LUNDS TEKNISKA HÖGSKOLA MATEMATIK

TENTAMENSSKRIVNING Funktionsteori 2015–03–21 Svar och anvisningar

1. Lösningen blir $x_n = (n-1)(-1)^n + 1$.

2. a)
$$\frac{1}{2} \ln 2 + \frac{3\pi i}{4} + 2\pi i k$$
, där $k \in \mathbb{Z}$

- b) Nej, u är inte harmonisk.
- c) Till exempel: $\sum_{k=1}^{\infty} \frac{(-1)^k}{k}.$
- d) Till exempel: $\sum_{k=0}^{\infty} (z-i)^k.$
- e) Till exempel: $f(z) = \frac{1}{z^2} + \frac{1}{z}$.
- 3. a) Börja gärna med att göra första halvan av uppgift b. Funktionen är begränsad (och därmed L^1), styckvis kontinuerlig och styckvis C^1 och uppfyller därmed villkoren i sats 7.18 i alla punkter (och villkoren i sats 7.16 i de flesta punkter). Det följer ur dessa konvergenssatser att $S(\pi/2) = \pi/4$, $S(-\pi/2) = \pi/4$ och $S(3\pi) = -\pi/2$.

- c) Funktionen är jämn, så serie B är utesluten. Medelvärdet över en period kan omöjligen vara $\pi/2$, vilket utesluter serie A och D. Serie E konvergerar likformigt med hjälp av Weierstrass M-test, så dess seriesumma är kontinuerlig. Den enda möjligheten är alltså C.
- **4.** a) Den första serien är konvergent (enklast med kvottestet), den andra konvergent (Leibniz) och den tredje är divergent (termerna går inte mot 0).
 - b) Serien är konvergent om och endast om $\alpha > 2/3$. (Jämför till exempel med $\sum_{k=0}^{\infty} \frac{1}{k^{3\alpha/2}}$.)
- **5.** a) Konvergensradien blir ∞ . (Observera att $a_k = 0$ när k är udda...)
 - b) Serien är alternerande och termerna uppfyller villkoren i Leibniz test. Det följer att resttermen till beloppet är mindre än

$$\frac{1}{2^n n!} a_4 = \frac{1}{2^n n!} \cdot \frac{1}{8(2n+2)(2n+4)}$$

c) Maclaurinserien för J'_n blir (enklast att först multiplicera in z^n och derivera termvis, vilket är tillåtet på hela $\mathbb C$ tack vare resultatet i a-uppgiften):

$$J'_n(z) = \frac{1}{2^n n!} \sum_{k=0}^{\infty} (n+k) a_k z^{n+k-1}$$
 (*)

Med hjälp av residyregel 2 ser vi att

$$\int_{|z|=1} \frac{J'_n(z)}{z^2} \, dz = 2\pi i c_1$$

där c_1 betecknar koeffeicienten framför z^1 i Maclaurinserien för J'_n . Vi ser att $c_1 = 0$ om n > 2 (lägstagradstermen i (*) har grad n - 1). För n = 2 ger k = 0 rätt grad, och därmed

$$c_1 = \frac{1}{2^2 \cdot 2!} (2+0) a_0 = \frac{1}{4}.$$

För n = 1 ger k = 1 rätt grad och

$$c_1 = \frac{1}{2^1 \cdot 1!} (1+1)a_1 = 0.$$

Sammanfattningsvis:

$$\int_{|z|=1} \frac{J'_n(z)}{z^2} dz = \begin{cases} \frac{i\pi}{2}, & n=2\\ 0, & n \neq 2. \end{cases}$$

(Även n=0 ger en nollskild integral, men vi tittar bara på positiva n i denna uppgift.)

- **6.** a) Följer ur algebra och observationen att $e^{\pm i\pi} = -1$.
 - b) Följ ledningen. Integralen längs de två lodräta stäckorna går mot 0 då $R\to\infty$ mha ML-olikheten och uppskattningen (för z=R+it)

$$f(z) = \left| \frac{e^{iz}}{e^z + e^{-z}} \right| \le \frac{1}{e^R - e^{-R}}$$

och en likartad uppskattning för z=-R+it. På sträckan $x+i\pi$ utnyttjar vi beräkningen i a) och får att

$$\int f(z) \, dz = \int_{R}^{-R} f(t+i\pi) \, dt = \int_{-R}^{R} e^{-\pi} f(z) \, dt.$$

Sammanfattningsvis (efter att $R \to \infty$) får vi kvar:

$$(1 + e^{-\pi}) \int_{-\infty}^{\infty} \frac{e^{ix}}{e^x + e^{-x}} dx = 2\pi i \operatorname{Res}_{z=i\pi/2} \frac{e^{iz}}{e^z + e^{-z}} = \pi e^{-\pi/2}$$

och därmed (ta realdelen):

$$\int_{-\infty}^{\infty} \frac{\cos x}{e^x + e^{-x}} dx = \frac{\pi e^{-\pi/2}}{1 + e^{-\pi}} = \frac{\pi e^{\pi/2}}{e^{\pi} + 1}.$$