Ch—03 Current Electricity

Daily Practice Problem 06

Q1. The figure given below is a part of a circuit. Calculate the current through 4Ω resistance and also find the potential difference $V_A - V_D$?

Q3. In the circuit shown in figure, find the current through the branch BD.

Q2. Calculate the current through each resistance in the given circuit (see figure). Also calculate the potential difference between the points a and b.

$$E_1$$
, = 6 V,

$$E_2 = 8V$$
,

$$E_3 = 10 \text{ V},$$

$$R_1 = 5 \Omega$$
,

$$R_2 = 10 \Omega$$

$$R_3 = 4 \Omega$$

Assume that all the cells have no internal resistance.

Q4. In the circuit shown in figure, determine the voltage drop' between A and D.

Q5. Find the current in each resistor in the circuit as shown in figure.

Q6. In the network of three cells, find the potential V of their junction.

Q7. Consider the circuit shown in figure. The current i_3 is equal to

Q8. For the circuit shown with $R_1 = 1.0\Omega$, $R_2 = 2.0 \Omega$, $E_1 = 2 \text{ V}$ and $E_2 = E_3 = 4 \text{ V}$, the potential difference between the points a and b is approximately (in volt)

- **a.** 2.7
- **b.** 2.3
- **c.** 3.7
- **d.** 3.3

Q9. In the given circuit diagram, the currents $I_1 = -0.3$ A, $I_4 = 0.8$ A and $I_5 = 0.4$ A, are flowing as shown. The currents I_2 , I_3 and I_6 respectively, are

- **a.** 1.1 A, 0.4 A, 0.4 A
- **b.** 1.1 A, 0.4 A,0.4A
- **c.** 0.4 A, 1.1 A, 0.4A
- **d.** 0.4 A, 0.4 A,1.1A

Q10. When the switch S in the circuit shown is closed, then the value of current i will be

- **a.** 4A
- **b.** 3A
- **c.** 2A
- **d.** 5A

Q11. In the circuit shown below, the current in the 1Ω resistor is

- a. 1.3 A, from P to Q
- **b.** 0.13 A, from Q to P
- **c.** 0 A
- d. 0.13 A, from P to Q

. ..

ANSWERS

1. 11 V

2.
$$i_1 = \frac{24}{25} A \text{ towards left,}$$

$$i_2 = \frac{1}{55} A towards right,$$

$$i_3 = \frac{5}{11} A upwards$$

$$V_a - V_b = \frac{90}{11}V$$

3. 5 A

4. 10 V

5. $i_{2\Omega} = 3 A$, $i_{9\Omega} = 2 A$

6.
$$-\frac{44}{7}$$

7.
$$-\frac{5}{6}A$$