

Report No. : EED32L00193803 Page 1 of 82

TEST REPORT

Product : Yanshee Robot

Trade mark : UBTCH

Model/Type reference : ERHA101

Serial Number : N/A

Report Number : EED32L00193803 **FCC ID** : 2AHJX-YANSHEE-1

Date of Issue : Aug. 26, 2019

Test Standards : 47 CFR Part 15Subpart C

Test result : PASS

Prepared for:

UBTECH ROBOTICS CORP LTD 16th and 22nd Floor, Block C1, Nanshan I Park, No.1001 Xueyuan Road, Nanshan District, Shenzhen City, P.R.CHINA

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By: Compiled by:

Reviewed by: Approved by ReIn To

Ware Xin

Date: Aug. 26, 2019 Check No.: 3096399624

Report Seal

Alex Wu

Page 2 of 82

2 Version

Version No.	Date	Description	
00	2019-08-26	Original	
	5	200	15
(@		(E)	

Page 3 of 82

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample(s) and the sample information are provided by the client.

Report No.: EED32L00193803 Page 4 of 82

4 Content

1 COVER PAGE	1
2 VERSION	2
3 TEST SUMMARY	3
4 CONTENT	
5 TEST REQUIREMENT	
5.1 Test setup 5.1.1 For Conducted test setup 5.1.2 For Radiated Emissions test setup 5.1.3 For Conducted Emissions test setup 5.2 Test Environment 5.3 Test Condition 6 GENERAL INFORMATION 6.1 CLIENT INFORMATION 6.2 GENERAL DESCRIPTION OF EUT 6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD 6.4 DESCRIPTION OF SUPPORT UNITS 6.5 Test Location 6.6 Deviation from Standards	
6.7 ABNORMALITIES FROM STANDARD CONDITIONS	9
7 EQUIPMENT LIST	10
8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION	14
Appendix A): Conducted Peak Output Power	
PHOTOGRAPHS OF TEST SETUP	80
PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	82

Report No. : EED32L00193803 Page 5 of 82

5 Test Requirement5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:	
Temperature:	24.0 °C
Humidity:	58 % RH
Atmospheric Pressure:	1010mbar

5.3 Test Condition

Test channel:

Test Mode	T/D	RF Channel				
	Tx/Rx	Low(L)	Middle(M)	High(H)		
802.11b/g/n(HT20)		Channel 1	Channel 6	Channel11		
	2412MHz ~2462 MHz	2412MHz	2437MHz	2462MHz		
		2422MHz	2437MHz	2452MHz		
Transmitting mode:	Keep the EUT in transmit data rate.	ting mode with all	kind of modulation	and all kind of		

Report No. : EED32L00193803 Page 7 of 82

Test mode:

Pre-scan under all rate at lowest channel 1

Mode			8	302	.11b			_			
Data Rate		1Mbp	s 2Mbp	os	5.5Mbps	11Mbps	8				
Power(dBm)		18.19	18.0	7	17.97	17.89			1000		
Mode 802			2.11g		(20)		(,				
Data Rate		6Mbp	s 9Mb _l	ps	12Mbps	18Mbps	24MI	bps	36Mbps	48Mbps	54Mbps
Power(dBm) 17.85 1		5 17.8	2	17.78	17.72	17.0	68	17.65	17.61	17.58	
Mode						802.11n	(HT20))		- 17	
Data Rate	6.5	Mbps	13Mbps	19	.5Mbps	26Mbps	39Mbp	os :	52Mbps	58.5Mbps	65Mbps
Power(dBm)	10	6.83	16.78	1	16.69	16.57	16.51		16.45	16.41	16.39

Through Pre-scan, 11Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20).

Report No.: EED32L00193803 Page 8 of 82

6 General Information

6.1 Client Information

UBTECH ROBOTICS CORP LTD
16th and 22nd Floor, Block C1, Nanshan I Park, No.1001 Xueyuan Road, Nanshan District, Shenzhen City, P.R.CHINA
UBTECH ROBOTICS CORP LTD
16th and 22nd Floor, Block C1, Nanshan I Park, No.1001 Xueyuan Road, Nanshan District, Shenzhen City, P.R.CHINA
UBTECH ROBOTICS CORP LTD BAOAN BRANCH
1-2 Floor, B Block, Huilongda Industry Park, Shilongzai, Shiyan Street, Baoan District, Shenzhen City, P.R.CHINA

6.2 General Description of EUT

Product Name:	Yanshee Robot					
Model No.(EUT):	ERHA101	ERHA101				
Trade Mark:	UBTCH					
EUT Supports Radios application:	WiFi 802.11b/g	/n(20MHz)				
Power Supply:	Adapter:	MODEL: HKA03609640-8A INPUT: 100-240V 1.5A, 50/60Hz OUTPUT: 9.6V4.0A				
	Battery: Model: Yanshee 1.1-2S1P Capacity: 7.4V, 3000mAh/ 22.2Wh					
Sample Received Date:	Jul. 22, 2019					
Sample tested Date:	Jul. 22, 2019 to Aug. 23, 2019					

6.3 Product Specification subjective to this standard

Operation Frequency:	IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz				
Channel Numbers:	IEEE 802.11b/g, IEEE 802.11n HT20: 11 Channels				
Channel Separation:	5MHz	(30)			
Type of Modulation:	DSSS, OFDM	(5%)			
Test Power Grade:	802.11b:18 802.11g:12/11/11 802.11n:11/11/10				
Test Software of EUT:	art.exe (manufacturer declare)				
Antenna Type and Gain:	Type: Chip antenna Gain:1.5dBi	(67)			
Test Voltage:	DC 9.6V				

Operation	Operation Frequency each of channel(802.11b/g/n HT20)									
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency			
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz			
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz			
3	2422MHz	6	2437MHz	9	2452MHz		10			

Report No. : EED32L00193803 Page 9 of 82

6.4 Description of Support Units

The EUT has been tested independently

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

о.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nower conducted	0.46dB (30MHz-1GHz)
2 RF power, conducted	Kr power, conducted	0.55dB (1GHz-18GHz)
2 Dedicted Counicus ansiesies test		4.3dB (30MHz-1GHz)
3 Radiated Sp	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
. 160	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%
	Be power voltages	G*/

Report No. : EED32L00193803 Page 10 of 82

7 Equipment List

RF test system							
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Signal Generator	Keysight	E8257D	MY53401106	03-01-2019	02-28-2020		
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-01-2019	02-28-2020		
Signal Generator	Keysight	N5182B	MY53051549	03-01-2019	02-28-2020		
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398- 002		01-09-2019	01-08-2020		
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-09-2019	01-08-2020		
DC Power	Keysight	E3642A	MY54426035	03-01-2019	02-28-2020		
PC-1	Lenovo	R4960d		03-01-2019	02-28-2020		
BT&WI-FI Automatic control	R&S	OSP120	101374	03-01-2019	02-28-2020		
RF control unit	JS Tonscend	JS0806-2	15860006	03-01-2019	02-28-2020		
RF control unit	JS Tonscend	JS0806-1	15860004	03-01-2019	02-28-2020		
RF control unit	JS Tonscend	JS0806-4	158060007	03-01-2019	02-28-2020		
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		03-01-2019	02-28-2020		
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	10-12-2018	10-11-2019		

 $Hot line; 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

9

Page 11 of 82

Conducted disturbance Test							
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Receiver	R&S	ESCI	100435	05-20-2019	05-18-2020		
Temperature/ Humidity Indicator	Defu	TH128	1	06-14-2019	06-12-2020		
Communication test set	Agilent	E5515C	GB47050 534	03-01-2019	02-28-2020		
Communication test set	R&S	CMW500	152394	01-18-2019	01-17-2020		
LISN	R&S	ENV216	100098	05-08-2019	05-06-2020		
LISN	schwarzbeck	NNLK8121	8121-529	05-08-2019	05-06-2020		
Voltage Probe	R&S	ESH2-Z3 0299.7810.56	100042	06-13-2017	06-11-2020		
Current Probe	R&S	EZ-17 816.2063.03	100106	05-20-2019	05-18-2020		
ISN	TESEQ	ISN T800	30297	01-06-2019	01-15-2020		
Barometer	changchun	DYM3	1188	06-20-2019	06-18-2020		

Page 12 of 82

3M Semi/full-anechoic Chamber						
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy	
3M Chamber & Accessory Equipment	TDK	SAC-3	~	05-24-2019	05-22-2020	
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-401	12-21-2018	12-20-2019	
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-26-2019	07-24-2020	
Microwave Preamplifier	Agilent	8449B	3008A024 25	07-12-2019	07-10-2020	
Microwave Preamplifier	Tonscend	EMC051845S E	980380	01-16-2019	01-15-2020	
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D- 1869	04-25-2018	04-23-2021	
Horn Antenna	ETS-LINDGREN	3117	00057410	06-05-2018	06-03-2021	
Double ridge horn antenna	A.H.SYSTEMS	SAS-574	374	06-05-2018	06-04-2021	
Pre-amplifier	A.H.SYSTEMS	PAP-1840-60	6041.6041	07-26-2019	07-24-2020	
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B- 076	04-25-2018	04-25-2021	
Spectrum Analyzer	R&S	FSP40	100416	04-28-2019	04-26-2020	
Receiver	R&S	ESCI	100435	05-20-2019	05-18-2020	
Receiver	R&S	ESCI7	100938- 003	11-23-2018	11-22-2019	
Multi device Controller	maturo	NCD/070/107 11112	ZA.	01-09-2019	01-08-2020	
LISN	schwarzbeck	NNBM8125	81251547	05-08-2019	05-06-2020	
LISN	schwarzbeck	NNBM8125	81251547	05-08-2019	05-06-2020	
Signal Generator	Agilent	E4438C	MY450957 44	03-01-2019	02-28-2020	
Signal Generator	Keysight	E8257D	MY534011 06	03-01-2019	02-28-2020	
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	10-12-2018	10-11-2019	
Communication test set	Agilent	E5515C	GB470505 34	03-01-2019	02-28-2020	
Cable line	Fulai(7M)	SF106	5219/6A	01-09-2019	01-08-2020	
Cable line	Fulai(6M)	SF106	5220/6A	01-09-2019	01-08-2020	
Cable line	Fulai(3M)	SF106	5216/6A	01-09-2019	01-08-2020	
Cable line	Fulai(3M)	SF106	5217/6A	01-09-2019	01-08-2020	
Communication test set	R&S	CMW500	104466	01-18-2019	01-17-2020	
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398- 002		01-09-2019	01-08-2020	
High-pass filter	MICRO- TRONICS	SPA-F-63029- 4		01-09-2019	01-08-2020	
band rejection filter	Sinoscite	FL5CX01CA0 9CL12-0395- 001		01-09-2019	01-08-2020	
band rejection filter	Sinoscite	FL5CX01CA0 8CL12-0393- 001	(A)	01-09-2019	01-08-2020	
band rejection filter	Sinoscite	FL5CX02CA0 4CL12-0396- 002		01-09-2019	01-08-2020	
band rejection filter	Sinoscite	FL5CX02CA0 3CL12-0394- 001		01-09-2019	01-08-2020	

Page 13 of 82

	3M full-a	nechoic Cham			
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166	06-18-2019	06-17-2020
Receiver	Keysight	N9038A	MY5729013 6	03-27-2019	03-25-2020
Spectrum Analyzer	Keysight	N9020B	MY5711111 2	03-27-2019	03-25-2020
Spectrum Analyzer	Keysight	N9030B	MY5714087 1	03-27-2019	03-25-2020
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-075	04-25-2018	04-23-2021
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-25-2018	04-23-2021
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-23-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-23-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-829	04-25-2018	04-23-2021
Communication Antenna	Schwarzbeck	CLSA 0110L	1014	02-14-2019	02-13-2020
Biconical antenna	Schwarzbeck	VUBA 9117	9117-381	04-25-2018	04-23-2021
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-08-2021
Preamplifier	EMCI	EMC18405 5SE	980596	05-22-2019	05-20-2020
Communication test set	R&S	CMW500	102898	01-18-2019	01-17-2020
Preamplifier	EMCI	EMC00133 0	980563	05-08-2019	05-06-2020
Preamplifier	Agilent	8449B	3008A0242 5	07-12-2019	07-10-2020
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	05-01-2019	04-30-2020
Signal Generator	KEYSIGHT	E8257D	MY5340110 6	03-01-2019	02-28-2020
Fully Anechoic Chamber	TDK	FAC-3	/	01-17-2018	01-15-2021
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-08-2021
Cable line	Times	SFT205- NMSM- 2.50M	394812- 0001	01-09-2019	01-08-2020
Cable line	Times	SFT205- NMSM- 2.50M	394812- 0002	01-09-2019	01-08-2020
Cable line	Times	SFT205- NMSM- 2.50M	394812- 0003	01-09-2019	01-08-2020
Cable line	Times	SFT205- NMSM- 2.50M	393495- 0001	01-09-2019	01-08-2020
Cable line	Times	EMC104- NMNM- 1000	SN160710	01-09-2019	01-08-2020
Cable line	Times	SFT205- NMSM- 3.00M	394813-0001	01-09-2019	01-08-2020
Cable line	Times	SFT205- NMNM- 1.50M	381964-0001	01-09-2019	01-08-2020
Cable line	Times	SFT205- NMSM- 7.00M	394815-0001	01-09-2019	01-08-2020
Cable line	Times	HF160- KMKM- 3.00M	393493-0001	01-09-2019	01-08-2020

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix A)
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

Report No. : EED32L00193803 Page 15 of 82

Appendix A): Conducted Peak Output Power

Result Table

Mode	Channel	Conducted Peak Output Power [dBm]	Verdict
11B	LCH	17.75	PASS
11B	мсн	18.19	PASS
11B	НСН	18.16	PASS
11G	LCH	17.85	PASS
11G	MCH	17	PASS
11G	НСН	17.27	PASS
11N20SISO	LCH	16.61	PASS
11N20SISO	МСН	16.83	PASS
11N20SISO	НСН	15.67	PASS

Report No. : EED32L00193803 Page 16 of 82

Test Graph

Appendix B): 6dB Occupied Bandwidth

Result Table

Mode	Channel	6dB Bandwidth [MHz]	99% OBW [MHz]	Verdict
11B	LCH	9.036	14.020	PASS
11B	мсн	8.540	14.028	PASS
11B	НСН	9.031	14.010	PASS
11G	LCH	15.05	16.291	PASS
11G	MCH	15.13	16.287	PASS
11G	НСН	15.10	16.278	PASS
11N20SISO	LCH	15.10	17.458	PASS
11N20SISO	MCH	15.11	17.456	PASS
11N20SISO	HCH	15.05	17.438	PASS

Report No. : EED32L00193803 Page 20 of 82

Test Graph

Page 22 of 82

Appendix C): Band-edge for RF Conducted Emissions

Result Table

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
11B	LCH	6.157	-43.950	-23.84	PASS
11B	НСН	6.699	-47.231	-23.3	PASS
11G	LCH	-0.973	-46.610	-30.97	PASS
11G	НСН	-1.056	-47.729	-31.06	PASS
11N20SISO	LCH	-1.225	-47.232	-31.23	PASS
11N20SISO	НСН	-2.210	-47.767	-32.21	PASS

Report No. : EED32L00193803 Page 24 of 82

Test Graph

Report No. : EED32L00193803 Page 25 of 82

Report No. : EED32L00193803 Page 26 of 82

Appendix D): RF Conducted Spurious Emissions

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
11B	LCH	6.397	<limit< td=""><td>PASS</td></limit<>	PASS
11B	MCH	7.142	<limit< td=""><td>PASS</td></limit<>	PASS
11B	НСН	6.782	<limit< td=""><td>PASS</td></limit<>	PASS
11G	LCH	-0.213	<limit< td=""><td>PASS</td></limit<>	PASS
11G	MCH	-1.56	<limit< td=""><td>PASS</td></limit<>	PASS
11G	НСН	-0.807	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	LCH	-1.281	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	MCH	-1.466	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	НСН	-2.149	<limit< td=""><td>PASS</td></limit<>	PASS

Report No. : EED32L00193803 Page 27 of 82

Test Graph

Page 28 of 82 Report No.: EED32L00193803

Report No. : EED32L00193803 Page 29 of 82

Report No. : EED32L00193803 Page 30 of 82

Report No. : EED32L00193803 Page 31 of 82

Page 32 of 82

Report No. : EED32L00193803 Page 33 of 82

Page 34 of 82

Report No. : EED32L00193803 Page 35 of 82

Appendix E): Power Spectral Density

Result Table

Mode	Channel	Power Spectral Density [dBm]	Verdict
11B	LCH	-7.568	PASS
11B	MCH	-7.092	PASS
11B	НСН	-7.406	PASS
11G	LCH	-14.779	PASS
11G	MCH	-15.643	PASS
11G	HCH	-14.027	PASS
11N20SISO	LCH	-15.591	PASS
11N20SISO	MCH	-14.907	PASS
11N20SISO	НСН	-17.380	PASS

Report No. : EED32L00193803 Page 37 of 82

Test Graph

Page 38 of 82

Page 39 of 82

Report No. : EED32L00193803 Page 40 of 82

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 1.5dBi.

Report No. : EED32L00193803 Page 41 of 82

Appendix G): AC Power Line Conducted Emission

Test Procedure:		nge :150KHz-30MHz			
	2) The EUT was Stabilization N power cables which was bor the unit being power cables t exceeded. 3)The tabletop E	inal disturbance volta connected to AC po letwork) which provious all other units of aded to the ground remeasured. A multiple to a single LISN provide. And for floor-stan	wer source through the EUT were ference plane in socket outlet socket had a non-metalli	ough a LISN 1 (Linuth H + 5Ω linear im connected to a sent the same way astrip was used to coof the LISN was not fic table 0.8m above.	ne Impedance pedance. The cond LISN 2 the LISN 1 for nnect multiple ve the groun
	horizontal grou 4) The test was p shall be 0.4 reference plan	and reference plane, erformed with a vertion m from the vertical e was bonded to the	cal ground refer ground refere horizontal grou	rence plane. The rence plane. The volume	ear of the EU ertical groun e. The LISN
	reference plar distance was to of the EUT and 5) In order to find	If m from the boundary of the for LISNs mounted the closest pure discourage of the maximum emission of the maximum emission of the charge of the maximum emission of the charge of the maximum emission of the charge of the charg	ed on top of the coints of the LISent was at least on, the relative	ne ground reference SN 1 and the EUT. 0.8 m from the LIS positions of equipr	e plane. Thi All other unit N 2. nent and all d
Limit:	measurement.	((3)	
			Limit (dB	uV)	
	Frequency ran	ge (MHz) Qua	asi-peak	Average	
	0.15-0.		to 56*	56 to 46*	
	0.5-5	(83)	56	46	
	5-30	6	60	50	
GB.	to 0.50 MHz. NOTE : The lower	ses linearly with the lo			nge 0.15 MH
leasurement Data n initial pre-scan w	ras performed on the I	ive and neutral lines v	with peak detec	tor.	
·	erage measurement w				emission we
etected.		(1)			
-0%					

Page 42 of 82

ERHA101

Product : Yanshee Robot Model/Type reference

Temperature : 24° C Humidity : 52%

Neutral line:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1500	12.82	9.97	22.79	56.00	-33.21	AVG	
2		0.1590	32.47	9.98	42.45	65.52	-23.07	peak	
3	*	0.1860	31.62	10.01	41.63	64.21	-22.58	peak	
4		0.1860	3.33	10.01	13.34	54.21	-40.87	AVG	
5		0.2985	-0.70	10.10	9.40	50.28	-40.88	AVG	
6	4 11	0.3075	23.21	10.09	33.30	60.04	-26.74	peak	
7	1 =	0.4335	15.14	10.00	25.14	57.19	-32.05	peak	
8		0.4335	-1.92	10.00	8.08	47.19	-39.11	AVG	
9	-	2.9985	19.57	9.83	29.40	56.00	-26.60	peak	
10	, =	3.0975	-0.03	9.83	9.80	46.00	-36.20	AVG	
11	-	10.1175	-2.21	9.96	7.75	50.00	-42.25	AVG	
12	1	10.1535	12.43	9.96	22.39	60.00	-37.61	peak	

Page 43 of 82

Live line:

No.	Mk.	Freq.	Level	Factor	ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1500	35.65	9.97	45.62	66.00	-20.38	peak	
2		0.1500	12.98	9.97	22.95	56.00	-33.05	AVG	
3		0.1725	33.04	10.00	43.04	64.84	-21.80	peak	
4		0.1725	5.80	10.00	15.80	54.84	-39.04	AVG	
5		0.2580	22.13	10.07	32.20	61.50	-29.30	peak	
6		0.2580	0.27	10.07	10.34	51.50	-41.16	AVG	
7		0.3525	16.64	10.05	26.69	58.90	-32.21	peak	
8	-	0.3660	-1.98	10.03	8.05	48.59	-40.54	AVG	
9		2.8545	18.98	9.83	28.81	56.00	-27.19	peak	
10		3.0705	-0.26	9.83	9.57	46.00	-36.43	AVG	
11		10.1625	11.76	9.96	21.72	60.00	-38.28	peak	
12		10.5405	-3.53	9.96	6.43	50.00	-43.57	AVG	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No.: EED32L00193803 Page 44 of 82

Appendix H): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:		Frequency	Detector	RBW	VBW	Remark
		30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
	1	Above 1GHz	Peak	1MHz	3MHz	Peak
	(45)	Above IGHZ	Peak	1MHz	10Hz	Average
est Procedure:	B o a.	elow 1GHz test proced The EUT was placed		stating table	≥ 0.8 meter	s above the d
(4)	b.	at a 3 meter semi-ane determine the position. The EUT was set 3 m was mounted on the to The antenna height is determine the maximum.	choic camber. The choic camber of the highest rate eters away from op of a variable-had varied from one um value of the fi	he table wa adiation. the interfer neight ante meter to fo eld strengtl	ence-recei nna tower. our meters n. Both hor	360 degrees to ving antenna, above the gro izontal and ve
	d. e.	the antenna was tuned was turned from 0 deg	mission, the EUT d to heights from grees to 360 degr em was set to Pe	was arran 1 meter to rees to find	ged to its v 4 meters a the maxin	worst case and and the rotatal num reading.
	f.	Place a marker at the frequency to show corbands. Save the spector lowest and highest	mpliance. Also m trum analyzer plo	easure any	emissions	s in the restric
	A l g. h. i.	Different between about to fully Anechoic Charant 18GHz the distance is Test the EUT in the lot The radiation measure Transmitting mode, ar Repeat above procedured.	we is the test site mber change forr of 1 meter and tab west channel , the ments are perfo and found the X ax	n table 0.8 le is 1.5 mo he Highest rmed in X, kis position	meter to 1 eter). channel Y, Z axis p ing which i	.5 meter(Abo
		(-6%)	L : :4 /-ID \/	/m @2m)	Rer	
imit:		Frequency	Limit (dBµV	/m @3m)	1101	mark
imit:		Frequency 30MHz-88MHz	40.0	/	-	mark eak Value
imit:		N N N N N N N N N N N N N N N N N N N)	Quasi-pe	N /
imit:		30MHz-88MHz	40.0	5	Quasi-pe	eak Value
imit:	60	30MHz-88MHz 88MHz-216MHz	40.0) 5)	Quasi-pe Quasi-pe Quasi-pe	eak Value eak Value
imit:		30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	40.0 43.5 46.0) 5))	Quasi-pe Quasi-pe Quasi-pe Quasi-pe	eak Value eak Value eak Value

Page 45 of 82

Test plot as follows:

Mode:	802.11 b(11Mbps) Transmitting	Channel:	2412
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	53.29	56.47	74.00	17.53	Pass	Horizontal
2	2411.9024	32.28	13.35	-42.43	102.46	105.66	74.00	-31.66	Pass	Horizontal

Page 46 of 82

Mode:	802.11 b(11Mbps) Transmitting	Channel:	2412
Remark:	PK		

Test Graph

NC	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	51.43	54.61	74.00	19.39	Pass	Vertical
2	2410.8949	32.28	13.35	-42.43	99.33	102.53	74.00	-28.53	Pass	Vertical

Page 47 of 82

Mode:	802.11 b(11Mbps) Transmitting	Channel:	2412
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2388.8736	32.24	13.38	-42.43	45.83	49.02	54.00	4.98	Pass	Horizontal
2	2390.0000	32.25	13.37	-42.44	43.78	46.96	54.00	7.04	Pass	Horizontal
3	2412.7660	32.28	13.36	-42.43	99.30	102.51	54.00	-48.51	Pass	Horizontal

 $Hot line; 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Page 48 of 82

Mode:	802.11 b(11Mbps) Transmitting	Channel:	2412
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2388.7297	32.24	13.38	-42.43	44.32	47.51	54.00	6.49	Pass	Vertical
2	2390.0000	32.25	13.37	-42.44	42.56	45.74	54.00	8.26	Pass	Vertical
3	2412.7660	32.28	13.36	-42.43	97.00	100.21	54.00	-46.21	Pass	Vertical

Page 49 of 82

Mode:	802.11 b(11Mbps) Transmitting	Channel:	2462
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2461.2916	32.35	13.48	-42.41	107.02	110.44	74.00	-36.44	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	55.82	59.18	74.00	14.82	Pass	Horizontal

Page 50 of 82

Mode:	802.11 b(11Mbps) Transmitting	Channel:	2462
Remark:	PK		

Test Graph

NO [MHz]	Factor [dB]	loss [dB]	gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1 246	62.6708 3	32.35	13.47	-42.41	106.95	110.36	74.00	-36.36	Pass	Vertical
2 248	33.5000 3	32.38	13.38	-42.40	54.73	58.09	74.00	15.91	Pass	Vertical

Page 51 of 82

Mode:	802.11 b(11Mbps) Transmitting	Channel:	2462
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2461.4368	32.35	13.48	-42.41	98.11	101.53	54.00	-47.53	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	46.72	50.08	54.00	3.92	Pass	Horizontal
3	2485.1014	32.38	13.37	-42.40	47.58	50.93	54.00	3.07	Pass	Horizontal

Page 52 of 82

Mode:	802.11 b(11Mbps) Transmitting	Channel:	2462
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2461.3642	32.35	13.48	-42.41	98.25	101.67	54.00	-47.67	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	45.48	48.84	54.00	5.16	Pass	Vertical
3	2484.9562	32.38	13.37	-42.40	46.38	49.73	54.00	4.27	Pass	Vertical

Page 53 of 82

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2412
Remark:	PK		

Test Graph

	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2390.0000	32.25	13.37	-42.44	56.64	59.82	74.00	14.18	Pass	Horizontal
ĺ	2	2411.4706	32.28	13.35	-42.43	99.77	102.97	74.00	-28.97	Pass	Horizontal

Page 54 of 82

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2412
Remark:	PK		

Test Graph

	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2390.0000	32.25	13.37	-42.44	56.55	59.73	74.00	14.27	Pass	Vertical
	2	2414.3492	32.28	13.37	-42.43	99.07	102.29	74.00	-28.29	Pass	Vertical
- 7											

Page 55 of 82

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2412
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	44.65	47.83	54.00	6.17	Pass	Horizontal
2	2413.7735	32.28	13.36	-42.43	89.95	93.16	54.00	-39.16	Pass	Horizontal

Page 56 of 82

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2412
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	44.22	47.40	54.00	6.60	Pass	Vertical
2	2413.9174	32.28	13.36	-42.42	88.51	91.73	54.00	-37.73	Pass	Vertical

Page 57 of 82

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2462
Remark:	PK		

Test Graph

N	OI	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2461.7998	32.35	13.48	-42.41	101.86	105.28	74.00	-31.28	Pass	Horizontal
	2	2483.5000	32.38	13.38	-42.40	56.48	59.84	74.00	14.16	Pass	Horizontal
<u> </u>		2100.000	02.00	10.00	12.10	00.10	00.01	7 1.00	1		110112011141

Page 58 of 82

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2462
Remark:	PK		

Test Graph

	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
Ī	1	2462.1627	32.35	13.47	-42.41	99.92	103.33	74.00	-29.33	Pass	Vertical
	2	2483.5000	32.38	13.38	-42.40	54.28	57.64	74.00	16.36	Pass	Vertical
-						0.00		2000			

Page 59 of 82

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2462
Remark:	AV		

Test Graph

1 2460.6383 32.34 13.48 -42.40 90.16 93.58 54.00 -39.58 Pass Horizon	NO	Freq. [MHz]	· I acio	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2460.6383	60.6383 32.34	13.48	-42.40	90.16	93.58	54.00	-39.58	Pass	Horizontal
2 2483.5000 32.38 13.38 -42.40 44.98 48.34 54.00 5.66 Pass Horizon		2483.5000	33.5000 32.38	13.38	-42.40	44.98	48.34	54.00	5.66	Pass	Horizontal

Page 60 of 82

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2462
Remark:	AV		

Test Graph

N	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2460.4205	32.34	13.48	-42.40	90.12	93.54	54.00	-39.54	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	43.92	47.28	54.00	6.72	Pass	Vertical

Page 61 of 82

Mode:	802.11 n(HT20)	(6.5Mbps)	Channel:	2412
Remark:	PK			

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	57.58	60.76	74.00	13.24	Pass	Horizontal
2	2413.0538	32.28	13.36	-42.43	98.58	101.79	74.00	-27.79	Pass	Horizontal
A					100		7.50			

Page 62 of 82

Mode:	802.11 n(HT20)	(6.5Mbps)	Channel:	2412
Remark:	PK			

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	56.97	60.15	74.00	13.85	Pass	Vertical
2	2414.0613	32.28	13.36	-42.42	98.08	101.30	74.00	-27.30	Pass	Vertical

Page 63 of 82

Mode:	802.11 n(HT20)	(6.5Mbps)	Channel:	2412	
Remark:	AV				

Test Graph

	Polarity
1 2390.0000 32.25 13.37 -42.44 43.36 46.54 54.00 7.46 Pass Ho	lorizontal
2 2414.3492 32.28 13.37 -42.43 88.72 91.94 54.00 -37.94 Pass Ho	lorizontal

Page 64 of 82

Mode:	802.11 n(HT20)	(6.5Mbps)	Channel:	2412
Remark:	AV			

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	42.88	46.06	54.00	7.94	Pass	Vertical
2	2414.2053	32.28	13.37	-42.43	87.05	90.27	54.00	-36.27	Pass	Vertical

Page 65 of 82

Mode:	802.11 n(HT20)	(6.5Mbps)	Channel:	2462
Remark:	PK			

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2462.0175	32.35	13.47	-42.41	99.76	103.17	74.00	-29.17	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	54.98	58.34	74.00	15.66	Pass	Horizontal

Page 66 of 82

Mode:	802.11 n(HT20)	(6.5Mbps)	Channel:	2462
Remark:	PK			

Test Graph

N	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2458.7509	32.34	13.49	-42.41	98.29	101.71	74.00	-27.71	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	54.67	58.03	74.00	15.97	Pass	Vertical

Page 67 of 82

Mode:	802.11	n(HT20)	(6.5Mbps)	Channel:	2462	
Remark:	AV					

Test Graph

N	10	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2460.3479	32.34	13.48	-42.40	88.36	91.78	54.00	-37.78	Pass	Horizontal
	2	2483.5000	32.38	13.38	-42.40	44.14	47.50	54.00	6.50	Pass	Horizontal
	100					100 140		27.563			

Report No.: EED32L00193803 Page 68 of 82

Mode:	802.11	n(HT20)	(6.5Mbps)	Channel:	2462
Remark:	AV				

Test Graph

	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
Ī	1	2460.2753	32.34	13.48	-42.40	88.35	91.77	54.00	-37.77	Pass	Vertical
	2	2483.5000	32.38	13.38	-42.40	43.09	46.45	54.00	7.55	Pass	Vertical

Note:

- 1) Through Pre-scan transmitting mode and charge+transmitter mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 6Mbpsof rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20) and then Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Appendix I): Radiated Spurious Emissions

Receiver Setup:

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
Abaya 1011-	Peak	1MHz	3MHz	Peak
Above 1GHz	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

j. Repeat above procedures until all frequencies measured was complete.

	٠			٠.	
	1	n	٦.	IT	1

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	13	300
0.490MHz-1.705MHz	24000/F(kHz)	-	(3.)	30
1.705MHz-30MHz	30	-)	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Report No.: EED32L00193803 Page 70 of 82

Radiated Spurious Emissions test Data:

Product : Yanshee Robot Model/Type reference : ERHA101

Temperature : 23° **Humidity** : 54%

Radiated Emission below 1GHz

Mode	e:	802.11	b (11Mb _l	ps) Transı	mitting	Channel:		2412		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	138.2628	7.29	1.38	-32.00	46.25	22.92	43.50	20.58	Pass	Н
2	205.7816	11.05	1.70	-31.95	46.44	27.24	43.50	16.26	Pass	Н
3	254.9655	12.30	1.90	-31.89	46.48	28.79	46.00	17.21	Pass	Н
4	500.0120	17.00	2.67	-31.91	36.22	23.98	46.00	22.02	Pass	Н
5	687.5318	19.70	3.14	-32.06	36.57	27.35	46.00	18.65	Pass	Н
6	875.0515	21.80	3.55	-31.70	43.25	36.90	46.00	9.10	Pass	Н
7	208.8859	11.13	1.71	-31.94	53.60	34.50	43.50	9.00	Pass	V
8	330.0510	13.86	2.16	-31.76	40.27	24.53	46.00	21.47	Pass	V
9	431.6202	15.91	2.45	-31.83	42.02	28.55	46.00	17.45	Pass	V
10	539.1069	17.78	2.79	-31.95	38.30	26.92	46.00	19.08	Pass	V
11	734.1934	20.18	3.28	-32.12	36.69	28.03	46.00	17.97	Pass	V
12	875.0515	21.80	3.55	-31.70	45.06	38.71	46.00	7.29	Pass	V

- 4		1902 /			7.073 1		132			
Mode) :	802.11	b (11Mb _l	ps) Transı	mitting	Channel:		2437		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	84.5195	8.14	1.06	-32.08	48.37	25.49	40.00	14.51	Pass	Н
2	208.8859	11.13	1.71	-31.94	47.91	28.81	43.50	14.69	Pass	Н
3	254.9655	12.30	1.90	-31.89	46.02	28.33	46.00	17.67	Pass	Н
4	604.6855	19.04	2.96	-32.03	39.87	29.84	46.00	16.16	Pass	Н
5	875.0515	21.80	3.55	-31.70	43.27	36.92	46.00	9.08	Pass	Н
6	960.0320	22.46	3.71	-31.09	41.04	36.12	54.00	17.88	Pass	Н
7	208.8859	11.13	1.71	-31.94	53.34	34.24	43.50	9.26	Pass	V
8	276.5017	12.73	1.98	-31.91	47.85	30.65	46.00	15.35	Pass	V
9	433.1723	15.93	2.46	-31.84	39.77	26.32	46.00	19.68	Pass	V
10	600.0290	19.00	2.96	-31.99	38.39	28.36	46.00	17.64	Pass	V
11	875.0515	21.80	3.55	-31.70	45.62	39.27	46.00	6.73	Pass	V
12	960.0320	22.46	3.71	-31.09	39.31	34.39	54.00	19.61	Pass	V

Page 71 of 82

Mode):	802.11	b (11Mb _l	ps) Transı	mitting	Channel:		2462		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	84.5195	8.14	1.06	-32.08	43.90	21.02	40.00	18.98	Pass	Н
2	139.8150	7.21	1.39	-31.99	45.74	22.35	43.50	21.15	Pass	Н
3	208.8859	11.13	1.71	-31.94	49.19	30.09	43.50	13.41	Pass	Н
4	254.9655	12.30	1.90	-31.89	46.65	28.96	46.00	17.04	Pass	Н
5	437.7318	16.00	2.47	-31.86	38.88	25.49	46.00	20.51	Pass	Н
6	875.0515	21.80	3.55	-31.70	42.86	36.51	46.00	9.49	Pass	Н
7	208.8859	11.13	1.71	-31.94	52.98	33.88	43.50	9.62	Pass	V
8	276.5017	12.73	1.98	-31.91	47.18	29.98	46.00	16.02	Pass	V
9	433.1723	15.93	2.46	-31.84	40.31	26.86	46.00	19.14	Pass	V
10	604.7825	19.04	2.96	-32.03	37.91	27.88	46.00	18.12	Pass	V
11	875.0515	21.80	3.55	-31.70	45.79	39.44	46.00	6.56	Pass	V
12	960.0320	22.46	3.71	-31.09	39.08	34.16	54.00	19.84	Pass	V

_	7 45 50										
	Mode	: :	802.11	g (6Mbps	s) Transm	itting	Channel:		2412		
	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
i	1	84.5195	8.14	1.06	-32.08	42.37	19.49	40.00	20.51	Pass	Н
	2	139.8150	7.21	1.39	-31.99	45.42	22.03	43.50	21.47	Pass	Н
	3	208.8859	11.13	1.71	-31.94	48.44	29.34	43.50	14.16	Pass	Н
	4	254.9655	12.30	1.90	-31.89	47.64	29.95	46.00	16.05	Pass	Н
	5	437.7318	16.00	2.47	-31.86	39.46	26.07	46.00	19.93	Pass	Н
	6	687.5318	19.70	3.14	-32.06	37.08	27.86	46.00	18.14	Pass	Н
	7	208.8859	11.13	1.71	-31.94	53.43	34.33	43.50	9.17	Pass	V
	8	282.6133	12.85	2.00	-31.91	47.69	30.63	46.00	15.37	Pass	V
	9	350.0350	14.30	2.23	-31.87	42.51	27.17	46.00	18.83	Pass	V
	10	431.6202	15.91	2.45	-31.83	38.67	25.20	46.00	20.80	Pass	V
	11	604.6855	19.04	2.96	-32.03	42.74	32.71	46.00	13.29	Pass	V
Ī	12	875.0515	21.80	3.55	-31.70	46.28	39.93	46.00	6.07	Pass	V

Page 72 of 82

Mode	: :	802.11	g (6Mbp	s) Transm	itting	Channel:		2437		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	208.8859	11.13	1.71	-31.94	50.31	31.21	43.50	12.29	Pass	Н
2	258.0698	12.36	1.91	-31.87	45.96	28.36	46.00	17.64	Pass	Н
3	437.8288	16.01	2.47	-31.87	38.97	25.58	46.00	20.42	Pass	Н
4	542.2112	17.84	2.79	-31.95	37.09	25.77	46.00	20.23	Pass	Н
5	806.4656	20.98	3.41	-32.01	35.37	27.75	46.00	18.25	Pass	Н
6	875.0515	21.80	3.55	-31.70	43.34	36.99	46.00	9.01	Pass	Н
7	143.9864	7.34	1.41	-31.99	45.05	21.81	43.50	21.69	Pass	V
8	208.8859	11.13	1.71	-31.94	53.16	34.06	43.50	9.44	Pass	V
9	276.5017	12.73	1.98	-31.91	48.42	31.22	46.00	14.78	Pass	V
10	433.1723	15.93	2.46	-31.84	39.94	26.49	46.00	19.51	Pass	V
11	549.9720	18.00	2.79	-31.96	41.23	30.06	46.00	15.94	Pass	V
12	734.1934	20.18	3.28	-32.12	37.77	29.11	46.00	16.89	Pass	V

Mode	e :	802.11	g (6Mbps	s) Transm	itting	Channel:		2462		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	208.8859	11.13	1.71	-31.94	49.05	29.95	43.50	13.55	Pass	Н
2	258.0698	12.36	1.91	-31.87	47.10	29.50	46.00	16.50	Pass	Н
3	437.7318	16.00	2.47	-31.86	37.58	24.19	46.00	21.81	Pass	Н
4	600.0290	19.00	2.96	-31.99	37.29	27.26	46.00	18.74	Pass	Н
5	875.0515	21.80	3.55	-31.70	43.06	36.71	46.00	9.29	Pass	Н
6	53.5734	12.63	0.83	-32.09	37.47	18.84	40.00	21.16	Pass	V
7	81.4151	7.43	1.05	-32.08	42.17	18.57	40.00	21.43	Pass	V
8	176.6787	8.82	1.56	-31.98	48.79	27.19	43.50	16.31	Pass	V
9	276.5017	12.73	1.98	-31.91	47.50	30.30	46.00	15.70	Pass	V
10	350.0350	14.30	2.23	-31.87	41.35	26.01	46.00	19.99	Pass	V
11	536.0996	17.72	2.78	-31.93	38.72	27.29	46.00	18.71	Pass	V

Page 73 of 82

Mode	e:	802.11	n (HT20)	(6.5Mbps	s)	Channel:		2412		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	130.5021	7.67	1.33	-32.01	43.79	20.78	43.50	22.72	Pass	Н
2	208.8859	11.13	1.71	-31.94	48.33	29.23	43.50	14.27	Pass	Н
3	254.9655	12.30	1.90	-31.89	47.10	29.41	46.00	16.59	Pass	Н
4	437.7318	16.00	2.47	-31.86	38.99	25.60	46.00	20.40	Pass	Н
5	687.5318	19.70	3.14	-32.06	37.46	28.24	46.00	17.76	Pass	Н
6	874.9545	21.80	3.54	-31.70	43.37	37.01	46.00	8.99	Pass	Н
7	208.8859	11.13	1.71	-31.94	53.49	34.39	43.50	9.11	Pass	V
8	273.3973	12.67	1.97	-31.90	47.68	30.42	46.00	15.58	Pass	V
9	362.5493	14.58	2.28	-31.86	40.03	25.03	46.00	20.97	Pass	V
10	433.0753	15.93	2.46	-31.84	38.68	25.23	46.00	20.77	Pass	V
11	536.0026	17.72	2.78	-31.94	39.26	27.82	46.00	18.18	Pass	V
12	875.0515	21.80	3.55	-31.70	45.70	39.35	46.00	6.65	Pass	V

Mod	de:	802.11	n (HT20)	(6.5Mbps	s)	Channel:		2437		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	208.8859	11.13	1.71	-31.94	48.33	29.23	43.50	14.27	Pass	Н
2	254.9655	12.30	1.90	-31.89	47.71	30.02	46.00	15.98	Pass	Н
3	437.7318	16.00	2.47	-31.86	38.34	24.95	46.00	21.05	Pass	Н
4	536.0996	17.72	2.78	-31.93	38.77	27.34	46.00	18.66	Pass	Н
5	764.9455	20.51	3.31	-32.06	36.59	28.35	46.00	17.65	Pass	Н
6	875.0515	21.80	3.55	-31.70	42.88	36.53	46.00	9.47	Pass	Н
7	176.6787	8.82	1.56	-31.98	48.67	27.07	43.50	16.43	Pass	V
8	208.8859	11.13	1.71	-31.94	53.00	33.90	43.50	9.60	Pass	V
9	276.5017	12.73	1.98	-31.91	47.76	30.56	46.00	15.44	Pass	V
10	362.4522	14.57	2.27	-31.84	39.99	24.99	46.00	21.01	Pass	V
11	539.2039	17.78	2.79	-31.95	38.68	27.30	46.00	18.70	Pass	V
12	875.0515	21.80	3.55	-31.70	44.71	38.36	46.00	7.64	Pass	V

Page 74 of 82

Mode	e:	802.11	n (HT20)	(6.5Mbps	s)	Channel:		2462		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	181.2381	9.12	1.58	-31.99	45.56	24.27	43.50	19.23	Pass	Н
2	208.8859	11.13	1.71	-31.94	48.17	29.07	43.50	14.43	Pass	Н
3	254.9655	12.30	1.90	-31.89	47.77	30.08	46.00	15.92	Pass	Н
4	437.7318	16.00	2.47	-31.86	38.86	25.47	46.00	20.53	Pass	Н
5	532.9953	17.66	2.77	-31.92	38.39	26.90	46.00	19.10	Pass	Н
6	875.0515	21.80	3.55	-31.70	43.64	37.29	46.00	8.71	Pass	Н
7	176.6787	8.82	1.56	-31.98	49.27	27.67	43.50	15.83	Pass	V
8	208.8859	11.13	1.71	-31.94	53.13	34.03	43.50	9.47	Pass	V
9	254.9655	12.30	1.90	-31.89	47.91	30.22	46.00	15.78	Pass	V
10	330.2450	13.87	2.16	-31.77	45.62	29.88	46.00	16.12	Pass	V
11	549.9720	18.00	2.79	-31.96	38.52	27.35	46.00	18.65	Pass	V
12	875.0515	21.80	3.55	-31.70	45.32	38.97	46.00	7.03	Pass	V

Report No. : EED32L00193803 Page 75 of 82

Transmitter Emission above 1GHz

Mode	э:	802.11	b (11Mbp	s) Transr	nitting	Channel		2412			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/ m]	Limit [dBµV/ m]	Margin [dB]	Result	Polarity	Remark
1	1092.6093	27.99	2.55	-42.71	53.71	41.54	74.00	32.46	Pass	Н	Peak
2	2855.1855	32.97	4.25	-42.20	51.26	46.28	74.00	27.72	Pass	Н	Peak
3	4824.0000	34.50	4.61	-40.65	44.90	43.36	74.00	30.64	Pass	Н	Peak
4	7236.0000	36.34	5.79	-40.99	44.93	46.07	74.00	27.93	Pass	Н	Peak
5	9648.0000	37.66	6.72	-40.73	42.74	46.39	74.00	27.61	Pass	Н	Peak
6	14795.7864	40.32	8.94	-42.30	46.14	53.10	74.00	20.90	Pass	Н	Peak
7	1721.2721	29.86	3.21	-42.67	52.97	43.37	74.00	30.63	Pass	V	Peak
8	3084.0056	33.23	4.76	-42.07	49.85	45.77	74.00	28.23	Pass	V	Peak
9	4824.0000	34.50	4.61	-40.65	44.50	42.96	74.00	31.04	Pass	V	Peak
10	7236.0000	36.34	5.79	-40.99	44.60	45.74	74.00	28.26	Pass	V	Peak
11	9648.0000	37.66	6.72	-40.73	42.53	46.18	74.00	27.82	Pass	V	Peak
12	12982.6655	39.60	8.27	-41.71	45.52	51.68	74.00	22.32	Pass	V	Peak

Mode		802.11	b (11Mb	ps) Transm	nitting	Channel:		2437			
NO	Freq. [MHz]	Ant Facto r [dB]	Cabl e loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/ m]	Limit [dBµ V/m]	Margin [dB]	Result	Pola rity	Remark
1	2821.9822	32.92	4.24	-42.23	52.12	47.05	74.00	26.95	Pass	Н	Peak
2	4874.0000	34.50	4.78	-40.61	45.17	43.84	74.00	30.16	Pass	Н	Peak
3	7311.0000	36.41	5.85	-40.93	43.20	44.53	74.00	29.47	Pass	Н	Peak
4	9748.0000	37.70	6.77	-40.63	41.81	45.65	74.00	28.35	Pass	Н	Peak
5	12408.6272	39.55	7.82	-41.12	45.31	51.56	74.00	22.44	Pass	Н	Peak
6	14271.7515	39.97	8.60	-41.81	45.97	52.73	74.00	21.27	Pass	Н	Peak
7	2822.5823	32.92	4.24	-42.22	51.61	46.55	74.00	27.45	Pass	V	Peak
8	3225.0150	33.29	4.55	-41.99	51.18	47.03	74.00	26.97	Pass	V	Peak
9	4874.0000	34.50	4.78	-40.61	43.51	42.18	74.00	31.82	Pass	V	Peak
10	7311.0000	36.41	5.85	-40.93	43.36	44.69	74.00	29.31	Pass	V	Peak
11	9748.0000	37.70	6.77	-40.63	42.51	46.35	74.00	27.65	Pass	V	Peak
12	13680.7120	39.51	8.27	-41.21	46.06	52.63	74.00	21.37	Pass	V	Peak

Page 76 of 82

	The second second			40.00		100					
Mode) :	802.11	b (11Mb _l	ps) Transm	nitting	Channel:		2462			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remar k
1	3075.0050	33.23	4.77	-42.07	50.84	46.77	74.00	27.23	Pass	Н	Peak
2	4924.0000	34.50	4.85	-40.56	47.93	46.72	74.00	27.28	Pass	Н	Peak
3	7386.0000	36.49	5.85	-40.87	44.79	46.26	74.00	27.74	Pass	Н	Peak
4	9848.0000	37.74	6.83	-40.54	41.46	45.49	74.00	28.51	Pass	Н	Peak
5	11705.5804	39.06	7.49	-41.31	46.33	51.57	74.00	22.43	Pass	Н	Peak
6	14986.7991	40.39	9.02	-42.31	46.07	53.17	74.00	20.83	Pass	Н	Peak
7	3226.0151	33.29	4.55	-41.99	51.23	47.08	74.00	26.92	Pass	V	Peak
8	4924.0000	34.50	4.85	-40.56	43.63	42.42	74.00	31.58	Pass	V	Peak
9	5944.1963	35.71	5.29	-41.04	45.31	45.27	74.00	28.73	Pass	V	Peak
10	7386.0000	36.49	5.85	-40.87	44.02	45.49	74.00	28.51	Pass	V	Peak
11	9848.0000	37.74	6.83	-40.54	41.49	45.52	74.00	28.48	Pass	V	Peak
12	11769.5846	39.12	7.47	-41.30	47.77	53.06	74.00	20.94	Pass	V	Peak

Mode) :	802.11	g (6Mbps	s) Transmi	tting	Channel:		2412			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2822.5823	32.92	4.24	-42.22	51.83	46.77	74.00	27.23	Pass	Н	Peak
2	4824.0000	34.50	4.61	-40.65	44.24	42.70	74.00	31.30	Pass	Н	Peak
3	7236.0000	36.34	5.79	-40.99	44.44	45.58	74.00	28.42	Pass	Н	Peak
4	9648.0000	37.66	6.72	-40.73	42.95	46.60	74.00	27.40	Pass	Н	Peak
5	13744.7163	39.55	8.31	-41.22	46.15	52.79	74.00	21.21	Pass	Н	Peak
6	15021.8015	40.42	9.21	-42.35	46.32	53.60	74.00	20.40	Pass	Н	Peak
7	1209.8210	28.11	2.66	-42.88	58.74	46.63	74.00	27.37	Pass	V	Peak
8	2822.1822	32.92	4.24	-42.22	51.84	46.78	74.00	27.22	Pass	V	Peak
9	4824.0000	34.50	4.61	-40.65	42.00	40.46	74.00	33.54	Pass	V	Peak
10	7236.0000	36.34	5.79	-40.99	43.84	44.98	74.00	29.02	Pass	V	Peak
11	9648.0000	37.66	6.72	-40.73	42.87	46.52	74.00	27.48	Pass	V	Peak
12	14853.7903	40.34	9.12	-42.30	45.55	52.71	74.00	21.29	Pass	V	Peak

Page 77 of 82

Mode	· ·	802 11	a (6Mhna	s) Transmit	tina	Channel:		2437			
Wiode	, . 		· .			Charmer.		2401			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2014.7015	31.72	3.50	-42.61	53.65	46.26	74.00	27.74	Pass	Н	Peak
2	2944.3944	33.11	4.40	-42.15	50.54	45.90	74.00	28.10	Pass	Н	Peak
3	4874.0000	34.50	4.78	-40.61	42.45	41.12	74.00	32.88	Pass	Н	Peak
4	7311.0000	36.41	5.85	-40.93	42.86	44.19	74.00	29.81	Pass	Н	Peak
5	9748.0000	37.70	6.77	-40.63	41.04	44.88	74.00	29.12	Pass	Н	Peak
6	11714.5810	39.07	7.48	-41.30	47.55	52.80	74.00	21.20	Pass	Н	Peak
7	1209.6210	28.11	2.66	-42.88	57.06	44.95	74.00	29.05	Pass	V	Peak
8	3226.0151	33.29	4.55	-41.99	51.07	46.92	74.00	27.08	Pass	V	Peak
9	4874.0000	34.50	4.78	-40.61	43.77	42.44	74.00	31.56	Pass	V	Peak
10	7311.0000	36.41	5.85	-40.93	43.42	44.75	74.00	29.25	Pass	V	Peak
11	9748.0000	37.70	6.77	-40.63	41.36	45.20	74.00	28.80	Pass	V	Peak
12	11732.5822	39.09	7.48	-41.31	46.57	51.83	74.00	22.17	Pass	V	Peak

Mode	e :	802.11	g (6Mbps	s) Transmitt	ting	Channel:		2462			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	3192.0128	33.28	4.64	-42.01	50.12	46.03	74.00	27.97	Pass	Н	Peak
2	4924.0000	34.50	4.85	-40.56	45.54	44.33	74.00	29.67	Pass	Н	Peak
3	7386.0000	36.49	5.85	-40.87	42.93	44.40	74.00	29.60	Pass	Н	Peak
4	9848.0000	37.74	6.83	-40.54	41.06	45.09	74.00	28.91	Pass	Н	Peak
5	12585.6390	39.60	8.16	-41.21	45.42	51.97	74.00	22.03	Pass	Н	Peak
6	14911.7941	40.36	9.16	-42.31	46.20	53.41	74.00	20.59	Pass	Н	Peak
7	3024.0016	33.21	4.88	-42.10	50.98	46.97	74.00	27.03	Pass	V	Peak
8	4924.0000	34.50	4.85	-40.56	43.70	42.49	74.00	31.51	Pass	V	Peak
9	7386.0000	36.49	5.85	-40.87	43.13	44.60	74.00	29.40	Pass	V	Peak
10	9848.0000	37.74	6.83	-40.54	41.35	45.38	74.00	28.62	Pass	V	Peak
11	12953.6636	39.60	8.13	-41.68	45.70	51.75	74.00	22.25	Pass	V	Peak
12	15008.8006	40.41	9.09	-42.33	46.44	53.61	74.00	20.39	Pass	V	Peak

Page 78 of 82

Mode):	802.11	n (HT20)	(6.5Mbps))	Channel:		2412			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2706.9707	32.73	4.12	-42.27	52.88	47.46	74.00	26.54	Pass	Н	Peak
2	4824.0000	34.50	4.61	-40.65	42.96	41.42	74.00	32.58	Pass	Н	Peak
3	7236.0000	36.34	5.79	-40.99	43.46	44.60	74.00	29.40	Pass	Н	Peak
4	9648.0000	37.66	6.72	-40.73	43.57	47.22	74.00	26.78	Pass	Н	Peak
5	12238.6159	39.44	7.70	-41.15	45.75	51.74	74.00	22.26	Pass	Н	Peak
6	15084.8057	40.48	9.55	-42.43	45.71	53.31	74.00	20.69	Pass	Н	Peak
7	17561.5805	42.65	11.40	-43.66	33.86	44.25	54.00	9.75	Pass	Н	AV
8	2822.9823	32.92	4.24	-42.22	51.94	46.88	74.00	27.12	Pass	V	Peak
9	4824.0000	34.50	4.61	-40.65	44.44	42.90	74.00	31.10	Pass	V	Peak
10	7236.0000	36.34	5.79	-40.99	43.53	44.67	74.00	29.33	Pass	V	Peak
11	9648.0000	37.66	6.72	-40.73	42.25	45.90	74.00	28.10	Pass	V	Peak
12	11695.5797	39.06	7.49	-41.32	46.38	51.61	74.00	22.39	Pass	V	Peak
13	13665.7110	39.50	8.20	-41.20	45.93	52.43	74.00	21.57	Pass	V	Peak

								~ /			
Mode	e:	802.11	n (HT20)	(6.5Mbps))	Channel:		2437			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2822.3822	32.92	4.24	-42.22	52.27	47.21	74.00	26.79	Pass	Н	Peak
2	4874.0000	34.50	4.78	-40.61	43.72	42.39	74.00	31.61	Pass	Н	Peak
3	7311.0000	36.41	5.85	-40.93	43.42	44.75	74.00	29.25	Pass	Н	Peak
4	9748.0000	37.70	6.77	-40.63	42.16	46.00	74.00	28.00	Pass	Н	Peak
5	11755.5837	39.10	7.47	-41.29	46.43	51.71	74.00	22.29	Pass	Н	Peak
6	14346.7565	40.05	8.63	-41.96	46.39	53.11	74.00	20.89	Pass	Н	Peak
7	3076.0051	33.23	4.77	-42.07	50.13	46.06	74.00	27.94	Pass	V	Peak
8	4874.0000	34.50	4.78	-40.61	43.02	41.69	74.00	32.31	Pass	V	Peak
9	7311.0000	36.41	5.85	-40.93	42.92	44.25	74.00	29.75	Pass	V	Peak
10	9748.0000	37.70	6.77	-40.63	42.12	45.96	74.00	28.04	Pass	V	Peak
11	11481.5654	38.89	7.62	-41.37	44.46	49.60	74.00	24.40	Pass	V	Peak
12	12877.6585	39.60	7.97	-41.58	45.72	51.71	74.00	22.29	Pass	V	Peak

Mada		000 44 (LITOO) (C EMb)				Ob a series		0.400			
Mode:		802.11 n (HT20) (6.5Mbps)				Channel:		2462			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	3092.0061	33.24	4.74	-42.07	50.29	46.20	74.00	27.80	Pass	Н	Peak
2	4924.0000	34.50	4.85	-40.56	42.64	41.43	74.00	32.57	Pass	Н	Peak
3	7386.0000	36.49	5.85	-40.87	43.76	45.23	74.00	28.77	Pass	Н	Peak
4	9848.0000	37.74	6.83	-40.54	41.59	45.62	74.00	28.38	Pass	Н	Peak
5	12324.6216	39.49	7.69	-41.13	46.08	52.13	74.00	21.87	Pass	Н	Peak
6	15821.8548	41.54	9.55	-43.23	45.95	53.81	74.00	20.19	Pass	Н	Peak
7	17979.7185	42.32	10.80	-43.25	32.08	41.95	54.00	12.05	Pass	Н	AV
8	2821.7822	32.91	4.24	-42.22	51.62	46.55	74.00	27.45	Pass	V	Peak
9	4924.0000	34.50	4.85	-40.56	43.21	42.00	74.00	32.00	Pass	V	Peak
10	7386.0000	36.49	5.85	-40.87	43.95	45.42	74.00	28.58	Pass	V	Peak
11	9848.0000	37.74	6.83	-40.54	40.80	44.83	74.00	29.17	Pass	V	Peak
12	11750.5834	39.10	7.47	-41.29	46.62	51.90	74.00	22.10	Pass	V	Peak
13	15087.8059	40.49	9.56	-42.44	46.07	53.68	74.00	20.32	Pass	V	Peak

Note:

- 1) Through Pre-scan transmitting mode and charge+transmitter mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 6Mbpsof rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20), and then Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

PHOTOGRAPHS OF TEST SETUP

Test Model No.: ERHA101

Radiated spurious emission Test Setup-1(Below 30MHz)

Radiated spurious emission Test Setup-1(Below 1GHz)

Report No. : EED32L00193803 Page 81 of 82

Radiated spurious emission Test Setup-2(Above 1GHz)

Conducted Emissions Test Setup

Page 82 of 82

PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No.EED32L00193801 for EUT external and internal photos.

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

