The Inverse of a Square Matrix

<u>Definition 8.</u> Two matrices are called mutually <u>inverse</u> if their product is the identity matrix. The inverse of the matrix A is denoted A^{-1} . Therefore, $\overline{AA^{-1}} = AA^{-1} = I$.

If $\det \mathbf{A} = 0$ then the inverse does not exist and the matrix \mathbf{A} is called *singular*.

Finding the Inverse Matrix

The Cofactor Method

- 1. Find the **determinant** of the given matrix **A**.
- 2. Find **all cofactors** of the given matrix.
- 3. Form the **cofactor matrix C** (replace all elements of the given matrix by their cofactors).
- 4. **Transpose** the cofactor matrix. The matrix C^T is called the *adjoint matrix* (often denoted adjA) of the given matrix.
- 5. The inverse of **A** is $\mathbf{A}^{-1} = \frac{1}{\det \mathbf{A}} \cdot \mathbf{C}^{T}$ or $\frac{1}{\det \mathbf{A}} \cdot \operatorname{adj} \mathbf{A}$.

The Inverse of a 2×2 Matrix:

Let $\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$; then the cofactors are $C_{11} = d$, $C_{12} = -c$, $C_{21} = -b$, $C_{22} = a$ and the cofactor matrix is

$$\mathbf{C} = \begin{pmatrix} d & -c \\ -b & a \end{pmatrix} \text{ and the adjoint matrix } \mathbf{C}^{T} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}. \text{ Therefore } \mathbf{A}^{-1} = \frac{1}{\det \mathbf{A}} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

$$\mathbf{Example 1}. \text{ Find the inverse matrix } \mathbf{A}^{-1} \text{ if the matrix } \mathbf{A} = \begin{bmatrix} 2 & 3 & -1 \\ 4 & 0 & 5 \\ -2 & -1 & 2 \end{bmatrix}.$$

$$1. \quad \det \mathbf{A} = \begin{vmatrix} 2 & 3 & -1 \\ 4 & 0 & 5 \\ -2 & -1 & 2 \end{vmatrix} = -40$$

$$\mathbf{C} \text{ of actors } \text{ (it is a divised to release the sefectors on ways recessing an arrival property of the second of the se$$

1.
$$\det \mathbf{A} = \begin{vmatrix} 2 & 3 & -1 \\ 4 & 0 & 5 \\ -2 & -1 & 2 \end{vmatrix} = -40$$

Cofactors (it is advised to place the cofactors on your page in an order corresponding to their indices):

$C_{11} = \begin{vmatrix} 0 & 5 \\ -1 & 2 \end{vmatrix} = 5$	$C_{12} = - \begin{vmatrix} 4 & 5 \\ -2 & 2 \end{vmatrix} = -18$	$C_{13} = \begin{vmatrix} 4 & 0 \\ -2 & -1 \end{vmatrix} = -4$
$\begin{vmatrix} C_{21} = -\begin{vmatrix} 3 & -1 \\ -1 & 2 \end{vmatrix} = -5$	$C_{22} = \begin{vmatrix} 2 & -1 \\ -2 & 2 \end{vmatrix} = 2$	$\begin{vmatrix} C_{23} = -\begin{vmatrix} 2 & 3 \\ -2 & -1 \end{vmatrix} = -4$
$C_{31} = \begin{vmatrix} 3 & -1 \\ 0 & 5 \end{vmatrix} = 15$	$C_{32} = - \begin{vmatrix} 2 & -1 \\ 4 & 5 \end{vmatrix} = -14$	$C_{33} = \begin{vmatrix} 2 & 3 \\ 4 & 0 \end{vmatrix} = -12$

3. | Cofactor matrix |
$$\mathbf{C} = \begin{pmatrix} 5 & -18 & -4 \\ -5 & 2 & -4 \\ 15 & -14 & -12 \end{pmatrix}$$
 | ; 4. Adjoint matrix: | $\mathbf{adjA} = \mathbf{C}^T = \begin{pmatrix} 5 & -5 & 15 \\ -18 & 2 & -14 \\ -4 & -4 & -12 \end{pmatrix}$ | 5. | Inverse matrix | $\mathbf{A}^{-1} = -\frac{1}{40} \begin{pmatrix} 5 & -5 & 15 \\ -18 & 2 & -14 \\ -4 & -4 & -12 \end{pmatrix} = \begin{pmatrix} -0.125 & 0.125 & -0.375 \\ 0.45 & -0.05 & 0.35 \\ 0.1 & 0.1 & 0.3 \end{pmatrix}$ | $\mathbf{Example 2}$. To find the inverse of | $\mathbf{B} = \begin{pmatrix} 4 & -5 \\ 2 & -3 \end{pmatrix}$ | , $\mathbf{detB} = -2$ and | $\mathbf{B}^{-1} = \frac{1}{-2} \begin{pmatrix} -3 & 5 \\ -2 & 4 \end{pmatrix} = \begin{pmatrix} 1.5 & -2.5 \\ 1 & -2 \end{pmatrix}$

5. | Inverse matrix
$$\mathbf{A}^{-1} = -\frac{1}{40} \begin{pmatrix} 5 & -5 & 15 \\ -18 & 2 & -14 \\ -4 & -4 & -12 \end{pmatrix} = \begin{pmatrix} -0.125 & 0.125 & -0.375 \\ 0.45 & -0.05 & 0.35 \\ 0.1 & 0.1 & 0.3 \end{pmatrix}$$

The Row Reduction Method of Finding Inverse Matrix

We will work with a 'double matrix' (A | I). It can be shown that the same row operations that transform the matrix **A** into the identity matrix **I**, will transform **I** into A^{-1} : $(A \mid I) \rightarrow (I \mid A^{-1})$.

Operations allowed:

- 1. Exchanging two rows
- 2. Dividing/multiplying a row by a nonzero number
- 3. Adding a multiple of one row to another

1.4 Page 1 Notice that the operations are the same we could perform when changing the determinants into diagonal form. However,

- In the *determinant* the first two operations changed its value; for the inverse matrix we do *not* consider the changes in the determinant.
- In the determinant, similar operations are allowed for columns; here it is strictly *rows only*.

We **aim** to obtain the identity matrix **I** on the left-hand side of the double matrix; don't forget to perform the same operations with the right-hand side.

Exercise 4.

- **1.** Find the inverse matrices of (a) $\begin{pmatrix} 1 & -3 \\ -2 & 5 \end{pmatrix}$ (b) $\begin{pmatrix} -2 & 3 \\ 6 & -8 \end{pmatrix}$ (c) $\begin{pmatrix} 4 & 2 \\ -3 & 1 \end{pmatrix}$
- **2**. Find the inverse matrices:

$$(a) \begin{pmatrix} 1 & 2 & -1 \\ 2 & 5 & 1 \\ 3 & 6 & -2 \end{pmatrix} (b) \begin{pmatrix} 1 & 3 & -2 \\ -1 & -5 & 6 \\ 2 & 6 & -3 \end{pmatrix} (c) \begin{pmatrix} 1 & 2 & -1 \\ 2 & 6 & 1 \\ 3 & 6 & -4 \end{pmatrix} (d) \begin{pmatrix} 2 & 1 & -1 \\ 6 & 4 & -1 \\ 4 & 2 & -3 \end{pmatrix} (e) \begin{pmatrix} 2 & 4 & -4 \\ 1 & 3 & -4 \\ 2 & 4 & -3 \end{pmatrix} (f) \begin{pmatrix} 1 & -2 & 2 \\ 2 & -3 & 1 \\ 3 & -6 & 6 \end{pmatrix}$$

$$(g) \begin{pmatrix} 2 & -1 & 0 \\ 1 & -3 & 4 \\ 3 & -2 & 1 \end{pmatrix} (h) \begin{pmatrix} 2 & 3 & -4 \\ 3 & 2 & -4 \\ 3 & 3 & -5 \end{pmatrix} (i) \begin{pmatrix} 1 & -1 & 1 \\ -3 & 1 & 2 \\ 1 & 2 & -6 \end{pmatrix} (j) \begin{pmatrix} 3 & -2 & -4 \\ 2 & 0 & -1 \\ -4 & 1 & 4 \end{pmatrix} (k) \begin{pmatrix} -2 & 0 & 2 \\ 1 & 2 & 2 \\ -2 & 1 & 4 \end{pmatrix}$$

- **3.** Show that $\mathbf{N} = \mathbf{M}^2 8\mathbf{I}$ is the inverse of the matrix $\mathbf{M} = \begin{pmatrix} 3 & 2 & 2 \\ 1 & -2 & 1 \\ -1 & 1 & -1 \end{pmatrix}$.
- **4.** Given $\mathbf{C} = \begin{pmatrix} 2 & 3 & -4 \\ 3 & 2 & -4 \\ 3 & 3 & -5 \end{pmatrix}$, evaluate \mathbf{C}^2 and find \mathbf{C}^{-1} .
- **5.** Consider the matrices $\mathbf{A} = \begin{pmatrix} 7 & 8 \\ 6 & 7 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 3 & -2 \\ 4 & -3 \end{pmatrix}$.
 - Find (a) A^{-1}
- (b) B^{-1}
- (c) $A^{-1}B^{-1}$
- (d) $B^{-1}A^{-1}$

- (e) **AB** and (**AB**)-1
- (f) BA and $(BA)^{-1}$.

1.04 Page 2

ANSWERS

1. (a)
$$\frac{1}{-1} \begin{pmatrix} 5 & 3 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} -5 & -3 \\ -2 & -1 \end{pmatrix}$$
 (b) $\begin{pmatrix} 4 & 1.5 \\ 3 & 1 \end{pmatrix}$ (c) $\begin{pmatrix} 0.1 & -0.2 \\ 0.3 & 0.4 \end{pmatrix}$

2. (a)
$$\det \mathbf{A} = 1$$
; $\mathbf{A}^{-1} = \begin{pmatrix} -16 & -2 & 7 \\ 7 & 1 & -3 \\ -3 & 0 & 1 \end{pmatrix}$ (b) $\det \mathbf{A} = -2$; $\mathbf{A}^{-1} = \begin{pmatrix} 10.5 & 1.5 & -4 \\ -4.5 & -0.5 & 2 \\ -2 & 0 & 1 \end{pmatrix}$ (c) $\det \mathbf{A} = -2$; $\mathbf{A}^{-1} = \begin{pmatrix} 15 & -1 & -4 \\ -5.5 & 0.5 & 1.5 \\ 3 & 0 & -1 \end{pmatrix}$

(d)
$$\det \mathbf{A} = -2$$
; $\mathbf{A}^{-1} = \begin{pmatrix} 5 & -0.5 & -1.5 \\ -7 & 1 & 2 \\ 2 & 0 & -1 \end{pmatrix}$ (e) $\det \mathbf{A} = 2$; $\mathbf{A}^{-1} = \begin{pmatrix} 3.5 & -2 & -2 \\ -2.5 & 1 & 2 \\ -1 & 0 & 1 \end{pmatrix}$ (f) $\det \mathbf{A} = 0$; singular matrix, no inverse

(g)
$$\mathbf{A}^{-1} = \begin{pmatrix} -5 & -1 & 4 \\ -11 & -2 & 8 \\ -7 & -1 & 5 \end{pmatrix}$$
 (h) $\mathbf{C}^{-1} = \begin{pmatrix} 2 & 3 & -4 \\ 3 & 2 & -4 \\ 3 & 3 & -5 \end{pmatrix} = \mathbf{C}$ (i) $\mathbf{A}^{-1} = \begin{pmatrix} 10 & 4 & 3 \\ 16 & 7 & 5 \\ 7 & 3 & 2 \end{pmatrix}$

(j)
$$\det \mathbf{A} = 3$$
; $\mathbf{A}^{-1} = \begin{pmatrix} \frac{1}{3} & \frac{4}{3} & \frac{2}{3} \\ -\frac{4}{3} & -\frac{4}{3} & -\frac{5}{3} \\ \frac{2}{3} & \frac{5}{3} & \frac{4}{3} \end{pmatrix}$ (k) $\det \mathbf{A} = -2$; $\mathbf{A}^{-1} = \begin{pmatrix} -3 & -1 & 2 \\ 4 & 2 & -3 \\ -2.5 & -1 & 2 \end{pmatrix}$

3.
$$\mathbf{M}^2 = \begin{pmatrix} 9 & 4 & 6 \\ 0 & 7 & -1 \\ -1 & -5 & 0 \end{pmatrix}; \quad \mathbf{N} = \begin{pmatrix} 9 & 4 & 6 \\ 0 & 7 & -1 \\ -1 & -5 & 0 \end{pmatrix} - \begin{pmatrix} 8 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 8 \end{pmatrix} = \begin{pmatrix} 1 & 4 & 6 \\ 0 & -1 & -1 \\ -1 & -5 & -8 \end{pmatrix};$$

N=M-1 if **MN=I**: check that
$$\begin{pmatrix} 3 & 2 & 2 \\ 1 & -2 & 1 \\ -1 & 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 4 & 6 \\ 0 & -1 & -1 \\ -1 & -5 & -8 \end{pmatrix} = \mathbf{I}$$

4. $C^2=I$, therefore $C = C^{-1}$.

5. (a)
$$\mathbf{A}^{-1} = \begin{pmatrix} 7 & -8 \\ -6 & 7 \end{pmatrix}$$
 (b) $\mathbf{B}^{-1} = \begin{pmatrix} 3 & -2 \\ 4 & -3 \end{pmatrix}$ (c) $\mathbf{A}^{-1}\mathbf{B}^{-1} = \begin{pmatrix} -11 & 10 \\ 10 & -9 \end{pmatrix}$ (d) $\mathbf{B}^{-1}\mathbf{A}^{-1} = \begin{pmatrix} 33 & -38 \\ 46 & -53 \end{pmatrix}$

(e)
$$\mathbf{AB} = \begin{pmatrix} 53 & -38 \\ 46 & -33 \end{pmatrix}$$
 (f) $(\mathbf{AB})^{-1} = \begin{pmatrix} 33 & -38 \\ 46 & -53 \end{pmatrix}$ (f) $\mathbf{BA} = \begin{pmatrix} 9 & 10 \\ 10 & 11 \end{pmatrix}$, $(\mathbf{BA})^{-1} = \begin{pmatrix} -11 & 10 \\ 10 & -9 \end{pmatrix}$

Page 3