MATH2040C Homework 1

(William)

January 21, 2021

1 Section 1.2, Q13

To check if a set is a vector space, one need to check those VS's.

[VS1]: $\forall (a_1, a_2), (b_1, b_2) \in \mathbb{V}$, note that from definition,

$$(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2b_2)$$

and

$$(b_1, b_2) + (a_1, a_2) = (a_1 + b_1, a_2b_2)$$

Hence $(b_1, b_2) + (a_1, a_2) = (a_1, a_2) + (b_1, b_2), \forall (a_1, a_2), (b_1, b_2) \in \mathbb{V}$. Therefore VS1 is satisfied.

[VS2]: $\forall (a_1, a_2), (b_1, b_2), (c_1, c_2) \in \mathbb{V}$, note that by definition,

$$((a_1, a_2) + (b_1, b_2)) + (c_1, c_2) = (a_1 + b_1, a_2b_2) + (c_1, c_2) = (a_1 + b_1 + c_1, a_2b_2c_2)$$

and

$$(a_1, a_2) + ((b_1, b_2) + (c_1, c_2)) = (a_1, a_2) + (b_1 + c_1, b_2c_2) = (a_1 + b_1 + c_1, a_2b_2c_2)$$

 $\therefore (a_1, a_2) + ((b_1, b_2) + (c_1, c_2)) = ((a_1, a_2) + (b_1, b_2)) + (c_1, c_2), \forall (a_1, a_2), (b_1, b_2), (c_1, c_2) \in \mathbb{V}.$

Therefore, VS2 is satisfied.

[VS3]: Note that an element $(0,1) \in \mathbb{V}$. Note that $\forall (a_1,a_2) \in \mathbb{V}$,

$$(0,1) + (a_1, a_2) = (0 + a_1, 1 \cdot a_2) = (a_1, a_2).$$

Hence VS3 is satisfied.

[VS4]: Note that $(1,0) \in \mathbb{V}$.

And $\forall (a_1, a_2) \in \mathbb{V}, (1, 0) + (a_1, a_2) = (1 + a_1, 0) \neq (0, 1)$. Note that the (0, 1) is the zero vector we defined in order to satisfy VS3.

Therefore VS4 cannot be satisfied, hence \mathbb{V} is not a vector space under the operations stated in the question.

2 Section 1.2 Q21

To check if a set is a vector space, one need to check those VS's.

[VS1]: $\forall (v_1, w_1), (v_2, w_2) \in Z$, note that

$$(v_1, w_1) + (v_2, w_2) = (v_1 + v_2, w_1 + w_2) = (v_2, w_2) + (v_1, w_1).$$

Therefore, VS1 is satisfied.

[VS2]: $\forall (v_1, w_1), (v_2, w_2), (v_3, w_3) \in \mathbb{Z}$, note that

$$((v_1, w_1) + (v_2, w_2)) + (v_3, w_3) = (v_1 + v_2, w_1 + w_2) + (v_3, w_3) = (v_1 + v_2 + v_3, w_1 + w_2 + w_3).$$

And

$$(v_1, w_1) + ((v_2, w_2) + (v_3, w_3)) = (v_1, w_1) + (v_2 + v_3, w_2 + w_3) = (v_1 + v_2 + v_3, w_1 + w_2 + w_3)$$

Therefore $((v_1, w_1) + (v_2, w_2)) + (v_3, w_3) = (v_1, w_1) + ((v_2, w_2) + (v_3, w_3))$, which implies that VS2 is satisfied.

[VS3]: Denote 0_V is a zero vector of V and 0_W is a zero vector of W.

Note that $(0_V, 0_W) \in Z$.

And $\forall (v, w) \in Z$,

$$(0_V, 0_W) + (v, w) = (0_V + v, 0_W + w) = (v, w).$$

Therefore, VS3 is satisfied, and we also define $0_Z = (0_V, 0_W)$ as a zero vector of Z.

[VS4]: $\forall (v, w) \in \mathbb{Z}$, note that $\exists \hat{v} \in V, \hat{w} \in W$ such that $v + \hat{v} = 0_V, w + \hat{w} = 0_W$ because V and W are themselves vector spaces.

Note that $(\hat{v}, \hat{w}) \in Z$, since $\hat{v} \in V, \hat{w} \in W$ and

$$(v, w) + (\hat{v}, \hat{w}) = (v + \hat{v}, w + \hat{w}) = (0_V, 0_W) = 0_Z.$$

Therefore, VS4 is satisfied.

[VS5]: Note that $1 \in \mathbb{F}$ and $\forall (v, w) \in \mathbb{Z}$,

$$1 \cdot (v, w) = (1 \cdot v, 1 \cdot w) = (v, w).$$

Therefore, VS5 is satisfied.

[VS6]: Note that $\forall (v, w) \in \mathbb{Z}, \forall a, b \in \mathbb{F},$

$$(ab)(v,w) = (ab \cdot v, ab \cdot w) = (a)(b \cdot v, b \cdot w) = a(b(v,w)).$$

Therefore, VS6 is satisfied.

[VS7]: Note that $\forall (v_1, w_1), (v_2, w_2) \in \mathbb{Z}, \forall a \in \mathbb{F},$

$$a((v_1, w_1) + (v_2, w_2)) = a(v_1 + v_2, w_1 + w_2) = (a \cdot v_1 + a \cdot v_2, a \cdot w_1 + a \cdot w_2) = a(v_1, w_1) + a(v_2, w_2).$$

Note that the second equality holds for V and W themselves being vector spaces and $v_1, v_2 \in V, w_1, w_2 \in W$.

Therefore, VS7 is satisfied.

[VS8]: Note that $\forall (v, w) \in \mathbb{Z}, \forall a, b \in \mathbb{F},$

$$(a+b)(v,w) = ((a+b) \cdot v, (a+b) \cdot w)$$

Note that V, W are vector spaces over field \mathbb{F} , therefore

$$(a+b)v = a \cdot v + b \cdot v,$$

$$(a+b)w = a \cdot w + b \cdot w.$$

Hence

$$(a + b)(v, w) = (a \cdot v + b \cdot v, a \cdot w + b \cdot w) = (a \cdot v, a \cdot w) + (b \cdot v, b \cdot w) = a(v, w) + b(v, w).$$

Therefore, VS8 is satisfied.

Since the requirements are all satisfied, therefore the set Z is a vector space over \mathbb{F} with the operations stated in the question.

3 Section 1.3 Q11

 $\forall n \geq 1$ and n being an integer, note that $f_1(x) = x^n + 1 \in W$ and $f_2(x) = -x^n \in W$. Given that $n \geq 1$, suppose that W is a subspace of $P(\mathbb{F})$. Then W is a vector space itself, which implies that

$$f_1(x) + f_2(x) = 1 \in W.$$

Note that 1 is of degree 0, and $1 \neq 0$. Hence by definition of W, $1 = f_1(x) + f_2(x) \notin W$. This is violating the requirements of being a vector space, because the addition defined on W, which is supposed to be a vector space, should have range W.

Therefore, W is not a subspace of P(F) at the first place.

4 Section 1.3 Q19

First, we prove the "if" direction.

Given that $W_1 \subset W_2$ or $W_2 \subset W_1$, we would prove $W_1 \cup W_2$ is a subspace of V.

Suppose the case is that $W_1 \subset W_2$, then $W_1 \cup W_2 = W_2$. From the condition we knwo that W_2 itself is a subspace of V. Therefore $W_1 \cup W_2 = W_2$ is a subspace of V.

Then, suppose the case is that $W_2 \subset W_1$, then $W_1 \cup W_2 = W_1$. From the condition we knwo that W_2 itself is a subspace of V. Therefore $W_1 \cup W_2 = W_1$ is a subspace of V.

The "if" direction is proved.

We would prove the "only if" part then. Now we assume $W_1 \cup W_2$ is a subspace of V and try to deduce that $W_1 \subset W_2$ or $W_1 \subset W_2$.

Assume it's not the case, neither of W_1 and W_2 can be empty set.

Then $\exists x_1 \in W_1$ such that $x_1 \notin W_2$, and $\exists x_2 \in W_2$ such that $x_2 \notin W_1$. Note that W_1, W_2 are subspaces of $W_1 \cup W_2$, hence the zero vector of $W_1 \cup W_2$'s (denoted as 0_{12}) is also W_1 's (denoted as 0_1) and W_2 's (denoted as 0_2).

In short,

$$0_{12} = 0_1 = 0_2$$
.

Note that $x_1 + x_2 \in W_1 \cup W_2$, since both $x_1, x_2 \in W_1 \cup W_2$.

(i) Suppose $x_1 + x_2 \in W_1$. As W_1 itself is a vector space, $\exists y_1 \in W_1$ such that $x_1 + y_1 = 0_1$. Then

$$y_1 + x_1 + x_2 = 0_1 + x_2 = 0_2 + x_2 = x_2 \in W_1.$$

Which contradicts with our assumption that $x_2 \notin W_1$.

(ii) Suppose $x_1 + x_2 \in W_2$. As W_2 itself is a vector space, $\exists y_2 \in W_2$ such that $x_2 + y_2 = 0_2$. Then

$$x_1 + x_2 + y_2 = x_1 + 0_2 = x_1 + 0_1 = x_1 \in W_2.$$

Which contradicts with our assumption that $x_1 \notin W_2$.

Therefore, $\forall x_1 \in W_1, x_1 \in W_2$ or $\forall x_2 \in W_2, x_2 \in W_1$ must hold at the first place. Which is by definition $W_1 \subset W_2$ or $W_2 \subset W_1$.

5 Section 1.3 Q31

5.1 (a)

First we prove the "if" part, which assumes $v \in W$

 $\forall v+x\in v+W,$ where $x\in W,$ note that $v+x\in W$ since W is a vector space. Hence $v+W\subset W.$

 $\exists y \in W$ such that $y + v = 0_W$, where 0_W is the zero vector of W. $\forall x \in W$,

$$x = x + 0_W = x + (y + v) = (x + y) + v.$$

Note that $x+y\in W$, hence $x=(x+y)+v\in W$. Therefore, $W\subset v+W$. Then v+W=W, hence v+W is a subspace.

Then we would prove the "only if" part, which assumes v + W is a subspace of V. Note that $\forall x \in W, v + x \in v + W$.

Because $x \in W$ and W is a vector space, $\exists y \in W$ such that $x + y = 0_W$, where 0_W is the zero vector of W. Also note that $v + y \in v + W$.

Then v + x + (v + y) = v + (x + y + v) v + W, since v + W is a subspace. Hence $x + y + v \in W$. Recall that $x + y = 0_W$, then $v \in W$.

Therefore, we proved the (a) part.

5.2 (b)

We prove the "if" part first, which assumes $v_1 - v_2 \in W$.

Note that $\forall v_1 + w_1 \in v_1 + W$, since $v_1 - v_2 \in W$ as assumed and $w_1 \in W$, we have

$$v_1 - v_2 + w_1 \in W$$
.

Therefore, there exists an element in v_2+W , which is $v_2+v_1-v_2+w_1=v_1+w_1\in v_2+W$. Hence $v_1+W\subset v_2+W$.

Note that $\forall v_2 + w_2 \in v_2 + W$, since $v_1 - v_2 \in W$ as assumed and $w_2 \in W$, we have

$$v_1 - v_2 - w_2 \in W.$$

Therefore, there exists an element in v_1+W , which is $v_1-(v_1-v_2-w_2)=v_2+w_2\in v_1+W$. Hence $v_2+W\subset v_1+W$. Therefore, $v_2+W=v_1+W$.

We prove the "only if" part first, which assumes $v_1 + W = v_2 + W$.