PROCESS RESEARCH OF NON-CZOCHRALSKI SILICON MATERIAL

WESTINGHOUSE ELECTRIC CORPORATION ADVANCED ENERGY SYSTEMS DIVISION

R. B. Campbell

Contract Objectives

- INVESTIGATE SIMULTANEOUS DIFFUSION OF LIQUID PRECURSORS IN O DENDRITIC WEB SILTEON TO FORM SOLAR CELL STRUCTURES
- INVESTIGATE PROCESS CONTROL PARAMETERS
- PERFORM COST ANALYSIS OF THE SIMULTANEOUS JUNCTION FORMATION PROCESS

Potential Benefits of Simultaneous Diffusion

- REDUCE NUMBER OF PROCESSING STEPS
- LESS COSTLY PROCESSING (CAPITAL EQUIPMENT, MATERIALS)
- MORE RAPID PROCESSING
- MORE UNIFORM CELL PARAMETERS

Simultaneous Junction Formation by Flash Diffusion

- NOVEL TECHNIQUE DEVELOPED TO ACHIEVE SIMULTANEOUS DIFFUSION WITHOUT CROSS-DOPING
- WEB STRIPS COATED WITH LIQUID PRECURSORS (B AND P DOPED) AND HEATED WITH A TUNGSTEN - HALOGEN LIGHT SOURCE.
- NOMINAL TIMES 10-20 SEC

 NOMINAL TEMPERATURE 1050°C 11>0°C
- . N*PP* AND P*NN* CELLS FABRICATED
- NO CROSS COPTAMINATION NOTED

HeatpulseTM Annealing Chamber

HeatpulseTM Temperature-Time Profile

Flash Diffusion: N-Type WEB Front Junction (Dopant Concentration Versus Distance into Cell)

Flash Diffusion: N-Type WEB Back Junction (Dopant Concentration Versus Distance into Cell)

Simultaneous Junction Formation by Flash Diffusion

OVERALL RESULTS

SUITABLE JUNCTION DEPTHS ACHIEVED FOR N-TYPE DENDRITIC WEB

 $P^{+}N = 0.15 \text{ } \mu\text{M} \text{ TO } 0.25 \text{ } \mu\text{M}$ $N^{+}N = 0.25 \text{ } \mu\text{M} \text{ TO } 0.80 \text{ } \mu\text{M}$

- FOR P-TYPE MATERIAL FRONT N*P JUNCTION DEEFER THAN OPTIMUM TO ACHIEVE REQUIRED P*P BSF
- ANNEALING OF DIFFUSED MATERIAL REQUIRED TO ACHIEVE HIGHEST EFFICIENCY - 750-800°C FOR 10 - 30 MIN
- EFFICIENCIES GREATER THAN 15.2% OBTAINED ON N-BASE CELLS -24.5 cm² area
- P BASE CELLS GAVE MAXIMUM LFFICIENCY OF 12.5%

Flash Diffusion Verification

• 48 WEB STRIPS EA/H OF: 0.4 9CM P TYPE GROWTH RUN 6 9CM P TYPE R499

0.2 9CM N TYPE GROWTH RUN
2 9CM N TYPE 5332
STRIPS 3 CM X 13 CM

- RUN R499 130 pm NOMINAL THICKNESS
 RUN 5332 100 pm Nominal Thickness
- COAT WITH LIQUID PRECURSORS (B & P DOPED)
- DIFFUSE AT 1100°C/10 SEC IN APGON
- LESS THAN 1% OF STRIPS BROKEN DURING DIFFUSION
- ANNEAL AT TEMPERATURES 900°C TO 750°C AND TIMES 10 MIN. TO 60 MIN. (6 CONDITIONS)
- FINISH BASELINE PROCESS

Flash Diffusion Verification: Samples Diffused 1100°C/10 s Back Surface Reflector (No Passivation)

ANNEALING (TEMP_*C)	ANNEALING IIME (MIN)	CE'L EFFICIENCY (%)				
		N BASE CELLS		P BASE CELLS		
		0.2 - 0.3 9CM	2 9CM	0.4 - 0.6 QCM	6-8 <u>9CM</u>	
900e	30	13.8	14.2	11.4	12.2	
900	10	12.8		10.4	11.1	
800	60	13.5	14.6	10.8	11.4	
800	30	14.4	14.6	11.4	11.5	
800	10	14.3	14.8	11.0	11.5	
750	60	14.0	15.1	12.1	11.5	

Diffusion Length in Flash-Diffused Cells

		DIFFUSION LENGTH (µM) P/ SP/				
ANNEAL TEMP.	ANNEAL TIME(MIN)	P TYPE	CELLS 6-8 QCM	N TYPE S D. 2. SEM	ELLS_ 2 ΩCM	
~00	30		50	***	160	
900	10		25	125	185	
800	60		92		145	
800	30		/5		168	
ĕ00	10		75		130	
750	60	65			165	

Representative Data from Selected Flash-Diffused Cells

Cell ID	Base Conductivity	Resistivity (Ω-cm)	>nneal Syc' (*C/min)	Eff.	Júl (A/cm²)	^J O2 (A/cm ²)	Ln (148)
7N	N	0.32	500/30	13.4	4.18-12	2.81-4	
10%	N	0.32	900/10	13.1	1.12-12	1.8t-5	125
47N		2.0	900/30	14.2	1.26-12	2.5E-5	170
58N	N	2.0	800/60	14.9	1.16-12	2.8E·5	135
£5N	N	2.0	800/30	14,7	1.26-12	1.2E~6	168
/9N	N	2.0	750/60	15.2	8.96-13	7.1E-6	160
48P	P	9.0	900, 30	12.5	3.3E-12	4.2E ·B	50
57P	P	8.0	800/60	11.8	2.28-12	9.8E-9	92
719	ρ	8.0	800/30	12.2	3.78-12	2.76-8	70
779	P	7.0	800/10	12.2	5.1E .	6.0E-8	72

14

Flash Diffusion Results (Cell Efficiency Versus Annealing Temperature/Time)

Quantum Efficiency Plot

Simultaneous Junction Formation by Flash Diffusion: Cost Analysis

- COMPARE SIMULTANEOUS JUNCTION FORMATION (FLASH DIFFUSION) WITH SEQUENTIAL DIFFUSION
- TWO PRODUCTION LEVELS CONSIDERED
 1 MW/YR SEMI-AUTOMATED
 25 MW/YR FULLY AUTOMATED
- COSTS CALCULATED IN 1985 \$ FOR DIFFUSION PROCESS STEP
- FORMAT A'S PREPARED

Cost Analysis

ALL COSTS - 1985 \$/WATT

PROCESS STEP COST (DIFFUSION)

PRODUCTION LEVEL (MW/YR)	SIMULTANEOUS - FLASH DIFFUSION	SEQUENTIAL DIFFUSION
1	0.57	0.92
25	0.072	0.134

Simultaneous Junction Formation by Flash Diffusion: Conclusions

CONCLUSIONS:

- SIMULTANEOUS JUNCTION FORMATION BY FLASH DIFFUSION VERIFIED
- NO CROSS-CONTAMINATION NOTED
- ANNEALING REQUIRED AFTER DIFFUSION TO ACHIEVE HIGHEST CELL EFFICIENCY
- TECHNIQUE IS COMPATIBLE WITH WESTINGHOUSE BASELINE PROCESS SEQUENCE
- N-BASE CELLS WITH EFFICIENCIES OF 15 2% FABRICATED USING FLASH DIFFUSION (AREA = 24.5 cm²)
- COST ANALYSIS SHOWS SAVING OF 60 85% IN DIFFUSION PROCESS STEP