Math 3012

Lecture 6 - Induction and Euclidean algorithm

Luís Pereira

Georgia Tech

August 31, 2018

The Principle of Mathematical Induction

Well ordering principle/axiom

Any non-empty set of positive integers has a smallest element.

Another formulation

If A is a set of positive integers such that

- ▶ 1 is in *A*
- whenever k is in A then k+1 is also in A

then A is the set of all positive integers.

Consequence: Mathematical Induction

To show that a statement S_n is true for all n, it is enough to check the following two things:

- **Base case:** S_1 is true
- ▶ Induction step: assuming that S_k is true, show that then S_{k+1} is also true.

Applying Induction (2)

Theorem The sum of the first n odd positive integers is n^2 , i.e.

$$1+3+5+7+\cdots+(2n-1)=n^2$$
 (S_n)

Proof We apply mathematical induction:

- ▶ Base case When n = 1 the LHS is 1 and RHS is $1^2 = 1$. So S_1 is true.
- ▶ **Induction step**. Assume S_k is true, i.e.

$$1+3+\cdots+(2k-1)=k^2$$
. Then

$$1+3+\cdots+(2k-1)+(2k+1)=k^2+(2k+1)$$
 (by S_k)
= $(k+1)^2$

This shows S_{k+1} . QED

Combinatorial proofs versus formal inductive proofs

Recall In Lecture 2 we gave a combinatorial proof of

$$1+3+5+7+\cdots+(2n-1)=n^2$$

Remarks

- Usually combinatorial proofs are preferable over formal inductive proofs, since they help understand what's really going on. (but "usually" doesn't mean "always")
- Sometimes combinatorial proofs are easier, sometimes inductive proofs are easier (no hard rules).

Applying Induction (3)

Theorem For all positive integer *n*

$$n^3 + (n+1)^3 + (n+2)^3$$

is a multiple of 9.

Proof We apply mathematical induction:

- ▶ Base case When n = 1 get $1^2 + (1+2)^2 + (1+2)^3 = 36$. This is a multiple of 9 so S_1 is true.
- ▶ Induction step. Assume S_k is true.

$$(k+1)^3 + (k+2)^3 + (k+3)^3 =$$

$$= (k+1)^3 + (k+2)^3 + k^3 + 9k^2 + 27k + 27$$

$$= \left[k^3 + (k+1)^3 + (k+2)^3\right] + \left[9k^2 + 27k + 27\right]$$

Both parts are multiples of 9 (why?), so S_{k+1} is true. QED

Exercises in mathematical induction (1)

Exercise Let x > -1 be a real number. Show that for all $n \ge 0$ it is

$$(1+x)^n \ge 1 + nx \qquad (S_n)$$

Solution We apply mathematical induction:

- ▶ Base case When n = 0 the LHS is $(1 + x)^0 = 1$ and the RHS is 1 + 0x = 1. So S_0 is true.
- ▶ Induction step. Assume S_k is true, i.e.

$$(1+x)^k \ge 1 + kx$$

It follows that (why?)

$$(1+x)^{k+1} \ge (1+kx)(1+x)$$

$$(1+x)^{k+1} \ge 1 + kx + x + kx^2$$

$$(1+x)^{k+1} \ge 1 + (k+1)x + kx^2$$

This implies

$$(1+x)^{k+1} > 1 + (k+1)x$$

which is S_{k+1} . QED

Exercises in mathematical induction (2)

Exercise Show that for all integers $n \ge 2$ it is

$$1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} > \sqrt{n}$$

Solution

Base case When n = 2 we need

$$1 + \frac{1}{\sqrt{2}} > \sqrt{2} \qquad \text{(true?)}$$

This is equivalent to

to
$$\left(1+\frac{1}{\sqrt{2}}\right)^2>(\sqrt{2})^2\quad \text{(true?)}$$

$$1+\frac{2}{\sqrt{2}}+\frac{1}{2}>2\quad \text{(true?)}$$

$$\sqrt{2}>1/2\quad \text{(true!)}$$

So S_2 is true.

Exercises in mathematical induction (2.1)

Exercise Show that for all $n \ge 2$ it is

$$1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} > \sqrt{n}$$

Solution (cont.)

▶ Induction step Assume S_k , i.e.

$$1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{k}} > \sqrt{k}$$

Then

$$1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{k}} + \frac{1}{\sqrt{k+1}} > \sqrt{k} + \frac{1}{\sqrt{k+1}}$$

but what we want to show is

$$1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{k}} + \frac{1}{\sqrt{k+1}} > \sqrt{k+1}$$

So it's enough to show $\sqrt{k} + \frac{1}{\sqrt{k+1}} > \sqrt{k+1}$

Exercises in mathematical induction (2.2)

Solution (cont.) It's enough to show

$$\sqrt{k} + \frac{1}{\sqrt{k+1}} > \sqrt{k+1}$$
 (true?)

This is equivalent to

$$\left(\sqrt{k} + \frac{1}{\sqrt{k+1}}\right)^2 > \left(\sqrt{k+1}\right)^2$$
 (true?)
 $k + \frac{2\sqrt{k}}{\sqrt{k+1}} + \frac{1}{k+1} > k+1$ (true?)
 $\frac{2\sqrt{k}}{\sqrt{k+1}} + \frac{1}{k+1} > 1$ (true?)

 $\frac{2\sqrt{k}}{\sqrt{k+1}} > 1$ (true?)

This will be true if

$$2\sqrt{k}>\sqrt{k+1}$$
 (true?) $4k>k+1$ (true!)

So the top inequality is true. QED (Phew!)

Exercises in mathematical induction (3)

Exercise Show that for every $n \ge 5$ it is

$$n^2 > 3n + 9 \qquad (S_n)$$

Solution We apply mathematical induction:

- ▶ Base case When n = 5 the LHS is $5^2 = 25$ and the RHS is $3 \times 5 + 9 = 24$. Since 25 > 24 we have S_5 is true.
- ▶ Induction step. Assume S_k is true, i.e.

$$k^2 > 3k + 9$$

Then

$$(k+1)^2 = k^2 + 2k + 1 > 3k + 9 + 2k + 1 = 3(k+1) + (2k+7)$$

But we want

$$(k+1)^2 > 3(k+1) + 9$$

So we need $2k + 7 \ge 9$. Is this true? Yes! QED

Piazza poll

Question Let S_n be the statement

$$n^2 + n$$
 is a multiple of 5 (S_n)

Then

Answers

- (A) S_4 and S_9 are both true
- (B) S_4 is true but S_9 is false
- (C) S_4 is false but S_9 is true
- (D) S_4 and S_9 are both false

Alternative forms of Mathematical Induction

By contradiction Assume that there is a smallest n such that S_n fails, then argue that S_k must also have failed for some k < n, leading to a contradiction.

Strong induction To show that a statement S_n is true for all n, it is enough to check the following two things:

- **Base case:** S_1 is true
- ▶ **Strong Induction step:** assuming that all of $S_1, S_2, S_3, \dots, S_k$ are true, show that then S_{k+1} is also true.

Exercise in strong mathematical induction

Exercise Show that the sequence with recursive definition

$$r_1 = 1$$
; $r_2 = 3$;, $r_n = r_{n-1} + 2r_{n-2} + 2$ for $n \ge 3$

is given by $r_n = 2^n - 1$.

Solution We apply strong mathematical induction:

- ▶ Base case $r_1 = 1$ and $2^1 1 = 1$ so S_1 holds.
- ▶ Strong induction step Assume S_1, S_2, \dots, S_k , i.e. that $r_i = 2^i 1$ when $i \le k$. Then

$$r_{k+1} = r_k + 2r_{k-1} + 2 = (2^k - 1) + 2(2^{k-1} - 1) + 2 = 2 \cdot 2^k - 1 = 2^{k+1} - 1$$

This shows S_{k+1} when $k+1 \ge 3$.

Must still check S_2 explicitly!! But $r_2 = 3 = 2^3 - 1$ so we're good. QED

Greatest common divisors (1)

Elementary problem: Adding fractions

$$\frac{5}{12} + \frac{7}{30} = \frac{5 \cdot 5}{12 \cdot 5} + \frac{7 \cdot 2}{30 \cdot 2} = \frac{39}{60} = \frac{13}{20}$$

Upshot Adding fractions is all about least common multiples and greatest common divisors.

Remark Given positive integers n, m

$$gcd(n, m) \cdot lcm(n, m) = n \cdot m$$

Upshot Finding *gcd* and *lcm* are problems of the same difficulty.

Greatest common divisors (2)

Less elementary problem: Adding big fractions

$$\frac{7871827128979}{9882303013399012285973582} + \frac{1273872987897293}{82288837599088247} = ?$$

Basic issue Finding

 $\gcd(9882303013399012285973582,82288837599088247)$

Solutions (?)

- ► Test all numbers up to 82288837599088247, pick the biggest number that divides both numbers
- ► Find the prime factorizations of both numbers, take common prime factors

These technically work, but are very inefficient.

A better way is given by the Euclidean Algorithm.

Basis for long division & the Euclidean Algorithm (1)

Theorem Let n, m be positive integers. Then there are unique q and r with $q \ge 0$ and $m > r \ge 0$ such that

$$n = qm + r$$

Set-up Fix $m \ge 2$ and let S_n be "there exist $q \ge n, r \ge 0$ with n = qm + r"

Proof By induction on *n*

- ▶ Base Case $1 = 0 \times m + 1$, so S_1 is true.
- ▶ **Induction Step** Assume S_k , i.e. k = qm + r. Two cases:
 - r < m-1 Then k+1 = qm + (r+1) works.
 - ightharpoonup r = m-1 Then k+1 = qm+m-1+1 = (q+1)m+0 works

In either case we get S_{k+1} .

The uniqueness part follows from basic algebra. QED

Basis for long division & the Euclidean Algorithm (2)

Theorem Let n, m be positive integers. Then there are unique q and r with $q \ge 0$ and $m > r \ge 0$ such that

$$n = qm + r$$

Fact If
$$r = 0$$
 then $gcd(n, m) = m$

Fact If
$$r > 0$$
 then $gcd(n, m) = gcd(m, r)$

Why?
$$\frac{n}{d} = q \frac{m}{d} + \frac{r}{d}$$
 and $\frac{r}{d} = \frac{n}{d} - q \frac{m}{d}$

Notation
$$r = n\%m$$

The Euclidean Algorithm

Euclidean Algorithm

```
def gcd(n,m):
    if n % m == 0:
        return m
    else:
        return gcd(m,n%m)
```

Idea Perform long division with smaller and smaller numbers until it stops.

The Euclidean Algorithm in action

Question Find gcd(10262736, 85470).

Answer

Hence gdc = 66.