

Introdução a Microcontroladores e Sistemas Embebidos Arduino

Formador: Miguel Cunha

Aula 2

Strong together

Lógica digita

001001001001001001 00100100100

High

Low -

- O que é um circuito eléctrico?
- permitindo uma passagem de corrente, e com Um circuito eléctrico consiste num conjunto de componentes elétricos ligados entre si, efeitos diversos em cada um deles.
- O que é um circuito electrónico?
- facto de ligar componentes electrónicos, e.g. Difere de um circuito eletrónico apenas no circuitos integrados.

Componentes Eletrónicos MAS

Componentes Eléctricos

subdivisão dos componentes electrónicos Os componentes elétricos são um

medida em que não geram nenhum tipo componentes eletrónicos passivos, na O componentes eléctricos são de energia no circuito

Vamos aos componentes mais simples mas essenciais:

Este é provavelmente o componente que corrente para o(s) componente(s) ligado mais utilizarão. A sua função é reduzir a (s) a seguir.

componentes não estejam sujeitos a uma Isto serve principalmente para que os corrente superior à suportada

- necessita de resistências antes, uma vez que tem um valor reduzido de corrente Por exemplo, um LED geralmente para funcionamento.
- Resultado de não utilizar resistências para limitar corrente?

 ∞

- Como saber que resistência usar (ou se resistência é mesmo necessária)?
- Duas ferramentas:
- Datasheet do componente
- Lei de Ohm $(V = I \times R)$
- Vamos então rever a Lei de Ohm e possíveis equações a derivar dela

- Lei de Ohm
- Uma das leis (senão a) mais importantes de circuitos eléctricos.
- pela quantidade de resistência que existe no quantidade de corrente que por ele passa e A voltagem de um circuito traduz-se na circuito:

 $Voltagem(V) = Corrente(I) \times Resistência(R)$

- E como é que isto nos ajuda?
- do componente, podemos saber qual a resistência Sabendo a voltagem e com o auxílio da datasheet necessaria para que ele funcione correctamente
- datasheet, tem uma corrente de funcionamento ideal de 10mA. Se considerarmos uma fonte de Exemplo de um LED, que pelas informações da

$$V = I \times R$$

$$R = \frac{V}{I}$$

$$\frac{3.3V}{0.010A}$$

$$R = 330\Omega$$

13

Electrónica - Resistência

resistência para corresponder a um valor dos limites de corrente do componente? de corrente diferente mas ainda dentro O que acontece se mudar o valor da

$$R_{\uparrow} = I? = R_{\downarrow}$$

$$R_{\downarrow} = I? = R_{\downarrow}$$

growing together

Transistor

Eletrónica - Transístor

- **Transistor**
- Um componente também muito utilizado por ter duas grandes funções possíveis:
- Amplificar a corrente (ou voltagem, conforme o sistema)
- Permitir ou impedir passagem de corrente (controlo)

Electrónica - Transístor

- O funcionamento do transístor é muitas vezes válvula que interrompe ou resume o fluxo de emissor como o destino e a base como a considerando o colector como a fonte, o equiparado a uma torneira de água, adna.
- aplicado à base, a corrente que está a passar Quando um certo valor de voltagem é no colector passa para o emissor.
- A partir desse valor para cima, a corrente no emissor é amplificada

GFFI together

Condensador

18

Electrónica - Condensador

- Um condensador armazena corrente e condensador uma espécie de pilha dispensa. Podemos considerar um recarregavel.
- carga armazenada quando deixa de ser Regula a saida e vai descarregando a alimentado

Electrónica - Condensador

corrente danifiquem os componentes, por isso normalmente é utilizado em circuitos Optimo para impedir que cortes de de maior tensão.

Lógica Digita

- Na passagem da electrónica, precisamos de perceber que, no mundo digital não existe voltagens ou nada do género.
- Digitalmente só temos dois valores possiveis:

0 (LOW, false) ou 1 (HIGH, true)

Lógica Digita

- Então como sabemos converter do mundo real (analógico) para o mundo digital?
- avançado, o ADC, mas apenas falaremos dele Podemos chegar a um conceito mais nas últimas aulas.
- O que temos de saber é que depende tudo do componente que faz a conversão

Lógica Digita

verdade que, em muitos casos se traduz integram internamente um tradutor de Por exemplo, os microcontroladores pelo seguinte gráfico:

