60080079 Introduction to Statistical Methods Semester 2 2023-2024 Handout 11

A Brief Introduction to One-Way ANOVA in SPSS

A. Overall F-Test

- 1. Set up the <u>hsb.sav</u> data, which require one variable (e.g., Science) to be quantitative, and the other variable (e.g., SES) to be categorical.
- 2. From the menu, choose Analyze \rightarrow Compare Means \rightarrow One-Way ANOVA.

3. In the One-Way ANOVA dialog box, click in Science in the **Dependent List** box, and SES in the **Factor** box.

4. If no additional option in needed, hit **OK**.

You should get the following output:

ANOVA

Science score								
	Sum of Squares	df	Mean Square	F	Sig.			
Between Groups	4773.972	2	2386.986	27.586	.000			
Within Groups	51657.761	597	86.529					
Total	56431.733	599						

The computed F is 27.586 and the p-value is close to zero so we reject H_0 : $\mu_L = \mu_M = \mu_H$, and conclude that at least two groups are not equal.

- B. (Planned) Contrasts
- 1. In the **One-Way ANOVA** dialog box, click the **Contrast** button.

2. You can create your own contrast by entering the one coefficient at a time in the **Coefficients** box.

Suppose we are interested in comparing whether the:

- a) Low and Medium SES groups have the same mean science score; and
- b) The mean science score of Low and Medium SES groups is the same that of the High SES.

The appropriate coefficients for these contrasts are: (1, -1, 0) and (1, 1, -2).

Use the Add, Change, and Remove buttons to enter/modify the contrast coefficients.

If more than one contrast is involved, you can move between contrasts using the **Previous** and **Next** buttons.

3. Click Continue, then OK.

For the contrasts we created, in addition to the ANOVA table, we also get the table of coefficients we specified, as well as the tests for the contrasts.

Contrast Coefficients

-	Socieconomic status						
Contrast	Low	Medium	High				
1	1	-1	0				
2	1	1	-2				

Contrast Tests

			Value of	Std.			
		Contrast	Contrast	Error	t	df	Sig. (2-tailed)
Science	Assume equal variances	1	-4.6243	.95494	-4.843	597	.000
score		2	-11.3246	1.74597	-6.486	597	.000
	Does not assume equal	1	-4.6243	.96788	-4.778	265.487	.000
	variances	2	-11.3246	1.72682	-6.558	303.641	.000

The tests for contrast indicate that we should reject H_0 : $\mu_L = \mu_M$ and H_0 : $\mu_L + \mu_M = 2\mu_H$.

- C. (Post-Hoc) Pairwise Comparisons
- 1. To request an analysis of the possible pairwise comparisons that account for multiple tests, we can use the **Post-hoc** button in the **One-Way ANOVA** dialog box.

2. In the **Post-Hoc Multiple Comparisons** dialog box, check **Scheffe** and **Tukey**.

3. Click **Continue** and then **OK**.

We should get the following output.

Multiple Comparisons

Dependent Variable: Science score

			Mean			95% Confidence Interval		
	(I) Socieconomic	(J) Socieconomic	Difference	Std.		Lower	Upper	
	status	status	(I-J)	Error	Sig.	Bound	Bound	
Tukey	Low	Medium	-4.62434 [*]	.95494	.000	-6.8680	-2.3807	
HSD		High	-7.97449 [*]	1.07547	.000	-10.5014	-5.4476	
	Medium	Low	4.62434*	.95494	.000	2.3807	6.8680	
		High	-3.35015 [*]	.90748	.001	-5.4823	-1.2180	
	High	Low	7.97449 [*]	1.07547	.000	5.4476	10.5014	
		Medium	3.35015 [*]	.90748	.001	1.2180	5.4823	
Scheffe	Low	Medium	-4.62434*	.95494	.000	-6.9677	-2.2810	
		High	-7.97449 [*]	1.07547	.000	-10.6136	-5.3354	
	Medium	Low	4.62434*	.95494	.000	2.2810	6.9677	
		High	-3.35015 [*]	.90748	.001	-5.5770	-1.1233	
	High	Low	7.97449 [*]	1.07547	.000	5.3354	10.6136	
		Medium	3.35015 [*]	.90748	.001	1.1233	5.5770	

^{*.} The mean difference is significant at the 0.05 level.

At $\alpha = .05$, we reject the null hypotheses $\mu_L = \mu_M$, $\mu_L = \mu_H$, and $\mu_M = \mu_H$.

We arrive at the same conclusions using either Tukey's or Scheffé's method.

Aside: There are various **Options** available under One-Way ANOVA. For now, we are only interested in Means plot.

We should get the following plot:

