Final Projects

CS114, Spring 2018

Shuang Zhao

Computer Science Department University of California, Irvine

(Multiple slides courtesy to Steve Marschner)

Final Project Rules

- Group size: 2 to 4 students
 - Choose your own groups (utilizing Piazza)
 - Expected scope is larger with more people

Examples:

- A cool game (with a focus on graphics)
- Implementation of advanced rendering/animation algorithms

Deliverables:

- Project proposal (due May 21)
- Milestone presentation (early June)
- Final presentation (during the final's week in June)

What Makes for Interesting Graphics?

Rendering

- Fancy shading/reflectance models
- Translucency
- Environment illumination

Animation

- Collision detection
- Particle systems for smoke, fire, explosions, etc.
- Procedurally animated water, wind, etc.

What Makes for Interesting Graphics?

Modeling

- Subdivision surfaces
- Voxelized terrain
- Procedural models (trees, cities, etc.)

Complexity Management

- Acceleration structures: Kd-trees, octrees
- Level-of-detail techniques

Overlap with Other Projects

- In general, it is okay to build upon your own earlier work
 - But you need to talk to me about it!
- You have to disclose overlaps
 - Work that comes from projects you did for other courses
 - Work that comes from your own personal projects before this course
 - Submitting overlapping work without saying anything is dishonest

Final Project Proposal

- One-two page description of your project
 - Say what constitutes the technical "meat"
 - Tentative schedule with allocation of team-members to tasks
- Major areas of focus
 - One primary area for small groups
 - Two for large groups

Project Requirements

- Must go significantly beyond Projects 1--3
 - Combine multiple techniques in interesting ways
 - Implement significant new techniques
- Quality product expected:
 - Nice imagery
 - Correct implementations (demonstrated with experimental results)
 - How you achieve results is as important as the results themselves

Code Base

- Pick whatever code base you want
 - Build on codebase from Projects 1--3
 - Start from scratch
 - C++/Java/WebGL
 - ...
- However, you need to implement key technical components yourself (instead of directly using existing libraries)

Resources

- Get 3D models off the web
 - E.g., <u>www.turbosquid.com</u>
 - Do NOT spend too much time modeling a person or an object
- Articles referenced in lecture

Piazza, office hours