МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені Тараса Шевченка ФАКУЛЬТЕТ ІНФОРМАЦІЙНИХ ТЕХНОЛОГІЙ

Кафедра програмних систем і технологій

Дисципліна

«Ймовірнісні основи програмної інженерії»

Звіт з лабораторної роботи № 2

на тему:

«Лінійне перетворення та графічне зображення даних»

Виконала:	Дрозд Єлизавета Андріївна	Перевірила:	Марцафей А. С.
Група	ІПЗ-12(2)	Дата перевірки	
Форма навчання	денна	Оцінка	
Спеціальність	121		

2022

Мета роботи:

Навчитись використовувати на практиці набуті знання про лінійні перетворення та графічне зображення даних.

Постановка задачі:

- 1. Знайдіть Q_1, Q_3 та P_{90} .
- 2. Знайдіть середнє та стандартне відхилення цих оцінок.
- 3. Через незадоволення низькими оцінками викладач вирішив використати шкалу форми y = ax + b, щоб відредагувати оцінки. Він хотів, щоб середнє значення масштабних оцінок становило 95, а оцінка 100, щоб залишалася рівною 100.
- 4. Показати дані за допомогою діаграми "стовбур листя".
- 5. Відобразити дані за допомогою коробкового графіка.
- 6. Зробити висновок.

Розроблена програма повинна зчитувати вхідні дані з файлу заданого формату та записувати дані у файл.

Побудова математичної моделі:

Формула знаходження середнього значення:

СЕРЕДНЕ

Середнє
$$\overline{\chi}$$
 незгрупованих даних $x_1, x_2, x_3, ..., x_n$

$$x_1, x_2, x_3, ..., x_n$$

отримують додаванням елементів і діленням суми на розмір даних:

$$\bar{x} = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n} = \frac{\sum_{i=1}^{n} x_i}{n}$$

Формула знаходження стандартного відхилення:

VARIANCE AND STANDARD DEVI

> The *variance* of a set of data *X* is defined as:

$$Var(X) = \frac{\sum_{x \in X} f_x (x - \overline{x})^2}{\sum_{x \in X} f_x}$$
 where f_x is the frequency of occurrence of x .

The standard deviation of a set of data X is given by:

$$\sigma = \sqrt{\operatorname{Var}(X)}$$

Принцип лінійних перетворень:

LINEAR TRANSFORMATION

The mean, variance, and standard deviation are the most commonly used measures to extract useful information from data. Some of their properties are discussed in this section.

A set of data X is said to be linearly transformed into a set Y if the elements of X are mapped onto the elements of Y by the relation $y = ax + b \in Y$, where a and b are real numbers.

The mean and standard deviation of Y are calculated as follows:

$$\overline{y} = \frac{\sum_{y \in Y} f_y \cdot y}{\sum_{y \in Y} f_y} = \frac{\sum_{x \in X} f_x \cdot (ax + b)}{\sum_{y \in X} f_x} = \frac{\sum_{x \in X} f_x \cdot (ax) + \sum_{x \in X} f_x \cdot (b)}{\sum_{y \in X} f_x} = \frac{a \sum_{x \in X} f_x x + b \sum_{x \in X} f_x}{\sum_{y \in X} f_x}$$

$$= a \frac{\sum_{x \in X} f_x x}{\sum_{y \in X} f_x} + b \frac{\sum_{x \in X} f_x}{\sum_{y \in X} f_x}$$

Hence, $\overline{y} = a \cdot \overline{x} + b$.

In a similar way, one can show that $Var(Y) = a^2 Var(X)$ and $\sigma_y = |a| \sigma_x$.

Псевдокод алгоритму:

```
import stemgraphic
  p90 = items[trunc(p90_index) - 1] + p90_index % 1 * (items[trunc(p90_index)] - items[trunc(p90_index) - 1])
 def task2():
     variance = 0
     mean = sum(items) / len(items)
         variance += pow(items[i] - mean, 2)
     standart_deviation = sqrt(variance)
     f2.write('\nMean = %s\nStandart deviation = %s' % (mean, standart_deviation))
     f2.write("\n----\n")
def task3():
     right = np.array([100, 95])
     a = np.linalg.solve(left, right)[0]
     b = np.linalg.solve(left, right)[1]
     while i < len(items):</pre>
         f2.write("%s\t" % items[i])
         items[i] = int_round(items[i] * a + b)
         f2.write("%s\n" % items[i])
```

```
task1()
task2()
task3()
task2()
task3()
task2()
task3()
task2()
task2()
task3()
task3()
task2()
task2()
task2()
task2()
task2()
task2()
task2()
task3()
task2()
task2()
task3()
t
```

Випробування алгоритму:

Результат роботи програми при введенні даних із файлу input_10.txt:

```
🗐 output.txt: Блокнот
                                                              X
Файл Редагування Формат Вигляд Довідка
First quartile = 62.0
Third quartile = 90.0
90th percentile = 99.0
Mean = 68.36363636363636
Standart deviation = 24.67340388969735
Before After
10
        86
40
        91
62
        94
65
        94
66
        95
70
        95
70
        95
84
        97
90
        98
95
        99
        100
100
```

```
Key: aggr|stem|leaf
                                         11 10 0
                                                 = 10.0 x10 = 100.0
11 | 10 0
    9 144555789
    86
```


Результат роботи програми при введенні даних із файлу input_100.txt:

10

Файл	Редагування	Формат	Вигляд	Довідка		
46	94			HH		
46	94					
47	94					
49	94					
50	94					
51	94					
51	94					
51	94					
52	94					
53	94					
54	94					
55	95					
56	95					
56	95					
57	95					
58	95					
58	95					
60	95					
60	95					
61	95					
61	95					
61	95					
61	95					
63	96					
64	96					
65	96					
66	96					
67	96					
68	96					
68	96					
68	96					
69	96					
70	96					
70	96					
71	97					
73	97					
73	97					
76 76	97					
76	97					

```
77
         97
77
         97
77
         97
78
        97
78
         97
79
        97
79
        97
80
         98
81
         98
81
         98
82
         98
82
         98
82
        98
83
         98
83
         98
85
         98
87
         98
87
         98
88
         99
91
         99
92
         99
92
         99
94
         99
97
         100
97
         100
98
         100
99
         100
99
         100
100
         100
100
         100
100
         100
```


Висновки:

Під час виконання цієї лабораторної роботи я навчилася використовувати здобуті знання про лінійні перетворення та графічне зображення даних на практиці за допомогою мови програмування Python.