Calcolo Numerico ed Elementi di	Prof. P.F. Antonietti	Firma leggibile dello studente
Analisi	Prof. L. Dedè	
CdL Ingegneria Aerospaziale	Prof. M. Verani	
Seconda Prova in Itinere		
26 giugno 2017		
Cognome:	Nome:	Matricola:

ISTRUZIONI

- Riportare le risposte nello spazio indicato.
- Alcuni esercizi richiedono di utilizzare MATLAB; per tali esercizi riportare sul foglio esclusivamente gli output richiesti.
- Utilizzare esclusivamente una penna nera o blu.
- Tempo a disposizione: 1h 30m.

SPAZIO RISERVATO AL DOCENTE

Pre Test	
Esercizio 1	
Esercizio 2	
Totale	

Pre Test

1.	. (1 punto) Assegnati i nodi $x_0 = 0$, $x_1 = 4$ e $x_2 = 6$ si consideri il polinor	nio caratteristico di
	Lagrange $\varphi_0(x)$. Si riporti il valore di $\varphi_0(3)$.	

10 punti

2. (2 punti) Assegnati i nodi $x_0 = 0$, $x_1 = 1$ $x_2 = 3$ e $x_3 = 7$ e i dati corrispondenti $y_0 = 6$, $y_1 = 0$, $y_2 = 0$ e $y_3 = 1$, si consideri il polinomio $\Pi_3(x)$ interpolante tali dati ai nodi. Si riporti il valore di $\Pi_3(5)$.

3. (1 punto) Sia $f(x) = 3x^3$. Si approssimi $\int_1^6 f(x)dx$ con la formula semplice del punto medio. Si riporti l'approssimazione I_{PM} ottenuta.
4. (2 punti) Si consideri la formula dei trapezi composita per l'approssimazione di $\int_0^1 \sin(\pi x) dx$. Senza applicare esplicitamente la formula, si stimi il numero M di sottointervalli equispaziati di $[0,1]$ tali per cui l'errore di quadratura è inferiore alla tolleranza $tol = 10^{-7}$.
5. (1 punto) Si consideri la funzione $f(x) = 6x^2 - 4x + 5$. Si riporti l'errore associato all'approssimazione di $f'(\overline{x})$ in un generico valore $\overline{x} \in \mathbb{R}$ mediate le differenze finite in avanti, ovvero $E_+f(\overline{x}) = f'(\overline{x}) - \delta_+f(\overline{x})$, usando il passo $h = \frac{1}{4}$.
6. (1 punto) Si consideri il seguente problema di Cauchy:
$\begin{cases} y'(t) = 2t^3 + 2y(t) & t \in (0,5], \\ y(0) = 6. \end{cases}$
Utilizzando il metodo di Eulero Implicito con passo $h=0.1$ e $u_0=y_0=6$ si calcoli u_1 , ovvero l'approssimazione di $y(t_1)$.
7. (2 punti) Si consideri il problema di Cauchy:
$\begin{cases} y'(t) = f(t, y(t)) & t \in (t_0, t_f], \\ y(t_0) = y_0. \end{cases}$
Utilizzando il metodo di Eulero Esplicito con passo $h > 0$ si ottiene l'approssimazione $u_1^{EE} = 7$ di $y(t_1)$, mentre con il metodo di Eulero Implicito si ottiene $u_1^{EI} = 8,5$. Si riporti il valore dell'approssimazione corrispondente u_1^{CN} ottenuta mediante il metodo di Crank-Nicolson.
Esercizio 1.
(a) $(3 \ punti)$ Sia $f:[a,b] \to \mathbb{R}$ una funzione continua. Si definisca e si fornisca l'espressione del polinomio interpolante composito lineare $\Pi^1_H f$ considerando $N+1$ nodi equispaziati nell'intervallo $[a,b]$, ovvero $x_0 = a, x_1, \ldots, x_N = b$, con passo $H = (b-a)/N$. Si riporti inoltre il risultato (teorema) di convergenza dell'interpolazione composita lineare.

mediante il polinomio interpolante composito lineare $\Pi_H^1 f$ su nodi equispaziati con passi di ampiezza H = 0.1, 0.05, 0.025, 0.0125. Si riportino, al variare di H, i valori delle approssimanti

per
$$H = 0.1$$
 $\Pi_H^1 f(\bar{x}) =$ ______

per $H = 0.05$ $\Pi_H^1 f(\bar{x}) =$ ______

per $H = 0.025$ $\Pi_H^1 f(\bar{x}) =$ ______

per $H = 0.0125$ $\Pi_H^1 f(\bar{x}) =$ ______

(c) (2 punti) In seguito al punto (b), si calcolino e si riportino gli errori $E_H(f) = \max_{x \in [a,b]} |f(x)|$ $\Pi_H^1 f(x)$ associati alle corrispondenti approssimanti $\Pi_H^1 f$ (al fine del calcolo dell'errore in Matlab® si valutino f(x) e $\Pi_H^1 f(x)$ in 1000 punti con il comando linspace (0, 4, 1000)). Si interpretino e si commentino i risultati ottenuti alla luce della stima teorica dell'errore di cui al punto (a).

per
$$H = 0.1$$
 $E_H(f) =$ ______

per $H = 0.05$ $E_H(f) =$ _____

per $H = 0.025$ $E_H(f) =$ _____

per $H = 0.0125$ $E_H(f) =$ _____

la retta di regressione la dimostrazione) e si	no le coppie di dati $\{(x_i, y_i)\}$ e lineare $p_1(x)$ che approdescriva dettagliatamen \mathbf{q}), la cui soluzione deter	ssima tali dati. Inc te la struttura del s	oltre, si riporti (non è	è richiesta
(1 punto) Siano ora a riporti l'espressione de	ssegnate le coppie di dati ella retta di regressione li	i $(0,0)$, $(1,1)$, $(2,8)$, ineare $p_1(x)$ che app	, (3, 27) e (4, 64). Si o prossima tali dati.	calcoli e si
	$p_1(x) = \underline{\hspace{1cm}}$			
SERCIZIO 2. Si con	sideri il problema a valor	ri ai limiti (di Poisso	on)	
	$\int -u''(x) = 1$	f(x) in (a,b) ,		11 pur
	$\begin{cases} u(a) = \alpha, \\ u(b) = \beta. \end{cases}$	f(x) in (a,b) ,		(1)

				stema risultante.
sistema line	Si riporti la contro eare $A \mathbf{u} = \mathbf{b}$, for termine noto \mathbf{b} e	nendo l'espressi	one dei coefficie	_

(c) (2 punti) Si di	imostri che la matrice di c	ui al punto (b) è simn	netrica e definita positiva.
deri il comand	o "back-slash" di Matlab [®] $\cos(x)$, si calcolino e si ripo	$\$). Sapendo che la solu ortino per ogni N gli er	er risolvere il sistema lineare si consuzione esatta del problema è data corrori $E_N = \max_{i=0,\dots,N+1} u_i - u(x_i) $
	per N = 9	$E_N = \underline{\hspace{1cm}}$	
		$E_N = \underline{\hspace{1cm}}$	
		$E_N = \underline{\hspace{1cm}}$ $E_N = \underline{\hspace{1cm}}$	
	per 1v = 19	$E_N = \underline{\hspace{1cm}}$	
	so aver risposto al punto ($(b-a)/(N+1)$) riportand		convergenza p del metodo rispettocedura seguita.
() ()			