Diagramas de Decisão Binária (BDDs)

Aula 2

Luiz Carlos Vieira

7 de outubro de 2015

MAC0239 - Introdução à Lógica e Verificação de Programas

Conteúdo de la contractiva del contractiva del contractiva de la c

- BDDs ordenados e reduzidos (ROBDDs)
- Algoritmos para ROBDDs
 - algoritmo reduzir
 - algoritmo aplicar
 - algoritmo restringir
 - algoritmo existe

Relembrando: múltiplas ocorrências

 A definição de BDDs não impede uma variável de ocorrer mais de uma vez em um caminho

- Mas tal representação pode incorrer em desperdícios
 - linha sólida do p à esquerda (colorida) jamais será percorrida

Esse é um resultado comum após as operações discutidas na aula anterior

Relembrando: comparação de BDDs

Além de tornar um BDD menos eficiente, ocorrências múltiplas de uma variável também dificultam a comparação de BDDs

• [p]

ullet [p,q]

ullet [p,q,p]

- $\bullet \quad [p,q,p]$
- ullet $[p \]$

 $\bullet \quad [p,q]$

- \bullet [p,q,p]
- ullet [p,q]
- [p]

- ullet [p,q,p]
- ullet [p,q]
- ullet [p,r]

- ullet [p,q,p]
- ullet [p,q]
- $\bullet \quad [p,r,q]$

- \bullet [p,q,p]
- ullet [p,q]
- ullet [p,r,q]
- ullet [p]

- \bullet [p,q,p]
- ullet [p,q]
- ullet [p,r,q]
- ullet [p,r]

- ullet [p,q,p]
- ullet [p,q]
- \bullet [p,r,q]
- $\bullet \quad [p,r,p]$

- \bullet [p,q,p]
- ullet [p,q]
- \bullet [p,r,q]
- $ullet \ [p,r,p]$

• [p

- \bullet [p,q,p]
- ullet [p,q]
- \bullet [p, r, q]
- ullet [p,r,p]

ullet [p,q]

- \bullet [p,q,p]
- ullet [p,q]
- \bullet [p,r,q]
- $\bullet \quad [p,r,p]$

- ullet [p,q]
- ullet [p]

- \bullet [p,q,p]
- ullet [p,q]
- \bullet [p,r,q]
- ullet [p,r,p]

- ullet [p,q]
- ullet [p,q]

- \bullet [p,q,p]
- ullet [p,q]
- \bullet [p,r,q]
- $\bullet \quad [p,r,p]$

- \bullet [p,q]
- ullet [p,q,r]

- \bullet [p,q,p]
- ullet [p,q]
- \bullet [p,r,q]
- ullet [p,r,p]

- \bullet [p,q]
- $\bullet \quad [p,q,r]$
- ullet $[p \]$

- [p,q,p]
- ullet [p,q]
- \bullet [p,r,q]
- ullet [p,r,p]

- ullet [p,q]
- $\bullet \quad [p,q,r]$
- ullet [p,q]

- [p,q,p]
- ullet [p,q]
- \bullet [p,r,q]
- ullet [p,r,p]

- ullet [p,q]
- $\bullet \quad [p,q,r]$
- ullet [p,q]

BDDs ordenados

Quando a ordem das variáveis em qualquer caminho é sempre a mesma, o BDD passa a ser chamado Diagrama de Busca Binária Ordenado (OBDD)

Definição: OBDDs

Definição 6.6

Seja $[p_1, p_2, ..., p_n]$ uma lista ordenada de variáveis sem duplicação e seja B um BDD tal que todas as suas variáveis aparecem em algum lugar da lista. Dizemos que B tem a ordem $[p_1, p_2, ..., p_n]$ se todos os nós de variáveis de B ocorrem na lista, e, para toda ocorrência de p_i seguido de p_j ao longo de qualquer caminho em B temos i < j.

Exemplo de BDD ordenado

Ordem: [p,q,r]

Exemplo de BDD não ordenado

Não ordenado ([p,q,r] à esquerda e [p,r,q] à direita)

OBDDs reduzidos

Quando são reduzidos, OBDDs passam a ser chamados de Diagramas de Busca Binária Ordenados Reduzidos (ROBDD)

Vantagens da ordenação de BDDs

- Aplicações das reduções C1-C3 em um OBDD garantidamente mantêm a ordem original
- O compromisso com a ordem e o processo de redução produzem uma representação única de funções booleanas
 - chamada de forma canônica
- A comparação de dois ROBDDs de ordens compatíveis é imediata
 - basta verificar se suas estruturas são idênticas

Teorema: ROBDDs são únicos

Teorema 6.7

A representação em ROBDD de uma função dada ϕ é unica. Isto é, sejam B e B' dois ROBDDs com ordens compatíveis; se B e B' representam a mesma função booleana, então eles têm estruturas idênticas.

Características de ROBDDs

- RODDBs permitem representações compactas de certas classes de funções booleanas
 - que seriam exponenciais em outros formatos/representações
- Por outro lado, não se pode realizar as operações ∧ e ∨ da forma anteriormente estudada
 - pois introduzem ocorrências múltiplas de uma mesma variável

Impacto da escolha da ordenação

Considere a escolha da ordem de variáveis para a seguinte função booleana em CNF:

$$\phi \equiv (p_1 \lor p_2) \land (p_3 \lor p_4) \land ... \land (p_{2n-1} \lor p_{2n})$$

- Se a escolha for a "ordem natural de ocorrência na fórmula" $([p_1, p_2, p_3, ..., p_{2n-1}, p_{2n}])$, o ROBDD terá 2n+2 nós
- Se a escolha for "índices impares antes de índices pares" $([p_1,p_3,p_5,...,p_{2n-1},p_2,p_4,p_6,...,p_{2n}])\text{, o ROBDD terá }2^{n+1}\text{ nós}$

Ordem "natural" para n=3

ROBDD para $\phi \equiv (p_1 \lor p_2) \land (p_3 \lor p_4) \land (p_5 \land p_6)$ com a ordem de variáveis $[p_1,p_2,p_3,p_4,p_5,p_6]$

Ordem "ímpar/par" para $\overline{n}=3$

ROBDD para $\phi \equiv (p_1 \lor p_2) \land (p_3 \lor p_4) \land (p_5 \land p_6)$ com a ordem de variáveis $[p_1, p_3, p_5, p_2, p_4, p_6]$

Escolha da ordenação

- A sensibilidade do tamanho de um ROBDD à ordem escolhida é um preço que se paga pelas vantagens obtidas
- Encontrar a ordem ótima também é um problema computacional caro
 - mas há heurísticas* que produzem ordens razoavelmente boas

* tipicamente agrupando as variáveis com interações mais fortes

 Teste de equivalência semântica. Se duas funções são representadas por OBDDs com ordens compatíveis, é possível decidir eficientemente se são equivalentes reduzindo seus OBDDs e comparando sua estrutura;

- Teste de equivalência semântica. Se duas funções são representadas por OBDDs com ordens compatíveis, é possível decidir eficientemente se são equivalentes reduzindo seus OBDDs e comparando sua estrutura;
- Ausência de variáveis redundantes. Se o valor de uma função booleana não depende de uma variável, então nenhum ROBDD que a represente contém tal variável;

- Teste de equivalência semântica. Se duas funções são representadas por OBDDs com ordens compatíveis, é possível decidir eficientemente se são equivalentes reduzindo seus OBDDs e comparando sua estrutura;
- Ausência de variáveis redundantes. Se o valor de uma função booleana não depende de uma variável, então nenhum ROBDD que a represente contém tal variável;
- Teste de validade. Se uma função booleana é válida, seu ROBDD é igual a B_1 ;

- Teste de equivalência semântica. Se duas funções são representadas por OBDDs com ordens compatíveis, é possível decidir eficientemente se são equivalentes reduzindo seus OBDDs e comparando sua estrutura;
- Ausência de variáveis redundantes. Se o valor de uma função booleana não depende de uma variável, então nenhum ROBDD que a represente contém tal variável;
- Teste de validade. Se uma função booleana é válida, seu ROBDD é igual a B_1 ;
- ullet Teste de satisfação. Se uma função booleana é satisfeita, então seu ROBDD não é igual a B_0 ;

- Teste de equivalência semântica. Se duas funções são representadas por OBDDs com ordens compatíveis, é possível decidir eficientemente se são equivalentes reduzindo seus OBDDs e comparando sua estrutura;
- Ausência de variáveis redundantes. Se o valor de uma função booleana não depende de uma variável, então nenhum ROBDD que a represente contém tal variável;
- Teste de validade. Se uma função booleana é válida, seu ROBDD é igual a B_1 ;
- Teste de satisfação. Se uma função booleana é satisfeita, então seu ROBDD não é igual a B_0 ;
- Teste de implicação. Pode-se testar se uma função ϕ implica em outra ψ calculando o ROBDD para $\phi \land \neg \psi$; a implicação é verdadeira se e somente este ROBDD é igual a B_0 .

Antes de prosseguir...

Antes de estudarmos as operações sobre ROBDDs, é necessário estudar um conceito importantíssimo: a *expansão de Shannon*

Definição: restrições

Definição 6.9

Sejam ϕ uma expressão booleana e p uma variável. Denotamos por $\phi[0/p]$ a expressão booleana obtida substituindo-se todas as ocorrências de p em ϕ por 0. A expressão $\phi[1/p]$ é definida de maneira semelhante. As expressões $\phi[0/p]$ e $\phi[1/p]$ são chamadas de restrições em ϕ com relação à variável p.

Exemplos de restrições

Para $\phi \equiv p \wedge (q \vee \neg p)$ tem-se:

- $\phi[0/p]$ é igual a $0 \land (q \lor \neg 0)$
 - que é semanticamente equivalente a ${f 0}$
- $\phi[1/p]$ é igual a $1 \wedge (q \vee \neg 1)$
 - que é semanticamente equivalente a $oldsymbol{q}$
- $\phi[0/q]$ é igual a $p \wedge (0 \vee \neg p)$
 - que é semanticamente equivalente a \perp
- $\phi[1/q]$ é igual a $p \wedge (1 \vee \neg p)$
 - que é semanticamente equivalente a $oldsymbol{p}$

Uso das restrições

- As restrições permitem executar recorrências em expressões booleanas decompondo-as em expressões mais simples
- Se p é uma variável em ϕ , então ϕ é equivalente a $\neg p \wedge \phi[0/p] \vee p \wedge \phi[1/p]$
 - facilmente verificável
 - fazendo p=0 resulta em $\phi[0/p]$
 - fazendo p=1 resulta em $\phi[1/p]$

Lema: expansão de Shannon

Lema 6.10

Para todas as expressões booleanas ϕ e todas as variáveis p (mesmo as que não ocorrem em ϕ), tem-se a chamada expansão de Shannon:

$$\phi \equiv \neg p \land \phi[0/p] \lor p \land \phi[1/p]$$

operador ITE

Definição auxiliar¹

Com base nessa equivalência, definimos o operador ITE (de *if-then-else*) como:

ITE
$$(p,\phi,\phi')=(p\wedge\phi)\vee(\neg p\wedge\phi')$$

Dessa forma, ITE é verdadeiro se a variável p e a expressão ϕ são verdadeiros, ou se a variável p é falsa e a expressão ϕ' é verdadeira.

¹não consta do livro

Uso do operador ITE

O operador ITE $(p, \phi, \phi') = (p \land \phi) \lor (\neg p \land \phi')$ permite expressar qualquer operador da gramática da Lógica Proposicional:

- $\neg p = \text{ITE}(p, \neg 1, \neg 0) = \text{ITE}(p, 0, 1)$
- $p \wedge q = \text{ITE}(p, 1 \wedge q, 0 \wedge q) = \text{ITE}(p, q, 0) = \text{ITE}(p, \text{ITE}(q, 1, 0), 0)$
- $\bullet \ p \lor q = \text{ITE}(\textcolor{red}{p},\textcolor{blue}{1} \lor q,\textcolor{red}{0} \lor q) = \text{ITE}(\textcolor{blue}{p},\textcolor{blue}{1},q) = \text{ITE}(\textcolor{blue}{p},\textcolor{blue}{1},\text{ITE}(\textcolor{red}{q},\textcolor{blue}{1},\textcolor{blue}{0}))$
- ullet p o q= ite(p,1 o q,0 o q)= ite(p,q,1)= ite(p, ite(q,1,0),1)

Forma normal condicional

Uma expressão booleana está na forma normal condicional se e somente se ela contém apenas constantes, o operador condicional ITE e variáveis sendo testadas por esse operador

Exemplos na forma e fora dela

- ullet A expressão ITE $(p, ext{ITE}(q,1,r), ext{ITE}(q,1,0))$ <u>não está</u> na forma normal condicional
 - a variável r ainda não está sendo testada condicionalmente

- ullet A expressão ITE $(p, ext{ITE}(q,1, ext{ITE}(r,1,0)), ext{ITE}(q,1,0))$ está na forma normal condicional
 - todas as variáveis estão sendo testadas condicionalmente

Conversão para a forma condicional

Toda expressão booleana pode ser convertida indutivamente para a forma normal condicional da seguinte maneira:

- ullet Se ϕ só contém variáveis de teste, ela já está na forma normal condicional
- ullet Senão, enquanto houver uma variável $p\in\phi$ que não seja teste, reescreva ϕ como ITE $(p,\phi[1/p],\phi[0/p])$

Por exemplo

Conversão de $(p \lor q) \land (q \lor r)$ para a forma normal conditional

```
= \text{ITE}(\boldsymbol{p}, (1 \lor q) \land (q \lor r), (0 \lor q) \land (q \lor r))
= \text{ITE}(\boldsymbol{p}, q \lor r, q)
= \text{ITE}(\boldsymbol{p}, \text{ITE}(\boldsymbol{q}, 1 \lor r, 0 \lor r), \text{ITE}(\boldsymbol{q}, 1, 0))
= \text{ITE}(\boldsymbol{p}, \text{ITE}(\boldsymbol{q}, 1, r), \text{ITE}(\boldsymbol{q}, 1, 0))
= \text{ITE}(\boldsymbol{p}, \text{ITE}(\boldsymbol{q}, 1, \text{ITE}(\boldsymbol{r}, 1, 0)), \text{ITE}(\boldsymbol{q}, 1, 0))
```

Forma condicional e árvore de decisão

A estrutura de recorrência da forma normal condicional:

$${\tt ITE}(p,{\tt ITE}(q,1,{\tt ITE}(r,1,0)),{\tt ITE}(q,1,0))$$

da expressão booleana $(p \lor q) \land (q \lor r)$ é a mesma da sua arvore de decisão binária

<u>llustração do argumento anterior</u>

Árvore de Decisão Binária da expressão: $(p \lor q) \land (q \lor r)$

Estrutura recorrente da forma condicional: ITE(p, ITE(q, 1, ITE(r, 1, 0)), ITE(q, 1, 0))

Estrutura de dados

A estrutura de dados para representar um ROBDD é composta de:

- ullet Uma tabela $T:n\mapsto \langle v,t,f
 angle$
 - que associa a cada identificador n um nó com variável de teste v, filho esquerdo t e filho direito f
- ullet Uma tabela inversa $T^{-1}:\langle v,t,f
 angle\mapsto n$
 - que associa nós em identificadores
 - devido ao compartilhamento de sub-grafos
 - usada para garantir que os diagramas sejam reduzidos

Ilustração dessa estrutura de dados

Tabela $T: n \mapsto \langle v, t, f \rangle$

n	T(n)
0	$\langle p_6, ext{NULL}, ext{NULL} angle$
1	$raket{\langle p_6, ext{NULL}, ext{NULL} angle}$
2	$\langle p, 3, 4 angle$
3	$\langle q,0,1 angle$
4	$\langle q, 5, 1 angle$
5	$\langle r,0,1 angle$

Tabela $T^{-1}:\langle v,t,f
angle \mapsto n$

$\langle v,t,f angle$	$T^{-1}(\langle v,t,f angle)$
$\langle p_6, ext{NULL}, ext{NULL} angle$	0
$\langle p_6, ext{NULL}, ext{NULL} angle$	1
$\langle p, 3, 4 angle$	2
$\langle q,0,1 angle$	3
$\langle q, 5, 1 angle$	4
$\langle r, 0, 1 \rangle$	5

 p_{6} : variável auxiliar usada nos nós terminais para manter a uniformidade da tabela

Observações

Nos algoritmos estudados a seguir, assume-se que:

- $ullet T(n) = T^{-1}(\langle v,t,f
 angle) =$ NULL sempre que $(n,\langle v,t,f
 angle)
 otin T$
- ullet A tabela T é uma variável global e |T| é o número de entradas existentes nessa tabela

Algoritmo de inicialização

Cria a tabela T de um ROBDD. Funciona assim:

ullet Recebe uma entrada m indicando o número máximo de variáveis existentes na expressão booleana

- ullet Inicia a tabela T com duas tuplas especiais
 - representando os nós terminais $0 \ e \ 1$
 - para garantir uniformidade, associa os nós terminais à uma variável auxiliar p_{m+1}

Pseudocódigo de INIT

```
1: procedure \operatorname{INIT}(T,m)
2: T \leftarrow \{(0,\langle m+1, \text{NULL}, \text{NULL}\rangle\}), \{(1,\langle m+1, \text{NULL}, \text{NULL}\rangle\})
```

Algoritmo de inserção de nós

Insere um nó em um ROBDD, mantendo-o reduzido e ordenado. Funciona assim:

- ullet Recebe como entrada uma variável v e os identificadores de seus filhos t e f
- ullet Se o nó v for redundante (t=f), devolve imediatamente o identificador do nó filho (t)
- ullet Caso o nó v já tenha sido criado, devolve seu identificador
- ullet Caso o nó v seja novo, cria-o e devolve o identificador

Pseudocódigo de INS

```
1: function INS(T, v, t, f)
     if t = f then
             return t
3:
        n \leftarrow T^{-1}(\langle v, t, f \rangle)
4:
     if n = \text{NULL} then
5:
             n \leftarrow |T|
6:
             T \leftarrow T \cup \{(n, \langle v, t, f \rangle)\}
7:
        return n
8:
```

Algoritmo de construção de ROBDDs

Constrói um ROBDD a partir de uma expressão em forma normal condicional. Funciona assim:

- ullet Recebe como entrada uma variável v e os identificadores de seus filhos t e f
- ullet Se o nó v for redundante (t=f), devolve imediatamente o identificador do nó filho (t)
- ullet Caso o nó v já tenha sido criado, devolve seu identificador
- ullet Caso o nó v seja novo, cria-o e devolve o identificador

Pseudocódigo de BUILD

```
1: function BUILD(ITE(v, \phi_t, \phi_f))
       if \phi_t, \phi_f \in \{0, 1\} then
           return INS(v, \phi_t, \phi_f)
3:
       if \phi_f \in \{0,1\} then
4:
           return INS(v, \text{BUILD}(\phi_t), \phi_f)
5:
       if \phi_t \in \{0,1\} then
6:
           return INS(v, \phi_t, \text{BUILD}(\phi_f))
7:
       return INS(v, BUILD(\phi_t), BUILD(\phi_t))
8:
```