Міністерство освіти і науки України Національний університет "Львівська політехніка"

Кафедра ЕОМ

Звіт

про виконання лабораторної роботи №1 з дисципліни: "Моделювання комп'ютерних систем"

Виконав: ст. гр. КІ-202

Ключко Д.С. Прийняв:

Старший викладач Козак Н.Б.

Мета: ознайомлення з середовищем розробки Xilinx ISE та побудова дешифратора 3-7.

Лабораторна робота №1

Інсталяція та ознайомлення з середовищем розробки Xilinx ISE. Ознайомлення зі стендом Elbert V2 – Spartan 3A FPGA.

Етапи роботи:

- 1. Інсталяція Xilinx ISE.
- 2. Побудова дешифратора 3->7 за допомогою ISE WebPACKTM Schematic Capture та моделювання його роботи за допомогою симулятора ISim.
- 3. Генерування .bit файла та тестування за допомогою стенда Elbert V2 Spartan 3A FPGA.

Виконання завдання

Згідно завдання було розроблено схему дешифратора 3 в 7, використовуючи компоненти з бібліотеки, у новому, доданому до проекту Schematic файлу

My2To4Decoder.sch

Рис.1. Схема дешифратора 3 в 7

Згодом було додану до проекту User Constraint файл, в якому було додано змінений вміст файлу elbertv2.ucf.

ConstraintsF.ucf

```
UCF for ElbertV2 Development Board
CONFIG VCCAUX = "3.3";
11
12
      # Clock 12 MHz
13
      #NET "Clk"
                                           LOC = P129 | IOSTANDARD = LVCMOS33 | PERIOD = 12MHz:
14
15
16
17
     18
                                                            LED
     19
20
                                         LOC = P46 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
LOC = P47 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
LOC = P48 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
LOC = P49 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
LOC = P50 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
LOC = P51 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
LOC = P54 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
LOC = P55 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
LOC = P55 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
21
           NET "OUT_1"
22
          NET "OUT 2"
23
          NET "OUT 3"
24
          NET "OUT
25
          NET "OUT_5"
26
27
           NET "OUT
         #NET "OUT 7"
28
29
     30
                                                      DP Switches
31
     32
33
                                  LOC = P70 | PULLUP | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
           NET "IN 0"
34
           NET "IN_1"
                                LOC = P69 | PULLUP | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
LOC = P68 | PULLUP | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
35
           NET "IN 2"
36
          #NET "DPSwitch[6]"

LOC = P60 | PULLUP | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;

#NET "DPSwitch[4]"

LOC = P63 | PULLUP | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;

#NET "DPSwitch[5]"

LOC = P60 | PULLUP | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;

#NET "DPSwitch[6]"

LOC = P60 | PULLUP | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;

#NET "DPSwitch[6]"

LOC = P59 | PULLUP | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;

#NET "DPSwitch[7]"

LOC = P58 | PULLUP | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
37
38
39
40
41
```

Puc.2. User Constraint файл

Результат симуляції моделювання дешифратора

Рис. 3. Запуск симуляції

Згодом було створено конфігураційний файл і були послідовно запущеніпроцеси, щоб переконатися що всі процеси успішно виконалися.

Рис.4. Виконання процесів

Висновок: Під час виконання даної лабораторної роботи я ознайомився з середовищем розробки **Xilinx ISE**, навчився працювати з засобами управління проектом. Також створив схему дешифратора **3->7** та перевірив його роботу в режимі симуляції. Ще пригадав, як працювати з логічними елементами **AND**.