ALASKA OILFIELD PIPELINE APPLICATION

MATTHEW DUPREE

PRESENTED: 4/30/2021

INTRODUCTION

Project Goal:

To create a web application that performs basic oilfield investigation with minimal user input.

Objectives:

To provide a data pipeline based on Alaskan public data to petroleum engineers and small companies looking to perform an oilfield investigation for free.

METHODOLOGY

Preliminary Action

- Collect data from public Alaskan oilfield database
- Use a SQL database
- Clean data

Pipeline Outputs

- Production: rates, cumulatives, ratios
- Production: a setup for forecasting
- Injection: rates, cumulatives

PIPELINE OPTIMIZATION

Importance:

- ~1.6 Million data points
- ~ 7,500 wells
- Earliest wells from ~1920

Key Techniques:

- SQL querying to minimize data imports
- Lazy Evaluation

PRUDHOE BAY

Production start: ~1980

OIL: 13.5 billion STB

GAS: 110.8 trillion scf

Water: 14.2 billion STB

PRODUCTION RATE

OIL: 178 MSTB/day, GAS: 8.8 Bcf/day, WATER: 13.3 MMSTB/day

DECLINE FORECASTING

Decline Equation

$$d_i \left(\frac{q}{q_i}\right)^b$$

INJECTION RATE

GAS: 7.4 Bcf/day, LIQUIDS: 2 MMSTB/day

STREAMLIT APPLICATION

Click Here

FUTURE WORK

- Finish decline forecast
- Refine Streamlit user interaction
- Auto-update SQL database