Σ -measurable ramp function

金弘义 518030910333

March 29, 2020

Exercise 9. Let (S, Σ) be a measurable space and take $h \in \mathbb{R}^S$. Let $h^+ = max(h, 0)$ and $h^- = max(-h, 0)$. Show that $h \in m\Sigma$ if and only if $h^+, h^- \in m\Sigma$.

Solution. Observe that

$$h^{+} = \begin{cases} 0 & h < 0 \\ h & h \ge 0 \end{cases}$$
$$h^{-} = \begin{cases} -h & h < 0 \\ 0 & h \ge 0 \end{cases}$$

So we have

$$h = h^+ - h^-$$

Since $m\Sigma$ is closed under taking sum and scalar multiplication, if $h^+, h^- \in m\Sigma$, $h \in m\Sigma$. Then we'll focus on another side. Assume $h \in m\Sigma$. Consider

$$\{h^+ \le c\} = \begin{cases} \emptyset & c < 0 \\ \{h \le c\} & c \ge 0 \end{cases}$$

By the definition of σ -algebra, $\emptyset \in \Sigma$. $\{h \leq c\} = h^{-1}(-\infty, c] \in \Sigma$. So $\{h^+ \leq c\} \in \Sigma$ $(\forall c \in \mathbb{R})$. We can derive that $h^+ \in m\Sigma$.

 $h^- \in m\Sigma$ can be derived similarly.

In conclusion, $h \in m\Sigma$ if and only if $h^+, h^- \in m\Sigma$.