Под редакцией Ф.Ф. Лысенко, С.Ю. Кулабухова

МАТЕМАТИКА

СЕЧЕНИЯ МНОГОГРАННИКОВ

ДБГИОН ЛЕГИОН ПРОФИЛЬНЫЙ УРОВЕНЬ

Учебно-методический комплекс «Математика. Подготовка к ЕГЭ»

Под редакцией Ф. Ф. Лысенко, С. Ю. Кулабухова

МАТЕМАТИКА

ЕГЭ

СЕЧЕНИЯ МНОГОГРАННИКОВ ПРОФИЛЬНЫЙ УРОВЕНЬ

Учебно-методическое пособие

∫ ′ ′ ′ ЛЕГИОН Ростов-на-Дону 2016 ББК 22.1 Р 34

Рецензент:

С.Ю. Кулабухов — кандидат физико-математических наук.

Резникова Н.М., Фридман Е.М.

Р 34 Математика. ЕГЭ. Профильный уровень. Сечения многогранников: учебно-методическое пособие / Н.М. Резникова, Е.М. Фридман; под редакцией Ф. Ф. Лысенко, С. Ю. Кулабухова. — Ростов-на-Дону: Легион, 2016. — 64 с. — (ЕГЭ).

ISBN 978-5-9966-0922-2

Задачи, связанные с сечениями многогранников, занимают важное место в контрольно-измерительных материалах ЕГЭ по математике. При этом в учебных программах школьного курса по геометрии отводится крайне мало часов на изучение этой темы, в связи с чем учебники содержат недостаточное количество задач. Предлагаемое пособие призвано разрешить это противоречие.

В начале пособия приведены краткие теоретические сведения. В первых двух разделах содержатся подготовительные задачи: в заданиях первого раздела необходимо в многограннике построить точку пересечения прямой и плоскости, провести отрезок, по которому плоскость сечения пересекает грань многогранника, и т.д. Во втором разделе представлены задания на построение сечений многогранника (призмы, пирамиды). В третьем — задачи, соответствующие заданию 14 профильного уровня ЕГЭ по математике.

Предлагаемое пособие будет полезно учащимся, самостоятельно осваивающим тему «Построение сечений многогранников», а также учителям математики, которые найдут в нём большое количество заданий, что послужит хорошим подспорьем в процессе изучения данной темы по действующим учебникам.

Оглавление

От авторов	4
Краткие теоретические сведения	5
Раздел I. Подготовительные задачи	7
Раздел II. Построение сечений многогранников	20
Раздел III. Задачи уровня ЕГЭ	45
Ответы к подготовительным задачам	61

От авторов

Пособие является частью комплекса «Математика. Подготовка к ЕГЭ» и предназначено для помощи в подготовке к государственной итоговой аттестации в форме ЕГЭ по математике. Книга содержит краткие теоретические сведения, которые помогут учащимся восстановить в памяти необходимый материал для решения всех задач данного пособия. В процессе решения заданий первого раздела пособия в различных видах многогранников учащиеся научатся строить точку пересечения прямой и плоскости, проводить отрезок, по которому плоскость сечения пересекает грань многогранника, и т.д.

Задания второго раздела — это задачи на построение сечений многогранников по трём заданным точкам или по точке (прямой) и дополнительному условию. Здесь представлены как задачи с полным, так и с частичным решением, а также задачи для самостоятельного решения.

Задания третьего раздела соответствуют уровню задания 14 ЕГЭ по математике.

Все предложенные в книге задания снабжены ответами, прилагаемыми в конце пособия.

Замечания и предложения, касающиеся данной книги, можно прислать почтой или на электронный адрес legionrus@legionrus.com. Предлагаем также обсудить пособие на форуме издательства http://f.legionr.ru.

Краткие теоретические сведения

Сечение многогранника — некоторый многоугольник. Вершины этого многоугольника находятся как точки пересечения рёбер многогранника с секущей плоскостью, а стороны многоугольника строятся как линии пересечения граней многогранника с секущей плоскостью.

Таким образом, сечение многогранника — это многоугольник, вершины которого принадлежат рёбрам, а стороны — граням многогранника, при этом две соседние вершины принадлежат одной грани.

Так, MK и KN — стороны многоугольника, который является сечением прямоугольного параллелепипеда $ABCDA_1B_1C_1D_1$ плоскостью MNK (см. рис.1). Действительно, точки M и K лежат и в грани AA_1B_1B , и в плоскости сечения MNK, поэтому MK является линией пересечения этих плоскостей, KN — линией пересечения плоскости сечения KMN с гранью $A_1B_1C_1D_1$ параллелепипеда.

Отрезок MN не является стороной многоугольника, являющегося сечением прямоугольного параллелепипеда $ABCDA_1B_1C_1D_1$ плоскостью MNK, так как отрезок MN не принадлежит ни одной грани параллелепипеда.

Построение сечений многогранника основано на нескольких утверждениях.

I. Аксиомы стереометрии.

- А 1. Через любые три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна.
- А 2. Если две точки прямой лежат в плоскости, то все точки данной прямой лежат в этой плоскости.
- А 3. Если две плоскости имеют общую точку, то они имеют общую прямую, которой принадлежат все общие точки этих плоскостей.

Аксиомы планиметрии.

А 4. В любой плоскости пространства выполняются все аксиомы планиметрии.

II. Теоремы.

- **Т1.** Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны.
- **Т2.** Если плоскость проходит через прямую, параллельную другой плоскости, и пересекает её, то линия пересечения параллельна этой прямой.

В формулировках задач сечение может быть задано по-разному: тремя точками, не лежащими на одной прямой; точкой и прямой или иначе.

Раздел I

Подготовительные задачи

Задача № 1. В кубе $ABCDA_1B_1C_1D_1\ M\in DC, N\in CC_1$.

Выполните задания:

а) Укажите грань куба, в которой лежит отрезок MN.

Ответ: _____

б) Укажите грань куба, параллельную отрезку MN.

Ответ: _____

Задача № 2. В кубе $ABCDA_1B_1C_1D_1$ на ребрах DC, CC_1 , BB_1 взяты соответственно точки M, N, K так, что M и N — середины ребер DC и CC_1 , $B_1K:KB=1:2$.

a)	Укажите	грань,	параллельную	грани	DD_1C_1C .
----	---------	--------	--------------	-------	--------------

Ответ:	_

б) Через точку K проведите прямую KT, параллельную отрезку MN. Укажите грань, в плоскости которой лежит эта прямая.

Ответ: _____

в) Укажите ребро куба (отличное от ребра BB_1), которое пересекает прямая KT

Ответ: _____

Задача № 3. Внутри грани SBC треугольной пирамиды SABC взята точка D.

Через точку D проведите:

- а) отрезок с концами на рёбрах пирамиды, параллельный ребру ВС;
- б) отрезок с концами на рёбрах пирамиды, параллельный ребру SC;
- в) отрезок с концами на рёбрах пирамиды, параллельный ребру SB.

Задача № 4. Через точку D, лежащую на ребре AS тетраэдра SABC,

постройте:

- а) сечение, параллельное основанию АВС;
- б) сечение, параллельное грани SBC;
- в) сечение, перпендикулярное основанию АВС.

Задача N2 5. Постройте линию пересечения грани ASC пирамиды SABC плоскостью, проходящей через точки B, M и N, где точки M и N принадлежат, соответственно, граням ABS и BCS (M и N не лежат на рёбрах пирамиды) (см. рис. 6).

Задача № 6. Сечение пирамиды SABC проходит через точки M, N, K (см. рис. 7).

Рис. 7.

Выполните задания, вставив на подчёркнутые места в представленном решении нужные точки, линии или плоскости. Постройте:

- а) линию пересечения плоскости ASB и плоскости MNK;
- б) точку пересечения прямой MK и плоскости ABC;
- в) линию пересечения грани ABC с плоскостью MNK;
- г) линию пересечения грани ASC с плоскостью MNK.

Решение.

а) Точки _____ и _____ лежат в каждой из плоскостей ASB и MNK, следовательно, _____ — линия пересечения плоскости ASB и плоскости MNK (см. рис. 8).

Рис. 8.

б) Прямые MK и BC лежат в плоскости BSC и не параллельны, следовательно, точка пересечения этих прямых — точка T — принадлежит прямой BC, а значит, и плоскости _____ (см. рис. 9).

Рис. 9.

в) Точка T принадлежит плоскости сечения MNK, т. к. ______. Точки _____ и _____ лежат одновременно в плоскости ABC и плоскости сечения, следовательно, прямая — _____ — линия пересечения плоскости ABC с плоскостью MNK (см. рис. 10).

Рис. 10.

Прямая NT пересекает ребро AB в точке P, поэтому _____ — линия пересечения грани ABC с плоскостью MNK (см. рис. 11).

Рис. 11.

г) Точки ______ и ____ лежат в плоскости сечения и в грани _____, следовательно, отрезок _____ является линией пересечения грани ASC с плоскостью MNK (см. рис. 12).

Рис. 12.

Задача N2 7. SABC — пирамида, точка M лежит в грани ASB, K — в грани SBC, $N \in SD$, как показано на рисунке 13. Постройте линию пересечения плоскости MNK с плоскостью ABC.

Решение.

Шаг 1. С помощью центрального проектирования с центром в точке \mathbf{M} , \mathbf{M} на \mathbf{M} проекции точек \mathbf{M} , \mathbf{N} и \mathbf{K} на плоскость \mathbf{ABC} (см. рис. 13).

Рис. 13.

Проекция точки M — точка пересечения _____ и ____, обозначим её буквой L, проекция точки K лежит на ребре _____, обозначим её буквой F, _____ — проекция точки N.

Шаг 2. Построим точки пересечения прямых MN и NK с плоскостью ABC (см. рис. 14).

Рис. 14.

Для этого построим сначала точку T пересечения прямой MN и её проекции ______, затем — точку P — точку пересечения прямой NK и её проекции ______.

Шаг 3. Проведём прямую _____, эта прямая лежит и в плоскости ABC и в плоскости MNK, следовательно, является их линией пересечения (см. рис. 15).

Рис. 15.

Решите задачи

Задача № 8. Является ли треугольник MNK сечением призмы $ABCDA_1B_1C_1D_1$ плоскостью MNK (см. рис. 16)?

Рис. 16.

Задача № 9. В правильной треугольной призме $ABCA_1B_1C_1$ стороны основания равны 6, а боковые рёбра равны 4. Постройте отрезок, по которому пересекаются грань $A_1B_1C_1$ и плоскость, проходящая через вершины A, B и середину ребра A_1C_1 . Найдите длину этого отрезка.

Задача № 10. Через середины рёбер *AB* и *BC* тетраэдра *SABC* проведена плоскость, параллельная ребру *SB*. Выберите (и обоснуйте) верное утверждение:

- 1) линии пересечения граней SAB и SBC этой плоскостью параллельны;
- 2) линии пересечения граней SAB и SBC этой плоскостью не параллельны.

Задача № 11. $ABCA_1B_1C_1$ — треугольная призма, точка M лежит на луче AB (AB < AM), $N \in AC$ (см. рис. 17).

Рис. 17.

Постройте:

- а) линию пересечения грани AA_1B_1B и плоскости A_1MN ;
- б) линию пересечения грани BB_1C_1C и плоскости A_1MN .

Задача № 12. Постройте линию пересечения плоскости MNK с плоскостью ABC (см. рис. 18).

Задача № 13. Постройте линию пересечения плоскости MNK с плоскостью ABC (см. рис. 19).

Рис. 19.

Задача № 14. Ребро куба $ABCDA_1B_1C_1D_1$ равно 4. На ребре AA_1 взята точка M так, что $AM:MA_1=1:3$.

- а) Постройте точку пересечения прямой B_1M и плоскости ABC и вычислите расстояние от этой точки до точки A;
- б) Найдите расстояние между точками пересечения прямых $B_1 M$ и $D_1 M$ с плоскостью ABC.

Задача № 15. Точки M и N — середины рёбер AB и AD куба $ABCDA_1B_1C_1D_1$.

- а) Постройте сечение куба, перпендикулярное плоскости ABC и проходящее через прямую MN;
- б) Постройте сечение куба, перпендикулярное отрезку MN и проходящее через его середину.

Задача № 16. В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ сторона основания равна 11, а боковое ребро $AA_1=6$. Точка К принадлежит ребру B_1C_1 и делит его в отношении 8:3, считая от вершины B_1 . Постройте отрезок, по которому пересекаются грань CC_1D_1D и плоскость BDK. Найдите длину этого отрезка.

Задача № 17. В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известны рёбра: AB=4, AD=2, $AA_1=5$. Точка О принадлежит ребру BB_1 и делит его в отношении 3:2, считая от вершины B.

- а) Постройте отрезок, по которому пересекаются грань CC_1D_1D параллелепипеда и плоскость AOC_1 . Найдите длину этого отрезка.
- 6) Постройте сечение прямоугольного параллелепипеда $ABCDA_1B_1C_1D_1$ плоскостью AOC.
 - в) Выберите верное утверждение и обоснуйте его:
 - 1) построенное сечение прямоугольник;
 - 2) построенное сечение ромб;
 - построенное сечение параллелограмм;
 - 4) построенное сечение треугольник.

Задача № 18. В кубе $ABCDA_1B_1C_1D_1$ постройте сечение AB_1C и определите его вид (см. рис. 20).

Задача № 19. В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известно, что $AA_1=8$, AD=6, AB=3, точки M и N — соответственно середины рёбер AA_1 и AD, $K\in B_1C_1$, $B_1K:KC_1=2:1$ (см. рис. 21).

Рис. 21.

- а) Проведите отрезок MN и укажите грань, в которой лежит отрезок MN.
- б) Назовите линию пересечения грани AA_1D_1D параллелепипеда $ABCDA_1B_1C_1D_1$ и секущей плоскости MNK.

- в) Назовите грань параллелепипеда, параллельную грани AA_1D_1D .
- г) Проведите через точку К прямую l, параллельную отрезку MN, укажите ребро куба (отличное от ребра B_1C_1), которое пересекает эта прямая.
- д) Постройте точку L пересечения прямой l и ребра CC_1 . Укажите, в каком отношении точка L делит ребро CC_1 , считая от вершины C.
 - е) Назовите грань параллелепипеда, в которой лежит KL.
- ж) Назовите линию пересечения грани BB_1C_1C параллелепипеда $ABCDA_1B_1C_1D_1$ и секущей плоскости MNK.
 - з) Найдите длину отрезка KL.
- и) Постройте точку R пересечения прямых MN и A_1D_1 . Найдите длину отрезка RA_1 ;
- к) Назовите грани параллелепипеда, в плоскостях которых лежит точка R.
 - л) Постройте точку Т пересечения отрезка RK и ребра A_1B_1 ;
- м) Назовите линию пересечения грани $A_1B_1C_1D_1$ параллелепипеда $ABCDA_1B_1C_1D_1$ и секущей плоскости MNK.
- н) Проведите отрезок MT. Назовите грань параллелепипеда, в которой лежит отрезок MT.
 - о) Назовите грань параллелепипеда, параллельную грани DD_1C_1C .
 - п) Постройте отрезок LP, параллельный отрезку MT.
- р) Постройте отрезок PN. Назовите грань параллелепипеда, в которой лежит отрезок PN.
 - c) Назовите сечение параллелепипеда плоскостью MNK.
- **Задача № 20**. В кубе $ABCDA_1B_1C_1D_1$ постройте сечение, проходящее через рёбра AA_1 и CC_1 .

Раздел II

Построение сечений многогранников

Задача № 1. Постройте сечение прямоугольного параллелепипеда $ABCDA_1B_1C_1D_1$ плоскостью MNK (см. рис. 22).

Решение.

- **Шаг 1**. Точки M и N лежат в плоскости передней грани AA_1D_1D и в плоскости сечения MNK, поэтому прямая MN линия пересечения этих плоскостей (см. рис. 23).
- **Шаг 2**. Прямые MN и A_1D_1 лежат в плоскости AA_1D_1D и пересекаются в точке T, значит, точка T лежит в плоскости сечения.

Шаг 3. Точки T и K лежат и в плоскости сечения MNK, и в плоскости верхней грани $A_1B_1C_1D_1$. Отсюда следует, что TK — линия их пересечения, а F — точка пересечения прямых TK и A_1B_1 (см. рис. 23).

Шаг 4. MF — линия пересечения плоскости сечения и грани AA_1B_1B (см. рис. 24).

Шаг 5. В плоскости ABC через точку N проведём прямую, параллельную FK (см. **T1**). Эта прямая пересекает прямую BC в точке P, CD — в точке L (см. рис. 25).

Шаг 6. Прямая KP — линия пересечения плоскости грани BB_1C_1C и плоскости сечения MNK (см. рис. 26). G — точка пересечения KP и C_1C .

Шаг 7. Отрезок GL — линия пересечения грани DD_1C_1C и плоскости сечения MNK (см. рис. 27).

NMFKGL — сечение прямоугольного параллелепипеда $ABCDA_1B_1C_1D_1$ плоскостью MNK (см. рис. 28).

Рис. 28.

Задача № 2. Постройте сечение прямоугольного параллелепипеда $ABCDA_1B_1C_1D_1$ плоскостью MNK (см. рис. 29).

Решение.

Шаг 1. Точки ______ лежат в плоскости грани $A_1B_1C_1D_1$ и в плоскости сечения, значит, прямая _____ — линия пересечения этих плоскостей (см. рис. 30). Аналогично прямая KM — линия пересечения плоскости _____ и плоскости _____.

Рис. 30.

Шаг 2. По теореме (см. **Т1**) через точку N в плоскости _____ прямой MK. T — точка пересечения NT и DD_1 (см. рис. 31). Аналогично через точку M в плоскости _____ проведём прямую MP, _____ KN. P — точка пересечения прямой MP и ребра _____.

Рис. 31.

Шаг 3. *PT* — линия пересечения плоскости грани _____ и плоскости сечения (см. рис. 32).

_____ искомое сечение.

Рис. 32.

Задача № 3. Постройте сечение прямоугольного параллелепипеда $ABCDA_1B_1C_1D_1$ плоскостью MNK (см. рис. 33).

Решение.

Шаг 1. L и C — проекции точек K и M на плоскость ABCD (см. рис. 34). F — точка пересечения прямых KM и LC ($KL \parallel MC$). Точка F лежит в плоскости сечения и в плоскости грани ABCD.

Шаг 2. FN — линия пересечения плоскости сечения MNK и плоскости ABCD (см. рис. 35). FN пересекает ребро CD в точке E.

Шаг 3. ME — линия пересечения грани DD_1C_1C и плоскости сечения (см. рис. 35).

Шаг 4. Прямая FN пересекает прямую AB в точке G (см. рис. 36).

Рис. 36.

Шаг 5. Точки G и K лежат в плоскости AA_1B_1B (см. рис. 37). GK пересекает ребро AA_1 в точке R, ребро BB_1 — в точке S. RK — линия пересечения грани AA_1B_1B и плоскости сечения.

Рис. 37.

Шаг 6. SM — линия пересечения плоскости BB_1C_1 и плоскости сечения (см. рис. 38). X — точка пересечения SM и B_1C_1 .

Рис. 38.

Шаг 7. KX — линия пересечения плоскости $A_1B_1C_1D_1$ и плоскости MNK (см. рис. 39).

Рис. 39.

Итак, *NRKXME* — искомое сечение (см. рис. 40).

Рис. 40.

Задача № 4. Постройте сечение прямоугольного параллелепипеда $ABCDA_1B_1C_1D_1$ плоскостью MNK (см. рис. 41).

Решение.

Шаг 1. — проекции точек K и N на плоскость *ABCD* (см. рис. 42).

Рис. 42.

Шаг 2. S — точка пересечения прямых KN и FD — лежит в плоскости грани — и в плоскости — (см. рис. 43).

Рис. 43.

Шаг 3. Прямая SM лежит в плоскости _____ и пересекает AD в точке P,BC — в точке L (см. рис. 44).

Рис. 44.

Шаг 4. Точки _____ и ____ лежат в плоскости грани BB_1C_1C и плоскости сечения, значит, ____ — линия их пересечения (см. рис. 45). Прямая _____ пересекает ребро BB_1 в точке V.

Рис. 45.

Шаг 5. — линия пересечения грани AA_1B_1B и плоскости сечения MNK, — линия пересечения грани AA_1D_1D и плоскости сечения MNK (см. рис. 46).

Рис. 46.

Шаг 6. В грани $A_1B_1C_1D_1$ проведём через точку K отрезок KG _____ отрезку MP (см. T1).

Шаг 7. Отрезок _____ — линия пересечения грани DD_1C_1C и плоскости сечения (см. рис. 47).

Рис. 47.

Итак, _____ искомое сечение (см. рис. 48).

Рис. 48.

Задача № 5. Постройте сечение пирамиды SABCD плоскостью MNK (см. рис. 49).

Решение.

Шаг 1. MN — линия пересечения плоскости MNK и грани SAD, MK — линия пересечения плоскости MNK и грани ABCD (см. рис. 50).

Шаг 2. Прямая MK пересекает прямые AB и CD в точках F и L соответственно (см. рис. 51).

Рис. 51.

Шаг 3. FN — линия пересечения плоскости сечения и плоскости грани ASB (см. рис. 52). FN пересекает ребро SB в точке G. GL — линия пересечения плоскости сечения и плоскости грани SBC. GL пересекает ребро SC в точке R.

Рис. 52.

Шаг 4. RK — линия пересечения плоскости MNK и плоскости CSD (см. рис. 53).

Рис. 53.

Итак, MNGRK — искомое сечение (см. рис. 54).

Рис. 54.

Задача № 6. Постройте сечение пирамиды SABCD плоскостью MNK (см. рис. 55).

Рис. 55.

Решение.

Шаг 1. — линия пересечения плоскости грани SDC и плоскости сечения MNK (см. рис. 56). Построим точку P пересечения прямых MK и DC.

Рис. 56.

Шаг 2. Точки _____ лежат в плоскости основания ABC и в плоскости сечения _____, поэтому PN — линия пересечения плоскостей ABC и MNK (см. рис. 57).

Рис. 57.

Построим точку L пересечения прямых PN и BC и точку F пересечения прямых PN и AD.

Шаг 3. Точки L и M лежат в плоскости грани _____ и в плоскости сечения, следовательно, ____ — линия пересечения грани _____ и плоскости MNK (см. рис. 58). LM пересекает ребро _____ пирамиды SABCD в точке T.

Рис. 58.

Шаг 4. — линия пересечения грани ASB и плоскости сечения MNK, — линия пересечения грани ASD и плоскости сечения MNK (см. рис. 59).

Рис. 59.

Итак, ____ — искомое сечение (см. рис. 60).

Рис. 60.

Задача N_2 7. Постройте сечение прямой шестиугольной призмы $ABCDEFA_1B_1C_1D_1E_1F_1$ плоскостью MNK (см. рис. 61).

Решение.

Шаг 1. T — точка пересечения прямой KM и её проекции PA на плоскость нижнего основания ABCDEF (см. рис. 62).

Рис. 62.

Шаг 2. TN — линия пересечения плоскости сечения и плоскости нижнего основания. L — точка пересечения ребра AB и TN (см. рис. 63).

Шаг 3. KL — линия пересечения грани AA_1B_1B и плоскости MNK.

Шаг 4. Проведём $RM \parallel LN$, $MV \parallel KL$ (см. **T1**). RM — линия пересечения плоскости сечения и плоскости верхнего основания $A_1B_1C_1D_1E_1F_1$, MV — линия пересечения плоскости сечения и плоскости EE_1D_1D (см. рис. 64).

Рис. 64.

Шаг 5. H — точка пересечения прямых TN и CD. HV — линия пересечения плоскости сечения и плоскости грани CC_1D_1D . O — точка пересечения ребра CC_1 и HV (см. рис. 65).

Шаг 6. ON — линия пересечения грани BB_1C_1C и плоскости MNK (см. рис. 65). $RS \parallel NO$ (см. **Т1**).

Шаг 7. Проводим отрезок KS (см. рис. 66).

Итак, KSRMVONL — искомое сечение (см. рис. 67).

Рис. 67.

Задачи для самостоятельного решения

- 1. Постройте сечение параллелепипеда $ABCDA_1B_1C_1D_1$, содержащее AB_1 и параллельное ребру A_1D_1 .
- 2. Постройте сечение параллелепипеда $ABCDA_1B_1C_1D_1$, содержащее A_1D_1 и параллельное AC.
- 3. Через точку пересечения медиан грани ABC пирамиды SABC постройте сечение, параллельное грани ASB.
- 4. Постройте сечение пирамиды SABCD, содержащее высоту SO пирамиды и параллельное ребру AB.
- 5. Постройте сечение пирамиды SABCD, содержащее высоту SO и перпендикулярное грани SAB.
- 6. Постройте сечение куба $ABCDA_1B_1C_1D_1$, проходящее через середину ребра AB параллельно плоскости BC_1D .
- 7. В кубе $ABCDA_1B_1C_1D_1$ найдите линию пересечения плоскостей AB_1C и BC_1D .
- 8. В правильной треугольной призме $ABCA_1B_1C_1$ постройте линию пересечения плоскостей ABC_1 и A_1B_1C .
- 9. В кубе $ABCDA_1B_1C_1D_1$ найдите линию пересечения плоскостей AB_1C_1D и CB_1A_1D .

- 10. В правильной шестиугольной призме $ABCDEFA_1B_1C_1D_1E_1F_1$ постройте сечение, проходящее через ребро BB_1 и перпендикулярное диагонали основания AD.
- 11. Постройте сечение правильной четырёхугольной пирамиды SABCD плоскостью, параллельной высоте SO и проходящей через середину ребра AB и точку C.
- 12. Постройте сечение параллелепипеда $ABCDA_1B_1C_1D_1$ плоскостью, проходящей через точку O пересечения его диагоналей параллельно грани а) AA_1B_1B ; б) $A_1B_1C_1D_1$; в) AA_1D_1D .
- 13. Постройте сечение четырёхугольной пирамиды SABCD плоскостью MNK (см. рис. 68).

- 14. Постройте сечение параллелепипеда $ABCDA_1B_1C_1D_1$ плоскостью ABC_1 .
- 15. Постройте сечение куба $ABCDA_1B_1C_1D_1$ плоскостью MNK (см. рис. 69).

Рис. 69.

Раздел III

Задачи уровня ЕГЭ

Задача \mathcal{N}_2 1. В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ сторона основания равна 10, а боковое ребро — 17. Точка K принадлежит ребру A_1B_1 и делит его в отношении 2:3, считая от вершины A_1 . Найдите площадь сечения этой призмы плоскостью, проходящей через точки K, A и C (см. рис. 70).

Решение.

Точки A и C принадлежат плоскости _______, следовательно, отрезок _____ лежит в этой плоскости (см. рис. 71).

Рис. 71.

Так как плоскости верхнего и нижнего оснований _______, то через точку K в плоскости ______ проведём отрезок KL ______ AC, где _____ \in _____ (см. рис. 72).

Рис. 72.

Соединим точки A и _____, лежащие в грани ______, а также точки C и _____, лежащие в грани _____ сечение призмы $ABCDA_1B_1C_1D_1$ плоскостью, проходящей через точки _____, ____, ______(см. рис. 73).

Рис. 73.

Рассмотрим грань $A_1B_1C_1D_1$. По условию $A_1B_1=10$, $A_1K:KB_1=2:3$, поэтому $A_1K=$ ______, $KB_1=$ _____. $\triangle KB_1L\sim \triangle A_1B_1C_1$, так как KL_______= A_1C_1 (см. рис. 74). Тогда $B_1L=$ _____= $LC_1=$ ____= KL=_____. $\triangle AKA_1$ ______, следовательно, AK=_____, значит, четырёхугольник AKLC является _______ (см. рис. 74).

Рис. 74.

Площадь равнобедренной трапеции AKLC найдём по формуле $S_{AKLC} = \frac{KL + AC}{2} \cdot KM.$

KL= ______, AC= ______, KM выразим из прямоугольного треугольника _____ по теореме Пифагора.

AK является гипотенузой прямоугольного треугольника ______, катеты которого _____ = _____, ___ = _____

$$AM = \frac{1}{2}$$

Подставляем найденные значения в выражение

$$KM = \sqrt{AK^2 - AM^2}$$
, получим $KM =$ ______

$$S_{AKLC} = \frac{1}{2}(\underline{\hspace{1cm}} + \underline{\hspace{1cm}}) \cdot \underline{\hspace{1cm}}$$

Ответ _____

Задача N2 2. Через точку L, принадлежащую высоте SO правильной четырёхугольной пирамиды SABCD, постройте сечение, параллельное грани SDC (см. рис. 75).

Рис. 75.

Решение.

Обозначим плоскость сечения буквой α . По условию $\alpha \parallel SDC$ и $L \in \alpha$. Это означает, что любая прямая плоскости α , проходящая через точку L, параллельна плоскости SDC (в противном случае плоскости SDC и α будут пересекаться).

Значит, нужно через точку L провести прямую, параллельную плоскости SDC. Можно через точку L провести любую прямую, параллельную плоскости SDC, в частности, это может быть прямая, параллельная DC, или SC, или SD (см. рис. 76).

Проведём через точку L прямую, параллельную SC. Для этого во вспомогательной плоскости SAC проведём через точку L отрезок $MN \parallel SC$ ($N \in AC$, $M \in AS$). Так как $MN \parallel SDC$, то $MN \in \alpha$.

Точка M принадлежит ребру AS пирамиды, следовательно, M — вершина многоугольника, являющегося искомым сечением.

Линия пересечения α и плоскости боковой грани ASB проходит через точку M параллельно AB. Действительно, плоскость ASB проходит через прямую AB, параллельную $DC(AB \parallel DC)$, так как ABCD — квадрат, $\alpha \parallel DC)$, и пересекает α по прямой, параллельной AB (см. $\mathbf{T2}$). Проведём в грани ASB отрезок $MK \parallel AB$ ($K \in BS$).

MK — линия пересечения плоскостей ASB и α , $MK \in \alpha$.

К — вершина многоугольника, являющегося искомым сечением.

MK — сторона многоугольника, являющегося искомым сечением, так как точки M и K лежат в грани ASB пирамиды (см. рис. 77).

Рассуждая аналогично по отношению к грани ASD, проведём отрезок $MP \parallel SD \ (P \in AD)$. MP — сторона многоугольника, являющегося искомым сечением (см. рис. 78).

Рис. 78.

Точки N и P лежат в плоскости α и в плоскости нижнего основания ABCD, значит, прямая PN — линия пересечения этих плоскостей (см. рис. 79).

PN пересекает ребро BC в точке T, поэтому точка T — вершина многоугольника, являющегося искомым сечением, а PT — сторона этого многоугольника (см. рис. 80).

Наконец, соединяя точки K и T, которые лежат в грани BSC пирамиды, получим искомое сечение MKTP (см. рис. 81).

Задача N_2 3. В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ через точку D постройте сечение, перпендикулярное диагонали BD_1 (см. рис. 82).

Решение.

В диагональном сечении BB_1D_1D проведём DK перпендикулярно BD_1 (см. рис. 83).

Рис. 83.

Через точку D в плоскости ABC проведём прямую \emph{l} , перпендикулярную BD (см. рис. 84).

 $l \perp DD_1$, по признаку перпендикулярности прямой и плоскости $l\perp BB_1D_1$, поэтому $l\perp BD_1$.

Итак, $BD_1 \perp KD$, $BD_1 \perp l$, откуда следует, что BD_1 перпендикуляна плоскости, проходящей через пересекающиеся прямые KD и l (см. рис. 85).

Рис. 85.

Построим точки пересечения прямой l с прямыми AB и BC (см. рис. 86).

Рис. 86.

KL — линия пересечения левой боковой грани AA_1B_1B и плоскости, проходящей через прямые DK и l, KF — линия пересечения задней грани BB_1C_1C и плоскости, проходящей через прямые DK и l (см. рис. 87).

Рис. 87.

T — точка пересечения ребра AA_1 и прямой KL, P — точка пересечения ребра CC_1 и прямой KF.

Проводим отрезки TD в передней грани и DP в правой боковой грани (см. рис. 88).

Рис. 88.

KPDT — искомое сечение (см. рис. 89).

Рис. 89.

Задачи для самостоятельного решения

Задача № 1. Точки M и N — середины боковых рёбер SA и SB правильной треугольной пирамиды SABC с основанием ABC.

- 1) Постройте сечение пирамиды плоскостью, перпендикулярной плоскости ABC и содержащей прямую MN.
- 2) На каком расстоянии от вершины C находится линия пересечения плоскости сечения и плоскости ABC, если AB = 30, AS = 28?
- Задача № 2. $ABCA_1B_1C_1$ правильная треугольная призма, $AB = AA_1 = 1, O$ точка пересечения диагоналей грани BB_1C_1 . Найдите угол между плоскостью ABC и плоскостью, проходящей через точки A и O и параллельной BC. Ответ дайте в градусах.

Задача № 3. M — точка пересечения медиан грани SAB правильной четырёхугольной пирамиды SABCD с основанием ABCD.

- 1) Постройте сечение пирамиды плоскостью, проходящей через точку M, перпендикулярной плоскости ABC и параллельной ребру AB.
- 2) Найдите расстояние от ребра AB до плоскости сечения, если $AB = 5\sqrt{2}, \, AS = 13$?

Задача № 4. $ABCDEFA_1B_1C_1D_1E_1F_1$ — правильная шестиугольная призма, сторона основания которой равна 4, а высота — 3. Постройте сечение призмы плоскостью AC_1F_1 и найдите площадь этого сечения.

Задача № 5. В кубе $ABCDA_1B_1C_1D_1$ найдите угол между плоскостями AB_1D_1 и ACD_1 . Ответ дайте в градусах.

Задача N2 6. В правильной четырёхугольной пирамиде SABCD постройте сечение, параллельное BD, проходящее через точку C и середину ребра SA. Найдите площадь построенного сечения, если сторона основания пирамиды равна 8, а боковое ребро 16.

Задача № 7 (ЕГЭ 2015). Основанием прямой четырёхугольной призмы

 $ABCDA_1B_1C_1D_1$ является квадрат ABCD со стороной $5\sqrt{2}$, высота призмы равна $2\sqrt{14}$. Точка K — середина ребра BB_1 . Через точки Kи C_1 проведена плоскость α , параллельная прямой BD_1 .

- а) Докажите, что сечение призмы плоскостью α является равнобедренным треугольником.
- б) Найдите периметр треугольника, являющегося сечением призмы плоскостью α .
- **Задача №** 8. Основанием прямой четырехугольной призмы $ABCDA_1B_1C_1D_1$ является квадрат ABCD со стороной $2\sqrt{2}$, высота призмы равна 8. Точка M середина ребра AA_1 .
- а) Постройте сечение призмы плоскостью, содержащей точки M, B и точку пересечения диагоналей квадрата ABCD.
 - б) Найдите площадь построенного сечения.
- Задача № 9. В кубе $ABCDA_1B_1C_1D_1$ со стороной, равной 3, через середину бокового ребра CC_1 и точку пересечения диагоналей основания ABCD проведена плоскость, параллельная диагонали B_1D . Через точки K и C_1 проведена плоскость α , параллельная прямой BD_1 .
 - а) Докажите, что построенное сечение является прямоугольником.
 - б) Найдите периметр построенного сечения.

Задача № 10. В правильной четырёхугольной пирамиде SABCD постройте сечение, проходящее через высоту SO пирамиды и перпендикулярное грани ASB. Установите вид сечения и найдите его площадь, если сторона основания равна $2\sqrt{87}$, а боковое ребро — 16.

Задача № 11 (ЕГЭ—2015). В правильной четырёхугольной пирамиде SABCD все рёбра равны 5. На рёбрах SA, AB, BC взяты точки P, Q, R соответственно так, что PA = AQ = RC = 2.

- а) Докажите, что плоскость PQR перпендикулярна ребру SD.
- б) Найдите расстояние от вершины D до плоскости PQR. Решение.
- а) Стороны треугольника SBD равны 5, 5 и $5\sqrt{2}$, поэтому он прямоугольный, то есть прямая DS перпендикулярна прямой SB (см. рис. 90).

Рис. 90.

Поскольку прямые SB и PQ параллельны, прямая DS перпендикулярна прямой PQ. Прямая AC перпендикулярна прямой BD, и по теореме о трёх перпендикулярах прямая AC перпендикулярна прямой SD, а значит, прямая QR перпендикулярна прямой SD. Таким образом, плоскость PQR перпендикулярна ребру SD.

6) Пусть плоскость PQR пересекает ребро SD в точке E. Из доказанного следует, что прямая PE перпендикулярна прямой SD, откуда $SE = SP\cos 60^\circ = \frac{3}{2}.$

Значит,
$$DE = SD - SE = \frac{7}{2}$$
.

Поскольку плоскость PQR перпендикулярна ребру SD, искомое расстояние равно DE.

Ответ: б)
$$\frac{7}{2}$$
.

Задача № 12 (ЕГЭ—2015). В правильной треугольной пирамиде SABC сторона основания AB равна 30, а боковое ребро SA равно 28. Точки M и N — середины рёбер SA и SB соответственно. Плоскость α содержит прямую MN и перпендикулярна плоскости основания пирамиды.

- а) Докажите, что плоскость α делит медиану CE основания в отношении 5:1, считая от точки C.
 - б) Найдите расстояние от вершины A до плоскости α . Решение.
- а) Прямая MN параллельна плоскости ABC, поэтому сечение пересекает плоскость ABC по прямой PQ, параллельной MN.

Рассмотрим плоскость SCE. Пусть K — точка пересечения этой плоскости и прямой MN, L — точка пересечения этой плоскости и прямой PQ, O — центр основания пирамиды (см. рис. 91).

Рис. 91.

б) Прямая CE перпендикулярна KL и PQ, поэтому прямая CE перпендикулярна плоскости MNQ. Прямые AB и PQ параллельны, значит,

расстояние от вершины A до плоскости сечения равно расстоянию от точки E до плоскости сечения, то есть $EL=\frac{CE}{6}=\frac{5\sqrt{3}}{2}.$

Ответ: 6)
$$\frac{5\sqrt{3}}{2}$$
.

ОТВЕТЫ К ЗАДАНИЯМ

Раздел I

Ответы к подготовительным задачам

1. a) CDD_1C_1 ; 6) ABB_1A_1 . 2. a) AA_1B_1B ; 6) AA_1B_1B , B) AB.

8. Her. 9. 3. 10. 1. 14. a) $\frac{4}{3}$; B) $\frac{4\sqrt{2}}{3}$. 16. $3\sqrt{2}$. 17. a) 5; 6) 3.

18. Треугольник AB_1C . 19. а) AA_1D_1D ; б) MN; в) BB_1C_1C ; г) C_1C ; д) 2:1; е) BB_1C_1C ; ж) KL; з) $\sqrt{2}$; и) 3; к) AA_1D_1D и $A_1B_1C_1D_1$; л) T; м) TK; н) AA_1B_1B ; о) AA_1B_1B ; п) LP; р) ABCD; с) MTKLPN.

Раздел III

Задачи для самостоятельного решения

1. $24\sqrt{66}$. 2. $\frac{25\sqrt{3}}{2}$. 3. 30. 4. $\frac{5}{3}$. 5. $6\sqrt{21}$. 6. 120. 7. $\frac{16\sqrt{87}}{3}$. 8. $13 + \sqrt{39}$. 9. $4\sqrt{5}$. 10. $3 + 3\sqrt{2}$. 11. $2\sqrt{3567}$.

$EI\mathcal{H}$

Учебное издание

Резникова Нина Михайловна **Фридман** Елена Михайловна

МАТЕМАТИКА. ЕГЭ СЕЧЕНИЯ МНОГОГРАННИКОВ Профильный уровень

Под редакцией Ф.Ф. Лысенко, С.Ю. Кулабухова

Налоговая льгота: издание соответствует коду 95 3000 ОК 005-93 (ОКП)

Обложка Н. Раевская Компьютерная верстка О. Сапожников Корректор Л. Андрецова

Подписано в печать с оригинал-макета 13.09.2016. Формат $60x84^1/_{16}$. Бумага типографская. Гарнитура Таймс. Печать офсетная. Усл. печ. л. 25,11. Тираж $4\,000$ экз. Заказ № 38.

ООО «ЛЕГИОН»

Для писем: 344000, г. Ростов-на-Дону, а/я 550. Адрес редакции: 344082, г. Ростов-на-Дону, ул. Согласия, 7. www.legionr.ru e-mail: legionrus@legionrus.com

Отпечатано в соответствии с качеством предоставленных диапозитивов в ООО «Полиграфобъединение» 347900, г. Таганрог, ул. Лесная биржа, 6В.

Рекомендует

ЕГЭ

МАТЕМАТИКА. 10–11 классы. ТРЕНАЖЁР ДЛЯ ПОДГОТОВКИ К ЕГЭ. Алгебра, геометрия, стереометрия

Под редакцией Ф.Ф. Лысенко, С.Ю. Кулабухова

Пособие предназначено для подготовки десяти- и одиннадцатиклассников к итоговой аттестации (ЕГЭ) по математике и может использоваться для обобщающего или тематического повторения курса математики. С помощью этой книги можно в спокойном режиме сформировать все необходимые компетенции, научиться решать задачи разных типов, систематизировать содержание курса школьной программы. Материал, представленный в этой книге, служит для формирования устойчивых навыков при выполнении заданий базового и профильного уровня первой части экзамена.

Пособие содержит 4 модуля ("Арифметика и алгебра", "Алгебра и начала анализа", "Планиметрия", "Стереометрия"), состоящих, в свою очередь, из нескольких параграфов. Параграфы включают себя: задачи, подобные тем, которые предстоит выполнять учащимся на экзамене, а также подготовительные задания к этим задачам (задания для формирования необходимых в каждом случае способов учебных действий); варианты для самостоятельного решения.

Издательство "Легион" предлагает обучающимся и учителям следующие пособия для подготовки к ЕГЭ по математике:

- Математика. Подготовка к ЕГЭ-2017. Профильный уровень. 40 тренировочных вариантов по демоверсии 2017 года. Под редакцией Ф.Ф. Лысенко, С.Ю. Кулабухова
- Математика. Подготовка к ЕГЭ-2017. Базовый уровень. 40 тренировочных вариантов по демоверсии 2017 года. Под редакцией Ф.Ф. Лысенко, С.О. Иванова
- Математика. ЕГЭ-2017. Тематический тренинг. Под редакцией Ф.Ф. Лысенко, С.О. Иванова
- Математика. ЕГЭ. Алгебра: задания с развёрнутым ответом. Под редакцией Ф.Ф. Лысенко, С.Ю. Кулабухова
- Математика. Тренажер для подготовки к ЕГЭ. 10-11 классы. Алгебра, геометрия, стереометрия. Под редакцией Ф.Ф. Лысенко, С.Ю. Кулабухова
- Математика. Большой справочник для подготовки к ЕГЭ. Под редакцией Ф.Ф. Лысенко, С.Ю. Кулабухова
- Математика. 7-11 классы. Карманный справочник. Ф.Ф. Лысенко, С.Ю. Кулабухов

Методика, секреты подготовки, особенности учебных пособий на авторских вебинарах для учителей и школьников на www.legionr.ru

ISBN 978-5-9966-0922-2 344000, г. Ростов-на-Дону, а/я 550 Тел. (863) 303-05-50, 248-14-03

