Data-driven Intelligent Systems

Lecture 6 Dimensionality Reduction Techniques

http://www.informatik.uni-hamburg.de/WTM/

Dimensionality Reduction Techniques

- Features Reduction
 - Correlation Analysis
 - Data Transformation
 - Normalization
 - PCA
 - Sampling

Data Reduction Strategies

Why data reduction? — A data warehouse may store terabytes ...

- Data analysis may take a very long time to run on the complete data set
- A reduced representation may produces (almost) same analytical results

Data reduction strategies

- Dimensionality reduction, e.g., remove unimportant attributes
 - Feature subset selection, feature creation
 - Wavelet-, Fourier transforms
 - Principal Components Analysis (PCA)
- Numerosity reduction (some simply call it: Data Reduction)
 - Regression, e.g. linear or log-linear models
 - Histograms, clustering, sampling
 - Data cube aggregation
- Data compression

Dimensions Reduction of Large Data Sets

Main dimensions:

columns (features), dimensionality reduction

rows (cases or samples),
 numerosity reduction
 → sampling

 values of the features for the given sample data compression

Dimensionality Reduction

Databases store a lot of attributes (variables, features), which determine the **dimensionality** of the variable- or feature space. Problems:

- Amount of stored data in ranges of terabytes
- Curse of dimensionality
 - When dimensionality increases, data becomes increasingly sparse
 - Density and distance between points becomes less meaningful, which is critical to, e.g., clustering, outlier analysis
 - The possible combinations of subspaces will grow exponentially

Dimensionality reduction

- Avoid the curse of dimensionality
- Help eliminate irrelevant features and reduce noise
- Reduce time & space required by data mining code
- Allow easier visualization of feature space and possible correlations

Dimensionality Reduction

Two standard approaches:

- Feature selection: A process that chooses an optimal subset of features according to an objective function:
 - feature ranking algorithms,
 - minimum subset algorithms.
- Feature extraction: refers to the mapping of the original high-dimensional data onto a lower-dimensional space.
 - Descriptive setting: minimizes information loss
 - Predictive setting: maximizes the class discrimination

Feature Selection – Example for Optimal Features' Subset

- Data set (whole set)
 - Five Boolean features
 - $C = F_1 \vee F_2$
 - $F_3 = \neg F_2$, $F_5 = \neg F_4$
 - Optimal subset:

$$\{F_1, F_2\}$$
 or $\{F_1, F_3\}$

 Combinatorial nature of searching for an optimal subset

Features Selection: A Univariate Method

Prerequisite: known class labels, i.e. two classes (A and B). Intuition: keep a feature only if it separates the classes well. Simplification: Use only means and variances.

• Test:
$$\frac{|\text{mean}(A) - \text{mean}(B)|}{\text{SE}(A - B)} > threshold_value$$

where standard error:
$$SE(A-B) = \sqrt{\frac{var(A)}{n_A} + \frac{var(B)}{n_B}}$$
numbers of samples

For one class: $SE = \frac{stddev}{\sqrt{n}}$ indicates how the sample mean differs from the population mean

for classes A and B

Features Selection: A Univariate Method

Comparison of *means* and *variances* – **Example**:

X	Y	С
0.3 0.2 0.6 0.5 0.7 0.4	0.7 0.9 0.6 0.5 0.7 0.9	A B A A B

threshold_value is 0.5

Are X or Y candidates for reduction?

Features Selection: A Univariate Method

Comparison of *means* and *variances* – **Example**:

X:
$$SE(X_A - X_B) = \sqrt{\frac{var(X_A)}{n_A} + \frac{var(X_B)}{n_B}} = \sqrt{\frac{0.0233}{3} + \frac{0.06333}{3}} = 0.170$$

Y:
$$SE(Y_A - Y_B) = \sqrt{\frac{\text{var}(Y_A)}{n_A} + \frac{\text{var}(Y_B)}{n_B}} = \sqrt{\frac{0.01}{3} + \frac{0.0133}{3}} = 0.0875$$

Tests:

X:
$$\frac{|\text{mean}(A) - \text{mean}(B)|}{\text{SE}(A - B)} = \frac{|0.4667 - 0.4333|}{0.170} < 0.5$$

Y:
$$\frac{|\text{mean}(A) - \text{mean}(B)|}{\text{SE}(A - B)} = \frac{|0.6 - 0.8333|}{0.0875} > 0.5$$

X is a candidate feature for reduction

because its mean values are close; the final test is below threshold value.

Methods of Feature Selection

- Univariate methods
 - Consider one variable (feature) at a time.
- Filter methods
 - Separate feature selection from classifier learning
 - Rely on general characteristics of data (information, distance, dependence, consistency)
 - Drop features based on general characteristics, e.g. no correlation with the class
 - No bias toward any learning algorithm, fast
- Wrapper methods
 - Rely on a predetermined classification algorithm
 - Using predictive accuracy as goodness measure
 - Drop features that do not help the model to predict the class
 - High accuracy, computationally expensive
- Embedded methods
 - Combine Filter and Wrapper approaches

Feature Selection may Fail!

[Guyon-Elisseeff, JMLR 2004; Springer 2006]

Dimensionality Reduction Techniques

- Features Reduction
- Correlation Analysis
 - Data Transformation
 - Normalization
 - PCA
 - Sampling

Handling Redundancy in Data Integration

- Redundant data occur often when integrating multiple databases
 - Object identification: The same attribute or object may have different names in different databases
 - Derivable data: One attribute may be a "derived" attribute in another table, e.g., annual revenue
- Redundant attributes may be possible to detect by correlation analysis

Correlation Analysis

- "A mutual relationship or connection between two or more things." (Oxford Dictionary)
- "things" can be:
 - Variables (e.g. regression ✓)
 - Features (e.g. PCA, later in this lecture)
 - Items (apriori algorithm, → later Lecture)
- Correlation ≠ Causation!
 - Positive correlation between birth rate and stork population
 - Negative correlation between number of pirates and global warming
 GLOBAL WARMING VS PIRATES

Correlation Analysis (Numeric Data)

Correlation coefficient (also called *Pearson's product moment coefficient*)

$$r_{A,B} = \frac{\sum_{i=1}^{n} (a_i - \overline{A})(b_i - \overline{B})}{n\sigma_A \sigma_B}$$

- n = number of tuples
- A and B = means or expected values of attributes A and B
- σ_A and σ_B = standard deviations of A and B
- $r_{A,B} > 0$: A and B are positively correlated
 - A's values increase as B's. Larger $r_{A,B} \rightarrow$ stronger correlation.
- $r_{A.B} = 0$: uncorrelated, not necessarily independent
- $r_{AB} < 0$: negatively correlated

Strongly negative Visually Evaluating Correlation -1.00-0.90-0.80-0.70-0.60-0.50-0.40**Scatter plots** Correlation coefficients range from r = -1 to 1, -0.30-0.20-0.100.00 0.10 0.20 0.30 i.e. it is the 0 normalized covariance 0.40 0.70 0.80 0.50 0.60 0.90 1.00 Strongly positive

Covariance (Numeric Data)

Covariance:

Cov(A, B) =
$$E((A - \bar{A})(B - \bar{B})) = \frac{\sum_{n=1}^{N} (a_n - \bar{A})(b_n - \bar{B})}{N}$$

Related to correlation coefficient: $r_{A,B} = \frac{Cov(A,B)}{\sigma_A \sigma_B}$

- *N* = number of tuples
- \overline{A} and \overline{B} = mean or expected values of A and B
- σ_A and σ_B = standard deviation of A and B.
- Positive covariance $(Cov_{A,B} > 0)$: A and B tend to be together larger or together smaller than their expected values
- Negative covariance $(Cov_{A,B} < 0)$: if A is larger than its expected value, B is likely to be smaller than its expected value.
- **No relationship**: $Cov_{A,B} = 0$ (does not necessarily imply statistical independence between variables!)

Co-Variance: an Example

It can be simplified in computation as

$$Cov(A,B) = E(A \cdot B) - \overline{A} \cdot \overline{B}$$

- Suppose two stocks A and B have the following values in one week: (2, 5), (3, 8), (5, 10), (4, 11), (6, 14).
- Question: If the stocks are affected by the same industry trends, will their prices rise or fall together?
 - E(A) = (2 + 3 + 5 + 4 + 6)/5 = 20/5 = 4
 - E(B) = (5 + 8 + 10 + 11 + 14)/5 = 48/5 = 9.6
 - Cov(A,B) = (2.5 + 3.8 + 5.10 + 4.11 + 6.14)/5 4.9.6 = 4
- Thus, A and B rise together since Cov(A, B) > 0.

Co-Variance Matrix

Let X be a set of N data vectors $\{x_n\}$

$$Cov(X) = E((X - \bar{X})(X - \bar{X})^T) = \frac{\sum_{n=1}^{N} (x_n - \bar{x})(x_n - \bar{x})^T}{N}$$

Element i,j of the covariance matrix

$$Cov_{ij}(X) = E((X_i - \bar{X}_i)(X_j - \bar{X}_j)^T) = \frac{\sum_{n=1}^{N} (x_{ni} - \bar{x}_i)(x_{nj} - \bar{x}_j)}{N}$$

computes the covariance between feature *i* and feature *j*.

- The covariance matrix is symmetric: $Cov_{ij} = Cov_{ji}$
- Diagonal element Cov_{ii} is the variance along dimension i.

Dimensionality Reduction Techniques

- Features Reduction
- Correlation Analysis
- Data Transformation
 - Normalization
 - PCA
 - Sampling

Motivation: Mapping Data to a New Space

 Example: Fourier analysis. Mapping from time to frequency domain allows detection of frequencies not observable by time-series only

- Noise detection & easy removal (suppression of certain frequencies)
- Related: wavelet transform

Data Transformation

- A function that maps the entire set of values of a given attribute to a new set of replacement values so that each old value can be identified with one of the new values
- Methods
 - Normalization: Scaled to fall within a smaller, specified range
 - min-max normalization
 - z-score normalization
 - whitening
 - normalization by decimal scaling
 - Attribute/feature construction
 - New attributes constructed from the given ones
 - E.g. PCA
 - Other methods such as smoothing or aggregation could also be seen as transformations

Dimensionality Reduction Techniques

- Features Reduction
- Correlation Analysis
- Data Transformation
 - Normalization
 - PCA
- Sampling

Normalization

- Normalization means rescaling data into a specific range or keeping data statistics into account
- Why data normalization is necessary?
 - Data attributes have different ranges and units
 - Example: a car can be described by weight, power, motor life span, fuel consumption, run time etc. → all features have different values and units
 - Even units can be different: Kilos vs. Tons? Km/h vs. mph?
 (→ check data consistency)
 - Databases have many attributes of many different objects
 - Consequence: Data Mining techniques produce wrong results or may even fail
 - E.g. Clustering, classification

Normalization (I/IV)

• Min-max normalization: to [new_min_A, new_max_A]

$$v' = \frac{v - min_A}{max_A - min_A} (new_max_A - new_min_A) + new_min_A$$

Example:

Let income range from \$12,000 to \$98,000 and we want to normalize all \$-values to a new range [0.0, 1.0].

Then a test value \$73,600 will be mapped to:

$$\frac{73,600-12,000}{98,000-12,000}(1.0-0)+0=0.716$$

Normalization (II/IV)

- Z-score normalization
 - Takes data statistics into account
 - An attribute value v is transformed into a new value v'

$$v' = \frac{v - \mu_A}{\sigma_A}$$

data

- μ: mean
- σ: standard deviation of a set A
- Example: Let the mean of an attribute set be $\mu = $54,000$ with standard deviation $\sigma = $16,000$.

Then, the value \$73,600 will be normalized to:

$$\frac{73,600 - 54,000}{16,000} = 1.225$$

Normalization (III/IV)

Whitening

- Use eigen-decomposition of the covariance matrix: Cov = U Λ U⁻¹
- Transform an attribute value v into a new value v' as:

$$v' = \Lambda^{-1} U^{T} (v - \mu)$$

- μ: mean
- Λ: variances (= eigenvalues of Cov on diagonal matrix Λ)
- U: eigenvectors of Cov (= principal components)

Normalization (IV/IV)

Normalization by decimal scaling

$$v' = \frac{v}{10^{j}}$$
 where *j* is the smallest integer such that Max(|v'|) < 1

- Simplest form of scaling of any decimal number into [-1.0;1.0]
- Move the decimal point according to the maximum value in your data
 - Example: Assume we have values between -5000 and 200. Our condition is Max(|v'|) < 1, so we compute:

$$\frac{-5000}{10000}$$
 = -0.5, where j=4 the decimal point was moved

Other Transformations of Raw Data

Data smoothing

Differences and ratios, e.g. for time series:

$$s(t+1) - s(t)$$

 $s(t+1) / s(t)$

- Composing new features
 - Example, Body Mass Index:

$$BMI = k \cdot F(Weight, Height)$$

Dimensionality Reduction Techniques

- Features Reduction
- Correlation Analysis
- Data Transformation
 - Normalization
 - PCA
- Sampling

Principal Component Analysis (PCA)

- Find a projection that captures the largest amount of variation in data
- Works for numeric data
- The original data are projected onto a much smaller space, resulting in dimensionality reduction. We find the eigenvectors of the covariance matrix, and these eigenvectors define the new space

PCA (Steps)

- Given N data vectors from D-dimensions, find m ≤ D orthogonal vectors (principal components) to represent the data
 - Subtract mean from the input data, each attribute has mean zero
 - Compute m orthonormal (unit) vectors, i.e., principal components
 - Each input data (vector) is a linear combination of the m principal component vectors
 - The principal components are sorted in order of decreasing "significance" (1st component: data has maximum variance)
 - Since the components are sorted, the size of the data can be reduced by eliminating the *insignificant components*, i.e., those with low variance (often: m << D)
 - Thus, using only the most significant principal components, it is possible to reconstruct a good approximation of the original data.

PCA Algorithm

1. Compute the *D*×*D* covariance matrix Cov

$$Cov_{ij} = \frac{1}{N-1} \cdot \sum_{n=1}^{N} (x_i^n - \bar{x}_i)^T \cdot (x_j^n - \bar{x}_j)$$
 where $\bar{x} = \frac{1}{N-1} \cdot \sum_{n=1}^{N} x^n$

2. Calculate the eigenvalues of Cov for the given data and sort them:

$$\{\lambda_1, \lambda_2, ..., \lambda_D\}$$
 where $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_D \geq 0$.

The eigenvalues are the *variances* of the data in the directions of the respective eigenvectors.

3. The *eigenvectors* e_1 , e_2 , ..., e_D correspond to respective eigenvalues $\lambda_1, \lambda_2, ..., \lambda_D$,

The eigenvectors are called the *principal axes*.

Multiply a Vector with a D×D Matrix

Symmetric matrix S

$$e.g. S = Cov$$

Eigenvector(s),

 $S \cdot e_1 = \lambda_1 \cdot e_1$

large eigenvalue λ_1

Eigenvector(s)

$$S \cdot e_2 = \lambda_2 \cdot e_2$$

small eigenvalue λ_2

Properties of the Covariance Matrix

- The covariance matrix Cov is a symmetric matrix
 - It always has eigenvectors
 - Eigenvectors are orthogonal to each other, if their eigenvalues differ
- Its eigenvalues are ≥ 0
 - Cov is positive (semi-) definite
- Eigenvalues are variances of the data in the directions of the corresponding eigenvectors

 Multiplying by Cov does not rotate any vector by more than 90°

Repeatedly Multiply with the Covariance Matrix

Repeatedly Multiply with the Covariance Matrix

Easy to see: individual dimensions/components i of \tilde{x} are multiplied by λ_i

Obtain Largest Eigenvalue and Eigenvector

Iterative method

- Choose an initial random vector x
- Repeat
 - *x* ← Cov·*x*
 - Normalize x to length 1
- Until converged. Then *normalized eigenvector* $e_1 = x$

Compute corresponding eigenvalue as the norm:

$$\lambda_1 = |Cov \cdot e_1|$$

 Other linear algebra methods, e.g. SVD, compute all eigenvectors and eigenvalues.

Dimensionality Reduction by PCA

The data can be expressed in the new coordinate system

$$x = \overline{x} + \sum_{j=1}^{m} w_j \cdot e_j$$

- w_i are the data coordinates along the eigenvector axes
- m < D: data are only approximately reconstructed

The first principal component is the axis in the direction of maximum variance.

Dimensionality Reduction by PCA

The criterion for features selection is based on the ratio R of the sum of the m largest eigenvalues (m≤D) of Cov to the trace of Cov (for example R>90%):

$$R = \frac{\sum_{i=1}^{m} \lambda_i}{\sum_{i=1}^{D} \lambda_i}$$
 sum over all explained variances

Trace of Cov

= sum over all variances

• Benefit: non-explained variance $\sum_{i=m+1}^{n}$ may be small, even if m << D.

Principle Components Example: Eigenfaces

Eigenfaces are the (first few) principle components of a face image database.

A Practical Example with Eigenfaces (1/3)

- Data set
 - 20 images (too few ...)
 - color (will be converted to grey scale)
 - controlled position and light
 - uniform background
 - size: 180 x 200 pixels: each data point is a 36000dimensional vector

A Practical Example with Eigenfaces (2/3)

- Steps (in Matlab, but similar in Python)
 - imread
 - rgb2gray
 - reshape (img -> 1D row vector)
 - mean
 - p = data mean (for every data point)
 - Cov = p^T p (covariance matrix, symmetric)
 - eig(Cov) (-> eigenvalues & eigenvectors)
 - sort
 - reshape (1D -> img) for display

mean vector of all data points

A Practical Example with Eigenfaces (3/3)

reconstruction of test image from mean plus with 1, 2, 3, ... eigenvectors

Dimensionality Reduction Techniques

- Features Reduction
- Correlation Analysis
- Data Transformation
 - Normalization
 - PCA
 - Sampling

Dimensions Reduction of Large Data Sets

Main dimensions:

Cases Reduction: Sampling

- Sampling: obtaining a small sample S to represent the whole data set N
- Key principle: Choose a representative subset of the data
 - Using a representative sample will work almost as well as using the entire data set
 - A sample is representative if it has approximately the same property (of interest) as the original set of data

Types of Sampling

Systematic sampling:

- For example 50% of a data set (every second sample)
- Simplest
- Problem: regularities in data set!

Random sampling

- There is an equal probability of selecting any particular item
- Sampling without replacement
 - Once an object is selected, it is removed from the population
- Sampling with replacement
 - A selected object is not removed from the population
- Stratified sampling

Sampling With or Without Replacement

Once an object is selected, it is removed from the population

A selected object is not removed from the population

Stratified Sampling

- Partition the data set into strata (non-overlapping)
- Draw samples from each partition proportionally to its percentage in the data – important for skewed data

Cases Reduction: Sample Size

Cases Reduction: Accuracy Parameter Estimation

 Challenging task: Infer the value of a population parameter based on a sample model.

Summary of Data Reduction

- Values reduction
 - Chi-merge
 - Binning
- Feature reduction
 - Feature selection
 - Feature extraction/transformation: PCA
 - (Transformation: Normalization)
- Numerosity reduction
 - Sampling