Задание 9.3 «Смеситель»

Водопроводный смеситель холодной $(T_1=10^{\circ}C)$ и горячей $(T_2=70^{\circ}C)$ воды состоит из двух одинаковых труб AB и CB, переходящих в удлинитель BD (рис.1). Краны K_1 и K_2 регулируют расход q (т.е. объем воды, проходящий через трубу в единицу времени) и температуру T воды, выходящей из смесителя.

Опыт показывает, что расход воды через P_2 трубу AB (или CB) пропорционален разности гидростатических давлений p_A и p_B на ее концах

 $q = \alpha C(p_A - p_B)$, где α — некоторый безразмерный коэффициент «открытия крана», принимающий значение от нуля (кран закрыт) до единицы (кран полностью открыт), а C — некоторый постоянный размерный коэффициент для данной трубы.

Расход воды через удлинитель BD также пропорционален разности давлений жидкости на его концах $q = C(p_B - p_0)$, где p_0 — нормальное атмосферное давление на выходе из трубы в точке D (см. рис. 1).

Давления в магистралях холодной $p_1 = p_A = 3.0\,amm$ и горячей $p_2 = p_B = 2.6\,amm$ труб поддерживаются постоянными. Воду будем считать несжимаемой жидкостью, а потери теплоты при прохождении смесителя — пренебрежимо малыми.

Если полностью открыть ($\alpha_1 = 1,0$) кран холодной воды при полностью закрытом кране горячей воды, то расход воды будет равен $q_1 = 1,4\frac{\pi}{c}$.

- **3.1** Вычислите значение коэффициента C и укажите его размерность.
- **3.2** Найдите расход q_2 воды при полном открытии крана с горячей водой (при закрытом втором кране).
- **3.3** Вычислите расход воды q_3 и ее температуру T_3 в случае, когда два крана открыть полностью ($\alpha_1=\alpha_2=1,0$).
- **3.4** Найдите расход воды q_4 и ее температуру T_4 в случае, когда один кран холодной воды открыт на $\alpha_1=0.30$, а кран горячей на $\alpha_2=0.70$.
- **3.5** В «час пик» при большом количестве пользователей давление p_2 в магистрали горячей воды может значительно упасть. При каком давлении $p_{2 \min}$ подача горячей воды в смеситель полностью прекратится, если кран холодной воды открыт на $\alpha_1 = 0.30$, а кран горячей на $\alpha_2 = 0.70$?