LINノードコンフィグレーション 解説書 Rev.1.00

2012.02.24 自動車制御ソフトGr. 宮部

改版履歴

Rev.	変更者	日付	変更点	備考
1. 00	宮部	2012.02.24	新規作成	

目次

- 1. ノードコンフィグレーションとは
- 2. ノードコンフィグレーションで使われるID
- 3. NADの詳細
- 4. スレーブの種別
- 5. ノードコンフィグレーションの基本ルール
- 6. SID(Service Identifier) のリスト
- 7. 各サービスの詳細
- 8. 略語集

1. ノードコンフィグレーションとは

ノードコンフィグレーションは、簡単にいうと、LINネットワーク上でスレーブノード (以下スレーブ)を、セットアップするために使われるサービスである。 所定の手続きにより、指定した情報を、取得、設定、保存することができる。

本書では、LIN2.1の仕様をベースに解説する。

(使用例)

- 1. 工場の製造工程で
 - 一意図したソフトウェアやパラメータが設定されていることの管理に利用する。
 - 生産日付やシリアル番号の設定に使用できる。

2. 車両の組立てラインで

- ーすべてのコンポーネントがネットワークに接続されていることを確認できる。
- ー意図しないコンポーネントが接続されている場合、それを排除するために使われる。 または、再セットアップすることで、そのコンポーネントを利用することもできる。

3. 市場で

一不具合改修など、対策が必要なコンポーネントを特定するために使うことができる。

2. ノードコンフィグレーションで使われるID (1)

各スレーブは、初期値として特定のID(LINプロダクトIDとイニシャルNAD)を持っており、 それを利用することで、マスタは各スレーブにアクセスすることができる。 これらの情報は各スレーブで固有のものであるが、あらかじめ所属するネットワーク全体で 管理されている情報である。そのため自由に変更することはできない。

2-1. LINプロダクトID

すべてのスレーブが下記の形式によりLINプロダクトIDを保持している。

<u>表2-1</u>

ID種別	サイズ	説明	備考
サプライアID	16ビット	LINコンソーシアムに登録したサプライアに付与されるID。	サンデンは 0x0071
ファンクションID	16ビット	サプライアがコンポーネント毎に任意に設定できるID。	
バリアントID	8ビット	コンポーネントが変更された時に変更される。	

D1	D2	D3	D4	D5
Supplier ID	Supplier ID	Function ID	Function ID	Variant ID
LSB	MSB	LSB	MSB	Variant ID

Table 4.1: LIN product identification

2. ノードコンフィグレーションで使われるID (2)

2-2. イニシャルNAD

- ー全てのスレーブがNAD(ノードアドレス)の初期値として、イニシャルNADを保持している。
- ースレーブのウェークアップ時(初期化時)に、アクティブなNADが設定されるが、 事前に特定のNADが設定されていない場合は、イニシャルNADをアクティブなNAD として設定する。
- ーアクティブなNADにより、マスタはスレーブを指定してアクセスできる。 NADの詳細については、<u>3節を参照</u>

また、スレーブの種別によっては、アクティブなNADをコンフィグレーションサービスにより変更、保存することもできる。

スレーブの種別については、4節を参照

3. NADの詳細

ノードコンフィグレーション、またはダイアグサービスにより、スレーブを特定してアクセスするためのIDがNAD(ノードアドレス)である。各スレーブが異なるNADを持つ。

各スレーブは、NADにより自分宛のメッセージを識別してマスタの要求に応答する。

NADは、マスタからの要求でスレーブを指定するために使われるだけでなく、スレーブからの 応答にも付加されて、どのスレーブからの応答であるかを認識するためにも使用される。

<u>表3</u>

NAD値	説明	備考
0	Go to sleepコマンドで使用。	
1~125(0x7D)	スレーブのノードアドレス(通常のNAD)として使用。	
126(0x7E)	ダイアグのみて使用されるファンクショナルNAD。 (LIN2. Oでは、通常のNADとして割当てられているので要注意)	全スレーブ対象
127(0x7F)	ブロードキャスト用のNAD。マスタが同一ネットワーク上のすべてのスレーブを対象にリクエストを送信する際に使用する。 (LIN2. Oでは、リザーブとなっており未使用)	全スレーブ対象 (通常はノードコンフィ グレーションで使用)
128(0x80) ~ 255(0xFF)	ユーザ定義により自由に使用できる。(現実的には、OEMの承認 が必要であり、この範囲を敢えて使う必要性もあまりない)	

4. スレーブの種別

NADの取り扱いにあたり、スレーブには、以下の3種類がある。

サンデンで開発している案件では、現時点で②の比較的シンプルなタイプが要求されているが NADを変更するためのサービスは要求されていない。

- ①Unconfigured slave node (あらかじめ設定されていないスレーブ)
 NADなどがRAMで保持されており、リセット後に毎回マスタにより設定される必要がある。
- ②Preconfigured slave node (あらかじめ設定されているスレーブ)
 NADなどがROMで保持されており、リセット後に所定の設定が自動で行なわれる。
 マスタが設定を変更することもできるが、変更は保存されない。
- ③Full configured slave node (完全に設定されるスレーブ)
 NADなどがEEPROMなどで保持されており、リセット後に所定の設定が自動で行なわれる。
 マスタが設定を変更・保存することもできる。

5. ノードコンフィグレーションの基本ルール

ノードコンフィグレーションのメッセージのやりとりは、以下のルールに則り実施される。

- ①メッセージはシングルフレームのみ。2フレームにまたがるメッセージは使用しない。 すなわち、データバイト数は、最大で5バイト(8バイトー(NAD+PCI+SID))。
- ②SID(Service Identifier)により、要求するサービスを指定する。(詳細は、<u>6節を参照</u>) RSID(Response Service Identifier)は、要求されたSID+0x40となる。 要求されたサービスをサポートしていたら必ずレスポンスしなければならない。
- ③メッセージは以下の内容で構成される。
 - ※PCIは、メッセージ種別とメッセージ長を示す。(詳細は、次頁を参照)
 - ※D1~D5は、必要なパラメータデータを示す。

表5-1

メッセージ種別	バイト1	バイト2	バイト3	バイト4	バイト5	バイト6	バイト7	バイト8
マスタからの リクエスト	NAD	PCI	SID	D1	D2	D3	D4	D5
スレーブの レスポンス	NAD	PCI	RSID	D1	D2	D3	D4	D5

5. ノードコンフィグレーションの基本ルール (補足)

PCI(Protocol Control Information)の説明:

ノードコンフィグレーションで使用するメッセージ種別は、シングルフレーム(SF)のみであるためPCIは以下の形式に固定される。

<u>表5-2</u>

メッセージ種別	PCIタイプ			付加情報				
	ビット7	ビット6	ビット5	ビット4	ビット3	ビット2	ビット1	ビットロ
シングル	0	0	0	0	メッセージ長。			
フレーム(SF)					SIDERSI	Dに依存し	て、1 ~ 6。	

ワイルドカード(Wildcards)について:

ノードコンフィグレーションでは、通常のID指定の他に、以下のIDをマスクするためにワイルドカードを使うこともできる。すべてのスレーブはワイルドカードを認識する必要がある。

ID種別	NAD	サプライアID	ファンクションID
ワイルドカード設定値	0x7F	0x7FFF	0xFFFF

6. SID(Service Identifier) のリスト

LIN2. 1ノードコンフィグレーションとして定義されているサービスは以下の通り。 SID0xB5~0xB7は、LIN2. 1で新規追加されたサービスである。

<u>表6</u>

SID	サービス	説明	対応要否	備考
0xB0	Assign NAD	NADの割当てを変更する。NADの重複回避。	オプション	<u>7-1参照</u>
0xB1	Assign frame identifier	メッセージIDによって定義されているフレームに、 有効なフレームID(PID)を設定する。1回の要求で 1フレームを設定できる。(本書では説明を割愛)	LIN2. O限定。 LIN2. 1では SID 0xB7を使用	LIN2. 0では 対応必須
0xB2	Read by Identifier	スレーブの各種情報を読み出す。	必須	<u>7-2参照</u>
0xB3	Conditional Change NAD	未確認のスレーブ(誤ったノードを接続した場合など)を検出し、NADを変更。NADの重複回避。	オプション	7-3参照
0xB4	Data Dump	スレーブのサプライアのためのサービスで、サプラ イアによるユーザ定義が可能。	オプション	<u>7-4参照</u>
0xB5	Assign NAD via SNPD	SNPD(Slave Node Position Detection)仕様により予約されている。 (本書では説明を割愛)	オプション	
0xB6	Save Configuration	設定されているNAD、PIDを保存する。 (不揮発メモリが必要)	オプション	7-5参照
0xB7	Assign frame identifier range	1回のリクエストで最大4つのPIDを再設定する。フレームIDの重複回避。	必須	7-6参照

7-1. 各サービスの詳細

Assign NAD

Assign NADは、新しいNADを割当てるためのリクエストである。 在庫品やリユース品によるコンポーネントの再利用などにより、同一ネットワーク上でNADが 重複した場合に、それを回避するために使われる。

リクエストで指定したイニシャルNAD(またはNADのワイルドカード)とサプライアID、ファンクションIDのすべてが合致したスレーブを対象として、そのNADを新しいNADに変更する。 対象のスレーブはイニシャルNADを使ってポジティブレスポンスで応答する。

NAD	PCI	SID	D1	D2	D3	D4	D5
Initial NAD	0x06	0xB0	Supplier ID LSB	Supplier ID MSB	Function ID LSB	Function ID MSB	New NAD

Table 4.7: Assign NAD request

NAD	PCI	RSID			Unused		
Initial NAD	0x01	0xF0	0xFF	0xFF	0xFF	0xFF	0xFF

Table 4.8: Positive assign NAD response

アクセス対象のNADを失うことを回避するために、すべてイニシャルNADでやりとりする。

7-2-1. 各サービスの詳細

Read by Identifier (1)

Read by Identifierは、スレーブの各種情報を読み出すためのリクエストである。 以下のデータID(DID)のリストにより、読み出す情報を指定する。

表7-2-1

DID	アイテム	レスポンス長	対応要否	備考
0x00	LINプロダクトID	5+RSID	必須	<u>2-1参照</u>
0x01	シリアルNo.	4+RSID	オプション	Genericは対応済
0x02~0x1F	リザーブ	_		
0x20~0x3F	ユーザ定義	ユーザ定義	オプション	Genericは下表参照
0x40~0xFF	リザーブ	_		

Genericソフトでは、ユーザ定義範囲を使用して以下に対応している。

<u>表7-2-2</u>

DID	アイテム	レスポンス長	備考
0x29	ECUパーツNo.	5+RSID	詳細は、Genericソフトの機能仕様書(SNCF)を参照。
0x32	ソフトウェアバージョン	5+RSID	(CMxxxxxxxx_Sanden_SoftSpec_Gen2_Generic_ LIN_SNCF_xxx_x.doc)
0x33	ハードウェアバージョン	5+RSID	

7-2-2. 各サービスの詳細

Read by Identifier (2)

Read by Identifierは、以下に示すリクエストとレスポンスでやりとりする。

NAD	PCI	SID	D1	D2	D3	D4	D5
NAD	0x06	0xB2	Identifier	Supplier ID	Supplier ID	Function ID	Function ID
INAL	0,00	UXDZ	Identifier	LSB	MSB	LSB	MSB

Table 4.18: Read by identifier request

ld	NAD	PCI	RSID	D1	D2	D3	D4	D5
0	NAD	0x06	0xF2	Supplier ID LSB	Supplier ID MSB	Function ID LSB	Function ID MSB	Variant
1	NAD	0x05	0xF2	Serial 0, LSB	Serial 1	Serial 2	Serial 3, MSB	0xFF
32- 63	NAD	0x05	0xF2	user defined	user defined	user defined	user defined	user defined

Table 4.20: Possible positive read by identifier response.

もしも、スレーブが対応していない等の理由で、リクエストを処理することが出来ない場合には、以下の形式でネガティブレスポンスで応答する。

NAD	PCI	RSID	D1	D2		Unused	
NAD	0x03	0x7F	Requested SID (= 0xB2)	Error code (= 0x12)	0xFF	0xFF	0xFF

Table 4.21: Negative response

7-3-1. 各サービスの詳細

Conditional Change NAD (1)

Conditional Change NADは、同一ネットワーク内に接続された未確認のスレーブを検出して、 そのNADを切り分けるために使われる。

未確認のスレーブが接続される理由として、例えば、製造ラインでの誤った組立て、または、 サービスマンによる間違った部品の置き換えなどが考えられる。 スレーブの中のNADが切り分けられるまで、このサービスは何度も使われる。 結果として、マスタがスレーブを競合なしで識別することができる。

【リクエストの構成】

NAD	PCI	SID	D1	D2	D3	D4	D5
NAD	0x06	0xb3	ld	Byte	Mask	Invert	New NAD

Table 4.9: Conditional change NAD request

【リクエストを受けた時のスレーブの動作】

- 1. リクエストのId(D1)で指定されたID(表7-2-1で定義されたDID)からID情報を準備する。
- 2. リクエストのByte(D2)で指定されたデータバイト(1が指定されたら1バイト目、すなわち Read by IdentifierのレスポンスでのD1に対応)を抽出する。
- 3. 抽出したデータバイトとリクエストのInvert(D4)のビットXORを演算する。
- 4. さらに、上記3の結果とリクエストのMask(D3)のビットANDを演算する。
- 5. 上記4の演算結果がゼロであるなら、NADをリクエストのNew NAD(D5)に変更する。

7-3-2.各サービスの詳細

Conditional Change NAD (2)

Conditional Change NADは、以下に示すリクエストとレスポンスでやりとりする。

NAD	PCI	SID	D1	D2	D3	D4	D5
NAD	0x06	0xb3	ld	Byte	Mask	Invert	New NAD

Table 4.9: Conditional change NAD request

NAD	PCI	RSID	Unused				
NAD	0x01	0xF3	0xFF	0xFF	0xFF	0xFF	0xFF

Table 4.10: Positive Conditional change NAD response

Assign NADサービスとは対照的に、Conditional Change NADサービスでは、イニシャルNADではなく、現在アクティブなNADを指定してリクエストを送信する。

例)スレーブのファンクションIDの最下位バイトの値が09hである場合に、新しいNADに変更したい場合、以下の設定値を持つリクエストを送信することで実現できる。

NAD	PCI	SID	D1	D2	D3	D4	D5
0x7F	0x06	0xB3	0x00	0x03	0x09	0xFF	0x78
(ブロードキャスト)							

7-4-1. 各サービスの詳細 Data Dump (1)

Data dumpは、スレーブのサプライアが、スレーブの初期設定に使えるようにリザーブ されている。このメッセージの形式はサプライアが自由に定義できる。

このサービスは、サプライアのダイアグでのみ使用されることとし、車両などで使用されてはならない。

Data dumpは、以下に示すリクエストとレスポンスでやりとりする。

T	NAD	PCI	SID	D1	D2	D3	D4	D5
	NAD	0x06	0xB4	User defined				

Table 4.12: Data dump request

NAD	PCI	RSID	D1	D2	D3	D4	D5
NAD	0x06	0xF4	User defined				

Table 4.13: Data dump response

7-4-2. 各サービスの詳細 Data Dump (2)

参考)

Generic LINでは、右表の データをEEPROMへ書き 込むためにData Dumpを 使用している。

No.	Item	Size (Byte)	DID (D1)
1	Hardware Version 1(上位4桁)	4	0x36
2	Hardware Version 2(下位1桁)	1	0x37
3	ECU Serial Number	4	0x32
4	ECU Part Number 1(上位4桁)	4	0x34
5	ECU Part Number 2(下位1桁)	1	0x35

例) ECUシリアルNo.の書込みは、下記の形式でData dumpリクエストを送信する。

NAD	PCI	SID	D1 📈	D2	D3	D4	D5
0x01	0x06	0xB4	0x32	0x12	0x34	0x56	0x78

シリアルNo.の形式は、顧客指定

7-5. 各サービスの詳細 Save Configuration

Save configurationは、現在のコンフィグレーション(NADとPID)を不揮発メモリに保存するために使われる。

- ※他のサービスによって設定された各コンフィグレーションは、このリクエストが来なくても有効である。
- ※現在のコンフィグレーションが正しいことをチェックしてから保存を行なう。 チェックOKの時だけ、下記のポジティブレスポンスを送信するが、保存が完了するのを待つ 必要はない。チェックNGであれば、保存もレスポンスも一切しない。

Save configurationは、以下に示すリクエストとレスポンスでやりとりする。

NAD	PCI	SID	Unused				
NAD	0x01	0xB6	0xFF	0xFF	0xFF	0xFF	0xFF

Table 4.14: Save configuration request

NAD	PCI	RSID	Unused				
NAD	0x01	0xF6	0xFF	0xFF	0xFF	0xFF	0xFF

Table 4.15: Save configuration positive response

7-6-1. 各サービスの詳細 Assign Frame Identifier Range (1)

Assign Frame Identifier Rangeは、1回のリクエストで最大4フレーム分のPIDを設定、または無効化できるサービスである。

- ※リクエストには、PIDとして、フレームIDとそのパリティを指定することに注意する。
- ※フレームIDの60(0x3C)~63(0x3F)は、ダイアグ用とリザーブなので変更できない。
- ※レスポンスは、NADが一致した場合でPID変更が成功した場合のみ送信する。

Assign Frame Identifier Rangeは、以下に示すリクエストとレスポンスでやりとりする。

NAD	PCI	SID	D1	D2	D3	D4	D5
NAD	0x06	0xB7	start index	PID (index)	PID (index+1)	PID (index+2)	PID (index+3)

Table 4.16: Assign frame PID range request

	NAD	PCI	RSID	unused				
Ì	NAD	0x01	0xF7	0xFF	0xFF	0xFF	0xFF	0xFF

Table 4.17: Positive assign frame PID range response

7-6-2. 各サービスの詳細 Assign Frame Identifier Range (2)

リクエストの書式:

start index (D1) =新しいPIDの設定対象のうち、最初のフレームが持つインデックス番号を 指定する。インデックス番号は、LDFかNCFのNode_attributesに定義 されたconfigurable_framesのフレーム名の記載順に従う。 ※インデックス番号は、Oから開始される。

PID(D2~D5) =設定したいPID(フレームID+パリティ)を指定する。

※0x00を指定した場合、対象のフレームは無効化され、LINバスへの 送信が禁止される。

※0xFFを指定した場合、対象のフレームは現在のPIDを保持する。

例) GenericのLDFにある定義の場合、各フレームのインデックスは、 EAC_AS_Frm=0、EAC_RQ_Frm=1となる。

```
Node_attributes {↓

EAC {↓

LIN_protocol = "2.1";↓

configured_NAD = 0x01;↓

initial_NAD = 0x01;↓

product_id = 0x0071, 0x0000, 0x00;↓

response_error = LIN_error;↓

P2_min = 50 ms;↓

ST_min = 0 ms;↓

configurable_frames {↓↓

EAC_AS_Frm;↓

EAC_RQ_Frm;↓

}↓

}↓

}↓
```


7-6-3. 各サービスの詳細 Assign Frame Identifier Range (3)

レスポンス時の注意事項:

リクエストで指定された新しいPID割り当てのすべて(無効化(0x00)や保持(0xFF)を含む)を 適用できない場合、リクエストを破棄する。(レスポンスしない)

スレーブは、マスタから送られたPIDを信頼しているので、PIDの妥当性検証は行なわない。 (パリティのチェックなどを行なわない)

- 例1) スレーブがIO_0, IO_1, IO_2, IO_3, IO_4の5つのフレームを持っている場合 リクエストで、start index(D1)=1として、それに続くPID(D2~D5)を0x80, 0xC1, 0x42, 0x00 と指定すると、IO_1=0x80, IO_2=0xC1, IO_3=0x42, IO_4=無効となる。IO_0は影響を受け ない。レスポンスが要求されていれば、ポジティブレスポンスを送信する。
- 例2) スレーブがフレームを2つ(IO_2, IO_5)しか持っていない場合 リクエストで、start index(D1)=0として、それに続くPID(D2~D5)を0xC4, 0x85, 0xFF, 0xFFと指定すると、IO_2=0xC4, IO_5=0x85となる。 スレーブが2つしかフレームを持っていないので、3、4番目のPID(D4,D5)の指定を 0xFF(保持)としなければ、リクエストは破棄される。

8. 略語集

略語	説明	備考
LIN	Local Interconnect Network. 車載LANの通信プロトコルの一種。	
NAD	Node Address. スレーブを特定してアクセスするためのアドレス。	
SID	Service Identifier. リクエストで指定されるサービスを識別するためのID。	
RSID	Response Service Identifier. レスポンスの内容を示すサービスのID。	RSID=SID+0x40
PCI	Protocol Control Information. メッセージ種別とレングスを示す情報。	
SF	Single Frame. シングルフレーム。8バイトで収まるメッセージ。	
PID	Protected Identifier. フレームID(6bit)とパリティ(2bit)で構成されるID。	
DID	Data Identifier. リードデータなどで指定されるデータを識別するためのID。	
NCF	Node Capability File. LINネットワークでのスレーブの特性を定義したファイル。	
LDF	LIN Description File. LINネットワークの各メッセージを定義したファイル。	LINマトリクスの情報

