조절효과_회귀분석

2023-08-23

파일 불러오기

```
setwd('C:\\Users\\ph102\\Desktop\\P\\bio_sas')
effect_reg <- read.csv('data\\metareg.csv')
effect_reg</pre>
```

```
##
       study
                 n1
                          n2 age
## 1
      study1 33 350 37 333
                             31
## 2
      study2 10 125
                     13 131
                             56
      study3 26 161
## 3
                     65 170
                             41
## 4
      study4 23 254 34 234
      study5 125 1769 156 1321
## 5
                              29
## 6
      study6 33 248
                     49 294
                             40
## 7
      study7 27 340 29 337
                             47
## 8
      study8 46 158 38 126
                             54
## 9
      study9 78 155 70 150
                             61
## 10 study10 178 479 150 415
                             66
## 11 study11 411 2887 409 2700 43
```

분석 진행

```
library(meta)
meta_reg <- metabin(a,n1,b,n2,data=effect_reg,sm='RR',</pre>
                       method='I',studlab = paste(study))
meta_reg
## Number of studies: k = 11
## Number of observations: o = 13137
## Number of events: e = 2040
##
##
                            RR
                                         95%-CI
                                                    z p-value
## Common effect model 0.8771 [0.8122; 0.9472] -3.34 0.0008
## Random effects model 0.8126 [0.6812; 0.9692] -2.31 0.0210
## Quantifying heterogeneity:
## tau^2 = 0.0556 [0.0118; 0.2114]; tau = 0.2358 [0.1087; 0.4598]
## I^2 = 70.4\% [45.1%; 84.0%]; H = 1.84 [1.35; 2.50]
## Test of heterogeneity:
       Q d.f. p-value
## 33.79 10 0.0002
## Details on meta-analytical method:
## - Inverse variance method
## - Restricted maximum-likelihood estimator for tau^2
## - Q-Profile method for confidence interval of tau^2 and tau
```

하위 집단 메타분석 결과

```
forest(meta_reg,col.diamond = 'deepskyblue1',col.square = 'deeppink1')
```

	Experim	ental	C	ontrol				Weight	Weight
Study	Events	Total	Events	Total	Risk Ratio	RR	95%-CI	(common)	(random)
study1	33	350	37	333	- - 	0.85	[0.54; 1.32]	3.0%	7.6%
study2	10	125	13	131		0.81	[0.37; 1.77]	1.0%	3.7%
study3	26	161	65	170		0.42	[0.28; 0.63]	3.7%	8.3%
study4	23	254	34	234	• !!	0.62	[0.38; 1.03]	2.4%	6.7%
study5	125	1769	156	1321	— <u>—</u>	0.60	[0.48; 0.75]	11.8%	11.8%
study6	33	248	49	294	- • 	0.80	[0.53; 1.20]	3.6%	8.2%
study7	27	340	29	337		0.92	[0.56; 1.52]	2.3%	6.7%
study8	46	158	38	126		0.97	[0.67; 1.38]	4.6%	9.1%
study9	78	155	70	150	: 	1.08	[0.86; 1.36]	11.0%	11.6%
study10	178	479	150	415	- •	1.03	[0.86; 1.22]	19.8%	12.8%
study11	411	2887	409	2700	-	0.94	[0.83; 1.07]	37.0%	13.5%
Common effect model		6926		6211	♦	0.88	[0.81; 0.95]	100.0%	
Random effects mode						0.81	[0.68; 0.97]		100.0%
Heterogeneity: $I^2 = 70\%$, 1	$z^2 = 0.0556$	6, p < 0	0.01						
					0.5 1 2				

회귀분석으로 메타분석의 설명력과 QM을 확인

```
metareg1<- metareg(meta_reg,age)
metareg1</pre>
```

```
## Mixed-Effects Model (k = 11; tau^2 estimator: REML)
## tau^2 (estimated amount of residual heterogeneity):
                                                        0.0202 \text{ (SE = } 0.0218)
## tau (square root of estimated tau^2 value):
                                                         0.1420
## I^2 (residual heterogeneity / unaccounted variability): 48.16%
## H^2 (unaccounted variability / sampling variability): 1.93
## R^2 (amount of heterogeneity accounted for):
                                                         63.74%
## Test for Residual Heterogeneity:
## QE(df = 9) = 17.5889, p-val = 0.0403
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 7.7683, p-val = 0.0053
## Model Results:
##
                                       pval
##
           estimate
                        se zval
## intrcpt -0.8562 0.2490 -3.4379 0.0006 -1.3443 -0.3681 ***
## age
             0.0143 0.0051
                            2.7872 0.0053 0.0042
                                                       0.0244
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

예측값과 기댓값을 출력

```
pred_reg<- predict(metareg1)</pre>
pred_reg
##
##
        pred se ci.lb ci.ub pi.lb pi.ub
## 1 -0.4129 0.1046 -0.6178 -0.2080 -0.7585 -0.0674
## 2 -0.0554 0.0811 -0.2144 0.1035 -0.3759 0.2650
## 3 -0.2699 0.0724 -0.4118 -0.1280 -0.5823 0.0424
## 4 -0.3986 0.1006 -0.5958 -0.2014 -0.7397 -0.0576
## 5 -0.4415 0.1127 -0.6624 -0.2206 -0.7968 -0.0863
## 6 -0.2842 0.0747 -0.4306 -0.1379 -0.5986 0.0302
## 7 -0.1841 0.0660 -0.3135 -0.0548 -0.4910 0.1227
## 8 -0.0840 0.0756 -0.2322 0.0641 -0.3993 0.2312
## 9 0.0161 0.0983 -0.1765 0.2087 -0.3223 0.3545
## 10  0.0876  0.1185  -0.1448  0.3199  -0.2749  0.4500
## 11 -0.2413 0.0688 -0.3762 -0.1064 -0.5505 0.0679
fit_reg <- exp(fitted(metareg1))</pre>
fit_reg
                    2
                              3
                                        4
                                                  5
          1
## 0.6617153 0.9460728 0.7634358 0.6712453 0.6430591 0.7525968 0.8318276 0.9193995
          9
                   10
## 1.0161907 1.0915055 0.7855843
```

회귀식 결과를 그래프로 확인

```
bubble(metareg1,col.line = 'deepskyblue1',bg = 'deeppink1',studlab = T)
```


결과 정리

```
library(kableExtra)
result <- matrix(0,2,8)</pre>
colnames(result) <- c('RR(95% CI)', 'hete_I^2', 'hete_p',</pre>
                         'subg_QM','sub_p','meta_B','meta_p','meta_R^2')
row.names(result) <- c('intercept',' ')</pre>
result[,1] <- paste('0.81','(0.68,0.97)')
result[,2] <- round(meta_reg$I2,3)</pre>
result[,3] <- round(meta_reg$pval.Q,4)</pre>
for (i in 1:2){
  if (result[i,3]<0.001){result[i,3]='<.001'}</pre>
}
result[,4] <- round(metareg1$QM,3)</pre>
result[,5] <- round(metareg1$QMp,3)</pre>
result[,6] <- round(metareg1$b,3)</pre>
result[,7] <- round(metareg1$pval,3)</pre>
result[,8] <- round(metareg1$R2,3)</pre>
kable(result)
```

	RR(95% CI)	hete_I^2	hete_p	subg_QM	sub_p	meta_B	meta_p	meta_R^2
•	0.81 (0.68,0.97)		2e-04	7.768	0.005	-0.856	0.001	63.74
평균 나이	0.81 (0.68,0.97)	0.704	2e-04	7.768	0.005	0.014	0.005	63.74