Homework 5 Problem. 1

- There are 38^5 outcomes, since we count the sequence of outcomes $38^5 = 38 \times 38 \times 38 \times 38 \times 38 = 79235/18$
- 1.2 The outcomes of the same color: $18^{5} + 18^{5} + 2^{5} = 3779168$
- Five times. Because all 38 slots are numbered, and the marble would land on one of the slots after we spun the wheel.

 After 5 times, the marble would be landed on one of the slots for at least 5 times.
- There are 52×51 ways to deal the cards. Since the cards are distinct from each other. $52 \times 51 = 2652$

There are 4 Aces, $3\times4=12$ face conds, 4 ten-cards. Thus, there are $2\times4\times16=128$ ways.

There are 13 spades, and 12 face cards

If the first card is not spade-face $10 \times 12 = 120$

If the first cand is spade-face: $3 \times 11 = 33$

So cell outcomes one 120+33=153

17 There are 13 spades 2 one-eyed jack, 11 valid face cards.
13×11×2 = 286

Problem 2

- 2.1 There are 11 Songs in total. $11^7 = 19487171$
- $6^7 + 5^7 = 358061$
- 2.3 6⁷ + 6⁸ + 6⁹ + 6¹⁰ = 7²503424
- 2.4 We can calculate the total number and subtract the cases where only one artist is used. $11^{7} (6^{7} + 5^{7}) = 19129110$
- There are 10 songs left. And the choices to play "US" in the sequence are 7 10×7=70
- 2.6 n(11,7) = ||x|0x9x8x7x6x5 = |b63200
- - \bigcirc Michaelson first= $5\times6\times4\times5\times3\times4\times2=14400$
 - 3 So the total ways = 21600+14400=36000

Problem 3

$$31 (6) = \frac{6!}{4! \ 2!} = \frac{6 \times 5}{2} = 15$$

$$32 \quad {6 \choose 2} = {6 \choose 4} = 15$$

$$3.3 \quad \binom{200}{199} = \frac{200!}{199! \cdot 1!} = 200$$

3.4
$$P(6,4) = \frac{6!}{2!} = 6 \times 5 \times 4 \times 3 = 360$$

3.6
$$P(26,2) = \frac{26!}{24!} = 26 \times 25 = 650$$

Problem 4

$$41 \quad 2^{10} = 1024$$

- 4.2 There are no 1, all digits are 0: 1 way:
- There are only 1 or 0=2 ways. The answer: 1024-2=1022
- 1.4 It depends on where the ones are. There are total 10 places, and 5 ones. $\binom{10}{5} = \frac{10!}{5! \cdot 5!} = 252$
- 4.5 Begins with 0= there are 9 places left.

 29 = 512

And the ways start with D and exactly 5 ones: $\binom{9}{5} = 126$

Thus= 252 +512-126 = 638