Samlefil for alle data til prøveeksamen

Filen 1A/Oppgave1AFigur_A.png

Figure 1: Figur fra filen 1A/Oppgave1AFigur_A.png

$Filen~1A/Oppgave1AFigur_B.png$

Figure 2: Figur fra filen 1A/Oppgave1AFigur_B.png

$Filen~1A/Oppgave1AFigur_C.png$

Figure 3: Figur fra filen 1A/Oppgave1AFigur_C.png

$Filen~1A/Oppgave1AFigur_D.png$

Figure 4: Figur fra filen 1A/Oppgave1AFigur_D.png

Filen 1A/Oppgave1AFigur_E.png

Figur E -650.000 -675.000 -700.000 -725.000 Radiell fart m/s -750.000 -775.000 -800.000 -825.000 -850.000 750 ò 250 500 1000 1250 1500 1750 Tidspunkt for observasjon (timer)

Figure 5: Figur fra filen 1A/Oppgave1AFigur_E.png

Filen 1B.txt

Luminositeten øker med en faktor 9.00e+09.

Filen 1C.png

Figure 6: Figur fra filen 1C.png

Filen 1E.png

Figure 7: Figur fra filen 1E.png

Filen 1G.txt

STJERNE A) massen til stjerna er 5 solmasser og den fusjonerer hydrogen i kjernen

STJERNE B) stjerna består hovedsakelig av karbon og oksygen og få andre grunnstoffer

STJERNE C) stjernas luminositet er 1/10 av solas luminositet og det finnes

noe helium i kjernen men ingen tyngre grunnstoffer

STJERNE D) stjerna har en levetid på noen millioner år og fusjonerer hydrogen til helium i kjernen

STJERNE E) stjerna er 10 milliarder år gammel, men har bare levd1/10av levetida si

Filen 1H.png

Figure 8: Figur fra filen 1H.png

Filen 1J.txt

Kjernen i stjerne A har massetet
thet 8.081e+06 kg/m $\hat{3}$ og temperatur 34 millioner K.

Kjernen i stjerne B har massetet
thet 6.213e+06 kg/m3̂ og temperatur 30 millioner K.

Kjernen i stjerne C har massetet
thet $1.953\mathrm{e}+06~\mathrm{kg/m}$ 3 og temperatur 17

millioner K.

Kjernen i stjerne D har massetet
thet 4.398e+06 kg/m3̂ og temperatur 23 millioner K.

Kjernen i stjerne E har massetet
thet 7.267e+06 kg/m3̂ og temperatur 17 millioner K.

Filen 1K/1K.txt

Påstand 1: denne har den største tilsynelatende bolometriske størrelseklassen (altså den vanlige størrelseklassen tatt over alle bølgelengder, uten filter)

Påstand 2: den tilsynelatende størrelseklassen (magnitude) med UV filter er betydelig mindre enn den tilsynelatende størrelseklassen i blått filter

Påstand 3: den absolutte størrelseklassen (magnitude) med blått filter er betydelig større enn den absolutte størrelseklassen i rødt filter

Påstand 4: denne har den minste tilsynelatende bolometriske størrelseklassen (altså den vanlige størrelseklassen tatt over alle bølgelengder, uten filter)

$Filen~1K/1K_Figur_A_.png$

Figure 9: Figur fra filen $1\mathrm{K}/1\mathrm{K}$ _Figur_A_.png

$Filen \ 1K/1K_Figur_B_.png$

Figure 10: Figur fra filen $1K/1K_Figur_B_pg$

$Filen~1K/1K_Figur_C_.png$

Figure 11: Figur fra filen $1K/1K_Figur_C_png$

$Filen~1K/1K_Figur_D_.png$

Figure 12: Figur fra filen 1K/1K-Figur-D_.png

$Filen \ 1L/1L_Figure_A.png$

Figure 13: Figur fra filen 1L/1L-Figure_A.png

$Filen~1L/1L_Figure_B.png$

Figure 14: Figur fra filen 1L/1L_Figure_B.png

$Filen \ 1L/1L_Figure_C.png$

Figure 15: Figur fra filen 1L/1L-Figure_C.png

$Filen \ 1L/1L_Figure_D.png$

Figure 16: Figur fra filen 1L/1L-Figure_D.png

Filen 1L/1L_Figure_E.png

Figur E tilsynelatende størrelseklasse 11.58 1.70 1.60 1.50 1.40 Relativ fluks 1.30 1.20 1.10 1.00 21.10 21.15 21.25 21.20 21.30 Bølgelgende (cm)

Figure 17: Figure fra filen 1L/1L-Figure-E.png

Filen 1N.txt

Kjernen i stjerne A har massetet
thet 1.888e+05 kg/m3̂ og temperatur 21.52 millioner K.

Kjernen i stjerne B har massetet
thet 2.160e+05 kg/m3̂ og temperatur 23.82 millioner K.

Kjernen i stjerne C har massetet
thet 2.202e+05 kg/m3̂ og temperatur 33.63

millioner K.

Kjernen i stjerne D har massetet
thet 1.992e+05 kg/m3̂ og temperatur 25.68 millioner K.

Kjernen i stjerne E har massetet
thet $4.852\mathrm{e}+05~\mathrm{kg/m}\hat{3}$ og temperatur 17.54 millioner K.

Filen~1O/1O.png

Figure 18: Figur fra filen 10/10.png

$Filen~1O/1O_Figur_0_.png$

Figure 19: Figur fra filen $1O/1O_Figur_O_png$

$Filen~1O/1O_Figur_1_.png$

Figure 20: Figur fra filen $1O/1O_Figur_1.png$

$Filen~1O/1O_Figur_2_.png$

Figure 21: Figur fra filen $1O/1O_Figur_2_png$

$Filen~1O/1O_Figur_3_.png$

Figure 22: Figur fra filen $1O/1O_Figur_3_png$

$Filen~1O/1O_Figur_4_.png$

Figure 23: Figur fra filen $1O/1O_F$ igur_4_.png

Filen 2A.png

Figure 24: Figur fra filen 2A.png

$Filen~2B/2B_Figur_1.png$

Figure 25: Figur fra filen 2B/2B_Figur_1.png

$Filen~2B/2B_Figur_2.png$

Figure 26: Figur fra filen 2B/2B_Figur_2.png

$Filen~2C/2C_Figur_1.png$

Figure 27: Figur fra filen $2C/2C_Figur_1.png$

Vinkelforflytning 2.19 buesekunder i løpet av et millisekund.

Filen 2C/2C_Figur_2.png

Figure 28: Figur fra filen 2C/2C_Figur_2.png

Filen 3A.txt

Din destinasjon er Tromsø som ligger i en avstand av 1400 km fra Kristiansand. Du og toget som går i motsatt retning kjører begge med farta 96.79340 km/t.

Filen 3E.txt

Tog1 veier 85000.00000 kg og tog2 veier 71000.00000 kg.

Filen 4A.png

Figure 29: Figur fra filen 4A.png

Filen 4C.txt

Hastigheten til Helium-partikkelen i x-retning er 464 km/s.

Filen 4E.txt

Massen til gassklumpene er 7500000.00 kg.

Hastigheten til G1 i x-retning er 15000.00 km/s.

Hastigheten til G2 i x-retning er 22020.00 km/s.

Filen 4G.txt

Massen til stjerna er 15.95 solmasser og radien er 3.42 solradier.