Uniform convergence and continuity, uniform convergence and integration, uniform convergence and differentiation

Theorem Let $K \subset \mathbb{R}$ or \mathbb{C} and $f_n : K \to \mathbb{R}$ (or \mathbb{C}) continuous functions which converge uniformly to $f : K \to \mathbb{R}$ (resp. \mathbb{C}). Then the function f is continuous.

Proof. Let $x \in K, \varepsilon > 0$. By virtue of the uniform convergence of (f_n) , there exists a sufficiently large $N \in \mathbb{N}$ so that for all $\xi \in K$ we have

$$|f_N(\xi) - f(\xi)| < \frac{\varepsilon}{3}.$$

Corresponding to x and ε we then determine a $\delta > 0$ so that

$$|f_N(y) - f_N(x)| < \frac{\varepsilon}{3}$$
 for all $y \in K$ with $|x - y| < \delta$.

This is possible as the functions f_N are by assumption continuous. We then have for all $y \in K$ with $|x - y| < \delta$

$$|f(x) - f(y)| \le |f(x) - f_N(x)| + |f_N(x) - f_N(y)| + |f_N(y) - f(y)|$$

$$< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon,$$

whereby f is continuous at x and therefore also in K, as $x \in K$ was arbitrary.

Using the same method as in the proof of the above theorem, we have

7.12 Theorem If $\{f_n\}$ is a sequence of continuous functions on E, and if $f_n \to f$ uniformly on E, then f is continuous on E.

Let E be a metric space.

7.13 Theorem Suppose K is compact, and

- (a) $\{f_n\}$ is a sequence of continuous functions on K,
- (b) $\{f_n\}$ converges pointwise to a continuous function f on K,
- (c) $f_n(x) \ge f_{n+1}(x)$ for all $x \in K$, n = 1, 2, 3, ...

Then $f_n \to f$ uniformly on K.

Proof Put $g_n = f_n - f$. Then g_n is continuous, $g_n \to 0$ pointwise, and $g_n \ge g_{n+1}$. We have to prove that $g_n \to 0$ uniformly on K.

Let $\varepsilon > 0$ be given. Let K_n be the set of all $x \in K$ with $g_n(x) \ge \varepsilon$. Since g_n is continuous, K_n is closed (Theorem 4.8), hence compact (Theorem 2.35). Since $g_n \ge g_{n+1}$, we have $K_n \supset K_{n+1}$. Fix $x \in K$. Since $g_n(x) \to 0$, we see that $x \notin K_n$ if n is sufficiently large. Thus $x \notin \bigcap K_n$. In other words, $\bigcap K_n$ is empty. Hence K_N is empty for some N (Theorem 2.36). It follows that $0 \le g_n(x) < \varepsilon$ for all $x \in K$ and for all $n \ge N$. This proves the theorem.

Remark

Let us note that compactness is really needed here. For instance, if

$$f_n(x) = \frac{1}{nx+1}$$
 (0 < x < 1; n = 1, 2, 3, ...)

then $f_n(x) \to 0$ monotonically in (0, 1), but the convergence is not uniform.

7.14 **Definition** If X is a metric space, $\mathcal{C}(X)$ will denote the set of all complex-valued, continuous, bounded functions with domain X.

We associate with each $f \in \mathcal{C}(X)$ its supremum norm

$$||f|| = \sup_{x \in X} |f(x)|.$$

Since f is assumed to be bounded, $||f|| < \infty$. It is obvious that ||f|| = 0 only if f(x) = 0 for every $x \in X$, that is, only if f = 0. If h = f + g, then

$$|h(x)| \le |f(x)| + |g(x)| \le ||f|| + ||g||$$

for all $x \in X$; hence

$$||f+g|| \le ||f|| + ||g||.$$

If we define the distance between $f \in \mathcal{C}(X)$ and $g \in \mathcal{C}(X)$ to be ||f - g||, then $\mathcal{C}(X)$ is a metric space.

7.15 **Theorem** The above metric makes $\mathscr{C}(X)$ into a complete metric space.

Proof Let $\{f_n\}$ be a Cauchy sequence in $\mathscr{C}(X)$. This means that to each $\varepsilon > 0$ corresponds an N such that $||f_n - f_m|| < \varepsilon$ if $n \ge N$ and $m \ge N$. It follows (by Theorem 7.8) that there is a function f with domain X to which $\{f_n\}$ converges uniformly. By Theorem 7.12, f is continuous. Moreover, f is bounded, since there is an n such that $|f(x) - f_n(x)| < 1$ for all $x \in X$, and f_n is bounded.

Thus $f \in \mathcal{C}(X)$, and since $f_n \to f$ uniformly on X, we have $||f - f_n|| \to 0$ as $n \to \infty$.

7.16 **Theorem** Let α be monotonically increasing on [a, b]. Suppose $f_n \in \mathcal{R}(\alpha)$ on [a, b], for $n = 1, 2, 3, \ldots$, and suppose $f_n \to f$ uniformly on [a, b]. Then $f \in \mathcal{R}(\alpha)$ on [a, b], and

(23)
$$\int_{a}^{b} f \, d\alpha = \lim_{n \to \infty} \int_{a}^{b} f_{n} \, d\alpha.$$

Proof It suffices to prove this for real f_n . Put

(24)
$$\varepsilon_n = \sup |f_n(x) - f(x)|,$$

the supremum being taken over $a \le x \le b$. Then

$$f_n - \varepsilon_n \le f \le f_n + \varepsilon_n$$
,

so that the upper and lower integrals of f (see Definition 6.2) satisfy

(25)
$$\int_{a}^{b} (f_{n} - \varepsilon_{n}) d\alpha \leq \int_{\underline{a}} f d\alpha \leq \int_{\underline{a}}^{b} (f_{n} + \varepsilon_{n}) d\alpha.$$
 Hence

 $0 \leq \overline{\int} f d\alpha - \int f d\alpha \leq 2\varepsilon_n [\alpha(b) - \alpha(a)].$

Since $\varepsilon_n \to 0$ as $n \to \infty$ (Theorem 7.9), the upper and lower integrals of f are equal.

Thus $f \in \mathcal{R}(\alpha)$. Another application of (25) now yields

(26)
$$\left| \int_{a}^{b} f \, d\alpha - \int_{a}^{b} f_{n} \, d\alpha \right| \leq \varepsilon_{n} [\alpha(b) - \alpha(a)].$$

Corollary If $f_n \in \mathcal{R}(\alpha)$ on [a, b] and if

$$f(x) = \sum_{n=1}^{\infty} f_n(x) \qquad (a \le x \le b),$$

the series converging uniformly on [a, b], then

$$\int_a^b f \, d\alpha = \sum_{n=1}^\infty \int_a^b f_n \, d\alpha.$$

Theorem Let I = [a, b] be a bounded interval in \mathbb{R} . Let $f_n : I \to \mathbb{R}$ be differentiable functions. Assume that

- (i) there exists a $z \in I$ for which $f_n(z)$ converges
- (ii) the sequence of derivatives (f'_n) converges uniformly on I.

Then the sequence (f_n) converges uniformly on I to a differentiable function f and we have

$$f'(x) = \lim_{n \to \infty} f'_n(x)$$
 for all $x \in I$.

Proof. Let g(x) be the limit of $f'_n(x)$. Let $\eta > 0$. Because of uniform convergence of f'_n we can find an $N \in \mathbb{N}$ with the following property

$$\forall \ n, m \ge N : \sup\{|f'_n(x) - f'_m(x)| : x \in I\} < \eta \tag{1}$$

and so
$$\sup\{|f'_n(x) - g(x)| : x \in I\} < \eta \quad \text{for } n \ge N$$
 (2)

Furthermore, for all $x \in I, n, m \in \mathbb{N}$, we have, by the mean value theorem

$$|f_n(x) - f_m(x) - (f_n(z) - f_m(z))| \le |x - z| \sup_{\xi \in I} |f'_n(\xi) - f'_m(\xi)|,$$
 (3)

and therefore

$$|f_n(x) - f_m(x)| \le |f_n(z) - f_m(z)| + |x - z| \sup_{\xi \in I} |f'_n(\xi) - f'_m(\xi)|,$$

wherefrom, on account of (i) and (1) it follows easily that (f_n) is a Cauchy sequence in $\mathscr{C}(I)$. Therefore, the sequence (f_n) converges to a continuous limit function f.

In particular (i), and thereby the above considerations, hold for every $z \in I$.

In (3) we let m tend to ∞ and obtain from (2)

$$|f_N(x) - f(x) - (f_N(z) - f(z))| \le |x - z|\eta.$$
 (4)

For N, which depends only on η , and x we find a $\delta > 0$ with

$$|f_N(x) - f_N(z) - (x - z)f_N'(x)| \le \eta |x - z| \text{ for } |x - z| < \delta.$$
 (5)

This follows from our characterization of differentiability.

It follows from (2), (4) and (5) that

$$|f(x) - f(z) - g(x)(x - z)| \le 3\eta |x - z|, \text{ if } |x - z| < \delta.$$

Since this holds for every $x \in I$ and for all z with $|x - z| < \delta$, it follows from our characterization of differentiability, that f'(x) exists and

$$f'(x) = g(x).$$