SPATIAL-SPECTRAL PROCESSING, FEATURE EXTRACTION AND CLASSIFICATION OF MNIST AND FASHION MNIST DATASETS

Shivangi Gupta A25266618 CS696-Big Data Analytics

TABLE OF CONTENTS

INTRODUCTION	3
PROCESSING TECHNIQUES	3
FEATURE EXTRACTION METHOD	8
METHOD OF CLASSIFICATION	16
RESULTS AND DISCUSSION.	19
CONCLUSION	43
REFERENCE	43
APPENDIX	17

INTRODUCTION

In my project, I have used MNIST dataset which comprises of hand-written digits and Fashion MNIST which comprises of clothing images. Both the dataset are of the same dimension and size i.e. 28X28 and 70,000 images. The images shown below depicts the sample images of MNIST and Fashion MNIST dataset.

Figure 1: Sample images of MNIST(left) AND Fashion MNIST(right) dataset.

PROCESSING TECHNIQUES

SPATIAL PROCESSING TECHNIQUES

1. DILATION

The basic effect of the operator on a binary image is to gradually enlarge the boundaries of regions of foreground pixels(i.e. white pixels, typically). Thus areas of foreground pixels grow in size while holes within those regions become smaller.

Figure 2 : Sample images of MNIST(left) AND Fashion MNIST(right) dataset after applying Dilation.

2. EROSION

The basic effect of the operator on a binary image is to erode away the boundaries of regions of foreground pixels (*i.e.* white pixels, typically). Thus areas of foreground pixels shrink in size, and holes within those areas become larger.

Figure 3 : Sample images of MNIST(left) AND Fashion MNIST(right) dataset after applying Erosion.

SPECTRAL PROCESSING TECHNIQUES

1. FOURIER TRANSFORM

The Fourier Transform is an important image processing tool which is used to decompose an image into its sine and cosine components. The output of the transformation represents the image in the Fourier or frequency domain, while the input image is the spatial domain equivalent.

Figure 4: Sample images of MNIST dataset after applying Fourier Transform.

Original Image

Fourier Transform

Figure 5: Sample images of Fashion MNIST dataset after applying Fourier Transform.

2. PRINCIPAL COMPONENT ANALYSIS

It is used to compress high dimension data to low dimension data space. The size of the data was reduced from 784 components to 154 components.

Figure 6: Sample images of MNIST(left) AND Fashion MNIST(right) dataset after applying PCA.

SPATIAL-SPECTRAL PROCESSING TECHNIQUES

This section comprises of the combination of techniques used for spatial-spectral processing on the MNIST and Fashion MNIST Dataset

1. Dilation followed by Fourier Transform

Figure 7: Sample images of MNIST(left) AND Fashion MNIST(right) dataset after applying Dilation followed by Fourier Transform.

2. Erosion followed by Fourier Transform

Figure 8: Sample images of MNIST(left) AND Fashion MNIST(right) dataset after applying Erosion followed by Fourier Transform.

3. Dilation followed by Principal Component Analysis

Figure 9: Sample images of MNIST(left) AND Fashion MNIST(right) dataset after applying Dilation followed by Principal Component Analysis.

4. Erosion followed by Principal Component Analysis

Figure 10: Sample images of MNIST(left) AND Fashion MNIST(right) dataset after applying Erosion followed by Principal Component Analysis.

FEATURE EXTRACTION METHODS

SOBEL EDGE DETECTOR METHOD

It is a discrete differentiation operator, computing an approximation of the gradient of the image intensity function. At each point in the image, the result of the Sobel–Feldman operator is either the corresponding gradient vector or the norm of this vector.

Figure 11: Sample images of MNIST(left) AND Fashion MNIST(right) dataset after applying Dilation followed by Fourier Transform and Sobel Edge Detector.

Figure 12: Sample images of MNIST(left) AND Fashion MNIST(right) dataset after applying Erosion followed by Fourier Transform and Sobel Edge Detector.

Figure 13: Sample images of MNIST(left) AND Fashion MNIST(right) dataset after applying Dilation followed by Principal Component Analysis and Sobel Edge Detector.

Figure 14: Sample images of MNIST(left) AND Fashion MNIST(right) dataset after applying Erosion followed by Principal Component Analysis and Sobel Edge Detector.

CANNY EDGE DETECTOR METHOD

The Canny edge detector is an edge detection operator that uses a multi-stage algorithm to detect a wide range of edges in images. It uses a filter based on the derivative of a Gaussian in order to compute the intensity of the gradients. The Gaussian reduces the effect of noise present in the image.

Figure 15: Sample images of MNIST(left) AND Fashion MNIST(right) dataset after applying Dilation followed by Fourier Transform and Canny Edge Detector.

Figure 16: Sample images of MNIST(left) AND Fashion MNIST(right) dataset after applying Erosion followed by Fourier Transform and Canny Edge Detector.

Figure 17: Sample images of MNIST(left) AND Fashion MNIST(right) dataset after applying Dilation followed by Principal Component Analysis and Canny Edge Detector.

Figure 18: Sample images of MNIST(left) AND Fashion MNIST(right) dataset after applying Erosion followed by Principal Component Analysis and Canny Edge Detector.

LOCAL BINARY PATTERN

Local Binary Pattern (LBP) looks at points surrounding a central point and tests whether the surrounding points are greater than or less than the central point (i.e. gives a binary result). The Images below depicts the processed images after applying the LBP.

Figure 19: Sample images of MNIST(left) AND Fashion MNIST(right) dataset after applying Dilation followed by Fourier Transform and Local Binary Pattern

Figure 20: Sample images of MNIST(left) AND Fashion MNIST(right) dataset after applying Erosion followed by Fourier Transform and Local Binary Pattern

Figure 21: Sample images of MNIST(left) AND Fashion MNIST(right) dataset after applying Dilation followed by Principal Component Analysis and Local Binary Pattern

Figure 22: Sample images of MNIST(left) AND Fashion MNIST(right) dataset after applying Erosion followed by Principal Component Analysis and Local Binary Pattern

PEAK LOCAL MAXIMA METHOD

Find peaks in an image as coordinate list or boolean mask.

Figure 23: Sample images of MNIST(left) AND Fashion MNIST(right) dataset after applying Dilation followed by Fourier Transform and Peak Local Maxima

Figure 24: Sample images of MNIST(left) AND Fashion MNIST(right) dataset after applying Erosion followed by Fourier Transform and Peak Local Maxima

Figure 25: Sample images of MNIST(left) AND Fashion MNIST(right) dataset after applying Dilation followed by Principal Component Analysis and Peak Local Maxima

Figure 26: Sample images of MNIST(left) AND Fashion MNIST(right) dataset after applying Erosion followed by Principal Component Analysis and Peak Local Maxima

METHOD OF CLASSIFICATION

MULTI-LAYER PERCEPTRON

It is a class of Feed-forward network. It consists of at least three Hidden layers of nodes. Each node is a neuron that uses a non-linear activation function. The figure given below shows the Architecture of the Multi-Layer perceptron used for this project.

Figure 27: Multi-layer Perceptron Model

CONVOLUTIONAL NEURAL NETWORK

It is a class of deep, feed-forward network. They require relatively less pre-processing compared to other image classification algorithms. The figure given below shows the Architecture of the Convolution neural network used for this project.

Figure 28: Convolutional Neural network model

At Each layer except the output Layer, I have used ReLu(Rectified Linear Unit) as the Non-

linear Activation Function. Softmax is applied at the output layer and Cross Entropy Loss is used to calculate the loss at each epoch.

ReLu Function:

$$f(x) = \max(0, x)$$

Softmax Function:

$$P(y = j \mid \mathbf{x}) = rac{e^{\mathbf{x}^\mathsf{T}\mathbf{w}_j}}{\sum_{k=1}^K e^{\mathbf{x}^\mathsf{T}\mathbf{w}_k}}$$

Cross Entropy Loss Function:

Loss =
$$-(y * log(p) + (1 - y) * log(1 - p))$$

RESULTS AND DISCUSSION

Figure 29: The Image above shows the Loss versus Epoch graph for MNIST dataset after applying Dilation and Feature Extraction with MLP as Classifier

Figure 30 : The Image above shows the Loss versus Epoch graph for MNIST dataset after applying Dilation and Feature Extraction with CNN as Classifier

Figure 31: The Image above shows the Loss versus Epoch graph for MNIST dataset after applying Erosion and Feature Extraction with MLP as Classifier

Figure 32: The Image above shows the Loss versus Epoch graph for MNIST dataset after applying Erosion and Feature Extraction with CNN as Classifier

Figure 33: The Image above shows the Loss versus Epoch graph for MNIST dataset after applying Fourier transform and Feature Extraction with MLP as Classifier

Figure 34: The Image above shows the Loss versus Epoch graph for MNIST dataset after applying Fourier transform and Feature Extraction with CNN as Classifier

Figure 35: The Image above shows the Loss versus Epoch graph for MNIST dataset after applying PCA and Feature Extraction with MLP as Classifier

Figure 36: The Image above shows the Loss versus Epoch graph for MNIST dataset after applying PCA and Feature Extraction with CNN as Classifier

Figure 37: The Image above shows the Loss versus Epoch graph for Fashion MNIST dataset after applying Dilation and Feature Extraction with MLP as Classifier

Figure 38: The Image above shows the Loss versus Epoch graph for Fashion MNIST dataset after applying Dilation and Feature Extraction with CNN as Classifier

Figure 39: The Image above shows the Loss versus Epoch graph for Fashion MNIST dataset after applying Erosion and Feature Extraction with MLP as Classifier

Figure 40: The Image above shows the Loss versus Epoch graph for Fashion MNIST dataset after applying Erosion and Feature Extraction with CNN as Classifier

Figure 41: The Image above shows the Loss versus Epoch graph for Fashion MNIST dataset after applying Fourier transform and Feature Extraction with MLP as Classifier

Figure 42: The Image above shows the Loss versus Epoch graph for Fashion MNIST dataset after applying Fourier transform and Feature Extraction with CNN as Classifier

Figure 43: The Image above shows the Loss versus Epoch graph for Fashion MNIST dataset after applying PCA and Feature Extraction with MLP as Classifier

Figure 44: The Image above shows the Loss versus Epoch graph for Fashion MNIST dataset after applying PCA and Feature Extraction with CNN as Classifier

Figure 45: The Image above shows the Loss versus Epoch graph for MNIST dataset after applying Dilation followed by Fourier Transform and Feature Extraction with MLP as Classifier

Figure 46: The Image above shows the Loss versus Epoch graph for MNIST dataset after applying Dilation followed by Fourier Transform and Feature Extraction with CNN as Classifier

Figure 47: The Image above shows the Loss versus Epoch graph for MNIST dataset after applying Dilation followed by PCA and Feature Extraction with MLP as Classifier

Figure 48: The Image above shows the Loss versus Epoch graph for MNIST dataset after applying Dilation followed by PCA and Feature Extraction with CNN as Classifier

Figure 49: The Image above shows the Loss versus Epoch graph for MNIST dataset after applying Erosion followed by Fourier Transform and Feature Extraction with MLP as Classifier

Figure 50: The Image above shows the Loss versus Epoch graph for MNIST dataset after applying Erosion followed by Fourier Transform and Feature Extraction with CNN as Classifier

Note: Forgot to change Legend values and noticed it very late to run the entire code again

Figure 51: The Image above shows the Loss versus Epoch graph for MNIST dataset after applying Erosion followed by PCA and Feature Extraction with MLP as Classifier

Figure 52: The Image above shows the Loss versus Epoch graph for MNIST dataset after applying Erosion followed by PCA and Feature Extraction with MLP as Classifier

Note: Forgot to change Legend values and noticed it very late to run the entire code again

Figure 53: The Image above shows the Loss versus Epoch graph for Fashion MNIST dataset after applying Dilation followed by Fourier Transform and Feature Extraction with MLP as Classifier

Figure 54: The Image above shows the Loss versus Epoch graph for Fashion MNIST dataset after applying Dilation followed by Fourier Transform and Feature Extraction with CNN as Classifier

Figure 55: The Image above shows the Loss versus Epoch graph for Fashion MNIST dataset after applying Dilation followed by PCA and Feature Extraction with MLP as Classifier

Figure 56: The Image above shows the Loss versus Epoch graph for Fashion MNIST dataset after applying Dilation followed by PCA and Feature Extraction with CNN as Classifier

Figure 57: The Image above shows the Loss versus Epoch graph for Fashion MNIST dataset after applying Erosion followed by Fourier Transform and Feature Extraction with MLP as Classifier

Figure 58: The Image above shows the Loss versus Epoch graph for Fashion MNIST dataset after applying Erosion followed by Fourier Transform and Feature Extraction with CNN as Classifier

Figure 59: The Image above shows the Loss versus Epoch graph for Fashion MNIST dataset after applying Erosion followed by PCA and Feature Extraction with MLP as Classifier

Figure 60: The Image above shows the Loss versus Epoch graph for Fashion MNIST dataset after applying Erosion followed by PCA and Feature Extraction with CNN as Classifier

	MLP	СИИ	
Dilation		62	64
Erosion		49	5 2
Fourier transform		54	59
PCA		58	58
Dilation+Fourier		57	62
Dilation+PCA		64	5 2
Erosion+Fourier		37	62
Erosion+PCA		51	57

Table 1 : Accuracy of MNIST data using different processing methods and no Feature Extraction Technique

Figure 61 : Accuracy of MNIST data using different processing methods and no Feature Extraction Technique

Figure 62 : Computation time of MNIST data using different processing methods and no Feature Extraction Technique

	MLP	CNIN	
Dilation		67	67
Erosion		60	62
Fourier transform		51	62
PCA		55	57
Dilation+Fourier		59	62
Dilation+PCA		58	58
Erosion+Fourier		44	64
Erosion+PCA		49	57

32

Table 2 : Accuracy of MNIST data using different processing methods and Sobel Edge Detector for Feature Extraction

Figure 63 : Accuracy of MNIST data using different processing methods and Sobel Edge Detector for Feature Extraction

Figure 64 : Computation time of MNIST data using different processing methods and Sobel Edge Detector for Feature Extraction

	MLP	CNN
Dilation	64	65
Erosion	54	59
Fourier transform	61	63
PCA	64	64
Dilation+Fourier	62	65
Dilation+PCA	65	64
Erosion+Fourier	54	66
Erosion+PCA	58	55

Table 3 : Accuracy of MNIST data using different processing methods and Canny Edge Detector for Feature Extraction

Figure 65 : Accuracy of MNIST data using different processing methods and Canny Edge Detector for Feature Extracti

Figure 66 : Computation time of MNIST data using different processing methods and Canny Edge Detector for Feature Extraction

	MLP	CNIN
Dilation	62	65
Erosion	52	58
Fourier transform	58	62
PCA	64	65
Dilation+Fourier	61	64
Dilation+PCA	65	64
Erosion+Fourier	50	65
Erosion+PCA	51	58

Table 4 : Accuracy of MNIST data using different processing methods and Local binary pattern for Feature Extraction

Figure 67 : Accuracy of MNIST data using different processing methods and Local binary pattern for Feature Extraction

Figure 68 : Computation time of MNIST data using different processing methods and Local binary pattern for Feature Extraction

	MLP	CNN
Dilation	64	66
Erosion	54	58
Fourier transform	59	62
PCA	63	65
Dilation+Fourier	64	66
Dilation+PCA	66	65
Erosion+Fourier	53	67
Erosion+PCA	54	59

Table 5 : Accuracy of MNIST data using different processing methods and Peak Local Maxima for Feature Extraction

Figure 69 : Accuracy of MNIST data using different processing methods and Peak Local Maxima for Feature Extraction

Figure 70 : Computation time of MNIST data using different processing methods and Peak Local Maxima for Feature Extraction

	MLP	CNN	
Dilation		58	63
Erosion		59	62
Fourier transform		61	65
PCA		64	59
Dilation+Fourier		56	61
Dilation+PCA		60	64
Erosion+Fourier		37	62
Erosion+PCA		51	57

Table 6 : Accuracy of Fashion MNIST data using different processing methods and No Feature Extraction

Figure 71 : Accuracy of Fashion MNIST data using different processing methods and No Feature Extraction

Figure 72 : Computation time of Fashion MNIST data using different processing methods and No Feature Extraction

	MLP	CNN
Dilation	64	64
Erasion	65	65
Fourier transform	64	66
PCA	62	61
Dilation+Fourier	61	62
Dilation+PCA	60	61
Erosion+Fourier	44	64
Eroslon+PCA	49	57

Table 7 : Accuracy of Fashion MNIST data using different processing methods and Sobel Edge detector for Feature Extraction

Figure 73 : Accuracy of Fashion MNIST data using different processing methods and Sobel Edge detector for Feature Extraction

Figure 74 : Computation time of Fashion MNIST data using different processing methods and Sobel Edge detector for Feature Extraction

	MLP	CNN
Diletion		61
Erosion	6	62
Fourier transform		64
PCA	•	54 61
Dilation+Fourier		59 59
Dilation+PCA	!	56 55
Erosion+Fourier		54 66
Erosion+PCA		55 58

Table 8 : Accuracy of Fashion MNIST data using different processing methods and Canny Edge detector for Feature Extraction

Figure 75 : Accuracy of Fashion MNIST data using different processing methods and Canny Edge detector for Feature Extraction

Figure 76 : Computation time of Fashion MNIST data using different processing methods and Canny Edge detector for Feature Extraction

	MLP	CNIN
Dilation	58	59
Erosion	59	62
Fourier transform	63	64
PCA	62	62
Dilation+Fourier	57	60
Dilation+PCA	54	55
Erosion+Fourier	54	65
Erosion+PCA	51	58

Table 8 : Accuracy of Fashion MNIST data using different processing methods and Local Binary Pattern for Feature Extraction

Figure 77 : Accuracy of Fashion MNIST data using different processing methods and Local Binary Pattern for Feature Extraction

Figure 78 : Computation time of Fashion MNIST data using different processing methods and Local Binary Pattern for Feature Extraction

	MLP	CNN	
Dilation		59	59
Erosion		61	61
Fourier transform		85	65
PCA		65	63
Dilation+Fourier		59	60
Dilation+PCA		54	56
Erasion+Faurier		50	61
Erosion+PCA		61	61

Table 10 : Accuracy of Fashion MNIST data using different processing methods and Peak Local Maxima for Feature Extraction

Figure 79 : Accuracy of Fashion MNIST data using different processing methods and Peak Local Maxima for Feature Extraction

Figure 80 : Computation time of Fashion MNIST data using different processing methods and Peak Local Maxima for Feature Extraction

CONCLUSION

From the above results, it can be observed that Classification using that the Accuracy of the dataset is not very good after processing it, but the Computation time was found to be decreased.

After processing of the dataset, Sobel edge detection feature extraction method performed better overall in comparison to other methods.

It can also be observed, that even though some datasets look similar after applying Feature Extraction method, they have different accuracies.

Overall, MNIST and Fashion MNIST dataset do not require any kind of processing but they can be classified using an appropriate Feature Extraction technique as shown in my previous project, as they had better results.

REFERENCES

- [1] MNIST database of handwritten digits : https://pytorch.org/docs/stable/data.html
- [2] Fashion MNIST database of clothes: https://pytorch.org/docs/stable/data.html
- [3] Pytorch: https://pytorch.org
- [4] Numpy: http://www.numpy.org
- [5] Matplotlib: https://matplotlib.org
- [6] Pandas : https://pandas.pydata.org
- [7] Math: https://docs.python.org/2/library/math.html
- [8] Random: https://docs.python.org/2/library/random.html
- [9] Canny Edge Detector : http://scikit-image.org/docs/dev/auto_examples/edges/plot_canny.html
- [10] Local Binary Pattern: http://scikit-image.org/docs/dev/auto_examples/features_detection/plot_local_binary_pattern.html
- [11] Peak Local Max : http://scikit-image.org/docs/dev/api/skimage.feature.peak local max
- [12] Sobel Edge Detector : http://scikit-image.org/docs/dev/auto_examples/edges/plot_edge_filter.html
- [13] Dilation: https://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.ndimage.morphology.binary_dilation.html
- [14] Erosion: https://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.ndimage.morphology.binary erosion.html
- $[15] \ Fourier \ transform: \underline{https://docs.scipy.org/doc/scipy/reference/tutorial/fltpack.html}$
- [16] Principal component analysis: https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html