V703

Das Geiger-Müller Zählrohr

Fritz Agildere fritz.agildere@udo.edu Amelie Strathmann amelie.strathmann@udo.edu

Durchführung: 25. April 2023 Abgabe:

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Zielsetzung	2	
2	Theorie	2	
3	Durchführung	2 2 2	
4	Auswertung4.1Fehlerrechnung4.2Kennlinie des Geiger-Müller-Zählrohrs	2	
5	Diskussion	4	
Lit	teratur	zurung 2 ung 2 errechnung 2 nlinie des Geiger-Müller-Zählrohrs 2 on 4	
Ar	nhang		

1 Zielsetzung

2 Theorie

3 Durchführung

4 Auswertung

Im Folgenden wird die Kennlinie des Geiger-Müller Zählrohrs bestimmt. Die Totzeit wird zunächst über die Zwei-Quellen-Methode und im Anschluss über das Osziloskop bestimmt.

4.1 Fehlerrechnung

Die Fehlerrechnung, für die Bestimmung der Messunsicherheiten, wird mit Uncertainties [1] gemacht. Für die Formel der Gauß Fehlerfortpflanzung ist gegeben durch

$$\Delta f = \sqrt{\sum_{i=1}^{N} \left(\frac{\partial f}{\partial x_i}\right)^2 \cdot \left(\Delta x_i\right)^2}.$$
 (1)

Für den Mittelwert gilt

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i. \tag{2}$$

Der Fehler des Mittelwertes ist gegeben durch

$$\Delta \bar{x} = \frac{1}{\sqrt{N}} \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2}.$$
 (3)

4.2 Kennlinie des Geiger-Müller-Zählrohrs

Die aufgenommenen Messwerte zur Bestimmung der Kennlinie des Geiger-Müller-Zählrohrs sind in der Tabelle 1 dargestellt. Zudem wurde mit Hilfe der ?? der statistische Fehler λ bestimmt und ebenfalls aufgelistet.

Tabelle 1: Messdaten zur Bestimmung der Kennlinie des Geiger-Müller-Zählrohrs

U/V	N	Ι / μΑ	λ
330	17211	0.2	131
350	18298	0.2	135
370	18392	0.3	136
390	18818	0.4	137
410	18653	0.4	137
430	18946	0.5	138
450	18915	0.6	138
470	18905	0.7	137
490	18934	0.8	138
510	18970	0.8	138
530	19015	0.8	138
550	19336	0.9	139
570	19235	1	139
590	19174	1	138
610	19224	1.1	139
630	18991	1.2	138
650	19082	1.2	138
670	19548	1.3	140
690	19505	1.3	140
710	20031	1.4	142
730	20429	1.5	143
750	21666	1.6	147

Die Messdaten der Detektorspannung U wurden gegen die Zählrate N aufgetragen und in der Abbildung 1 dargestellt. Die Ausgleichsgrade hat die Form

$$N = a \cdot U + b.$$

Mit Hilfe von Linearer Regression, welche mit Sci
Py [2]durchgeführt wurde, ergeben sich die Werte

$$\begin{split} a &= (0.018 \pm 0.003) \, \mathrm{V}^{-1} \quad \text{und} \\ b &= 149.499 \pm 0.172 \, . \end{split}$$

Der Plateu-Bereich hat eine Länge von $340\,\mathrm{V}$

Abbildung 1: Messwerte der Detektorspannung wurde gegen die Zählrate aufgetragen. Zudem die Ausgleichsgrade des Plateu-Bereichs.

In der $\ref{Implication}$ sind die gemessenen Werte für die Spannung U und die Stromstärke I abgebildet. Zusätzlich wurde die Anzahl der detektierten Ladungsträger N_e pro einfallenden Teilchen anhand der Formel

$$\Delta Z = \sqrt{\left(\frac{1}{eN} \cdot \Delta I\right)^2 + \left(\frac{1}{eN2} \cdot \Delta N\right)^2},$$

berechnet. Dabei beträgt $t=120\,\mathrm{s}$ und die Elementarladung e ist gegeben durch $e=1.6\cdot 10^{-19}\mathrm{coloumb}.$

5 Diskussion

Literatur

- [1] Eric O. Lebigot. *Uncertainties: a Python package for calculations with uncertainties.* Version 2.4.6.1. URL: http://pythonhosted.org/uncertainties/.
- [2] Pauli Virtanen u. a. "SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python". Version 1.9.3. In: *Nature Methods* 17 (2020), S. 261–272. DOI: 10.1038/s41592-019-0686-2.

Anhang