1. Find the distance between objects 1 and 3 by using the formula provided on the slides. Notice that we have mixed type of attributes. (You can scan and submit your handwritten calculation) (25/20 points)

Object Identifier	test-1(nominal)	test-2 (ordinal)	test-3 (numeric)		
1	A	excellent	45		
2	В	fair	22		
3	С	good	64		
4	A	excellent	28		

1. Nominal attribute (test-1):

Since the values for objects 1 and 3 are A and C, the distance $d_{13}^{(1)}$ =1.

2.Ordinal attribute (test-2):

The ranks assigned to 'excellent', 'good', and 'fair' are 3, 2, and 1, respectively.

For object 1 ('excellent'), r1 = 3.

For object 3 ('good'), r3 = 2.

$$Z1 = \frac{3-1}{3-1} = 1$$
 $Z3 = \frac{2-1}{3-1} = 0.5$.

The normalized rank distance= | Z1 - Z3 | = |1 - 0.5| = 0.5.

3. Numeric attribute (test-3):

the distance =
$$\left| \frac{45-64}{64-22} \right| = \frac{19}{42} \approx 0.452$$

$$d(1,3) = \frac{1(no \min al) + 0.5(ordinal) + 0.452(numeric)}{3} \approx 0.650$$

3. In the table below, determine whether passing a class has a dependency on attendance by using Chi-square test. Please refer to the formula in the slides. (25/20 points) (For the expected value for each cell, multiply the total counts in the rows and columns of the cell and divide by total count.

For example: Expected value for Attended-Pass=33*31/54 = 18.94. You can scan and submit your handwritten calculation)

	Passed	Failed	Total
Attended	25	6	31
Skipped	8	15	23
Total	33	21	54

Expected for Attended and Passed:31*33/54= 18.94

Expected for Attended and Failed: 31*21/54=12.06

Expected for Skipped and Passed: 23*33/54=14.06

Expected for Skipped and Failed: 23*21/54=8.94

Chi-square Contributions for Each Cell:

Contribution for Attended and Passed: (25-18.94)² /18.94≈1.94

Contribution for Attended and Failed: (6-12.06)² /12.06≈3.04

Contribution for Skipped and Passed: (8-14.06)² /14.06≈2.61

Contribution for Skipped and Failed: (15-8.94)² /8.94≈4.10

Summing up all the contributions gives us the Chi-square Statistic:

$$x^2 \approx 1.94 + 3.04 + 2.61 + 4.10 = 11.69$$

The critical value for 1 degree of freedom (df) at a 0.05 significance level is 3.84, according to the Chi-square distribution table. Since our Chi-square statistic of 11.69 is much higher than this critical value, it shows a statistically significant link between class attendance and passing. Simply put, the data suggests that attending class can significantly affect a student's chances of passing or failing.