		N									
	(5 6350 Big Data Analytiis & Maray	gement									
0	Assign-4 Sashid	4.50									
	Assign-4 Sashidhar D. Szd173730										
	Post I: Clustering! Points: (2,10), (2,5), (8,4), (5,9), (7.5), (6,4),										
	(1,2) (4,9), (6,10)	,, ,									
	(i) (E2.5) 6.3										
	14										
	(33 (33) (3)										
	10 [**										
(0.0)) (es) (es) (es) (es) (es) (o)	2 6.02									
09-80		D 1288)									
(505.5	4	(393) Ca									
Cu. f	1) (13.1) 2 2 13.02 (13.1) 13.02 (13.1) (13.1)	2744									
	(0.8 8) 2 4 56 (\$ 100 12 Lado work 6	1 1 /2									
	Plot dota to su appropriate Cleaster.	Suntano Sult									
(0)	(2) (81), (2) (1010) (2) (817, 93)										
	(ii) Beginning with (2,5), (5,8), (4,9) an initial ch	ester centeaids.									
101	0 (PN) (SI (2)5) (ZF) (S181) (V (49) 5/10/8)	-									
20.		10-									
10		10									
7.5		(2)									
	(7.5) (25) (73) (73) (73) (73) (73) (73) (74) (74)										
	(N) FO 152 558										
	(49) /20 /2 (50)										
	(1910) [29] [37										
	(35.9 85.8) (2.3)										
	=> (2,5), (6,4), (1,2)										
-	C, 7 (8, w), (5,9), (7,5), (1910)										
	() (2) (2) (4)										

(2) Using Naire Boys Calculate P(A=1, B=1, C=0) P(+|A=1,B=1,C=0) = P(A=1,B=1,C=0/+) P(+) P (A=1, B=1, (->)
= P (A=1) P (B=1) P (C=0) P(+) = (3/5)(1/5)(1/5)(1/2)/K = 3/250KP(-/A=1, B=1, Cas) = P(A=1, B=1, C=0/-) P(-) P(A=1/-) P(B=1/-) P(d-) P(-) = (215) (415) (0) (1)2)/K =0 3 Using m-estimate approads n=1/2, m=4 5/9 4/9 3/9 419 3/9 2/9

(E) Report part (3) P(A=1, B=1, C=0 () ==) which class? =) P(+|A-1, B-1, (=0) = P(+) (P(A=1/+) P(B=1/+) P(G=0/2)
P(A=1, B=1, C=0) = (49)(3/9)(1/2)/K = 0.30/A => P(-1A=1,B=1, c=) = P(+)(P(A=1-)P(B=1)-)P(C1-) (4/9) (4/9) (2/4) (1/2) /k = -219/1K B)

= -219/1K B)

= A>B) The clampication clam of nample is + B) Considering above two carry, when the conditional plob ability of one of the clave is zero, without nonothing the contribution of all other plobabilities is not taken into consideration.

So, then the contribution of other probabilities contribute to meet to the given clave then the zero then the guo perb. Volue. I see given clau then the Hence, it is fetter to consider all perbability wight to all the classes. given minimal

-)	1	c		9	1200	W ₂	1000	w	win	w	6.	We
7	1	٤+	Q+	2+	12.5	1	125	.125	125	125	in	. 152
-	Ica >	025	.55		All the same of th	-125	4		.25	.25	.083	.083
1	2	.167			2.083		-		.150		.050	-050
	3	.10	7999	1.0	249	1.249	1.02	1,000	.17	1.62	0,	
	(12.12.12.12.12.2)											
	a facilities les est alle hand so											
	2) Training Euce of adoubsort =0											
-	A CO											
	Adapost outperform a ringle decision stump Pelacu when											
	sind decision string is use the training ellor is down mostly greater their zees and also has high vorviona which is not the name using adabout											
-	and the same walls allaborate											
	The Trume wing wallout											
	(3.15) + (88.1) 1 -186. 3											
0/4		X, E	da,	10	X,E	20,9	w, w,	4	X3 E	of k,s	vy	
de												
	patent entory => - (5 (ryi log (ryi log (ryi) log (ryi) log (ryzi+ryzi)											
	(ny(+ny2i) U (ny2i+ny2i)											
		0		33	45 1	-	N.		-1 1	-	2	
1	17	1	10		=	(5	109 5	+ -	5 695)=	.434	
(JE47)	$= + \left(\frac{6}{11}\log\frac{6}{11} + \frac{5}{11}\log\frac{5}{11}\right) = .944$ $\boxed{\text{DNns consider sorting on band of } X_1}$											
	INTO consider norther on Pans of X,											
	=) entury (Sa) = - (3/wg 3/s + 2/s /wg 2/s)											
	REST - ((8883) - 1.628											
	Sb = -(3/6 log 3/6 + 3/6 log 3/6)											
	DE (10) 10)											
	- 01 ((-1(02) 1 (C))											
	$IG = .94 - ((\frac{5}{11})(97) + (\frac{6}{11})1) = .0076$											
						1			1			

IG of 3 is highest 80-) splita x 23 At geo. Node (3) =) entropy = Sa = -1 lag 1/2 = (log 1/2) 8b = -2 log 2/3 -2(1) + 3 (918) IG = 000 .99 + 0-192 band on X2 Sc = - 1 hay 1 = 1 lug 1/2 =1 Jug 1/ 20 (=x1 + 1 x0 +0 +0) 16 = .97-

Build stury band on 22 (IGnz = IGnz 22 - new farent po new to callent Ity because we can left with 2, only a) Find Pecino Trus! Is - age

For given dates

Devinion The!—

(i) only 2 atteibute mode and 3 haf nodes with look adways. C; > clan rodes 2; > atteibute rody. (ii) Calculating activisty of test sample every order model:
From model

2 = b, 2 = 170 expected value -> -1

Obtained value => Y=-1 2, = a, 2=150 expected Value >> +1

Obtained => Y = +1 Y = b , 72 = 60 expected value => +1 · Obtained -> Y=-1 X Acuracy = 2/3 = .667 =) 66-7-1-