

AUDIOVISUAL COMMUNICATIONS LCAV

Mathematical Foundations of Signal Processing

Module 5: Sequences and Discrete-Time Systems

Benjamín Béjar Mihailo Kolundžija Reza Parhizkar Martin Vetterli

October 13, 2014

Discrete Time Signals

- Modeling Discrete Time Signals
 - Sequences
 - Discrete-time Systems

- Analyzing Discrete Time Signals
 - Why do we need Transforms?
 - Discrete Time Fourier Transform DTFT
 - Z Transform
 - Discrete Fourier Transform DFT

Modeling Discrete Time Signals

Sequences

Discrete-time signals are represented by sequences

- Infinite-length sequences: $[\dots x_{-2} \ x_{-1} \ x_0 \ x_1 \ x_2 \ \dots]$ Signal observed for an infinite lapse of time (theoretic case)
- Finite-length sequences
 - Truly finite $[x_0 \ x_1 \ x_2 \ \dots \ x_{N-1}]$
 - A period of a periodic sequence $[\ldots x_{N-1} | x_0 | x_1 x_2 \ldots x_{N-1} x_0 x_1 \ldots]$
 - A window view (observation) of an infinite sequence

Box window
$$w_n = \begin{cases} 1 & 0 \le n \le n_0 - 1 \\ 0 & \text{otherwise} \end{cases}$$
 $w = \begin{bmatrix} \dots & 0 & \underbrace{1} & \dots & 1 \\ 0 & \dots & 1 \end{bmatrix}^T$

Raised cosine window $w_n = \begin{cases} \frac{1}{2} \left(1 - \cos \frac{2\pi n}{n_0 - 1} \right) & 0 \le n \le n_0 - 1 \\ 0 & \text{otherwise} \end{cases}$

Sequences

Multidimensional sequences

- (a) Two-dimensional separable sinusoidal sequence $x_{n,m} = \sin(\frac{\pi}{16}n) \sin(\frac{5\pi}{6}m)$.
- (b) Two-dimensional nonseparable sinusoidal sequence $x_{n,m} = \sin(\frac{\pi}{16}n + \frac{5\pi}{6}m)$.
- (c) Earth visible above the lunar surface, taken by Apollo 8 crew member Bill Anders on December 24, 1968. This could be considered a two-dimensional sequence if the image were gray scale representing the intensity, or a higher-dimensional sequence depending on how color is represented.

Sequence Spaces

Discrete-time sequences are classified into specific spaces

- ullet $\ell^1(\mathbb{Z})$: absolutely summable sequences $\{x: \|x\|_1 = \sum_{n \in \mathbb{Z}} |x_n| < \infty\}$
- $\ell^2(\mathbb{Z})$: square summable sequences $\{x: \|x\|_2^2 = \sum_{n \in \mathbb{Z}} |x_n|^2 < \infty\}$
- $\ell^{\infty}(\mathbb{Z})$: bounded sequences $\{x: \max_{n \in \mathbb{Z}} |x_n| < \infty\}$

with the following properties

- $\ell^1(\mathbb{Z}) \subset \ell^2(\mathbb{Z}) \subset \ell^\infty(\mathbb{Z})$
- ullet $\ell^P(\mathbb{Z}), P \geq 1$ are all complete normed vector spaces \longrightarrow Banach spaces every Cauchy sequence is convergent
- ullet $\ell^2(\mathbb{Z})$ is also a Hilbert space \longrightarrow An inner product induces the norm

Remark: Here too, sequence space definitions extend to the K-dimensional case.

Special sequences

Kronecker delta

The Kronecker delta is defined as

$$\delta_n = \begin{cases} 1 & \text{for } n = 0; \\ 0 & \text{otherwise}. \end{cases}$$

The set of Kronecker deltas $\{\delta_{n-k}\}_{k\in\mathbb{Z}}$ forms an orthonormal basis for $\ell^2(\mathbb{Z})$

Special sequences

Sinc function and sequences

Defined as

$$x_n = \frac{1}{\sqrt{T}}\operatorname{sinc}(\pi n/T) = \frac{1}{\sqrt{T}}\frac{\sin(\pi n/T)}{\pi n/T}.$$

The sinc sequence is in $\ell^{\infty}(\mathbb{Z})$, $\ell^{2}(\mathbb{Z})$, but not in $\ell^{1}(\mathbb{Z})$.

Special sequences

Heaviside sequence

The Heaviside or unit-step sequence is defined as

$$u_n = \begin{cases} 1 & \text{for } n \geq 0; \\ 0 & \text{otherwise}. \end{cases}$$

It belongs to ℓ^{∞} but not in ℓ^2 or ℓ^1 .

The Kronecker delta and Heaviside sequences are related via

$$u_n = \sum_{k=-\infty}^n \delta_k.$$

Deterministic correlation

Deterministic autocorrelation

$$a_n = \sum_{k \in \mathbb{Z}} x_k x_{k-n}^* = \langle x_k, x_{k-n} \rangle_k$$

Properties

$$a_n = a_{-n}^*$$

 $a_0 = \sum_{k \in \mathbb{Z}} |x_k|^2 = ||x||^2$

• Deterministic crosscorrelation

$$c_n = \sum_{k \in \mathbb{Z}} x_k y_{k-n}^* = \langle x_k, y_{k-n} \rangle_k$$

- •
- Properties

$$c_{x,y,n}=c_{y,x,-n}^*$$

Special finite-length sequences

Periodic Kronecker delta sequences

A periodic Kronecker delta obtained by adding all shifts of δ_n by integer multiples of N:

$$arphi_{n} = \sum_{I \in \mathbb{Z}} \delta_{n-IN} \,, \quad n \in \mathbb{Z}$$

The resulting sequence is

$$\varphi = [\dots \ 0 \ \underbrace{\boxed{1} \ 0 \dots 0}_{N} \ 1 \ 0 \dots]^{T}$$

The set of N sequences generated from φ by shifts of $\{0, 1, \ldots, N-1\}$ spans the space of N-periodic sequences

Special finite-length sequences

Complex exponential sequence

Complex exponential sequences form a natural basis for *N*-periodic sequences:

$$\varphi_{k,n} = \frac{1}{\sqrt{N}} e^{j(2\pi/N)kn}, \quad k \in \{0, 1, ..., N-1\}, \quad n \in \mathbb{Z}$$

Discrete-time systems

A discrete-time system is an operator T that maps an input sequence $x \in V$ into an output sequence $y \in V$

$$y = T(x)$$

Definition (Linear system)

A discrete-time system T is called *linear* when, for any inputs x and y and any α , $\beta \in \mathbb{C}$,

$$T(\alpha x + \beta y) = \alpha T(x) + \beta T(y).$$

Discrete-time systems

- A linear operator has a unique matrix representation once bases have been chosen for the domain and codomain of the operator
- Matrix representations of linear systems will be with respect to the standard basis $\{\delta_{n-k}\}_{k\in\mathbb{Z}}$ for both the inputs and outputs
- The matrix representation has as column k the output that results from taking the shifted Kronecker delta sequence δ_{n-k} as the input
- For each $k \in \mathbb{Z}$, let input $x^{(k)}$ result in output $y^{(k)}$, where

$$x_n^{(k)} = \delta_{n-k}, \quad n \in \mathbb{Z}.$$

• The matrix representation of the system is

$$\begin{bmatrix} \vdots & \vdots & \vdots \\ \cdots & y_{-1}^{(-1)} & y_{-1}^{(0)} & y_{-1}^{(1)} & \cdots \\ \cdots & y_0^{(-1)} & y_0^{(0)} & y_0^{(1)} & \cdots \\ \cdots & y_1^{(-1)} & y_1^{(0)} & y_1^{(1)} & \cdots \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

System types

Definition (Memoryless system)

A discrete-time system T is called *memoryless* when, for any integer k and inputs x and x',

$$1_{\{k\}} x = 1_{\{k\}} x' \Rightarrow 1_{\{k\}} T(x) = 1_{\{k\}} T(x')$$

Definition (Causal system)

A discrete-time system T is called *causal* when, for any integer k and inputs x and x',

$$1_{\{-\infty,...,k\}} x = 1_{\{-\infty,...,k\}} x' \Rightarrow 1_{\{-\infty,...,k\}} T(x) = 1_{\{-\infty,...,k\}} T(x')$$

Definition (Shift-invariant system)

A discrete-time system T is called *shift invariant* when, for any integer k and input x,

$$y = T(x) \Rightarrow y' = T(x'),$$
 where $x'_n = x_{n-k}$ and $y'_n = y_{n-k}$.

Stable systems

Definition (BIBO stable system)

A discrete-time system T is called bounded-input bounded-output stable when a bounded input x produces a bounded output y = T(x):

$$x \in \ell^{\infty}(\mathbb{Z}) \quad \Rightarrow \quad y \in \ell^{\infty}(\mathbb{Z})$$

- In a matrix representation of a linear and BIBO-stable system, every row of the matrix will be absolutely summable
- A linear and BIBO stable system is a bounded linear operator from $\ell^\infty(\mathbb{Z})$ to $\ell^\infty(\mathbb{Z})$
- Absolute-summability also insures that the system is a bounded linear operator from $\ell^2(\mathbb{Z})$ to $\ell^2(\mathbb{Z})$

Impulse response

Definition (Impulse response)

A sequence h is called the *impulse response* of LSI discrete-time system T when input δ produces output h.

Convolution

- The impulse response and its shifts form the columns of the matrix representation of an LSI system
- Since a general input x to LSI system T can be written as $x_n = \sum_{k \in \mathbb{Z}} x_k \delta_{n-k}$ for any $n \in \mathbb{Z}$, we can express the output as

$$y = Tx = T\sum_{k\in\mathbb{Z}} x_k \delta_{n-k} = \sum_{k\in\mathbb{Z}} x_k T\delta_{n-k} = \sum_{k\in\mathbb{Z}} x_k h_{n-k} = h * x,$$

Definition (Convolution)

The *convolution* between sequences h and x is defined as

$$(Hx)_n = (h*x)_n = \sum_{k \in \mathbb{Z}} x_k h_{n-k} = \sum_{k \in \mathbb{Z}} x_{n-k} h_k,$$

where H is called the *convolution operator* associated with h.

Convolution properties

The convolution satisfies

• Connection to the inner product

$$(h*x)_n = \sum_{k\in\mathbb{Z}} x_k h_{n-k} = \langle x_k, h_{n-k}^* \rangle_k$$

Commutativity

$$h * x = x * h$$

Associativity

$$g * (h * x) = g * h * x = (g * h) * x$$

Deterministic autocorrelation

$$a_n = \sum_{k \in \mathbb{Z}} x_k \, x_{k-n}^*$$

Filters

The impulse response is often called a *filter* and the convolution is called *filtering*. Here are some basic classes of filters:

- Causal filters are such that $h_n = 0$ for all n < 0.
- Anticausal filters are such that $h_n = 0$ for all n > 0.
- Two-sided filters are neither causal nor anticausal.
- Finite impulse response (FIR) filters have only a finite number of coefficients h_n different from zero.
- Infinite impulse response (IIR) filters have infinitely many nonzero terms.

Stability

Theorem (BIBO stability)

An LSI system is BIBO stable if and only if its impulse response is absolutely summable

Theorem (Filtering with BIBO stable filter)

When $h \in \ell^1(\mathbb{Z})$ and $x \in \ell^p(\mathbb{Z})$ for any $p \in [1, \infty]$, the result of h * x is in $\ell^p(\mathbb{Z})$ as well

Matrix view

Any linear operator can be expressed in matrix form

$$y = \begin{bmatrix} \vdots \\ y_{-2} \\ y_{-1} \\ y_{0} \\ y_{1} \\ y_{2} \\ \vdots \end{bmatrix} = \underbrace{\begin{bmatrix} \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \cdots & h_{0} & h_{-1} & h_{-2} & h_{-3} & h_{-4} & \cdots \\ \cdots & h_{1} & h_{0} & h_{-1} & h_{-2} & h_{-3} & \cdots \\ \cdots & h_{2} & h_{1} & \boxed{h_{0}} & h_{-1} & h_{-2} & \cdots \\ \cdots & h_{3} & h_{2} & h_{1} & h_{0} & h_{-1} & \cdots \\ \cdots & h_{4} & h_{3} & h_{2} & h_{1} & h_{0} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix}}_{H} \begin{bmatrix} \vdots \\ x_{-2} \\ x_{-1} \\ x_{0} \\ x_{1} \\ x_{2} \\ \vdots \end{bmatrix} = Hx$$

- An LSI discrete-time system, linear operator (on sequences), filter and (doubly-infinite) matrix are all synonyms
- The filtering matrix has the Toeplitz structure
- ullet Adjoint H^* of the convolution matrix given by the Hermitian transposition

$$H^* \times = \sum_{n \in \mathbb{Z}} h_{n-k}^* x_n$$

Convolution with circularly-extended signal

- x a periodic sequence with period N
- Filter h in $\ell^1(\mathbb{Z})$
- Periodized version of h

$$h_{N,n} = \sum_{k\in\mathbb{Z}} h_{n-kN}$$

Circular convolution

$$(h*x)_{n} = \sum_{k \in \mathbb{Z}} h_{k} x_{n-k} = \sum_{\ell \in \mathbb{Z}} \sum_{k=\ell N}^{(\ell+1)N-1} h_{k} x_{n-k}$$

$$= \sum_{\ell \in \mathbb{Z}} \sum_{k'=0}^{N-1} h_{k'+\ell N} x_{n-k'-\ell N} = \sum_{\ell \in \mathbb{Z}} \sum_{k=0}^{N-1} h_{k+\ell N} x_{n-k}$$

$$= \sum_{k=0}^{N-1} \underbrace{\sum_{\ell \in \mathbb{Z}} h_{k+\ell N}}_{h_{N,k}} x_{n-k} = \sum_{k=0}^{N-1} h_{N,k} x_{n-k}$$

$$= \sum_{k=0}^{N-1} h_{N,k} x_{(n-k) \bmod N} = (h_{N} \circledast x)_{n}$$

Circular convolution

Definition (Circular convolution)

The circular convolution between length-N sequences h and x is defined as

$$(Hx)_n = (h \circledast x)_n = \sum_{k=0}^{N-1} x_k h_{(n-k) \bmod N} = \sum_{k=0}^{N-1} x_{(n-k) \bmod N} h_k,$$

where H is called the circular convolution operator associated with h

Theorem (Equivalence of circular and linear convolutions)

Linear and circular convolutions between a length-M sequence x and a length-L sequence h are equivalent when the period of the circular convolution N satisfies

$$N > L + M - 1$$
.

Circular convolution

Linear and circular convolution

- Sequence x of length M=4
- Filter h of length L=3
- Linear convolution results in a sequence of length L+M-1=6, the same as a circular convolution with a period $N \ge L+M-1$, N=6 in this case
- \bullet Circular convolution with a smaller period, ${\it N}=5$, does not lead to the same result

Circular convolution: Matrix view

$$y = \begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ \vdots \\ y_{N-1} \end{bmatrix} = \underbrace{\begin{bmatrix} h_0 & h_{N-1} & h_{N-2} & \cdots & h_1 \\ h_1 & h_0 & h_{N-1} & \cdots & h_2 \\ h_2 & h_1 & h_0 & \cdots & h_3 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ h_{N-1} & h_{N-2} & h_{N-3} & \cdots & h_0 \end{bmatrix}}_{H} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_{N-1} \end{bmatrix} = Hx.$$

Analyzing Discrete Time Signals

Why do we need Transforms?

Here again the same two motivations (one or both)

- View from a different perspective the characteristics of the function
- Move to a space where certain computations are simplified
 Notice that here we need the transform to be *invertible* (a one to one application)!

Eigensequences of the convolution operator

Consider a complex exponential sequence

$$v_n = e^{j\omega n}, \qquad n \in \mathbb{Z}$$

- ullet v is bounded since $|v_n|=1$ for all $n\in\mathbb{Z}$
- If the impulse response h is in $\ell^1(\mathbb{Z})$, the output h*v is bounded as well and has the form

$$(H v)_n = (h * v)_n = \sum_{k \in \mathbb{Z}} v_{n-k} h_k = \sum_{k \in \mathbb{Z}} e^{j\omega(n-k)} h_k$$
$$= \sum_{k \in \mathbb{Z}} h_k e^{-j\omega k} \underbrace{e^{j\omega n}}_{v_n}$$

- v is an eigensequence of H
- The eigenvalue λ_{ω} is called the *frequency response* of the system $H(e^{j\omega})$

Definition

Finding the appropriate Fourier transform now amounts to projecting onto the subspaces generated by each of the eigensequences

Definition (Discrete-time Fourier transform)

The discrete-time Fourier transform of a sequence x is

$$X(e^{j\omega}) = \sum_{n\in\mathbb{Z}} x_n e^{-j\omega n}, \qquad \omega \in \mathbb{R}.$$

It exists when this sum converges for all $\omega \in \mathbb{R}$; we then call it the *spectrum* of x. The *inverse DTFT* of a 2π -periodic function $X(e^{j\omega})$ is

$$x_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega, \qquad n \in \mathbb{Z}.$$

When the DTFT exists, we denote the DTFT pair as

$$x_n \stackrel{\text{DTFT}}{\longleftrightarrow} X(e^{j\omega})$$

• DTFT is always a 2π -periodic function, which is emphasized by the notation $X(e^{i\omega})$

Sequences in ℓ^1

• Existence:

Existence straightforwardly follows from the existence (or convergence) of the sum for absolutely summable sequences

$$\sum_{n\in\mathbb{Z}}|x_ne^{-j\omega n}|=\sum_{n\in\mathbb{Z}}|x_n|<\infty$$

Moreover, as a consequence of absolute convergence for all ω , the limit $X(e^{j\omega})$ is a continuous function of ω

• Inverse transform:

The inverse always exists and it corresponds to the sequence itself

$$x_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega.$$

Indeed one can simply check that $x_n \in \ell^1$ guarantees that $X(e^{j\omega}) \in \mathcal{L}^1([-\pi,\pi])$.

Sequences in $\ell^2(\mathbb{Z})$

- For sequences not in $\ell^1(\mathbb{Z})$, the DTFT series might fail to converge for some values of ω
- ullet To extend beyond $\ell^1(\mathbb{Z})$, we consider the limit as $N o \infty$ of the *partial sums*

$$X_N(e^{j\omega}) = \sum_{n=-N}^N x_n e^{-j\omega n}.$$

• If $x \in \ell^2(\mathbb{Z})$, the partial sum $X_N(e^{j\omega})$ converges to a function $X(e^{j\omega}) \in \mathcal{L}^2([-\pi,\pi))$ in the sense that

$$\lim_{N\to\infty} ||X(e^{j\omega}) - X_N(e^{j\omega})|| = 0$$

This convergence in $\mathcal{L}^2([-\pi,\pi))$ norm implies convergence for almost all values of ω , but there is no guarantee of the convergence being uniform or the limit function $X(e^{j\omega})$ being continuous

Gibbs Phenomenon

The sequence

$$x_n = \frac{1}{\sqrt{2}} \frac{\sin(\pi n/2)}{\pi n/2} \,,$$

is not in $\ell^1(\mathbb{Z})$ but in $\ell^2(\mathbb{Z})$ and in particular the corresponding DTFT is not continuous Consequently, the truncated DTFT

$$X_N(e^{j\omega}) = \sum_{n=-N}^N \frac{1}{\sqrt{2}} \frac{\sin(\pi n/2)}{\pi n/2},$$

will converge in norm $\mathcal{L}^2([-\pi,\pi))$ but not uniformly The values of the truncated DTFT oscillates around the points of discontinuities of the DTFT

Gibbs Phenomenon

(a) N = 10, (b) N = 100 and (c) N = 1000, with (d) a detail from (c).

DTFT properties

- Shift in time $x_{n-n_0} \stackrel{\text{DTFT}}{\longleftrightarrow} e^{-j\omega n_0} X(e^{j\omega})$
- Shift in frequency $e^{j\omega_0 n} x_n \stackrel{\text{DTFT}}{\longleftrightarrow} X(e^{j(\omega-\omega_0)})$
- Time reversal $x_{-n} \stackrel{\text{DTFT}}{\longleftrightarrow} X(e^{-j\omega})$
- Convolution in time $(h*x)_n \overset{\mathrm{DTFT}}{\longleftrightarrow} H(e^{j\omega}) X(e^{j\omega})$
- Circular convolution in frequency $h_n x_n \overset{\mathrm{DTFT}}{\longleftrightarrow} \frac{1}{2\pi} (H \circledast X) (e^{j\omega})$ with $(H \circledast X) (e^{j\omega}) = \int_{-\pi}^{\pi} X (e^{j\theta}) H(e^{j(\omega \theta)}) d\theta$
- Deterministic autocorrelation $a_n = \sum_{k \in \mathbb{Z}} x_k x_{k-n}^* \overset{\mathrm{DTFT}}{\longleftrightarrow} A(e^{j\omega}) = |X(e^{j\omega})|^2$

Parseval's equality

- DTFT is a linear operator from the space of sequences to the space of 2π -periodic functions, $X=F\,x$
- $F:\ell^2(\mathbb{Z}) \to \mathcal{L}^2([-\pi,\pi))$ because $x \in \ell^2(\mathbb{Z})$ implies that $X(e^{j\omega})$ has finite $\mathcal{L}^2([-\pi,\pi))$ norm $\|X\|^2 = 2\pi \|x\|^2$
- It is easily shown that $\frac{1}{\sqrt{2\pi}}F$ is a unitary operator:

$$\left\langle \frac{1}{\sqrt{2\pi}}Fx, \frac{1}{\sqrt{2\pi}}Fy \right\rangle = \langle x, y \rangle$$
 for every x and y in $\ell^2(\mathbb{Z})$

Equivalently:

$$\langle x, y \rangle = \frac{1}{2\pi} \langle X, Y \rangle$$
 for every x and y in $\ell^2(\mathbb{Z})$

The z transform extends the DTFT from the unitary circle defined by $e^{j\omega}$ to the complex plane.

It can be defined over regions of convergence that might not contain the unitary circle $e^{j\omega}$ (this also might be considered as an extension), therefore enabling a different perspective (analysis) also for those sequences not admitting a DTFT.

Eigensequences of the convolution operator

Consider a complex exponential sequence with an arbitrary modulus

$$v_n = z^n = (re^{j\omega})^n, \qquad n \in \mathbb{Z}$$

 This is also an eigensequence of the convolution operator H associated with the LSI system with impulse response h since

$$(H v)_n = (h * v)_n = \sum_{k \in \mathbb{Z}} v_{n-k} h_k = \sum_{k \in \mathbb{Z}} z^{n-k} h_k$$
$$= \sum_{k \in \mathbb{Z}} h_k z^{-k} \underbrace{z^n}_{v_n}$$

It can thus be written:

$$Hz^n = h*z^n = H(z)z^n$$

ullet The set of impulse responses h for which the sum converges now depends on |z|

Definition

Definition (z-transform)

The z-transform of a sequence x is

$$X(z) = \sum_{n\in\mathbb{Z}} x_n z^{-n}, \qquad z\in\mathbb{C}.$$

It exists when this sum converges absolutely for some values of z; these values of z are called the *region of convergence* (ROC),

$$ROC = \{z \mid |X(z)| < \infty\}.$$

When the z-transform exists, we denote the z-transform pair as

$$x_n \quad \stackrel{\text{ZT}}{\longleftrightarrow} \quad X(z),$$

where the ROC is part of the specification of X(z).

Convergence

- For the z-transform to exist and have $z = re^{j\omega}$ in its ROC, $X(z) = \sum_{n \in \mathbb{Z}} x_n z^{-n}$ must converge absolutely
- Since

$$\sum_{n\in\mathbb{Z}} \left| x_n z^{-n} \right| \; = \; \sum_{n\in\mathbb{Z}} \left| x_n \, r^{-n} \right| \, \left| \mathrm{e}^{-j\omega n} \right| \; = \; \sum_{n\in\mathbb{Z}} \left| x_n r^{-n} \right|,$$

absolute summability of $x_n r^{-n}$ is necessary and sufficient for the circle |z| = r to be in the ROC of X(z)

• ROC is a ring of the form

ROC =
$$\{z \mid 0 \le r_1 < |z| < r_2 \le \infty\}.$$

Properties

- The z-transform has the same properties as the DTFT, but for a larger class of sequences
- The main new twist is to properly account for ROCs
- Convolution of two sequences can be computed as a product in the transform domain even when the sequences do not have proper DTFTs, provided that the sequences have some part of their ROCs in common

Geometric series

• Right-sided geometric series (causal)

$$x_n = \begin{cases} \alpha^n & n \ge 0 \\ 0 & n < 0 \end{cases}, \quad X(z) = \frac{1}{1 - \alpha z^{-1}}, \quad \text{ROC} = \{z | |z| > |\alpha| \}$$

$$x_n = \left(\frac{1}{2}\right)^n u_n$$
.

 $ROC = \{z \mid |z| > \frac{1}{2}\}.$

• Left-sided geometric series (anti-causal)

$$x_n = \begin{cases} \alpha^n & n \le 0 \\ 0 & n > 0 \end{cases}, \quad X(z) = \frac{1}{1 - \alpha z^{-1}}, \quad ROC = \{z | |z| < |\alpha| \}$$

$$x_n = -\left(\frac{1}{2}\right)^n u_{-n-1}.$$

 $ROC = \{z \mid |z| < \frac{1}{2}\}.$

Rational z-transform

- An important class of z-transforms are those that are rational functions, since transfer functions of most realizable systems (systems that can be built and used in practice) are rational
- Such transfer functions are of the form

$$H(z) = \frac{B(z)}{A(z)},$$

where A(z) and B(z) are polynomials in z^{-1} with no common roots, of degree N and M, respectively, with $M \leq N$

• The zeros of the numerator B(z) and denominator A(z) are called the zeros and poles of the rational transfer function H(z)

$$H(z) = \frac{b_0 \prod_{k=1}^{M} (1 - z_k z^{-1})}{a_0 \prod_{k=1}^{N} (1 - p_k z^{-1})}$$

 A causal filter is BIBO stable if and only if the poles of its transfer function are inside the unit circle (ROC contains the unit circle)

Deterministic autocorrelation

 z-transform pair corresponding to the deterministic autocorrelation of a sequence x is

$$a_n = \sum_{k \in \mathbb{Z}} x_k x_{k-n}^* \quad \stackrel{\mathrm{ZT}}{\longleftrightarrow} \quad A(z) = X(z) X_*(z^{-1}), \qquad \mathrm{ROC}_x \cap \frac{1}{\mathrm{ROC}_x}$$

- $X_*(z)$ denotes $X^*(z^*)$, which amounts to conjugating coefficients but not z
- A(z) satisfies

$$A(z) = A_*(z^{-1})$$

For a real x

$$A(z) = X(z)X(z^{-1}) = A(z^{-1}).$$

Rational autocorrelation

Theorem (Rational autocorrelation)

A rational function A(z) is the z-transform of the deterministic autocorrelation of a stable real sequence x, if and only if

• its complex poles and zeros appear in quadruples:

$$\{z_i, z_i^*, z_i^{-1}, (z_i^{-1})^*\}, \qquad \{p_i, p_i^*, p_i^{-1}, (p_i^{-1})^*\};$$

its real poles and zeros appear in pairs:

$$\{z_i, z_i^{-1}\}, \{p_i, p_i^{-1}\};$$

and

• its zeros on the unit circle are double zeros:

$$\{z_i, z_i^*, z_i^{-1}, (z_i^{-1})^*\} \ = \ \{e^{j\omega_i}, e^{-j\omega_i}, e^{-j\omega_i}, e^{j\omega_i}\},$$

with possibly double zeros at $z=\pm 1$. There are no poles on the unit circle

Spectral factorization

Corollary (Spectral factorization)

A rational z-transform A(z) is the deterministic autocorrelation of a stable real sequence x_n if and only if it can be factored as $A(z) = X(z)X(z^{-1})$

- Spectral factorization amounts to assigning poles and zeros from quadruples and pairs X(z) and $X(z^{-1})$
- For the poles, there is a unique rule: take all poles inside the unit circle and assign them to X(z)
 - Stability of x requires X(z) to have only poles inside the unit circle
 - x real requires that conjugate pairs be kept together
- For the zeros, there is a choice, since we are not forced to assign only zeros inside the unit circle to X(z). Doing so, however, creates a unique solution called the *minimum-phase solution*
- Minimum phase sequences: A sequence h_n is called minimum phase if it is stable, causal and all zeros are inside or on the unit circle (strictly minimum phase if zeros strictly inside the unit circle).

Spectral Factorization

Discrete Fourier Transform (DFT)

- DFT is a tool for fast computation of linear convolution
- DFT contains eigensequences of the circular convolution operator H

$$v_n = e^{j(2\pi/N)kn} = W_N^{-kn}, \quad v = \begin{bmatrix} 1 & W_N^{-k} & \dots & W_N^{-(N-1)k} \end{bmatrix}^T$$

$$(H v)_{n} = (h \circledast v)_{n} = \sum_{i=0}^{N-1} v_{(n-i) \bmod N} h_{i} = \sum_{i=0}^{N-1} W_{N}^{-k[(n-i) \bmod N]} h_{i}$$

$$= \sum_{i=0}^{N-1} W_{N}^{k(i-n)} h_{i} = \underbrace{\sum_{i=0}^{N-1} h_{i} W_{N}^{ki}}_{\lambda_{k}} \underbrace{W_{N}^{-kn}}_{v_{n}}$$

- λ_k is the eigenvalue called the frequency response H_k
- k is called the discrete frequency

Discrete Fourier Transform (DFT)

Definition (Discrete Fourier transform)

The discrete Fourier transform of a length-N sequence x is

$$X_k = (F x)_k = \sum_{n=0}^{N-1} x_n W_N^{kn}, \qquad k \in \{0, 1, ..., N-1\};$$

we call it the *spectrum* of x. The *inverse DFT* of a length-N sequence X is

$$x_n = \frac{1}{N} (F^* X)_n = \frac{1}{N} \sum_{k=0}^{N-1} X_k W_N^{-kn}, \qquad n \in \{0, 1, \dots, N-1\}.$$

We denote the DFT pair as

$$x_n \stackrel{\mathrm{DFT}}{\longleftrightarrow} X_k$$

DFT: Matrix View

$$F = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & W_N & W_N^2 & \cdots & W_N^{N-1} \\ 1 & W_N^2 & W_N^4 & \cdots & W_N^{2(N-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & W_N^{(N-1)} & W_N^{2(N-1)} & \cdots & W_N^{(N-1)^2} \end{bmatrix},$$

$$F^{-1} = \frac{1}{N} \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & W_N^{-1} & W_N^{-2} & \cdots & W_N^{-(N-1)} \\ 1 & W_N^{-2} & W_N^{-4} & \cdots & W_N^{-2(N-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & W_N^{-(N-1)} & W_N^{-2(N-1)} & \cdots & W_N^{-(N-1)^2} \end{bmatrix} = \frac{1}{N} F^*$$

DFT is an orthogonal basis

$$FF^* = F^*F = NI_{N \times N}$$

Relation between DFT & DTFT

ullet For a given length-N sequence, DFT is the sample of DTFT spectrum at

$$\omega = \frac{2\pi k}{N}$$

$$\begin{bmatrix} x_0 & x_1 & \dots & x_{N-1} \end{bmatrix} \xrightarrow{DFT} & \begin{bmatrix} X_0 & X_1 & \dots & X_{N-1} \end{bmatrix}$$

$$Zero \ extension \ to \ \pm \infty$$

$$\dots 000 \begin{bmatrix} x_0 & x_1 & \dots & x_{N-1} \end{bmatrix} 000\dots$$

Formally

$$X(e^{j\omega})\Big|_{\omega=(2\pi/N)k} = X(e^{j(2\pi/N)k}) = \sum_{n\in\mathbb{Z}} x_n e^{-j(2\pi/N)kn}$$
$$= \sum_{n\in\mathbb{Z}} x_n e^{-j(2\pi/N)kn} = X_k$$

Sampling the spectrum

5.2 52

Properties of DFT

Properties

- Linearity $\alpha x_n + \beta y_n \stackrel{\text{DFT}}{\longleftrightarrow} \alpha X_k + \beta Y_k$
- Shift in time $x_{(n-n_0) \bmod N} \overset{\mathrm{DFT}}{\longleftrightarrow} W_N^{kn_0} X_k$
- Shift in frequency $W_N^{-k_0n}x_n \overset{\mathrm{DFT}}{\longleftrightarrow} X_{(k-k_0) \bmod N}$
- Convolution in time $(h \circledast x)_n \stackrel{\text{DFT}}{\longleftrightarrow} H_k X_k$
- Convolution in frequency $h_n x_n \overset{\text{DFT}}{\longleftrightarrow} \frac{1}{N} (H \circledast X)_k$
- Deterministic auto-correlation $a_n = \sum_{k=0}^{N-1} x_k x_{(k-n) \bmod N}^* \overset{\text{DFT}}{\longleftrightarrow} A_k = |X_k|^2$
- Deterministic cross-correlation $c_n = \sum_{k=0}^{N-1} x_k y_{(k-n) \bmod N}^* \overset{\text{DFT}}{\longleftrightarrow} C_k = X_k Y_k^*$

Diagonalization of the circular convolution operator

- \bullet H the circular convolution operator associated with length-N filter h
- The DFT spectrum of h gives a diagonal form for H

$$\Lambda = \text{diag}([H_0, H_1, ..., H_{N-1}]), \quad \text{where } H_k = \sum_{n=0}^{N-1} h_n W_N^{kn}$$

- X_k DFT spectrum of length-N sequence x_n
- The circular convolution property

$$(h \circledast x)_n \stackrel{\mathrm{DFT}}{\longleftrightarrow} H_k X_k$$

gives

$$F(Hx) = \Lambda Fx \Rightarrow H = F^{-1}\Lambda F$$

• DFT operator F diagonalizes the circular convolution operator H

$$FHF^{-1} = \Lambda$$