

∠⁷ Expand

probably make your model classify the sentence as a "0".

Congratulations! You passed!

Grade received 100% Latest Submission Grade 100% To pass 80% or higher

Go to next item

nge of variation and meaning in those words.		1,
○ True		
False		
∠ ⁷ Expand		
 Correct No, the dimension of word vectors is usually smaller than the size of the vocabulary. Most com 	nmon sizes for word vectors range between 50 and 1000.	
hat is t-SNE?		1,
A linear transformation that allows us to solve analogies on word vectors		
An open-source sequence modeling library		
A supervised learning algorithm for learning word embeddings		
A non-linear dimensionality reduction technique		
∠ [™] Expand		
uppose you download a pre-trained word embedding which has been trained on a huge corpus of nguage task of recognizing if someone is happy from a short snippet of text, using a small training		1
x (input text)	y (happy?)	
I'm feeling wonderful today!	1	
I'm bummed that my cat is ill.	0	
Really enjoying this!	1	
rue/False: Then even if the word "upset" does not appear in your small training set, your RNN mighbel $y = 0$.	it reasonably be expected to recognize "I'm upset" as deserving a	
False		
False		
True		

Yes, word vectors empower your model with an incredible ability to generalize. The vector for "upset" would contain a negative/unhappy connotation which will

4.	Which of these equations do you think should hold for a good word embedding? (Check all that apply)	1/1 point
	$igsqcup e_{boy} - e_{brother} pprox e_{sister} - e_{girl}$	
	$igsqcup e_{boy} - e_{girl} pprox e_{sister} - e_{brother}$	
	$\checkmark~e_{boy} - e_{girl} pprox e_{brother} - e_{sister}$	
	✓ Correct Yes!	
	$\checkmark~e_{boy} - e_{brother} pprox e_{girl} - e_{sister}$	
	✓ Correct Yes!	
5.	Let A be an embedding matrix, and let o_{4567} be a one-hot vector corresponding to word 4567. Then to get the embedding of word 4567, why don't we call $A*o_{4567}$ in Python?	1/1 point
	\bigcirc The correct formula is A^T*o_{4567}	
	None of the answers are correct: calling the Python snippet as described above is fine.	
	It is computationally wasteful.	
	This doesn't handle unknown words (<unk>).</unk>	
	∠ [™] Expand	
	 ✓ Correct Yes, the element-wise multiplication will be extremely inefficient. 	
6.	When learning word embeddings, we create an artificial task of estimating $P(target \mid context)$. It is okay if we do poorly on this artificial prediction task; the more important by-product of this task is that we learn a useful set of word embeddings.	1/1 point
	○ False	
	True	
	∠ [™] Expand	
7.	True/False: In the word2vec algorithm, you estimate $P(t/c)$, where t is the target word and c is a context word. t and c are chosen from the training set to be nearby words.	1/1 point
	True	
	○ False	

	Yes, and are chosen from the training set to be nearby words.	
	Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The word2vec model uses the following softmax function: $P(t\mid c) = \frac{e^{\theta_t^T e_c}}{\sum_{l=0}^{n=000} e^{\theta_l^T e_c}}$	1/1 point
	Which of these statements are correct? Check all that apply.	
	$ ightharpoonup heta_t$ and e_c are both 500 dimensional vectors.	
	✓ Correct	
	$ec{m{artheta}}_t$ and e_c are both trained with an optimization algorithm such as Adam or gradient descent.	
	✓ Correct	
	$oxed{\Box}$ After training, we should expect $ heta_t$ to be very close to e_c when t and c are the same word.	
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
	∠ [™] Expand	
9.	Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The GloVe model minimizes this objective: $\min \sum_{i=1}^{10,000} \sum_{j=1}^{10,000} f(X_{ij}) (\theta_i^T e_j + b_i + b_j' - log X_{ij})^2$	1/1 point
	True/False: X_{ij} is the number of times word j appears in the context of word i.	
	True	
	○ False	
	∠ [™] Expand	
	\bigcirc correct X_{ij} is the number of times word ${\it j}$ appears in the context of word i.	
10.	. You have trained word embeddings using a text dataset of t_1 words. You are considering using these word embeddings for a language task, for which you have a separate labeled dataset of t_2 words. Keeping in mind that using word embeddings is a form of transfer learning, under which of these circumstances would you expect the word embeddings to be helpful?	1/1 point
	$lacksquare$ When t_1 is larger than t_2	
	$igcup$ When t_1 is smaller than t_2	
	$igcup$ When t_1 is equal to t_2	

 \bigcirc Correct

 $_{\swarrow}^{\nearrow}$ Expand

Transfer embeddings to new tasks with smaller training sets.

Ü	J		