Update on the Taiwan household model

02/08/2021

Household/non-household transmission model

number of

infectious cases (within

a household)

- Agent-based model
 - Number of households: 100,000
 - Household size: 3
- Household transmission (within household i)

 $\lambda_{i,hh} = c_{hh} * t_{hh} * I_i$

Non-household transmission

$$\lambda_{nhh} = c_{nhh} * t_{nhh} * \sum I / \sum N$$

number of transmission probability total population

Household/non-household transmission model

Model setting

- Initial case in the population: 1
- Duration of infectiousness: 5 days
- Total population: 300,000 (number of households*household size)

Model output

- 40 stochastic runs (each costs about 4-5 minutes)
- Reproduction numbers (Rt) for household and non-household cases
- Number of new infections by household and non-household transmission

Changes in COVID-19 transmissibility

- Before alert level 3 (week 1-3)
- Wave 1 survey
 - Total contacts: 9.14
 - Household contacts: 2.26
- Transmission probability
 - Household: 0.21 (Thompson et al.)
 - Non-household: 0.26

- After alert level 3 (week 4-12)
- Wave 3 survey
 - Total contacts: 3.97
 - Household contacts: 2.20
- Transmission probability
 - Household: 0.21
 - Non-household: 0.21*0.26*X
 - Multiplicative effect of measures
 - X = 1: no effect
 - X = 0.3: moderate effect
 - X = 0.7: strong effect

Input data

*non-contact rate declines a week before (15-21th day) the implementation of alert level 3 measures, to reflect the effect of alert level 2

Evaluation of vaccination impact

Scenarios	Initial distribution of state	
Fully susceptible (baseline)	S: 300,000 - 1 I: 1 R: 0	
20% of vaccine coverage + 1 per household	S: 300,000 - 1 - 60,000 I: 1 R: 60,000 (60,000 household)	
20% of vaccine coverage + 2 per household	S: 300,000 - 1 - 60,000 I: 1 R: 60,000 (30,000 household)	

Fully susceptible scenario – State overview

Fully susceptible scenario – Rt estimates

Fully susceptible scenario – New infections

Partially vaccinated scenario – Rt estimates

Allocation strategy: (1) 1 person per household

Partially vaccinated scenario – Rt estimates

Allocation strategy: (1) 1 person per household

Partially vaccinated scenario – New infections

Allocation strategy: (1) 1 person per household

Note:

The stochastic effect of transmission can be seen, where the peak number of infections can be more than 2 times than the average.

Partially vaccinated scenario – State overview

Allocation strategy: (2) 2 persons per household

Partially vaccinated scenario – Rt estimates

Allocation strategy: (2) 2 persons per household

Partially vaccinated scenario – New infections

Allocation strategy: (2) 2 persons per household

Comparison between fully susceptible and partially vaccinated scenarios

Note:

It is obvious that an outbreak is more likely to occur in the fully susceptible population, compared to the vaccinated population (coverage = 20%).

Comparison between vaccine allocation strategies

Note:

Similar impacts on outbreak prevention are shown between the vaccination allocation strategies of 1 and 2 members per household.

Outbreak potential

Allocation strategy Indicators	Without vaccination, fully susceptible	20% of total population vaccinated, 1 per household	20% of total population vaccinated, 2 per household
Cumulative infections over the first 2 weeks: median (1 st – 3 rd quantiles)	273	58	62
	(63, 368)	(4, 121)	(16, 122)
<= 10 cumulative infections over the first 2 weeks: number of runs (total runs)	17	34	26
	(120)	(120)	(120)