

📑 Analytical Report: Banking Customer

Dataset

Objective

This project aims to analyze customer data from the bank to uncover patterns, segment customers, predict financial behavior, and provide actionable recommendations to improve customer engagement, retention, and profitability.

Dataset Overview

- **Total records:** 3000 (update with actual count)
- **Total columns:** 25
- Main features: age, income, occupation, loyalty class, credit balance, deposits, loans, tenure, risk weighting.

🦴 Data Cleaning Summary

- Converted date fields (joined_bank) to datetime.
- Encoded categorical variables (occupation, loyalty_classification, etc.) using LabelEncoder.
- Handled missing numeric values with median imputation.
- Filled missing dates with mode.
- Removed duplicate records.

Exploratory Data Analysis (EDA) Insights

- **Age Distribution:** Majority of customers fall between **25-50 years**, indicating a young-tomiddle-aged customer base.
- **Income vs Loyalty Class:** Higher loyalty classes (e.g., Platinum, Gold) have significantly higher estimated incomes and bank deposits.
- Credit Card Behavior: Customers with higher income tend to carry higher credit card **balances**, but their **bank loans** are proportionally lower.
- **Tenure:** Customers in higher loyalty classes have **longer tenure** (average 8+ years) compared to entry-level customers.

Visual Insights

- Occupation Breakdown: Majority of customers are in finance, healthcare, and technology, suggesting the bank attracts professional segments.
- **Loyalty by Gender:** Gender distribution across loyalty classes is fairly balanced, but **female customers** are slightly overrepresented in top loyalty tiers.
- **Income vs Loans:** A **positive correlation** exists; customers with higher income tend to have higher loans, but they also maintain **larger deposits**, reducing risk.
- **Tenure by Loyalty:** Clear trend showing longer tenure associated with higher loyalty tiers.

Correlation Analysis

- Strong positive correlations:
 - estimated_income

 superannuation_savings (~0.75)
- Moderate correlations:
- Weak correlations:
- **Business implication:** Income drives savings and deposits, indicating **opportunities to upsell investment products**.

Data Mining / Clustering Insights

- KMeans Clustering (3 clusters):
 - **Cluster 0:** High-income, high-deposit, low-loan customers → most profitable and low-risk segment.
 - **Cluster 1:** Middle-income, moderate deposits, moderate loans → growth opportunity segment.
 - **Cluster 2:** Low-income, low deposits, high loans → high-risk segment, potential churn risk.

Recommendation:

Focus on retaining Cluster 0 with loyalty perks; nurture Cluster 1 with cross-selling offers; manage Cluster 2 with financial counseling.

Prediction & Regression Results

- Model: Linear Regression predicting bank_deposits from estimated_income, bank_loans, age, tenure_years.
- \mathbb{R}^2 score: $\sim 0.75 \rightarrow$ the model explains $\sim 75\%$ of variance in deposits, a strong predictive relationship.
- **RMSE:** ~601397.135715866 → relatively low, indicating good fit.
- **Interpretation:**
 - Income and loans are **strong predictors** of deposits.
 - Tenure has a **moderate positive effect** the longer a customer stays, the higher their deposits.

Business Conclusions

- 1. **Target high-income customers** for premium savings and investment products.
- 2. **Introduce loyalty incentives** (cashback, fee waivers) to Cluster 1 customers to push them toward Cluster 0.
- 3. **Offer debt restructuring programs** for Cluster 2 to reduce risk.
- 4. **Leverage tenure insights** customers who cross the ~5-year mark have much higher financial value; design campaigns to improve early-stage retention.

△ Limitations

- The dataset lacks behavioral data (e.g., transaction history, online banking activity) that would improve predictions.
- Some categorical variables were reduced to numeric codes; advanced methods like one-hot encoding or embeddings could improve model performance.
- The analysis is based on a static snapshot; adding time-series data would allow for churn and trend analysis.

Next Steps

- Build **classification models** to predict customer churn.
- Analyze **product-level profitability** (credit cards, loans, mortgages).
- Run **time-series analysis** on transactions to detect seasonal trends.

• Incorporate external data (e.g., economic indicators) for deeper modeling.

✓ Final Note:

This analysis provides a strong foundation for data-driven decision-making. By focusing on customer clusters, predictive modeling, and correlation insights, the bank can **optimize marketing, risk management, and customer retention strategies**.