PHYS 225 Fundamentals of Physics: Mechanics

Prof. Meng (Stephanie) Shen Fall 2024

Lecture 6: Vectors

Chapter 3: Vectors

- Learning goals:
 - Apply vector operation in two and three dimensions
 - Vector addition and Vector components
 - Vector multiplication

Learning goals for today

- Concepts about vectors in higher dimensions
- Vector addition
 - Head-tail rule
 - By components
- Vector decomposition

$$\vec{\mathbf{R}} = \vec{\mathbf{A}} + \vec{\mathbf{B}}$$

Vectors

- Vectors has magnitude and direction
 - Magnitude = Size of the vector
 - Direction: from start point to end point
- 1D vectors
 - Sign (+/-) to show direction
- What about 2D? 3D?

Demo

https://phet.colorado.edu/sims/html/vector-addition/latest/vector-addition_all.html

Adding vectors geometrically in higher dimensions

Adding vectors geometrically in higher dimensions

$$\vec{\mathbf{R}} = \vec{\mathbf{A}} + \vec{\mathbf{B}}$$

Head-tail rule

Clicker Question 1

Vectors \vec{A} and \vec{B} are shown to the right. Which of the following best describes $\vec{A}+\vec{B}$?

Vector scaling

Multiplying a vector by a scalar changes the length

The direction reverses also, if the scalar is negative

Clicker Question 2

Vectors \vec{A} and \vec{B} are shown on the right.

Which of the following best describes $\overrightarrow{A} - \overrightarrow{B}$?

Clicker question 2

An object has velocity v_1 at time t=0 and v_2 at time t=1 s. Which of the following are the

 $\frac{1}{1} = \frac{1}{\sqrt{2} - 1}$ average acceleration?

$$\frac{1}{\sqrt{2}} + \left(-\sqrt{2}\right)$$

Vector decomposition

- Vectors in higher dimensions can be decomposed into 1D components
 - Each component points to either the x, y or z direction
- Operation by components makes complex physics clear

Vector decomposition

- Vectors in higher dimensions can be decomposed into 1D components
 - Each component points to either the x, y or z direction
- Operation by components makes complex physics clear
- For example:

ZD Veltor: X Q J

2D Vector \vec{a} is decomposed into \vec{a}_{x} and \vec{a}_{y}

$$\vec{a} = \vec{a}_x + \vec{a}_y$$

3D Vector A is decomposed into \vec{A}_{χ} , \vec{A}_{y} and \vec{A}_{z}

$$\vec{A} = \vec{A}_x + \vec{A}_v + \vec{A}_z$$

Unit vector notation (*) * The unit vectors point along axes.

- Its sole purpose is to point in a direction
- The unit vectors \hat{i} , \hat{j} , \hat{k} point along the x, y and z axes, respectively
- Any vector can be written in terms of its components and unit vectors. For example,

$$\bullet \vec{A} = A_x \hat{\imath} + A_y \hat{\jmath} + A_z \hat{k}$$

Trig mini-review

Know these basic trigonometric functions

Hypotenuse 2 = adjacent 2 + opposite 2

$$\sin \theta = \frac{\text{leg opposite } \theta}{\text{hypotenuse}}$$

$$\cos \theta = \frac{\text{leg adjacent to } \theta}{\text{hypotenuse}}$$

$$\tan \theta = \frac{\text{leg opposite } \theta}{\text{leg adjacent to } \theta}$$

Copyright @ 2014 John Wiley & Sons, Inc. All rights reserved.

Clicker question 3

• What is *b* / *a* ?

Clicker question 4

What is a / c?

Magnitude and direction in terms of components

Magnitude:
$$C = \sqrt{C_x^2 + C_y^2}$$

Direction:
$$\theta = \tan^{-1} (C_y/C_x)$$

arctan, atan Here, θ is the angle counterclockwise There, \vec{C} is the angle counterclockwis $\vec{C} = \vec{C}_x + \vec{C}_y$ from the +x direction to the vector \vec{C} $(-9)^2, 9)^2$

$$\frac{1}{\gamma}$$
 = $\sqrt{\gamma^2 + \gamma^2}$

$$\theta = \arctan(\frac{y_y}{x_x}) + 180$$

Be careful with the range of tan⁻¹ function!

Calculator set up: Rad or degree?

In degrees for Chapter 3

If you are unsure if your calculator is in rad or degree mode, do simple calculations to validate!

Example 1 Seepl; Skutch

• Please decompose vector \vec{r} in the xy plane if \vec{r} 's direction is 267° counterclockwise from the positive direction of the x axis and its magnitude is 5.1 m?

positive direction of the x axis and its magnitude is 5.1 m?

Step 2:
$$Pecomposition$$
 unit veetor notation

For $r = |r| cos \theta i + |r| sin \theta i$

For $r = |r| cos \theta i + |r| sin \theta i$

For $r = |r| cos \theta i + |r| sin \theta i$

For $r = |r| cos \theta i + |r| sin \theta i$

For $r = |r| cos \theta i + |r| sin \theta i$

For $r = |r| cos \theta i + |r| sin \theta i$

For $r = |r| cos \theta i + |r| sin \theta i$

For $r = |r| cos \theta i + |r| sin \theta i$

For $r = |r| cos \theta i + |r| sin \theta i$

For $r = |r| cos \theta i + |r| sin \theta i$

For $r = |r| cos \theta i + |r| sin \theta i$

For $r = |r| cos \theta i + |r| sin \theta i$

For $r = |r| cos \theta i + |r| sin \theta i$

For $r = |r| cos \theta i + |r| sin \theta i$

For $r = |r| cos \theta i + |r| sin \theta i$

For $r = |r| cos \theta i + |r| sin \theta i$

For $r = |r| cos \theta i + |r| sin \theta i$

For $r = |r| cos \theta i + |r| sin \theta i$

For $r = |r| cos \theta i + |r| sin \theta i$

For $r = |r| cos \theta i + |r| sin \theta i$

For $r = |r| cos \theta i + |r| sin \theta i$

For $r = |r| cos \theta i + |r| sin \theta i$

For $r = |r| cos \theta i + |r| sin \theta i$

For $r = |r| cos \theta i + |r| sin \theta i$

For $r = |r| cos \theta i + |r| sin \theta i$

For $r = |r| cos \theta i + |r| sin \theta i$

For $r = |r| cos \theta i + |r| sin \theta i$

For $r = |r| cos \theta i + |r| sin \theta i$

For $r = |r| cos \theta i + |r| sin \theta i$

For $r = |r| cos \theta i + |r| sin \theta i$

For $r = |r| cos \theta i + |r| sin \theta i$

For $r = |r| cos \theta i + |r| sin \theta i$

For $r = |r| cos \theta i + |r| sin \theta i$

For $r = |r| cos \theta i + |r| sin \theta i$

For $r = |r| cos \theta i + |r| sin \theta i$

For $r = |r| cos \theta i + |r| sin \theta i$

For $r = |r| cos \theta i + |r| sin \theta i$

For $r = |r| cos \theta i + |r| sin \theta i$

For $r = |r| cos \theta i + |r| sin \theta i$

For $r = |r| cos \theta i$

For $r = |r$

Add vectors by components

Step 1: Decompose each of the vectors

Step 2: Vector sum the components in each direction

Demo: Add vectors by components

• Demo:

Vector addition: Real-life example

• Cal State Fullerton is 1.70 miles away from Fullerton College, at an angle 23.6° **north of east.** The Apple Store is 2.50 miles due north of Cal State Fullerton. A bird flies from Fullerton College to Cal State Fullerton, and then from Cal State Fullerton to the Apple Store. What is the bird's displacement?

Clicker question 5: Real-life example

How long is the dashed arrow?

Clicker question 6: Real-life example

How long is the dashed arrow?

- 1.70 miles x sin 23.6°
- 1.70 miles x cos 23.6°
- © 1.70 miles x tan 23.6°
- **D** 1.70 miles
- E None of ABCD

Vector addition: A real-life example

• Cal State Fullerton is 1.70 miles away from Fullerton College, at an angle 23.6° north of east. The Apple Store is 2.50 miles due north of Cal State Fullerton. A bird flies from Fullerton College to Cal State Fullerton, and then from Cal State Fullerton to the Apple Store. What is the bird's displacement?

Seap 2; Add: $\vec{r} = r_{1x} \cdot \hat{i} + (r_{1y} + r_{2y})$ = 1.56 mi $\hat{i} + 3$. 18 mi)

Vector addition example: Solution

$$\vec{r} = (1.7 \text{mi} \cos 23.6^{\circ}) \hat{i} + (1.7 \text{mi} \sin 23.6^{\circ} + 2.5 \text{ mi}) \hat{j}$$

Magnitude of displacement:

$$|\vec{r}| = \sqrt{(1.7 \text{mi} \cos 23.6^{\circ})^2 + (1.7 \text{mi} \sin 23.6^{\circ} + 2.5 \text{ mi})^2}$$

= 3.54 mi

Direction of displacement (angle counter-clockwise = angle "north of east":

$$\theta = \tan^{-1} \left(\frac{1.7 \text{ mi} \sin 23.6^{\circ} + 2.5 \text{ mi}}{1.7 \text{ mi} \cos 23.6^{\circ}} \right)$$
= 63.9°

Determine if your calculator accepts radians or degrees

Practice example (work in a group of 2-3)

(a) In unit-vector notation, what is the sum of $\vec{a} = (3.7 \text{ m})\hat{i} + (1.7 \text{ m})\hat{j}$ and $\vec{b} = (-12.0 \text{ m})\hat{i} + (6.8 \text{ m})\hat{j}$. What are (b) the magnitude and (c) the direction of $\vec{a} + \vec{b}$ (relative to \hat{i})?

Practice (try simulations)

Clicker question 7

• What is the vector sum of vectors $d\vec{l}_1$, $d\vec{l}_2$, \cdots , $d\vec{l}_4$ above: $\sum_{i=1}^{i=4} d\vec{l}_i$?

Vector addition summary

- Vector addition by head-tail convention
- Vector addition by components
- Properties of vector addition
 - Commutative: $\vec{a} + \vec{b} = \vec{b} + \vec{a}$
 - Associative: $\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$

Next time: Vector multiplication