

Politechnika Gdańska Wydział Fizyki Technicznej i Matematyki Stosowanej

Projekt 1 Analiza składowych głównych

 $Kamil\ Langowski$

prowadzący: dr inż. Anna Szafrańska

Spis treści

1	Część pierwsza				
	1.1	Zadanie I.1 (Wczytanie danych.)	2		
	1.2	Zadanie I.2 (Przygotowanie danych i statystyki opisowe.)	2		
	1.3	Zadanie I.3 (Spektralna dekompozycja $\mathbf{S}_{\mathbf{Y}}$)	3		
	1.4	Zadanie I.4 (Analiza dekompozycji.)	3		
	1.5	Zadanie I.5 (Interpretacja składowych głównych.)	4		
	1.6	Zadanie I.6 (Korelacja pomiędzy zmiennymi a składowymi główny-			
		mi.)	6		
	1.7	Zadanie I.7 (Wybór składowych głównych w celu redukcji wymiaru.)	6		
	1.8	Zadanie I.8 (Wykresy składowych głównych.)	7		
	1.9	Zadanie I.9 (Dyskryminacja.)	9		
2	Czę	ść druga	11		
	2.1	Zadanie II.1 (Wczytanie danych.)	11		
	2.2	Zadanie II.2 (Przygotowanie danych i statystyki opisowe.)	11		
	2.3	Zadanie II.3 (Spektralna dekompozycja $\mathbf{S}_{\mathbf{Y}}$)	11		
	2.4	Zadanie II.4 (Analiza dekompozycji.)	11		
	2.5	Zadanie II.5 (Interpretacja składowych głównych.)	11		
	2.6	Zadanie II.6 (Korelacja pomiędzy zmiennymi a składowymi głów-			
		nymi.)	13		
	2.7	Zadanie II.7 (Wybór składowych głównych w celu redukcji wymiaru.)	13		
	2.8	Zadanie II.8 (Wykresy składowych głównych.)	14		
	2.9	Zadanie II.9 (Dyskryminacja.)	16		
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			

1 Część pierwsza

Opis problemu

W tej części projektu wykonujemy analizę PCA dla rzeczywistych danych dot. nowotworu gruczołu sutkowego, posługując się napisanymi przez siebie funkcjami (w oparciu o działania na wektorach i macierzach) w środowisku R. Nie skorzystamy z żadnych dedykowanych pakietów do analizy PCA.

1.1 Zadanie I.1 (Wczytanie danych.)

Polecenie

Wczytać dane z pliku danePCA.csv. Sprawdzić poprawność wczytanych wartości pod kątem liczby obserwacji, liczby zmiennych i typów zmiennych (polecenia he-ad(), dim(), str()).

W dalszej części mówiąc o danych mamy na myśli wartości zmiennych 3-32 opisujących charakterystyki komórek.

Zapisać jako zmienną \mathbf{X} macierz danych o wymiarze (569 \times 30).

Realizacja

Dane wczytano do programu. Ustalono, że zbiór składa się 569 obserwacji i 32 cech. Usunięto pierwsze dwie zmienne: id typu całkowitoliczbowego oraz diagnosis typu znakowego. Dane oznaczono jako X.

1.2 Zadanie I.2 (Przygotowanie danych i statystyki opisowe.)

Polecenie

Wyznaczyć wektor wartości średnich oraz macierz kowariancji dla macierzy danych X.

Wystandaryzować dane (centrowanie i skalowanie). Zapisać wystandaryzowane dane jako zmienną Y. Wyznaczyć wektor wartości średnich oraz macierz kowariancji (S_Y) dla Y.

Realizacja

Za pomocą funkcji: cov_matrix , $standard_deviation$ oraz standardization dokonano przekształceń. Wyznaczono wektor wartości średnich oraz macierz kowariancji dla X. Dane X zostały wystandaryzowane (ozn. Y). Utworzono macierz kowariancji na podstawie Y. Macierz kowariancji dla Y jest symetryczna i zawiera na przekątnej wartości 1.

1.3 Zadanie I.3 (Spektralna dekompozycja S_Y)

Polecenie

Wyznaczyć wartości własne i wektory własne macierzy kowariancji $\mathbf{S}_{\mathbf{Y}}$. Zapisać je jako zmienne eval i evec odpowiednio.

Realizacja

Za pomocą wbudowanej funkcji podstawowej eigen wyznaczono wartości i wektory własne dla \mathbf{Y} .

1.4 Zadanie I.4 (Analiza dekompozycji.)

Polecenie

Nasze składowe są posortowane względem malejącej wariancji – ponieważ nasze dane były wystandaryzowane, to wariancja i-tej składowej równa jest odpowiedniej wartości własnej λ_i . Przedstawić wypełnioną tabelę z rys.X.

	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9	
wariancja	•			•			•			•
proporcja wariancji (τ_i)										
skumulowana proporcja										•

Rysunek 1: Docelowa tabela

Realizacja

W poniższej tabeli umieszczono wyniki wariancji (utożsamianej z wartościami własnymi), proporcję wariancji i skumulowaną proporcję. Można zauważyć, że pierwsza składowa główna wyjaśnia 44,27% wariancji, a trzy pierwsze składowe główne 72,64%.

	PC1	PC2	PC3	PC4	PC5	PC6
wariancja	1.328161e+01	5.691355e+00	2.817949e+00	1.980640e+00	1.648731e+00	1.207357e+00
proporcja wariancji	4.427203e-01	1.897118e-01	9.393163e-02	6.602135e-02	5.495768e-02	4.024522e-02
skumulowana proporcja	0.4427203	0.6324321	0.7263637	0.7923851	0.8473427	0.8875880
	PC7	PC8	PC9	PC10	PC11	PC12
wariancja	6.752201e-01	4.766171e-01	4.168948e-01	3.506935e-01	2.939157e-01	2.611614e-01
proporcja wariancji	2.250734e-02	1.588724e-02	1.389649e-02	1.168978e-02	9.797190e-03	8.705379e-03
skumulowana proporcja	0.9100953	0.9259825	0.9398790	0.9515688	0.9613660	0.9700714
	PC13	PC14	PC15	PC16	PC17	PC18
wariancja	2.413575e-01	1.570097e-01	9.413497e-02	7.986280e-02	5.939904e-02	5.261878e-02
proporcja wariancji	8.045250e-03	5.233657e-03	3.137832e-03	2.662093e-03	1.979968e-03	1.753959e-03
skumulowana proporcja	0.9781166	0.9833503	0.9864881	0.9891502	0.9911302	0.9928841
	PC19	PC20	PC21	PC22	PC23	PC24
wariancja	4.947759e-02	3.115940e-02	2.997289e-02	2.743940e-02	2.434084e-02	1.805501e-02
proporcja wariancji	1.649253e-03	1.038647e-03	9.990965e-04	9.146468e-04	8.113613e-04	6.018336e-04
skumulowana proporcja	0.9945334	0.9955720	0.9965711	0.9974858	0.9982971	0.9988990
	PC25	PC26	PC27	PC28	PC29	PC30
wariancja	1.548127e-02	8.177640e-03	6.900464e-03	1.589338e-03	7.488031e-04	1.330448e-04
proporcja wariancji	5.160424e-04	2.725880e-04	2.300155e-04	5.297793e-05	2.496010e-05	4.434827e-06
skumulowana proporcja	0.9994150	0.9996876	0.9999176	0.9999706	0.9999956	1.0000000

1.5 Zadanie I.5 (Interpretacja składowych głównych.)

Polecenie

Zauważmy, że najbardziej informatywną kombinacją liniową zmiennych jest ta zadana przez pierwszy wektor własny (odpowiadający największej wartości własnej). Zapisz w postaci liniowej kombinacji wycentrowanych zmiennych $y_1, ..., y_{30}$ pierwszą i drugą składową główną z_1, z_2 . Czy potrafisz opisać / wytłumaczyć w praktyce co opisuje zmienna z_1 , a co z_2 ?

Przedstawić na wykresie zdolność kolejnych składowych głównych do wyjaśniania zmienności w danych. W tym celu wykreślić wykres osypiska (ang. scree plot) opisujący wyjaśnianą wariancję – względnie lub bezwzględnie.

Realizacja

Dla z_1 przyjmujemy za współczynniki elementy wektora własnego dla odpowiednich zmiennych

```
\begin{split} z_1 = & 0.2189 \cdot y_1 - 0.1037 \cdot y_2 - 0.2275 \cdot y_3 - 0.2210 \cdot y_4 - 0.1426 \cdot y_5 + \\ & - 0.2393 \cdot y_6 - 0.2584 \cdot y_7 - 0.2609 \cdot y_8 - 0.1382 \cdot y_9 - 0.0644 \cdot y_{10} + \\ & - 0.2060 \cdot y_{11} - 0.01742 \cdot y_{12} - 0.2113 \cdot y_{13} - 0.2029 \cdot y_{14} - 0.2029 \cdot y_{15} + \\ & - 0.1704 \cdot y_{16} - 0.1536 \cdot y_{17} - 0.1834 \cdot y_{18} - 0.04250 \cdot y_{19} - 0.1026 \cdot y_{20} + \\ & - 0.2280 \cdot y_{21} - 0.1044 \cdot y_{22} - 0.2366 \cdot y_{23} - 0.2259 \cdot y_{24} - 0.1280 \cdot y_{25} + \\ & - 0.2101 \cdot y_{26} - 0.2288 \cdot y_{27} - 0.2509 \cdot y_{28} - 0.1229 \cdot y_{29} - 0.1318 \cdot y_{30}. \end{split}
```

Można stwierdzić, że im mniejsza wartość danego współczynnika, tym mniejsza jest istotność cechy, której odpowiada.

Formuła na składową druga:

```
\begin{split} z_2 &= -0.2339 \cdot y_1 - 0.0597 \cdot y_2 - 0.2152 \cdot y_3 - 0.2311 \cdot y_4 + 0.1861 \cdot y_5 + \\ &-0.1519 \cdot y_6 - 0.0602 \cdot y_7 - 0.0358 \cdot y_8 + 0.1903 \cdot y_9 + 0.3666 \cdot y_{10} + \\ &-0.1056 \cdot y_{11} + 0.0900 \cdot y_{12} - 0.0895 \cdot y_{13} - 0.1523 \cdot y_{14} + 0.2044 \cdot y_{15} + \\ &+0.2327 \cdot y_{16} + 0.1972 \cdot y_{17} + 0.1303 \cdot y_{18} + 0.1838 \cdot y_{19} + 0.2801 \cdot y_{20} + \\ &-0.2199 \cdot y_{21} - 0.0455 \cdot y_{22} - 0.1999 \cdot y_{23} - 0.2194 \cdot y_{24} + 0.1723 \cdot y_{25} + \\ &+0.1436 \cdot y_{26} + 0.0980 \cdot y_{27} - 0.0083 \cdot y_{28} + 0.1419 \cdot y_{29} + 0.2753 \cdot y_{30}. \end{split}
```

 ${\it Na}$ rys. 2 i rys. 3 przedstawiono wykresy osypiska opisujące wariancję względnie i bezwzględnie.

Rysunek 2: Wykres osypiska opisujący wariancję.

Rysunek 3: Wykres osypiska opisujący wyjaśnianą wariancję.

Składowe o wartości wariancji mniejszej od 1 mają mniejszą wariancję niż oryginalne dane.

1.6 Zadanie I.6 (Korelacja pomiędzy zmiennymi a składowymi głównymi.)

Polecenie

Rozważmy korelację pomiędzy wektorem składowych głównych ${\bf Z}$ i oryginalnym, wystandaryzowanym wektorem ${\bf Y}$. Korelacje r_{Y_i,Z_j} mogą być wykorzystane do określenia związku pomiędzy składową główną Z_j i oryginalną zmienną X_i . Zauważmy, że $\sum_{j=1}^p r_{Y_i,Z_j}^2 = 1$, dla każdego i. Stąd r_{Y_i,Z_j}^2 mogą być traktowane jako proporcja wariancji Y_i wyjaśniana przez Z_j . Wykreślić powyższe proporcje w przestrzeni pierwszych dwóch składowych głównych.

Realizacja

Na rys. 4 przedstawiono wykres proporcji w przestrzeni pierwszych dwóch składowych głównych.

Rysunek 4: Wykres proporcji w przestrzeni PC1 i PC2.

Im zmienne leżą bliżej okręgu, tym są lepiej wyjaśniane przez składowe PC1 i PC2, oznacza to również, że są z nimi najsilniej skorelowane. Z rys. 4 można odczytać te zmienne, są to np. Y_{24}, Y_{23} .

1.7 Zadanie I.7 (Wybór składowych głównych w celu redukcji wymiaru.)

Polecenie

Wybrać na podstawie wykresu osypiska składowe główne, dla których wariancja jest większa od 1. Wykreślić wykres skumulowanej proporcji i określić wartość wyjaśnianej wariancji przez te składowe główne.

Realizacja

Na rys. 5 przedstawiono wykres skumulowanej proporcji.

Rysunek 5: Wykres skumulowanej proporcji.

Znormalizowane składowe główne, dla których wariancja jest mniejsza niż 1 w praktyce wyjaśniają mniejszą część wariancji niż oryginalne zmienne (ich wariancja wynosiła 1). Zauważamy, że po składowej 6 wykres zaczyna się spłaszczać, czyli maleje wzrost wyjaśnialności składowych. Zatem w wyniki kompromisu pomiędzy wyjaśnialnością, a liczbą zmiennych nie powinno się uwzględniać więcej czynników, niż te znajdujące się do 6 punktu. Zatem moglibyśmy użyć tylko sześciu zmiennych do opisu danych. Zysk naszej analizy to redukcja aż 24 wymiarów. W kontekście wyłącznie analizy PCA surowe dane ${\bf X}$ nie są już potrzebne, jednakże PCA służy lepszemu poglądowi na dane, zatem w szerszym kontekście dalszych analiz (np. tworzenia modeli itp.) surowe dane są jak najbardziej potrzebne.

1.8 Zadanie I.8 (Wykresy składowych głównych.)

Polecenie

Przedstaw jednowymiarową, dwuwymiarową i trójwymiarową projekcje na PC1, PC2, PC3.

Realizacja

Na poniższych rysunkach przedstawiono kolejno: jednowymiarową projekcję, dwuwymiarową projekcję i trójwymiarową projekcję.

Rysunek 6: Jednowymiarowa projekcja.

Rysunek 7: Dwuwymiarowa projekcja.

Rysunek 8: Trójwymiarowa projekcja.

Można zaobserwować, że dane są skupione w jednej części wykresu. Możemy również zaobserwować, że istnieją obserwacje odstające.

1.9 Zadanie I.9 (Dyskryminacja.)

Polecenie

Załóżmy, że nasza analiza ma posłużyć wskazaniu / wytłumaczeniu / opisaniu różnic pomiędzy złośliwym a łagodnym guzem. Dodaj zmienną odpowiedzi (diagnosis) do wykresów i zinterpretuj je.

Przedstaw projekcję na PC1 i PC2 obserwacji w podziale na złośliwy / łagodny. Wyznacz środki obu zbiorów i zaznacz (wyznacz elipsy) zbiory zawierające najbardziej typowe 95% obserwacji z każdego z podzbiorów.

Realizacja

Dokonano podziału na obserwacje złośliwe (czerwone) i łagodne (czarne) oraz wyznaczono elipsy określające te dwa podziały. Wyniki umieszczono na rys. 9.

Rysunek 9: Podział na nowotwory łagodne i złośliwe.

Możemy zauważyć, że obserwacje układają się w dwóch obszarach. Obserwacje złośliwe są bardziej rozproszone (stąd większe pole elipsy) niż łagodne, które charakteryzują się większym zagęszczeniem obserwacji. Można również postawić zasadną hipotezę, że punkty znajdujące się w dużej odległości od elipsy to obserwacje odstające (lub w pewien sposób błędne).

2 Część druga

Opis problemu

W tej części posłużymy się gotowym pakietem statystycznym wbudowanym w R, aby powtórzyć tą samą analizę co w części pierwszej.

Nie będziemy analizować wyników, a jedynie porównamy je z tymi uzyskanymi w części pierwszej.

2.1 Zadanie II.1 (Wczytanie danych.)

Realizacja

Identycznie jak w 1.1, zmieniono jedynie nazwy zmiennych.

2.2 Zadanie II.2 (Przygotowanie danych i statystyki opisowe.)

Realizacja

Skorzystano z wbudowanych funkcji *colMeans, cov* oraz *prcomp*. Uzyskane wyniki w przybliżeniu pokrywają się z uzyskanymi 1.2. Funkcja *prcomp* przyjmuje jako argumenty dane, a także argumenty boolowskie pozwalające na standaryzację i centrowanie zmiennych.

2.3 Zadanie II.3 (Spektralna dekompozycja S_Y)

Realizacja

Identycznie jak w 1.3.

2.4 Zadanie II.4 (Analiza dekompozycji.)

Realizacja

Skorzystano z funkcji get_eigenvalue. Uzyskane wyniki w przybliżeniu są takie same jak te uzyskane w 1.4. Funkcja get_eigenvalue przyjmuje za argument wynik działania funkcji prcomp i zwraca wartość własną (wariancję), procent proporcji wariancji oraz procent skumulowanej proporcji.

2.5 Zadanie II.5 (Interpretacja składowych głównych.)

Realizacja

Na podstawie wyników funkcji z 2.4 widać, że wyniki są identyczne do tych z 1.5. Na poniższych rysunkach umieszczono wykresy osuwiska utworzone za pomocą funkcji $fviz_eig$.

Rysunek 10: Wykres osypiska opisujący wariancję.

Rysunek 11: Wykres osypiska opisujący procent wyjaśnianej wariancji.

Porównując z wykresami z 1.5 można stwierdzić, że wyniki są bardzo zbliżone. Funkcja *fviz_eig* przyjmuje za argument wynik PCA oraz typ wykresu. Można uzyskać wykres osypiska opisujący wariancję albo wykres osypiska opisujący procent wyjaśnianej wariancji.

2.6 Zadanie II.6 (Korelacja pomiędzy zmiennymi a składowymi głównymi.)

Realizacja

Posłużono się funkcją $fviz_pca_var$, której wynik umieszczono na poniższym rysunku. Jak widać, porównując z 1.6 punkty są odbite względem osi Dim2, poza tym

Rysunek 12: Wykres proporcji w przestrzeni PC1 i PC2.

umiejscowienie jest identyczne. Dodatkowo na osiach widać procent wyjaśnialności. Funkcja fviz_pca_var tworzy wykres proporcji w przestrzeni PC1 i PC2.

2.7 Zadanie II.7 (Wybór składowych głównych w celu redukcji wymiaru.)

Realizacja

Skorzystano z tego samego kodu co w 1.7, zmieniając jedynie zmienną na tę z 2.2.

Rysunek 13: Wykres skumulowanej proporcji.

Wykres jest identyczny jak w 1.7.

2.8 Zadanie II.8 (Wykresy składowych głównych.)

Realizacja

Identyczny kod jak w 1.8 z danymi z 2.2. Wartość PC2 wzięto z minusem w celu uzyskania identycznych wyników.

Rysunek 14: Jednowymiarowa projekcja.

Rysunek 15: Dwuwymiarowa projekcja.

Rysunek 16: Trójwymiarowa projekcja.

Wykresy są identyczne jak 1.8.

2.9 Zadanie II.9 (Dyskryminacja.)

Realizacja

Korzystając z funkcji fviz_pca_ind wykreślono elipsy z rys. 17

Rysunek 17: Podział na nowotwory łagodne i złośliwe.

Rozbieżność z 1.9 wynika z przeciwnych znaków dla PC2.

Rysunek 18: Skorygowany podział na nowotwory łagodne i złośliwe.

2.10 Wniosek

Porównując wyniki wyprowadzone w cz. II można wnioskować, że poprawnie dokonano analizy w cz. I. Mnożąc PC2 przez -1 otrzymano wyniki identyczne.