3/8/2019 What about solids + liquids?

Ke, molar comes (ignore 'em!)

Kp, gas pressures (alum, ignore unit).

(3), (aq). // (5), (l)

effective core/pressure = 1

ex:
$$2(O(g) \rightleftharpoons O_2(g) + C(g)$$
 $K_c = E(O_2) E(G)^2 = E(O_2)$
 $E(O_2)^2 = E(O_2)^2$
 $E(O_3)^2 = E(O_2)^2$
 $E(O_3)^2 = E(O_2)^2$
 $E(O_3)^2 = E(O_2)^2$

rewerse

 $E(O_3) = E(O_2)^2 = E(O_2)^2$
 $E(O_3) = E(O_3)^2$
 $E(O_3) = E($

HF(ag) + H2O(1) = H3O+(ag) + F(ac)

Kc = [H30+][F] = [H30+][F]

[HF][HOJ" = [HF]

Calculating Kc from ear cons

ex: What's Ke for Hz(g) + Izg1 = 2HIG

if [H2] = [I2] = 0.11M and [HI] = 0.78M @EOM

Kc = [HI] = (0.78) = 50, or 5.0x10'
[H2][I2] (0.11)(0.11)

What happens if we know INITIAL comes, but only know some of the final eque comes? Can we find Ke? (YES!)

-use shorthismetry + (R) ICE charts.

(Rxn) init! | eque change

Note: no matter the initial concentrations of H_2 , I_2 , or HI — at equilibrium the ratio of HI squared to $H_2 \times I_2$ is always a constant (the equilibrium constant)

Typo! The squared should be outside of the []

TABLE 15.1 Initial and Equilibrium Concentrations for the Reaction $H_2(g) + I_2(g) \Longrightarrow 2 \text{ HI}(g) \text{ at } 445 \text{ }^{\circ}\text{C}$

Initial Concentrations			Equilibrium Concentrations			Equilibriurn Constant
[H ₂]	[l ₂]	[HI]	[H ₂]	[l ₂]	[HI]	$K_{c} = \frac{[HI^{2}]}{[H_{2}][I_{2}]}$
0.50	0.50	0.0	0.11	0.11	0.78	$\frac{(0.78)^2}{(0.11)(0.11)} = 50$
0.0	0.0	0.50	0.055	0.055	0.39	$\frac{(0.39)^2}{(0.055)(0.055)} = 50$
0.50	0.50	0.50	0.165	0.165	1.17	$\frac{(1.17)^2}{(0.165)(0.165)} = 50$
1.0	0.50	0.0	0.53	0.033	0.934	$\frac{(0.934)^2}{(0.53)(0.033)} = 50$
0.50	1.0	0.0	0.033	0.53	0.934	$\frac{(0.934)^2}{(0.033)(0.53)} = 50$

^{© 2017} Pearson Education, Inc.

ex:
$$A(g) \rightleftharpoons 2B(g)$$
 [A] = 1.00M
 $EBJ_0 = 0.00M$
 $CAJ_{ea} = 0.75M$
 $K_c = 3$
Rxn: $A(g) \rightleftharpoons 2B(g)$
Initial 1.00 0 +0.50
Change -0.25 +2x0.25 (B)²
Equilibrium 0.75 0.50 $K_c = [AJ_{ea}]$
 $= (0.50^2) = 0.33$
 $= (0.75)$
Predicting direction of change
 $EX = 15.5$, $EX = 15.5$ $EX = 15.5$

Q, K, and the Direction of a Reaction

© 2017 Pearson Education, Inc.

our last situation: AGI = BG	5 Kc = 1.45						
[A] = [B] = 1.00M							
2, 20 325							
Q = ?							
Q=? Which way will it shift?	Qc = Kc (not @ ra=)						
Q= [B] = 1.00 = 1.00	Qc < Kc: Shift to						
Q= [B] = 1.00 = 1.00 [A] Kinstantameons/init	values. RHS						
Yes, in theory you can memorize the direction	(B]T,Q=E)						
of shift as follows:							
 Q < K, shift to RHS Q = K, no shift (@ eqm) Q > K, shift to LHS 	$A \rightarrow B$						
But if you understand that in order for the reaction to come to equilibrium the value of Q							
must increase or decrease to equalize K — and that only happens by causing more A to	* 17 1						
be converted to B or vice versa — then you will never forget on an exam!							
Understanding takes a lot more time, energy,							
and effort than memorizing. Unfortunately that's the price for not forgetting.							
	A side that is a second						
	- 1s						