

BIGDATA 210: Introduction to Data Engineering

Autumn 2018

Module 2: Hadoop and the Hadoop Ecosystem

Jerry Kuch

jkuch@uw.edu

Week 2 Agenda

- Week 1 Review / Questions?
- Introduction to Scalable Computing
- The Hadoop Ecosystem
- Sandbox Environment / Assignment 1
 - Hortonworks Hadoop cluster sandbox
 - Ambari cluster manager
 - Lab assignment: Fun with Hive

Last Week...

- Objectives, Schedule, Logistics
- Introduction to Big Data
- History and Context for our Coverage:
 - Remarks on Classic DBs
 - GFS/MapReduce, Hadoop...
- Cloud Computing / Enabling Technologies:
 - Utility computing and pay as you go via...
 - Virtualization
 - Containers

Last Week...

- Who did the suggested reading?
- Any comments or thoughts?
- Questions?
- Moving on...

Introduction to Scalable Computing

Distributed Systems, Big Data and the Hadoop Ecosystem

Big Data and Distributed Computing

- Recall core of our definition for Big Data...
- Too big to fit on a single machine
- Must be distributed across multiple machines
- So:
 - Why is that a new problem?
 - What makes it hard?
 - What does it force us to do differently?

Big Data and Distributed Computing

- The Fallacies of Distributed Computing
 - 1. The network is reliable
 - 2. Latency is zero
 - 3. Bandwidth is infinite
 - 4. The network is secure
 - 5. Topology doesn't change
 - 6. There is one administrator
 - 7. Transport cost is zero
 - 8. The network is homogeneous

Big Data and Distributed Computing

- Point of the Fallacies: Distributed computing is hard!
- Data gets big enough => must be distributed.
- How do the fallacies affect us in practice?
- Consider an *Example Scenario*:
 - You need to process a set of log files monthly to bill customers for service use

127.0.0.1 - frank [10/Oct/2000:13:55:36 -0700] "GET /apache_pb.gif HTTP/1.0" 200 2326

- Case 1: One reasonable sized file
 - Shell script/program reads data in memory and outputs to screen or file

Issues:

Something goes wrong? Run job again

- Case 2a: Many reasonable sized files
 - Shell script/program reads data in memory and outputs to screen or file
- Issues and Responses Have Multiplied:
 - Application crashes processing one file?
 - How many already processed?
 - How many left to process?
 - Current totals for each resource need maintained
 - Might run out of memory
 - Serial processing is slow... so maybe parallelize?

- · Case 2b: Many reasonable sized files
 - Multiple shell script/programs reads data in memory and outputs to screen or file

Issues

- Application crashes processing one file
 - How many already processed?
 - How many left to process?
 - Current totals for each resource need maintained
 - Might run out of memory
 - Post-process or coordinate parallel jobs

- Case 3: Very large files
 - Split into smaller files and run multiple scripts/ programs to read data in memory....

Issues

- Application crashes processing one file
 - How many already processed?
 - How many left to process?
 - Current totals for each resource need maintained
 - Need a pre-processing step to split files
 - Post-process or coordinate jobs

- Common things that made our motivating problem harder as it got bigger:
 - Dealing with failure
 - Processes fail?
 - Things that store data die?
 - Coordinating activity
 - Starting, monitoring and restarting
 - Collecting results

Big Data: Solving these Problems Enter GFS and MapReduce

- Google File System (SOSP 2003)
 - https://research.google.com/archive/gfs.html

- Google MapReduce (OSDI 2004)
 - https://research.google.com/archive/mapreduce.html

Big Data: Hadoop's Answers to GFS and MapReduce

Our Motivating Problem: Revisited in a Hadoop World

- Our Problem Before: Handle very large files
 - HDFS splits files across a distributed file system
 - MapReduce engine processes each chunk of data and aggregates results

Issues

- Complexity emerges in...
 - The code users must write
 - The operational work administrators must do

HDFS

- Purpose: Distribute very large files across multiple nodes of a cluster
- Components of a Running HDFS Cluster:
 - Name Node(s)
 - Maintain filesystem metadata
 - Keep a standby NameNode for HA and redundancy
 - Data Node(s)
 - Store file blocks on local filesystems on nodes
 - Replicate blocks to multiple data nodes for redundancy

HDFS: Immutability

- Immutability: once something is written, don't change it in place!
 - if you aren't modifying a file in place and you fail you don't leave it messed up
 - if some or all of the file is replicated in multiple places and it doesn't mutate synchronization is easy
- Immutability eases many things:
 - Replication
 - Concurrency
 - Fault tolerance
 - Data integrity, ...
- ...but at the potential price of:
 - Lots of I/O,
 - Lots of intermediate files in multi-stage jobs

HDFS: Writing a File

- Client consults Name Node
- Client writes block directly to one Data Node
- Data Nodes replicates block
- Cycle repeats for next block

HDFS: Reading a File

- Client receives Data Node list for each block
- Client picks first Data Node for each block
- Client reads blocks sequentially

BRAD HEDLUND .com

HDFS: The Command Line

HDFS Command Line Client:

- In the sandbox, meet the 'hadoop' command
- Command various things, now we'll look at HDFS access
- hadoop fs # 'fs' subcommand
 - 1s
 - rm
 - put
 - etc....
- 'hadoop fs' operations are generally Unix-styled
- hadoop fs -put local_file hdfs_dir

HDFS: Downsides, Issues and Things To Note

- Replication requires lots of space
 - Default: replicate 3 times => 200% overhead
 - Improved with Hadoop 3.0+
- Slow Performance
- Limits to file size
 - Improved using multiple name nodes with federated namespaces
 - Increase block size to cut down on number of blocks

Hadoop MapReduce

- Distributes data processing across a cluster of machines and handles:
 - Coordinating tasks
 - Splitting input data
 - Failure recovery
- Components
 - Resource Manager (YARN)
 - Multiple for HA
 - Node Manager(s)

MapReduce

MapReduce: Example—Input Data

Example:

- Find average price per zip code from housing data
- The data's in a CSV file that looks like...

id,date,price,bedrooms,bathrooms,sqft_living,sqft_lot,floors,waterfront,view,condition,grade,sqft_above,sqft_basement,yr_built,yr_renovated,zipcode,lat,long,sqft_living15,sqft_lot15
 "7129300520","20141013T000000",221900,"3","1",1180,5650,"1",0,0,3,7,1180,0,1955,0,"98178",
47.5112,-122.257,1340,5650

MapReduce: Example—Mapping

Map:

- For each input line emit a key/value pair of zipcode/price
- Example input line:

```
In: "7129300520","20141013T0000000",221900,"3","1", 1180,5650,"1",0,0,3,7,1180,0,1955,0,"98178", 47.5112,-122.257,1340,5650
```

Out: (98178, 221900)

MapReduce: Example—Reducing

Reduce:

- For each key, compute average of list of prices
- After the shuffle phase we end up with:

In: (98008, [450000,346000,799000,....])

Out: (98008, 526454)

MapReduce Code: Old School Hideous Mapper

```
public class HomePriceZipCodeMapper extends
          Mapper<LongWritable, Text, IntWritable, IntWritable> {
   private final static IntWritable keyOut = new IntWritable();
    private final static IntWritable valueOut = new IntWritable();
    private final CSVParser parser = new
                                        CSVParserBuilder().withSeparator(',')
                                              .withQuoteChar('"').build();
    @Override
    protected void map(LongWritable key, Text value, Context context)
    throws IOException, InterruptedException {
       try {
          CSVReader reader = new CSVReaderBuilder(new StringReader(
                         value.toString())).withCSVParser(parser).build();
          String[] line = reader.readNext();
          int zipCode = Integer.parseInt(line[16]);
          int price = Integer.parseInt(line[2]);
          keyOut.set(zipCode);
          valueOut.set(price);
          context.write(keyOut, valueOut);
     } catch (Exception ex) {
          // just swallow error for demo
```

© Jason Kolter

MapReduce Code: Old School Hideous Reducer

© Jason Kolter

MapReduce: Things to Note So Far

- Rigid, clumsy programming model
 - Key/value pairs
 - Types? Positions? Offsets? Oh my!
- Dependent on YARN and HDFS
- Multiple passes on same data require separate applications/code
- Multiple passes may read/write a lot of data to and from HDFS

Hive: Making Hadoop More Humane

- RDBMSes show us declarative query languages:
 - Are productive
 - Are well tolerated and usable by people
- So Hadoop grew Catalog metadata to:
 - Add structure to data over data in HDFS
 - Support SQL style queries in Hadoop
- Enabling components ape some of the pieces of an RDBMS:
 - Metadata server
 - Proxies metadata requests to backing SQL storage
 - Hive server
 - · Handle query parsing/planning/optimizing and send to execution engine
 - Execution Engine(s)
 - MR
 - Tez
 - Spark
- How do these components fit together to help us?

Hive

Hive: Data Made to Look More SQL Table-is

Example:

 Find average price per zip code from housing data

ID	Date	price	bedrooms	bathrooms	floors	view	Zipcode	lat	lon
1231	2015121	444000	3	3	2	Υ	98008	40.22	-80.12

Hive: A SQL-ish Query Language

- HiveQL: looks mostly like SQL...
- Compared to those MapReduce Java classes!

select zipcode, avg(price) from home_data group by zipcode;

Hive: Ways to Access It

- Hive CRUD operations and queries can be done from:
 - Command line
 - NOTE: Original 'hive' command line deprecated...
 - Now: Use the 'beeline' command.
 - Java or any JDBC/ODBC application
 - Via JDBC Java code can talk to Hive like it would another SQL DB
 - Excel and many BI tools can speak ODBC
 - Spark (we'll see a lot later)

Hive: Example of Table Creation

```
CREATE TABLE `home data`(
  `id` bigint,
  `date` string,
  `price` int,
  `bedrooms` int,
  `bathrooms` double,
  `sqft living` int,
  `sqft lot` int,
  `floors` int,
  `waterfront` int,
  `view` int,
  `condition` int,
  `grade` int,
  `sqft above` int,
  `sqft basement` int,
  `yr built` int,
  `yr renovated` int,
  `zipcode` int,
  `lat` double,
  `long` double,
  `sqft living15` int,
  `sqft lot15` int)
ROW FORMAT SERDE
  'org.apache.hadoop.hive.ql.io.orc.OrcSerde'
STORED AS INPUTFORMAT
  'org.apache.hadoop.hive.ql.io.orc.OrcInputFormat'
OUTPUTFORMAT
  'org.apache.hadoop.hive.gl.io.orc.OrcOutputFormat'
LOCATION
  'hdfs://sandbox.hortonworks.com:8020/apps/hive/warehouse/home data'
```

Hive: How does it all work underneath?

- We saw the components and how they ape RDBMS structure earlier
- Two Table options:
 - Internal
 - Completely managed by Hive
 - Data is copied into HDFS warehouse dir
 - Data is DELETED from HDFS when table dropped

External

- Only metadata is managed by Hive
- Data not copied from source
- Options besides HDFS
- Data not deleted when table is dropped

Hive: How does it work underneath?

- File Formats—what does the stuff look like on HDFS storage?
 - ORC File
 - The "Hive" file format
 - Efficient column projection
 - AVRO
 - Portable container file format
 - Good for cross platform functionality
 - Other Hadoop InputFormats
 - Legacy

Hive: How does it work underneath?

- Partitioned table
 - Physically separates the data on HDFS for more efficient queries
 - Example: Frequent queries by date and zipcode
 - Create partitioned hive table by date then by zipcode
 - Creates physical subdirectories for those slices of data
 - Don't over-partition
 - Small partitions and very high cardinality data will become less efficient

Week 2: Summary

- A motivating example
- Bigness => distribution
- Distribution => challenges
- Hadoop ecosystem pillars:
 - HDFS
 - MapReduce
- MapReduce and its discontents
- A first step forward: Hive

Assignment 2

- Assignment to be posted to Canvas tomorrow
 - Log into your Azure VM
 - See Hortonworks sandbox running; explore!
 - Get sample data from course website into your sandbox
 - Hive warmup exercise (actual data munging part should be easy for SQL sophisticates)
- Try to start early! The first week out is where we may encounter hiccups.