MAT 186 Module D1: Linear Approximation Section LEC 0108

Adam Morgan adam.morgan@mail.utoronto.ca

October 11, 2023

Plan for Today

- Two Warm-Up Problems
- 2 Interpretive Problems, discussion in groups
- Code demo

Warm-Up Problem 1

Problem

Explain why the small angle approximation for $\sin \theta$ makes sense.

Warm-Up Problem 2

Problem

If z denotes the (positive) depth below sea level, $\rho(z)$ denotes the density of seawater at depth z, P(z) denotes the pressure of seawater at depth z, and $g\approx 10m/s^2$ denotes the acceleration due to gravity on Earth, then the **equation of hydrostatic balanace** tells us that

$$\frac{\mathrm{d}P}{\mathrm{d}z}=\rho(z)g.$$

At a depth of 2km, the density of seawater is about $1.03285kg/m^3$, and the pressure of seawater is about 197.4 atmospheres (1 atmosphere = $101325\frac{kg}{ms^2}$ of pressure).

Estimate the pressure of seawater at a depth of 2.1km.

Interpretive Problem 1

Problem

Consider the periodic function

$$f(x) = \begin{cases} \sqrt{x} & x \in [0,1) \\ \sqrt{x-1} & x \in [1,2) \\ \sqrt{x-2} & x \in [2,3) \\ \dots \end{cases}$$

defined on $[0, \infty)$. Can linear approximation be used to estimate f(x) for $x \approx 32$?

Interpretive Problem 2, Part 1

Problem

Estimate $\sqrt{16.05}$ without using a calculator. Then, compute the error between your approximate value and the value produced by a calculator.

Interpretive Problem 2, Part 2

Problem

In 60 CE, the mathematician Heron described an algorithm for approximating \sqrt{A} .

- **1** Pick an initial guess $x_0 \approx \sqrt{A}$.
- 2 Iteratively define a sequence of approximations $x_n \approx \sqrt{A}$ via

$$x_{n+1} = \frac{1}{2} \left(\frac{A}{x_n} + x_n \right).$$

The more iterations we perform, the better the approximation $x_n \approx \sqrt{A}$ becomes.

Take A = 16.05 and use an initial guess of $x_0 = 4$.

- Show that the Heron approximation x_1 is same approximation we got using linearization.
- Compute x_2 . Is the answer a better or worse approximation to $\sqrt{16.05}$ than x_1 ?

Interpretive Problem 3: Background

- In 1740, Thomas Simpson devised a numerical method for approximately finding the roots of a given differentiable function f(x), based on earlier ideas of Newton. Owing to the weirdness of history, this algorithm is called **Newton's method**.
- Like Heron's method for approximating \sqrt{A} , Newton's method is iterative:
 - pick an initial guess x_0 for the root;
 - 2 iteratively update the guess via

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$

• Under certain conditions, one can show the approximation gets better and better with each successive iteration.

Interpretive Problem 3

Problem

Derive Newton's method for solving

$$f(x) = 0$$

from scratch by following the recipe below.

- **1** Assume you have constructed x_n already, and that it is very close to the true root x_* .
- 2 Explain why we want to have have $x_{n+1} = x_*$.
- **3** Find an expression for x_{n+1} in terms of x_n if we indeed have $x_{n+1} = x_*$.

Extra Problem

Problem

- Explain why computing \sqrt{A} is equivalent to finding the roots of a particular quadratic function f(x).
- Show that Heron's method is a special case of Newton's method.

Code Demo: Using Newton's Method

To the Jupyter notebook!