由题可知,在这个选址问题中,我们既要给出仓库选址,也要给出大规模物资分拣中心的位置,是一个 典型的多层级配送中心问题。

1.确定大规模物资分拣中心和仓库的数量。

以小区作为节点,做系统聚类,确保每一聚类簇中的人口不超过10w人. 聚类簇的数量即为大规模物资分拣中心的数量。 仓库数量为大规模分拣中心数量的50%。

2.第一层级配送中心(大规模分拣中心)选址。

所谓第一层级配送中心指的就是大规模分拣中心,物资在这里分拣完毕后应该直接送给各小区。

基于配送费用最少的选址模型

模型假设:

- 根据运输量与运输距离构建运费函数。
- 采用地理坐标对配送中心与零售商的距离进行求解,并将其作为模型的配送中心与零售商距离数据。

模型变量:

配送中心向各小区的运输费用为C一共有n个配送中心,配送中心的坐标表示为 (X_i,Y_i) 两坐标之间的距离为 d_{ii}

一共有m个小区,小区的坐标为 (x_j,y_j) ,其需求量为 p_j ,其允许配送的最大距离为 $D_j=1km$ 运输单价表示为q=0.2元/kg/km,配送中心到小区的运输费用表示为 b_{ij} ,配送中心i到小区j的运输量为 w_{ij} 每个分拣中心每天能够分拣的物资量为 v_i

模型:

$$(1)$$
目标函数: $minC = \sum_{i=1}^n \sum_{j=1}^m w_{ij} * d_{ij} * q$

$$(2)$$
小区的需求量必须被满足: $\displaystyle\sum_{i=1}^n w_{ij} = p_j$

(3)配送中心的坐标必须在长春市范围内: $(X_i,Y_i)\in$ 长春

$$(4)$$
配送中心不能离小区太远: $d_{ij} = [(X_i - x_j)^2 + (Y_i - y_j)^2]^{rac{1}{2}} \leq D_j$

(5)分拣中心每日配送量小于其承载量:
$$\sum_{j=1}^m w_{ij} \leq v_i$$

解法:

- 初始化n个配送中心的坐标。
- 通过上述模型构建每个配送中心到小区的分配方案。
- 根据文献(见群图的条件),根据上一轮的 (X_i,Y_i) 和上一步中得到的weight方案,求解出新的坐标:

$$X_i' = rac{\sum_{j=1}^m rac{w_{ij}qx_j}{d_{ij}}}{\sum_{j=1}^m rac{w_{ij}q}{d_{ij}}}$$
 $Y_i' = rac{\sum_{j=1}^m rac{w_{ij}qy_j}{d_{ij}}}{\sum_{j=1}^m rac{w_{ij}q}{d_{ij}}}$

• 反复迭代, 直到 X_i, Y_i 不再变化为止。