Изпит по ДИС-2, втора част(теория) специалност "Информатика" 1-ви курс, редовно обучение 24.06.2016 година

Име: фак. номер:

- 1. (4 точки) Формулирайте достатъчното условие на Силвестър за наличие на локален максимум за функция на три променливи.
- 2. (12 точки) Формулирайте и докажете теоремата за равенство на смесените производни за функция F(x,y).
- 3. (4 точки) Покажете как се свежда пресмятането на двоен интеграл чрез повторен, ако областта е криволинеен трапец с хоризонтални основи.
 - **4.** (4+11 точки) Доформулирайте и докажете следната формула на Грийн:

Нека
$$D: \begin{vmatrix} y \in [0, 2016] \\ x \in [y - 2016, 2016 - y] \end{vmatrix}$$

Нека $D: \left| \begin{array}{l} y \in [0,2016] \\ x \in [y-2016,2016-y] \end{array} \right|$. Ако функцията Q(x,y) е заедно с частната си производна , то е в сила:

$$\iint\limits_{D} \frac{\partial Q}{\partial x} \, dx dy = \oint\limits_{\gamma} Q \, dy,$$

където γ е крива, която е на D и интегрирането се извършва в посока

- **5.** (4 точки) Кога (в \mathbb{R}^2) казваме, че полето $\vec{F}(P(x,y),Q(x,y))$ е потенциално.
- **6.** (15 точки) Докажете (в \mathbb{R}^2), че от независимостта от пътя на криволинеен интеграл от втори род следва съществуването на потенциал(диференцируема функция U(x,y)).

Изпит по ДИС-2, втора част(теория) специалност "Информатика" 1-ви курс, редовно обучение 24.06.2016 година

Име: фак. номер:

- 1. (4 точки) Дефинирайте какво е производна по посока за функция на две променливи.
- 2. (12 точки) (верижно правило) Формулирайте и докажете теоремата за производна на съставна функция от вида $F(t) = f(\phi(t), \psi(t))$.
 - **3.** (4 точки) Довършете дефиницията:

Казваме, че функцията F(x,y) е диференцируема в точката (x_0,y_0) , ако ...

4. (4+11 точки) Доформулирайте и докажете следната формула на Грийн:

Нека
$$D: \begin{vmatrix} x \in [-2016, 0] \\ y \in [-2016 - x, x + 2016] \end{vmatrix}$$

Нека $D: \left| \begin{array}{l} x \in [-2016,0] \\ y \in [-2016-x,x+2016] \end{array} \right|$. Ако функцията P(x,y) е заедно с частната си производна , то е в сила:

$$-\iint\limits_{D} \frac{\partial P}{\partial y} \, dx dy = \oint\limits_{\gamma} P \, dx,$$

където γ е крива, която е на D и интегрирането се извършва в посока

- **5.** (4 точки) Кога (в \mathbb{R}^2) казваме, че изразът $P(x,y) \, dx + Q(x,y) \, dy$ е пълен диференциал.
- **6.** (15 точки) Докажете (в \mathbb{R}^2), че от съществуването на потенциал (диференцируема функция U(x,y)) следва независимост от пътя на криволинеен интеграл от втори род.