

konversi citra RGB ke Grayscale

Kelompok limit

Anggota kelompok

Bayu 221021002

sarmila s 221021003

Muh. Arqam 221021006

Lightness yaitu mencari nilai tertinggi dan terendah dari nilai R, G, dan B, kemudian hasil penjumlahan nilai tertinggi dan terendah tersebut dikalikan dengan 0,5 Secara matematis:

Grayscale = (max(R, G, B)) + (min(R, G, B)) * 0.5


```
import cv2
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
img path = 'Project.JPG'
img = cv2.imread(img_path)
print(img.shape)
fix_img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
plt.imshow(fix_img)
R, G, B = fix_img[:,:,0], fix_img[:,:,1], fix_img[:,:,2]
print(np.array(fix_img))
```


Penjelasan kode:
Kode ini di gunakan untuk
mengkonversi warna dari format
BGR ke RGB, dan mencetak
matriks yang mempresentasikan
gambar yang telah diubah
warnanya.


```
(1280, 960, 3)
            2]
            1]
 [ 99 110 116]
 [100 111 117]
 [100 111 117]]
       0 2]
            1]
  [ 98 109 115]
   99 110 116]
 [ 99 110 116]]
            0]
        0 0]
            1]
 [ 98 109 115]
   98 109 115]
 [ 97 108 114]]
```

Matriks Gambar


```
1]
           1]
[107 107 107]
[108 108 108]
[108 108 108]]
           1]
           1]
[106 106 106]
[107 107 107]
[107 107 107]]
```


[106 106 106] [106 106 106] [105 105 105]]

Matriks Lightness

Bayu

karena terjadi operasi matematis yaitu nilai max dari RGB dan min RGB dijumlahkan kemudian : 2

```
[[ 0 0 2] Nilai Mix RGB = 2 [ 0 0 2] Nilai Min RGB = 0 [ 1 1 1] (2 + 1)/2 = 1
```

Matemtis setiap metode lightness dilakukan secara baris per baris

. . .

[184 195 201] [184 194 203] [184 194 203]]

[[164 175 179] [164 175 179]

[164 175 179]

. . .

[184 195 201]

[184 194 203]

[184 194 203]]


```
[[171 171 171]
  [171 171 171]
  [171 171 171]
  [192 192 192]
  [193 193 193]
 [193 193 193]]
[[171 171 171]
 [171 171 171]
 [171 171 171]
 [192 192 192]
  [193 193 193]
 [193 193 193]]
[[171 171 171]
  [171 171 171]
 [171 171 171]
 [192 192 192]
  [193 193 193]
  [193 193 193]]
```

Sarmila S

karena terjadi operasi matematis yaitu nilai max dari RGB dan min RGB dijumlahkan kemudian : 2

[164 175 179] Nilai Mix RGB = 179 [164 175 179] Nilai Min RGB = 164 [164 175 179] (179 + 164) /2 = 171

Matemtis setiap metode lightness dilakukan secara baris per baris


```
[171 171 171]
[171 171 171]
[171 171 171]
Matriks Lightness
```


(1500,	844, 3)	
[[[139	138 143]	
[139	138 143]	
[139	138 143]	
[114	113 118]	
[114	113 118]	
[113	112 117]]	
[[139	138 143]	
[139	138 143]	
[139	138 143]	
[114	113 118]	
[114	113 118]	
[113	112 117]]	
[[139	138 143]	
[139	138 143]	
[139	138 143]	
[114	113 118]	
-	113 118]	
[113	112 117]]	


```
[[140 140 140]
 [140 140 140]
 [140 140 140]
 [115 115 115]
 [115 115 115]
 [114 114 114]]
[[140 140 140]
[140 140 140]
[140 140 140]
 [115 115 115]
 [115 115 115]
[114 114 114]]
[[140 140 140]
[140 140 140]
[140 140 140]
 [115 115 115]
 [115 115 115]
 [114 114 114]]
```


karena terjadi operasi matematis yaitu nilai max dari RGB dan min RGB dijumlahkan kemudian : 2

```
[139 138 143] Nilai Mix RGB = 143
[139 138 143] Nilai Min RGB = 138
[139 138 143] (143 + 138) /2 = 140
```

Matemtis setiap metode lightness dilakukan secara baris per baris

[[140 140 140] [140 140 140] [140 140 140] Matriks Lightness

Average

Average, mencari nilai rata-rata dari R, G, dan B. Nilai ratarata itulah yang dapat dikatakan sebagai grayscale. Rumus matematisnya adalah: R+B+G/3

Average

```
(1280, 960, 3)
 [ 99 110 116]
 [100 111 117]
 [100 111 117]]
    0 0 2]
  [ 98 109 115]
   99 110 116]
```

[[0.66666667 109.33333333]	0.66666667	1.	•••	108.33333333	109.33333333
[0.66666667 108.33333333]	0.66666667	1.	•••	107.33333333	108.33333333
[0. 106.33333333]	0.	1.	•••	107.33333333	107.33333333
[5.66666667 24.66666667]	5.66666667	5.66666667	•••	24.66666667	24.66666667
[5.66666667 22.66666667]	5.66666667	5.66666667	•••	23.66666667	23.66666667
[5.66666667 22.66666667]]	5.66666667	5.66666667	• • • •	22.66666667	22.66666667

Matriks Gambar

karena terjadi operasi matematis yaitu nilai R + G + B dijumlah kemudian di bagi 3

[[0 0 2] Nilai
$$G = 0$$

[0 0 2] Nilai $B = 2$
[1 1 1] $(0 + 0 + 2)/3$
 $= 0.6666666666$

Matemtis setiap metode Average dilakukan secara baris per baris

Average

- 1			
(1600,	1200	3, 3)	
[[[164	175	179]	
[164	175	179]	
[164	175	179]	
[184	195	201]	
[184	194	203]	
[184	194	203]]	
[[164	175	179]	
[164	175	179]	
[164	175	179]	

Matriks Gambar

Sarmila S

karena terjadi operasi matematis yaitu nilai R + G + B dijumlah kemudian di bagi 3

Matemtis setiap metode Average dilakukan secara baris per baris


```
[[172.66666667 172.66666667 172.66666667 ... 193.3333333 193.66666667 193.66666667]
[172.666666667 172.66666667 172.66666667 ... 193.3333333 193.66666667 193.66666667]
[172.66666667 172.66666667 172.66666667 ... 193.3333333 193.66666667 193.66666667]
...
[71. 71. 69. ... 163.33333333 165.3333333 166.33333333]
[63. 67. 68. ... 160.33333333 161.3333333 162.3333333]
[53. 60. 65. ... 156.33333333 157.33333333 157.3333333]
```

Matriks Average

(1500,	844,	, 3)
[[[139	138	143]
[139	138	143]
[139	138	143]
[114	113	118]
[114	113	118]
[113	112	117]]
-		
-		
[[139	138	143]
		143] 143]
[139	138	_
[139	138	143]
[139 [139	138 138	143]
[139 [139 [114	138 138 113	143] 143]

[[139 138 143]

[139 138 143]

[139 138 143]

[114 113 118]

[114 113 118]

[113 112 117]]

[[140.	140.	140.	115.	115.
114.]	4.40	445	445
[140. 114.	140. 1	140.	115.	115.
[140.	140.	140.	115.	115.
114.]			
117.3333 90.	3333 119.33333333 1	121.33333333	89.	90.
[118.3333	3333 119.33333333	121.33333333	91.	91.
-] 3333 119.33333333	121.33333333	92.	92.
93.]]			

Argam

karena terjadi operasi matematis yaitu nilai R + G + B dijumlah

kemudian di bagi 3

Matemtis setiap metode Average dilakukan secara baris per baris

Luminosity, mengalikan setiap nilai R, G, dan B dengan konstanta tertentu yang sudah ditetapkan nilainya, kemudian hasil perkalian seluruh nilai R, G, B dijumlahkan satu sama lain. Rumus matematisnya adalah:

Grayscale =
$$(0.2126 \times R) + (0.7152 \times G) + (0.0722 \times B)$$

Grayscale =
$$(0.299 \times R) + (0.587 \times G) + (0.114 \times B)$$

Matriks Gambar

```
[[ 0 0 2]
[ 0 0 2]
[ 1 1 1]
```



```
0.228 1. ... 107.395 108.395 108.395]
0.228
      0.228 1. ... 106.395 107.395 107.395]
0.228
       0. 1. ... 106.395 106.395 105.395]
                              26.099
6.811
       6.811
             6.811 ... 26.099
                                     26.099]
6.811
      6.811
            6.811 ... 25.099
                              25.099
                                     24.099]
6.811
      6.811
             6.811 ... 24.099
                              24.099
                                     24.099]]
```

Cara 1
$$(0.299 \times 0) + (0.587 \times 0) + (0.114 \times 12) = 0.228$$

Matriks Gambar

```
[[ 0 0 2]
[ 0 0 2]
[ 1 1 1]
```


Cara 2 $(0.2126 \times 0) + (0.7152 \times 0) + (0.0722 \times 2) = 0.1444$

Matriks Gambar

[[164 175 179]

[164 175 179]

[164 175 179]

Cara 1
$$(0.299 \times 164) + (0.587 \times 175) + (0.114 \times 179) = 172.167$$

Matriks Gambar

```
[[164 175 179]
[164 175 179]
[164 175 179]
```



```
[[172.9502 172.9502 172.9502 ... 193.0946 192.5238 192.5238]
[172.9502 172.9502 172.9502 ... 193.0946 192.5238 192.5238]
[172.9502 172.9502 172.9502 ... 193.0946 192.5238 192.5238]
...
[71.4436 71.4436 69.4436 ... 163.5158 165.5158 166.5158]
[63.4436 67.4436 68.4436 ... 160.5158 161.5158 162.5158]
[53.4436 60.4436 65.4436 ... 156.5158 157.5158 157.5158]
```

Cara 2 $(0.2126 \times 164) + (0.7152 \times 175) + (0.0722 \times 179) = 172.9502$

Matriks Gambar

[139 138 143]

[139 138 143]

[139 138 143]


```
[[138.869 138.869 138.869 ... 113.869 113.869 112.869]
[138.869 138.869 138.869 ... 113.869 113.869 112.869]
```

[138.869 138.869 138.869 ... 113.869 113.869 112.869]

. . .

[116.168 118.168 120.168 ... 88.157 89.157 89.157]

[117.168 118.168 120.168 ... 90.157 90.157 90.157]

[117.168 118.168 120.168 ... 91.157 91.157 92.157]]

Cara 1
$$(0.299 \times 139) + (0.587 \times 138) + (0.114 \times 143) = 138.869$$

Matriks Gambar

[139 138 143]

[139 138 143]

[139 138 143]


```
[[138.5736 138.5736 138.5736 ... 113.5736 113.5736 112.5736]

[138.5736 138.5736 138.5736 ... 113.5736 113.5736 112.5736]

[138.5736 138.5736 138.5736 ... 113.5736 113.5736 112.5736]

...

[115.7862 117.7862 119.7862 ... 88.0762 89.0762 89.0762]

[116.7862 117.7862 119.7862 ... 90.0762 90.0762]
```

[116.7862 117.7862 119.7862 ... 91.0762 91.0762 92.0762]]

Cara 2 $(0.2126 \times 139) + (0.7152 \times 138) + (0.0722 \times 143) = 138.5736$

KESIMPULAN

Citra menurut kelompok kami paling bagus adalah metodel Average.

