

<u>Física Térmica - Exercícios.</u> **Dilatação.**

www.plantaofisica.blogspot.com

Dilatação linear

1- Uma bobina contendo 2000 m de fio de cobre medido num dia em que a temperatura era de 35 °C. Se o fio for medido de novo em um dia que a temperatura for 10°C esta nova medida indicará (dado o coeficiente de dilatação linear do cobre α = 1,6.10⁻⁵°C⁻¹):

a) 1,0 m a menos

d) 20 m a menos

b) 1,0 m a mais

e) 20 mm a mais

c) 2000 m

2- (UFLA-95) Uma barra de ferro homogênea, é aquecida de 10°C até 60°C. Sabendo-se que a barra a 10°C tem um comprimento igual a 5,000m e que o coeficiente da dilatação linear do ferro é igual 1,2 x 10⁻⁶ °C⁻¹, podemos afirmar que a variação de dilatação ocorrida e o comprimento final da barra foram de:

a) 5x10⁻⁴m; 5,0005m

d) 3x10⁻⁴m; 5,0003m

b) 2x10⁻⁴m; 5,0002m

e) 6x10⁻⁴m; 5,0006m

c) 4x10⁻⁴m; 5,0004m

3- (FAFIC) Uma ponte de aço tem 1.000m, à temperatura de 20°C. Quando a temperatura atingir 40 °C, o seu comprimento estará: (dado α = 11 x 10⁻⁶ °C⁻¹)

a) entre 1000 e 1010m

c) igual a 1000m

b) entre 1100 e 1200m

d) entre 900 e 1000m

4- (UFMG 99) . O comprimento L de uma barra, em função de sua temperatura t , é descrito pela expressão

$$L = L_0 + L_0 \alpha (t-t_0),$$

sendo L_0 o seu comprimento à temperatura t_0 e α o coeficiente de dilatação do material da barra.

Considere duas barras, X e Y, feitas de um mesmo material. A uma certa temperatura, a barra X tem o dobro do comprimento da barra Y . Essas barras são, então, aquecidas até outra temperatura, o que provoca uma dilatação ΔX na barra X e ΔY na barra Y.

A relação CORRETA entre as dilatações das duas barras é

a)
$$\Delta X = \Delta Y$$
.

b)
$$\Delta X = 4 \Delta Y$$

$$\Delta X = \frac{\Delta Y}{\Delta Y}$$

d)
$$\Delta X = 2 \Delta Y$$

5- A dilatação térmica dos sólidos depende diretamente de três fatores ou grandezas. Assinale a opção que contém as três grandezas corretas:

- a) tamanho inicial, natureza do material e velocidade
- b) tamanho inicial, tempo e velocidade
- c) tamanho inicial, natureza do material e variação da temperatura
- d) tamanho inicial, variação da temperatura e tempo
- 6- Uma barra de determinado material possui comprimento de 10m à temperatura ambiente (20°C) e comprimento de 10,1m, quando submetida à uma temperatura de 220°C. Calcule o coeficiente de dilatação deste material.

7-(Cesgranrio 95) Uma régua de metal mede corretamente os comprimentos de uma barra de alumínio e de uma de cobre, na temperatura ambiente de 20 °C, sendo os coeficientes de dilatação linear térmica do metal, do alumínio e do cobre, respectivamente iguais a 2,0.10⁻⁵°C⁻¹, 2,4.10⁻⁵°C⁻¹ e 1,6.10⁻⁵°C⁻¹, então é correto afirmar que, a 60 °C, as medidas fornecidas pela régua para os comprimentos das barras de alumínio e de cobre, relativamente aos seus comprimentos reais nessa temperatura, serão, respectivamente:

a) menor e menor.

d) maior e maior.

b) menor e maior.

e) igual e igual.

c) maior e menor.

8- (Ufpe 96) O gráfico a seguir representa a variação, em milímetros, do comprimento de uma barra metálica, de tamanho inicial igual a 1 000 m, aquecida em um forno industrial. Qual é o valor do coeficiente de dilatação térmica linear do material de que é feita a barra, em unidades de 10^{-6} °C⁻¹?

9- (Fei 97) Duas barras, sendo uma de ferro e outra de alumínio, de mesmo comprimento I = 1m a $20^{\circ}C$, são unidas e aquecidas até $320^{\circ}C$. Sabe-se que o coeficiente de dilatação linear do ferro é de $12.10^{-6} \, ^{\circ}C^{-1}$ e do alumínio é $22.10^{-6} \, ^{\circ}C^{-1}$. Qual é o comprimento final após o aquecimento?

a) 2,0108 m

d) 2,0120 m

b) 2,0202 m

e) 2,0102 m

c) 2,0360 m

10-(Puccamp 98) A figura a seguir representa o comprimento de uma barra metálica em função de sua temperatura.

A análise dos dados permite concluir que o coeficiente de dilatação linear do metal constituinte da barra é, em °C⁻¹,

a) 4.10⁻⁵

d) 2.10⁻⁶

b) 2.10⁻⁵

e) 1.10⁻⁶

c) 4.10⁻⁶

11- (Ufes 96) Uma barra de metal tem comprimento igual a 10,000 m a uma temperatura de 10,0 °C e comprimento igual a 10,006 m a uma temperatura de 40 °C. O coeficiente de dilatação linear do metal é

a) $1.5 \times 10^{-4} \, ^{\circ}\text{C}^{-1}$

d) $2.0 \times 10^{-6} \, ^{\circ}\text{C}^{-1}$

b) $6.0 \times 10^{-4} \, ^{\circ}\text{C}^{-1}$

e) $3.0 \times 10^{-6} \, ^{\circ}\text{C}^{-1}$

c) $2.0 \times 10^{-5} \, ^{\circ}\text{C}^{-1}$

12- (Ita 95) Se duas barras, uma de alumínio com comprimento L_1 e coeficiente de dilatação térmica α_1 = 2,30 × 10⁻⁵ °C⁻¹ e outra de aço com comprimento L_2 > L_1 e coeficiente de dilatação térmica α_2 = 1,10 × 10⁻⁵ °C⁻¹, apresentam uma diferença em seus comprimentos a 0°C, de 1000 mm e essa diferença se mantém constante com a variação da temperatura, podemos concluir que os comprimentos L_1 e L_2 são a 0 °C:

- a) $L_1 = 91,7 \text{ mm}$;
- $L_2 = 1091,7 \text{ mm}$
- d) L_1 = 676 mm;
 - $L_2 = 1676 \text{ mm}$

- b) $L_1 = 67,6 \text{ mm}$;
- $L_2 = 1067,6 \text{ mm}$
- e) $L_1 = 323 \text{ mm}$;
- $L_2 = 1323 \text{ mm}$

- c) $L_1 = 917 \text{ mm}$;
- $L_2 = 1917 \text{ mm}$

13- (Cesgranrio 92) Uma rampa para saltos de asa-delta é construída de acordo com o esquema que se segue. A pilastra de sustentação II tem, a 0 °C, comprimento três vezes maior do que a I.

Os coeficientes de dilatação de I e II são, respectivamente, α_1 e α_2 . Para que a rampa mantenha a mesma inclinação a qualquer temperatura, é necessário que a relação entre α_1 e α_2 seja:

a) $\alpha_1 = \alpha_2$

d) $\alpha_2 = 3\alpha_1$

b) $\alpha_1 = 2\alpha_2$

e) $\alpha_2 = 2\alpha_1$

- c) $\alpha_1 = 3\alpha_2$

14) (Ufmg 95) Duas lâminas de metais diferentes, M e N, são unidas rigidamente. Ao se aquecer o conjunto até uma certa temperatura, esse se deforma, conforme mostra a figura a seguir.

Com base na deformação observada, pode-se concluir que

Metal M

Temperatura T_1 Temperatura $T_2 > T_1$

- a) a capacidade térmica do metal M é maior do que a capacidade térmica do metal N.
- b) a condutividade térmica do metal M é maior do que a condutividade térmica do metal N.
- c) a quantidade de calor absorvida pelo metal M é maior do que a quantidade de calor absorvida pelo metal N.
- d) o calor específico do metal M é maior do que o calor específico do metal N.
- e) o coeficiente de dilatação linear do metal M é maior do que o coeficiente de dilatação linear do metal N.

Dilatação superficial

15- (Fatec 96) Uma placa de alumínio tem um grande orifício circular no qual foi colocado um pino, também de alumínio, com grande folga. O pino e a placa são aquecidos de 500 °C, simultaneamente.

Podemos afirmar que

- a) a folga irá aumentar, pois o pino ao ser aquecido irá contrair-se.
- b) a folga diminuirá, pois ao aquecermos a chapa a área do orifício diminui.
- c) a folga diminuirá, pois o pino se dilata muito mais que o orifício.
- d) a folga irá aumentar, pois o diâmetro do orifício aumenta mais que o diâmetro do pino.
- e) a folga diminuirá, pois o pino se dilata, e a área do orifício não se altera.

16- (Uel 97) Uma chapa de zinco, cujo coeficiente de dilatação linear é 25.10⁻⁶ °C⁻¹, sofre elevação de 10°C na sua temperatura. Verifica-se que a área da chapa aumenta de 2,0 cm². Nessas condições, a área inicial da chapa mede, em cm²,

a) $2.0.10^2$

d) 2,0.10⁴

b) $8,0.10^2$

e) 8.0.10⁴

c) $4.0.10^3$

17- (Uepg 2001) A figura abaixo mostra dois frascos de vidro (1 e 2), vazios, ambos com tampas de um mesmo material indeformável, que é diferente do vidro. As duas tampas estão plenamente ajustadas aos frascos, uma internamente e outra externamente. No que respeita à dilatabilidade desses materiais, e considerando α_v que é o coeficiente de expansão dos dois vidros e que α_t é o coeficiente de expansão das duas tampas, assinale o que for correto.

- a) Sendo α_t menor que α_v , se elevarmos a temperatura dos dois conjuntos, o vidro 1 se romperá.
- b) Sendo α_t maior que α_v , se elevarmos a temperatura dos dois conjuntos, o vidro 2 se romperá.
- c) Sendo α_t menor que α_v , se elevarmos a temperatura dos dois conjuntos, ambos se romperão.
- d) Sendo α_t maior que α_v , se diminuirmos a temperatura dos dois conjuntos, o vidro 1 se romperá.
- e) Qualquer que seja a variação a que submetermos os dois conjuntos, nada ocorrerá com os frascos e com as tampas.

18- (Ufc 2006) Numa experiência de laboratório, sobre dilatação superficial, foram feitas várias medidas das dimensões de uma superfície S de uma lâmina circular de vidro em função da temperatura T. Os resultados das medidas estão representados no gráfico a sequir.

Com base nos dados experimentais fornecidos no gráfico, pode-se afirmar, corretamente, que o valor numérico do coeficiente de dilatação linear do vidro é:

a) 24 x10⁻⁶ °C⁻¹. b) 18 x10⁻⁶ °C⁻¹.

d) 9 x10⁻⁶ °C⁻¹

e) 6 x10⁻⁶ °C⁻¹.

c) 12 x10⁻⁶ °C⁻¹.

19- (Ufmq 97) O coeficiente de dilatação térmica do alumínio (AI) é, aproximadamente, duas vezes o coeficiente de dilatação térmica do ferro (Fe). A figura mostra duas peças onde um anel feito de um desses metais envolve um disco feito do outro. Á temperatura ambiente, os discos estão presos aos anéis.

Se as duas peças forem aquecidas uniformemente, é correto afirmar que

- a) apenas o disco de Al se soltará do anel de Fe.
- b) apenas o disco de Fe se soltará do anel de Al.
- c) os dois discos se soltarão dos respectivos anéis.
- d) os discos não se soltarão dos anéis.

20- (Ufmg 2006) João, chefe de uma oficina mecânica, precisa encaixar um eixo de aço em um anel de latão, como mostrado nesta figura:

À temperatura ambiente, o diâmetro do eixo é maior que o do orifício do anel.

Sabe-se que o coeficiente de dilatação térmica do latão é maior que o do aço.

Diante disso, são sugeridos a João alguns procedimentos, descritos nas alternativas a seguir, para encaixar o eixo no anel.

Assinale a alternativa que apresenta um procedimento que NÃO permite esse encaixe.

- a) Resfriar apenas o eixo.
- b) Aquecer apenas o anel.
- c) Resfriar o eixo e o anel.
- d) Aquecer o eixo e o anel.

21- Uma placa de ferro tem área de 200cm² quando está submetida a uma temperatura de 30°C. Calcule o aumento que esta chapa irá sofrer quando for submetida a uma temperatura duas vezes maior. Dado α_{ferro} =2x10⁻⁵ °C⁻¹

Dilatação volumétrica

22- (Fatec 99) Um bloco macico de zinco tem forma de cubo, com aresta de 20cm a 50°C. O coeficiente de dilatação linear médio do zinco é 25.10⁻⁶ °C⁻¹.

O valor, em cm³, que mais se aproxima do volume desse cubo a uma temperatura de -50°C é:

a) 8060

d) 7940

b) 8000

e) 7700

c) 7980

- 23- O volume de um bloco metálico sofre um aumento de 0,6% quando sua temperatura varia de 200 °C. O coeficiente de dilatação linear médio desse metal, em °C⁻¹, vale
- a) 1,0.10⁻⁵ b) 3,0.10⁻⁵

d) 3,0.10⁻⁴

c) 1,0.10⁻⁴

- e) 3,0.10⁻³
- 24-(PUC MG 99) O coeficiente de dilatação linear do cobre é 17 x 10⁻⁶ °C⁻¹. Então, uma esfera de cobre de volume 1m³, ao ter sua temperatura elevada de 1°C, sofrerá um acréscimo de volume de:
 - a) 0.0017 cm^3

d) 17 cm³

b) 0,0034 cm³

e) 51 cm³

- c) 0,0051 cm³
- 25- (Pucmg 97) O tanque de gasolina de um automóvel, de capacidade 60 litros, possui um reservatório auxiliar de retorno com volume de 0,48 litros, que permanece vazio quando o tanque está completamente cheio. Um motorista enche o tanque quando a temperatura era de 20°C e deixa o automóvel exposto ao sol. A temperatura máxima que o combustível pode alcançar, desprezando-se a dilatação do tanque, é igual a:

 $\gamma_{\text{gasolina}} = 2.0 \text{ x } 10^{-4} \text{ °C}^{-1}$ a) 60°C

d) 90°C

b) 70°C

e) 100°C

- c) 80°C
- 26- Um cubo tem volume de 1m^3 a 10°C . Calcule o seu volume a 60°C , sabendo-se que o seu coeficiente de dilatação volumétrica vale $6 \times 10^{-60} \text{C}^{-1}$

Dilatação dos líquidos

- 27- (UFOP-95) Um frasco de vidro, cujo volume é 1000 cm³ a 0°C, está completamente cheio de mercúrio a essa temperatura. Quando o conjunto é aquecido até 200°C transbordam 34 cm³ de mercúrio. Dado: coeficiente de dilatação volumétrica do mercúrio: $\gamma = 0.18.10^{-3}$ °C-¹. Calcule:
 - a) o aumento de volume sofrido pelo mercúrio.
 - b) o coeficiente de dilatação linear do vidro.
- 28- (Pucmg 2007) Um recipiente de vidro está completamente cheio de um determinado líquido. O conjunto é aquecido fazendo com que transborde um pouco desse líquido. A quantidade de líquido transbordado representa a dilatação:
- a) do líquido, apenas.
- b) do líquido menos a dilatação do recipiente.
- c) do recipiente, apenas.
- d) do recipiente mais a dilatação do líquido
- 29- Um recipiente de vidro (γ = 5 x 10⁻⁶ °C⁻¹), de volume igual a 100dm³ está completamente cheio de álcool à temperatura ambiente (20 °C). Ao ser aquecido a 60°C, nota-se que foram derramados 0,2dm³. Calcule a dilatação real do líquido.
- 30- (Fgv 2001) O dono de um posto de gasolina recebeu 4000 L de combustível por volta das 12 horas, quando a temperatura era de 35°C. Ao cair da tarde, uma massa polar vinda do Sul baixou a temperatura para 15°C e permaneceu até que toda a gasolina fosse totalmente vendida. Qual foi o prejuízo, em litros de combustível, que o dono do posto sofreu?

(Dados: coeficiente de dilatação do combustível é de 1,0. 10⁻³ °C⁻¹)

a) 4L	d) 140L
b) 80L	e) 60L
c) 40L	•

31- (Fuvest 98) Um termômetro especial, de líquido dentro de um recipiente de vidro. é constituído de um bulbo de 1cm³ e um tubo com secção transversal de 1mm². À temperatura de 20 °C, o líquido preenche completamente o bulbo até a base do tubo. À temperatura de 50 °C o líquido preenche o tubo até uma altura de 12mm. Considere desprezíveis os efeitos da dilatação do vidro e da pressão do gás acima da coluna do líquido. Podemos afirmar que o coeficiente de dilatação volumétrica médio do líquido

```
a) 3 \times 10^{-4} \, ^{\circ}\text{C}^{-1}
                                                                                                                                                    d) 20 \times 10^{-4} \, {}^{\circ}\text{C}^{-1}
b) 4 \times 10^{-4} \, {}^{\circ}\text{C}^{-1}
                                                                                                                                                    e) 36 × 10<sup>-4</sup> °C<sup>-1</sup>
c) 12 \times 10^{-4} \, {}^{\circ}\text{C}^{-1}
```

32- (Ufpel 2005) Os postos de gasolina, são normalmente abastecidos por um caminhãotanque. Nessa ação cotidiana, muitas situações interessantes podem ser observadas. Um caminhão-tanque, cuja capacidade é de 40.000 litros de gasolina, foi carregado completamente, num dia em que a temperatura ambiente era de 30°C. No instante em que chegou para abastecer o posto de gasolina, a temperatura ambiente era de 10°C, devido a uma frente fria, e o motorista observou que o tanque não estava completamente

Sabendo que o coeficiente de dilatação da gasolina é 1,1×10⁻³ °C⁻¹ e considerando desprezível a dilatação do tangue, é correto afirmar que o volume do ar, em litros, que o motorista encontrou no tanque do caminhão foi de

```
d) 4.088.
a) 40.880.
b) 8.800.
                                                     e) 880.
```

c) 31.200.

Gabarito:

1 . a	13. c	25 . a
2 . d	14. e	26. $V = 1,0003 \text{m}^3$
3. a	15. d	27.
4. d	16. c	a) $\Delta V_{Hg} = 36 \text{cm}^3$ b) $\gamma_{vidro} = 0.01 \text{x} 10^{-3} ^{\circ}\text{C}^{-1}$
5. c	17. a	b) $\gamma_{\text{vidro}} = 0.01 \times 10^{-3} \text{ oC}^{-1}$
6. $\alpha = 5 \times 10^{-5} \text{ o C}^{-1}$	18. d	28. b
7. c	19. b	29. $\Delta V_{real} = 36 \text{ dm}^3$
8. $\alpha = 0.003 \times 10^{-6} \text{ °C}^{-1}$	20. c	30. b
9 . d	21. 0,24cm ²	31 . b
10 . a	22 . d	32. e
11. c	23 . a	
12 . c	24 . e	

Veja mais sobre Física e Matemática no Site Plantão de Física - ΠΦ www.plantaofisica.blogspot.com