Strings and regular expressions

Week 5

AEM 2850 / 5850 : R for Business Analytics Cornell Dyson Fall 2025

Acknowledgements: R4DS (2e)

Announcements

Prelim 1 will be next Thursday, October 2 at 7:30pm in Warren 173 and 175

- Will cover everything so far including this week's material
- Tuesday, Sep 30: review session in class
- Thursday, Oct 2: no class
- Extra office hours TBD
- We will provide more guidance via canvas
- Please contact me and SDS as soon as possible if you are eligible for testing accommodations and are not yet registered

Questions before we get started?

Plan for this week

Tuesday

Working with strings in R

Regular expressions

Working with regular expressions in R

Thursday

example-05

Working with strings in R

Strings are nothing new

```
select(carrier, tailnum, origin, dest)
## # A tibble: 336,776 × 4
      carrier tailnum origin dest
##
##
      <chr>
              <chr>
                      <chr> <chr>
##
   1 UA
              N14228
                      EWR
                              IAH
##
   2 UA
              N24211
                     LGA
                              IAH
                              MIA
##
   3 AA
              N619AA
                      JFK
   4 B6
              N804JB
                              BON
##
                      JFK
##
   5 DL
              N668DN
                      LGA
                              ATL
##
   6 UA
              N39463
                      EWR
                              ORD
##
   7 B6
              N516JB
                      EWR
                              FLL
   8 EV
              N829AS
                              IAD
##
                      LGA
##
   9 B6
              N593JB
                      JFK
                              MCO
## 10 AA
              N3ALAA LGA
                              ORD
## # i 336,766 more rows
```

flights |>

```
read csv("homework-1-survev.csv") |>
   select(Concentration)
## # A tibble: 113 × 1
      Concentration
      <chr>
    1 Finance
    2 Business Analytics and Accounting
    3 Business Analytics
    4 Entrepreneurship
    5 Entrepreneurship
##
    6 Finance
##
    7 Strategy
    8 Business Analytics
    9 Business Analytics
## 10 Human Resource Management
## # i 103 more rows
```

Strings in R

Strings are also referred to as "characters" (abbreviated chr)

Strings can be stored in many ways:

- Vectors
- Data frame columns
- Elements in a list

So far we have used them as we would any other data

But now we'll learn to filter on, modify, or analyze "functions" of strings

The stringr package

stringr is loaded as part of the core tidyverse

All stringr functions have intuitive names that start with str_

We will cover a bunch of handy functions this week:

```
    str_length
    str_to_upper and str_to_lower
    str_c and str_glue
    str_detect
    str_count
    str_replace
```

See vignette("stringr") for more

We'll use data from The Office

The schrute package contains transcripts of all episodes of The Office (US)

```
library(schrute)
theoffice # this data frame is an object from the schrute package
```

```
## # A tibble: 55,130 × 12
##
      index season episode episode_name director
                                                      writer
                                                                        character text
      <int> <int>
##
                      <int> <chr>
                                          <chr>
                                                      <chr>
                                                                         <chr>
                                                                                   <chr>
                          1 Pilot
                                          Ken Kwapis Ricky Gervais; S... Michael
                                                                                   All ...
##
## 2
                          1 Pilot
                                          Ken Kwapis Ricky Gervais; S... Jim
                                                                                   0h, ...
## 3
                          1 Pilot
                                          Ken Kwapis Ricky Gervais; S... Michael
                                                                                   So y...
## 4
                          1 Pilot
                                           Ken Kwapis Ricky Gervais; S... Jim
                                                                                   Actu...
                                                                                   All ...
## 5
                          1 Pilot
                                           Ken Kwapis Ricky Gervais; S... Michael
## 6
                          1 Pilot
                                           Ken Kwapis Ricky Gervais; S... Michael
                                                                                   Yes,...
                                                                                   I've...
## 7
                          1 Pilot
                                          Ken Kwapis Ricky Gervais; S... Michael
                          1 Pilot
                                           Ken Kwapis Ricky Gervais; S... Pam
                                                                                   Well...
## 8
                                                                                   If y...
##
                          1 Pilot
                                           Ken Kwapis Ricky Gervais; S... Michael
## 10
                          1 Pilot
                                           Ken Kwapis Ricky Gervais; S... Pam
                                                                                   What?
         10
## #
       55,120 more rows
## # i 4 more variables: text_w_direction <chr>, imdb_rating <dbl>,
       total votes <int>, air date <chr>
## #
```

1) str_length()

5 Jan

str_length tells you the number of characters in a string

```
str_length("supercalifragilisticexpialidocious")
## [1] 34
theoffice |>
  distinct(character) |>
  slice_head(n = 5) |>
  mutate(name_length = str_length(character))
## # A tibble: 5 × 2
## character name_length
  <chr>
                    <int>
## 1 Michael
## 2 Jim
## 3 Pam
## 4 Dwight
```

2) str_to_lower() and str_to_upper()

str_to_lower converts to lower case

[1] "I WENT TO CORNELL, YOU EVER HEARD OF IT?"

```
str_to_lower("I went to Cornell, you ever heard of it?")

## [1] "i went to cornell, you ever heard of it?"

str_to_upper converts to upper case

str_to_upper("I went to Cornell, you ever heard of it?")
```

Similar functionality for str_to_title() and str_to_sentence()

These functions are locale dependent (e.g., "en_GB" vs "en_US")

3) str_c()

We have seen c combine arguments to make a **longer** vector or list:

```
abc <- c("a", "b", "c")
c(abc, "s")

c(abc, NA)

## [1] "a" "b" "c" "s"

## [1] "a" "b" "c" ## [1] "a" "b" "c" ## [1] "a" "b" "c" NA
```

By contrast, str_c combines arguments to make a wider character vector:

We can use str_c within data frames to combine strings at scale

3) str_c()

Here's an example of multiple columns in a data frame being combined into one:

```
theoffice |> slice_head(n = 1) |>
  select(character, text)
## # A tibble: 1 × 2
##
    character text
   <chr>
          <chr>
## 1 Michael All right Jim. Your quarterlies look very good. How are things at t...
theoffice |> slice_head(n = 1) |>
    mutate(line = str_c(character, " said: ", text), .keep = "none") # mutate and keep only `line`
## # A tibble: 1 × 1
##
    line
##
    <chr>
## 1 Michael said: All right Jim. Your quarterlies look very good. How are things ...
```

3) str_c()

str_c will automatically recycle fixed arguments like " said: " that are shorter
than character and text:

```
theoffice |> slice_head(n = 3) |>
    mutate(line = str_c(character, " said: ", text), .keep = "none")

## # A tibble: 3 × 1

## line

## <chr>
## 1 Michael said: All right Jim. Your quarterlies look very good. How are things ...

## 2 Jim said: Oh, I told you. I couldn't close it. So...

## 3 Michael said: So you've come to the master for guidance? Is this what you're ...
```

3) str_glue()

str_glue() provides similar functionality, but different syntax:

```
theoffice |> slice_head(n = 3) |>
    mutate(line = str_glue("{character} said: {text}"), .keep = "none") # note the different syntax

## # A tibble: 3 × 1

## line

## <glue>

## 1 Michael said: All right Jim. Your quarterlies look very good. How are things ...

## 2 Jim said: Oh, I told you. I couldn't close it. So...

## 3 Michael said: So you've come to the master for guidance? Is this what you're ...
```

Items inside {} are evaluated as if they are outside the quotes

This can be handy when combining many fixed and variable strings

str_c() and str_glue() work well with mutate() because their output is the
same length as their inputs

Regular expressions

Regular expressions

What are regular expressions?

A concise, powerful way for describing patterns within strings

Regular expressions are a generic tool, not something specific to R

Let's use the names of some characters from The Office as examples:

```
names <- theoffice |> distinct(character) |> slice_head(n = 10) |> pull(character)
names

## [1] "Michael" "Jim" "Pam" "Dwight" "Jan"
## [6] "Michel" "Todd Packer" "Phyllis" "Stanley" "Oscar"
```

Pattern basics

The simplest patterns consist of literal characters

```
names

## [1] "Michael" "Jim" "Pam" "Dwight" "Jan"

## [6] "Michel" "Todd Packer" "Phyllis" "Stanley" "Oscar"
```

str_view is a handy classroom utility for class to see how patterns match:

```
str_view(names, pattern = "J")
## [2] | <J>im
## [5] | <J>an
```

Pattern basics

Literal pattern matches are case-sensitive by default

```
names

## [1] "Michael" "Jim" "Pam" "Dwight" "Jan"

## [6] "Michel" "Todd Packer" "Phyllis" "Stanley" "Oscar"
```

What do you think this will return?

What do you think this will return?

```
str_view(names, pattern = "M")
str_view(names, pattern = "m")
```

Note that these matches depend on patterns, not position

Meta-characters

Punctuation characters like ., +, *, [,], and ? are **meta-characters** with special meanings

The most common one is ., which will match any character

What do you think these statements will return?

```
str_view(names, pattern = "J.m")

## [2] | <Jim>
## [5] | <Jan>
```

Meta-characters

What do you think these statements will return?

```
str_view(names, pattern = "J...")

## [2] | <Jim>
## [5] | <Jan>
```

Quantifiers

Quantifiers control how many times a pattern can match:

- ? makes a pattern optional -- it matches 0 or 1 times
- + lets a pattern repeat -- it matches at least once
- * lets a pattern be optional or repeat

What do you think this statement will return?

```
str_view(names, "M.*l") # match strings with M, then any number of any characters, then l
## [1] | <Michael>
## [6] | <Michel>
```

Note that quantifiers modify the pattern they follow: we used .*, not *.

Character classes

[] lets you match a set of characters

```
str_view(names, "[aeiou]") # vowels
```

```
\lceil 1 \rceil
           M<i>ch<a><e>1
##
    [2]
##
           J<i>m
##
    [3]
           P<a>m
##
    [4]
           Dw<i>ght
##
    [5]
           J<a>n
    [6]
           M<i>ch<e>l
##
           T<o>dd P<a>ck<e>r
##
    [7]
           Phyll<i>s
    [8]
##
    [9]
           St<a>nl<e>y
##
## [10]
           0sc<a>r
```

inverts character class matches

```
str_view(names, "[^aeiou]") # NOT vowels
```

```
<M>i<c><h>ae<1>
    \lceil 1 \rceil
##
##
    Γ2]
           <J>i<m>
    [3]
           <P>a<m>
##
##
    [4]
           <D><w>i<g><h><t>
    [5]
           <J>a<n>
##
    [6]
           <M>i<c><h>e<l>
##
##
    [7]
           <T>o<d><d>< ><P>a<c><k>e<r>
           <P><h><y><l><l>i<s>
    [8]
##
    [9]
           <$><t>a<n><l>e<y>
##
   [10]
           <0><s><c>a<r>
##
```

Alternation

Last one! Hang in there!

Alternation, |, allows you to search for one or more alternative patterns

This should seem familiar...

What do you think these statements will return?

```
str_view(names, "J.m|P.m")

## [2] | <Jim> ## [9] | <Stanley> ## [10] | <Oscar>
```

More patterns

See Chapter 15 of R4DS (2e) for more on:

- **escaping**: matching meta-characters as if they were literal strings
- anchors: match the start or end of a strong
- character classes: (continued)
- quantifiers (continued)
- operator precedence: parentheses, etc.
- grouping: back references, etc.

Working with regular expressions in R

str_detect can be used to match patterns and return a logical vector

```
first_4_characters str_detect(first_4_characters, "Dwight")

## [1] "Michael" "Jim" "Pam" "Dwight" ## [1] FALSE FALSE FALSE TRUE
```

What do you think these statements will return?

```
str_detect(first_4_characters, "a")

## [1] TRUE FALSE  ## [1] TRUE TRUE TRUE TRUE
## [1] TRUE TRUE TRUE TRUE
```

How could we fit this into our current workflow?

str_detect is a powerful way to filter a data frame

```
## # A tibble: 370 \times 4
##
      season episode character text
       <int>
               <int> <chr>
                               <chr>
##
## 1
                   2 Jim
                               This is my biggest sale of the year. They love me o...
                               Mr. Decker, we didn't lose your sale today, did we?...
## 2
                   2 Jim
## 3
                   3 Jim
                               That is a great offer. Thank you. I really think I ...
## 4
                   3 Jan
                               From sales?
## 5
                   4 Michael
                               Look, look, look. I talked to corporate, about prot...
                   5 Michael
                               All right, time, time out. Come on, sales, over her...
##
                               Alan and I have created an incentive program to inc...
##
                   6 Jan
##
                   6 Jan
                               We've created an incentive program to increase sale...
                   6 Jim
                               Plus you have so much more to talk to this girl abo...
## 9
## 10
                   6 Stanley
                               I thought that was the incentive prize for the top ...
    i 360 more rows
```

Literal pattern matches with str_detect are case-sensitive

```
## # A tibble: 28 × 4
     season episode character
##
                                        text
##
       <int>
               <int> <chr>
                                        <chr>
##
                  11 Michael
                                        No, no. Salesmen and profit centers.
## 2
             14 Michael
                                        Old fashioned raid. Sales on Accounting. Y...
##
  3
                 14 Michael and Dwight Ahhhh! Whoo hoo! Come on, come on...
                 14 Michael
                                        Oh, and I'm not? Why would you say that? B...
##
## 5
                 17 Jim
                                        Dwight was the top salesman of the year at...
##
                 17 Michael
                                        Speaker at the Sales Convention. Been ther...
                  17 Dwight
##
                                        Saleswoman has a v*g1n*.
## 8
                  17 Speaker
                                        Next, I'd like to introduce the Dunder Mif...
                  17 Dwight
                                        Salesman of Northeastern Pennsylvania, I a...
## 9
## 10
                   5 Angela
                                        Sales take a long time.
## # i 18 more rows
```

You could use multiple calls to str_detect, or use alternation:

```
## # A tibble: 392 × 4
##
      season episode character text
##
       <int>
               <int> <chr>
                               <chr>
## 1
                   2 Jim
                               This is my biggest sale of the year. They love me o...
## 2
                  2 Jim
                               Mr. Decker, we didn't lose your sale today, did we?...
## 3
                  3 Jim
                               That is a great offer. Thank you. I really think I ...
## 4
                  3 Jan
                               From sales?
## 5
                  4 Michael
                               Look, look, look. I talked to corporate, about prot...
                   5 Michael
                               All right, time, time out. Come on, sales, over her...
##
                   6 Jan
                               Alan and I have created an incentive program to inc...
##
##
                  6 Jan
                               We've created an incentive program to increase sale...
                   6 Jim
                               Plus you have so much more to talk to this girl abo...
## 9
## 10
                   6 Stanley
                               I thought that was the incentive prize for the top ...
    i 382 more rows
```

You could consolidate this: regex parentheses are like in math

```
## # A tibble: 392 × 4
     season episode character text
##
##
      <int>
               <int> <chr>
                               <chr>
## 1
                   2 Jim
                              This is my biggest sale of the year. They love me o...
## 2
                  2 Jim
                              Mr. Decker, we didn't lose your sale today, did we?...
## 3
                  3 Jim
                               That is a great offer. Thank you. I really think I ...
## 4
                  3 Jan
                              From sales?
## 5
                  4 Michael
                              Look, look, look. I talked to corporate, about prot...
                  5 Michael
##
                              All right, time, time out. Come on, sales, over her...
                  6 Jan
                               Alan and I have created an incentive program to inc...
##
##
                  6 Jan
                              We've created an incentive program to increase sale...
                  6 Jim
                               Plus you have so much more to talk to this girl abo...
## 9
                               I thought that was the incentive prize for the top ...
## 10
                  6 Stanley
    i 382 more rows
```

Or use regex to ignore all cases and control other pattern matching details

```
## # A tibble: 393 × 4
##
      season episode character text
##
       <int>
               <int> <chr>
                               <chr>
##
                   2 Jim
                               This is my biggest sale of the year. They love me o...
## 2
                  2 Jim
                               Mr. Decker, we didn't lose your sale today, did we?...
## 3
                  3 Jim
                               That is a great offer. Thank you. I really think I ...
                  3 Jan
                              From sales?
##
## 5
               4 Michael
                               Look, look, look. I talked to corporate, about prot...
                  5 Michael
##
                               All right, time, time out. Come on, sales, over her...
                               Alan and I have created an incentive program to inc...
##
                  6 Jan
##
                  6 Jan
                               We've created an incentive program to increase sale...
                  6 Jim
                               Plus you have so much more to talk to this girl abo...
## 9
## 10
                  6 Stanley
                               I thought that was the incentive prize for the top ...
    i 383 more rows
```

When I say ignore all cases, I mean IGNORE ALL CASES!

str_detect can be combined with familiar functions to summarize data

```
theoffice |>
  filter(str_detect(text, regex("sale", ignore_case = TRUE))) |>
  count(character, sort = TRUE)

## # A tibble: 46 × 2
```

```
##
  character
  <chr>
          <int>
## 1 Michael
               91
## 2 Dwight
           81
  3 Jim
         51
##
   4 Andy
         31
## 5 Pam
               26
## 6 Ryan
               10
  7 Clark
##
  8 Gabe
  9 David
## 10 Angela
## # i 36 more rows
```

str_detect can be combined with familiar functions to summarize data

```
theoffice |>
  filter(str_detect(text,
                    regex("that's what she said", ignore_case = TRUE))) |>
  count(character, sort = TRUE)
## # A tibble: 8 × 2
## character
## <chr> <int>
## 1 Michael
                 23
## 2 Dwight
## 3 Jim
## 4 Creed
## 5 David
## 6 Holly
## 7 Jan
## 8 Pam
```

str_detect with regular expressions can be very powerful

```
theoffice |> select(character, text) |>
  filter(str_detect(text, "assistant.*manager")) |>
  slice head(n = 10)
## # A tibble: 10 × 2
##
     character text
##
     <chr> <chr>
##
   1 Dwight
                I, but if there were, I'd be protected as assistant regional manag...
##
   2 Dwight
                And that's why you have an assistant regional manager.
   3 Michael
##
                No, I am the team manager. You can be assistant to the team manage...
##
   4 Dwight
                Hey, Pam, I'm assistant regional manager, and I can take care of h...
   5 Michael
                All right. Well then, you are now acting manager of Dunder Mifflin...
##
   6 Dwight
                Uh,... my first sale, my promotion to assistant regional manager, ...
##
   7 Jim
                Oh, that's because at first it was a made up position for Dwight, ...
##
   8 Charles
                So you're the assistant to the regional manager?
                Since Andy promoted me to assistant regional manager, I've been tr...
  9 Darrvl
                You now, Darryl, this is textbook assistant regional manager stuff...
## 10 Andy
```

5) str_count()

str_count can be used to count the number of matches in a string

```
theoffice |>
  distinct(character) |>
  slice_head(n = 5) |>
  mutate(
    name = str_to_lower(character), # another way to avoid case sensitivity

    m_s = str_count(name, "m"),
    i_s = str_count(name, "i")
)
```

```
## # A tibble: 5 × 4
## character name
                  m_s i_s
## <chr> <int> <int> <int>
## 1 Michael
             michael
## 2 Jim
             jim
## 3 Pam
                              0
             pam
             dwight
## 4 Dwight
## 5 Jan
                              0
             jan
```

5) str_count() with regex

```
theoffice |>
  distinct(character) |>
  slice_head(n = 5) |>
  mutate(
    name = str_to_lower(character),
    vowels = str_count(name, "[aeiou]"), # count matches of ANY of these characters
    consonants = str_count(name, "[^aeiou]") # count matches of everything EXCEPT these characters
)
```

Reminder: [] lets you match a set of characters; ^ inverts character class matches

6) str_replace()

As the name suggests, str_replace can be used to modify patterns in strings

```
names
                                           "Dwight"
   [1] "Michael"
                "Jim"
                               "Pam"
                                                        "Jan"
##
##
   [6] "Michel"
                "Todd Packer" "Phyllis"
                                            "Stanley"
                                                        "Oscar"
str_replace(names, "Dw", "Duhw") # jim's office pronunciation guide
   [1] "Michael"
                                            "Duhwight"
                   "Jim" "Pam"
                                                        "Jan"
##
               "Todd Packer" "Phyllis"
                                            "Stanley"
##
   [6] "Michel"
                                                        "0scar"
```

6) str_replace()

str_replace replaces the first match of a pattern

```
str_replace("Phyllis", "l", "!")
## [1] "Phy!lis"
```

str_replace_all replaces all matches of a pattern

```
str_replace_all("Phyllis", "l", "!")
## [1] "Phy!!is"
```

These pair naturally with mutate just like str_c, str_glue, and str_count

example-05