Numerical Methods - CSC207

Dr. Puskar Raj Pokhrel Associate Professor

Tribhuvan University, Nepal

February 2, 2025

System of linear equation

• Linear equation: $a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1$,

System of linear equation

- Linear equation: $a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1$,
- A System of linear equations:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1,$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2,$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n,$$

where a_{ik} and b_i are given (real or complex) numbers.

System of linear equation

- Linear equation: $a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1$,
- A System of linear equations:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1,$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2,$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n,$$

where a_{jk} and b_j are given (real or complex) numbers.

- This is *homogeneous* if all the b_i 's are zeros, otherwise *non-homogeneous*.
- In matrix form:

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix},$$

$$Ax = B$$
,

■ A x = B, where A =
$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}.$$

■ Here **A** is *coefficient matrix* and **x**, **B** are *column vectors* or *matrices*.

- Here **A** is *coefficient matrix* and **x**, **B** are *column vectors* or *matrices*.
- Augmented matrix: The coefficient matrix A with column vector B:

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & : & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & : & b_2 \\ \vdots & \vdots & & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} & : & b_n \end{bmatrix}$$

$$\blacksquare [A : B] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & : & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & : & b_2 \\ \vdots & \vdots & & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} & : & b_n \end{bmatrix}.$$

- A solution of this linear system is a tuple (s_1, s_2, \dots, s_n) of numbers that makes each equation a true statement when the values s_1, s_2, \dots, s_n are substituted for x_1, x_2, \dots, x_n , respectively.
- The set of all solutions is called a solution of the system.

Solution of System of linear equations

- Analytic approach
 - Gauss-Elimination method
 - (Echelon form)
 - Gauss-Jordan method
 - (Normal form)
 - LU- Factorization
- Iteration approach
 - Jacobi's iteration method
 - Gauss-Seidal method

Gauss-elimination method - complete pivoting

Ex.1: Solve x + 6y + 2z = -1, 3x + 5y + 2z = 8, 6x + 2y + 8z = 26 using Gauss elimination method with complete pivoting

Gauss-elimination method - complete pivoting

Ex.1: Solve x + 6y + 2z = -1, 3x + 5y + 2z = 8, 6x + 2y + 8z = 26 using Gauss elimination method with complete pivoting

Soln: Here, the system is

$$x + 6y + 2z = -1$$
, $3x + 5y + 2z = 8$, $6x + 2y + 8z = 26$

With complete pivoting method, the system can be written as

$$8z + 2y + 6x = 26$$

$$2z + 5y + 3x = 8,$$

$$2z + 6y + x = -1,$$

Gauss-elimination method - complete pivoting

Ex.1: Solve x + 6y + 2z = -1, 3x + 5y + 2z = 8, 6x + 2y + 8z = 26 using Gauss elimination method with complete pivoting

Soln: Here, the system is

$$x + 6y + 2z = -1$$
, $3x + 5y + 2z = 8$, $6x + 2y + 8z = 26$

With complete pivoting method, the system can be written as

$$8z + 2y + 6x = 26,$$

 $2z + 5y + 3x = 8,$
 $2z + 6y + x = -1.$

■ In matrix form:
$$\begin{bmatrix} 8 & 2 & 6 \\ 2 & 5 & 3 \\ 2 & 6 & 1 \end{bmatrix} \begin{bmatrix} z \\ y \\ x \end{bmatrix} = \begin{bmatrix} 26 \\ 8 \\ -1 \end{bmatrix},$$

$$A X = B$$

■ In Augmented matrix:
$$\begin{bmatrix} 8 & 2 & 6 & : & 26 \\ 2 & 5 & 3 & : & 8 \\ 2 & 6 & 1 & : & -1 \end{bmatrix}$$

lacksquare Operating $R_2 o R_2 - \left(rac{2}{8}
ight) R_1, \ R_3 o R_3 - \left(rac{2}{8}
ight) R_1$, we get

$$\begin{bmatrix} 8 & 2 & 6 & : & 26 \\ 0 & 4.5 & 1.5 & : & 1.5 \\ 0 & 5.5 & -0.5 & : & -7.5 \end{bmatrix}$$

■ Operating $R_2 \leftrightarrow R_3$, we get

$$\begin{bmatrix} 8 & 2 & 6 & : & 26 \\ 0 & 5.5 & -0.5 & : & -7.5 \\ 0 & 4.5 & 1.5 & : & 1.5 \end{bmatrix}.$$

■ Operating $R_2 \leftrightarrow R_3$, we get

$$\begin{bmatrix} 8 & 2 & 6 & : & 26 \\ 0 & 5.5 & -0.5 & : & -7.5 \\ 0 & 4.5 & 1.5 & : & 1.5 \end{bmatrix}.$$

• Operating $R_3 \rightarrow R_3 - \left(\frac{4.5}{5.5}\right) R_2$, we get

$$\begin{bmatrix} 8 & 2 & 6 & : & 26 \\ 0 & 5.5 & -0.5 & : & -7.5 \\ 0 & 0 & \frac{21}{11} & : & \frac{84}{11} \end{bmatrix}.$$

The system of linear equation is

$$8z + 2y + 6x = 26$$
, $5.5y - 0.5x = -7.5$, $\frac{21}{11}x = \frac{84}{11}$.

■ By back substitution: x = 4, y = -1, z = 1/2.

Consider a system of equation

$$a_1x + b_1y + c_1z = d_1$$
, $a_2x + b_2y + c_2z = d_2$, $a_3x + b_3y + c_3z = d_3$.

In matrix form:

$$\begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix}.$$

Consider a system of equation

$$a_1x + b_1y + c_1z = d_1$$
, $a_2x + b_2y + c_2z = d_2$, $a_3x + b_3y + c_3z = d_3$.

In matrix form:

$$\begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix}.$$

Augmented matrix form :

$$\begin{bmatrix} a_1 & b_1 & c_1 & : & d_1 \\ a_2 & b_2 & c_2 & : & d_2 \\ a_3 & b_3 & c_3 & : & d_3 \end{bmatrix}$$

Consider a system of equation

$$a_1x + b_1y + c_1z = d_1$$
, $a_2x + b_2y + c_2z = d_2$, $a_3x + b_3y + c_3z = d_3$.

In matrix form:

$$\begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix}.$$

Augmented matrix form :

$$\begin{bmatrix} a_1 & b_1 & c_1 & : & d_1 \\ a_2 & b_2 & c_2 & : & d_2 \\ a_3 & b_3 & c_3 & : & d_3 \end{bmatrix}$$

• Operating $R_2 \to R_2 - (\frac{a_2}{a_1})R_1, R_3 \to R_3 - (\frac{a_3}{a_1})R_1$, we get

$$\begin{bmatrix} a_1 & b_1 & c_1 & : & d_1 \\ 0 & b_2' & c_2' & : & d_2' \\ 0 & b_3' & c_3' & : & d_3' \end{bmatrix}$$

Here

$$\begin{bmatrix} a_1 & b_1 & c_1 & : & d_1 \\ 0 & b_2' & c_2' & : & d_2' \\ 0 & b_3' & c_3' & : & d_3' \end{bmatrix}$$

Here

$$\begin{bmatrix} a_1 & b_1 & c_1 & : & d_1 \\ 0 & b'_2 & c'_2 & : & d'_2 \\ 0 & b'_3 & c'_3 & : & d'_3 \end{bmatrix}$$

■ Taking $b_2' \neq 0$. Operating $R_1 \rightarrow R_1 - (\frac{b_1'}{b_2'})R_2$, $R_3 \rightarrow R_3 - (\frac{b_3'}{b_2'})R_1$, we get

$$\begin{bmatrix} a_1 & 0 & c_1' & : & d_1' \\ 0 & b_2' & c_2' & : & d_2' \\ 0 & 0 & c_3'' & : & d_3'' \end{bmatrix}$$

Here

$$\begin{bmatrix} a_1 & b_1 & c_1 & : & d_1 \\ 0 & b'_2 & c'_2 & : & d'_2 \\ 0 & b'_3 & c'_3 & : & d'_3 \end{bmatrix}$$

■ Taking $b_2' \neq 0$. Operating $R_1 \rightarrow R_1 - (\frac{b_1'}{b_2'})R_2$, $R_3 \rightarrow R_3 - (\frac{b_3'}{b_2'})R_1$, we get

$$\begin{bmatrix} a_1 & 0 & c'_1 & : & d'_1 \\ 0 & b'_2 & c'_2 & : & d'_2 \\ 0 & 0 & c''_3 & : & d''_3 \end{bmatrix}$$

■ Taking $c_3'' \neq 0$. Operating $R_1 \to R_1 - (\frac{c_1'}{c_3''})R_3$, $R_2 \to R_2 - (\frac{c_2'}{c_3''})R_3$, we get

$$\begin{bmatrix} a_1 & 0 & 0 & : & d_1'' \\ 0 & b_2' & 0 & : & d_2'' \\ 0 & 0 & c_3'' & : & d_3'' \end{bmatrix}$$

■ Therefore

$$\begin{bmatrix} a_1 & 0 & 0 & : & d_1'' \\ 0 & b_2' & 0 & : & d_2'' \\ 0 & 0 & c_3'' & : & d_3'' \end{bmatrix}.$$

Therefore

$$\begin{bmatrix} a_1 & 0 & 0 & : & d_1'' \\ 0 & b_2' & 0 & : & d_2'' \\ 0 & 0 & c_3'' & : & d_3'' \end{bmatrix}.$$

• Operating $R_1 o \left(\frac{1}{a_1}\right) R_1$, $R_2 o \left(\frac{1}{b_2'}\right) R_2$, and $R_3 o \left(\frac{1}{c_3''}\right) R_3$, we get

$$\begin{bmatrix} 1 & 0 & 0 & : & d_1''/a_1 \\ 0 & 1 & 0 & : & d_2''/b_2' \\ 0 & 0 & 1 & : & d_3''/c_3'' \end{bmatrix}$$

■ Therefore, the solution of the system is

$$x = d_1''/a_1$$
, $y = d_2''/b_2'$, $z = d_3''/c_3''$.

This method is known as Gauss-Jordan method.

Ex.1 Solve the the system of the equations x + y + z = 9, 2x - 3y + 4z = 13, 3x + 4y + 5z = 40 by using Gauss-Jordan method

Ex.1 Solve the the system of the equations x + y + z = 9, 2x - 3y + 4z = 13, 3x + 4y + 5z = 40 by using Gauss-Jordan method

Soln: Here, the system of equation is

$$x + y + z = 9$$
, $2x - 3y + 4z = 13$, $3x + 4y + 5z = 40$,

In matrix form : $\begin{bmatrix} 1 & 1 & 1 \\ 2 & -3 & 4 \\ 3 & 4 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 9 \\ 13 \\ 40 \end{bmatrix}.$

Ex.1 Solve the the system of the equations x + y + z = 9, 2x - 3y + 4z = 13, 3x + 4y + 5z = 40 by using Gauss-Jordan method

Soln: Here, the system of equation is

$$x + y + z = 9$$
, $2x - 3y + 4z = 13$, $3x + 4y + 5z = 40$,

In matrix form :
$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & -3 & 4 \\ 3 & 4 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 9 \\ 13 \\ 40 \end{bmatrix}.$$

■ Augmented matrix : $\begin{bmatrix} 1 & 1 & 1 & : & 9 \\ 2 & -3 & 4 & : & 13 \\ 3 & 4 & 5 & : & 40 \end{bmatrix} .$

Ex.1 Solve the the system of the equations x + y + z = 9, 2x - 3y + 4z = 13, 3x + 4y + 5z = 40 by using Gauss-Jordan method

Soln: Here, the system of equation is

$$x + y + z = 9$$
, $2x - 3y + 4z = 13$, $3x + 4y + 5z = 40$,

- In matrix form : $\begin{bmatrix} 1 & 1 & 1 \\ 2 & -3 & 4 \\ 3 & 4 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 9 \\ 13 \\ 40 \end{bmatrix}.$
- Augmented matrix : $\begin{vmatrix} 1 & 1 & 1 & : & 9 \\ 2 & -3 & 4 & : & 13 \\ 3 & 4 & 5 & : & 40 \end{vmatrix} .$
- Operating $R_2 o R_2 (2)R_1, R_3 o R_3 (3)R_1$, we get

$$\begin{bmatrix} 1 & 1 & 1 & : & 9 \\ 0 & -5 & 2 & : & -5 \\ 0 & 1 & 2 & : & 13 \end{bmatrix}.$$

Example Operating $R_2 \rightarrow (-1/5)R_2$, we get

$$\begin{bmatrix} 1 & 1 & 1 & : & 9 \\ 0 & \mathbf{1} & -2/5 & : & 1 \\ 0 & 1 & 2 & : & 13 \end{bmatrix}.$$

Example Operating $R_2 \rightarrow (-1/5)R_2$, we get

$$\begin{bmatrix} 1 & 1 & 1 & : & 9 \\ 0 & \mathbf{1} & -2/5 & : & 1 \\ 0 & 1 & 2 & : & 13 \end{bmatrix}.$$

• Operating $R_1 \rightarrow R_1 - R_2$, and $R_3 \rightarrow R_3 - R_2$, we get

$$\begin{bmatrix} 1 & 0 & 7/5 & : & 8 \\ 0 & 1 & -2/5 & : & 1 \\ 0 & 0 & 12/5 & : & 12 \end{bmatrix}.$$

• Operating $R_3 \rightarrow (5/12)R_3$, we get

$$\begin{bmatrix} 1 & 0 & 7/5 & : & 8 \\ 0 & 1 & -2/5 & : & 1 \\ 0 & 0 & 1 & : & 5 \end{bmatrix}.$$

Example Operating $R_2 \rightarrow (-1/5)R_2$, we get

$$\begin{bmatrix} 1 & 1 & 1 & : & 9 \\ 0 & \mathbf{1} & -2/5 & : & 1 \\ 0 & 1 & 2 & : & 13 \end{bmatrix}.$$

• Operating $R_1 \rightarrow R_1 - R_2$, and $R_3 \rightarrow R_3 - R_2$, we get

$$\begin{bmatrix} 1 & 0 & 7/5 & : & 8 \\ 0 & 1 & -2/5 & : & 1 \\ 0 & 0 & 12/5 & : & 12 \end{bmatrix}.$$

• Operating $R_3 \rightarrow (5/12)R_3$, we get

$$\begin{bmatrix} 1 & 0 & 7/5 & : & 8 \\ 0 & 1 & -2/5 & : & 1 \\ 0 & 0 & 1 & : & 5 \end{bmatrix}.$$

• Operating $R_1 \to R_1 - (7/5)R_3$, and $R_2 \to R_2 + (2/5)R_3$ we get

$$\begin{bmatrix} 1 & 0 & 0 & : & 1 \\ 0 & 1 & 0 & : & 3 \end{bmatrix}$$
. Therefore $x = 1, y = 3, z = 5$.

LU Factorization Method

- Every square matrix A can be expressed as the product of lower and upper triangular matrices if all the minors of A are non-singular,
- Consider the equation

$$a_1x + b_1y + c_1z = d_1,$$

 $a_2x + b_2y + c_2z = d_2,$
 $a_3x + b_3y + c_3z = d_3.$

In matrix form

$$\begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix},$$

$$AX = B, (1)$$

LU Factorization Method

where

$$A = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix}, \quad X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \quad B = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix}.$$

Setting

$$A = LU, (2)$$

where

$$L = \begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \quad \text{and} \quad U = \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}.$$

■ So (1) becomes

$$LUX = B, (3)$$

Setting

$$UX = Y. (4)$$

■ So (3) becomes

$$LY = B$$
,

or
$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix},$$

giving

$$y_1 = d_1,$$

 $l_{21}y_1 + y_2 = d_2,$
 $l_{31}y_1 + l_{32}y_2 + y_3 = d_3.$

Solve:
$$2x - 3y + 10z = 3$$
, $-x + 4y + 2z = 20$, $5x + 2y + z = -12$ by using

LU factorization method

Soln: Here, the system of equation can be written as

$$2x - 3y + 10z = 3,$$

 $-x + 4y + 2z = 20,$

$$5x + 2y + z = -12,$$

■ and as in matrix form $\begin{bmatrix} 2 & -3 & 10 \\ -1 & 4 & 2 \\ 5 & 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ 20 \\ -12 \end{bmatrix},$

$$AX = B, (5)$$

where

$$A = \begin{bmatrix} 2 & -3 & 10 \\ -1 & 4 & 2 \\ 5 & 2 & 1 \end{bmatrix}, \quad X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 3 \\ 20 \\ -12 \end{bmatrix},$$

Setting

$$A = LU, (6)$$

$$\begin{bmatrix} u_{11} & u_{12} & u_{13} \\ l_{21}u_{11} & l_{21}u_{12} + u_{22} & l_{21}u_{13} + u_{23} \\ l_{31}u_{11} & l_{31}u_{12} + l_{32}u_{22} & l_{31}u_{13} + l_{32}u_{23} + u_{33} \end{bmatrix} = \begin{bmatrix} 2 & -3 & 10 \\ -1 & 4 & 2 \\ 5 & 2 & 1 \end{bmatrix}.$$

Equating the corresponding elements (first columns), we get

Setting

$$A = LU, (6)$$

$$\begin{bmatrix} u_{11} & u_{12} & u_{13} \\ l_{21}u_{11} & l_{21}u_{12} + u_{22} & l_{21}u_{13} + u_{23} \\ l_{31}u_{11} & l_{31}u_{12} + l_{32}u_{22} & l_{31}u_{13} + l_{32}u_{23} + u_{33} \end{bmatrix} = \begin{bmatrix} 2 & -3 & 10 \\ -1 & 4 & 2 \\ 5 & 2 & 1 \end{bmatrix}.$$

Equating the corresponding elements (first columns), we get

$$u_{11} = 2,$$
 $l_{21}u_{11} = -1,$ $l_{31}u_{11} = 5,$
 \vdots $l_{21} = -1/2,$ $l_{31} = 5/2,$

$$\begin{bmatrix}
u_{11} & u_{12} & u_{13} \\
l_{21}u_{11} & l_{21}u_{12} + u_{22} & l_{21}u_{13} + u_{23} \\
l_{31}u_{11} & l_{31}u_{12} + l_{32}u_{22} & l_{31}u_{13} + l_{32}u_{23} + u_{33}
\end{bmatrix} = \begin{bmatrix}
2 & -3 & 10 \\
-1 & 4 & 2 \\
5 & 2 & 1
\end{bmatrix}.$$

Equating the corresponding elements(second columns), we get

$$u_{12} = -3$$
, $l_{21}u_{12} + u_{22} = 4$, $l_{31}u_{12} + l_{32}u_{22} = 2$,

$$\begin{bmatrix} u_{11} & u_{12} & u_{13} \\ l_{21}u_{11} & l_{21}u_{12} + u_{22} & l_{21}u_{13} + u_{23} \\ l_{31}u_{11} & l_{31}u_{12} + l_{32}u_{22} & l_{31}u_{13} + l_{32}u_{23} + u_{33} \end{bmatrix} = \begin{bmatrix} 2 & -3 & 10 \\ -1 & 4 & 2 \\ 5 & 2 & 1 \end{bmatrix}.$$

Equating the corresponding elements(second columns), we get

$$u_{12} = -3$$
, $l_{21}u_{12} + u_{22} = 4$, $l_{31}u_{12} + l_{32}u_{22} = 2$,
or $u_{22} = 4 - (3/2) = 5/2$, $l_{32} = (2 - (5/2)(-3))/(2/5) = 19/5$,
 \vdots $u_{22} = 5/2$, $l_{32} = 19/5$,

Equating the corresponding elements(third columns), we get

$$u_{13} = 10$$
, $l_{21}u_{13} + u_{23} = 2$, $l_{31}u_{13} + l_{32}u_{23} + u_{33} = 1$,

$$\begin{bmatrix} u_{11} & u_{12} & u_{13} \\ l_{21}u_{11} & l_{21}u_{12} + u_{22} & l_{21}u_{13} + u_{23} \\ l_{31}u_{11} & l_{31}u_{12} + l_{32}u_{22} & l_{31}u_{13} + l_{32}u_{23} + u_{33} \end{bmatrix} = \begin{bmatrix} 2 & -3 & 10 \\ -1 & 4 & 2 \\ 5 & 2 & 1 \end{bmatrix}.$$

Equating the corresponding elements(second columns), we get

$$u_{12} = -3$$
, $l_{21}u_{12} + u_{22} = 4$, $l_{31}u_{12} + l_{32}u_{22} = 2$,
or $u_{22} = 4 - (3/2) = 5/2$, $l_{32} = (2 - (5/2)(-3))/(2/5) = 19/5$,
 \vdots $u_{22} = 5/2$, $l_{32} = 19/5$,

Equating the corresponding elements(third columns), we get

$$u_{13} = 10$$
, $l_{21}u_{13} + u_{23} = 2$, $l_{31}u_{13} + l_{32}u_{23} + u_{33} = 1$,
or $u_{23} = 2 - (-1/2)(10) = 7$, $u_{33} = 1 - l_{31}u_{13} - l_{32}u_{23} = -253/5$,
 \vdots $u_{23} = 7$, $u_{33} = -253/5$.

$$\begin{bmatrix}
u_{11} & u_{12} & u_{13} \\
l_{21}u_{11} & l_{21}u_{12} + u_{22} & l_{21}u_{13} + u_{23} \\
l_{31}u_{11} & l_{31}u_{12} + l_{32}u_{22} & l_{31}u_{13} + l_{32}u_{23} + u_{33}
\end{bmatrix} = \begin{bmatrix}
2 & -3 & 10 \\
-1 & 4 & 2 \\
5 & 2 & 1
\end{bmatrix}.$$

■ Equating the corresponding elements(second columns), we get

$$u_{12} = -3$$
, $l_{21}u_{12} + u_{22} = 4$, $l_{31}u_{12} + l_{32}u_{22} = 2$,
or $u_{22} = 4 - (3/2) = 5/2$, $l_{32} = (2 - (5/2)(-3))/(2/5) = 19/5$,
 \vdots $u_{22} = 5/2$, $l_{32} = 19/5$,

Equating the corresponding elements(third columns), we get

$$u_{13} = 10$$
, $l_{21}u_{13} + u_{23} = 2$, $l_{31}u_{13} + l_{32}u_{23} + u_{33} = 1$,
or $u_{23} = 2 - (-1/2)(10) = 7$, $u_{33} = 1 - l_{31}u_{13} - l_{32}u_{23} = -253/5$,

$$u_{23} = 7,$$
 $u_{33} = -253/5.$

■ Therefore $L = \begin{bmatrix} 1 & 0 & 0 \\ -\frac{1}{2} & 1 & 0 \\ \frac{5}{2} & \frac{19}{5} & 1 \end{bmatrix}, \quad U = \begin{bmatrix} 2 & -3 & 10 \\ 0 & \frac{5}{2} & 7 \\ 0 & 0 & -\frac{253}{5} \end{bmatrix}.$

- From (5) and (6), we write LUX = B.
- Setting UX = Y. Thus LY = B becomes

$$\begin{bmatrix} 1 & 0 & 0 \\ -\frac{1}{2} & 1 & 0 \\ \frac{5}{2} & \frac{19}{5} & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 3 \\ 20 \\ -12 \end{bmatrix},$$

- **giving** $y_1 = 3$, $y_2 = 43/2$, $y_3 = -506/5$.
- So, UX = Y becomes

$$\begin{bmatrix} 2 & -3 & 10 \\ 0 & \frac{5}{2} & 7 \\ 0 & 0 & -\frac{253}{5} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ \frac{43}{2} \\ -\frac{506}{5} \end{bmatrix}.$$

- Therefore 2x 3y + 10z = 3, $\frac{5}{2}y + 7z = \frac{43}{2}$, $-\frac{253}{5}z = -\frac{506}{5}$.
- By back substitution: x = -4, y = 3 and z = 2.

Inverse by Gauss-Jordan method

■ Then, after augmenting by the identity, the following is obtained:

$$[A:I] = \begin{bmatrix} a_1 & a_2 & a_3 & : & 1 & 0 & 0 \\ b_1 & b_2 & b_3 & : & 0 & 1 & 0 \\ c_1 & c_2 & c_3 & : & 0 & 0 & 1 \end{bmatrix}.$$

Performing elementary row operations on the [A : I] matrix until it reaches reduced into canonical form(normal form):

$$[I:A^{-1}] = \begin{bmatrix} 1 & 0 & 0 & : & a'_1 & a'_2 & a'_3 \\ 0 & 1 & 0 & : & b'_1 & b'_2 & b'_3 \\ 0 & 0 & 1 & : & c'_1 & c'_2 & c'_3 \end{bmatrix}.$$

■ The matrix augmentation can now be undone, which gives the following:

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad A^{-1} = \begin{bmatrix} a_1' & a_2' & a_3' \\ b_1' & b_2' & b_3' \\ c_1' & c_2' & c_3' \end{bmatrix}.$$

Ex.: Find the inverse of matrix
$$\begin{bmatrix} 2 & 1 & 1 \\ 3 & 2 & 3 \\ 1 & 4 & 0 \end{bmatrix}$$
 by using Gauss-Jordan method

Augmented matrix is

$$\begin{bmatrix} 2 & 1 & 1 & :1 & 0 & 0 \\ 3 & 2 & 3 & :0 & 1 & 0 \\ 1 & 4 & 9 & :0 & 0 & 1 \end{bmatrix}$$

■ Operating $R_1 \leftrightarrow R_3$, to get

$$\begin{bmatrix} 1 & 4 & 9 & : 0 & 0 & 1 \\ 3 & 2 & 3 & : 0 & 1 & 0 \\ 2 & 1 & 1 & : 1 & 0 & 0 \end{bmatrix}$$

• Operating $R_2 o R_2 - {3 \over 3} R_1, R_3 o R_3 - {2 \over 2} R_1$, to get

$$\begin{bmatrix} 1 & 4 & 9 & :0 & 0 & 1 \\ 0 & -10 & -24 & :0 & 1 & -3 \\ 0 & -7 & -17 & :1 & 0 & -2 \end{bmatrix}$$

• Operating $R_2 \rightarrow (-\frac{1}{10})R_2$, to get

$$\begin{bmatrix} 1 & 4 & 9 & :0 & 0 & 1 \\ 0 & 1 & 12/5 & :0 & -1/10 & 3/10 \\ 0 & -7 & -17 & :1 & 0 & -2 \end{bmatrix}.$$

• Operating $R_3 \rightarrow R_3 + {}^{7}R_2$, $R_1 \rightarrow R_1 - {}^{4}R_2$, to get

$$\begin{bmatrix} 1 & 0 & -3/5 & :0 & 2/5 & -1/5 \\ 0 & 1 & 12/5 & :0 & -1/10 & 3/10 \\ 0 & 0 & -1/5 & :1 & -7/10 & 1/10 \end{bmatrix}.$$

■ Operating $R_3 \rightarrow -5R_3$, to get

$$\begin{bmatrix} 1 & 0 & -3/5 & : 0 & 2/5 & -1/5 \\ 0 & 1 & 12/5 & : 0 & -1/10 & 3/10 \\ 0 & 0 & 1 & : -5 & 7/2 & -1/2 \end{bmatrix}.$$

■ Operating $R_1 o R_1 + \frac{3}{5}R_3$, $R_2 o R_2 - \frac{12}{5}R_3$, to get

$$\begin{bmatrix} 1 & 0 & 0 & :-3 & 5/2 & -1/2 \\ 0 & 1 & 0 & :12 & -17/2 & 3/2 \\ 0 & 0 & 1 & :-5 & 7/2 & -1/2 \end{bmatrix}.$$

Hence, the inverse of the given matrix is

$$A^{-1} = \begin{bmatrix} -3 & 5/2 & -1/2 \\ 12 & -17/2 & 3/2 \\ -5 & 7/2 & -1/2 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} -6 & 5 & -1 \\ 24 & -17 & 3 \\ -10 & 7 & -1 \end{bmatrix}.$$

Iterations method

- Jacobi Iteration method
- Gauss-Seidal iteration method

Jacobi Iteration Method

Jacobi iteration method example

Ex.1: Solve 28x + 4y - z = 32, x + 3y + 10z = 24, 2x + 17y + 4z = 35 by using Jacobi iteration method accurate to three decimal places (error should be less than 10^{-4})

Soln: Here, the elements in coefficients matrix are diagonally dominant as

$$28x + 4y - z = 32$$
, $2x + 17y + 4z = 35$, $x + 3y + 10z = 24$,

The system of equation can be written as

$$x = \frac{1}{28}(32 - 4y + z),\tag{7}$$

$$y = \frac{1}{17}(35 - 2x - 4z),\tag{8}$$

$$z = \frac{1}{10}(24 - x - 3y). \tag{9}$$

■ Putting $x_0 = y_0 = z_0 = 0$ in (7) - (9), the first approximation is

$$x_1 = \frac{1}{28}(32 - 0 + 0) = \frac{32}{28} = 1.14285,$$

 $y_1 = \frac{1}{17}(35 - 0 - 0) = \frac{35}{17} = 2.0588,$
 $z_1 = \frac{1}{10}(24 - 0 - 0) = \frac{24}{10} = 2.4.$

X	У	Z
		- 1
1.14285	2.0588	2.4
0.9345	1.3597	1.6681
1.0082	1.5564	1.8986
0.9883	1.4935	1.8323
0.9949	1.5114	1.8531
0.9931	1.5058	1.8471
0.9937	1.5074	1.8489
0.9935	1.5069	1.8489
0.9936	1.5070	1.8486
0.9936	1.5070	1.8485
	1.0082 0.9883 0.9949 0.9931 0.9937 0.9935 0.9936	0.9345 1.3597 1.0082 1.5564 0.9883 1.4935 0.9949 1.5114 0.9931 1.5058 0.9937 1.5074 0.9935 1.5069 0.9936 1.5070

- \blacksquare the values of x, y and z in the last two iterations are almost same with very sufficient small error.
- the roots are x = 0.993, y = 1.507, z = 1.848.

Gauss-Seidal Iteration Method

Ex.1: Solve
$$10x + y - z = 11.19$$
, $x + 10y + z = 28.08$, $-x + y + 10z = 35.61$, Gauss-Seidal iteration method correct to two decimal places

Soln: Here, the system of equations can be rearranged as

$$10x + y - z = 11.19,$$

 $x + 10y + z = 28.08,$
 $-x + y + 10z = 35.61,$

the given system of equation can be written as

$$x = \frac{1}{10}(11.19 - y + z),\tag{10}$$

$$y = \frac{1}{10}(28.08 - x - z),\tag{11}$$

$$z = \frac{1}{10}(35.61 + x - y). \tag{12}$$

Example(cont...)

- Taking the initial approximations $y_0 = z_0 = 0$.
- First Iteration Substituting $y_0 = z_0 = 0$ in (10), we get

$$x_1 = \frac{1}{10}(11.19 - 0 + 0) = \frac{11.19}{10} = 1.119.$$

Substituting $x = x_1, z = z_0$ in (11), we get

$$y_1 = \frac{1}{10}(28.08 - 1.119 - 0) = \frac{26.9610}{10} = 2.6961.$$

Substituting $x = x_1, y = y_1$ in (12), we get

$$z_1 = \frac{1}{10}(35.61 + 1.119 - 2.6961) = \frac{34.0329}{10} = 3.40329.$$

Examp...

■ The other iterations are the following:

X	У	z	
1.119	2.6961	3.40329	
1.1897	2.3487	3.4451	
1.2286	2.3406	3.4498	
1.2299	2.3400	3.4499	
	1.119 1.1897 1.2286	1.119 2.6961 1.1897 2.3487 1.2286 2.3406	

- The values of x, y and z in the last two iterations are same correct to two decimal places.
- Hence, the roots are x = 1.22, y = 2.34, z = 3.45.

Ex. 2: Solve
$$-x_1 - x_2 - 2x_3 + 10x_4 = -9$$
, $10x_1 - 2x_2 - x_3 - x_4 = 3$, $-2x_1 + 10x_2 - x_3 - x_4 = 15$, $-x_1 - x_2 + 10x_3 - 2x_4 = 27$ using Gauss-Seidal iteration method

Soln: Here, the system of equations can be rearranged as

$$10x_1 - 2x_2 - x_3 - x_4 = 3, -2x_1 + 10x_2 - x_3 - x_4 = 15, -x_1 - x_2 + 10x_3 - 2x_4 = 27, -x_1 - x_2 - 2x_3 + 10x_4 = -9.$$

The equation can be written as

$$x_1 = \frac{1}{10}(3 + 2x_2 + x_3 + x_4),$$
 (13)

$$x_2 = \frac{1}{10}(15 + 2x_1 + x_3 + x_4), \tag{14}$$

$$x_3 = \frac{1}{10}(27 + x_1 + x_2 + 2x_4), \tag{15}$$

$$x_4 = \frac{1}{10}(-9 + x_1 + x_2 + 2x_3),$$
 (16)

■ Taking initial approximations $x_2 = x_3 = x_4 = 0$

$$x_1 = \frac{1}{10}(3+0+0+0) = 0.3,$$

$$x_2 = \frac{1}{10}(15+2\times0.3+0+0) = 1.56,$$

$$x_3 = \frac{1}{10}(27+0.3+1.56+0) = 2.886,$$

$$x_4 = \frac{1}{10}(-9+0.3+1.56+2\times2.886) = -0.1368,$$

Iterations	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	X4
1	0.3	1.56	2.886	-0.1368
2	0.8869	1.9523	2.9565	-0.0247
3	0.9836	1.9899	2.9924	-0.0004
4	0.9968	1.9981	2.9986	-0.0007
5	0.9994	1.9996	2.9997	-0.0001
6	0.9998	1.9999	2.9999	-0.0000
7	0.9999	1.9999	2.9999	0.0000
8	0.9999	1.9999	2.9999	0.0000

- The values of x_1, x_2, x_3 and x_4 in the last two iterations are almost same with very sufficient small error.
- Hence, the roots are $x_1 = 0.9999, x_2 = 1.9999, x_3 = 2.9999, x_4 = 0.0000.$

Eigenvalue and Eigenvector by Power Method

■ Let A be a square matrix of size $n \times n$, and let **X** be a $n \times 1$ vector. If

$$AX = \lambda X$$
,

then λ is called Eigenvalue and X is called Eigenvector of A.

Eigenvalue and Eigenvector by Power Method

■ Let A be a square matrix of size $n \times n$, and let **X** be a $n \times 1$ vector. If

$$AX = \lambda X$$
,

then λ is called Eigenvalue and X is called Eigenvector of A.

■ The Power Method is an iterative technique used to approximate the eigenvalue of a square matrix A that has the largest absolute value (also known as the dominant Eigenvalue), along with its associated Eigenvector.

Eigenvalue and Eigenvector by Power Method

Let A be a square matrix of size $n \times n$, and let **X** be a $n \times 1$ vector. If

$$AX = \lambda X$$
,

then λ is called Eigenvalue and X is called Eigenvector of A.

The Power Method is an iterative technique used to approximate the eigenvalue of a square matrix A that has the largest absolute value (also known as the dominant Eigenvalue), along with its associated Eigenvector.

Definition

(Dominant Eigenvalue and Dominant Eigenvector): Let A be a matrix of size $n \times n$ and $\lambda_1, \lambda_2, \lambda_3, \cdots, \lambda_n$ be the Eigenvalues of the matrix A satisfying $|\lambda_1| \geq |\lambda_2| \geq |\lambda_3| \geq \cdots \geq |\lambda_n|$, then λ_1 is called dominant Eigenvalue and the any Eigenvector corresponding to λ_1 is called dominant Eigenvector.

Ex.1: Find the largest eigenvalue and eigenvector of the matrix $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$

Ex.1: Find the largest eigenvalue and eigenvector of the matrix $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$

Soln: Here,
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
. Initial guess of Eigenvector $X = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

■ First Iteration:

$$AX = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} = 3 \begin{bmatrix} 0.3333 \\ 1 \end{bmatrix} = \lambda^{(1)}X^{(1)}.$$

Ex.1: Find the largest eigenvalue and eigenvector of the matrix $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$

Soln: Here,
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
. Initial guess of Eigenvector $X = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

■ First Iteration:

$$AX = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} = 3 \begin{bmatrix} 0.3333 \\ 1 \end{bmatrix} = \lambda^{(1)}X^{(1)}.$$

- Eigenvalue is $\lambda^{(1)} = 3$, Eigenvector is $X^{(1)} = \begin{bmatrix} 0.3333 \\ 1 \end{bmatrix}$
- Second Iteration:

$$AX^{(1)} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 0.3333 \\ 1 \end{bmatrix} = \begin{bmatrix} 2.3333 \\ 4.9999 \end{bmatrix} = 4.9999 \begin{bmatrix} 0.4667 \\ 1 \end{bmatrix} = \lambda^{(2)}X^{(2)}.$$

■ Eigenvalue is $\lambda^{(2)} = 4.9999$, Eigenvector is $X^{(2)} = \begin{bmatrix} 0.4667 \\ 1 \end{bmatrix}$

■ Third Iteration:

$$AX^{(2)} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 0.4667 \\ 1 \end{bmatrix} = \begin{bmatrix} 2.4667 \\ 5.4001 \end{bmatrix} = 5.4001 \begin{bmatrix} 0.4568 \\ 1 \end{bmatrix} = \lambda^{(3)}X^{(3)}.$$

■ Third Iteration:

$$AX^{(2)} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 0.4667 \\ 1 \end{bmatrix} = \begin{bmatrix} 2.4667 \\ 5.4001 \end{bmatrix} = 5.4001 \begin{bmatrix} 0.4568 \\ 1 \end{bmatrix} = \lambda^{(3)}X^{(3)}.$$

■ Eigenvalue is $\lambda^{(3)} = 5.4001$, Eigenvector is $X^{(3)} = \begin{bmatrix} 0.4568 \\ 1 \end{bmatrix}$

■ Third Iteration:

$$AX^{(2)} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 0.4667 \\ 1 \end{bmatrix} = \begin{bmatrix} 2.4667 \\ 5.4001 \end{bmatrix} = 5.4001 \begin{bmatrix} 0.4568 \\ 1 \end{bmatrix} = \lambda^{(3)}X^{(3)}.$$

- Eigenvalue is $\lambda^{(3)} = 5.4001$, Eigenvector is $X^{(3)} = \begin{bmatrix} 0.4568 \\ 1 \end{bmatrix}$
- Fourth Iteration:

■ Third Iteration:

$$AX^{(2)} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 0.4667 \\ 1 \end{bmatrix} = \begin{bmatrix} 2.4667 \\ 5.4001 \end{bmatrix} = 5.4001 \begin{bmatrix} 0.4568 \\ 1 \end{bmatrix} = \lambda^{(3)}X^{(3)}.$$

- Eigenvalue is $\lambda^{(3)} = 5.4001$, Eigenvector is $X^{(3)} = \begin{bmatrix} 0.4568 \\ 1 \end{bmatrix}$
- Fourth Iteration:

$$AX^{(3)} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 0.4568 \\ 1 \end{bmatrix} = \begin{bmatrix} 2.4568 \\ 5.3704 \end{bmatrix} = 5.3704 \begin{bmatrix} 0.4575 \\ 1 \end{bmatrix} = \lambda^{(4)}X^{(4)}.$$

■ Eigenvalue is $\lambda^{(4)} = 5.3704$, and Eigenvector is $X^{(4)} = \begin{bmatrix} 0.4575 \\ 1 \end{bmatrix}$.

$$AX^{(4)} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 0.4575 \\ 1 \end{bmatrix} = \begin{bmatrix} 2.4575 \\ 5.3725 \end{bmatrix} = 5.3725 \begin{bmatrix} 0.4574 \\ 1 \end{bmatrix} = \lambda^{(5)}X^{(5)}.$$

- Eigenvalue is $\lambda^{(5)} = 5.3725$, and Eigenvector is $X^{(5)} = \begin{bmatrix} 0.4574 \\ 1 \end{bmatrix}$
- Sixth Iteration:

$$AX^{(4)} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 0.4575 \\ 1 \end{bmatrix} = \begin{bmatrix} 2.4575 \\ 5.3725 \end{bmatrix} = 5.3725 \begin{bmatrix} 0.4574 \\ 1 \end{bmatrix} = \lambda^{(5)}X^{(5)}.$$

- Eigenvalue is $\lambda^{(5)} = 5.3725$, and Eigenvector is $X^{(5)} = \begin{bmatrix} 0.4574 \\ 1 \end{bmatrix}$
- Sixth Iteration:

$$AX^{(5)} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 0.4574 \\ 1 \end{bmatrix} = \begin{bmatrix} 2.4574 \\ 5.3722 \end{bmatrix} = 5.3722 \begin{bmatrix} 0.4574 \\ 1 \end{bmatrix} = \lambda^{(6)}X^{(6)}.$$

$$AX^{(4)} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 0.4575 \\ 1 \end{bmatrix} = \begin{bmatrix} 2.4575 \\ 5.3725 \end{bmatrix} = 5.3725 \begin{bmatrix} 0.4574 \\ 1 \end{bmatrix} = \lambda^{(5)}X^{(5)}.$$

- Eigenvalue is $\lambda^{(5)} = 5.3725$, and Eigenvector is $X^{(5)} = \begin{bmatrix} 0.4574 \\ 1 \end{bmatrix}$
- Sixth Iteration:

$$AX^{(5)} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 0.4574 \\ 1 \end{bmatrix} = \begin{bmatrix} 2.4574 \\ 5.3722 \end{bmatrix} = 5.3722 \begin{bmatrix} 0.4574 \\ 1 \end{bmatrix} = \lambda^{(6)}X^{(6)}.$$

- Eigenvalue is $\lambda^{(6)} = 5.3725$, Eigenvector is $X^{(6)} = \begin{bmatrix} 0.4574\\1 \end{bmatrix}$.
- Largest Eigenvalue, and Eigenvector in fifth and sixth iterations are almost same. Hence, $\lambda = 5.372$, and $X = \begin{bmatrix} 0.4574 \\ 1 \end{bmatrix}$.

Ex.1 Find the largest Eigenvalue and Eigenvector of $\begin{bmatrix} 15 & -4 & -3 \\ -10 & 12 & -6 \\ -20 & 4 & -2 \end{bmatrix}$ using Power method

$$\begin{bmatrix} 15 & -4 & -3 \\ -10 & 12 & -6 \\ -20 & 4 & -2 \end{bmatrix}$$

Ex.1 Find the largest Eigenvalue and Eigenvector of $\begin{bmatrix} 13 & -4 & -3 \\ -10 & 12 & -6 \\ -20 & 4 & -2 \end{bmatrix}$

$$\begin{bmatrix} 15 & -4 & -3 \\ -10 & 12 & -6 \\ -20 & 4 & -2 \end{bmatrix}$$

using Power method

Soln: Here,
$$A = \begin{bmatrix} 15 & -4 & -3 \\ -10 & 12 & -6 \\ -20 & 4 & -2 \end{bmatrix}$$
. Initial guess, $X = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}'$.

■ First Iteration:

$$AX = \begin{bmatrix} 15 & -4 & -3 \\ -10 & 12 & -6 \\ -20 & 4 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 15 \\ -10 \\ -20 \end{bmatrix} = 20 \begin{bmatrix} 0.75 \\ -0.5 \\ -1 \end{bmatrix} = \lambda^{(1)}X^{(1)}.$$

Ex.1 Find the largest Eigenvalue and Eigenvector of $\begin{bmatrix} 13 & -4 & -3 \\ -10 & 12 & -6 \\ 20 & 4 & 2 \end{bmatrix}$

$$\begin{bmatrix} 15 & -4 & -3 \\ -10 & 12 & -6 \\ -20 & 4 & -2 \end{bmatrix}$$

using Power method

Soln: Here,
$$A = \begin{bmatrix} 15 & -4 & -3 \\ -10 & 12 & -6 \\ -20 & 4 & -2 \end{bmatrix}$$
. Initial guess, $X = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}'$.

■ First Iteration:

$$AX = \begin{bmatrix} 15 & -4 & -3 \\ -10 & 12 & -6 \\ -20 & 4 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 15 \\ -10 \\ -20 \end{bmatrix} = 20 \begin{bmatrix} 0.75 \\ -0.5 \\ -1 \end{bmatrix} = \lambda^{(1)}X^{(1)}.$$

Second Iteration:

$$AX^{(1)} = \begin{bmatrix} 15 & -4 & -3 \\ -10 & 12 & -6 \\ -20 & 4 & -2 \end{bmatrix} \begin{bmatrix} 0.75 \\ -0.5 \\ -1 \end{bmatrix} = \begin{bmatrix} 16.25 \\ -7.5 \\ -15 \end{bmatrix} = 16.25 \begin{bmatrix} 1 \\ -0.4615 \\ -0.9230 \end{bmatrix} = \lambda^{(2)}X^{(2)}.$$

■ Third Iteration:

$$AX^{(2)} = \begin{bmatrix} 15 & -4 & -3 \\ -10 & 12 & -6 \\ -20 & 4 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ -0.4615 \\ -0.9231 \end{bmatrix} = \begin{bmatrix} 19.5541 \\ -9.8158 \\ -19.9386 \end{bmatrix} = 19.9386 \begin{bmatrix} 0.9807 \\ -0.4923 \\ -1 \end{bmatrix} = \lambda^{(3)}X^{(4)}$$

■ Third Iteration:

$$AX^{(2)} = \begin{bmatrix} 15 & -4 & -3 \\ -10 & 12 & -6 \\ -20 & 4 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ -0.4615 \\ -0.9231 \end{bmatrix} = \begin{bmatrix} 19.5541 \\ -9.8158 \\ -19.9386 \end{bmatrix} = 19.9386 \begin{bmatrix} 0.9807 \\ -0.4923 \\ -1 \end{bmatrix} = \lambda^{(3)}X^{(1)}$$

■ Fourth Iteration:

$$AX^{(3)} = \begin{bmatrix} 15 & -4 & -3 \\ -10 & 12 & -6 \\ -20 & 4 & -2 \end{bmatrix} \begin{bmatrix} 0.9807 \\ -0.4923 \\ -1 \end{bmatrix} = \begin{bmatrix} 19.6797 \\ -9.7146 \\ -19.5832 \end{bmatrix} = 19.6797 \begin{bmatrix} 1 \\ -0.4936 \\ -0.9951 \end{bmatrix} = \lambda^{4)}X^{(4)}$$

■ Third Iteration:

$$AX^{(2)} = \begin{bmatrix} 15 & -4 & -3 \\ -10 & 12 & -6 \\ -20 & 4 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ -0.4615 \\ -0.9231 \end{bmatrix} = \begin{bmatrix} 19.5541 \\ -9.8158 \\ -19.9386 \end{bmatrix} = 19.9386 \begin{bmatrix} 0.9807 \\ -0.4923 \\ -1 \end{bmatrix} = \lambda^{(3)}X^{(4)}$$

■ Fourth Iteration:

$$AX^{(3)} = \begin{bmatrix} 15 & -4 & -3 \\ -10 & 12 & -6 \\ -20 & 4 & -2 \end{bmatrix} \begin{bmatrix} 0.9807 \\ -0.4923 \\ -1 \end{bmatrix} = \begin{bmatrix} 19.6797 \\ -9.7146 \\ -19.5832 \end{bmatrix} = 19.6797 \begin{bmatrix} 1 \\ -0.4936 \\ -0.9951 \end{bmatrix} = \lambda^{4)}X^{(4)}$$

$$AX^{(4)} = \begin{bmatrix} 15 & -4 & -3 \\ -10 & 12 & -6 \\ -20 & 4 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ -0.4936 \\ -0.9951 \end{bmatrix} = \begin{bmatrix} 19.9597 \\ -9.9526 \\ -19.9842 \end{bmatrix} = 19.9842 \begin{bmatrix} 0.9988 \\ -0.4980 \\ -1 \end{bmatrix} = \lambda^{(5)}X$$

■ Sixth Iteration:

$$AX^{(5)} = \begin{bmatrix} 15 & -4 & -3 \\ -10 & 12 & -6 \\ -20 & 4 & -2 \end{bmatrix} \begin{bmatrix} 0.9988 \\ -0.4980 \\ -1 \end{bmatrix} = \begin{bmatrix} 19.9740 \\ -9.9640 \\ -19.968 \end{bmatrix} = 19.974 \begin{bmatrix} 1 \\ -0.4988 \\ -0.9997 \end{bmatrix} = \lambda^{(6)}X^{(6)}.$$

■ Sixth Iteration:

$$AX^{(5)} = \begin{bmatrix} 15 & -4 & -3 \\ -10 & 12 & -6 \\ -20 & 4 & -2 \end{bmatrix} \begin{bmatrix} 0.9988 \\ -0.4980 \\ -1 \end{bmatrix} = \begin{bmatrix} 19.9740 \\ -9.9640 \\ -19.968 \end{bmatrix} = 19.974 \begin{bmatrix} 1 \\ -0.4988 \\ -0.9997 \end{bmatrix} = \lambda^{(6)}X^{(6)}.$$

■ Seventh Iteration:

$$AX^{(6)} = \begin{bmatrix} 15 & -4 & -3 \\ -10 & 12 & -6 \\ -20 & 4 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ -0.4988 \\ -0.9997 \end{bmatrix} = \begin{bmatrix} 19.9943 \\ -9.9874 \\ -19.9958 \end{bmatrix} = 19.9958 \begin{bmatrix} 0.9999 \\ -0.4995 \\ -1 \end{bmatrix} = \lambda^{(7)}X^{(7)}$$

Sixth Iteration:

$$AX^{(5)} = \begin{bmatrix} 15 & -4 & -3 \\ -10 & 12 & -6 \\ -20 & 4 & -2 \end{bmatrix} \begin{bmatrix} 0.9988 \\ -0.4980 \\ -1 \end{bmatrix} = \begin{bmatrix} 19.9740 \\ -9.9640 \\ -19.968 \end{bmatrix} = 19.974 \begin{bmatrix} 1 \\ -0.4988 \\ -0.9997 \end{bmatrix} = \lambda^{(6)}X^{(6)}.$$

■ Seventh Iteration:

$$AX^{(6)} = \begin{bmatrix} 15 & -4 & -3 \\ -10 & 12 & -6 \\ -20 & 4 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ -0.4988 \\ -0.9997 \end{bmatrix} = \begin{bmatrix} 19.9943 \\ -9.9874 \\ -19.9958 \end{bmatrix} = 19.9958 \begin{bmatrix} 0.9999 \\ -0.4995 \\ -1 \end{bmatrix} = \lambda^{(7)}X^{(7)}$$

■ Eighth Iteration:

$$AX^{(7)} = \begin{bmatrix} 15 & -4 & -3 \\ -10 & 12 & -6 \\ -20 & 4 & -2 \end{bmatrix} \begin{bmatrix} 0.9999 \\ -0.4995 \\ -1 \end{bmatrix} = \begin{bmatrix} 19.9965 \\ -9.9930 \\ -19.9960 \end{bmatrix} = 19.9965 \begin{bmatrix} 1 \\ -0.4997 \\ -1 \end{bmatrix} = \lambda^{(8)}X^{(8)}$$

■ Seventh Iteration:

$$AX^{(6)} = \begin{bmatrix} 15 & -4 & -3 \\ -10 & 12 & -6 \\ -20 & 4 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ -0.4988 \\ -0.9997 \end{bmatrix} = \begin{bmatrix} 19.9943 \\ -9.9874 \\ -19.9958 \end{bmatrix} = 19.9958 \begin{bmatrix} 0.9999 \\ -0.4995 \\ -1 \end{bmatrix} = \lambda^{(7)}X^{(7)}$$

■ Seventh Iteration:

$$AX^{(6)} = \begin{bmatrix} 15 & -4 & -3 \\ -10 & 12 & -6 \\ -20 & 4 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ -0.4988 \\ -0.9997 \end{bmatrix} = \begin{bmatrix} 19.9943 \\ -9.9874 \\ -19.9958 \end{bmatrix} = 19.9958 \begin{bmatrix} 0.9999 \\ -0.4995 \\ -1 \end{bmatrix} = \lambda^{(7)}X^{(7)}$$

■ Eighth Iteration:

$$AX^{(7)} = \begin{bmatrix} 15 & -4 & -3 \\ -10 & 12 & -6 \\ -20 & 4 & -2 \end{bmatrix} \begin{bmatrix} 0.9999 \\ -0.4995 \\ -1 \end{bmatrix} = \begin{bmatrix} 19.9965 \\ -9.9930 \\ -19.9960 \end{bmatrix} = 19.9965 \begin{bmatrix} 1 \\ -0.4997 \\ -1 \end{bmatrix} = \lambda^{(8)}X^{(8)}$$

Largest Eigenvalue and Eigenvector Seventh Iteration:

$$AX^{(6)} = \begin{bmatrix} 15 & -4 & -3 \\ -10 & 12 & -6 \\ -20 & 4 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ -0.4988 \\ -0.9997 \end{bmatrix} = \begin{bmatrix} 19.9943 \\ -9.9874 \\ -19.9958 \end{bmatrix} = 19.9958 \begin{bmatrix} 0.9999 \\ -0.4995 \\ -1 \end{bmatrix} = \lambda^{(7)}X^{(7)}$$

■ Eighth Iteration:

$$AX^{(7)} = \begin{bmatrix} 15 & -4 & -3 \\ -10 & 12 & -6 \\ -20 & 4 & -2 \end{bmatrix} \begin{bmatrix} 0.9999 \\ -0.4995 \\ -1 \end{bmatrix} = \begin{bmatrix} 19.9965 \\ -9.9930 \\ -19.9960 \end{bmatrix} = 19.9965 \begin{bmatrix} 1 \\ -0.4997 \\ -1 \end{bmatrix} = \lambda^{(8)}X^{(8)}$$

■ The largest eigenvalue corresponding to the vectors of seventh and eighth iterations are almost same.

Hence, Eigenvalue,
$$\lambda = 19.99$$
, Eigenvector, $X = \begin{bmatrix} 1.000 \\ -0.499 \\ -1 \end{bmatrix}$