Pandas Essential for Data Science

Muhammad Affan Alim

Brief introduction of Pandas

- Pandas is a newer package built on top of the NumPy, and provides an efficient implementation of a DataFram
- DataFrames are essentially multidimensional arrays with attached row and column labels
- Sometime heterogeneous types and/or missing data
- The three fundamentals of pandas data structure are "Series", "DataFrame", and "Index"

Pandas Library and version

```
[]: import pandas as pd
```

[]: print(pd.__version__)

The pandas Series object

- A pandas "Series" is a one-dimensional array of indexed data.
- It can be created from a list or array as follows:

```
[]: data = pd.Series([0.25, 0.5, 0.75, 1.0])
```

[o/p]: 0 0.25

1 0.5

2 0.75

3 1.00

dtype: float64

The pandas Series object cont...

• We can access with the "values" and "index" attributes. The values are simply a familiar NumPy array

```
[]: data.values
[o/p]: array([0.25, 0.5, 0.75, 1.0])
```

[]: data.index

[o/p]: RangeIndex(start=0, stop=4, step=1)

Feature Engineering Encoding Technique

- Dataset contains some categorical data in qualitative nature
- It is easily understandable by human but encode these into numeric values for machine learning model
- Example
- Color, place of birth, fruit etc.

Index	Country
1	Pak
2	US
3	Pak
4	UK
5	Us
6	Singapore
7	UK
1	UK

Encoding Categorical data

- these categories are unordered and when do the order then it penalize the model like pak= 1, US = 2 etc.
- can't assign any arbitrary number to any value for machine learning model

Index	Country	encoding
1	Pak	1
2	US	2
3	Pak	1
4	UK	3
5	US	2
6	Singapore	4
7	UK	3

- values can encode the additional binary features corresponding the each value respect or not
- Example

Index	Country	
1	' Pak '	
2	'USA'	
3	'UK'	
4	'UK'	
5	'France'	

Index	C_ Pak	C_USA	C_UK	C_France
1	1	0	0	0
2	0	1	0	0
3	0	0	1	0
4	0	0	1	0
5	0	0	0	1
	1			

Encoding Categorical data

- In doing so your model can leverage the information that what country is given without inference any order between the different options
- There are two main methods for encoding techniques
 - 1. One-Hot encoding: *n*-category with *n*-feature
 - 2. Dummy encoding: *n*-category with (*n*-1)-feature

- Both models create huge number of columns being created
- Example:
- One-hot encoding

dfNew1 = pd.get_dummies(dfNew,columns=['Embarked'], prefix='E')

Dummy encoding

dfNew2 = pd.get_dummies(dfNew,columns=['Embarked'], drop_first =
True, prefix = 'E')

Encoding Categorical data

- · Limit your columns
- What values to included? First creating the mask of the values which is less than n times in values.

[]: Counts = dfNew['Embarked'].value_counts()

- First create the mask
- []: mask = dfNew['Embarked'].isin(counts[counts<170].index)
- []: dfNew['Embarked'][mask] = 'other'
- []: print(pd.value_count(dfNew['Embarked']))

Feature Engineering Dealing with Numeric Variables

Numeric Variables

- If data has all numeric values, but it also allows to improve the features
- Numeric features, such as age, price, counts, geospatial data
- It shows different characteristics, few consideration and possible feature engineering can be improved it

Numeric Variables cont...

- Example
- Check either the magnitude is the most important or just direction
- Data set of the health and safety rating that contains the number of times the restaurant major violations.

Numeric Variables cont...

Consider the example

Index	Resturant_Id	Number of violation
0	RS_1	0
1	RS_2	0
2	RS_3	2
3	RS_4	1
4	RS_5	0
5	RS_6	4
6	RS_7	4
7	RS_8	1
8	RS_9	0
9	RS_10	2

Numeric Variables cont...

- First method
- Create a binary column that a restaurant committed the violation or not
- []: df['Binary_violation'] = 0
- []: df.loc[df['Number_of_violations']>0, 'Binary_violation']=1

Numeric Variables cont...

Second Method-Binning Numeric Variable

• This is often useful such as age, weight, etc.

```
[]: import numpy as pd
```

```
[]: df['Binned_Grouped'] = pd.cut(df['Number_of_violations'],
bins=[-np.inf,0,2,np.inf],
labels=[1,2,3])
```

Feature Engineering Missing Data

Dealing with Missing Values

- · First recognize why the missing values occurs?
- if it is confirmed that missing values occurs at random not being intentially be omitted.
- Most statistic and sound approach is called "complete case analysis" or "list wise deletion"
- In this method the record fully excluded from the model.

Dealing with Missing Values cont...

•

Index	Survey date	Converted salary	Hobby
1	2/28/18	NaN	Yes
2	6/28/18	7084.0	Yes
3	6/6/18	NaN	No
4	5/9/18	21426.0	Yes
5	4/12/18	41671.0	Yes

Dealing with Missing Values cont...

- · List wise deletion in python
- # Drop all rows with atleast one missing values in any column []: df.dropna(how='any')
- # Drop in specific column
- []: df.dropna(subset=['converted_salary'])

Dealing with Missing Values cont...

- Issue with list wise deletion
- Several drawbacks are exist of list wise deletion
- 1. It deletes a valid data points
- 2. Relies on randomness: If missing values not omitted randomly then it effect the model
- 3. Reduce Information: It reduces the degree of freedom of the model

Dealing with Missing Values cont...

 The most common way to deal with the missing values is "fillna()" method

Dealing with other issues

- Data issues are not limited
- Take an example of a monetarily value, suppose fetch data from excel file the some number filed may contain the \$, Rs. and other signs
- []: Df['RawSalary'] = df['RawSalary'].str.replace('\$',")
- Now convert the data type
- []: df['RawSalary'] = df['RawSalary'].astype('float')

Feature Engineering Data Distribution

Data Distribution

- Important consideration before built-in the machine learning model the distribution of the underlying data
- There are several algorithm can be used to get how the data is distributed and how different features interact each other
- Like all models beside tree-based model required the data in the same scale
- Feature engineering allows to manipulate the data

Distribution assumption

 Except tree-based model all model required the data is in normal distribution like bell shape shown in figure

Data Distribution cont...

 The property of the normal distribution is that 68.27% of data lies between one standard deviation of the mean, 95.45% lies two standard deviation of the mean, and 99.73% lies three standard deviation of the mean

Observing your data by python

[]: import matplotlib as plt

[]: df.hist()

[]: plt.show()

Delivering deeper with box plot

Any point outside the box is outlier

Delivering deeper with box plot cont...

- []: df[['column_1']].boxplot()
- []: plt.show()

Pairing Distribution

[]: import seaborn as sns

[]: sns.pairplort(df)

The above python code shows the correlation or association to each other

[]: df.describle()

Feature Engineering Scaling and Transformation

Scaling

- Most machine learning model required the data on same scale
- It is difficult to campus the salary value often in thousand with ages
- Similar scale is measuring need to rescale and bring all data on same scale

Scaling cont...

- Most machine learning model Scaling data required the data on same scale
- It is difficult to campus the salary value often in thousand with ages
- Similar scale is measuring nee to rescale and bring all data or same scale

Scaling...

- There are different types of scaling technique, two of them are
 - 1. Min-max scaling
 - 2. Standardization

Min-max scaling

- · It is also called linear scaling
- The python code is

Min-max scaling cont...

- []: from sklearn.preprocessing import MinMaxScaler
- []: Scaler = MinMaxScaler()
- []: Scaler.fit(df[['age']])
- []: df['normalized_age']= scaler.transform(df[['age]])

Standardization

- Standardization finds the mean of the data and center of the distribution around it
- Finding the standard deviation from mean this has no max and min values

Standardization cont...

[]: from sklearn.preprocessing import standardScaler

[]: scaler = StandardScaler()

[]: scaler.fit(Df[['age']])

[]: df['standardScaler_col'] = scaler.transform(df[['age']])

Removing Outliers

After transformation data is very skewed because outliers which exist in data

What are the Outliers

 Outliers which is far away from majority of the data What are outliers?

Removing Outliers

How to delete it

- There are several methods to remove the outliers some of them are
- 1. Quantile based approach
- 2. Standard deviation based deletion

Outlier- Quantile based approach for removing

- We can remove top 5% of data
- But if there is no outlier the removing the actual data may remove
- []: q_cutoff = df['col_name'].quantile(0.95)
- []: mask = df['col_name'] < q_cutoff
- []: trimmed_off = df[mask]

Outlier- Quantile based approach for removing

d Quantile based detection

Outlier- Standard deviation based deletion

- This method support to remove only genuine outlier values
- []: mean = df['co_name'].mean()
- []: std = df['col_name'].std()
- []: cut_off = std*3
- []: lower,upper = mean cut off, mean + cutoff
- []: new_df = df[(df['col_name'] < upper & (df['col_name'] > lower)]

Outlier- Standard deviation based deletion

d

Standard deviation based detection

