1. Intro to Colab & Language Models

Colin Wang

Slides based on those of Austin W., Jens T., Ameet D., Chris S., and everyone else they based theirs on

Logistics

- Precepts are Fridays, 10-10:50am, 11-11:50am, CS 105 (Optional but useful)
- Course Website: princeton-nlp.github.io/cos484
- Office Hours:
 - Monday: 11-1, 2-3
 - Tuesday: 2-4, 4:30-6:30
 - Wednesday: 11-12
 - Thursday: 10-12, 2:30-4:30
 - Friday: 1-2, 2-4
- All assignments should be done on Colab! To maximize OH efficiency we will not be debugging problems with incompatible local Jupyter instances.

Today's Topics

- 1. Google Colab walkthrough (10 min)
- 2. Lecture review: language models (35 min)

Google Colab Demo

Useful Resources

- Working with Colab
- Working with LaTeX
- Submitting Assignments
- Feel free to post any issues with any of these on Ed!

Definition: A language model is a probabilistic model over sequences of words (tokens).

More explicitly, a probability over a sequence is the joint probability of the tokens $P(w_1, w_2, ..., w_n)$

Definition: A language model is a probabilistic model over sequences of words (tokens).

More explicitly, a probability over a sequence is the joint probability of the tokens $P(w_1, w_2, ..., w_n)$

We can decompose this using the chain rule:

$$P(w_1, w_2, ..., w_n) = P(w_1) \cdot P(w_2 | w_1) \cdot P(w_3 | w_1, w_2) \cdot ... \cdot P(w_n | w_1, ..., w_{n-1})$$

Given an (ideally very large) sequence of words (called a corpus) how do we set $P(w_n | w_1, ..., w_{n-1})$?

Definition: A language model is a probabilistic model over sequences of words (tokens).

More explicitly, a probability over a sequence is the joint probability of the tokens $P(w_1, w_2, ..., w_n)$

We can decompose this using the chain rule:

$$P(w_1, w_2, ..., w_n) = P(w_1) \cdot P(w_2 | w_1) \cdot P(w_3 | w_1, w_2) \cdot ... \cdot P(w_n | w_1, ..., w_{n-1})$$

Given an (ideally very large) sequence of words (called a corpus) how do we set $P(w_n | w_1, ..., w_{n-1})$?

Why not let $P(w_n | w_1, ..., w_{n-1}) = 1$ for w_n with the max count from the corpus, 0 for all other words and then apply smoothing?

Definition: A language model is a probabilistic model over sequences of words (tokens).

More explicitly, a probability over a sequence is the joint probability of the tokens $P(w_1, w_2, ..., w_n)$

We can decompose this using the chain rule:

$$P(w_1, w_2, ..., w_n) = P(w_1) \cdot P(w_2 | w_1) \cdot P(w_3 | w_1, w_2) \cdot ... \cdot P(w_n | w_1, ..., w_{n-1})$$

Given an (ideally very large) sequence of words (called a corpus) how do we set $P(w_n | w_1, ..., w_{n-1})$?

Why not let $P(w_n | w_1, ..., w_{n-1}) = 1$ for w_n with the max count from the corpus, 0 for all other words and then apply smoothing?

MLE Principle: We want to set $P(w_n | w_1, ..., w_{n-1})$ such that the probability of the corpus is maximized! \rightarrow perplexity is minimized

Definition: A language model is a probabilistic model over sequences of words (tokens).

More explicitly, a probability over a sequence is the joint probability of the tokens $P(w_1, w_2, ..., w_n)$

We can decompose this using the chain rule:

$$P(w_1, w_2, ..., w_n) = P(w_1) \cdot P(w_2 | w_1) \cdot P(w_3 | w_1, w_2) \cdot ... \cdot P(w_n | w_1, ..., w_{n-1})$$

This is the provable way to set the probabilities so corpus perplexity is minimized:

$$P(w_3 | w_1, w_2) \leftarrow \frac{\text{Count}(w_1, w_2, w_3)}{\text{Count}(w_1, w_2)}$$

where $Count(w_1, w_2, w_3)$ is the number of times the sequence " $w_1w_2w_3$ " occurs in the corpus.

Definition: A language model is a probabilistic model over sequences of words (tokens).

More explicitly, a probability over a sequence is the joint probability of the tokens $P(w_1, w_2, ..., w_n)$

We can decompose this using the chain rule:

$$P(w_1, w_2, ..., w_n) = P(w_1) \cdot P(w_2 | w_1) \cdot P(w_3 | w_1, w_2) \cdot ... \cdot P(w_n | w_1, ..., w_{n-1})$$

How to evaluate a language model?

Definition: A language model is a probabilistic model over sequences of words (tokens).

More explicitly, a probability over a sequence is the joint probability of the tokens $P(w_1, w_2, ..., w_n)$

We can decompose this using the chain rule:

$$P(w_1, w_2, ..., w_n) = P(w_1) \cdot P(w_2 | w_1) \cdot P(w_3 | w_1, w_2) \cdot ... \cdot P(w_n | w_1, ..., w_{n-1})$$

How to evaluate a language model? For a test corpus S with n words $w_1, w_2, ..., w_n$

$$ppl(S) = P(w_1, \dots, w_n)^{-1/n} = \exp\left(-\frac{1}{n} \sum_{i=1}^n \log P(w_i | w_1, \dots, w_{i-1})\right)$$

where n is the total number of words in the corpus

Lower perplexity means the model accurately describes the corpus. Intuitively, you can think of perplexity as the **average branching factor** (i.e. between how many words is the model choosing when predicting the next word).

Intuition on perplexity

If our k-gram model (with vocabulary V) has following probability:

$$P(w | w_{i-k}, \dots w_{i-1}) = \frac{1}{|V|} \quad \forall w \in V$$

 $P(w | w_{i-k}, \dots w_{i-1}) = \frac{1}{|V|} \quad \forall w \in V$ $x = -\frac{1}{n} \sum_{i=1}^{n} \log P(w_i | w_1 \dots w_{i-1})$

what is the perplexity of the test corpus?

A)
$$e^{|V|}$$

B)
$$|V|$$
 C) $|V|^2$ D) $e^{-|V|}$

D)
$$e^{-|V|}$$

$$ppl = e^{-\frac{1}{n}n\log(1/|V|)} = |V|$$

Measure of model's uncertainty about next word (aka `average branching factor')

branching factor = # of possible words following any word

Calculating the probabilities exactly for every sequence is infeasible because of the sheer number of possible sequences ($|V|^n$)

Impossible for training corpus to have counts for every conceivable $Count(w_1, w_2, \ldots, w_n)$

Calculating the probabilities exactly for every sequence is **infeasible** because of the sheer number of possible sequences $(|V|^n)$

Impossible for training corpus to have counts for every conceivable $Count(w_1, w_2, \ldots, w_n)$

We approximate using the Markov assumption:

1st order approximation:

$$P(w_n | w_1, w_2, ..., w_{n-1}) \approx P(w_n | w_{n-1})$$

2nd order approximation:

$$P(w_n | w_1, w_2, ..., w_{n-1}) \approx P(w_n | w_{n-2}, w_{n-1})$$

kth order approximation:

$$P(w_n | w_1, w_2, ..., w_{n-1}) \approx P(w_n | w_{n-k}, ..., w_{n-2}, w_{n-1})$$

An n-gram language model is an $(n-1)^{th}$ order Markov approximation:

An n-gram language model is an $(n-1)^{th}$ order Markov approximation:

Unigram (1 - gram) model:

$$P(w_1, w_2, ..., w_n) \approx P(w_1)P(w_2)...P(w_n) = \prod_{i=1}^n P(w_i)$$

An n-gram language model is an $(n-1)^{th}$ order Markov approximation:

Unigram (1 - gram) model:

$$P(w_1, w_2, ..., w_n) \approx P(w_1)P(w_2)...P(w_n) = \prod_{i=1}^{n} P(w_i)$$

Bigram (2-gram) model:

$$P(w_1, w_2, ..., w_n) \approx P(w_1)P(w_2 | w_1)...P(w_n | w_{n-1}) = \prod_{i=1}^n P(w_i | w_{i-1})$$

An n-gram language model is an $(n-1)^{th}$ order Markov approximation:

Unigram (1 - gram) model:

$$P(w_1, w_2, ..., w_n) \approx P(w_1)P(w_2)...P(w_n) = \prod_{i=1}^n P(w_i)$$

Bigram (2-gram) model:

$$P(w_1, w_2, ..., w_n) \approx P(w_1)P(w_2 | w_1)...P(w_n | w_{n-1}) = \prod_{i=1}^{n} P(w_i | w_{i-1})$$

N-gram model:

$$P(w_1, w_2, ..., w_n) \approx \prod_{i=1}^n P(w_i | w_{i-n+1}, ..., w_{i-2}, w_{i-1})$$

Generating from a language model

· Given a language model, how to generate a sequence?

Trigram
$$P(w_1, w_2, \dots, w_n) = \prod_{i=1}^n P(w_i \mid w_{i-2}, w_{i-1})$$

- Generate the first word $w_1 \sim P(w)$
- Generate the second word $w_2 \sim P(w \mid w_1)$
- Generate the third word $w_3 \sim P(w \mid w_1, w_2)$
- Generate the fourth word $w_4 \sim P(w \mid w_2, w_3)$
- ...

Left to Right Generation

Language models do things beyond chatting in natural languege

1. Software Development & Automation

- Automated Code Generation GitHub Copilot, Code Llama, StarCoder
- Automated Debugging & Code Explanation Al-powered error detection and fixes
- Program Synthesis Generating programs from natural language descriptions

2. Mathematical & Theoretical Al

- Mathematical Proof Generation Lean, Coq, Minerva
- Symbolic Reasoning & Formal Verification Proving correctness of algorithms and software

3. Al Agents & Autonomy

- Desktop & Workflow Automation Al agents operating desktops, automating tasks, and managing applications
- Task Planning & Execution Autonomous agents following complex multi-step instructions

4. Robotics & Control

- Al-Assisted Robotics Language models guiding robotic actions and reasoning
- Embodied AI Models assisting in real-world perception, manipulation, and navigation

5. Biological & Scientific Discovery

- Protein Structure Prediction Al models like AlphaFold and ESMFold predicting protein folding
- Genomic Prediction & Analysis Al models analyzing DNA sequences for genetic trait forecasting
- Al-Assisted Drug Discovery Discovering new molecular structures for pharmaceutical applications

Definition: A language model is a probabilistic model over sequences of words (tokens). $P(w_1, w_2, ..., w_n)$

Definition: A language model is a probabilistic model over sequences of words (tokens). $P(w_1, w_2, ..., w_n)$

We can decompose this using the chain rule:

$$P(w_1, w_2, ..., w_n) = P(w_1) \cdot P(w_2 | w_1) \cdot P(w_3 | w_1, w_2) \cdot ... \cdot P(w_n | w_1, ..., w_{n-1})$$

Definition: A language model is a probabilistic model over sequences of words (tokens). $P(w_1, w_2, ..., w_n)$

We can decompose this using the chain rule:

$$P(w_1, w_2, ..., w_n) = P(w_1) \cdot P(w_2 | w_1) \cdot P(w_3 | w_1, w_2) \cdot ... \cdot P(w_n | w_1, ..., w_{n-1})$$

To make estimating these probabilities tractable, we use Markov assumption (e.g. bigram)

$$P(w_1, w_2, ..., w_n) \approx P(w_1)P(w_2 | w_1)...P(w_n | w_{n-1}) = \prod_{i=1}^n P(w_i | w_{i-1})$$

Definition: A language model is a probabilistic model over sequences of words (tokens). $P(w_1, w_2, ..., w_n)$

We can decompose this using the chain rule:

$$P(w_1, w_2, ..., w_n) = P(w_1) \cdot P(w_2 | w_1) \cdot P(w_3 | w_1, w_2) \cdot ... \cdot P(w_n | w_1, ..., w_{n-1})$$

To make estimating these probabilities tractable, we use Markov assumption (e.g. bigram)

$$P(w_1, w_2, ..., w_n) \approx P(w_1)P(w_2 | w_1)...P(w_n | w_{n-1}) = \prod_{i=1}^n P(w_i | w_{i-1})$$

We set these conditional probabilities to minimize the perplexity of training corpus. For trigram:

$$P(w_3 | w_1, w_2) \leftarrow \frac{\text{Count}(w_1, w_2, w_3)}{\text{Count}(w_1, w_2)}$$

Definition: A language model is a probabilistic model over sequences of words (tokens). $P(w_1, w_2, ..., w_n)$

We can decompose this using the chain rule:

$$P(w_1, w_2, ..., w_n) = P(w_1) \cdot P(w_2 | w_1) \cdot P(w_3 | w_1, w_2) \cdot ... \cdot P(w_n | w_1, ..., w_{n-1})$$

To make estimating these probabilities tractable, we use Markov assumption (e.g. bigram)

$$P(w_1, w_2, ..., w_n) \approx P(w_1)P(w_2 | w_1)...P(w_n | w_{n-1}) = \prod_{i=1}^n P(w_i | w_{i-1})$$

We set these conditional probabilities to minimize the perplexity of training corpus. For trigram:

$$P(w_3 | w_1, w_2) \leftarrow \frac{\text{Count}(w_1, w_2, w_3)}{\text{Count}(w_1, w_2)}$$

We evaluate using perplexity:

$$ppl(S) = P(w_1, \dots, w_n)^{-1/n} = \exp\left(-\frac{1}{n} \sum_{i=1}^n \log P(w_i | w_1, \dots, w_{i-1})\right)$$

We want our models to accurately describe our languages. But, languages have a long tail and we have finite data \rightarrow Not all n-grams will be observed in the training data!

We want our models to accurately describe our languages. But, languages have a long tail and we have finite data \rightarrow Not all n-grams will be observed in the training data!

How can we help our models compensate for this sparsity? Smoothing!

- Additive
- Discounting
- Interpolation

Additive smoothing (Laplace): add a small count to each n-gram

- Simplest form of smoothing: Just add α to all counts and renormalize!
- Max likelihood estimate for bigrams:

$$P(w_i|w_{i-1}) = \frac{C(w_{i-1}, w_i)}{C(w_{i-1})}$$

After smoothing:

$$P(w_i|w_{i-1}) = \frac{C(w_{i-1}, w_i) + \alpha}{C(w_{i-1}) + \alpha |V|}$$

Additive smoothing (Laplace): add a small count (α) to each n-gram

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

	i	want	to	eat	chinese	food	lunch	spend
i	6	828	1	10	1	1	1	3
want	3	1	609	2	7	7	6	2
to	3	1	5	687	3	1	7	212
eat	1	1	3	1	17	3	43	1
chinese	2	1	1	1	1	83	2	1
food	16	1	16	1	2	5	1	1
lunch	3	1	1	1	1	2	1	1
spend	2	1	2	1	1	1	1	1

Add 1 (α = 1) observation to each bigram

32

Additive smoothing (Laplace): add a small count (α) to each n-gram

As α increases, we approach the uniform distribution.

Add α often removes too much probability mass / too simple to work well in practice

$$P(w_i|w_{i-1}) = \frac{C(w_{i-1}, w_i) + \alpha}{C(w_{i-1}) + \alpha |V|}$$

Discounting: Take probability mass from each of the observed n-grams. Redistribute it among unseen n-grams.

$$P(w_i | w_{i-1}) = \begin{cases} \frac{\text{Count}(w_{i-1}, w_i) - d}{\text{Count}(w_{i-1})} & \text{Count}(w_{i-1}, w_i) > 0\\ \frac{P(w_i)}{\sum_{w: \text{Count}(w_{i-1}, w) = 0} P(w)} & \text{Count}(w_{i-1}, w_i) = 0 \end{cases}$$

Left-over probability mass to be redistributed (either uniformly or according to unigram probabilities as above)

Discounting: Take probability mass from each of the observed n-grams. Redistribute it among unseen n-grams.

$$P(w_i | the) = \begin{cases} \frac{\text{Count}(the, w_i) - d}{\text{Count}(the)} & \text{Count}(the, w_i) > 0\\ \alpha(the) \cdot \frac{P(w_i)}{\sum_{w: \text{Count}(the, w) = 0} P(w)} & \text{Count}(the, w_i) = 0 \end{cases}$$

Discounting: Take probability mass from each of the observed n-grams. Redistribute it among

unseen n-grams.

$$P(w_i | the) = \begin{cases} \frac{\text{Count}(the, w_i) - d}{\text{Count}(the)} & \text{Count}(the, w_i) > 0\\ \frac{P(w_i | the)}{\sum_{w: \text{Count}(the, w) = 0} P(w)} & \text{Count}(the, w_i) = 0 \end{cases}$$

- Define Count*(x) = Count(x) 0.5
- Missing probability mass:

$$\alpha(w_{i-1}) = 1 - \sum_{w} \frac{\text{Count}^*(w_{i-1,w})}{\text{Count}(w_{i-1})}$$

$$\alpha(\text{the}) = 10 \times 0.5/48 = 5/48$$

• Divide this mass between words w for which Count(the, w) = 0

x	Count(x)	$Count^*(x)$	$\frac{\text{Count}^*(x)}{\text{Count}(x)}$
the	48		
the, dog	15	14.5	14.5/48
the, woman	11	10.5	10.5/48
the, man	10	9.5	9.5/48
the, park	5	4.5	4.5/48
the, job	2	1.5	1.5/48
the, telescope	1	0.5	0.5/48
the, manual	1	0.5	0.5/48
the, afternoon	1	0.5	0.5/48
the, country	1	0.5	0.5/48
the, street	36	0.5	0.5/48

Discounting: Take probability mass from each of the observed n-grams. Redistribute it among

unseen n-grams.

$$P(w_i | the) = \begin{cases} \frac{\text{Count}(the, w_i) - d}{\text{Count}(the)} & \text{Count}(the, w_i) > 0\\ \alpha(the) \cdot \frac{P(w_i)}{\sum_{w: \text{Count}(the, w) = 0} P(w)} & \text{Count}(the, w_i) = 0 \end{cases}$$

- Define Count*(x) = Count(x) 0.5
- Missing probability mass:

$$\alpha(w_{i-1}) = 1 - \sum_{w} \frac{\text{Count}^*(w_{i-1,w})}{\text{Count}(w_{i-1})}$$

$$\alpha(\text{the}) = 10 \times 0.5/48 = 5/48$$

• Divide this mass between words w for which Count(the, w) = 0

x	Count(x)	$Count^*(x)$	$\frac{\operatorname{Count}^*(x)}{\operatorname{Count}(x)}$
the	48		
the, dog	15	14.5	14.5/48
the, woman	11	10.5	10.5/48
the, man	10	9.5	9.5/48
the, park	5	4.5	4.5/48
the, job	2	1.5	1.5/48
the, telescope	1	0.5	0.5/48
the, manual	1	0.5	0.5/48
the, afternoon	1	0.5	0.5/48
the, country	1	0.5	0.5/48
the, street	37	0.5	0.5/48

Counts

the, teacher = 0

the, student = 0

teacher = 1student = 2

Discounting: Take probability mass from each of the observed n-grams. Redistribute it among

unseen n-grams.

$$P(w_i | the) = \begin{cases} \frac{\text{Count}(the, w_i) - d}{\text{Count}(the)} & \text{Count}(the, w_i) > 0\\ \frac{P(w_i | the)}{\sum_{w: \text{Count}(the, w) = 0} P(w)} & \text{Count}(the, w_i) = 0 \end{cases}$$

- Define Count*(x) = Count(x) 0.5
- Missing probability mass:

$$\alpha(w_{i-1}) = 1 - \sum_{w} \frac{\text{Count}^*(w_{i-1,w})}{\text{Count}(w_{i-1})}$$
 $\alpha(\text{the}) = 10 \times 0.5/48 = 5/48$

• Divide this mass between words w for which Count(the, w) = 0

x	Count(x)	$Count^*(x)$	$\frac{\text{Count}^*(x)}{\text{Count}(x)}$
the	48		
the, dog	15	14.5	14.5/48
the, woman	11	10.5	10.5/48
the, man	10	9.5	9.5/48
the, park	5	4.5	4.5/48
the, job	2	1.5	1.5/48
the, telescope	1	0.5	0.5/48
the, manual	1	0.5	0.5/48
the, afternoon	1	0.5	0.5/48
the, country	1	0.5	0.5/48
the, street	38	0.5	0.5/48

Counts

the, teacher = 0 the, student = 0

teacher = 1student = 2

Prob after smoothing

the, teacher =
$$\frac{5}{48} \times \frac{1}{\frac{3}{2}}$$

the, student = $\frac{5}{48} \times \frac{2}{3}$

Interpolation: Use a combination of multiple different n-grams.

E.g. Linear interpolation

How do we pick lambdas? Many ways!

- Use a development set to pick best one
- Average-count (Chen and Goldman, 1996)
- •

<End_of_precept> And happy new semester!