Lecture 4: Introduction

Amos Ron

University of Wisconsin - Madison

February 01, 2021

Outline

- Matrix Norms
 - Characterizing the ∞-norm
 - Characterizing the 2-norm
- Positive definite matrices
 - Definition and example

Outline

- Matrix Norms
 - Characterizing the ∞-norm
 - Characterizing the 2-norm
- Positive definite matrices
 - Definition and example

Blank page

Theorem: Computing the ∞ -norm

 \bigcirc For an $A m \times n$,

$$||A||_1=||A'||_{\infty}.$$

2 Let b'_1, \ldots, b'_m be the rows of A. Then

$$||A||_{\infty} = \max_{1 \le i \le m} ||b_i||_1.$$

Theorem: Computing the ∞ -norm

• For an $A m \times n$,

$$||A||_1 = ||A'||_{\infty}.$$

2 Let b'_1, \ldots, b'_m be the rows of A. Then

$$||A||_{\infty} = \max_{1 \leq i \leq m} ||b_i||_1.$$

Comment: The equivalence of the two conditions above follows directly from the characterization of the 1-norm.

Comment: Assertion (2) above can be proved directly, using a similar approach (but with different details) to the prooof of the 1-norm case.

We show how to prove $||A||_1 = ||A'||_{\infty}$ directly from basic Linear Algebra principles.

Step I: Show that, for any $v \in \mathbb{R}^m$,

$$||v||_1 = \max\{(v, w) : ||w||_{\infty} = 1\},$$
 and

$$||v||_{\infty} = \max\{(v, w) : ||w||_{1} = 1\}.$$

Step II: Since $||A||_1 = \max\{||Av||_1 : ||v||_1 = 1\}$, it follows that

$$||A||_1 = \max\{(Av, w) : ||v||_1 = 1, \ ||w||_{\infty} = 1\}.$$

Step III: Since $||A'||_{\infty} = \max\{||A'w||_{\infty} : ||w||_{\infty} = 1\}$, it follows that

$$||A'||_{\infty} = \max\{(A'w, v) : ||v||_{1} = 1, ||w||_{\infty} = 1\}.$$

Some basics:

$$||v||_2^2 = (v, v).$$

Some basics:

$$||v||_2^2 = (v, v).$$

Whatever A is, A'A is symmetric, and its eigenvalues are non-negative.

$$(BC)' = C'B' \implies (A'A)' = A'A'' = A'A.$$

Some basics:

$$||v||_2^2 = (v, v).$$

Whatever A is, A'A is symmetric, and its eigenvalues are non-negative.

$$(A'A)v = \lambda v \implies \lambda ||v||_2^2 = (\lambda v, v) = (A'Av, v) = (Av, Av) = ||Av||_2^2,$$

$$\implies \lambda = \frac{||Av||_2^2}{||v||_2^2} \ge 0.$$

Also:

$$\lambda \le ||A||_2^2.$$

Whatever A is, A'A is symmetric, and its eigenvalues are non-negative.

Definition

- A left singular vector of A is an eigenvector of A'A.
- An $s \ge 0$ is a singular value of A is $s^2 \in \sigma(A'A)$.

Notation (spectral radius): A square:

$$\rho(A) := \max\{|\lambda| : \lambda \in \sigma(A)\}.$$

So:

$$||A||_2 \ge \sqrt{\rho(A'A)}.$$

Characterizing the 2-norm

Theorem: Chracterizing the 2-norm

$$||A||_2 = \sqrt{\rho(A'A)},$$

i.e., $||A||_2$ = the largest singular value of A.

Characterizing the 2-norm

Theorem: Chracterizing the 2-norm

$$||A||_2 = \sqrt{\rho(A'A)},$$

i.e., $||A||_2$ = the largest singular value of A.

Proof: We already saw that $||A||_2 \ge \sqrt(\rho(A'A))$.

Now, Let $v \in \mathbb{R}^m$, such that $||v||_2 = 1$, and $||A||_2 = ||Av||_2$. Let

$$A'A = QDQ'$$

be the Schur decomposition of A'A. Then

$$||A||_2^2 = ||Av||_2^2 = (Av, Av) = (A'Av, v) =$$

 $(QDQ'v, v) = (DQ'v, Q'v).$

Denote w := Q'v. Since Q' is orthogonal, $||w||_2 = ||v||_2 = 1$.

Characterizing the 2-norm

$$||A||_2^2 = ||Av||_2^2 = (Av, Av) = (A'Av, v) =$$

 $(QDQ'v, v) = (DQ'v, Q'v).$

Denote w := Q'v. Since Q' is orthogonal, $||w||_2 = ||v||_2 = 1$. So,

$$||A||_2^2 = (Dw, w) = \sum_{i=1}^m D(i, i)w(i)^2 \le \sum_{i=1}^m \rho(A'A)w(i)^2 = \rho(A'A)\sum_{i=1}^m w(i)^2 \le \sum_{i=1}^m \rho(A'A)w(i)^2 = \rho(A'A)\sum_{i=1}^m w(i)^2 \le \sum_{i=1}^m \rho(A'A)w(i)^2 \le \sum_{i=1}^m \rho(A'A)w(i)^$$

So,
$$||A||_2 \le \sqrt{(\rho(A'A))}$$
.

Demo #2

Outline

- Matrix Norms
 - Characterizing the ∞-norm
 - Characterizing the 2-norm
- Positive definite matrices
 - Definition and example

Definition of Positive Definiteness