Nikki Liu

June 2024

Dragonfruit AI Challenge

1. Efficient Data Structures for Image Representation

For storing and processing the images, we need efficient data structures that can handle the high resolution (100,000 x 100,000 pixels) while minimizing storage space.

Microscope Images

We are given that microscope images typically have large contiguous regions of black pixels (background) and a single contiguous blob of white pixels (parasite).

Using a **Run-Length Encoding** (RLE) is an efficient way to store images like these.

RLE then compresses the image by storing the lengths of runs of consecutive pixels with the same value.

RLE Representation for Microscope Image:

- Store the pixel value (black (0) or white (1)) and the length of the run.
- Example: [(0, 500), (1, 2500), (0, 97500)] for a row with 500 black pixels, 2500 white pixels, and 97500 black pixels.

Estimated Storage Size:

- In the worst case (an image with alternating black and white pixels), the storage size would be around 100,000 * 2 entries (each run represented by a pair of values), resulting in 200,000 values.
- If each value takes 4 bytes (assuming integer representation), the total size would be 800,000 bytes per row, leading to approximately **80 GB** for the entire image.

We also know that Dye Sensor Images can have more scattered lit areas. Therefore, using a **Sparse Matrix Representation** can be more efficient. We will store only the coordinates of the lit pixels (where dye is present).

Sparse Matrix Representation for Dye Sensor Image:

- Store the coordinates of lit pixels.
- Example: [(x1, y1), (x2, y2), ...] where each tuple (x,y) represents the position of a lit pixel.

Estimated Storage Size:

- Assuming fewer than 10% of pixels are lit, this results in at the very most **10,000,000** coordinates.
- If each coordinate pair takes 8 bytes (4 bytes each for x and y), the total size would be 80,000,000 bytes or **80 MB** for the entire image.

2. Generating Simulated Images

We can simulate images using the above data structures in python:

```
generate.py:
import random
def generate microscope image(width, height):
       image = []
       for _ in range(height):
       row = []
       for in range(width):
       if random.random() < 0.75: #75% chance for background (black pixel)
       row.append(0)
       else: #25% chance for blob (white pixel)
       row.append(1)
       image.append(row)
       return image
def generate dye image(width, height):
       image = []
       for in range(height):
       row = []
       for in range(width):
       if random.random() < 0.05: # 5% chance for lit pixel (dye present)
       row.append(1)
       else:
       row.append(0)
       image.append(row)
       return image
if name == " main ":
       width, height = 100, 100 # Using smaller dimensions for testing
       microscope image = generate microscope image(width, height)
       dye image = generate dye image(width, height)
       # Save generated images to files
       with open("microscope image.txt", "w") as f:
```

```
for row in microscope_image:
f.write(','.join(map(str, row)) + "\n")
with open("dye_image.txt", "w") as f:
for row in dye_image:
f.write(','.join(map(str, row)) + "\n")
print("Images generated and saved.")
```

Explanation:

generate_microscope_image:

• This creates an image with a black background and a white blob, represented as a 2D list. Each pixel in the list is either 0 (black, representing the background) or 1 (white, representing the blob).

generate_dye_image:

• This creates an image with randomly scattered lit pixels, represented as a 2D list. Each pixel is either 1 (dye present) or 0 (no dye).

Main:

- Uses the generate_microscope_image and generate_dye_image functions to generate two images.
- Saves generated images to two text files (microscope_image.txt and dye_image.txt). Each row of the image is now saved as a comma-separated string of pixel values.

3. Detecting Cancer in Parasites

This function calculates whether the amount of dye within the parasite exceeds 10% of its total area.

```
detect cancer.py:
def has cancer(microscope image, dye image, width, height):
        total blob pixels = 0
        total dye pixels = 0
        for y in range(height):
        for x in range(width):
        if microscope image[y][x] == 1: # Blob pixel
        total blob pixels += 1
        if dye image[y][x] == 1: # Dye within blob
                total dye pixels += 1
        dye percentage = total dye pixels / total blob pixels if total blob pixels > 0 else 0
        return dye percentage > 0.10
if name == " main ":
        # Load generated images from files
        with open("microscope image.txt", "r") as f:
        microscope image = [list(map(int, line.strip().split(','))) for line in f]
        with open("dye image.txt", "r") as f:
        dye image = [list(map(int, line.strip().split(','))) for line in f]
        width, height = len(microscope image[0]), len(microscope image) # Get dimensions from image
        result = has cancer(microscope image, dye image, width, height)
        print(f"Parasite has cancer: {result}")
```

Explanation:

- The has_cancer function reads the images from the files, splitting each line by commas to reconstruct the 2D lists.
- The dimensions of the images are determined by the length of the lists.
- The function checks for total blob pixels > 0 to avoid division by zero.
- Main loads the generated picture from the file

4. Optimizing Execution Speed

We optimize the execution speed using NumPy

```
optimize.py:
import numpy as np
def has cancer optimized(microscope image, dye image, width, height):
       # Convert lists to NumPy arrays for efficient processing
       microscope array = np.array(microscope image)
       dye array = np.array(dye image)
       # Count the number of blob pixels and dye pixels within the blob
       blob pixels = np.sum(microscope array == 1)
       dye pixels within blob = np.sum((microscope array == 1) & (dye array == 1))
       # Calculate the percentage of dye pixels within the blob
       dye percentage = dye pixels within blob / blob pixels if blob pixels > 0 else 0
        return dye percentage > 0.10
if name == " main ":
       # Load generated images from files
       with open("microscope image.txt", "r") as f:
       microscope image = [list(map(int, line.strip().split(','))) for line in f]
        with open("dye image.txt", "r") as f:
       dye image = [list(map(int, line.strip().split(','))) for line in f]
        width, height = len(microscope image[0]), len(microscope image) # Get dimensions from image
        result = has cancer optimized(microscope image, dye image, width, height)
        print(f"Parasite has cancer: {result}")
```

Explanation: We pretty much do the same thing as detect_cancer but with NumPy arrays

- Converts the 2D lists of the microscope and dye images to NumPy arrays.
- Counts the number of blob pixels (parasite body) in the microscope image.
- Counts the number of dye pixels within the blob area using a logical AND operation between the two arrays.
- Calculates the percentage of dye pixels within the blob.
- Returns True if the dye percentage exceeds 10%, indicating cancer; otherwise, returns False.

5. Other Compression Techniques and Their Impact

Compression Techniques:

1. Block-Based Compression:

- **Method**: Divide the image into smaller blocks and compress each block individually.
- **Impact**: Reduces storage space by exploiting redundancy within each block but may introduce slight decompression overhead.

2. Wavelet Transform:

- **Method**: Apply wavelet transformation to compress the image by removing less significant details.
- **Impact**: Significantly reduces storage space while maintaining important features. Although it introduces more computational complexity during compression and decompression.

3. PNG Compression:

- Method: Use the PNG format, which combines lossless compression algorithms
- **Impact**: Efficiently reduces storage size with minimal impact on runtime.

Storage and Runtime Costs:

• Typical Storage Costs:

- **Uncompressed Image**: Each 100,000 x 100,000 pixel image requires approximately 10 GB of storage (assuming 1 byte per pixel).
- Compressed Image: Compression techniques can reduce storage requirements by an order of magnitude. For example, block-based compression or PNG might reduce the size to 1-2 GB.

• Runtime Costs:

- Compression and decompression add computational overhead, which can be minimized with efficient algorithms.
- The actual runtime for processing a 100,000 x 100,000 pixel image using optimized techniques (like the NumPy-based approach) is manageable

6. Tools and Techniques Used to Solve the Challenge

Tools Used:

- **Python**: The primary programming language used for my implementation.
- **NumPy**: A library for numerical computations, used for efficient array operations and processing large images.

LLM Techniques:

• Large Language Models (LLMs): Used for initial drafting and explanation of concepts, ensuring clarity and correctness in the description of algorithms and processes.

Steps to Solve the Challenge:

1. Understanding Requirements:

• Analyze the requirements to determine the need for efficient storage and processing of high-resolution images.

2. Choosing Data Structures:

• Select appropriate data structures (e.g., 2D lists, NumPy arrays) for representing images to balance storage efficiency and processing speed.

3. Generating Simulated Images:

• Implement functions to generate realistic simulated images for testing purposes.

4. Cancer Detection Algorithm:

• Develop and optimize the cancer detection algorithm using NumPy for efficient processing.

5. Testing and Verification:

• Test the implementation with simulated images to ensure accuracy and performance.