Disclaimer: The problem that are solved here is best to my knowledge. I cannot be held responsible for the mistakes in neither exams nor your personal life. I have confidence that the answers presented here is error free. If you find any misunderstanding or issue, please solve it yourself.

DC Motors.

For reference. Take this circuit diagrams.

1. Shunt DC Motor.

2. Series DC Motor.

- 3. Important things to notice.
 - Armature coil of motor has its own resistance, R_a. It is not shown in figure here.
 - We need current carrying wire to generate flux, its resistance will be denoted by R_f. In second figure, inductor coil is also flux generating coil in series.
 - Back emf is produced in armature of motor due to Faraday's law. It will be denoted by E.
 - Armature current will be denoted by I_a and flux current will be denoted by I_f .
 - Torque in motor is proportional to armature current times generated flux.
 - Back emf is proportional to motor speed and flux. Motor speed is denoted by 'N' in rpm.
 - Please refer to the book for ideas and IOE syllabus app for old questions.

Old questions solutions.

2076 Back. 3. B.

Here,

It is a shunt motor,

Field current, $I_f = 220/110 = 2A$

Therefore, $I_a = 25-2 = 23A$

Apply KVL, we get back emf E = 220-23*0.1 = 217.7V

Also, when shunt resistance is increased by 50 Ohm. $I_{f2} = 220/160 = 1.38 A$

We know, torque is proportional to If*Ia.

From question, new torque = T_1 -10% of T_1 = 0.9 T_1

So,
$$T_1/0.9T_1 = (I_{f1}/I_{f2})*(I_{a1}/I_{a2}).$$

Therefore, $I_{a2} = 30.1 A$.

Again apply KVL for 30.1 A, and back emf will be, $E_2 = 216.98V$

Now we have,

$$E_1/E_2 = (N_1/N_2)*(I_{a1}/I_{a2})$$
. Since, $N_1 = 1200$ rpm

 $N_2 = 914$ rpm. That's it.

2075 Bhadra, Regular 4. A.

Here,

It is DC shunt motor. Look the reference circuit.

Field current, $I_f = 220/220 = 1A$

So, armature current, $I_a = 20-1 = 19 A$

Apply KVL, so back emf E = 220-19*0.2 = 216.2 V

We know, torque is proportional to flux*Ia, flux is proportional to If,

Increased torque = 1.1 T, if T is original

Now, the field current is same on both cases,

 $1.1T/T = I_{a2}/I_{a1}$

```
So, I_{a2} = 20.9 A
```

Again apply KVL with new armature current and new resistance value (0.2+0.1),

Back emf, E_2 = 220-20.9*0.3 = 213.73V

Also, we have,

 $E_2/E_1 = (N_2/N_1)$

 $N_2 = 1384 \text{ rpm}.$

2075 Baisakh Back, 4. B.

Here,

It is a dc series motor, from reference figure, $I_a = I_f$

Apply KVL, 200 = E + I*(0.6+0.4),

i.e. E = 185V

Again, for 5 ohm added in series with similar current and voltages, the back emf produced is ,

E = 110V

Now, $E_2/E_1 = (I_2/I_1)*(N_2/N_1)$

Therefore, $N_2 = 476$ rpm.

That's it. Try to do all other problems in similar way.