

Assignatura	Codi	Data	Hora inici
Lògica	05.570	16/06/2012	15:30

C05.570\R16\R06\R12\RE\E3€

Enganxeu en aquest espai una etiqueta identificativa amb el vostre codi personal Examen

Fitxa tècnica de l'examen

- Comprova que el codi i el nom de l'assignatura corresponen a l'assignatura en la qual estàs matriculat.
- Només has d'enganxar una etiqueta d'estudiant a l'espai corresponent d'aquest full.
- No es poden adjuntar fulls addicionals.
- No es pot realitzar la prova en llapis ni en retolador gruixut.
- Temps total: 2 h.
- En cas que els estudiants puguin consultar algun material durant l'examen, quin o quins materials poden consultar?

No es pot consultar cap material

- Valor de cada pregunta: Problema 1: 30%; problema 2: 25%; problema 3: 25%; problema 4: 20%
- En cas que hi hagi preguntes tipus test: Descompten les respostes errònies? NO Quant?
- Indicacions específiques per a la realització d'aquest examen:

Enunciats

Assignatura	Codi	Data	Hora inici
Lògica	05.570	16/06/2012	15:30

Problema 1

- a) Formalitzeu utilitzant la lògica d'enunciats les frases següents. Utilitzeu els àtoms proposats.
 - M: "Tenir un bon motor"
 - H: "Ser hàbil"
 - P: "Tenir paciència"
 - G: "Guanyar una cursa"
 - C: "Guanyar el campionat"
 - Quan no tens un bon motor, és necessari ser hàbil i tenir paciència per a poder guanyar una cursa.
 ¬M → (G → H ∧ P)
 - 2) Si tens un bon motor i ets hàbil, pots guanyar una cursa si tens paciència. $M \land H \rightarrow (P \rightarrow G)$
 - 3) Per a guanyar el campionat no és necessari guanyar una cursa. $\neg(C \to G)$
- b) Formalitzeu utilitzant la lògica de predicats les frases següents. Utilitzeu els predicats proposats.

Predicats

M(x): x és un monstre

F(x): x llença foc por la boca

R(x): x llença rajos radioactius pels ulls

A(x, y): x ataca y S(y): x es salva

C(x): x és una ciutat

Constants

- a: Gamera
- b: Gozilla
- c: Tokio
- 1) Tots els monstres llencen foc per la boca o llencen rajos radioactius pels ulls, però no les dues coses a la vegada

$$\forall x[M(x) \to (F(x) \lor R(x)) \land \neg (F(x) \land R(x))]$$

2) Si Gozilla ataca Tokio aleshores Tokio només es salva si Gamera ataca a Gozilla

$$A(b, c) \rightarrow (S(c) \rightarrow A(a, b))$$

3) Si un monstre que llença foc per la boca ataca una ciutat aleshores serà atacat per algun monstre que llenci rajos radioactius pels ulls.

$$\forall x [M(x) \land F(x) \land \exists y [C(y) \land A(x,y)] \rightarrow \exists z [M(z) \land R(z) \land A(z,x)]]$$

Assignatura	Codi	Data	Hora inici
Lògica	05.570	16/06/2012	15:30

Problema 2

Demostreu la validesa del raonament següent utilitzant les 9 regles primitives de la deducció natural (no podeu utilitzar ni regles derivades ni equivalents deductius):

$$A \rightarrow \neg B, D \rightarrow \neg C, B \rightarrow C :: B \rightarrow \neg D \land \neg A$$

(1)	A→¬B			P
(2)	D→¬C			Р
(3)	B→C			Р
(4)		В		Н
(5)			D	Н
(6)			С	E→3,4
(7)			¬C	E→2,5
(8)		¬D		I¬5,6,7
(9)			Α	Η
(10)			В	it 4
(11)			¬B	E→1,9
(12)		¬A		I ¬ 9,10,11
(13)		$\neg D \land \neg A$		I ∧ 8,12
(14)	B→¬D∧¬A			I → 4,13

Problema 3

Analitzeu la validesa o la invalidesa del següent raonament utilitzant el mètode de resolució.

$$\mathsf{B} \to \mathsf{P} \land \mathsf{A} \ , \ \mathsf{A} \to \mathsf{S} \land \mathsf{F} \ , \ \mathsf{F} \lor \mathsf{S} \to \mathsf{G} \ , \ \mathsf{G} \to (\mathsf{S} \to \neg \mathsf{A}) \ \therefore \ \mathsf{A} \ \to \neg \mathsf{G} \land \neg \mathsf{B}$$

Normalització de les premisses i de la negació de la conclusió:

$$B \rightarrow P \wedge A = \neg B \vee (P \wedge A) = (\neg B \vee P) \wedge (\neg B \vee A)$$

$$A \rightarrow S \land F = \neg A \lor (S \land F) = (\neg A \lor S) \land (\neg A \lor F)$$

$$\mathsf{F} \vee \mathsf{S} \to \mathsf{G} = \neg(\mathsf{F} \vee \mathsf{S}) \vee \mathsf{G} = (\neg\mathsf{F} \wedge \neg\mathsf{S}) \vee \mathsf{G} = (\neg\mathsf{F} \vee \mathsf{G}) \wedge (\neg\mathsf{S} \vee \mathsf{G})$$

$$G \rightarrow (S \rightarrow \neg A) = G \rightarrow (\neg S \lor \neg A) = \neg G \lor \neg S \lor \neg A$$

$$\neg(A \rightarrow \neg G \land \neg B) = \neg(\neg A \lor (\neg G \land \neg B)) = (A \land \neg(\neg G \land \neg B)) = A \land (\neg \neg G \lor \neg \neg B) = A \land (G \lor B)$$

Conjunt de clàusules resultants:

$$\neg B \lor P \ , \ \neg B \lor A \ , \ \neg A \lor S \ , \ \ \neg A \lor F \ , \ \ \neg F \lor G \ , \ \ \neg S \lor G \ , \ \ \neg G \lor \neg S \lor \neg A \ , \ \textbf{A} \ , \ \textbf{G} \lor \textbf{B}$$

Assignatura	Codi	Data	Hora inici
Lògica	05.570	16/06/2012	15:30

(amb negreta, el conjunt de suport)

La clàusula ($\neg B \lor P$) es pot eliminar perquè no hi ha cap clàusula que contingui $\neg P$ (literal pur). La clàusula ($\neg B \lor A$) es pot eliminar perquè hi ha la clàusula A (subsumpció). Les dues clàusules eliminades equivalen a la primera premissa. Per tant, si el raonament és vàlid, la primera premissa no intervé en la validació.

Llavors, el conjunt resultant de clàusules és:

$$\neg A \lor S$$
 , $\neg A \lor F$, $\neg F \lor G$, $\neg S \lor G$, $\neg G \lor \neg S \lor \neg A$, \textbf{A} , $\textbf{G} \lor \textbf{B}$

La clàusula ($G \lor B$) es pot eliminar perquè no hi ha cap clàusula que contingui ¬B (literal pur) Aquesta clàusula és una part de la conclusió que es vol demostrar a partir de les premisses. Per tant, si el raonament és vàlid, només una part de la conclusió intervé realment en la validació.

Llavors, el conjunt resultant de clàusules és:

$$\neg A \lor S$$
 , $\neg A \lor F$, $\neg F \lor G$, $\neg S \lor G$, $\neg G \lor \neg S \lor \neg A$, A

Resolució:

¬A∨S	Α
S	$\neg S \lor G$
G	¬G ∨ ¬S ∨ ¬A
¬S∨¬A	Α
¬S	¬A∨S
¬A	Α

Hem observat que la primera premissa no s'utilitza. I pel que fa a la conclusió, únicament es necessita A. Això indica que de les premisses es pot deduir $\neg A$ i, per tant, que si introduïm A com a hipòtesi podrem deduir qualsevol cosa (en particular $\neg G \land \neg B$).

Assignatura	Codi	Data	Hora inici
Lògica	05.570	16/06/2012	15:30

Problema 4

Demostra per resolució la validesa del següent raonament

```
 \forall x[ \ R(x) \rightarrow \exists y \ S(x,y) \land \forall z \ (S(x,z) \rightarrow \neg M(z)) \ ] 
 \forall u \ \forall v(M(u) \rightarrow S(u,v)) 
 \therefore \forall x[R(x) \rightarrow \exists w[S(x,w) \land \neg M(x) \ ]] 
Solució:
 FNS(\forall x[ \ R(x) \rightarrow \exists y S(x,y) \land \forall z \ (S(x,z) \rightarrow \neg M(z))) = 
 \forall x( \ [\neg R(x) \lor S(x,f(x)) \ ] \land [\neg R(x) \lor \neg S(x,z) \lor \neg M(z)] ) 
 FNS(\forall u \ \forall v(M(u) \rightarrow S(u,v))) = \forall u \ \forall v[ \ \neg M(u) \lor S(u,v) \ ] 
 FNS(\neg \forall x[R(x) \rightarrow \exists w[S(x,w) \land \neg M(x) \ ]]) = 
 \forall w[R(a) \land (\neg S(a,w) \lor M(a)]
```

Conjunt de clàusules= $\{\neg R(x) \lor S(x,f(x)), \neg R(x) \lor \neg S(x,z) \lor \neg M(z), \neg M(u) \lor S(u,v), R(a), \neg S(a,w) \lor M(a) \}$

Resolució:

Clàusules troncals	Clàusules laterals	
R(a)	$\neg R(x) \lor S(x,f(x))$	Substitució x per a
	$\neg R(a) \lor S(a,f(a))$	
S(a,f(a))	¬S(a,w) ∨ M(a)	Substitució w per f(a)
	$\neg S(a,f(a)) \lor M(a)$	
M(a)	$\neg M(u) \lor S(u,v)$	Substitució u per a
	¬M(a) ∨ S(a,v)	
S(a,v)	$\neg R(x) \lor \neg S(x,z) \lor \neg M(z)$	Substitució x per a
	$\neg R(a) \lor \neg S(a,v) \lor \neg M(v)$	z per v
¬R(a) ∨¬M(v)	R(a)	
¬M(v)	M(a)	Substitució v per a
¬M(a)		

Hem arribat a clàusula buida per tan el raonament és vàlid