Space-Time Preconditioners

Consider Riesz bases for the spaces

$$\mathcal{X} := (L_2(0,T) \otimes V) \cap (H^1(0,T) \otimes V'),$$

$$\mathcal{Y} := (L_2(0,T) \otimes V),$$

where $V = H^1$.

The appropriate scaling of a basis function $bf(t,x) := \theta(t)\sigma(x)$ is then as follows:

• in \mathcal{X} :

$$\text{RightPreconditioner2D} = \frac{1}{\sqrt{\|\theta\|_{L_{2}}^{2}\|\sigma\|_{H^{1}}^{2} + \|\theta\|_{H^{1}}^{2}\|\sigma\|_{H^{-1}}^{2}}}$$

• in \mathcal{Y} :

$$\label{eq:leftPreconditioner2D} \text{LeftPreconditioner2D} = \frac{1}{\sqrt{\|\theta\|_{L_2}^2 \|\sigma\|_{H^1}^2}}$$

See also [Schwab, Stevenson, 2009].

The required norms can be computed in different ways. The different possibilities are presented for the space part $\sigma(x)$ of the basis function, but apply to the time part $\theta(t)$ as well.

- L_2 -Norm:
 - (i) Normalization in L_2 [N]:

$$\|\sigma\|_{L_2}^2 = 1$$

(ii) Integral [I]:

$$\|\sigma\|_{L_2}^2 = \int_{\Omega} \sigma^2(x) dx$$

• H^1 -Norm:

(i) Scaling using normalization in L_2 [Sc_N]:

$$\|\sigma\|_{H^1}^2 = 2^{2j} \cdot \|\sigma\|_{L_2}^2 = 2^{2j} \cdot 1$$

(ii) Scaling using integral [Sc_I]:

$$\|\sigma\|_{H^1}^2 = 2^{2j} \cdot \|\sigma\|_{L_2}^2 = 2^{2j} \int_{\Omega} \sigma^2(x) dx$$

(iii) Integral [I]:

$$\|\sigma\|_{H^1}^2 = \int_{\Omega} \sigma^2(x) dx + \int_{\Omega} \sigma_x^2(x) dx$$

• H^{-1} -Norm:

(i) Scaling using normalization in L_2 [Sc_N]:

$$\|\sigma\|_{H^{-1}}^2 = 2^{-2j} \cdot \|\sigma\|_{L_2}^2 = 2^{-2j} \cdot 1$$

(ii) Scaling using L_2 -Integral [Sc_ L_2 I]:

$$\|\sigma\|_{H^{-1}}^2 = 2^{-2j} \cdot \|\sigma\|_{L_2}^2 = 2^{-2j} \int_{\Omega} \sigma^2(x) dx$$

(iii) Scaling using H^1 -Integral [Sc_ H^1 I]:

$$\|\sigma\|_{H^{-1}}^2 = 2^{-2j} \cdot \|\sigma\|_{L_2}^2 = 2^{-4j} \left(\int_{\Omega} \sigma^2(x) dx + \int_{\Omega} \sigma_x^2(x) dx \right)$$

(iv) Duality Properties [D]:

$$\|\sigma\|_{H^{-1}}^2 \simeq \frac{1}{\|\sigma\|_{H^1}^2} = \frac{1}{\int_{\Omega} \sigma^2(x) dx + \int_{\Omega} \sigma_x^2(x) dx}$$

The following tables are overviews over the implemented combinations of norm calculations.

${\bf Left Norm Preconditioners}$	Time L_2	Space H^1
LeftNormPreconditioner2D	I	Ι

${\bf Right Norm Preconditioners}$	Time		Space	
	L_2	H^1	H^1	H^{-1}
(not working)	N	Ι	Ι	$\mathbf{Sc}_{-}\mathbf{N}$
RightNormPreconditioner2D	N	Ι	Ι	$\mathbf{Sc}_{ extsf{L}} L_{2} \mathbf{I}$
$RightNormPreconditioner2D_a$	I	\mathbf{I}	Ι	$\mathbf{Sc}_{-}L_{2}\mathbf{I}$
$RightNormPreconditioner2D_b$	I	\mathbf{I}	Ι	\mathbf{D}
$RightNormPreconditioner2D_c$	I	$\mathbf{Sc}_{-}\mathbf{I}$	Ι	D

References

[Schwab, Stevenson, 2009] C. Schwab and R. Stevenson. Space-time adaptive wavelet methdos for parabolic evolution problems. Math.Comp., 78 (267), pp. 1293-1318 (2009)