Clase 17 - Análisis Matemático 1 - LC: Análisis de funciones II

Eugenia Díaz-Giménez

eugenia.diaz@unc.edu.ar

15 de Mayo de 2020

Índice

- 1 Repaso
- 2 Teorema de Rolle y del valor medio
 - Enunciados
- 3 Crecimiento y Decrecimiento
 - Funciones Crecientes y decrecientes
 - Ejemplos
- 4 Concavidad y Convexidad
 - Funciones Cóncavas y Convexas
 - Concavidad y Convexidad de una función
 - Ejemplos

Repaso definiciones

Extremos Absolutos

- Una función f tiene un máximo absoluto en un punto c de su dominio si f(c) ≥ f(x) para todo x en el dominio de f. El punto c se llama punto de máximo de f, y f(c) se llama valor máximo de f
- Una función f tiene un mínimo absoluto en un punto c de su dominio si f(c) ≤ f(x) para todo x en el dominio de f. El punto c se llama punto de mínimo de f, y f(c) se llama valor mínimo de f

Extremos Locales

- Una función f tiene un máximo local en un punto c de su dominio si hay un intervalo Abierto \mathbb{I} que continene a c tal que $f(c) \geq f(x)$ para todo $x \in \mathbb{I}$. El punto c se llama punto de máximo local de f.
- Una función f tiene un mínimo local en un punto d de su dominio si hay un intervalo abierto \mathbb{J} que contiene a d tal que $f(d) \leq f(x)$ para todo $x \in \mathbb{J}$. El punto d se llama punto de mínimo local de f

Teorema de Fermat

Si f tiene un extremo (máximo o mínimo) local en x=c y si f es derivable en x=c, entonces f'(c)=0

$$si \ x = c$$
es extremo y $\exists f'(c) \Rightarrow f'(c) = 0$

Importante: NO es válido el recíproco: que f'(c) = 0 NO implica que sea extremo

Puntos críticos

Un punto crítico de una función es un número c del dominio de f tal que f'(c)=0 o f'(c) no existe

$$P.C. = \{x \in Dom f \mid f'(x) = 0 \lor \nexists f'(x)\}$$

Extremos en Intervalos CERRADOS

- Verificar continuidad en el intervalo cerrado (Weierstrass)
- 2 Buscar puntos críticos
- 3 Evaluar la función en los extremos del intervalo y en los puntos críticos que caen en el intervalo
- 4 Comparar los valores encontrados y elegir cuál es el máximo y cuál es el mínimo

Teoremas

Teorema de Rolle

Sea f una función tal que

- \blacksquare f es continua en [a, b]
- f es derivable en (a, b)
- f(a) = f(b)

Entonces, existe al menos un valor $c \in (a, b)$ tal que f'(c) = 0

Demostración: llamemos k al valor en los extremos: k = f(a) = f(b)

- Si $f(x) = k \ \forall \ x \in [a, b], f'(x) = 0$ y se cumple la conclusión del téorema
- Si f no es constante, existe $x \in [a,b] / f(x) > k$ o f(x) < k. Por Teo.de Weierstrass: \exists max y min.
 - Sup. f(x) > k: entonces f tendrá un máximo en $c \in (a, b)$. Por Teo. de Fermat:

$$f'(c) = 0$$

• Sup f(x) < k: entonces tendrá un mínimo en $c \in (a,b)$ y por T. de Fermat: f'(c) = 0

Ejemplos que no son ejemplos

Teorema de Rolle

Sea f una función tal que

- f es continua en [a, b]
- 2 f es derivable en (a, b)
- f(a) = f(b)

Entonces, existe al menos un valor $c \in (a, b)$ tal que f'(c) = 0

$$f(x) = \begin{cases} x & si & 0 \le x < 1 \\ 0 & si & x = 1 \end{cases}$$

$$f(0) = 0 = f(1)$$

Calculemos la derivada:

$$f'(x) = 1 \text{ si } 0 < x < 1$$

 $\nexists c \in (0, 1) / f'(c) = 0!$

POR QUÉ NO SE CUMPLE FL TEOREMA???

f NO es continua en [0, 1]

EL TEOREMA? f no es derivable en (-1, 1)

$$\begin{aligned} & [-1,1] & & [-1,1] \\ f(x) &= \sqrt{|x|} = \left\{ \begin{array}{ccc} \sqrt{x} & si & x \geq 0 \\ \sqrt{-x} & si & x < 0 \end{array} \right. & f(x) = x \\ f(-1) &= 1 = f(1) \text{ Cuál es} \\ c &\in (-1,1) / f'(c) = 0? & f'(x) = 1 \ \forall x \in (-1,1) \end{aligned}$$

POR QUÉ NO SE
CUMPLE EL

$$\frac{1}{2}x^{-\frac{1}{2}}$$
 si $x > 0$ TEODEMA?

$$f'(x) = \begin{cases} \frac{1}{2}x^{-\frac{1}{2}} & si & x > 0 \\ \frac{1}{2}(-x)^{-\frac{1}{2}} & si & x < 0 \end{cases}$$

 $f'(c) \neq 0 \text{ si } c \neq 0, y \not\equiv f'(0),$

POR QUÉ NO SE CUMPLE

Teorema del Valor Medio

Teorema del Valor Medio

Sea f una función tal que

- f es continua en el intervalo cerrado [a, b]
- f es derivable en el intervalo abierto (a, b)

Entonces, existe $c \in (a, b)$ tal que la derivada de la función en c es igual a la pendiente de la recta que une los puntos (a, f(a)) y (b, f(b)) (secante):

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

(ver https://www.geogebra.org/m/MhWDzkgD)

Teorema del Valor Medio

Teorema del Valor Medio

Sea f una función tal que

- 1 f es continua en el intervalo cerrado [a, b]
- f es derivable en el intervalo abierto (a, b)

Entonces, existe $c \in (a, b)$ tal que la derivada de la función en c es igual a la pendiente de la recta que une los puntos (a, f(a)) y (b, f(b)) (secante):

$$f'(c) = rac{f(b) - f(a)}{b - a}$$

Demostración: La recta secante es

$$y = m \cdot (x - a) + f(a)$$
 con $m = \frac{f(b) - f(a)}{b - a}$

Sea F(x) = f(x) - y(x) Distancia entre un punto en la curva y un punto en la recta secante

$$F(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a} \cdot (x - a)$$

F(a) = 0 y F(b) = 0 (evaluar o pensar en el gráfico que ambas coinciden en las puntas!)

F(x) es continua en [a, b] y derivable en (a, b) porque f(x) e y(x) lo son.

Por el Teo. de Rolle: $\exists c \in (a, b) / F'(c) = 0$ derivando $F'(x) = f'(x) - \frac{f(b) - f(a)}{b}$

en
$$x = c (T.Rolle) \Rightarrow 0 = f'(c) - \frac{f(b) - f(a)}{b - a}$$
 $f'(c) = \frac{f(b) - f(a)}{b - a}$

Creciente y Decreciente

Función Creciente

Una función f definida en un intervalo $\mathbb I$ se dice creciente sobre $\mathbb I$ si y sólo si $f(x_1) < f(x_2)$ cuando $x_1 < x_2$, con $x_1, x_2 \in \mathbb I$

Función Decreciente

Una función f definida en un intervalo $\mathbb I$ se dice creciente sobre $\mathbb I$ si y sólo si $f(x_1) > f(x_2)$ cuando $x_1 < x_2$, con $x_1, x_2 \in \mathbb I$

f creciente sobre $\mathbb I$ f decreciente sobre $\mathbb I$ Si en un intervalo $\mathbb I$ una función es toda creciente, o toda decreciente, decimos que

f es monótona en I

Crecimiento y Decrecimiento

Teorema

Sea f una función continua en el intervalo cerrado [a,b], y derivable en el intervalo abierto (a,b)

- Si $f'(x) > 0 \ \forall \ x \in (a,b) \Rightarrow f$ es creciente en [a,b]
- Si $f'(x) < 0 \ \forall \ x \in (a,b) \Rightarrow f$ es decreciente en [a,b]

Teorema

Sea f una función continua en el intervalo cerrado [a, b], y derivable en el intervalo abierto (a, b)

- Si $f'(x) > 0 \ \forall \ x \in (a,b) \Rightarrow f$ es creciente en [a,b]
- Si $f'(x) < 0 \ \forall \ x \in (a,b) \Rightarrow f$ es decreciente en [a,b]

Demostración:

Supongamos $f'(x) < 0 \ \forall x \in (a,b)$. Tomemos x_1 y x_2 en [a,b] con $x_1 < x_2$ Entonces, f es continua en $[x_1,x_2]$ y derivable en (x_1,x_2) . Del Teo. del V.M.: $\exists c \in (x_1,x_2)$ tal que

$$f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} \Rightarrow f(x_2) - f(x_1) = \underbrace{(x_2 - x_1)}_{x_2 > x_1 \to x_2 - x_1 > 0} \cdot \underbrace{f'(c)}_{<0}$$

$$f(x_2) - f(x_1) < 0 \Rightarrow f(x_2) < f(x_1)$$

f es decreciente en [a, b]

Funciones Crecientes y decrecientes

Teorema

Sea f una función continua en el intervalo cerrado [a, b], y derivable en el intervalo abierto (a, b)

- Si $f'(x) > 0 \ \forall \ x \in (a,b) \Rightarrow f$ es creciente en [a,b]
- Si $f'(x) < 0 \ \forall \ x \in (a, b) \Rightarrow f$ es decreciente en [a, b]

Corolario

Si f es continua en [a,b] y derivable en (a,b), y existe un punto $c\in(a,b)$ tal que f'(x)>0 a la izquierda de c y f'(x)<0 a la derecha de c, entonces f crece a la izquierda de c, y decrece a la derecha de c, por lo tanto c en un máximo local.

Si f es continua en [a,b] y derivable en (a,b), y existe un punto $c\in(a,b)$ tal que f'(x)<0 a la izquierda de c y f'(x)>0 a la derecha de c, entonces f decrece a la izquierda de c, y crece a la derecha de c, por lo tanto c en un mínimo local.

Determinar en qué intervalos la función es creciente y decreciente. Determinar mínimos y máximos locales y absolutos: $f(x) = x^2 - 2x + 1$ f'(x) = 2x - 2

■ Determinar puntos críticos (f'=0 o $\nexists f'$) y puntos que no pertenecen al dominio de f

$$Dom f = \mathbb{R} \qquad Dom f' = \mathbb{R}$$

$$f'(x) = 0 \Rightarrow 0 = 2x - 2 = 2.(x - 1) \rightarrow \boxed{x = 1} \text{ es P.C.}$$

ubicar sobre la recta real todos los puntos encontrados y definir intervalos

$$\xrightarrow{(-\infty,1)} \xrightarrow{(1,\infty)} x$$

 $(-\infty \ 1) \ | \ v - 1 \ | \ (1 \ \infty)$

		$(\infty,1)$	A — I	$(1, \infty)$
■ Construir tabla y analizar signos de la f′	2	+	+	+
	(x-1)	_	0	+
	f'	_	0	+
	f	decrece		crece
		\		7

- Definir crecimiento y decrecimiento de la f: f decrece $(-\infty, 1)$ y crece en $(1, \infty)$
- Seleccionar mínimos y máximos locales: x = 1 es mínimo local
- Analizar los límites en el infinito para saber si hay max/min absolutos: $\lim_{x \to -\infty} f(x) = \infty$ y

$$\lim_{x\to\infty} f(x) = \infty$$

x=1 es mínimo absoluto, f(1) = 0. No hay máximos.

Determinar en qué intervalos la función es creciente y decreciente. Determinar mínimos y máximos

locales y absolutos:
$$f(x) = 2x\sqrt{3-x}$$
 $f'(x) = 2 \cdot \sqrt{3-x} + 2x \cdot \frac{1}{2}(3-x)^{-\frac{1}{2}} \cdot (-1)$ $= 2\sqrt{3-x} - \frac{x}{\sqrt{3-x}} = \frac{6-3x}{\sqrt{3-x}}$

■ Determinar puntos críticos (f' = 0 o $\nexists f'$) y puntos que no pertenecen al dominio de f:

$$Dom f = \{x \in \mathbb{R} \ / \ 3 - x \ge 0\} = (-\infty, 3]$$
 $Dom f' = (-\infty, 3)$ $x = 3$ es P.C.

$$f'(x) = 0 \Rightarrow 0 = \frac{6 - 3x}{\sqrt{3 - x}} \to 6 - 3x = 0 \to 3(2 - x) = 0' \to \boxed{x = 2}$$
 es P.C.

ubicar sobre la recta real todos los puntos encontrados y definir intervalos

$$\xrightarrow{(-\infty,2)} \xrightarrow{(2,3)} x$$

		$(-\infty, 2)$	x = 2	(2,3)
$^\prime$ analizar signos de la f^\prime	$3 \cdot (2 - x)$	+	0	_
	$\sqrt{3-x}$	+	1	+
	f'	+	0	_
	f	crece		decrece
		7		\searrow

- Definir crecimiento y decrecimiento de la f: f crece $(-\infty, 2)$ y decrece en (2, 3)
- Seleccionar mínimos y máximos locales: x = 2 es máximo local, f(2) = 4
- lacksquare Analizar los límites en el infinito para saber si hay max/min absolutos: $\lim_{x o -\infty} f(x) = -\infty$ y

$$\lim_{x\to 3} f(x) = 0$$

Construir tabla v

Determinar en qué intervalos la función es creciente y decreciente. Determinar mínimos y máximos locales y absolutos: $f(x) = \frac{1}{x-2}$ $f'(x) = -\frac{1}{(x-2)^2}$

- Determinar puntos críticos (f' = 0 o $\nexists f'$) y puntos que no pertenecen al dominio de f: $Dom f = \mathbb{R} \{2\}$ Dom f' = Dom f f'(x) = 0 No hay P.C.
- ubicar sobre la recta real todos los puntos encontrados y definir intervalos

$$\xrightarrow{(-\infty,2)} \xrightarrow{(2,\infty)} x$$

lacksquare Construir tabla y analizar signos de la f'

		$(-\infty,2)$	x=2	$(2, +\infty)$
٠	f'	_		_
	f	decrece		decrece
		×		\searrow

- Definir crecimiento y decrecimiento de la f: f decrece $(-\infty, 2) \cup (2, \infty)$
- Seleccionar mínimos y máximos locales: No tiene
- Analizar los límites en el infinito y las asíntotas verticales para saber si hay max/min absolutos: $\lim_{x \to -\infty} f(x) = 0$ y $\lim_{x \to \infty} f(x) = 0$ $\lim_{x \to 2^-} f(x) = -\infty$ y $\lim_{x \to 2^+} f(x) = +\infty$

No hay máximos ni mínimos absolutos

Resumen

¿Cómo determinar en qué intervalos la función es creciente y decreciente? ¿Cómo determinar mínimos y máximos locales y absolutos?

- Determinar puntos críticos (f' = 0 o $\nexists f'$) y puntos que no pertenecen al dominio de f
- ubicar sobre la recta real todos los puntos encontrados y definir intervalos
- Construir tabla y analizar signos de la f' evaluando los factores en números dentro de cada intervalo
- Definir crecimiento y decrecimiento de la f ($f' > 0 \rightarrow f$ crece, $f' < 0 \rightarrow f$ decrece)
- 5 Seleccionar mínimos y máximos locales (corolario del teorema) √ √ o ✓ √
- 6 Analizar los límites en el infinito (y las asíntotas verticales si hubiera) para saber si hay max/min absolutos

Funciones Cóncavas y Convexas

Si f es creciente:

Funciones conVexas o cóncavas hacia arriba: U

Si f es derivable en un intervalo $\mathbb I$ y la curva de f queda arriba de todas las rectas tangentes a la función en los puntos de ese intervalo, f se dice cóncava hacia arriba

Funciones cónCavas o cóncavas hacia abajo: \(\)

Si f es derivable en un intervalo $\mathbb I$ y la curva de f queda por debajo de todas las rectas tangentes a la función en los puntos de ese intervalo, f se dice cóncava hacia abajo

Concavidad en intervalos

Prueba de concavidad

Si f tiene derivadas segundas en un intervalo \mathbb{I}

- Si $f''(x) > 0 \ \forall \ x \in \mathbb{I}$, entonces f es cóncava hacia arriba en \mathbb{I}
- Si $f''(x) < 0 \ \forall \ x \in \mathbb{I}$, entonces f es cóncava hacia abajo en \mathbb{I}

$$f(x) = x^{3} f'(x) = 3x^{2} f''(x) = 6x$$

$$f''(x) > 0 \Rightarrow 6x > 0 \rightarrow x > 0 f \text{ es } \bigcup$$

$$f''(x) < 0 \Rightarrow 6x < 0 \rightarrow x < 0 f \text{ es } \bigcap$$

Concavidad en intervalos

Prueba de concavidad

Si f tiene derivadas segundas en un intervalo I

- Si $f''(x) > 0 \ \forall \ x \in \mathbb{I}$, entonces f es cóncava hacia arriba en \mathbb{I}
- Si $f''(x) < 0 \ \forall \ x \in \mathbb{I}$, entonces f es cóncava hacia abajo en \mathbb{I}

Punto de inflexión

Sea f continua en \mathbb{I} ; y derivable en \mathbb{I} salvo quizás en un punto x_0 de \mathbb{I} . Si la curva pasa de cóncava hacia arriba a cóncava hacia abajo (o viceversa) en el punto $(x_0, f(x_0))$, entonces x_0 se llama punto de inflexión

ATENCIÓN: los puntos de inflexión NO son los puntos que hacen cero la f''(x).(Tarea: pensa en $f(x) = x^4$)

Determinar intervalos donde f es cóncava hacia arriba y hacia abajo, y dar los puntos de inflexión.

$$f(x) = x^4 - 4x^2 + 1$$
 $f'(x) = 4x^3 - 8x$ $f''(x) = 12x^2 - 8$

 \blacksquare Buscar los puntos que anulan a la f'' y los que no pertenecen al dominio

$$\begin{aligned} & Dom \, f = \mathbb{R} \quad f''(x) = 0 \to 12 x^2 - 8 = 0 \to 12 \left(x^2 - \frac{8}{12} \right) = 0 \to 12 \left(x^2 - \frac{2}{3} \right) = 0 \\ & x_1 = \sqrt{\frac{2}{3}} \text{ y } x_2 = -\sqrt{\frac{2}{3}} \qquad \qquad f''(x) = 12 \left(x - \sqrt{\frac{2}{3}} \right) \left(x + \sqrt{\frac{2}{3}} \right) \end{aligned}$$

ubicar sobre la recta real todos los puntos encontrados y definir intervalos

$$\xrightarrow[-\sqrt{\frac{2}{3}}]{ \left(-\sqrt{\frac{2}{3}},\sqrt{\frac{2}{3}}\right) \quad \left(\sqrt{\frac{2}{3}},\infty\right) \\ -\sqrt{\frac{2}{3}} \quad \sqrt{\frac{2}{3}} \quad x} } x$$

Construir tabla y analizar signos de la f" tomando valores en los intervalos, y decidir sobre la concavidad de f, y los P.I.

	$\left(-\infty,-\sqrt{\frac{2}{3}}\right)$	$x = -\sqrt{\frac{2}{3}}$	$\left(-\sqrt{\frac{2}{3}},\sqrt{\frac{2}{3}}\right)$	$x=\sqrt{\tfrac{2}{3}}$	$\left(\sqrt{\frac{2}{3}},+\infty\right)$
$\left(x-\sqrt{\frac{2}{3}}\right)$	_	_	_	0	+
$\left(x+\sqrt{\frac{2}{3}}\right)$	_	0	+	+	+
f''	+	0	_	0	+
f	U		\cap		U

Máximo y mínimo local - El regreso!

Prueba de la derivada segunda

Si f'' es continua en un intervalo abierto que contiene a c:

- \blacksquare Si f'(c)=0 (c es P.C.) y f''(c)>0 entonces c es mínimo local de f
- Si f'(c) = 0 (c es P.C.) y f''(c) < 0 entonces c es máximo local de f

Atención: si f''(c) = 0 no podemos decir nada, hay que hacer otro análisis. Ejemplo: Encontrar máximos y mínimos locales

$$f(x) = x(x-1)^3$$
 $f'(x) = (x-1)^3 + x \cdot 3(x-1)^2 = (x-1)^2(x-1+3x) = (x-1)^2(4x-1)$

$$f''(x) = 2(x-1)(4x-1) + (x-1)^2 \cdot 4 = 2(x-1)[4x-1+2(x-1)] = 2(x-1)(6x-3)$$

Puntos críticos: $f'(x) = 0 = (x - 1)^2 (4x - 1) \Rightarrow x_c = 1$ y $x_c = \frac{1}{4}$ Prueba derivada 2da:

f''(1) = 0 Entonces no podemos decir nada de $x_c = 1$ $f''(\frac{1}{4}) = \frac{9}{4} > 0$ $x_c = \frac{1}{4}$ es mínimo local.

FIN