2018 年全国青少年信息学奥林匹克竞赛 江苏省省队集训

比赛时间: 2018 年 7 月 2 日 8:00~13:00

请选手务必仔细阅读本页内容

题目名称	value	distance	crack
可执行文件名	value	distance	crack
输入文件名	value.in	distance.in	crack.in
输出文件名	value.out	distance.out	crack.out
每个测试点时限	2 秒	1 秒	1秒
内存限制	512MB	512MB	512MB
子任务数目	5	3	10
每个测试点分值	见题目描述	见题目描述	见题目描述
是否有部分分	否	否	否
题目类型	传统型	传统型	传统型
结果比较方式	全文比较	Special Judge	全文比较
是否有样例文件	是	是	否
是否有附加文件	否	否	是

提交源程序须加后缀

对于 C++ 语言	value.cpp	distance.cpp	crack.cpp
对于 C 语言	value.c	distance.c	crack.c
对于 Pascal 语言	value.pas	distance.pas	crack.pas

编译开关

对于 C++ 语言	-O2 -lm -std=c++11
对于 C 语言	-O2 -lm -std = c + +11
对于 Pascal 语言	-O2

value

【问题描述】

给两个 n 维向量 $\mathbf{a}, \mathbf{b}, \forall 0 \leq i < n, a_i \geq b_i$ 。 你需要设定两个参数 $x, y, x \geq y$,对于每个 i,计算收益:

- 否则, 若 $y \le b_i$, 获得 y 的收益
- 否则,获得0的收益

最大化总收益。

【输入格式】

第一行包含 1 个正整数 n。 接下来 n 行每行包含 2 个整数 a_i, b_i 。

【输出格式】

共一行包含 1 个整数 ans,表示总收益的最大值。

【样例 1 输入】

5

80 20

60 50

 $40 \ 40$

15 10

70 30

【样例 1 输出】

220

【样例 2】

见选手目录下的 value/value2.in 与 value/value2.ans。 该组样例的数据范围同第 1 个子任务。

【样例 3】

见选手目录下的 value/value3.in 与 value/value3.ans。该组样例的数据范围同第 2 个子任务。

【样例 4】

见选手目录下的 value/value4.in 与 value/value4.ans。该组样例的数据范围同第 3 个子任务。

【样例 5】

见选手目录下的 value/value5.in 与 value/value5.ans。该组样例的数据范围同第 4 个子任务。

【样例 6】

见选手目录下的 value/value6.in 与 value/value6.ans。该组样例的数据范围同第 5 个子任务。

【数据规模与约定】

对于 100% 的数据,满足 $n \le 150000, 0 \le b_i \le a_i \le 10^9$ 。

子任务编号	分值	n	特殊性质
1	16pts	≤ 3000	
2	18pts	≤ 100000	$\mathbf{a} = \mathbf{b}$
3	11pts	≤ 50000	
4	12pts	≤ 75000	
5	43pts	≤ 150000	

distance

【问题描述】

给定一个 $n \times m$ 的网格图和包括 (1,1),(n,m) 在内的 k 个标记点,你只能通过标记点进行转移。任意两个标记点间的距离定义为 2 的切比雪夫距离次方,即 (x_1,y_1) 和 (x_2,y_2) 间的距离为 $2^{\max(|x_1-x_2|,|y_1-y_2|)}$ 。

输出一条从(1,1)到(n,m)的最短路。

【输入格式】

第一行包含 3 个正整数 n, m, k。

接下来 k 行每行包含 2 个正整数 x_i, y_i ,表示一个标记点的坐标,其中 1 号点一定是 (1,1),k 号点一定是 (n,m)。

【输出格式】

第一行包含一个正整数 t。

第二行包含 t 个正整数 $ans_1, ans_2, \ldots, ans_t$,表示一条最短路。 ans_i 表示最短路中到达的第 i 个标记点的编号,其中 ans_1 一定是 1, ans_t 一定是 k。

【样例 1 输入】

- 5 6 9
- 11
- 43
- 46
- 2 5
- 3 1
- 3 3
- 3 6
- 5 4
- 5 6

【样例 1 输出】

5

16289

【样例 2】

见选手目录下的 distance/distance2.in 与 distance/distance2.ans。该组样例的数据范围同第 1 个子任务。

【样例 3】

见选手目录下的 distance/distance3.in 与 distance/distance3.ans。该组样例的数据范围同第 2 个子任务。

【样例 4】

见选手目录下的 distance/distance4.in 与 distance/distance4.ans。该组样例的数据范围同第 3 个子任务。

【数据规模与约定】

对于 100% 的数据,满足 $n \le 10000, 1 \le x_i \le n, 1 \le y_i \le m$.

子任务编号	分值	n, m, k	特殊性质
1	23pts	≤ 500	
2	36pts	≤ 10000	每行每列至多一个标记点
3	41pts		

crack

【问题描述】

本题共分为 10 个子任务,下文将有针对每个子任务的具体说明。每个子任务各对应一种不同的基础算法,并且保证采用的任意单个算法对所有合法输入数据具有普适性,即不会针对有限组输入数据采用特例。你的目标便是还原这些算法。

为了发掘这些程序所完成的任务,你可以利用下发的可执行文件 crack_force 运行任意自行设计的合法输入数据,具体使用方法将在下文提及。然而由于某些原因,下发的 crack_force 只能处理 规模较小的输入数据,并且将会花费较多的时间。但你还原的程序必须在规定时间内解决 规模较大的问题。

crack force 从 crack force.in 读取输入数据,并将输出数据写入到 crack force.ans。

本题将采用传统题方式进行评测,针对每个子任务均有若干组赛前已经生成的测试点,以检验你还原出的算法的正确性,只有全部通过才能获得该子任务的全部分数。

【输入格式】

对于所有数据,输入第一行均为 1 个整数 t, $1 \le t \le 10$, 表示该组数据所属的子任务编号。接下来对于每个子任务分别进行描述(描述中出现的变量名均按照小写字母的顺序依次标识):

子任务 1/2

共一行包含 1 个整数 a。

子任务 3

第一行包含 2 个整数 a,b。

第二行包含 a 个整数 $c_1, c_2, \ldots, c_a, -10^9 \le c_i \le 10^9$ 。

接下来 b 行每行包含 2 个整数 $d_i, e_i, 1 \le d_i \le e_i \le a$ 。

子任务 4

第一行包含 2 个整数 a, b。

第二行包含 a 个整数 $c_1, c_2, \ldots, c_a, 0 \le c_i \le 10^9$ 。

接下来 b 行每行包含 2 个整数 $d_i, e_i, 1 \le d_i \le e_i \le a$ 。

子任务 5/6

第一行包含 1 个整数 a。

接下来 a-1 行每行包含 3 个整数 $b_i, c_i, d_i, 1 \le b_i, c_i \le a, 0 \le d_i \le 10^9$, 数据满足:

- $\forall 1 \leq i \leq a-1, b_i \neq c_i$
- $\forall 1 \leq i < j \leq a 1, (b_i, c_i) \neq (b_i, c_j) \perp (b_i, c_i) \neq (c_j, b_j)$
- $\forall 1 \leq i < j \leq a$,存在序列 $\{e_f\}$ 满足:
 - $-e_1 = i$
 - $-e_f=j$

- ∀1 ≤ k < f , 存在 1 ≤ l ≤ a − 1 满足: $(e_k, e_{k+1}) = (b_l, c_l)$ 或 $(e_k, e_{k+1}) = (c_l, b_l)$

子任务 7/8

第一行包含 2 个整数 a,b。

接下来 b 行每行包含 3 个整数 $c_i, d_i, e_i, 1 \le c_i, d_i \le a, 0 \le e_i \le 10^9$, 数据满足:

- $\forall 1 \leq i \leq b, c_i \neq d_i$
- $\forall 1 \le i < j \le b, (c_i, d_i) \ne (c_j, d_j) \perp (c_i, d_i) \ne (c_j, d_j)$
- $\forall 1 \leq i < j \leq a$,存在序列 $\{f_g\}$ 满足:
 - $f_1 = i$
 - $-f_g=j$
 - $\forall 1 \leq k < g$,存在 $1 \leq l \leq b$ 满足: $(f_k, f_{k+1}) = (c_l, d_l)$ 或 $(f_k, f_{k+1}) = (d_l, c_l)$

子任务 9/10

共一行包含一个由小写字母组成的字符串 a。

【输出格式】

子任务 1/2/5/6/7/8/9/10

共一行包含 1 个整数 ans, $-10^{18} \le ans \le 10^{18}$.

子任务 3/4

共 b 行每行包含 1 个整数 ans_i , $-10^{18} \le ans_i \le 10^{18}$.

【数据规模与约定】

子任务编号	分值	下发文件数据范围	最终测试数据范围	
1	6pts	$2 < a < 10^5$	2 105	$2 < a < 10^9$
2	10pts	$2 \le u \le 10$	$2 \le u \le 10$	
3	7pts	$2 \le a, b \le 1000$	$2 \le a,b \le 100000$	
4	11pts		$2 \le a,b \le 10000$	
5	8pts	$2 \le a \le 100$	2 < ~ < 1000	
6	12pts		$2 \le a \le 1000$	
7	9pts	$2 \le a \le 100, 2 \le b \le 200$	$2 \le a \le 1000, 2 \le b \le 2000$	
8	13pts		$2 \le a \le 1000, 2 \le b \le 2000$	
9	10pts	2 < a < 100	2 < a < 1000	
10	14pts	$2 \le a \le 100$	$2 \le a \le 1000$	