LICENCIATURA EN ESTADÍSTICA MUESTREO Y PLANIFICACIÓN DE ENCUESTAS PRIMER REPARTIDO

EJERCICIOS 1 – 5 Ejercicios 2.3 al 2.6 y 2.8 de C. E. Särndall, B. Swensson y J. Wretman. Model Assisted Survey Sampling. Springer-Verlag New York 1992.

EJERCICIO 6

Dada $U = \{1,2,3,4\}$, se sabe que $y_1 = 12$, $y_2 = 10$, $y_3 = 5$, $y_4 = 3$.

Sea
$$S = \{\{1,2\},\{1,3\},\{1,4\}\} \text{ con } p(s) = \frac{1}{3} \forall s \in S.$$

Se pide:

- a) Calcule π_2 .
- b) ¿Estamos frente a un diseño aleatorio? ¿Por qué?
- c) Si $s = \{1,3\}$, ¿cuánto vale $\hat{t}_{y\pi}$ para esa muestra?
- d) ¿Estamos frente a un diseño medible? ¿Por qué?

EJERCICIO 7 (Ejercicio de la Primer Revisión de 2002)

Suponga un diseño p(s) de tamaño n_s aleatorio. Partiendo de $n_s = \sum_{ll} I_k$ demostrar

$$E(n_s) = \sum_{U} \pi_k$$

$$V(n_s) = \sum_{U} \sum_{U} \pi_{kl} - \left(\sum_{U} \pi_k\right)^2$$

Suponiendo que el diseño es de tamaño fijo, *n*, demostrar

$$\sum_{U} \pi_{k} = n$$

$$\sum_{k \neq l} \sum_{U} \pi_{kl} = n(n-1)$$

$$\sum_{k \neq l} \pi_{kl} = \pi_{k}(n-1)$$

$$\sum_{k \neq l} \sum_{U} \Delta_{kl} = 0$$

EJERCICIO 8 (Ejercicio de la Primer Revisión de 2002)

Sean $a_1, a_2, ..., a_k, ..., a_N$ y $a_{11}, a_{12}, ..., a_{kl}, ..., a_{NN}$ números fijos y $\frac{a_k}{\pi_k}$ y $\frac{a_{kl}}{\pi_{kl}}$ sus respectivos velores π expandidos (son $\pi_k > 0$ y $\pi_k > 0$). Demostrar que

valores π -expandidos (con $\pi_{_k} > 0$ y $\pi_{_{kl}} > 0$). Demostrar que

$$\sum_{s} \frac{a_k}{\pi_k}$$
 es insesgado para $\sum_{u} a_k$ y que $\sum_{s} \sum_{s} \frac{a_{kl}}{\pi_{kl}}$ lo es para $\sum_{u} \sum_{s} \sum_{t} a_{kl}$.

Usando lo anterior demostrar que $-\frac{1}{2}\sum\sum_{s}\frac{\Delta_{kl}}{\pi_{kl}}\left(\frac{y_k}{\pi_k}-\frac{y_l}{\pi_l}\right)^2$ es insesgado para estimar $V(\hat{t}_{\pi})$ si el diseño es de tamaño fijo.

EJERCICIO 9 (Ejercicio de la Primer Revisión de 2000)

Se desconoce el tamaño total (*N*) de una cierta población. Se selecciona una muestra $S=\{15, 25, 36, 49\}$ con probabilidades de inclusión $\pi_{15}=0.25, \pi_{25}=0.01, \pi_{36}=0.10, \pi_{49}=0.10$. Note que el tamaño de la población puede escribirse como $N=\Sigma_U$ 1.

Se pide:

- a) Establezca el estimador- π de N y la varianza del mismo.
- b) Calcule una estimación puntual de *N* para el presente caso.
- c) Se puede estimar la varianza del estimador- π de N con los datos proporcionados? En caso afirmativo, cuánto vale la estimación de la varianza?

EJERCICIO 10

Supongamos que los valores de una variable y en una población U son tales que se cumple $y_k = c\pi_k \quad \forall \ k \in U$ donde c > 0 es una constante (es decir, la probabilidad de inclusión de cada elemento es proporcional al valor de la variable y.

Se pide:

- 1. Plantear la forma particular del estimador π de t_y .
- 2. Calcule la varianza del estimador π de t_y .

EJERCICIO 11

Sea $\hat{t}_y = \sum_s \frac{y_k}{\pi_k}$ y $\hat{t}_z = \sum_s \frac{z_k}{\pi_k}$ los estimadores de \hat{t}_y y \hat{t}_z bajo un diseño p(s) medible dado.

Se pide:

- 1. Mostrar que $COV\left(\hat{t}_y, \hat{t}_z\right) = \sum \sum_{l} \Delta_{kl} \frac{y_k}{\pi_k} \frac{z_l}{\pi_l}$.
- 2. Demostrar que $\sum \sum_{s} \frac{\Delta_{kl}}{\pi_{kl}} \frac{y_k}{\pi_k} \frac{z_l}{\pi_l}$ es un estimador insesgado de $COV(\hat{t}_y, \hat{t}_z)$.