WPI Acc No: 1987-175392/198725

Porous sealing tape - comprising stacked integrated porous

fluoro-resin sheet layers No Abstract Dwg 3/3
Patent Assignee: NITTO ELECTRIC IND CO (NITL)
Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No Kind Date Applicat No Kind Date Week JP 62108464 A 19870519 JP 85249886 A 19851106 198725 B

Priority Applications (No Type Date): JP 85249886 A 19851106

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

JP 62108464 A 5

Derwent Class: A85; L03; O65; X16

International Patent Class (Additional): F16J-015/10; H01M-8/02

POROUS SEAL TAPE

Patent Number: JP62108464 Publication date: 1987-05-19

Inventor(s): TAKAHATA EIJI; others: 02 Applicant(s): NITTO ELECTRIC IND CO LTD

Requested Patent: JP62108464

Application Number: JP19850249886 19851106

Priority Number(s):

IPC Classification: H01M8/02; F16J15/10

EC Classification:

Equivalents:

Abstract

PURPOSE:To reduce influence of thermal expansion/contraction so as to improve the cushion performance and the gas seal performance by forming a porous seal tape while laminating and integrating at least two layers of porous fluororesin sheet. CONSTITUTION:Fluororesin such as PTFE, tetra-fluoroethylene-perfluoroalkyl-vinylether copolymer is formed into a porous sheet having the hole diameter of 0.01-10mum, the porosity of 60-95%, the apparent specific gravity lower than 1.5 and the thickness of 0.02-5mm. Then it is laminated at least in two layers, preferably 15-70 layers, to produce a porous seal tape having the porosity of 50-70% and the thickness of 0.3-2mm. It is employed as a seal tape at the position requiring gas seal such as the circumference of an electrode of a fuel cell. Consequently, a good gas seal performance having excellent cushion performance, improved heat-resistance, medicine-resistance, etc. can be achieved.

⑩ 日本国特許庁(JP)

(1) 特許出額公開

⑩ 公 開 特 許 公 報 (A)

昭62 - 108464

@Int_Cl.4

識別記号

庁内整理番号

國公開 昭和62年(1987)5月19日

H 01 M 8/02 F 16 J 15/10 S-7623-5H G-6814-3J

審査請求 未請求 発明の数 1 (全3頁)

劉発明の名称 多孔性シールテープ

②特 願 昭60-249886

願 昭60(1985)11月6日

砂発 明 者 高 畠 栄 治

茨木市下穂積1丁目1番2号 日東電気工業株式会社内

茨木市下穂積1丁目1番2号 日東電気工業株式会社内

砂発 明 者 内 田 陽

灰木市下穂積1丁目1番2号 日東電気工業株式会社内

砂発 明者 鈴木 弘 _

日東軍気工業株式会社 茨木市下穂積1丁目1番2号 の出 関 人

1. 発明の名称

多孔性シールテープ

2. 特許請求の範囲

(1)多孔性のフッ素樹脂シートを少なくとも二層 以上積層、一体化して成る多孔性シールテープ。 (2)フッ素樹脂がポリテトラフルオロエチレンま たはテトラフルオロエチレンーパーフルオロアル キルピニルエーテル共取合体であることを特徴と する特許請求の範囲第1項記載の多孔性シールテ ープ.

3. 発明の詳細な説明

(産業上の利用分野)

本発明は燃料電池等の封止に用いられる多孔性 のシールテーブに関する。

〔従来の技術とその問題点〕

燃料電池は発電容量を増大させるために、通常 用途に応じ電極を多層積層してある。そして、燃 料としての水素または酸素の湖池防止のため、そ の積層された電極の周囲を封止する必要があるが 、燃料電池の内部ではリン酸が200年程度に加 熱されているので、良好な封止をするためにはガ スシール性、クッション性、耐熱性、耐薬品性等 の良好な材料で封止する必要がある。

従来、そのような特性を有するものとしてはク ッション性を付与するため発泡剤を用いたポリテ トラフルオロエチレン (以下、PTFEという) シートで封止したものが知られている。

しかしながらこのような発泡剤付与PTFEシ ートは発泡倍率に限界があり、あまり柔らかいも の (気孔率で 40~50%) の作成は困難であり 、その結果クッション性(柔軟性と復元力のバラ ンス) に問題があり、電池の運転、停止に伴う各 材料の熱膨張、収縮に追従できないという欠点が あり、長期のガスシール性は不十分であった。

(問題点を解決するための手段)

本発明は発泡剤付与PTFEシートでは不十分 であったガスシール性を向上させた多孔性シール テープに関し、多孔性のフッ素樹脂シートを少な くとも二層以上積層、一体化して成ることを特徴・ とするものである。

本発明で用いられるフッ森樹脂シートは、PTFE、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体等のフッ素樹脂を通常、孔径0.01~100μm、気孔率60~95%、見掛け比重1.5以下、厚さ0.02~5mmの多孔質のシートに成形したものである。

本発明では上記フッ素樹脂シートを少なくとも 二層、好ましくは 15~70層積層する。このようにして作成された多孔性シールテープは、通常 気孔率が50~70%、厚さ0、3~2mmのも のである。

該多孔性シールテープを作成するには、通常はフッ素樹脂の融点以下の温度で、加熱、加圧圧着することにより得られる。好ましくは290~310で、1~5kg/cm²で加熱、加圧される。加熱温度が融点を越えれば、気孔が消滅し、硬いシートとなりやすく、加熱温度が低すぎるとフッ素樹脂シート同志が接合さればフッ素樹脂シート同志が接合さればフッ素樹脂シート同志が接合さればファ素樹脂シート同志が接合さればファ素樹脂シート同志が接合さればファ素樹脂シート同志が接合さればファ素樹脂シート同志が接合さればファ素樹脂シート同志が接合さればファ素樹脂シート同志が接合さ

れにくく、逆に高すぎると気孔率が低くなりすぎ たり、気孔が消滅することがある。

これまでは燃料電池についてのみ説明したが、 本発明の多孔性シールテープはガスシール性等の 必要な他の用途にも適用できることは言うまでも ない。

(実施例)

以下、実施例により本発明を説明する。 実施例

厚さ0.03mm、平均孔径0.6μm、気孔 取85%の焼成した多孔性PTFE(融点327で)シートをアルミニウム製の金属板の上に60枚重ね、シートの周囲を圧着器具により金属板に位置する。次いで、該シートの上部に金属板を乗せ温度305で、圧力3kg/cm²の条件で10分間加熱、加圧した後、該シートの上に前記金属板に代え20での金属板を同圧力で乗せ10分間冷却して、厚さ1.0mm、気孔率65%の本発明の多孔性シールテープを得た。

上記実施例により得られた多孔性シールテープ

の特性を調べるため、ガスシール性、復元力、柔軟性を測定した。比較のため厚さ1.0mmの発泡剤付与PTFEシートについても測定した。その結果をガスシール性については第1表、柔軟性については第1図、復元力については第2図に記載する。図中、Aは実施例、Bは比較例を示す。

ガスシール性、復元力、柔軟性それぞれの測定 方法を以下に示す。尚、測定は 2 5 でにて行った

第 1 妻

	ガスリーク量(cc/min·20cm²)
爽施例	0
比較例	10以下

<ガスシール性> _10

直径 5 0 mmの試料を第 3 図の如き装置に締付 圧 4 . 5 kg/cm*でセットし、これを 2 0 0 でで1時間加熱、 2 5 でで1時間冷却の加熱、冷 却サイクルを 1 0 0 回行う。その後、 2 5 でで直 径 1 2 . 5 mmの送気孔 1 1 より 5 kg/cm* の圧力でガスを加えて、その際のガスリーク量を 流量計12にて測定する。

<復元力>

試料に荷重を10分間加えた後、荷重を除去し 5分経過後の厚さ。但し、荷重をかける前の厚さ を1とする。

<柔軟性>

は料に荷重を加え、30秒後の厚みを測定する。但し、荷重をかける前の厚さを1とする。

(発明の効果)

本発明の多孔性シールテープは上記のように、 多孔性のフッ素制脂シートが少なくとも二層以上 積層、一体化されているので、従来の発泡剤付与 PTFEシートに比ペクッション性に優れ、熱脳 張、収縮による影響が少いのでガスシール性が良 好である。

4. 図面の簡単な説明

第1~2図は本発明の多孔性シールテープおよび従来の多孔質PTFEシートの特性を示すグラフで、第1図は柔軟性、第2図は復元力を示す。

特開昭62-108464 (3)

第3図はガスシール性の測定に用いる装置の低略 を示す断面図である。

A···実施例

B···比較例

特許出願人 日東電気工業株式会社 代表者 雄居 五朗

A… 実施例 B… 比較例