$$\int 6x^{2} - 4x c dx \qquad MI$$

$$(f(x) =) 2x^{3} - 2x^{2} + C \qquad A2 - 1 = 0$$

$$3 = 2 - 2 + C \qquad MI$$

$$C = 3 \qquad OR \qquad (f(x) =) 2x^{3} - 2x^{2} + C \qquad AI$$

2.
$$\frac{6+3\sqrt{7}}{5+2\sqrt{7}}$$
 BI $\frac{6+3\sqrt{7}}{5+2\sqrt{7}}$ MI $\frac{5+2\sqrt{7}}{5+2\sqrt{7}}$ $\frac{12+3\sqrt{7}}{-3}$ M2 $\frac{4-\sqrt{7}}{3}$ AI

3 a) (T)
$$\sqrt[3]{8}$$
 B1 $\frac{5}{2} \circ \cdot E$ A1 (E) $\sqrt{2} \times 2^{11}$ M1 $\frac{1}{2}$ A1

b)

$$\frac{3x^3y^2}{9x^4y^6}$$
 M2 $\frac{1}{3}x^{1}y^{-4}$ or $\frac{1}{3}xy^{4}$

4.
$$(y = (x + 1)^{2} + 2x + 3)$$
 or $x = 3$ $x = 4$

5. (a)
$$x^2 + 2x - 6 = 0$$
 MI
 $(x+1)^2 = 7$ MI
 $x = -1 \pm \sqrt{7}$ AI

to BI SHAPE \
MI THROUGH O

M CORRECT SURD INTRICART

ft so was the THERE ME SORDS E.9 1±15

- (b) REAPPLANCE 32+18=24 TO FIND GRADIN M IMPUES THE PHONERO GEADING IS -3 BI CORRECT USE of $y-y_0=m(x-x_0)$ or y=mz+Cy=-3x+9 O.E. A
- (2) 3x+18=0 or $0=-\frac{2}{3}x+9$ OR SINIAR BI OR 0=-2x+9 (-6,0) -41(310) OE Al = × 9 × 19.5 0 = MI ft

87.75 * WITH WONUNCING WORKINGS 4

-leew

48 + 4k = 44MI 444+12K = 178 MI SUBSTITUTE OR EUMINATES COREAST ATTEMPT MI (k=- 1 p. = 46)

b)
$$0=2+\frac{1}{2}$$
 MI $\left(-\frac{1}{2},0\right)$ or $-\frac{1}{2}$ or AI

c)
$$2+x^{-1}$$
 BI
$$\left(\frac{dy}{dx}=\right)-x^{-2}=-\frac{1}{x^2}$$
 AI
$$-\frac{1}{\left(-\frac{1}{2}\right)^2} \circ 2 - 4 \quad \text{MI of Both}$$

(NORMAL GRADINST) IS
$$\frac{1}{4}$$
 All $y-0=\frac{1}{4}(x+\frac{1}{2})^{11}$ MI ft $8y=2x+1$ Al convergely

d)
$$8(2+\frac{1}{2})=2x+1$$
 MI
 $15+\frac{8}{2}=2x$ MI
 $2x^2-5x-8=0$ Alone
 $(2x+1)(x-8)$ MI
 $8(2+\frac{1}{2})=2x+1$ MI
 $2x^2-5x-8=0$ Alone
 $(2x+1)(x-8)$ MI

ANAWGOUS MARKS IF THEY
FURWHO DIFFERINT SUBSTITUTION

!Bt GENTROUS!