Academic year 2020 2024 (Even Sem) DEPARTMENT OF

COMPUTER SCIENCE & ENGINEERING

	COM	PUII	TUD		1		J				=0		
	Date		Tu	ine 202	4 T	1		m Mark	S		50		
1	Course Code	791	C	S241A	1			ation	77. 60		90 Mi	-	
1000				Test-1		St	aff: HK	K/ASP/S	SMS/	SG	K/MI	NV	
	Sem-IV DISCRETE M	ATHE	MATIC	CAL ST	RUCT	URES.	AND C	OMBIN	ATC)K	ICS	-	
			(Comi	mon to (CSE, ISE	& AIM	(L)		Mark		BT	CO	
				2) 10		10		10	5		4	2	1
la.	Determine if the	expansio	on of (x^2)	$-\frac{2}{r}$) 18 \	will conta	in a term	n containi	ng x'.		0	-	2	
1b.	If a person place that exactly two	s 6 letters	s into 6 ac	ddressed	envelope	es, what	is the pro	bability	5	5	3		
2a.	Find the number	of non n	egative in	nteger so	lutions o	f			6		3	2	
	$x_1 + x_2 +$	$x_3 + x_4 +$	$x_5 = 40$								1208		
1	ii. $x_1 + x_2 +$	$x_3 + x_4 +$	$x_5 \le 40$										
	iii. $x_1 + x_2 +$	$x_3 + x_4 +$	$x_5 = 40 \text{ y}$	with $x_1 \ge 1$	$x_2 \ge 2$,	$x_3 \ge 3, x_4$	$\geq 4, x_5 \geq 5$		3-4			- 11 -	
	(iv) $x_1 + x_2 +$	$x_3 + x_4 +$	$x_5 = 40 \text{ v}$	with $x_1 < 1$	20				377				
26.	Simplify using t	he laws o	flogic:						4	4	3	1	4
6	$\neg [\neg \{(p \vee q) \wedge r\}$	v ¬al	n logic.							U			
3a.	Write the recurr	rence rel	ation to	solve th	e Tower	of Hand	oi proble	m. Also	6	2	4	4	
	solve that recurr									2	-	3	
3b.	Draw the circuit	diagram	to repres	ent the f	following	stateme	nt:		4	0	2) 3	
1	[p v (p ^ q) v (p	^ q ^ ¬r)) ^ [p ^	r^t) v t	1	+ Cod +l	a amour	t he will	1	5	3	4	
4a.	If a person investiget at the end of	$5 \times 25,0$	00 at at 9	9% annu	ial interes	t, ima u	ie ainoui	it he will				1	
	• interest c	250		vearly						1	1		
	• interest co	177	-	0.00						0			
- N	Write the recurre												
(46.)	Determine the tru	ith value	s of p. a.	r. s. t w	hen [p ^	(a ^ r)]-	\rightarrow (s \vee t)	is false.		4	2 2	2	1
5a.	Show the validity	of the a	rgument	:	Поптер	(1 /1				6	1	3	3
2.	$(\neg p \land \neg q) \rightarrow (r \land q)$		0							2			
	$r \rightarrow t$									2			
	¬t											1	
												1	
	: р												
ib. 1	Find the number	of ways	in which	5 peop	le A, B, C	C, D, an	d F can	be seated	i l	4		1	1
	at a round table, s												
a	it a found table, 3	Les air	t togethe	r						6	1		1200
	• C and D a										1		157
	• C and D no	ever sit 1	together										1
				-	my CO	7							
		BT	-Blooms	Тахопо	my, CO-	ourse (Jutcomes	, M-Mar	ks			3/85	
	Particulars	COI	CO2	CO3	CO4	CO5	L1	L2	L3		L4		L5
Marks	Particulars	301		10	12			-					
ribution	n Max Marks	. 12	16	10	14		4	8	27		11		-
	. 17207. 17207.			HEE				THE REAL PROPERTY.					

Academic year 2023-2024 (Even Sem) DEPARTMENT OF

COMPUTER SCIENCE & ENGINEERING

COM	DUTER SCIENCE	Maximum Marks	60				
COM	July 2024	Maximum Marks	00				
Date	July 202.	Duration	120 Min				
Course Code	CS241AT		INIV				
Sem-IV	Test-II	Staff: HKK/ASP/SMS/SGR/MNV STAFF: AND COMBINATORICS					
Sciii-1 V							

DISCRETE MATHEMATICAL STRUCTURES AND COMBINATORICS (Common to CSE, ISE & AIML)

		(Common to CSE, ISE & AIVIL)	Marks	BT	To	CO
	The same	PART-A		1	+	2
	1.1	Let A={1, 2, 3, 4}. How many relations on A which are antisymmetric? How many relations on A which are neither reflexive nor irreflexive?	2		1	1
	1.2	Let R be the relation on the set $A=\{1, 2, 3, 4, 5\}$ containing the ordered pairs $R=\{(1, 3), (2, 4), (3, 1), (3, 5), (4, 3), (5, 1), (5, 2), (5, 4)\}$. Find R^4 .	2			
	1.3	For the POSET (A,) where A={2, 4, 6, 9, 12, 18, 27, 36, 48, 60, 72} find the upper bounds, lower bounds, LUB and GLB of {2, 6, 9, 18}.		2 2		2
1	1.4	How many ways can one distribute 4 distinct objects among 3 identical containers?			1	
1	.5	If $A=\{1, 2, 3, 4, 5\}$ and there are 6720 injective functions f: $A \rightarrow B$, what is $ B $?		1 1		1
1.	6	Let $P(x, y)$ denote the sentence: x divides y. What are the truth values of $\forall x \exists y P(x, y), \ \forall x \forall y P(x, y), \ \text{where the domain of } x, y \text{ is the set } \{1, 2, 4, 6, 12\}$?		1	1	
1.7	7	Express the negation of the below statement so that all negation symbols immediately precede predicates. $\forall x\exists y (P(x,y) \to Q(x,y))$		1	1	
		PART-B			1	200
2a	1.	For the following statement state the converse, inverse, and contrapositive. A determine the truth value for the given statement, as well as the truth value for its converse, inverse, and contrapositive. "For all real numbers x, if $x^2+4x-21$ then $x>3$ or $x<-7$.	r	05		3

		05	4	
2b.	Test the validity of the following argument: Some rational numbers are powers of 7. All integers are rational numbers.			
	Some integers are power of 7.		-	+
3a.	Let $A=\{1, 2, 3, 4\}$ and $R=\{(1, 2), (2, 3), (3, 4), (2, 1)\}$. Write the matrix for R. Find the R^{∞} by computing matrices for R^2 , R^3 ,	04	2	-
3b.	Suppose A is a set, R is an equivalence relation on A, and a and b are elements of A. Prove the following. i. If aRb, then [a]=[b]. ii. [a]=[b] or [a] \(\begin{align*} (b) = \begin{align*} (b) = \begin{align*} (b) = \begin{align*} (b) = \begin{align*} (c) & (c)	06	4	
4a.	Define POSET. Show that the set A={1, 2, 3, 6, 12, 15, 24, 36, 48} under the divisibility () operation forms a POSET. Draw the Hasse diagram for (A,)	05	2	
4b.	Let U={1, 2, 3, 4, 5, 6, 7}, with A=P(U) (power set of U), and R be the subset relation on A. For B={{1}, {2}, {2, 3}}CA, determine each of the following. a) The number of upper bounds of B that contains 4 elements. b) The number of upper bounds that exists for B. c) The lub of B d) The number of lower bounds that exists for B. e) The glb of B.	05	3	
5a.	 i. Let f(x)=x³ and g(x)=x-1 for all real numbers x. Find g o f and f o g. Verify whether g o f equals f o g. ii. Let f, g: R→R, where g(x)=1-x+x² and f(x)=ax+b. If (g o f)(x)=9x²-9x+3, determine a and b. 	04		3
5b.	If f: A \rightarrow B and g: B \rightarrow C are invertible functions, then g o f: A \rightarrow C is an invertible function and (g o f) ⁻¹ =f ⁻¹ o g ⁻¹ . Prove this.	06		4
ба.	Let f: A→B, g: B→C and h: C→D. Prove the following. i. If f and g are one-to-one, then g o f is one-to-one. ii. If f and g are onto, then g o f is onto. iii. (h o g) o f=h o (g o f).	06		4
	Let $A=\{1, 2, 3, 4, 5\}$ and $B=\{6, 7, 8, 9, 10, 11, 12\}$. i. How many functions f: $A\rightarrow B$ are there? ii. How many functions are one-to-one? iii. How many functions f: $A\rightarrow B$ are such that $f^1(\{6, 7, 8\})=\{1, 2\}$?	04	1	

Marks Distribution Particulars CO1 CO2 CO3 CO4 CO5 L1 L2 L3 L4

Course Code	CS241AT	Duration	120 Min
Sem-IV	Improvement Test	Staff: HKK/ASP/SMS/SGR/N	INV

DISCRETE MATHEMATICAL STRUCTURES AND COMBINATORICS (Common to CSE, ISE & AIML)

	(Common to CSE, ISE & AIML)	e l'are				
	PART-A	Marks	ВТ	С		
1.1	Let G be the set of real numbers not containing -1 and * be the binary operation defined by $a*b=a+b+ab$. What is the inverse of any number $a \in G$.	1	1	1		
1,2'	If the binary operation * is associative, then complete the following table. * a b c d a a b c d b b a c d c c d c d d c c d c d	1	1	1		
13	Let $G = (Z_{12}, +)$ and $H = \{[0], [4], [8]\}$. What is the partition of G induced by the subgroup H.	1	3	2		
1,4	A binary symmetric channel has probability p=0.05. What is the probability of sending the code word 110101101 and making at most 2 errors in the transmission?	1	2	1		
¥.5	Let E: $Z_2^3 \rightarrow Z_2^9$ be the encoding function for (9, 3) triple repetition code and D: $Z_2^9 \rightarrow Z_2^3$ is the corresponding decoding function. Find three different received words r for which D(r) =000.	1	2	1		
1.6	Let G be the Peterson graph. Find χ(G).	1	1.	2		
1.7	What is the value of $\chi'(G)$ where G is $K_{3,2}$?	1	1	2		
1.8	If 5 colors are available, how many proper colorings are possible to color the graph K _{3,3} .					
1.9	Find the centroid of the tree shown below.	1		2		
1.10	Find the center of the graph shown below.		1	2		

	PART-B			
Za.	In a group $(G, *)$, prove that $(a * b)^{-1} = b^{-1} * a^{-1}$ for all $a, b \in G$.	05	3	2
26.	Show that (Z ₁₂ , +) is a cyclic group and find all its generators.	05	4	3
Xa.	Let G be a group and let a be any fixed element of G. Show that the function f: $G \rightarrow G$ defined by $f(x) = axa^{-1}$, for $x \in G$, is an isomorphism.	05	. 3	2
3b.	Let E: WIIC be an encoding function with the set of messages $W \subseteq Z_2^m$ and the set of code words $E(W)=C \subseteq Z_2^n$, where $m < n$. For $k \in Z^+$, we can detect transmission errors of weight $\le k$ iff the minimum distance between code words is at least $k+1$. Prove this.	05	2	3
4a.	Define the encoding function E: $Z_2^3 \rightarrow Z_2^6$ by means of the parity check matrix $\begin{array}{c} 1 \ 0 \ 1 \ 0 \ 0 \\ 1 \ 1 \ 0 \ 0 \ 1 \end{array}$ Determine all code words. ii. What is the error detection and correction capability? Decode the received words 000011, 111100.	06	2	2
4b.	i. If $x \in Z_2^{10}$, determine $ S(x, 1) $, $ S(x, 2) $, $ S(x, 3) $. ii. For $n, k \in Z^+$ with $1 \le k \le n$, if $x \in Z_2^n$, what is $ S(x, k) $?	04	3	2
5a.	Find $P(G, \lambda)$ for the graph shown below.	06		3 / 4
5b.	Give an example of a connected graph that has i. Neither an Euler circuit nor a Hamilton cycle. ii. An Euler circuit but no Hamilton cycle. No Euler circuit but has Hamilton cycle. iv. Both Euler circuit and a Hamilton cycle.		04	1
a. F	Prove that in every tree $ V = E +1$.		05	2
b. E	By applying the decomposition theorem, find the number of spanning trees for the hown below. OAATTI MSC-111	graph	05	. 3

BT-Blooms Taxonomy, CO-Course Outcomes, M-Marks

		BT-Blo	oms Tax	conomy,	CO-Co	Trse Out			L3	L4	L5	Le
Marks	Particulars	CO1	CO2	CO3	CO4	CO5	L1	L2	13	Di		1
Distribution					-	-	6	22	27	5	-	1
	Max Marks	7	26	16	11	-	0				1	1