Autoregressive Moving Average Models (ARMA)^{[1],[2]}

The ARMA models were proposed by Whittle (1951) to capture the correlation that may be generated through lagged linear relations in time series.

ARMA models can accurately approximate stationary processes: For any stationary process with autocovariance γ such that $\lim_{h\to\infty}\gamma(h)=0,$

and any integer k>0, there is an ARMA process $\{X_t\}$ for which $\gamma_x(h) = \gamma(h), h = 0,1,...,k$.

ARMA processes are generated by using white noise as the 'forcing terms' in a set of linear difference equations with constant coefficients.

^[1] Robert Shumway, David Stoffer. Time Series Analysis and its Applications with R Examples, 4th edition, Springer, 2017 (chapter 3)

^[2] Peter Brockwell, Richard Davis. Time Series: Theory and Methods, Springer-Verlag, 1987 (chapter 3)

Def. The backshift operator B is defined by $BX_t = X_{t-1}$ and it is extended to powers $B^2X_t = B(BX_t) = X_{t-2}$ and so on. Thus, $B^KX_t = X_{t-K}$.

The inverse operator B^{-1} is the forward-shift operator $X_t = B^{-1}BX_t = B^{-1}X_{t-1}$

Autoregressive Models (AR)

They are based on the assumption that Xt can be explained as a function of p past values Xt-1,..., Xt-p.

Def. An AR(p) model is of the form $X_t = \beta_1 X_{t-1} + \beta_2 X_{t-2} + \ldots + \beta_p X_{t-p} + w_t, \text{ where }$ X_t is stationary, $w_t \sim w_t (0, T_w^2)$ and β_1, \ldots, β_p are parameters $(\beta_p \neq 0)$.

Using the backshift operator, an AR(p) has the form $\left(1-\phi,B-\phi_zB^2-\ldots-\phi_pB^p\right)\cdot X_t=w_t$ [Inot p(B) the autoregressive operator

Example The AR(1) model

$$X_t = \emptyset X_{t-1} + W_t$$
or equivalent, iterating backwards K times

$$X_t = \emptyset^K X_{t-K} + \sum_{j=0}^{K-1} \emptyset^j W_{t-j}$$

Throwided that
$$|\phi| < 1$$
 and $Van(X_t) < \infty$, we have that $\lim_{k \to \infty} E[(X_t - \sum_{j=0}^{k-1} \phi^j \cdot W_{t-j})^2] = \lim_{k \to \infty} E[(\phi^k X_{t-k})^2] = \lim_{k \to \infty} \phi^{2k} E[(X_{t-k})^2] = 0$

$$= \lim_{k \to \infty} \phi^{2k} E[(X_{t-k})^2] = 0$$

$$\left[X_{n} \xrightarrow{ms} X_{n} \text{ iff } E\left[\left(X_{n} - X \right)^{2} \right]_{n \to \infty} 0 \right]$$

So,
$$X_t = \sum_{j=0}^{\infty} \phi^j w_{t-j}$$
 — $AR(1)$ con be represented as
$$E(X_t) = \sum_{j=0}^{\infty} \phi^j E(W_{t-j}) = 0$$

$$Y(h) = cov(X_{t+h}, X_t) = E\left[\left(\sum_{j=0}^{\infty} \phi^j w_{t+h-j}\right)\left(\sum_{k=0}^{\infty} \phi^k w_{t-k}\right)\right]$$

$$= T_w^2 \sum_{j=0}^{\infty} \phi^{h+j} \cdot \phi^j = T_w^2 \phi^h \sum_{j=0}^{\infty} \phi^{2j}$$

$$= \frac{T_w^2 \cdot \phi^h}{1-\phi^2}, h \ge 0$$

So,
$$X_t = \sum_{j=0}^{\infty} \phi^{j} w_{t-j}$$
 — $AR(1)$ con be represented as a linear process
$$E(X_t) = \sum_{j=0}^{\infty} \phi^{j} E(W_{t-j}) = 0$$

$$Y(h) = Cov(X_{t+h}, X_t) = E[(\sum_{j=0}^{\infty} \phi^{j} w_{t+h-j})(\sum_{k=0}^{\infty} \phi^{k} w_{t-k})]$$

$$= T_w^2 \sum_{j=0}^{\infty} \phi^{h+j} \cdot \phi^{j} = T_w^2 \phi^{h} \sum_{j=0}^{\infty} \phi^{2j}$$

$$= \frac{T_w^2 \cdot \phi^{h}}{1 - \phi^2} , h \ge 0$$

For a stationary process,
$$V(h) = V(-h)$$
 so we only exhibit it for $h \geqslant 0$.

The ACF $S(h) = \frac{V(h)}{V(0)} = \emptyset^h$, $h \geqslant 0$
 $S(h) = \emptyset S(h-1)$, $h = 1/2$,...

Example Two AR(1) processes, one with \$ = 0.9 and the other with $\phi = -0.9$; in both ceses $\nabla w = 1$.

$$X_t = \emptyset X_{t-1} + W_t$$

autoregression AR(1) phi=0.9

autoregression AR(1) phi=-0.9

Series x

Series x

II) if
$$|\phi| > 1$$
, the process is called "explosive" because the values of the time series grow exponentially.

 $|\phi|^{3} \rightarrow \infty \implies \sum_{j=0}^{k-1} \phi^{j} W_{t-j}$ does not converge in mean square as $k \rightarrow \infty$

autoregression AR(1) 'explosion' phi=1.03

Still, we can obtain a stationary model as follows:
$$X_{t+1} = \emptyset X_t + W_{t+1}$$

$$X_t = \frac{1}{\emptyset} X_{t+1} - \frac{1}{\emptyset} W_{t+1} = \dots$$

$$= \emptyset^{-K} X_{t+K} - \sum_{j=1}^{K-1} \emptyset^{-j} W_{t+j}$$

Becourse
$$|\phi|^{-1} < 1$$
, then

$$X_t = -\sum_{j=1}^{\infty} \phi^{-j} w_{t+j}$$

$$E(X_t) = 0$$

$$Y(h) = Cov(X_{t+h}, X_t) = cov(-\sum_{j=1}^{\infty} \phi^{-j} w_{t+h+j}, -\sum_{k=1}^{\infty} \phi^{-k} w_{t+k})$$

$$= \frac{\nabla_w \phi^{-h} \cdot \phi^{-2}}{1-\rho^{-2}}$$

So, X+ is stationery.

We notice that Xt is correlated with \ws\s>t, which is unnetweel.

Def. When a process does not depend on the future, such as AR(1) when $|\phi| < 1$, we call it causal.

```
Obs. Every "explosion" has a "conse"

X_t = \emptyset \ X_{t-1} + w_t \ , \ |\emptyset| > 1 \ \text{ and } w_t \ \text{niid} \ N \left(0, \nabla w^2\right)

The consol process defined by

Y_t = \emptyset^{-1} Y_{t-1} + V_t \ , \ V_t \ \text{niid} \ N \left(0, \nabla w^2 \phi^{-2}\right)
is stochestically equivalent to X_t.
```

Example $X_t = 2X_{t-1} + w_t$ with $T_w^2 = 1$ and $Y_t = \frac{1}{2}Y_{t-1} + V_t$ with $T_v^2 = \frac{1}{4}$ are equivalent (Y_t is consol!)

Excluding explosive models from consideration is not a problem because they have consol counterports.

They essume that on the right-hand side of the defining equation, there is a linear combination of white noise.

In an equivalent form,
$$X_t = (1 + \theta_1 B + ... + \theta_2 B^2) w_t$$
 Inst
$$\theta(B) \text{ the moving average operator}$$

Obs. MA is stationery for any values of $\theta_1, ..., \theta_2$.

Example The MA(1) model

$$X_t = W_t + \Theta W_{t-1}$$

$$E(X_t) = O$$

$$Y(h) = \begin{cases} (1 + \Theta^2) & \text{The } h = 0 \\ \Theta & \text{The } h = 1 \end{cases}$$

$$O \qquad h > 1$$

$$9(h) = \begin{cases} 1 & \text{h} = 0 \\ \Theta & \text{th} = 1 \\ 0 & \text{th} = 1 \end{cases}$$

Obs.
$$|S(1)| \le \frac{1}{2} \forall \theta$$

 X_t is correlated with X_{t-1} , but not with X_{t-2} , X_{t-3} ,
(compare it to $AR(1)$)

Example Two MA(1) processes, one with $\theta = 0.9$ and the other with $\theta = -0.9$; in both cases $T_w^2 = 1$.

Non-uniqueness of MA models

Obs. For MA(1),
$$S(h)$$
 is the same for θ and $\frac{1}{\theta}$
 $V(h)$ is the same for $\left(\overline{\tau_w^2}=1; \theta=5\right)$ and $\left(\overline{\tau_w^2}=25; \theta=\frac{1}{5}\right)$.

By mimicking the criterion of consality for AR models, we choose the MA model with an infinite AR representation. Such a process is called invertible.

To find out which model is the invertible one, we reverse the roles of Xt and Wt

 $\begin{aligned} W_t &= -\Theta \, W_{t-1} + X_t \\ \text{if } |\Theta| &< 1, \text{ then } W_t &= \sum_{j=0}^{\infty} \left(-\Theta \right)^j X_{t-j}. - \text{that is the infinite} \\ \text{AR representation of the model.} \end{aligned}$

So, we will choose the MA(1) model with $\theta = \frac{1}{5}$, $T_w^2 = 25$ because it is invertible.

They are models for stationary time series

Def. A time series 4×4 , $t=0,\pm 1,\pm 2...$ is ARMA (ρ, g) if it is stationary and $X_t = \emptyset_1 \times_{t-1} + ... + \emptyset_p \times_{t-p} + w_t + \Theta_1 w_{t-1} + ... + \Theta_2 w_{t-g}$, with $\emptyset_p \neq 0$, $\Theta_g \neq 0$ and $T_w^2 > 0$, $w_t \sim wn(0, T_w^2)$. It can be written more consisely as $\emptyset(B) \times_t = \Theta(B) w_t$.

Def. The AR and MA polynomials are defined as:
$$\phi(z) = 1 - \phi_1 z - \dots - \phi_p z^p \quad , \quad \phi_p \neq 0$$

$$\theta(z) = 1 + \theta_1 z + \dots + \theta_q z^2 \quad , \quad \theta_q \neq 0$$
 where z is a complex number.

Def. An ARMA (prg) model is called causal if
$$X_t$$
 can be written as
$$X_t = \sum_{j=0}^{\infty} Y_j \cdot w_{t-j} = Y(B) w_t,$$
where $Y(B) = \sum_{j=0}^{\infty} Y_j \cdot B^j$ and $\sum_{j=0}^{\infty} |Y_j| < \infty$. We set $Y_0 = 1$.

Theorem 1 An ARMA(p,q) model is causal iff
$$\phi(z) \neq 0$$

for $|z| \leq 1$. The coefficients Y can be determined by solving $Y(z) = \sum_{j=0}^{\infty} Y_j z^j = \frac{\theta(z)}{\theta(z)}$, $|z| \leq 1$.

A stationary solution X_t to the ARMA equation $\Phi(B)X_t = \Theta(B)W_t$ exists iff Φ has no roots on the unit circle.

Causality implies stationarity.

Def An ARMA (p,g) model is colled invertible if Xz can be written as

$$TT(B)X_t = \sum_{j=0}^{\infty} T_j X_{t-j} = W_t,$$
 where
$$TT(B) = \sum_{j=0}^{\infty} T_j B^j \text{ and } \sum_{j=0}^{\infty} |T_j| < \infty. \text{ We set } T_0 = 1.$$

Theorem 2 An ARMA (p,q) model is invertible iff $\theta(z) \neq 0$ for $|z| \leq 1$. The coefficients TI can be determined by solving $TI(z) = \sum_{j=0}^{\infty} T_j \cdot z^j = \frac{\phi(z)}{\theta(z)}, |z| \leq 1$

Obs. The condition " $\phi(z) \neq 0$ for $|z| \leq 1$ " can be rephrased as "the roots of $\phi(z)$ lie outside the cent circle".

Example ARMA(1,1) model

$$X_t = 0.9 X_{t-1} + 0.5 W_{t-1} + W_t$$
 $(1 - 0.9 B) X_t = (1 + 0.5 B) W_t$
 $\phi(z) = (1 - 0.9 z)$
 $\phi(z) = (1 + 0.5 z)$

The model is consel because
$$\phi(z) = 1 - 0.9z = 0$$
 when $z = 10/9$ (outside the unit circle)

$$\Psi$$
-weights are obtained from $\phi(z)$. $\Psi(z) = \Theta(z)$
 $(1-0.5z)(1+\Psi_1z+\Psi_2z^2+...) = 1+0.5z$
 $1+(\Psi_1-0.5)z+(\Psi_2-0.5\Psi_1)z^2+... = 1+0.5z$
 $\Psi_1-0.9=0.5$
 $\Psi_1-0.5\Psi_{j-1}=0$, for $j>1$
 $\Psi_j=1.4\cdot(0.5)^{j-1}$ for $j>1$
 $Y_1=1.4\cdot(0.5)^{j-1}$ for $j>1$
 $Y_2=1.4\cdot(0.5)^{j-1}$

The model is invertible because $\Theta(z) = (+0.5z) = 0$ when z = -2 (outside the unit circle)

$$\Pi - \text{weights one obtained from } \Theta(z) \Pi(z) = \emptyset(z)$$

$$(1+0.5z) (1+\Pi_1 z + \Pi_2 z^2 + ...) = 1-0.9z$$

$$1+(\Pi_1 + 0.5) z + (\Pi_2 + 0.5\Pi_1) z^2 + ... = 1-0.9z$$

$$\Pi_1 + 0.5 = -0.9$$

$$\Pi_j + 0.5\Pi_{j-1} = 0 \text{ for } j > 1$$

$$\Pi_j = (-1.4) \cdot (-0.5)^{j-1} \quad j \ge 1$$

$$W_t = X_t - 1.4 \sum_{j=1}^{\infty} (-0.5)^{j-1} \cdot X_{t-j}$$

Particularizations of Theorem 1

2) The process
$$AR(1)$$
 is consol iff $\emptyset(2) = 1 - \emptyset_1 + 2$ has its noot outside the unit circle, i.e. $|\emptyset_1| \leq 1$.

Particularizations of Theorem 1

3) The AR(2) process $X_t - \emptyset, X_{t-1} - \emptyset_2 X_{t-2} = W_t$ is coursel iff $\phi(z) = 1 - \emptyset, z - \emptyset_2 z^2$ has its noots outside the unit circle.

if we denote the roots by z_1 and z_2 , then $|z_1| > 1$ and $|z_2| > 1$. z_1 and z_2 may be real or a complex conjugate pain.

Viète formules $z_1 + z_2 = -\frac{\phi_1}{\phi_2}$ $= \frac{\phi_1}{\phi_2}$ $= \frac{z_1^{-1} + z_2^{-1}}{\phi_2}$ $z_1 \cdot z_2 = -\frac{1}{\phi_2}$ $= \frac{z_1^{-1} + z_2^{-1}}{\phi_2}$

Particularizations of Theorem 1