0.1 曲线和域

定义 0.1 (连续曲线)

所谓**连续曲线**, 是指定义在闭区间 [a,b] 上的一个复值连续函数 $\gamma:[a,b]\to \mathbb{C}$, 写为

$$z = \gamma(t) = x(t) + iy(t), \ a \le t \le b,$$

这里,x(t),y(t) 都是 [a,b] 上的连续函数.

如果用 γ^* 记 γ 的像点所成的集合:

$$\gamma^* = \{ \gamma(t) : a \leqslant t \leqslant b \},$$

那么 γ^* 是 \mathbb{C} 上的紧集. 曲线 γ 的方向就是参数t 增加的方向, 在这个意义下, $\gamma(a)$ 和 $\gamma(b)$ 分别称为 γ 的起点和终点.

如果 $\gamma(a) = \gamma(b)$, 即起点和终点重合, 就称 γ 为**闭曲线**.

如果曲线 γ 仅当 $t_1 = t_2$ 时才有 $\gamma(t_1) = \gamma(t_2)$, 就称 γ 为简单曲线或 **Jordan 曲线**.

如果只有当 $t_1 = a, t_2 = b$ 时才有 $\gamma(t_1) = \gamma(t_2)$, 就称 γ 为简单闭曲线或 **Jordan 闭曲线**, 或简称**围道**.

定义 0.2

设 $z = \gamma(t)(a \le t \le b)$ 是一条曲线. 对区间 [a, b] 作分割 $T: a = t_0 < t_1 < \cdots < t_n = b$, 得到以 $z_k = \gamma(t_k)(k = 0, 1, \cdots, n)$ 为顶点的折线 P, 那么 P 的长度为

$$|P| = \sum_{k=1}^{n} |\gamma(t_k) - \gamma(t_{k-1})|.$$

如果不论如何分割区间 [a,b], 所得折线的长度都是有界的, 就称曲线 γ 是**可求长的**, γ 的长度定义为 |P| 的上确界, 即

$$\sup_{T} \sum_{k=1}^{n} |\gamma(t_k) - \gamma(t_{k-1})|.$$

如果 $\gamma'(t) = x'(t) + iy'(t)$ 存在,且 $\gamma'(t) \neq 0$,那么 γ 在每一点都有切线, $\gamma'(t)$ 就是曲线 γ 在 $\gamma(t)$ 处的切向量,它与正实轴的夹角为 $Arg\gamma'(t)$.如果 $\gamma'(t)$ 是连续函数,那么 γ 的切线随 t 而连续变动,这时称 γ 为**光滑曲线**.在这种情况下, γ 的长度为

$$\int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt = \int_{a}^{b} |\gamma'(t)| dt.$$

曲线 γ 称为**逐段光滑的**, 如果存在 t_0, t_1, \dots, t_n , 使得 $a = t_0 < t_1 < \dots < t_n = b, \gamma$ 在每个参数区间 $[t_{j-1}, t_j]$ 上是光滑的, 在每个分点 t_1, \dots, t_{n-1} 处 γ 的左右导数存在.

定义 0.3

平面点集 E 称为是**连通的**, 如果对任意两个不相交的非空集 E_1 和 E_2 , 满足

$$E = E_1 \cup E_2$$

那么 E_1 必含有 E_2 的极限点, 或者 E_2 必含有 E_1 的极限点. 也就是说, $E_1 \cap \bar{E_2}$ 和 $\bar{E_1} \cap E_2$ 至少有一个非空.

命题 0.1

 \mathbb{C} 中的开集 E 是连通的充分必要条件是 E 不能表示为两个不相交的非空开集的并.

证明 设开集 E 是连通的, 如果存在不相交的非空开集 E_1 和 E_2 , 使得 $E = E_1 \cup E_2$. 由于 E_1 中的点都是 E_1 的内点, E_2 中的点都是 E_2 的内点, 因此 E_1 中没有 E_2 的极限点, E_2 中也没有 E_1 的极限点, 这与 E 的连通性相矛盾. 这就证明了条件的必要性. 反之, 如果开集 E 是不连通的, 则必存在不相交的非空集 E_1 和 E_2 ,使得 $E = E_1 \cup E_2$,且 E_1 中无 E_2 的极限点, E_2 中无 E_1 的极限点. 由此可见, E_1 和 E_2 均为开集. 这就证明了条件的充分性.

定理 0.1

平面上的非空开集 E 是连通的充分必要条件是:E 中任意两点可用位于 E 中的折线连接起来.

证明 先证必要性. 设 E 是平面上一个非空的连通的开集, 任取 $a \in E$, 定义 E 的子集 E_1,E_2 如下:

 $E_1 = \{z \in E : z \neq a \in E : z \neq a \in E \in E : z \neq$

 $E_2 = \{z \in E : z \, \pi a \, \text{不能用位于} E \, \text{中的折线连接} \}.$

显然, $E = E_1 \cup E_2$,而且 $E_1 \cap E_2 = \varnothing$. 现在证明 E_1 和 E_2 都是开集. 任取 $z_0 \in E_1$,因 E 是开集,故必有 z_0 的 邻域 $B(z_0,\delta) \subset E$. 这一邻域中的所有点当然可用一条线段与 z_0 相连,因而可用位于 E 中的折线与 a 相连,即 $B(z_0,\delta) \subset E_1$,所以 E_1 是开集. 再任取 $z_0' \in E_2$,则必有 z_0' 的邻域 $B(z_0',\delta') \subset E$,如果此邻域中有一点能用一条折线与 a 点相连,那么 z_0' 能用线段与该点相连,因而 z_0' 能用折线与 a 点相连,这与 z_0' 的定义矛盾. 因而 $B(z_0',\delta') \subset E_2$,即 E_2 也是开集. 由 E 的连通性知道, E_1,E_2 中必有一个是空集. 由于 E_2 是空集. 因而 E 中所有点都能用折线与 E_2 相连,而 E 中任意两点可以用经过 E_2 的折线相连,这就证明了必要性.

再证条件的充分性. 如果存在两个不相交的非空开集 E_1 , E_2 , 使得 $E=E_1\cup E_2$. 任取 $z_1\in E_1$, $z_2\in E_2$, 由假定, 这两点可用 E 中的折线连接, 因而折线中必有一条线段把 E_1 中的一点与 E_2 中的一点连接起来. 不妨设这条线段连接的就是 z_1 和 z_2 , 该线段的参数表示为

$$z = z_1 + t(z_2 - z_1),$$

其中,t ∈ [0,1]. 今设

$$T_1 = \{t \in (0,1) : z_1 + t(z_2 - z_1) \in E_1\},\$$

$$T_2 = \{t \in (0,1) : z_1 + t(z_2 - z_1) \in E_2\}.$$

则 T_1,T_2 是非空的不相交的开集, 而且 $T_1 \cup T_2 = (0,1)$, 这与区间的连通性相矛盾.

定义 0.4

非空的连通开集称为域.

Ŷ 笔记 从定理 0.1知道, 域中任意两点必可用位于域中的折线连接起来.

从几何上来看,一个域就是平面上连成一片的开集.例如,单位圆的内部、上半平面、下半平面等都是域的例子.

定理 0.2 (Jordan 定理)

一条简单闭曲线 γ 把复平面分成两个域, 其中一个是有界的, 称为 γ 的**内部**; 另一个是无界的, 称为 γ 的**外 部**, 而 γ 是这两个域的共同的边界.

证明

定义 0.5

域 D 称为是**单连通的**, 如果 D 内任意简单闭曲线的内部仍在 D 内. 不是单连通的域称为是**多连通的**.

定义 0.6

如果域D是由n条简单闭曲线围成的,就称D是n连通的,简单闭曲线中也可以有退化成一条简单曲线或一点的.

2

例题 0.1 单位圆盘是单连通的, 圆环 $\{z:1<|z|<2\}$ 是二连通的, 除去圆心的单位圆盘也是二连通的, 除去圆心和 线段 $\left[\frac{1}{2},\frac{2}{3}\right]$ 的单位圆盘则是一个三连通域.