Segundo Taller de Teoría de Grafos

Rodrigo Castillo

4 de octubre de 2020

1. Considere el grafo G:

Figura 1: grafo G

- 1. seleccione una arista $e \in E(G)$ y dibuje G ey $G \cdot e$
- 2. calcule r(G-e) y $r(G\cdot e)$
- 3. Escriba la matriz ${\cal Q}$ asociada al grafo ${\cal G}$
- 4. Verifique r(G) , $r(G-e)+r(G\cdot e)$ calculando r(G) por medio de la matrix Q .

2. Considere el digrafo D

Figura 2: digrafo D

- 1. calcule el numero de arboles de la salida de expansion de D con raíz en $u_1\,$
- 2. Calcule el número de árboles de entrada de expansión de D con raíz en u_4 .

3. Considere el grafo H

Figura 3: Grafo H

- 1. obtenga el arbol de expansión de ${\cal H}$ con raíz en g usando busqueda a profundidad.
- 2. obtenga un árbol de expansión de ${\cal H}$ con raíz en g usando búsqueda a lo ancho
- 3. calcule el numero de árboles de expansión de ${\cal H}$. (requiere programar)

4. Calcule la longitud, el camino y los pasos para determinar un camino de longitud mínima entre c y f usando el algoritmo de Dijkstra en el siguiente grafo

Figura 4: Grafo al cuál hacerle dijsktra

5. Considere la siguiente tabla de frecuencias

Carácter	Frecuencia	Carácter	Frecuencia
A	8	I	4
D	16	0	8
Е	8	R	2
F	8	S	2
G	4	Т	4

Figura 5: tabla de frecuencias

- 1. Construya un código Huffman y codifique el string ${f TEORIADEGRAFOS}$
- 2. verifique si la entropía es igual a la longitud esperada

6. Escriba los recorridos pre orden , in orden y post orden de el siguiente arbol:

Figura 6: Arbol