初等数学中的基本公式

一、式的恒等变换

$$a^{2} - b^{2} = (a - b)(a + b)$$

$$(a \pm b)^{2} = a^{2} \pm 2ab + b^{2}$$

$$(a + b + c)^{2} = a^{2} + b^{2} + c^{2} + 2ab + 2ac + 2bc$$

$$(a + b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$$

$$(a - b)^{3} = a^{3} - 3a^{2}b + 3ab^{2} - b^{3}$$

$$a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2})$$

$$a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})$$

$$a^{n} - 1 = (a - 1)(a^{n-1} + a^{n-2} + \dots + 1)$$

二、幂

$$a^{m} \cdot a^{n} = a^{m+n}$$

$$(a^{m})^{n} = a^{mn}$$

$$a^{m} \div a^{n} = a^{m-n}$$

$$(a_{1}a_{2} \cdots a_{k})^{n} = a_{1}^{n}a_{2}^{n} \cdots a_{k}^{n}$$

三、根式

1、
$$(\sqrt[n]{a})^n = a$$
, $(a > 0)$, $n > 1$ 为自然数

当 n为奇数时 $\sqrt[n]{a^n} = a$, a是任意实数

当
$$n$$
 为偶数时 $\sqrt[n]{a^n} = |a|$

2、
$$\sqrt[n]{a_1a_2\cdots a_k} = \sqrt[n]{a_1}\sqrt[n]{a_2}\cdots\sqrt[n]{a_k}$$
, 其中 $a_i \ge 0,1 \le i \le k,n > 1$

$$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}} \quad (a \ge 0, b > 0, n > 1)$$

$$(\sqrt[n]{a})^m = \sqrt[n]{a^m} \quad (a \ge 0, n > 1)$$

$$\sqrt[n]{a^{mn}} = a^m \quad (a \ge 0, m, n > 1)$$

$$\sqrt[m]{\sqrt[n]{a}} = \sqrt[mn]{a} \quad (a \ge 0, m, n > 1)$$

四、等差数列与等比数列

1、等差数列: $a_1, a_2, \dots, a_n, \dots$

通项公式: $a_n = a_1 + (n-1)d$, d 为公差,

前 n 项和的公式 $S_n = \frac{a_1 + a_n}{2} n$; 若 a,b,c 成等差数列 , 则有 $b = \frac{a+c}{2}$

2、等比数列: $a_1, a_2, \dots, a_n, \dots$

通项公式: $a_n = a_1 q^{n-1}$, q 为公比;前 n 项和的公式 $S_n = \frac{a_1 (q^n - 1)}{q - 1}$

3、某些特殊数列前 n 项的和:

$$1+2+\cdots+n=\frac{1}{2}n(n+1)$$

$$1+3+5+\cdots+(2n-1)=n^2$$

$$2+4+6+\cdots+2n = n(n+1)$$

$$1^{2} + 2^{2} + \dots + n^{2} = \frac{1}{6}n(n+1)(2n+1)$$

$$1^3 + 2^3 + \dots + n^3 = \left[\frac{1}{2}n(n+1)\right]^2$$

$$1 \cdot 2 + 2 \cdot 3 + \dots + n(n+1) = \frac{1}{3}n(n+1)(n+2)$$

$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n(n+1)} = 1 - \frac{1}{n+1} = \frac{n}{n+1}$$

五、排列、组合及二项式定理

1、 从 n 个不同元素中取出m ($m \le n$) 个元素的所有排列的个数,叫做从n 个不

同元素中取出
$$m$$
个元素的排列,记为 $P_n^m = n(n-1)(n-2)\cdots(n-m+1) = \frac{n!}{(n-m)!}$

n 个不同元素全部取出的排列叫做这n 个不同元素的全排列 $P_n^n = n!$

2、从n个不同元素中取出m($m \le n$)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号 C_n^m 表示

$$C_n^m = \frac{P_n^m}{P_m^m} = \frac{n!}{m!(n-m)!}$$

3、二项式定理

$$(a+b)^{n} = C_{n}^{0}a^{n} + C_{n}^{1}a^{n-1}b + \dots + C_{n}^{r}a^{n-r}b^{r} + \dots + C_{n}^{n}b^{n}$$

组合数有性质: $C_n^m = C_n^{n-m}, C_n^0 = 1, C_n^n = 1$

4、重要不等式

若 a, b 都是实数,则有 $a^2 + b^2 \ge 2ab$ (当且仅当 a = b 时,取等号)

若a, b都是正数,则有 $\frac{a+b}{2} \ge \sqrt{ab}$ (当且仅当a=b时,取等号)

若a,b,c都是正数,则有 $\frac{a+b+c}{3} \ge \sqrt[3]{abc}$

六、初等函数的基本性质

初等函数是由基本初等函数经过有限次的四则运算和复合而成的,所以下面仅介绍基本初等函数

1、常量函数 $y \equiv C$ (常数)

此函数的定义域为 $(-\infty,+\infty)$,值域为 $\{C\}$,所以是有界函数,其图形为平行于x轴,截距为 C的直线。

2、幂函数 $y = x^{\alpha} (\alpha 为实数)$

随 α 取值的不同,其定义域、图形也均不同。当 α 为自然数时,定义域为全体 实数 ;当 α 为负整数时, $x \neq 0$;而当 $x \in (0,+\infty)$ 时, $y = x^{\alpha}$ 恒有意义,且当 $\alpha > 0$ 时为单调增,当 $\alpha < 0$ 时为单调减,图形均过点(1,1)。

3、指数函数

$$y = a^x$$
, $a > 0$, $a \ne 1$

定义域: $(-\infty, +\infty)$,值域 $(0, +\infty)$,图形恒通过点

(0,1); 当a>1时单调增; 当0<a<1时单调

减。特别当a = e时,即 $y = e^x$ 是常用的指数函数,

其中 $e = 2.7182 \cdots$ 为无理数。

$$a^{x} \cdot a^{y} = a^{x+y}, \quad a^{x} \div a^{y} = a^{x-y}, \quad (a^{x})^{y} = a^{xy},$$

运算性质:

$$\sqrt[y]{a^x} = a^{\frac{x}{y}}, \qquad a^{-x} = \frac{1}{a^x}, \qquad a^0 = 1$$

当
$$a > 1$$
时, $\lim_{x \to -\infty} a^x = 0$, $\lim_{x \to +\infty} a^x = +\infty$

当
$$0 < a < 1$$
时, $\lim_{x \to -\infty} a^x = +\infty$, $\lim_{x \to +\infty} a^x = 0$

4、对数函数

$$y = \log_a x$$
, $a > 0 \perp a \neq 1$

对数函数是指数函数的反函数,其定义域为

(0,+∞),值域为(-∞,+∞);

当a > 1时单调增,当0 < a < 1时单调减。其图形

与 $y = a^x$ 的图形关于直线y = x对

称 ,均过点(1 ,0) ,特别当 a=e 时为自然对数 ,记为 $y=\ln x$,即 $y=e^x$ 与 $y=\ln x$ 互为反函数

运算性质:
$$\log_a xy = \log_a x + \log_a y$$
, $\log_a \frac{x}{y} = \log_a x - \log_a y$,

$$\log_a x^{\mu} = \mu \log_a x$$
, $a^{\log_a x} = x$, $\log_a 1 = 0$, $\log_a a = 1$,

换底公式:
$$b > 0$$
, $b \neq 1$, 则有 $\log_a A = \frac{\log_b A}{\log_b a}$

当
$$a > 1$$
时, $\lim_{x \to 0^+} \log_a x = -\infty$, $\lim_{x \to +\infty} \log_a x = +\infty$,

当
$$0 < a < 1$$
时, $\lim_{x \to 0^+} \log_a x = +\infty$, $\lim_{x \to +\infty} \log_a x = -\infty$,

5、三角函数

$$y = \sin x$$
, $y = \cos x$, $y = \tan x$, $y = \cot x$, $y = \sec x$, $y = \csc x$

(1) 定义域及值域:

① $y = \sin x$,定义域为 $(-\infty, +\infty)$,值域[-1,1],为奇函数,以 2π 为周期,在 $(-\frac{\pi}{2}, \frac{\pi}{2})$ 内单调增,在 $(\frac{\pi}{2}, \frac{3\pi}{2})$ 内单调减。

 $y = \cos x$, 定义域为 $(-\infty, +\infty)$, 值域 [-1,1] , 为偶函数 , 以 2π 为周期 , 在 $(0,\pi)$ 内 中调减 , 在 $(\pi, 2\pi)$ 内单调增。

③
$$y = \tan x = \frac{\sin x}{\cos x}$$
 , 定义域为 $x \neq k\pi + \frac{\pi}{2}, k = 0, \pm 1, \pm 2, \cdots$, 值域为 $(-\infty, +\infty)$,为奇函数,以 π 为周期,在

 $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ 内为单调增。

以 π 为周期,在 $(0,\pi)$ 内单调减。

⑤
$$y = \sec x = \frac{1}{\cos x}$$
 , 定义域为

 $x \neq k\pi + \frac{\pi}{2}, k = 0, \pm 1, \pm 2, \cdots$

⑥
$$y = \csc x = \frac{1}{\sin x}$$
, 定义域为 $x \neq k\pi, k = 0, \pm 1, \pm 2, \cdots$

(2) 同角三角函数的基本关系:

 $\sin x \csc x = 1$, $\cos x \sec x = 1$, $\tan x \cot x = 1$

$$\tan x = \frac{\sin x}{\cos x}, \quad \cot x = \frac{\cos x}{\sin x}$$

$$\sin^2 x + \cos^2 x = 1$$
, $1 + \tan^2 x = \sec^2 x$, $1 + \cot^2 x = \csc^2 x$

(3) 两角和与差的公式:

 $\sin x(\pm y) = \sin x \cos y \pm \cos x \sin y$

$$c \circ sx(\pm y) = c \circ sx c \circ sy \mp s i nx s i ny$$

$$t a nx(\pm y) = \frac{t a nx \pm t a ny}{1 \mp t a nx t a ny}$$

倍角公式:

$$\sin 2x = 2\sin x \cos x$$

$$\cos 2x = \cos^2 x - \sin^2 x = 2\cos^2 x - 1 = 1 - 2\sin^2 x$$

$$t a n2x = \frac{2 t a nx}{1 - t a n^2 x}$$

(4) 和差化积公式:

$$\sin x + \sin y = 2\sin \frac{x+y}{2}\cos \frac{x-y}{2};$$
 $\sin x - \sin y = 2\cos \frac{x+y}{2}\sin \frac{x-y}{2}$

$$\cos x + \cos y = 2\cos \frac{x+y}{2}\cos \frac{x-y}{2}$$
; $\cos x - \cos y = -2\sin \frac{x+y}{2}\sin \frac{x-y}{2}$

(5) 积化和差公式:

$$\sin x \cos y = \frac{1}{2} [\sin(x+y) + \sin(x-y)]$$

$$\cos x \sin y = \frac{1}{2} [\sin(x+y) - \sin(x-y)]$$

$$\sin x \sin y = -\frac{1}{2} [\cos(x+y) - \cos(x-y)]$$

$$\cos x \cos y = \frac{1}{2} [\cos(x+y) + \cos(x-y)]$$

(6) 附表:

特殊角的三角函数值:

Х	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
sin x	0	1/2	$\sqrt{2}/2$	$\sqrt{3}/2$	1
$\cos x$	1	$\sqrt{3}/2$	$\sqrt{2}/2$	1/2	0
tan x	0	$\sqrt{3}/3$	1	$\sqrt{3}$	8
$\cot x$	8	$\sqrt{3}$	1	$\sqrt{3}/3$	0

三角函数在各象限的符号:

	sin x	cos x	tan x	cot x
第一象限	正	正	正	正
第二象限	正	负	负	负
第三象限	负	负	正	正
第四象限	负	正	负	负

6、反三角函数

(1) $y = \arcsin x$

当
$$x \in [-\frac{\pi}{2}, \frac{\pi}{2}]$$
时, $y = \sin x$ 单调

增 有反函数 記为 $y = \arcsin x$,

其定义域为

[-1,1]值域为 $[-\frac{\pi}{2},\frac{\pi}{2}]$ 为有界函

数,且为奇函数,单调增。

(2) $y = \arccos x$

当 $x \in [0,\pi]$ 时, $y = \cos x$ 单调下

降,有反函数,记为

 $y = \arccos x$, 其定义域为

[-1,1],值域为[0,π],单调减、有界。

当 $x \in (-\frac{\pi}{2}, \frac{\pi}{2})$ 时, $y = \tan x$ 单调增,有反函数,记

为 $y = \arctan x$, 其定义域为

 $(-\infty,+\infty)$, 值域为 $(-\frac{\pi}{2},\frac{\pi}{2})$, 有界、单调增 , 也是奇

函数。且有

 $\lim_{x \to +\infty} \arctan x = \frac{\pi}{2}, \lim_{x \to -\infty} \arctan x = -\frac{\pi}{2} \bullet$

$(4) y = arc \cot x$

当 $x \in (0,\pi)$ 时, $y = \cot x$ 单调减,有反函数,记为 $y = arc\cot x$,其定义域为 $(-\infty, +\infty)$,值域为 $(0,\pi)$,有界。

(5) 附表:

特殊点的反三角函数值:

y	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
arcsin x	$-\frac{\pi}{2}$	$-\frac{\pi}{3}$	$-\frac{\pi}{4}$	$-\frac{\pi}{6}$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
arccos x	π	$\frac{5\pi}{6}$	$\frac{3\pi}{4}$	$\frac{2\pi}{3}$	$\frac{\pi}{2}$	$\frac{\pi}{3}$	$\frac{\pi}{4}$	$\frac{\pi}{6}$	0

y	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$
arctan x	$-\frac{\pi}{3}$	$-\frac{\pi}{4}$	$-\frac{\pi}{6}$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$
arc cot x	$\frac{5\pi}{6}$	$\frac{3\pi}{4}$	$\frac{2\pi}{3}$	$\frac{\pi}{2}$	$\frac{\pi}{3}$	$\frac{\pi}{4}$	$\frac{\pi}{6}$