

UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA FACULTAD DE INGENIERÍA LABORATORIO DE HIDRÁULICA

PRÁCTICA 6. AFORO EN DESCARGA HORIZONTAL

	Integrantes	Matricula
Grupo:		
Equipo:		
Fecha:		
Maestro:		
Calificación:		

Aforo con tubería totalmente llena					
	1	2	3	Diagrama	
Viscosidad cinemática (v):				- ×	
Área (A):					
Distancia en 🗴 :					
Distancia en y :					
Diámetro (D):					
Gasto (Q) :					
Velocidad (V):					
Numero de Reynolds (Re):					

Aforo con tubería parcialmente llena						
	1	2	3			
Viscosidad cinemática (v):						
Área total (At):						
Diámetro (D):				d		
Tirante de agua (H):				Ah		
Aángulo en radianes (🖰):				θ		
Perimetro mojado (Pm):						
Área parcial (Ah):				S		
Radio hidráulico (Rh):				(2H)		
Gasto e tubo lleno (Qu):				$\theta = 2 \cos^{-1} \left(1 - \frac{2H}{D} \right)$		
Gasto (Q):				\ /		
Velocidad (V):				$A = \frac{(\theta - \sin \theta)D^2}{8}$ $S = Pm = \theta R$ Nota: Manejar los datos en radianes		
Numero de Reynolds (Re):				Nota: Manejar los datos en radianes		

	Formulario	
Caudal a tubo lleno:	$Q = \frac{\pi d^2 x}{4} \sqrt{\frac{g}{2y}}$ Caudal a tubo parcialmente lleno:	$Q=rac{A_h}{A_t}Q_u$ Área de un semicirculo:
Para un conducto	Pac — Vd Para un conducto no	$4VR_h$

	$R\rho = \frac{vu}{}$	T did dil colladeto llo	$D_{\alpha} -$	
cilíndrico:	Re – _v	cilíndrico:	NC —	v

Conclusión			