with the last result this showing the presuce of the "PARALLEL ATIS THEOREM for the INERTIA matrix".

Let.

1) FRAME (is attached to the centre of mass of the body and is "ALMOST" body fited.

2.) The body has an angular velocity relative to the @ frame, such that

where: w = angular velocity of © FRAME

So = angular velocity of BODY relative
to the © FRAME.

3.) We'll assume to that the INERTIA of the body according to FRAME© does NOT change ... even though the body is rotative relative to FRAME ©. An example of this situation is

ok: as before we can write:

$$v = V_{00} + (w + \Omega) \times r$$

of the angular momentum relative to the P-frame is:

 $L = S = x v dm$
 $L = x v dm$
 $L = x dm$
 $L = x v dm$
 $L = x$

of
$$L = MR \times Doc + [I] \cdot (\omega + \Omega) - 2$$

as before, we have: $-N_0 = \omega \times R$

of $L = M \cdot R \times \omega \times R + CI(\omega + \Omega)$

$$= M \cdot [Y^2 + Z^2 - \chi Y - \chi Z] \cdot \omega + I(\omega + \Omega)$$

$$= M \cdot [D] \cdot \omega + [CI] \omega + [CI] \Omega$$

$$= M \cdot [D] \cdot \omega + [CI] \omega + [CI] \Omega$$

$$= M \cdot [D] + CI \cdot \omega + [CI] \Omega$$

As before we can apply the DERIVATIVE TRANSFORMATION formulae to compute the rate of change of the angular momentum vector, ie:

$$PM = \frac{Gd}{d+} \left(\frac{PL}{L} \right) = \frac{gd}{d+} \left(\frac{PL}{L} \right) + w \times \frac{PL}{L}$$

$$\frac{1}{2} M = (MCDJ + CI) \dot{w} + [CI] \dot{x} + w \times (MD + CI) w + CI \chi$$

$$\frac{1}{2} M = (MCDJ + CI) \dot{w} + w \times \xi (MCDJ + CI) \cdot w \dot{\xi}$$

$$+ CI \dot{\chi} + w \times \xi CI \cdot \chi \dot{\xi}$$

$$+ CI \dot{\chi} + w \times \xi CI \cdot \chi \dot{\xi}$$

$$+ CI \dot{\chi} + w \times \xi CI \cdot \chi \dot{\xi}$$

$$+ CI \dot{\chi} + w \times \xi CI \cdot \chi \dot{\xi}$$

$$+ CI \dot{\chi} + w \times \xi CI \cdot \chi \dot{\xi}$$

$$+ CI \dot{\chi} + w \times \xi CI \cdot \chi \dot{\xi}$$

So PARTO are just the standard EULER components. And PARTO are the new terms that arise because of the extra angular momentum of the system.

Let:
$$O$$
 I = $MCDI$ + C

$$\mathcal{E} N = I \dot{w} + w \times (I \dot{w}) + I c \mathcal{R} + w \times (I \mathcal{R})$$

Let's look at 2 special cases of equalia @:-

CASE 1:
$$I_c = \begin{bmatrix} I_x & o & o \\ o & I_y & o \\ o & o & I_z \end{bmatrix}$$
, $\Omega = \begin{pmatrix} o \\ o \\ \Omega_z \end{pmatrix}$

$$: I_c, \mathcal{R} = \begin{pmatrix} 0 \\ 0 \\ I_z, \hat{\mathcal{R}}_z \end{pmatrix}$$

Case 2: let
$$S = \begin{pmatrix} S_x \\ O \\ O \end{pmatrix}$$
 is $I_c S_t = \begin{pmatrix} I_x S_x \\ O \\ O \end{pmatrix}$

$$M - \left(\begin{array}{c} I_{x} \Omega_{x} \\ \omega_{z} I_{x} \Omega_{x} \\ - \omega_{y} I_{x} \Omega_{x} \end{array} \right) = I_{p} \dot{\omega} + \omega_{x} \left(\begin{array}{c} I_{w} \\ I_{w} \end{array} \right)$$