CSE 250B: Machine learning

Winter 2019

Homework 4 — Convexity, Perceptron, SVM

- 1. Are the following functions $f: \mathbb{R} \to \mathbb{R}$ convex, concave, or neither? Justify your answer.
 - (a) $f(x) = e^{ax}$, for some constant a.
 - (b) f(x) = |x|.
 - (c) $f(x) = \ln x$, where x > 0.
 - (d) $f(x) = x^a$, for $a \ge 1$. What if $a \le 0$? What if $0 \le a \le 1$?
- 2. Show that the following functions $f: \mathbb{R}^d \to \mathbb{R}$ are convex.
 - (a) $f(x) = x^T M x$, where $M \in \mathbb{R}^{d \times d}$ is symmetric positive semidefinite.
 - (b) $f(x) = e^{u \cdot x}$, for some $u \in \mathbb{R}^d$.
 - (c) $f(x) = \max(f_1(x), \dots, f_k(x))$, where f_1, \dots, f_k are convex.
- 3. Recall that the *entropy* of a discrete distribution $p = (p_1, \ldots, p_k)$ over k outcomes is defined as follows:

$$H(p) = \sum_{i=1}^{n} p_i \log \frac{1}{p_i}.$$

Show that H(p) is a concave function of p. You may switch to the natural logarithm if you wish.

4. Recall the loss function for regularized least squares: for some constant $\lambda > 0$,

$$L(w) = \sum_{i=1}^{n} (y^{(i)} - w \cdot x^{(i)})^{2} + \lambda ||w||^{2},$$

- (a) Obtain an expression for the Hessian H(w): that is, the $d \times d$ matrix of second derivatives.
- (b) Establish that L(w) is a convex function of w.
- 5. In class, we studied convex functions. In this problem, we will define the notion of a convex set. Pick any $K \subseteq \mathbb{R}^d$. We say K is a convex set if for any $x, y \in K$, the line segment joining x and y lies entirely in K; more formally, for any $x, y \in K$ and any $0 < \theta < 1$, we have $\theta x + (1 \theta)y \in K$.

Which of the following is a convex set?

- (a) The circle: $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}.$
- (b) The unit ball: $\{x \in \mathbb{R}^d : ||x|| \le 1\}$.
- (c) A hyperplane: $\{x \in \mathbb{R}^d : w \cdot x = 0\}$ for some $w \in \mathbb{R}^d$.
- (d) All k-sparse points: $\{x \in \mathbb{R}^d : x \text{ has at most } k \text{ nonzero coordinates}\}.$
- (e) The set of all $d \times d$ symmetric positive semidefinite matrices (treat each matrix as a vector in $\mathbb{R}^{d(d+1)/2}$).

- 6. Norms. In class, we talked about ℓ_p norms on \mathbb{R}^d , which include the following:
 - The l_1 norm: $||x||_1 = \sum_{i=1}^d |x_i|$.
 - The l_2 (Euclidean) norm: $||x|| = \sqrt{\sum_{i=1}^d x_i^2}$.
 - The l_{∞} norm: $||x||_{\infty} = \max_i |x_i|$.

We now define norms more generally. A function $f: \mathbb{R}^d \to \mathbb{R}$ is a norm if:

- It is nonnegative: $f(x) \ge 0$ always.
- f(x) = 0 if and only if x = 0.
- It is homogeneous: f(tx) = |t| f(x) for any $x \in \mathbb{R}^d$ and $t \in \mathbb{R}$.
- It satisfies the triangle inequality: $f(x+y) \le f(x) + f(y)$.
- (a) Prove that the ℓ_1 norm satisfies these properties.
- (b) Prove that any norm $f: \mathbb{R}^d \to \mathbb{R}$ is a convex function. (This means we can easily incorporate norms into objective functions we are optimizing.)
- (c) Prove the following two properties. For the second, you may need to use the Cauchy-Schwarz inequality (that is, $|a \cdot b| \le ||a|| ||b||$ for any vectors a, b).
 - $||x||_1 \ge ||x|| \ge ||x||_{\infty}$.
 - $||x||_1 \le ||x|| \cdot \sqrt{d} \le ||x||_{\infty} \cdot d.$
- (d) Another norm that is quite common in machine learning and statistics is the Mahalanobis norm:

$$||x||_A = \sqrt{x^T A x},$$

where A is a symmetric positive definite matrix. What does the unit ball of this norm, that is $\{x: ||x||_A \le 1\}$, look like? *Hint*: think back to the multivariate Gaussian.

- 7. A lower bound for the perceptron. Give an example of a data set $\{(x^{(i)}, y^{(i)})\}$ for which the bound of the perceptron convergence theorem is tight. For convenience, choose the $x^{(i)}$ to have unit length, and show that the number of updates is $1/\gamma^2$.
- 8. Small SVM example. Consider the following small data set in \mathbb{R}^2 :
 - Points (1,2), (2,1), (2,3), (3,2) have label -1.
 - Points (4,5), (5,4), (5,6), (6,5) have label +1.

Now, suppose (hard) SVM is run on this data.

- (a) Sketch the resulting decision boundary.
- (b) What is the (numerical value of the) margin, exactly?
- (c) What are w and b, exactly?
- 9. Support vectors. The picture below shows the decision boundary obtained upon running soft-margin SVM on a small data set of blue squares and red circles.

- (a) Mark the support vectors. For each, indicate the approximate value of the corresponding slack variable.
- (b) Suppose the factor C in the soft-margin SVM optimization problem were increased. Would you expect the margin to increase or decrease?