Class core values

- 1. Be **respect**ful to yourself and others
- 2. Be confident and believe in yourself
- 3. Always do your **best**
- 4. Be cooperative
- 5. Be creative
- 6. Have fun
- 7. Be **patient** with yourself while you learn
- 8. Don't be shy to ask "stupid" questions
- 9. Be inclusive and accepting

Discriminative and generative models

VAEs and explicit density

Taxonomy of generative models

What you can do with GANs

https://thispersondoesnotexist.com/image

What you can do with GANs

https://thispersondoesnotexist.com/image

Generative adversarial networks

Idea behind GANs

Evolutionary arms race

Idea behind GANs

Evolutionary arms race

Generator vs discriminator

Generator

Random noise as input

Discriminator

Real vs fake

Real vs fake

 χ

 $D_{\theta d}(x)$ Real \checkmark Fake X

 $G_{\Theta g}(z)$

$$D_{\theta d}(G_{\theta g}(z))$$
 Real \times Fake \checkmark

Real vs fake

 $\boldsymbol{\chi}$

 $D_{\theta d}(x)$ Real \checkmark Fake X

$$G_{\theta g}(z)$$
 Real \checkmark Fake X

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right] \\ \text{Discriminator output} \\ \text{for real data x} \\ \text{Discriminator output for generated fake data G(z)}$$

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right] \\ \text{Discriminator output} \\ \text{for real data x} \\ \text{Discriminator output for generated fake data G(z)}$$

Alternate between:

Gradient ascent on discriminator

$$\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right] \\ \text{Discriminator output} \\ \text{for real data x} \\ \text{Discriminator output for generated fake data G(z)}$$

Generator

is low

performance

Alternate between:

Gradient ascent on discriminator

$$\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Gradient descent on generator

$$\min_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$$

Minimize likelihood of discriminator being right

Generator performance is high

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right] \\ \text{Discriminator output} \\ \text{for real data x} \\ \text{Discriminator output for generated fake data G(z)}$$

Alternate between:

Gradient ascent on discriminator

$$\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]^{\frac{3}{2}}$$

2. Instead: Gradient ascent on generator, different

objective

$$\max_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(D_{\theta_d}(G_{\theta_g}(z)))$$

Maximize likelihood of discriminator being wrong

Difficulties with training GANs

Challenging to train two separate networks. Can be unstable.

Once trained, produced great outputs

Latent space tricks: Interpolation

Latent space tricks: Interpolation

Comparison with VAEs

VAE

- Optimize variational lower bound of likelihood
- Training generally straightforward
- Results are generally not as good*

• GAN

- Game-theoretic approach
- Training is difficult
- Results are generally better*

*for image generation

GAN Zoo

- 3D-ED-GAN Shape Inpainting using 3D Generative Adversarial Network and Recurrent Convolutional Networks
- 3D-GAN Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling (github)
- · 3D-IWGAN Improved Adversarial Systems for 3D Object Generation and Reconstruction (github)
- 3D-PhysNet 3D-PhysNet: Learning the Intuitive Physics of Non-Rigid Object Deformations
- 3D-RecGAN 3D Object Reconstruction from a Single Depth View with Adversarial Learning (github)
- ABC-GAN ABC-GAN: Adaptive Blur and Control for improved training stability of Generative Adversarial Networks (github)
- · ABC-GAN GANs for LIFE: Generative Adversarial Networks for Likelihood Free Inference
- AC-GAN Conditional Image Synthesis With Auxiliary Classifier GANs
- acGAN Face Aging With Conditional Generative Adversarial Networks
- ACGAN Coverless Information Hiding Based on Generative adversarial networks
- acGAN On-line Adaptative Curriculum Learning for GANs
- ACtuAL ACtuAL: Actor-Critic Under Adversarial Learning
- AdaGAN AdaGAN: Boosting Generative Models
- · Adaptive GAN Customizing an Adversarial Example Generator with Class-Conditional GANs
- · AdvEntuRe AdvEntuRe: Adversarial Training for Textual Entailment with Knowledge-Guided Examples
- AdvGAN Generating adversarial examples with adversarial networks
- AE-GAN AE-GAN: adversarial eliminating with GAN
- AE-OT Latent Space Optimal Transport for Generative Models
- AEGAN Learning Inverse Mapping by Autoencoder based Generative Adversarial Nets
- AF-DCGAN AF-DCGAN: Amplitude Feature Deep Convolutional GAN for Fingerprint Construction in Indoor Localization System
- AffGAN Amortised MAP Inference for Image Super-resolution
- · AIM Generating Informative and Diverse Conversational Responses via Adversarial Information Maximization
- AL-CGAN Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts
- ALI Adversarially Learned Inference (github)
- AlignGAN AlignGAN: Learning to Align Cross-Domain Images with Conditional Generative Adversarial Networks
- AlphaGAN AlphaGAN: Generative adversarial networks for natural image matting

VAE-GAN

Figure 1. Overview of our network. We combine a VAE with a GAN by collapsing the decoder and the generator into one.

Generating proteins using GANs

Generating proteins using GANs

