## Multiple inequalities

Created by Mr. Francis Hung on 20100201

Solve the following inequalities:

1.  $(x+2)(x-1) \le 0$ 



From the graph,  $y \le 0$  corresponds to  $x \le -2$  or  $1 \le x$ 

Class work 1

Solve the following quadratic inequalities:

$$1.1 \quad (y-3)(2y+3) > 0$$

1.2 (a) 
$$(1-z)(z-4) \ge 0$$

(b) Hence solve  $(1 - t^2)(t^2 - 4) \ge 0$ 

Last updated: 31 August 2021

2.  $(y+2)y(1-y) \le 0$ 

Multiple by −1 first.

$$(y+2)y(y-1) \ge 0$$



From the graph,  $z \ge 0$  corresponds to  $-2 \le y \le 0$  or  $1 \le y$ 

Class work 2

Solve the following inequalities:

2.1 
$$(x-2)(1-2x)(2-3x)(3-4x) \le 0$$

2.2 (a) 
$$(y+1)(2-y)(3-y) > 0$$

(b) Hence solve  $(\sqrt{t} + 1)(2 - \sqrt{t})(3 - \sqrt{t}) > 0$ 

3.  $x^2 - 2x - 1 < 0$  correct to 2 decimal places. Let  $x^2 - 2x - 1 = 0$ , x = 2.41 or -0.41 2 d.p.



From the graph,  $y \le 0$  corresponds to  $-0.41 \le x \le 2.41$ 

Class work 3

Solve the following inequalities:

$$3.1 \quad a^2 + 5a + 2 > 0$$

$$3.2 \quad (b-2)(5-b^2) > 0$$

Correct your answers to 3 significant figures.

4.  $x^2 - 2x - 1 > 0$  answer in surd form.  $x^2 - 2x - 1 = 0$ ,  $x = 1 - \sqrt{2}$  or  $1 + \sqrt{2}$ With the same graph as Q3  $x < 1 - \sqrt{2}$  or  $1 + \sqrt{2} < x$ 

Class work 4

Solve the following inequalities in surd form:

4.1 
$$x^2 - 4x - 1 \ge 0$$

$$4.2 \quad 1 - 4x - x^2 \ge 0$$

$$|4.3 \quad (1-4x-x^2)(x^2-4x-1) \ge 0$$

## $t^2 + 6t + 9 > 0$

Let 
$$y = t^2 + 6t + 9 = (t + 3)^2$$

The parabola opens upward and touches *t*-axis



From the graph, y > 0 corresponds to

$$t < -3 \text{ or } -3 < t$$

## $x^2 - x + 4 > 0$

Method 1 Let 
$$y = x^2 - x + 4$$

$$\Delta = (-1)^2 - 4(1)(4) = -15 < 0$$

The parabola opens upward and does not cut the x-axis.



From the graph, y > 0 corresponds to

All real numbers of *x* 

## $(x+2)^{31}x^{28}(x-3)^{53} \le 0$

Note that when x = -2, 0 or 3, the inequality | Solve the following inequalities: does not hold  $\therefore x \neq -2$ , 0 and 3

$$\frac{(x+2)^{31}x^{28}(x-3)^{53}}{(x+2)^{30}x^{28}(x-3)^{52}} < \frac{0}{(x+2)^{30}x^{28}(x-3)^{52}} < (x+2)(x-3) < 0$$
(The second is a writted)

(The graph is omitted)

$$-2 \le x \le 3$$
 and  $x \ne 0$ 

$$-2 < x < 0 \text{ or } 0 < x < 3$$

$$8 \qquad \frac{(x+2)^{21}}{(x-3)^{97}} \ge 0$$

Note that the inequality does not hold when 8.1

$$\frac{(x+2)^{21}}{(x-3)^{97}} \cdot \frac{(x-3)^{98}}{(x+2)^{20}} \ge 0 \cdot \frac{(x-3)^{98}}{(x+2)^{20}}$$

 $(x+2)(x-3) \ge 0, x \ne 3$ 

(The graph is omitted)

$$x \le -2$$
 or  $3 \le x$ 

Class work 5

Solve the following inequalities:

$$|5.1 \quad 4y^2 - 12y + 9 \le 0$$

$$|5.2 (y+2)(49y^2-28y+4)>0$$

Method 2 Completing the squares

$$x^{2} - x + \left(\frac{1}{2}\right)^{2} - \left(\frac{1}{2}\right)^{2} + 4 > 0$$

$$\left(x - \frac{1}{2}\right)^2 + \frac{15}{4} > 0$$

Always true

x can be any real numbers

Class work 6

Solve the following inequalities:

6.1 
$$-20-x^2+2x > 0$$
 by graphical method

$$|6.2 z^2 - 4z + 9 \ge 0$$
 by completing the squares

$$|6.3 (z^2 - 4z + 9)(3z^2 + 6z + 1)| > 0$$
 in surd form.

Class work 7

$$|7.1 (1-7t)^{99}(t-1)^{200}(3-2t)^{1002} \le 0$$

7.2 
$$(x+1)^{51}x^{20}(3x^2+47x-2)^{267} < 0$$
  
correct to 3 decimal places

Class work 8

Solve the following inequalities:

$$8.1 \quad \frac{4}{x} \ge 1 \\
8.2 \quad \frac{z-2}{z} \le \frac{z-1}{z} \\
8.3 \quad \frac{(x+1)^3 \cdot (x-1)^5}{x^{61}} \ge 0$$

$$8.5 \quad \frac{(x^6 - 2x^3 + 1)^3}{x^6 - 1} \le 0$$

$$8.6 \quad \frac{(x^3 + 1) \cdot (x-1)^2}{x^4 - 2x^2 + 1} > 0$$

$$8.7 \quad (x + \frac{1}{x})^2 > 2$$

8.4 
$$\frac{x}{x+2} > 1$$
 8.8  $(x + \frac{1}{x})^2 \ge 6$  in surd form.

- 1.1  $y < -\frac{3}{2}$  or 3 < y
- 1.2 (a)  $1 \le z \le 4$ 
  - (b)  $-2 \le t \le -1 \text{ or } 1 \le t \le 2$
- 2.1  $x < \frac{1}{2}$  or  $\frac{2}{3} < x < \frac{3}{4}$  or 2 < x
- 2.2 (a)  $-1 \le y \le 2 \text{ or } 3 \le y$ 
  - (b)  $0 \le t \le 4 \text{ or } 9 \le t$
- 3.1 a < -4.56 or -0.438 < a
- 3.2 b < -2.24 or 2 < b < 2.24
- 4.1  $x \le 2 \sqrt{5}$  or  $2 + \sqrt{5} \le x$
- 4.2  $-2-\sqrt{5} \le x \le -2+\sqrt{5}$
- 4.3  $-2-\sqrt{5} \le x \le 2-\sqrt{5}$  or  $-2+\sqrt{5} \le x \le 2+\sqrt{5}$
- 5.1  $y = \frac{3}{2}$
- 5.2  $-2 < y < \frac{2}{7}$  or  $\frac{2}{7} < y$
- 6.1 No solution
- 6.2 z can be all real numbers

6.3 
$$z < \frac{-3 - \sqrt{6}}{3}$$
 or  $\frac{-3 + \sqrt{6}}{3} < z$ 

7.1 
$$\frac{1}{7} < t < 1 \text{ or } 1 < t < \frac{3}{2} \text{ or } \frac{3}{2} < t$$

- 7.2 x < -15.709 or -1 < x < 0 or 0 < x < 0.042
- 8.1  $0 < x \le 4$
- 8.2 z > 0
- 8.3  $-1 \le x \le 0 \text{ or } 1 \le x$
- 8.4 x < -2
- 8.5  $-1 \le x \le 1$
- 8.6  $-1 \le x \le 1 \text{ or } 1 \le x$
- 8.7 x < 0 or x > 0

8.8 
$$x \le \frac{-\sqrt{2} - \sqrt{6}}{2}$$
 or  $\frac{\sqrt{2} - \sqrt{6}}{2} \le x < 0$  or  $0 < x \le \frac{\sqrt{6} - \sqrt{2}}{2}$  or  $x \le \frac{\sqrt{6} + \sqrt{2}}{2}$ 

1.1 
$$(y-3)(2y+3) > 0$$
  
  $y < -\frac{3}{2}$  or  $3 < y$ 

1.2 (a) 
$$(1-z)(z-4) \ge 0$$
  
 $(z-1)(z-4) \le 0$   
 $1 \le z \le 4$ 

(b) 
$$(1-t^2)(t^2-4) \ge 0$$
  
Let  $t^2 = z$ , then  $(1-z)(z-4) \ge 0$   
By  $(a)$ ,  $1 \le z \le 4$   
 $1 \le t^2 \le 4$   
 $-2 \le t \le -1$  or  $1 \le t \le 2$ 

2.1 
$$(x-2)(1-2x)(2-3x)(3-4x) < 0$$
  
 $(2x-1)(3x-2)(4x-3)(x-2) > 0$   
 $x < \frac{1}{2}$  or  $\frac{2}{3} < x < \frac{3}{4}$  or  $2 < x$ 

2.2 (a) 
$$(y+1)(2-y)(3-y) > 0$$
  
  $(y+1)(y-2)(y-3) > 0$   
  $-1 < y < 2 \text{ or } 3 < y$   
 (b)  $(\sqrt{t}+1)(2-\sqrt{t})(3-\sqrt{t}) > 0$   
 Let  $y = \sqrt{t}$ , then  $(y+1)(2-y)(3-y) > 0$ 

Let 
$$y = \sqrt{t}$$
, then  $(y+1)(2-y)(3-y)$   
By  $(a)$ ,  $-1 < y < 2$  or  $3 < y$   
 $-1 < \sqrt{t} < 2$  or  $3 < \sqrt{t}$   
 $0 \le \sqrt{t} < 2$  or  $3 < \sqrt{t}$   
 $0 \le t < 4$  or  $9 < t$ 

3.1 
$$a^2 + 5a + 2 > 0$$
  
Let  $a^2 + 5a + 2 = 0$   
 $a = -4.56$  or  $-0.438$  (correct to 3 sig. fig.)  
The solution is:  $a < -4.56$  or  $-0.438 < a$ 

3.2 
$$(b-2)(5-b^2) > 0$$
  
 $(b+\sqrt{5})(b-2)(b-\sqrt{5}) < 0$   
 $b < -2.24$  or  $2 < b < 2.24$ 

4.1 
$$x^2 - 4x - 1 \ge 0$$
  
Let  $x^2 - 4x - 1 = 0$   
 $x = 2 - \sqrt{5}$  or  $2 + \sqrt{5}$ 

The solution is  $x \le 2 - \sqrt{5}$  or  $2 + \sqrt{5} \le x$ 

4.2 
$$1-4x-x^2 \ge 0$$
  
 $x^2+4x-1 \le 0$   
Let  $x^2+4x-1=0$   
 $x=-2-\sqrt{5}$  or  $-2+\sqrt{5}$ 

The solution is  $-2 - \sqrt{5} \le x \le -2 + \sqrt{5}$ 

4.3 
$$(1-4x-x^2)(x^2-4x-1) \ge 0$$
  
 $(x+2+\sqrt{5})(x+2-\sqrt{5})(x-2+\sqrt{5})(x-2-\sqrt{5}) \le 0$   
 $-2-\sqrt{5} \le x \le 2-\sqrt{5}$  or  $-2+\sqrt{5} \le x \le 2+\sqrt{5}$ 

5.1 
$$4y^{2} - 12y + 9 \le 0$$
$$(2y - 3)^{2} \le 0$$
$$y = \frac{3}{2}$$

5.2 
$$(y+2)(49y^2 - 28y + 4) > 0$$
  
 $(y+2)(7y-2)^2 > 0$   
 $\frac{(y+2)(7y-2)^2}{(7y-2)^2} > \frac{0}{(7y-2)^2}, y \neq \frac{2}{7}$   
 $y+2 > 0 \text{ and } y \neq \frac{2}{7}$   
 $y > -2 \text{ and } y \neq \frac{2}{7}$   
 $-2 < y < \frac{2}{7} \text{ or } \frac{2}{7} < y$ 

6.1 
$$-20 - x^2 + 2x > 0$$
 by graphical method  $x^2 - 2x + 20 < 0$ 

$$\Delta = (-2)^2 - 4(1)(20) = -76 \le 0$$

The graph opens upwards and does not cut *x*-axis.

∴ Always false, no solution

6.2  $z^2 - 4z + 9 \ge 0$  by completing the squares  $z^2 - 4z + 4 + 5 \ge 0$ 

 $(z-2)^2 + 5 \ge 0$ 

Always true, z can be all real numbers

6.3 
$$(z^2 - 4z + 9)(3z^2 + 6z + 1) > 0$$
  
Let  $3z^2 + 6z + 1 = 0$   
 $z = \frac{-3 - \sqrt{6}}{2}$  or  $\frac{-3 + \sqrt{6}}{2}$ 

By 6.2, 
$$z^2 - 4z + 9$$
 is always positive.  

$$\frac{(z^2 - 4z + 9)(3z^2 + 6z + 1)}{z^2 - 4z + 9} > \frac{0}{z^2 - 4z + 9}$$

$$3z^2 + 6z + 1 > 0$$

The solution: 
$$z < \frac{-3 - \sqrt{6}}{3}$$
 or  $\frac{-3 + \sqrt{6}}{3} < z$ 

7.1 
$$(1-7t)^{99}(t-1)^{200}(3-2t)^{1002} < 0$$

$$\frac{(1-7t)^{99}(t-1)^{200}(3-2t)^{1002}}{(1-7t)^{98}(t-1)^{200}(3-2t)^{1002}} < \frac{0}{(1-7t)^{98}(t-1)^{200}(3-2t)^{1002}}$$

$$1-7t < 0, t \ne 1 \text{ and } t \ne \frac{3}{2}$$

$$\frac{1}{7} < t < 1 \text{ or } 1 < t < \frac{3}{2} \text{ or } \frac{3}{2} < t$$

7.2 
$$(x+1)^{51}x^{20}(3x^2+47x-2)^{267} < 0$$
  
When  $3x^2+47x-2=0$ ,  $x=0.042$ ,  $-15.709$  (3 d.p.)

$$\frac{(x+1)^{51}x^{20}(3x^2+47x-2)^{267}}{(x+1)^{50}x^{20}(3x^2+47x-2)^{266}} < \frac{0}{(x+1)^{50}x^{20}(3x^2+47x-2)^{266}} < \frac{0}{(x+1)^{50}x^{20}(3x^2+47x-2)$$

$$(x < -15.709 \text{ or } -1 < x < 0.042) \text{ and } x \neq 0$$
  
 $\therefore x < -15.709 \text{ or } -1 < x < 0 \text{ or } 0 < x < 0.042$ 

8.1 
$$\frac{4}{x} \ge 1, x \ne 0$$
$$\frac{4}{x} \cdot x^2 \ge x^2$$
$$4x \ge x^2$$
$$0 \ge x^2 - 4x = x(x - 4)$$
$$0 < x \le 4$$

8.2 
$$\frac{z-2}{z} \le \frac{z-1}{z}, z \ne 0$$

$$z^2 \cdot \frac{z-2}{z} \le z^2 \cdot \frac{z-1}{z}, z \ne 0$$

$$z(z-2) \le z(z-1), z \ne 0$$

$$0 \le z \text{ and } z \ne 0$$

$$0 < z$$

8.3 
$$\frac{(x+1)^3 \cdot (x-1)^5}{x^{61}} \ge 0, x \ne 0$$
$$\frac{x^{62}}{(x+1)^2 (x-1)^4} \cdot \frac{(x+1)^3 \cdot (x-1)^5}{x^{61}} \ge \frac{x^{62} \cdot 0}{(x+1)^2 (x-1)^4}$$
$$(x+1)x(x-1) \ge 0 \text{ and } x \ne 0$$

$$(x+1)x(x-1) \ge 0 \text{ and } x \ne 0$$
  
-1 \le x \le 0 \text{ or } 1 \le x

8.4 
$$\frac{x}{x+2} > 1, x \neq -2$$
  
 $(x+2)^2 \cdot \frac{x}{x+2} > (x+2)^2$   
 $x(x+2) > (x+2)^2$   
 $0 > 2(x+2)$   
 $x < -2$ 

8.5 
$$\frac{\left(x^{3}-1\right)^{3}}{x^{3}-1} \le 0$$

$$\frac{\left(x^{3}-1\right)^{6}}{\left(x^{3}-1\right)^{2}\left(x^{3}+1\right)^{2}} \le 0$$

$$\frac{\left(x^{3}-1\right)^{2}\left(x^{3}+1\right)^{2}}{\left(x^{3}-1\right)^{6}} \cdot \frac{\left(x^{3}-1\right)^{6}}{\left(x^{3}-1\right)^{2}\left(x^{3}+1\right)^{2}} \le \frac{\left(x^{3}-1\right)^{2}\left(x^{3}+1\right)^{2}}{\left(x^{3}-1\right)^{6}} \cdot \frac{\left(x^{3}-1\right)^{2}\left(x^{3}+1\right)^{2}}{\left(x^{3}-1\right)^{6}} \cdot \frac{\left(x^{3}-1\right)^{2}\left(x^{3}+1\right)^{2}}{\left(x^{3}-1\right)^{6}} \cdot \frac{\left(x^{3}-1\right)^{2}\left(x^{3}+1\right)^{2}}{\left(x^{3}-1\right)^{6}} \cdot \frac{\left(x^{3}+1\right)\left(x^{2}-1\right)}{\left(x^{4}-1\right)\left(x^{2}-1\right)} \le 1 \text{ and } x \ne -1$$

$$x^{2}-x+1=\left(x-\frac{1}{2}\right)^{2}+\frac{3}{4} > 0 \text{ for all } x.$$

$$x^{2}+x+1=\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4} > 0 \text{ for all } x.$$

$$\frac{\left(x+1\right)\left(x^{2}-x+1\right)\left(x-1\right)^{2}}{\left(x^{2}-x+1\right)\left(x^{2}+x+1\right)} \le \frac{0}{\left(x^{2}-x+1\right)\left(x^{2}+x+1\right)} \cdot \frac{(x+1)\left(x-1\right)^{2}}{\left(x^{2}-1\right)^{2}} > 0, x \ne \pm 1$$

$$x^{2}-x+1=\left(x-\frac{1}{2}\right)^{2}+\frac{3}{4} > 0 \text{ for all } x.$$

$$\frac{\left(x^{2}-1\right)^{2}}{\left(x^{2}-1\right)^{2}} \cdot \frac{\left(x+1\right)\left(x^{2}-x+1\right)\cdot\left(x-1\right)^{2}}{\left(x^{2}-1\right)^{2}} > \frac{0\cdot\left(x^{2}-1\right)^{2}}{\left(x^{2}-x+1\right)\left(x-1\right)^{2}} > 0, x \ne \pm 1$$

$$x^{2}-x+1=\left(x-\frac{1}{2}\right)^{2}+\frac{3}{4} > 0 \text{ for all } x.$$

$$\frac{\left(x^{2}-1\right)^{2}}{\left(x^{2}-1\right)^{2}} \cdot \frac{\left(x+1\right)\left(x^{2}-x+1\right)\cdot\left(x-1\right)^{2}}{\left(x^{2}-1\right)^{2}} > \frac{0\cdot\left(x^{2}-1\right)^{2}}{\left(x^{2}-x+1\right)\left(x-1\right)^{2}} > 0, x \ne \pm 1$$

$$x^{2}-x+1=\left(x-\frac{1}{2}\right)^{2}+\frac{3}{4} > 0 \text{ for all } x.$$

$$\frac{\left(x^{2}-1\right)^{2}}{\left(x^{2}-1\right)^{2}} > 0, x \ne \pm 1$$

$$x^{2}-x+1=\left(x-\frac{1}{2}\right)^{2}+\frac{3}{4} > 0 \text{ for all } x.$$

$$\frac{\left(x^{2}-1\right)^{2}}{\left(x^{2}-1\right)^{2}} > \left(x^{2}-1\right)^{2} > \frac{0\cdot\left(x^{2}-1\right)^{2}}{\left(x^{2}-x+1\right)\left(x-1\right)^{2}} > \frac{0\cdot\left$$