- Input
 - Geometric model
 - Triangle vertices, vertex normals, texture coordinates
 - Lighting/material model (shader)
 - Light source positions, colors, intensities, etc.
 - Texture maps, specular/diffuse coefficients, etc.
 - Viewpoint + projection plane
- Output
 - Color (+depth) per pixel

- Project vertices to 2D (image)
- Rasterize triangle: find which pixels should be lit
- Compute per-pixel color
- Test visibility (Z-buffer), update frame buffer

- Project vertices to 2D (image)
 - We now have screen coordinates
- Rasterize triangle: find which pixels should be lit
- Compute per-pixel color
- Test visibility (Z-buffer), update frame buffer

2D Scan Conversion

• Primitives are "continuous" geometric objects; screen is discrete (pixels)

2D Scan Conversion

- Primitives are "continuous" geometric objects; screen is discrete (pixels)
- Rasterization computes a discrete approximation in terms of pixels (how?)

Edge Functions

- The triangle's 3D edges project to line segments in the image (thanks to planar perspective)
 - Lines map to lines, not curves

Edge Functions

- The triangle's 3D edges project to line segments in the image (thanks to planar perspective)
- The interior of the triangle is the set of points that is inside all three halfspaces defined by these lines

Edge Functions

- The triangle's 3D edges project to line segments in the image (thanks to planar perspective)
- The interior of the triangle is the set of points that is inside all three halfspaces defined by these lines

$$E_i(x,y) = a_i x + b_i y + c_i$$

(x,y) within triangle $\Leftrightarrow E_i(x,y) \geq 0,$ nen orall i=1,2,3

Tuesday, November 23, 2010

Brute Force Rasterizer

- Compute E₁, E₁, E₃ coefficients from projected vertices
 - Called "triangle setup", yields a_i, b_i, c_i for i=1,2,3

Brute Force Rasterizer

- Compute E₁, E₁, E₃ coefficients from projected vertices
- For each pixel (x, y)
 - Evaluate edge functions at pixel center
 - If all non-negative, pixel is in!

Problem?

Brute Force Rasterizer

- Compute E₁, E₁, E₃ coefficients from projected vertices
- For each pixel (x, y)
 - Evaluate edge functions at pixel center

If the triangle is small, lots of useless computation if we really test all pixels

Easy Optimization

- Improvement: Scan over only the pixels that overlap the *screen bounding box* of the triangle
- How do we get such a bounding box?
 - X_{min}, X_{max}, Y_{min}, Y_{max} of the projected triangle vertices

Rasterization Pseudocode

Note: No visibility

```
For every triangle
```

Compute projection for vertices, compute the E_i Compute bbox, clip bbox to screen limits For all pixels in bbox

Evaluate edge functions E_{i}

If all > 0

Framebuffer[x,y] = triangleColor

Bounding box clipping is easy, just clamp the coordinates to the screen rectangle

MIT EECS 6.837 - Durand & Lehtinen

56

Can We Do Better?

Can We Do Better?

For every triangle

Compute projection for vertices, compute the $E_{\rm i}$ Compute bbox, clip bbox to screen limits For all pixels in bbox

Evaluate edge functions $a_ix + b_iy + c_i$

If all >0

Framebuffer[x,y] = triangleColor

These are linear functions of the pixel coordinates (x,y), i.e., they only change by a constant amount when we step from x to x+1 (resp. y to y+1)

MIT EECS 6.837 - Durand & Lehtinen

59

Incremental Edge Functions

```
For every triangle
   ComputeProjection
Compute bbox, clip bbox to screen limits
For all scanlines y in bbox
        Evaluate all E<sub>i</sub>'s at (x0,y): E<sub>i</sub> = a<sub>i</sub>x0 + b<sub>i</sub>y + c<sub>i</sub>
        For all pixels x in bbox
        If all E<sub>i</sub>>0
            Framebuffer[x,y] = triangleColor
        Increment line equations: E<sub>i</sub> += a<sub>i</sub>
```

 We save ~two multiplications and two additions per pixel when the triangle is large

Incremental Edge Functions

```
For every triangle
   ComputeProjection
Compute bbox, clip bbox to screen limits
For all scanlines y in bbox
   Evaluate all Ei's at (x0,y): Ei = aix0 + biy + ci
   For all pixels x in bbox
        If all Ei>0
            Framebuffer[x,y] = triangleColor
        Increment line equations: Ei += ai
```

 We save ~two multiplications and two additions per pixel when the triangle is large

Can also zig-zag to avoid reinitialization per scanline, just initialize once at x0, y0

MIT EECS 6.837 – Durand & Lehtinen

61

Can We Do Even Better?

- We compute the line equation for many useless pixels
- What could we do?

Indeed, We Can Be Smarter

Indeed, We Can Be Smarter

- Hierarchical rasterization!
 - Conservatively test blocks of pixels before going to per-pixel level (can skip large blocks at once)

Conservative tests of axis-aligned blocks vs. edge functions are not very hard, thanks to linearity. See Akenine-Möller and Aila, Journal of Graphics Tools 10 (3), 2005.

Indeed, We Can Be Smarter

- Hierarchical rasterization!
 - Conservatively test blocks of pixels before going to per-pixel level (can skip large blocks at once)

Can also test if an entire block is **inside** the triangle; then, can skip edge functions tests for all pixels for even further speedups. (Must still test Z, because they might still be occluded.)

Further References

- Henry Fuchs, Jack Goldfeather, Jeff Hultquist, Susan Spach, John Austin, Frederick Brooks, Jr., John Eyles and John Poulton, "Fast Spheres, Shadows, Textures, Transparencies, and Image Enhancements in Pixel-Planes", Proceedings of SIGGRAPH '85 (San Francisco, CA, July 22–26, 1985). In *Computer Graphics*, v19n3 (July 1985), ACM SIGGRAPH, New York, NY, 1985.
- Juan Pineda, "A Parallel Algorithm for Polygon Rasterization", Proceedings of SIGGRAPH '88 (Atlanta, GA, August 1–5, 1988). In *Computer Graphics*, v22n4 (August 1988), ACM SIGGRAPH, New York, NY, 1988. Figure 7: Image from the spinning teapot performance test.
- Marc Olano Trey Greer, "Triangle Scan Conversion using 2D Homogeneous Coordinates", Graphics Hardware 97 http://www.cs.unc.edu/~olano/papers/2dh-tri/2dh-tri.pdf

Oldskool Rasterization

Compute the boundary pixels using line rasterization

Oldskool Rasterization

- Compute the boundary pixels using line rasterization
- Fill the spans

Oldskool Rasterization

- Compute the boundary pixels using line rasterization
- Fill the spans

More annoying to implement than edge functions

Not faster unless triangles are huge

What if the p_z is $> eye_z$?

What if the p_z is $< eye_z$?

What if the $p_z = eye_z$?

When w' = 0, point projects to infinity (homogenization is division by w')

A Solution: Clipping "clip" geometry to view frustum, discard outside parts $z \ axis \rightarrow +$ (eye_x, eye_y, eye_z) z=far z=near image plane

MIT EECS 6.837 - Durand & Lehtinen

75

Clipping

• Eliminate portions of objects outside the viewing frustum

View Frustum

boundaries of the image
 plane projected in 3D

a near & far clipping plane

 User may define additional clipping planes

MIT EECS 6.837 – Durand & Lehtinen

76

Why Clip?

- Avoid degeneracies
 - Don't draw stuff behind the eye
 - Avoid divisionby 0 and overflow

Related Idea

- "View Frustum Culling"
 - Use bounding volumes/hierarchies to test whether any part of an object is within the view frustum
 - Need "frustum vs. bounding volume" intersection test
 - Crucial to do hierarchically when scene has *lots* of objects!
 - Early rejection (different from clipping)

See e.g. Optimized view frustum culling algorithms for bounding boxes, Ulf **Assarsson and Tomas** Möller, journal of graphics tools, 2000.

- Perform projection of vertices
- Rasterize triangle: find which pixels should be lit
- Compute per-pixel color
- Test visibility, update frame buffer

Pixel Shaders

 Modern graphics hardware enables the execution of rather complex programs to compute the color of every

- Perform projection of vertices
- Rasterize triangle: find which pixels should be lit
- Compute per-pixel color
- Test visibility, update frame buffer

Visibility

• How do we know which parts are visible/in front?

Z buffer

- In addition to frame buffer (R, G, B)
- Store distance to camera (z-buffer)
- Pixel is updated only if new z is closer than z-buffer value

Z-buffer pseudo code

```
For every triangle

Compute Projection, color at vertices

Setup line equations

Compute bbox, clip bbox to screen limits

For all pixels in bbox

Increment line equations
```

Compute curentZ

Increment currentColor
If all line equations>0 //pixel [x,y] in
 triangle

If currentZ<zBuffer[x,y] //pixel is visible</pre>

Framebuffer[x,y]=currentColor

zBuffer[x,y]=currentZ

Works for hard cases!

