Lecture Notes in Partial Differential Equations

Ashish Kujur

Last Updated: August 11, 2022

Introduction

This is a set of lecture notes which I took for reviewing stuff that I typed after taking class from *Dr. K.R. Arun*. This course used the textbook *Partial Differential Equations* by L.C. Evans.

Contents

§ 1	Lecture 1 — 11th August, 2022 — Definition, Classifications & Examples of PDEs	2
	§1.1 Notations	2
	§1.2 Definition, Classification & Examples	2
	§1.2.1 Classifications of PDE	2
	§1.2.2 Examples	3

§1 Lecture 1 — 11th August, 2022 — Definition, Classifications & Examples of PDEs

§1.1 Notations

- Let \mathbb{N}_0 be defined to be the set $\mathbb{N} \cup \{0\}$. For any $N \in \mathbb{N}$, an element of \mathbb{N}_0^N to be an *multiin-dex*. If $\alpha \in \mathbb{N}_0^N$ then $\alpha = (\alpha_1, \alpha_2, ..., \alpha_N)$ for some $\alpha_i \in \mathbb{N}_0$.
- For any $x \in \mathbb{R}^N$ and $N \in \mathbb{N}$, we define $x^{\alpha} = x_1^{\alpha_1} \cdots x_N^{\alpha_N}$.
- Given any multiindex $\alpha \in \mathbb{N}_0^N$, we define $|\alpha| = \alpha_1 + \alpha_2 + \ldots + \alpha_N$.
- Given any multiindex α , we define

$$D^{\alpha} := \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1} \cdots \partial x_N^{\alpha_N}} = \partial x_1^{\alpha_1} \cdots \partial x_N^{\alpha_N}$$

- For any $k \in \mathbb{N}$, denote $D^k = \{D^\alpha : |\alpha| = k\}$
- We will denote $\Omega \subset \mathbb{R}^N$ to be an open subset.

§1.2 Definition, Classification & Examples

Definition §1.2.1 (Partial Differential Equation). Let Ω be an open subset of \mathbb{R}^N . An expression of the form

$$F\left(D^k u(x), D^{k-1} u(x), \dots, D u(x), x\right) = 0 \qquad (x \in \Omega)$$

is called a kth order PDE for the unknown function $u: \Omega \to \mathbb{R}$. One may assume $F: \mathbb{R}^{N^k} \times \mathbb{R}^{N^{k-1}} \times \mathbb{R}^{N^k} \times \mathbb{R}^{N^k} \times \mathbb{R}^{N^{k-1}} \times \mathbb{R}^{N^k} \times$

§1.2.1 Classifications of PDE

(i) The PDE (1) is called *linear* if it has the form

$$\sum_{0 \le |\alpha| \le k} a_{\alpha}(x) D^{\alpha} u = f$$

for some functions a_{α} , f. The linear PDE is homogeneous if f = 0.

(ii) The PDE (1) is called semilinear if it has the form

$$\sum_{|\alpha|=k} a_{\alpha}(x) D^{\alpha} u + a_0 \left(D^{k-1} u, \dots, Du, u, x \right) = 0$$

(iii) The PDE (1) is called *quasilinear* if it has the form

$$\sum_{|\alpha|=k} a_{\alpha}(D^{k-1}u, \dots, Du, u, x)D^{\alpha}u + a_{0}(D^{k-1}u, \dots, Du, u, x) = 0$$

(iv) The PDE (1) is called *nonlinear* if the PDE has a nonlinear dependence on the highest order derivative.

§1.2.2 Examples