Contents

1	Firs	st-order ODEs
	1.1	Separable Equations
	1.2	Linear Equations
	1.3	Exact Equations
	1.4	Exact Equations with Integration Constant
	1.5	Homogeneous Equations
	1.6	Bernoulli's Equation
	1.7	Reduction to Separation of Variables
	1.8	Riccati's Equation
2	Higher-order ODEs	
	2.1	Initial Value Problems
	2.2	Linear Independence
	2.3	Homogeneous Linear n th-Order Equations
	2.4	Nonhomogeneous Linear n th-Order Equations
	2.5	Homogeneous Linear Second-Order Equations
	2.6	Homogeneous Linear Equations with Constant Coefficients

1 First-order ODEs

Form: IVP

$$\frac{dy}{dx} = f(x, y)$$
$$y(x_0) = y_0$$

Test: f(x,y) and $\partial f/\partial y$ are continuous over I **Property:** A unique solution is guaranteed over I

1.1 Separable Equations

Form:

$$\frac{dy}{dx} = g(x)h(y)$$

Solution: Divide by h(y) then integrate with respect to x.

$$\frac{dy}{dx} = g(x)h(y)$$

$$\frac{1}{h(y)}\frac{dy}{dx} = g(x)$$

$$\int \frac{1}{h(y)}\frac{dy}{dx} dx = \int g(x) dx$$

$$\int \frac{1}{h(y)} dy = \int g(x) dx$$

$$H(y) = G(x) + c$$

1.2 Linear Equations

Form:

$$\frac{dy}{dx} + P(x)y = f(x)$$

Solution:

- 1. Determine the integrating factor $e^{\int P(x) dx}$
- 2. Multiply by the integrating factor
- 3. Recognise that the left hand side of the equation is the derivative of the product of the integrating factor and y
- 4. Integrate both sides of the equation
- 5. Solve for y

1.3 Exact Equations

Form:

$$z = f(x, y) = c$$

$$dz = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy = M(x, y) dx + N(x, y) dy = 0$$

Test:

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

Solution:

1. Integrate M(x,y) with respect to x to find an expression for z=f(x,y)

$$\frac{\partial f}{\partial x} = M(x, y)$$

$$f(x, y) = \int M(x, y) dx + g(y)$$

2. Differentiate f(x,y) with respect to y and equate it to N(x,y) to find g'(y)

$$\frac{\partial f}{\partial y} = N(x, y) = \frac{\partial}{\partial y} \int M(x, y) \, dx + g'(y)$$
$$g'(y) = N(x, y) - \frac{\partial}{\partial y} \int M(x, y) \, dx$$

- 3. Integrate g'(y) with respect to y to find g(y) and substitute it into f(x,y)
- 4. Equate f(x,y) with an unknown constant c

Note: The steps can be performed with x and y reversed, i.e. start by integrating N(x,y) with respect to y, etc.

1.4 Exact Equations with Integration Constant

Form:

$$M(x,y) dx + N(x,y) dy = 0$$

Test: $(M_y - N_x)/N$ is a function of x alone or $(N_x - M_y)/M$ is a function of y alone

Solution:

1. Compute the integrating factor

$$\mu(x) = e^{\int \frac{M_y - N_x}{N} \, dx}$$

or

$$\mu(y) = e^{\int \frac{N_x - M_y}{M} \, dy}$$

as appropriate

- 2. Multiple the equation by this factor
- 3. The equation is now exact and can be solved as above

1.5 Homogeneous Equations

Form:

$$M(x,y) dx + N(x,y) dy = 0$$

Test: M and N are homogeneous functions of the same degree **Solution:**

1. Rewrite as

$$M(x,y) = x^{\alpha}M(1,u)$$
 and $N(x,y) = x^{\alpha}N(1,u)$ where $u = y/x$

or

$$M(x,y) = y^{\alpha}M(v,1)$$
 and $N(x,y) = y^{\alpha}N(v,1)$ where $v = x/y$

- 2. Substitute y = ux and dy = u dx + x du or x = vy and dx = v dy + y dv as appropriate
- 3. Solve the resulting first-order separable DE
- 4. Substitude u = y/x or v = x/y as appropriate

1.6 Bernoulli's Equation

Form:

$$\frac{dy}{dx} + P(x)y = f(x)y^n$$

Test: $n \neq 0$ and $n \neq 1$

Solution:

- 1. Substitude $y=u^{1/(1-n)}$ and $\frac{dy}{dx}=\frac{d}{dx}(u^{1/(1-n)})$
- 2. Solve the resulting linear equation
- 3. Substitude $u = y^{1-n}$

1.7 Reduction to Separation of Variables

Form:

$$\frac{dy}{dx} = f(Ax + By + C), B \neq 0$$

Solution:

1. Substitute

$$Ax + By + C = u$$

- 2. Solve the resulting separable equation
- 3. Substitute

$$u = Ax + By + C$$

1.8 Riccati's Equation

Form:

$$\frac{dy}{dx} = P(x) + Q(x)y + R(x)y^2$$

Test: You know a particular solution y_1 of the equation **Solution:**

- 1. Substitute $y = y_1 + u$ and $y' = y'_1 + u'$
- 2. Solve the resulting Bernoulli equation
- 3. Substitude $u = y y_1$

2 Higher-order ODEs

Initial Value Problems

Form: *n*-th order IVP

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx_{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$

subject to

$$y(x_0) = y_0, y'(x_0) = y_1, \dots, y^{(n-1)}(x_0) = y_{n-1}$$

Test: $a_n(x), a_{n-1}(x), \ldots, a_0(x), \text{ and } g(x) \text{ are continuous on an interval } I \text{ and } I$ $a_n(x) \neq 0$ for every x in I

Property: A unique solution exists for every $x = x_0$ in I

2.2Linear Independence

Form: A set of functions $f_1, f_2, ..., f_n$ **Test:** The Wronskian $W(f_1, f_2, ..., f_n) \neq 0$ for every x in an interval I where

$$W(f_1, f_2, \dots, f_n) = \begin{vmatrix} f_1 & f_2 & \cdots & f_n \\ f'_1 & f'_2 & \cdots & f'_n \\ \vdots & \vdots & & \vdots \\ f_1^{(n-1)} & f_2^{(n-1)} & \cdots & f_n^{(n-1)} \end{vmatrix}$$

Property: The functions are linearly independent in I

2.3 Homogeneous Linear nth-Order Equations

The general solution is of the form

$$y = c_1 y_1 + c_2 y_2 + \dots + c_n y_n$$

where c_i are arbitrary constants and y_i are a fundamental set of solutions (i.e. a set of n linearly independent solutions).

2.4 Nonhomogeneous Linear nth-Order Equations

The general solution is of the form

$$y = y_c + y_p = c_1 y_1(x) + c_2 y_2(x) + \dots + c_n y_n(x) + y_p(x)$$

where y_c is the complementary function (i.e. the general solution of the associated homogeneous equation) and y_p is a particular solution.

2.5 Homogeneous Linear Second-Order Equations

Form:

$$y'' + P(x)y' + Q(x)y = 0$$

Test: A non-trivial solution $y_1(x)$ is known **Solution:**

1. Recognise that the ratio of two linearly independent functions isn't constant, i.e.

$$u(x) = \frac{y_1(x)}{y_2(x)}$$
 or $y_2(x) = u(x)y_1(x)$

- 2. Substitute $y_2(x) = u(x)y_1(x)$ into the DE this will result in a DE involving only u'' and u' which can be treated as a linear first-order DE in u' = w
- 3. Solve for w
- 4. Substitute w = u'
- 5. Integrate to find u
- 6. Multiply by y_1 to find y_2

or equivalently

$$y_2 = y_1(x) \int \frac{e^{-\int P(x) dx}}{y_1^2(x)} dx$$

2.6 Homogeneous Linear Equations with Constant Coefficients

Form:

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_1 y' + a_0 y = 0$$

Solution:

1. Assume the equation has a solution of the form $y = e^{mx}$, giving

$$a_n m^n e^{mx} + a_{n-1} m^{n-1} e^{mx} + \dots + a_1 m e^{mx} + a_0 e^{mx} = 0$$

2. Divide by e^{mx} , giving the auxiliary/characteristic equation

$$a_n m^n + a_{n-1} m^{n-1} + \dots + a_1 m + a_0 = 0$$

- 3. Solve for m, where
 - \bullet A real root m corresponds to a solution

$$y = ce^{mx}$$

• A complex root $\alpha + i\beta$ corresponds to a solution

$$y = e^{\alpha x} (c_1 \cos \beta x + c_2 \sin \beta x)$$

ullet A root m of multiplicity k corresponds to the solutions

$$e^{mx}, xe^{mx}, x^2e^{mx}, \dots, x^{k-1}x^{mx}$$