Groups and linear algebra (SC220) Autumn 2019 In Sem -II Time: 1hr 30 min

Name:
Student I.D.:
Section 1. True/False (2 pts. each)
Print "T" if the statement is true, otherwise print "F". In either case give a justification or a counter example. No points will be awarded for just writing T or F.
The matrix $A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & -1 & 0 \\ 1 & 2 & 3 \end{pmatrix}$ is invertible
Let V be a vector space and $V = U_1 \oplus W$ and $V = U_2 \oplus W$, where U_1, U_2, W are subspaces of V , then it is necessarily true that $U_1 = U_2$
A and B are $n \times n$ matrices. If A is similar to B then A^2 is similar to B^2

In $C[-\pi,\pi]$ the set of vectors $\{\cos^2 x, \sin^2 x, \cos 2x\}$ are linearly independent

____ In the vector space C[-1,1] the subset $W = \{f(x) \in C[-1,1] : f(-1) = -f(1)\}$ is a subspace.

There equation Ax = b where $A = \begin{pmatrix} 1 & 3 & -2 & 0 \\ 2 & 6 & -2 & 4 \\ 0 & 1 & 1 & 3 \end{pmatrix} x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}, b = \begin{pmatrix} 3 \\ 18 \\ 10 \end{pmatrix}$ has infinitely many solutions.

The set of vectors $\{(1, -1, 1, 0), (0, 1, 1, 1), (3, -1, 5, 2)\}$ in \mathbb{R}^4 . is linearly independent.

In $Q_2[x]$ with basis $\{1, x, x^2\}$, the linear transformation that takes T that p(x) to p(x+1) has matrix representation $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$

In
$$M_2(\mathbb{R})$$
 let $U = \left\{ \begin{pmatrix} a & a \\ b & 0 \end{pmatrix} | a, b \in \mathbb{R} \right\}$ and $V = \left\{ \begin{pmatrix} 0 & x \\ y & x \end{pmatrix} | x, y \in \mathbb{R} \right\}$ then $\dim(U + V) = 4$

_____ The two matrices $A=\begin{pmatrix}1&0\\0&0\end{pmatrix}$ and $B=\begin{pmatrix}\frac{1}{2}&-\frac{1}{2}\\-\frac{1}{2}&\frac{1}{2}\end{pmatrix}$ are similar

Section 2. Short Answer (10 pts each)

Answer all problems in as thorough detail as possible.

1. In \mathbb{R}^2 let L be a line that makes an angle θ with the x-axis. Show that the matrix representation of the operator $R_{\theta}: \mathbb{R}^2 \to \mathbb{R}^2$ which is reflection about line L in the standard basis $\{e_1, e_2\}$ is given by $\begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix}$

2. Let $\{e_1, e_2, \dots, e_n\}$ be a basis of a vector space V then show that $\{e_1, e_1 + e_2, e_1 + e_2 + e_3, \dots, e_1 + e_2 + \dots + e_n\}$ is also a basis of V

3. Use Kirchoff's current and voltage laws to find the currents I_1, I_2 and I_3

Figure 1: Electrical Circuit