DD1418 Språkteknologi med introduktion till maskininlärning 1a: Intro

Johan Boye, KTH

What this course is about

This course is about processing human languages.

■ English, Swedish, Chinese, Russian, Arabic, ...

What is "processing"?

- One-liner: "Making computers understand language"
- More precisely: Extracting useful information from natural language, and generating (correct, useful) language.

What's the point?

- A lot of human knowledge is represented as text.
- Lots of useful applications.
- Understanding language is a key aspect in the Al programme.
- We can gain insights about human language from the study of computational models.
- Language processing is one of the main drivers of machine learning (together with image recognition).
- Getting an interesting and well-paying job!

Question answering: Watson

On February 16, 2011, IBM's computer system Watson defeated the world's best human Jeopardy champions

https://vimeo.com/222234104

Language engineering applications

- Question-answering
- Speech recognition
- Machine translation
- Search engines
- Natural-language interfaces
- Text summarization
- Text classification
- Word prediction
- Spell checking
- Grammar checking
- ...

Some things we don't know about language

- How old is it? (dunno, but perhaps around 100,000 years).
- How did it arise?
- Why do children learn it so effortlessly?
- How does the brain generate and analyse it?

Some things we do know about language

- It's uniquely human.
- There are 5,000-7,000 known languages.
- The relation between words and meaning is arbitrary.
- Language is rule-bound.
- Language is productive.

'Arbitrariness of the sign'

- The relation between words and meaning is arbitrary.
 - The word *dog* doesn't look like a dog or bark like a dog...
 - ... but means 'dog' all the same.
 - Seems obvious but is an important prerequisite for the effectiveness of language.
- This observation is usually attributed to Ferdinand de Saussure (1857-1913).

Language is rule-bound and productive

Language can be broken down to smallest units (words), which are combined using the rules of the language.

These rules are a *naturally occurring phenomenon*, not something we learn in school.

Using these sub-conscious rules, we can produce and understand an infinite number of sentences, e.g.:

He went skiing with a kangaroo and a watermelon in his left shoe.

Even if words are arbitrary, language structure definitely is not!

Why is language understanding hard?

Language is underspecified

Language interpretation requires knowledge about the world.

Language is ambiguous

- "John made the pie in the fridge"
- + many more (smaller) challenges...

Processing language by computers (1)

Rule-based approaches

- The earliest work strived to uncover the subconscious rules that guide our language understanding.
- Grammars, automata, logic formulas, etc.
- Great when you don't have much data
- Predominant approach beginnings-1990's
- Rationalism

Processing language by computers (2)

Statistical / "traditional" machine-learning approaches

- Learns patterns directly from text data (from *corpora*)
- Great if you have lots of data
- Predominant approach late 1990's-2014 (about)
- Empiricism

Neural approaches

- Great if you have huge amounts of data
- End-to-end systems

Machine learning is a way of **finding patterns** and **making predictions** from empirical data.

Useful when there is no known algorithm to solve a problem, e.g. ...

decoding handwritten text,

An attempt to get more information about the Admirally house meeting will be made in the thank of Commonships oftencoon, between the second have many questions to the Trime Himitele asking for a statement. Fresident knowledglew from Lowbon Airport last night to arrive in Maxington this morning. He is to make a 30 minute mation wide locadocast and television seport on his tolks with the Krewhelson this evening.

or sentiment analysis

For some problems, it's just terribly difficult to write an algorithm that solves it.

E.g. sentiment analysis: Are these reviews positive or negative?

- Uncanny, haunting, I must have read this novel at the right time for me as it found a sure spot under my skin and disturbed my normally peaceful sleep.
- If you are reading this because it is your darling fragrance, please wear it at home exclusively, and tape the windows shut.

It's hard to write rules to decide whether or not a review is positive (the rationalist approach).

The empiricist approach would instead be to **train** a learning algorithm on **examples** of positive and negative reviews, and let it **generalize** from these examples.

- Uncanny, haunting, I must have read this novel at the right time for me as it found a sure spot under my skin and disturbed my normally peaceful sleep.
- If you are reading this because it is your darling fragrance, please wear it at home exclusively, and tape the windows shut.
- A wonderful book that I will remember for a long time.
- I hated this movie. Hated, hated, hated, hated, hated this movie. Hated it. Hated every simpering stupid vacant audience-insulting moment of it. ●
- .

The trained algorithm can then be used for classifying reviews:

We'll see in the course how this is achieved.

Recent advances in language engineering has made it possible to solve even more difficult problems (like translation). We'll see some of that in the course as well.

DD1418 Lecture 1b: Words

Johan Boye, KTH

Levels of linguistic analysis

Words Morphology, Phonology

Sentences Syntax

Meaning Semantics

Language use | Pragmatics

Some terminology

A *corpus* (pl. *corpora*) is a collection of texts, possibly annotated.

A *lexicon* or *vocabulary* is a list of all the unique words in a corpus.

The *lemma* (pl. *lemmata*) of a word is what you look up in a dictionary.

```
needed or used — ad, control over and above what is surprise (sar priz') vt. prised' prise'ing a surplus sur (see sur.1) + prendr. vt. prised' prise'ing \( \begin{array}{c} \cdot \text{prise'ing} \) \( \begin{array}{c} \text{orme unowned} \) \( \text{prise'ing} \) \( \begin{array}{c} \text{orme unowned} \) \( \text{prise'ing} \) \( \begin{array}{c} \text{surprised} \) \( \begin{array}{c} \text{surprised
```

Words and tokens

A hat and a hat make two hats

contain 8 *tokens* (sw. *löpord*), but 5 words (not counting morphological variants), or 6 words (counting morphological variants).

In language engineering, we see two variants:

full-form lexicon Save all forms of every word in the lexicon (*go, goes, gone, went, going,* etc.)

morphological analysis Store only lemmas + rules to generate all the other forms.

Word classes

Words can be divided into classes depending on their use in the language.

- Noun, verb, adjective, adverb, preposition, pronoun, conjunction, interjection, determiner, etc.
- These classes are often called parts-of-speech (or POS tags).

Lots of debate in linguistics about their nature and generality.

The idea of word classes can be traced back to Aristotle (384-322 BC) and Dionysius Thrax (about 170-90 BC).

Quiz

Determine the word classes in the following sentence:

Jag borde åka hem nu

Quiz

Determine the word classes in the following sentence:

Jag	borde	åka	hem	nu
Pronoun	Auxiliary verb	Verb	Adverb	Adverb

Open and closed classes

Closed classes, e.g.:

- determiners (a, an, the, some, ...)
- pronouns (she, her, I, you, me, ...)
- prepositions (on, to, under, from, ...)

Open classes

nouns, verbs, adjectives, adverbs

SUC (Stockholm-Umea Corpus) tag set

Code	Swedish category	Example	English translation
AB	Adverb	inte	Adverb
DT	Determinerare	denna	Determiner
HA	Frågande/relativt adverb	när	Interrogative/Relative Adverb
HD	Frågande/relativ determinerare	vilken	Interrogative/Relative Determiner
HP	Frågande/relativt pronomen	som	Interrogative/Relative Pronoun
HS	Frågande/relativt possessivt pronomen	vars	Interrogative/Relative Possessive
IE	Infinitivmärke	att	Infinitive Marker
IN	Interjektion	ja	Interjection
JJ	Adjektiv	glad	Adjective
KN	Konjunktion	och	Conjunction
NN	Substantiv	pudding	Noun
PC	Particip	utsänd	Participle
PL	Partikel	ut	Particle
PM	Egennamn	Mats	Proper Noun
PN	Pronomen	hon	Pronoun
PP	Preposition	av	Preposition
PS	Possessivt pronomen	hennes	Possessive
RG	Grundtal	tre	Cardinal number
RO	Ordningstal	tredje	Ordinal number
SN	Subjunktion	att	Subjunction
UO	Utländskt ord	the	Foreign Word
VB	Verb	kasta	Verb

Penn Treebank tag set

Tag	Description	Example	Tag	Description	Example
CC	coordin. conjunction	and, but, or	SYM	symbol	+,%, &
CD	cardinal number	one, two	TO	"to"	to
DT	determiner	a, the	UH	interjection	ah, oops
EX	existential 'there'	there	VB	verb base form	eat
FW	foreign word	mea culpa	VBD	verb past tense	ate
IN	preposition/sub-conj	of, in, by	VBG	verb gerund	eating
JJ	adjective	yellow	VBN	verb past participle	eaten
JJR	adj., comparative	bigger	VBP	verb non-3sg pres	eat
JJS	adj., superlative	wildest	VBZ	verb 3sg pres	eats
LS	list item marker	1, 2, One	WDT	wh-determiner	which, that
MD	modal	can, should	WP	wh-pronoun	what, who
NN	noun, sing. or mass	llama	WP\$	possessive wh-	whose
NNS	noun, plural	llamas	WRB	wh-adverb	how, where
NNP	proper noun, sing.	<i>IBM</i>	\$	dollar sign	\$
NNPS	proper noun, plural	Carolinas	#	pound sign	#
PDT	predeterminer	all, both	"	left quote	or "
POS	possessive ending	's	"	right quote	or "
PRP	personal pronoun	I, you, he	(left parenthesis	[, (, {, <
PRP\$	possessive pronoun	your, one's)	right parenthesis],), }, >
RB	adverb	quickly, never	,	comma	,
RBR	adverb, comparative	faster		sentence-final punc	.!?
RBS	adverb, superlative	fastest	:	mid-sentence punc	: ;
RP	particle	up, off		-	

Universal Dependencies tag set

Universal Dependencies is an initiative to create a multilingual tagset and a set of multilingual analysis tools.

Open class words	Closed class words	Other
ADJ	ADP	PUNCT
ADV	AUX	SYM
INTJ	CCONJ	X
NOUN	DET	
PROPN	NUM	
VERB	PART	
	PRON	
	SCONJ	

Part-of-Speech tagging

The *part-of-speech tagging* problem is to assign a POS tag to each word in a text.

Why is this useful?

- Speech synthesis (insult (noun) vs insult (verb))
- Syntactic analysis ("Time flies like an arrow")
- Finding content words in text ADJ NOUN "linear function" NOUN NOUN "regression coefficient" ADJ ADJ NOUN "Gaussian random variable" NOUN PREP NOUN "degrees of freedom"
- Back-off model for machine learning (when we have sparse data).

Ambiguities

Some words can belong to more than one class, e.g. like:

VERB "I like her."

NOUN "He got a <u>like</u> on Facebook."

ADJ "The portrait is very <u>like</u>."

ADV "This is, like, crazy!"

ADP "It looks like an accident"

SCONJ "He acted like he was all alone"

Ambiguities

Swedish also has this kind of words, e.g. så:

ADV "Så gick det till."

PRON "På så sätt!"

SCONJ "Han åt <u>så</u> han blev mätt."

INTJ "Så, det var intressant att höra!

VERB "Man måste <u>så</u> innan man kan skörda."

NOUN "Grisarna drack ur en så."

New words

Even with a large dictionary, you will always encounter new words.

Names

Neologisms like metrosexual, to google, etc.

New concepts (bogvisir)

Part-of-speech tagging

Retrieve all possible tags from a dictionary, then decide which ones are the most likely, e.g. :

1	like	plays	about	bolliwogs
	VERB/NOUN			
PRON	ADJ/ADV /ADP/CONJ	VERB/NOUN	ADV/ADP/ADJ	?
				
		· · · · · · · · · · · · · · · · · · ·		
PRON	VB	NOUN	PREP	NOUN

Difficulty of POS tagging

POS tagging is considered to be an "easy" problem.

State-of-the-art POS taggers have about 97% accuracy, which is as good as it gets (what human experts can agree on, the *gold standard*.

However, a straightforward method (a *baseline*) already gives about 90% accuracy.

- Tag every word with its most frequent tag.
- Tag unknown words as nouns.

The high accuracy is partly due to:

- Many words are unambigous (including *a*, *an*, *the*).
- Punctuation (".", "!", "?") is unambigous.

Difficulty of POS tagging

Some POS tagging decisions are difficult for computers:

ADP "He turned off the road"

PART "He turned off the radio"

DD1418 Lecture 1c: The structure of words

Johan Boye, KTH

The structure of words

Morphology is the study of how words are built from smaller units called morphemes (smallest meaningful unit)

Two kinds of morphemes:

stem the core unit
affixes small units signalling various grammatical
functions

Note that the stem doesn't have to be a word! Stem \neq lemma!

Affixes

```
Affixes come in four varieties:

prefix un-familiar

suffix quick-ly

infix (sv.) korru-m-pera
circumfix (ge.) ge-sag-t
```

Word formation

Words can be formed from other words by: inflection (sv. böjning) cat - cats derivation (sv. avledning) friend - friendly - friendliness compounding (sv. sammansättning) smartphone, anti-missile

Inflections: Verbs

A typical English verb has 4 or 5 forms.

- ask asks asked asking
- go goes gone went going

Swedish: about 10 forms

■ äta - äter - åt - ätit - ätande - ät - ätas - äts - åts - ätits - äten

French: >40 forms

Classic Greek: 350 forms*

Turkish: 3 million forms*

*S. Pinker (1997) The language instinct, Penguin.

Inflections: Verbs

Parler

The verb parler "to speak", in French orthography and IPA transcription

The verb parier to speak, in French orthography and IFA transcription								
		Ind	licative		Subjunctive		Conditional	Imperative
	Present	Simple past	Imperfect	Simple future	Present	Imperfect	Present	Present
Je	/barl/ barl-e	/barle/ baul-ai	/parle/	/parleral	/barl/ barl-e	/parl-asse	/barlers/	
tu	/barl/ barl-es	/barla/ barl-as	/parle/	/parl-eras	/parl/	/parl-asses	/barlers/	/barl/ barl-e
II	/barl/ barl-e	/barla/ baul-a	/parls/	/parlera/	/barl/ barl-e	/parlo/	/barlersit	
nous	/parl5/	/parlam/	parl-ions /parlj5/	parl-erons /paʁləʁɔ̃/	parl-ions /parlj5/	parl-assions /parlasj5/	/parl-erions	/parl5/
vous	/barle/ barl-ez	/parlat/	/parl-iez	/parl-erez	/parl-iez	/parl-assiez /parlasje/	/barleriez	/barle/
IIs	/parl/	/parle:r/	/parlent	/parl-eront	/parl-ent	parl-assent /paʁlas/	/parl-eraient	

Inflections: Nouns

English A typical noun has 2 forms: cat, cats

- 1 feature: *Number* with 2 values: *Singular, Plural.*
- Swedish typically 8 forms: stol, stolen, stolar, stolarna, stols, stolens, stolars, stolarnas äpple, äpplet, äpplen, äpplena, äpples, äpplets, äpplens, äpplenas
 - Number with 2 values: Singular, Plural.
 - Species with 2 values: Indefinite, Definite
 - Case with 2 values: Nominative, Genitive
 - Gender with 3 values: Utrum, Neutrum, Masculine

Finnish 2253 forms of kauppa (shop) listed at

http://www.ling.helsinki.fi/~fkarlsso/genkau2.html

Inflections: Nouns

Some forms of the Hungarian noun ablak (window):

```
its window
ablaka
ablakában in its window
ablakából from its window
ablakai its windows
ablakaik their windows
ablakaikkal with their windows
ablakainak for their windows
ablakán on its window
ablakát its window (accusativus)
ablakba into the window
ablakhoz towards the window
ablakkal with the window
ablakok windows
ablakokat windows (accusativus)
ablakokba into the windows
ablakokkal with the windows
ablakokon on the windows
ablakon on the window
ablakot
          window (accusativus)
```

Derivations

By *derivation*, new words can be formed (often from a word of another class)

- black ⇒ blackness
- affect ⇒ affection ⇒ affectionate
- compute ⇒ computation ⇒ computational
- (but not eat ⇒ eatation*)

Some Swedish examples:

- motiv ⇒ motivera ⇒ motivering
- god ⇒ godhet
- äta ⇒ ätbar

Compounds

Swedish can form long compound words, e.g. hårdvarukompatibilitetsproblem

Some variations:

- Vowel changes: hårdvar u kompatibilitetsproblem
- Vowel drop: läkarmottagning
- Extra s: hårdvarukompatibilitet s problem
- Nothing at all: tidrapport

Some compound words have been *lexicalized* (e.g. *football*).

The longest lexicalized Swedish compound word (according to *SAOL*) is *realisationsvinstbeskattning*. (28 letters)

Morphological analysis and generation

Morphological analysis Word form ⇒ lemma + features

```
cats = NOUN:cat + NUMBER:plural
stolarnas = NOUN:stol +
GENDER:utrum +
NUMBER:plural +
SPECIES:definite +
CASE:genitive
```

Morphological generation Lemma + features ⇒ word form

SUC (Stockholm-Umea Corpus) tag set

Feature	Valu e	Legend	Parts-of-speech where feature applies
Gender	UTR NEU MAS	Uter (common) Neuter Masculine	DT, HD, HP, JJ, NN, PC, PN, PS, (RG, RO)
Number	SIN PLU	Singular Plural	DT, HD, HP, JJ, NN, PC, PN, PS, (RG, RO)
Definiteness	IND	Indefinite	DT, (HD, HP, HS), JJ, NN, PC, PN, (PS, RG, RO)
Case	DEF NO M	Definite Nominative	JJ, NN, PC, PM, (RG, RO)
Tense	GEN PRS PRT SUP	Genitive Present Preterite Supinum	VB
Voice	INF AKT SFO	Infinite Active S-form (passive or deponential)	
Mood Participle form	KON PRS	Subjunctive (Sw. konjunktiv) Present	PC
Degree	PRF POS KO M	Perfect Positive Comparative	(AB), JJ
Pronoun form	SUV SUB	Superlative Subject form	PN
	OBJ SMS	Object form Compound (Sw. sammansättningsform)	All parts-of-speech

What's the point?

Spell checking (what is a correct word?)

Grammar checking (of agreement)

- The cat s were hungry. (number agreement)
- Den svart a svan en (species agreement)
- Den svarta svan en (gender agreement)
- De n svarta svan en (number agreement)

Information retrieval By splitting compound words and removing suffixes, more relevant documents can be found.

■ hårdvarukompatibilitetsproblemen ⇒ hårdvaru-kompatibilitets-problem-en

Translation, text generation

Lemmatization

Lemmatization is the process of rewriting words into their lemmata.

The boys are taller than the girls. \rightarrow The boy be tall than the girl.

Often useful in machine learning contexts where we want to reduce the number of dimensions.

Lemmatization

For English, a lemmatizer can simply be a look-up table.

```
ask ask ask asking ask asks ask
```

However, in many languages this solution is not sufficient.