

Data User Workshop: Natural Disasters and Entrepreneurship

Ole Lück (University of Cologne, Germany)

Institute of Geography (Working group: "Economic Geography and the Global South")

Today's agenda

- Natural Disasters and Entrepreneurship an overview
- Coding goals and STATA output
- Overview of Datasets
- Climate shock indices
- First coding part: Exploration of self-employment dynamics
- Second coding part: Exploration of natural disasters
- Key Take-Aways

Natural Disasters and Entrepreneurship – an overview

- Micro firms build the backbone of local economies and often act as a poverty fighting strategy in developing and emerging countries (e.g. Mead and Liedholm 1998, Rijkers and Söderbom, 2013)
- Opportunity entrepreneurs can play a key role in establishing new growth paths, which was identified in earlier research using TVSEP data (Sohns and Revilla Diez 2018)
- Thailand and Vietnam are highly affected by Climate Change: Natural disasters are becoming more frequent and intense (e.g. IPCC 2022, Eckstein et al. 2020)
- Studies for other countries imply negative impacts on probability for households to be entrepreneurial active (Churchill et al. 2024) and reveal external macro-impacts and business-specific damages on micro firms (Hudecheck et al., 2020; Miklian and Hoelscher, 2022; Mawejje, 2024)

→ What is the impact of natural disasters on entrepreneurial households in Thailand and Vietnam?

Coding goals and STATA output

Goals:

- Understanding self-employment dynamics and exposure towards natural disasters across time and space
- Dealing with different spatial and panel datasets
- Creating basic and advanced graphs with STATA
- Setting the stage for future empirical analysis

STATA output:

- Bar charts showing self-employment dynamics in different provinces of Vietnam and Thailand
- Box plots showing drought exposure in Vietnam and Thailand (SPEI12) across Survey Waves
- Table showing storm exposure by province

Overview of Datasets

Household and firm information: TVSEP Survey Data (2007, 2008, 2010, 2013, 2016, 2017, 2019, 2022)

- Weather Data:
 - Storm Track Data (<u>International Best Track Archive for Climate Stewardship (IBTrACS) Project</u>)
 - High-resolution (5 km) gridded drought records: Precipitation: Climate Hazards Group InfraRed Precipitation with Station Data (CHIRPS, version 2); Evaporation: Global Land Evaporation Amsterdam Model (GLEAM, version 3.7a) → SPEI data
 - → Extracted and merged with village coordinates in "R" → code available upon request

Climate shock indices

• Storms:

Based on "Exposure to weather shocks: A comparison between self-reported record and extreme weather data" Nguyen & Nguyen (2020) and Saffir-Simpson Hurricane Wind Scale: **Events having at least 33m/s** and village are at least 250km close to event

- → https://www.nhc.noaa.gov/aboutsshws.php (Saffir-Simpson Hurricane Wind Scale)
- Droughts: SPEI12 index < -1.28 SD
 - → recommended by Agnew (2000)

SPEI	Probability	Category	
>1.65	0.05	Extremely humid	
>1.28	0.1	Severely humid	
>0.84	0.2	Moderately humid	
>-0.84 and <0.84	0.6	Normal	
<-0.84	0.2	Moderately dry	
<-1.28	0.1	Severely dry	
<-1.65	0.05	Extremely dry	

Source: Gebrechorkos et al. (2023)

FIRST PART: EXPLORATION OF SELF-EMPLOYMENT DYNAMICS

Constructing Sample Data I

- First step: Clean data for each survey wave and country: create/rename variable v61001c for each wave (if necessary)
- Use either general household data and merge with self-employment data or use only household data with self-employment variable being included ex-ante

 v61001c of the survey asks for engagement in Non-farm Self-Employment (must be generated for some older waves: e.g. in 2013)

Account for different dataset types!

```
********* 2022 *******
*VN
use "$vietnam/2022/TVSEP2022SurveyV1.dta", clear
keep QID v61001c v10003 v10004
destring QID, replace
format QID %15.0f
gen year = 2022
save "$vietnam/2022/TVSEP2022SurveyV1_selfemplonly.dta", replace
*TH
use "$thailand/2022/TVSEP2022SurveyV1.dta", clear
keep QID v61001c v10003 v10004
gen year = 2022
save "$thailand/2022/TVSEP2022SurveyV1_selfemplonly.dta", replace
```

```
********* 2013 *******
*VN
use "$vietnam/2013/hhclean.dta", clear
tostring QID, replace format(%15.0f)
save "$vietnam/2013/hhclean_stringQID.dta", replace

use "$vietnam/2013/selfemplclean.dta", clear
keep QID
duplicates drop QID, force
gen v61001c = 1
merge 1:m QID using "$vietnam/2013/hhclean_stringQID.dta"
replace v61001c = 2 if _merge==2
gen year = 2013
keep QID v61001c year
destring QID, replace
save "$vietnam/2013/hhclean_selfemplonly.dta", replace
```


Constructing Sample Data II

- Append household/self-employment data of each wave for Thailand and Vietnam
- Reshape function to transform wide format to long format -> better suited data format for panel analysis
- v61001c2007, v61001c2008, ... → variables showing if HH mentioned to have at least one micro firm during the reference period of Survey Wave

```
* merging all waves VN
*******
use "$vietnam/2022/TVSEP2022SurveyV1 selfemplonly.dta", clear
append using "$vietnam/2017/hhclean_selfemplonly.dta"
append using "$vietnam/2016/hhclean selfemplonly.dta"
append using "$vietnam/2013/hhclean_selfemplonly.dta"
append using "$vietnam/2010/hhclean_selfemplonly.dta"
append using "$vietnam/2008/hhclean_selfemplonly.dta"
append using "$vietnam/2007/hhclean selfemplonly.dta"
sort QID year
order QID year
format OID %15.0f
reshape wide v61001c v10003 v10004 subdistr vill _x10003 _x10004, i(QID) j(year)
 missing year means that HH information IN GENERAL is not available
keep OID v61001c*
gen country = "VN"
save "$vietnam/Aggregates/selfemplonly_07to22_QID_VN.dta", replace
```

```
******************
* merging all waves VN + TH

****************

use "$vietnam/Aggregates/selfemplonly_07to22_QID_VN.dta", clear
append using "$thailand/Aggregates/selfemplonly_07to22_QID_TH.dta"

order QID country v61001c2007 v61001c2008 v61001c2010 v61001c2013 v61001c2016 v61001c2017 v61001c2019 v61001c2022
save "$masterfolder/Data_Aggregates/selfemplonly_07to22_QID_VN_TH.dta", replace
```


Constructing Sample Data III

```
* load weights-data in order to integrate village and year specific weights and to get province information use "$masterfolder/Weights/Weights_TH_VN.dta", clear

destring QID, replace format QID %15.0f

merge 1:1 QID using "$masterfolder/Data_Aggregates/selfemplonly_07to22_QID_VN_TH.dta"

drop if _merge == 1

drop _merge

order QID v61001c2007 v61001c2008 v61001c2010 v61001c2013 v61001c2016 v61001c2017 v61001c2022

reshape long v61001c, i(QID) j(year)
drop if v61001c == .
drop if v61001c == 3
```

To get consistent data on location of HH and weights to account for scaling results → merge dataset with "Weights_TH_VN.dta" (BUT: weights are not used today)

Creation of Bar Charts

Task: Show how often HH are engaged into Non-farm Self-employment across all Survey Waves in which they occur in TVSEP – Proportion of HH showing certain engagement behavior

- a) Create bar chart on country-level (for Thailand and Vietnam)
- b) Create bar chart on provincial-level (for all six provinces in both countries)
- Make use of the histogram command
- Make use of "binned" groups of users

```
gen has_firm = .
replace has_firm = 1 if v61001c == 1
replace has_firm = 0 if v61001c == 2

bysort QID (year): gen year_count = _N if _n == 1

egen sum_has_firm = sum(has_firm), by(QID)
gen relative_years_used = (sum_has_firm/year_count) *100

* binning relative years for better overview
gen relative_years_used_bins = .
replace relative_years_used_bins = 0 if relative_years_used == 0
replace relative_years_used_bins = 1 if relative_years_used <= 50 & relative_years_used > 0
replace relative_years_used_bins = 2 if relative_years_used < 100 & relative_years_used > 50
replace relative_years_used_bins = 3 if relative_years_used == 100
```


Vietnam

Thailand

Solution

```
*Vietnam*
* country
    histogram relative years_used_bins if country == "VN", horizontal discrete fraction ///
    xlabel(0(0.1)0.5) ///
    ylabel(0 "Never self-employed" 1 "<= 50% of Survey Waves self-employed" 2 "> 50% of Survey Waves self-employed" ///
    3 "Always self-employed", angle(0)) ///
    color(gray) ///
    scheme(s2color) ///
    lcolor(black) ///
    xtitle("Fraction of Households", size(small)) ///
    ytitle("") ///
    barwidth(1)
graph export "$masterfolder/Output/Self Employment VN country.png", as(png) replace
* provinces
histogram relative_years_used_bins if country == "VN", horizontal discrete fraction by(_x10001, row(1) title("")) ///
    xlabel(0(0.1)0.5) ///
    vlabel(0 "Never self-employed" 1 "<= 50% of time self-employed" 2 "> 50% of time self-employed" ///
    3 "Always self-employed", angle(0)) ///
    color(gray) ///
    scheme(s2color) ///
    lcolor(black) ///
    xtitle("Fraction of Households", size(small)) ///
    vtitle("") ///
    barwidth(1)
graph export "$masterfolder/Output/Self Employment VN provinces.png", as(png) replace
```


SECOND PART: EXPLORATION OF NATURAL DISASTERS

Creation of box plots - Droughts

Task: Visualize SPEI12 index for the year (reference period) of each Survey Wave

- a) cumulative for all households
- b) only for Vietnamese households
- c) only for Thai households
- Make use of the graph hbox command

Solution

```
* DROUGHTS *
*SPEI 12 by country

*pooled
graph hbox spei12, by(year,cols(1) title("Pooled", size(mediumsmall)) note(""))
yline(-1.65, lwidth(thin) lpattern(solid) lcolor(red)) name(pooled, replace) scheme(s2mono)
*TH
graph hbox spei12 if T == 1, by(year,cols(1) title("Thailand", size(mediumsmall)) note("")) yline(-1.28, lwidth(thin) lpattern(solid) lcolor(orange)) ///
yline(-1.65, lwidth(thin) lpattern(solid) lcolor(red)) name(T, replace) scheme(s2mono)
*VN
graph hbox spei12 if T == 0, by(year,cols(1) title("Vietnam",size(mediumsmall)) note("")) yline(-1.28, lwidth(thin) lpattern(solid) lcolor(orange)) ///
yline(-1.65, lwidth(thin) lpattern(solid) lcolor(red)) yscale(range(-3 2)) name(V, replace) scheme(s2mono)

*combine graphs
graph combine pooled T V, ycommon nocopies rows(1)
graph export "$masterfolder/Output/SPEI12_TH_VN.png", as(png) replace
```


Creation of Table - Storms

Task: Table showing storm-affected households by provinces and year

Make use of tab command

Solution

Province ID	 2007	2010	2013	year 2016	2017	2019	2022	Total
Dak Lak Ha Tinh Nakhon Phanom Thua Thien Hue Ubon Ratchathani	6 72 40 72 16	0 66 0 24 0	0 72 40 72 20	0 72 0 0	76 72 40 72 18	76 0 0 0	0 0 0 72 67	158 354 120 312 121
Total No storm-affected	206 HH in Buriram	90	204	72	278	76	139	1,065

Key Take-Aways

Examining household engagement in micro-firms over time provides insights into the volatility of non-farm selfemployment and the potential vulnerability of these businesses:

- Engagement into Non-farm Self-Employment is highly volatile
- Micro firms usually do not sustain long, suggesting lack of resilience (?) → applies for each of the six provinces in both countries
- Severe weather events are present during all survey years implying higher a risk of (economic) disruptions
- Shock exposure differs in type, intensity and location
- In future: use specific firm variables (Section 6 in TVSEP survey) to proceed with analysis on heterogeneous, group-specific effects

References

Agnew, C. T.: Using the SPI to Identify Drought, Drought Network News (1994–2001), https://digitalcommons.unl.edu/droughtnetnews/1, 2000.

Awaworyi Churchill, S., Munyanyi, M. E., Trinh, T.-A., & Wiklund, J. (2024). From disastrous heat waves to extreme rains: Effects of weather shocks on entrepreneurship. Journal of Business Venturing Insights, 21, Article e00469. https://doi.org/10.1016/j.jbvi.2024.e00469

Eckstein, D., Künzel, V., Schäfer, L., & Winges, M. (2020). Global Climate Risk Index 2020: Who Suffers Most from Extreme Weather Events? Weather-Related Loss Events in 2018 and 1999–2018. Germanwatch e.V. (Report). Retrieved from https://www.germanwatch.org/en/17307

Gebrechorkos, S. H., Peng, J., Dyer, E., Miralles, D. G., Vicente-Serrano, S. M., Funk, C., Beck, H. E., Asfaw, D. T., Singer, M. B., and Dadson, S. J.: Global high-resolution drought indices for 1981–2022, Earth Syst. Sci. Data, 15, 5449–5466, https://doi.org/10.5194/essd-15-5449-2023, 2023.

Hudecheck, M., Sirén, C., Grichnik, D., & Wincent, J. (2020, March 9). How companies can respond to the coronavirus. MIT Sloan Management Review.

IPCC. (2022). Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (H.-O. Pörtner, D. C. Roberts, M. Tignor, et al., Eds.). Cambridge University Press. https://doi.org/10.1017/9781009325844

References

Hudecheck, M., Sirén, C., Grichnik, D., & Wincent, J. (2020, March 9). How companies can respond to the coronavirus. MIT Sloan Management Review. Retrieved from https://sloanreview.mit.edu/article/how-companies-can-respond-to-the-coronavirus/

IPCC. (2022). Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (H.-O. Pörtner, D. C. Roberts, M. Tignor, et al., Eds.). Cambridge University Press. https://doi.org/10.1017/9781009325844

Mawejje, J. (2024). How does the weather and climate change affect firm performance in low-income countries? Evidence from Uganda. Sustainable Futures, 7, 100167. https://doi.org/10.1016/j.sftr.2024.100167

Miklian, J., & Hoelscher, K. (2022). SMEs and exogenous shocks: A conceptual literature review and forward research agenda. International Small Business Journal, 40(2), 178–204. https://doi.org/10.1177/02662426211050796

Mead, D. C., & Liedholm, C. (1998). The dynamics of micro and small enterprises in developing countries. World Development, 26(1), 61–74. https://doi.org/10.1016/S0305-750X(97)10010-9

Rijkers, B., & Söderbom, M. (2013). The effects of risk and shocks on non-farm enterprise development in rural Ethiopia. World Development, 45, 119–136. https://doi.org/10.1016/j.worlddev.2012.10.013

Sohns, F., & Revilla Diez, J. (2018). Explaining micro entrepreneurship in rural Vietnam—a multilevel analysis. Small Business Economics, 50(1), 219–237. https://doi.org/10.1007/s11187-017-9886-2

