MF20006: Introduction to Computer Science

Lecture 1: Numbers and Computation

Hui Xu xuh@fudan.edu.cn

Outline

- 1. Binary System
- 2. Computation

1. Binary System

How to Represent Numbers?

- □Decimal numbers are commonly used in daily life.
 - ➤ Each digit represents a power of 10

$$\triangleright$$
e.g., 123 = 10³ + 2 * 10² + 3 * 10¹

- □In computer, we represent numbers with binary (base-2) numbers.
 - > Each binary digit, or bit, represents a power of 2

$$\triangleright$$
e.g., $(1011)_2 = 1 * 2^3 + 0 * 2^2 + 1 * 2^1 + 1 * 2^0 = 11$

- □We can generalize this idea to any base *n*.
 - \triangleright Each position represents a power of n.

$$\triangleright$$
e.g., $(1011)_n = 1 * n^3 + 0 * n^2 + 1 * n^1 + 1 * n^0$

Arabic Numbers are Based on The Numbers of Angles

Binary-based Numbers in Computer

- **□**Computer storage consists of consecutive bits.
- **□Which position is the start of a number?**
 - ➤ Generally via the memory address.
 - ➤ Granularity: 1-byte or 8 bit.
- **□Which position is the end of a number?**
 - > We need a fixed number of bits of to represent a number.
 - ➤ E.g., 8-bit, 32-bit, etc.

Memory Address: p

Represent Natural Numbers with 8 Bits (1 Byte)

Decimal	Fixed-length (8 bit/1 byte)
0	0000000
1	0000001
2	0000010
3	0000011
4	00000100
5	00000101
6	00000110
7	00000111
8	00001000
9	00001001
10	00001010
11	00001011
12	00001100
13	00001101
14	00001110
15	00001111
16	00010000

Simplified Representations in Hexadecimal Format

Decimal	Fixed-length (8 bit/1 byte)	Hex (base 16)
0	0000000	0
1	0000001	1
2	0000010	2
3	0000011	3
4	00000100	4
5	00000101	5
6	00000110	6
7	00000111	7
8	00001000	8
9	00001001	9
10	00001010	Α
11	00001011	В
12	00001100	C
13	00001101	D
14	00001110	Е
15	00001111	F
16	00010000	10

Exercise

□What is the binary representation for:

- $>(100)_{10}$
- $>(1024)_{10}$ (also known as 1 kilo)
- □Given any decimal number X, how to calculate the binary representation step by step?

More Quantifiers

- □1 mega (M): 2²⁰
- □1 giga (G): 2³⁰
- □1 tera (T): 2⁴⁰
- □1 peta (P): 2⁵⁰
- □1 exa (E): 2⁶⁰
- □1 zetta (Z): 2⁷⁰
- □1 yotta (Y): 2⁸⁰
- **...**

How to Represent Negative Numbers?

□Option 1: Simply employ the first bit as the sign bit.

$$(0011)_2 = 3, (1011)_2 = -3$$

➤ Issue: 0 has two representations.

□Option 2: Complement-based approach by flipping all bits.

 \triangleright e.g., one's complement: $x + y = 2^n - 1$

$$(1000)_2 = -(0111)_2 = -7$$

$$(1011)_2 = -(0100)_2 = -4$$

$$(1111)_2 = -(0000)_2 = -0$$

➤ Issue: seems no benefit; 0 still has two representations.

\Box Two's complement: $x + y = 2^n$

$$(1000)_2 = -(0111 + 1)_2 = -(1000)_2 = -8$$

$$(1111)_2 = -(0000 + 1)_2 = -1$$

Representing Negative Integers with Two's Complement

□Employ the leftmost bit as the sign bit.	Decimal	Binary
>0 for positive numbers.	-8	1000
\ 1 f _0 = 0 =time = 0 = 0	-7	1001
▶1 for negative numbers.	-6	1010
➤ Padding 0 or 1 to a fixed size, e.g., 4 bits	-5	1011
	-4	1100
□Obtain the two's complement of numbers.	-3	1101
\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-2	1110
➤Invert all the bits of the positive number, then add one.	-1	1111
➤Or sub one first, then invert all bits.	0	0000
	1	0001
	2	0010
invert add 1	3	0011
$-(0001)_2 \longrightarrow 1110 \longrightarrow 1111$	4	0100
	5	0101
	6	0110
	7	0111

Benefits of Two's Complement

□Turn all subtractions in to adds => Reuse the adders.

$$7 - 5 = 7 + (-5)$$

$$2 - 5 = 2 + (-5)$$

Why?

To Prove:
$$x + (-y) \mod 2^n = x - y \mod 2^n$$

According to the definition of two's complement:

$$-y = 2^n - y$$

Therefore,

$$x + (-y) \mod 2^n$$

$$= x + 2^n - y \mod 2^n$$

$$= x - y \mod 2^n$$

Exercise

- □What is the largest signed integer that 16 bits can represent?
- **□What is the smallest signed integer that 16 bits can represent?**

Questions

- **□What if the the number is very large?**
- **□**How to represent fractional numbers?

Representing Decimals

□Fixed-point method: Allocate a fixed number of bits for the integer part and the fractional part.

$$\triangleright$$
e.g., $(1000.0100)_2 = 2^3 + 2^{-2} = 8.25$

>Limitation: limited range and fixed precision

- □Floating-point method: shift the decimal point based on the number.
 - >If the number is large, use more bits for the integer part
 - >If the number is small, use more bits for the fractional part

Floating-point Numbers Defined in IEEE 754

- □Meaning of bits for 32-bit single-precision floating-point numbers:
 - >32 (leftmost): sign bit.
 - ▶24-31: exponent bits, to represent a wide range of values.
 - ▶1-23: mantissa bits.
- **DEvaluation:** $2^{exp-bias} * mantissa$

exponent (8 bits) mantissa (23 bits)
$$2^{7} + 2^{2} + 2^{1} - 127 \qquad 1 + 2^{-1} + 2^{-4}$$

$$= 7 \qquad = 1.5625$$

$$2^7 * 1.5625 = 200$$

Why do we subtract a bias 127?

Exercise

- **□What is the value of the following floating-point numbers**

Conversion to Floating-point Numbers

□What is the floating-point representation for 11.25?

Exercise

□Which of the following numbers can be represented by floatingpoint numbers without precision loss?

>0.1

>0.2

>0.3

>0.4

>0.5

Beside Numbers, All Data are Stored in Computers as Bits

□Text/Documents

□lmages

□Videos

□Sounds

□Code

□Neural Networks

U...

Encoding Characters in Bits (Bytes)

□ASCII (American Standard Code for Information Interchange)

- ➤ Using 8 bits (7 useful bits) to represent a character.
- >0 can be represented as 0x30 in hex or 0011 0000 in binary, or 48.
- >A can be represented as 0x41 in hex or 0100 0001 in binary, or 65.

	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Ε	F
0x00	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	HT	LF	VT	FF	CR	SO	SI
0x10	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US
0x20	SP	!	11	#	\$	%	&	1 -	()	*	+	,	-	•	/
0x30	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
0x40	@	Α	В	С	D	Ε	F	G	Н	-1	J	K	L	M	N	0
0x50	Р	Q	R	S	Т	U	V	W	Χ	Υ	Z	[\]	٨	_
0x60	`	а	b	С	d	е	f	g	h	i	j	k	-1	m	n	0
0x70	р	q	r	S	t	u	V	W	X	У	Z	{		}	~ UNI	DEL

2. Computation

Computation Unit

- **CPUs** are made with ALU (Arithmetic Logic Unit) and others.
- □The ALU is built using logic gates.
- □Logic gates are implemented with transistors.
- □Transistors are made from semiconductors, primarily silicon.

Semiconductor

- □Pure materials like silicon (Si) with limited conductivity.
- **□**Doping: Adding small amounts of impurities to change conductivity.
 - ➤ P-type: Add atoms with 3 valence electrons e.g., boron.
 - Create holes (positive charge carriers).
 - ➤ N-type: Add atoms with 5 valence electrons (e.g., phosphorus)
 - Add free electrons (negative charge carriers).

Periodic Table of Elements

Transistors

- □A transistor is an electronic switch that controls the flow of current.
- **□**Types of Transistors:
 - >PMOS (P-type MOSFET): Conducts when gate is low.
 - ➤ NMOS (N-type MOSFET): Conducts when gate is high.

PMOS

NMOS

Transistor => Logical Gate: NOT

□When a voltage is applied to a semiconductor, it can become conductive.

Α	Not A
0	1
1	0

NMOS NOT

Transistor => Logical Gate: AND

A	В	A AND B
0	0	0
0	1	0
1	0	0
1	1	1

NMOS AND

Transistor => Logical Gate: OR

A	В	A OR B
0	0	0
0	1	1
1	0	1
1	1	1

NMOS OR

Transistor => Logical Gate: XOR

Α	В	A XOR B
0	0	0
0	1	1
1	0	1
1	1	0

Compose a Half Adder with Logical Gates

□ Half adder has no carry input.

In	puts	Out	tputs
Α	В	$\mathbf{C}_{\mathrm{out}}$	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Full Adder

	Input	Out	puts	
Α	В	C _{in}	C out	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Full Adder (with carrier input)

Adder of 4 Bits

CPU and Von Neumann Model

- □Control unit: fetch instructions from memory at the address specified by the program counter.
- □ALU: perform the operation specified by the instruction, write the results to memory or registers.

Summary

- □All data are stored in computers as bits.
 - ➤Integers: Base-2 system.
 - ➤ Negative integers: Two's complement.
 - ➤ Decimals: Floating-point numbers with IEEE 754.
- □Computers are made of transistors that accept bit inputs.
 - ➤ Composing of logic gates with transistors.
 - ➤ Composing arithmetic units with logical gates.

