1

Physical World and Measurement

Physics: Scope, Technology and under standing

- In physics we have study mechanial, thermal, electrical, magnetic and optical charcteristics of a body.
- To understand such a property, physics developed mechanics, thermodynamics, electormagnetism, optics and electrodynamics, such like branches.
- Range of physics is from zero to infinite.
- Range of length in physics is from 10^{-14} m (radius of nucleus) to 10^{26} m (length of Galaxy.) Hence ratio of measurement is in order of 10^{40} .
- Range of measurement of time is 10^{-22} s to 10^{18} s.
- Range of mass is from 10^{-30} kg (mass of an electron) to 10^{55} kg (mass of Galaxy).
- There are four type of fundamental forces in nature: (1) Gravitational force (2) Electro magnetic force (3) Weak nuclear force (4) Strong nuclear force.

	(2) Electro magnetic	force (3) Weak nuclear	force (4) Strong n	uclear force.	
(1)	Universe is made of				
	(A) Only radiation	(B) Only matter	(C) Vacuum	(D) Matter and radiation	
(2)	Full name of AFM is				
	(A) Atomic force mirror		(B) Atomic force	(B) Atomic force microscope	
	(C) Atomic fire micros	cope	(D) Automatic f	orce microscope	
(3)	Full name of ESR is				
	(A) Electron spin resonance		(B) Electron spi	n range	
	(C) Electric spin reson	ance	(D) Electric spa	ce radar	
(4)	The range of physics is	s about			
	(A) Zero to infinite	(B) range of nucleus	(C) Earth to sun	(D) near around the earth	
(5)	Physics considered vac	cuum as one			
	(A) Physical Quantity	(B) Physical State	(C) Physical uni	t (D) Infinite	
(6)	is a branch of phys	is a branch of physics related to charge and magnetic field.			
	(A) Mechanics	(B) Electrodynamics	(C) Thermodyna	amics (D) Optics	
(7)	Electromagnetic force is				
	(A) only attractive	(A) only attractive		(B) Attractive and repulsive	
	(C) Only repulsive (D) Short range force			force	
(8)	Strong nuclear force ac	Strong nuclear force acting in the nucleus is between			
	(1) Proton-Proton (2) I	Proton-Neutron (3) Neutr	ron-Neutron (4) Pr	oton-Electron	
	(A) 1, 2, 3	(B) 1, 2, 4	(C) 1, 3, 4	(D) 4	

- (9) During the β -emission, nucleus emits
 - (A) fledition and election (B) fledition and proton (C) fleditino
 - (A) neutron and electron (B) neutron and proton (C) neutrino and electron (D) neutrino and proton
- (10) As space is isotropic, which law of conservation is obtained?
 - (A) Law of conservation of energy
- (B) Law of conservation of charge
- (C) Law of conservation of linear momentum
- (D) Law of conservation of angular momentum
- (11) is responsible for the conservation of linear momentum.
 - (A) Homogenity of a space

(B) Isotropy of a space

(C) Homogenity of time

- (D) Isotropy of time
- (12) If time is homogeneous, which law of conservation is obtained?
 - (A) Law of conservation of energy
- (B) Law of conservation of charge
- (C) Law of conservation of linear momentum
- (D) Law of conservation of angular momentum

- (13) Full name of LHC is
 - (A) Large hedron collider

(B) Large heater collider

(C) Large heater collision

- (D) Large hedron cobalt.
- (14) If the resultant external acting on the system is zero, total linear momentum of the system remains constant.
 - (A) Force
- (B) Torque
- (C) Charge
- (D) Mass

Ans: 1 (D), 2 (B), 3 (A), 4 (A), 5 (B), 6 (B), 7 (B), 8 (A), 9 (C), 10 (D), 11 (A), 12 (A), 13 (A), 14 (A)

Units and Unit systems:

SI unit system:

Fundamental physical	Name of Unit	Symbol
quantity		
Length (l)	metre	m
mass (m)	kilogram	kg
time (t)	second	S
Electric current (I)	Ampere	A
Thermodynamic	Kelvin	K
temperature (T)		
Lumnious Intensity (I)	Candella	cd
Quantity of matter (µ)	Mole	mol

Supplementry Units:

No.	Supplementry	SI Unit	Symbol	Formula
	physical quantity			
1.	Plane angle (θ)	Radian	rad	$\theta = \frac{\text{arc}}{\text{radius}}$
2.	Solid angle (Ω)	Steradian	Sr	$\Omega = \frac{\text{area}}{(\text{radius})^2} = \frac{\Delta A}{r^2}$

(15)	Number of fundament	al units in SI system are	•••••			
	(A) 5	(B) 6	(C) 7	(D) 9		
(16)	Which is not a unit of energy?					
	(A) joule		(B) watt sec			
	(C) newton meter		(D) kilogram-meter/se	c^2		
(17)	Which one have derive	ed unit ?				
	(A) Pressure		(B) quanitity of matter	•		
	(C) mass		(D) Thermodynamic t	emperature		
(18)	KWh is unit of which	physical quantity?				
	(A) Power	(B) momentum	(C) work	(D) Electric potential		
(19)	Unit of modulus of rig	idity is				
	(A) Nm	(B) Nm^{-1}	(C) Nm ⁻²	(D) Nm ²		
(20)	Qurie is unit of which	physical quantity?				
	(A) Energy of γ - ray	(B) radioactivity	(C) Half life	(D) Intensity of radiation		
(21)	SI unit of an angular momentum is					
	(A) kg ms ⁻¹	(B) kg $m^2 s^{-1}$	(C) kg m^{-2} s ⁻¹	(D) kg $m^2 s^{-2}$		
(22)	Which one is supplem	entary unit ?				
	(A) second	(B) Ampere	(C) Candella	(D) Steradian		
(23)	Which one is not a true unit of given physical quantity ?					
	(A) Power: N ms ⁻¹		(B) Torque : N m			
	(C) Pressure: N m ⁻²		(D) Surface tension:	N m ²		
(24)	Parsec is unit of					
	(A) Distance	(B) velocity	(C) time	(D) plane angle		
(25)	Which one is unit of I	ntensity of an electric fiel	ld ?			
	(A) Vm	(B) NC	$(C) Vm^{-1}$	(D) As		
(26)	Which one is not a un	it of time ?				
	(A) second	(B) hour	(C) year	(D) lightyear		
(27)	Which one is not a ph	ysical quanitity?				
	(A) Kelvin	(B) Candella	(C) Volt	(D) All		
(28)	Which physical quanti	ty having same unit in all	the unit system?			
	(A) Length	(B) Time	(C) mass	(D) Work		
(29)	dyne g-1 is a unit of w	which physical quantity?				
	(A) Velocity	(B) mass	(C) Force	(D) Acceleration		
(30)	Which physical quanti	ty from given below is dir	mensionless?			
	(A) Angle	(B) Stress	(C) density	(D) Latent heat		

- (31)Which relation given below is wrong?
 - (A) $1J = 10^7 \text{ erg}$

(B) 1 dyne = 10^5 N

(C) 1 fm = 10^{-15} m

- (D) 1 parsec = 3.08×10^{16} m
- (32)The average distance between sun and earth is called
 - (A) 1 Parsec
- (B) 1 lightyear
- (C) 1 AU
- (D) 1Å

- (33)SI unit of moment of inertia is
 - (A) kg m
- (B) $kg m^{-2}$
- (C) $kg m^2$
- (D) kg cm²

- (34)Which unit is different than other unit?
 - (A) Ws
- (B) KWh
- (C) Js
- (D) eV
- (35)If the units for mass, length and time becomes double, then unit of angular momentum becomes
 - (A) Doubles
- (B) Three times
- (C) Four times
- (D) Eight times

- $\frac{lns}{l\mu s} \; = \;$ (36)
 - (A) 10^{-3}
- (B) 10^3
- (C) 10^{-9}
- (D) 10⁻⁶

- (37)Ns is a unit of which physical quantity?
 - (A) velocily
- (B) Angular momentum (C) Linear momentum (D) work
- (38)The volume and area of surface are equal for a given cube. Then the surface area = unit.
 - (A) 36
- (B) 216
- (C) 144
- (D) 1000

- (39)Nm⁻² is not a unit of physical quantity given below?
 - (A) Pressure
- (B) Stress
- (C) Bulk modulus
- (D) Strain

15 (C), 16 (D), 17 (A), 18 (C), 19 (C), 20 (B), 21 (B), 22 (D), 23 (D), 24 (A), 25 (C), 26 (D), Ans.: 27 (D), 28 (B), 29 (D), 30 (A), 31(B), 32 (C), 33 (C), 34 (C), 35 (C), 36 (A), 37 (C), 38 (B),

Measurement:

Measurement for a long distance

Planet D

Earth

Distance between Earth and planet, $D = \frac{b}{\theta}$ Measurement of dimension of planet and Star $\alpha = \frac{d}{D}$

Where, b = Distance between two positions for observation on the Earth.

 α = angular diameter of planet.

 θ = angle in radian

D = Distance between planet and the Earth d = diameter of the planet

• Units for very small and very large distances

Multiples

Value	Prefix	Symbol
10^{18}	Exa	Е
1015	Peta	P
1012	Tera	Т
109	Giga	G
106	Mega	M
10 ³	Kilo	k
102	Hecto	h
101	Deca	da

Submultiples

Value	Prefix	Symbol
10-1	deci	d
10-2	centi	c
10 ⁻³	milli	m
10 ⁻⁶	micro	μ
10 ⁻⁹	nano	n
10-12	pico	p
10-15	femto	f
10-18	atto	a

• For very small distance

$$1 \text{ fm} = 10^{-15} \text{ m}$$

$$1 \text{ Å} = 10^{-10} \text{ m}$$

$$1 \text{ nm} = 10^{-9} \text{ m}$$

$$fm = Fermi$$

$$\overset{\circ}{A}$$
 = Angstrom

• For very large distance

The average distance between the Sun and the Earth is called 1AU

1 Astronomical unit = $1 \text{ AU}^{\circ} = 1.496 \times 10^{11} \text{ m}$

The distance corresponding to 1AU length where 1" angle lubtended, is called 1 parsec (1 pc).

1 Parsec =
$$3.08 \times 10^{16} \,\text{m}$$

1 lightyear = 1 ly =
$$9.46 \times 10^{15}$$
 m

• Some units of mass:

1 quintal = 100 kg

1 Metric ton = 1000 kg

1 atomic mass unit (amu) = 1.67×10^{-27} kg

• Some units of time:

1 year =
$$365.25$$
 days = 3.156×10^7 Sec.

1 LM (Lunar Month) = 27.3 days.

Time taken by moon to complete 1 revolution around the Earth is called 1 LM.

• For a given physical quantity nu = Constant

Where n = Quntitative value, u = unit

$$\therefore \quad \mathbf{n}_1 \mathbf{u}_1 = \mathbf{n}_2 \mathbf{u}_2$$

 u_1 = unit of physical quantity in one system.

 u_2 = unit of physical quantity in other system.

(40) $1^{\circ} = \dots$ rad

- (A) $\frac{\pi}{180}$
- (B) $\frac{180}{\pi}$
- (C) $\frac{360}{n}$
- (D) $\frac{n}{360}$

- (41) If the unit of length and force increases to four times, the unit of energy
 - (A) Increases to 8 times

(B) Increases to 16 times

(C) Decreases to 8 times

- (D) Decreases to 16 times
- (42) If the unit of length and time are taken as km and hr, What is the value of g in km h⁻¹.
 - (A) 980
- (B) 9800
- (C) 1,27,008
- (D) 12,70
- (43) The angle between two observed direction for a planet observed from two diametrically opposite points A and B of the earth is 1.6° . If the diameter of the earth is 1.276×10^{4} km, Find the distance between earth and planet.
 - (A) $4.57 \times 10^5 \,\mathrm{km}$
- (B) $4.57 \times 10^8 \,\mathrm{km}$
- (C) 3.84×10^8 m
- (D) $4.08 \times 10^8 \,\mathrm{m}$
- (44) Diameter of the sun is 1.393×10^9 m. Angular diameter of the Sun is Distance between Sun and earth is 1.496×10^8 km and $1'' = 4.85 \times 10^{-6}$ rad.
 - (A) 1920"
- (B) 1920'
- (C) 192.0"
- (D) 1920 rad
- (45) If the angle between two observed direction for moon is 54', When it is observed from the two diametrically opposite points simultaneously. If the radius of the earth is 6.4×10^6 m. Find the distance between earth and moon.
 - (A) 8.153×10^8 m
- (B) $4.076 \times 10^8 \,\mathrm{m}$
- (C) $5.813 \times 10^8 \,\mathrm{m}$
- (D) $3.581 \times 10^8 \,\mathrm{m}$

Errors in measurement:

Measurement of inaccuracy is called error.

- Estimation of Error:
 - (1) Absolute error:

Observations for any physical quantity are a_1, a_2, \dots, a_n

Mean
$$\bar{a} = \frac{a_1 + a_2 + \dots + a_n}{n} = \frac{1}{n} \sum_{i=1}^{n} a_i$$

Absolute error in each observation

$$\Delta a_1 = \overline{a} - a_1, \ \Delta a_2 = \overline{a} - a_2, \dots \ \Delta a_n = \overline{a} - a_n$$

Average (Mean) Absolute error.

$$\Delta \, \overline{a} \; = \; \frac{\left| \Delta \overline{a_1} \right| + \left| \Delta \overline{a_2} \right| + \ldots + \left| \Delta \overline{a_n} \right|}{n} \; = \; \frac{1}{n} \; \sum_{i=1}^n \left| \Delta \overline{a_i} \right|$$

 \therefore Measurement of any physical quantity = $a \pm \Delta a$

(2) Relative error.

$$\delta a = \frac{\Delta \overline{a}}{\overline{a}}$$

(3) Percentage error

$$\delta a \times 100 \% = \frac{\Delta \overline{a}}{\overline{a}} \times 100 \%$$

Combination of errors:

No.	Formula	error
1.	Addition $Z = A + B$	$\Delta Z = \Delta A + \Delta B$
2.	Subtraction $Z = A - B$	$\Delta Z = \Delta A + \Delta B$
3.	Multiplication $Z = AB$	$\frac{\Delta Z}{Z} = \frac{\Delta A}{A} + \frac{\Delta B}{B}$
4.	Division $Z = A/B$	$\frac{\Delta Z}{Z} = \frac{\Delta A}{A} + \frac{\Delta B}{B}$
5.	Terms with power $Z = A^n$	$\frac{\Delta Z}{Z} = n \frac{\Delta A}{A}$

Significant digits:

"The number of digits whose value is accurately known in a measurement plus one additional digit about which we not certain are called significant figures (digits)"

Rules to decide significant digits

- (1) All non zero digits are significant.
- (2) All zeros between two non zero digits are significant.
- (3) When the value is less than one, All zeros to the right of decimal and left of non zero digit are never significant.
- (4) All zeros on the right of non zero digit are not significant.
- (5) All zeroes after nonzero mumber in, number having decimal point are significant.
- As number of significant digits after decimal points are more, accuracy in measurement is more.
- (46) A body travels a distance (14.0 ± 0.2) m in (4.0 ± 0.3) s, its velocity is ms⁻¹ (A) (3.5 ± 0.51) ms⁻¹ (B) (3.5 ± 0.41) ms⁻¹ (C) (3.5 ± 0.31) ms⁻¹ (D) (3.5 ± 0.21) ms⁻¹
- (47) For parallel connection of Resistance $Rp = \frac{R_1 R_2}{R_1 + R_2}$ then $\frac{\Delta R_p}{R_p^2} =$

(A)
$$\frac{\Delta R_1}{R_1} + \frac{\Delta R_2}{R_2}$$
 (B) $\frac{\Delta R_1}{R_1} - \frac{\Delta R_2}{R_2}$ (C) $\frac{\Delta R_1}{R_1^2} - \frac{\Delta R_2}{R_2^2}$ (D) $\frac{\Delta R_1}{R_1^2} + \frac{\Delta R_2}{R_2^2}$

- (48) Two resistances $R_1 = (3 \pm 0.1) \Omega$ and $R_2 = (6 \pm 0.3) \Omega$ are connected in series, net resistance $R = \Omega$
 - (A) 9 ± 0.2 (B) 3 ± 0.2 (C) 9 ± 0.4 (D) 9 ± 0.1
- (49) The mass, lenght, breadth and thickness for a cube is (39.3 ± 0.1) g, (5.12 ± 0.01) cm (2.56 ± 0.01) cm, (0.37 ± 0.01) cm respectively then inaccuracy in measurement of density is g cm⁻³
 - (A) 0.29 (B) 0.41 (C) 0.19 (D) 0.035
- (50) For a wire, mass = (0.3 ± 0.003) g radius = (0.5 ± 0.005) mm and length = (6 ± 0.06) cm, percentage error in density is
 - (A) 1 % (B) 2 % (C) 3 % (D) 4 %

(51)	The periodic time of second pendulum is 2.0 s and mean absolute error in its measurement is 0.01s, then value of periodic time with error is					
	(A) 2.0 ± 0.10 s	(B) 2.0 ± 0.05 s	(C) 2.0 ± 0.02 s	(D) 2.0 ± 0.01 s		
(52)	$V = (100 \pm 5) V, I =$	(10 ± 0.1) A, then percent	ntage error in measureme	ent of Resistance is		
	(A) 5.1 %	(B) 4.9 %	(C) 6 %	(D) 3 %		
(53)				ergy produced is given by pectively then percentage		
	(A) 6 %	(B) 5 %	(C) 7 %	(D) 8 %		
(54)	A length of cube $l =$	(1.5 ± 0.02) cm its volum	me $V = cm^3$			
	(A) 3.375 ± 0.04	(B) 3.375 ± 0.135	(C) 3.375 ± 0.4	(D) 3.375 ± 0.013		
(55)		CD		A, B, C, D are 2 %, 1 %,		
	3 % and $\frac{1}{3}$ % respectively. Find the percentage error in measurement of 'Z'.					
	(A) 8 %	(B) 7 %	(C) 6 %	(D) 5 %		
(56)	How many significant digits in 0.0250 ?					
	(A) 1	(B) 2	(C) 3	(D) 4		
(57)	Significant digits in 5.4×10^3 is					
	(A) 1	(B) 2	(C) 3	(D) 4		
(58)	$1.875 + 2.41 = \dots$ (by considering significant digits)					
	(A) 4.3	(B) 4.28	(C) 4.285	(D) 4.29		
(59)	Mass and radius of sphere are 5.13 g and 2.10 mm. Find its density by considering significant digits.					
	(A) 132 g cm^{-3}	(B) 130 g cm^{-3}	(C) 132.3 g cm^{-3}	(D) 132.30 g cm^{-3}		
(60)	Multiplication of 15.235, 3.315 and $2 = \dots$ (by considering significant digits)					
	(A) 101.0	(B) 101.00	(C) 101	(D) 100		
(61)	1.97855 is round off t	to three digits then obtain	ned number =			
	(A) 1.97	(B) 1.98	(C) 1.90	(D) 2.00		
(62)	Significant figures in	71.15, 3.008 and 0.1237>	<10 ⁵ are			
	(A) 4, 2, 4	(B) 4, 4, 4	(C) 4, 3, 5	(D) 4, 4, 6		
(63)	Significant digits in 0	.0007 are				
	(A) 1	(B) 2	(C) 3	(D) 4		
(64)	When 1.71 N is Subtr	racted from 3.75 N the re	esult in significant figures	s is		
	(A) 2 N	(B) 2.0 N	(C) 2.04 N	(D) 2.000 N		

(65)				mm is 10 cm. Clock having ms ⁻² . (take $g = 9.8 \text{ ms}^{-2}$)
	(A) 9.8 ± 0.11	(B) 9.8 ± 0.21	(C) 9.8 ± 0.31	(D) 9.8 ± 0.41
(66)	Thickness of plate	measured with $l_1 = 40.2$	± 0.1 and $l_2 = 20.1 \pm 0.1$.1, maximum uncertainity in
	$l_1 + l_2 = \dots$	-	_	
	(A) 0.1	(B) 0.2	(C) 0.3	(D) 0.4
(67)	•	measured by micrometer the measurement of thic		mm is 1.03 mm. What is the
	(A) 0.7 %	(B) 0.97 %	(C) 1 %	(D) 1.2 %
(68)	$9.15 + 3.8 = \dots$ (b	y considering significant	digits).	
	(A) 13	(B) 13.0	(C) 13.00	(D) 13.000
(69)		he measurement in leng or in the measurement is		2.09 m, 2.07 m and 2.01 m.
	(A) 0.028 m	(B) 0.030 m	(C) 0.152 m	(D) 0.048 m
(70)	$\phi = -\frac{GM}{r} \text{ (gravitat)}$	ional potential), then $\frac{\Delta\phi}{\phi}$	· =	
	$(A) - \frac{\Delta r}{r}$	(B) $\frac{\Delta r}{r}$	(C) $2 \frac{\Delta r}{r}$	(D) $\frac{r}{\Delta r}$
(71)	If the percentage en measurement of su		of volume of a sphere is	3 %, percentage error in the
	(A) 2 %	(B) 1 %	(C) 3 %	(D) 4 %
(72)	Radius of a sphere	is 1.51 cm. Area of spher	re by considering signific	cant figures is
	(A) 28.6 cm ²	(B) 28.63 cm^2	(C) 28.638 cm^2	(D) 28.6381 cm ²
Ans	57 (B), 58 (B),			9), 54 (B), 55 (B), 56 (C), 6), 65 (C), 66 (B), 67 (B),
Dime	nsion and Dimension	nal Formula		
	When any physical	quantity is represented	in terms of M, L, T,	, the equation is known as
	dimensional formul	a and power of M, L, T	is known as dimension.	

• If the dimensional formula for a physical quantity is $M^a L^b T^c$, their values in two different unit system are n_1 and n_2 then,

$$\boldsymbol{n}_2 = \boldsymbol{n}_1 {\left[\frac{\boldsymbol{M}_1}{\boldsymbol{M}_2} \right]}^a \ {\left[\frac{\boldsymbol{L}_1}{\boldsymbol{L}_2} \right]}^b {\left[\frac{\boldsymbol{T}_1}{\boldsymbol{T}_2} \right]}^c$$

Physical quantity: Formule, Units and dimensional formula.

No.	Physical Quantity	Formula	Unit	Dimensional Formula
1.	Speed	Distance / time	ms ⁻¹	M° L¹ T-1
2.	Acceleration	Change in volocity/time	ms ⁻²	M° L¹ T-2
3.	Force	Mass × accleration	$N = kg ms^{-2}$	M ¹ L ¹ T ⁻²
4.	Density	Mass/volume	kg m ⁻³	M¹ L-3 T°
5.	Pressure	Force/area	$Nm^{-2} = Pa$	$M^1 L^{-1} T^{-2}$
6.	Work	Force × displacement	Nm = J	$M^1 L^2 T^{-2}$
7.	Energy	-	J	$M^1 L^2 T^{-2}$
8.	Power	Work / time	Watt	$M^1 L^2 T^{-3}$
9.	Impulse of force	Force × Change in time	Ns	M ¹ L ¹ T ⁻¹
10.	momentum	mass × velocity	kg ms ⁻¹	M ¹ L ¹ T ⁻¹
11.	Torque	Force × position vector	Nm	$M^1 L^2 T^{-2}$
12.	Temperature (T)	-	Kelvin	M° L° T° θ ⁻¹
13.	Heat (Q)	-	J	$M^1 L^2 T^{-2}$
14.	Specific heat	$\frac{Q}{m\Delta T} = \frac{Heat}{mass \times Temp. diffrence}$	J kg ⁻¹ K ⁻¹	$M^{\circ} L^{2} T^{-2} \theta^{-1}$
15.	Latent heat	Heat mass	J kg ⁻¹	M° L ² T ⁻²
16.	Gas constant (R)	-	J mol ⁻¹ K ⁻¹	$M^1 L^2 T^{-2} \theta^{-1}$
17.	Boltzmann constant (k _B)	$\frac{R}{N_A} = \frac{gas \ constant}{Avagrado's \ No.}$	J K ⁻¹	$M^1 L^2 T^{-2} \theta^{-1}$
18.	Plank's constant (h)	Energy / frequency	Js	$M^1 L^2 T^{-1}$
19.	Charge (q)	Electric current × time	As = C	$M^{\circ} L^{\circ} T^{1} A^{1}$
20.	Surface Charge density (σ)	Charge area	Cm ⁻²	M° L ⁻² T ¹ A ¹
21.	Electric current density (J)	Current per unit area	Am ⁻²	M° L ⁻² T°A ¹
22.	Electric potential (V)	Work Charge	JC ⁻¹	$M^1 L^2 T^{-3} A^{-1}$
23.	Intensity of electric (E) field	Force/Charge	NC ⁻¹ or Vm ⁻¹	M ¹ L ¹ T ⁻³ A ⁻¹
24.	Resistance (R)	Potential difference Electric current	$\frac{V}{A} = \Omega$	M ¹ L ² T ⁻³ A ⁻²
25.	Conductance $\left(\frac{1}{R}\right)$	Electric current Potrential difference	$\Omega^{-1} = mho$	$M^{-1} L^{-2} T^3 A^2$
26.	Resistivity (ρ)	$\frac{RA}{l} = \frac{Resistance \times Area}{length}$	Ωm	$M^1 L^3 T^{-3} A^{-2}$

No.	Physical Quantity	Formula	Unit	Dimensional
				Formula
27.	Conductivity (σ)	$\frac{1}{\rho} = \frac{l}{RA}$	$\Omega^{-1} m^{-1}$	$M^{-1} L^{-3} T^3 A^2$
28.	Permitivity of vacuum (ε_0)	$\varepsilon_{0} = \frac{q_{1}q_{2}}{4\pi Fr^{2}}$	$N^{-1}C^2m^{-2}$	$M^{-1} L^{-3} T^4 A^2$
29.	Capacitance (C)	Charge potential difference	CV ^{−1} or F	$M^{-1} L^{-2} T^4 A^2$
30.	Intensity of magnetic field (B)	$B = \frac{F}{qv}$	NA ⁻¹ m ⁻¹ or tesla	M ¹ L ⁰ T ⁻² A ⁻¹
31.	Magnetic flux (φ)	$N\vec{B}\cdot\vec{A}$	Vs or weber	M¹ L²T-2A-1
32.	Self inductance (L)	$\frac{N\phi}{I}$	Vs A ⁻¹ or henry	M¹ L²T-²A-²
33.	Stress	Force / area	Nm ⁻²	M ¹ L ⁻¹ T ⁻²
34.	Modulus of elasticity	Stress/Strain	Nm ⁻²	$M^1 L^{-1}T^{-2}$
35.	Moment of Inertia (I)	$mass \times (Perpendicular distance)^2$	kg m ²	M ¹ L ² T ^o
36.	Surface Tension (T)	$\frac{\text{Force}}{\text{length}}$ or $\frac{\text{Energy}}{\text{area}}$	$Nm^{-1} = Jm^{-2}$	M¹ L ⁰ T ⁻²
37.	Co-efficient of viscosity (η)	$\frac{F}{6\pi rv}$	Nsm ⁻²	M ¹ L ⁻¹ T ⁻¹

Physical quantity having same dimension :

No.	Dimensional	Physical quantity
	Formula	
1.	M° L° T⁻¹	Frequency, Angular frequency, Angular Speed, Angular velocity velocity gradient,
		decay constant
2.	$M^1 L^2 T^{-2}$	Work, kinetic energy, potential energy Internal energy, Torque, Heat energy
		moment of force
3.	$M^1 L^{-1} T^{-2}$	Pressure, Stress, Bulk modulus, Young's modulus, modulus of rigidity energy density
4.	$M^1 L^1 T^{-1}$	Linear momentum, Impulse of Force.
5.	M° L¹ T-2	Acceleration, Acceleration due to gravity, Intensity of gravitational field
6.	$M^1 L^1 T^{-2}$	Force, Weight, Thrust
7.	$M^1 L^{\circ} T^{-2}$	Surface Tension, Surface energy (energy per unit area), spring constant.
8.	M° L° T°	Strain, relative density, plane angle, solid angle, relative permitivity (Dielectric
		constant), relative permeability.
9.	M° L ² T ⁻²	Latent heat, Gravitational potential
10.	$M^1 L^2 T^{-2} \theta^{-1}$	Heat capacity, gas constant, Boltzmann's Constant, Antropy

	(A) $M^1 L^1 T^{-2}$	(B) $M^1 L^2 T^{-2}$	(C) $M^2 L^2 T^{-2}$	(D) $M^1 L^{-2} T^{-2}$
(74)	Dimensional formula of	f energy density is		
	(A) $M^1 L^1 T^{-1}$	(B) $M^1 L^{-1} T^{-2}$	(C) $M^1 L^2 T^{-2}$	(D) $M^1 L^{-2} T^{-1}$
(75)	If E, M, L G are En	ergy, mass, angular mo	omentum and universal	constant of gravitation
	respectively then dimen	nsion of $\frac{EL^2}{M^5G^2}$ is		
	(A) Plane angle	(B) time	(C) mass	(D) Length
(76)	Which pair (given below	w) having same dimension	nal formula ?	
	(A) Force and work	(B) Torque and Power	(C) Energy and Torque	(D) Power and Energy
(77)		acceleration due to gravious of Gravitational const	ty (g) and pressure (P) a ant (G) in c, g, P is	re taken as fundamental
	(A) -1, 2, -1		(C) 2, 2, -1	(D) 0, 2, -1
(78)	Dimensional formula o	f ab in $\left(P + \frac{a}{V^2}\right)$ (v-b)	= μRT is Where V	= volume, P = pressure,
	T = Temperature			
	(A) $M^1 L^3 T^{-2}$	(B) $M^1 L^5 T^{-2}$	(C) $M^1 L^{-8} T^2$	(D) $M^1 L^8 T^{-2}$
(79)	Which one is dimension	nally correct?		
	$(A) v = v_0 + at^2$	(B) $F = \frac{W}{d}$	(C) $d = \frac{v^2}{2at}$	(D) $d = \frac{v^2 - v_0^2}{2a}$
	$v = \text{final velocity}, v_0 = \text{in}$	itial velocity, $a =$ accelerat	ion, W = work, d = displac	cement
(80)	If A, B and C are physic	al quantities having differe	ent dimension, then which o	one, given below is true?
	(A) $\frac{A-B}{C}$	(B) $AB + C$	(C) (A + B)C	(D) $\frac{AB}{C}$
(81)	Which pair given below	having different dimensi	on?	
	(A) Torque and Work		(B) Angular momentum	n, Plank's constant
	(C) Impulse of force &	linear momentum	(D) Tension, Surface te	nsion
(82)	Amplitude of damped A = Initial Amplitude, n		$Ae^{\frac{-bt}{2m}}$. Dimensional	formula of $b = \dots$
	(A) M ¹ L° T ⁻¹	(B) $M^1 L^1 T^1$	(C) $M^1 L^1 T^{-1}$	(D) M ¹ L ¹ T°
		10		

Dimensional formula of moment of force couple is

(73)

(83)	The number of undecayed atoms at time 't' in a element is given by $N = N_0 e^{-\lambda t}$. $N_0 = N_0 = N_0$ Initial undecayed atoms. Find the dimensional formula of λ .					
	(A) $M^{-1} L^{\circ} T^{\circ}$	(B) $M^{\circ} L^{\circ} T^{-1}$	(C) $M^{\circ} L^{-1}T^{\circ}$	(D) $M^1 L^{\circ} T^{-1}$		
(84)	Dimensional formula of	Power is				
	(A) $M^1 L^{-2} T^2$	(B) $M^1 L^2 T^{-2}$	(C) $M^1 L^2 T^{-3}$	(D) $M^{\circ} L^{2} T^{-3}$		
(85)	Dimensional formula of	Impulse of force is				
	(A) $M^1 L^1 T^1$	(B) $M^1 L^{-1} T^1$	(C) $M^1 L^1 T^{-1}$	(D) $M^1 L^2 T^{-1}$		
(86)	M° L° T⁻¹ is dimensiona	l formula of				
	(A) $\frac{R}{L}$	(B) $\frac{L}{R}$	(C) LR	(D) $\frac{1}{LR}$		
(87)	Dimensional formula of	Intensity of radiation is .				
	(A) $M^1 L^{-2} T^{-2}$	(B) $M^{\circ} L^{3} T^{-2}$	(C) $M^1 L^{\circ}T^{-1}$	(D) $M^1 L^{\circ} T^{-3}$		
(88)	Distance travelled by J	particle in time 't' is 'x	$x', x = \frac{v_0}{k}$ [1 - e ^{kt}], v_0	= initial velocity, then		
	dimensional formula of	k =				
	(A) $M^{\circ} L^{-1} T^{1}$	(B) M° L¹ T°	(C) M° L°T ⁻¹	(D) $M^{\circ} L^{\circ} T^{1}$		
(89)	$\frac{dx}{dt} = ae^{-bt}$, a and b are	re constant, x is a displa	acement of a particle in	time 't'. Dimension of		
	$\frac{a}{b}$ is					
	(A) Distance	(B) time	(C) mass	(D) velocity		
(90)	Pressure difference for	inner and outer side of	f bubble formed in air is	$s P_i - P_o = \frac{4T}{R}$. Where		
	R = Radius of bubble,	Γ = Surface tension, dime	ension of surface Tension	is		
	(A) $M^1 L^1 T^{-1}$	(B) $M^1 L^{-1} T^{-1}$	(C) $M^1 L^{\circ} T^{-2}$	(D) $M^1 L^{\circ} T^{-1}$		
(91)	Young modulus for stee	1 in MKS is 2×10^{11} Pa	then in CGS its value is	dyne cm ⁻² .		
	(A) 2×10^{10}	(B) 2×10^{12}	(C) 2×10^{13}	(D) 2×10^6		
(92)	In a new unit system ur is the unit of mass in ne		time are 100N, 10m and	d 10s respectively. What		
	(A) 10^3 kg	(B) 10^4 kg	(C) 10^5 kg	(D) 10^6 kg		
(93)	u ₁ and u ₂ are units of so	ome physical quantity, n ₁	and n ₂ are their quantitati	ve values then		
	(A) $\frac{n_1}{n_2} = \frac{u_1}{u_2}$	(B) $\frac{n_1}{n_2} = \frac{u_2}{u_1}$	(C) $\frac{n_1}{u_2} = \frac{u_1}{n_2}$	(D) $\frac{n_1}{u_1} = \frac{n_2}{u_2}$		

(94)	Force acting on a body is 10N. If the unit of mass and distance become double and unit of time becomes half then magnitude of force in new unit system will be N.			
	(A) 1.6	(B) 16	(C) 160	(D) 1600
(95)	Energy of a particle is	10J. If the unit of mass b	pecomes four times, unit	of acceleration becomes
	double, unit of length b	ecomes half, then energy	of particle in new system	n is
	(A) 4J	(B) 40J	(C) 400J	(D) 4kJ
(96)	Unit of power 100erg m	in ⁻¹ , unit of time is 1 h, ur	nit of force is 60 dyne then	unit of lenght is cm.
	(A) 1	(B) 10	(C) 100	(D) 1000
(97)	Dimensional formula of	f force is Ma Lb Tc then 3	$a + 5b - 2c = \dots$	
	(A) 10	(B) 1.2	(C) 4	(D) 12
(98)	Dimensional formula of	f Electric power is Ma Lb	T^cA^d then, $5a + 2b + c -$	- d =
	(A) 4	(B) 6	(C) 8	(D) 10
(99)	Dimensional formula of	of angular momentum is	M ^a L ^b T ^c and dimension	al formula of density is
	$M^x L^y T^z$ then $ax + by$	$-cz = \dots$		
	(A) -5	(B) 5	(C) 25	(D) –25
(100)	When 10 N force is act	t on a particle momentur	n obtained is 1 SI, frequ	ency of oscillation for a
	particle is			
	(A) 1 Hz	(B) 10 Hz	(C) 100 Hz	(D) 1 KHz
(101)	Momentum (p), Area (A	a), time (T) are taken as for	undamental quantities, dir	nension of energy is
	(A) $p^1 A^{-1} T^1$	(B) $p^2 A^1 T^1$	(C) $p^2 A^{\frac{-1}{2}} T^1$	(D) $p^1 A^{\frac{1}{2}} T^{-1}$
(102)	A body is moving along	g the x-axis, equation of	velocity is given by $v(t)$	$= \frac{A + Bt^2}{1 + Ct}$. Dimensional
	formula of A, B and C are			
	(A) $L^1 T^{-1}$, $L^1 T^{-3}$, T^{-1}		(B) $L^1 T^{-1}$, $L^1 T^{-2}$, T^{-1}	
	(C) $L^1 T^{-2}$, $L^1 T^{-1}$, T^1		(D) $L^1 T^{-1}$, $L^1 T^{-2}$, $L^1 T$	<u>~1</u>
(103)) Momentum (p) is given by equation p = $\frac{mv}{\sqrt{1-\frac{v^2}{c^2}}}$. Dimension of c and p are			are
	(A) $L^1 T^{-2}$, $M^1 L^1 T^{-2}$		(B) $M^1 L^1 T^{-1}$, $L^1 T^{-1}$	
	(C) $L^1 T^{-1}$, $M^1 L^1 T^{-1}$		(D) $M^1 L^1 T^{-2}$, $L^1 T^{-2}$	
(104)		$\frac{Dt + Et^2}{1 + A\sin^2 \omega t}$, then units		
	(A) unitless, Ns ⁻¹	(B) unitless, Ns	(C) m, Ns ⁻¹	(D) m, Ns
(105)			n as units in new system	
	(A) 0.01 J	(B) 0.1 J	(C) 1 J	(D) 10 J
	() 0.02 0	(-)	(-)	(-)

(106) Energy $E = G^x c^y h^z$. Where G = universal constand of gravitation, c = velocity of light and h = plank's constant then value of x, y, z are

(A)
$$\frac{1}{2}$$
, $\frac{-1}{2}$, $\frac{-5}{2}$

(B)
$$\frac{-1}{2}$$
, $\frac{3}{2}$, $\frac{1}{2}$

(C)
$$\frac{-1}{2}$$
, $\frac{5}{2}$, $\frac{1}{2}$

(A)
$$\frac{1}{2}$$
, $\frac{-1}{2}$, $\frac{-5}{2}$ (B) $\frac{-1}{2}$, $\frac{3}{2}$, $\frac{1}{2}$ (C) $\frac{-1}{2}$, $\frac{5}{2}$, $\frac{1}{2}$ (D) $\frac{1}{2}$, $\frac{-1}{2}$, $\frac{-3}{2}$

If energy (E), velocity (V), and time (T) are taken as fundamental physical quantities. Then, (107)dimensional formula of surface tension is

(A)
$$E^1 V^{-2} T^{-2}$$

(B)
$$E^1 V^{-1} T^{-2}$$

(C)
$$E^1 V^{-2} T^{-1}$$

(C)
$$E^1 V^{-2} T^{-1}$$
 (D) $E^{-2} V^{-1} T^{-3}$

Dimensional formula of permitivity of vacuum is (108)

(A)
$$M^{-1} L^{-3} T^4 A^2$$

(B)
$$M^{-1} L^{-3} T^2 A^2$$

(C)
$$M^{-1}L^{-3}T^4A^{-2}$$

(A)
$$M^{-1} L^{-3} T^4 A^2$$
 (B) $M^{-1} L^{-3} T^2 A^2$ (C) $M^{-1} L^{-3} T^4 A^{-2}$ (D) $M^{-1} L^{-3} T^{-2} A^{-2}$

(109) If the dimension of a physical quantity is L^a M^bT^c, then this physical quantity is

(A) Acceleration, If
$$a = 1$$
, $b = 1$, $c = -2$ (B) Pressure, If $a = -1$, $b = 1$, $c = -2$

(B) Pressure, If
$$a = -1$$
, $b = 1$, $c = -2$

(C) Force, If
$$a = -1$$
, $b = 0$, $c = -2$ (D) velocity, If $a = 1$, $b = 0$, $c = 1$

(D) velocity, If
$$a = 1$$
, $b = 0$, $c = 1$

(110)Dimensional formula for the ratio of linear momentum and angular momentum is

(B)
$$M^{\circ} L^{-1} T^{\circ}$$
 (C) $M^{\circ} L^{1} T^{\circ}$

(D)
$$M^{\circ} L^{1} T^{-1}$$

A physical quantity is given by $Z = M^xL^yT^z$. If percentage error in measurement of M, L and T (111)are a, b and c respectively then maximum percentage error in the measurement of Z is

(A)
$$\frac{a}{x} + \frac{b}{y} + \frac{c}{z}$$
 (B) $ax + by + cz$ (C) $ax + by - cz$ (D) $\frac{a}{x} + \frac{b}{y} - \frac{c}{z}$

(B)
$$ax + by + cz$$

(C)
$$ax + by - cz$$

(D)
$$\frac{a}{x} + \frac{b}{y} - \frac{c}{z}$$

76 cm height of Hg = Nm^{-2} . (112)

Density of Mercury (Hg), $\rho = 13.6 \text{ g cm}^{-3}$.

(A)
$$1.013 \times 10^5$$

(B)
$$1.01 \times 10^{-5}$$
 (C) 76×10^{-2} (D) 7.6×10^{5}

(C)
$$76 \times 10^{-2}$$

(D)
$$7.6 \times 10^5$$

73 (B), 74 (B), 75 (A), 76 (C), 77 (D), 78 (D), 79 (B), 80 (D), 81 (D), 82 (A), 83 (B), 84 (C), 85 (C), 86 (B), 87 (D), 88 (C), 89 (A), 90 (C), 91 (B), 92 (A), 93 (B), 94 (C), 95 (B), 96 (C), 97 (D), 98 (B), 99 (A), 100 (B), 101 (D), 102 (A), 103 (C), 104 (A), 105 (B), 106 (C), 107 (A), 108 (A), 109 (B), 110 (B), 111 (B), 112 (A)

Questions depents on experimental skills:

Least-count of Vernier calliperse:

L.C. = $\frac{\text{Value of one division on main scale (S)}}{\text{Total no. of divisions on vernier scale}}$

Least count (L.C.) = Value of one division on main scale (1 MSD) - value of one division on vernier scale (1 VSD)

Suppose 1 MSD = a unit

If nth division of vernier matches with mth division of main scale.

$$1 \text{ VSD} = \frac{m}{n} \times \text{a unit}$$

$$\therefore$$
 Least count (L.C.) = $a - \left(\frac{m}{n}\right)a = \left(1 - \frac{m}{n}\right)$ a unit

1	Least	count	Λf	micr	ometer	screw	•
J	Least	Count	VI.	HILL	umeter	SCIEW	

•	Least count (L.C.)	= Pitch (p) Total divisions on cir	cular Scale		
	Where pitch $(p)=d$	istance of one division on m	nain scale.		
		Distance travelled in comple		ır scale.	
(113)				'x' cm. n th division of vernier	
	scale matches with	(n–1) th division. Then min	nimum measurement o	f vernier calliperse is cm.	
	(A) $\frac{x}{n-1}$	(B) $\left(\frac{n-1}{n}\right)x$	(C) $\frac{n x}{n-1}$	(D) $\frac{x}{n}$	
(114)		with pitch 0.5 mm and e. Then least count of mi		lar scale is used to measure	
	(A) 0.1 cm	(B) 0.01 cm	(C) 0.001 cm	(D) 0.05 cm	
(115)		ernier scale matches w sion on main scale is 0.5°		main scale in spectrometer. rement (L.C.) =	
	(A) One minute	(B) Half minute	(C) 1°	(D) 0.5°	
(116)	Diameter of a wire	is measured with microm	neter of least count 0.0	1 mm. Reading of main scale	
	is 0 mm and reading	g of circular scale are 48	divisions then diamete	r of a wire is	
	(A) 0.48 cm	(B) 0.048 cm	(C) 0.24 cm	(D) 0.0048 cm	
Ans.	: 113 (D), 114 (C),	115 (A), 116 (B)			
Assert	ion - Reason type	Question:			
Instru	ction : Read asserti	on and reason carefully	, select proper optio	n from given below.	
	(a) Both assertion a	nd reason are true and reason	ason explains the asser	tion.	
	(b) Both assertion a	nd reason are true but rea	son does not explain t	he assertion.	
	(c) Assertion is true	but reason is false.			
	(d) Assertion is fals	e and reason is true.			
(117)	Assertion : Light year and wavelength both represent distance.				
	Reason: Both having	ng dimension of time.			
	(A) a	(B) b	(C) c	(D) d	
(118)	Assertion : The diswith the method of		farthar away than 100) light year can not measured	
	Reason : Angle of	parallex removal can not	be measured accurated	y.	
, ,	(A) a	(B) b	(C) c	(D) d	
(119)		sion of Surface tension ar	nd Surface energy are	equal.	
	Reason: Their SI	_			
	(A) a	(B) b	(C) c	(D) d	
		16	<u> </u>		

(120) **Assertion**: $y = A \sin(\omega t - kx)$ and $(\omega t - kx)$ is dimensionless.

Reason : Dimension of k is $M^{\circ}L^{1}T^{\circ}$

- (A) a
- (B) b

(C) c

(D) d

(121) **Assertion :** In all measurement, last significant digit is more in accurate.

Reason : d = 0.9 m, d = 0.90 m and d = 0.900 m the d = 0.900 m is more accurate.

(A) a

- (B) b
- (C) c
- (D) d

• Match the columns :

(122) Match the physical quantity in column-1 with SI unit in Column-2.

	Column-1	Column-2		
(1)	Work	(a)	Jm^{-1}	
(2)	Power	(b)	Ns	
(3)	momentum	(c)	kwh	
(4)	Force	(d)	Nms ⁻¹	

- (A) 1 (c), 2 (d), 3 (b), 4 (a)
- (B) 1 (b), 2 (c), 3 (a), 4 (d)
- (C) 1 (d), 2 (b), 3 (c), 4 (a)
- (D) 1 (c), 2 (d), 3 (a), 4 (b)

(123)		Column-1		Column-2
	(1)	Stefan's Constant	(a)	$JK^{-1}mol^{-1}$
	(2)	Universal gas constant	(b)	Fm ⁻¹
	(3)	Electric permitivity	(c)	Hm ⁻¹
	(4)	magnetic permeability	(d)	Wm ⁻² k ⁻⁴

- (A) 1 (d), 2 (b), 3 (c), 4 (a)
- (B) 1 (a), 2 (d), 3 (b), 4 (c)
- (C) 1 (d), 2 (a), 3 (b), 4 (c)
- (D) 1 (a), 2 (d), 3 (c), 4 (b)

(124) Match the measurement in column-1 with significant digits in column-2.

	Column-1	Column-2		
(1)	33.015	(a)	3	
(2)	0.054	(b)	4	
(3)	0.003530	(c)	2	
(4)	1.75×10 ⁻⁴	(d)	5	

- (A) 1 (b), 2 (a), 3 (d), 4 (c)
- (B) 1 (d), 2 (c), 3 (b), 4 (a)
- (C) 1 (d), 2 (a), 3 (c), 4 (a)
- (D) 1 (b), 2 (c), 3 (d), 4 (a)

Ans.: 117 (B), 118 (A), 119 (C), 120 (C), 121 (B), 122 (A), 123 (C), 124 (B)