

Discrete Structures

Lecture 11: Sets and Set Operations

based on slides by Jan Stelovsky based on slides by Dr. Baek and Dr. Still Originals by Dr. M. P. Frank and Dr. J.L. Gross Provided by McGraw-Hill

Muhammad Adeel Zahid

Department of Computer Science Government College University Faisalabad

Set Identities

- Identity: $A \cup \emptyset = A = A \cap U$
- Domination: $A \cup U = U$, $A \cap \emptyset = \emptyset$
- Idempotent: $A \cup A = A$, $A \cap A = A$
- Double complement: $(A^c)^c = A$
- Commutative: $A \cup B = B \cup A, A \cap B = B \cap A$
- Associative:
 - $A \cup (B \cup C) = (A \cup B) \cup C$,
 - $A \cap (B \cap C) = (A \cap B) \cap C$
- Distributive:
 - $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
 - $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- Absorption: $A \cup (A \cap B) = A, A \cap (A \cup B) = A$
- Complement: $A \cup A^c = U, A \cap A^c = \emptyset$

De Morgan's Law for Sets

- Exactly analogous to (and provable from) DeMorgan's Law for propositions
 - $(A \cup B)^c = A^c \cap B^c$
 - $(A \cap B)^c = A^c \cup B^c$

Proving Set Identities

- To prove statements about sets, of the form E1 = E2 (where the Es are set expressions), here are three useful techniques:
 - 1. Prove $E1 \subseteq E2$ and $E2 \subseteq E1$ separately.
 - 2. Use set builder notation & logical equivalences.
 - 3. Use a membership table.
 - 4. Use a Venn diagrams

Method 1: Mutual Subsets

- Example: Show $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- Part 1: Show $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$
- Assume $x \in A \cap (B \cup C)$, & show $x \in (A \cap B) \cup (A \cap C)$
- We know that $x \in A$, and either $x \in B$ or $x \in C$
 - Case 1: $x \in A \land x \in B$. Then $x \in A \cap B$,
 - so $x \in (A \cap B) \cup (A \cap C)$
 - Case 2: $x \in A \land x \in C$. Then $x \in A \cap C$,
 - so $x \in (A \cap B) \cup (A \cap C)$
- Therefore, $x \in (A \cap B) \cup (A \cap C)$
- Therefore, $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$

Method 1: Mutual Subsets

- Part 2: Show $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$
- Let's assume that $x \in (A \cap B) \cup (A \cap C)$
- $x \in (A \cap B)$ or $x \in (A \cap C)$ By definition of union
- $(x \in A \text{ and } x \in B)$ or $(x \in A \text{ and } x \in C)$ By def of intersection
- We can see that, $x \in A$ and $(x \in B \text{ or } x \in C)$
- And $x \in A$ and $x \in (B \cup C)$ By def of union
- Finally, $x \in A \cap (B \cup C)$ By def of intersection
- Consequently, $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$ is proved

Method 2: Set Builder Notation and Logical Equivalence

• Show that
$$(A \cap B)^c = A^c \cup B^c$$

•
$$(A \cap B)^c = \{x | x \notin A \cap B\}$$

$$\bullet = \{x \mid \neg (x \in (A \cap B))\}\$$

$$\bullet = \{x \mid \neg(x \in A \land x \in B)\}\$$

• =
$$\{x \mid \neg x \in A \lor \neg x \in B\}$$

$$\bullet = \{x \mid x \notin A \lor x \notin B\}$$

• =
$$\{x \mid x \in A^c \lor x \in B^c\}$$

$$\bullet = \{x | x \in A^c \cup B^c\}$$

$$\bullet = A^c \cup B^c$$

definition of complement

definition of does not belong

definition of intersection

De Morgan's Law (logic)

Definition of does not belong

Definition of Complement

Definition of Union

By set builder Notation

Method 3: Membership Tables

- Analog to truth tables in propositional logic
- Columns for different set expressions
- Rows for all combinations of memberships in constituent sets
- Use "1" to indicate membership in the derived set, "0" for non-membership.
- Prove equivalence with identical columns

Membership Table Example

• Prove that $(A \cup B) - B = A - B$

A	В	$A \cup B$	$(A \cup B) - B$	A - B
1	1	1	0	0
1	0	1	1	1
0	1	1	0	0
0	0	0	0	0

Membership Table Exercise

• Prove $(A \cup B) - C = (A - C) \cup (B - C)$

A	В	C	$A \cup B$	$(A \cup B) - C$	A-C	B-C	$(A-C)\cup(B-C)$
1	1	1	1	0	0	0	0
1	1	0	1	1	1	1	1
1	0	1	1	0	0	0	0
1	0	0	1	1	1	0	1
0	1	1	1	0	0	0	0
0	1	0	1	1	0	1	1
0	0	1	0	0	0	0	0
0	0	0	0	0	0	0	0

Method 4: Venn Diagrams

• Prove $(A \cup B) - C = (A - C) \cup (B - C)$

Generalized Unions and Intersections

- Since union & intersection are
 - Commutative and
 - Associative,
- we can extend them from operating on pairs of sets A and B to operating on sequences of sets A_1, \ldots, A_n , or even on sets of sets, $X = \{A \mid P(A)\}$

Generalized Union

- Binary union operator: $A \cup B$
- n-ary union: $A_1 \cup A_2 \cup \cdots \cup A_n = ((\dots((A_1 \cup A_2) \cup \cdots) \cup A_n))$
 - (grouping & order is irrelevant)
- "Big U" notation: $\bigcup_{i=1}^{n} A_i$
- More generally, union of the sets A_i for $i \in I$: $\bigcup_{i \in I} A_i$
- For infinite number of sets: $\bigcup_{i=1}^{\infty} A_i$

Generalized Union Example

- Let $A_i = \{i, i + 1, i + 2, ...\}$. Then,
- $\bigcup_{i=1}^n A_i = A_1 \cup A_2 \cup A_3 \cup \cdots A_n$
- = $\{1,2,3...\} \cup \{2,3,4...\} \cup \cdots \cup \{n,n+1,n+2,...\}$
- $\bullet = \{1,2,3,...\} = Z^+$
- Let $A_i = \{1,2,3...i\}$ Then
- $\bigcup_{i=1}^{\infty} A_i = A_1 \cup A_2 \cup A_3 \cup \cdots$
- = $\{1\} \cup \{1,2\} \cup \{1,2,3\} \cup \cdots$
- $\bullet = \{1,2,3...\} = Z^+$

Generalized Intersection

- Binary intersection operator: $A \cap B$
- n-ary intersection: $A_1 \cap A_2 \cap \cdots \cap A_n = ((...(A_1 \cap A_2) \cap \cdots) \cap A_n)$
 - (grouping & order is irrelevant)
- "Big arch" notation: $\bigcap_{i=1}^{n} A_i$
- More generally, intersection of the sets A_i for $i \in I: \bigcap_{i \in I} A_i$
- For infinite number of sets: $\bigcap_{i=1}^{\infty} A_i$

Generalized Intersection Example

- Let $A_i = \{i, i + 1, i + 2, ...\}$. Then,
- $\bullet \cap_{i=1}^n A_i = A_1 \cap A_2 \cap \cdots A_n$
- = $\{1,2,3...\} \cup \{2,3,4...\} \cup \cdots \cup \{n,n+1,n+2,...\}$
- $\bullet = \{n, n + 1, n + 2 \dots \}$
- Let $A_i = \{1,2,3...i\}$ Then
- $\bigcap_{i=1}^n A_i = A_i \cap A_2 \cap \cdots$
- = $\{1\} \cap \{1,2\} \cap \{1,2,3\} \cap \cdots$
- = {1}

Bit String Representation of Sets

- A frequent theme of this course are methods of representing one discrete structure using another discrete structure of a different type
- For an enumerable universal set U with ordering $x_1, x_2, x_3, ...$, we can represent a finite set $S \subseteq U$ as the finite bit string $B = b_1b_2 ... b_n$ where $b_i = 1$ if $x_i \in S$ and $b_i = 0$ if $x_i \notin S$
- $U = N, S = \{2,3,5,7,11\}, B = 0011 0101 0001$
- In this representation, the set operators, union, intersection and complement are implemented directly by bitwise OR, AND, NOT respectively

Examples of Sets as Bit Strings

- Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, and the ordering of elements of U has the elements in increasing order, then
- $S_1 = \{1, 2, 3, 4, 5\} \Rightarrow B_1 = 1111100000$
- $S_2 = \{1, 3, 5, 7, 9\} \Rightarrow B_2 = 10\ 1010\ 1010$
- $S_1 \cup S_2 = \{1, 2, 3, 4, 5, 7, 9\} \Rightarrow \text{bit string} = 11 1110 1010 = B1 \lor B2$
- $S1 \cap S2 = \{1, 3, 5\} \Rightarrow bit string = 10 \ 1010 \ 0000 = B1 \land B2$
- $S_1^c = \{6, 7, 8, 9, 10\} \Rightarrow bit string = 00 0001 1111 = \neg B1$