8.2 מבחני השוואה להתכנסות והתכנסות בהחלט

הגדרות

התכנסות בהחלט

 $a < N \in \mathbb{R}$ לכל [a,N] אינטגרבילית בקטע $f: [a,\infty) o \mathbb{R}$ ותהי $a \in \mathbb{R}$

. נאמר שהאינטגרל הלא אמיתי $\int\limits_{a}^{\infty}\left|f\left(x\right)\right|dx$ מתכנס בהחלט אם"ם האינטגרל הלא אמיתי $\int\limits_{a}^{\infty}f\left(x\right)dx$ מתכנס

באותה מידה נטען על $g:[a,\infty)$ כאשר $g:[a,\infty)$ אינטגרל לא אמיתי מהסוג השני $g:[a,\infty)$

משפטים

1. מבחן ההשוואה לאינטגרלים לא אמיתיים

 $a < N \in \mathbb{R}$ יהיו $f,g:[a,\infty) o f$ אינטגרביליות ב $f,g:[a,\infty) o \mathbb{R}$ יהיו $\forall x \geq c$ פניח שקיים $c \in [a,\infty)$ שמקיים נניח שקיים

$$\int\limits_{c}^{\infty}f\left(x
ight)dx\leq\int\limits_{c}^{\infty}g\left(x
ight)dx$$
 אם $\int\limits_{a}^{\infty}f\left(x
ight)dx$ מתכנס, $\int\limits_{a}^{\infty}f\left(x
ight)dx$ מתכנס, 1

. אם $\int\limits_{a}^{\infty}f\left(x
ight)dx$ מתבדר גם הוא. $\int\limits_{a}^{\infty}f\left(x
ight)dx$ אם .2

כלומר $\int\limits_{a}^{\infty}g\left(x
ight) dx,\int\limits_{a}^{\infty}f\left(x
ight) dx$ כלומר

לכל $[a,b-\delta]$ אינטגרביליות בf,gו $f,g:[a,b) o\mathbb{R},\,a< b\in\mathbb{R},c\in f,g:[a,b) o\mathbb{R}$ אינטגרביליות ב $[a,b-\delta]$ אינטגרביליות ב $[a,b-\delta]$ לכל $[a,b-\delta]$ אינטגרביליות ב $[a,b-\delta]$ לכל $[a,b-\delta]$ אינטגרביליות ב $[a,b-\delta]$ לכל $[a,b-\delta]$

הוכחה נשים לב שהפונקציה הצוברת $ilde{F}$ מונוטונית עולה לכל $x\in[c,\infty)$ מאי שליליות האינטגרל, ובאופן דומה גם הפונקציה הצוברת $ilde{G}$, אזי הגבולות $x\in[c,\infty)$ חסומות מלעיל ב $x\in[c,\infty)$

2. קריטריון קושי לאינטגרלים לא אמיתיים

 $a< N\in\mathbb{R}$ יהי $a\in\mathbb{R}$ ותהי $a\in\mathbb{R}$ אינטגרבילית בקטע $a\in\mathbb{R}$ יהי $a\in\mathbb{R}$ ותהי $a\in\mathbb{R}$ אינטגרבילית בקטע $\left|\int\limits_{b}^{b_2}f\left(x\right)dx\right|<arepsilon$ מתכנס אם"ם $\left|\int\limits_{a}^{\infty}f\left(x\right)dx\right|<arepsilon$ מתכנס אם $\left|\int\limits_{a}^{\infty}f\left(x\right)dx\right|$

 $. ilde{F}$ הוכחה $\,$ תקציר: נפעיל את קריטריון קושי להתכנסות פונקציות על הפונקציה הצוברת

מתכנס אם "ם $\int\limits_a^\infty f\left(x\right)dx$, אזי מהגדרת האינטגרל הלא אמיתי, קיימת ל- $ilde{F}$ מתכנס אם היסודי של החשבון האינטגרלי, קיימת ל- $ilde{F}$ הפונקציה הצוברת האינטגרל הלא אמיתי, $\lim\limits_{N o\infty} ilde{F}\left(N\right)$

 $\left| ilde{F}\left(b_{2}
ight)- ilde{F}\left(b_{1}
ight)
ight|<arepsilon$ מתקיים $b_{1},b_{2}>B$ שלכל $B\in\mathbb{R}$ קיים arepsilon>0 קיים מתכנסות פונקציות, $ilde{F}$ מתכנסת אם לכל פי קריטריון קושי להתכנסות פונקציות,

נשים לב שמתקיים
$$\left| ilde{F}\left(b_{2}
ight) - ilde{F}\left(b_{1}
ight)
ight| = \left| \int\limits_{a}^{b_{2}} f\left(x
ight) dx - \int\limits_{a}^{b_{1}} f\left(x
ight) dx
ight| = \left| \int\limits_{b_{1}}^{b_{2}} f\left(x
ight) dx
ight|$$
 כנדרש

3. התכנסות בהחלט⇒ התכנסות

 $f:[a,\infty) o\mathbb{R}$ ותהי $a\in\mathbb{R}$ ותהי הי הי הי הי הי הי הי האינטגרל הלא אמיתי $\int\limits_a^\infty f\left(x\right)dx$ מתכנס בהחלט, האינטגרל הלא אמיתי

הוכחה

- 1. דרך ארוכה:
- $\forall x \in [a, \infty)$ $f_{-}(x) = -\min\{f(x), 0\}, f^{+}(x) = \max\{f(x), 0\}$ נגדיר •
- $(i)\ f^+,f_-\geq 0,\quad (ii)\ f=f^+-f_-,\quad (iii)\ |f|=f^++f_-,\quad (iv)\ f_-,f^+\leq |f|$ מתקיים
 - נקבל מ(iv), (iv) ש f^+ , f_- אינטגרביליות ב $[a,\infty)$ ולכן מתקיים

$$\int_{a}^{\infty} f(x) dx \stackrel{(ii)}{=} \int_{a}^{\infty} f^{+}(x) dx - \int_{a}^{\infty} f_{-}(x) dx \stackrel{(i)}{\leq} \int_{a}^{\infty} f^{+}(x) dx + \int_{a}^{\infty} f_{-}(x) dx \stackrel{(iii)}{=} \int_{a}^{\infty} |f(x)| dx$$

 $\left|\int\limits_{a}^{\infty}f\left(x
ight)dx
ight|\leq 1$ נפעיל את קריטריון קושי לאינטגרלים לא אמיתיים על אמיתיים על , $\int\limits_{a}^{\infty}\left|f\left(x
ight)
ight|dx$ ובהינתן , ובהינתן 2. $\left| \int_{0}^{\infty} |f(x)| \, dx \right| < \varepsilon$

 $\int\limits_{-\infty}^{\infty} rac{f(x)}{x^p} dx$ התכנסות.4

 $1< N\in\mathbb{R}$ תהי $f:[1,\infty)\to \mathbb{R}$ אינטגרבילית בקטע $f:[1,\infty)\to \mathbb{R}$ תהי p>0 אם $\int\limits_1^\infty \frac{f(x)}{x^p}dx$ אמיתי האינטגרל הלא אמיתי הומה ב

ההשוואה M,p>0 לכל לכל M,p>0 קיים M,p>0 לכל לכל M,p>0, והרי ל $x\in [1,\infty)$ הוכחה ל $x\in [1,\infty)$ ההשוואה לכן ממבחן ממבחן ההשוואה לערכו ממבחן החשוואה הוכחה מתכנס בהחלט ולכן מתכנס מתכנס $\int\limits_{-\infty}^{\infty} rac{f(x)}{x^p} dx$