

No good party starts without introductions...

Wade Fagen-Ulmschneider (waf)
Teaching Associate Professor of Computer Science
Grainger College of Engineering

Nerding out in life...

Wade Fagen-Ulmschneider (waf)

Teaching Associate Professor of Computer Science Grainger College of Engineering

Courses:

MOOC: Accel. CS Fund.

CS 241

CS 105

CS 305

CS 225

CS 240

Morgan Stanley

STAT/CS/IS 107

Teaching Assistants

Eunice Zhou

Patrick Crain

Course Assistants

Bora Shim

Jeremy Shaffar

Jackson Kennel

Kevin Chen

You:

C++ Programming (CS 225)

C++ Programming (CS 225)

Data Structures (CS 225)

C++ Programming (CS 225)

Data Structures (CS 225)

Algorithm Analysis (CS 173)

C++ Programming (CS 225)

Data Structures (CS 225)

Algorithm Analysis (CS 173)

Programming Skills (CS 125/126/225)

Foundational Computer Architecture

Foundational Computer Architecture

Operating System Design

Foundational Computer Architecture

Operating System Design

Multiprogramming and Resource Sharing

Foundational Computer Architecture

Operating System Design

Multiprogramming and Resource Sharing

Cloud-based Infrastructure

Foundational Computer Architecture

Operating System Design

Multiprogramming and Resource Sharing

Cloud-based Infrastructure

Building Cloud-scale Applications

★ Lecture: Tuesday/Thursdays

★ Lecture: Tuesday/Thursdays

CS 240 (This Thursday, Lecture #2!)

★ Lecture: Tuesday/Thursdays

★ Weekly MPs and PL Homework

★ Lecture: Tuesday/Thursdays

★ Weekly MPs and PL Homework

★ Two Exams in the CBTF

★ Lecture: Tuesday/Thursdays

- **★** Weekly MPs and PL Homework
- **★** Two Exams in the CBTF

★ Final Course Project

Everything Else:

https://courses.grainger.illinois.edu/cs240/

#1: Data

#2: Central Processing Unit

#3: Memory and Storage

#4: Peripherals

#5: Operating System

#6: Processes

System Level Abstractions

System Level Abstractions

#1: Virtual Machine

System Level Abstractions

#2: Containers

System Level Abstractions

#3: Nodes / Servers in the "Cloud"

Representing Data

All data within a computer is:

$$1_2 = 10$$
 $10_2 = 10$
 $11_2 = 10$
 $100_2 = 10$

10₂ = 11₂ = 100₂ =

$$101 \ 1000_2 = 10$$

1 0 1 1 0 0 0₂
64 32 16 8 4 2 1₁₀

× 64 32 16 8 4 2 1₁₀

× 64 32 16

```
64 32 16 8 4 2 1<sub>10</sub>
64 + 0 + 16 + 8 + 0 + 0 + 0_{10}
```


1 0 1 1 0 0
$$\theta_2$$
64 32 16 8 4 2 θ_{10}
64 + 0 + 16 + 8 + 0 + 0 + θ_{10}

I

$$7_{10} = 2 = 0b$$

$$18_{10} = _{2} = 0b$$


```
01/binary.c
 1 #include <stdio.h>
 2
   int main() {
     int v1 = 0b10010;
     int v2 = 0b11001;
     int v3 = v1 + v2;
     printf("%d\n", v3);
 8
 9
     return 0;
10
```


Binary Digits

Number of Students at Illinois:

0b 1100 1100 0110 1011

Hexadecimal

Digits:

 $16^5 16^4 16^3 16^2 16^1 16^9$

0x c 0 f f e e $16^{5} 16^{4} 16^{3} 16^{2} 16^{1} 16^{0}$ $12\times16^{5} 0\times16^{4} 15\times16^{3} 15\times16^{2} 14\times16^{1} 14\times16^{0}$

1048576 65536 4096 256 16 12×16^5 0×16^4 15×16^3 15×16^2 14×16^1 14×16^9

0x c 0 f f e e = $12,648,430_{10}$

$$11_{10} = 0x$$
 $34_{10} = 0x$
 $87_{10} = 0x$
 $255_{10} = 0x$

1 = 0x1	9 = 0x9
$2 = 0x^2$	10 = 0xa
3 = 0x3	11 = 0xb
4 = 0x4	12 = 0xc
5 = 0x5	13 = 0xd
6 = 0x6	14 = 0xe
7 = 0x7	15 = 0xf
8 = 0x8	

Students at Illinois:

0b 1100 1100 0110 1011

People Following Tay on Twitter:

101 0100 1001 0010 1010 0110 0000


```
01/hex.c
 #include <stdio.h>
2
  int main() {
    int h1 = 0xc0ffee;
    int h2 = 0xf00d;
    printf("x\n", h1 + h2);
8
    return 0;
9
```


PrairieLearn #01

