Exercice 1:

On considère les équations différentielles (E): $(2-6x+2x^2)y-(3x^2-4x)y'+x^2y''=2$ et (L): z''-3z'+2z=2.

- 1. Résoudre (L) sur \mathbb{R} .
- 2. Trouver un entier relatif k tel que $x \mapsto x^k$ soit solution de (E) sur $]0, +\infty[$.
- 3. Pour cet entier k, montrer que la fonction $u: x \mapsto x^k \times v(x)$ est solution de (E) sur $]0, +\infty[$ si et seulement si v est solution de (L) sur $]0, +\infty[$.
- 4. En déduire l'ensemble des solutions de (E) sur $]0, +\infty[$.

Exercice 2:

- 1. Résoudre sur $]0, +\infty[$ et sur $]-\infty, 0[$ l'équation différentielle $(E): xy' + 2y = \frac{x}{1+x^2}.$
- 2. Rappeler la valeur de $\sum_{k=0}^{n} q^k$ pour $q \neq 1$.
- 3. Soit $x \in \mathbb{R}_+$.
 - (a) Soit $t \in [0, x]$. Montrer que $\frac{1}{1+t^2} = \sum_{k=0}^{n} (-1)^k t^{2k} + (-1)^{n+1} \frac{t^{2n+2}}{1+t^2}$. Que donne cette égalité pour n=1?
 - (b) En déduire $\arctan(x) = x \frac{x^3}{3} + \int_0^x \frac{t^4}{1+t^2} dt$.
 - (c) Montrer que $0 \leqslant \int_0^x \frac{t^4}{1+t^2} \mathrm{d}x \leqslant \frac{x^5}{5}$ puis en déduire $\arctan(x) x \underset{x \to 0}{\sim} -\frac{x^3}{3}$.
 - (d) Montrer que la fonction $\varphi: x \mapsto \frac{\arctan(x) x}{x^2}$ est prolongeable par continuité en 0 puis dérivable en 0 après prolongement.

Préciser alors la valeur de $\varphi'(0)$ (en notant encore φ la fonction prolongée en 0).

4. Montrer qu'il existe une unique solution de (E) sur \mathbb{R} (indication : elle doit être solution de (E) sur $]0, +\infty[$, être continue et dérivable en 0).

Exercice 3:

Une équation fonctionnelle

On cherche à déterminer dans cet exercice toutes les fonctions continues $f:[0,+\infty[\to\mathbb{R} \text{ satisfaisant}]$ à la condition (C) suivante

(C):
$$\forall x \in [0, +\infty[, \int_0^x (x - 3t) f(t) dt = \frac{x^2}{2}]$$

- 1. On suppose que $f:[0,+\infty[\to\mathbb{R}$ est une fonction continue, satisfaisant à (C). Soit F la primitive de f sur $[0,+\infty[$ telle que F(0)=0. Soit G la primitive de $t\mapsto tf(t)$ sur $[0,+\infty[$ telle que G(0)=0.
 - (a) Justifier que : $\forall x \ge 0$, $xF(x) 3G(x) = \frac{x^2}{2}$. En déduire : $\forall x > 0$, $f(x) = \frac{1}{2} \left(\frac{1}{x} F(x) 1 \right)$.
 - (b) Montrer que f est de classe C^1 sur $]0, +\infty[$.
 - (c) Montrer que f est solution de l'équation différentielle (E): 2xy' + y = -1.
 - (d) Résoudre (E) sur $]0, +\infty[$ puis déterminer f en utilisant le fait que f est continue en 0.
- 2. Déterminer toutes les fonctions continues sur $[0, +\infty[$, satisfaisant à (C).