COSC6364 Project Description

3D Computations - The Dipole Field

Report and Deliverables: COSC6364 Project Instructions.pdf @ course MS Teams Channel

Maximum number of group members: 1

Project Description:

Computational processes are oten used in calculating the spatial distribution of fields in a variety of fields, in sciences and engineering. The purpose of this project is to perform fundamental computations in 3D assuming a magnetic dipole. The equation for the field generated by a magnetic dipole is:

$$\overrightarrow{B} = \nabla \times \overrightarrow{A} = \left(\frac{d\overrightarrow{A}_{z}}{dy} - \frac{d\overrightarrow{A}_{y}}{dz}\right)\hat{i} + \left(\frac{d\overrightarrow{A}_{x}}{dz} - \frac{d\overrightarrow{A}_{z}}{dx}\right)\hat{j} + \left(\frac{d\overrightarrow{A}_{y}}{dx} - \frac{d\overrightarrow{A}_{x}}{dy}\right)\hat{k},$$

$$\overrightarrow{A} = L \cdot \frac{\overrightarrow{m} \times \overrightarrow{R}}{\left|\overrightarrow{R}\right|^{3}},$$

$$L = \frac{\mu_{0}}{4\pi} = 9.8696 \frac{Newton}{Ampere^{2}}$$

where \vec{A} is the magnetic vector potential, $\hat{\imath}$, $\hat{\jmath}$, and \hat{k} are the x, y, and z basis vectors, L is a physical constant, \vec{m} is the magnetic moment of the dipole, and \vec{R} is the Cartesian vector from the center of the dipole to the measurement location.

Figure 1: Example Dipole Field Lines in 2D

By Geek3 - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=11621788

Tasks:

Implement your code, in Matlab, Python or C, to calculate the 3D distribution of the field generated by a point dipole.

Inputs of your code:

- 1. Point dipole parameters: (i) Location (X_d , Y_d , Z_d) in the 3D Cartesian coordinate system, (ii) Orientation defined with the angle φ measured relative to the X axis in the XY-plane and angle θ measured relative to the Z axis. (iii) Strength with a default value of 1.0
- 2. 3D Area of Calculation: (i) Location (X_v, Y_v, Z_v) ; default will be $(X_v, Y_v, Z_v) = (X_d, Y_d, Z_d)$ and (ii) Size defined as X_c , Y_c , Z_c . This means that the area you perform calculations is,. For example in the X axis, from X_v -1/2 X_c , X_v +1/2 X_c .
- 3. Resolution of modeling: number of steps per axis N_x , N_y , N_z ; this corresponds to N_x N_y N_z points and a step on the X axis of X_c/N_x , Y of Y_c/N_y and Z of Z_c/N_z

Outputs of your code:

The digitized function B that is a tensor containing the magnetic field vectors at each spatial position ($0 \le i < N_x$, $0 \le j < N_y$, $0 \le k < N_z$) within 3D Area. You should also calculate the gradient of the magnitude of B at each point. Report the following values for each point in a .csv file:

i, j, k, X_i, Y_j, Z_k, B_{x,i}, B_{y,j}, B_{z,k}, B_{magntitude}, Gradient_x, Gradient_z

Report and Deliverables: COSC6364_Project_Instructions.pdf @ course MS Teams Channel