SUBESPAÇOS GERADOS:

Seja V um espaço vetorial.

Consideremos um subconjunto $A = \{ \overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3}, ..., \overrightarrow{v_n} \} \in V$, com $A \neq \emptyset$.

O conjunto S de todos os vetores de V que são combinações lineares dos vetores de A é <u>subespaço vetorial de V</u>.

O subespaço diz-se gerado pelos vetores $\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3}, ..., \overrightarrow{v_n}$; ou o subespaço é gerado pelo conjunto A (gerador de S).

Simbolicamente: S= $[\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3}, ..., \overrightarrow{v_n}]$ ou S=G(A)

Exemplos:

- 1. Verificar se o conjunto $A = \{\vec{\iota}, \vec{\jmath}\}$ gera o subespaço vetorial $S = \{(x,y)/talque\ x\ e\ y\ \in R\}$, ou seja, se S pode ser escrito como $S = [\vec{\iota}, \vec{\jmath}]$ ou S = G(A). (obs.: verifica-se que $S = R^2$). Desenvolvimento:
- 2. Seja V=R³. Determinar o subespaço gerado pelo A ={ $\overrightarrow{v_1}$ } onde $\overrightarrow{v_1}$ = (1,2,3). Desenvolvimento:
- 3. Seja V=R³. Determinar o subespaço gerado pelo A ={ $\overrightarrow{v_1}$, $\overrightarrow{v_2}$ } onde é $\overrightarrow{v_1}$ = (1,-2,-1) e $\overrightarrow{v_1}$ = (2,1,1). Desenvolvimento:

Referência: Álgebra Linear. Alfredo Steinbruch. Página 44 a 46.