WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 5:

A01N 25/32, 43/56 C07D 231/06, 231/54 (11) Internationale Veröffentlichungsnummer:

WO 91/07874

A1

(43) Internationales
Veröffentlichungsdatum:

13. Juni 1991 (13.06.91)

(21) Internationales Aktenzeichen:

PCT/EP90/02020

(22) Internationales Anmeldedatum:

26. November 1990 (26.11.90)

(74) Gemeinsamer Vertreter: HOECHST AKTIENGESELL-SCHAFT; Zentrale Patentabteilung, Postfach 80 03 20, D-6230 Frankfurt am Main 80 (DE).

(81) Bestimmungsstaaten: AT (europäisches Patent), AU, BE

(30) Prioritätsdaten:

P 39 39 503.0

30. November 1989 (30.11.89) DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US): HO-ECHST AKTIENGESELLSCHAFT [DE/DE]; Postfach 80 03 20, D-6230 Frankfurt am Main 80 (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): RÖSCH, Wolfgang [DE/DE]; Geisenheimer Straße 92, D-6000 Frankfurt am Main (DE). SOHN, Erich [DE/DE]; Lange Gasse 4, D-8900 Augsburg (DE). BAUER, Klaus [DE/DE]; Doorner Straße 53d, D-6450 Hanau (DE). BIERINGER, Hermann [DE/DE]; Eichenweg 26, D-6239 Eppstein (DE).

(europäisches Patent), ČA, ĈH (europäisches Patent), DE (europäisches Patent), DK (europäisches Patent), ES (europäisches Patent), FR (europäisches Patent), GB (europäisches Patent), GR (europäisches Patent), HU, IT (europäisches Patent), JP, KR, LU (europäisches Patent), NL (europäisches Patent), SE (europäisches Patent), SU, US.

Veröffentlicht

Mit internationalem Recherchenbericht.

(54) Title: PYRAZOLINES FOR THE PROTECTION OF CROPS AGAINST HERBICIDES

(54) Bezeichnung: PYRAZOLINE ZUM SCHUTZ VON KULTURPFLANZEN GEGENÜBER HERBIZIDEN

$$(X)_{n}$$

$$R^{3}$$

$$R^{2}$$

$$H$$

$$COOR^{1}$$

(57) Abstract

Disclosed are compounds of formula (I) in which X, n, R^1 , R^2 and R^3 are as defined in claim 1. Such compounds are suitable for use as antidotes against the phytotoxic side-effects of herbicides used on crops, without diminishing the effect of the herbicides against weeds.

(57) Zusammenfassung

Verbindungen der Formel (I), worin X, n, R¹, R² und R³ wie in Anspruch 1 definiert sind, eignen sich als Antidote gegen phytotoxische Nebenwirkungen von Herbiziden bei Kulturpflanzen, ohne die Wirkung der Herbizide gegen Schadpoflanzen zu beeinträchtigen.

LEDIGLICH ZUR INFORMATION

Code, die zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AT	Österreich	ES	Spanien	MG	Madagaskar
ΑU	Australien	FI	Finnland	ML	Mali
BB	Barbados	FR	Frankreich	MN	Mongolei
BE	Belgien	GA	Gabon	MR	Mauritanien
BF	Burkina Faso	GB	Vereinigtes Königreich	MW	Malawi
B G	Bulgarien	GN	Guinea	NL	Niederlande
BJ	Benin	GR	Griechenland	NO	Norwegen
BR	Brasilien	HU	Ungarn	PL	Polen
CA	Kanada	IT	Italien	RO	Rumänien
CF	Zentrale Afrikanische Republik	JP	Japan	SD	Sudan
œ	Kongo	KP	Demokratische Volksrepublik Korea	SE	Schweden
CH	Schweiz	KR	Republik Korea	SN	Senegal
a	Côte d'Ivoire	LI	Liechtenstein	SU	Soviet Union
CM	Kamerun	LK	Sri Lanka	TD	Tschad
DE	Deutschland	LU	Luxemburg	TG	Togo
DK	Dänemark	MC	Monaco	us	Vereinigte Staaten von Amerika

WO 91/07874 PCT/EP90/02020

Beschreibung

5

20

25

Pyrazoline zum Schutz von Kulturpflanzen gegenüber Herbiziden

Bei der Anwendung von Herbiziden, können unerwünschte, nicht tolerierbare Schäden an Kulturpflanzen auftreten. Besonders bei der Applikation von Herbiziden nach dem Auflaufen der Kulturpflanzen besteht daher oft das Bedürfnis, das Risiko einer möglichen Phytotoxizität zu vermeiden.

Solche Verbindungen, die die Eigenschaften besitzen,
Kulturpflanzen gegen phytotoxische Schäden durch Herbizide

zu schützen, ohne die eigentliche herbizide Wirkung dieser
Mittel zu beeinträchtigen, werden "Antidot" oder "Safener"
genannt.

Verschiedene Verbindungen wurden für diese Anwendung bereits beschrieben (vgl. z.B. EP-A 152 006 und EP-A 0174562).

In der Deutschen Patentanmeldung P-3 808 896.7 wurden 1-Phenyl- und 1-(Pyrid-2-yl)-pyrazolderivate als Safener vorgeschlagen.

Die Anwendung von Alkoxypyrazolinen als Safener wurde in der Deutschen Patentanmeldung P 3923649.8 (HOE 89/F 235) vorgeschlagen.

Gegenstand der vorliegenden Erfindung sind kulturpflanzenschützende Mittel, welche 4,5-Pyrazolin-3carbonsäureesterderivate der Formel (I),

worin

10 X unabhängig voneinander Halogen oder Halogenalkyl,

n eine ganze Zahl von 1 bis 3,

R¹ Wasserstoff, Alkyl, Cycloalkyl, Trialkylsilyl, Trialkylsilylmethyl oder Alkyloxyalkyl,

15 R² und R³ unabhängig voneinander Wasserstoff, Alkyl,
C₃-C₆-Cycloalkyl, Alkenyl, Alkinyl, Halogenalkyl,
Alkoxyalkyl, Hydroxyalkyl, Alkoxycarbonyl,
Alkylcarbonyl, Alkylaminocarbonyl, gegebenenfalls
substituiertes Phenyl, Halogen oder Cyano bedeuten,
wobei die Reste R² und R³ mit dem 5-C-Atom des
Pyrazolinrings einen Ring bilden können,
enthalten.

Die Formel (I) umfaßt dabei alle möglichen geometrischen 25 Isomeren und Stereoisomeren. In Formel (I) bedeuten Halogen Fluor, Chlor, Brom oder Jod, Alkyl geradkettiges, verzweigtes oder cyclisches Alkyl, Alkenyl geradkettiges oder verzweigtes Alkenyl, wobei die Doppelbindung an beliebiger Stelle im Alkenylrest vorliegen kann und Alkinyl 30 geradkettiges oder verzweigtes Alkinyl, wobei auch hier die Dreifachbindung beliebig im Alkinylrest lokalisiert sein kann, Halogenalkyl ein- oder mehrfach durch Halogen substituiertes Alkyl, Alkoxyalkyl und Hydroxyalkyl einoder mehrfach durch Alkoxy bzw. Hydroxy substituiertes Alkyl. Die genannten Bedeutungen für Alkyl gelten auch für 35 die in Kombinationen wie Alkyloxyalkyl, Alkyloxycarbonyl und Alkylaminocarbonyl enthaltenen Alkylreste.

Von besonderem Interesse sind erfindungsgemäße Mittel mit Verbindungen der Formel (I), worin 5

- X unabhängig voneinander Halogen oder C_1-C_4 -Halogenalkyl,
- n ein ganze Zahl von 1 bis 3,
- R^1 C_1 - C_6 -Alkyl, C_3 - C_6 -Cycloalkyl, Tri- $(C_1$ - C_4 -alkyl)-silyl, Tri- $(C_1$ - C_4 -alkyl)silylmethyl oder $(C_1$ - C_6 -Alkyloxy)- C_1 - C_6 -alkyl,
- R^2 und R^3 unabhängig voneinander Wasserstoff, C_1 - C_6 -Alkyl, C_2 - C_6 -Alkenyl, C_2 - C_6 -Alkinyl, C_3 - C_6 -Cycloalkyl, C_1 - C_6 -Halogenalkyl, Mono- oder Di- $(C_1$ - C_4 -Alkoxy)- C_1 - C_4 -Alkyl, C_1 - C_6 -Hydroxyalkyl, $(C_1$ - C_6 -Alkyl)carbonyl, Mono-
- Alkyl, C₁-C₆-Hydroxyalkyl, (C₁-C₆-Alkyl)carbonyl, Monooder Di-(C₁-C₄-alkyl)amino-carbonyl, Cyano, Halogen,
 (C₁-C₁₂-Alkyl)-oxycarbonyl, Phenyl oder Phenyl, das
 durch ein oder mehrere Reste aus der Gruppe Halogen,
 C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder Cyano substituiert ist,

bedeuten.

Halogenalkyl bedeutet bevorzugt Trifluormethyl, 2-Chlorethyl, 1,1,2,2-Tetrafluorethyl oder Hexafluorpropyl; Halogen ist bevorzugt Fluor, Chlor oder Brom.

Alkyl steht bevorzugt für einen der Reste Methyl, Ethyl, n-Propyl, i-Propyl, die Butyl-, Pentyl und Hexylisomeren, Cyclopentyl und Cyclohexyl.

Alkenyl bedeutet bevorzugt einen der Reste Vinyl, 1-Propen-1-yl, 1-Propen-2-yl, die Butenyl-, Pentenyl- und

25 Hexenylisomeren.

Alkinyl steht bevorzugt für Ethinyl, 1-Propinyl oder 2-Propinyl.

Bevorzugt sind erfindungsgemäße Mittel mit Verbindungen der Formel (I), worin

- X unabhängig voneinander Fluor, Chlor, Brom oder Trifluormethyl, vorzugsweise jeweils in 2- oder 4-Position,
- n 2 oder 3,

30

- 35 $R^1 C_1-C_4-Alkyl$ oder $(C_1-C_4-Alkoxy)-C_1-C_4-alkyl$,
 - R² Wasserstoff, C₁-C₄-Alkyl, C₂-C₄-Alkenyl,
 - R^3 C_1 - C_4 -Alkyl, C_3 - C_4 -Alkenyl, C_2 - C_4 -Alkinyl, C_1 - C_4 -Halogenalkyl, Mono- oder Di- $(C_1$ - C_4 -Alkoxy)- C_1 - C_4 -alkyl, C_1 - C_4 -Hydroxyalkyl, Mono- oder Di- $(C_1$ - C_4 -alkyl)-aminocarbonyl, Cyano, $(C_1$ - C_{12} -Alkyloxy)-carbonyl,

Phenyl oder Phenyl, das ein- oder mehrfach durch Halogen, insbesondere Fluor oder Chlor, substituiert ist, bedeuten.

- 5 Besonders bevorzugt sind erfindungsgemäße Mittel mit Verbindungen der Formel (I), worin
 - .X unabhängig voneinander Fluor, Chlor, Brom oder Trifluormethyl, vorzugsweise in 2- oder 4-Position im Phenylring,
- 10 n 2 oder 3,

15

- R² Wasserstoff, C₁-C₄-Alkyl, C₂-C₄-Alkenyl oder C₂-C₄-Alkinyl,
- R³ C₁-C₄-Alkyl, das unsubstituiert oder ein- oder mehrfach durch Halogen substituiert ist, (C₁-C₁₂-Alkyl)oxycarbonyl oder Cyano bedeuten.

Die Verbindungen der Formel (I) sind zum Teil aus WO 88/06583 als Vorprodukte zur Herstellung von Insektiziden bekannt und können analog den dort beschriebenen Verfahren hergestellt werden. Die Safenerwirkung der Verbindungen der Formel (I) ist nicht bekannt gewesen.

- Gegenstand der Erfindung sind auch nicht vorbeschriebene Verbindungen der genannten Formel (I), in der R¹ Cycloalkyl, bevorzugt C₃-C₆-Cycloalkyl, Trialkylsilyl, Trialkylsilylmethyl oder Alkyloxyalkyl, bevorzugt (C₁-C₆-Alkoxy)-C₁-C₆-alkyl bedeutet oder Verbindungen der Formel (I), in der
- (X)_n 2 oder 3 Reste am Phenylring, vorzugsweise zwei Reste in 2,3- oder 2,4-Position, insbesondere in 2,4-Position am Phenylring, aus der Gruppe Halogen und Halogenalkyl, wie z.B C₁-C₄-Halogenalkyl, vorzugsweise die Reste 2,4-Cl₂, 2,4-F₂, 2,4-Br₂, 2-Cl-4-F, 2-F-4-Cl, 2,4-(CF₃)₂, 2-CF₃-4-Cl, 2-Cl-4-CF₃, 2-F-4-CF₃, 2-CF₃-4-F, 2-CF₃-4-Br, 2-Br-4-CF₃, insbesondere 2,4-Cl₂ bedeuten.

Die obengenannten Verbindungen der Formel (I) können beispielsweise hergestellt werden, indem man eine Verbindung der Formel (II),

5

$$(X)_{n}$$

$$NH-N=C-COOR^{1}$$
(II)

worin Y für Chlor oder Brom steht und $(X)_n$ und \mathbb{R}^1 die oben angegebenen Bedeutungen haben, mit Olefinen der Formel (III),

$$H_2C=C \xrightarrow{\mathbb{R}^2} (III)$$

worin R^2 und R^3 die oben angegebenen Bedeutungen haben, 20 umsetzt.

Die Komponenten können äquimolar oder im Überschuß der Verbindungen der Formel (III) eingesetzt werden, zweckmäßigerweise im molaren Verhältnis von 1: 1,05 bis 1: 20, bevorzugt im molaren Verhältnis 1: 1,1 bis 1: 5.

Die Verbindungen der Formel (II) sind zum Teil bekannt oder können nach üblichen Verfahren synthetisiert werden. Sie lassen sich beispielsweise aus den entsprechenden Anilinen durch Diazotieren und Kuppeln mit den entsprechenden 2-Chlor-Acetessigestern erhalten. Die Verbindungen der Formel (III) sind ebenfalls nach üblichen Verfahren zugänglich, zum Beispiel durch Wittig-Olefinierung der entsprechenden Ketone oder Aldehyde der Formel R²COR³.

35

25

30

Die Umsetzung der Verbindungen der Formeln(II) und (III) wird in der Regel zwischen 0 und 150°C, vorteilhaft zwischen 20 und 100°C, gegebenenfalls in Gegenwart einer

organischen Base, wie sterisch gehinderte Amine, z.B.
Triethylamin oder Pyridin, oder einer anorganischen Base,
wie z.B. Kaliumcarbonat, Kaliumhydroxyd oder
Natriumcarbonat, mit oder ohne Gegenwart eines organischen
Lösungsmittels, wie gegebenenfalls eines halogenierten
aliphatischen oder aromatischen Kohlenwasserstoffs oder
eines Ethers, beispielsweise des Lösungsmittels Toluol,
Xylol, Dichlorethan, Dimethoxyethan, Di- oder Triglyme,
Cyclohexan, Petrolether oder Chlorbenzol, durchgeführt.

10

35

5

Basen und Lösungsmittel sind nur beispielhaft aufgezählt, ohne daß das Verfahren auf diese Beispiele beschränkt ist.

- Die Verbindungen der Formel (I) haben die Eigenschaft,

 phytotoxische Nebenwirkungen von Herbiziden, beim Einsatz
 in Nutzpflanzenkulturen zu vermindern oder ganz zu
 verhindern. Die Verbindungen der Formel (I) sind in der
 Lage, schädliche Nebenwirkungen der Herbizide weitgehend
 oder völlig aufzuheben, ohne die Wirksamkeit dieser

 Herbizide gegen Schadpflanzen zu schmälern. Das
 Einsatzgebiet herkömmlicher Herbizide kann durch Zugabe der
 Safenerverbindung der Formel (I) ganz erheblich vergrößert
 werden.
- Gegenstand der vorliegenden Erfindung ist daher auch ein Verfahren zum Schutz von Kulturpflanzen gegen phytotoxische Nebenwirkungen von Herbiziden, das dadurch gekennzeichnet ist, daß man die Pflanzen, Pflanzensamen oder Anbauflächen mit einer Verbindung der Formel (I) vor, nach oder gleichzeitig mit einem Herbizid behandelt.

Herbizide, deren phytotoxische Nebenwirkungen mittels der Verbindungen der Formel (I) herabgesetzt werden können, sind z.B. Carbamate, Thiocarbamate, Halogenacetanilide, substituierte Phenoxy-, Naphthoxy- und Phenoxyphenoxy-carbonsäurederivate sowie

Heteroaryloxyphenoxycarbonsäurederivate wie Chinolyloxy-, Chinoxalyloxy-, Pyridyloxy-, Benzoxazolyloxy-,

Benzthiazolyloxy-phenoxy-carbonsäureester und ferner Cyclohexandion-derivate. Bevorzugt hiervon sind Phenoxyphenoxy- und Heteroaryloxyphenoxy-carbonsäureester und strukturelle Analoga wie Benzylphenoxycarbonsäureester. Als Ester kommen hierbei insbesondere niedere Alkyl-, Alkenyl- und Alkinylester in Frage.

Beispielsweise seien, ohne daß dadurch eine Beschränkung erfolgen soll, folgende Herbizide genannt:

10

5

A) Herbizide vom Typ der Phenoxyphenoxy- und Heteroaryloxyphenoxycarbonsäure- (C_1-C_4) -alkyl-, (C_2-C_4) -alkenyl- oder (C_3-C_4) -alkinylester wie 2-(4-(2,4-Dichlorphenoxy)phenoxy)-propionsäuremethylester, 2-(4-(4-Brom-2chlorphenoxy)-phenoxy)-propionsäuremethylester, 2-(4-(4-15 Trifluormethylphenoxy)-phenoxy)-propionsäuremethylester, 2-(4-(2-Chlor-4-trifluormethylphenoxy)-phenoxy)propionsäuremethylester; 2-(4-(2,4-Dichlorbenzyl)phenoxy)-propionsäuremethylester, 2-Isopropylideneaminooxyethyl(R)-2-[4-(6-chloroquinoxalin-2-yloxy)-phenoxy]-20 propionat (Propaguizafop), 4-(4-(4-Trifluormethylphenoxy)-phenoxy)-pent-2-ensäureethylester, 2-(4-(3,5-Dichlorpyridyl-2-oxy)phenoxy)-propionsäureeethylester, 2-(4-(3,5-Dichlorpyridyl-2-oxy)-phenoxy)-propionsäurepropargylester, 25 2-(4-(6-Chlorbenzoxazol-2-yloxy)-phenoxy)propionsäureethylester, 2-(4-(6-Chlorbenzthiazol-2-yloxy)-phenoxy)-propionsäureethylester, 2-(4-(3-Chlor-5trifluormethyl-2-pyridyloxy)-phenoxy)propionsäuremethylester, 2-(4-(5-Trifluormethyl-2-30 pyridyloxy)-phenoxy)-propionsäurebutylester, 2-(4-(6-Chlor-2-chinoxalyloxy)-phenoxy)-propionsaureethylester, 2-(4-(6-Fluor-2-chinoxalyloxy)-phenoxy)propionsäureethylester, 2-(4-(5-Chlor-3-fluorpyridyl-2oxy)-phenoxy)-propionsäurepropargylester, 2-(4-(6-Chlor-35 2-chinolyloxy)-phenoxy)-propionsäureethylester, 2-(4-(3,5-Dichlorpyridyl-2-oxy)-phenoxy)-

propionsäuretrimethylsilylmethylester, 2-(4-(3-Chlor-5-

trifluormethoxy-2-pyridyloxy)-phenoxy)propionsäureethylester,

- B) Chloracetanilid-Herbizide wie

 N-Methoxymethyl-2,6-diethyl-chloracetanilid,

 2-Chlor-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methyl-ethyl)-acetamid, N-(3-Methyl-1,2,4-oxdiazol-5-yl-methyl)-chloressigsäure-2,6-dimethylanilid,
- C) Cyclohexandion-derivate wie S-Ethyl-N,N-dipropylthiocarbamat oder S-Ethyl-N,N-diisobutylthiocarbamat,
 - D) Cyclohexadion-Derivate wie
- 2-(N-Ethoxybutyrimidoyl)-5-(2-ethylthiopropyl)-3-hydroxy-2-cyclohexen-1-on, 2-(N-Ethoxybutyrimidoyl)-5-(2-phenyl-thiopropyl)-3-hydroxy-2-cyclohexen-1-on oder 2-(1-Allyloxyiminbutyl)-4-methoxycarbonyl-5,5-dimethyl-
 - 3-oxocyclohexenol, 2-(N-Ethoxypropionamidoyl)-5-mesityl-
- 3-hydroxy-2-cyclohexen-1-on (oder auch als
 5-(2,4,6-Trimethylphenyl)-3-hydroxy-2-[1-(Ethoxyimino)propyl]-cyclohex-2-en-1-on bezeichnet),
 2-(N-Ethoxybutyrimidoyl)-3-budrowy-5-(thiam-2-ex)-6
 - 2-(N-Ethoxybutyrimidoyl)-3-hydroxy-5-(thian-3-yl)-2-cyclohexen-1-on/
- 2-[1-(Ethoxyimino)-butyl]-3-hydroxy-5-(2H-tetrahydrothiopyran-3-yl)-2-cyclohexen-1-one (BASF 517);
 (±)-2-[(E)-3-chloroallyloxyiminopropyl]-5-(2-ethylthiopropyl)-3-hydroxycyclohex-2-enone (Clethodim).
- Von den Herbiziden, welche erfindungsgemäß mit den Verbindungen der Formel (I) kombiniert werden können, sind bevorzugt die unter A) aufgeführten Verbindungen zu nennen, insbesondere 2-(4-(6-Chlorbenzoxazol-2-yl-oxy)-phenoxy)-propionsäureethylester, 2-(4-(6-Chlorbenzthiazol-2-yl-oxy)-
- phenoxy)-propionsäureethylester und 2-(4-(5-Chlor-3-fluor-pyridyl-2-oxy)-phenoxy)-propionsäurepropargylester. Von den unter D) genannten Substanzen ist insbesondere 2-(N-Ethoxypropionamidoyl)-5-mesityl-3-hydroxy-2-cyclohexen-1-on von Bedeutung.

Das Gewichtsverhältnis Safener (Verbindung I): Herbizid kann innerhalb weiter Grenzen variieren und ist vorzugsweise im Bereich von 1: 10 bis 10: 1, insbesondere 2: 1 bis 1: 10.

5

10

15

20

25

Die jeweils optimalen Mengen an Herbizid und Safener sind abhängig vom Typ des verwendeten Herbizids oder vom verwendeten Safener sowie von der Art des zu behandelnden Pflanzenbestandes und lassen sich von Fall zu Fall durch entsprechende Versuche ermitteln.

Haupteinsatzgebiete für die Anwendung der Safener sind vor allem Getreidekulturen (Weizen, Roggen, Gerste, Hafer), Reis, Mais, Sorghum, aber auch Baumwolle, Zuckerrüben, Zuckerrohr und Sojabohne.

Die Safener können je nach ihren Eigenschaften zur Vorbehandlung des Saatgutes der Kulturpflanze (Beizung der Samen) verwendet werden oder vor der Saat in die Saatfurchen eingebracht werden und vor, nach oder gleichzeitig zusammen mit dem Herbizid vor oder nach dem Auflaufen der Pflanzen angewendet werden. Vorauflaufbehandlung schließt sowohl die Behandlung der Anbaufläche vor der Aussaat als auch die Behandlung der angesäten, aber noch nicht bewachsenen Anbauflächen ein.

Bevorzugt ist jedoch die gleichzeitige Anwendung des Safeners mit dem Herbizid in Form von Tankmischungen oder Fertigformulierungen.

30

35

Die Verbindungen der Formel (I) oder deren Kombination mit einem oder mehreren der genannten Herbizide bzw.

Herbizidgruppen können auf verschiedene Art formuliert werden, je nachdem wie es durch die biologischen und/oder chemisch-physikalischen Parameter vorgegeben ist. Als Formulierungsmöglichkeiten kommen beispielsweise folgende infrage:

Emulgierbare Konzentrate (EC), Emulsionen (EW),
Suspensionskonzentrate (SC), Kapselsuspension (CS),
wasserlösliche Konzentrate (SL), wasserlösliche Pulver (SP),
wasserlösliche Granulate (SG), wasserdispergierbare Pulver
(Spritzpulver) (WP), wasserdispergierbare Granulate (WG),
ölmischbare Lösungen (OL), Stäubemittel (DP), Granulate
(GR) in Form von Mikro-, Sprüh-, Aufzugs- und
Adsorptionsgranulaten, ULV-Formulierungen, Mikrokapseln
und Wachse.

10

5

Diese einzelnen Formulierungstypen sind im Prinzip bekannt und werden beispielsweise beschrieben in: Winnacker-Küchler, "Chemische Technologie", Band 7, C. Hauser Verlag, München, 4. Auflage 1986; van Valkenburg, "Pesticides Formulations", Marcel Dekker N.Y., 2nd Ed. 1972-73; K. Martens, "Spray

Marcel Dekker N.Y., 2nd Ed. 1972-73; K. Martens, "Spray Drying Handbook", 3rd Ed. 1979, G. Goodwin Ltd, London.

Die notwendigen Formulierungshilfsmittel wie Inertmaterialien, Tenside, Lösungsmittel und weitere 20 Zusatzstoffe sind ebenfalls bekannt und werden beispielsweise beschrieben in: Watkins, "Handbook of Insecticide Dust Diluents and Carriers", 2nd Ed., Darland Books, Caldewell N.J.; H. v. Olphen, "Introduction to Clay Colloid Chemistry", 2nd Ed., J. Wiley & Sons, N.Y. 1950; McCutcheon's "Detergents and Emulsifiers Annual", MC Publ. 25 Corp., Ridgewood N.J.; Sisley and Wood, "Encyclopedia of Suface Active Agents", Chem. Publ. Co. Inc., N.Y. 1964; Schönfeldt, "Grenzflächenaktive Äthylenoxiaddukte", Wiss. Verlagsgesellschaft, Stuttgart 1976; Winnacker-Küchler, "Chemische Technologie", Band 7, C. Hauser Verlag München, 30 4. Aufl. 1986.

Auf der Basis dieser Formulierungen lassen sich auch Kombinationen mit anderen pestizid wirksamen Stoffen,

Düngemitteln und/oder Wachstumsregulatoren herstellen, z.B. in Form einer Fertigformulierung oder als Tankmix.

Spritzpulver sind in Wasser gleichmäßig dispergierbare Präparate, die neben dem Wirkstoff außer einem Verdünnungs- oder Inertstoff noch Netzmittel, z.B.

polyoxethylierte Alkyphenole, polyoxethylierte
Fettalkohole und Fettamine,
Fettalkoholpolyglykolethersulfate, Alkan- oder
Alkylbenzolsulfonate und Dispergiermittel, z.B.
ligninsulfonsaures Natrium, 2,2'-dinaphthylmethan-6,6'disulfonsaures Natrium, dibutylnaphthalin-sulfonsaures
Natrium oder auch oleylmethyltaurinsaures Natrium
enthalten.

Emulgierbare Konzentrate werden durch Auflösen des Wirkstoffes in einem organischen Lösungsmittel, z.B. Butanol, Cyclohexanon, Dimethylformamid, Xylol oder auch höhersiedenden Aromaten oder Kohlenwasserstoffen unter Zusatz von einem oder mehreren Emulgatoren hergestellt. Als Emulgatoren können beispielsweise verwendet werden: Alkylarylsulfonsaure Calzium-Salze wie Ca-dodecylbenzolsulfonat oder nichtionische Emulgatoren wie Fettsäurepolyglykolester, Alkylarylpolyglykolether, Fettalkoholpolyglykolether, Propylenoxid-Ethylenoxid-Kondensationsprodukte, Alkylpolyether, Sorbitanfettsäureester, Polyoxyethylensorbitan-

fettsäureester oder Polyoxethylensorbitester.

Stäubemittel erhält man durch Vermahlen des Wirkstoffes mit fein verteilten festen Stoffen, z.B. Talkum, natürlichen 25 Tonen wie Kaolin, Bentonit und Pyrophyllit, oder Diatomeenerde. Granulate können entweder durch Verdüsen des Wirkstoffes auf adsorptionsfähiges, granuliertes Inertmaterial hergestellt werden oder durch Aufbringen von 30 Wirkstoffkonzentraten mittels Klebemitteln, z.B. Polyvinylalkohol, polyacrylsaurem Natrium oder auch Mineralölen, auf die Oberfläche von Trägerstoffen wie Sand, Kaolinite oder von granuliertem Inertmaterial. Auch können geeignete Wirkstoffe in der für die Herstellung von 35 Düngemittelgranulaten üblichen Weise - gewünschtenfalls in Mischung mit Düngemitteln - granuliert werden.

In der Regel enthalten die erfindungsgemäßen Formulierungen 1 bis 95 Gew.-%, vorzugsweise 2 bis 90 Gew.-% Wirkstoff, d.h. Wirkstoff der Formel (I) oder Kombination des Wirkstoffs der Formel (I) mit dem Pflanzenschutzmittel (Herbizid).

In Spritzpulvern beträgt die Wirkstoffkonzentration z.B. etwa 10 bis 90 Gew.-%, der Rest zu 100 Gew.-% besteht aus üblichen Formulierungsbestandteilen. Bei emulgierbaren

Konzentraten kann die Wirkstoffkonzentration etwa 1 bis 85 Gew.-%, vorzugsweise 5 bis 80 Gew.-% betragen. Staubförmige Formulierungen enthalten meistens 1 bis 25 Gew.-%, vorzugsweise 5 bis 20 Gew.-% an Wirkstoff, versprühbare Lösungen etwa 0,2 bis 25 Gew.-%, vorzugsweise 2 bis 20 Gew.-% Wirkstoff. Bei Granulaten hängt der Wirkstoffgehalt zum Teil davon ab, ob die wirksame Verbindung flüssig oder fest vorliegt und welche Granulierhilfsmittel, Füllstoffe usw. verwendet werden.

5

- Daneben enthalten die genannten Wirkstofformulierungen gegebenenfalls die jeweils üblichen Haft-, Netz-, Dispergier-, Emulgier-, Penetrations-, Lösungsmittel, Fülloder Trägerstoffe.
- Zur Anwendung werden die in handelsüblicher Form vorliegenden Konzentrate gegebenenfalls in üblicher Weise verdünnt, z.B. bei Spritzpulvern, emulgierbaren Konzentraten, Dispersionen und teilweise auch bei Mikrogranulaten mittels Wasser. Staubförmige und granulierte Zubereitungen sowie versprühbare Lösungen werden vor der Anwendung üblicherweise nicht mehr mit weiteren inerten Stoffen verdünnt.
- Mit den äußeren Bedingungen wie Temperatur, Feuchtigkeit,
 der Art des verwendeten Herbizids u. a. variiert die
 erforderliche Aufwandmenge der Verbindungen der Formel (I).
 Sie kann innerhalb weiter Grenzen schwanken, z.B. zwischen
 0,005 und 10,0 kg/ha oder mehr Aktivsubstanz, vorzugsweise
 liegt sie jedoch zwischen 0,01 und 5 kg/ha.

Folgende Beispiele dienen zur Erläuterung der Erfindung:

A. Formulierungsbeispiele

- a) Ein Stäubemittel wird erhalten, indem man 10 Gew.-Teile einer Verbindung der Formel (I) und 90 Gew.-Teile Talkum oder Inertstoff mischt und in einer Schlagmühle zerkleinert.
- b) Ein in Wasser leicht dispergierbares, benetzbares Pulver wird erhalten, indem man 25 Gew.-Teile einer Verbindung der Formel (I), 64 Gew.-Teile kaolinhaltigen Quarz als Inertstoff, 10 Gew.-Teile ligninsulfonsaures Kalium und 1 Gew.-Teil oleoylmethyltaurinsaures Natrium als Netzund Dispergiermittel mischt und in einer Stiftmühle mahlt.
- Dispersionskonzentrat wird erhalten, indem man 20 Gew.Teile einer Verbindung der Formel (I) mit 6 Gew.-Teilen
 Alkylphenolpolyglykolether (Triton X 207), 3 Gew.Teilen Isotridecanolpolyglykolether (8 EO = 8
 Ethylenoxyeinheiten) und 71 Gew.-Teilen paraffinischem
 Mineralöl (Siedebereich z.B. ca. 255 bis über 277°C)
 mischt und in einer Reibkugelmühle auf eine Feinheit
 von unter 5 Mikron vermahlt.
- d) Ein emulgierbares Konzentrat wird erhalten aus 15 Gew.Teilen einer Verbindung der Formel (I), 75 Gew.-Teilen
 Cyclohexanon als Lösungsmittel und 10 Gew.-Teilen
 oxethyliertes Nonylphenol als Emulgator.
- e) Ein in Wasser leicht emulgierbares Konzentrat aus einem Phenoxycarbonsäureester und einem Antidot (10 : 1) wird erhalten aus 12,00 Gew.-% 2-[4-(6-Chlorbenzoxazol-2-yl-oxy)-phenoxy]-propionsäureethylester,

```
1,20 Gew.-% Verbindung der Formel (I),
         69,00 Gew.-% Xylol,
          7,80 Gew.-% dodecylbenzolsulfonsaurem Calcium,
          6,00 Gew.-% ethoxyliertem Nonylphenol (10 EO) und
 5
          4,00 Gew.-% ethoxyliertem Rizinusöl (40 EO).
      Die Zubereitung erfolgt wie unter Beispiel a) angegeben.
      f) Ein in Wasser leicht emulgierbares Konzentrat aus einem
10
         Phenoxycarbonsäureester und einem Antidot (1 : 10) wird
         erhalten aus
          4,0 Gew.-% 2-[4-(6-Chlorbenzoxazol-2-yl-oxy)-phenoxy]-
                       propionsäureethylester,
15
         40,0 Gew.-% Verbindung der Formel (I),
         30,0 Gew.-% Xylol,
         20,0 Gew.-% Cyclohexanon,
          4,0 Gew.-% dodecylsulfonsaurem Calcium und
          2,0 Gew.-% ethoxyliertem Rizinusöl (40 EO).
20
      g) Ein in Wasser dispergierbares Granulat wird erhalten,
         indem man
          75 Gewichtsteile einer Verbindung der Formel (I),
25
          10
                           ligninsulfonsaures Calcium,
           5
                           Natriumlaurylsulfat,
           3
                           Polyvinylalkohol und
           7
                           Kaolin
30
          mischt, auf einer Stiftmühle mahlt und das Pulver in
          einem Wirbelbett durch Aufsprühen von Wasser als
          Granulierflüssigkeit granuliert.
      h) Ein in Wasser dispergierbares Granulat wird auch
35
         erhalten, indem man
```

25 Gewichtsteile einer Verbindung der Formel (I),

2,2'-dinaphthylmethan-6,6'-

disulfonsaures Natrium,

5

2 Gewichtsteile oleoylmethyltaurinsaures Natrium,

- 1 Polyvinylalkohol,
- 17 " Calciumcarbonat und
- 50 " , Wasser

5

auf einer Kolloidmühle homogenisiert und vorzerkleinert, anschließend auf einer Perlmühle mahlt und die so erhaltene Suspension in einem Sprühturm mittels einer Einstoffdüse zerstäubt und trocknet.

10

- i) Ein nach üblichen Methoden hergestelltes Granulat besteht z.B. aus
- 2 15 Gew.-Teilen Wirkstoff der Formel (I) und
 15 98 85 " " inertes Granulatmaterial, wie
 Attapulgit, Bimsstein und Quarzsand.

Beispiel 1:

B. Herstellungsbeispiele

- 20 1-(2,4-Dichlorphenyl)-5-methyl-5-dodecyloxycarbonylpyrazolin-3-carbonsäureethylester
- 31,8 g Methylacrylsäuredodecylester und 37,6 g Triethylamin werden auf 70°C erwärmt. Innerhalb einer halben Stunde läßt 25 man zu dieser Mischung 14,8 g des 2,4-Dichlorphenylhydrazons von 2-Chlorglyoxalsäureethylester, Formel (II) mit $x^1=x^2=y=c1$, $x^1=c_2H_5$ (IIa) in 50 ml Toluol zutropfen. Man rührt 4 h bei 80°C nach, saugt nach Abkühlen vom Niederschlag ab und engt im Vakuum schonend sein. Nach Säulenchromatographie (Laufmittel n-Heptan/Essigester 1:1) über Kieselgel erhält man 19,0 g des oben bezeichneten Pyrazolins als Öl mit einem Brechungsindex von $n_D(20°C)$: 1,5198.

35 Beispiel 2:

- 1-(2,3-Dichlorphenyl)-5-cyano-5-methyl-pyrazolin-3-carbonsäuremethylester
- 19,0 g Methylacrylnitril und 7,6 g Triethylamin werden auf

5

70°C erwärmt. Innerhalb einer halben Stunde läßt man zu dieser Mischung 14,8 g des 2,3-Dichlorphenylhydrazons von 2-Chlorglyoxalsäureethylester, (IIb), in 50 ml Dimethoxyethan zutropfen. Man rührt 4 h bei 80°C nach, saugt nach Abkühlen vom Niederschlag ab und engt im Vakuum schonend ein. Aus der Mutterlauge fällt ein farbloser Niederschlag (9,2 g) vom Schmelzpunkt 66-67°C aus.

Beispiel 3:

1-(2,4-Dichlorphenyl)-5-methyl-5-ethoxycarbonyl-pyrazolin-3-carbonsäureethylester

22,8 g Methylacrylsäureethylester und 14,8 g Verbindung
der Formel (II a) (siehe Beispiel 1), werden auf 50-60°C
erwärmt. Innerhalb einer halben Stunde läßt man zu dieser
Mischung 7,6 g Triethylamin zutropfen. Man rührt weitere
2 h bei 70°C nach, saugt nach Abkühlen vom Niederschlag
ab und engt unter reduziertem Druck schonend ein. Man
erhält 18,1 g blaßgelbes Öl;
Brechungsindex: np(20°C):1,5651.

Beispiel 4:

1-(2,4-Dichlorphenyl)-5-methyl-5-phenyl-pyrazolin-3carbonsäureethylester

23,7 g 2-Methylstyrol und 14,8 g Verbindung (IIa) (siehe Beispiel 1), werden zusammen mit 50 ml gesättigter wäßriger Natriumcarbonat-Lösung 4 h auf 80°C erhitzt. Anschließend wird die wäßrige Phase abgetrennt, die organische Phase über Natriumsulfat getrocknet und unter reduziertem Druck eingeengt. Nach Säulenchromatographie (Laufmittel n-Heptan/Essigester 1:1) über Kieselgel erhält man 6,9 g des oben bezeichneten Pyrazolins als farblosen Feststoff mit einem Schmelzpunkt von 87-89°C.

In der folgenden Tabelle 1 sind weitere Verbindungen der Formel (I) aufgeführt, die analog den Verfahren der Beispiele 1 bis 4 erhalten werden.

$$(X)_{n}$$

$$R^{3}$$

$$R^{2}$$

$$H$$

$$COOR^{1}$$

Tabelle 1: Pyrazoline der Formel (I)

Beisp.	(X) _n	R^{1}	R ²	R ³	n _D ²⁰ [Schmp.]
Nr.					
5	2,4-Cl ₂	C_2H_5	CH ₃	С ₂ Н ₅	1,5243
6	2,4-Cl ₂	с ₂ н ₅	C2H5	С ₂ Н ₅	
7	2,4-Cl ₂	c_2H_5	CH ₃	n-C ₃ H ₇	
8	2,4-Cl ₂	с ₂ н ₅	n-C ₃ H ₇	n-C ₃ H ₇	
9	2,4-Cl ₂	с ₂ н ₅	CH ₃	i-C ₃ H ₇	
10	2,4-Cl ₂	C2H5	CH ₃	$t-C_4H_9$	
11	2,4-Cl ₂	C2H5	CH ₃	CH_2 -t- C_4H_9	,
12	2,4-Cl ₂	C2H5	CH ₃	CH ₂ Cl	1,5325
13	2,4-Cl ₂	С ₂ Н ₅	CH ₃	CH=CH ₂	
14	2,4-Cl ₂	С ₂ Н ₅	CH ₃	С ₂ Н ₄ ОН	
15	2,4-Cl ₂	C2H5	н	i-C ₃ H ₇	
16	2,4-Cl ₂	C2H5	H	$i-C_3H_5$	1,5394
17	2,4-Cl ₂	С ₂ Н ₅	H	CH(OCH ₃) ₂	
18	2,4-Cl ₂	С ₂ Н ₅	H	$CH(OC_2H_5)_2$	
19	2,4-Cl ₂	с ₂ н ₅	CH ₃	C ₂ H ₄ Cl	
20	2,4-Cl ₂	с ₂ н ₅	H	CH2OC2H5	
21	2,4-Cl ₂	с ₂ н ₅	H	$CH_2O-n-C_4H_9$	
22	2,4-Cl ₂	C2H5	H	t-C ₄ H ₉	

Fortsetzung der Tabelle 1:

Beisp.	(X) _n	R ¹	R^2	R ³	n _D 20 [Schmp.	1
Nr.					D (permip)	j
23	2,4-Cl ₂	C ₂ H ₅	H	C ₆ H ₅		
24	2,4-Cl ₂	C ₂ H ₅	H	4-C1-C6H4		
25	2,4-Cl ₂	C2H5	C6H5	C ₆ H ₅		
26	2,4-Br ₂	C ₂ H ₅	CH ₃	C ₆ H ₅		
27	2-C1,4-CF3	C ₂ H ₅	CH ₃	C ₆ H ₅		
28	2,4-Cl ₂	с ₂ н ₅	CH ₃	4-C1-C ₆ H ₄		
29	2,4-Cl ₂	C2H5	н	CN		
30	2,4-Cl ₂	с ₂ н ₅	CH ₃	CN		
31	2,4-Br ₂	с ₂ н ₅	CH ₃	CN		
32	2,4-Cl ₂	C ₂ H ₅	CH ₃	Cl		
33	2,4-Cl ₂	с ₂ н ₅	CH ₂ C1	Cl		
34	2,4-Cl ₂	C2H5	C ₂ H ₅	Cl		
35	2,4-Cl ₂		CH ₃	CO2CH3		
36	2-CF ₃ ,4-Cl		CH ₃	со ₂ с ₂ н ₅		
37		С ₂ Н ₅	CH ₃	CO2nC4H9		
38	2,4-Cl ₂	C ₂ H ₅	CH ₃	CO2iC4H9	1,5503	
39		С ₂ н ₅	CH ₃	co ₂ c ₂ H ₅		
40	2,4-Cl ₂ (C			CO2CH3		
41	2,3-Cl ₂	С ₂ Н ₅	CH ₃	CO2CH3		
42	2-C1,4-CF ₃	с ₂ н ₅	_	CO2CH3		
43	2-CF ₃ ,4-Cl		_	CO2CH3	1,5420	
44	2,4-Br ₂	С ₂ Н ₅		CO2CH3		
45	2,4-Cl ₂	с ₂ н ₅	н	CO2CH3		
46	2,4-Cl ₂	с ₂ н ₅	H	CO2nC4H9		
47	2,4-Cl ₂	с ₂ н ₅	H	CO2nC12H25	1,5198	
48	2,4-Cl ₂	с ₂ н ₅	H	CO2CH2C1		
49	2,4-Cl ₂	H	H	COOH	[147-150°C]	
50	2,4-Cl ₂	H	CH ₃	CO2H	[178-179°C]	
51	2,4-Cl ₂	с ₂ н ₅	CH ₂ CO ₂	CH ₃ CO ₂ CH ₃	[82-84°C]	
52	2,4-Cl ₂	с ₂ н ₅	H	COCH3	•	
53	2,4-Cl ₂	с ₂ н ₅	CH _{3.}	COCH ₃		
54	2,4-Cl ₂	C_2H_5	H	CON(CH ₃) ₂	[149-151°C]	
55	2,4-Cl ₂	с ₂ н ₅	CH ₃	CON(CH3)2	[162-163°C]	

Fortsetzung der Tabelle 1:

Beisp	o. (X) _n	R ¹	R ²	R ³	n _D 20	[Schmp.]
Nr.	,					
56	2,4-B	r ₂ C ₂ H ₅	CH ₃	CO ₂ -n-C ₄ H ₉		
57	2-CF ₃ ,4	-C1 C ₂ H ₅	CH ₃	CO2C2H5		
58	2-CF3,4	-C1 C ₂ H ₅	CH ₃	C ₆ H ₅		
59	2,4-B		н	CO2-i-C4H9		
60	2-C1,4-	CF ₃ "	11	11		
61	2,4-B	r ₂ "	H	$CH(OC_2H_5)_2$		
62	2,4-C	12 "	- (C	H ₂) ₄ -		
63	11	11	- (C	H ₂) ₅ -		
64	*1	CH ₃	H	CH ₃		
65	B t	n-C ₆ H ₁₃	С ₂ Н ₅	•		
66	tt	n-C ₄ H ₉	С ₃ Н ₇	- •		
67	91	CH ₃	н	cyclo-C ₆ H _{1:}	1	
68	11	11	11	Cyclobutyl	•	
69	11	π	n	Cyclopropy	L	
70	11	TI .	11	Cyclopenty		
71	11	Cyclohexyl	CH ₃	CH ₃		
72	11	CH2CH2OCH2CH3	н	C≡CH		
73	11	i-C ₃ H ₇	CH ₃	CH2CH=CH2		
74	ŧŧ	C ₂ H ₅	11	CH ₂ C≡CH		
75	2,4-F ₂	CH ₃	tt	CN		
76	11	C ₂ H ₅	11	CO2CH3		
77	11	CH ₃	Ħ	CF ₃		
78	2,5-Cl ₂		91	CH ₂ Cl		
79	11	ī ,	#1	CH ₂ OH		
80	11	11	f 1	CH ₂ CN		
81	3,5-Cl ₂	11	ti	CH ₃		
82	3,4-(CF ₃) ₂ CH ₃	H	CF ₃		
83	3,4-F ₂	11	11	CH ₂ OH		
84	3-F,4-Cl	11	C ₂ H ₅	C ₂ H ₅		
85	3,4-Cl ₂	11	11	CH ₂ CN		
86	3-CF ₃ ,4-	F "	11	CO2CH3		

Fortsetzung der Tabelle 1:

Beisp	. (X) _n	R ¹	R ²	R ³	n _D 20	[Schmp.]
Nr.						
87	2,4,6-(Cl) ₃ C ₃ H ₇	н	CH ₃		
88	2,4,6-F ₃	С ₂ Н ₅	11	11		
89	2-Cl,4-CF 6-Cl	3, CH ₃	11	с ₆ н ₅		
90	2,4,5-Cl ₃	11	CH ₃	CO ₂ CH ₃		
91	4-Cl	11	11	CH ₃		
92	11	Si(CH ₃) ₃	11	11		
93	11	$Si(C_2H_5)_3$. 11	C ₂ H ₅		
94	2,4-Cl ₂	Si(CH ₃) ₃	11	"		
95	11	CH2Si(CH3)2		11		
96	11	11	***	со ₂ сн ₃		
97	2,3-Cl	Si(CH3)	TI	C ₂ H ₅		
98	11	ti	11	CON(CH ₃) ₂		•
99	\$F	ti	.11	1,1,2,2-C ₂ F	'4 ^H	
100	2,4-Cl ₂	$\operatorname{Si}(C_2H_5)_3$	fi	CFHCF ₂ CF ₃	-	
101	2,4-Cl ₂	с ₂ н ₅	H	CO-OC2H5	Oel	
102	2,4-Cl ₂	C ₂ H ₅	H	CO-O-t-C ₄ H _c	Oel	

Beispiel 1

Weizen und Gerste wurden im Gewächshaus in Plastiktöpfen bis zum 3 bis 4-Blattstadium herangezogen und dann mit erfindungsgemäßen Safener-Verbindungen und Herbiziden im Nachauflaufverfahren behandelt. Die Herbizide und die Verbindungen der Formel (I) wurden dabei in Form wäßriger Suspensionen bzw. Emulsionen mit einer Wasseraufwandmenge von umgerechnet 800 l/ha ausgebracht. 3 bis 4 Wochen nach der Behandlung wurden die Pflanzen visuell auf jede Art von Schädigung durch die ausgebrachten Herbizide bonitiert, wobei insbesondere das Ausmaß der anhaltenden Wachstumshemmung berücksichtigt wurde. Der Grad der Schädigung bzw. die Safener-Wirkung von Verbindungen der Formel (I) alleine bzw. in Kombination mit Herbiziden wurde in % Schädigung bestimmt.

15

5

10

Die Ergebnisse zeigen (vgl. Tabelle 2), daß die erfindungsgemäßen Verbindungen starke Herbizidschäden an Kulturpflanzen effektiv reduzieren können.

- Selbst bei starken Überdosierungen eines Herbizids wie Fenoxaprop-ethyl werden bei Kulturpflanzen auftretende schwere Schädigungen deutlich reduziert, und geringere Schäden völlig aufgehoben. Mischungen aus Herbiziden und erfindungsgemäßen Verbindungen eignen sich deshalb in
- vorteilhafter Weise zur selektiven Unkrautbekämpfung in Getreidekulturen.

Tabelle 2: Safenerwirkung im Nachauflaufverfahren

Verbindungen	Dosis	Schädigu	ng in % bei
Herbizid + Beisp. Nr.	(kg a.i./ha)	TRAE	ночи
Н	2,0	70	•
	0,2	-	80
H + 2	2,0 + 1,25	30	-
	0,2 + 1,25	-	50
H + 6	2,0 + 1,25	-	-
	0,2 + 1,25	-	20
H + 7	2,0 + 1,25	-	<u>-</u>
	0,2 + 1,25	-	30
H + 8	2,0 + 1,25	-	-
	0,2 + 1,25	•	35
H + 13	2,0 + 1,25	20	-
	0,2 + 1,25	-	30
H + 16	2,0 + 1,25	10	-
	0,2 + 1,25	-	10
H + 17	2,0 + 1,25	-	-
	0,2 + 1,25	-	35
H + 25	2,0 + 1,25	· _	-
	0,2 + 1,25	-	20
H + 29	2,0 + 1,25	40	-
	0,2 + 1,25	-	40

	Verbindungen	Dosis	Schädigung in % bei	
	Herbizid + Beisp.Nr.	(kg a.i./ha)	TRAE	ночи
5	H + 30	2,0 + 1,25	40	-
J	11 7 30	0,2 + 1,25		30
	н + 45	2,0 + 1,25	20	-
		0,2 + 1,25	-	27
10	н + 47	2,0 + 1,25	-	-
		0,2 + 1,25	-	27
	H + 49	2,0 + 1,25	20	-
15		0,2 + 1,25	-	45
	н + 52	2,0 + 1,25	-	-
		0,2 + 1,25	-	17
20	H + 62	2,0 + 1,25	-	•
		0,2 + 1,25	-	30

Abkürzungen:

25

H = Fenoxaprop-ethyl

TRAE = Triticum aestivum (Weizen)

30 HOVU = Hordeum vulgare (Gerste)

a.i. = aktive Substanz; auf reinen Wirkstoff bezogen

Beispiel 2

In einer Versuchsserie analog Beispiel 1, die aber mit einer größeren Zahl an Wiederholungsversuchen bei der

5

jeweiligen Applikation durchgeführt wurde, erhielt man die in Tabelle 3 gezeigten Ergebnisse. Teilweise abweichende absolute Werte in den Wirksamkeiten sind durch klimatische Einflüsse erklärbar, die bei beiden Versuchsserien nicht ganz gleich waren.

Tabelle 3: Safenerwirkung der erfindungsgemäßen Verbindungen an Weizen (TRAE) und Gerste (HOVU).

10		Dosis	herbizide	Wirkung in %
	Herbizid +	(kg a.i./ha)	TRAE	HOVU
	Safener (Beisp.	Nr.)		
	H	2,0	70	_
		0,2	-	85
15				
	H + 1	2,0 + 1,0	20	-
		2,0 + 0,25	8	-
		0,2 + 1,0	-	40
		0,2 + 0,25	-	42
20				
	H + 2	2,0 + 1,0	30	-
		2,0 + 0,25	20	-
		0,2 + 1,0	-	15
		0,2 + 0,25	-	. 25
25				
	H + 3	2,0 + 1,0	18	-
		2,0 + 0,25	10	-
		0,2 + 1,0	-	15
		0,2 + 0,25	-	18
30				
	H + 6	2,0 + 1,0	5	-
		2,0 + 0,25	10	-
•		0,2 + 1,0	-	12
		0,2 + 0,25	-	15
35				

Herbizid +	Dosis (kg a.i./ha)		Wirkung in %
Safener (Beisp.N	r.)		
H + 7	2,0 + 1,0	20	-
	2,0 + 0,25	22	-
	0,2 - 1,0	-	20
	0,2 + 0,25	-	22
н + 8	2,0 + 1,0	20	-
	2,0 + 0,25	25 ·	-
	0,2 + 1,0	· -	25
	0,2 + 0,25	-	27
H + 11	2,0 + 1,0	48	-
	2,0 + 0,25	50 .	-
	0,2 + 1,0	-	32
	0,2 + 0,25	- ·	40
н + 13	2,0 + 1,0	10	-
	2,0 + 0,25	12	-
	0,2 + 1,0	-	35
	0,2 + 0,25	-	35
H + 15	2,0 + 1,0	2	-
	2,0 + 0,25	5	-
	0,2 + 1,0	-	32
	0,2 + 0,25	-	40
H + 16	2,0 + 1,0	10	-
	2,0 + 0,25	12	-
	0,2 + 1,0	-	28
	0,2 + 0,25	-	. 37
H + 17	2,0 + 1,0	22	-
	2,0 + 0,25	25	-
	0,2 + 1,0	-	30
	0,2 + 0,25	-	35

	Dosis	herbizide	Wirkung in %
Herbizid +	(kg a.i./ha)		HOVU
Safener (Beisp.Nr.)			
H + 18	2,0 + 1,0	20	-
	2,0 + 0,25	13	-
	0,2 + 1,0	_	30
	0,2 + 0,25	-	27
H + 20	2,0 + 1,0	15 ,	-
	2,0 + 0,25	10	-
	0,2 + 1,0	-	38
	0,2 + 0,25	-	45
H + 21	2,0 + 1,0	20	-
	2,0 + 0,25	25	-
	0,2 + 1,0	-	30
	0,2 + 0,25	-	35
H + 25	2,0 + 1,0	10	-
	2,0 + 0,25	12 '	-
	0,2 + 1,0	-	10
	0,2 + 0,25	-	15
H + 29	2,0 + 1,0	-	-
	2,0 + 0,25	-	-
	0,2 + 1,0	-	30
	0,2 + 0,25	-	40
H + 30	2,0 + 1,0	30	-
	2,0 + 0,25	20	-
	0,2 + 1,0	-	. 12 ,
	0,2 + 0,25		25
H + 31	2,0 + 1,0	10	-
	2,0 + 0,25	15	-
	0,2 + 1,0	-	30
	0,2 + 0,25	-	38

	Dosis	herbizide	Wirkung in %
Herbizid +	(kg a.i./ha)	TRAE	HOVU
Safener (Beisp.Nr.)			
н + 35	2,0 + 1,0	22	-
	2,0 + 0,25	25	-
	0,2 + 1,0	-	20
	0,2 + 0,25	-	35
н + 36	2,0 + 1,0	18	-
	2,0 + 0,25	25	· _
	0,2 + 1,0	-	20
	0,2 + 0,25	-	35
н + 37	2,0 + 1,0	35	-
	2,0 + 0,25	38	-
	0,2 + 1,0	-	20 .
	0,2 + 0,25	-	28
H + 38	2,0 + 1,0	5	-
	2,0 + 0,25	8	-
	0,2 + 1,0	-	35
	0,2 + 0,25	-	38
н + 39	2,0 + 1,0	15	-
	2,0 + 0,25	23	-
	0,2 + 1,0	-	30
	0,2 + 0,25	-	23
н + 40	2,0 + 1,0	18	-
	2,0 + 0,25	23	-
	0,2 + 1,0	-	10
	0,2 + 0,25	-	13
н + 43	2,0 + 1,0	23 .	-
	2,0 + 0,25	10	-
	0,2 + 1,0	-	20
	0,2 + 0,25	_	35

	Dosis	herbizide	Wirkung in %
Herbizid +	(kg a.i./ha)	TRAE	HOVU
Safener (Beisp.Nr.	.)		
H + 44	2,0 + 1,0	15	-
	2,0 + 0,25	13	-
	0,2 + 1,0	-	25
	0,2 + 0,25	~	25
H + 45	2,0 + 1,0	5	-
	2,0 + 0,25	10	-
	0,2 + 1,0	-	15
	0,2 + 0,25	-	25
H + 47	2,0 + 1,0	3	-
	2,0 + 0,25	5	-
	0,2 + 1,0	-	38
	0,2 + 0,25	-	40
H + 48	2,0 + 1,0	28	-
	2,0 + 0,25	10	
	0,2 + 1,0	-	30
	0,2 + 0,25	-	40
H + 49	2,0 + 1,0	10	-
	2,0 + 0,25	20	-
	0,2 + 1,0	_	45
	0,2 + 0,25		50
H + 50	2,0 + 1,0	20	_
	2,0 + 0,25	25	-
	0,2 + 1,0	-	35
	0,2 + 0,25	-	37
H + 51	2,0 + 1,0	25	-
	2,0 + 0,25	23	-
	0,2 + 1,0	-	33
	0,2 + 0,25	-	48

Herbizid + (kg a.i./ha) TRAE HOVU Safener (Beisp.Nr.) H + 52 2,0 + 1,0 22 2,0 + 2,25 28 0,2 + 1,0 - 25 0,2 + 0,25 28 2,0 + 0,25 28 2,0 + 0,25 28 2,0 + 0,25 28 2,0 + 0,25 28 2,0 + 0,25 28 2,0 + 0,25 28 2,0 + 0,25 28 2,0 + 0,25 28 2,0 + 0,25 28 2,0 + 0,25 28 2,0 + 0,25 28 2,0 + 0,25 28 2,0 + 0,25 28 2,0 + 0,25 28 2,0 + 0,25 28 2,0 + 0,25 28 2,0 + 0,25 28 2,0 + 0,25 28 2,0 + 0,25 20 2,2 + 0,25 20 2,2 + 0,25 20 2,2 + 0,25 20 2,2 + 0,25 20 2,2 + 1,0 20 2,2 + 0,25 20 2,2 + 0,25 25 2,3 + 0,25 25 2,3 + 0,2	•	Dosis	herbizide	Wirkung in %
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Herbizid +	(kg a.i./ha)	TRAE	HOVU
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Safener (Beisp.N:	r.)		
$\begin{array}{c} 0,2+1,0 \\ 0,2+0,25 \\ \end{array} \begin{array}{c} - \\ 0,2+0,25 \\ \end{array} \begin{array}{c} - \\ 30 \\ \end{array} \begin{array}{c} - \\ 2,0+0,25 \\ \end{array} \begin{array}{c} - \\ 28 \\ - \\ 0,2+1,0 \\ 0,2+0,25 \\ \end{array} \begin{array}{c} - \\ 30 \\ \end{array} \begin{array}{c} - \\ 35 \\ \end{array} \begin{array}{c} - \\ 35$	H + 52	2,0 + 1,0	22	-
$\begin{array}{c} 0,2+0,25 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $		2,0 + 0,25	28	-
$\begin{array}{c} 0,2+0,25 & - & 30 \\ 10 & - & 2,0+1,0 & 10 & - \\ 2,0+0,25 & 28 & - \\ 0,2+1,0 & - & 30 \\ 0,2+0,25 & - & 30 \\ 0,2+0,25 & - & 30 \\ \end{array}$ $\begin{array}{c} 11 & + 57 & 2,0+1,0 & 13 & - \\ 2,0+0,25 & 10 & - \\ 0,2+1,0 & - & 20 \\ 0,2+0,25 & - & 18 \\ \end{array}$ $\begin{array}{c} 11 & + 60 & 2,0+1,0 & 10 & - \\ 2,0+0,25 & 8 & - \\ 0,2+1,0 & - & 48 \\ 0,2+0,25 & - & 50 \\ \end{array}$ $\begin{array}{c} 11 & + 61 & 2,0+1,0 & 0 & - \\ 2,0+0,25 & - & 50 \\ \end{array}$ $\begin{array}{c} 11 & + 61 & 2,0+1,0 & 0 & - \\ 2,0+0,25 & - & 25 \\ \end{array}$ $\begin{array}{c} 11 & + 62 & 2,0+1,0 & 22 & - \\ 2,0+0,25 & - & 25 \\ \end{array}$ $\begin{array}{c} 11 & + 62 & 2,0+1,0 & 22 & - \\ 2,0+0,25 & - & 25 \\ \end{array}$ $\begin{array}{c} 11 & + 62 & 2,0+1,0 & 22 & - \\ 2,0+0,25 & - & 35 \\ 0,2+1,0 & - & 35 \\ 0,2+1,0 & - & 35 \\ 0,2+0,25 & - & 40 \\ \end{array}$		0,2 + 1,0	-	25
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0,2 + 0,25	-	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H + 56	2,0 + 1,0	10	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2,0 + 0,25	28	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0,2 + 1,0 .	_	30
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			-	30
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H + 57	2,0 + 1,0	13	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2,0 + 0,25	10	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•	0,2 + 1,0	-	. 20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0,2 + 0,25	-	18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H + 60	2,0 + 1,0	10	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2,0 + 0,25	8	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0,2 + 1,0	~	48
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0,2 + 0,25	-	50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H + 61	2,0 + 1,0	0	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2,0 + 0,25	0	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0,2 + 1,0	_	20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0,2 + 0,25	-	25
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H + 62	2,0 + 1,0	22	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2,0 + 0,25	25	-
H + 101 2,0 + 1,0 10 - 2,0 + 0,25 12 - 0,2 + 1,0 - 12		0,2 + 1,0	-	35
2,0 + 0,25 12 - 0,2 + 1,0 - 12		0,2 + 0,25	-	40
2,0 + 0,25 12 - 0,2 + 1,0 - 12				
0,2 + 1,0 - 12	H + 101 .	2,0 + 1,0	10	-
		2,0 + 0,25	12	-
0,2 + 0,25 - 20		0,2 + 1,0	-	12
		0,2 + 0,25	-	20

	Dosis	herbizide	Wirkung in %
Herbizid +	(kg a.i./ha)	TRAE	HOVU
Safener (Beisp.Nr.)		
H + 102	2,0 + 1,0	25	-
	2,0 + 0,25	30	-
	0,2 + 1,0	-	20
	0,2 + 0,25	-	28

Abkürzungen:

H = Fenoxaprop-ethyl

TRAE = Triticum aestivum (Weizen)

HOVU = Hordeum vulgare (Gerste)

a.i. = aktive Substanz; auf reinen Wirkstoff bezogen

WO 91/07874 PCT/EP90/02020

Patentansprüche

1. Kulturpflanzenschützende Mittel, dadurch gekennzeichnet, daß sie Verbindungen der Formel (I)

$$\begin{array}{c|c}
 & & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\$$

worin

20

30

X unabhängig voneinander Halogen oder Halogenalkyl,

15 n eine ganze Zahl von 1 bis 3,

R¹ Wasserstoff, Alkyl, Cycloalkyl, Trialkylsilyl, Trialkylsilylmethyl oder Alkyloxyalkyl,

R² und R³ unabhängig voneinander Wasserstoff, Alkyl, C₃-C₆-Cycloalkyl, Alkenyl, Alkinyl, Halogenalkyl, Alkoxyalkyl, Hydroxyalkyl, Alkoxycarbonyl, Alkylcarbonyl, Alkylaminocarbonyl, gegebenenfalls substituiertes Phenyl, Halogen oder Cyano bedeuten, wobei die Reste R² und R³ mit dem 5-C-Atom des Pyrazolinrings einen Ring bilden können, und im

25 Pflanzenschutz übliche Formulierungshilfsmittel enthalten.

2. Mittel nach Anspruch 1, dadurch gekennzeichnet, daß

X unabhängig voneinander Halogen oder C_1-C_4 -Halogenalkyl,

n ein ganze Zahl von 1 bis 3,

 R^1 C_1 - C_6 -Alkyl, C_3 - C_6 -Cycloalkyl, Tri- $(C_1$ - C_4 -alkyl)-silyl, Tri- $(C_1$ - C_4 -alkyl)silylmethyl oder $(C_1$ - C_6 -Alkyloxy)- C_1 - C_6 -alkyl,

35 R^2 und R^3 unabhängig voneinander Wasserstoff, C_1 - C_6 -Alkyl, C_2 - C_6 -Alkenyl, C_2 - C_6 -Alkinyl, C_3 - C_6 -Cycloalkyl, C_1 - C_6 -Halogenalkyl, Mono- oder Di- $(C_1$ - C_4 -Alkoxy)- C_1 - C_4 -

5

alkyl, C_1 - C_6 -Hydroxyalkyl, $(C_1$ - C_6 -Alkyl)carbonyl, Monooder Di- $(C_1$ - C_4 -alkyl)amino-carbonyl, Cyano, Halogen, $(C_1$ - C_{12} -Alkyl)-oxycarbonyl, Phenyl oder Phenyl, das durch ein oder mehrere Reste aus der Gruppe Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy oder Cyano substituiert ist, bedeuten.

- 3. Mittel nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß
- 10 X unabhängig voneinander Fluor, Chlor, Brom oder Trifluormethyl,
 - n 2 oder 3,
 - R^1 C_1 - C_4 -Alkyl oder (C_1 - C_4 -Alkoxy)- C_1 - C_4 -alkyl,
 - R² Wasserstoff, C₁-C₄-Alkyl, C₂-C₄-Alkenyl,
- 15 R³ C₁-C₄-Alkyl, C₃-C₄-Alkenyl, C₂-C₄-Alkinyl,
 C₁-C₄-Halogenalkyl, Mono- oder Di-(C₁-C₄-Alkoxy)C₁-C₄-alkyl, C₁-C₄-Hydroxyalkyl, Mono- oder Di-(C₁-C₄-Alkyl)-aminocarbonyl, Cyano, (C₁-C₁₂-Alkyloxy)-carbonyl,
 Phenyl oder Phenyl, das ein- oder mehrfach durch Halogen
 substituiert ist,

bedeuten.

- 4. Mittel nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß
- 25 X unabhängig voneinander Fluor, Chlor, Brom oder Trifluormethyl,
 - n 2 oder 3,
 - R^2 Wasserstoff, C_1 - C_4 -Alkyl, C_2 - C_4 -Alkenyl oder C_2 - C_4 -Alkinyl,
- 30 R³ C₁-C₄-Alkyl, das unsubstituiert oder ein- oder mehrfach durch Halogen substituiert ist, (C₁-C₁₂-Alkyl)oxycarbonyl oder Cyano bedeuten.

- 5. Mittel nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß sie zusätzlich ein Herbizid enthalten.
- 6. Mittel nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß 1 bis 95 Gew.-% Verbindung der Formel (I) nach einem oder mehreren der Ansprüche 1 bis 3 oder 1 bis 95 Gew.-% der Kombination aus Verbindung der Formel (I) und Herbizid enthalten.

10

- 7. Verbindungen der in einem oder mehreren der Ansprüche 1 bis 4 definierten Formel (I), dadurch gekennzeichnet, daß R¹ Cycloalkyl, Trialkylsilyl, Trimethylsilylmethyl oder Alkoxyalkyl bedeutet und
- 15 X, n und R^2 und R^3 die definierte Bedeutung haben oder n 2 oder 3 bedeutet und X, R^1 , R^2 und R^3 die definierte Bedeutung haben.
 - 8. Verbindungen nach Anspruch 7, dadurch gekennzeichnet, daß
 - $(X)_n$ zwei Reste aus den Gruppen Halogen und C_1 - C_4 -Halogenalkyl bedeuten.
 - Verbindungen nach Anspruch 8, dadurch gekennzeichnet, daß

30

25

20

10. Verfahren zur Herstellung einer nach Anspruch 7 definierten Verbindung der Formel (I), dadurch gekennzeichnet, daß man eine Verbindung der Formel (II),

worin Y für Chlor oder Brom steht und $(X)_n$ und \mathbb{R}^1 die oben angegebenen Bedeutungen haben, mit Olefinen der Formel (III)

5

10

25

worin

R² und R³ unabhängig voneinander Wasserstoff, Alkyl, C₃-C₆-Cycloalkyl, Alkenyl, Alkinyl, Halogenalkyl, Alkoxyalkyl, Hydroxyalkyl, Alkoxycarbonyl, Alkylcarbonyl, Alkylaminocarbonyl, gegebenenfalls substituiertes Phenyl, Halogen oder Cyano bedeuten, wobei die Reste R² und R³ und das 2-C-Atom des Olefins einen Ring bilden können, umsetzt.

- 11. Verfahren zur Bekämpfung von unerwünschten Pflanzen in Nutzpflanzenkulturen, dadurch gekennzeichnet, daß man ein Herbizid in Kombination mit nach einem oder mehreren der Ansprüche 1 bis 4 definierten Verbindungen der Formel (I) auf die Pflanzen, Pflanzensamen oder die Anbaufläche appliziert.
 - 12. Verfahren zur Bekämpfung von unerwünschten Pflanzen in Nutzpflanzenkulturen, dadurch gekennzeichnet, daß man ein Herbizid in Kombination mit nach einem oder mehreren der Ansprüche 7 bis 9 definierten Verbindungen der Formel (I) auf die Pflanzen, Pflanzensamen oder die Anbaufläche appliziert.
- 13. Verwendung von nach einem oder mehreren der Ansprüche 30 1 bis 4 definierten Verbindungen der Formel (I) zum Schutz vor phytotoxischen Nebenwirkungen von Herbiziden.

INTERNATIONAL SEARCH REPORT

International Application No PCT/EP 90/02020

I. CLASI	SIFICATION OF SUBJECT MATTER (# several class		EP 90/02020 .
CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate ell) According to international Patent Classification (IPC) or to both National Classification and IPC			
Int	. CI. ⁵ A O1 N 25/32, 43/56, C (07 D 231/06, 231/54	
	S SEARCHED		
	Minimum Docume	intation Searched ?	
Classificati	on System	Classification Symbols	
Int	. C1. ⁵ A 01 N; C 07 D		
	Documentation Searched other	than Minimum Documentation s are included in the Fields Searched ^e	
III. DOCI	MENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of Document, 11 with Indication, where app	propriate, of the relevant passages 12	Relevant to Claim No. 13
X	EP, A2, 0268554 (CIBA-GEIGY AC page 5, line 6 - line 9, c		1-6,11- 13
X	DE, A1, 3808896 (HOECHST AG) 2 see page 42 - page 43, cla		1-6,11- 13
X	EP, A1, 0269806 (HOECHST AG) 8 page 47 - page 50, claims	1-6,11- 13	
X	EP, A2, 0174562 (HOECHST AG) 19 March 1986, see page 14, line 20 - page 15, line 11, claims 1-7		
X	WO, A1, 8806583 (E.I. DUPONT DE NEMOURS AND COMPANY) 7 September 1988, see page 9, line 19 - page 10, line 38; page 14, line 10 - line 20, claim 10		
		· 	
"A" doc	il categories of cited documents: 18 ument defining the general state of the art which is not sidered to be of particular relevence	"T" later document published after th or priority date and not in conflic cited to understand the principle invention	t with the application but
	er document but published on or after the international grate	"X" document of particular relevance cannot be considered novel or	e; the claimed invention cannot be considered to
whi	ument which may throw doubts on priority claim(s) or ch is cited to establish the publication dete of another	Involve an inventive step "Y" document of particular relevance	
citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing data but "P" document published prior to the international filing data but			or more other such docu- bytous to a person skilled
later than the priority date claimed "A" document member of the same patent family			
IV. CERTIFICATION Date of the Actual Completion of the International Search Date of Mailing of this International Search Report			
	ebruary 1991 (12.02.91)	5 March 1991 (05.03.9	
Internation	al Searching Authority	Signature of Authorized Officer	
Euro	pean Patent Office		

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO.PCT/EP 90/02020

SA 42147

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 28/12/90

The European Patent office is in no way liable for theseparticulars which are merely given for the purpose of information.

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
EP-A2- 0268554	25/05/88	AU-B- AU-D- JP-A- SU-A- US-A- ZA-A-	591351 7997287 63115867 1597099 4944790 8707909	30/11/89 28/04/88 20/05/88 30/09/90 31/07/90 22/04/88
DE-A1- 3808896	28/09/89	AU-D- EP-A- JP-A-	3137389 0333131 1283274	21/09/89 20/09/89 14/11/89
EP-A1- 0269806	08/06/88	AU-D- DE-A- JP-A- US-A-	7930887 3633840 63091373 4891057	14/04/88 14/04/88 22/04/88 02/01/90
EP-A2- 0174562	19/03/86	AU-B- AU-D- DE-A- JP-A- US-A-	581459 4732285 3525205 61068474 4639266	23/02/89 20/03/86 20/03/86 08/04/86 27/01/87
WO-A1- 8806583 .	07/09/88	AU-D- EP-A-B- WO-A-	1154488 0330678 88/05046	26/09/88 06/09/89 14/07/88

For more details about this annex: see Official Journal of the European patent Office, No. 12/82

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen PCT/EP 90/02020

TO THE PER ANNEL DUNGSGENSTANDS (bei me	ehreren Klassifikationssymbolen sind alle anzugebe	n) ⁶			
KLASSIFIKATION DES ANMELDUNGSGENSTANDS (bei mehreren Klassifikationssymbolen sind alle anzugeben) Nach der Internationalen Patentklassifikation (IPC) oder nach der nationalen Klassifikation und der IPC Nach der Internationalen Patentklassifikation (IPC) oder nach der nationalen Klassifikation und der IPC Nach der Internationalen Patentklassifikation (IPC) oder nach der nationalen Klassifikation und der IPC Nach der Internationalen Patentklassifikation (IPC) oder nach der nationalen Klassifikation und der IPC					
Int.CI.5 A 01 N 25/32, 43/56, C 07 D 231/06, 231/54					
II. RECHERCHIERTE SACHGEBIETE Recherchierter Mi	adactarii(etall)				
	Klassifikationssymbole				
Klassifikationssystem					
A 01 N; C 07 D					
Recherchierte nicht zur ur	n Mindestprüfstoff gehörende Varöffentlichungen, so nter die recherchierten Sachgebiete fallen ⁸	oweit diese			
III. EINSCHLÄGIGE VERÖFFENTLICHUNGEN ⁸					
Art * Kennzeichnung der Veröffentlichung ¹¹ , soweit erforderlic	h unter Angabe der maßgeblichen Teile ¹²	Betr. Anspruch Nr. ¹³			
X EP, A2, 0268554 (CIBA-GEIGY AG) siehe Seite 5, Zeile 6 - Ze Ansprüche 1-25	25 Mai 1988,	1-6,11-			
	·				
X DE, A1, 3808896 (HOECHST AG) 28 siehe Seite 42 - Seite 43,	September 1989,	1-6,11- 13			
Ansprüche 1-9					
EP, A1, 0269806 (HOECHST AG) 8 siehe Seite 47 - Seite 50, Ansprüche 1,3-10	Juni 1988,	1-6,11- 13			
	·				
* Besondere Kategorien von angegebenen Veröffentlichungen 10: *A* Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist definiert, aber nicht als jedoch erst am oder nach dem internationalen Anmeldedatum der Anmeldung nicht kotlidiert, sondern nur Zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der Ihr zugrundeliegenden Theorie angegeben ist					
"X" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhalt erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) werden veröffentlichung von besonderer Bedeutung, die beanspruchkeit beruhend betrachtet werden werden veröffentlichung von besonderer Bedeutung, die beanspruch-					
Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht bezieht te Erindung kann nicht als auf erinternacht in der veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kate- oorie in Verbindung gebracht wird und diese Verbindung für					
"P" Veröffentlichung, die vor dem Internationalen Anmeldeda- tum, aber nach dem beanspruchten Prioritätsdatum veröffent- licht worden ist					
IV. BESCHEINIGUNG	Absendedatum des internationalen Recherchenbe	richts			
Datum des Abschlusses der Internationalen Recherche	Apsendedatum des internationalen Recharchembe				
12. Februar 1991	Unterschrift des bevollmächtigten Betreitsteten				
Internationale Recherchenbehörde Furonäisches Patentamt	Y.Y. MISS D. S. KOWA	LCZYK			

	CHLÄGIGE VERÖFFENTLICHUNGEN (Fortsetzung von Blatt 2)	
. EINS	CHLÄGIGE VERÖFFENTLICHUNGEN (Fortsetzung von Blatt 2) Kennzeichnung der Veröffentlichung, soweit erforderlich unter Angabe der maßgeblichen Teite	Betr. Anspruch Nr.
(EP, A2, 0174562 (HOECHST AG) 19 März 1986, siehe Seite 14, Zeile 20 - Seite 15, Zeile 11, Ansprüche 1-7	1-6,11- 13
〈	WO, A1, 8806583 (E.I. DUPONT DE NEMOURS AND COMPANY) 7 September 1988, siehe Seite 9, Zeile 19 - Seite 10, Zeile 38; Seite 14, Zeile 10 - Zeile 20, Anspruch 10	7-10
	•	
	·	
	•	
	· · ·	
	<u>.</u>	

ANHANG ZUM INTERNATIONALEN RECHERCHENBERICHT ÜBER DIE INTERNATIONALE PATENTANMELDUNG NR.PCT/EP 90/02020

SA

4214

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten Internationalen Recherchenbericht angeführten Patentdokumente angegeben.
Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am 28/12/90 Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
EP-A2- 0268554	25/05/88	AU-B- AU-D- JP-A- SU-A- US-A- ZA-A-	591351 7997287 63115867 1597099 4944790 8707909	30/11/89 28/04/88 20/05/88 30/09/90 31/07/90 22/04/88
DE-A1- 3808896	28/09/89	AU-D- EP-A- JP-A-	3137389 0333131 1283274	21/09/89 20/09/89 14/11/89
EP-A1- 0269806	08/06/88	AU-D- DE-A- JP-A- US-A-	7930887 3633840 63091373 4891057	14/04/88 14/04/88 22/04/88 02/01/90
EP-A2- 0174562	19/03/86	AU-B- AU-D- DE-A- JP-A- US-A-	581459 4732285 3525205 61068474 4639266	23/02/89 20/03/86 20/03/86 08/04/86 27/01/87
WO-A1- 8806583	07/09/88	AU-D- EP-A-B- WO-A-	1154488 0330678 88/05046	26/09/88 06/09/89 14/07/88