实验三 简单模型机的设计与实现

一、实验目的

- 1. 掌握指令格式、寻址方式、指令系统的设计方法;
- 2. 掌握 MIPS 指令系统三种指令格式的特点和寻址方式;
- 3. 深入理解 CPU 的内部结构, 主要功能部件的功能和端口功能;
- 4. 掌握典型指令的执行流程
- 5. 掌握数据通路建立过程中,控制信号与数据流之间关系;
- 6. 掌握组合逻辑控制器的设计方法,理解模型计算机的整机工作过程;
- 7. 提高基于 Verilog HDL 的硬件电路的设计、调试、测试能力。

二.实验设备

- 1. DE2-70 开发板, 下载线缆
- 2. QuartusII IDE
- 3. 实验提供的文件见表 1

表 1 源文件清单

序号	文件名	功能简介
1	Misp_cpu.dbf	模型机顶层模块
2	SEG7_LUT. V	七段数码译码模块
3	SEG7_L_8. V	32 位数据 7 段数码数据模块
4	EXT. v	扩展模块
5	Mux. v	数据选择器模块
6	Ctrl_encode_def.v	参数控制定义文件
7	alu. v	运算器模块
8	Dm. v	RAM 模块
9	RF. V	寄存器堆模块
10	im. v	指令存储器模块
11	NPC. v	PC 更新模块
12	PC. V	PC 模块
13	IR. v	IR 模块
14	Ctrl.v	CU 模块

15	cputest.csv	输入输出引脚分配文件
----	-------------	------------

三、实验内容和要求

- 1. 分析表 2 所示汇编程序的代码,完成下列要求。
- (1) 画出汇编程序的流程图,说明该程序的功能;
- (2) 写出每条汇编指令对应的机器码和存储地址,并将其存放到指令存储器中。

表 2 汇编指令和机器指令对应关系

机器指令	存储地址			汇编指令
		start:	ori	\$1,\$0,4
			ori	\$2,\$0,1
			ori	\$3,\$0,1
		loop1:	sw	\$2,0(\$2)
			addu	\$2,\$2,\$3
			bne	\$2,\$1,loop1
			ori	\$2,\$0,3
			ori	\$1,\$0,0
		loop2:	lw	\$4,0(\$2)
			addu	\$1,\$1,\$4
			subu	\$2,\$2,\$3
			bne	\$2,\$0,loop2
			SW	\$1,0(\$0)
			jal	start

2. 分析模型机的基本结构

模型机的顶层结构如图 1-1 至图 1-3 所示,完成如下要求:

(1)分析模型机中的主要构成模块,包括程序计数器 PC, PC 更新模块 NPC, 指令存储器 IM, 指令寄存器 IR, 寄存器文件 RF, 运算器 ALU、数据存储器 DM 的端口信号的功能, 明确各部件的工作原理; 分析模型 机的总线互联结构, 明确各部件间的数据流向,并填写表 3。

图 1-1 CPU 数据通路图 (1)

图 1-2 CPU 数据通路图 (2)

图 1-3 CPU 数据通路图 (3)

表 3 主要部件功能及数据流向列表

		输入数据 来源	输入	端口	<i>+</i> A , I,)W . I =	输出	端口	
模块名	功能描述		信号 名称	作用描述	输出数据 目的地	信号 名称	作 用描述	控制信号
PC								
NPC								
IM								
IR								
RF								
ALU								
DM								

(2) 分析系统中的 4 个多路数据选择器,填写表 4

表 4 数据选择器的功能分析

实例化名称	选择器类	控制信号名称	输出数据流向	控制信号与输出
	型			之间的关系
MUX_DISPDATA	8选1	LUT_SEL[20]	七段译码器数据输入	000: REG1DATA[310]
			端	001: REG2DATA[310]
				010:
				011:
				100:
				101:
				110:
				111:
MUX_RFWD				
ALU_B				
_				
RF_A3SEL				

- (3) 分析并说明系统中的 2 个数据扩展器 U_EXTPC 和 U_EXT 的作用
- 3.设计并实现一个能够执行下列 MISP32 指令的控制器

MISP 指令集: addu, subu, ori, lw, sw, bne, jal

- (1) 写出指令集中每条指令的指令格式,并对指令功能进行说明
- (2) 设计的控制器端口信号如图 2 所示,在端口上标明每个输入和输出信号的作用

图 2 控制器模块端口引脚图

- (3) 根据指令的功能,分析每条从取指到指令执行的整个过程中所需的控制信号填写表 5。
- (4) 补充完善 Ctrl.v 的 Verilog 代码,使其能够正确执行 MISP 指令集中的 addu, subu, ori, lw, sw, bne, jal 七条指令。

实现过程:将实验内容 1 中的汇编程序对应的机器指令写入指令存储器,并在 QuartusII IDE 环境下,进行系统功能仿真,在波形仿真图中对程序中每条指令的执行过程进行说明。

(5) 在 DE2-70 开发板上对 CU 的结果进行验证,并观察指令的操作过程中所涉及部件相关数据的变化过程,能够正确的解释指令的执行过程,并对结果的正确性进行分析判断。

表 5 各指令流程控制信号分析

指令	State	RFWr	DMWr	PCWr	IRWr	EXPOp	ALUOP	NPCOP	GPRSel	WDSel	BSel
	[2: 0]						[1: 0]	[1: 0]	[1: 0]	[1: 0]	
addu	Fetch										
	Exe										
	Mem										
	WB										
subu	Fetch										
	Exe										
	Mem										
	WB										
Ori	Fetch										
	Exe										
	Mem										
	WB										
lw	Fetch										
	Exe										
	Mem										
	WB										

指令	State	RFWr	DMWr	PCWr	IRWr	EXPOp	ALUOP	NPCOP	GPRSel	WDSel	BSel
	[2: 0]						[1: 0]	[1: 0]	[1: 0]	[1: 0]	
sw	Fetch										
	Exe										
	Mem										
	WB										
bne	Fetch										
	Exe										
	Mem										
	WB										
jal	Fetch										
	Exe										
	Mem										
	WB										

四.实验报告要求

- 1. 分析系统电路图,仔细阅读各模块 Verilog 代码,明确各主要功能模块的功能,理解数据传送通路。按照如下要求画出系统完整的数据通路图。
 - (1) 使用 A3 纸, 横版画出 (手画)。
- (2) 模块用方块画出,上边外部标出模块名称。方块内部标出模块的所有输入输出信号,每个信号要注明含义。

说明:①对于典型的信号,如 clk 等,可以不写出含义;②信号含义的标注方式:可以在模块内部注明,如图 2 的 REG_FILE 模块;也可以在外部以列表方式说明模块/信号功能,如图 2 的 MUX RFWD 模块。

- (3)模块间的连接信号线:地址线用蓝色粗线、数据线用黑色粗线、控制线用红色单线画出。 传送多种类型信息的信号线用绿色画出。要用箭头表示每组线的传送方向。
 - (4) 每组地址线、数据线都要标出位数。如图中线上标注的 5 位、32 位。
- (5)每个*控制信号*要标注 3 种信息:外部信号名,连接电路板的资源,控制信号的有效电平。 其中,连接电路板的资源要用红色字体写出。
- 2.填写表 2
- 3.填写表 3
- 4.填写表 4
- 5.对图 2 的端口进行标注
- 6.填写表 5
- 7.给出完整的 Ctrl.v 的代码
- 8. 对 CU 的功能仿真波形(可打印)上对中每条指令的执行过程进行说明,分析程序的正确性。