

Applications in veterinary epidemiology: spatial transmission and metapopulation models

Introduction to Infectious Disease Modelling and its Applications

Introduction: similarities & differences

- Approaches used for modelling human diseases are similar to those used for investigating spread of animal diseases.
- Some critical differences:

Epidemiology

- Frequency or density dependence in transmission
- Unit of interest (animal/groups of animals)
- Multiple species
- Susceptibility/infectivity may vary by
- Life-expectancy may be short (high turnover of population)
- Spatial spread very important
- Experimental infection studies are possible (though rare)

Introduction: similarities & differences

- Approaches used for modelling human diseases are similar to those used for investigating spread of animal diseases.
- Some critical differences:

Epidemiology

- Frequency or density dependence in transmission
- Unit of interest (animal/groups of animals)
- Multiple species
- Susceptibility/infectivity may vary by
- Life-expectancy may be short (high turnover of population)
- Spatial spread very important
- Experimental infection studies are possible (though rare)

Control

- Culling of animals frequently used
- Spatial policies are common (e.g. ring policies)
- Vaccination issues
 - Mask infection & disease
 - · Eradication and disease free status
 - Economics
 - Turnover of populations

Density vs frequency-dependent transmission

Frequency-dependent:

contacts made per unit time is independent of population size

- Commonly used assumption for human infectious diseases
- "True mass action"
- Someone living in London does not have 100 times the contacts (pop ~8m) as someone in Wigan (pop ~80,000)

 $\lambda = \beta I / N$

(although sometimes $\beta = c/N$)

Density vs frequency-dependent transmission

Frequency-dependent:

contacts made per unit time is independent of population size

- Commonly used assumption for human infectious diseases
- "True mass action
- Someone living in London does not have 100 times the contacts (pop ~8m) as someone in Wigan (pop ~80,000)

 $\lambda = \beta I / N$ (although sometimes $\beta = c/N$)

Density-dependent:

contacts made per unit time is dependent on population size

- As population increases, contacts increase
- "Pseudo mass action"
- May be more true for some animal (and plant) disease
- Increase the herd size increase contacts, and therefore transmission

 $\lambda = \beta I$

Density vs frequency-dependent transmission

- Experimental data on pseudorabies in pigs suggests transmission frequency dependent
 - Adding more pigs does not increase transmission
- But density-dependence is sometimes argued
- STD in 2-spot ladybirds appears to be density dependent

Density vs frequency-dependent transmission

- Experimental data on pseudorabies in pigs suggests transmission frequency dependent
 - Adding more pigs does not increase transmission
 - But density-dependence is sometimes argued
- Generally more important to distinguish than in human diseases, as population size may fluctuate greatly through time
 - Birthing season, slaughtering (livestock) / Birthing season, winter pressures (wildlife)
 - Populations may be growing/shrinking rapidly from year to year (particularly wildlife)
 - Disease (and/or the intervention) can have a large impact on mortality rates, and therefore the population size

Unit of interest: within-farm models

- In the same way as we do for human infections, we can divide, say a farm population, into SEIR classes
- This may be for a single-species (e.g. chickens for avian influenza) or we may want to stratify the model by species (e.g. cattle, pigs, sheep etc. for FMD)
- Such a model represents the dynamics of infection within a farm - hence termed a "within-farm" model

Within-farm models

- Mixing often not homogenous on a farm
 - On mixed farms different species often
 - Animals may be segregated by age
 - . E.g. sows and rearing-pigs
- · Can reflect heterogeneous mixing
 - Contact between groups not necessarily symmetrical
- · Chance effects (stochasticity) may be very important
 - Relatively small # animals on a farm

Unit of interest: between-farm models

- · Often more interested in spread between farms
- Control efforts often targeted at the farm
 - Want to control spread between farms
 - Once one animal infected all animals are slaughtered
- For diseases that spread rapidly within farms (such as FMD, or AI), may be plausible to ignore within-farm dynamics & treat farms as unit of interest.

Unit of interest: between-farm models

- · Often more interested in spread between farms
- Control efforts often targeted at the farm
 - Want to control spread between farms
 - Once one animal infected all animals are slaughtered
- For diseases that spread rapidly within farms (such as FMD, or AI), may be plausible to ignore within-farm dynamics & treat farms as unit of interest.
- So farms are either susceptible, infectious (E), infected (I) or recovered (R).
 - The recovered state typically tracks premises in which all animals have been slaughtered
- If a premise is re-stocked, then we may additionally want to consider recovered premises moving back to susceptible
 - SIRS structure (often with very short period of immunity)

Between-farm model structures Force of Development of infectiousness to other premises and/or culling S E I Restocking

Parameters

- · As for human infections, there are 3 basic parameters:
 - force of infection acting on susceptibles
 - duration of the latent period
 - duration of the infectious period
- However, parameters now relate to premises (farms) rather than individual animals
- This complicates duration of latent and infectious period as car depend on:
 - the within-farm dynamics
 - the number of animals and different species at the premise
 - detection times
- Note: infectious period on an uncontrolled farm will be longer than individual animals' infectious period

Parameters

- As for human infections, there are 3 basic parameters:
 - force of infection acting on susceptibles
 - duration of the latent period
 - duration of the infectious period
- However, parameters now relate to premises (farms) rather than individual animals
- This complicates duration of latent and infectious period as can depend on:
 - the within-farm dynamics
 - the number of animals and different species at the premise
 - detection times
- Note: infectious period on an uncontrolled farm will be longer than individual animals' infectious period

Susceptibility and infectivity

- Additional parameters often included to allow for variation in susceptibility to infection, and onward infectivity of infection
- · E.g. could depend on number of animals at a premise
- Let i denote the size of the infected farm and j the size of the susceptible farm, then the force of infection from i to j would be given by

$$foi(i,j) = \beta_i \alpha_j$$
 susceptibility

- Then summing over all different sizes of farms $\it i$, the equations for loss of susceptible farms of size $\it j$ would be

$$\frac{dS_j}{dt} = -\alpha_j S_j \sum_i \beta_i \frac{I_i}{N_i}$$

Susceptibility & infectivity: e.g. FMD

- · Ferguson model:
- Infectiousness and susceptibility of a farm allowed vary by the size of the farm and the species kept at the farm
 - Cattle farms were most susceptible
- Pig farms were more infectious than other species
- Small farms (<100 animals) were least susceptible & infectious
- Keeling model
 - Susceptibility and infectiousness function of number of animals of different species (L) on each farm
 - Species-specific parameters estimated by fitting model to data

r organori or all mataro, 20

Inf rate for farm j = Suscepti * Σ_i Infectivityi * $K(d_{ij})$

Survival of animals

- · Survival can be important in interpreting disease statistics
- The lifespan of animals reared for food (e.g. cows, lambs, chickens, pigs) is generally much shorter than their natural lifespan
- This can impact on the epidemiology in two ways:
 - Short survival results in fast turnover of animals. In absence of restrictions, can result in replenishment of the susceptible pool, further fuelling an epidemic
 - Survival may be shorter than incubation period, so disease could go undetected in many animals
- Short survival also affects potential controls animals which only live for a short time more easily replaced, hence it may be easier to implement controls that include slaughtering

Cattle Survival and its impact on BSE

- Most cattle slaughtered for consumption between 2–2.5 years of age
- Mean incubation period for BSE in cattle is 5 years
- Mean age at infection was approximately
 months

Cattle Survival and its impact on BSE

- Most cattle slaughtered for consumption between 2–2.5 years of age
- Mean incubation period for BSE in cattle is 5 years
- Mean age at infection was approximately 6 months

Most infected cattle slaughtered before onset with clinical signs

The impact of survival on estimates of numbers of infected animals

1996 estimates:

763,000 infected before Jan '89 140,000 infected after Jan '89 903,000 infected total

The impact of survival on estimates of numbers of infected animals

1996 estimates:

763,000 infected before Jan '89 140,000 infected after Jan '89 903,000 infected total

Updated estimates (based on case data to October 2002, screening data and including differential survivorship):

~ 4 million infected & ~3.3 million entered the human food supply

Spatial Spread

- Farms or premises generally clustered in local areas (e.g. very few in London!)
- Spread of infections often occurs through contact processes (e.g. people and vehicles going from one premise to another) and may also be airborne (e.g. FMD).
- · Contacts more likely to occur in close geographical proximity
- · Control measures are often spatial
 - E.g. culling of CP, ring vaccination
- · Thus models are typically spatially explicit

Analogy with mixing patterns The model then behaves much like the mixing models you have seen earlier Interaction between the two neighbourhoods can be specified by a simple mixing matrix, m is the relative strength of mixing between farms in two different areas compared to two within an area N S N 1 m S m 1 So the number of new infections e.g. in population N is: beta * S_N * I_N/N_N + beta * S_N * m * I_S/N_S Infection rate from infected farms in N to other in N

Spatial kernel

- May want a more general function that allows the probability of transmission to decay naturally as the distance between 2 premises increases
- This is termed a "spatial kernel"

Spatial kernel

- May want a more general function that allows the probability of transmission to decay naturally as the distance between 2 premises increases
- This is termed a "spatial kernel"
- Suppose d is the distance between two neighbourhoods and f(d) is the spatial kernel
- The new infections in neighbourhood B from A which is distance x away is:

f(x)*beta*S_B*I_A/N_A

Estimating spatial kernel: FMD 2001

- Two potential ways of incorporating a spatial kernel:
 - Use contact tracing data directly
 - E.g. Keeling et al. 2001
 - Estimate the spatial kernel in the model
 - specify functional form (e.g. exponential decay)
 - Fit model to data, to get best-fit parameter estimates
 - E.g. Ferguson et al. 2001

Keeling et al. Science 2001

Estimating spatial kernel: Bluetongue virus

Szmaragd et al. PLoS One 2009

Interventions

- Wider range of interventions is possible:
 - Culling of infected premises
 - Culling of animals near to infected premises
 - Movement restrictions
 - Reducing time to detection
 - Vaccination

Success will also depend on:

- compliance (may be economically driven)
- logistical constraints (e.g. vaccine stocks, numbers of veterinary officers, disposal of slaughtered animals)

Movement restrictions

- Movement restrictions reduce the contact pattern
- In a simple model this could simply be through
 - A reduction in the transmission parameter B
 - A change in the mixing matrix
- Restrictions may be placed for a short-period nationally but more likely to be localised
- For a spatial model, efficacy of local restrictions placed around an infected premise will depend on the spatial kernel

Ster and Ferguson PLoS One 2008

Slaughtering

- Slaughter of animals is commonly used to "damp out" an outbreak
- Three possibilities
 - Slaughter of animals at infected premises
 - · almost always undertaken

Slaughtering

- Slaughter of animals is commonly used to "damp out" an outbreak
- Three possibilities
 - Slaughter of animals at infected premises
 - · almost always undertaken
 - "Ring-culling" slaughter of animals on neighbouring premises or within a certain distance
 - used "successfully" in the FMD outbreak in 2001
 - Diameter of ring must be greater than spatial diffusion of infection

Slaughtering

- Slaughter of animals is commonly used to "damp out" an outbreak
- Three possibilities
 - Slaughter of animals at infected
 - almost always undertaken
 - "Ring-culling" slaughter of animals on neighbouring premises or within a certain distance

 used "successfully" in the FMD outbreak in 2001

 - Diameter of ring must be greater than spatial diffusion of infection
 - Slaughter of premises outside of spatial ring who have had recent contact with premise "dangerous
 - will help to damp down outbreaks with less spatial transmission

Time to slaughter

- Time to slaughter is an important factor determining the success of slaughter-based controls
- · For infected premises, recall for an SEIR model
 - R₀ = beta * average duration of infectious period
 - beta * average time taken to cull

So reducing the time taken to cull directly reduces the reproductive number

Similar arguments apply to ring-culling and culling of dangerous contacts

Vaccination Strategies

- Vaccination can be used in two ways:
 - Prior to outbreak: to reduce impact of outbreak or protect valuable animals
 - Reactive: To control an outbreak
- Reactive vaccination may be spatial:
 - Ring vaccination vaccinate in a spatial ring around infectious premises

Vaccination Strategies

- Vaccination can be used in two ways:
 - Prior to outbreak: to reduce impact of outbreak or protect valuable animals
 - Reactive: To control an outbreak
- Reactive vaccination may be spatial:
 - Ring vaccination vaccinate in a spatial ring around infectious premises
- Relative effectiveness will depend on the characteristics of the vaccine:
 - Reduction in susceptibility
 - Reduction in infectiousness
 - Change in latent and/or infectious period
 - Degree of protection
- Type of vaccine (all/nothing or partial protection)
- Optimal vaccination strategy will also depend on the impact of disease

Summary

- Models for veterinary diseases can be at both within-farm and betweenfarm level:
 - Within-farm are similar to models for human diseases
 - Greater heterogeneity if multiple species, housing etc.
 - Between-farm models more applicable to understand control as this is the unit at which control measures are aimed
 - Parameterisation of between-farm models is more difficult and dependent on external factors (e.g. time to slaughter)
- Four additional factors are important:
 - Fluctuating population size (and therefore assumptions about transmission
 - Survival of animal
 - Slaughtering as a potential control option
 - Spatial transmission
- Spatial models:
 - Meta-population structure
 - Spatial kernel needs to be specified
 - Allows consideration of spatial controls
- Control policies are different to human diseases:
 - Culling of infected premises and ring culling

Summary

- Models for veterinary diseases can be at both within-farm and betweenfarm level:
 - Within-farm are similar to models for human diseases
 - Greater heterogeneity if multiple species, housing etc.
 - Between-farm models more applicable to understand control as this is the unit at which control measures are aimed
 - Parameterisation of between-farm models is more difficult and dependent on external factors (e.g. time to slaughter)
- Four additional factors are important:
 - Fluctuating population size (and therefore assumptions about transmission)
 - Survival of animals
 - Slaughtering as a potential control option
 - Spatial transmission
- Spatial models:
 - Meta-population structure
 - Spatial kernel needs to be specified
 - Allows consideration of spatial controls
- Control policies are different to human diseases:
 - Culling of infected premises and ring culling