Cloud-Native Renewable Energy Forecst via Automated Machine Learning and Cloud Pipelines

Team Number: 06

Team Members: A. Revanth, B. Darshan Reddy, M.V.Sai Nitheesh Reddy, P. Mouli

> Amrita School of Computing Amrita Vishwa Vidyapeetham, Amritapuri

> > June 20, 2025

Area of Project

- Renewable Energy Forecasting (Solar Wind)
- Machine Learning for Weather and Energy Prediction
- Cloud-Based Environmental Monitoring Systems
- Real-Time Data Visualization and Analytics
- Smart Cities and Sustainable Infrastructure
- Contributing to United Nations SDG 7: Affordable and Clean Energy

Motivation

- Growing global demand for clean and sustainable energy
- Need for accurate forecasting to optimize solar and wind energy utilization
- Real-time environmental monitoring is essential for smart city development
- Lack of integrated systems combining prediction, visualization, and cloud deployment
- Supports United Nations SDG 7: Ensure access to affordable, reliable, sustainable, and modern energy for all

Problem Statement

- Develop an end-to-end system for predicting and visualizing solar irradiation and wind parameters.
- Integrate machine learning models and real-time weather APIs to enable accurate, location-based predictions.
- Build interactive dashboards to visualize trends, patterns, and forecasts for decision support.
- Ensure the system is cloud-deployed, scalable, and accessible via a user-friendly web interface.
- Address the need for clean energy forecasting to support efficient renewable energy utilization and planning.

Solution Approach

Data Collection:

- Historical weather data from CSV files stored on Google Cloud Storage
- Real-time weather inputs using Tomorrow.io API (temperature, humidity, wind, etc.)

• Model Development:

- Solar irradiation prediction using AutoML Regression model in Vertex AI
- Feature engineering with parameters like temperature, dew point gap, wind speed, etc.
- Wind forecasting handled through real-time data analytics and trend analysis

Solution Approach

Backend System:

- Built using Node.js and Express.js
- Handles prediction requests, API integration, and serves data to the frontend

• Frontend Interface:

- HTML + Tailwind CSS for UI
- Chart.js for dynamic visualizations (time series, bar, pie, wind rose, etc.)
- Embedded Looker Studio dashboards for historical trend analysis

Deployment:

- Deployed on Google Cloud Run for a serverless, scalable architecture
- API endpoints for ML predictions and real-time weather insights

Model Architecture

RENEWAUBLE ENERGY PREDICTION SYSTEM

Explanation

1. Data Module:

- Historical weather data retrieved from NASA POWER API.
- Real-time weather data fetched using Tomorrow.io via backend integration.

• 2. Machine Learning Module:

- Trained a solar irradiation prediction model using Vertex Al AutoML.
- Features include temperature, humidity, wind speed, dew-point gap, and more.
- Wind metrics analyzed in real-time for forecasting trends (direction, speed, gust).

3. Backend Module:

- Built using Node.js + Express.
- Handles:
 - API calls to NASA and Tomorrow.io
 - Requests to Vertex AI for solar predictions
 - Data serving to the frontend

Explanation

4. Frontend Visualization:

- Built using HTML, Tailwind CSS, and Chart.js.
- Visualizes:
 - Time-series of solar wind parameters
 - Wind rose, bar, and pie charts
- Embedded Looker Studio for historical data analytics.
- Live app: https://temp-589768796668.us-central1.run.app

• 5. Deployment Status:

- Entire system deployed on Google Cloud Run.
- Fully functional:
 - Real-time API data
 - ML predictions
 - Interactive UI and dashboards

Results & Dashboard Overview

Solar Irradiation Prediction:

- Displays predicted solar irradiation in kWh/m².
- Shows a confidence interval to indicate model certainty.

Wind Prediction:

- Wind speed prediction in meters per second (m/s).
- Wind direction shown in degrees with compass orientation.
- Gust speed and turbulence level provided.
- Estimated wind power output calculated in kilowatts (kW).

• Embedded Analytics Dashboard:

- Integrated Looker Studio dashboard for historical data insights.
- Charts include:
 - Time-series of solar and wind parameters.
 - Bar and pie charts for city-based and monthly trends.
 - Wind rose for direction analysis.
 - Scatter plots for feature correlation.

• Web Application:

 Fully deployed on Google Cloud Run with live predictions and interactive visualizations.

Technologies & Services Used

Data Sources:

- NASA POWER API (historical weather data)
- Tomorrow.io API (real-time weather conditions)

• Machine Learning:

Google Vertex Al AutoML (solar irradiation prediction)

Cloud Services:

- Google Cloud Run (web app hosting)
- Google Cloud Storage (dataset storage)
- Google BigQuery (data querying & aggregation)

Visualization Tools:

- Google Looker Studio (interactive dashboards)
- Chart.js (real-time graphs in frontend)

Web Application:

- Frontend: HTML, Tailwind CSS, JavaScript
- Backend: Node.js, Express.js, Axios

Deployment:

Deployed on Google Cloud Run with integrated APIs and dashboards

Comparison with Forecasting Methods

Traditional vs. ML Pipelines vs. Our Model

Aspect	Traditional	Manual ML	Our Model
Prediction Time	Slow	Moderate	Real-time
Expertise Needed	High	Moderate	Low
Scalability	Low	Medium	High
Automation	None	Partial	Fully Automated
Real-time Data	No	Rarely	Yes
Deployment	Offline Tools	Local APIs	Cloud Dashboard

Key Advantage: Our model combines accuracy, automation, and real-time capabilities with cloud scalability.

Our Novel and Efficient Cloud-Native Approach

Core Advantages

- Achieved 93% prediction accuracy (R²) using Vertex AI AutoML.
- Fully automated end-to-end ML pipeline: from data ingestion to live deployment.
- Real-time prediction latency: results generated in just a few seconds.

Key Differentiators & Novelty

- Seamless integration of ML, real-time APIs, cloud infrastructure, and visualization.
- Fully cloud-native, real-time, and accessible via a responsive web interface.
- Directly contributes to **UN SDG 7** promoting affordable and clean energy through smart digital forecasting.

Conclusion

- Developed an end-to-end system that predicts solar irradiation and analyzes wind parameters using machine learning and real-time data.
- Integrated multiple cloud-based services including Vertex AI,
 BigQuery, and Looker Studio for intelligent prediction, data handling, and visualization.
- Enabled real-time insights with a fully deployed web application on Google Cloud Run, accessible from any device.
- Dashboard provides dynamic charts and analytics to assist in energy planning, weather monitoring, and environmental decision-making.
- Contributes to UN SDG 7 (Affordable and Clean Energy) by enabling data-driven renewable energy solutions.
- Future enhancements can include:
 - Long-term forecasting
 - Integration with IoT-based weather stations
 - Turbine efficiency analytics

References I

- [1] Google Cloud Platform, "Vertex Al Documentation." [Online]. Available: https://cloud.google.com/vertex-ai
- [2] Tomorrow.io, "Weather API Documentation." [Online]. Available: https://docs.tomorrow.io/
- [3] Chart.js, "Chart.js Documentation." [Online]. Available: https://www.chartjs.org/docs/
- [4] Google BigQuery, "BigQuery Documentation." [Online]. Available: https://cloud.google.com/bigquery
- [5] Google Looker Studio, "Looker Studio Help." [Online]. Available: https://support.google.com/looker-studio/

Thank You!

Questions or Feedback?

Team 06

A. Revanth B. Darshan Reddy M.V. Sai Nitheesh Reddy P. Mouli Amrita School of Computing, Amritapuri

