

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение

высшего образования

« МИРЭА Российский технологический университет»

РТУ МИРЭА

Институт Информационных технологий

Кафедра Вычислительной техники

УЧЕБНОЕ ЗАДАНИЕ

по дисциплине

« Объектно-ориентированное программирование»

Наименование задачи:

« Задание 2_1_3 »

С тудент группы	ИКБО-13-21	Дамарад Д.В.
Руководитель практики	Ассистент	Асадова Ю.С.
Работа представлена	«» 2022 г.	
		(подпись студента)
Оценка		
		(подпись руководителя)

Москва 2022

СОДЕРЖАНИЕ

ВВЕДЕНИЕ
Постановка задачи
Метод решения
Описание алгоритма
Блок-схема алгоритма
Код программы
Тестирование
ЗАКЛЮЧЕНИЕ
СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ (ИСТОЧНИКОВ)

введение

Постановка задачи

Создать объ	ект, которь	ий обрабат:	ывает ма	ссив цель	іх чисел	не более 10
элементов.						
Количество	элементов	определяю	гся в мо	мент кон	струирова	ния объекта.
Объект	обладає	PT	следующ	ей	функцио	ональностью:
- в конструкт	оре считыв	ает значени	е количе	ства элеме	нтов масс	ива, выводит
значение		КОЛ	ичества			элементов;
- сч	итывает	значе	ения	элеме	нтов	массива;
- ВЬ	ыводит	значе	ния	элемеі	НТОВ	массива;
- разворачи	ивает пос	ледователь	ность з	начений	элементо	в массива.
Написать		пр	ограмму	,		которая:
1. Создает об	, оъект и в ко:	нструкторе	считывае	т количест	гво элемен	тов массива;
2.	Считы	вает	Э	лементы		массива;
3. Выводи	т значен	ия элем	ентов і	массива	согласно	исходной
последовател	іьности;					
4.	Разворач	чивает		элементы		массива;
5. Выводит	значения	элементов	массива	согласно	новому	их порядку
следования.						
Описание вх	кодных дан	ных				
Первая			строк	a:		
целое	число	В		десятичн	ОМ	формате.
Вторая			строк	a:		

последовательность целых чисел в десятичном формате разделенных пробелом.

Описание выходных данных

Первая строка:

N = «количество элементов»

Вторая строка (исходный порядок следования элементов): Значения элементов массива, значение каждого элемента занимает 5 позиции, выравнивание по правому краю.

Третья строка (порядок следования элементов после разворота): Значения элементов массива, значение каждого элемента занимает 5 позиции, выравнивание по правому краю.

Метод решения

Для решения поставленной задачи используются:

- Объект стандартного потока вывода cout. Пользуется для вывода на экран.
- Объект arr класса mass. Используется для создания объекта.
- Стандартная функиця swap(), используется для обмена своих аргументов.
- Цикл с параметром for, используется для считывания и вывода на экран значений массива.

Класс mass:

- Поле, отвечающее за размер массива:
 - Наименование N.
 - Тип целочисленный.
 - Модификатор доступа private.
- Поле, отвечающее за массив:
 - Наименование arr.
 - Тип целочисленный динамический массив.
 - Модификатор доступа private.
- Методы:
 - Метод mass
 - Функционал констурктор с целочисленным параметром n размером массива.
 - Метод setArr
 - Функционал инициализация элементов класса.
 - Метод reverseArr
 - Функционал переворот последовательности значений

массива.

- Метод getArr
 - Функционал вывод массива на экран.

Описание алгоритма

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

Функция: main

Функционал: Основной алгоритм программы

Параметры: Без праметров

Возвращаемое значение: Целочисленное значение - код возврата

Алгоритм функции представлен в таблице 1.

Таблица 1. Алгоритм функции main

N₂	Предикат	Действия	№ перехода	Комментарий
1		Объявление целочисленной переменной п	2	
2		Ввод с клавиатуры значения п	3	
3		Вывод на экран "N = "+n+переход на следущую строку	4	
4		Создание объекта arr класса mass и конструирование путем вызова параметризированного конструктора mass с значением переменной п	5	
5		Вызов метода setArr() объекта arr	6	
6		Вызов метода getArr() объекта arr	7	
7		Вызов метода reverseArr() объекта arr	8	
8		Вывод на экран перехода на новую строку	9	

9		Вызов метода getArr() объекта arr	Ø	
---	--	--------------------------------------	---	--

Класс объекта: mass

Модификатор доступа: public

Метод: mass

Функционал: Параметризированный конструктор

Параметры: Целочисленная переменная п - размер массива

Возвращаемое значение: Пустое множество значений

Алгоритм метода представлен в таблице 2.

Таблица 2. Алгоритм метода mass класса mass

N₂	Предикат	Действия	№ перехода	Комментарий
1		Инициализация поля N, принимающего значение параметра п	2	
2		Создание целочисленного динамического массива arr размера N	Ø	

Класс объекта: mass

Модификатор доступа: public

Метод: setArr

Функционал: Инициализация элементов класса

Параметры: Без параметров

Возвращаемое значение: Пустое множество значений

Алгоритм метода представлен в таблице 3.

Таблица 3. Алгоритм метода setArr класса mass

N₂	Предикат	Действия	№ перехода	Комментарий
1		Объявление целочисленной переменной с инициализацией i=0	2	
2	i <n< td=""><td>Ввод с клавиатуры значения arr[i]</td><td>Ø</td><td></td></n<>	Ввод с клавиатуры значения arr[i]	Ø	
			Ø	

Класс объекта: mass

Модификатор доступа: public

Метод: reverseArr

Функционал: Переворот последовательности значений массива

Параметры: Без параметров

Возвращаемое значение: Пустое множество значений

Алгоритм метода представлен в таблице 4.

Таблица 4. Алгоритм метода reverseArr класса mass

N₂	Предикат	Действия	№ перехода	Комментарий
1		Объявление целочисленной переменной с инициализацией i=0	2	
2	i <n 2<="" td=""><td>Используем стандартную функцию swap и меняем значения arr[i] и arr[N-i-1] местами</td><td>Ø</td><td></td></n>	Используем стандартную функцию swap и меняем значения arr[i] и arr[N-i-1] местами	Ø	
			Ø	

Класс объекта: mass

Модификатор доступа: public

Метод: getArr

Функционал: Вывод массива на экран

Параметры: Без параметров

Возвращаемое значение: Без возвращаемого значения

Алгоритм метода представлен в таблице 5.

Таблица 5. Алгоритм метода getArr класса mass

N₂	Предикат	Действия	№ перехода	Комментарий
1		Объявление целочисленной переменной с инициализацией i=0	2	
2	i <n< td=""><td>Вывод на экран значения arr[i]</td><td>Ø</td><td>Каждое значение занимает 5 позиций</td></n<>	Вывод на экран значения arr[i]	Ø	Каждое значение занимает 5 позиций
			Ø	

Блок-схема алгоритма

Представим описание алгоритмов в графическом виде на рисунках ниже.

Рис. 1. Блок-схема алгоритма.

Рис. 2. Блок-схема алгоритма.

Код программы

Программная реализация алгоритмов для решения задачи представлена ниже.

Файл main.cpp

```
#include <stdlib.h>
#include <stdio.h>
#include <iostream>
#include "mass.h"
using namespace std;
int main()
        int n;
        cin >> n;
        cout << "N = " << n << endl;
        mass arr(n);
        arr.setArr();
        arr.getArr();
        arr.reverseArr();
        cout << std::endl;</pre>
        arr.getArr();
        return 0;
}
```

Файл mass.cpp

```
#include <iostream>
#include <iomanip>
#include "mass.h"
using namespace std;
mass::mass(int n) {
         N = n;
         arr = new int[N];
void mass::setArr() {
         for (int i = 0; i < N; i + +) {
                  cin >> arr[i];
         }
void mass::reverseArr() {
     for (int i = 0; i < N/2; i++) {</pre>
                  swap(arr[i], arr[N - i - 1]);
         }
void mass::getArr() {
         for (int i = 0; i < N; i + +) {
                  cout << right << setw(5) << arr[i];</pre>
         }
```

Файл mass.h

```
#ifndef MASS_H
#define MASS_H
class mass {
private:
        int N;
        int* arr;
public:
        mass(int n);
        void setArr();
        void reverseArr();
        void getArr();
};
#endif
```

Тестирование

Результат тестирования программы представлен в следующей таблице.

Входные данные	Ожидаемые выходные данные	Фактические выходные данные
3 35 4 6	N = 3 35 4 6 6 4 35	N = 3 35 4 6 6 4 35
41234	N = 4 1 2 3 4 4 3 2 1	N = 4 1 2 3 4 4 3 2 1

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ (ИСТОЧНИКОВ)

- 1. Васильев А.Н. Объектно-ориентированное программирование на С++. Издательство: Наука и Техника. Санкт-Петербург, 2016г. 543 стр.
- 2. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2017. 624 с.
- 3. Методическое пособие для проведения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratorny h_rabot_3.pdf (дата обращения 05.05.2021).
- 4. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».

обращения 05.05.2021).

6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. — М.: МИРЭА — Российский технологический университет, 2018 — 1 электрон. опт. диск (CD-ROM).