

Streaming Random Forest Learning in Spark and StreamDM

Heitor Murilo Gomes and Albert Bifet Télécom ParisTech

#SAISEco7

Agenda

ML for streaming data

Streaming Random Forest

StreamDM and implementations

Future

About me

- Heitor Murilo Gomes
- PhD in Computer Science
- ML Researcher at Télécom ParisTech
- Contribute to StreamDM and MOA

- heitor.gomes@telecom-paristech.fr
- Website: www.heitorgomes.com
- Linkedin: www.linkedin.com/in/hmgomes/

Data streams

You can't store all the data

Data streams

You don't want to store all the data

ML for Streaming data

Machine Learning for...

Batch data X **Streaming** data

Batch data

Well defined training phase

Random access to instances

Challenges:

missing data, noise, imbalance, high dimensionality,

...

Streaming data

Sequential access only

Strict time/memory requirements

Non-stationary data distribution

Challenges: inherit those from batch + concept drifts, feature evolution,

•••

Batch x Streaming

Batch data

Train data

Test data

The output is a trained model

Streaming data

The output is a trainable model

Definitions / Assumptions

Independent and identically distributed (iid)

 (x^t, y^t) does not influence (x^{t+1}, y^{t+1})

Immediate vs. delayed labeling

immediate: y^t is available before x^{t+1} arrives

delayed: yt may be available at some point in the future

Stationary and non-stationary

Stationary data

The data distribution is unknown, but it doesn't change

Non-stationary (evolving) data

The data distribution is unknown and it may change

Concept Drift

The data distribution may change overtime

The data distribution may change overtime

The data distribution may change overtime

There are many ways to categorize concept drifts...

... Abrupt, gradual, incremental ...

A survey on concept drift adaptation. Gama, Žliobaitė, Bifet, Pechenizkiy, Bouchachia (2014). Computing Surveys (CSUR), ACM.

... in general, we care about those that disturb our model

Addressing concept drifts

Focus on supervised learning*

Some strategies:

Reactive: ensemble learner

Active: drift detector + learner

Addressing concept drifts

Why use an ensemble to cope with concept drift?

Flexibility. Relatively easy to forget and learn new concepts by removing/resetting base models and training new ones.

A survey on ensemble learning for data stream classification. Gomes, Barddal, Enembreck, Bifet (2017). Computing Surveys (CSUR), ACM.

Are there other challenges?

Yes, unfortunately (or fortunately)

Concept evolution
Feature evolution
Continual preprocessing
Verification latency (delayed labeling)

. . .

Our current approach

Ensemble: StreamingRandomForest

Base learner: StreamingDecisionTree

Implementation compatible with mllib

Another implementation in the **StreamDM** framework

HoeffdingTree / StreamingDecisionTree

Incremental decision tree learning algorithm

Intuition: Splitting after observing a small amount of data

Also known as Very Fast Decision Tree (VFDT)

Mining High-Speed Data Streams. Domingos, Hulten (2000). KDD, ACM.

Streaming version of the original Random Forest by Breiman

Random forests. Breiman (2001). Machine learning, Springer.

Main differences:

Bootstrap aggregation and the base learner

Overview:

- 1. Online bagging
- Random subset of features

1. Online bagging

"Standard" bootstrap aggregation is inviable

Issue: Can't resample from the dataset as it is not stored

Solution: Approximate it using a Poisson distribution with $\lambda=1$

Online bagging and boosting. Oza (2005).

1. Online bagging

```
k \leftarrow Poisson (\lambda=1)

if k > 0 then

l \leftarrow FindLeaf(t,x)

UpdateLeafCounts(l,x,k)
```

Practical effect: train trees with different subsets of instances.

1. Online bagging

Leveraging [online] bagging

Augment λ (usually 6), such that instances are used more often

<u>Leveraging bagging for evolving data streams</u>. Bifet, Holmes, Pfahringer (2010). *ECML-PKDD*, *Springer*.

2. Randomly select subsets of features for splits

Use a subset of randomly selected features for each split

Implementation

Mllib streaming algorithm: StreamingLogisticRegressionWithSGD

Streaming Decision Tree

Implementation of the HoeffdingTree algorithm

StreamingRandomForest

Implementation of the Random Forest algorithm

Similar API

```
val streamLR: StreamingLogisticRegressionWithSGD =
  new StreamingLogisticRegressionWithSGD()
    .setInitialWeights(Vectors.zeros(elecConfig.numFeatures))
...
streamLR.trainOn(examples)
```

```
val streamDT: StreamingDecisionTree =
  new StreamingDecisionTree(instanceSchema).
  setModel().setMaxDepth(Option(10))
...
streamDT.trainOn(examples)
```


StreamingDT implementation

Similar coding standard as StreamingLogisticRegressionWithSGD

Handles both nominal and numeric attributes

Numeric using Gaussian estimator

Training

- Statistics are computed in the workers
- Splits are decided and performed in the driver

StreamingRF implementation

Similar to StreamingDecisionTree

Training

- Delegates training to the underlying tree models
- Uses online bagging

Some results

Electricity dataset

#~50k instances

#8 features

2 class labels

Some results

Covertype dataset

~600k instances

54 features

#7 class labels

Streaming Random forest

MaxDepth = 20

NumTrees = 10 and 100

StreamDM

Started in Huawei Noah's Ark Lab

Collaboration between Huawei Shenzhen and Télécom ParisTech

Open source

Built on top of Spark Streaming*

Experimental Structured Streaming version

Extensible to include new tasks/algorithms

Website: http://huawei-noah.github.io/streamDM/

GitHub: https://github.com/huawei-noah/streamDM

GitHub (structured streaming): https://github.com/hmgomes/streamDM/tree/structured-

streaming

StreamDM

Stream readers/writers

Classes for reading data in and outputting results

Tasks

Setting up the learning cycle (e.g. train/predict/evaluate)

Methods

Supervised and unsupervised learning algorithms. Hoeffding Tree, CluStream, Random Forest*, Bagging, ...

Base/other classes

Instance and Example representation, Feature specification, parameter handling, ...

DEMO

Wrap-up / Future

Machine learning for streaming data

Non-stationary (and concept drift)

Streaming Decision Trees and Random Forest implementations

Future:

- StreamDM Structured streaming version
- Improve performance (both decision tree and random forest)
- More methods (anomaly detection, multi-output, ...)

Further reading / links

Machine Learning for Data Streams

Albert Bifet, Ricard Gavaldà, Geoffrey Holmes, Bernhard Pfahringer

Contact

heitor.gomes@telecom-paristech.fr

Repository (main)

https://github.com/huawei-noah/streamDM

Repository (structured streaming)

https://github.com/hmgomes/streamDM/tree/structured-streaming

