## Education, Marriage, and Social Security

Prasanthi Ramakrishnan<sup>1</sup> Southern Methodist University

> DSE 2024 August 6, 2024

 $<sup>^1</sup>$ The author thanks the Center for Retirement Research and the Social Security Administration for their financial assistance. The views expressed do not necessarily reflect the views of the Center for Retirement Research and the Social Security Administration.

#### Motivation and Research Question

• Social security system biased towards married couples

### Social Security: Payroll Taxes and Benefits



Payroll taxes fund the SS system

### Social Security: Payroll Taxes and Benefits



• Higher income individuals: Higher taxes, higher benefits

### Social Security: Single vs Single-Earner HHs



• Single vs single-earner HHs: Same taxes, different benefits

### Social Security: Biased towards Married Couples



• Labor force participation within HH affects social security

## Social Security: Summary



 $\bullet$  Education, marital status, LFPR  $\Rightarrow$  social security

## Social Security: Summary



• Social security  $\stackrel{?}{\Rightarrow}$  if and who to get married to; education

#### Motivation and Research Question

- Social security system biased towards married couples
  - Single/single-earner households: same payroll taxes, yet different benefits
- Education, marital status, LFPR ⇒ social security
- Social security <sup>?</sup>⇒ if and who to get married to; education

#### Motivation and Research Question

- Social security system biased towards married couples
  - Single/single-earner households: same payroll taxes, yet different benefits
- Education, marital status, LFPR ⇒ social security
- Social security  $\stackrel{?}{\Rightarrow}$  if and who to get married to; education
- Research Question: How do changes in tax and retirement policy affect education and marriage?
- Relevance: SS Benefits need to be reduced post 2033

#### What Do I Do

- Document facts relating to social security and household structure
- Build dynamic discrete choice model of time allocation with endogenous human capital accumulation and equilibrium marriage markets
  - Households made up of distinct individuals
  - Time split into work, home, and leisure
- Estimate for 1940-49 cohort using PSID, HRS data
- Decompose the effect of tax and retirement policy on education and marriage
- Effect on education, marriage, and work when:
  - Payroll taxes are increased
  - Spousal benefits are removed
  - Joint income taxation is removed

#### What Do I Do

- Document facts relating to social security and household structure
- Build dynamic discrete choice model of time allocation with endogenous human capital accumulation and equilibrium marriage markets
  - Households made up of distinct individuals
  - Time split into work, home, and leisure
- Estimate for 1940-49 cohort using PSID, HRS data
- Decompose the effect of tax and retirement policy on education and marriage
- Effect on education, marriage, and work when:
  - Payroll taxes are increased
  - Spousal benefits are removed
  - Joint income taxation is removed
- Increase in payroll taxes: 
   † education [without marriage]; no change [with marriage]

#### Contribution to Literature

- Endogenous human capital accumulation 
   ⇔ retirement earnings [Blundell, French and Tetlow (2016), Manuelli, Seshadri and Shin (2012), Fan, Seshadri and Taber (2017)]
- Human capital ⇔ if and who you marry [Chiappori, Iyigun and Weiss (2009), Chiappori, Salanie and Weiss (2017), Chiappori, Dias and Meghir (2018), Eckstein, Keane and Lifshitz (2019)]
- Marital status ⇒ retirement earnings (spousal benefits) [Gustman and Steinmeier (2009), Banks, Blundell and Rivas (2007), Borella, De Nardi and Yang (2019)]
- Collective model of decision-making with equilibrium marriage markets [Chiappori (1988, 1992), Choo and Siow (2006), Gayle and Shephard (2019)]

Endogenous marriage and decision making within household crucial to understanding tax implications

# Model

#### Model Environment

- Life-cycle model, discrete-time
- Males and females
  - Identical at the start; differ by human capital accumulation process and efficiency in work, home production
- Endogenous human capital and asset accumulation

#### Model Environment

- Life-cycle model, discrete-time
- Males and females
  - Identical at the start; differ by human capital accumulation process and efficiency in work, home production
- Endogenous human capital and asset accumulation
- Two goods: Private consumption good, and public good of home production
- Taxes (payroll, medicare and income) and social security benefits (including spousal benefits)
- Individual utility from: Private consumption, home production good, and own leisure
  - Additively separable and risk-averse Specification
- Collective model: weighted sum of utilities  $\lambda^{i,k^m} \leftarrow \text{prices that clear frictionless}$  marriage market Utility Details
- Type 1 EV shocks

```
t=1 \\ \text{Males} \\ \text{Females} \\ \\ \text{State Human Capital } H^f \\ \text{Assets } A^f \\ \\ \hline \text{Shocks HC Shock } \epsilon_i \\ \hline \text{Choice Education } i \ (j) \\ i = 1 \ (\text{low}) \\ i = 2 \ (\text{high}) \\ \hline
```



|        | t=1<br>Males<br>Females          | t=2 Males of type $j$ Females of type $i$ | $t = [3, t_w]$<br>Single Households<br>Married Households |   |
|--------|----------------------------------|-------------------------------------------|-----------------------------------------------------------|---|
| State  | Human Capital $H^f$ Assets $A^f$ | Education $i(j)$                          | $H_t^i, H_t^{k_m}$<br>Joint $A_t^{i,k_m}$                 | ' |
|        |                                  |                                           | Weight $\lambda^{i,k_m}$                                  |   |
| Shocks | HC Shock $\epsilon_i$            | Love Shock $	heta^i_{i,k_m}$              | Choice Shock $\epsilon_t^{i,k_m}$                         |   |
| Choice | Education $i(j)$                 | Marriage                                  | Work: $M_t^i, M_t^{k_m}$                                  |   |
|        | i=1  (low)                       | $k_m = 0, j = 1, 2$                       | Home: $Q_t^i, Q_t^{k_m}$                                  |   |
|        | i=2 (high)                       |                                           | Savings: $ ho_t^{i,k_m}$                                  |   |
|        | ( )                              |                                           | Sharing Rule: $s_t^{i,k_m}$                               |   |

|        | t=1<br>Males<br>Females          | t=2 Males of type $j$ Females of type $i$ | $t= [3, t_w]$<br>Single Households<br>Married Households | $t = [t_r, T]$<br>Single Households<br>Married Households    |
|--------|----------------------------------|-------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------|
| State  | Human Capital $H^f$ Assets $A^f$ | Education $i(j)$                          | $H_t^i, H_t^{k_m}$<br>Joint $A_t^{i,k_m}$                | Income $Y_t^i, Y_t^{k_m}$ All agents Joint $A_t^{i,k^m}$ die |
|        |                                  |                                           | Weight $\lambda^{i,k_m}$                                 | Weight $\lambda^{i,k_m}$                                     |
| Shocks | HC Shock $\epsilon_i$            | Love Shock $	heta^i_{i,k_m}$              | Choice Shock $\epsilon_t^{i,k_m}$                        | Choice Shock $\epsilon_t^{i,k_m}$                            |
| Choice | Education $i(j)$                 | Marriage                                  | Work: $M_t^i, M_t^{k_m}$                                 | Home: $Q_t^i, Q_t^{k_m}$                                     |
|        | i=1  (low)                       | $k_m = 0, j = 1, 2$                       | Home: $Q_t^i,Q_t^{k_m}$                                  | Savings: $ ho_t^{i,k_m}$                                     |
|        | i=2 (high)                       |                                           | Savings: $ ho_t^{i,k_m}$                                 | Sharing Rule: $s_t^{i,k_m}$                                  |
|        |                                  |                                           | Sharing Rule: $s_{i}^{i,k_{m}}$                          | - "                                                          |

#### Time Allocation

|        | t=1<br>Males<br>Females                          | t=2 Males of type $j$ Females of type $i$ | $t = [3, t_w]$<br>Single Households<br>Married Households                                                                                                               | $t = [t_r, T]$<br>Single Households<br>Married Households                         |                   |
|--------|--------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------|
| State  | Human Capital $H^f$ Assets $A^f$                 | Education $i(j)$                          | $H_t^i, H_t^{k_m}$<br>Joint $A_t^{i,k_m}$                                                                                                                               | Joint $A_t^{i,k^m}$                                                               | All agents<br>die |
| Shocks | HC Shock &                                       | Love Shock $	heta^i_{i,k_m}$              | Weight $\lambda^{i,k_m}$<br>Choice Shock $\epsilon^{i,k_m}_{\star}$                                                                                                     | Weight $\lambda^{i,k_m}$<br>Choice Shock $\epsilon_t^{i,k_m}$                     |                   |
| Choice | Education $i$ $(j)$ $i = 1$ (low) $i = 2$ (high) | Marriage $k_m = 0, j = 1, 2$              | $\begin{array}{l} \text{Work: } M_t^i, M_t^{k_m} \\ \text{Home: } Q_t^i, Q_t^{k_m} \\ \text{Savings: } \rho_t^{i,k_m} \\ \text{Sharing Rule: } s_t^{i,k_m} \end{array}$ | Home: $Q_t^i, Q_t^{km}$<br>Savings: $\rho_t^{i,km}$<br>Sharing Rule: $s_t^{i,km}$ |                   |

- Household decisions: time allocation (home, work, leisure) + savings + division of resources
  - Time spent at home,  $Q_t$ , produces a non-marketable public good Home Production
  - ullet Time spent at work  $M_t o$  higher income today + higher human capital tomorrow ullet HC+Income
  - ullet Standard asset accumulation as a result of savings  $ho_t$  ullet Assets

## Marriage

|                  | t=1<br>Males<br>Females                                            | t=2 Males of type $j$ Females of type $i$            | $t= [3, t_w]$<br>Single Households<br>Married Households                                                                             | $t = [t_r, T]$<br>Single Households<br>Married Households                                                        |
|------------------|--------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| State            | Human Capital $H^f$ Assets $A^f$                                   | Education $i(j)$                                     | $H^i_t, H^{k_m}_t$<br>Joint $A^{i,k_m}_t$<br>Weight $\lambda^{i,k_m}$                                                                | Income $Y_t^i, Y_t^{k_m}$ All agents  Joint $A_t^{i,k^m}$ die  Weight $\lambda^{i,k_m}$                          |
| Shocks<br>Choice | HC Shock $\epsilon_i$ Education $i$ $(j)$ $i=1$ (low) $i=2$ (high) | Love Shock $	heta_{i,k_m}^t$ Marriage $k_m=0, j=1,2$ | Choice Shock $\epsilon_t^{i,km}$ Work: $M_t^i, M_t^{km}$ Home: $Q_t^i, Q_t^{km}$ Savings: $\rho_t^{i,km}$ Sharing Rule: $s_t^{i,km}$ | Choice Shock $\epsilon_t^{i,k_m}$ Home: $Q_t^i, Q_t^{k_m}$ Savings: $\rho_t^{i,k_m}$ Sharing Rule: $s_t^{i,k_m}$ |

- Utility from marriage: Economic component + love shock (Choo and Siow 2006)
- Individuals get married: Public good of home production, policy incentives (income tax, spousal benefits), insurance, preference for marriage
- ullet Pareto weight  $\lambda^{i,k_m}$  result of supply = demand ullet Marriage Clearing

## Jointness of Education and Marriage

|        | t=1<br>Males<br>Females          | t=2 Males of type $j$ Females of type $i$ | $\mathbf{t}= [3,t_w]$<br>Single Households<br>Married Households | $\mathbf{t} = [t_r, T]$<br>Single Households<br>Married Households                                                                 |
|--------|----------------------------------|-------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| State  | Human Capital $H^f$ Assets $A^f$ | Education $i(j)$                          | $H_t^i, H_t^{k_m}$<br>Joint $A_t^{i,k_m}$                        | $\begin{array}{ccc} \text{Income } Y_t^i, Y_t^{k_m} & \text{All agents} \\ & & \text{Joint } A_t^{i,k^m} & \text{die} \end{array}$ |
|        |                                  |                                           | Weight $\lambda^{i,k_m}$                                         | Weight $\lambda^{i,k_m}$                                                                                                           |
| Shocks | $i$ to shock $c_i$               | Love Shock $	heta^i_{i,k_m}$              | Choice Shock $\epsilon_t^{i,k_m}$                                | Choice Shock $\epsilon_t^{i,k_m}$                                                                                                  |
| Choice | Education $i(j)$                 | Marriage                                  | Work: $M_t^i, M_t^{k_m}$                                         | Home: $Q_t^i,Q_t^{ar{k}_m}$                                                                                                        |
|        | i=1  (low)                       | $k_m = 0, j = 1, 2$                       | Home: $Q_t^i, Q_t^{\check{k}_m}$                                 | Savings: $ ho_t^{i,k_m}$                                                                                                           |
|        | i=2 (high)                       |                                           | Savings: $ ho_t^{i,k_m}$                                         | Sharing Rule: $s_t^{i,k_m}$                                                                                                        |
|        | , ,                              |                                           | Sharing Rule: $s_t^{i,k_m}$                                      |                                                                                                                                    |

- Education ⇒ Labor Market + Marriage Market
- Marriage  $\Rightarrow$  Education

education ⇔ marriage

► Individual's Problem

▶ Kev Mechanisms

### Estimation

#### Estimation

- Data: PSID, HRS Data Key Statistics
- Parameters to estimate  $(\theta)$ : Outside Parameters
  - Utility:  $\eta_C, \beta_Q, \eta_Q, \beta_L, \eta_L$
  - Home Production:  $\{\Gamma^i\}_{i=1,2}, \{\Gamma^j\}_{j=1,2}, \{\tilde{\Gamma}_i\}_{i=1,2}, \Gamma_{i=j}, \alpha$
  - Fixed Costs:  $FC_{ft}^f, FC_{pt}^f, FC_{pt}^m, FC_{ft}^m$
- Semi-parametric identification (Magnac and Thesmar, 2002) + Identification of  $\lambda$  (Gayle and Shephard, 2019) Identification
- Two-step estimation ► Estimation Details
- Summary of Estimates: Summary
  - High gains from homogamy in marriage
  - Fixed costs higher for females than males
  - Higher Pareto weights for college educated

#### Model Fit.







### Model Fit



### Counterfactuals

## Tax and Retirement Policy Implications

- Decomposition: With and Without Marriage Channel
  - Focus on payroll taxes
- Effect of tax and retirement policy on:
  - Education
  - Marriage

| Model                                                       | College   | Single    | Married LFPR |        | Single LFPR        |      |
|-------------------------------------------------------------|-----------|-----------|--------------|--------|--------------------|------|
|                                                             |           |           | Female       | Male   | Female             | Male |
| Baseline                                                    | 0.52      | 0.32      | 0.54         | 0.78   | 0.87               | 0.84 |
| Increasing Payroll                                          | Taxes Pro | oportiona | itely by 50  | 0% (6% | $\rightarrow 9\%)$ |      |
| Without Marriage $(\Delta\%)$<br>With Marriage $(\Delta\%)$ |           |           |              |        |                    |      |

• Percent difference from the baseline

| Model                                                       | College   | Single    | Married LFPR Sir |        | Single I           | ngle LFPR |  |
|-------------------------------------------------------------|-----------|-----------|------------------|--------|--------------------|-----------|--|
|                                                             |           |           | Female           | Male   | Female             | Male      |  |
| Baseline                                                    | 0.52      | 0.32      | 0.54             | 0.78   | 0.87               | 0.84      |  |
| Increasing Payroll                                          | Taxes Pro | oportiona | itely by 50      | 0% (6% | $\rightarrow 9\%)$ |           |  |
| Without Marriage $(\Delta\%)$<br>With Marriage $(\Delta\%)$ | 1.65      |           |                  | 3.10   |                    | 0.35      |  |

- Percent difference from the baseline
- Fan, Seshadri, Taber (2019): College ↑ 2.6%; Male LFPR ↑ 3.1%

| Model                                                       | College   | Single    | Married LFPR |        | Single LFPR        |      |
|-------------------------------------------------------------|-----------|-----------|--------------|--------|--------------------|------|
|                                                             |           |           | Female       | Male   | Female             | Male |
| Baseline                                                    | 0.52      | 0.32      | 0.54         | 0.78   | 0.87               | 0.84 |
| Increasing Payroll                                          | Taxes Pro | oportiona | itely by 50  | 0% (6% | $\rightarrow 9\%)$ |      |
| Without Marriage $(\Delta\%)$<br>With Marriage $(\Delta\%)$ | 1.65      | 3.47      | -0.85        | 3.10   | 0.52               | 0.35 |

- Percent difference from the baseline
- Fan, Seshadri, Taber (2019): College ↑ 2.6%; Male LFPR ↑ 3.1%

| Model                                                       | College      | Single    | Married LFPR |        | Single LFPR        |      |
|-------------------------------------------------------------|--------------|-----------|--------------|--------|--------------------|------|
|                                                             |              |           | Female       | Male   | Female             | Male |
| Baseline                                                    | 0.52         | 0.32      | 0.54         | 0.78   | 0.87               | 0.84 |
| Increasing Payroll                                          | Taxes Pro    | oportiona | itely by 50  | 0% (6% | $\rightarrow 9\%)$ |      |
| Without Marriage $(\Delta\%)$<br>With Marriage $(\Delta\%)$ | 1.65<br>0.08 | 3.47      | -0.85        | 3.10   | 0.52               | 0.35 |

- Percent difference from the baseline
- Fan, Seshadri, Taber (2019): College ↑ 2.6%; Male LFPR ↑ 3.1%

| Model                                                       | College      | Single        | Married LFPR |        | Single LFPR        |      |
|-------------------------------------------------------------|--------------|---------------|--------------|--------|--------------------|------|
|                                                             |              |               | Female       | Male   | Female             | Male |
| Baseline                                                    | 0.52         | 0.32          | 0.54         | 0.78   | 0.87               | 0.84 |
| Increasing Payroll                                          | Taxes Pro    | oportiona     | itely by 50  | 0% (6% | $\rightarrow 9\%)$ |      |
| Without Marriage $(\Delta\%)$<br>With Marriage $(\Delta\%)$ | 1.65<br>0.08 | 3.47<br>-1.18 | -0.85        | 3.10   | 0.52               | 0.35 |

- Percent difference from the baseline
- Fan, Seshadri, Taber (2019): College ↑ 2.6%; Male LFPR ↑ 3.1%

| Model                                                       | College      | Single        | Married LFPR   |              | Single LFPR        |              |
|-------------------------------------------------------------|--------------|---------------|----------------|--------------|--------------------|--------------|
|                                                             |              |               | Female         | Male         | Female             | Male         |
| Baseline                                                    | 0.52         | 0.32          | 0.54           | 0.78         | 0.87               | 0.84         |
| Increasing Payroll                                          | Taxes Pro    | oportiona     | itely by 50    | 0% (6%       | $\rightarrow 9\%)$ |              |
| Without Marriage $(\Delta\%)$<br>With Marriage $(\Delta\%)$ | 1.65<br>0.08 | 3.47<br>-1.18 | -0.85<br>-0.54 | 3.10<br>0.99 | 0.52<br>0.52       | 0.35<br>0.65 |

- Percent difference from the baseline
- Fan, Seshadri, Taber (2019): College ↑ 2.6%; Male LFPR ↑ 3.1%

| Model                                                       | College      | Single        | Married LFPR   |              | Single LFPR        |              |
|-------------------------------------------------------------|--------------|---------------|----------------|--------------|--------------------|--------------|
|                                                             |              |               | Female         | Male         | Female             | Male         |
| Baseline                                                    | 0.52         | 0.32          | 0.54           | 0.78         | 0.87               | 0.84         |
| Increasing Payroll                                          | Taxes Pro    | oportiona     | itely by 50    | 0% (6%       | $\rightarrow 9\%)$ |              |
| Without Marriage $(\Delta\%)$<br>With Marriage $(\Delta\%)$ | 1.65<br>0.08 | 3.47<br>-1.18 | -0.85<br>-0.54 | 3.10<br>0.99 | 0.52<br>0.52       | 0.35<br>0.65 |

- Two-fold returns to education: Labor-market and marriage market
- Mechanism: More household specialization ⇒ ↓ female bargaining power ⇒ ↓ singlehood rates
- Endogenous marriage and decision making within household crucial to understanding tax implications

# Tax and Retirement Policy Implications

- Decomposition: With and Without Marriage Channel
  - Focus on payroll taxes
- Effect of tax and retirement policy on:
  - Education
  - Marriage

# Tax and Retirement Policy Analysis

- 1. Payroll Tax: ↑ by 50 %
- 2. No Spousal Benefits
- 3. No Joint Income Taxation
- 4. Marriage Neutral System

# Tax and Retirement Policy Analysis





# Tax and Retirement Policy Analysis: No Spousal Benefits



Retirement earnings ↓ ⇒ Lower income; benefit of marriage removed

# Tax and Retirement Policy Analysis: No Spousal Benefits



Household specialization 
 ↓ education, marriage to college males 
 ↑

# Tax and Retirement Policy Analysis: No Joint Income Taxation



Household specialization ↓ ⇒ Rise in NC-NC matches

# Tax and Retirement Policy Analysis: Marriage Neutral Policy



 $\bullet$  Household specialization  $\Downarrow \Rightarrow$  Rise in marriage to college males

#### Conclusion

- How do changes in tax and retirement policy affect education and marriage?
- Develop a dynamic discrete choice model with endogenous education and marriage
- Estimate the model for 1940-49 cohort using PSID and HRS
- Increasing payroll taxes  $\implies$  no change on college,  $\downarrow$  single
- ullet Removing spousal benefits, joint IT  $\Longrightarrow \downarrow$  household specialization

Endogenous marriage and decision making within household crucial to understanding tax implications

Thank You!

# College At



# College At . .



1 A /I

Fall in Ma



Stronger F



Change in Market Hours 1000 1500 

agegrp

Change in '





### Inequality Trends



Source: CPS Data. Note: The above data is for 1940-49 cohort, for heads in the age group of 65-69 years. Quintiles are assigned separately for each cohort on the basis of equivalent household income (taking into account the number of household members, using an equivalence scale ( $\sqrt{\text{Number of Adults}} + 0.5*\text{Number of Children}$ )

# Stage 1: Education

$$\begin{split} V^S(H_1,\epsilon_1;\lambda_1,\mathbf{X}) &= \max_{k_1 \in K_1} \, u^S(C_1) + \epsilon_{k_1}^S \\ &+ \beta \sum_{H_2} V^1(H_2;\lambda_1,\mathbf{X}) F(H_2|H_1,I_1) \\ \text{subject to: } M_1 + I_1 &= 1 \\ C_1 &= Y_1(H_1,M_1,FC,t) \\ H_2 &= (1-\delta)H_1 + (I_1H_1)^\alpha \end{split}$$

# Stage 3: Work

$$V_2^C(H_2^1, H_2^2, A_2, \epsilon_2; \lambda_1 \mathbf{X}) = \max_{k_2 \in K_2} \lambda_1 u^1(L_2^1, C_2, C_2^Q; \mathbf{X}^1)$$

$$+ (1 - \lambda_1) u^2(L_2^2, C_2, C_2^Q; \mathbf{X}^2) + \epsilon_{k_2}^C$$

$$+ \beta \sum_{H_3^1, H_3^2, A_3} V_3^C(H_3^1, H_3^2, A_3; \lambda_1, \mathbf{X}) F(H_3^1, H_3^2, A_3 | H_2^1, H_3^1, A_2, k_2 = 1)$$
(1)

subject to: 
$$M_2^1 + Q_2^1 + L_2^1 = 1$$
 (2)

$$M_2^2 + Q_2^2 + L_2^2 = 1 (3)$$

$$H_3^1 = (1 - \sigma)H_2^1 + (M_2^1 H_2^1)^{\alpha} \tag{4}$$

$$H_3^2 = (1 - \sigma)H_2^2 + (M_2^2 H_2^2)^{\alpha}$$
(5)

$$A_3 + C_2 = Y_2(H_2^1, M_2^1, FC, t) + Y_2(H_2^2, M_2^2, FC, t) + (1+r)A_2$$
(6)

$$C_2^Q = \zeta(\mathbf{X}) f(Q_2^1, Q_2^2)$$
 (7)

# Individual's Problem - Retirement (Single)

$$\begin{aligned} \max_{k_4 \in K_4} \, u^S(L_4, C_4, C_4^Q; \mathbf{X}) + \beta V_5^S(A_5; \mathbf{X}) + \epsilon_{k_4}^S \\ \text{subject to: } & Q_4 + L_4 = 1 \\ & Y_4 = F_{ss}(Y_3(H_3)) \\ & C_4 + A_5 = Y_4 + (1+r)A_4 \\ & C_4^Q = \zeta(\mathbf{X})Q_4 \end{aligned}$$

#### Value Functions - Households

$$\begin{split} &V_2^{C,1}(H_2^1, H_2^2, A_2; \lambda_1, \mathbf{X}) = \sigma_{\epsilon} \gamma + \sum_k p_2^k (H_2^1, H_2^2, A_2; \lambda_1, \mathbf{X}) \\ & \left[ v_k^{C,1}(L_2^1, L_2^2, Q_2^1, Q_2^2, H_2^1, H_2^2, A_2; \mathbf{X}) \right. \\ & \left. - \sigma_{\epsilon} \log(p_2^k (H_2^1, H_2^2, A_2; \lambda_1, \mathbf{X}))) \right] \\ & V_2^{C,2}(H_2^1, H_2^2; \lambda_1, \mathbf{X}) = \sigma_{\epsilon} \gamma + \sum_k p_2^k (H_2^1, H_2^2, A_2; \lambda_1, \mathbf{X}) \\ & \left[ v_k^{C,2}(L_2^1, L_2^2, Q_2^1, Q_2^2, H_2^1, H_2^2, A_2; \mathbf{X}) \right. \\ & \left. - \sigma_{\epsilon} \log(p_2^k (H_2^1, H_2^2, A_2; \lambda_1, \mathbf{X}))) \right] \end{split}$$

# Conditional Choice Probability

• As errors are Type 1 EV:

$$p_k(x; \mathbf{X}) = \frac{\exp(v_k(x)/\sigma_{\epsilon})}{\sum_{k'} \exp(v_{k'}(x)/\sigma_{\epsilon})}$$
$$\log\left(\frac{p_k(x; \mathbf{X})}{p_1(x; \mathbf{X})}\right) = \frac{1}{\sigma_{\epsilon}} [v_k(x) - v_1(x)]$$

Arcidiacono and Miller (2011)

# Moments at Optimal

| Moments | At Optimal |  |  |
|---------|------------|--|--|
| 1       | -0.17      |  |  |
| 2       | 0.05       |  |  |
| 3       | 0.04       |  |  |
| 4       | -0.30      |  |  |
| 5       | 0.01       |  |  |
| 6       | 4.88       |  |  |

## Set Parameters

| Parameter | Description              | Value        |  |
|-----------|--------------------------|--------------|--|
| $\beta$   | Discount Factor          | 0.95         |  |
| $b_1$     | Bequest Function         | 5.00         |  |
| $b_2$     | Bequest Function         | 0.00         |  |
| r         | Rate of Return           | 0.05         |  |
| t         | Payroll Tax              | 0.06         |  |
| $A_0$     | Initial Assets           | 0.00         |  |
| $FC_f$    | Fixed Cost, Female       | 1.50         |  |
| $FC_m$    | Fixed Cost, Male         | 1.00         |  |
| $bp_1$    | Social Security Function | 1.11         |  |
| $bp_2$    | Social Security Function | 6.69         |  |
| cap       | Social Security Function | 3.49         |  |
| $w_1^f$   | Wages, Female            | [14.6, 25.4] |  |
| $w_1^m$   | Wages, Male              | [20.9, 34.9] |  |

### **Estimates**

| Parameter                                    | Туре                     | Estimate |
|----------------------------------------------|--------------------------|----------|
| $\eta_Q$                                     | Utility Parameter        | 0.10     |
| $\eta_L$                                     | <b>Utility Parameter</b> | 1.15     |
| $eta_Q$                                      | <b>Utility Parameter</b> | 1.21     |
| $eta_L$                                      | <b>Utility Parameter</b> | 1.46     |
| $\alpha$                                     | Home Production          | 0.76     |
| $\eta_C$                                     | <b>Utility Parameter</b> | 2.16     |
| $\Gamma_1^f$                                 | Home Production          | 15.11    |
| $\Gamma_2^{	ilde f}$                         | Home Production          | 14.09    |
| $\Gamma_2^m$                                 | Home Production          | 13.40    |
| $\Gamma_1^{c,f}$ $\Gamma_2^{c,f}$ $\Gamma^h$ | Home Production          | 2.03     |
| $\Gamma_2^{c,f}$                             | Home Production          | 1.40     |
| $\Gamma^{ar{h}}$                             | Home Production          | 1.92     |
| $\sigma_n$                                   | Marriage                 | 1.00     |
| $FC_{pt}^f$                                  | Fixed Costs              | 8.09     |
| $FC_{pt}^m$                                  | Fixed Costs              | 1.39     |
| $FC_{ft}^f$                                  | Fixed Costs              | 17.40    |
| $FC_{ft}^m$                                  | Fixed Costs              | 4.64     |

# Value Functions - Singles

$$\begin{split} V_4^{S,i}(Y_3^i,A_4^i,&\epsilon_{\mathbf{k_4}};\mathbf{X^i}) = \max_{k_4^i \in K_4^i} u^{S,i}(C_4^i,C_4^{Q,i},L_4^i;\mathbf{X^i}) \\ &+ \beta V_5^{S,i}(A_5^i;\mathbf{X^i}) + \epsilon_{k_4^i} \\ \text{subject to: } Q_4^i + L_4^i = 1 \\ & C_4^i + A_5^i = Y_4^i = F_{ss}^S(Y_3^i) + (1+r)A_4^i \\ & C_4^i = (1-\rho_4^i)Y_4^i \\ & C_4^{Q,i} = \zeta_i(\mathbf{X^i})Q_4^i \end{split}$$

k:L (Leisure), Q (Home Production), M (Market Time),  $\rho$  (Savings Rate)

# Value Functions - Married Couples

$$\begin{split} V_4^{C,ij}(Y_3^i,Y_3^j,A_4^{ij},&\epsilon_{\pmb{k_4}}^{\pmb{C}};\lambda_{ij},\mathbf{X^i},\mathbf{X^j}) = \max_{k_4^{ij} \in K_4^{ij}} \lambda_{ij} u^{C,i}(C_4^i,C_4^{Q,ij},L_4^i;\mathbf{X^i}) \\ &+ (1-\lambda_{ij}) u^{C,j}(C_4^j,C_4^{Q,ij},L_4^j;\mathbf{X^j}) \\ &+ \epsilon_{k_4^{ij}}^C + \beta V_5^{C,ij}(A_5^{ij};\mathbf{X^i},\mathbf{X^j}) \end{split}$$
 subject to:  $Q_4^i + L_4^i = 1; \qquad Q_4^j + L_4^j = 1$  
$$C_4^{ij} + A_5^{ij} = Y_4^{ij} = F_{ss}^C(Y_3^i,Y_3^j) + (1+r)A_4^{ij}$$
 
$$C_4^{ij} = (1-\rho_4^{ij})Y_4^{ij}$$
 
$$C_4^i + C_4^j = C_4^{ij}; \qquad C_4^i = s_{ij}C_4^i$$
 
$$C_4^{Q,ij} = \zeta_{ij}(\mathbf{X^i},\mathbf{X^j})f_Q(Q_4^i,Q_4^j) \end{split}$$

k:L (Leisure), Q (Home Production), M (Market Time),  $\rho$  (Savings Rate)

# Value Functions - Married Co

$$V_2^{C,ij}(H_2^i, H_2^j, A_2^{ij}, \boldsymbol{\epsilon_{k_3}^C}; \lambda_{ij}, \mathbf{X^i}, \mathbf{X^j}) = \max_{k_2^{ij} \in K_2^{ij}} \lambda_{ij} u^{C,i}(C_2^i, C_2^{Q,ij}, L_2^i; \mathbf{X^i})$$

$$+ (1 - \lambda_{ij}) u^{C,j}(C_2^j, C_2^{Q,ij}, L_2^j; \mathbf{X^j}) + \epsilon_{bij}^C$$

$$V_2^{\mathcal{C},ij}(H_2^i,H_2^j,A_2^{ij},\boldsymbol{\epsilon_{k_3}^{\mathcal{C}}};\lambda_{ij},\mathbf{X^i},\mathbf{X^j})$$

 $C_2^{ij} = (1 - \rho_2^{ij}) Y_2^{ij}$ 

$$\lambda_{ij}, \mathbf{X^i}, \mathbf{X^j})$$
 =

 $+ \beta \mathbb{E}_{H_3^i, H_3^j, A_3^{ij}} \left[ V_3^{C, ij} (H_3^i, H_3^j, A_3^{ij}; \lambda_{ij}, \mathbf{X^i}, \mathbf{X^j}) \right]$ 

subject to:  $M_2^i + Q_2^i + L_2^i = 1$ ;  $M_2^j + Q_2^j + L_2^j = 1$  $H_2^i = (1 - \sigma)H_2^i + (M_2^i H_2^i)^{\alpha}$  $H_2^j = (1 - \sigma)H_2^j + (M_2^j H_2^j)^{\alpha}$ 

> $C_2^i + C_2^j = C_2^{ij}; C_2^i = s_{ii}C_2^{ij}$  $C_2^{Q,ij} = \zeta_{ij}(\mathbf{X^i}, \mathbf{X^j}) f_Q(Q_2^i, Q_2^j)$

couples 
$$(\mathbf{X}^{\mathbf{i}}, \mathbf{X}^{\mathbf{j}}) =$$



| ou | p  | les |  |
|----|----|-----|--|
| -  | Γ. |     |  |

 $C_2^{ij} + A_3^{ij} = Y_2^{ij} = y_2^i (H_2^i, M_2^i, FC^i, \tau) + y_2^j (H_2^j, M_2^j, FC^j, \tau) + (1+r)A_2^{ij}$ 

 $k \cdot L$  (Leisure) O (Home Production) M (Market Time) o (Savings Rato) Ref

# Value Functions - Marriage

$$V^{f,2}(H_2^i, A_2^i, \boldsymbol{\theta^{i,g}}; \mathbf{X^i}) = \max_{k_2^i} \left\{ V_2^{S,i}(H_2^i, A_2^i, \boldsymbol{\epsilon_{k_2}}; \mathbf{X^i}) + \theta_{i0}^{i,g}, \right.$$
$$\left. \left\{ V_2^{C,i}(H_2^i, H_2^j, A_2^{ij}, \boldsymbol{\epsilon_{k_3}^C}; \lambda_{ij}, \mathbf{X^i}, \mathbf{X^j}) + \theta_{ir}^{i,g} \right\}_{r = \forall j \in J} \right\} \right\}$$

#### Value Functions - Education

$$\begin{split} V^f(H_1^f, \pmb{\epsilon_{k_1}^f}; \mathbf{X^f}) &= \max_{k_1^f \in K_1^f} u^f(C_1^f) + \pmb{\epsilon_{k_1^f}^f} + \beta \mathbb{E}_{H_2^i} \Bigg[ V^{f,2}(H_2^i; \mathbf{X^i}) \Bigg] \\ \text{subject to: } M_1^f + I_1^f &= 1 \\ C_1^f &= y_1^f(H_1^f, M_1^f, FC^f, \tau) \\ H_2^f &= (1 - \delta) H_1^f + (I_1^f H_1^f)^\alpha \end{split}$$

#### Value Functions - Households

 $H_2^1, H_2^2, A_3$ 

Retirement: 
$$V_4^C(Y_4^1, Y_4^2, A_4, \epsilon_4^C; \lambda_1, \mathbf{X}) = \max_{k_4 \in K_4} \lambda_1 u^1(L_4^1, C_4^1, C_4^Q; \mathbf{X}^1)$$
  
  $+ (1 - \lambda_1) u^2(L_4^2, C_4^2, C_4^Q; \mathbf{X}^2) + \beta V_5^C(A_5; \lambda_1, \mathbf{X}) + \epsilon_{k_4}^C$   
 $\underline{\mathbf{T}} = 3: \text{Work} \quad V_3^C(H_3^1, H_3^2, A_3, \epsilon_3; \lambda_1, \mathbf{X}) = \max_{k_3 \in K_3} \lambda_1 u^1(L_3^1, C_3, C_3^Q; \mathbf{X}^1)$   
 $+ (1 - \lambda_1) u^2(L_3^2, C_3, C_3^Q; \mathbf{X}^2) + \epsilon_{k_3}^C$   
 $+ \beta \sum_{Y_4, A_4} V_4^C(Y_4^1, Y_4^2; \lambda_1, \mathbf{X}) F(Y_4^1, Y_4^2, A_4 | Y_3^1, Y_3^2, A_3, k_3 = 1)$   
 $\underline{\mathbf{T}} = 2: \text{Work} \quad V_2^C(H_2^1, H_2^2, A_2, \epsilon_2; \lambda_1, \mathbf{X}) = \max_{k_2 \in K_2} \lambda_1 u^1(L_2^1, C_2^1, C_2^Q; \mathbf{X}^1)$   
 $+ (1 - \lambda_1) u^2(L_2^2, C_2^2, C_2^Q; \mathbf{X}^1) + \epsilon_{k_2}^C$   
 $+ \beta \sum_{Y_4, X_4} V_3^C(H_3^1, H_3^2, A_3; \lambda_1, \mathbf{X}) F(H_3^1, H_3^2, A_3 | H_2^1, H_3^1, A_2, k_2 = 1)$ 

• Let  $V^{C,1}_t(.)$  be the married female value function and  $V^{C,2}_t(.)$  be the married male value function (Equation (Back))

# Value Functions - Education and Marriage

#### Marriage:

$$V^{1}(H_{2}; \lambda_{1}, \mathbf{X}) = \max_{j} \{V_{2}^{S}(H_{2}, A_{2}; \mathbf{X}) + \theta_{i0}^{i,g}, \{V_{2}^{C,1}(H_{2}, r; \lambda_{1}, \mathbf{X}) + \theta_{ir}^{i,g}\}_{r = \forall H_{2}^{2}}\}$$

$$V^{2}(H_{2}; \lambda_{1}, \mathbf{X}) = \max_{i} \{V_{2}^{S}(H_{2}, A_{2}; \mathbf{X}) + \theta_{j0}^{j,g}, \{V_{2}^{C,2}(r, H_{2}; \lambda_{1}, \mathbf{X}) + \theta_{rj}^{j,g}\}_{r = \forall H_{2}^{2}}\}$$

#### **Education**:

$$V^{f}(H_{1}, \epsilon_{1}; \lambda_{1}, \mathbf{X}) = \max_{k_{1} \in K_{1}} u^{S}(C_{1}) + \epsilon_{k_{1}}^{S}$$
$$+ \beta \sum_{H_{2}} V^{1}(H_{2}; \lambda_{1}, \mathbf{X}) F(H_{2}|H_{1}, I_{1})$$
$$V^{m}(H_{1}, \epsilon_{1}; \lambda_{1}, \mathbf{X}) = \max_{k_{1} \in K_{1}} u^{S}(C_{1}) + \epsilon_{k_{1}}^{S}$$
$$+ \beta \sum_{H_{2}} V^{2}(H_{2}; \lambda_{1}, \mathbf{X}) F(H_{2}|H_{1}, I_{1})$$

# Divorced and Widowed Form Major Chunk of Single Females





(a) Non-Hispanic White

(b) Black



#### Inherent Bias in Benefits



### LHS and HS Worst Off





# Single Females Worst Off

|                | Obs.                         | Zero (%) | Reliance (%) | Mean    | Median  | S.D.    |
|----------------|------------------------------|----------|--------------|---------|---------|---------|
| 1940-49        | 40536                        | 17.8     | 23.0         | 16779.9 | 15986.6 | 12696.8 |
| By Marital Sta | By Marital Status and Gender |          |              |         |         |         |
| Single Female  | 12300                        | 19.0     | 29.4         | 12303.9 | 12382.4 | 9162.1  |
| Single Male    | 6142                         | 20.0     | 31.2         | 13233.1 | 13890.8 | 9647.2  |
| Married        | 22094                        | 16.6     | 17.1         | 20257.7 | 20850.7 | 14015.3 |

**◆** Back

# Low Educated Most Reliant on Social Security

|                       | Obs.  | Zero (%) | Reliance (%) | Mean    | Median  | S.D.    |
|-----------------------|-------|----------|--------------|---------|---------|---------|
| By Education          |       |          |              |         |         |         |
| Less than High School | 5427  | 17.7     | 38.5         | 13465.2 | 12175.1 | 10597.8 |
| High School           | 13073 | 14.5     | 27.8         | 17221.7 | 16402.5 | 11968.9 |
| Some College          | 10435 | 15.6     | 21.6         | 17408.3 | 16636.2 | 12456.5 |
| College               | 11601 | 23.6     | 11.5         | 17267.3 | 17024.5 | 14277.2 |

# Nearly Half of Single, Low Educated Females Rely on Social Security Obs. Zero (%) Reliance (%) Mean Median S.D.

| By Education,  | Marital S | tatus and | l Gender |         |         |         |
|----------------|-----------|-----------|----------|---------|---------|---------|
| Less than High | School    |           |          |         |         |         |
| Single Female  | 1893      | 18.8      | 43.1     | 9893.9  | 9931.0  | 7520.4  |
| Single Male    | 1034      | 18.6      | 48.7     | 11359.2 | 11364.8 | 8596.4  |
| Married        | 2500      | 16.6      | 30.7     | 17040.5 | 16926.3 | 12091.8 |
| High School    |           |           |          |         |         |         |
| Single Female  | 4150      | 16.1      | 34.6     | 12584.4 | 12626.5 | 8746.6  |
| Single Male    | 1992      | 17.0      | 35.9     | 13755.1 | 14594.3 | 9161.6  |
| Married        | 6931      | 12.7      | 21.5     | 20994.7 | 21844.2 | 13028.2 |
| Some College   |           |           |          |         |         |         |
| Single Female  | 3422      | 17.1      | 27.0     | 12923.6 | 13277.7 | 9017.9  |
| Single Male    | 1548      | 17.9      | 29.1     | 14014.3 | 14769.4 | 9838.0  |
| Married        | 5465      | 14.1      | 16.2     | 21177.8 | 21756.2 | 13708.0 |
| College        |           |           |          |         |         |         |
| Single Female  | 2835      | 25.7      | 15.7     | 12754.3 | 13521.5 | 10569.7 |
| Single Male    | 1568      | 26.8      | 15.8     | 13034.3 | 14496.3 | 10512.4 |
| Married        | 7198      | 22.1      | 8.9      | 19966.9 | 20454.4 | 15533.0 |

# Rise in Dual Earner Couples for College-Educated, Relative to Single



#### Moments \_

| Moments             | Description                                            | Pins down                                  |
|---------------------|--------------------------------------------------------|--------------------------------------------|
| 1-8                 | Retirement, Couples,<br>Home Production and<br>Leisure | $\eta_Q, \eta_L, \beta_L, \beta_Q, \alpha$ |
| 9                   | Retirement, Couples, Consumption                       | $\eta_C$                                   |
| 10-12, 13-15, 16-18 | Marriage market equations for males                    | $\lambda_{ij}, \Gamma_{ij}$                |
| 19-21, 22-24, 25-27 | Marriage market equations for females                  | $\lambda_{ij}, \Gamma_{ij}$                |
| 28-29, 30-31        | Retirement, Singles                                    | $\Gamma_1,\Gamma_2$                        |
| 32-40               | Equilibrium clearing for marriage market               | $\lambda_{ij}$                             |
| 41-49               | Equating model with data for marriage market, females  | $\sigma_{\eta}$                            |

Stage 4: Retirement
Couple's utility maximization problem:

$$\begin{split} V_4^{H,ij}(z_4^i, \boldsymbol{\epsilon_{k_4}^H}) &= \max_{k_4^{ij} \in K_4^{ij}, s_4^{ij} \in [0,1]} \lambda_{ij} u^{H,i}(C_4^i, C_4^{Q,ij}, L_4^i; \mathbf{X^i}) \\ &+ (1 - \lambda_{ij}) u^{H,j}(C_4^j, C_4^{Q,ij}, L_4^j; \mathbf{X^j}) \\ &+ \boldsymbol{\epsilon_{k_4^{ij}}^H} + \beta \sum_{z' \in z_5^{ij}} V_5^{H,ij}(z') F(z'|z_4^{ij}, \lambda_{ij}, k_4^{ij} = 1) \end{split}$$
 subject to: 
$$Q_4^i + L_4^i = 1; \qquad Q_4^j + L_4^j = 1 \\ C_4^{ij} + A_5^{ij} = Y_4^{ij} = F_{ss}^C(Y_3^i, Y_3^j) + (1 + r) A_4^{ij} \\ C_4^{ij} = (1 - \rho_4^{ij}) Y_4^{ij} \\ C_4^i + C_4^j = C_4^{ij}; \qquad C_4^i = s_4^{ij} C_4^{ij} \\ C_4^{Q,ij} = \zeta_{ii}(\mathbf{X^i}, \mathbf{X^j}) f_O(Q_4^i, Q_2^j) \end{split}$$

•  $\lambda_{ij}$ : Pareto weight of Female;  $s_{A}^{ij}$ : Share of consumption to female Back

#### Stage 3: Work-Life

$$\begin{split} V_t^{H,ij}(z',\lambda_{ij}, \pmb{\epsilon}_{\pmb{k_t}}^{\pmb{H}}) &= \max_{k_t^{ij} \in K_t^{ij}, s_t^{ij} \in [0,1]} \lambda_{ij} u^{H,i}(C_t^i, C_t^{Q,ij}, L_t^i; \mathbf{X^i}) + \epsilon_{k_t^{ij}}^{H} \\ &+ (1-\lambda_{ij}) u^{H,j}(C_t^j, C_t^{Q,ij}, L_t^j; \mathbf{X^j}) + \beta \sum_{z' \in z_t^{ij}} V_{t+1}^{H,ij}(z',\lambda_{ij}) F(z'|z_t^{ij},\lambda_{ij}, k_t^{ij} = 1) \\ \text{subject to: } M_t^i + Q_t^i + L_t^i = 1; \qquad M_t^j + Q_t^j + L_t^j = 1 \\ H_{t+1}^i &= (1-\sigma) H_t^i + (M_t^i H_t^i)^{\alpha_2} \\ H_{t+1}^j &= (1-\sigma) H_t^j + (M_t^j H_t^j)^{\alpha_2} \\ C_2^{ij} + A_{t+1}^{ij} &= Y_t^{ij} = y_t^i (H_t^i, M_t^i, FC^i, \tau) \\ &+ y_t^j (H_t^j, M_t^j, FC^j, \tau) + (1+r) A_t^{ij} \\ C_t^i &= (1-\rho_t^{ij}) Y_t^{ij} \\ C_t^i + C_t^j &= C_t^{ij}; \qquad C_t^i = s_t^{ij} C_t^{ij} \\ C_t^{Q,ij} &= \zeta_{ij} (\mathbf{X^i}, \mathbf{X^j}) f_Q(Q_t^i, Q_t^j) \end{split}$$

# Summary Statistics - PSID

| Variable                | Overall     | Sir         | gle         | Mar          | ried       |
|-------------------------|-------------|-------------|-------------|--------------|------------|
|                         |             | Male        | Female      | Male         | Female     |
| Number of Individuals   |             | 583.00      | 721.00      | 1590.00      | 1590.00    |
|                         |             | [0.00]      | [0.00]      | [0.00]       | [0.00]     |
| Education               | 11.94       | 10.57       | 11.02       | 12.45        | 12.40      |
|                         | [3.87]      | [4.96]      | [4.21]      | [3.80]       | [3.44]     |
| Married                 | 0.71        | 0.00        | 0.00        | 1.00         | 1.00       |
|                         | [0.45]      | [0.00]      | [0.00]      | [0.00]       | [0.00]     |
| Father's Income         | 42150.82    | 38477.03    | 30854.45    | 43703.29     | 45385.57   |
|                         | [18138.14]  | [9190.38]   | [7902.02]   | [13539.98]   | [19813.54  |
| Income (25-50)          | 19839.74    | 35096.82    | 18591.55    | 51197.12     | 17325.61   |
| , ,                     | [14746.15]  | [15683.81]  | [12808.58]  | [30493.56]   | [13234.17  |
| Income (51-64)          | 27848.86    | 32411.39    | 26211.59    | 58615.45     | 27383.61   |
| , ,                     | [27780.20]  | [29978.30]  | [27980.90]  | [69538.00]   | [27240.38  |
| Hours Worked (25-50)    | 1160.94     | 1807.35     | 1138.91     | 2048.19      | 1047.43    |
| , ,                     | [533.61]    | [322.19]    | [508.91]    | [475.32]     | [484.06]   |
| Hours Worked (51-62)    | 1317.86     | 1368.71     | 1255.79     | 1792.42      | 1322.61    |
| , ,                     | [625.39]    | [670.45]    | [601.40]    | [668.62]     | [621.35]   |
| Housework Hours (25-50) | 707.94      | 126.20      | 410.41      | 236.87       | 882.05     |
|                         | [546.21]    | [117.28]    | [331.70]    | [174.03]     | [530.00]   |
| Housework Hours (51-62) | 849.78      | 302.91      | 722.98      | 363.29       | 978.79     |
|                         | [393.82]    | [140.57]    | [241.94]    | [186.13]     | [355.99]   |
| Consumption (25-50)     | 27807.17    | 24568.12    | 24235.92    | 29210.70     | 29210.70   |
|                         | [6612.80]   | [4739.10]   | [5110.36]   | [6698.27]    | [6698.27]  |
| Consumption (51-62)     | 26109.40    | 22575.67    | 21063.84    | 27901.23     | 27901.23   |
|                         | [7557.15]   | [5000.69]   | [5721.72]   | [7568.77]    | [7568.77]  |
| Assets (25-50)          | 116425.66   | 82404.30    | 76894.42    | 131625.82    | 131625.82  |
|                         | [239363.43] | [69147.71]  | [120696.60] | [275405.24]  | [275405.24 |
| Assets (51-62)          | 349650.38   | 247748.01   | 176935.25   | 407492.11    | 407492.13  |
|                         | [930155.48] | [280001.70] | [342206.49] | [1080535.66] | [1080535.6 |

# Summary Statistics - HRS

| Variable                | Overall      | Sin          | gle         | Mar          | ried       |
|-------------------------|--------------|--------------|-------------|--------------|------------|
|                         |              | Male         | Female      | Male         | Female     |
| Number of Individuals   |              | 754.00       | 1286.00     | 2332.00      | 2332.00    |
|                         |              | [0.00]       | [0.00]      | [0.00]       | [0.00]     |
| Education               | 12.70        | 12.63        | 12.35       | 12.94        | 12.81      |
|                         | [3.08]       | [3.26]       | [3.18]      | [3.34]       | [3.02]     |
| Married                 | 0.70         | 0.00         | 0.00        | 1.00         | 1.00       |
|                         | [0.46]       | [0.00]       | [0.00]      | [0.00]       | [0.00]     |
| Income (51-62)          | 28356.86     | 36038.30     | 28067.68    | 38459.70     | 27194.79   |
|                         | [27129.64]   | [29265.12]   | [23152.98]  | [35558.05]   | [27590.53  |
| Income (63+)            | 13216.73     | 14461.83     | 9686.79     | 9452.46      | 13991.06   |
|                         | [22505.21]   | [18449.43]   | [14406.11]  | [17778.92]   | [24733.95  |
| Hours Worked (51-62)    | 875.02       | 1322.09      | 1054.22     | 1205.46      | 753.33     |
| ` '                     | [667.59]     | [851.79]     | [707.17]    | [790.73]     | [574.25]   |
| Hours Worked (63+)      | 357.66       | 523.91       | 256.99      | 279.42       | 358.70     |
|                         | [486.46]     | [633.32]     | [392.48]    | [452.71]     | [475.28]   |
| Housework Hours (51-62) | 1399.31      | 1074.22      | 1193.09     | 989.12       | 1508.73    |
| ` ′                     | [340.60]     | [193.72]     | [237.98]    | [234.48]     | [323.00]   |
| Housework Hours (63+)   | 1417.04      | 1169.02      | 1375.09     | 1111.12      | 1468.56    |
| , ,                     | [313.70]     | [229.15]     | [268.61]    | [264.45]     | [316.30]   |
| Leisure Hours (51-62)   | 3833.67      | 3936.25      | 3944.89     | 3687.29      | 3786.41    |
| , ,                     | [236.66]     | [165.76]     | [196.32]    | [164.45]     | [241.08]   |
| Leisure Hours (63+)     | 4252.55      | 4307.70      | 4334.70     | 4294.77      | 4220.98    |
| , ,                     | [290.58]     | [184.27]     | [250.82]    | [240.09]     | [308.55]   |
| Consumption (51-62)     | 61738.01     | 41964.26     | 40549.22    | 70777.07     | 70777.07   |
| , , ,                   | [23554.39]   | [12840.76]   | [13049.72]  | [21337.95]   | [21337.95  |
| Consumption (63+)       | 51600.71     | 34348.61     | 36498.08    | 58549.37     | 58549.37   |
| ,                       | [21868.38]   | [12648.69]   | [12985.59]  | [21352.58]   | [21352.58  |
| Assets (51-62)          | 522601.40    | 406539.79    | 264328.37   | 612577.72    | 612577.72  |
| . ,                     | [1057791.97] | [1776348.28] | [835431.94] | [937053.79]  | [937053.79 |
| Assets (63+)            | 807358.55    | 603522.19    | 359184.69   | 963947.11    | 963947.11  |
| • ,                     | [1572984.83] | [1796055.23] | [583808.87] | [1690330.61] | [1690330.6 |

#### Model Solution: Key CCPs

From marriage choice,

$$p^{f}(k_{2}^{m,i} = r | z_{2}^{i}, \boldsymbol{z_{2}^{m}}, \boldsymbol{\lambda^{i}}) = \frac{\exp[V_{2}^{H,i}(z_{2}^{ir}, \lambda_{ir})/\sigma_{\vartheta}]}{\exp[V_{2}^{S,i}(z_{2}^{i})/\sigma_{\vartheta}] + \sum_{r' \in J} \exp[V_{2}^{H,i}(z_{2}^{ir'}, \lambda_{ir'})/\sigma_{\vartheta}]}$$
$$= \frac{\mu_{ir}^{s}(\boldsymbol{z_{2}}, \lambda_{ir})}{f^{i}}$$

From education choice,

$$p^{f}(e_{1}^{f}|z_{1}^{f}, \boldsymbol{p}(\boldsymbol{e}_{1}), \boldsymbol{\mathcal{X}}^{c}, \boldsymbol{\theta}) = \frac{\exp[v^{f}(e_{1}^{f}, z_{1}^{f}, \boldsymbol{p}(\boldsymbol{e}_{1}), \boldsymbol{\mathcal{X}}^{c}, \boldsymbol{\theta}) / \sigma_{\epsilon}]}{\sum_{e' \in E_{1}^{f}} \exp[v^{f}(e', z_{1}^{f}, \boldsymbol{p}(\boldsymbol{e}_{1}), \boldsymbol{\mathcal{X}}^{c}, \boldsymbol{\theta})) / \sigma_{\epsilon}]}$$
$$= \frac{f_{i}(p^{f}(e_{1}^{f}|z_{1}^{f}))}{\mathcal{F}}$$

4 Rack

## Definition of Equilibrium

#### A stationary equilibrium consists of

- (i) conditional choice probabilities for single women  $p^{S,i}(k_t^i|z_t^i)$ , single men  $p^{S,j}(k_t^j|z_t^j)$  and married couples  $p^{H,ij}(k_t^{ij}|z_t^{ij},\lambda_{ij})$  for work-life and retirement (t=2,3,4), respectively;
- (ii) conditional choice probabilities of marriage for females  $p^f(k_2^{m,i}|z_2^i, \boldsymbol{z_2^m}, \boldsymbol{\lambda_i})$  and males  $p^m(k_2^{m,j}|z_2^j, \boldsymbol{z_2^m}, \boldsymbol{\lambda_j})$  (iii) conditional choice probability of education for females  $p^f(e_1^f|z_1^f, \boldsymbol{p(e_1)}, \boldsymbol{\mathcal{X}^c}), \boldsymbol{\theta})$  and males  $p^m(e_1^m|z_1^m, \boldsymbol{p(e_1)}, \boldsymbol{\mathcal{X}^c}), \boldsymbol{\theta})$ ;
- (iii) an optimal rule for the Pareto weight  $\pmb{\lambda}(\pmb{z_2}, \pmb{p}(e_1), \pmb{\mathcal{X}^c}), \pmb{\theta}$  and a sharing rule  $s_t^{ij,*}(\lambda_{ij})$

**■** Back

#### Estimation Strategy

- 1. For each set of parameters  $\theta$ , we first calculate the optimal  $\lambda$ . For each guess of  $\lambda$ ,
  - Calculate the probability of education for measure of males and females in each education category
  - Construct  $ED(\lambda_{ij}) = \mu_{ij}^d(\lambda_{ij}) \mu_{ij}^s(\lambda_{ij}) \ \forall i, j.$
  - We then construct a score which is the sum of squared errors of excess demand.
- 2. Iterate on this using two algorithms: DBCPOL and then DBCONF to get optimal  $\lambda(\theta)$ .
- 3. With optimal  $\lambda(\theta)$ , construct CCPs to calculate score
- 4. Iterate on heta to using DBCONF to find optimal heta

**∢** Back



| Female Education | Male Education |       |
|------------------|----------------|-------|
|                  | No Col Col     |       |
| No College       | 0.861          | 0.866 |
| College          | 0.870          | 0.875 |

▶ Back

1. 23 percent of individuals derive more than 3/4th of their income from social security (1940-49 cohort, 65-69 years)

- 1. 23 percent of individuals derive more than 3/4th of their income from social security (1940-49 cohort, 65-69 years)
- 2. For single females, 30 percent are reliant on social security, as compared to 17 percent for married individuals
  - Single females make up half of the poorest 25 percent

- 1. 23 percent of individuals derive more than 3/4th of their income from social security (1940-49 cohort, 65-69 years)
- 2. For single females, 30 percent are reliant on social security, as compared to 17 percent for married individuals
  - Single females make up half of the poorest 25 percent
- 3. 38 percent of individuals with less than high school educated depend on social security compared to 10 percent of college educated individuals ••• ••
  - Single, low educated are the worst-off

- 1. 23 percent of individuals derive more than 3/4th of their income from social security (1940-49 cohort, 65-69 years)
- 2. For single females, 30 percent are reliant on social security, as compared to 17 percent for married individuals
  - Single females make up half of the poorest 25 percent
- 3. 38 percent of individuals with less than high school educated depend on social security compared to 10 percent of college educated individuals •••
  - Single, low educated are the worst-off
- 4. Single-earner couples have fallen; for college educated, dual-earner couples have risen more than single individuals •

- 1. 23 percent of individuals derive more than 3/4th of their income from social security (1940-49 cohort, 65-69 years)
- 2. For single females, 30 percent are reliant on social security, as compared to 17 percent for married individuals
  - Single females make up half of the poorest 25 percent
- 3. 38 percent of individuals with less than high school educated depend on social security compared to 10 percent of college educated individuals ••• ••
  - Single, low educated are the worst-off
- 4. Single-earner couples have fallen; for college educated, dual-earner couples have risen more than single individuals •

Education and Marriage plays a key role in reducing reliance on Social Security Back

Estimates |

| Parameter                             | Туре                     | Estimate (1940) | Estimate (1970) |
|---------------------------------------|--------------------------|-----------------|-----------------|
| $\eta_Q$                              | Utility Parameter        | 0.97            | 0.97            |
| $\eta_L$                              | <b>Utility Parameter</b> | 1.50            | 1.50            |
| $eta_Q$                               | <b>Utility Parameter</b> | 2.46            | 2.46            |
| $eta_L$                               | <b>Utility Parameter</b> | 1.53            | 1.53            |
| $\alpha$                              | Home Production          | 0.37            | 0.58            |
| $\eta_C$                              | <b>Utility Parameter</b> | 2.40            | 2.40            |
| $\Gamma^f_{rac{1}{f}}$               | Home Production          | 2.57            | 4.48            |
| $\Gamma_2^{ar{f}}$                    | Home Production          | 3.16            | 2.04            |
| $\Gamma_2^{\overline{m}}$             | Home Production          | 3.86            | 2.19            |
| $\Gamma_1^{c,f}$                      | Home Production          | 2.23            | 1.44            |
| $\Gamma_2^{\widehat{c},f} \ \Gamma^h$ | Home Production          | 1.51            | 1.55            |
| $\Gamma^{ar{h}}$                      | Home Production          | 1.36            | 0.32            |
| $\sigma_n$                            | Marriage                 | 1.00            | 1.00            |
| $\mathbf{p}\alpha f$                  | F: 16 .                  | 0.70            |                 |

# Age at Marriage and Marriage Length





#### Retirement Age



#### Payroll Tax Parameters

| Variable                          | $Age\ 25-50$ | $Age\ 51-62$ |
|-----------------------------------|--------------|--------------|
| Cap on Earnings (in 1000 Dollars) | 75.53        | 104.97       |
| Payroll Tax                       | 5.31         | 6.20         |
| Medicare                          | 1.13         | 1.45         |

*Note:* These are calculated using Payroll Tax and Cap data from SSA. For ages 25-50 years, the years 1965-1999 are averaged and for ages 51-62 years, the ages 1991- 2011 are averaged.



#### Income Tax Parameters

| Variable                             | $Age\ 25-50$ | $Age\ 51-62$ |  |  |  |  |
|--------------------------------------|--------------|--------------|--|--|--|--|
| Married Couples                      |              |              |  |  |  |  |
| Income ≤65,000                       | 0.18         | 0.17         |  |  |  |  |
| Income $>$ 65,000 and $\leq$ 200,000 | 0.35         | 0.29         |  |  |  |  |
| Income $\geq 200,000$                | 0.53         | 0.36         |  |  |  |  |
| Single House                         | seholds      |              |  |  |  |  |
| Income ≤ 32,500                      | 0.16         |              |  |  |  |  |
| Income $>$ 32,500 and $\leq$ 100,000 | 0.32         |              |  |  |  |  |
| Income $\geq 100,\!000$              | 0.52         |              |  |  |  |  |
| Income $\leq 32,500$                 |              | 0.14         |  |  |  |  |
| Income $>$ 32,500 and $\leq$ 100,000 |              | 0.28         |  |  |  |  |
| Income $\geq 100,000$                |              | 0.36         |  |  |  |  |

Note: These are calculated using Income Tax Rates and Brackets over the years. For ages 25-50 years, the years 1965-1999 are averaged and for ages 51-62 years, the ages 1991- 2011 are averaged.

## Social Security Benefits

 90 percent of AIME ≤ Bend Point 1, 32 percent of AIME > Bend Point 1 and AIME ≤ Bend Point 2, 15 percent of AIME > Bend Point 2.

| Bend Point                     | Value |
|--------------------------------|-------|
| Bend Point 1 (in 1000 Dollars) | 9.75  |
| Bend Point 2 (in 1000 Dollars) | 58.78 |

*Note:* These are calculated using Social Security bend points over the years. We use the years 2002 onwards.



# Distribution of Initial Ability

|      | Male  | Female |
|------|-------|--------|
| Low  | 13.30 | 15.84  |
| High | 86.70 | 84.16  |

Source: Author's calculations from Panel Study of Income Dynamics, 1968-2019 and Health and Retirement Survey, 1992-2018

**∢** Back

# Human Capital in T=2 $(H_2)$

|                 | Male                              |       | Female  |       |  |
|-----------------|-----------------------------------|-------|---------|-------|--|
|                 | HS and below College HS and below |       | College |       |  |
| Wage, Age 25-50 | 27.05                             | 30.50 | 20.28   | 24.85 |  |

Source: Author's calculations from Panel Study of Income Dynamics, 1968-2019 and Health and Retirement Survey, 1992-2018



#### Returns to Human Capital

| Variable                 | Value |
|--------------------------|-------|
| Depreciation             | 0.00  |
| Returns to Human Capital | 1.13  |

Source: Author's calculations from Panel Study of Income Dynamics, 1968-2019 and Health and Retirement Survey, 1992-2018



# Remaining Parameters

| Parameter | Meaning                       | Value  | Source                   |
|-----------|-------------------------------|--------|--------------------------|
| $\beta$   | Discount Factor               | 0.98   | Voena (2015)             |
| r         | Rate of Return on Assets      | 0.03   | Voena (2015)             |
| $b_1$     | Weight on Bequest             | -107.6 | De Nardi and Yang (2014) |
| $b_2$     | Curvature of Bequest Function | 16.5   | De Nardi and Yang (2014) |

**◆** Back

## Definition of Equilibrium

#### A stationary equilibrium consists of

- (i) conditional choice probabilities for single women  $p^{S,i}(k_t^i|z_t^i)$ , single men  $p^{S,j}(k_t^j|z_t^j)$  and married couples  $p^{H,ij}(k_t^{ij}|z_t^{ij},\lambda_{ij})$  for work-life and retirement (t=2,3,4), respectively;
- (ii) conditional choice probabilities of marriage for females  $p^f(k_2^{m,i}|z_2^i, \pmb{z_2^m}, \pmb{\lambda_i})$  and males  $p^m(k_2^{m,j}|z_2^j, \pmb{z_2^m}, \pmb{\lambda_j})$
- (iii) conditional choice probability of education for females  $p^f(e_1^f|z_1^f, p(e_1), \mathcal{X}^c), \theta)$  and males  $p^m(e_1^m|z_1^m, p(e_1), \mathcal{X}^c), \theta)$ ;
- (iv) an optimal rule for the Pareto weight  $\lambda(z_2,p(e_1),\mathcal{X}^c), \theta$  and a sharing rule  $s_t^{ij,*}(\lambda_{ij})$

Existence: [sketch] Conditional on  $p(e_1)$ , existence of  $\lambda$  follows from Gayle and Shephard (2019); for  $p(e_1)$  to be a fixed point, use Brouwer's fixed point theorem

#### Construction of Choices

- Ability: Father's Income (proxy); Low: < \$53,794 (in 2015 \$)
- Education:  $HS \le 12$  years; College > 12 years
- Work: NW  $\leq 400$  hours, PT  $\in (400, 1400)$  hours, FT  $\geq 1400$  hours
- Home Production: Low, Medium, High varies by age, gender and marital status
- Savings Rate: Low: <70%

**∢** Back

#### Parameters Set Outside the Model

- Taxation: Payroll Tax + Cap, Income Tax Payroll Tax
- Social Security Benefits: Bend Points Social Security
- Distribution of Initial Ability Dist
- Human Capital in T=2 → Wages
- Returns to Human Capital Returns
- $\beta, r$ , Bequest  $(b_1, b_2)$  Remaining Parameters

#### Time Allocation

• An individual can spend his time in 3 ways: working  $(M_t)$ , in home production  $(Q_t)$ , and in leisure  $(L_t)$ 

| Stage                 | Time Allocation     |  |  |
|-----------------------|---------------------|--|--|
| Work-Life             | $M_t, Q_t, L_t$     |  |  |
| Retirement            | $M_t = 0, Q_t, L_t$ |  |  |
| $M_t + Q_t + L_t = 1$ |                     |  |  |

•  $M_t, Q_t, L_t$  take on multiple values;  $M_t \in \{NW, PT, FT\}$ 



#### Human Capital and its Evolution

- Households draw human capital and assets from log-normal distribution
- Deterministic evolution  $\delta$ : depreciation;  $\alpha_2$ : returns to working

$$H_{t+1}^{a} = (1 - \delta)H_{2}^{a} + (M_{t}^{a}H_{t}^{a})^{\alpha_{2}}$$

• Most uncertainty arises in the initial years (Guvenen et. al 2019)

▶ Back

#### Income and Taxes

- Individual's before-tax income:  $y_t^a(H_t^a, M_t^a, FC^a)$ ; fixed cost  $FC^a$
- Individuals pay taxes

$$\tau(\boldsymbol{y_t}, \boldsymbol{X^\tau}) = \underbrace{\min\{\boldsymbol{y_t}, c^p\} * \tau^p}_{\text{payroll tax}} + \underbrace{\boldsymbol{y_t} * \tau^m}_{\text{medicare tax}} + \underbrace{\tau^i(\boldsymbol{y_t}, \boldsymbol{c^a(X)}, \tau^{i,a}(\boldsymbol{X}))}_{\text{income tax}}$$

• Retirement income:

$$F_{ss}^{S}(y_T^a) = 0.9 * \min\{bp_1, y_T^a\} + 0.32 * \min\{bp_2 - bp_1, \max\{0, y_T^a - bp_1\}\} + 0.15 * \max\{0, y_T^a - bp_2\}$$

• If married, spousal benefit:

$$F_{ss}^{a}(\boldsymbol{y_T}) = \min\{F_{ss}^{S}(y_T^a), 0.5 * F_{ss}^{S}(y_T^b)\}$$

**∢** Back

#### **Budget Constraint**

• Single household's budget constraint:

$$C_t^a + A_{t+1}^a = Y_t^a = y_t^a(H_t^a, M_t^a, FC^a) - \tau(y_t^a, \mathbf{X}^{\tau}) + (1+r)A_t^a$$

Married household's budget constraint:

$$C_t^{ij} + A_{t+1}^{ij} = Y_t^{ij} = y_t^i(H_t^i, M_t^i, FC^i) + y_t^j(H_t^j, M_t^j, FC^j) - \tau(\mathbf{y_t}, \mathbf{X^{\tau}}) + (1+r)A_t^{ij}$$

• Choose how much to save  $\rho_t^a$  in each stage

$$C_t^a = (1 - \rho_t^a)Y_t^a$$

ullet For married individuals, consumption is divided according to sharing rule  $s_t^{ab}$ 

$$C_t^a + C_t^b = C_t^{ij}; \qquad C_t^a = s_t^{ab} C_t^{ab}$$

#### Home Production

- Time spent in home production produces a non-marketable public good in the household
- For single households:

$$C_t^{Q,a} = \Gamma_a(\mathbf{X}^i)Q_t^a$$

where  $\Gamma^a(\mathbf{X}^a)$ : efficiency scale.

For married households:

$$C_t^{Q,ij} = \Gamma_{ij}(\mathbf{X}^i, \mathbf{X}^j)(Q^i)^{\alpha}(Q^j)^{1-\alpha}$$

where  $\Gamma_{ij}(\mathbf{X^i}, \mathbf{X^j})$ : efficiency scale of home production;  $\alpha$ : returns to scale in home production time by wife

**■** Back

#### **Preferences**

- $\bullet$  Utility comes from three components: own consumption  $C^a_t$  , home production  $C^{Q,a}_t$  and own leisure  $L^a_t$
- For single households:

$$u^{S,a}(C_t^a, C_t^{Q,a}, L_t^a, \epsilon_t^a; \mathbf{X}^a) = u(C_t^a, C_t^{Q,a}, L_t^a; \mathbf{X}^a) + \epsilon_t^a$$

• For married households:

$$u^{H,ab}(C_t^{ab}, C_t^{Q,ab}, L_t^{ab}, \epsilon_t^{ab}; \boldsymbol{X}^{\boldsymbol{a}}, \boldsymbol{X}^{\boldsymbol{b}}) = \lambda^{ab}u(C_t^a, C_t^{Q,ab}, L_t^a; \boldsymbol{X}^{\boldsymbol{a}}, \lambda^{ab}) + (1 - \lambda^{ab})u(C_t^b, C_t^{Q,ab}, L_t^b; \boldsymbol{X}^{\boldsymbol{b}}, \lambda^{ab}) + \epsilon_t^{ab}$$

ullet Each households experiences Type 1 EV preference shocks ( $\sim$  health shocks)

▶ Back

• A female at time t=0 solves: • Back

$$\begin{aligned} & \max_{\substack{i,k_m,\\ \{k_t^i,k_t^{i,k_m}\}_{t=2}^T}} \mathbb{E}\bigg\{\sum_{i=1}^I \underbrace{d_i}_{\text{education}} \left[u(i;z_1) + \epsilon_i \right. \\ & + \beta \underbrace{d_{k_m=0}}_{\text{single}} \left(\mathbb{E}_{h,a}\bigg\{\sum_{t=2}^{T+1} \sum_{k_t^i}^{K_t^i} d_{k_t^i} \Big[u(k_t^i;z_t^i) + \epsilon_{k_t^i}\Big] \Big\} + \theta_{i0}^i \right) \\ & + \beta \sum_{k_m=1}^J \underbrace{d_{k_m}}_{\text{household}} \left(\mathbb{E}_{h_i,h_{k_m},a} \bigg\{\sum_{t=2}^{T+1} \sum_{k_t^{i,k_m}}^{K_t^{i,k_m}} d_{k_t^{i,k_m}} \Big[u(k_t^{i,k_m},s_t^{i,k_m};z_t^{i,k_m}) + \epsilon_{k_t^{i,k_m}}\Big] \right\} + \theta_{i,k_m}^i \right) \Big| |z_1 \bigg\} \end{aligned}$$

subject to time allocation constraints, evolution of human capital, and budget constraints

• A female at time t=0 solves:

$$\begin{aligned} & \max_{\substack{i,k_m,\\ \{k_t^i,k_t^{i,k_m}\}_{t=2}^T}} \mathbb{E}\bigg\{\sum_{i=1}^I \underbrace{d_i}_{\text{education}} \left[u(i;z_1) + \epsilon_i \right. \\ & + \beta \underbrace{d_{k_m=0}}_{\text{single}} \left(\mathbb{E}_{h,a}\bigg\{\sum_{t=2}^{T+1} \sum_{k_t^i}^{K_t^i} d_{k_t^i} \Big[u(k_t^i;z_t^i) + \epsilon_{k_t^i}\Big] \Big\} + \theta_{i0}^i \right) \\ & + \beta \sum_{k_m=1}^J \underbrace{d_{k_m}}_{\text{household}} \left(\mathbb{E}_{h_i,h_{k_m},a} \bigg\{\sum_{t=2}^{T+1} \sum_{k_t^{i,k_m}}^{K_t^{i,k_m}} d_{k_t^{i,k_m}} \Big[u(k_t^{i,k_m},s_t^{i,k_m};z_t^{i,k_m}) + \epsilon_{k_t^{i,k_m}}\Big] \right\} + \theta_{i,k_m}^i \right) \Big] |z_0 \bigg\} \end{aligned}$$

• choose i (education);  $z_0 = [y_1^p, X^f]$ 

• A female at time t=0 solves:

$$\begin{aligned} & \max_{i,k_m, \atop \{k_t^i, k_t^{i,k_m}\}_{t=2}^T} \mathbb{E}\bigg\{\sum_{i=1}^I \underbrace{d_i}_{\text{education}} \left[u(i; z_1) + \epsilon_i \right. \\ & + \beta \underbrace{d_{k_m=0}}_{\text{single}} \bigg(\mathbb{E}_{h,a}\Big\{\sum_{t=2}^{T+1} \sum_{k_t^i}^{K_t^i} d_{k_t^i} \Big[u(k_t^i; z_t^i) + \epsilon_{k_t^i}\Big]\Big\} + \theta_{i0}^i \bigg) \\ & + \beta \sum_{k_m=1}^J \underbrace{d_{k_m}}_{\text{household}} \bigg(\mathbb{E}_{h_i, h_{k_m}, a}\Big\{\sum_{t=2}^{T+1} \sum_{k_t^{i,k_m}}^{K_t^{i,k_m}} d_{k_t^{i,k_m}} \Big[u(k_t^{i,k_m}, s_t^{i,k_m}; z_t^{i,k_m}) \\ & + \epsilon_{k_t^{i,k_m}}\Big]\Big\} + \theta_{i,k_m}^i \bigg) \bigg] |z_1 \bigg\} \end{aligned}$$

• choose  $k_m$  (marriage);  $z_1 = [i, X^i]$ 

• A female at time t=0 solves:

$$\begin{aligned} & \max_{i,k_m, \atop \{k_t^i, k_t^{i,k_m}\}_{t=2}^T} \mathbb{E}\bigg\{\sum_{i=1}^I \underbrace{d_i}_{\text{education}} \left[u(i; z_1) + \epsilon_i \right. \\ & + \beta \underbrace{d_{k_m=0}}_{\text{single}} \left(\mathbb{E}_{h,a} \Big\{\sum_{t=2}^{T+1} \sum_{k_t^i}^{K_t^i} d_{k_t^i} \Big[u(k_t^i; z_t^i) + \epsilon_{k_t^i}\Big] \Big\} + \theta_{i0}^i \right) \\ & + \beta \sum_{k_m=1}^J \underbrace{d_{k_m}}_{\text{household}} \left(\mathbb{E}_{h_i, h_{k_m}, a} \Big\{\sum_{t=2}^{T+1} \sum_{k_t^{i,k_m}}^{K_t^{i,k_m}} d_{k_t^{i,k_m}} \Big[u(k_t^{i,k_m}, s_t^{i,k_m}; z_t^{i,k_m}) + \epsilon_{k_t^{i,k_m}}\Big] \Big\} + \theta_{i,k_m}^i \right) \Big] |z_1 \bigg\} \end{aligned}$$

• choose  $k_t^i = [M_t, Q_t, \rho_t]$  (if single);  $z_t^i = \{H_t^i, A_t^i, \boldsymbol{X^i}\}$ 

# Individual's Problem t=0 solves: •Back

$$\begin{split} & \max_{\substack{i,k_m,\\ \{k_t^i,k_t^{i,k_m}\}_{t=2}^T}} \mathbb{E}\bigg\{\sum_{i=1}^{I} \underbrace{d_i}_{\text{education}} \left[u(i;z_1) + \epsilon_i \right. \\ & + \beta \underbrace{d_{k_m=0}}_{\text{single}} \left(\mathbb{E}_{h,a} \Big\{\sum_{t=2}^{T+1} \sum_{k_t^i}^{K_t^i} d_{k_t^i} \Big[u(k_t^i;z_t^i) + \epsilon_{k_t^i}\Big] \Big\} + \theta_{i0}^i \right) \\ & + \beta \sum_{k_m=1}^{J} \underbrace{d_{k_m}}_{\text{household}} \left(\mathbb{E}_{h_i,h_{k_m},a} \Big\{\sum_{t=2}^{T+1} \sum_{k_t^{i,k_m}}^{K_t^{i,k_m}} d_{k_t^{i,k_m}} \Big[u(k_t^{i,k_m},s_t^{i,k_m};z_t^{i,k_m}) + \epsilon_{k_t^{i,k_m}}\Big] \Big\} + \theta_{i,k_m}^i \right) \Big] |z_1 \bigg\} \end{split}$$

• choose  $k_t^{i,k_m} = [M_t^i, Q_t^i, M_t^{k_m}, Q_t^{k_m}, \rho_t]$  (if single);  $z_t^{i,k_m} = \{H_t^i, H_t^{k_m}, A_t^{i,k_m}, \lambda^{i,k_m}, X^i, X^{k_m}\}$ 

# Marriage Market Clearing

Supply = demand

$$\mu_{ij}(\boldsymbol{\lambda}) = \mu_{ij}^d(\boldsymbol{\lambda^i}) = \mu_{ij}^s(\boldsymbol{\lambda^j})$$

• Married + Single = Total of that type

$$\begin{split} & \sum_{j \in \{1,2\}} \mu^s_{ij}(\boldsymbol{\lambda}) + \mu^s_{i0} = f^i(p^f(i|z_1^f, \boldsymbol{\lambda}), \mathcal{F}) \quad \forall i \in I \\ & \sum_{i \in \{1,2\}} \mu^d_{ij}(\boldsymbol{\lambda}) + \mu^d_{0j} = m^j(p^m(j=1|z_1^m, \boldsymbol{\lambda}), \mathcal{M}) \quad \forall j \in J \end{split}$$

### Who Forms the Bottom Quintile?





Housel



# Ratio of Wife/Husband Earnings Vary with the Type of Household



















# Specification

• Utility function:

$$u^{a}(L, C, C^{Q}; \mathbf{X}) = \frac{C^{1-\eta_{C}} - 1}{1 - \eta_{C}} + \beta_{Q} \frac{(C^{Q})^{1-\eta_{Q}} - 1}{1 - \eta_{Q}} + \beta_{L} \frac{L^{1-\eta_{L}} - 1}{1 - \eta_{L}}$$

**■** Back

# Single Hou



#### Identification

- ullet Utility Parameters on Consumption ( $\eta_C$ ): Variation in savings rate choice in retirement stage from single's problem
- Utility Parameters on Home Production and Leisure  $(\beta_L, \beta_Q, \eta_L, \eta_Q)$ : Variation in choices in work-life of singles (couples)
- Home Production Parameters  $(\Gamma, \alpha)$ : Variation in the home production choices with types for each gender; and within household types for married couples
- Fixed Costs: Variation in choice of work across singles (couples)
- Variance of love shock: Comparison of model generated singles with the data



■ Back
 ■



• No Joint IT  $\implies$  higher cost of working, fall in marriage and labor market return.



• No Joint IT  $\implies$  increased marriage, higher bargaining power of women = -9.00 69/82



• No Joint IT  $\implies$  females work more due to lower cost in terms of taxes; males

# Percent Change in $\lambda$

| Policy        | NC-NC | NC-C  | C-NC  | C-C   |
|---------------|-------|-------|-------|-------|
| Payroll Taxes | -0.51 | -0.48 | -0.49 | -0.46 |
| No SB         | -0.19 | -0.17 | -0.18 | -0.17 |
| No IT         | 0.19  | 0.16  | 0.15  | 0.13  |
| No SB+IT      | -0.01 | -0.02 | -0.03 | -0.05 |

■ Back

# Background and Data

### Retirement System: Background

- Three pillars: Social security, employment-based pensions and own savings
- Set up in 1935, social security 'earned right'
  - 'Genderless'; differential treatment built-in
  - Expanded to include wives and widows in 1939
- Benefits based on highest 35 years of earnings
  - Progressive in nature
- $\bullet$  Payroll taxes  $\to$  Trust Fund; insolvency a concern: Benefits need to be 75% in 2033
  - Worker to beneficiary ratio: >20 in 1950s to < 5 in 2020s</li>



#### Data

- Datasets used: PSID, HRS (Public+Restricted), CAMS PSID HRS Choice Set
- Male: 1940-1949 cohort; Female: 1940-1954 cohort
- Education: HS or Below (Not College); Some College and Above (College)
- $\bullet$  Married: Longest marriage that lasts  $\geq 10$  years for age at marriage  $\leq$  46 years  $\bullet$  Marriage

■ Back

# **Key Statistics**

• College: 41%

• Single: 29%

• NC: Not College;

C: College



Who Gets Married to Whom?

0.45

■ Back

#### **Estimation**

- T=1: Age 18-24; T=2: Age 25; T=3: Age 25-49; T=4: 50-62; T=5: 63-99

   Retirement Age
- Parameters estimated outside the model Parameters-1
  - $\bullet$  Taxation, social security benefits, distribution of human capital,  $\beta, r$ , bequest parameters
- Parameters to estimate  $(\theta)$ :
  - Utility:  $\eta_C, \beta_Q, \eta_Q, \beta_L, \eta_L$
  - Home Production:  $\{\Gamma^i\}_{i=1,2}, \{\Gamma^j\}_{j=1,2}, \{\tilde{\Gamma}_i\}_{i=1,2}, \Gamma_{i=j}, \alpha$
  - Fixed Costs:  $FC_{ft}^f, FC_{pt}^f, FC_{pt}^m, FC_{ft}^m$
- Semi-parametric identification (Magnac and Thesmar, 2002) + Identification of  $\lambda$  (Gayle and Shephard, 2019) Identification

### **Estimation Method**

- Two-step estimation:
  - 1. For each set of parameters  $\theta$ , calculate optimal  $\lambda(\theta)$  by minimizing excess demand
  - 2. With optimal  $\lambda(\theta)$ , construct CCPs to calculate score

$$\hat{\theta} = \arg\min[h(\theta)]^T W[h(\theta)]$$

► Key CCPs ► Algorithm

◆ Back

### Summary of Estimates

- Home Production:
  - High gains from homogamy in marriage
  - Higher weight on female time in home production ( $\sim 0.8$ )
- Fixed costs:
  - Higher for females compared to males
  - ullet 8 times higher for part-time and 4 times higher for full-time
- Utility Parameters
  - Consumption  $\eta_C = 2.2$
  - Most weight on home production
- Pareto Weight
  - Higher weights for college educated







### Key Mechanisms

#### human capital ⇔ marital status ⇔ retirement earnings

- Retirement earnings ⇒ education, marital status
- Education, marital status ⇒ retirement earnings
  - Low educated, single females form disproportionately represented in the bottom quintile at 65-69 years
- Marriage and within-household decisions affect labor force participation and income Ratio-HW
  - Within household income inequality higher for low-low couples compared to high-low couples (wife-husband)
- Returns to education two-fold: Labor markets + marriage market returns



# Preferences and Household Decision Making Summary Mo

- Individual utility from: Private consumption, home production good, and own leisure
  - Additively separable and risk-averse Specification
- Collective model: Household formed by many individuals
- Weighted sum of utilities  $\lambda^{i,k^m} \leftarrow \text{prices that clear frictionless marriage market}$  Utility
- ullet Distribution of resources endogenous  $s^{ij}$
- Assume allocations are Pareto-efficient
- Imperfectly transferable utility: Time allocation decisions and taxation/social security benefits relevant

### Home Production

- ullet Time spent at home,  $Q_t$ , produces a non-marketable public good
- Efficiency scales  $\Gamma^{a,k_m=0}(g,a)$  vary by gender, g, and education, a

$$C_t^{Q,a} = \Gamma^{a,k_m=0}(g,a)Q_t^a$$

• Couples: Time input of both spouses;  $\alpha$ : Returns to scale in home production by wife;

$$C_t^{Q,ij} = \Gamma_{ij}(\mathbf{X}^i, \mathbf{X}^j)(Q^i)^{\alpha}(Q^j)^{1-\alpha}$$

- Efficiency scales,  $\Gamma_{ij}$ , vary by type of household
  - ullet Homogamy component  $\Gamma_{i=j}$  and based on female  $\tilde{\Gamma}_i$
  - $\rightarrow \Gamma_{ij} = \Gamma_{i=j} imes \tilde{\Gamma}_i$  (Gayle and Shephard 2019)
    - Assortative mating



## Human Capital and Income

- Before work-life, uncertainty in human capital (Guvenen et. al, 2019)
- Human capital follows deterministic evolution through work-life
  - Depends on time spent working,  $M_t$ , and human capital previous period Human Capital
  - Varies by gender
- $\bullet$  Income is a function of human capital, H, and time worked, M; fixed cost of working,  $FC_f^gt$

$$Y_t(H,M,FC,g) = (1-\tau)HM - \mathbb{1}[PT]FC_p^gt - \mathbb{1}[FT]FC_f^gt$$

ullet  $M_t \Longrightarrow \hbox{higher consumption today} + \hbox{higher human capital tomorrow}$  (learning-by-doing)

Back

### Taxes, Assets and Consumption

- Taxes: payroll, medicare, income (joint)
  - Payroll taxes funds social security system
  - Income tax varies by marital status
- Receive social security (and spousal benefits if married) during retirement
   Income Tax
- Standard asset accumulation as a result of savings  $ho_t$  Budget Constraint
- ullet For married, consumption a function of sharing rule,  $s^{ij}$ 
  - Joint assets + one-time marriage  $\Rightarrow s^{ij}(\lambda^{ij})$
- Bequests (De Nardi, 2004)

$$u_{T+1}(A_T; \mathbf{X}) = b_1[(b_2 + A_T)^{1-\eta_C} - 1]$$

■ Back