

Assignment 2

Diabetes Prediction using Decision Tree and Random Forest

Bao-Hsuan Huang
Po-Chih Kuo

Introduction

- Diabetes mellitus is a common chronic disease, and it may cause many complications. According to statistics, the morbidity of diabetes has been on the rise in recent years.
- In about 20 years, the world's diabetic patients will reach 642 million, which means that one in every ten adults will have diabetes in the future.
- Therefore, in this assignment, we need to analyze the given ICU dataset and predict whether the patient suffers from diabetes.

Dataset

- GOSSIS dataset (The Global Open-Source Severity of Illness Score)
- **Real** Data
 - The real data collected by GOSSIS consortium
 - A database contains a large amount of critical care data from many different intensive care units (ICUs) worldwide
- Basic Part: We extract 30 cases with 9 attributes and 1 label ('diabetes_mellitus')
- Advanced Part: We extract 8379 cases with 24 attributes and 1 label

Goal

- Implement a decision tree with GOSSIS dataset
- Implement a random forest by using your decision tree model
- Predict the patients' diabetes ('diabetes_mellitus') from real data
- Fine-tune the model for better performance

Grading Policy

Item	Score
Basic Implementation (Decision Tree)	60%
Advanced Implementation (Random Forest)	35%
Report	5%

Basic Implementation (60%)

- Given information on several patients and whether they have diabetes
- Build a decision tree in following steps with diabetes detection dataset
 - Step 1 : calculate the entropy (10%)
 - Step 2 : calculate the information gain (10%)
 - Step 3 : search for the best split (10%)
 - Step 4 : split data into 2 branches (10%)
 - Step 5 : build the decision tree (10%)
 - Step 6: make predictions by decision tree (10%)
- Please use hw2_input_basic.csv as your input data
- You don't need to use hw2_input_test.csv in the basic part
- Please save your answer in hw2_basic.csv

Advanced Implementation (35%)

- Build a random forest by using at least 3 decision trees
- Please use hw2_input_advanced.csv as the input data
- Please use hw2_input_test.csv as the test data and make the predictions
- Make predictions with the test data
 - Please save the predictions in hw2_advanced.csv

Advanced Grading Policy

- Make predictions with Random Forest on the test data in hw2_input_test.csv
- Baseline 20%
 - F1-Score >= 0.55
- Ranking 15%
 - We will calculate F1-Score to compete with the whole class

You will have the following items

- Template: hw2.ipynb
- Input file:
 - hw2_input_basic.csv
 - hw2_input_advanced.csv
 - hw2_input_test.csv (without label data)
- Sample output file :
 - sample_basic.csv
 - sample_advanced.csv

Template

- You must use the given file
 hw2.ipynb to build the model
- Except for the imported packages in the template, you cannot use any other packages

HW2: Decision Tree and Random Forest

In assignment 2, you need to finish:

- 1. Basic Part: Implement a Decision Tree model and predict whether the patients in the validation set have diabetes
 - Step 1 : Load the input data
 - Step 2 : Calculate the Entropy and Information Gain
 - Step 3 : Find the Best Split
 - Step 4 : Split into 2 branches
 - o Step 5: Build decision tree
 - Step 6 : Save the answers from step2 to step5
 - o Step 7: Split data into training set and validation set
 - o Step 8: Train a decision tree model with training set
 - $\circ~$ Step 9 : Predict the cases in the \emph{validation} set by using the model trained in Step8
 - $\circ~$ Step 10 : Calculate the f1-score of your predictions in Step9
 - o Step 11: Write the Output File
- 2. Advanced Part: Build a Random Forest model to make predictions
 - o Step 1 : Load the input data
 - o Step 2 : Load the test data
 - Step 3 : Build a random forest
 - o Step 4: Predict the cases in the test data by using the model trained in Step3
 - \circ Step 5 : Save the predictions(from Step 4) in a csv file

Basic Input File Format

- Named "hw2_input_basic.csv"
 - 30 instances in total
 - Each instance has 9 features and 1 class label

9 features	Class	labe
------------	-------	------

age	bmi	gender	height	weight	glucose_apache	heart_rate_apache	resprate_apache	sodium_apache	diabetes_mellitus
70	25.98465933	1	172.7	77.5	116	101	49	137	0
30	31.31036825	1	170.2	90.7	71	39	33	144	0
54	24.38882429	1	177.8	77.1	120	120	31	141	0
65	34.14107409	0	170.2	98.9	73	48	36	140	1
49	22.56474287	1	172.7	67.3	207	119	6	144	0
62	29.42401041	0	154.9	70.6	113	60	32	137	0
85	27.67357353	1	154.9	66.4	102	49	36	142	0
65	22.26943229	1	177.8	70.4	333	59	6	145	1

Advanced Input File Format

- Named "hw2_input_advanced.csv"
 - 8379 instances in total
 - Each instance has 24 features and 1 class label

				7			
age	bmi	gender	height		apache_4a_hospital	apache_4a_icu_de	a diabetes_mellitus
	72 35.02716161	1	188		0.2	0.12	2
	68 23.99402733	1	180.3		0.05	0.02	2
	54 29.56654595	5 1	188		0.06	0.04	i e
	42 16.26190759	1	182.9	•••••	0.01	C)
	82 24.01776785	5 0	162.6		0.07	0.03	3
	42 33.26036394	1	172.7		0.02	0.01	
	73 28.12148481	1	177.8		0.02	0.01	i e
	64 27.36810207	0	165.1		0.42	0.31	i

Advanced Input Test File Format

- Named "hw2_input_test.csv"
 - 840 instances in total
 - Each instance has 24 features
 - Without class label

24 features

age	bmi	gender	height
62	32.86639226	1	177.8
82	23.58276644	0	157.5
61	31.68452008	1	172.7
58	45.15625	0	160
74	25.81701636	1	172.7
19	22.95871667	0	162.6
45	28.11651131	0	162.56

ventilated_apache	wbc_apache	apache_4a_hospital	apache_4a_icu_dea
0	4.56	0.06	0.03
0	6	0.14	0.06
0	8.59	0.05	0.03
1	16.03	0.33	0.22
0	45.8	0.12	0.05
0	10.6	0.01	0
0	5.6	0.01	0

Basic Output File Format

- Named as hw2_basic.csv
- There should be (7+2n) rows in your csv file:

row number	description	variable
Row 1	entropy	'ans_entropy'
Row 2	information gain	'ans_informationGain'
Row 3~5	best split information gain, value, feature	'ans_ig', 'ans_value', 'ans_name'
Row 6	number of instances in the left subtree	'ans_left'
Row 7 ~ $7+(n-1)$	n features you used	'ans_features'
Row 7+n, 7+(2n-1)	the threshold corresponding to each feature	'ans_thresholds'
Row 7+2n	F1-score	'ans_f1score'

Basic Output File Format

Example:

- Please make sure that your output format is correct
 - You can refer to the output format of sample_basic.csv

Advanced Output File Format

- Named as hw2_advanced.csv
- y_test contains 840 instances
- There should be 840 rows in your csv file
 - Without header
 - Your prediction answer should be either 0 or 1
- Please make sure that your output format is correct
 - You can refer to the output format of sample_advanced.csv

1	0
2	0
3	0
4	1
5	1
6	1
7	0
8	0
9	0
10	1
11	1
12	0
13	0
14	1

Report

- Named as "hw2_report.pdf"
- Briefly describe the attributes setting of the random forest model (2%), including:
 - The number of trees you used
 - The number of features you used
 - The number of instances you used to build each tree
 - (optional) any other settings
- Briefly describe the difficulty you encountered (1%)
- Summarize how you solve the difficulty and your reflections (2%)
- No more than one page

Assignment 2 Requirement

- Do it individually! Not as a team! (The team is for final project)
- Announce date: 2022/10/20
- Deadline: 2022/11/2 23:59 (Late submission is not allowed!)
- Hand in your files in the following format (Do not compressed!)
 - hw2_basic.csv
 - hw2_advanced.csv
 - hw2.ipynb
 - hw2_report.pdf
- Assignment 2 would be covered on the exam next time

The Evaluation Metric

• F1-score

$$F1$$
-score = $2 \times \frac{(Precision \times Recall)}{(Precision + Recall)}$

- For example
 - The class you predicted:

$$\hat{y} = [1, 1, 0, 0, 0, 0, 1]$$

- Actual values:

$$y = [0, 0, 0, 0, 0, 1, 1]$$

- F1-score = 0.4

		Actual/True value		
		positive	negative	
d value	positive	TP	FP	
Predicted value	negative	FN	TN	

		Actual/True value		
		positive	negative	
d value	positive	TP	FP	
Predicted value	negative	FN	TN	

Penalty

- 0 points if any of the following conditions happened
 - Plagiarism
 - Late submission
 - Not using a template or importing any other packages in this assignment
 - Incorrect prediction format
 - Incorrect submission format

Questions?

- TA: Bao-Hsuan Huang (thebhhuang@gmail.com)
- Do not ask for debugging.

