ANSWERS

Exercise 1 - Manual Linear Regression Model Fitting ANSWER

To fit a linear regresion model we must calculate:

- the mean of both x and y (independent and dependent variable): \bar{x}, \bar{y}
- the sum of squares of the differences of x values from the mean: $\sum (x-\bar{x})^2$
- the sum of cross-multiplication of x and y differences from the mean: $\sum (x \bar{x})(y \bar{y})$

Then we use these to calculate the slope (m) and the constant coefficient (c) of the linear model. This was done in a spreadsheet but in an exam the number of instances would be a lot smaller (e.g. 5), hence calculable manually in reasonable time.

+	T . 4 ()	T . O					
	Test 1 (x)	Test 2 (y)					
	X	y	$X-\overline{X}$	$y-\overline{y}$	$(x-\overline{x})^2$	$(x-\overline{x})(y-\overline{y})$	
	59	56	11.77	2.46	138.51	28.97	
	52	63	4.77	9.46	22.75	45.12	
	44	55	-3.23	1.46	10.44	-4.72	
	51	50	3.77	-3.54	14.21	-13.34	
	42	66	-5.23	12.46	27.36	-65.18	
	42	48	-5.23	-5.54	27.36	28.97	
	41	58	-6.23	4.46	38.82	-27.80	
	45	36	-2.23	-17.54	4.98	39.12	
	27	13	-20.23	-40.54	409.28	820.12	
	63	50	15.77	-3.54	248.67	-55.80	
	54	81	6.77	27.46	45.82	185.89	
	44	56	-3.23	2.46	10.44	-7.95	
	50	64	2.77	10.46	7.67	28.97	
mean: x, y	47.23	53.54					
square/crossmultiplication sums: $\Sigma(x-\overline{x})^2$, $\Sigma(x-\overline{x})(y-\overline{y})$					1006.31	1002.38	
m (slope): $\mathbb{D}(x-\overline{x})(y-\overline{y})/\mathbb{D}(x-\overline{x})^2$							1.00
c (constant coefficient): $\overline{y} - m\overline{x}$							6.49
* * * * * * * * * * * * * * * * * * * *							

Screenshot of spreadsheet Lab4_2_Ex1_ANSWER.csv, which can be downloaded alongisde this document.

$$m = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sum (x - \bar{x})^2} = 1.00$$

$$c = \bar{y} - m\bar{x} = 6.49$$

The linear regression model is:

$$y = 6.49 + x$$

Using the model we can predict the value of y in the case that x = 46:

$$y(x=46) = 6.49 + 46 = 52.49$$