Data Communication

Instructor: Sazid Zaman Khan

5.1 DIGITAL-TO-ANALOG CONVERSION

Digital-to-analog conversion is the process of changing one of the characteristics of an analog signal based on the information in digital data. Figure 5.1 shows the relationship between the digital information, the digital-to-analog modulating process, and the resultant analog signal.

Figure 5.1 Digital-to-analog conversion

As discussed in Chapter 3, a sine wave is defined by three characteristics: amplitude, frequency, and phase. When we vary any one of these characteristics, we create a different version of that wave. So, by changing one characteristic of a simple electric signal, we can use it to represent digital data. Any of the three characteristics can be altered in this way, giving us at least three mechanisms for modulating digital data into an analog signal: **amplitude shift keying (ASK)**, **frequency shift keying (FSK)**, and **phase shift keying (PSK)**. In addition, there is a fourth (and better) mechanism that combines changing both the amplitude and phase, called **quadrature amplitude modulation (QAM)**. QAM is the most efficient of these options and is the mechanism commonly used today (see Figure 5.2).

Figure 5.2 *Types of digital-to-analog conversion*

5.1.2 Amplitude Shift Keying

In amplitude shift keying, the amplitude of the carrier signal is varied to create signal elements. Both frequency and phase remain constant while the amplitude changes.

Binary ASK (BASK)

Although we can have several levels (kinds) of signal elements, each with a different amplitude, ASK is normally implemented using only two levels. This is referred to as binary amplitude shift keying or on-off keying (OOK). The peak amplitude of one signal level is 0; the other is the same as the amplitude of the carrier frequency. Figure 5.3 gives a conceptual view of binary ASK.

Figure 5.3 Binary amplitude shift keying

1 HOLE BIT 0 HOLE SOJA

Implementation

The complete discussion of ASK implementation is beyond the scope of this book. However, the simple ideas behind the implementation may help us to better understand the concept itself. Figure 5.4 shows how we can simply implement binary ASK.

Figure 5.4 Implementation of binary ASK

If digital data are presented as a unipolar NRZ (see Chapter 4) digital signal with a high voltage of 1 V and a low voltage of 0 V, the implementation can achieved by multiplying the NRZ digital signal by the carrier signal coming from an oscillator. When the amplitude of the NRZ signal is 1, the amplitude of the carrier frequency is held; when the amplitude of the NRZ signal is 0, the amplitude of the carrier frequency is zero.

Bandwidth for ASK

Figure 5.3 also shows the bandwidth for ASK. Although the carrier signal is only one simple sine wave, the process of modulation produces a nonperiodic composite signal. This signal, as was discussed in Chapter 3, has a continuous set of frequencies. As we expect, the bandwidth is proportional to the signal rate (baud rate). However, there is normally another factor involved, called d, which depends on the modulation and filtering process. The value of d is between 0 and 1. This means that the bandwidth can be expressed as shown, where S is the signal rate and the B is the bandwidth.

The formula shows that the required bandwidth has a minimum value of S and a maximum value of 2S. The most important point here is the location of the bandwidth. The middle of the bandwidth is where f_C , the carrier frequency, is located. This

Multilevel ASK

The above discussion uses only two amplitude levels. We can have multilevel ASK in which there are more than two levels. We can use 4, 8, 16, or more different amplitudes for the signal and modulate the data using 2, 3, 4, or more bits at a time. In these cases, r = 2, r = 3, r = 4, and so on. Although this is not implemented with pure ASK, it is implemented with QAM (as we will see later).

Example 5.1

An analog signal carries 4 bits per signal element. If 1000 signal elements are sent per second, find the bit rate.

Solution

In this case, r = 4, S = 1000, and N is unknown. We can find the value of N from

$$S = N \times (1/r)$$
 or $N = S \times r = 1000 \times 4 = 4000 \text{ bps}$

S=SIGNAL ELEMENT (baud)=1000 Bit rate n R diya koiyta signal ase bujai

Example 5.2

An analog signal has a bit rate of 8000 bps and a baud rate of 1000 baud. How many data elements are carried by each signal element? How many signal elements do we need?

Solution

In this example, S = 1000, N = 8000, and r and L are unknown. We first find the value of r and then the value of L.

$$S = N \times 1/r \longrightarrow r = N/S = 8000/10,000 = 8 \text{ bits/baud}$$

 $r = \log_2 L \longrightarrow L = 2^r = 2^8 = 256$

Example 5.3

We have an available bandwidth of 100 kHz which spans from 200 to 300 kHz. What are the carrier frequency and the bit rate if we modulated our data by using ASK with d = 1?

Solution

The middle of the bandwidth is located at 250 kHz. This means that our carrier frequency can be at $f_c = 250$ kHz. We can use the formula for bandwidth to find the bit rate (with d = 1 and r = 1).

$$B = (1 + d) \times S = 2 \times N \times (1/r) = 2 \times N = 100 \text{ kHz} \longrightarrow N = 50 \text{ kbps}$$

Example 5.4

In data communications, we normally use full-duplex links with communication in both directions. We need to divide the bandwidth into two with two carrier frequencies, as shown in Figure 5.5. The figure shows the positions of two carrier frequencies and the bandwidths. The

Carrier frequency bolle middile point nibo bandwidth er

available bandwidth for each direction is now 50 kHz, which leaves us with a data rate of 25 kbps in each direction.

Figure 5.5 Bandwidth of full-duplex ASK used in Example 5.4

5.1.3 Frequency Shift Keying

In frequency shift keying, the frequency of the carrier signal is varied to represent data. The frequency of the modulated signal is constant for the duration of one signal element, but changes for the next signal element if the data element changes. Both peak amplitude and phase remain constant for all signal elements.

Binary FSK (BFSK)

One way to think about binary FSK (or BFSK) is to consider two carrier frequencies. In Figure 5.6, we have selected two carrier frequencies, f_1 and f_2 . We use the first carrier if the data element is 0; we use the second if the data element is 1. However, note that this is an unrealistic example used only for demonstration purposes. Normally the carrier frequencies are very high, and the difference between them is very small.

Figure 5.6 Binary frequency shift keying

Fsk te 2 ta carrier frequency thke 1 hole 2 tai hobe 0 hole 1 ta carrier frequency use hbe

$$r = 1 \quad S = N \quad B = (1+d)S + 2Df$$

$$0 \quad \downarrow S(1+d) \quad S(1+d)$$

$$0 \quad \downarrow f_1 \quad f_2$$

$$2Df$$

As Figure 5.6 shows, the middle of one bandwidth is f_1 and the middle of the other is f_2 . Both f_1 and f_2 are Δ_f apart from the midpoint between the two bands. The difference between the two frequencies is $2\Delta_f$.

Bandwidth for BFSK

Figure 5.6 also shows the bandwidth of FSK. Again the carrier signals are only simple sine waves, but the modulation creates a nonperiodic composite signal with continuous frequencies. We can think of FSK as two ASK signals, each with its own carrier frequency $(f_1 \text{ or } f_2)$. If the difference between the two frequencies is $2\Delta_f$, then the required bandwidth is

$$B = (1+d) \times S + 2\Delta \phi$$

Implementation

There are two implementations of BFSK: noncoherent and coherent. In noncoherent BFSK, there may be discontinuity in the phase when one signal element ends and the next begins. In coherent BFSK, the phase continues through the boundary of two signal elements. Noncoherent BFSK can be implemented by treating BFSK as two ASK mod-

Multilevel FSK

Multilevel modulation (MFSK) is not uncommon with the FSK method. We can use more than two frequencies. For example, we can use four different frequencies f_1 , f_2 , f_3 , and f_4 to send 2 bits at a time. To send 3 bits at a time, we can use eight frequencies.

Note that MFSK uses more bandwidth than the other techniques; it should be used then noise is a serious issue.

Figure 5.7 Implementation of BFSK

Note that MFSK uses more bandwidth than the other techniques; it should be used

when noise is a serious issue.

Phase Shift Keying

5.1.4 Phase Shift Keying

In phase shift keying, the phase of the carrier is varied to represent two or more different signal elements. Both peak amplitude and frequency remain constant as the phase changes. Today, PSK is more common than ASK or FSK. However, we will see shortly that QAM, which combines ASK and PSK, is the dominant method of digital-to-analog modulation.

Binary PSK (BPSK)

The simplest PSK is binary PSK, in which we have only two signal elements, one with a phase of 0°, and the other with a phase of 180°. Figure 5.9 gives a conceptual view of PSK. Binary PSK is as simple as binary ASK with one big advantage—it is less susceptible to noise. In ASK, the criterion for bit detection is the amplitude of the

Figure 5.9 Binary phase shift keying

signal; in PSK, it is the phase. Noise can change the amplitude easier than it can change the phase. In other words, PSK is less susceptible to noise than ASK. PSK is superior to FSK because we do not need two carrier signals. However, PSK needs more sophisticated hardware to be able to distinguish between phases.

Bandwidth

Figure 5.9 also shows the bandwidth for BPSK. The bandwidth is the same as that for binary ASK, but less than that for BFSK. No bandwidth is wasted for separating two carrier signals.

Implementation

The implementation of BPSK is as simple as that for ASK. The reason is that the signal element with phase 180° can be seen as the complement of the signal element with phase 0°. This gives us a clue on how to implement BPSK. We use the same idea we used for ASK but with a polar NRZ signal instead of a unipolar NRZ signal, as shown in Figure 5.10. The polar NRZ signal is multiplied by the carrier frequency; the 1 bit (positive voltage) is represented by a phase starting at 0°; the 0 bit (negative voltage) is represented by a phase starting at 180°.

Figure 5.10 Implementation of BASK

Quadrature PSK (QPSK)

The simplicity of BPSK enticed designers to use 2 bits at a time in each signal element, thereby decreasing the baud rate and eventually the required bandwidth. The scheme is

PHYSICAL LAYER

called *quadrature PSK* or *QPSK* because it uses two separate BPSK modulations; one is in-phase, the other quadrature (out-of-phase). The incoming bits are first passed through a serial-to-parallel conversion that sends one bit to one modulator and the next bit to the other modulator. If the duration of each bit in the incoming signal is *T*, the duration of each bit sent to the corresponding BPSK signal is 2*T*. This means that the bit to each BPSK signal has one-half the frequency of the original signal. Figure 5.11 shows the idea.

(d) QAM (QuadrataneAmplitude Modulation):

Both amplitude and phane are modulated to represent digial data. QAM unes uses a combination OF amplitude shift and phase shifts to end encode multiple bits perc Symbol

These techniques are common in various techniques are communication systems for various communication systems for Information transmitting digital important information over along channels.

Quadrature signals

The two composite signals created by each multiplier are sine waves with the same frequency, but different phases. When they are added, the result is another sine wave, with one of four possible phases: 45° , -45° , 135° , and -135° . There are four kinds of signal elements in the output signal (L=4), so we can send 2 bits per signal element (r=2).

Example 5.7

Find the bandwidth for a signal transmitting at 12 Mbps for QPSK. The value of d = 0.

Solution

For QPSK, 2 bits are carried by one signal element. This means that r = 2. So the signal rate (baud rate) is $S = N \times (1/r) = 6$ Mbaud. With a value of d = 0, we have B = S = 6 MHz.

Constellation Diagram

A **constellation diagram** can help us define the amplitude and phase of a signal element, particularly when we are using two carriers (one in-phase and one quadrature). The

diagram is useful when we are dealing with multilevel ASK, PSK, or QAM (see next section). In a constellation diagram, a signal element type is represented as a dot. The bit or combination of bits it can carry is often written next to it.

The diagram has two axes. The horizontal *X* axis is related to the in-phase carrier; the vertical *Y* axis is related to the quadrature carrier. For each point on the diagram, four pieces of information can be deduced. The projection of the point on the *X* axis defines the peak amplitude of the in-phase component; the projection of the point on the *Y* axis defines the peak amplitude of the quadrature component. The length of the line (vector) that connects the point to the origin is the peak amplitude of the signal element (combination of the *X* and *Y* components); the angle the line makes with the *X* axis is the phase of the signal element. All the information we need can easily be found on a constellation diagram. Figure 5.12 shows a constellation diagram.

Quadrature amplitude modulation is a combination of ASK and PSK.

Figure 5.12 Concept of a constellation diagram

Example 5.8

Show the constellation diagrams for ASK (OOK), BPSK, and QPSK signals.

Solution

Figure 5.13 shows the three constellation diagrams. Let us analyze each case separately:

Figure 5.13 Three constellation diagrams

■ For ASK, we are using only an in-phase carrier. Therefore, the two points should be on the X axis. Binary 0 has an amplitude of 0 V; binary 1 has an amplitude of 1 V (for example). The points are located at the origin and at 1 unit.

Another example-consider amplitude 1 and phase difference of 45 degree

Quadrature Amplitude Modulation (QAM)

QAM

• Quadrature Amplitude Modulation or QAM is a digital modulation scheme where data is transmitted over the channel by varying both the amplitude and phase of the highfrequency carrier signal.

QAM

- BPSK also uses only an in-phase carrier. However, we use a polar NRZ signal for modulation. It creates two types of signal elements, one with amplitude 1 and the other with amplitude −1. This can be stated in other words: BPSK creates two different signal elements, one with amplitude 1 V and in phase and the other with amplitude 1 V and 180° out of phase.
- QPSK uses two carriers, one in-phase and the other quadrature. The point representing 11 is made of two combined signal elements, both with an amplitude of 1 V. One element is represented by an in-phase carrier, the other element by a quadrature carrier. The amplitude of the final signal element sent for this 2-bit data element is $2^{1/2}$, and the phase is 45°. The argument is similar for the other three points. All signal elements have an amplitude of $2^{1/2}$, but their phases are different (45°, 135°, -135°, and -45°). Of course, we could have chosen the amplitude of the carrier to be $1/(2^{1/2})$ to make the final amplitudes 1 V.

References

- The textbook-Forouzan
- Everythingrf.com.
- https://www.youtube.com/watch?v=h_7dmlehoY