

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

нальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ "Информатика и системы управления"

КАФЕДРА "Программное обеспечение ЭВМ и информационные технологии"

ОТЧЁТ К ЛАБОРАТОРНОЙ РАБОТЕ НА ТЕМУ:

"Разработка ПО Интегральный калькулятор"

Студент	<u>ИУ7-68Б(В)</u> (Группа)	(Подпись, дата)	Д.П. Косаревский (И.О.Фамилия)
Преподаватель			В.И. Солодовников
		(Подпись, дата)	(И.О.Фамилия)

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

	За	УТВЕРЖДАЮ ведующий кафедрой
ЗАЛА	АНИЕ	
на выполнение ла		боты
по дисциплине "Основы программной инжене		
студент группы <u>ИУ7-68Б(В)</u>	<u> </u>	
Студент трунны <u>113 7 боб(Б)</u> Косаревский Дмитри	ий Пет р овии	
	имя, отчество)	
Тема лабораторной работы " <u>Разработка ПО"</u>	, ,	
Задание:		
1. Написать программу для приближенного вычи	сления определенного и	интеграла
методами трапеций с заданным шагом, трапеций с зада	•	*
пересечения выбранной пользователем функции с оськ	о абсцисс на заданном из	нтервале
методом дихотомии. Выбранную для проверки функци	ю передавать как отдели	ьный параметр подпрограмм
вычисления значений функции, интеграла, корня.		
Для проверки использовать следующие функции:		
1) sin(x);		
 2) cos²(x) · ln²(x + 5). 2. Разработать спецификацию требований (техни 	наакаа валица) на пров	
 газраоотать спецификацию треоовании (техни Нарисовать блок-схемы алгоритмов, реализова 		
4. добавить возможность выбора третьей функци		
$a1 \cdot x^8 + a2 \cdot x^7 + a3 \cdot x^6 + a4 \cdot x^5 + a5 \cdot x^4 + a6$		
		/
 Запись в файл значений функции и арт Чтение из файла значений функции и з Вывод на экран значений из файла в в Построение графика по значениям из о 	аргумента; иде таблицы;	нтервале и с заданным шагом;
5. Разработать функциональные диаграммы SAD спецификации программного продукта.	T/IDEF0 и диаграммы п	отоков данных DFD для
Дата выдачи задания « » 2021 г		
Преподаватель		В.И. Солодовников
	(Подпись, дата)	(И.О.Фамилия)
Стулент		Л.П. Косаревский

(И.О.Фамилия)

(Подпись, дата)

Спецификация требований к программному обеспечению (Software Requirements Specification) на основе стандарта ISO/IEC/IEEE 29148:2011

История изменений

Дата	Версия	Описание	Автор
23.03.2021	0.1	Документ создан	Косаревский Д.П.

Утверждения

Кто утвердил	ФИО	Дата	Подпись
Гейткипер	****		
Ответственный за проект	****		
Разработчик	Д. Косаревский		
Разработчик	***		

• Введение

о Цели

В данном документе подробно описываются все внешние проявления и сценарии поведения разрабатываемого в рамках проекта "Интегральный калькулятор" (далее «система») приложения (или его части, подсистемы). Наряду с этим приводится перечень нефункциональных требований, проектных ограничений и других аспектов, необходимых для полного и всестороннего описания всех требований участников к проектному решению.

о Соглашения о терминах

Сокращение русское	Скоращение английское	Пояснение
Система		Совокупность логически связанных между собой объектов, организованных некоторым образом в единое целое.
Поле (свойство, атрибут)		Характеристика объекта, низшая неделимая единица системы.
Экранная форма (экран)		Совокупность элементов интерфейса пользователя, выводимых на экран одновременно с возможностью просмотра содержимого без дополнительной навигации.

Представление	Совокупность настроек внешнего вида экранной формы. В отношении перечня пользовательское представление — это набор и порядок отображаемых полей.
Пользователь	Пользователь, имеющий доступ на просмотр определенной информации в системе

о Предполагаемая аудитория и последовательность восприятия

Аудиторией будут являться преподаватели и студенты МГТУ им. Баумана, а также любой иной пользователь, который получит доступ к системе.

о Масштаб проекта

Проект является учебным в рамках лабораторных работ по курсу "Основы программной инженерии" в МГТУ им. Баумана.

о Ссылки на источники

Система размещена в сети по адресу:

https://share.streamlit.io/dkosarevsky/sef_lab/main/integral_trapezoidal.py

• Общее описание

о Видение продукта

Основные задачи системы:

- Вычисление определённого интеграла методами трапеций с заданным шагом
- Вычисление определённого интеграла методами трапеций с заданной точностью
- Вычисление точки пересечения функции с осью абсцисс на заданном интервале методом дихотомии
 - о Функциональность продукта

В зависимости от типа вычисления и выбранной задачи пользователь может производить параметрическую настройку вычислений, например:

- Нижний и верхний предел интегрирования
- Шаг разбиений
- Необходимую точность вычислений
- Начало и конец интервала
 - о Классы и характеристики пользователей

Чёткой классификации пользователей не предусмотрено, пользователем может являться любой человек, никаких ограничений не накладывается.

о Среда функционирования продукта (операционная среда)

Система работает из web-интерфейса, работоспособность без ограничений по ОС будет доступна при наличии соединения с интернет. Также возможен локальный запуск, при этом система будет запущена в веб-странице бразуера.

о Рамки, ограничения, правила и стандарты

При локальном запуске присутствует ряд ограничений, а именно необходима установка ЯП Python версии не ниже чем 3.8.8, а также библиотек, перечень которых определён в файле requirements.txt в репозитории проекта.

о Документация для пользователей

Проект не является настолько масштабным, чтобы писать полноценную документацию, однако предусмотрены как текстовые описания необходимых действий внутри приложения для рядовых пользователей, так и комментарии и docstrings в коде для продвинутых пользователей.

о Допущения и зависимости

Для корректной работы системы есть ряд обязательных зависимостей в виде pythonбиблиотек:

streamlit==0.79.0

numpy = 1.20.1

plotly = = 4.14.3

• Функциональность системы

- о Функциональный блок 1
 - Описание и приоритет

Приближенное вычисление определенного интеграла методом трапеций с заданным шагом. Высокий приоритет.

Функциональные требования

Должна быть реализована возможность параметризации расчета с помощью ввода верхнего и нижнего предела интегрирования, а также шага разбиения.

Функциональный блок 2

• Описание и приоритет

Приближенное вычисление определенного интеграла методом трапеций с заданной точностью. Высокий приоритет.

• Функциональные требования

Должна быть реализована возможность параметризации расчета с помощью ввода верхнего и нижнего предела интегрирования, а также точности вычисления.

Функциональный блок 3

• Описание и приоритет

Вычисление точки пересечения функции с осью абсцисс на заданном интервале методом дихотомии. Высокий приоритет.

• Функциональные требования

Должна быть реализована возможность параметризации расчета с помощью ввода начала и конца интервала, а также шага значения.

• Требования к внешним интерфейсам

Интерфейсы пользователя (UX)

Пользовательские интерфейсы включают в себя переключатели между необходимыми видами вычислений в виде радиокнопок:

Выб	ерите необходимое вычисление
	 Приближенное вычисление определенного интеграла методом трапеций с заданным шагом Приближенное вычисление определенного интеграла методом трапеций с заданной точностью
•	3. Вычисление точки пересечения функции с осью абсцисс на заданном интервале методом дихотомии

При выборе какого-либо из видов вычислений пользовательские интерфейсы включают параметризацию вычислителя, для 1-го вычисления:

для 2-го вычисления:

для 3-го вычисления:

о Программные интерфейсы

Интерфейс системы должен обеспечивать простоту, скорость и точность ввода информации, наглядность представления данных, отсутствие утомляемости при длительной работе пользователя. Данные условия определяют следующие требования:

- ★ Наглядность, понятность, динамичность интерфейса
- ★ Отсутствие излишних отвлекающих элементов
- ★ Оптимальные размеры элементов управления
- ★ Оптимальный подбор цветовой гаммы элементов интерфейса
- о Интерфейсы связи и коммуникации

Интерфейс коммуникации с пользователем при выборе вычисления точки пересечения функции с осью абсциисс должен обеспечивать отображение интерактивных графиков на которых будут отображены как сами функции, так и точка пересечения функции с осью абсцисс.

• Нефункциональные требования

о Требования к производительности

Система не предъявляет специальных требований к производительности.

о Требования к сохранности (данных)

Система не предъявляет требований к сохранности данных. Отсутствуют взаимодействия с БД, никакие данные не сохраняются.

о Требования к качеству программного обеспечения

- Система должна быть надёжной
 - ◊ Устойчива к отказам
 - ♦ Способность к восстановлению работоспособности при отказах
- Практичность, удобство использования
 - ◊ Понятность
 - ◊ Простота и удобство использования (требование относится к интерфейсу)
- Эффективность
 - ◊ Временные характеристики
 - ◊ Использование ресурсов
- Сопровождаемость
 - ◊ Анализируемость
 - ◊ Изменяемость
 - ◊ Контролируемость
- *№ Переносимость, мобильность*
 - ◊ Адаптируемость
 - ◊ Удобство установки
- о Требования к безопасности системы

Программный продукт не предъявляет требований к безопасности системы.

о Требования на интеллектуальную собственность

Программный продукт не облагается правами на интеллектуальную собственность.

Блок-схемы алгоритмов основных функций системы

Верхнеуровневая диаграмма сущностей и подключаемых библиотек

Блок схемы функции trapezoidal_rule:

Автоматически сгенерированная блок схема с помощью Codimension:

```
trapezoidal_rule(func, low_limit: float, up_limit: float, intervals: float)
area = .5 * (func(low_limit) + func(up_limit))
x = low_limit + intervals
while
x <= up_limit - intervals
area += func(x)
x += intervals
intervals * area</pre>
```

Классическая блок-схема (ГОСТ):

Блок схема функции precision_trapezoidal_rule:

Автоматически сгенерированная блок схема с помощью Codimension:

```
precision_trapezoidal_rule(func, low_lim: float, up_lim: float, max_err: float = .1, intervals: int = 1)
 dx = (up_lim - low_lim) / intervals
 total = \overline{0}
x = low_lim
for
           interval in range(intervals)
  total += slice_area(func, x, x + dx, max_err)
  x += dx
 ← round(total, 5)
```

Классическая блок-схема (ГОСТ):

Блок схема вспомогательный функции slice_area для функции precision_trapezoidal_rule:

```
slice_area(function, x1, x2, max_error)

y1 = function(x1)
y2 = function(x2)
xm = (x1 + x2) / 2
ym = function(xm)

starge = (x2 - x1) * (y1 + y2) / 2
first = (xm - x1) * (y1 + ym) / 2
second = (x2 - xm) * (y2 + ym) / 2
both = first + second

start
error = (both - large) / large

start
abs(error) < max_error

start
both

start
slice_area(function, x1, xm, max_error) + slice_area(function, xm, x2, max_error)</pre>
```


Блок схема функции dichotomy:

Код основных функций программы

Основные функции программы:

Функция для приближенного вычисления определенного интеграла методами трапеций с заданным шагом:

```
Idef trapezoidal_rule(func, low_limit: float, up_limit: float, intervals: float) -> float:

"""

Правило трапеций для численной аппроксимации интегральной заданной функции

:param func: математическая функция

:param low_limit: нижний предел интегрирования

:param up_limit: верхний предел интегрирования

:param intervals: число отрезков, на которые разбивается

:return: результат вычислений

"""

area = .5 * (func(low_limit) + func(up_limit))

x = low_limit + intervals

while x <= up_limit - intervals:

area += func(x)

x += intervals * area
```

Функция для приближенного вычисления определенного интеграла методами трапеций с заданной точностью:

```
def precision_trapezoidal_rule(func, low_lim: float, up_lim: float, max_err: float = .1, intervals: int = 1) -> float:

"""

Правило трапеций с заданной точностью

:param func: математическая функция

:param low_lim: нижний предел интегрирования

:param up_lim: верхний предел интегрирования

:param intervals: число отрезков, на которые разбивается

:return: peзультат вичислений
"""

dx = (up_lim - low_lim) / intervals

total = 0

# выполняем интеграцию

x = low_lim

for interval in range(intervals):

# добавляем область трапеции для этого среза

total += slice_area(func, x, x + dx, max_err)

# переходим к следующему срезу

x += dx

return round(total, 5)
```

Вспомогательная функция для приближенного вычисления определенного интеграла методами трапеций с заданной точностью, вызываемая внутри функции precision_trapezoidal_rule:

```
def slice_area(function, x1, x2, max_error):

# вычисляем функцию в конечных и средних точках
y1 = function(x1)
y2 = function(x2)
xm = (x1 + x2) / 2
ym = function(xm)

# рассчитываем площади срезов и самого большого участка
large = (x2 - x1) * (y1 + y2) / 2
first = (xm - x1) * (y1 + ym) / 2
second = (x2 - xm) * (y2 + ym) / 2
both = first + second

# рассчитываем ошибку
error = (both - large) / large

# сравниваем ошибку с допустимым значением ошибки (точности)
if abs(error) < max_error:
    return both

# если ошибка больше допустимого значения - делим ее на две части (два среза)
return slice_area(function, x1, xm, max_error) + slice_area(function, xm, x2, max_error)
```

Функция для вычисления точки пересечения выбранной пользователем функции с осью абсцисс на заданном интервале методом дихотомии:

Результаты тестирования

При запуске и тестировании программы были получены следующие результаты:

Выберите необходимое вычисление					
• 1. Приближенн шагом					
2. Приближенн точностью	ое вычислен	ние определенного	интеграла м	етодом трапеций с	заданной
	3. Вычисление точки пересечения функции с осью абсцисс на заданном интервале методом дихотомии				
Приближенное выч	исление опр	ределенного интегр	рала методом	і трапеций с задані	ным шагом
Введите нижний предел		Введите верхний пре	дел:	Введите шаг:	
0.00	- +	1.57	- +	0.01000000	- +
Результат для sin(x) = 0.9892				
Результат для cos^;	2(x) * ln^2(x+	5) = 2.26454			
2. Приближенное вычисление определенного интеграла методом трапеций с заданной точностью					
3. Вычисление точки пересечения функции с осью абсцисс на заданном интервале методом дихотомии					
Приближенное вычисление определенного интеграла методом трапеций с заданной точностью					
Введите нижний предел:		Введите верхний пре	дел:	Введите точность:	
0.00	- +	1.57	- +	0.10000000	- +
Результат для sin(x) = 0.98634					
Результат для cos^2(x) * In^2(x+5) = 2.22693					

SADT (Structured Analysis and Design Technique)

Построение диаграммы для структурно-функционального моделирования системы.

DFD (Data Flow Diagrams)

Построение диаграммы процессов и потоков данных

Результат

В результате работы была достигнута поставленная цель:

- 1. Создана программа в соответствии с описанным заданием
- 2. Реализованы 3 варианта вычислений
- 3. Реализована возможность параметризации вычислений пользователем
- 4. Реализовано отображение графиков и их изменений в зависимости от заданных параметров

Код программы находится в открытом репозитории по ссылке:

https://github.com/dKosarevsky/SEF_lab

Работающую программу можно увидеть и протестировать по ссылке: https://share.streamlit.io/dkosarevsky/sef_lab_001/main/integral_trapezoidal.py

Программа написана на языке программирования Python 3.8.8 с использованием следующих библиотек:

- streamlit
- numpy
- plotly