Algoritmos em Grafos Lista de Exercícios IX

- 1. Dado G = (V, E) não direcionado e dois vértices $a, b \in V$, mostre como encontrar os vértices que formam um separador mínimo N(a, b) de $\{a, b\}$.
- 2. Seja G=(V,E) um digrafo acíclico. Queremos encontrar o menor número de caminhos disjuntos nos vértices que cobrem todos os vértices, ou seja, caminhos tal que cada vértice do grafo está em exatamente um deles. Os caminhos podem começar e terminar em quaisquer vértices e seus tamanhos podem ser qualquer um, um caminho de tamanho 0 por exemplo, que contém um único vértice, é válido.

Considere a rede de fluxo G' = (V', E') tal que

$$V' = \{s, t\} \cup \{v'_i \text{ para cada } v_i \in V\} \cup \{v''_i \text{ para cada } v_i \in V\}$$

$$E' = \{(s, v_i') \text{ para cada } v_i \in V\} \cup \{(v_i'', t) \text{ para cada } v_i \in V\} \cup \{(u', v'') \text{ para cada } (u, v) \in E\}$$

A capacidade de todas as arestas é 1. Seja f um fluxo máximo em G' e seja p o menor número de caminhos em G que são disjuntos nos vértices e que cobrem todos os vértices. Mostre que p = |V| - |f|. Além disso mostre um algoritmo para encontrar os caminhos que cobrem todos os vértices.

- 3. Suponha uma rede aleatória G(N, p) onde $N = 10^3$ e $p = 10^{-3}$.
 - Qual o número esperado de links $\langle L \rangle$ na rede?
 - Em qual regime esta rede está?
 - Calcule a probabilidade p_c para que a rede esteja no seu ponto crítico.
 - Dado $p=10^{-3}$ encontre o número de nos N' para que uma rede aleatória gerada seja conexa.
 - Para a rede do item anterior calcule o valor esperado dos caminhos mínimos $\langle d \rangle$.
 - Qual a probabilidade p_k (por Poisson) que um nó tenha grau k considerando a rede do item anterior?
- 4. Uma árvore de Cayley é construída da seguinte forma: comece com um nó central de grau k, e para cada um destes nós ligue-os com (k-1) novos nós e repita o processo até que as folhas tenham distância P para o nó central (cada nó com distância menor que P para o nó central terá grau k e os nós com distância P são folhas e portanto possuem grau 1).
 - Qual o número de nós com distância t para o nó central?

- Qual a distribuição de graus dos nós?
- Qual o diâmetro da árvore?
- Ache uma fórmula aproximada para o diâmetro da árvore em função de N.
- A rede possui a propriedade de mundos pequenos?
- 5. Assumindo $k_{min} = 1$ qual é o grau máximo esperado para as redes abaixo?

Rede	N	γ_{in}	γ_{out}	γ	$\langle k \rangle$
Internet	192244	*	*	3.42	6.34
Rede de atores	702388	*	*	2.12	83.71
Int. de proteínas	2018	*	*	2.89	2.9
WWW	325729	2.0	2.31	*	4.6

6. Considere uma distribuição de probabilidade para os graus dos vértices p_k . Considere o método para gerar nós com grua seguindo esta distribuição onde para cada nó sorteamos um número t em [0,1], e achamos o maior k' tal que

$$\sum_{k=1}^{k'-1} p_k < t \in \sum_{k=1}^{k'} p_k \ge t$$

Mostre que a probabilidade de t estar no intervalo

$$\left(\sum_{k=1}^{k'-1} p_k, \sum_{k=1}^{k'} p_k\right]$$

é igual a $p_{k'}$.

- 7. Crie um programa para criar uma rede livre de escala com parâmetro $\gamma = 2.2$ e $N = 10^4.$
- 8. Crie um programa para criar uma rede Barabási-Albert com $N=10^4$ e m=4 e condição inicial de uma rede com m=4 nós formando uma clique. Compare a distribuição de graus com a rede criada na questão anterior, bem como os parâmetros $\langle d \rangle$, k_{max} , k_{min} e $\langle C \rangle$.