Scilab Textbook Companion for Mechanics Of Fluid by B. S. Massey And A. J. Ward-Smith¹

Created by
Tanay Bobde
B.Tech
Chemical Engineering
Indian Institute of Technology, BHU, Varanasi
College Teacher
Bhavna Verma
Cross-Checked by
Chaitanya

May 26, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Mechanics Of Fluid

Author: B. S. Massey And A. J. Ward-Smith

Publisher: Taylor & Francis Group

Edition: 8

Year: 2006

ISBN: 9780415362061

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		
1	Fundamental Concepts	5
2	Fluid Statics	8
3	The Principles Governing Fluids in Motion	14
4	The Momentum Equation	19
5	Physical Similarity ans Dimensional Analysis	22
6	Laminar Flow Between Solid Boundaries	24
7	Flow and Losses in Pipes and Fittings	30
8	Boundary Layers Wakes and Other Shear Layers	35
9	The Flow of an Inviscid Fluid	40
10	Flow with a Free Surface	45
11	Compressible Flow of Gases	51
12	Unsteady Flow	59
13	Fluid Machines	62

List of Scilab Codes

Exa 1.1	1	5
Exa 1.2	2	5
Exa 1.3	3	6
Exa 2.1	1	8
Exa 2.2	2	9
Exa 2.3	3	10
Exa 2.4	4	11
Exa 2.5	5	12
Exa 2.6	6	13
Exa 3.2	2	14
Exa 3.3	3	15
Exa 3.4	4	16
Exa 3.5	5	17
Exa 3.6	6	17
Exa 4.1	1	19
Exa 4.2	2	20
Exa 4.3	3	21
Exa 5.3	3	22
Exa 5.4	4	23
Exa 6.1	1	24
Exa 6.2	2	25
Exa 6.3	3	25
Exa 6.4	4	26
Exa 6.5	5	27
Exa 6.6	6	28
Exa 6.7	7	28
Exa 7.1	1	30
Exa 7.2	2	31

Exa 7.3	3	31
Exa 7.4	4	32
Exa 7.5	5	32
Exa 7.6	6	33
Exa 8.1	1	35
Exa 8.3	3	35
Exa 8.4	4	37
Exa 8.5	5	37
Exa 8.6	6	38
Exa 9.2	2	40
Exa 9.3	3	41
Exa 9.4	4	41
Exa 9.5	5	42
Exa 9.7	7	43
Exa 10.1	1	45
Exa 10.2	2	46
Exa 10.3	3	46
Exa 10.4	4	48
Exa 10.5	5	48
Exa 10.6	6	49
Exa 10.7	7	49
Exa 11.1	1	51
Exa 11.2	2	52
Exa 11.3	3	53
Exa 11.4	4	54
Exa 11.5	5	55
Exa 11.6	6	56
Exa 11.7	7	57
Exa 12.1	1	59
Exa 12.4	4	59
Exa 13.1	1	62
Exa 13.2	2	63
Exa 13.3	3	65
Exa 13.5	5	66
Exa 13.6	6	67
Eva 13 7	7	60

Fundamental Concepts

Scilab code Exa 1.1 1

```
1 clc
2 p=2*10^5; // Pa
3 T=300; // K
4 R=287; // J/(kg.K)
5 V=3; // m^3
6
7 rho=p/(R*T);
8 disp("(a) The density of air = ")
9 disp(rho)
10 disp("kg/m^3")
11
12 m=rho*V;
13 disp("(b) Its mass =")
14 disp(m)
15 disp("m^3")
```

Scilab code Exa 1.2 2

```
1 clc
2 M_C = 12;
3 M_N = 14;
4 M_0=16;
5 R=8314; // J/(kg.K)
7 M_CO = M_C + M_O;
8 R_CO=R/M_CO;
10 M_CO2 = M_C + 2 * M_O;
11 R_CO2=R/M_CO2;
12
13 M_NO = M_N + M_O;
14 R_NO=R/M_NO;
15
16 M_N20=2*M_N+M_0;
17 R_N20=R/M_N20;
18
19 disp("Gas constant for CO = ")
20 disp(R_CO)
21 disp("J/(kg.K)")
22
23 disp("Gas constant for CO2 = ")
24 disp(R_CO2)
25 disp("J/(kg.K)")
26
27 disp("Gas constant for NO = ")
28 disp(R_NO)
29 disp("J/(kg.K)")
30
31 disp("Gas constant for N2O = ")
32 disp(R_N20)
33 disp("J/(kg.K)")
```

Scilab code Exa 1.3 3

```
1 clc
2 d=0.004; // m
3 rho=1000; // kg/m^3
4 v=3; // m/s
5 meu=10^(-3); // khm(m.s)
6
7 Re=rho*v*d/meu;
8 disp("Reynolds number =")
9 disp(Re)
10 disp("The Reynolds number is well in excess of 4000, so the flow is turbulent.")
```

Fluid Statics

Scilab code Exa 2.1 1

```
1 clc
2 d=1.5; // m
3 m=1.2; // kg
4 rate=0.0065; // K/m
5 R=287; // J/(kg.K)
6 T_0=288.15; // K
7 p_0=101*10^3; // Pa
8 \text{ g=9.81; } // \text{ m/s}^2
9
10 rho=m/(%pi*d^3/6);
11 rho_0=p_0/R/T_0;
12
13 // \log (\text{rho/rho_0}) = (g/R*\text{rate} - 1)*\log ((T_0-\text{rate*z})/
      T_0
14
15 z=1/rate*(T_0-T_0*exp(log(rho/rho_0)/(g/R/rate-1)));
16
17 disp("The height above sea level to which the ballon
       will rise = ")
18 \text{ disp}(z)
19 disp("m")
```

```
20
21 printf("The height above sea level to which the ballon will rise = %f m", z)
```

Scilab code Exa 2.2 2

```
1 clc
2 d=2; // m
3 \text{ a=1; } // \text{ radius in m}
4 rho=880; // density of oil in kg/m^3
5 \text{ g=9.81; } // \text{ m/s}^2
6 rho_w=1000; // density of water in kg/m<sup>3</sup>
8 C_0=4*a/3/%pi; // centroid of the upper semicircle
9 h1=a-C_0; // distance of the centroid from the top
10
11 P1=rho*g*h1; // Pressure of the oil at this point
12 F1=P1*%pi*a^2/2; // Force exerted by the oil on the
      upper half of the wall
13
14 cp1=a^4*(%pi/8-8/(9*%pi)); // (AK^2)_C
15
16 cp2=cp1/(%pi*a^2/2*h1); // Centre of Pressure below
      the centroid
17
18 cp0=cp2+h1; // Centre of Pressure below the top
19
20 P_w = (rho*g*a) + (rho_w*g*C_0);
21 F_w=P_w*\%pi*a^2/2;
22
23 h2=C_0+rho/rho_w;
24 \text{ cp2_w=cp1/(\%pi*a^2/2*h2)};
25 cp0_w=a+C_0+cp2_w; // below the top of cylinder
26
27 F_{total} = F1 + F_{w};
```

```
28
29  // F1*cp0 + F_w*cp0_w = F_total*x
30
31  x=(F1*cp0 + F_w*cp0_w)/F_total;
32
33  disp("Total force =")
34  disp(F_total)
35  disp("N")
36
37  disp("Distance of line of action of total force from top of cylinder =")
38  disp(x)
39  disp("m")
```

Scilab code Exa 2.3 3

```
1 clc
3 rho=1000; // kg/m^3
4 g=9.81; // m/s^2
5 r=4; // m
6 h=2; // m
7 1=5; // m
8 \text{ theta=}\%\text{pi/}6;
9
10 A = h * 1;
12 F_h=rho*g*h*A; // Horizontal force
13
14 C0=(2^2/(12*2))+2; // distance of line of action
      below the free surface
15
16 AB=4-4*\cos(theta);
17
18 F_v=rho*g*l*(AB*1+\%pi*r^2*theta/(2*\%pi)-1/2*h*r*cos(
```

```
theta));
19 BC=0.237; // m
20
21 F_net=sqrt(F_h^2+F_v^2);
22
23 phi=atand(F_v/F_h);
24
25 disp("Net force =")
26 disp(F_net)
27 disp("N")
28
29 disp("Angle between net force and horizontal =")
30 disp(phi)
31 disp("degrees")
```

Scilab code Exa 2.4 4

```
1 clc
3 \text{ m} = 10; // \text{ kg}
4 M=80; // kg
5 \text{ H=1.5}; // \text{m}
6 rho=1026; // kg/m^3
7 g=9.81; // m/s^2
8 d=1; // m
10 // m*H + M*H/2 = (M+m) (OG)
11
12 OG = (m*H + M*H/2)/(M+m);
13
14 // For vertical equilibrium, buoyancy = weight
15 h=(M+m)/(rho*\%pi/4*d^2);
16
17 BM = (\%pi*d^4/64)/(\%pi*d^2*h/4);
18 OB=h/2;
```

Scilab code Exa 2.5 5

```
1 clc
2 m = 10; // kg
3 M=80; // kg
4 OG = 0.8333; // m
5 rho=1026; // kg/m^3
6 g=9.81; // m/s^2
7 d=1; // m
8 W = (m+M) *g;
10 // W(OG) = (W + F) (OB + BM) = rho*g*\%pi/4*d^2*h1*(h1)
      /2+d^2/(16*h1)
11
12 h1=sqrt(2*(W*OG/(rho*g*\%pi/4*d^2) - d^2/16));
13
14 \text{ F=rho*g*\%pi/4*d^2*h1 - W};
15
16 disp("Least vertical downward force =")
17 disp(F)
18 disp("N")
19
20 disp("Depth of immersion =")
21 disp(h1)
22 disp("m")
```

Scilab code Exa 2.6 6

```
1 clc
2
3 a=5; // m/s^2
4 s=0.5; // m
5 phi=atand(1/4); // degrees
6 g=9.81; // m/s^2
7 rho=880; // kg/m^3
9 a_x=a*cosd(phi); // Horizontal component of
      acceleration
10 a_z=a*sind(phi); // Vertical component of
      acceleration
11
12 theta=atand(a_x/(a_z+g)); // b=tan(theta)
14 d=(tand(phi)+tand(theta))/(1-tand(phi)*tand(theta));
15
16 c=s*d;
17
18 V=s*(s^2-s*c/2);
19
20 disp("(a) Volume left in the tank =")
21 disp(V*1000)
22 disp("L")
23
24 P=rho*g*s*cosd(phi);
25 disp("(b) Pressure at the lowest corners of the tank
     =")
26 disp(P)
27 disp("Pa")
```

The Principles Governing Fluids in Motion

Scilab code Exa 3.2 2

```
1 clc
3 \text{ u}_A = 1.35; // \text{ m/s}
4 d_A = 0.225; // m
5 d_B=0.150; // m
6 	 d_C=0.150; // m
7 d=5.6; //m
8 friction=2.5; // kW
9 power_req=12.7; // kW
10
11 rho=1000; // kg/m^3
12 rho_m=13560; // kg/m^3
13
14 g=9.81; // m/s^2
15
16 pC=35000; // Pa
17 pA=rho_m*g*(-d_B);
18
19 Area_A=%pi*d_A^2/4;
```

```
20 Area_B=\%pi*d_B^2/4;
21 Area_C=%pi*d_C^2/4;
22
23 u_B=u_A*(Area_A/Area_B);
24 u_C=u_A*(Area_A/Area_C);
25
26 // Energy_added_by_pump/time = (Mass/time)*((pC-pA)/
     rho + (u_C^2 - u_A^2)/2 + g*(zC-zA)
27
28 Energy_added = Area_A*u_A*(pC-pA+rho/2*(u_C^2-u_A^2)
     +rho*g*d)/1000+friction;
29
30 Efficiency=Energy_added/power_req*100;
31
32 disp("Overall efficiency of the pump =")
33 disp(Efficiency)
34 disp("%")
```

Scilab code Exa 3.3 3

```
1 clc
2
3 d_jet = 0.0086; // m
4 d_orifice = 0.011; // m
5 x = 2; // m
6 y = 0.6; // m
7 h = 1.75; // m
8 g = 9.81; // m/s^2
9
10 A2 = %pi/4*d_orifice^2;
11
12 Cc = (d_jet/d_orifice)^2; // Coefficient of Contraction
13
14 Cv = x/2/sqrt(y*h); // Coefficient of velocity
```

```
15
16 Cd = Cv*Cc; // Coefficient of Discharge
17
18 Q = Cd*A2*sqrt(2*g*h);
19
20 disp("Rate of discharge = ")
21 disp(Q)
22 disp("m^3/s")
```

Scilab code Exa 3.4 4

```
1 clc
3 \text{ Cd} = 0.97;
4 d1=0.28; // m
5 d2=0.14; // m
7 g=9.81; // m/s^2
8 d=0.05; // difference in mercury level in metre
9 rho=1000; // kg/m^3
10 rho_m=13600; // kg/m^3
11
12 A1 = \%pi/4*d1^2;
13 A2 = \%pi/4*d2^2;
14
15 p_diff=(rho_m-rho)*g*d;
16 h=p_diff/rho/g;
17
18 Q=Cd*A1*((2*g*h)/((A1/A2)^2-1))^(1/2);
19
20 disp("Flow rate = ")
21 disp(Q)
22 \text{ disp}(\text{"m}^3/\text{s"})
```

Scilab code Exa 3.5 5

```
1 clc
2
3 \text{ Cd=0.62};
4 g=9.81; // m/s^2
5 d=0.1; // m
6 \ d0=0.06; \ // \ m
7 d1=0.12; // m
9 rho=1000; // kg/m^3
10 rho_m = 13600; // kg/m^3
11 rho_f = 0.86*10^3; //kg/m^3
12
13 A0 = \%pi/4*d0^2;
14 \quad A1 = \%pi/4*d1^2;
15
16 p_diff=(rho_m-rho_f)*g*d;
17
18 h=p_diff/rho_f/g;
19
20 Q=Cd*A0*((2*g*h)/(1-(A0/A1)^2))^(1/2);
21
22 \text{ m=rho_f*Q};
23
24 disp("Mass flow rate = ")
25 \text{ disp(m)}
26 \text{ disp}("kg/s")
```

Scilab code Exa 3.6 6

1 clc

```
2
3 \text{ Cd} = 0.61;
4 g=9.81; // m/s^2
5 b=0.6; // m
6 \text{ H=0.155}; // \text{mQ}
7 A=0.26; // m^2
8 \text{ u1=0.254; } // \text{ m/s}
9
10 Q=2/3*Cd*sqrt(2*g*b*(H)^3/2);
11
12 \text{ velo=Q/A};
13
14 H1=H+u1^2/(2*g);
15
16 Q1=2/3*Cd*sqrt(2*g*b*(H1)^3/2);
17
18 disp("Discharge =")
19 disp(Q1)
20 \quad disp("m^3/s")
```

The Momentum Equation

Scilab code Exa 4.1 1

```
1 clc
3 rho=1000; // \text{kg/m}^3
4 u1=36; // m/s
5 u2=30; // m/s
6 \text{ d=0.05; } // \text{ m}
7 theta=60; // degrees
9 A = \%pi/4*d^2;
10
11 Q = A * u1;
12
13 F_x=rho*Q*(u2*cosd(theta) - u1);
14 F_y=rho*Q*u2*sind(theta);
15
16 F = sqrt(F_x^2 + F_y^2);
17 phi=atand(F_y/F_x);
18
19 disp("The Hydrodynamic force on the vane =")
20 disp(F)
21 disp("N")
```

Scilab code Exa 4.2 2

```
1 clc
3 Q1=0.45; // \text{ m}^3/\text{s}
4 Q2=0.425; // \text{ m}^3/\text{s}
5 d1=0.6; // m
6 d2=0.3; // m
7 p1=1.4*10<sup>5</sup>; // Pa
8 rho=1000; // kg/m^3
9 theta=45; // degrees
10
11 A1 = \%pi/4*d1^2;
12 A2 = \%pi/4*d2^2;
13
14 u1 = Q1/A1;
15 u2=Q2/A2;
16
17 p2=p1+rho/2*(u1^2-u2^2);
18
19 F_x=rho*Q2*(u2*cosd(theta)-u1)-p1*A1+p2*A2*cosd(
      theta)
20 F_y=rho*Q2*(u2*sind(theta)-0)+p2*A2*sind(theta);
21
22 F = sqrt(F_x^2 + F_y^2);
23 phi=atand(F_y/F_x);
24
25 disp("The net horizontal force exerted by the water
      onthe bend =")
26 disp(F)
27 disp("N")
```

Scilab code Exa 4.3 3

```
1 clc
3 rho=1.2; // kg/m^3
4 d=12; // m
5 \text{ u1=20}; // \text{m/s}
6 u4=8; // m/s
7
8 A = \%pi/4*d^2
9 F=rho*A*(u1+u4)/2*(u1-u4);
10
11 disp("(b) The thrust on the turbine = ")
12 disp(F)
13 disp("N")
14
15 P=rho*A*(u1+u4)/2*(u1^2/2-u4^2/2);
16 disp("Power generated by the turbine =")
17 disp(P)
18 disp("W")
```

Physical Similarity ans Dimensional Analysis

Scilab code Exa 5.3 3

```
1 clc
3 u_p=10; // m/s
4 scale=1/25; // l_m/l_p
5 L=125; // m
6 meu=1.235*10^(-6); // \text{ m}^2/\text{s}
7 meu_p=1.188*10^(-6); // m^2/s
8 rho_p=1025; // kg/m^3
9 rho_m=1000; // kg/m^3
10 A=3500; // wetted surface in m^2
11
12 u_m=u_p*sqrt(scale);
13
14 \text{ d=L*scale};
15 Re=d*u_m/meu; // Reynolds no.
16 C_F=0.075/(log10(Re)-2)^2; // Skin friction
      coefficient
17
18 res_skin=rho_m/2*u_m^2*(A*scale^2)*C_F;
```

```
19
20 res_tot=54.2; // N
21
22 F_resid_m=res_tot-res_skin;
23
24 F_resid_p=F_resid_m*rho_p/rho_m/scale^3;
25
26 Re_p=u_p*L/meu_p;
27
28 C_F_p=0.075/(log10(Re_p)-2)^2+0.0004;
29 \quad C_F_pnew=1.45*C_F_p;
30
31 res_friction=rho_p/2*u_p^2*A*C_F_pnew;
32
33 Resistance=F_resid_p+res_friction;
34 disp("The total resistance of the prototype =")
35 disp(Resistance)
36 disp("N")
```

Scilab code Exa 5.4 4

```
1 clc
2
3 A=0.88; // ratio of A2 and A1
4 C_D=0.85; // ratio of C_D2 to C_D1
5 P=1.20; // ratio of P2 to P1
6 V1=11; // m/s
7
8 V2=V1*(P/A/C_D)^(1/3);
9 disp("Maximum speed of the redesigned torpedo =")
10 disp(V2)
11 disp("m/s")
```

Laminar Flow Between Solid Boundaries

Scilab code Exa 6.1 1

```
1 clc
3 \text{ RD=0.83};
4 rho_w=1000; // density of water in kg/m^3
5 \text{ v} = 2.3; // \text{m/s}
6 d=0.012; // m
7 u=0.08; // dynamic viscocity in kg/m/s
9 rho_oil=RD*rho_w;
10
11 Re=rho_oil*v*d/u;
12 disp("(a) Reynolds number =")
13 disp(Re)
14
15 v_max=2*v;
16 disp("(b) Maximum velocity =")
17 disp(v_max)
18 disp("m/s")
19
```

```
20 Q=%pi/4*d^2*v;
21 disp("(c) Volumetric flow rate =")
22 disp(Q)
23 disp("m^3/s")
24
25 p=-128*Q*u/%pi/d^4;
26 disp("Pressure gradient along the pipe = ")
27 disp(p)
28 disp("Pa/m")
```

Scilab code Exa 6.2 2

```
1 clc
2 c=0.001; // m
3 p1=15*10^3; // Pa
4 u=0.6; // kg/m/s
5 R=6; // ratio of R2/R1
6
7 Q=%pi*c^3*p1/(6*u*log(R));
8 disp("(b) Rate at which oil must be supplied =")
9 disp(Q)
10 disp("m^3/s")
```

Scilab code Exa 6.3 3

```
1 clc
2
3 F=6*10^3; // Pa
4 b=0.12; // m
5
6 f=F*b;
7
8 disp("(a) The load the pad will support =")
```

```
9 disp(f)
10 disp("N/m")
11
12 dp=12*10^3; // N/m^2
13 dx=0.12; // m
14 c=0.00018; // m
15 u=0.5; // kg/m/s
16 V=5; // m/s
17
18 q=(dp/dx)*c^3/12/u + V*c/2;
19 disp("(b) The rate at which oil must be supplied =")
20 disp(q)
21 disp("m^2/s")
```

Scilab code Exa 6.4 4

```
1 clc
3 d_p=0.05; // diameter of piston in m
4 d_c=0.0504; // diameter of cylinder in m
5 \text{ SG=0.87};
6 rho_w=1000; // kg/m^3
7 v=10^-4; // m^2/s
8 dp=1.4*10^6; // Pa
9 1=0.13; // m
10
11 c=(d_c-d_p)/2; // clearance
12
13 u=SG*rho_w*v; // Dynamice viscocity
14
15 Vp=dp*c^3/(6*u*1*(d_p/2+c));
16 disp("Velocity of the dashpot =")
17 disp(Vp)
18 disp("m/s")
```

Scilab code Exa 6.5 5

```
1 clc
3 disp("(a) the dynamic and kinematic viscosities of
     the oil")
5 d=0.00475; // m
6 g=9.81; // m/s^2
7 rho_s=1151; // kg/m^3
8 rho=880; // kg/m^3
9 u=0.006; // m/s
10
11 F=\%pi/6*d^3*g*(rho_s-rho);
12
13 rat_d=0.25; // ratio of d/D
14 rat_F=1.8; // ratio of F/Fo
15
16 dynamic=F/(1.8*3*%pi*u*d);
17
18 kinematic=dynamic/rho;
19
20 disp("Dynamic viscosity = ")
21 disp(dynamic)
22 disp("kg/m/s")
23
24 disp("Kinematic viscosity =")
25 disp(kinematic)
26 disp("m^2/s")
27
28 disp("(b) Reynolds number of sphere =")
29
30 Re=rho*u*d/dynamic;
31 disp("Reynolds number =")
```

```
32 disp(Re)
```

Scilab code Exa 6.6 6

```
1 clc
2
3 D=0.120; // m
4 h=0.08; // m
5 c=0.001; // m
6 t=0.01875; // m
7 rev=65; // revolutions per min
8 T=4*10^-3; // N.m
9
10 K1 = \%pi *h/4/c;
11 K2 = \%pi/32/t;
12
13 u=T/(rev*2*\%pi/60)/(K1*D^3+K2*D^4);
14 disp("viscosity of the liquid =")
15 disp(u)
16 disp("Pa.s")
```

Scilab code Exa 6.7 7

```
1 clc
2
3 V=10; // m/s
4 h1=0.0005; // m
5 h2=0.00025; // m
6 L=0.1; // m
7 b=0.1; // m
8 RD=0.87;
9 u=2*10^-4; // m^2/s
10 rho_w=1000; // kg/m^3
```

```
11
12 H=h1/h2;
13
14 Q=V/2*(1+H^2)/(1+H^3)*b*h1;
15 disp("(b) Volumetric flow rate of oil =")
16 disp(Q)
17 disp("m^3/s")
18
19 F=V/2*(1-(1+H^2)/(1+H^3))*12*RD*rho_w*u/h1^2*L^2/4*b
;
20 disp("The load supported by the bearing =")
21 disp(F)
22 disp("N")
```

Flow and Losses in Pipes and Fittings

Scilab code Exa 7.1 1

```
1 clc
3 Q=50*10^-3; // m^3/s
4 d=0.15; // m
5 1=300; // m
6 v=1.14*10^-6; // m^2/s
7 g=9.81; // m/s^2
9 // For galvanised steel
10 k=0.00015; // m
11 t=0.001; // ratio of k to d; (k/d)
12 f=0.00515;
13
14 A1=\%pi/4*d^2;
15
16 \quad u=Q/A1;
17 Re=u*d/v;
18
19 h_f = 4 * f * 1 * u^2 / d / (2 * g);
```

```
20 disp("Head lost to friction =")
21 disp(h_f)
22 disp("m")
```

Scilab code Exa 7.2 2

```
1 clc
3 k=0.00025; // m
4 d=0.1; // m
5 1=120; // m
6 \text{ h_f=5}; // \text{m}
7 g=9.81; // m/s^2
8 v = 10^{-5}; // m^2/s
9
10 f = 0.0079042;
11
12 u = sqrt(h_f*d*(2*g)/(4*f*1));
13 Re=u*d/v;
14
15 Q=u*\%pi/4*d^2;
16 disp("Rate =")
17 disp(Q)
18 disp("m^3/s")
```

Scilab code Exa 7.3 3

```
1 clc
2
3 h_f=9; // m
4 l=180; // m
5 Q=85*10^-3; // m^3/s
6 f=0.00475;
```

```
7 k=0.00015; // m
8 v=1.14*10^-6; // m^2/s
9 g=9.81; // m/s^2
10
11 d=(4*f*1*Q^2/h_f/(%pi/4)^2/(2*g))^(1/5);
12 Re=(Q/(%pi*d^2/4))*d/v;
13
14 disp("The size of galvanized steel pipe = ")
15 disp(d)
16 disp("m")
```

Scilab code Exa 7.4 4

```
1 clc
2
3 // D1=(5*b1/3/a)^(1/8)
4 // D2=(5*b1/3/a)^(1/8)
5
6 // But b2=2.5*b1
7 // Therefore D2=(2.5)^(1/8)*D1
8
9 D1=600; // mm
10
11 D2=(2.5)^(1/8)*D1;
12
13 disp("Revised estimate of the optimum pipe diameter =")
14 disp(D2)
15 disp("mm")
```

Scilab code Exa 7.5 5

```
1 clc
```

```
2
3 disp("(a) Feed is at the end of the main")
4 Q0=4.5*10^-3; // m^3/s
5 d=0.1; // m
6 1=4.5*10^3; // m
7 g=9.81; // m/s^2
8 f = 0.006;
9 rho=1000; // \text{kg/m}^3
10
11 u0=Q0/(\%pi/4*d^2);
12 h_f = 4 * f * u0^2 * 1/3/(d * 2 * g);
13
14 \text{ dp=h_f*rho*g};
15 disp("Pressure difference =")
16 disp(dp)
17 disp("N/m<sup>2</sup>")
18
19 disp("(b) Feed is at the centre of the main")
20
21 \quad Q0_b = Q0/2;
22 u0_b=u0/2;
23  1_b=1/2;
24
25 dp_b=(u0_b/u0)^2*(1_b/1)*dp;
26 disp("Pressure difference =")
27 disp(dp_b)
28 disp("N/m^2")
```

Scilab code Exa 7.6 6

```
1 clc
2
3 d1=3; // m
4 d2=2; // m
5 f=0.007;
```

```
6 1 = 75; // m
7 d=0.05; // m
8 \text{ g=9.81; } // \text{ m/s}^2
9 h1=1.8; // m
10
11 A1=\%pi/4*d1^2;
12 A2 = \%pi/4*d2^2;
13
14 // dh/dt = dz1/dr*(1+A1/A2)
15 // Q=-A1*dz1/dt = -4/13*A1*dh/dt
16
17 // u=(Q/2)^2/(\%pi/4*d^2)
18 // h=(4*f*l/d + 1.5)*u^2/2g = 1.438*10^5*Q^2
19
  // t=integrate('-1/(1+A1/A2)*A1*(1.438*10^5/h)^(1/2)
      ', 'h', h1, H)
21
22 // By integrating, we get
23 H=(h1^{(1/2)}-(900/2/824.7))^2;
24 h = h1 - H;
25 dz1=1/(1+A1/A2)*h;
26
27 disp("The change in the level in larger tank =")
28 disp(dz1)
29 disp("m")
```

Boundary Layers Wakes and Other Shear Layers

Scilab code Exa 8.1 1

```
1 clc
2
3 delta=0.6; // mm
4
5 delta1=delta/3;
6
7 theta=2/15*delta;
8
9 disp("Displacement thickness =")
10 disp(delta1)
11 disp("mm")
12
13 disp("Momentum thickness =")
14 disp(theta)
15 disp("mm")
```

Scilab code Exa 8.3 3

```
1 clc
2
3 disp("(a) To determine the values of a1 & a2")
5 // To determine the values of a1 & a2 following
      conditions must be satisfied
  // Condition I - When n=0, u/um=0
8 // Condition II - When n=1, u/um=a1+a2=1
9 // Condition III - When n=1, d(u/um)/dn = a1+2a2=0
10
11 // By satisfying these conditions, we have
12 // a1+a2=1;
13 // a1+2a2=0;
14
15 A = [1, 1; 1, 2];
16 B = [1; 0];
17 X = inv(A) *B;
18
19 a1=X(1);
20 \text{ a2=X(2)};
21
22 disp("a1=")
23 disp(a1)
24 disp("a2=")
25 disp(a2)
26
27 disp("(b) Evaluate the constants A and B")
28
29 // A = integrate ('(1-f(n))*f(n)', 'n', 0, 1)
30
31 A=integrate(((1-(2*n-n^2))*(2*n-n^2)', 'n',0,1)
32 disp("A =")
33 disp(A)
34
35 // B = differentiation of (2*n-n^2) at n=0, we get
```

```
36 B=2;
37
38 disp("B =")
39 disp(B)
```

Scilab code Exa 8.4 4

```
1 clc
 2
3 \text{ v=1.5*10^(-5)}; // \text{m^2/s}
4 Re_t=5*10^5;
5 \text{ x_t=1.2; } // \text{ m}
6 rho=1.21; // kg/m^3
8 \quad u_m = v * Re_t / x_t;
9
10 disp("(a) the velocity of the airstream =")
11 \text{ disp}(u_m)
12 disp("m/s")
13
14 theta=0.646*x_t/sqrt(Re_t);
15
16 \quad F=rho*u_m^2*theta;
17
18 D_F = 2 * F * x_t;
19
20 disp("(b)) the frictional drag of the plate, D_F = ")
21 disp(D_F)
22 disp("N")
```

Scilab code Exa 8.5 5

1 clc

```
2
3 u_m = 50; // m/s \text{ or } 180 \text{ km/h}
4 v=1.5*10^{(-5)}; // m^2/s
5 1 = 100; // m
6 rho=1.2; // kg/m^3
7 b=8.3; // m
9 delta = 0.37*(v/u_m)^(1/5)*1^(4/5);
10
11 disp("(a) the boundary layer thickness at the rear
      of the train =")
12 disp(delta)
13 disp("m")
14
15 Re_1 = u_m*1/v;
16 C_F=0.074*(Re_1)^(-1/5);
17 F=0.037*rho*u_m^2*l*Re_l^(-1/5);
19 D_F = F*b;
20
21 disp("(b) the frictional drag acting on the train,
     D_{-}F = "
22 disp(D_F)
23 disp("N")
24
25 P=D_F*u_m;
26 disp("(c) the power required to overcome the
      frictional drag =")
27 disp(P/1000)
28 disp("kW")
```

Scilab code Exa 8.6 6

```
1 clc 2
```

```
3 Re_t=5*10^5;
4 Re_l=5*10^6;
5
6 r1=Re_t/Re_l; // r1=x_t/l
7 r2=1-36.9*(1/Re_t)^(3/8); // r2=x_0/x_t
8
9 r=r1*r2; // r=x_0/l;
10
11 disp("(a) the proportion of the plate occupied by the laminar boundary layer =")
12 disp(r*100)
13 disp("%")
14
15 C_F = 0.074/Re_l^(1/5)*(1-r)^(4/5);
16 disp("(b) the skin friction coefficient CF evaluated at the trailing edge =")
17 disp(C_F)
```

The Flow of an Inviscid Fluid

Scilab code Exa 9.2 2

```
1 clc
3 // p_a-p_b=-1/2*rho*C^2*(1/R_A^2-1/R_B^2)
5 rho_w=1000; // kg/m^3
6 g=9.81; // m/s^2
7 h=0.0115; // m
8 rho=1.22; // kg/m^3
9 R_A=0.4; // m
10 R_B=0.2; // m
11
12 C = sqrt(rho_w*g*h*2/(rho*(1/R_B^2-1/R_A^2)));
13
14 m=rho*C*R_B*integrate('1/R','R', R_B, R_A);
15
16 disp("Mass flow rate =")
17 disp(m)
18 disp("kg/s")
```

Scilab code Exa 9.3 3

```
1 clc
2
3 // p=1/2*rho*w^2*R^2 + C
5
6 // At z=0
7 rho=900; // kg/m^3
8 \text{ g=9.81; } // \text{ m/s}^2
9 h=0.6; // m
10
11 C=rho*g*h;
12
13 // p = -\text{rho}*\text{K}^2/(2*\text{R}^2)+D
14 // From this we get, D = 9*w^2 + C
15
16 // At z = 0
17 // p = D - rho*K^2/2/R^2;
18 p_max=150000; // Pa
19
20 // From the above equation we obtain,
21 w = 135.6; // rad/s
22
23 disp("The maximum speed at which the paddles may
      rotate about their vertical axis =")
24 disp(w)
25 \text{ disp}("rad/s")
```

Scilab code Exa 9.4 4

```
1 clc
2
3 U=40; // m/s
4 h=0.01; // m
```

```
5
6 m = 2 * U * h;
7 disp("(a) the strength of the line source =")
8 \text{ disp(m)}
9 \operatorname{disp}(\mathrm{"m^2/s"})
10
11 s = m/(2*\%pi*U);
12 disp("(b) the distance s the line source is located
      behind the leading edge of the step =")
13 disp(s*1000)
14 disp("mm")
15
16 x=0; // m
17 y=0.005; // m
18
19 u=U + m/(2*\%pi)*(x/(x^2+y^2));
20 v=m/(2*\%pi)*(y/(x^2+y^2));
21 disp("Horizontal component =")
22 disp(u)
23 disp("m/s")
24
25 disp("Vertical Component =")
26 disp(v)
27 disp("m/s")
```

Scilab code Exa 9.5 5

```
1 clc
2
3 b=0.0375; // m
4 t=0.0625; // m
5 U=5; // m/s
6
7 m=2*%pi*U*t/atan(2*b*t/(t^2-b^2));
```

```
9 L=2*b*(1+m/(%pi*U*b))^(1/2);
10
11 disp("L =")
12 disp(L)
13 disp("m")
```

Scilab code Exa 9.7 7

```
1 clc
2
3 11=10; // m
4 \text{ r1=2; } // \text{ m}
5 C_D1=0.0588;
6 theta1=6.5; // degrees
8 AR1=11/r1; // Aspect ratio
9
10 C_L=0.914;
12 C_D2=C_L^2/(%pi*AR1);
13 theta2=atand(C_L/(%pi*AR1))
14
15 C_D3=C_D1-C_D2;
16 theta3=theta1-theta2;
17
18 AR2=8;
19
20 C_Di=C_L^2/(%pi*AR2);
21 \quad C_D = C_Di + C_D3;
22
23 theta4=atand(C_L/(\%pi*AR2));
24 theta=theta4+theta3;
25
26 disp("Lift coefficient =")
27 disp(C_L)
```

```
28
29 disp("Drag coefficient =")
30 disp(C_D)
31
32 disp("Effective angle of attack =")
33 disp(theta)
34 disp("degrees")
```

Flow with a Free Surface

Scilab code Exa 10.1 1

```
1 clc
2
3 Q = 400; // m^3/s
4 b2=20; // m
5 \text{ g=9.81; } // \text{ m/s}^2
6 b1=25; // m
8 h2=(Q/b2/sqrt(g))^(2/3);
9 // Since energy is conserved
10 // h1 + u1^2/2g = h2 + u2^2/2g = h2 + h2/2 = 3h2/2
12 // h1 + 1/2*g*(Q/(b1h1))^2 = 3*h2/2;
14 / h1^3 - 5.16*h1^2 + 13.05 = 0;
15
16 // By solving this cubic equation
17
18 h1=4.52; // m
19
20 disp("(a) The depth of the water under the brigde ="
```

```
21 disp(h2)
22 disp("m")
23
24 disp("(b) the depth of water upstream =")
25 disp(h1)
26 disp("m")
```

Scilab code Exa 10.2 2

```
1 clc
3 w=0.04; // thickness of block in \ensuremath{m}
4 d=0.07; // depth of liquid in m
5 b=0.4; // m
6 g=9.81; // m/s^2
7
8 \text{ H=d-w};
10 Q=1.705*b*H^{(3/2)};
11
12 u1=Q/d/b;
13 h=u1^2/(2*g);
14
15 H1=H+h;
16
17 Q1=1.705*b*H1^(3/2);
18
19 disp("Rate of flow = ")
20 disp(Q1)
21 disp("m^3/s")
```

Scilab code Exa 10.3 3

```
1 clc
2
3 \text{ h1=0.45}; // m
4 g=9.81; // m/s^2
5 b1=0.8; // m
6 h2=0.35; // m
7 b2=0.3; // m
8 disp("(a) the flow rate")
9 Q = sqrt((h1-h2)*2*g/((1/(h1*b1)^2)-(1/(h2*b2)^2)));
10 disp("(a) Flow rate =")
11 disp(Q)
12 disp("m<sup>3</sup>/s")
13
14 disp("(b) the Froude number at the throat")
15 Fr2=Q/(sqrt(g)*b2*h2^(3/2));
16 disp("The Froude number at the throat =")
17 disp(Fr2)
18
19 disp("(c) the depth of water at the throat")
20
21 / (h1/h2)^(3) + 1/2*(b2/b1)^2 = 3/2*(h1/h2)^2
22
23 // The solution for the above eqn is as follows
24 / (h1/h2) = 0.5 + \cos(2\arcsin(b2/b1)/3)
25
26 / h1/h2 = 1.467
27
28 h2_new=h1/1.467;
29 disp("Depth of water at the throat =")
30 disp(h2_new)
31 disp("m")
32
33 disp("(d)the new flow rate")
34 \ Q=sqrt(g)*b2*h2_new^(3/2);
35 disp("New flow rate =")
36 disp(Q)
37 \text{ disp}(\text{"m}^3/\text{s"})
```

Scilab code Exa 10.4 4

```
1 clc
2
3 Q=8.75; // m^3/s
4 \text{ w=5}; // \text{m}
5 n=0.0015;
6 s = 1/5000;
8 // Q/(w*h0) = u = m^{(2/3)}*i^{(1/2)}/n = 1/0.015*(w*h0)
      /(w+2*h0))^(2/3)*sqrt(s);
9 // Solution by trial gives h0
10 h0=1.8; // m
11
12 \quad q=1.75;
13 g=9.81;
14 hc=(q^2/g)^(1/3); // critical depth
15
16 disp("Depth =")
17 disp(h0)
18 disp("m")
```

Scilab code Exa 10.5 5

```
1 clc
2
3 g=9.81; // m/s^2
4 T=5; // s
5 h=4; // m
6
7 // lambda=g*T^2/(2*%pi)*tanh(2*%pi*h/lambda1);
8 // by trial method , we get
```

```
9 lambda1=28.04;
10
11 lambda=g*T^2/(2*%pi)*tanh(2*%pi*h/lambda1);
12 disp("Wavelength =")
13 disp(lambda)
14 disp("m")
```

Scilab code Exa 10.6 6

```
1 clc
2
3 g=9.81; // m/s^2
4 T=12; // s
5
6 c=g*T/(2*%pi);
7
8 lambda=c*T;
9
10 disp("Phase velocity =")
11 disp(c)
12 disp("m/s")
13
14 disp("Wavelength =")
15 disp(lambda)
16 disp("m")
```

Scilab code Exa 10.7 7

```
1 clc
2
3 c=18.74; // m/s
4 lambda=225; // m
5
```

```
6 disp("(a) Estimate the time elapsed since the waves
      were generated in a storm occurring 800 km out to
       sea. ")
7
8 x=800*10^3; // m
9 \text{ cg=c/2};
10
11 t=x/cg;
12
13 disp("time elapsed =")
14 disp(t/3600)
15 disp("hours")
16
17 disp("(b) Estimate the depth at which the waves begin
       to be significantly influenced by the sea bed as
       they approach the shore.")
18
19 h1=lambda/2;
20
21 h2=lambda/(2*%pi)*atanh(0.99);
22
23 printf("The answers show that h lies in the range
      between about %f m and %f m", h2,h1)
```

Compressible Flow of Gases

Scilab code Exa 11.1 1

```
1 clc
3 disp("(a) the density at plane 1")
5 p1=1.5*10^5; // N/m^2
6 R=287; // J/kg.K
7 T1=271; // K
9 rho1=p1/R/T1;
10 disp("Density at plane 1 =")
11 disp(rho1)
12 disp("kg/m^3")
13
14 disp("(b) the stagnation temperature")
15
16 u1=270; // m/s
17 cp=1005; // J/Kg.K
18
19 T0=T1+u1^2/(2*cp);
20 disp("The stagnation temperature =")
21 disp(T0)
```

```
22 disp("K")
23
24 disp("(c) the temperature and density at plane 2")
25
26 \text{ u}2=320; // \text{m/s}
27 p2=1.2*10^5; // N/m^2
28
29 T2=T0-u2^2/(2*cp);
30 disp("Temperature = ")
31 disp(T2)
32 disp("K")
33
34 \text{ rho2=p2/(R*T2)};
35 disp("density =")
36 disp(rho2)
37 disp("kg/m^3")
```

Scilab code Exa 11.2 2

```
1 clc
2
3 disp("(a) the angle through which the airstream is deflected")
4
5 y=1.4;
6 R=287; // J/kg.K
7 T1=238; // K
8 u1=773; // m/s
9 beta1=38; // degrees
10 cp=1005; // J/kg.K
11
12 a1=sqrt(y*R*T1);
13 M1=u1/a1;
14
15 beta2=atand(tand(beta1)*((2+(y-1)*M1^2*(sind(beta1))))
```

```
^2)/((y+1)*M1^2*(sind(beta1))^2)));
16
17 deflection_angle=beta1-beta2;
18 disp("Deflection angle =")
19 disp(deflection_angle)
20 disp("degrees")
21
22 disp("(b) the final Mach number")
23
24 u2=u1*cosd(beta1)/cosd(beta2);
25
26 T2=T1+1/(2*cp)*(u1^2-u2^2);
27 a2=sqrt(y*R*T2);
28
29 M2=u2/a2;
30
31 disp("Final Mach number =")
32 disp(M2)
33
34 disp("(c) the pressure ratio across the wave.")
35 ratio=T2/T1*(tand(beta1)/tand(beta2));
36 disp("Pressure ratio =")
37 disp(ratio)
```

Scilab code Exa 11.3 3

```
1 clc
2
3 M1=1.8;
4 theta1=20.73; // degrees
5 theta2=30.73; // degrees
6 M2=2.162;
7 p1=50; // kPa
8 y=1.4;
```

```
10 p2=p1*((1+(y-1)/2*M1^2)/(1+(y-1)/2*M2^2))^(y/(y-1));
11
12 disp("Pressure after the bend =")
13 disp(p2)
14 disp("kPa")
```

Scilab code Exa 11.4 4

```
1 clc
3 p=28*10^3; // N/m^2
4 y = 1.4;
5 M1 = 2.4;
6 M2=1;
7 T0=291; // K
8 R=287; // J/kg.K
9
10 disp("(a) the pressures in the reservoir and at the
      nozzle throat")
11
12 p0=p*(1+(y-1)/2*M1^2)^(y/(y-1));
13 pc=p0*(1+(y-1)/2*M2^2)^(-y/(y-1));
14
15 disp("Pressure in the reservoir =")
16 disp(p0)
17 disp("N/m<sup>2</sup>")
18
19 disp("Pressure at the nozzle throat =")
20 disp(pc)
21 \quad disp("N/m^2")
22
23 disp("(b) the temperature and velocity of the air at
       the exit.")
24
25 T=T0*(1+(y-1)/2*M1^2)^(-1);
```

```
26
27 disp("Temperature =")
28 disp(T)
29 disp("K")
30
31 a=sqrt(y*R*T)
32
33 u=M1*a;
34
35 disp("Velocity =")
36 disp(u)
37 disp("m/s")
```

Scilab code Exa 11.5 5

```
1 clc
2
3 \text{ M_He=1.8};
4 y_He = 5/3;
5 y_air=1.4;
6 p2=30; // kPa
8 // (A/At) = (1+(y-1)/2*M^2) ((y+1)/(y-1))/M^2*(2/(y+1))
     ((y+1)/(y-1))
10 \ // \ = \ (1+1/3*1.8^2)^{(4)}/1.8^{(2)}*(3/4)^{(4)} = \ 1.828
     for helium
11
12 // = (1+0.2*M^2)^6/M^2*1/1.2^6 for air
13 // Hence by trial
14
15 \quad M1 = 1.715;
16 disp("Mach number before the shock =")
17 disp(M1)
18
```

```
19 p1=p2/((2*y_air*M1^2-(y_air-1))/(y_air+1));
20
21 p0_1=p1*(1+(y_air-1)/2*M1^2)^(y_air/(y_air-1));
22
23 disp("Stagnation Pressure =")
24 disp(p0_1)
25 disp("kPa")
```

Scilab code Exa 11.6 6

```
1 clc
2
3 p0=510; // kPa
4 pA=500; // kPa
5 pB=280; // kPa
6 d=0.02; // m
7 l_max=12; // m
9 disp("(a) the value of the friction factor for the
     pipe")
10
  // At A, pA/p0 = 500/510 = 0.980. From the
      Isentropic Flow Tables (Appendix 3), MA = 0.17.
12 // From the Fanno Flow Tables (Appendix 3) for MA =
                 = 1.4, pc/pA = 0.1556 and (fl_maxP/A)
     0.17 and
     A = 21.37
13
14 pC=pA*0.1556;
15
16 // From the Fanno Tables at pc/pB = 0.278, M.B =
      0.302 and (fl_{max}P/A)B = 5.21.
17 // For a circular pipe P/A=4/d
18 M_B = 0.302;
19 f = (21.37-5.21)/1_max/4*d;
20
```

```
21 disp("friction factor =")
22 disp(f)
23
24 disp("(b) the overall length of the pipe, L, if the
      flow exhausts to atmosphere")
25
26 p=100; // kPa
27
\frac{28}{7} At exit, \frac{pc}{p} = \frac{77.8}{100} = 0.778. From the Fanno
      Tables, (fl_maxP/A) = 0.07
29 L=1_max*(21.37-0.07)/(21.37-5.21);
30
31 disp("Overall Length =")
32 disp(L)
33 disp("m")
34
35 disp("(c) the mass flow rate if the reservoir
      temperature is 294 K.")
36 \text{ TO} = 294; // \text{ K}
37 R=287; // J/kg.K
38 y = 1.4;
39 M = 0.302;
40
41 m = \%pi/4*d^2*pB*10^3*M_B*(y*(1+(y-1)*M^2/2)/R/T0)
      ^{(1/2)};
42 disp("mass flow rate =")
43 disp(m)
44 disp("kg/s")
```

Scilab code Exa 11.7 7

```
1 clc
2
3 p1=8*10^5; // N/m^2
4 p2=5*10^5; // N/m^2
```

```
5 f = 0.006;
6 1 = 145; // m
7 m=0.32; // kg/s
8 R=287; // J/kg.K
9 T=288; // K
10 y = 1.4;
11
12 d=(4*f*1*m^2*R*T/(\%pi/4)^2/(p1^2-p2^2))^(1/5);
13 disp("(a) Diameter of pipe =")
14 disp(d)
15 disp("m")
16
17 rho=p1/R/T;
18 A = \%pi/4*d^2;
19 u=m/rho/A;
20
21 a=sqrt(y*R*T);
22
23 \text{ M1=u/a};
24 M2=p1/p2*M1;
25
26 disp("(b) Entry and Exit Mach number =")
27
28 disp("Entry Mach number =")
29 disp(M1)
30
31 disp("Exit Mach number =")
32 disp(M2)
33
34 disp("(c) Determine the pressure halfway along the
      pipe.")
35 \text{ px} = \text{sqrt}((p1^2+p2^2)/2);
36 disp("Pressure =")
37 \text{ disp}(px)
38 \text{ disp}("N/m^2")
```

Unsteady Flow

Scilab code Exa 12.1 1

```
1 clc
2
3 Q=0.05; // m^3/s
4 d=0.15; // m^2
5 h=8; // m
6 g=9.81; // m/s^2
7 l=90; // m
8 f=0.007;
9
10 u1=Q/(%pi/4*d^2);
11
12 t=-integrate('1/((h*g/l)+(2*f/d)*u^2)', 'u', u1, 0);
13 disp("Time for which flow into the tank continues after the power failure = ")
14 disp(t)
15 disp("s")
```

Scilab code Exa 12.4 4

```
1 clc
3 disp("(b) Estimate the height of tank required")
5 f = 0.006;
6 1 = 1400; // m
7 g=9.81; // m/s^2
8 d1=0.75; // m
9 d2=3; // m
10 Q=1.2; // \text{ m}^3/\text{s}
11 a=20; // m
12
13 K=4*f*1/(2*g*d1);
14
15 // 2*K*Y = 1*a/(g*A) = 8.919 s^2
16
17 // Y = 2*K*Y/2*K
18
19 Y=8.919/(2*K);
20 // \text{When } t=0
21
22 \text{ u0=Q/(\%pi/4*d1^2)};
23
24 y0=K*u0^2;
25
26 C=-Y/K/\exp(y0/Y);
27
  // To determine the height of the surge tank, we
      consider the condition y = y_max when u = 0.
29
30 // 0 = 1/K*(y_max+Y) + C*exp(y_max/Y)
31
32 // From the above eqn we get
33
34 \text{ y_max} = -Y;
35
36 \text{ H=a-y_max};
37 disp("The minimum height of the surge tank =")
```

```
38 disp(H)
39 disp("m")
40
41 disp("The actual design height should exceed the
        minimum required, say 23 m")
```

Fluid Machines

Scilab code Exa 13.1 1

```
1 clc
3 // Maximum hydraulic efficiency occurs for minimum
      pressure loss, that is, when
5 // dp1/dQ = 2.38Q - 1.43 = 0
7 Q_{opt}=1.43/2.38;
9 p1_min=1.19*Q_opt^2-1.43*Q_opt+0.47; // MPa
11 rho=1000; // \text{kg/m}^3
12 g=9.81; // m/s^2
13 w = 69.1; // rad/s
14 P=200*10^3; // W
15 Ohm_P=0.565; // rad
16 d=0.5; // m
17 h = 0.06; // m
18
19 p1=p1_min*10^6/(rho*g); // mH2O, coversion of units
20
```

```
21 H=(w*P^(1/2)/(rho^(1/2)*0hm_P))^(4/5)/g;
22
23 Hydraulic_efficiency=(H-p1)/H;
24 disp("Hydraulic Efficiency =")
25 disp(Hydraulic_efficiency)
26
27 Overall_efficiency=P/(Q_opt*rho*g*H);
28 disp("Overall Efficiency =")
29 disp(Overall_efficiency)
30
31 H_Euler=H-p1;
32
33 u1=w*0.25;
34 \text{ v_w1=g*H_Euler/u1};
35 \quad A = \%pi*d*h*0.95;
36 \text{ v_r=Q_opt/A};
37
38 \text{ alpha1=atand}(v_r/v_w1);
39 disp("Outlet angles of the guide vanes =")
40 disp(alpha1)
41 disp("degrees")
42
43 beta1=atand(v_r/(v_w1-u1));
44 disp("Rotor blade angle at inlet =")
45 disp(beta1)
46 disp("degrees")
47 u2=w*0.325/2;
48 beta2=atand(v_r/u2);
49 disp("Rotor blade angle at outlet =")
50 disp(beta2)
51 disp("degrees")
```

Scilab code Exa 13.2 2

1 clc

```
2
3 \text{ w=} 6.25;
4 D=0.75; // m
5 gv_angle=15; // guide vane angle in degrees
6 g=9.81; // m/s^2
7 \text{ H}=27.5; // \text{m}
8 A1=0.2; // \text{ m}^2
9 rho=1000; // kg/m^3
10 p_atm=101.3*10^3;
11 p_min=35*10^3;
12
13 u1 = \%pi * w * D;
14 v1=u1*sind(105)/sind(60);
15 v_r1=v1*sind(gv_angle);
16 v_w1=v1*cosd(gv_angle);
17 \quad v_w2=0;
18
19 n_hydraulic=u1*v_w1/g/H;
20
21 n_overall=0.97*n_hydraulic;
22 disp("Overall efficiency =")
23 disp(n_overall)
24
25 \ Q = A1 * v_r1;
26
27 P=n_overall*Q*rho*g*H;
28 Ohm_P=w*2*\%pi/(g*H)^(5/4)*(P/rho)^(1/2);
29
30 // \text{sigma} > 0.119*(0.5)^(1.84) = 0.0331
31
32 \text{ sigma=0.0331};
33
34 //((p_atm-p_min)/(rho*g)-z0)/H > 0.0331
35
36 	 z0 = ((p_atm - p_min)/(rho*g)) - sigma*H;
37 disp("Limiting value for the height of the draft
      tube above =")
38 disp(z0)
```

Scilab code Exa 13.3 3

```
1 clc
2
3 // \text{Static head upstream} = -11 \text{ mm H2O} = -11*1000/1.2
     mm air = -9.167 m air
5 h=9.167; // m air
6 g=9.81; // m/s^2
7 d1=0.75; // m, tip diameters
8 d2=0.4; // m, hub diameters
9 d3=0.075; // m, diameter above atmospheric pressure
10 d4=0.011; // m, diameter below atmospheric pressure
11 P=6500; // W
12 \quad w = 25;
13 rho=1000; // \text{kg/m}^3
15 v=sqrt(2*g*h); // Velocity upstream
16 Q=\%pi/4*d1^2*v; // Volume flow rate
17
18 H=d3+d4; // Total head rise across fans
19 p=rho*g*H;
20
21 n_fan=Q*p/P;
22 disp("Total efficiency =")
23 disp(n_fan)
24
25 p_ideal=p/n_fan;
26 \quad u = \%pi*w*(d1+d2)/2;
27
v_w2_A=p_ideal/(2*1.2*u);
29
30 \text{ v1=Q/(\%pi/4*(d1^2-d2^2)}
```

Scilab code Exa 13.5 5

```
1 clc
3 Q=0.04; // \text{ m}^3/\text{s}
4 d=0.15; // m
5 h=28; // m
6 f = 0.006;
7 1=38; // m
8 g=9.81;
9 \text{ fre=50; } // \text{ Hz}
10 \text{ n\_manometer} = 0.75;
11 theta=30; // degrees
12
13 v=Q/(\%pi/4*d^2);
14 h1=(3+4*f*1/d)*v^2/2/g; // Total head loss through
      pipes and valves
15
16 h_m=h+h1; // Manometric head
17
```

```
18 // w=2*\%pi*50/n; where n = number of pairs of poles.
19 // Ohm_s=w*Q^(1/2)/(g*H)^(3/4) = 0.876/n rad
20
21 // If n = 2, Ohm_s = 0.438 rad, which suggests pump
      1 or 2, and = 157 \text{ rad/s}. Outlet flow area =
      %pi*D*D/10
22
23 // v_r 2 = 0.04/(\%pi*D^2/10)
24 // u2 = *D/2 = 78.54 D
25
26 // v_w = g + h_m / (n_manometer + u^2) = 5.06 / D; // m^2 / s
27
28 // \tan( \text{theta}) = v_r 2 /( u_2 - v_w 2)
29
30 // Solving above equation, we get
31 / 78.54*D^3 - 5.06*D - 0.2205 = 0;
32
33 // Solving above cubic equation we get
34
35 D = 0.272; // m
36 \text{ disp}("D = ")
37 disp(D)
38 disp("m")
39 disp("That is near enough. So we choose pump 1")
```

Scilab code Exa 13.6 6

```
1 clc
2
3 f=0.0085;
4 l=21.1; // m
5 d=0.09; // m
6 g=9.81; // m/s^2
7 rho=1000; // kg/m^3
```

```
9 // h1=hf=(4*f*1/d)*(16*Q^2/(2*\%pi^2*d^4*g)) = (100*Q)
      ) ^2
10
11 disp("(a) The head loss due to pipe friction in terms
       of flow rate Q is given as")
12 disp("(100*Q)^2")
13
14 // For Pump
15 Q = [0:0.006:0.042 \ 0.052];
16 H=[15 16 16.5 16.5 15.5 13.5 10.5 7 0]
17 plot(Q,H,"r")
18 xlabel("Q(m^3/s)")
19 ylabel("H(m)")
20
21 // For Pipe System
22
23 // H1 = 11.5 + (100*Q)^2;
24
25 \quad Q = [0:0.01:0.06];
26 plot(Q,(11.5+10000*Q^2),"b")
27
28 legend("pipe system", "pump")
29
30 // From the plot of the pump and pipe
      characteristics, the intersection is at
31
32 \text{ H}=16; // \text{ m}
33 Q=0.021; // \text{ m}^3/\text{s}
34 n = 0.74;
35
36 \text{ P=rho*g*H*Q/n};
37
38 disp("(b) Power required =")
39 disp(P)
40 disp("W")
```

Scilab code Exa 13.7 7

```
1 clc
3 \text{ H}=16.5; // \text{ m}
4 Q=0.015; // \text{ m}^3/\text{s}
5 n=0.63;
6 \text{ H_s=} 11.5;
7 rho=1000; // kg/m^3
8 \text{ g=9.81; } // \text{ m/s}^2
10 h_f = (100 * Q)^2; // frictional head loss
12 \text{ h\_valve} = \text{H} - \text{H\_s} - \text{h\_f};
13
14 \text{ P=rho*g*H*Q/n};
15 disp("(i) the power consumption of the pump =")
16 disp(P/1000)
17 disp("kW")
18
19 disp("(ii) The power dissipated in the pump =")
20 P_d=P*(1-n)/1000;
21 disp(P_d)
22 disp("kW")
23
24 disp("(iii) The power lost by pipe friction =")
25 P_f = rho * g * h_f * Q;
26 disp(P_f/1000)
27 disp("kW")
28
29 disp("(iv) The power lost in the valve =")
30 P_valve=rho*g*h_valve*Q;
31 disp(P_valve/1000)
32 disp("kW")
```

```
33
34 P_s=rho*g*H_s*Q;
35
36 n_overall = P_s/P*100;
37
38 disp("(b) Overall efficiency of the installation =")
39 disp(n_overall)
40 disp("%")
```