Energy Band Theory

Y. Yin

Course Structure

- Part A: Introduction to Modelling
- Part B: Monte Carlo Simulations
- Part C: Density Functional Theory (DFT) Calculations
 - Energy Band Theory
 - Density Functional Theory (2 Parts)
 - Softwares for DFT (2 Parts)
 - Applications of DFT in MSE

- Tutorial 3: Constructing Atomic Models and Visualization
- Introduction to High Performance Computing

Solid State Physics

- This lecture is only a brief introduction to band theory and by no means comprehensive. If you need to understand more on the theories in today's lecture, please refer to the following books:
- C. Kittel, Introduction to Solid State Physics, 8th Edition.
- D. Ashcroft and N. Mermin, Solid State Physics

Electrons in Solids

- Let's begin with metals.
 - Metallic state is favored by elements.
 - The bonds that bind the metal together are rather unidirectional. By contrast, ionic and covalent bonds are more directional bonds.
 - There is a lot of "empty space" in metals. The ionic radius of metals is much larger than the ionic radius, leaving a great deal of volume for conduction electrons to move around.

Metals

 An array of widely spaced, small ionic cores, with the mobile valence electrons spread through the volume between.

Drude Model

- Proposed in 1900 by Paul Drude to explain the transport properties of materials (especially metals).
- Consider metal to be formed of a mass of positively charged ions and a number of "free electrons".
- A *collision* indicates the scattering of an electron (and only by) and ionic core.
- Between collisions, electron do not interact with each other.
- Electron achieve thermal equilibrium with their surroundings only through *collisions*.)

Failure of Drude Model

- Attempts to use classical theory to understand electron transport
- Drude model predicts the electronic heat capacity independent of temperature (but experiments show C ~ T)
- Drude model severely underestimate the thermal conductivity.
- Can not explain complex electromagnetic behavior such as Hall effect.
- We can not treat electrons simply as molecules of a classical gas.

Free Electron Model (Sommerfeld Model)

- Developed by Arnold Sommerfeld and combined classic model (Drude) with quantum mechanical Fermi-Dirac statistics
- Inherit the basic assumptions of Drude model (electron-electron interactions completely neglected)
- Electron motion now described in wave function and solved by Schodinger Equation
- The electron energy statistics described by Fermi-Dirac distribution.

Wavefunction

- The dual behavior of the nuclei and electrons can be described by a function called a wave function ψ(r). This really just describes the electron orbitals.
- The norm of a wavefunction tells us the probability of finding the subatomic particle in a given region of space

Failure of Sommerfeld Model

- Although thermal properties now can be appropriately described, electromagnetic behavior still can not be explained.
- Most importantly, the model is not applicable to insulators and semiconductors.

Bloch's Theorem: Electron Motion in A Periodic Lattice

- The potential energy of an electron in crystalline solids has a perfect periodicity.
- V(r+T) = V(r)
- Bloch's theorem states that the solution to the Schrodinger equation for electrons within a periodic potential has the form
- ψ (r) = $u(r)\exp(ik \cdot r)$
- u(r) is a function with the periodicity of the real-space Bravis lattice.
- Bloch's theorem is the underlying foundation of solving electronic structure in a crystalline lattice.

Reciprocal Space (k space)

- Fourier transform of real lattice
- Defined by exp(iK*R)=1, where K is the reciprocal lattice vector and R is the real lattice vector.
- Reciprocal lattice lets us conveniently write the wavefunction in the form of a sum of plane waves.
- The points in reciprocal space reflects the periodicity in real space (Recall Bragg's Law, and the relationship d(hkl)=2π/|G|.

$$\vec{b}_1 = 2\pi \frac{\vec{a}_2 \times \vec{a}_3}{\vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3)}$$

$$\vec{b}_2 = 2\pi \frac{\vec{a}_3 \times \vec{a}_1}{\vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3)}$$

$$\vec{b}_3 = 2\pi \frac{\vec{a}_1 \times \vec{a}_2}{\vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3)}$$

First Brillouin Zone

- Wigner-Seitz Cell of the reciprocal lattice (also primitive cell in the reciprocal lattice)
- Contains a set of points that can be reached from origin without crossing any Bragg plane.

First Brillouin Zone

- The Bragg's law can be written in terms of primitive reciprocal lattice vector by k'-k=g
- Further transform to $k \cdot 1/2g = 1/2g \cdot 1/2g$
- Any wavevector drawn from origin to the Bragg plane satisfies Bragg's law.
- These Bragg's planes defines the boundary of 1st Brillouin zone
- 1st Brillouine zone therefore contains all symmetry of a crystalline lattice
- Later, we'll see electronic structure of a periodic lattice is contained in 1st Brillouin zone.

Near Free Electron Model

- Constructed to respond to "how electron moves in a periodic structure"
- Electron still "free" within each order of Bragg planes.
- Energy discontinuity rises at the Bragg planes (boundary of Brillouin zones) due to electron diffraction.
- This discontinuity creates "energy band" and "band gap".

Band Structure in Three Dimensions

- Band structure: electron energy dispersion in k-space
- Normally we plot along the boundary of 1st Brillouin Zone to reflect crystalline periodicity.
- Electronic structure at higher Brillouin zone is folded back to 1st by symmetry.
- Band structure serves as a key link between its crystal structure and physical properties.

Band Structure of Different Materials

Depend on how electrons occupy these energy levels

Part C: Density Functional Theo	OI
---------------------------------	----

Coming up: DFT

How do we use computational modelling to obtain electronic structures?

Summary

- Models to describe electron motion in solids: Drude, Sommerfeld, NFE
- Reciprocal lattice and Brillouin zone
- Bloch theorem
- Band structure diagrams

