BAGGING & RANDOM FOREST

CS 334: Machine Learning

WISDOM OF CROWDS

"Wisdom of Crowds" (Surowiecki, 2004) - the collective knowledge of a diverse and independent body of people typically exceeds the knowledge of any single individual, and can be harnessed by voting

- Use multiple "learners" to solve the same problem
- Reduce bias/variance and improve performance

"This is how you win ML competitions: you take other peoples' work and ensemble them together."

- Vitaly Kuznetsov, NIPS 2014

GROUP ACTIVITY

- Given a dataset, how to get multiple learners to ensure diverse opinions?
- How to combine the multiple learners?

- Same classifier (different datasets)
 - Bagging/averaging: build multiple models independently and then average reduce variance
 - Boosting: build multiple models sequentially reduce bias
- Different classifiers (same datasets)
 - Voting: average or weighted average of multiple different classifiers
 - Stacking: predictions of multiple classifiers are used as input to another estimator for final prediction

- Bagging and Random forest
- Boosting and Gradient boosted tree
- Voting and Stacking

BAGGING/AVERAGING METHODS

- Bootstrapping (resampling with replacement) bagging
- Random subsets of the dataset (sampling without replacement) pasting
- Random subsets of the features random subspaces
- Random subsets of both samples and features random patches

BAGGING

- <u>Bootstrap Aggregating</u>: variance reduction technique introduced by Breiman in 1992
- Method: Average predictions over collection of bootstrap samples
 - Create B bootstrap replicates
 - Fits model to each replicate
 - Combines predictions via averaging or voting

BOOTSTRAPPING

- Fundamental resampling tool in statistics
- Resampling with replacement
- General and most widely used tool to estimate measures of uncertainty associated with a given statistical model (e.g., confidence intervals, bias, variance, etc.)

BOOTSTRAPPING

Figure 5.11 James et al

BAGGING: COMBINING MULTIPLE LEARNERS

- Regression: averaging
- Classification: majority voting

$$\hat{f}^{\text{bag}}(\mathbf{x}) = \operatorname{argmax}_G \sum_b \mathbb{1}_{\{\hat{f}_b^{\text{tree}}(\mathbf{x}) = g\}}$$

• Classification: average of predicted class probabilities, then choose class with highest probability

$$\hat{p}^{\text{bag}}(y=g|\mathbf{x}) = \frac{1}{B} \sum_{b} \hat{p}_{b}^{\text{tree}}(y=g|\mathbf{x})$$

 Classification: averaging probability preferable for estimates of class probabilities and can help overall prediction accuracy

BAGGING: COMBINING MULTIPLE LEARNERS

 What if we were to use the proportion of votes for class g as estimated probability?

$$\hat{p}_g^{\text{bag}}(\mathbf{x}) = \frac{1}{B} \sum_b \mathbb{1}_{\{\hat{f}_b^{\text{tree}}(\mathbf{x}) = g\}}$$

• Why would this not be a good estimate?

BAGGING & TREES

- Trees are ideal candidates for bagging
 - Capture somewhat complex boundaries (with sufficient depth)
 - Low bias but high variance
- · Bagging: the bias does not change but variance is reduced

BAGGING: CONCEPTUALLY

Original dataset

	Date	Title	Budget	Domestic Total Gross	Director	Rating	Runtime
۰	2013-11-22	The Hunger Games: Catching Fire	130000000	424668047	Francis Lawrence	PG-13	146
1	2013-05-03	Iron Man 3	200000000	409013994	Shane Black	PG-13	129
2	2013-11-22	Frozen	150000000	400738009	Chris BuckJennifer Lee	PG	108
3	2013-07-03	Despicable Me 2	76000000	368061265	Pierre CoffinChris Renaud	PG	98
4	2013-06-14	Man of Steel	225000000	291045518	Zack Snyder	PG-13	143
5	2013-10-04	Gravity	1000000000	274092705	Alfonso Cuaron	PG-13	91
6	2013-06-21	Monsters University	NaN	268492764	Dan Scanlon	G	107
7	2013-12-13	The Hobbit: The Desolation of Smaug	NaN	258386855	Peter Jackson	PG-13	161
8	2013-05-24	Fast & Furious 6	160000000	238679850	Justin Lin	PG-13	130
9	2013-03-08	Oz The Great and Powerful	215000000	234911825	Sam Raimi	PG	127
10	2013-05-16	Star Trek Into Darkness	190000000	228778661	J.J. Abrams	PG-13	123
11	2013-11-03	Thor: The Dark World	170000000	206362140	Alan Taylor	PG-13	120
12	2013-06-21	World War Z	190000000	202359711	Marc Forster	PG-13	116
13	2013-03-22	The Croods	135000000	187168425	Kirk De MiccoChris Sanders	PG	98
14	2013-06-28	The Heat	43000000	159582188	Paul Feig	R	117
15	2013-08-07	We're the Millers	37000000	150394119	Rawson Marshall Thurber	R	110
16	2013-12-13	American Hustle	40000000	150117807	David O. Russell	R	138
17	2013-06-10	The Great Gatsby	105000000	144840419	Baz Luhrmann	PG-13	143

EXAMPLE: BAGGING + DECISION TREE

Simulated data with n=30, two classes, and 5 features (high pairwise correlations)

Figure 8.9 (Hastie et al.)

EXAMPLE: BAGGING + DECISION TREE

How many bags to choose?

EXAMPLE: BREIMAN'S EXPERIMENT

Data Set	$ar{e}_S$	\bar{e}_B	Decrease
waveform	29.1	19.3	34%
heart	4.9	2.8	43%
breast cancer	5.9	3.7	37%
ionosphere	11.2	7.9	29%
diabetes	25.3	23.9	6%
glass	30.4	23.6	22%
soybean	8.6	6.8	21%

Comparison of misclassification error between CART tree (pruned via cross-validation) and bagging (B=50)

WHY DOES BAGGING WORK?

- Suppose a binary classification problem and we have B independent classifiers, each has an accuracy of p (misclassification rate I-p)
- Our bagged classifier: $\hat{f}(\mathbf{x}) = \operatorname{argmax}_G \sum_b \mathbb{1}_{\{\hat{f}_b^{\text{tree}}(\mathbf{x}) = g\}}$
- The number of positive votes of bagged classifier is a Binomial variable with probability p
- Assume without loss of generality that the true class is I
 - Correct prediction if the number >= B/2, incorrect if < B/2

BINOMIAL DISTRIBUTION

BAGGING

- If each classifier has a misclassification rate over 0.5
 - The bagged classifier will fail and become perfectly inaccurate as B approaches infinity
- Assume each classifier has a misclassification rate lower than 0.5
 - As B grows larger, the bagged classifier should be perfect in theory
 - Often this is not the case, since individual classifiers are not independent

RANDOM FOREST: MOTIVATION

For B independent trees with same variance, bagged variance is:

$$\sigma^2/B$$

• For B trees with positive pairwise correlation ρ , bagged variance is:

$$\rho\sigma^2 + \frac{1-\rho}{B}\sigma^2$$

Correlation of bagged trees limits benefits of averaging

How to reduce correlation?

RANDOM FORESTS (BREIMAN, 2001)

- Bagged classifier using decision trees
 - Each split only considers a random group of features
 - Tree is grown to maximum size without pruning
 - Final predictions obtained by aggregating over the B trees

$$\hat{f}_{\rm rf}^B(\mathbf{x}) = \frac{1}{B} \sum_b T(\mathbf{x}; \theta_b)$$

• Reduce variance (at the cost of slight increase in bias)

RANDOM FOREST: ALGORITHM

Algorithm 15.1 Random Forest for Regression or Classification.

- 1. For b = 1 to B:
 - (a) Draw a bootstrap sample \mathbf{Z}^* of size N from the training data.
 - (b) Grow a random-forest tree T_b to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size n_{min} is reached.
 - i. Select m variables at random from the p variables.
 - ii. Pick the best variable/split-point among the m.
 - iii. Split the node into two daughter nodes.
- 2. Output the ensemble of trees $\{T_b\}_1^B$.

To make a prediction at a new point x:

Regression:
$$\hat{f}_{rf}^B(x) = \frac{1}{B} \sum_{b=1}^B T_b(x)$$
.

Classification: Let $\hat{C}_b(x)$ be the class prediction of the bth random-forest tree. Then $\hat{C}_{rf}^B(x) = majority \ vote \{\hat{C}_b(x)\}_1^B$.

RANDOM FOREST: ALGORITHM

Algorithm 15.1 Random Forest for Regression or Classification.

- 1. For b = 1 to B:
- What's a good number of trees? (a) Draw a bootstrap sample \mathbf{Z}^* of size N from the training data.
 - (b) Grow a random-forest tree T_b to the bootstrapped data, by recursively repeating the following steps for each terminal node of
 - i. Select m variables at random from the p variables.

the tree, until the minimum node size n_{min} is reached.

- ii. Pick the best variable/split-point among the m.
- iii. Split the node into two daughter nodes.
- 2. Output the ensemble of trees $\{T_b\}_1^B$.

To make a prediction at a new point x:

Regression:
$$\hat{f}_{rf}^B(x) = \frac{1}{B} \sum_{b=1}^B T_b(x)$$
.

Classification: Let $\hat{C}_b(x)$ be the class prediction of the bth random-forest tree. Then $\hat{C}_{rf}^{B}(x) = majority \ vote \ \{\hat{C}_{b}(x)\}_{1}^{B}$.

What's a good number of subset of variables?

EXAMPLE: GENE EXPRESSION

15-class gene expression data set with p = 500 predictors

When m=p, equivalent to bagging

What's a good number of trees?

What's a good number of subset of variables?

Figure 8.10 (James et al.)

RANDOM FOREST VS. BAGGING

- Errors are further reduced for RF compared to Bagging
- Grow enough trees until error settles down
- Additional trees won't improve results

HOW TO EVALUATE RANDOM FOREST?

- Cross-validation error can be expensive to compute
- An alternative method: Out of bag (OOB) error

BOOTSTRAP: NUMBER OF POINTS

What's the probability of a data point belonging to a bootstrap sample/dataset?

BOOTSTRAP: NUMBER OF POINTS

ullet Sampling with replacement from N samples

$$\Pr(i \in B) = 1 - (1 - \frac{1}{N})^N$$

$$\approx 0.632$$

- Each bootstrap sample will contain roughly 63.2% of the original instances
- Roughly 36.8% samples will not be sampled

OUT OF BAG (OOB) SAMPLES

- Out of Bag (OOB) samples are those not in the bootstrap
- For each observation *i*, construct its prediction by averaging those trees corresponding to bootstrap samples not containing *i* (in which *i* is an OOB)
- OOB error estimates almost identical to k-fold cross-validation (leave-one-out cross validation)
- Once OOB stabilizes, training can be stopped

EXAMPLE: OOB ERROR

Figure 15.4 (Hastie et al.)

RANDOM FOREST VS DECISION TREE

- Reduced variance and improved performance
- Lose interpretability

How to evaluate the importance of each feature?

WHICH FEATURES ARE MOST IMPORTANT?

TREES: VARIABLE IMPORTANCE

• Squared importance for variable j

$$\operatorname{Imp}_{j}^{2}(\hat{f}^{\text{tree}}) = \sum_{k=1}^{m} \hat{d}_{k} \mathbb{1}_{\{\text{split at node } k \text{ is on variable j}\}}$$

- m is number of internal modes (non-leaves)
- \hat{d}_k is the improvement in RSS (regression) or misclassification/Gini/Entropy (classification) from making the split

EXAMPLE: VARIABLE IMPORTANCE

FOREST: VARIABLE IMPORTANCE

Average squared importance over all fitted trees

$$\operatorname{Imp}_{j}^{2}(\hat{f}^{\text{boost}}) = \frac{1}{M} \sum_{m=1}^{M} \operatorname{Imp}_{j}^{2}(\hat{f}_{m}^{\text{tree}})$$

- Stabilizes variable importances —> more accurate than for single tree
- Relative importance: Scale largest importance to 100 and scale all other variable importances accordingly

What are the drawbacks of this importance?

VARIABLE IMPORTANCE: IMPURITY BASED

- Biased towards high cardinality features
- Computed on training set statistics and do not reflect the ability of feature to generalize to the test set

VARIABLE IMPORTANCE: PERMUTATION BASED

- For bth tree, OOB samples are passed down tree and accuracy recorded
- Values for jth variable are randomly permuted in OOB samples and accuracy again computed
- Decrease in accuracy is used as measure of importance (marginal contribution of the feature)

FEATURE IMPORTANCE

RANDOM FOREST: ADVANTAGES

- State of the art method, one of the most accurate general-purpose learners available
- Handles a large number of input variables without overfitting (variance reduction)
- Robust to errors and outliers
- Can model non-linear boundaries
- Gives variable importance and out of bag error rates
- · Easy to train and tune, easily parallelized by training

RANDOM FOREST: DISADVANTAGES

- Loss of interpretability (no decision rules)
- Difficult to analyze as an algorithm and mathematical properties still largely unknown
- Large number of trees is memory-intensive
- Bias towards categorical variables with larger number of levels

RANDOM FOREST

PREVIEW: HOMEWORK #5

- Almost Random Forest
- Instead of choosing a random subset of features for each split, choose a random subset of features that the tree will be created on (the same subset is used as candidates from all splits)

SKLEARN: RANDOM FOREST

- sklearn.ensemble.RandomForestClassifier
 - n_estimators, default=100
 - max_features: {"sqrt", "log2", None}, default="sqrt"