MOWNIT laboratorium 4

Interpolacja II

Zadanie 1

Porównanie średniej geometrycznej odległości od siebie poniższych zbiorów punktów dla ich ilości n=10,20,50:

- punkty Czebyszewa
- punkty Legendre'a
- punkty rozłożone równomiernie

Punkty Czebyszewa

Na przedziałe $x \in [-1,1]$ punkty Czebyszewa wyraża się następującym wzorem:

$$t_i = -\cos\left(\frac{2i-1}{2n}\pi\right), i = 1, 2, ...n \tag{1}$$

Ogólniej, dla przedziału $x \in [a, b]$ mamy:

$$x_i = \frac{a+b}{2} + \frac{b-a}{2}t_i \tag{2}$$

Średnia geometryczna odległości punktu od wszystkich pozostałych

Punkty Legendre'a

Wyznaczane są jako miejsca zerowe wielomianów Legendre'a, danych wzorem:

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n, n = 0, 1, 2, \dots$$
 (3)

1.00

Średnia geometryczna odległości punktu od wszystkich pozostałych

Punkty rozłożone równomiernie

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

Wyznaczenie punktów jest trywialne

Zadanie 2

$$f_1(x) = \frac{1}{1 + 25x^2} \tag{4}$$

$$f_2(x) = e^{\cos x} \tag{5}$$

Interpolacja funkcji $f_1(x)$ na 3 poniższe sposoby, z różną liczbą węzłów interpolacji oraz porównanie wyników.

- interpolacja Lagrange'a z równoodległymi węzłami
- interpolacja kubicznymi funkcjami sklejanymi z równoodległymi węzłami
- interpolacja Lagrange'a z węzłami Czebyszewa
- a) Wykres funkcji $f_1(x)$ z 12 węzłami interpolacji oraz wielomianami interpolacyjnymi wyznaczonymi każdą z 3 powyższych metod

b) Interpolacja funkcji $f_1(x)$ i $f_2(x)$ z n = 4, 5, ... 50 węzłami interpolacji, każdą z trzech metod. Porównanie wektorów błędów dla różnych metod i ilości węzłów i przedstawienie wyników na wykresach

Błędy interpolacji funkcji f1 10⁷ Metoda Lagrange'a, równoodległe węzły Kubiczne funkcje sklejane, równoodległe węzł Metoda Lagrange'a, węzły Czebyszewa Norma euklidesowa wektora błędów 10⁵ 10^{3} 10¹ 10^{-1} 10^{-3} 10^{-5} 10 20 30 40 50 Liczba węzłów interpolacji

Rysunek 5: Wykres przedstawiający normy euklidesowe wektorów błędów funkcji $f_1(x)$ dla każdej z 3 metod, przy różnych n

Rysunek 6: Wykres przedstawiający normy euklidesowe wektorów błędów funkcji $f_2(x)$ dla każdej z 3 metod, przy różnych n

Wnioski

Punkty Legendre'a i Czebyszewa są rozłożone tak, aby minimalizować średnią geometryczną odległości punktów od siebie, co widać na wykresach z zadania 1. W zadaniu drugim, tam gdzie używaliśmy węzłów Czebyszewa, otrzymywaliśmy mniejsze błędy, niż gdzie w tej samej metodzie z węzłami równoodległymi. Warto również zauważyć, że przy interpolacji Lagrange'a z równoodległymi węzłami, błąd interpolacji rósł wraz ze wzrostem liczby węzłów. Co do porównania różnych metod samej interpolacji, to wynik jest zależny od interpolowanej funkcji. W przypadku f_1 lepsze są kubiczne funkcje sklejane, a w przypadku funkcji f_2 interpolacja Lagrange'a. Warto jednak zwrócić uwagę na to, że dla obu funkcji, wraz ze wzrostem liczby węzłów, błąd interpolacji funkcjami kubicznymi malał, a w przypadku interpolacji Lagrange'a z równoodległymi węzłami miejscami rósł.