Aufgabe: FIB

Fibonacci-Repräsentationen

CEOI 2018, Tag 2. Speicherlimit: 256 MB.

16.08.2018

Die Fibonacci-Zahlen sind definiert durch:

$$F_1 = 1$$

 $F_2 = 2$
 $F_n = F_{n-1} + F_{n-2}$ für $n > 3$

Die ersten Fibonacci-Zahlen sind 1,2,3,5,8,13,21

Definiere X(p) als die Anzahl der Möglichkeiten, die positive Ganzzahl p als eine Summe von **unterschied-lichen** Fibonacci-Zahlen auszudrücken. Zwei Möglichkeiten sind unterschiedlich, falls eine Fibonacci-Zahl in nur einer von beiden vorkommt.

Dir wird eine Folge von n positiven Ganzzahlen a_1, a_2, \ldots, a_n gegeben. Für ein nicht-leeres Präfix a_1, a_2, \ldots, a_k definieren wir $p_k = F_{a_1} + F_{a_2} + \ldots + F_{a_k}$. Deine Aufgabe ist es, die Werte $X(p_k)$ modulo $10^9 + 7$ für $k = 1, \ldots, n$ zu berechnen.

Eingabe

Die erste Zeile der Standardeingabe enthält eine Ganzzahl n ($1 \le n \le 100\,000$). Die zweite Zeile enthält n durch Leerzeichen getrennte Ganzzahlen a_1, a_2, \ldots, a_n ($1 \le a_i \le 10^9$).

Ausgabe

Du musst n Zeilen ausgeben, wobei die k-te Zeile den Wert $X(p_k)$ modulo $10^9 + 7$ enthalten muss.

Beispiel

Für die Eingabe	lautet das richtige Ergebnis
4	2
4 1 1 5	2
	1
	2

Erklärung des Beispiels: Wir haben die folgenden p_k Werte:

$$p_1 = F_4 = 5$$

$$p_2 = F_4 + F_1 = 5 + 1 = 6$$

$$p_3 = F_4 + F_1 + F_1 = 5 + 1 + 1 = 7$$

$$p_4 = F_4 + F_1 + F_1 + F_5 = 5 + 1 + 1 + 8 = 15$$

Die Zahl 5 kann auf $X(p_1) = 2$ verschiedene Arten ausgedrückt werden: $F_2 + F_3 = 2 + 3$ und $F_4 = 5$. Es gilt $X(p_2) = 2$, weil $p_2 = 1 + 5 = 1 + 2 + 3$.

Die einzige Möglichkeit, die Zahl 7 als eine Summe von (unterschiedlichen) Fibonacci-Zahlen auszudrücken, ist 2+5.

Letztendlich kann 15 als 2 + 13 und 2 + 5 + 8 ausgedrückt werden (zwei Möglichkeiten).

Bewertung

Die Testfälle sind in die folgenden Teilaufgaben mit zusätzlichen Beschränkungen gegliedert. Jede dieser Teilaufgaben besteht aus einer oder mehreren Testfallgruppen. Jede Testfallgruppe enthält einen oder mehrere Testfälle.

Teilaufgabe	Beschränkungen	Punkte
1	$n, a_i \le 15$	5
2	$n, a_i \le 100$	20
3	$n \leq 100, a_i$ sind Quadrate von unterschiedlichen na-	15
	türlichen Zahlen	
4	$n \le 100$	10
5	a_i sind unterschiedliche gerade Zahlen	15
6	keine zusätzlichen Beschränkungen	35