Piezoelectricity

- Polarization does not disappear when the electric field removed.
- The direction of polarization is reversible.

Figure by MIT OCW FRAM L

FRAM utilize two stable positions. Figure by MIT OCW

Hysterisis

Domain Polarization

• Poling: 100 C, 60kV/cm, PZT

• Breakdown: 600kV/cm, PZT

• Unimorph cantilever

Piezoelectricity

Direct effect

$$D = Q/A = dT$$

Converse effect

$$S = dE$$

$$E = -gT$$

$$T = -eE$$

$$g = d/\varepsilon = d/K\varepsilon_{\circ}$$

$$E = -hS$$

- D: dielectric displacement, electric flux density/unit area
- T: stress, S: strain, E: electric field
- d: Piezoelectric constant, [Coulomb/Newton]

Boundary Conditions

$$d = (\partial S/\partial E)_{T} = (\partial D/\partial T)_{E}$$

$$g = (-\partial E/\partial T)_{D} = (\partial S/\partial D)_{T}$$

$$e = (-\partial T/\partial E)_{S} = (\partial D/\partial S)_{E}$$

Clamped
$$\longrightarrow$$
 S

$$h = (-\partial T/\partial D)_s = (-\partial E/\partial S)_D$$

Principles of piezoelectric

Equation of State

Basic equation

$$\begin{array}{lll} \text{d-form} & S_{ij} = s_{ijkl}{}^E T_{kl} + d_{kij} E_k & c^E = 1/s^E \\ & D_i = d_{ikl} T_{kl} + \epsilon_{ik}{}^T E_k & e = dc^E \\ \text{g-form} & S = s^D T + g D & \epsilon^E = \epsilon^T - dc^E d_t \\ & E = -g T + \beta^T D & \beta^T = 1/\epsilon^T \\ & E = -g T + \beta^T D & g = d/\epsilon^T \\ & D_i = e_{kij} S_{kl} + \epsilon_{ik} {}^S E_k & s^D = s^E - d_t (\epsilon^T)^{-1} d \\ & D = Q/A \\ & E = -h S + \beta^S D & S = F/A \end{array}$$

Equation of states

$$D = dT + \varepsilon^{T}E$$
direct

$$S = s^{E}T + dE$$
 converse

Tensor to Matrix notation

For cylindrical symmetry, and poling in axis 3,

$$D_{1} = \varepsilon_{1}E_{1} + d_{15}T_{5}$$

$$D_{2} = \varepsilon_{1}E_{2} + d_{15}T_{4}$$

$$D_{3} = \varepsilon_{3}E_{3} + d_{31}(T_{1} + T_{2}) + d_{33}T_{3}$$

$$S_{1} = s_{11}T_{1} + s_{12}T_{2} + s_{13}T_{3} + d_{31}E_{3}$$

$$S_{2} = s_{11}T_{2} + s_{12}T_{1} + s_{13}T_{3} + d_{31}E_{3}$$

$$S_{3} = s_{13}(T_{1} + T_{2}) + s_{33}T_{3} + d_{33}E_{3}$$

$$S_{4} = s_{44}T_{4} + d_{15}E_{2}$$

$$S_{5} = s_{44}T_{5} + d_{15}E_{1}$$

$$S_{6} = s_{66}T_{6}$$

Applications of piezoelectric

Sensors

Pressure sensors

Accelerometers

Gyroscopes

Power generators

Vibrators

Ultrasonic transducers

Resonators / Filters / Switches

Actuators

Surface Acoustic wave(SAW) devices

Transformers

Actuators

Ultrasonic motors

Piezoelectric Charge Constants

Electrical energy

Actuator

Mechanical energy

Longitudinal (d₃₃)

Diagram removed for copyright reasons. Source: Piezo Systems, Inc. "Introduction to Piezo Transducers." http://www.piezo.com/bendedu.html

 $\Delta T/T = d_{33} \cdot E$

Transverse (d₃₁)

Diagram removed for copyright reasons. Source: Piezo Systems, Inc. "Introduction to Piezo Transducers." http://www.piezo.com/bendedu.html

 $\Delta L/L = d_{31} \cdot E$

Shear (d₁₅)

Shear strain = d₁₅ E

Piezoelectric Charge Constants

Mechanical energy

Sensor

Electrical energy

Longitudinal (d₃₃)

Diagram removed for copyright reasons. Source: Piezo Systems, Inc. "Introduction to Piezo Transducers." http://www.piezo.com/bendedu.html

$$Q = d_{33} \cdot F_{in}$$

$$V_{out}/T = g_{33} \cdot F_{in} /(L \cdot W)$$

Transverse (d₃₁)

Diagram removed for copyright reasons. Source: Piezo Systems, Inc. "Introduction to Piezo Transducers." http://www.piezo.com/bendedu.html

$$Q = d_{31} \cdot F_{in}$$

$$V_{out} / T = g_{31} \cdot F_{in} / (T \cdot W)$$

$$Q = n \cdot d_{33} \cdot F_{in}$$

$$V_{out} / T = t/n \cdot g_{33} \cdot F_{in} / (LW)$$

Multi-layer (d₃₃)

Diagram removed for copyright reasons. Source: Piezo Systems, Inc. "Introduction to Piezo Transducers" http://www.piezo.com/bendedu.html

$$Q = n \cdot d_{33} \cdot F_{in}$$

$$V_{out} / T = t / n \cdot g_{33} \cdot F_{in} / (LW)$$

d_{31} vs d_{33}

K = 1000

Homework 2:

Compare generated voltages V31 (from d31mode), V33 (d33mode). Both have same cantilever dimension, but different electrodes.

Assume, g33=2g31 tpzt=0.5 μ d=5 μ length=100 μ , width=50 μ Young's modulus of the beam= 65 Gpa, max. strain = 0.1%

Design of a Z-positioner

Component schematic removed for copyright reasons.

Physik Instrumente Z-positioner P-882.10, in

http://www.pi-usa.us/pdf/2004_PICatLowRes_www.pdf, page 1-45.

Ordering Number*	Dimensions A x B x L [mm]	Nominal Displaceme nt [µm @ 100 V] (±10%)	Max. Displaceme nt [µm @ 120 V] (±10%)	Blocking Force [N @ 120 V]	Stiffness [N/µm]	Electrical Capacitance [µF] (±20%)	Resonant Frequency [kHz]
P-882.10	2 x 3 x 9	7	9	215	26	0.13	135

Fabrication Methods for PZT thin Films

Sol-Gel spin coating

Advantages

- Vacuum chamber not necessary (simple)
- Easy composition control
- Deposition on large flat substrate

Disadvantages

- Difficult to deposit on deep trenched surface
- Higher raw material consumption

Advantage and disadvantage of PZT film

Advantage	Disadvantage
Unlimited resolution Large force generation Fast expansion No magnetic fields (low cross talk) Low power consumption No wear and tear for actuation Vacuum and clean room compatible Operation at cryogenic temperature	Complex fabrication Hysteresis Life cycle (10 ¹² cycles) ; Fatigue, retention

Typical Layer Structures for Sol-Gel PZT

Top electrode Pt (e-beam evaporation lift-off)

d₃₁ mode Sang-Gook Kim, MIT

d₃₃ mode

Thermal Oxide Growth and Bottom Electrode Evaporation

Tubes for growing of device diffusion barrier

Evaporation of device electrodes

Fabrication of the PZT Film

Spin-coat Mitsubishi PZT sol-gel: 15% PZT(118/52/48) A6 Type

Fabrication of the PZT Film

PZT Patterning

Patterned PZT on device

top electrode
thin-film PZT

bottom electrode

PZT Patterning (Wet ethcing)

PZT wet-etching with thick photoresist

HCI(64%)+BOE(31%)+DI (5%) (etch rate: 0.25 μm/min)

PZT Patterning (Wet ethcing)

PZT wet-etching with thin resist

• large undercuts with thin (1 μm) photoresist material

¹ W. Liu et al, Thin Solid Films, 2000.

² K. Yamashita et al, Transducers '01, Munich.

PZT Patterning (Dry etching)

PZT dry-etching with thick resist

using RIE, Plamaquest (in TRL) or Plasmatherm (in EML) with BCl₃:Cl₂ (30:10)

• stiff sidewall with thick (10 μm) photoresist material

Top Electrode Lift-Off

d33 mode interdigitated structure

d31 mode sandwich structure

Pt/Ti top electrode pattern by lift-off, 220 nm thick.

Micro-structure of PZT Thin Film

SEM of PZT film surface

Average grain size : 0.1µm

Cross sectional image of PZT film

PZT thickness = 510 ± 40 nm; Pt thickness = 200 nm.

Using SEM

PZT XRD On Various Bottom Electrode Combinations

Electrical Measurements - PZT Ferroelectric Characterization

- hysteresis due to domain reorientation growth, merging and shrinkage
- saturation polarization, P_s at 65 μC/cm²
- remnant polarization, 2P_r at 50 μ C/cm²

Piezoelectric Fatigue Analysis

- PZT electrical fatigue up to more than 1E10 cycles
- characteristics recovered on 2nd run with same device

Piezoelectric Displacement Analysis

strain = $d_{31}V/t$

 $(d_{33}=275pC/N^{-1}, d_{31}=-115pC/N^{-2})$

¹ direct measurement

² inferred from mechanical motion