Quasar evolution at high redshift from optical surveys

Tan McGreer (Steward Observatory)

Xiaohui Fan (Steward), Linhua Jiang (ASU), Nic Ross, Martin White (LBNL,UCB), Gordon Richards (Drexel), Michael Strauss (Princeton), Zoltán Haiman (Columbia), Don Schneider (PSU)

quasar lifecycle

BHMF at high redshift

heavy seeds

light seeds

fuel supply: gas-rich mergers

fuel supply: cold mode accretion

di Matteo+2012

The Quasar Luminosity Function

$$\Phi(\mathsf{L})$$
 =

black hole mass function

Eddington ratio distribution

The Quasar Luminosity Function

Hopkins, Richards & Hernquist 2007 (HRH07)

models for QLF evolution

Evolution of QLF parameters

BOSS QLF

summary of BOSS quasars

- DR9QLF (N. Ross, IDM, M. White, et al. 2013)
 - 22,301 QSOs (i<21.8)
 - 2236 deg²
 - $^{\circ}$ 2.2 < z < 3.5
- variability (Palanque-Delabrouille++2011,2012)
 - Stripe 82 (220 deg², 5500 QSOs 2.2 < z < 3.5)
 - boss21 (15 deg², 1900 QSOs 0.7 < z < 4)

evolution with redshift

evolution of QLF parameters

compare to HRH07

evolution at low redshift (z<=2)

evolution at high redshift (z>2)

evolution of shape (power-law slopes)

$$\alpha$$
 = -1.4
(-1.2)
(-1.6, -1.1)

PLE LEDE

$$\beta = -3.6$$
 (-4.5, -2.8)

comparison to theoretical models

The z~5 QLF from SDSS Stripe 82

evolving slope

bright end slope flattens at high-z (Schmidt, Schneider, & Gunn 1995, Fan+01, Richards+06, HRH07)

accretion mode? feedback?

bright end evolution from cold stream model

selection from Stripe 82 coadds

coadded imaging is ~2 mag fainter than SDSS

simple color selection highly efficient & complete at z~5

Stripe 82 z~5 numbers

92 candidates

73 spectra

71 quasars

524.7 < z < 5.1

QLF shape at z~5, SDSS DR3

QLF shape at z~5, SDSS DR7

QLF shape at z~5, Stripe 82

QLF shape at z~5, model fits

comparison to theoretical models

in the context of the BOSS LEDE model

acceleration evolution at z>6?

$$z = 5 \rightarrow 6$$

$$V_a = \int_{\Delta z} p(M_{1450}, z) \frac{dV}{dz} dz$$

$$\rho = \sum_i \frac{1}{V_a^i} \ , \quad \sigma(\rho) = \left[\sum_i \left(\frac{1}{V_a^i} \right)^2 \right]^{1/2}$$

... potentially seen in near-IR surveys

from B. Venemans

Constraints on the z~6 QLF from an HST/WFC3 Snapshot Survey

motivation

- HST resolution
- biases (QLF, BH mass, near zones)
- host galaxies

Lensing model

Comerford, Haiman, & Schaye 2002

background lensing rate:

- DM Halo Mass function (Jenkins+01)
- baryonic cooling (Kochanek & White 2001)
- magnification PDF (dp/dμ)

magnification bias (posterior lensed fraction)

QLF shape (break luminosity + bright-end slope)

lensing bias on observed QLF

$$\Phi_{\rm int}(L) = \frac{\Phi_*/L_*}{(L/L_*)^{\beta_l} + (L/L_*)^{\beta_h}} \ . \tag{6}$$

$$\Phi_{\rm obs}(L_{\rm obs}, \, \mu_{\rm min}) = \int_{\mu_{\rm min}}^{\infty} d\mu \frac{dp}{d\mu} \Phi_{\rm int} \left(\frac{L_{\rm obs}}{\mu}\right) \frac{1}{\mu} \,. \tag{2}$$

 $dp/d\mu \propto \mu^{-3}$

HST Snapshot sample

- > 60 quasars known at z ≥ 6
- Divided into two samples:

$$-z_{AB} < 20.5 2x180s$$

$$-z_{AB} > 20.5 3x400s$$

• 29 observed (+ 8 archival)

```
Richards+04 ACS/HRC F850LP 1200 s 4 QSOs
This work WFC3/IR F105W 360/1200 s 29 QSOs
```

WFC3 Snapshot gallery

Two candidate lenses

J1602+4228

- SDSS (Fan et al. 2004)
- z = 6.1
- $z_{AB} = 19.9$
- two image lens + galaxy?
- awaiting confirmation

J0050+3445

- CFHTQS (Willott et al. 2010)
- z = 6.25
- $z_{AB} = 20.5$
- 4 components? 3?
- Cycle 19 obtained
 - 3 orbits ACS-i
 - 2 orbits WFC3-Y

QLF constraints from 0 lenses

QLF constraints from 1 lens

aside on quasar fueling

J0050: ACS/i + WFC3/Y deep imaging

companion has F105W ~ 24.5 (i-dropout)

separation ~ 5 kpc

another close neighbor (from Stripe 82)

Summary

- PLE to LEDE transition at z~2
- strong evolution in break luminosity
- weak bright end slope evolution
- low lensing rate at z~6 also consistent with high break luminosity
- evidence for accelerated density evolution at z>6