

THE FINITE ELEMENT METHOD (3)

EXERCISE

Milano, 30 May 2017 Luca Amerio

Exercise

DATA:

Beam Properties

Mass per unit length

$$m = 19.5 \text{ kg/m}$$

Flexural rigidity

$$EJ = 1.1 \cdot 10^5 \text{ Nm}^2$$

Axial stiffness

$$EA = 5.15 \cdot 10^8 \text{ N}$$

Lumped mass

$$m_c = 20 \text{ kg}$$

Springs

 $k_1 = 2.0 \cdot 10^6 \text{ N/m}$

 $k_2 = 3.0 \cdot 10^6 \text{ N/m}$

 $k_3 = 2.0 \cdot 10^6 \text{ N/m}$

Damper

 $C_2 = 310 \text{ Ns/m}$

Exercise

We want to:

- Define mesh for the analysis up to 200 Hz; fmax
- Calculate the first 3 natural frequencies and the related mode shapes;
- Calculate the FRFs Y_A/θ and Y_B/θ , where: θ (t) = $\theta_0 \cdot \cos(\Omega t)$

Definition of length of beam finite element

Length of beam finite element $l_{fe} = 0.5 \text{ m}$

Assembly of Mass Matrix

 $[\mathbf{M}_{\mathrm{FF}}]_{13\times13}$

 $[M_{FC}]_{13\times 5}$

	7,24	0,00	0,00	1,25	0,00	0,15	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,25	0,00	-0,15	0,00	0,00
	0,00	6,50	0,00	0,00	1,63	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,63	0,00	0,00	0,00
	0,00	0,00	0,05	-0,15	0,00	-0,02	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,15	0,00	-0,02	0,00	0,00
	1,25	0,00	-0,15	6,87	0,00	0,26	1,63	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	0,00	1,63	0,00	0,00	6,87	-0,26	0,00	1,25	0,15	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	0,15	0,00	-0,02	0,26	-0,26	0,05	0,00	-0,15	-0,02	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	0,00	0,00	0,00	1,63	0,00	0,00	6,50	0,00	0,00	1,63	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
[N/I] _	0,00	0,00	0,00	0,00	1,25	-0,15	0,00	7,24	0,00	0,00	1,25	0,15	0,00	0,00	0,00	0,00	0,00	0,00
[M] =	0,00	0,00	0,00	0,00	0,15	-0,02	0,00	0,00	0,05	0,00	-0,15	-0,02	0,00	0,00	0,00	0,00	0,00	0,00
	0,00	0,00	0,00	0,00	0,00	0,00	1,63	0,00	0,00	3,25	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,25	-0,15	0,00	3,62	0,26	0,00	0,00	0,00	0,00	0,00	0,00
	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,15	-0,02	0,00	0,26	0,02	0,00	0,00	0,00	0,00	0,00	0,00
	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	20,00	0,00	0,00	0,00	0,00	0,00
	1,25	0,00	0,15	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	3,62	0,00	-0,26	0,00	0,00
	0,00	1,63	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	3,25	0,00	0,00	0,00
	-0,15	0,00	-0,02	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-0,26	0,00	0,02	0,00	0,00
	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	0,00	0,00	0,00	0.00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0.00	0,00	0.00	0,00	0,00	0,00	0,00
_	_						_											_

 $\overline{[M_{CF}]_{5\times13}}$

 $[M_{CC}]_{5\times 5}$

Assembly of the Stiffness Matrix – Sping K1

 $[K_{FF}]_{13\times13}$

 $[K_{FC}]_{13\times 5}$

ſī																		
	22120000	-1000000	0	-10560000	0	-2640000	-1000000	1000000	0	0	0	0	0	-10560000	0	2640000	0	0
	-1000000	2061000000	0	0	-1030000000	0	1000000	-1000000	0	0	0	0	0	0	-1030000000	0	0	0
	0	0	1760000	2640000	0	440000	0	0	0	0	0	0	0	-2640000	0	440000	0	0
	-10560000	0	2640000	1042560000	0	2640000	-1030000000	0	0	0	0	0	0	0	0	0	0	0
	0	-1030000000	0	0	1040560000	-2640000	0	-10560000	-2640000	0	0	0	0	0	0	0	0	0
[K] =	-2640000	0	440000	2640000	-2640000	1760000	0	2640000	440000	0	0	0	0	0	0	0	0	0
	-1000000	1000000	0	-1030000000	0	0	2061000000	-1000000	0	-1030000000	0	0	0	0	0	0	0	0
	1000000	-1000000	0	0	-10560000	2640000	-1000000	22120000	0	0	-10560000	-2640000	0	0	0	0	0	0
	0	0	0	0	-2640000	440000	0	0	1760000	0	2640000	440000	0	0	0	0	0	0
	0	0	0	0	0	0	-1030000000	0	0	1030000000	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	-10560000	2640000	0	13560000	2640000	-3000000	0	0	0	0	0
	0	0	0	0	0	0	0	-2640000	440000	0	2640000	880000	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	-3000000	0	3000000	0	0	0	0	0
	-10560000	0	-2640000	0	0	0	0	0	0	0	0	0	0	10560000	0	-2640000	0	0
	0	-1030000000	0	0	0	0	0	0	0	0	0	0	0	0	1030000000	0	0	0
	2640000	0	440000	0	0	0	0	0	0	0	0	0	0	-2640000	0	880000	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

 $[K_{CF}]_{5\times13}$

 $[K_{CC}]_{5\times 5}$

 \bigcirc Contribution due to k_1 spring

Internal contrains

Like k2 and k3

How do I handle an internal spring?

The potential energy of the spring is:

$$V = \frac{1}{2}k(u_5 - u_8)^2$$

$$= \frac{1}{2}k(u_5^2) - u_5u_8 - u_8u_5 + u_8^2$$
2 positive contributions

Internal contrains

How do I handle an internal spring?

Assembly of the Stiffness Matrix – Sping K2

 $[K_{FF}]_{13\times13}$ $[K_{FC}]_{13\times5}$

٢																		
	22120000	-1000000	0	-10560000	0	-2640000	-1000000	1000000	0	0	0	0	0	-10560000	0	2640000	0	0
[K] =	-1000000	2061000000	0	0	-1030000000	0	1000000	-1000000	0	0	0	0	0	0	-1030000000	0	0	0
	0	0	1760000	2640000	0	440000	0	0	0	0	0	0	0	-2640000	0	440000	0	0
	-10560000	0	2640000	1042560000	0	2640000	-1030000000	0	0	0	0	0	0	0	0	0	0	0
	0	-1030000000	0	0	1040560000	-2640000	0	-10560000	-2640000	0	0	0	0	0	0	0	0	0
	-2640000	0	440000	2640000	-2640000	1760000	0	2640000	440000	0	0	0	0	0	0	0	0	0
	-1000000	1000000	0	-1030000000	0	0	2061000000	-1000000	0	-1030000000	0	0	0	0	0	0	0	0
	1000000	-1000000	0	0	-10560000	2640000	-1000000	22120000	0	0	-10560000	-2640000	0	0	0	0	0	0
	0	0	0	0	-2640000	440000	0	0	1760000	0	2640000	440000	0	0	0	0	0	0
	0	0	0	0	0	0	-1030000000	0	0	1030000000	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	-10560000	2640000	0	13560000	2640000	-3000000	0	0	0	0	0
	0	0	0	0	0	0	0	-2640000	440000	0	2640000	880000	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	-3000000	0	3000000	0	0	0	0	0
	-10560000	0	-2640000	0	0	0	0	0	0	0	0	0	0	10560000	0	-2640000	0	0
	0	-1030000000	0	0	0	0	0	0	0	0	0	0	0	0	1030000000	0	0	0
	2640000	0	440000	0	0	0	0	0	0	0	0	0	0	-2640000	0	880000	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Contribution due to the spring "k₃". We can consider the spring element as a 6 **DoFs element** (we don't have any dof corresponding to the direction ok k3)

$$\underline{\mathbf{X}}_{k}^{L} = egin{cases} u_1 \\ v_1 \\ heta_1 \\ u_2 \\ v_2 \\ heta_2 \end{pmatrix}$$

The stiffness matrix is:

A sprin element is a beam element with 0 stiffness on any direction exept for the axial one.

We can project in global coordinates using the same way we use for the FE elements:

$$\begin{bmatrix} \Lambda_{k_3} \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} \lambda_{k_3} \end{bmatrix} & \begin{bmatrix} 0 \end{bmatrix} \\ \begin{bmatrix} 0 \end{bmatrix} & \begin{bmatrix} \lambda_{k_3} \end{bmatrix} \end{bmatrix}$$

$$\begin{bmatrix} \Lambda_{k_3} \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} \lambda_{k_3} \end{bmatrix} & \begin{bmatrix} 0 \end{bmatrix} \\ \begin{bmatrix} 0 \end{bmatrix} & \begin{bmatrix} \lambda_{k_3} \end{bmatrix} \end{bmatrix} \qquad \text{and} \qquad \begin{bmatrix} \lambda_{k_3} \end{bmatrix} = \begin{bmatrix} \cos \gamma & \sin \gamma & 0 \\ -\sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$K_G = \left[\Lambda_{k_3}\right]^T [K_L] \left[\Lambda_{k_3}\right]$$

Assembly of the Stiffness Matrix – Sping K3

 $[K_{FF}]_{13\times13}$ $[K_{FC}]_{13\times5}$

٦																		
	22120000	-1000000	0	-10560000	0	-2640000	-1000000	1000000	0	0	0	0	0	-10560000	0	2640000	0	0
	-1000000	2061000000	0	0	-1030000000	0	1000000	-1000000	0	0	0	0	0	0	-1030000000	0	0	0
	0	0	1760000	2640000	0	440000	0	0	0	0	0	0	0	-2640000	0	440000	0	0
	-10560000	0	2640000	1042560000	0	2640000	-1030000000	0	0	0	0	0	0	0	0	0	0	0
	0	-1030000000	0	0	1040560000	-2640000	0	-10560000	-2640000	0	0	0	0	0	0	0	0	0
	-2640000	0	440000	2640000	-2640000	1760000	0	2640000	440000	0	0	0	0	0	0	0	0	0
	-1000000	1000000	0	-1030000000	0	0	2061000000	-1000000	0	-1030000000	0	0	0	0	0	0	0	0
	1000000	-1000000	0	0	-10560000	2640000	-1000000	22120000	0	0	-10560000	-2640000	0	0	0	0	0	0
K] =	0	0	0	0	-2640000	440000	0	0	1760000	0	2640000	440000	0	0	0	0	0	0
	0	0	0	0	0	0	-1030000000	0	0	1030000000	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	-10560000	2640000	0	13560000	2640000	-3000000	0	0	0	0	0
	0	0	0	0	0	0	0	-2640000	440000	0	2640000	880000	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	-3000000	0	3000000	0	0	0	0	0
	-10560000	0	-2640000	0	0	0	0	0	0	0	0	0	0	10560000	0	-2640000	0	0
	0	-1030000000	0	0	0	0	0	0	0	0	0	0	0	0	1030000000	0	0	0
	2640000	0	440000	0	0	0	0	0	0	0	0	0	0	-2640000	0	880000	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

- \bigcirc Contribution due to k_1 spring
- \bigcirc Contribution due to k_2 spring
- Contribution due to k₃ spring

Natural Frequencies and Mode Shapes

Structural Damping Matrix

As an example, from experimental analysis $h_1 = 0.01$, $h_2 = 0.015$ and $h_3 = 0.018$. We want to estimate α and β parameters by using the method of least square.

$$h_i = \frac{c_i}{2m_i\omega_{n,i}} = \frac{\alpha}{2\omega_{n,i}} + \frac{\beta\omega_{n,i}}{2}$$

$$\alpha = 1.55 \text{ s}^{-1}$$
 $\beta = 5.28 \cdot 10^{-5} \text{ s}$

$$[C_{\rm s}] = \alpha[{\rm M}] + \beta[{\rm K}]$$

Overcontrained system of equations -> not exact solution -> we can compute alpha and beta to have a damping as close as possible to h1, h2 and h3 on the

Assembly of Damping Matrix

$[C_{FF}]_{13\times13}$	$[C_{FC}]_{13\times 5}$
-------------------------	-------------------------

	1180	-53	0	-556	0	-139	-53	53	0	0	0	0	0	-556	0	139	0	0
	-53	108897	0	0	-54415	0	53	-53	0	0	0	0	0	0	-54415	0	0	0
	0	0	93	139	0	23	0	0	0	0	0	0	0	-139	0	23	0	0
	-556	0	139	55091	0	140	-54415	0	0	0	0	0	0	0	0	0	0	0
	0	-54415	0	0	54986	-140	0	-556	-139	0	0	0	0	0	0	0	0	0
	-139	0	23	140	-140	93	0	139	23	0	0	0	0	0	0	0	0	0
	-53	53	0	-54415	0	0	108897	-53	0	-54415	0	0	0	0	0	0	0	0
	53	-53	0	0	-556	139	-53	1180	0	0	-556	-139	0	0	0	0	0	0
	0	0	0	0	-139	23	0	0	93	0	139	23	0	0	0	0	0	0
	0	0	0	0	0	0	-54415	0	0	54422	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	-556	139	0	1032	140	-468	0	0	0	0	0
	0	0	0	0	0	0	0	-139	23	0	140	47	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	-468	0	499	0	0	0	0	0
	-556	0	-139	0	0	0	0	0	0	0	0	0	0	564	0	-140	0	0
l	0	-54415	0	0	0	0	0	0	0	0	0	0	0	0	54422	0	0	0
	139	0	23	0	0	0	0	0	0	0	0	0	0	-140	0	47	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

 $[C_{CF}]_{5\times13}$

 $[C_{CC}]_{5\times 5}$

Reaction force

Remember the equation of motion for the system

$$\begin{bmatrix} M_{FF} & M_{FC} \\ M_{CF} & M_{CC} \end{bmatrix} \begin{Bmatrix} \dot{x_F} \\ \dot{x_C} \end{Bmatrix} + \begin{bmatrix} C_{FF} & C_{FC} \\ C_{CF} & C_{CC} \end{bmatrix} \begin{Bmatrix} \dot{x_F} \\ \dot{x_C} \end{Bmatrix} + \begin{bmatrix} K_{FF} & K_{FC} \\ K_{CF} & K_{CC} \end{bmatrix} \begin{Bmatrix} x_F \\ \dot{x_C} \end{Bmatrix} = \begin{Bmatrix} F \\ R \end{Bmatrix}$$

In this problem $x_C = \begin{bmatrix} 0 & \dots & \theta_0 e^{i\Omega t} & \dots & 0 \end{bmatrix}$ therefore known unknown

$$M_{FF}\dot{x_F} + M_{FC}\dot{x_C} + C_{FF}\dot{x_F} + C_{FC}\dot{x_C} + K_{FF}x_F + K_{FC}x_C = F$$

Reaction force

Assuming

$$x_F = x_0 e^{i\Omega t}$$

And

$$x_C = x_{C0} e^{i\Omega t}$$

In this problem F = 0 therefore

$$(-\Omega^{2}M_{FF}+i\Omega C_{FF}\dot{x_{F}}+K_{FF})x_{F}e^{i\Omega t} = (-\Omega^{2}M_{FC}+i\Omega C_{FC}\dot{x_{F}}+K_{FC})x_{C0}e^{i\Omega t} + F$$

$$x_{F} = (-\Omega^{2}M_{FF}+i\Omega C_{FF}) + K_{FF})^{-1}(-\Omega^{2}M_{FC}+i\Omega C_{FC}) + K_{FC})x_{C}$$

Frequency Response Function

FRF Y_A/θ

Frequency Response Function

FRF Y_B/θ

Distributed load

We want to compute the FRF of the displacement in A due to a distributed load on the horizontal element.

Ho do we implement the distributed load in the FE code?

Distributed load

Flexibility coefficients – engineering manual

The distributed load on a beam can be repleaced by the equivalent forces at the nodes. These can be computed solving the constrains reaction of a fixed-fixed beam subject to the same load.

Frequency Response Function

FRF Y_A/p

