Lecture Two - Differentiation

Section 2.1 –Introducing the Derivative

Definition

The slope of the curve y = f(x) at the point $P(x_0, f(x_0))$ is the number

$$m = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}, \quad (\lim \exists)$$

The tangent line to the curve at *P* is the line through *P* with this slope.

Example

a) Find the slope of the curve $y = \frac{1}{x}$ at any point $x = a \neq 0$. What is the slope at the point x = -1?

1

- b) Where does the slope equal $-\frac{1}{4}$?
- c) What happens to the tangent to the curve at the point $\left(a, \frac{1}{a}\right)$ as a changes?

Solution

a) The slope of $f(x) = \frac{1}{x}$ at $\left(a, \frac{1}{a}\right)$ is

$$m = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$
$$= \lim_{h \to 0} \frac{\frac{1}{a+h} - \frac{1}{a}}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} \frac{a - (a + h)}{a(a + h)}$$

$$= \lim_{h \to 0} \frac{1}{h} \frac{a - a - h}{a(a + h)}$$

$$= \lim_{h \to 0} \frac{1}{h} \frac{-h}{a(a + h)}$$

$$= \lim_{h \to 0} \frac{-1}{a(a + h)}$$

$$= -\frac{1}{a^2}$$

The slope at x = -1 is: $= -\frac{1}{(-1)^2} = -1$

b) The slope equals to $x = -\frac{1}{4}$

$$\Rightarrow -\frac{1}{a^2} = -\frac{1}{4}$$

$$a^2 = 4 \rightarrow \boxed{a = \pm 2}$$

$$x = -2 \Rightarrow y = -\frac{1}{2}$$

 $x = 2 \Rightarrow y = \frac{1}{2}$ \Rightarrow $\left(-2, -\frac{1}{2}\right)$ and $\left(2, \frac{1}{2}\right)$

c) The slope $\left(-\frac{1}{a^2}\right)$ is always negative if $a \neq 0$

 $\lim_{x \to \pm \infty} \left(-\frac{1}{a^2} \right) = 0$ The slope approaches 0 and the tangent becomes horizontal.

 $\lim_{x\to 0^{-}} \left(-\frac{1}{a^2}\right) = -\infty$ The slope approaches $-\infty$ and the tangent increasingly steep.

Definition of the Derivative

The derivative of a function f at a point x_0 , denoted $f'(x_0)$ is

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}, \quad (\lim \exists)$$

If f' exists at a particular x, we say that f is **differentiable** (has a **derivative**) at x.

If f' exists at every point in the domain of f, we call f differentiable

The process of finding derivatives is called *differentiation*.

Notations

Some common alternative notations for the derivative are

$$f'(x)$$
, f' , $\frac{d}{dx}[f(x)]$, $\frac{d}{dx}f$, $\frac{dy}{dx}$, y' , \dot{y} , and $D_{\chi}[y]$

Example

Differentiate $f(x) = \frac{x}{x-1}$

Solution

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$f(x+h) = \frac{(x+h)}{(x+h) - 1}$$

$$= \lim_{h \to 0} \frac{\frac{x+h}{x+h-1} - \frac{x}{x-1}}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} \frac{(x+h)(x-1) - x(x+h-1)}{(x+h-1)(x-1)}$$

$$= \lim_{h \to 0} \frac{1}{h} \frac{x^2 - x + hx - h - x^2 - hx + x}{(x + h - 1)(x - 1)}$$

$$= \lim_{h \to 0} \frac{1}{h} \frac{-h}{(x + h - 1)(x - 1)}$$

$$= \lim_{h \to 0} \frac{-1}{(x + h - 1)(x - 1)}$$

$$= \frac{-1}{(x - 1)(x - 1)}$$

$$= \frac{-1}{(x - 1)^2}$$

Example

Find the derivative of $f(x) = x^2$

Solution

$$f(x+h) = (x+h)^{2}$$

$$= x^{2} + 2hx + h^{2}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{x^{2} + 2hx + h^{2} - x^{2}}{h}$$

$$= \lim_{h \to 0} \frac{2hx + h^{2}}{h}$$

$$= \lim_{h \to 0} (2x+h)$$

$$= 2x$$

Example

- a) Find the derivative of $f(x) = \sqrt{x}$ for x > 0
- b) Find the tangent line to the curve $y = \sqrt{x}$ at x = 4

Solution

a)
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h}$$

$$= \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h} \frac{\sqrt{x+h} + \sqrt{x}}{\sqrt{x+h} + \sqrt{x}}$$

$$= \lim_{h \to 0} \frac{x+h-x}{h(\sqrt{x+h} + \sqrt{x})}$$

$$= \lim_{h \to 0} \frac{h}{h(\sqrt{x+h} + \sqrt{x})}$$

$$= \lim_{h \to 0} \frac{1}{\sqrt{x+h} + \sqrt{x}}$$

$$= \frac{1}{\sqrt{x} + \sqrt{x}}$$

$$= \frac{1}{2\sqrt{x}}$$

b) The slope of the curve at x = 4 is: $f'(4) = \frac{1}{2\sqrt{4}} = \frac{1}{4}$

The tangent is the line through the point (4, 2) with slope $\frac{1}{4}$:

$$y-2=\frac{1}{4}(x-4)$$

$$y = \frac{1}{4}x - 1 + 2$$

$$y = \frac{1}{4}x + 1$$

Graphing

- \checkmark The rate of change of f is positive, negative, or zero
- \checkmark The rough size of the growth rate at any x and its size in relation to the size of f(x)
- ✓ Where the rate of change itself is increasing or decreasing.

Differentiable Functions Are Continuous

A function is continuous at every point where it has a derivative.

Theorem – Differentiability Implies Continuity

If f has a derivative at x = c, then f is continuous at x = c

Proof

Given that f'(c) exists, we must show that $\lim_{x\to c} f(x) = f(c)$, or equivalently, that

$$\lim_{h\to 0} f(c+h) = f(c)$$
. If $h \neq 0$, then

$$f(c+h) = f(c) + (f(c+h) - f(c))$$
$$= f(c) + \frac{f(c+h) - f(c)}{h} \cdot h$$

Take the limits as $h \to 0$.

$$\lim_{h \to 0} f(c+h) = \lim_{h \to 0} f(c) + \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} \cdot \lim_{h \to 0} h$$
$$= f(c) + f'(c) \cdot 0$$
$$= f(c)$$

Summary

The following are all interpretations for the limit of the difference quotient, $\lim_{h\to 0} \frac{f\left(x_0+h\right)-f\left(x_0\right)}{h}$

7

- **1.** The slope of the graph of y = f(x) @ $x = x_0$
- **2.** The slope of the tangent to the curve y = f(x) @ $x = x_0$
- **3.** The rate of change of f(x) with respect to $x @ x = x_0$
- **4.** The derivative $f'(x_0)$ at a point

Exercises Section 2.1 – Introducing the Derivative

Use the definition of the derivative to determine the slope of the curve y = f(x). Find an equation of the line tangent to the curve y = f(x) at P; then graph the curve and the tangent line.

1.
$$y = 4 - x^2$$
; $P(-1, 3)$

5.
$$f(x) = 4x^2 - 7x + 5$$
; $P(2, 7)$

2.
$$y = \frac{1}{x^2}$$
; $P(-1, 1)$

6.
$$f(x) = 5x^3 + x$$
; $P(1, 6)$

3.
$$f(x) = 2\sqrt{x}$$
; $P(1, 2)$

7.
$$f(x) = \frac{x+3}{2x+1}$$
; $P(0, 3)$

4.
$$f(x) = x^3 + 3x$$
; $P(1, 4)$

8.
$$f(x) = \frac{1}{2\sqrt{3x+1}}$$
; $P(0, \frac{1}{2})$

9. Find the slope of the curve
$$y = 1 - x^2$$
 at the point $x = 2$

10. Find the slope of the curve
$$y = \frac{1}{x-1}$$
 at the point $x = 3$

11. Find the slope of the curve
$$y = \frac{x-1}{x+1}$$
 at the point $x = 0$

12. Find equations of all lines having slope –1 that are tangent to the curve
$$y = \frac{1}{x-1}$$

13. What is the rate of change of the area of a circle
$$(A = \pi r^2)$$
 with respect to the radius when the radius is $r = 3$?

14. Find the slope of the tangent to the curve
$$y = \frac{1}{\sqrt{x}}$$
 at the point where $x = 4$

15. Find the values of the derivatives of the function
$$f(x) = 4 - x^2$$
. Then find the values of $f'(-3)$, $f'(0)$, $f'(1)$

16. Find the values of the derivatives of the function
$$r(s) = \sqrt{2s+1}$$
. Then find the values of $r'(0)$, $r'(\frac{1}{2})$, $r'(1)$

17. Find the derivative of
$$f(x) = 3x^2 - 2x$$

18. Find the derivative of y with the respect to t for the function
$$y = \frac{4}{t}$$

19. Find the derivative of
$$\frac{dy}{dx}$$
 if $y = 2x^3$

20. Find the equation of the tangent line to
$$f(x) = x^2 + 1$$
 that is parallel to $2x + y = 0$

- **21.** Differentiate the function $y = \frac{x+3}{1-x}$ and find the slope of the tangent line at the given value of the independent variable.
- 22. Use the definition of limits to find the derivative: $f(x) = \frac{3}{\sqrt{x}}$
- 23. Use the definition of limits to find the derivative: $f(x) = \sqrt{x+2}$
- **24.** Suppose the height *s* of an object (in *m*) above the ground after *t* seconds is approximated by the function $s = -4.9t^2 + 25t + 1$
 - a) Make a table showing the average velocities of the object from time t = 1 to t = 1 + h, for h = 0.01, 0.001, 0.0001, and 0.00001.
 - **b**) Use the table in part (a) to estimate the instantaneous velocity of the object at t = 1.
 - c) Use limits to verify your estimate in part (b).
- **25.** Suppose the following graph represents the number of bacteria in a culture *t* hours after the start of an experiment.

- a) At approximately what time is the instantaneous growth rate the greatest, for $0 \le t \le 36$? Estimate the growth rate at this time.
- **b**) At approximately what time is the instantaneous growth rate the least, for $0 \le t \le 36$? Estimate the growth rate at this time.
- c) What is the average growth rate over the interval $0 \le t \le 36$?