Mate 2: Curs #0 Solutii Exercitii

Tulba-Lecu Gabriel si Preoteasa Mircea

24 Septembrie 2019

1 Exercitiul 1

1.1 Enunt

Sa se determine clasele de echivalenta pe Z. Notam $x\rho y \iff n|x-y,$ $n \in N^*, n \neq 1.$

1.2 Rezolvare

Notam $\hat{x} = \{y \mid y \in Z, y \equiv x \pmod{n}\}$ Atunci multimea claselor de echivalenta este $Z_n = \{\hat{x} \mid x \in Z\}$

2 Exercitiul 2

2.1 Enunt

Sa se arate ca daca ρ este o relatie de echivalenta pe A si $x,y\in A$ atunci $\hat{x}=\hat{y}$ sau $\hat{x}\cap\hat{y}=\varnothing$.

2.2 Rezolvare

Presupunem ca $\hat{x} \cap \hat{y} \neq \emptyset$ si $\hat{x} \neq \hat{y}$. Atunci $\exists z \in A \ a.i. \ z \in \hat{x} \ si \ z \in \hat{y}$, deci $x \rho z \ si \ y \rho z$.

 ρ este o relatie de echivalenta pe A, deci ρ este reflexiva, tranzitiva si simetrica. Din faptul ca ρ este simetrica $y\rho z \implies z\rho y$.

Din faptul ca ρ este tranzitiva $x\rho z$ si $z\rho y \implies x\rho y$.

Din $x\rho y$ rezulta ca $y \in \hat{x}$, iar din simetrie avem $y\rho x$, din care rezulta ca $x \in \hat{y}$, deci $\hat{x} = \hat{y}$, dar $\hat{x} \neq \hat{y}$, contradictie.

In concluzie, $\hat{x} \cap \hat{y} \neq \emptyset \implies \hat{x} = \hat{y}$, deci $\hat{x} \cap \hat{y} = \emptyset$ sau $\hat{x} = \hat{y}$.

3 Exercitiul 3

3.1 Enunt

Sa se arate ca pentru o relatie ρ intre A si B, intre $A\rho B\iff\exists\ f:A\to B\ bijectie$ este o relatie de echivalenta.

3.2 Rezolvare