

Università degli Studi di L'Aquila

Prima Prova Parziale di Algoritmi e Strutture Dati con Laboratorio

Martedì 26 Novembre 2013 – Prof. Guido Proietti (Modulo di Teoria)

Scrivi i tuoi dati \Longrightarrow	Cognome:	Nome:	Matricola:	PUNTI
ESERCIZIO 1	Risposte Esatte:	Risposte Omesse:	Risposte Errate:	

ESERCIZIO 1: Domande a risposta multipla

Premessa: Questa parte è costituita da 10 domande a risposta multipla. Per ciascuna domanda vengono fornite 4 risposte, di cui soltanto una è corretta. Per rispondere utilizzare la griglia annessa, barrando con una \times la casella corrispondente alla risposta prescelta. È consentito omettere la risposta. In caso di errore, contornare con un cerchietto la \times erroneamente apposta (ovvero, in questo modo \otimes) e rifare la \times sulla nuova risposta prescelta. Se una domanda presenta più di una risposta, verrà considerata omessa. Per tutti i quesiti verrà attribuito un identico punteggio, e cioè: risposta esatta 3 punti, risposta omessa 0 punti, risposta sbagliata -1 punto. Il voto relativo a questa parte è ottenuto sommando i punti ottenuti e normalizzando su base 30. Se tale somma è negativa, verrà assegnato 0.

1. Quale tra i seguenti rappresenta lo pseudocodice dell'algoritmo FIBONACCI 4:

ŧ	a)	b)	c)	*d)	
	FIBONACCI4(intero n) \rightarrow inter	ro Fibonacci4(intero n) \rightarrow inte	ero Fibonacci 4 (intero n) -	\rightarrow intero Fibonacci4(intero n) \rightarrow in	$_{ m tero}$
	$a \leftarrow 1; b \leftarrow 2$	$a \leftarrow b \leftarrow 1$	$a \leftarrow b \leftarrow 1$	$a \leftarrow b \leftarrow 1$	
	for $i = 3$ to n do	for $i = 3$ to $n - 1$ do	for $i = 2$ to n do	for $i = 3$ to n do	
	$c \leftarrow a + b$	$c \leftarrow a + b$	$c \leftarrow a + b$	$c \leftarrow a + b$	
	$a \leftarrow b$	$a \leftarrow b$	$a \leftarrow b$	$a \leftarrow b$	
	$b \leftarrow c$	$b \leftarrow c$	$b \leftarrow c$	$b \leftarrow c$	
	return b	return b	return b	$\operatorname{return} b$	

2. Sia $f(n) = 2n^2 + n - 4$; quale delle seguenti relazioni asintotiche è <u>falsa</u>:

```
a) f(n) = \Theta\left(\frac{n^2 \cdot \log_3 n^2}{2 \log n}\right) b) f(n) = O\left(\frac{n^3}{\log n}\right) *c) f(n) = \Omega\left(\frac{n^2 \cdot \log^2 n}{\log n}\right) d) f(n) = \Theta\left(\frac{n^4 + n}{n^2 + 3n - 12}\right)
```

3. L'algoritmo di ricerca binaria in un array ordinato di n elementi nel caso medio ha complessità:

```
a) \Theta(n) *b) \Theta(\log n) c) \Theta(n \log n) d) \Theta(1)
```

4. Sia dato in input l'array A = [3, 5, 2, 1, 8]; quanti confronti tra elementi esegue l'algoritmo INSERTIONSORT2 per ordinare in ordine non decrescente A?

```
a) 10 b) 5 c) 25 *d) 7
```

5. Siano f(n) e g(n) i costi degli algoritmi HeapSort e MergeSort nel caso peggiore e in quello medio, rispettivamente. Quale delle seguenti relazioni asintotiche è vera:

```
a) g(n) = o(f(n)) *b) f(n) = \Theta(g(n)) c) f(n) = \omega(g(n)) d) g(n) = \omega(f(n))
```

6. Nell'algoritmo QUICKSORT, scegliendo il perno a caso, il numero di confronti C(n) tra elementi nel caso atteso è:

a)
$$\sum_{a=0}^{n-1} [n-1+C(a)+C(n-a-1)]$$
 b) $\frac{1}{n}[n-1+C(a)+C(n-a-1)]$

c)
$$\sum_{a=0}^{n-1} \frac{1}{n} [C(a) + C(n-a-1)]$$
 * d) $\sum_{a=0}^{n-1} \frac{1}{n} [n-1 + C(a) + C(n-a-1)]$

7. Una coda di priorità realizzata con un heap d-ario avente nella radice l'elemento minimo, supporta la cancellazione dell'elemento minimo in:

```
a) \Theta(\log n) b) \Theta(n) c) \Theta(1) *d) O(d \log_d n)
```

8. Come si esegue l'operazione increaseKey(elem e, chiave Δ) di un elemento con chiave k in un heap binomiale?

a) eseguendo insert $(e, k + \Delta)$ b) eseguendo decreaseKey $(e, -\Delta)$

c) eseguendo $\mathtt{delete}(e)$ seguita da $\mathtt{insert}(e, \Delta)$ *d) eseguendo $\mathtt{delete}(e)$ seguita da $\mathtt{insert}(e, k + \Delta)$

9. In un albero binario di ricerca di altezza h e con n elementi, il predecessore di un elemento può essere determinato, nel caso peggiore, seguendo un cammino di lunghezza pari a:

*a) h b) $\log n$ c) 1 d) 2h

10. Si supponga di gestire un dizionario utilizzando un array non ordinato. Nel caso peggiore, quanto costa l'operazione di cancellazione di un elemento dal dizionario?

a)
$$\Theta(n)$$
 b) $n-1$ c) $\Theta(\log n)$ *d) $O(1)$

Griglia Risposte

	Domanda									
Risposta	1	2	3	4	5	6	7	8	9	10
a										
b										
c										
d										