

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets ⁶ : A61K 7/13	A1	(11) Numéro de publication internationale: WO 99/17730 (43) Date de publication internationale: 15 avril 1999 (15.04.99)
--	----	---

(21) Numéro de la demande internationale: PCT/FR98/02075 (22) Date de dépôt international: 28 septembre 1998 (28.09.98) (30) Données relatives à la priorité: 97/12353 3 octobre 1997 (03.10.97) FR (71) Déposant (<i>pour tous les Etats désignés sauf US</i>): L'OREAL [FR/FR]; 14, rue Royale, F-75008 Paris (FR). (72) Inventeurs; et (75) Inventeurs/Déposants (<i>US seulement</i>): DE LA METTRIE, Roland [FR/FR]; 6, boulevard d'Angleterre, F-78110 Le Vesinet (FR). COTTERET, Jean [FR/FR]; 13, rue du Pré Rousselin, F-78480 Verneuil-sur-Seine (FR). DE LABBEY, Arnaud [FR/FR]; 9, rue Dordain, F-93600 Aulnay sous Bois (FR). MAUBRU, Mireille [FR/FR]; 7, avenue d'Epremesnil, F-78400 Chatou (FR). (74) Mandataire: GOULARD, Sophie; L'Oréal – DPI, 90, rue du Général Roguet, F-92583 Clichy Cedex (FR).	(81) Etats désignés: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, brevet ARIPO (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
---	---

Publiée
Avec rapport de recherche internationale.
publiée
1/15 6, 228, 179 B1

(54) Title: OXIDATION DYEING COMPOSITION FOR KERATIN FIBRES AND DYEING METHOD USING SAID COMPOSITION

(54) Titre: COMPOSITION DE TEINTURE D'OXYDATION DES FIBRES KERATINIQUES ET PROCEDE DE TEINTURE MESSANT EN OEUVRE CETTE COMPOSITION

(57) Abstract

The invention concerns a ready-to-use oxidation dyeing composition for keratin fibres, and in particular for human keratin fibres such as hair comprising, in a medium appropriate for dyeing at least an oxidation base, at least a direct cationic dye, and at least an oxidoreductase type enzyme with 2 electrons in the presence of at least a donor for said enzyme, and the dyeing method using said composition.

(57) Abrégé

L'invention a pour objet une composition prête à l'emploi pour la teinture d'oxydation des fibres kératiniques, et en particulier des fibres kératiniques humaines telles que les cheveux comprenant, dans un milieu approprié pour la teinture, au moins une base d'oxydation, au moins un colorant direct cationique, et au moins une enzyme de type oxydo-réductase à 2 électrons en présence d'au moins un donneur pour ladite enzyme, ainsi que le procédé de teinture mettant en oeuvre cette composition.

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

AL	Albanie	ES	Espagne	LS	Lesotho	SI	Slovénie
AM	Arménie	FI	Finlande	LT	Lituanie	SK	Slovaquie
AT	Autriche	FR	France	LU	Luxembourg	SN	Sénégal
AU	Australie	GA	Gabon	LV	Lettonie	SZ	Swaziland
AZ	Azerbaïdjan	GB	Royaume-Uni	MC	Monaco	TD	Tchad
BA	Bosnie-Herzégovine	GE	Géorgie	MD	République de Moldova	TG	Togo
BB	Barbade	GH	Ghana	MG	Madagascar	TJ	Tadjikistan
BE	Belgique	GN	Guinée	MK	Ex-République yougoslave de Macédoine	TM	Turkménistan
BF	Burkina Faso	GR	Grèce	ML	Mali	TR	Turquie
BG	Bulgarie	HU	Hongrie	MN	Mongolie	TT	Trinité-et-Tobago
BJ	Bénin	IE	Irlande	MR	Mauritanie	UA	Ukraine
BR	Brésil	IL	Israël	MW	Malawi	UG	Ouganda
BY	Biélorusse	IS	Islande	MX	Mexique	US	Etats-Unis d'Amérique
CA	Canada	IT	Italie	NE	Niger	UZ	Ouzbékistan
CF	République centrafricaine	JP	Japon	NL	Pays-Bas	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norvège	YU	Yougoslavie
CH	Suisse	KG	Kirghizistan	NZ	Nouvelle-Zélande	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	République populaire démocratique de Corée	PL	Pologne		
CM	Cameroun	KR	République de Corée	PT	Portugal		
CN	Chine	KZ	Kazakhstan	RO	Roumanie		
CU	Cuba	LC	Sainte-Lucie	RU	Fédération de Russie		
CZ	République tchèque	LI	Liechtenstein	SD	Soudan		
DE	Allemagne	LK	Sri Lanka	SE	Suède		
DK	Danemark	LR	Libéria	SG	Singapour		
EE	Estonie						

COMPOSITION DE TEINTURE D'OXYDATION DES FIBRES KERATINIQUES ET PROCEDE DE TEINTURE METTANT EN OEUVRE CETTE COMPOSITION

L'invention a pour objet une composition pour la teinture d'oxydation des fibres kératiniques, et en particulier des fibres kératiniques humaines telles que les cheveux comprenant, dans un milieu approprié pour la teinture, au moins une base d'oxydation, au moins un colorant direct cationique, et au moins une enzyme de type oxydo-réductase à 2 électrons en présence d'au moins un donneur pour ladite enzyme, ainsi que le procédé de teinture mettant en œuvre cette composition.

Il est connu de teindre les fibres kératiniques et en particulier les cheveux humains avec des compositions tinctoriales contenant des précurseurs de colorant d'oxydation, en particulier des ortho ou paraphénylénediamines, des ortho cu paraaminophénols, des bases hétérocycliques, appelés généralement bases d'oxydation. Les précurseurs de colorants d'oxydation, ou bases d'oxydation, sont des composés incolores ou faiblement colorés qui, associés à des produits oxydants, peuvent donner naissance par un processus de condensation oxydative à des composés colorés et colorants.

On sait également que l'on peut faire varier les nuances obtenues avec ces bases d'oxydation en les associant à des coupleurs ou modificateurs de coloration, ces derniers étant choisis notamment parmi les métadiamines aromatiques, les métaaminophénols, les métadiphénols et certains composés hétérocycliques.

La variété des molécules mises en jeu au niveau des bases d'oxydation et des coupleurs, permet l'obtention d'une riche palette de couleurs.

Il est également connu que pour faire encore varier les nuances obtenues et leur donner des reflets, on peut utiliser, en association avec les précurseurs de

colorants d'oxydation et les coupleurs, des colorants directs, c'est à dire des substances colorées qui apportent une coloration en l'absence d'agent oxydant.

Ces colorants directs appartiennent pour leur très grande majorité à la famille
5 des composés nitrés de la série benzénique et ont l'inconvénient, lorsqu'ils sont incorporés dans des compositions tinctoriales, de conduire à des colorations présentant une ténacité insuffisante, en particulier vis-à-vis des shampooings.

La coloration dite "permanente" obtenue grâce à ces colorants d'oxydation, doit
10 par ailleurs satisfaire un certain nombre d'exigences. Ainsi, elle doit être sans inconvénient sur le plan toxicologique, elle doit permettre d'obtenir des nuances dans l'intensité souhaitée et présenter une bonne tenue face aux agents extérieurs (lumière, intempéries, lavage, ondulation permanente, transpiration, frottements).

15 Les colorants doivent également permettre de couvrir les cheveux blancs, et être enfin les moins sélectifs possible, c'est à dire permettre d'obtenir des écarts de coloration les plus faibles possible tout au long d'une même fibre kératinique, qui peut être en effet différemment sensibilisée (i.e. abîmée) entre sa pointe et
20 sa racine.

La coloration d'oxydation des fibres kératiniques est généralement réalisée en milieu alcalin, en présence de peroxyde d'hydrogène. Toutefois, l'utilisation des milieux alcalins en présence de peroxyde d'hydrogène présentent pour
25 inconvénient d'entraîner une dégradation non négligeable des fibres, ainsi qu'une décoloration importante des fibres kératiniques qui n'est pas toujours souhaitable.

La coloration d'oxydation des fibres kératiniques peut également être réalisée à
30 l'aide de systèmes oxydants différents du peroxyde d'hydrogène tels que des systèmes enzymatiques. Ainsi il a déjà été proposé de teindre les fibres

kératiniques, notamment dans la demande de brevet EP-A-0 310 675, avec des compositions comprenant une base d'oxydation et éventuellement un coupleur, en association avec des enzymes telles que la pyranose-oxydase, la glucose-oxydase ou bien l'uricase, en présence d'un donneur pour lesdites enzymes.

- 5 Ces procédés de teinture, bien qu'étant mis en œuvre dans des conditions n'entraînant pas une dégradation des fibres kératiniques comparable à celle engendrée par les teintures réalisées en présence de peroxyde d'hydrogène, conduisent à des colorations ne donnant pas entière satisfaction notamment du point de vue de leur puissance, de leur chromaticité et de leur résistance vis à
10 vis des diverses agressions que peuvent subir les cheveux.

Or, la demanderesse vient maintenant de découvrir qu'il est possible d'obtenir de nouvelles teintures, capables de conduire à des colorations puissantes et chromatiques, sans engendrer de dégradation significative des fibres
15 kératiniques, peu sélectives et résistant bien aux diverses agressions que peuvent subir les fibres, en associant au moins une base d'oxydation, au moins un colorant direct cationique, et au moins une enzyme de type oxydo-réductase à 2 électrons en présence d'au moins un donneur pour ladite enzyme.

- 20 Cette découverte est à la base de la présente invention.

L'invention a donc pour premier objet une composition prête à l'emploi, pour la teinture d'oxydation des fibres kératiniques et en particulier des fibres kératiniques humaines telles que les cheveux, caractérisée par le fait qu'elle
25 comprend, dans un milieu approprié pour la teinture :

- au moins une base d'oxydation,
- au moins un colorant direct cationique,
- au moins une enzyme de type oxydo-réductase à 2 électrons,
- 30 - et au moins un donneur pour ladite enzyme.

La composition tinctoriale prête à l'emploi conforme à l'invention conduit à des colorations puissantes, chromatiques, présentant une faible sélectivité et d'excellentes propriétés de résistances à la fois vis à vis des agents atmosphériques tels que la lumière et les intempéries et vis à vis de la transpiration et des différents traitements que peuvent subir les cheveux (lavages, déformations permanentes).

L'invention a également pour objet un procédé de teinture d'oxydation des fibres kératiniques mettant en oeuvre cette composition tinctoriale prête à l'emploi.

10

La ou les oxydo-réductases à 2 électrons utilisées dans la composition tinctoriale prête à l'emploi conforme à l'invention peuvent notamment être choisies parmi les pyranose oxydases, les glucose oxydases, les glycérol oxydases, les lactates oxydases, les pyruvate oxydases, et les uricases.

15

Selon l'invention, l'oxydo-réductase à 2 électrons est de préférence choisie parmi les uricases d'origine animale, microbiologique ou biotechnologique.

A titre d'exemple, on peut notamment citer l'uricase extraite de foie de sanglier, 20 l'uricase d'*Arthrobacter globiformis*, ainsi que l'uricase d'*Aspergillus flavus*.

La ou les oxydo-réductases à 2 électrons peuvent être utilisées sous forme cristalline pure ou sous une forme diluée dans un diluant inerte pour ladite oxydo-réductase à 2 électrons.

25

La ou les oxydo-réductases à 2 électrons conformes à l'invention représentent de préférence de 0,01 à 20 % en poids environ du poids total de la composition tinctoriale prête à l'emploi, et encore plus préférentiellement de 0,1 à 5 % en poids environ de ce poids.

30

Selon l'invention, on entend par donneur, les différents substrats participant au fonctionnement de ladite ou desdites oxydo-réductases à 2 électrons.

La nature du donneur (ou substrat) pour ladite enzyme varie en fonction de la
5 nature de l'oxydo-réductase à 2 électrons qui est utilisée. Par exemple, à titre de donneur pour les pyranose oxydases, on peut citer le D-glucose, le L-sorbose et le D-xylose ; à titre de donneur pour les glucose oxydases, on peut citer le D-glucose, à titre de donneur pour les glycérol oxydases, on peut citer le glycérol et la dihydroxyacétone ; à titre de donneur pour les lactate oxydases,
10 on peut citer l'acide lactique et ses sels ; à titre de donneur pour les pyruvate oxydases, on peut citer l'acide pyruvique et ses sels ; et enfin à titre de donneur pour les uricases, on peut citer l'acide urique et ses sels.

Le ou les donneurs (ou substrats) utilisés conformément à l'invention
15 représentent de préférence de 0,01 à 20 % en poids environ du poids total de la composition tinctoriale prête à l'emploi conforme à l'invention et encore plus préférentiellement de 0,1 à 5 % en environ de ce poids.

La nature de la ou des bases d'oxydation utilisées dans la composition
20 tinctoriale prête à l'emploi n'est pas critique. Elles peuvent notamment être choisies parmi les paraphénylénediamines, les bases doubles, les para-aminophénols, les ortho aminophénols et les bases d'oxydation hétérocycliques.

25 Parmi les paraphénylénediamines utilisables à titre de base d'oxydation dans les compositions tinctoriales conformes à l'invention, on peut notamment citer les composés de formule (I) suivante et leurs sels d'addition avec un acide :

dans laquelle :

- R₁ représente un atome d'hydrogène, un radical alkyle en C₁-C₄, monohydroxyalkyle en C₁-C₄, polyhydroxyalkyle en C₂-C₄, alcoxy(C₁-C₄)alkyle(C₁-C₄), alkyle en C₁-C₄ substitué par un groupement azoté, phényle ou 4'-aminophényle ;
- R₂ représente un atome d'hydrogène, un radical alkyle en C₁-C₄, monohydroxyalkyle en C₁-C₄, polyhydroxyalkyle en C₂-C₄, alcoxy(C₁-C₄)alkyle(C₁-C₄) ou alkyle en C₁-C₄ substitué par un groupement azoté ;
- R₃ représente un atome d'hydrogène, un atome d'halogène tel qu'un atome de chlore, de brome, d'iode ou de fluor, un radical alkyle en C₁-C₄, monohydroxyalkyle en C₁-C₄, hydroxyalcoxy en C₁-C₄, acétylaminoalcoxy en C₁-C₄, mésylaminoalcoxy en C₁-C₄ ou carbamoylaminoalcoxy en C₁-C₄,
- R₄ représente un atome d'hydrogène, d'halogène ou un radical alkyle en C₁-C₄.

15

Parmi les groupements azotés de la formule (I) ci-dessus, on peut citer notamment les radicaux amino, monoalkyl(C₁-C₄)amino, dialkyl(C₁-C₄)amino, trialkyl(C₁-C₄)amino, monohydroxyalkyl(C₁-C₄)amino, imidazolinium et ammonium.

20

Parmi les paraphénylènediamines de formule (I) ci-dessus, on peut plus particulièrement citer la paraphénylènediamine, la paratoluylènediamine, la 2-chloro paraphénylènediamine, la 2,3-diméthyl paraphénylènediamine, la 2,6-diméthyl paraphénylènediamine, la 2,6-diéthyl paraphénylènediamine, la 2,5-diméthyl paraphénylènediamine, la N,N-diméthyl paraphénylènediamine, la N,N-diéthyl paraphénylènediamine, la N,N-dipropyl paraphénylènediamine, la 4-amino N,N-diéthyl 3-méthyl aniline, la N,N-bis-(β-hydroxyéthyl)

paraphénylénediamine, la 4-N,N-bis-(β -hydroxyéthyl)amino 2-méthyl aniline, la 4-N,N-bis-(β -hydroxyéthyl)amino 2-chloro aniline, la 2- β -hydroxyéthyl paraphénylénediamine, la 2-fluoro paraphénylénediamine, la 2-isopropyl paraphénylénediamine, la N-(β -hydroxypropyl) paraphénylénediamine, la 5 2-hydroxyméthyl paraphénylénediamine, la N,N-diméthyl 3-méthyl paraphénylénediamine, la N,N-(éthyl, β -hydroxyéthyl) paraphénylénediamine, la N-(β , γ -dihydroxypropyl) paraphénylénediamine, la N-(4'-aminophényl) paraphénylénediamine, la N-phényl paraphénylénediamine, la 2- β -hydroxyéthyloxy paraphénylénediamine, la 10 2- β -acétylaminoéthyloxy paraphénylénediamine, la N-(β -méthoxyéthyl) paraphénylénediamine, et leurs sels d'addition avec un acide.

Parmi les paraphénylénediamines de formule (I) ci-dessus, on préfère tout particulièrement la paraphénylénediamine, la paratoluylénediamine, la 15 2-isopropyl paraphénylénediamine, la 2- β -hydroxyéthyl paraphénylénediamine, la 2- β -hydroxyéthyloxy paraphénylénediamine, la 2,6-diméthyl paraphénylénediamine, la 2,6-diéthyl paraphénylénediamine, la 2,3-diméthyl paraphénylénediamine, la N,N-bis-(β -hydroxyéthyl) paraphénylénediamine, la 2-chloro paraphénylénediamine, la 2- β -acétylaminoéthyloxy paraphénylénediamine, et 20 leurs sels d'addition avec un acide.

Selon l'invention, on entend par bases doubles, les composés comportant au moins deux noyaux aromatiques sur lesquels sont portés des groupements amino et/ou hydroxyle.

25

Parmi les bases doubles utilisables à titre de bases d'oxydation dans les compositions tinctoriales conformes à l'invention, on peut notamment citer les composés répondant à la formule (II) suivante, et leurs sels d'addition avec un acide :

30

dans laquelle :

- Z_1 et Z_2 , identiques ou différents, représentent un radical hydroxyle ou $-\text{NH}_2$ pouvant être substitué par un radical alkyle en $\text{C}_1\text{-}\text{C}_4$ ou par un bras de liaison Y ;
- le bras de liaison Y représente une chaîne alkylène comportant de 1 à 14 atomes de carbone, linéaire ou ramifiée pouvant être interrompue ou terminée par un ou plusieurs groupements azotés et/ou par un ou plusieurs hétéroatomes tels que des atomes d'oxygène, de soufre ou d'azote, et éventuellement substituée par un ou plusieurs radicaux hydroxyle ou alcoxy en $\text{C}_1\text{-}\text{C}_6$;
- R_5 et R_6 représentent un atome d'hydrogène ou d'halogène, un radical alkyle en $\text{C}_1\text{-}\text{C}_4$, monohydroxyalkyle en $\text{C}_1\text{-}\text{C}_4$, polyhydroxyalkyle en $\text{C}_2\text{-}\text{C}_4$, aminoalkyle en $\text{C}_1\text{-}\text{C}_4$ ou un bras de liaison Y ;
- R_7 , R_8 , R_9 , R_{10} , R_{11} et R_{12} , identiques ou différents, représentent un atome d'hydrogène, un bras de liaison Y ou un radical alkyle en $\text{C}_1\text{-}\text{C}_4$;

étant entendu que les composés de formule (II) ne comportent qu'un seul bras de liaison Y par molécule.

Parmi les groupements azotés de la formule (II) ci-dessus, on peut citer notamment les radicaux amino, monoalkyl($\text{C}_1\text{-}\text{C}_4$)amino, dialkyl($\text{C}_1\text{-}\text{C}_4$)amino, trialkyl($\text{C}_1\text{-}\text{C}_4$)amino, monohydroxyalkyl($\text{C}_1\text{-}\text{C}_4$)amino, imidazolinium et ammonium.

- Parmi les bases doubles de formules (II) ci-dessus, on peut plus particulièrement citer le N,N'-bis-(β -hydroxyéthyl) N,N'-bis-(4'-aminophényl) 1,3-diamino propanol, la N,N'-bis-(β -hydroxyéthyl) N,N'-bis-(4'-aminophényl) éthylènediamine, la N,N'-bis-(4-aminophényl) tétraméthylènediamine, la 5 N,N'-bis-(β -hydroxyéthyl) N,N'-bis-(4-aminophényl) tétraméthylènediamine, la N,N'-bis-(4-méthyl-aminophényl) tétraméthylènediamine, la N,N'-bis-(éthyl) N,N'-bis-(4'-amino, 3'-méthylphényl) éthylènediamine, le 1,8-bis-(2,5-diaminophénoxy)-3,5-dioxaoctane, et leurs sels d'addition avec un acide.
- 10 Parmi ces bases doubles de formule (II), le N,N'-bis-(β -hydroxyéthyl) N,N'-bis-(4'-aminophényl) 1,3-diamino propanol, le 1,8-bis-(2,5-diaminophénoxy)-3,5-dioxaoctane ou l'un de leurs sels d'addition avec un acide sont particulièrement préférés.
- 15 Parmi les para-aminophénols utilisables à titre de bases d'oxydation dans les compositions tinctoriales conformes à l'invention, on peut notamment citer les composés répondant à la formule (III) suivante, et leurs sels d'addition avec un acide :
- 20 (III)
- dans laquelle :
- R₁₃ représente un atome d'hydrogène ou d'halogène, un radical alkyle en C₁-C₄, monohydroxyalkyle en C₁-C₄, alcoxy(C₁-C₄)alkyle(C₁-C₄), aminoalkyle en C₁-C₄ ou hydroxyalkyl(C₁-C₄)aminoalkyle en C₁-C₄,
 - 25 - R₁₄ représente un atome d'hydrogène ou d'halogène, un radical alkyle en C₁-C₄, monohydroxyalkyle en C₁-C₄, polyhydroxyalkyle en C₂-C₄, aminoalkyle en C₁-C₄, cyanoalkyle en C₁-C₄ ou alcoxy(C₁-C₄)alkyle(C₁-C₄).

étant entendu qu'au moins un des radicaux R₁₃ ou R₁₄ représente un atome d'hydrogène.

Parmi les para-aminophénols de formule (III) ci-dessus, on peut plus particulièrement citer le para-aminophénol, le 4-amino 3-méthyl phénol, le 4-amino 3-fluoro phénol, le 4-amino 3-hydroxyméthyl phénol, le 4-amino 2-méthyl phénol, le 4-amino 2-hydroxyméthyl phénol, le 4-amino 2-méthoxyméthyl phénol, le 4-amino 2-aminométhyl phénol, le 4-amino 2-(β-hydroxyéthyl aminométhyl) phénol, le 4-amino 2-fluoro phénol, et leurs sels d'addition avec un acide.

Parmi les orthoaminophénols utilisables à titre de bases d'oxydation dans les compositions tinctoriales conformes à l'invention, on peut plus particulièrement citer le 2-amino phénol, le 2-amino 5-méthyl phénol, le 2-amino 6-méthyl phénol, le 5-acétamido 2-amino phénol, et leurs sels d'addition avec un acide.

Parmi les bases hétérocycliques utilisables à titre de bases d'oxydation dans les compositions tinctoriales conformes à l'invention, on peut plus particulièrement citer les dérivés pyridiniques, les dérivés pyrimidiniques, les dérivés 20 pyrazoliques, les dérivés pyrazolo-pyrimidiniques, et leurs sels d'addition avec un acide.

Parmi les dérivés pyridiniques, on peut plus particulièrement citer les composés décrits par exemple dans les brevets GB 1 026 978 et GB 1 153 196, comme la 2,5-diamino pyridine, la 2-(4-méthoxyphényl)amino 3-amino pyridine, la 2,3-diamino 6-méthoxy pyridine, la 2-(β-méthoxyéthyl)amino 3-amino 6-méthoxy pyridine, la 3,4-diamino pyridine, et leurs sels d'addition avec un acide.

Parmi les dérivés pyrimidiniques, on peut plus particulièrement citer les composés décrits par exemple dans les brevets allemand DE 2 359 399 ou japonais JP 88-169 571 et JP 91-10659 ou demandes de brevet WO 96/15765,

comme la 2,4,5,6-tétra-aminopyrimidine, la 4-hydroxy 2,5,6-triaminopyrimidine, la 2-hydroxy 4,5,6-triaminopyrimidine, la 2,4-dihydroxy 5,6-diaminopyrimidine, la 2,5,6-triaminopyrimidine, et leurs sels d'addition avec un acide.

- 5 Parmi les dérivés pyrazoliques, on peut plus particulièrement citer les composés décrits dans les brevets DE 3 843 892, DE 4 133 957 et demandes de brevet WO 94/08969, WO 94/08970, FR-A-2 733 749 et DE 195 43 988 comme le 4,5-diamino 1-méthyl pyrazole, le 3,4-diamino pyrazole, le 4,5-diamino 1-(4'-chlorobenzyl) pyrazole, le 4,5-diamino 1,3-diméthyl pyrazole, le 10 4,5-diamino 3-méthyl 1-phényl pyrazole, le 4,5-diamino 1-méthyl 3-phényl pyrazole, le 4-amino 1,3-diméthyl 5-hydrazino pyrazole, le 1-benzyl 4,5-diamino 3-méthyl pyrazole, le 4,5-diamino 3-tert-butyl 1-méthyl pyrazole, le 4,5-diamino 1-tert-butyl 3-méthyl pyrazole, le 4,5-diamino 1-(β -hydroxyéthyl) 3-méthyl pyrazole, le 4,5-diamino 1-éthyl 3-méthyl pyrazole, le 4,5-diamino 1-éthyl 15 3-(4'-méthoxyphényl) pyrazole, le 4,5-diamino 1-éthyl 3-hydroxyméthyl pyrazole, le 4,5-diamino 3-hydroxyméthyl 1-méthyl pyrazole, le 4,5-diamino 3-hydroxyméthyl 1-isopropyl pyrazole, le 4,5-diamino 3-méthyl 1-isopropyl pyrazole, le 4-amino 5-(2'-aminoéthyl)amino 1,3-diméthyl pyrazole, le 3,4,5-triamino pyrazole, le 1-méthyl 3,4,5-triamino pyrazole, le 3,5-diamino 20 1-méthyl 4-méthylamino pyrazole, le 3,5-diamino 4-(β -hydroxyéthyl)amino 1-méthyl pyrazole, et leurs sels d'addition avec un acide.

Parmi les dérivés pyrazolo-pyrimidiniques, on peut plus particulièrement citer les pyrazolo-[1,5-a]-pyrimidines de formule (IV) suivante, leurs sels d'addition avec un acide ou avec une base et leurs formes tautomères, lorsqu'il existe un équilibre tautomérique :

dans laquelle :

- R₁₅, R₁₆, R₁₇ et R₁₈, identiques ou différents désignent, un atome d'hydrogène, un radical alkyle en C₁-C₄, un radical aryle, un radical hydroxyalkyle en C₁-C₄, un radical polyhydroxyalkyle en C₂-C₄, un radical (C₁-C₄)alcoxy alkyle en C₁-C₄, un radical aminoalkyle en C₁-C₄ (l'amine pouvant être protégée par un radical acétyle, uréido ou sulfonyle), un radical (C₁-C₄)alkylamino alkyle en C₁-C₄, un radical di-[(C₁-C₄)alkyl] amino alkyle en C₁-C₄ (les radicaux dialkyles pouvant former un cycle carboné ou un hétérocycle à 5 ou 6 chaînons), un radical hydroxy(C₁-C₄)alkyl- ou di-[hydroxy(C₁-C₄) alkyl]-amino alkyle en C₁-C₄ ;
- les radicaux X désignent , identiques ou différents, un atome d'hydrogène, un radical alkyle en C₁-C₄, un radical aryle, un radical hydroxyalkyle en C₁-C₄, un radical polyhydroxyalkyle en C₂-C₄, un radical amino alkyle en C₁-C₄, un radical (C₁-C₄)alkyl amino alkyle en C₁-C₄, un radical di-[(C₁-C₄)alkyl] amino alkyle en C₁-C₄ (les dialkyles pouvant former un cycle carboné ou un hétérocycle à 5 ou 6 chaînons), un radical hydroxy(C₁-C₄)alkyl ou di-[hydroxy(C₁-C₄) alkyl]amino alkyle en C₁-C₄, un radical amino, un radical (C₁-C₄)alkyl- ou di-[(C₁-C₄)alkyl]-amino ; un atome d'halogène, un groupe acide carboxylique, un groupe acide sulfonique ;
- i vaut 0, 1, 2 ou 3 ;
- p vaut 0 ou 1 ;
- q vaut 0 ou 1 ;
- n vaut 0 ou 1 ;

sous réserve que :

- la somme p + q est différente de 0 ;
- lorsque p + q est égal à 2, alors n vaut 0 et les groupes NR₁₅R₁₆ et NR₁₇R₁₈ occupent les positions (2,3) ; (5,6) ; (6,7) ; (3,5) ou (3,7) ;

- lorsque p + q est égal à 1 alors n vaut 1 et le groupe NR₁₅R₁₅ (ou NR₁₇R₁₈) et le groupe OH occupent les positions (2,3) ; (5,6) ; (6,7) ; (3,5) ou (3,7) ;

5 Lorsque les pyrazolo-[1,5-a]-pyrimidines de formule (IV) ci-dessus sont telles qu'elles comportent un groupe hydroxyle sur l'une des positions 2, 5 ou 7 en α d'un atome d'azote, il existe un équilibre tautomérique représenté par exemple par le schéma suivant :

10

Parmi les pyrazolo-[1,5-a]-pyrimidines de formule (IV) ci-dessus on peut notamment citer :

- la pyrazolo-[1,5-a]-pyrimidine-3,7-diamine ;
 - 15 - la 2,5-diméthyl pyrazolo-[1,5-a]-pyrimidine-3,7-diamine ;
 - la pyrazolo-[1,5-a]-pyrimidine-3,5-diamine ;
 - la 2,7-diméthyl pyrazolo-[1,5-a]-pyrimidine-3,5-diamine ;
 - le 3-amino pyrazolo-[1,5-a]-pyrimidin-7-ol
 - le 3-amino pyrazolo-[1,5-a]-pyrimidin-5-ol
 - 20 - le 2-(3-amino pyrazolo-[1,5-a]-pyrimidin-7-ylamino)-éthanol
 - le 2-(7-amino pyrazolo-[1,5-a]-pyrimidin-3-ylamino)-éthanol
 - le 2-[(3-Amino-pyrazolo[1,5-a]pyrimidin-7-yl)-(2-hydroxy-éthyl)-amino]-éthanol
 - le 2-[(7-Amino-pyrazolo[1,5-a]pyrimidin-3-yl)-(2-hydroxy-éthyl)-amino]-éthanol
 - la 5,6-diméthyl pyrazolo-[1,5-a]-pyrimidine-3,7-diamine ;
 - 25 - la 2,6-diméthyl pyrazolo-[1,5-a]-pyrimidine-3,7-diamine ;
 - la 2, 5, N 7, N 7-tetraméthyl pyrazolo-[1,5-a]-pyrimidine-3,7-diamine ;
- et leurs sels d'addition et leurs formes tautomères, lorsqu'il existe un équilibre tautomérique.

Les pyrazolo-[1,5-a]-pyrimidines de formule (IV) ci-dessus peuvent être préparées par cyclisation à partir d'un aminopyrazole selon les synthèses décrites dans les références suivantes :

5

- EP 628559 BEIERSDORF-LILLY
- R. Vishdu, H. Navedul, Indian J. Chem., 34b (6), 514, 1995.
- N.S. Ibrahim, K.U. Sadek, F.A. Abdel-Al, Arch. Pharm., 320, 240, 1987.
- R.H. Springer, M.B. Scholten, D.E. O'Brien, T. Novinson, J.P. Miller, R.K. Robins, J. Med. Chem., 25, 235, 1982.
- T. Novinson, R.K. Robins, T.R. Matthews, J. Med. Chem., 20, 296, 1977.
- US 3907799 ICN PHARMACEUTICALS

15 Les pyrazolo-[1,5-a]-pyrimidines de formule (IV) ci-dessus peuvent également être préparées par cyclisation à partir d'hydrazine selon les synthèses décrites dans les références suivantes :

- A. McKillop et R.J. Kobilecki, Heterocycles, 6(9), 1355, 1977.
- E. Alcade, J. De Mendoza, J.M. Marcia-Marquina, C. Almera, J. Elguero, J. Heterocyclic Chem., 11(3), 423, 1974.
- K. Saito, I. Hori, M. Higarashi, H. Midorikawa, Bull. Chem. Soc. Japan, 47(2), 476, 1974.

25 La ou les bases d'oxydation représentent de préférence de 0,0005 à 12 % en poids environ du poids total de la composition tinctoriale conforme à l'invention, et encore plus préférentiellement de 0,005 à 6 % en poids environ de ce poids.

30 Le ou les colorants directs cationiques pouvant être utilisés dans la composition tinctoriale prêté à l'emploi conforme à l'invention sont de préférence choisis parmi les amino-anthraquinoniques cationiques, les mono- ou di-azoïques cationiques, les naphtoquinones cationiques.

A titre de d'exemple, on peut notamment citer le chlorure de [8-[(p-aminophényl)azol]-7-hydroxy-2-naphtyl]triméthylammonium (également appelé Basic Brown 16 ou Arianor Mahogany 306002 dans le Color Index), le chlorure de 3-[(4-amino-6-bromo-5,8-dihydro-1-hydroxy-8-imino-5-oxo-2-naphtalényl)-amino]-N,N,N-triméthyl-benzénaminium (également dénommé Basic Blue 99 ou Arianor Steel Blue 306004 dans le Color Index), le chlorure de 7-hydroxy-8-[(2-méthoxyphényl)azo]-N,N,N-triméthyl-2-naphtalénaminium (également appelé le Basic Red 76 ou Arianor Madder Red dans le Color Index), le chlorure de [8-[(4-amino-2-nitrophényl)azo]-7-hydroxy-2-naphtyl]triméthylammonium (également appelé Basic Brown 17 ou Arianor Sienna Brown 306001 dans le Color Index) et le chlorure de 3-[(4,5-dihydro-3-méthyl-5-oxo-1-phényl-1H-pyrazol-4-yl)azo]-N,N,N-triméthyl-benzénaminium également appelé Basic Yellow 57 ou Arianor Straw Yellow 306005 dans le Color Index).

Le ou les colorants directs cationiques peuvent également être choisis parmi :

a) les composés de formule (V) suivante :

20

dans laquelle :

D représente un atome d'azote ou le groupement -CH,

25

R₁₉ et R₂₀, identiques ou différents, représentent un atome d'hydrogène ; un radical alkyle en C₁-C₄ pouvant être substitué par un radical -CN, -OH ou -NH₂

ou forment avec un atome de carbone du cycle benzénique un hétérocycle éventuellement oxygéné ou azoté, pouvant être substitué par un ou plusieurs radicaux alkyle en C₁-C₄; un radical 4'-aminophényle,

- 5 R₂₁ et R'₂₁, identiques ou différents, représentent un atome d'hydrogène ou d'halogène choisi parmi le chlore, le brome, l'iode et le fluor, un radical cyano, alcoxy en C₁-C₄ ou acétyloxy,

- X⁻ représente un anion de préférence choisi parmi le chlorure, le méthyl sulfate
10 et l'acétate,

A représente un groupement choisi par les structures A1 à A19 suivantes :

A₁A₂A₃A₄A₅A₆A₇A₈A₉

A₁₀A₁₁A₁₂A₁₃A₁₄A₁₅A₁₆A₁₇A₁₈A₁₉

10

dans lesquelles R₂₂ représente un radical alkyle en C₁-C₄ pouvant être substitué par un radical hydroxyle et R₂₃ représente un radical alcoxy en C₁-C₄ ;

b) les composés de formule (VI) suivante :

5

dans laquelle :

R_{24} représente un atome d'hydrogène ou un radical alkyle en C_1-C_4 ,

10 R_{25} représente un atome d'hydrogène, un radical alkyle pouvant être substitué par un radical -CN ou par un groupement amino, un radical 4'-aminophényle ou forme avec R_{24} un hétérocycle éventuellement oxygéné et/ou azoté pouvant être substitué par un radical alkyle en C_1-C_4 ,

15 R_{26} et R_{27} , identiques ou différents, représentent un atome d'hydrogène, un atome d'halogène tel que le brome, le chlore, l'iode ou le fluor, un radical alkyle en C_1-C_4 ou alcoxy en C_1-C_4 , un radical -CN,

X⁻ représente un anion de préférence choisi parmi le chlorure, le méthyl sulfate et l'acétate,

B représente un groupement choisi par les structures B1 à B6 suivantes :

5 dans lesquelles R₂₈ représente un radical alkyle en C₁-C₄, R₂₉ et R₃₀, identiques ou différents, représentent un atome d'hydrogène ou un radical alkyle en C₁-C₄ ;

c) les composés de formules (VII) et (VII') suivantes :

dans lesquelles :

15 R₃₁ représente un atome d'hydrogène, un radical alcoxy en C₁-C₄, un atome d'halogène tel que le brome, le chlore, l'iode ou le fluor ou un radical amino,

R_{32} représente un atome d'hydrogène, un radical alkyle en C₁-C₄ ou forme avec un atome de carbone du cycle benzénique un hétérocycle éventuellement oxygéné et/ou substitué par un ou plusieurs groupements alkyle en C₁-C₄,

- 5 R_{33} représente un atome d'hydrogène ou d'halogène tel que le brome, le chlore, l'iode ou le fluor,

R_{34} et R_{35} , identiques ou différents, représentent un atome d'hydrogène ou un radical alkyle en C₁-C₄,

10

D₁ et D₂, identiques ou différents, représentent un atome d'azote ou le groupement -CH,

m = 0 ou 1,

15

étant entendu que lorsque R_{31} représente un groupement amino non substitué, alors D₁ et D₂ représentent simultanément un groupement -CH et m = 0,

X⁻ représente un anion de préférence choisi parmi le chlorure, le méthyl sulfate

20 et l'acéate,

E représente un groupement choisi par les structures E1 à E8 suivantes :

Structure E1: Pyridine ring with an R₃₆ group attached to the nitrogen atom.

E1

Structure E2: Pyridine ring with an R₃₆ group attached to the carbon atom adjacent to the nitrogen atom.

E2

25

5

dans lesquelles R_{36} représente un radical alkyle en C_1-C_4 ;

lorsque $m = 0$ et que D_1 représente un atome d'azote, alors E peut également désigner un groupement de structure $E9$ suivante :

10

dans laquelle R_{36} représente un radical alkyle en C_1-C_4 .

15 Les colorants directs cationiques de formules (V), (VI), (VII) et (VII') utilisables dans la composition tinctoriale prête à l'emploi conforme à l'invention, sont des

composés connus et sont décrits par exemple dans les demandes de brevets WO 95/01772, WO 95/15144 et EP-A-0 714 954.

Parmi les colorants directs cationiques de formule (V) utilisables dans les 5 compositions tinctoriales prêtes à l'emploi conformes à l'invention, on peut plus particulièrement citer les composés répondant aux structures (V1) à (V52) suivantes :

5

10

5

10

5

, et

5

Parmi les composés de structures (V1) à (V52) décrits ci-dessus, on préfère tout particulièrement les composés répondant aux structures (V1), (V2), (V4), (V14) et (V31).

- 10 Parmi les colorants directs cationiques de formule (VI) utilisables dans les compositions tinctoriales prêtes à l'emploi conformes à l'invention, on peut plus particulièrement citer les composés répondant aux structures (VI1) à (VI12) suivantes :

15

5

et

Parmi les colorants directs cationiques de formule (VII), utilisables dans les compositions tinctoriales prêtes à l'emploi conformes à l'invention, on peut plus particulièrement citer les composés répondant aux structures (VII1) à (VII18) suivantes :

10

5

10

5 ; et

Parmi les composés particuliers de structures (VII1) à (VII18) décrits ci-dessus,

10 on préfère tout particulièrement les composés répondant aux structures (VII4),
(VII5) et (VII13).

Parmi les colorants directs cationiques de formule (VII'), utilisables dans les compositions tinctoriales prêtes à l'emploi conformes à l'invention, on peut plus particulièrement citer les composés répondant aux structures (VII'1) à (VII'3)

15 suivantes :

5

Le ou les colorants directs cationiques utilisés selon l'invention, représentent de préférence de 0,001 à 10 % en poids environ du poids total de la composition tinctoriale prête à l'emploi et encore plus préférentiellement de 0,05 à 5 % en poids environ de ce poids.

La composition tinctoriale conforme à l'invention peut en outre contenir un ou plusieurs coupleurs et/ou des colorants directs non cationiques notamment pour modifier les nuances ou les enrichir en reflets.

15 Parmi les coupleurs pouvant être présents dans la composition tinctoriale conforme prête à l'emploi conforme à l'invention, on peut notamment citer les méta-phénylènediamines, les méta-aminophénols, les métadiphénols, les coupleurs hétérocycliques, et leurs sels d'addition avec un acide.

Lorsqu'ils sont présents ces coupleurs additionnels représentent de préférence de 0,0001 à 10 % en poids environ du poids total de la composition tinctoriale prête à l'emploi et encore plus préférentiellement de 0,005 à 5 % en poids environ de ce poids.

5

D'une manière générale, les sels d'addition avec un acide utilisables dans le cadre des compositions tinctoriales de l'invention (bases d'oxydation et coupleurs) sont notamment choisis parmi les chlorhydrates, les bromhydrates, les sulfates et les tartrates, les lactates et les acétates.

10

Le milieu approprié pour la teinture (ou support) de la composition tinctoriale prête à l'emploi conforme à l'invention est généralement constitué par de l'eau ou par un mélange d'eau et d'au moins un solvant organique pour solubiliser les composés qui ne seraient pas suffisamment solubles dans l'eau. A titre de solvant organique, on peut par exemple citer les alcanols en C₁-C₄, tels que l'éthanol et l'isopropanol ; le glycérol ; les glycols et éthers de glycols comme le 2-butoxyéthanol, le propylèneglycol, le monométhyléther de propylèneglycol, le monoéthyléther et le monométhyléther du diéthylèneglycol, ainsi que les alcools aromatiques comme l'alcool benzylique ou le phénoxyéthanol, les produits analogues et leurs mélanges.

15

20

Les solvants peuvent être présents dans des proportions de préférence comprises entre 1 et 40 % en poids environ par rapport au poids total de la composition tinctoriale, et encore plus préférentiellement entre 5 et 30 % en poids environ.

25

30

Le pH de la composition prête à l'emploi conforme à l'invention est choisi de telle manière que l'activité enzymatique de l'oxydo-réductase à 2 électrons soit suffisante. Il est généralement compris entre 5 et 11 environ, et de préférence entre 6,5 et 10 environ. Il peut être ajusté à la valeur désirée au moyen d'agents

acidifiants ou alcalinisants habituellement utilisés en teinture des fibres kératiniques.

Parmi les agents acidifiants, on peut citer, à titre d'exemple, les acides minéraux
5 ou organiques comme l'acide chlorhydrique, l'acide orthophosphorique, l'acide sulfurique, les acides carboxyliques comme l'acide acétique, l'acide tartrique, l'acide citrique, l'acide lactique, les acides sulfoniques.

Parmi les agents alcalinisants on peut citer, à titre d'exemple, l'ammoniaque, les
10 carbonates alcalins, les alcanolamines telles que les mono-, di- et triéthanolamines, le 2-méthyl 2-amino propanol ainsi que leurs dérivés, les hydroxydes de sodium ou de potassium et les composés de formule (VIII) suivante :

15 dans laquelle W est un reste propylène éventuellement substitué par un groupement hydroxyle ou un radical alkyle en C₁-C₄ ; R₃₇, R₃₈, R₃₉ et R₄₀, identiques ou différents, représentent un atome d'hydrogène, un radical alkyle en C₁-C₄ ou hydroxyalkyle en C₁-C₄.

20 La composition tinctoriale prête à l'emploi conforme à l'invention peut également renfermer divers adjuvants utilisés classiquement dans les compositions pour la teinture des cheveux, tels que des agents tensio-actifs anioniques, cationiques, non-ioniques, amphotères, zwittérioniques ou leurs mélanges, des polymères anioniques, cationiques, non-ioniques, amphotères, zwittérioniques ou leurs 25 mélanges, des agents épaisseurs minéraux ou organiques, des agents antioxydants, des enzymes différentes des oxydo-réductases à 2 électrons utilisées conformément à l'invention telles que par exemple des peroxydases, des agents de pénétration, des agents séquestrants, des parfums, des

tampons, des agents dispersants, des agents de conditionnement tels que par exemple des silicones volatiles ou non volatiles, modifiées ou non modifiées, des agents filmogènes, des céramides, des agents conservateurs, des agents opacifiants.

5

Bien entendu, l'homme de l'art veillera à choisir ce ou ces éventuels composés complémentaires de manière telle que les propriétés avantageuses attachées intrinsèquement à la composition tinctoriale prête à l'emploi conforme à l'invention ne soient pas, ou substantiellement pas, altérées par la ou les 10 adjonctions envisagées.

La composition tinctoriale prête à l'emploi conforme à l'invention peut se présenter sous des formes diverses, telles que sous forme de liquides, de crèmes, de gels, éventuellement pressurisés, ou sous toute autre forme 15 appropriée pour réaliser une teinture des fibres kératiniques, et notamment des cheveux humains. Dans ce cas, le ou les colorants d'oxydation et la ou les oxydo-réductases à 2 électrons sont présents au sein de la même composition prête à l'emploi, et par conséquent ladite composition doit être exempte 20 d'oxygène gazeux, de manière à éviter toute oxydation prématuée du ou des colorants d'oxydation.

L'invention a également pour objet un procédé de teinture des fibres kératiniques et en particulier des fibres kératiniques humaines telles que les cheveux mettant en oeuvre la composition tinctoriale prête à l'emploi telle que 25 définie précédemment.

Selon ce procédé, on applique sur les fibres au moins une composition tinctoriale prête à l'emploi telle que définie précédemment, pendant un temps suffisant pour développer la coloration désirée, après quoi on rince, on lave 30 éventuellement au shampooing, on rince à nouveau et on sèche.

Le temps nécessaire au développement de la coloration sur les fibres kératiniques est généralement compris entre 3 et 60 minutes et encore plus précisément 5 et 40 minutes.

- 5 Selon une forme de réalisation particulière de l'invention, le procédé comporte une étape préliminaire consistant à stocker sous forme séparée, d'une part, une composition (A) comprenant, dans un milieu approprié pour la teinture, au moins une base d'oxydation, au moins un colorant direct cationique et, d'autre part, une composition (B) renfermant, dans un milieu approprié pour la teinture,
- 10 au moins une enzyme de type oxydo-réductase à 2 électrons en présence d'au moins un donneur pour ladite enzyme, puis à procéder à leur mélange au moment de l'emploi avant d'appliquer ce mélange sur les fibres kératiniques.

Un autre objet de l'invention est un dispositif à plusieurs compartiments ou "kit" de teinture ou tout autre système de conditionnement à plusieurs compartiments dont un premier compartiment renferme la composition (A) telle que définie ci-dessus et un second compartiment renferme la composition (B) telle que définie ci-dessus. Ces dispositifs peuvent être équipés d'un moyen permettant de délivrer sur les cheveux le mélange souhaité, tel que les dispositifs décrits dans le brevet FR-2 586 913 au nom de la demanderesse.

Les exemples qui suivent sont destinés à illustrer l'invention sans pour autant en limiter la portée.

EXEMPLES

EXEMPLES 1 à 3 DE TEINTURE

- 5 On a préparé les compositions tinctoriales prêtes à l'emploi suivantes (teneurs en grammes) :

COMPOSITION	1	2	3
Paraphénylénediamine (base d'oxydation)	0,7	-	0,36
Colorant direct cationique rouge de structure (V1)	0,6	-	-
Para-aminophénol (Base d'oxydation)	-	0,187	-
5-N-(β-hydroxyéthyl)amino 2-méthyl phénol (couleur)	-	0,21	0,36
Colorant direct cationique orangé de structure (V4)	-	0,065	-
Colorant direct cationique : Basic Red 76 (Arianor Madder Red)	-	-	0,12
Uricase d'Arthrobacter globiformis à 20 Unités Internationales (U.I.) / mg, commercialisée par la société Sigma	1,5	1,5	1,5
Acide urique	1,5	1,5	1,5
Support de teinture commun (*)	(*)	(*)	(*)
Eau déminéralisée q.s.p.	100 g	100 g	100 g

(*) : Support de teinture commun :

10

- Ethanol 20,0 g
- Hydroxyéthylcellulose vendue sous la dénomination NATROSOL 250 HR ® par la société AQUALON 1,0 g

- Alkyl (C_8-C_{10}) polyglucoside en solution aqueuse à 60 % de matière active (M.A.) tamponné par du citrate d'ammonium (0,5%), vendu sous la dénomination ORAMIX CG110 ® par la société SEPPIC 8,0 g
- 5 - Monoéthanolamine q.s. pH = 9,5

Chacune des compositions tinctoriales prêtées à l'emploi décrites ci-dessus a été appliquée sur des mèches de cheveux gris naturels à 90 % de blancs pendant 30 minutes. Les cheveux ont ensuite été rincés, lavés avec un shampooing 10 standard, puis séchés.

Les cheveux ont été teints dans les nuances figurant dans le tableau ci-après :

EXEMPLE	Nuance obtenue
1	Rouge intense
2	Blond clair cuivré rouge
3	Blond violine rouge

REVENDICATIONS

1. Composition prête à l'emploi, pour la teinture d'oxydation des fibres kératiniques et en particulier des fibres kératiniques humaines telles que les cheveux, caractérisée par le fait qu'elle comprend, dans un milieu approprié pour la teinture :

- au moins une base d'oxydation,
- au moins colorant direct cationique,
- 10 - au moins une enzyme de type oxydo-réductase à 2 électrons,
- et au moins un donneur pour ladite enzyme.

2. Composition selon la revendication 1, caractérisée par le fait que l'oxydo-réductases à 2 électrons est choisie parmi les pyranose oxydases, les glucose oxydases, les glycérol oxydases, les lactates oxydases, les pyruvate oxydases, et les uricases.

3. Composition selon l'une quelconque des revendications 1 ou 2, caractérisée par le fait que l'oxydo-réductases à 2 électrons est choisie parmi les uricases d'origine animale, microbiologique ou biotechnologique.

4. Composition selon l'une quelconque des revendications précédentes, caractérisée par le fait que la ou les oxydo-réductases à 2 électrons représentent de 0,01 à 20 % en poids du poids total de la composition tinctoriale prête à l'emploi.

5. Composition selon la revendication 4, caractérisée par le fait que la ou les oxydo-réductases à 2 électrons représentent de 0,1 à 5 % en poids du poids total de la composition tinctoriale prête à l'emploi.

6. Composition selon la revendication 3, caractérisée par le fait que le donneur (ou substrat) pour ladite oxydo-réductase à 2 électrons est choisi parmi l'acide urique et ses sels.

5 7. Composition selon l'une quelconque des revendications précédentes, caractérisée par le fait que le ou les donneurs représentent de 0,01 à 20 % en poids du poids total de la composition tinctoriale prête à l'emploi.

10 8. Composition selon la revendication 7, caractérisée par le fait que le ou les donneurs représentent de 0,1 à 5 % en poids du poids total de la composition tinctoriale prête à l'emploi.

15 9. Composition selon l'une quelconque des revendications précédentes, caractérisée par le fait que la ou les bases d'oxydation sont choisies parmi les paraphénylenediamines, les bases doubles, les para-aminophénols, les ortho aminophénols et les bases d'oxydation hétérocycliques.

20 10. Composition selon la revendication 9, caractérisée par le fait que les paraphénylenediamines sont choisies parmi les composés de formule (I) suivante et leurs sels d'addition avec un acide :

dans laquelle :

- R₁ représente un atome d'hydrogène, un radical alkyle en C₁-C₄, monohydroxyalkyle en C₁-C₄, polyhydroxyalkyle en C₂-C₄, alcoxy(C₁-C₄)alkyle(C₁-C₄), alkyle en C₁-C₄ substitué par un groupement azoté, phényle ou 4'-aminophényle ;

- R₂ représente un atome d'hydrogène, un radical alkyle en C₁-C₄, monohydroxyalkyle en C₁-C₄, polyhydroxyalkyle en C₂-C₄, alcoxy(C₁-C₄)alkyle(C₁-C₄) ou alkyle en C₁-C₄ substitué par un groupement azoté ;
- R₃ représente un atome d'hydrogène, un atome d'halogène tel qu'un atome de chlore, de brome, d'iode ou de fluor, un radical alkyle en C₁-C₄, monohydroxyalkyle en C₁-C₄, hydroxyalcoxy en C₁-C₄, acétylaminoalcoxy en C₁-C₄, mésylaminoalcoxy en C₁-C₄ ou carbamoylaminoalcoxy en C₁-C₄,
- R₄ représente un atome d'hydrogène, d'halogène ou un radical alkyle en C₁-C₄.

- 10 11. Composition selon la revendication 10, caractérisée par le fait que les paraphénylenediamines de formule (I) sont choisies parmi la paraphénylenediamine, la paratoluylénediamine, la 2-chloro paraphénylenediamine, la 2,3-diméthyl paraphénylenediamine, la 2,6-diméthyl paraphénylenediamine, la 2,6-diéthyl paraphénylenediamine, la 2,5-diméthyl paraphénylenediamine, la N,N-diméthyl paraphénylenediamine, la N,N-diéthyl paraphénylenediamine, la N,N-dipropyl paraphénylenediamine, la 4-amino N,N-diéthyl 3-méthyl aniline, la N,N-bis-(β-hydroxyéthyl) paraphénylenediamine, la 4-N,N-bis-(β-hydroxyéthyl)amino 2-méthyl aniline, la 4-N,N-bis-(β-hydroxyéthyl) amino 2-chloro aniline, la 2-β-hydroxyéthyl paraphénylenediamine, la 2-fluoro paraphénylenediamine, la 2-isopropyl paraphénylenediamine, la N-(β-hydroxy-propyl) paraphénylenediamine, la 2-hydroxyméthyl paraphénylenediamine, la N,N-diméthyl 3-méthyl paraphénylenediamine, la N,N-(éthyl, β-hydroxyéthyl) paraphénylenediamine, la N-(β,γ-dihydroxypropyl) paraphénylenediamine, la N-(4'-aminophényl) paraphénylenediamine, la 25 N-phényl paraphénylenediamine, la 2-β-hydroxyéthyloxy paraphénylenediamine, la 2-β-acétylaminoéthyloxy paraphénylenediamine, la N-(β-méthoxyéthyl) paraphénylenediamine, et leurs sels d'addition avec un acide.

12. Composition selon la revendication 9, caractérisée par le fait que les bases doubles sont choisies parmi les composés de formule (II), et leurs sels d'addition avec un acide :

5

dans laquelle :

- Z_1 et Z_2 , identiques ou différents, représentent un radical hydroxyle ou $-\text{NH}_2$ pouvant être substitué par un radical alkyle en $\text{C}_1\text{-C}_4$ ou par un bras de liaison Y

10

;

- le bras de liaison Y représente une chaîne alkylène comportant de 1 à 14 atomes de carbone, linéaire ou ramifiée pouvant être interrompue ou terminée par un ou plusieurs groupements azotés et/ou par un ou plusieurs hétéroatomes tels que des atomes d'oxygène, de soufre ou d'azote, et éventuellement substituée par un ou plusieurs radicaux hydroxyle ou alcoxy en $\text{C}_1\text{-C}_6$;

15

- R_5 et R_6 représentent un atome d'hydrogène ou d'halogène, un radical alkyle en $\text{C}_1\text{-C}_4$, monohydroxyalkyle en $\text{C}_1\text{-C}_4$, polyhydroxyalkyle en $\text{C}_2\text{-C}_4$, aminoalkyle en $\text{C}_1\text{-C}_4$ ou un bras de liaison Y ;

20

- R_7 , R_8 , R_9 , R_{10} , R_{11} et R_{12} , identiques ou différents, représentent un atome d'hydrogène, un bras de liaison Y ou un radical alkyle en $\text{C}_1\text{-C}_4$;

étant entendu que les composés de formule (II) ne comportent qu'un seul bras de liaison Y par molécule.

25

13. Composition selon la revendication 12, caractérisée par le fait que les bases doubles de formule (II) sont choisies parmi le N,N'-bis-(β -hydroxyéthyl) N,N'-bis-(4'-aminophényl) 1,3-diamino propanol, la N,N'-bis-(β -hydroxyéthyl) N,N'-bis-(4'-aminophényl) éthylènediamine, la N,N'-bis-(4-aminophényl) tétraméthylènediamine, la N,N'-bis-(β -hydroxyéthyl) N,N'-bis-(4-aminophényl) tétraméthylènediamine, la N,N'-bis-(4-méthyl-aminophényl) tétraméthylène-diamine, la N,N'-bis-(éthyl) N,N'-bis-(4'-amino, 3'-méthylphényl) éthylènediamine, le 1,8-bis-(2,5-diaminophénoxy)-3,5-dioxaoctane, et leurs sels d'addition avec un acide.

10

14. Composition selon la revendication 9, caractérisée par le fait que les para-aminophénols sont choisis parmi les composés de formule (III), et leurs sels d'addition avec un acide :

15

dans laquelle :

- R₁₃ représente un atome d'hydrogène ou d'halogène, un radical alkyle en C₁-C₄, monohydroxyalkyle en C₁-C₄, alcoxy(C₁-C₄)alkyle(C₁-C₄), aminoalkyle en C₁-C₄ ou hydroxyalkyl(C₁-C₄)aminoalkyle en C₁-C₄,

- R₁₄ représente un atome d'hydrogène ou d'halogène, un radical alkyle en C₁-C₄, monohydroxyalkyle en C₁-C₄, polyhydroxyalkyle en C₂-C₄, aminoalkyle en C₁-C₄, cyanoalkyle en C₁-C₄ ou alcoxy(C₁-C₄)alkyle(C₁-C₄), étant entendu qu'au moins un des radicaux R₁₃ ou R₁₄ représente un atome d'hydrogène.

25

15. Composition selon la revendication 14, caractérisée par le fait que les para-aminophénols de formule (III) sont choisis parmi le para-aminophénol, le

4-amino 3-méthyl phénol, le 4-amino 3-fluoro phénol, le 4-amino 3-hydroxyméthyl phénol, le 4-amino 2-méthyl phénol, le 4-amino 2-hydroxyméthyl phénol, le 4-amino 2-méthoxyméthyl phénol, le 4-amino 2-aminométhyl phénol, le 4-amino 2-(β -hydroxyéthyl aminométhyl) phénol, le 5 4-amino 2-fluoro phénol, et leurs sels d'addition avec un acide.

16. Composition selon la revendication 9, caractérisée par le fait que les orthoaminophénols sont choisis parmi 2-amino phénol, le 2-amino 5-méthyl phénol, le 2-amino 6-méthyl phénol, le 5-acétamido 2-amino phénol, et leurs 10 sels d'addition avec un acide.

17. Composition selon la revendication 9, caractérisée par le fait que les bases d'oxydation hétérocycliques sont choisies parmi les dérivés pyridiniques, les dérivés pyrimidiniques, les dérivés pyrazoliques, les dérivés pyrazolo-pyrimidiniques, et leurs sels d'addition avec un acide. 15

18. Composition selon l'une quelconque des revendications précédentes, caractérisée par le fait que la ou les bases d'oxydation représentent de 0,0005 à 12 % en poids du poids total de la composition tinctoriale.

20
19. Composition selon la revendication 18, caractérisée par le fait que la ou les bases d'oxydation représentent de 0,005 à 6 % en poids du poids total de la composition tinctoriale.

25
20. Composition selon l'une quelconque des revendications précédentes, caractérisée par le fait que le ou les colorants directs cationiques sont choisis parmi les amino-anthraquinones cationiques, les mono- ou di-azoïques cationiques, les naphtoquinones cationiques.

30
21. Composition selon la revendication 20, caractérisée par le fait que le ou les colorants directs cationiques sont choisis parmi le chlorure de

[8-[(p-aminophényl)azol]-7-hydroxy-2-naphtyl]triméthylammonium, le chlorure de 3-[(4-amino-6-bromo-5,8-dihydro-1-hydroxy-8-imino-5-oxo-2-naphtalényl)-amino]-N,N,N-triméthyl-benzénaminium, le chlorure de 7-hydroxy-8-[(2-méthoxy-phényl)azo]-N,N,N-triméthyl-2-naphtalènaminium, le chlorure de [8-[(4-amino-2-nitrophényl)azol]-7-hydroxy-2-naphtyl]triméthylammonium et le chlorure de 3-[(4,5-dihydro-3-méthyl-5-oxo-1-phényl-1H-pyrazol-4-yl)azo]-N,N,N-triméthyl-benzénaminium.

22. Composition selon l'une quelconque des revendications 1 à 19, caractérisée par le fait que le ou les colorants directs cationiques sont choisis parmi :

a) les composés de formule (V) suivante :

15 dans laquelle :

D représente un atome d'azote ou le groupement -CH,

20 R₁₉ et R₂₀, identiques ou différents, représentent un atome d'hydrogène ; un radical alkyle en C₁-C₄ pouvant être substitué par un radical -CN, -OH ou -NH₂ ou forment avec un atome de carbone du cycle benzénique un hétérocycle éventuellement oxygéné ou azoté, pouvant être substitué par un ou plusieurs radicaux alkyle en C₁-C₄ ; un radical 4'-aminophényle,

25 R₂₁ et R'₂₁, identiques ou différents, représentent un atome d'hydrogène ou d'halogène choisi parmi le chlore, le brome, l'iode et le fluor, un radical cyano, alcoxy en C₁-C₄ ou acétyloxy,

X^- représente un anion de préférence choisi parmi le chlorure, le méthyl sulfate et l'acétate,

5 A représente un groupement choisi par les structures A1 à A19 suivantes :

A₁A₂A₃

10

A₄A₅A₆A₇A₈A₉A₁₀A₁₁A₁₂

15

A₁₃A₁₄A₁₅A₁₆A₁₇A₁₈A₁₉

dans lesquelles R₂₂ représente un radical alkyle en C₁-C₄ pouvant être substitué
10 par un radical hydroxyle et R₂₃ représente un radical alcoxy en C₁-C₄ ;

b) les composés de formule (VI) suivante :

dans laquelle :

R_{24} représente un atome d'hydrogène ou un radical alkyle en C_1-C_4 ,

5

R_{25} représente un atome d'hydrogène, un radical alkyle pouvant être substitué par un radical -CN ou par un groupement amino, un radical 4'-aminophényle ou forme avec R_{24} un hétérocycle éventuellement oxygéné et/ou azoté pouvant être substitué par un radical alkyle en C_1-C_4 ,

10

R_{26} et R_{27} , identiques ou différents, représentent un atome d'hydrogène, un atome d'halogène tel que le brome, le chlore, l'iode ou le fluor, un radical alkyle en C_1-C_4 ou alcoxy en C_1-C_4 , un radical -CN,

15

X^- représente un anion de préférence choisi parmi le chlorure, le méthyl sulfate et l'acétate,

B représente un groupement choisi par les structures B1 à B6 suivantes :

20

B1

B2

B3

B4

B5

B6

dans lesquelles R₂₈ représente un radical alkyle en C₁-C₄, R₂₉ et R₃₀, identiques ou différents, représentent un atome d'hydrogène ou un radical alkyle en C₁-C₄ ;

5 c) les composés de formules (VII) et (VII') suivantes :

(VII)

(VII')

dans lesquelles :

10

R₃₁ représente un atome d'hydrogène, un radical alcoxy en C₁-C₄, un atome d'halogène tel que le brome, le chlore, l'iode ou le fluor ou un radical amino,

15

R₃₂ représente un atome d'hydrogène, un radical alkyle en C₁-C₄ ou forme avec un atome de carbone du cycle benzénique un hétérocycle éventuellement oxygéné et/ou substitué par un ou plusieurs groupements alkyle en C₁-C₄,

R₃₃ représente un atome d'hydrogène ou d'halogène tel que le brome, le chlore, l'iode ou le fluor,

20

R_{34} et R_{35} , identiques ou différents, représentent un atome d'hydrogène ou un radical alkyle en C₁-C₄,

D₁ et D₂, identiques ou différents, représentent un atome d'azote ou le groupement -CH,

m = 0 ou 1,

étant entendu que lorsque R₃₁ représente un groupement amino non substitué,
alors D₁ et D₂ représentent simultanément un groupement -CH et m = 0,

X⁻ représente un anion de préférence choisi parmi le chlorure, le méthyl sulfate et l'acétate,

E représente un groupement choisi par les structures E1 à E8 suivantes :

E1

E2

E3

E4

E5

E6

E7

E8

dans lesquelles R₃₆ représente un radical alkyle en C₁-C₄ ;

- 5 lorsque m = 0 et que D₁ représente un atome d'azote, alors E peut également désigner un groupement de structure E9 suivante :

- 10 dans laquelle R₃₆ représente un radical alkyle en C₁-C₄.

23. Composition selon la revendication 22, caractérisée par le fait que les colorants directs cationiques de formule (V) sont choisis parmi les composés répondant aux structures (V1) à (V52) suivantes :

15

5

5

10

 Cl^- (V33) Cl^- (V34) Cl^- (V35) Cl^- (V36) Cl^- (V37)

5

5

24. Composition selon la revendication 22, caractérisée par le fait que les colorants directs cationiques de formule (VI) sont choisis parmi les composés répondant aux structures (VI1) à (VI12) suivantes :

5

;

;

10

;

;

et

5 25. Composition selon la revendication 22, caractérisée par le fait que les colorants directs cationiques de formule (VII) sont choisis parmi les composés
10 répondant aux structures (VII1) à (VII18) suivantes :

5

10

; et

26. Composition selon la revendication 22, caractérisée par le fait que les colorants directs cationiques de formule (VII') sont choisis parmi les composés répondant aux structures (VII'1) à (VII'3) suivantes :

10

27. Composition selon l'une quelconque des revendications précédentes, caractérisée par le fait que le ou les colorants directs cationiques représentent

de 0,001 à 10 % en poids du poids total de la composition tinctoriale prête à l'emploi.

28. Composition selon la revendication 27, caractérisée par le fait que le ou les colorants directs cationiques représentent de 0,05 à 5 % en poids du poids total de la composition tinctoriale prête à l'emploi.

29. Composition selon l'une quelconque des revendications précédentes, caractérisée par le fait que les sels d'addition avec un acide sont choisis parmi les chlorhydrates, les bromhydrates, les sulfates et les tartrates, les lactates et les acétates.

30. Composition selon l'une quelconque des revendications précédentes, caractérisée par le fait que le milieu approprié pour la teinture est constitué par de l'eau ou par un mélange d'eau et d'eau moins un solvant organique.

15 31. Composition selon l'une quelconque des revendications précédentes, caractérisée par le fait qu'elle présente un pH compris 5 et 11.

32. Composition selon l'une quelconque des revendications précédentes, caractérisée par le fait qu'elle contient au moins une peroxydase.

20 33. Procédé de teinture des fibres kératiniques et en particulier des fibres kératiniques humaines telles que les cheveux, caractérisé par le fait qu'on applique sur lesdites fibres au moins une composition tinctoriale prête à l'emploi telle que définie dans l'une quelconque des revendications précédentes, pendant un temps suffisant pour développer la coloration désirée.

34. Procédé selon la revendication 33, caractérisé par le fait qu'il comporte une étape préliminaire consistant à stocker sous forme séparée, d'une part, une composition (A) comprenant, dans un milieu approprié pour la teinture au moins une base d'oxydation, au moins un colorant direct cationique et, d'autre part,

une composition (B) renfermant, dans un milieu approprié pour la teinture, au moins une enzyme de type oxydo-réductase à 2 électrons en présence d'au moins un donneur pour ladite enzyme, puis à procéder à leur mélange au moment de l'emploi avant d'appliquer ce mélange sur les fibres kératiniques.

5

35. Dispositif à plusieurs compartiments ou "kit" de teinture, caractérisé par le fait qu'il comporte un premier compartiment renfermant la composition (A) telle que définie dans la revendication 34 et un second compartiment renfermant la composition (B) telle que définie dans la revendication 34.

INTERNATIONAL SEARCH REPORT

Inte. ional Application No
PCT/FR 98/02075

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6 A61K7/13

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	EP 0 716 846 A (YAMAHATSU SANGYO KAISHA) 19 June 1996 see page 2, line 24 - line 58 see page 3, line 3 - line 23 ---	1-11, 14-16, 20, 33
A	WO 94 00100 A (OREAL ;SAMAIN HENRI (FR); DUBIEF CLAUDE (FR)) 6 January 1994 see page 2, line 2 - page 5, line 6 see page 6, line 27 - line 32 ---	1, 2
A	EP 0 310 675 A (KYOWA HAKKO KOGYO KK ;YAMAHATSU SANGYO CO LTD (JP)) 12 April 1989 cited in the application ----	

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority, claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

8 December 1998

Date of mailing of the international search report

14/12/1998

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Pelli Wablat, B

INTERNATIONAL SEARCH REPORT

Information on patent family members

Int. Application No

PCT/FR 98/02075

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
EP 0716846	A	19-06-1996	AU 3662495 A CA 2150596 A JP 8217652 A		27-06-1996 17-06-1996 27-08-1996
WO 9400100	A	06-01-1994	FR 2692782 A DE 69301464 D DE 69301464 T EP 0645999 A JP 7508271 T US 5538517 A		31-12-1993 14-03-1996 05-06-1996 05-04-1995 14-09-1995 23-07-1996
EP 0310675	A	12-04-1989	JP 7045385 B JP 63246313 A DE 3886867 D DE 3886867 T WO 8807360 A US 4961925 A		17-05-1995 13-10-1988 17-02-1994 28-04-1994 06-10-1988 09-10-1990

RAPPORT DE RECHERCHE INTERNATIONALE

De : de Internationale No

PCT/FR 98/02075

A. CLASSEMENT DE L'OBJET DE LA DEMANDE

CIB 6 A61K7/13

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement)

CIB 6 A61K

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés)

C. DOCUMENTS CONSIDERES COMME PERTINENTS

Catégorie	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
A	EP 0 716 846 A (YAMAHATSU SANGYO KAISHA) 19 juin 1996 voir page 2, ligne 24 - ligne 58 voir page 3, ligne 3 - ligne 23 -----	1-11, 14-16, 20,33
A	WO 94 00100 A (OREAL ; SAMAIN HENRI (FR); DUBIEF CLAUDE (FR)) 6 janvier 1994 voir page 2, ligne 2 - page 5, ligne 6 voir page 6, ligne 27 - ligne 32 -----	1,2
A	EP 0 310 675 A (KYOWA HAKKO KOGYO KK ; YAMAHATSU SANGYO CO LTD (JP)) 12 avril 1989 cité dans la demande -----	

Voir la suite du cadre C pour la fin de la liste des documents

Les documents de familles de brevets sont indiqués en annexe

* Catégories spéciales de documents cités:

"A" document définissant l'état général de la technique, non considéré comme particulièrement pertinent

"E" document antérieur, mais publié à la date de dépôt international ou après cette date

"L" document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée)

"O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens

"P" document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée

"T" document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention

"X" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément

"Y" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier

"Z" document qui fait partie de la même famille de brevets

Date à laquelle la recherche internationale a été effectivement achevée

8 décembre 1998

Date d'expédition du présent rapport de recherche internationale

14/12/1998

Nom et adresse postale de l'administration chargée de la recherche internationale

Office Européen des Brevets, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Fonctionnaire autorisé

Pelli Wablat, B

RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatifs aux membres de familles de brevets

Des de Internationale No

PCT/FR 98/02075

Document brevet cité au rapport de recherche	Date de publication	Membre(s) de la famille de brevet(s)	Date de publication
EP 0716846 A	19-06-1996	AU 3662495 A CA 2150596 A JP 8217652 A	27-06-1996 17-06-1996 27-08-1996
WO 9400100 A	06-01-1994	FR 2692782 A DE 69301464 D DE 69301464 T EP 0645999 A JP 7508271 T US 5538517 A	31-12-1993 14-03-1996 05-06-1996 05-04-1995 14-09-1995 23-07-1996
EP 0310675 A	12-04-1989	JP 7045385 B JP 63246313 A DE 3886867 D DE 3886867 T WO 8807360 A US 4961925 A	17-05-1995 13-10-1988 17-02-1994 28-04-1994 06-10-1988 09-10-1990