What is claimed is:

1. A compound of Formula I:

$$(R^3)_k$$
 $(R^3)_k$
 $(CR^1R^2)_p$
 $(CR^1R^2)_p$
 $(CR^8R^9)_q$

wherein:

5

Z is CH, CR³ or N; wherein when Z is CH or CR³, k is 0-4 and when Z is N, k is 0-3;

p is 0-8;

10 n is 2-8;

q is 0 or 1;

Q is selected from C₃-C₈ cycloalkyl, phenyl, and monocyclic Het; wherein said C₃-C₈ cycloalkyl, phenyl and monocyclic Het are optionally unsubstituted or substituted with one or more groups independently selected from halo, cyano, nitro,

15 C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, $-C_0$ - C_6 alkyl- CO_2R^{11} ,

 $-C_0-C_6 \text{ alkyl-C(0)} SR^{11}, -C_0-C_6 \text{ alkyl-CONR}^{12}R^{13}, -C_0-C_6 \text{ alkyl-COR}^{14},$

 $-C_{0}-C_{6} \text{ alkyl-NR}^{12}R^{13}, \ -C_{0}-C_{6} \text{ alkyl-SR}^{11}, \ -C_{0}-C_{6} \text{ alkyl-OR}^{11}, \ -C_{0}-C_{6} \text{ alkyl-SO}_{3}H, \\$

 $-C_0-C_6 \text{ alkyl-SO}_2 NR^{12}R^{13}, \ -C_0-C_6 \text{ alkyl-SO}_2 R^{11}, \ -C_0-C_6 \text{ alkyl-SOR}^{14},$

 $-C_0-C_6 \text{ alkyl-OCOR}^{14}, -C_0-C_6 \text{ alkyl-OC(O)NR}^{12}R^{13}, -C_0-C_6 \text{ alkyl-OC(O)OR}^{14},$

20 -C₀-C₆ alkyl-NR¹²C(O)OR¹⁴, -C₀-C₆ alkyl-NR¹²C(O)NR¹²R¹³, and

-C₀-C₆ alkyl-NR¹²COR¹⁴, where said C₁-C₆ alkyl is optionally unsubstituted or substituted by one or more halo substituents;

 W^1 and W^2 are each independently C_3 - C_8 cycloalkyl or aryl; each R^1 and R^2 is independently selected from H, C_1 - C_6 alkyl, -OH,

25 -O-C₁-C₆ alkyl, -SH, and -S-C₁-C₆ alkyl;

each R^3 is the same or different and is independently selected from halo, cyano, nitro, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, $-C_0$ - C_6 alkyl-Ar,

-C₀-C₆ alkyl-Het, -C₀-C₆ alkyl-C₃-C₇ cycloalkyl, -C₀-C₆ alkyl-CO₂R¹¹,

 $-C_0-C_6 \text{ alkyl-C(O)SR}^{11}, -C_0-C_6 \text{ alkyl-CONR}^{12} R^{13}, -C_0-C_6 \text{ alkyl-COR}^{14},$

 $\begin{array}{lll} 30 & -C_0-C_6 \text{ alkyl-NR}^{12}R^{13}, \ -C_0-C_6 \text{ alkyl-SR}^{11}, \ -C_0-C_6 \text{ alkyl-SO}_2R^{11}, \ -C_0-C_6 \text{ alkyl-SO}_2R^{12}, \\ -C_0-C_6 \text{ alkyl-SO}_2R^{12}R^{13}, \ -C_0-C_6 \text{ alkyl-SO}_2R^{11}, \ -C_0-C_6 \text{ alkyl-SOR}^{14}, \end{array}$

 $-C_0-C_6$ alkyl-OCOR¹⁴, $-C_0-C_6$ alkyl-OC(O)NR¹²R¹³, $-C_0-C_6$ alkyl-OC(O)OR¹⁴, $-C_0-C_6$ alkyl-NR¹²C(O)OR¹⁴, $-C_0-C_6$ alkyl-NR¹²C(O)NR¹²R¹³, and

-C₀-C₆ alkyl-NR¹²COR¹⁴, wherein said C₁-C₆ alkyl is optionally unsubstituted or substituted by one or more halo substituents;

each R⁴ and R⁵ is independently H or C₁-C₄ alkyl; R⁶ and R⁷ are each independently H or C₁-C₄ alkyl; R⁸ and R⁹ are each independently H or C₁-C₄ alkyl;

R¹⁰ is selected from H, C₁-C₈ alkyl, C₃-C₈ alkenyl, C₃-C₈ alkynyl,

-C0-C6 alkyl-Ar, -C0-C8 alkyl-Het and -C0-C6 alkyl-C3-C7 cycloalkyl;

 R^{11} is selected from H, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl,

-C0-C6 alkyl-Ar, -C0-C6 alkyl-Het and -C0-C8 alkyl-C3-C7 cycloalkyl;

each R^{12} and each R^{13} are independently selected from H, $C_1\text{-}C_6$ alkyl,

C₃-C₆ alkenyl, C₃-C₆ alkynyl, -C₀-C₆ alkyl-Ar, -C₀-C₆ alkyl-Het and

-C₀-C₆ alkyl-C₃-C₇ cycloalkyl, or R¹³ and R¹⁴ together with the nitrogen to which they are attached form a 4-7 membered heterocyclic ring which optionally contains one or more additional heteroatoms selected from N, O, and S; and

 R^{14} is selected from C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkyl- A_7 , $-C_0$ - C_6 alkyl-Het and $-C_0$ - C_6 alkyl- C_3 - C_7 cycloalkyl;

provided that R¹⁰ is not H or methyl when p is 1 and R¹ and R² are each H, k is 0, n is 3 and each R⁴ and R⁵ are H, q is 1 and R⁸ and R⁹ are each H, Q is unsubstituted phenyl or 4-methoxyphenyl or 2-chloro-3-trifluoromethyl-phenyl, R⁶ and R⁷ are each H, W¹ is unsubstituted phenyl and W² is unsubstituted phenyl or unsubstituted cyclohexyl;

or a pharmaceutically acceptable salt or solvate thereof.

25

5

10

15

20

- 2. The compound according to claim 1, wherein p is 0 or 1.
- 3. The compound according to any of claims 1-2, wherein R^1 and R^2 are each H, or one of R^1 or R^2 is H and the other of R^1 or R^2 is C_1 - C_4 alkyl or both R^1 and R^2 are C_1 - C_3 alkyl.
- 4. The compound according to any of claims 1-2, wherein R¹ and R² are each H, or one of R¹ or R² is H and the other of R¹ or R² is methyl, ethyl, propyl, butyl, or sec-butyl, or R¹ and R² are both methyl or ethyl.

35

5. The compound according to any of claims 1-4, wherein R^{10} is H or C_1 - C_4 alkyl.

- 6. The compound according to any of claims 1-5, wherein Z is CH.
- 7. The compound according to any of claims 1-6, wherein k is 0 or 1.
- 8. The compound according to any of claims 1-7, wherein R^3 is selected from halo, C_1 - C_4 alkyl and C_1 - C_4 alkoxy.

5

- 9. The compound according to any of claims 1-8, wherein n is 2-4.
- 10. The compound according to any of claims 1-9, wherein n is 3.
- 15 11. The compound according to any of claims 1-10, wherein q is 1.
 - 12. The compound according to any of claims 1-11, wherein R⁶, R⁷, R⁸ and R⁹ are each H.
- 20 13. The compound according to any of claims 1-12, wherein Q is a substituted phenyl group containing one, two, or three substituents selected from halo, C₁-C₄ alkoxy and C₁-C₄ alkyl or Q is substituted pyridyl group containing one C₁-C₄ alkyl substituent.
- 25 14. The compound according to any of claims 1-13, wherein Q is a substituted phenyl group containing one, two, or three substituents selected from -F, -Cl, -CF₃, -OCH₃, and -CH(CH₃)₂, or Q is 6-methyl-pyridin-2-yl.
- 15. The compound according to any of claims 1-14, wherein Q is a 2-chloro-3-(trifluoromethyl)phenyl group.
 - 16. The compound according to any of claims 1-15, wherein W^1 and W^2 are each aryl or one of W^1 or W^2 is aryl and the other of W^1 or W^2 is cyclopentyl.

17 The compound according to any of claims 1-16, wherein W¹ and W² are each independently selected from unsubstituted cyclopentyl, unsubstituted phenyl and mono-substituted phenyl, where the phenyl is substituted by halo.

18. The compound according to any of claims 1-17, wherein W¹ and W² are both unsubstituted phenyl, or one of W¹ or W² is unsubstituted phenyl and the other of W¹ or W² is cyclopentyl, or W¹ and W² are both fluoro-substituted phenyl or one of W¹ or W² is unsubstituted phenyl and the other of W¹ or W² is chlorosubstituted phenyl.

10

5

19. A compound of Formula II:

$$R^{10}$$
 O
 $(CR^1R^2)_p$
 Z
 O
 $(CR^4R^5)_n$
 $(CR^8R^9)_q$
 Q
 $||$

wherein:

Z is CH or N;

Q is phenyl or monocyclic Het; wherein said phenyl and monocyclic Het are optionally unsubstituted or substituted with one or more groups independently selected from halo, cyano, nitro, C₁-C₆ alkyl, C₃-C₆ alkenyl, C₃-C₆ alkynyl,

-C₀-C₄ alkyl-CO₂R¹¹, -C₀-C₄ alkyl-C(0)SR¹¹, -C₀-C₄ alkyl-CONR¹²R¹³,

 $-C_0-C_4 \text{ alkyl-COR}^{14}, \ -C_0-C_4 \text{ alkyl-NR}^{12} R^{13}, \ -C_0-C_4 \text{ alkyl-SR}^{11}, \ -C_0-C_4 \text{ alkyl-OR}^{11}, \ -C_0-C_4 \text{ alkyl-OR}^{11}$

-C₀-C₄ alkyl-SO₃H, -C₀-C₄ alkyl-SO₂NR¹²R¹³, -C₀-C₄ alkyl-SO₂R¹¹,

 $-C_0-C_4$ alkyl-SOR¹⁴, $-C_0-C_4$ alkyl-OCOR¹⁴, $-C_0-C_4$ alkyl-OC(O)NR¹²R¹³,

 $-C_0-C_4 \text{ alkyl-OC(O)OR}^{14}, \ -C_0-C_4 \text{ alkyl-NR}^{12}C(O)OR^{14}, \\$

 $-C_0-C_4$ alkyl-NR¹²C(O)NR¹²R¹³, and $-C_0-C_4$ alkyl-NR¹²COR¹⁴, where said C₁-C₆ alkyl is optionally unsubstituted or substituted by one or more halo substituents,

25

30

20

p is 0-4;

k is 0, 1 or 2;

n is 2-4;

q is 0 or 1;

 W^1 and W^2 are each independently $C_3\text{-}C_8$ cycloalkyl or aryl;

each R¹ and R² is independently selected from H, C₁-C₄ alkyl, -OH,

-O-C₁-C₄ alkyl, -SH, and -S-C₁-C₄ alkyl;

each R^3 is the same or different and is independently selected from halo, cyano, C_1 - C_6 alkyl, $-C_0$ - C_4 alkyl- $NR^{12}R^{13}$, $-C_0$ - C_4 alkyl- OR^{11} ,

 $-C_0-C_4$ alkyl-SO₂NR¹²R¹³, and $-C_0-C_4$ alkyl-CO₂H, wherein said C₁-C₆ alkyl is optionally unsubstituted or substituted by one or more halo substituents;

each R⁴ and R⁵ is independently H or C₁-C₄ alkyl;

R⁶ and R⁷ are each independently H or C₁-C₄ alkyl;

R8 and R9 are each independently H or C1-C4 alkyl;

 R^{10} is selected from H, C_1 - C_6 alkyl, $-C_0$ - C_4 alkyl-Ar, $-C_0$ - C_4 alkyl-Het and $-C_0$ - C_4 alkyl- C_3 - C_6 cycloalkyl;

 R^{11} is selected from H, C_1 - C_6 alkyl, $-C_0$ - C_4 alkyl-Ar, $-C_0$ - C_4 alkyl-Het and $-C_0$ - C_4 alkyl- C_3 - C_7 cycloalkyl;

each R^{12} and each R^{13} are independently selected from H, C_1 - C_6 alkyl, $-C_0$ - C_4 alkyl-Ar, $-C_0$ - C_4 alkyl-Het and $-C_0$ - C_4 alkyl- C_3 - C_7 cycloalkyl, or R^{12} and R^{13} together with the nitrogen to which they are attached form a 4-7 membered heterocyclic ring which optionally contains one or more additional heteroatoms selected from N, O, and S; and

 R^{14} is selected from C_1 - C_8 alkyl, - C_0 - C_4 alkyl-Ar, - C_0 - C_4 alkyl-Het and - C_0 - C_4 alkyl- C_3 - C_7 cycloalkyl;

provided that R¹⁰ is not H or methyl when p is 1 and R¹ and R² are each H, k is 0, n is 3 and each R⁴ and R⁵ are H, q is 1 and R⁸ and R⁹ are each H, Q is unsubstituted phenyl or 4-methoxyphenyl or 2-chloro-3-trifluoromethyl-phenyl, R⁶ and R⁷ are each H, W¹ is unsubstituted phenyl and W² is unsubstituted phenyl or unsubstituted cyclohexyl;

or a pharmaceutically acceptable salt or solvate thereof.

25

30

5

10

15

20

20. The compound according to claim 1 or 19, wherein R⁴, R⁵, R⁶, R⁷, R⁸ and R⁹ are each H; at least one of R¹ or R² is methyl, ethyl, propyl butyl or secbutyl or both of R¹ and R² are methyl or ethyl; R¹⁰ is H or methyl; Q is 2-chloro-3-(trifluoromethyl)phenyl; W¹ and W² are both unsubstituted phenyl, or one of W¹ or W² is unsubstituted phenyl and the other of W¹ or W² is cyclopentyl, or W¹ and W² are both fluoro-substituted phenyl or one of W¹ or W² is unsubstituted phenyl and the other of W¹ or W² is chloro-substituted phenyl; Z is CH; p is 0, 1 or 2; n is 3; q is 1; k is 0 or 1 and R³ is Cl, Br or methyl; or a pharmaceutically acceptable salt or solvate thereof.

21. The compound according to claim 1 or 19, wherein R^6 , R^7 , R^8 and R^9 are each H; R^1 and R^2 are each independently H or methyl; at least one R^4 or R^5 is methyl; R^{10} is H or methyl; Q is a substituted phenyl group containing one, two, or three substituents selected from -F, -Cl, -CF₃, -OCH₃, and -CH(CH₃)₂; W¹ and W² are unsubstituted phenyl; Z is CH; p is 1; n is 3; q is 1; and k is 0; or a pharmaceutically acceptable salt or solvate thereof.

22. The compound according to claims 1 or 19, selected from:

5

10

15

20

25

- (R)-2-(3-{3-[[2-chloro-3-(trifluoromethyl)benzyl](2,2-diphenylethyl)amino]-2-methyl-propoxy}-phenyl)acetic acid methyl ester;
 - (R)-2-(3-{3-[[2-chloro-3-(trifluoromethyl)benzyl](2,2-diphenylethyl)amino]-2-methyl-propoxy}-phenyl)acetic acid;
 - (S)-2-(3-{3-[[2-chloro-3-(trifluoromethyl)benzyl](2,2-diphenylethyl)amino]-2-methyl-propoxy}-phenyl)acetic acid;
- (R)-2-(3-{3-[[2-chloro-3-(trifluoromethyl)benzyl](2,2-diphenylethyl)amino]-1-methyl-propoxy}-phenyl)acetic acid methyl ester;
- (R)-2-(3-{3-[[2-chloro-3-(trifluoromethyl)benzyl](2,2-diphenylethyl)amino]-1-methyl-propoxy}-phenyl)acetic acid;
- (S)-2-(3-{3-[[2-chloro-3-(trifluoromethyl)benzyl](2,2-diphenylethyl)amino]-1-methyl-propoxy}-phenyl)acetic acid;
- (R)-2-(3-{3-[[2-chloro-3-(trifluoromethyl)benzyl](2,2-diphenylethyl)amino]-3-methyl-propoxy}-phenyl)acetic acid;
- (S)-2-(3-{3-[[2-chloro-3-(trifluoromethyl)benzyl](2,2-diphenylethyl)amino]-3-methyl-propoxy}-phenyl)acetic acid;
- (R)-2-(3-{3-[[2-fluoro-3-(trifluoromethyl)benzyl](2,2-diphenylethyl)amino]-2-methyl-propoxy}-phenyl)acetic acid;
- (R)-2-(3-{3-[[3-(trifluoromethyl)-4-fluoro-benzyl](2,2-diphenylethyl)amino]-2-methyl-propoxy}-phenyl)acetic acid;
- (R)-2-(3-{3-[[6-methyl-pyridin-2-ylmethyl](2,2-diphenylethyl)amino]-2-methyl-propoxy}-phenyl)acetic acid;
 - (R)-2-(3-{3-[[2,4-dimethoxy-benzyl](2,2-diphenylethyl)amino]-2-methyl-propoxy}-phenyl)acetic acid;
- (R)-2-(3-[3-[[4-methoxy-benzyl](2,2-diphenylethyl)amino]-2-methyl-propoxy}-phenyl)acetic acid;
- 35 (R)-2-(3-{3-[[2-fluoro-4-methoxy-benzyl](2,2-diphenylethyl)amino]-2-methyl-propoxy}-phenyl)acetic acid;

(R)-2-(3-{3-[[3-fluoro-4-methoxy-benzyl](2,2-diphenylethyl)amino]-2-methyl-propoxy}-phenyl)acetic acid;

(R)-2-(3-{3-[[2,4-dimethoxybenzyl](2,2-diphenylethyl)amino]-1-methyl-propoxy}-phenyl)acetic acid;

5

10

15

20

25

- (R)-2-(3-{3-[[4-methoxybenzyl](2,2-diphenylethyl)amino]-1-methyl-propoxy}-phenyl)acetic acid;
- (R)-2-(3-{3-[[2-fluoro-4-methoxybenzyl](2,2-diphenylethyl)amino]-1-methyl-propoxy}-phenyl)acetic acid;
- (R)-2-(3-{3-[[3-trifluoromethylbenzyl](2,2-diphenylethyl)amino]-1-methyl-propoxy}-phenyl)acetic acid;
 - (R)-2-(3-{3-[[2-fluoro-3-(trifluoromethyl)benzyl](2,2-diphenylethyl)amino]-1-methyl-propoxy}-phenyl)acetic acid;
- (R)-2-(3-{3-[[3-(trifluoromethyl)-4-fluoro-benzyl](2,2-diphenylethyl)amino]-1-methyl-propoxy}-phenyl)acetic acid;
- (R)-2-(3-{3-[[3-fluoro-4-methoxybenzyl](2,2-diphenylethyl)amino]-1-methyl-propoxy}-phenyl)acetic acid;
- (R)-2-(3-{3-[[2-chlorobenzyl](2,2-diphenylethyl)amino]-3-methyl-propoxy}-phenyl)acetic acid;
- (R)-2-(3-{3-[[3-trifluoromethylbenzyl](2,2-diphenylethyl)amino]-3-methyl-propoxy}-phenyl)acetic acid;
 - (R)-2-(3-{3-[[2-fluoro-(3-trifluoromethyl)benzyl](2,2-diphenylethyl)amino]-3-methyl-propoxy}-phenyl)acetic acid;
 - $(R)-2-(3-\{3-[[3-trifluoromethyl-4-fluoro-benzyl](2,2-diphenylethyl)amino]-3-methyl-propoxy\}-phenyl)acetic acid;$
 - (R)-2-(3-{3-[[2,4-dimethoxybenzyl](2,2-diphenylethyl)amino]-3-methyl-propoxy}-phenyl)acetic acid;
 - (R)-2-(3-{3-[[4-methoxybenzyl](2,2-diphenylethyl)amino]-3-methyl-propoxy}-phenyl)acetic acid;
 - (R)-2-(3-{3-[[2-fluoro-4-methoxybenzyl](2,2-diphenylethyl)amino]-3-methyl-propoxy}-phenyl)acetic acid;
 - $(R) 2 (3 \{3 \{[2 chloro 3, 4 dimethoxybenzyl\}](2, 2 diphenylethyl) amino] 3 methyl-propoxy\}-phenyl) acetic acid;$
 - (R)-2-(3-{3-[[3-fluoro-4-methoxybenzyl](2,2-diphenylethyl)amino]-3-methyl-propoxy}-phenyl)acetic acid;
- 35 (3-{(R)-[(2,2-diphenyl-ethyl)-(4-isopropyl-benzyl)-amino]-methyl-propoxy}-phenyl)-acetic acid;

3-{3-[[2-chloro-3-(trifluoromethyl)benzyl](2,2-diphenylethyl)amino]-propoxy}-4-methyl-benzoic acid;

- (3-{3-[[2,2-(bis-(4-fluoro-phenyl)-ethyl]-(2-chloro-3-(trifluoromethyl)-benzyl)-amino]-propoxy}-phenyl)- acetic acid;
- (3-{3-[[2,2-(bis-(3-fluoro-phenyl)-ethyl]-(2-chloro-3-(trifluoromethyl)-benzyl)-amino]-propoxy}-phenyl)- acetic acid;
- rac-(3-{3-[[2-phenyl-2-(o-chloro-phenyl)-ethyl]-(2-chloro-3-(trifluoromethyl)-benzyl)-amino]-propoxy}-phenyl)- acetic acid;
- 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy}-phenyl)-butyric acid;

5

10

20

25

- 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy}-phenyl)-pentanoic acid;
- 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy}-phenyl)-hexanoic acid;
- 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy}-phenyl)-4-methyl-pentanoic acid;
 - 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy}-phenyl)-2-ethyl-butyric acid methyl ester;
 - 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy}-phenyl)-2-ethyl-butyric acid;
 - 2-(3-{(R)-3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-butoxy}-phenyl)-2-methyl-propionic acid;
 - 3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy}-benzoic acid methyl ester;
 - 3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy}-benzoic acid;
 - 2-bromo-5-{3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy}-benzoic acid;
 - (2-bromo-5-{3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy}-phenyl)-acetic acid;
 - N-(2-phenyl-2-cyclopentylethyl)-N-(2-chloro-3-trifluoromethylbenzyl)-3-(3-carboxymethylenephenoxy)propylamine;
 - N-(2,2-diphenylethyl)-N-(2-chloro-3-trifluoromethylbenzyl)-3-(3-carboxyphenoxy)propylamine;
- 35 N-(2,2-diphenylethyl)-N-(2-chloro-3-trifluoromethylbenzyl)-2,2-dimethyl-3-(3-aminopropoxy)phenylpropionic acid;

(3-chloro-4-{3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy}-phenyl)-acetic acid methyl ester;

(3-chloro-4-{3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy}-phenyl)-acetic acid;

2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy}-phenyl)-2-methyl-propionic acid;

2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy}-phenyl)-propionic acid;

and a stereoisomer, a stereoisomeric mixture or racemate thereof and a pharmaceutically acceptable salt or solvate thereof.

- 23. A pharmaceutical composition comprising a compound according to any one of claims 1-22.
- 15 24. The pharmaceutical composition according to claim 23 further comprising a pharmaceutically acceptable carrier or diluent.
 - 25. A method for the prevention or treatment of an LXR mediated disease or condition comprising administering a therapeutically effective amount of a compound having Formula I-A:

$$R^{10}$$
 $(CR^{1}R^{2})_{p}$
 CR^{10}
 $(CR^{1}R^{2})_{p}$
 $(CR^{1}R^{2})_{p}$
 $(CR^{1}R^{2})_{q}$
 $(CR^{1}R^{2})_{q}$
 $(CR^{1}R^{2})_{q}$

wherein:

5

20

Z is CH, CR³ or N; wherein when Z is CH or CR³, k is 0-4 and when Z is N, k 25 is 0-3;

p is 0-8;

n is 2-8;

q is 0 or 1;

Q is selected from C₃-C₈ cycloalkyl, phenyl, and monocyclic Het; wherein said C₃-C₈ cycloalkyl, phenyl and monocyclic Het are optionally unsubstituted or substituted with one or more groups independently selected from halo, cyano, nitro,

PCT/US03/09278 WO 03/082802

```
C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>3</sub>-C<sub>6</sub> alkenyl, C<sub>3</sub>-C<sub>6</sub> alkynyl, -C<sub>0</sub>-C<sub>6</sub> alkyl-CO<sub>2</sub>R<sup>11</sup>,
           -C<sub>0</sub>-C<sub>6</sub> alkyl-C(O)SR<sup>11</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-CONR<sup>12</sup>R<sup>13</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-COR<sup>14</sup>,
           -C<sub>0</sub>-C<sub>6</sub> alkyl-NR<sup>12</sup>R<sup>13</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-SR<sup>11</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-OR<sup>11</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-SO<sub>3</sub>H,
           -C<sub>0</sub>-C<sub>6</sub> alkyl-SO<sub>2</sub>NR<sup>12</sup>R<sup>13</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-SO<sub>2</sub>R<sup>11</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-SOR<sup>14</sup>,
           -C<sub>0</sub>-C<sub>6</sub> alkyl-OCOR<sup>14</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-OC(O)NR<sup>12</sup>R<sup>13</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-OC(O)OR<sup>14</sup>,
           -C<sub>0</sub>-C<sub>6</sub> alkyl-NR<sup>12</sup>C(O)OR<sup>14</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-NR<sup>12</sup>C(O)NR<sup>12</sup>R<sup>13</sup>, and
           -C<sub>0</sub>-C<sub>6</sub> alkyl-NR<sup>12</sup>COR<sup>14</sup>, where said C<sub>1</sub>-C<sub>6</sub> alkyl is optionally unsubstituted or
           substituted by one or more halo substituents;
                          W1 and W2 are each independently C3-C8 cycloalkyl or aryl;
                          each R1 and R2 is independently selected from H, C1-C6 alkyl, -OH,
10
           -O-C<sub>1</sub>-C<sub>6</sub> alkyl, -SH, and -S-C<sub>1</sub>-C<sub>6</sub> alkyl;
                          each R3 is the same or different and is independently selected from halo,
            cyano, nitro, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>3</sub>-C<sub>6</sub> alkenyl, C<sub>3</sub>-C<sub>6</sub> alkynyl, -C<sub>0</sub>-C<sub>6</sub> alkyl-Ar,
            -C₀-C₀ alkyl-Het, -C₀-C₀ alkyl-C₃-C₁ cycloalkyl, -C₀-C₀ alkyl-CO₂R¹¹,
           -C<sub>0</sub>-C<sub>6</sub> alkyl-C(O)SR<sup>11</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-CONR<sup>12</sup>R<sup>13</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-COR<sup>14</sup>,
15
           -C_0-C_6 \text{ alkyl-NR}^{12} R^{13}, \ -C_0-C_6 \text{ alkyl-SR}^{11}, \ -C_0-C_6 \text{ alkyl-OR}^{11}, \ -C_0-C_6 \text{ alkyl-SO}_3 H,
            -C<sub>0</sub>-C<sub>6</sub> alkyl-SO<sub>2</sub>NR<sup>12</sup>R<sup>13</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-SO<sub>2</sub>R<sup>11</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-SOR<sup>14</sup>,
           -C<sub>0</sub>-C<sub>6</sub> alkyl-OCOR<sup>14</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-OC(O)NR<sup>12</sup>R<sup>13</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-OC(O)OR<sup>14</sup>,
           -C<sub>0</sub>-C<sub>6</sub> alkyl-NR<sup>12</sup>C(O)OR<sup>14</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-NR<sup>12</sup>C(O)NR<sup>12</sup>R<sup>13</sup>, and
           -C<sub>0</sub>-C<sub>6</sub> alkyl-NR<sup>12</sup>COR<sup>14</sup>, wherein said C<sub>1</sub>-C<sub>6</sub> alkyl is optionally unsubstituted or
20
            substituted by one or more halo substituents;
                          each R4 and R5 is independently H or C1-C4 alkyl;
                          R<sup>6</sup> and R<sup>7</sup> are each independently H or C<sub>1</sub>-C<sub>4</sub> alkyl;
                          R<sup>8</sup> and R<sup>9</sup> are each independently H or C<sub>1</sub>-C<sub>4</sub> alkyl;
                          R<sup>10</sup> is selected from H, C<sub>1</sub>-C<sub>8</sub> alkyl, C<sub>3</sub>-C<sub>8</sub> alkenyl, C<sub>3</sub>-C<sub>8</sub> alkynyl,
25
            -C<sub>0</sub>-C<sub>6</sub> alkyl-Ar, -C<sub>0</sub>-C<sub>6</sub> alkyl-Het and -C<sub>0</sub>-C<sub>6</sub> alkyl-C<sub>3</sub>-C<sub>7</sub> cycloalkyl;
                           R<sup>11</sup> is selected from H, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>3</sub>-C<sub>6</sub> alkenyl, C<sub>3</sub>-C<sub>6</sub> alkynyl,
            -C<sub>0</sub>-C<sub>6</sub> alkyl-Ar, -C<sub>0</sub>-C<sub>6</sub> alkyl-Het and -C<sub>0</sub>-C<sub>6</sub> alkyl-C<sub>3</sub>-C<sub>7</sub> cycloalkyl;
                           each R<sup>12</sup> and each R<sup>13</sup> are independently selected from H, C<sub>1</sub>-C<sub>6</sub> alkyl,
            C<sub>3</sub>-C<sub>6</sub> alkenyl, C<sub>3</sub>-C<sub>6</sub> alkynyl, -C<sub>0</sub>-C<sub>6</sub> alkyl-Ar, -C<sub>0</sub>-C<sub>6</sub> alkyl-Het and
30
            -C<sub>0</sub>-C<sub>6</sub> alkyl-C<sub>3</sub>-C<sub>7</sub> cycloalkyl, or R<sup>13</sup> and R<sup>14</sup> together with the nitrogen to which they
            are attached form a 4-7 membered heterocyclic ring which optionally contains one
            or more additional heteroatoms selected from N, O, and S; and
                           R<sup>14</sup> is selected from C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>3</sub>-C<sub>6</sub> alkenyl, C<sub>3</sub>-C<sub>6</sub> alkynyl, -C<sub>0</sub>-C<sub>6</sub> alkyl-Ar,
            -C<sub>0</sub>-C<sub>6</sub> alkyl-Het and -C<sub>0</sub>-C<sub>6</sub> alkyl-C<sub>3</sub>-C<sub>7</sub> cycloalkyl;
```

provided that R¹⁰ is not H when p is 1 and R¹ and R² are each H, k is 0, n is 3 and each R⁴ and R⁵ are H, q is 1 and R⁸ and R⁹ are each H, Q is unsubstituted phenyl or 4-methoxyphenyl or 2-chloro-3-trifluoromethyl-phenyl, R⁶ and R⁷ are each H, W¹ is unsubstituted phenyl and W² is unsubstituted phenyl or unsubstituted cyclohexyl;

or a pharmaceutically acceptable salt or solvate thereof.

- 26. The method according to claim 25, wherein p is 0 or 1 and q is 1.
- 10 27. The method according to any of claims 25-26, wherein R⁶, R⁷, R⁸ and R⁹ are each H.
 - 28. The method according to any of claims 25-27, wherein Z is CH.
- 15 29. The method according to any of claims 25-28, wherein k is 0 or 1.
 - 30. The method according to any of claims 25-29, wherein R^3 is selected from halo, C_1 - C_4 alkyl and C_1 - C_4 alkoxy.
- The method according to any of claims 25-30, wherein n is 3.
 - 32. The method according to any of claims 25-31, wherein R^{10} is H or C_1 - C_4 alkyl.
- 25 33. The method according to any of claims 25-32, wherein Q is a substituted phenyl group containing one, two, or three substituents selected from halo, C₁-C₄ alkoxy and C₁-C₄ alkyl or Q is substitued pyridyl group containing one C₁-C₄ alkyl substituent.
- 34. The method according to any of claims 25-33, wherein Q is a substituted phenyl group containing one, two, or three substituents selected from -F, -Cl, -CF₃, -OCH₃, and -CH(CH₃)₂, or Q is 6-methyl-pyridin-2-yl.
- 35. The method according to any of claims 25-34, wherein Q is a 2-chloro-3-(trifluoromethyl)phenyl group.

36. The method according to any of claims 25-35, wherein W^1 and W^2 are each aryl or one of W^1 or W^2 is aryl and the other of W^1 or W^2 is cyclopentyl.

- The method according to any of claims 25-36, wherein W¹ and W² are each independently selected from unsubstituted cyclopentyl, unsubstituted phenyl and mono-substituted phenyl, where the phenyl is substituted by halo.
 - 38. The compound according to any of claims 25-37, wherein W^1 and W^2 are both unsubstituted phenyl, or one of W^1 or W^2 is unsubstituted phenyl and the other of W^1 or W^2 is cyclopentyl, or W^1 and W^2 are both fluoro-substituted phenyl or one of W^1 or W^2 is unsubstituted phenyl and the other of W^1 or W^2 is chlorosubstituted phenyl.
- 39. A method for the prevention or treatment of an LXR mediated
 15 disease or condition comprising administering a therapeutically effective amount of a compound having Formula II-A:

$$R^{10}$$
 O
 $(CR^1R^2)_p$
 Z
 O
 $(CR^4R^5)_n$
 C
 $(CR^8R^9)_q$
 Q
 Q

wherein:

10

Z is CH or N;

Q is phenyl or monocyclic Het; wherein said phenyl and monocyclic Het are optionally unsubstituted or substituted with one or more groups independently selected from halo, cyano, nitro, C₁-C₆ alkyl, C₃-C₆ alkenyl, C₃-C₆ alkynyl, -C₀-C₄ alkyl-CO₂R¹¹, -C₀-C₄ alkyl-CO₃R¹¹, -C₀-C₄ alkyl-CO₄R¹²R¹³,

 $-C_0-C_4 \text{ alkyl-COR}^{14}, \ -C_0-C_4 \text{ alkyl-NR}^{12} R^{13}, \ -C_0-C_4 \text{ alkyl-SR}^{11}, \ -C_0-C_4 \text{ alkyl-OR}^{11}, \ -C_0-C_4 \text{ alkyl-OR}^{11}$

-C₀-C₄ alkyl-SO₃H, -C₀-C₄ alkyl-SO₂NR¹²R¹³, -C₀-C₄ alkyl-SO₂R¹¹,

 $-C_0-C_4 \text{ alkyl-SOR}^{14}, \ -C_0-C_4 \text{ alkyl-OCOR}^{14}, \ -C_0-C_4 \text{ alkyl-OC(O)NR}^{12} R^{13}, \\$

 $-C_0-C_4 \text{ alkyl-OC(O)OR}^{14}, \ -C_0-C_4 \text{ alkyl-NR}^{12}C(O)OR^{14}, \\$

 $-C_0-C_4$ alkyl-NR¹²C(O)NR¹²R¹³, and $-C_0-C_4$ alkyl-NR¹²COR¹⁴, where said C₁-C₆ alkyl is optionally unsubstituted or substituted by one or more halo substituents,

30 p is 0-4;

25

k is 0, 1 or 2;

n is 2-4;

q is 0 or 1;

 W^1 and W^2 are each independently $C_3\text{-}C_6$ cycloalkyl or aryl; each R^1 and R^2 is independently selected from H, $C_1\text{-}C_4$ alkyl, -OH,

5 -O-C₁-C₄ alkyl, -SH, and -S-C₁-C₄ alkyl;

each R^3 is the same or different and is independently selected from halo, cyano, C_1 - C_6 alkyl, $-C_0$ - C_4 alkyl- $NR^{12}R^{13}$, $-C_0$ - C_4 alkyl- OR^{11} , $-C_0$ - C_4 alkyl- $SO_2NR^{12}R^{13}$, and $-C_0$ - C_4 alkyl- CO_2H , wherein said C_1 - C_6 alkyl is optionally unsubstituted or substituted by one or more halo substituents;

each R⁴ and R⁵ is independently H or C₁-C₄ alkyl;

R⁶ and R⁷ are each independently H or C₁-C₄ alkyl;

R⁸ and R⁹ are each independently H or C₁-C₄ alkyl;

 R^{10} is selected from H, $C_1\text{--}C_6$ alkyl, $-C_0\text{--}C_4$ alkyl-Ar, $-C_0\text{--}C_4$ alkyl-Het and $-C_0\text{--}C_4$ alkyl- $C_3\text{--}C_6$ cycloalkyl;

 R^{11} is selected from H, C_1 - C_6 alkyl, $-C_0$ - C_4 alkyl-Ar, $-C_0$ - C_4 alkyl-Het and $-C_0$ - C_4 alkyl- C_3 - C_7 cycloalkyl;

each R^{12} and each R^{13} are independently selected from H, C_1 - C_6 alkyl, $-C_0$ - C_4 alkyl-Ar, $-C_0$ - C_4 alkyl-Het and $-C_0$ - C_4 alkyl- C_3 - C_7 cycloalkyl, or R^{12} and R^{13} together with the nitrogen to which they are attached form a 4-7 membered heterocyclic ring which optionally contains one or more additional heteroatoms selected from N, O, and S; and

 R^{14} is selected from C_1 - C_6 alkyl, $-C_0$ - C_4 alkyl-Ar, $-C_0$ - C_4 alkyl-Het and $-C_0$ - C_4 alkyl- C_3 - C_7 cycloalkyl;

provided that R¹⁰ is not H when p is 1 and R¹ and R² are each H, k is 0, n is 3 and each R⁴ and R⁵ are H, q is 1 and R⁸ and R⁹ are each H, Q is unsubstituted phenyl or 4-methoxyphenyl or 2-chloro-3-trifluoromethyl-phenyl, R⁶ and R⁷ are each H, W¹ is unsubstituted phenyl and W² is unsubstituted phenyl or unsubstituted cyclohexyl;

or a pharmaceutically acceptable salt or solvate thereof.

30

35

10

15

20

25

40. The method according to claim 25 or 39, wherein R⁴, R⁵, R⁶, R⁷, R⁸ and R⁹ are each H; at least one of R¹ or R² is methyl, ethyl, propyl butyl or secbutyl or both of R¹ and R² are methyl or ethyl; R¹⁰ is H or methyl; Q is 2-chloro-3-(trifluoromethyl)phenyl; W¹ and W² are both unsubstituted phenyl, or one of W¹ or W² is unsubstituted phenyl and the other of W¹ or W² is cyclopentyl, or W¹ and W² are both fluoro-substituted phenyl or one of W¹ or W² is unsubstituetd phenyl and

the other of W^1 or W^2 is chloro-substitued phenyl; Z is CH; p is 0, 1 or 2; n is 3; q is 1; k is 0 or 1 and R^3 is Cl, Br or methyl; or a pharmaceutically acceptable salt or solvate thereof.

41. The method according to claim 25 or 39, wherein R⁶, R⁷, R⁸ and R⁹ are each H; R¹ and R² are each independently H or methyl; at least one R⁴ or R⁵ is methyl; R¹⁰ is H or methyl; Q is a substituted phenyl group containing one, two, or three substituents selected from -F, -Cl, -CF₃, -OCH₃, and -CH(CH₃)₂; W¹ and W² are unsubstituted phenyl; Z is CH; p is 1; n is 3; q is 1; and k is 0; or a pharmaceutically acceptable salt or solvate thereof.

5

10

- 42. The method according to claim 25 or 39 comprising administering a compound selected from:
- R)-2-(3-{3-[[2-chloro-3-(trifluoromethyl)benzyl](2,2-diphenylethyl)amino]-2methyl-propoxy}-phenyl)acetic acid; (R)-2-(3-{3-[[2-chloro-3-15 (trifluoromethyl)benzyl](2,2-diphenylethyl)amino]-1-methyl-propoxy}-phenyl)acetic acid; (R)-2-(3-{3-[[2-chloro-3-(trifluoromethyl)benzyl](2,2-diphenylethyl)amino]-3methyl-propoxy}-phenyl)acetic acid; (S)-2-(3-{3-[[2-chloro-3-(trifluoromethyl)benzyl](2,2-diphenylethyl)amino]-3-methyl-propoxy}-phenyl)acetic acid; 3-{3-[[2-chloro-3-(trifluoromethyl)benzyl](2,2-diphenylethyl)amino]-propoxy}-4-20 methyl-benzoic acid; 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethylamino]-propoxy}-phenyl)-propionic acid; (3-{3-[[2,2-(bis-(3-fluoro-phenyl)-ethyl]-(2chloro-3-(trifluoromethyl)-benzyl)-amino]-propoxy}-phenyl)- acetic acid hydrochloride salt; rac-(3-{3-[[2-phenyl-2-(o-chloro-phenyl)-ethyl]-(2-chloro-3-(trifluoromethyl)-benzyl)-amino]-propoxy}-phenyl)- acetic acid hydrochloride salt; 25 (3-chloro-4-{3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]propoxy}-phenyl)-acetic acid methyl ester; (R)-2-(3-{3-[[2,4-dimethoxybenzyl](2,2diphenylethyl)amino]-3-methyl-propoxy}-phenyl)acetic acid; (R)-2-(3-[4methoxybenzyl](2,2-diphenylethyl)amino]-3-methyl-propoxy}-phenyl)acetic acid; (R)-2-(3-{3-[[2-fluoro-4-methoxybenzyl](2,2-diphenylethyl)amino]-3-methyl-30 propoxy}-phenyl)acetic acid; (3-{(R)-[(2,2-diphenyl-ethyl)-(4-isopropyl-benzyl)amino]-methyl-propoxy}-phenyl)-acetic acid; and 2-(3-{3-[(2-chloro-3trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy}-phenyl)-2-methylpropionic acid hydrochloride salt; and a stereoisomer, a stereoisomeric mixture or racemate thereof and a pharmaceutically acceptable salt or solvate thereof. 35

.

43. The method according to claim 25 or 39, wherein said LXR mediated disease or condition is cardiovascular disease.

- 44. The method according to claim 25 or 39, wherein said LXR mediated disease or condition is atherosclerosis.
 - 45. The method according to claim 25 or 39, wherein said LXR mediated disease or condition is inflammation.
- 10 46. A method for increasing reverse cholesterol transport, said method comprising administering a therapeutically effective amount of a compound according to any of claims 1-22.
- 47. A method for inhibiting cholesterol absorption, said method comprising administering a therapeutically effective amount of a compound according to any of claims 1-22.
 - 48. A compound according to any of claims 1-22 for use as a medicament.

20

25

49. Use of a compound according to any of claims 1-22 for the preparation of a medicament for the prevention or treatment of an LXR mediated disease or condition.

- 50. Use of a compound according to any of claims 1-22 for the preparation of a medicament for the prevention or treatment of cardiovascular disease.
- 51. Use of a compound according to any of claims 1-22 for the preparation of a medicament for the prevention or treatment of atherosclerosis.
 - 52. Use of a compound according to any of claims 1-22 for the preparation of a medicament for the prevention or treatment of inflammation.
- 35 53. Use of a compound according to any of claims 1-22 for the preparation of a medicament for increasing reverse cholesterol transport.

Use of a compound according to any of claims 1-22 for the preparation of a medicament for inhibiting cholesterol absorption.

- 55. A pharmaceutical composition comprising a compound according to any of claims 1-22 for use in the prevention or treatment of an LXR mediated disease or condition.
- 56. A compound according to any one of claims 1-22 wherein at least one of R⁴, R⁵, R⁸, R⁷, R⁸ or R⁹ is defined as follows:

 wherein at least one R⁴ or R⁵ is C₁-C₄ alkyl; or

at least one of R^8 of R^7 is C_1 - C_4 alkyl; or both of R^8 or R^9 are independently C_1 - C_4 alkyl.

- 15 57. A compound according to any one of claims 1-22 wherein at least one R⁴ or R⁵ is methyl.
 - 58. A compound according to any one of claims 1-22 wherein:

any one of R⁴ or R⁵ is not H or

20 any one of R⁶ or R⁷ is not H or

R⁸ and R⁹ are each C₁-C₄ alkyl when

Z is CH or CR³ and k is 0-4 or Z is N and k is 0-3;

p is 0-8;

n is 2-8;

25 q is 0 or 1;

Q is selected from optionally unsubstituted or substituted C₃-C₈ cycloalkyl, phenyl and mono-cyclic Het;

W¹ and W² are each independently optionally unsubstituted or substituted C₃-C₀ cycloalkyl or aryl;

each R¹ and R² is independently selected from H, C₁-C₆ alkyl, -OH, -O-C₁-C₆ alkyl, -SH, and -S-C₁-C₆ alkyl;

each R^3 is the same or different and is independently selected from halo, cyano, nitro, -CONR¹²R¹³, -COR¹⁴, -SR¹¹, -SO₂R¹¹, -SOR¹⁴, -OCOR¹⁴ and optionally unsubstituted or substituted C₁-C₆ alkyl, C₃-C₆ alkenyl, 5-6 membered-Het,

35 $-C_0-C_6$ alkyl- CO_2R^{11} , or $-C_0-C_6$ alkyl- $NR^{12}R^{13}$.