CPSC 420 Lecture 4 : Today's announcements:

- ▶ HW1 available on Gradescope, due Jan 19, 23:59
- Examlet 1 on Jan 27 in class.
- Reading: Voronoi Diagrams [Computational Geometry: Algorithms and Applications 3rd Edition pg 147]
- ► Reading: Linear Programming [Intro to Algs 4th Ed. by Cormen, Leiserson, Rivest, Stein Ch. 29-29.2, pg 817]

Today's Plan

- Chan's Algorithm analysis
- Voronoi diagrams

Given n points P and a guess g for the number of hull points...

- 1. Divide P into n/g groups of g points
- 2. Use Graham's Scan to find the convex hull of each group in $O(g \log g)$ time per group

Given n points P and a guess g for the number of hull points...

- 1. Divide P into n/g groups of g points
- 2. Use Graham's Scan to find the convex hull of each group in $O(g \log g)$ time per group

Given n points P and a guess g for the number of hull points...

- 1. Divide P into n/g groups of g points
- 2. Use Graham's Scan to find the convex hull of each group in $O(g \log g)$ time per group

Given n points P and a guess g for the number of hull points...

- \bigcap 1. Divide P into n/g groups of g points
- Use Graham's Scan to find the convex hull of each group in $O(g \log g)$ time per group
- O(n) 3. Find the lowest point p_0 4. Gift-wrap (Jarvis March) these convex hulls for g wrap steps. To find the next hull point p_{i+1}
 - - 4.1 find the right-tangent from p_i to each group hull in $O(\log g)$ time per group — $(n/4 \log 3)$ 4.2 p_{i+1} is rightmost-by-tangent-angle of these tangent points (1/4)4.3 If $p_{i+1} = p_0$ output hull Succeed
 - 5. Output "g is too small!" Fail

Total time: $O(n \log g)$.

How to generate guesses

Chan's Main CH Algorithm

Run Chan's Alg. with guess g = 4 then g = 16 then g = 256 ... until it outputs the Convex hull

$$g=2^{2^t}$$
 on the t^{th} try.

Total run time (until $g \ge \text{hull size } h$):

Total run time (until
$$g \ge \text{hull size } h$$
):
$$\sum_{t=1}^{\lceil \lg \lg h \rceil} O(n \log(2^{2^t})) = \sum_{t=1}^{\lceil \lg \lg h \rceil} O(n2^t) = O(n \sum_{t=1}^{\lceil \lg \lg h \rceil} 2^t) = O(n \lg h)$$

Voronoi diagrams

Voronoi diagrams

Definition

A **Voronoi diagram** of a set of n sites (points) s_1, \ldots, s_n is a set of regions R_1, \ldots, R_n where R_i is the set of points x such that $d(x, s_i) \leq d(x, s_j)$ for all j.

A **Voronoi edge** is the border between two regions: $\{x | x \in R_i \text{ and } x \in R_i \text{ and } i \neq j\}.$

A Voronoi vertex is the intersection of Voronoi edges:

 $\{x|x \text{ in more than 2 Vor. Regions}\}.$

Problem Given $S = s_1, s_2, \dots, s_n$, find Voronoi vertices and edges

Voronoi Diagram using Divide and Conquer [Shamos & Hoey '75]

This algorithm finds both VorD and CH of S.

0. Sort sites by x-coord

VorD+CHull(S)

- igstar 1 . if |S|=1 return $\mathsf{VorD}=\emptyset$ and $\mathsf{CHull}=[s_1]$
- 2. if |S|=2 return VorD $=\perp$ -bisector of $\overline{s_1s_2}$ and CHull $=[s_1s_2]$
 - 3. Recursively find VorD_L and CHull_L of $s_1, \ldots, s_{n/2}$
 - 4. Recursively find $VorD_R$ and $CHull_R$ of $s_{n/2+1}, \ldots, s_n$
 - 5. Merge CHull_L and CHull_R to get CHull
 - 6. Stitch together $VorD_L$ and $VorD_R$ to get VorD
 - 7. Return VorD and CHull

See your Homework 1 for a (more general) O(n) time solution. The two blue lines are the upper and lower bridges.

Stitch together $VorD_{\it L}$ and $VorD_{\it R}$

- 1. Let \overline{pq} be upper bridge
- 2. Find intersection of $\perp \overline{pq}$ with edge of $VorD_L(p)$ and $VorD_R(q)$
- 3. If $\perp \overline{pq}$ intersects $\perp \overline{pp'}$ before $\perp \overline{qq'}$ then p = p' else q = q'
- 4. Repeat until \overline{pq} is lower bridge

Note: Step 2 can be done by scanning edges of $VorD_L(p)$ cw and $VorD_R(q)$ ccw (no backtracking).

$\begin{cal}Example from Computational Geometry by Preparate \& Shamos \end{cal}$

