5 Dreieck

a) Zielfunktion $z(u) = u \cdot (f(u) - g(u))$

$$z(u) = u \cdot \left(-u + 4 - \frac{1}{3}u + 4\right)$$

$$z(u) = u \cdot \left(-\frac{4}{3}u + 8\right)$$

$$z(u) = -\frac{4}{3}u^2 + 8u$$

$$z'(u) = -\frac{8}{3}u + 8; \quad z''(u) = -\frac{8}{3}$$

$$z'(u) = 0$$

$$-\frac{8}{3}u + 8 = 0 \qquad |-8$$

$$-\frac{8}{3}u = -8 \qquad |: \left(-\frac{8}{3}\right)$$

$$u = \frac{8 \cdot 3}{8} = 3$$

Rechteck: a = 3

$$b = f(3) - g(3) = 1 - (-3) = 4$$

$$A_{Rechteck} = 3 \cdot 4 = 12 FE$$

b) Dreieck: $A_{Dreieck} = \frac{1}{2}g \cdot h$ mit g als Seite auf der

y-Achse und h als Senkrechte vom Schnittpunkt von f und g zur y-Achse g = 4 - (-4) = 8.

Berechnung von h:

Schnittpunkt von f und g

$$-x + 4 = \frac{1}{3}x - 4$$

$$\left| -\frac{1}{3}x + 4 \right|$$

$$-\frac{4}{3}x + 8 = 0 + 8$$

$$-\frac{4}{3}x = -8$$
 | : $\left(-\frac{4}{3}\right)$

$$x = \frac{8 \cdot 3}{h} = 6 \implies h = 6$$

$$A_{\text{Dreieck}} = \frac{1}{2} \cdot 8 \cdot 6 = 24$$

 $A_{Rechteck}$: $A_{Drejeck} = 12:24 = 1:2$

6 Rechtwinkliges Dreieck

a)
$$\frac{5}{x-4} + 5 = 0$$
 | -5
 $\frac{5}{x-4} = -5$ | $\cdot (x-4)$
 $5 = -5(x-4)$
 $5 = -5x + 20$ | $+5x - 5$
 $5x = 15$ | : 5

x = 3

b) Zielfunktion $z(u) = \frac{1}{2} \cdot u \cdot f(u)$

$$z(u) = \frac{1}{2} \cdot u \cdot \left(\frac{5}{u-4} + 5\right)$$

$$z(u) = \frac{1}{2}u \cdot \frac{5}{u-4} + \frac{5}{2}u$$

c) $z'(u) = \frac{1}{2} \cdot \frac{5}{u-4} + \frac{1}{2}u \cdot \frac{-5}{(u-4)^2} + \frac{5}{2}$ (Produktregel)

$$z'(u) = \frac{5}{2 \cdot (u-4)} - \frac{5u}{2 \cdot (u-4)^2} + \frac{5}{2} = 0 \qquad | \cdot 2 \cdot (u-4)^2$$

$$5 \cdot (u-4) - 5u + 5(u-4)^2 = 0$$

$$5u - 20 - 5u + 5(u^2 - 8u + 16) = 0$$

$$5u - 20 - 5u + 5(u^2 - 8u + 16) = 0$$

 $-20 + 5u^2 - 40u + 80 = 0$

$$5u^2 - 40u + 60 = 0$$
 | : 5

$$u^2 - 40u + 60 = 0$$
 1:
 $u^2 - 8u + 12 = 0$

Lösung mit der abc- oder pq-Formel:

 $u_1 = 6$ scheidet aus

$$z(2) = \frac{1}{2} \cdot 2 \cdot \left(\frac{5}{-2} + 5\right)$$

$$z(2) = 2.5$$

Da z(0) = 0 und z(3) = 0, ist das Dreieck mit x = 2 und f(2) = 2.5 am größten: 2.5 FE.

7 Kreis

Die Zielfunktion z(u) ist der Abstand vom Kreismittelpunkt P zu einem beliebigen Punkt

$$\left(u \mid -\frac{1}{2}u - 1\right)$$
 der Geraden:

$$z^2 = a^2 + b^2$$

$$b = f(u) - 4$$

$$z(u) = \sqrt{u^2 + \left(-\frac{1}{2}u - 1 - 4\right)^2}$$

$$z(u) = \sqrt{u^2 + \left(-\frac{1}{2}u - 5\right)^2}$$

$$z(u) = \sqrt{u^2 + \frac{1}{4}u^2 + 5u + 25}$$

$$z(u) = \sqrt{\frac{5}{4}u^2 + 5u + 25} = (\frac{5}{4}u^2 + 5u + 25)^{\frac{1}{2}}$$

$$z'(u) = \frac{1}{2} \cdot \left(\frac{5}{4}u^2 + 5u + 25\right)^{-\frac{1}{2}} \cdot \left(\frac{5}{2}u + 5\right)$$
$$= \frac{1}{2\sqrt{\frac{5}{4}u^2 + 5u + 25}} \cdot \left(\frac{5}{2}u + 5\right) = 0$$

$$\frac{5}{2}u + 5 = 0 \qquad | -5$$

$$\frac{5}{2}u = -5 \qquad | : \frac{5}{2}$$

$$\frac{5}{2}u = -5$$
 | : $\frac{5}{2}$

$$z(-2) = \sqrt{\frac{5}{4} \cdot 4 - 5 \cdot 2 + 25}$$

$$z(-2) = \sqrt{5-10+25} = \sqrt{20} \approx 4,47 > 4$$

Der kleinste Abstand ist größer als 4; daher schneidet der Kreis um Pnirgends die Gerade.

Alternative Lösung:

Du kannst diese Abstands-Aufgaben auch oft mit der Normalen lösen:

Steigung der Normalen zu g durch P:

$$m_n = -\frac{1}{-\frac{1}{2}} = 2$$

Normale n: y = 2x + 4 (mit der Form $y = m \cdot x + b$)

n X g:
$$2x + 4 = -\frac{1}{2}x - 1$$
 $| +\frac{1}{2}x - 4$

$$x = -2$$
 $S(-2|0)$

Abstand
$$|\overline{SP}| = \sqrt{(0+2)^2 + (4-0)^2}$$

$$|\overline{SP}| = \sqrt{4 + 16} = \sqrt{20} > 4$$

$$t_1 = 1.5$$
; $t_2 = -1.5$
 t_2 ist nicht im Definitionsbereich, da $t > 0$.

$$z''(1,5) = \frac{8}{3} > 0 \implies Tiefpunkt$$

Für t≈ 1,5 wird der Flächeninhalt des beschriebenen Dreiecks am kleinsten.

TRAINING 6

1 Gemeinsame Punkte

a) Gemeinsame Punkte: f(x) = g(x)

$$0.5x^{2} - 0.5x + 2.5 = 0.5x - 1$$
 | $-0.5x + 1$
 $0.5x^{2} - x + 3.5 = 0$ | $:0.5$
 $x^{2} - 2x + 7 = 0$

Lösung mit pq- oder abc-Formel führt zu negativem Wert unter der Wurzel ⇒ keine Lösung, also keine Schnittpunkte.

b) Zielfunktion z(u) = f(u) - g(u)

$$z(u) = 0.5 \cdot u^2 - u + 3.5$$

$$z'(u) = u - 1$$
; $z''(u) = 1$

Extempunkt:

$$z'(u) = 0$$

$$u - 1 = 0$$

$$z''(1) = 1 > 0 \Rightarrow Tiefpunkt$$

$$z(1) = 0.5 - 1 + 3.5 = 3.5 LE$$

2 Senkrechter Abstand

a)
$$\frac{4}{x+1} = -x + 4 | \cdot (x+1)$$

$$4 = (-x + 4) \cdot (x + 1)$$

$$4 = -x^2 - x + 4x + 4$$

$$4 = -x^2 + 3x + 4$$

$$x^2 - 3x = 0$$

$$x \cdot (x - 3) = 0$$

1.
$$x_1 = 0$$
; $g(0) = 4 \implies S_1(0 \mid 4)$

2.
$$x-3=0$$

$$x_2 = 3$$
; $g(3) = -3 + 4 = 1 \implies S_2(3|1)$

b)
$$f(1) = \frac{4}{2} = 2$$

$$g(1) = -1 + 4 = 3$$

$$\Rightarrow$$
 g(x) > f(x) für 0 < x < 3

Zielfunktion z(u) = g(u) - f(u); 0 < u < 3

$$z(u) = -u + 4 - \frac{4}{u+1}$$

$$z'(u) = -1 + \frac{4}{(u+1)^2} = 0$$
 $|\cdot (u+1)^2$

$$-(u+1)^2+4=0$$

$$-u^2 - 2u - 1 + 4 = 0$$
 $|\cdot(-1)|$

$$u^2 + 2u - 3 = 0$$

$$u_1 = -3$$
 scheidet aus

$$u_2 = 1$$

 $z(1) = -1 + 4 - \frac{4}{1+1} = 3 - 2 = 1 LE$

3 Abstand und Tangente

a)
$$f'(x) = -0.2x^3 + 0.75x^2 + 0.8$$

$$f'(0) = -0.8$$

Ursprungsgerade: $y = m \cdot x$

$$t: v = 0.8x$$

b) Zielfunktion z(u) = f(u) - t(u)

$$z(u) = -0.05u^4 + 0.25u^3 + 0.8x - 0.8x$$

= -0.05u⁴ + 0.25u³

c)
$$z'(u) = -0.2u^3 + 0.75u^2 = 0$$
; $z''(u) = -0.6u^2 + 1.5u^2 = 0$; $z''(u) = -0.6u^2 + 1.5u^2 = 0$

1.
$$u_1 = 0$$
: $z(0) = 0 \Rightarrow Randminimum$

2:
$$-0.2 u + 0.75 = 0$$
 | -0.75
-0.2 u = -0.75 | : (-0.2)

$$u = 3.75$$
; $z''(3.75) = -2.8125 < 0$: Hochpunkt

4 Parabel

a) Schnittpunkt mit der y-Achse: f(0) = 2 Abstand von (0 | 2) zum Ursprung: d = 2 LE

Schnittpunkt mit der x-Achse: f(x) = 0

$$-0.5x^2 + 2 = 0$$
$$-0.5x^2 = -2$$

$$x_2 = 4$$

b) Mit a = 0 und b = 0, da der betrachtete Punkt P(a | b) der Ursprung ist.

Zielfunktion
$$z(u) = \sqrt{u^2 + (f(u))^2}$$

 $x_{1,2} = \pm \sqrt{4} = \pm 2 \implies d = 2$

$$z(u) = \sqrt{u^2 + (-0.5u^2 + 2)^2}$$

$$z(u) = \sqrt{u^2 + 0.25u^4 - 2u^2 + 4}$$

$$z(u) = \sqrt{0.25u^4 - u^2 + 4} = (0.25u^4 - u^2 + 4)^{\frac{1}{2}}$$

c)
$$z'(u) = \frac{1}{2}(0.25u^4 - u^2 + 4)^{-\frac{1}{2}} \cdot (u^3 - 2u)$$

$$= \frac{1}{2\sqrt{0.25\,u^4 - u^2 + 4}} \cdot (u^3 - 2\,u) = 0$$

$$u^3 - 2u = 0$$

$$u(u^2-2)=0$$

1.
$$u_1 = 0$$
: $z(0) = 2$ (Teilaufgabe a))

2.
$$u^2 = 2$$

$$u_{2,3} = \pm \sqrt{2}$$

$$f(\pm\sqrt{2}) = -0.5 \cdot 2 + 2 = 1 \implies$$

 $P_1(\sqrt{2}|1)$ und $P_2(-\sqrt{2}|1)$ haben den kleinsten Abstand.

$$d = \sqrt{\sqrt{2^2 + 1^2}} = \sqrt{2 + 1} = \sqrt{3} = 1,73 LE$$