

Curso de Python

26/01/2021

https://github.com/tsbressan/CursoPython

Editor

Jupyter Notebook

Funcionamento:

- Clicar no ícone: Jupyter Notebook no menu do Anaconda ou via linha de comando: >> jupyter notebook
- É Executado por um navegador (como um servidor web local).

http://localhost:8888

<u>Files</u> = Lista dos arquivos no diretório principal

New = novo arquivo Python3

Running = arquivo em aberto (em funcionamento)

Jupyter Notebook

- New / Python3:

Jupyter Notebook

- Menu Insert: Insert line Above or Bellow
- Menu Edit: Delete Cells

Jupyter Notebook

• VARIÁVEIS:

- Utilizada para armazenar alguma "informação" conforme um tipo de dado
- Deve ser inicializada/criada antes de ser utilizada.
- Não existe criação automática de variáveis em Python

Por exemplo:

>>> soma = numero1 + numero2

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: name 'numero1' is not defined

• VARIÁVEIS:

Tipo de dados em Python

- inteiro:

```
a = 123 #decimal a = 017 #Octal inicia em zero
```

a = 0xAF #Hexadecimal inicia em 0x

- Float:

```
a = 0.024
```

- Long: #números inteiros longos

a = 145897896254

• VARIÁVEIS:

Tipo de dados em Python

- bool: #valores booleanos True ou False (Operadores lógicos, and-or)
 a=True

b=False

- None type: #tipo None, ausência de valores, simular a null a=None
- **String(str):** #entre aspas simples, duplas ou triplas.

a="Curso"

• VARIÁVEIS:

EXEMPLOS PRÁTICOS(1):

```
a=2.25 #tipo float
b=55 #tipo inteiro
c=0740 #tipo inteiro octal
e=0xFFAB #tipo inteiro hexadecimal
f="Curso de Python" #tipo string
type(a) #mostra o tipo da variável
```

• VARIÁVEIS:

EXEMPLOS PRÁTICOS(2):

```
meu_nome = "Carlos"
meu_sobrenome = 'Santini'
```

```
print ("Nome: %s, Sobrenome: %s" % (meu_nome.upper(), meu_sobrenome))
print (f'Nome: {meu_nome.upper()}, Sobrenome: {meu_sobrenome}') #Formatted string literals ou f-
print("Nome: {0}, Sobrenome: {1}".format(meu_nome.upper(), meu_sobrenome)) #new-
style string formatting
```

```
print ("Meu nome começa com a letra ", meu_nome[0])
print ("Meu nome começa com a letra ", meu_nome[0].lower())
print ("Meu primeiro nome é ", meu_nome[0:6])
print ("Meu sobrenome é ", meu_sobrenome[0:7])
```

• VARIÁVEIS:

Conversão de tipos em python

```
a = float(21/4)
b = int(4.8)
c = int(4.9)
d = int(0xff500)
e = float(int(3.9))
f = int(float(3.9))
g = int(float(3))
h = round(3.9)
i = round(3)
j = int(round(3.9))
print (a,b,c,d,e,f,g,h,i,j)
```

• VARIÁVEIS:

Palavras reservadas – não utilizar como uma variável:

False	class	finally	is	return
None	continue	for	lambda	try
True	def	from	nonlocal	while
and	del	global	not	with
as	elif	if	or	yield
assert	else	import	pass	
break	except	in	raise	

Código estruturado com função

```
def main(): #função com o nome main()

a = 3

b = 4

soma = a + b

print("A soma de a + b e igual a: ", soma)
```

main() # executa a função

- Cuidar a indentação;
- Revisar aspas, parênteses, pontos, vírgulas,..., programação é revisar o texto várias e várias vezes

Entrada de dados — input()

• Responsável por receber os dados que o usuário fornece via teclado.

```
Formato:
variável = input ("prompt")

Exemplo:
nome = input ("Qual é o seu nome? ")
print ("O seu nome é:", nome)
```

Entrada de dados — input()

```
def main():
      a = input("Digite o primeiro numero: ")
      b = input("Digite o segundo numero: ")
      soma = int(a) + int(b)
      print("A soma de", a, "+", b, "e igual a", soma)
main()
```

Exemplos práticos:

- 1) Operações matemáticas com 2 variáveis
- 2) Operações matemáticas com 3 variáveis
- 3) Operações com String
- 4) Conversão de tipos
- 5) Operações com booleanos
- 6) Operação com String avançado

Estrutura de controle:

 Utilizada para decidir qual bloco de código deve ser executado ou não, através de uma condição lógica em linguagem de programação

• -----

Se estiver chovendo: #expressão verdadeira

Levarei guarda-chuva

Senão: #expressão falsa

Não levarei

• Estrutura de controle:

- Utiliza o bloco de comando se..senão ou se..senãose
- Traduzindo para a linguagem Python: if ...else ou if..elif

Saída:::

>> Número maior que 3

• Estrutura de controle:

```
valor entrada = 10
if valor entrada == 1:
       print("a entrada era 1")
elif valor entrada == 2:
       print("a entrada era 2")
elif valor entrada == 3:
       print("a entrada era 3")
elif valor entrada == 4:
       print("a entrada era 4")
else:
       print("o valor de entrada não era esperado em nenhum if")
```

• Estrutura de controle:

Operadores utilizados na estrutura de controle:

```
== #igual
```

- > #maior
- < #menor
- >= #maior igual
- <= #menor igual
- != #diferente

and-or # operadores lógicos

• Estrutura de controle:

```
Exemplo utilizando função:
def main():
 —→idade= int(input ("Quantos anos voce tem?"))
      if idade \geq 16:
      print ("Você já tem idade para votar.")
      elif idade > 10 and idade < 16:
             print ("Você é adolescente")
      else:
             print("Você ainda é um garoto(a). Aproveite para brincar...")
```

• Estrutura de controle:

```
Exemplo:
def main():
    →Numero1= int(input ("Digite o número 1:"))
      Numero2= int(input ("Digite o Número 2:"))
      if Numero1 > Numero2:
      print ("Primeiro número é maior que o segundo número")
      elif Numero2 > Numero1:
            print ("Segundo número é maior que o primeiro número")
      else:
            print("Os números são iguais")
```

• Estrutura de controle:

Vetor simples unidirecional:

Lista de dados de um mesmo tipo. No <u>Python</u> é possível armazenar em vetor dados de vários 'tipos', a qual chamamos de Lista:

Notas =
$$[5.0, 8.5, 7.8, 9.3]$$

índice: 0 1 2 3

Para acessar, basta indicar a posição (índice) do vetor (iniciando sempre na posição zero)

• Estrutura de controle:

```
Exemplo utilizando vetor simples:
```

```
Numeros = [] #inicio do vetor
def main():
       Numeros.append(input ("Digite o número 1:"))
       Numeros.append(input ("Digite o Número 2:"))
       if Numeros[0] > Numeros[1]:
               print ("Primeiro número é maior que o segundo número")
       elif Numeros[1] > Numeros[0]:
               print ("Segundo número é maior que o primeiro número")
       else:
               print("Os números são iguais")
```

main()

• Estrutura de controle:

Erro comum – acessar posição do vetor que não existe

alunos = ['Andre', 'Lucas', 'Antonio', 'Maria']
print(alunos[4])

• Estrutura de controle:

Mais algumas funções aplicados sobre um vetor de dados:

```
alunos = ['Andre', 'Lucas', 'Antonio', 'Maria']
len (alunos) #tamanho do vetor alunos-4
append() #método responsável por adicionar um novo elemento na próxima posição do vetor
```

Concatenar valores em vetor

```
lista = [1,2,3]
lista = lista + [4]
print (lista)
lista = lista + [4,5,6]
print (lista)
```

• Estrutura de controle:

Mais algumas funções aplicados sobre um vetor de dados:

Multiplicação de vetores (duplicar conteúdo do vetor):

```
lista = [1,2,3]
```

lista * 3 #repete 3x o conteúda a lista

Utilizado para inicializar um vetor com zero. Ex.:

tamanho = 10

lista = [0]

lista * tamanho

• Estrutura de controle:

Exemplos práticos. Armazenar os valores em vetor:

- 1) Escreva um código Python que, dados 2 números diferentes (a e b), encontre o menor e o maior.
- 2) Leia um número e imprima a raiz quadrada do número caso o número seja positivo ou igual a zero.
- 3) Leia dois números e efetue a adição. Caso o valor somado seja maior que 20, este deverá ser apresentado somando-se a ele mais 8; caso o valor somado seja menor ou igual a 20, este deverá ser apresentado subtraindo-se 5.

• Estrutura de controle:

Exemplos práticos. Armazenar os valores em vetor:

4) Faça um algoritmo que leia dois vetores de 3 posições e realize a soma dos valores nas mesmas posições.

5) Faça um algoritmo que leia 3 números float, armazene em vetor e calcule a soma dos valores, a média dos valores

• Estrutura de controle:

Matriz = linha x coluna

O Python não possui em sua estrutura (de forma nativa da linguagem) um tipo de dado matriz.

Como resolver?

- Lista de listas
- Biblioteca Numpy (será visto com detalhes)

• Estrutura de controle:

Matriz = linha x coluna

Lista de listas

>>> m = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]]

Operações: acessar posição, remover item, apagar lista, operações matemáticas.

• Estrutura de controle:

Exemplos práticos – matriz com lista

1) Faça um código Python para criar uma matriz com 3 linhas e 5 colunas. Inicializar com valores aleatórios (tipo float). Realizar a soma dos valores por linha e por coluna. Mostrar os valores.