Math 131A Lecture Notes

Kyle Chui

2021-09-24

Contents

1	Lecture 1	1
	.1 Goals of This Class	
	.2 Mathematical Arguments and Logic	
	.3 Logical Connections	
	1.3.1 Truth Tables	. 1
		0
2	Lecture 2	3
	2.1 Continuation of Logic	
	2.1.1 De Morgan's Laws	
	2.1.2 Converse	
	2.1.3 Proof by Contrapositive	
	2.1.4 Variables and Quantifiers	
	2.1.5 Proof by Counterexample	
	2.1.6 Proof by Contradiction	. 4
3	Lecture 3	5
3	3.1 More Logic	
	· ·	
	v	
	3.2 Set Theory	
	3.2.1 Set Combinations	
	3.2.2 De Morgan's Laws	. 6
1	Lecture 4	7
-	1 Cartesian Product	
	.1 Cartesian Froduct	. '
5	Lecture 5	9
_	5.1 The Natural Numbers	
	5.1.1 Properties of the Natural Numbers	
	6.2 Fields	
	5.2.1 Axioms for Addition	
	5.2.2 Axioms for Multiplication	
	5.2.3 Distributive Law	
	0.2.0 Distributive Law	. 10
6	Lecture 6	11
	5.1 The Rationals	. 11
7	Lecture 7	13
	7.1 Fundamental Properties of the Real Numbers (because of LUBP)	. 14
8	Lecture 8	15
	3.1 A Construction of the Real Numbers	. 15
	3.2 Interesting Questions	. 16
_		
9	Lecture 9	17
	1.1 Sequences	. 17
	9.1.1 Behaviors of Sequences	
	9.1.2 Facts From the Homework	
	9.1.3 Convergence	. 18
10		
10	Lecture 10	19
	0.1 Convergence of Sequences Using the Definition of Convergence	
	0.2 Limit Laws	. 20

Math 131A	Kyle Chui
Lecture Notes	$P_{a\sigma e}$

Lecture 11 11.1 Proof for Algebraic Limit Theorem	
 Lecture 12 12.1 Subsequences	24 24

1 Lecture 1

1.1 Goals of This Class

The end goal of this class is to go over the Fundamental Theorem of Calculus, and to do that we must first cover:

- What is a real number and what makes them special?
- How do we define the convergence of a sequence of real numbers?
- What is a limit?
- What is continuity?
- What is a derivative?
- What is an integral?

1.2 Mathematical Arguments and Logic

We have the following components to reasoning about solutions to a mathematical problem:

- Assumptions
- Logical steps
- Conclusions

1.3 Logical Connections

We usually use the letters P and Q to denote logical statements (either true or false). We can also use conjunctions to connect logical statements to one another.

- 1. Conjunctions: "P and Q", $P \wedge Q$
- 2. Disjunctions: "P or Q", $P \lor Q$
- 3. Implications: "If P, then Q", $P \implies Q$
 - (a) If the proposition is false (i.e. if P is false) then the whole statement is true.

Definition.

We say that the statement is vacuously true.

4. Negations: "Not P", $\neg P$

1.3.1 Truth Tables

$$\begin{array}{c|c|c} P & Q & P \Longrightarrow Q \\ \hline T & T & T \\ T & F & F \\ F & T & T \\ F & F & T \\ \end{array}$$

Example. Prove that if n is an integer, then n(n+1) is even.

Proof. Suppose that n is an integer. Then we have two cases, where either n is even or n is odd. Let n be an even integer such that n=2k where $k \in \mathbb{Z}$. Then we have

$$n(n+1) = 2k(2k+1)$$
$$= 2(2k^2 + k).$$

Thus we see that n(n+1) is even when n is even. Now let n be odd such that n=2m+1 where $m\in\mathbb{Z}.$ Then we have

$$n(n+1) = (2m+1)(2m+1+1)$$

= $(2m+1)(2m+2)$
= $2(m+1)(2m+1)$.

Thus n(n+1) is also even when n is odd, and so is even for all integers n.

2 Lecture 2

2.1 Continuation of Logic

2.1.1 De Morgan's Laws

$$\neg (P \lor Q) = \neg P \land \neg Q$$
$$\neg (P \land Q) = \neg P \lor \neg Q$$

Note. Negations turn "and" into "or" and vice versa.

Example. Suppose we have the following statement:

P: x is even and x > 0.

Then the negation of P would be:

 $\neg P$: x is odd or $x \le 0$.

2.1.2 Converse

Definition. Converse

The *converse* of a statement $P \implies Q$ is the statement $Q \implies P$. In general, the converse of a statement says nothing about the original statement.

Example. Consider the statement

If
$$x > 0$$
, then $x^3 \neq 0$.

The converse is then

If
$$x^3 \neq 0$$
, then $x > 0$.

Note that the converse is false even though the original statement is true.

If we know both the original statement and the converse are true, then we may write $P \iff Q$ instead of $(P \implies Q) \land (Q \implies P)$. In this case, we call P and Q logically equivalent. In writing, we say "P if and only if Q".

2.1.3 Proof by Contrapositive

We can show that

$$(\neg Q) \implies (\neg P) \iff P \implies Q.$$

This gives us another way of proving the original statement, since the contrapositive has the same truth values.

Lemma 1. Let a be an integer. If a^2 is even, then a is even.

Proof. Suppose a is odd, so a = 2k + 1 for some integer k. Then

$$a^2 = (2k+1)^2$$

= $2(2k^2 + 2k) + 1$.

Thus a^2 is odd and this completes the proof.

2.1.4 Variables and Quantifiers

We have a value x that varies over some values, so we use P(x) to denote a statement that depends on the value of x.

Example. Consider the statement

$$P(x): x + 2 = 3.$$

The statement is true if and only if x = 1.

We have two quantifiers— \forall = "for all", and \exists = "there exists".

- $\forall x : P(x)$ is true if P(x) is true for all x.
- $\exists x : P(x)$ is true if there exists at least one x such that P(x) is true.

We can also have nested quantifiers,

$$\forall m \in \mathbb{N}, \exists n \in \mathbb{N} : m < n.$$

Note. The order of quantifiers matters. In the above example, the quantifiers tell us that our choice of n depends on m.

2.1.5 Proof by Counterexample

After "simplifying" the statement $\neg(\forall x: P(x))$, we get $\exists x: \neg P(x)$. We simply need to find a single counterexample to show that a statement is false for all x.

Example. Consider the statement $\forall x \in \mathbb{R} : x + 2 = 3$. All we need to do is show that there exists some $x \in \mathbb{R}$ such that $x + 2 \neq 3$. This occurs when x = 0, so the statement is false.

2.1.6 Proof by Contradiction

Key Idea. We want to show that $P \implies Q$ indirectly.

Lemma 2. We can show that

$$P \implies Q = (\neg P) \lor Q.$$

Then $P \implies Q$ is true if and only if $\neg (P \implies Q)$ is false, and so by Lemma 2 and De Morgan's Laws, $P \land \neg Q$ is false.

For proof by contradiction, we assume P is true and $\neg Q$ is true, and try to show that $P \land \neg Q$ is false (a contradiction).

3 Lecture 3

3.1 More Logic

3.1.1 Proof by Contradiction

To do a proof by contradiction for a statement $P \implies Q$, we assume $P \land \neg Q$. We aim to show that $P \land \neg Q$ is false (a contradiction).

Theorem — Irrationality of $\sqrt{2}$

There is no rational number x such that $x^2 = 2$. In other words, if $x \in \mathbb{Q}$, then $x^2 \neq 2$.

Proof. Suppose towards a contradiction that there exists some $x \in \mathbb{Q}$ such that $x^2 = 2$. Since x is rational, there exist integers p, q such that $q \neq 0$, $\frac{p}{q} = x$, and p and q have no common divisors (other than 1). Then

$$x^{2} = 2$$

$$\frac{p^{2}}{q^{2}} = 2$$

$$x^{2} = 2a^{2}$$

Since p^2 is even, there exists some integer k such that p=2k. Thus

$$(2k)^2 = 2q^2$$
$$4k^2 = 2q^2$$
$$2k^2 = q^2.$$

By the same logic as before, we know that q must also be even (they share a common factor of 2). However, this contradicts our original assumption that p and q share no common factors, and this completes the proof.

3.2 Set Theory

We write $x \in A$ when we want to say that "x is an element of A", and $x \notin A$ when we want to say that "x is not an element of A".

3.2.1 Set Combinations

- Union: $A \cup B = \{x \mid x \in A \lor x \in B\}.$
- Intersection: $A \cap B = \{x \mid x \in A \land x \in B\}.$
- Difference: $A \setminus B = \{x \mid x \in A \land x \notin B\}.$
- Subset (Inclusion): $A \subseteq B$ if and only if $x \in A \implies x \in B$.

 $\textbf{Definition.}\ \ Proper\ Subset$

A set A is a proper subset of a set B if $A \subseteq B$ and there exists some $x \in B$ such that $x \notin A$. We denote this as $A \subset B$.

• Equality: A = B if and only if $A \subseteq B$ and $B \subseteq A$.

Note (Showing Equality of Sets). If you want to show A = B, you need to show both $A \subseteq B$ and $B \subseteq A$. In other words, you must show that for all $x \in A$, we have $x \in B$, and vice versa.

Example. We have $\mathbb{N} = \{1, 2, 3, \dots\}$.

- Let E be the set of even natural numbers. Note that $E \subseteq \mathbb{N}$.
- Let $S = \{ p \in \mathbb{Q} \mid p^2 < 2 \} \subseteq \mathbb{Q}$.

Then we have:

- $\mathbb{N} \cup E = \mathbb{N}$.
- $\mathbb{N} \cap E = E$.
- $\mathbb{N} \cap S = \{ n \in \mathbb{N} \mid n^2 < 2 \} = \{ 1 \}.$
- $E \cap S = \emptyset$.

Definition. Disjoint Sets

If $A \cap B = \emptyset$, we call A and B disjoint sets.

Proof. Suppose towards a contradiction that there exists some $x \in E \cap S$, which is to say $x \in E$ and $x \in S$. Since $x \in E$, we know that x is even, and so there exists some integer k such that x = 2k. Then

$$x^2 = (2k)^2 = 4k^2$$

so $4 \mid x^2$. Therefore $x \geq 4$, which contradicts the condition for $x \in S$, namely $x^2 < 2$.

- Given some $n \in \mathbb{N}$, we define $A_n = \mathbb{N} \setminus \{1, \dots, n-1\}$.
 - $\bigcup_{n \in \mathbb{N}} A_n = \mathbb{N}.$
 - $-\bigcap_{n\in\mathbb{N}}A_n=\varnothing.$

Definition. Set Complement

If $A \subseteq B$, then we define the *complement* of A in B to be $A^c = B \setminus A$.

3.2.2 De Morgan's Laws

If I is an index set and $\{A_j\}_{j\in I}$ are subsets of B, then

$$\left(\bigcup_{j\in I}A_j\right)^c=\bigcap_{j\in I}A_j^c,\quad\text{and}\quad\left(\bigcap_{j\in I}A_j\right)^c=\bigcup_{j\in I}A_j^c$$

4 Lecture 4

4.1 Cartesian Product

If I have two sets A and B, then we may form their Cartesian Product, which is

$$A \times B = \{(x, y) \mid x \in A \land y \in B\}.$$

Definition. Binary Relation

A binary relation is a subset $R \subseteq A \times B$. We say $x \in A$ is in relation to $y \in B$ if $(x,y) \in R$. We denote this by

$$xRy \iff (x,y) \in R.$$

Example. Consider the relation

$$\mathbb{R} \times \mathbb{R} \supseteq R = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x \le y\}.$$

Then the relation is *reflexive*, because xRx. It is also antisymmetric, because $xRy \wedge yRx \implies x = y$. Finally, this relation is transitive, because $xRy \wedge yRz \implies xRz$.

These properties only make sense if A = B, i.e. $R \subseteq A \times A$, and we say that "R is a relation on A".

Definition. Partial Order

If a relation is reflexive, antisymmetric, and transitive on A, then it is a partial order on A.

The notion of "less than or equal to" is a partial order for \mathbb{N} , \mathbb{Z} , \mathbb{Q} , and \mathbb{R} , but there exists no partial order for \mathbb{C} .

Definition. Power Set

For a set A, we may define its power set by

$$\mathscr{P}(A) = \{ C \mid C \subseteq A \}.$$

Note that set inclusion is a partial order on $\mathcal{P}(A)$.

Definition. Equivalence Relation

An equivalence relation R over A is a relation that is reflexive, symmetric, and transitive.

Note. Just like a partial order behaves much like ≤, an equivalence relation behaves much like =.

Definition. Equivalence Class

Given an equivalence relation on A.0, we define a new set

$$[x] := \{ y \in A \mid x \sim y \}.$$

We call [x] the equivalence class of x. Any $z \in [x]$ is called a representative of the equivalence class [x]. In particular, x is a representative of its own equivalence class.

Let A be a set with equivalence relation \sim . Then for any $x, y \in A$,

$$[x] = [y]$$
 or $[x] \cap [y] = \varnothing$.

Proof. Let $x, y \in A$. We know that x is either equivalent to y or it is not. Suppose the former is true and let $z \in [x]$. Thus we know that $z \sim x$ and $x \sim y$, and by transitivity we have $z \sim y$. Thus $z \in [y]$ and $[x] \subseteq [y]$. The reverse argument is the same.

If x is not equivalent to y, then suppose towards a contradiction that $[x] \cap [y] \neq \emptyset$. Let $x \in [x] \cap [y]$. Then $z \sim x$ and $z \sim y$. By symmetry we know that $x \sim z$ and by transitivity we have $x \sim y$. We have arrived at the contradiction that x is both equivalent and not equivalent to y.

Definition. Function

A relation $R \subseteq A \times B$ is a function if for all $x \in A$ and all $y, z \in B$, we have the following:

• $xRy \wedge xRz \implies y = z$.

In other words, every input x has only one output.

Definition. Injective Functions

A function f is injective if $f(x_1) = f(x_2) \implies x_1 = x_2$.

Definition. Surjective Functions

A function f is surjective if for every $y \in B$, there exists some $x \in A$ such that f(x) = y.

5 Lecture 5

5.1 The Natural Numbers

We know that the natural numbers are defined via:

$$\mathbb{N} = \{1, 2, 3, 4, \dots\}.$$

5.1.1 Properties of the Natural Numbers

- (P1) $1 \in \mathbb{N}$
- (P2) If $n \in \mathbb{N}$, then it has a successor, $n+1 \in \mathbb{N}$
- (P3) 1 is *not* the successor of any element of \mathbb{N}
- (P4) If m, n have the same successor, then m = n

Note. The properties above can be abstracted to become:

- (P1) $1 \in \mathbb{N}$
- (P2) There exists some $S \colon \mathbb{N} \to \mathbb{N}$ where S(n) is the successor n
- (P3) $1 \notin \operatorname{range} S$
- (P4) S is injective
- (P5) Suppose $A \subseteq \mathbb{N}$ with the properties:
 - (i) $1 \in A$
 - (ii) If $n \in A$, then $S(n) \in A$

Then $A = \mathbb{N}$.

Theorem — 1.1 (Induction)

Let $\{P(n) \mid n \in \mathbb{N}\}$ be a set of logical propositions. Suppose that

- (i) P(1) is true.
- (ii) If P(n) is true, then P(n+1) is true.

Then P(n) is true for all $n \in \mathbb{N}$.

Proof. Let $A = \{n \mid P(n) \text{ is true}\} \subseteq \mathbb{N}$. By our first assumption, $1 \in A$. By (ii), if $n \in A$, then $n+1 \in A$. So by (P5) of the natural numbers, we know that $A = \mathbb{N}$.

Definition. 1.2 (Peano Axioms)

A triplet $(\mathbb{N}, 1, S)$ is said to be a system of the naturals if it satisfies:

- 1) \mathbb{N} is a set and $1 \in \mathbb{N}$
- 2) $S: \mathbb{N} \to \mathbb{N}$ is a function
- 3) $1 \notin \operatorname{range} S$
- 4) S is injective
- 5) $\forall A \subseteq N$ such that $1 \in A$ and $S(A) \subseteq A$, then $A = \mathbb{N}$

Definition. Addition

We define the binary relation + over \mathbb{N} :

- (i) $\forall n \in \mathbb{N}, n+1 \coloneqq S(n)$
- (ii) $\forall m, n \in \mathbb{N}$, we have m + S(n) = S(m+n)

The following properties can be proven from the above definition of addition:

- (a) Associativity: $\forall x, y, z \in \mathbb{N}$, we have (x+y) + z = x + (y+z)
- (b) Commutativity: $\forall x, y \in \mathbb{N}$, we have x + y = y + x
- (c) Cancellative Law: $\forall x, y, z \in \mathbb{N}$, we have $x + y = y + z \implies x = z$

Theorem — 1.3 (Existence of the Naturals)

There exists a unique system of the naturals. In other words, there is a bijection between different systems of the naturals and so we may write:

$$(\mathbb{N}, 1, S) \iff (\mathbb{N}', 1', S').$$

5.2 Fields

Definition. Field

A *field* is a set with two binary operations,

- +, or 'addition'
- ·, or 'multiplication'

5.2.1 Axioms for Addition

- (A1) $x \in \mathbb{F} \land y \in \mathbb{F} \implies x + y \in \mathbb{F}$
- (A2) $\forall x, y \in \mathbb{F}$, we have x + y = y + x
- (A3) $\forall x, y, z \in \mathbb{F}$, we have (x+y) + z = x + (y+z)
- (A4) There exists some $0 \in \mathbb{F}$ such that 0 + x = x for all $x \in \mathbb{F}$
- (A5) $\forall x \in \mathbb{F}$, there exists $-x \in \mathbb{F}$ such that x + (-x) = 0

5.2.2 Axioms for Multiplication

- (M1) $x \in \mathbb{F} \land y \in \mathbb{F} \implies x \cdot y \in \mathbb{F}$
- (M2) $\forall x, y \in \mathbb{F}$, we have $x \cdot y = y \cdot x$
- (M3) $\forall x, y, z \in \mathbb{F}$, we have $(x \cdot y) \cdot z = x \cdot (y \cdot z)$
- (M4) There exists some $1 \in \mathbb{F}$ such that $1 \neq 0$ and $1 \cdot x = x$ for all $x \in \mathbb{F}$
- (M5) $\forall x \in \mathbb{F}$, there exists some $\frac{1}{x} \in \mathbb{F}$ such that $x \cdot \frac{1}{x} = 1$

5.2.3 Distributive Law

(D1) $\forall x, y, z \in \mathbb{F}$, we have $x \cdot (y+z) = x \cdot y + x \cdot z$

6 Lecture 6

6.1 The Rationals

On the natural numbers, we have a notion of addition, multiplication, and comparison (\leq). We constructed the integers and so we now have:

- A notion of an additive identity, $0 \in \mathbb{Z}$
- Additive inverses

However, we don't have:

• Multiplicative inverses

When we think of the rationals, we consider the set

$$\mathbb{Q} = \left\{ \frac{p}{q} \mid p, q \in \mathbb{Z}, q \neq 0 \right\}.$$

Note. When dealing with \mathbb{Q} , we now have multiplicative inverses.

In particular, $(\mathbb{Q}, +, \cdot, \leq)$ is an ordered field.

Definition. Ordered Field

An ordered field is a field \mathbb{F} which is also an ordered set (\leq) such that:

- (i) If $x, y, z \in \mathbb{F}$ and y < z, then x + y < x + z
- (ii) If $x, y \in \mathbb{F}$, x > 0 and y > 0, then $x \cdot y > 0$

Unfortunately, the rational numbers still don't allow us to solve polynomial equations (i.e. $x^2 = 2$).

Definition. Algebraic Numbers

A number is called *algebraic* if it solves

$$c_n x^n + c_{n-1} x^{n-1} + \dots + c_1 x + c_0 = 0,$$

where $c_0, \ldots, c_n \in \mathbb{Z}, c_n \neq 0, n \in \mathbb{N}$.

Example. Every rational number is algebraic, because it solves the equation

$$qx - p = 0.$$

Definition. Dividing

We say $k \in \mathbb{Z}$ divides $m \in \mathbb{Z}$ if $\frac{m}{k} \in \mathbb{Z}$.

Theorem — Rational Zeros Theorem

Suppose $c_0, \ldots, c_n \in \mathbb{Z}$, $c_n \neq 0$ and $r \in \mathbb{Q}$ satisfies

$$c_n r^n + c_{n-1} r^{n-1} + \dots + c_1 r + c_0 = 0.$$

Then writing $r = \frac{c}{d}$ with c, d having no common factors, $d \neq 0$, we have:

$$c$$
 divides c_0

$$d$$
 divides c_n

Proof. Since r solves the equation, we have

$$c_n \left(\frac{c}{d}\right)^n + c_{n-1} \left(\frac{c}{d}\right)^{n-1} + \dots + c_1 \left(\frac{c}{d}\right) + c_0 = 0.$$

Multiplying both sides by d^n , we get

$$c_n c^n + c_{n-1} c^{n-1} d + \dots + c_1 c d^{n-1} + c_0 d^n = 0.$$

Rearranging, we have

$$c_n c^n = -d(c_{n-1}c^{n-1} - \dots + c_1cd^{n-2} - c_0d^{n-1}).$$

We know that $d \mid c_n c^n$. Since c and d have no common factors, we know $d \mid c_n$. Rearranging terms again,

$$-c(c_nc^{n-1} + c_{n-1}c^{n-2}d + \dots + c_1d^{n-1}) = c_0d^n.$$

By the same reasoning as before, we have that $c \mid c_0$.

Corollary. Suppose $r \in \mathbb{Q}$ solves

$$r^{n} + c_{n-1}r^{n-1} + \dots + c_{1}r + c_{0} = 0.$$

Then $r \in \mathbb{Z}$ and $r \mid c_0$.

Proof. Since $r \in \mathbb{Q}$, we may express $r = \frac{c}{d}$, $c \mid c_0$ and $d \mid 1$. From this we know that d = 1, so r = c and $c \mid c_0$. Therefore $r \in \mathbb{Z}$ and $r \mid c_0$.

We have some deficiencies for \mathbb{Q} :

• There seem to be some "gaps" in \mathbb{Q} .

Proposition. We consider the sets $A = \{ p \in \mathbb{Q} \mid p \geq 0 \text{ and } p^2 < 2 \}$ and $B = \{ p \in \mathbb{Q} \mid p \geq 0 \text{ and } p^2 > 2 \}$. Notice that A has no largest element and B has no smallest element.

Proof. Given $p \in \mathbb{Q}$, let

$$q = p - \frac{p^2 - 2}{p^2 + 2} = \frac{2(p+1)}{p+2}.$$

We also have $q^2 - 2 = \frac{2(p^2 - 2)}{(p+2)^2}$. If $p \in A$, $p^2 - 2 < 0$ so q > p and $q^2 - 2 > 0$. If $p \in B$, $p^2 - 2 > 0$ so q < p and $q^2 - 2 > 0$.

7 Lecture 7

Definition. 2.11—Upper and Lower Bounds

Let E be an ordered set and $A \subset E$.

- (a) If there exists $x \in E$ such that for all $a \in A$, $a \le x$, we say A is bounded above by x and call x an upper bound for A.
- (b) Suppose $A \subset E$ is non-empty and bounded above and there exists some $x^* \in E$ such that
 - i) x^* is an upper bound for A
 - ii) If y is any upper bound for A^* , then $x^* \leq y$

Then we call x^* the least upper bound for A, and we write

$$x^* = \sup A.$$
 (sup meaning supremum)

The greatest lower bound or infimum of a set B, which is bounded below and non-empty, satisfies

- i) inf B is a lower bound for B
- ii) If y is any lower bound for B, then $y \leq \inf B$

Example. Suppose

$$A = \left\{ p \in \mathbb{Q} \mid p \ge 0, p^2 < 2 \right\}, \\ B = \left\{ p \in \mathbb{Q} \mid p \ge 0, p^2 > 2 \right\}.$$

Then A is bounded above (say by 2) and B is bounded below (say by 0). In the last lecture we proved that neither sup A nor inf B exist in \mathbb{Q} (because the values would have been $\sqrt{2}$).

Example. Let

$$C = \{ p \in \mathbb{Q} \mid p < 0 \},$$
$$D = \{ p \in \mathbb{Q} \mid p \le 0 \}.$$

Then

$$\sup C = \sup D = 0.$$

However, notice that $\sup C \notin C$ and $\sup D \in D$.

Definition. Maximum

We define $\max A$ to be the largest element of A, which satisfies:

- i) $\max A \in A$
- ii) For all $a \in A$, $a \le \max A$

The definition for minimum is similar.

Definition. 2.12—Least Upper Bound Property (LUBP)

An ordered set E has the least upper bound property if the following is true:

i) If $A \subseteq E$, $A \neq \emptyset$, A is bounded above, then $\sup A$ exists and $\sup A \in E$.

Note. $\mathbb Q$ does not have the least upper bound property.

Theorem — 2.13 (Existence of \mathbb{R})

There exists an ordered field \mathbb{R} which has

- i) Q as a sub-field
- ii) The least upper bound property

7.1 Fundamental Properties of the Real Numbers (because of LUBP)

Theorem — 2.14 (Archimedean Property of \mathbb{R})

If $x, y \in \mathbb{R}$, and x > 0, then $\exists n \in \mathbb{N}$ such that $n \cdot x > y$.

Proof. Let $A = \{nx \mid n \in \mathbb{N}\} \subseteq \mathbb{R}$. Suppose towards a contradiction that there is no such n that satisfies the statement above. In other words, for all $n \in \mathbb{N}$, $nx \leq y$. Thus A is bounded above by y. Since A is nonempty and is a subset of \mathbb{R} , we know that $\sup A$ exists. Consider the value given by $\sup A - x$, which is not an upper bound for A. Then we know there exists some $z \in A$ such that $\sup A - x < z$. Since z = mx (because $z \in A$), we have

$$\sup A - x < z$$

$$\sup A - x < mx$$

$$\sup A < (m+1)x.$$

We know that $(m+1)x \in A$, which contradicts the definition of $\sup A$.

Some remarks:

- 1. Let x = 1. Then $\forall y \in \mathbb{R}, \exists n \in \mathbb{N} \text{ such that } n > y$.
- 2. Let y = 1. Then $\forall x \in \mathbb{R}, \exists n \in \mathbb{N} \text{ such that } x > \frac{1}{n} > 0$.

Theorem — 2.15 (Density of \mathbb{Q} in \mathbb{R})

For all $x, y \in \mathbb{R}$, x < y, there exists some $p \in \mathbb{Q}$ such that x .

Proof. Fix x < y. Then by the Archimedean property we have some $n \in \mathbb{N}$ such that n(y - x) > 1, or $y - x > \frac{1}{n}$. We may suppose x > 0, because otherwise we either have x < 0 < y or x < y < 0 (multiply all sides by -1).

We want to show that

$$nx < m < ny$$
.

Since nx + 1 < ny, we have nx < m < nx + 1, or m - 1 < nx < m. If $nx \in \mathbb{Z}$, we can take m = nx + 1. Thus

$$x < x + \frac{1}{n} = \frac{nx+1}{n} = \frac{m}{n} < \frac{ny}{n} < y.$$

Otherwise we have $nx \notin \mathbb{Z}$. We then apply the following lemma:

Lemma. If $x \in \mathbb{R}$, there exists a $k \in \mathbb{Z}$ such that $k - 1 \le x \le k$.

Then m-1 < nx < m, as desired.

8 Lecture 8

8.1 A Construction of the Real Numbers

We want to show that there exists some field \mathbb{R} such that \mathbb{Q} is a sub-field and \mathbb{R} has the least upper bound property. This construction will be via Dedekind cuts.

Definition. 2.17—Cut

A *cut* in \mathbb{Q} is a pair of subsets $A, B \subset \mathbb{Q}$ such that:

- (i) $A \cap B = \emptyset$, $A \cup B = \mathbb{Q}$, $A, B \neq \emptyset$ (They partition \mathbb{Q})
- (ii) If $a \in A$ and $b \in B$, then a < b
- (iii) A contains no largest element

Example. An example of such a cut could be $A=\{p\in\mathbb{Q}\mid p<1\}$ and $B=\{p\in\mathbb{Q}\mid p\geq 1\}$. We say that $A\mid B$ is a cut. Another such example is $A=\{p\in\mathbb{Q}\mid p\leq 0 \text{ or } p^2<2\}$ and $B=\{p\in\mathbb{Q}\mid p>0 \text{ and } p^2\geq 2\}$

Definition. 2.18—The Reals

We may define

$$\mathbb{R} = \{ X \mid X \text{ is a cut in } \mathbb{Q} \}.$$

In order to show that the above is a valid definition for \mathbb{R} , we must show:

- (i) \mathbb{Q} is contained in \mathbb{R} in some "natural way"
- (ii) \mathbb{R} is an ordered field
- (iii) \mathbb{R} has the least upper bound property

Definition. 2.19—Partial Order for the Reals

We define a partial order on \mathbb{R} as follows: If $X = A \mid B$ and $Y = C \mid D$, then we say X < Y if and only if $A \subset C$ and $X \leq Y$ if and only if $A \subseteq C$.

We will show that the reals contain the rationals.

Proof. We will begin by showing that $\mathbb{Q} \subseteq \mathbb{R}$. We say that $A \mid B$ is a rational cut if for some $c \in \mathbb{Q}$, we have $A = \{p \in \mathbb{Q} \mid p < c\}$ and $B = \mathbb{Q} \setminus A$. We will use c^* to denote the rational cut at c. Then we may associate every $c \in \mathbb{Q}$ with a corresponding rational cut $c^* \in \mathbb{R}$.

Theorem — 2.20 (The Reals have the LUBP)

With respect to the partial order \leq defined earlier, we may show that \mathbb{R} has the least upper bound property.

Proof. Let \mathscr{C} be any non-empty collection of cuts which are bounded above, say by the cut X. We want to show that $\sup \mathscr{C}$ exists in \mathbb{R} , so $\sup \mathscr{C}$ is itself a cut. A candidate for $\sup \mathscr{C}$ is $C \mid D$, where

$$C = \{a \in \mathbb{Q} \mid \text{There exists a cut } A \mid B \in \mathscr{C} \text{ such that } a \in A\}.$$

Now, $Z = C \mid D$ is a cut in \mathbb{Q} . We claim that C has no largest element. If $a \in C$, then there exists a cut $A \mid B \in \mathscr{C}$ such that $a \in A$. Since A is a part of a cut, it has no largest element, so there exists some $a' \in A$ such that a < a'. Thus $a' \in C$ so C has no largest element.

We must now show that Z is the least upper bound of \mathscr{C} . For any $A \mid B \in \mathscr{C}, A \subseteq C$. Therefore $A \mid B \leq C \mid D = Z$ and Z is an upper bound for \mathscr{C} . We must now show that it is the *least* upper

bound. Let $Z' = C' \mid D'$ be an upper bound for \mathscr{C} . Then $A \mid B \leq C' \mid D'$ and $A \subseteq C'$ for any $A \mid B \in \mathscr{C}$. Now by definition of C, we have $C \subseteq C'$. Therefore $C \mid D \leq C' \mid D'$, so $Z \leq Z'$. We have $Z = \sup \mathscr{C} \in \mathbb{R}$, so \mathbb{R} has the least upper bound property.

We now show that \mathbb{R} is a field, namely an ordered field. We define the binary relations + and \cdot as follows: Given two cuts $A \mid B$ and $C \mid D$, we may define

$$E = A + C = \{ p \in \mathbb{Q} \mid p = a + c \text{ for some } a \in A, c \in C \}.$$

Note. This set summation is known as the Minkowski sum.

We must check that $E \mid F$ is a cut. We must also show that the additive identity for \mathbb{R} is 0, i.e. we must show that 0 + x = x + 0 = x for all $x \in \mathbb{R}$. To show the existence of additive inverses, show that for any cut $A \mid B$, there exists some $C \mid D \in \mathbb{R}$ such that $A \mid B + C \mid D = 0$.

Similarly, we define multiplication by

$$E = \{ p \in \mathbb{Q} \mid p = ac \text{ for some } a \in A, c \in C \}.$$

8.2 Interesting Questions

- (a) Can we cut \mathbb{R} to get something larger? No, because every possible cut in \mathbb{R} is an element of \mathbb{R} . This is because \mathbb{R} has the least upper bound property and every cut in \mathbb{R} would just be a "real cut" at sup A.
- (b) Is \mathbb{R} unique in some natural way? Yes. If you take any other ordered field \mathbb{F} such that $\mathbb{Q} \subseteq \mathbb{F}$ and \mathbb{F} has the least upper bound property, then there exists some bijection between \mathbb{F} and \mathbb{R} .
- (c) What about $+\infty$ and $-\infty$? We can't treat these as real numbers using Dedekind cuts, as either A or B would have to be empty.

9 Lecture 9

9.1 Sequences

Example. Approximating π

We know that the area of the unit circle should be π . We can approximate the area of a unit circle by inscribing various shapes in the circle and finding their areas (giving us a sequence of lower bounds). If we inscribe an equilateral triangle in the circle, we find that its side length is $\sqrt{3}$, so the area of the triangle is $a_1 = \frac{3\sqrt{3}}{4} \approx 1.299$.

If we use a square instead, its side length is $\sqrt{2}$, so we have a new lower bound of $a_2 = 2 < \pi$. Using a regular pentagon, we have a new approximation as given by $a_3 = \frac{5}{2} \sin\left(\frac{2\pi}{5}\right) < \pi$. Continuing this pattern, we get

$$a_n = \frac{n+2}{2}\sin\left(\frac{2\pi}{n+2}\right) < \pi.$$

Notice that for all $n \in \mathbb{N}$, we have $a_n < a_{n+1} < \pi$. Computing this value for larger n, we have

$$a_{100} \approx 3.1396$$

 $a_{1000} \approx 3.141572$
 $a_{10000} \approx 3.14159245$.

Similarly, we may obtain upper bounds for π by circumscribing regular polygons around the unit circle. By circumscribing a square, we know that $\pi < 4$, so we know that there is some upper bound for what π is equal to. Thus we know that there exists some $a \in \mathbb{R}$ such that $a_n \approx a$ for some sufficiently large n.

In other words, there exists some $a \in \mathbb{R}$ such that a_n converges to a as n approaches ∞ .

One issue to note is that we are using π in our formula for a_n to approximate the value of π . Using some trigonometric identities, we may circumvent this by evaluating

$$a_{2n} = \frac{n}{2} \left(n - \sqrt{n - 4a_n^2} \right).$$

Definition. 3.1—Sequences

A sequence is a function $f: \mathbb{N} \to \mathbb{R}$. Instead of writing $f(1), f(2), \ldots, f(n)$, we tend to write a sequence as f_1, f_2, \ldots, f_n .

Note (Notations for Sequences). There are many different notations for expressing sequences, a few popular notations being used below:

$$\left(1,\frac{1}{2},\frac{1}{3},\ldots\right) = \left(\frac{1}{n}\right)_{n=1}^{\infty} = \left(\frac{1}{n}\right)_{n\in\mathbb{N}} = \left\{\frac{1}{n}\mid n\in\mathbb{N}\right\}.$$

9.1.1 Behaviors of Sequences

- (a) "Convergence"—Getting closer and closer to a given point.
- (b) "Divergence"—Getting closer and closer to $\pm \infty$.
- (c) "Oscillation"—The sequence does not approach any value in particular.

9.1.2 Facts From the Homework

We define the absolute value function

$$|\cdot|: \mathbb{R} \to [0, \infty) = \begin{cases} x & \text{if } x \ge 0, \\ -x & \text{if } x < 0. \end{cases}$$

We have the following properties of the absolute value function:

- (i) |xy| = |x| |y| for all $x, y \in \mathbb{R}$.
- (ii) $|x-y| \le \ell$ if and only if $y-\ell \le x \le y+\ell$, where $\ell \ge 0$ and $x,y \in \mathbb{R}$.
- (iii) Triangle Inequality: $|x+y| \le |x| + |y|$.

Note. One consequence of this is

$$|x - y| = |x - z + z - y|$$

 $\leq |x - z| + |z - y|$.

In other words, the distance between two points x and y is always less than or equal to the sum of the distances of x and y to a third point, z.

We say that a_n approaches a if " $|a_n - a|$ gets arbitrarily small as n gets arbitrarily large".

9.1.3 Convergence

Definition. 3.2—Convergence

A sequence (x_n) of real numbers is said to *converge* to an $x \in \mathbb{R}$ if for all $\varepsilon > 0$, there exists N > 0 such that

$$|x_n - x| < \varepsilon$$

for all n > N. If (x_n) converges to x, we also write:

$$x_n \to x \text{ as } n \to \infty \quad \text{or} \quad \lim_{n \to \infty} x_n = x.$$

We call x the *limit* of the sequence (x_n) . We say that a sequence diverges if it does not converge.

Note. By the Archimedean property, we can always take $N \in \mathbb{N}$. In general, N is a function of ε . We fix $\varepsilon > 0$, and use that to find some sufficient N so that the sequence converges.

Example. Consider the sequence $x_n = \frac{1}{n^2}$. We suspect that $x_n \to 0 \in \mathbb{R}$ as $n \to \infty$. Fix $\varepsilon > 0$. If we let $N = \left\lceil \frac{1}{\sqrt{\varepsilon}} \right\rceil$ and n > N, we have

$$|x_n - 0| = \left| \frac{1}{n^2} \right|$$

$$= \frac{1}{n^2}$$

$$< \frac{1}{N^2}$$

$$< \varepsilon.$$

Thus, $x_n \to 0$ as $n \to \infty$, so

$$\lim_{n \to \infty} x_n = 0.$$

10 Lecture 10

10.1 Convergence of Sequences Using the Definition of Convergence

From last lecture, we have a basic definition of convergence. However, this is not very helpful for determining whether a sequence converges or not because we have to actually know what the sequence converges to.

Example. Consider the sequence $x_n = \frac{4n^3 + n}{n^3 - 6}$. We have an intuition that this converges to 4 by dividing the leading coefficients of the numerator and denominator.

We have

$$|x_n - 4| = \left| \frac{4n^3 + n}{n^3 - 6} - 4 \right|$$

$$= \left| \frac{(4n^3 + n) - 4(n^3 - 6)}{n^3 - 6} \right|$$

$$= \left| \frac{n + 24}{n^3 - 6} \right|$$

$$= \frac{|n + 24|}{|n^3 - 6|}$$

$$= \frac{n + 24}{n^3 - 6}$$

We want to find some N such that $\frac{n+24}{\lfloor n^3-6\rfloor} < \varepsilon$ for all n > N. Thus we want to show

$$\frac{n+24}{|n^3-6|} \le \frac{C}{n^2} \le \varepsilon.$$

If $n \ge 24$, we have $n + 24 \le 2n$. Suppose we wish for $|n^3 - 6| > 0$, so $n \ge 2$. Furthermore, note that $n^3 - 6 \ge \frac{1}{2}n^3$ when $n \ge 12^{\frac{1}{3}}$. Thus for $n \ge 24$, we have

$$\frac{n+24}{|n^3-6|} \le \frac{2n}{\frac{1}{2}n^3} = \frac{4}{n^2}.$$

Thus we take

$$N = \max\left(24, \left\lceil \sqrt{\frac{4}{\varepsilon}} \right\rceil\right) = \max\left(24, \left\lceil \frac{2}{\sqrt{\varepsilon}} \right\rceil\right).$$

Thus for n > N, we have

$$\frac{n+24}{|n^3-6|} < \varepsilon.$$

Proof. Fix $\varepsilon > 0$ and choose $N = \max\left(24, \left\lceil \frac{2}{\sqrt{\varepsilon}} \right\rceil\right)$. Then

$$|x_n - 4| = \frac{n + 24}{|n^3 - 6|}$$

$$\leq \frac{4}{n^2}$$

$$< \varepsilon$$

for all n > N. Thus $\lim_{n \to \infty} x_n = 4$.

Example. Show that $x_n = (-1)^n$ diverges.

Note that $x_{2k} = 1$, and $x_{2k+1} = -1$ for some integer k.

Proof. Suppose towards a contradiction that x_n converges to a point x. Since we know that the sequence only takes on the values 1 and -1, we know that

$$2 = |(1 - x) + (x + 1)|$$

$$\leq |1 - x| + |x + 1|$$

$$2 \leq |x_{2n} - x| + |x - x_{2n+1}|.$$

Since $x_n \to x$, given $\varepsilon > 0$, there exists N such that $|x_n - 1| < \varepsilon$ for all n > N. For n > N, we have $|x_{2n} - x| < \varepsilon$ and $|x - x_{2n+1}| < \varepsilon$. Thus we have $2 \le 2\varepsilon$, so $1 \le \varepsilon$, which contradicts that ε may be arbitrarily small. Hence the sequence diverges.

10.2 Limit Laws

Proposition 3.4 (Limits are Unique)—If $x_n \to x$ and $x_n \to y$, then x = y.

Idea: The points in the sequence have to be arbitrarily close to x and y simultaneously. We see that

$$|x - y| \le |x - x_n| + |x_n - y|$$

= ε .

for any $\varepsilon > 0$. By a previous theorem, we have x = y.

Proof. Fix $\varepsilon > 0$. Since $x_n \to x$, there exists $N_1 \in \mathbb{N}$ such that $|x_n - x| < \frac{\varepsilon}{2}$ for all $n > N_1$. Since $x_n \to y$, there exists $N_2 \in \mathbb{N}$ such that $|x_n - y| < \frac{\varepsilon}{2}$ for all $n > N_2$. Then for $n > \max(N_1, N_2)$, the triangle inequality implies that

$$|x - y| \le |x_n - x| + |y - x_n|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon$$

Since we have $|x-y| < \varepsilon$ for any $\varepsilon > 0$, we have x = y.

Definition. 3.5—Boundedness for Sequences

A sequence (x_n) is bounded if there exists some real number M > 0 such that $|x_n| \leq M$ for all $n \in \mathbb{N}$.

Note. In the above, our choice of M does not depend on n. Additionally, all convergent sequences are bounded (since we may just choose an arbitrary ε and we know that x_n will at some point rest between $x - \varepsilon$ and $x + \varepsilon$).

Theorem — 3.6 (Convergent Sequences are Bounded)

Suppose $x_n \to x$. Then for $\varepsilon = 1$, we may find a $N \in \mathbb{N}$ such that $|x_n - x| < 1$ for all n > N. Then when n > N, we have

$$|x_n| \le |x_n - x| + |x|$$

$$\le 1 + |x|.$$

Hence, for $M = \max(|x_1|, |x_2|, \dots, |x_N|, 1 + |x|)$, we see that $|x_n| \leq M$ for all $n \in \mathbb{N}$.

 $Math\ 131A$ Kyle Chui Page 21 Lecture Notes

Theorem — 3.7 (Algebraic Limit Theorem) Let $\lim_{n\to\infty} x_n = x$ and $\lim_{n\to\infty} y_n = y$. Then

- (i) $\lim_{n\to\infty} (ax_n + by_n) = ax + by$ for all $a, b \in \mathbb{R}$.
- (ii) $\lim_{n\to\infty} (x_n \cdot y_n) = xy$.
- (iii) $\lim_{n\to\infty} \frac{x_n}{y_n} = \frac{x}{y}$, provided $y \neq 0$.

11 Lecture 11

11.1 Proof for Algebraic Limit Theorem

We want to show that

$$|x_n y_n - xy| < \varepsilon$$

for all $\varepsilon > 0$.

Proof. Observe that

$$|x_n y_n - xy| = |x_n y_n - x_n y + x_n y - xy|$$

$$= |x_n (y_n - y) + (x_n - x)y|$$

$$\leq |x_n (y_n - y)| + |y(x_n - x)|$$

$$= |x_n| |y_n - y| + |y| |x_n - x|$$

Since convergent sequences are bounded, we know that there exist some M > 0 such that $|x_n| \leq M$ for all $n \in \mathbb{N}$.

$$\leq M |y_n - y| + |y| |x_n - x|$$

Fix $\varepsilon > 0$. Then there exists N_1 such that $|x_n - x| < \frac{\varepsilon}{2(1+|y|)}$ for all $n > N_1$. Furthermore, we know there exists some N_2 such that $|y_n - y| < \frac{\varepsilon}{2(1+M)}$ for all $n > N_2$.

$$<\frac{M\varepsilon}{2(1+M)}+\frac{|y|\,\varepsilon}{2(1+|y|)}\\<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}\\<\varepsilon,$$

for all $\varepsilon > 0$. Therefore the limit exists and

$$\lim_{n \to \infty} x_n y_n = xy.$$

We now want to show that

$$\lim_{n \to \infty} \left(\frac{x_n}{y_n} \right) = \frac{x}{y}.$$

Proof. Observe that

$$\begin{split} \left| \frac{x_n}{y_n} - \frac{x}{y} \right| &= \left| \frac{x_n y - x y_n}{y_n y} \right| \\ &= \frac{1}{|y_n| \, |y|} \, |x_n y - x y_n| \\ &= \frac{1}{|y_n| \, |y|} \, |x_n y - x y + x y - x y_n| \\ &\leq \frac{1}{|y_n| \, |y|} \, |y(x_n - x) + x (y - y_n)| \\ &= \frac{1}{|y_n| \, |y|} \, (|y| \, |x_n - x| + |x| \, |y - y_n|) \end{split}$$

We now need to show that $\frac{1}{|y_n|}$ is upper bounded by some value. Since (y_n) converges, we know that for all $\varepsilon > 0$, there exists some $N \in \mathbb{N}$ such that $|y_n - y| < \varepsilon$. Suppose we choose $\varepsilon = \frac{y}{2}$, so we have $\frac{1}{y_n} \le \frac{2}{y}$. In a fashion similar to the previous part, we may manipulate the above expression to complete the proof.

Theorem — 3.8 (Order Limit Theorem)

Assume $x_n \to x$ and $y_n \to y$.

- (i) If $x_n \geq 0$ for all $n \in \mathbb{N}$, then $x \geq 0$.
- (ii) If $x_n \leq y_n$ for all $n \in \mathbb{N}$, then $x \leq y$.
- (iii) If there exists $a \in \mathbb{R}$ such that $a \leq x_n$ for all $n \in \mathbb{N}$, then $a \leq x$. If there exists $b \in \mathbb{R}$ such that $b \geq x_n$ for all $n \in \mathbb{N}$, then $b \geq x$.

Note. Strict inequalities are not necessarily respected! If $x_n \to x$ and $x_n > 0$, then the most we can say is that $x_n \ge 0$. For example, consider the case where $x_n = \frac{1}{n} > 0$, and x = 0.

11.2 Monotone Sequences

Definition. 3.9—Monotonicity

A sequence (x_n) is increasing if $x_n \leq x_{n+1}$ for all $n \in \mathbb{N}$. A sequence (x_n) is decreasing if $x_n \geq x_{n+1}$ for all $n \in \mathbb{N}$. We call both increasing and decreasing sequences monotone or monotonic.

Note. If you iterate the definition for an increasing sequence, you get $x_n \leq x_m$ for $n \leq m$. A similar result comes from iterating the definition for a decreasing sequence.

Example. Monotone Sequences

- $x_n = 1 \frac{1}{n}$ is increasing (and converges to 1).
- $x_n = \frac{1}{2^n}$ is decreasing (and converges to 0).
- $x_n = n$ is increasing (but is neither convergent nor bounded).
- $x_n = (-1)^n$ is not monotonic (and does not converge).

Note. In the above examples, if a sequence is monotonic, then if it is bounded it converges, otherwise diverges. Can we prove this?

Theorem — 3.10 (Monotone Convergence Theorem)

Every monotonic and bounded sequence in \mathbb{R} necessarily converges.

Proof. Let (x_n) be a sequence in \mathbb{R} which is both increasing and bounded (same argument works for decreasing). If we look at the set

$$S = \{x_n \mid n \in \mathbb{N}\} \subseteq \mathbb{R},$$

we see that this set is non-empty and bounded above (because (x_n) is bounded). Thus by the least upper bound property of $\mathbb R$ we know that $\sup S$ exists. We claim that $x=\sup S$ is the limit for (x_n) . Let $\varepsilon>0$. Then there exists some $x_N\in S$ such that $x_N>x-\varepsilon$. We know that (x_n) is increasing, then $x-\varepsilon< x_N< x_n$ for all n>N. Furthermore, since x is the supremum of S, we know that $x_n< x< x+\varepsilon$. Thus we have

$$x - \varepsilon < x_n < x + \varepsilon,$$

so $|x_n - x| < \varepsilon$ for all $\varepsilon > 0$ and all n > N.

12 Lecture 12

Example. Consider the sequence defined by $x_1 = 2$, and for $n \ge 2$

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{2}{x_n} \right).$$

We don't have a nice function for x_n in terms of n, so proving convergence by normal means is non-ideal. To find the limit of (x_n) , we:

- Show that (x_n) is monotonic (decreasing in this case) and bounded
- Apply the Monotonic Convergence Theorem, and say that there exists some $x \in \mathbb{R}$ such that $x_n \to x$
- \bullet Apply limit laws to actually find the value of x

Note. If $x_n \to x$, we know that $x_{n+1} \to x$.

Taking the first few terms, we see

$$x_1 = 2, x_2 = \frac{3}{2}, \dots$$

We guess that the sequence is always bounded, namely $1 \le x_n \le 2$ for all $n \in \mathbb{N}$. We can prove this by induction. To show that the sequence is decreasing, we just need to show that for all $n \in \mathbb{N}$, we have $x_{n+1} - x_n \le 0$. We can then use induction again, along with the fact that the previous inequality can be expressed as a function of x_n , to show that the sequence is decreasing.

We can see that the sequence (x_n) is strictly greater than zero, so we may use the Algebraic Limit Theorem. Thus we have

$$x = \frac{1}{2} \left(x + \frac{2}{x} \right)$$
$$2x = x + \frac{2}{x}$$
$$x = \frac{2}{x}$$
$$x^{2} = 2$$
$$x = \sqrt{2}.$$

12.1 Subsequences

Consider the diverging sequence given by $x_n = (-1)^n$. If we take the even terms, we see that $x_{2n} = 1$, and if we take the odd terms, we have $x_{2n+1} = -1$. Thus we see that "parts" of our diverging sequence are actually convergent sequences.

Definition. Subsequences Let (x_n) be a sequence and

$$n_1 < n_2 < n_3 < \cdots$$

be a strictly increasing sequence of natural numbers. Then for $k \in \mathbb{N}$, the sequence (x_{n_k}) is a subsequence of the original sequence (x_n) .

Example. Subsequences

1. Consider $x_n = (-1)^n$. Then $x_{2k} = 1$ is a subsequence. Similarly, $x_{2k+1} = -1$ is also a subsequence.

2. Consider $x_n = \frac{1}{n} = (1, \frac{1}{2}, \frac{1}{3}, \dots)$. A valid subsequence could be $x_{n_k} = \frac{1}{2k}$ or $x_{n_k} = \frac{1}{10^k}$. However, the sequence given by

$$n_1 = 10, n_2 = 50, n_3 = 20, n_4 = 5, n_5 = 1000$$

is not a subsequence because the indices are not strictly increasing.

Observation. Suppose we have (n_k) is strictly increasing. Then we know that $n_k \geq k$, because it is strictly increasing and starts at 1. Then if $x_{n_k} = \frac{1}{n_k}$, then we see

$$x_{n_k} \le \frac{1}{k} \to 0.$$

Thus we see that for any subsequence of our convergent sequence x_n , it converges to the same limit as (x_n) .

Proposition 3.12 Every subsequence of a converging sequence converges and does so to the same limit as the original sequence.

Lemma. We will show that $n_k \geq k$ for all $k \in \mathbb{N}$, assuming that n_k is a strictly increasing sequence.

Proof. We proceed via induction. Observe that for $n_1 \in \mathbb{N}$, we have $n_1 \geq 1$. Suppose $n_k \geq k$ Then since (n_k) is strictly increasing, we have $n_{k+1} > n_k \geq k$, so $n_{k+1} \geq k+1$.

Proof. Suppose (x_n) converges to x. Let (x_{n_k}) be a subsequence of (x_n) . We claim that $x_{n_k} \to x$. Let $\varepsilon > 0$. Then there exists some $N \in \mathbb{N}$ such that $|x_n - x| < \varepsilon$ for all n > N. Since $n_k \ge k$ for k > N, we have $|x_{n_k} - x| < \varepsilon$ for all $n_k > N$. Thus $x_{n_k} \to x$ as $k \to \infty$.

Note. If $x_n \to x$, then $x_{n+1} \to x$ because (x_{n+1}) is a subsequence of (x_n) .

Note. Proposition 3.12 can be used to prove divergence, by showing that two subsequences of (x_n) converge to different values. For example, if $(x_n) = (-1)^n$, then

$$x_{2n} = (-1)^{2n} = 1$$

 $x_{2n+1} = (-1)^{2n+1} = -1$,

so (x_n) diverges.

Proposition 3.13 Every sequence has a monotonic subsequence.

Proof. We need to carefully select our subsequence. Let (x_n) be a sequence and

$$D = \{ n \in \mathbb{N} \mid x_n > x_m \text{ for all } m > n \} \subseteq \mathbb{N}.$$

If $n \in D$, then $x_n > x_m$ for all m > n. We say that if $n \in D$, that x_n is dominant. We now consider when D is finite and when D is infinite.

1. If D is infinite, then there exists $\{n_k\} \subseteq D$ such that x_{n_k} is dominant. Then $x_{n_{k+1}} < x_{n_k}$ and so (x_{n_k}) is a subsequence which is decreasing, and so monotonic.

2. If D is finite, then there exists some N such that $\max D = N$. Thus the last dominant term of our sequence is x_N . Hence there exists some $n_1 > N$ such that $x_{n_1} > x_{N+1}$. However, since $n_1 > N$, we have $n_1 \notin D$, so there must exist some $x_{n_2} > x_{n_1+1}$. By induction on $k \in \mathbb{N}$, we get (n_k) , so there exist

$$n_1 < n_2 < n_3 < \cdots$$

such that

$$x_{n_1} < x_{n_2} < \dots < x_{n_k} < x_N.$$

Therefore (x_{n_k}) is an increasing subsequence, and so is monotonic.

Theorem — 3.14 (Bolzano-Weierstrass)

Every bounded sequence in \mathbb{R} has a converging subsequence.

Proof. Suppose we have a bounded sequence (x_n) in \mathbb{R} . Then by Proposition 3.13 we know that there exists some subsequence (x_{n_k}) that is monotonic, which is also bounded. Thus by the Monotone Convergence Theorem we have that (x_{n_k}) converges in \mathbb{R} .

Note. Bolzano–Weierstrass doesn't tell us anything about the original sequence, just that there are converging subsequences.