See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/9078830

Acylated Preatroxigenin Glycosides from Atroxima c ongolana

ARTICLE in JOURNAL OF NATURAL PRODUCTS · SEPTEMBER 2003 Impact Factor: 3.8 · DOI: 10.1021/np030057+ · Source: PubMed							
CITATIONS	READS						
12	17						

4 AUTHORS, INCLUDING:

Mohamed Elbandy

Jazan University

26 PUBLICATIONS 134 CITATIONS

SEE PROFILE

Tomofumi Miyamoto

Kyushu University

191 PUBLICATIONS 2,568 CITATIONS

SEE PROFILE

Acylated Preatroxigenin Glycosides from Atroxima congolana

Mohamed Elbandy,† Tomofumi Miyamoto,‡ Clément Delaude,§ and Marie-Aleth Lacaille-Dubois*.†

Laboratoire de Pharmacognosie, Unité de Molécules d'Intérèt Biologique (UMIB JE 2244), Faculté de Pharmacie, Université de Bourgogne, 7 Bd. Jeanne d'Arc, BP 87900, 21079 Dijon Cedex, France, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan, and Centre de Recherche Phytochimique, Université de Lîege, Institut de Chimie-B6, Sart Tilman B-4000-Lîege I, Belgium

Received January 31, 2003

Six new acylated bisdesmosidic preatroxigenin saponins named atroximasaponins E_1 , E_2 (1, 2), F_1 , F_2 (3, 4), and G_1 , G_2 (5, 6) were isolated as three inseparable mixtures of the *trans*- and *cis-p*-methoxycinnamoyl derivatives, from the roots of *Atroxima congolana*. Their structures were established through extensive NMR spectroscopic analysis as $3 - O - \beta - D$ -glucopyranosylpreatroxigenin- $28 - O - \beta - D$ -xylopyranosyl- $(1 \rightarrow 4) - \alpha - D$ -rhamnopyranosyl- $(1 \rightarrow 2) - [\beta - D$ -glucopyranosyl- $(1 \rightarrow 3)] - [4 - O - trans - p$ -methoxycinnamoyl]- $\beta - D$ -fucopyranosyl- $(1 \rightarrow 3) - D$ -D-clucopyranosyl- $(1 \rightarrow 2) - [6 - O - acetyl - \beta - D$ -glucopyranosyl- $(1 \rightarrow 3)] - [4 - O - trans - p$ -methoxycinnamoyl]- $\beta - D$ -fucopyranoside (atroximasaponin F_1 , 3), and its *cis*-isomer, atroximasaponin F_2 (4), $3 - O - \beta - D$ -glucopyranosylpreatroxigenin- $28 - O - \beta - D$ -apiofuranosyl- $(1 \rightarrow 3) - [\alpha - L - rhamnopyranosyl-<math>(1 \rightarrow 2)] - [4 - O - trans - p - methoxycinnamoyl] - \beta - D$ -fucopyranoside (atroximasaponin G_1 , 5), and its *cis*-isomer, atroximasaponin G_2 (6), respectively.

In a previous paper, 1 we reported the isolation and characterization of eight new preatroxigenin saponins, atroximasaponins A_1 , A_2 , B_1 , B_2 , C_1 , C_2 , and D_1 , D_2 as four inseparable mixtures from the ethanolic extract of the cortex of roots of *Atroxima congolana* E. Petit (Polygalaceae). Further investigation of the saponin fraction of this plant resulted in the isolation and structure elucidation of six new additional triterpene glycosides named atroximasaponins E_1 , E_2 (1, 2), F_1 , F_2 (3, 4), and G_1 , G_2 (5, 6), which were obtained as three inseparable mixtures of the respective *trans*- and *cis-p*-methoxycinnamoyl derivatives. This paper deals with the isolation and structure elucidation of these saponins (1–6).

Results and Discussion

The ethanolic extract of the cortex of the roots of A. congolana was suspended in MeOH and purified by precipitation with Et_2O , yielding a crude saponin mixture. This extract was subjected to Sephadex LH-20 column chromatography followed by repeated medium-pressure liquid chromatography (MPLC) on normal silica gel and semipreparative reversed-phase HPLC to afford compounds 1-6 as three inseparable mixtures, with each compound pair 1/2, 3/4, and 5/6 giving only one spot by HPTLC but two peaks by HPLC.

All the compounds **1–6** were obtained as white amorphous powders. The 1 H and 13 C NMR data of the aglycon part of **1–6** (Table 1) were almost superimposable with those of preatroxigenin (2β , 3β , 22β ,27-tetrahydroxyolean-12-ene-23,28-dioic acid). $^{1-3}$ Acid hydrolysis of each saponin pair **1/2**, **3/4**, and **5/6** with 2 N TFA at 120 °C afforded artifactual aglycons of preatroxigenin (atroxigenic acid, atroxigenin, and atroxigenic acid lactone) $^{2.3}$ and rhamnose, fucose, glucose, and xylose in the case of **1/2** and **3/4** and rhamnose, fucose, glucose, and apiose in the case of **5/6** (TLC, GLC). The alkaline hydrolysis of each compound pair

with 5% KOH at 120 °C gave the same prosapogenin previously characterized as 3-O- β -D-glucopyranosylpreatroxigenin (TLC, 1 H and 13 C NMR). 1 The mild alkaline hydrolysis of each saponin pair with 1% KOH (60 min at room temperature) yielded *trans*- and *cis-p*-methoxycinnamic acid (TLC, authentic sample) 1 and a compound that exhibited a lower polarity than the native one (lower R_f on TLC), indicating acylation of the saponins. All these

Api

Atroximasaponin G2 (6)

^{*} To whom correspondence should be addressed. Tel: 0033-3-80393229. Fax: 0033-3-80393300. E-mail: malacd@u-bourgogne.fr.

Université de Bourgogne.

[‡] Kyushu University.

[§] Université de Liège

Table 1. ¹³C NMR and ¹H NMR Data of the Aglycons of **1–6** (C₅D₅N)^{a–c}

		1, 2			3, 4		5, 6		
position	DEPT	δ ¹³ C	$\delta^{_1}\!_{ m H}$	δ ¹³ C	$\delta^{_1}{ m H}$	δ ¹³ C	$\delta^{_1}{ m H}$		
1	CH_2	43.4	1.45 (1H, m)	43.4	1.36 (1H, m)	43.9	1.33 (1H, m)		
			2.22 (1H, m)		2.22 (1H, m)		2.30 (1H, m)		
2 3	CH	69.8	4.62 (1H, m)	69.6	4.61 (1H, m)	69.8	4.70 (1H, m)		
3	CH	86.3	4.55 (1H, d, J = 3)	85.7	4.47 (1H, d, J = 3)	85.6	4.55 (1H, d, J = 3)		
4	C	53.2		53.2		52.5			
5	CH	51.8	2.06 (1H, m)	52.1	2.03 (1H, m)	52.1	2.13 (1H, m)		
6	CH_2	20.7	nd	21.0	1.65, 1.70	21.0	nd, 1.56		
7	CH_2	33.0	1.70, 2.10	33.0	1.68, 2.05	33.1	1.78, 2.01		
8	C	40.3		40.2		40.8			
9	CH	48.6	2.10	48.6	2.10	49.0	2.31		
10	C	36.0		36.1		36.7			
11	CH_2	23.2	1.86, 1.90	23.0	1.90, 1.95	23.9	20.5, 2.18		
12	CH	126.9	5.74 (1H, t-like)	126.9	5.78 (1H, t-like)	127.5	5.94 (1H, t-like)		
13	C	138.8		138.8		139.2			
14	C	47.8		47.8		48.2			
15	CH_2	23.9	nd, 1.98	23.9	nd, 1.75	24.4	2.07, 2.15		
16	CH_2	23.8	nd	23.8	2.00, 1.17	24.3	nd, 1.75		
17	C	53.7		53.6		53.5			
18	CH	38.4	3.36 (1H, m)	38.4	3.37 (1H, m)	38.9	3.58 (1H, m)		
19	CH_2	45.1	1.26, 1.65	45.2	1.30, 1.68	45.6	1.48, 1.88		
20	C	29.7		29.8		30.3			
21	CH_2	40.4	1.30, 1.50	40.3	nd	41.4	1.50, 1.67		
22	CH	70.4	4.63 (1H, d, J = 1.8)	70.6	4.63 (1H, d, J = 1.8)	71.3	4.71 (1H, d, J = 1.8)		
23	C	182.5	,	180.4	, , ,	180.7			
24	CH_3	14.3	1.72 (3H, s)	13.8	1.71 (3H, s)	13.8	1.88 (3H, s)		
25	CH_3	16.8	1.29 (3H, s)	16.8	1.32 (3H, s)	17.2	1.53 (3H, s)		
26	CH_3	18.2	0.95 (3H, s)	18.1	0.98 (3H, s)	16.1	1.16 (3H, s)		
27	CH_2	63.6	3.68 (1H, d, J = 12)	63.7	3.72 (1H, d, J = 12)	63.8	3.84 (1H, d, J = 12)		
	-		4.07 (1H, d, J = 12)		4.07 (1H, d, J = 12)		4.06 (1H, d, J = 12)		
28	C	174.3	, , ,	174.4	, , ,	174.3	,		
29	CH_3	33.5	0.78 (3H, s)	33.5	0.77 (3H, s)	34.0	0.85 (3H, s)		
30	CH_3	26.7	1.21 (3H, s)	26.8	1.22 (3H, s)	27.3	1.36 (3H, s)		

^a Multiplicities were assigned from DEPT spectra. ^b The assignments are based on the HMBC, HSQC, and DEPT experiments (150 MHz for ¹³C and 600 MHz for ¹H NMR). ^c nd: not determined. Overlapped ¹H NMR signals are reported without designated multiplicity.

findings indicated that compounds 1-6 were bisdesmosidic saponins having the same prosapogenin (3-O- β -D-glucopyranosylpreatroxigenin). This was confirmed by the downfield chemical shifts of C-3 of the aglycon at δ 86.3 (1, 2), 85.7 (**3**, **4**), and 85.6 (**5**, **6**) and the upfield chemical shifts at C-28 of the aglycon at δ 174.3 (1, 2; 5, 6) and 85.7 (3, 4), respectively. Furthermore, all compounds **1–6** are acylated by trans- and cis-p-methoxycinnamoyl residues, which were identified by the ¹H- ¹H COSY NMR experiment (see Tables 2 and S1). These findings indicated that the compound pairs 1/2, 3/4, and 5/6 were mixtures of trans- and cis-p-methoxycinnamoyl preatroxigenin glycosides (2:1 for 1/2 and 5/6 and 1:1 for 3/4, respectively, from the relative NMR and HPLC intensities).^{1,4} Each mixture was homogeneous by HPTLC but was separated into transand *cis*-isomers by HPLC, but all attempts to separate each saponin pair by semipreparative HPLC were unsuccessful. The observed isomerization is due to the effect of light on the *p*-methoxycinnamoyl group in aqueous methanolic solution. Under these conditions, the geometrical isomeric structures of the *p*-methoxycinnamoyl groups in 1 and 2 showed tautomer-like behavior. This phenomenon has already been observed in E and Z mixtures of saponins from Polygala senega,5 Silene jenisseensis,4 and Muraltia heisteria⁶ and also in the previously reported saponins of this plant.1

The HRESIMS (positive-ion mode) of 1/2 exhibited a quasimolecular ion peak at m/z 1465.6283 [M + Na]⁺ (calcd 1465.6252), consistent with the molecular formula C₆₉H₁₀₂O₃₂Na. Their FABMS (negative-ion mode) showed a quasimolecular ion peak at m/z 1441 [M - H]-, indicating a molecular weight of 1442. Other significant fragment peaks appeared at m/z 1279 [(M - H) - 162]⁻, 695 [(M -H) $-162 - 160 - 2 \times 146 - 132$], and 533 [(M - H) -

 $162 - 160 - 2 \times 146 - 132 - 162$]⁻, corresponding to the loss of one hexosyl, one p-methoxycinnamoyl, two deoxyhexosyl, one pentosyl, and one hexosyl unit, respectively. The fragment ion peak at m/z 533 corresponded to the pseudomolecular ion of the aglycon (preatroxigenin).¹⁻³

The ¹H NMR spectrum of **1/2** displayed signals for five anomeric protons at δ 6.22 (br s), 6.01 (d, J = 8.4 Hz), 4.97 (d, J = 7.3 Hz), 4.92 (d, J = 7.0 Hz), and 4.76 (d, J = 7.0Hz), which correlated in the HSQC spectrum with ¹³C NMR signals at δ 100.4, 93.7, 104.5, 103.5, and 106.2, respectively. The ring protons of the monosaccharide residues were assigned starting from the readily identifiable anomeric protons by means of the COSY, TOCSY, HSQC, and HMBC NMR experiments (Table S1), and the sequence of the oligosaccharide chains was obtained from the HMBC and NOESY experiments. Evaluation of spin-spin couplings and chemical shifts allowed the identification of one α -rhamnopyranosyl (Rha), one β -fucopyranosyl (Fuc), two β -glucopyranosyl (Glc), and one β -xylopyranosyl (Xyl) unit, respectively. The absolute configurations of these sugar residues were determined to be D for Glc, Xyl, and Fuc and L for Rha by GC analysis of chiral derivatives of sugars in an acidic hydrolysate.7

The ¹H and ¹³C NMR signals in the molecules 1/2 corresponding to the 3-O- β -D-glucopyranosyl moiety and the 28-O- α -L-rhamnopyranosyl (1→2)-[4-O-trans-p-methoxycinnamoyl]- β -D-fucopyranosyl moiety and the *cis*-isomer form were almost superimposable to those of atroximasaponins A_1 , A_2 , B_1 , B_2 , C_1 , C_2 , and D_1 , D_2 , consistent with the proposed sequence.1 In addition, HMBC correlations between $\delta_{\rm H}$ 4.76 (d, J = 7.0 Hz) (Xyl-1) and $\delta_{\rm C}$ 83.3 (Rha-4) and between δ_H 4.04 (Rha-4) and δ_C 106.2 (Xyl-1) showed that the Xyl unit was linked to the Rha unit at C-4. This was also supported by a NOESY cross-peak between $\delta_{\rm H}$

Table 2. ¹³C NMR Data of the Sugar and Acid Moieties of Compounds 1−6 (C₅D₅N)^{a,b}

		1	2	3	4	5	6
3- <i>O</i> -Glc I	1	103.5	103.5	103.8	103.8	104.8	104.8
	2	74.1	74.1	74.0	74.0	74.7	74.7
	3	76.2	76.2	76.7	76.7	77.6	77.6
	4	69.3	69.3	69.6	69.6	71.0	71.0
	5	77.1	77.1	77.1	77.1	77.8	77.8
	6	61.3	61.3	61.2	61.2	62.0	62.0
28-O-sugars	· ·	01.0	01.0	01.2	01.2	02.0	02.0
Fuc	1	93.7	93.7	93.8	93.8	94.4	94.4
T GC	2	71.3	71.1	71.0	71.0	72.5	72.5
	3	82.7	82.7	82.7	82.7	81.1	81.1
	4	74.1	74.0	73.1	72.9	73.7	73.4
	5	74.1	70.4	70.7	70.6	71.0	70.8
	6	70.5 15.7	70.4 15.6	16.1	15.9	16.1	16.0
Dlag							
Rha	1	100.4	100.3	100.4	100.3	101.9	101.8
	2	70.5	70.4	70.7	70.6	72.2	72.2
	3	71.3	71.3	71.2	71.2	71.9	71.9
	4	83.3	83.4	83.7	83.7	73.0	73.0
	5	67.5	67.6	67.7	67.7	70.0	70.0
	6	17.7	17.8	17.8	17.8	18.5	18.4
Xyl	1	106.2	106.2	106.1	106.1		
	2	75.0	75.0	75.0	75.0		
	3	76.7	76.7	76.4	76.4		
	4	70.3	70.3	70.2	70.2		
	5	66.1	66.1	66.1	66.1		
Glc II	1	104.5	104.5	103.9	103.9		
	2	74.0	74.0	74.0	74.0		
	3	76.6	76.6	76.7	76.7		
	4	70.2	70.2	69.7	69.7		
	5	76.6	76.6	76.7	76.7		
	6	61.8	61.8	63.3	63.3		
Ac at Glc II C-6				20.3, 172.0	20.2, 171.0		
Api	1			,	,	112.5	112.5
р-	2					78.1	78.1
	3					80.2	80.2
	4					75.3	75.3
	5					64.4	64.4
acid	(1',1")	167.8	166.5	166.8	166.1	167.1	166.1
aciu	(2',2'')	114.5	115.7	114.7	116.2	115.4	116.2
	(2,2) (3',3'')	14.5	144.9	145.1	144.0	145.6	145.0
	(3 ,3) (4',4'')	126.4	126.6	126.5	126.9	126.9	127.0
	(5', 9';5",9")	130.0	132.4	130.0	132.5	130.2	133.0
	(6',8';6",8")	114.3	113.5	114.3	113.7	114.5	113.8
OM	(7',7'')	161.5	160.4	161.4	160.4	161.8	161.1
OMe	(7',7")	55.2	55.0	55.2	55.0	55.3	55.1

 a The assignments are based on the COSY, TOCSY, NOESY, HSQC, and HMBC experiments (150 MHz for 13 C and 600 MHz for 14 H NMR). Multiplicities were assigned from DEPT spectra.

4.76 (d, J=7.0 Hz) (Xyl-1) and $\delta_{\rm H}$ 4.04 (Rha-4). This terminal Xyl was confirmed by its $^1{\rm H}$ and $^{13}{\rm C}$ NMR data (Tables 2 and S1). Another HMBC correlation observed between $\delta_{\rm H}$ 4.97 (d, J=7.3 Hz) (Glc II-1) and $\delta_{\rm C}$ 82.7 (Fuc-3) indicated that Glc II was attached to the Fuc unit at C-3. This was confirmed by a NOESY cross-peak between $\delta_{\rm H}$ 4.43 (Fuc-3) and 4.97 (d, J=7.3 Hz) (Glc II-1). Thus, the structures of 1/2 were established as 3-O- β -D-gluco pyranosylpreatroxigenin-28-O- β -D-xylopyranosyl-(1 \rightarrow 4)- α -L-rhamnopyranosyl-(1 \rightarrow 2)-[β -D-glucopyranosyl-(1 \rightarrow 3)]-[4-O-trans-p-methoxycinnamoyl]- β -D-fucopyranoside (atroximasaponin E₁, 1) and its *cis*-isomer, atroximasaponin E₂ (2).

The HRESIMS (positive-ion mode) of compounds 3/4 exhibited a quasimolecular ion peak at m/z 1507.6367 [M + Na]⁺ (calcd 1507.6358), consistent with the molecular formula of $C_{71}H_{104}O_{33}Na$. Their FABMS (negative-ion mode) showed a quasimolecular ion peak at m/z 1483 [M - H]⁻, indicating a molecular weight of 1484. Other significant ion peaks in the FABMS appeared at m/z 1321-[(M - H) - 162]⁻, 695 [(M - H) - 162 - 42 - 160 - 2 × 146 - 132]⁻, and 533 [(M - H) - 162 - 42 - 160 - 2 × 146 - 132 - 162]⁻, corresponding to the loss of one hexosyl, one acetyl, one p-methoxycinnamoyl, two deoxyhexosyl, one pentosyl, and one hexosyl unit, respectively. The fragment

ion peak at m/z 533 corresponded to the pseudomolecular ion of the preatroxigenin. $^{1-3}$

The ¹H and ¹³C NMR data of 3/4 (Tables 1, 2, and S1) assigned from TOCSY, HSQC, and HMBC experiments were similar to those of 1/2, except for the appearance of one additional acetyl group. The location of the acetyl group at Glc II-C-6 was determined by TOCSY and COSY experiments, starting from the anomeric ¹H NMR signal of Glc II at δ 4.94 (d, J=7.7 Hz). The downfield shifts observed in the HSQC spectrum for the Glc II-H-6/Glc II-C-6 resonances at $\delta_{\rm H}$ 4.74, 4.54/ $\delta_{\rm C}$ 63.3 proved the primary alcoholic function of Glc II-6-OH to be acetylated. On the basis of the above observations, the structures of 3/4 were determined as 3-O-\beta-D-glucopyranosylpreatroxigenin-28-O- β -D-xylopyranosyl-(1 \rightarrow 4)- α -L-rhamnopyranosyl-(1 \rightarrow 2)-[6-Oacetyl- β -D-glucopyranosyl- $(1\rightarrow 3)$]-[4-O-trans-p-methoxycinnamoyl]- β -D-fucopyranoside (atroximasaponin F_1 , 3) and its cis-isomer, atroximasaponin F_2 (4).

The HRESIMS (positive-ion mode) of compounds **5/6** exhibited a quasimolecular ion peak at m/z 1303.5695 [M + Na]⁺ (calcd 1303.5724) consistent with the molecular formula of $C_{63}H_{92}O_{27}Na$. Their FABMS (negative-ion mode) showed a quasimolecular ion peak at m/z 1279 [M - H]⁻, indicating a molecular mass of 1280, or 162 mass units less than compounds **1** and **2**. Two other significant ion peaks

appeared at m/z 1119 [(M - H) - 160] $^-$ and 533 [(M - H) - 160 - 2 \times 146 - 132 - 162] $^-$, corresponding to the loss of one p-methoxycinnamoyl, two deoxyhexosyl, one pentosyl, and one hexosyl unit, respectively.

The ¹H NMR spectrum of 5/6 showed four proton anomeric signals at δ 6.14 (d, J = 8.4 Hz), 6.08 (br s), 5.81 (br s), and $\bar{5}.00$ (d, J = 7.7 Hz), which gave correlations with ^{13}C NMR signals in the HSQC spectrum at δ 94.4, 101.9, 112.5, and 104.8, respectively. Evaluation of spinspin couplings and chemical shifts from the 2D NMR data for the sugar moieties of 5/6 and GC analysis of chiral derivatives of the sugars in the acidic hydrolysate of 5/6 allowed the identification of one α -L-rhamnopyranosyl (Rha), one β -D-fucopyranosyl (Fuc), one β -D-apiofuranosyl (Api), and one β -D-glucopyranosyl (Glc) unit, respectively. In the HMBC spectrum, a correlation between the ¹H NMR signal at $\delta_{\rm H}$ 6.14 (d, J = 8.4 Hz) (Fuc-1) and the $^{13}{\rm C}$ NMR signal at δ_C 174.3 (aglycon-28) demonstrated a glycosidic ester linkage of the Fuc unit to the C-28 of the aglycon. The location of the *p*-methoxycinnamoyl group at Fuc-4 was determined by TOCSY and COSY experiments, starting from the anomeric ¹H NMR signal of Fuc at δ 6.14 (d, J =8.4 Hz). The downfield shifts observed in the HSQC spectrum for the Fuc (H)4/Fuc(C)4 resonances at $\delta_{\rm H}$ 5.87/ $\delta_{\rm C}$ 73.7 showed the secondary alcoholic function of OH-C(4) of Fuc to be acylated. In the HMBC spectrum a correlation between signals at $\delta_{\rm H}$ 6.08 (br s) (Rha-1) and $\delta_{\rm C}$ (72.5) (Fuc-2) and a reverse correlation between $\delta_{\rm H}$ (4.72) (Fuc-2) and $\delta_{\rm C}$ (101.9) (Rha-1) revealed a (1 \rightarrow 2) linkage between these two sugars. The ¹H and ¹³C NMR signals of a terminal Rha were assigned.

The HMBC correlation observed between $\delta_{\rm H}$ 4.36 (Fuc-3) and $\delta_{\rm C}$ 112.5 (Api-1) indicated that the Api unit was linked to a Fuc residue at C-3. This was confirmed by a NOESY cross-peak between $\delta_{\rm H}$ 4.36 (Fuc-3) and 5.81 (br s) (Api-1). On the basis of these results the structures of 5/6 were established as 3-O- β -D-glucopyranosylpreatroxigenin-28-O- β -D-apiofuranosyl-(1 \rightarrow 3)-[α -L-rhamnopyranosyl-(1 \rightarrow 2)]-[4-O-trans-p-methoxycinnamoyl]- β -D-fucopyranoside (atroximasaponin G_1 , 5) and its cis-isomer, atroximasaponin G_2 (6).

Experimental Section

General Experimental Procedures. The instruments and techniques used for IR spectra, 1D and 2D NMR spectra ($^1H^{-1}H$ COSY, TOCSY, NOESY, HSQC, and HMBC) (600 MHz for 1H and 150 MHz for ^{13}C NMR spectra), and fast-atom bombardment (FABMS) (negative-ion mode, thioglycerol matrix) were previously described. 1 HRESIMS was carried out on a Q-TOF 1 micromass spectrometer. GC analysis was carried out on a Termoquest gas chromatograph using a DB-1701 capillary column (30 m \times 0.25 mm, i.d.) (J & W Scientific); detection, FID; detector temperature, 250 °C; injection temperature, 230 °C; initial temperature was maintained at 80 °C for 5 min and then raised to 270 °C at the rate of 15 °C/min; carrier gas, He. TLC, HPTLC, MPLC, and HPLC were carried out by using previously reported conditions. 1

Plant Material. The cortex of the roots of *Atroxima congolana* was collected from the Democratic Republic of Congo, in the Eala Forest in March 1990. A voucher specimen under the reference H. Breyne No. 1865 is deposited in the Herbarium of the National Botanical Garden of Brussels, Belgium.

Extraction and Isolation. The dried powdered root cortex (2 kg) was macerated with 80% EtOH and further submitted to boiling for 3 h. The EtOH extract was filtered and evaporated to dryness. The residue was dissolved in MeOH (1500 mL). After filtration, the MeOH solution was concentrated and purified by precipitation with Et_2O (3 imes 1500 mL). The

resulting residue was washed with Et₂O, dried, solubilized in water (1200 mL), and submitted to dialysis for 4 days and then lyophilized. After decolorization with charcoal and filtration, the residue was dissolved in MeOH and purified again by precipitation with Et₂O, yielding a crude saponin mixture (124.6 g). Of this mixture, 4.0 g was submitted to column chromatography (Sephadex LH-20) and then to successive MPLC (silica gel 60 (15–40 μ m, CHCl $_3$ –MeOH–H $_2$ O (32:17:3 and 65:35:10, lower phase)), followed by semipreparative HPLC (isocratic, 28% MeCN-H₂O with 0.06% CF₃COOH for 30 min; flow rate 4.5 mL/min), yielding 1/2 (t_R 12.70, 13.76 min) (14 mg), 3/4 (t_R 15.30, 16.24 min) (11 mg), and 5/6 (t_R 11.58, 12.03 min) (35 mg). Each compound pair was isolated as an amorphous powder, which gave fluorescence quenching zones under UV light at 254 nm and violet-blue fluorescence under UV light at 365 nm by TLC without any chemical

3-*O*β-D-Glucopyranosylpreatroxigenin-28-*O*β-D-xylopyranosyl-(1-4)-α-L-rhamnopyranosyl-(1-2)-[β-D-glucopyranosyl-(1-3)]-[4-O-*trans-p*-methoxycinnamoyl]-β-D-fucopyranoside (atroximasaponin E₁, 1) and its *cis*-isomer, atroximasaponin E₂ (2): IR (KBr) ν_{max} 3405 (OH), 2926 (CH), 1750 and 1740 (CO ester groups), 1710 (CO carboxylic acid), 1634 (C=C), 1610, 1600, 1560, 1500 cm⁻¹; ¹H NMR (pyridine- d_5 , 600 MHz) and ¹³C NMR (pyridine- d_5 , 150 MHz), see Tables 2 and S1; HRESIMS positive-ion mode m/z 1465.6283 [M + Na]⁺ (calcd for C₆₉H₁₀₂O₃₂Na, 1465.6252); negative FABMS (thioglycerol matrix) m/z 1441 [M - H]⁻, 1279 [(M - H) - 162]⁻, 695 [(M - H) - 162 - 160 - 2 × 146 - 132]⁻, 533 [(M - H) - 162 - 162 - 160 - 2 × 146 - 132 - 162]⁻; TLC R_f 0.45 (system a); blue spot by spraying with Komarowsky reagent.

3-*O*β-D-Glucopyranosylpreatroxigenin-28-*O*β-D-xylopyranosyl-(1–4)-α-L-rhamnopyranosyl-(1–2)-[6-*O*-acetyl-β-D-glucopyranosyl-(1–3)]-[4-*O*-trans-p-methoxycinnamoyl]-β-D-fucopyranoside (atroximasaponin F₁, 3) and its *cis*isomer, atroximasaponin F₂ (4): IR (KBr) ν_{max} 3406 (OH), 2927 (CH), 1723 and 1740 (CO ester groups), 1710 (CO carboxylic acid), 1636 (C=C), 1580, 1500, 1420 cm⁻¹; ¹H NMR (pyridine- d_5 , 600 MHz) and ¹³C NMR (pyridine- d_5 , 150 MHz), see Tables 2 and S1; HRESIMS positive-ion mode m/z 1507.6367 [M + Na]+ (calcd for C₇₁H₁₀₄O₃₃Na, 1507.6358); negative FABMS (thioglycerol matrix) m/z 1483 [M - H]-, 1321 [(M - H) - 162]-, 695 [(M - H) - 162 - 42 - 160 - 2 × 146 - 132]- and 533 [(M - H) - 42 - 162 - 162 - 160 - 2 × 146 - 132 - 162]-; TLC R_f 0.51 (system a); blue spot by spraying with Komarowsky reagent.

3-*O*-β-D-Glucopyranosylpreatroxigenin-28-*O*-β-D-apio-furanosyl-(1 \rightarrow 3)-[α-L-rhamnopyranosyl-(1 \rightarrow 2)]-[4-*O-transp*-methoxycinnamoyl]-β-D-fucopyranoside (atroximasaponin G₁, 5) and its *cis*-isomer, atroximasaponin G₂ (6): IR (KBr) ν_{max} 3404 (OH), 2927 (CH), 1723 and 1740 (CO ester groups), 1710 (CO carboxylic acid), 1636 (C=C), 1580, 1500, 1420, 1260, 1090 cm⁻¹; ¹H NMR (pyridine- d_5 , 600 MHz) and ¹³C NMR (pyridine- d_5 , 150 MHz), see Tables 2 and S1; HRESIMS positive-ion mode m/z 1303.5695 [M + Na]⁺ (calcd for C₆₃H₉₂O₂₇Na, 1303.5724); negative FABMS (thioglycerol matrix) m/z 1279 [M – H]⁻, 1119 [(M – H) – 160]⁻, 533 [(M – H) – 160–2 × 146–132–162]⁻; TLC R_f 0.62 (system a); blue spot by spraying with Komarowsky reagent.

Acid Hydrolysis. A solution of each compound pair (5 mg of each) in H_2O (2 mL) and 2 N aqueous CF_3COOH (5 mL) was refluxed on a water bath for 3 h. After this period, the reaction mixture was diluted with H_2O (15 mL) and extracted with CH_2Cl_2 (3 × 5 mL). The combined CH_2Cl_2 extracts were washed with H_2O and then evaporated to dryness in vacuo. Evaporation of the solvent gave the artifactual aglycons of preatroxigenin. After repeated evaporations to dryness of the aqueous layer with MeOH until neutral, the residue of sugars was dissolved in anhydrous pyridine (100 μ L) and L-cysteine methyl ester hydrochloride (0.06 mol/L) was added. The mixture was stirred at 60 °C for 1 h, then 150 μ L of HMDS-TMCS (hexamethyldisilazane—trimethylchlorosilane, 3:1) was added, and the mixture was stirred at 60 °C for another 30 min. The precipitate was centrifuged off, and the

supernatant was concentrated under a N_2 stream. The residue was partitioned between n-hexane and H₂O (0.1 mL each), and the hexane layer (1 μ L) was analyzed by GC. D-Glucose, D-xylose, D-fucose, and L-rhamnose for 1/2 and 3/4 were detected in each case by co-injection of the hydrolysate with standard silylated samples, giving single peaks at 18.75, 13.57, 12.18, and 13.21, respectively. By the same manner, identification of D-glucose, D-fucose, D-apiose, and L-rhamnose was carried out for **5/6**, giving single peaks at 18.77, 12.20, 14.50, and 13.23, respectively.

Alkaline Hydrolysis. Each saponin pair (5 mg) was refluxed with 5% aqueous KOH (10 mL) for 2 h. The fraction mixture was adjusted to pH 6 with dilute HCl and then extracted with H_2O -saturated BuOH (3 \times 10 mL). The combined BuOH extracts were washed with (H2O) and evaporated to yield the prosapogenin, which was identified as 3-Oβ-D-glucopyranosylpreatroxigenin (TLC, ¹³C NMR) in comparison with an authentic sample.1

Mild Alkaline Hydrolysis. Each saponin pair was hydrolyzed with 1% aqueous KOH at room temperature. After 1 h, the mixture was neutralized with dilute HCl and extracted with Et₂O. The Et₂O layer gave trans- and cis-p-methoxycinnamic acids, which were identified by TLC (authentic sample). 1,6

The aqueous layer was extracted with H₂O-saturated BuOH, yielding the deacylated saponin.

Supporting Information Available: Figure S1 of HMBC correlations of the aglycon of compound pairs 1/2, 3/4, and 5/6 and Table S1 of ¹H NMR data of compounds **1–6**. This material is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

- (1) Elbandy, M.; Miyamoto, T.; Delaude, C.; Lacaille-Dubois, M. A. Helv. Chim. Acta 2003, 86, 522-531.
- (2) Bila, B.; Warin, R.; Delaude, C.; Huls, R. Bull. Soc. Chim. Belg. 1982, 91. 321-331.
- (3) Bila, B.; Warin, R.; Delaude, C.; Huls, R. Bull. Soc. Chim. Belg. 1983, 92, 355–360.
- (4) Lacaille-Dubois, M. A.; Hanquet, B.; Cui, Z. H.; Lou, Z. C.; Wagner,
- H. Phytochemistry 1997, 45, 985–990. Yoshikawa, M.; Murakami, T.; Ueno, T.; Kadoya, M.; Matsuda, H.; Yamahara, J.; Murakami, N. Chem. Pharm. Bull. 1995, 43, 2115-
- (6) Elbandy, M.; Miyamoto, T.; Chauffert, B.; Delaude, C.; Lacaille-Dubois, M. A. J. Nat. Prod. 2002, 65, 193-197.
 (7) Hara, S.; Okabe, H.; Mihashi, K. Chem. Pharm. Bull. 1987, 35, 1917.

NP030057+