HIVE: Evaluating the Human Interpretability of Visual Explanations

Sunnie S. Y. Kim, Nicole Meister, Vikram V. Ramaswamy, Ruth Fong, Olga Russakovsky, Princeton University

Overview

Despite the growth of the interpretability/XAI field,
 evaluating interpretability methods remains a challenge,
 particularly due to the diverse range of proposed explanation types.

Our contributions:

- We present HIVE (Human Interpretability of Visual Explanations), a novel human evaluation framework for visual interpretability methods.
- We demonstrate HIVE's effectiveness and usefulness for evaluating a variety of interpretability methods, and open-source our UI code: https://princetonvisualai.github.io/HIVE/.
- We are the first to investigate the utility of visual explanations in distinguishing correct and incorrect predictions, conduct human studies for interpretable-by-design models, and study how users trade off interpretability and accuracy.

HIVE study design

- HIVE was designed to enable cross-method comparison by evaluating a variety of interpretability methods on a common task.
- For human-centered evaluation, we design these tasks to measure the utility of explanations to human users in AI-assisted decision making scenarios.
- These objective evaluation tasks enable falsifiable hypothesis testing about whether a given method has a certain property.

Evaluation UI examples

UI for ProtoPNet [3] agreement study

UI for GradCAM [1] distinction study

Experimental setup

- We conduct IRB-approved human studies of 4 methods that span the diversity of visual interpretability methods on CUB (birds) and ImageNet (objects) image classification tasks.
- We evaluate each method on the agreement and distinction tasks.
 Each study is completed by 50 participants recruited through
 Amazon Mechanical Turk.
- For each study, we report the mean accuracy and standard deviation of the participants' performance. We also compare the study result to random chance and compute the p-value from a 1-sample t-test.

Key findings

The agreement task results reveal an issue of confirmation bias: Participants tend to believe that a model prediction is correct when given an explanation for it.

CUB	GradCAM [1]	BagNet [2]	ProtoPNet [3]	ProtoTree [4]	
Correct	72.4% ± 21.5%	75.6% ± 23.4%	73.2% ± 24.9%	66.0% ± 33.8%	
Incorrect	32.8% ± 24.3%	42.4% ± 28.7%	46.4% ± 35.9%	37.2% ± 34.4%	
ImageNet	GradCAM [1]	BagNet [2]	 Goal: 100% accuracy, i.e., participants can perfectly identify whether or not a prediction is correct Baseline: 50% accuracy with random guessing 		
Correct	70.8% ± 26.6%	66.0% ± 27.2%			
Incorrect	44.8% ± 31.6%	35.6% ± 26.9%			

■ How to read the numbers: For GradCAM on CUB, participants thought 72.4% of correct predictions were correct and 100 – 32.8 = 67.2% of incorrect predictions were correct.

Key findings (continued)

• The **distinction** task results reveal that participants struggle to identify the correct class based on explanations, especially when the model has made an incorrect prediction.

CUB	GradCAM [1]	BagNet [2]	ProtoPNet [3]	ProtoTree [4]	
Correct	71.2% ± 33.3%	45.6% ± 28.0%	54.5% ± 30.3%	33.8% ± 15.9%	
Incorrect	26.4% ± 19.8%	32.0% ± 20.8%	 Goal: 100% accuracy, i.e., participants can perfectly identify the correct class (the predicted class for the below table) Baseline: 25% accuracy with random guessing 		
ImageNet	GradCAM [1]	BagNet [2]			
Correct	51.2% ± 24.7%	38.4% ± 28.0%			
Incorrect	30.0% ± 22.4%	26.0% ± 18.4%			

- How to read the numbers: For GradCAM on CUB, participants were able to identify the correct class for 71.2% of the correct predictions and 26.4% of the incorrect predictions.
- For GradCAM [1] and BagNet [2], we also ask participants to select the class they think the model predicts (**output prediction** task) and find they struggle to identify the output based on explanations.

Dataset	CUB		ImageNet	
Method	GradCAM [1]	BagNet [2]	GradCAM [1]	BagNet [2]
Correct	69.2% ± 32.3%	50.4% ± 32.8%	48.0% ± 28.3%	46.8% ± 29.0%
Incorrect	53.6% ± 27.0%	30.0% ± 24.1%	35.6% ± 24.1%	34.0% ± 24.1%

- How to read the numbers: For GradCAM on CUB, participants were able to identify
 the class the model predicted for 69.2% of the correct predictions and 53.6% of the
 incorrect predictions.
- For ProtoPNet [3] and ProtoTree [4], we ask participants to rate the similarity of prototype-image pairs and empirically confirm prior work's [4, 5] anecdotal observation that prototype-based models' notion of similarity sometimes doesn't align with that of humans.
- Finally, we study the **interpretability-accuracy tradeoff** participants are willing to make under different risk settings. On average, participants require a baseline model to have +6.2% higher accuracy for low-risk (e.g., scientific or educational purposes), +8.2% for medium-risk (e.g., biodiversity and ecosystem monitoring), and +10.9% for high-risk (e.g., veterinary science or medical diagnosis) settings, to use it over a model with explanations.

Funding acknowledgments

We acknowledge support from NSF Grant 1763642 (OR), Princeton SEAS Howard B. Wentz, Jr.
Junior Faculty Award (OR), Princeton SEAS Project X Fund (RF, OR), Open Philanthropy (RF, OR),
and Princeton SEAS and ECE Senior Thesis Funding (NM).

References

- . Selvaraju et al. "Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization." ICCV 2017.
- 2. Brendel & Bethge. "Approximating CNNs with Bag-of-Local-Features Models Works Surprisingly Well on ImageNet." ICLR 2019.
- 3. Chen*, Li* et al. "This Looks Like That: Deep Learning for Interpretable Image Recognition." NeurIPS 2019.
- 4. Nauta et al. "Neural Prototype Trees for Interpretable Fine-grained Image Recognition." CVPR 2021.
- 5. Hoffmann et al. "This Looks Like That… Does it? Shortcomings of Latent Space Prototype Interpretability in Deep Networks." ICML Workshops 2021.