

MDE_TELTO_FCC_MPEa FCC ID 2AET4-RUT950 IC ID: 23005-RUT950

Maximum Permissible Exposure

as specified in Table 1B of 47 CFR 1.1310 – Limits for Maximum Permissible Exposure (MPE), Limits for General Population/Uncontrolled Exposure

Frequency range (MHz)	Power density (mW/cm²)	
300 – 1,500	f/1500	
1,500 - 100,000	1.0	

Limits specified per RSS-102, Issue 5.

Frequency range (MHz)	Power density (W/m²)	Power density (mW/cm²)
300 – 6000	$0.02619 f^{0.6834}$	$mW/cm^2 = W/m^2 * 0.1$

Calculations

The output power at antenna input terminal:

Prediction frequency 1(PF 1) (\mathbf{P}): 20MHz BW - 2412 MHz @ 15.8 dBm Prediction frequency 2(PF 2) (\mathbf{P}): 40MHz BW - 2422 MHz @ 15.6 dBm

Antenna gain(**G**) @ 2.4GHz: 5.0dBi Prediction distance **R**: 20 cm MPE limit **S**: 1 mW/cm²

Equation OET bulletin 65, page 18, edition 97-01: $S = \frac{PG}{4\pi R^2} = \frac{EIRP}{4\pi R^2}$

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the centre of radiation of the antenna (20cm)

Maximum Power density	Limit FCC	Limit IC	Verdict
PF 1: 0.0239 mW/cm ²	1.0 mW/cm ²	0.5366	Pass
PF 2: 0.0228 mW/cm ²	1.0 mW/cm ²	0.5381	Pass

Margin to FCC Limit (mW/cm²)	Margin to IC Limit (mW/cm²)	Minimum Distance to be ensured cm (FCC)	Minimum Distance to be ensured cm (IC)
0.9761	0.5127	3.0931	4.2225
0.9772	0.5153	3.0227	4.1206

Note. The calculation was made under the consideration of the duty cycle effect.

Yours sincerely

Patrick Lomax, Project Manager 07.08.2017 Ratingen, Germany