Package 'diceplot'

October 28, 2024

NeedsCompilation no

Author Matthias Flotho [aut, cre] (https://orcid.org/0009-0006-4374-0801)

Repository CRAN

Date/Publication 2024-10-28 17:10:02 UTC

Title High Dimensional Categorical Data Visualization

Contents

calculate_dot_size	2
create_custom_legends	
create_var_positions	3
dice_plot	4
domino_plot	
order_cat_b	7
perform_clustering	8
prepare_box_data	8
prepare_plot_data	9

Index 11

Description

Calculates the dot size based on the number of variables.

Usage

```
calculate_dot_size(num_vars, max_size, min_size)
```

Arguments

num_vars Number of variables.

max_size Maximal dot size for the plot to scale the dot sizes.

min_size Minimal dot size for the plot to scale the dot sizes.

Value

A numeric value representing the dot size.

```
{\tt create\_custom\_legends} \quad \textit{Create Custom Legends}
```

Description

Creates custom legend plots for cat_c and group.

```
create_custom_legends(
  data,
  cat_c,
  group,
  cat_c_colors,
  group_colors,
  var_positions,
  num_vars,
  dot_size
)
```

3 create_var_positions

Arguments

data	The original data frame.
cat_c	The name of the cat_c variable.
group	The name of the group variable.

cat_c_colors A named vector of colors for cat_c.

group_colors A named vector of colors for the group variable.

Data frame with variable positions. var_positions Number of variables in cat_c. num_vars

dot_size The size of the dots used in the plot.

Value

A combined ggplot object of the custom legends.

Description

Generates a data frame containing variable names from cat_c_colors and corresponding x and y offsets based on the number of variables.

Usage

```
create_var_positions(cat_c_colors, num_vars)
```

Arguments

A named vector of colors for variables in category C. The names correspond to cat_c_colors

variable names.

The number of variables. Supported values are "3", "4", "5", or "6". num_vars

Value

A data frame with columns:

var Factor of variable names from cat_c_colors.

x_offset Numeric x-axis offset for plotting.

y_offset Numeric y-axis offset for plotting.

Examples

```
library(dplyr)
cat_c_colors <- c("Var1" = "red", "Var2" = "blue", "Var3" = "green")</pre>
create_var_positions(cat_c_colors, 3)
```

dice_plot

dice_plot

Dice Plot Visualization

Description

This function generates a custom plot based on three categorical variables and a group variable. It adapts to the number of unique categories in cat_c and allows customization of various plot aesthetics.

Usage

```
dice_plot(
  data,
  cat_a,
  cat_b,
  cat_c,
  group = NULL,
  group_alpha = 0.5,
  title = NULL,
  cat_c_colors = NULL,
  group_colors = NULL,
  custom_theme = theme_minimal(),
  max_dot_size = 5,
 min_dot_size = 2,
  legend_width = 0.25,
  legend_height = 0.5,
  base_width_per_cat_a = 0.5,
  base_height_per_cat_b = 0.3,
  reverse_ordering = FALSE
)
```

Arguments

data	A data frame containing the categorical and group variables for plotting.
cat_a	A string representing the column name in data for the first categorical variable.
cat_b	A string representing the column name in data for the second categorical variable.
cat_c	A string representing the column name in data for the third categorical variable.
group	A string representing the column name in data for the grouping variable.
group_alpha	A numeric value for the transparency level of the group rectangles. Default is 0.5.
title	An optional string for the plot title. Defaults to NULL.
cat_c_color	A named vector of colors for cat_c categories. Defaults to NULL (automatically generated).

domino_plot 5

group_colors	A named vector of colors for the group variable. Defaults to NULL (automatically generated).
custom_theme	A ggplot2 theme for customizing the plot's appearance. Defaults to theme_minimal().
max_dot_size	Maximal dot size for the plot to scale the dot sizes.
min_dot_size	Minimal dot size for the plot to scale the dot sizes.
legend_width	Relative width of your legend. Default is 0.25.
legend_height	Relative width of your legend. Default is 0.5.
base_width_per_cat_a	
	Used for dynamically scaling the width. Default is 0.5.
base_height_per_cat_b	
	Used for dynamically scaling the height. Default is 0.3.
reverse_ordering	
	Should the cluster ordering be reversed?. Default is FALSE.

Value

A ggplot object representing the dice plot.

domino_plot Domino Plot Visualization

Description

This function generates a plot to visualize gene expression levels for a given list of genes. The size of the dots can be customized, and the plot can be saved to an output file if specified.

```
domino_plot(
  data,
  gene_list,
  switch_axis = FALSE,
 min_dot_size = 1,
 max_dot_size = 5,
  spacing_factor = 3,
  var_id = "var",
  feature_col = "gene",
  celltype_col = "Celltype",
  contrast_col = "Contrast",
  contrast_levels = c("Clinical", "Pathological"),
  contrast_labels = c("Clinical", "Pathological"),
  logfc_col = "avg_log2FC",
  pval_col = "p_val_adj",
  logfc_limits = c(-1.5, 1.5),
  logfc_colors = c(low = "blue", mid = "white", high = "red"),
```

6 domino_plot

```
color_scale_name = "Log2 Fold Change",
  size_scale_name = "-log10(adj. p-value)",
  axis_text_size = 8,
  aspect_ratio = NULL,
  base_width = 5,
  base_height = 4,
  output_file = NULL
)
```

Arguments

A data frame containing gene expression data. data A character vector of gene names to include in the plot. gene_list switch_axis A logical value indicating whether to switch the x and y axes. Default is FALSE. min_dot_size A numeric value indicating the minimum dot size in the plot. Default is 1. max_dot_size A numeric value indicating the maximum dot size in the plot. Default is 5. spacing_factor A numeric value indicating the spacing between gene pairs. Default is 3. var_id A string representing the column name in data for the variable identifier. Default is "var". feature_col A string representing the column name in data for the feature variable (e.g., genes). Default is "gene". celltype_col A string representing the column name in data for the cell type variable. Default is "Celltype". A string representing the column name in data for the contrast variable. Default contrast_col is "Contrast". contrast_levels A character vector specifying the levels of the contrast variable. Default is c("Clinical", "Pathological"). contrast_labels A character vector specifying the labels for the contrasts in the plot. Default is c("Clinical", "Pathological"). logfc_col A string representing the column name in data for the log fold change values. Default is "avg_log2FC". pval_col A string representing the column name in data for the adjusted p-values. Default is "p_val_adj". A numeric vector of length 2 specifying the limits for the log fold change color logfc_limits scale. Default is c(-1.5, 1.5). A named vector specifying the colors for the low, mid, and high values in the logfc_colors color scale. Default is c(low = "blue", mid = "white", high = "red"). color_scale_name A string specifying the name of the color scale in the legend. Default is "Log2 Fold Change".

size_scale_name

A string specifying the name of the size scale in the legend. Default is "-log10(adj. p-value)".

order_cat_b 7

<pre>axis_text_size</pre>	A numeric value specifying the size of the axis text. Default is 8.
aspect_ratio	A numeric value specifying the aspect ratio of the plot. If NULL, it's calculated automatically. Default is NULL.
base_width	A numeric value specifying the base width for saving the plot. Default is 5.
base_height	A numeric value specifying the base height for saving the plot. Default is 4.
output_file	An optional string specifying the path to save the plot. If NULL, the plot is not saved. Default is NULL.

Value

A ggplot object representing the domino plot.

Description

Determines the ordering of category B based on the counts within each group, ordered by group and count.

Usage

```
order_cat_b(data, group, cat_b, group_colors, reverse_order = FALSE)
```

Arguments

data	A data frame containing the variables.
group	The name of the column representing the grouping variable.
cat_b	The name of the column representing category B.
group_colors	A named vector of colors for each group. The names correspond to group names.
reverse_order	Reverse the ordering? Default is FALSE.

Value

A vector of category B labels ordered according to group and count.

Examples

```
library(dplyr)
data <- data.frame(
  group = rep(c("G1", "G2"), each = 5),
  cat_b = sample(LETTERS[1:3], 10, replace = TRUE)
)
group_colors <- c("G1" = "red", "G2" = "blue")
order_cat_b(data, "group", "cat_b", group_colors)</pre>
```

8 prepare_box_data

perform_clustering

Description

Performs hierarchical clustering on category A based on the binary presence of combinations of categories B and C.

Usage

```
perform_clustering(data, cat_a, cat_b, cat_c)
```

Arguments

data	A data frame containing the variables.
cat_a	The name of the column representing category A.
cat_b	The name of the column representing category B.
cat_c	The name of the column representing category C.

Value

A vector of category A labels ordered according to the hierarchical clustering.

Examples

```
library(dplyr)
library(tidyr)
library(tibble)
data <- data.frame(
   cat_a = rep(letters[1:5], each = 4),
   cat_b = rep(LETTERS[1:2], times = 10),
   cat_c = sample(c("Var1", "Var2", "Var3"), 20, replace = TRUE)
)
perform_clustering(data, "cat_a", "cat_b", "cat_c")</pre>
```

prepare_box_data

Prepare Box Data

Description

Prepares data for plotting boxes by calculating box boundaries based on category positions.

```
prepare_box_data(data, cat_a, cat_b, group, cat_a_order, cat_b_order)
```

prepare_plot_data 9

Arguments

data	A data frame containing the variables.
cat_a	The name of the column representing category A.
cat_b	The name of the column representing category B.
group	The name of the column representing the grouping variable.
cat_a_order	A vector specifying the order of category A.
cat_b_order	A vector specifying the order of category B.

Value

A data frame with box boundaries for plotting.

Examples

```
library(dplyr)
data <- data.frame(
   cat_a = rep(letters[1:3], each = 2),
   cat_b = rep(LETTERS[1:2], times = 3),
   group = rep(c("G1", "G2"), times = 3)
)
cat_a_order <- c("a", "b", "c")
cat_b_order <- c("A", "B")
prepare_box_data(data, "cat_a", "cat_b", "group", cat_a_order, cat_b_order)</pre>
```

prepare_plot_data

Prepare Plot Data

Description

Prepares data for plotting by calculating positions based on provided variable positions and orders.

```
prepare_plot_data(
  data,
  cat_a,
  cat_b,
  cat_c,
  group,
  var_positions,
  cat_a_order,
  cat_b_order
)
```

10 prepare_plot_data

Arguments

data	A data frame containing the variables.
cat_a	The name of the column representing category A.
cat_b	The name of the column representing category B.
cat_c	The name of the column representing category C.
group	The name of the column representing the grouping variable.
var_positions	$A \ data \ frame \ with \ variable \ positions, typically \ output \ from \ \verb create_var_positions .$
cat_a_order	A vector specifying the order of category A.
cat_b_order	A vector specifying the order of category B.

Value

A data frame ready for plotting with added x_pos and y_pos columns.

Examples

```
library(dplyr)
data <- data.frame(
    cat_a = rep(letters[1:3], each = 4),
    cat_b = rep(LETTERS[1:2], times = 6),
    cat_c = rep(c("Var1", "Var2"), times = 6),
    group = rep(c("G1", "G2"), times = 6)
)
var_positions <- data.frame(
    var = c("Var1", "Var2"),
    x_offset = c(0.1, -0.1),
    y_offset = c(0.1, -0.1)
)
cat_a_order <- c("a", "b", "c")
cat_b_order <- c("A", "B")
prepare_plot_data(data, "cat_a", "cat_b", "cat_c", "group", var_positions, cat_a_order, cat_b_order)</pre>
```

Index

```
calculate_dot_size, 2
create_custom_legends, 2
create_var_positions, 3

dice_plot, 4
domino_plot, 5

order_cat_b, 7

perform_clustering, 8
prepare_box_data, 8
prepare_plot_data, 9
```