Predicting_Customer_Churn_in_Telecom_Operators

March 30, 2020

1 Predicting Customer Churn in Telecommunication Operators

Customer turnover refers to a decision made by the customer on the term of business relationship. Customer loyalty and customer turnover always add up to 100%. If a company has a 60% loyalty rate, then customer loss taxes are 40%. According to the 80/20 customer profitability rule, 20% of customers are generating 80% of revenue. Therefore, it is very important to predict the users who are likely to abandon the business relationship and the factors that affect how the customer's decisions. In this project, I predicted Customer Churn at a Telecommunications Operator using python and frameworks (Pandas, Numpy, scipy and Scikit-Learn).

```
[8]: # Importing libraries and frameworks
   import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns
   %matplotlib inline
   import scipy.stats
   from sklearn.preprocessing import StandardScaler
   from sklearn.preprocessing import MinMaxScaler
   from sklearn.feature_selection import f_classif,chi2
   from sklearn.feature_selection import SelectKBest
   import random
   import folium
   import os
   from IPython.display import display
   from IPython.display import Image
   from sklearn.linear_model import LogisticRegression
   from sklearn.metrics import confusion matrix, classification report,
     →accuracy_score
```

```
from sklearn.externals import joblib
import warnings
warnings.filterwarnings("ignore")
```

1.1 Importing dataset

```
[2]: # Importing train dataset
    df_train = pd.read_csv("data/projeto4_telecom_treino.csv")
    df_test = pd.read_csv("data/projeto4_telecom_teste.csv")
```

1.2 Exploratory Analysis

```
[82]: # Checking dataset features
     print(df_train.shape[1])
     df_train.head()
```

	21						
[82]:		id state	account lengt	th area code	international_plan	voice mail plan	\
[0=].	0	1 KS		28 area_code_415	no	yes	,
	1	2 OH)7 area_code_415	no	yes	
	2	3 NJ		37 area_code_415	no	no	
	3	4 OH		34 area_code_408	yes	no	
	4	5 OK		'5 area_code_415	yes	no	
		number_v		- • -	s total_day_calls	\	
	0		25	265.			
	1		26	161.0			
	2		0	243.4			
	3		0	299.4			
	4		0	166.	7 113		
		total da	v charge	total eve calls	total_eve_charge \		
	0		45.07	99	16.78	•	
	1		27.47	103	16.62		
	2		41.38	110	10.30		
	3		50.90	88	5.26		
	4		28.34	122	12.61		
						,	
	•	total_ni	-		total_night_charge	\	
	0		244.7	91	11.01		
	1		254.4	103	11.45		
	2		162.6	104	7.32		
	3		196.9	89	8.86		

```
4
                       186.9
                                             121
                                                                 8.41
         total_intl_minutes total_intl_calls total_intl_charge \
      0
                       10.0
      1
                       13.7
                                             3
                                                              3.70
                       12.2
                                             5
                                                              3.29
      2
                        6.6
                                             7
                                                              1.78
      3
      4
                       10.1
                                             3
                                                              2.73
         number_customer_service_calls
      0
                                            no
      1
                                      1
                                            no
      2
                                      0
                                            no
      3
                                      2
                                            no
      4
                                      3
                                            no
      [5 rows x 21 columns]
[83]: # Checking for missing values
      print(pd.isna(df_train).any().any())
      print(pd.isna(df_test).any().any())
      print(pd.isnull(df_train).any().any())
      print(pd.isnull(df_test).any().any())
     False
     False
     False
     False
[84]: # datasets size
      print(df_train.shape)
      print(df_test.shape)
     (3333, 21)
     (1667, 21)
[207]: df_train.columns
[207]: Index(['id', 'state', 'account_length', 'area_code', 'international_plan',
             'voice_mail_plan', 'number_vmail_messages', 'total_day_minutes',
             'total_day_calls', 'total_day_charge', 'total_eve_minutes',
             'total_eve_calls', 'total_eve_charge', 'total_night_minutes',
             'total_night_calls', 'total_night_charge', 'total_intl_minutes',
             'total_intl_calls', 'total_intl_charge',
             'number_customer_service_calls', 'churn'],
            dtype='object')
```

```
'total_day_calls', 'total_day_charge', _
 'total_eve_calls', 'total_eve_charge', _
 'total_night_calls', 'total_night_charge', __
 'total_intl_calls', 'total_intl_charge', u
 →'number_customer_service_calls']].copy()
df_describe = pd.concat([df_train_num.describe().T,
              df_train_num.mad().rename('mad'),
              df_train_num.skew().rename('skew'),
              df_train_num.kurt().rename('kurt'),
              df_train_num.median().rename('median')
              ], axis=1).T
display(df_describe)
        account_length
                        number_vmail_messages
                                               total_day_minutes
count
           3333.000000
                                  3333.000000
                                                     3333.000000
            101.064806
                                     8.099010
                                                      179.775098
mean
                                                       54.467389
std
             39.822106
                                    13.688365
              1.000000
                                     0.000000
                                                        0.000000
min
25%
                                                      143.700000
            74.000000
                                     0.000000
50%
            101.000000
                                     0.000000
                                                      179.400000
75%
            127.000000
                                    20.000000
                                                      216.400000
            243.000000
                                    51.000000
max
                                                      350.800000
mad
             31.821440
                                    11.719778
                                                      43.523455
              0.096606
                                     1.264824
                                                       -0.029077
skew
                                                       -0.019940
kurt
             -0.107836
                                    -0.051129
median
            101.000000
                                     0.000000
                                                      179.400000
        total_day_calls
                         total_day_charge
                                           total_eve_minutes
                                                              total_eve_calls
            3333.000000
                              3333.000000
                                                 3333.000000
                                                                  3333.000000
count
mean
             100.435644
                                30.562307
                                                  200.980348
                                                                   100.114311
              20.069084
                                 9.259435
                                                   50.713844
                                                                    19.922625
std
min
               0.000000
                                0.000000
                                                    0.000000
                                                                     0.00000
25%
              87.000000
                                24.430000
                                                  166.600000
                                                                    87.000000
50%
             101.000000
                                30.500000
                                                  201.400000
                                                                   100.000000
75%
             114.000000
                                36.790000
                                                  235.300000
                                                                   114.000000
```

df_train_num = df_train[['account_length', 'number_vmail_messages',__

[85]: # Compute numerical data summary statistics

max mad	165.000000 15.944943	59.640000 7.398914	363.700000 40.469244	170.000000 15.860332
skew	-0.111787	-0.029083	-0.023877	-0.055563
kurt	0.243182	-0.019812	0.025630	0.206156
median	101.000000	30.500000	201.400000	100.000000
	+-+-1	totol might minutos	total mimbt calls	,
count	total_eve_charge 3333.000000	total_night_minutes 3333.000000	3333.000000	\
	17.083540	200.872037	100.107711	
mean std	4.310668	50.573847	19.568609	
min	0.000000	23.200000	33.000000	
25%	14.160000	167.000000	87.000000	
	17.120000	201.200000	100.000000	
50%				
75%	20.000000	235.300000	113.000000	
max	30.910000	395.000000	175.000000	
mad	3.439937	40.410387	15.690341	
skew	-0.023858	0.008921	0.032500	
kurt	0.025487	0.085816	-0.072020	
median	17.120000	201.200000	100.000000	
	total_night_charge	total_intl_minutes	total_intl_calls	\
count	3333.000000	3333.000000	3333.000000	`
mean	9.039325	10.237294	4.479448	
std	2.275873	2.791840	2.461214	
min	1.040000	0.000000	0.000000	
25%	7.520000	8.500000	3.000000	
50%	9.050000	10.300000	4.000000	
75%	10.590000	12.100000	6.000000	
	17.770000		20.000000	
max		20.000000 2.184712		
mad	1.818555		1.881093	
skew	0.008886	-0.245136	1.321478	
kurt	0.085663	0.609185	3.083589	
median	9.050000	10.300000	4.000000	
	total_intl_charge	number customer serv	vice calls	
count	3333.000000		333.000000	
mean	2.764581		1.562856	
std	0.753773		1.315491	
min	0.000000		0.000000	
25%	2.300000		1.000000	
50%	2.780000		1.000000	
75%	3.270000		2.000000	
			9.000000	
max	5.400000			
mad	0.589880		1.052532	
skew	-0.245287		1.091359	
kurt	0.609610		1.730914	
median	2.780000		1.000000	

```
[86]: # Compute categorical data summary statistics

df_train_cat = df_train[['state', 'area_code', 'international_plan',

→'voice_mail_plan', 'churn']].copy()

df_train_cat.describe()
```

```
[86]:
            state
                        area_code international_plan voice_mail_plan churn
             3333
                             3333
                                                 3333
                                                                  3333
                                                                         3333
     count
     unique
               51
                                                                     2
                                                                            2
               WV area_code_415
     top
                                                   no
                                                                    no
                                                                           no
     freq
              106
                             1655
                                                 3010
                                                                  2411
                                                                        2850
```

1.2.1 Univariate analysis

Checking churn variable distribution and proportion

```
[214]: # churn values and proportion
df = pd.DataFrame(pd.Categorical(df_train.churn).describe())
display(df)

# churn variable barplot
sns.set(style="whitegrid")
sns.barplot(x=['no','yes'], y=df_train.churn.value_counts().values).
→set_title('Churn barplot')
```

```
counts freqs
categories
no 2850 0.855086
yes 483 0.144914
```

[214]: Text(0.5, 1.0, 'Churn barplot')

As noticed on table and graph above, churn feature is unbalanced. About 14% of customers stopped using the telecom service and 85% still using it.

Categorical variables

State

The state with the highest frequency is the West Virginia and the lowest frequency is the California. Other states with a large number of records are New York and Minnesota. ###### Number of records by State shown on the map below:

```
[9]: # Map graph
    # Load the shape of the zone (US states)
    state_geo = os.path.join('', 'us-states.json')
    # state data
    state_data = pd.DataFrame({'state': df_train.state.value_counts().index,
                               'count': df_train.state.value_counts().values})
    # Initialize the map:
    m = folium.Map(location=[37, -102], zoom_start=5)
    # Add the color for the chloropleth:
    m.choropleth(
    geo_data=state_geo,
    name='Number of records by state',
    data=state_data,
     columns=['state', 'count'],
    key_on='feature.id',
    fill_color='YlGn',
    fill_opacity=0.7,
    line_opacity=0.2,
    legend_name='Number of records'
    folium.LayerControl().add_to(m)
    # Save to html
```

```
m.save('#registers_by_map.html')
display(m)
# Loading map image
# Image(filename='records_by_state.png')
```

[9]:

Area code

	counts	freqs
categories		
area_code_408	838	0.251425
area_code_415	1655	0.496550
area_code_510	840	0.252025

Code area 415 has the largest number of records. ##### International plan

plt.show()

```
counts freqs
categories
no 3010 0.90309
yes 323 0.09691
```


Most customers do not have international plan. ##### Voice mail plan

```
counts freqs
categories
no 2411 0.723372
yes 922 0.276628
```


Most customers do not have voice mail plan. #### Numerical variables ###### Checking numerical features distributions

```
[40]: # Features histograms and kde
df = df_train_num.copy()
fig, axs = plt.subplots(ncols=3, nrows=5)
plt.subplots_adjust(hspace = 0.4, wspace = 0.4)
fig.set_size_inches(18, 18, forward=True)

count = 0

for i in range(5):
    for j in range(3):
        plt.sca(ax=axs[i][j])
        if count < df.shape[1]:
            col = df.columns[count]
            sns.distplot(df[col]).set_title(col +' distribution')
        else:
            break

count +=1</pre>
```


"account_lenght", " total_day_minutes"," total_day_calls"," total_day_charge"," total_eve_minutes"," total_eve_charge"," total_eve_charge"," total_night_minutes"," total_night_charge"," total_intl_minutes"," total_intl_charge" seem to have a normal distribution. "number_vmail_messages" has a bimodal distribution; "total_intl_calls" has a exponential distribution and "number_customer_service_calls" has a multimodal distribution.

```
[42]: # Features boxplot
df = df_train_num.copy()
fig, axs = plt.subplots(ncols=3, nrows=5)
plt.subplots_adjust(hspace = 0.4, wspace = 0.4)
fig.set_size_inches(18, 18, forward=True)

count = 0

for i in range(5):
```

```
for j in range(3):
    plt.sca(ax=axs[i][j])
    if count < df.shape[1]:
        col = df.columns[count]
        sns.boxplot(y=df[col]).set_title(col +' boxplot')
    else:
        break

count +=1</pre>
```


"total_intl_calls" and "number_customer_service" have a large number of outliers. ### Bivariate analysis ###### Checking correlation between numerical variables

```
[16]: # heat map of correlation values

df = df_train_num.copy()
```

```
df['churn'] = df_train.churn.apply(lambda x: 0 if x=='no' else 1)

corr = df.corr()
fig, ax = plt.subplots(figsize=(16,16))

g = sns.heatmap(corr, annot=True, ax=ax, square=True, linewidth=0.5)

plt.yticks(rotation=0)
g.set_xticklabels(g.get_xticklabels(), rotation=90)
ax.set_ylim([len(corr) + 0.5, 0])
ax.set_xlim([-0.5, len(corr)])
```

[16]: (-0.5, 16)

account_length - number_vmail_messages -	1															
number_vmail_messages -		-0.0046	0.0062	0.038	0.0062	-0.0068	0.019	-0.0067	-0.009	-0.013	-0.009	0.0095	0.021	0.0095	-0.0038	0.017
	-0.0046	1	0.00078	-0.0095	0.00078	0.018	-0.0059	0.018	0.0077	0.0071	0.0077	0.0029	0.014	0.0029	-0.013	-0.09
total_day_minutes -	0.0062	0.00078	1	0.0068	1	0.007	0.016	0.007	0.0043	0.023	0.0043	-0.01	0.008	-0.01	-0.013	0.21
total_day_calls -	0.038	-0.0095	0.0068	1	0.0068	-0.021	0.0065	-0.021	0.023	-0.02	0.023	0.022	0.0046	0.022	-0.019	0.018
total_day_charge -	0.0062	0.00078	1	0.0068	1	0.007	0.016	0.007	0.0043	0.023	0.0043	-0.01	0.008	-0.01	-0.013	0.21
total_eve_minutes -	-0.0068	0.018	0.007	-0.021	0.007	1	-0.011	1	-0.013	0.0076	-0.013	-0.011	0.0025	-0.011	-0.013	0.093
total_eve_calls -	0.019	-0.0059	0.016	0.0065	0.016	-0.011	1	-0.011	-0.0021	0.0077	-0.0021	0.0087	0.017	0.0087	0.0024	0.0092
total_eve_charge -	-0.0067	0.018	0.007	-0.021	0.007	1	-0.011	1	-0.013	0.0076	-0.013	-0.011	0.0025	-0.011	-0.013	0.093
total_night_minutes -	-0.009	0.0077	0.0043	0.023	0.0043	-0.013	-0.0021	-0.013	1	0.011	1	-0.015	-0.012	-0.015	-0.0093	0.035
total_night_calls -	-0.013	0.0071	0.023	-0.02	0.023	0.0076	0.0077	0.0076	0.011	1	0.011	-0.014	0.0003	-0.014	-0.013	0.0061
total_night_charge -	-0.009	0.0077	0.0043	0.023	0.0043	-0.013	-0.0021	-0.013	1	0.011	1	-0.015	-0.012	-0.015	-0.0093	0.035
total_intl_minutes -	0.0095	0.0029	-0.01	0.022	-0.01	-0.011	0.0087	-0.011	-0.015	-0.014	-0.015	1	0.032	1	-0.0096	0.068
total_intl_calls -	0.021	0.014	0.008	0.0046	0.008	0.0025	0.017	0.0025	-0.012	0.0003	-0.012	0.032	1	0.032	-0.018	-0.053
total_intl_charge -	0.0095	0.0029	-0.01	0.022	-0.01	-0.011	0.0087	-0.011	-0.015	-0.014	-0.015	1	0.032	1	-0.0097	0.068
umber_customer_service_calls -	-0.0038	-0.013	-0.013	-0.019	-0.013	-0.013	0.0024	-0.013	-0.0093	-0.013	-0.0093	-0.0096	-0.018	-0.0097	1	0.21
chum -	0.017	-0.09	0.21	0.018	0.21	0.093	0.0092	0.093	0.035	0.0061	0.035	0.068	-0.053	0.068	0.21	1
	account_length -	number_vmail_messages -	total_day_minutes -	total_day_calls -	total_day_charge	total_eve_minutes	total_eve_calls -	total_eve_charge _	total_night_minutes -	total_night_calls -	total_night_charge -	total_intl_minutes -	total_intl_calls -	total intl charge -	number_customer_service_calls -	- which

There is a high correlation between the following pairs of variables: "total_day_minutes" and "total_day_charge", "total_night_minutes" and "total_night_charge", "total_eve_minutes" and "total_eve_charge", "total_intl_minutes" and "total_intl_charge". ##### Getting numerical features distribuition grouped by target variable (churn)

```
[50]: # Getting numerical features distribution grouped by churn variable
     df = df train num
     df['churn'] = df_train.churn.copy()
     for col in df.drop("churn", axis=1).columns:
         fig, axs = plt.subplots(ncols=2)
         fig.set_size_inches(13, 4, forward=True)
         sns.distplot(df[df.churn == 'no'][col], color='red', label='Stay',__
      \Rightarrowax=axs[0], bins = 40)
         sns.distplot(df[df.churn == 'yes'][col], color='green', label='Churn',
      \rightarrowax=axs[0], bins = 18)
         axs[0].legend()
         axs[0].set_xlabel(col)
         axs[0].set_title(col + ' kde grouped by customer satisfaction')
         sns.boxplot(y=col, x="churn", data = df, ax=axs[1])
         axs[1].set_xlabel(col)
         axs[1].set_xticklabels(['Stay', 'Churn'])
         axs[1].set_title(col + ' boxplot grouped by churn')
         plt.show()
```


Getting categorical features barplot grouped by churn variable

```
[87]: # categorical variables boxplot grouped by churn
df = df_train_cat.drop('state', axis=1)
df['churn'] = df_train.churn.copy()

fig, axs = plt.subplots(ncols=3)
plt.subplots_adjust(hspace = 0.4, wspace = 0.4)
fig.set_size_inches(18, 4, forward=True)

count = 0

for j in range(3):
    plt.sca(ax=axs[j])
    if count < df.shape[1]:
        col = df.columns[count]
        df_g = pd.DataFrame(df.groupby([col, 'churn']).size()).reset_index()
        sns.barplot(x=col, y=0, hue="churn", data=df_g, palette="rocket")</pre>
```

```
axs[j].set_xlabel(col)
  axs[j].set_title(col + ' barplot grouped by churn')
else:
  break
count +=1
```


Most of the customers who remained do not have an international plan. ##### Churn by state

```
[11]: # Map graph exibing churn proportion
     # Load the shape of the zone (US states)
     state_geo = os.path.join('', 'us-states.json')
     # state data
     state_data = pd.DataFrame({'state': df_train[df_train.churn == 'yes'].state.
      →value_counts().index,
                                'churn_prop': df_train[df_train.churn == 'yes'].
      →state.value counts().values/ \
                                df_train.state.value_counts().values})
     state_data
     # Initialize the map:
     m = folium.Map(location=[37, -102], zoom_start=5)
     # Add the color for the chloropleth:
     m.choropleth(
      geo_data=state_geo,
      name='Churn proportion by state',
      data=state_data,
      columns=['state', 'churn_prop'],
      key_on='feature.id',
      fill_color='PuRd',
      fill_opacity=0.7,
      line_opacity=0.2,
      legend_name='Churn proportion'
     folium.LayerControl().add_to(m)
```

```
# Save to html
m.save('#churn_proportion.html')
display(m)

# # Loading map image
# Image(filename='churn_proportion_by_state.png')
```

[11]:

Checking categorical features

```
count += 1
     df_new_train_cat.state = df_new_train_cat.state.apply(lambda x: dic[x])
     # Changing area_code variable
     df_new_train_cat.area_code[df_new_train_cat.area_code == 'area_code_408'] = 1
     df_new_train_cat.area_code[df_new_train_cat.area_code == 'area_code_510'] = 2
     df_new_train_cat.area_code[df_new_train_cat.area_code == 'area_code_415'] = 3
[89]: # heat map of correlation values
     df = df_new_train_cat.copy()
     corr = df.corr()
     fig, ax = plt.subplots(figsize=(8,8))
     g = sns.heatmap(corr, annot=True, ax=ax, square=True, linewidth=0.5)
     plt.yticks(rotation=0)
     g.set_xticklabels(g.get_xticklabels(), rotation=90)
     ax.set_ylim([len(corr) + 0.5, 0])
     ax.set_xlim([-0.5, len(corr)])
[89]: (-0.5, 4)
```


1.2.2 Multivariate analysis


```
[90]: # df_new_train_cat = df_train_cat
     df_new_train_cat = df_train_cat.copy()
     df_new_train_cat.international_plan = df_new_train_cat.international_plan.
      \rightarrowapply(lambda x: 0 if x=='no' else 1)
     df_new_train_cat.voice_mail_plan = df_new_train_cat.voice_mail_plan.
      \rightarrowapply(lambda x: 0 if x=='no' else 1)
     df_new_train_cat.churn = df_new_train_cat.churn.apply(lambda x: 0 if x=='no'__
      →else 1)
[91]: df_new_train_cat.head()
[91]:
       state
                  area_code international_plan voice_mail_plan
     0
          KS area_code_415
                                                0
                                                                         0
```

1

OH area_code_415

0

1

0

```
2
         NJ area_code_415
                                             0
                                                              0
                                                                     0
         OH area_code_408
                                                                     0
    3
                                             1
         OK area_code_415
                                             1
                                                                     0
[96]: # Checking relation between categorical variables grouped by churn
    values = df_train_cat[['state', 'international_plan', 'voice_mail_plan', '
     .groupby(['international_plan', 'voice_mail_plan', 'churn']).count()
    dic = {'international_plan': [],
           'voice_mail_plan': [],
           'churn': [],
           'count': []}
    for a_tuple in values.index:
        dic['international_plan'].append(a_tuple[0])
        dic['voice_mail_plan'].append(a_tuple[1])
        dic['churn'].append(a_tuple[2])
        dic['count'].append(values.loc[a_tuple].values[0])
    display(pd.DataFrame(dic).sort_values(by ='count', ascending=False))
```

	${\tt international_plan}$	voice_mail_plan	churn	count
0	0	0	0	1878
2	0	1	0	786
1	0	0	1	302
4	1	0	0	130
5	1	0	1	101
6	1	1	0	56
3	0	1	1	44
7	1	1	1	36

1.3 Feature Engineering

Converting train categorical variables to numerical

```
[92]: # converting test categorical variables to numerical
train_data = df_train.drop('id', axis=1).copy()

# Converting to binary
train_data.international_plan = train_data.international_plan.apply(lambda x: 0

→if x=='no' else 1)
train_data.voice_mail_plan = train_data.voice_mail_plan.apply(lambda x: 0 if

→x=='no' else 1)
train_data.churn = train_data.churn.apply(lambda x: 0 if x=='no' else 1)
```

```
dic = {}
count = 1

# Changing state variable
for state in train_data.state.unique():
    dic[state] = count
    count += 1

train_data.state = train_data.state.apply(lambda x: dic[x])

# Changing area_code variable
train_data.area_code[train_data.area_code == 'area_code_408'] = 1
train_data.area_code[train_data.area_code == 'area_code_510'] = 2
train_data.area_code[train_data.area_code == 'area_code_415'] = 3

# Saving dataset
train_data.to_csv("data/train_data.csv", index=False)
```

Converting test categorical variables to numerical

```
[93]: # converting test categorical variables to numerical
     test_data = df_test.drop('id', axis=1).copy()
     # Converting to binary
     test_data.international_plan = test_data.international_plan.apply(lambda x: 0_
      \rightarrowif x=='no' else 1)
     test_data.voice_mail_plan = test_data.voice_mail_plan.apply(lambda x: 0 ifu
     \rightarrow x=='no' else 1)
     test_data.churn = test_data.churn.apply(lambda x: 0 if x=='no' else 1)
     dic = \{\}
     count = 1
     # Changing state variable
     for state in test data.state.unique():
         dic[state] = count
         count += 1
     test_data.state = test_data.state.apply(lambda x: dic[x])
     # Changing area_code variable
     test_data.area_code[test_data.area_code == 'area_code_408'] = 1
     test_data.area_code[test_data.area_code == 'area_code_510'] = 2
     test_data.area_code[test_data.area_code == 'area_code_415'] = 3
     # Saving dataset
     test_data.to_csv("data/test_data.csv", index=False)
```

Removing high correlated features

```
[94]: high_corr_features = [col for col in train_data.columns if 'minute' in col] high_corr_features

less_corr_train_data = train_data.drop(high_corr_features, axis=1).copy()
less_corr_test_data = test_data.drop(high_corr_features, axis=1).copy()

less_corr_train_data.to_csv("data/less_corr_train_data.csv", index=False)
less_corr_test_data.to_csv("data/less_corr_test_data.csv", index=False)
```

Standardizing train and test data

```
[97]: # Applying StandardData to scaled data
     # Train data
     df = less_corr_train_data.drop(['churn', 'international_plan',__

¬'voice_mail_plan'], axis=1).copy()
     StandardData = pd.DataFrame(StandardScaler().fit_transform(df), \
                               columns = df.columns)
     stand_train_data = StandardData
     stand_train_data['international_plan'] = less_corr_train_data.
     →international_plan.copy()
     stand_train_data['voice_mail_plan'] = less_corr_train_data.voice_mail_plan.
     →copy()
     stand_train_data['churn'] = less_corr_train_data.churn.copy()
     # Test data
     df = less_corr_test_data.drop(['churn', 'international_plan', | ])

¬'voice_mail_plan'], axis=1).copy()
     StandardData = pd.DataFrame(StandardScaler().fit_transform(df), \
                               columns = df.columns)
     stand_test_data = StandardData
     stand_test_data['international_plan'] = less_corr_test_data.international_plan.
     →copy()
     stand_test_data['voice_mail_plan'] = less_corr_test_data.voice_mail_plan.copy()
     stand_test_data['churn'] = less_corr_test_data.churn.copy()
     # Saving data
     stand_train_data.to_csv("data/stand_train_data.csv", index=False)
     stand_test_data.to_csv("data/stand_test_data.csv", index=False)
```

Applying MinMaxScaler to train and test data

```
[98]: # Applying MinMaxData to scaled data
     # Train data
     df = less_corr_train_data.drop(['churn', 'international_plan',__

¬'voice_mail_plan'], axis=1).copy()
     MinMaxData = pd.DataFrame(MinMaxScaler().fit_transform(df), \
                               columns = df.columns)
     minmax_train_data = MinMaxData
     minmax_train_data['international_plan'] = less_corr_train_data.
     →international_plan.copy()
     minmax_train_data['voice_mail_plan'] = less_corr_train_data.voice_mail_plan.
     minmax_train_data['churn'] = less_corr_train_data.churn.copy()
     # Test data
     df = less_corr_test_data.drop(['churn', 'international_plan',_

¬'voice_mail_plan'], axis=1).copy()
     MinMaxData = pd.DataFrame(MinMaxScaler().fit_transform(df), \
                               columns = df.columns)
     minmax_test_data = MinMaxData
     minmax_test_data['international_plan'] = less_corr_test_data.international_plan.
      →copy()
     minmax_test_data['voice_mail_plan'] = less_corr_test_data.voice_mail_plan.copy()
     minmax_test_data['churn'] = less_corr_test_data.churn.copy()
     # Saving data
     minmax_train_data.to_csv("data/minmax_train_data.csv", index=False)
     minmax_test_data.to_csv("data/minmax_test_data.csv", index=False)
```

1.4 Training models

To predict Customer Churn, I chose to use Logistic Regression to get information on whether customers are going to cancel their plan and their likelihood. ### Balancing data

1.4.1 Logistic Regression

```
[146]: # LogisticRegression algorithm
lr = LogisticRegression(C=1e5)

# training model
lr.fit(Xo_train, yo_train)

# prediction
churn_prob = lr.predict(Xo_test)
pred = churn_prob.round()

# Evaluating prediction
print (confusion_matrix(yo_test,pred))
print (classification_report(yo_test,pred))

# Save the model as a pickle in a file
# joblib.dump(lr, 'lr.pkl')
```

```
Γ 192
         3211
                            recall f1-score
              precision
                                                support
           0
                   0.88
                              0.98
                                         0.93
                                                   1443
           1
                   0.56
                              0.14
                                         0.23
                                                    224
                                         0.87
                                                   1667
    accuracy
                   0.72
                              0.56
                                         0.58
                                                   1667
   macro avg
                                         0.83
weighted avg
                   0.84
                              0.87
                                                   1667
```

[146]: ['lr.pkl']

[[1418

25]

1.5 Trying to optimizate model

1.5.1 Logistic regression optimization

Selecting most important features

```
[149]: # selecting most important features
k = 9

X = less_corr_train_data.drop("churn", axis=1).copy()
y = less_corr_train_data.churn.copy()

selectChi2 = SelectKBest(chi2, k=k).fit(X, y)
selectF_classif = SelectKBest(f_classif, k=k).fit(X, y)

selected = selectChi2.get_support() & selectF_classif.get_support()
```

```
features = [col for col, i in zip(X.columns, selected) if i]
print("{} most important features: ".format(len(features)), features)
```

```
7 most important features: ['international_plan', 'voice_mail_plan', 'number_vmail_messages', 'total_day_charge', 'total_eve_charge', 'total_intl_calls', 'number_customer_service_calls']
```

Training model using less variables

```
[[1410
         33]
 [ 184
         40]]
                            recall f1-score
                                                support
              precision
           0
                    0.88
                              0.98
                                         0.93
                                                    1443
           1
                    0.55
                              0.18
                                         0.27
                                                     224
                                         0.87
                                                    1667
    accuracy
   macro avg
                    0.72
                              0.58
                                         0.60
                                                    1667
weighted avg
                    0.84
                              0.87
                                         0.84
                                                    1667
```

0.8698260347930414

Using standard deviation dataset

```
[171]: # Defining features

Xsd_train, Xsd_test, ysd_train, ysd_test = stand_train_data.drop("churn", □

→axis=1).copy(), \
```

```
stand_test_data.drop("churn", axis=1).
 →copy(), \
                                       stand_train_data.churn.copy(),__

→stand_test_data.churn.copy()
# LogisticRegression algorithm
lr = LogisticRegression(C=1e5)
# training model
lr.fit(Xsd_train, ysd_train)
# prediction
churn_prob = lr.predict(Xsd_test)
pred = churn_prob.round()
# Evaluating prediction
print (confusion_matrix(ysd_test,pred))
print (classification_report(ysd_test,pred))
print(accuracy_score(ysd_test,pred))
# Save the model as a pickle in a file
joblib.dump(lr, 'lr.pkl')
```

```
[[1407
         36]
         4311
 Γ 181
              precision
                         recall f1-score
                                               support
           0
                   0.89
                             0.98
                                        0.93
                                                   1443
           1
                   0.54
                              0.19
                                        0.28
                                                    224
                                        0.87
                                                   1667
   accuracy
  macro avg
                   0.72
                             0.58
                                        0.61
                                                   1667
                   0.84
                              0.87
                                        0.84
                                                   1667
weighted avg
```

0.8698260347930414

optimization using GridSearch

```
[155]: #Results dataframe
    cols = ['Case', 'LogReg']

resul = pd.DataFrame(columns=cols)
    resul.set_index("Case",inplace=True)

resul.loc['Standard'] = [0]
    resul.loc['GridSearch'] = [0]
    resul.loc['RandomSearch'] = [0]
```

```
resul.loc['Hyperopt'] = [0]
[164]: #Models creation
      lr = LogisticRegression(solver='liblinear')
      # Standard parameters
      lr.fit(Xsd_train,ysd_train.values.ravel())
      resul.iloc[0, 0] = lr.score(Xsd_test,ysd_test)
[174]: # GridSearch parameters
      from sklearn.model_selection import GridSearchCV
      from sklearn.model_selection import RepeatedStratifiedKFold
      #Logistic Regrresion
      solvers = ['newton-cg', 'lbfgs', 'liblinear']
      penalty = ['12']
      c_values = [100, 10, 1.0, 0.1, 0.01]
      lr_grid = dict(solver=solvers, penalty=penalty, C=c_values)
      grid = lr_grid
      cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3,
                                   random state=1)
      grid_search = GridSearchCV(estimator=lr,
                    param_grid=grid, n_jobs=-1, cv=cv,
                    scoring='accuracy',error_score=0)
      grid_clf_acc = grid_search.fit(Xsd_train, ysd_train)
      resul.iloc[1,0] = grid_clf_acc.score(Xsd_test,ysd_test)
      # Save the model as a pickle in a file
      joblib.dump(grid_search, 'grid_search.pkl')
[174]: ['grid_search.pkl']
        optimization using RandomSearch
[165]: from scipy.stats import randint as sp_randint
      from sklearn.model_selection import RandomizedSearchCV
      cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3,
                                   random_state=1)
      n_iter_search = 3
      random_search = RandomizedSearchCV(lr, param_distributions=grid,
                                         n_iter=n_iter_search, cv=cv)
```

[166]: LogReg
Case
Standard 0.870426
GridSearch 0.871626
RandomSearch 0.869826
Hyperopt 0

1.5.2 Final model

GridSearch exibed the best result. The final model presents accuracy of 0.87. The results are shown in the table below including churn probability predicted by model.

```
[[1410
         33]
 Γ 181
         43]]
               precision
                             recall f1-score
                                                 support
           0
                    0.89
                               0.98
                                          0.93
                                                     1443
           1
                    0.57
                               0.19
                                          0.29
                                                      224
                                          0.87
                                                     1667
    accuracy
                                          0.61
                                                     1667
   macro avg
                    0.73
                               0.58
weighted avg
                    0.84
                               0.87
                                          0.84
                                                     1667
```

0.871625674865027

[197]: display(result)

```
real_churn predicted_churn probability
0 0 0 0.066634
1 0 0 0.051263
```

2	0	0	0.239797
3	0	0	0.133904
4	0	0	0.063361
1662	0	0	0.183550
1663	1	0	0.402079
1664	0	0	0.051855
1665	0	0	0.031570
1666	0	0	0.004603

[1667 rows x 3 columns]

```
[198]: result.to_csv("data/result.csv", index=False)
```