Зміст

1.	Означення.	2
2.	Методи знаходження лишків.	2
	2.1. Часткові випадки	3
3.	Нескінчена особлива точка. Ряд Лорана в околі $z=\infty.$	3
	3.1. Характеристика ізольованої особливої точки $z_0 = \infty$ за розкладом в	
	ряд Лорана.	4
	3.2. Пошук лишків. Зв'язок з рядом Лорана	4
4.	Застосування лишків для обчислення інтегралів.	5
	4.1. Застосування теорії лишків для дійсних інтегралів	5

Лишки (вычеты)

1. Означення.

f(z) – аналітична в околі т. z_0 за виключенням самої z_0 :

$$\left\{ z \mid 0 < |z - z_0| < \delta \right\}$$

 γ – контур, що охоплює z_0 та належить проколотому околу z_0 .

Лишком f(z) в точці z_0 називають:

$$\operatorname{res}_{z=z_0} f(z) = \frac{1}{2\pi} \int_{\gamma} f(z) dz$$

Зауваження. З теореми Кошы для неоднозв'язної області випливає, що $\forall \gamma_1, \gamma_2,$ що охоплюють т. z_0 та належать $\left\{z \mid 0 < |z - z_0| < \delta\right\}$, виконується рівність:

$$\int_{\gamma_1} f(z) dz = \int_{\gamma_2} f(z) dz$$

Таким чином, $\underset{z=z_0}{\operatorname{res}} f(z)$ не залежить від γ .

Теорема 1.1. f(x) – аналітична в $\Big\{z \; \Big|\; 0 < |z-z_0| < \delta\Big\}$. Тоді:

$$\underset{z=z_0}{\operatorname{res}} f(z) = C_{-1},$$

де C_{-1} – коефіцієнт головної частини ряду Лорана при $\frac{1}{z-z_0}$.

2. Методи знаходження лишків.

Лема. z_0 – ycyвна особлива точка f(z). Тоді:

$$\underset{z=z_0}{\operatorname{res}} f(z) = 0$$

Лема. $z_0 - суттева$ особлива точка. Тоді:

 $\mathop{\mathrm{res}}_{z=z_0} f(z)$ рахується **тільки за розкладом** в ряд Лорана.

 $\mathbf{Лема.}\ z_0 - nonoc$ порядка k. Тоді:

$$\mathop{\rm res}_{z=z_0} f(z) = \frac{1}{(k-1)!} \lim_{z \to z_0} \left(f(z) * (z - z_0)^k \right)^{(k-1)}$$

2.1. Часткові випадки.

1) z_0 - полюс першого порядку. Тоді:

$$\mathop{\rm res}_{z=z_0} f(z) = \lim_{z \to z_0} f(z)(z - z_0) =$$

2) $f(z)=rac{arphi(z)}{\psi(z)}$ така, що: $arphi(z_0)\neq 0$ $\psi(z_0)=0$ $\psi'(z_0)\neq 0$. Тоді:

$$\underset{z=z_0}{\operatorname{res}} f(z) = \frac{\varphi(z_0)}{\psi'(z_0)}$$

3. Нескінчена особлива точка. Ряд Лорана в околі $z=\infty$.

Перетворення $\omega=\frac{1}{z}$ переводить $z=\infty$ в т. $\omega=0.$

Розглядаємо: $\omega=\frac{1}{z}\iff z=\frac{1}{\omega}\quad z_0=\infty\iff \omega_0=0.$

$$f(z) = \dots = \sum_{k=1}^{\infty} C_{-k} z^k + \sum_{n=0}^{\infty} \frac{C_n}{z^n}$$

Коефіцієнт ряду обчислюється за формулою:

$$C_n = \frac{1}{2\pi i} \int_{\gamma} f(z) z^{n-1} dz$$

Означення. Точка $z_0=\infty$ є ізольованою, якщо:

$$\exists R \; \forall z \in \Big\{z \; \Big| \; R < |z|\Big\} : f(z)$$
 – аналітична.

Означення. Точка $z_0=\infty$ – ізольована, називається:

- усувною, якщо $\exists \lim_{z \to \infty} f(z) = A \pm \infty$.
- *полюсом*, якщо $\exists \lim_{z \to \infty} f(z) = \infty$.
- суттевою, якщо $\nexists \lim_{z \to \infty} f(z)$.

Порядок полюса $z_0 = \infty$:

$$\lim_{z \to \infty} f(z) = \infty \iff \lim_{z \to \infty} \frac{1}{f(z)} = 0$$

Тоді порядок полюса $z_0 = \infty$ є кратність нуля $z_0 = \infty$ для $h(z) = \frac{1}{f(z)}$

3.1. Характеристика ізольованої особливої точки $z_0 = \infty$ за розкладом в ряд Лорана.

Твердження. $z_0 = \infty$ – ізольована, особлива точка для f(z). Тоді:

- 1) $z_0 = \infty$ усувна: ряд Лорана не містить головної частини.
- 2) $z_0 = \infty$ *полюс* кр. k: ряд Лорана містить k доданків головної частини.
- 3) $z_0 = \infty$ *суттева*: ряд Лорана містить безліч доданків головної частини.

Означення. z_0 – ізольована особлива точка функції f(z).

Лишком функціі f(z) в т. $z_0 = \infty$ називають:

$$\underset{z=\infty}{\operatorname{res}} f(z) = \frac{1}{2\pi} \int_{\gamma^{-}} f(z) dz$$

3.2. Пошук лишків. Зв'язок з рядом Лорана.

Теорема 3.1. $z_0 = \infty$ – ізольована, особлива точка для f(z). Тоді:

$$\underset{z=z_0}{\operatorname{res}} f(z) = -C_1$$

де C_1 – коефіцієнт головної частини ряду Лорана f(z) в околі $z_0=\infty$, тобто коефіцієнт при доданку $\frac{1}{z}$.

 $\it 3ауваження.$ Навіть у усувної точки $\it z_0 = \infty$ лишок може бути ненульовим.

4. Застосування лишків для обчислення інтегралів.

Теорема 4.1 (Коші, для лишків І). Задана f(x) – аналітична в області D за вийнятком скінченої кількості особливих точок z_1, \ldots, z_n .

 γ – замкнений контур в D, який охоплює z_1,\ldots,z_n . Тоді:

$$\int_{\gamma} f(z)dz = 2\pi i \sum_{k=1}^{n} \underset{z=z_k}{\text{res}} f(z)$$

Теорема 4.2 (Коші, для лишків II). Задана f(x) – аналітична в області D за вийнятком скінченої кількості особливих точок z_1, \ldots, z_n . Тоді:

$$\sum_{k=1}^{n} \underset{z=z_{k}}{\text{res}} f(z) + \underset{z=\infty}{\text{res}} f(z) = 0$$

Зауваження. Ми розглядаємо випадок скінченої кількості особливих точок, бо в випадку нескінченої кількості з'являється гранична точка(точки) із множини особливих, що не будуть ізольованими.

4.1. Застосування теорії лишків для дійсних інтегралів.

І. R(x,y) — дробово-раціональна функція від x,y:

$$R(x,y) = \frac{P(x,y)}{Q(x,y)},$$
 де P,Q – многочлени.

Тоді, шляхом заміни в інтегралі отримаємо:

$$\int\limits_{0}^{2\pi}R(\cos\left(x\right),\sin\left(x\right))\mathrm{d}x = \begin{vmatrix} e^{ix} = z & \cos x = \frac{z^2+1}{2z} \\ -i\frac{\mathrm{d}z}{z} = \mathrm{d}x & \sin x = \frac{z^2-1}{2iz} \end{vmatrix} = -\int\limits_{|z|=1}iR\left(\frac{z^2+1}{2z};\frac{z^2-1}{2iz}\right)\frac{\mathrm{d}z}{z} \boxminus$$

Підінтегральна функція – дробово-раціональна від z, тому має скінчену кількість особливих точок в колі |z|=1, таким чином:

ІІ. Невласні дійсні інтеграли.

$$\int_{-\infty}^{+\infty} f(x) dx = v.p. \int_{-\infty}^{+\infty} f(x) dx = \lim_{A \to \infty} \int_{-A}^{A} f(x) dx$$

Теорема 4.3. f(x) задана на \mathbb{R} така, що вона продовжується аналітично на верхню півплощину $\mathbb{C}(\Im z>0)$ за виключенням скінченої кількості особливих точок z_1,\ldots,z_n .

$$f(x)$$
 така, що $\exists \lim_{|z| \to \infty} |z \cdot f(z)| = 0$. Тоді: $\int_{-\infty}^{+\infty} f(x) \mathrm{d}x = 2\pi i \sum_{j=1}^n \underset{z=z_j}{\mathrm{res}} f(z)$

III.
$$\int_{-\infty}^{+\infty} f(x) \cos x dx$$
 and $\int_{-\infty}^{+\infty} f(x) \sin x dx$.

Зауважемо, що: $\cos(\alpha x) = \Re e^{i\alpha x}$, $\sin(\alpha x) = \Im e^{i\alpha x}$. Тому:

$$\int_{-\infty}^{+\infty} f(x) \cos x dx = \Re \int_{-\infty}^{+\infty} f(x) e^{i\alpha x} dx$$

$$\int_{-\infty}^{+\infty} f(x) \sin x dx = \Im \int_{-\infty}^{+\infty} f(x) e^{i\alpha x} dx$$

Тому далі будемо розглядати:

$$\int_{-\infty}^{+\infty} f(x)e^{i\alpha x} dx = v.p. \int_{-\infty}^{+\infty} f(x)e^{i\alpha x} dx = \lim_{R \to \infty} \int_{-R}^{R} f(x)e^{i\alpha x} dx$$

Лема (Жордана). f(x) – аналітична в верхній півплощині $\mathbb C$ за виключенням скінченої кількості особливих точок z_1,\ldots,z_n .

$$\lim_{|z| \to \infty} \max_{\substack{|z| = R \\ \Im z \ge 0}} (f(z)) = 0$$

Тоді:

$$\lim_{R \to \infty} \int_{\substack{|z| = R \\ \Im z \ge 0}} f(z)e^{i\alpha z} dz = 0$$

Теорема 4.4. f(x) задана на \mathbb{R} така, що вона продовжується аналітично на верхню півплощину $\mathbb{C}(\Im z>0)$ за виключенням скінченої кількості особливих точок z_1,\ldots,z_n .

$$\lim_{|z| \to \infty} \max_{\substack{|z| = R \\ \Im z \ge 0}} (f(z)) = 0$$

Тоді:

$$\int_{-\infty}^{+\infty} f(x)e^{i\alpha x} dx = 2\pi i \sum_{j=1}^{n} \underset{z=z_{j}}{\text{res}} f(z)e^{i\alpha z}$$

Теорема 4.5. f(x) – парна. γ – симетричний відносно OX. **Тоді:**

$$\int\limits_{\gamma} f(x) \mathrm{d}x = 0$$