FINAL PROJECT RED WINE QUALITY PREDICTION

Presented by: Mya Ei Win

INTRODUCTION

- Dataset: Red Wine Quality (UCI Machine Learning Repository)
- Goal: Predict red wine quality score (regression) and high-quality label (classification)
- Used models: Linear, Logistic, MLP,
 Gradient Boosting

RED WINE DATASET

fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	pH	sulphates	alcohol	quality
7.4	0.7	0	1.9	0.076	11	34	0.9978	3.51	0.56	9.4	5
7.8	0.88	0	2.6	0.098	25	67	0.9968	3.2	0.68	9.8	5
7.8	0.76	0.04	2.3	0.092	15	54	0.997	3.26	0.65	9.8	5
11.2	0.28	0.56	1.9	0.075	17	60	0.998	3.16	0.58	9.8	6
7.4	0.7	0	1.9	0.076	11	34	0.9978	3.51	0.56	9.4	5
7.4	0.66	0	1.8	0.075	13	40	0.9978	3.51	0.56	9.4	5
7.9	0.6	0.06	1.6	0.069	15	59	0.9964	3.3	0.46	9.4	5
7.3	0.65	0	1.2	0.065	15	21	0.9946	3.39	0.47	10	7
7.8	0.58	0.02	2	0.073	9	18	0.9968	3.36	0.57	9.5	7
7.5	0.5	0.36	6.1	0.071	17	102	0.9978	3.35	0.8	10.5	5
6.7	0.58	0.08	1.8	0.097	15	65	0.9959	3.28	0.54	9.2	5
7.5	0.5	0.36	6.1	0.071	17	102	0.9978	3.35	0.8	10.5	5
5.6	0.615	0	1.6	0.089	16	59	0.9943	3.58	0.52	9.9	5
7.8	0.61	0.29	1.6	0.114	9	29	0.9974	3.26	1.56	9.1	5
8.9	0.62	0.18	3.8	0.176	52	145	0.9986	3.16	0.88	9.2	5
8.9	0.62	0.19	3.9	0.17	51	148	0.9986	3.17	0.93	9.2	5
8.5	0.28	0.56	1.8	0.092	35	103	0.9969	3.3	0.75	10.5	7
8.1	0.56	0.28	1.7	0.368	16	56	0.9968	3.11	1.28	9.3	5
7.4	0.59	0.08	4.4	0.086	6	29	0.9974	3.38	0.5	9	4
7.9	0.32	0.51	1.8	0.341	17	56	0.9969	3.04	1.08	9.2	6
8.9	0.22	0.48	1.8	0.077	29	60	0.9968	3.39	0.53	9.4	6
7.6	0.39	0.31	2.3	0.082	23	71	0.9982	3.52	0.65	9.7	5
7.9	0.43	0.21	1.6	0.106	10	37	0.9966	3.17	0.91	9.5	5
8.5	0.49	0.11	2.3	0.084	9	67	0.9968	3.17	0.53	9.4	5
6.9	0.4	0.14	2.4	0.085	21	40	0.9968	3.43	0.63	9.7	6
6.3	0.39	0.16	1.4	0.08	11	23	0.9955	3.34	0.56	9.3	5
7.6	0.41	0.24	1.8	0.08	4	11	0.9962	3.28	0.59	9.5	5
7.9	0.43	0.21	1.6	0.106	10	37	0.9966	3.17	0.91	9.5	5
7.1	0.71	0	1.9	0.08	14	35	0.9972	3.47	0.55	9.4	5
7.8	0.645	0	2	0.082	8	16	0.9964	3.38	0.59	9.8	6
6.7	0.675	0.07	2.4	0.089	17	82	0.9958	3.35	0.54	10.1	5

DATA PREPARATION

- Loaded dataset from CSV
- Checked for and removed missing values
- Separated features and target (quality)
- Split into training and test sets (80/20)

MODEL USED

- Linear Regression & Logistic
 Regression (baseline models)
- MLP Regressor & Classifier (neural network, tuned)
- Gradient Boosting Regressor &
 Classifier (tree-based, tuned)

Model	MSE	R² Score
Linear Regression	0.39	0.40
MLP Regressor	0.37	0.43
Gradient Boosting	0.35	0.46

REGRESSION RESULTS

- Gradient Boosting Regressor performed best:
- - Linear Regression: MSE = 0.390, $R^2 = 0.403$
- - MLP Regressor: MSE = 0.372, $R^2 = 0.431$
- - Gradient Boosting: MSE = 0.353, $R^2 = 0.460$
- Gradient Boosting handled non-linear relationships

CLASSIFICATION RESULTS

- Gradient Boosting Classifier achieved highest accuracy:
- Logistic Regression: Accuracy =
 0.85
- - MLP Classifier: Accuracy = 0.86
- - Gradient Boosting: Accuracy = 0.89

Model	Accuracy
Logistic Regression	0.85
MLP Classifier	0.86
Gradient Boosting	0.89

Correlation Heatmap 0.11 0.094 -0.15 -0.11 0.67 -0.68 -0.26 0.18 -0.062 0.12 -0.55 0.0019 0.061 -0.011 0.076 0.022 <mark>0.23 -0.26 -0.2 -0.39</mark> volatile acidity - -0.26 citric acid - 0.67 0.14 0.2 -0.061 0.036 0.36 -0.54 0.31 0.11 0.23 - 0.6 residual sugar - 0.11 0.0019 0.14 0.056 0.19 - 0.4 chlorides - 0.094 0.061 0.2 0.056 1 0.0056 0.047 0.2 -0.27 0.37 -0.22 -0.13 free sulfur dioxide - -0.15 -0.011 -0.061 0.19 0.0056 -0.022 0.07 0.052 -0.069 -0.051 - 0.2 total sulfur dioxide - -0.11 0.076 0.036 0.2 0.047 0.67 0.071 -0.066 0.043 -0.21 -0.19 - 0.0 0.15 -0.086 -0.27 0.07 -0.066 - -0.2 sulphates - 0.18 -0.26 0.31 0.0055 0.37 0.052 0.043 0.15 0.094 0.25 -0.4alcohol - -0.062 -0.2 0.11 0.042 -0.22 -0.069 -0.21 -0.5 0.21 0.094 -0.6quality - 0.12

KEY VISUALS USED

 Correlation Heatmap: Alcohol had strongest positive correlation

KEY VISUALS USED

 Feature Importance (Gradient Boosting): Alcohol, sulphates most important

KEY VISUALS USED

Actual vs Predicted Plot (GBR):
 Points close to ideal line

KEY VISUALS USED

- This matrix shows the model is really strong at identifying non-high-quality wines. It correctly labeled 262 of them.
- For high-quality wines, it caught 24 out of 47.
- So, while overall performance is good, there's still room to improve that side.

SUMMARY

- Gradient Boosting performed best overall in both tasks
- MLP improved with tuning, but slower to train
- Linear and Logistic models were good baselines

CONCLUSION & FUTURE WORK

- Learned how different models perform on the same dataset
- Gradient Boosting was most effective
- Future: handle class imbalance, tune tree depth, use full cross-validation

REFERENCE

- https://www.kaggle.com/datasets/uciml/red-wine-quality-cortez-et-al-2009/data
- https://www.canva.com/