A Quantum Cavity Method

and some applications to Monte-Carlo simulations

Francesco Zamponi
LPT, Ecole Normale Superieure

Collaborators:

F.Krzakala, ESPCI

A. Rosso, Orsay

G. Semerjian, ENS Paris

Phys. Rev. B 78, 134428 (2008)

See also: (Cavity)

C. Laumann, A. Scardicchio, S.L. Sondhi

Phys.Rev.B 78, 134424 (2008)

S. Knysh, V.N. Smelyanskiy arXiv:0803.0149

See also (Monte-Carlo):

Beard-Wiese 96,

Prokof'ev et al. 98,

Rieger-Kawashima 99

Generalize the cavity method to quantum systems

Why?

- A consistent mean field theory for finite-connectivity quantum models:
 - distance between variables (correlation length)
 - fluctuations of the local environment (disorder)
 - localization phenomena (e.g. Anderson localization)
- Exact solution of quantum models on random graphs
 - phase diagram of random K-sat, q-col, ...
- Studies of quantum annealing or quantum information
- Monte-Carlo methods for disordered systems

Quantum Spins Model in Transverse Field

$$(|+\rangle, |-\rangle)^{\otimes N}$$

Hilbert space:
$$(|+\rangle, |-\rangle)^{\otimes N}$$
 $\sigma^z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ $\sigma^x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

Quantum Spins Model in Transverse Field

Hilbert

$$(|+\rangle, |-\rangle)^{\otimes N}$$

Hilbert space:
$$(|+\rangle, |-\rangle)^{\otimes N}$$
 $\sigma^z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ $\sigma^x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

 $\mathcal{H} = E(\{\sigma^z\}) - \Gamma \sum \sigma_i^x$

ⁱ \ Transverse field New quantum interaction

Partition Function:

$$Z = \operatorname{Tr} e^{-\beta \mathcal{H}}$$

Quantum Spins Model in Transverse Field

Hilbert

Hilbert
$$(|+\rangle, |-\rangle)^{\otimes N}$$
 space:

$$\sigma^z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad \sigma^x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

 $\mathcal{H} = \overline{E(\{\sigma^z\})} - \Gamma \sum \sigma_i^x$

ⁱ \ Transverse field New quantum interaction

Partition Function:

$$Z = \operatorname{Tr} e^{-\beta \mathcal{H}}$$

Example: The Ising Ferromagnet

$$E = -J \sum_{\langle i,j \rangle} S_i S_j$$

$$\mathcal{H} = -J \sum_{\langle i,j \rangle} \sigma_i^z \sigma_j^z - \Gamma \sum_i \sigma_i^x$$

Two technically related questions:

I) How to simulate such models using the Heat Bath Monte Carlo Simulation?

2) How to apply the Bethe-Peierls (Cavity/Message Passing/TAP....) approach to such models?

Overview

- Heat bath for classical and quantum spins
- Cavity Method for classical and quantum spins
- Concusions and perspectives

Overview

- Heat bath for classical and quantum spins
- Cavity Method for classical and quantum spins
- Concusions and perspectives

The Heat-Bath Monte-Carlo algorithm

$$\mathcal{H} = -J \sum_{\langle i,j \rangle} S_i S_j$$

The Heat-Bath Monte-Carlo algorithm

$$\mathcal{H} = -J \sum_{\langle i,j \rangle} S_i S_j$$

1) Choose a spin at random

The Heat-Bath Monte-Carlo algorithm

$$\mathcal{H} = -J \sum_{\langle i,j \rangle} S_i S_j$$

- 1) Choose a spin at random
- 2) Compute its "local field"

The Heat-Bath Monte-Carlo algorithm

$$\mathcal{H} = -J \sum_{\langle i,j \rangle} S_i S_j$$

3) Choose the new value of the spin with Boltzman probability

$$p_{up} = \frac{e^{2\beta}}{Z} \qquad p_{down} = \frac{e^{-2\beta}}{Z}$$

The Heat-Bath Monte-Carlo algorithm

$$\mathcal{H} = -J \sum_{\langle i,j \rangle} S_i S_j$$

2) Compute its "local field"

3) Choose the new value of the spin with Boltzman probability

$$p_{up} = \frac{e^{2\beta}}{Z} \qquad p_{down} = \frac{e^{-2\beta}}{Z}$$

The Heat-Bath Monte-Carlo algorithm

$$\mathcal{H} = -J \sum_{\langle i,j \rangle} S_i S_j$$

3) Choose the new value of the spin with Boltzman probability

$$p_{up} = \frac{e^{2\beta}}{Z} \qquad p_{down} = \frac{e^{-2\beta}}{Z}$$

4) ...and repeat....

The Heat-Bath Monte-Carlo algorithm

$$\mathcal{H} = -J \sum_{\langle i,j \rangle} S_i S_j$$

2) Compute its "local field"

3) Choose the new value of the spin with Boltzman probability

$$p_{up} = \frac{e^{2\beta}}{Z} \qquad p_{down} = \frac{e^{-2\beta}}{Z}$$

4) ...and repeat....

How to generalize this procedure to the quantum case?

$$Z = \operatorname{Tr}\left(e^{-\beta \hat{E} + \beta \Gamma \sum_{i=1}^{N} \sigma_i^x}\right)$$

$$Z = \operatorname{Tr}\left(\left(e^{-\frac{\beta}{N_s}\widehat{E} + \frac{\beta}{N_s}\Gamma\sum_{i=1}^N \sigma_i^x}\right)^{N_s}\right)$$

$$Z = \operatorname{Tr}\left(\left(e^{-\frac{\beta}{N_s}\widehat{E} + \frac{\beta}{N_s}\Gamma\sum_{i=1}^N \sigma_i^x}\right)^{N_s}\right)$$
 In the large Ns limit
$$= \lim_{N_s \to \infty} \operatorname{Tr}\left(\left(e^{-\frac{\beta}{N_s}\widehat{E}}e^{\frac{\beta}{N_s}\Gamma\sum_{i=1}^N \sigma_i^x}\right)^{N_s}\right)$$

$$Z = \operatorname{Tr}\left(\left(e^{-\frac{\beta}{N_s}\widehat{E} + \frac{\beta}{N_s}}\Gamma\sum_{i=1}^N\sigma_i^x\right)^{N_s}\right)$$
 In the large Ns limit
$$= \lim_{N_s \to \infty}\operatorname{Tr}\left(\prod_{\alpha=1}^{N_s}e^{-\frac{\beta}{N_s}\widehat{E}}e^{\frac{\beta}{N_s}}\Gamma\sum_{i=1}^N\sigma_i^x\right)$$

$$Z = \operatorname{Tr}\left(\left(e^{-\frac{\beta}{N_s}\widehat{E} + \frac{\beta}{N_s}}\Gamma\sum_{i=1}^N\sigma_i^x\right)^{N_s}\right)$$
 In the large Ns limit
$$= \lim_{N_s \to \infty}\operatorname{Tr}\left(\prod_{\alpha=1}^{N_s}e^{-\frac{\beta}{N_s}\widehat{E}}e^{\frac{\beta}{N_s}}\Gamma\sum_{i=1}^N\sigma_i^x\right)$$

(in the "z-base")

Use Ns relation (in the "z-base")
$$\sum_{\underline{\sigma}^{\alpha}} |\underline{\sigma}^{\alpha}\rangle\langle\underline{\sigma}^{\alpha}| = 1$$

where the vector are the set of 2^N "classical" configurations in the z-direction

$$Z={
m Tr}\left(\left(e^{-rac{eta}{N_s}\widehat{E}+rac{eta}{N_s}\Gamma\sum_{i=1}^N\sigma_i^x}
ight)^{N_s}
ight)$$
In the large Ns limit $\left(rac{N_s}{N_s}\widehat{E}+rac{eta}{N_s}\widehat{E}+rac{eta}{N$

Ns limit
$$= \lim_{N_s \to \infty} \operatorname{Tr} \left(\prod_{\alpha=1}^{N_s} e^{-\frac{\beta}{N_s} \widehat{E}} e^{\frac{\beta}{N_s} \Gamma \sum_{i=1}^{N} \sigma_i^x} \right)$$

$$Z = \lim_{N_s \to \infty} \sum_{\underline{\sigma}^1, \dots, \underline{\sigma}^{N_s}} \prod_{\alpha = 1}^{N_s} \langle \underline{\sigma}^{\alpha} | e^{-\frac{\beta}{N_s} \widehat{E}} e^{\frac{\beta}{N_s} \Gamma \sum_{i=1}^{N} \sigma_i^x} | \underline{\sigma}^{\alpha + 1} \rangle$$

Use Ns relation (in the "z-base")
$$\sum_{\sigma^\alpha} |\underline{\sigma}^\alpha\rangle\langle\underline{\sigma}^\alpha| = 1$$

where the vector are the set of 2^N "classical" configurations in the z-direction

$$Z={
m Tr}\left(\left(e^{-rac{eta}{N_S}\widehat{E}+rac{eta}{N_S}\Gamma\sum_{i=1}^N\sigma_i^x}
ight)^{N_S}
ight)$$
 In the large

Ns limit

$$= \lim_{N_s \to \infty} \operatorname{Tr} \left(\prod_{\alpha=1}^{N_s} e^{-\frac{\beta}{N_s} \widehat{E}} e^{\frac{\beta}{N_s} \Gamma \sum_{i=1}^N \sigma_i^x} \right)$$

$$Z = \lim_{N_s \to \infty} \sum_{\underline{\sigma}^1, \dots, \underline{\sigma}^{N_s}} \prod_{\alpha = 1}^{N_s} e^{-\frac{\beta}{N_s} E(\underline{\sigma}^{\alpha})} \prod_{i = 1}^{N} \prod_{\alpha = 1}^{N_s} \langle \sigma_i^{\alpha} | e^{\frac{\beta}{N_s} \Gamma \sigma^x} | \sigma_i^{\alpha + 1} \rangle$$

Use Ns relation (in the "z-base")
$$\sum_{\underline{\sigma}^{\alpha}} |\underline{\sigma}^{\alpha}\rangle\langle\underline{\sigma}^{\alpha}| = 1$$

where the vector are the set of 2^N"classical" configurations in the z-direction

Example for the 1d Quantum Chain

Consider the Original "classical" system

Example for the Id Quantum Chain Duplicate the system Ns times

Example for the 1d Quantum Chain

And obtain a system with d+1 dimension

Example for the Id Quantum Chain cosh -

And obtain a system with d+1 dimension With additional couplings

Perform a Classical Monte Carlo on the d+1 Lattice

Quantum Monte Carlo

GOOD NEWS:

Very easy implementation

Just add one dimension and use your usual code

BAD NEWS:

New source of finite size effects (finite-size in the "Trotter" Dimension) Slow evolution, metastable states

Quantum Monte Carlo

GOOD NEWS:

Very easy implementation

Just add one dimension and use your usual code

BAD NEWS:

New source of finite size effects (finite-size in the "Trotter" Dimension) Slow evolution, metastable states

Can we work directly in the infinite Ns limit?

Quantum Monte Carlo

GOOD NEWS:

Very easy implementation

Just add one dimension and use your usual code

BAD NEWS:

New source of finite size effects (finite-size in the "Trotter" Dimension) Slow evolution, metastable states

Can we work directly in the infinite Ns limit?

Work directly in the continuous limit:

(Loop algorithm: Beard-Wiese 96, Prokof'ev et al. 98, Rieger-Kawashima 1999)

Up to now limited to non-disordered systems

"time"

Take Ns $\rightarrow \infty$: the "world line" of spin is now entirely characterized by the set of flipping times

I) Choose a site at random

- I) Choose a site at random
- 2) Compute its "local field"

The difficulty is to generate a "world line of spin" given a "world line field"

The difficulty is to generate a "world line of spin" given a "world line field"

Generating a new spin path in a heat bath way

How to generate the path according to its weight?

Generating a new spin path in a heat bath way

How to generate the path according to its weight?

Generating a new spin path in a heat bath way

How to generate the path according to its weight?

- I) How to generate a path in a constant field?
- 2) How to generate the path in a piecewise constant field?

Generating a path in a constant field

Define (and compute) the propagators in constant field h for a time λ :

$$e^{\lambda(h\sigma_z + \lambda\Gamma\sigma_x)} = \begin{pmatrix} W_{u,u} & W_{u,d} \\ W_{d,u} & W_{d,d} \end{pmatrix}$$

$$W(s \to s', h, \lambda) = \begin{cases} \cosh(\lambda\sqrt{\Gamma^2 + h^2}) + s \frac{h}{\sqrt{\Gamma^2 + h^2}} \sinh(\lambda\sqrt{\Gamma^2 + h^2}) & \text{if } s = s' \\ \frac{\Gamma}{\sqrt{\Gamma^2 + h^2}} \sinh(\lambda\sqrt{\Gamma^2 + h^2}) & \text{if } s = -s' \end{cases}$$

A useful recursion

$$\frac{\sigma}{\sigma} = \frac{1}{1 + \int du} \frac{u}{1 +$$

$$W(s \to s, h, \lambda) = e^{sh\lambda} + \Gamma \int_0^{\lambda} du \ e^{shu} \ W(-s \to s, h, \lambda - u) ,$$

$$W(s \to -s, h, \lambda) = \Gamma \int_0^{\lambda} du \ e^{shu} \ W(-s \to -s, h, \lambda - u) .$$

$$\frac{\sigma}{\sigma} = \frac{\sigma}{\sigma} + \int du \frac{u}{\sigma}$$

$$\frac{\sigma}{\sigma} = \int du \frac{u}{\sigma}$$

$$W(s \to s, h, \lambda) = e^{sh\lambda} + \Gamma \int_0^{\lambda} du \ e^{shu} \ W(-s \to s, h, \lambda - u) ,$$

+ - - - -

```
If s = s': — with probability e^{sh\lambda} /W (s \to s, h, \lambda), set \sigma(t) = \sigma on the whole time interval — otherwise, draw a random variable u \in [0, \lambda] with density proportional to e^{shu} W (-s \to s, h, \lambda - u) and set s(t) = \sigma up to time u
```

$$\frac{\sigma}{\sigma} = \frac{\sigma}{\sigma} + \int du \frac{u}{\sigma}$$

$$\frac{\sigma}{\sigma} = \int du \frac{u}{\sigma}$$

$$W(s \to s, h, \lambda) = e^{sh\lambda} + \Gamma \int_0^{\lambda} du \ e^{shu} \ W(-s \to s, h, \lambda - u) ,$$

If s=s': — with probability $e^{sh\lambda}$ /W ($s \to s, h, \lambda$), set $\sigma(t)=\sigma$ on the whole time interval — otherwise, draw a random variable $u \in [0,\lambda]$ with density proportional to e^{shu} W ($-s \to s, h, \lambda - u$) and set $s(t)=\sigma$ up to time u

$$\frac{\sigma}{\sigma} = \frac{\sigma}{\sigma} + \int du \frac{u}{\sigma}$$

$$\frac{\sigma}{\sigma} = \int du \frac{u}{\sigma}$$

$$W(s \to s, h, \lambda) = e^{sh\lambda} + \Gamma \int_0^{\lambda} du \ e^{shu} \ W(-s \to s, h, \lambda - u) ,$$

If s = -s': - draw a random number with density proportional to e^{shu} W ($-s \rightarrow -s, h, \lambda - u$)

- $\sec \sigma(t) = \sigma \text{ up to time u}$
- call the previous procedure to generate the remaining trajectory

$$\frac{\sigma}{\sigma} = \frac{\sigma}{\sigma} + \int du \frac{u}{\sigma}$$

$$\frac{\sigma}{\sigma} = \int du \frac{u}{\sigma}$$

$$W(s \to -s, h, \lambda) = \Gamma \int_0^{\lambda} du \ e^{shu} \ W(-s \to -s, h, \lambda - u) \ .$$

If s = -s': - draw a random number with density proportional to e^{shu} W ($-s \rightarrow -s, h, \lambda - u$)

- $\sec \sigma(t) = \sigma \text{ up to time u}$
- call the previous procedure to generate the remaining trajectory

$$\frac{\sigma}{\sigma} = \frac{\sigma}{\sigma} + \int du \frac{u}{\sigma}$$

$$= \int du \frac{u}{\sigma}$$

$$W(s \to -s, h, \lambda) = \Gamma \int_0^{\lambda} du \ e^{shu} \ W(-s \to -s, h, \lambda - u) \ .$$

Generating a path in a constant piecewise field

We need to know the spin orientation at time t(1),t(2) ... in order to apply the "constant field algorithm"

$$P(s_1, \dots, s_p | \mathbf{h}) = \prod_{i=0}^p W(s_i \to s_{i+1}, h^{(i)}, \lambda^{(i)})$$

Some results

Comparison with the best available algorithm (Loop Algorithm, Rieger-Kawashima 98') on a regular random graph

Overview

- Heat bath for classical and quantum spins
- Cavity Method for classical and quantum spins
- Concusions and perspectives

Bethe-Peierls Approximation

(Replica-Symmetric cavity method)

Bethe-Peierls Approximation

(Replica-Symmetric cavity method)

Bethe-Peierls Approximation

(Replica-Symmetric cavity method)

Solve the model on a tree with the same connectivity

$$h_1$$
 h_2
 h_3
 $=$
 h'_1

$$h' = \sum_{i=1}^{3} \frac{1}{\beta} \tanh^{-1} \left(\tanh \beta h_i \tanh \beta J \right)$$

The Cavity Method: solving by recursion

$$h = \frac{c-1}{\beta} \tanh^{-1} \left(\tanh \beta h \tanh \beta J \right)$$

BP

Id=no transition

 $\beta(2d) = 0.346$

 $\beta(3d) = 0.203$

 $\beta(4d) = 0.144$

 $\beta(5d) = 0.112$

Monte-Carlo

Id=no transition

 $\beta(2d) = 0.44$

 $\beta(3d) = 0.221$

 $\beta(4d) = 0.149$

 $\beta(5d) = 0.114$

The Cavity Method: solving by recursion

Fixed Point
$$h = \frac{c-1}{\beta} \tanh^{-1} \left(\tanh \beta h \tanh \beta J \right)$$

BP

Id=no transition

 $\beta(2d) = 0.346$

 $\beta(3d) = 0.203$

 $\beta(4d) = 0.144$

 $\beta(5d) = 0.112$

Good quantitative approximation!

Monte-Carlo

Id=no transition

 $\beta(2d) = 0.44$

 $\beta(3d) = 0.221$

 $\beta(4d) = 0.149$

 $\beta(5d) = 0.114$

One field is enough for Ising spins

$$p_{down} = \frac{e^{-\beta h}}{Z}$$

One field is enough for Ising spins

$$p_{up} = \overline{Z}$$

$$h' = \sum_{i=1}^{3} \frac{1}{\beta} \tanh^{-1} \left(\tanh \beta h_i \tanh \beta J \right)$$

$$p_{down} = \frac{e^{-\beta n}}{Z}$$

But not for quantum spins !!!!

The probability distribution P(s) is a quite complicated object!

But not for quantum spins !!!!

The probability distribution P(s) is a quite complicated object!

Need for a recursion for P(s)!

$$P(s) = \sum_{\substack{s_1, s_2, s_3}} P(s_1) P(s_2) P(s_2) P(s_3) e^{\beta(s_1 + s_2 + s_3)s} \frac{\omega(s)}{Z}$$

$$P(s) = \sum_{s_1, s_2, s_3} P(s_1) P(s_2) P(s_3) e^{\beta(s_1 + s_2 + s_3)s} \frac{\omega(s)}{Z}$$

Define the probability distribution given a "field trajectory h"

$$\longrightarrow p(s|\mathbf{h}) = \frac{1}{\mathcal{Z}(\mathbf{h})} \omega(s) e^{\beta h s}$$

$$P(s) = \sum_{s_1, s_2, s_3} P(s_1) P(s_2) P(s_3) e^{\beta(s_1 + s_2 + s_3)s} \frac{\omega(s)}{Z}$$

Define the probability distribution given a "field trajectory h"

$$\longrightarrow p(s|\mathbf{h}) = \frac{1}{\mathcal{Z}(\mathbf{h})} \omega(s) e^{\beta h s}$$

Note h=s1+s2+s3 and rewrite the recursion as

$$P(s) = \sum_{s_1, s_2, s_3} P(s_1) P(s_2) P(s_3) p(s|s_1 + s_2 + s_3) \frac{\mathcal{Z}(s_1 + s_2 + s_3)}{Z}$$

$$P(s) = \sum_{s_1, s_2, s_3} P(s_1) P(s_2) P(s_3) p(s|s_1 + s_2 + s_3) \frac{\mathcal{Z}(s_1 + s_2 + s_3)}{Z}$$

$$p(s|\mathbf{h}) = \frac{1}{\mathcal{Z}(\mathbf{h})} \omega(s) e^{\beta h s}$$

Use the "population" representation :
$$P(s) = \sum_{i=1}^{\mathcal{N}} p_i \delta(\sigma - \sigma_i)$$

$$P(s) = \sum_{s_1, s_2, s_3} P(s_1) P(s_2) P(s_3) p(s|s_1 + s_2 + s_3) \frac{\mathcal{Z}(s_1 + s_2 + s_3)}{Z}$$

$$p(s|\mathbf{h}) = \frac{1}{\mathcal{Z}(\mathbf{h})} \omega(s) e^{\beta h s}$$

Use the "population" representation :
$$P(s) = \sum_{i=1}^{\mathcal{N}} p_i \delta(\sigma - \sigma_i)$$
 Example for a population of 7 elements

$$P(s) = \sum_{s_1, s_2, s_3} P(s_1) P(s_2) P(s_2) P(s_3) p(s_1 + s_2 + s_3) \frac{Z(s_1 + s_2 + s_3)}{Z}$$

$$p(s|\mathbf{h}) = \frac{1}{\mathcal{Z}(\mathbf{h})} \omega(s) e^{\beta h s}$$

Use the "population" representation :
$$P(s) = \sum_{i=1}^{\mathcal{N}} p_i \delta(\sigma - \sigma_i)$$
 Example for a population of 7 elements
$$P^{_1} P^{_2} P^{_3} P^{_4} P^{_5} P^{_6} P^{_7}$$

$$P(s) = \sum_{s_1, s_2, s_3} P(s_1) P(s_2) P(s_2) P(s_3) p(s_1 + s_2 + s_3) \frac{Z(s_1 + s_2 + s_3)}{Z}$$

$$p(s|\mathbf{h}) = \frac{1}{\mathcal{Z}(\mathbf{h})} \omega(s) e^{\beta h s}$$

$$P(s) = \sum_{s_1, s_2, s_3} P(s_1) P(s_2) P(s_2) P(s_3) p(s_1 + s_2 + s_3) \frac{Z(s_1 + s_2 + s_3)}{Z}$$

$$p(s|\mathbf{h}) = \frac{1}{\mathcal{Z}(\mathbf{h})} \omega(s) e^{\beta h s}$$

Use the "population" representation:

$$P(s) = \sum_{i=1}^{\mathcal{N}} p_i \delta(\sigma - \sigma_i)$$

$$\text{field}$$

$$P(s) = \sum_{s_1, s_2, s_3} P(s_1) P(s_2) P(s_2) P(s_3) p(s|s_1 + s_2 + s_3) \frac{Z(s_1 + s_2 + s_3)}{Z}$$

$$p(s|\mathbf{h}) = \frac{1}{\mathcal{Z}(\mathbf{h})} \omega(s) e^{\beta h s}$$

Use the "population" representation:

$$P(s) = \sum_{s_1, s_2, s_3} P(s_1) P(s_2) P(s_3) p(s|s_1 + s_2 + s_3) \frac{\mathcal{Z}(s_1 + s_2 + s_3)}{Z}$$

$$p(s|\mathbf{h}) = \frac{1}{\mathcal{Z}(\mathbf{h})} \omega(s) e^{\beta h s}$$

Use the "population" representation :
$$P(s) = \sum_{i=1}^{\mathcal{N}} p_i \delta(\sigma - \sigma_i)$$

$$P(s) = \sum_{s_1, s_2, s_3} P(s_1) P(s_2) P(s_3) p(s|s_1 + s_2 + s_3) \frac{\mathcal{Z}(s_1 + s_2 + s_3)}{Z}$$

$$p(s|\mathbf{h}) = \frac{1}{\mathcal{Z}(\mathbf{h})} \omega(s) e^{\beta h s}$$

Use the "population" representation :
$$P(s) = \sum_{i=1}^{\mathcal{N}} p_i \delta(\sigma - \sigma_i)$$

$$P(s) = \sum_{s_1, s_2, s_3} P(s_1) P(s_2) P(s_3) p(s|s_1 + s_2 + s_3) \frac{\mathcal{Z}(s_1 + s_2 + s_3)}{Z}$$

$$p(s|\mathbf{h}) = \frac{1}{\mathcal{Z}(\mathbf{h})} \omega(s) e^{\beta h s}$$

Use the "population" representation :
$$P(s) = \sum_{i=1}^{\mathcal{N}} p_i \delta(\sigma - \sigma_i)$$

$$P(s) = \sum_{s_1, s_2, s_3} P(s_1) P(s_2) P(s_3) p(s|s_1 + s_2 + s_3) \frac{\mathcal{Z}(s_1 + s_2 + s_3)}{Z}$$

$$p(s|\mathbf{h}) = \frac{1}{\mathcal{Z}(\mathbf{h})} \omega(s) e^{\beta h s}$$

Use the "population" representation :
$$P(s) = \sum_{i=1}^{\mathcal{N}} p_i \delta(\sigma - \sigma_i)$$

$$P(s) = \sum_{s_1, s_2, s_3} P(s_1) P(s_2) P(s_3) p(s|s_1 + s_2 + s_3) \frac{Z(s_1 + s_2 + s_3)}{Z}$$

$$p(s|\mathbf{h}) = \frac{1}{\mathcal{Z}(\mathbf{h})} \omega(s) e^{\beta h s}$$

Use the "population" representation :
$$P(s) = \sum_{i=1}^{\mathcal{N}} p_i \delta(\sigma - \sigma_i)$$

$$P(s) = \sum_{s_1, s_2, s_3} P(s_1) P(s_2) P(s_3) p(s|s_1 + s_2 + s_3) \frac{\mathcal{Z}(s_1 + s_2 + s_3)}{Z}$$

$$p(s|\mathbf{h}) = \frac{1}{\mathcal{Z}(\mathbf{h})} \omega(s) e^{\beta h s}$$

Use the "population" representation :
$$P(s) = \sum_{i=1}^{\mathcal{N}} p_i \delta(\sigma - \sigma_i)$$

$$P(s) = \sum_{s_1, s_2, s_3} P(s_1) P(s_2) P(s_3) p(s|s_1 + s_2 + s_3) \frac{\mathcal{Z}(s_1 + s_2 + s_3)}{Z}$$

$$p(s|\mathbf{h}) = \frac{1}{\mathcal{Z}(\mathbf{h})} \omega(s) e^{\beta h s}$$

Use the "population" representation :
$$P(s) = \sum_{i=1}^{\mathcal{N}} p_i \delta(\sigma - \sigma_i)$$

Some Results

Ising ferromagnet in transverse field on a random 3-regular graph

Some Results

Ising ferromagnet in transverse field on a random 3-regular graph

Conclusions...

- A heat bath method for generic quantum spin-1/2 models in transverse field
- Allows to formulate a quantum version of the cavity method to solve the same models on trees (or more generally on random graphs)

... and perspectives

- Simulation of quantum spin-1/2 problem where no loop algorithm is known (Quantum Spin Glasses, Quantum Constraint Satisfaction Problems....)
- Application of the quantum cavity method to the same models on trees/random graphs
- Application to particles systems (Bosonic Hubbard model) e.g. to study glassy phases of cold atoms in disordered potentials
- Application to dynamics of classical models?

Thanks to my collaborators...

Guilhem Semerjian

Alberto Rosso

Florent Krzakala

...and to you for your attention!