PDE: ASSIGNMENT 4

MARK DITSWORTH

1. Problem 1

Consider the operator $\hat{A} = -c(x)\nabla^2$ in a 2d region $\Omega \subset \mathbb{R}^2$ with Dirichlet boundaries where c(x) > 0. Suppose the eigenfunctions of \hat{A} are $u_n(x)$ with eigenvalues λ_n numbered in order $(\lambda_1 < \lambda_2 < \dots)$.Let G(x, x') be the Green's function of \hat{A} .

1.1. Part 1. If $f(x) = \sum_n \alpha_n u_n(x)$, show α_n in terms of f and u_n . Then find $\int_{\Omega} G(x, x') f(x') d^2 x'$ in terms of α_n and u_n .

1.2. Part 2. For any possible value of u(x), find

$$\frac{\int_{\Omega}\int_{\Omega}\frac{1}{c(x)}\overline{u(x)}G(x,x')u(x')d^2xd^2x'}{\int_{\Omega}\frac{|u(x'')|^2}{c(x'')}d^2x''}$$

2. Problem 2

Solve the Laplacian eigenproblem $-\nabla^2 u = \lambda u$ in a 2d radius-1 cylinder, r <= 1 with Dirichlet boundary conditions $u|_{r=1,\Omega} = 0$ by "brute force" in Julia and compare to the analytical Bessel solutions.

3. Problem 3

Recall that the displacement u(x,t) of a string (with fixed ends u(0,t)=u(L,t)=0) satisfies the wave equation $\frac{\partial^2 u}{\partial x^2}+f(x,t)=\frac{\partial^2 u}{\partial t^2}$, where f(x,t) is an external force density (pressure) on the string.