Course Name Fall 2025

Assignment 00

By: Omar Hayat

Instructor: Dr. John Smith University of Waterloo

Due: Date Here

Q1

Solution.

a) First we show that if u is a solution to $u_t + uu_x = 0$, then $w = u^2$ is a smooth solution of (2).

$$\begin{aligned} u_t + uu_x &= 0\\ (2u)u_t + (2u)u_x &= 0\\ 2uu_t + 2uu_x &= 0\\ \left(u^2\right)_t + \left(\frac{2}{3}(u^2)^{\frac{3}{2}}\right)_x &= 0 \text{ Since } u \text{ is smooth.}\\ w_t + \left(\frac{2}{3}w^{\frac{3}{2}}\right)_x &= 0 \end{aligned}$$

In the other direction, we start with $w=u^2$ as a solution to $w_t+\left(\frac{2}{3}w^{\frac{3}{2}}\right)_x=0$.

$$\begin{split} w_t + \left(\frac{2}{3}w^{\frac{3}{2}}\right)_x &= 0\\ (u^2)_t + \left(\frac{2}{3}u^3\right)_x &= 0\\ 2uu_t + 2u^2u_x &= 0 \quad \text{Since } u \text{ is smooth.}\\ 2u(u_t + uu_x) &= 0 \end{split}$$

Thus we have two cases. If u=0, then trivially, (1) holds. Otherwise if u>0, then we can divide by 2u giving us that,

$$u_t + uu_x = 0$$

as required. This concludes the proof in both directions.

b) Figures can be added as follows:

		for Lax-Wend Error	
 20	0.05000	3.81099e-02	NaN
		9.65411e-03	
		2.42033e-03	
		6.05469e-04	
Convergence Table for Upwind Method			
		Error	
20	0.05000	2.19454e-01	NaN
		1.16176e-01	
		5.98359e-02	
		3.03737e-02	
Convergence Table for Lax-Friedrichs Method			
		Error	
20	0.05000	5.25876e-01	NaN
		3.09733e-01	
		1.68991e-01	
160	0.00625	8.83820e-02	0.93512