140C Summary of Definitions and Results - Part

II

1 Lebesgue Theory

1.1 Set functions

Definition 1.1 A family of sets R is called a ring if

$$A, B \in \mathcal{R} \implies A \cup B \in \mathcal{R} \text{ and } A \setminus B \in \mathcal{R}.$$

Thus, a ring is closed under finite unions and set differences (as well as finite intersections).

Definition 1.2 A σ -ring is a ring that is also closed under countable unions, i.e.,

$$A_n \in \mathcal{R}, n = 1, 2, \dots \implies \bigcup_n A_n \in \mathcal{R}.$$

It can be deduced that a σ -ring is also closed under countable intersections.

Definition 1.3 A set function on a ring (or σ -ring) assigns to every element of \mathcal{R} a number (in the extended reals).

Definition 1.4 A set function f is additive if for disjoint sets $A, B \in \mathcal{R}$,

$$f(A \cup B) = f(A) + f(B).$$

Definition 1.5 A set function f is countably additive if for disjoint sets $A_i \in \mathcal{R}$, i = 1, 2, ...

$$f(\cup A_i) = \sum_{i=1}^{\infty} f(A_i).$$

Theorem 1.6 Suppose f is a countably additive function on a σ -ring \mathcal{R} . Let $A_n \in \mathcal{R}, n = 1, 2, ...$ with $A_1 \subset A_2 \subset ...$ and suppose that $A := \bigcup_{n=1}^{\infty} A_n \in \mathcal{R}$.

Then

$$\lim_{n \to \infty} f(A_n) = f(A).$$

1.2 Construction of the Lebesgue measure

Definition 1.7 An interval in \mathbb{R}^p is a set of the form $I = [a_1, b_1] \times ... \times [a_p, b_p]$.

Definition 1.8 An elementary set is a finite union of intervals.

Definition 1.9 For an interval I, define the set function m, via

$$m(I) := \prod_{i=1}^{p} (b_i - a_i).$$

Definition 1.10 For a finite disjoint union of intervals I_i , set

$$m(\bigcup_{i=1}^{n} I_i) := \sum_{i=1}^{n} m(I_i).$$

Definition 1.11 Denote by \mathcal{E} the collection of all elementary subsets of \mathbb{R}^p

Remark 1.12 \mathcal{E} is a ring, but not a σ -ring. Elements of \mathcal{E} can be decomposed as finite, disjoint unions of intervals.

Remark 1.13 The function m defined above is additive on \mathcal{E} .

Definition 1.14 (Regularity) A non-negative, additive set function f defined on \mathcal{E} is regular if

 $\forall A \in \mathcal{E}, \epsilon > 0, \exists F, G, \in \mathcal{E}, \text{ where } F \text{ is closed and } G \text{ is open,}$

and

$$F \subset A \subset G$$
,

with

$$f(G) - \epsilon \le f(A) \le f(F) + \epsilon$$
.

Example 1.15 The set function m defined above is regular on \mathcal{E} .

Definition 1.16 (Outer measure) Let μ be a non-negative, additive, finite, regular set function defined on \mathcal{E} . The outer measure of $E \subset \mathbb{R}^p$ is given by

$$\mu^*(E) = \inf \sum_{n=1}^{\infty} \mu(A_n)$$

where the infimum is taken over all countable covers of E by elementary open sets.

Fact 1.17 The following are simple to deduce from the definition:

$$\mu^*(E) \ge 0,$$

$$E_1 \subset E_2 \implies \mu^*(E_1) \le \mu^*(E_2).$$

Theorem 1.18 Let μ be finite, non-negative, additive, regular, then μ^* agrees with μ on elementary sets, and it is countably sub-additive. That is,

(a)
$$A \in \mathcal{E} \implies \mu^*(A) = \mu(A)$$
,

(b)
$$E = \bigcup_{i=1}^{\infty} E_i \implies \mu^*(E) \le \sum_{i=1}^{\infty} \mu^*(E_i).$$

Definition 1.19 (Convergence) We say that a sequence of sets A_n converges to A if

$$\lim_{n \to \infty} d(A, A_n) = 0,$$

where for two sets A and B we define

$$d(A,B) := \mu^* ((A \setminus B) \cup (B \setminus A)).$$

Notice that the notion of covergence above depends on the choice of μ .

Definition 1.20 (Finitely μ -measurable sets) If there is a sequence of elementary sets converging to A, we say A is finitely μ -measurable; we write $A \in \mathcal{M}_F(\mu)$.

Definition 1.21 (\mu-measurable sets) If A is a countable union of finitely μ -measurable sets, we say that A is μ -measurable; we write $A \in \mathcal{M}(\mu)$.

Theorem 1.22 $\mathcal{M}(\mu)$ is a σ -ring and μ^* is countably additive on $\mathcal{M}(\mu)$.

Thus we may now replace $\mu^*(A)$ by $\mu(A)$ – and we can call μ a measure. When $\mu = m$, we call it the Lebesgue measure.

Definition 1.23 A Borel set is a set that can be obtained via countable unions, countable intersections, and/or set differences, complements, of open sets.

Remark 1.24 The collection of Borel sets in \mathbb{R}^p is a σ -ring. In fact, it is the smallest σ -ring containing all open sets.

Remark 1.25 Every $A \in \mathcal{M}(\mu)$ is the union of a Borel set and a set of measure zero.

2 Measure spaces

Definition 2.1 Let X be some set. If there exists a σ -ring \mathcal{M} of subsets of X (called measurable sets) and a non-negative countable additive set function μ (called a measure) defined on μ , then X is called a measure space. We often write (X, \mathcal{M}, μ) to identify the σ -ring and measure associated with X.

Definition 2.2 We say that a function f defined on a measurable space \mathcal{M} is measurable if

$$\{x|f(x) > a\}$$

is measurable (i.e., belongs to \mathcal{M}) for all a.

Theorem 2.3 The following are equivalent:

- $\{x|f(x) > a\}$ is measurable for all real a.
- $\{x|f(x) \ge a\}$ is measurable for all real a.
- $\{x|f(x) < a\}$ is measurable for all real a.
- $\{x|f(x) \leq a\}$ is measurable for all real a.

Theorem 2.4 The inf, sup, liminf, and limsup of a sequence of measurable functions are measurable. The limit of a converging sequence of measurable functions is measurable.

Theorem 2.5 Suppose that f and g are measurable functions, then

- \bullet | f| is also measurable
- $\max(f,g)$, $\min(f,g)$, $f^+ = \max(f,0)$, $f^- = -\min(f,0)$ are measurable.

Theorem 2.6 If f, g are measurable real-valued functions on X, and $F : \mathbb{R}^2 \to \mathbb{R}$ is continuous, then h defined via

$$h(x) = F(f(x), g(x)), x \in X$$

is measurable. For example, this implies the sum and product of measurable functions is measurable.

Remark 2.7 Notice that the way we define measurable functions does not really require a measure, only a σ -ring \mathcal{M} .