# 5374 Fall 2022 Numerical Linear Algebra

Lecture 27

The **Gradient Descent** algorithm (fixed number of steps =  $k_0$ )



Let A be positive and  $z_*$  the solution to  $Az_* = b$ , and  $\{z_k\}_k$  a sequence generated by Gradient Descent, then

$$f(\boldsymbol{z}_k) - f(\boldsymbol{z}_*) \le \left(1 - \frac{1}{\operatorname{cond}(A)}\right) \left(f(\boldsymbol{z}_{k-1}) - f(\boldsymbol{z}_*)\right)$$

In particular

$$f(\boldsymbol{z}_k) - f(\boldsymbol{z}_*) \le \left(1 - \frac{1}{\operatorname{cond}(A)}\right)^k (f(\boldsymbol{z}_0) - f(\boldsymbol{z}_*))$$

this inequality ultinately produces on ohimete for 112x-2x11 . How?

Lastly, observe that

$$f(\boldsymbol{z}_k) - f(\boldsymbol{z}_*) = \frac{1}{2}(A(\boldsymbol{z}_k - \boldsymbol{z}_*), \boldsymbol{z}_k - \boldsymbol{z}_*)$$

The lemma says LHS  $\rightarrow 0$  as  $k \rightarrow \infty$ , and thus RHS  $\rightarrow 0$  as well

If A were designed, 
$$A = \begin{pmatrix} \lambda_{11} & \lambda_{11} \end{pmatrix}$$

The

$$= \frac{1}{2} \left( \lambda_{1} \left( \frac{2}{2} x_{1} - \frac{2}{2} \lambda_{1}^{2} + \dots + \lambda_{11} \left( \frac{2}{2} x_{1} - \frac{2}{2} \lambda_{11}^{2} \right) \right)$$

$$= \frac{1}{2} \lambda_{0} \left( \left( \frac{2}{2} x_{1} - \frac{2}{2} \lambda_{11}^{2} + \dots + \left( \frac{2}{2} x_{1} - \frac{2}{2} \lambda_{11}^{2} \right) \right)$$

The the proof of the condition of

If  $\lambda_{\mathbf{O}} = \text{smallest eigenvalue of A}$ , we have

$$\frac{1}{2}(A(z_k - z_*), z_k - z_*) \ge \frac{\lambda_0}{2}|z_k - z_*|^2$$

and thus  $z_k \to z_*$  in the limit.

We can do even better! We can say
how fact the convergence happens. We have  $\frac{1}{2} | \log | 2_K - 2_K |^2 \le f(2_K) - f(2_K) - f(2_K)$   $\le \left(1 - \frac{1}{\operatorname{cond}(a_K)}\right) \left(f(2_K) - f(2_K)\right)$ 

Gradient descent

Let's look only at 
$$z_0 = 0$$
, then

$$\frac{1}{2} \lambda_0 \| z_K - z_* \|^2 \le \left( 1 - \frac{1}{2} \lambda_0 \right)^K \left( -f(z_*) \right)$$
Well,  $f(z_*) = \frac{1}{2} \left( A z_*, z_* \right) - \left( b_1 z_* \right)$ . Size

$$A z_* = b, \qquad f(z_*) = \frac{1}{2} \left( A z_*, z_* \right) - \left( A z_*, z_* \right)$$

$$= -\frac{1}{2} \left( A z_*, z_* \right)$$

$$= -\frac{1}{2} \left( A z_*, z_* \right)$$

$$= \frac{1}{2} \left( A z_*, z_* \right)$$

$$= \frac{1}{2} \left( A z_*, z_* \right)$$
Well,  $f(z_*) = \frac{1}{2} \left( A z_*, z_* \right)$ 

$$= -\frac{1}{2} \left( A z_*, z_* \right)$$

$$= \frac{1}{2} \left( A z_*, z_* \right)$$

$$= \frac{1}{2} \left( A z_*, z_* \right)$$
Well,  $f(z_*) = \frac{1}{2} \left( A z_*, z_* \right)$ 

$$= \frac{1}{2} \left( A z_*, z_* \right)$$

$$= \frac{1}{2} \left( A z_*, z_* \right)$$

$$= \frac{1}{2} \left( A z_*, z_* \right)$$
Well,  $f(z_*) = \frac{1}{2} \left( A z_*, z_* \right)$ 

$$= \frac{1}{2} \left( A z_*, z_* \right)$$

$$= \frac{1}{$$

What we have, is

1/20 112x-2x112 = (1- 1- consum) 2 10 117x112

Since  $Cond(A) = \frac{40}{26}$ 

 $||2_{k}-2_{k}||^{2} \leq (|-\frac{1}{\text{cond}(A)}) \text{cond}(A) ||2_{k}||^{2}$ 

12x-7\*11<sup>2</sup> = (1- Land(A)) cond(A)

The egone of the relative
and of the relative
and of the relative
cond(A)

In conclusion,

$$\frac{\|z_k - z_*\|}{\|z_*\|} \le \operatorname{cond}(A) \left(1 - \frac{1}{\operatorname{cond}(A)}\right)^{\frac{k}{2}}$$

Suprum und the RHS to be \( \xi\) \( \xi\) how his should le \( \xi\) be?

For a moment, write c = cond(A), give  $\varepsilon > 0$ , we want to find the first  $k \in \mathbb{N}$  such that

$$c^{\frac{1}{2}}\left(1-\frac{1}{c}\right)^{\frac{k}{2}} \leq \varepsilon$$

$$e^{\frac{k}{2}\log(1-\frac{1}{c})} = \frac{\varepsilon}{c^{k_2}}$$

$$k \sim 2c\log(c^{k_2}\varepsilon)$$

$$k \sim 2c\log(c^{k_2}\varepsilon)$$

$$k = 2\log(\varepsilon^{k_2}\varepsilon)$$

For a moment, write c = cond(A), give  $\varepsilon > 0$ , we want to find the first  $k \in \mathbb{N}$  such that

$$c\left(1-\frac{1}{c}\right)^{\frac{k}{2}} \le \varepsilon$$

What's remarkable about this estimate is its independence on the dimension n, showing that a n dimensional equation with nlarge but good condition number can be effectively solved in relatively few steps.

# In summary Gradient Descent:

- Involves minimizing  $f(z) := \frac{1}{2}(Az, z) (b, z)$
- Line searches to minimize f(z),

$$\operatorname{argmin}_{\alpha} f(\boldsymbol{z} + \alpha \boldsymbol{v}) = -\frac{(\mathbf{A}\boldsymbol{z} - \boldsymbol{b}, \boldsymbol{v})}{(\mathbf{A}\boldsymbol{v}, \boldsymbol{v})} = \frac{(\boldsymbol{r}, \boldsymbol{v})}{(\mathbf{A}\boldsymbol{v}, \boldsymbol{v})}$$

- Gradient descent consists in taking  $\boldsymbol{v} = -\nabla f(\boldsymbol{z}) = \boldsymbol{r}$
- #{iterations for rel. error  $\leq \varepsilon$ }  $\sim \text{cond}(A) \log(\text{cond}(A)/\varepsilon)$

# The Conjugate Gradient Method

$$f(z) = f(z) + \frac{1}{2}(A(z-z_*), z-z_*)$$



(too ruch zigzes/in et A

hu a bod condition nowher

What we would like to heppen.



We introduce an auxiliary inner product

$$({m x},{m y})_{
m A}:=({
m A}{m x},{m y}), \quad \|{m x}\|_{
m A}:=\sqrt{({m x},{m x})_{
m A}}$$

In the context of scientific computing, when two vectors  $\boldsymbol{x}$  and  $\boldsymbol{y}$  are orthogonal with respect to this inner product they are said to be A-conjugate.

Observe, that in terms of  $\|\cdot\|_{A}$ , we have

$$f(z) = f(z_*) + \frac{1}{2} ||z - z_*||_{A}^{2}$$



Let  $v_1, \ldots, v_n$  be a basis made out of A-conjugate vectors

$$(\boldsymbol{v}_i, \boldsymbol{v}_j)_{\mathrm{A}} = 0$$
 whenever  $i \neq j$ 

As they form a basis, given some initial guess  $z_0$ , we can write

$$\boldsymbol{z}_0 - \boldsymbol{z}_* = \alpha_1 \boldsymbol{v}_1 + \ldots + \alpha_n \boldsymbol{v}_n$$

for some (at the moment, unknown) numbers  $\alpha_1, \ldots, \alpha_n$ .

As we recalled a moment ago, we have

$$f(z_0) = f(z_*) + \frac{1}{2}(A(z_0 - z_*), z_0 - z_*)$$
  
=  $f(z_*) + \frac{1}{2}||z_0 - z_*||_A^2$ 

Since  $z_0 - z_* = \alpha_1 v_1 + \ldots + \alpha_n v_n$  and the  $v_i$  are A-orthogonal,

$$f(\mathbf{z}_0) = f(\mathbf{z}_*) + \frac{1}{2} \|\mathbf{v}_1\|_{\mathbf{A}}^2 \alpha_1^2 + \ldots + \frac{1}{2} \|\mathbf{v}_n\|_{\mathbf{A}}^2 \alpha_n^2$$

#### Line searches

It is wortwhile to check what would happen if we perform consecutive line searches in the directions  $v_1, \ldots, v_n$ , starting from  $z_0$ 

Observe that

$$f(\mathbf{z}_0 + s\mathbf{v}_1) = f(\mathbf{z}_*) + \frac{1}{2} \|\mathbf{v}_1\|_{\mathbf{A}}^2 (\alpha_1 + s)^2 + \ldots + \frac{1}{2} \|\mathbf{v}_n\|_{\mathbf{A}}^2 \alpha_n^2$$

It is clear that the minimum is achieved for  $s = -\alpha_1$ , so that



Line searches

Now, performing a line search at  $z_1$  in the direction  $v_2 \dots$ 

$$f(\mathbf{z}_1 + s\mathbf{v}_2) = f(\mathbf{z}_*) + \frac{1}{2} \|\mathbf{v}_2\|_{\mathbf{A}}^2 (\alpha_2 + s)^2 + \ldots + \frac{1}{2} \|\mathbf{v}_n\|_{\mathbf{A}}^2 \alpha_n^2$$

Now the minimum is achieved for  $s = -\alpha_2$ , so

$$\boldsymbol{z}_2 = \boldsymbol{z}_1 - s_2 \boldsymbol{v}_2 = \boldsymbol{z}_* + \alpha_3 \boldsymbol{v}_3 + \ldots + \alpha_n \boldsymbol{v}_n$$

# Conjugate gradient Line searches

Repeating this argument, after k steps (with k < n) we have

$$\boldsymbol{z}_k = \boldsymbol{z}_* + \alpha_{k+1} \boldsymbol{v}_{k+1} + \ldots + \alpha_n \boldsymbol{v}_n$$

and, at the *n*-th step

$$z_n = z_*$$
.

That is, if rounding errors are not a problem, we would find the exact solution  $z_*$  after no more than n line searches.

### Selecting the search directions

We are all left with generating the search directions  $v_k$  so that they are pairwise conjugate (= orthogonal with respect to  $(,)_A$ )

We cannot take 
$$\mathbf{v}_k = -\nabla f(\mathbf{z}_k)$$
 (cannot expect  $(A\mathbf{v}_i, \mathbf{v}_j) = 0$ )

However, we can progressively modify these  $\boldsymbol{v}$ 's, setting, first

$$\boldsymbol{v}_1 = \boldsymbol{r}_1 = \boldsymbol{b} - \mathbf{A}\boldsymbol{z}_0$$

and defining (recursively) for  $k = 2, \ldots, n$ 

$$m{v}_k = m{r}_k - \left(egin{array}{ccc} ext{the $A$-orthogonal projection of } m{r}_k \ ext{onto the space spanned by } m{v}_1, \dots, m{v}_{k-1} \end{array}
ight)$$
 reall,  $m{r}_k = m{b} - m{A} m{z}_k$ 

recall,
$$\Gamma_{k} = b - A z_{k}$$

Selecting the search directions

With better notation, we will take  $v_k = P_{k-1}r_k$ , where

$$P_{k-1} =$$
A-orthogonal projection onto the complement of  $\mathbf{v}_1, \dots, \mathbf{v}_{k-1}$ 

This means that for any  $\boldsymbol{x} \in \mathbb{R}^n$  and  $k = 2, \dots, n$ 

$$\mathrm{P}_{k-1}oldsymbol{x} = oldsymbol{x} - \sum_{j=1}^{k-1} rac{(oldsymbol{v}_j, oldsymbol{x})_\mathrm{A}}{(oldsymbol{v}_j, oldsymbol{v}_j)_\mathrm{A}} oldsymbol{v}_j$$

Selecting the search directions

$$egin{aligned} oldsymbol{v}_k &= -\mathrm{P}_{k-1} 
abla Q(oldsymbol{z}_k) \ &= \mathrm{P}_{k-1} oldsymbol{r}_k \ &= oldsymbol{r}_{k-1} \sum_{j=1}^{k-1} rac{(oldsymbol{v}_j, oldsymbol{r}_k)_{\mathrm{A}}}{(oldsymbol{v}_j, oldsymbol{v}_j)_{\mathrm{A}}} oldsymbol{v}_j \end{aligned}$$

### Selecting the search directions

### Lemma

For the sequences  $z_k$ ,  $r_k$  in the CGM, we have

$$(r_{k-1}, v_j) = 0 \text{ for } 1 \le j \le k-2$$

In particular, for k = 2, ..., n, the following holds

$$oldsymbol{v}_k = oldsymbol{r}_k - rac{(oldsymbol{v}_{k-1}, oldsymbol{r}_k)_{ ext{A}}}{(oldsymbol{v}_{k-1}, oldsymbol{v}_{k-1})_{ ext{A}}} oldsymbol{v}_{k-1}$$

### The Conjugate Gradient algorithm

Let  $k_0 \leq n$ ,

### Lemma

Let A be positive and  $\mathbf{z}_*$  the solution to  $A\mathbf{z}_* = \mathbf{b}$ , and  $\{\mathbf{z}_k\}_k$  a sequence generated by Conjugate Gradient, then

$$f(\boldsymbol{z}_k) - f(\boldsymbol{z}_*) \le 2\left(1 - \frac{2}{\sqrt{\operatorname{cond}(A)} + 1}\right)^k (f(\boldsymbol{z}_0) - f(\boldsymbol{z}_*))$$

From here follows a similar estimate for 1124-224/ 212+4

a in gradient doescent.

### Number of operations

Each iteration of the conjugate gradient method (CGM) has:

- Matrix-vector products: Av, Az ( $O(N^2)$  (O(N)) if space
- Inner products:  $(\boldsymbol{r}, \boldsymbol{v}), (A\boldsymbol{v}, \boldsymbol{v}), (A\boldsymbol{v}, \boldsymbol{r})$
- Sums/differences  $z + \alpha v$ , b Az,  $r \frac{(Av,r)}{(Av,v)}v$

How many FLOPs?

The first  $\bullet$  takes  $O(n^2)$  FLOPs (O(n)) if A is sparse

The second and third  $\bullet$  take O(n) FLOPs

Total 
$$O(\kappa_0 n^2)$$
 /  $O(\kappa_0 n)$  if  $(4\pi \kappa_0)$  items)

### Number of operations

Each iteration of the conjugate gradient method (CGM) has:

- Matrix-vector products: Av, Az
- Inner products: (r, v), (Av, v), (Av, r)
- Sums/differences  $z + \alpha v$ , b Az,  $r \frac{(Av,r)}{(Av,v)}v$

How many FLOPs?

The first  $\bullet$  takes  $O(n^2)$  FLOPs (O(n)) if A is sparse

The second and third  $\bullet$  take O(n) FLOPs

The analysis of CGM is more delicate, but in general it will perform **much better** than regular gradient descent.