Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

Национальный исследовательский университет «МЭИ»

Институт автоматики и вычислительной техники

Кафедра вычислительных машин, систем и сетей

ЛИНЕЙНЫЙ ОДНОКАСКАДНЫЙ УСИЛИТЕЛЬ СИГНАЛА ЗВУКОВОЙ ЧАСТОТЫ

курсовой проект по курсу "Электроника"

Москва 2021 НИУ «МЭИ»

ЗАДАНИЕ

на курсовой проект по курсу "Электроника" для студентов АВТИ

<u>ЛИНЕЙНЫЙ ОДНОКАСКАДНЫЙ</u> УСИЛИТЕЛЬ СИГНАЛА ЗВУКОВОЙ ЧАСТОТЫ

Рассчитать элементы схемы однокаскадного усилителя, удовлетворяющего указанным техническим требованиям (см. таблицу с вариантами заданий):

- 1. Рекомендуемый тип транзистора;
- 2. Амплитуда неискаженного выходного сигнала не менее В;
- 3. Коэффициент усиления напряжения $K_e = \frac{U_{\text{вых}}}{e_{\Gamma}}$ при заданном сопротивлении нагрузки $R_{\text{H}} = \dots$ кОм и внутреннем сопротивлении источника сигнала $R_{\Gamma} = \dots$ кОм не менее;
- 4. Усилитель при заданной емкости нагрузки $C_{\rm H} =$ нФ должен обеспечить полосу пропускания от $f_{\rm H} = ...$ Гц до $f_{\rm B} =$ к Γ ц;
- 5. Температурный диапазон для всех вариантов: -40°С ... +60°С.

Варианты заданий выдаются преподавателем на первом практическом занятии.

Содержание работы

- 1. Для заданного типа транзистора с помощью программы схемотехнического проектирования *OrCad* 9.2 (или любой другой) снять входные и выходные характеристики для схемы включения ОЭ.
- 2. По заданным техническим требованиям обосновать выбор схемы усилительного каскада.
- 3. Используя выходные характеристики транзистора по максимальной амплитуде выходного сигнала и сопротивлению нагрузки определить рабочий режим транзистора и номинальное напряжение источника питания. Дать графическое обоснование выбора рабочей точки и напряжения источника питания.

<u>Примечание:</u> Напряжение источника питания выбирать из номинального ряда.

4. По характеристикам в рабочей точке определить малосигнальные параметры транзистора: коэффициент усиления h_{21} , и входное сопротивление h_{11} .

- 5. По заданному типу транзистора и его предельным параметрам, определенным по справочным данным, обосновать возможность применения транзистора в заданной схеме усилительного каскада. В противном случае тип транзистора согласовать с преподавателем.
- 6. Рассчитать сопротивления резисторов схемы с учетом разброса коэффициента усиления транзистора (смотри в справочнике) и колебаний внешней температуры.

<u>Примечание</u>. Сопротивления резисторов выбирать из номинального ряда.

- 7. Для выбранных сопротивлений резисторов схемы аналитически рассчитать рабочий режим каскада и проверить, совпадает ли он с выбранным в п. 3.
- 8. Рассчитать возможный уход рабочего тока из-за колебаний температуры и из-за разброса коэффициента усиления. Проверить, лежит ли это изменение в заданном диапазоне, определенном в п. 3.
- 9. Для выбранных сопротивлений резисторов схемы определить рабочий режим графически, используя ВАХ транзистора. Для этого:
 - с помощью программы *OrCad* 9.2 на входной BAX транзистора построить линию нагрузки по постоянному току и определить рабочий базовый ток;
 - На семействе выходных характеристик с помощью программы *OrCad* 9.2 построить линию нагрузки по постоянному и переменному току.
 - Определить максимальную амплитуду неискаженного выходного сигнала. Сравнить с заданием.
- 10. Рассчитать входное и выходное сопротивление усилителя.
- 11. Рассчитать коэффициент усиления напряжения с учетом внутреннего сопротивления источника сигнала $K_e = \frac{U_{\text{вых}}}{e_{-}}$.

<u>Примечание.</u> Для каскада ОЭ введением ООС обеспечить коэффициент усиления напряжения, отличающийся от заданного не более, чем на $\pm 10\%$.

12. По заданной нижней границе полосы пропускания рассчитать емкости конденсаторов.

<u>Примечание</u>. Емкость конденсатора выбирать из номинального ряда.

- 13. Определить верхнюю границу полосы пропускания, используя справочные данные на транзистор и данные на емкость нагрузки.
- 14. Проверить с помощью программы схемотехнического моделирования *OrCad* 9.2 работоспособность схемы. С ее помощью рассчитать:
 - режим схемы,
 - амплитудно-частотную характеристику,
 - входное сопротивление усилителя,

- выходное сопротивление усилителя,
- амплитудную характеристику,
- для максимального неискаженного выходного сигнала (см. п. 9) определить коэффициент нелинейных искажений.
- 15. Результаты сравнить с заданием и расчетами, сделав соответствующие сравнительные таблицы.
- 16. Оформить работу с учётом требований к оформлению.

Требования к оформлению работы

Результаты курсовой работы должны быть представлены в виде пояснительной записки и графической части, куда должны входить следующие разделы:

- 1. Содержание с указанием страниц разделов отчета.
- 2. Задание на проектирование и исходные данные.
- 3. Обоснование выбора схемы усилительного каскада.
- 4. Принципиальная схема усилительного каскада, выполненная **по** всем правилам ЕСКД.
- 5. Обоснование и расчет элементов усилительного каскада с необходимыми пояснениями и графиками.
- 6. При расчетах сначала выводится общая формула (либо дается ссылка на источник), затем подставляются числовые значения известных величин, приводятся результаты промежуточных вычислений и конечный результат. В промежуточных вычислениях размерности величин не указываются, а в конечном результате приведение размерности обязательно.
- 7. Вольтамперные характеристики транзистора со всеми графическими построениями.
- 8. Справочные данные на выбранный транзистор.
- 9. Перечень элементов (спецификация).
- 10. Результаты моделирования на ЭВМ (схемы моделирования, полученные осциллограммы и характеристики).
- 11. Таблицы сравнительного анализа моделирования с заданием и расчетом.
- 12. Список использованной литературы.

График выполнения проекта:

Пункты содержания работы	Контрольная неделя	Пункт содержания работы	Контрольная неделя
1-12	8 (KM1)	13-16	12 (KM2)
	15		

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА:

- 1. Степаненко И.П. Основы теории транзисторов и транзисторных схем, издание 3-е. М.: Энергия, 1973.
- 2. Степаненко И.П. Основы микроэлектроники. М.: Сов. Радио, 1980.
- 3. Степаненко И.П. Основы микроэлектроники: Учебное пособие для ВУЗов. / 2-ое изд. -М.: Лаборатория Базовых Знаний. 2001. -488c.
- 4. Ткаченко Ф.А. Техническая электроника. М.: Дизайн ПРО, 2002. 368с. (УДК 621.38; Т484)
- 5. Электротехника и электроника. Учебник для вузов.- В 3-х кн. Кн. 3. Электрические измерения и основы электроники/ Г.П.Гаев, В.Г.Герасимов, О.М.Князьков и др.; Под ред. проф. В.Г.Герасимова. М.: Энергоатомиздат, 1998. (УДК 621.3; Э45)
- 6. Опадчий Ю.Ф., Глудкин О.П., Гуров А.И. Аналоговая и цифровая электроника (Полный курс): Учебник для вузов /Под ред. О.П.Глудкина. М.: Горячая линия Телеком, 2000. –768с.: ил. (О-60 УДК 621.396.6)
- 7. Войшвилло Г.В. Усилительные устройства: учебник для вузов. 2-е изд.-М.: Радио и связь. 1983.
- 8. Транзисторы для аппаратуры широкого применения: справочник. / под ред. Б.Л. Перельмана. -М.: Радио и связь. 1981.
- 9. Кобяк А.Т., Новикова Н.Р., Паротькин В.И., Титов А.А. Применение системы Design Lab 8.0 в курсах ТОЭ и электроники: Метод. пособие. –М.: Издательство МЭИ, 2001. –128с. (УДК 621.3 П–764).
- 10. Кобяк А.Т., Батенина А.П., Лагутина С.В. Применение программы схемотехнического моделирования Design Lab 8.0 в курсе электроники: Метод. Пособие.–М.: Издательство МЭИ, 2014. –36с. (УДК 621.3).
- 11. ГОСТ 2.743-88 «Обозначения условные графические в схемах. Элементы цифровой техники». -Госстандарт СССР.
- 12. Разработка и оформление конструкторской документации радиоэлектронной аппаратуры. Справочник. /Под ред. Романычевой З.Т. -М.: Радио и связь. -1989.

Приложения

П1. Номинальные ряды

Ряд	Номиналы											
Е6	10			15			22					
20%	33			47			68					
E12	1	0	1	2	1	5	1	8	2	2	2	7
10%	3	3	3	9	4	7	5	6	6	8	8	2
E24	10	11	12	13	15	16	18	20	22	24	27	30
5%	33	36	39	43	47	51	56	62	68	75	82	91

Ряд Е6 - 20%. Применяется обычно для электролитических конденсаторов.

Ряд Е12 - 10%. Применяется для резисторов и конденсаторов.

Ряд Е24 - 5%. Применяется для резисторов и конденсаторов.

П2. Номинальный ряд напряжений (В)

5; 9; 12; 15; 18; 24; 27; 30; 36; 48.

П3. Пример оформления спецификации

Спецификация элементов

No	Поз.	Название	К-во	Примечание
		Резисторы		
1	R1	C2-23-0,125Вт-6,8кОм ±5%	1	
2	R2	МЛТ-2Вт-330кОм ±10%	2	Соединить параллельно
3	R3	СП3-19a -0,5Вт-470 ±10%	1	
		Vayyayaamany		
		Конденсаторы		
4	C1	К53-4 33мкФ х 16В ±20%	1	
5	C2	KM 5A M750 120πΦ ±10%	1	
		Диоды		
	T/D1	16H 22 6 F		
6	VD1	КД 226 Г	1	
		Транзисторы		
		T pullone rop Bi		
7	VT1	KT 3102 A	1	
8	VT2	2T 9124 B	1	
		Микросхемы		
9	DA1	ОС 140 УД6В	1	140 УД6В
10	DD2	КМ 155 ИЕ7	1	SN 74193J

П4. Пример оформления работы

Национальный исследовательский университет «МЭИ»

Институт автоматики и вычислительной техники

Кафедра вычислительных машин, систем и сетей

Курсовой проект

ЛИНЕЙНЫЙ ОДНОКАСКАДНЫЙ УСИЛИТЕЛЬ СИГНАЛА ЗВУКОВОЙ ЧАСТОТЫ

Студент	Иванов Иван Иванович
Группа	A-17-19
Дата	15 мая 2021 г.
	Принял
Преподаватель	Петров Петр Петрович
Оценка	
Дата	

Выполнил

Содержание

1. Задание на проектирование и исходные данные	3
2. Обоснование и расчет элементов усилительного каскада	• • •
2.1. Обоснование принципиальной схемы усилительного	
каскада	•••
2.2. Характеристики транзистора и обоснование выбора	• • •
рабочей точки	• • •
2.3. Расчет резисторов	• • •
2.4. Графический расчет уилительного каскада	• • •
2.5. Расчет конденсаторов	•••
3. Перечень элементов (спецификация)	• • •
4. Моделирование усилительного каскада на ЭВМ	• • •
4.1. Схема моделирования	• • •
4.2. Статический анализ схемы	• • •
4.3. Частотные характеристики усилителя	• • •
4.4. Амплитудная характеристика усилителя	• • •
4.5. Выводы	• • •
5. Сводные данные (сравнительные таблицы)	• • •
6. Список использованной литературы	

1.	Задание на проектирование и исходные данные

2. Обоснование и расчет элементов усилительного каскада

2.1. Выбор принципиальной схемы усилительного каскада
И т.д.

5. Сводные данные

1. Расчет режима схемы по постоянному току:

	Расчет	Моделирование на ЭВМ
$I_{\rm K}$, MA		
U_{κ_9} , B		
I_6 , мкА		

2. Основные параметры каскада:

	Задание	Расчет	Моделирование на ЭВМ
K_u			
$R_{\scriptscriptstyle \mathrm{BX}}$, кОм			
$R_{\scriptscriptstyle m BMX}$, Om			
$f_{\scriptscriptstyle \mathrm{H}}$, Гц			
$f_{\scriptscriptstyle m B}$, Гц			
$U_{\text{вых макс}}, \mathbf{B}$			
КНИ, %			