Devoir 1: Les intégrales à paramètres

- I 1) Montrer que la fonction $(t \mapsto \sin t/t)$ se prolonge sur \mathbb{R} tout entier en une fonction continue q.
 - 2) Montrer que pour tout $y \ge 0$, l'intégrale

$$f(y) = \int_0^{+\infty} e^{-yt} g(t) dt = \int_0^{+\infty} e^{-yt} \frac{\sin t}{t} dt$$

est convergente. On définit ainsi une fonction $f:[0;+\infty[\to\mathbb{R}.$

3) Pour $n \in \mathbb{N}^*$, on définit $f_n : [0; +\infty[\to \mathbb{R} \text{ par}]$

$$f_n(y) = \int_0^n e^{-yt} g(t) dt.$$

Montrer que f_n est continue.

4) Montrer à l'aidre d'une intégration par parties que

$$\forall y \in [0; +\infty[, \forall n \in \mathbb{N}^*, \left| \int_n^{+\infty} e^{-yt} \frac{\sin t}{t} dt \right| \le \frac{3}{n}.$$

En déduire que (f_n) converge uniformément vers f sur l'intervalle $[0; +\infty[$, et que f est continue.

- II 5) Montrer que f_n est de classe C^1 sur $[0; +\infty[$ et exprimer $f'_n(y)$ à l'aide d'une intégrale.
 - 6) Montrer que pour y > 0, l'intégrale

$$F(y) = \int_0^{+\infty} -e^{-yt} \sin t dt$$

est convergente. Montrer que pour tout a > 0, (f'_n) converge uniformément sur l'intervalle $[a; +\infty[$ vers la fonction f ainsi définie. En déduire que f est dérivable en tout point de $]0; +\infty[$, et que f'(y) = F(y) pour y > 0.

7) Calculer F(y). En déduire qu'il existe une constante K telle que

$$\forall\; y\in]0;+\infty[\,,\quad f(y)=K-\arctan y\,.$$

- 8) Montrer que $\lim_{y\to +\infty} f(y)=0$. En déduire la valeur de K.
- 9) Déduire de ce qui précède la valeur de l'intégrale

$$\int_0^{+\infty} \frac{\sin t}{t} dt \, .$$