

Π_4^0 conservation of Ramsey's theorem for pairs

Quentin Le Houérou Université Paris-Est-Créteil-Val-de-Marne

November 6, 2024

Joint work with Ludovic Levy Patey and Keita Yokoyama

Introduction

Motivations: Hilbert's program

Objective: Justify the use of the actual infinity in mathematics.

- Conservation: Every theorem about finite objects proved using infinite objects can be proven without them.
- Consistency: Finitary mathematics can prove that infinitary mathematics doesn't lead to a contradiction.
- Gödel (1931): Both of these goals are unattainable.
- Partial results still possible.

Motivations: Hilbert's program

Objective: Justify the use of the actual infinity in mathematics.

- Conservation: Every theorem about finite objects proved using infinite objects can be proven without them.
- Consistency: Finitary mathematics can prove that infinitary mathematics doesn't lead to a contradiction.
- Gödel (1931) : Both of these goals are unattainable.
- Partial results still possible.

Reverse mathematics

Reverse mathematics: Framework

Framework: second-order arithmetic.

- Easy distinction between finite and infinite objects.
- Allow the use of computability theory tools.
- Most of everyday mathematics is still formalizable.

Base theory RCA₀

Base theory: RCA₀

- Robinson's arithmetic Q
- $lack \Delta_1^0$ -comprehension (The computable sets exists)
- Σ_1^0 -induction (Every set of finite cardinality is bounded)

RCA $_0$ is conservative over Σ_1 -PA (Friedman) and Π_2 conservative over PRA (Parsons, Harrington)

Reverse matnematics

The "Big Five"

Modulo RCA_0 , most theorems of ordinary mathematics are equivalent to one the following theories (from weakest to strongest):

- \blacksquare RCA₀: constructive mathematics.
- ${\color{red} {\Bbb Z}}$ WKL $_0$: compactness arguments.
- 3 ACA₀: second-order version of Peano arithmetics.
- 4 ATR₀: transfinite recursion.
- Π_1^1 CA: impredicativism.

Reverse mathematics

Ramsey's theorem for pairs and two colors escape this phenomenon.

Finite Ramsey's theorem

For every 2-coloring of the edges of K_6

Introduction

Finite Ramsey's theorem

There exists some monochromatic copy of K_3

Infinite Ramsey's theorem

Let $[X]^2$ be the set of all subsets of X of cardinality 2.

Definition (Ramsey's theorem for pairs and two colors)

 RT_2^2 is the statement: "For every coloring $f:[\mathbb{N}]^2 \to 2$ there is an infinite set $H \subseteq \mathbb{N}$ such that $|f([H]^2)| = 1$ ".

First-order consequences of RT₂²

Facts

- $\blacksquare \mathsf{RCA}_0 + \mathsf{RT}_2^2 \not\vdash \mathsf{I}\Sigma_2^0 \tag{\mathsf{Chong/Slaman/Yang}}$
- RT₂² is Π_1^1 -conservative over I Σ_2^0 + RCA₀. (Cholak/Jockusch/Slaman)

The first-order consequences of RT₂² therefore lies between those of $Q + I\Delta_2$ and $Q + I\Sigma_2$.

It is still open whether RT $_2^2$ is Π_1^1 -conservative over RCA $_0+I\Delta_2^0$

First-order consequences of RT₂²

A $\forall \Pi_3^0$ formula is a formula of the form $(\forall X)(\forall x)(\exists y)(\forall z)\theta(X,x,y,z)$ with $\theta \Delta_0^0$.

Theorem (Patey/Yokoyama)

 $RCA_0 + RT_2^2$ is a $\forall \Pi_3^0$ -conservative extension of RCA_0 .

Furthermore, the proof is formalizable in PRA, hence $PRA \vdash Con(Q + I\Sigma_1) \rightarrow Con(RCA_0 + RT_2^2)$

Main theorem (Le Houérou/Levy Patey/Yokoyama)

 $RCA_0 + RT_2^2$ is a $\forall \Pi_4^0$ -conservative extension of $RCA_0 + I\Delta_2^0$.

Proof

Outline of the proof

$\mathsf{Theorem}$

 RT_2^2 is $\forall \Pi_4^0$ conservative over $\mathsf{RCA}_0 + \mathsf{I}\Delta_2^0$.

Proof:

- Assume RCA₀ + I $\Delta_2^0 \not\vdash \forall X \forall x \phi(X, x)$ for $\phi(X, x) := \exists y \forall z \exists t \theta(X, x, y, z, t)$ a Σ_3^0 statement.
- By completeness, compactness and the Löwenheim-Skolem theorem, there exists $\mathcal{M}=(M,S)\models \mathsf{RCA}_0+\mathsf{I}\Delta_2^0+\neg\phi(A,a)$ be a countable model with M nonstandard, and $a\in M,\ A\in S$
- From \mathcal{M} , build a model $\mathcal{M}' \models \mathsf{RCA}_0 + \mathsf{I}\Delta_2^0 + \mathsf{RT}_2^2 + \neg \phi(A, a)$
- Therefore $RCA_0 + I\Delta_2^0 + RT_2^2 \not\vdash \forall X \forall x \phi(X)$

Cuts

An initial segment $I \subseteq M$ closed under successor is called a *cut*.

Preserving RCA₀

From a cut $I \subsetneq M$, consider the model (I, Cod(M/I)) where

$$Cod(M/I) = \{F \cap I : F \text{ finite set of } \mathcal{M}\}\$$

- If I is stable by multiplication then $I \models Q$.
- $(I, \operatorname{Cod}(M/I)) \models \Delta_1^0 \text{-comprehension}.$
- For $(I, \operatorname{Cod}(M/I))$ to be a model of $I\Sigma_1^0$, we want every M-finite set F of cardinality $\in I$ to not be cofinal in I. A cut verifying that is called *semi-regular*.

Preserving RCA₀

From a cut $I \subsetneq M$, consider the model (I, Cod(M/I)) where

$$Cod(M/I) = \{F \cap I : F \text{ finite set of } \mathcal{M}\}\$$

- If I is stable by multiplication then $I \models Q$.
- $(I, \operatorname{Cod}(M/I)) \models \Delta_1^0$ -comprehension.
- For (I, Cod(M/I)) to be a model of $I\Sigma_1^0$, we want every M-finite set F of cardinality $\in I$ to not be cofinal in I. A cut verifying that is called *semi-regular*.

Preserving RCA₀

From a cut $I \subsetneq M$, consider the model (I, Cod(M/I)) where

$$Cod(M/I) = \{F \cap I : F \text{ finite set of } \mathcal{M}\}\$$

- If I is stable by multiplication then $I \models Q$.
- $(I, \operatorname{Cod}(M/I)) \models \Delta_1^0$ -comprehension.
- For (I, Cod(M/I)) to be a model of $I\Sigma_1^0$, we want every M-finite set F of cardinality $\in I$ to not be cofinal in I. A cut verifying that is called *semi-regular*.

Every instance of RT₂² in (I, Cod(M/I)) is obtained from a finite instance $f: [b]^2 \to 2$ that is restricted to $[I]^2$.

Problem : It may be impossible to have $H \cap I$ cofinal in I We need a stronger version of Ramsey's theorem that put more weight on small elements.

lpha-largeness

Definition : α -large sets

A set $X \subseteq_{fin} \mathbb{N}$ is

- ω^0 -large if $X \neq \emptyset$.
- $\omega^{(n+1)}$ -large if $X \setminus \min X$ is $(\omega^n \cdot \min X)$ -large
- $\omega^n \cdot k$ -large if there are $k \omega^n$ -large subsets of X

$$X_0 < X_1 < \cdots < X_{k-1}$$

where A < B means that for all $a \in A$ and $b \in B$, a < b.

- **X** is $\omega^0 \cdot k$ -large iff $|X| \ge k$
- X is ω^1 -large iff $|X| > \min X$
- X is ω^2 -large iff $X = \{\min X\} \cup X_1 \cup \cdots \cup X_{\min X}$ with each X_i ω^1 -large.

Theorem: Kołodziejczyk/Yokoyama

Let X be ω^{300n} -large and $f:[X]^2\to 2$ a coloring. There exists some ω^n -large subset Y of X such that f is homogeneous on $[Y]^2$.

Parson's theorem

If for some Δ_0^0 formula ψ we have:

$$\mathsf{RCA}_0 \vdash \forall X(X \text{ is infinite } \to (\exists F \subseteq_{\mathtt{fin}} X) \exists y \psi(y, F))$$

Then there exists some $n \in \omega$ such that:

$$\mathsf{I}\Sigma^0_1 \vdash \forall Z(Z \text{ is } \omega^n\text{-large} o \exists F \subseteq Z\exists y < \mathsf{max}\, Z\psi(y,F))$$

Proposition

$$RCA_0 \vdash (\forall a)(WF(\omega^a) \rightarrow \text{every infinite set contains some } \omega^a\text{-large subset})$$

Preserving a Π_2^0 formula

Assume $(M, S) \models (\forall y)(\exists z)\theta(y, z)$.

By Δ_1^0 -comprehension, let $X = \{x_0 < x_1 < \dots\}$ infinite such that $(\forall y < x_i)(\exists z < x_{i+1})\theta(y, z)$ for every i.

By overflow, let a non-standard such that $(M, S) \models WF(\omega^{300^a})$ By RCA₀, let $Y \subseteq X$ be ω^{300^a} -large.

I will be defined as $\bigcup_{n\in\omega}[0,\min Y_n]$ for $Y=Y_0\supseteq Y_1\supseteq\ldots$ with Y_i $\omega^{300^{a-i}}$ -large and $\min Y_{i+1}>\min Y_i$. Finally, $(I,\operatorname{Cod}(M/I))\models(\forall y)(\exists z)\theta(y,z)$

Preserving a Π_3^0 formula

Assume $(M, S) \models (\forall y)(\exists z)(\forall t)\theta(y, z, t)$. Not possible to build $X = \{x_0 < x_1 < \dots\}$ infinite such that $(\forall y < x_i)(\exists z < x_{i+1})(\forall t)\theta(y, z, t)$: this requires Σ_1^0 -comprehension.

Definition: θ -apart

Two finite sets A < B are θ -apart if:

$$(\forall y < \max A)(\exists z < \min B)(\forall t < \max B)\theta(y, z, t)$$

Definition : α -large(θ) sets

A set $X \subseteq_{\mathtt{fin}} \mathbb{N}$ is

- ω^0 -large(θ) if $X \neq \emptyset$.
- $\omega^{(n+1)}$ -large(θ) if $X \setminus \min X$ is $(\omega^n \cdot \min X)$ -large(θ)
- $\omega^n \cdot k$ -large(θ) if there are k ω^n -large(θ) subsets of X that are pairwise θ -apart.

$$X_0 < X_1 < \cdots < X_{k-1}$$

For every standard n, RCA₀ + I Δ_2^0 + $(\forall y)(\exists z)(\forall t)\theta(y,z,t)$ proves that every infinite set contain some ω^n -large(θ) set.

Proposition

Let X be $\omega^{(16^6+1)^n}$ -large(θ) and $f:[X]^2\to 2$ a coloring. There exists some ω^n -large(θ) subset Y of X such that f is homogeneous on $[Y]^2$.

References

Ludovic Patey and Keita Yokoyama.

The proof-theoretic strength of Ramsey's theorem for pairs and two colors.

Adv. Math., 330:1034-1070, 2018.

Leszek Aleksander Koł odziejczyk and Keita Yokoyama.

Some upper bounds on ordinal-valued Ramsey numbers for colourings of pairs.

Selecta Math. (N.S.), 26(4):Paper No. 56, 18, 2020.

Quentin Le Houérou, Ludovic Levy Patey, and Keita Yokoyama.

 Π_4^0 conservation of ramsey's theorem for pairs, 2024.

Appendix

Proposition: Kołodziejczyk/Yokoyama

If Y is ω^{n+1} -large and $Y = Y_0 \cup Y_1$, then there exists some i < 2 such that Y_i is ω^n -large.

Proposition: Le Houérou/Levy Patey/Yokoyama

For every n, there is a Δ_0^0 formula θ , a set Y that is ω^{2n-1} -large(θ) and a partition $Y = Y_0 \cup Y_1$ such that Y_0 and Y_1 are not ω^n -large(θ).