EEDG/CE 6303: Testing and Testable Design

Mehrdad Nourani

Dept. of ECE Univ. of Texas at Dallas

Session 05

Acceleration Heuristics for Test Generation

Fault Analysis System (Review)

Fault Sampling (A Statistical Method for Fault Simulation)

Basic Idea

- A randomly selected subset (sample) of faults is simulated.
- Measured coverage in the sample is used to estimate fault coverage in the entire circuit.
- Advantage: Saving in computing resources (CPU time and memory.)
- Disadvantage: Limited data on undetected faults.

Motivation for Sampling

- Complexity of fault simulation depends on:
 - Number of gates
 - Number of faults
 - Number of vectors
- Complexity of fault simulation with fault sampling depends on:
 - Number of gates
 - Number of vectors

Random Sampling Model

All faults with a fixed but unknown coverage

$$N_p$$
 = total number of faults (population size)

$$N_s$$
 = sample size $N_s << N_p$

c = sample coverage(a random variable - 0≤c≤1)

- The challenge is to sample enough such that
 - You save time compared to simulating all faults and
 - c (estimated fault coverage) is close to C (real fault coverage).

Key Parameters

- N_p: Total number of faults in the circuit for which coverage is to be determined
- C: Unknown but true fault coverage of given vectors,
 0≤ C≤1. This is the quantity being estimated.
- CN_p: Actual (but unknown) number of faults detectable by the given vectors.
- N_s : Number of randomly sampled faults from the set of N_p faults. N_s is known and normally $N_s << N_p$.
- c: Sample coverage, a random variable with range, 0≤c≤1.
- x: Value of c determined from sample fault simulation, 0≤x≤1.
- xN_s: Number of sampled faults detected by given vectors. This is a known quantity that is determined by the fault simulator.

Probabilistic Analysis

Using the key parameters:

Ways of obtaining sample of size
$$N_s = \binom{N_p}{N_s!} = \frac{N_p!}{N_s!(N_p - N_s)!}$$
 Number of ways to choose detectable faults

Ways of obtaining sample coverage
$$x = \binom{CN_p}{xN_s} \cdot \binom{(1-C)N_p}{(1-x)N_s}$$
 Number of ways to choose undetectable faults

$$p(x) = \text{Pr } ob \text{ (sample coverage, } c = x\text{)} = \frac{\binom{CN_p}{xN_s} \cdot \binom{(1-C)N_p}{(1-x)N_s}}{\binom{N_p}{N_s}}$$

• This is known as the **hypergeometric** probability density function of a discrete-valued random variable. The random variable c can take discrete values $0,1/N_s,2/N_s,...,1$. When N_s is large, c can be treated as a continuous variable and the above p(x) can be approximated by a **Gaussian (normal)** probability density function with mean E(c)=C and variance σ^2 :

$$p(x) = \text{Pr} \, ob(x \le c \le x + dx) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-C)^2}{2\sigma^2}}$$

Probability Density of Sample Coverage

$$p(x) = \text{Pr} \, ob(x \le c \le x + dx) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-C)^2}{2\sigma^2}}$$

Probability that the sampled fault coverage stays within a limit

Sampling Error

The variance of c can be determined as:

$$\sigma^2 = \frac{C(1-C)}{N_s} (1 - \frac{N_s}{N_p}) \approx \frac{C(1-C)}{N_s}$$

 The sampling error is defined as |x-C| and its high confidence (0.997 probability) can be determined by limiting it to 3σ . $|x-C|=3\sigma$

$$=3\sqrt{\frac{C(1-C)}{N_s}}$$

For sampling error $\lambda \sigma$ in general (instead of 3σ) solve this quadratic equation for C: $(x-C)^2 = \lambda^2 \frac{C(1-C)}{N_s}$

$$(x-C)^2 = \lambda^2 \frac{C(1-C)}{N}$$

When $\lambda=3$, using approximation of $N_s \ge 1000$

$$3\sigma$$
 coverage estimate = $C_{3\sigma} = x \pm \frac{4.5}{N_s} \sqrt{1 + 0.44 N_s x (1 - x)}$

Example I

- A circuit with 39,096 faults has an actual fault coverage of C=87.1%. This is found by an accurate fault simulation in 94sec CPU time.
- The measured coverage in a random sample of $N_s=1,000$ faults is x=88.7%.
- CPU time for sample simulation was 11sec, i.e. about 10% of that for all faults.
- The $C_{3\sigma}$ formula gives an estimate of $-88.7\% \pm 3\%$.

Example II

 For the same circuit with 39,096 faults, suppose we want the 3σ sampling error not to exceed $\pm \Delta$

$$\Delta^2 = \frac{4.5^2}{N_s^2} (1 + 0.44 N_s x (1 - x)) \approx \frac{4.5^2}{N_s} 0.44 x (1 - x)$$

 The sample size is assumed to be large. Since maximum value of x(1-x) is 0.25 which occurs at x=0.5, we get: $N_s = \frac{4.5^2 \times 0.44 \times 0.25}{\Lambda^2} = \frac{2.2275}{\Delta^2}$

$$N_s = \frac{4.5^2 \times 0.44 \times 0.25}{\Delta^2} = \frac{2.2275}{\Delta^2}$$

- For Δ =0.02, we obtain N_s=5,569, that is the sample size for the worst case. If x=0.90, then $C_{\Lambda} = C_{0.02} = 0.90 \pm 0.02$.
- If x=0.90, the 3σ range will be $C_{3\sigma}=0.90\pm0.012$.