referacik

dupa chuj

kurwa szmata

21.37

Contents

	owadzonia do twiordzonia Stokos'a	
0.1	Powtórka tego co było	-

0.1 Powtórka tego co było

DYFEOMORFIZM to funkcja h : U \to V dla otwartych U, V $\subseteq \mathbb{R}^n$ która jest klasy C $^{\infty}$ i jej odwrotność h $^{-1}$: V \to U jest również klasy C^{∞} . k-WYMIAROWA ROZMAITOŚĆ to podzbiór M $\subseteq \mathbb{R}^n$ taki, że dla każdego punktu $x \in M$ istnieje otwarty podzbiór $x\ni U\subseteq \mathbb{R}^n$, otwarty podzbiór $V\subseteq \mathbb{R}^n$ oraz dyfeomorfizm $h:U\to V$ taki, że

$$h(U \cap M) = V \cap (\mathbb{R}^k \times \{0\}) = \{y \in V : y^{k+1} = ... = y^n = 0\}$$

czyli U \cap M jest z dokładnością do dyfeomorfizmy po prostu $\mathbb{R}^k \times \{0\}$.

UKŁAD WSPÓŁRZĘDNYCH wg. Spivaka to różnowartościowa funkcja W $\to \mathbb{R}^n$ dla otwartego W $\subseteq \mathbb{R}^k$ taka, że

- \hookrightarrow f(W) = M \cap U
- \hookrightarrow f'(y) ma rangę k (czyli obraz ma wymiar k) dla każdego $y \in W$ \hookrightarrow $f^{-1}: f(W) \to W$ jest ciągła.

TENSORY

k-tensor to funkcja k-liniowa T : $V^k \to \mathbb{R}$ dla V - przestrzeni liniowej nad \mathbb{R} . Zbiór wszystkich k-tensorów oznaczamy $\mathscr{T}^{\mathsf{k}}(\mathsf{V})$ i wymagamy, żeby to była przestrzeń liniowa (dodawanie, mnożenie przez skalary ma śmigać)

Iloczyn tensorowy dla $S \in \mathcal{T}^{j}(V)$ oraz $T \in \mathcal{T}^{k}(V)$ to $S \otimes T \in \mathcal{T}^{j+k}(V)$ idefiniujemy go:

$$(S \otimes T)(v_1,...,v_{k+i}) = S(v_1,...,v_i) \cdot T(v_{i+1},...,v_{k+i}),$$

bo przecież S i T to tak naprawdę skalary, więc sprowadza się to do mnożenia skalarów, tylko musimy zmienić dziedzinę żeby śmigało :v

Jeśli $e_1,...,e_d$ jest bazą V, a $\phi_1,...,\phi_d$ jest jej bazą dualną, to zbiór wszystkich iloczynów tensorowych k elementów bazy dualnej jest **bazą przestrzeni** $\mathcal{T}^{k}(V)$.

Dla odzworowania liniowego f : V \to W definiujemy odwzorowanie liniowe $f^*: \mathscr{T}^k(W) \to \mathscr{T}^k(V)$ jako

$$(f^*T)(v_1,...,v_k) = T(f(v_1),...,f(v_k))$$

TENSORY ALTERNUJACE

Tensor alternujący ω to taki, że dla dowolnego $\sigma \in S_k$ mamy

$$\omega(\mathsf{v}_{\sigma(1)},...,\mathsf{v}_{\sigma(k)}) = (\mathsf{sgn}(\sigma))\omega(\mathsf{v}_1,...,\mathsf{v}_k)$$

Przestrzeń liniową tensorów alternujących oznaczamy $\Omega^{k}(V)$ (lub $\Lambda^{k}(V)$, jeżeli jesteśmy Spivakiem)

 $\text{Przekształcenie Alt}: \mathscr{T}^{k}(V) \rightarrow \Omega^{k}(V) \text{ definiowane Alt}(T)(v_{1},...,v_{k}) = \frac{1}{k!} \sum_{\sigma \in S_{k}} (\text{sgn}(\sigma)) T(v_{\sigma(1)},...,v_{\sigma(k)}) \text{ jest liniowe.}$

Iloczyn zewnętrzny tensorów alternujących jest definiowany dla $\omega \in \Omega^k(V)$ i $\eta \in \Omega^j(V)$ jako

$$\omega \wedge \eta = \frac{(\mathsf{k} + 1)!}{\mathsf{k}! \mathsf{j}!} \mathsf{Alt}(\omega \otimes \eta) \in \Omega^{\mathsf{k} + \mathsf{j}}(\mathsf{V})$$

Zbiór wszystkich k-krotnych iloczynów zewnętrznych ϕ_i jest bazą przestrzeni $\Omega^k(V)$.

POLA

Przestrzeń styczna w punkcie $p \in \mathbb{R}^d$ jest definiowana jako

$$T_p \mathbb{R}^d = \mathbb{R}_p^d := \{(p, v) : p, v \mathbb{R}^d\}$$

i określamy na niej działanie (p, v) + (p, w) = (p, v + w) oraz a(p, v) = (p, av).

Wiązka styczna w punkcie p to zbiór $\{(p,v): p \in \mathbb{R}^d, v \in \mathbb{R}^d\} = \bigcup_{p \in \mathbb{R}^d} T_p \mathbb{R}^d$

Pole wektorowe zmienia definicje z $F: \mathbb{R}^d \to \mathbb{R}^d$ zadanego $F(p) = (F_1(p), ..., F_d(p))$ na $F: \mathbb{R}^d \to T\mathbb{R}^d$ zadanego wzorem $F(p) = (p, \sum\limits_{i=1}^d F^i(p)e_i)$ dla wektorów bazowych e_i . Pola wektorowe można dodawać i mnożyć przez funkcjonał.

To samo możemy zrobić dla 1-tensorów, czyli funkcjonałów - podmieniamy w definicji wiązki stycznej wektor v na funkcjonał i dostajemy $\mathsf{T}^*\mathbb{R}^d \approx \mathbb{R}^d \times \Omega^1(\mathbb{R}^d)$.

1 Wprowadzenie do twierdzenia Stokes'a

FORMY

Mówimy, że funkcja $\overline{\phi}: \mathbb{R}^d \to \mathsf{T}^*\mathbb{R}^d$ jest nazywana **cięciem** $\mathsf{T}^*\mathbb{R}^d$, a z kolei $\overline{\omega}: \mathbb{R}^d \to \Omega^k(\mathsf{T}\mathbb{R}^d)$ jest **cięciem** $\mathsf{T}\mathbb{R}^d$. Alternatywnie, te funkcje nazywamy odpowiednio **1-formą i** k**-formą**.

Mimo, że wszystkie funkcjonały zapisują się jako suma $\overline{\phi_i}(E_j) = \delta_{ij}$ przemnożona przez $a_i(p)$, ale nie jest to baza, bo a_i to funkcjonał a nie skalar

<u>Jeżeli f : W $\to \mathbb{R}^n$ jest u</u>kładem współrzędnych, a ω jest k-formą na M to f* ω jest k-formą na W.

NOWE OZNACZENIE: $dx^i = \overline{\phi_i}$.

Dowolną k-formę możemy zapisać jako

$$\omega = \sum_{i_1 < ... < j_k} \omega_{i_1...i_k} dx^{i_1} \wedge ... \wedge dx^{i_k}$$

gdzie ω_{i_k} to funkcje na \mathbb{R}^d a ω powinna mieć kreseczkę, ale używamy notacji ze Spivaka :3 Jeśli te funkcje są ciągłe, to cała forma nazywa się **formą ciągłą** i tak samo z klasami $C^1, C^2, ..., C^{\infty}$.

Przestrzeń k-form klasy C^m to $\Gamma^k_m(\mathbb{R}^d)$ = $\{\omega: \mathbb{R}^d \to \Omega^k(T\mathbb{R}^d): \omega(p) \in \Omega^k(T_p\mathbb{R}^d)\}$ jest przestrzenią liniową nad \mathbb{R} z dodatkową strukturą mnożenia przez funkcje klasy C^m

Różniczka $dg \in \Gamma^1_0(\mathbb{R}^d)$ dla funkcji $g \in C^1(\mathbb{R}^d)$ to 1-forma $dg = \frac{\partial g}{\partial x_1} dx^1 + ... + \frac{\partial g}{\partial x_d} dx^d$. Dla funkcji różniczkowalnej $f : \mathbb{R}^d \to \mathbb{R}^m$ możemy też zdefiniować odwzorowanie liniowe $Df(p) : \mathbb{R}^d \to \mathbb{R}^m$.

Jeśli mamy k-rozmaitość $M\subseteq\mathbb{R}^n$ i układ współrzędnych $f:W\to\mathbb{R}^n$ wokół x = f(a). Ponieważ ranga f'(a) wynosi k, to liniowe przekształcenie $f_*:T_a\mathbb{R}^d\to T_{f(a)}\mathbb{R}^m$ zadane wzorem

$$f_*((a, v)) = (f(a), Df(a)(v)) < -1 CO ONO PONIEWAŻUJE???$$

Wtedy $f_*(T_a\mathbb{R}^k)$ jest k-wymiarową podprzestrzenią $T_{f(a)}\mathbb{R}^n$. W dodatku jest to niezależne od wyboru układu współrzędnych, czyli jeśli g też jest układem tam gdzie f i x = g(b), to

$$g_*(T_b\mathbb{R}^k) = f_*(f^{-1}\circ g)_*(T_b\mathbb{R}^k) = f_*(T_a\mathbb{R}^k)$$

i to jest przestrzeń styczna M w x, co Spivak oznacza M_x.

Kolejna funkcja, czyli

$$\begin{split} f^*:\Gamma^k_0(\mathbb{R}^m) &\to \Gamma^k_0(\mathbb{R}^d) \\ f^*(\omega)(a)(v_1,...,v_k) &= \omega(f(a))(f_*(v_1),...,f_*(v_k)) \end{split}$$

Twierdzenie: istnieje jedyna (p + 1)-forma d ω na rozmaitości M taka, że dla każdego układu współrzędnych f : W $\to \mathbb{R}^n$ zachodzi

$$f^*(d\omega) = d(f^*\omega),$$

twierdzenie to jest bardzo podobne do zadania 3 z listy 22.

Dowodzik: Niech $f: W \to \mathbb{R}^n$ będzie układem współrzędnych takim, że x = f(a) i niech $v_1, ..., v_{p+1} \in M_x$. Wtedy istnieją unikalne $w_1, ..., w_{n+1} \in \mathbb{R}^n$ takie, że $f_*(w_i) = v_i$. Zdefiniujmy

$$d\omega(x)(v_1,...,v_{p+1}) = d(f^*\omega)(a)(w_1,...,w_{p+1}).$$

Trzeba sprawdzić, że taka definicja d ω nie zależy od układu współrzędnych f (patrz na uwagę wyżej, że $f_*(T_a\mathbb{R}^k)$ nie zależy od wyboru układu współrzędnych), więc d ω zostało dobrze dobrane. Co więcej, jasne jest, że d ω musiało zostać wybrane tak a nie inaczej, żeby śmigało.