Data Science & Artificial Intelligence

Summer Term 2022

L05.1 Introduction

Decision Trees (DTs)

- non-parametric supervised learning method for classification and regression
- predicts the value of a target variable by learning simple decision rules
- Classification trees are essentially a series of questions designed to assign a class
- good interpretability

L05.2 Definitions

topmost decision node

Leaf Nodes

- also called terminal nodes
- nodes that don't split into more nodes

split point

decicion where to split between the nodes

Tree depth

how many splits a tree can make

L05.2 Definitions

Output of a Decision Tree

classes are assigned by majority vote

Greedy Algorithm

- continue to split until it has a pure node
- classification trees don't split on pure nodes

? How do we find a good split point?

L05.3 Information Gain

Find a good split point

- A good value for a split point is one that separates one class well from the others
- this results in a large Information Gain

<u>Information Gain (IG):</u>

$$IG(D_p, f) = I(D_p) - \sum_{j=1}^{m} \frac{N_j}{N} I(D_j)$$

f: featrue split on

 D_p : Dataset of the parent node D_i : Dataset of the jth child node

I: Impurity criterion

N: total number of samples

 N_i : number of samples in jth child node

L05.3 Information Gain

- Binary Splits
- For binary splits (left and right) we can simply the formula to:

<u>Information Gain Binary Split (IG):</u>

$$IG(D_p, f) = I(D_p) - \underbrace{\left(\frac{N_{left}}{N}I(D_{left}) + \frac{N_{right}}{N}I(D_{right})\right)}_{\text{weighted impurity}}$$

f: featrue split on

 D_p : Dataset of the parent node D_i : Dataset of the jth child node

I: Impurity criterion

N: total number of samples

 N_i : number of samples in jth child node

Impurity Function

- measures how impure a leaf is
- two alternatives: Gini Index and Entropy

Gini Index:

$$I_G = \sum_{k=1}^{K} p_k (1 - p_k)$$

- p_k is the probability to pick a certain label out of the leaf: $p_k = \frac{N_k}{N}$
- $1 p_k$ is the probability not to pick that class
- K is the number of classes

Entropy

- Based on the following assumption:
 - worst case scenario in a leaf is to have $p_1=p_2=\cdots=p_k=\frac{1}{K}$
 - This means that all classes occur the same number of times
- The goal is to find a distribution p that is as far as possible from this case (we set q for the worst case)
- Use Kullback-Leibler Divergence to measure how different two distributions are

Kullback-Leibler Divergence:

$$KL(p||q) = \sum_{k=1}^{K} p_k \log\left(\frac{p_k}{q_k}\right)$$

From Kullback-Leibler Divergence to Entropy

$$KL(p||q) = \sum_{k=1}^{K} p_k \log \left(\frac{p_k}{q_k}\right) \qquad \text{with } q_k = \frac{1}{K}$$

$$= \sum_{k=1}^{K} p_k \log \left(\frac{p_k}{\frac{1}{K}}\right) = \sum_{k=1}^{K} p_k \log (p_k) + \sum_{k=1}^{K} p_k \log (K) = \sum_{k=1}^{K} p_k \log (p_k) + \log (K) \underbrace{\sum_{k=1}^{K} p_k}_{=1}$$

$$= \sum_{k=1}^{K} p_k \log (p_k) + \log (K)$$

• The goal is to maximize the distance, therefore the only relevant term is $\sum_{k=1}^{N} p_k \log{(p_k)}$

From Kullback-Leibler Divergence to Entropy

maximize the distance (= to maximize the order):

$$\max_{p} \left(\sum_{k=1}^{K} p_k \log \left(p_k \right) \right)$$

is the same as minimize the Disorder (= Entropy)

$$\min_{p} \left(-\sum_{k=1}^{K} p_k \log (p_k) \right)$$
Entropy

Entropy:

$$I_H = -\sum_{k=1}^K p_k log_2(p_k)$$

L05.6 Working Principle

Find the best split point

- For every possible split point:
 - calculate the Impurity I (Gini or Entropy)
 - calculate the Information Gain IG
- Pick the Split point with the highest resulting Information Gain

<u>Information Gain Binary Split (IG):</u>

$$IG(D_p, f) = I(D_p) - \underbrace{\left(\frac{N_{left}}{N}I(D_{left}) + \frac{N_{right}}{N}I(D_{right})\right)}_{\text{weighted impurity}}$$

Gini Index:

$$I_G = \sum_{k=1}^{K} p_k (1 - p_k)$$

Entropy:

$$I_G = \sum_{k=1}^{K} p_k (1 - p_k)$$
 $I_H = -\sum_{k=1}^{K} p_k log_2(p_k)$

L05.7 Regression

Transfer to regression problems:

 Instead of Gini or Entropy, the Mean Squared Loss is used as Impurity Function

Mean Squared Loss:

$$I_M = \frac{1}{N_j} \sum_{y \in D_j} (y - \bar{y})^2$$

The output of the jth Leaf is the mean value of its data:

Mean Leaf value:

$$\bar{y}_j = \frac{1}{N_j} \sum_{y \in D_j} y$$

Diabetes regression

L05.7 Regression

Transfer to regression problems:

- Problem: Regression Trees can grow infinitely
- Tradeoff between regression error and max tree depth

L05.8 Advantages and Disadvantages

Advantages:

- Simple to understand and to interpret
- Requires no data preparation
- handle both numerical and categorical data
- white box model

Disadvantages:

- can lead to a very deep trees (over-complex trees)
- often leads to overfitting on the training dataset
- can be unstable because small variations in the data might result in a completely different tree

L05.9 Prevent Overfitting

Simple Approaches:

Restrict tree size

limit how many splits a tree can make

Required number of data points per node

 Only split if a minimum number of observations per node is available

Impurity Gain threshold

 Split only if a threshold value for the Impurity Gain has been reached

L05.10 Bagging

Working Principle

- the training dataset S is split into N smaller subsets
- a separate tree is trained for each of these subsets → Ensemble
- The final output is determined by majority vote (for classification) or mean value (for regression) of the individual tree outputs

For classification:

$$P = \arg\max\{p_1, p_2 \dots, p_n\}$$

For regression:

$$P = \frac{1}{N} \sum_{n=1}^{N} p_n$$

Face Overfitting (high variance)

Bagging is an effective way to minimize the variance problem

L05.10 Bagging

Hyperparameter

- N determines how often the data is split and how many individual trees are learned
- the tree depth controls how many splits a tree within the ensemble can make
- The performance of the bagging ensemble exceeds the CART benchmark only when the number of estimators exceeds a certain limit

Bagging tree depth

Limiting the tree depth is quite superfluous in a bagging ensemble

L05.10 Bagging

Disadvantages

- Loss of interpretability
 - the final bagged classifier is not a tree
 - we lose the clear interpretability of a classification / regression tree
- Computational complexity
 - multiplying the work of growing a single tree by N
 - especially if we use the more elaborate implementation that prunes and validates the data with the original training data

L05.11 Random Forests

Working Principle

- based on Bagging
- the training dataset S is split into N smaller subsets
- a separate tree is trained for each of these subsets

However, the training algorithm for the individual trees is different:

- Bagging: split are allowed in every dimension d
- Random Forests: splits are only allowed in randomly drawn subsets τ of the dimensions: $\tau \ll d$
- Rule of thumb: $\tau \approx \sqrt{d}$

L05.11 Random Forests

Intuition

Given that there is a very strong predictor in the dataset, along with a number of other moderately strong predictors:

Using Bagging:

- in the collection of the bagged trees, most or all of the trees will use this strong predictor in the top split
- All of the bagged trees are quite similar to each other
- predictions from the bagged trees will be highly correlated

Random Forests:

• weaker predictors will have also the chance to be a split candidate as τ is randomly selected

L05.12 Boosting

Intuition

- Bagging and Random Forest ensembles consists of large trees (strong learners)
- What if we use only very small trees (weak learners)?

Strong Learners

capable to reduce the error to zero

VS

Weak Learners

a bit better than guessing

L05.12 Boosting

Adaptive Boosting: AdaBoost

- tries to reduce the Bias problem
- uses only Decision Stumps

Random Forests

 each tree has the same influence on the model output

VS

AdaBoost

- some stumps have higher influence than others
- error of the first stump makes influence how second stump is trained

Working Principle

- each sample is assigned a weight that describes how important the correct classification of the sample is
- 2. based on S_n a Decision Stump h_n is trained
- 3. calculate the Total Error ϵ
- 4. calculate new sample weights
- 5. sample a new dataset S_{n+1}
- 6. reset the sample weights for S_{n+1}

$$H(x) = \sum_{t=1}^{T} \alpha_t h_t(x)$$

Working Principle

• For N samples, the sample weights are initialized to $\frac{1}{N}$

Total Error ϵ of a stump:

Sum of weights associated with misclassified samples

$$H(x) = \sum_{t=1}^{T} \alpha_t h_t(x)$$

Amount of say lpha

• defines how influential the stump h_t is for the resulting model output

Amount of say:

$$\alpha_t = \frac{1}{2} \log \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

Working Principle

Sample weights update rule

different updates for correctly and misclassified samples:

misclassified samples:

$$w_i \leftarrow w_i e^{\alpha}$$

correctly classified samples:

$$w_i \leftarrow w_i e^{-\alpha}$$

• after calculation of the new sample weights, the weights need to be normalized so that $\sum_{i=1}^N w_i = 1$

Use Case: Heart Disease

Chest	Blocked	Patient	\mathbf{Heart}	Sample
Pain	${f Arteries}$	\mathbf{Weight}	Disease	\mathbf{Weight}
Yes	Yes	205	Yes	1/8
No	Yes	180	Yes	1/8
Yes	No	210	Yes	1/8
Yes	Yes	167	Yes	1/8
No	Yes	156	No	1/8
No	Yes	125	No	1/8
Yes	No	168	No	1/8
Yes	Yes	172	No	1/8

initial dataset

For the first iteration init all weights to $\frac{1}{N}$

Use Case: Heart Disease

$egin{array}{c} { m Chest} \\ { m Pain} \end{array}$	Blocked Arteries	Patient Weight	Heart Disease	Sample Weight
Yes	Yes	205	Yes	1/8
No	Yes	180	Yes	1/8
Yes	No	210	Yes	1/8
Yes	Yes	167	Yes	1/8
No	Yes	156	No	1/8
No	Yes	125	No	1/8
Yes	No	168	No	1/8
Yes	Yes	172	No	1/8

initial dataset

Use Case: Heart Disease

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	Sample Weight
Yes	Yes	205	Yes	1/8
No	Yes	180	Yes	1/8
Yes	No	210	Yes	1/8
Yes	Yes	167	Yes	1/8
No	Yes	156	No	1/8
No	Yes	125	No	1/8
Yes	No	168	No	1/8
Yes	Yes	172	No	1/8

Use Case: Heart Disease

Update the misclassified sample weights

Chest	Blocked	Patient	Heart	Sample
Pain	Arteries	Weight	Disease	Weight
Yes	Yes	205	Yes	1/8
No	Yes	180	Yes	1/8
Yes	No	210	Yes	1/8
Yes	Yes	167	Yes	1/8
No	Yes	156	No	1/8
No	Yes	125	No	1/8
Yes	No	168	No	1/8
Yes	Yes	172	No	1/8

$$\alpha_t = \frac{1}{2} \log \left(\frac{1 - \epsilon_t}{\epsilon_t} \right) = \frac{1}{2} \log \left(\frac{1 - \frac{1}{8}}{\frac{1}{8}} \right) = 0.97$$

$$w_i \leftarrow w_i \, e^{\alpha} = \frac{1}{8} e^{0.97} = 0.33$$

Use Case: Heart Disease

Update the misclassified sample weights

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	Sample Weight	$egin{array}{c} \mathbf{New} \\ \mathbf{Weight} \end{array}$
Yes	Yes	205	Yes	1/8	
No	Yes	180	Yes	1/8	
Yes	No	210	Yes	1/8	
Yes	Yes	167	Yes	1/8	0.33
No	Yes	156	No	1/8	
No	Yes	125	No	1/8	
Yes	No	168	No	1/8	
Yes	Yes	172	No	1/8	

Use Case: Heart Disease

Update the correct sample weights

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	Sample Weight	New Weight
Yes	Yes	205	Yes	1/8	
No	Yes	180	Yes	1/8	
Yes	No	210	Yes	1/8	
Yes	Yes	167	Yes	1/8	0.33
No	Yes	156	No	1/8	
No	Yes	125	No	1/8	
Yes	No	168	No	1/8	
Yes	Yes	172	No	1/8	

Use Case: Heart Disease

Update the correct sample weights

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	Sample Weight	New Weight
Yes	Yes	205	Yes	1/8	0.05
No	Yes	180	Yes	1/8	0.05
Yes	No	210	Yes	1/8	0.05
Yes	Yes	167	Yes	1/8	0.33
No	Yes	156	No	1/8	0.05
No	Yes	125	No	1/8	0.05
Yes	No	168	No	1/8	0.05
Yes	Yes	172	No	1/8	0.05

Use Case: Heart Disease

- Create a new data set with the same size, init the sample weights to $\frac{1}{N}$
- sample from the previous dataset based on the normalized sample weights
- Samples with a high weight are very likely to appear in the new dataset
- Duplicates are allowed

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	Sample Weight	$egin{array}{c} \mathbf{New} \\ \mathbf{Weight} \end{array}$	Norm. Weight
Yes	Yes	205	Yes	1/8	0.05	0.07
No	Yes	180	Yes	1/8	0.05	0.07
Yes	No	210	Yes	1/8	0.05	0.07
Yes	Yes	167	Yes	1/8	0.33	0.49
No	Yes	156	No	1/8	0.05	0.07
No	Yes	125	No	1/8	0.05	0.07
Yes	No	168	No	1/8	0.05	0.07
Yes	Yes	172	No	1/8	0.05	0.07

Chest	Blocked	Patient	Heart	Sample
Pain	${f Arteries}$	\mathbf{Weight}	Disease	\mathbf{Weight}
No	Yes	156	No	1/8
Yes	Yes	167	Yes	1/8
No	Yes	125	No	1/8
Yes	Yes	167	Yes	1/8
Yes	Yes	167	Yes	1/8
Yes	Yes	172	No	1/8
Yes	Yes	205	Yes	1/8
Yes	Yes	167	Yes	1/8

initial dataset new dataset

Use Case: Heart Disease

Now a new stump is learned based on the new data set

Intuition

- AdaBoost is not prone to overfitting though there is no concrete proof for this
- being extended beyond binary classification and has found use cases in text and image classification as well
- Boosting technique learns progressively, it is important to ensure that you have quality data.
- AdaBoost is also extremely sensitive to Noisy data and outliers

AdaBoost

- builds stumps
- the amount of say depends on how well the earlier error was compensated
- weighted data samples

VS

Gradient Boosting

- starts with a single leaf
- builds fixed sized trees based on the errors of the previous steps

Working Principle

start by making a single initial leaf

regression:

$$F_0 = \frac{1}{N} \sum_{i=1}^{N} y_i$$

classification:

$$F_0 = \log(\text{odds}) = \log\left(\frac{p}{1-p}\right)$$

- log(odds) is the Logistic Regression equivalent of the average
 - Example: four samples are true, two false $\rightarrow \log(odds) = \log(\frac{4}{2}) = 0.7$

Working Principle

• we can convert log(odds) to probabilities:

probabilities:

$$p = \frac{\exp(\log(\text{odds}))}{1 + \exp(\log(\text{odds}))}$$

Working Principle

- now we build a tree based on the errors
- in comparison to AdaBoost we build trees that are significantly larger than mere stumps
- typically, the number of leaves is set to 8 up to 32
- the residuals are defined by the difference between the label and the predicted values
- Error = Label Prediction

residuals:

$$r_{i,m} = -\underbrace{\left[\frac{\delta L(y_i, F(x_i))}{\delta F(x_i)}\right]}_{\text{Gradient}}; F(x) = F_{m-1}(x)$$

Working Principle

for training a differentiable loss function is needed:

regression:

$$L(y_i, F(x)) = \frac{1}{2} (Label - Prediction)^2$$

classification:

$$L(y_i, F(x)) = -[y_i \log(p) + (1 - y_i) \log(1 - p)]$$

= -y_i \log(\text{odds}) + \log(1 + \exp(\log(\text{odds})))

the loss function for classification is based on Log Likelihood

Working Principle

- get the output of a leaf:
- in regression, the output is simply the average value of the elements of the leaf

classification:

$$\gamma_{j,m} = \frac{\sum \text{leaf residulas}}{\sum \text{prev. probability - (1-prev. probability)}}$$

Working Principle

get the output of the model

output:

$$F_m(x) = F_{m-1} + \sum_{j=1}^{J} \gamma_{j,m} I(x \in R_{j,m})$$

• Simplified: add the output values $\gamma_{j,m}$ for all leaves $R_{j,m}$ that a sample x can be found in

Working Principle

- Problem: model is prone to overfitting
- therefore, we are approaching the goal in several small steps using the learning rate ν

output:

$$F_m(x) = F_{m-1} + \nu \sum_{j=1}^{J} \gamma_{j,m} I(x \in R_{j,m})$$

Working Principle

typically about 100 trees are learned in practice

Comparison

AdaBoost	Gradient Boosting
shortcomings identified by high-weight data points	shortcomings identified by the gradient
only decision stumps	larger trees with 8 up to 32 leaves
each tree has different weight based on its performance	all trees are weighed equally,
based on its performance	predictive capacity is restricted by ν
max. variance is captured by weigths for classifiers and observations	variance in data is captured by fitting the residuals

L05.14 Remarks

Bias VS. Variance

Boosting

- is based on weak learners (low variance, high bias)
- make use of shallow trees (even as small as stumps)
- reduces error by reducing the bias by aggregating outputs of many models

Bagging / Random Forest

- based on strong learners (low bias, high variance)
- make use of fully grown trees
- reduces error by reducing the model variance by averaging multiple models trained on different subsets of the dataset (Random Forests: random selection of possible splits)

www.hs-kempten.de/ifm