

Breve Introdução à Computação em Nuvem

Catarina Nabais, 21478, Turma A DOCENTE: PROFESSOR SÉRGIO PINTO

ÌNDICE

Su	mário	2
Intr	odução	2
1.	O que é a Computação na Nuvem?	3
Da	ta center	3
Pri	ncipais Benefícios	3
	Para clientes	3
	Para fornecedores	4
	Para ambos	4
Pri	ncipais Usos	4
2.	Modelos de serviços de computação na nuvem	4
So	tware as a Service (SaaS)	5
Pla	tform as a Service (PaaS)	5
Infr	astructure as a Service (laaS)	5
3.	Segurança	6
Pro	blemas e soluções	6
4.	Virtualização	7
Со	nclusão	9
Bib	liografia	9
Glo	ossário	o

SUMÁRIO

A computação em nuvem surge como consequência da evolução tecnológica, um serviço resultante da virtualização de sistemas, recursos e serviços. Permite uma gestão flexível de recursos e um reduzido custo operacional, visionando um sistema "pague o que usar".

O presente trabalho discute o tema da tecnologia de computação em nuvem, explorando a sua génese e potencialidades, as suas principais vantagens e usos, assim como explorar métodos a adotar na garantia de segurança.

Palavras-chave: Computação na nuvem, software, hardware, cloud computing, datacenter, SaaS, PaaS, IaaS.

INTRODUÇÃO

Que inovações advêm do desenvolvimento da tecnologia? Como se torna a computação em nuvem um passo essencial para um futuro tecnológico e empresarial mais acessível, económico e que satisfaça as necessidades de um cliente cada vez mais exigente?

O objetivo deste trabalho é responder a estas perguntas, através de uma breve introdução da tecnologia de computação em nuvem. Explicitará o conceito básico de computação em nuvem, explorando as suas vantagens tanto para empresas como clientes individuais, e explicitará o conceito e aplicações da virtualização, assim como questões de segurança que desta originam.

O trabalho encontra-se organizado em 4 capítulos, sendo que o capítulo 1 introduz conceitos básicos, como a definição do que é um *data center* e da sua importância, e os principais usos e benefícios da computação em nuvem, tanto para clientes como para fornecedores.

No capítulo 2, abordar-se-ão os três principais serviços da computação em nuvem, sendo estes Software as a Service, Platform as a Service, e Infrastructure as a Service.

Já o capítulo 3, abordará questões de segurança e identificará problemas que dela advêm, ao mesmo tempo que aponta soluções.

Finalmente, no capítulo 4, aborda-se a temática da virtualização e conceitos essenciais como *Virtual Machines* e *Containers*, assim como uma comparação da arquitetura tradicional e virtual, e dos benefícios que a segunda providencia.

A metodologia utilizada centrou-se num resumo didático da matéria explicada nas aulas, enriquecida com uma pesquisa bibliográfica.

1. O QUE É A COMPUTAÇÃO NA NUVEM?

A tecnologia de computação na nuvem (*cloud computing*) define-se como o fornecimento de recursos de computação (*hardware* e/ou *software*) remotos (na "nuvem" ou "*cloud*") via internet ou por ligações dedicadas, a clientes individuais ou empresas. Estes recursos podem ser dedicados, partilhados, físicos ou virtuais, e a sua disponibilização visiona o acesso a inovações mais rápidas, recursos mais flexíveis, e economias de escala.

Existem 3 tipos de cloud:

- Cloud privada: Virtualização de serviços via ligações dedicadas/redes privadas;
- Cloud pública: Virtualização de serviços pela internet;
- Cloud híbrida: Virtualização de serviços utilizando ambas a internet e redes privadas.

DATA CENTER

O data center é onde a magia acontece. Define-se como um local físico onde estão guardados todos os componentes (routers, servers, sistemas de armazenamento, application-delivery controllers, etc) que possibilitam o fornecimento da generalidade de serviços IT, como transporte, software, gestão de redes e outros ao cliente final.

PRINCIPAIS BENEFÍCIOS

Impulsionada por um mercado de negócios cada vez mais competitivo, a computação na nuvem desenvolveu-se graças à emergente evolução tecnológica que originou virtualização de plataformas, Internet de maior velocidade, mecanismos de segurança mais desenvolvidos, e uma distribuição universal dos seus serviços.

Cloud computing constrói os seus alicerces na acessibilidade, aumento de produtividade e baixo custo, centrando-se assim em benefícios fiscais, operacionais, e de acessibilidade.

PARA CLIENTES

€ Redução de custos: Ao disponibilizar recursos hardware/software remotos, a computação na nuvem elimina gastos de capital em compra, configuração e manutenção de datacenters ou plataformas software/hardware próprias e em custos operacionais de infraestruturas. Existe, portanto, uma grande minimização de custos, o

que se torna extremamente benéfico para empresas com orçamento reduzido;

Flexibilidade: Ao eliminar a necessidade do cliente de adquirir plataformas de hardware e software próprias, possibilita a aceleração de expansões de capacidade, assim como o acesso de mais clientes aos seus serviços de nuvem. Tal adaptabilidade permite uma maior

agilidade, facilitando a adaptação a mercados cada vez mais competitivos e transmutáveis;

Produtividade: A computação na nuvem remove a necessidade de gerenciamento de funções que, deixando de estar ao cargo do

cliente e possibilitando que este invista o seu tempo noutros objetivos, maximizam a produtividade.

PARA FORNECEDORES

Escalabilidade: Dimensionamento adaptável dos serviços de computação proporcionados. Estes serviços devem ser facilmente e rapidamente redimensionáveis, acompanhando a necessidade do cliente conforme a sua evolução;

Velocidade: Maioritariamente, são serviços automáticos e *on-demand*, sendo que a sua disponibilização é feita numa questão de

minutos, possibilitando flexibilidade e alto desempenho ao cliente;

Garantia de segurança: Implementação de mecanismos de segurança eficazes e fiáveis, de modo a maximizar a credibilidade dos serviços prestados, garantindo assim a boa reputação do prestador de serviços, e a confortabilidade do cliente.

PARA AMBOS

Desempenho: <u>Para o cliente</u>: O tempo de acesso á infraestrutura na nuvem é minimizado; <u>para o fornecedor</u>: Garantia de capacidade e recursos, adaptando-se à evolução das necessidades do cliente; para ambos: Garantia de comunicação segura entre a rede do cliente e o serviço nuvem do fornecedor.

PRINCIPAIS USOS

- ☐ Armazenamento, backups, e recuperação de dados;
- ☑ Criação e teste de aplicações (apps) na nuvem;
- ☑ Transmissão áudio e vídeo:
- ☑ Providenciar software e hardware on-demand.

2. MODELOS DE SERVIÇOS DE COMPUTAÇÃO NA NUVEM

Existem 3 tipos de modelos de serviços em cloud computing:

- Software as a Service (SaaS);
- Platform as a Service (PaaS);
- Infrastructure as a Service (laaS)

SOFTWARE AS A SERVICE (SAAS)

SaaS caracteriza-se como a disponibilização de *software* de aplicações a partir da nuvem, ou seja, a infraestrutura e informação são completamente geridas e hospedadas, remotamente, pelo fornecedor. Deste modo, o cliente não terá que se preocupar com custos relacionados com, por exemplo, atualização de *software* e aplicação de *patches* de segurança.

O modelo SaaS identifica-se como o mais adequado a clientes cujo negócio se centraliza em questões operacionais que não abrangem manutenção do *software*. Isto porque este serviço dispensa investimento em infraestrutura local por parte do cliente, facilitando assim o acesso ao serviço, independentemente do dispositivo e da sua localização. Exemplos representativos são o Gmail, Google Docs, e o Office 365 da Microsoft.

PLATFORM AS A SERVICE (PAAS)

Neste modelo, o cliente tem a possibilidade de desenvolver e gerir os serviços, que por sua vez estão disponíveis numa plataforma disponibilizada pelo fornecedor. Assim, o cliente pode gerir o conteúdo/dados da infraestrutura, mas não se encarrega da sua manutenção ou hospedagem. Alguns exemplos destes serviços são Microsoft Azure, GitHub e Heroku.

INFRASTRUCTURE AS A SERVICE (IAAS)

Este modelo consiste no fornecimento de infraestrutura através de serviços *online*. São exemplos deste tipo de modelo os serviços DigitalOcean, Rackspace, e Amazon Web Services.

Figura 1. Representação gráfica do controlo do cliente/utilizador, referente a cada um dos modelos mencionados. A vermelho evidenciam-se os serviços controlados pelo fornecedor e a azul os a cargo do cliente. Note-se que, apesar dos serviços serem universalmente disponibilizados, o controlo que o cliente tem sobre estes difere em cada modelo.

3. SEGURANÇA

Sendo a nuvem uma rede pública/privada, remota e cujo fluxo de informação ocorre via meios de transmissão diversos, uma das maiores preocupações na virtualização de recursos é a segurança de dados. Aumenta assim a necessidade de garantir a proteção de informação privada do cliente e a continuidade do seu negócio.

PROBLEMAS E SOLUÇÕES

Problema	Necessidade	Soluções
Vulnerabilidade dos dados face a ataques de segurança, externos ou internos	Controlo de acesso aos recursos da nuvem, isolando dados de diferentes clientes	 Autenticar utilizadores externos de forma segura e utilizar Firewall para controlar o seu acesso Autenticar os próprios clientes, para que não acedam a dados privados um dos outros Separar e privatizar o fluxo de informação de cada cliente através do uso de VLANs distintas
Exposição dos dados nos meios de transmissão	Garantir a privacidade na comunicação	Implementar mecanismos de autenticação do cliente, encriptação para a proteção de dados, e controlo de integridade, realizados através do uso de VPN, que é obrigatório se o acesso for feito por redes públicas como a Internet
Perda de informação que impossibilita a continuidade do negócio	Disponibilidade de serviços e isolamento de falhas	 Aplicar mecanismos que administrem recursos partilhados (como CPU, discos, etc), para que uma falha num deles não afete vários clientes Realizar backups periódicos de dados Empregar um sistema redundante, de modo a duplicar componentes críticos e manter o

Problema	Necessidade	Soluções
		sistema a funcionar caso exista
		falha num dos componentes
Dependência do cliente		Assegurar contratualmente a
relativamente a falhas	Minimizar perda de controlo	segurança, controlo, e direitos do
do fornecedor		cliente

4. VIRTUALIZAÇÃO

O conceito de virtualização estabelece a fundação da computação em nuvem e classifica-se como a partilha de recursos por meio de infraestruturas virtuais.

Os pioneiros da virtualização foram os servidores, pináculos da arquitetura de rede tradicional. Com a crescente evolução tecnológica, procurou-se cada vez mais desenvolver uma arquitetura que permitisse uma virtualização de sistemas, funções e aplicações que fosse abrangente, completa, e facilitasse cada vez mais a acessibilidade.

Assim, aos ombros dos servidores, nasceram as várias aplicações de rede que permitem uma completa virtualização de funções, sistemas e aplicações. Tornou-se possível a virtualização de hardware de funções de rede, como por exemplo routers, switch, etc, um processo denominado de NFV (Network Function Virtualization).

Na arquitetura tradicional, era necessária a implementação de funções de rede num *hardware* dedicado. Numa arquitetura virtual, essas funções são remotas, configuradas sobre recursos de *hardware* partilhados por vários clientes.

Existe um *hypervisor*, que atua como um maestro, fazendo a orquestração entre o meio virtual e o físico, ambos providenciados pelo fornecedor ao cliente final.

Figura 2, diagrama de uma arquitetura tradicional vs arquitetura virtual que possibilita a Cloud

A nuvem é um serviço que resulta da virtualização, onde o meio físico e virtual são fornecidos ao cliente. Nesta, o *software* pode ainda criar dois tipos de entidades: a **Máquina Virtual/Virtual Machine** (VM) e o **Contentor/Container**.

Uma Máquina Virtual funciona como um emulador de um computador e todas as suas funcionalidades, incluindo sistema operativo e aplicações, transportados para a nuvem. Este método torna possível a flexibilidade de recursos, adaptáveis às necessidades do cliente.

Um Contentor é, como o nome indica, um invólucro que contem diversos recursos *hardware* e/ou *software* com o objetivo de disponibilizar o serviço final ao cliente. Permite ao cliente um nível de abstração de realidades como, por exemplo, o sistema operativo, aquando da programação.

Assim, a virtualização gerou as inovações que possibilitam a *cloud*, que como já referenciado se define pelo fornecimento de recursos *hardware* e *software* remotos. A implementação duma arquitetura virtual torna possível:

- Simulação de hardware através de software;
- Partilha dos mesmos recursos físicos por clientes diferentes;
- A utilização de recursos virtuais (software) configurados sobre recursos físicos (hardware) partilhados.

Ao providenciar recursos virtuais que satisfaçam a necessidade de agilidade e rapidez no desenvolvimento e gestão de serviços e recursos de rede, prioriza-se a partilha de recursos e a flexibilidade destes face às exigências do cliente. Deste modo, atingem-se reduções significativas em custos de operação (OPEX) e de aquisição (CAPEX) destes mesmo equipamentos.

A virtualização potenciou assim a computação em nuvem, um serviço revolucionário tanto para o fornecedor como o cliente.

CONCLUSÃO

Este relatório serviu como uma análise compreensiva e introdutória do conceito de computação em nuvem. Podemos a partir deste inferir que a computação em nuvem representa uma evolução tecnológica que potencia um crescimento económico, empresarial e individual, capaz de reduzir significativamente custos de aquisição e operação através de uma virtualização de sistemas, aplicações e funções.

Não obstante das possíveis vulnerabilidades da segurança quando se trata da virtualização de informação, a computação em nuvem, e a virtualização em geral, permitem aumentar a potencialidade de recursos, e assim facilitar visivelmente a gestão económica de recursos, tanto de *software* e *hardware*, como tempo.

Avançamos cada vez mais para um futuro acessível e *on-demand*, um futuro onde a virtualização e, por sua vez, a computação em nuvem, moldam irrefutavelmente a relação humana com a tecnologia.

BIBLIOGRAFIA

- (s.d.). Obtido de Priberam: https://dicionario.priberam.org/
- (s.d.). Obtido de Dicionários Porto Editora: https://www.infopedia.pt/dicionarios/lingua-portuguesa/
- Azure, M. (s.d.). O que é computação em nuvem? Obtido de https://azure.microsoft.com/pt-br/overview/what-is-cloud-computing/
- CienaCorp. (1 de Março de 2016). What is NFV? Obtido de https://www.youtube.com/watch?v=xGZaZTnvR9A
- Pinto, S. (30 de Janeiro de 2020). Obtido de https://classroom.google.com/u/4/c/MTU2MzY0NTQwMDc2/m/MjUyNTg0Nzg2NDY2/details

GLOSSÁRIO

- **Software**: Conjunto de programas, processos, regras e, eventualmente, documentação, relativos ao funcionamento de um conjunto de tratamento de informação;
- Hardware: Material físico de um computador;
- Computação: Processamento automático de dados através de computadores;
- Base de dados: Conjunto de dados organizados e relacionados, capaz de ser processado por um sistema informático;
- **Datacenter**: Um local físico onde se encontram armazenados sistemas de computadores e os seus componentes, como telecomunicações e sistemas de armazenamento de dados;

- On-demand: Termo utilizado como referência a algo que é necessário assim que é requerido;
- Backup: Cópia que se destina a guardar dados armazenados no caso de uma eventual perda de informação
- Aplicação (app): Programa informático que visa facilitar a realização de uma tarefa num computador ou num dispositivo móvel;
- Patch: aplicação que altera um programa de modo a melhorá-lo ou a corrigi-lo;
- Hospedar (de hosting): Fornecer o equipamento e as condições necessárias para manter um site;
- **Developer:** Programador que desenvolve
- Cache: secção de memória de alta velocidade que armazena temporariamente informação utilizada frequentemente, permitindo o acesso mais rápido;
- Firewall: 1) software que permite a passagem seletiva do fluxo de informação entre uma rede
 interna e a rede pública, assim como a neutralização das tentativas de penetração abusiva nas
 redes privadas; 2) computador que interliga duas redes e restringe a troca de informação para
 evitar acessos não autorizados;
- Online: 1) diz-se de atividades realizadas através da internet; 2) diz-se dos programas, funções e serviços que comunicam entre si ou estão disponíveis em rede;