Section 14.6

Outline

- Directional Derivatives
- ▶ The Gradient Vector
 - Definition
 - Geometric Meanings of the Gradient Vector

When you climb a mountain, you will experience different "slopes" along different paths. Which path will you choose?

- Now we want to find the rate of change of z = f(x, y) at (x_0, y_0) in the direction of an arbitrary unit vector $\vec{u} = (a, b)$.
- First draw a vertical plane that passes through the point $P(x_0, y_0, f(x_0, y_0))$ in the direction of \vec{u} which intersects surface S: z = f(x, y)in a curve C.

- The slope of the tangent line T to C at the point P is the rate of change of z in the direction of \vec{u} .
- **Definition** The **directional derivative** of f at (x_0, y_0) in the direction of a unit vector $\mathbf{u} = \langle a, b \rangle$ is

$$D_{\mathbf{u}}f(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}$$

if this limit exists.

For functions of n variables, we define the directional derivatives of f in the direction \vec{u} by the vector notation:

$$D_{\mathbf{u}}f(\mathbf{x}_0) = \lim_{h \to 0} \frac{f(\mathbf{x}_0 + h\mathbf{u}) - f(\mathbf{x}_0)}{h}$$

Ex: $f(x,y) = \chi^{\frac{1}{3}}y^{\frac{1}{3}}$. Find $D \in f(0,0)$, $D \in f(0,0)$ and $D \in f(0,0)$ where $\hat{u} = (\cos 0, \sin 0)$.

- If $\vec{u}=\vec{i}=(1,0)$, then $D_{\vec{i}}f=f_x$.
- If $\vec{u}=\vec{j}=(0,1)$, then $D_{\vec{j}}f=f_y$.
- In other words, the partial derivatives of f with respect to x and y are just special cases of the directional derivatives.

Theorem If f is a differentiable function of x and y, then f has a directional derivative in the direction of any unit vector $\mathbf{u} = \langle a, b \rangle$ and

$$D_{\mathbf{u}}f(x,y) = f_{x}(x,y) a + f_{y}(x,y) b$$

$$D_{\vec{u}}f(x)=(aD_{\vec{i}}+bD_{\vec{j}})f(x)=(aD_x+bD_y)f(x)$$
 i.e.
$$D_{\vec{u}}=aD_x+bD_y\cdot$$

If the unit vector \vec{u} makes an angle θ with the positive x-axis, then we can write $\vec{u} = (\cos \theta, \sin \theta)$ and $D_{\vec{u}}f(x,y) = f_x(x,y)\cos \theta + f_y(x,y)\sin \theta$

Theorem If f(x,y) is differentiable, then f has a directional derivative in any direction $\hat{u}=(a,b)$ (with $|\hat{u}|=1$) and $\hat{v}=(a,y)=\hat{v}=(a,y)$ and $\hat{v}=(a,y)=\hat{v}=(a,y)$.

Ex: $f(x_1y) = xy^2 + x^{\frac{1}{9}}$. Find the direction derivative of f in the direction $\vec{u} = (-3, 4)$ at (2, 1).

Ex: Let
$$f(x,y) = \begin{cases} \frac{\chi^3}{\chi^2 + y^2}, & \text{if } (x,y) \neq (0,0) \\ 0, & \text{if } (x,y) = (0,0) \end{cases}$$
 and $\vec{u} = (\cos 0, \sin 0)$.

B Definition If f is a function of two variables x and y, then the gradient of f is the vector function ∇f defined by

$$\nabla f(x, y) = \langle f_x(x, y), f_y(x, y) \rangle = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j}$$

lacktriangle Hence, if f is differentiable at (x_0, y_0) we can write the directional derivatives as

9

$$D_{\mathbf{u}}f(x,y) = \nabla f(x,y) \cdot \mathbf{u}$$

 \blacktriangleright If f is a function of n variables, then the gradient of f is defined as the vector

$$\nabla f = \frac{\partial f}{\partial x_1} \vec{e_1} + \frac{\partial f}{\partial x_2} \vec{e_2} + \dots + \frac{\partial f}{\partial x_n} \vec{e_n}$$

If f is differentiable at $\vec{x_0}$, then

$$D_{\vec{u}}f(\vec{x_0}) = \nabla f(\vec{x_0}) \cdot \vec{u}$$

- Meanings of the gradient vector:
- ▶ 1.Maximizing the directional derivatives:
- Theorem Suppose f is a differentiable function of two or three variables. The maximum value of the directional derivative $D_{\mathbf{u}} f(\mathbf{x})$ is $|\nabla f(\mathbf{x})|$ and it occurs when \mathbf{u} has the same direction as the gradient vector $\nabla f(\mathbf{x})$.

Pf of the theorem:

Ex: Suppose that $D\vec{u} f(1,0) = \frac{5}{2}I^2$ for $\vec{u} = (\frac{1}{2}, \frac{1}{12})$ and $D\vec{v} f(1,0) = \frac{1}{5}$ for $\vec{V} = (\frac{3}{5}, -\frac{4}{5})$ and f(x,y) is diff at (1,0).

Find
$$\vec{\forall} f(1,0)$$
 and maximum value of $\vec{D}_{\vec{\omega}} f(1,0)$ for all $|\vec{\omega}|=1$.

- ▶ 2. As the normal vector to the level surface:
- Suppose S is a surface with equation F(x,y,z)=k, that is, it is a level surface of a function F, and let $P(x_0, y_0, z_0)$ be a point on S. We can derive that the gradient vector at P, $\nabla F(x_0,y_0,z_0)$, is perpendicular to the tangent vector to any curve C on S that passes through P.

Prop: Suppose that F(x,y,z) is differentiable. Consider a level surface S: F(x,y,z) = k. For any differentiable curve $\vec{r}(t) = (x(t), y(t), z(t)) \subset S$ with $\vec{r}(t_0) = (x_0, y_0, z_0)$, we have $\vec{\nabla} F(\vec{x}_0) \cdot \vec{r}(t_0) = 0$.

Therefore, if $\nabla F(x_0, y_0, z_0) \neq \vec{0}$, it is natural to define the **tangent plane to the level** surface F(x, y, z) = k at $P(x_0, y_0, z_0)$ as the plane that passes through P and has normal vector $\nabla F(x_0, y_0, z_0)$. We can write the equation of this tangent plane as

$$F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0$$

Ex: Find an equation of the tangent plane to the surface $S: X^2 + 4y^2 - \overline{z}^2 = 1$ at (x_0, y_0, z_0) .

Ex: $S_1: z=x^2+zy^2$, $S_2: x^2+zy+z^2=12$ Let C be the curve of intersection $C=S_1 \cap S_2$. Find the tangent line of C at (1,-1,3). Prop: Suppose that f(x,y) is differentiable. Let C: f(x,y) = k. If $(x_0, y_0) \in C$, then $\overrightarrow{\nabla} f(x_0, y_0) \perp C$.

Reproduced with the permission of Natural Resources Canada 2009, courtesy of the Centre of Topographic Information.

Review

- ▶ How do we compute directional derivatives?
- What is the gradient vector of a function?
- What are the geometric meanings of the gradient vector?
- Write down the equation of the tangent plane of a level surface F(x,y,z)=k at a point $P(x_0,y_0,z_0)$.