</sup>

Tunica serosa bursalis Tunica muscularis bursalis Tunica mucosa bursalis<sup>13</sup> Plica bursalis<sup>13</sup> Lobulus bursalis<sup>14</sup>
Pars lymphoepithelialis<sup>14</sup>
Pars lymphoreticularis<sup>14</sup>
Venula postcapillaris
Lamina epithelialis interlobaris<sup>14</sup>

#### SPLEN<sup>16</sup>

Tunica serosa splenica
Capsula splenica
Trabeculae splenicae
Hilum splenicum
Pulpa splenica rubra
Pulpa splenica alba
Lymphonoduli splenici
Vagina periarterialis lymphatica<sup>15</sup>
Vagina periellipsoidea<sup>16</sup>
Aa. splenicae (**Art.** Annot. 59)
A. trabecularis

A. centralis
Vasa capillaria penicillaria<sup>16</sup>
Vasa capillaria
pre-ellipsoidea<sup>16</sup>
Vasa capillaria ellipsoidea<sup>16</sup>
Vasa capillaria terminalia<sup>16</sup>
Vv. splenicae (Ven. Annot. 79)
V. trabecularis
V. colligens
Vasa venosa primordalia
Splen accessorius<sup>17</sup>

# LYMPHONODULI AGGREGATI APPARATUS DIGESTORII

Lymphonoduli pharyngeales<sup>18</sup> Lymphonoduli esophageales<sup>18</sup> Lymphonoduli cecales<sup>18</sup> Anuli [Annuli] lymphatici jejunales<sup>19</sup> Anuli [Annuli] lymphatici ileales<sup>19</sup>

# LYMPHONODUS8

Lymphonodus cervicothoracicus<sup>8</sup>

| Lymphonodus lumbaris<sup>8</sup>

# VASA LYMPHATICA COLLIGENTIA [COLLECTORIA] 5 20

Truncus thoracoabdominalis<sup>21</sup>

Vas 1. celiacum<sup>22</sup>

Vas 1. mesentericum craniale<sup>23</sup>

Vas 1. adrenale (Fig. 13.6)

Vasa 1. ovarica (Fem. Annot. 21)

Vasa 1. testicularia (Fig. 13.6)

Vasa 1. renalia (Fig. 13.6)

Vasa 1. ureterodeferentialia

Vas 1. iliacum externum

Vas 1. femorale

Vas 1. ischiadicum (Fig. 13.6)

Plexus lymphaticus cordis

lymphatici

Cor lymphaticum (Fig. 13.7)

Vasa 1. afferentia

Vas 1. iliacum internum

Vasa 1. cloacalia (Cloaca

Annot, 24)

Vasa 1. efferentia

Vas 1. mesentericum caudale<sup>24</sup>

Vas l. sacrale medianum

(Fig. 13.7)

Vasa 1. bursae cloacalis

(Cloaca Annot. 24)

Vas lymphaticum jugulare<sup>25</sup>

Vas 1. caroticum commune

Vas 1. vertebrale

Vas 1. thyroideum (Fig. 13.6)

Vasa 1. ingluvialia (Fig. 13.6)

Vasa 1. esophagealia (Fig. 13.6)

Vas 1. esophagotracheale

Vas 1. cephalicum caudale

Vas 1. cephalicum rostrale

Vas lymphaticum subclavium<sup>26</sup>

Vas 1. axillare

Vas 1. sternoclaviculare

Vas 1. pectorale commune

Vas 1. brachiale profundum

Vas 1. basilicum

Vas 1. radiale

Vas 1. ulnare

Vasa lymphatica thoracica interna<sup>27</sup>

Vasa 1. pulmonalia superficialia

Vas 1. cardiacum commune<sup>28</sup>

Vas 1. cardiacum dextrum

Vas 1. cardiacum sinistrum

Vas 1. pulmonale commune<sup>29</sup>

Vas 1. pulmonale profundum

dextrum

Vas 1. pulmonale profundum

sinistrum

Vas 1. proventriculare<sup>30</sup>

# **ANNOTATIONS**

- (1) Vas lymphaticum initiale (Fig. 13.1). Initial lymphatics always lie within organs and may be sinuses (lymph capillaries) or precollectors (see Annot. 4) (Konitz, et al., 1985; Berens v. Rautenfeld, et al., 1987a).
- (2) Sinus lymphaticus initialis [Vas lymphocapillare]. The term "initial lymph sinus" (Fig. 13.1) characterizes this section of the initial lymphatics better than "lymph capillary" (Berens v. Rautenfeld, et al., 1987a; Castenholz and Berens v. Rautenfeld, 1987).

- (3) Fibrae basilares; Fibrae fixationes; Accessus interendothelialis; Ponticulus endothelialis. These structures are components of the "opening apparatus" (Fig. 13.2) of the initial lymphatics which permit the influx of fluids from the interstitial space into the lumen of the initial lymph sinus. All of these components also occur in "precollectors" (Vas 1. precollectorium) (Berens v. Rautenfeld and Wenzel-Hora, 1985; Berens v. Rautenfeld, et al., 1987a). Except for the Fibrae fixationes, the elements in the heading of this annotation (Fig. 13.2) are not listed by the *Nomina Histologica* (NH) (1989). The components of the opening apparatus in birds, and amniotes generally, are: (1) a wide-meshed subendothelial network of reticulin fibres (Fibrae basilares); (2) anchoring filaments (Fibrae fixationes); (3) interendothelial openings (Accessus interendotheliales); (4) and endothelial bridges (Ponticuli interendotheliales) (Berens v. Rautenfeld, et al., 1976; Berens v. Rautenfeld, et al., 1983a; Berens v. Rautenfeld, et al., 1987a; and Berens v. Rautenfeld, et al., 1987b). Three transformation types of interendothelial openings exist (Berens v. Rautenfeld and Castenholz, 1987).
- (4) Vas lymphaticum precolligens [Vas l. precollectorium]; Vas lymphaticum fibrotypicum; Trabecula fibroendothelialis. Precollectors (Fig. 13.1) form the first postsinusoidal section of the lymphatics equipped with valves and still situated within the organs (Berens v. Rautenfeld and Wenzel-Hora, 1985). Vas lymphaticum fibrotypicum (Nomina Histologica, 1989) has a subendothelial mantle of connective tissue fibres, but only occasionally has any smooth muscle cells (Berens v. Rautenfeld, et al., 1987a). Characteristic structural elements of the precollectors are connective tissue trabeculae (Trabeculae fibroendotheliales) (see Annot. 6) (Berens v. Rautenfeld, et al. 1983a; Berens v. Rautenfeld, et al. 1987a).
- (5) Vas lymphaticum colligens [Vas l. collectorium]; Vas lymphaticum myotypicum; Vas lymphaticum colligens superficiale; Vas lymphaticum colligens profundum. All lymphatics vessels leading away from the organs (Fig. 13.1) are called "collectors" (Vas l. collectorium) (Berens v. Rautenfeld, et al., 1987a). Collectors are Vasa lymphatica myotypica (Fig. 13.3), i.e., the media of these vessels possesses several layers of nonstriated muscle (Berens v. Rautenfeld, et al., 1984). Only short segments of epifascial collectors (Vasa lymphatica colligentia superficialia) exist in avian skin (Berens v. Rautenfeld, et al., 1983b). In the limbs, subfascial collectors (Vasa lymphatica colligentia profunda) form the main lymphovascular route for lymph travelling centrally (Fig. 13.1).
- (6) Cor lymphaticum; Trabecula myofibroendothelialis. Lymph hearts may be present only embryonally, e.g., in *Gallus* (Romanoff, 1960), but also postembryonally in certain ratites, Anserinae, and Laridae (Baum, 1930). Budras and Berens v. Rautenfeld (1982), Budras and Berens v. Rautenfeld (1984), and Budras, et al. (1987) deal with the functional and topographical anatomy of the lymph hearts in different birds. Lymph hearts remove lymph from the Phallus protrudens (Masc. Annot. 40).

Lymph from the lymph hearts drains into the internal vertebral venous sinus (a lymphovenous connection) Ven. Annot. 46, 82) (Budras and Berens v. Rautenfeld, 1984). Like collectors, lymph hearts have subendothelial smooth muscle cells, and a possibly unique type of striated muscle cell (Berens v. Rautenfeld and Budras, 1981; Budras and Berens v. Rautenfeld, 1983; Budras, et al., 1987). Their muscle-connective tissue trabeculae (Trabeculae myofibroendotheliales) contain striated muscle cells.

(7) Lymphonodulus solitarius [Nodulus lymphaticus solitarius]; Centrum germinale. Solitary lymph nodules occur in most organs and tissues of the chicken. "Mural lymphoreticular formations" (in the wall of the lymphatics) can be distinguished from parenchymal lymphoreticular formations (in the parenchymas), and tonsils (see Annot. 10). Solitary lymphoid nodules do not appear to be structurally comparable with the mammalian primary or secondary nodules of the *Nomina Histologica* (NH) (1989). Avian nodules consist of thymus-derived lymphoid tissue, and often include bursa-derived avian germinal centres. Numerous synonyms exist (cf. Payne, 1971, and Rose, 1981).

Avian germinal centres have a characteristic covering network of reticular cells (Olah and Glick, 1979), as well as blood capillaries; postcapillary venules with recirculating lymphocytes are always found outside avian germinal centers close to the reticular cells (Berens v. Rautenfeld and Budras, 1980; Berens v. Rautenfeld and Budras, 1983). The antigen-dependent formation of avian germinal centers in the spleen has been described by White, et al. (1975).

- (8) Lymphonodus [Nodus lymphaticus]: Vas lymphaticum afferens: Capsula; Sinus lymphaticus intranodalis; Chorda lymphoreticularis; Venula postcapillaris; Vas lymphaticum efferens. Avian lymph nodes occur as cervicothoracic and lumbar lymph nodes in Anseriformes and certain other birds (Jolly, 1909-1910; Fürther, 1913), but not in Gallus (Baum, 1930). For reviews see Lindner (1961) and Rose (1981). Avian lymph nodes consist of a subordinate system of lymph sinuses, lymphoreticular cords and a thin capsule (Fig. 13.3) (Berens v. Rautenfeld, et al., 1981; Berens v. Rautenfeld and Budras, 1983; Berens v. Rautenfeld, et al., 1983a; Berens v. Rautenfeld, 1985), and lack trabeculae and an uniform hilum (Lindner, 1961; Berens v. Rautenfeld and Budras, 1983). The system of lymph sinuses cannot be subdivided into special sections (e.g., marginal sinuses). The afferent and efferent lymphatics reaching far into the parenchyma of the node display valves (Fig. 13.3) and a smooth muscle media (Berens v. Rautenfeld and Budras, 1983), and may mimic the presence of a central lymph sinus (Rose, 1981). The lymphoreticular cords display B- and T-lymphocyte areas (Sugimura, et al., 1977), postcapillary venules with recirculating lymphocytes, and a pool of free macrophages (Berens v. Rautenfeld and Budras, 1983). In anatids involution often begins even before sexual maturity (Berens v. Rautenfeld and Budras, 1983).
- (9) Formatio lymphoreticularis muralis interna; Formatio lymphoreticularis muralis externa. Synonymy: Lymphonodulus muralis, NAA (1979); Sinus lymphaticus intramuralis; Venula postcapillaris. Mural lymphoreticular formations have been demonstrated in the wall of the lymphatics of many avian species (Kondo, 1937a; Kondo, 1937b; Biggs, 1957) including all so far examined (Berens v. Rautenfeld, et al., 1983b). For reviews see Payne (1971) and Rose (1981).

The new term "Formatio" was chosen because "lymphonodulus" (NAA, 1979) is a general term describing the structure of the secondary lymphatic tissue and is already in use. Mural formations also occur in reptiles (Kampmeier, 1969). In the bird a distinction must be made between internal and external variants (Fig. 13.4), i.e., in the intima and externa of the lymphatics (Berens v. Rautenfeld, et al., 1983a; Berens v. Rautenfeld, 1985). Only the external mural lymphoreticular formations have lymph sinuses (Fig. 13.4), which are connected to the lumen of the lymphatic vessel (Berens v. Rautenfeld et al., 1981; Berens v. Rautenfeld, et al., 1983b).

Internal formations also occur in the wall of lymph hearts (Berens v. Rautenfeld, et al., 1981). According to Berens v. Rautenfeld (1985), mural lymphoreticular for-

mations are avian lymph nodes which have developed postembryonally, since their induction is antigen-dependent. Mural formations can display all the structural features of the T- and B-lymphocyte areas of nodes (McCorkle, et al., 1979), postcapillary venules with recirculating lymphocytes, and lymph sinuses (Berens v. Rautenfeld, 1985).

- (10) Formatio lymphoreticularis parenchymatosa. Parenchymal lymphoreticular formations have been described in the literature as "ectopic lymphoid areas, lymphatic nodes, lymphoid follicles, focal lymphoid areas, secondary nodules, nodular lymphatic tissue" etc. (Payne, 1971). They are not listed in NAA (1979), but are categorised as "aggregated nodules". See Annot. 9 for the choice of the term "Formatio"; this term covers the general collections of lymphoid tissue scattered throughout the body (Rose, 1981). It includes secondary lymphoid tissue in the oculonasal region, liver, gall bladder, peripheral nerves, and skin (Rose, 1981), endocrine glands (Payne and Breneman, 1952; Cogburn and Glick, 1981), but not the lymphoid tissue proper in the digestive tract (see below). Parenchymal formations display postcapillary venules with recirculating lymphocytes (cf., Cogburn and Glick, 1981).
- (11) **Corpuscula thymica.** Synonymy: Hassal's corpuscles. The characteristics of these corpuscles in the chicken have been reviewed by Hodges (1974: 217-221).
- (12) Bursa cloacalis. Synonymy: Bursa Fabricii (see Cloaca Annot. 11-13). The bursa is an appendage organ of the proctodeum in most birds (e.g., Gallus), but a mural organ in ratites (Berens v. Rautenfeld and Budras, 1982). For reviews of the structure and function of the bursa see Payne (1971) and Rose (1981); for the ontogenesis of the bursa in ratites see Müller (1985), and for involution of the bursa in Gallus and ratites see Berens v. Rautenfeld and Budras (1982).
- (13) **Tunica mucosa bursalis; Plica bursalis.** The arrangement and number of folds in the mucosa of the cloacal bursa varies with the species. Primary, secondary and tertiary folds can be distinguished (Berens v. Rautenfeld and Budras, 1982).
- (14) Lobulus bursalis; Pars lymphoepithelialis; Pars lymphoreticularis; Lamina epithelialis interlobaris. The term "folliculus" in the NAA (1979) has been replaced by the term "lobulus" (Fig. 13.5), because in the bursa of most of the avian species examined, the lobuli (Fig. 13.5) project into the lumen (e.g., in ratites) (Mathis, 1938; Berens v. Rautenfeld and Budras, 1982).

The term "folliculus" is characterized by mesenchymal structures. The term Pars lymphoepithelialis and Pars lymphoreticularis replace "medulla" and "cortex", respectively (Fig. 13.5). The notion of a central cortex and a peripheral medulla in the bursa of birds with projecting lobuli is misleading. The Pars lymphoepitheliales is comparable with the follicle-associated epithelium of other lymphoepithelial organs (Holbrook, et al., 1974; Glick, et al., 1977).

Lamina epithelialis interlobularis is the epithelium between the Partes lymphoepitheliales of the bursal lobuli (Holbrook, et al., 1974). The term Septum interfolliculare (NAA 1979) is omitted since this structure cannot be related to the projecting lobuli. For a review of the literature on avian species displaying projecting lobuli or invaginated lobuli (e.g., *Gallus*) see Berens v. Rautenfeld and Budras (1982). The projecting Lobulus may be developmentally primitive, since it is demonstrable only in the embryo of the chicken (Holbrook, et al., 1974) and duck (*Anas*) (Märk, 1944).

(15) Vagina periarterialis lymphatica. Synonymy: "Periarterial lymphatic sheath".

(16) Splen. Synonymy: Lien. Several new terms are introduced for lymphoid tissue of the white pulp and the terminal vasculature. These terms are: Vagina periellipsoidea, Vasa capillaria penicillaria, Vasa capillaria pre-ellipsoidea, Vasa capillaria terminalia.

See Fukuta, et al. (1969a, b), and Olah and Glick (1982) for a review of the literature.

- (17) **Splen accessorius.** One or more small accessory spleens may occur near the spleen, weighing from 4 to 45 mg in 69 of 144 chickens (*Gallus*) (Glick and Sato, 1964).
- (18) Lymphonoduli pharyngeales/esophageales/cecales. Synonymy: pharyngeal, esophageal, cecal tonsils. Lymphoid tissues occur in the lamina propria and (or) submucosa of the alimentary tract from Pharynx to Cloaca. The identification of B-and T-dependent areas in the cecal tonsils are described by Hoshi and Mori (1973). The term "gut associated lymphoid tissue" (GALT) has been widely used. The tonsils are Lymphonoduli aggregati of relatively constant occurrence and relatively large size. The existence of Lymphonoduli esophageales, however, is somewhat dubious, but were described by Zietschmann (1911), Schauder (1923), and Kovacs (1928).
- (19) Anuli [Annuli] lymphatici jejunales/ileales. Cranial and caudal bands of lymphoid tissue have been recorded in both the jejunum and ileum of *Anas* (Leibovitz, 1968), but not in *Gallus*.
- (20) Vasa lymphatica colligentia [collectoria] (see Annot. 5). Dransfield (1944, 1945) provided the most detailed account of the distribution of lymphatic vessels in *Gallus*, but without naming them; Baum (1930) and Kondo (1937a) named the major vessels. Previously unnamed lymphatic vessels are named herein according to the blood vessels which they follow or the organs from which they drain lymph; some previously named vessels have been similarly renamed. Most lymphatic vessels consist of two or more parallel trunks with frequent anastomoses between them (Dransfield, 1944, 1945). For a topographical summary see King (1975: 2010-13).
- (21) **Truncus thoracoabdominalis.** Usually right and left trunks are present, with frequent anastomoses connecting them; sometimes present is a single vessel which may bifurcate near its termination (Figs. 13.6, 13.7). In *Gallus* the trunk or trunks always terminate in the Venae cavae craniales (Miyaki and Yasuda, 1977). Thoracic and lumbar parts of the thoracoabdominal trunk are distinguished by Baum (1930). Dransfield (1944, 1945) restricted the term thoracic duct to the lymphatics cranial to the celiac lymphatic plexus, and did not name the caudal part.
- (22) **Vas lymphaticum celiacum.** The celiac lymphatic vessel (Fig. 13.6) receives tributaries from the thoracic esophagus, proventriculus, gizzard, duodenum, ileum, ceca, spleen, pancreas, and liver (Dransfield, 1944, 1945).
- (23) Vas lymphaticum mesentericum craniale. The cranial mesenteric lymphatic vessel (Fig. 13.6) receives branches from the jejunum, ileum, ceca, testis, ovary, and the cranial part of the oviduct (Dransfield, 1944, 1945).
- (24) Vas lymphaticum mesentericum caudale (Fig. 13.7). The caudal mesenteric vessel drains lymph from the rectum (Dransfield, 1944, 1945).
- (25) Vas lymphaticum jugulare. Lymph carried by the jugular lymphatic vessel empties into the Vena jugularis (Fig. 13.6) near the junction of the latter with Vena subclavia (Dransfield, 1944, 1945), or into either the Truncus thoracoabdominalis or the Venae cavae craniales (Miyaki and Yasuda, 1977).

- (26) Vas lymphaticum subclavium. The subclavian lymphatic vessel unites with the Vena subclavia near the junction of the latter with the Vena jugularis (Fig. 13.6) (Dransfield, 1944, 1945), or with the Truncus thoracoabdominalis or Vas lymphaticum jugulare (Miyaki and Yasuda, 1977).
- (27) Vasa lymphatica thoracica interna. The internal thoracic lymphatics accompany the Vv. thoracicae internae (see Ven. Annot.47), receive drainage from the superficial lymphatics of the lung (Fig. 13.6) and abdominal muscles, and join the Vena cava cranialis close to its origin (Dransfield, 1944, 1945).
- (28) Vas lymphaticum cardiacum commune. The common cardiac lymphatic is a single vessel (Fig. 13.6) which empties into the right Vena cava cranialis close to its termination at the right atrium, its tributaries being independent of the coronary arteries and veins (Dransfield, 1944, 1945).
- (29) Vas lymphaticum pulmonale commune. The tributaries of the common vessel receive lymph from the deep pulmonary lymphatics and travel along the left and right pulmonary veins (Dransfield, 1944, 1945). The common pulmonary lymphatic is a single vessel which joins the left Vena cava cranialis close to, or with, the Truncus thoracoabdominalis (Fig. 13.6).
- (30) Vas lymphaticum proventriculare. The proventricular lymphatic follows the cranial proventricular vein (see Ven. Annot. 12), and joins the left Vena cava cranialis close to, or in common with, the left Truncus thoracoabdominalis (Dransfield, 1944, 1945).



Fig. 13.1. Schematic representation of initial segments of lymph vessels in the skin, subcutis, and underlying skeletal muscle. New terms (NT) and terms of the *Nomina Histologia* (NH) (1989) are presented in their English and Latin forms. Note that the Vas I. precollectorium [precolligens] is a fibrotype vessel; the Vas I. collectorium [colligens] is a myotype vessel (see Annot. 4).



Fig. 13.2. Inital lymph vessel in transverse section, demonstrating its structural components. See Annot. 3.



Fig. 13.3. Structure of the cranial part of a Lymphonodus cervicothoracicus of *Anas*. A subdivision into cortex, paracortex and medulla or different sinus segments is not possible. The afferent jugular trunk continues as a Vas. I. myotypicum far inside the node. See Annot. 8.



Fig. 13.4. Internal (above) and external (below) lymphoreticular formations of a Vas I. myotypicum. See Annot. 9.



Fig. 13.5. Two types of Lobulus bursalis in the cloacal bursa: (above) the type found in Gallus; (below) the ratite type.



Fig. 13.6. Diagram of the lymphatic vessels of the trunk in *Gallus*; ventral view. Based on Baum (1930) and Dransfield (1944). Notice the termination (lymphovenous connections) of Truncus thoracoabdominalis and other lymph vessels into the cranial caval veins and jugular veins. See Fig. 13.7 for lymphovenous connections of the lymph hearts.



Fig. 13.7. Diagram of the lymphatic vessels of the caudal trunk area in male *Anas*; ventral view. Based on lymphography (pers. obs. of Berens v. Rautenfeld). Arrows in the area of the right lymph heart show Vasa I. efferentia to the venous system (based on studies of Budras and Berens v. Rautenfeld, 1984). The arrow with asterisk represents the lymphovenous connection to the "internal vertebral (epidural) venous sinus" (see **Ven.** Annot. 46, 82) and internal iliac veins.

# SYSTEMA NERVOSUM CENTRALE

### JAMES E. BREAZILE and WAYNE J. KUENZEL

With contributions from subcommittee members: J. J. Baumel, H. Berkhoudt, S. E. Brauth, J. L. Dubbeldam, W. Hodos, T. J. Neary, M. Yasuda, G. Zweers.

This chapter on the central nervous system (CNS) is divided into three parts: terminology (employing the internationally accepted language of Latin), explanatory annotations, and figures with legends. In an attempt to make the chapter as useful as possible, we recommend that the reader first consult Fig. 1 which is a side view of the brain partitioned into regions in the order in which the anatomical terms are listed.

Terms presented first are those of features located within the spinal cord (Medulla spinalis) followed by those in the Medulla oblongata or Myelencephalon. The next region is the Metencephalon (includes the Pons and Cerebellum). The Pons and Medulla oblongata are traditionally combined into the more inclusive term, Rhombencephalon. Anatomical structures found within the Mesencephalon or midbrain are then listed. The most rostral sections are those located in the Prosencephalon (Diencephalon and Telencephalon).

Detailed annotations form the second section of the chapter. Numerical superscripts found throughout the list of terms refer to the annotations. Annotations include brief descriptions and English equivalents of terms, relevant references, controversial terms, and/or synonyms that historically have been used to identify the same neural structure.

Finally, a set of figures is included at the end of the chapter. Most of the terms presented in the terminology are identified on schematic plates of the CNS of the two-week old chick (*Gallus gallus*), adapted and redrawn from the stereotaxis atlas of the chick brain of Kuenzel and Masson (1988) with permission of Johns Hopkins University Press.

It is important to realize that the nomenclature found herein is not immutable. It is anticipated that many discoveries will occur during the decade of the nineties and turn of the century that will result in significant changes and additions to neural anatomical terminology of the avian CNS. The authors apologize for the inevitable omission of studies from the literature which have been overlooked. Those who use this nomenclature are urged to submit suggestions for revision to the authors of this chapter or to individual subcommittee members.

The authors are greatly indebted to Manju Masson who prepared the final drawings of all the figures of the chapter. Supported in part from USDA Grant #90-37240-5506. Scientific Article No. A6203. Contribution No. 8372 of the Maryland Agricultural Experiment Station (Department of Poultry Science).

### **TERMINOLOGY**

# MEDULLA SPINALIS (see Figs. 14.1, 3, 5, 6; and PNS Intro. Spinal nerves)

Fissura mediana [ventralis] Funiculi medullae spinalis Funiculus dorsalis Funiculus lateralis Funiculus ventralis

Pars cervicalis

Intumescentia cervicalis<sup>1</sup>

Pars thoracica Pars synsacralis<sup>2</sup>

Intumescentia lumbosacralis<sup>1</sup>

Corpus gelatinosum<sup>3</sup> Fossa rhomboidea spinalis<sup>3</sup> Lobi accessorii<sup>4</sup> <sup>7</sup> Pars caudalis Sulcus medianus dorsalis Sulcus dorsolateralis Sulcus ventrolateralis Rdx. dorsalis n. spinalis Rdx. ventralis n. spinalis

# **SECTIONES MEDULLAE SPINALIS** (Figs. 14.1, 5, 6)

Canalis centralis<sup>3</sup> Commissura alba5 Commissura grisea Septum dorsale medianum Substantia grisea<sup>6</sup>

Cornu dorsale

Apex cornus dorsalis

Cornu ventrale

Nuc. substantiae gelatinosae

Nuc. dorsolateralis Nuc. marginalis<sup>4</sup> <sup>7</sup> Nuc. proprius<sup>8</sup> Substantia intermedia<sup>9</sup> Nuc. intermediolateralis9 Pars thoracolumbalis Pars sacralis Nuc. cervicalis lateralis 10

Nuc. motorius

Rdx n accessorii

Nuc. motorius lateralis<sup>11</sup> Pars thoracolumbalis Pars sacralis

Nuc. motorius medialis<sup>12</sup>

Nuc. n. accessorii<sup>36</sup>

Nuc. tr. descendentis n. trigemini<sup>13</sup>

Subnuc, caudalis Pars marginalis

### SECTIONES MEDULLAE SPINALIS (Figs. 14.1, 5, 6) (cont.)

Pars gelatinosa

Pars magnocellularis

Substantia gelatinosa centralis

Nuc. cornucommissuralis

Substantia alba

Funiculus dorsalis

Fasc. gracilis

Fasc. cuneatus

Fasc. proprius

Funiculus lateralis

Tr. hypothalamospinalis<sup>14</sup>

Tr. spinocerebellaris dorsalis<sup>15</sup>

Tr. spinocerebellaris ventralis<sup>15</sup>

Tr. spinocerebellaris rostralis<sup>15</sup>

Tr. occipitomesen-

cephalicus 16 45 78 88 99

Tr. reticulospinalis lateralis

Tr. rubrospinalis<sup>77</sup>

Tr. septomesencephalicus<sup>78</sup>

Tr. spino-olivaris

Tr. spinoreticularis<sup>5</sup>

Tr. spinothalamicus<sup>5</sup> 17

Tr. spinotectalis<sup>5</sup>

Fasc. proprius

Fasc. dorsolateralis<sup>18</sup>

Tr. descendens n. trigemini<sup>37</sup>

Funiculus ventralis

Tr. vestibulospinalis [lateralis]

Fasc. longitudinalis medialis<sup>27</sup>

Tr. interstitiospinalis<sup>19</sup>

Tr. vestibulospinalis

[ventralis]

Tr. reticulospinalis medialis

Fasc. proprius

#### ENCEPHALON<sup>21</sup>

### PARTES EXTERNAE ENCEPHALI (Figs. 14.2, 3)

**Bulbus** olfactorius

Cerebellum

Auricula cerebelli

Fissura cerebelli

Folia cerebelli

Hemispherium cerebelli

Cerebrum [Hemispherium

telencephali]

Eminentia sagittalis 104

Fovea limbica

Pars occipitalis

Pars frontalis

Pars parietalis

Tuber ventrolaterale

Tuber ventromediale

Tuber ventrofrontale

Vallecula telencephali

Chiasma opticum

Fissura cerebellotectalis

Fissura cerebrocerebellaris

Fissura interhemispherica

Fissura subhemispherica

Glandula pinealis

Hypophysis cerebri [Gl. pituitaria]

Medulla oblongata

**Pons** 

Tectum mesencephali

Tr. opticus

#### RHOMBENCEPHALON<sup>22</sup>

# MEDULLA OBLONGATA [MYELENCEPHALON]<sup>22</sup> <sup>28</sup>

(Figs. 14.1, 4A, 7-11)

Canalis centralis

Fibrae arcuatae superficiales

Fissura mediana [ventralis]

Fossa rhomboidea<sup>24</sup>

Calamus scriptorius

Funiculus dorsalis

Fasc. cuneatus Fasc. gracilis

Funiculus ventralis

N. abducens

N. facialis

N. vestibulocochlearis

Pars cochlearis

Pars vestibularis

N. glossopharyngeus

N. vagus

N. accessorius

N. hypoglossus<sup>32</sup>

Pedunc. cerebellaris caudalis<sup>15</sup> 23

Corpus juxtarestiforme

Corpus restiforme

Sulcus lateralis

Sulcus ventrolateralis

Ventriculus quartus<sup>24</sup>

Obex

Plexus choroideus ventriculi quarti

Recessus lateralis

Sulcus intermedius dorsalis

Sulcus limitans

Sulcus medianus [dorsalis]

Taenia ventriculi quarti

Velum medullare caudale

Ventriculus cerebelli

#### SECTIONES MEDULLAE OBLONGATAE

Area postrema<sup>22</sup> 25

Commissura alba

Commissura infima

Commissura grisea

Complexus olivaris caudalis<sup>26</sup> 72

Nuc. olivaris accessorius medialis

Pars dorsalis

Pars intermedia

Pars ventralis

Nuc. olivaris accessorius dorsalis

Pars lateralis

Pars medialis

Nuc. olivaris principalis

Pars lateralis

Pars medialis

Decuss. cochlearis dorsalis

Fibrae arcuatae internae

Fibrae arcuatae externae

Fasc. longitudinalis medialis<sup>27</sup>

Fasc, uncinatus

Funiculus dorsalis

Fasc. gracilis

Fasc, cuneatus

Funiculus lateralis

Funiculus ventralis

Lemniscus lateralis<sup>47</sup>

Lemniscus medialis<sup>28</sup>

Lemniscus spinalis

Tr. spinotectalis

Tr. spinothalamicus

N. trigeminus

N. facialis

N. vestibulocochlearis

Pars cochlearis

# **SECTIONES MEDULLAE OBLONGATAE (cont.)**

Pars vestibularis

N. glossopharyngeus

N. vagus

N. accessorius

N. hypoglossus

Nuc. ambiguus<sup>29</sup>

Nuc. angularis<sup>30</sup> 33 46

Nuc. centralis medullae oblongatae

Pars dorsalis

Pars ventralis

Nuc. cuneatus<sup>28</sup> 45 71 78 88

Nuc. cuneatus accessorius

[lateralis]<sup>31</sup>

Nuc. commissuralis

Nuc. gracilis<sup>28</sup> 45 71 88

Nuc. intercalatus

Nuc. intermedius medullae

oblongatae<sup>32</sup>

Nuc. intrafascicularis n. hypoglossi

Nuc. laminaris<sup>33</sup> 46 47

Nuc. magnocellularis cochlearis<sup>34</sup> 46

Nuc. motorius dorsalis n. vagi<sup>35</sup>

Pars caudalis [posterior]
Pars rostralis [anterior]

Subnuc. lateralis ventralis

Nuc. n. accessorii36

Nuc. motorius n. glossopharyngei<sup>35</sup>

Nuc. sensorius n. glossopharyngei

Nuc. n. hypoglossi<sup>32</sup>

Pars tracheo-syringealis

Pars lingualis

Nuc. prepositus hypoglossi

Nuc. raphae magnae<sup>39</sup> Nuc. raphae obscurae<sup>39</sup>

Nuc. raphae pallidae<sup>39</sup>

Nuc. reticularis gigantocellularis

Nuc. reticularis lateralis Subnuc. magnocellularis Subnuc. parvocellularis Subnuc. subtrigeminalis Nuc. reticularis paragigantocellularis

lateralis

Nuc. reticularis paramedianus<sup>40</sup>

Nuc. reticularis parvocellularis

Nuc. retroambiguus

Nuc. sensorius n. glossopharyngei

Nuc. supraspinalis<sup>41</sup>

Pars dorsalis Pars ventralis

Nuc. tr. ascendentis n.

glossopharyngei<sup>37</sup>

Nuc. tr. solitarii<sup>42</sup>

Subnuc. medialis

Pars superficialis

Pars dorsalis

Pars parasolitaria

Pars ventralis

Pars ventralis rostralis

Pars lateralis

Subnuc. lateralis

Pars dorsalis [sulcalis]

Pars superficialis Pars parasolitaria

Subnuc, taeniae choroideae

Nuc. tr. descendentis n.

trigemini<sup>37</sup> 43 45

Subnuc. caudalis Pars marginalis

Pars substantia gelatinosa

Pars magnocellularis

Subnuc. interpolaris

Subnuc. oralis

Nuclei vestibulares<sup>44</sup>

Nuc. vestibularis descendens

Nuc. vestibularis lateralis dorsalis

Nuc. vestibularis medialis Nuc. vestibularis rostralis

[superior]

Nuc. vestibularis tangentialis<sup>44</sup>

Nuc. vestibularis lateralis ventralis

# **SECTIONES MEDULLAE OBLONGATAE (cont.)**

Organum postremum<sup>25</sup>

Rdx n. accessorii

Rdx. n. faciali

Rdx. n. glossopharyngei

Rdx. n. vestibulocochlearis

Rdx. n. vagi

Pars ascendens

Pars descendens

Rdx. caudalis n. hypoglossi

Rdx. rostralis n. hypoglossi

Tr. arcuatus superficialis dorsalis

Tr. ascendens n. glossopharyngei<sup>37</sup>

Tr. ascendens n. trigemini

Tr. bulbotectalis

Tr. bulbothalamicus

Tr. laminocerebellaris

Tr. lamino-olivaris

Tr. occipitomesen-

cephalicus 16 45 78 88 99

Tr. olivocerebellaris<sup>26</sup>

Tr. reticulospinalis lateralis

Tr. reticulospinalis ventralis

Tr. rubrospinalis<sup>77</sup>

Tr. solitarius

Tr. descendens n. trigemini<sup>43</sup>

Tr. spinocerebellaris dorsalis<sup>15</sup>

Tr. spinocerebellaris ventralis<sup>15</sup>

Tr. spinocerebellaris rostralis<sup>15</sup>

Tr. tectobulbaris dorsalis

Tr. tectobulbaris ventralis

Tr. tectospinalis

Tr. vestibulocerebellaris

Tr. vestibulomesencephalicus

Tr. vestibulospinalis lateralis

Tr. vestibulospinalis ventralis

#### **METENCEPHALON**

PONS<sup>22</sup> (Figs. 14.1, 4A, 11, 12)

Pedunc. cerebellaris intermedius<sup>23</sup> Velum medullare rostrale

Organum subtrochleare

#### **SECTIONES PONTIS**

Corpus trapezoideum<sup>46</sup>

Decuss. n. trochlearis

Fasc. longitudinalis medialis<sup>27</sup>

Fasc. uncinatus

Lemniscus lateralis<sup>47</sup>

Lemniscus medialis<sup>28</sup>

Lemniscus spinalis

Tr. spinotectalis

Tr. spinothalamicus<sup>17</sup>

Nuc. accessorius n. abducentis<sup>51</sup>

Nuc. ceruleus<sup>45</sup> 49 105

Nuc. corporis trapezoidei<sup>46</sup>

Pars dorsalis

Pars intermedia<sup>48</sup>

Pars ventralis

Nuc. lateralis pontis<sup>45</sup> 50 72 78

Pars caudalis

Pars rostralis

Nuc. lemnisci lateralis<sup>47</sup>

Nuc. medialis pontis<sup>50</sup> 78

Pars caudalis

Pars rostralis

### **SECTIONES PONTIS (cont.)**

Nuc. motorius n. facialis<sup>52</sup>

Pars dorsalis<sup>52</sup>
Pars intermedia
Pars ventralis

Nuc. motorius n. trigemini<sup>53</sup>

Pars principalis<sup>52</sup> <sup>53</sup>
Pars medialis<sup>53</sup>

Pars ventralis

Nuc. n. abducentis<sup>51</sup>

Nuc. olivaris superior

Nuc. retrofacialis<sup>56</sup>

Nuc. papillioformis<sup>72</sup>

Nuc. parabrachialis<sup>38</sup> Pars dorsolateralis

Pars medialis

Pars superficialis lateralis

Pars ventrolateralis Nuc. raphae pontis<sup>39</sup>

Nuc. reticularis parvocellularis<sup>45</sup>

Nuc. reticularis pontis caudalis Pars gigantocellularis

Nuc. reticularis pontis rostralis

Nuc. salivatorius n. facialis<sup>55</sup> Nuc. sensorius n. facialis<sup>54</sup>

Nuc. sensorius principalis n.

trigemini<sup>37</sup> 57 58

Pars dorsalis

Pars ventralis

Nuc subceruleus dorsalis<sup>45</sup>

Nuc. subceruleus ventralis<sup>45</sup>

Nuc. tr. descendentis n. trigemini<sup>43</sup>

Rdx. ascendens n. trigemini

Rdx. mesencephalica n. trigemini Rdx. n. abducentis

Tr. occipitomesen-

cephalicus 16 45 78 88 99

Tr. quintofrontalis<sup>57</sup> 58 107

Tr. rubrospinalis<sup>77</sup>

Tr. descendens n. trigemini<sup>43</sup>

Tr. spinocerebellaris dorsalis<sup>15</sup>

Tr. spinocerebellaris ventralis<sup>15</sup> Tr. spinocerebellaris rostralis<sup>15</sup>

Tr. tectobulbaris dorsalis

# CEREBELLUM<sup>21 72 74</sup> (Figs. 14.1, 4B, 11, 12)

Corpus cerebelli

Fissura prima Fissura secunda

Fissura uvulonodularis

Folia cerebelli Lobus caudalis

Lobus flocculonodularis

Lobus rostralis

Ventriculus cerebelli

Paraflocculus

Paraflocculus dorsalis Paraflocculus ventralis

Flocculus

Pedunc, flocculi

Hemispherium cerebelli

Sulci cerebelli

Vallecula cerebelli

Vermis cerebelli (Fig. 14.4B)

Lobulus I -----[Lobulus lingularis]

Lobulus IIa ----[Lobulus centralis]

Lobulus IIb

Lobulus IIIa

Lobulus IIIb

Lobulus IVa

Lobulus IVb --[Lobulus culminus]

Lobulus Va

Lobulus Vb

Fissura prima

Lobulus VIa

Lobulus VIb -----[Declive]

# CEREBELLUM<sup>21</sup> 72 74 (Figs. 14.1, 4B, 11, 12) (cont.)

Lobulus VIc Fissura secunda Lobulus IXa Lobulus VIIa ----[Folium vermis] Lobulus VIIb -----[Tuber vermis] Lobulus IXb ----[Lobulus uvularis] Lobulus VIIIa [Lobulus pyramidis] Lobulus IXc Lobulus VIIIb Lobulus X ----[Lobulus nodularis]

SECTIONES CEREBELLI<sup>59</sup> 74

Arbor vitae cerebelli Commissura cerebellaris Cortex cerebelli Stratum moleculare Stratum ganglionare Stratum granulosum Decuss. tr. cerebellobulbaris Fasc. uncinatus Fissura precentralis

Fissura prepyramidalis Fissura prima Fissura secunda Fissura uvulonodularis

Nuc. cerebellaris medialis [Nuc.

fastigiil<sup>60 88</sup> Nuc. cerebellaris intermedius<sup>60 88</sup>

Nuc. cerebellaris lateralis<sup>60</sup> 71 88 Pedunc, cerebellaris caudalis

[Corpus restiformis]<sup>23</sup> Pedunc. cerebellaris intermedius

[Brachium pontisl<sup>23</sup>

Pedunc. cerebellaris rostralis [Brachium conjunctivum]<sup>15 23</sup>

Tr. dentato-rubro-thalamicus Tr cerebellobulbaris

Tr. laminocerebellaris Tr. olivocerebellaris

Tr. pontocerebellaris Tr. spinocerebellaris dorsalis<sup>15</sup>

Tr. spinocerebellaris ventralis<sup>15</sup>

Tr. spinocerebellaris rostralis<sup>15</sup>

Tr. vestibulocerebellaris Ventriculus cerebelli

# **MESENCEPHALON** (Figs. 14.1, 4A, 12-14)

Aqueductus mesencephali Brachium colliculi mesencephali<sup>63</sup> Colliculus mesencephali<sup>45</sup> 62 Commissura caudalis [posterior] Commissura tectalis Lamina tecti mesencephali

N. oculomotorius N. trochlearis Organum subcommissurale Tectum mesencephali<sup>61</sup> 62 76 86 Tegmentum mesencephali Ventriculus tecti mesencephli

### SECTIONES MESENCEPHALI64

Aqueductus mesencephali Area ventralis (of Tsai) Colliculus mesen-

cephali62 63 65 71 78

Stratum album centrale Stratum griseum periventriculare Stratum griseum centrale<sup>45</sup> Pars profunda

### SECTIONES MESENCEPHALI<sup>64</sup> (cont.)

Pars intermedia Pars superficialis

Stratum griseum et fibrosum

superficiale

Stratum opticum

Commissura caudalis [posterior]

Pars pretectalis Pars medullaris Commissura tectalis Complexus isthmi<sup>65</sup>

> Nuc. magnocellularis isthmi Nuc. parvocellularis isthmi Nuc. isthmo-opticus<sup>66</sup>

Nuc. semilunaris mesencephali

Decuss. n. oculomotorii<sup>67</sup>

Decuss. trochlearis

Decuss. pedunculi cerebellaris

rostralis

Decuss. tr. rubrospinalis Decuss. tr. tectospinalis

Fasc. longitudinalis medialis<sup>27</sup>

Fasc. tegmentalis<sup>68</sup>

Formatio reticularis lateralis

mesencephali

Formatio reticularis medialis

mesencephali

Griseum tectale<sup>76</sup>

Pars compacta Pars dorsalis

Pars ventralis

Lemniscus lateralis<sup>47</sup>

Lemniscus medialis<sup>28</sup>

Lemniscus spinalis

Tr. spinotectalis

Tr. spinothalamicus<sup>17</sup> Nuc. centralis superior<sup>39</sup>

Nuc. commissuralis caudalis

[nosterior]

[posterior]<sup>69</sup>

Pars diffusa parvocellularis

Nuc. interstitialis commissurae

caudalis

Nuc. fasciculi longitudinalis

medialis

Nuc. intercollicularis<sup>45</sup> 71 Nuc. interpeduncularis Nuc. lemnisci lateralis<sup>47</sup>

Pars dorsalis
Pars intermedia<sup>48</sup>
Pars ventralis

Nuc. lentiformis mesencephali<sup>72</sup>
Pars lateralis [P. parvocellularis]
Pars medialis [P. magnocellularis]

Nuc. linearis caudalis<sup>39</sup> Nuc. linearis intermedius<sup>39</sup> Nuc. linearis rostralis<sup>39</sup>

Nuc. mesencephalicus lateralis Pars dorsalis<sup>73</sup> <sup>47</sup> <sup>63</sup>

Pars dorsalis<sup>75</sup> 47 6.

Pars ventralis

Nuc. mesencephalicus n. trigemini<sup>74</sup> Nuc. mesencephalicus profundus<sup>72</sup>

Nuc. tegmenti pedunculo-

pontini<sup>79</sup> 105

Pars disseminata

Pars compacta dorsalis

Pars compacta ventralis

Nuc. n. oculomotorii<sup>75</sup>

Subnuc. accessorius<sup>67</sup>

Subnuc. dorsomedialis Subnuc. dorsolateralis

Subnuc. ventralis<sup>67</sup>

Subnuc. centralis

Nuc. n. trochlearis Nuc. pretectalis<sup>78</sup>

Pars lateralis

Pars medialis

Pars principalis

Nuc. radicis opticae basalis<sup>70</sup> 72

Pars dorsalis

# SECTIONES MESENCEPHALI<sup>64</sup> (cont.)

Pars ventralis Nuc. ruber<sup>28</sup> <sup>78</sup>

Nuc. semilunaris mesencephali

Nuc. subpretectalis Nuc. dorsalis tegmenti Nuc. ventralis tegmenti Pedunc. cerebellaris rostralis

[Brachium conjunctivum] 15 23

Pars ascendens
Pars descendens

Rdx. mesencephalica n. trigemini

Rdx. n. oculomotorii Rdx. n. trochlearis Rdx. optica basalis<sup>70</sup> Substantia grisea centralis

Tegmentum mesencephali Tr. bulbotectalis Tr. bulbothalamicus

Tr. geniculotectalis

Tr. habenulo-interpeduncularis

Pars lateralis
Pars medialis

Tr. interstitiospinalis

Tr. isthmo-mesencephalicus

Tr. isthmo-opticus<sup>66</sup> Tr. occipito-mesen-

cephalicus 16 45 78 88 99

Tr. opticus
Pars lateralis
Pars medialis

Tr. pretecto-subpretectalis Tr. quinto-frontalis<sup>58</sup> 107

Tr. rubrospinalis<sup>77</sup>

Tr. septomesencephalicus<sup>78</sup>
Tr. tectobulbaris dorsalis
Tr. tectobulbaris ventralis

Tr. tectorotundus
Tr. tectospinalis
Tr. tectothalamicus

Tr. vestibulomesencephalicus

### PROSENCEPHALON

DIENCEPHALON (Figs. 14.4A, 14-18)

#### **THALAMUS**

Commissura caudalis [C. posterior] Foramen interventriculare Plexus choroideus ventriculi tertii Sulcus subhabenularis Ventriculus tertius

#### SECTIONES THALAMI

Ansa lenticularis<sup>79</sup>
Area pretectalis
Area pretectalis diffusa
Area ventralis thalami<sup>105</sup>
Brachium colliculi mesencephali<sup>63</sup>
Complexus opticus principalis

thalami<sup>76</sup> 84

Nuc. dorsolateralis rostralis
[anterior] thalami<sup>84</sup>

Pars lateralis

Pars medialis [magnocellularis] Nuc. lateralis rostralis [anterior]

thalami84

Complexus spiriformis<sup>88</sup>

### SECTIONES THALAMI (cont.)

Nuc. spiriformis lateralis<sup>79</sup> 88

Nuc. spiriformis

medialis45 78 88

Nuc. principalis

precommissuralis45 88

Nuc. dorsolateralis caudalis

[posterior] thalami<sup>17</sup> <sup>28</sup> <sup>80</sup> <sup>88</sup>

Nuc. dorsolateralis intermedius

thalami88

Nuc. dorsointermedius caudalis [posterior] thalami<sup>79</sup>

Nuc. dorsomedialis thalami81 Pars rostralis [anterior]

Pars caudalis [posterior]

Nuc. entopeduncularis ventralis

rostralis82

Nuc. geniculatus lateralis<sup>78</sup>

Pars dorsalis [P. principalis]

Pars intercalatus

Pars ventralis<sup>76</sup> <sup>78</sup> <sup>83</sup> <sup>84</sup>

Nuc. geniculatus ventralis Nuc. interstitialis thalami

Nuc. intercalatus thalami<sup>17</sup> <sup>28</sup> <sup>76</sup> <sup>78</sup> <sup>80</sup>

Nuc. interstitio-pretecto-

subpretectalis

Nuc. ovoidalis<sup>85</sup>

Nuc. periventricularis thalami

Pars magnocellularis

Pars parvocellularis

Nuc. reticularis thalami

Pars dorsalis

Pars ventralis

Nuc. rotundus<sup>86</sup> 63

Nuc. semilunaris thalami87

Nuc. subrotundus<sup>45</sup>

Nuc. superficialis parvocellularis

thalami80

Nuc. triangularis

Nuc. ventrolateralis thalami

Rdx. optica basalis<sup>70</sup>

Stratum cellulare externum

Sulcus subhabenularis

Tr. bulbothalamicus

Tr. frontothalamicus

Tr. isthmo-opticus<sup>66</sup>

Tr. nuc. ovoidalis<sup>63</sup> 87

Tr. opticus

Pars lateralis

Pars medialis

Tr. occipitomesen-

cephalicus 16 45 78 88 99

Pars hypothalamica

Tr. quintofrontalis<sup>58</sup> 107

Tr. tectothalamicus

Tr. thalamofrontalis

Tr. thalamostriaticus

#### **HYPOTHALAMUS**

Chiasma opticum

Hypophysis cerebri [Gl. pituitaria]

(see Endoc.)

Recessus neurohypophysialis

[R. infundibuli]

Tr. opticus

Pars lateralis

Pars medialis

Tuber cinereum

Eminentia mediana<sup>94</sup>

Pars rostralis (P.

para-infundibularis tuberis)

Pars caudalis (P. caudalis tuberis)

Ventriculus tertius

# SECTIONES HYPOTHALAMI90

Ansa lenticularis<sup>79</sup>

Decuss. supraoptica

Pars dorsalis Pars ventralis

# SECTIONES HYPOTHALAMI90 (cont.)

Decuss. supramammillaris

Decuss. tr. infundibularis

Fasc. lateralis prosencephali

Tr. quintofrontalis<sup>58</sup> 107

Tr. frontothalamicus

Tr. thalamostriaticus

Tr. thalamofrontalis

Fasc. medialis prosencephali

Tr. striohypothalamicus medialis

Regio caudalis [mammillaris]

hypothalami

Nuc. intercalatus hypothalami

Nuc. mammillaris lateralis<sup>14</sup>

Nuc. mammillaris medialis

Nuc. premammillaris hypothalami

Nuc. supramammillaris interstitialis

Nuc. periventricularis hypothalami

Regio lateralis hypothalami

Tr. hypothalamohypophysialis

Tr. paraventriculohypophysialis

Tr. supra-opticohypophysialis

Tr. suprachiasmatico-hypophysialis

Tr. infundibularis<sup>95</sup>

Tr. opticus

Pars lateralis

Pars medialis

Tr. hypothalamospinalis

Tr. retinohypothalamicus<sup>96</sup>

Regio medialis [tuberalis]

hypothalami

Nuc. periventricularis

hypothalami<sup>14</sup>

Nuc. paraventricularis

hypothalami<sup>92</sup>

Nuc. dorsomedialis hypothalami<sup>16</sup>

Nuc. ventromedialis

hypothalami<sup>16</sup> 93

Nuc. inferioris hypothalami

Nuc. infundibuli hypothalami

Eminentia mediana<sup>94</sup>

Pars caudalis

Pars rostralis

Regio pre-optica [R. rostralis]

hypothalami<sup>91</sup>

Nuc. preopticus periventricularis

Nuc. magnocellularis preopticus

Pars dorsalis

Pars medialis

Pars ventralis

Nuc. rostralis [anterior] medialis

hypothalami

Nuc. decussationis supra-opticae<sup>20</sup>

Pars dorsalis

Pars ventralis<sup>20</sup>

Nuc. supra-opticus

Pars externus

Pars ventralis

Nuc. suprachiasmaticus

Pars medialis<sup>20</sup>

Nuc. preopticus medialis

Nuc. preopticus medianus<sup>102</sup>

Nuc. preopticus dorsolateralis

Rdx. optica basalis<sup>70</sup>

#### **EPITHALAMUS**

Glandula pinealis (Fig. 14.4A; Endoc. Annot. 6)

#### SECTIONES EPITHALAMI

Commissura habenularis

Nuc. habenularis lateralis<sup>105</sup>

Nuc. habenularis medialis

Nuc. subhabenularis lateralis

Nuc. subhabenularis medialis

Stria medullaris [S. habenularis]

Tr. archistriato-habenularis et

precommissuralis

Tr. hypothalamohabenularis

Tr. olfactohabenularis

Tr. septohabenularis

Tr. taeniae habenularis

Tr. habenulo-interpeduncularis

Pars lateralis

Pars medialis

### **TELENCEPHALON** (Figs. 14.1, 4A 14-20)

Bulbus olfactorius<sup>97</sup>

Ventriculus olfactorius

Cerebrum [Hemispherium

telencephali]

Eminentia sagittalis<sup>104</sup>

Fissura interhemispherica

Fovea limbica

Pars frontalis

Pars occipitalis

Pars parietalis

Tuber ventrofrontale

Tuber ventrolaterale

Tuber ventromediale

Vallecula telencephali

Ventriculus lateralis

Plexus choroideus ventriculi

lateralis

#### SECTIONES TELENCEPHALI

Archistriatum<sup>16</sup> 99 101 108

Archistriatum caudale

Archistriatum intermedium

Pars dorsalis

Pars ventralis

Archistriatum mediale<sup>16 99</sup>

Archistriatum rostrale<sup>16</sup> 99

Nuc. robustus<sup>99</sup>

Area coracoidea dorsolateralis

Area parahippocampalis

Area septalis

Nuc. septalis lateralis

Nuc. septalis medialis

Nuc. accumbens<sup>100</sup>

Nuc. interstitialis striae

terminalis

Area temporoparieto-occipitalis

Bulbus olfactorius<sup>97</sup>

Fila olfactoria

Lamina glomerulosa

Lamina granularis externa Lamina molecularis externa

Lamina mitralis

Lamina molecularis interna

Lamina ependymalis

Ventriculus olfactorius

Capsula interna occipitalis

Cingulum periectostriaticum<sup>78</sup>

Commissura rostralis [anterior]<sup>100</sup>

Pars bulbaris 100

Pars temporalis<sup>100</sup>

Commissura pallii

Complexus paleostriaticus 101 79 100

# **SECTIONES TELENCEPHALI (cont.)**

Nuc. intrapeduncularis<sup>79</sup> 101 Paleostriatum augmentatum<sup>101</sup> Paleostriatum primitivum<sup>79</sup> 82 Paleostriatum ventrale<sup>101</sup>

Cortex prepiriformis
Cortex piriformis<sup>100</sup>
Ectostriatum<sup>101</sup>

Fasc. diagonalis (of Broca)

Fasc. lateralis prosencephali<sup>82</sup> 100

Ansa lenticularis

Fasc. medialis prosencephali81

Ager L (Field L)

Foramen interventriculare

**Fornix** 

Hippocampus<sup>103</sup>

Hyperstriatum

accessorium<sup>104</sup> 78 81 101

Hyperstriatum dorsale<sup>81</sup> 104 Hyperstriatum intercalatum

supremum<sup>80</sup> 100 101

Lamina externa Lamina interna

Hyperstriatum ventrale<sup>101</sup>

Pars dorsalis Pars ventralis

Lamina archistriatica dorsalis

Lamina frontalis superior<sup>104</sup> Lamina frontalis suprema<sup>104</sup>

Lamina hyperstriatica

Lamina medullaris dorsalis

Lamina medullaris ventralis Lobus parolfactorius<sup>100</sup> 101 105

Neostriatum<sup>78</sup> 101 107

Pars caudalis<sup>80</sup> Pars intermedia Pars rostralis [frontalis]<sup>108</sup>

Nuc. ansae lenticularis caudalis

[posterior]<sup>106</sup> <sup>79</sup>

Nuc. ansae lenticularis rostralis

[anterior]<sup>106</sup> <sup>79</sup>

Nuc. basalis [Nuc. trigeminalis]

prosencephali<sup>107</sup> 58

Nuc. interstitialis commissurae pallii

Nuc. olfactorius rostralis [anterior]

Nuc. tr. diagonalis

Nuc. tr. septomesencephali Organum paraventriculare

Organum vasculosum laminae

terminalis

Organum laterale septi Organum subseptale [O.

interventricularel

Plexus choroideus ventriculi lateralis Substantia grisea periventricularis

lateralis

Tr. cortico-habenularis et

cortico-septalis

Tr. dorso-archistriaticus

Tr. fronto-archistriaticus 100 108

Tr. frontothalamicus

Tr. occipitomesen-

cephalicus 16 45 78 88 99

Pars hypothalami<sup>16</sup>

Tr. quintofrontalis<sup>58</sup> 107

Tr. septomesencephalicus<sup>78</sup>

Tr. striomesencephalicus<sup>105</sup>

Tr. thalamofrontalis

Tr. thalamostriaticus

Tuberculum olfactorium<sup>100</sup>

#### MENINGES

Dura mater spinalis<sup>110</sup> Dura mater encephali<sup>109</sup> 110

Dura mater propria Lamina periostealis

### **MENINGES** (cont.)

Plica tentorialis<sup>111</sup>
Diaphragma sellae
Arachnoidea spinalis
Arachnoidea encephali
Cavum subarachnoideum [Cavitas subarachnoidea]

Liquor cerebrospinalis

Cisterneae subarachnoideae
Pia mater spinalis
Lig. denticulatum<sup>112</sup>
Lig. ventromedianum<sup>112</sup>
Septum ventromedianum
Lig. suspensorium transversum<sup>112</sup>
Pia mater encephali

### **ANNOTATIONS**

- (1) Intumescentia cervicalis; Intumescentia lumbosacralis. Enlargements of the region of the spinal cord from which the brachial and lumbosacral plexus arise; Intumescentia cervicalis is usually larger than the lumbosacral intumescence, in flying birds. In flightless birds, especially the Ostrich (Struthio camelus), Intumescentia lumbosacralis is larger in size (Kuhlenbeck, 1975). See Osteo. Annot. 145.
- (2) Pars synsacralis. Since the synsacrum contains one or more thoracic vertebrae in addition to the lumbar, sacral, and some of the caudal vertebrae, pars synsacralis of the spinal cord seems more appropriate than pars lumbosacralis. (See Osteo. Annot. 141, 145).
- (3) Corpus gelatinosum. A specialized glial structure which lies within the Fossa rhomboidea spinalis (see Annot. 24). Due to its high glycogen content the Corpus is often called the "glycogen body" (Gage, 1917; Terni, 1924). Lyser (1973) and Welsch and Wachtler (1969), utilizing electron microscopy, demonstrated that its structural elements are glycogen-laden glial cells; Moller (1978) has affirmed that the cells are astrocytes. The glial elements are innervated by nonmyelinated axons and receive a rich blood supply (Paul, 1971; 1973). The Corpus consists of dorsal and ventral parts connected by a constriction bounded by pia mater. The ventral portion encloses the Canalis centralis of the spinal cord (Hodges, 1974). Benzo, et al. (1975) have suggested a metabolic function of these cells related to myelination, while Azciotia, et al. (1985) suggest a secretory function. Sansone (1977) and Sansone and Lebeda (1976) described the distribution of glycogen contained within the spinal cord of the chicken. Uehara and Ueshima (1982) describe the development of these cells in the chick.
- (4) **Lobi accessorii.** Most evident in the lumbosacral levels of the spinal cord; the lobes contain neurons of **Nuc. marginalis.** These lobes have been referred to as lobes of Lachi and as the nuclei of Hoffmann-von Kolliker (Ariëns Kappers, et al., 1936; De Genaro and Benzo, 1976). See **Annot.** 7.
- (5) Commissura alba. Both dorsal and ventral white commissures are present in birds. The dorsal white commissure contains collaterals of dorsal root fibers and axons of cell bodies located within the grey matter. The ventral white commissure contains axons which cross the midline to form the spinoreticular, spinothalamic, and spinotectal tracts of the spinal cord.

- (6) Substantia grisea. The dorsal horn of birds is laminated similar to the scheme originally developed in the cat by Rexed (1952; 1954). In chickens (Gallus) lamina III lies medial rather than ventral to lamina II (Brinkman and Martin, 1973; Martin, 1979) while in pigeons (Columbidae) a typical dorsoventral lamination pattern occurs (Leonard and Cohen, 1975). The two schemes shown in Fig. 5 represent at least two different types of dorsal horn lamination patterns in avian species. The novel "chicken" pattern appears to be widespread among various taxonomic groups. The type of pattern found in a given species has thus far been shown to be consistent across successively higher taxonomic categories. In other words, the pattern is conserved at the specific, generic, familial and ordinal taxonomic levels (Woodbury, 1989).
- (7) **Nuc. marginalis.** This nucleus lies within the white matter of the spinal cord, usually near the surface. It is also represented by scattered cell bodies, often referred to as "paragriseal" neurons. Nuc. marginalis is also known as the nucleus of Hoffmann-von Kolliker. The marginal nucleus is particularly well developed in the synsacral levels where it protrudes from the spinal cord as the Lobi accessorii (See **Annot.** 4) near the attachment of the Lig. denticulatum.
- (8) **Nuc. proprius.** Synonymy: Dorsal magnocellular column of the spinal cord grey matter (Jungherr, 1969; Bolton, 1971).
- (9) Substantia intermedia; Nuc. intermediolateralis. Synonymy: Column of Terni. The dorsal commissural portion of Substantia intermedia within the thoracolumbar levels of the spinal cord has been demonstrated to contain autonomic preganglionic nerve cell bodies and to be the avian homologue of the mammalian intermediolateral cell column (Nuc. intermediolateralis) (Terni, 1923; MacDonald and Cohen, 1970; Ohmori, et al., 1984a). The nucleus has commonly been referred to as the column of Terni. Division of the nucleus into Pars thoraco-lumbaris and Pars sacralis corresponds to the locations of the "sympathetic" and "parasympathetic" (see PNS) preganglionic neurons, respectively (Ohmori, et al., 1984a).
- (10) **Nuc. cervicalis lateralis.** Although no literature references are available to document the presence or homology of Nuc. cervicalis lateralis of mammals, cell accumulations are present in a comparable position in birds. Whether these represent a continuation of Nuc. marginalis, of the paragriseal system of the spinal cord of birds, or are separate entities is not known. See **Annot.** 7.
- (11) Nuc. motorius lateralis. This nucleus lies only within lamina IX (Brinkman and Martin, 1973; Martin, 1979) of the cervical and lumbosacral enlargements and contains neurons supplying the thoracic and pelvic limb muscles (Ohmori, et al., 1982; 1984b). The nucleus is divided into two parts. Axons of motor neurons of Pars lateralis pass through Fasciculus dorsalis of peripheral nerves and innervate muscles of the extensor surface of the limbs, while axons of Pars medialis pass through Fasciculus ventralis and supply muscles of the flexor surfaces. See also Addens (1933).
- (12) Nuc. motorius medialis. The nucleus lies within the ventral horn throughout the length of the spinal cord. In the enlargements it is located within lamina VIII (Brinkman and Martin, 1973; Martin, 1979). See Annot. 1.
- (13) Nuc. tr. descendentis n. trigemini. The trigeminal nuclear complex extends into the cervical spinal cord as in mammals. The nucleus merges with the dorsal horn of the spinal cord gray matter. Dubbeldam and Karten (1978) describe the central projections of the trigeminal ganglion in the pigeon (*Columba livia*). Dubbeldam and Veenman (1978) and Dubbeldam (1980) describe the somatotopy of the trigeminal

- system in the Mallard (*Anas platyrhynchus*). Dubbeldam, et al. (1979) describe the central projections of the glossopharyngeal and vagus ganglia in the Mallard. Dubbeldam (1984) relates the afferents of the glossopharyngeal and facial nerves in the pigeon to feeding behavior.
- (14) **Tr. hypothalamospinalis.** This tract has been described in the pigeon by Cabot, et al. (1982). The tract arises from **Nuc. periventricularis hypothalami**, **Nuc. mammillaris lateralis** and **Nuc. suprachiasmaticus** of the hypothalamus. These findings have been supported by Gross and Oppenheim (1985).
- (15) Tr. spinocerebellaris ventralis; Tr. spinocerebellaris dorsalis; Tr. spinocerebellaris rostralis. The presence of dorsal and ventral spinocerebellar tracts in birds has been demonstrated by Friedlander (1898), Sanders (1929), Ariëns Kappers, et al. (1936), Larsell (1948), and Whitlock (1952). Oscarsson, et al. (1963) studied these tracts in the duck and verified their existence, but indicated that the dorsal spinocerebellar tract may function in a somewhat different capacity than in mammals. The dorsal spinocerebellar tract axons originate from the cervical intumesence of the spinal cord, comparing well with Tr. spinocerebellaris rostralis of the cat (Lundberg and Oscarsson, 1962). The dorsal portion of the tract passes to the cerebellum via the caudal cerebellar peduncle and ventral portion joins the ventral spinocerebellar tract to enter the rostral cerebellar peduncle (Van Den Akker, 1970).
- (16) Tr. occipitomesencephalicus; Pars hypothalamica. The occipitomesencephalic tract arises from the rostral two-thirds of the Archistriatum and is distributed contralaterally to the first few cervical segments of the spinal cord. Haartsen and Verhaart (1967) and Zeier and Karten (1971) indicate that this may be an avian homologue to Bagley's bundle of the goat. Pars hypothalamica arises from the Archistriatum caudale and the Archistriatum mediale, which appears to be homologous to the mammalian amygdaloid complex (Zeier and Karten, 1971). The fibers of this tract terminate with both medial and lateral hypothalamic regions in a manner similar to that of the amygdalofugal fibers of mammals (Zeier and Karten, 1971; Cohen and Karten, 1974). The most dense terminations of this tract are within the Nuc. ventromedialis hypothalami and Nuc. dorsomedialis hypothalami. (See Annot. 78).
- (17) Tr. spinothalamicus. The spinothalamic tract of birds resembles that of mammals in its origin from the dorsal horn of the spinal grey, its decussation at segmental levels and its contribution to the lateral funiculus (Van Den Akker, 1970; Oscarsson, et al., 1963). The terminations of this tract within the thalamus have been studied by Karten and Revzin (1966) and Delius and Bennetto (1972). These investigators indicate terminations in Nuc. intercalatus thalami, Nuc. dorsolateralis caudalis thalami and Nuc. superficialis parvocellularis thalami. The tract is presumed to serve tactile, pain and thermal sensory systems, but electrophysiological evidence is limited to the tactile system (Delius and Bennetto, 1972).
- (18) Fasciculus dorsolateralis. This is a well developed fasciculus in birds, located in part in the dorsal and lateral funiculi and corresponds to Lissaur's tract of mammals (Van Den Akker, 1970). It has been suggested that Fasciculus dorsolateralis contains long contralateral ascending pathways, forming a spinal lemniscus system (or a spino-bulbo-tectothalamic tract) (Kuhlenbeck, 1975).
- (19) **Tr. interstitiospinalis.** Synonymy: Tr. tegmentospinalis (Kuhlenbeck, 1975). There is both an interstitiospinalis tract and a separate tegmentospinalis **tract** within the fasciculus longitudinalis medialis of mammals, both originating from the

tegmentum of the midbrain. Whether a tegmentospinal tract exists in birds has not been demonstrated.

- (20) Nuc. suprachiasmaticus, Pars medialis. There is little agreement regarding the location of a retinorecipient nucleus that plays a role in circadian rhythms comparable to the suprachiasmatic nucleus of mammals. A retinal projection to the medial, anterior hypothalamus has been reported in the House Sparrow (Passer domesticus) (Hartwig, 1974) and Java Sparrow (Padda oryzivora) (Ebihara and Kawamura, 1981). In Fig. 14.18 it is shown as the SCNm. More evidence has accumulated that supports a more lateral hypothalamic nucleus as the avian equivalent of the SCN. It was first described by Repèrant (1973) as the Nuc. decussationis supraopticae, Pars ventralis (see DSv in Fig. 14.17) and several studies show it to be a retinorecipient nucleus (Cooper, et al., 1983; Cassone and Moore, 1987; Ehrlich and Mark, 1984; Meier, 1973) as well as one that demonstrates circadian variations (Cassone, 1988). It has been suggested that the nucleus be termed the "lateral hypothalamic retinorecipient nucleus" (Norgren and Silver, 1989).
- (21) **Encephalon.** The Encephalon is the brain. It includes the cerebrum, cerebellum, and the brain stem. See Figs. 1, 2, 3 for surface features and parts of the brain.
- (22) Rhombencephalon. The Rhombencephalon includes the Pons and the Medulla oblongata. Bläser (1981) described the localization of somatostatin and enkephalin immunoreactive neurons in the caudal brain stem of the domestic chicken (Gallus). Bohme (1970 described the originization of the fourth ventricle in Gallus. Brandis (1894) described the origin of cranial nerves from the medulla oblongata. Cabot, et al. (1982) described bulbospinal tracts in birds. Cohen and Schnall (1970) and Cohen et al. (1970) described the medullary cells of origin of vagal cardioinhibitory fibers in the pigeon. Hirunagi and Yasuda (1979) described the fine structure of the ependymal cells of the Area postrema in domestic fowl. Moll and Hilvering (1951) describe the Area in other birds.
- (23) Pedunculus cerebellaris caudalis, Pedunculus cerebellaris intermedius, Pedunculus cerebellaris rostralis. The cerebellar peduncles are commonly referred to as Corpus restiforme (Peduncularis cerebellaris caudalis), Brachium pontis (Pedunculus cerebellaris intermedius) and Brachium conjunctivum (Pedunculus cerebellaris rostralis). For purposes of simplicity, the topographical terms, caudalis, intermedius, and rostralis have been adopted. This terminology allows the inclusion of Corpus juxtarestiformis and Corpus restiforme within the caudal peduncle.
- (24) **Ventriculus quartus.** The fourth ventricle includes the **Fossa rhomboidea** (see Annot. 3) of the caudal pons and rostral medulla and is continuous dorsally with the **Ventriculus cerebelli.** The ventricle is bounded laterally by the caudal, intermediate and rostral cerebellar peduncles.
- (25) Area postrema, Organum postremum. Area postrema represents an area on either side of the obex. Organum postremum represents a neuroglial circumventricular organ (Leonhardt, 1980). In domestic fowl (Gallus) and the pigeon (Columba livia), the organ has histological characteristics similar to those of mammals (Pessacq, 1967). The area is characterized by an ependymal layer, neuroglial parenchyma, and a high vascularity (Bohme, 1970). Kirunogi and Yasuda (1979) have described the organization of these structures in the chicken. See Annot. 22.

- (26) Complexus olivaris caudalis. Synonymy: Complex. oliv. inferior. There is much variation in the description of the nuclei of the avian caudal olivary complex. The number of nuclei of the complex named by investigators varies from only two (Kooy, 1915; 1917) to as many as seven (Vogt-Nilsen, 1954). Yashimura (1909) provides a comparative study of this complex in birds. Furber (1983; 1984) indicates that the dorsal lamella of the complex is homologous, from lateral to medial, with the dorsal accessory, the principal, and a small part of the ventral accessory nuclei of the mammalian caudal olivary complex. The ventral lamina represents the remainder of the mammalian complex. Furber (1983) also provides a description of Tr. olivocerebellaris of birds. Armstrong and Clarke (1979) describe the development of the complex in the chick.
- (27) **Fasciculus longitudinalis medialis.** This is the oldest and most constant longitudinal fiber system in the central nervous system of vertebrates. It is large in all vertebrates and exhibits a relative larger size in more primitive animals. The medial longitudinal fasciculus of birds appears to be homologous to that of other vertebrates (Sarnat and Netsky, 1974).
- (28) Lemniscus medialis. The medial lemniscus of birds resembles that of mammals: in its origin from Nuc. gracilis and Nuc. cuneatus (Van Den Akker, 1970; Friedlander, 1898), its decussation within the Medulla oblongata and its ascent within the ventromedial portion of the brain stem. It terminates within the mesencephalon, ventral hypothalamus, Nuc. ruber, Nuc. intercalatus thalami and Nuc. dorsolateralis caudalis thalami (Wallenberg, 1904; Delius and Bennetto, 1972).
- (29) Nuc. ambiguus. Synonymy: Nuc. motorius ventralis n. vagi (Bolton, 1971).
- (30) Nuc. angularis. In the pigeon (Columba livia) this nucleus is divisible into three parts: (1) Pars lateralis, consisting of large cells; (2) Pars medialis containing small cells, resembling the adjacent Nuc. magnocellularis; and (3) Pars ventralis. The ventral part receives afferents from both the cochlear and lagenar nerves, whereas the medial and lateral parts receive afferents from the cochlear nerve (Boord and Rasmussen, 1963). The distribution of these afferents appear to maintain a tonotopic distribution within the nucleus, similar to that of the cochlear nuclei of mammals. It was suggested by Boord and Rasmussen (1963) that Pars lateralis and Pars ventralis are homologues of the caudal division of the dorsal cochlear nucleus of mammals. The medial part of the nucleus, along with the medial and lateral parts of Nuc. magnocellularis, appear to correspond to the ventral cochlear nucleus of mammals. Cajal (1908) describes the brain stem terminations of the cochlear nerve in birds. Correia, et al. (1982) describe the organization of the ascending auditory pathways in the pigeon.
- (31) Nuc. cuneatus accessorius [lateralis]. This nucleus corresponds to Nuc. cuneatus externus of Dubbeldam and Karten (1978). In birds it receives afferents from the Ganglion trigeminale and from the proximal ganglia of Nn. IX and X.
- (32) Nuc. intermedius medullae oblongatae. This nucleus is said in some birds to contain both vagal and hypoglossal motor neurons, and in others to be entirely vagal or entirely hypoglossal in its composition. Based on retrograde degeneration studies (Watanabe, 1968; Watanabe, et al., 1975), the motor nucleus of the syrinx appears to be a part of this nucleus. Youngren and Phillips (1983) in the chicken (Gallus) and Manogue and Nottebohm (1982) in the budgerigar (Melopsittacus undulatus), describe the location of motor neurons supplying some tongue muscles, the trachea and the syrinx.

- Nuc. n. hypoglossi. Synonymy: Nuc. n. cervicalis medialis (Watanabe, et al., 1975). This nucleus may be equivalent to the Nuc. intermedius of the medulla oblongata (see above paragraph). It was described by Nottebohm, Stokes and Leonard (1976), and includes a Pars tracheo-syringealis and Pars lingualis (see Figs. 14.7, 8).
- (33) Nuc. laminaris. It has been suggested that Nuc. laminaris represents a primary auditory nucleus. Cochlear and lagenar fibers, however, do not terminate within the nucleus. Boord (1968), showed that the nucleus receives afferents from Nuc. angularis, and suggests that it is an avian homologue of the medial nucleus of the rostral olivary complex of mammals, representing a secondary nucleus of the auditory sensory system. Scheich et al. (1979) described the functional organization of some auditory nuclei in the guinea fowl. Parks (1979; 1981), Parks and Rubel (1975; 1978), Parks, et al. (1983), Smith (1981), and Smith and Rubel (1979) describe the development and organization of the brain stem auditory nuclei of the chicken (Gallus).
- (34) Nuc. magnocellularis cochlearis. On the basis of cell morphology and fibrillar architecture the nucleus can be divided into three subnuclei (Boord and Rasmussen, 1963). Two divisions have been described by a number of investigators (Brandis, 1894; Holmes, 1903; Cajal, 1908; Sanders, 1929; Craigie, 1930). Jhavari and Morest (1982a, b) presented the architecture and some developmental aspects of this nucleus. Boord and Rasmussen (1963) demonstrated that the ventrolateral portion of the nucleus receives mixed afferents from both the cochlear and lagenar components of the vestibulocochlear nerve, whereas the remainder of the nucleus receives afferents only from the cochlear component. They suggest that the Nuc. magnocellularis cochlearis is an avian homologue of the rostral part of the ventral cochlear nucleus of mammals. The medial part of Nuc. magnocellularis appears to be the avian equivalent of region III while the lateral part of Nuc. magnocellularis is the equivalent of region I of the mammalian rostro-ventral cochlear nucleus of Harrison and Irving (1965).
- (35) Nuc. motorius dorsalis n. vagi; Nuc. motorius n. glossopharyngei. Nuc. motorius dorsalis n. vagi has been referred to as the ventrolateral nucleus of the vagus nerve by those who classify Nuc. intercalatus as Nuc. dorsomedialis n. vagi. Craigie (1930) identified the Nuc. motorius dorsalis n. vagi as a combination nucleus of the glossopharyngeal nerve and vagus nerve. Nuc. motorius n. glossopharyngei is a rostral extension of Nuc. motorius dorsalis n. vagi. Katz and Karten (1983a, b) described 11 subnuclei within Nuc. motorius dorsalis n. vagi. Note that the rules established for this nomenclature have been altered in this case to accommodate both directional terms, caudalis and posterior, in order that they might be included as separate nuclei. Cohen and Schnall (1970) and Cohen, et al. (1970) have described the location of cardioinhibitory neurons within Nuc. motorius dorsalis n. vagi.
- (36) Nuc. n. accessorii. Synonymy: column of Lenhossek. Although located mostly within the Medulla oblongata, Nuc. n. accessorii is principally a cervical spinal cord nucleus, representing the motor neurons supplying M. cutaneus colli lateralis (M. cucullaris capitis, Myol. Annot. 7). It has been argued that this muscle is the avian counterpart of the trapezius muscle of mammals (Watanabe, 1961). Huber (1936) describes a column of cells in the pigeon that occupy a position in the lateral part of the grey matter at about the level of the central canal and extending over the upper three or four cervical segments of the spinal cord, the "column of Lenhossek". Huber notes that the cells of this column are probably the cells of origin of fibers representing the spinal portion of the accessory nerve in mammals. Hildebrand (1975), however, found retrograde changes only in the dorsocentral motor column of

Beccari after interruption of N. accessorius. His illustrations, however, do not provide a clear location of this cell group. See **Annot.** 32.

- (37) Nuc. tractus ascendentis n. glossopharyngei; Tr. ascendens n. glossopharyngei. Nuc. tr. ascendens n. glossopharyngei represents that portion of the Nuc. n. glossopharyngei that lies adjacent to, and receives afferents from, the ascending tract of the glossopharyngeal nerve. Tractus ascendens n. glossopharyngei ascends medially along Tr. descendentis n. trigemini. It terminates in Nuc. sensorius n. glossopharyngei and sends collaterals into Nuc. tr. ascendentis n. glossopharyngei and into the medial zone of Nuc. tr. descendens n. trigemini (Dubbeldam et al. 1979). The tract may also contain vagal and/or hypoglossal fibers, with terminations in Nuc. sensorius principalis n. trigemini (Wild, 1981; Bottjer and Arnold, 1982).
- (38) The Nuc. parabrachialis has been divided into four subnuclei in the pigeon: Pars dorsolateralis, medialis, superficialis lateralis and ventrolateralis (Arends, et al., 1988).
- (39) Nuclei raphae. The raphae nuclei form a continuous series of nuclei within the brain stem raphae, extending from the caudal limits of the medulla oblongata to the rostral mesencephalon. These nuclei have many functions, and functionally are generally considered to be a part of the brain stem reticular formation. The nuclei included in this group from caudal to rostral are: Nuc. raphae pallidae, Nuc. raphae obscurae, Nuc. raphae magnae, Nuc. raphae pontis, Nuc. centralis superior, Nuc. linearis caudalis, Nuc. linearis intermedius and Nuc. linearis rostralis. These nuclei have been described in many mammals (see Taber, et al., 1960, for description in the cat), and are clearly present in birds (Breazile and Hartwig, 1989); however their function in birds has not been investigated.
- (40) Nuc. reticular paramedianus. Petrovicky (1966) indicated that the paramedian reticular nucleus is absent in birds, however it appears present in the chicken (Gallus), turkey (Meleagris), Java dove (Streptopelia) and pigeon (Columba). The stereotaxic atlas of the pigeon brain of Karten and Hodos (1967) indicates the presence of this nucleus made up of cell nests lying between the root fibers of the hypoglossal nerve and the midline raphe of the medulla oblongata. The cells are medium sized, darkly-staining.
- (41) Nuc. supraspinalis. This nucleus contains neurons that supply motor innervation to some of the upper neck muscles (Wild and Zeigler, 1980; Gross, 1985). On the basis of cytologic organization, the nucleus is divisible into a pars dorsalis and a pars ventralis. Retrograde degeneration studies of Watanabe (1968) and Watanabe, et al. (1975) and unpublished HRP studies of Watanabe show that the Nuc. n. hypoglossi also innervates cervical muscles. See PNS. Annot. 30.
- (42) Nuc. tr. solitarii. Facial, glossopharyngal and vagus nerves have projections to the Nuc. tr. solitarii. Contrary to previous reports (Kuhlenbeck, 1975), the facial nerve contains afferent fibers involved in taste (Berkhoudt, 1985). Based on the projections of nerves into the nucleus, a number of subnuclei have been described in the Mallard (*Anas platyrhynchos*) (Dubbeldam, 1979), the pigeon (Dubbeldam, 1984) and the chicken (*Gallus*) (Ganchrow, et al., 1986). The cytoarchitectonic study of the nucleus in the pigeon of Katz and Karten (1983) is the basis for the nomenclature presented here.

- (43) Nuc. tr. descendentis n. trigemini. The nucleus represents a large dorsolateral nucleus in the caudal pons and the medulla. It extends into and is a component of the dorsal horn of the spinal grey matter. The subnuclear organization is similar to that of mammals. The caudal extent of the nucleus has not been determined in birds, but the adjacent Tr. descendens n. trigemini appears to extend to about the third cervical segment of the cord. Arends, et al. (1984) describe the efferent projections of this nucleus in the duck (*Anas platyrhynchos*).
- (44) Nuclei vestibulares. The nomenclature of the vestibular nuclei adopted in this work is derived from Sanders (1929). For comparisons with other terminologies consult Larsell (1967) and Kuhlenbeck (1975). Eden and Corriea (1982) and Schwarz, et al. (1981) described the vestibular efferents from these nuclei in the pigeon (*Columba*). Vollrath and Delius (1976) describe the vestibular nuclear projections to the thalamus in the pigeon. Boord and Karten (1974) describe the efferent terminations of the vestibular component of the eighth nerve. Wold (1975; 1976; 1978a, b) describes the nuclear organization in relationship to both afferents and efferents. Peusner and Morest (1977a, b, c) describe the development and organization of Nuc. vestibularis tangentialis in the chick. Through the use of tracer methods, Eden and Correia (1982) identified multiple groups of efferent vestibular neurons.
- (45) Tr. occipitomesencephalicus. Zeier and Karten (1971) have demonstrated that the occipitomesencephalic tract originates from the rostral two-thirds of the Archistriatum and is distributed ipsilaterally to the following structures: lateral part of Nuc. spiriformis medialis, Nuc. subrotundus, Nuc. principalis precommissuralis and lateral mesencephalic reticular formation, Nuc. intercollicularis, Stratum griseum centrale of Colliculus mesencephali, Nuc. ceruleus, Nuc. subceruleus dorsalis and ventralis and Nuc. lateralis pontis. Caudal to this level the tract is distributed bilaterally to Nuc. reticularis parvocellularis, Nuc. subtrigeminalis, Nuc. tr. descendentis n. trigemini, and Nuc. gracilis and Nuc. cuneatus. The contralateral component continues into the spinal cord to end within the upper cervical segments, overlapping somewhat with the termination of the septomesencephalic tract. See Annot. 16, 99.
- (46) Corpus trapezoideum; Nuc. corporis trapezoidei. The trapezoid body is composed of third order axons from cells of Nuc. laminaris and second order axons from cells of the medial part of Nuc. angularis and the lateral part of Nuc. magnocellularis cochlearis (Boord, 1968; 1969). As these nuclei are considered to represent avian homologues of the dorsal and ventral cochlear nuclei and the medial nucleus of the rostral olivary complex of mammals, it appears that the Corpus trapezoideum of birds is homologous to that of mammals. Many of the axons of the Corpus trapezoideum terminate within Nuc. corporis trapezoidei. Knudsen (1980) described mechanisms of sound localization in owls (strigiforms).
- (47) Lemniscus lateralis. The lateral lemniscus has been demonstrated to serve as the major afferent pathway to Nuc. lemnisci lateralis and Nuc. mesencephalicus lateralis, Pars dorsalis in the pigeon (Columba) (Boord, 1968), and contains efferents from the avian homologues of the mammalian cochlear nuclei and Nuc. laminaris, an avian counterpart of the medial nucleus of the rostral olivary complex (Cajal, 1908; Stotler, 1905). Owing to these relationships the lateral lemniscus of birds can be considered to be homologous to that of mammals. Correia, et al. (1982) describe the organization of ascending auditory pathways in the pigeon.

- (48) Nuc. lateralis lemnisci, Pars intermedia. Synonymy: Pars lateroventralis (Boord, 1969). Boord equates Pars intermedia of the lateral lemniscus with Nuc. ventralis lemnisci lateralis of Karten and Hodos (1967).
- (49) **Nuc. ceruleus.** Synonymy: Locus ceruleus. Shimizu et al. (1974) describe the distribution of efferents from this nucleus in the budgerigar. Gugliemone and Panzica (1982) describe the nucleus and its development in the chick.
- (50) **Nuc. medialis pontis.** Brodal, et al. (1950) describe the avian homologues of the pontine grey of mammals. Armstrong and Clarke (1979) describe the development of the pontine nuclei in the chick.
- (51) Nuc. accessorius n. abducentis. This nucleus is found in numerous taxa of birds as a small mass located ventrolateral to Nuc. n. abducentis. Kuhlenbeck (1975) indicated that it innervates muscles of the nictitating membrane (PNS. Annot. 16).
- (52) Nuc. motorius n. facialis, Pars dorsalis. This nucleus innervates M. depressor mandibulae. It lies close to the dorsomedial part of Nuc. motorius n. trigemini, Pars principalis. This proximity is considered to reflect the functional association of these nuclei in the control of beak movements (Wild and Zeigler, 1980).
- (53) Nuc. motorius n. trigemini. The relationships of the subdivisions of Pars principalis of this nucleus to jaw muscles have been clarified in the pigeon by Wild and Zeigler (1980). Pars medialis is the source of fibers innervating the M. depressor palpebrae ventralis in the pigeon and the duck. The ontogeny and migration of the trigeminal motor nucleus and the developmental relationships between these neurons and trigeminal afferents have been investigated by Heaton and Moody (1980) and Moody and Heaton (1983a, b, c).
- (54) Nuc. sensorius n. facialis. This cell group has been described as Nuc. n. VII in the duck (*Anas*) (Dubbeldam, et al., 1976), but has also been recognized in the pigeon and the chicken (Ganchrow et al. 1986).
- (55) Nuc. salivatorius n. facialis. The nucleus has been described in the duck (*Anas*) (Bout and Dubbeldam, 1985) and in the chicken (Ganchrow, et al., 1986). The role of this nucleus as a salivatory motor nucleus is uncertain.
- (56) Nuc. retrofacialis. See Wild (1982) for a description of this nucleus which innervates one of the tongue muscles.
- (57) Nuc. sensorius principalis n. trigemini. The size of this nucleus varies greatly in different taxa, correlating well with the size of the beak (Stingelin, 1961). The nucleus receives a topographically organized projection from the trigeminal ganglion and serves as the origin of the Tr. quintofrontalis (Wallenberg, 1904; Woodburne, 1936; Zeigler and Karten, 1973; Witkovsky, et al., 1973). The nucleus is clearly divisible into dorsal and ventral components (Woodburn, 1936). Studies of afferents and efferents with the aid of tracer methods in the pigeon and Mallard by have been conducted by Dubbeldam and Veenman (1978), Dubbeldam, (1980), Dubbeldam, et al., (1981) and Berkhoudt, et al., (1981).
- (58) Tr. quintofrontalis. This tract arises from both dorsal and ventral divisions of Nuc. sensorius principalis n. trigemini, undergoes partial decussation, and terminates in Nuc. basalis prosencephali. It appears to represent a lemniscal pathway in birds (Wallenberg, 1903; Dubbeldam and Veenman, 1978; Dubbeldam, 1980; Dubbeldam, et al., 1981; Berkhoudt, et al., 1981).

- Sectiones cerebelli. Anatomical evidence for the existence of Tr. isthmocerebellaris. Tr. cerebello-motorius and Tr. tectocerebellaris in birds is lacking. For this reason they have not been included here in the list of terms. Nieuwenhuys (1967) presents a comparative anatomy of the cerebellum, including birds. Larsell (1948) describes the development and subdivisions of the cerebellum of birds. Feirabend, et al. (1978) describe the longitudinal organization of afferents and efferents of the cerebellar cortex in the chicken (Gallus), (Feirabend and Voogd (1986) describe the organization of the white matter of the cerebellum of the domestic chicken. Goodman, et al. (1964) describe the functional localization of the cerebellar surface of the chicken. Whitlock (1952) presents the sensory receptive areas in the chicken. Paula-Barbosa and Sobrinho-Simoes (1976) describe the ultrastructural organization of mossy fiber endings of the afferents in the cerebellum of the pigeon (Columba), rat (Rattus), and man (Homo), Clark (1977) describes visual and other connections to the cerebellum of birds. Schwarz and Schwarz (1983) and Renggli (1967) provide comparative studies of the relationship of the vestibular nuclei and the cerebellum in birds. Freedman (1977) describes climbing fibers of the avian cerebellum. Bortolami, et al. (1972) describe the relationship of the Nuc. mesencephalicus n. trigemini and the cerebellum in the duck (Anas). Brauth (1977) describes a direct accessory optic projection to the vestibulocerebellum.
- (60) Nuc. cerebellaris medialis [Nuc. fastigii]; Nuc. cerebellaris intermedius; Nuc. cerebellaris lateralis. Comparative studies of representatives of 18 avian orders have demonstrated numerous differences in the number and structure of the deep cerebellar nuclei. In some falconids, psittaciforms, piciformes, meropids, trochilids and passeriforms there is a folding of the nuclei produced by concentrations of cells within the nuclei. These folds appear to be genetically fixed, like the fissures of the cerebellar cortex (Renggli, 1967). In general organization, in all orders examined, there are three identifiable nuclei or groups. These groups relate well to afferent and efferent projections from the overlying vermis, paravermis and hemispheric portions of the cerebellar cortex (Goodman, et al., 1964). Karten (1964) describes the efferent projections of these nuclei in the pigeon. Arends (1985) presents the corticonuclear and olivocerebellar organization in the pigeon. Nieuwenhuys (1967) presents a review of afferent and efferent organization of the cerebellum of birds.
- (61) **Tectum mesencephali.** Synonymy: Lobus opticus; Tectum opticum. As a gross brain feature, the tectum mesencephali has been considered to be a primary visual center. Cohen and Karten (1974) summarizing information concerning this structure indicate that the term "optic lobe" is a misnomer, as only a limited portion of the lobe is actually related to the visual system. Since the midbrain tectum functions in other spheres of activity it is prudent to avoid a name with a functional connotation.
- (62) Colliculus mesencephali. Synonymy: Tectum opticum. Failure to recognize the fundamental distinction between the optic lobe and the Tectum opticum has led to confusion, particularly regarding the comparative relationships of avian and mammalian brains (Cohen and Karten, 1974). The so-called optic lobe of birds is equivalent to the rostral colliculus of mammals and the optic tectum of birds is considered to be equivalent to the superficial cap of the mammalian rostral colliculus (Acheson, et al., 1980). Hunt and Kunzel (1976) studied the surface layers of the colliculus. The designation, Colliculus mesencephali, provides a topographic rather than a functional basis for the name. McGraw and McLaughlin (1980a, b) describe the synaptic organization of the colliculus in the chick (Gallus). Reperant and Angaut (1977) and

Acheson, et al. (1980) describe its retinotectal projections in pigeons (*Columba*). Mestres and Delius (1982) also describe some mesencephatic tectum afferents in the pigeon. Rager (1980a, b) describes these projections in the chicken. Domesick and Morest (1977a, b) describe the development of the Colliculus mesencephali in the chick. Duff, et al. (1981) describe the retinal receptive areas in the pigeon. Bravo and Pettigrew (1981) describe the distribution of neurons projecting from the retina to telencephalic structures in the Barn Owl (*Tyto alba*) and the Burrowing Owl (*Athene cunicularia*). In general, the superficial layers of the tectum mesencephali receive retinal afferents and deeper layers receive other afferents and serve as the efferent layers of the colliculus. See Annot. 61.

- (63) **Brachium colliculi mesencephali.** The mammalian brachium of the caudal colliculus is represented in birds as the **Tr. nuc. ovoidalis.** This tract contains axons with cell bodies of origin in **Nuc. mesencephalicus lateralis, Pars dorsalis,** the avian counterpart of the mammalian caudal colliculus (Karten, 1967). **Tr. nuc. ovoidalis** terminates primarily within **Nuc. ovoidalis,** the avian counterpart of the mammalian ventral division of the medial geniculate (Karten, 1967). Brachium colliculi mesencephali refers specifically to the "tectofugal" fibers projecting from the **Colliculus mesencephali** to **Nuc. rotundus,** the avian counterpart of the mammalian Nuc. lateralis caudalis of the thalamus (Karten and Revzin, 1966; Karten and Hodos, 1970; Benowitz and Karten, 1976b; Reiner and Karten, 1982; Revzin and Karten, 1966). See **Annot.** 62.
- (64) Sectiones mesencephali. Bertler, et al. (1964) describes adrenergic connections between the mesencephalon and the telencephalon. Graef (1973a, b, c, d, e) describes the cytoarchitecture and myeloarchitecture of the mesencephalon of the chicken (Gallus). Verhaart (1972) provides a review of the fiber systems of the avian mesencephalon. Blähser and Dubois (1980) described the met-enkephalin containing neurons of the brain of domestic fowl. Blähser and Heinrichs (1982) similarly demonstrated the immunoreactive neuropeptide systems in domestic Mallard (Anas platyrhynchos), domestic fowl and Japanese Quail (Coturnix coturnix). These descriptions involve the mesencephalon to a great degree. Jungherr (1945) described a number of mesencephalic nuclei in the chicken.
- (65) Complexus isthmi. The isthmal complex receives an intense and topographically organized input from the Colliculus mesencephali (Cohen and Karten, 1974). Clarke (1982a, b) described the development of the isthmic complex in the chick (Gallus).
- (66) Nuc. isthmo-opticus. Synonymy: Ganglion opticum dorsale (Bellonci, 1888; Jelgersma, 1896), Nuc. opticus medialis (Perlia, 1889), Ganglion isthmi (Edinger and Wallenberg, 1899) and Nucleus of the isthmo-optic tract (Craigie, 1928). This nucleus has been demonstrated to give rise to a definite efferent tract (Tr. isthmo-opticus) which projects to the retina (Cowan and Powell, 1963; Holden, 1966; Ogden, 1967; Cowan and Wenger, 1968; Crossland and Hughes, 1978; Crossland and Uchwat, 1979; Cowan, 1970; 1982; Hayes and Holden, 1983). See Angaut and Reperant (1978) for a description of the nucleus. Sohal and Narayanan (1974) describe the development of the nucleus in the chick (Gallus).
- (67) **Decuss. n. oculomotorii.** Some of the fibers from the ventral part of the oculomotor nuclear complex decussate proximal to the emergence of the oculomotor nerve (Kuhlenbeck, 1975). Niimi, et al. (1958) described a crossing component associated with the **Subnuc. accessorius** (considered to be the avian homologue of the Edinger-

Westphal nucleus of mammals). Heaton and Wayne (1983) indicate that a portion of the fibers from **Subnuc. ventralis** also decussate. Puelles (1978) describes the development of the crossing fibers in the chicken (*Gallus*).

- (68) **Fasc. tegmentalis.** Several fiber bundles traversing the tegmentum in a mediolateral or lateromedial direction have been recognized (Zweers, 1971). The origin and termination of these fibers is not known.
- (69) Nuc. commissuralis caudalis. Synonymy: Nuc. commissuralis posterior. This nucleus appears to be homologous with the nucleus of the caudal commissure of mammals.
- (70) Nuc. radicis opticae basalis [Nuc. ectomamillaris]. This nucleus in birds appears to be homologous to at least a portion of the nucleus of the basal optic tract of mammals (Brecha, et al., 1980). Rio (1979) described the organization of the nucleus in the pigeon and Rio, et al. (1983) describe the efferent projections to telencephalic structures. Reiner, et al. (1979) describe the afferents to the nucleus. Karten, et al. (1977) describe the accessory optic system in the pigeon.
- (71) Nuc. intercollicularis. This nucleus receives afferents from the spinal cord, Nuc. lateralis cerebelli, Colliculus mesencephali, Nuc. gracilis and Nuc. cuneatus (Karten, 1963, 1965, 1967), and has been demonstrated to play an important role in song vocalization in birds. It may be involved in respiration rather than vocalization. Its homology with mammalian brain structures is not known.
- (72) Nuc. lentiformis mesencephali, Pars lateralis/medialis. Gamlin and Cohen (1988) point out that the usual division of this nucleus into Pars magnocellularis and Pars parvocellularis, as described by Ehrlich and Mark (1984) and Gottlieb and McKenna (1986), has caused much confusion. The entire nucleus is in fact comprised of a mixture of large and small cells. Gamlin and Cohen (1988) suggest that Nuc. lentiformis mesencephali is comparable to the nucleus of the optic tract of mammals. Both Pars lateralis and Pars medialis have connections to Complexus olivaris caudale, cerebellum, lateral pontine nucleus, Nuc. papillioformis, Nuc. radicis opticae basalis and Nuc. mesencephalicus profundus. See also Clarke (1977), Brauth and Karten (1977), Brecha, et al. (1980), Brecha (1978) and Azevedo, et al. (1983) for descriptions of these nuclei.
- (73) Nuc. mesencephalicus lateralis, Pars dorsalis. This nucleus appears to be an avian homologue of the caudal colliculus of mammals (Correia, et al., 1982). Referred to as the Ganglion laterale, it has been proposed to be the pneumotaxic center of birds. The latter conclusion is unlikely, as the nucleus is clearly a mesencephalic structure and the pneumotaxic center of mammals is Nuc. parabrachialis medialis. The term "torus semicircularis" has been applied to this nucleus, but does not apply well to birds; if used, it should be limited to reptiles and amphibians. Cobb (1964) compared the size of this nucleus with the size of the mesencephalic tectum in a variety of birds. Karten (1967) describes the diencephalic projections of the nucleus in the pigeon.
- (74) Nuc. mesencephalicus n. trigemini. Rogers and Cowan (1973) describe the development of this nucleus in the chick. For a description of the relationships of this nucleus and the Cerebellum in birds (see Bortalami, et al. (1972). Manni, et al. (1965) demonstrate the relationship between jaw muscle afferents and Nuc. mesencephalicus n. trigemini in birds.

- (75) Nuc. n. oculomotorii. The oculomotor complex in birds has been characterized in several taxa. Niimi, et al. (1958) and Heaton and Wayne (1983) describe it in the chick, Sohal (1977) in the duck and Heaton (1981) in *Coturnix*. The nomenclature used here is that of Heaton and Wayne (1983). Isomura (1973) has contributed to the study of this nucleus in the chicken (*Gallus*).
- (76) Griseum tectale. Synonymy: Substantia grisea tecti. Described by Gamlin and Cohen (1988) as a pretectal nucleus, although associated with the mesencephalic tectum. They divide the area into a rostral retino-recipient region and a caudal, non-retino-recipient zone, referring to the latter as Pars compacta. Griseum tectale projects efferents to Nuc. intercalatus thalami, Nuc. supraopticae pars ventralis, Nuc. geniculatus lateralis, pars ventralis and Complexus opticus principalis thalami. The area also projects into the layers of Tectum mesencephali.
- (77) **Tr. rubrospinalis.** Wild, et al. (1979) describe this tract in the pigeon. The tract decussates within the mesencephalon, immediately caudal to the nucleus and descends to lumbosacral levels of the spinal cord (Cabot, et al., 1982).
- (78) Tr. septomesencephalicus. This tract arises from the dorsal telencephalon, predominantly from the Hyperstriatum accessorium and projects to the lateral Neostriatum, Cingulum periectostriaticum, internal lamella of the ventral geniculate nuc., Nuc. pretectalis, Colliculus mesencephali, Nuc. intercalatus thalami, Nuc. spiriformis medialis, Nuc. ruber, the medial reticular formation, pontine nuclei and Nuc. cuneatus. The system continues contralaterally into the spinal cord, terminating within the dorsal horn of the spinal grey where it overlaps with the terminations of Tr. occipitomesencephalicus (Adamo, 1967; Karten, 1969; Zecha, 1962).
- (79) Ansa lenticularis. The Ansa lenticularis arises exclusively from the Paleostriatum primitivum/Nuc. intrapeduncularis component of the Complexus paleostriaticus. Ansa lenticularis terminates in Nuc. ansae lenticularis rostralis, Nuc. ansae lenticularis caudalis, Nuc. dorsointermedius caudalis thalami, Nuc. spiriformis lateralis and Nuc. tegmenti pedunculopontini. On the basis of anatomic and histochemical studies by Karten and Dubbeldam (1973) it appears that the avian Ansa lenticularis is an avian counterpart to that of mammals.
- (80) Nuc. dorsolateralis caudalis thalami; Nuc. superficialis parvocellularis thalami; Nuc. intercalatus thalami. These nuclei represent thalamic relay nuclei for the cutaneous sensory information in birds (Delius and Bennetto, 1972). It has been demonstrated that Nuc. dorsolateralis caudalis thalami and Nuc. superficialis parvocellularis thalami projects to telencephalic structures, namely, Hyperstriatum intercalatus supremum and Neostriatum caudalis, Pars rostralis et medialis (Erulkar, 1955; Delius and Bennetto, 1972). The homologies of these nuclei with thalamic nuclei in mammals are not clear at present, but the possibility is evident that at least a portion of the nuclei involved, most likely Nuc. dorsolateralis caudalis thalami and Nuc. superficialis parvocellularis thalami, are avian counterparts of the ventrobasilar complex of mammals.
- (81) Nuc. dorsomedialis thalami, Pars rostralis. This nucleus gives rise to a fiber system that accompanies Fasc. medialis prosencephali rostrally to terminate within the medial division of the Hyperstriatum dorsale and the immediately adjacent dorsomedial portion of Hyperstriatum accessorium (Zeier and Karten, 1971). No functional significance has been alleged to these structures, but it is speculated that Nuc. dorsomedialis, Pars rostralis may be comparable to the mammalian anterior

thalamic complex and its projection field in **Hyperstriatum dorsale** and **Hyperstriatum accessorium** may represent a homologue of part of the mammalian "limbic" system (Karten, et al., 1973). This speculation is strengthened by the proximity of the telencephalic region involved in this projection to the region of the avian brain that traditionally is considered to represent the hippocampal formation of mammals (Karten, et al., 1973).

- (82) Nuc. entopeduncularis ventralis rostralis. This nucleus is considered to be an avian homologue of the subthalamic nucleus of mammals. It is referred to as the entopeduncular nuclear group by Craigie (1929) and is represented by nerve cell bodies scattered along Fasc. prosencephali lateralis. The cells resemble those of Paleostriatum primitivum. This nucleus includes the following nuclei as described by Rendahl (1924): (1) Nuc. dorsalis supraopticum, (2) Bed nucleus of Tr. thalamofrontalis anterior, and (3) Nuc. parastriatus.
- (83) Nuc. geniculatus lateralis, Pars ventralis. Crossland and Uchwat (1979) describe the afferents to this nucleus.
- (84) Complexus opticus principalis thalami. Nuc. dorsolateralis rostralis thalami, Pars lateralis, Pars medialis (also known as Pars magnocellularis) and Nuc. lateralis rostralis thalami are collectively considered to be Complexus opticus principalis thalami (Karten, et al., 1973; Bravo and Pettigrew, 1981; Ehrlich and Mark, 1984). Meier, et al. (1974) describe the thalamic organization of the retino-thalamo-hyperstriatal pathway in the pigeon. The complex appears to be an avian homologue of the dorsal nucleus of the lateral geniculate of mammals. These nuclei represent a primary thalamic termination of the optic tract in birds and remain quite distinct from Nuc. geniculatus lateralis, Pars ventralis and from pretectal nuclei. Karten and Nauta (1968) described the retinothalamic projections in the pigeon and owl. See Emmerton (1983) for a review of the avian visual system.
- (85) Nuc. ovoidalis. Synonymy: Nuc. B (Rendahl, 1924); Nuc. anterior ventralis (Edinger and Wallenberg, 1899). Nuc. ovoidalis represents the thalamic relay nucleus of the auditory system. Karten (1967) shows that this nucleus is the avian homologue of the ventral portion of the mammalian medial geniculate body. Karten (1968) describes the telencephalic projection of the nucleus. Bonke, et al. (1979) describe the connections of the auditory forebrain nuclei of the guinea fowl (*Numida meleagris*).
- (86) Nuc. rotundus. Anatomic, electrophysiologic and behavioral studies indicate that Nuc. rotundus represents a major thalamic relay for the visual sysetm of birds (Cowan, et al., 1961; Karten and Revzin, 1966; Revzin and Karten, 1966). Afferents to the nucleus arise in Tectum mesencephali and efferents project to the "tectofugal pathway" of the avian visual system (Karten, et al., 1973). Nuc. rotundus appears to be the avian counterpart of the Nuc. lateralis caudalis of mammals.
- (87) Nuc. semilunaris thalami. Synonymy: Nuc. semilunaris parovoidalis. This nucleus lies adjacent to the ventrolateral aspect of Nuc. ovoidalis and receives a significant number of afferent fibers from that nucleus (Karten, 1967).
- (88) Complexus spiriformis. This complex is considered to include Nuc. spiriformis lateralis, Nuc. spiriformis medialis, Nuc. principalis precommissuralis, Nuc. dorsolateralis caudalis and Nuc. dorsolateralis intermedius of the thalamus (Karten and Dubbeldam, 1973). The afferents to this region of the thalamus include those from the spinal cord, cerebellar nuclei, basal ganglia homologues (See Annot. 101),

- Tr. occipitomesencephalicus and possibly a small projection from Nuc. cuneatus and Nuc. gracilis. Each of these afferent systems overlap to some degree. These observations suggest that Complexus spiriformis may correspond, at least in part, to the ventral tier of nuclei of the mammalian thalamus (Karten and Dubbeldam, 1973).
- (89) Nuc. triangularis. Synonymy: Nuc. tr. habenulopeduncularis (Huber and Crosby, 1926; Craigie, 1930).
- (90) Sectiones Hypothalami. Kuenzel and van Tienhoven (1982) provided an excellent description of the hypothalamic nuclei of the chicken (*Gallus*). The nomenclature provided here primarily represents their proposed organization. Crosby and Showers (1969) describe the organization of the hypothalammic nuclei in the sparrow. Goosens, et al. (1977) describe the immunochemistry of the hypothalamoneurohypophyseal system in birds.
- (91) **Regio preoptica [R. rostralis] hypothalami.** Panzica and Viglietti-Panzica (1980) describe the preoptic area in the chicken (*Gallus*). Berk and Butler (1981) describe the efferent projections of the medial preoptic and medial hypothalamus of the pigeon (*Columba*).
- (92) Nuc. paraventricularis hypothalami. Schober, et al. (1977) have described hypothalamo-medullary connections from the region of this nucleus in the pigeon (Columba). Panzica and Viglietti-Panzica (1982: 1983) describe the parvocellular component and synaptology of neurosecretory neurons in this nucleus of the chicken (Gallus), as they relate to regulation of salt and water balance. Berk, et al. (1982) describe the localization of vasotocin and neurophysin-containing neurons in the diencephalon of the pigeon. Blähser, et al. (1978) and Blähser (1980) describe the localization of somatostatin containing neurons in the hypothalamus of the domestic Mallard (Anas platyrhychos) and chicken. Dubois, et al. (1974) describe the distribution of somatostatin in the median eminence of mammals, birds, and amphibians. Bons, (1976; 1980) and Bons, et al. (1978a, b) describe the topography of the mesotocin, vasotocin, and luteinizing hormone releasing hormone (LHRH) neuroendocrine systems and connections with the hippocampal area in the brain of the domestic Mallard and Japanese Quail (Coturnix coturnix). Jozsa and Mess (1982), Sterling and Sharp (1982), Mikami et al. (1988) and Kuenzel and Blähser (1991) localized LHRH containing neurons in the brain of domestic fowl. Korf, et al. (1982; 1983) describe the afferents to the nucleus in the Mallard and demonstrate that some of the neurons make contact with cerebrospinal fluid of the third ventricle. Viglietti-Panzica and Contenti (1983) describe the development of the nucleus in the chick.
- (93) Nuc. ventromedialis hypothalami. Synonymy: Nuc. posterior medialis hypothalami (Bouille, et al., 1977). These investigators describe the hippocampal and septal connections to this nucleus.
- (94) **Eminentia mediana.** There occur in *Zonotrichia leucophrys* anatomically distinct divisions of the median eminence that may be drained by separate rostral and caudal groups of hypophysial portal vessels (Vitums, et al., 1964).
- (95) **Tr. infundibularis.** Benowitz and Karten (1976a) describe this and other tracts in the region of the infundibulum.
- (96) **Tr. retinohypothalamicus.** Meier (1973) describes this tract in the chicken (*Gallus*), Bons (1974; 1976) in the duck (*Anas*), and Hartwig (1974) in the sparrow.

- (97) **Bulbus olfactorius.** Ricke and Wenzel (1978) describe the projections of the olfactory bulb to the forebrain of the pigeon (*Columba*).
- (98) **Fissura subhemispherica.** Synonymy: Transverse cerebral fissure (Baumel, 1967). The cleft between the ventral surface of one telencephalic hemisphere and the dorsal surface of the mesencephalic tectum.
- (99) Archistriatum. Consideration of its cytoarchitectural organization and hodologic relationships makes it apparent that the Archistriatum is more complex than has been previously assumed (Zeier and Karten, 1971, 1973). Some of the associated subdivisions of the Archistriatum are included in this nomenclature. It should be emphasized, however that the subdivisions listed are by no means all the cytoarchitectonic components. By way of simplification of structural relationships of the Archistriatum, based upon investigations of Zeier and Karten (1973), it appears that its caudal one-third and most medial parts (Archistriatum caudale and Archistriatum mediale) represent "limbic" components of the Telencephalon. These regions project to the hypothalamus via Pars hypothalamica of Tr. occipitomesencephalicus, and may represent an avian counterpart of the mammalian amygdala (Zeier and Karten, 1971) (See Annot. 16). The rostral two-thirds (Archistriatum rostrale and Archistriatum intermedium) give rise to the nonhypothalamic component of Tr. occipitomesencephalicus and appear to function in a "somatic" rather and a visceroendocrine effector system. A nucleus, called **Nuc. robustus** can be recognized within this part of the Archistriatum of singing birds and the budgerigar, as part of the "vocalization circuit" (Paton, et al., 1981). This area of the Archistriatum compares with the pericentral cortex of the goat and the sensorimotor cortex of primates (Zeier and Karten, 1971).
- (100) Commissura rostralis [anterior]. Synonymy: Commissura interarchistriatica (Ariens Kappers, et al., 1936). On crossing the midline, this commissure divides into two major fascicles; a relatively diffuse rostromedial branch (Pars bulbaris) and a more compact, laterally directed, caudal branch (Pars temporalis). Pars bulbaris passes rostromedially to Fasc. lateralis prosencephali and terminates in an area ventral and lateral to Lobus parolfactorius, including Nuc. accumbens, the dorsal portion of the Tuberculum olfactorium and limited areas of the medial edge of Paleostriatum intercalatum supremum. A portion of Pars temporalis ends in the rostral one-third of the Archistriatum and continues by two paths: a dorsolateral projection to the temporo-parieto-occipital area as it continues rostrolaterally to the Hyperstriatum intercalatum supremum and a ventrolateral projection paralleling Tr. frontoarchistriaticus to terminate in the deep layers of the Cortex piriformis (Zeier and Karten, 1973).
- (101) Complexus paleostriaticus. Several investigators have suggested that the paleostriate complex, consisting of the Paleostriatum augmentatum, Paleostriatum primitivum and Nuc. intrapeduncularis, represent the equivalent of the mammalian "basal ganglia" (caudate, putamen, and globus pallidus), whereas the overlying striatal masses of Neostriatum, Ectostriatum, Hyperstriaticum ventrale, dorsale, et accessorium are representative of the mammalian neocortex (Karten, 1969; Nauta and Karten, 1970; Zeier and Karten, 1971; Juorio and Vogt, 1967; Scheich, 1983; Dubbeldam and Vissner, 1987). These assumptions have been supported by Karten and Dubbeldam (1973) utilizing histochemical and neuroanatomic methods. Paleostriatum augmentatum and Lobus parolfactorius together are considered to be the equivalent of the mammalian caudate-putamen and Nuc. accumbens, respectively

- (Reiner, et al., 1983). Paleostriatum primitivum and Nuc. intrapeduncularis appear to correspond to the outer and inner laminae of the globus pallidus of mammals (Karten and Dubbeldam, 1973). Moreover, a Paleostriatum ventrale has been recognized in the pigeon (Kitt and Brauth, 1981) and the duck. The latter is a small-celled area ventral to the Lobus parolfactorius and medial to Fasc. lateralis prosencephali. It receives afferents from Lobus parolfactorius and other prosencephalic structures (Brauth, et al., 1978) and may have connections with the Archistriatum and the reticular formation of the brain stem.
- (102) **Nuc. preopticus medianus.** This sexually dimorphic nucleus within the preoptic hypothalamic area of the *Coturnix* quail was recently described and named by Adkins-Regan and Watson (1990). This nucleus was originally reported by Viglietti-Panzica, et al. (1986) as sexually dimorphic in *Coturnix*; they used the term Nuc. preopticus medialis (POM). The POM as presented in the pigeon (*Columba*) stereotaxic brain atlas (Karten and Hodos, 1967) does not accurately represent its anatomical position. It is suggested that the Nuc. preopticus medianus be applied to the nucleus within the preoptic area shown to be larger in males, involved in sexual behavior, and found to contain aromatase receptors (Balthazart, et al., 1990).
- (103) **Hippocampus.** Bons, et al. (1976) describe the projections of the hippocampus of the pigeon to the hypothalamus.
- (104) Hyperstriatum accessorium. Hyperstriatum accessorium makes up a major part of the gross brain structure. It is evidenced on the dorsal surface of the telencephalic hemisphere as the Eminentia sagittalis or "Wulst" (Fig. 14.2). The sagittal eminence may include (depending upon the author) Hyperstriatum accessorium and a variable subpial molecular layer, Lamina frontalis superior, Lamina frontalis suprema, Hyperstriatum dorsale and Hyperstriatum intercalatus supremum. Medially the sagittal eminence grades into the parahippocampal and hippocampal areas (Karten, et al., 1973). Nixdorf and Bischof (1982) describe the afferent connections to Eminentia sagittalis in the Zebra Finch; Bagnoli and Burkhalter (1983) present a similar study in the chicken. Watanabe, et al. (1983) describe the cytoarchitecture of the visual receptive cells of this region.
- (105) Lobus parolfactorius. The Lobus can be divided into lateral and medial portions (Reiner, et al., 1983). The lateral portion, together with the Complexus paleostriatum, is the source of Tr. striomesencephalicus. This tract projects to Nuc. habenularis lateralis, Area ventralis thalami, Nuc. tegmenti pedunculopontini and Nuc. ceruleus (Kitt and Brauth, 1981).
- (106) Nuc. ansae lenticularis caudalis; Nuc. ansae lenticularis rostralis. Synonymy: nucleus of the dorsal supraoptic decussation (Huber and Crosby, 1929); Nuc. entopeduncularis postero-superior (Kuhlenbeck, 1937). Nuc. ansae lenticularis corresponds to the entopeduncular nucleus of the alligator (Alligator mississippiensis) (Huber and Crosby, 1926) and a cell group believed by Papez (1935) to be comparable to the mammalian subthalamic nucleus. Powell and Cowan (1961) referred to the nucleus as the Nuc. posteroventralis and Baker-Cohen (1968) identified it as the entopeduncular nucleus. These nuclei have been referred to as the avian equivalent of the internal segment of the Globus pallidus or Substantia nigra. Karten and Dubbeldam (1973), however, indicate that on the basis of current information these assumptions are not justified, but that Nuc. ansae lenticularis rostralis/ caudalis may be more correctly considered to represent the avian counterpart of the mammalian subthalamic nucleus, nuclei of the field of Forel and other cell groups that receive

afferents from the Ansa lenticularis. To emphasize: the mammalian homologue of these nuclei is not definitively established.

- (107) Nuc. basalis [Nuc. trigeminalis] prosencephali. The synonym indicates that this nucleus is primarily related to the termination of ascending fibers from the principal sensory nucleus of the trigeminal nerve. It may in fact represent a thalamic relay nucleus somewhat remote from the thalamus proper. It is not clear, however, that Nuc. basalis exclusively serves this function (Wallenberg, 1903; Woodburne, 1936; Witkovsky, et al., 1973). The name, Nuc. basalis is retained in the present terminology because of this contingency and the fact that the term is well established in the literature. Stingelin (1961) noted that the relative size of Nuc. basalis is proportional to the size of the principal sensory nucleus of the trigeminal nuclear complex. Physiological studies indicate that the principal sensory nucleus of the trigeminal complex is linked to Nuc. basalis by way of a direct monosynaptic pathway, the Tr. quintofrontalis (Witkovsky, et al., 1973). Dubbeldam, et al. (1981) and Berkhoudt, et al. (1981) describe the somatotopy of tactile representation in Nuc. basalis. Dubbeldam and Visser (1987) describe the efferents of Nuc. basalis and the interrelationships between Nuc. basalis and the Neostriatum in the Mallard.
- (108) Tr. fronto-archistriaticus. This tract originates from Neostriatum, Pars rostralis and terminates in Archistriatum and the overlying lateral part of the Neostriatum (Wild, et al., 1985).
- (109) **Meninges.** Early workers were able to identify only a pia-arachnoid lamina, and a Dura mater encephali, with little or no development of a **cavum subarachnoideum** in birds (see Hodges, 1974; Baumel, 1975 for reviews). Bohme (1970) and Jones and Dolman (1978), using light and electron microscopy, have demonstrated distinct **Pia** and **Arachnoid** layers, a subarachnoid cavity and arachnoid granulations in the pigeon (*Columba*) and the chicken (*Gallus*).
- (110) **Dura mater spinalis; Dura mater encephali.** The internal vertebral venous sinus lies in the epidural space between the Dura mater spinalis and the periosteum of the vertebral canal. The dura mater encephali consists of two layers closely adherent, but separable from one another. Cranial dural venous sinuses are located in the plane between the two layers; both layers are vascularized by rami of the cerebral arteries.
- (111) **Plica tentorialis.** This is a transverse fold of Dura mater encephali that lies in the Fissura subhemispherica between the caudoventral surface of the telencephalic hemispheres and the mesencephalic colliculus. The fold is attached to and extends the Crista tentorialis, an osseous ledge on the inner surface of the cranial cavity (See **Osteo.** Fig. 4.6).
- (112) Lig. suspensoria transversa. Ligamentous bands of the Pia mater that stretch from Lig. denticulatum to Lig. ventromedianum and on to the opposite Lig. denticulatum, forming a hammock-like structure for the lumbosacral intumescence (Annot. 1) of the spinal cord (Dingler, 1965).

**Sequence of sections.** The sequence of brain sections are presented from caudal to rostral, beginning in the spinal cord, then Medulla oblongata, ending with the Telencephalon. In individual figures with multiple sections the uppermost section is most rostral, the bottom one is most caudal (see Fig. 14.1). The figures were adapted and redrawn from the atlas of Kuenzel and Masson (1988) with the permission of Johns Hopkins Press.

**Abbreviations.** In some instances the abbreviations for features on the sections of the brain do not agree completely with their recommended names as presented in the list of terms. In many of these, the abbreviation is not only followed by the recommended term but followed by parenthetical word or words. For example: CBI, Nuc. cerebellaris medialis (internus). The "internus" is not an alternate term but a non-recommended synonym which helps to explain why the abbreviation is CBI instead of CBM. On the other hand, parts of names in square brackets that follow the primary term, as explained in the general introduction, are "official", recommended, secondary alternative terms.



Fig. 14.1. Median-sagittal view of chick brain showing anatomical regions used in text.



Fig. 14.2. Frontal aspect of the brain of the pigeon.



Fig. 14.3. Lateral aspect of the brain of the pigeon. Abbreviations for Figs. 14.1, 2, 3:

| ·9· · · · · · | Editoral doposit of the brain of the pr |
|---------------|-----------------------------------------|
| AUC           | Auricula cerebelli                      |
| во            | Bulbus olfactorius                      |
| CFL           | Cerebrum, Fovea limbica                 |
| Cfr           | Cerebrum, Pars frontalis                |
| Coc           | Cerebrum, Pars occipitalis              |
| Сра           | Cerebrum, Pars parietalis               |
| CTvI          | Cerebrum, Tuber ventrolaterale          |
| CTvm          | Cerebrum, Tuber ventromediale           |
| CO            | Chiasma opticum                         |
| ES            | Eminentia sagittalis                    |
| FiC           | Fissura cerebelli                       |
| FI            | Fissura interhemispherica               |
| FS            | Fissura subhemispherica                 |
| FoC           | Folia cerebelli                         |
| GP            | Glandula pinealis                       |
| Н             | Hypophysis                              |
| HT            | Hemispherium telencephali               |
| MS            | Medulla spinalis                        |
| Р             | Pons                                    |
| TeM           | Tectum mesencephali                     |
| TeO           | Tectum opticum                          |
| TrO           | Tr. opticus                             |
|               |                                         |

Vallecula telencephali

Va



Fig. 14.4A. Mid-sagittal view of chick brain showing the location of circumventricular organs.

Fig. 14.4B. Sagittal view of cerebellum showing a numbering system for the many lobules of the structure. Note that the anatomical scheme will vary from species to species. Redrawn from Kuenzel and Masson (1988) with permission of Johns Hopkins Press.

Abbreviations for Fig. 14.4 A & B:

AP Area postrema
GP Glandula pinealis
LSO Organum laterali septi
ME Eminentia mediana
NH Neurohypophysis

OVLT Organum vasculosum laminae terminalis

PC Plexus choroideus

PVO Organum paraventriculare SCo Organum subcommissurale

SSO Organum subseptale (O. interventriculare)

STO Organum subtrochleare

Fp Fissura prima Fs Fissura secunda





Fig. 14.5 A, B and C. Transverse sections of the avian spinal cord in the synsacral region. The Sinus rhomboidalis is apparent in the lumbosacral swelling of the cord and contains the gelatinous body. The dorsal horn is laminated in birds similar to other vertebrates. In chickens (Fig. 14.5A, 5B) lamina 3 lies medial rather than ventral to lamina 2 (Brinkman and Martin, 1973; Martin, 1979) while in pigeons (Fig. 14.5C) a typical dorsoventral lamination pattern occurs (Leonard and Cohen, 1975). The two schemes shown represent at least two different types of dorsal horn lamination patterns in avian species. The "chicken" pattern appears to be widespread among various avian taxa. The type of pattern found in a given species has thus far been shown to be consistent across successively higher taxa. In other words, the pattern is conserved at the specific, generic, familial and ordinal taxonomic levels (Woodbury, 1989).





Fig. 14.6. A transverse section of the spinal cord of the chick in the cervicothoracic transitional region of the vertebral column. This is the level of the cervical intumescence of the cord from which the brachial plexus arises. The laminar pattern shown is that developed by Brinkman and Martin (1973).

Abbreviations for Figs. 14.5 and 6:

CC Canalis centralis CoA Commissura alba CoG Commissura grisea CG Corpus gelatinosum CD Cornu dorsale CV Cornu ventrale FD Funiculus dorsalis FL Funiculus lateralis F۷ Funiculus ventralis NM Nuc. marginalis



Figs. 14.7, 8, 9. Transverse sections of the Medulla oblongata of the chick. Levels of sections (see Fig. 14.1). The most caudal section is at the bottom of each group of three. Redrawn from Kuenzel and Masson (1988) with permission of Johns Hopkins Press.

Abbreviations:

| APa | Area postrema     |  |
|-----|-------------------|--|
| Cb  | Cerebellum        |  |
| CC  | Canalis centralis |  |

CE Nuc. cuneatus accessorius [lateralis] (continued p. 535)



Fig. 14.8



Fig. 14.9

(continued from p. 532)

CL Nuc. cervicalis lateralis

CMOd Nuc. centralis medullae oblongatae, Pars dorsalis CMOv Nuc. centralis medullae oblongatae, Pars ventralis

Co Nuc. commissuralis FD Funiculus dorsalis

FLM Fasc. longitudinalis medialis

FLt Funiculus lateralis
FV Funiculus ventralis

GC Nuclei gracilis et cuneatus

IC Nuc. intercalatus
LM Lemniscus medialis
LS Lemniscus spinalis

MCC Nuc. magnocellularis cochlearis
MnX Nuc. motorius dorsalis n. vagi
nlX Nuc. motorius n. glossopharyngei

nIX-X Nuc. n. glossopharyngei et Nuc. motorius dorsalis n. vagi

nXII Nuc. n. hypoglossi

NVIIIc N. vestibulocochlearis, Pars cochlearis

NIX-X Nn. glossopharyngeus et vagus

NX N. vagus

NXII N. hypoglossus

OI Complexus olivaris caudalis (components of OI include: OAD, OAM,

and OP)

OAD Nuc. olivaris accessorius dorsalis
OAM Nuc. olivaris accessorius medialis

OP Nuc. olivaris principalis
PH (Plexus of Horsley)
R Nuc. raphae

Rgc Nuc. reticularis gigantocellularis

RL Nuc. reticularis lateralis
Rpc Nuc. reticularis parvocellularis
RPaM Nuc. reticularis paramedianus

RPgl Nuc. reticularis paragiganto-cellularis lateralis;

RST Nuc. reticularis subtrigeminalis

S Nuc. tractus solitarii

SCbd Tr. spinocerebellaris dorsalis

SG Pars substantia gelatinosa, Nuc. tr. descend. n. trigem.

SS Nuc. supraspinalis

TDV Nuc. tr. descendentis n. trigemini

TS Tr. solitarius

VeD Nuc. vestibularis descendens
VeM Nuc. vestibularis medialis



Figs. 14.10, 11. Transverse sections of the Pons and rostral part of the Medulla oblongata of the chick. The most caudal section is at the bottom of each group of three. Redrawn from Kuenzel and Masson (1988) with permission of Johns Hopkins Press.

## Abbreviations:

| An | Nuc. angularis                                         |              |      |
|----|--------------------------------------------------------|--------------|------|
| BC | Pedunc. cerebellaris rostralis [Brachium conjunctivum] |              |      |
| Ch | Caraballum                                             | (continued n | 538) |



Fig. 14.11

(continued from p. 536)

Cbl Nuc. cerebellaris medialis (internus)

CbIM Nuc. cerebellaris intermedius

Cblvm Nuc. cerebellaris lateralis (internus, pars ventromedialis)

CbL Nuc. cerebellaris lateralis

CCV Commissura cerebellaris ventralis

CTz Corpus trapezoideum

FLM Fasc. longitudinalis medialis

FLO Flocculus
FU Fasc, uncinatus

L Lobulus lingulae (Lingula)

La Nuc. laminaris
LO Tr. lamino-olivaris
La Nuc. laminaris
LS Lemniscus spinalis

MCC Nuc. magnocellularis cochlearis
MnV Nuc. motorius n. trigemini

MnVIId Nuc. motorius n. facialis, Pars dorsalis
MnVIIi Nuc. motorius n. facialis, Pars intermedia
MnVIIv Nuc. motorius n. facialis. Pars ventralis

nVI Nuc. n. abducentis N V N. trigeminus N VI N. abducens N VII N. facialis

N VIIIc N. vestibulocochlearis, Pars cochlearis N VIIIv N. vestibulocochlearis, Pars vestibularis

OS Nuc. olivaris superior PL Nuc. lateralis pontis

PLCV Proc. lateralis cerebello-vestibularis

PM Nuc. medialis pontis

R Nuc. raphae

Rgc Nuc. reticularis gigantocellularis
RP Nuc. reticularis pontis caudalis
Rpc Nuc. reticularis parvocellularis
RPaM Nuc. reticularis paramedianus

RPgc Nuc. reticularis pontis caudalis, Pars gigantocell.

SCbd Tr. spinocerebellaris dorsalis
SCv Nuc. subceruleus ventralis
Ta Nuc. vestibularis tangentialis
TD V Nuc. tr. descendentis n. trigemini

V IV Ventriculus quartus VC Ventriculus cerebelli

VeD Nuc. vestibularis descendens
VeDL Nuc. vestibularis dorsolateralis
VeL Nuc. vestibularis lateralis
VeM Nuc. vestibularis medialis

VeS Nuc. vestibularis rostralis (superior)



Figs. 14.12, 13. Transverse sections of the Mesencephalon and rostral part of the Pons in the chick. The most caudal section is at the bottom of each group of three. Redrawn from Kuenzel and Masson (1988) with permission of Johns Hopkins Press.

Abbreviations:

AVT

Area ventralis (Tsai)

BC

Pedunc. cerebellaris rostralis [Brachium conjunctivum] (continued p. 541)



Fig. 14.13

(continued from p. 539)

BCA (Brachium conjunctivum ascendens) BCD (Brachium conjunctivum descendens)

BCS Brachium colliculi mesencephali (superioris)

Cb Cerebellum

Cbl Nuc. cerebellaris internus CS Nuc. centralis superior CT Commissura tectalis CTz Corpus trapezoideum D IV Decuss, nervi trochlearis

ΕW Nuc. n. oculomotorii (nuc. of Edinger-Westphal)

FLM Fasc, longitudinalis medialis

FRI Formatio reticularis lateralis mesencephali FRM Formatio reticularis medialis mesencephali

FUs Fasc, uncinatus

Substantia grisea centralis GCt iCo. Nuc. intercollicularis

Complexus isthmi, Nuc. magnocell, isthmi Imc

IOs Nuc. isthmo-opticus IPs Nuc. interpeduncularis lpc Nuc. parvocellularis isthmi I Cs Nuc. linearis caudalis

Nuc. lemnisci lateralis. Pars dorsalis HI LLi Nuc. lemnisci lateralis, Pars intermedia Hv Nuc. lemnisci lateralis, Pars ventralis LoC Nuc. ceruleus (Locus ceruleus)

MLd Nuc. mesencephalicus lateralis. Pars dorsalis

MnV Nuc. motorius n. trigemini MPv Nuc. mesencephalicus profundus

nIV Nuc. n. trochlearis

nBOR Nuc. radicis opticae basalis

nDBC Nuc. decussationis brachiorum conjunctivorum

nPrV Nuc. sensorius principalis n. trigemini

N III N. oculomotorius N IV N. trochlearis ΝV N. trigeminus

OM Tr. occipitomesencephalicus

OMdI Nuc. n. oculomotorii. Subnuc. dorsolateralis OMdm Nuc. n. oculomotorii, Subnuc. dorsomedialis OMv Nuc. n. oculomotorii. Subnuc. ventralis

Pap Nuc. papillioformis

PBv Nuc. parabrachialis, Pars ventrolateralis

PΙ Nuc. lateralis pontis PM Nuc. medialis pontis QF Tr. quintofrontalis R Nuc. raphae

RPgc Nuc. reticularis pontis caudalis. Pars gigantocellularis

**RPO** Nuc. reticularis pontis rostralis (oralis)

Rus Nuc. ruber

RxVM Rdx. mesencephalica n. trigemini

SAC Stratum album centrale

SCd Nuc. subceruleus dorsalis (continued p. 542) (continued from p. 541)

SCv Nuc. subceruleus ventralis SGC Stratum griseum centrale

SGFS Stratum griseum et fibrosum superficiale

SGP Stratum griseum periventriculare SLu Nuc. semilunaris mesencephali

SO Stratum opticum

STO Organum subtrochleare
TD Nuc. tegmenti dorsalis
TIC Tr. isthmocerebellaris
TIO Tr. isthmo-opticus

TPc Nuc. tegmenti pedunculo-pontinus, Pars compacta

TV Nuc. tegmenti ventralis
TVM Tr. vestibulomesencephalicus
VeM Nuc. vestibularis medialis
VT Ventriculus tecti mesencephali



Figs. 14.14, 15. Transverse sections of the caudal part of the Telencephalon, the caudal part of the Diencephalon, and Mesencephalon of the chick. The most caudal section is at the bottom of each group of three. For clarification from which brain region the schematic drawings are taken see Fig. 1. Redrawn from Kuenzel and Masson (1988) with permission of Johns Hopkins Press.

Abbreviations:

AL Ansa lenticularis (continued p. 545)



Fig. 14.15

(continued from p. 543)

AI P Nuc. ansae lenticularis caudalis (posterior)

AP Area pretectalis

APH Area parahippocampalis AΩ Aqueductus mesencephali AVT Area ventralis (Tsai)

BCS Brachium colliculi mesencephali (superioris)

Cb Cerebellum

CDL Area corticoidea dorsolateralis CP Commissura caudalis (posterior)

CPi Cortex piriformis CT Commissura tectalis

D Nuc. paragrisealis centralis mesencephali (Nuc. of Darkschewitsch)

DA Tr. dorso-archistriaticus

DIP Nuc. dorsointermedius caudalis (posterior) thalami: DLP Nuc. dorsolateralis caudalis (posterior) thalami

DMN Nuc. dorsomedialis hypothalami

DMP Nuc. dorsomedialis caudalis (posterior) thalami

DSM Decuss, supramamillaris

FRL Formatio reticularis lateralis mesencephali FRM Formatio reticularis medialis mesencephali

GCt Substantia grisea centralis

GLdp Nuc. geniculatus lateralis, Pars dorsalis (principalis)

GLv Nuc. geniculatus lateralis. Pars ventralis

HIP Tr. habenulo-interpeduncularis Nuc. habenularis lateralis ΗΙ НМ Nuc. habenularis medialis

Ηp Hippocampus

HV Hyperstriatum ventrale ICH Nuc. intercalatus hypothalami

ICo Nuc. intercollicularis Tr. infundibularis

IHT Nuc. inferioris hypothalami

Imc Complexus isthmi, Nuc. magnocell, isthmi

IN Nuc. infundibuli hypothalami

IPS Nuc. interstitio-pretecto-subpretectalis

IS Nuc. interstitialis thalami LH Lamina hyperstriatica LHv Regio lateralis hypothalami

Nuc. lentiformis mesencephali, Pars medialis [P. magnocellularis] LMmc LMpc Nuc. lentiformis mesencephali, Pars lateralis [P. parvocellularis]

ME Eminentia mediana MI Nuc. mamillaris lateralis MM Nuc. mamillaris medialis

Nuc. mesencephalicus lateralis, Pars dorsalis MLd MPv Nuc. mesencephalicus profundus, Pars ventralis

nl Nuc. intramedialis (nuc. c)

nV M Nuc. mesencephalicus n. trigemini

nBOR Nuc. radicis opticae basalis

Nuc. tractus septomesencephalicus (Nuc. superficialis parvocellularis) nTSM

(continued p. 546)

(continued from p. 545)

N Neostriatum

NC Neostriatum, Pars caudalis
OM Tr. occipitomesencephalicus

OV Nuc. ovoidalis
P Glandula pinealis

PHN Nuc. periventricularis hypothalami
PMI Nuc. paramedianus internus thalami
PMM Nuc. premamillaris hypothalami
PPC Nuc. principalis precommissuralis

PST Tr. pretecto-subpretectalis

PT Nuc. pretectalis

PTM Nuc. pretectalis, Pars medialis PVO Organum paraventriculare

QF Tr. quintofrontalis

RI Recessus neurohypophysialis [Recessus infundibuli]

ROT Nuc. rotundus

RSd Nuc. reticularis thalami (superior, pars dorsalis)

Ru Nuc. ruber

SAC Stratum album centrale
SCE Stratum cellulare externum
SCO Organum subcommissurale
SGC Stratum griseum centrale

SGFS Stratum griseum et fibrosum superficiale

SGP Stratum griseum periventriculare
SHL Nuc. subhabenularis lateralis
SHM Nuc. subhabenularis medialis

SO Stratum opticum
SP Nuc. subpretectalis
SpL Nuc. spiriformis lateralis
SpM Nuc. spiriformis medialis

T Nuc. triangularis
TIO Tr. isthmo-opticus

ToS (Torus semicircularis)(See Annot. 73)

TOV Tr. nuc. ovoidalis
TrO Tr. opticus

TSM Tr. septomesencephalicus
TT Tr. tectothalamicus

TVM Tr. vestibulomesencephalicus

VL Ventriculus lateralis

VT Ventriculus tecti mesencephali



Figs. 14.16, 17, 18. Transverse sections of the caudal part of the Telencephalon and the rostral part of the Diencephalon of the chick. The most caudal section is at the bottom of each group of three. Redrawn from Kuenzel and Masson (1988) with permission of Johns Hopkins Press.

## Abbreviations:

AA Archistriatum rostralis (anterior)

Ac Nuc. accumbens

Ald Archistriatum intermedium, Pars dorsalis (continued p. 550)



Fig. 14.17



Fig. 14.18

(continued from p. 547)

Alv Archistriatum intermedium, Pars ventralis

AL Ansa lenticularis

ALA Nuc. ansae lenticularis rostralis (anterior)

Am Archistriatum mediale

AM Nuc. rostralis (anterior) medialis hypothalami

APH Area parahippocampalis
CA Commissura rostralis (anterior)
CDL Area corticoidea dorsolateralis

CHCS Tr. cortico-habenularis et cortico-septalis

CIO Capsula interna occipitalis

CO Chiasma opticum
CPa Commissura pallii
CPi Cortex piriformis
DA Tr. dorso-archistriaticus

DLA Nuc. dorsolateralis rostralis thalami

DLAI Nuc. dorsolateralis rostralis thalami, Pars lateralis DLAm Nuc. dorsolateralis rostralis thalami, Pars medialis

DLAmc Nuc. dorsolateralis rostralis thalami, Pars magnocellularis

DLP Nuc. dorsolateralis caudalis thalami
DMA Nuc. dorsomedialis rostralis thalami
DMP Nuc. dorsomedialis caudalis thalami
DSD Decuss. supraoptica, Pars dorsalis
DSV Decuss. supraoptica, Pars ventralis

E Ectostriatum
F Fornix

FA Tr. fronto-archistriaticus
FDB Fasc. diagonalis (of Broca)

FL Ager L (Field L)

FPL Fasc. prosencephali lateralis FPM Fasc. prosencephali medialis

GLdp Nuc. geniculatus lateralis, Pars dorsalis [principalis]

GLv Nuc. geniculatus lateralis, Pars ventralis

HA Hyperstriatum accessorium
HL Nuc. habenularis lateralis
HM Nuc. habenularis medialis

Hp Hippocampus

HV Hyperstriatum ventrale **ICT** Nuc. intercalatus thalami INP Nuc. intrapeduncularis LA Nuc. lateralis rostralis thalami LAD Lamina archistriatica dorsalis LES Lamina frontalis superior LFSM Lamina frontalis suprema LH Lamina hyperstriatica LHv Regio lateralis hypothalami LMD Lamina medullaris dorsalis

LMmc Nuc. lentiformis mesencephali, Pars medialis [P. magnocellularis]
LMpc Nuc. lentiformis mesencephali, Pars lateralis [P. parvocellularis]

LSO Organum laterale septi

MPOd Nuc. magnocellularis preopticus, Pars dorsalis

MPOm Nuc. magnocellularis preopticus, Pars medialis (continued p. 551)

(continued from p. 550)

MPOv Nuc. magnocellularis preopticus, Pars ventralis

nCPa Nuc. interstitialis commissurae pallii nST Nuc. interstitialis striae terminalis nTSM Nuc. tr. septomesencephalicus

N Neostriatum

NI Neostriatum, Pars intermedia OM Tr. occipitomesencephalicus

OV Nuc. ovoidalis

OVLT Organum vasculosum laminae terminalis

PA Paleostriatum augmentatum
PCVIII Plexus choroideus ventriculi tertii
PCVL Plexus choroideus ventriculi lateralis
PHN Nuc. periventricularis hypothalami

POM Nuc. preopticus medialis
POMn Nuc. preopticus medialis
POP Nuc. preopticus medianus
POP Nuc. preopticus periventricularis
PP Paleostriatum primitivum

PPC Nuc. principalis precommissuralis

PTD Nuc. pretectalis diffusus
PV Nuc. posteroventralis thalami
PVN Nuc. paraventricularis hypothalami

PVO Organum paraventriculare
PVT Paleostriatum ventrale
QF Tr. quintofrontalis
ROT Nuc. rotundus

RSd Nuc. reticularis superior, Pars dorsalis

SCE Stratum cellulare externum

SCNm Nuc. suprachiasmaticus, Pars medialis SGFS Stratum griseum et fibrosum superficiale

SL Nuc. septalis lateralis
SM Nuc. septalis medialis
SMe Stria medullaris
SO Stratum opticum

SOe Nuc. supraopticus, Pars externa SOv Nuc. supraopticus, Pars ventralis

SRt Nuc. subrotundus
SSO Organum subseptale
T Nuc. triangularis
TeM Tectum mesencephali
TeO Tectum opticum
TIO Tr. isthmo-opticus
Tn Nuc. taeniae

TPO Area temporo-parieto-occipitalis

TrO Tr. opticus

TSM Tr. septomesencephalicus

TT Tr. tectothalamicus
TTS Tr. thalamostriaticus
V III Ventriculus tertius
VLs Ventriculus lateralis

VLT Nuc. ventrolateralis thalami
VMN Nuc. ventromedialis hypothalami



Figs. 14.19, 20. Transverse sections of the rostral part of the Telencephalon of the chick. The most caudal section is at the bottom of each group of three. The top schematic diagram shows the bulbus olfactorius. Redrawn from Kuenzel and Masson (1988).

#### Abbreviations:

AA Archistriatum rostrale
Ac Nuc. accumbens
Bas Nuc. basalis
BO Bulbus olfactorius
CPP Cortex prepiriformis
E Ectostriatum

Ep Cingulum periectostriaticum (continued p. 554)



Fig. 14.20

(continued from p. 552)

FA Tr. fronto-archistriaticus
FDB Fasc. diagonalis (of Broca)
FPL Fasc. lateralis prosencephali

FT Tr. frontothalamicus et tractus thalamofrontalis

HA Hyperstriatum accessorium HD Hyperstriatum dorsale

HIS Hyperstriatum intercalatum supremum

HV Hyperstriatum ventrale

HVd Hyperstriatum ventrale, Pars dorsalis HVv Hyperstriatum ventrale, Pars ventralis

INP Nuc. intrapeduncularis
LFS Lamina frontalis superior
LFSM Lamina frontalis suprema
LH Lamina hyperstriatica
LMD Lamina medullaris dorsalis
LPO Lobus parolfactorius
LSO Organum laterale septi

N Neostriatum

NI Neostriatum, Pars intermedia OA Nuc. olfactorius rostralis (anterior) PΑ Paleostriatum augmentatum POD Nuc. preopticus dorsolateralis PP Paleostriatum primitivum PVT Paleostriatum ventrale QF Tr. quintofrontalis SL Nuc. septalis lateralis

SOv Nuc. supraopticus. Pars ventralis

TO Tuberculum olfactorium
TSM Tr. septomesencephalicus
TTS Tr. thalamostriaticus
Va Vallecula telencephali
VL Ventriculus lateralis
VO Ventriculus olfactorius

# SYSTEMA NERVOSUM PERIPHERICUM

#### JACOB L. DUBBELDAM

With contributions from subcommittee members: J. J. Baumel, H. Berkhoudt, G. A. Clark, Jr., A. S. King, L. Malinovský, Y. Ohmori, T. Watanabe, M. Yasuda. The figures were redrawn by Martin Brittijn.

Since the first edition of *Nomina Anatomica Avium* (NAA, 1979), only a few terms have been added or changed in this chapter. However, some parts of the terminology have been rearranged and many new data from the literature have been inserted in the annotations. Two recent reviews (Bubien-Waluszewska, 1981, 1985), using predominantly the nomenclature of NAA (1979), offer an excellent introduction to the anatomy of the cranial nerves and the somatic peripheral nervous system. Much work, however, relates to the anatomy of the fowl or the pigeon, and interspecific differences are still sources of a number of ambiguities.

Cranial nerves. The extensive communications between the cranial nerves IX-XII cause problems in the interpretation of the origin and target of the various components of this complex. Tracing studies have helped solve some of the complications.

Spinal nerves. The spinal nerves are organized similarly to those of mammals, thus the numbering and naming of these nerves seems to offer no problem. However, the variable number of vertebrae between species results in differences in the contributions of certain nerves to the various regions (review in Bubien-Waluszewska, 1985), as well as within a given species (e.g., Kaiser, 1923). Moreover, the definition of the different regions (cervical, thoracic, etc.) is problematical. It is possible to use the terms cervical or thoracic nerves in a regional sense, but in a transitional zone it may be risky to ascribe a particular nerve to one or the other region. The nerves of the pelvic region are named collectively as Nn. synsacrales, which obviates the problem of the regional vertebrae incorporated in the Synsacrum (Osteo. Annot. 141a). The best method of designating spinal nerves is to number them, starting at the base of the cranium and proceeding caudally (Huber,

1936; Baumel, 1975a). The innervation of the tail region was described recently in the pigeon by Baumel (1988).

Connexus/Ramus communicans. The term "Connexus" is employed instead of "Ramus communicans" as in other anatomical nomenclatures, except for the "Rami communicantes" that connect the spinal nerves with the Truncus paravertebralis. Thus confusion between these specifically-defined communicating rami and other nerve communications is avoided. The term "anastomosis" is not used at all in reference to communications between nerves; as the term indicates, it refers to connections between tubular structures (vessels). One should be aware that for each listing of a connexus there will be a second listing of the same connexus, with the names of the structures involved indicated in reversed order.

Visceral nerves. The autonomic nervous system is often classified as a purely visceral efferent (motor) system. In the present terminology Pars visceralis of Systema Nervosum Periphericum is not the equivalent of the autonomic nervous system, since the nerves making up Pars visceralis contain both visceral afferent and efferent neuronal processes. The terminology of Pars visceralis makes no reference to the autonomic "sympathetic" and "parasympathetic" divisions, nor to cholinergic or adrenergic systems, inasmuch as these have functional rather than anatomical connotations. The names of the neural elements are organized into craniosacral and thoracolumbar divisions for purposes of convenience.

The term "Plexus subvertebralis" is synonymous with the mammalian non-official terms "Plexus prevertebralis" or "Plexus collateralis". This terminology relates to the bipedal anatomical position of the birds compared to the upright anatomical position of man (see **Gen. Intro.:** terms of orientation; and **Topog.**). Neither the *Nomina Anatomica Veterinaria* (NAV; ICVGAN, 1983) nor the 6th Edition of the human *Nomina Anatomica* (IANC, 1989) has an inclusive term equivalent to the avian Plexus subvertebralis, but instead use general regional terms: Plexus aorticus thoracicus/abdominalis, Plexus hypogastricus superior.

The distribution of N. glossopharyngeus and N. vagus is visceral for the most part; therefore, these nerves are treated in detail in Pars visceralis, but only briefly in Pars somatica. Each major named autonomic ganglion of the head is listed with the cranial nerve which provides the so-called "motor root" of the ganglion. This practice was adopted in the 4th Edition of *Nomina Anatomica* (IANC, 1977) and continued in the 5th and 6th editions, but the last two editions of *Nomina Anatomica Veterinaria* (ICVGAN, 1973, 1983) are inconsistent in this regard.

# TERMINOLOGY PARS SOMATICA NERVI CRANIALES

#### N. olfactorius<sup>1</sup>

R. dorsalis

R. ventralis

N. terminalis<sup>1</sup>

N. opticus<sup>2</sup> (Osteo. Annot. 32)

Chiasma opticum

N. oculomotorius (Fig. 15.2; and

Pars visc.)

R. dorsalis

Rr. musculares

R. ventralis

R. ganglionaris ciliaris<sup>3</sup>

Rr. musculares

#### Ganglion ciliare4

Connexus cum n. abducenti

Connexus cum n.

oculomotorio3

Connexus cum n.

ophthalmico

Nn. choroidales<sup>5</sup>

N. iridociliaris<sup>5</sup> 6 7

Rdx. ganglionaris<sup>6</sup>

Rdx. ophthalmica<sup>6</sup>

Plexus anularis ciliaris<sup>7</sup>

Rr. ciliares<sup>7</sup>

Plexus anularis iridicus<sup>7</sup>

Rr. iridici<sup>7</sup>

**N. trochlearis** (Fig. 15.2; Fig. 4.3)

R. muscularis

Connexus cum n. ophthalmico

N. trigeminus (Fig. 15.1)

Rdx. motoria

Rdx. sensoria

Ganglion trigeminale<sup>8</sup>

N. ophthalmicus<sup>9</sup>

Connexus cum n. trochleari

Rdx. iridociliaris<sup>6</sup> (see N.

oculomot.)

Connexus cum g. ethmoidali<sup>10</sup>

Connexus cum g. ciliari

Rr. glandulae nasalis<sup>10</sup> (see

Pars visc. N. pal.)

R. lateralis (Osteo. Annot. 31)

Rr. glandulae nasalis

Rr. frontales

Rr. cristales<sup>11</sup>

Rr. palpebrales dorsonasales<sup>11</sup>

Rr. nasales interni

R. medialis (Osteo. Annot. 31)

Rr. nasales interni

R. premaxillaris dorsalis

Rr. rostri maxillaris<sup>11</sup>

R. premaxillaris ventralis

Connexus cum n. palatino<sup>12</sup>

Rr. palatini

Rr. rostri maxillaris11

Rr. glandularum palatinarum

(Digest. Annot. 10)

N. maxillaris (Fig. 15.1)

Connexus cum n. facialis<sup>2</sup>

N. supraorbitalis<sup>9</sup>

Rr. cristales<sup>11</sup>

Rr. frontales

Rr. auriculares

Rr. glandulares lacrimales

R. palpebralis

dorsotemporalis<sup>11</sup>

R. palpebralis

ventrotemporalis<sup>11</sup>

N. infraorbitalis

#### **NERVI CRANIALES (cont.)**

Rr. palpebrales

ventronasales11

N. nasopalatinus

R. palatinus

R. nasalis

Rr. nasales externi

Rr. nasales interni

Connexus cum n. palatino<sup>12</sup>

Connexus cum g.

ethmoidali

N. mandibularis (Fig. 15.1)

Rr. musculares 13

R. pterygoideus<sup>13</sup>

R. externus<sup>13</sup>

Rr. artc. quadratomandibularis

R. anguli oris

Rr. glandulares

Rr. palatini

Rr. cutanei

R. mandibularis externus

R. intermandibularis<sup>14</sup>

R. muscularis

Rr. cutanei

N. intramandibularis<sup>15</sup>

Connexus cum chorda

tympani<sup>21</sup>

R. sublingualis<sup>15</sup>

Rr. glandulares

Rr. rostri mandibularis<sup>11</sup>

N. abducens (Fig. 15.2)

Connexus cum g. ciliari

R. dorsalis16

R. ventralis<sup>16</sup>

N. facialis (Fig. 15.1; see Pars

visc.)

Geniculum n. facialis

Ganglion geniculi<sup>17</sup>

N. intermedius<sup>19</sup>

N. palatinus<sup>18</sup> (see Pars visc.) Ganglion sphenopalatinum<sup>18</sup>

(see Pars visc.)

Ganglion ethmoidale<sup>18</sup> (see

Pars visc.)

N. hyomandibularis [R. caudalis]

R. auricularis

N. m. depressoris mandibulae<sup>23</sup>

R. hvoideus<sup>24</sup>

R. cervicalis<sup>24</sup>

Connexus cum g. cervicali

craniali

Connexus cum n.

glossopharyngeo (Fig. 15.3)

Connexus cum n. cervicali

#### N. vestibulocochlearis<sup>25</sup> (see Sens.)

Pars vestibularis

Ganglion vestibulare<sup>26</sup>

R. rostralis

N. ampullaris anterior

N. ampullaris lateralis

[horizontalis]

N. utricularis

R. caudalis

N. ampullaris posterior

N. cristae neglectae

N. saccularis

Pars cochlearis

Ganglion cochleare<sup>26</sup>

N. cochlearis

Ganglion lagenare<sup>26</sup>

N. lagenaris

## N. glossopharyngeus (Fig. 15.3;

see Pars visc.)

N. laryngopharyngealis<sup>63</sup>

N. larvngealis<sup>63</sup>

Rr. musculares<sup>63</sup>

Chorda tympani<sup>20</sup> (see Pars visc.) N. vagus<sup>73</sup> (see Pars visc.)

#### **NERVI CRANIALES (cont.)**

N. accessorius (Fig. 15.3)

Rdxx. craniales

Rdxx. spinales

Connexus cum n. vago

R. externus<sup>27</sup> (see N. vagus)

N. hypoglossus (Fig. 15.3)

Rdx. rostralis Rdx. caudalis

Connexus cum g. cervicali

craniali

Connexus cum n. cervicali

primo<sup>28</sup>

# N. hypoglossocervicalis<sup>29</sup>

Connexus cum n. vago

Connexus cum n.

glossopharyngeo

Connexus cum n. cervicali

secundo

R. cervicalis descendens<sup>30</sup>

R. laryngolingualis<sup>31</sup>

Rr. linguales<sup>31</sup>

R. tracheosyringealis<sup>31</sup>

Rr. tracheales<sup>31</sup>

R. syringealis<sup>31</sup> <sup>32</sup>

## NERVI SPINALES<sup>33</sup> (see PNS Intro.)

Fila radicularia

Rdx. dorsalis

Ganglion spinale [G. radiculare

dorsalel

Rdx. ventralis

N. spinalis

R. dorsalis

R. ventralis

Rr. communicantes (PNS Intro.)

R. meningeus

#### NN. CERVICALES (Figs. 15.3, 4; PNS Intro.)

Rr. dorsales

Rr. articulares

Rr. musculares

Nn. cutanei cervicales

dorsales<sup>33</sup> Plexus cervicalis dorsalis<sup>34</sup>

Rr. ventrales

Rr. musculares

Nn. cutanei cervicales

ventrales<sup>33</sup>

Connexus cum n. faciali35

N. cutaneus colli<sup>35</sup>

Connexus cum n. hypoglosso<sup>29</sup>

#### PLEXUS BRACHIALIS<sup>36</sup>

Radices plexus<sup>37</sup>

Rr. musculares<sup>38</sup>

Trunci plexus

Fasciculi plexus<sup>39</sup>

Fasc. dorsalis<sup>40</sup>

N. subscapularis

N. subcoracoscapularis

N. anconealis

#### PLEXUS BRACHIALIS<sup>36</sup> (cont.)

N. axillaris

Rr. musculares

N. cutaneus axillaris

N. radialis

Rr. musculares

N. cutaneus brachialis

dorsalis

N. propatagialis dorsalis

N. cutaneus antebrachialis

dorsalis

R. superficialis

Rr. postpatagiales

R. profundus

Rr. carpales dorsales

R. alularis

Nn. metacarpales

dorsales

Rr. postpatagiales

Rr. digitales

Fasc. ventralis<sup>40</sup>

N. supracoracoideus (Myol.

Annot. 76)

N. bicipitalis

Rr. propatagiales

N. medianoulnaris

N. cutaneus brachialis

ventralis

N. medianus

Rr. musculares

N. propatagialis ventralis

R. superficialis

R. profundus

Rr. carpales ventrales

R. alularis

Nn. metacarpales

ventrales

Rr. postpatagiales

Rr. digitales

N. cutaneus

antebrachialis ventralis

N. ulnaris

Rr. musculares

N. cutaneus cubiti

R. caudalis

R. cranialis

Rr. postpatagiales

Rr. metacarpales ventrales

Rr. digitales

N. pectoralis

N. pectoralis cranialis

Rr. musculares

Nn. cutanei pectorales

N. pectoralis caudalis

Rr. musculares

Nn. cutanei abdominales

(Integ. Annot. 15)

#### PLEXUS BRACHIALIS ACCESSORIUS38

N. cutaneus omalis<sup>38</sup> | Rr. musculares<sup>38</sup>

## NN. THORACICI (PNS Intro.)

Rr. dorsales

Rr. articulares

Rr. cutanei

Rr. musculares

Rr. ventrales

Nn. intercostales

Rr. articulares

Rr. cutanei

Rr. musculares<sup>41</sup>

Rr. peritoneales

#### NN. SYNSACRALES<sup>42</sup> (PNS Intro.)

Plexus lumbosacralis<sup>43</sup>

Radices plexus

Trunci plexus

Fasc. dorsalis46

Fasc. ventralis46

Plexus lumbalis<sup>43</sup> (Figs. 15.6)

R. cutaneus femoralis lateralis

R. cutaneus femoralis

medialis<sup>48</sup>

N. cutaneus cruralis cranialis

N. pubicus<sup>49</sup>

N. femoralis (Figs. 15.6, 7)

N. cutaneus femoralis

cranialis

N. coxalis cranialis (Art.

Annot. 70; Myol.

Annot. 104)

Rr. musculares<sup>46</sup>

N. obturatorius<sup>48</sup>

R. medialis

R. lateralis

Plexus sacralis41

Fasc. dorsalis<sup>46</sup>

Fasc. ventralis46

N. coxalis caudalis (Art.

Annot. 70)

N. cutaneus femoralis caudalis

Rr. musculares<sup>46</sup>

Connexus caudalis<sup>47</sup>

N. ischiadicus<sup>46</sup> (Figs. 15.6, 7)

N. tibialis<sup>46</sup>

N. suralis lateralis

N. suralis medialis

N. plantaris medialis<sup>50</sup>

N. metatarsalis plantaris

N. interosseus

N. cutaneus suralis

N. paraperoneus [N.

parafibularis]<sup>51</sup>

N. plantaris lateralis<sup>52</sup>

N. metatarsalis plantaris

R. digitalis

Rr. musculares<sup>46</sup>

N. peroneus [N. fibularis]<sup>46</sup>

Rr. musculares<sup>46</sup>

N. peroneus superficialis

Nn. metatarsales dorsales

Rr. digitales

N. peroneus profundus

Nn. metatarsales dorsales

Rr. digitales

N. furcalis<sup>44</sup>

Plexus pudendus<sup>44</sup> (Fig. 15.6, 8)

Rr. cutanei

N. lateralis caudae<sup>74</sup>

Rr. venti

Rr. musculares

Rr. cutanei

Connexus caudalis<sup>47</sup>

N. intermedius caudae<sup>74</sup>

Rr. muscularis<sup>74</sup>

Rr. cutanei<sup>74</sup>

N. pudendus<sup>74</sup> (see Pars

visceralis)

N. bigeminus<sup>45</sup>

# NN. CAUDALES (see PNS. Intro.) (Fig. 15.9)

Plexus caudalis<sup>53</sup>

Ansae plexus caudalis

N. medialis caudae<sup>54</sup>

N. dorsalis bulbi rectricium<sup>55</sup>

N. accessorius dorsalis bulbi<sup>55</sup>

N. accessorius ventralis bulbi<sup>55</sup>

Nn. ventrales bulbi rectricium<sup>55</sup>

Rr. musculares<sup>56</sup>

Rr. cutanei

Rr. glandulae uropygialis

## PARS VISCERALIS<sup>57</sup> (see PNS Intro.)

#### **DIVISIO CRANIOSACRALIS**

N. oculomotorius (Fig. 15.2; cf.

Pars somatica)

Ganglion ciliare<sup>4</sup>

Connexus cum n. oculomotorio

Connexus cum n. ophthalmico

Connexus cum n. abducenti

N. iridociliaris<sup>5</sup>

Rdx. ganglionaris<sup>6</sup>

Rdx. ophthalmica<sup>6</sup>

Plexus anularis ciliaris<sup>7</sup>

Rr. ciliares<sup>7</sup>

Plexus anularis iridicus<sup>7</sup>

Rr. iridici<sup>7</sup>

N. facialis (Fig. 15.1; Pars

somatica)

Ganglion geniculi<sup>17</sup>

N. intermedius<sup>19</sup>

Chorda tympani<sup>20</sup> <sup>21</sup>

Connexus cum n. mandibulari<sup>21</sup>

Ganglia mandibularia<sup>21</sup>

Rr. glandulares (see Digest.)

Connexus cum n. maxillari<sup>22</sup>

Rr. glandulares lacrimales

see N. max.)

N. palatinus [R. rostralis]<sup>18</sup> (see

N. hyomand.)

Connexus cum n.

glossopharyngeo

R. ventralis

Connexus cum n. infraorbitali

Connexus cum g.

sphenopalatino

Ganglion sphenopalatinum<sup>58</sup>

(Fig. 1)

Rr. glandulae membranae nictitantis 18

Connexus cum n.

nasopalatino<sup>18</sup>

R. dorsalis

Connexus cum g. ethmoidali

Ganglion ethmoidale<sup>58</sup>

Connexus cum n.

ophthalmico<sup>59</sup>

Rr. glandulae nasalis<sup>18</sup>

Connexus cum g.

sphenopalatino

N. glossopharyngeus (Fig. 15.3)

Ganglion proximale<sup>60</sup>

Ganglion distale<sup>60</sup>

Connexus cum n. palatino

Connexus cum n. hyomandibulari

Connexus cum g. cervicali

craniali

N. subcaroticus [N. precaroticus]<sup>68</sup>

N. lingualis<sup>61</sup>

Rr. pharyngeales

Rr. mm. hyobranchialium<sup>60</sup>

Rr. glandulares

Rr. gustatorii

Connexus

vagoglossopharyngealis<sup>62</sup> 73

N. laryngopharyngealis<sup>63</sup>

N. laryngealis<sup>63</sup>

Rr. musculares<sup>63</sup>

Rr. laryngotracheales<sup>63</sup>

N. pharyngealis<sup>64</sup>

Rr. pharyngeales<sup>64</sup>

Rr. esophageales<sup>64</sup>

R. muscularis<sup>64</sup>

Connexus cum n.

hypoglossocervicali

N. esophagealis descendens<sup>65</sup>

#### **DIVISIO CRANIOSACRALIS (cont.)**

Rr. esophageales

Rr. ingluviales

Rr. tracheales

Connexus cum n. vago N. vagus<sup>73</sup> (Figs. 15.3, 9)

Ganglion proximale<sup>66</sup>

Connexus cum n. accessorio

Connexus cum g. cervicali

craniali

R. externus<sup>27</sup> Connexus

vagoglossopharyngealis<sup>62</sup>

Connexus cum n.

hypoglossocervicali

Ganglion distale<sup>66</sup>

Rr. glandulares<sup>67</sup>

R. glomi carotici68

N. cardiacus cranialis<sup>69</sup>

N. aorticus<sup>69</sup>

N. recurrens

Rr. bronchiales

Rr. esophageales

N. pulmoesophagealis<sup>70</sup>

R. pulmonalis<sup>70</sup>

Plexus pulmonalis<sup>70</sup>

R. esophagealis

R. descendens

Rr. esophageales

Connexus cum plexu celiaco

R. ascendens

Rr. esophageales

Rr. ingluviales

Rr. tracheales

Rr. musculorum tracheae<sup>71</sup>

Rr. pulmonales<sup>70</sup>

Nn. cardiaci caudales<sup>69</sup> <sup>79</sup>

Rr. septi obliqui<sup>72</sup>

Truncus communis n. vagi<sup>73</sup>

Rr. proventriculares

Rr. viscerales abdominales

[Nn. gastrici]<sup>73</sup>

Rr. proventriculares

Connexus cum plexu celiaco

(Fig. 15.10)

Rr. ventriculares

Rr. pylorici

Rr. duodenales

Rr. pancreatici

Rr. hepatici

Plexus pudendus (Pars somatica)

N. pudendus<sup>74</sup>

Rr. ureterales (Ren)

Rr. oviductales (Fem)

Rr. vaginales (Fem)

Rr. ductus deferentis (Masc)

Ganglia cloacalia (Cloaca

Annot. 25)

Plexus cloacalis (Cloaca

Annot. 25)

Nn. cloacales (Cloaca

Annot. 25)

Rr. cloacales

Rr. bursae cloacalis

Rr. corporis vascularis phalli

Ganglion paracloacale (Cloaca

Annot, 25)

Ganglia rectalia<sup>75</sup> (Cloaca

Annot. 25)

15.3, 6, 9)

Ganglion uterovaginale<sup>75</sup>

N. intestinalis<sup>76</sup> (Fig. 15.10)

Ganglia n. intestinalis<sup>76</sup>

#### **DIVISIO THORACOLUMBALIS**

Truncus paravertebralis<sup>83</sup>

Ganglia paravertebralia (Figs.

(PNS Intro.)

#### **DIVISIO THORACOLUMBALIS (cont.)**

Rr. communicantes (PNS Intro.) Connexus interganglionares Ansae connexuum

interganglionarum<sup>77</sup>

Plexus subvertebralis<sup>78</sup> (PNS

Intro.)

Ganglia subvertebralia Truncus paravertebralis

cervicalis<sup>77</sup> (Fig. 15.10)

Ganglion cervicale craniale<sup>77</sup>

N. ophthalmicus externus<sup>78</sup>

Connexus cum n. trigemino

N. caroticus externus<sup>78</sup>

N. caroticus cerebralis<sup>78</sup>

Connexus cum n. faciali

glossopharyngeo

Connexus cum n. vago

Connexus cum n. hypoglosso

Truncus subvertebralis<sup>78</sup>

Plexus subvertebralis

Connexus cum n.

cervicalis68 78

Truncus paravertebralis thoracicus

N. cardiacus<sup>79</sup>

Rr. pulmonales<sup>70</sup>

Plexus pulmonalis

Nn. splanchnici thoracici<sup>79</sup>

Plexus subvertebralis thoracicus<sup>79</sup>

Ganglion celiacum

Ganglia mesenterica cranialia Plexus celiacus<sup>80</sup> (Fig. 15.10)

Plexus splenicus<sup>80</sup>

Plexus hepaticus<sup>80</sup>

Plexus

pancreaticoduodenalis<sup>80</sup>

Plexus proventricularis<sup>80</sup>

Plexus gastricus<sup>80</sup>

Plexus mesentericus

cranialis80

Truncus paravertebralis synsacralis (Fig. 15.10)

Nn. splanchnici synsacrales<sup>79</sup>

Plexus subvertebralis

synsacralis

Plexus aorticus<sup>81</sup>

Plexus adrenalis81

Ganglia adrenalia81

(Fig. 15.10)

N. hepaticus<sup>82</sup>

Plexus renales<sup>81</sup> (Ren)

Plexus testicularis<sup>81</sup>

(Masc)

Plexus ovaricus<sup>81</sup> (Fem)

Plexus oviductales81

(Fem)

Plexus mesentericus

caudalis80

Plexus iliacus internus

Truncus paravertebralis caudalis<sup>83</sup>

Nn. splanchnici caudales

Ganglia imparia<sup>83</sup> (Fig. 15.10)

Plexus pelvici

N. intestinalis<sup>76</sup> (see N. vagus) Ganglia n. intestinalis<sup>76</sup>

## **ANNOTATIONS**

(1) N. olfactorius. Consult Baumel (1975a) and Watanabe and Yasuda (1968) for descriptions of the peripheral course and relationships of the olfactory nerve. The latter authors refer to R, dorsalis as R, externus and to R, ventralis as R, internus.

- N. terminalis. Wirsig-Wiechmann (1990) described cell bodies and fibers in *Gallus* forming a N. terminalis along the N. olfactorius; see also von Bartheld, et al. (1987).
- (2) N. opticus (Fig. 15.2). See O'Flaherty (1971) for a study of the fiber size distribution of the optic nerve of *Anas platyrhynchos*. Duff and Scott (1979) described a gradient in mean fiber size from ventronasal to dorsotemporal in the optic nerve in the pigeon.
- (3) **R. ganglionaris ciliaris** (Fig. 15.2). Synonymy: Rdx. brevis. This branch is also known as the oculomotor root of the ciliary ganglion [Connexus cum n. oculomotorio].
- (4) G. ciliare (Fig. 15.2). The paper of Oehme (1968) reviews the literature pertaining to the avian ciliary ganglion and thoroughly treats the connections and "branches" of the ganglion as well as its components in several species of Corvidae. See Annot. 5, 6, 7.
- (5) N. iridociliaris (Fig. 15.2). Synonymy: N. ciliaris major (Cords, 1904); N. ciliaris longus. See Annot. 6, 7.
- Nn. choroidales (Fig. 15.2). Synonymy: Nn. ciliares breves. Oehme (1968) discusses the nomenclatural difficulties in applying mammalian names to the nerves "branching" from G. ciliare that pass to the Bulbus oculi. The terms, N. irido-ciliaris and Nn. choroidales, were proposed by Oehme (1968). Watanabe, et al. (1967) described the formation and distribution of these nerves in *Gallus*. There is some uncertainty concerning whether the N. iridociliaris supplies autonomic fibers to the iridial muscle of birds (Isomura, 1973; Oehme, 1969b; Holtzmann, 1896; Schwalbe, 1879), but it has been demonstrated to supply the fundus and the ciliary body (Oehme, 1968).
- (6) Rdx. ganglionaris; Rdx. ophthalmica (Fig. 15.2). N. iridociliaris is formed by the union of two roots, viz., the Rdx. ophthalmica from N. ophthalmicus (often consisting of multiple rootlets) and the Rdx. ganglionaris from Ganglion ciliare (Bubien-Waluszewska, 1981). Oehme (1968) contends that Rdx. ophthalmica contributes sensory and sympathetic nerve fibers and that Rdx. ganglionaris contributes postganglionic "parasympathetic" fibers to Bulbus oculi. See Watanabe, et al. (1967) for an overview of synonyms used by older authors.
- (7) Plexus anularis ciliaris; Plexus anularis iridicus; Rami iridici (Fig. 15.2). Synonymy: Plexus ciliaris (Watanabe, et al., 1967). N. iridociliaris courses rostrally within the eye bulb between the scleral and choroidal layers and ramifies into several branches. At the periphery of the ciliary muscle the branches form a circular ciliary plexus within the muscle (see Sens). One or more rami of the ciliary annular plexus form the iridial ring of nerves which in turn gives rise to Rr. iridici that supply the iris (Oehme, 1968).
- (8) G. trigeminale (Fig. 15.1). Synonymy: G. semilunare, G. Gasseri. The trigeminal ganglion of some birds (e.g., *Gallus*, *Anser*) is partially divided into a smaller ophthalmic part and a larger maxillomandibular part. The extent of this division is reflected in the configuration of the Fossa ganglii trigemini of the interior of the floor of the cranial cavity in the dried skull (Osteo. Fig. 4.3).

- (9) N. ophthalmicus (Figs 15.1, 2). The ophthalmic nerve is the principal afferent nerve of the upper jaw (Rostrum maxillare, see Osteo. Annot. 57). This nerve has been known as N. ophthalmicus profundus; the use of this term is confusing since in the older literature N. ophthalmicus superficialis refers to the supraorbital branch of N. maxillaris.
- (10) **Rr. glandulae nasalis** (Fig. 15.1). Secretomotor nerve fibers to Gl. nasalis (salt gland) course via Connexus cum g. ethmoidali to N. ophthalmicus and are distributed via glandular rami (see N. facialis). The innervation of Gl. nasalis is treated by Ash, et al. (1969).
- (11) **Rr. cristales** (Fig. 15.1). These branches of the opthalmic and maxillary nerve innervate the comb in *Gallus* (Bubien-Waluszewska, 1981).
- Rr. palpebrales/dorsonasales/dorsotemporalis/ventrotemporalis/ventronasales. Synonymy: Rr. palpebrales rostrodorsales/caudodorsalis/caudoventralis/rostroventrales. Consult Bubien-Waluszewska (1981); see Fig. 15.1.
- Rr. rostri maxillaris/mandibularis (Fig. 15.1). These afferent rami of N. ophthalmicus and N. mandibularis carry impulses centrally from the various sensory corpuscles and discs deep to the Rhamphotheca of the upper and lower jaws. These endings have been extensively studied in different birds (see Malinovský and Zemanek, 1969, for a concise review of the literature; for other citations see Gottschaldt, 1985); Osteo. Annot. 41; Sens. Annot. 62-64.
- (12) Connexus cum n. palatino. Branches of the N. palatinus (VII) form a plexus with branches of N. ophthalmicus and N. maxillaris. Apparently facial fibers join trigeminal branches on their way to taste buds in the upper beak of the Mallard, *Anas platyrhynchos* (Krol and Dubbeldam, 1979).
- (13) **Rr. musculares.** These rami of N. mandibularis supply the M. depressor palpebrae ventralis and the various parts of the jaw muscles, but not the M. depressor mandibulae. Certain of the Rr. musculares have been given specific names by Barnikol (1953): R. pterygoideus and R. externus. See **Myol.** Annot. 16, 17.
- (14) **R. intermandibularis** (Fig. 15.1). Synonymy: R. circumflexus. Innervates skin between the mandibular rami as well as Mm. intermandibulares (**Myol. Annot. 26**).
- (15) N. intramandibularis (Fig. 15.1). This is the main trunk of the mandibular nerve and lies in the mandibular neurovascular canal. See Osteo. Annot. 47; Art. Annot. 25; Ven. Annot. 24.
- **R.** sublingualis (Fig. 15.1) (Cords, 1904). This branch of N. mandibularis has been referred to as N. or R. lingualis in the literature. The sublingual ramus does not have a lingual distribution proper, but is distributed to the mucosa of the floor of the oral cavity (see N. glossopharyngeus and N. hypoglossus).
- (16) R. dorsalis; R. ventralis. The dorsal ramus of the abducent nerve corresponds to the combined dorsolateral and ascending rami of Baumel (1975a), and supplies M. rectus lateralis and M. quadratus membranae nictitantis. The ventral ramus corresponds to Baumel's R. descendens, and is distributed to M. pyramidalis of the Membrana nictitans.
- (17) G. geniculi (Fig. 15.1). In a study of the sensory ganglion of N. facialis, Yntema and Hammond (1954) recognized a G. radicis and a G. geniculi, the former arising from the neural crest and the latter of placodal origin. It has been suggested that in the adult bird the G. radicis is incorporated in the vestibular ganglion (G.

vestibulare et radicis facialis), but there is no definite proof (d'Amico-Martel and Noden, 1983).

- (18) N. palatinus [R. rostralis] (Fig. 15.1). Synonymy: N. nasopalatinus (Bonsdorf, 1852). This ramus of N. facialis is considered by Santamaria-Arnáiz (1962) to be the homologue of the greater superficial petrosal or Vidian nerve of mammals. The nerve conducts parasympathetic fibers to G. ethmoidale and G. sphenopalatinum (see Pars visceralis). The ultimate distribution of this pathway presumably includes the Gl. nasalis, Gl. membranae nictitantis, Gl. lacrimalis, the palatine glands and glands of the nasal mucosa (Akester, 1979). These last communications are effected through Connexus cum n. nasopalatino. Viscero-sensory fibers innervate taste buds (Annot. 12).
- (19) N. intermedius. The common stem of Chorda tympani and Connexus cum n. maxillaris is sometimes called the intermedial nerve (Schummer, 1973). It carries special and general visceral afferent fibers and general visceral efferent fibers (Bubien-Waluszewska, 1981). See Annot. 21.
- (20) Chorda tympani (Fig. 15.1). Smith (1904-1905) describes two configurations of the Chorda tympani. In *Columba* and *Sturnus vulgaris*, the Chorda springs from N. hyomandibularis near its exit from the Basis cranii, enters the caudal portion of the tympanic cavity, crosses dorsal to Cartilago extracolumellaris, traverses the cavity with Lig. columello-squamosum (see Sens.), and leaves the cavity near the articulation of Quadratum with the squamous and otic bones. Crompton (1953) notes the same relationships of Chorda tympani in *Spheniscus demersus*. In *Gallus*, on the other hand, the Chorda tympani arises from the region of G. geniculi of N. facialis and arches above the tympanic cavity within the canal of the external ophthalmic vessels, entering the orbit with these vessels. Kuratani, et al. (1988b) find the Chorda tympani in the chick to be predominantly prespiracular, this in contrast to other vertebrates where it is postspiracular.
- (21) Connexus cum n. mandibulari; Connexus cum chorda tympani. Cords (1904) reviewed the earlier literature regarding the existence and connections of the avian Chorda tympani. Cords and more recently Hsieh (1951) indicate that the Chorda joins either the intramandibular segment of N. mandibularis or its R. sublingualis (see Fig. 15, 1). Chorda tympani fibers innervate mandibular taste buds in the chicken (Ganchrow, et al., 1986).
- **Gg. mandibularia.** These autonomic ganglia consist of scattered ganglion cells or small ganglia within the Chorda tympani. The efferent fibers supply the mandibular salivary gland (Akester, 1979).
- (22) Connexus cum chorda tympani; Connexus cum n. maxillari. This connection of the chorda tympani with the maxillary nerve is the lesser superficial petrosal nerve of Hsieh (1951), who described it as forming a common stem with the Chorda tympani. The nerve becomes distinct from the Chorda within the canal of the external ophthalmic vessels, communicates with the perivascular sympathetic nerves, and joins the maxillary nerve just medial to the Rete mirabile ophthalmicum. According to Hsieh some of the facial nerve fibers that join N. maxillaris are distributed to the lacrimal gland (Annot. 18). If, however, this connection is to be considered an homologue of the mammalian lesser superficial petrosal nerve, its origin should be from the N. glossopharyngeus.
- (23) N. m. depressoris mandibulae (Fig. 15.1). Synonymy: N. digastricus. Branch of the hyomandibular nerve to M. depressor mandibulae.

- (24) **R. hyoideus** (Fig. 15.1). The hyoid ramus of N. hyomandibularis of the facial nerve innervates M. stylohyoideus and M. serpihyoideus (**Myol.** Annot. 27, 28).
- **R. cervicalis** (Fig. 15.1). The cervical branch innervates the M. constrictor colli (Myol. Annot. 5).
- (25) N. vestibulocochlearis. Terminology of the branches of the vestibulocochlear nerve are based primarily on the works of Ewald (1892) and Boord (1969).
- (26) G. vestibulare. This afferent ganglion occupies the Fossa acustica interna of the caudal fossa of the cranial cavity.
- G. cochleare; G. lagenare. These afferent ganglia extend along the basilar membrane of the cochlea beneath the Habenula perforata (Sens. Fig. 16.9) and the papilla of the Lagena, respectively. See Sens. Annot. 42; Smith (1985).
- (27) **R. externus** (Fig. 15.3). The external ramus of the accessory nerve is distributed to the craniolateral portion of the cucullaris muscle (Baumel, 1975a). It appears to be a branch of the vagus nerve, but consists of fibers from N. accessorius that join and travel with the vagus nerve for a distance (Baumel, 1975a).
- (28) Connexus cum n. cervicali primo (Fig. 15.3). Synonymy: Plexus hypoglossocervicalis and Plexus cervicalis (Nishi, 1938). See Annot. 29.
- (29) N. hypoglossocervicalis (Fig. 15.3). This nerve is formed by the combination of the ventral elements of the hypoglossal nerve and the first cervical nerve. Kuratani, et al. (1988a) recently described the development of the hypoglossal nerve and associated structures in the chick embryo.
- (30) **R. cervicalis descendens.** This branch of the hypoglossocervical nerve supplies M. sternotrachealis (Watanabe, 1964). The Nuc. intermedius is source of its fibers (Youngren and Phillips, 1983). See **Myol.** Annot. 37.
- (31) **R. laryngolingualis.** Synonymy: R. rostralis (NAA, 1979); R. lingualis ventralis (Manogue and Nottebohm, 1982). This laryngolingual branch forms **Rr. linguales** (lingual rami) that supply motor fibers to several of the tongue muscles (Bubien-Waluszewska, 1981).
- **R.** tracheosyringealis. Synonymy: R. trachealis or R. caudalis (NAA, 1979); R. trachealis (Bubien-Waluszewska, 1981). This nerve gives off **Rr.** tracheales that supply motor fibers to tracheal muscles. It also forms the **R.** syringealis (Annot. 32).
- (32) **R. syringealis.** The syringeal ramus of the hypoglosso-cervical nerve is believed to be the motor supply to the intrinsic syringeal muscles. Nottebohm and Nottebohm (1976) contended that the fibers in this Ramus come from the hypoglossal nerve. See also Bubien-Waluszewska (1981) and Brackenbury (1989) for reviews. It has often been suggested that the vagus nerve, too, innervates syringeal nerves, either by direct branches or via the N. recurrens, but any such vagal fibers are likely to either have a visceral function in the syrinx or to be destined for the crop. Brackenbury (1989) reviewed the distribution of the right and left syringeal branches to the syringeal muscles, with reference to left hypoglossocervical dominance and the existence of two independent acoustic sources in the syrinx. **Resp.** Annot. 46.

- (33) **Nn. spinales.** The naming of spinal nerves is somewhat difficult because of the problem of distinguishing between regions of vertebrae (see **PNS** Intro.). See Yasuda (1964) for a detailed terminology of cutaneous nerves of *Gallus*. Kaiser (1923) proved the segmental innervation of the skin in *Columba*.
- (34) **Plexus cervicalis dorsalis** (Yasuda, 1964). Synonymy: Plexus suboccipitalis (Nishi, 1938). The dorsal cervical plexus is formed by the medial branches of the first three cervical dorsal rami (cf. Waluszewska-Bubien, 1985).
- (35) N. cutaneus colli. This nerve is formed by a communication of N. facialis and the ventral rami of the third cervical nerve (Yasuda, 1964).
- (36) Plexus brachialis (Figs. 15.4, 9). The terminal branches of this plexus have been classed into the following four divisions by Fürbringer (1879): (1) Nn. thoracici superiores; (2) Nn. brachiales superiores; (3) Nn. brachiales inferiores and (4) Nn. thoracici inferiores. These terms were used by Buri (1900), Baumel (1958), and Yasuda (1960). On the other hand the present nomenclature emphasizes the intrinsic organization of the plexus by the use of the terms Radices, Trunci, and Fasciculi (see Baumel, 1958, 1975). Bubien-Waluszewska (1985) surveys which nerves contribute to the brachial plexus in a number of birds.
- (37) **Rdxx. plexus.** The radices (roots) of the brachial plexus are supported by an apparatus of long and short suspensory ligaments (Baumel, 1985) in several major taxa of birds. Rami to the ventral vertebral musculature arise from roots of the plexus.
- (38) **Plexus brachialis accessorius** (Fig. 15.4). Synonymy: Nebenplexus (Fürbringer, 1879). This plexus is separable into two entities in the passeriform *Progne subis* (Baumel, 1958). **N. cutaneus omalis** supplies the skin of the shoulder region. **Rr. musculares** supply the rhomboid and serratus muscles.
- (39) **Fasciculi plexus.** Nerve cords formed by junction of divisions of the trunks of the brachial plexus (Fig. 15.4).
- (40) Fasciculus dorsalis; Fasciculus ventralis (Figs. 15.4, 5). The origin of the Fasciculus dorsalis, which supplies the dorsal forelimb muscles derived from the dorsal muscle mass, is situated laterally in the lamina 9; that of the Fasciculus ventralis which supplies the ventral muscles is located in the medial part of lamina 9 of the spinal grey (Ohmori, et al., 1982).
- (41) **Rr. musculares.** These thoracic nerve branches include those to intercostal muscles (deWet, et al., 1967) and to Mm. costoseptales. (Myol. Annot. 61).
- (42) **Nn. synsacrales.** These nerves include the caudal thoracic, lumbar, sacral and several caudal nerves, which are associated with the Synsacrum. (Osteo. Annot. 141, 145). See PNS Intro.
- (43) **Plexus lumbosacralis** (Fig. 15.6; Annot. 43) This term does not indicate all the spinal nerves that contribute to the plexus, but is commonly employed. Boas (1933) used the term in the most definitive work available on the description of this plexus. Yasuda (1961) described the plexus as consisting of a Plexus cruralis, Plexus sacralis (ischiadicus) and Plexus pudendus.

**Plexus lumbalis; Plexus sacralis** (Figs. 15.6, 8). Branches of the lumbar plexus leave the Pelvis cranial to the hip joint (see **Arthr.** Annot 184); branches of the sacral plexus exit the Pelvis via the ischiadic foramen caudal to the hip.

(44) **N. furcalis.** This nerve bifurcates and contributes a cranial branch to Plexus lumbalis, a caudal branch to Plexus sacralis. It is the 25th spinal nerve in *Gallus* (Baumel, 1975a) and spinal nerve 22 or 23 in *Columba* (Kaiser, 1923), but cannot always be recognized.

**Plexus pudendus** (Figs. 15.8, 6). See Baumel (1988) for details of branching of the pudendal plexus.

- N. intermedius caudae. Synonymy: N. cutaneus caudae (du Toit, 1912-13).
- (45) **N. bigeminus** (Fig. 15.8). This is the ventral ramus of spinal nerve 30 in *Gallus* (Baumel, 1975a) and 25, 26 or 27 in *Columba*. It contributes to both Plexus sacralis and Plexus pudendus, but cannot always be recognized.
- (46) **Rr. musculares.** The muscular branches of the femoral nerve (Fig. 15.7) are distributed primarily to the extensor muscles of the knee. The direct muscular branches of the sacral plexus, exclusive of tibial and peroneal nerve distribution, supply primarily the M. iliotibialis and M. iliofibularis.
- N. ischiadicus, N. tibialis, N. peroneus [N. fibularis] (Figs. 15.6, 7). The ischiadic (sciatic) nerve is actually the combined tibial and the peroneal nerves in a common epineurial sheath with little or no communication of fibers between them; the two nerves are easily separable. Ohmori, et al. (1984a) showed that the tibial and peroneal nerves are derived from different fasciculi of the plexus: the N. peroneus and Rr. musculares from Fasc. dorsalis, the tibial nerve and remaining branches of the Plexus sacralis from the Fasc. ventralis.
- (47) Connexus caudalis (Fig. 15.6). Synonymy: R. communicans caudalis (Buchholz, 1959-1960). This nerve connects N. lateralis caudae with a branch of N. coxalis caudalis; it contains motor fibers derived from the N. coxalis caudalis (Ohmori, et al., 1984), the distribution of the fibers is unknown.
- (48) N. cutaneus femoralis medialis (Fig. 15.7). Synonymy: N. saphenus. See Buchholz (1959-1960) and Yasuda (1964) for the distribution of this nerve.
- N. obturatorius (Fig. 15.7). N. cutaneus femoralis medialis and N. obturatorius are part of the Fasc. ventralis of the Plexus lumbalis (Ohmori, et al., 1984a). The remaining nerves are derived from the Fasc. dorsalis (Annot. 46).
- (49) **N. pubicus.** Synonymy: N. ilioinguinalis (Buchholz, 1959-1960). Arises from the lumbar plexus or the intrapelvic part of the medial femoral cutaneous nerve, parallels the pubis, and sends muscular rami to abdominal muscles (Baumel, 1975a).
- (50) N. plantaris medialis (Fig. 15.7). This nerve ends in the integument of the medial aspect of the ankle joint. The proximal part of the nerve corresponds to R. tibialis profundus and the distal part corresponds to R. cutaneus tarsalis medialis of Buchholz (1959-1960).
- (51) N. paraperoneus [N. parafibularis] (Fig. 15.7). This is the term of Holmes (1963); Yasuda (1961) referred to it as the tibial plantar nerve, and Buchholz (1959-1960) referred to it as the tertiary fibular nerve. The paraperoneal nerve is a branch of the tibial nerve that accompanies N. peroneus through the Ansa m. iliofibularis and extends into the foot as N. plantaris lateralis (Annot. 52). See Arthr. Annot. 186.
- (52) N. plantaris lateralis (Fig. 15.7). Synonymy: N. metatarsalis profundus plantaris (Buchholz, 1959-1960) (Annot. 51).
- (53) **Plexus caudalis** (Figs. 15.8, 9). In the pigeon this plexus is formed by the ventral rami of the last 6 or 7 spinal nerves. The caudal plexus supplies ventral axial

muscles of the tail, M. bulbi rectricium, the dorsal integument of the uropygium and uropygial gland (Baumel, 1988). See Annot. 56. The dorsal axial muscles and integument of the uropygium are supplied by dorsal rami of the nerves that form the caudal plexus.

- (54) N. medialis caudae. Synonymy: N. caudalis (du Toit, 1912-13).
- (55) N. dorsalis bulbi rectricium; Nn. ventrales bulbi rectricium; Nn. accessorii bulbi (Fig. 15.8). See Baumel (1988) for the description of these nerves.
- (56) **Rr. musculares.** The muscular rami of the caudal plexus can be specified after the muscles they innervate (see Fig. 15.8).
- (57) Pars visceralis. This portion of the peripheral nervous system includes both visceral efferent and visceral afferent components. See PNS Intro.
- (58) **G. sphenopalatinum** (Fig. 15.1). Synonymy: Ventral pterygopalatine ganglion. For connections of this ganglion see Schrader (1970); Watanabe and Yasuda (1970); Baumel (1975b) and Akester (1979). See Annot. 18
- **G. ethmoidale** (Fig. 15.1). Synonymy: G. orbitonasale; dorsal pterygopalatine ganglion. For connections of this ganglion see Schrader (1970); Watanabe and Yasuda (1970); Baumel (1975b) and Akester (1979). See Annot. 18.
- (59) Connexus cum n. ophthalmico. Krol and Dubbeldam (1979) describe a plexus of facial and trigeminal branches in the Mallard *Anas platyrhynchos*. See Annot. 12.
- (60) Ganglion proximale (Fig. 15.3). Synonymy: G. jugulare; G. radicis. In general this afferent ganglion of the glossopharyngeal nerve is closely related or actually joined to G. proximale of N. vagus in a fossa of the base of the skull (Osteo. Annot. 39).

Ganglion distale. The distal afferent ganglion of N. glossopharyngeus is closely adjacent to the G. cervicale craniale of the paravertebral trunk (Fig. 15.3).

Rr. mm. hyobranchialium. The rami of the N. lingualis of the glossopharyngeal nerve innervate some of the branchiomandibular muscles (Myol. Annot. 29).

- (61) N. lingualis (Fig. 15.3). Synonymy: N. lingualis dorsalis (Manogue and Nottebohm, 1982). See Annot. 31.
- (62) Connexus vagoglossopharyngealis (Fig. 15.3). Synonymy: Anastomosis of Staderini. The variability of this connection in *Gallus* is described by Waluszewska-Bubien (1972). Similar variability occurs in *Anas*, in which the connection may be represented by two or three nerves (Dubbeldam, unpubl.).
- (63) N. laryngopharyngealis (Fig. 15.3). Synonymy: N. pharyngolaryngealis (Manogue and Nottebohm, 1982). The laryngopharyngeal branch of the IXth nerve and its two main branches were reviewed by Baumel (1975b) and Bubien-Waluszewska (1981). One branch, the N. laryngealis innervates the intrinsic laryngeal muscles (Resp. Annot. 30) via its Rr. musculares, these being branchial efferent fibers from the Nuc. ambiguus; it also sends visceral efferent fibers to glands in the laryngeal mucosa (these may be vagal in origin, Annot. 62). The Rr. laryngotracheales supply visceral afferent and efferent fibers to the mucous membrane and glands of the larynx and the cranial part of the trachea.

- (64) **N. pharyngealis.** This pharyngeal branch of the laryngopharyngeal nerve supplies the smooth muscle and mucosa of the Pharynx via its **Rr. pharyngeales** and of the cranial part of the Esophagus via its **Rr. esophageales.** Its **R. muscularis** is a small twig innervating the **M.** genioglossus.
- (65) N. esophagealis descendens. The fibers that make up this nerve to the Esophagus and the Ingluvies are very likely of vagal origin (Baumel, 1975b: 2034; Watanabe, 1968).
- (66) Ganglion proximale. Synonymy: G. jugulare; G. radicis. This afferent ganglion of the vagus nerve is located in Fovea vagoglossopharyngea in the floor of the caudal cranial fossa of the cranium. See Annot. 60; and Osteo. Annot. 39

Ganglion distale. Synonymy: G. trunci; G. courvreuri; G. thoracicum; G. nodosum. The distal vagal ganglion has been shown histologically and physiologically to contain exclusively afferent cell bodies, although many efferent fibers pass through it (Wakley and Bower, 1981). This ganglion is located in the root of the neck at the thoracic inlet.

- (67) **Rr. glandulares.** These rami split off below the G. distale and probably innervate blood vessels in the ultimobranchial, parathyroid and thyroid glands.
- (68) **Rr. glomi carotici.** The topography has recently been revised by Abdel-Magied and King (1978); see also **Art.** Annot. 14. The carotid body in *Gallus* is supplied by a single branch from the G. distale. Abdel-Magied and King (1982) and Taha and King (1983) showed that nearly all the axons in the carotid body (probably over 90%) are afferent with their cell bodies in the distal ganglion. The **N. subcaroticus** (subcarotid or precarotid nerve) is primarily a "sympathetic" nerve, but was claimed by Terni (1929) to carry fibers of the N. glossopharyngeus to the carotid body; it accompanies the A. carotis interna in the neck, but it does not reach the carotid body (Jones and Purves, 1970; Abdel-Magied and King, 1978; review in Bubien-Waluszewska, 1981)
- (69) N. cardiacus cranialis; Nn. cardiaci caudales. The cranial cardiac nerves contain predominantly afferent nerve fibers from the heart, whereas the caudal cardiac nerves contain the only significant "parasympathetic" branches to the heart (Fedde et al. 1963) (Annot. 79).

N. aorticus. The aortic nerve is found more readily on the right side, as a branch of the cranial cardiac nerve, or of the distal vagal ganglion. It sends twigs to the aortic arch, where there is a baroreceptor zone (Taha, et al., 1983). The physiology and anatomy of the aortic nerve are reviewed by West, et al., (1981) and Bubien-Waluszewska (1981).

- (70) N. pulmoesophagalis; Rr. pulmonales. For a description of these structures see Fedde et al. (1963) and Fedde (1970); King and Molony (1971); McLelland and Abdalla (1972). The R. pulmonalis of the N. pulmoesophagealis combines with the Rr. pulmonales of the N. vagus to form the Plexus pulmonalis, which distributes afferent fibers to the lung. For a review, see Bubien-Waluszewska (1981).
- (71) Rami musculorum tracheae. The motoneurons of these nerves are found in the caudal part of the Nuc. intermedius medullae oblongatae (CNS Annot. 27).
- (72) **Rami septi obliqui.** These branches provide partial innervation to the muscle of the oblique septum (Annot. 41; and **Pericar.** Annot. 5).

(73) Nervus vagus. Fiber spectrum studies by Abdalla and King (1979a, b; 1982) showed that the cervical trunk of the vagus contains about 16, 000 nerve fibers, the ratio of myelinated to unmyelinated being about 1.3:1. The myelinated fibers are afferent and efferent in roughly equal proportions. About 90% of the afferent myelinated fibers have their cell bodies in the G. distale n. vagi, the rest are in the G. proximale n. vagi or G. distale n. glossopharyngei. About 70% of the unmyelinated fibers are afferent. The numbers of afferent and efferent fibers were also established in the Connexus vagoglossopharyngealis and the recurrent, cranial cardiac, and pulmoesophageal nerves. See Figs. 15.3, 9.

Truncus communis n. vagi (Fig. 15.9). Synonymy: N. vagus impar. The right and left vagi unite on the Proventriculus to form this nerve; there appears to be some interchange of nerve fibers in this junction (Watanabe, 1960). A common vagal trunk is not always formed in the chicken (Waluszewska-Bubien, 1972). When present the common trunk divides at the caudal extremity of the Proventriculus into right and left vagus nerves or **Rr. viscerales abdominales [Nn. gastrici]** (Baumel, 1975: 2035-2036); (Fig. 9). For details on the innervation of the stomach, see Malinovský (1963).

(74) N. lateralis caudae (Fig. 15.6). Synonymy: external pudendal nerve (du Toit, 1912-1913). See Art. Annot. 83 for origin of this term.

The lateral and the intermediate nerves of the tail are the main somatic branches of the Plexus pudendus (Cloaca Annot. 25), both of them supplying Rr. musculares to the muscles of the tail and Rr. cutanei to the skin in the region of the vent and the tail (Baumel, 1988).

N. pudendus (Figs. 15.6, 9). Synonymy: N. pelvinus (Freedman and Sturkie, 1963); N. pelvicus, pelvic splanchnic nerve. The pudendal is the visceral branch of the Plexus pudendus. It contains sacral "parasympathetic" fibers innervating the reproductive organs and cloaca, but no somatomotor fibers (Ohmori, et al., 1984b).

N. intermedius caudae (Baumel, 1988) (Fig. 15.6, 8). Synonymy: N. cutaneus caudae (du Toit, 1912-1913). This branch of the pudendal plexus is distributed mostly to the ventral tail muscles.

- (75) Ganglion rectale (Fig. 15.10). Synonymy: G. coli (Watanabe, 1972). Ganglion uterovaginale. The uterovaginal ganglion of the chicken is located proximal to the cloacal ganglia, not as large as the latter (S. Freedman, pers. comm.).
- (76) N. intestinalis (Fig. 15.10). Synonymy: nerve of Remak. For review of the structure and proposed function of this nerve see Pusstilnik (1937), Hsieh (1951), Watanabe (1972), Bennett (1974), and Akester (1979). N. intestinalis courses near the mesenteric border of the gut from the end of the rectum to the duodenum; numerous ganglia occur along its length. See Cloaca, Annot. 25.
- (77) Truncus paravertebralis cervicalis. Synonymy: sympathetic trunk; N. vertebralis (Fig. 15.3). The cervical paravertebral trunk is the avian counterpart of the cervical sympathetic trunk of mammals. In birds this nerve passes through the Foramina transversaria from the thoracic inlet to the cranial cervical ganglion (Thebault, 1898) at the base of the skull.

Ganglion cervicale craniale. The cranial cervical ganglion of the avian paravertebral trunk is formed by fusion of the first two cervical ganglia. Individual ganglia are associated with the remainder of the cervical nerves (Hsieh, 1951).

Ansae connexuum interganglionarum (Fig. 15.10). The ansae are a series of anastomosing interganglionic connections looping ventral to the costal processes of the cervical vertebrae that form the ventral wall of each transverse foramen.

(78) **Plexus subvertebralis.** Synonymy: common carotid plexus (Hsieh, 1951). See **Intro.** Visceral nerves.

**Truncus subvertebralis [N. caroticus cervicalis].** Synonymy: retrocarotid trunk (Terni, 1929). The trunk arises from the cranial cervical ganglion, and courses caudally along the cervical part of the internal carotid artery in the cervical carotid canal (**Osteo.** Annot. 121) on the ventral aspect of the vertebral column.

N. ophthalmicus externus; N. caroticus externus; N. caroticus cerebralis. Each of these nerves forms a periarterial plexus on the corresponding arteries. See Art. Annot. 17.

(79) **N. cardiacus** (Fig. 15.9). This is the so-called sympathetic cardiac nerve. This nerve along with other cardiac nerves has been described in detail by Hsieh (1951). The plexuses formed by these nerves are described by Ssinelnikow (1928); Thebault (1898) and Hsieh (1951) (Annot. 69).

Nn. splanchnici thoracici, Nn. splanchnici synsacrales (Fig. 15.10). In *Gallus* preganglionic fibers from thoracic ganglia 2-5 converge on the origin of the celiac artery and form with vagal fibers the **Plexus subvertebralis thoracicus**. Splanchnic fibers from thoracic ganglia 6-7 and synsacral ganglia 1-3, together with vagal fibers form an extensive plexus along the aorta (Akester, 1979).

- (80) Plexus celiacus; Plexus mesentericus cranialis/caudalis (Fig. 15.10). For a description of these structures see Watanabe and Paik (1973) and Baumel (1975). The celiac plexus and its subsidiaries form a vascular plexus around the celiac artery and its branches to the viscera of each region (Akester, 1979).
- (81) **Plexus aorticus.** The aortic plexus and its subsidiary plexuses have been reviewed by Baumel (1975). It lies on the aorta between the cranial mesenteric and ischiadic arteries. The paired **Plexus adrenalis** contains two or three large **Ganglia adrenalia** (Fig. 15.10), which contribute to the renal, gonadal, and oviductal plexuses. All subsidiary plexuses are distributed periarterially over the arteries of the different regions.
- (82) N. hepaticus (Fig. 15.10). The distribution of nerves to the liver are described by Staderini (1889), Cords (1904), Marage (1889), Thebault (1898), and Hsieh (1951). The hepatic nerve is derived from a ganglion in the right adrenal plexus and from the cranial mesenteric plexus (Hsieh, 1951).
- (83) **Gg. imparia** (Fig. 15.10). Several unpaired ganglia occur in the tail region where the paravertebral trunks converge and form a single trunk (*Columba*, Baumel, pers. comm).



Fig. 15.1. The distribution of the trigeminal and facial nerves in the chicken, *Gallus gallus*. Lateral view of head, left side. Redrawn from Watanabe and Yasuda (1970) and Schrader (1970).

Abbreviations: G. eth., G. ethmoidale; G. sphenopal., G. sphenopalatinum; N. depr. mand., N. m. depressoris mandibulae; N. hyomand., N. hyomandibularis; Rr. gl. memb. nict., Rr. glandulae membranae nictitantis; R. ang. oris, R. anguli oris; R. palp. caud. dors., R. palpebralis caudodorsalis; V, N. trigeminus; VII, N. facialis.



Fig. 15.2. Innervation of the eye of the chicken, *Gallus gallus*. Lateral view of the left eye. Redrawn from Watanabe, et al. (1967). Each of the nerves to the extrinsic eye muscles, including those of the nictating membrane is indicated by the name of the muscle.

Abbreviations: Connex. c. n. abduc., Connexus cum n. abducenti; Connex. c. n. ophth., Connexus cum n. ophthalmico; G. C., Ganglion ciliare; M. quad. memb. nict., M. quadratus membranae nictitantis; M. pyram. memb. nict., M. pyramidalis membranae nictitantis; II, N. opticus; III, N. oculomotorius; IV, N. trochlearis; V<sup>1</sup>, N. ophthalmicus; VI, N. abducens; Tendo. m. pyram., Tendo m. pyramidalis membranae nictitantis.



Fig. 15.3. Communications of the nerves at the base of the skull in the chicken, *Gallus gallus*. Dorsal aspect, right side, of the upper cervical spinal cord and Medulla oblongata. Redrawn from Baumel (1975a). Plexiform communications between the last four cranial nerves, the upper cervical nerves and the cranial end of the paravertebral autonomic nerve trunk occur intracranially and immediately below the base of the skull.

Note: (1) The three nerves springing from the upper end of G. cervicale craniale accompany arteries of similar names; (2) the proximal ganglia of cranial nerves IX and X are fused with one another and occupy a fossa in the base of the skull (Annot. 66); (3) the first cervical nerve (C1) differs from most of the other spinal nerves in lacking a dorsal root ganglion and no paravertebral ganglion attached to it; (4) the several connections of nerve C1 with nerves XII and X.

Abbreviations: C1, C2, Nn. cervicales 1 and 2; Connexus X-IX, Connexus vagoglos-sopharyngealis; Connexus c. n. hypogl. cerv., Connexus cum n. hypoglossocervicali; N. hypogl. cerv., N. hypoglossocervicalis; N. laryng. pharyng., N. laryngopharyngealis; Truncus paravert. cerv., Truncus paravertebralis cervicalis; VII, connexus of N. hyomandibularis of n. VII with G. distalis of N. glossopharyngeus and G. cervicale craniale; IX, N. glossopharyngeus; X, N. vagus; XII, N. hypoglossus.



Fig. 15.4. Brachial plexus of the pigeon, *Columba livia*. Ventral view, right side. Redrawn from Baumel (1979). Numerals identify the spinal nerves that contribute to the formation of the plexus; the roots (Rdxx. plexus) of the plexus are the ventral rami of the spinal nerves (see the smaller Rr. dorsales). The proximal half (the viewer's right half) of the plexus is located within the thoracic cavity.

Abbreviations: N. cutan. antebrach. dors./ventr., N. cutaneus antebrachialis; N. m. cor. brach. caud./cran., N. m. coracobrachialis; N. m. hum. tric., N. m. humerotricipitis; N. m. lat. dors., N. m. latissimi dorsi; N. m. rhom. prof./superf., N. m. rhomboidei; N. m. serr. prof./superf., N. m. serrati profundi/superficialis; N. m. scap. tric., N. m. scapulotricipitis; N. subcor. scap., N. subcoracoscapularis; Plex. brach. access., Plexus brachialis accessorius.





Fig. 15.5. Innervation of the wing of the pigeon, *Columba livia*. Right side: A. ventral nerves; B. dorsal nerves. Redrawn from Baumel (1979).

Note: (1) only a few of the muscular rami are identified; (2) the propatagial and postpatagial nerves are mostly cutaneous in their distribution; the postpatagial rami innervate the follicles of the large flight feathers; (3) see Fig. 15.4 for the origins of the radial and medianoulnar nerves from the brachial plexus.

Abbreviations: N. cutan. antebrach., N. cutaneus antebrachialis; N. cutan. brach. N. cutaneus brachialis; N. m. coracobr. cran., N. m. coracobrachialis cranialis; N. m. latiss. dors., N. m. latissimi dorsi; N. propatag., N. propatagialis.



Fig. 15.6. Lumbosacral plexus of the pigeon, *Columba livia*. Ventral view, right side. Redrawn from Baumel (1979). Numerals indicate the nerves usually involved in the formation of the two subplexuses of the plexus. The Plexus lumbalis is formed by the ventral rami of spinal nerves 21-23; the Plexus sacralis is formed by nerves 23-27. Note that the 27th nerve contributes to both plexuses. See Fig. 15.7 and Annot. 46 relating to the distribution of the femoral, tibial, and peroneal nerves, the principal branches of the plexuses.



Fig. 15.7. Innervation of the pelvic limb of the pigeon, *Columba livia*. Lateral view, left side. Redrawn from Baumel (1979). Note: (1) most muscular nerves are unnamed; (2) N. plantaris medialis is the prolongation of N. suralis medialis; (3) N. plantaris lateralis is the continuation of N. paraperoneus. N. paraperoneus is actually adherent to N. peroneus as the two traverse the Ansa m. iliofibularis; (4) see **Art.** Annot. 74 and **Ven.** Annot. 69 concerning the sural nerves and related vessels.

Abbreviations: Ansa iliofib., Ansa m. iliofibularis; N. cutan. fem., N. cutaneus femoralis; N. cutan. crur. cran., N. cutaneus cruralis cranialis; N. m. ischiofem., N. m. ischiofemoralis; N. paraper., N. paraperoneus; N. per. prof./superf., N. peroneus profundus/superficialis; R. musc., R. muscularis; R. obt. med., R. medialis N. obturatorii; Retin. ext. tib. tars., Retinaculum extensorium tibiotarsi.



Fig. 15.8. Plexus pudendus and its nerves in the pigeon *Columba livia*, Lateral view, left side. Redrawn from Baumel (1979). Some variation occurs in the formation of the plexus and its pattern of branching. Numerals identify the spinal nerves that contribute to the plexus. The ventral ramus of spinal nerve 27 contributes to both sacral and pudendal plexuses (see Annot. 45).

Abbreviations: Antroch., Antitrochanter; Connex. caud., Connexus caudalis; G. cl., G. cloacale; N. bigem., N. bigeminus; N. int. caudae, N. intermedius caudae; N. isch., N. ischiadicus; N. lat. caudae, N. lateralis caudae; N. pud., N. pudendus; Plex. sacr., Plexus sacralis; Rr. cutan. abd./l. t., R. cutanei of the abdomen/lateral tail. In the right half a number of muscles innervated by the Rr. musculares are indicated: PCIC and PCIP, the caudal and pelvic parts of M. pubocaudalis; PCE, M. pubocaudalis externus; SCD, SCV, dorsal and ventral parts of M. sphincter cloacae; TCL, M. transversus cloacae.



Fig. 15.9. Plexus caudalis and its branches in the pigeon, *Columba livia*. Ventral view; redrawn after Baumel (1988). The roots of the caudal plexus (ventral rami of spinal nerves 32-37(38) are nearly as large as those forming the pudendal plexus, a reflection of the abundant innervation required by the bulbs of the rectrices and the well-developed elevator and depressor muscles and integument of the uropygium, including the afferent innervation of the follicles of the flight feathers and their coverts and filoplumes. Note that the roots of the plexus are connected to one another by loops (ansae) that form a longitudinal chain, the N. medialis caudae.

Abbreviations: N. acc. dors./ventr. b., N. accessorius dorsalis/ventralis bulbi; N. dors./ ventr. b.r., N. dorsalis/ventralis bulbi rectricium; R. dors., R. dorsalis nervi spinalis 31; Rr. foll., follicular branches; Rdx. plex. pud., last root of Plexus pudendus; Rr. musc. b.r., Rr. musculares bulbi rectricium. Rr. musculares innervate muscles of the tail region: DCA, M. depressor caudae; LTCA, M. lateralis caudae; LVCA, M. levator caudae.



Fig. 15.10. Thoracoabdominal visceral nerves of the chicken, *Gallus gallus*. Redrawn from Baumel (1975b; after Stiemens, 1934). Ventrolateral view of the spinal nerves and paravertebral trunk of the left side showing the various splanchnic nerves forming the subvertebral plexuses (see Chap. Intro.) on the aorta and on the roots of its visceral branches.

Note: (1) the connection between the vagus nerve and the celiac plexus and the relation of the pudendal nerve to the Plexus pelvicus; (2) the rectal, ileal, and jejunal segments of N. intestinalis; (3) N. cardiacus provides pulmonary rami (not shown) as well as cardiac rami; (4) the loops (ansae) of the paravertebral trunk in the cervical, thoracic, and caudal regions; (5) the Gg. imparia which represent the fusion of the right and left paravertebral trunks in the caudal region.

Abbreviations: A, GI. adrenalis; C, Cecum; D, Duodenum; H, Hepar; I, Ileum; J, Jejunum; K, Ren; P, Proventriculus; Plex. mesent. caud., Plexus mesentericus caudalis; Plex. pancr. duod., Plexus pancreaticoduodenalis; R, Rectum; S, Splen; V, Ventriculus.

# ORGANA SENSUUM [ORGANA SENSORIA]

#### HOWARD E. EVANS and GRAHAM R. MARTIN

With contributions from subcommittee members: J. J. Baumel, H. Berkhoudt, R. B. Chiasson, V. Ilyichev, A. S. King, L. Malinovský, C. J. Murphy.

The structure of many organs in birds differs significantly from that of reptiles or mammals and requires different descriptive terms. In the present list an effort has been made to use the same terms as appear in *Nomina Anatomica Veterinaria* (NAV; ICVGAN, 1983) for domestic mammals, *Nomina Anatomica* (NA; IANC, 1989) for humans, and *Nomina Histologica* (IANC, 1989) for both, when appropriate.

There are still unanswered questions in regard to all sensory organs involved in orientation, navigation, foraging and daily life, and many areas of controversy concerning the role of different sensory capacities. Tactile and taste sensitivity within the bill seem particularly important in the foraging of both waterfowl (Anseriformes) and shorebirds (Charadriiformes) (Berkhoudt, 1985a; Gottschaldt, 1985). There is good evidence that olfaction is particularly important in the foraging of kiwis (Apterygidae) and in pelagic seabirds (Procellariiformes) (Wenzel, 1971; Bang and Wenzel, 1985). In the latter group olfaction may also serve as an aid to navigation and homing, a role also ascribed to this sense in the pigeon (Wiltschko and Wiltschko, 1989).

Migration. Migrating or homing birds may utilise a range of sensory cues, perhaps in a redundant manner. There is evidence that birds can detect the coordinates of the earth's magnetic field (Wiltschko & Wiltschko, 1988) and we know that they can orient to stellar rotation (Emlen, 1975) as well as perceive small changes in barometric pressure which could aid the determination of flight altitude Keeton (1979). Information on the plane of polarization of light (Kreithen and Keeton, 1974; Helbig and Wiltschko, 1989) may be available to some birds, although this has been called into question recently and reviewed by Martin (1991). There is also evidence that in many

birds visual sensitivity extends throughout the visible spectrum and into the ultraviolet (Kreithen and Eisner, 1978; Emmerton and Delius, 1980). This ultraviolet sensitivity may be used to guide birds in their foraging as well as their orientation (Goldsmith, 1980).

Echolocation. Some cave nesting birds echolocate with poor acuity (compared with bats) by using sounds of relatively low frequency—in the range of 1.5–2.5 kHz in the oilbird, *Steatornis* (Konishi and Knudsen, 1979), and 4.5–7.5 kHz in the cave swiftlets, Apodidae (Griffin and Suthers, 1970). It has been suggested that pigeons (*Columba livia*) may also perceive low frequency infrasound and use this as an orientation cue (Kreithen and Quine, 1979). No birds have yet been recorded with sensitivity above 12kHz; greatest sensitivity lies in the range 1–5 kHz (Dooling, 1982) and the lowest auditory threshold in the most sensitive birds (the owls, Strigiformes) is similar to that of humans (Martin, 1990: 167).

Eye. The eye of the bird is distinctive for many of its features. It varies greatly in shape from near spherical to tubular and the axis may be directed rostrally (owl), laterally (finch), or caudally (woodcock). The poles of the bulb are designated "anterior" and "posterior" for consistency with the human Nomina Anatomica (IANC, 1989) and Nomina Anatomica Veterinaria (ICVGAN, 1983). The part of the eye nearest the beak is designated as "nasal" and that nearest the ear as "temporal". The field of binocular vision in front of or behind a bird varies greatly between species (see Martin, 1986, and Martin and Brooke, 1991, for comparisons between five species).

The lens of the bird eye has an annular pad or band, Pulvinus anularis lentis, that is not present in any other animal eye (Fig. 16.2; Annot. 32). This annular pad is wrapped around a hydrostatic "vesicular chamber" which in turn surrounds the "central core" of the lens. The refractive properties of the bird eye are influenced by this unique arrangement.

Unlike mammals, the ciliary processes of the bird's eye are in contact with the lens and usually attach to it. The ciliary muscle is attached to the inner surface of the sclera, extends across the inner surface of the scleral ring, and inserts at the scleral venous sinus and the sclerocorneal junction. The ciliary muscle appears capable of dilating the scleral venous sinus and the filtration angle of the cilioscleral sinus (Annot. 11) (Fig. 16.2). Both lenticular and corneal accommodation have been demonstrated in birds (pigeon and chicken, Martin, 1987) but the actual mechanisms by which the ciliary muscles bring about these refractive changes are not understood. The mechanics of accommodation differ between bird and mammal. One hypothesis is that the avian bulb functions as a hydrostatic unit in which deformation of the shape and position of the lens and cornea is brought about by changes of

pressure within the bulb (Suburo and Marcantoni, 1983). In amphibious species, where a large range of accommodation is necessary to compensate for immersion, the curvature of the central core of the lens may be increased by forcing the lens through a constricted iris opening (Levy and Sivak, 1980).

At the point where the optic nerve exits from the bulb, the choroid and non-sensory retina project into the vitreous body as a highly vascular structure, the Pecten (Annot. 30).

Ear. The ear of the bird, which can be isolated in situ without great difficulty because of the pneumatic structure of the bone that surrounds it, is a model of simplicity with several distinctive features (Kuhne and Lewis, 1985): (1) a canal which connects the Scala tympani with the Scala vestibuli at the base of the Cochlea; (2) a Lagena at the end of the Cochlear duct; (3) a single, elongate ear ossicle, the columella, with processes attached to the tympanic membrane.

In the arrangement of terms for the ear the structures of the membranous labyrinth have been separated from those of the osseous labyrinth in order to clarify their relationships. Carelessness in the use of the terms "canal" and "duct" in past and current literature has led to confusion concerning the difference between the membranous and osseous labyrinths. The membranous labyrinth is the progenitor of the sensory structures of the inner ear and is filled with endolymph. The osseous labyrinth forms secondarily around the membranous labyrinth, contains perilymph, and is not in open communication with the endolymphatic spaces. For example, the Scala vestibuli and Scala tympani are creations of the osseous labyrinth, whereas the Ductus cochlearis (sometimes called the Scala media) and Lagena are terminal portions of the membranous labyrinth. Just as the semicircular "ducts" signify the membranous component versus the semicircular "canals" for the osseous portion, so should the other "ducts" and "canals" agree. Thus, the so-called Ductus brevis, which joins the basal portions of the Scala tympani and the Scala vestibuli, is herein named the Canalis interscalaris basalis, while the connection of the two scalae at the "apex" of the Cochlea (Helicotrema) is called the Canalis interscalaris apicalis. The latter is an appropriate term since in the bird the connection between the two scalae has length rather than being a simple hole or trema (Fig. 16.8).

Other special senses. The structures which mediate the detection of magnetic fields, infrasound, and heat detection in the beak or tongue are unknown. Furthermore, the structures underlying many sensory modalities are little understood. In particular these include olfaction, taste, and tactile sensitivity. Therefore a continuing mission is the identification of avian sensory transducers and an elucidation of their structure and function.

# TERMINOLOGY ORGANUM VISUS [OCULUS]

## BULBUS OCULI<sup>1</sup> (Fig. 16.1 Term. Sit. Annot. 1; and Intro.)

Polus anterior
Polus posterior
Equator<sup>2</sup>
Bulbs oculi anterior
Bulbus oculi posterior

Meridiani bulbi<sup>3</sup>
Axis bulbi [A. opticus]<sup>4</sup>
Axis visualis [A. visus]<sup>5</sup>
Axis visualis temporalis
Axis visualis centralis
Fundus oculi<sup>6</sup>

#### TUNICA FIBROSA BULBI<sup>7</sup>

Sclera<sup>7</sup>

Anulus [Annularis] ossicularis

sclerae8

Ossiculum sclerae

Ossicula posteriora sclerae9

Os nervi optici<sup>10</sup>

Sinus cilioscleralis<sup>11</sup>

Sinus venosus sclerae<sup>12</sup>

Lamina cartilaginea sclerae<sup>13</sup>

Junctura corneoscleralis<sup>15</sup>

Cornea<sup>14</sup>

Anulus [Annulus] corneae<sup>15</sup>

Limbus corneae

Facies anterior

Facies posterior

Epithelium corneae externum<sup>14</sup>

Lamina limitans superficialis<sup>14</sup>

Substantia propria corneae<sup>14</sup>

Lamina limitans profunda<sup>14</sup>

Epithelium corneae internum<sup>14</sup>

#### TUNICA VASCULOSA BULBI<sup>16</sup>

Choroidea<sup>17</sup>

Lamina suprachoroidea [L. fusca]<sup>17</sup>

Spatium perichoroideale<sup>17</sup>

Lamina vasculosa<sup>17</sup>

Lamina choroidocapillaris<sup>17</sup>

Lamina basalis<sup>17</sup>

Corpus ciliare<sup>18</sup>

Corona ciliaris

Processus ciliares<sup>19</sup>

Plicae ciliares

Zonula ciliaris<sup>20</sup>

Fibrae zonulares<sup>20</sup>

Spatia zonularia

Musculus ciliaris<sup>21</sup>

M. ciliaris anterior<sup>21</sup>

M. ciliaris posterior<sup>21</sup>

Fibrae radiales<sup>21</sup>

#### IRIS<sup>22</sup>

Facies anterior
Facies posterior
Margo pupillaris<sup>22</sup>
Margo ciliaris<sup>22</sup>
Anulus [Annulus] iridis
Plicae iridis<sup>22</sup>
Pupilla<sup>22</sup>

M. sphincter striatus pupillae<sup>23</sup>

M. sphincter myoepithelialis pupillae<sup>23</sup>

M. dilator striatus pupillae<sup>23</sup>

M. dilator myoepithelialis pupillae Stroma iridis<sup>22</sup> Tapetum lucidum iridis<sup>24</sup>
Corpus iridocytorum<sup>24</sup>
Iridocyti<sup>24</sup>
Epithelium anterium iridis<sup>22</sup>
Stratum pigmentum iridis<sup>22</sup>
Angulus iridocornealis<sup>32</sup>
Reticulum trabeculare
[Ligamentum pectinatum]<sup>32</sup>
Spatia anguli iridocornealis<sup>32</sup>
Circulus arteriosus iridis<sup>23</sup>
Circulus arteriosus ciliaris<sup>23</sup>

#### TUNICA INTERNA BULBI<sup>25</sup>

Retina<sup>26</sup> (CNS Annot. 42, 43)

Pars optica retinae
Stratum nervosum retinae<sup>26</sup>
Stratum neuroepitheliale<sup>26</sup>
Epitheliocytus bacillifer
Epitheliocytus conifer
Stratum bipolare<sup>26</sup>
Stratum ganglionaris<sup>26</sup>
Stratum neurofibrarum<sup>26</sup>
Nervus opticus<sup>26</sup>
Areae et foveae retinae<sup>27</sup>
Area centralis rotunda<sup>27</sup>
Area centralis horizontalis<sup>27</sup>
Fovea centralis<sup>27</sup>
Fovea temporalis<sup>27</sup>
Fovea temporalis<sup>27</sup>

Ora serrata<sup>28</sup>
Pars ciliaris retinae
Pars iridica retinae
Pars optica retinae
Stratum pigmentosum retinae<sup>26</sup>
Tapetum lucidum retinae<sup>29</sup>
Pecten oculi<sup>30</sup>
Pecten conicus oculi<sup>30</sup>
Pecten plicatus oculi<sup>30</sup>
Pecten vanellus oculi<sup>30</sup>
Pons pectinis<sup>30</sup>
Lamina basalis pectinis<sup>30</sup>

#### **CAMERA ANTERIOR BULBI31**

Humor aquosus<sup>31</sup> Angulus iridocornealis<sup>32</sup> Reticulum trabeculare [Lig. pectinatum]<sup>32</sup> Spatia anguli iridocornealis<sup>32</sup>

#### CAMERA POSTERIOR BULBI31

Humor aquosus

#### CAMERA VITREA BULBI33

Corpus vitreum<sup>33</sup> Membrana vitrea<sup>33</sup> Stroma vitreum<sup>33</sup> Humor vitreus<sup>33</sup>

## LENS<sup>34</sup> (Fig. 16.2)

Aqua vesiculae lentis

Axis lentis

Capsula lentis

Fibrae lentis

Corpus centrale lentis<sup>34</sup>

Equator lentis

Facies anterior lentis Facies posterior lentis Polus anterior lentis Polus posterior lentis Pulvinus anularis [annularis] lentis<sup>34</sup> Radii lentis

Substantia lentis Vesicula lentis<sup>34</sup>

#### ORGANA OCULI ACCESSORIA

Musculi bulbi<sup>35</sup> (Fig. 16.3)

M. rectus dorsalis

M. rectus ventralis

M. rectus nasalisM. rectus temporalis

M. obliquus dorsalis

M. obliquus ventralis

M. quadratus membranae

nictitantis37

M. pyramidalis membranae

nictitantis37

Vagina bulbi

Spatium episclerale

Corpus adiposum orbitae

M. tensor periorbita

M. orbicularis oculi

Palpebrae<sup>36</sup>

Facies cutanea

Facies conjunctivalis

Palpebra dorsalis<sup>36</sup>

Palpebra ventralis<sup>36</sup>

M. levator palpebrae dorsalis

M. depressor palpebrae ventralis

Limbus palpebralis<sup>36</sup>

Plicae marginales<sup>36</sup>

Cilia palpebralia (Integ.

Annot. 40)

Rima palpebrarum

Tarsus palpebralis<sup>36</sup>

Commissura palpebrarum

temporalis

Commissura palpebrarum nasalis

Angulus oculi temporalis

Angulus oculi nasalis

Membrana nictitans [Palpebra

tertia]<sup>37</sup>

(continued)

#### **ORGANA OCULI ACCESSORIA (cont.)**

Plica marginalis<sup>37</sup>

M. quadratus membranae

nictitantis<sup>37</sup>

Vagina fibrosa tendinis [Trochlea]

(Fig. 16.3)

M. pyramidalis membranae

nictitantis<sup>37</sup>

Tendo m. pyramidalis

Conjunctiva

Tunica conjunctiva bulbi

Tunica conjunctiva palpebrarum

Tunica conjunctiva membranae

nictitantis

Saccus conjunctivae

Fornix conjunctivae dorsalis

Fornix conjunctivae ventralis

Fornix conjunctivae membranae nictitantis

Apparatus lacrimalis<sup>38</sup> (Fig. 16.4)

Glandula lacrimalis<sup>38</sup>

Ductus gl. lacrimalis<sup>38</sup>

Glandula membranae nictitantis<sup>38</sup>

Ductus gl. membranae nictitantis

Ductus nasolacrimalis<sup>38</sup>

Canaliculus lacrimalis<sup>38</sup>

Ostium canaliculi lacrimalis<sup>38</sup>

## ORGANUM VESTIBULOCOCHLEARE [AURIS] AURIS INTERNA

## LABYRINTHUS MEMBRANACEUS (See Chap. Intro.)

Labyrinthus vestibularis<sup>39</sup>

(Fig. 16.6)

Endolympha Utriculus<sup>40</sup>

Macula utriculi<sup>40</sup>

Cotilus<sup>40</sup>

Striola<sup>40</sup>

Rampa<sup>40</sup>

Statoconia<sup>40</sup>

Reticulum gelatinosum

Neuroepithelium

Ductus semicirculares<sup>41</sup>

Ductus semicircularis anterior<sup>41</sup>

Ductus semicircularis posterior<sup>41</sup>

Ductus semicircularis lateralis<sup>41</sup>

Epithelium ductus semicircularis

Crus membranaceum commune<sup>41</sup>

Crus membranaceum simplex

Crus memoranaceum simplex

Crus membranaceum ampullaria

Ampullae membranaceae

Ampulla membranacea anterior

Crista ampullaris anterior

Ampulla membranacea posterior

Crista ampullaris posterior

Ampulla membranacea lateralis Crista ampullaris lateralis

Crista ampunaris Crista neglecta<sup>42</sup>

Septum cruciatum<sup>43</sup>

Cupula gelatinosa

Ductus utriculosaccularis<sup>44</sup>

Sacculus<sup>44</sup>

Macula sacculi<sup>44</sup>

Statoconia

Reticulum gelatinosum

Neuroepithelium

Saccus endolymphaticus<sup>44</sup>

Ductus endolymphaticus<sup>44</sup>

Ductus sacculocochlearis

[D. reuniens]<sup>45</sup>

Labyrinthus cochlearis

(continued)

### LABYRINTHUS MEMBRANACEUS (cont.)

Ductus cochlearis<sup>45</sup>

Spatium endolymphaticum

Tegmentum vasculosum<sup>46</sup>

Papilla basilaris<sup>45</sup>

Membrana tectoria

Lamina basilaris

Neuroepithelium

Kinocilia

Terminationes nervorum

Fibrocartilago ventralis Fibrocartilago dorsalis

Ganglion cochleare

Habenula perforata

Lagena<sup>45</sup>

Macula lagenae

Statoconia

Reticulum gelatinosum

Neuroepithelium

### LABYRINTHUS OSSEUS (Fig. 16.7B)

Perilympha

Spatium perilymphaticum

Cochlea<sup>47</sup>

Apex cochleae

Basis cochleae

Canaliculus cochleae<sup>50</sup>

Canalis interscalaris basalis<sup>48</sup>

Canalis interscalaris apicalis

[Helicotrema]<sup>49</sup>

Cisterna scalae vestibuli

Fossa scalae vestibuli

Recessus scalae tympani

Scala tympani<sup>45</sup> <sup>48</sup>

Scala vestibuli<sup>45</sup> 48

Vestibulum

Canales semicirculares ossei

Canalis semicircularis anterior

Canalis semicircularis posterior

Canalis semicircularis lateralis

Crus osseum simplex<sup>41</sup>

Crus osseum ampullaria41

Crus osseum commune<sup>41</sup> Ampullae osseae

Ampulla ossea anterior

Ampulla ossea posterior

Ampulla ossea lateralis

## **AURIS MEDIA (Fig. 16.7)**

## CAVUM TYMPANICUM [CAVITAS TYMPANICA]

Recessus pneumaticus

paratympanicus (Osteo. Annot. 23,

25, 26)

Ostium tympanicum tubae auditivae (Osteo. Annot. 98; Digest.

Annot, 19)

Recessus columellae (Osteo.

Annot. 22)

Ligamentum anulare [annulare] columellae<sup>51</sup>

Fenestra cochleae

Membrana tympanica secundaria

Membrana tympanica

Margo fibroelastica<sup>52</sup>

Sinus pneumaticus marginalis<sup>52</sup>

Columella<sup>53</sup>

Scapus columellae

(continued)

Fenestra vestibuli

### **CAVUM TYMPANICUM [CAVITAS TYMPANICA] (cont.)**

Basis columellae Lig. columellosquamosum Cartilago extracolumellaris<sup>54</sup>

Proc. anterior Proc. posterior

Proc. ventralis
Foramen m. columellae<sup>55</sup>
M. columellae<sup>56</sup>
Organum paratympanicum<sup>57</sup>

## AURIS EXTERNA<sup>58</sup> (Fig. 16.7B)

Apertura auris externae Meatus acusticus externus (**Osteo.** Annot. 19, 21)

Pennae auriculares<sup>59</sup>
Plumae auriculares rostrales
Plumae auriculares caudales

Operculum auris<sup>60</sup> (**Topog.** Annot. 5)

Plica cavernosa<sup>58</sup> Glandulae auriculares (**Integ.** 

Annot. 24)

## ORGANUM OLFACTORIUM [O. OLFACTUS]61

Concha nasalis caudalis (**Resp.**Annot. 5)
Concha septalis (**Resp.** Annot. 9)
Regio olfactoria (**Resp.** Annot. 15)

Epithelium olfactorium
Epitheliocytus neurosensorius
olfactorius

#### **ORGANUM GUSTATORIUM**

Caliculus gustatorius [Gemma gustatoria] Porus gustatorius Neurofibra gustatoria

# TERMINATIONES NEURALES<sup>63</sup> ORGANA SOMATOSENSORIA

Organa sensoria integumenti
Terminatio neuralis libera<sup>64</sup>
Terminationes nervorum plumae
et filopumae<sup>65</sup>
Terminationes dendritione

Terminationes dendriticae nervorum<sup>66</sup>

Corpusculum nervosum terminale

Corpusculum lamellosum avium<sup>67</sup>
Corpusculum discoidale
multicellulare<sup>68</sup>
Meniscus tactus<sup>69</sup>
Terminationes sensorium apicis
rostri<sup>70</sup>

Organa sensoria musculi

(continued)

#### **ORGANA SOMATOSENSORIA (cont.)**

Fusus neuromuscularis Organum nervosum terminale musculotendineum<sup>71</sup>

Terminationes dendriticae

nervorum<sup>66</sup>

Organa sensoria tendinis Fusus neurotendineus Terminatio neuralis libera Organum nervosum terminale musculotendineum Terminationes dendriticae nervorum Organa sensoria articulationis Corpusculum nervosum terminale Corpusculum lamellosum avium

#### ORGANA SENSORIA VISCERALIA72

Organa sensoria cardiovascularia Corpora para-aortica (Art. Annot. 5)

Sinus caroticus (Art. Annot. 7) Glomus caroticum (Art. Annot. 14)

#### ANNOTATIONS

- (1) **Bulbus oculi.** (Fig. 16.1) The avian eye varies greatly in the shape of the bulb from near spherical, as in the chicken, through to tubular, as in owls (Strigiformes). The shape is maintained in part by the scleral ring (Annot. 8) rather than by intraocular pressure. No bird eye is flat (planus) or spherical (globose) although these shapes are often cited as two of the three classical types of avian eye (Walls, 1942). For development of the eye and its accessory structures see Slonaker (1922); for a comparison of the eyes of falconiform and passeriform birds see Lord (1956).
- (2) Equator. (Fig. 16.1) The greatest circumference of the eyeball. Usually approximately perpendicular to the Axis bulbi (Annot. 4). All avian eyes studied to date show complex asymmetry with respect to the axis bulbi. The equator always lies posterior to the scleral ossicles, typically near, or coincident with, the limit Ora serrata of the nervous retina (Annot. 27).
- (3) Meridiani bulbi. Lines surrounding the surface of the eyeball which pass through both anterior and posterior poles.
- (4) Axis bulbi [A. opticus]. (Fig. 16.1) A line passing through the central point of the cornea and the center of the lens. This is not an axis of symmetry for the bulb and thus does not usually pass through the posterior pole. It is usually an axis of symmetry for the optical system and hence was previously referred to as the optic axis. [This term avoids the Latin and Greek combination of Axis (L.) and opticus(G.)].
- (5) Axis visualis [A. visus]. (Fig. 16.1) A line passing from the center of a fovea through the center of the lens. It is assumed that such a line defines a direction of high spatial resolution within the visual field. Distinction should be drawn between Axis visuale centralis and Axis visuale temporalis whose presence depends upon the position (central or temporal) of the Fovea (Annot. 27) in the retina. In some species

both visual axes are present: kingfisher (Alcedo); bittern (Botaurus); kestrel (Falco), and tern (Sterna).

- (6) **Fundus oculi** (Fig. 16.4). Common term in ophthalmology, referring to the internal surface or deepest portion of the posterior half of the eyeball. It is typically used to refer to the entire retinal surface, and is thus terminated by the **Ora serrata** (Annot. 28).
- (7) **Tunica fibrosa bulbi.** (Fig. 16.2) The outer fibrous case of the eyeball formed by the opaque **Sclera** and clear **Cornea** which meet at the Junctura corneoscleralis (Annot. 15). There are few living cells in the sclera and cornea thus the metabolism of the **Tunica fibrosa bulbi** is low, as a consequence of no direct vascular supply.
- (8) Anulus [Annulus] ossicularis sclerae. (Fig. 16.2 and Fig. 16.7A) The ring of bony ossicles which lies within the sclera anterior to the equator. It provides support for the shape of the bulb. There may be between 10 and 18 (the majority of species have 14 or 15) of the overlapping plate-like scleral ossicles (Curtis and Miller, 1938). The shape of the individual ossicles varies from flat or slightly convex to concave according to the shape of the eye.
- (9) Ossicula posteriora sclerae. Ossifications in the sclera posterior to the equator, distinct from the scleral ring. When the ossicle forms around the optic nerve it is called the Os nervi optici (Annot. 10).
- (10) Os nervi optici. The cartilage surrounding the optic nerve may ossify and form a complete ring or horseshoe-shaped bone. Formerly known as "Gemmingers ossicle" and "Os opticus", it has been recorded in over 200 species (Tiemeier, 1950, 1953). No satisfactory explanation of its presence has been published.
- (11) Sinus cilioscleralis. (Fig. 16.2) A medial extension of the anterior chamber in the region of the iridiocorneal angle. Aqueous humour from the chamber drains into this sinus via the **Reticulum trabeculare** and then into the Sinus venosus sclerae (see Annot. 12, 32).
- (12) Sinus venosus sclerae. (Fig. 16.2) Synonymy: Canal of Schlemm. A venous annulus near the iridiocorneal angle which drains aqueous humor from the cilioscleral sinus. There may be two venous sinuses of the sclera depending upon the course of an annular artery Circulus arteriosus ciliaris which sometimes divides the chamber. (See Annot. 11, 32; Ven. Annot. 17, and Art. Annot. 28)
- (13) Lamina cartilaginea sclerae. A cartilaginous cup within the sclera that is continuous with the scleral ring.
- (14) Cornea. The avian cornea is considered to be similar to that of other vertebrates. Five layers are recognized: (1) the anterior epithelium Epithelium corneae externum, (2) the anterior limiting membrane Lamina limitans superficialis, a very thin layer formerly known as Bowman's membrane, (3) the substantia propria Substantia propria corneae, a layer of connective tissue which accounts for about 90% of the corneal thickness, (4) the posterior limiting membrane Lamina limitans profunda, a thin, homogeneous layer formerly known as Descemet's membrane, and (5) the posterior epithelium Epithelium corneae internum.
- (15) Anulus [Annulus] corneae. The zone of transition between the opaque sclera and the transparent cornea is marked by a pigmented ring and referred to as the corneoscleral junction (Junctura corneoscleralis).

- (16) **Tunica vasculosa bulbi.** (Fig. 16.1) The vascular layer of the eyeball internal to the **Sclera**, also referred to as the uveal tract or uvea. It is divided into three principal components: the **Choroidea** (Annot. 17), **Corpus ciliare** (Annot. 18), and **Iris** (Annot. 22).
- (17) Choroidea. The choroid consists of blood vessels, bound in connective tissue. which provide the primary blood supply to the retina. The choroid is thickest in the fundus and has a prominent capillary bed. Five layers are recognized in the choroid: (1) Lamina suprachoroidea, which is thin, heavily pigmented and loosely attached to the sclera, (2) the Spatium perichoroideale, (3) the Lamina vasculosa whose blood vessels appear to be mostly arteries (see Art. Annot. 26), (4) the Lamina choroidocapillaris, and (5) the Lamina basalis, a thin basal layer which is loosely attached to the retina. The Spatium perichoroideale appears rather empty in prepared slides but there are striated and non-striated fiber bundles and cords of connective tissue which pass radially through it. The function of these muscle bundles has not been established. Duke-Elder (1958: 405) proposed that they may regulate blood flow in the choroid, while Walls (1942: 645) thought they may form part of the accommodatory mechanism. In the latter, the contraction and relaxation of the muscles, might alter the position of the retinal surface to adjust fine focus. In the flicker (Colaptes) the choroid is not empty-looking since it contains a thick mass of mucoid tissue which may have been developed as a cushion to prevent detachment of the retina during "woodpecking" (Walls, 1942: 645).
- (18) Corpus ciliare. (Figs. 16.1, 2). The ciliary body of the bird is a concept rather than a unitary structure. It includes structures around the scleral venous sinus and consists principally of striated muscle fibers which are concerned with accommodative mechanisms. In birds both lenticular and corneal accommodation have been demonstrated (Troilo and Wallman, 1987; Martin, 1987). The mechanisms of accommodation are not understood completely (see Intro.).
- (19) **Processus ciliares.** (Fig. 16.2) Unlike mammals, the ciliary processes of birds are numerous and irregular and may fuse with one another. Attached directly to the lens capsule and usually heavily pigmented, they are composed of non-sensory retina (Annot. 26).
- (20) **Zonula ciliaris.** (Fig. 16.2) The ciliary zonule consists of zonular fibers **Fibrae zonulares**, with spaces in between, which pass from the ciliary processes, plicae, and adjacent areas to the lens capsule. In the bird they do not appear to be tensed at any time and probably do not function as in the mammal. Owing to the contact and fusion of ciliary processes with the lens, the zonular fibers in this region are short or fused in the contact zone.
- (21) Musculus ciliaris. (Fig. 16.2) Synonymy: Musculus sclerocornealis. The ciliary muscle is the principal muscle bundle of the ciliary body (Annot. 18). There are considerable interspecific differences in size and fasciculation. The muscle attaches posteriorly to the inner surface of the sclera, and extends from the optic cup across the width of the scleral ring to the corneoscleral junction where it ends on the limbus of the cornea or on the Sinus venosus sclerae (Fig. 16.2). The ciliary muscle may appear as one muscle or may appear to be divided into two, three, or four muscles. Usually two muscles are distinguished, the M. ciliaris anterior or Crampton's muscle, and the M. ciliaris posterior or Brucke's muscle. The anterior and posterior muscles overlap in the region of the scleral ossicles. The M. ciliaris anterior is largest in hawks and owls, smallest in aquatic birds and absent in the cormorant (*Phalacro*-

- corax). The M. ciliaris posterior is large in the cormorant and gannet (Morus). The status of the Fibrae radiales (Müller's muscle) is uncertain. In some birds it is seen as a subdivision of Crampton's muscle while in others as a subdivision of Brucke's muscle. Rochon-Duvigneaud (1950: 228) regards Muller's muscle simply as fibers which pass between Crampton's and Brucke's muscles which do not merit a designation.
- (22) Iris. (Fig. 16.2) The iris controls its aperture, the pupil, Pupilla, which in turn determines the brightness and quality of the retinal image (Martin, 1985: 322). The iris is thin at its ciliary border Margo ciliaris where it is attached to the ciliary body Corpus ciliare (Annot. 18) at the Angulus iridocornealis (Annot. 32). It thickens towards its midpoint, and then thins again towards the pupillary border Margo pupillaris. The pupillary border is in contact with the anterior surface of the lens. The margin of the pupil is folded Plicae iridis. The anterior surface of the iris is lined by a single layer of flattened epithelia cells Epithelium anterium iridis. The posterior surface is lined by layers of darkly pigmented cells Stratum pigmentum iridis derived from non-nervous retinal tissue (Annot. 26). Between the epithelial layers are connective tissue stroma Stroma iridis and two layers of muscles (Annot. 22). The anterior surface Facies anterior of the iris is typically heavily pigmented; both lipochrome and guanine are present (Duke-Elder, 1958; Oliphant, 1981). The color of the iris varies over the spectrum, and can be influenced by season, sex, emotional state, and diet (Mann, 1931).
- (23) M. sphincter pupillae; M. dilator pupillae. Iris movement and size are under the control of two layers of muscles, sphincter and dilator, which are generally considered to be striated. It is these striated muscles which are responsible for the rapidity of the avian pupillary response (Oliphant, et al., 1983). In a number of avian species a second dilator system, in which muscle fibres are non-striated (myoepithelial), have also been described (Walls, 1942: 647; Oehme, 1969; Pilar and Vaughan, 1971). However, striated fibres are always more numerous than unstriated. The blood supply to the iris is from the ciliary artery (Circulus arteriosus ciliaris) (Art. Annot. 28). This divides at the margin of the iris to form an arterial circle Circulus arteriosus iridis which passes circumferentially within the iris (Art. Annot. 28).
- (24) **Tapetum lucidum iridis.** This structure reported in the iris of columbiform birds consists of reflective cells **iridocyti** which are visible in histological sections under transmitted or polarized light. Chiasson and Ferris (1968) described two types of cells in the Inca Dove (*Scardafella inca*): cells with large reflecting platelets scattered in the superficial layer of the iris and deeper cells with smaller platelets forming a more discrete iridocyte body **Corpus iridocytorum.**
- (25) **Tunica interna bulbi.** The innermost layer of the eyeball [formerly Tunica nervosa bulbi].
- (26) Retina. Within the fundus (Annot. 6) the retina consists of two principal layers, an outer pigmented layer (Stratum pigmentosum retinae) adjacent to the choroid (Annot. 16) and an inner nervous layer (Stratum nervosum retinae). Within the inner nervous layer four main divisions are recognized: (1) The neuroepithelial layer (Stratum neuroepitheliale) lies between the pigmented epithelium and the external limiting membrane. It contains the visual cell outer segments and nuclei; (2) The bipolar layer Stratum bipolare which is further subdivided into an outer plexiform layer with visual cell synaptic terminals; an inner nuclear layer containing nuclei of the horizontal, bipolar, amacrine, and Müller cells; and an inner plexiform layer; (3) The ganglion cell layer Stratum ganglionaris; and (4) The optic fiber layer

Stratum neurofibrarum which forms the optic nerve on its exit from the globe. The site of exit of these fibers is linear rather than circular, as in mammals, and the pecten (Annot. 30) attaches on the internal aspect of the linear band. The external and internal limiting membranes are formed by the terminal bars of the fibres of adjacent Müller cells. These fibres pass radially through the retina and surround most neurons. Müller cells provide the primary mechanical support of the retina. Of all vertebrate retinae the bird's retina has the greatest regularity of differentiated layers. There is considerable interspecific variation in the relative thickness of the layers (Martin, 1985: 336). Outside the fundus, anterior to the **Ora serrata** (Annot. 28), the **Stratum pigmentosum retinae** continues as a layer of pigmented non-nervous tissue. It forms the **Processus ciliares** (Annot. 19), and where the retina extends over the posterior surface of the iris it becomes the **Stratum pigmentum iridis** (Annot. 22). Non-nervous retina also extends over the pecten (Annot. 30).

- (27) Areae et foveae retinae. An Area is a clearly defined portion of the sensory retina characterized by cell types showing particular features such as increased density, specific size, or regular arrangement. Areae are thought to be associated with specific visual abilities, such as high spatial resolution or the detection of movement, in localized regions of the visual field. Most areae have photoreceptor cells which are longer, thinner, and more tightly packed than elsewhere in the retina, although there are also areae which contain specific types of ganglion cells (Haves, et al., 1991). Areae are a common feature of the avian retina and show marked interspecific variability in their number, shape, and position. Three main types are recognized: (1) Area centralis rotunda, a circular area located in the central region of the fundus dorsal and nasal to the pecten, (2) Area temporalis, a circular area often located lateral to the central area in the temporal retina, and (3) Area centralis horizontalis, a linear area which may extend across the retina in an approximately horzontal plane, sometimes joining the central and temporal areas. The Fovea centralis and Fovea temporalis are each a circular depression in the retina which results from the radial displacement of more internal layers. It may be of variable depth, size and shape, but always occurs within a central or temporal area. No more than two foveae have been reported in any species. (See Meyer (1977) and Martin (1985) for interspecific differences and functional interpetations).
- (28) **Ora serrata.** (Fig. 16.1) Synonymy: Ora terminalis. The anterior limit of the sensory retina which defines the boundary of the fundus (Annot. 6). Although, in the majority of avian taxa this margin is a ring of transition and better called "terminal" than "toothed", Ora serrata is retained because of its widespread use.
- (29) **Tapetum lucidum retinae.** A reflective structure in the pigmented layer recorded in birds only in the retinae of goatsuckers (Caprimulgidae) by Nicol and Arnott (1974). In mammals, tapeta are common in the choroid, but no such tapetum has been reported in any bird (Martin, 1985: 348).
- (30) **Pecten oculi.** (Figs. 16.1, 5) The pecten is a vascular structure, devoid of muscle or nervous tissue and covered by non-sensory retina (Annot. 26), which projects into the vitreous body **Corpus vitreum** (Annot. 33) from the exit of the optic nerve. Three types of pecten are recognized: (1) **Pecten oculi conicus**, found only in kiwis (Apterygidae), and similar in appearance to the conus papillaris of lizards, (2) **Pecten oculi vanellus**, found in the other extant Struthioniformes (ostrich, rheas, emu, and cassowaries) and the tinamous (Tinamiformes); in transverse section this pecten exhibits a central lamina with vanes radiating from it., (3) **Pecten oculi pliactus**, found in all other birds, transverse sections revealing a plicated structure with the

folds held in place by a bridge of tissue, the **Pons pectinis**. There is a basal membrane (**Lamina basalis pectinis**) upon which the pleats sit. The arterial supply to the pecten is completely separate from that of the choroid (**Art**. Annot. 29). The capillaries of the pecten form an extensive anastomotic network and their ultrastructure suggests that there is active transcellular transport through the capillary endothelial cells. Wood (1917) illustrated (in color) the gross appearance of the pecten for many species. The pecten usually has numerous pigment granules which give it a jet-black appearance. In the Humboldt Penguin (*Spheniscus humboldti*) and some procellariiform seabirds the pecten is unpigmented, except for the Pons pectinis. Wingstrand and Munk (1965) concluded that the pecten is a nutritive organ necessary for the maintenance of the inner retinal layers, a viewpoint supported by Dieterich and Pfautsch (1973). Brach (1975, 1977) suggested that the pecten is related primarily to intraocular pH regulation. Other explanations of how the pecten functions are those of Meyer (1977) Martin (1985), and See Wood (1917) Meyer (1977), Martin and Young (1984), and Martin (1985: 538) for descriptions of the pecten in a range of birds.

- (31) Camera anterior bulbi. (Fig. 16.1) The anterior chamber of the eye is bounded by the cornea, lens and iris and iridocorneal angle peripherally. The chamber is filled by the aqueous humour **Humor aquosus** which usually has a density and refractive index similar to water. However, in the owl *Strix aluco* the aqueous humour is reported to be a viscous, mucinous substance (Barany, et al., 1957). Between the iris and the anterior lens surface another smaller chamber Camera posterior bulbi is present.
- (32) Angulus iridocornealis. (Fig. 16.2) The iridocorneal angle lies within the anterior chamber where the base of the iris meets the cornea. Within this angle is the **Reticulum trabeculare [Ligamentum pectinatum]** and **Spatia anguli iridocornealis** (spaces of Fontana). These interstices between the trabeculae allow for drainage of aqueous fluid into the Sinus venosus sclerae (see Annots. 11, 12).
- (33) Camera vitrea bulbi. (Fig. 16.1) The vitreous chamber of the eye is bounded by the retinal surface, lens and Fibrae zonulares (Annot. 21). The chamber is filled by the vitreous humour (Humor vitreus) which is viscous and has a density and refractive index higher than water. It can often be removed as a single body, the Corpus vitreum. The Membrana vitrea separates the vitreous body and the zonal fibres.
- (34) Lens. (Fig. 16.2) The avian lens differs from that of mammals because it has an annular pad Pulvinus anularis [Annulus] lentis, also known as the ringwulst or borrelet, around its central core Corpus centrale lentis. This pad is separated from the central core by a fluid filled chamber (Vesicula lentis). This arrangement may be a hydrostatic mechanism for transmitting pressure from the ciliary muscles to the central core for accomodation. Marked interspecific differences in the size of the annular pad relative to the central portion of the lens have been noted. It is large in swifts (Apus) but relatively small in the Ostrich (Struthio).
- (35) Musculi bulbi. (Fig. 16.3) The eyes of birds fit tightly within the orbits and the six extraocular muscles are reduced to thin bands. The opposing muscles are: (1) M. rectus nasalis and M. rectus temporalis around a vertical axis, (2) M. rectus dorsalis and M. rectus ventralis around a mediolateral axis, (3) M. obliquus dorsalis and M. obliquus ventralis around the anteroposterior axis. Eye movements, which are of small amplitude, can be described as: (1) impulses and oscillations; (2) tremors; (3) flicks; and (4) drifts (Nye, 1969; Pettigrew, et al., 1990). Amplitudes

vary in different meridians and movements are non-conjugate (Martin, 1986) as in reptiles.

- (36) Palpebrae. The upper lid Palpebra dorsalis is short and thick whereas the lower lid Palpebra ventralis is longer, thinner and very moveable. They may be feathered or unfeathered. Closure of the eye is due mainly to the movement of the lower lid which has a fibrous Tarsus. Four muscles are involved in lid movement. When the lids are closed they meet as a slight arch above the level of the pupil. The lid margin (Limbus palpebralis) is thickened and segmented into a variable number of folds (Plicae marginales) to allow for stretching in closure. In the sparrow (Passer domesticus) there are 17 to 19 folds (Slonaker, 1918). At hatching bird's eyes may be open (precocial, nidifugous species such as anseriforms), or the lids may remain closed for a number of days (altricial, nidicolous species such as passeriforms). Myol. Annot. 16; and Topog. Annot. 24.
- (37) Membrana nictitans [Palpebra tertia]. The nictitating membrane or thirdeyelid lies in the dorsonasal quadrant of the conjunctival sac. It is elastic and is moved rapidly (except in owls, strigiforms) over the surface of the cornea. All birds have a functional nictitating membrane that serves to protect, moisten and clean the cornea. The two muscles responsible for its movement are the M. quadratus membranae nictitantis and M. pyramidalis membranae nictitantis (Fig. 16.3; Myol. Annot. 15). The free margin of the membrane, the **Plica marginalis**, is thickened and folded under to act as a sweep to draw fluids and detritus from the corneal surface to the Ostium canaliculi lacrimalis (Annot. 38) at the nasal commissure of the lids. The cornea is kept moist primarily by secretions of the gland of the nictitating membrane and also by secretions from the lacrimal gland (Annot, 38). The nictitating membrane may be transparent, translucent, or opaque white as in dippers (Cinclus) and owls (Goodge, 1960). Descriptions of the nictitating membrane can be found in Slonaker (1918) for the House Sparrow (Passer domesticus), or in Simic and Jablan-Plantic (1959) for the chicken. In mammals the Plica semilunaris is a rudiment of the Membrana nictitans, and a comparison of birds and mammals is given by Stibbe (1928).
- (38) Apparatus lacrimalis. (Figs. 16.4, 5). Two glands moisten, nourish, and lubricate the cornea: Gl. membranae nictitantis, the gland of the nictitating membrane, also known as the gland of the third eyelid, and Gl. lacrimalis. The gland of the nictitating membrane lies in the ventronasal quadrant of the orbit near inter-orbital septum, and secretes via its duct into the conjunctival space between the nictitating membrane and the cornea. The lacrimal gland lies in the ventrotemporal part of the orbit and its secretion via multiple ducts Ductus gl. lacrimalis enters the conjunctival space beneath the lower lid. Lacrimal fluid from both glands drains into dorsal and ventral lacrimal canals Canaliculi lacrimales at the nasal commissure of the lids and into the Ostium canaliculi lacrimalis. These canals join, forming Ductus nasolacrimalis which enters the nasal cavity. Marked interspecific differences occur in the relative size of the lacrimal gland (Wood, 1915; Martin, 1985: 334).
- (39) Labyrinthus vestibularis (Figs. 16.5, 6). The avian vestibular organ is composed of three principal structures; Utriculus (Annot. 40), Sacculus (Annot. 44), and the Ductus semicirculares (Annot. 41). The function of the vestibular labyrinth as a whole is that of equilibration and this is mediated by sensory structures which are responsive to angular and linear acceleration and positional changes. However, the functions of the different receptors in the utricle, saccule and semicircular ducts are probably not totally separated (Smith, 1985).

- (40) Utriculus (Fig. 16.6). The utricle is a chamber of the membranous labyrinth that gives rise to the semicircular ducts (Annot. 41). The sensory end organ is the Macula utriculi which is generally thought to be responsive to linear acceleration and gravity. The macula consists of hair cells, supporting cells and basal cells covered by a gelatinous meshwork in which numerous tiny calcareous crystals or Statoconia are embedded. The Macula utriculi has three main parts: (1) a central Cotilus which anteriorly and laterally is separated from the (2) Rampa by (3) a Striola. These regions are characterized by their types of hair cells. Jorgensen (1989) has examined the utricles of 20 bird species belonging to 13 families and described two types of hair cells and their distribution: bouton-innervated hair cells and calyceal hair cells.
- (41) **Ductus semicirculares** (Fig. 16.6). The three semicircular ducts **Ductus semicircularis** anterior/posterior/lateralis are thin-walled membranous tubes which arise from the utricle. One end of each tube (**Crus m. ampullaris**) is enlarged forming the membranous ampulla **Ampulla membranacea** (Crus m. ampullaria) which contains a neuroepithelium, the **Crista ampullaris**. The ducts form approximately two-thirds of a circle and end at the side of the utricle opposite to that on which their ampullae are located (**Crus m. simplex**). The horizontal (lateral) duct terminates between the common crus and the caudal ampulla. The two vertical ducts (the anterior and posterior) join above the vestibule to form the **Crus membranaceum commune** which opens into the utricle. It is generally considered that the semicircular ducts are sensitive to angular acceleration (Smith, 1985: 299).
- (42) Crista [Papilla] neglecta. This small sensory area on the floor of the Utriculus close to the Crista ampullaris posterior (Fig. 16.5) is often present in mammals as part of the Crista ampullaris caudalis (Boord, 1969; Jorgensen, 1970).
- (43) **Septum cruciatum.** Synonomy: Eminentia cruciata; Septum cruciforme. A horizontal fold on the **Cupula** within the Ampullae of the anterior and posterior semicircular ducts (Igarashi and Yoshinobu, 1966; Smith, 1985).
- (44) Sacculus. (Fig. 16.6) The saccule is thought to be responsive to linear acceleration and gravity. It is located in a bony recess on the wall of the vestibule caudal to the vestibular window (Fenestra vestibuli). The Macula sacculi forms one wall of the saccule and is attached to the bone; the macula is oval in shape and composed of a compact group of hair cells and supporting cells located over a connective tissue base through which the capillaries and myelinated nerve fibres course. Arising caudally from the saccule and adjacent to the utriculosaccular duct (Ductus utriculosaccularis) is the endolymphatic duct Ductus endolymphaticus. It traverses the vestibular aqueduct to end in an enlargement, the endolymphatic sac (Saccus endolymphaticus) within the cranial cavity.
- (45) **Ductus cochlearis** (Figs. 16.7B, 8). Synonomy: Scala media. An outgrowth of the **Sacculus** filled with **Endolymph** and connected with it by the **Ductus sacculocochlearis** [**D. reuniens**]. The blind end of the **Ductus cochlearis** is the **Lagena**. On each side of the cochlear duct are perilymphatic spaces: the **Scala vestibuli** (see Annot. 46) and **Scala tympani** (Amerlinck, 1923; Schwartzkopff and Winter, 1960; Jorgensen, 1970). Within the cochlear duct is the elongate **Papilla basilaris** with its various types of sensory cells (Takasaka and Smith, 1971).
- (46) **Tegmentum vasculosum** (Fig. 16.8). A thick folded epithelium occupying a large part of the cochlear duct and compressing the **Scala vestibuli** so as to occlude the lumen (Amerlinck, 1923; Schwartzkopff, 1973; Smith, 1985).

- (47) Cochlea (Figs. 16.7B, 8). The thin walled osseus tube enclosing the Scala vestibuli, Scala tympani, and Ductus cochlearis with its terminal Lagena. The Cochlea of birds is slightly curved rather than a coil as in mammals.
- (48) Canalis interscalaris basalis (Fig. 16.8). Synonymy: Ductus brevis. An osseous connection at the base of the cochlea between the Scala vestibuli and the Scala tympani. "Ductus brevis" is an inappropriate synonym because this is a part of the bony labyrinth not the membranous labyrinth. See chapter Intro.
- (49) Canalis interscalaris apicalis [Helicotrema] (Fig. 16.8). This is the apical osseous connection between the Scala vestibuli and the Scala tympani. An inappropriate synonym is "Ductus scalae" tympani. The term "Ductus" for structures in the inner ear should be restricted to parts of the membranous labyrinth.
- (50) Canaliculus cochleae. Synonymy: Aqueductus cochlea; Canaliculus perilymphaticus. A connection between the Scala tympani and the subarachnoid space.
- (51) Lig. anulare [annulare] columellae. A ring of fibrous tissue attaching the footplate of the Columella to the rim of the vestibular window.
- (52) Margo fibroelastica. The thickened margin of the tympanic membrane. In its rostroventral attachment area it includes an air sinus, the Sinus pneumaticus marginalis of Pohlman (1921: 239)
- (53) Columella. (Fig. 16.7B) Synonymy: Columella auris. The only auditory ossicle in the middle ear of a bird. It is of hyoid arch origin and extends from the tympanic membrane to the vestibular window. At the tympanic or distal end there is a tripartite extracolumellar cartilage and at the proximal or vestibular end there is an expanded basis or foot-plate occluding the vestibular window (for the Ostrich, *Struthio*, see Saiff, 1981 and Osteo. Annot. 22). See Müller (1963) for a detailed synonymy of parts of the avian columella.
- (54) Cartilago extracolumellaris. (Fig. 16.7B, C) A tripod-like cartilage on the distal end of the columella fused to the tympanic membrane. Also referred to by the synonym: Pars extrastapedialis of the Columella. See Müller (1963) for a detailed synonymy for parts of the avian columella.
- (55) **Foramen m. columellae** (Fig. 16.7A, C). An opening in the region of the subtympanic hiatus for the passage of the muscle of the columella (M. columellae) (Annot. 56) into the middle ear cavity.
- (56) M. columellae (Fig. 16.7C). This muscle has its origin on the surface of the skull, passes into the middle ear cavity under the edge of the tympanic membrane and attaches to the extra-columellar cartilage, thus regulating the movement of the columella (Fig. 16.7C) by tensing it and the tympanic membrane to which it is attached indirectly. It has been synonymised with both the M. tensor tympani and the M. stapedius, and was called the M. occipito-tympanicus by Edgeworth (1935). Since it is innervated by the facial nerve (Pohlman 1921) and is associated with a derivative of the second or hyoid branchial arch (hyomandibular =columella =stapes) it is homologous to the M. stapedius muscle of mammals. This new term clearly associates the muscle with the columella, the only ear ossicle in the bird.

- (57) **Organum paratympanicum.** A vesicular remnant of pharyngeal pouches noted by Vitali (1912) and reinvestigated by Federici (1927). The organ is of variable form, embedded in connective tissue caudodorsal to the quadrato-otic articulation. It is also called the organ of Vitali (Maderson and Jaskoll, 1976; Romanoff, 1960).
- (58) Auris externa. (Fig. 16.7B) The external ear of birds may have ear flaps (Annot. 60) or specialized feathers (Annot. 59) associated with it. Diving birds have the narrowest lumen, while parrots, passerines, and falconiforms have wide ear openings. The external ear openings are asymmetrical in several genera of owls (Strigidae and Tytonidae), one being more dorsal and/or larger than the other (Iliychev, 1961; Kelso, 1940). This asymmetry is associated with accurate sound localization in the frontal-vertical plane (Norberg, 1968, 1978; Knudsen and Konishi, 1979). Counter and Tsao (1986) described an additional membrane within the external acoustic meatus of the gull (*Larus*), rostral to the tympanic membrane, which appeared to be a collecting parabolic chamber. Perhaps this additional membrane is the same as the semicircular erectile fold (**Plica cavernosa**) described and illustrated by Pohlman (1921) and Evans (1982) deep in the external acoustic meatus close to the tympanic membrane (Fig. 16.7B). The base of this fold is separated by a bursa from the wall of the external acoustic meatus. For a discussion of the external and middle ear of birds see Kuhne and Lewis (1985). See also **Osteo.** Annot. 19, 21.
- (59) **Pennae auriculares.** Feathers associated with the opening to the external ear. In some birds the rostral shielding feathers (**Plumae auriculares rostrales**) are rather open-spaced whereas in others (owls, Strigidae and Tytonidae; harriers, *Circus*) they form a facial disc. The caudal feathers **Plumae auriculares caudales** are often very dense and probably serve to reflect and amplify sound especially in those birds with a prominent facial ruff such as owls, harriers, and the nightjar *Caprimulgus* (Konishi, 1973; Ilyichev, 1961, 1975). In diving birds the feathers of the external ear may overlap and cover the meatus (Ilyichev, 1961; Lucus and Stettenheim, 1972: 99). See Annot. 56.
- (60) Operculum auris. Skin folds capable of covering the ear opening may be rostral and/or caudal to the external acoustic meatus and may contain muscle. They are present in some owls (Asio otis), sandgrouse (Pteroclidae) and others. In the Budgerigar (Melopsittacus) there is one prominent dermo-osseous muscle capable of pulling a rostral skin fold over the ear opening (Evans, 1982). Norberg (1978) illustrates four external ear muscles in the Boreal Owl (Aegolius funereus), one acting on a preaural flap and three muscles acting on a postaural flap.
- (61) Organum olfactorium. The literature on the avian olfactory system is not voluminous and the general impression is that birds are not very "olfactory" in their behaviour. However, there are birds in which olfaction has been demonstrated to be used in foraging and/or orientation. Taxa in which olfaction seems to be of considerable importance include the kiwis (Apterygidae), albatrosses and petrels (Procellariiformes), the Turkey Vulture (Cathartes aura), and the Oilbird (Steatornis caripensis) (Bang and Wenzel, 1985). Kiwis are the only birds with nostrils at the extremity of the bill and they have been shown capable of locating food by olfactory cues alone (Wenzel, 1971). The size of the nasal cavity and of the olfactory lobes of the brain show marked interspecific variation which is probably correlated with olfactory prowess (see Bang and Wenzel, 1985, for review).
- (62) Caliculus gustatorius [Gemma gustatoria]. Taste buds in birds are much less numerous than the thousands found in mammals. The greatest number (400-500) are

found in parrots and lesser numbers (100-200) in chickens. However, the gustatory ability of birds does not appear to be closely correlated with the numbers of taste buds observed (Kare and Mason, 1986) because investigators have concentrated on the tongue where they are scarce (Moore and Elliot, 1946; Gentle, 1971; Wenzel, 1983). Taste buds are found in several locations within the oral cavity. They may be in the non-keratinized oral mucosa of the rostral floor of the mouth adjacent to the tongue; on the palate; or on the dorsum of the tongue, commonly in association with the openings of salivary glands, (Botezat, 1904; Bath, 1906; Berkhoudt, 1977; 1985a). Taste buds are ovoid structures, with central neurosensory cells, which extend from the dermis to the superficial surface of the epidermis. Opening at the surface is a taste bud pore which may be elongated and terminate as one or several canals. (Kurosawa, et al., 1983; Berkhoudt, 1985a; Ganchrow and Ganchrow, 1985, 1989). In the Mallard (Anas platyrhynchos), tastebuds contain 20-30 intragemmel sensory fibers. The nerves responsible for the innervation of taste buds in the Mallard have been described by Krol and Dubbeldam (1979) and Gentle (1987). The topographic location of taste buds in relation to food-positioning while feeding has been studied by Berkhoudt (1977; 1985b) in the Mallard.

- (63) **Terminationes neurales.** This inclusive heading, used in *Nomina Histologica* (IACN, 1989) covers all types of sensory structures in skin, muscles, joints, tendons, and visceral organs. In response to several requests urging the conservation of well known eponyms for terms with no satisfactory substitutes, the eponyms have been listed as synonyms in the annotations. In several cases similar looking cells described in birds and mammals differ physiologically and may ultimately be given different names Gottschaldt (1985). Alternate schemes of classification for nerve endings have been proposed and illustrated by Malinovský (1986a, b; 1989a, b; 1990).
- (64) **Terminatio neuralis libera.** Free nerve endings, myelinated or not, are found in various tissues of the body. These endings may be associated with general or specific chemical, electrical, or mechanical sensations. They have been described in both the epidermis and dermis. Their function is not clear but they appear to be multimodal, slowly adapting mechanoreceptors (Malinovský pers. comm.) or thermoreceptors and nociceptors (Necker, 1983; Gottschaldt, 1985).
- (65) Terminationes nervorum plumae et filoplumae. These sensory structures on feather follicles function as do mammalian sinus hairs. [For filopluma see Andres and von During (1984); Clark and deCruz (1989), and for pluma see Gewecke and Woike (1978); and Malinovský (1986b).]
- (66) Terminationes dendriticae nervorum. Synonymy: Ruffini endings. The afferent axon arborizes and entwines the receptor but has no distinct outer capsule as in mammals, according to Gottschaldt (1985). Malinovský (pers. comm., 1990) says Ruffini formations always have a capsule. These dendritic endings have been described in articular capsules and joint ligaments (Iggo and Andres, 1982; Gottschaldt, 1985; 426). Similar endings have been seen in the beak of the goose (Gottschaldt, et al., 1982) and pigeon (Berkhoudt, 1985a). They function as slowly adapting, type II, mechanoreceptors, detecting the amplitude component of mechanical stimuli (Gottshaldt, 1985).
- (67) Corpusculum lamellosum avium. Synonymy: Herbst corpuscle; Corpusculum herbsti. A lamellated, Pacinian-like receptor of birds, showing several specializations of non-nervous elements around its afferent nerve fibers. These corpuscles have: (1) an inner core formed by specialized Schwann cells, (2) an outer zone or sub-

capsular space which contains a collagen fiber system and surrounds the lamellated structure of the inner core, and (3) an outer capsule derived from the perineurium (Malinovský and Pac, 1985; Malinovský and Malinovský, 1985). These corpuscles are believed to function as a rapidly adapting mechanoreceptor, sensitive to acceleration components in mechanical stimuli, and optimally activated by vibrational stimuli. For reviews see Saxod, 1978; Iggo and Andres, 1982; Necker, 1983; Gottschaldt, 1985.

- (68) Corpusculum discoidale multicellulare. Synonymy: Grandry corpuscles; Corpusculum Grandri (Halata, 1971; Pac and Malinovský, 1985; Gottschaldt, 1985). The former NAA (1979) term for this corpuscle, C. bicellulare, was not satisfactory because only a small percentage of all corpuscles have two cells. This is an encapsulated receptor, described mainly in anseriforms (Berkhoudt, 1980), consisting of 2 to 7 large, stacked cells with disc-like nerve terminals between them. This corpuscle functions as a rapidly adapting mechanoreceptor detecting velocity components in mechanical stimuli. Several confusions exist in the literature. Ziswiler and Trnka (1972) used the term "Grandry corpuscles" for what Botezat in 1906 called "Merkel corpuscles".
- (69) Meniscus tactus. Synonymy: Complexus Merkeli. These small end-organs which appear to be groups of Merkel cells were described by Andersen and Nafstad (1968), Saxod (1978), Iggo and Andres (1982), Pac (1982), and Nafstad (1986). Gottschaldt (1985) referred to them as "terminal column receptors". The same endings have been seen in the pigeon palate by Berkhoudt (1985a). The Nomina Histologica (IANC 1989) calls the Merkel cell "Epithelioidocytus tactus". Ide and Munger (1978) describe "Merkel corpuscles" in the toe skin of the chicken and called them Grandry corpuscles
- (70) Terminationes sensorium apicis rostri. The "bill-tip organ" is not really an "organ" but rather an aggregation of sensory structures (Grandy and Herbst-type cells) in the bill, best developed in charadriiforms and anseriforms. It has been seen in shorebirds such as snipe (Bolze, 1968; Goglia, 1964) and sandpipers (Gerritsen, 1988), and studied extensively in ducks and geese. In ducks the organ consists of a series of perpendicular connective tissue papillae within the horny nail of the upper and lower bill. Each papilla has a blood vessel loop within it and contains touch and vibration sensitive corpuscles of Herbst Corpusculum lamellosum avium proximally, and Grandry Corpusculum discoidale multicellulare distally, in a particular spatial arrangement (Gottschaldt and Laussmann, 1974; Zweers, et al., 1977; Saxod, 1978; Berkhoudt, 1976, 1980, 1985a; Gottschaldt, 1985). Goujon (1869) described an "apparatus" of tactile corpuscles in the beak of parrots. The bill-tip organ of the chicken was studied by Gentle and Breward (1986). Leitner and Roumy (1974a, b) described thermosensitive and mechanosensitive units in the upper bill of the duck. See Osteo. Annot. 41.
- (71) Organum nervosum terminale musculotendineum. Synonymy: Golgi organ. This term coined by Berkhoudt (1980) is a Latin transliteration of the original Italian term used by Golgi in 1880 viz., "Organo nervosa terminale musculo-tendineo", for the structures he saw. It functions as a slowly adapting stretch receptor (Gottschaldt, 1985).
- (72) Organa sensoria visceralia. These enteroceptors include sensory structures of the heart, great vessels, lungs and other organs (Art. Annot. 5, 7, 14).



Fig. 16.1. Schematic dorsal section (inset A) through the eye of a chicken (Gallus). The view is of the interior of the ventral half of the bulb (from Evans, 1982). With permission of Academic Press.



Fig. 16.2. Part of a schematic meridional section of the eye through the corneoscleral junction, ciliary region, and lens of the Inca Dove (*Scardafella inca*). Drawn from histological slides courtesy of R. B. Chiasson (from Evans, 1982). With permission of Academic Press.



Fig. 16.3. Posterior view of the right eye of a House Sparrow (*Passer domesticus*) to show the extrinsic muscles of the bulb and nictitating membrane (from Evans, 1982). With permission of Academic Press.



Fig. 16.4. Schematic dorsal section through the lower lid and orbit of a chicken eye to show the position of the lacrimal gland and the gland of the nictitating membrane (from Evans, 1982). With permission of Academic Press.



Fig. 16.5. Schematic lateral view of the head of a Budgerigar (*Melopsittacus undulatus*) with the skull roof and anterior portion of the eye removed. The nasal cavity and osseous labyrinth are exposed (from Evans, 1969).



Fig. 16.6. Schematic lateral view of the left membranous labyrinth of a bird (after Smith, 1985).



Fig. 16.7. The ear of the chicken (*Gallus*). A. Lateral view of the skull. The Membrana tympanica and Columella are removed to expose the middle ear cavity. B. Dorsolateral view of the left ear sculptured to show the osseous labyrinth and the floor of the external acoustic meatus. C. Lateral view of the caudoventral quadrant of the left ear. The processes of the extracolumellar cartilage show through the tympanic membrane. The tendon of M. columellae which originates on the external surface of the skull, passes through a foramen and enters the middle ear cavity where it attaches to the extracolumella (from Evans, 1982).



Fig. 16.8. Schematic longitudinal section of the chicken (*Gallus*) cochlea. Inset shows the plane of section. Note that the footplate of the columella covers the vestibular window on the Scala vestibuli (from Evans, 1982). With permission of Academic Press.

## APPENDIX A

## LATIN GRAMMAR

#### ANTHONY S. KING

Unlike English, Latin is an inflected language, which means that the form of a word may change and the changes may indicate its relation to other words. The anatomist is only concerned with the inflexions of nouns and adjectives, which are known as declensions. Declensions are based on numbers and cases. There are two numbers, singular and plural, and six cases.

Cases. The Nominative case indicates the *subject*; the Vocative is the case of *address*; the Accusative indicates the *object*; the Genitive indicates *possession*; the Dative names the *receiver* or *indirect object*, the Ablative indicates *from*, by, on, or in, and (in anatomy) with.

#### **EXAMPLES:**

| Nominative | Arteria dividit           | The artery divides       |  |
|------------|---------------------------|--------------------------|--|
| Vocative   | Arteria                   | O artery!                |  |
| Accusative | Arteriam seco             | I cut the artery         |  |
| Genitive   | Arteriae ramus            | The branch of the artery |  |
| Dative     | Arteriae ligatura additur | A ligature is added to   |  |
|            |                           | the artery               |  |
| Ablative   | Arteria sanguis fluit     | Blood flows from the     |  |
|            |                           | artery                   |  |

In anatomy, the nominative and genitive (both singular and plural) are the only cases that are in constant use; the accusative and ablative are used occasionally in association with prepositions (see below, Prepositions); the accusative is used, though even more rarely, without a preposition (e.g., Termini situm et directionem indicantes, means "terms indicating position and direction", and, therefore, situm and directionem are accusative singular); the vocative and dative can for all practical purposes be ignored.

614 A. S. KING

Gender. Nouns and adjectives have grammatical gender, distinguishing masculine (m.), feminine (f.), and neuter (n.). The gender of nouns can often be identified by the nominative singular. If this ends in -a, the gender (of anatomical nouns, e.g., Vena) will nearly always be feminine (among the few exceptions, are Chiasma, Soma, Stoma, Stroma, and Systema, all of which are neuter and of Greek derivation); if a noun ends in -us it will nearly always be masculine, but there are important anatomical exceptions (e.g., Manus is feminine, and Corpus, Glomus, and Viscus are neuter); and if it ends in -um it can be assumed to be neuter.

**Nouns.** There are five declensions of nouns. The genitive singular distinguishes each declension.

First declension. The nominative singular generally ends in -a, as in many anatomical terms such as Vena. The genitive singular ends in -ae, e.g., Venae. The nominative plural ends in -ae (Venae), and the genitive plural in -arum (Venarum). These nouns are feminine. The classical pronunciation of the diphthong -ae, as in Vertebrae, is ai as in aisle (Mountford, 1973) (which is similar to -ie as in pie); English-speaking anatomists generally mispronounce it -ee as in bee.

Second declension. The nominative singular commonly ends in -us, as in many anatomical terms such as Nervus. The genitive singular ends in -i, e.g., Nervi. These nouns are masculine. The nominative singular of some second declension nouns ends in -um (Labium); the genitive singular again ends in -i (Labii). Such nouns are neuter. Forms with the nominative singular ending in -us have the nominative plural ending in -i (Nervi) and genitive plural ending in -orum (Nervorum). Forms such as Labium have a nominative plural ending in -a (Labia) and genitive plural ending in -orum (Labiorum). The classical pronunciation of the ending -i ,as in Nervi, is long -i as in machine (Mountford, 1973); English-speaking anatomists commonly mispronounce it -ie as in pie. Thus the pronunciations of endings in -ae and -i by most English-speaking anatomists have been virtually reversed.

Other second declension nouns have a nominative singular ending in -er (e.g., Puer, a boy). These play no great part in anatomical nomenclature, but reappear in the declension of adjectives (see below). Their genitive singular, nominative plural, and genitive plural endings are the same as those of nouns with the nominative singular ending in -us.

Third declension. The nominative singular ends variously, but the genitive singular always ends in -is. The gender is variable. Among the many examples from anatomy are: Radix, radicis, f. root; Pes, pedis, m. foot; Cor, cordis, n. heart; Caput, capitis, n. head; Vas, vasis, n. vessel; Crus, cruris, n. leg; Mater, matris, f. mother; Nomen, nominis, n. name; Avis, avis, f. bird; Pons, pontis, m. bridge; Rete, retis, n. net.

Masculine and feminine nouns of the third declension have a nominative plural ending in -es (Radices, Pedes, Matres, Aves, Pontes) and genitive plural ending in -um (Radicum, Pedum, Matrum) or -ium (Avium, Pontium). Neuter nouns of the third declension have a nominative plural ending in -a (Corda, Capita, Vasa, Nomina) or -ia (Retia); the genitive plural again ends in -um (Cordum, Capitum, Nominum), or -ium (Retium). Vas is an irregular noun, mainly third declension but partly second declension: its genitive plural (Vasorum, as in Vasa vasorum) is typical of the second declension.

The Greek nouns mentioned above, Chiasma, Soma, Stoma, Stroma, and Systema, fit uneasily into the Latin third declension. The ending of the nominative singular in -a is itself atypical of the third declension. Stroma appears to be the only one of these with any claims to a classical Latin usage, its Greek endings being Latinized during the late Roman era as in the third declension (genitive singular, Stromatis; nominative plural, Stromata; genitive plural, Stromatum). The others, all of them new Latin, are declined similarly.

Fourth declension. The nominative singular ends in -us as in quite numerous anatomical terms such as Manus (f.), Plexus (m.), and Tractus (m.), or -u (e.g., Genu, n.). The genitive singular also ends in -us (Manus, Plexus, Tractus, Genus), but the vowel u is short in the nominative and long in the genitive, i.e., pronounced "oo" as in took in the singular, and "oo" as in shoot in the genitive; in Latin, s is always pronounced "ss" as in mass, not "s" as in was (Mountford, 1973). Fourth declension nouns ending in -us are either masculine or feminine; those ending in -u are neuter. The nominative plural also ends in -us (long u). The genitive plural ends in -uum (Manuum, Plexuum, Tractuum, Genuum) the first -u being long and the second -u being short. Nouns with the nominative singular ending in -us tend to cause difficulty to anatomists who are not familiar with Latin, because they may belong to the second (e.g., Nervus), third (e.g., Crus), or fourth (e.g., Manus) declension. In anatomical terms genitives are often used, and to make the genitive forms of these nouns correctly it is necessary to know to which declension they belong. For example, "a branch of a nerve" is translated into "Ramus nervi" (or nervi ramus, see below, Word Order), but "the skeleton of the crus" is translated into Skeleton cruris and "the bones of the hand" into "Ossa manus". Fortunately the problem is easily solved because Latin Dictionaries give both the nominative and the genitive singular cases of nouns.

Fifth declension. The nominative singular ends in -es. The genitive singular ends in -ei. Two examples in anatomical terminology are Facies (genitive singular, faciei), and Ingluvies (Ingluvei). Both of these nouns are feminine. The nominative plural is the same as the nominative singular (Facies, Ingluvies), and the genitive plural ends in -erum (Facierum, Ingluvierum).

616 A. S. KING

Adjectives. Adjectives agree with their nouns in number, case, and gender. There are two groups: adjectives of the first and second declensions, and adjectives of the third declension. Their endings respectively resemble the first two declensions of nouns, and the third declension of nouns.

First and second declensions. Adjectives of the first and second declensions end in -us (m.), -a (f.), -um (n.), or -er, -ra, -rum. In those ending in -us, -a, -um, the masculine is declined like Nervus, the feminine like Vena, and the neuter like Labium. Thus the nominative singular of Internus is Internus, Interna, Internum; hence Ramus internus, Capsula interna, and Labium internum. The genitive singular forms are Rami interni (of the internal ramus), Capsulae internae (of the internal capsule), and Labii interni (of the internal labium). The nominative plurals are Rami interni, Capsulae internae, and Labia interna; the genitive plurals are Ramorum internorum, Capsularum internarum, and Labiorum internorum.

Adjectives of the first and second declension ending in -er, -ra, -rum decline like Dexter (right). The nominative singular is Dexter (m.), Dextra (f.), Dextrum (n.); genitive singular, Dextri, Dextrae, Dextri; nominative plural, Dextri, Dextrae, Dextrae, Dextra; genitive plural, Dextrorum, Dextrorum, Dextrorum. Hence when dexter qualifies a masculine noun such as Ramus, the cases are Ramus dexter (the right branch), Rami dextri (of the right branch), Rami dextri ( the right branches), and Ramorum dextrorum (of the right branches). When dexter qualifies a feminine noun, e.g., Crista, the corresponding cases are Crista dextra (the right crest), Cristae dextrae (of the right crest), Cristae dextrae (the right crests), and Cristarum dextrarum (of the right crests). When dexter qualifies the neuter Labium, the same four cases are Labium dextrum, Labii dextri, Labia dextra, and Labiorum dextrorum.

Third declension. Adjectives of the third declension with the nominative singular ending in -is decline like Dorsalis. The nominative singular is Dorsalis (m. and f.), and Dorsale (n.); genitive singular, Dorsalis (m., f., n.); nominative plural, Dorsales (m., f.), Dorsalia (n.); genitive plural, Dorsalium (m., f., n.). Hence Arteria dorsalis (the dorsal artery), and Vasis dorsale (the dorsal vessel); Arteriae dorsalis (of the dorsal arteries), Vasa dorsalia (the dorsal vessels); and Arteriarum dorsalium (of the dorsal arteries), Vasorum dorsalium (of the dorsal vessels).

Adjectives of the third declension with the nominative singular ending -or decline like Inferior. The nominative singular is Inferior (m., f.), Inferius (n.); genitive singular, Inferioris (m., f., n.); nominative plural, Inferiores (m., f.), Inferiora (n.); genitive plural, Inferiorum (m., f., n.).

Some adjectives of the third declension have the nominative singular ending in -ens. The present participles of verbs also end in -ens, or in -ans (e.g., afferens, derived from the present participle of the verb adfero, I carry to, i.e., adferens, carrying to; communicans, communicating, derived from communico, I communicate). Several other present participles are commonly used in anatomical Latin, including efferens, recurrens, ascendens, descendens, perforans. Present participles decline like adjectives. The nominative singular forms are afferens and communicans (m., f., n.); genitive singular afferentis and communicantis (m., f., n.); nominative plural afferentes and communicantes (m., f.) and afferentia and communicantia (n.); and genitive plural afferentium and communicantium (m., f., n.).

**Prepositions.** Only two prepositions are routinely used in anatomical terms, ad (to) and cum (with). Ad takes the accusative case. An example (from the NAV, 1983) is Ramus ad sulcum cranialem (branch to the cranial sulcus). Sulcus is a second declension masculine noun, and Cranialis a third declension adjective (resembling Dorsalis). The accusative singular of such second declension nouns ends in -um (hence Sulcum); the accusative singular of third declension adjectives like dorsalis ends in -em when masculine (hence cranialem) or feminine, and -e when neuter.

Cum takes the ablative. An example from the NAV (1983) is Ramus anastomoticus cum plexu ophthalmico (anastomotic branch with the ophthalmic plexus). The ablative singular of the fourth declension noun Plexus (m.) ends in -u, and the masculine ablative singular of the first and second declension adjective ophthalmicus ends in -o (feminine -a, neuter -o). An example from this edition of the NAA is Connexus cum nervo faciali (connection with the facial nerve). Here the ablative singular of the second declension noun Nervus (m.) ends in -o; the masculine, feminine, and neuter ablative singular cases of the third declension adjective Facialis end in -i.

Word order and formation of new terms. Fortunately for anatomists Latin is not strict about the order in which words are combined. For example "a branch of a nerve" can be translated into ramus nervi or nervi ramus. In anatomical Latin, however, the nominative noun always goes first, e.g., Venae cordis (the veins of the heart).

Before devising a composite term consisting of several nouns and adjectives, the anatomist should decide what he is trying to say in his own vernacular. Suppose he wants to say "greater curvature of the stomach". Clearly the adjective "greater" qualifies "curvature", not "stomach". Therefore the number, case, and gender of major (greater) must agree with Curvatura (singular, nominative, feminine), hence Curvatura major; "of the stomach" requires the genitive singular of (second declension, masculine) Ventriculus,

618 A. S. KING

i.e., Ventriculi. These three terms can be written as in English, i.e., Major curvatura ventriculi, but in Latin the adjective is often placed after its noun. This is the rule in anatomical Latin, and indeed the first word in an anatomical term seems never to be an adjective; therefore, Curvatura major ventriculi would be acceptable. An alternative is to put the genitive noun in the middle instead of at the end, i.e., Curvatura ventriculi major, which is the form adopted by the NAV (1983) for this particular term; this may be stylistically better, since it resembles the word order in classical Greek, which influences classical Latin. However, the NAV and NH use both of these forms. For example, the NAV has Tunica mucosa oris in which the genitive noun is at the end, as it is in Tunica interna bulbi of the NH (1989). On the other hand, the NH also has Organa oculi accessoria, in which the genitive noun is in the middle. Where a term contains two nouns, one nominative and the other genitive and each of them is qualified by an adjective, the genitive noun followed by its genitive adjective can go at the end; an example is Crus rostrale capsulae internae (the rostral crus of the internal capsule) as in the NAV (1983).

#### REFERENCE

Mountford, J. (1973). Kennedy's Shorter Latin Primer. Longman, London.

## APPENDIX B

## LIST OF MEMBERS OF ICAAN

Bakst, Murray R. U.S. Dept. Agriculture, ARS Avian Physiology Laboratory Beltsville, MD 20705 USA.

Ballmann, Peter Am Botanischen Garten 68 5000 Koln 60 GERMANY

Baumel, Julian J. Division of Anatomy School of Medicine Creighton University Omaha, NE 68178 USA

Bázantová, I. Dept. of Histology Faculty of Medicine Karls University Prague, CFSR

Berens von Rautenfeld, D. Medizinische Hochschule Hannover Postfach 61 01 80 D-3000 Hannover 61 GERMANY

Berkhoudt, Herman Zoologisch Laboratorium der Rijksuniversiteit Leiden Kaiserstraat 63, Postbus 9516 2300 RA Leiden NEDERLAND

Bezuidenhout, A. J.
Department of Anatomy
Universiteit van Pretoria
Onderstepoort 0110
REPUBLIC OF SOUTH AFRICA

Bhattacharyya, B. N. Department of Zoology Bangabasi College Calcutta 700 009 INDIA

Brauth, Stephen E.
Department of Psychology
University of Maryland
College Park, MD 20742 USA

Breazile, James E.
Dept. Physiological Sciences
College of Veterinary Medicine
Oklahoma State University
Stillwater, OK 74074 USA

Bubien-Waluszewski, A. Akademia Rolnicza Wydzial Weterynaryjnv Katedra Anatomii Zwierzat Wroctaw 12 ul. Kozuchowska 1/3 POLAND

Budras, K.-D. Institut Veterinär-Anatomie, Histologie u. Embryologie Freie Universität Berlin 1000 Berlin 33 Koserstrasse 20 GERMANY

Bühler, Paul Institut f. Zoologie Universität Hohenheim ID-7000 Stuttgart 70 GERMANY Burtt, Edward H. Dept. Biological Sciences Ohio Wesleyan University Delaware, OH 43015 USA

Chaisson, R. B. Dept. Biological Sciences University of Arizona Tucson, AZ 85721 USA

Clark, George A., Jr. Biological Sciences Group University of Connecticut Storrs, CT 06268 USA

Clench, Mary H. University Texas Medical Branch Galveston, TX 77550 USA

Dubbeldam, J. L. Zoologisch Laboratorium Rijksuniversiteit Leiden 2300 RA Leiden NEDERLAND

Duke, Gary E. College of Veterinary Medicine University of Minnesota St. Paul, MN 55108 USA

Duncker, H.-R. Institut f. Anat. Zytobiologie Justus Liebig Universität 6300 Giessen GERMANY

Epple, August Department of Anatomy Jefferson Medical College Thomas Jefferson University Philadelphia, PA 19107 USA

Evans, Howard E.
Department of Anatomy
College of Veterinary Medicine
Cornell University
Ithaca, NY 14853 USA

Fancsi, Tibor Dept. Anatomy Histology Univ. Veterinary Medicine 1900 Budapest PF2 HUNGARY

Fujioka, Toshitake Lab. Veterinary Anatomy Faculty of Agriculture Nagoya University Chikusa-Ku Nagoya JAPAN 464

Gaunt, Abbot S.
Department of Zoology
Ohio State University
Columbus, OH 43210 USA

Fehér, Gy. Institut Anatomie Histologie Veterinärmediz. Universität Budapest, HUNGARY

Hodos, W. Department of Psychology University of Maryland College Park, MD 20742 USA

Hogg, David Department of Anatomy University of Glasgow Glasgow G12 8QQ SCOTLAND UK

Ilyichev, V. Ringing Centre 109240 Ist Kotelnichesky per. 10 Moscow 10 USSR

Johnston, David W. National Academy of Sciences Washington, DC 20418 USA Kaman, Jiri
Department of Pathological
Anatomy and Histology
University of Veterinary Medicine
612 42 Brno CZECHOSLOVAKIA

King, Anthony S. Longacre, 41 Farr Hall Drive Heswall, Merseyside, L60 4SE ENGLAND UK

Kitoh, Junzoh
Institute Laboratory Animals
School of Medicine Research
Nagoya University
Showa-Ku Nagoya
JAPAN 466

Komárek, Vladimir Sidlistni 204 165 00 Praha, 6-Lysolaje CZECHOSLOVAKIA

Kuenzel, Wayne, J. Department of Poultry Science University of Maryland College Park, MD 20742 USA

Kurochkin, E.N. Paleontological Institute Academy of Sciences Profsojuznaja 113 Moscow 117321 USSR

Lake, P. E. ARC Poultry Research Centre Roslin, Midlothian EH25 9PS SCOTLAND UK

Landolt, Ruth
Zoologischen Museum der
Universität Zurich
CH-8057 Zurich SWITZERLAND

Lippert-Burmester, W.
Medizinische Hochschule Hannover
Inst. f. Funktionelle ünd
Angewandte Anatomie
Postfach 610180
D-3000, Hannover 61 GERMANY

Lucas, Alfred M.
Department of Animal Science
Michigan State University
East Lansing, MI 48824 USA

Maina, J. N.
Dept. of Veterinary Anatomy
University of Nairobi
Chiromo Campus
Nairobi KENYA

Malinovský, Lubomir Department of Anatomy University J. E. Purkyne 662 43 Brno, Komenskeho nam. 2 CZECHOSLOVAKIA

Martin, Graham R. School of Continuing Studies University of Birmingham Birmingham B15 2TT ENGLAND UK

McLelland, John Department of Anatomy Royal (Dick) School of Veterinary Studies Edinburgh EH9 1QH SCOTLAND UK

Michel, Günter Sekt. Veterinary-Med.(Anat) Karl-Marx-Universität Leipzig 7010 Leipzig, Semmelweisstr. 4 GERMANY Midtgård, Uffe Nørrevangen 16 A, 2610 Rødovre DENMARK

Miyaki, Takayoshi Department of Anatomy Nippon Medical School 1-1-5 Sendagi, Bunkyo-ku Tokyo 113, JAPAN

Morlion, Maria Fortlaan 22 B-9000 Ghent BELGIUM

Murphy, C. J. School of Veterinary Medicine University of Wisconsin Madison, WI 53706 USA

Neary, Timothy J.
Division of Anatomy
School of Medicine
Creighton University
Omaha, NE 68178 USA

Nishida, Takao Lab. of Veterinary Anatomy Faculty of Agriculture University Tokyo, Bunkyo-ku Tokyo 123, JAPAN

Ohmori, Yasushige Dept. Veterinary Anatomy Faculty of Agriculture Nagoya University Chikusa-Ku, Nagoya JAPAN

Paik, Y. K.
Lab. Veterinary Anatomy
Agricultural College
Chon-puk University
Chonju KOREA

Pastea, B.
Department of Anatomy
Faculty Veterinary Medicine
Splaiul Independentel 105
Bucuresti ROUMANIA

Payne, L. N. Houghton Poultry Research Station Houghton, Huntingdon, Cambs, PE17 2DA ENGLAND UK

Pohlmeyer, K.
Tierärztlichen Hochschule Hannover
Inst. f. Veterinäranatomie
Bischofsholer Damm 15
Hannover D 3000 GERMANY

Raikow, Robert J. Dept. Biological Sciences University of Pittsburgh Pittsburgh, PA 15260 USA

Rawal, U.M.
Department of Zoology
School of Sciences
Gujarat University
Ahmedabad 380 009 INDIA

Saiff, Edward I. Theoretical/Applied Science Ramapo College of New Jersey 505 Ramapo Valley Road Mahway, NJ 07430 USA

Schlüns, J. Frei Universität Berlin, Koserstrasse 20 D-1000 Berlin 33 GERMANY Simic, Vladeta Dept. Veterinary Anatomy Faculty Veterinary Medicine JNA 18,, 11000, Belgrade YUGOSLAVIA

Simpson, Sharon S. E. College Osteopathy 1750 N.E. 168th Street N. Miami Beach, FL 33162 USA

Spearman, R. I. C. Dept. Biochemical Pathology School of Medicine University College of London London WEIE 6JJ, ENGLAND UK

Stettenheim, Peter #64-255 Meriden Road Lebanon, NH 03766 USA

Storer, Robert W.
Museum of Zoology
University of Michigan
Ann Arbor, MI 48109 USA

Tingari, M.D. Vice-Chancellor University of Khartoum Khartoum, REPUBLIC OF SUDAN

Vanden Berge, James C. Northwest Center for Medical Education Indiana University Gary, IN 46408 USA

Watanabe, Tohru Dept. Veterinary Anatomy Faculty of Agriculture Nagoya University Nagoya 464 JAPAN Wideman, Robert F., Jr. Dept. Poultry Science Pennsylvania State University University Park, PA 16802 USA

Witmer, Lawrence M.
Department of Anatomy
New York College of
Osteopathic Medicine
Old Westbury, Long Island, NY
11568 USA

Yasuda, Mikio Department of Anatomy School of Medicine Nagoya University Tsurumai, Showa, Nagoya 464 JAPAN

Ziswiler, Vincent Zoologisches Museum der Universität Zurich-Irchel Winterthurerstrasse 190 CH-8057 Zurich SWITZERLAND

Zusi, Richard L. Division of Birds National Museum of Natural History Washington, DC 20560 USA

Zweers, Gart A. Subfaculteit Biologie Rijksuniversiteit Leiden Kaiserstraat 63, P.B. 9516b 2300 RA Leiden NEDERLAND

- Abdalla, A. B. and King, A. S. 1979a. The afferent and efferent myelinated fibres of the avian cervical vagus. J. Anat. 128: 135-142.
- ———. 1979b. Afferent and efferent myelinated fibres in branches of the avian vagus. J. Anat. **129**: 69–75.
- ———. 1982. The unmyelinated fibre spectrum of the avian cervical vagus nerve. J. Anat. 134: 85–89.
- Abdalla, M. A. 1989. The blood supply to the lung. In: Form and Function in Birds (A. S. King and J. McLelland, eds.). Vol. 4, pp. 281-306. Academic Press, London.
- Abdalla, M. A. and King, A. S. 1975. The functional anatomy of the pulmonary circulation of the domestic fowl. Resp. Physiol. 23: 267-290.
- ——. 1976a. Pulmonary arteriovenous anastomoses in the avian lung: do they exist? Respir. Physiol. 27: 187–191.
- ———. 1976b. The functional anatomy of the bronchial circulation of the domestic fowl. J. Anat. 121: 537–550.
- 1977. The avian bronchial arteries: species variations. J. Anat. 123: 697-704.
- Abdalla, O. 1979 Ossification and mineralization in the tendons of the chicken (*Gallus domesticus*). J. Anat., 129: 351-359.
- Abdel-Magied, E. M. and King, A. S. 1978. The topographical anatomy and blood supply of the carotid body region of the domestic fowl. J. Anat. 126: 535-546.
- ———. 1982. Effects of distal vagal ganglionectomy and midcervical vagotomy on the ultrastructure of axonal elements in the carotid body of the domestic fowl. J. Anat. 134: 643-652.
- ———. 1984. Intramural granular cells in the arteries of the carotid body region of the domestic fowl. J. Anat. 139: 483-490.
- Abdel-Magied, E. M., Taha, A. A. M., and King, A. S. 1982. An ultrastructural investigation of a baroreceptor zone in the common carotid artery of the domestic fowl. J. Anat. 135: 463-473.
- Abdelwahab, E. M. 1987. Ultrastructure and arrangement of hepatocyte cords in the duckling's liver. J. Anat. 150: 181-189.
- Abraham A. and Stammer, A. 1966. Über die Struktur und die Innervierung der Augenmuskeln der Vögel unter Berücksichtigung des Ganglion ciliare. Acta Biol. (Hungary) 12: 87-118.

- Acheson, D. W. K., Kemplay, S. K. and Webster, K. E. 1980. Quantitative analysis of the optic terminal profile distribution within the pigeon optic tectum. Neuroscience 5: 1067–1084.
- Adamo, N. J. 1967. Connections of efferent fibers from hyperstriatal areas in chicken, raven and African love-bird. J. Comp. Neurol. 131: 377-356.
- Addens, J. L. 1933. The motor nuclei and roots of the cranial and first spinal nerves of vertebrates. Z. Anat. Entwgesch. 101: 307-410.
- Adkins-Regan, E. and Watson, J. T. 1990. Sexual dimorphism in the avian brain is not limited to the song system of songbirds: a morphometric analysis of the brain of the quail (*Coturnix japonica*). Brain Res. **514**: 320–326.
- Aire, T. A. 1979a. The epididymal region of the Japanese Quail (*Coturnix coturnix japonica*). Acta Anat. **103:** 304–312.
- ———. 1979b. Micro-stereological study of the avian epididymal region. J. Anat. **129:** 703–706.
- Aitken, R. N. C. 1966. Postovulatory development of ovarian follicles in the domestic fowl. Res. Vet. Sci. 7: 138-142.
- Aitken, R. N. C. and Johnston, H. S. 1963. Observations on the fine structure of the infundibulum of the avian oviduct. J. Anat. 97: 87-99.
- Akester, A. R. 1960. The comparative anatomy of the respiratory pathways in the domestic fowl (*Gallus domesticus*), pigeon (*Columba livia*), and domestic duck (*Anas platyrhynchos*). J. Anat. **94:** 487–505.
- ———. 1964. Radiographic studies of the renal portal system in the domestic fowl (*Gallus domesticus*). J. Anat. **98:** 365-376.
- -----. 1967. Renal portal shunts in the kidney of the domestic fowl. J. Anat. 101: 569-594.
- ———. 1974. Deformation of red blood cells in avian lung capillaries. J. Anat. 117: 658.
- Birds (A. S. King and J. McLelland, eds.). Vol. 1, pp. 381-441. Academic Press, London.
- . 1986. Structure of the glandular layer and koilin membrane in the gizzard of the adult domestic fowl (*Gallus gallus domesticus*). J. Anat. **147:** 1-25.
- Akester, A. R. and Mann, S. P. 1969. Adrenergic and cholinergic innervation of the renal portal valve in the domestic fowl. J. Anat. 104: 241-252.
- Akester, A. R., Pomeroy, D. E., and Purton, M. D. 1973. Subcutaneous air pouches in the Marabou stork (*Leptoptilos crumeniferus*). J. Zool. **170**: 493-499.

- Alix, E. 1874. Essai on l'appareil locomoteur des Oiseaux. Masson, Paris. Alverdes, K. 1924. Der Nebenhoden des Haussperlings. Z. Mikrosk.-anat.
- Forsch. 1: 207–227.
- Amerlinck, A. 1923. Contribution a l'etude de la Membrane de Reissner et de l'epithelium de revetement du canal cochleaire des oiseaux. Arch. Biol. 33: 301-328.
- Ames, P. L. 1971. The morphology of the syrinx in passerine birds. Bull. Peabody Mus. Nat. Hist. (Yale Univ.) 37: 1-194.
- . 1975. The application of syringeal morpholgy to the classification of the Old World Insect Eaters (Muscicapidae). Bonn. Zool. Beitr. 26: 107-134.
- Ames, P. L., Heimerdinger, M. A., and Warter, S. L. 1968. The anatomy and systematic position of the antipipits *Conopophaga* and *Corythopis*. Postilla (Peabody Mus. Nat. Hist., Yale Univ.), no. 114: 32 pp.
- Ametov, Z. 1971. Peculiarities of the structure and function of the joints and tendon-ligament apparatus of the pelvic bones and extremities of saltigrade birds. Doclady Akad. Nauk SSSR **200**(2): 492–495.
- Andersen, A. E. and Nafstad, P. H. J. 1968. An electron microscopic investigation of the sensory organs in the hard palate region of the hen. Z. Zellforsch. Mikrosk. Anat. 91:391-401.
- Andres, K. H. and von During, M. 1984. The filopluma: an avian receptor organ. Fourth Conf. Europ. Soc. Comp. Skin Biology, Grenoble, Abs., p. 4.
- Andrew, A. 1984. The development of the gastro-enteropancreatic neuroendocrine system in birds. In: *Evolution and Tumour Pathology for the Neuroendocrine System* (S. Falkmer, R. Hakanson, and F. Sundler, eds.). Elsevier, Amsterdam.
- Angaut, P. and Reperant, J. 1978. A light and electron microscopic study of the nucleus isthmo-opticus in the pigeon. Arch. Anat. Micr. 67: 63-78.
- Antony, M. 1920. Über die Speicheldrüsen der Vögel. Zool. Jb. 41: 547-660.
- Arends, J. J. A., Wild, J. M., and Zeigler, H. P. 1988. Projections of the nucleus of the tractus solitarius in the pigeon (*Columba livia*). J. Comp. Neurol. 278: 405-429.
- Ariëns-Kappers, C. U. 1933. The forebrain arteries in plagiostomes, reptiles, birds. In: Wirbeltiere und des Menschen. Bohn, Haarlem.
- -----. 1947. Anatomie Comparee du Systeme Nerveux. Masson, Paris.
- Ariëns-Kappers, C. U., Huber, G. C., and Crosby, E. C. 1936. The Comparative Anatomy of the Nervous System of Vertebrates Including Man. Mac-Millan Co., New York.

- Arnold, A. P., Nottebohm, F., and Pfaff, D. W. 1976. Hormone concentrating cells in vocal control and other areas of the brain of the zebra finch (*Poephila guttata*). J. Comp. Neurol. **165**: 487-512.
- Ash, R. W., Pearce, J. W., and Silver, A. 1969. An investigation of the nerve supply to the salt gland of the duck. Quart. J. Exp. Physiol. Cog. Med. Sci. 54: 281-295.
- Assenmacher, I. 1953. Étude anatomique du systeme arteriel cervicocephalique chez l'oiseau. Arch. Anat. Histol. Embryol. 35: 181-202.
- Astier, H. 1980. Thyroid gland in birds: structure and function. In: *Avian Endocrinology* (A. Epple and M. H. Stetson, eds.), pp. 167-189. Academic Press, New York.
- Austin, O. L. 1961. Birds of the World. Golden Press, New York.
- Azcoitia, I., Fernandez-Soriano, J., Fernandez-Ruiz, B., and Fernandez-Larios, A. 1985. Is the avian glycogen body a secretory organ? J. Hirnforsch. 26: 651-657.
- Bachmann, R. 1954. Die Nebenniere. In: Handbuch der mikroskopischen Anatomie des Menschen (W. Bargmann, ed.). Vol. 6, Pt. 5. Springer-Verlag, Berlin.
- Baer, M. 1896. Beiträge zur Kenntnis der Anatomie und Physiologie der Athemwerk zeuge bei den Vögeln. Z. Wiss. Zool. 61: 420-498.
- Bagnoli, P. and Burkhalter, A. 1983. Organization of the afferent projections to the wulst in the pigeon. J. Comp. Neurol. 214: 103-113.
- Bailey, R. E. 1953. Accessory reproductive organs of male fringillid birds: seasonal variations and response to various sex hormones. Anat. Rec. 115: 1-19.
- Bain, J. and Hall, J. M. 1969. Observations on the development and structure of the vitelline membrane of the hen's egg: an electron microscope study. Austral. J. Biol. Sci. 22: 653-655.
- Baker-Cohen, D. F. 1968. Comparative enzyme histochemical observations on submammalian brains. Ergebn. Anat. Entw. 40: 1-70.
- Bakst, M. R. 1978a. Scanning electron microscopy of the oviductal mucosa apposing the hen ovum. Poult. Sci. 57: 1065-1069.
- ———. 1986. Embryonic development of the chicken external cloaca and phallus. Scan. Electr. Microsc. 11: 653-659.
- ———. 1987. Anatomical basis of sperm-storage in the avian oviduct. Scan. Microsc. 1: 1257–1266.

- Bakst, M. R. and Bird, D. M. 1987. Localization of oviductal sperm-storage tubules in the American Kestrel (*Falco sparverius*). Auk **104**:321–324.
- Bakst, M. R. and Cecil, H. C. 1983. Gross appearance of turkey cloacae before and after single or multiple manual semen collections. Poult. Sci. 62: 683-689.
- . 1985. A microscopic examination of the male turkey proctodeal gland. J. Morph. 186: 361-368.
- ———. 1986. Embryonic appearance of the turkey male genitalia. Poult. Sci. 65: 1623–1630.
- Bakst, M. R. and Howarth, B. 1975. SEM preparation and observations of the hen's oviduct. Anat. Rec. 181: 211-226.
- ———. 1975. The head, neck and midpiece of cock spermatozoa examined with the transmission electron microscope. Biol. Reprod. 12: 632-640.
- ——. 1977a. The fine structure of the hen's oviduct. Biol. Reprod. 17: 361-369.
- . 1977b. Hydrolysis of the hen's perivitelline layer by cock sperm in vitro. Biol. Reprod. 17: 370-379.
- Ballmann, P. 1969a. Die Vögel aus der altburdigalen Spaltenfüllung von Wintershof (West) bei Eichstätt in Bayern, Zitteliana (München) 1: 5-60.
- ———. 1969b. Les oiseaux miocenes de la Grive-Saint-Alban (Isere). Geobios 2: 157-204.
- ———. 1979. Fossile Glareolidae aus dem Nörwlinger Ries (Aves: Charadriiformes). Bonn. Zool. Beitr. 30: 53-101.
- Balthazart, J., Foidart, A., Surlemont, C., Harada, N., Leranth, C., and Naftolin, F. 1990. İmmunocytochemical localization of aromatase and estrogen receptors in the brain. Soc. Neurosci. Abstr. 16: 1313.
- Bang, B. G. 1971. Functional anatomy of the olfactory system in 23 orders of birds. Acta Anat. 79, Suppl., pp. 1-76.
- Bang, B. G. and Wenzel, B. M. 1985. Nasal cavity and olfactory system. In: *Form and Function in Birds*. (A. S. King and J. McLelland, eds.) Vol. 3, pp. 195-225. Academic Press, London.
- Banks, W. J. 1981. Applied Veterinary Histology. Williams and Wilkins, Baltimore.
- Barany, E., Berggren, L. and Vrabec, F. 1957. The mucinous layer covering the corneal endothelium in the owl *Strix aluco*. Brit. J. Ophthal. 41: 25–30.
- Bargmann, W. 1939. Die Epithelkörperchen. In: *Handbuch der mikroskopischen Anatomie des Menschen* (W. v. Mollendorff, ed.). Vol. 6, Pt. 2, pp. 137-196. Springer Verlag, Berlin.
- ——. 1943. Die Epiphysis cerebri. In: *Handbuch der microskopischen Anatomie des Menschen* (W. von Mollendorff ed.). Vol. 6, Pt. 4, pp. 309–502. Springer Verlag, Berlin.

- Barker, S. G. E. and Kendall, M. D. 1984. A study of the rete epithelium in several wild birds. J. Anat. 138: 139-152.
- Barkow, H. 1829. Anatomisch-physiologische Untersuchungen, vorzüglich über das Schlagadersystem der Vögel. Arch. Anat. Physiol., pp. 306–496.
- Barkow, H. C. L. 1856. Syndesmologie der Vögel, 41 pp. Königlichen Universität, Breslau.
- Barnett, C. H. 1954a. A comparison of the human knee and avian ankle. J. Anat. 88: 59-70.
- ———. 1954b. The structure and function of fibrocartilages within vertebrate joints. J. Anat. 88: 363–368.
- Barnett, C. H. and O. J. Lewis 1958. The evolution of some traction epiphyses in birds and mammals. J. Anat. 92: 593-601.
- Barnikol, A. 1953. Zur Morphologie des Nervus Trigeminus der Vögel unter besonderer Berücksichtigung der Accipitres, Cathartidae, Striges. und Anseriformes. Z. Wiss. Zool. 157: 285–332.
- Bartels, M. 1925. Über die gegend des Deiters and Bechterewskernes der Vögeln. Z. Ges. Anat. 77: 726-784.
- Bas, C. 1954-55. On the relation between the masticatory muscles and the surface of the skull in *Ardea cinerea* L.). Pts. I, II, III. Proc. Koninkl. Nederl. Akad. Wetensch. (Amsterdam), Ser. C, Pt. I, **57**: 678-685 (1954); Pts. II, III, **58**: 101-108; 109-113 (1955).
- Bath, W. 1906. Die Geschmacksorgane der Vögel und Krokodile. Arch. Biontol. 1: 1-47.
- Batojeva, S. Ts. and Batojev, Ts. Zh. 1972. On the anatomy of the pancreas of domestic birds. Arkh. Anat. Histol. Embriol. 63: 105-108.
- Baum, H. 1930. Das Lymphgefässsystem des Huhnes. Z. Anat. Entwgesch. 93: 1-34.
- Baumel, J. J. 1958. Variation in the brachial plexus of *Progne subis*. Acta Anat. **34:** 1-34.
- \_\_\_\_\_. 1964. Vertebral-dorsal carotid artery interrelationships in the pigeon and other birds. Anat. Anz. 114: 113-130.
- . 1967. The characteristic asymmetrical distribution of the posterior cerebral artery of birds. Acta Anat. 67: 53-549.
- ——. 1975a. Aves nervous system. In: Sisson and Grossman's The Anatomy of the Domestic Animals. (R. Getty, ed.), 5th ed. Vol. 2, pp. 2019–2062. Saunders, Philadelphia.
- The Anatomy of the Domestic Animals (R. Getty, ed.). 5th ed. Vol. 2, pp. 2053-2062. Saunders, Philadelphia.
- The Anatomy of Domestic Animals. (R. Getty, ed.). 5th ed. Vol. 2, pp. 1968-2009. Saunders, Philadelphia.

- ——. 1979. Osteologia/Arthrologia/Systema Cardiovasculare. In: *Nomina Anatomica Avium*. (J. J. Baumel, A. S. King, A. S. Lucas, A. M. Breazile, and H. E. Evans, eds.), pp. 53–121; 123–173; 343–407. Academic Press, London.
- ———. 1985. Suspensory ligaments of nerves: an adaptation for protection of the avian spinal cord. Zbl. Vet. Med. C 14: 1-5.
- ——. 1988. Functional morphology of the tail apparatus of the pigeon Columba livia). Adv. Anat. Embryol. Cell Biol. no. 110: 115 pp. Springer Verlag, Heidelberg.
- Baumel, J. J., A. F. Dalley, and Quinn, T. H. 1983. The collar plexus of subcutaneous thermoregulatory veins in the pigeon *Columba livia*: its association with esophageal pulsation and gular flutter. Zoomorphology **102**: 215–239.
- Baumel, J. J. and Gerchman, L. 1968. The avian intercarotid anastomosis and its homologue in other vertebrates. Amer. J. Anat. 122: 1-18.
- Baumel, J. J., Wilson, J. A., and Bergren, D. R. 1990. The ventilatory movements of the avian pelvis and tail: Function of the muscles of the tail region of the pigeon (*Columba livia*). J. Exp. Biol. 151: 263-277.
- Beddard, F. E. 1884. A contribution to the anatomy of *Scopus umbretta*. Proc. Zool. Soc. London, pp. 543–553.
- -----. 1885. On the structural characters and classification of the cuckoos. Proc. Zool. Soc. London, pp. 168–187.
- ———. 1886. On the syrinx and other points in the anatomy of the Caprimulgidae. Proc. Zool. Soc. London, pp. 147–153.
- . 1888. Notes on the visceral anatomy of birds. II. On the respiratory organs in certain diving birds. Proc. Zool. Soc. London, pp. 252-258.
- ———. 1890. On the alimentary canal of the Martineta Tinamou (*Calidromas elegans*). Ibis, pp. 61–66.
- ines and in some other birds. Proc. Zool. Soc. London, pp. 225-231.
- ——. 1898. The Structure and Classification of Birds. Longmans Green, London.
- . 1911. On the alimentary tract of certain birds and on the mesenteric relations of the intestinal loops. Proc. Zool. Soc. London 1: 47–93.
- Bellairs, A. d'A. and Jenkin, C. R. 1960. The skeleton of birds. In: *Biology and Comparative Physiology of birds*. (A. J. Marshall, ed.). Vol. 1, pp. 241–300. Academic Press, London.
- Bellairs, A. d'A. and Attridge, J. 1975. *Reptiles*. 2nd ed. Hutchinson, London.

- Bellairs, R. 1965. The relationship between oocyte and follicle in the hen's ovary as shown by electron microscopy. J. Embryol. Exp. Morph. 13: 215-233.
- Bellairs, R., Harkness, M., and Harkness, R. D. 1963. The vitelline membrane of the hen's egg: a chemical and electron microscopical study. J. Ultrastruct. Res. 8: 339-359.
- Bellonci, J. 1888. Über die zentrale Endigung des Nervus opticus bei der Vertebraten. Z. Wiss. Zool. 47: 1-45.
- Benes, F. M., Parks, T. N. and Rubel, E. W. 1977. Rapid dendritic atrophy following deafferentation: An EM morphometric analysis. Brain Res. 122: 1-13.
- Bennett, T. 1974. Peripheral and autonomic nervous systems. In: *Avian Biology* (D. S. Farner and J. R. King, eds.). Vol. 4, pp. 1–77. Academic Press, New York.
- Bennett, T. and Malmfors, T. 1970. The adrenergic nervous system of the domestic fowl (*Gallus domesticus*). Z. Zellforsch. Mikrosk. Anat. 106: 22-50.
- Benoit, J. 1926. Sur l'origine des cellules interstitielles de l'ovaire de la poule. Compt. Rend. Séanc. Soc. Biol. **94:** 873–874.
- 1950. Organes uro-genitaux. In: *Traité de Zoologie* (P. P. Grassé, ed.). Vol. 15, pp. 341-377. Masson, Paris.
- Benowitz, L. 1980. Functional organization of the avian telencephalon. In: *Comparative neurology of the telencephalon*. (S. O. E. Ebbesson, ed.), pp. 389-421. Plenum Press, New York, London.
- Benowitz, L. I. and Karten, H. J. 1976a. The tractus infundibuli and other afferents to the parahippocampal region of the pigeon. Brain Res. 102: 174-180.
- . 1976b. Organization of the tectofugal visual pathway in the pigeon: a retrograde transport study. J. Comp. Neurol. **167**: 503-520.
- Bentz, G. D. 1979. The appendicular myology and phylogenetic relationships of the Ploceidae and Estrildidae (Aves: Passeriformes). Bull. Carnegie Mus. Nat. Hist. 15: 1-25.
- ———. 1983. Myology and histology of the phalloid organ of the Buffalo Weaver (*Bubalornis albirostris*). Auk **100:** 501–504.
- Bentz, G. D. and Zusi, R. L. 1982. The humeroulnar pulley and its evolution in hummingbirds. Wilson Bull. 94: 71-73.
- Benzo, C. A. De Gennardo, L. D., and Stearns, S. B. 1975. Glycogen metabolism in the developing chick glycogen body: Functional significance of the direct oxidative pathway. J. Exp. Zool. 193: 161-166.
- Berens v. Rautenfeld, D. 1973. Zur Form und Funktion des Kopulationsorganes beim Haushuhn (*Gallus domesticus*). Inaug. Diss., Freie Universität, Berlin.

- . 1979. Vergleichenden-anatomische Untersuchungen der Kloake von Vögeln mit besonderer Berucksichtigung des lymphatischen Kopulations-schwellkörpers. Habil.-Sammelreferat, Berlin.
- ———. 1985. Comparative aspects of the avian lymph system. Fortschr. Zool. **30:** 411–415.
- . 1985. Comparative aspects on the avian lymph system. In: *Functional Morphology in Vertebrates* (H. R. Duncker and K. Fleischer, eds.), p. 411–415. G. F. Fischer Verlag, Stuttgart, New York.
- Berens v. Rautenfeld, D. and Budras, K. D. 1975. Elektronoptische Untersuchungen über Transsudationsvorgänge zwischen Blut- und Lymphkapillaren im Lymphobulbus des Kopulationsorganes beim Haushahn (*Gallus domesticus*). Zbl. Vet. Med. C 4: 274-287.
- . 1978. Vergleichend-anatomische Untersuchungen über einen transepithelialen Flüssigkeitstrom in das Lumen der Kloake von Vögeln. Zbl. Vet. Med. C 7: 276-279.
- ———. 1980. A comparative study on the Bursa Fabricii and Tonsilla caecalis in Birds. Folia Morph. (Prague) 28: 168-170.
- ———. 1981. TEM and SEM investigations of lymph hearts in birds. Lymphology 14: 186-190.
- . 1982. The bursa cloacae (Fabricii) of Struthioniformes in comparison with the bursa of other Birds. J. Morph. 172: 123-138.
- 1983. Topography, ultrastructure and phagocytic capacity of avian lymph nodes. Cell Tissue Res. 228: 389-403.
- Berens v. Rautenfeld, D., Budras, K.-D., and Gassmann, R. 1976. A morphological study of antibody transport in the transparent fluid flowing from the lymph-folds of the copulatory organ in the cloacal lumen of the cock (Gallus domesticus). Z. Mikrosk.-Anat. Forsch. 90: 989-1008.
- Berens v. Rautenfeld, D., Budras, K. D., Manthey, H., and Stenzel, R. 1981. Zur Feinstruktur und Funktion der aviären Lymphknoten. Verh. Anat. Ges. 75: 741-743.
- Berens v. Rautenfeld, D. and Castenholz, A. 1987. Neues zur Form und Funktion der interendothelialen Öffhungen und Ankerfilamente im Lymphdrainageweg der Amnioten. Verh. Anat. Ges. 81: 751-752.
- Berens v. Rautenfeld, D., Lubach, D., and Hunneshagen, C. 1987a. Zur Nomenklatur initialer Lymphgefässe und ihrer Strukturelemente bei Vertebraten. Anat. Histol. Embryol. 16: 357-362.
- Berens v. Rautenfeld, D., Lubach, D., Wenzel-Hora, B., Klanke, J., and Hunneshagen C., 1987b. New techniques of demonstrating lymph vessels in skin biopsy specimens and intact skin with the scanning electron microscope. Arch. Dermatol. Res. 279: 327-334.
- Berens v. Rautenfeld, D., Preuss, F., and Fricke, W. 1974. Neue Daten zur Erektion und Reposition de Erperl phallus. Prakt. Tierarzt. 10: 553-556.

- Berens v. Rautenfeld, D. and Wenzel-Hora, B. 1985. The nomenclature of the initial lymphatics from a comparative anatomical point of view. *Progress In Lymphology, X. Proc. Int. Congr. Lymphology.* (J. R. Casley-Smith and N. B. Piller, eds.). Adelaide, University of Adelaide Press, (Australia).
- Berens v. Rautenfeld, D., Wenzel-Hora, B., Budras, K. D., and Henschel, E. 1983. Morphologische Untersuchungen des Lymph-drainageweges nach Applikation von Intravitalfarbstoffen und Röntgenkontrastmitteln. Verh. Anat. Ges. 77: 533-536.
- Berens v. Rautenfeld, D., Wenzel-Hora, B., and Hickel, E.-M. 1983. Lymphgefässsystem und Lymphographie beim Vögel, Teil 1: Anatomische Besonderheiten des Lymphgefässsystems. Tierärztl. Praxis 11: 469–476.
- Berens v. Rautenfeld, D., Wenzel-Hora, B., Hickel, E.-M., and Henschel, E. 1984. Lymphgefässsystem und Lymphographie beim Vögel, Teil 2: Indirekte und direkte Lymphographie. Tierärztl. Praxis 12: 21-32.
- 1966. The musculature. In: Avian Myology (J. C. George and A. J. Berger, eds.), pp. 224-473. Academic Press. New York and London.
  1968. Appendicular myology of Kirtland's Warbler. Auk 85: 594-616.
- Appendicular myology of passerine birds. Wilson Bull. **81:** 220–223.
- Berger, C. 1966. Mikroskopische und histochemische Untersuchungen an der Niere von *Columba livia aberratio domestica*. Z. Mikrosk.-Anat. Forsch. **74**: 436-456.
- Berk, M. L. and Butler, A. B. 1981. Efferent projections of the medial preoptic nucleus and medial hypothalamus in the pigeon. J. Comp. Neurol. 203: 379-399.
- Berk, M. L., Reaves Jr., T. A., Hayward, J. N., and Finklestein, J. A. 1982. The localization of vasotocin and neurophysin neurons in the diencephalon of the pigeon, *Columba livia*. J. Comp. Neurol. **204**: 392–406.
- Berkhoudt, H. 1976. The epidermal structure of the bill tip organ in ducks. Netherl. J. Zool. **26:**561–566.
- ———. 1977. Taste buds in the bill of the Mallard (*Anas platyrhynchos*): their morphology, distribution and functional significance. Netherl. J. Zool. **27**: 310–331.
- ———. 1980. The morphology and distribution of the cutaneous mechanoreceptors (Herbst and Grandry corpuscles) in bill and tongue of the Mallard (Anas platyrhynchos) Netherl. J. Zool. 30: 1-34.

- ------. 1985. Structure and function of avian taste receptors. In: *Form and Function in Birds* (A. S. King and J. McClelland, eds.). Vol. 3, pp. 463-496. Academic Press, London.
- ———. 1985. The role of oral exteroceptive sense organs in avian feeding behaviour. Vert. Morph. Fortschritte Zool. **30:** 269–272.
- Berkhoudt, H., Dubbeldam, J. L., and Zeilstra, S. 1981. Studies on the somatotopy of the trigeminal system in the Mallard, *Anas platyrhynchos* L., IV. Tactile representation in the nucleus basalis. J. Comp. Neurol. 196: 407-420.
- Berman, S. L. 1984. The hindlimb musculature of the White-fronted Amazon (*Amazona albifrons*, Psittaciformes). Auk 101: 74-92.
- Berman, S. L. and R. J. Raikow. 1982. The hindlimb musculature of the mousebirds (Coliiformes). Auk 99: 41-57.
- Bertler, A., Falck, B., Gottfries, C. G., Ljunggren, L., and Rosengren, E. 1964. Some observations on adrenergic connections between mesencephalon and cerebral hemispheres. Acta Pharmacol. Toxicol. 21: 283-289.
- Bezuidenhout, A. J. 1981. The anatomy of the heart of the Ostrich *Struthio camelus* Linn. Dr. Vet. Sci. Thesis, Univ. of Pretoria.
- ——. 1983. The Valva atrioventriculus dextra of the avian heart. Zbl. Vet. Med. C. 12: 104–108.
- ——. 1984. The coronary circulation of the heart of the Ostrich *Struthio camelus*. J. Anat. **138**: 385-397.
- ———. 1986. The topography of the thoraco-abdominal viscera in the Ostrich (*Struthio camelus*). Onderstepoort J. Vet. Res. **53**: 111–117.
- Bhaduri, J. L., Biswas, B., and Das, S. K. 1957. The arterial system of the domestic pigeon *Columba livia* Gmelin). Anat. Anz. 104: 1-14.
- Bhattacharyya, B. N. 1980. The morphology of the jaw and tongue musculature of the common pigeon, *Columba livia*, in relation to its feeding habit. Proc. Zool. Soc. (Calcutta) **31:** 95–126.
- ———. 1982. Functional morphology of the tongue muscles of some Indian insect-eating birds. Gegenbaurs Morphol. Jb. (Leipzig) **128:** 208–254.
- -----. 1985. Functional morphology of the jaw muscles of some Indian insect-eating birds. Gegenbaurs Morphol. Jb. (Leipzig) 131: 93-123.
- ———. 1987. On the structural adaptations of the bill, skull elements, tongue, and hyoid of some Indian insect-eating birds. Gegenbaurs Morphol. Jb. (Leipzig) 133: 311-351.
- . 1989. Functional morphology of the jaw muscles of two species of Imperial Pigeons, *Ducula aenea nicobarica* and *Ducula badia insignis*. Gegenbaurs Morphol. Jb. (Leipzig) **135:** 573-618.
- Bickford, A. A. 1965. A fully formed and functional right oviduct in a Single Comb White Leghorn pullet. Avian Dis. 9: 464-470.

- Biggs, P. M. 1957. The association of lymphoid tissue with the lymph vessels in the domestic chicken. Acta Anat. 29: 36-47.
- Bignon, F. 1889. Contribution á l'étude de la pneumaticité chez les oiseaux. Les cellules aeriennes cervico-cephaliques des oiseaux et leurs rapports avec les os de la tête. Mem. Soc. Zool. France 2: 260–320.
- Binkley, S. 1980. Functions of the pineal gland. In: *Avian Endocrinology* (A. Epple and M. H. Stetson, eds.), pp. 53–74. Academic Press, New York.
- ———. 1989. The Pineal: Endocrine and Nonendocrine Function. Prentice-Hall, Englewood Cliffs, New Jersey.
- Bittner, H. 1924. Die Sektion des Hausgeflugels und der Versuchssingvögel. Berl. tierärtz. Wschr. **40:** 99–101.
- ——. 1925. Beitrag zur topographischen Anatomie der Eingeweide des Huhnes. Z. Morph. Ökol. Tiere 2: 785-793.
- Blähser, S. 1980. Somatostatin-immunoreaktive Neuroenverbande im Hypothalamus und Mesencephalon des Huhnes, *Gallus domesticus*. Verh. Anat. Ges. **74:** 775–777.
- ——. 1981a. Zur Raumlichen Beziehung zwischen Somatostatin- und Enkephalin-immunoreaktiven Neuronsystemen im kaudelen Hirnstamm von *Gallus domesticus*. Verh. Anat. Ges. **75:** 793–795.
- ——. 1981b. Vasotocin and mesotocin systems in birds. In: Neurosecretion (D. S. Farner and K. Lederis, eds.), pp. 71-77. Plenum Press, New York.
- ——. 1984. Peptidergic pathways in the avian brain. J. Exp. Zool 232: 398-403.
- ———. 1988. The fascinating facets of neuropeptide systems in birds. In: Acta XIX Cong. Intern. Ornith. (H. Ouellet, ed.), pp. 2196–2201.
- Blähser, S. and Dubois, M. P. 1980. Immunocytochemical demonstration of met-enkephalin in the central nervous system of the domestic fowl. Cell Tissue Res. 213: 53–68.
- Blähser, S., Fellmann, D., and Bugnon, C. 1978. Immunocytochemical demonstration of somatostatin-containing neurons in the hypothalamus of the domestic Mallard. Cell Tissue Res. 195: 183–187.
- Blähser, S. and Heinrichs, M. 1982. Immunoreactive neuropeptide systems in avian embryos (domestic Mallard, domestic fowl, Japanese quail). Cell Tissue Res. 223: 287–303.
- Blom, L. 1973. Ridge pattern and surface ultrastructure of the oviducal mucosa of the hen (*Gallus domesticus*). Kgl. Danske Vidensk. Selsk. Skr., Bio. **20:** 3-15.
- BNA (Basle Nomina Anatomica). 1895. In: *Anatomical Dictionary with Nomenclatures and Explanatory Notes*. T. Donath and G. N. C. Crawford. Pergamon Press, Oxford and London.

- Board, R. G. 1982. Properties of avian egg shells and their adaptive value. Bio. Rev. 57: 1-28.
- Boas, J. E. V. 1929. Biologisch-anatomische Studien über den Hals der Vögel. Kgl. Danske Vidensk. Selsk. Skr., naturvidensk. Mathem. Afd., Ser. 9, 1, pp. 105-222.
- ——. 1933. Kreuzbein, Becken, und Plexus lumbosacralis der Vögel. Kgl. Danske Vidensk. Selsk. Skr., naturvidensk. Mathem. Afd., Ser. 9, 5, pp. 1-74, 15 pls.
- Bobr, L. W., Lorenz, F. W., and Ogasawara, F. X. 1964. Residence sites of spermatozoa in fowl oviducts. J. Reprod. Fert. 8: 39-47.
- Böck, P. 1982. The paraganglia. In: *Handbuch der Mikroskopischen Anatomie des Menschen* (A. Okscheand and L. Vollrath, eds.). Vol. 6, Pt. 8. Springer Verlag, Berlin.
- Bock, W. J. 1960. Secondary articulation of the avian mandible. Auk 77: 19-55.
- ------. 1962. The pneumatic fossa of the humerus in the Passeres. Auk 79: 425-443.
- Ornith. Cong.: (C. G. Sibley, ed.), pp. 39-54.
- ——. 1964. Kinetics of the avian skull. J. Morph. 114: 1-52.
- ------. 1966. An approach to the functional analysis of bill shape. Auk 83: 10-51.
- ———. 1968. Mechanics of one- and twojoint muscles. Amer. Mus. Novit. no. 2319: 45 pp.
- ——. 1985. The skeletomuscular system of the feeding apparatus of the Noisy Scrub-bird, *Atrichornis clamosus* (Passeriformes: Atrichornithidae). Records Australian Mus. 37: 193–210.
- Bock, W. J., Balda, R. P. and Wall, S. B. 1973. Morphology of the sublingual pouch and tongue musculature in Clark's Nutcracker. Auk 90: 491–519.
- Bock, W. J. and Hikida, R. S. 1968. An analysis of twitch and tonus fibers in the hatching muscle. Condor **70**: 211–222.
- ———. 1969. Turgidity and function of the hatching muscle. Amer. Midl. Nat. 81: 99–106.
- Bock, W. J. and Morioka, H. 1971. Morphology and evolution of the ectethmoid-mandibular articulation in the Melpiphagidae (Aves). J. Morph. 135: 13-50.
- Bock, W. J. and Morony, J. 1972. Snap-closing jaw ligaments in flycatchers. Amer. Zool. 12: 729-730.

- Bock, W. J. and Shear, C. R. 1972. A staining method for gross dissection of vertebrate muscle. Anat. Anz. 130: 222-227.
- Bodrossy, L. 1938. Das Venensystem der Hausvogel. Inaug. Diss., Budapest [in Hungarian, German summary].
- Bohme, G. 1970. Eine organartige Bildung im IV. Ventrikel beim Huhn. Verh. Anat. Ges. 64: 245-250.
- Boille, C., Raymond, J., and Bayle, J. D. 1977. Retrograde transport of horseradish peroxidase from the nucleus posterior medialis hypothalami to the hippocampus and the medial septum in the pigeon. Neuroscience 2: 435-439.
- Boker, H. 1929. Flugvermogen und Kropf bei *Opisthocomus cristatus* und *Stringops habroptilus*. Morph. Jb. **63:** 152–207.
- Bolton, T. B. 1971. The structure of the nervous system. In: *Physiology and Biochemistry of the Domestic Fowl* (D. B. Bell and B. M. Freeman, eds.). Vol. 2, pp. 641-673. Academic Press, London.
- Bolze, G. 1968. Anordnung und Bau der Herbstschen Korperchen in Limonicolenschnabeln im Zusammenhang mit der Nahrungsfindung. Zool. Anz. 181: 313-355.
- Bonke, B. A., Bonke, D. and Scheich, H. 1979. Connectivity of the auditory forebrain nuclei in the guinea fowl (*Numida meleagris*). Cell Tissue Res. **200**: 101-121.
- Bons, N. 1974. Mise en evidence an microscope electronique, de terminaisons nerveuses d'origine retinienne dans l'hypothalamus anterieur du Carnard. Compt. Rend. Acad. Sci. (Paris) 278:319-321.
- \_\_\_\_\_\_. 1976. Retinohypothalamic pathway in the duck (*Anas platyrhy-nchos*). Cell Tissue Res. **168**: 343–360.
- ———. 1980. The topography of mesotocin and vasotocin systems in the brain of the domestic Mallard and Japanese Quail: immunocytochemical identification. Cell. Tissue Res. 213: 37–51.
- Bons, N., Bouille, C., Bayle, J. D., and Assenmacher, I. 1976. Light and electron microscopic evidence of hypothalamic afferents originating from hippocampus in pigeon. Experientia 32: 1443-1444.
- Bons, N., Kerdelhue, B., and Assenmacher, I. 1978a. Mise en evidence d'un deuxieme systeme neurosecretoire a LH-RH dans l'hypothalamus du Canard. Compt. Rend. Acad. Sci. (Paris) 287: 145-151.
- ------. 1978b. Immunocytochemical identification of the LHRH-producing system originating in the preoptic nucleus of the duck. Cell Tissue Res. **188**: 99–106.
- Bonsdorf, E. V. 1852. Symbolae ad Anatomiam comparatam nervorum animalium vertebratorum. Acta Soc. Sci. Fenn. 3: 505-569; 591-624.
- Boord, R. L. 1968. Ascending projections of the primary cochlear nuclei and nucleus laminaris in the pigeon. J. Comp. Neurol. 133: 523-542.

639

——. 1969. The anatomy of the avian auditory system. Ann. N.Y. Acad. Sci. 167: 186–198.

- Boord, R. L. and Karten, H. J. 1974. The distribution of primary lagenar fibers within the vestibular nuclear complex of the pigeon. Brain, Behav. Evol. 10: 228-235.
- Boord, R. L. and Rasmussen, G. L. 1963. Projection of the cochlear and lagenar nerves on the cochlear nuclei of the pigeon. J. Comp. Neurol. 120: 463-475.
- Bortolami, R., Callegari, E., and Lucchi, M. L. 1972. Anatomical relationship between mesencephalic trigeminal nucleus and cerebellum in the duck. Brain Res. 47: 317-329.
- Botezat, E. 1904. Geschmacksorgane und andere nervose Endapparate im Schnabel der Vögel. Biol. Zentralbl. 24: 722-736.
- . 1906. Die Nervenendapparate in der Mundteilen der Vögel in die einheitliche Endigungsweise der Peripheren Nerven bei den Wirbeltieren.
   Z. Wiss. Zool. 84: 205-360.
- Bottijer, S. W. and Arnold, A. P. 1982. Afferent neurons in the hypoglossal nerve of the Zebra Finch (*Poephila guttata*): localization with horseradish peroxidase. J. Comp. Neurol. **210**: 190–197.
- Boyd, J. D. and Hamilton, W. J. 1952. Cleavage, early development and implantation of the egg. In: *Marshall's Physiology of Reproduction*. 3rd ed. (A. S. Parkes, ed.). Vol. 2, Chap. 14. Longmans Green, London.
- Brach, V. 1975. The effect of intraocular ablation of the pecten oculi of the chicken. Invest. Ophth. 14: 166-168.
- ———. 1977. The functional significance of the avian pecten: a review. Condor **79:** 321–327.
- Brackenbury, J. H. 1989. Functions of the syrinx and the control of sound production. In: *Form and Function in Birds* (A. S. King and J. McLelland, eds.). Vol. 4, pp. 193–220. Academic Press, London.
- Brandis, F. 1894. Untersuchungen über das Gehirn der Vögel. Ursprung der Nerven der Medulla oblongata. Wilhelm Roux Arch. Entw. Organismen 43: 96-116.
- Branton, S. L., Lott, B. D., Morgan, G. W., and Deaton, J. W. 1988. Position of Meckel's diverticulum in broiler-type chickens. Poult. Sci. 67: 677-679.
- Braun, E. J. 1984. Renal morphometrics of the Western Gull, (*Larus occidentalis*). Amer. Zool. 24: 148A.
- Braun, E. J. and Dantzler, W. H. 1972. Function of mammalian-type and reptilian-type nephrons in kidney of desert quail. Amer. J. Physiol. 222: 617-629.

- Brauth, S. E. 1977. Direct accessory optic projections to the vestibulocerebellum: a possible channel for oculomotor control systems. Exp. Brain Res. 28: 73-84.
- Brauth, S. E., Ferguson, J. L., and Kitt, C. A. 1978. Prosencephalic pathways related to the paleostriatum of the pigeon (*Columba livia*). Brain Res. **147:** 205–221.
- Bravo, H. and Pettigrew, J. D. 1981. The distribution of neurons projecting from the retina and visual cortex to the thalamus and tectum opticum of the Barn Owl (*Tyto alba*) and the Burrowing Owl, *Athene cunicularia*. J. Comp. Neurol. **199:** 419–441.
- Breazile, J. E. and Hartwig, H-G. 1989. Central nervous system. In: *Form and Function in Birds*. (A. S. King and J. McLelland, eds.). Vol. 4, pp. 485–566. Academic Press, London.
- Brecha, N., Karten, H. J. and Hunt, S. P. 1980. Projections of the nucleus of the basal optic root in the pigeon: An autoradiographic and horseradish peroxidase study. J. Comp. Neurol. **169**: 615–670.
- Brinkman, R. and Martin, A. H. 1973. A cytoarchitectonic study of the spinal cord of the domestic fowl *Gallus gallus domesticus*. 1. Brachial region. Brain Res. **56**: 43-62.
- Brodal, A., Kristiansen, K., and Jansen, J. 1950. Experimental demonstration of a pontine homologue in birds. J. Comp. Neurol. 92: 23-69.
- Brode, M. D. 1928. The significance of the asymmetry of the ovaries of the fowl. J. Morphol. 46: 1-56.
- Brooks, W. S. and Garrett, S. E. 1970. The mechanism of pipping in birds. Auk 87: 458-466.
- Bubien-Waluszewska, A. 1972. Topography of the vagus nerve in the domestic hen (*Gallus domesticus F. domestica* L.). Zool. Poloniae 22: 5-42.
- ———. 1981. The cranial nerves. In: Form and Function in Birds (A. S. King and J. McLelland, eds.). Vol. 2, pp. 385–438. Academic Press, London.
- ———. 1985. Somatic peripheral nerves. In: Form and Function in Birds (A. S. King, J. McLelland, eds.). Vol. 3, pp. 149–193. Academic Press, London.
- Buchholz, V. 1959-60. Beitrag zu makroskopischen Anatomie des Armgeflechtes und der Beckennerven beim Haushuhn (*Gallus domesticus*). Wiss. Z. Humboldt-Univ. Berlin, Math.-Nat. R. 9: 515-594.
- Budras, K. D. 1972. Das epoöphoron der Henne und die Transformation seiner Epithelelzellen in Interrenal- und Interstitialzellen. Ergeb. Anat. Entw. Gesch. 46: 7-72.
- Budras, K. D. and Berens v. Rautenfeld, D. 1982. Zur topographischen und funktionellen Anatomie des Lymphherzens von Wasservogel und Laufvogel. Verh. Anat. Ges. 76: 339-341.

- ——. 1983. Die quergestreifte Lymphherzmuskulatur des Vogels. Ein bisher unbekannter Muskelzelltyp. Verh. Anat. Ges. 77: 529-531.
- ——... 1984. Zur Funktionellen und topographischen Anatomie des Lymphherzen und Lymphgefässsystems im Beckenreich bei Wasser- und Laufvögeln. Anat. Anz. 154: 231–240.
- Budras, K. D., Hullinger, R. L., and Berens v. Rautenfeld, D. 1987. Lymph heart musculature in birds. J. Morph. 191: 77-87.
- Budras, K. D. and Meier, U. 1981. The epididymis and its development in ratite birds. (Ostrich, emu, rhea). Anat. Embryol. 62: 281-299.
- Budras, K. D. and Preuss, F. 1973. Elektronenmikroskopische Untersuchungen zur embryonalen und postembryonalen Genese der Eierstocks zwischenzellen des Haushuhns. Z. Zellforsch. Mikrosk. Anat. 136: 59-83.
- Budras, K. D. and Sauer, T. 1975. Morphology of the epididymis of the cock (*Gallus domesticus*) and its effect upon the steroid sex hormone synthesis. 1. Ontogenesis, morphology and distribution of the epididymis. Anat. Embryol. **148**: 175–196.
- Budras, K. D. and Schmidt, F. G. 1976. Die Frühentwicklung der Gonaden und die Ontogenese von Rete testis und Tubuli seminiferi bei Huhn Gallus domesticus). Zbl. Vet. Med. C. 5: 267-289.
- Bühler, P. 1970. Schädelmorphologie und Kiefermechanik der Caprimulgidae (Aves). Z. Morph. Tiere 66: 337-399.
- Bühler, P., Martin, L. D., and Witmer, L. M. 1988. Cranial kinesis in the Late Cretaceous *Hesperornis* and *Parahesperornis*. Auk 105: 111-122.
- Bunt, S. M. and Horder, T. J. 1983. Evidence for an orderly arrangement of optic axons within the optic nerves of the major nonmammalian vertebrate classes. J. Comp. Neurol. 213: 94-114.
- Buri, R. O. 1900. Zur Anatomie des Flügels von *Micropus melba* und einigen anderen Coracornithes, zugleich Beitrag zur Kenntnis der systematischen Stellung der Cypselidae. Jena Z. Med. 33: 361-610.
- Burrows, W. H. and Quinn, J. P. 1937. The collection of spermatozoa from the domestic fowl and turkey. Poult. Sci. 16: 19-24.
- Burt, W. H. 1929. Pterylography of certain North American woodpeckers. Univ. Calif. Publ. Zool. 30: 427-442.
- ——. 1930. Adaptive modifications in the woodpeckers. Univ. Calif. Publ. Zool. 32: 455-524.
- ———. 1970. Some observations on the Os uncinatum in the Musophagidae. Ostrich, Suppl., 8: 7-13.

- . 1971. Some observations on the splenius capitis muscle of birds. Ibis 113: 19-28.
- ———. 1974. Feeding and Feeding Apparatus in Waders: A Study of Anatomy and Adaptations in Charadrii. Brit. Mus. Nat. Hist., Publ., no. 719, 15 pp.

- . 1984. Anatomy and evolution of the feeding apparatus in the avian orders Coraciiformes and Piciformes. Bull. Brit. Mus. Nat. Hist., Zool. 47: 333-433.
- Busse, A. 1985. Licht- und elektronenmikroskopische Untersuchungen zur Bedeutung der Urniere auf die pränatale Entwicklung des Interrenalorgans beim Emu (*Dromaius novaehollandiae*). Inaug. Diss. Vet. Med., Berlin.
- Butendieck, E. 1980. Die Benennung des Skeletts beim Truthuhn (*Meleagris galapavo*) unter Berücksichtigung der Nomina Anatomica Avium 1979. Inaug. Diss. Tierärtzl. Hochschule, Hannover.
- Butler, G. W. 1889. On the subdivision of the body-cavity in lizards, crocodiles and birds. Proc. Zool. Soc. London, pp. 452–474.
- Cabot, J. B., Reiner, A., and Bogan, N. 1982. Avian bulbospinal pathways: anterograde and retrograde studies of cells of origin, funicular trajectories and laminar terminations. Prog. Brain Res. 57: 79-108.
- Cadow, G. 1933. Magen und Darm der Fruchttauben. J. f. Ornith. 81: 236-252.
- Cajal, S. Ramon. 1908. Les ganglions terminaux du nerf acoustique des oiseaux. Tab. Lab. Invest. Biol. (Univ. Madrid) 6: 195-225.
- Calhoun, M. L. 1954. *Microscopic Anatomy of the Digestive System of the Chicken*. Iowa State College Press, Ames.
- Campana, A. 1875. Recherches d'Anatomie, de Physiologie pour la détermination des lois de la genése et de l'Evolution des Espéces Animales. 1. Mémoire: Physiologie de la respiration chez les oiseaux, anatomie de l'appareil pneumatique-pulmonaire, des faux diaphragmes, de séreuses et de l'intestin chez le poulet. Masson, Paris.
- Campbell, B. and Lack, E. (eds.) 1985. *A Dictionary of Birds*. Buteo Books, Vermillion, South Dakota.
- Carlson, N., Pizant, J., and Stahl, A. 1983. Mesonephric origin of the gonadal primitive medulla in chick embryos. Anat. Embryol. 166: 399-414.

- Cassone, V. M. 1988. Circadian variation of [14C]2-deoxyglucose uptake within the suprachiasmatic nucleus of the house sparrow, *Passer domesticus*. Brain Res. **459**: 178–182.
- Cassone, V. M. and Moore, R. Y. 1988. Retinohypothalamic projection and suprachiasmatic nucleus of the house sparrow, *Passer domesticus*. J. Comp. Neurol. **266**: 171-182.
- Castenholz, A. und Berens v. Rautenfeld, D. 1987. Zum Begriff der "Lymphkapillare" aus rasterelektronenmikroskopischer und funktioneller Sicht. Verh. Anat. Ges. 81: 749-750.
- Cazin, M. 1887. Recherches anatomiques histologiques et embryologiques sur l'appareil gastrique des oiseaux. Ann. Sci. nat. Zool. 4: 177-323.
- Chandler, A. C. 1916. A study of the structure of feathers, with reference to their taxonomic significance. Univ. Calif. Publ. Zool. 13: 243-446.
- Chard, R. D. and Gundlach, R. H. 1938. The structure of the eye of the homing pigeon. J. Comp. Psychol. 25: 249-272.
- Chevallier, A. 1979. Role of the somitic mesoderm in the development of thorax in bird embryos. II. Origin of thoracic and appendicular musculature. J. Embryol. Exp. Morph. 49: 73–88.
- Chiasson, R. B. and Ferris, W. R. 1968. The iris and associated structures of the Inca Dove (*Scardafella inca*). Amer. Zool. 8: 818.
- Cholodkowsky, N. 1892. Zur Kenntnis der Speicheldrüsen der Vögel. Zool. Anz. 15: 250–254.
- Christ, B., M. Jacob, and H. J. Jacob. 1983. On the origin and development of the ventrolateral abdominal muscles in the avian embryo. An experimental and ultrastructural study. Anat. Embryol. 166: 87-102.
- Clara, M. 1934. Über den Bau des Magendarmkanals bei der Amseln (Turdidae). Z. Anat. Entwgesch. 102: 718-771.
- Clark, G. A. and deCruz, J. B. 1989. Functional interpretation of protruding filoplumes in oscines. Condor **91**: 962–965.
- Clark, L. F., Rahn, H., and Martin, M. D. 1942. Seasonal and sexual dimorphic variations in the so-called "air sac" region of the Sage Grouse. Bull. Wyoming Game Fish Dep. 2: 13-27.
- Clark, N. B., Kaul, K. and Roth, S. I. 1986. The parathyroid glands. In: *Vertebrate Endocrinology: Fundamentals and Biomedical Implications*, Vol. 1, *Morphological Considerations* (P. K. T. Pang and M. P. Schreibman, eds.), pp. 207-234. Academic Press, Orlando.
- Clarke, P. G. H. 1977. Some visual and other connections to the cerebellum of the pigeon. J. Comp. Neurol. 174: 535-552.
- \_\_\_\_\_. 1982a. The generation and migration of the chick's isthmic complex. J. Comp. Neurol. **207**: 208–222.
- -----. 1982b. The genuineness of isthmo-optic neuronal death in chick embryos. Anat. Embryol. **165**: 389-404.

- Clench, M. H. 1970. Variability in body pterylosis, with special reference to the genus *Passer*. Auk **87:** 650–691.
- . 1978. Tracheal elongation in birds-of-paradise. Condor **80**: 423-430.
- Cobb, S. 1964. A comparison of the size of an auditory nucleus (n. mesencephalicus lateralis, pars dorsalis) with the size of the optic lobe in twenty seven species of birds. J. Comp. Neurol. 122: 271-279.
- Coe, M. J. 1960. Inflation of the neck pouch of the Marabou Stork. Nature 188: 598.
- Cogburn, L. A. and Glick, B. 1981. Lymphopoiesis in the chicken pineal gland. Amer. J. Anat. 160: 131-142.
- Cohen, D. H. and Schnall, A. M. 1970. Medullary cells of origin of vagal cardioinhibitory fibers in the pigeon. I. Anatomical studies of peripheral nerve and the dorsal motor nucleus. J. Comp. Neurol. 140: 299-320.
- Cohen, D. H., Schnall, A. M., MacDonald, R. L., and Pitts, L. H. 1970. Medullary cells of origin of vagal cardioinhibitory fibers in the pigeon. II. Electrical stimulation of the dorsal motor nucleus. J. Comp. Neurol. 140: 321-342.
- Cohen, D. H. and Karten, H. J. 1974. The structural organization of avian brain: An overview. In: *Birds, Brain and Behavior*. (I. J. Goodman and M. W. Schein, eds.), pp. 27–93. Academic Press, New York.
- Coil, W. H. and Wetherbee, D. K. 1959. Observations on the cloacal gland of the Eurasian Quail, *Coturnix coturnix*. Ohio J. Sci. **59:** 268-270.
- Collin, J. P., Balemans, M., Juillard, M. T. Legerstee, W. C., van Bentham, J., and Voisin, P. 1982. Indole metabolism at the cellular level: an in vivo combined radiobiochemical and high-resolution autoradiographic study in the avian pineal, with special reference to melatonin/5-methoxy-tryptophol. Biol. Cell **44:** 25-34.
- Collin, J. P. and Oksche, A. 1981. Structural and functional relationships in the nonmammalian pineal gland. In: *The Pineal Gland: Anatomy and Biochemistry* (R. J. Reiter, ed.). Vol. 1, pp. 27-67. CRC Press, Boca Raton.
- Cook, R. D. and King, A. S. 1969. A neurite-receptor complex in the avian lung: electron microscopical observations. Experientia 25: 1162-1164.
- Cook, R. D., Vaillant, C. R., and King, A. S. 1986a. The abdominal air sac ostium of the domestic fowl; a sphincter regulated by neuro-epithelial cells? J. Anat. 149: 101-111.
- ———. 1986b. The structure and innervation of the saccopleural membrane of the domestic fowl, *Gallus gallus:* an ultrastructural and immunohistochemical study. J. Anat. 150: 1-9.
- Cooper, M. L., Pickard, G. E. and Silver, R. 1983. Retinohypothalamic pathway in the dove demonstrated by anterograde HRP. Brain Res. Bull. 10: 715-718.

- Cords, E. 1904. Beiträge zur Lehre vom Kopfnervensystem der Vögel. Anat. Hefte **26:** 49–100.
- Cornselius, C. 1925. Morphologie, Histologie, und Embryologie des Muskelmagens der Vögel. Morph. Jb. **54**: 507-559.
- Correia, M. J., Eden, A. R., Westlund, K. N., and Coulter, J. D. 1982. Organization of ascending auditory pathways in the pigeon (*Columba livia*) as determined by autoradiographic methods. Brain Res. **234**: 205–212.
- Corti, A. 1923. Contributo alla migliore conoscenza dei diverticuli chiechi dell' intestino posteriore degli uccelli. Ric. Morf. 3: 211–295.
- Coues, E. 1872. Key to North American Birds. Dodd and Mead, New York.

  ———. 1927. Key to North American Birds. Page Co., Boston.
- Counter, S. A and Tsao, P. 1986. Morphology of the seagull's inner ear. Acta Otol. (Stockh.) 101: 34-42.
- Cowan, W. M. 1970. Centrifugal fibers to the avian retina. Brit. Med. Bull. **26:** 112-118.
- Cowan, W. M. and Powell, T. P. S. 1963. Centrifugal fibers in the avian visual system. Proc. Roy. Soc. London, B. 158: 232-252.
- Cowan, W. M. and Wenger, E. 1968. The development of the nucleus of origin of centrifugal fibers to the retina in the chick. J. Comp. Neurol. 133: 207-240.
- Cracraft, J. 1968. The lacrimal-ectethmoid complex in birds: a single character analysis. Amer. Midl. Nat. 80: 316-359.
- ———. 1971. The functional morphology of the hind limb of the domestic pigeon, *Columba livia*. Bull. Amer. Mus. Nat. Hist. **144**: 171–268.
- Craigie, E. H. 1928. Observations on the brain of the hummingbird (*Chrysolampis mosquitus* Linn. and *Chlorostibon caribaeus* Lawr.). J. Comp. Neurol. **45:** 377-481.
- . 1930. The brain of the kiwi (*Apteryx australis*). J. Comp. Neurol. **49:** 223-357.
- Cralley, J. C. 1965. The vascular anatomy of the starling, *Sturnus vulgaris* Linnaeus. Ph. D. Diss., Anatomy, Univ. of Illinois. [University Microfilms, Ann Arbor, Michigan].
- Crompton, A. W. 1953. The development of the chondrocranium of *Sphenis-cus demersus* with special reference to the columella auris of birds. Acta Zool. 34: 71-146.
- Crosby, E. C. and Showers, M. J. C. 1969. Comparative anatomy of the preoptic and hypothalamic areas. In: *The Hypothalamus* (W. Haymaker, E. Anderson, and W. J. H. Nauta, eds.), pp. 61-135. Charles C. Thomas, Springfield.

- Crossland, W. J. and Hughes, C. P. 1978. Observations on the afferent and efferent connections of the avian isthmo-optic nucleus. Brain Res. 145: 239–256.
- Crossland, W. J. and Uchwat, C. J. 1979. Topographic projections of the retina and optic tectum upon the ventral lateral geniculate nucleus in the chick. J. Comp. Neurol. 185: 87–106.
- Curtis, E. L. and Miller, R. C. 1938. The sclerotic ring in North American birds. Auk 55: 225-243.
- Curtis, M. R. 1910. The ligaments of the oviduct of the domestic fowl. Bull. Maine Agric. Expt. Sta. no. 176, 20 pp.
- d'Amico-Martel, A. and Noden, D. M. 1983. Contribution of placodal and neural crest cells to avian peripheral ganglia. Amer. J. Anat. 166: 445–468.
- Dahl, E. 1970. Studies of the fine structure of ovarian interstitial tissue. 6. Effects of clomiphene on the thecal gland of the domestic fowl. Z. Zellforsch. Mikrosk. Anat. 109: 227-244.
- ———. 1971. Studies of the fine structure of ovarian interstitial cells. 5. Effects of gonadotropins on the thecal gland of the domestic fowl. Z. Zellforsch. Mikrosk. Anat. 113: 133-156.
- Dang-quan-Dien 1951. Contribution à l'anatomie des arteres de lapoule domestique. Thesis Fac. Medic. Pharm., Lyon.
- Das, B. K. 1924. On the intra-renal course of the so-called "renal portal" veins in some common Indian birds. Proc. Zool. Soc. Lond. 50: 757-773.
- Davids, J. A. G. 1952. Étude sur les attaches au crane des muscles de la tete et du cou chez *Anas platyrhyncha platyrhyncha L.* II, III. Proc. Koninkl. Nederl. Akad. Wetensch. (Amsterdam), Ser. C, 55: 525-533; 534-540.
- Davidson, M. F., Draper, M. H., and Leonard, E. M. 1968. Structure and function of the oviduct of the laying hen. J. Physiol. (London) **196:** 9P-10P.
- Davies, F. 1930. The conducting system of the bird's heart. J. Anat. 64: 129–147.
- Day, M. G. 1966. Identification of hair and feather remains in the gut and faeces of stoats and weasels. J. Zool. 148: 201-217.
- de Beer, G. R. 1937. *The Development of the Vertebrate Skull*. Clarendon Press, Oxford.
- de Beer, G. R. and Barrington, E. J. W. 1934. The segmentation and chondrification of the skull of the duck. Phil. Trans. Roy. Soc. London 233B: 411-467.
- De Dennaro, L. D. and Benzo, C. A. 1976. Ultrastructural characterization of the accessory lobes of Lachi (Hoffmann's nuclei) in the nerve cord of the chick. I. Axoglial synapses. J. Exp. Zool. 198: 97-107.

- de Kock, J. M. 1955. The cranial morphology of *Sturnus vulgaris vulgaris* Linnaeus. Ann. Univ. Stellenbosch, Sec. A, no. 3, **21**, 153-175.
- DeKock, L. L. 1959. The carotid body system of higher vertebrates. Acta Anat. 37: 265-279.
- Delius J. D. and Bennetto, K. 1972. Cutaneous sensory projections to the avian forebrain. Brain Res. 37: 205-221.
- deWet, P., Fedde, M. R., and Kitchell, R. L. 1967. Innervation of the respiratory muscles of *Gallus domesticus*. J. Morph. **123**: 17-34.
- Dial, K. P., S. R. Kaplan, G. E. Goslow, Jr., and F. A. Jenkins, Jr. 1987. Structure and neural control of the pectoralis in pigeons: implications for flight mechanics. Anat. Rec. 218: 284-287.
- Dieterich, C. E. and Pfautsch, M. 1973. Fine structure observations of the pecten oculi capillaries of the chicken. Freeze etching, scanning, and transmission electron microscopic investigations. Z. Zellforsch. Mikrosk. Anat. 146: 473-489.
- Domesick, B. B. and Morest, D. K. 1977a. Migration and diffentiation of ganglion cells in the optic tectum of the chick embryo. Neuroscience 2: 459-475.
- ——. 1977b. Migration and differentiation of Shepherd's crook cells in the optic tectum of the chick embryo. Neuroscience 2: 477–491.
- Donath, T. and Crawford, G. N. C. 1969. Anatomical Dictionary with Nomenclatures and Explanatory Notes. Pergamon, Oxford, London.
- Dooling, R. J. 1982. Auditory perception in birds. In: *Acoustic Communication in Birds* (D. Kroodsma and E. Miller, eds.). Vol. 1. pp. 95-130. Academic Press, London.
- Dransfield, J. W. 1944. The lymphatic system of the domestic fowl. M. V. Sc. Thesis, Liverpool University.
- Draper, M. H., Davidson, M. F., and Wyburn, G. M. 1972. The fine structure of the fibrous membrane forming region of the isthmus of the oviduct of *Gallus domesticus*. Quart. J. Exp. Physiol. 57: 297-309.
- Draper, M. H., Johnston, H. S., and Wyburn, G. M. 1968. The fine structure of the oviduct of the laying hen. J. Physiol. London 196: 7-8P.
- Drent, R. 1975. Incubation. In: *Avian Biology* (D. S. Farner, J. R. King, and K. C. Parkes, eds.). Vol. 5, pp. 333-420. Academic Press, New York.
- Drimmelen, G. C. van. 1946. Sperm nests in the oviduct of the domestic hen. J. S. African Vet. Med. Assoc. 17: 42-52.
- Dubale, M. S. 1969. The jaw muscles of some Indian birds. Proc. Nat. Acad. Sci. India 39 (B); I and II: 201-212.
- Dubbeldam, J. L. 1968. On the shape and the structure of the brain stem in some species of birds. Thesis, Rijksuniversiteit te Leiden, Netherlands.

- ———. 1976. The basal branch of the septo-mesencephalic tract in the Mallard, *Anas platyrhyhchos* L. Acta Morph. Neerl.-Scand. **14:** 98.
- ———. 1980. Studies on the somatotopy of the trigeminal system in the Mallard, Anas platyrhynchos L. II. The morphology of the principal sensory nucleus. J. Comp. Neurol. 191: 557-571.
- . 1984. Afferent connections of nervus facialis and nervus glossopharyngeus in the pigeon (*Columba livia*) and their role in feeding behavior. Brain, Behav. Evol. 24: 47-57.
- Dubbeldam, J. L., Brauch, C. S. M., and Don, A. 1981. Studies on the somatotopy of the trigeminal system in the Mallard, *Anas platyrhynchos* L. III. Afferents and organization of the nucleus basalis. J. Comp. Neurol. 196: 391-405.
- Dubbeldam, J. L., Brus, E. R., Menken, S. B. J., and Zeilstra, S. 1979. The central projection of the glossopharyngeal and vagus ganglia in the Mallard, *Anas platyrhynchos* L. J. Comp. Neurol. **183**: 149–168.
- Dubbeldam, J. L. and Karten, H. J. 1978. The trigeminal system in the pigeon (*Columba livia*): I. Projections of the Gasserian ganglion. J. Comp. Neurol. **180**: 661–678.
- Dubbeldam, J. L., Karten, H. J., and Menken, S. B. J. 1976. Central projections of the chorda tympani nerve in the Mallard *Anas platyrhynchos* L. J. Comp. Neurol. **170:** 415-420.
- Dubbeldam, J. L. and Veenman, C. L. 1978. Studies on the somatotopy of the trigeminal system in the Mallard, *Anas platyrhynchos* L. I. The ganglion trigeminale. Netherl. J. Zool. **28:** 150-160.
- Dubbeldam, J. L. and Visser, A. M. 1987. The organization of the nucleus basalis-neostriatum complex of the Mallard (*Anas platyrhynchos* L.) and its connections with the archistriatum and paleostriatum complex. Neuroscience 21: 487-517
- Dubois, M. P., Barry, J., and Leonardelli, J. 1974. Mises en evidence par immunofluorescence et repartition de la somatostatine (SRIF) dans l'eminence mediane des vertebre (mammiferes, oiseaux, amphibiens, poissons). Sci. Natur. 279: 1899-1902.
- Duff, T. A. and Scott, G. 1979. Electron microscopic evidence of a ventronasal to dorsotemporal variation in fiber size in pigeon optic nerve. J. Comp. Neurol. 183: 679-688.
- Duff, T. A., Scott, G., and Mai, R. 1981. Regional differences in pigeon optic tract, chiasm and retino-receptive layers of the optic tectum. J. Comp. Neurol. 198: 231-247.
- Duke-Elder, S. 1958. System of Ophthalmology. Vol. 1. The Eye in Evolution. Kimpton, London.
- Duncker, H.-R. 1971. The lung air sac system of birds. Ergebn. Anat. Entw. **45** (6): 1–171.

- . 1972. Structure of avian lungs. Respir. Physiol. 14: 44-63.
- ———. 1979. Coelomic cavities. In: Form and Function in Birds (A. S. King and J. McLelland, eds.). Vol. 1, pp. 39-67. Academic Press, London.
- du Toit, P. J. 1912–1913. Untersuchungen über das Synsacrum und den Schwanz von *Gallus domesticus* nebst Beobachtungen über Schwanzlösigheit bei Kaulhühnern. Jena Z. Naturwiss. **49:** 149–312.
- Duijm, M. 1951. On the head posture in birds and its relation to some anatomical features. I, II. Proc. Koninkl. Nederl. Akad. Wetensch. (Amsterdam), Ser. C, **54**: 202-211; 261-271.
- Dullemeijer, P. 1951. The correlation between muscle system and skull structure in *Phalacrocorax carbo sinensis* Shaw and Nodder. I, II, III. Proc. Koninkl. Nederl. Akad. Wetensch. (Amsterdam), Ser. C, **54**: 247–259; 400–404; 533–536.
- Dzerzhinsky, F. Ya and K. A. Yudin. 1982. On homology of the jaw in the tuatara and the birds. Ornithol. Studies in the USSR [Zool. Inst., USSR Acad. Sci., Moscow], 2: 408-436.
- Dziuk, H. E. and Duke, G. E. 1972. Cineradiographic studies of gastric motility in turkeys. Amer. J. Physiol. 222: 159-166.
- Eckhard, C. 1876. Ueber die Erection der Vögel. Beitr. Anat. Physiol. 7: 116-125.
- Eden, A. R. and Correia, M. J. 1982. Identification of multiple groups of efferent vestibular neurons in the adult pigeon using horseradish peroxidase and DAPI. Brain Res. 248: 201-208.
- Edgeworth, F. H. 1935. *The Cranial Muscles of Vertebrates*. Cambridge Univ. Press, London.
- Edinger, L. and Wallenberg, A. 1899. Untersuchungen über das Gehirn der Tauben. Anat. Anz. 15: 245-271.
- Edington, G. H. and Miller, A. E. 1941. The avian ulna: its quill knobs. Proc. Roy. Soc. Edinburgh, **B61**: 138-148.
- Ehrlich, D. and Mark, R. 1984. An atlas of the primary visual projections in the brain of the chick *Gallus gallus*. J. Comp. Neurol. **223**: 592–610.
- Eiselen, G. 1939. Untersuchungen über den Bau und die Entstehung von Schmalzkielen bei Tauben. Z. Wiss. Zool. **152**: 409–438.
- Elzanowski, A. 1987. Cranial and eyelid muscles and ligaments of the tinamous (Aves): Tinamiformes). Zool. Jb. Anat. 116: 63–118.
- Emlen, S. T. 1975. The stellar orientation system of a migratory bird. Sci. Amer. 233: 102-111.
- Emmerton, J. 1983. Functional morphology of the visual system. In: *Physiology and Behavior of the Pigeon* (M. Abs, ed.), pp. 221–244. Academic Press, London.

- Emmerton, J. and Delius, J. 1980. Wavelength discrimination in the "visible" and ultraviolet spectrum by pigeons. J. Comp. Physiol. 141: 47-52.
- Epple, A. and Brinn, J. E. 1986. Pancreatic islets. In: *Vertebrate Endocrinology: Fundamentals and Biomedical Implications*, Vol. 1, *Morphological Considerations* (P. K. T. Pang and M. P. Schreibman, eds.), pp. 279-317. Academic Press, Orlando.
- ———. 1987. The comparative physiology of the pancreatic islets. Zoophysiology, Ser. 21. Springer Verlag, Heidelberg.
- Erdmann, K. 1940. Zur Entwicklungsgeschichte der Knochen im Schädel des Huhnes bis zum Zeitpunkt des Ausschlüpfens aus den Ei. Z. Morph. Ökologia Tiere **36:** 315–400.
- Erulkar, S. D. 1955. Tactile and auditory areas in the brain of the pigeon. J. Comp. Neurol. 103: 421-458.
- Ettershank, G. 1972. Phylum Arthropoda. In: *Parker and Haswell's Text-book of Zoology—Invertebrates*, 7th ed. (A. J. Marshall and W. D. Williams, eds.). Vol. 1. MacMillan, London.
- Evans, H. E. 1969. Anatomy of the Budgerigar. In: *Diseases of Cage and Aviary Birds*. (M. L. Petrak, ed.), pp. 45-112. Lea & Febiger, Philadelphia.
- Birds. 2nd ed. (M. L. Petrak, ed.). Lea & Febiger, Philadelphia.
- Ewald, J. R. 1892. Physiologische Untersuchungen über das Endorgan des Nervus octavus. J. R. Bergmann, Wiesbaden.
- Fahrenholz, C. 1937. Drüsen der Mundhöhle. In: *Handbuch der vergleichenden Anatomie der Wirbeltiere* (L. Bolk, E. Göppert, E. Kallius and W. Lubosch, eds.). Vol. 3, pp. 115–210. Urban & Schwarzenberg, Berlin and Vienna.
- Fawcett, D. W., Anderson, W. A., and Phillips, D. M. 1971. Morphogenetic factors influencing the shape of the sperm head. Dev. Biol. 26: 220–251.
- Fedde, M. R. 1970. Peripheral control of avian respiration. Fed. Proc. 29: 1664-1673.
- ———. 1987. Respiratory muscles. In: *Bird Respiration* (T. J. Seller, ed.). Vol. I, pp. 3-37. CRC Press, Boca Raton, FL.
- Fedde, M. R., Burger, R. E., and Kitchell, R. L. 1963. Localization of vagal afferents involved in the maintenance of normal avian respiration. Poult. Sci. 42: 1224-1236.
- ———. 1964. Anatomic and electromyographic studies of the costo-pulmonary muscles in the cock. Poult. Sci. 42: 1177-1184.
- Feder, F. H. 1969. Beitrag zur makroskopischen und mikroskopischen Anatomie des Verdauungsapparates beim Wellensittich (*Melopsittacus undulatus*). Anat. Anz. 125:233-255.

- ———. 1970. Die äusseren männlichen Geschlechtsorgane des Truthahn *Meleagris gallopava*. Anat. Anz. **127:** 347–353.
- Federici, F. 1927. Über die innervation des von Vitali entdecklen Sinnesorganes im Mittelohr der Vogel paratympanisches Organ. Anat. Anz. 62: 241–254.
- Feduccia, A. 1985. The scapulocoracoid of flightless birds: a primitive avian character similar to that of theropods. Ibis 128: 128-132.
- Feduccia, A. and S. L. Olson 1982. Morphological similarities between the Menurae and the Rhinocryptidae relict passerine birds of the Southern Hemisphere. Smithsonian Contrib. Zool., no. 366, 22 pp.
- Feduccia, A. and Tordoff, H. B. 1979. Feathers of *Archaeopteryx:* asymmetric vanes indicate aerodynamic function. Science **203:** 1021–1022.
- Feher, Gy. and Fancsi, T. 1971. Vergleichenden Morphologie der Bauchspeicheldrüse von Hausvögeln. Acta Vet. Hung. 21: 141-164.
- Feher, Gy. and Gyuru, F. 1971. Data on the postembryonal changes of the yolk sac in the domestic fowl. I. Postembryonal changes of the yolk sac in chickens. Magy. Allatorv. Lap. 26: 353-360.
- Feinstein, B. 1962. Additional cases of bilobated kidneys in the hornbills. Auk 79: 709-711.
- Feirabend, H. K. P., Vielvoye, G. J., Freedman, S. L., and Voogd, J. 1978. Longitudinal organization of afferent and efferent connections of the cerebellar cortex of the White Leghorn (*Gallus domesticus*). Exp. Brain Res., Suppl., 1: 72-78.
- Feirabend, H. K. P. and Voogd, J. 1986. Myeloarchitecture of the cerebellum of the chicken (*Gallus domesticus*): an atlas of the compartmental subdivision of the cerebellar white matter. J. Comp. Neurol. **251**: 44-66.
- Feldotto, A. 1929. Die Harnkanälchen des Huhnes. Z. Mikrosk.-anat. Forsch. 17: 353-370.
- Fenna, L. and Boag, D. A. 1974. Adaptive significance of the caeca in Japanese Quail and Spruce Grouse (Galliformes). Canadian J. Zool. 52: 1577-1584.
- Fischer, G. 1905. Vergleichend anatomische Untersuchungen über den Bronchialbaum der Vögel. Zoologica 19: 1-45.
- Fisher, H. I. 1940. The occurrence of vestigial claws on the wings of birds. Amer. Midl. Nat. 23: 234-243.
- ———. 1945. Flying ability and the anterior intermuscular line on the coracoid. Auk **62:** 125-129.
- ———. 1946. Adaptations and comparative anatomy of the locomotor apparatus of New World vultures. Amer. Midl. Nat. 35: 545–727.
- ------. 1966. Hatching and the hatching muscle in some North American ducks. Trans. Illinois State Acad. Sci. **59:** 30–325.

- Fisher, H. I. and Goodman, D. C. 1955. The myology of the Whooping Crane, *Grus Americana*. Illinois Biol. Monogr., no. 24, 127 pp.
- Foelix, R. F. 1970. Vergleichend-morphologische Untersuchungen an den Speicheldrüsen körnerfressender Singvögel. Zool. Jb. Anat. 87: 523–587.
- Forbes, W. A. 1877. On the bursa Fabricii in birds. Proc. Zool. Soc. London, pp. 304–318.
- . 1881. On the conformation of the thoracic end of the trachea in the "ratite" birds. Proc. Zool. Soc. London, pp. 778–788.
- ———. 1882. On some points on the anatomy of the Indian Darter (*Plotus melanogaster*), and on the mechanism of the neck of darters (*Plotus*) in connection with their habits, Proc. Zool. Soc. London, pp. 208–212.
- Forsyth, D. 1908. The comparative anatomy, gross and minute, of the thyroid and parathyroid glands in mammals and birds. J. Anat. **42**: 141–169; 302–319.
- Francis, E. T. B. 1964. Excretory system. In: *A New Dictionary of Birds* (A. L. Thomson, ed.), p. 258. McGraw Hill, New York.
- Freedman, S. L. 1968. The innervation of the suprarenal gland of the fowl (*Gallus domesticus*). Acta Anat. **69:** 18-25.
- Freedman, S. L. and Sturkie, P. D. 1963a. Extrinsic nerves of the chicken's uterus (shell gland). Anat. Rec. 147: 431-437.
- \_\_\_\_\_\_. 1963b. Blood vessels of the chickens's uterus (shell gland). Amer. J. Anat. 113: 1-7.
- Freedman, S. L., Voogd, J., and Vielvoye, G. J. 1977. Experimental evidence for climbing fibers in the avian cerebellum. J. Comp. Neurol. 175: 243–252.
- Freund, L. 1926. Das äussere Ohr der Sauropsiden. Zool. Anz. 66: 319-325.
- Frewein, J. 1967. Die Gelenkräume, Schleimbeutel und Sehnenscheiden an den Zehen des Haushuhnes. Zbl. Vet. Med. 14A: 129-136.
- Friedlander 1898. Untersuchungen über das Ruckenmark und das Kleinhirn der Vögel. Neurol. Entbl. 17: 397–409.
- Friess, A. E., Sinowatz, F., and Wrobel, K. H. 1978. The uterovaginal sperm host glands of the quail (*Coturnix coturnix japonica*). An ultrastructural and ultracytochemical study. Cell Tissue Res. **191**: 101–114.
- Fritsch, E. and K.-L. Schuchmann. 1988. The Musculus splenius capitis of hummingbirds Trochilidae. Ibis 130: 124–132.
- Fuchs, A. 1955. On the correlation between the skull structure and the muscles in the male *Phasianus colchicus* L. VI. Some remarks on a number of ligaments and other connective tissue connections. Proc. Koninkl. Nederl. Akad Wetensch. (Amsterdam), Ser. C, **58**: 114–120.

- Fujihara, N. and Nishiyama, H. 1976. Studies on the accessory reproductive organs in the drake. 3. Ejecting mechanism of the fluid from the ejaculatory groove region. Poult. Sci. 55: 1026-1030.
- Fujihara, N., Nishiyama, H., and Koga, O. 1985a. The mechanism of the ejection of a frothy fluid from the cloaca in the male turkey. Poult. Sci. 64: 1377-1381.
- ——. 1985b. The ejection of a frothy fluid from the cloacal region of rooster during manual semen collection. Canadian. J. Anim. Sci. **65:** 985–988.
- ———. 1986. Localization of frothy fluid-producing region in the cloaca of male turkey. Anat. Anz. 162: 359–366.
- ———. 1987. Effect on turkey spermatozoa of a frothy fluid derived from the cloaca of a male turkey. Theriogenology **28**: 225–235.
- ———. 1988. Anatomical features of cloacal region of male guinea fowl with special reference to the ejection of lymph-like fluid. Anat. Anz. 167: 341-347.
- Fujihara, N., Nishiyama, H., and Nakashima, N. 1976. Studies on the accessory reproductive organs in the drake. 2. Macroscopic and microscopic observations on the cloaca of the drake with special reference to the ejaculatory groove region. Poult. Sci. 55: 927-935.
- Fujii, S. 1963. Histological and histochemical studies on the oviduct of the domestic fowl with special reference to the region of uterovaginal junction. Archum. Histol. Jap. 23: 447-459.
- ———. 1975. Scanning electron microscopical observation on the mucosal epithelium of hen's oviduct with special reference to the transport mechanism of spermatozoa through the oviduct. J. Fac. Fish. Anim. Husb. Hiroshima Univ. 14: 1-13.
- ———. 1981. Scanning electron microscopic observation on ciliated cells of the chicken oviduct in various functional stages. J. Fac. Appl. Biol. Sci. Hiroshima Univ. 20: 1-11.
- Fujii, S., Tamura, T., and Kunisaki, H. 1965. Histochemical study of muco-polysaccharides in goblet cells of the chicken oviduct. J. Fac. Fish. Anim. Husb. Hiroshima Univ. 6: 25-35.
- Fujii, S., Tamura, T., and Okamoto, T. 1981. Microarchitecture of air capillaries and blood capillaries in the respiratory areas of the hen's lung examined by scanning electron microscopy. Jap. J. Vet. Sci. 43: 83-88.

- Fujii, S. and Yoshimura, Y. 1979. Morphological observations on the stigma of the follicular wall concerning the mechanism of ovulation in hens. J. Fac. Appl. Biol. Sci. Hiroshima Univ. 18: 185-196.
- Fujii, S., Yoshimura, Y., Okamoto, T., and Tamura, T. 1981. The regional morphology of the infundibulum of the hen's oviduct with special reference to the mechanism of the engulfing of the ovulated ovum. J. Fac. Appl. Biol. Sci. Hiroshima Univ. 20: 87-98.
- Fujii, S., Yoshimura, Y., and Tamura, T. 1980. Supplemental observations on structural changes in stigmal tissue of hen's ovarian follicle in the process of ovulation. J. Fac. Appl. Biol. Sci. Hiroshima Univ. 19: 161-176.
- Fujioka. T. 1959. On the origins and insertions of the muscles of the thoracic limb in the fowl. Jap. J. Vet. Sci. 21: 85-95.
- ———. 1962. On the origins and insertions of the muscles of the pelvic limb in the fowl. Jap. J. Vet. Sci. 24: 183-199 [in Japanese].
- ———. 1963. On the origins and insertions of the muscles of the head and neck in fowl. Part 1. Muscles of the head. Jap. J. Vet. Sci. 25: 207-226.
- Fukuta, K. Nishida, T., and Yasuda, M. 1969a. Blood vascular system of the spleen in the fowl. Jap. J. Vet. Sci. 31: 179-185 [in Japanese].
- ———. 1969b. Structure and distribution of fine blood vascular system in the spleen. Jap. J. Vet. Sci. **31:** 303–311.
- Furber, S. E. 1983. The organization of the olivocerebellar projection in the chicken. Brain, Behav. Evol. 22: 198-211.
- nuclear complex in the chicken. J. Comp. Neurol. 225: 244-258.
- Fürbringer, M. 1879. Zur Lehre von den Umbildungen der Nervenplexus. Morph. Jb. 5: 324–394.
- ———. 1886. Uber Deutung und Nomenklatur der Muskulatur des Vogelflugels. Morph. Jb. 11: 121–125.
- . 1888. Untersuchungen zur Morphologie und Systematik der Vögel.

  1. Specieller Theil. T. J. Van Holkema, Amsterdam.
- ———. 1902. Zur vergleichenden Anatomie des Brustschulterapparates und der Schultermuskeln. V. Teil. Vögel. Jena Z. Naturwiss. 36 (N.F. 29): 289-736.
- Fürther, H. 1913. Beiträge zur Kenntniss der Vogellymphknoten. Jena Z. Med. Naturwiss. **50:** 359-410.
- Gabella, G. 1985. Structure of the musculature of the chicken small intestine. Anat. Embryol. 171: 139–149.
- Gadow, H. 1879a. Versuch einer vergleichende Anatomie des Verdauungssystems der Vögel. I. Theil. Jena Z. Naturwiss. 13: 97-171.
- 1879b. Versuch einer vergleichende Anatomie des Verdauungssystems der Vögel. II. Theil. Jena Z. Naturwiss. 13: 339-403.

- . 1887. Remarks on the cloaca and copulatory organs of the amniota. Phil. Trans. Roy. Soc., ser. B, 178: 5-37.
- ———. 1889. On the taxonomic value of the intestinal convolutions in birds. Proc. Zool. Soc. Lond., 303-315.
- eds.). Pt. 1, pp. 90-91. Black, London.
- -------. 1896. Syrinx. In: A Dictionary of Birds (A. Newton and H. Gadow, eds.). Pt. 4, pp. 937–942. Black, London.
- Gadow, H. and Selenka, E. 1891. Vögel: I. Anatomischer Theil. Vol. 6, pt.
  4, in *Bronn's Klassen und Ordnungen des Thier-Reichs*. C. F. Winter, Leipzig.
- Gage, S. H. 1917. Glycogen in the nervous system of vertebrates. J. Comp. Neurol. 27: 451-456.
- Gamlin, P. and Cohen, D. H. 1988. The retinal projections to the pretectum in the pigeon (*Columba livia*). J. Comp. Neurol. **269:** 1-17.
- Ganchrow, D. and Ganchrow, J. R. 1985. Number and distribution of tastebuds in the oral cavity of hatchling chicks. Physiol. Behav. 34: 889-894.
- ———. 1989. Gustatory ontogenesis in the chicken; an avian-mammalian comparison. Med. Sci. Res. 17: 223-228.
- Ganchrow, D., Ganchrow, J. R., and Gentle, M. J. 1986. Central afferent connections and origin of efferent projections of the facial nerve in the chicken (*Gallus gallus domesticus*). J. Comp. Neurol. **248**: 455-463.
- Ganchrow, J. R., Ganchrow, D., and Oppenheimer, M. 1986. Chorda tympani innervation of anterior mandibular taste buds in the chicken (*Gallus gallus domesticus*). Anat. Rec. **216**: 434-439.
- Gans, C. and Bock, W. J. 1965. The functional significance of muscle architecture—a theoretical analysis. Ergeb. Anat. Entw. 38: 115-142.
- Gardner, L. L. 1926. The adaptive modifications and the taxonomic value of the tongue in birds. Proc. U.S. Nat'l. Mus. 67, Art. 19, 49 pp.
- Garrod, A. H. 1872. On the mechanism of the gizzard in birds. Proc. Zool. Soc. London, pp. 525–529.
- ———. 1873. On some points in the anatomy of *Steatornis*. Proc. Zool. Soc. London, pp. 526–525.
- ———. 1874a. On the "showing-off" of the Australian Bustard (*Eupoditis australis*). Proc. Zool. Soc. London, pp. 471–474.
- 1874b. Further notes on the mechanism of "showing-off" in the bustards. Proc. Zool. Soc. London, pp. 102–105.
- ———. 1876. Anatomy of *Plotus anhinga*. Proc. Zool. Soc. London, pp. 335–345.

- ——. 1877. Notes on the anatomy of passerine birds. Part III. Proc. Zool. Soc. London, pp. 523-526.
- . 1878a. Note on the gizzard and other organs of *Carpophaga latrans*. Proc. Zool. Soc. London, pp. 102-105.
- ———. 1878b. Notes on points in the anatomy of Levaillant's darter (*Plotus levaillanti*). Proc. Zool. Soc. London, pp. 354–380.
- ———. 1879. On the conformation of the thoracic extremity of the trachea in the class Aves. Part I. The Gallinae. Proc. Zool. Soc. London, pp. 354– 380.
- Gaunt, A. S. and Gaunt, S. L. L. 1977. Mechanics of the syrinx in *Gallus gallus*. II. Electromyographic studies of *ad libitum* vocalizations. J. Morph. 152 1-20.
- Gaunt, A. S., Stein, R. C., and Gaunt, S. L. L. 1973. Pressure and air flow during distress calls of the starling *Sturnus vulgaris.*, J. Exp. Zool. **183**: 241-262.
- Gentle, M. J. 1971. The lingual taste buds of *Gallus domesticus*. British. Poult. Sci. 12: 245-248.
- -------. 1975. Gustatory behavior of the chicken and other birds. In: *Neural and Endocrine Aspects of Behavior in Birds* (P. Wright, P. G. Caryl, and D. M. Vowles, eds.), pp. 305-318. Elsevier, Amsterdam.
- ———. 1987. Facial nerve sensory response recorded from the geniculate ganglion of *Gallus gallus* var. *domesticus*. J. Comp. Physiol. **160**: 683–691.
- Gentle, M. J. and Breward, J. 1986. The bill tip organ of the chicken (*Gallus gallus* var. *domesticus*). J. Anat. **145**: 79-85.
- George, J. C. and Berger. A. J. 1966. *Avian Myology*. Academic Press, New York.
- Gerhardt, U. 1933. Kloake und Begattungsorgane. In: *Handbuch der vergleichenden Anatomie der Wirbeltiere* (L. Bolk, E. Göppert, E. Kallius, and W. Lubosch, eds.). Vol. 6, pp. 267-350. Urban und Schwarzenberg, Berlin.
- Gerisch, D. 1971. Die Bronchi atriales in der Lunge des Haushuhnes (Gallus gallus domesticus L.). Ein beitrage zur Morphologie und Nomenklatur. Inaug. Diss., Hanover.
- Gerisch, D. and Schwarz, R. 1972. Morphologische Befunde an den *Bronchi atriales* des Haushuhnes (*Gallus gallus dom.*). Dtsch. Tierärztl. Wschr. 79: 573-612.
- Gerritsen, A. F. C. 1988. Feeding techniques and the anatomy of the bill in sandpipers (*Calidris*). Thesis, Univ. Leiden.

- Gertner, M. 1969. Vascular system of the oviduct of the goose. Agrartud. Wgyet. Mezögtud. Kar. Közl. Godollo, pp. 73–82. [in Hungarian].
- Gewecke, M. and Woike, M. 1978. Breast feathers as an air-current sense organ for the control of flight behaviour in a songbird (*Carduelis spinus*). Z. Tierphysiol. 47: 293-298.
- Ghetie. V. and Atanasui. 1. 1962. Die Myologie des Zungenbeinaufhangeapparates und der Zunge beim Huhner- und Wassergeflugel. Rev. Biol. (Rumania) 7: 85-94.
- Ghetie, V., Chitescu, S., Cotofan, V., and Hillebrand, A. 1976. *Atlas d'Anatomie des Oiseaux Domestiques*. Editura Academiei Republicii Socialiste Romania, Bucharest.
- Ghosh, A. 1980. Avian adrenal medulla: structure and function In: Avian Endocrinology (A. Epple and M. H. Stetson, eds.), pp. 301-318. Academic Press, New York.
- Gier, H. T. 1952. The air sacs of the loon. Auk 69: 40-49.
- Gilbert, A. B. 1961. The innervation of the renal portal valve of the domestic fowl. J. Anat. 95: 594-598.
- Quart. J. Exp. Physiol. **50**: 437–445.
- ——. 1969. Innervation of the ovary of the domestic hen. Quart. J. Exp. Physiol. **54**: 404–411.
- ——. 1971a. The ovary. In: *The Physiology and Biochemistry of the Domestic Fowl* (D. J. Bell and B. M. Freeman, eds.) Vol. 3, pp. 1163–1208. Academic Press, London.
- ——. 1971b. The egg: its physical and chemical aspects. In: The Physiology and Biochemistry of the Domestic Fowl (D. J. Bell and B. M. Freeman eds.). Vol. 3. Academic Press, London.
- (A. S. King and J. McLelland, eds.). Vol. 1, pp. 237-360. Academic Press, London.
- Gingerich. P. D. 1972. A new partial mandible of *Ichthyornis*. Condor **74**: 471–473.
- Gladstone, J. S. 1918. A note on the structure of the feather. Ibis, pp. 243-247.
- Glenny, F. H. 1951. A systematic study of the main arteries in the region of the heart. Aves XII. Galliformes, Part 1. Ohio J. Sci. 51: 47-54.
- . 1955. Modifications of pattern in the aortic arch system of birds and their phylogenetic significance. Proc. U.S. Nat'l. Mus. 104: 525-621.
- Glenny, F. L. and Friedmann, H. 1954. Reduction of the clavicies in the Mesoenatidae, with some remarks concerning the relationship of the clavicle to flight-function in birds. Ohio J. Sci. 54: 111-113.

- Glick, B. and Sato, K. 1964. Accessory spleens in the chicken. Poult. Sci. 43: 1610-161.
- Glick, B., Holbrook, K. A., and Perkins, W. D. 1977. Scanning electron microscopy of the bursa of Fabricius from normal and testosterone-treated embryos. Dev. Comp. Immunol. 1: 41–46.
- Goedbloed, E. 1958. The condylus occipitalis in birds. 1, II, III. Proc. Koninkl. Nederl. Akad. Wetensch. (Amsterdam), Ser. C, **61**: 36–47; 48–58; 59–65.
- Goglia, C. 1964. "L'Organo tattile apicale" del becco di alcuni volatili. Acta Med. Romana 2: 243-262.
- Goldberg, S. 1974. Studies on the mechanics of development of the visual pathways in the chick embryo. Dev. Biol. 36: 24-43.
- Goldsmith, T. H. 1980. Hummingbirds see near ultraviolet light. Science **207**: 786-788.
- Goldstein, D. L. and Braun, E. J. 1986. Proportions of mammalian-type and reptilian-type nephrons in the kidneys of two passerine birds. J. Morph. 187: 173-179.
- ———. 1989. Structure and concentrating ability in the avian kidney. Amer. J. Physiol. **256:** R501–R509.
- Golliez, R. 1967. Beitrag zur Pterylose von *Melopsittacus undulatus* Shaw mit besonderer Berücksichtigung der Filoplumae. Verh. Naturforsch. Ges., Basel **78**: 315–364.
- Goodchild, W. M. 1956. Biological Aspects of the Urinary System of *Gallus domesticus* with Particular Reference to the Anatomy of the Ureter. M. Sc. Thesis, Univ. of Bristol, U.K.
- ———. 1969. The venous system of the adrenal glands of *Gallus domesticus*. British. Poult. Sci. **10**: 183–185.
- ———. 1970. Differentiation of the body cavities and air sacs of *Gallus domesticus* post mortem and their location in vivo. British. Poult. Sci. 11: 209-215.
- Goodge, W. R. 1960. Adaptations for amphibious vision in the dipper (Cinclus mexicanus). J. Morph. 107: 79-91.
- ———. 1972. Anatomical evidence for phylogenetic relationships among woodpeckers. Auk 89: 65-85.
- Goodman, D. C. and Fisher, H. I. 1962. Functional anatomy of the feeding apparatus in waterfowl (Aves: Anatidae.) Southern Illinois University Press, Carbondale.
- Goodman, D. C., Horel, J. A., and Freemond, F. R. 1964. Functional localization in the cerebellum of the bird and its bearing on the evolution of cerebellar function. J. Comp. Neurol. 123: 45-54.
- Goodrich, E. S. 1930. Studies on the Structure and Development of Vertebrates. Macmillan, London. [Reprinted 1958, Dover, New York.]

- ——. 1958. Studies on the Structure and Development of Vertebrates. Macmillan, London. [Reprint of 1930 edition, Dover, New York.]
- Göppert, E. 1903. Die Bedeutung der Zunge fur den sekundären Gaumen und den Ductus naso-pharyngeus. Morph. Jb. 31: 331-359.
- Gorham, F. W. and Ivy, A. C. 1938. General function of the gall-bladder from the evolutionary standpoint. Field Mus. Nat. Hist. Publ., Zool. Ser. 22: 159-213.
- Goossens, N., Blähser, S., Oksche, A., Vandesande, F., and Dierickx, K. 1977. Immunocytochemical investigation of the hypothalamo-neuro-hypophyseal system in birds. Cell Tissue Res. 184: 1-13.
- Gottschaldt, K. M. 1985. Structure and function of avian somatosensory receptors. In: *Form and function in Birds*. (A. S. King and J. McLelland, eds.). Vol. 3, pp. 375–461. Academic Press, London.
- Gottschaldt, K. M. Fruhstorfer, H. Schmidt, W., and Kraft, I. 1982. Thermosensitivity and its possible fine-structural basis in mechanoreceptors in the beak skin of geese. J. Comp. Neurol. 205: 219-245.
- Gottschaldt, K. M. and Lausmann, S. 1974. The peripheral morphological basis of tactile sensibility in the beak of geese. Cell. Tissue Res. 153: 477-496.
- Goujon, E. 1869. Sur un appareil de corpuscles tactiles situe dan le bec des perroquets. J. Anat. Physiol. 6: 449-455.
- Graef, W. 1973a. Zyto- und myeloarchitektonik des Mesencephalon beim Haushuhn (*Gallus domesticus* L.). I. Zytoarchitektonik im kaudalen Abschnitt. Anat. Anz. 133: 144-152.
- ——. 1973b. Zyto- und myeloarchitektonik des Mesencephalon beim Haushuhn (*Gallus domesticus* L.). II. Zytoarchitektonik im mittleren Abschnitt. Anat. Anz. 133: 503-510.
- ———. 1973c. Zyto- und myeloarchitektonik des Mesencephalon beim Haushuhn (*Gallus domesticus* L.) III. Zytoarchitektonik im rostralen Abschnitt. Anat. Anz. 133: 511-522.
- ———. 1973d. Zyto- und myeloarchitektonik des Mesencephalon beim Haushuhn (*Gallus domesticus* L.). IV. Zytoarchitektonik in Horizontalansichten. Anat. Anz. 134: 38-44.
- ———. 1973e. Zyto- und myeloarchitektonik des Mesencephalon beim Haushuhn (Gallus domesticus L.). V. Zytoarchitektonik in Saggitalansichten. Anat. Anz. 134: 99-107.
- Grajal, A., Strahl, S. D., Parra, R., Dominguez, M. G., and Neher, A. 1989. Foregut fermentation in the Hoatzin, a neotropical leaf-eating bird. Science **245**: 1236-1238.
- Grant, P. 1986. Gulls, A Guide to Identification, 2nd ed., Academic Press, London.

- Grau, C. R. 1976. Ring structure of avian egg yolk. Poult. Sci. 55: 1418-1422.
- Grau, H. 1943a. Artmerkmale am Darmkanal unserer Hausvogel. Berl. Tierarztl. Wschr. 23-24: 176-179.
- . 1943b. Anatomie der Hausvögel. In: Ellenberger and Baum's Handbuch der vergleichenden Anatomie der Haustiere (O. E. Zietzschmann, E. Ackerknecht, and H. Grau, eds.) 18th ed. Springer, Berlin.
- Gray, J. C. 1937. The anatomy of the male genital ducts in the fowl. J. Morph. 60: 393-405.
- Green, J. D. 1951. The comparative anatomy of the hypophysis, with special reference to its blood supply and innervation. Amer. J. Anat. 88: 225-311.
- Greenewalt, C. H. 1968. *Bird Song: Acoustics and Physiology*. Smithsonian Institution Press, Washington D.C.
- Greenlee, T. K., Jr., Beckham, C., and Pike, D. 1975. A fine structural study of the development of the chick flexor digital tendon: a model for synovial sheathed tendon healing. Amer. J. Anat. 143: 303-314; 556-572.
- Griffin, D. R. and Suthers, R. A. 1970. Sensitivity of echolocation in cave swiftlets. Biol. Bull. 139: 495-501.
- Grillner, S. 1975. Locomotion in vertebrates: central mechanisms in reflex interaction. Physiol. Rev. **55:** 247–304.
- Grimpe, G. 1930. Über den Penis von *Struthio camelus*. Zoolog. Garten 2: 184–193.
- Groebbels, F. 1932a. Der Vögel. Bau, Funktion, Lebenserscheinung, Einpassung, Vol. 1. Borntraeger, Berlin.
- ———. 1932b. *Der Vögel*. I. *Atmungswelt und Nahrunswelt*. Gebrüder Borntraeger, Berlin.
- Gross, G. H. 1985. Innervation of the complexus ("Hatching") muscle of the chick. J. Comp. Neurol. 232: 180-189.
- Gross, G. H. and Oppenheim, R. W. 1985. Novel sources of descending input to the spinal cord of the hatchling chick. J. Comp. Neurol. **232**: 162–179.
- Guglielmone, R. and Panzica, G. C. 1982. Topographic, morphologic and developmental characterization of the nucleus loci coerulei in the chicken. Cell Tissue Res. **225**: 95–110.
- Guha, B. and Gosh, A. 1978. A cytomorphological study of the endocrine pancreas of some Indian birds. Gen. Comp. Endocrinology 34: 38-44.
- Gunawardana, V. K. and Scott, M. G. A. D. 1977. Ultrastructural studies on the differentiation of spermatids in the domestic fowl. J. Anat. 124: 741–755.
- Guzsal, E. 1966. Histological studies on the mature and post-ovulation ovarian follicle of fowl. Acta Vet. Hung. 16: 37–44.

- -----. 1974. Erection apparatus of the copulatory organ of ganders and drakes. Acta Vet. Hung. **24:** 361–373.
- Haartsen, A. B. and Verhaart, W. J. C. 1967. Cortical projections to brain stem and spinal cord in the goat by way of the pyramidal tract and bundle of Bagley. J. Comp. Neurol. 18: 189-201.
- Haecker, V. 1900. Der Gesang der Vögel, sein anatomischer und biologischen Grundlagen. Fischer, Jena.
- Hafferl, A. 1933. Gefässsystem. V. Das Arteriensystem. In: Handbuch der vergleichenden Anatomie der Wirbeltiere (L. Bolk, E. Göppert, E. Kallius, and W. Lubosch, eds.). Vol. 6, pp. 583-684. Urban & Schwarzenberg, Berlin and Vienna.
- Haines, R. W. 1942. The tetrapod knee joint. J. Anat. 76: 270-301.
- Halata, Z. 1971. Ultrastructure of Grandry Nerve endings in the beak skin of some aquatic birds. Folia Morph. (Prague) 3: 225-232.
- Hall, B. K. 1984. Developmental mechanisms underlying the formation of atavisms. Biol. Rev. **59:** 89–124.
- Hamilton, H. L. 1952. *Lillie's Development of the Chick*. 3rd ed. Henry Holt, New York.
- Hanke, B. 1971. Zur Histologie des Oesophagus der Tinamidae. Bonn. Zool. Beitr. 8: 1-4.
- Harrison, C. J. O. 1968. Additional information on the carpometacarpal process as a taxonomic character. Bull. Brit. Ornith. Club 89: 27–29.
- Harrison, J. M. and Irving, R. 1965. The anterior ventral cochlear nucleus.J. Comp. Neurol. 124: 15-42.
- Hartman, F. A. and Brownell, K. A. 1949. *The adrenal gland*. Kimpton, London.
- Hartwig, H. G. 1974. Electron microscopic evidence for a retinohypothalamic projection to the suprachiasmatic nucleus of *Passer domesticus*. Cell Tissue Res. **153**: 89–99.
- . 1980. The structure of the pineal gland. In: *Avian Endocrinology* (A. Epple and H. H. Stetson, eds.), pp. 33-51. Academic Press, New York.
- ------. 1981. Hypothalamic distribution of monoamine-containing neurons in homeothermic vertebrates. In: *Neurosecretion Molecules and Cell Systems* (D. S. Farner and K. Lederis, eds.), pp. 93-103. Plenum Press, New York.
- ———. 1982. Comparative aspects of retinal and extraretinal photosensory input channels entraining endogenous rhythms. In: *Vertebrate Circadian Systems* (J. Aschoff, S. Dann and G. Groos, eds.), pp. 25–30. Springer-Verlag, Berlin.

- Hartwig, H. G. and Oksche, A. 1982. Neurobiological aspects of extraretinal photoreceptive systems: structure and function. Experientia 38: 991–996.
- Hartwig, H. G., Pradelles, P., Christolomme, A., and Calas, A. 1981. Distribution des structures neuronales reconnues par des anticorps contre la met-enkephaline et la substance P dans le systeme nerveux central d'oiseaux. J. Physiol. 77: 8B-9B.
- Harvey, E. B., Kaiser, H. E., and Rosenberg, L. E. 1968. An Atlas of the Domestic Turkey (Meleagris gallopavo). Myology and Osteology. U.S. Atomic Energy Commission, Div. Biol. Med., U.S. Gov't. Print. Office, Washington, D.C.
- Hasegawa, K. 1956. On the vascular supply of hypophysis and of hypothalamus in domestic fowl. Fukuoka Acta. Med. 47: 89–98 (in Japanese).
- Hasse, C. 1871. Zur Morphologie des Labyrinths der Vögel. Anat. Studien (herausg. von Hasse), Vol. 2, no. 6.
- Hatch, S. A. 1983. Mechanism and ecological significance of sperm storage in the Northern Fulmar with reference to its occurrence in other birds. Auk **100:** 593–600.
- Hayes, B., Martin, G. R., and Brooke, M. 1991. Novel area serving binocular vision in the retinae of procellariiform seabirds. Brain, Behav. Evol. 37: 79-84.
- Hayes, B. P. and Holden, A. L. 1983. The distribution of centrifugal terminals in the pigeon retina. Exp. Brain Res. 49: 189-197.
- Hazelwood, R. L. 1989. *The Endocrine Pancreas*. Prentice Hall, Englewood Cliffs.
- Heaton, M. B. 1981. The development of the oculomotor nuclear complex in the Japanese Quail embryo. J. Comp. Neurol. 198: 633-648.
- Heaton, M. B. and Moody, S. A. 1980. Early development and migration of the trigeminal motor nucleus in the chick embryo. J. Comp. Neurol. **189**: 61–99.
- Heaton, M. B. and Wayne, D. B. 1983. Patterns of extraocular innervation by the oculomotor complex in the chick. J. Comp. Neurol. 216: 245-254.
- Hedonius, I. 1892. Chemische Untersuchung der Hornartigen Schicht des Muskelmagens der Vögel. Skand. Arch. Physiol. 3: 244-252.
- Heidrich, H. 1908. Die Mund- und Schlundkopfhöhle der Vögel und ihre Drüsen. Morph. Jb. 37: 10-69.
- Heidweiller, J. 1989. Post natal development of the neck system in the chicken (*Gallus domesticus*). Amer. J. Anat. **186**: 258–270.
- Heidweiller, J. and Zweers, G. A. 1990. Drinking mechanisms in the Zebra Finch and the Bengalese Finch. Condor 92: 1-28.
- Heilmann, G. 1926. The Origin of Birds. H. F. & G. Witherby, London.

- Helbig, A. J. and Wiltschko, W. 1989. The skylight polarization patterns at dusk affect the orientation behavior of Blackcaps, *Sylvia atricapilla*. Naturwissenschaften **76:** 227–229.
- Helmi, C. and Cracraft. J. 1977. The growth patterns of three hindlimb muscles in the chicken. J. Anat. 123: 615-635.
- Hikida, R. S. 1972. The structure of the sarcotubular system in avian muscle. Amer. J. Anat. 134: 481-496.
- ———. 1981. Tenotomy of the avian anterior latissimus dorsi muscle. I. Can regeneration from the stump occur in the pigeon? Amer. J. Anat. 160: 409-418.
- Hikida, R. S. and Bock, W. J. 1974. Analysis of fiber types in the pigeon's metapatagialis muscle. 1. Histochemistry, end plates and ultrastructure. Tissue and Cell 6: 411-430.
- . 1976. Analysis of fiber types in the pigeon's metapatagialis muscle. 11. Effects of denervation. Tissue and Cell 8: 259-276.
- Hikida, R. S. and R. J. Wang. 1981. Tenotomy of the avian anterior latissimus dorsi muscle. I. Effect of age on fiber-type transformation and regeneration from the stump in chicks. Amer. J. Anat. 160: 395-408.
- Hinchliffe, J. R. 1977. The chondrogenic pattern in chick limb morphogenesis: a problem of development and evolution. In: *Vertebrate Limb and Somite Morphogenesis* (D. A. Ede, J. R. Hinchliffe, and M. Balls, eds.). Cambridge Univ. Press. New York.
- . 1985. 'One, two, three' or 'two, three, four': An embryologist's view of the homologies of the digits and carpus of modern birds. In: *Beginnings of Birds*. (M. K. Hecht, J. H. Ostrom, G. Viohl, and P. Wellnhofer, eds.), pp. 141-147. Freunde Jura Museum Eichstätt, Willibaldsburg, Germany.
- Hirschberger, W. 1979. Vergleichend experimentel-histologische Untersuchungen zur retinalen repräsentation in den primären visuallen zentrum einiger Vogelarten. Doctoral Dissertation, University of Frankfurt (Main).
- Hirunagi, K. and Yasuda, M. 1979. Fine structure of the ependymal cells in the area postrema of the domestic fowl. Cell Tissue Res. 200: 45-51.
- Hodges, R. D. 1965. The blood supply to the avian oviduct, with special reference to the shell gland. J. Anat. 99: 485-506.
- . 1974. The Histology of the Fowl. Academic Press, London.
- branchial gland of the domestic fowl. Cell Tissue Res. 197: 113-135.
- ———. 1981. Endocrine glands. In: Form and Function in Birds (A. S. King and J. McLelland, eds.). Vol. 2, pp. 149-234. Academic Press, London and New York.

- Hodges, R. D. and Michael, E. 1975. Structure and histochemistry of the normal intestine of the fowl. III. The fine structure of the duodenal crypt. Cell. Tissue Res. 160: 125-138.
- Hofer, H. 1945. Untersuchungen über den Bau des Vogelschädels. besonders über den der Spechte und Steisshühner. Zool. Jb. Abt. Anat. Ontogenie Tiere 69: 1-158.
- ——. 1949. Die Gaumenlücken der Vögel. Acta Zool. 30: 209–248.
- ———. 1950. Zur Morphologie der Keifermuskulatur der Vogel. Zool. Jb. Anat. **70:** 427–600.
- Hofer, H. 1955. Neuere Untersuchungen zur Kopfmorphologie der Vögel. Acta XI Congr. Intern. Ornith. (A. Portmann and I. Sutter, eds.), pp. 104–137.
- Hoffman, K. B. and Pregl, F. 1907. Über Koilin. Hoppe-Seyler's Z. Physiol. Chem. **52:** 448–471.
- Hogg, D. A. 1978. The articulations of the neurocranium in the postnatal skeleton of the domestic fowl (*Gallus gallus domesticus*). J. Anat. 127: 53-63.
- ———. 1980. A re-investigation of the centres of ossification in the avian skeleton at and after hatching. J. Anat. 130: 725-743.
- ———. 1984. The distribution of pneumatisation in the skeleton of the adult domestic fowl. J. Anat. 138: 617-629.
- Holbrook, K. A., Perkins, W. D., and Glick, B. 1974. The fine structure of the bursa of Fabricius. "B"-Cell surface configuration and lymphoepithelial organization revealed by scanning and transmission microscopy. J. Reticuloendothel. Soc. 16: 300-311.
- Holden, A. L. 1966. An investigation of the centrifugal pathway to the pigeon retina. J. Physiol. 186: 133P.
- Holmes, E. B. 1962. The terminology of the short extensor muscles to the third toe in birds. Auk 79: 485-488.
- ———. 1963. Variation in the muscles and nerves of the leg in two genera of grouse (*Tympanuchus* and *Pediocetes*). U. Kansas Publ. Mus. Nat. Hist. 12: 363-474.
- Holmes, G. 1903. On the comparative anatomy of the nervus acousticus. Trans. Roy. Irish Acad. Sec. B, 32: 101-144.
- Holmes, N. W. and Cronshaw, J. 1984. Adrenal gland: some evidence for the structural and functional zonation of the steroidogenic tissues. J. Exp. Zool. 232: 627-631.
- Holmgren, N. 1955. Studies on the phylogeny of birds. Acta Zool. **36:** 243-328.
- Holtzman, H. 1896. Untersuchungen über Ciliärganglion und Ciliärnerven. Morph. Arbeit. 6: 114–142.

- Homberger, D. G. 1980. Funktionell-morphologische Untersuchungen zur Radiation der Ernahrungs- und Trinkmethoden der Papageien. Bonner Zool. Monogr., no. 13, 192 pp.
- -------. 1986. The lingual apparatus of the African Grey Parrot, *Psittacus erithacus* L. (Aves: Psittacidae): description and theoretical mechanical analysis. Amer. Orn. Union, Ornith. Monogr. no. 39, 233 pp.
- Homberger, D. G. and Meyers, R. A. 1989. Morphology of the lingual apparatus of the domestic chicken (*Gallus gallus*), with special attention to the structure of the fasciae. Amer. J. Anat. **186**: 217-257.
- Honess, R. F. and Allred, W. J. 1942. Structure and function of the neck muscles in inflation and deflation of the oesophagus in the Sage Grouse. Bull. Wyoming Game Fish Dept. 2: 1-12.
- Hoshi, H. and Mori, T. 1973. Identification of the bursa-dependent and thymus-dependent areas in the Tonsilla caecalis of chicken. Tohoku J. Exp. Med. 111: 309-322.
- Hossler, F. E. and Olson, K. R. 1984. Microvasculature of the avian eye: Studies on the eye of the duckling with microcorrosion casting, scanning electron microscopy and stereology. Amer. J. Anat. 170: 205–221.
- Howard, H. 1929. The avifauna of Emeryville shellmound. Univ. Calif. Publ. Zool. 32: 301-394.
- ——. 1957. A gigantic "toothed" marine bird from the Miocene of California. Bull. Santa Barbara Mus. Nat. Hist., no. 1: 1-23.
- Hsieh, T. M. 1951. The sympathetic and parasympathetic nervous system of the fowl. Ph. D. Thesis, Univ. of Edinburgh.
- Huber, C. G. 1917. On the morphology of the renal tubules of vertebrates. Anat. Rec. 13: 305-339.
- Huber, J. F. 1936. Nerve roots and nuclear groups in the spinal cord of the pigeon. J. Comp. Neurol. 65: 43-91.
- Huber, J. G. and Crosby, E. C. 1926. On thalamic and tectal nuclei and fiber paths in the brain of the American Alligator. J. Comp. Neurol. 40: 97– 227.
- . 1929. The nuclei and fiber paths of the avian diencephalon, with consideration of telencephalic and certain mesencephalic centres and connections. J. Comp. Neurol. 48: 1-222.
- Hudson, G. E. 1937. Studies on the muscles of the pelvic appendage in birds. Amer. Midl. Nat. 18: 1-108.
- Hudson, G. E., Chen Wang, S. Y., and Provost, E. E. 1965. Ontogeny of the supernumerary sesamoids in the leg muscles of the Ring-necked Pheasant. Auk 82: 427-437.
- Hudson, G. E., Hoff, K. M., Vanden Berge, J., and Trivette, E. C. 1969. A numerical study of the wing and leg muscles of Lari and Alcae. Ibis 111: 159-524.

- Hudson, G. E. and Lanzillotti, P. J. 1955. Gross anatomy of the wing muscles in the family Corvidae. Amer. Midl. Nat. 53: 1-41.
- ———. 1964. Muscles of the pectoral limb in galliform birds. Amer. Midl. Nat. 71: 1-113.
- Hudson, G. E., Lanzillotti, P. J., and Edwards, G. D. 1959. Muscles of the pelvic limb in galliform birds. Amer. Midl. Nat. 61: 1-67.
- Hudson, G. E., Parker, R. A., Vanden Berge, J., and Lanzillotti, P. J. 1966. A numerical analysis of the modifications of the appendicular muscles in various genera of gallinaceous birds. Amer. Midl. Nat. **76:** 1–73.
- Hudson, G. E., Schreiweis, D. O., and Chen Wang, S. Y. 1972. A numerical study of the wing and leg muscles of tinamous (Tinamidae). Northwest Sci. 46: 207-255.
- Humphreys, P. N. 1972. Brief observations on the semen and spermatozoa of certain passerine and non-passerine birds. J. Reprod. 29: 327–336.
- Hunt, S. P. and Kunzle, H. 1976. Observations on the projections and intrinsic organization of the pigeon optic tectum: an autoradiographic study based on anterograde and retrograde axonal and dendritic flow. J. Comp. Neurol. 170: 153-172.
- Huxley, T. H. 1877. A Manual of the Anatomy of Vertebrated Animals. London.
- ——. 1882. Respiratory organs of *Apteryx*. Proc. Zool. Soc. London, pp. 560–569.
- Hyrtl, J. 1864. Neue Wundernetze und Geflechte bei Vögeln und Saugethieren. Denkschr. Mathem.-naturwiss. (Wien) 22: 113–147.
- IANC (International Anatomical Nomenclature Committee). 1989. *Nomina Anatomica* (human). 6th ed. Williams and Wilkins, Baltimore.
- IANC (International Committee on Anatomical Nomenclature). 1989. Nomina Histologica 3rd ed. In: Nomina Anatomica 6th ed. Churchill Livingston, London.
- ICVGAN (International Committee on Veterinary Gross Anatomical Nomenclature). 1983. *Nomina Anatomica Veterinaria*, 3rd ed. Ithaca, NY. [Also contains *Nomina Histologia*, 2nd ed.]
- Ide, C. and Munger, B. L. 1978. A cytological study of Grandy corpuscle development in chicken toe skin. J. Comp. Neurol. 179: 301-324.
- Igarashi, H. and Yoshinobu, T. 1966. Comparative observations of the eminentia cruciata in birds and mammals. Anat. Rec. 115: 269–278.
- Iggo, A. and Andres, K. H. 1982. Morphology of cutaneous receptors. Rev. Neurosci. 5: 1-33.
- Ilyichev, V. D. 1961. Morphological and functional details of the external ear in crepuscular and nocturnal birds. Dok. Biol. Sci. Sect. 137: 253–256.
- . 1975. Bio-acoustics of Birds. Moscow Univ. Press. [in Russian].

- Isomura, G. 1973. A nerve originating from the superior cervical ganglion in the fowl. Anat. Anz. 133: 82-89.
- Iwanaga, T., Yui, R., and Fujita, T. 1983. The pancreatic islets of the chicken. In: *Avian Endocrinology: Environmental and Ecological Perspectives* (S. Mikami, K. Homma, and M. Wada, eds.), pp. 57-65. Jap. Sci. Soc. Press, Tokyo.
- Jacob, J. and Ziswiler, V. 1982. The uropygial gland. In: Avian Biology.
  (D. S. Farner, J. R. King, and K. C. Parkes, eds.) Vol. 6, pp. 199-234.
  Academic Press, New York.
- Jacob, M., Christ, B., and Jacob, H. J. 1979. The migration of myogenic cells from the somites into the leg region of avian embryos. Anat. Embryol. 157: 291-309.
- Jacobshagen, E. 1937. Mittel- und Enddarm (Rumpfdarm). In: Handbuch der vergleichende Anatomie der Wirbeltiere (L. Bolk, E. Göppert, E. Kallius and W. Lubosch, eds.). Vol. 3, pp. 563-724. Urban and Schwarzenberg, Berlin and Vienna.
- Jäger, G. 1857. Das Os humero-scapulare der Vögel. Sitzber. Akad. Wiss. Wien 23: 387–423.
- ———. 1858. Das Wirbelkorpergelenk der Vögel. Sitzber. Akad. Wiss. Wien 23: 527–564.
- Jansen, J. 1972. Features of cerebellar morphology and organization. Acta Neurol. Scand., Suppl., 51: 197-217.
- Janzik, H. H. 1966. Der Vorderstrang der Hühner. Verh. Anat. Ges. 61: 351-355.
- Jeikowski, H. 1974. Der Übergang von der diastataxischen zur eutaxischen Flugelfederanordnung bei *Halcyon*. J. f. Ornith. 115: 152-180.
- Jenkins, F. A., Dial, K. P., and Goslow, G. E. 1988. A cineradiographic analysis of bird flight: the wishbone in starlings is a spring. Science **241**: 1495–1498.
- Jenni, L. 1981. Das Skelettmuskelsystem des Halses von Buntspecht und Mittelspecht, *Dendrocopos major* und *medius*. J. f. Ornith. 122: 37-63.
- Jhaveri, S. and Morest, D. K. 1982a. Neuronal architecture in nucleus magnocellularis of the chicken auditory system with observations on nucleus laminaris: a light and electron microscopic study. Neuroscience 7: 809-836.
- ———. 1982b. Sequential alterations of neuronal architecture in nucleus magnocellularis of the developing chicken: an electron microscopic study. Neuroscience 7: 855–870.
- JNA (Jena Nomina Anatomica) 1935. In: Anatomical Dictionary with Nomenclatures and Explanatory Notes (1969). T. Donath and G. N. C. Crawford. Pergamon Press, Oxford, London.

- Johnsgard, P. A. 1961. Tracheal anatomy of the Anatidae and its taxonomic significance. 12th Ann. Report Wildfowl Trust 1959–1960, pp. 58–69.
- Johnson, J. S. 1925. The innervation of the female genitalia in the common fowl. Anat. Rec. 29: 387.
- Johnson, L. C. 1960. Mineralization of turkey leg tendon. I. Histology and histochemistry of mineralization. In: *Calcification in Biological Systems* (R. F. Sognnaes, ed.). AAAS Publ. no. 64, pp. 117-128.
- Johnson, O. W. 1968. Some morphological features of avian kidneys. Auk 85: 216-228.
- . 1974. Relative thickness of the renal medulla in birds. J. Morph. 142: 277-284.
- ———. 1979. Urinary organs. In: Form and Function in Birds (A. S. King and J. McLelland, eds.). Vol. 1, pp. 183–235. Academic Press, London.
- Johnson, O. W. and Ohmart, R. D. 1973. Some features of water economy and kidney microstructure in the Large-billed Savannah Sparrow (*Passer-culus sandwichensis rostratus*). Physiol. Zool. **46:** 276–284.
- Johnson, O. W., Phipps, G. L., and Mugaas, J. N. 1972. Injection studies of cortical and medullary organization in the avian kidney. J. Morph. 136: 181-190.
- Johnson, O. W. and Skadhauge, E. 1975. Structural and functional correlations in the kidneys and observations of colon and cloacal morphology in certain Australian birds. J. Anat. 120: 495-505.
- Johnson, R. 1984. The cranial and cervical osteology of the European Oystercatcher *Haematopus ostralegus* L. J. Morph. **182**: 227–244.
- Johnston, D. W. 1988. A morphological atlas of the avian uropygial gland. Bull. Brit. Mus. (Nat. Hist.), Zool. Ser., **54**: 199-259.
- Johnston, H. S., Aitken, R. N. C., and Wyburn, G. M. 1963. The fine structure of the uterus of the domestic fowl. J. Anat. 97: 333-334.
- Jollie, M. T. 1957. The head skeleton of the chicken and remarks on the anatomy of this region in other birds. J. Morph. 100: 389-436.
- Jolly, J. 1909–1910. Recherches sur les ganglions lymphatiques des oiseaux. Arch. Anat. Microsc. Morph. Exp. 11: 179–290.
- -----. 1915. La bourse de Fabricius. Arch. Anat. Microsc. Morph. exp. **16:** 363-547.
- Jones, D. R. and Purves, M. J. 1970. The carotid body of the duck and the consequences of its denervation upon cardiac responses to immersion. J. Physiol. 211: 279-294.

- Joos, C. 1941. Vergleichende Untersuchungen über die Ontogenese des Darmtraktus von Melopsittacus undulatus Gould. Verh. Naturforsch. Ges. Basel **53**: 15–70.
- Jorgensen, J. M. 1970. On the structure of the macula lagenae in birds with some notes on the avian maculae utriculi and sacculi. Vidensk. Medd. Dansk. Naturh. Foren. 133: 121-147.
- ———. 1989. Number and distribution of hair cells in the utricular macula of some avian species. J. Morph. 201: 187-204.
- Jozsa, R. and Mess, B. 1982. Immunohistochemical localization of the luteinizing hormone releasing hormone (LHRH)-containing structures in the central nervous system of the domestic fowl. Cell. Tissue Res. 227: 451–458.
- Juillet, A. 1912. Recherches anatomiques, embryologiques, histologiques et comparatives sur le poumon des oiseaux. Arch. Zool. Exp. Gén. 9: 207–371.
- Jungherr, E. 1945. Certain nuclear groups of the avian mesencephalon. J. Comp. Neurol. 82: 55-175.
- Jurio, A. V. and Vogt, M. 1967. Monamines and their metabolites in the avian brain. J. Physiol. 189: 489-518.
- Kaiser, L. 1923. De segmentale innervatie bij de duif (*Columba livia* var. domestica). Nwe. Verh. Bataafs Genootsch. Proefonderv. Wijsbegeerte, 2° R., 9: 1-104.
- Kajigaya, H., Kamemura, M., Tanahara, N., Ohta, A., Suzuki, H., Sugiyama, M., and Isoda, M. 1987. The influence of celomic membranes and a tunnel between celomic cavities on cancer metastasis in poultry. Avian Dis. 31: 176–186.
- Kaku, K. 1959. On the vascular supply in the brain of the domestic fowl. Fukuoka Acta Medica 50: 4293–4306.
- Kallius. E. 1905. Beitrage zur Entwicklung der Zunge. 11 Teil. Vögel (Anas boschas L.; Passer domesticus L.) Anat. Hefte (Abt. I), pp. 309-586.
- Kameda, Y. 1984. Ontogeny of chicken ultimobranchial glands studied by an immunoperoxidase method using calcitonin, somatostatin and 19S-thyroglobulin antisera. Anat. Embryol. 170: 139-144.
- Kampmeier, O. F. 1969. Evolution and Comparative Morphology of the Lymphatic System. C. C. Thomas, Springfield, Illinois.
- Kaplan, S. R. and G. E. Goslow, Jr. 1989. Neuromuscular organization of the pectoralis (Pars thoracicus) of the pigeon (*Columba livia*): implications for motor control. Anat. Rec. **224**: 426–430.
- Kar, A. B. 1947. Studies on the ligaments of the oviduct in the domestic fowl. Anat. Rec. 97: 175-192.

- Kare, M. R. and Mason, J. R. 1986. The chemical senses in birds. In: *Avian Physiology*, 4th ed. (P. D. Sturkie, ed.), pp. 59-73. Springer, Berlin.
- Karten, H. J. 1963. Ascending pathways from the spinal cord in the pigeon. Proc. XVI Int. Congr. Zool. (Wash.), 2: 23 (abstr.).
- . 1964. Projections of the cerebellar nuclei of the pigeon (*Columba livia*). Anat. Rec. **148:** 297–298 (abstr.).
- ———. 1967. The organization of the ascending auditory pathway in the pigeon (*Columba livia*). I. Diencephalic projections of the inferior colliculus (nucleus mesencephali lateralis, pars dorsalis). Brain Res. 6: 409–427.
- . 1968. The ascending auditory pathway in the pigeon (*Columba livia*). II. Telencephalic projections of the nucleus ovoidalis thalami. Brain Res. 11: 134-153.
- ———. 1969. The organization of the avian telencephalon and some speculations on the phylogeny of the amniote telencephalon. Ann. N.Y. Acad. Sci. 167: 164-179.
- ———. 1971. Efferent projections of the wulst of the owl. Anat. Rec. **155**: 1679 (abstr.).
- Karten, H. J. and Dubbeldam, J. L. 1973. The organization and projections of the paleostriatal complex in the pigeon (*Columba livia*). J. Comp. Neurol. **148**: 61-90.
- Karten, H. J., Fite, H. V., and Brecha, N. 1977. Specific projection of displaced retinal ganglion cells upon the accessory optic system in the pigeon (*Columba livia*). Proc. Natl. Acad. Sci. **74:** 1753–1756.
- Karten, H. J. and Hodos, W. 1967. A Stereotaxic Atlas of the Brain of the Pigeon (Columba livia). Johns Hopkins Univ. Press, Baltimore.
- \_\_\_\_\_\_. 1970. Telencephalic projection of the nucleus rotundus in the pigeon (*Columba livia*). J. Comp. Neurol. **140**: 35-52.
- Karten, H. J., Hodos, W., Nauta, W. J. H., and Revzin, A. M. 1973. Neural connections of the visual "wulst" of the avian telencephalon. Experimental studies in the pigeon (*Columba livia*) and owl (*Speotyto cunicularia*). J. Comp. Neurol. **150**: 253–278.
- Karten, H. J. and Nauta, W. J. H. 1968. Organization of retinothalamic projections in the pigeon and owl. Anat. Rec. 148: 297-298 (abstr.).
- Karten, H. J. and Revzin, M. 1966. The afferent connections of the nucleus rotundus in the pigeon. Brain Res. 2: 368-377.
- Katz, D. M. and Karten, H. J. 1983a. Subnuclear organization of the dorsal motor nucleus of the vagus nerve in the pigeon, *Columba livia*. J. Comp. Neurol. 217: 31-46.
- . 1983b. Visceral representation within the nucleus of the tractus solitarius in the pigeon (*Columba livia*). J. Comp. Neurol. **218:** 42-73.
- Keeton, W. T. 1979. Avian orientation and navigation. Rev. Physiol. 41: 353-366.

- Kelly, D. B. and Nottebohm, F. 1979. Projections of a telencephalic auditory nucleus-field L- in the canary. J. Comp. Neurol. 183: 455–470.
- Kelso, L. 1940. Variation of the external ear-opening in the Strigidae. Wilson Bull. 52: 24-29.
- Kemp, A. C. 1985. Hornbill. In: *A Dictionary of Birds* (B. Campbell and E. Lack, eds.), pp. 290–292. T. & A. D. Poyser, Calton, U.K.
- Kern, D. 1963. Die Topographie der Eingeweide der Körperhöhle des Haushuhnes (*Gallus domesticus*) unter besonderer Berücksichtigung der Serosa- und Gekröseverhaltnisse. Inaug. Diss., Giessen.
- Kern, M. and Coruzzi, L. 1979. The structure of the canary's incubation patch. J. Morph. 162: 425-452.
- Kesteven, H. L. 1925. The parabasal canal and nerve foramina and canals in the bird skull. J. Roy. Soc. New South Wales **59:** 108-123.
- Kilgore, L. Jr., Boggs, D. R., and Birchard, G. F. 1979. Role of the Rete mirabile ophthalmicum in maintaining the body-to-brain temperature difference in pigeons. J. Comp. Physiol. 129: 119-122.
- Kim, Y. and Yasuda, M. 1979. The cardiac conducting system of the fowl. Zbl. Vet. Med. C, Anat. Histol. Embryol. 8: 138-150.
- King, A. S. 1966. Structural and functional aspects of the avian lungs and air sacs. In: *International Review of General and Experimental Zoology* (W. J. L. Felts and R. J. Harrison, eds.). Vol. II, pp. 171-267. Academic Press, New York.
- ———. 1975a. Aves urogenital system. In: Sisson and Grossman's The Anatomy of the Domestic Animals (R. Getty, ed.). 5th ed. Vol. 2, pp. 1919–1964. Saunders, Philadelphia.
- ——. 1975b. Aves. Respiratory system. In: Sisson and Grossman's The Anatomy of the Domestic Animals (R. Getty, ed.) 5th ed. Vol. 2, pp. 1883– 1918. Saunders, Philadelphia.
- ed. (J. J. Baumel, A. S. King, A. M. Lucas, J. E. Breazile, and H. E. Evans, eds.), pp. 227-265. Academic Press, London.
- ———. 1981. Cloaca. In: Form and Function in Birds (A. S. King and J. McLelland, eds.). Vol. 2, pp. 63-105. Academic Press, London.
- ———. 1981. Phallus. In: Form and Function in Birds (A. S. King and J. McLelland, eds.). Vol. 2, pp. 107-147. Academic Press, London.
- ———. 1989. Functional anatomy of the syrinx. In: Form and Function in Birds (A. S. King and J. McLelland, eds.). Vol. 4, pp. 105-192. Academic Press, London.
- King, A. S. and Atherton, J. D. 1970. The identity of the air sacs of the turkey *Meleagris gallopavo*. Acta Anat. 77: 78-91.
- King, A. S. and Cowie, A. F. 1969. The functional anatomy of the bronchial muscle of the bird. J. Anat. 105: 323-336.

- King, A. S., King, D. Z., and Griffiths, C. 1977. Do neuroepithelial bodies occur in avian respiratory epithelium? J. Anat. 124: 254.
- King, A. S. and McLelland, J. 1984. *Birds Their Structure and Function*. Baillière Tindall, London.
- . 1980-1989. Form and Function in Birds. 4 vols. Academic Press, London.
- King, A. S., McLelland, J., Cook, R. D., King, D. Z., and Walsh, C. 1974. The ultrastructure of afferent nerve endings in the avian lung. Respir. Physiol. 22: 21-40.
- King, A. S. and Molony, V. 1971. The anatomy of respiration. In: *Physiology and Biochemistry of the Domestic Fowl* (D. J. Bell and B. M. Freeman, eds.). Vol. 1, pp. 93-169. Academic Press, London.
- King, J. R. and Farner, D. S. 1965. Studies of fat deposition in migratory birds. Ann. N.Y. Acad. Sci. 131: 422-440.
- Kinsky, F. C. 1971. The consistent presence of paired ovaries in the Kiwi (*Apteryx*) with some discussion of this condition in other birds. J. f. Ornith. 112: 334-357.
- Kirby, V. C. 1980. An adaptive modification in the ribs of woodpeckers and piculets (Picidae). Auk 97: 521-532.
- Kitoh, J. 1962. Observations on the arteries with their anastomoses in and around the brain in the fowl. Jap. J. Vet. Sci. 24: 141-150 [in Japanese].
- 1964. Arterial supply of the spinal cord. Jap. J. Vet. Sci. **26:** 169–175 [in Japanese].
- Kitt, C. A. and Brauth, S. E. 1981. Projections of the paleostriatum upon the midbrain tegmentum in the pigeon. Neuroscience 6: 1551-1566.
- ———. 1986a. Telencephalic projections from midbrain and isthmal cell groups in the pigeon. I. Locus coeruleus and subcoeruleus. J. Comp. Neurol. **247**: 69–91.
- \_\_\_\_\_\_. 1986b. Telencephalic projections from midbrain and isthmal cell groups in the pigeon. II. The nigral complex. J. Comp. Neurol. **247**: 92–110.
- Klemm, R. D. 1969. "Comparative myology of the hind limb of procellariiform birds." Southern Illinois Univ. Monogr., Sci. Ser., 2: 1-269.
- Klemm, R. D., Knight, C. E., and Stein, S. 1973. Gross and microscopic morphology of the glandula proctodealis (foam gland) in *Coturnix c. japonica* (Aves). J. Morph. **141:** 171-184.
- Klepacek, I. 1983. Anatomy of the zeugopodium and autopodium of the wing. I. Development of muscle groups and individual muscles of the autopodium of the chick wing during ontogenesis. Folia Morphol. (Czeckoslovakia), 31 240-249.

- Knight, C. E. 1967. Gross and Microscopic Anatomy of the Structures Involved in the Production of Seminal Fluid in the Chicken. M. Sc. Thesis, Michigan State University.
- ———. 1970. The Anatomy of the Structures involved in the Erectiondilution Mechanism in the Male Domestic Fowl. Ph. D. Thesis, Michigan State University.
- Knight, C. E., Bakst, M. R., and Cecil, H. C. 1984. Anatomy of the Corpus vasculare paracloacale of the male turkey. Poult. Sci. 63: 1883-1891.
- Knudsen, E. I. 1980. Sound localization in birds. In: *Comparative Studies of Hearing in Vertebrates* (A. N. Popper and R. R. Fay, eds.), pp. 289-322. Springer-Verlag, Berlin.
- Knudsen, E. I. and Konishi, M. 1979. Mechanisms of sound localisation in the barn owl *Tyto alba*. J. Comp. Physiol. **133**: 13–21.
- Köditz, W. 1925. Über die Syrinx einiger Clamatores und ausländischer Oscines. Z. Wiss. Zool. 126: 70-144.
- Kolda, J. and Komárek, Vl. 1958. Anatomie Domacich Ptaku. Ceskoslovenska Akad. Zemedelskych Ved., Prague.
- Komárek, V. 1958. Krajiny tela husy a Kura [Regiones corporis der Gans und des Huhnes]. Acta Univ. Agric. Sylvicul. (Brno) 6: 1-19.
- ——. 1969. Die männliche Kloake unserer Entenvögel. Anat. Anz. 124: 434–442.
- ----. 1970. Vertebra avia. Sci. Agric. Bohemoslovaca 2: 35-49.
- Brno **39:** 227-234.
- ------. 1971. The female cloaca of anseriform and galliform birds. Acta Vet. Brno **40**: 13-22.
- ———. 1979. Anatomia Avium Domesticarum. Príroda, Bratislava, Czecho-slovakia.
- Komárek, V., Malinovský, L., Lemez, L., et al. 1982. Anatomia Avium Domesticarum et Embryologia Galli. Príroda, Bratislava, Czechoslovakia.
- Komárek, V. and Marvan, F. 1969. Beitrag zur mikroskopischen Anatomie des Kopulationsorganes der Entenvögel. Anat. Anz. 124: 467-476.
- Kondo, M. 1937a. Die lymphatischen Gebilde im Lymphgefässsystem des Huhnes. Folia Anat. Jap. 15: 309-325.
- ———. 1937b. Die lymphatischen Gebilde im Lymphgefässsystem der verschiedenen Vogelarten. Folia Anat. Jap. 15: 329–348.
- Konishi, M. and Knudsen, E. I. 1979. The Oilbird: hearing and echolocation. Science. **204**: 425-427.
- Konitz, H., Berens v. Rautenfeld, D., Klanke, J., and Wenzel-Hora, B. 1985. REM-Darstellung der initialen Lymphstrombahn durch indirekte Applikation von MERCOX<sup>R</sup> oder Glutaraldehyd. Beitr. elektronenmikrosk. Direktabb. Oberfl. 18: 249-256.

- Kooloos, J. G. M., Kraaijeveld, A. R., Langenbach, G. E. J., and Zweers, G. A. 1989. Comparative mechanics of filter feeding in *Anas platyrhy-nchos*, *Anas clypeata* and *Aythya fuligula* (Aves, Anseriformes). Zoomorph. 108: 269-290.
- Kooy, F. H. 1915. De phylogenese van de oliva inferior. Ned. Tijdss. voor Geneesk. **51:** 2533–2536.
- ——. 1917. The inferior olive in vertebrates. Fol. Neurobiol. **10:** 205–369.
- Korf, H. W. 1984. Neuronal organisation of the avian paraventricular nucleus: intrinsic, afferent, and efferent connections. J. Exp. Zool. 232: 387-150.
- Korf, H. W., Simon-Oppermann, C., and Simon, E. 1982. Afferent connections of physiologically identified neuronal complexes in the paraventricular nucleus of conscious Pekin Ducks involved in regulation of salt- and water-balance. Cell Tissue Res. 226: 275-300.
- Korf, H. W., Viglietti-Panzica, C., and Panzica, G. C. 1983. A Golgi study on the cerebrospinal fluid (CSF)-contacting neurons in the paraventricular nucleus of the Pekin Duck. Cell Tissue Res. 228: 149–163.
- Korf, H. W., Zimmerman, H. H., and Oksche, A. 1982. Intrinsic neurons and neural connections of the pineal organ of the house sparrow, *Passer domesticus*, as revealed by anterograde and retrograde transport of horseradish peroxidase. Cell Tissue Res. 222: 243-260.
- Kovacs, J. 1928. Comparative histological studies upon the oral and anal parts of the intestine of the domestic fowl. Közleményck az Osszehasontitó Élet-és Kórtan Köréböl. 21: 400-405 (abstract in Jahresbericht Vet. Medizu. 1: 56).
- Koyanagi, F. and Nishiyama, H. 1981. Disintegration of spermatozoa in the infundibular sperm-host glands of the fowl. Cell Tissue Res. 214: 81-87.
- Kozlova, E. V. 1961. *Charadriiformes, suborder Alcae*. Israel Prog. Sci. Transl. Jerusalem.
- Krause, R. 1922. Mikroskopische Anatomie der Wirbeltiere in Einzel Darstellungen. II. Vögel und Reptilien. DeGruyter, Berlin.
- Kreithen, M. L. and Eisner, T. 1978. Ultraviolet light detection by the homing pigeon. Nature 272: 347-348.
- Kreithen, M. L. and Keeton, W. T. 1974. Detection of polarized light by the homing pigeon, *Columba livia*. J. Comp. Physiol. 89: 83-92.
- Kreithen, M. L. and Quine, D. 1979. Infrasound detection by the homing pigeon; a behavioural audiogram. J. Comp. Physiol. 129: 1-4.
- Krol, C. P. M. and Dubbeldam, J. L. 1979. On the innervation of taste buds by the N. facialis in the Mallard, *Anas platyrhynchos*. Netherl. J. Zool. **29**: 267-274.

- Krstic, R. V. 1984. *Illustrated Encyclopedia of Human Histology*. Springer, Berlin.
- Kudo, N., Sugimura, M., and Yamano, S. 1975. Anatomical studies of corpus paracloacalis vascularis in cocks. Jap. J. Vet. Res. 23: 1-10.
- Kuenzel, W. J. and Blähser, S. 1991. The distribution of gonadotropinreleasing hormone (GnRH) neurons and fibers throughout the chick brain (Gallus domesticus). Cell Tissue Res. 264: 481-495.
- Kuenzel, W. J. and Masson, M. 1988. A Stereotaxic Atlas of the Brain of the Chick (Gallus domesticus). Johns Hopkins Univ. Press, Baltimore.
- Kuenzel, W. J. and van Tienhoven, A. 1982. Nomenclature and location of avian hypothalamic nuclei and associated circumventricular organs. J. Comp. Neurol. 206: 293-313.
- Kuhlenbeck, H. 1937. The ontogenetic development of the diencephalic centres in a bird's brain (chick) and comparison with reptilian and mammalian diencephalon. J. Comp. Neurol. **66:** 23–75.
- Survey of its Comparative Anatomy with an Introduction to the Pertinent Fundamental and Logical Concepts. Vol. 4. Spinal Cord and Deuterencephalon. Karger, Basel.
- -------. 1978. The Central Nervous System of Vertebrates. A General Survey of its Comparative Anatomy with an Introduction to the Pertinent Fundamental and Logical Concepts. Vol. 5/II. Mammalian Telencephalon: Surface Morphology and Cerebral Cortex. The Vertebrate Neuraxis as a Whole. Karger, Basel.
- Kuhlenbeck, H. and Haymaker, W. 1949. The derivatives of the hypothalamus in the human brain; their relation to the extrapyramidal and autonomic system. Military Surg. 105: 26-52.
- Kuhne, R. and Lewis, B. 1985. External and middle ears. In: Form and Function in Birds (A. S. King and J. McLelland, eds.). Vol. 3, pp. 227-271. Academic Press, London.
- Kuratani, S., Ishikawa, Y. and Zukeran, C. 1988. Early development of the hypoglossal nerve in the chick embryo as observed by the whole-mount nerve staining method. Am. J. Anat. 182: 155-168.
- Kuratani, S., Tanaka, S., Ishikawa, Y., and Zukeran, Z. 1988. Early development of the facial nerve in the chick embryo with special reference to the development of the chorda tympani. Am. J. Anat. 182: 169-182.
- Kurihara, S. and Yasuda, M. 1975. Morphological study of the kidney of the fowl. I. Arterial system. Jap. J. Vet. Sci. 37: 29-47.
- Kurochkin, E. N. 1968. Locomotion and morphology of the pelvic extremities in swimming and diving birds. Acad. Sci. Ukranian SSR Inst. Zool., Moscow, 18 pp. [in Russian.]

- Kuroda, N. 1954. On some osteological and anatomical characters of Japanese Alcidae (Aves). Jap. J. Zool. 11: 311-327.
- ———. 1960. On the pectoral muscles of birds. Misc. Reports Yamashina Inst. Ornith. Zool. 2: 50-59.
- . 1961a. A note on the pectoral muscles of birds. Auk 78: 261-263.
- ———. 1961b. Analysis of three adaptive body forms in the Steganopodes, with notes on pectoral muscles. Misc. Reports Yamashina Inst. Ornith. Zool. 3: 54-66.
- . 1962. On the cervical muscles of birds. Misc. Reports Yamashina Inst. Ornith. Zool. 3: 189-211.
- Kurosawa, T., Niimura, S., Kusuhara, S., and Ishida, K. 1983. Morphological studies of tastebuds in chickens. Jap. J. Zootech. Sci. **54**: 502-510.
- Lake, P. E. 1957. Fowl semen as collected by the massage method. J. Agric. Sci. 49: 120-126.
- of the Domestic Fowl (D. J. Bell and B. M. Freeman, eds.). Vol. 3, pp. 1411-1447. Academic Press, London.
- . 1981. Male genital organs. In: *Form and Function in Birds* (A. S. King and J. McLelland, eds.). Vol. 2, pp. 1-61. Academic Press, London.
- Lake, P. E., Smith, W., and Young, D. 1968. The ultrastructure of the ejaculated fowl spermatozoon. Quart. J. Exp. Physiol. 53: 356-366.
- Lakjer. T. 1926. Studien über die Trigeminus-versorgte Kaumuskulatur der Sauropsiden. C. A. Reitzel, Copenhagen.
- Lambrecht, K. 1933. Literatur des Skelettssystems. In: *Handbuch der Palaeornithologie*, pp. 9-57. Gebrüder Borntraeger, Berlin.
- Landolt, R. 1985. A comparative morphological study of the gizzard in the Columbidae. Fortschr. Zool. 30: 265–268.
- . 1987a. Vergleichend funktionelle Morphologie des Verdauungstraktes der Tauben (Columbidae) mit besonderer Berücksichtigung der adaptiven Radiation der Fruchttauben (Treroninae). Teil I. Zool. Jb. Anat. 116: 169-215.
- ——. 1987b. Vergleichend funktionelle Morphologie des Verdauungstraktes der Tauben (Columbidae) mit besonderer Berücksichtingung der adaptiven Radiation der Fruchtauben (Treroninae). Teil II (Schluss). Zool. Jb. Anat. 116: 285-316.
- Landolt, R. and G. A. Zweers. 1985. Anatomy of the muscle-bone apparatus of the cervical system in the Mallard (*Anas platyrhynchos* L.). Netherl. J. Zool. 35: 611-670.
- Lange, B. 1931. Integument der Sauropsiden. In: *Handbuch der vergleichenden Anatomie der Wirbeltiere* (L. Bolk, E. Göppert, E. Kallius, and W. Lubosch, eds.). Vol. 1, pp. 375–448. Urban & Schwartzenberg, Berlin.

- Langley, J. N. 1904. On the sympathetic system of birds, and on the muscles which move the feathers. J. Physiol. **30**: 221–252.
- Larsell, O. 1948. The development and subdivisions of the cerebellum of birds. J. Comp. Neurol. 89: 123–189.
- ——. 1969. The Comparative Anatomy and Histology of the Cerebellum from Myxinoids through Birds. Univ. of Minnesota Press, Minneapolis.
- Larson, L. 1930. Osteology of the California Road-Runner Recent and Pleistocene. Univ. Calif. Publ. Zool. 32: 409-428.
- Larsson, L.-I., Sundler, F., Hakanson, R., Rehfeld, J. F., and Stadil, F. 1974. Distribution and properties of gastrin cells in the gastrointestinal tract of chicken. Cell Tissue Res. **154**: 409-421.
- Lanyon, S. M. and Lanyon, W. E. 1989. The systematic position of the plant cutters, *Phytotoma*. Auk 106: 422-432.
- Lanyon, W. E. 1984. A phylogeny of the kingbirds and their allies. Amer. Mus. Novit. no., 2797, 28 pp.
- Lasiewski, R. C. 1972. Respiratory function in birds. In: *Avian Biology* (D. S. Farner and J. R. King, eds.). Vol. 2, pp. 288-342. Academic Press, New York.
- Lebedinsky, N. G. 1921. Zur Syndesmologie der Vögel. Anat. Anz. **54:** 8-15.
- ———. 1920. Beiträge zur Morphologie und Entwicklungsgeschichte des Unterkiefers der Vögel. Verh. Naturforsch. Ges. Basel 31: 39-112.
- Le Douarin, N., Fontaine, J., and Le Lievre, C. 1974. New studies on the neural crest origin of the avian ultimobranchial glandular cells—interspecific combinations and cytochemical characterization of C cells based on the uptake of biogenic amine precursors. Histochemistry 38: 297-305.
- Leibovitz, L. 1968. Weyonella Philiplevinei. N. S. P., a coccidial organism of the white Peking Duck. Avian Dis. 12: 670-681.
- Leitner, L. M. and Roumy, M. 1974. Mechanosensitive units in the upper bill and in the tongue of the domestic duck. Pflugers Arch. 346: 141-150.
- ———. 1974. Thermosensitive units in the tongue and in the skin of the ducks bill. Pflugers Arch. 346: 151-155.
- Lennerstedt, I. 1975. A functional study of papillae and pads in the foot of passerines, parrots, and owls. Zool. Scripta 4: 111-123.
- Leonard, R. B. and Cohen, D. H. 1975. A cytoarchitectonic analysis of the spinal cord of the pigeon (*Columba livia*). J. Comp. Neurol. **163:** 159–180.
- Leonhardt, H. 1980. Ependyma und circumventriculare Organe. In: *Handbuch der Mikroskopischen Anatomie des Menschen* (A. Oksche and L. Vollrath, eds.). Vol. 4, Part 10, Neuroglia I, pp. 177-666. Springer-Verlag, Berlin.

- Leonhardt, H., Krisch, B., and Hartwig, H. G. 1983. Circumventricular organs as targets and release sites for peptide hormones and monoamines. In: *Structure and Function of Peptidergic and Aminergic Neurons* (J. Sano, et al., eds.). Japanese Sci. Soc. Press, Tokyo.
- Levy, B. and Sivak, J. G. 1980. Mechanisms of accommodation in the bird eye. J. Comp. Physiol. 137: 267-272.
- Liebe, W. 1914. Die männliches Begattungsorgane der Hausente. Jena Z. Naturwiss. **51:** 627–696.
- Liebelt, R. A. and Eastlick, H. L. 1954. The organlike nature of the subcutaneous fat bodies in the chicken. Poultry Sci. 33: 169-179.
- Lillie, F. R. 1952. *Development of the Chick*. 3rd ed. (Revised by H. L. Hamilton) Holt Rinehart and Winston, New York.
- Lin, M., Jones R. C., and Blackshaw, A. W. 1990. The cycle of the seminiferous epithelium in the Japanese Quail (*Coturnix coturnix japonica*) and estimation of its duration. J. Repro. Fert. **88:** 481-490.
- Lindgren, H. 1868. Ueber den Bau der Vogelnieren. Z. Rationelle Med. 33: 15-35.
- Lindner, D. 1961. Zur Frage der mikroskopischen und makroskopischen Anatomie der Vogellymphknoten (gleichzeitig ein Beitrag zur vergleichenden Morphologie der Lymphknoten der Vögel und Säugetiere). Wiss. Z. Humboldt-Univ. Berlin, 10: 183-204.
- Lindsay, F. E. F. 1967. The cardiac veins of *Gallus domesticus*. J. Anat. 101: 555-568.
- Lindsay, F. E. F. and Smith, H. J. 1965. Coronary arteries of Gallus domesticus. Amer. J. Anat. 116: 301-314.
- Livezey, 1990. Evolutionary morphology of flightlessness in the Auckland Islands Teal. Condor **92:**639–673.
- Llewellyn, J. 1972. Phylum Platyhelminthes. In: *Parker and Haswell's Text-book of Zoology—Vertebrates*. 7th ed. (A. J. Marshall and W. D. Williams, eds.). Vol. 2. MacMillan, London.
- Lob, G. 1967. Untersuchungen am Huhn über die Blutgefässe von Rückenmark und Corpus gelatinosum. Morph. Jb. 110: 316-358.
- Lockner, F. R. and Youngren, O. M. 1976. Functional syringeal anatomy of the Mallard. I. *In situ* electromyograms during ESB elicited calling. Auk **93:** 324–342.
- Locy, W. A. and Larsell, O. 1916a. The embryology of the bird's lung. Part 1. Am. J. Anat. 19: 447-504.
- . 1916b. The embryology of the bird's lung. Part 2. Am. J. Anat. **20:** 1-44.
- Lord, R. D. 1956. A comparative study of the eyes of some falconiform and passeriform birds. Amer. Midl. Nat. **56:** 325–344.

- Lorenz, F. W. 1964. Research on fertility and artificial insemination of domestic birds. Vth Cong. Int. Ripro. Anim. Fecond. Art., Vol. 4, pp. 7-32.
- Lucas, A. M. and Stettenheim, P. R. 1972. Avian Anatomy: Integument. 2 vols. Agr. Handbook no. 362, U.S. Dept. Agric., Washington, D.C.
- Lucas, F. A. 1897. The tongue of birds. Rept. U.S. Nat'l. Mus. pp. 1003-1020.
- Lundberg, A. and Oscarsson, O. 1962. Functional organization of the ventral spino-cerebellar tract in the cat. IV. Identification of units by anti-dromic activation from the cerebellar cortex. Acta Physiol. Scand. 54: 252-269.
- Lyser, K. M. 1973. The fine structure of the glycogen body of the chicken. Acta Anat. 85: 533-549.
- MacDonald, J. D. 1960. Secondary external nares of the gannet. Proc. Zool. Soc. London 135: 357–363.
- MacDonald, R. L. and Cohen, D. H. 1970. Cells of origin of sympathetic pre- and postganglionic cardioacceleratory fibers in the pigeon. J. Comp. Neurol. 40: 343-358.
- Maderson, P. F. A. and Jaskoll, T. 1976. A long-ignored sensory structure in the avian middle ear. Amer. Zool. 16: 200.
- Magnan, A. 1912. Essai de morphologie stomacale en fonction du regime alimentaire chez les oiseaux. Ann. Sci. Nat. Zool. 15: 1-41.
- Magnus, H. 1870. Untersuchungen über den Bau knochernen Vogelkopfes. Z. Zool. 21: 1-108.
- Mahdi, A. H. and McLelland, J. 1988. The arrangement of the muscle at the ileo-caeco-rectal junction of the domestic duck (*Anas platyrhynchos*). J. Anat. **161:** 133-142.
- ——. 1989. A morphometric study of the rectocoprodeal sphincter in the domestic duck. J. Anat. **165**: 169–274.
- Maina, J. N. 1982. A scanning electron microscopic study of the air and blood capillaries of the lung of the domestic fowl (*Gallus domesticus*). Experientia **38**: 614–616.
- ———. 1988. Scanning electron microscope study of the spatial organization of the air and blood conducting components of the avian lung (*Gallus gallus* variant *domesticus*). Anat. Rec. 222: 145-153.
- ——. 1989. The mophometry of the avian lung. In: Form and Function in Birds (A. S. King and J. McLelland, eds.). Vol. 4, pp. 307–368. Academic Press, London.
- Maina, J. N., Abdalla, M. A., and King, A. S. 1982. Light microscopic morphometry of the lung of 19 avian species. Acta Anat. 112: 264-270.
- Maina, J. N. and King, A. S. 1982. The thickness of the avian blood-gas barrier: qualitative and quantitative observations. J. Anat. 134: 553-562.

- Maina, J. N., King, A. S., and Settle, G. 1989. An allometric study of pulmonary morphometric parameters in birds, with mammalian comparisons. Philos. Trans. Roy. Soc., B, 326: 1-57.
- Malinovský, L. 1962. Contribution to the anatomy of the vegetative nervous system in the neck and thorax of the domestic pigeon. Acta Anat. **50:** 326–347.
- ——. 1963. The nerve supply of the stomach in the domestic pigeon (*Columba domestica*). Čslká. Morf. 11: 16-27.
- ———. 1965. Contribution to the comparative anatomy of the vessels in the abdominal part of the body cavity in birds. III. Nomenclature of branches of the a. coeliaca and of tributaries of the v. portae. Folia Morph. (Prague) 13: 252-264.
- ———. 1965. I. Blood supply to stomachs and adjacent organs in Buzzard (*Buteo buteo* L.). Folia Morph. (Prague) 13: 191-201.
- ———. 1986. Classification of sensory nerve endings brought up to date. Folia Morph. (Prague) **34:** 261–264.
- . 1984. Mechanoreceptors and free nerve endings. In: *Biology of the Integumentum* (J. Bereiter-Hahn, A. G. Matolsy, and K. S. Richard, eds.). Vol. 2, pp. 535–560. Springer, Heidelberg.
- ------. 1989a. A contribution to the nomenclature of peripheral sensory structures. Z. Mikrosk.-anat. Forsch. 104: 170-176.
- ———. 1989b. Classification of the skin mechanoreceptors. Verh. Anat. Ges. 82: 141-149.
- -------. 1990. A contribution to the nomenclature of peripheral sensory structures (sensory nerve endings). Z. Mikrosk.-anat. Forsch. 104: 170– 176.
- Malinovský, L. and Malinovský, L., Jr. 1985. The structure of the Herbst Corpuscle in the scanning electron microscope. Z. Mikrosk.-anat. Forsch. 99: 707-716.
- Malinovský, L. and Pac, L. 1985. Ultrastructural development of the Herbst corpuscles in the skin of the beak of the domestic duck. Folia Morph. (Prague) 33: 150-155.
- Malinovský, L. and Visnanska M. 1975. Branching of the coeliac artery in some domestic birds. II. The domestic goose. Folia Morph. (Prague) 23: 128-135.
- Malinovský, L., Visnanska M. and Roubal. P. 1973. Branching of A. coeliaca in some domestic birds. 1. Domestic duck (*Anas platyrhynchos f. domestica*). Scripta Medica (Brno) **46**: 325-336.
- Malinovský, L. and Zemanek, R. 1969. Sensory corpuscles in the beak skin of the domestic pigeon. Folia Morph. 17: 241-250.
- Mann, I. C. 1931. Iris pattern in vertebrates. Trans. Zool. Soc. London 21: 355-412.

- Manni, E., Azze, G. M., and Bortolami R. 1965. Jaw muscle proprioception and mesencephalic trigeminal cells in birds. Exp. Neurol. 12: 320-328.
- Manogue, K. R. and Nottebohm, F. 1982. Relation of medullary motor nuclei to nerves supplying the vocal tract of the budgerigar (*Melopsittacus undulatus*). J. Comp. Neurol. **204:** 384-391.
- Märk, W. 1944. Die Entwicklung der Bursa Fabricii bei der Ente. Z. Mikrosk.-Anat. Forsch. 54: 1-95.
- Marples, B. J. 1932. The structure and development of the nasal glands of birds. Proc. Zool. Soc. London 2: 829-844.
- Marshall, A. J. 1962. Reproduction. In: *Biology and Comparative Physiology of Birds* (A. J. Marshall, ed.). Vol. 2, pp. 169–213. Academic Press, New York.
- ——. 1962. Parker and Haswell's Textbook of Zoology. 7th ed. (Revised by A. J. Marshall). Vol. 2. Macmillan, London.
- Marshall, E. K. 1934. The comparative physiology of the kidney in relation to theories of renal secretion. Physiol. Rev. 14: 133-159.
- Martin, A. H. 1979. A cytoarchitectonic scheme of the spinal cord of the domestic fowl, *Gallus gallus domesticus:* lumbar region. Acta Morphol. Neerl. Scand. **17:** 105-117.
- Martin, G. R. 1985. Eye. In: *Form and Function in Birds*. (A. S. King and J. McLelland, eds.). Vol. 3, pp. 311-373. Academic Press, London.
- ——. 1986. The eye of a passeriform bird, the European starling (*Sturnus vulgaris*): eye movement amplitude, visual fields, and optical structure. J. Comp. Physiol. **159:** 545-557.
- . 1987. How do birds accommodate? Nature 238: 383.
- ——. 1990. Birds by Night. T. & A. D. Poyser, Lond.
- -----. 1991. Ornithology: the question of polarization. Nature 350: 194.
- Martin, G. R. and Brooke, M. 1991. The eye of a procellariiform seabird, the Manx shearwater *Puffinus puffinus:* visual fields and optical structure. Brain, Behav. Evol. 37: 65-78.
- Martin, G. R. and Young, S. R. 1984. The eye of the Humboldt Penguin (*Spheniscus humboldti*): visual fields and schematic optics. Proc. Roy. Soc. London 223 B: 197-222.
- Martin, L. D. 1984. A new hesperornithid and the relationships of the Mesozoic birds. Trans. Kansas Acad. Sci. 87: 141-150.
- ——. 1987. The beginning of the modern avian radiation. Docum. Lab. Géol. Lyon., no. 99, pp. 9-19.
- Martin, L. D. and J. D. Stewart 1985. Homologies in the avian tarsus. Nature 315: 159-160.
- Martin, L. D., J. D. Stewart, and K. N. Whetstone 1980. The origin of birds: structure of the tarsus and teeth. Auk 97: 86-93.

- Marvan, F. 1969. Postnatal development of the male genital tract of the *Gallus domesticus*. Anat. Anz. **124**: 443–462.
- Marvan, F. and Tesik, I. 1970. Comparative anatomical study of the tongue of fowl, turkey and guinea fowl. Acta Vet. Brno. 39: 235-243.
- Mathis, J. 1938. Zum Feinbau der Bursa Fabricii. Z. Mikrosk.-Anat. Forsch. 43: 179-180.
- Matsumoto, C. 1955. The venous sinuses of the dura mater of the brain and the veins in the bird kind. J. Kurume Med. Assoc 18: 765-797 [in Japanese].
- Matsushita, M. 1968. Zur Zytoarchitektonik des Huhnerrückenmarks nach Silberimprägnation. Acta Anat. 70: 238-259.
- Matthews, L. H. 1949. The origin of stomach oil in the petrels, with comparative observations on the avian proventriculus. Ibis 91: 373-392.
- Mauger, H. M. 1941. The autonomic innervation of the female genitalia in the domestic fowl and its correlation with the aortic branchings. Amer. J. Vet. Res. 2: 447–452.
- Maumus, J. 1902. Les caecums des oiseaux. Ann. Sci. Nat. Zool. 15: 1-148.
- Mayr, E. 1931. Die Syrinx einiger Singvögel aus Neu-Guinea. J. f. Ornith. **79:** 333–337.
- McClearn, D. and D. M. Noden. 1988. Ontogeny of architectural complexity in embryonic quail visceral arch muscles. Amer. J. Anat. 183: 277–293.
- McCorkle, F. M., Stinson, R. S., Olah, I., and Glick, B. 1979. The chicken's femoral lymph nodules T- and B-Cells and the immune response. J. Immunol. 123: 667-668.
- McFarland, L. Z., Warner, R. L., Wilson, W. O., and Mather, F. B. 1968. The cloacal gland complex of the Japanese Quail. Experientia 24: 941-943.
- McFarlane, R. W. 1963. The taxonomic significance of avian sperm. XIII Proc. Intern. Ornith. Cong. (C. G. Sibley, ed.). Vol. 1., pp. 91-102.
- ———. 1971. The Ultrastructural and Phylogenetic Significance of Avian Spermatozoa. Ph. D. Thesis, University of Florida.
- McGowan, C. 1985. Tarsal development in birds: evidence for homology with the theropod condition. J. Zool. London, ser. A, **206**: 53-67.
- McGraw, C. F. and McLaughlin, B. J. 1980a. Fine structural studies of synaptogenesis in the superficial layers of the chick optic tectum. J. Neurocytol. 9: 79-93.
- . 1980b. A freeze-fracture study of synaptic junction development in the superficial layers of the chick optic tectum. J. Neurocytol. 9: 95-106.
- McIntosh, J. R. and Porter, K. R. 1967. Microtubules in the spermatids of the domestic fowl. J. Cell Biol. 35: 153-173.

- McKitrick, M. C. 1985. Pelvic myology of the kingbirds and their allies (Aves: Tyrannidae). Ann. Carnegie Mus. 54: 275-317.
- ———. 1985. Myology of the pectoral appendage in kingbirds (*Tyrannus*) and their allies. Condor, **87** 402–417.
- ——. 1986. Individual variation in the flexor cruris lateralis muscle of the Tyrannidae (Aves: Passeriformes) and its possible significance. J. Zool. London, ser. A, **209**: 251-270.
- McLelland, J. 1965. The anatomy of the rings and muscles of the trachea of *Gallus domesticus*. J. Anat. **99:** 651-666.
- 1968. The hyoid muscles of Gallus gallus. Acta Anat. 69: 81-86.
  1975a. Aves Digestive System. In: Sisson and Grossman's The
  - Anatomy of the Domestic Animals. 5th ed. (R. Getty, ed.). Vol. 2, pp. 1857–1882. Saunders, Philadelphia.
- ———. 1979. Digestive system. In: Form and Function in Birds (A. S. King and J. McLelland, eds.) Vol. 1, pp. 69–181. Academic Press, London and New York.
- Cecum (E. J. Braun and G. E. Dukes, eds.). Proc. First International Avian Cecal Symposium, Grand Marais, Minnesota, August 1988. J. Exp. Zool., Suppl. 3: 2-9.
- ———. 1989. Larynx and trachea. In: Form and Function in Birds (A. S. King and J. McLelland, eds.) Vol. 4, pp. 69-103. Academic Press, London.
- ———. 1990. A Colour Atlas of Avian Anatomy. Wolfe Medical Publications, London.
- McLelland, J. and Abdalla, A. B. 1972. The gross anatomy of the nerve supply to the lungs of *Gallus domesticus*. Anat. Anz. 131: 320-328.
- McLelland, J. and King., A. S. 1970. The gross anatomy of the peritoneal coelomic cavities of *Gallus domesticus*. Anat. Anz. 127: 480-490.
- Grossman's The Anatomy of the Domestic Animals pp. 1849–1856. 5th ed. (R. Getty, ed.) Vol. 2, Saunders, Philadelphia.
- McLelland, J. and MacFarlane, C. J. 1986. Solitary granular endocrine cells and neuroepithelial bodies in the lungs of the Ringed Turtle Dove (*Streptopelia risoria*). J. Anat. 147: 83-93.
- McLelland, J. and Molony, V. 1983. Respiration. In: *Physiology and Biochemistry of the Domestic Fowl* (B. M. Freeman, ed.). Vol. 4, pp. 63-89. Academic Press, London.
- McLeod, W. M. and Wagers, R. P. 1939. The respiratory system of the chicken. J. Amer. Vet. Med. Assoc. 95: 59-70.
- McVean, A., J. Stelling and A. Rowlerson. 1987. Muscle fibre types in the external eye muscles of the pigeon, *Columba livia*. J. Anat. 154: 91-101.

- Meier, R. E. 1973. Autoradiographic evidence for a direct retinohypothalamic projection in the avian brain. Brain Res. 53: 417-421.
- Meier, R. E., Mihailovic, J., and Cuenod, M. 1974. Thalamic organization of the retino-thalmo-hyperstriatal pathway in the pigeon (*Columba livia*). Exp. Brain Res. 19: 351-364.
- Menaker, M. and Binkley, S. 1981. Neural and endocrine control of circadian rhythms in the vertebrates. In: *Handbook of Behavioral Neurobiology*, Vol. 4, *Biological Rhythms* (J. Aschoff, ed.), pp. 243-255. Plenum Press, New York.
- Menaker, M. and Oksche, A. 1974. The avian pineal organ. In: *Avian Biology* (D. S. Farner and J. R. King, eds.). Vol. 4, pp. 79-118. Academic Press, New York.
- Menon, G. K. and Salinukul, N. 1989. Ceruminous glands in ear canal of domestic fowl: morphology, histochemistry and ultrastructure. Zool. Anz. 222: 110-121.
- Mestres, P. and Delius, J. D. 1982. A contribution to the study of the afferents to the pigeon optic tectum. Anat. Embryol. 165: 415-423.
- Meyer, D. B. 1977. The avian eye and its adaptations. In: *Handbook of Sensory Physiology* (F. Crescitelli, ed.). Vol. 7, no. 5, pp. 549-611. Springer, Berlin.
- Mialhe, P. 1958. Glucagon, insuline et regulation endocrine chez le canard. Acta. Endocrinol. (Copenhagen) 28, Suppl. 26: 9-134.
- Michael, E. and Hodges, R. D. 1973. Structure and histochemistry of the normal intestine of the fowl. 1. The mature absorptive cell. Histochem. J. 5: 313-333.
- Michel, G. 1971. Zur Histologie und Histochemie des Drüsen- und Muskelmagens von Huhn und Ente. Mb. Vet. Med. 26: 907-911.
- Michel, G. and Gutte, G. 1971. Zum mikrokopischen Anatomie und Histochemie des Darmkanals von Huhn und Ente. Arch. Exp. Vet. Med. 25: 601-613.
- Michel, G. and Junge, D. 1972. Zur mikroskopischen Anatomie der Niere bei Huhn und Ente. Anat. Anz. 131: 124-134.
- Middleton, A. L. A. 1972. The structure and possible function of the avian seminal sac. Condor 74: 185-190.
- Midtgård, U 1981. The Rete tibiotarsale and arterio-venous association in the hind mb of birds: A comparative morphological study on countercurrent h t exchange systems. Acta Zool. 62: 67-87.
- 82. Patterns in the blood vascular system in the pelvic limb of birds. J. pol. London 196: 545-567.

685

- ———. 1984b. Eye temperatures in birds and the significance of the Rete ophthalmicum. Vidensk. Medd. Dansk Naturh. Foren. **145**: 173–181.
- Mikami, S. I. 1980. Hypothalamic control of avian adenohypophysis. In: *Biological Rhythms in Birds* (Y. Tanabe, K. Tanaka, and T. Ookawa, eds.), pp. 17–32. Jap. Sci. Soc. Press, Tokyo.
- . 1983. Avian adenohypophysis: recent progress in immunocytochemical studies. In: *Avian Endocrinology Environmental and Ecologic Perspectives* (S. Mikami, K. Homma, and M. Wada, eds.), pp. 39–56. Jap. Sci. Soc. Press, Tokyo.
- Mikami, S. I., Oksche, A., Farner, D. S. and Vitums, A. 1970. Fine structure of the vessels of the hypophysial portal system of the White-Crowned Sparrow, *Zonotrichia leuophrys gambelii*. Z. Zellforsch. **106**: 155-170.
- Mikami, S. I. and Ono, K. 1962. Glucogen deficiency induced by extirpation of alpha islets of the fowl pancreas. Endocr. 71: 464-473.
- Mikami, S. I., Taniguchi, K., and Ishikawa, T. 1985. Immunocytochemical localization of the pancreatic islet cells in the Japanese Quail, *Coturnix coturnix japonica*. Jap. J. Vet. Sci. 47: 357-369.
- Mikami, S. I., Taniguchi, K. and Ishikawa, T. 1985. Immunocytochemical localisation of the pancreatic islet cells in the Japanese quail, *Coturnix coturnix japonica*. Jap. J. Vet. Sci. 47: 357–369.
- Mikami, S. I. and Yamada, S. 1984. Immunohistochemistry of the hypothalamic neuropeptides and anterior pituitary cells in the Japanese quail. J. Exp. Zool. 232: 405-417.
- Mikami, S., Yamada, S., Hasegawa, Y., and Miyamoto, K. 1988. Localization of avian LHRH-immunoreactive neurons in the hypothalamus of the domestic fowl, *Gallus domesticus*, and the Japanese Quail, *Coturnix coturnix*. Cell Tissue Res. **251:** 51–58.
- Miller, A. H. 1941. The buccal food-carrying pouches of the Rosy Finch. Condor **43**: 72–73.
- Miller, A. M. 1903. The development of the postcaval vein in birds. Amer. J. Anat. 2: 283-298.
- Milne-Edwards, A. 1865. Observations sur l'appareil respiratoire de quelques oiseaux. Ann. Sci. Nat. 3: 137-142.
- . 1867-71. Recherches anatomiques et paleontologiques pour servir a l'histoire des oiseaux fossiles de la France. Vols. 1, 2. Masson et Fils, Paris
- Miskimen, M. 1951. Sound production in passerine birds. Auk 68: 493–504.Mitchell, P. C. 1895. On the anatomy of *Chauna chavaria*. Proc. Zool. Soc. London, pp. 350–358.
- ——. 1901. On the intestinal tract of birds; with remarks on the evaluation and nomenclature of zoological characters. Trans. Linn. Soc. London, pp. 1039–1072.

- ———. 1913. The peroneal muscles in birds. Proc. Zool. Soc. London, pp. 1039–1072.
- Mivart, St. G. 1895. On the hyoid bone of certain parrots. Proc. Zool. Soc. London, pp. 162-174.
- Miyaki, T. 1973. The hepatic lobule and its relation to the distribution of blood vessels and bile ducts in the fowl. Jap. J. Vet. Sci. 35: 403-410.
- ———. 1978. The afferent venous vessels to the liver and the intrahepatic portal distribution in the fowl. Zbl. Vet. Med. C, Anat. Histol. Embryol. 7: 129-139.
- Miyaki, T. and Yasuda, M. 1977. On the thoracic duct and the lumbar lymphatic vessel in the fowl. Jap. Vet. Sci. 39: 559-570.
- Moll, J. and Hilvering, C. 1951. An area postrema in birds? Proc. Kon. Nedl. Akad. Wet., Ser. C., 54: 301-307.
- Möllendorff, W. v. 1930. Handbuch der mikroskopischen Anatomie des Menschen. Vol. 7, Part 1. Springer, Berlin.
- Moller, W. 1978. Circumventriculare Organe in der Gewebekultur. Springer-Verlag, Berlin.
- Monague, K. R. and Nottebohm, F. 1982. Relation of medullary motor nuclei to nerves supplying the vocal tract of the budgerigar (*Melopsittacus undulatus*). J. Comp. Neurol. **204:** 384-391.
- Moody, S. A. and Heaton, 1983a. Ultrastructural observations of the migration and early development of trigeminal motoneurons in chick embryos. J. Comp. Neurol. 216: 20-35.
- ———. 1983b. Developmental relationships between trigeminal ganglia and trigeminal motoneurons in chick embryos. I. Ganglion development is necessary for motoneuron migration. J. Comp. Neurol. 213: 327-343.
- ——. 1983c. Developmental relationships between trigeminal ganglia and trigeminal motoneurons in chick embryos. II. Ganglia axon in growth guides motoneuron migration. J. Comp. Neurol. 213: 344–349.
- ———. 1983d. Developmental relationships between trigeminal ganglia and trigeminal motoneurons in chick embryos. III. Ganglia perikarya direct motor axon growth in the periphery. J. Comp. Neurol. 213: 350-364.
- Moore, C. A. and Elliott, R. 1946. Numerical and regional distribution of taste buds on the tongue of the bird. J. Comp. Neurol. 84: 119-131.
- Moreno, E. 1990. The Musculi flexor perforatus digiti II and flexor digitorum longus in Paridae. Condor **92**: 634-638.
- Morild, I., Bohle, A., and Christensen, J. A. 1985. Structure of the avian kidney. Anat. Rec. 212: 33-40.
- Morild, I., Mowinckel, R., Bohle, A., and Christensen, J. A. 1985. The juxtaglomerular apparatus in the avian kidney. Cell Tissue Res. **240**: 209–214.

- Morlion, M. 1971. Vergelijkende Studie van de Pterylosis in Enkele Afrikaanse Genera van de Ploceidae. Verh. Koninkl. Acad. Wetensch., Belgie, 33 (Nr 119), Vol. I: xvi + 1-328, Vols. II and III: 1-256.
- Morony, J. J., Bock, W. J., and Farrand, J. 1975. Reference list of birds of the world. Amer. Mus. Nat. Hist., New York.
- Mouchett, R. and Cuypers, Y. 1959. Étude de la vascularisation du rein de coq. Arch. Biol. 69: 577-590.
- Mudge, G. P. 1903. On the morphology of the tongue of parrots. with a classification of the order, based upon the structure of the tongue. Trans. Zool. Soc. London 16: 211-278.
- Mugnaini, E. and Dahl, A. L. 1975. Mode of distribution of aminergic fibers in the cerebellar cortex of the chicken. J. Comp. Neurol. **162**: 417–432.
- Muller, B. 1908. The air sacs of the pigeon. Smithsonian Misc. Coll. **50**: 365-414.
- Müller, C. 1985. Zur Ontogenese der Bursa cloacalis (Fabricii) beim Emu (*Dromaius novohollandiae*). Eine licht- und elektronen-mikroskopische Untersuchung. Vet. Med. Diss., Frei Univ., Berlin.
- Müller, G. B. and Alberch, P. 1990. Ontogeny of the limb skeleton in *Alligator mississippiensis:* developmental invariance and change in the evolution of archosaur limbs. J. Morph. **203:** 151–164.
- Müller, G. B. and Streicher, J. 1989. Ontogeny of the syndesmosis tibiofibularis and the evolution of the bird hindlimb: a caenogenetic feature triggers phenotypic novelty. Anat. Embryol. 179: 327-339.
- Müller, H. J. 1963. Die Morphologie und Entwicklung des Cranium von *Rhea americana* Linné. Z. Wiss. Zool. **168**: 35-118.
- Müller, J. 1836. Ueber zwei verscheidene Typen in dem Bau der erectilen männlichen Geschlectsorgane bei den straussartigen Vögeln. Gelesen in den Königl. Akad. Wiss. Physikal. Abhandl., pp. 137-177.
- . 1878. Johannes Müller, On certain variations in the vocal organs of the Passeres that have hitherto escaped notice. (Read before Königl. Akad. Wiss., Berlin, 1846 and 1848. Translated from the German by F. J. Bell). Clarendon Press, Oxford.
- Müller, R. 1908. Über den Tannenberg'schen Körper. Arch. Ges. Physiol. 122: 455-483.
- Muller, S. 1922. Zur Morphologie des Oberflachenreliefs der Rumpfdarmsschleimhaut bei den Vogeln. Jena Z. Naturw. 58: 533-606.
- Murakami, T., Akaboshi, M., Saito, I., and Mochizuki, K. 1982. The blood vessels of heart in pigeon. Bull. Fac. Agric., Miyazaki Univ. 29: 117-124.
- Murakami, T., Saito, I., and Mochizuki, K. 1978. The sinuatrial valve of avian heart. Bull. Fac. Agric., Miyazaki Univ. 25: 189-197.

- ——. 1980. The blood vessels of the Ostrich heart. Bull. Fac. Agric., Miyazaki Univ. 27: 1-6.
- ——. 1981. The sinuatrial node of the avian heart. Exp. Anim. **30:** 263–268.
- \_\_\_\_\_. 1985. The atrioventricular conducting system of the avian heart. Jap. J. Vet. Sci. 47: 73-79.
- Murie, J. 1867. On the tracheal pouch of the Emu (*Dromaeus novae-hollandiae* Vieill.). Proc. Zool. Soc. London, pp. 405-415.
- ———. 1868. Observations concerning the presence and function of the gular pouch in *Otis kori* and *Otis australis*. Proc. Zool. Soc. London, pp. 471–477.
- ———. 1869. Note on the gular pouch of *Otis tarda*. Proc. Zool. Soc. London, pp. 140–142.
- Myers, J. A. 1917. Studies of the syrinx of *Gallus domesticus*. J. Morph. **29**: 165–215.
- NAA 1979. Nomina Anatomica Avium (J. J. Baumel, A. S. King, A. M. Lucas, J. E. Breazile, and H. E. Evans, eds.). Academic Press, London.
- NAV *Nomina Anatomica Veterinaria*. 2d ed. 1983. World Association of Veterinary Anatomists. Ithaca, New York.
- NE *Nomina Embryologica*. 3rd ed. 1989. International Anatomical Nomenclature Committee, Churchill Livingstone, Edinburgh.
- NH Nomina Histologica. 2d ed. 1983. World Association of Veterinary Anatomists, Ithaca New York.
- NH *Nomina Histologica*. 3rd ed. 1989. International Anatomical Nomenclature Committee. Churchill Livingstone, Edinburgh.
- Nafstad, P. H. J. 1986. On the avian Merkel cells. J. Anat. 145: 25-33.
- Nagamura, T., Nishida, T., and Nomura, S. 1974. The origin and insertion of thoracic-limb muscles in the pigeon (*Columba livia*). J. Vet. Sci. 38: 145-162.
- ———. 1976. The origin and insertion of pelvic limb muscles in the pigeon (*Columba livia*). Jap. J. Vet. Sci. **38:** 355–368.
- Nagano, T. 1962. Observations on the fine structure of the developing spermatid in the domestic chicken. J. Biophys. Biochem. Cytol. 14: 193-205.
- Nakamura, M. 1990. Cloacal protuberance and copulatory behaviour of the Alpine Accentor (*Prunella collaris*). Auk **107:** 284–295.
- Nalbandov, A. V. and Graver, J. W. 1969. Neural control of the anterior and posterior pituitary gland in birds. In: *The Hypothalamus* (W. Haymaker, E. Anderson, and W. J. H. Nauta, eds.), pp. 311-325. Charles C. Thomas, Springfield.
- Nalbandov, A. V. and James, M. F. 1949. The blood vascular system of the chicken ovary. Amer. J. Anat. 85: 347-367.

- Narbaitz, R. and De Robertis, E. M. 1968. Postnatal evolution of steroidogenic cells in the chick ovary. Histochemie 15: 187-193.
- Nasu, T., Nakai, M., and Murakami, T. 1985. The cast of excurrent duct system in the epididymis of the cock. Jap. J. Zootech. Sci. 56: 81-85.
- Nauck E. Th. 1938. Extremitätenskelett der Tetrapoden. In: Handbuch der vergleichenden Anatomie der Wirbeltiere (L. Bolk, E. Göppert, E. Kallius, and W. Lubosch, eds.). Vol. 5, pp. 71–248. Urban & Schwarzenberg, Berlin and Vienna.
- Nauta, W. J. H. and Karten, H. J. 1970. A general profile of the vertebrate brain, with sidelights on the ancestry of the cerebral cortex. In: *The Neuro-Sciences, Second Study Program* (F. O. Schmitt, ed.), pp. 7-26. Rockefeller Univ. Press, New York.
- Necker, R. 1983a. Hearing. In: *Physiology and Behaviour of the Pigeon* (M. Abs, ed.), pp. 193-219. Academic Press, London.
- ------. 1983b. Somatosensory system. In: *Physiology and Behaviour of the Pigeon* (M. Abs, ed.), pp. 169-192. Academic Press, London.
- chanoreceptor associated with filoplumes in the feathered skin of pigeons. J. Comp. Physiol., A, **156**: 391-394.
- Neugebauer, L. A. 1845. Systema venosum avium cum eo mammalium et imprimis hominis collatum. Nova Acta Acad. Leopoldino-Carolinae Naturae Curiosum 21: 517-698.
- Newton, A. 1896. A Dictionary of Birds. Black, London.
- Nickel, R., Schummer, A., and Seiferle, E. 1977. Anatomy of Domestic Birds. Verlag Paul Parey, Berlin.
- Nicol, J. A. C. and Arnott, H. J. 1974. Tapeta lucida in the eyes of goat-suckers (Caprimulgidae). Proc. Roy. Soc. 187 B: 349-352.
- Nicholson, J. K. 1982. The microanatomy of the distal tubules, collecting tubules and collecting ducts of the starling kidney. J. Anat. 134: 11-23.
- Nickel, R., Schummer, A., and Seiferle, E. 1973. *The Viscera of the Domestic Mammals* (translated and revised by W. O. Sack). Paul Parey, Berlin.
- ———. 1977. Anatomy of the Domestic Birds (translated by W. G. Siller and P. A. L. Wight). Paul Parey, Berlin.
- Niethammer, G. 1933. Anatomisch-histologische und physiologische Untersuchungen über die Kropfbildungen der Vögel. Z. Wiss. Zool., Abt. A. 144: 12-101.
- . 1966. Sexual dimorphismus am Oesophagus von Rostratula. J. f. Ornith. 107: 201–204.
- Nieuwenhuys, R. 1967. Comparative anatomy of the cerebellum. Prog. Brain Res. 25: 1-93.
- Niimi, K., Sakai, T., and Takasu, J. 1958. The ontogenetic development of the oculomotor nucleus in the chick. Tokushima J. Exp. Med. 5: 311-325.

- Nishi, S. 1938. II. Muskeln des Rumpfes. III. Muskeln des Kopfes, Parietale Musculatur. In: *Handbuch der vergleichenden Anatomie der Wirbeltiere* (L. Bolk, E. Göppert, E. Kallius, and W. Lubosch, eds.), Vol. 5, pp. 351–446. Urban and Schwarzenberg, Berlin.
- Nishida, T. 1963. The blood vascular system of the hind limb in the fowl. Part 1. The artery. Jap. J. Vet. Sci. 24: 93-106 [in Japanese].
- . 1964. Blood vascular system of the male reproductive organs. Jap.
   J. Vet. Sci. 26: 211-221 [in Japanese].
- Nishida, T., Kurohmaru, M., and Tsugiyama, I. 1987. Comparative morphological studies on the male copulatory organs of domestic birds. Proc. 103 Ann. Meet. Jap. Soc. Vet. Sci., p. 8.
- Nishida, T. and Mochizuki, K. 1976. The venous system of the proventriculus of duck *Anas domesticus*. Jap. J. Vet. Sci. **38:** 255–262.
- Nishida, T., Paik, Y., and Yasuda, M. 1969. Blood vascular supply of the glandular stomach (ventriculus glandularis) and the muscular stomach (ventriculus muscularis). Jap. J. Vet. Sci. 31: 51-70 [in Japanese].
- Nishida, T., Seki, M., Mochizuki, K., and Seta, S. 1977. Scanning electron microscopic observations on the microvascular architecture of the ovarian follicles in the domestic fowl. Jap. J. Vet. Sci. 39: 347–352.
- Nishiyama, H. 1950. Studies on the physiology of reproduction in the male fowl. 1. On the accessory organs of the phallus. Sci. Bull. Fac. Agric. Kyushu 12: 27–36.
- -------. 1955. Studies on the accessory reproductive organs in the cock. J. Fac. Agric. Kyushu **10:** 277–305.
- Nitzsch, C. L. 1867. Nitzsch's Pterylography. Ray Society, London.
- Nixdorf, B. E. and Bischof, H. J. 1982. Afferent connections of the ectostriatum and visual wulst in the Zebra Finch (*Taeniopygia guttata castanotis* Gould)—an HRP study. Brain Res. **248**: 9-17.
- Noden, D. M. 1983. The embryonic origins of avian cephalic and cervical muscles and associated connective tissues. Amer. J. Anat. 168: 257-276.
- Nonidez, J. F. and Goodale, H. D. 1927. Histological studies on the endocrines of chickens deprived of ultraviolet light. I. Parathyroids. Amer. J. Anat. 38: 319–347.
- Norberg, R. A. 1968. Physical factors in directional hearing in *Aegolius funereus* (Strigiformes), with special reference to the significance of the asymmetry of the external ears. Ark. Zool. **20:** 181–204.
- ——. 1978. Skull asymmetry, ear structure and function, and auditory localization in Tengmalm's owl, *Aegolius funereus*. Phil. Trans. Roy. Soc. **282B**: 325–410.
- Norgren, R. B. and Silver, R. 1989. Retinohypothalamic projections and the suprachiasmatic nucleus in birds. Brain Behav. Evol. 34: 73-83.

- Nottebohm, F. 1976. Phonation in the Orange-winged Amazon Parrot. J. Comp. Physiol. 108: 157-170.
- Nottebohm, F. and Nottebohm, M. E. 1976. Left hypoglossal dominance in the control of canary and White-crowned Sparrow song. J. Comp. Physiol. 108: 171–192.
- Nottebohm, F., Stokes, T. M., and Leonard, C. M. 1976. Central control of song in the canary, Serinus canarius. J. Comp. Neurol. 165: 457-486.
- Nye, P. W. 1969. The monocular eye movements of the pigeon. Vision Res. 9: 133-144.
- Oehme, H. 1968. Das Ganglion ciliare der Rabenvögel (Corvidae). Anat. Anz. 123: 261-277.
- ——. 1969a. Blutgefässe und Bindgewebe der Vogeliris. Morph. Jb. 113: 555-589.
- ———. 1969b. Der Bewegungsapparat der Vogeliris (eine vergleichende morphologisch-funktionelle Untersuchung). Zool. Jb. Anat. **86:** 96–128.
- Oelofsen, B. W. 1973. Renal function in the penguin (*Spheniscus demersus*) with special reference to the role of the renal portal system and renal portal valves. Zool. Afr. **8:** 41-62.
- \_\_\_\_\_\_. 1977. The renal portal valves of the Ostrich *Struthio camelus*. Afr. J. Sci. **73:** 57–58.
- O'Flaherty, J. J. 1971. The optic nerve of the mallard duck: Fiber diameter, frequency distribution and physiological properties. J. Comp. Neurol. 143: 17-24.
- Ogawa, M. and Sokabe, H. 1971. The macula densa site of avian kidney. Z. Zellforsch Mikrosk. Anat. 120: 29-36.
- Ogden, T. E. 1967. On the function of efferent retinal fibers. In: Structure and Function of Inhibitory Neuronal Mechanisms, pp. 89-109. Wenner Gren Center International Symposia 7. Pergamon Press, London.
- Ohmori, S. 1928. Anatomische und entwicklungsgeschichtliche Untersuchungen über das Atrioventrikularverbindungssystem des Vogelherzens. Fujioka Acta Med. 21: 3-5; 62-90.
- Ohmori, Y., Watanabe, T., and Fujioka, T. 1982. Localization of the motoneurons innervating the forelimb muscles in the spinal cord of the domestic fowl. Zbl. Vet. Med. C. Anat. Histol. Embryol. 11: 124-137.
- . 1984a. Localization of motoneurons innervating the hindlimb muscles in the spinal cord of the domestic fowl. Anat. Histol. Embryol. 13: 141–155.
- ———. 1984b. Localization of parasympathetic preganglionic neurons in the sacral spinal cord of domestic fowl. Jap. J. Zootech. Sci. 55: 792–794.
- Ohsawa, K., Nishida, T., Kurohmaru, M., and Hayashi, Y. 1989. Ultrastructural identification of axons supplying the M. retractor phalli cranialis in chickens. Okajimas Folia Anat. Jpn. 66: 23-38.

- Oksche, A. 1978a. Pattern of neuroendocrine cell complexes (subunits) in hypothalamic nuclei: Neurobiological and phylogenetic concepts. In: *Neurosecretion and Neuroendocrine Activity, Evolution, Structure and Function* (W. Bargmann, et al., eds.), pp. 64–71. Springer-Verlag, Berlin, Heidelberg, New York.
- . 1978b. Evolution, differentiation and organization of hypothalamic systems controlling reproduction: Neurobiological concepts. In: *Neural Hormones and Reproduction. Brain Endocrine Interaction.* III (D. E. Scott, et al., eds.), pp. 1-15. Karger, Basel.
- In: Biological Rhythms in Birds. Neural and Endocrine Aspects (Y. Tanabe, et al., eds.), pp. 3-15. Jap. Sci. Soc. Press, Tokyo.
- ——. 1980b. Structural principles of central neuroendocrine systems. Acta VII Congr. Intern. Ornith. (R. Nohring, ed.), pp. 217–222.
- Oksche, A. and Farner, D. S. 1974. Neurohistological studies of the hypothalamo-hypophyseal system of *Zonotrichia leucophrys gambelii* (Aves, Passeriformes). With special attention to its role in the control of reproduction. Adv. Anat. Embryol. Cell Biol. **48(4):** 1–136.
- Olah, J. and Glick, B. 1979. Structure of the germinal centers in the chicken caecal tonsilla. Light- and electron microscope and autoradiographic studies. Poult. Sci. **58**: 196–210.
- -----. 1982. Splenic white pulp and associated vascular channels in chicken spleen. Amer. J. Anat. 165: 445-480.
- ———. 1984. Meckel's diverticulum. I. Extramedullary myelopoiesis in yolk sac of hatched chickens (*Gallus domesticus*). Anat. Rec. **208**: 243–252.
- Olah, J., Glick, B., and Taylor, R. L., Jr. 1984. Meckel's diverticulum. II. A novel lymphoepithelial organ in the chicken. Anat. Rec. 208: 253–263.
- O'Leary, D. D. M. and Cowan, W. M. 1982. Further studies on the development of the isthmo-optic nucleus with special reference to the occurrence and fate of ectopic and ipsilaterally projecting neurons. J. Comp. Neurol. 212: 399-416.
- Oliphant, L. W. 1981. Crystalline pteridines in the stromal pigment cells of the iris of the Great Horned owl. Cell. Tissue Res. 217: 387–395.
- Oliphant, L. W., Johnson, M. R., Murphy, C. J., and Howland, H. 1983. The musculature and pupillary response of the Great Horned Owl iris. Exp. Eye Res. 37: 383-595.

- Oliver, J., Bouille, C., Herbute, S., and Bayle, J. D. 1977. Horseradish peroxidase study of intact or deafferented infundibular complex in Coturnix quail. Neuroscience 2: 989-996.
- Olson, S. L. and Feduccia, A. 1980a. Relationships and evolution of flamingos (Aves: Phoenicopteridae). Smithsonian Contr. Zool. 316: 1-73.
- . 1980b. *Presbyornis* and the origin of the Anseriformes (Aves: Charadriomorphae). Smithsonian Contrib. Zool. **323:** 1–24.
- Ono, K. 1967. The morphogenesis of the pancreas in the chicken. Acta. Anat. Nippon. **42:** 99-109.
- Oribe, Y. 1976. Studies on distribution of blood vessels of ovary of domestic fowl. IV. On the arterial distribution of ovarian stroma of laying hen by vascular casts. Bull. Hiroshima Agric. 5: 317-327.
- -------. 1977. Studies on distribution of ovarian blood vessels of domestic fowl. V. On the various types of ovarian artery in laying hen. Bull. Hiroshima Agric. 5: 439-446.
- ——. 1980. Studies on distribution of ovarian blood vessels of domestic fowl. VI. On the distribution of arterial system of mature follicle of laying hen. Bull. Hiroshima Agric. 6: 327-334.
- ------. 1981. Studies on distribution of ovarian blood vessels of domestic fowl. VII. On the distribution of the venous microvessel in the superficial region of the mature follicular membrane. Bull. Hiroshima Agric. 6: 501–507.
- ———. 1983. Histological and morphological observation of the ovary of domestic hen during several months until the beginning of egglaying. Bull. Hiroshima Agric. 7: 133-144.
- ------. 1985. Lymphatic tissues in the ovarian stroma of the laying hen. Bull. Hiroshima Agric. 7: 451-458.
- Oribe, S. and Fujii, S. 1978. Innervation of the mature follicular membrane of the domestic hen. Bull. Hiroshima Agric. 6: 63-71.
- Osborne. D. R. 1968. The functional anatomy of the skin muscles in Phasianinae. Ph. D. Thesis, Michigan. State Univ., East Lansing.
- Oscarsson, O., Rosenk, I., and Uddenberg, N. 1963. Organization of ascending tracts in the spinal cord of the duck. Acta Physiol. Scand. **59**: 143-153.
- Osman, D. I. 1980. The connection between the seminiferous tubules and the rete testis in the domestic fowl *Gallus domesticus*). Morphological study. Int. J. Androl. 3: 177-187.
- Ostrom, J. H. 1976. *Archaeopteryx* and the origin of birds. Biol. J. Linn. Soc. 8: 91-182.
- . 1979. Bird flight: How did it begin? Amer. Scientist 67: 46-56.
- Owen, R. 1842. Monograph on Apteryx australis. including its myology. Proc. Zool. Soc. London, pp. 22-41.

- ———. 1866. On the Anatomy of Vertebrates, Vol. 2. Longmans Green, London.
- Owre, O. T. 1967. Adaptations for locomotion and feeding in the Anhinga and the Double-crested Cormorant. Amer. Ornith. Union, Ornith. Monogr., no. 6, 138 pp.
- Pac, L. 1982. Contribution to the study of Merkel corpuscles in the domestic fowl. Folia Morph. (Prague) 30: 340-345.
- Pac, L. and Malinovský, L. 1985. Ultrastructure of development of Grandy corpuscles in the beak skin in the domestic duck. Folia Morph. (Prague) 33: 379-384.
- Paik, Y. K., Fujioka, T., and Yasuda, M. 1974. Division of pancreatic lobes and distribution of pancreatic ducts. Jap. J. Vet. Sci. 36: 213-229.
- Pal, D. 1977. Histochemistry of the utero-vaginal junction with special reference to the sperm-host glands in the oviduct of the domestic duck. Folia Histochem. Cytochem. 15: 235-242.
- Palmer, R. S. 1972. Patterns of molting. In: Avian Biology (D. S. Farner, J. R. King, and K. C. Parkes, eds.) Vol. 2, pp. 65-102. Academic Press, New York.
- Palmgren, P. 1949. Zur biologischen Anatomie der Halsmuskulatur der Singvögel. In: *Ornithologie als Biologische Wissenschaft* (E. Mayr and E. Schuz, eds.), pp. 192-203. Carl Winter Heidelberg.
- Panzica, G. C. 1980. The preoptic area of the domestic fowl. II. Ultrastructure of the medial preoptic area. Cell Tissue Res. 210: 85-94.
- Panzica, G. C. and Viglietti-Panzica, C. 1980. The preoptic area of the domestic fowl. Cell Tissue Res. 227: 79-92.
- ———. 1983. A golgi study of the parvocellular neurons in the paraventricular nucleus of the domestic fowl. Cell Tissue Res. 231: 603–613.
- Papez, J. W. 1920. Comparative Neurology. Thomas Y. Crowell Co., New York.
- Parker, W. K. 1869. On the structure and development of the skull of the common fowl (*Gallus domesticus*). Phil. Trans. Roy. Soc. London 159: 755-807.
- -----. 1879. VII on the structure and development of the bird's skull. Trans. Linn. Soc. London 1879 99-154.
- ——. 1888. On the vertebral chain of birds. Proc. Roy. Soc. **43**: 465–482.
- Parks, T. N. 1979. Afferent influences on the development of the brain stem auditory nuclei of the chicken: Otocyst ablation. J. Comp. Neurol. 183: 665-678.
- ———. 1981a. Morphology of axosomatic endings in an avian cochlear nucleus: Nucleus magnocellularis of the chicken, J. Comp. Neurol. 203: 425-440.

- -----. 1981b. Changes in the length and organization of nucleus laminaris dendrites after unilateral otocyst ablation in chick embryos. J. Comp. Neurol. 202: 47-57.
- Parks, T. N., Collins, P., and Conlee, J. W. 1983. Morphology and origin of axonal endings in nucleus laminaris of the chicken. J. Comp. Neurol. 214: 32-42.
- Parks, T. N. and Rubel, E. W. 1975. Organization and development of brain stem auditory nuclei of the chicken: Organization of projections from nuc. magnocellularis to nuc. laminaris. J. Comp. Neurol. **164:** 435–448.
- ———. 1978. Organization and development of the brain stem auditory nuclei of the chicken: Primary afferent projections. J. Comp. Neurol. 180: 439-448.
- Paul, E. 1971. Neurohistologische und fluoreszenzmikroskopische Untersuchungen über die Innervation des Glycogenkörpers der Vögel. Z. Zellforsch. Mikrosk. Anat. 112: 516-525.
- ——. 1973. Histologische und quantitative studien am lumbalen Glykogenkörper der Vögel. Z. Zellforsch. Mikrosk. Anat. **145**: 89–101.
- Paula-Barbosa, M. M. and Sobrinho-Simoes, M. A. 1976. An ultrastructural morphometric study of mossy fiber endings in pigeon, rat and man. J. Comp. Neurol. 170: 365-380.
- Pavaux, C. and Jolly, A. 1968. Note sur la structure vasculo-canaliculaire du foie des oiseaux domestiques. Rev. Med. Vet. 119: 445-466.
- Payne, D. C. and King, A. S. 1959. Is there a vestibule in the lung of *Gallus domesticus?* J. Anat. 93: 577.
- ———. 1960. The lung of *Gallus domesticus:* secondary bronchi. J. Anat. **94:** 292–293.
- Payne, F. and Breneman, W. R. 1952. Lymphoid areas in endocrine glands of fowl. Poult. Sci. 31: 155-165.
- Payne, L. N. 1971. The lymphoid system. In: *Physiology and Biochemistry of the Domestic Fowl* (D. J. Bell and B. M. Freeman, eds.). Vol. 2, pp. 985-1037. Academic Press, London.
- Peaker, M. and Linzell, J. L. (1975). Salt Glands in Birds and Reptiles. Monogr. Physiol. Soc., no. 32, x + 307 pp.
- Pelissier, M. 1923. L'appareil ligamentaire des remiges des oiseaux. Arch. Anat. Hist. Embryol. (Strasbourg) 2: 307-341.
- Perlia, R. 1889. Über ein Opticuscentrum beim Hühne. Arch. Ophth. 35: 20-24.
- Pernkopf, E. 1930. Beiträge zur vergleichenden Anatomie des Vertebratenmagens. Z. Anat. Entwgesch. 91: 329-390.

- Pernkopf, E. and Lehner, J. 1937. Vorderdarm. Vergleichende Beschreibung des Vorderdarm bei den einzeln Klassen der Kranioten. In: *Handbuch der vergleichende Anatomie der Wirbeltiere* (L. Bolk, E. Göppert, E. Kallius, and W. Lubosch, eds.). Vol. 3, pp. 349–476. Urban and Schwarzenberg, Berlin and Vienna.
- Perry, M. M. and Gilbert, A. B. 1985. The structure of yellow yolk in the domestic fowl. J. Ultra. Res. 90: 313-322.
- Perry, M. M., Gilbert, A. B. and Evans, A. J. 1978a. Electron microscopic observations on the ovarian follicle of the domestic fowl during the rapid growth phase. J. Anat. 125: 481-497.
- \_\_\_\_\_\_. 1978b. The structure of the germinal disc region of the hen's ovarian follicle during the rapid growth phase. J. Anat. 127: 379-392.
- Pessacq, T. P. 1967. Une organe paraventriculaire situe dans l'angle inferieur du quatrieme ventricule des oiseaux. Compt. Rend. Soc. Biol. (Paris) **161**: 229–230.
- Petit, M. 1933. Peritonie et cavite peritoneale chez les oiseaux. Rev. Vet. J. Med. Vet. 85: 376-382.
- Petren, T. 1926. Die Coronärarterien des Vogelherzens. Morph. Jb. **56**: 239–249.
- Petrovicky, P. 1960. Reticular formation of the pigeon. Folia Morph. 14: 334-346.
- Petry, G. 1951. Über die Formen und die Verteilungen elastisch-muskuloser Verbindungen in der Haustaube. Morph. Jahrb. 91: 511–535.
- Pettigrew, J. D. Wallman, J. and Wildsoet, C. 1990. Saccadic oscillations facilitate ocular perfusion from the avian pecten. Nature **343**: 362–363.
- Peusner, K. D. and Morest, K. D. 1977a. The neuronal architecture and topography of the nucleus vestibularis tangentialis in the late chick embryo. Neuroscience 2: 189–207.
- ———. 1977b. A morphological study of neurogenesis in the nucleus vestibularis tangentialis of the chick embryo. Neuroscience **2:** 209–227.
- . 1977c. Neurogenesis of the nucleus vestibularis tangentialis of the chick embryo in the absence of the primary afferent fibers. Neuroscience 2: 253-270.
- Pilar, G. and Vaughan, P. C. 1971. Ultrastructure and contractures of the pigeon iris striated muscle. J. Physiol. 219: 253-266.
- Pilz, H. 1937. Artmerkmale am Darmkanal des Hausgeflügels Gans, Ente, Huhn, Taube). Morph. Jb. **79:** 275–304.
- Pintea, V., Constantinescu, G. M., and Radu, C. 1967. Vascular and nerve supply of bursa of Fabricius in the hen. Acta Vet. Acad. Sci. Hung. 17: 263-268.
- Pitman, C. R. S. 1964. Eggs, natural history of. In: *New Dictionary of Birds* (A. L. Thomson, ed.), pp. 238–242. Nelson, London.

- PNA *Paris Nomina Anatomica* 1955. International Anatomical Nomenclature Committee. Printed privately, London.
- Pohlman, A. G. 1921. The position and functional interpretation of the elastic ligaments in the middle-ear region of *Gallus*. J. Morph. 35: 229-262.
- Pohlmeyer, K. and Kummerfeld, N. 1989. Morphologie der Nasenhöhle und der nasen Nebenhöhlen sowie ihre klinische Bedeutung bei Grosspapageien. Kleintierpraxis 34: 127-133.
- Poole, M. 1909. The development of the subdivisions of the pleuroperitoneal cavity in birds. Proc. Zool. Soc. London 77: 210-235.
- Portmann, A. 1950. Squelette. In: *Traité de Zoologie*. (P.-P. Grassé, ed.). Vol. 15, pp. 78-107. Masson, Paris.
- Powell, T. P. S. and Cowan, W. M. 1961. The thalamic projection upon the telencephalon in the pigeon (*Columba livia*). J. Anat. 95: 78-109.
- Preuss, F. and Berens v. Rautenfeld, D. 1974. Umstrittenes zur Anatomieä der Bursa cloacale, der Papilla vaginalis und des Phallus femininus beim Huhn. Berl. Münch. Tierärztl. Wschr. 87: 456-458.
- Procházková, E. and Komárek, V. 1970. Growth of the zona vasculosa and zona parenchymatosa in postnatal development of the ovary in the chicken. Acta Vet. Brno 39: 3-10.
- Puelles, L. 1978. A Golgi study of oculomotor neuroblasts migrating across the midline in chick embryos. Anat. Embryol. 152: 205-215.
- Purslow, P. P. and Vincent, J. F. V. 1978. Mechanical properties of primary feathers from the pigeon. J. Exp. Biol. 72: 251-260.
- Purton, M. D. 1969. Structure and ultrastructure of the liver in the domestic fowl, *Gallus gallus*. J. Zool. London **159**: 273-282.
- ———. 1976. Extravascular cells within the perisinusoidal space of the avian liver. Experientia 32: 737-740.
- Pusstilnik, E. 1937. Zum Problem der Innervation der Beckenorgane der Wirbeltiere. Anat. Anz. 84: 106-112.
- Pycraft, W. P. 1900. On the morphology and phylogeny of the Palaeognathae (Ratitae and Crypturi) and Neognathae (Carinatae). Trans. Zool. Soc. London 15: 149-290.
- ------. 1902. Contributions to the osteology of birds. Part 5. Falconiformes. Proc. Zool. Soc. London, pp. 277–320.
- Quay, W. B. 1967. Comparative study of the anal glands of birds. Auk 84: 379-389.
- Quay, W. B. and Renzoni, A. 1967. The diencephalic relations and variably bipartite structure of the avian pineal complex. Riv. Biol. 60: 9-75.
- Quinn, T. H. and Baumel, J. J. 1990. The digital tendon locking mechanism of the avian foot (Aves). Zoomorph. 109: 281-293.
- Quiring, D. P. 1933-34. The development of the sino-atrial region of the chicken heart. J. Morph. 55: 81-118.

- Quitzow, H. 1970. Die Bronchen der Huhnerlunge. Inaug. Diss., Freie University, Berlin.
- Radu, C. 1975. Les fosses renales des oiseaux domestiques (Gallus domesticus, Meleagris gallapavo, Anser domesticus et Anas platyrhynchos). Anat. Histol. Embryol. 4: 10-23.
- Radu, C. and Radu, L. 1971. Le dispotif vasculaire du poumon chez les oiseaux domestiques (coq, dindon, oie, canard). Rev. Méd. Vét. 122: 1219-1226.
- Rager, G. H. 1980a. Development of the retinotectal projection in the chicken. Adv. Anat. Embryol. Cell Biol. 63: 1-92.
- ———. 1980b. Die ontogenese der retinotopen projection. Naturwiss. **67:** 280–287.
- Raikow, R. J. 1970. Evolution of diving adaptations in the stifftail ducks. Univ. Calif. Publ. Zool. 94: 1-52.
- ———. 1975. The evolutionary reappearance of ancestral muscles as developmental anomalies in two species of birds. Condor 77: 514–517.
- . 1976. Pelvic appendage myology of the Hawaiian honeycreepers (Drepanididae). Auk **93:** 774-792.
- . 1977. Pectoral appendage myology of the Hawaiian honeycreepers (Drepanididae) Auk **94:** 331–342.
- World nine-primaried oscines (Aves: Passeriformes). Bull. Carnegie Mus. Nat. Hist., 7: 1-43.
- . 1985a. Locomotor system. In: Form and Function in Birds (A. S. King and J. McLelland, eds.). Vol. 3, pp. 57-147. Academic Press, London.
- . 1985b. Systematic and functional aspects of the locomotor system of the scrub-birds, *Atrichornis*, and lyrebirds, *Menura* (Passeriformes: Atrichornithidae and Menuridae). Records Australian Mus., 37: 211-228.
- —. 1987. Hindlimb myology and evolution of the Old World suboscine passerine birds (Acanthisittidae, Pittidae, Philepittidae, Eurylaimidae). Amer. Ornith. Union, Ornith. Monogr. no. 41, viii + 81 pp.
- Raikow, R. J., S. R. Borecky and S. L. Berman. 1979. The evolutionary reestablishment of a lost ancestral muscle in the bowerbird assemblage. Condor 81: 203-206.
- Raikow, R. J. and Cracraft, J. 1983. Monophyly of the Piciformes: a reply to Olson. Auk 100: 134-138.
- Rawal, U. M. 1971. Adaptations for food getting in the House Swift. Proc. Indian Acad. Sci. 73: 224-235.
- Rawdon, B. B. 1988. Origin and differentiation of gut endocrine cells in birds. Acta XIX Congr. Intern. Ornith. (H. Ouellet, ed.), pp. 2214-2222. Ottawa University Press, Ottawa.

- Reiner, A., Brecha, N., and Karten, H. J. 1979. A specific projection of retinal displaced ganglion cells to the nucleus of the basal optic root in the chicken. Neuroscience 4: 1679-1688.
- Reiner, A. and Karten, H. J. 1982. Laminar distribution of the cells of origin of the descending tectofugal pathways in the pigeon (*Columba livia*). J. Comp. Neurol. **204:** 165-187.
- Reiner, A., Karten, H. J., and Solina, A. R. 1983. Substance P: Localization within paleostriatal-tegmental pathways in the pigeon. Neuroscience 9: 61-85.
- Rendahl, H. 1924. Embryologische und morphologische Studien über das Zwischenhirn beim Huhn. Acta Zool. 5: 241–344.
- Renggli, F. 1967. Vergleichend anatomische Untersuchungen über die Kleinhirn- und Vestibulariskerne der Vögel. Rev. Suisse Zool. **74:** 701–778.
- Repérant, J. 1973. Nouvelles donées sur les projections visuelles chez le pigeon (*Columba livia*). J. Hirnforschung **14:** 151–187.
- Revzin, A. M. and Karten, H. J. 1966. Rostral projections of the optic tectum and the nucleus rotundus in the pigeon. Brain Res. 3: 164-176.
- Rexed, B. 1952. The cytoarchitectonic organization of the spinal cord in the cat. J. Comp. Neurol. **96:** 415–496.
- ——. 1954. A cytoarchitectonic atlas of the spinal cord in the cat. J. Comp. Neurol. 100: 297-380.
- Rich, P. V. 1985. Osteological comparison of the Scrub-birds, *Atrichornis*, and lyrebirds, *Menura* (Passeriformes: Atrichornithidae and Menuridae). Records Australian Mus. 37: 1-173.
- Richards, L. P. and Bock W. J. 1973. Functional anatomy and adaptive evolution of the feeding apparatus in the Hawaiian Honeycreeper genus *Loxops* (Drepanididae). Amer. Ornith. Union, Ornith. Monogr., no. 15, 173 pp.
- Richards, S. A. 1967. Anatomy of the arteries of the head in the domestic fowl. J. Zool. 152: 221-234.
- \_\_\_\_\_. 1968. Anatomy of the veins of the head in the domestic fowl. J. Zool. 154: 223-234.
- Richardson, K. C. 1935. The secretory phenomena in the oviduct of the fowl, including the process of shell formation examined by microincineration technique. Phil. Trans. Roy. Soc. 225B: 149-195.
- Rieke, G. K. and Wenzel, B. M. 1978. Forebrain projections of the pigeon olfactory bulb. J. Morph. 158: 41-56.
- Rio, J. P. 1979. The nucleus of the basal optic root in the pigeon: An electron microscope study. Arch. Anat. Microscop. 1: 17-27.
- Rio, J. P., Villalobos, J., Miceli, D. and Repérant, J. 1983. Efferent projections of the visual wulst upon the nucleus of the basal optic root in the pigeon. Brain Res. 271: 145-151.

- Robertson, D. R. 1986. The ultimobranchial body. In: *Vertebrate Endocrinology: Fundamentals and Biomedical Implications*. Vol. 1. Morphological Considerations (P. K. T. Pang and M. P. Schreibman, eds.), pp. 235–259. Academic Press, Orlando.
- Robin, Ch. and Chabry, L. 1884. Note sur les organes elastiques de l'aile des oiseaux. J. Anat. Physiol. Paris 20: 291-316.
- Rochon-Duvigneaud, A. 1950. Les Yeux et la rision. In: *Traité de Zoologie*. (P.-P. Grassé, ed.). Vol. 15, pp. 221-242. Masson, Paris.
- Rogers, L. A. and Cowan, W. M. 1973. The development of the mesencephalic nucleus of the trigeminal nerve in the chick. J. Comp. Neurol. 147:291-320.
- Romanoff, A. L. 1960. The Avian Embryo. MacMillan, New York.
- Romanoff, A. L. and Romanoff, A. J. 1949. *The Avian Egg.* Wiley, New York.
- Romer, A. S. 1927. The development of the thigh musculature of the chick. J. Morph. Physiol. **43**: 347–385.
- . 1962. The Vertebrate Body. 3rd ed. Saunders, Philadelphia.
- Rooth, J. 1953. On the correlation between the jaw muscles and the structure of the skull in *Columba palumbus* L. Konigl. Nederl. Akad. Wetensch. ser. C. 56: 251-264.
- Rose, C. 1890. Beiträge zur vergleichenden Anatomie des Herzens der Wirbelthiere. Morph. Jb. 16: 26-96.
- Rose, M. E. 1981. Lymphatic system. In: Form and Function in Birds (A. S. King and J. McLelland, eds.) Vol. 2, pp. 341-384. Academic Press, London.
- Rosser, B. W. C. 1980. The wing muscles of the American Coot (Fulica americana Gmelin). Canadian J. Zool. 58: 1758-1773.
- Rosser, B. W. C. and J. C. George. 1985. An exceptionally high density of muscle spindles in a slow-tonic pigeon muscle. Anat. Rec. 212: 118-122.
- ——. 1986. The avian pectoralis: histochemical characterization and distribution of muscle fiber types. Canadian J. Zool. **64:** 1174–1185.
- Rosser, B. W. C., D. M. Secoy, and P. W. Riegert. 1982. The leg muscles of the American Coot (*Fulica americana* Gmelin). Canadian J. Zool. 60: 1236-1256.
- Rothwell, B. and Solomon, S. E. 1977. The ultrastructure of the follicle wall of the domestic fowl during the phase of rapid growth. Brit. Poult. Sci. 18: 605-610.
- Rothwell, B. and Tingari, M. D. 1973. The ultrastructure of the boundary tissue of the seminiferous tubule in the testis of the domestic fowl (*Gallus domesticus*). J. Anat. 114: 321-328.
- Rowe, T. 1986. Homology and evolution of the deep dorsal thigh musculature in birds and other reptilia. J. Morph. 189: 327-346.

701

- Rubel, E. W., Smith, Z. D. J., and Steward, O. 1981. Sprouting in the avian brainstem auditory pathway: Dependence on dendritic integrity. J. Comp. Neurol. 202: 397-414.
- Rüppell, W. 1933. Physiologie und Akustik der Vogelstimme. J. f. Ornith. 81: 433-542.
- Sabatier, C. P. D. A. 1878-79. Comparaisons des ceintures thoracique et pelvienne dan la serie des vertebres. C. R. Assoc. Franç. Av. Sci., pp. 752-753; Mem. Acad. Montpellier 9: 277-709.
- Saiff, E. I. 1974. The middle ear of the skull of birds. The Procellariiformes. J. Linn. Soc. London, Zool. 54: 213-240.
- ------. 1981. The middle ear of the skull of birds: the Ostrich, *Struthio camelus*. Zool. J. Linn. Soc. **73**: 201-212.
- Saito, I. 1966. Comparative anatomical studies of the oral organs of poultry. IV. Macroscopical observations of the salivary glands. Bull. Fac. Agric. Univ. Miyazaki 12: 110-120.
- Salt, G. W., and Zeuthen, E. 1960. The respiratory system. In: *Biology and Comparative Physiology of Birds* (A. J. Marshall, ed.). Vol. I, pp. 363-409. Academic Press.
- Salt, R. 1954. The structure of the cloacal protuberance of the Vesper Sparrow (*Poocetes gramineus*) and certain other passerine birds. Auk 71: 4-73.
- Samour, J. H., Smith, C. A., Moore, H. D., and Markham, J. A. 1986. Semen collection and spermatozoa characteristics in budgerigars (*Melopsittacus undulatus*). Vet. Rec. 118: 397-399.
- Sanders, E. B. 1929. A consideration of certain bulbar, midbrain and cerebellar centers and fiber tracts in birds. J. Comp. Neurol. 49: 155-222.
- Sandoval, J. 1964. Estudio sobre la anatomía comparada y functional del esqueleto cefálico de la gallinula y su morfogenesis. Anales Anat. 12: 283-359.
- Sansone, F. M. 1977. The craniocaudal extent of the glycogen body in the domestic chicken. J. Morph. 153: 87-105.
- Sansone, F. M. and Lebeda, F. J. 1976. A brachial glycogen body in the spinal cord of the domestic chicken. J. Morph. 148: 23-31.
- Santamaria-Arnaiz, P. 1962. Untersuchungen über die parasympathischen Kopfganglien beim Sperling (*Passer domesticus*). Morph. Jb. 103: 85–107.
- Sappey, P. 1847. Recherches sur l'appareil respiratoire des oiseaux. Bailliere, Paris.
- Sarnat, H. B. and Netsky, M. G. 1974. Evolution of the Nervous System. Oxford University Press, Oxford.
- Sasaki, H., Nishida, T., and Mochizuki, K. 1984. Vascular system of paracloacal vascular body in the guinea fowl, *Numida meleagris*. Jap. J. Vet. Sci. 46: 425-435.

- Sato, T. and Wake, K. 1983. Nervous organisation of the pineal organs in birds. In: *Avian Endocrinology: Environmental and Ecological Perspectives* (S. Mikami, K. Homma, and M. Wada, eds.), pp. 57-65. Jap. Sci. Soc. Press, Tokyo.
- Sawyer, R. H., Knapp, L. W. and O'Guin, W. M. 1986. Epidermis, dermis and appendages. In: *Biology of the Integument*. 2. *Vertebrates* (J. Bereiter-Hahn, A. G. Matoltsy, and K. S. Richards, eds.), pp. 194–254. Springer-Verlag, Berlin.
- Saxod, R. 1978. Development of cutaneous sensory receptors in birds. In: *Handbook of Sensory Physiology.* (M. Jacobson, ed.). Vol. 9, pp. 337-417. Springer, Berlin.
- Schaffer, J. 1903. Uber die Sperrvorrichtung an den Zehen der Vogel. Ein Beitrag zur Mechanik des Vogelfusses und zur Kenntnis der Bindesubstanz. Zeitschr. Wiss. Zool. 73: 377-428.
- Schalkház, I., Fehér, G., Bartalits, L., Sik, J., and Sótonyi, P. 1982. Nyirokvétel a lúdphallus protrudenséből (újabbadatok a phallus morfológiájához). Magyar Allatorvosok Lapja 37: 829-834.
- Schaller, O. and G. Forstenpointner. 1987. Synovialeinrichtungen für Sehnen im Gelenksbereich. Anat. Histol. Embryol. 16: 215–220.
- Schauder, W. 1923. Systema Lymphaticum. In: *Lehrbuch der Anatomie der Haustiere* (P. Martin, ed.). Schickhardt und Ebner, Stuttgart.
- Scheich, H. 1983. Two columnar systems in the auditory neostriatum of the chick: Evidence from 2-deoxyglucose. Exp. Brain Res. 51: 199-205.
- Scheich, H., Bonke, B. A., Bonke, D., and Langner, G. 1979. Functional organization of some auditory nuclei in the guinea fowl demonstrated by the 2-deoxyglucose technique. Cell Tissue Res. 204: 17-27.
- Scheid, P. and Piiper, J. 1970. Analysis of gas exchange in the avian lung: theory and experiments in the domestic fowl. Respir. Physiol. 9: 246-262.
- Schepelmann, E. 1906. Über die gestaltende Wirkung verschiedener Ernahrung auf die Organa der Gans, insbesondere über die funktionelle Anpassung an die Hahrung. Arch. Entweech. Org. 21: 500-595.
- Schmidt, R. S. 1964. Blood supply of pigeon inner ear. J. Comp. Neurol. 123: 187-204.
- Schober, F., Trautmann, U., Naumann, W., and Sterba, G. 1977. Die oxytocinergen exohypothalamischen Verbindungen zur Medulla oblongata bei der Taube und der Ratte. Acta Biol. Med. Ger. 36: 1183-1186.
- Schrader, E. 1970. Die Topographie der Kopfnerven vom Huhn. Inaug. Diss., Freie Universität, Berlin.

- Schreiweis, D. O. 1982. A comparative study of the appendicular musculature of pengiuns (Aves: Sphenisciformes). Smithsonian Contr. Zool., **341**: 1-46.
- Schroeter, S. and K. W. Tosney. 1991. Spatial and temporal patterns of muscle cleavage in the chick thigh and their value as criteria for homology. Amer. J. Anat. 191: 325-350.
- Schulin, R. 1987. Hindlimb myology and phylogenetic relationships of the Australian Magpie Goose, *Anseranas semipalmata* (Latham). Zool. Jb. Anat. 116: 217-243.
- Schulze, F. E. 1908. Die Lungen der afrikanischen Strausses. Sitzber. Preuss. Akad. Wiss., pp. 416-431.
- ———. 1910. Über die Luftsäcke der Vögel. Verhandl. VIII Internat. Kongr. Graz., pp. 446–482.
- Schummer, A. 1973. Anatomie der Hausvogël. In: *Lehrbuch der Anatomie der Haustiere* (R. Nickel, A. Schummer, and E. Seiferle, eds.). Vol. 5, 215 pp. Parey, Berlin.
- Schuppin, G. T., Krey, H. P., and Denbow, D. M. 1984. Ultrastructural analyses of uterovaginal sperm storage glands in fertile and infertile turkey breeder hens. Poult. Sci. 63: 1872–1882.
- Schüz, E. 1927. Beitrag zur Kenntnis der Puderbildung bei den Vögeln. J. f. Ornith. 75: 86-223.
- Schwalbe, G. 1879. Das Ganglion oculomotorii, ein Beitrag zur vergleichenden Anatomie der Kopfnerven. Jena Z. Naturwiss. 13: 173–268.
- Schwartzkopff, J. 1973. Mechanoreception. In: *Avian Biology* (D. S. Farner, J. R. King, and K. C. Parks, eds.). Vol. III, pp. 417–477. Academic Press, London.
- Schwartzkopff, J. and Winter, P. 1960. Zur Anatomie der Vogel-Cochlea unter naturlichen Bedingungen. Biol. Zbl. 79: 607-625.
- Schwarz, I. E. and Schwarz, D. W. F. 1983. The primary vestibular projection to the cerebellar cortex in the pigeon (*Columba livia*). J. Comp. Neurol. **216**: 438-444.
- Schwarz, I. E., Schwarz, D. W. F., Fredrickson, J. M., and Landolt, J. P. 1981. Efferent vestibular neurons: A study employing retrograde tracer methods in the pigeon (*Columba livia*). J. Comp. Neurol. 196: 1-12.
- Schwarz, R. 1969. Eileiter und Ei vom Huhn. Die Wechsel beziehungen von Morphologie und Funktion bei Gegenüberstellung von Sekretionsorgan und Sekretionsprodukt. Zentr. Vet. Med. A 16: 64-136.
- Schwarz, R. von and Radke, B. 1981. Mikroskopische Untersuchungen zum Einfluss unterscheidlich hoher Flüssigkeitsangebote auf die Morphologie der Nierenkörperchen des Haushuhnes (*Gallus domesticus*). Zbl. Vet. Med. C. Anat. Histol. Embryol. **10:** 167–179.

- Schwarz, R. von, Ali, A. M. A., and Radke, B. 1981. Untersuchungen zur Makro- und Mikromorphologie der Valva portalis renalis bei Huhn, Ente und Schwan. Deutsche Tierärztl. Wschr. 88: 498-502.
- Seichert, V., I. Klepacek, and Z. Vasickova. 1982. Anatomy of the zeugopodium and autopodium of the wing of the domestic fowl. I. Description of the muscles and the main arterial, venous and nerve trunks. Folia Morph. (Prague) 30 99-112.
- Seichert, V. and Rychter, Z. 1972. Vascularization of developing anterior limb of the chick embryo. II. Folia Morph. (Prague) 20: 352-361.
- Sell, J. 1959. Incidence of persistent right oviducts in the chicken. Poult. Sci. **38:** 33-35.
- Sengel, P. 1976. Morphogenesis of Skin. Cambridge Univ. Press, London.
- Setterwall, C. G. 1901. Studier öf ver Syrinx hos Polymoda Passeres. Akad. Lund. Afhandl., 128 pp.
- Shaner, R. F. 1923. On the muscular architecture of the vertebrate ventricle. J. Anat. 58: 59-70.
- Sharp, P. J. and Follett, B. K. 1969. The blood supply to the pituitary and basal hypothalamus in the Japanese quail (*Coturnix coturnix japonica*). J. Anat. **104:** 227–232.
- Shellswell, G. B. and L. Wolpert. 1977. The pattern of muscle and tendon development in the chick wing. In: *Vertebrate Limb and Somite Morphogenesis* (D. A. Ede, J. R. Hinchliffe and M. Balls, eds.) Cambridge Univ. Press, London.
- Shimizu, N., Ohnishi, S., Tohyama, M., and Maeda, T. 1974. Demonstration by degeneration silver method of the ascending projection from the locus coeruleus. Exp. Brain Res. 21: 181-192.
- Shufeldt, R. W. 1888. On the skeleton in the genus *Sturnella*, with osteological notes upon other North-American Icteridae and the Corvidae. J. Anat. Physiol. **22**: 309–348.
- ——. 1890. *The Myology of the Raven* (Corvus corax sinuatus). Macmillan, London.
- . 1909. Osteology of birds. New York State Museum Bull., no. 130, 381 pp.
- Shugart, G. W. 1988. Uterovaginal sperm-storage glands in sixteen species with comments on morphological differences. Auk 105: 379-384.
- Siegel-Causey, D. 1990. Phylogenetic patterns of size and shape of the nasal gland depression in Phalacrocoracidae. Auk 107: 110-118.
- Siller, W. G. 1971. Structure of the kidney. In: *Physiology and Biochemistry of the Domestic Fowl* (D. J. Bell and B. M. Freeman, eds.). Vol. 1, pp. 197-231. Academic Press, London.

- ——. 1983. Structure of the kidney. In: *Physiology and Biochemistry of the Domestic Fowl* (B. M. Freeman, ed.). Vol. 4, pp. 91–105. Academic Press, London.
- Siller, W. G. and Hindle, R. M. 1969. The arterial blood supply to the kidney of the fowl. J. Anat. 104: 117-135.
- Simic, V. and Andrejevic. V. 1964. Morphologie und Topographic der Brustmuskeln bei den Hausschwimmvogeln. Morph. Jb. 106: 480-490.
- Simic, V. and Jablan-Pantic, O. 1959. Morphologischer Beitrag über den Mechanismus des dritten Augenlids bei den Hausvögeln. Anat. Anz. 106: 76-85.
- Simic, V. and Jankovic, N. 1959. Ein Beitrag zur Kenntnis der Morphologie und Topographie der Leber beim Hausgeflugel und der Taube. Acta Vet. (Beogr.) 9: 7-34.
- Simons, P. C. M. 1971. Ultrastructure of the hen eggshell and its physiological interpretation. Communication No. 175, Central Inst. Poult. Res. "Hot Spelderbolt", Beekbergen, Netherlands.
- Simpson, S. F. and Cracraft, J. 1981. The phylogenetic relationships of the Piciformes (Class Aves). Auk 98: 481-494.
- Singh, R. M. and Dominic, C. J. 1970. Distribution of the portal vessels of the avian pituitary in relation to the median eminence and the pars distalis. Experientia 26: 962-964.
- Sladen, W. J. L. 1978. Sexing penguins by cloacascope. Int. Zoo Yearbook 18: 77-80.
- Slonaker, J. R. 1918. A physiological study of the anatomy of the eye and its accessory parts of the English Sparrow (*Passer domesticus*). J. Morph 31: 351–459.
- English Sparrow (*Passer domesticus*). J. Morph. 35: 263-357.
- Smith, C. A. 1985. Inner ear. In: Form and Function in Birds (A. S. King and J. McLelland, eds.) Vol 3, pp. 273-310. Academic Press, London.
- Smith, G. 1904-05. The middle ear and columella of birds. Quart. J. Micros. Sci. (London) 48: 11-22.
- Smith, J. H., Meier, J. L., Lamke, C., Neill, P. J. G., and Box, E. D. 1986. Microscopic and submicroscopic anatomy of the parabronchi, air sacs, and respiratory space of the budgerigar (*Melopsittacus undulatus*). Amer. J. Anat. 177: 221-242.
- Smith, Z. D. J. 1981. Organization and development of brain stem auditory nuclei of the chicken: dendritic development in N. laminaris. J. Comp. Neurol. 203: 309-333.
- Smith, Z. D. J. and Rubel, E. W. 1979. Organization and development of brain stem auditory nuclei of the chicken: Dendritic gradients in nucleus laminaris. J. Comp. Neurol. 186: 213-240.

- Snyder, G. K. 1988. Anatomical organization of the microvasculature in the anterior and posterior latissimus dorsi muscles of the chicken. J. Anat. 156: 97-106.
- Sohal, G. S. 1977. Development of the oculomotor nucleus, with special reference to the time of cell origin and cell death. Brain Res. 138: 217–228.
- Sohal, G. S. and Narayanan, Ch. 1974. The development of the isthmo-optic nucleus in the duck (*Anas platyrhynchos*). I. Changes in cell number and cell size during normal development. Brain Res. 77: 243–255.
- Sokabe, H. and Ogawa, M. 1974. Comparative studies of the juxtaglomerular apparatus. In: *International Review of Cytology* (G. H. Bourne, J. F. Danielli, and K. W. Jeon, eds.). Vol. 37. Academic Press, New York.
- Sokoloff, A., T. Deacon, and G. E. Goslow, Jr. 1989. Musculotopic innervation of the primary flight muscles, the pectoralis (pars thoracicus) and supracoracoideus of the pigeon (*Columba livia*): a WGA-HRP study. Anat. Rec. 225: 35–40.
- Solomon, S. E. 1983. Oviduct. In: Physiology and Biochemistry of the Domestic Fowl (B. M. Freeman, ed.). Vol. 4, pp. 379–419. Academic Press, London.
- Spanner, R. 1925. Der Pfortaderkreislauf in der Vogelniere. Morph. Jb. 54: 560-632.
- Bedeutung für den Abkürzungskreislauf im portocavelen System des Vogels; zugleich ein Beitrag zur Kenntnis der epithelioid Zellen. Z. Anat. EntwGesch. **109:** 443–492.
- Spatz, H., Diepen, R. and Gaup, V. 1948. Zur Anatomie des Infundibulum und des Tuber einereum beim Kaninchen. Deutsche Z. Nervenheilk. **159**: 229–268.
- Spearman, R. I. C. 1983. Integumentary system. In: Physiology and Biochemistry of the Domestic Fowl (B. M. Freeman, ed.) Vol. 4, pp. 211–217. Academic Press, London.
- Spearman, R. I. C. and Hardy, J. A. 1985. Integument. In: Form and Function in Birds. (A. S. King and J. McLelland, eds.). Vol. 3, pp. 1-56. Academic Press, London.
- Sperber, I. 1944. Studies of the mammalian kidney. Zool. Bidr. Uppsala 22: 252-431.
- ———. 1949. Investigations on the circulatory system of the avian kidney. Zool. Bidr. Uppsala 27: 429-448.
- ———. 1960. Excretion. In: Biology and Comparative Physiology of Birds. (A. J. Marshall, ed.). Vol. 1, pp. 469–492. Academic Press, London.

- Ssinelnikow, R. 1928. Die Herznerven der Vögel. Z. Anat. Entwickl. **86:** 540–562.
- Staderini, R. 1889. Sopra la distribuzione dei nervi glosso-faringeo, vago e ipoglosso in alcuni rettili ed uccelli. Att. Accad. Fisiocrit. Siena 1: 585–599.
- Starck, D. 1940. Beobachtungen an dem Trigeminusmuskulatur der Nasenhornvögel. Morph. Jb. Ökol. Tiere 15: 585-623.
- ——. 1955. Die endokraniale Morphologie der Ratiten, besonders der Apterygidae und Dinornithidae. Morph. Jb. 96: 14-72.
- Starck. D. and Barnikol. 1954. Beiträge zur Morphologie der Trigeminusmuskulatur der Vögel. Morph. Jb. 94: 1-64.
- Stegmann, B. 1964. Die funktionelle Bedeutung des Schlüsselbeines bei den Vögeln. J. f. Ornith. 105: 450-463.
- ———. 1978. Relationships of the Superorders Alectoromorphae and Charadriomorphae (Aves): a comparative study of the hand. Publ. Nuttall Ornith. Club, no. 17, 119 pp.
- Steinbacher, G. 1935. Funktionell-anatomische untersuchungen an Vogelfüssen mit Wendezehen und Rückzehen. J. f. Ornith. 83 214–282.
- Steiner, H. 1922. Die ontogenetische und phylogenetische Entwicklung des Vogelflügelskelettes. Acta Zool. 3: 307-360.
- ———. 1938. Der Archaeopteryx-Schwanz der Vogelembryonen Vjschr. Naturf. Ges. Zürich Beibl. 30. Festschr. Karl Hescheler 83: 279–300.
- Stephan, B. 1970. Eutaxie, Diastataxie, und anderer Probleme der Befiederung des Vogelflugels. Mitt. Zool. Mus. Berlin 46: 339-437.
- Sterling, R. J. and Sharp, P. J. 1982. The localisation of LH-RH neurones in the diencephalon of the domestic hen. Cell Tissue Res. 222: 283-298.
- Sterzi. G. 1903. I vasi sanguigni della midolla spinale degle uccelli. Arch. Ital. Anat. Embriol. 2: 216-236.
- Stettenheim, P. 1959. Adaptations for underwater swimming in the common murre *Uria aalge*. Ph. D. Diss., Univ. of Michigan.
- and J. R. King, eds.). Vol. 2, pp. 1-63. Academic Press, London.
- \_\_\_\_\_. 1974. The bristles of birds. Living Bird 12: 201-234.
- Stibbe, E. P. 1928. A comparative study of the nictitating membrane of birds and mammals. J. Anat. 62: 159-176.
- Stingelin, W. 1961. Grossenunterschiede des sensiblen Trigeminuskerns bei verschiedenen Vögeln. Rev. Suisse Zool. **68:** 247–251.
- Stoeckel, M. E. and Porte, A. 1970. A comparative electron microscopic study of the fowl, pigeon and the turtle-dove of the C cells localised in the ultimobranchial body and the thyroid. In: *Calcitonin 1969* (S. Taylor and G. Foster, eds.), Heinemann, London.

- Stokes, T. M., Leonard, C. M., and Nottebohm, F. 1974. The telencephalon, diencephalon, and mesencephalon of the Canary, *Serinus canaria*, in stereotaxic coordinates. J. Comp. Neurol. **156**: 337–374.
- Stoll, R. and Maraud, R. 1955. Sur la constitution de l'épididyme du coq. Compt. Rend. Séance Soc. Biol. **149**: 687-689.
- Stolpe, M. 1932. Physiologisch-anatomische Untersuchungen über die hintere Extremitat der Vögel. J. f. Ornith. 80: 161-247.
- Storer, R. W. 1982. Fused thoracic vertebrae in birds: their occurrence and possible significance. J. Yamashina Inst. Ornith. 14: 86-95.
- Stork, H. J. 1972. Zur Entwicklung pneumatischer Raume im Neurocranium der Vögel (Aves). Z. Morph. Tiere 73: 81-94.
- Stotler, W. A. 1905. Further studies of the bulbar acoustic centres. Anat. Rec. 10: 349 (Abstr.).
- Strauch, J. G., Jr. 1985. The phylogeny of the Alcidae. Auk 102: 520-539.
- Stresemann, E. 1927-34. Sauropsida: Aves. In: *Handbuch der Zoologie*. (W. Kukenthal and T. Krumbach, eds.). Vol. 7(2), 899 pp. de Gruyter, Berlin and Leipzig.
- Suburo, A. M. and Marcantoni, M. 1983. The structural basis of ocular accommodation in the chick. Rev. Can. Biol. Exptl. 42: 131-137.
- Sugimura, M., Hashimoto, Y., and Nakanishi, Y. H. 1977. Thymus- and bursa-dependent areas in duck lymph nodes. Jap. J. Vet. Res. 25: 7-16.
- Sugimura, M., Kudo, N. and Yamano, S. 1975. Fine structures of corpus paracloacalis vascularis in cocks. Jap. J. Vet. Res. 23: 11-16.
- Sullivan, G. E. (1962). Anatomy and embryology of the wing musculature of the domestic fowl (Gallus). Austral. J. Zool. 10: 458-518.
- Surface, F. M. 1912. The histology of the oviduct of the domestic hen. Bull. Maine Agric. Exptl. Sta. 206: 397-430.
- Suschkin, P. P. 1899. Zur Morphologie des Vogelskelets. 1. Schädel von *Tinnunculus*. Nov. Mem. Soc. Imperiale Nat. Moscou. **XVI:** 1–163.
- Susi, F. R. 1969. Keratinization in the mucosa of the ventral surface of the chicken tongue. J. Anat. 105: 477-486.
- Suthers, R. A and Hector, D. H. 1985. The physiology of vocalization by the echolocating oilbird, *Steatornis caripensis*. J. Comp. Physiol. A156: 243-266.
- Swenander, G. 1899. Beiträge zur Kenntnis des Kropfes der Vögel. Zool. Anz. 22: 140-142.
- --------. 1902. Studien über den Bau des Schlundes und des Magens der Vögel. Kgl. Norsk. Vidensk. Selsk. Skr. 6: 1-240.
- Swierczewski, E. V. and R. J. Raikow. 1981. Hindlimb morphology, phylogeny, and classification of the Piciformes. Auk 98: 466-480.
- Sy, M. 1936. Functionell-anatomische Untersuchungen am Vogelflügel. J. f. Ornith. 84: 199–296.

- Szabo, L. 1958. A hullámos papagáj (*Melopsittacus undulatus*) errendszere. [The vascular system of the Australian Lovebird (*Melopsittacus undulatus*)] Thesis, Anatomy, Veterinary Medicine, Budapest.
- Taha, A. A. M., Abdel-Magied, E. M., and King, A. S. 1983. Ultrastructure of aortic and pulmonary baroreceptors in the domestic fowl. J. Anat. 137: 197-207.
- Taha, A. A. M. and King, A. S. 1983. Autoradiographic observations on the innervation of the carotid body of the domestic fowl. Brain Res. 266: 193– 201.
- . 1986. Aortico-pulmonary bodies in the domestic fowl: ultrastructure, innervation and secretion. J. Anat. 149: 41-53.
- Takasaka, T. and Smith, C. A. 1971. The structure and innervation of the pigeon's basilar papilla. J. Ultra. Res. 35: 20-65.
- Tamura, T. and Fujii, S. 1967. Studies on the cloacal gland of the quail. I. Macroscopical and microscopical observations. Jap. Poult. Sci. 4: 187–193.
- Taylor, T. G., Simkiss, K., and Stringer. D. A. 1971. The skeleton: its structure and metabolism. In: *Physiology and Biochemistry of the Domestic Fowl* (D. J. Bell and B. M. Freeman, eds.). Vol. 2, pp. 621-640. Academic Press. London.
- Technau, G. 1936. Die Nasendrüse der Vögel zugleich ein Beitrag zur Morphologie der Nasenhöhle. J. f. Ornith. 84:511-617.
- Terni, T. 1924. Richerche sulla considetta sostanza gelatinosa del midollo lumbosacrale degli uccelli. Arch. Ital. Anat. Embriol. 21: 55–86.
- ———. 1929. Recherches morphologiques sur le sympathique cervical des oiseaux et sur l'innervation autonome de quelques organes glandulaires du cou. Compt. Rend. Assoc. Anat. 24: 473–480.
- Tetzlaff, G. 1983. Schaumzellspermatophagen im Nebenhodendes Peking Erpels (*Anas platyrhynchos* L.). Inaug. Diss., Freien Universität, Berlin.
- Thebault, V. 1898. Étude des rapports qui existent entre les systèmes pneumogastrique et sympathique chez les oiseaux. Ann. Sci. Natur. Zool. 6: 1-243.
- Thomson, A. L. (ed.) 1964. A New Dictionary of Birds. Nelson, London.
- Thurston, R. J. and Hess, R. A. 1987. Ultrastructure of spermatozoa from domesticated birds: comparative study of turkey, chicken, and guinea fowl. Scanning Microscopy 1: 1829–1838.
- Tiemeier, O. W. 1950. The os opticus of birds. J. Morph. 86: 25-46.
- Passer domesticus. Trans. Kansas Acad. Sci. **56**: 440-448.
- Tingari, M. D. 1971. On the structure of the epididymal region and ductus deferens of the domestic fowl (*Gallus domesticus*). J. Anat. 109: 425-435.

- -------. 1973. Observations on the fine structure of spermatozoa in the testis and excurrent ducts of the male fowl (*Gallus domesticus*). J. Repro. Fert. **34:** 255-265.
- Toerien, M. J. 1971. The developmental morphology of the chondrocranium of *Podiceps cristatus*. Ann. Univ. van Stellenbosch **46:** 1–128.
- Tolivia, J., Tolivia, D., and Alvarez-Uria, M. 1987. The hypothalamic magnocellular system in the domestic fowl. Study on semithin sections. Acta Anat. 130: 143-150.
- Tomita, T., Doull, V., Pollock, H. G., and Kimmel, J. R. 1985. Regional distribution of pancreatic polypeptide and other hormones in chicken pancreas: reciprocal relationship between pancreatic polypeptide and glucagon. Gen. Comp. Endocr. 58: 303-310.
- Traciuc, E. 1967. L'anatomie microscopique del'épididyme chez *Sterna hirundo*. Anat. Anz. 121: 381-386.
- ———. 1969. La structure de l'épididyme de *Coeleus monedula* (Aves, Corvidae). Anat. Anz. **125**: 49-67.
- Trautmann, A. and Fiebiger, J. 1957. Fundamentals of the Histology of the Domestic Animals (translated and edited by R. E. Habel and E. L. Biberstein). Comstock, Ithaca.
- Troilo, D. and Wallman, J. 1987. Changes in corneal curvature during accommodation in chicks. Vision Res. 27: 241-248.
- Tsai, H. M., Garber, B. B., and Larramendi, L. M. H. 1981. 3H-Thymidine autoradiographic analysis of telencephalic histogenesis in the chick embryo: II. Dynamics of neuronal migration, displacement and aggregation. J. Comp. Neurol. 198: 293-306.
- Uchiyama, T. I. 1928. Zur Frage der Vv. minimae thebesii und der Sinusoide beim Hühnerherzen. Morph. Jb. 60: 196-322.
- Ueck, M. 1979. Innervation of the vertebrate pineal. In: *The Pineal Gland of Vertebrates Including Man* (J. A. Kappers and P. Pevet, eds.), pp. 45-88. Elsevier, Amsterdam.
- Uehara, M. and Ueshima, T. 1982. Development of the glycogen body through the whole length of the chick spinal cord. Anat. Rec. 202: 511–519.
- Van den Akker, L. M. 1970. An Anatomical Outline of the Spinal Cord of the Pigeon. Van Gorcum Ltd., Netherlands.
- Vanden Berge, J. C. MS. Tenostosis and a review of intratendinous ossification in birds.
- . MS. A. W. Schorger and a review of intratendinous ossifications in gallinaceous birds and other avian taxa.
- ------. 1970. A comparative study of the appendicular musculature of the Order Ciconiiformes. Amer. Midl. Nat. 84: 289-364

711

——. 1975. Aves myology. In: Sisson and Grossman's *The Anatomy of the Domestic Animals*. 5th ed. (R. Getty, ed), pp. 1802–1848. Saunders, Philadelphia.

- ——. 1976. M. iliotibialis medialis and a review of the M. iliotibialis complex in flamingos. Auk 93: 429-433.
- ——. 1979. Myologia. In: *Nomina Anatomica Avium*, 1st ed. (J. J. Baumel, A. S. King, A. M. Lucas, J. E. Breazile, and H. E. Evans eds.), pp. 175–219. Academic Press, London.
- \_\_\_\_\_\_. 1982. Notes on the myology of the pelvic limb in kiwi (*Apteryx*) and in other birds. Auk **99**: 309–315.
- van Gennip, E. M. S. J. 1986. The osteology, arthrology and myology of the jaw apparatus of the pigeon (*Columba livia* L.) Netherl. J. Zool. 36: 1–46.
- van Oort, E. D. 1905. Beitrag zur Osteologie des Vogelschwanzes. Tijdschr. Nederl. Dierk. Ver. 9: 1-144.
- Van Tyne, J. and Berger, A. J. 1959. Fundamentals of Ornithology. John Wiley, New York.
- Verhaart, W. J. 1972. Fibre systems of the avian midbrain. Acta Morph. Neerl. Scand. 9: 377-386.
- Viglietti-Panzica, C. and Contenti, E. 1983. Cytodifferentiation of the paraventricular nucleus in the chick embryo. Cell Tissue Res. 229: 281–297.
- Viglietti-Panzica, C., Panzica, G. C., Fiori, M. G., Calcagni, M., Anselmetti, G. C., and Balthazart, J. 1986. A sexually dimorphic nucleus in the quail preoptic area. Neurosci. Lett. **64:** 129–134.
- Vitali, G. 1912. Di un interessante derivito dell' ectoderma della prima fessura branchiale nervoso di sono nell' orecchio medio degli uccelli. Anat. Anz. 40: 631-639.
- Vitums, A., Mikami, S.-I., and Farner, D. S. 1965. Arterial blood supply to the brain of the White-crowned sparrow, *Zonotrichia leucophrys gambelii*. Anat. Anz. 116: 309-326.
- Vitums, A., Mikami, S.-I., Oksche, A., and Farner, D. S. 1964. Vascularization of the hypothalamo-hypophysial complex in the White-crowned Sparrow, *Zonotrichia leucophrys gambelii*. Z. Zellforsch. **64:** 541-569.
- Vogt-Nilsen, L. 1954. The inferior olive in birds, a comparative morphological study. J. Comp. Neurol. 101: 447-481.
- Vollmerhaus, B. and Hegner, D. 1963. Korrosionsanatomische Untersuchungen am Blutgefässsystem der Hühnerfusses. Morph. Jb. 105: 139–184.
- Vollrath, F. W. and Delius, J. D. 1976. Vestibular projections to the thalamus of the pigeon. Brain, Behav. Evol. 13: 56-68.

- von Bartheld, C. S., Lindörfer H. W. and Meyer, D. L. 1987. The nervus terminalis also exists in cyclostomes and birds. Cell Tissue Res. **250**: 431–434.
- Vos, H. J. 1934. Über den Weg der Atemluft in der Entenlunge. Z. Vergl. Physiol. 21: 552-578.
- Wade, C. H. 1876. Notes on the venous system of birds. J. Linn. Soc. Zool. 12: 531–535.
- Wakley, G. K. and Bower, A. J. 1981. The distal vagal ganglion of the hen (*Gallus domesticus*), a histological and physiological study. J. Anat. 132: 95-105.
- Walker, A. D. 1977. Evolution of the pelvis in birds and dinosaurs. In: *Problems in Vertebrate Evolution*. (S. Mahala Andrews, R. S. Miles, and A. D. Walker, eds.). Linn. Soc. Symp. Ser. No. 4: 319-358.
- Walker, M. 1888. On the form of the quadrate bone in birds. Zool. Univ. Coll. Dundee, pp. 11-18.
- Wallenberg, A. 1903. Der Ursprung des Tractus isthmo-striatus (oder bulbostriatus) der Taube. Neurol. Zentrabl. 22: 98-101.
- Walls, G. L. 1942. *The Vertebrate Eye and its adaptive radiation*. Cranbrook Inst. Sci., Bloomfield, Mich.
- Walsh, M. T. and Mays, M. C. 1984. Clinical manifestations of cervico-cephalic air sacs of psittacines. Comp. Contin. Education 6: 783-789.
- Warner, R. W. 1971. The structural basis of the organ of voice in the genera *Anas* and *Aythya* (Aves). J. Zool. **164:** 197–207.
- 1972a. The syrinx in family Columbidae. J. Zool. 166: 385-390.
  1972b. The anatomy of the syrinx in passerine birds. J. Zool. 168: 381-393.
- Warnke, G. and H. J. Stork 1977. Biostatische und Thermoregulationische Funktion der Sandwich-Structuren in der Schädel-decke der Vögel. Zool. Anz. (Jena) 199: 251–257.
- Warui, C. N. 1989. Light microscopic morphometry of the kidneys of four-teen avian species. J. Anat. 162: 19-31.
- Watanabe, T. 1960. On the peripheral courses of the vagus nerve in the fowl. Jap. J. Vet. Sci. 22: 145-154.
- . 1961. Comparative and topographic anatomy of the fowl. VII. On the distribution of the nerves in the neck of fowl. Jap. J. Vet. Sci. 23: 85-94
- . 1964. Peripheral courses of the hypoglossal, accessory and glossopharyngeal nerves. Jap. J. Vet. Sci. 26: 249-258.
- . 1968. A study of the retrograde degeneration in the vagal nuclei of the fowl. Jap. J. Vet. Sci. 30: 331-340.
- . 1972. Sympathetic nervous system of the fowl. Part 2. Nervus intestinalis. Jap. J. Vet. Sci. 34: 303-313.

- Watanabe, T., Isomura, J., and Yasuda, M. 1967. Distribution of nerves in the oculomotor and ciliary muscles. Jap. J. Vet. Sci. 29: 151-158.
- Watanabe, T., Ito, H. and Masai, H. 1983. Cytoarchitecture and visual receptive neurons in the wulst of the Japanese quail (*Coturnix coturnix japonica*). J. Comp. Neurol. **213**: 188-198.
- Watanabe, T., Iwata, N., and Yasuda, M. 1975. Further studies on the hypoglossal nucleus in the fowl. Anat. Hist. Embryol. 4: 323-333.
- Watanabe, T. and Paik, Y. K. 1973. Sympathetic nervous system of the fowl. Part 3. Plexus celiacus and plexus mesentericus cranialis. Jap. J. Vet. Sci. **35:** 389-401.
- Watanabe, T. and Yasuda, M. 1968. Peripheral course of the olfactory nerve in the fowl. Jap. J. Vet. Sci. 30: 275-279.
- . 1970. Peripheral course of the trigeminal nerve. Jap. J. Vet. Sci. 32: 43-57 (in Japanese).
- Watson, M. 1883. *Voyage of H. M. S. Challenger: Zoology* (C. W. Thomson and J. Murray, eds.). Vol. 7. Longmans, London.
- Watzka, M. 1933. Vergleichende Untersuchungen über den ultimobranchialen Körper. Z. Mikrosk. Anat. Forsch. 34: 494-533.
- Webster, H. D. 1948. The right oviduct in chickens. J. Amer. Vet. Med. Assoc. 112: 221-223.
- Weisgram, J. and G. A. Zweers 1987. Avian cranio-cervical systems. Part II: Arthrology of the occipito-cervical system in the Mallard (*Anas platyrhynchos* L. Acta Morph. Neerl.-Scand. 25: 157-166.
- Welsch, U. and Wachtler, K. 1969. Zum Feinbau des Glykogenkörpers im Rückenmark der Taube. Z. Zellforsch Mikrosk. Anat. 97: 160-169.
- Wenzel, B. M. 1971. Olfactory sensation in the Kiwi and other birds. Ann. N.Y. Acad. Sci. 188: 183-193.
- West, N. H., Langille, B. L. and Jones, D. R. 1981. Cardiovascular system. In: *Form and Function in Birds* (A. S. King, J. McLelland, eds.). Vol. 2, pp. 235-339. Academic Press, London.
- Westpfahl, U. 1961. Das Arteriensystem das Haushuhnes (*Gallus domesticus*). Wiss. Z. Humboldt-Univ. Berlin, Math.-Nat. R. 10: 93-124.
- Wetmore, A. 1918. A note on the tracheal air-sac in the Ruddy Duck. Condor 20: 19-20.
- White, R. G., Henderson, D. C., Eslami, M. B., and Nielson, K. 1975. Localisation of a protein antigen in the chicken spleen. Effect of various manipulative procedures on the morphogenesis of the germinal centre. Immunology 28: 1-12.
- White, S. S. 1970. The larynx of *Gallus domesticus*. Ph. D. Thesis. University of Liverpool, England.

- ——. 1975. The larynx. In: Sisson and Grossman's The Anatomy of Domestic Animals 5th ed. (R. Getty, ed.) Vol. 2, pp. 1891–1897. Saunders, Philadelphia.
- White, S. S. and Chubb, J. C. 1967. The muscles and movements of the larynx of G. domesticus. J. Anat. 102: 575.
- Whitlock, D. G. 1952. A neurohistological and neurophysiological study of afferent fiber tracts and receptive areas of the avian cerebellum. J. Comp. Neurol. 97: 567-635.
- Wideman, R. F. 1988. Avian kidney anatomy and physiology. CRC Crit. Rev. Poult. Biol. 1: 133-176.
- ———. 1989. Maturation of glomerular size distribution profiles in domestic fowl (*Gallus gallus*). J. Morph. **201**: 205–213.
- Wideman, R. F, Braun, E. J., and Anderson, G. L. 1981. Microanatomy of the renal cortex in the domestic fowl. J. Morph. 168: 249-267.
- Wild, J. M. 1981. Identification and localization of the motor nuclei and sensory projections of the glossopharyngeal, vagus and hypoglossal nerves in the cockatoo (*Cacatua roseicapilla*, Cacatuidae). J. Comp. Neurol. **203**: 351–378.
- Wild, J. M., Arends, J. J. A., and Zeigler, H. P. 1985. Telencephalic connections of the trigeminal system in the pigeon (*Columba livia*): a trigeminal sensorimotor circuit. J. Comp. Neurol. **234**: 441–464.
- Wild, J. M., Cabot, J. B., Cohen, D. H., and Karten, H. J. 1979. Origin, course and terminations of the rubrospinal tract in the pigeon (*Columba livia*) J. Comp. Neurol. **187**: 639-654.
- Wild, J. M. and Zeigler, H. P. 1980. Central representation and somatotopic organization of the jaw muscles within the facial and trigeminal nuclei of the pigeon (*Columba livia*). J. Comp. Neurol. 192: 175–201.
- Williams, P. L. and Warwick, R. 1980. *Gray's Anatomy*, 36th ed. Churchill Livingstone, Edinburgh.
- Williamson, J. H. 1965. Cystic remnants of the right Müllerian duct and egg production in two strains of White Leghorns. Poult. Sci. 44: 321-324.
- Wiltschko, R. and Wiltschko, W. 1989. Pigeon homing; olfactory orientation—a paradox. Behav. Ecol. Sociobiol. 24: 163-173.
- Wiltschko, W. and Wiltschko, R. 1988. Magnetic orientation in birds. In: *Current Ornithology* (R. F. Johnston, ed.). Vol. 5, pp. 67-121. Plenum Press, New York.
- Wingstrand. K. G. 1951. The Structure and Development of the Avian Pituitary. C. W. K. Gleerup, Lund.
- ——. 1966. Comparative anatomy of the hypophysis. In: *The Pituitary Gland* (G. W. Harris and B. T. Donovan, eds.), Vol. 1, pp. 58–126. Butterworths, London.

- Wingstrand, K. G. and Munk, O. 1965. The pecten oculi of the pigeon with particular regard to its function. Biol. Skr. Danske Vid. Selsk. 14: 1-64.
- Winter, H. 1958. Persistent right oviducts in fowls including an account of the histology of the fowl's normal oviduct. Aust. Vet. J. 34: 140-147.
- Wirsig-Wiechmann, C. R. 1983. The nervus terminalis in the chick: a FMRF amide-immunoreactive and AChE-positive nerve. Brain Res. 523: 175-179.
- Witkovsky, P., Zeigler, H. P., and Silver, R. 1973. A single-unit analysis of the nucleus basalis in the pigeon. J. Comp. Neurol. 147: 119-128.
- Witmer, L. 1987. The nature of the antorbital fossa of archosaurs: Shifting the null hypothesis. In: *Fourth Symposium on Mesozoic Terrestrial Ecosystems, Short Papers* (P. J. Currie and E. H. Koster, eds.), pp. 230-235.
- ———. 1990. The craniofacial air sac system of Mesozoic birds (Aves). Zool. J. Linn. Soc. 100: 327-378.
- Witmer, L. M. and Martin, L. D. 1987. The primitive features of the avian palate, with special reference to Mesozoic birds. Docum. Lab. Geol. Lyon 99: 21-40.
- Witschi, E. 1961. Sex and secondary sexual characters. In: *Biology and Comparative Physiology of Birds* (A. J. Marshall ed.) Vol. 2, pp. 115-168. Academic Press, New York.
- Wold, J. E. 1975. The vestibular nuclei in the domestic hen (*Gallus domesticus*). II. Primary afferents. Brain Res. **95:** 531-543.
- ——. 1976. The vestiublar nuclei in the domestic hen (*Gallus domesticus*). I. Normal anatomy. Anat. Embryol. (Berl.) **149:** 29-46.
- ------. 1978a. The vestibular nuclei in the domestic hen (*Gallus domesticus*). III. Ascending projections to the mesencephalic eye motor nuclei. J. Comp. Neurol. **179**: 393-406.
- Wolf, L. 1967. Das Herz der Vögel. Inaug. Diss. Humboldt-Universität, Berlin.
- Wolfson, A. 1952. The cloacal protuberance a means for determining breeding condition in live male passerines. Bird Banding 23: 159–165.
- Wood, C. A. 1917. The Fundus Oculi of Birds especially as viewed by the ophthalmoscope. Lakeside Press, Chicago.
- ———. 1924. The Polynesian Fruit Pigeon, *Globicera pacifica*, its food and digestive apparatus. Auk **41:** 433–438.
- Woodburne, R. T. 1936. A phylogenetic consideration of the primary and secondary centers and connections of the trigeminal complex in a series of vertebrates. J. Comp. Neurol. 65: 403-501.

- Woodbury, J. 1989. Somatopy and physiology of skin sensory inputs to the dorsal horn of the chicken. Ph. D. Dissertation, State Univ. N.Y., Stony Brook, 213 pp.
- Wright, L. L. 1981. Time of cell origin and cell death in the avian dorsal motor nucleus of the vagus. J. Comp. Neurol. 199: 125-132.
- Wunderlich, L. 1884. Beiträge zur vergleichenden Anatomie und Entwickelungsgeschichte des unteren Kehlkopfes der Vogel. Nova Acta Kgl. Leop.-Carol. Dt. Akad. der Naturforsch. 48: 1-80.
- Wyburn, G. M. and Baillie, A. H. 1966. Some observations on the fine structure and histochemistry of the ovarian follicle of the fowl. In: *Physiology of the Domestic Fowl* (C. Horton-Smith and E. C. Amoroso, eds.), pp. 30–38. Oliver and Boyd, Edinburgh.
- Wyburn, G. M., Aitken, R. N. C., and Johnston, H. S. 1965. The ultrastructure of the zona radiata of the ovarian follicle of the domestic fowl. J. Anat. **99:** 469–506.
- Xia, L., Clermont, Y., Lalli, M., and Buckland, R. B. 1986. Evolution of the endoplasmic reticulum during spermiogenesis of the rooster: An electron microscopic study. Amer. J. Anat. 177: 301-312.
- Yamada, J., Kitamura, N., and Yamashita, T. 1983. Avian gastro-intestinal endocrine cells. In: *Avian Endocrinology: Environmental and Ecological Perspectives* (S. Mikami, K. Homma, and M. Wada, eds.), pp. 67–79. Jap. Sci. Soc. Press, Tokyo.
- Yarrell, W. 1833. On the organs of voice in birds. Trans. Linn. Soc. London **16:** 305–321.
- Yasuda, M. 1960. On the nervous supply of the thoracic limb in the fowl. Jap. J. Vet. Sci. 22: 89-101.
- ———. 1961. On the nervous supply of the hind limb in the fowl. Jap. J. Vet. Sci. 23: 145–155.
- . 1964. Distribution of cutaneous nerves in the fowl. Jap. J. Vet. Sci. **26:** 241–254.
- Yntema, C. L. and Hammond, W. S. 1954. The origin of intrinsic ganglia of trunk viscera from vagal neural crest in the chick embryo. J. Comp. Neur. 101: 515-542.
- Yoshimura, K. 1909. Experimentelle und vergleichend anatomische Untersuchungen über die untere Olive der Vögel. Arb. Neur. Int. Weiner. Univ. 18: 46-59.
- Yoshimura, Y. and Fujii, S. 1979. Morphological changes of the stigma of follicle in the ovulatory process in the hen. Jap. Poult. Sci. 16: 287-289.
- Youngren, O. M., Peek, F. W., and Phillips, R. E. 1974. Repetitive vocalizations evoked by local electrical stimulation of avian brain. Brain, Behav. Evol. 9: 393-421.

- Youngren, O. M. and Phillips, R. E. 1978. A stereotaxic atlas of the brain of the three day-old domestic chick. J. Comp. Neurol. 181: 567-600.
- -----. 1983. Location and distribution of tracheosyringeal motoneuron somata in the fowl. J. Comp. Neurol. 213: 86-93.
- Yudin, K. A. 1961. On the mechanism of the jaw in Charadriiformes, Procellariiformes, and some other birds. Trudy Zool. Inst. Leningrad 29: 257-302 [in Russian].
- Zamojska, D. 1975. Anatomical studies on the vascularization of the bursa of Fabricius and uropygial gland in hens (*Gallus domesticus* L.). Part II. Blood vessels of the Bursa of Fabricius (Bursa Fabricii). Zool. Pol. 24: 503-521.
- Zecha, A. 1962. The "pyramidal tract" and other telencephalic efferents in birds. Acta Morph. Neerl. Scand. 5: 194-195.
- Zeek, P. M. 1951. Double trachea in penguins and sea lions. Anat. Rec. 111: 327-344.
- Zeier, H. and Karten, H. J. 1971. The archistriatum of the pigeon: organization of afferent and efferent connections. Brain Res. 31: 313-326.
- Zeigler, H. P. and Karten, H. J. 1973. Brain mechanisms and feeding behavior in the pigeon (*Columba livia*). I. Quinto-frontal structures. J. Comp. Neurol. **152**: 59–82.
- Zietschmann, O. 1911. Der Verdauungsapparat der Vögel. In: *Handbuch der vergleichenden mikroskopischen Anatomie der Haustiere*. (W. Ellenberger, ed.). Vol. 3. Paul Parey, Berlin.
- Ziswiler, V. 1963. Die Afterfeder der Vögel. Untersuchungen zur Morphogenese und Phylogenese des sogenannten Afterschaftes. Zool. Jb., Abt. Anat. 80: 245-308.
- ———. 1965. Zur Kenntnis des Samenoffnens und der Struktur des hornernen Gaumens bei kornerfressenden Oscines. J. f. Ornith. 106: 1– 48.
- . 1967. Vergleichend morphologische Untersuchungen am Veraduungstrakt kornerfressender Singvogel zur Abklarung ihrer systematischen Stellung. Zool. Jb. Abt. Syst. 94: 427–520.
- eds.), pp. 427-429. T. & A. D. Poyser, Calton, U.K.
- Ziswiler, V. and Trnka, V. 1972. Tastkorperchen im Schlundbereich der Vögel. Rev. Suisse Zool. **79:** 307-318.
- Zusi, R. L. 1959. The role of the depressor mandibulae in certain passerine birds. Auk 76: 537-539.

- ——. 1962. Structural Adaptations of the Head and Neck in the Black Skimmer, Rynchops nigra. Publ. Nuttall Ornith. Club, no. 3, viii + 101 pp.
- ——. 1967. The role of the depressor mandibulae muscle in kinesis of the avian skull. Proc. U.S. Nat'l. Mus. 123 (3607): 1–28.
- ———. 1974. An interpretation of skull structure in penguins. In: *Biology of Penguins* (B. Stonehous, ed.), pp. 59–84. Macmillan, New York.
- . 1978. The interorbital septum in cardueline finches. Bull. Brit. Ornith. Club **98:** 5-10.
- ------. 1984. Functional and evolutionary analysis of rhynchokinesis in birds. Smithsonian Contrib. Zool. 395: 1-40.
- ————. 1987. A feeding adaptation of the jaw articulation in new world jays (Corvidae). Auk **104**: 665–680.
- Zusi, R. L. and Bentz, G. D. 1978. The appendicular myology of the Labrador Duck (*Camptorhynchus labradorius*). Condor **80:** 407–418.
- ———. 1982. Variation of a muscle in hummingbirds and swifts and its systematic implications. Proc. Biol. Soc. Washington **95:** 412–420.
- . 1984. Myology of the Purple-throated Carib (*Eulampis jugularis*) and other hummingbirds (Aves: Trochilidae). Smithsonian Contr. Zool. **385:** 1–70.
- Zusi, R. L. and J. R. Jehl, Jr. 1970. The systematic relationships of *Aechmorhynchus*, *Prosobonia*, and *Phegornis* (Charadriiformes; Charadrii). Auk 87: 760-780.
- Zusi, R. L. and Storer, R. W. 1969. Osteology and myology of the head and neck of the Pied-billed Grebes (Pobilymbus). Misc Publ. Mus. Zool., Univ. of Michigan. no. 139, 49 pp.
- Zweers, G. A. 1971. A Stereotaxic Atlas of the Brainstem of the Mallard (*Anas platyrhynchos* L.). A Stereotaxic Apparatus for Birds and Investigation of the Individual Variability of Some Head Structures. Koninklijke Van Gorcum and Corp. N.V., Assen., The Netherlands (Diss. Univ. of Leiden).
- 1974. Structure, movement, and myography of the feeding apparatus of the Mallard (*Anas platyrhynchos* L. Netherl. J. Zool. 24: 323-467
  1982. The Feeding System of the Pigeon (*Columba livia* L). Advances in Anatomy, Embryology, and Cell Biology. Vol. 73, 108 pp. Heidelberg, Springer.
- Zweers, G. A. and Berkhoudt, H. 1987. Larynx and pharynx of crows (*Corvus corone* L. and *C. monedula* L., Passeriformes: Corvidae). Netherl. J. Zool. 37: 365-393.

- Zweers, G. A. Gerritsen, A. F. C., and van Kranenberg-Voogd, P. J. 1977. Mechanics of feeding of the Mallard (*Anas platyrhynchos;* Aves, Anseriformes). In: *Contributions to Vertebrate Evolution* (M. K. Hecht and F. S. Szalay, eds.). Vol. 3, 109 pp. Karger.
- Zweers, G. A., Vanden Berge, J. C., and Koppendraier, R. 1987. Avian cranio-cervical systems. Part I: Anatomy of the cervical column in the chicken (*Gallus gallus L.*). Acta Morph. Neerl.-Scand. **25:** 131-155.
- Zweers, G. A., van Pelt, H. C., and Beckers, A. 1981. Morphology and mechanics of the larynx of the pigeon (*Columba livia L.*): a drill-chuck system (Aves). Zoomorph. **99:** 37-69.

*Key*: **Arabic numerals** indicate pages with lists of the terms; **italicized page numbers** indicate an item in the text of the annotations of a chapter or in its introductory material; page **numbers in bold type** indicate an item in an illustration or its legend. Items in the index in **capital letters** are the main headings of the terminology. See INTRODUCTION (pages xx-xxi) for general abbreviations.

Abbreviations, General xx A. coronaria dextra 417 Abbreviations, Key to Main Headings xxi coronaria sinistra 416 Arteria, also see p. 726 cranialis coxae 421. 434 A. adrenalis 421 cruralis medialis 422 anastomotica 371, 372, 380 cubitalis dorsalis 420 antebrachialis dorsalis caudalis 420 cubitalis ventralis 420 cutanea abdominalis 423, 430 antebrachialis dorsalis cranialis 420 auricularis caudalis 419, 429 cutanea brachialis 420 auricularis rostralis 419, 429 cutanea cervicalis ascendens 417 cutanea cervicalis descendens 419 basilaris 418, 427, 461 bicipitalis 420, 430 cutanea cruralis caudalis 422 cutanea dorsolateralis caudae 423, 436 brachialis 420, 463 bursocloacalis 390, 423, 435 cutanea dorsomedialis caudae 423 cutanea femoralis caudalis 422 carotis communis 260, 262 carotis externa 260 cutanea femoralis cranialis 421 CAROTIS CEREBRALIS 400, 417, 427, cutanea femoralis lateralis 422 cutanea thoracoabdominalis 419, 430 460, 461 caudalis coxae 422, 434 cvstica 432 caudalis labyrinthi 418, 428 dorsalis cerebelli 418 centralis 478 duodenojejunalis 421, 432 cerebralis caudalis 418, 427 eminentiae caudalis 400 cerebralis media 418 eminentiae rostralis 400 cerebralis rostralis 401, 418 epicondylaris lateralis 422 cerebroethmoidalis 418 epicondylaris medialis 422 choroidea ventriculi lateralis et tertii esophagealis 420, 431 418, 427 esophagealis ascendens 417, 425 choroidea ventriculi quarti 418 esophagealis descendens 419 esophagotrachealis 419, 430 ciliaris posterior longa nasalis 418, 428 ciliaris posterior longa temporalis esophagotracheobronchialis 260, 261, 262, 418, 428 417, 425 circumflexa dorsalis humeri 420 ethmoidalis 418 circumflexa femoris 421, 422, 434 facialis 419 circumflexa ventralis humeri 420 femoralis 421, 433, 466 clavicularis 419 femoralis caudalis 421, 422, 434 collateralis radialis 420 femoralis cranialis 421 collateralis ulnaris 420 femoralis medialis 421 comes nervi vagi 417, 419, 426, 462 fibularis 422 coracoidea dorsalis 419, 430

This Index was prepared by J.J. Baumel with the assistance of M.A. Keefe, Division of Anatomy, Creighton University.

 A. gastrica dextra dorsalis 421, 432 A. occipitalis profunda 417, 418, 419 gastrica dextra ventralis 421, 432 occipitalis superficialis 417, 418, 419 gastrica dorsalis 420, 432 ophthalmica interna 418, 427 ophthalmotemporalis 418, 429, 460 gastrica sinistra 421, 432 gastrica ventralis 421, 432 ovarica 421, 433 gastroduodenalis 421 oviductalis caudalis 372, 380 oviductalis cranialis 371, 380, 421, 433 genicularis lateralis 422 oviductalis cranialis accessoria 371, 380, genicularis medialis 422 421, 433 glandulae uropygialis 423, 436 oviductalis marginalis dorsalis 371, 372, hepatica dextra 421, 431, 465 380, 387, 422, 434 hepatica sinistra 421, 431 oviductalis marginalis ventralis 371, 372, hypophysialis caudalis 400, 418, 404 ileocecalis 421, 432 380, **387**, 422, 434 oviductalis media 372, 380, 422, 433 infraorbitalis 418 infrascapularis 419 palatina 419, 430 infundibularis 400, 418, 404 palatina mediana 419, 430, 460 palpebralis dorsonasalis 419 intercostalis dorsalis 417 intercostalis ventralis 419, 431 pancreaticoduodenalis 421, 432, 465 interhemispherica 418, 427, 461 pararenalis 421 interossea 422 pectinis oculi 419, 429 interpeduncularis 418 pectoralis caudalis 419 intramandibularis 418. 428 pectoralis cranialis 419 ischiadica 332, 348 pectoralis media 419, 430 laryngea 419, 429 peronea 422 laryngea propria 259, 419, 429 postpagagialis marginalis 420 lateralis caudae 423, 435, 464 profunda brachii 420 lateralis medullae oblongatae 418 profunda dorsalis bulbi [rectricium] lateralis venti 423 423, 436 lingualis 419 profunda femoris 434 lingualis propria 419 proventricularis ventralis 420 magni 422 proventriculus dorsalis 420, 431, 465 mandibularis 419, 429 pterygoidea dorsalis 419 marginalis intestini tenuis 421, 432 pterygopharyngealis 419 maxillaris 419, 430, 460 pubica 421, 433 meningealis caudalis 418 pudenda 332, 348, 390, 423, 436, 467 mesenterica caudalis 391, 423, 464, 467 pudenda externa 436 metacarpalis interossea 420 radialis profunda 420 metatarsalis dorsalis communis 422, 435 radialis superficialis 420 metatarsalis dorsalis I 422, 435 radicularis dorsalis 423 metatarsalis dorsalis II 422, 435 radicularis ventralis 423 metatarsalis dorsalis III 422, 435 recurrens radialis 420 metatarsalis plantaris lateralis 422 recurrens tibialis cranialis 422 metatarsalis plantaris medialis 422 recurrens ulnaris 420 musculorum colli 420, 464 renalis caudalis 332, 338, 422, 467 neurohypophysialis 400, 404 renalis cranialis 332, 338, 348 nutricia distalis femoris 422 renalis media 332, 338, 422 nutricia humeri 420 retrochiasmatica 400 nutricia proximalis femoris 422 rostralis labyrinthi 418, 428 nutricia tibiae 422 sphenoidea 417, 427 obturatoria 422 spinalis ventralis 423, 436 occipitalis 417, 418, 419, 427 stapedia 418, 428

| A. sternalis externa 419                | Aa. hypothalamicae ventrales 401, 404   |
|-----------------------------------------|-----------------------------------------|
| sternalis interna 419, 430              | ileae 421, <i>432</i>                   |
| sternoclavicularis 419, 430             | infundibuli 371, 372, 380, 421          |
| sublingualis 419, 429                   | ingluviales 417, 426                    |
| submandibularis profunda 419            | intercostales dorsales 420, 431         |
| submandibularis superficialis 419, 429  | interlobulares 306, 317                 |
| subscapularis 420                       | intermetatarsales plantares 422, 435    |
| superficialis dorsalis bulbi rectricium | interosseae dorsales 420, 430           |
| 423, <b>436</b>                         | interparabronchiales 262, 280, 416, 424 |
| supracoracoidea 420, 430                | intralobulares 332, 339, 421, 422       |
| supraorbitalis 418                      | intramurales 370, 376                   |
| suprascapularis 417, 426                | isthmi 372, 422                         |
| suralis 422, <i>434</i>                 | jejunales 421, <i>432</i>               |
| suralis lateralis 422, 434              | lienales 421, 408, 432                  |
| suralis medialis 422, 434               | magni 371, 372, 380, 421                |
| temporalis 418                          | musculares bulbi oculi 419              |
| testicularis 347, 348, 351, 421, 433    | oviductales 371, 379, 387               |
| thoracica interna 419                   | oviductales caudales 423, 433           |
| tibialis caudalis 422                   | palpebrales dorsotemporales 418         |
| tibialis cranialis 422, 434, 466        | palpebrales ventrales 418               |
| tibialis medialis 422                   | parallelae choroideae 418, 428          |
| trabecularis 478                        | pedunculares 370, 376                   |
| trachealis descendens 260, 419          | preopticae 401, 418, 404                |
| transversa colli 417                    | segmentales 423, 431                    |
| trigeminalis 418                        | segmentales caudales 423, 431           |
| trochanterica 422                       | segmentales cervicales 417, 431         |
| ulnaris profunda 420, 430               | segmentales synsacrales 421, 431, 432   |
| ulnaris superficialis 420               | segmentales synsacri 423, 431           |
| umbilicalis 421, 433                    | segmentales truncales 417, 420, 431     |
| uterina lateralis 372, 380              | spinales dorsales 423, 436              |
| uterina medialis 372, 380               | splenicae 421, 408, 432, 478            |
| vaginalis 372, 381, 423                 | tarsales plantares 422                  |
| ventralis bulbi rectricium 423, 436     | thyroideae 417, 425                     |
| ventralis cerebelli 418, 428            | uteri 372, 380                          |
| ventralis tecti mesencephali 418        | uterinae 422, 423                       |
| vertebralis ascendens 417, 426          | Abdomen 13                              |
| vertebralis descendens 417, 426         | Aboralis 2, 3                           |
| vertebromedullaris 417, 421, 425, 436   | Accessus interendothelialis 477, 480    |
| vesicae biliaris 421, 431               | Acetabulum 62, 104                      |
| vesicae felleae 421, 432                | Acini pancreatici 307                   |
| A-V bundle 414                          | Acromion 59, 95                         |
| Aa. ciliares anteriores 418, 428        | Acropodium 21, 33                       |
| ciliares posteriores breves 419, 428    | Acrosoma 347, 351, 361                  |
| cloacales 390, 395, 423                 | Acrotarsium 21, 33                      |
| contortae 370, 376                      | Adenohypophysis 400, 403                |
| digitales 422, 435                      | Aditus 46                               |
| dorsales tecti mesencephali 418         | Afferens 2, 13                          |
| dorsolaterales 423, 436                 | Ager L 506                              |
| glandulae membranae nictitantis 419     | Air sacs 281                            |
| hyobranchiales 259, 419                 | ALA 9, 13, 46, 258, 265                 |
| hyoideae 419                            | ischii 63                               |
| •                                       |                                         |

| Al A parambanaidalia 49 40 90 117                                              | Anastomosis lymphovenosa 409              |
|--------------------------------------------------------------------------------|-------------------------------------------|
| ALA parasphenoidalis 48, 49, 80, 117 [Pars] postacetabularis ilii 63, 106, 129 | maxillofacialis 437                       |
| [Pars] preacetabularis ilii 63, 106,129                                        | portal-arterial 344                       |
| tympanica 80                                                                   | venovenosa 409                            |
| Alae cristae ventralis 55, 86                                                  | Anatomical position 1                     |
| linguae 302, 309                                                               | Angulus 46                                |
| spinae sternae 58                                                              | caudodorsalis 261, 276                    |
| Albumen 372, 382                                                               | caudolateralis 53, 78                     |
| densum 372, 383                                                                | caudomedialis 53, 78                      |
| polare 372, 383                                                                | caudoventralis 261, 276                   |
| rarum 372, 383                                                                 | costae 57                                 |
| Alula 9, 13                                                                    | craniodorsalis 261, 276                   |
| Ampulla membranacea anterior 591                                               | craniofacialis 8, 10                      |
| membranacea lateralis 591                                                      | craniovacians 6, 76                       |
| membranacea posterior 591                                                      | cristae 60                                |
| ossea anterior 592                                                             | frontonasalis 8, 10                       |
| ossea lateralis 592                                                            | iridocornealis 589, 597, 599, <b>607</b>  |
| ossea posterior 592                                                            | lateralis 59                              |
| Ampullae membranaceae 591, 601                                                 | mandibulae 52, 73                         |
| osseae 592                                                                     | medialis 59                               |
| Anastomoses cum arteria carotis interna 417                                    | oculi nasalis 590                         |
| cum arteria vertebrali ascendenti 417                                          | oculi temporalis 590                      |
| cum sinu vertebrali interno 443                                                | oris 301                                  |
| sinujugulares 440, 450, 470                                                    | oris 8, 11                                |
| sinurenales 443, 440, <i>451</i>                                               | Ankle joint 184                           |
| Anastomosis arteriarum hepaticarum                                             | Ansa axialis 305, <b>224</b> , 315        |
| 421. 431                                                                       | bicipitalis 174                           |
| arterioarteriosa 409                                                           | costotransversaria 55, 56, 89, <b>121</b> |
| arteriovenosa 409                                                              | duodeni 305, 314, 324                     |
| cum a. ethmoidali 419                                                          | iliofibularis 581                         |
| cum a. ophthalmica interna 419                                                 | lenticularis 502, 503, 505, 519           |
| cum anastomose interiliaca 444, 467                                            | m. iliofibularis 145 174, 195, 218        |
| cum arteria occipitali 417                                                     | nephrica 331, <i>337</i>                  |
| cum arteria ophthalmotemporali 418                                             | supracecalis 305                          |
| cum arteria supraorbitali 418                                                  | supraduodenalis 305, 315, 224             |
| cum circulo iridico 419                                                        | trachealis 259, 269                       |
| cum rete ophthalmico 437                                                       | Ansae connexuum interganglionarum 564,    |
| cum sinu cavernoso 438                                                         | 573                                       |
| cum sinu foraminis magni 440                                                   | ductus deferentis 348, 353                |
| cum v. faciali 439                                                             | ilei 305, <i>315</i>                      |
| cum v. iliaca interna 440                                                      | jejuni 305, <i>315</i>                    |
| cum v. mesenterica caudali 442                                                 | plexus caudalis 561                       |
| cum v. occipitali interna 440                                                  | Antebrachium 9, 13                        |
| cum v. ophthalmica externa 438                                                 | Anterior 13                               |
| cum v. portali renali caudali 440                                              | Antitrochanter 62, 63, 105, 182           |
| cum v. portali renali craniali 440                                             | Antrum 46                                 |
| cum v. ulnari superficiali 441                                                 | Antrum pneumaticum caudale 71             |
| intercarotica 400, 417, 427, 460 404                                           | pneumaticum dorsale 71                    |
| interiliaca 442, 443, 453, 467, 475                                            | pneumaticum rostrale 71                   |
| interjugularis 438, 448, 470                                                   | Anuli [Annuli] lymphatici ileales 305,    |
| ischiofemoralis 421, 433, 443, 453, 474                                        | 478, <i>483</i>                           |
|                                                                                |                                           |

| Anuli [Annuli] lymphatici jejunales 305, | Appendix epididymidis 348, 353         |
|------------------------------------------|----------------------------------------|
| 478, 483                                 | APTERIA 21, 29, 32, 42                 |
| Anulus ossicularis sclerae 588, 595, 610 | capitalia 21, 32                       |
| [Annulus] 46, 347, <i>353</i>            | dorsalia 21, 32                        |
| [Annulus] atrioventricularis dexter      | lateralia 21, 32                       |
| 410, 414                                 | Apterium antebrachiale ventrale 21, 32 |
| [Annulus] corneae 588, 595               | caudale 21, <i>32</i>                  |
| [Annulus] fibrosus 139 156, 409, 412     | cervicale laterale 21, 32              |
| [Annulus] iridis 589                     | humerale 21, 32                        |
| [Annulus] tympanicus 54, 79              | membri pelvici 21, 32                  |
| Aorta, main branches 464                 | propatagiale ventrale 21, 32           |
| AORTA 416, 424                           | scapulare 21, 32                       |
| AORTA ASCENDENS 416, 464                 | spinale 21, 32                         |
| DESCENDENS 420                           | subhumerale 21, 32                     |
| Aortic bodies 424                        | truncale laterale 21, 32               |
| Apertura 46                              | ventrale 21, 32                        |
| auris externae 8, 10, 593                | Aqua vesiculae lentis 590              |
| nasi [nasalis] ossea 52, 68              | Aqueductus mesencephali 500            |
| oris 8                                   | Arachnoidea encephali 507, 524         |
| sinus antorbitalis 258, 265              | spinalis 507, 524                      |
| sinus infraorbitalis 258, 265            | Arbor vitae cerebelli 500              |
| thoracica caudalis 57                    | Archistriatum 505, 522                 |
| thoracica cranialis 57                   | caudale 505, 522                       |
| Apex 19, 27, 47                          | intermedium 505, 522                   |
| carinae 58                               | mediale 505, 522                       |
| ceci 305, 315                            | rostrale 505, 522                      |
| cochleae 592                             | Arcus 47                               |
| cordis 409                               | AORTAE 417                             |
| cornus dorsalis 494                      | arteriosus 409                         |
| linguae 302                              | atlantis 56                            |
| phalangis 67                             | axis 56                                |
| phalli erecti 349, 358                   | dorsalis 19, 26, 40                    |
| pubis 63                                 | extensorius 66, 111                    |
| pygostyli 57                             | jugalis 51, <i>68</i>                  |
| Aponeurosis 135, 190                     | longitudinalis dorsalis 410, 413       |
| cruciata 194, 211, <b>234</b>            | neuralis 55, 87                        |
| dorsalis antebrachii 143, 146, 175       | parahyalis 55, 80                      |
| interphalango-remigalis 146, 175         | plantaris 422                          |
| intramuscularis 194, 213                 | plantaris superficialis 443, 454       |
| plantaris 145, 173, 185                  | suborbitalis 51, 72                    |
| transversa 193, 205                      | transversus dexter 410, 413            |
| ulnocarporemigalis 142, 146, 164, 216    | transversus sinister 410, 413          |
| ventralis 142, 146, 164, 181             | venosus 409                            |
| ventralis antebrachii 143, 146, 175, 187 | vertebrae 55                           |
| ventralis carpalis 143                   | Area 47                                |
| Apophysis 47                             | centralis horizontalis 589, 598        |
| furculae 59, <i>94</i>                   | centralis rotunda 589, 598             |
| Apparatus lacrimalis 591, 600            | coracoidea dorsolateralis 505          |
| COPULATIONIS 348                         | incubationis 18, 24                    |
| HYOBRANCHIALIS 302                       | interarticularis 64                    |
| HYOBRANCHIALIS HYOLIN-                   | intercondylaris 65                     |
| GUALIS 55, 79                            | intercotylaris 56, 111                 |

| Area 47 lig. elastici 55, 87              | Artc. paraglosso-basihyalis 139, 154   |
|-------------------------------------------|----------------------------------------|
| muscularis aspera 49, 81                  | procrico-arytenoidea 259               |
| parahippocampalis 505                     | procrico-cricoidea 259, 266            |
| postrema 496, 510                         | procrico-cricoidea dorsalis 259, 266   |
| pretectalis 502                           | propygostylaris 140, 158               |
| pretectalis diffusa 502                   | pterygobasipterygoidea 138, 149        |
| septalis 505                              | pterygopalatina 138, 149               |
| temporalis 589, 598                       | pterygorostralis 138, 149              |
| temporoparieto-occipitalis 505            | quadrato-articularis 151               |
| tuberculata tendinis 190, 196, 222        | quadrato-quadratojugalis 134, 137, 149 |
| ventralis (of Tsai) 500                   | quadrato-squamoso-otica 137, 149       |
| ventralis thalami 502, 523                | quadratomandibularis 138, 150          |
| Areae articulares vertebrales 63, 107     | quadratopterygoidea 137, 149           |
| et foveae retinae 589, 598                | radiocarpalis 142                      |
| interpulvinares 22, 33                    | radioulnaris proximalis 142            |
| Armpit 12                                 | sellaris 136, 146                      |
| Artc. acrocoracoclavicularis 141, 161     | sternocoracoidea 141, 160              |
| atlanto-occipitalis 139, 156              | sternocostalis 140, 159                |
| atlantodentalis 140                       | tibiofibularis 144, 169                |
| basihyo-urohyalis 139, 155                | tibiotarso-tarsometatarsalis 171       |
| cartilago-tibiotarsalis 144, 170          | ulnocarpalis 142                       |
| cerato-basihyalis 139, 155                | vomerorostralis 137, 148               |
| coraco-scapulo-humeralis 141              | zygapophysialis 139, 140, 157, 186     |
| coracoscapularis 140, 141, 161            | Artcc. atlantoaxiales 140, 157         |
| costotransversaria 140, 157               | carpo-carpometacarpales 142, 165       |
| coxocapitalis 144                         | intercarpales 142                      |
| coxotrochanterica 144                     | interphalangeales 145                  |
| crico-cricoidea dorsalis 259, 267         | metacarpophalangeales 143, 166         |
| ectethmomandibularis 138, 153             | metatarsophalangeales 145, 173         |
| epi-ceratobranchialis 139 155             | ulnocarpalis et radiocarpalis 142      |
| femorofibularis 144, 169                  | Arteria 409                            |
| femoropatellaris 144                      | AXILLARIS 420, 462                     |
| femorotibialis 144, 169                   | CAROTIS COMMUNIS 417, 425, 462         |
| humeroradialis 142                        | CAROTIS EXTERNA 419, 429, 460, 462     |
| humeroulnaris 142                         | CAROTIS INTERNA 417, 426, 460          |
| intercoracoidea 140, 160                  | CELIACA [COELIACA] 420, 408, 465       |
| intercorporalis139, 155                   | ILIACA EXTERNA 421, 433, 464           |
| intercorporea 140                         | ARTERIA ILIACA INTERNA 423,            |
| intercricoidea dorsalis 259, 267          | 436, 467                               |
| interlaterosphenoidalis 136               | ISCHIADICA 422, 433, 466, 467          |
| interphalangealis digiti majoris 143, 167 | MEDIANA CAUDAE 423, 464                |
| interphalangealis lateralis 143           | MESENTERICA CAUDALIS 423, 464          |
| intertarsalis 145, 167, 171, 184          | MESENTERICA CRANIALIS 421, 464         |
| jugolacrimalis 137, 148                   | OPHTHALMICA EXTERNA 418, 428,          |
| mandibulosphenoidalis 138, 150            | 460                                    |
| mesotarsalis 171                          | POPLITEA 422, 434                      |
| metacarpophalangealis alulae 143, 166     | pulmonalis 262, 416, 424               |
| metacarpophalangealis digiti majoris 143  | RADIALIS 420, 430, 463                 |
| metacarpophalangealis digiti minoris 143  | RENALIS CRANIALIS 421, 464             |
| notariosynsacralis 140, 158               | SUBCLAVIA 419, 464                     |
| palatorostralis 137, 150                  | ULNARIS 420, 463                       |
|                                           | , , ,                                  |

| ARTERIAE 416                                                                      | Axis visualis centralis 588, 594                                       |
|-----------------------------------------------------------------------------------|------------------------------------------------------------------------|
| CORONARIAE 416, 424, 457                                                          | visualis temporalis 588, 594                                           |
| MEDULLAE SPINALIS 423                                                             | visus 588, <i>594</i>                                                  |
| ovaricae 370, 376, 387                                                            | Axon 258                                                               |
| Arteries, extracranial 460                                                        | Axonema 347, 352, 361                                                  |
| intracranial 461                                                                  |                                                                        |
| of neck 462                                                                       | Barba pennae 19, 25, 40                                                |
| of tail region 467                                                                | Barbae umbilicales 18                                                  |
| of wing <b>463</b>                                                                | Barbicella 19, 26                                                      |
| spinal cord 423, 436                                                              | Barbula distalis 19, 26, 39, 40                                        |
| Arteriola 409                                                                     | proximalis 19, 26, 39, 40                                              |
| glomerularis afferens 332, 339                                                    | rami 19                                                                |
| glomerularis efferens 332, 339                                                    | rhachidialis 19, 26                                                    |
| Arteriolae intraparabronchiales 262, 280                                          | stylosa 19, 26                                                         |
| rectae 332, <i>339</i>                                                            | Basibranchiale caudale 55, 80                                          |
| Articulatio 135, 146                                                              | rostrale 55, 80                                                        |
| composita 135                                                                     | Basicranium 71                                                         |
| condylaris 136                                                                    | Basihyale 55, 80                                                       |
| ellipsoidea 136                                                                   | Basis 47                                                               |
| plana 135                                                                         | barbule 19, 26                                                         |
| simplex 135                                                                       | ceci 305, 315                                                          |
| spheroidea 136                                                                    | cochleae 592                                                           |
| trochoidea 136                                                                    | columellae 593                                                         |
| OMALIS 141, <i>16</i> 2, <b>179</b>                                               | cordis 409, <i>412</i>                                                 |
| ARTICULATIONES MANDIBULI ET                                                       |                                                                        |
|                                                                                   | pericardii 251, 252                                                    |
| OSSIS QUADRATI 138, <b>177</b><br>MAXILLAE ET PALATI 137, <i>147</i> , <b>177</b> | phalangis 67<br>phalli 349, <i>356</i>                                 |
| Articulato intertarsalis 9, 13                                                    | •                                                                      |
| Ascendens 2, 13                                                                   | pygostyli 57, 92                                                       |
|                                                                                   | rostri parasphenoidalis 48, 49, 82<br>BASIS CRANII EXTERNA 48, 71, 117 |
| Astragalus 65, 111                                                                |                                                                        |
| Atlas 56, 89, 121                                                                 | BASIS CRANII INTERNA 48                                                |
| Atrium 262, 278                                                                   | Beak, horny covering 32                                                |
| ATRIUM DEXTRUM 411                                                                | Bifurcatio trunci pulmonalis 416, 424                                  |
| SINISTRUM 411                                                                     | Brachium 9, 13                                                         |
| Auditory tubes, communications 309                                                | colliculi mesencephali 500, 502, 517                                   |
| Auricula cerebelli 495                                                            | conjunctivum 500, 502, 510                                             |
| dextra 411                                                                        | pontis 500, 510                                                        |
| sinistra 411                                                                      | Brain (encephalon) 510                                                 |
| AURIS 591                                                                         | frontal aspect 526                                                     |
| EXTERNA 593, 603                                                                  | median sagittal view 525                                               |
| INTERNA 591                                                                       | Breast 13                                                              |
| MEDIA 592                                                                         | Bronchi laterodorsales 261, 278, 298                                   |
| AXES, LINEAE ET PLANA 2                                                           | lateroventrales 261, 278, 298                                          |
| Axilla 9, 12                                                                      | mediodorsales 261, 278, 298                                            |
| Axis 56, 89, 121                                                                  | medioventrales 261, 278, 298                                           |
| bulbi 588, <i>594</i> , <b>606</b>                                                | secondary, synonyms 286                                                |
| lentis 590                                                                        | secundarii 261, 277, 286, <b>298</b>                                   |
| opticus 588, <i>594</i>                                                           | Bronchidesmus 271                                                      |
| proximodistalis 2, 15                                                             | BRONCHUS PRIMARIUS, PARS                                               |
| rostrocaudalis 2, 15                                                              | EXTRAPULMONALIS 261, 276                                               |
| visualis 588, <i>594</i>                                                          | PARS INTRAPULMONALIS 262, 277                                          |
|                                                                                   |                                                                        |

| Bronchus tertiaris 278                   | Canalis iliosynsacralis 62, 105, 129  |
|------------------------------------------|---------------------------------------|
| Bucca 301                                | interosseus distalis 66, 113          |
| Bulbus aortae 411, 416, 416              | interscalaris apicalis 592, 602, 611  |
| oculi anterior 588                       | interscalaris basalis 592, 602, 611   |
| oculi posterior 588                      | m. ambientis 64                       |
| olfactorius 495, 505, 522, <b>526</b>    | n. abducentis 49, 109                 |
| pyloricus 304, <i>314</i>                | n. coracobrachialis 60, 98            |
| rectricium 9, 13                         | n. hypoglossi 49                      |
| trachealis 259, 269                      | n. maxillomandibularis 49, 81         |
| trunci pulmonalis 416                    | neurovascularis 52                    |
| BULBUS OCULI 588, 594                    | neurovascularis mandibulae 52, 53, 74 |
| Bulla syringealis 260, 270, 293          | neurovascularis maxillae 52, 76       |
| Bursa acrocoracoidea 141, 162            | notarii 56, 90                        |
| BURSA CLOACALIS 390, 368, 393, 478,      | nutriens 47                           |
| 482, <b>489</b>                          | ophthalmicus externus 51, 71          |
| fabricii 482                             | orbitalis 49, 82                      |
| supracoracoidea 141, 162                 | pygostyli 57                          |
| synovialis 135, 190                      | semicircularis anterior 50, 592       |
| •                                        | semicircularis lateralis 50, 592, 610 |
| Calamus pennae 18, 24, 25                | semicircularis posterior 49, 50, 592  |
| scriptorius 496                          | stapedialis 71                        |
| Calcaneum 65, 111                        | [Sulcus] iliosynsacralis 62           |
| Calcar alae 9, 22, 33                    | synsacri 56, 91                       |
| metatarsale 9, 22, 33                    | triosseus 59, 97, <b>179</b>          |
| Calcaria 22                              | v. semicircularis anterioris 50       |
| Caliculus gustatorius 302, 303, 593, 603 | v. semicircularis lateralis 50        |
| Calvaria 47, 69                          | vascularis 57                         |
| CAMERA ANTERIOR BULBI 589,               | vertebralis 55, 57, 91, 85            |
| 599, 606                                 | vertebrarterialis 55, 89              |
| POSTERIOR BULBI 590,                     | Capillaris 409                        |
| 599, 607                                 | Capitulum 347                         |
| pulmonalis 411, <i>415</i> , <b>458</b>  | costae 57, 85                         |
| CAMERA VITREA BULBI 590, 599             | phalangis 67                          |
| Canales hypotarsi 65                     | oticum 54, 70                         |
| n. hypoglossi 48, 49                     | squamosum 54                          |
| portales 306, 317                        | Capsula 477, 481                      |
| semicirculares ossei 49, 592             | adrenalis 400                         |
| Canaliculi biliferes 306, 317            | articularis 136                       |
| neurovasculares 52, 53                   | fibrosa perivascularis 306, 317       |
| Canaliculus 47                           | glandulae uropygialis 18              |
| cochleae 592, 602                        | glomerularis 331                      |
| lacrimalis 590, 600                      |                                       |
| testae 373, 384                          | interna occipitalis 505<br>lentis 590 |
| Canalis 47                               |                                       |
| ALIMENTARIUS 303                         | parathyroidea 399                     |
|                                          | splenica 478                          |
| caroticus cervicalis 55, 83, 86, 426     | thymica 478                           |
| caroticus cranialis 49, 83, 119          | thyroidea 399                         |
| centralis 494, 496, 507                  | CAPUT 8, 10, 47, 190, 347             |
| extensorius 65, 110                      | caudale 194                           |
| flexorius metatarsi 145, 172             | coracoideum 195                       |
| flexorius plantae 145, 173               | craniale 194                          |

| Caput, dorsale 194, 195 femorale 196 femoris 64, 196 fibulae 65, 108, 131 fibulare 195, 196 humerale 195 humeri 60, 97 laterale 194 mediale 194 proximale 194 | Cavitas NASALIS 52, 257 oralis 301 pericardialis 251 peritonealis hepatica dorsalis 251, 253 peritonealis hepatica ventralis 251, 253 peritonealis intestinalis 252, 253 pharyngealis 302 pleuralis 251, 253 subarachnoidea 507 syringealis 260 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| radii 60<br>scapulae 59<br>tibiae 64, <i>109</i><br>ventrale 194, 195                                                                                         | thoracica 57 TYMPANICA 51, 70, 592 ventriculi dextri 411 ventriculi sinistri 411                                                                                                                                                                |
| Carina 47                                                                                                                                                     | CAVUM CRANII 48 119                                                                                                                                                                                                                             |
| sterni 58, 94                                                                                                                                                 | hepaticum dorsale peritonei 251                                                                                                                                                                                                                 |
| Carotid body 401, 426                                                                                                                                         | hepaticum ventrale peritonei 251,                                                                                                                                                                                                               |
| CARPOMETACARPUS 62, 128                                                                                                                                       | 253, <b>255</b>                                                                                                                                                                                                                                 |
| Carpus 9, 13                                                                                                                                                  | intestinale peritonei 252, 253                                                                                                                                                                                                                  |
| Cart. arytenoidea 258                                                                                                                                         | laryngis 258                                                                                                                                                                                                                                    |
| cricoidea 258                                                                                                                                                 | mandibulare 75                                                                                                                                                                                                                                  |
| cricoidea dorsalis 258, 265                                                                                                                                   | medullare 47                                                                                                                                                                                                                                    |
| membranosa dorsalis 260, 271                                                                                                                                  | NASI 52, 257                                                                                                                                                                                                                                    |
| membranosa ventralis 260, 271                                                                                                                                 | ORIS 301, <i>307</i>                                                                                                                                                                                                                            |
| procricoidea 258, 266, 290                                                                                                                                    | pericardii 251                                                                                                                                                                                                                                  |
| Cartilago 135                                                                                                                                                 | peritonei 251                                                                                                                                                                                                                                   |
| articularis 136                                                                                                                                               | pharyngis 302, 307                                                                                                                                                                                                                              |
| epiphysialis 47, 67                                                                                                                                           | pleurae 251, 253, 255                                                                                                                                                                                                                           |
| extracolumellaris 593, 602, 609                                                                                                                               | subarachnoideum 507, 524                                                                                                                                                                                                                        |
| semilunaris 170                                                                                                                                               | syringis 260                                                                                                                                                                                                                                    |
| tibialis 144, 170, <b>184</b>                                                                                                                                 | CAVUM THORACIS 57                                                                                                                                                                                                                               |
| Cartt. accessoriae 260, 271                                                                                                                                   | TYMPANICUM 51, 70, 592                                                                                                                                                                                                                          |
| bronchiales 261, 276                                                                                                                                          | Cecum 305, 315, 324, 325                                                                                                                                                                                                                        |
| bronchosyringeales 260, 270                                                                                                                                   | Cella aeria 372, 383                                                                                                                                                                                                                            |
| laryngeales 258                                                                                                                                               | Cellulae 47                                                                                                                                                                                                                                     |
| laryngis 258                                                                                                                                                  | A 400, 402                                                                                                                                                                                                                                      |
| membranosae 260                                                                                                                                               | B 400, 402                                                                                                                                                                                                                                      |
| syringeales 260                                                                                                                                               | D 400, 402                                                                                                                                                                                                                                      |
| tracheales 259, 268                                                                                                                                           | endocrinae mucosae digestorium 400                                                                                                                                                                                                              |
| tracheosyringeales 260, 270                                                                                                                                   | F 400, 402                                                                                                                                                                                                                                      |
| Casque 10                                                                                                                                                     | insularum 400, 402                                                                                                                                                                                                                              |
| CAUDA 9, 13, 258                                                                                                                                              | pneumaticae 48, 51, 68                                                                                                                                                                                                                          |
| Caudalis 1, 3, 6                                                                                                                                              | spermatogenicae 347                                                                                                                                                                                                                             |
| Cavitas 47 articularis 136                                                                                                                                    | strati granulosi 370, 374<br>thecales 370, 375                                                                                                                                                                                                  |
| atrii dextri 411                                                                                                                                              | Centralis 2, 3                                                                                                                                                                                                                                  |
|                                                                                                                                                               | Centrifugalis 2, 3                                                                                                                                                                                                                              |
| atrii sinistri 411<br>CRANII 48                                                                                                                               | Centriolum distale 347                                                                                                                                                                                                                          |
| glenoidalis 59, 141, 161, 162                                                                                                                                 | proximale 347                                                                                                                                                                                                                                   |
| laryngealis 258                                                                                                                                               | Centripetalis 2, 3                                                                                                                                                                                                                              |
| medullaris 47                                                                                                                                                 | Centrum germinale 477, 481                                                                                                                                                                                                                      |
| modulidits 4/                                                                                                                                                 | Contrain germinate 4/1, 401                                                                                                                                                                                                                     |

| Centrum latebrae 372, 382                | Collum femoris 64                     |
|------------------------------------------|---------------------------------------|
| tendineum 304, 313, 322                  | folliculi 23                          |
| Cera 8, 12, 21, 32                       | latebrae 372, 382                     |
| Ceratobranchiale 55                      | scapulae 59, 96                       |
| CEREBELLUM 495, 499, 525, 527            | Colon 305, 316                        |
| lobules 528                              | Columella 49, 592, 602, 610           |
| sagittal view 528                        | Column of Lenhossek 512               |
| Cerebrum 495, 505                        | COLUMNA VERTEBRALIS 55, 85, 123       |
| Cervix 12, 47                            | Comb 10                               |
| Chalaza 372, 382                         | Combining forms, arthrological terms  |
| Chevron bones 91                         | 135, <i>164</i>                       |
| Chiasma opticum 495, 503, 549, 557       | Commissura alba 494, 496, 507         |
| Choana 257, 263, 301, 319                | caudalis 500                          |
| lymphoreticularis 477, 481, 487          | caudalis [posterior] 501              |
| tympani 558, 562, 567, <b>575</b>        | cerebellaris 500                      |
| Chordae tendineae 409                    | grisea 494, 496, 531                  |
| Choroidea 588, 596                       | habenularis 505                       |
| Cilia palpebralia 590                    | infima 496                            |
| Cilium 258                               | interarchistriatica 522               |
| dorsale 19, 27                           | pallii 505                            |
| ventrale 19, 27                          | palpebrarum nasalis 590               |
| Cingulum periectostriaticum 505, 519     | palpebrarum temporalis 590            |
| Circulus arteriosus 409                  | rostralis [anterior] 505, 522         |
| arteriosus ciliaris 589, 597             | tectalis 500, 501                     |
| arteriosus iridis 589, 597               | Commissurae venti 390, 394            |
| ciliaris 418, <i>429</i>                 | Complexus isthmi 501                  |
| iridicus 418, <i>429</i>                 | COMPLEXUS JUXTAGLOMERULARIS           |
| uropygialis 18, 20, 30                   | 331, <i>338</i>                       |
| venosus 409                              | m. deltoideus 194, 214                |
| venosus portalis 332                     | olivaris caudalis 496, 511, 518       |
| [venosus] portalis renalis 443           | opticus principalis thalami 502, 520  |
| Cisterna 409                             | paleostriaticus 505, 519, 522         |
| extratesticularis 347, 350               | spiriformis 502, 520                  |
| intracapsularis 347, 350                 | Concavitas 47                         |
| intratesticularis 347, 350               | infracristalis 62, 63, 105            |
| lymphatica basis phalli 349, 357         | lateralis 55                          |
| lymphatica corporis phalli 349, 358, 366 | palati 51                             |
| scalae vestibuli 592                     | Concha nasalis caudalis 258, 264, 593 |
| vestibularis 258, 264                    | nasalis media 258, 263                |
| Cisterneae subarachnoideae 507           | nasalis rostralis 258, 263            |
| CLAVICULA 59, 94, 124                    | nasalis septalis 258, 264             |
| Claws <i>33</i>                          | septalis 593                          |
| CLOACA 306, 390, 391, 368                | Conchae nasales 52, 76                |
| Cloaca, interior 363, 367, 368           | Condylus 47                           |
| Coccyx 57, 92                            | caudalis 54, 79                       |
| Cochlea 50, 592, 602, 611                | dorsalis humeri 60, 99                |
| Colliculus mesencephali 500, 516, 517    | dorsalis ulnae 60, 101                |
| Colloidum thyroideum 399                 | lateralis 54, 65, 79, 108, 110        |
| COLLUM 9, 12, 18, 23, 47                 | medialis 54, 65, 108, 110             |
| bursae cloacalis 390, 393                | occipitalis 48, 49, 80                |
| costae 57                                | oticum 54                             |
|                                          |                                       |

| G 11                                         | G 500 505                                        |
|----------------------------------------------|--------------------------------------------------|
| Condylus pterygoideus 54                     | Cornea 588, 595                                  |
| quadraticus 53, 79                           | Cornu 55                                         |
| rostralis 54, 79                             | branchiale 55                                    |
| squamosum 54                                 | caudale 144, 145                                 |
| ventralis humeri 60, 99                      | craniale 144, 145                                |
| ventralis ulnae 60, 101                      | dorsale 494, 531                                 |
| Conjunctiva 591                              | ventrale 494, <b>531</b>                         |
| Connexus caudalis 395, 561, 570, 580, 582    | Cornua 47                                        |
| cum chorda tympani 558, 567                  | Corona 8, 10                                     |
| cum fasciculo atrioventriculari 410          | ciliaris 588                                     |
| cum fasciculo truncobulbari 410              | Coronalis 2, 3                                   |
| cum g. cervicali craniali 558, 559, 562, 563 | Corpora adiposa [Panniculus adiposus] 18, 24, 37 |
| cum g. ciliari 557, 558                      | Corpora para-aortica 416, 424, 594               |
| cum g. ethmoidali 557, 558, 562              | Corpus 47, 61, 258, 265                          |
| cum g. sphenopalatino 562                    | Corpus adiposum abdominale laterale 18           |
| cum n. abducenti 557, 562                    | adiposum abdominale medioventrale 18             |
| cum n. accessorio 563                        | adiposum abdominale transversum 18               |
| cum n. cervicali 558                         | adiposum coracoclaviculare 18                    |
| cum n. cervicali primo 559, 568              | adiposum dorsocervicale 18                       |
| cum n. cervicali secundo 559                 | adiposum femorale caudale 18                     |
| cum n. faciali 559, 564, 557, 559            | adiposum femorale craniale 18                    |
| cum n. glossopharyngeo 558, 559,             | adiposum iliocaudale                             |
| 562, 564                                     | [C.a.caudofemorale] 18                           |
| cum n. hyomandibulari 562                    | adiposum ischiopubicum 18                        |
| cum n. hypoglosso 559, 564                   | adiposum laterocervicale 18                      |
| cum n. hypoglossocervicali 562, 563          | adiposum mesenteriale 18, 24                     |
| cum n. infraorbitali                         | adiposum ophthalmicum 18                         |
| cum n. mandibulari 562, 566                  | adiposum orbitae 18, 590                         |
| cum n. maxillari 562                         | adiposum paracloacale 18, 24                     |
| cum n. nasopalatino 562                      | adiposum pectorale 18                            |
| cum n. oculomotorio 557, 562                 | adiposum plantare profundum 18, 24,              |
| cum n. ophthalmico 557, 562                  | 145, <i>173</i>                                  |
| cum n. palatino 557, 558, 562, 566, 571      | adiposum plantare superficiale 18, 24,           |
| cum n. trigemino 564                         | 145, <i>173</i>                                  |
| cum n. trochleari 557                        | adiposum retropatellare 144, 170                 |
| cum n. vago 559, 563, 564                    | adiposum spinale 18                              |
| cum plexu celiaco 563                        | adiposum subalare 18                             |
| interganglionares 564                        | adiposum synsacrale 18                           |
| n. mandibulari 562, 567                      | adiposum thoracicum laterale 18                  |
| n. maxillari 562, 567                        | adiposum tracheale 18                            |
| Connexus/Ramus communicans, usage 556        | atlantis 56                                      |
| vagoglossopharyngealis 562, 563,             | aureum 370, <i>376</i>                           |
| <i>571</i> , <b>577</b>                      | axis 56                                          |
| Contour feather 28                           | carpometacarpi 62                                |
| Conus arteriosus 411                         | cavernosum linguae 302, 308                      |
| mamillae 373, 382                            | cavernosum palatae 302, 308                      |
| COPRODEUM 390, 391, 368, 367                 | ceci 305, <i>315</i>                             |
| COR 409, 457                                 | centrale lentis 590                              |
| Cor lymphaticum 477, 479, 488, <b>491</b>    | cerebelli 499                                    |
| CORACOIDEUM 59, 124                          | ciliare 588, 596, 597, 606                       |

| Corpus claviculae 59                      | Cortex piriformis 506, 522         |
|-------------------------------------------|------------------------------------|
| coracoidei 59                             | prepiriformis 506                  |
| costae 57                                 | renis [renalis] 330, 333, 334      |
| femoris 64, 108                           | thymicus 478                       |
| fibrocartilagineum 349, 356, 364          | Costa sternalis 57                 |
| fibulae 65                                | vertebralis 57                     |
| gelatinosum 494, 507, 530                 | COSTAE 57, 92                      |
| gl. pinealis 399                          | Cotilus 591                        |
| humeri 60                                 | Cotyla 47, 67                      |
| ilii 63, <i>106</i>                       | articularis 67                     |
| iridocytorum 589, 597                     | caudalis 52                        |
| ischii 63                                 | dorsalis 60, 100                   |
| juxtarestiforme 496                       | humeralis 60                       |
| linguae 302                               | lateralis 52, 66, 79               |
| notarii 56, 91                            | medialis 52, 66                    |
| ossis premaxillare 53                     | quadratica otici 50, 70            |
| ossis quadrati 54                         | quadratica squamosi 48, 50, 51, 83 |
| para-ampullare 390, 393                   | quadratojugalis 54, 79             |
| phalangis 67                              | rostralis 52, 79                   |
| phalli 349, 356, 367                      | scapularis 59, 96                  |
| phallicum laterale 348, 354               | ventralis 60, 100                  |
| phallicum medianum 348, 354               | Cotylae fossae articularis 52, 74  |
| pineale 402                               | quadraticae otici 50               |
| pubis 63                                  | Coxa 9, 13                         |
| pygostyli 57                              | Cranialis 1, 2, 3, 6               |
| radii 60                                  | craniopharyngealis 49, 82          |
| restiforme 496, 500, 510                  | CRANIUM 8, 10, 47, 68, 114-119     |
| scapulae 59, 96                           | Crissum 9, 13                      |
| sterni 58, 92                             | Crista 47                          |
| synsacri 57, 91                           | ampullaris anterior 591, 601, 609  |
| tarsometatarsi 66, 110                    | ampullaris lateralis 591, 601      |
| tibiotarsi 65                             | ampullaris posterior 591, 601      |
| trapezoideum 498, 514                     | articularis sternalis 59, 97       |
| ulnae 60                                  | articularis tibialis 65            |
| vasculare phalli 348, 355, 356            | basilaris transversa 49            |
| vasculare phalli 390                      | bicipitalis 60, 98                 |
| ventriculi 304, 312                       | caudalis fossae renalis 63         |
| vertebrae 55, 85                          | cnemialis cranialis 64, 109        |
| vitreum 590, 598, 599                     | cnemialis lateralis 64             |
| vomeris 53                                | deltopectoralis 60, 98             |
| Corpuscle, tactile 605                    | dorsalis 19, 25, 55                |
| Corpuscula thymica 478, 482               | dorsalis notarii 56                |
| Corpusculum chromatoideum 347, <i>351</i> | dorsalis synsacri 56               |
| bicellulare 605                           | dorsolateralis 55, 77, 129         |
| discoidale multicellulare 593, 604, 605   | dorsolateralis ilii 63, 107        |
| lamellosum avium 593, 594, 604, 605       | fibularis 65                       |
| nervosum terminale 593, 594               | fossae parabasalis 48, 49          |
| RENALE 331                                | frontalis interna 48, 50, 69       |
| Cortex 19, 25, 47                         | iliaca dorsalis 63, 106            |
| cerebelli 500                             | iliaca intermedia 63, 106          |
| ovarii 370, <i>373</i>                    | iliaca lateralis 63, 106           |
|                                           |                                    |

| Crista iliaca obliqua 63, 106          | Crus dextrum fasciculi 410                |
|----------------------------------------|-------------------------------------------|
| iliosynsacralis 62, 105                | dorsale fossae 60, 99                     |
| incisurae capitis 98                   | laterale 145                              |
| intercotylaris 60, 52                  | longum 60, 103                            |
| intermedia 59                          | mediale 145                               |
| intermedia hypotarsi 66, 112           | membranaceum ampullaria 591, 601          |
| lateralis 53, 78                       | membranaceum commune 591, 601, 609        |
| lateralis carinae 58, 94               | membranaceum simplex 591, 601             |
| lateralis hypotarsi 66, 112            | osseum ampullaria 592                     |
| lateralis sulci patellaris 64, 108     | osseum commune 592                        |
| lig. acrocoracoacromiali 59, 95        | osseum simplex 592                        |
| m. supracoracoidei 60, 98              | sinistrum fasciculi 410                   |
| marginalis 48, 72                      | ventrale fossae 60, 99                    |
| medialis 53, 77                        | Cryptae intestinales 305                  |
| medialis hypotarsi 66, 112             | Cubitus 9, 13                             |
| medialis sulci patellaris 64, 108      | Culmen 8, 11                              |
| mediana carinae 58                     | Cupula gelatinosa 591                     |
| medianoplantaris 66, 112               | Curvatura major 304, 312                  |
| nasalis 258, 264                       | minor 304, 312                            |
| neglecta 591, 601                      | Cuspis dextra 411, 415                    |
| nuchalis sagittalis 48, 49, 69, 118    | dorsalis 411                              |
| nuchalis transversa 48, 50, 69, 118    | sinistra 411                              |
| patellaris 64, 109                     | Cuticula 373, 384                         |
| pennae 8, 10                           | cornificata linguae 302, 308, 309         |
| plantaris lateralis 66                 | gastris 304, 313                          |
| plantaris medialis 66                  | CUTIS 17, 22                              |
| spinosa notarii 56                     | Cytopodium 331, 334                       |
| spinosa synsacri 56, 91                | Cytotrabecula 331, 334                    |
| sterni 94                              |                                           |
| supracondylaris lateralis 64           | Declive 499                               |
| supracondylaris medialis 64, 109       | Decuss. cochlearis dorsalis 496           |
| temporalis 49                          | n. oculomotorii 501, 517                  |
| tentorialis 48                         | n. trochlearis 498                        |
| tibiofibularis 64, 108, 130            | pedunculi cerebellaris rostralis 501      |
| tomialis 52, 53, 76                    | supramammillaris 504                      |
| transversa fossae 52, 75, 114          | supraoptica 503                           |
| transverso-obliqua 55, 87              | tr. cerebellobulbaris 500                 |
| trochanteris 64                        | tr. infundibularis 504                    |
| tympanica 54, 69                       | tr. rubrospinalis 501                     |
| vallecularis 48, 50, 84                | tr. tectospinalis 501                     |
| ventralis 19, 25, 53, 57, 78, 258, 265 | trochlearis 501                           |
| ventralis corporis 55, 86              | Dendritum 258                             |
| ventralis notarii 56                   | Dens 56, 90                               |
| ventralis synsacri 57                  | nodosus 19, 26                            |
| ventrolateralis 55, 87                 | ventralis 19, 26, 40                      |
| [Proc.] ventralis corporis 55          | Dentes 52, 80, 301                        |
| Cristae laterales ansae 55             | Depressio epicondylaris lateralis 65, 111 |
| trochleae 65                           | epicondylaris medialis 65, 111            |
| Crop 12, 310                           | frontalis 47, 69                          |
| diverticula 321                        | ligamentosa 61, 102                       |
| Crus 9, 13, 47                         | radialis 61, 101                          |
| breve 60, 103                          | Dermis [Corium] 17, 22                    |

| Descendens 2, 3                           | Dorsum linguae 302                        |
|-------------------------------------------|-------------------------------------------|
| Dexter 2, 3                               | sellae 49, 82                             |
| Diaphragma sellae 507                     | trunci 9, 13                              |
| Diaphysis 47, 67                          | Ducti intercalati 307                     |
| Diapophysis 87                            | interlobulares 307                        |
| Diastema remigium secundarium 20, 31      | intralobulares 307                        |
| DIENCEPHALON 502, 525                     | Ductuli biliferes 306, 318                |
| transverse sections 543, 544, 547,        | epoophorontis transversi 370, 376         |
| 548, 549                                  | glandularum oralium 302, 309              |
| Digitationes remigales 146, 142, 143, 175 | glandularum pharyngealium 303, 310        |
| Digiti 10, 13, 14                         | interlobulares 306, 317                   |
| pedis II-IV 2-4, 10, 14                   | Ductulus aberrans 348, 353                |
| Digits of wing, nomenclature 45           | conjungens 348, <i>353</i>                |
| Digitus pedis I [Hallux] 10               | efferens distalis testis 348, 353         |
| Diplomicrotubulus periphericus 347, 352   | efferens proximalis testis 348, 353       |
| Discus 47, 135                            | paradidymidis 348, 353                    |
| articularis 136                           | Ductus cochlearis 592, 601, 602, 609, 611 |
| germinalis 372, 381                       | colligens 331, 333, 338                   |
| intervertebralis 139, 156                 | cysticoentericus 306, 318                 |
| latebrae 372, 382                         | DEFERENS 348                              |
| pygostyli 57, 92                          | endolymphaticus 591, 601                  |
| Distalis 2, 3                             | epididymidis 348, 353                     |
| Diverticula cardiaca 262, 281             | epoophorontis longitudinalis 370, 376     |
| ceci 305, 315                             | gl. lacrimalis 591                        |
| cervicocephalica 258, 265                 | gl. membranae nictitantis 591             |
| extrathoracica 262, 282                   | glandulae uropygialis 18, 23, 30          |
| femoralia 263, 282                        | hepaticus dexter 306, 318                 |
| intermuscularia 262, 281                  | hepaticus sinister 306, 318               |
| intrathoracica 262, 281                   | hepatocysticus 306, 318                   |
| perirenalia 263, 282                      | hepatoentericus accessorius 306, 318      |
| sternalia 262, 281                        | hepatoentericus communis 306, 318, 327    |
| subcutanea 262, 281                       | hepatoentericus dexter 306, 318           |
| vertebralia 262, 281                      | lobi lateralis 258                        |
| Diverticulum 47                           | lobi medialis 258                         |
| axillare 262, 282                         | nasolacrimalis 591                        |
| dextrum ingluviei 303, 310                | pancreaticus dorsalis 307                 |
| humerale 263, 282                         | pancreaticus tertius 307, 318             |
| medianum ingluviei 303, 310               | pancreaticus ventralis 307, 318           |
| proventriculi 303, 311, 223               | reuniens 591, 601                         |
| sinistrum ingluviei 303, 310              | sacculocochlearis 591, 601, 611           |
| subpectorale 263, 282                     | semicirculares 591, 600, 601              |
| subscapulare 262, 282                     | semicircularis anterior 591               |
| suprahumerale 263, 282                    | semicircularis lateralis 591              |
| vitellinum 305, 315                       | semicircularis posterior 591              |
| Divisio renalis caudalis 330, 333, 341    | utriculosaccularis 591, 601               |
| CRANIOSACRALIS 562                        | vitellinus 305                            |
| renalis cranialis 330, 333, 341           | Duodenum 305                              |
| renalis media 330, 333, 341               | Dura mater encephali 506, 524             |
| THORACOLUMBALIS 563                       | mater propria 506                         |
| Dorsalis 1, 2, 3                          | mater spinalis 506, 524                   |
| Dorsum 9, 13                              |                                           |
| caudae 9, 13                              | Ear, external 603                         |
|                                           |                                           |

| Ectepicondylus 60, 100                      | Epitheliocytus nondifferentiatus 304, 305     |
|---------------------------------------------|-----------------------------------------------|
| Ectostriatum 506, 522                       | oxynticopepticus 304, 312                     |
| Efferens 2, 3                               | respiratorius 261, 262, 279                   |
| Egg (testa), parts of 388                   | squamosum 261, 262, 303                       |
| shell 383, 389                              | sustenans 258, 347, 350                       |
| shell membranes 389                         | Epithelium 391                                |
| Elbow 13                                    | anterium iridis 589, 597                      |
| joint 163, <b>180</b>                       | corneae externum 588, 595                     |
| Eminentia 47                                | corneae internum 588, 595                     |
| aqueductus vestibuli 48                     | ductus semicircularis 591                     |
| canalis semicircularis 48                   | olfactorium 258, 593                          |
| costolateralis 55, 56, 57, 85               | pseudostratificatum columnare 332             |
| intercotylaris 66                           | pseudostratificatum columnare ciliatum        |
| mediana 400, 404, 503, 504, 521             | 258, 259, 260, 261                            |
| sagittalis 84, 495, 505, <b>526</b>         | simplex columnare ciliatum 260                |
| venti 9, 13, 390, 394                       | simplex cuboideum/columnare 331, 336          |
| ENCEPHALON 495, 510, 526                    | simplex squamosum 260                         |
| ENDOCARDIUM 410                             | Epithelium spermatogenicum 347                |
| Endocrinocytus gastrointestinalis 303, 304, | stratificatum                                 |
| 305, 311                                    | cuboideum/pseudostratificatum                 |
| interstitialis 347, 370, 374                | columnare 331, <i>338</i>                     |
| myoideus 331, 338                           | stratificatum squamosum 302                   |
| respiratorius 259, 261, 270                 | stratificatum squamosum noncornificatum       |
| Endolympha 591                              | 258, 260                                      |
| Endotheliocytus fenestratus 331             | superficiale 370, 373                         |
| Entepicondylus 60, 100                      | Epoophoron 370, 376                           |
| Epibranchiale 55                            | Equator 588, 594                              |
| EPICARDIUM 410                              | lentis 590                                    |
| Epicleideum 59, 95, 159                     | ESOPHAGUS 303, 307                            |
| Epicondylus 47                              | Excavatio 47                                  |
| dorsalis 60, 100                            | Exocrinocytus caliciformis 258, 259, 260,     |
| lateralis 64, 65                            | 261, 269, 305, 371, 391                       |
| medialis 64, 65                             | columnaris 304, 305, 306, 313                 |
| ventralis 60, 100                           | cum granulis acidophilicis 305, 316           |
| Epidermis 22, 348                           | pancreaticus 307                              |
| EPIDIDYMIS 17                               | Externus 2, 3                                 |
| Epimysium 190                               | Extremitas 47                                 |
| Epiphysis 47, 67                            | Extremitas caudalis 330, 347, 348, 353,       |
| Epiphysis cerebri 402                       | 370, <i>373</i>                               |
| EPITHALAMUS 504                             | caudalis scapulae 59                          |
| Epitheliocytus bacillifer 589               | caudalis synsacri 57                          |
| basalis 258, 259, 260, 261                  | cranialis 330, 347, 348, 353, 370, <i>373</i> |
| centroacinosus 307                          | cranialis scapulae 59                         |
| ciliatus 258, 259, 260, 261, 371            | cranialis synsacri 56                         |
| columnaris 304, 305, 312, 391               | distalis carpometacarpi 62                    |
| conifer 589                                 | distalis femoris 64                           |
| cuboideus 261                               | distalis humeri 60                            |
| granularis 262, 279                         | distalis radii 61                             |
| hepatis 306                                 | distalis tarsometatarsi 66                    |
| maculae densae 331                          | distalis tibiotarsi 65                        |
| microvillosus 259, 331, 336                 | distalis ulnae 61                             |
| neurosensorius olfactorius 258, 593         | dorsalis costae 57                            |

77, 78

Extremitas omalis claviculae 59, 95 Facies articularis patellaris 64 articularis phalangealis 62 omalis coracoidei 59, 95 proximalis carpometacarpi 62, 103 articularis premaxillaris 53 proximalis femoris 64 articularis ptervgoidea 49, 53 proximalis humeri 60 articularis quadratica 53 proximalis radii 61 articularis radialis 61 proximalis tarsometatarsi 66 articularis radiocarpalis 61, 62, 102 proximalis tibiotarsi 65 articularis scapularis 59, 96 proximalis ulnae 60 articularis sternalis 58 sternalis claviculae 59 articularis tibialis 65, 109 sternalis coracoidei 59 articularis ulnaris 61 ventralis costae 57, 58 articularis ulnocarpalis 62 Eye, interior structure 606 articularis vomeralis 49, 53 caudalis 60 muscles, extrinsic 608 shape of 586, 594 caudoventralis 61 cerebellaris 49 Eye, temporal and nasal parts 586 Eyelid 12 cerebralis 49, 50 conjunctivalis 590 FACIES 8, 10, 47, 51, 68 corporis tarsometatarsi 66, 112 anterior lentis 590 corporis ulnae 101 anularis [annularis] 304, 312 costalis 59, 261, 276 articularis 47, 55 cranialis 61 articularis acetabularis 64 cutanea 590 articularis acrocoracoidea 59 dorsalis 66, 330, 370, 373 articularis acromialis 59 dorsalis alae 8, 10 articularis alularis 62 dorsalis corporis 55 articularis antitrochanterica 64, 108 dorsalis synsacri 56 articularis atlantica 56 dorsocaudalis 409, 412 articularis axialis 56 ET MARGINES 8, 10 articularis basipterygoidea 53 gastrocnemialis 64, 110 articularis caudalis 55, 57 hepatica 409, 412 articularis clavicularis 59 lateralis 59, 63, 347 articularis coracoidea 58, 95 lateralis carinae 58 articularis costalis 58, 93 lateralis corporis 55 articularis cranialis 55, 57 lateralis synsacri 57 articularis dentalis 56 medialis 57, 347 articularis digitalis major 62 medialis [F. pulmonalis] 57 articularis digitalis minor 62 medullae oblongatae 49 articularis femoralis 63, 64-65 muscularis sterni 58, 93 articularis fibularis 64 nasalis 50 articularis frontonasalis 50, 84 nuchalis 48, 49 articularis furculae 58 orbitalis 49, 50 articularis humeralis 59, 95 palmaris 8, 10 articularis intercoracoidea 59, 97 parietalis 306 articularis intercostalis 57, 58 plantaris 8, 66 articularis lateralis 64, 109 posterior lentis 590 articularis maxillaris 53 pulmonalis 57, 409, 412 articularis medialis 64, 109 renalis ilii 63 articularis metacarpalis 61, 62 septalis 261, 276 articularis palatina 49, 53 sternalis 409, 412 articularis parasphenoidalis 52, 53, 75, subcaudalis 9, 13

subcutanea lateralis 66, 112

| Facies subcutanea medialis 66, 112         | Fenestra 47                      |
|--------------------------------------------|----------------------------------|
| tecti mesencephali 49                      | antorbitalis 51, 68              |
| temporalis 49                              | caudalis mandibulae 52, 74       |
| tendinea 304, 312                          | centralis 139                    |
| tympanica 54, 79                           | cochleae 51, 70, 592             |
| ventralis 330, 333, 370, 373               | ischiopubica 62, 104             |
| ventralis alae 8, 10                       | lateralis 58                     |
| ventralis corporis 55                      | medialis 58                      |
| ventrocranialis 409, 412                   | orbitonasalis 51, 68             |
| vertebralis 261, 276                       | palatina 51, 69                  |
| visceralis 306                             | pseudorotunda 51, 70             |
| visceralis sterni 56, 57, 58, 93           | rostralis mandibulae 52, 74      |
| visceralis synsacri 57, 91                 | vestibuli 51, 592, 610           |
| volaris 8, 10                              | Fenestrae intercristales 56, 86  |
| Fasc. cuneatus 494, 496                    | intertransversariae 56, 57, 91   |
| diagonalis (of Broca) 506                  | sterni 58, 93                    |
| dorsalis 559, 561, 569, 578                | Fibrae arcuatae externae 496     |
| dorsalis, [n. peroneus] 570                | arcuatae superficiales 496       |
| dorsolateralis 495, 509                    | basilares 477, 480, 486          |
| gracilis 494, 496                          | fixationes 477, 480, 486         |
| lateralis prosencephali 504, 506, 520, 522 | lentis 590                       |
| longitudinalis medialis 495, 496, 498,     | radiales 588, 597                |
| 501, <i>510</i>                            | zonulares 588, 596, 599          |
| medialis prosencephali 504, 506, 519       | Fibrocartilago 135               |
| of Broca 506                               | atlantis 139                     |
| proprius 495                               | dorsalis 592                     |
| tegmentalis 501, 518                       | humeroscapularis 141, 162        |
| uncinatus 496, 498, 500                    | ventralis 592                    |
| ventralis 560, 561, 569, 578               | FIBULA 65, 131                   |
| ventralis, [n. tibialis] 570               | Fibulare 65, 111                 |
| Fascia 190                                 | Fibularis 2, 3                   |
| Fasciculi plexus 559, 569                  | Field L 506                      |
| Fasciculus atrioventricularis 410, 414     | Fila olfactoria 505              |
| muscularis 190                             | radicularia 559                  |
| truncobulbaris 410, 414                    | Filopluma 19, 28                 |
| Fat bodies 24                              | Fimbriae infundibulares 371, 378 |
| Feather aftershaft 27                      | Fissura 47                       |
| bristle 28                                 | cerebelli 495                    |
| covert 30                                  | cerebellotectalis 495            |
| down 28                                    | cerebrocerebellaris 495          |
| emargination 27                            | interhemispherica 495, 505       |
| flight 28, 31                              | interpalatina 51                 |
| friction zone 27                           | mediana [ventralis] 494, 496     |
| ligaments 133                              | precentralis 500                 |
| ligaments, of wing 187                     | prepyramidalis 500               |
| parts of 24                                | prima 499, 500                   |
| powder down 28                             | secunda 499, 500                 |
| shaft 27                                   | subhemispherica 495, 522         |
| tracts 29                                  | uvulonodularis 499, 500          |
| Featherless areas 29                       | Flagellum 347, 351, 352, 361     |
| FEMUR 9, 13, 64, 130                       | Flank 13                         |
|                                            |                                  |

| Flexion zones of jaws 133, 138    | Foramen obturatum 62, 104                  |
|-----------------------------------|--------------------------------------------|
| zones of skull 178                | ophthalmicum internum 49, 82               |
| Flexura 19, 26                    | opticum 48, 51, 72                         |
| duodeni 305                       | orbitonasale laterale 51, 72               |
| duodenojejunalis 305              | orbitonasale mediale 51, 72                |
| phalli nonerecti 349, 358         | pneumaticum 47, 58, 60, 67, 99,            |
| Flocculus 499                     | 263, 282                                   |
| Folia cerebelli 495, 499, 527     | pneumaticum articulare 52, 54, 75          |
| Folium vermis 500                 | pneumaticum caudale 51, 71                 |
| Follicle, layers 386              | pneumaticum dorsale 51, 70                 |
| ovarian 385, 386                  | pneumaticum rostrale 51, 71                |
| Folliculus 11, 17, 18, 23         | rami occipitalis ophthalmicae externae 48  |
| atreticus 370, 376                | rostri 58, 94                              |
| lymphaticus 482                   | transversarium 55, 56, 89                  |
| postovulatorius 370, 376          | triosseum 97                               |
| throideus 399                     | v. occipitalis externae 49, 117            |
| OVARICUS 370, 374,                | vasculare distale 66                       |
| 385, 386                          | vasculare proximale 66                     |
| Fonticuli interorbitales 51, 71   | vertebrale 55, 85                          |
| orbitocraniales 51, 71            | Foramina intervertebralia 56, 57, 91       |
| Fonticulus 47                     | neurovascularia 50, 52, 53, 76             |
| occipitalis 49, 81                | pneumatica 55                              |
| Foot 13                           | venarum minimarum 411, 416                 |
| joints 185                        | Forearm 13                                 |
| Foramen 47                        | Formatio lymphoreticularis muralis externa |
| acetabuli 62, 104                 | 477, <i>481</i> , <b>488</b>               |
| ethmoidale 48, 72                 | lymphoreticularis muralis interna 477,     |
| fossae 56                         | 481, <b>488</b>                            |
| ilioischiadicum 62, 104           | lymphoreticularis parenchymatosa           |
| interbronchiale 260, 271          | 477, 482                                   |
| interosseum distale 144, 170      | reticularis lateralis mesencephali 501     |
| interosseum proximale 144, 170    | reticularis medialis mesencephali 501      |
| interventriculare 502, 506        | Fornix 506                                 |
| intervertebrale 55                | Fornix conjunctivae dorsalis 591           |
| laterale arcus 55                 | Fornix conjunctivae membranae              |
| m. columellae 51, 593, 602        | nictitantis 591                            |
| magnum 48, 69                     | Fornix conjunctivae ventralis 591          |
| n. abducentis 49                  | Fossa 47                                   |
| n. ampullaris caudalis 50         | acustica interna 48, 50, 83                |
| n. ampullaris lateralis 50        | aditus canalis neurovascularis 52, 74      |
| n. ampullaris rostralis 50        | antorbitalis 52, 68                        |
| n. cochlearis 50                  | articularis quadratica 52, 74              |
| n. facialis 50                    | auriculae cerebelli 48, 72, 119            |
| n. glossopharyngealis 49          | bulbi olfactorii 48                        |
| n. maxillomandibularis 49, 51, 81 | caudalis 52, 75                            |
| n. oculomotorii 49                | cerebelli 48, 72                           |
| n. olfactorii 48, 51              | choanalis 53, 77                           |
| n. ophthalmici 49, 51, 82         | condyloidea 56, 89                         |
| n. supracoracoidei 59             | cranii caudalis 48                         |
| n. trochlearis 49                 | cranii media 48, 72                        |
| n. vagi 49                        | cranii rostralis 48                        |
| nutriens 47                       | dorsalis 62                                |

| Fossa ejaculatoria 349, 355, 359, 390   | Fovea lig. capitis 64                  |
|-----------------------------------------|----------------------------------------|
| flexoria 65, 110                        | lig. collateralis 67                   |
| ganglii trigemini 48, 49, 119           | lig. collateralis atlantoaxialis 56    |
| glandulae nasalis 48, 50, 69            | limbica 495, 505, <b>526</b>           |
| hypophysialis 49, 119                   | m. poplitei 65                         |
| iliaca dorsalis 63                      | menisci lateralis 66                   |
| iliocaudalis 63, 107                    | temporalis 589, 598, 594               |
| infracotylaris dorsalis 66, 112         | tendinis m. tibialis cranialis 64      |
| infraorbitalis 68, 128                  | Foveae corpusculorum nervosorum 52,    |
| infratrochlearis 62, 103                | 53, <i>73</i>                          |
| lateralis mandibulae 52, 74             | ligg. collateralium 66                 |
| m. brachialis 60                        | Foveola 47                             |
| medullae oblongatae 48                  | Frenulum linguae 302                   |
| metatarsi I [hallucis] 66               | lingualis 302                          |
| olecrani 60                             | Frons 8, 10, 47                        |
| oviductalis 390, 392                    | Frontalis 2, 3                         |
| parabasalis 48, 49, 81                  | Fundus ingluviei 303                   |
| parahypotarsalis lateralis 66           | oculi 588                              |
| parahypotarsalis medialis 66            | Funiculi medullae spinalis 494         |
| pneumatica 99                           | Funiculus dorsalis 494, 495, 496       |
| pneumotricipitalis 60, 99, 126          | lateralis 494, 495, 496                |
| poplitea 64                             | musculosus 252, 371, 379               |
| renalis 62, 105                         | ventralis 494, 495, 496                |
| retropatellaris 65, 109                 | FURCULA 59, 94, 124                    |
| rhomboidea 496                          | Fusus neuromuscularis 594              |
| rhomboidea spinalis 494, 507, 510, 530  | neurotendineus 594                     |
| scalae vestibuli 592                    |                                        |
| subcondylaris 49                        | Galerum basale mamillae 373, 383       |
| subtemporalis 50, 84, 114, 202          | Galerus pulposus 18, 25                |
| supratrochlearis 62                     | Gall bladder 318                       |
| supratrochlearis plantaris 66, 103      | Ganglia adrenalia 564, 574             |
| tecti mesencephali 48                   | cloacalia 562, 582                     |
| temporalis 47, 50, 83                   | imparia 564, <i>574</i>                |
| tricipitalis 60, 99                     | mandibularia 562                       |
| trochanteris 64, 108                    | mesenterica cranialia 564, 584         |
| ventralis 53, 62, 67                    | n. intestinalis 563, 564, 584          |
| vesicae biliaris 306                    | paravertebralia 563, 577, 580          |
| vesicae felleae 306                     | rectalia 563, 573, 584                 |
| Fossae glandulares infundibuli 371, 378 | subvertebralia 564, 556                |
| renales 56                              | Ganglion celiacum 564                  |
| Fossula 47                              | cervicale craniale 564, 573, 577       |
| Fossula articularis 347, 352            | ciliare 557, 562, 565, <b>575</b>      |
| Fovea 47                                | cochleare 558, 568, 592                |
| apicis cordis 409                       | distale 562, 563, 571, 572, <b>577</b> |
| aspera 56                               | ethmoidale 558, 562, 571, 575          |
| carpalis caudalis 62, 103               | geniculi 558, 562, 566, <b>576</b>     |
| carpalis cranialis 62, 103              | lagenare 558, 568                      |
| centralis 589, 594, 598, <b>606</b>     | paracloacale 563                       |
| costalis 55, 85                         | proximale 562, 563, 571, 572, 577      |
| cranioventralis 55, 85                  | radiculare dorsale 559                 |
| ganglii vagoglossopharyngealis 48, 49,  | semilunare 565                         |
| 73, 119                                 | sphenopalatinum 558, 562, 571          |
| •                                       |                                        |

| Gangiion spinale 339                                 | Gii. mandibulares externae 302, 309      |
|------------------------------------------------------|------------------------------------------|
| trigeminale 558, 565, 575                            | mandibulares intermediae 302, 309        |
| uterovaginale 562, 573                               | mandibulares internae 302, 309           |
| vestibulare 558, 568                                 | mandibulares rostrales 302, 308          |
| Gape 10                                              | palatinae 302, 308                       |
| GASTER 303, 311                                      | parathyroideae accessoriae 399, 401      |
| Gemma gustatoria 302, 303, 593, 603                  | proventriculares profundae 303, 311      |
| Geniculum n. facialis 558                            | proventriculares superficiales 303, 312  |
| Genu 9, 13                                           | pyloricae 304                            |
| Gg. adrenalia 332, 347, 348, 371, 372                | sphenopterygoideae 303, 309, 320         |
| cloacalia 391, 395                                   | ventriculares 304                        |
| Ginglymus 136                                        | Glomera aortica 424                      |
| Gizzard (muscular stomach) 321, 322                  | corporis vascularis phalli 349, 354, 356 |
| Gl. anguli oris 302                                  | Glomerulus 331, 334, 343                 |
| maxillaris 302, 308                                  | Glomus caroticum 417, 426, 594           |
| pituitaria 495, 503, 527                             | seminale 348, 354                        |
| Gland, foam 393                                      | Glottis 258, 265, 302, 319               |
| para cloacal 393                                     | Gomphosis 135, 146                       |
| shell 378                                            | GONADUM DEXTRUM 371, 377                 |
| Glands, salivary, of mouth, pharynx 320              | Gonys 8, 11                              |
| GLANDULA ADRENALIS 400, 403                          | Grandry corpuscle 605                    |
| [Crypta] intestinalis 391                            | Granulum proacrosomaticum 347, 351       |
| lacrimalis 591, 600                                  | Griseum tectale 501, 519                 |
| membranae nictitantis 591, 600, <b>609</b>           |                                          |
| nasalis 258, 265, 609                                | Habenula perforata 592                   |
| olfactoria 258                                       | Hallux 14                                |
| PARATHYROIDEA 399, 401                               | Hamulus 19, 27                           |
| PINEALIS 399, 402, 495, 504, <b>528</b> , <b>544</b> | Hand 13                                  |
| PITUITARIA 400, 403                                  | Hassal's corpuscles 482                  |
| proctodealis dorsalis 390, 393                       | Haustra ceci 305, 315                    |
| THYROIDEA 399, 401                                   | Heart 409, <b>457</b> , <b>458</b>       |
| ULTIMOBRANCHIALIS 399, 401                           | external features 458                    |
| uropygialis 9, 17, 23, 18                            | impulse conducting system 410, 459       |
| Glandulae adrenales accessoriae 400, 403             | interior features 458                    |
| auriculares 17, 23, 593                              | Helicotrema 592, 602                     |
| externae labii venti 17, 24, 390, 394                | Hemispherium cerebelli 495, 499          |
| isthmi 371, <i>378</i>                               | Hemispherium telencephali 495, 505       |
| magni 371, <i>378</i>                                | HEPAR 306, 325, 326                      |
| mucosae 258, 259, 260, 261                           | Herbst corpuscle 604                     |
| oris 302, 308                                        | Hiatus 47                                |
| pharyngis 303, <i>308</i>                            | acetabularis 195                         |
| proctodeales laterales 390, 393                      | craniofacialis septi 51, 68              |
| tubi infundibularis 371, 378                         | interarcualis 55, 88                     |
| uterinae 371                                         | subtympanicus 51, 70                     |
| Gll. cricoarytenoideae 303, 310, 320                 | Hilum splenicum 478                      |
| duodeni 305, 316                                     | Hilus ovarii 370, 373                    |
| esophageae 303, 310                                  | pulmonalis 261                           |
| esophageales 303, 310                                | Hip 13                                   |
| ingluviei 303, 310                                   | bone 104                                 |
| intestinales 305                                     | joint 182                                |
| linguales 302, 309                                   | Hippocampus 506, <i>523</i>              |
| mandibulares caudales 302, 303, 309                  | Hoffmann von Kolliker, nuclei of 507     |
| manufoulates caudates 302, 303, 309                  | TOTAL VOIL ROTTECT, HUCICI OF 307        |

| Horizontalis 2, 3                           | Incisura caudalis 306, 317                 |
|---------------------------------------------|--------------------------------------------|
| HUMERUS 60, 97, 126                         | caudalis arcus 55, 56, 88, 90              |
| Humor aquosus 589, 590, 599                 | caudalis pelvis 62, 105                    |
| vitreus 590, 599                            | cranialis 306, <i>317</i>                  |
| Hypenation of terms 164                     | cranialis arcus 55, 56, 88                 |
| Hyperstriatum accessorium 506, 519, 523     | ductus nasolacrimalis 50                   |
| dorsale 506, 519, 522                       | foraminis ilioischiadici 63                |
| intercalatum supremum 506, 519, 522         | foraminis magni 49                         |
| ventrale 506, 522                           | foraminis obturatorii 63                   |
| Hypocleideum 59, 94                         | fossae 56                                  |
| Hypopenna 18                                | intercapitularis 54                        |
| HYPOPHYSIS 400, 403                         | intercondylaris 60, 65, 99                 |
| cerebri 495, 503, <b>527</b>                | interlobaris 306, 317                      |
| Hyporhachis 18                              | intertrochlearis lateralis 66              |
| Hypotarsus 66, 112, 132                     | intertrochlearis medialis 66               |
| HYPOTHALAMUS 503                            | lateralis 58                               |
| Hypovexillum 18                             | lobaris 306, 317                           |
|                                             | marginis caudalis 62, 104                  |
| Ileum 305, 315                              | medialis 58                                |
| Ilia 9, 13                                  | mediana condyli 49                         |
| ILIUM 63, 123, 129                          | metacarpalis 61, 103                       |
| Impressio 47                                | n. optici 49                               |
| cardiaca 306                                | n. supracoracoidei 59                      |
| coracobrachialis 60, 98, 126                | radialis 60, 100                           |
| duodenalis 306, 317                         | rami 19, 25                                |
| eminentiae sagittalis 48, 50                | retroarticularis 52                        |
| glandulae nasalis 50, 51                    | tendinosa 61, 101                          |
| jejunalis 306                               | tibialis 65, 110                           |
| lig. acrocoracohumeralis 59                 | tuberculi carpalis 61, 101                 |
| lig. collateralis lateralis 64, 66          | vexilli 19, 27                             |
| lig. collateralis medialis 64, 65           | Incisurae costales 58                      |
| lig. cruciati caudalis 64, 109              | sternae 58, <i>93</i>                      |
| lig. cruciati cranialis 64                  | Inferior 1                                 |
| lig. intercondylaris 65                     | Infundibulum 262, 279, 302, 309, 371, 378, |
| m. brachialis 60, 180                       | 400, 411                                   |
| m. pectoralis 60                            | Ingluvies 303, 321                         |
| m. scapulotricipitis 60                     | Innervation, eye 576                       |
| m. sternocoracoidei 58, 59                  | pelvic limb 581                            |
| proventricularis 306                        | tail 583                                   |
| splenalis 306                               | thoraco-abdominal viscera 584              |
| testicularis 306, 317                       | wing 579                                   |
| ventricularis 306                           | Inscriptio tendinea 197                    |
| Impressiones ansae m. iliofibularis 64, 108 | Insertio 190, 197                          |
| ligamentosae trochanteris 64, 108           | Insula juxtavascularis 331, 338            |
| musculares trochanteris 64, 108             | INSULAE PANCREATICAE 400, 402              |
| retinaculi extensorii 66                    | INTEGUMENTUM SPECIALE 21                   |
| Incisura 47                                 | Intercentrum 91                            |
|                                             | Intercentrum 97 Intermedius 2              |
| acetabularis 63, 105                        | Internedus 2 Internodus 19, 26             |
| angularis 304, 312                          |                                            |
| capitis humeri 60, 97                       | Internus 2, 3                              |
| capitulotubercularis 57, 92                 | Intersectio tendinea 190, 197, 211         |

| Intestinum 305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Interstitium testis 347    | JUNCTURAE LARYNGIS 139            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------|
| CRASSUM 305 TENUE 305, 314 Intumescentia 47 cervicalis 494, 507, 531 humeri 60, 99, 126 lumbosacralis 494, 507, 530 Involucrum phalli 349, 356, 366 Iridocyti 589, 597 IRIS 589 ISCHIUM 63 Isthmus 371, 378 gastris 304, 312, 322 Jejunum 305, 315 Joints, types of 134, 146 Jugulum 9, 12 Jugulum 9, 12 Junctura cartilaginea 135 corneoscleralis 588, 595 COXAE 144, 169, 182 esophagoproventricularis 303, 311 fibrosa 135 metatarsophalangealis 9, 13 ossea 135 ossea 135 ossea 135 metatarsophalangealis 9, 13 ossea 135 COXAE 144, 169, 182 esophagoproventricularis 303, 311 fibrosa 135 INNCTURAE ALAE 141 APPARATUS HYOBRANCHIALIS [HYOLINGUALIS] 139, 154 arytenoideae 259, 267 CAPITIS 136, 146 CARPI ET MANUS 142, 164 carpometacarpi 143 CAUDAE 140, 158 CINGULI MEMBRI THORACICI 140 COLUMNAE VERTEBRALIS 139, 155, 186 COSTARUM 140, 159 cricoideae 259, 267 CUBITI 142, 163, 180 ET LIGAMENTA INTRACRURALES 144 GERUS 144, 169, 182 interphalangeales no, 13 interphalangeales nanus 143, 167  MEMBRI PELVICI 144 NOTARII 140, 157 OSSIS COXAE 143 OSSIUM 134, 146 procricoideae 259, 266 REGIONIS OMALIS 141 SPECIALES REGIONIS OMALIS 141 STERNI 140 SYNSACRI 140, 158 TARSOMETATARSALES ET INTERMETATARSALES 145, 172 Juxtaglomerularocytus 331, 338  Keel, of sternum 94 Kidney 330, 342, 346 Kinocilia 592 Knee 13 joint 182  Labia venti 390 Labium 47 laterale 260, 272 mediale 260, 272 medial | INTESTINUM 305             |                                   |
| TENUE 305, 314 Intumescentia 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                   |
| Intumescentia 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                                   |
| cervicalis 494, 507, 531 humeri 60, 99, 126 lumbosacralis 494, 507, 530 Involucrum phalli 349, 356, 366 Iridocyti 589, 597 IRIS 589 ISCHIUM 63 Isthmus 371, 378 gastris 304, 312, 322 Isimum 305, 315 Joints, types of 134, 146 Jugulum 9, 12 Jugum 47 Junctura cartilaginea 135 corneoscleralis 588, 595 COXAE 144, 169, 182 esophagoproventricularis 303, 311 fibrosa 135 ossium 136, 146 rectocoprodealis 390, 392 synovialis 135 JUNCTURAE ALAE 141 APPARATUS HYOBRANCHIALIS [HYOLINGUALIS] 139, 154 arytenoideae 259, 267 CAPITIS 136, 146 CARPI ET MANUS 142, 164 carpometacarpi 143 CAUDAE 140, 158 CINGULI MEMBRI PELVICI 143, 168 CINGULI MEMBRI THORACICI 140 COLUMNAE VERTEBRALIS 139, 155, 186 COSTARUM 140, 159 cricoideae 259, 267 CUBITI 142, 163, 180 ET LIGAMENTA INTRACRURALES 144 GENUS 144, 169, 182 interphalangeales no, 13 interphalangeales no, 13 interphalangeales manus 143, 167  OSSIUM 134, 146 procricoideae 259, 266 REGIONIS OMALIS 141 SPECIALES REGIONIS OMALIS 141 STERNI 140 SYNSACRI 140, 158 TARSI ET PEDIS 144, 185 TARSOMETATARSALES ET INTERMETATARSALES 145, 172 Juxtaglomerularocytus 331, 338  Keel, of sternum 94 Kidney 330, 342, 346 Kinociiias 592 Knee 13 joint 182  Labia venti 390 Labium 47  laterale 260, 272 mediale 260, 272 mediale 260, 272 sulci phalli dextrum/sinistrum 349, 357 venti dorsale 390, 394 venti ventrale 390, 394 Labra cavitatis glenoidalis 141 Labrum 47 acetabulare 144 condyli dorsalis 61 coracoideum 141 externum 58 glenoidale 59 internum 58 scapulare 141 Labyrinth, membranous 609 Labyrinthus cochlearis 591 LABYRINTHUS MEMBRANACEUS 591 LABYRINTHUS OSSEUS 592 vestibularis 591, 600 Lachi, lobes of 507 Lacuna 47 Lacuna hepatis 306, 318 Lacuna interzygapophysialis 55, 56, 88, 114 Interplatangeales manus 143, 167                                                                                                                                                                                                                |                            |                                   |
| humeri 60, 99, 126 lumbosacralis 494, 507, 530 Involucrum phalli 349, 356, 366 Iridocyti 589, 597 IRIS 589 ISCHIUM 63 Isthmus 371, 378 gastris 304, 312, 322 IJejunum 305, 315 Joints, types of 134, 146 Jugulum 9, 12 Jugum 47 Jugulum 9, 12 Jugum 47 Jugulum 47 Jugulum 9, 12 Jugum 47 Jugunum 305, 315 corneoscleralis 588, 595 COXAE 144, 169, 182 esophagoproventricularis 303, 311 fibrosa 135 metatarsophalangealis 9, 13 ossea 135 metatarsophalangealis 9, 13 ossea 135 JUNCTURAE ALAE 141 APPARATUS HYOBRANCHIALIS [HYOLINGUALIS] 139, 154 arytenoideae 259, 267 CAPITIS 136, 146 CARPI ET MANUS 142, 164 carpometacarpi 143 CAUDAE 140, 158 CINGULI MEMBRI PELVICI 143, 168 COSTARUM 140, 159 cricoideae 259, 267 CUBITI 142, 163, 180 ET LIGAMENTA INTRACRURALES 144 GENUS 144, 169, 182 interphalangeales 10, 13 interphalangeales manus 143, 167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |                                   |
| Involucrum phalli 349, 356, 366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                   |
| Involucrum phalli 349, 356, 366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                   |
| Iridocyti 589, 597   IRIS 589   SYNSACRI 140, 158   SYNSACRI 140, 158   SYNSACRI 140, 158   TARSI ET PEDIS 144, 185   TA   |                            |                                   |
| IRIS 589 ISCHIUM 63 ISCHIUM 371, 378 gastris 304, 312, 322 INTERMETATARSALES IT INTERMETATARSALES 145, 172 Juxtaglomerularocytus 331, 338  Jejunum 305, 315 Joints, types of 134, 146 Jugulum 9, 12 Jugum 47 Junctura cartilaginea 135 correoscleralis 588, 595 COXAE 144, 169, 182 esophagoproventricularis 303, 311 fibrosa 135 ossium 136, 146 rectocoprodealis 390, 392 synovialis 135  JUNCTURAE ALAE 141 APPARATUS HYOBRANCHIALIS [HYOLINGUALIS] 139, 154 arytenoideae 259, 267 CAPITIS 136, 146 CARPI ET MANUS 142, 164 carpometacarpi 143 CAUDAE 140, 158 CINGULI MEMBRI PELVICI 143, 168 CINGULI MEMBRI THORACICI 140 COLUMNAE VERTEBRALIS 139, 155, 186 COSTARUM 140, 159 cricoideae 259, 267 CUBITI 142, 163, 180 ET LIGAMENTA INTRACRURALES 144 GENUS 144, 169, 182 interphalangeales 10, 13 interphalangeales amanus 143, 167  IRRSOMETARSALES ET TARSOMETATARSALES 145, 172 Juxtaglomerularocytus 331, 338  Keel, of sternum 94 Kidney 330, 342, 346 Kinocilia 592 Knee 13 joint 182  Labia venti 390 Labia venti  | -                          |                                   |
| TARSI ET PEDIS 144, 185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |                                   |
| Sthmus 371, 378 gastris 304, 312, 322                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |                                   |
| gastris 304, 312, 322  Jejunum 305, 315  Joints, types of 134, 146  Jugulum 9, 12  Jugum 47  Junctura cartilaginea 135  corneoscleralis 588, 595  COXAE 144, 169, 182  esophagoproventricularis 303, 311  fibrosa 135  metatarsophalangealis 9, 13  ossea 135  ossium 136, 146  rectocoprodealis 390, 392  synovialis 135  JUNCTURAE ALAE 141  APPARATUS HYOBRANCHIALIS  [HYOLINGUALIS] 139, 154  arytenoideae 259, 267  CAPITIS 136, 146  CARPI ET MANUS 142, 164  carpometacarpi 143  CAUDAE 140, 158  CINGULI MEMBRI PELVICI 143, 168  CINGULI MEMBRI THORACICI 140  COLUMNAE VERTEBRALIS 139, 155, 186  COSTARUM 140, 159  cricoideae 259, 267  CUBITI 142, 163, 180  ET LIGAMENTA INTRACRURALES  144  GENUS 144, 169, 182  interphalangeales 10, 13  interphalangeales manus 143, 167  INTERMETATARSALES 145, 172  Juxtaglomerularocytus 331, 338  Keel, of sternum 94  Kidney 330, 342, 346  Kinocilia 592  Knee 13  joint 182  Labia venti 390  Labium 47  laterale 260, 272  sulci phalli dextrum/sinistrum 349, 357  venti dorsale 390, 394   |                            |                                   |
| Juxtaglomerularocytus 331, 338  Jejunum 305, 315  Joints, types of 134, 146  Jugulum 9, 12  Jugum 47  Junctura cartilaginea 135  corneoscleralis 588, 595  COXAE 144, 169, 182  esophagoproventricularis 303, 311  fibrosa 135  metatarsophalangealis 9, 13  ossea 135  ossium 136, 146  rectocoprodealis 390, 392  synovialis 135  JUNCTURAE ALAE 141  APPARATUS HYOBRANCHIALIS  [HYOLINGUALIS] 139, 154  arytenoideae 259, 267  CAPITIS 136, 146  CARPI ET MANUS 142, 164  carpometacarpi 143  CAUDAE 140, 158  CINGULI MEMBRI PELVICI 143, 168  CINGULI MEMBRI PELVICI 143, 168  CINGULI MEMBRI THORACICI 140  COLUMNAE VERTEBRALIS 139, 155, 186  CINGULI MEMBRI THORACICI 140  COLUMNAE VERTEBRALIS 139, 155, 186  CINGULI MEMBRI THORACICI 140  COLUMNAE VERTEBRALIS 139, 155, 186  ET LIGAMENTA INTRACRURALES  144  GENUS 144, 169, 182  interphalangeales 10, 13  interphalangeales manus 143, 167  Keel, of sternum 94  Kidney 330, 342, 346  Kinocilia 592  Knee 13  joint 182  Labia venti 390  Labium 47  laterale 260, 272  mediale 260, 272  mediale 260, 272  mediale 260, 272  venti dorsale 390, 394  venti ventrale 390, 394  venti orsale 390, 394  venti orsale 390, 394  venti orsale 360, 272  mediale 260, 272  mediale 26 |                            |                                   |
| Jejunum 305, 315 Joints, types of 134, 146 Jugulum 9, 12 Jugum 47 Junctura cartilaginea 135 corneoscleralis 588, 595 COXAE 144, 169, 182 esophagoproventricularis 303, 311 fibrosa 135 metatarsophalangealis 9, 13 ossea 135 ossium 136, 146 rectocoprodealis 390, 392 synovialis 135  JUNCTURAE ALAE 141 APPARATUS HYOBRANCHIALIS [HYOLINGUALIS] 139, 154 arytenoideae 259, 267 CAPITIS 136, 146 CARPI ET MANUS 142, 164 carpometacarpi 143 CAUDAE 140, 158 CINGULI MEMBRI PELVICI 143, 168 CINGULI MEMBRI THORACICI 140 COLUMNAE VERTEBRALIS 139, 155, 186 CNGULI MEMBRI THORACICI 140 COLUMNAE VERTEBRALIS 139, 155, 186 CNGULI MEMBRI THORACICI 140 COSTARUM 140, 159 cricoideae 259, 267 CUBITI 142, 163, 180 ET LIGAMENTA INTRACRURALES 144 GENUS 144, 169, 182 interphalangeales 10, 13 interphalangeales manus 143, 167  Keel, of sternum 94 Kidney 330, 342, 346 Kinncilia 592 Knee 13 joint 182  Labia venti 390 Labium 47 laterale 260, 272 mediale 260, 272 sulci phalli dextrum/sinistrum 349, 357 venti dorsale 390, 394 venti ventrale 390, 394 venti dorsale 360 coracideum 141 externum 58 glenoidale 59 internum 58 scapulare 141 Labyrinth membranous 609 Labyrinthus cochlearis 591 LABYRINTHUS MEMBRANACEUS 591 LABYRINTHUS OSSEUS 592 vestibularis 591, 600 Lachi, lobes of 507 Lacuna interzygapophysialis 55, 56, 88, 121 interphalangeales manus 143, 167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | guoti 15 504, 512, 522     |                                   |
| Joints, types of 134, 146 Jugulum 9, 12 Junctura cartilaginea 135 corneoscleralis 588, 595 COXAE 144, 169, 182 esophagoproventricularis 303, 311 fibrosa 135 metatarsophalangealis 9, 13 ossea 135 ossium 136, 146 rectocoprodealis 390, 392 synovialis 135 JUNCTURAE ALAE 141 APPARATUS HYOBRANCHIALIS [HYOLINGUALIS] 139, 154 arytenoideae 259, 267 CAPITIS 136, 146 CARPI ET MANUS 142, 164 carpometacarpi 143 CAUDAE 140, 158 CINGULI MEMBRI THORACICI 140 COLUMNAE VERTEBRALIS 139, 155, 186 COSTARUM 140, 159 COSTARUM 140, 159 COSTARUM 140, 159 COSTARUM 140, 159 CINGULI MEMBRI THORACICI 140 COLUMNAE VERTEBRALIS 139, 155, 186 COSTARUM 140, 159 COSTARUM 140, 159 CINGULI MEMBRI THORACICI 140 COLUMNAE VERTEBRALIS 139, 155, 186 COSTARUM 140, 159 COSTARUM 140, 159 CINGULI MEMBRI THORACICI 140 COLUMNAE VERTEBRALIS 139, 155, 186 COSTARUM 140, 159 COSTARUM 140, 159 CINGULI MEMBRI THORACICI 140 COLUMNAE VERTEBRALIS 139, 155, 186 COSTARUM 140, 159 COSTARUM 140, 159 CINGULI MEMBRI THORACICI 140 COLUMNAE VERTEBRALIS 139, 155, 186 COSTARUM 140, 159 CO | Jeiunum 305 315            | suxuagionici una rocytus 331, 330 |
| Jugulum 9, 12 Jugum 47 Junctura cartilaginea 135 corneoscleralis 588, 595 COXAE 144, 169, 182 esophagoproventricularis 303, 311 fibrosa 135 metatarsophalangealis 9, 13 ossea 135 ossium 136, 146 rectocoprodealis 390, 392 synovialis 135  JUNCTURAE ALAE 141 APPARATUS HYOBRANCHIALIS [HYOLINGUALIS] 139, 154 arytenoideae 259, 267 CAPITIS 136, 146 CARPI ET MANUS 142, 164 carpometacarpi 143 CAUDAE 140, 158 CINGULI MEMBRI PELVICI 143, 168 CINGULI MEMBRI PELVICI 143, 168 CINGULI MEMBRI THORACICI 140 COLUMNAE VERTEBRALIS 139, 155, 186 COSTARUM 140, 159 cricoideae 259, 267 CUBITI 142, 163, 180 ET LIGAMENTA INTRACRURALES 144 GENUS 144, 169, 182 interphalangeales manus 143, 167  Kidney 330, 342, 346 Kinocilia 592 Knee 13 joint 182  Labia venti 390 Labium 47 laterale 260, 272 mediale 260, 272 nediale 260, 272 venti dorsale 390, 394 venti ventrale 390, 394 venti dorsale 360, 272 mediale 260, 272 venti dorsale 390, 394 venti ventrale 390, 394 venti dorsale 390, 394 venti ventrale 390, 394 venti dorsale  |                            | Keel of sternum 94                |
| Jugum 47 Junctura cartilaginea 135 corneoscleralis 588, 595 COXAE 144, 169, 182 esophagoproventricularis 303, 311 fibrosa 135 metatarsophalangealis 9, 13 ossea 135 ossium 136, 146 rectocoprodealis 390, 392 synovialis 135  JUNCTURAE ALAE 141 APPARATUS HYOBRANCHIALIS [HYOLINGUALIS] 139, 154 arytenoideae 259, 267 CAPITIS 136, 146 CARPI ET MANUS 142, 164 carpometacarpi 143 CAUDAE 140, 158 CINGULI MEMBRI THORACICI 140 COLUMNAE VERTEBRALIS 139, 155, 186 COSTARUM 140, 159 cricoideae 259, 267 CUBITI 142, 163, 180 ET LIGAMENTA INTRACRURALES 144 GENUS 144, 169, 182 interphalangeales manus 143, 167  Kinocilia 592 Knee 13 joint 182  Kabia venti 390 Labium 47 laterale 260, 272 mediale 260, 272 sulci phalli dextrum/sinistrum 349, 357 venti dorsale 390, 394 venti ventrale 390, 394 venti ventrale 390, 394 venti ventrale 390, 394 venti dorsale 61 coracoideum 141 externum 58 glenoidale 59 internum 58 scapulare 141 Labyrinthu scochlearis 591 LABYRINTHUS MEMBRANACEUS 591 LABYRINTHUS OSSEUS 592 vestibularis 591, 600 Lachi, lobes of 507 Lacuna 47 Lacuna hepatis 306, 318 Lacuna interzygapophysialis 55, 56, 88, 121 Lagena 50, 592, 601, 602, 609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                                   |
| Junctura cartilaginea 135 corneoscleralis 588, 595 COXAE 144, 169, 182 esophagoproventricularis 303, 311 fibrosa 135 metatarsophalangealis 9, 13 ossea 135 ossium 136, 146 rectocoprodealis 390, 392 synovialis 135  JUNCTURAE ALAE 141 APPARATUS HYOBRANCHIALIS [HYOLINGUALIS] 139, 154 arytenoideae 259, 267 CAPITIS 136, 146 CARPI ET MANUS 142, 164 carpometacarpi 143 CAUDAE 140, 158 CINGULI MEMBRI PELVICI 143, 168 CINGULI MEMBRI PELVICI 143, 168 CINGULI MEMBRI THORACICI 140 COLUMNAE VERTEBRALIS 139, 155, 186 COSTARUM 140, 159 cricoideae 259, 267 CUBITI 142, 163, 180 ET LIGAMENTA INTRACRURALES 144 GENUS 144, 169, 182 interphalangeales 10, 13 interphalangeales manus 143, 167  Knee 13 joint 182  Labia venti 390 Labium 47 laterale 260, 272 sulci phalli dextrum/sinistrum 349, 357 venti dorsale 390, 394 venti ventrale 390, 394 venti ventrale 390, 394 venti ventrale 390, 394 venti dorsale 390, 394 venti ventrale 390, 394 condyli dersalis 61 coracoideum 141 externum 58 glenoidale 59 internum 58 scapulare 141 Labyrinth, membranous 609 Labyrinthus cochlearis 591 LABYRINTHUS MEMBRANACEUS 591 LABYRINTHUS OSSEUS 592 vestibularis 591, 600 Lachi, lobes of 507 Lacuna 47 Lacuna hepatis 306, 318 Labia venti 390 Labium 47 laterale 260, 272 sulci phalli dextrum/sinistrum 349, 357 venti dorsale 260, 272 sulci phalli dextrum/sinistrum 349, 357 venti dorsale 260, 272 sulci phalli dextrum/sinistrum 349, 357 venti dorsale 260, 272 sulci phalli dextrum/sinistrum 349, 357 venti dorsale 390, 394 venti ventrale 390, 394 venti ventrale 390, 394 venti ventrale 390, 394 Labra cavitatis glenoidalis 141 Labrum 47 accetabulare 144 condyli dorsalis 61 coracoideum 141 externum 58 glenoidale 59 internum 58 scapulare 141 Labyrinth, membranous 609 Labyrinthus cochlearis 591 LABYRINTHUS MEMBRANACEUS 591 LABYRINTHUS OSSEUS 592 vestibularis 591, 600 Lachi, lobes of 507 Lacuna 47 Lacuna hepatis 306, 318 Lacuna interzygapophysialis 55, 56, 88, 121                                                                                                                      |                            |                                   |
| corneoscleralis 588, 595 COXAE 144, 169, 182 esophagoproventricularis 303, 311 fibrosa 135 metatarsophalangealis 9, 13 ossea 135 ossium 136, 146 rectocoprodealis 390, 392 synovialis 135  JUNCTURAE ALAE 141 APPARATUS HYOBRANCHIALIS [HYOLINGUALIS] 139, 154 arytenoideae 259, 267 CAPITIS 136, 146 CARPI ET MANUS 142, 164 carpometacarpi 143 CAUDAE 140, 158 CINGULI MEMBRI PELVICI 143, 168 CINGULI MEMBRI THORACICI 140 COLUMNAE VERTEBRALIS 139, 155, 186 COSTARUM 140, 159 cricoideae 259, 267 CUBITI 142, 163, 180 ET LIGAMENTA INTRACRURALES 144 GENUS 144, 169, 182 interphalangeales manus 143, 167  joint 182  Labia venti 390 Labium 47 laterale 260, 272 sulci phalli dextrum/sinistrum 349, 357 venti dorsale 390, 394 venti ventrale 390, 394 venti ventrale 390, 394 venti ventrale 390, 394 venti dorsale 390, 394 condyli dorsalis 61 coracoideum 141 externum 58 glenoidale 59 internum 58 scapulare 141 Labyrinth, membranous 609 Labyrinthus cochlearis 591 LABYRINTHUS OSSEUS 592 vestibularis 591, 600 Lachi, lobes of 507 Lacuna 47 Lacuna hepatis 306, 318 Labia venti 390 Labium 47 laterale 260, 272 sulci phalli dextrum/sinistrum 349, 357 venti dorsale 390, 394 venti ventrale 390, 394 venti ventrale 390, 394 venti orsale 390, 394 venti orsale 390, 394 venti dorsale 390, 394 venti dorsale 390, 394 Labra cavitatis glenoidalis 141 Labrum 47 acetabulare 144 condyli dorsalis 61 coracoideum 141 externum 58 glenoidale 59 internum 58 scapulare 141 Labyrinthus cochlearis 591 LABYRINTHUS MEMBRANACEUS 591 LABYRINTHUS OSSEUS 592 vestibularis 591, 600 Lachi, lobes of 507 Lacuna 47 Lacuna hepatis 306, 318 Lacuna interzygapophysialis 55, 56, 88, 121 Lagena 50, 592, 601, 602, 609                                                                                                                                                                                                                                                                                                                                                                                              | •                          |                                   |
| COXAE 144, 169, 182 esophagoproventricularis 303, 311 fibrosa 135 metatarsophalangealis 9, 13 ossea 135 ossium 136, 146 rectocoprodealis 390, 392 synovialis 135  JUNCTURAE ALAE 141 APPARATUS HYOBRANCHIALIS [HYOLINGUALIS] 139, 154 arytenoideae 259, 267 CAPITIS 136, 146 CARPI ET MANUS 142, 164 carpometacarpi 143 CAUDAE 140, 158 CINGULI MEMBRI PELVICI 143, 168 CINGULI MEMBRI THORACICI 140 COLUMNAE VERTEBRALIS 139, 155, 186 COSTARUM 140, 159 cricoideae 259, 267 CUBITI 142, 163, 180 ET LIGAMENTA INTRACRURALES 144 GENUS 144, 169, 182 interphalangeales 10, 13 interphalangeales manus 143, 167  Labia venti 390 Labium 47 laterale 260, 272 mediale 260, 260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |                                   |
| esophagoproventricularis 303, 311 fibrosa 135 metatarsophalangealis 9, 13 ossea 135 ossium 136, 146 rectocoprodealis 390, 392 synovialis 135  JUNCTURAE ALAE 141 APPARATUS HYOBRANCHIALIS [HYOLINGUALIS] 139, 154 arytenoideae 259, 267 CAPITIS 136, 146 CARPI ET MANUS 142, 164 carpometacarpi 143 CAUDAE 140, 158 CINGULI MEMBRI PELVICI 143, 168 CINGULI MEMBRI PELVICI 143, 168 CINGULI MEMBRI THORACICI 140 COLUMNAE VERTEBRALIS 139, 155, 186 COSTARUM 140, 159 cricoideae 259, 267 CUBITI 142, 163, 180 ET LIGAMENTA INTRACRURALES 144 GENUS 144, 169, 182 interphalangeales 10, 13 interphalangeales manus 143, 167  Labiau venti 390 Labium 47 laterale 260, 272 mediale 260, 260  ablium 47 labracavitatis glenoidalis 141 Labrum 47 acetabulare 144 condyli dorsalis 61 coracoideum 141 externum 58 glenoidale 59 internum 58 scapulare 141 Labyrinth, membranous 609 Labyrinthus cochlearis 591 LABYRINTHUS OSSEUS 592 vestibularis 591, 600 Lachi, lobes of 507 Lacuna interzygapophysialis 55, 56, 88, 121 Labium 47 acterale 260, 272 mediale 260, 29 venti dorsale 390, 394 Labra cavitatis glenoidalis 141 Labrum 47 acetabulare 144 condyli dorsalis 61 coracoideum 141 externum 58 glenoidale 59 internum 58 glenoidale 59 internum 58 scapulare 141 Labyrinthus ochlearis 591 LABYRINTHUS OSSEUS 592 vestibularis 591, 600 Lachi, lobes of 507 Lacuna interzygapophysialis 55, 56, 88, 121         |                            | John 182                          |
| fibrosa 135 metatarsophalangealis 9, 13 ossea 135 ossium 136, 146 rectocoprodealis 390, 392 synovialis 135  JUNCTURAE ALAE 141 APPARATUS HYOBRANCHIALIS [HYOLINGUALIS] 139, 154 arytenoideae 259, 267 CAPITIS 136, 146 CARPI ET MANUS 142, 164 carpometacarpi 143 CAUDAE 140, 158 CINGULI MEMBRI PELVICI 143, 168 CINGULI MEMBRI PELVICI 143, 168 CINGULI MEMBRI THORACICI 140 COLUMNAE VERTEBRALIS 139, 155, 186 COSTARUM 140, 159 cricoideae 259, 267 CUBITI 142, 163, 180 ET LIGAMENTA INTRACRURALES 144 GENUS 144, 169, 182 interphalangeales 10, 13 interphalangeales manus 143, 167  Labium 47 laterale 260, 272 mediale 260, 260  Labrul 47 condyli dorsalis 61 coracideum 141 externum 58 scapulare 141 Labrum 47  Labrum 47  Labrum 47  acetabulare 144 condyli dorsalis 61 coracideum 141 externum 58 scapulare 141 Labryninth, membranous 609 Labryninthus cochlearis 591 LABYRINTHUS MEMBRANACEUS 591 LABYRINTHUS OSSEUS 592 vestibularis 591, 600 Lachi, lobes of 507 Lacuna 47 Lacuna hepatis 306, 318 Lacuna interzygapophysialis 55, 56, 88, 121 Lagena 50, 592, 601, 602, 609                                                                                                                                                                                                                                                                                                                                                                            |                            | Labia vanti 200                   |
| metatarsophalangealis 9, 13 ossea 135 ossium 136, 146 rectocoprodealis 390, 392 synovialis 135  JUNCTURAE ALAE 141 APPARATUS HYOBRANCHIALIS [HYOLINGUALIS] 139, 154 arytenoideae 259, 267 CAPITIS 136, 146 CARPI ET MANUS 142, 164 carpometacarpi 143 CAUDAE 140, 158 CINGULI MEMBRI PELVICI 143, 168 CINGULI MEMBRI THORACICI 140 COLUMNAE VERTEBRALIS 139, 155, 186 COSTARUM 140, 159 cricoideae 259, 267 CUBITI 142, 163, 180 ET LIGAMENTA INTRACRURALES 144 GENUS 144, 169, 182 interphalangeales 10, 13 interphalangeales manus 143, 167  laterale 260, 272 mediale 260, 272 sulci phalli dextrum/sinistrum 349, 357 venti dorsale 390, 394 venti ventrale 390, 394 Labra cavitatis glenoidalis 141 Labrum 47 acetabulare 144 condyli dorsalis 61 coracoideum 141 externum 58 glenoidale 59 internum 58 scapulare 141 Labyrinth, membranous 609 Labyrinthus cochlearis 591 LABYRINTHUS OSSEUS 592 vestibularis 591, 600 Lachi, lobes of 507 Lacuna 47 Lacuna 47 Lacuna hepatis 306, 318 Lacuna interzygapophysialis 55, 56, 88, interphalangeales manus 143, 167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |                                   |
| ossea 135 ossium 136, 146 rectocoprodealis 390, 392 synovialis 135  JUNCTURAE ALAE 141 APPARATUS HYOBRANCHIALIS [HYOLINGUALIS] 139, 154 arytenoideae 259, 267 CAPITIS 136, 146 CARPI ET MANUS 142, 164 carpometacarpi 143 CAUDAE 140, 158 CINGULI MEMBRI PELVICI 143, 168 CINGULI MEMBRI PELVICI 143, 168 CINGULI MEMBRI THORACICI 140 COLUMNAE VERTEBRALIS 139, 155, 186 COSTARUM 140, 159 cricoideae 259, 267 CUBITI 142, 163, 180 ET LIGAMENTA INTRACRURALES 144 GENUS 144, 169, 182 interphalangeales 10, 13 interphalangeales manus 143, 167  mediale 260, 272 sulci phalli dextrum/sinistrum 349, 357 venti dorsale 390, 394 Labra cavitatis glenoidalis 141 Labrum 47 acetabulare 144 condyli dorsalis 61 coracoideum 141 externum 58 glenoidale 59 internum 58 scapulare 141 Labyrinth, membranous 609 Labyrinthus cochlearis 591 LABYRINTHUS MEMBRANACEUS 591 LABYRINTHUS OSSEUS 592 vestibularis 591, 600 Lachi, lobes of 507 Lacuna 47 Lacuna hepatis 306, 318 Lacuna interzygapophysialis 55, 56, 88, interphalangeales manus 143, 167 Lagena 50, 592, 601, 602, 609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                                   |
| ossium 136, 146 rectocoprodealis 390, 392 synovialis 135  JUNCTURAE ALAE 141  APPARATUS HYOBRANCHIALIS [HYOLINGUALIS] 139, 154 arytenoideae 259, 267 CAPITIS 136, 146 CARPI ET MANUS 142, 164 carpometacarpi 143 CAUDAE 140, 158 CINGULI MEMBRI PELVICI 143, 168 CINGULI MEMBRI THORACICI 140 COLUMNAE VERTEBRALIS 139, 155, 186 COSTARUM 140, 159 cricoideae 259, 267 CUBITI 142, 163, 180 ET LIGAMENTA INTRACRURALES 144 GENUS 144, 169, 182 interphalangeales 10, 13 interphalangeales manus 143, 167  sulci phalli dextrum/sinistrum 349, 357 venti dorsale 390, 394 venti ventrale 390, 394 venti ventrale 390, 394 venti dorsale 390, 394 cordale 59 internum 58 scapulare 141 Labrum 47 acetabulare 144 condyli dorsalis 61 coraccideum 141 externum 58 scapulare 149 Labrum 47 acetabulare 144 condyli dorsalis 61 coraccideum 141 externum 58 scapulare 149 Labrum 47 Labrum 47 acetabulare 144 condyli dorsalis 61 coraccideum 141 externum 58 scapulare 149 Labrum 47 Labrum 47 acetabulare 144 condyli dorsalis 61 coraccideum 141 exte |                            | •                                 |
| rectocoprodealis 390, 392 synovialis 135  JUNCTURAE ALAE 141  APPARATUS HYOBRANCHIALIS [HYOLINGUALIS] 139, 154 arytenoideae 259, 267 CAPITIS 136, 146 CARPI ET MANUS 142, 164 carpometacarpi 143 CAUDAE 140, 158 CINGULI MEMBRI PELVICI 143, 168 CINGULI MEMBRI THORACICI 140 COLUMNAE VERTEBRALIS 139, 155, 186 COSTARUM 140, 159 cricoideae 259, 267 CUBITI 142, 163, 180 ET LIGAMENTA INTRACRURALES 144 GENUS 144, 169, 182 interphalangeales 10, 13 interphalangeales manus 143, 167  venti dorsale 390, 394 venti ventrale 390, 394 venti dorsale 390, 394 Labra cavitatis glenoidalis 141 Labrum 47 acetabulare 144 condyli dorsalis 61 coracoideum 141 externum 58 scapulare 141 Labyrinth, membranous 609 Labyrinthus cochlearis 591 LABYRINTHUS MEMBRANACEUS 591 LABYRINTHUS OSSEUS 592 vestibularis 591, 600 Lachi, lobes of 507 Lacuna 47 Lacuna hepatis 306, 318 Lacuna interzygapophysialis 55, 56, 88, interphalangeales manus 143, 167 Lagena 50, 592, 601, 602, 609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                                   |
| synovialis 135  JUNCTURAE ALAE 141  APPARATUS HYOBRANCHIALIS [HYOLINGUALIS] 139, 154 arytenoideae 259, 267 CAPITIS 136, 146 CARPI ET MANUS 142, 164 carpometacarpi 143 CAUDAE 140, 158 CINGULI MEMBRI PELVICI 143, 168 CINGULI MEMBRI THORACICI 140 COLUMNAE VERTEBRALIS 139, 155, 186 COSTARUM 140, 159 cricoideae 259, 267 CUBITI 142, 163, 180 ET LIGAMENTA INTRACRURALES 144 GENUS 144, 169, 182 interphalangeales 10, 13 interphalangeales manus 143, 167  Labra cavitatis glenoidalis 141 Labrum 47 acetabulare 144 condyli dorsalis 61 coracoideum 141 externum 58 glenoidale 59 internum 58 scapulare 141 Labyrinth, membranous 609 Labyrinthus cochlearis 591 LABYRINTHUS MEMBRANACEUS 591 LABYRINTHUS OSSEUS 592 vestibularis 591, 600 Lachi, lobes of 507 Lacuna 47 Lacuna hepatis 306, 318 Lacuna interzygapophysialis 55, 56, 88, interphalangeales manus 143, 167  Lagena 50, 592, 601, 602, 609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |                                   |
| JUNCTURAE ALAE 141  APPARATUS HYOBRANCHIALIS [HYOLINGUALIS] 139, 154 arytenoideae 259, 267  CAPITIS 136, 146  CARPI ET MANUS 142, 164 carpometacarpi 143  CAUDAE 140, 158 CINGULI MEMBRI PELVICI 143, 168 CINGULI MEMBRI THORACICI 140 COLUMNAE VERTEBRALIS 139, 155, 186  COSTARUM 140, 159 Cricoideae 259, 267 CUBITI 142, 163, 180 ET LIGAMENTA INTRACRURALES 144 GENUS 144, 169, 182 interphalangeales 10, 13 interphalangeales manus 143, 167  Labra cavitatis glenoidalis 141 Labrum 47 acetabulare 144 condyli dorsalis 61 coracoideum 141 externum 58 glenoidale 59 internum 58 scapulare 141 Labyrinth, membranous 609 Labyrinthus cochlearis 591 LABYRINTHUS MEMBRANACEUS 591 LABYRINTHUS OSSEUS 592 vestibularis 591, 600 Lachi, lobes of 507 Lacuna 47 Lacuna hepatis 306, 318 Lacuna interzygapophysialis 55, 56, 88, interphalangeales manus 143, 167 Lagena 50, 592, 601, 602, 609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                                   |
| APPARATUS HYOBRANCHIALIS [HYOLINGUALIS] 139, 154 arytenoideae 259, 267 CAPITIS 136, 146 CARPI ET MANUS 142, 164 carpometacarpi 143 CAUDAE 140, 158 CINGULI MEMBRI PELVICI 143, 168 CINGULI MEMBRI THORACICI 140 COLUMNAE VERTEBRALIS 139, 155, 186 COSTARUM 140, 159 Cricoideae 259, 267 CUBITI 142, 163, 180 ET LIGAMENTA INTRACRURALES 144 GENUS 144, 169, 182 interphalangeales 10, 13 interphalangeales manus 143, 167  Labrum 47 acetabulare 144 condyli dorsalis 61 coracoideum 141 externum 58 glenoidale 59 internum 58 scapulare 141 Labyrinth, membranous 609 Labyrinthus cochlearis 591 LABYRINTHUS MEMBRANACEUS 591 LABYRINTHUS OSSEUS 592 vestibularis 591, 600 Lachi, lobes of 507 Lacuna 47 Lacuna hepatis 306, 318 Lacuna interzygapophysialis 55, 56, 88, interphalangeales manus 143, 167 Lagena 50, 592, 601, 602, 609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                          |                                   |
| [HYOLINGUALIS] 139, 154 arytenoideae 259, 267 CAPITIS 136, 146 CARPI ET MANUS 142, 164 carpometacarpi 143 CAUDAE 140, 158 CINGULI MEMBRI PELVICI 143, 168 CINGULI MEMBRI THORACICI 140 COLUMNAE VERTEBRALIS 139, 155, 186 COSTARUM 140, 159 Cricoideae 259, 267 CUBITI 142, 163, 180 ET LIGAMENTA INTRACRURALES 144 GENUS 144, 169, 182 interphalangeales 10, 13 interphalangeales manus 143, 167  acetabulare 144 condyli dorsalis 61 coracoideum 141 externum 58 glenoidale 59 internum 58 scapulare 141 Labyrinth, membranous 609 Labyrinthus cochlearis 591 LABYRINTHUS MEMBRANACEUS 591 LABYRINTHUS OSSEUS 592 vestibularis 591, 600 Lachi, lobes of 507 Lacuna 47 Lacuna hepatis 306, 318 Lacuna interzygapophysialis 55, 56, 88, interphalangeales manus 143, 167 Lagena 50, 592, 601, 602, 609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |                                   |
| arytenoideae 259, 267 CAPITIS 136, 146 CARPI ET MANUS 142, 164 carpometacarpi 143 CAUDAE 140, 158 CINGULI MEMBRI PELVICI 143, 168 CINGULI MEMBRI THORACICI 140 COLUMNAE VERTEBRALIS 139, 155, 186 COSTARUM 140, 159 Cricoideae 259, 267 CUBITI 142, 163, 180 ET LIGAMENTA INTRACRURALES 144 GENUS 144, 169, 182 interphalangeales 10, 13 interphalangeales manus 143, 167  condyli dorsalis 61 coracoideum 141 externum 58 glenoidale 59 internum 58 scapulare 141 Labyrinth, membranous 609 Labyrinthus cochlearis 591 LABYRINTHUS MEMBRANACEUS 591 LABYRINTHUS OSSEUS 592 vestibularis 591, 600 Lachi, lobes of 507 Lacuna 47 Lacuna hepatis 306, 318 Lacuna interzygapophysialis 55, 56, 88, 121 Lagena 50, 592, 601, 602, 609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                                   |
| CAPITIS 136, 146  CARPI ET MANUS 142, 164  carpometacarpi 143  CAUDAE 140, 158  CINGULI MEMBRI PELVICI 143, 168  CINGULI MEMBRI THORACICI 140  COLUMNAE VERTEBRALIS 139, 155,  186  COSTARUM 140, 159  Cricoideae 259, 267  CUBITI 142, 163, 180  ET LIGAMENTA INTRACRURALES  144  GENUS 144, 169, 182  interphalangeales 10, 13  interphalangeales manus 143, 167  coracoideum 141  externum 58  glenoidale 59  internum 58  scapulare 141  Labyrinth, membranous 609  Labyrinthus cochlearis 591  LABYRINTHUS MEMBRANACEUS 591  LABYRINTHUS OSSEUS 592  vestibularis 591, 600  Lachi, lobes of 507  Lacuna 47  Lacuna hepatis 306, 318  Lacuna interzygapophysialis 55, 56, 88,  121  Lagena 50, 592, 601, 602, 609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |                                   |
| CARPI ET MANUS 142, 164 carpometacarpi 143 CAUDAE 140, 158 CINGULI MEMBRI PELVICI 143, 168 CINGULI MEMBRI THORACICI 140 COLUMNAE VERTEBRALIS 139, 155, 186 COSTARUM 140, 159 Cricoideae 259, 267 CUBITI 142, 163, 180 ET LIGAMENTA INTRACRURALES 144 GENUS 144, 169, 182 interphalangeales 10, 13 interphalangeales manus 143, 167  externum 58 glenoidale 59 internum 58 scapulare 141 Labyrinth, membranous 609 Labyrinthus cochlearis 591 LABYRINTHUS MEMBRANACEUS 591 LABYRINTHUS OSSEUS 592 vestibularis 591, 600 Lachi, lobes of 507 Lacuna 47 Lacuna hepatis 306, 318 Lacuna interzygapophysialis 55, 56, 88, interphalangeales manus 143, 167 Lagena 50, 592, 601, 602, 609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                          | •                                 |
| carpometacarpi 143 CAUDAE 140, 158 CINGULI MEMBRI PELVICI 143, 168 CINGULI MEMBRI THORACICI 140 COLUMNAE VERTEBRALIS 139, 155, 186 COSTARUM 140, 159 Cricoideae 259, 267 CUBITI 142, 163, 180 ET LIGAMENTA INTRACRURALES 144 GENUS 144, 169, 182 interphalangeales 10, 13 interphalangeales manus 143, 167  glenoidale 59 internum 58 scapulare 141 Labyrinth, membranous 609 Labyrinthus cochlearis 591 LABYRINTHUS MEMBRANACEUS 591 LABYRINTHUS OSSEUS 592 vestibularis 591, 600 Lachi, lobes of 507 Lacuna 47 Lacuna hepatis 306, 318 Lacuna interzygapophysialis 55, 56, 88, 121 Lagena 50, 592, 601, 602, 609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                                   |
| CAUDAE 140, 158  CINGULI MEMBRI PELVICI 143, 168  CINGULI MEMBRI THORACICI 140  COLUMNAE VERTEBRALIS 139, 155,  186  COSTARUM 140, 159  Cricoideae 259, 267  CUBITI 142, 163, 180  ET LIGAMENTA INTRACRURALES  144  GENUS 144, 169, 182  interphalangeales 10, 13  interphalangeales manus 143, 167  interphalangeales manus 143, 167  interphalangeales interphalangeales manus 143, 167  interphalangeales interphalan | •                          |                                   |
| CINGULI MEMBRI PELVICI 143, 168 CINGULI MEMBRI THORACICI 140 COLUMNAE VERTEBRALIS 139, 155,  186 COSTARUM 140, 159 Cricoideae 259, 267 CUBITI 142, 163, 180 ET LIGAMENTA INTRACRURALES 144 GENUS 144, 169, 182 interphalangeales 10, 13 interphalangeales manus 143, 167  scapulare 141 Labyrinth, membranous 609 Labyrinthus cochlearis 591 LABYRINTHUS MEMBRANACEUS 591 LABYRINTHUS OSSEUS 592 vestibularis 591, 600 Lachi, lobes of 507 Lacuna 47 Lacuna hepatis 306, 318 Lacuna interzygapophysialis 55, 56, 88, 121 Lagena 50, 592, 601, 602, 609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                          |                                   |
| CINGULI MEMBRI THORACICI 140 COLUMNAE VERTEBRALIS 139, 155, 186  COSTARUM 140, 159 Cricoideae 259, 267 CUBITI 142, 163, 180 ET LIGAMENTA INTRACRURALES 144 GENUS 144, 169, 182 interphalangeales 10, 13 interphalangeales manus 143, 167  Labyrinth, membranous 609 Labyrinthus cochlearis 591 LABYRINTHUS MEMBRANACEUS 591 LABYRINTHUS OSSEUS 592 vestibularis 591, 600 Lachi, lobes of 507 Lacuna 47 Lacuna hepatis 306, 318 Lacuna interzygapophysialis 55, 56, 88, 121 Lagena 50, 592, 601, 602, 609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |                                   |
| COLUMNAE VERTEBRALIS 139, 155,  186  COSTARUM 140, 159  cricoideae 259, 267  CUBITI 142, 163, 180  ET LIGAMENTA INTRACRURALES 144  GENUS 144, 169, 182 interphalangeales 10, 13 interphalangeales manus 143, 167  Labyrinthus cochlearis 591  LABYRINTHUS MEMBRANACEUS 591  LABYRINTHUS OSSEUS 592  vestibularis 591, 600  Lachi, lobes of 507  Lacuna 47  Lacuna hepatis 306, 318  Lacuna interzygapophysialis 55, 56, 88,  121  Lagena 50, 592, 601, 602, 609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                          |                                   |
| 186 LABYRINTHUS MEMBRANACEUS 591 COSTARUM 140, 159 LABYRINTHUS OSSEUS 592 cricoideae 259, 267 vestibularis 591, 600 CUBITI 142, 163, 180 Lachi, lobes of 507 ET LIGAMENTA INTRACRURALES 144 Lacuna 47 Lacuna hepatis 306, 318 GENUS 144, 169, 182 Lacuna interzygapophysialis 55, 56, 88, interphalangeales 10, 13 121 interphalangeales manus 143, 167 Lagena 50, 592, 601, 602, 609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |                                   |
| COSTARUM 140, 159     cricoideae 259, 267     CUBITI 142, 163, 180     ET LIGAMENTA INTRACRURALES     144     GENUS 144, 169, 182     interphalangeales 10, 13     interphalangeales manus 143, 167     LABYRINTHUS OSSEUS 592     vestibularis 591, 600     Lachi, lobes of 507     Lacuna 47     Lacuna hepatis 306, 318     Lacuna interzygapophysialis 55, 56, 88,     121     Lagena 50, 592, 601, 602, 609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                                   |
| cricoideae 259, 267  CUBITI 142, 163, 180  ET LIGAMENTA INTRACRURALES  144  GENUS 144, 169, 182  interphalangeales 10, 13  interphalangeales manus 143, 167  Lacuna interphalangeales 10, 13  Lagena 50, 592, 601, 602, 609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                                   |
| CUBITI 142, 163, 180  ET LIGAMENTA INTRACRURALES 144  GENUS 144, 169, 182  interphalangeales 10, 13  interphalangeales manus 143, 167  Lachi, lobes of 507  Lacuna 47  Lacuna hepatis 306, 318  Lacuna interzygapophysialis 55, 56, 88,  121  Lagena 50, 592, 601, 602, 609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                                   |
| ET LIGAMENTA INTRACRURALES 144  GENUS 144, 169, 182  interphalangeales 10, 13  interphalangeales manus 143, 167  Lacuna 47  Lacuna hepatis 306, 318  Lacuna interzygapophysialis 55, 56, 88,  121  Lagena 50, 592, 601, 602, 609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                                   |
| 144 Lacuna hepatis 306, 318 GENUS 144, 169, 182 Lacuna interzygapophysialis 55, 56, 88, interphalangeales 10, 13 interphalangeales manus 143, 167 Lagena 50, 592, 601, 602, 609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                   |
| GENUS 144, 169, 182  Lacuna interzygapophysialis 55, 56, 88, interphalangeales 10, 13  interphalangeales manus 143, 167  Lagena 50, 592, 601, 602, 609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |                                   |
| interphalangeales 10, 13 121 interphalangeales manus 143, 167 Lagena 50, 592, 601, 602, 609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | -                                 |
| interphalangeales manus 143, 167 Lagena 50, 592, 601, 602, 609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                   |
| INTERVERTERRALES CENERALES Lamella condolateralis 52 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INTERVERTEBRALES GENERALES | Lamella caudolateralis 53, 77     |
| 139 choanalis 53, 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 139                        | choanalis 53, 78                  |

| Lamella dorsalis 53, 77                       | Lamina propria serosae 371, 391         |
|-----------------------------------------------|-----------------------------------------|
| verticalis naris 257, 263                     | pygostyli 57, 92                        |
| Lamellae rostri 8, 11, 319                    | superficialis 410, 413                  |
| uterinae 371, <i>37</i> 9                     | suprachoroidea 588, 596                 |
| Lamina 47                                     | tecti mesencephali 500                  |
| archistriatica dorsalis 506                   | transversa notarii 56, 91               |
| arcocostalis 55, 88, 121                      | transversa synsacri 56, 91              |
| basalis 588, <i>596</i>                       | vasculosa 588, 596                      |
| basalis folliculi 370, 375                    | visceralis 251                          |
| basalis pectinis 589, 599                     | LARYNX 54, 258                          |
| basilaris 592                                 | cartilaginous components 288, 289       |
| basiparasphenoidalis 82, 117                  | intrinsic muscles of 289                |
| basitemporalis 48, 49, 82                     | joints of 290                           |
| cartilaginea sclerae 588, 595, 607            | Latebra 372, 382                        |
| choroidocapillaris 588, 596                   | Lateralis 2, 3                          |
| continua 372, 382                             | Latus trunci 9, 13                      |
| corporocostalis 55, 88                        | Leg 13                                  |
| dorsalis 50, 84                               | Lemniscus lateralis 496, 498, 501, 514  |
| dorsalis arcus 55, 56                         | medialis 496, 498, 501, 511             |
| elastica 17, 23                               | spinalis 496, 498, 501                  |
| ependymalis 505                               | LENS 590, 599                           |
| epithelialis 349, 359                         | Lien 483                                |
| epithelialis interlobaris 478, 482            | Lig. accessorium 145                    |
| externa 47, 506                               | acrocoraco-procoracoideum 140, 160      |
| extravitellina 372, 382                       | acrocoracoacromiale 141, 161            |
| frontalis superior 506, 522                   | acrocoracoclaviculare profundum 141     |
| frontalis suprema 506, 522                    | acrocoracoclaviculare superficiale 141  |
| fusca 588                                     | acrocoracohumerale 141, 162, 179        |
| glomerulosa 505                               | acromioclaviculare 141                  |
| granularis externa 505                        | anulare [annulare] columellae 592, 602  |
| hepatica 306, 317                             | aortae 420, 431, <b>464</b>             |
| hyperstriatica 506                            | apicis dentis 140                       |
| infracristalis ilii 63, 107, 127              | arteriosum 416, 420, 431                |
| interna 48, 506                               | aryteno-cricoideum 259, 267             |
| lateralis arcus 55, 56, 87                    | aryteno-cricoideum dorsale 259, 267     |
| limitans 347, 350                             | arytenoglossale 259, 268                |
| limitans profunda 588, 595                    | arytenoparaglossale 139, 155            |
| limitans superficialis 588, 595               | bronchiale mediale 261, 276             |
| medullaris dorsalis 506                       | capitis femoris 144                     |
| medullaris ventralis 506                      | cartilago-metatarsale 145, 171          |
| mitralis 505                                  | cartilago-sesamoideum 144               |
| molecularis externa 505                       | collaterale 139, 140, 145, 155, 173     |
| molecularis interna 505                       | collaterale atlantoaxiale 140, 157      |
| muscularis mucosae 303, 304, 305, 312,        | collaterale caudale 143, 166, 167       |
| 313, 391, 397                                 | collaterale craniale 143                |
| parasphenoidalis 48, 49, 82                   | collaterale dorsale 142, 143, 163       |
| parietalis 251                                | collaterale laterale 144, 145, 172      |
| periostealis 506                              | collaterale mediale 144, 145, 172       |
| perivitellina 370, 372,, 374, 375, 382        | collaterale ventrale 142, 143, 163, 166 |
| propria 349, 359                              | columellosquamosum 593                  |
| propria mucosae 332, 371, 391                 | coracohumerale dorsale 141, 162         |
| P. Op. 11 11 11 10 10 10 10 10 10 10 10 10 10 | condendation delibrate 171, 102         |

intercricoideum dorsale 259, 267

Lig. intercristale ventrale 139, 140, 156, 158 Lig. coracoideum 140 coracoscapulare dorsale 141, 161 interosseum 137, 143, 145, 149, 172 coracoscapulare interosseum 141, interphalango-remigale 143, 146, 167 161, 179 interspinosum 139 intertransversarium 140 coracoscapulare ventrale 141, 161 corpus claviculae 140, 159 intracapsulare coracoideum caudale 142 craniale cubiti 142, 163 intracapsulare coracoideum craniale 142 crico-cricoideum dorsale 259, 267 intramandibulare 138, 139, 151 cricobasihyale 259, 268 ischiofemorale 144, 169, 182 ischiopubicum 143, 168 cruciatum caudale 144, 183 cruciatum craniale 144, 183 jugolacrimale 137, 148, 177 cubiti 146, 176 jugomandibulare laterale 138, 152, 177 denticulatum 507, 524 jugomandibulare mediale 138, 152, 177 dorsale oviductus 252, 371, 379 lacrimomandibulare 138, 152, 177 duodenocecale 252, 254 laterodorsale 139 duodenohepaticum 252, 254 laterospheno-jugale 138, 151 elasticum 136, 146 limitans cubiti 142, 143, 167, 235 m. extensoris longi digiti majoris 143 elasticum extensorium unguis 145, 174 elasticum extensorium unguis 196, 223 m. extensoris metacarpi ulnaris 143 elasticum interlaminare 139, 156, 186 m. ulnometacarpalis dorsalis 143 elasticum interrectricale 146, 176 mandibulo-occipitale 138, 151 elasticum interremigale major 146, mandibulosphenoidale 138, 150 175, 187 maxillomandibulare 138, 150 elasticum interremigale minor 146, medianum atlantoaxiale 140, 157 176, 187 menisco-metacarpale 142 elasticum interspinale 139, 156 meniscocollaterale 144, 170 elasticum intertectricale 146, 176 meniscofemorale 144 elasticum intertectricale carpale 146, 176 meniscofibulare caudale 144 elasticum metatarsi I 145, 172 meniscosesamoideum 145, 171 elasticum obliquum 139 meniscotibiale 145, 171 elasticum phalli 349, 359, 365 meniscotibiale caudale 144 elasticum tendinis flexoris 145, 174, meniscotibiale craniale 144 196, 223 mesethmopalatinum 138, 150, 177 elasticum transversum 139 mesethmovomerale 137, 149, 177 falciforme hepatis 252 metatarso-sesamoideum 145, 171 gastroduodenale 252, 254 obliquum alulae 143, 166 hepaticum 252, 254 obliquum hallucis 145, 172 hepatopericardiacum 251, 282 obliquum intra-articulare 143, 166 humerocarpale 143, 168, 181 occipitomandibulare 138, 151, 177, 202 humeroscapulare transversum 141 orbitale 138, 150 ileocecale 252, 254 orbitoquadratum 138, 152 ileodiverticulare 252, 254 palatolacrimale 138 iliofemorale 144, 169, 182 palatomaxillare 138, 154 inguinale 145, 174 paraglosso-basihyale dorsale 139 interansale 139, 156 paraglosso-basihyale ventrale 139 interarytenoideum caudale 259, 267, 290 patellae 144, 170 interarytenoideum rostrale 259, 267 pectinatum 589, 599 interbronchiale 260, 271 plantare 145, 173, 185 intercondylare transversum 145 postorbitale 138, 152 intercoracoideum 141 procoracoclaviculare 141

procrico-cricoideum 259, 266

| Lig. procrico-cricoideum dorsale 259, 266 propatagiale 143, 167, 187, 235, 236 pubofemorale 144 quadratomandibulare temporale 138, 151 quadratomandibulare caudale 138, 151 quadratomandibulare laterale 138, 151 | Lig. ulno-radiocarpale ventrale 142, 165 ulno-ulnocarpale distale 142, 165 ulno-ulnocarpale proximale 142, 165 ulnocarpo-metacarpale dorsale 142, 166, 181 ulnocarpo-metacarpale ventrale 142, 166 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| quadratomandibulare rostrale 138, 151                                                                                                                                                                             | ventrale oviductus 252, 371, 379                                                                                                                                                                   |
| quadratosphenoidale 137, 149                                                                                                                                                                                      | ventrolaterale 139, 156<br>ventromedianum 507, 524                                                                                                                                                 |
| quadratotemporale 137, 149<br>radio-radiocarpale craniale 142                                                                                                                                                     | vomerale 137, 149                                                                                                                                                                                  |
| radio-radiocarpale dorsale 142, 165                                                                                                                                                                               | zygomaticomandibulare 138, 152                                                                                                                                                                     |
| radio-radiocarpale ventrale 142, 181                                                                                                                                                                              | Ligamenta 136                                                                                                                                                                                      |
| radiocarpo-metacarpale craniale 142                                                                                                                                                                               | ACCESSORIA ALAE 145, 167                                                                                                                                                                           |
| radiocarpo-metacarpale dorsale 142                                                                                                                                                                                | ACCESSORIA MEMBRI PELVINI                                                                                                                                                                          |
| radiocarpo-metacarpale ventrale 142, 165                                                                                                                                                                          | [PELVICI] 145                                                                                                                                                                                      |
| radioulnare interosseum 142, 164                                                                                                                                                                                  | columellae 138                                                                                                                                                                                     |
| radioulnare transversum 142, 163                                                                                                                                                                                  | PENNARUM 146, 175, 187                                                                                                                                                                             |
| rectum hallucis 145                                                                                                                                                                                               | Ligaments, naming of 134                                                                                                                                                                           |
| scapuloclaviculare dorsale 141, 162                                                                                                                                                                               | Ligamentum collaterale 136                                                                                                                                                                         |
| scapulohumerale caudale 141                                                                                                                                                                                       | elasticum 136                                                                                                                                                                                      |
| scapulohumerale dorsale 141, 162                                                                                                                                                                                  | extracapsulare 136                                                                                                                                                                                 |
| scapulohumerale laterale 141                                                                                                                                                                                      | interosseum 136                                                                                                                                                                                    |
| sterno-acrocoracoideum 141                                                                                                                                                                                        | intracapsulare 136                                                                                                                                                                                 |
| sternoacromiale 141                                                                                                                                                                                               | Ligg. accessoria musculi 168                                                                                                                                                                       |
| sternoclaviculare 141                                                                                                                                                                                             | collateralia sternocoracoidea 141, 160                                                                                                                                                             |
| sternoclaviculare longum 141                                                                                                                                                                                      | dorsalia vertebrae 139                                                                                                                                                                             |
| sternocoracoideum externum 141<br>sternocoracoideum internum 141                                                                                                                                                  | iliosynsacralia 140, <i>158</i><br>lateralia vertebrae 139                                                                                                                                         |
| sternocoracoideum laterale 141, 161                                                                                                                                                                               | phalangoremigalia distalia 146, 175                                                                                                                                                                |
| sternocoracoideum longum 141                                                                                                                                                                                      | rectricium 146                                                                                                                                                                                     |
| sternocoracoideum mediale 141                                                                                                                                                                                     | remigium primariorum 146                                                                                                                                                                           |
| sternoprocoracoideum 141, 160                                                                                                                                                                                     | remigium secondariorum 146                                                                                                                                                                         |
| suborbitale 138, 150                                                                                                                                                                                              | ventralia vertebrae 139                                                                                                                                                                            |
| suspensorium corporum vertebralium                                                                                                                                                                                | Limbus corneae 588                                                                                                                                                                                 |
| 139, 156                                                                                                                                                                                                          | palpebralis 590, 600                                                                                                                                                                               |
| suspensorium transversum 507, 524                                                                                                                                                                                 | Linea 47                                                                                                                                                                                           |
| syringeale 260, 271                                                                                                                                                                                               | anastomotica 261, 277                                                                                                                                                                              |
| tibiofibulare craniale 144, 170                                                                                                                                                                                   | extensoria 65, 110                                                                                                                                                                                 |
| tibiofibulare interosseum 144, 170                                                                                                                                                                                | intermuscularis 58, 64, 93                                                                                                                                                                         |
| tibiofibulare obliquum 144, 170                                                                                                                                                                                   | intermuscularis ventralis 59, 97                                                                                                                                                                   |
| tibiometatarsale intercondylare 145,                                                                                                                                                                              | m. latissimi dorsi 60                                                                                                                                                                              |
| 171, 184                                                                                                                                                                                                          | m. peronei 65                                                                                                                                                                                      |
| tracheo-cricoideum 259, 268                                                                                                                                                                                       | mediania dorsalis 2, 5                                                                                                                                                                             |
| tracheo-cricoideum dorsale 259, 268                                                                                                                                                                               | mediania ventralis 2, 5                                                                                                                                                                            |
| transversum atlantis 140, 157<br>transversum genus 144                                                                                                                                                            | nuchalis sagittalis 48, 49, 69<br>nuchalis transversa 48, 49, 69                                                                                                                                   |
| transversum genus 144<br>transversum metatarsale 145, 172, <b>185</b>                                                                                                                                             | Lineae intermusculares 61                                                                                                                                                                          |
| triangulare 140, 159                                                                                                                                                                                              | m. fibularis 65                                                                                                                                                                                    |
| tricipitale 142, 164                                                                                                                                                                                              | LINGUA 302, 309                                                                                                                                                                                    |
| ulno-metacarpale ventrale 142, 165                                                                                                                                                                                | Lipocytus perisinusoideus 306, 318                                                                                                                                                                 |
| ulno-radiocarpale interosseum 142                                                                                                                                                                                 | Liquor cerebrospinalis 507                                                                                                                                                                         |
|                                                                                                                                                                                                                   | 4                                                                                                                                                                                                  |

| Liver (Hepar) 255, 306, 325, 326 | Loculus costalis 58, 93                |
|----------------------------------|----------------------------------------|
| Lobi accessorii 494, 507         | Locus ceruleus 515                     |
| ovarii 370, <i>373</i>           | Longitudinalis 2, 3                    |
| Lobuli hepatis 306, 317          | Lorum 8, 12                            |
| pancreatici 307                  | Lumen capsulae 331                     |
| Lobulus bursalis 478, 482, 489   | vasis 409                              |
| centralis 499                    | Lung (Pulmo) 255                       |
| culminus 499                     | (Pulmo), bronchi of (transparency) 298 |
| I 499                            | (Pulmo), surfaces and parts 297        |
| IIa 499                          | cross section, distribution of         |
| IIb 499                          | bronchi 298                            |
| IIIa 499                         | internal architecture 299              |
| IIIb 499                         | paleo-neopulmo 298                     |
| IVa 499                          | parabronchi of 299                     |
| IVb 499                          | Lymph collectors, epifascial 480, 485  |
| IXa 500                          | collectors, subfascial 480, 485        |
| IXb 500                          | hearts 480                             |
| IXc 500                          | precollectors 480                      |
| lingularis 499                   | vessels, initial 485, 486              |
| nodularis 500                    | Lympha 409                             |
| pyramidis 500                    | Lymphobulbus phalli 349, 356, 491      |
| renalis 330, 333, 342, 344       | phalli dexter/sinister 349, 355, 364   |
| thymici 478                      | Lymphonodularis muralis 481            |
| uvularis 500                     | LYMPHONODULI AGGREGATI                 |
| Va 499                           | APPARATUS DIGESTORII 478               |
| Vb 499                           | cecales 305, 478, 483                  |
| VIa 499                          | esophageales 303, 310, 478, 483        |
| VIb 499                          | pharyngeales 478, 483                  |
| VIc 500                          | pharyngis 302                          |
| VIIa 500                         | rectales 305                           |
| VIIb 500                         | solitarii 305                          |
| VIIIa 500                        | splenici 478                           |
| VIIIb 500                        | Lymphonodulus aggregatus 477           |
| X 500                            | solitarius 477, 481                    |
| Lobus caudalis 499               | LYMPHONODUS 477, 478, 481, 487         |
| dexter hepatis 306               | cervicothoracicus 478, 481             |
| flocculonodularis 499            | lumbaris 478, 481                      |
| glandulae uropygialis 17         | Mm., Musculus, also see pp. 750-751    |
| lateralis 258, 265               | M. abductor alulae 195, 217            |
| medialis 258, 265                | abductor digiti II 196, 223            |
| nervosus 400                     | abductor digiti IV 196, 224            |
| opticus 516                      | abductor digiti majoris 195, 217       |
| pancreatis dorsalis 306          | adductor alulae 195, 217               |
| pancreatis splenalis 306         | adductor digiti II 196, 223            |
| pancreatis tertius 306, 327      | adductor digiti IV 196, 224            |
| pancreatis ventralis 306         | adductor mandibulae caudalis 201       |
| parolfactorius 506, 522          | adductor mandibulae externus 192,      |
| posterior 404                    | 200, 228                               |
| renalis 330, <i>334</i>          | adductor mandibulae ossis quadrati     |
| rostralis 499                    | 192, <i>201</i>                        |
| sinister hepatis 306             | adductor rectricium 191, 194, 211      |
| thymicus 478                     | ambiens 195, 218                       |
|                                  |                                        |

M. ascendens cervicalis 193, 207 ascendens thoracicus 193, 207 atrialis 279 basianularis atrii 410, 412, 413, 458 basibranchialis mandibularis 203 biceps brachii 191, 195, 215 biventer cervicis 193, 206 brachialis 195, 237 branchiomandibularis 192, 204 bulbi rectricium 194, 211, 234 bulbospiralis 410 caudofemoralis 194, 211 caudofemoralis 195, 219, 240 ceratoglossus 192, 204 ceratohyoideus 192, 204 ciliaris anterior 586, 588, 596, 607 ciliaris posterior 586, 588, 596, 607 cleidohyoideus 192, 231, 259, 273 cleidotrachealis 192, 244, 259 columellae 191, 200, 593, 602, 610 complexus 193, 206, 223 constrictor colli 191, 198, 227 constrictor glottidis 192, 205, 259, 268, **289** contractor cloacae 194, 212, 391, 396 coracobrachialis caudalis 194, 213 coracobrachialis cranialis 194, 213 coracotriceps 194, 215 costopulmonalis 210 costoseptalis 193, 210 costosternalis 193, 210 crassus caudodorsalis 304, 313, 322 crassus cranioventralis 304, 313, 322 cricohyoideus 274 cricohyoideus dorsalis 192, 205, 259, 274 cricohyoideus ventralis 192, 205, 259, 274 cucullaris capitis 191, 198, 199, 227 cucullaris cervicis 191, 198 cutaneus colli 198 deltoideus 191, 194, 214, 236 deltoideus major 194, 214, 236 deltoideus minor 194, 214, 236 depressor anguli venti 194, 212, 391, 396 depressor caudae 194, 211 depressor mandibulae 192, 202, 228, 230 depressor palpebrae ventralis 191, 200, 590 dilator cloacae 194, 212, 349, 359, 360, 391, 396 dilator glottidis 192, 259, 268, 205, 289 dilator pupillae 589, 597

M. dilator striatus pupillae 589 ectepicondylo-ulnaris 195, 217 ethmomandibularis 192, 202 expansor secundariorum 191, 195, 197 extensor brevis alulae 195, 217 extensor brevis digiti III 196, 242 extensor brevis digiti IV 196, 223 extensor carpi radialis 195, 216, 236 extensor carpi ulnaris 195, 216 extensor digitorum communis 195, 216 extensor digitorum longus 196, 220 extensor hallucis longus 196, 223, 242 extensor longus alulae 195, 217 extensor longus digiti majoris 195, 217 extensor metacarpi radialis 216 extensor metacarpi ulnaris 216 extensor proprius digiti III 196, 223 extensor proprius digiti IV 196, 223 femorotibialis intermedius [medius] 195 femorotibialis lateralis [externus] 195 femorotibialis medialis [internus] 195, 239 fibularis [peroneus] brevis 196, 220, 240 fibularis [peroneus] longus 196, 220, 241 flexor alulae 195, 217 flexor carpi ulnaris 195, 215, 237 flexor colli lateralis [brevis] 193, 208 flexor colli medialis [profundus] 193, 208 flexor cruris lateralis 195, 219, 238 flexor cruris medialis 195, 219, 240 flexor digiti minoris 195, 218 flexor digitorum longus 196, 221, 243 flexor digitorum profundus 195, 216 flexor digitorum superficialis 195, 216 flexor hallucis brevis 196, 222, 223 flexor hallucis longus 196, 221, 222, 243 flexor perforans et perforatus digiti II 196, 219, 221, **238** flexor perforans et perforatus digiti III 196, 219, 221 flexor perforatus digiti II 196, 219 flexor perforatus digiti III 196, 219, 241 flexor perforatus digiti IV 196, 219 gastrocnemius 196, 221, 241 genioglossus 192, 205, 232 humerotriceps 194, 215 hyoglossus obliquus [lateralis] 192, 204 hyoglossus rostralis [medialis] 192, 204 hyoglossus transversus 192, 204 hyovalvularis 192, 259, 274, 205 iliofemoralis 220 iliofemoralis externus 195, 219

M. iliofemoralis internus 195, 219 iliofibularis 195, 218, 239 iliotibialis cranialis 195, 218, 238 iliotibialis lateralis 195, 218 iliotibialis medialis 195, 218 iliotrochantericus caudalis 195, 218 iliotrochantericus cranialis 195, 218 iliotrochantericus medius 195, 218 interceratobranchialis 192, 204 intercristalis 193, 208 intermandibularis dorsalis 192, 203, 231 intermandibularis ventralis 192, 203, 227 interosseus dorsalis 195, 217 interosseus ventralis 195, 217 ischiofemoralis 195, 240 lateralis caudae 194, 210, 234 latissimus dorsi 191, 194, 199, 213, 236 levator alulae 217 levator caudae 194, 210 levator cloacae 194, 212, 349, 359, 360, 391, 396 levator palpebrae dorsalis 191, 200, 590 longitudinalis ventriculi dextri 410, 413 longitudinalis ventriculi sinistri 410, 413 longus colli dorsalis 193, 207, 208 longus colli ventralis 193, 209, 233 lumbricalis 196 mesoglossus 192, 204 mylohyoideus 202 obliquus dorsalis 191, 199, 590, 599 obliquus externus abdominis 193, 210 obliquus internus abdominis 193, 210 obliquus lateralis 192, 260, 276 obliquus ventralis 191, 192, 199, 260, 276, 590, 599 obturatorius lateralis 195, 220 obturatorius medialis 195, 220 orbicularis oculi 590 orbicularis palpebrarum 191, 200 pectinati valvae 410, 414 pectoralis 191, 194, 213, 199 peroneus brevis 196, 221 peroneus longus 196, 221 plantaris 196, 221 popliteus 196, 221 pronator profundus 195, 215 pronator superficialis 195 propatagialis 194, 214 propatagialis brevis 214 protractor pterygoidei et quadrati 192, 202, **228** 

pseudotemporalis superficialis 192, 201 pterygoideus 192, 202, 228 pubo-ischio-femoralis 195, 220, 240, 241 pubocaudalis externus 194, 211, 234 pubocaudalis internus 194, 211 pyramidalis membranae nictitantis 191, 200, 226 pyramidalis membranae nictitantis 590, 591, 600, 608 quadratus lumborum 209 quadratus membranae nictitantis 191, 200, **226**, 590, 591, 600, **608** rectus abdominis 193, 210 rectus capitis dorsalis 193, 206 rectus capitis lateralis 193, 206 rectus capitis ventralis 193, 206 rectus dorsalis 191, 199, 590, 599 rectus lateralis 191, 199 rectus medialis 191, 199 rectus nasalis 590, 599 rectus temporalis 590, 599 rectus ventralis 191, 199, 590, 599 retractor phalli caudalis 194, 212, 349, 359, 360, 391, 396 rhomboideus profundus 194, 212 rhomboideus superficialis 194, 212, 236 scalenus 193, 209 scapulohumeralis caudalis 194, 212 scapulohumeralis cranialis 194, 212 scapulotriceps 194, 214 sclerocornealis 596 septi obliqui 251, 253 serpihyoideus 192, 203, 231 serratus profundus 194, 212 serratus superficialis 191, 194, 212 sinuspiralis 410 sphincter ceci 305, 316 sphincter cloacae 194, 211, 234, 391, 395 sphincter diverticuli vitellini 305, 316 sphincter ductus pancreatici 307, 318 sphincter ilei 305, 316 sphincter pupillae 589, 597 sphincter rectocoprodei 305, 316 sphincter striatus pupillae 589 sphincter vaginae 371, 379 splenius capitis 193, 206 sternocoracoideus 193, 210 sternohyoideus 273 sternotrachealis 192, 259, 274 stylohyoideus 192, 204, 232

M. pseudotemporalis profundus 192, 201

| M                                          | M                                                 |
|--------------------------------------------|---------------------------------------------------|
| M. subcoracoideus 194, 213                 | Margo costovertebralis 261, 276                   |
| subscapularis 194, 213                     | cranialis 8, 10, 57, 61, 261, 276, 306            |
| supinator 195                              | cranialis carinae 58                              |
| supracoracoideus 194, 213                  | cranialis sterni 58                               |
| supraglossus 192, 204                      | dexter 306                                        |
| syringealis 260, 276                       | dorsalis 8, 10, 59                                |
| syringealis caudalis 193, 260, 276         | epididymalis 347                                  |
| syringealis dorsalis 193, 260, 275         | fibroelastica 592, 602                            |
| syringealis profundus 193, 260, 276        | fibularis 65                                      |
| syringealis superficialis 192, 260, 276    | foraminis ilioischiadici 63                       |
| syringealis ventralis 260, 275             | infraorbitalis 51                                 |
| tensor periorbitae 191, 200, 590           | interosseus [caudalis] 61                         |
| tensor propatagialis brevis 214            | lateralis 8, 10, 63, 330, 333, 370, 373           |
| tenuis caudoventralis 304, 313, 322        | lateralis laminae transversae 57                  |
| tenuis craniodorsalis 304, 313, 322        | lateralis sterni 58                               |
| thyrohyoideus 274                          | liber 347                                         |
| tibialis cranialis 196, 220, 239           | linguae 302                                       |
| tracheobronchialis brevis 193, 260, 275    | medialis 8, 10, 63, 330, 333, 370, 373            |
| tracheobronchialis dorsalis 193, 260, 275  | pupillaris 589, 597                               |
| tracheobronchialis ventralis 193, 260, 275 | rostralis 8, 10                                   |
| tracheohyoideus 273                        | sinister 306                                      |
| tracheolateralis 192, 227, 259, 275 205    | supra-angularis 59                                |
| tracheovalvularis 192, 259, 274            | supraorbitalis 50, 51                             |
| transversus abdominis 193                  | ventralis 8, 10                                   |
| transversus cloacae 194, 211, 234,         | ventralis carinae 58                              |
| 391, 396                                   | vertebralis 59, 63                                |
| triceps brachii 194, 237                   | vertebroseptalis 261, 276                         |
| ulnometacarpalis dorsalis 195, 216, 236    | MAXILLA 51, 76                                    |
| ulnometacarpalis ventralis 195, 217        | Meatus 47                                         |
| valvae atrioventricularis dextrae          | Meatus acusticus externus 48, 69, 593, 610        |
| 410, 413, 458                              | Meatus nasalis 258, 264, 287                      |
| vocalis dorsalis 193, 260, 276             | Medialis 2, 4                                     |
| vocalis ventralis 193, 260, 276            | Medianus 2, 4                                     |
| Macrophagocytus stellatus 306, 318         | Medius 2, 4                                       |
| Macula densa 331, 338                      | Medulla 19, 25, 47                                |
| lagenae 592                                | oblongata 495, 525                                |
| sacculi 591, 601                           | OBLONGATA [MYELENCEPHALON]                        |
| utriculi 591, 601                          | 496, <i>510</i> , <b>525</b>                      |
| Magnum 371, 378                            | oblongata, transverse sections 532, 533, 534, 536 |
| Mala 8, 11                                 | ovarii 370, <i>373</i>                            |
| Mamilla 373, 382                           |                                                   |
| MANDIBULA 52, 54, 114, 115                 | renis [renalis] 330, 333                          |
| Manica flexoria 190, 221<br>Manus 9, 13    | MEDULLA SPINALIS 494, 525<br>thymica 478          |
| Margo 19, 27, 47                           | Medullary cones 333, 342                          |
| caudalis 8, 10, 57, 60, 61, 63, 99, 261,   | Mem. semilunaris 260, 271                         |
| 276, 306                                   | tracheosyringealis 260, 272                       |
| caudalis sterni 58, 93                     | tympaniformis lateralis 260, 272, 291             |
| ciliaris 589, 597                          | tympaniformis medialis 260, 272                   |
| costalis lateralis 58                      | Membrana 136                                      |
| costalis sterni 58, 93                     | acetabuli 144, 169                                |
| costoseptalis 261, 276                     | acrosomatica externa 347, 351                     |
| совозорина 201, 270                        | acrosomatica externa 377, 331                     |

| Membrana acrosomatica interna 347, 351                | Mesenterium dorsale 252, 256               |
|-------------------------------------------------------|--------------------------------------------|
| atlanto-occipitalis dorsalis 139, 157                 | ventrale 252, <b>256</b>                   |
| atlanto-occipitalis ventralis 139, 157                | Mesoduodenum 252                           |
| atlantoaxialis 140                                    | Mesoileum 252                              |
| basalis 17, 22, 331, 347, 350                         | Mesojejunum 252                            |
| basilaris 611                                         | Mesorchium 252, 347                        |
| circumorbitalis 138, 150                              | Mesotheliocytus cuboideus 370              |
| cristoclavicularis 141, 160                           | Mesothelium 371, 391                       |
| fibrosa 136                                           | Mesovarium 252, 256, 370, 373              |
| iliocaudalis 145, 174                                 | Mesoviductus 252                           |
| ilioischiadica 144, 169                               | Metacarpo 164                              |
| interlaminaris 139, 186                               | Metapatagium 20, 29                        |
| interossea antebrachii 143                            | Metaphysis 47, 67                          |
| interossea cruris 144                                 | Metatarsal bones 111                       |
| intramuscularis 194, 213                              | METENCEPHALON 498, 525                     |
| ischiopubica 143, 168                                 | Microtubulus centralis 347, 352            |
| nictitans 8, 12, 226, 590, 600, 608                   | Mm. apteriales 17, 23, 191, 197            |
| postmeatica 138, <i>151</i> , <b>177</b> , <i>202</i> | ascendentes 193, 233                       |
| sternocoracoclavicularis 141, 160, 179                | atriales 410, 412                          |
| synovialis 136                                        | cervicales dorsales 193, 205               |
| tectoria 592                                          | cervicales laterales 193, 205              |
| temporalis 138, 150                                   | cervicales ventrales 193, 205              |
| testae externa 373, 383                               | cloacales 194                              |
| testae externa 373, 383                               | costoseptales 251, 253, <b>255</b>         |
|                                                       |                                            |
| tympanica 592, <b>609</b> , <b>610</b>                | craniocervicales 193, 205                  |
| tympanica secundaria 592                              | femorotibiales 195, 219                    |
| vitrea 590, 599                                       | iliocostalis et longissimus dorsi 193, 207 |
| Membranae fenestrarum sterni 140, 159                 | iliotibiales 195, 218                      |
| incisurarum sterni 140, 159                           | iliotrochanterici 195, 218                 |
| testae 373, 378, 383                                  | inclusi dorsales 193, 208                  |
| vitelli 372, 382                                      | inclusi ventrales 193, 208                 |
| interanulares 261, 276                                | intercostales externi 193, 209             |
| MEMBRUM PELVICUM 9, 13                                | intercostales interni 193, 209             |
| THORACICUM 9                                          | interspinales 193, 208                     |
| MENINGES 506, 524                                     | intertransversarii 193, 208, 233           |
| Meniscus articularis 136, 138, 139, 143,              | laryngeales 259, 272                       |
| 152, 157, 166                                         | laryngis 259                               |
| intercarpalis 142, 165, 181                           | levatores costarum 193, 209                |
| intervertebralis 139, 155                             | nonstriati dermatis 17, 23                 |
| lateralis 144, 145, 170, 171                          | papillares 409, 410, 412                   |
| medialis 144, 145, 170, 171                           | pectinati 410, 412                         |
| radioulnaris 142, 163, 180                            | pennarum 17, 23, 191, 197, 225             |
| tactus 593, 605                                       | pterylarum 18, 23                          |
| Mentum 8, 11                                          | subcoracoscapulares 194, 213               |
| Meridiani bulbi 588, 594                              | syringeales 192, 260, 272, 275             |
| Merkel corpuscle 605                                  | tracheales 259, 272                        |
| Mesangiocytus extraglomerularis 331, 338              | ventriculares 410, 413                     |
| intraglomerularis 331, 334                            | Mons laryngealis 258, 265, 302, 319        |
| Mesangium extraglomerulare 331, 338                   | Mucocytus 303, 311, 312                    |
| intraglomerulare 331, 334                             | Muscle, Brucke's 596                       |
| MESENCEPHALON 500, 525                                | Crampton's 596                             |
| tranverse sections 539, 540, 543                      | hatching 206                               |
|                                                       |                                            |

| Muscle, Muller's 597                   | Musculus levator 190                                |
|----------------------------------------|-----------------------------------------------------|
| smooth 196                             | multipennatus 190                                   |
| Muscles, cervical 233                  | nonstriatus 190, 196                                |
| Garrod formula 190                     | planus 190                                          |
| Jaw 228, 229                           | pronator 190                                        |
| of pelvic limb 238-242                 | protractor 190                                      |
| of thigh, leg, and foot 238, 239, 240, | quadratus 190                                       |
| 241, 242                               | retractor 190                                       |
| of wing (dorsal) 236                   | rotator 190                                         |
| of wing (ventral) 237                  | skeleti 190, 196                                    |
| scapulohumeral 236                     | sphincter 190                                       |
| tail 234                               | striatus 190, <i>196</i>                            |
| MUSCULI ALAE [MEMBRI                   | subcutaneus 190                                     |
| THORACICI] 194                         | supinator 190                                       |
| APPARATUS HYOBRANCHIALIS 192,          | tensor 190                                          |
| 202, 231, 232                          | unipennatus 190                                     |
| APPARATUS HYOLINGUALALIS 192,          | MYOCARDIUM 410                                      |
| 202, 231                               | Nn., Nerve, also see pp. 752-753                    |
| bulbi 590, <i>599</i>                  | N. abducens 496, 558, <b>576</b>                    |
| BULBI OCULII 191, 199, 226             | accessorius 496, 497, 558, 577                      |
| CAPITIS 191                            | accessorius dorsalis bulbi 561, 570, 583            |
| CAUDAE ET CLOACAE 193, 210, 211,       | accessorius ventralis bulbi 561, 570                |
| 234                                    | ampullaris anterior 558                             |
| CLOACALES 391, 395                     | ampullaris lateralis [horizontalis] 558             |
| intramurales 371, 374                  | ampullaris posterior 558                            |
| LARYNGIS [LARYNGEALES] 192, 205        | anconealis 559                                      |
| linguae 302                            | aorticus 563, 572                                   |
| MANDIBULAE 192, 200, 228               | •                                                   |
| membranae nictitantis 191, 200         | axillaris 560, <b>578</b>                           |
| · · · · · · · · · · · · · · · · · · ·  | bicipitalis 560                                     |
| MEMBRI PELVICI 195                     | bigeminus 561, <i>570</i> cardiacus 564, <i>574</i> |
| NONSTRIATI DERMATIS 191, 197, 225      | ·                                                   |
| palpebrarum et periorbitae 191, 200    | cardiacus cranialis 562, 572                        |
| pedunculares 370, 374                  | caroticus cerebralis 564, 574, 577                  |
| PTERYLARUM 191, 197                    | caroticus cervicalis 574                            |
| SUBCUTANEI 191, 197                    | caroticus externus 564, 574                         |
| SYRINGEALES 192, 205                   | cochlearis 558                                      |
| TRACHEALES 192, 205                    | coxalis caudalis 561                                |
| TRUNCI 193, 209                        | coxalis cranialis 561, 581                          |
| TRUNCI ET REGIONIS CAUDALIS 193        | cristae neglectae 558                               |
| VERTEBRALES 193, 205, 233              | cutaneus antebrachialis dorsalis 560, 579           |
| Musculus abductor 190                  | cutaneus antebrachialis ventralis 560               |
| articularis 190                        | cutaneus axillaris 560                              |
| bipennatus 190                         | cutaneus brachialis dorsalis 560                    |
| ciliaris 588, 596                      | cutaneus brachialis ventralis 560                   |
| constrictor 190                        | cutaneus colli 559, 569                             |
| depressor 190                          | cutaneus cruralis cranialis 561                     |
| dilator 190                            | cutaneus cubiti 560                                 |
| expansor 190                           | cutaneus femoralis caudalis 561                     |
| extensor 190                           | cutaneus femoralis cranialis 561                    |
| flexor 190                             | cutaneus omalis 560, 569                            |
| fusiformis 190                         | cutaneus suralis 561                                |

| J. dorsalis bulbi rectricium 561, 570 esophagealis descendens 562 | N. peroneus superficialis 561 pharyngealis 562, 572      |
|-------------------------------------------------------------------|----------------------------------------------------------|
| facialis 496, 558, 562, 575                                       | plantaris lateralis 561, 570, 581                        |
|                                                                   | plantaris medialis 561, 570                              |
| femoralis 561, 580, 581                                           | precaroticus 562                                         |
| fibularis 561, 570                                                | •                                                        |
| furcalis 561, 570                                                 | propatagialis dorsalis 560, 579                          |
| glossopharyngeus 259, 260, 259, 496, 497, 558, 562                | propatagialis ventralis 560 pubicus 561, <i>570</i>      |
| hepaticus 564, 574, 584                                           | pudendus 332, 348, 372, 391, 561, 563,                   |
| hyomandibularis [R. caudalis] 558, 575                            | 573, 582                                                 |
| hypoglossocervicalis 260, 261, 558,                               | pulmoesophagealis 262,563, 572                           |
| 568, 577                                                          | radialis 560, <b>578</b> , <b>579</b>                    |
| hypoglossus 496, 497, 558                                         | recurrens 260, 262, 563                                  |
| ilioinguinalis 570                                                | saccularis 558                                           |
| infraorbitalis 557                                                | spinalis 559                                             |
| intermedius 558, 562, 567                                         | subcaroticus 562, 572                                    |
| intermedius caudae 561, 570, 573                                  | subcoracoscapularis 559                                  |
| interosseus 561                                                   | subscapularis 559                                        |
| intestinalis 563, 464, 573, <b>584</b>                            | supracoracoideus 560, 578                                |
| intramandibularis 558                                             | supraorbitalis 557                                       |
| iridociliaris 557, 562, 565                                       | suralis lateralis 561, <b>581</b>                        |
| ischiadicus 561, 570                                              | suralis medialis 561                                     |
| lagenaris 558                                                     | terminalis 557, 565                                      |
| laryngealis 259, 260, 558, 562, 571                               | tibialis 561, 570, <b>580</b> , <b>581</b>               |
| laryngopharyngealis 259, 558, 562,                                | trigeminus 496, 557                                      |
| 571, <b>577</b>                                                   | trochlearis 500, 557, <b>576</b>                         |
| lateralis caudae 391, 561, 573, <b>582</b>                        | ulnaris 560, <b>579</b>                                  |
| lingualis 562, <i>571</i>                                         | utricularis 558                                          |
| m. depressoris mandibulae 558, 567                                | vagus 260, 262, 496, 497, 558, 563, <i>573</i>           |
| mandibularis 558, 575                                             | vestibulocochlearis 496, 558, 568                        |
| maxillaris 557, 575                                               | Naris 8, 12, 68, 257, 263                                |
| medialis caudae 561, 570, <b>583</b>                              | shapes of 263                                            |
| medianoulnaris 560, 578                                           | Nasal cavity, transverse sections 287                    |
| medianus 560, <b>579</b>                                          | conchae, transverse sections 287                         |
| metatarsalis plantaris 561                                        | Neopulmo 261, 277, 298                                   |
| nasopalatinus 558                                                 | Neossoptilus 19, 28                                      |
| obturatorius 561, 570, <b>581</b>                                 | Neostriatum 506, 519, 522                                |
| oculomotorius 500, 557, 562, <b>576</b>                           | Nephron 331, <i>334</i>                                  |
| olfactorius 557, 564                                              | corticale 331, <i>334</i> , <i>335</i> , <b>343</b>      |
| ophthalmicus 557, 566, 575, 576                                   | juxtamedullare 331, <i>334</i> , <i>336</i> , <b>343</b> |
| ophthalmicus externus 564, 574                                    | Nephrons, parts of 345                                   |
| opticus 557, 565, <b>589</b>                                      | Nerve endings, free 604                                  |
| palatinus 558, 567                                                | endings, stretch 605                                     |
| palatinus [R. rostralis] 562                                      | facial, branches 575                                     |
| parafibularis 561, 570                                            | of Remak <i>573</i>                                      |
| paraperoneus 561, 570, 581                                        | sympathetic cardiac 574                                  |
| pectoralis 560, 578                                               | trigeminal, branches 575                                 |
| pectoralis caudalis 560                                           | Nerves, at base of skull,                                |
| pectoralis cranialis 560                                          | communications 577                                       |
| peroneus 561                                                      | parasympathetic 556                                      |
| peroneus profundus 561                                            | spinal, numbering 555                                    |
| 1                                                                 | 1 -,                                                     |

| Nervis, sympathetic 556 Nervi articulares 136 cloacae 391, 395 NERVI CRANIALES 557 oviductus 372, 381 NERVI SPINALES 559, 569, 555 Nervous system, peripheral 555 Neuroepithelium 591, 592 Neurofibra gustatoria 593 Neurohypophysis 400, 404 Nn. cardiaci caudales 562, 572 NN. CAUDALES 561, 583 NN. CERVICALES 559 choroidales 557, 565, 576 cloacales 391, 563 cutanei abdominales 560 cutanei cervicales dorsales 559 cutanei cervicales ventrales 559 cutanei erevicales ventrales 550 folliculares 371, 377 gastrici 563 intercostales 560 metatarsales dorsales 561, 581 ovarici 371, 377 pedunculares 564, 574 splanchnici thoracici 564, 574 SYNSACRALES 555, 561, 569 THORACICI 560 ventrales bulbi rectricium 561, 570, 583  Nuc. basalis [Nuc. trigeminalis] prosencephali 506, 515, 524 centralis medullae oblongatae 497 centralis superior 501 cerebellaris intermedius 500, 516 cerebellaris intermedius 501 facerebellaris intermedius 501 cerebellaris intermedius 500, 516 cerebellaris intermedius 500, 516 cerebellaris intermedius 501 cerebellaris intermedius 501 cerebellaris intermedius 500, 516 cerebellaris intermedius 500, 516 cerebellaris intermedius 501 cerebellaris intermedius 501 cerebellaris intermedius 500, 516 cerebellaris intermedius 500, 516 cerebellaris intermedius 501 cerebellaris intermedius 500, 516 cerulaes 498, 514, 515 cervicalis lateralis 494 commissuralis 495 commissuralis 495 commissuralis 495 co |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| cloacae 391, 395  NERVI CRANIALES 557     oviductus 372, 381  NERVI SPINALES 559, 569, 555  Nervous system, peripheral 555  Neuroepithelium 591, 592  Neurofibra gustatoria 593  Neurohypophysis 400, 404  Nn. cardiaci caudales 562, 572  NN. CAUDALES 559     choroidales 557, 565, 576     cloacales 391, 563     cutanei abdominales 560     cutanei cervicales dorsales 559     cutanei pectorales 560     folliculares 371, 377     gastrici 563     intercostales 560     metatarpales ventrales 560     metatarpales ventrales 560     metatarpales ventrales 560     metatarsales dorsales 561, 581     ovarici 371, 377     pedunculares 371, 377     splanchnici caudales 564, 574     SYNSACRALES 555, 561, 569     THORACICI 560      certellaris intermedius 500, 516     cerebellaris intermedius 500, 516     cornucomissuralis 494     commissuralis 495     cornucommissuralis 495     cornucommisuralis 500     cornucommissuralis 495     cornucommissuralis 495     cornucommissur |
| NERVI CRANIALES 557   oviductus 372, 381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| oviductus 372, 381  NERVI SPINALES 559, 569, 555  Nervous system, peripheral 555  Neuroepithelium 591, 592  Neurofibra gustatoria 593  Neurohypophysis 400, 404  Nn. cardiaci caudales 562, 572  NN. CAUDALES 561, 583  NN. CERVICALES 559  choroidales 557, 565, 576  cloacales 391, 563  cutanei abdominales 560  cutanei cervicales ventrales 559  cutanei pectorales 560  folliculares 371, 377  gastrici 563  intercostales 560, 579  metacarpales dorsales 560, 579  metacarpales ventrales 560  metatarsales dorsales 561, 581  ovarici 371, 377  pedunculares 371, 377  splanchnici caudales 564, 574  splanchnici synsacrales 564, 574  splanchnici thoracici 564, 574  SYNSACRALES 555, 561, 569  THORACICI 560  cerebellaris intermedius 500, 516  cerebellaris lateralis 500, 516  cerebellaris intermedialis 494, 508  cerclis and is intermedialis 500, 516  cereblaria intermicalis 500, 516  cerebellaris intermedialis 50 |
| NERVI SPINALES 559, 569, 555 Nervous system, peripheral 555 Neuroepithelium 591, 592 Neurofibra gustatoria 593 Neurohypophysis 400, 404 Nn. cardiaci caudales 562, 572 NN. CAUDALES 561, 583 NN. CERVICALES 559 choroidales 557, 565, 576 cloacales 391, 563 cutanei abdominales 560 cutanei cervicales dorsales 559 cutanei cervicales ventrales 559 cutanei recroitales 560 folliculares 371, 377 gastrici 563 intercostales 560 intramurales 371, 377 metacarpales dorsales 560, 579 metacarpales ventrales 560 metatarsales dorsales 561, 581 ovarici 371, 377 pedunculares 371, 377 splanchnici caudales 564, 574 splanchnici thoracici 564, 574 sylsaCRALES 555, 561, 569 THORACICI 560  cerebellaris medialis 500, 516 ceruleus 498, 514, 515 cervicalis lateralis 494, 508 commissuralis 497 commissuralis 495 commissuralis 496 commissuralis 495 commissuralis 497 commissuralis 496 commissuralis 496 commissuralis 496 comuscialis 496 cornucommissuralis 495 cornucommissuralis 495 cornucommissuralis 496 cornucommissuralis 495 cornucommissuralis 495 cornucommissuralis 496 commessuralis 496 cornucommissuralis 496 comuscialis 498 cornucommissuralis 496 comuscialis 498 cornucommissuralis 496 cornuc |
| Nervous system, peripheral 555 Neuroepithelium 591, 592 Neurofibra gustatoria 593 Neurohypophysis 400, 404 Nn. cardiaci caudales 562, 572 NN. CAUDALES 561, 583 NN. CERVICALES 559 choroidales 557, 565, 576 cloacales 391, 563 cutanei abdominales 560 cutanei cervicales ventrales 559 cutanei cervicales ventrales 559 cutanei pectorales 560 folliculares 371, 377 metacarpales dorsales 560, 579 metacarpales ventrales 560 metatarsales dorsales 561, 581 ovarici 371, 377 pedunculares 371, 3 |
| Neuroepithelium 591, 592  Neurofibra gustatoria 593  Neurohypophysis 400, 404  Nn. cardiaci caudales 562, 572  NN. CAUDALES 561, 583  NN. CERVICALES 559  choroidales 557, 565, 576  cloacales 391, 563  cutanei abdominales 560  cutanei cervicales ventrales 559  cutanei pectorales 560  folliculares 371, 377  gastrici 563  intercostales 371, 377  metacarpales ventrales 560  metatarsales dorsales 560, 579  metacarpales ventrales 560  metatarsales dorsales 561, 581  ovarici 371, 377  pedunculares 564  splanchnici caudales 564, 574  SYNSACRALES 555, 561, 569  THORACICI 560  commissuralis 494  commissuralis caudalis [posterior]  cornucommissuralis 495  cornucommissuralis 498  cornucommissuralis 498  cornucommissuralis 498  cornucommissuralis 498  cornucommisurale 498  cornucommisurale 498  cornucatus  |
| Neurofibra gustatoria 593  Neurohypophysis 400, 404  Nn. cardiaci caudales 562, 572  NN. CAUDALES 561, 583  NN. CERVICALES 559  choroidales 557, 565, 576  cloacales 391, 563  cutanei abdominales 560  cutanei cervicales ventrales 559  cutanei pectorales 560  folliculares 371, 377  gastrici 563  intercostales 560, 579  metacarpales dorsales 560, 579  metacarpales ventrales 560  metatarsales dorsales 560, 579  metacarpales ventrales 560  metatarsales dorsales 561, 581  ovarici 371, 377  pedunculares 564  splanchnici caudales 564, 574  sylsackales 565, 561, 569  THORACICI 560  commissuralis 497  commissuralis (posterior)  commissuralis (posterior)  commissuralis (posterior)  commissuralis (posterior)  commissuralis 495  commissuralis (posterior)  composite trapezoidei 498, 514  comeaus 497, 510, 521  cuneatus accessorius [lateralis] 497, 511  decussationis supra-opticae 504, 510  dorsointermedius caudalis [posterior]  thalami 502, 519  dorsolateralis caudalis [posterior]  thalami 503, 519  dorsolateralis intermedius thalami 503  dorsolateralis intermedius thalami 503  dorsolateralis rostralis [anterior] thalami  502, 520  dorsomedialis hypothalami 504, 509  dorsomedialis thalami 503, 519  ectomammilaris 518  entopeduncularis ventralis rostralis  splanchnici thoracici 564, 574  synsacrales 555, 561, 569  fasciculi longitudinalis medialis 501  fastigii 500, 516                                                                                                                                                                                                                                                                                                                                                                                                         |
| Neurohypophysis 400, 404 Nn. cardiaci caudales 562, 572 NN. CAUDALES 561, 583 NN. CERVICALES 559 choroidales 557, 565, 576 cloacales 391, 563 cutanei abdominales 560 cutanei cervicales dorsales 559 cutanei pectorales 560 folliculares 371, 377 gastrici 563 intercostales 560 intramurales 371, 377 metacarpales dorsales 560 metatarsales dorsales 561, 581 ovarici 371, 377 pedunculares 371, 377 pedunculares 371, 377 splanchnici caudales 564 splanchnici synsacrales 564, 574 synsaCrales 555, 561, 569 THORACICI 560  Commissuralis 497 commissuralis 495 cornucommissuralis 495 cornucommisuralis 495 cornucatus 497, 510, 521 cuneatus 497, 510 cuneatu |
| Nn. cardiaci caudales 562, 572  Nn. CAUDALES 561, 583  Nn. CERVICALES 559                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| NN. CAUDALES 561, 583  NN. CERVICALES 559                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| NN. CERVICALES 559 choroidales 557, 565, 576 cloacales 391, 563 cutanei abdominales 560 cutanei cervicales dorsales 559 cutanei cervicales ventrales 559 cutanei pectorales 560 cutanei pectorales 560 dorsalis tegmenti 502 cutanei pectorales 560 dorsolateralis 494 intercostales 560 intercostales 560, 579 metacarpales dorsales 560, 579 metacarpales ventrales 560 metacarpales ventrales 560 dorsolateralis intermedius thalami 503 dorsolateralis rostralis [anterior] thalami metatarsales dorsales 561, 581 ovarici 371, 377 pedunculares 371, 377 pedunculares 371, 377 splanchnici caudales 564 splanchnici ithoracici 564, 574 splanchnici thoracici 564, 574 SYNSACRALES 555, 561, 569 THORACICI 560  cornucommissuralis 498 cuneatus 497, 510, 521 cuneatus 497, 510 cunea |
| choroidales 557, 565, 576 cloacales 391, 563 cutanei abdominales 560 cutanei cervicales dorsales 559 cutanei cervicales ventrales 559 cutanei pectorales 560 cutanei pectorales 560 folliculares 371, 377 gastrici 563 intercostales 560 interaurales 371, 377 metacarpales dorsales 560 metacarpales ventrales 560 dorsointermedius caudalis [posterior] thalami 503, 519 dorsolateralis caudalis [posterior] thalami 503, 519, 509 dorsolateralis intermedius thalami 503 dorsolateralis intermedius thalami 503 metacarpales ventrales 560 dorsolateralis intermedius thalami 503 dorsolateralis rostralis [anterior] thalami 502, 520 dorsomedialis hypothalami 504, 509 dorsomedialis thalami 503, 519 ectomammilaris 518 entopeduncularis ventralis rostralis 503, 520 SYNSACRALES 555, 561, 569 THORACICI 560  cuneatus 497, 510, 521 cuneatus 497, 510 dorsolateralis intermelius caudalis [posterior] thalami 502 dorsolateralis rostralis [anterior] thalami 503, 519 ectomammilaris 518 entopeduncularis ventralis rostralis 503, 520 fasciculi longitudinalis medialis 501 fastigii 500, 516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| cloacales 391, 563 cutanei abdominales 560 cutanei cervicales dorsales 559 cutanei cervicales ventrales 559 cutanei pectorales 560 cutanei pectorales 560 cutanei pectorales 560 cutanei pectorales 560 dorsalis tegmenti 502 dorsolateralis caudalis [posterior] folliculares 371, 377 gastrici 563 intercostales 560 intercostales 560 interacarpales dorsales 560, 579 metacarpales ventrales 560 metacarpales ventrales 560 dorsolateralis caudalis [posterior] thalami 503, 519, 509 dorsolateralis intermedius thalami 503 dorsolateralis intermedius thalami 503 dorsolateralis rostralis [anterior] thalami 502, 520 dorsonedialis hypothalami 504, 509 dorsomedialis thalami 503, 519 ectomammilaris 518 splanchnici caudales 564 splanchnici thoracici 564, 574 sylnsacrales 555, 561, 569 THORACICI 560  cuneatus 497, 510, 521 cuneatus accessorius [lateralis] 497, 511 decussationis supra-opticae 504, 510 dorsolateralis tegmenti 502 dorsolateralis caudalis [posterior] thalami 503, 519, 509 dorsolateralis intermedius thalami 503 dorsolateralis rostralis [anterior] thalami 502, 520 dorsomedialis hypothalami 504, 509 dorsomedialis thalami 503, 519 ectomammilaris 518 entopeduncularis ventralis rostralis 503, 520 fasciculi longitudinalis medialis 501 fastigii 500, 516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| cutanei abdominales 560 cutanei cervicales dorsales 559 cutanei cervicales ventrales 559 cutanei pectorales 560 cutanei pectorales 560 cutanei pectorales 560 dorsalis tegmenti 502 dorsalis tegmenti 502 dorsalis tegmenti 503 dorsolateralis caudalis [posterior] thalami 503, 519 dorsolateralis 494 dorsolateralis caudalis [posterior] thalami intramurales 371, 377 metacarpales dorsales 560, 579 metacarpales ventrales 560 metacarpales ventrales 560 dorsolateralis caudalis [posterior] thalami 503, 519, 509 dorsolateralis intermedius thalami 503 dorsolateralis rostralis [anterior] thalami 502, 520 dorsomedialis hypothalami 504, 509 dorsomedialis thalami 503, 519 ectomammilaris 518 entopeduncularis ventralis rostralis 503, 520 SYNSACRALES 555, 561, 569 THORACICI 560  cuneatus accessorius [lateralis] 497, 511 decussationis supra-opticae 504, 510 dorsalis tegmenti 502 dorsolateralis caudalis [posterior] thalami 503, 519, 509 dorsolateralis intermedius thalami 503 dorsolateralis rostralis [anterior] thalami 502, 520 dorsomedialis hypothalami 504, 509 dorsomedialis thalami 503, 519 ectomammilaris 518 entopeduncularis ventralis rostralis 503, 520 fasciculi longitudinalis medialis 501 fastigii 500, 516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| cutanei cervicales dorsales 559 cutanei cervicales ventrales 559 cutanei pectorales 560 cutanei pectorales 560 dorsalis tegmenti 502 dorsointermedius caudalis [posterior] folliculares 371, 377 gastrici 563 intercostales 560 intercostales 560 interaurales 371, 377 metacarpales dorsales 560, 579 metacarpales ventrales 560 metacarpales ventrales 560 metacarpales ventrales 560 dorsolateralis caudalis [posterior] thalami 503, 519, 509 dorsolateralis intermedius thalami 503 dorsolateralis rostralis [anterior] thalami 502, 520 dorsomedialis hypothalami 504, 509 dorsomedialis thalami 503, 519 splanchnici caudales 564 splanchnici synsacrales 564, 574 splanchnici thoracici 564, 574 SYNSACRALES 555, 561, 569 THORACICI 560  dorsolateralis rostralis [anterior] thalami 502, 520 dorsomedialis hypothalami 504, 509 dorsomedialis thalami 503, 519 ectomammilaris 518 entopeduncularis ventralis rostralis 503, 520 fasciculi longitudinalis medialis 501 fastigii 500, 516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| cutanei cervicales ventrales 559 cutanei pectorales 560 folliculares 371, 377 gastrici 563 intercostales 560 interacuraples dorsales 560, 579 metacarpales ventrales 560 metacarpales ventrales 560 metacarpales ventrales 560 dorsolateralis caudalis [posterior] thalami 503, 519, 509 dorsolateralis caudalis [posterior] thalami 503, 519, 509 dorsolateralis intermedius thalami 503 dorsolateralis intermedius thalami 503 dorsolateralis rostralis [anterior] thalami 502, 520 dorsonedialis hypothalami 504, 509 dorsomedialis thalami 503, 519 splanchnici caudales 564 splanchnici synsacrales 564, 574 splanchnici thoracici 564, 574 SYNSACRALES 555, 561, 569 THORACICI 560  dorsolateralis rostralis [anterior] thalami 503, 519 ectomammilaris 518 entopeduncularis ventralis rostralis 503, 520 fasciculi longitudinalis medialis 501 fastigii 500, 516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| cutanei pectorales 560 folliculares 371, 377 gastrici 563 intercostales 560 intercostales 560 interaurales 371, 377 metacarpales dorsales 560, 579 metacarpales ventrales 560 metacarpales ventrales 560 dorsolateralis caudalis [posterior] thalami 503, 519, 509 dorsolateralis intermedius thalami 503 dorsolateralis intermedius thalami 503 dorsolateralis rostralis [anterior] thalami 502, 520 dorsomedialis hypothalami 504, 509 dorsomedialis thalami 503, 519 splanchnici caudales 564 splanchnici synsacrales 564, 574 splanchnici thoracici 564, 574 SYNSACRALES 555, 561, 569 THORACICI 560 dorsointermedius caudalis [posterior] thalami 503, 519 dorsolateralis rostralis [anterior] thalami 502, 520 dorsomedialis hypothalami 504, 509 dorsomedialis thalami 503, 519 ectomammilaris 518 entopeduncularis ventralis rostralis 503, 520 fasciculi longitudinalis medialis 501 fastigii 500, 516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| folliculares 371, 377 gastrici 563 intercostales 560 intercostales 571, 377 metacarpales dorsales 560, 579 metacarpales ventrales 560 metacarpales ventrales 560 metacarpales ventrales 560 metacarpales ventrales 560 metacarpales ventrales 561, 581 metacarpales ventrales 561, 581 metacarpales ventrales 560 metacarpales ventrales 560 dorsolateralis intermedius thalami 503 dorsolateralis rostralis [anterior] thalami 502, 520 dorsomedialis hypothalami 504, 509 dorsomedialis thalami 503, 519 splanchnici caudales 564 splanchnici synsacrales 564, 574 splanchnici thoracici 564, 574 SYNSACRALES 555, 561, 569 THORACICI 560  thalami 503, 519 dorsolateralis rostralis [anterior] thalami 502, 520 dorsomedialis hypothalami 504, 509 dorsomedialis thalami 503, 519 ectomammilaris 518 entopeduncularis ventralis rostralis 503, 520 fasciculi longitudinalis medialis 501 fastigii 500, 516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| gastrici 563 intercostales 560 intercostales 571, 377 metacarpales dorsales 560, 579 metacarpales ventrales 560 metacarpales ventrales 560 dorsolateralis caudalis [posterior] thalami 503, 519, 509 dorsolateralis intermedius thalami 503 dorsolateralis rostralis [anterior] thalami 502, 520 dorsomedialis hypothalami 504, 509 dorsomedialis thalami 503, 519 splanchnici caudales 564 splanchnici synsacrales 564, 574 splanchnici thoracici 564, 574 SYNSACRALES 555, 561, 569 THORACICI 560 dorsolateralis caudalis [anterior] thalami 502, 520 dorsomedialis hypothalami 504, 509 dorsomedialis thalami 503, 519 ectomammilaris 518 entopeduncularis ventralis rostralis 503, 520 fasciculi longitudinalis medialis 501 fastigii 500, 516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| intercostales 560 intramurales 371, 377 metacarpales dorsales 560, 579 metacarpales ventrales 560 metacarpales ventrales 560 metatarsales dorsales 561, 581 ovarici 371, 377 pedunculares 371, 377 splanchnici caudales 564 splanchnici synsacrales 564, 574 splanchnici thoracici 564, 574 SYNSACRALES 555, 561, 569 THORACICI 560 dorsolateralis caudalis [posterior] thalami 503, 519 dorsonedialis nypothalami 503, 519 ectomammilaris 518 entopeduncularis ventralis rostralis 503, 520 fasciculi longitudinalis medialis 501 fastigii 500, 516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| intramurales 371, 377 metacarpales dorsales 560, 579 metacarpales ventrales 560 metacarpales ventrales 560 dorsolateralis intermedius thalami 503 dorsolateralis rostralis [anterior] thalami metatarsales dorsales 561, 581 ovarici 371, 377 dorsomedialis hypothalami 504, 509 pedunculares 371, 377 splanchnici caudales 564 splanchnici synsacrales 564, 574 splanchnici thoracici 564, 574 SYNSACRALES 555, 561, 569 THORACICI 560  503, 519, 509 dorsonedialis intermedius thalami 503 dorsolateralis intermedius thalami inte |
| metacarpales dorsales 560, 579 metacarpales ventrales 560 metacarpales ventrales 560 dorsolateralis intermedius thalami 503 dorsolateralis rostralis [anterior] thalami metatarsales dorsales 561, 581 ovarici 371, 377 dorsomedialis hypothalami 504, 509 pedunculares 371, 377 splanchnici caudales 564 splanchnici synsacrales 564, 574 splanchnici thoracici 564, 574 SYNSACRALES 555, 561, 569 THORACICI 560 dorsomedialis intermedius thalami 503 dorsolateralis intermedius thalami 503 follows in the solution of the  |
| metacarpales ventrales 560 metatarsales dorsales 561, <b>581</b> ovarici 371, 377 pedunculares 371, 377 splanchnici caudales 564 splanchnici thoracici 564, 574 sylvacrales 555, 561, 569 THORACICI 560 dorsonedialis rostralis [anterior] thalami 502, 520 dorsomedialis hypothalami 504, 509 dorsomedialis thalami 503, 519 ectomammilaris 518 entopeduncularis ventralis rostralis 503, 520 fasciculi longitudinalis medialis 501 fastigii 500, 516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| metatarsales dorsales 561, <b>581</b> ovarici 371, 377 pedunculares 371, 377 splanchnici caudales 564 splanchnici synsacrales 564, 574 splanchnici thoracici 564, 574 SYNSACRALES 555, 561, 569 THORACICI 560  502, 520 dorsomedialis hypothalami 504, 509 dorsomedialis thalami 503, 519 ectomammilaris 518 entopeduncularis ventralis rostralis 503, 520 fasciculi longitudinalis medialis 501 fastigii 500, 516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ovarici 371, 377 dorsomedialis hypothalami 504, 509 pedunculares 371, 377 dorsomedialis thalami 503, 519 splanchnici caudales 564 ectomammilaris 518 splanchnici synsacrales 564, 574 entopeduncularis ventralis rostralis splanchnici thoracici 564, 574 SYNSACRALES 555, 561, 569 fasciculi longitudinalis medialis 501 THORACICI 560 fastigii 500, 516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| pedunculares 371, 377 dorsomedialis thalami 503, 519 splanchnici caudales 564 ectomammilaris 518 splanchnici synsacrales 564, 574 entopeduncularis ventralis rostralis splanchnici thoracici 564, 574 503, 520 SYNSACRALES 555, 561, 569 fasciculi longitudinalis medialis 501 THORACICI 560 fastigii 500, 516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| splanchnici caudales 564 ectomammilaris 518 splanchnici synsacrales 564, 574 entopeduncularis ventralis rostralis splanchnici thoracici 564, 574 503, 520 SYNSACRALES 555, 561, 569 fasciculi longitudinalis medialis 501 THORACICI 560 fastigii 500, 516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| splanchnici synsacrales 564, 574 entopeduncularis ventralis rostralis splanchnici thoracici 564, 574 503, 520 SYNSACRALES 555, 561, 569 fasciculi longitudinalis medialis 501 THORACICI 560 fastigii 500, 516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| splanchnici thoracici 564, 574  SYNSACRALES 555, 561, 569 THORACICI 560  503, 520 fasciculi longitudinalis medialis 501 fastigii 500, 516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SYNSACRALES 555, 561, 569 fasciculi longitudinalis medialis 501<br>THORACICI 560 fastigii 500, 516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| THORACICI 560 fastigii 500, 516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ventrales build rectricium 501, 570, 505 geniculatus lateralis 505, 520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Nodulus lymphaticus aggregatus 477 geniculatus ventralis 503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| lymphaticus solitarius 477, 481 gracilis 497, 510, 521                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Nodus 19, 26 habenularis lateralis 505, 523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| atrioventricularis 410, 414, 459 habenularis medialis 505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| lymphaticus 477, 481, 487 inferioris hypothalami 504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| sinuatrialis 410, 413, <b>459</b> infundibuli hypothalami 504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| truncobulbaris 410, 413, <b>459</b> intercalatus 497, 512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Notaeum 13 intercalatus hypothalami 504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| NOTARIUM 56, 90, 123 intercalatus thalami 503, 509, 519,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Nuc. accessorius n. abducentis 498, 515 intercollicularis 501, 518, 514                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| accumbens 505, 522 intermediolateralis 494, 508                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ambiguus 497, 511 intermedius medullae oblongatae 497, 511                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| angularis 497, 511, 514 interpeduncularis 501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ansae lenticularis caudalis [posterior] 506, interstitialis commissurae caudalis 501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 519, 523 interstitialis commissurae pallii 506                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ansae lenticularis rostralis [anterior] 506, interstitialis striae terminalis 505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 519, 523 interstitialis thalami 503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| Nuc. interstitio-pretecto-subpretectalis 503                            | Nuc. preopticus medianus 504, 523                                 |
|-------------------------------------------------------------------------|-------------------------------------------------------------------|
| intrafascicularis n. hypoglossi 497                                     | preopticus periventricularis 504                                  |
| intrapeduncularis 506, 519, 523                                         | prepositus hypoglossi 497                                         |
| isthmo-opticus 501, 517                                                 | pretectalis 501                                                   |
| laminaris 497, 512, 514                                                 | principalis precommissuralis 503                                  |
| lateralis lemnisci 498, 514, 515                                        | proprius 494, 508                                                 |
| lateralis pontis 498, 514                                               | radicis opticae basalis 501, 518                                  |
| lateralis rostralis [anterior] thalami 502                              | raphae magnae 497, 513                                            |
| lemnisci lateralis 501                                                  | raphae obscurae 497, 513                                          |
| lentiformis mesencephali 501, 518                                       | raphae pallidae 497, 513                                          |
| linearis caudalis 501, 513                                              | raphae pontis 499, 513                                            |
| linearis intermedius 501, 513                                           | reticularis gigantocellularis 497                                 |
| linearis rostralis 501, 513                                             | reticularis lateralis 497                                         |
| magnocellularis cochlearis 497, 512                                     | reticularis paragigantocellularis                                 |
| magnocellularis isthmi 501                                              | lateralis 497                                                     |
| magnocellularis preopticus 504                                          | reticularis paramedianus 497, 513                                 |
| mammillaris lateralis 504, 509                                          | reticularis parvocellularis 497, 499, 514                         |
| mammillaris medialis 504                                                | reticularis pontis caudalis 499                                   |
| marginalis 494, 507, 508, <b>531</b>                                    | reticularis pontis rostralis 499                                  |
| medialis pontis 498, 515                                                | reticularis thalami 503                                           |
| mesencephalicus lateralis 501, 518                                      | retroambiguus 497                                                 |
| mesencephalicus n. trigemini 501,                                       | retrofacialis 499, 515                                            |
| 514, 518                                                                | robustus 505, 522                                                 |
| mesencephalicus profundus 501, 518                                      | rostralis [anterior] medialis                                     |
| motorius 494                                                            | hypothalami 504                                                   |
| motorius dorsalis n. vagi 497, 512                                      | rotundus 503, <i>520</i>                                          |
| motorius lateralis 494, 508                                             | ruber 502, <i>511</i>                                             |
| motorius medialis 494, 508                                              | salivatorius n. facialis 499, 515                                 |
| motorius n. facialis 499, 515                                           | semilunaris mesencephali 502                                      |
| motorius n. glossopharyngei 497, 512                                    | semilunaris thalami 503, 520                                      |
| motorius n. trigemini 499, 515                                          | sensorius n. facialis 499, 515                                    |
| n. abducentis 499                                                       | sensorius n. glossopharyngei                                      |
| n. accessorii 494, 497, 512                                             | 497, <i>513</i>                                                   |
| n. hypoglossi 497, 512                                                  | sensorius principalis n. trigemini 499,                           |
| n. oculomotorii 501, 519                                                | 513, 515                                                          |
| n, trochlearis 501                                                      | septalis lateralis 505                                            |
| olfactorius rostralis [anterior] 506                                    | septalis medialis 505                                             |
| olivaris accessorius dorsalis 497                                       | spiriformis lateralis 503                                         |
| olivaris accessorius medialis 497                                       | spiriformis medialis 503, 519                                     |
| olivaris principalis 497                                                | subceruleus dorsalis 499                                          |
| olivaris superior 499                                                   | subceruleus uoisais 499<br>subceruleus ventralis 499, 514         |
| ovoidalis 503, 517, 520                                                 | subhabenularis lateralis 505                                      |
| papilloformis 499, 518                                                  | subhabenularis medialis 505                                       |
| parabrachialis 499, 513                                                 | subpretectalis 501, 502                                           |
| paraoracinans 499, 513<br>paraventricularis hypothalami 504, 521        | subrotundus 503                                                   |
| parvocellularis isthmi 501                                              | substantiae gelatinosae 494                                       |
| -                                                                       | •                                                                 |
| periventricularis hypothalami 504, 509<br>periventricularis thalami 503 | subtrigeminalis 514<br>superficialis parvocellularis thalami 503, |
| •                                                                       | 509, 519                                                          |
| premammillaris hypothalami 504                                          | •                                                                 |
| preopticus dorsolateralis 504                                           | supra-opticus 504                                                 |
| preopticus medialis 504                                                 | suprachiasmaticus 504, 509, 510                                   |

| Nuc. supramammillaris interstitialis 504                                                                                                                                                                 | Organa, sensoria musculi 593                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| supraspinalis 497, 513                                                                                                                                                                                   | sensoria tendinis 594                                                                                                                                                              |
| taeniae 505                                                                                                                                                                                              | sensoria visceralia 594, 605                                                                                                                                                       |
| tegmenti pedunculo-pontini 501, 519                                                                                                                                                                      | SENSORIA VISCERALIA 594                                                                                                                                                            |
| tr. ascendentis n. glossopharyngei                                                                                                                                                                       | SOMATOSENSORIA 593                                                                                                                                                                 |
| 497, 513                                                                                                                                                                                                 | URINARIA 330                                                                                                                                                                       |
| tr. descendentis n. trigemini 494, 497,                                                                                                                                                                  | Organum interventriculare 506, 529                                                                                                                                                 |
|                                                                                                                                                                                                          | _                                                                                                                                                                                  |
| 499, 513, 514, 508                                                                                                                                                                                       | ORGANUM GUSTATORIUM 593                                                                                                                                                            |
| tr. diagonalis 506                                                                                                                                                                                       | laterale septi 506, 528                                                                                                                                                            |
| tr. septomesencephali 506                                                                                                                                                                                | nervosum terminale musculotendineum                                                                                                                                                |
| tr. solitarii 497, 513                                                                                                                                                                                   | <i>5</i> 94, <i>605</i>                                                                                                                                                            |
| triangularis 503, 521                                                                                                                                                                                    | ORGANUM OLFACTORIUM 593, 603                                                                                                                                                       |
| trigeminalis prosencephali 506, 524                                                                                                                                                                      | paratympanicum 593, 603                                                                                                                                                            |
| ventralis tegmenti 502                                                                                                                                                                                   | paraventriculare 506, 529                                                                                                                                                          |
| ventrolateralis thalami 503                                                                                                                                                                              | postremum 498, 510                                                                                                                                                                 |
| ventromedialis hypothalami 504, 521, 589                                                                                                                                                                 | subcommissurale 500, 528                                                                                                                                                           |
| vestibulares 497, 514                                                                                                                                                                                    | subseptale 506, 529                                                                                                                                                                |
| vestibularis descendens 497                                                                                                                                                                              | subtrochleare 498                                                                                                                                                                  |
| vestibularis lateralis dorsalis 497                                                                                                                                                                      | vasculosum laminae terminalis 506, 528                                                                                                                                             |
| vestibularis lateralis ventralis 497                                                                                                                                                                     | VESTIBULOCOCHLEARE 591                                                                                                                                                             |
| vestibularis medialis 497                                                                                                                                                                                |                                                                                                                                                                                    |
|                                                                                                                                                                                                          | VISUS 588, 595                                                                                                                                                                     |
| vestibularis rostralis [superior] 497                                                                                                                                                                    | Orificium 47                                                                                                                                                                       |
| vestibularis tangentialis 497, 514                                                                                                                                                                       | venti 390                                                                                                                                                                          |
| Nucha 9, 12                                                                                                                                                                                              | Origo 190, 197                                                                                                                                                                     |
| Nuclei, of sympathetic and parasympathetic                                                                                                                                                               | Os 8, 301                                                                                                                                                                          |
| neurons 508                                                                                                                                                                                              | Os angulare 54                                                                                                                                                                     |
| Nucleus 347                                                                                                                                                                                              | articulare 54, 75                                                                                                                                                                  |
| mamillae 373                                                                                                                                                                                             | basioccipitale 48, 49                                                                                                                                                              |
|                                                                                                                                                                                                          | basisphenoidale 49                                                                                                                                                                 |
| Obex 496                                                                                                                                                                                                 | carpi radiale 61, 103, 128, 181                                                                                                                                                    |
| Occipitalis 2, 4                                                                                                                                                                                         | carpi ulnare 61, 102, 128                                                                                                                                                          |
| Occiput 8, 10, 48                                                                                                                                                                                        | compactum 47                                                                                                                                                                       |
| OCULUS 8, 12, 588, 594                                                                                                                                                                                   | coracoideum 59, 124                                                                                                                                                                |
| OESOPHAGUS 303, 307                                                                                                                                                                                      | coronoideum 54, 75                                                                                                                                                                 |
| Olecranon 60, 100                                                                                                                                                                                        | coxae 62, 104, 123, 129                                                                                                                                                            |
| Omus 9, 12                                                                                                                                                                                               | cuneatum 66, 145, 173                                                                                                                                                              |
| Ocyte 373, 374                                                                                                                                                                                           | dentale 54, 75                                                                                                                                                                     |
|                                                                                                                                                                                                          |                                                                                                                                                                                    |
| Oogonia 373                                                                                                                                                                                              | dorsale 56                                                                                                                                                                         |
| Operculum auris 593, 603                                                                                                                                                                                 | ectethmoidale 50, 51, 52, 84                                                                                                                                                       |
|                                                                                                                                                                                                          |                                                                                                                                                                                    |
| nasale 8, 12, 15, 257, 263                                                                                                                                                                               | epioticum 50, 84                                                                                                                                                                   |
| Ora serrata 589, 594, 595, 598, 606                                                                                                                                                                      | epioticum 50, 84<br>exoccipitale 48, 49                                                                                                                                            |
|                                                                                                                                                                                                          | epioticum 50, 84                                                                                                                                                                   |
| Ora serrata 589, 594, 595, 598, <b>606</b><br>Oralis 2, 4<br>ORBITA 46, 51, 71                                                                                                                           | epioticum 50, 84<br>exoccipitale 48, 49                                                                                                                                            |
| Ora serrata 589, 594, 595, 598, <b>606</b><br>Oralis 2, 4                                                                                                                                                | epioticum 50, 84<br>exoccipitale 48, 49<br>femoris 64                                                                                                                              |
| Ora serrata 589, 594, 595, 598, <b>606</b><br>Oralis 2, 4<br>ORBITA 46, 51, 71                                                                                                                           | epioticum 50, 84<br>exoccipitale 48, 49<br>femoris 64<br>frontale 50, 51                                                                                                           |
| Ora serrata 589, 594, 595, 598, <b>606</b><br>Oralis 2, 4<br>ORBITA 46, 51, 71<br>Organ, "bill-tip" 605                                                                                                  | epioticum 50, 84<br>exoccipitale 48, 49<br>femoris 64<br>frontale 50, 51<br>jugale 53                                                                                              |
| Ora serrata 589, 594, 595, 598, <b>606</b> Oralis 2, 4 ORBITA 46, 51, 71 Organ, "bill-tip" 605 Golgi 605                                                                                                 | epioticum 50, 84<br>exoccipitale 48, 49<br>femoris 64<br>frontale 50, 51<br>jugale 53<br>lacrimale 50, 84                                                                          |
| Ora serrata 589, 594, 595, 598, 606 Oralis 2, 4 ORBITA 46, 51, 71 Organ, "bill-tip" 605 Golgi 605 Organa sensoria articulationis 593                                                                     | epioticum 50, 84 exoccipitale 48, 49 femoris 64 frontale 50, 51 jugale 53 lacrimale 50, 84 lacrimopalatinum 54 latero-ethmoidale 50, 84                                            |
| Ora serrata 589, 594, 595, 598, 606 Oralis 2, 4 ORBITA 46, 51, 71 Organ, "bill-tip" 605 Golgi 605 Organa sensoria articulationis 593 GENITALIA FEMININA 370                                              | epioticum 50, 84<br>exoccipitale 48, 49<br>femoris 64<br>frontale 50, 51<br>jugale 53<br>lacrimale 50, 84<br>lacrimopalatinum 54                                                   |
| Ora serrata 589, 594, 595, 598, 606 Oralis 2, 4 ORBITA 46, 51, 71 Organ, "bill-tip" 605 Golgi 605 Organa sensoria articulationis 593 GENITALIA FEMININA 370 GENITALIA MASCULINA 347 OCULI ACCESSORIA 590 | epioticum 50, 84 exoccipitale 48, 49 femoris 64 frontale 50, 51 jugale 53 lacrimale 50, 84 lacrimopalatinum 54 latero-ethmoidale 50, 84 laterosphenoidale 48, 49, 51, 81 longum 47 |
| Ora serrata 589, 594, 595, 598, 606 Oralis 2, 4 ORBITA 46, 51, 71 Organ, "bill-tip" 605 Golgi 605 Organa sensoria articulationis 593 GENITALIA FEMININA 370 GENITALIA MASCULINA 347                      | epioticum 50, 84 exoccipitale 48, 49 femoris 64 frontale 50, 51 jugale 53 lacrimale 50, 84 lacrimopalatinum 54 latero-ethmoidale 50, 84 laterosphenoidale 48, 49, 51, 81           |

| Os, medullare 47, 67                     | OSSA CRANII 49                                      |
|------------------------------------------|-----------------------------------------------------|
| mentomandibulare 76                      | DIGITORUM MANUS 62, 104                             |
| mesethmoidale 50, 84                     | DIGITORUM PEDIS 65                                  |
| metacarpale alulare 46, 62, 103, 128     | FACIEI 53                                           |
| metacarpale majus 46, 62, 128            | MANDIBULAE 54, 75                                   |
| metacarpale minus 46, 62, 128            | MAXILLAE ET PALATI 53                               |
| metatarsale I [primum] [hallucis] 66     | MEMBRI PELVICI 64                                   |
| metatarsale II [secundum] 66             | MEMBRI THORACICI 60, 97                             |
| metatarsale III [tertium] 66             | METATARSALIA 66                                     |
| metatarsale IV [quartum] 66              | otica 50                                            |
| metoticum 50, 84                         | PEDIS 65, 113                                       |
| nasale 53                                | pneumatica 263, 282                                 |
| nervi optici 588, 595                    | proximalia tarsi 65                                 |
| nuchale 54, 79                           | sclerae 54                                          |
| opisthoticum 50, 84                      | supraorbitalia 54, 79                               |
| palatinum 53, 77, 117, 120               | suturarum 54, 79                                    |
| parasphenoidale 49                       | TARSI 65                                            |
| parietale 50                             | Ossicula posteriora sclerae 588, 595                |
| planum 47                                | sclerae 588, <b>607</b>                             |
| pleurosphenoidale 48, 49, 51, 81         | Ostia venarum cardiacarum 411                       |
| pneumaticum 47, 67                       | Ostium 47, 262, 279                                 |
| prearticulare 54, 75                     | aortae 411                                          |
| prefrontale 50, 84                       | atrioventriculare dextrum 411                       |
| premaxillare 53                          | atrioventriculare sinistrum 411                     |
| prominens 61, 103                        | bursae cloacalis 390, 393                           |
| prooticum 50, 84                         | canaliculi lacrimalis 591, 600                      |
| pterygoideum 53, 77                      | canalis carotici 49, 117                            |
| pterygopalatinum 53, 77                  | canalis ophthalmici externi 49, 117                 |
| quadratojugale 53                        | canalis tubae auditivae 51                          |
| quadratum 54, 79                         | canalis tubae pharyngotympanicae 51                 |
| sesamoideum 47                           | ceci 305, 316                                       |
| sesamoideum intertarsale 65, 144, 171    | cloacale oviductus dextri 390, 392                  |
| sesamoideum m. scapulotricipitis 60, 101 | cloacale oviductus sinistri 371, 390, 392           |
| siphonium 54                             | cloacale ureteris 332, 390, <i>392</i> , <b>367</b> |
| spleniale 54, 75                         | ductus deferentis 348, 354, 390, 392                |
| spongiosum 47, 48, 68                    | ductus nasolacrimalis 258                           |
| squamosum 50, 83                         | ileocecale 305                                      |
| supra-angulare 54, 75                    | infundibulare 371, 378                              |
| suprajugale 54                           | infundibulare tubae auditivae 302                   |
| supraoccipitale 49                       | ingluviei 303                                       |
| tarsi distale 65, 111                    | pharyngeale 50                                      |
| uncinatum 54                             | pyloricoduodenale 304, 314                          |
| OSSA ACCESSORIA CRANII 54, 79            | sacci cutanei phalli 349, 358, 390                  |
| ALAE 60, 97                              | sacci glandularis phalli 349, 358                   |
| carpi 102                                | sinus venosi 411, <i>414</i>                        |
| CARPI 61, 102                            | trunci pulmonalis 411                               |
| carpi centralia 61                       | tympanicum 50                                       |
| carpi distalia 61                        | tympanicum tubae auditivae 592                      |
| carpi proximalia 61                      | venae cavae caudalis 410                            |
| CINGULI MEMBRI PELVICI 62                | venae cavae cranialis dextrae 411                   |
| CINGULI MEMBRI THORACICI 58              | venae cavae cranialis sinistrae 411                 |
|                                          |                                                     |

|                                         | D 1 1 262 270 200                      |
|-----------------------------------------|----------------------------------------|
| Ostium venae proventricularis           | Parabronchus 262, 278, 299             |
| cranialis 411, 415                      | Paraflocculus 499                      |
| venae pulmonalis dextrae 411, 415       | dorsalis 499                           |
| venae pulmonalis sinistrae 411, 415     | ventralis 499                          |
| ventriculopyloricum 304, 222            | Paraganglia 400, 403                   |
| Ovarium dextrum 377                     | Paraglossum 55, 80                     |
| OVARIUM SINISTRUM 370                   | Paramedianus 4                         |
| Ovary, arteries 387                     | Parenchyma insularum 400               |
| Oviduct, layers of wall 377             | parathyroidea 399                      |
| OVIDUCTUS DEXTER 372, 381               | pinealis 399                           |
| SINISTER 371, <i>377</i>                | testis 347                             |
| Ovocytus primarius 370                  | thyroidea 399, 401                     |
| secundarius 370                         | ultimobranchialis 399                  |
| Ovogonium 370                           | Paries 18, 23                          |
| Ovum 370, <i>376</i>                    | caudalis orbitae 51                    |
| OVUM TESTACEUM 372, 381                 | dorsalis orbitae 51                    |
|                                         | externus 331                           |
| Palate, configurations 120              | folliculi 18, 23                       |
| Palatum 301                             | internus 331                           |
| osseum 51, 117, 120                     | medialis orbitae 51                    |
| Paleopulmo 261, 277, 298                | rostralis orbitae 51                   |
| Paleostriatum augmentatum 506, 522      | Paroophoron 370, 376                   |
| primitivum 506, 519, 520, 523           | Pars abdominalis 20                    |
| ventrale 506                            | abdominalis lateralis 21               |
| Palpebra dorsalis 8, 12, 590, 600       | abdominalis mediana 21                 |
| tertia 590, 600                         | accessoria 195, 219                    |
| ventralis 8, 12, 590, 600               | accessoria systematis conducentis 410  |
| Palpebrae 590, 600, 608                 | anastomotica 444                       |
| Palpebra tertia 8, 12                   | ascendens 305                          |
| PANCREAS 306, 224, 318, 327, 402        | axillaris 20                           |
| Pancreatic cell types, distribution 402 | basilaris 437, <i>446</i>              |
| lobes 402                               | brevis 194                             |
| Papilla basilaris 592, 601, 611         | bulbaris (of commissura rostralis) 505 |
| ductus deferentis 348, 354, 390, 392    | cardiaca 58, 73                        |
| ductus vitellini 305, 315               | caudalis 52, 192, 193, 194, 195, 258,  |
| duodenalis 305, 314                     | 200, 301                               |
| duodeni 305, 314                        | caudalis tuberis 503                   |
| ilealis 305, 315                        | cavopulmonalis 409                     |
| neglecta 601                            | cervicalis 20, 303                     |
| uropygialis 18                          | cervicalis 20, 303                     |
| Papillae choanales 302, 307, 319        | choanalis 53, 77                       |
| filiformes pyloricae 304, 314           | ciliaris retinae 589                   |
| linguae caudales 302, 307, 319          | clavicularis 191, 198, 199             |
|                                         |                                        |
| linguales 302, 307                      | cochlearis 496, 558                    |
| palatinae 301, 307                      | compacta dorsalis 501                  |
| pharyngis 302, 307, <b>319</b>          | compacta ventralis 501                 |
| pharyngis caudodorsales 302, 307        | conjungens 347, 352                    |
| pharyngis caudoventrales 302, 307, 319  | costobrachialis 194, 213               |
| proventriculi 303, 311                  | cranialis 193, 194                     |
| remigales caudales 61, 101              | cranialis uteri 371, 379               |
| remigales ventrales 61, 101             | crassa 335                             |

Pars maxillaris 9 Pars cruralis 21 descendens 305 medialis (pons) 499 diffusa parvocellularis 501 medialis 193, 263, 281, 306, 317 digitalis 21 medialis [caudalis] 195 disseminata 501 medialis [interna] 196 distalis 194, 195, 196, 400, 403 medullaris 501 metapatagialis 191, 194, 212 dorsalis 195 dorsalis [sulcalis] 497 minor 193, 194 dorsolateralis 499 MUSCULARIS 304, 312 elastica 143, 235 nuchalis 191, 198 occipitalis (of brain) 495, 505 elastica, Lig. propatagialis 235 endocrina pancreatis 307 optica retinae 589 exocrina pancreatis 307 palatina 53 externa 305, 316 parasolitaria 497 femoralis 21 parietalis (of brain) 495, 505 femoralis distalis 145 parvocellularis 501, 503 femoralis proximalis 145 pectoralis 20 fibularis 145 pelvica 20, 194, 195, 332 pennacea 19, 25 frontalis (of brain) 495, 505 gelatinosa 495 plana 390, 394 gigantocellularis 499 plumacea 19, 25 GLANDULARIS 303, 311 postacetabularis 195 hepatica 58 postacetabularis ilii 63 humeralis 142, 146, 163 preacetabularis 195 humeralis accessoria 142, 146, 163 preacetabularis ilii 63 hypothalami (of tr. pretectalis 501 occipitomesencephalicus) 506 principalis (pons) 499 hypothalamica 503 principalis 347, 352, 501, 503 infrapubica 9, 13 profunda 192, 193, 194, 410 intercalatus 503 propatagialis 191, 194, 195, 198, 199 interlobaris 306 proximalis 194, 195, 196 intermandibularis 191, 198 pudenda fossae 62, 105 intermedia (pons) 498 PYLORICA GASTRIS 304, 314, 322, 323 intermedia 52, 73, 196, 347, 352 recta ductus deferentis 348, 353 interna 305, 316 rectricalis 194, 210 interscapularis 20, 191, 198, 199 remigalis 195 interventricularis 437, 446 renalis 332, 340 iridica retinae 589 rostralis 192, 258, 200, 301 ischiadica fossae 62, 105 rostralis [pars para-infundibularis lateralis 77, 193, 263, 281, 306, 317 tuberis] 503 lateralis [cranialis] 195 rostralis [temporalis] 192 lateralis [externa] 196 rugosa 390, 394 lingualis 497, 512 sacralis 494 longa 194 scapulohumeralis 191, 199, 212, 213 lymphoepithelialis 478, 482, 489 SOMATICA 557 lymphoreticularis 478, 482, 489 spinalis 20 magnocellularis 495, 497, 501, 502, 503 sternalis 20 major 193, 194 sternobrachialis 194, 213 major uteri 371, 379 subcutanea abdominalis 191, 199 mandibularis 9 subcutanea thoracica 191, 199 marginalis 494, 497 substantia gelatinosa 497

| Pars superficialis lateralis 499                                   | PELVIS ET OS COXAE 62                              |
|--------------------------------------------------------------------|----------------------------------------------------|
| supramedialis 196                                                  | Penis 354                                          |
| suprapubica 9, 13                                                  | phallus, differences 354                           |
| symphysialis 52, 54, 73                                            | Penna 19                                           |
| SYNSACRALIS AORTAE 423,                                            | contorna 19, 28                                    |
| <i>431</i> , <b>467</b>                                            | volatus 19, 28                                     |
| synsacralis (spinal cord) 494, 507                                 | Pennae auriculares 593, 603                        |
| tarsometatarsalis 21                                               | contornae generales 19, 28                         |
| temporalis (of commissura rostralis) 505                           | Pennula 19, 26, 40                                 |
| tenuis 335                                                         | Perforationes interatriales 409, 412               |
| terminalis 347, 352                                                | Perforatorium 347, 351, 361                        |
| thoracica (spinal cord) 494                                        | PERICARDIUM 251                                    |
| thoracica 193, 303                                                 | fibrosum 251                                       |
| thoracolumbalis 494                                                | serosum 251                                        |
| tracheo-syringealis 497, 512                                       | Perilympha 592                                     |
| translucens isthmi 371                                             | Perimysium 190                                     |
| transversa 444, 455                                                | Periphericus, Peripheralis 2, 4                    |
| tuberalis 400                                                      | PERITONEUM 251                                     |
| ulnaris 146, 142, <i>163</i>                                       | parietale 251, <b>255</b>                          |
| venti 20, <i>30</i>                                                | viscerale 251, <b>255</b>                          |
| ventralis 195, 281                                                 | Perpendiculus 2, 4                                 |
| ventralis rostralis 497                                            | Pes 9, 13                                          |
| ventralis [medialis] 192                                           | pterygoidei 53, 78, 117                            |
| ventrolateralis 499                                                | Pessulus 260, 271, 292                             |
| vertebralis 194, 210                                               | Petiolus 19, 25                                    |
| vestibularis 496, 497, 558                                         | Phalanges 10                                       |
| VISCERALIS 562, 571                                                | proximales et intermediae 67                       |
| Partes corporis 7                                                  | Phalanx 47                                         |
| corticales gl. adrenalis 400                                       | digiti alulae 62                                   |
| PARTES EXTERNAE ENCEPHALI 495                                      | digiti minoris 62                                  |
| medullares gl. adrenalis 400                                       | distalis digiti majoris 62                         |
| PARTES PENNAE 18                                                   | proximalis digiti majoris 62                       |
| PARTES VERTEBRAE 55, 85                                            | ungualis [terminalis] 67, 113                      |
| Parts of feather 24                                                | Phallus femininus 390, 394                         |
| Patagia alae 20, 29                                                | masculinus 348, <i>354</i> , 390                   |
| Patagium alulae 20, 29                                             | nonprotrudens 348, 354, 363, 390                   |
| cervicale [Plica cervicalis] 20, 29                                | protrudens 349, 356, 364, 365, 366,                |
| Patella 64, 109                                                    | <b>367</b> , 390                                   |
| Pecten conicus oculi 589, 598                                      | Pharyngobranchiale 55                              |
| oculi 589, 598, <b>606</b>                                         | PHARYNX 302, 307                                   |
| plicatus oculi 589, 598                                            | infundibulum 321                                   |
| vanellus oculi 589, 598                                            | Pia mater encephali 507, 524                       |
| Pectus 9, 13                                                       | mater spinalis 507, 524                            |
| Pediculus arcus 55, 87 Pedunc. cerebellaris caudalis 496, 500, 510 | Pila 47, 67 carinae 58                             |
| cerebellaris intermedius 498, 500                                  |                                                    |
|                                                                    | coracoidea 58, 94                                  |
| cerebellaris rostralis 500, 502<br>flocculi 499                    | costalis 58, 93                                    |
| Pedunculus folliculi 370, 373                                      | cranialis phalangis 62, 104 ilioischiadica 63, 105 |
| ŕ                                                                  | otica 50, 51                                       |
| gl. pinealis 399, 402<br>Pelvis 123, 129                           | postrenalis 63, 106                                |
| FC1V15 123, 127                                                    | posticitatis 03, 100                               |
|                                                                    |                                                    |

| Pila prootica 51, 70                      | Plexus pterygoideus 419, 429                         |
|-------------------------------------------|------------------------------------------------------|
| supranasalis 52, 69                       | pudendus 391, 561, 563, 570, <b>580</b> , <b>582</b> |
| Pileum 8, 10                              | pulmonalis 262, 563, 564                             |
| Plana dorsalia 2, 5                       | renales 332, 372, 564, <b>584</b>                    |
| paramediana 2, 4, 5                       | sacralis 561, 569, 580, 582                          |
| sagittalia 2                              | splenicus 564                                        |
| transversalia 2, 5                        | subcutaneus collaris 440, 450                        |
| Planes 2                                  | subvertebralis cervicalis 564                        |
| Plantaris 2, 4                            | subvertebralis synsacralis 564                       |
| Planum anastomoticum 261, 277, 298        | subvertebralis thoracicus 564, 574                   |
| bicipitale 98                             | subvertebralis, usage 556, 574                       |
| intertuberculare 60, 98                   | testicularis 347, 564                                |
| medianum 2, 5                             | vascularis 409                                       |
| postcarinale 58, 93                       | venosus 409                                          |
| Plasmalemma ovocyti 370, 372, 374, 382    | Plica angularis 304, 313                             |
| ovocyti 372, 382                          | bursalis 478, 482                                    |
| PLEURA 251                                | cavernosa 593, 603                                   |
| parietalis 251, <b>255</b>                | cloacalis 391, 397                                   |
| pulmonalis 251                            | coprourodealis 390, 392, 368                         |
| visceralis 251                            | ET PATAGIA CUTIS 20, 29                              |
| Pleural and peritoneal cavities 255       | infundibuli 302                                      |
| Plexus adrenalis 332, 347, 348, 371, 372, | marginalis, of nictitating membrane                  |
| 564, <i>574</i>                           | 591, <i>600</i>                                      |
| anularis ciliaris 557, 562, 565, 576      | metatarsalis 10                                      |
| anularis iridicus 557, 562, 565, 576      | rectocoprodealis 390, 392                            |
| aorticus 332, 347, 348, 371, 372,         | synovialis 136                                       |
| 564, <i>574</i>                           | synovialis coracoidea 142                            |
| arteriosus 409                            | synovialis scapularis 142                            |
| PLEXUS BRACHIALIS 559, 569, 578           | synovialis transversa 142                            |
| BRACHIALIS ACCESSORIUS 560, 569,          | tentorialis 507, 524                                 |
| 578                                       | uroproctodealis 390, 392                             |
| caudalis 561, 570, 580, 583               | vagina tendinis 190                                  |
| celiacus 564, 574, <b>584</b>             | Plicae ciliares 588                                  |
| cervicalis dorsalis 559, 569              | esophagi 303, 310                                    |
| choroideus ventriculi lateralis 505, 506  | ingluviei 303, 310                                   |
| choroideus ventriculi quarti 496          | intestinales submucosae 305, 316                     |
| choroideus ventriculi tertii 502          | intestinales villosae 305, 316                       |
| cloacalis 391, 563                        | iridis 589, <i>597</i>                               |
| gastricus 564                             | lymphaticae 349, 355, 390                            |
| hepaticus 564, 584                        | marginales, of eye lids 590, 600                     |
| iliacus internus 564                      | pharyngis 302, 309                                   |
| lumbalis 561, 569, <b>580</b>             | primariae 371                                        |
| lumbosacralis 561, 569, 580               | proctodeales 390, 394                                |
| lymphaticus colligens 477                 | proventriculi 303, 311                               |
| lymphaticus cordis lymphatici 479, 491    | pyloricae 304, <i>314</i>                            |
| mesentericus caudalis 564, 574, 584       | secundariae 371                                      |
| ovaricus 371, 372, 564                    | synoviales et Ligg. intracapsularia                  |
| oviductales 372, 564                      | 142, <i>162</i>                                      |
| pancreaticoduodenalis 564                 | tunicae mucosae 306                                  |
| pelvici 564, 584                          | vaginae tendinis 196, 223                            |
| proventricularis 564                      | ventriculi 304, 313, 223                             |
|                                           |                                                      |

| Pluma 19, 28                              | Proc. caudomedialis 53, 78            |
|-------------------------------------------|---------------------------------------|
| Plumae auriculares caudales 593, 603      | condylaris 49                         |
| auriculares rostrales 593, 603            | coronoideus 52, 73                    |
| Plumula 19, 28                            | costalis 55, 57, 86                   |
| Pneumocapillaris 262, 279, 299            | costalis atlantis 89                  |
| Podocytus 331, <i>334</i>                 | costalis axis 55, 90                  |
| Podotheca 21, 32                          | cotylaris dorsalis 60, 100            |
| Polocytus primarius 370                   | cranialis 306, 317                    |
| secundarius 370                           | craniolateralis sterni 58, 93         |
| Polus acutus 372, 384                     | dorsalis 53, 78                       |
| anterior 588                              | dorsalis dexter 306, 317              |
| anterior lentis 590                       | dorsalis sinister 306, 317            |
| obtusus 372, 383, 384                     | extensorius 62                        |
| posterior 588                             | flexorius 60, 99                      |
| posterior lentis 590                      | frontalis 53                          |
| tubularis 331                             | glenoidalis coracoidei 59, 95         |
| vascularis 331                            | glenoidalis scapulae 59, 95           |
| PONS 495, 498, 510, 525                   | haemalis 57, 91                       |
| pectinis 589, 599                         | interclavicularis 59                  |
| supratendineus 65, 110, 131, 184          | intermetacarpalis 62, 103             |
| transverse sections 536, 537, 539         | jugalis 53, 77                        |
| Ponticulus endothelialis 477, 480, 486    | lacrimalis 50, 84                     |
| Pori neurovascularia 53, 76               | lateralis 59, 97                      |
| pneumatici 47, 58, 67, 263, 282           | lateralis mandibulae 52, 54, 75       |
| Porta hepatis 306, 317                    | lateralis parasphenoidalis 48, 49, 83 |
| Porus 47                                  | mandibularis 54                       |
| ductus glandulae uropygialis 18           | marginis caudalis 62, 105             |
| gustatorius 593                           | maxillaris 53, 76, 77                 |
| testae 373, 384                           | maxillopalatinus 53, 76               |
| Postzygapophysis 89                       | medialis mandibulae 52, 54, 75        |
| Posterior 1, 2, 3                         | medialis parasphenoidalis 48, 49, 83  |
| Postpatagium 20, 29                       | muscularis 61, 103                    |
| Prezygapophysis 89                        | nasalis 53                            |
| Prefixes - infra 1                        | obturatorius 63, 107                  |
| - pre 1                                   | orbitalis 50, 54                      |
| - pro I                                   | oticus 54                             |
| - supra 1                                 | palatinus 53, 76                      |
| Prepenna 19, 28                           | papillaris 306, <i>317</i>            |
| Preplumula 19, 28                         | parahyalis 55                         |
| Proacrosoma 347, 351                      | paroccipitalis 49, 50, 81             |
| Proc. acrocoracoideus 59, 95, 96          | paroticus 48, 50, 81                  |
| acrocoracoideus claviculae 59, 95         | pectinealis 63, 106                   |
| acromialis claviculae 59, 95              | pisiformis 62, 103                    |
| alularis 62                               | postlateralis 55, 87                  |
| antitrochantericus 63                     | postorbitalis 49, 50, 51, 71          |
| articularis sternocostalis 58, 93         | prefrontalis 50, 84                   |
| articularis tarsometatarsalis 66          | premaxillaris 53                      |
| basipterygoideus 48, 49, 82               | procoracoideus 59, 96                 |
| calcaris 66, 113                          | pterygoideus 53, 77                   |
| caroticus 55, 86, 121                     | quadraticus 53                        |
| caroneus 33, 86, 121<br>caudalis 258, 266 | retroarticularis 52, 54, 74           |
| caudolateralis sterni 58, 93              | rostralis 53, 258, 78, 265            |
| Caudolaterans sterni 30, 93               | 10stratis 33, 230, 70, 203            |

| Proc. spinosus [arcus] 55                        | Pulvipenna [Pulvipluma] 19, 28                                |
|--------------------------------------------------|---------------------------------------------------------------|
| spinosus [P.dorsalis] 55, 56, 90                 | Pupilla 589, 597                                              |
| sublateralis 86                                  | Pyga 9, 13                                                    |
| supracondylaris dorsalis 60, 100, 126            | Pygostylus 57, 92                                             |
| suprameaticus 50, 83                             | Pylorus 304                                                   |
| supraorbitalis 50                                | •                                                             |
| terminalis ischii 63, 107                        | Quadratum 54, 79, 118                                         |
| transversus 57                                   |                                                               |
| transversus vertebrae 55, 57, 87                 | R. accessorius 416, 424                                       |
| uncinatus 57, 92, 289                            | acromialis 417                                                |
| ventralis corporis 55, 86                        | alularis 560                                                  |
| ventralis dexter 306, 317                        | anastomoticus cum rete ophthalmico 437                        |
| ventralis medius 306, 317                        | anguli oris 558                                               |
| vocalis 260, 271                                 | ascendens 563                                                 |
| zygomaticus 50, 83                               | atrialis dextra 416                                           |
| Procc. conicales 304, 314                        | atrialis sinistra 416                                         |
| dentales 304, 314                                | auricularis 558                                               |
| Processus 47                                     | bronchialis 262, 280, 417                                     |
| ciliares 588, 596, <b>607</b>                    | bursalis 435                                                  |
| pectinatus 22                                    | caudalis 391, 423, 560                                        |
| PROCTODEUM 390, <i>391</i>                       | caudolateralis 416                                            |
| Profundus 2, 4                                   | caudomedialis 416                                             |
| Projectio pennarum 8, 12                         | cervicalis descendens 260                                     |
| Prominentia cerebellaris 48, 69                  | cervicalis descendens, n. hypoglossus                         |
| Promontorium cloacale 348, 354, 390              | 559, 568                                                      |
| Propatagium 20, 29                               | cervicalis, n. hyomandibularis 558, 568                       |
| PROSENCEPHALON 502, 525                          | circumflexus 416, 417                                         |
| Protuberantia metacarpalis 62, 103               | cranialis 416, 423, 560                                       |
| PROVENTRICULUS GASTRIS 303, 311                  | cutaneus femoralis lateralis 561                              |
| Proximalis 2, 4                                  | cutaneus femoralis medialis 561, 570                          |
| Pteryla alae 20, 30                              | descendens 563                                                |
| capitalis 20, 30                                 | digitalis 561                                                 |
| caudalis 20, <i>30</i><br>dorsalis 20, <i>30</i> | dorsalis 417, 419, 421, 423, 559<br>dorsalis, n. abducens 566 |
| lateralis 20, 30                                 | esophagealis 417, 563, 572                                    |
| membri pelvici 21, 31                            | externus 558, 563                                             |
| scapulohumeralis 20, 30                          | externus, n. accessorius 568                                  |
| ventralis 20                                     | fibularis [peroneus] profundus 422, 435                       |
| PTERYLAE 20, 29                                  | fibularis [peroneus] superficialis 422, 435                   |
| PUBIS 63, 107                                    | ganglionaris ciliaris 557, 565                                |
| PULMO 261                                        | glomi carotici 563, 572                                       |
| Pulmonary aponeurosis 252                        | hyoideus 558, 568                                             |
| Pulp cap, feather 25                             | interatrialis 416                                             |
| Pulpa splenica alba 478                          | intermandibularis 558, 566                                    |
| splenica rubra 478                               | interventricularis paraconalis 416, 424                       |
| Pulvinar luminalis 409                           | interventricularis subsinuosis 417, 424                       |
| Pulvinus anularis [annularis] lentis 590, 586,   | laryngolingualis 559, 568                                     |
| <i>599</i> , <b>607</b>                          | mandibularis externus 558                                     |
| digitalis 10, 21, 33                             | meningeus 559                                                 |
| hypotarsalis 10, 21, 33                          | nasalis 419, 429, 558                                         |
| metatarsalis 10, 14, 21, 33                      | palatinus 417, 558                                            |
| ungualis 21, 33                                  | palatinus lateralis 419, 430                                  |
|                                                  |                                                               |

| D 1.1 11 410 420                      | 21                                         |
|---------------------------------------|--------------------------------------------|
| R. palatinus medialis 419, 430        | Rdx. motoria 557                           |
| palpebralis dorsotemporalis 557, 566  | n. abducentis 499                          |
| palpebralis ventrotemporalis 557, 566 | n. accessorii 494, 498                     |
| pinealis 418                          | n. faciali 498                             |
| premaxillaris dorsalis 557            | n. glossopharyngei 498                     |
| premaxillaris ventralis 557           | n. oculomotorii 502                        |
| profundus 416, 417, 560               | n. trochlearis 502                         |
| pterygoideus 558                      | n. vagi 498                                |
| pulmonalis 262, 563                   | n. vestibulocochlearis 498                 |
| rostralis a. carotis cerebralis 401   | ophthalmica 557, 562, 565                  |
| sphenomaxillaris 417                  | optica basalis 502, 503, 504               |
| sublingualis 558, 566                 | rostralis n. hypoglossi 498                |
| superficialis 416, 417, 560           | sensoria 557                               |
| syringealis 261, 417                  | ventralis 559                              |
| syringealis, n. hypoglossocervicalis  | ventralis n. spinalis 494                  |
| 559, <i>568</i>                       | Rdxx. craniales (n. accessorius) 559       |
| trachealis 260, 417                   | cranialis/caudomedialis/caudolateralis 262 |
| tracheosyringealis 260, 261, 559, 568 | esophageales 440                           |
| ureterodeferentiales 423              | postpatagiales 441                         |
| ventralis 417, 419, 421, 423, 559     | renales efferentes 332, 339, 441, 442, 452 |
| ventralis, n. abducens 566            | spinales (of spinal cord) 559              |
| Radialis 2, 4                         | Receptaculum ductus deferentis 348, 353    |
| Radices plexus 559, 561, 569          | Recessus 47                                |
| Radii lentis 590                      | antevestibularis 51, 70                    |
| Radiocarpo – 164                      | caudalis fossae 62, 63, 107, 123           |
| RADIUS 61                             | columellae 51, 70, 592                     |
| Radix 47                              | conicalis 52, 75                           |
| linguae 302                           | infundibuli 503                            |
| mesenterii 252                        | lateralis 496                              |
| Rampa 591, 601                        | neurohypophysialis 400, 404, 503           |
| Ramus 19, 26, 47                      | pneumatici paranasales 52, 258             |
| caudalis a. carotidis cerebralis 418  | pneumatici paratympanici 51, 70, 258       |
| dexter arteriae celicae 421           | pneumaticus paratympanicus 592             |
| dexter v. portae dextrae 444          | scalae tympani 592                         |
| mandibulae 52                         | sinister atrii dextri 411, 415             |
| rostralis a. carotidis cerebralis 418 | tympanicus caudalis 51, 71                 |
| sinister arteriae celicae 421, 465    | tympanicus dorsalis 51, 70                 |
|                                       | * *                                        |
| sinister v. portae dextrae 444        | tympanicus rostralis 51, 71                |
| submalaris 8, 11                      | uterinus 371, 379                          |
| Rdx. ascendens n. trigemini 499       | Rectrices 9, 13, 20, 28, 30                |
| caudalis n. hypoglossi 498            | Rectrix 19, 28                             |
| caudolateralis 437                    | Rectum 305, 316                            |
| caudomedialis 437                     | Regio auricularis 8, 10                    |
| cranialis 437                         | caudalis [mammillaris] hypothalami         |
| dorsalis 559                          | 504                                        |
| dorsalis n. spinalis 494              | cranialis [Cranium] 8, 10                  |
| dorsocaudalis 441                     | facialis 8, 10                             |
| dorsocranialis 441                    | frontalis 8, 10                            |
| ganglionaris 557, 562, 565            | glandularis 303, 311                       |
| iridociliaris 557                     | gularis 8, 11                              |
| mesencephalica n. trigemini 499, 502  | ingluvialis 9, 12                          |

| Regio interramalis 8, 11                  | Retinaculum laterale 145, 171            |
|-------------------------------------------|------------------------------------------|
| lateralis hypothalami 504                 | m. extensoris metacarpi ulnaris 143, 168 |
| lobuli corticalis 330, 333, 342           | m. fibularis [peronei] 145, 175          |
| lobuli medullaris 330, 333, 342           | m. scapulotricipitis 143, 168            |
| malaris 8, 11                             | mediale 145, 171                         |
| medialis [tuberalis] hypothalami 504      | Rhachis pennae 18, 24                    |
| nasalis 8                                 | Rhamphotheca 11, 21, 32                  |
| occipitalis 8, 10                         | RHOMBENCEPHALON 496, 510, 525            |
| olfactoria 258, 264, 593                  | Rictal commissure 11                     |
| omalis 9, 12                              | Rictus 8, 11                             |
| oralis 8                                  | Ridges, of palate 308                    |
| orbitalis 8                               | Rima infundibuli 302, 309                |
| pre-optica hypothalami 504, 521           | oris 8, 11, 301                          |
| respiratoria 258, 264                     | palpebrarum 590                          |
| rostralis hypothalami 521                 | Rings, fibrous (heart) 412               |
| submalaris 8                              | Rostralis 1, 2, 4, 6                     |
| vestibularis 258, 264                     | Rostrum 8, 10, 11, 47, 301               |
| Regiones corporis 7                       | mandibulae 52, 73, 115                   |
| Remex (Remiges) 19, 20, 28                | mandibulare 8, 11, 301                   |
| carpalis 20, 31                           | maxillae 51, 73, 115                     |
| Remiges alulae [R.alulares] 20, 31        | maxillare 8, 11, 301                     |
| primarii 20, 30, 43, 44                   | parasphenoidale 49, 83, 148              |
| secundarii 20, 31, 43, 44                 | sphenoidale 49, 83                       |
| tertiarii [R.humerales] 20, 31            | sterni 58, 94                            |
| REN 330, 346                              | Rr. alulares 420                         |
| Rete arteriosum 409                       | artc. quadratomandibularis 558           |
| capillare glomerulare 331, 334            | articulares 559, 560                     |
| capillare glomerulare 332                 | atriales 416, 417                        |
| capillare peritubulare corticale 332, 339 | auriculares 557, 558                     |
| capillare terminale 370, 376              | bronchiales 262, 563                     |
| lymphaticum initiale 477                  | bursae cloacalis 391, 563                |
| medullae oblongatae 418, 428              | bursales 391, 423, 435                   |
| mirabile 409                              | bursocloacales 391, 423                  |
| mirabile ophthalmicum 428, 449, 469       | carpales dorsales 420, 560               |
| mirabile tibiotarsale 435, 454            | carpales ventrales 420, 560              |
| ophthalmicum 418, 428, 439, 449, 468      | choroidei 418, 419                       |
| palatopharyngeale 438                     | ciliares 557, 562                        |
| pterygopharyngeale 438, 448               | cloacales 391, 423, 563                  |
| quadratopterygoideum 438                  | communicantes 559, 556, 564, 577         |
| testis 347, 350, 362                      | conales 416                              |
| tibiotarsale 422, 435, 443, 454           | corporis vascularis phalli 391, 423, 563 |
| venosum 409                               | cranialis/caudomedialis/caudolateralis/  |
| Reticulum gelatinosum 591, 592            | accessorius 262                          |
| trabeculare 589, 599, 607                 | cristales 557, 566                       |
| Retina 589, 597                           | cruris 410, <i>413</i>                   |
| Retinacula patellae 144                   | cutanei 558, 560, 561                    |
| ulnocarpo-remigalia 146, 175, 187         | cutanei colli 417                        |
| Retinaculum 136                           | digitales 422, 560, 561                  |
| extensorium tarsometatarsi 145, 174       | digitales dorsales 420                   |
| extensorium tibiotarsi 144, 145, 174, 184 | digitales ventrales 420                  |
| flexorium 142, 145, 146, 164, 171         | dorsales diencephali 418                 |
|                                           | 4                                        |

| Rr. dorsales hemispherici 418                                     | Rr. periarteriales 410                                    |
|-------------------------------------------------------------------|-----------------------------------------------------------|
| ductus deferentis 348, 563                                        | peritoneales 560                                          |
| duodenales 563                                                    | pharyngeales 419, 562, 572                                |
| epididymales 348, 421                                             | postpatagiales 420, 560, 579                              |
| esophageales 420, 562, 563                                        | propatagiales 420, 560                                    |
| fissurae 423                                                      | proventriculares 563                                      |
| frontales 419, 557                                                | pulmonales 262, 563, 564, 572                             |
| glandulae membranae nictitantis 562                               | pulvinares 422                                            |
| glandulae nasales 418, 427                                        | pylorici 563                                              |
| glandulae nasalis 418, 557, 562, 566                              | rectales 423                                              |
| glandulae uropygialis 561                                         | renales afferentes 332, 339, 343, 443, 452                |
| glandulares 557, 558, 562, 563, 572                               | rostri mandibularis 558, 566                              |
| glandulares lacrimales 557, 562                                   | rostri maxillaris 557, 566                                |
| glandularum palatinarum 557                                       | sacci 421, <i>431</i>                                     |
| gustatorii 562                                                    | septales 416, 417                                         |
| hepatici 563                                                      | septi obliqui 563, 572                                    |
| ilei 423                                                          | subendocardiales atriales 410                             |
| ingluviales 563                                                   | subendocardiales ventriculares 410                        |
| intrahepatici v. portae dextrae 444                               | subepicardiales atriales 410, 413                         |
| intrahepatici V. portae sinistrae 444                             | subepicardiales arriales 410, 413                         |
| iridici 557, 562, 565                                             | sulci 423                                                 |
| laryngotracheales 259, 562                                        | sulcocommissurales 423                                    |
| laterales hemispherici 418                                        | thymici 417                                               |
| linguales 559                                                     | tracheales 260, 559, 563                                  |
| marginales 423, 436                                               | ureterales 332, 563                                       |
| mediani 421, 431                                                  | ureterici craniales 421                                   |
| mediani dorsales 444                                              | ureterici medii 422                                       |
| mediani ventrales 441                                             | ureterici primarii 332, 340, 342                          |
| medullares 418                                                    | ureterici secundarii 332, 340, 342                        |
| mentales 418                                                      | ureterici tertiarii 332, 340, 342                         |
| metacarpales dorsales 420                                         | ureterodeferentiales caudales 332, 348                    |
| metacarpales dorsales 420<br>metacarpales ventrales 420, 560      | ureterodeferentiales craniales 332,                       |
| mm. hyobranchialium 562, 571                                      | 348, 421                                                  |
| musculares 259, 391, 559, 560, 561, 562,                          | ureterodeferentiales medii 332, 348, 422                  |
| 569, 570, 571                                                     | uterini 372                                               |
| musculares, n. mandibularis 566                                   | vaginales 372, 391, 563                                   |
| musculorum tracheae 260, 563, 572                                 | vaginales 372, 391, 303<br>venti 391, 561, <b>582</b>     |
| myofibrarum conducentes atrii 410                                 | ventrales hemispherici 418                                |
| myofibrarum conducentes ventriculi 410                            | ventrales hemispherici 416<br>ventriculares 416, 417, 563 |
| nasales 418                                                       | viscerales abdominales 563                                |
| nasales externi/interni 557, 558                                  | Ruffini ending 604                                        |
| nodi sinuatrialis 410, 413                                        | Ruga distalis 19, 26                                      |
| occipitales hemispherici 418                                      | palatina mediana 301, 308                                 |
| orbitales 418                                                     | palatina transversalis 301, 308                           |
| ovarii 421                                                        | proximalis 19, 26                                         |
| oviductales 563                                                   | spiralis 305, 315                                         |
|                                                                   | Rugae ingluviei 303, 310                                  |
| palatini 557, 558<br>palpebrales dorsonasales 557, 566            | linguae 302                                               |
| palpebrales dorsonasaies 337, 300 palpebrales ventrales 419       | palatinae 301, 308                                        |
| palpebrales ventrales 419 palpebrales ventronasales 557, 558, 566 | palatinae intermediales 301, 308                          |
| pancreatici 563                                                   | palatinae laterales 301, 308                              |
| panereatier 505                                                   | paratinue internice 501, 500                              |

| D 111 040 350                    | 0.11 4 11 10 02                             |
|----------------------------------|---------------------------------------------|
| Rugae phalli 349, 358            | Sella turcica 49, 82                        |
| proventriculi 303, 311           | Semicircular canals, ducts; definition 587  |
| ventriculi 304, 312              | Seminal vesicle 354                         |
| Rump 13                          | Semipluma 19, 28                            |
|                                  | Semiseta 19, 28                             |
| Sacci phalli 349, 356, 358       | Septa interlobularia 307                    |
| PNEUMATICI 262, 281              | Septum 47                                   |
| Saccobronchus 262, 280           | cruciatum 591, 601                          |
| Saccoperitoneal membrane 252     | dorsale medianum 494                        |
| Saccopleural membrane 252        | horizontale 251, 252                        |
| Sacculus 591, 600, 601           | humerocarpale 146, 143, 175, 187            |
| Saccus abdominalis 255, 263, 282 | interarticulare 58, 94                      |
| caudalis 304, <i>312</i>         | interatriale 262, 279, 409, 412, <b>458</b> |
| cervicalis 263, 281              | intercoracoidale 58                         |
| clavicularis 263, 281            | interfolliculare 482                        |
| conjunctivae 591                 | interlobare 17                              |
| cranialis 304, 312               | interlobulare thymicum 478                  |
| cutaneus phalli 349, 358, 364    | interorbitale 51                            |
| endolymphaticus 591, 601         | interparabronchiale 262, 279                |
| esophagi 303, 310                | interventriculare 409                       |
| glandularis phalli 349, 358, 365 | nasale 258                                  |
| oris 301, <i>307</i>             | nasi [nasale] osseum 50, 52, 76             |
| protrudens 8, 12                 | obliquum 251, 252                           |
| thoracicus caudalis 263, 282     | orbitale 138, 150                           |
| thoracicus cranialis 263, 282    | osseum fossae bulbi 48, 72                  |
| trachealis 259, 269              | posthepaticum 252, 253, 254, 256            |
| vitellinus 305                   | sinus venosi 410, 411, 415, 458             |
| Sagittalis 2, 4                  | supracloacale 194, 212, 234                 |
| Sanguis 409                      | ventromedianum 507                          |
| Scala media 601                  | Seta 19, 28                                 |
| tympani 592, 601, 602, 611       | Shaft of feather 24                         |
| vestibuli 592, 601, 602, 611     | Shoulder 12                                 |
| SCAPULA 59, 95, 124              | joint 162, 179                              |
| Scapus 47, 67                    | Sinister 2, 4                               |
| claviculae 59, 67                | Sinus 47                                    |
| columellae 592                   | antorbitalis 258, 264, 287                  |
| pennae 18, 24                    | aortae 416, 424                             |
| pubis 63, 107                    | caroticus 417, 425, 594                     |
| Sclera 588, 595                  | cavernosus 401, 439, 447, 468, 485          |
| Scuta 21, 32                     | cilioscleralis 588, 595                     |
| Scutella 21, 32                  | conchoantorbitalis 258, 265                 |
| Scutum dorsale/plantare 22       | conchoinfraorbitalis 258, 265               |
| SECTIONES CEREBELLI 500, 516     | dextra dorsalis/ventralis 416               |
| EPITHALAMI 505                   | dural venous 469                            |
| HYPOTHALAMI 503, 521             | foraminis magni 439, 450, 469               |
| MEDULLAE OBLONGATAE 496          | fossae auriculae cerebelli 439, 449         |
| MEDULLAE SPINALIS 494            | infraorbitalis 258, 264, 287                |
| MESENCEPHALI 500, 517            | lymphaticus 349, 356, 355                   |
| PONTIS 498                       | lymphaticus initialis 477, 479, 485         |
| TELENCEPHALI 505                 | lymphaticus intramuralis 477, 488           |
| THALAMI 502                      | lymphaticus intranodalis 477, 481, 487      |
|                                  | - 4                                         |

767

| 51 1 1 10                                     | 245 257                                                  |
|-----------------------------------------------|----------------------------------------------------------|
| Sinus occipitalis 439                         | Spermatozoon 347, 351                                    |
| olfactorius 438, 469                          | Spina 47                                                 |
| petrosus caudalis 439, 448                    | communis 58                                              |
| petrosus rostralis 439                        | dorsolateralis ilii 63, 107                              |
| pneumaticus marginalis 592, 602               | externa rostri 58, 94                                    |
| proctodeales 390, 394                         | fibulae 65                                               |
| sagittalis dorsalis 438, 468                  | interna rostri 58, 94                                    |
| sagittalis olfactorius 438                    | scapulae 59                                              |
| septalis 258, 264                             | Spinal cord, dorsal horn, lamination 530                 |
| sinister 416                                  | lumbosacral swelling 530                                 |
| sphenotemporalis 439                          | transverse sections 530, 531                             |
| transversus 439, <b>469</b>                   | Spleen (splen) 227, 324                                  |
| transversus pericardii 251                    | SPLEN 478, 483                                           |
| trunci pulmonalis 416, 424                    | accessorius 478, 483                                     |
| venosus sclerae 438, 588, 595, 607            | Spurs, wing and foot 33                                  |
| VENOSUS 410, 414, 458                         | Squama 47                                                |
| [venosus] vertebralis internus 445, 450,      | Squamosum 50, 83                                         |
| 470                                           | Statoconia 591, 592, 601                                 |
| [VENOSUS] VERTEBRALIS INTERNUS                | STERNUM 58, 92, 125                                      |
| [PARS CAUDALIS] 442, 450, 467, 475            | Stigma folliculare 370, 375                              |
| [VENOSUS] VERTEBRALIS INTERNUS                | Stomach (gaster), interior 223, 322                      |
| [PARS CERVICOTHORAICA] 440,                   | basic types 311                                          |
| 450                                           | Stratum album centrale 500, 514                          |
| Siphonium 51, 54, 75                          | basale 22                                                |
| SKELETON ANTEBRACHII 60                       | bipolare 589, 597                                        |
| APPENDICULARE 58                              | cellulare externum 503                                   |
| AXIALE 47                                     | chalaziferum 372, 383                                    |
| BRACHII 60                                    | circulare 303, 304, 305, <i>313</i> , 332,               |
| laryngis 54, 258                              | 371, 391                                                 |
| MANUS 61                                      | compactum 23                                             |
| syringis 54                                   | corneum 22                                               |
| Skull ligaments 133, 177                      | externum 372                                             |
| Smooth muscle, feathers 23                    | fibrosum 347, <i>350</i>                                 |
| skin 23                                       | ganglionare 500                                          |
| Spatia anguli iridocornealis 589, 599         | ganglionaris 589, 597                                    |
| zonularia 588                                 | granulosum 370, <i>374</i> , 500                         |
| Spatium endolymphaticum 592                   | griseum centrale 500                                     |
| episclerale 590                               | griseum et fibrosum superficiale 501                     |
| intercoracoidale 58, 94                       | griseum et horosum supernelate 501                       |
| intercostale 57                               | intermedium 22                                           |
| internetacarpale 62                           | internum 372                                             |
| perichoroideale 588                           | laxum 23                                                 |
| perilymphaticum 592                           | longitudinale 303, 304, 305, 313, 310,                   |
| perisinusoideum 306, 318                      | 371, 391                                                 |
| Sperm glands 379                              | •                                                        |
|                                               | longitudinale externum/internum 332 mamillarium 373, 383 |
| storage tubules 379                           |                                                          |
| Spermatazoan, diagram 361<br>Spermatidium 347 | moleculare 500                                           |
|                                               | myoideum 347, 350                                        |
| Spermatocytus primarius 347 secundarius 347   | nervosum retinae 589, 597                                |
|                                               | neuroepitheliale 589, 597                                |
| Spermatogonium 347, 351                       | neurofibrarum 589, 598                                   |

| Stratum opticum 501                    | Sulcus [Canalis] m. ambientis 64          |
|----------------------------------------|-------------------------------------------|
| pigmentosum retinae 589, 597, 598      | [Canalis] n. coracobrachialis 60          |
| pigmentum iridis 589, 597, 598         | carinae 58                                |
| profundum 23                           | caroticus 55, 86                          |
| spongiosum 373, <i>384</i>             | caudalis 304, 313                         |
| superficiale 23, 373, 384              | coronarius 409                            |
| vallatum 373, 384                      | cranialis 304, 313                        |
| Stria habenularis 505                  | dorsolateralis 494                        |
| medullaris 505                         | ejaculatorius 349, 355, 357,359, 366, 390 |
| Striola 591, 601                       | extensorius 65, 66, 112                   |
| Stroma iridis 589, 597                 | flexorius 66, 112                         |
| parathyroidea 399                      | humerotricipitalis 60, 100                |
| thyroidea 399                          | hypotarsi 66                              |
| ultimobranchialis 399                  | iliosynsacralis 62, 105                   |
| vitreum 590                            | intercnemialis 65, 110, 131               |
| Stylus 47                              | intercondylaris 54, 61, 64, 101           |
| dorsalis 19, 26                        | intercotylaris 52, 74                     |
| Subnuc. accessorius 501, 517           | intermedius dorsalis 496                  |
| caudalis 494, 497                      | interosseus 62, 104                       |
| centralis 501                          | interventricularis paraconalis 409,       |
| dorsolateralis/dorsomedialis 501       | 412, 457                                  |
| interpolaris 497                       | interventricularis subsinuosus 409,       |
| lateralis/medialis 497                 | 412, 457                                  |
| lateralis ventralis 497                | laryngealis 258, 265                      |
| magnocellularis 497                    | lateralis 55, 85, 496                     |
| oralis 497                             | lateralis infundibuli 302                 |
| parvocellularis 497                    | ligamentosus 66, 111                      |
| subtrigeminalis 497                    | limitans 496                              |
| taeniae choroideae 497                 | m. ambientis 64, 109                      |
| ventralis 501, 517                     | m. fibularis [peronei] brevis 66          |
| Substantia acrosomatica 347, 351       | m. fibularis [peronei] longus 66          |
| alba 495                               | medianus dorsalis 494                     |
| gelatinosa centralis 495               | medianus infundibuli 302                  |
| grisea 494, 508                        | medianus sterni 58                        |
| grisea centralis 502                   | medianus [dorsalis] 496                   |
| grisea periventricularis lateralis 506 | n. coracobrachialis 60                    |
| intermedia 494, 508                    | n. olfactorii 50, 51                      |
| lentis 590                             | n. ophthalmici 49                         |
| postacrosomatica 347, 351              | n. radialis 60, 99                        |
| propria corneae 588                    | n. trochlearis 49                         |
| subacrosomatica 347, 351               | neurovascularis 67, 113                   |
| Sulci cerebelli 499                    | obturatorius 63, 104                      |
| costales 261, 276                      | palatinus medianus 302, 308               |
| linguae 302, 309                       | patellaris 64, 108                        |
| palatini 301, 308                      | phalli 349, 357                           |
| palatini laterales 301, 308            | pneumaticus 54                            |
| proventriculi 303, 311                 | pulmonalis 57, 92                         |
| ventriculi 304, 313                    | scapulotricipitalis 60, 100               |
| Sulcus antitrochantericus 63, 105      | sinus sagittalis dorsalis 48, 50          |
| articularis coracoideus 58, 93         | subhabenularis 502, 503                   |
| atrioventricularis 409                 | supracoracoideus 59, 96                   |

| Sulcus tendinosus 60, 61, 62, 101, 102  | Sut. lacrimonasalis 137                   |
|-----------------------------------------|-------------------------------------------|
| transversus 60, 98                      | laterospheno-frontalis 136                |
| tuberoinfundibularis 400, 404           | laterospheno-squamosa 136                 |
| v. semicircularis 48                    | maxillopremaxillaris 137                  |
| ventralis 19, 25                        | mesethmonasalis 137                       |
| ventralis corporis 57                   | mesethmoparasphenoidalis 137              |
| ventrolateralis 494, 496                | mesethmopremaxillaris 137                 |
| Superficialis 2, 4                      | nasomaxillaris 137                        |
| Superior 1                              | nasopremaxillaris 137                     |
| Suprarenal gland 403                    | oticoparietalis 136                       |
| Surfaces 2, 6                           | oticosquamosa 136                         |
| pelvic limb 2                           | palatomaxillaris 137                      |
| wing 2                                  | palatopremaxillaris 137                   |
| Suspensorium phalli 349, 359, 366       | parietosquamosa 136                       |
| Sut. angulosplenialis 137               | pterygopalatina 137, 148                  |
| angulosuprangularis 137                 | rostromaxillaris 137                      |
| articulo-prearticulo-angularis 137      | supra-angulosplenialis 137                |
| articulo-prearticulo-supraangularis 137 | supraoccipitoparietalis 136, 147          |
| articuloangularis 137                   | supraoccipitosquamosa 136                 |
| articuloprearticularis 137              | [Synos.] iliosynsacralis 140              |
| articulosupraangularis 137              | vomeromaxillaris 137, 147                 |
| costouncinata 140, 159                  | vomeropalatina 137, 147                   |
| dentoangularis 137                      | Sutt. faciei maxillaris 137               |
| dentosplenialis 137                     | Sutura 135                                |
| dentosupraangularis 137                 | foliata 135                               |
| exoccipitosquamosa 136                  | interspinalis 140                         |
| faciei maxillaris 137, 147              | plana 135                                 |
| fronto-ectethmoidalis 137               | serrata 135                               |
| frontomesethmoidalis 137, 147           | squamosa 135                              |
| frontonasalis 137                       | SUTURAE CRANII 136, 146                   |
| frontoparietalis 136, 147               | FACIEI 137                                |
| frontopremaxillaris 137                 | FACIEI MANDIBULARIS 137                   |
| frontosquamosa 136                      | Sympathetic trunk 573                     |
| iliocostalis 140, 159                   | Symphysis 135                             |
| iliosynsacralis 140, 143, 129, 158      | ischiadica 144, 169                       |
| interfrontalis 136, 147                 | mandibulae 11, 52, 73, 137, 148           |
| intermaxillaris 137                     | metacarpalis distalis 62, 104             |
| internasalis 137, 147                   | metacarpalis proximalis 104               |
| interpalatina 137, 148                  | postsynsacralis 140, 158                  |
| interparietalis 136, 147                | pubica 144, 169                           |
| interpremaxillaris 137                  | Sync. [Artc.] basihyo-urohyalis 139, 155  |
| interpterygoidea 137, 148               | [Artc.] epi-ceratobranchialis 139, 155    |
| interspinalis 140, 158                  | [Artc.] interlaterosphenoidalis 136, 147  |
| intervomeralis 137, 148                 | basioccipito-exoccipitalis 136            |
| intrapterygoidea 148                    | basioccipito-parasphenoidalis 136         |
| ischiopubica 143, 168                   | basiparaspheno-rostroparasphenoidalis 136 |
| jugo-quadratojugalis 137                | basispheno-parasphenoidalis 136           |
| jugolacrimalis 137                      | basispheno-rostroparasphenoidalis 136     |
| jugomaxillaris 137                      | capitis costae 140                        |
| lacrimo-ectethmoidalis 137, 147         | exoccipito-parasphenoidalis 136           |
| lacrimofrontalis 137                    | exoccipito-prootica 136                   |
|                                         | •                                         |

| Sync. ilioischiadica 143, 129, 169                                                           | Synoss. carpometacarpales 143, 166                                    |
|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| iliopubica 144                                                                               | pygostyli 140, <i>159</i>                                             |
| intercostalis 140, 159                                                                       | Synostosis 47, 135                                                    |
| ischiopubica 143                                                                             | Synovia 136                                                           |
| laterospheno-parasphenoidalis 136                                                            | SYNSACRUM 56, 90, 123, 129                                            |
| mesethmo-ectethmoidalis 137                                                                  | Syringeal muscles, synonymy 284, 285                                  |
| mesethmo-laterosphenoidalis 136                                                              | Syringes, cartilages and ligaments of 291–297                         |
| otico-parasphenoidalis 136                                                                   | muscles of 291–297                                                    |
| otico-supraoccipitalis 136                                                                   | types of 291–297                                                      |
| prootico-basioccipitalis 136                                                                 | SYRINX 54, 260, 269                                                   |
| prootico-laterosphenoidalis 136                                                              | types of 269                                                          |
| rostromesethmoidalis 137, 148                                                                | SYSTEMA CONDUCENS CARDIACUM                                           |
| supraoccipito-exoccipitalis 136                                                              | 410, <i>413</i> , <b>459</b>                                          |
| Syncc. inter-oticae 136, 147                                                                 | ENDOCRINUM MUCOSAE                                                    |
| intercarpales 142, 165                                                                       | DIGESTORIUM 400, 402                                                  |
| SYNCHONDROSES CRANII 136, 146                                                                | PORTALE HEPATIS 444, 455, 473                                         |
| FACIEI 137                                                                                   | portale hypophysiale 401, 404                                         |
| Synchondrosis 135                                                                            | portale renale 332, 346                                               |
| Synd. acrocoracoclavicularis 141, 161                                                        | PORTALE RENIS 443, 452                                                |
| acromioclavicularis 141, 162                                                                 | <b>-</b> 1 11 11 11 11 11 11 11 11 11 11 11 11                        |
| aryteno-cricoidea 259, 267                                                                   | Taenia ventriculi quarti 496                                          |
| aryteno-cricoidea dorsalis 259, 267                                                          | Tapetum lucidum iridis 589, 597                                       |
| coracoscapularis 141, 161                                                                    | lucidum retinae 589, 598                                              |
| crico-cricoidea dorsalis 259, 267                                                            | TARSOMETATARSUS 9, 14, 66, 111, 132                                   |
| cricobasibranchialis 259, 268                                                                | Tarsus 13                                                             |
| interarytenoidea 259, 267                                                                    | palpebralis 590, 600                                                  |
| intercricoidea 259, 267                                                                      | Taste buds 603                                                        |
| intermetatarsalis hallucis 145, 172                                                          | Tectrices alae 20, 30, 31, 43                                         |
| interparaglossalis 139, 154                                                                  | caudae 20, <i>30</i>                                                  |
| intra-arytenoidea 259, 267                                                                   | caudales 13                                                           |
| intramandibularis caudalis 139, 154                                                          | caudales dorsales majores 20, 30, 43                                  |
| mandibulo-occipitalis 138, 151                                                               | caudales dorsales minores 20                                          |
| mandibulosphenoidalis 138, 150                                                               | caudales ventrales majores 20, 30, 44                                 |
| procoracoclavicularis 141, 162                                                               | caudales ventrales minores 20                                         |
| pterygopalatina 150                                                                          | dorsales 20                                                           |
| radioulnaris distalis 142                                                                    | dorsales alulae 20                                                    |
| sternoclavicularis 140, 159                                                                  | dorsales caudae 20                                                    |
| tibiofibularis 144, 170                                                                      | dorsales propatagii 20, 31, 43                                        |
| urohyocricoidea 139, 155                                                                     | marginales manus 20, 31, 43                                           |
| Syndesmosis 135                                                                              | marginales propatagii 20, 31 primariae dorsales majores 20, <b>43</b> |
| Synos. costotransversaria 140, 157                                                           | primariae dorsales mediae 20                                          |
| iliosynsacralis 140<br>interclavicularis 141                                                 | •                                                                     |
|                                                                                              | primariae dorsales minores 20                                         |
| intercorporalis 140                                                                          | primariae ventrales majores 21, 44<br>primariae ventrales mediae 21   |
| interiliospinalis 140, <i>158</i><br>intermetacarpalis distalis 143, <b>128</b> , <i>166</i> | primariae ventrales mediae 21<br>primariae ventrales minores 21       |
| intermetacarpalis proximalis 143, 128, 166                                                   | secundariae dorsales majores 20, 43                                   |
| intermetacarpans proximans 143, 128, 100                                                     | secundariae dorsales majores 20, 43 secundariae dorsales mediae 20    |
| intermetatarsalis hallucis 145                                                               | secundariae dorsales minores 20                                       |
| interspinalis 140, 158                                                                       | secundariae dorsales finioles 20 secundariae ventrales majores 21, 44 |
| intertransversaria 140                                                                       | secundariae ventrales majores 21,                                     |
| tarsometatarsalis 145                                                                        | secundariae ventrales mientae 21 secundariae ventrales minores 21     |
| miscilicumismis 175                                                                          | becaucing tenting limbure 21                                          |

| Tectrices, tertiariae dorsales 20            | Tibiale 65, 111                             |
|----------------------------------------------|---------------------------------------------|
| tertiariae ventrales 21                      | Tibialis 2, 4                               |
| ventrales 20                                 | TIBIOTARSUS 65, 131                         |
| ventrales caudae 20, 30                      | Toe pads 33                                 |
| ventrales propatagii 21                      | Tomium mandibulare 8, 11, 15                |
| Tectrix 19, 30                               | maxillare 8, 11, 15                         |
| carpalis dorsalis 20                         | Tonsilla pharyngea 302                      |
| Tectum mesencephali 495, 500, 516            | Tonsils 483                                 |
| opticum 516                                  | Tori intercostales 261, 276                 |
| Tegmen 19, 25                                | marginales 261, 276                         |
| Tegmentum mesencephali 500, 502              | pulmonales 261, 276                         |
| vasculosum 592, 601, 611                     | Torus 47                                    |
| Tela interdigitalis 10, 14, 16, 20, 22, 33   | dorsalis 55, 87                             |
| intermuscularis 371                          | intercostalis 92                            |
| subcutanea 197, 303, 304, 305, 306,          | linguae 302, 309                            |
| 371, 391                                     | marginalis caudalis/cranialis 261           |
| SUBCUTANEA [SUBCUTIS] 18, 24, 37             | palatinus 301, 307                          |
| submucosa linguae 302                        | pyloricus 304, <i>314</i>                   |
| submucosa oris 302                           | Tr. archistriato-habenularis et             |
| submucosa pharyngis 303                      | precommissuralis 505,                       |
| subserosa 251, 303, 304, 305, 306, 391       | arcuatus superficialis dorsalis 498         |
| TELENCEPHALON 505                            | ascendens n. glossopharyngei 498, 513       |
| Telencephalon, transverse sections 543, 544, | ascendens n. trigemini 498                  |
| 547, 548, 549, 552                           | bulbotectalis 498, 502                      |
| Tendo 190                                    | bulbothalamicus 498, 502, 503               |
| axialis 193                                  | cerebellobulbaris 500                       |
| centralis 194                                | cortico-habenularis et cortico-septalis 506 |
| distalis 197                                 | dentato-rubro-thalamicus 500                |
| elastica 17, 23, 191, 197, 225               | descendens n. trigemini 495, 498,           |
| m. pyramidalis 191, 226, 576, 591, 608       | 513, 514                                    |
| ossificans 190, 196                          | dorso-archistriaticus 506                   |
| proximalis 197                               | fronto-archistriaticus 506, 522, 524        |
| Tendon, plantar, types 243                   | frontothalamicus 503, 504, 506              |
| sheath 197                                   | geniculotectalis 502                        |
| Tendons, ossified 196                        | habenulo-interpeduncularis 502, 505         |
| Terminatio neuralis libera 593, 594, 604     | hypothalamohabenularis 505                  |
| Terminationes dendriticae nervorum 593,      | hypothalamohypophysialis 504                |
| 594, 604                                     | hypothalamospinalis 495, 504, 509           |
| NEURALES 593, 604                            | infundibularis 504, 521                     |
| nervorum 592                                 | interstitiospinalis 495, 502, 509           |
| nervorum plumae et filopumae 593, 604        | isthmo-mesencephalicus 502                  |
| sensorium apicis rostri 593, 605             | isthmo-opticus 502, 503                     |
| TERMINI GENERALES 2, 5                       | lamino-olivaris 497                         |
| Terms of orientation I                       | laminocerebellaris 498, 500                 |
| Testa 373, 383                               | nuc. ovoidalis 503, 517                     |
| TESTIS 347                                   | occipito-mesencephalicus 502                |
| THALAMUS 502                                 | occipitomesencephalicus 495, 498, 499,      |
| Theca externa 370, 375                       | 503, 506, 509, 514                          |
| interna 370, <i>375</i>                      | olfactohabenularis 505                      |
| Thecae folliculi 370                         | olivocerebellaris 498, 500, 511             |
| Thigh 13                                     | opticus 495, 502, 503, 504                  |
| THYMUS 478                                   | paraventriculohypophysialis 504             |
|                                              |                                             |

| r. pontocerebenaris 500                        | Trochanter 47                                  |
|------------------------------------------------|------------------------------------------------|
| pretecto-subpretectalis 502                    | femoris 64, 108                                |
| quintofrontalis 499, 502, 503, 504, 506,       | Trochlea 47, 591, 608                          |
| 515, 524                                       | accessoria 66, 113                             |
| reticulospinalis lateralis/medialis 495        | articularis 67                                 |
| reticulospinalis ventralis 498                 | carpalis 61, 62, 101                           |
| retinohypothalamicus 504, 521                  | cartilaginis tibialis 65, 110, 131             |
| rubrospinalis 495, 498, 499, 502, 519          | fibularis 64, 108                              |
| septohabenularis 505                           | humeralis 143                                  |
| septomesencephalicus 495, 502, 506, 519        | humeroulnaris 142, 146, 163, 180               |
| solitarius 498                                 | metatarsi I [primi] [hallucis] 66              |
| spino-olivaris 495                             | metatarsi II [secundi] 66                      |
| spinocerebellaris dorsalis 495, 498, 499,      | metatarsi III [tertii] 66                      |
| 500, <i>509</i>                                | metatarsi IV [quarti] 66                       |
| spinocerebellaris rostralis 495, 498, 499,     | Trunci plexus 559, 561                         |
| 500, <i>509</i>                                | TRUNCUS 9, 12                                  |
| spinocerebellaris ventralis 495, 498, 499,     | artrioventricularis 410, 414                   |
| 500, <i>509</i>                                | BRACHIOCEPHALICUS 417, 425, 462                |
| spinoreticularis 495                           | communis n. vagi 563, 573, 584                 |
| spinotectalis 495, 496, 498, 501               | paravertebralis 563                            |
| spinothalamicus 495, 496, 498, 501, <b>509</b> | paravertebralis caudalis 564                   |
| striohypothalamicus medialis 504               | paravertebralis cervicalis 564, 573, 577       |
| striomesencephalicus 506, 523                  | paravertebralis synsacralis 564, 580, 584      |
| supra-opticohypophysialis 504                  | paravertebralis thoracicus 564                 |
| suprachiasmatico-hypophysialis 504             | pectoralis 419, 438, 440, 451, 462,            |
| taeniae habenularis 505                        | 470, 471                                       |
| tectobulbaris dorsalis 498, 499, 502           | PULMONALIS 416, 424, 457                       |
| tectobulbaris ventralis 498, 502               | subvertebralis 564, 574                        |
| tectorotundus 502                              | thoracoabdominalis 262, 332, 347, 348,         |
| tectospinalis 502                              | 370, 479, <i>483</i> , <b>490</b> , <b>491</b> |
| tectothalamicus 502, 503                       | vertebralis 417, 426, 462                      |
| thalamofrontalis 503, 504, 506                 | Tuba auditiva 50, 83, 302                      |
| thalamostriaticus 503, 504, 506                | auditiva communis 49, 49, 82 302, 309          |
| vestibulocerebellaris 498                      | Tuba pharyngotympanica 50, 83                  |
| vestibulocerebellaris 500                      | pharyngotympanica communis 49, 82              |
| vestibulomesencephalicus 498, 502              | Tuber 47                                       |
| vestibulospinalis lateralis 498, 495           | cinereum 503                                   |
| vestibulospinalis ventralis 498, 495           | ventrofrontale 495, 505                        |
| Trabecula fibroendothelialis 477, 480, 486     | ventrolaterale 495, 505                        |
| intermedia 58                                  | ventromediale 495, 505                         |
| lateralis/mediana 58                           | vermis 500                                     |
| myofibroendothelialis 477, 480                 | Tuberculum 47                                  |
| thymica 478                                    | ansae 55                                       |
| Trabeculae carneae 410                         | aponeurosis ventralis 61, 102                  |
| ossis 47, 68                                   | basilare 48, 72, 80                            |
| splenicae 478                                  | bicipitale radii 61, 101                       |
| TRACHEA 259                                    | bicipitale ulnae 6, 101                        |
| Tractus hypothalamohypophysialis 400           | brachiale 59, 96                               |
| Fransversalis, Transversus 2, 4                | carpale 61, 101                                |
| Trias hepatica 306, 317                        | coracoideum 59, 95                             |
| Trigona fibrosa 409 412                        | costae 57                                      |

| Tuberculum costarium 85                   | Tubus infundibularis 371, 378                    |
|-------------------------------------------|--------------------------------------------------|
| dorsale 60, 98                            | Tunica adventitia 303, 307, 332, 310             |
| extensorium 67, 65                        | albuginea 347, 349, 370, 373                     |
| flexorium 67                              | conjunctiva bulbi 591                            |
| intercotylare 52, 74                      | conjunctiva membranae nictitantis 591            |
| labri externi 58                          | conjunctiva palpebrarum 591                      |
| lacrimale 53                              | fibrosa 306, 316, 391, 397                       |
| laterale 66                               | TUNICA FIBROSA BULBI 588, 595                    |
| lig. collateralis ventralis 61, 101       | INTERNA BULBI 589, 597                           |
| m. fibularis [peronei] brevis 66          | media arteriolae glomerularis 331                |
| m. gastrocnemialis lateralis 64           | mucosa 304, 305, 307, 332, 348,                  |
| m. gastrocnemialis medialis 64            | 391, <i>397</i>                                  |
| m. iliofibularis 65                       | mucosa bursalis 478, 482                         |
| m. scapulotricipitis 59, 96               | mucosa oris 301                                  |
| majus 98                                  | mucosa pharyngis 302                             |
| mediale 66                                | mucosa proventriculi 303                         |
| minus 98                                  | mucosa respiratoria 258, 259, 260,               |
| olfactorium 506, 522                      | 261, 269                                         |
| pineale 48, 72                            | mucosa vesicae 306                               |
| preacetabulare 63, 106, 174               | mucosae ingluviei 303                            |
| prefrontale 53                            | mucosae linguae 302                              |
| pseudotemporale 52, 74                    | mucosae ventriculi 304                           |
| retinaculi m. fibularis [peronei] 65, 111 | muscularis 303, 307, 332, 340, <i>348</i> , 371, |
| supracondylare dorsale 60, 100            | 391, <i>397</i>                                  |
| supracondylare ventrale 60, 100           | muscularis bursalis 478                          |
| ventrale 60, 98                           | muscularis pharyngis 303                         |
| Tuberositas 47, 68                        | serosa 251, 303-306, 316, 332, 371,              |
| lig. collateralis 55, 85                  | 391, <i>397</i>                                  |
| lig. collateralis lateralis 65            | serosa bursalis 478                              |
| lig. sternoclavicularis 58                | serosa splenica 478                              |
| lig. transversi 55                        | superficialis 370, 375                           |
| m. tibialis cranialis 66                  | VASCULOSA BULBI 588, 596                         |
| poplitea 65, 110                          | Tympanic chamber 270                             |
| retinaculi extensori 65, 110              | Tympanum 260, 270                                |
| Tubuli spermatici 371, 379                | Tympanam 200, 270                                |
| Tubulus attenuatus 331, 336               | ULNA 60                                          |
| colligens 331, <i>333</i> , <i>337</i>    | Ulnaris 2, 4                                     |
| colligens corticalis 331, 337, 343        | Ulnocarpo (combining form) 164                   |
| colligens medullaris 331, 337, 343        | Ultimobranchial body 401                         |
| conjungens 331, 337                       | Umbilicus distalis/proximalis 18, 25             |
| contortus distalis 331, 337               | Unguis digiti alulae 22                          |
| contortus proximalis 331, 336             | digiti majoris 22                                |
| distalis 331, 335                         | digiti manus 22, 33                              |
| intermedius 331, 335                      | digiti pedis 10, 14, 22, 33                      |
| proximalis 331, 335                       | mandibularis 8, 21, 32                           |
| rectus distalis 331, 336                  | maxillaris 8, 21, 32, 319                        |
| rectus proximalis 331, 336                | URETER 332, 341                                  |
| renalis colligens 331                     | URODEUM 390, 391, 363                            |
| seminifer convolutus 347, 349             | Urohyale 55, 80                                  |
| seminifer rectus 347, 349, 350            | Uropygium 9, 13                                  |
| RENALIS 331                               | Uterus 371, <i>378</i>                           |
|                                           |                                                  |

Utriculus 591, 600, 601 V cutanea cruralis caudalis 443 cutanea dorsolateralis caudae 442 Vv., also see p. 778 cutanea dorsomedialis caudae 442 V. adrenalis 441, 472 anastomotica cum sinu olfactorio 437 cutanea femoralis caudalis 443 cutanea femoralis cranialis 443 antebrachialis dorsalis caudalis 441, 471 antebrachialis dorsalis cranialis 441 cutanea femoralis lateralis 443 auricularis caudalis/rostralis 439, 449 cutanea propatagialis 441, 471 basilica 441 cutanea thoracoabdominalis 440, 451 bicipitalis 440, 471 dorsalis labyrinthi 439, 449 bursalis 391, 444 dorsalis profunda bulbi [rectricium] bursocloacalis 391, 442, 453, 467 442, 453 cardiaca circumflexa dextra 437, 446, 457 dorsalis superficialis bulbi [rectricium] cardiaca circumflexa sinistra 437, 446 442. *453* cardiaca media [dorsalis] 437, 446, 457 dorsalis tecti mesencephali 439 cardiaca sinistra 437, 445 duodenojejunalis 444 carotis cerebralis 439 efferens sinus vertebralis interni 442 caudalis tecti mesencephali 439, 469 emissaria mediana 438 cava cranialis 470 esophagealis 262 cephalica caudalis 468, 470 esophagealis descendens 438, 440 cephalica rostralis 468 esophagotrachealis 260, 262, 438 cerebellaris lateralis 439 esophagotracheobronchialis 440, 450, 261 cerebellaris rostromediana 439 ethmoidalis 437 cerebellaris rostroventralis 439 facialis 438, 447 cerebralis basilaris 439 femoralis 443, 472, 474 cerebralis caudalis 439 femoralis caudalis 443, 454, 474 cerebralis dorsocaudalis 439 femoralis cranialis 443 cerebralis dorsomedialis 439 femoralis medialis 443 cerebralis dorsorostralis 438, 469 fibularis [peronea] 443, 455 cerebralis interna 439 fibularis [peronea] profunda 443, 455 cerebralis magna 439 fibularis [peronea] superficialis 443, 455 cerebralis media 439 frontalis profunda/superficialis 437, 447 cerebralis rostralis 439 gastrica dextra 444, 473 choroidea ventriculi lateralis 439 gastrica dorsalis/ventralis 444, 473 choroidea ventriculi quarti 439 gastrica sinistra 444 choroidea ventriculi tertii 439 gastropancreaticoduodenalis 444 ciliaris dorsalis 437 hepatica accessoria 441, 452 circumflexa femoris lateralis/medialis 443 hepatica dextra 441, 451, 472, 473 circumflexa humeri dorsalis/ventralis 441 hepatica sinistra 441, 451, 472, 473 clavicularis 440 ileocecalis 444, 473 coccygomesenterica 444, 455 infraorbitalis 438 collateralis radialis 441/ulnaris 441 infrascapularis 440 colligens 478 interatrialis 437 coracoidea dorsalis 440 intercruralis 439 cordis magna 445 intermandibularis 438 coxae caudalis/cranialis 443, 454 intramandibularis 448 cruralis medialis 443 ischiadica 443, 472 cubitalis dorsalis/ventralis 441 iugularis 260, 261 cutanea abdominalis 442, 453, 467 laryngea 259, 438 cutanea brachialis 441 lateralis caudae 442, 453 cutanea cervicalis ascendens 440 lateralis corporis striati 439 cutanea cervicalis descendens 439, 440 lateralis diencephali 439

| V. lateralis genus 443                                                 | V. oviductalis media 372, 381, 442, 472                                |
|------------------------------------------------------------------------|------------------------------------------------------------------------|
| lateralis tecti mesencephali 439                                       | palatina 439                                                           |
| lateralis venti 442                                                    | palatina lateralis 437, 447                                            |
| lingualis 259, 438                                                     | palatina medialis 438, 447                                             |
| lingualis propria 438                                                  | palatina mediana 438, 447                                              |
| mandibularis 259, 438, 439, 448                                        | palpebralis communis 438, 447                                          |
| mandibularis externa 437                                               | palpebralis dorsonasalis 437, 438, 448                                 |
| mandibularis interna 437                                               | palpebralis dorsotemporalis 438, 447                                   |
| marginalis intestini tenuis 444                                        | palpebralis ventralis 438, 447                                         |
| maxillaris 437, 447                                                    | pancreaticoduodenalis 444, 473                                         |
| medialis genus 443                                                     | pectinis oculi 438                                                     |
| mediana caudae 442, 453, 467                                           | pectoralis caudalis/cranialis 440, 470                                 |
| mesenterica caudalis 391, 444, 455, 467                                | pectoralis media 440, 451                                              |
| mesenterica communis 444, 455, 473                                     | pharyngealis 438                                                       |
| mesenterica cranialis 444, 455, 467, 473                               | poplitea 443, 453, 474                                                 |
| metacarpalis interossea 441                                            | portalis renalis caudalis 332, <b>346</b> , 443,                       |
| metatarsalis dorsalis communis 444,                                    | 452, 472, 475                                                          |
| 454, 474                                                               | portalis renalis cranialis 332, 443,                                   |
| metatarsalis dorsalis lateralis 444, 454                               | 452, 472                                                               |
| metatarsalis dorsalis medialis 444, 454                                | postpatagialis marginalis 441                                          |
| metatarsalis plantaris profunda 443, 454                               | profunda brachii 441, <b>471</b>                                       |
| metatarsalis plantaris superficialis lateralis                         | profunda dorsalis bulbi [rectricium]                                   |
| 443, 454, 474                                                          | 442. <b>467</b>                                                        |
| metatarsalis plantaris superficialis medialis                          | propatagialis marginalis 441, 471                                      |
| 443, 454                                                               | proventricularis cranialis 441, 451, 473                               |
| myelencephali basilaris 439                                            | proventricularis dextra 444, 455                                       |
| nasalis caudalis 437, 447                                              | proventricularis dexita 444, 455                                       |
| nasalis dorsalis 437, 447                                              | proventricularis doisans 444                                           |
| nasalis lateralis 437, 438, 447                                        | proventricularis ventraris 444 proventriculosplenica 444, 455, 473     |
| nasalis medialis 437, 447                                              | proximalis genus 443                                                   |
| nasalis ventralis 437, 447                                             | pterygopharyngealis 438                                                |
| nervi glossopharyngealis 439                                           | pubica 443, 455, <b>474</b>                                            |
| nervi trigemini 439                                                    | pudenda 332, 348, 391, 442, 453                                        |
| nutricia femoris distalis 443                                          | pulmonalis 262, 437                                                    |
| nutricia femoris proximalis 443                                        | pulmonalis communis 437                                                |
| occipitalis communis 439, 449                                          | pylorica 444, 445                                                      |
| occipitalis dorsomediana 439, 449                                      | radialis 441, <b>471</b>                                               |
| occipitalis externa/interna 439                                        | radialis profunda 441, 471                                             |
| occipitalis profunda 439, 450                                          | radialis superficialis 441                                             |
| occipitalis superficialis 439, 450                                     | renalis caudalis 332, 348, 442, 443,                                   |
| occipitalis ventromediana 438, 448, 470                                | 452, 472                                                               |
| occipitocollaris 439, 449, 470                                         | rostralis cruris cerebellaris 439                                      |
| ophthalmica 437                                                        | rostralis diencephali 438                                              |
| ophthalmica externa 439, 449                                           | rostralis tecti mesencephali 439                                       |
|                                                                        |                                                                        |
| ophthalmica interna 438 ophthalmotemporalis 437, 449, 468              | rostrodorsalis myelencephali 439<br>sacci cranialis 444                |
| oviductalis caudalis 372, 442                                          | semicircularis lateralis 439, 449                                      |
| oviductalis caudalis 372, 442                                          | semicircularis rateraris 439, 449<br>semicircularis rostralis 439, 449 |
| oviductalis eramans 372, 441, 472 oviductalis marginalis dorsalis 372, | sphenoidea 439                                                         |
| 442, 452                                                               | sphenomaxillaris 439                                                   |
| oviductalis marginalis ventralis 372,                                  | spinalis dorsalis/ventralis 445, 456                                   |
| 442, <i>452</i>                                                        | sternalis externa 440                                                  |
| T12, 732                                                               | Sicilians exicina 440                                                  |

|                                       | ***                                     |
|---------------------------------------|-----------------------------------------|
| V. sternalis interna 440              | Valva aortae 411, 416                   |
| sternoclavicularis 440                | atrioventricularis dextra 411, 415, 458 |
| sublingualis 438                      | atrioventricularis sinistra 411, 415    |
| submandibularis 438, 447              | portalis renalis 332, 339, 346, 441,    |
| submandibularis profunda 438          | <i>452</i> , <b>472</b>                 |
| submandibularis superficialis 438     | sinuatrialis 410, 414, <b>458</b>       |
| subscapularis 440                     | trunci pulmonalis 411, 415, 416         |
| supracoracoidea 440                   | venae pulmonalis 411, 415               |
| supraorbitalis 437                    | Valvula lymphatica 409, 477, 487        |
| suprascapularis 440, 450              | nasalis 258, 264                        |
| supraspinosa 442                      | semilunaris dextra 411                  |
| suralis 443, <i>454</i> , <b>474</b>  | semilunaris dextra dorsalis 411         |
| suralis lateralis 443                 | semilunaris dextra ventralis 411        |
| suralis medialis 443                  | semilunaris dorsalis 411                |
| thoracica interna 440, 451, 470       | semilunaris sinistra 411                |
| tibialis caudalis 443, 454, 474       | sinuatrialis dextra 410                 |
| tibialis cranialis 443, 454, 474      | sinuatrialis sinistra 410               |
| tibialis medialis 443                 | syringealis 260, 272                    |
| trabecularis 478                      | venosa 409                              |
| trachealis ascendens 260, 438, 440    | Vas afferens [advehens] 409             |
| transversa colli 440                  | anastomoticum 409                       |
| ulnaris 441                           | capillare 409                           |
| ulnaris profunda 441, 451, 471        | capillare glomerulare 331               |
| ulnaris recurrens 441                 | capillare sinusoideum 332, 339, 344     |
| ulnaris superficialis 441, 451, 471   | collaterale 409                         |
| umbilicalis 441, 473                  | deferens [rehevens] 409                 |
| uropygialis 442                       | l. adrenale 479                         |
| uterina lateralis/medialis 372        | l. afferens 477, 481, 487               |
| vaginalis 372, 442                    | 1. axillare 479                         |
| ventralis bulbi [rectricium] 442, 453 | 1. basilicum 479                        |
| ventralis labyrinthi 439              | 1. brachiale profundum 479              |
| ventralis tecti mesencephali 439      | 1. cardiacum commune 479, 484           |
| vertebralis ascendens 439, 440, 449,  | l. cardiacum dextrum 479                |
| 450, <b>470</b>                       | 1. cardiacum sinistrum 479              |
| vertebralis communis 440              | 1. caroticum commune 479, 490           |
| vertebralis descendens 440, 450, 470  | 1. celiacum 479, 483, <b>490</b>        |
| vertebromedullaris 445, 456           | 1. cephalicum caudale 479               |
| Vagina 371, <i>37</i> 9               | l. cephalicum rostrale 479              |
| amorpha 347, 353                      | l. collectorium 477, 480                |
| bulbi 590                             | 1. colligens 477, 480                   |
| cytoplasmatica 347                    | 1. colligens profundum 477, 480, 483    |
| fibrosa 145, <i>173</i>               | 1. colligens superficiale 477, 480, 483 |
| fibrosa flexoria 145, 172             | 1. efferens 477, 481                    |
| fibrosa tendinis 591                  | l. esophagotracheale 479                |
| mitochondrialis 347, 352              | 1. femorale 479                         |
| pennae 18, 24                         | 1. fibrotypicum 477, 480                |
| periarterialis lymphatica 478 482     | 1. iliacum externum 479                 |
| periellipsoidea 478, 483              | 1. iliacum internum 391, 479            |
| tendinis 190, 191, 197                | l. ischiadicum 479                      |
| Vallecula cerebelli 499               | l. jugulare 479, 483, 487, 490          |
| telencephali 495, 505, <b>526</b>     | l. mesentericum caudale 479, 483        |
|                                       |                                         |

| Vas 1. mesentericum craniale 479, 483, 490                           | Vasa Sanguinea et Nervi Laryngis 259 |
|----------------------------------------------------------------------|--------------------------------------|
| 1. myotypicum 477, 480                                               | Sanguinea et Nervi Syringis 260      |
| 1. pectorale commune 479                                             | Sanguinea et Nervi Testis 347        |
| 1. precollectorium 477, 480, 485                                     | Sanguinea et Nervi Tracheae 260      |
| l. precolligens 477, 480                                             | SANGUINEA HYPOPHYSIS 400             |
| 1. proventriculare 479, 484                                          | Sanguinea Oviductus 371              |
| 1. pulmonale commune 262, 479, 484                                   | sinusoidea 306, 318                  |
| 1. pulmonale profundum dextrum 262, 479                              | sinusoidea portalia 401, 405         |
| 1. pulmonale profundum sinistrum                                     | vasorum 409                          |
| 262, 479                                                             | venosa primordalia 478               |
| 1. radiale 479                                                       | Veins, of brain 469                  |
| 1. sacrale medianum 391, 479, 491                                    | tail 467, 475                        |
| 1. sternoclaviculare 479                                             | wing <b>471</b>                      |
| 1. subclavium 479, 484                                               | Velum medullare caudale 496          |
| 1. thyroideum 479                                                    | medullare rostrale 498               |
| 1. ulnare 479                                                        | Vena 409                             |
| 1. vertebrale 479                                                    | iliaca communis 443                  |
| lymphaticum 409                                                      | AXILLARIS 440, 470                   |
| lymphaticum initiale 477, 479, 485                                   | CAVA CAUDALIS 441, 451, 472          |
| lymphocapillare 477, 479                                             | CAVA CRANIALIS 437, 446, 470         |
| Vasa articularia 136                                                 | CEPHALICA CAUDALIS 438, 448, 470     |
| capillaria ellipsoidea 478, 483                                      | CEPHALICA ROSTRALIS 437, 446, 468    |
| -                                                                    | comitans 409                         |
| capillaria penicillaria 478, 483 capillaria pre-ellipsoidea 478, 483 | ILIACA COMMUNIS 441, 472             |
| capillaria terminalia 478, 483                                       |                                      |
| -                                                                    | ILIACA EXTERNA 443, 472              |
| Cloacae 391                                                          | ILIACA INTERNA 442, 443, 452, 467    |
| et Nervi Apparati Copulationis 349                                   | ISCHIADICA 443, 453, 474             |
| et Nervi Ovarii Sinistri 370                                         | JUGULARIS 439, 446, 470              |
| et Nervi Renis 332, 346                                              | PORTAE DEXTRAE HEPATIS 444, 455,     |
| et Nervi Ureteris 332                                                | 473                                  |
| 1. afferentia 479                                                    | PORTAE SINISTRAE HEPATIS 444, 455,   |
| 1. bursae cloacalis 391, 395, 479, <b>491</b>                        | 473                                  |
| 1. cloacalia 349, <i>356</i> , <i>357</i> , 391, <i>395</i> ,        | SUBCLAVIA 440                        |
| 479, 491                                                             | VENAE 437                            |
| 1. efferentia 479                                                    | ovaricae 370, <i>376</i>             |
| 1. esophagealia 479                                                  | oviductales 372, 381                 |
| 1. ingluvialia 479                                                   | CARDIACAE 408, 437, 445, <b>457</b>  |
| 1. ovarica 370, <i>377</i> , 479                                     | COLUMNAE VERTEBRALIS ET              |
| 1. pulmonalia superficialia 262, 479, 490                            | MEDULLAE SPINALIS 445                |
| 1. renalia 332, 479, <b>490</b>                                      | ENCEPHALICAE ET SINUS DURAE          |
| 1. testicularia 347, 479, <b>490</b>                                 | MATRIS 438, 448, 469                 |
| 1. thoracica interna 262                                             | PULMONALES 437, 445                  |
| l. ureterodeferentialia 332, 348, 479                                | Venter 9, 13, 190                    |
| lymphatica colligentia 483                                           | Ventralis 2, 4                       |
| LYMPHATICA COLLIGENTIA                                               | Ventriculus 311                      |
| [COLLECTORIA] 479                                                    | cerebelli 496, 499, 500, 510         |
| lymphatica thoracica interna 479, 484                                | VENTRICULUS DEXTER 411               |
| nervorum 409                                                         | GASTRIS 304, <i>312</i>              |
| Sanguinea et Lymphatica et Nervi Ductus                              | lateralis 505                        |
| Deferentis 348                                                       | olfactorius 505                      |
| Sanguinea et Lymphatica et Nervi                                     | quartus 496, 510                     |
| Pulmonis 262                                                         | SINISTER 411                         |
|                                                                      |                                      |

| Ventriculus tecti mesencephli 500    | Vv. afferentes sinus vertebralis interni 442 |
|--------------------------------------|----------------------------------------------|
| tertius 502, 503                     | apicis cordis 437                            |
| Ventrum caudae 9, 13                 | atriales 262, 437                            |
| linguae 302                          | auriculares 449                              |
| trunci 9                             | brachiales 440, 451, 471                     |
|                                      | bronchiales 262, 280                         |
| VENTUS 390, 394                      | bursales 391, 442                            |
| cloacae 9, <i>13</i>                 | •                                            |
| Venula 409                           | cardiacae dextrae [ventrales] 437, 446       |
| postcapillaris 477, 478, 481         | cardiacae minimae 437, 446                   |
| Venulae intraparabronchiales 262     | carpales dorsales 441                        |
| rectae 332, 340                      | carpales ventrales 441                       |
| septales 262                         | centrales 306, 318, 441, 451                 |
| Vermis cerebelli 499                 | choroideae 437, 438                          |
| Vertebra acetabularis 57, 91, 123    | ciliares anteriores 438                      |
| Vertebrae caudales liberae 57, 123   | ciliares ventrales 438                       |
| CAUDALES 57, <b>129</b>              | cloacales 391, 395, 442, 444                 |
| caudales stabiles 57, 123            | comitantes a. maxillaris 438                 |
| cervicales 85, 88, 121               | conales 437                                  |
| CERVICALES SPECIALES 56, 88, 121     | contortae 441                                |
| SYNSACRALES 56, 123                  | cordis 408, 445                              |
| THORACICAE, [LUMBICALES], ET         | cutaneae colli 440                           |
| SACRALES 56, 90, 91, 123             | digitales 443, 444                           |
| Vertebral column ligaments 186       | digitales dorsales 441                       |
| Vertex 8, 10                         | digitales ventrales 441                      |
| Verticalis 2, 5                      | dorsales cerebelli 439                       |
| Vesica biliaris 306, 318             | dorsales myelencephali 439                   |
| fellea 306, 318                      | dorsolaterales 445, 456                      |
| Vesicula lentis 590, 586, 599        | duodenales 444                               |
| proacrosomatica 347, 351             | efferentes sinus vertebralis interni 442,    |
| Vesiculae ultimobranchiales 399      | <i>455</i> , <b>467</b>                      |
| Vestibulum 50, 592                   | esophageales 440                             |
| aortae 411                           | fissurae 445, 456                            |
| Vexillum barbae 19, 26               | frontales 437, 438                           |
| barbae distale 19, 39                | glandulae membranae nictitantis 438          |
| barbae proximale 19, 39              | hepaticae medianae 441, 451                  |
| externum 19, 25                      | hyobranchiales [hyoideae] 438                |
| internum 19, 25                      | ileae 444                                    |
| pennae 19, 25                        | ileocecales 444                              |
| Villi 19, 25                         | infundibuli 372, 442                         |
| cloacalis 391, 397                   | ingluviales 440                              |
| intestinales 305, 316                | intercostales dorsales 440, 450              |
| synoviales 136                       | intercostales ventrales 440                  |
| Vincula, plantar tendons of foot 243 | interlobulares 306, 317, 332, 339, 343       |
| tendinum 190                         | interosseae dorsales 441                     |
| Vinculum breve 190                   | interparabronchiales 262, 280, 299,          |
| longum 190                           | 437, 445                                     |
| tendinum flexorum 196, 223           | interspinosae 442                            |
| Vitellus 372, 382                    | intervertebrales 442, 456                    |
| albus 372, 382                       | intralobulares 332, 339, 343, 441, 442       |
| aureus 372, 382                      | intramurales 441                             |
| Vomer 53, 78, 117                    | intramurales externae 370                    |
| Vv. adenohypophysiales 401, 405, 439 |                                              |
|                                      |                                              |

| Vv. intramurales internae 370         | Vv. ureterodeferentiales mediae 332, 348,   |
|---------------------------------------|---------------------------------------------|
| intramurales mediae 370               | 442, 452                                    |
| intraparabronchiales 262, 280         | uteri 372                                   |
| isthmi 372, 442                       | uterinae 442                                |
| jejunales 444, <b>473</b>             | ureterodeferentiales caudales 348           |
| magni 372, 442                        | ureterodeferentiales mediae 348             |
| mandibulares caudales 438             | ventriculares 437                           |
| marginales 445, 456                   | ventrolaterales 445, 456                    |
| meningeales 439                       | vertebromedullares 440, 456                 |
| metacarpales dorsales 441             |                                             |
| metacarpales ventrales 441            | Wrist 13                                    |
| metatarsales plantares 443, 454       | joint 181                                   |
| musculares bulbi oculi 438            |                                             |
| musculares caudales colli 440         | Zona caudalis eminentiae medianae 400, 404  |
| musculares craniales colli 439        | caudalis partis distalis 400                |
| musculares ventrales colli 438        | elastica 47                                 |
| ovaricae 441, 452, 472                | flexoria 47                                 |
| pancreaticae 444                      | flexoria arcus jugalis 138, 154             |
| parallelae choroideae 438, 437        | flexoria craniofacialis lateralis 138,      |
| pedunculares 370, 441                 | <i>153</i> , <b>178</b>                     |
| pharyngeales dorsales 438             | flexoria craniofacialis medialis 138,       |
| portales adrenales 441, 452           | <i>153</i> , <b>178</b>                     |
| portales caudales 401, 405            | flexoria dorsomedialis 138, 154             |
| portales hepaticae propriae 444, 456  | flexoria [Ginglymus] craniofacialis 47, 68, |
| portales rostrales 401, 405           | 138, <i>153</i>                             |
| proventriculares caudales 444, 473    | flexoria intramandibularis caudalis 139,    |
| pulvinarum 443, 444                   | <i>154</i> , <b>178</b>                     |
| radiculares dorsales 445              | flexoria intramandibularis rostralis 139,   |
| radiculares propriae 445              | 154, <b>178</b>                             |
| radiculares ventrales 445, 456        | flexoria nasalis dorsalis 138               |
| rectales 444                          | flexoria nasalis ventralis 138              |
| renales craniales 332, 443, 346, 441, | flexoria ossea 135                          |
| <i>452</i> , <b>472</b>               | flexoria palatina 138, 117, 154, 178        |
| sacci caudalis 444                    | flexoria rostrodorsalis 138, 153, 178       |
| sacci cranialis 444                   | flexoria rostroventralis 138, 178           |
| segmentales 442, 445, 456             | impendens 19, 27                            |
| segmentales caudales 442, 443         | intermedia gastris 304, 312, 322            |
| segmentales cervicales/truncales 440  | radiata 370, 374                            |
| segmentales synsacrales 442, 443, 452 | rostralis eminentiae medianae 400, 404      |
| septales 437, 446                     | rostralis partis distalis 400               |
| splenicae 444, 478                    | Zonae flexoriae mandibulares 139, 154       |
| sublobulares 306, 318, 441, 451       | flexoriae maxillares 138, 153               |
| sulci 445, <i>456</i>                 | FLEXORIAE OSSIUM FACIEI 138, 147,           |
| sulcocommissurales 445                | 153                                         |
| syringeales 261                       | parenchymatosae 370, 373                    |
| tarsales plantares 443                | vasculosae 370, 373                         |
| temporales 438                        | Zonula ciliaris 588, 596                    |
| testiculares 332, 347, 348, 441, 452  | Zygapophysis 47                             |
| thyroidea 440                         | [Proc. articularis] cranialis 55, 56, 89    |
| tracheales 260, 440                   | [Proc.articularis] caudalis 55, 56, 89      |
| uretericae 441, 442                   |                                             |
|                                       |                                             |













## Date Due



