

LAB4 Linear Regression

贾艳红 Jana

Email:jiayh@mail.sustech.edu.cn

- O1 Simple Linear Regression
- **Evaluation**
- Polynomial Regression

- > Simple Linear Regression:
 - ✓ attributes and target, least square method
- > Evaluation
 - ✓ MSE, RMSE, MAE, R-Squared.
- > Polynomial regression
 - ✓ pipeline, bias & variance, regularization

What is regression?

- A method to determine the statistical relationship between a dependent variable and one or more independent variables.
- When two or more independent variables are used to predict or explain the outcome of the dependent variable, this is known as multiple regression.
- > This can be broadly classified into two major types.
 - ① Linear Regression
 - 2 Logistic Regression

Linear regression

The general form of regression is:

Simple linear regression:

$$y = \theta_0 + \theta_1 x$$

• Multiple linear regression:

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

Where,

x: Independent Variable

y: Dependent Variable

 θ_1 : Slope of Line

 θ_0 : y Intercept

Logistic regression

Logistic regression is a classification algorithm. It is used to predict a binary outcome based on a set of independent variables.

Logistic\Sigmoid function:

$$h_{\theta}(y) = \frac{1}{1 + e^{-\theta y}}$$

Linear Regression vs Logistic regression eming

Logistic Regression(这里特指回归操作):

$$f(x) = sigmoid(w^T x + b)$$

Logistic Classifier:

$$y=\left\{egin{array}{ll} 1 & f(x)\geq 0.5 \ -1 & f(x)<0.5 \end{array}
ight.$$

Linear Regression:

$$f(x) = w^T x + b$$

Linear Classifier:

$$y = \left\{egin{array}{ll} 1 & f(x) \geq 0 \ -1 & f(x) < 0 \end{array}
ight.$$

Attributes and Targets (Linear Regression)

- > Attributes: measuring aspects of a sample instance
- > Targets: continuous value of the indicator we concern
 - ✓ example: Boston house prices (embedded dataset in scikit-learn)

	Attributes													Target
	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	Price
0	9.91655	0.0	18.10	0.0	0.6930	5.852	77.8	1.5004	24.0	666.0	20.2	338.16	29.97	6.3
1	3.83684	0.0	18.10	0.0	0.7700	6.251	91.1	2.2955	24.0	666.0	20.2	350.65	14.19	19.9
2	0.43571	0.0	10.59	1.0	0.4890	5.344	100.0	3.8750	4.0	277.0	18.6	396.90	23.09	20.0
3	0.03150	95.0	1.47	0.0	0.4030	6.975	15.3	7.6534	3.0	402.0	17.0	396.90	4.56	34.9
4	0.62976	0.0	8.14	0.0	0.5380	5.949	61.8	4.7075	4.0	307.0	21.0	396.90	8.26	20.4
5	5.87205	0.0	18.10	0.0	0.6930	6.405	96.0	1.6768	24.0	666.0	20.2	396.90	19.37	12.5
6	2.37857	0.0	18.10	0.0	0.5830	5.871	41.9	3.7240	24.0	666.0	20.2	370.73	13.34	20.6
7	0.03578	20.0	3.33	0.0	0.4429	7.820	64.5	4.6947	5.0	216.0	14.9	387.31	3.76	45.4
8	5.70818	0.0	18.10	0.0	0.5320	6.750	74.9	3.3317	24.0	666.0	20.2	393.07	7.74	23.7
9	0.46296	0.0	6.20	0.0	0.5040	7.412	76.9	3.6715	8.0	307.0	17.4	376.14	5.25	31.7

Least square method (Linear Regression)

- \triangleright Consider the model: $y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + ... + \theta_n x_n$
- ➤ Given a random sample of observations, the population regression line is estimated by:

$$\hat{y}^{(i)} = \theta_0 + \theta_1 X_1^{(i)} + \theta_2 X_2^{(i)} + ... + \theta_n X_n^{(i)}$$
$$\theta = (\theta_0, \theta_1, \theta_2, ..., \theta_n)^T$$

 \triangleright θ is the parameters we want

Least square method (Linear Regression)

 \nearrow X is attribute values of all samples, $X^{(i)}$ denotes the i-th sample, X_n denotes the n-th attribute

$$\hat{y}^{(i)} = \theta_0 X_0^{(i)} + \theta_1 X_1^{(i)} + \theta_2 X_2^{(i)} + \dots + \theta_n X_n^{(i)} \quad , X_0^{(i)} \equiv 1$$

$$X^{(i)} = (X_0^{(i)}, X_1^{(i)}, X_2^{(i)}, \dots, X_n^{(i)})$$

$$\hat{\mathbf{y}}^{(i)} = X^{(i)} \cdot \boldsymbol{\theta}$$

Least square method

$$X_{b} = \begin{pmatrix} 1 & X_{1}^{(1)} & X_{2}^{(1)} & \dots & X_{n}^{(1)} \\ 1 & X_{1}^{(2)} & X_{2}^{(2)} & \dots & X_{n}^{(2)} \\ \dots & & & \dots & \\ 1 & X_{1}^{(m)} & X_{2}^{(m)} & \dots & X_{n}^{(m)} \end{pmatrix} \qquad \theta = \begin{pmatrix} \theta_{0} \\ \theta_{1} \\ \theta_{2} \\ \dots \\ \theta_{n} \end{pmatrix} \qquad \hat{y} = X_{b} \cdot \boldsymbol{\theta}$$

$$\boldsymbol{\theta} = \left(\begin{array}{c} \boldsymbol{\theta}_0 \\ \boldsymbol{\theta}_1 \\ \boldsymbol{\theta}_2 \\ \dots \\ \boldsymbol{\theta}_n \end{array} \right)$$

$$\hat{\mathbf{y}} = X_b \cdot \boldsymbol{\theta}$$

$$e = \left\| y - \hat{y} \right\| = \left\| y - X_b \theta \right\|$$

Least square method

 \succ To make $|y - \hat{y}|$ as small as possible, the solution is

$$\theta = (X_b^T X_b)^{-1} X_b^T y$$

 \triangleright This means $\boldsymbol{\theta}$ is the orthogonal projection of y into R(X _b)

 \triangleright If X_b is too large, calculate the inverse is expensive. we often use some optimization methods (like gradient descent)

Evaluation

- \triangleright How to evaluate the model? We compare the predict \hat{y} with real y
- Mean Squared Error (MSE)

$$\frac{1}{m} \sum_{i=1}^{m} (y_{test}^{(i)} - \hat{y}_{test}^{(i)})^2$$

Root Mean Squared Error (RMSE)

$$\sqrt{\frac{1}{m} \sum_{i=1}^{m} (y_{test}^{(i)} - \hat{y}_{test}^{(i)})^2} = \sqrt{MSE_{test}}$$

Evaluation

Mean Absolute Error (MAE)

$$\frac{1}{m} \sum_{i=1}^{m} |y_{test}^{(i)} - \hat{y}_{test}^{(i)}|$$

 \triangleright R-Squared (R²): value closer to 1 is better

$$R^2 = 1 - \frac{SS_{residual}}{SS_{total}}$$
 (Residual Sum of Squares) (Total Sum of Squares)

$$R^{2} = 1 - \frac{\sum_{i} (\hat{y}^{(i)} - y^{(i)})^{2}}{\sum_{i} (\overline{y} - y^{(i)})^{2}}$$

$$R^{2} = 1 - \frac{(\sum_{i} (\hat{y}_{i} - y_{i})^{2}) / m}{(\sum_{i} (\hat{y}_{i} - y_{i})^{2}) / m}$$

$$= 1 - \frac{MSE(\hat{y}, y)}{Var(y)}$$

Polynomial regression

- Now consider a more complex situation: $\Phi(x) = \prod_{n=0}^N x_n^{k_n}$, $\sum_n k_n \leq d$
- It becomes polynomial regression. Theoretically, polynomial can fit any function if the degree (d) were large enough.
- For example, we have 2 attributes, degree is 3

$$x_1, x_2$$
 \downarrow $1, x_1, x_2$

$$x_1^2, x_2^2, x_1 x_2$$

$$x_1^3, x_2^3, x_1^2 x_2, x_1 x_2^2$$

Standardization

> We have introduced data normalization, **standardization** is another way to regularize data.

$$x_{scale} = \frac{x - x_{mean}}{S} \qquad s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2}$$

It makes sure the value of each attribute provided by all samples have a mean of 0, and a standard deviation (s) of 1.

It is good when the data value has no boundary or has some outliers.

Polynomial Regression Pipeline

- When we performing polynomial regression, 3 steps are required:
 - ✓ Make polynomial features
 - ✓ Standardization (for gradient descent)
 - ✓ Linear regression
- Scikit-learn provides the *Pipeline* class for customizing our own polynomial regression

Bias & Variance

Bias usually caused by underfitting, Variance caused by overfitting

Choose a better polynomial degree and regularization coefficient

Use training set, validation set and test set or cross validation to acquire a better model

Low Variance (Precise)

High Variance (Not Precise)

High Bias

Low Bias (Accurate)

Regularization

 \succ We can use regularization to restrict the parameters in $oldsymbol{ heta}$

In scikit-learn, class Ridge corresponds to

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

Lab Task

- 1. Complete the exercises and questions in the lab03_Bayes.pdf
- 2. Submit two result files with the same content to bb. The extensions of these two files are **ipynb** and **pdf**, respectively.

Lab1: 周三 上午3-4节 荔园6栋408机房

Lab2: 周三 下午7-8节 荔园6栋406机房

Lab3: 周二下午5-6节 荔园6栋409机房

Lab4: 周二下午7-8节 荔园6栋406机房

Thanks

贾艳红 Jana Email:jiayh@mail.sustech.edu.cn

