Chapter 2 Exercises

Campinghedgehog

July 16, 2023

P 1 2.4

- (a) Suppose M is a set and d, d' are two different metrics on M. Prove that d and d' generate the same topology on M if and only if the following condition is satisfied: for every $x \in M$ and every r > 0, there exist positive numbers r_1 and r_2 such that $B_{r_1}^{(d')}(x) \subseteq B_r^{(d)}(x)$ and $B_{r_2}^{(d)}(x) \subset B_r^{(d')}(x)$
- (b) Let (M, d) be a metric space, let c be a positive real number, and define a new metric d' on M by $d'(x, y) = c \cdot d(x, y)$. Prove that d and d' generate the same topology on M.
- (c) Define a metric d' on \mathbb{R}^n by $d'(x,y) = max\{|x_1 y_1|, \dots, |x_n y_n|\}$. Show that the Euclidean metric and d' generate the same topology.
- (d) Let X be any set, and let d be the discrete metric on X. Show that d generates the discrete topology.
- (e) Show that the discrete metric and the Euclidian metric generate the same topology on the set $\mathbb Z$ of integers.

(sol) 1.1

- (a) Assume d, d' generate the same topology. Then $r_1 = r_2 = r$ works.
- Conversely assume the condition holds. We want to show that an open set with respect to d is also open in d' and vice versa. Let U be open in d. Let $B_r^d \subseteq U$ be open. Then from the hypothesis there exists an r_1 such that $B_{r_1}^{(d')}(x) \subseteq B_r^{(d)}(x)$. This applies to all points in U, so it is a union of open balls wrt to d', thus U is open in d'. The converse follows similarly.
- (b) For every open ball with radius r in d' just divide by c for the radius in d and vice versa.
- (c) Exercise B.1 implies there exists a constant $c \leq \sqrt(n)$ such that $d'(x,y) = c \cdot |x-y|$. So part b implies the result.
- (d) Any subset can be formed since all distances are 1.
- (e) The Euclidian metric on the integers yields open balls containing just the integer itself. So for any set, the union of all the singletons containing the integer elements is open.

P 2 2.9

Let X be a topological space and let $A \subseteq X$ be any subset.

- (c) A point is in ∂A if and only if every neighborhood of it contains both at point of A and a point of $X \setminus A$.
- (d) A point is in \overline{A} if and only if every neighborhood of it contains a point of A. (e)

(sol) 2.1

(c) Let $x \in \partial A$ and U be an open neighborhood of x. If $U \cap A = \emptyset$ then U is in the exterior of A and so is x so $x \notin \partial A$. The same goes for $X \setminus A$.

Similarly if a neighborhood of x is contained in either Int A or Ext A, then the neighborhood is completely contained in it, which is disjoint from ∂A .

(d) \overline{A} is either the interior of A or the boundary A both of which every neighborhood contains a point of A.

()

P 3 2.18

Prove parts (a)-(c) of Proposition 2.17

(sol) 3.1

- (a) Singleton is closed, and the domain, i.e. the whole of X is also closed.
- (b) trivial
- (c) Open subset of X inherits the topology of X, so the restriction is also continuous.

P 4

(sol) 4.1