Indicar claramente apellido y número de padrón en cada hoja que entregue. Todas las respuestas deben estar debidamente justificadas. No se aceptarán cálculos dispersos, poco claros o sin comentarios. En la resolución de integrales, cada paso de integración debe resolverse indicando la primitiva y los límites correspondientes.

Apellid	lo(s):	No	$ombre(s): \dots$	
Curso:	Pa	drón:	Código asignat	ura:

- 1. Dado $\vec{f}: \mathbb{R}^3 \to \mathbb{R}^3 \, / \, \vec{f}(x,y,z) = (\, y \, z \, , \, x \, z \, , \varphi(y,z) \,)$ con $\vec{f} \in C^1(\mathbb{R}^3)$, calcule la circulación de \vec{f} a lo largo de la curva borde de la superficie de ecuación y=4 con $x+z \leq 2$, $z \geq 0$, $x \geq 0$. Indique gráficamente con qué orientación ha decidido realizar la circulación.
- 2. Sea $\vec{f}(x,y,z)=(x\,z\,,\,y\,z\,,\,z^2)$ definido en \mathbb{R}^3 , **calcule** el flujo de \vec{f} a través de la superficie Σ de ecuación $y^2+z^2=9$ con $x+y\leq 3$ en el 1^0 octante. **Indique** gráficamente qué orientación adoptó para Σ .
- 3. La superficie de ecuación $z = x^2 + 6xy^2 6x + 10$ tiene tres puntos donde el plano tangente es paralelo al plano xy, calcule el área del triángulo que tiene a dichos puntos como vértices.
- 4. Dado $\vec{f} \in C^1(\mathbb{R}^2)$ tal que $\vec{f}(x,y) = (2 y g(x), x g(x))$, halle una g(x) tal que g(1) = 3 y que $\oint_{\partial D^+} \vec{f} \cdot d\vec{s} = 0$, siendo $D \subset \mathbb{R}^2$ definido por: $x^2 + 2 x + y^2 \le 4$.
- 5. Dada la familia de curvas planas de ecuación $x^2 + Cy = 0$, halle una ecuación para la curva de la familia ortogonal que pasa por el punto (2, 2).

Indicar claramente apellido y número de padrón en cada hoja que entregue. Todas las respuestas deben estar debidamente justificadas. No se aceptarán cálculos dispersos, poco claros o sin comentarios. En la resolución de integrales, cada paso de integración debe resolverse indicando la primitiva y los límites correspondientes.

Apellid	lo(s):	No	$ombre(s): \dots$	
Curso:	Pa	drón:	Código asignat	ura:

- 1. Dado $\vec{f}: \mathbb{R}^3 \to \mathbb{R}^3 \, / \, \vec{f}(x,y,z) = (\, y\, z\, ,\, x\, z\, ,\, \varphi(x,z)\,)$ con $\vec{f}\in C^1(\mathbb{R}^3)\, ,$ calcule la circulación de \vec{f} a lo largo de la curva borde de la superficie de ecuación x=4 con $y+z\leq 2\, ,\, z\geq 0\, ,\, y\geq 0\, .$ Indique gráficamente con qué orientación ha decidido realizar la circulación.
- 2. Sea $\vec{f}(x,y,z) = (x\,z\,,\,x\,y\,,\,z^2)$ definido en \mathbb{R}^3 , **calcule** el flujo de \vec{f} a través de la superficie Σ de ecuación $x^2+z^2=9$ con $x+y\leq 3$ en el 1^0 octante. **Indique** gráficamente qué orientación adoptó para Σ .
- 3. La superficie de ecuación $z = y^2 + 6yx^2 6y + 10$ tiene tres puntos donde el plano tangente es paralelo al plano xy, calcule el área del triángulo que tiene a dichos puntos como vértices.
- 4. Dado $\vec{f} \in C^1(\mathbb{R}^2)$ tal que $\vec{f}(x,y) = (2yg(x) + x, xg(x) + y^2)$, halle una g(x) tal que g(2) = 4 y que $\oint_{\partial D^+} \vec{f} \cdot d\vec{s} = 0$, siendo $D \subset \mathbb{R}^2$ definido por: $y^2 + 2y + x^2 \le 4$.
- 5. Dada la familia de curvas planas de ecuación $y + Cx^2 = 0$, halle una ecuación para la curva de la familia ortogonal que pasa por el punto (2, 2).

TEMA 1

Evaluación Integradora

Indicar claramente apellido y número de padrón en cada hoja que entregue. Todas las respuestas deben estar debidamente justificadas. No se aceptarán cálculos dispersos, poco claros o sin comentarios. En la resolución de integrales, cada paso de integración debe resolverse indicando la primitiva y los límites correspondientes.

La evaluación se aprueba con un mínimo de tres (3) ítems bien resueltos

Apellid	lo(s):		No	ombre(s)	:	
Curso:		Padrón:		Código	asignatura:	

1. Sea π_0 el plano normal a la curva definida por la intersección de las superficies Σ_1 y Σ_2 en el punto A = (2, 1, 1). Calcule el área del trozo de π_0 cuya proyección sobre el plano xz es el rectángulo $D = [1, 2] \times [2, 4]$, sabiendo que en un entorno de A las mencionadas superficies quedan definidas por las siguientes ecuaciones:

$$\Sigma_1 : x + z e^{yz-1} = 3$$
 y $\Sigma_2 : xy + \ln(xy - z) - 2yz = 0$

- 2. Siendo $\vec{f}(x,y,z) = (x+\sin(y^2z), y+\cos(x^2+z), 2z)$ para todo $(x,y,z) \in \mathbb{R}^3$, calcule el flujo de \vec{f} a través de la superficie frontera Σ del cuerpo definido por: $z \leq 5 x^2, z \geq 1, |y| \leq 2$. Indique gráficamente la orientación que ha adoptado para Σ .
- 3. Dado $\vec{f}(x,y) = (2x, y-1)$ definido en \mathbb{R}^2 , **calcule** la circulación de \vec{f} desde (0,2) hasta $(2,y_1)$ a lo largo de la curva integral de y'+2xy=2x.
- 4. Sea el cuerpo $H = \{(x, y, z) \in \mathbb{R}^3 / x^2 + z^2 a \le y \le a x^2 z^2\}$ con a > 0 constante, **calcule** el valor de a para el cual el volumen de H es igual a 9π .
- 5. Dada la región $D = \{(x,y) \in \mathbb{R}^2 / x^2 + y^2 \le 4x 3, y \ge 0\}$ y la función f(x,y) = xy + h(y/x) con $h \in C^1(\mathbb{R})$, calcule $\iint_D ||\vec{X}|| f'(\vec{X}, \check{X}) dx dy$, donde $f'(\vec{X}, \check{X})$ con $\vec{X} = (x,y)$ es la derivada direccional de f en \vec{X} según \check{X} .

Indicar claramente apellido y número de padrón en cada hoja que entregue. Todas las respuestas deben estar debidamente justificadas. No se aceptarán cálculos dispersos, poco claros o sin comentarios. En la resolución de integrales, cada paso de integración debe resolverse indicando la primitiva y los límites correspondientes.

La evaluación se aprueba con un mínimo de tres (3) ítems bien resueltos

Apellid	lo(s):		No	ombre(s)	:	
Curso:		Padrón:		Código	asignatura:	

1. Sea π_0 el plano normal a la curva definida por la intersección de las superficies Σ_1 y Σ_2 en el punto A=(1,2,1). Calcule el área del trozo de π_0 cuya proyección sobre el plano yz es el rectángulo $D=[1,2]\times[2,4]$, sabiendo que en un entorno de A las mencionadas superficies quedan definidas por las siguientes ecuaciones:

$$\Sigma_1 : y + z e^{xz-1} = 3$$
 y $\Sigma_2 : xy + \ln(xy - z) - 2xz = 0$

- 2. Siendo $\vec{f}(x,y,z) = (x+\sin(z^2y)\,,\,y+\cos(z^2+x)\,,\,2\,z\,)$ para todo $(x,y,z) \in \mathbb{R}^3$, calcule el flujo de \vec{f} a través de la superficie frontera Σ del cuerpo definido por: $z \leq 5-y^2\,,\,z \geq 1\,,\,|x| \leq 2\,.$ Indique gráficamente la orientación que ha adoptado para Σ .
- 3. Dado $\vec{f}(x,y) = (x, 2y 2)$ definido en \mathbb{R}^2 , **calcule** la circulación de \vec{f} desde (0,3) hasta $(2,y_1)$ a lo largo de la curva integral de y' + 2xy = 2x.
- 4. Sea el cuerpo $H = \{(x, y, z) \in \mathbb{R}^3 / y^2 + z^2 a \le x \le a y^2 z^2\}$ con a > 0 constante, **calcule** el valor de a para el cual el volumen de H es igual a 16π .
- 5. Dada la región $D = \{(x,y) \in \mathbb{R}^2 / x^2 + y^2 \le 4y 3, x \ge 0\}$ y la función f(x,y) = xy + h(x/y) con $h \in C^1(\mathbb{R})$, calcule $\iint_D ||\vec{X}|| f'(\vec{X}, \check{X}) dx dy$, donde $f'(\vec{X}, \check{X})$ con $\vec{X} = (x,y)$ es la derivada direccional de f en \vec{X} según \check{X} .

Indicar claramente apellido y número de padrón en cada hoja que entregue. Todas las respuestas deben estar debidamente justificadas. No se aceptarán cálculos dispersos, poco claros o sin comentarios. En la resolución de integrales, cada paso de integración debe resolverse indicando la primitiva y los límites correspondientes.

La evaluación se aprueba con un mínimo de tres (3) ítems bien resueltos

Apellido(s):	
--------------	--

1. Sea H la chapa plana limitada por las curvas de nivel 4 de los campos escalares:

$$f(x,y) = x^2 + y$$
 y $g(x,y) = x^2 + 2y$

Calcule la masa de H si su densidad superficial en cada punto es proporcional a la distancia desde el punto al eje y.

2. Sea D la región del plano xy que se representa en el gráfico, **calcule** el área de D sabiendo que su curva frontera C admite la ecuación vectorial $\vec{X} = (1 - \text{sen}(2t), \text{sen}(t))$ con $0 \le t \le \pi$.

- 3. Dada la superficie Σ de ecuación x+z=3 con $z\geq y$, $x\geq 0$, $y\geq 0$, y el campo vectorial $\vec{f}\in C^1(\mathbb{R}^3)$ tal que $\vec{f}(x,y,z)=(g(x,z),x^2,2yz)$, calcule la circulación de \vec{f} a lo largo de la curva borde de Σ . Indique gráficamente la orientación que ha elegido para recorrer la curva.
- 4. El campo vectorial $\vec{f}: \mathbb{R}^3 \to \mathbb{R}^3 / \vec{f}(x,y,z) = (2\,x\,,\,8\,y\,,\,-1)$ admite función potencial ϕ tal que $\phi(0,0,1)=2$. Calcule el volumen del cuerpo limitado por la superficie cuyos puntos tienen potencial igual a 3 y el plano de ecuación z=4.
- 5. Dado $\vec{f}(x,y,z) = (x g(x), z^2 2 x y, x y)$, halle g(x) tal que g(1) = 3 y el flujo de \vec{f} a través de la superficie frontera del cuerpo definido por $(x-2)^2 + y^2 + z^2 \le 1$ resulte numéricamente igual al volumen del cuerpo. Suponga $\vec{f} \in C^1$ en todo punto (x,y,z) con x>0 e **indique** gráficamente cómo orientó la superficie.

Indicar claramente apellido y número de padrón en cada hoja que entregue. Todas las respuestas deben estar debidamente justificadas. No se aceptarán cálculos dispersos, poco claros o sin comentarios. En la resolución de integrales, cada paso de integración debe resolverse indicando la primitiva y los límites correspondientes.

La evaluación se aprueba con un mínimo de tres (3) ítems bien resueltos

Apellido(s):	

Curso: Padrón: Código asignatura:

1. Sea H la chapa plana limitada por las curvas de nivel 4 de los campos escalares:

$$f(x,y) = x + y^2$$
 y $g(x,y) = 2x + y^2$

Calcule la masa de H si su densidad superficial en cada punto es proporcional a la distancia desde el punto al eje x.

2. Sea D la región del plano xy que se representa en el gráfico, **calcule** el área de D sabiendo que su curva frontera C admite la ecuación vectorial $\vec{X} = (1 + \text{sen}(2t), -\text{sen}(t))$ con $0 \le t \le \pi$.

- 3. Dada la superficie Σ de ecuación y+z=3 con $z\geq x$, $x\geq 0$, $y\geq 0$, y el campo vectorial $\vec{f}\in C^1(\mathbb{R}^3)$ tal que $\vec{f}(x,y,z)=(y^2,g(y,z),2xz)$, calcule la circulación de \vec{f} a lo largo de la curva borde de Σ . Indique gráficamente la orientación que ha elegido para recorrer la curva.
- 4. El campo vectorial $\vec{f}: \mathbb{R}^3 \to \mathbb{R}^3 / \vec{f}(x,y,z) = (8\,x\,,\,2\,y\,,\,-1)$ admite función potencial ϕ tal que $\phi(0,0,1)=2$. Calcule el volumen del cuerpo limitado por la superficie cuyos puntos tienen potencial igual a 3 y el plano de ecuación z=4.
- 5. Dado $\vec{f}(x,y,z) = (x g(x) + z^2, x^2 2xy, xy)$, halle g(x) tal que g(1) = 4 y el flujo de \vec{f} a través de la superficie frontera del cuerpo definido por $(x-3)^2 + y^2 + z^2 \le 1$ resulte numéricamente igual al volumen del cuerpo. Suponga $\vec{f} \in C^1$ en todo punto (x,y,z) con x > 0 e **indique** gráficamente cómo orientó la superficie.

Indicar claramente apellido y número de padrón en cada hoja que entregue. Todas las respuestas deben estar debidamente justificadas. No se aceptarán cálculos dispersos, poco claros o sin comentarios. En la resolución de integrales, cada paso de integración debe resolverse indicando la primitiva y los límites correspondientes.

La evaluación se aprueba con un mínimo de tres (3) ítems bien resueltos

Apellio	lo(s): N	Tombre(s):
Curso:	Padrón:	. Código asignatura:

1. Calcule la longitud de la curva definida por la intersección de las superficies de ecuaciones:

$$x^2 + 2y^2 = 8$$
 y $z = y + 2$ con $x \ge 0$.

2. Dado $f \in C^1(\mathbb{R}^3)$ tal que $f(x,y,z) = \varphi(x-y\,,\,y-x) + z^3\,$, calcule el flujo de ∇f a través de la superficie de ecuación x+y+z=1 con $x^2+z^2\leq 4\,$, orientada hacia z^+ .

3. Siendo $D_{xy} = \{(x,y) \in \mathbb{R}^2 / x \le y \le x+2, x+y \le 4, y \ge 0\}$, calcule $\iint_{D_{xy}} 2(y-x) dxdy$ aplicando el cambio de variables definido por (x,y) = (v-u,v).

4. El campo vectorial $\vec{f} = (P, Q) \in C^1$ en $\mathbb{R}^2 - \{(0, 0)\}$ tiene matriz jacobiana:

$$D\vec{f}(x,y) = \begin{pmatrix} P'_x(x,y) & 2 + \varphi(x,y) \\ 4 + \varphi(x,y) & Q'_y(x,y) \end{pmatrix}.$$

Sabiendo que para C_1 de ecuación $x^2 + y^2 = 1$ resulta $\oint_{C_1^+} \vec{f} \cdot d\vec{s} = 3$, calcule $\oint_{C_2^+} \vec{f} \cdot d\vec{s}$ siendo C_2 la frontera del rectángulo $[-2, 2] \times [-3, 3]$.

5. Calcule el volumen del cuerpo definido por: $2y \le z \le 4 + 2y - x^2 - y^2$.

Indicar claramente apellido y número de padrón en cada hoja que entregue. Todas las respuestas deben estar debidamente justificadas. No se aceptarán cálculos dispersos, poco claros o sin comentarios. En la resolución de integrales, cada paso de integración debe resolverse indicando la primitiva y los límites correspondientes.

La evaluación se aprueba con un mínimo de tres (3) ítems bien resueltos

Apellid	lo(s):		No	ombre(s)	:	
Curso:		Padrón:		Código	asignatura:	

1. Calcule la longitud de la curva definida por la intersección de las superficies de ecuaciones:

$$2x^2 + y^2 = 8$$
 y $z = x + 2$ con $x \ge 0$.

- 2. Dado $f \in C^1(\mathbb{R}^3)$ tal que $f(x,y,z) = \varphi(y-x\,,\,x-y) + z^3\,$, calcule el flujo de ∇f a través de la superficie de ecuación x+y+z=2 con $x^2+z^2\leq 9\,$, orientada hacia z^+ .
- 3. Siendo $D_{xy} = \{(x,y) \in \mathbb{R}^2 \mid x-2 \le y \le x, x+y \ge -4, y \le 0\}$, calcule $\iint_{D_{xy}} 2(y-x) dxdy$ aplicando el cambio de variables definido por (x,y) = (v-u,v).
- 4. El campo vectorial $\vec{f} = (P, Q) \in C^1$ en $\mathbb{R}^2 \{(0, 0)\}$ tiene matriz jacobiana:

$$D\vec{f}(x,y) = \begin{pmatrix} P'_x(x,y) & 3 + \varphi(x,y) \\ 5 + \varphi(x,y) & Q'_y(x,y) \end{pmatrix}.$$

Sabiendo que para C_1 de ecuación $x^2 + y^2 = 4$ resulta $\oint_{C_1^+} \vec{f} \cdot d\vec{s} = 6$, calcule $\oint_{C_2^+} \vec{f} \cdot d\vec{s}$ siendo C_2 la frontera del rectángulo $[-3,3] \times [-4,4]$.

5. Calcule el volumen del cuerpo definido por: $2x \le z \le 4 + 2x - x^2 - y^2$.

Indicar claramente apellido y número de padrón en cada hoja que entregue. Todas las respuestas deben estar debidamente justificadas. No se aceptarán cálculos dispersos, poco claros o sin comentarios. En la resolución de integrales, cada paso de integración debe resolverse indicando la primitiva y los límites correspondientes.

Apellid	o(s): 1	Nombre(s):
Curso:	Padrón:	Código asignatura:

- 1. Sea $f: \mathbb{R}^3 \to \mathbb{R} \, / \, f(x,y,z) = x \, y + x \, z + y \, z$, y la curva Γ definida por $\Gamma: \left\{ \begin{array}{l} x^2 + z^2 = 2 \, x \\ y = 2 \, x \end{array} \right.$ Calcule la circulación de ∇f a lo largo de Γ en sus puntos con coordenada $z \geq 0$. Indique claramente qué puntos son los que ha elegido como *inicial* y *final* del recorrido.
- 2. En el espacio xyz la superficie Σ tiene ecuación vectorial $(x,y,z)=(u+v\,,\,u-v\,,u^2+2\,v)$ con $(u,v)\in\mathbb{R}^2$. Calcule el área del trozo de Σ cuyos puntos cumplen con: $x+y\leq 2\,,y\leq x\,,y\geq 0$.
- 3. Dado el campo vectorial $\vec{f}(x,y) = (x, 2y)$ definido en \mathbb{R}^2 , halle una ecuación para la línea de campo que pasa por el punto (1,2), dibújela e indique gráficamente su orientación en dicho punto.
- 4. Calcule el flujo de \vec{f} a través de la superficie Σ de ecuación $x^2 + y^2 + z^2 = 5$ con $z \ge 1$, sabiendo que $\vec{f}(x,y,z) = (g(y),g(x),4z)$ con $\vec{f} \in C^1(\mathbb{R}^3)$. Indique gráficamente cómo ha decidido orientar a Σ .
- 5. El cuerpo H definido por: $z \ge \sqrt{x^2 + y^2}$, $y \ge |x|$, $z \le 4$ tiene densidad $\delta(x, y, z) = kz$ con k > 0. Calcule la masa de H.

Indicar claramente apellido y número de padrón en cada hoja que entregue. Todas las respuestas deben estar debidamente justificadas. No se aceptarán cálculos dispersos, poco claros o sin comentarios. En la resolución de integrales, cada paso de integración debe resolverse indicando la primitiva y los límites correspondientes.

Apellid	o(s): 1	Nombre(s):
Curso:	Padrón:	Código asignatura:

- 1. Sea $f: \mathbb{R}^3 \to \mathbb{R} \, / \, f(x,y,z) = x \, y + x \, z + y \, z$, y la curva Γ definida por $\Gamma: \left\{ \begin{array}{l} y^2 + z^2 = 2 \, y \\ x = 2 \, y \end{array} \right.$. Calcule la circulación de ∇f a lo largo de Γ en sus puntos con coordenada $z \geq 0$. Indique claramente qué puntos son los que ha elegido como *inicial* y *final* del recorrido.
- 2. En el espacio xyz la superficie Σ tiene ecuación vectorial $(x,y,z)=(v-u\,,\,u+v\,,2\,u+v^2)$ con $(u,v)\in\mathbb{R}^2$. Calcule el área del trozo de Σ cuyos puntos cumplen con: $x+y\leq 2\,,y\geq x\,,x\geq 0\,.$
- 3. Dado el campo vectorial $\vec{f}(x,y) = (2\,x\,,\,y)$ definido en \mathbb{R}^2 , halle una ecuación para la línea de campo que pasa por el punto (2,1), dibújela e indique gráficamente su orientación en dicho punto.
- 4. Calcule el flujo de \vec{f} a través de la superficie Σ de ecuación $x^2 + y^2 + z^2 = 8$ con $z \geq 2$, sabiendo que $\vec{f}(x,y,z) = (h(y), h(x), 4z)$ con $\vec{f} \in C^1(\mathbb{R}^3)$. Indique gráficamente cómo ha decidido orientar a Σ .
- 5. El cuerpo H definido por: $z \ge \sqrt{x^2 + y^2}$, $x \ge |y|$, $z \le 3$ tiene densidad $\delta(x, y, z) = kz$ con k > 0. Calcule la masa de H.

evaluación integradora del 12/02/19

- 1. Dada la superficie Σ de ecuación $x^2 y = 2z$ con $x^2 \le y \le 4$, **calcule** el flujo de \vec{f} a través de Σ orientada hacia z^+ sabiendo que $\vec{f}(x,y,z) = (x,y,z)$.
- 2. Siendo $\vec{f}(x,y) = (2y, -1)$, calcule el área de la región D del plano xy limitada por x = 0 y las líneas de campo L_1 y L_2 de \vec{f} que pasan por los puntos (4,0) y (1,0) respectivamente.
- 3. Sea $\vec{f}(x,y,z) = (P(x,y,z), Q(x,y,z), z+2)$ con $\vec{f} \in C^1(\Re^3)$ y solenoidal, tal que el flujo de \vec{f} a través de la superficie Σ de ecuación $y = \sqrt{5-x^2-z^2}$ con $y \ge 1$ resulta igual a 7π cuando Σ se la orienta hacia y^+ . Calcule el flujo del campo \vec{f} a través de la superficie S de ecuación y = 1 con $x^2 + y^2 + z^2 \le 5$, orientada también hacia y^+ .
- 4. Sean $U: \Re^2 \to \Re$ con $U \in C^2(\Re^2)$ y $\vec{f} = U \nabla U + \vec{g}$ con $\vec{g}(x,y) = (\operatorname{sen}(x^2 + x), 2xy)$. Sabiendo que la circulación de \vec{f} desde A = (-2,0) hasta B = (2,0) a lo largo de la curva de ecuación $y = 4 x^2$ es igual a -24, calcule la circulación de \vec{f} desde A hasta B a lo largo de $y = -\sqrt{4 x^2}$.
- 5. Calcule el volumen del cuerpo D definido por: $z \le 16 y^2$, $x^2 + y^2 \le 4y$, $y \le 2$, en el 1º octante.

evaluación integradora del 18/12/18

- 1. Sea C la curva dada como intersección de las superficies Σ_1 y Σ_2 de ecuaciones $z=x^2+2\,y^2$ y $z=3-2\,x^2-4\,y^2$ respectivamente. **Calcule** la circulación de \vec{f} a lo largo de C, sabiendo que $\vec{f}(x,y,z)=(z^2+\varphi(x),2xz,\varphi(z))$ con $\vec{f}\in C^1(\Re^3)$. **Indique** gráficamente cómo orientó a C.
- 2. **Calcule** la masa del cuerpo D definido por: $x^2 + z^2 \le 2$, $z^2 \ge x^2 + 2y^2$, $x \ge 0$, $y \ge 0$, $z \ge 0$, si su densidad en cada punto es proporcional a la distancia desde el punto al plano xy.
- 3. Sea $\vec{f}:\Re^3 \to \Re^3$ / $\vec{f}(x,y,z) = (6y,3z,x+y)$. Calcule el flujo de \vec{f} a través del trozo de plano Σ de ecuación x+3y+3z=6 cuya proyección sobre el plano xy tiene área igual a 8. Indique gráficamente cómo decidió orientar a Σ .
- 4. Si $\vec{f}(x,y) = (2y(1+2x^2)e^{x^2} + 2x, 2xe^{x^2})$, **verifique** que \vec{f} admite función potencial en \Re^2 y **calcule** la circulación del campo desde A = (0,0) hasta B = (1,1).
- 5. Dada la familia F de curvas planas de ecuación $x^2 + 2y^2 = C$, **calcule** el área de la región del plano limitada por la recta de ecuación y = 6 x y la curva de la familia ortogonal a F que pasa por el punto (1,1).

evaluación integradora del 19/02/19

- 1. Dado $\vec{f}(x,y,z) = (y+h(xy), x+h(xy), z+3h(xy))$ con $h: \Re \to \Re$ y \vec{f} continuo en \Re^3 , calcule la circulación de \vec{f} a lo largo del segmento \overline{AB} desde A=(0,0,6) hasta $B=(x_0,y_0,z_0)$ con $x_0>0$, sabiendo que el segmento tiene longitud igual a $\sqrt{24}$ y está incluido en la recta de ecuación $\vec{X}=(t,2t,6-t)$ con $t\in \Re$.
- 2. Calcule el volumen del cuerpo definido por: $z \le 4 x^2$, $x^2 + y^2 \le 4$, $y \le x$, 1° octante.
- 3. Si $\vec{f} \in C^1(\Re^3)$ / $\vec{f}(x,y,z) = (2yg(x) + y^2, zg(x) + 2xy, z^2 + xg(x))$ con $\vec{f}(0,0,1) = (0,1,1)$, halle una g(x) tal que la circulación de \vec{f} a lo largo de la circunferencia Γ incluida en el plano z = 2 con centro en (0,0,2) y radio R > 0 resulte numéricamente igual al doble del área del círculo que tiene a Γ como borde. Indique gráficamente la orientación que adopta para Γ .
- 4. Sean $\bar{f}(x,y,z) = (y^2 xz, z^2 3yz, x^2 z^2)$ y el cuerpo D definido por $z \ge \sqrt{x^2 + 2y^2}$, $z \le y + 2$. Calcule el flujo de \bar{f} a través de la superficie frontera de D y, en función del resultado obtenido y de cómo ha elegido orientar a la superficie, analice si dicho flujo es entrante o saliente de D.
- 5. Sea C la curva de ecuación $\vec{X} = (t, t^2, h(t))$ con z = h(t) tal que $tz + e^{t+z-3} 3 = 0$, para t en un entorno de $t_0 = 1$. Calcule la distancia entre los puntos en que la recta tangente a C en (1, 1, h(1)) interseca a la superficie de ecuación $z = x^2 + 4$.

evaluación integradora del 26/02/19

- 1. Sea π_o el plano normal en $(2,0,z_o)$ a la curva de ecuación $\vec{X}=(2t^2,t^2-t,2t+1)$ con $t\in\Re$. Calcule la longitud de la curva definida por la intersección de π_o con la superficie de ecuación y=2x en el 1º octante.
- 2. Dado $\vec{f}(x,y) = (xy + e^{x^2}, x^2 + e^{y^2})$, **calcule** la circulación de \vec{f} a lo largo de la frontera de $D = \{(x,y) \in \Re^2 / y \ge |x|, x+3y \le 4\}$. **Indique** gráficamente con qué orientación decidió realizar la circulación.
- 3. Siendo $\vec{f}(x,y,z) = (2x,2y,2z)$, **calcule** el flujo de \vec{f} a través del trozo de plano Σ de ecuación x+y+2z=4 con $x+y\leq 2$, $y\geq x$, $x\geq 0$. Oriente Σ de manera que, en cada punto, su versor normal \breve{n} cumpla con $\breve{n}\cdot \breve{k}>0$.
- 4. Dada la familia de curvas planas F de ecuación y Cx = C, calcule el área de la región del semiplano $x \ge 0$ limitada por la curva Γ de la familia ortogonal a F que pasa por (0,1).
- 5. Sea $\vec{f} \in C^1(\Re^3)$ con rotor: $\nabla \times \vec{f}(x,y,z) = (\alpha(x,y,z), \beta(x,y,z), z+2)$. Calcule el flujo de $\nabla \times \vec{f}$ a través de la superficie abierta de ecuación $z = 4 x^2 y^2$ con $z \ge 0$, orientada hacia z^+ .

evaluación integradora de 30/07/19

- 1. Sea $\vec{f} \in C^1(\Re^3)$ tal que $\vec{f}(x,y,z) = (x+g(x-z), g(x-z)-y, z^2+g(x-z))$, **calcule** el flujo de \vec{f} a través de la superficie frontera del cuerpo D definido por $x^2+y^2+z^2 \le 5$, $z \ge 1$. **Indique** gráficamente la orientación elegida para la superficie.
- 2. Sea $\vec{f} = (P,Q): \Re^2 \{\vec{0}\} \to \Re^2$ con $\vec{f} \in C^1$ en su dominio, sabiendo que $Q_x' P_y' = 10$ constante y que $\oint_{\Gamma^+} \vec{f} \cdot d\vec{s} = 7\pi$ cuando Γ es una circunferencia con centro en (0,0) y radio 3, **calcule** $\oint_{\Gamma_1^+} \vec{f} \cdot d\vec{s}$ para el caso en que Γ_1 es la curva frontera del cuadrado $[-5,5] \times [-5,5]$.
- 3. Dado $\vec{f}: D \subset \mathbb{R}^2 \to \mathbb{R}^3 \ / \ \vec{f}(x,y) = (\sqrt{xy-x}, \sqrt{5-x^2-y^2}, \ln(y-1))$ donde D es el dominio natural de \vec{f} , calcule el área de D.
- 4. Sea F la familia de curvas planas tales que la ordenada al origen de su recta tangente en cada punto es igual al doble de la ordenada del punto. Siendo $\vec{f}(x,y) = (4xy, x^2)$, **calcule** la circulación de \vec{f} desde (1,2) hasta (2,1) a lo largo de la curva de F que pasa por dichos puntos.
- 5. El campo escalar $f(x,y,z) = 2x^2 + 2y^2 + 2z^2$ en cada punto (x,y,z) del espacio tiene una derivada direccional máxima que denotaremos g(x,y,z). Calcule la masa del cuerpo H cuya superficie frontera es el conjunto de nivel 4 de g, si la densidad de masa en cada punto es proporcional a la distancia desde el punto al eje z.

evaluación integradora de 23/07/19

1. **Calcule** el área de la región D del plano xy que se representa en la figura, sabiendo que su curva frontera ∂D admite la ecuación $\vec{X} = (t^2 - t, t^2 - t^3)$ con $0 \le t \le 1$.

- 2. Sabiendo que en puntos del plano xy es $\vec{f}(x,y,0) = (y^2,xy,x^2)$, $\vec{f} \in C^1(\Re^3)$ y que \vec{f} es solenoidal, **calcule** el flujo de \vec{f} a través de la superficie abierta Σ de ecuación $z = 4 x^2 4y^2$ con $z \ge 0$, orientada hacia z^+ .
- 3. Dado $\vec{f}: \Re^2 \to \Re^2$ / $\vec{f}(x,y) = ((2+2x)e^{x^2+2x+y^2}, 2ye^{x^2+2x+y^2})$, que admite función potencial ϕ en su dominio, sabiendo que $\phi(0,0) = 3$ calcule la longitud de la curva de nivel 3 de ϕ .
- 4. Sea Γ la curva borde del trozo de plano de ecuación x+z=2 con $y \le x, y \ge 0, z \ge 0$. Calcule la circulación de \vec{f} a lo largo de Γ si $\vec{f}(x,y,z)=(4y,z+g(y),2x+g(z))$ con $\vec{f} \in C^1(\Re^3)$, indique gráficamente cómo decidió orientar a Γ.
- 5. Calcule el volumen del cuerpo H cuyos puntos cumplen con $x^2 + y^2 + z^2 \le 5$, $z \ge x^2 + y^2 + 1$.

evaluación integradora del 18/02/20

- 1. Calcule el área del trozo de superficie cónica Σ de ecuación $z^2 = x^2 + y^2$ con $x^2 + y^2 \le 2y$, $z \ge 0$.
- 2. Calcule el volumen del cuerpo D definido por: $z \le 9 x^2 (y 3)^2$, $z \ge 2y$.
- 3. Sea $\phi(x,y,z) = 3 + e^{z+x^2+y^2-7}$ la función potencial de \vec{f} en \Re^3 y sea Σ el trozo de superficie de potencial 4 del campo cuyos puntos cumplen con $z \ge 3$. Calcule el flujo de \vec{f} a través de Σ orientada hacia z^+ .
- 4. Sea F la familia de curvas planas de ecuación $y = Cx^2$. Calcule el área de la región H limitada por la curva de la familia ortogonal a F que contiene al punto (2.2), con $x \ge 0$.
- 5. La superficie Σ de ecuación $z=x^2-4x+x\,y^2+3$ tiene tres puntos $(A,B\ y\ C)$ donde el plano tangente es paralelo al plano xy. Dado $\vec{f}(x,y,z)=(x\,y+z^2,\,x^2+h(y),\,h(x))$ con $\vec{f}\in C^1(\Re^3)$, calcule la circulación de \vec{f} a lo largo de la curva borde del triángulo cuyos vértices son los puntos mencionados. La circulación debe realizarse en el sentido $A\to B\to C\to A$, indicando cuáles son las coordenadas de cada uno de los puntos a los que se decidió denominar $A,B\ y\ C$.

evaluación integradora del 17/12/19

- 1. Dado $\vec{f}(x,y,z) = (x+g(yz), y+g(xz), z-x^2)$ con $\vec{f} \in C^1(\Re^3)$, **calcule** el flujo de \vec{f} a través de la superficie abierta Σ de ecuación $x^2+4y^2+z^2=4$ con $z\geq 0$ y orientada hacia z^+ .
- 2. Dado $\vec{f}(x,y) = (g(x)e^{x^2+y^2}, 2ye^{x^2+y^2})$ con $\vec{f} \in C^1(\Re^2)$, **determine** g(x) de manera que \vec{f} admita función potencial en \Re^2 y, en ese caso, **calcule** la circulación de \vec{f} desde A = (0,3) hasta B = (1,4) a lo largo de la curva de ecuación $y = x^5 + 3$.
- 3. Calcule el volumen del cuerpo D definido por: $x^2 + (z-1)^2 \le 1$, $0 \le y \le x$.
- 4. Siendo $\vec{f}(x,y,z) = (x^2yz + h(y), g(x,z), x^3y)$ con $\vec{f} \in C^1(\Re^3)$, calcule la circulación de \vec{f} a lo largo de la curva C de ecuación $\vec{X} = (3\cos(t), 5, 3\sin(t))$ con $t \in [0, 2\pi]$ respetando la orientación impuesta por esta parametrización.
- 5. Calcule $\iint_D (x+y)^2 dx dy$ con $D = \{(x,y) \in \Re^2 / 2 \le x+y \le 4 \land y \ge x \land x \ge 0\}$ aplicando el cambio de variables definido por (x,y) = (v-2u,2u).

evaluación integradora de 16/07/19

- 1. Calcule el volumen del cuerpo D limitado por las superficies de ecuaciones $z = 12 2x^2$ y $z = x^2 + 3y^2$.
- 2. Dada la superficie abierta Σ de ecuación $z = x^2$ con $z \le 9$, $0 \le y \le 1$, **calcule** el flujo de \vec{f} a través Σ orientada hacia z^+ sabiendo que $\vec{f}(x,y,z) = (x,x\varphi(y,z),3z)$ con \vec{f} continuo en \Re^3 .
- 3. Dado $\vec{f}(x,y) = (xy, x^2)$, **calcule** la circulación de \vec{f} desde (1,3) hasta (2,5) a lo largo de la curva integral (solución particular) de $y' + x^{-1}y = 3x$ que contiene a dichos puntos.
- 4. Calcule el área de la superficie Σ de ecuación $z = 4 \sqrt{x^2 + y^2}$ con $x \ge 0$, $y \ge 0$, $z \ge 1$.
- 5. Sabiendo que $\vec{f} \in C^1(\Re^3)$ y que $\vec{f}(x,y,z) = (x^2z, xz^2 + h(y), yh(z))$, **calcule** la circulación de \vec{f} a lo largo de la curva de ecuación $\vec{X} = (2\cos(t), 2\sin(t), 5)$ con $0 \le t \le \pi$ con la orientación impuesta por la parametrización dada.

evaluación integradora del 10/12/19

- 1. Sean la superficie Σ de ecuación $y=x^2+1$ con $y \le 5$, $0 \le z \le 2$ y el campo vectorial \vec{f} definido en \Re^3 tal que $\vec{f}(x,y,z)=(3x,2y,xz)$. Calcule el flujo de \vec{f} a través de Σ indicando gráficamente cómo decidió orientar a la superficie.
- 2. Sabiendo que $\phi(x,y) = x^2 y + 1$ es la función potencial del campo \vec{f} en \Re^2 , halle una ecuación para la línea de campo de \vec{f} que pasa por el punto (2,1) e **indique** gráficamente la orientación de dicha línea en ese punto.
- 3. Siendo $\vec{f}(x,y) = (x+y, 5x+\varphi(y))$ con $\vec{f} \in C^1(\Re^2)$, calcule la circulación de \vec{f} desde A = (2,0) hasta B = (0,0) a lo largo de la curva Γ de ecuación $x^2 + y^2 = 2x$ con $y \ge 0$.
- 4. Siendo $\vec{f}(x,y,z) = (3xy^2 + g(y), g(x) y^3, z^2)$ con $\vec{f} \in C^1(\Re^3)$, **calcule** el flujo de \vec{f} a través de la superficie frontera del cuerpo D definido por: $x^2 + y^2 \le 4$, $y \le z \le y + 1$ **indicando** qué orientación adopta para dicha superficie.
- 5. Sea C la curva definida por la intersección de las superficies Σ_1 y Σ_2 cuyas ecuaciones son:

$$\Sigma_1: x^2y + xz = 3$$
 y $\Sigma_2: xy - z^2 = 1$.

Si r_0 es la recta tangente a C en P=(1,2,1), **calcule** la circulación de \vec{f} a lo largo de r_0 desde el punto A hasta el B donde r_0 interseca a la superficie de ecuación $z=x^2$, sabiendo que $\vec{f}(x,y,z)=(x-1,y-2,z-1)$.

En la resolución debe aclararse cuál de los dos puntos es el que se adopta como punto $\it A$, el otro será el $\it B$.

evaluación integradora de 06/08/19

- 1. Dado $\vec{f}(x,y,z) = (xy,zx,2yz)$, **calcule** el flujo de \vec{f} a través de la superficie abierta Σ de ecuación $z = 9 x^2$ con $z \ge y$, $y \ge 0$, $x \ge 0$, orientada hacia z^+ .
- 2. Dado $\vec{f}(x,y) = (\frac{-4y}{x^2 + y^2}, \frac{4x}{x^2 + y^2})$ definido en $\Re^2 \{\vec{0}\}$, analice si \vec{f} admite función potencial en dicho dominio.
- 3. **Demuestre** que $f(x,y) = e^{x^2 + y^2 + 2x + 5}$ produce un mínimo local en un punto (x_o, y_o) y **calcule** el volumen del cuerpo H definido por $0 \le z \le f(x,y)$ con $(x,y) \in D_{xy}$, donde D_{xy} es un círculo de radio R = 1 con centro en el mencionado punto (x_o, y_o) .
- 4. Sea la curva Ω definida por la intersección de y+z=2 con $4x^2+y^2=4$, orientada de manera que su versor tangente en (1,0,2) tiene componente en \vec{k} negativa. Calcule la circulación de \vec{f} a lo largo de Ω sabiendo que $\vec{f}(x,y,z)=(z^2,\varphi(z),y^2)$ con φ' continua en \Re .
- 5. Dado $\vec{f}(x,y,z) = (2+xg(x), 3+yg(x), 4-3zg(x))$ con $\vec{f}(1,0,0) = (2,3,4)$ y $\vec{f} \in C^1(\Re^3)$, halle una g(x) de manera que el flujo de \vec{f} a través de la superficie frontera ∂H del cubo H definido por $[-a,a] \times [-a,a] \times [-a,a]$ con a>0 resulte entrante y con módulo igual al doble del volumen de H.