BELLE NOTE 1486

Measurement of the decay

$$B^+ \to K^+ K^- \ell^+ \nu_{\ell}$$
 with B2BII

Matic Lubej

. Changelog

- 4. May: First submission of the note.
- 16. May: Added ROE validation section.
- 7. July: update of whole BNOTE, B2BII chapter, finishing control fits.
- 19. August:

- More details on the fit process and background splitting.
- Adding sources of systematics
- Ready for box opening

14 Contents

		F	age		
15	1	Introduction	1		
16	2	Oata and Monte-Carlo Samples			
17		2.1 Signal MC Production	6		
18		2.2 Control Decay			
19	3	Belle to Belle II Format Conversion	9		
20		3.1 Conversion Procedure	9		
21		3.2 Validation	10		
22	4	Event Reconstruction	14		
23		4.1 Final State Particles Selection	14		
24		4.2 Pre-selection of First B Meson Candidates	20		
25		4.3 Loose Neutrino Reconstruction	23		
26		4.4 Final Stage Optimization	26		
27		4.5 Charge product categorization	28		
28		4.6 Selection Summary	29		
29	5	Rest of Event Clean-up			
30		5.1 Clusters Clean-up	31		
31		$5.1.1 \pi^0 \text{ MVA Training } \dots \dots \dots \dots \dots \dots \dots \dots \dots$	31		
32		5.1.2 γ MVA Training	33		
33		5.2 Tracks Clean-up	35		
34		5.2.1 Tracks from Long-lived Particles	36		
35		5.2.2 Duplicate Tracks	37		
36		5.3 Belle Clean-up	44		
37		5.4 Clean-up Results	44		
38		5.5 ROE Clean-up Validation	48		
39	6	Background Suppression	52		
40		6.1 Resonant Background	52		
41		6.2 Continuum Cuppression			
42		6.2.1 Characteristic Variables	53		
43		6.2.2 MVA Training	55		
44		6.3 $B\bar{B}$ Suppression	57		
45		6.3.1 Boosting to Uniformity	59		
46		6.4 Selection Optimization	60		
47		6.4.1 $B\bar{B}$ Background Composition and Lepton Veto	62		
48		6.5 Data and MC Agreement	66		
49		6.5.1 Off-resonance Data	67		

50			6.5.2	On-resonance Data	. 68
51	7	Sign	nal Ex	traction	70
52		7.1	Fit Se	etup	. 71
53			7.1.1	Control Fit	. 71
54			7.1.2	Signal Fit	. 74
55		7.2	Adapt	tive Binning Algorithm	. 76
56		7.3	Toy N	MC Experiments	. 77
57			7.3.1	Pseudo Experiment: Expected Signal Yield	. 77
58			7.3.2	Pseudo Experiment: Linearity Test	
59		7.4	Fit Re	esults	
60			7.4.1	Signal MC Fit Results	. 79
61			7.4.2	Control Fit Result	
62			7.4.3	Signal Fit to Data	. 87
63		7.5		usion	
64	8	Sve	tomati	ic Uncertainty	91
	O	8.1		Efficiency Correction	
65		8.2	Fit Bi		_
66		8.3		sian Constraints	
67					
68		8.4		emplate Smearing and Offset	
69		8.5		s of a Finite MC sample	
70		8.6		Selection Efficiencies	
71		8.7		l Uncertainty Effects	
72		8.8	Sumn	nary of Systematics	. 97
73	9			ntrol Plots	100
74		9.1	ROE	Clean-up π^0 Training	
75			9.1.1	Variable Importance	
76			9.1.2	Variable Distributions	
77			9.1.3	Hyper-parameter Optimization	. 103
78			9.1.4	Results	. 103
79		9.2	ROE	Clean-up γ Training	. 104
80			9.2.1	Variable Importance	. 104
81			9.2.2	Variable Distributions	. 105
82			9.2.3	Hyper-parameter Optimization	. 106
83			9.2.4	Results	. 106
84		9.3	ROE	Clean-up Duplicate Pair Training	. 107
85			9.3.1	Variable Importance	. 107
86			9.3.2	Variable Distributions	. 109
87			9.3.3	Hyper-parameter Optimization	. 111
88			9.3.4	Results	. 111
89		9.4	ROE	Clean-up Duplicate Track Training	. 112
90			9.4.1	Variable Importance	. 112
91			9.4.2	Variable Distributions	. 113
92			9.4.3	Hyper-parameter Optimization	. 114
93			9.4.4	Results	. 114
94		9.5	$q\bar{q}$ Su	ppression Training	. 115
95			9.5.1	Variable Importance	

96		9.5.2	Variable Distributions
97		9.5.3	Hyper-parameter Optimization
98		9.5.4	Results
99	9.6	Standa	ard $B\bar{B}$ Suppression Training
100		9.6.1	Variable Importance
101		9.6.2	Variable Distributions
102		9.6.3	Hyper-parameter Optimization
103		9.6.4	Results
104	9.7	Unifor	mity Boosted $B\bar{B}$ Suppression Training
105		9.7.1	Hyper-parameter Optimization
106		9.7.2	Results

Chapter 1

123

124

125

126

127

129

130

131

132

Introduction

Particle physics is an established branch of physics with a rich history in theory and 109 experiments ever since the beginning of the 20th century. So far the experimental 110 and theoretical research have shown us hand in hand that the universe consists of 111 particles and force carriers. Particles of matter, or elementary particles, are divided 112 into two groups, quarks and leptons. The quarks that we know today are called u113 (up), d (down), s (strange), c (charm), b (bottom) and t (top). Leptons are further 114 split into two groups; charged leptons e (electron), μ (muon), τ (tau lepton) and 115 their corresponding neutrinos ν_e (electron neutrino), ν_{μ} (muon neutrino), ν_{τ} (tau 116 neutrino). Particles of force are known as gauge bosons and they are γ (photon), 117 q (gluon), W^{\pm} (charged weak bosons) and Z^0 (neutral weak boson). Theory also 118 predicted the recently discovered Higgs boson (H), which is responsible for the 119 mass of all particles. Some of the particles above also have a mirrored version of 120 themselves, called antiparticles, which exhibit somewhat different properties as their 121 un-mirrored versions. 122

Combinations of quarks such as $q_1q_2q_3$ (hadrons) or $q_1\bar{q}_2$ (mesons) can make up heavier particles that we see today. Such particles are protons and neutrons, but also heavier particles which can be produced in processes involving very high energies. Such heavy particles are unstable and decay into lighter ones via forces of nature. Together with the elementary particles and force carriers, three out of four of these forces are joined in a theoretical model called the Standard Model (SM), which is shown in Figure 1.1. They are the electromagnetic, weak nuclear and strong nuclear force. Gravity is not included in the current version of the Standard Model due to its complex and weakly interacting nature. Researching such processes in large experiments enables us to study the mechanism of how elementary particles interact. By doing so we are able to learn the secrets of the universe and how it all began.

Figure 1.1: A schematic of the Standard Model.

This analysis revolves around decays of the so-called B mesons, which are particles that consist of a b quark and a light \bar{u} or \bar{d} quark (or vice-versa). One of the most surprising features of the universe that can be studied with decays of B mesons is the CP symmetry violation (CP). CP symmetry is a combination of the C symmetry (charge conjugation) and the P symmetry (spatial inversion). It states that there is no reason why processes of particles and mirrored processes of antiparticles would be different. Today we know that this does not hold for all cases and we, in fact, find processes which violate this postulate. We also know that CP is very closely related to the weak nuclear force. Here lies our motivation for studying decays of B mesons, since they exhibit a rich spectrum of decays which proceed via the weak nuclear force.

One of the most important properties of the weak nuclear force is that it can change the flavor of particles. Flavor is a quantum number which is conserved for each type of quark, so changing a flavor of a quark means changing the quark itself. Such processes are forbidden for the electromagnetic and the strong nuclear force, but not for the weak one. All of the information regarding quark transitions and transition probabilities can be merged into a form of a complex matrix called the Cabibbo-Kobayashi-Maskawa (CKM) matrix [1, 2]

$$V_{CKM} = \begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix}.$$
 (1.1)

The CKM matrix is a unitary matrix and has only four free parameters which are not described by theory. Its unitarity provides us with several mathematical identities, out of which the most famous one is

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0. (1.2)$$

It can be represented by a triangle in the complex plane, called the unitarity triangle, shown in Figure 1.2. The sides and the angles of the unitarity triangle are

closely connected to the free parameters of the CKM matrix. It is important to mention that all experimental measurements depend only on these four parameters, so it is possible to determine them by measuring the angles and sides of the unitarity triangle. This way the unitarity triangle offers us a unique way to test the consistency of the SM. The ultimate goal is to then join all such measurements and overconstrain the unitarity triangle to check if all the sides meet. By improving such measurements one can check whether the SM is consistent, or if there are some contributing physics processes that we do not yet understand. Such processes are commonly referred to as "new physics" (NP). The measurements of the sides and angles of the triangle are done by using different decays of which a large portion are B meson decays. Here lies another motivation for using B mesons in the analysis.

Figure 1.2: The unitarity triangle with λ , η , ρ and A (not shown) as free parameters of the CKM matrix, shown in the Wolfenstein parametrization [3].

In this analysis, we focus on the V_{ub} CKM matrix element, which corresponds to $b \to u$ quark transitions. It has the smallest absolute value of all the CKM matrix elements and the largest error, so it offers the most room for improvement. Such quark transitions are present in charmless semi-leptonic B meson decays of the form

$$B^+ \to X_u^0 \ell^+ \nu_\ell, \tag{1.3}$$

where X_u^0 represents a charmless hadron with a u quark and ℓ is one of the charged leptons e, μ or τ . Measuring the decay rate of the B meson in such decays paves the way for the CKM matrix element determination. Decay rates are directly connected to the V_{ub} element as

$$d\Gamma \propto G_F^2 |V_{ub}|^2 |L^{\mu} \langle X_u | \bar{u} \gamma_u \frac{1}{2} (1 - \gamma_5) b |B\rangle|^2, \tag{1.4}$$

where Γ is the decay width, G_F is the Fermi coupling constant, L^{μ} is the leptonic current and the expression in the Dirac brackets is the hadronic current. The factor $|V_{ub}|^2$ represents the probability for the $b \to u$ quark transition. Measurement of the V_{ub} CKM matrix element can be performed in two possible ways. With the exclusive or the inclusive method, which are described below. Both methods require different experimental and theoretical techniques, so they provide largely independent determinations of $|V_{ub}|$. Currently, both methods also have comparable accuracies.

In the exclusive method, one studies the decays of B mesons to a specific charmless hadronic final state, such as $B \to \pi \ell \nu$. Clean determination of the V_{ub} is possible due

to precise experimental measurements along with reliable theoretical calculations. However, theoretical calculations are more challenging for decays to a specific final state, since hadronization of quarks has to be taken into account. There are also two main experimental challenges in this method. One has to reduce the abundant background from $B \to X_c \ell \nu$ processes since the $b \to c$ quark transition is much more common. The second experimental challenge is to separate the B meson decay with the specific charmless hadronic final state from other $B \to X_u \ell \nu$ decays since it roughly populates the same regions of the phase-space as the signal decay.

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

In the inclusive method, one studies the decays of B mesons to any charmless hadronic final state $B \to X_u \ell \nu$. In this case, the total decay rate for $b \to u \ell \nu$ can be calculated accurately since hadronization does not have to be taken into account. The greater challenge with this method is again the experimental measurement of the total decay rate due to the $B \to X_c \ell \nu$ background. Experimental sensitivity to V_{ub} is highest where $B \to X_c \ell \nu$ decays are less dominant. Theory and experiment have to compromise and limit the V_{ub} determination to a region where the signalto-background ratio is good. Theory takes this into account by reliably calculating the partial decay rate $\Delta\Gamma$, which is more challenging than the total decay rate. One possible and often used approach to reduce $b \to c$ background is to reject all events with K particles, or kaons, present in the final particle selection. The procedure is called a K-veto. Kaons consist of an s quark, which is mainly produced in $c \to s$ transitions. This means that if a kaon is found in the event, it is very likely that it originates from a particle with a c quark, indicating the $b \to c$ process.

If V_{ub} is determined with both these methods, the values can be compared. It turns out that consistency between these two results is only marginal, where the difference is at a level of 3σ . The current world averages [4] of the exclusive (from $B^0 \to \pi^- \ell^+ \nu$) and inclusive (GGOU collab. [5]) are

$$|V_{ub}|_{\text{excl.}} = (3.65 \pm 0.09 \pm 0.11) \times 10^{-3},$$
 (1.5)

$$|V_{ub}|_{\text{excl.}} = (3.65 \pm 0.09 \pm 0.11) \times 10^{-3},$$
 (1.5)
 $|V_{ub}|_{\text{incl.}}^{\text{GGOU}} = (4.52 \pm 0.15 ^{+0.11}_{-0.14}) \times 10^{-3},$ (1.6)

where the first and the second errors are the experimental and the theoretical error, 208 respectively. We see that inclusive measurements prefer higher values than exclusive 209 ones. This is known as the V_{ub} puzzle. It is necessary to make further research as 210 to why this difference occurs. The reason could be an unknown experimental or 211 theoretical error, or it is even possible that some NP contributions occur. This anal-212 ysis will focus on a possible reason that could be hidden in the selection mentioned 213 before. By performing a K-veto, one discards all events with kaons in the final state 214 in order to suppress $b \to c$ contributions. In this analysis, we focus on the charged 215 $B \to KK\ell\nu$ decay, which is very similar to the $B \to \pi\ell\nu$, except for a production 216 of an $s\bar{s}$ quark pair, which then combines with final state quarks to form kaons, 217 as shown in Figure 1.3. In this case, we have kaons in the final state where the B218 meson decayed via a $b \to u$ process. Such decays were discarded in previous V_{ub} 219 determinations with the inclusive method, but in principle, they contribute to the 220 result and should be taken into account. The results of this analysis should help us 221 make a step closer to solving the V_{ub} puzzle.

Figure 1.3: Feynman diagrams for the $B^+ \to \pi^0 \ell^+ \nu_\ell$ decay (left) and the $B^+ \to K^- K^+ \ell^+ \nu_\ell$ decay (right).

Specifically, we will be focusing on decays of the charged B mesons of the form $B^+ \to K^+ K^- \ell^+ \nu$, since it includes two charged kaons, as opposed to the case of the neutral B meson decay. The reason for this is a simpler decay chain and a higher reconstruction efficiency. All further occurrences of $B \to KK\ell\nu$ automatically imply decays of the form $B^+ \to K^+ K^- \ell^+ \nu$ and its charge conjugated counterpart.

$_{\circ}$ Chapter 2

₂₉ Data and Monte-Carlo Samples

The Belle detector acquired a dataset of about $L_0 \approx 710 \text{ fb}^{-1}$ of integrated luminosity in it's lifetime, which corresponds to about 771×10^6 BB meson pairs. 231 Additionally, several streams of Monte-Carlo (MC) samples were produced, where 232 each stream of MC corresponds to the same amount of data that was taken with 233 the detector. The main focus of this and other similar analyses is to study a rare 234 signal decay, which means that the amount of such decays in the existing MC is not 235 abundant enough. In such cases, it is a common practice to produce specific samples of signal MC, where the abundance of signal decays is much larger, enabling us to 237 study its properties in greater detail. 238

The following samples were used in this analysis

• data

239

240

241

242

243

245

246

247

248

250

252

253

254

255

- Belle on-resonance dataset of about L_0 integrated luminosity, measured at $\Upsilon(4S)$ resonance energy,
- Belle off-resonance dataset of about $1/10 \times L_0$ integrated luminosity, measured at 60 MeV below $\Upsilon(4S)$ resonance energy,
- signal MC, corresponding to about $400 \times L_0$,

• other MC

- generic on-resonance, 10 streams of $B\bar{B}$ (denoted as charged and mixed) and 6 streams of $q\bar{q}$ produced at $\Upsilon(4S)$ resonance energy, where each stream corresponds to L_0 ,
- generic off-resonance, 6 streams of $q\bar{q}$ produced at 60 MeV below $\Upsilon(4S)$ resonance energy, where each stream corresponds to $1/10 \times L_0$,
- $-B \rightarrow X_u \ell \nu$ (denoted as ulnu), not included in previous MC samples, equal to an amount of $20 \times L_0$,
- other rare B meson decays (denoted as rare), not included in previous MC samples, equal to an amount of $50 \times L_0$.

₅ 2.1 Signal MC Production

The signal MC sample of $B^+ \to K^+ K^- \ell \nu_\ell$ and the charge conjugated B^- decays was produced using the mcproduzh package for producing Belle MC. The package accepts a decay file, which describes the decays to be generated. The decay file used for signal MC generation was the same as for the ulnu sample since it includes the decays of interest. An additional skim was applied in order to select only events of interest

with at least 2 kaons and a light lepton, all coming from the same particle. This 262 decreases the CPU consumption during the detector simulation and reconstruction. 263 264

The relevant processes which contribute to our signal decay are

- $B^+ \rightarrow a_{00} \ell^+ \nu_{\ell}$, 265
- $B^+ \to a_{20} \ell^+ \nu_{\ell}$, 266
- $B^+ \to f_2 \ell^+ \nu_\ell$ 267
- $B^+ \to f_0 \ell^+ \nu_{\ell}$, 268

270

271

272

273

274

276

277

278

279

280

281

282

• $B^+ \to X_u^0 \ell^+ \nu_\ell$ 269

> where a_{00} , a_{20} , f_2 and f_0 are light unflavored states which include further decays into a K^+K^- pair, and X_u^0 represents a generic $u\bar{u}$ quark pair, which further hadronizes based on the PYTHIA quark hadronization model [6]. Figure 2.1 shows the invariant mass of the KK pair from various contributions of the MC generator. The light unflavored states have small contributions with resonant structures, while KK pairs from the X_u^0 state are more frequent and follow a wider and smoother distribution.

Figure 2.1: Invariant mass of the KK pair from various contributions of the MC generator. The light unflavored states have small contributions with resonant structurer, while KK pairs from the X_u^0 state are more frequent and follow a wider and smoother distribution.

The produced signal MC sample contains decays of the form $B \to KK\ell\nu$ as well as $B \to KKX\ell\nu$, where X can be any hadron as long as it satisfies all the selection rules of the decay. It is possible to calculate the MC branching ratios for each channel by making combinations of the particles directly from the generator. Table 2.1 shows some of the most prominent channels, which are similar to our signal decay, as well as their relative fraction. It is clear that our signal decay is the most abundant one, with a relative contribution of about 28 \%, while other channels contribute only up to about 8 % or less. Additionally, our signal decay is the cleanest, while other decays include neutral particles like π^0 , which are harder to reconstruct and suffer from decrease in efficiency due to reconstruction effects.

Channel	Ratio [%]		
K^+K^-	28.14	Channel	Ratio
$K^{+}K^{-}\pi^{0}$	8.94	$K^{+}K^{-}\pi^{0}\pi^{0}$	0.86
$K^+\bar{K}^0\pi^-$	8.71	$K^{+}K^{-}\pi^{+}\rho^{-}$	0.69
$K^0K^-\pi^+$	8.70	$K^{+}K^{-}\rho^{+}\pi^{-}$	0.68
$K^{+}K^{-}\pi^{+}\pi^{-}$	4.15	$K^0 \bar{K}^0 \rho^0$	0.00
$K^0 \bar{K}^0$	3.32		
$K^{0}\bar{K}^{0}\pi^{0}$	3.26	KK pair with η	7.08
$K^+K^-\rho^0$	1.93	$K\bar{K}$ pair with ω	5.33
,		Other	14.53
$K^+\bar{K}^0 ho^-$	1.84		11.00
$K^0K^-\rho^+$	1.83		

Table 2.1: Relative branching ratios of $B \to KKX\ell\nu$ decays by channel.

We generate about 1.3×10^9 events of the form $B \to X_u \ell \nu$, which corresponds to an integrated luminosity of about $L = 400 \times L_0$, where this value was obtained by normalizing the signal MC to the amount of signal in the $B \to X_u \ell \nu$ MC sample. This amounts to a total of about 9.37×10^6 generated signal events, and to a branching ratio

$$\mathcal{B}\left(B^{+} \to K^{+}K^{-}\ell^{+}\nu_{\ell}\right)_{MC} = 1.53 \times 10^{-5},$$
 (2.1)

where ℓ is e or μ . During analysis, the abundant signal MC sample is scaled down to correspond to the amount of data taken with the Belle detector.

33 2.2 Control Decay

In this analysis, we are also able to define another *B* meson decay which occupies almost the same phase space as our signal decay. This process can be used for the monitoring of our analysis steps, which are applied to both measured and simulated data. Any kind of difference between the two might indicate our procedure to be fine-tuned to simulated data, or some other similar problem.

We define a control decay of the form

$$B^+ \to \bar{D}^0 \ell^+ \nu, \quad D^0 \to K^+ K^-,$$

which is much more abundant and, most importantly, easy to suppress since it only populates a very narrow region in the kaon invariant mass spectrum. Due to no extra particles in the D^0 decay, the kaon invariant mass is equal to $m_{KK} \approx m_{D^0}$ up to very good precision. By excluding this narrow region we discard the majority of the control candidates while discarding only a small amount of the signal candidates. A more quantitative description of suppressing control and other background candidates is written in chapter 6.

Chapter 3

Belle to Belle II Format Conversion

3.1 Conversion Procedure

The Belle experiment finished its data-taking run of 10 years at the end of 2010 after collecting a dataset of about 1 ab⁻¹. That year the Belle detector was shut down and the Belle II experiment has started in its place. While the focus moved to the construction of the Belle II detector and the development of the Belle II Analysis Framework (BASF2), Belle analyses are still on-going and Belle data is still being used today. BASF2 software with its modular structure has a more intuitive approach to performing analyses, however, since it was rewritten completely from scratch, it was designed for the incoming Belle II data and therefore out-of-the-box usage of Belle data is outside of its scope.

In the Belle II Collaboration, a task force was created in order to convert Belle data into Belle II format (B2BII). The B2BII package was developed as a part of BASF2 in order to convert data and MC of the Belle experiment and make it available within BASF2. In addition to the convenience of Belle data being processed in the more intuitive and advanced BASF2 framework, B2BII allows for estimation and validation of performances of various advanced algorithms being developed for Belle II. The conversion itself, however, is considered non-trivial. Although the conversion of the raw detector data would be possible, the reconstruction algorithms of BASF2 are optimized for Belle II and cannot be effectively applied to Belle data. To bypass this problem, reconstructed objects from PANTHER tables, a custom solution of the Belle collaboration based on C/C++ and Fortran, are mapped to their corresponding representations in BASF2. In this analysis, we use the developed converter package in order to analyze Belle data with the Belle II software.

The conversion in the B2BII package is divided into three BASF2 modules. The first module opens the Belle input files and reads the events into memory in the form of PANTHER tables. This module consists predominantly of reused BASF code. The second module applies various calibration factors, such as experiment and run dependent factors, to the beam energy, particle identification information, error matrices of the fitted tracks, etc. The module also applies some low-level cuts to reproduce removing background events as done within BASF. The actual conversion and the mapping of reconstructed objects are done in the last module. For more information see [7].

3.2 Validation

In order to make sure the conversion was successful and without errors, a thorough validation should be performed. This is done by comparing histograms of all physical quantities of the reconstructed objects on simulated and recorded events, processed with BASF and BASF2.

Our signal decay mode consists of three charged tracks, track conversion should perform flawlessly. Additionally, energy measurement is also very important in our untagged analysis in order to successfully determine the missing 4-momentum in the event, which is why we also need a correct conversion of the ECL clusters for photons and π^0 particles. Figures 3.1 to 3.3 show the basic physical properties of converted tracks, photons and π^0 particles, obtained with BASF and BASF2. The plots indicate that the conversion is successful in all aspects and we can proceed with the analysis in the framework of BASF2.

Figure 3.1: Some of the more important physical properties of tracks for Belle and Belle II in the conversion process.

The histograms seem to overlap and the conversion is assumed to be successful.

Figure 3.2: Some of the more important physical properties of photons for Belle and Belle II in the conversion process.

The histograms seem to overlap and the conversion is assumed to be successful.

Figure 3.3: Some of the more important physical properties of π^0 particles for Belle and Belle II in the conversion process. The histograms seem to overlap and the conversion is assumed to be successful.

$_{\tiny{54}}$ Chapter 4

$_{ iny 155}$ Event Reconstruction

In this chapter the procedure for event reconstruction of the B meson decay $B \to KK\ell\nu$ is shown, starting with final state particle selection and then combining them to obtain B meson candidates.

59 4.1 Final State Particles Selection

Since the neutrino escapes detection, we can only reconstruct the charged tracks in the decay, which are the two charged kaons (K) and the light lepton, which is the electron (e) or muon (μ) . These are some of the particles which are commonly referred to as final state particles (FSP). Final state particles have a long lifetime and are usually the particles that we detect when they interact with the material in the detector.

It is important to limit our selection of FSP particles in order to cut down the number of particle combinations, and consequentially computation time and file sizes.

At this point in the analysis, we do not apply any intelligent cuts yet, which results in a large number of available particles and their combinations. In order to minimize this effect, we perform this part of the study on a smaller subset of the available generic MC, experiment no. 23 and 31, which correspond to an integrated luminosity of 6.273 fb⁻¹ and 17.725 fb⁻¹, respectively. We chose these two experiments to get closer to the appropriate ratio of SVD1 and SVD2 data in the full Belle MC.

375 Leptons

367 368

369

370

371

Figures 4.1 and 4.2 show the impact parameters d_0 and z_0 , the momentum in $\Upsilon(4S)$ center-of-mass system (CMS), and the PID information for true and fake electrons and muons, where an extra category for true electrons/muons from the signal decay is shown.

Figure 4.1: Normalized properties of true (blue), fake (red) and true electrons from signal B candidates (green).

Figure 4.2: Normalized properties of true (blue), fake (red) and true muons from signal B candidates (green).

Based on these distributions, we can define a set of cuts

• $|d_0| < 0.1 \text{ cm}$,

380

384

- $|z_0| < 1.5 \text{ cm},$
- $p_{CMS} \in [0.4, 2.6]$ GeV/c for electrons,
 - $p_{CMS} \in [0.6, 2.6]$ GeV/c for muons.

After this selection we can determine the optimal PID cuts for electrons and muons, where we optimize the selection by maximizing the standard definition of figure of merit (FOM), defined in Eq. (4.1)

$$FOM = \sqrt{\mathcal{EP}} \propto \frac{S}{\sqrt{S+B}},\tag{4.1}$$

where the argument in the square root is the product of the efficiency (\mathcal{E}) and the purity (\mathcal{P}) function. The definitions of signal (S) and background (B) are somewhat fluid throughout the analysis and need to be defined for each FOM separately. In this section we define two representations of S and B. In FOM₁ the signal S represents correctly reconstructed final state particles, while in FOM₂ the signal S represents correctly reconstructed final state particles which also come from a correctly reconstructed S meson candidate. In both cases S represents all other particle candidates which do not satisfy the conditions of S.

The FOM plots are shown in Figures 4.3 and 4.4. The cut values are based on PID cuts used for PID efficiency calibration. The optimal value for the PID cuts is equal to the largest available value, regardless of the leptons coming from signal decays or not. The optimized PID cuts for leptons are

• e prob. > 0.9 for electrons,

• μ prob. > 0.97 for muons.

Figure 4.3: FOM optimizations of the PID probability cuts for true electrons (left) and true electrons from signal B candidatess (right).

Figure 4.4: FOM optimizations of the PID probability cuts for true muons (left) and true muons from signal B candidates (right).

Kaons

402

We repeat the procedure for both kaons. Figure 4.5 shows the impact parameters d_0 and d_0 and d_0 , the momentum in $\Upsilon(4S)$ center-of-mass system (CMS), and the PID information for true and fake kaons, where an extra category for true kaons from the signal decay is shown.

Figure 4.5: Normalized properties of true (blue), fake (red) and true kaons (green) from signal B candidates.

We define the kaon cuts in the same manner as in the case for leptons

• $|d_0| < 0.15$ cm,

407

- $|z_0| < 1.5 \text{ cm},$
- $p_{CMS} \in [0, 2.5] \text{ GeV}/c.$

The PID optimization, in this case, is taken in two steps. First, we optimize the cut on K/π , and after that the K/p separation probability. Figure 4.6 shows the optimization procedure for PID cuts on kaon candidates.

Figure 4.6: FOM optimizations of the PID probability cuts for true kaons (top) and true kaons from signal B candidates (bottom). The plots on the left show the optimization of the first step for the K/π probability cut, and the plot on the right the K/p probability cut.

The optimized PID cuts for kaons are

- $K/\pi > 0.6$,
- K/p > 0.1.

4.2 Pre-selection of First B Meson Candidates

In this section, we use the charged particle candidates from the previous section to make particle combinations, which correspond to B meson candidates. When a B meson candidate is selected, additional features can be calculated and used for background rejection. Since we are still performing this part of the study on

a smaller subset of the full available MC sample, we will perform under-optimized cuts based on the FOM optimization in order to optimize them later on the full Belle MC sample.

Since the missing neutrino escapes detection, we reconstruct the B mesons in the following two channels

$$B^+ \to K^+ K^- e^+,$$

 $B^+ \to K^+ K^- \mu^+,$

and similarly for B^- . When an arbitrary combination is obtained, we perform a vertex fit of the three tracks in order to discard combinations with a low probability of tracks coming from the same point. B mesons have a relatively long lifetime and decay along the z axis of the detector in the direction of the boost, so the vertex fit is enforced with an IPTUBE constraint, which constrains the vertex to an elongated ellipsoid along beam direction. We demand that the fit converged and apply a cut on the minimal fit probability. The fit probability for signal and background B meson candidates is shown in Figure 4.7 (left). We perform a FOM cut optimization of this variable, which is shown in Figure 4.7 (right) for the subset of the Belle MC sample. In this and in the following cases, the definition of S from Eq. (4.1) are correctly reconstructed B meson candidates with a missing neutrino which are not coming from a $b \to c$ transition.

Figure 4.7: Normalized vertex fit probability distribution for signal and background B meson candidates in logarithmic scale(left) and FOM optimization of the vertex fit probability (right) for the subset of the full Belle MC sample.

The chosen pre-cut on the fit probability is

•
$$P(\chi^2, NDF) > 1.0 \times 10^{-3}$$
.

With the neutrino being the only missing particle on the reconstructed side, it is possible to determine the angle between the direction of the reconstructed B (denoted as $Y \to KK\ell$) and the nominal B, as

$$p_{\nu} = p_B - p_Y, \tag{4.2}$$

$$p_{\nu}^{2} = m_{\nu}^{2} = m_{B}^{2} + m_{Y}^{2} - 2E_{B}E_{Y} + 2\vec{p}_{B} \cdot \vec{p}_{Y} \approx 0, \tag{4.3}$$

$$\cos(\theta_{BY}) = \frac{2E_B E_Y - m_B^2 - m_Y^2}{2|\vec{p}_B||\vec{p}_Y|},\tag{4.4}$$

where all the energy and momenta above are calculated in the CMS frame. The mass of the neutrino is equal to 0 to a very good precision, so we use it in Eq. (4.3). In addition, we can substitute the unknown energy and momentum magnitude, E_B and $|\vec{p}_B|$, of the B meson in Eq. (4.4), with quantities from the well known initial conditions

$$E_B = E_{CMS}/2, (4.5)$$

$$|\vec{p}_B| = p_B = \sqrt{E_B^2 - m_B^2},$$
 (4.6)

where E_{CMS} is the total energy of the e^+e^- collision in the CMS frame and m_B is the nominal mass of the B meson.

For the correctly reconstructed candidates, this variable lies in the [-1,1] region, though only to a certain precision, due to the finite detector resolution. Background candidates, however, populate also the non-physical regions, as shown in Figure 4.8 (left).

Figure 4.8: Normalized $\cos \theta_{BY}$ distribution for signal and background B meson candidates (left) and FOM optimization of the $\cos \theta_{BY}$ variable (right) for the subset of the full Belle MC.

We again impose an under-optimized cut on this variable from Figure 4.8 (right) to discard a large amount of background on this subset of the full Belle MC

•
$$|\cos{(\theta_{BY})}| < 1.20.$$

444

445

446

447

4.3 Loose Neutrino Reconstruction

The signal-side neutrino escapes detection, so we cannot directly determine it's four-momentum. However, due to the detectors geometry, which almost completely covers the full solid angle, and due to well known initial conditions of the $\Upsilon(4S)$ meson, it is possible to determine the kinematics of the missing neutrino via indirectly reconstructing the companion B meson by summing up the four-momenta of all the FSP particles in the event which were not used in the reconstruction of the signal side B meson. This is known as the untagged method since we are not using any kind of tagging method to reconstruct the companion B meson. The particles used in the indirect companion B meson reconstruction are also said to belong to the rest of the event (ROE).

Due to the beam background in the detector, material interactions, or other processes, random tracks and clusters enter our event and get reconstructed as part of the physics process we want to study. These tracks and clusters are not interesting and further spoil the data we measure. In order to remedy this, we perform an extensive clean-up of the tracks and clusters in the ROE side before calculating the four-momentum of the missing part of the event. Here we see the motivation for the ROE clean-up since our signal candidate reconstruction depends on tracks and clusters in the ROE side. The clean-up procedure is performed separately on tracks and clusters and uses multiple steps with multivariate analysis (MVA) algorithms in order to separate good tracks and clusters from the bad ones, which populate the ROE. Then, for each ROE object, a ROE mask is created for tracks and clusters, which narrates the use of this object in the final calculations of the ROE four-momentum. From this point on we assume the ROE to be efficiently cleansed of extra tracks and clusters. A more detailed description of the ROE clean-up can be found in Chapter 5.

The total missing four-momentum in the event can be determined as

$$p_{miss} = p_{\Upsilon(4S)} - \sum_{i}^{\text{Event}} (E_i, \vec{p}_i), \qquad (4.7)$$

$$p_{miss} = p_{\Upsilon(4S)} - \left(p_Y - \sum_{i}^{\text{Rest of event}} (E_i, \vec{p}_i)\right), \tag{4.8}$$

where the summation runs over all charged and neutral particles in the defined set with

$$\mathbf{p}_i^{\text{neutral}} = (p_i, \vec{p}_i) \quad \text{and} \quad \mathbf{p}_i^{\text{charged}} = \left(\sqrt{m_i^2 + p_i^2}, \vec{p}_i\right),$$
 (4.9)

where we assumed all neutral particles to be massless photons. For charged tracks in the ROE a mass hypothesis needs to be defined in order to determine the track's energy. After the ROE clean-up we make the following procedure of choosing the mass hypothesis

- 1. e, if e prob. $> \mu$ prob. and e prob. > 0.9,
- 2. otherwise μ , if μ prob. > e prob. and μ prob. > 0.97,
- 3. otherwise K, if K/π prob. > 0.6,

4. otherwise π .

486

487

488

489

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

We define the square of the missing mass, m_{miss}^2 , which is consistent with zero, if signal-side neutrino is the only missing particle in the event, as shown in Eq. (4.11).

$$p_{\nu} = p_{miss} = (E_{miss}, \vec{p}_{miss}),$$
 (4.10)

$$p_{\nu} = p_{miss} = (E_{miss}, \vec{p}_{miss}),$$
 (4.10)
 $m_{miss}^2 = p_{miss}^2 = p_{\nu}^2 = m_{\nu}^2 \approx 0.$ (4.11)

Since the detector is not perfect, the distribution of the m_{miss}^2 variable has a nonzero width. Additionally, a tail is introduced due to missing particles like neutrinos, other neutral undetected particles such as K_L^0 , or simply missing tracks due to detection failure. Figure 4.9 shows the distribution of m_{miss}^2 as defined with the missing four-momentum in Eq. (4.10). Correctly reconstructed candidates, which come from events where the other B meson decayed via a hadronic decay mode, peak at zero. If this is not the case, candidates are shifted to larger values of this variable, even if the event in question is a signal event. For this purpose, we define a subset of all signal candidates, which come from events where the companion B meson decayed hadronically and all of its particles were taken into account correctly. We only allow for missing photons, since they are frequently irradiated due to bremsstrahlung effects and they do not have such a big impact on the 4-momentum of the final candidate. We denote this subset as *perfect* signal.

Due to this fact, we impose a cut on the m_{miss}^2 variable in order to partially discard candidates with spoiled properties, even if it was in principle a correct combination of FSP particles on the signal side. The cut was chosen based on the optimization of FOM, where in this case the definition of S were perfectly reconstructed signal candidates. The chosen cut value is

•
$$|m_{miss}^2| < 3.0 \text{ GeV}/c^2$$
,

which is also under-optimized at this point due to the same reasons as in the cases above.

Figure 4.9: Squared missing mass distribution for signal and various types of background. All signal (green) and perfect signal (black) are scaled up equally.

The main uncertainty of the neutrino four-momentum, defined in Eq. (4.10), comes from energy uncertainty. It is a common practice to substitute the missing energy with the magnitude of the missing momentum, since the momentum resolution from the measurement is much better, thus redefining the neutrino four-momentum to

$$p_{\nu} = (|\vec{p}_{miss}|, \vec{p}_{miss}),$$
 (4.12)

which fixes the neutrino mass to $0 \text{ GeV}/c^2$.

The newly defined neutrino four-momentum can be added to the four-momentum of the $Y(KK\ell)$ candidate to obtain the full B meson four-momentum and calculate the traditional M_{BC} and ΔE variables

$$\Delta E = E_B - E_{CMS}/2,\tag{4.13}$$

$$M_{BC} = \sqrt{(E_{CMS}/2)^2 - |\vec{p}|^2}.$$
 (4.14)

Since the final fit will be performed over ΔE and M_{BC} , we define the fit region

- $M_{BC} \in [5.1, 5.295] \text{ GeV}/c^2$,
- $\Delta E \in [-1.0, 1.3] \text{ GeV}.$

514

515

516

517

518

519

520

521

Figure 4.10 shows the distributions of ΔE (left) and M_{BC} (right) for signal and major types of background after the pre-cuts. Both signal components are scaled up with respect to the background components but are in proper scale one to another. The effects of missing particles are clearly seen based on the shape difference between all and perfect signal.

Figure 4.10: Distributions of ΔE (left) and M_{BC} (right) for signal and major types of background after the precuts. Both signal components are scaled up with respect to the background components, but are in proper scale one to another. The perfect signal has a much better resolution in both distributions, since the event is perfectly reconstructed.

2 4.4 Final Stage Optimization

With the charge particle selection and a rough selection of the *B* meson particles in place, we can now afford to run the reconstruction procedure over all 10 streams of the full available Belle generic MC. After obtaining the full reconstructed sample, the first task is to optimize the under-optimized cuts from the pre-selection stage. Repeating the procedure on the full sample results in the FOM shapes shown in Figure 4.11, while the optimal cut values are

- $P(\chi^2, NDF) > 6.0 \times 10^{-3}$,
- $|\cos(\theta_{BY})| < 1.05$.

529

530

531

532

533

534

535

536

538

539

540

541

Figure 4.11: FOM optimization of the vertex fit probability (left) and the $\cos \theta_{BY}$ variable (right) for the full Belle MC sample.

With further optimizations, we will be fine-tuning the signal to background ratio. The most prominent and distinguishable part of our signal is the perfectly reconstructed signal. For this purpose, we define a signal region in ΔE and M_{BC} , where most of our perfectly reconstructed candidates lie. We use this region for all of the following optimization steps in this chapter and also in the background suppression chapter 6 since this allows us to better improve the signal to background ratio where it counts most. The 2D FOM optimization of the optimal ΔE and M_{BC} signal region is shown in Figure 4.12.

The signal region is defined as

- $M_{BC} > 5.271 \text{ GeV}/c^2$.,
 - $|\Delta E| < 0.126 \text{ Gev}$.

Figure 4.12: 2D FOM optimization of the signal region definition, where the signal in the optimization was represented by perfectly reconstructed candidates.

With the signal window defined, we can tighten the cut on m_{miss}^2 , which we intentionally left loose before the signal categorization. With the FOM optimization of perfectly reconstructed candidates inside the signal region, shown in Figure 4.13, the optimal cut on m_{miss}^2 is

• $|m_{miss}^2| < 0.975 \text{ GeV}/c^2$.

542

543

545

Figure 4.13: FOM optimization of the optimal m_{miss}^2 cut in the signal region.

4.5 Charge product categorization

The missing information due to an escaping neutrino in our reconstructed channel is replaced by information from the companion B meson. Since this is an untagged reconstruction, the quality of the companion B meson affects the properties of the signal candidate. Perfect reconstruction of a hadronically decayed companion B meson results in pronounced peaks at $\Delta E \approx 0$, $m_{miss}^2 \approx 0$ and $M_{BC} \approx m_B$, while imperfect reconstruction due to any kind of missing particles produces tails, shift or simply a worse resolution of the mentioned distributions. These effects are undesired since they make it harder to separate signal from background.

To remedy this, we look at the charge product of the reconstructed B meson and the ROE object. For correctly reconstructed events, this should have a value of

$$q_{B^{\pm}}q_{B^{\mp}} = -1, (4.15)$$

however, this value is distributed due to missing charged particles in the reconstruction. Figure 4.14 shows various signal distributions of ΔE and M_{BC} in arbitrary (left) and normalized (right) scales, with the relative ratios of 67.86 % and 32.14 % for correct and wrong values of the charge product, respectively. We see that correctly reconstructed events represent the majority of signal and also have the best resolution in ΔE and M_{BC} , so we proceed with the analysis by imposing the cut in Eq. 4.15.

While this cut introduces a drop in the signal efficiency of about 32.14 %, it improves the resolution of our signal ΔE and M_{BC} distributions and also the signal to background ratio, where the latter changes from 0.95×10^{-3} to 1.09×10^{-3} .

Figure 4.14: Signal distributions of ΔE and M_{BC} based on the charge product of both B mesons in the event. The plot on the left shows the distributions in an arbitrary scales, while the plot on the right shows the normalized distributions.

4.6 Selection Summary

In this section, one can find the full summary of all final selection cuts in the event reconstruction, from FSP particles up to the *B* meson.

• FSP particles:

- electrons: $|d_0| < 0.1 \text{ cm}, |z_0| < 1.5 \text{ cm}, p > 0.6 \text{ GeV}/c,$ $p_{CMS} \in [0.4, 2.6] \text{ GeV}/c, eID > 0.9,$
- muons: $|d_0| < 0.1 \text{ cm}, |z_0| < 1.5 \text{ cm}, p_{CMS} \in [0.6, 2.6] \text{ GeV}/c,$ $\mu ID > 0.97,$

```
- kaons: |d_0| < 0.15 cm, |z_0| < 1.5 cm, p_{CMS} < 2.5 GeV/c,
576
                 K/\pi \ ID > 0.6, K/p \ ID > 0.1,
577
        \bullet B meson candidates:
578
              - standard cuts: P(\chi^2, DOF) > 6 \times 10^{-3}, |\cos \theta_{BY}| < 1.05, |m_{miss}^2| <
579
                 0.975~{\rm GeV}/c^2,
```

- fit region cuts: $\Delta E \in [-1.0, 1.3] \text{ GeV}, M_{BC} \in [5.1, 5.295] \text{ GeV}/c^2$, 581
- signal region cuts: $|\Delta E| < 0.126 \text{ GeV}, M_{BC} > 5.271 \text{ GeV}/c^2$, 582
- charge categorization: $q_{B^{\pm}}q_{B^{\mp}}=-1$. 583

Chapter 5

Rest of Event Clean-up

Continuing from section 4.3, the description of the ROE clean-up process is described here.

Training the MVA classifiers follows the same recipe for all the steps in this chapter. For each step, we run B meson reconstruction on Signal MC with a generic companion B meson. This way the produced weight files are less likely to be signal-side dependent and can be used also for untagged analyses of other decays. For every correctly reconstructed signal B meson we save the necessary information for each MVA step (i.e. properties of ROE clusters). Only correctly reconstructed B candidates are chosen here, to prevent leaks of information from the signal side to the ROE side.

5.1 Clusters Clean-up

Photons originate from the IP region, travel to the ECL part of the detector in a straight line and produce a cluster. The direction of the photon is determined via the location of the cluster hit in the ECL and the energy of the photon is directly measured via the deposited energy. This way the four-momentum of photons is determined and used in Eq. (4.8).

Most of the photons in events with B mesons come from $\pi^0 \to \gamma \gamma$ decays. However, a lot of hits in the ECL are also created by photons coming from the beaminduced background or secondary interactions with the detector material. Photons of the first kind should be taken into account when calculating the missing 4-momentum, while the latter kind adds extra energy and momentum which spoils our measured quantities. In the first step of the clusters clean-up, we train an MVA which recognizes good π^0 candidates and apply this information to the daughter photons. This represents a sort of a π^0 origin probability, which peaks at or is equal to 0 for photons not coming from π^0 particles, and peaks at 1 otherwise. This information is used as an additional classifier variable in the next step of the clean-up, where we train to recognize good photons in an event.

${f 5.1.1}$ π^0 MVA Training

The training dataset of π^0 candidates contains

- 183255 target candidates.
- 200000 background candidates,

where the definition of a target is that both photon daughters that were used in the reconstruction of the π^0 are actual photons and real daughters of the π^0 particle. 618 We use π^0 candidates from the converted Belle particle list and select those with invariant mass in the range of $M \in [0.10, 0.16]$ GeV. After that we perform a mass-620 constrained fit on all candidates, keeping only the ones for which the fit converged. 621 The input variables used in this MVA are

- p and p_{CMS} of π^0 and γ daughters,
- fit prob. of the mass-constrained fit, invariant mass and significance of mass before and after the fit,
- angle between the photon daughters in the CMS frame,
 - cluster quantities for each daughter photon
 - $-E_{9}/E_{25}$
- theta angle, 629

622

623

624

625

626

627

628

632

633

634

- number of hit cells in the ECL, 630
- highest energy in cell, 631
 - energy error,
 - distance to closest track at ECL radius.
 - The classifier output variable is shown in Figure 5.1.

Figure 5.1: Classifier output of the π^0 training for signal and background π^0 candidates.

The distributions for all input variables and their correlations for signal and back-635 ground candidates can be found in Appendix A for all steps of the ROE clean-up.

$_{ au}$ 5.1.2 γ MVA Training

In this MVA training, we take the π^0 classifier output of the previous training as an input in order to train a classifier to distinguish between good and bad photons. The π^0 probability information from the previous step is applied to all photon pairs which pass the same π^0 cuts as defined in the previous step. Since it's possible to have overlapping pairs of photons, the π^0 probability is overwritten in the case of a larger value, since this points to a greater probability of a correct photon combination. On the other hand, some photon candidates fail to pass the π^0 selection, these candidates have a fixed value of π^0 probability equal to zero.

The training dataset of γ candidates contains

- 171699 target candidates,
- 177773 background candidates,

where the definition of a target is that the photon is an actual photon which is related to a primary MC particle. This tags all photon particles from secondary interactions as background photons. We use the converted γ candidates from the existing Belle particle list.

The input variables used in this MVA are

- p and p_{CMS} of γ candidates,
- π^0 probability,

646

647

648

- cluster quantities
- $-E_9/E25,$
- theta angle,
- number of hit cells in the ECL,
- highest energy in cell,
- energy error,
- 662 distance to closest track at ECL radius.
- The classifier output variable is shown in Figure 5.2.

Figure 5.2: Classifier output of the γ training for signal and background γ candidates.

With the final weights for photon classification in hand, we apply them to the photon particle list. The cut optimization is shown in Figure 5.3 (left), with the optimal cut on the γ classifier output at

• $BDT_{\gamma} > 0.5045$.

667

671

672

Figure 5.3 (right) shows the LAB frame momentum of the photons before and after the cut in logarithmic scale. The signal efficiency and background rejection at this clean-up cut are

• Signal efficiency: $\epsilon_{SIG} = 83.2 \%$,

• Background rejection: $1 - \epsilon_{BKG} = 81.2 \%$.

Figure 5.3: The FOM of the classifier output optimization (left) and momentum magnitude in the LAB frame of signal and background photon candidates before and after the optimal cut (right).

The event is now considered to be clean of extra clusters.

5.2 Tracks Clean-up

681

682

683

684

693

Charged particles leave hits in the detector, which are then grouped into tracks by advanced tracking algorithms. The track is fitted and the track momentum is determined. With the help of particle identification information (PID), we are able to make an intelligent decision about the mass hypothesis of the particle and thus reconstruct the charged particle's four-momentum, which is then added in the loop in Eq. (4.8).

Most of the quality (good) tracks, which come from physics event of interest, come from the IP region, where the collisions occur. Cleaning up the tracks is a more complex procedure than cleaning up the clusters. The following facts need to be taken into account

- 685 (a) good tracks can also originate away from the IP region, due to decays of long-686 lived particles, such as $K_S^0 \to \pi^+\pi^-$,
- (b) charged particles from background sources produce extra tracks or duplicates,
- (c) low momentum charged particles can curl in the magnetic field and produce multiple tracks,
- 690 (d) secondary interactions with detector material or decays of particles in flight can 691 produce "kinks" in the flight directory, resulting in multiple track fit results per 692 track.
 - Schematics of all the cases mentioned above are shown in Figure 5.4.

Figure 5.4: (a) Tracks from long-lived neutral particles, which decay away from the IP region, (b) Random tracks from background which are reconstructed, (c) Low-momentum particles which curl in the magnetic field, (d) in-flight decays of particles, which produce a kink in the trajectory.

It is obvious that tracks from the same momentum source should only be taken into account once, or, in case of background tracks, not at all. Such tracks will from this point on be denoted as *extra* tracks, because they add extra four-momentum to our final calculations in Eq. (4.8). At the same time, we have to take care that we don't identify *good* tracks as *extra* tracks. Both of these cases have negative impacts on the final resolution of all variables which depend on information from ROE.

5.2.1 Tracks from Long-lived Particles

The first step in tracks clean-up is taking care of tracks from long-lived particles. Here we only focus on K_S^0 , since they are the most abundant. This step is necessary because the π^{\pm} particles, coming from the K_S^0 decays, have large impact parameters, which is usually a trait of background particles. In order to minimize confusion from the MVA point-of-view, these tracks are taken into account separately.

We use the converted K_S^0 candidates from the existing Belle particle list and use a pre-trained Neural Network classifier in order to select only the good K_S^0 candidates. Figure 5.5 shows the distribution of the K_S^0 invariant mass for signal and background candidates, before and after the classifier cut. The momentum of selected K_S^0 candidates is added to the ROE, while the daughter tracks are discarded from our set.

Figure 5.5: Invariant mass of the K_S^0 candidates before (dashed lines) and after (solid lines) the cut on the Neural Network classifier for signal (green) and background candidates (red). Signal peaks at nominal K_S^0 mass, while background covers a wider region.

The signal efficiency and background rejection for K_S^0 candidates after this cut and on the full range are

• Signal efficiency: $\epsilon_{SIG} = 80.7 \%$,

• Background rejection: $1 - \epsilon_{BKG} = 99.4 \%$.

5.2.2 Duplicate Tracks

714

715

720

721

723

724

725

726

727

728

All good tracks at this point should be coming from the IP region, since we took care of all the good tracks from long-lived particle decays, therefore we apply a cut on impact parameters for all the remaining tracks

• $|d_0| < 10$ cm and $|z_0| < 20$ cm

and proceed with the clean-up of track duplicates.

Defining a duplicate track pair

In this step, we wish to find a handle on secondary tracks from low momentum curlers and decays in flight. The main property for these cases is that the angle between such two tracks is very close to 0° or 180°, since tracks deviate only slightly from the initial direction, but can also be reconstructed in the opposite way. Figure 5.6 shows the distribution of the angle between two tracks in a single pair for random track pairs and duplicate track pairs, where the latter were reconstructed as two same-sign or opposite-sign tracks.

Figure 5.6: Distribution of the angle between two tracks in a single pair for random track pairs (green) and duplicate track pairs, where the latter were reconstructed as two samesign (blue) or opposite-sign tracks (red).

If the particle decayed mid-flight or produced multiple tracks due to being a low-momentum curler, then, as the name suggests, these particles most likely had low momentum in the transverse direction, p_T . Since both tracks originate from the same initial particle, the momentum difference should also peak at small values. Figure 5.7 shows the momentum and momentum difference of tracks which belong to a random or a duplicate track pair.

Figure 5.7: Distribution of transverse momentum p_T (left) and transverse momentum difference Δp_T (right) for all tracks coming from random (green) or duplicate track pairs (red). The plot on the right already includes the cut on p_T from the plot on the left.

We impose a cut of

- $p_T < 0.5 \text{ GeV}/c$
- $|\Delta p_T| < 0.1 \text{ GeV}/c$,

in order to cut down the number of random track pairs, while retaining a high percentage of duplicate track pairs. After all the cuts defined in this chapter, the final distribution of the angle between two tracks is shown in Figure 5.8.

Figure 5.8: Distribution of the angle between two tracks in a single pair after applying the selection cuts defined in this subsection. The distributions are shown for random track pairs (green) and duplicate track pairs, where the latter were reconstructed as two same-sign (blue) or opposite-sign tracks (red).

742 Training the duplicate track pair MVA

This final sample of track pairs is now fed into an MVA, which is trained to recognize duplicate track pairs over random ones. The training dataset contains

- 113707 target candidates,
 - 190314 background candidates,

where the definition of a target is that the track pair is a duplicate track pair.
The input variables used in this MVA are

- angle between tracks,
- track quantities

745

746

749

751

- impact parameters d_0 and z_0 ,
- transverse momentum p_T ,
 - helix parameters and helix parameter errors of the track,

track fit p-value,

754

755

761

764

765

- number of hits in the SVD and CDC detectors

The classifier is able to distinguish between random and duplicate track pairs in a very efficient manner, as shown in Figure 5.9.

Figure 5.9: Classifier output of the track pair training for random track pairs and duplicate track pairs.

The FOM function for optimal cut selection is shown in Figure 5.10 (left), along with the angle between the two tracks before and after the optimal cut (right). The optimal cut for duplicate track selection is

• $BDT_{duplicate} > 0.9985$.

The signal efficiency and background rejection for duplicate pair candidates after this cut is

- Signal efficiency: $\epsilon_{SIG} = 87.2 \%$,
- Background rejection: $1 \epsilon_{BKG} = 98.8 \%$,

where signal and background represent duplicate and random track pairs, respectively.

Figure 5.10: The optimization of the FOM function for the cut on classifier output (left) and distribution of the angle between two tracks in a single pair before (dashed) and after (solid) applying the optimal cut on the output classifier for random and duplicate track pairs (right).

768 Defining duplicate tracks

775

777

778

What remains now is to decide which track from the duplicate track pair to keep and which to discard. For this purpose, we apply duplicate pair-level information to each track in the pair in the form of

$$\Delta f = f_{this} - f_{other},\tag{5.1}$$

where f is an arbitrary variable from the list of track quantities in section 5.2.2. From the point-of-view of *this* track, a track is more *duplicate*-like if the following is true

- $\Delta d_0, \Delta z_0 > 0$ (this track further away from the IP region),
- $\Delta p_T, \Delta p_Z < 0$ (this track has lower momentum),
 - ΔN_{SVD} , $\Delta N_{CDC} < 0$ (this track has less hits in the SVD and CDC),

Additionally we define an MC truth variable

$$\Delta \chi^2 = \chi_{this}^2 - \chi_{other}^2, \quad \chi^2 = \sum_{i=x,y,z} \frac{\left(p_i - p_i^{MC}\right)^2}{\sigma(p_i)^2},$$
 (5.2)

where we compare all components of track momentum to the true values. If $\Delta \chi^2 > 0$, then *this* track has a higher probability of being a duplicate track and should be discarded.

However, it turns out that solving this problem is not as simple as discarding one track and keeping the other one. An additional complication here is that we can have more than one extra track from the same initial particle, which leads to track pairs where both tracks are track duplicates. For example, if we have the following case

```
t_1: good track,

t_2: extra track,

t_3: extra track,

pair<sub>1</sub>: (t_1,t_2),

pair<sub>2</sub>: (t_1,t_3),

pair<sub>3</sub>: (t_2,t_3),
```

where t_1 is the original track and t_2 and t_3 are extra tracks, with t_3 being even more duplicate-like with respect to t_2 . Here tracks t_2 and t_3 should be discarded while t_1 should be kept. We can achieve this if we overwrite existing pair-level information in the tracks for cases where the variable difference Δf is more duplicate-like. If we follow the same example, we could fill information about the property f in six different orders.

```
1. (t_1,t_2*) \rightarrow (t_1,t_3*) \rightarrow (t_2*,t_3*),

2. (t_1,t_2*) \rightarrow (t_2*,t_3*) \rightarrow (t_1,t_3*),

3. (t_1,t_3*) \rightarrow (t_2,t_3*) \rightarrow (t_1,t_2*),

4. (t_1,t_3*) \rightarrow (t_1,t_2*) \rightarrow (t_2*,t_3*),

5. (t_2,t_3*) \rightarrow (t_1,t_2*) \rightarrow (t_1,t_2*),

6. (t_2,t_3*) \rightarrow (t_1,t_2*) \rightarrow (t_1,t_3*),
```

where the "*" symbol denotes when a track is recognized as a duplicate track with respect to the other track. We see that no matter the order, both t_2 and t_3 get recognized as duplicate tracks correctly. If you are a part of my defense committee and actually read this before my thesis defense, let me know, I owe you a bottle of whiskey.

787 Training the duplicate track MVA

The training procedure is similar as before. The sample of tracks from duplicate track pairs is now fed into an MVA, which is trained to distinguish duplicate tracks from good tracks. The training dataset contains

- 84339 target candidates,
- 68280 background candidates,

where the definition of a target is that the track is a duplicate track.

The input variables used in this MVA are

- theta angle of the track momentum,
- track quantities

791

792

794

795

796

- impact parameters d_0 and z_0 and their errors,
- CMS frame momentum p_{CMS} and momentum components p_T and p_z

- number of hits in the SVD and CDC detectors
- track fit p-value,
- pair-level information

799

800

801

802

803

804

805

809

810

811

812

813

814

 $-\Delta d_0, \Delta z_0, \Delta N_{CDC}, \Delta N_{SVD}, \Delta p_T, \Delta p_z, \Delta p$ -value.

The weights from this training are applied to the tracks, where now each track has a certain probability of being a duplicate track. We then compare these values between both tracks in each track pair as

$$\Delta BDT_{final} = BDT_{final}^{this} - BDT_{final}^{other}, \tag{5.3}$$

which is again applied to all track pairs and overwritten for tracks which are more duplicate-like. The classifier output and the classifier output difference for each track are shown in Figure 5.11.

Figure 5.11: Classifier output of the MVA training for curling track recognition (left) and difference of the classifier output, calculated for each track in a track pair (right).

Finally, we select all duplicate tracks which survive the cut

$$\Delta BDT_{final} > 0 \tag{5.4}$$

and discard them from our ROE. We can check the performance of our duplicate track classifier by applying the procedure on a validation sample of duplicate track pairs and compare the predicted result with the truth, based on Eq. (5.2). Table 5.1 shows the performance of the duplicate track recognition in the form of percentages of correctly and incorrectly identified duplicate and original tracks. The model seems to perform well and the event is now considered to be clean of duplicate tracks.

	Predicted duplicate track	Predicted good track
Duplicate track	83.07 %	22.62 %
Good track	16.93 %	77.38%

Table 5.1: Ratios of correctly classified and misclassified tracks.

5.3 Belle Clean-up

The clean-up, used standardly at Belle, is much simpler and relies only on a set of rectangular cuts for neutral particles as well as charged ones. In case of photons, a single cut on photon energy is applied, depending on the region where the photon hit the relevant part of the detector. The photon cuts are summarized in Table 5.2.

	$17^{\circ} < \theta < 32^{\circ}$	$32^{\circ} < \theta < 130^{\circ}$	$130^{\circ} < \theta < 150^{\circ}$
E_{γ}	> 100 MeV	> 50 MeV	> 150 MeV

Table 5.2: Photon selection for the Belle clean-up procedure. Different cuts are applied on photons in different parts of the detector

In case of tracks, pairs are selected which satisfy the following criteria:

• $p_T < 275 \text{ MeV}/c$,

825

830

832

833

834

835

836

837

838

839

- $\Delta p = |\mathbf{p}_1 \mathbf{p}_2| < 100 \text{ MeV}/c$,
- $\cos \theta(\mathbf{p}_1, \mathbf{p}_2) < 15^{\circ}$ for same sign,
 - $\cos \theta(\mathbf{p}_1, \mathbf{p}_2) > 165^{\circ}$ for opposite sign.

Of the two tracks, the one with a larger value of formula in Eq. 5.5 is discarded.
The remaining tracks in the event then need to satisfy the conditions described in
Table 5.3.

$$(\gamma |d_0|)^2 + |z_0|^2, \quad \gamma = 5.$$
 (5.5)

	$p_T < 250 \text{ MeV}/c$	$250 \text{ MeV}/c < p_T < 500 \text{ MeV}/c$	$p_T > 500 \text{ MeV}/c$
$ d_0 $	< 20 cm	< 15 cm	< 10 cm
$ z_0 $	< 100 cm	< 50 cm	< 20 cm

Table 5.3: Photon selection for the Belle clean-up procedure. Different cuts are applied on photons in different parts of the detector

$_{ iny 9}$ 5.4 Clean-up Results

In this section, the results of the ROE clean-up are shown. It is obvious that cleaning up the event affects the shape of various distributions, especially ΔE and M_{BC} , which we are most interested in. Since the reconstruction procedure includes cuts on the cleaned-up variables, the clean-up also affects the efficiency of the reconstructed sample, not only the resolution.

We compare the clean-up setup, defined in this analysis, to the standard clean-up used by Belle, and to a default case, where no clean-up was applied at all. We apply the clean-up procedure to our signal MC sample with all the applied cuts, defined in section 4.6, except for the signal categorization cuts. Figure 5.12 (left) shows signal candidate distributions of ΔE and M_{BC} for various clean-up setups. Focusing on

the ROE clean-up, we see an improvement in resolution in both observed variables 840 and an overall decrease in efficiency. The efficiency decrease is expected since the 841 cleaned-up variables are able to better isolate the perfectly reconstructed candidates and discard the non-perfect candidates. In fact, the efficiency of the perfectly re-843 constructed candidates increases after the ROE clean-up, as shown in Figure 5.12 844 (right). The signal MC sample after in case of the Belle clean-up also shows a slight 845 improvement in the resolution, but looking at the perfectly reconstructed candi-846 dates we see that this clean-up procedure is not optimal. Table 5.4 shows ratios 847 of efficiencies and FWHM's of the clean-up procedures for the perfect signal with respect to the default case, based on the ΔE distribution. While both the Belle and ROE clean-up improve the resolution, ROE clean-up performs significantly better 850 and also increases the amount of the perfectly reconstructed candidates in the final 851 sample. 852

Figure 5.12: ΔE and M_{BC} distributions for various types of cleanup procedures. The figures on the left are shown for the full signal sample after the stated cuts, while the figures on the right are shown for the perfectly reconstructed signal candidates. For ROE clean-up, the procedure seems to improve resolution as well as increase the amount of perfectly reconstructed candidates, relative to the default case.

	Efficiency ratio	FWHM ratio
Belle clean-up	28.5 %	75.0 %
ROE clean-up	140.1 %	35.0 %

Table 5.4: Comparison of efficiencies and FWHM's of ROE and Belle clean-up setups with respect to the default case (no clean-up).

Another variable which heavily depends on the clean-up is the charge product of

the signal and companion B meson candidate, already defined in Eq. (4.15), shown in Figure 5.13 for various clean-up procedures. The figure shows an improved resolution of the distribution, which means that candidates migrate to the correct value of the charge product after the clean-up. Looking at the perfectly reconstructed candidates we again see the increase in the bin corresponding to the correct charge product. As a cross-check, we can also look at ΔE and M_{BC} variables for each value of the charge product. These plots are shown for the full signal MC sample in Figure 5.14 and they show a clear resolution improvement for the correct value of the charge product in the case of the ROE clean-up. For other values of the charge product, there also seems to be a small improvement for both cases of clean-up, but it is negligible compared to the plots in the second column. This supports our choice of signal categorization, defined in section 4.5, where we select only candidates with the correct value of the charge product.

Figure 5.13: Distribution of the charge product of both B mesons for various types of clean-up procedures, shown on the full signal MC (left) and for the perfectly reconstructed signal candidates (right). For ROE clean-up, the procedure seems to increase the number of perfectly reconstructed candidates.

Figure 5.14: Distributions of ΔE (top) and M_{BC} (bottom) for various types of clean-up procedures, split by specific values of the charge product, shown for the full signal MC. There is a significant improvement in resolution after ROE-cleanup for the case of the correct value of the charge product.

867 5.5 ROE Clean-up Validation

The ROE clean-up seems to perform well on signal MC based on the results in the previous section. However, it is necessary to make sure that this procedure performs as well on other simulated and measured data, which is done in this section. The clean-up procedure is validated on the control sample,

$$B^+ \to \bar{D}^0 \ell^+ \nu, \quad D^0 \to K^+ K^-,$$

which was already defined in section 2.2. The control candidates are reconstructed in the same manner as the signal candidates. In addition to the same cuts applied as in the previous section we also apply a selection to make the control sample more significant. We discard all candidates which fail to pass the cut on invariant mass of the two kaons

1.849
$$\text{GeV}/c^2 < m_{KK} < 1.879 \text{ GeV}/c^2$$
 (5.6)

as shown in Figure 5.15.

Figure 5.15: Distributions of m_{KK} for the full MC dataset. The black lines represent the cut on region in the m_{KK} distribution where the control sample is enhanced.

With the control sample selection determined, we now run the reconstruction with and without the ROE clean-up procedure on MC and data. For the purpose of this validation, we only run the reconstruction over 1 stream of the full available generated MC.

The effects of the ROE clean-up are shown in Figure 5.16. We see that data and MC agree well, and evidently even better after the clean-up procedure. The control sample resolution seems very poor in the case without the clean-up, but it improves significantly if the clean-up procedure is applied, as expected. The simulated background also seems to gain an improvement in the resolution, but this is likely due to the background consisting of similar candidates as the control sample. This means that the clean-up performs as expected due to the nature of the decays and does not arbitrarily shape the background to be more signal like. Additionally, it should be pointed out that, after the clean-up, the simulated background resolution is worse compared to the control decay resolution, while this is not the case if the clean-up procedure is not performed.

Figure 5.16: Distributions of ΔE (top) and M_{BC} bottom for the case without (left) and with ROE clean-up (right). The resolution of the control sample is improved and the MC and data agree well in all aspects. While the simulated background resolution is also improved, it is worse compared to the resolution of the control sample.

To perform the clean-up validation in greater detail we also compare the data and MC agreement in bins of the charge product of the two B mesons. Figure 5.17 shows the cleaned-up versions of ΔE and M_{BC} for each charge product bin in the same manner as shown in the previous section. We see that the MC and data agreement persists in all cases.

Figure 5.17: Distributions of ΔE (top) and M_{BC} (bottom) split in bins of the charge product of the two B mesons.

The ROE clean-up procedure seems to perform well. It significantly improves the resolution of the signal/control candidates and increases the amount of perfectly clean events. The clean-up procedure was also applied to data and no disagreement with respect to the simulated MC samples was found. This means that the procedure does not differ between MC and data and does not affect them differently. The procedure was therefore validated in great detail and is suitable to be used in this analysis.

$_{\tiny{\tiny{1}}}$ Chapter 6

913

914

915

918

919

920

921

922

923

924

925

926

Background Suppression

This chapter shows the procedure in suppressing various kinds of background by applying cuts on MVA classifier outputs.

6.1 Resonant Background

In this analysis we study decays with kaons in the final state. This means that standard procedures in $b \to u$ analyses in order to suppress $b \to c$ backgrounds, such as K-veto, are not possible. As a consequence, our final sample consists of combinations of K pairs coming also from $b \to c$ sources, such as $D^0 \to K^+K^-$. Such candidates usually have resonance-like properties in the two-kaon invariant mass spectrum. Figure 6.1 shows this invariant mass spectrum of two kaons, m_{KK} , where obvious resonant structures are present from sources like

- $\phi \to K^+K^-$ (sharp resonance at $\sim 1.019 \text{ GeV}/c^2$),
- $D^0 \to K^+K^-$ (sharp peak at $\sim 1.864~{\rm GeV}/c^2$),
- $D^0 \to K^+\pi^-$ (wide, shifted peak, due to kaon miss-identification).

In order to suppress these resonant backgrounds, while studying signal or control decay, we impose a set of the following cuts

- Signal cut: $|m_{KK} m_{\phi}| > \Delta_{\phi}$, $|m_{KK} m_{D^0}| > \Delta_{D^0}$, $|m_{K\pi} m_{D^0}| > \Delta_{D^0}$,
- Control cut: $|m_{KK} m_{D^0}| \le \Delta_{D^0}, |m_{K\pi} m_{D^0}| > \Delta_{D^0},$

where m_{KK} is the KK invariant mass and $m_{K\pi}$ is the invariant mass of KK, where the kaon's mass, which has the same charge as the B meson, was given the mass of the π^0 particle, and where $m_{\phi} \approx 1.019 \text{ GeV}/c^2$ and $m_{D^0} \approx 1.864 \text{ GeV}/c^2$ are nominal masses of the ϕ and D^0 mesons, and $\Delta_{\phi} \approx 8 \times 10^{-3} \text{ GeV}/c^2$ and $\Delta_{D^0} \approx 1.5 \times 10^{-2} \text{ GeV}/c^2$ are symmetric cut widths around the nominal mass values for the ϕ and D^0 mesons, respectively. By imposing the signal or control cut on our data, we are able to efficiently isolate the desired subset, which is very useful for further studies of the control decay. Table 6.1 shows the subsample efficiency after applying either of the cuts.

	ϵ (Signal cand.)	ϵ (Control cand.)	$\epsilon(\phi \text{ resonance cand.})$
Signal cut	95.4%	4.0%	13.6%
Control cut	1.9%	96.0%	0.0%

Table 6.1: Various subset efficiencies after imposing the signal or control cut on the KK invariant mass.

Figure 6.1: Invariant mass of two correctly reconstructed kaons (left) and invariant mass of two kaons, where one was miss-identified as a pion (right). Signal (green) and perfect signal (black) are equally scaled up.

929 6.2 Continuum Cuppression

Continuum background are physics processes where continuum states are produced in electron and positron collisions

$$e^+e^- \to q\bar{q}$$

where q = u, d, s or c, and are a sizable contribution to $B\bar{B}$ events. Additionally 930 to kinematic constraints to separate $e^+e^- \to \Upsilon(4S) \to B\bar{B}$ decays from $e^+e^- \to q\bar{q}$, 931 properties of the "event shape" are also often used, because phase-space distributions 932 of decayed particles differ for these two processes. Continuum background events 933 are generated in a back-to-back way in the CMS frame, so hadrons produced in the 934 quark fragmentation possess only a small transverse momentum compared to the initial momentum magnitude. This leads to a spatially confined, jet-like structure. 936 On the other hand, B mesons from $B\bar{B}$ events are produced almost at rest in the 937 CMS frame. Their decay products from an isotropic distribution in the detector, 938 which yields a spherical event shape. 939

940 6.2.1 Characteristic Variables

Information on the phase-space distribution of decay particles is obtained in a number of different ways. In this subsection different characteristic variables are presented which are used in the MVA training. They all focus on kinematic and shape differences between the two processes, which we want to discriminate.

Thrust and Related Variables

951

It is possible to define a thrust axis **T** for a collection of N momenta p_i as a unit 946 vector along which their total projection is maximal. Thrust axis T can be obtained 947 by maximizing the expression

$$\mathbf{T} = \frac{\sum_{i} |\mathbf{T} \cdot \mathbf{p}_{i}|}{\sum_{i} |\mathbf{p}_{i}|}.$$
 (6.1)

In this case, a related variable is $|\cos \theta_T|$, where θ_T is the angle between the thrust axis of the momenta from B meson decay particles and the thrust axis of all particles 950 in the ROE. Since both B mesons in $B\bar{B}$ events are produced at rest, their decay particles, and consequentially their thrust axes, are uniformly distributed in the range [0, 1]. On the other hand, decay particles from continuum events follow the 953 direction of the jets in the event. As a consequence, the thrusts of both the B954 meson and the ROE are strongly directional and collimated, which results in a large 955 peak at $|\cos \theta_T| \approx 1$. Additionally, one can also use the variable $|\cos \theta_{TB}|$, which 956 is the thrust axis between the B candidate and the beam axis. For B candidates 957 from BB, this distributions is again uniformly distributed, while for candidates 958 from continuum events this distribution follows the distribution of the jets with 959 the function $1 + \cos^2 \theta_{T,B}$. Figure 6.2 shows the distributions of $|\cos \theta_T|$ (left) and 960 $|\cos \theta_{T,B}|$ (right) for different B meson candidates.

Figure 6.2: Distributions of $|\cos \theta_T|$ (left) and $|\cos \theta_{T,B}|$ (right) for different B meson candidates.

CLEO Cones

963

966

967

CLEO cones have been introduced by the CLEO collaboration [8] and are an additional specific tool to provide optimal background discrimination. They are nine variables corresponding to the momentum flow around the thrust axis of the B meson candidate, binned in nine cones of 10° around the thrust axis, as illustrated in Figure 6.3.

Figure 6.3: Concept of CLEO cones. \mathbf{T} denotes the thrust axis of the B meson candidates in the event. Each variable corresponds to a momentum flow around the thrust axis in steps of 10° .

968 KSFW Moments

976

977

980

Fox-Wolfram moments are another useful parametrization of phase-space distribution of energy flow and momentum in an event. For a collection of N momenta p_i , the k-th order normalized Fox-Wolfram moment R_k is defined as

$$R_k = \frac{H_k}{H_0} = \frac{1}{H_0} \sum_{i,j} |p_i| |p_j| P_k(\cos \theta_{ij}), \tag{6.2}$$

where θ_{ij} is the angle between p_i and p_j , and P_k is the k-th order Legendre polynomial. For events with two strongly collimated jets, R_k takes values close to 0 (1) for odd (even) values of k, so these moments provide a convenient discrimination between $B\bar{B}$ and continuum events.

Belle developed a refined generation of Fox-Wolfram moments, called Kakuno-Super-Fox-Wolfram (KSFW) moments to further suppress the continuum background. There are 17 different KSFW moments which are grouped into R_k^{so} , R_k^{oo} and R_k^{ss} [9]. The latter ones are excluded due to correlations with B meson specific variables.

981 6.2.2 MVA Training

Most of the characteristic variables, described in section 6.2.1, were taken together in order to train a single MVA classifier for continuum suppression. All characteristic variables were checked for possible q^2 correlation. Variables with significant correlation or complex shapes in the 2D plot were discarded from the training set, since they would have introduced unwanted dependence on the unreliable model, ISGW2, used for signal MC generation. Additionally, all of the characteristic variables in our set do not depend on the signal mode, they only differ in the kinematic and topological aspects of $B\bar{B}$ and continuum background events.

The training dataset consisted of 2×10^5 candidates, where 50 % of the candidates are correctly reconstructed signal events, 25 % are $u\bar{u}$, $d\bar{d}$ and $s\bar{s}$ background with expected proportions, and 25 % is $c\bar{c}$ background. Since the full Belle dataset is experiment dependent, we construct the training dataset by proportionally sampling each MC dataset, corresponding to the appropriate experiment number.

The training variable set consisted of

- B meson direction and thrust related variables
- magnitude of thrust axes of B and ROE,
 - cosine of the angle between the thrust axis of B and thrust axis of ROE,
 - cosine of the angle between the thrust axis of B and beam direction,
 - reduced Fox-Wolfram moment R_2 ,
 - all 9 CLEO Cones

990

991

992

993

994

995

996

1000

1001

1002

1003

1004

1005

1007

1008

1009

1010

1011

1012

• KSFW Moments

```
-R_{01}^{so}, R_{02}^{so}, R_{03}^{so}, R_{04}^{so},
```

- $-R_{10}^{so}, R_{12}^{so}, R_{14}^{so},$
- $-R_{20}^{so}, R_{22}^{so}, R_{24}^{so},$
- $-R_0^{oo}, R_1^{oo}, R_2^{oo}, R_3^{oo}, R_4^{oo},$
 - FlavorTagging variables
 - $-qp ext{ of } e, \mu, \ell,$
 - qp of intermediate e, μ, ℓ ,
 - -qp of $K, K/\pi$, slow pion, fast hadron,
 - -qp of maximum P^* , Λ , fast-slow-correlated (FSC),
 - Other
- $-\Delta z, \Delta t.$

Figure 6.4 shows the classifier output for various types of background, all in expected MC proportions. B meson candidates from continuum background are dominant at lower values, while candidates from $B\bar{B}$ events populate the region with higher values.

Figure 6.4: Continuum suppression classifier output for signal and various types of background. B candidates from continuum events dominate the lower region, while candidates from $B\bar{B}$ dominate in the upper region of the classifier output.

6.3 $B\bar{B}$ Suppression

After separating continuum background from $B\bar{B}$ events, the next step is to train an MVA classifier to recognize our signal candidates among the candidates of other $B\bar{B}$ background. $B\bar{B}$ background consists of

• $b \to c\ell\nu$ background,

- $b \to u\ell\nu$ background,
- Other rare decays (radiative, penguin, rare 2- and 3-body decays, ...).

Similarly, the training dataset for this classifier consisted of 2×10^5 candidates, where 50 % of the candidates are correctly reconstructed signal events. The remaining part of the training dataset consists of all background, not including the control sample, because we are not interested in suppressing it directly. The background part of the dataset consists of 75 % charged and neutral $B\bar{B}$ events in equal proportions, whereas the remaining 25 % is equally populated with charged and neutral $B\bar{B}$ events from $b \to u\ell\nu$ and other rare decays. The training dataset was proportionally sampled in the same manner as described in section 6.2.2.

In order to separate this kind of background, we must be careful not to introduce correlations with the fit variables (ΔE , M_{BC}) or any kind of model dependence (correlation with q^2). This means that we can not use any information of the decay particles or the candidate, which is of kinematics nature, such as decay particles momenta, decay angles or other variables with such behavior.

The training variable set consisted of

• fit probability of $P(\chi^2, DOF)$ of the signal candidate and the ROE side, separately,

- $\cos \theta_{BY}$ from Eq. (4.4),
- cos of the angle between momentum and vertex of X, where $X \in [KK, KK\ell, KK\ell\nu]$,
 - FlavorTagger variables for the two signal-side kaons,
- number of kaons, tracks and distant tracks in ROE,
- θ angle of the ROE momentum in CMS frame,
- ξ_Z from [10]
- \bullet Δz ,

1041

1044

1052

1053

1054

1055

1056

1057

1059

1060

1061

1062

- m_{miss}^2 from Eq. (4.11),
- $B \to D^* \ell \nu$ veto variables,

where distant tracks are all tracks in ROE which satisfy the condition of $|d_0| > 10.0$ cm or $|z_0| > 20.0$ cm. The last entry, $B \to D^*\ell\nu$ veto variables, are a set of variables where we partially reconstruct the D^* candidate 4-momentum via a linear combination of the π_s^{\pm} 4-momentum in the $D^* \to D\pi_s^{\pm}$ decay. It helps discard the most dominant $B \to D^*\ell\nu$ background. It is most efficient in the $B^0 \to D^{*-}\ell^+\nu$ decay, where D^{*-} further decays via $D^{*-} \to \bar{D}^0\pi_s^-$. Other decays do not contain a charged π_s particle and are harder to reconstruct with good precision. This results in larger suppression of the neutral $B\bar{B}$ background only. Figures 6.5 shows the veto variable with a partial reconstruction of a charged π_s^{\pm} .

Figure 6.5: Distribution of m_{miss}^2 for partially reconstructed $B^0 \to D^{*-}\ell^+\nu$ decays, which serves as a veto.

When the training is finished and the hyper-parameters of the classifier are optimized, the classifier output, as shown in Figure 6.6 (left), can be used for background suppression. B meson candidates from $B\bar{B}$ background are dominant at lower values, while candidates from $B\bar{B}$ events populate the region with higher values. Since

the differences between signal and background $B\bar{B}$ events are smaller than $B\bar{B}$ and $q\bar{q}$ events, the resulting classifier has a smaller separation power than in the previous section.

6.3.1 Boosting to Uniformity

The selection approach with standard classifiers is optimal for counting experiments, as it by construction produces the optimal selection for observing an excess of signal over background events. Today's BDT algorithms, which work in this way, produce non-uniform selection efficiencies and may, as a consequence, shape background distributions to look like signal. In order to minimize such behavior, it is possible to discard variables, which are correlated with the variable of interest (in our case ΔE and M_{BC}), from the training set. This, however, decreases the classifiers discriminating power. Another approach is to use a novel boosting method, uBoost, which is trained to optimize an integrated FOM under the constraint that the BDT selection efficiency for the desired class must be uniform. The uBoost algorithm balances the biases to produce the optimal uniform selection [11].

The training set used in this training is the same as described at the beginning of this chapter, along with the same set of training variables. It will be seen later that the standard BDT classifier shapes the background to look like signal mostly in the M_{BC} picture, therefore we train the uBDT classifier with a uniformity constraint in the M_{BC} variable for background candidates with the uBoost algorithm. The resulting classifier output is shown in Figure 6.6 (right). For this classifier, the separation power between signal and background seems worse, however, the shapes of backgrounds differ significantly, which greatly affects the performance of signal extraction.

Figure 6.6: $B\bar{B}$ suppression classifier output for signal and various types of background for the standard BDT classifier (left) and the uBDT classifier (right). B candidates from $B\bar{B}$ background events dominate the lower region, while signal and control candidates dominate in the upper region of the classifier output.

6.4 Selection Optimization

Instead of two separate $q\bar{q}$ and $B\bar{B}$ FOM optimizations, it is more efficient to do a simultaneous 2D FOM optimization, since the two classifiers are not completely uncorrelated. In the same manner, as before, FOM is optimized for perfectly reconstructed signal candidates in the signal window, after all the pre-cuts, signal categorization, and after cutting out the background resonances and the control decay. The FOM plot with the optimal point for both $B\bar{B}$ MVA classifiers is shown in Figure 6.7.

Figure 6.7: 2D FOM optimization of continuum suppression classifier and the standard BDT (left) and uBDT (right) $B\bar{B}$ suppression classifier.

We can compare signal and major background distributions of ΔE and M_{BC} after the 2D FOM optimization for both classifiers. Figure 6.8 shows the arbitrary (left) and normalized scale (right) for ΔE (top) and M_{BC} (bottom) for the final sample optimized with the standard BDT classifier, while Figure 6.9 shows similarly for the final sample optimized with uBDT classifier. We can see that there is considerably more background in the latter case, however, also shapes of background and signal distributions differ greatly, meaning there is less room for correlation. The biggest change seems to be in the shape of the M_{BC} distribution, where the background component is much more signal like in the final sample optimized with the standard BDT classifier than in the other case. Additionally, the shapes are more easily constrained in the latter case, since they are present in regions where no signal is expected. The total numbers of expected signal candidates and the signal-to-noise ratios for both classifiers are:

- Standard BDT: $N_{siq} = 176$, $N_{siq}/N_{bkq} = 4.83 \%$,
- uBDT: $N_{sig} = 264$, $N_{sig}/N_{bkg} = 1.33 \%$.

Due to the large difference in ΔE and M_{BC} shape, we will continue the analysis with the uBDT classifier, although the comparison between both methods will be shown for the final fit result in the next chapter.

Figure 6.8: Arbitrary (left) and normalized scale (right) for ΔE (top) and M_{BC} (bottom) for the final sample optimized with the standard BDT classifier.

Figure 6.9: Arbitrary (left) and normalized scale (right) for ΔE (top) and M_{BC} (bottom) for the final sample optimized with the uBDT classifier for $B\bar{B}$ suppression.

6.4.1 $B\bar{B}$ Background Composition and Lepton Veto

The majority of background candidates after the final selection is represented by candidates from $B\bar{B}$ events. In order to suppress this background even further, we need to take a look at its structure and recognize various contributions to this part of the background. Figure 6.10 shows ΔE and M_{BC} for the most significant contributions, along with m_{KK} . While most of the candidates come from events where all reconstructed charged particles in the signal decay do not come from one B meson, but both of them, these candidates are not so problematic, because their collaborative distribution is rather smooth and frequent in regions where we expect no signal. On the other hand, there are also contributions from B meson decays which produce more signal-like distributions. We will denote the first kind of background as $\Upsilon(4S)$ -matched and the second kind as the B-matched $B\bar{B}$ background. Fortunately, these decays are well known and well measured, so their yields can be constrained. Es-

pecially problematic is the double semileptonic decay $B \to \bar{D}^{(*)}\ell^+\nu$, $D^+ \to \bar{K}^-\ell^+\nu$, where the secondary lepton is misidentified as a kaon. Even though the decay has two neutrinos, these events survive the m_{miss}^2 selection cut and produce peaks at the same positions as signal distributions, while exhibiting only a slightly worse resolution.

1128

1130

Figure 6.10: ΔE (left), M_{BC} (right) and m_{KK} (bottom) for major contributions to the $B\bar{B}$ background in the signal cut region. $\Upsilon(4S)$ -matched backgrounds represents the majority, but has a smooth and wide background, which has a distinguishable shape from signal. B-matched contributions show a peak in M_{BC} and sometimes in ΔE , but can be constrained using existing measurements.

In order to suppress these candidates, a lepton veto can be applied to both kaons, stating that neither of the kaons should exhibit lepton-like properties. On the candidates passing the final selection, we optimize the eID and μID PID cuts, where

 1135 S and B in Eq. 4.1 are represented by perfect signal candidates and by background candidates, respectively, whereas in the latter case a lepton has been misidentified as a kaon. 2D FOM plots for both kaons are shown in Figure 6.11, where it can be seen that in the majority of the cases, an electron is misidentified as the kaon with the opposite charge to the B meson. With the optimal cuts of

• K_0 : eID < 0.7,

1141

1142

1143

1144

1145

• K_1 : eID < 0.1, $\mu ID < 0.8$,

we reject 77.5% of candidates from the double semileptonic decays, while efficiency loss of signal and other types of $B\bar{B}$ background is about 5-6%. The $B\bar{B}$ background after the lepton veto cuts is shown in Figure 6.12 for the signal cut region, and in Figure 6.13 for the control cut region.

Figure 6.11: 2D FOM for optimal eID and μID cuts on same-sign (left) and opposite-sign (right) kaons with respect to the B meson charge. For double semileptonic background component, in most cases an electron is missidentified as the opposite-sign kaon in the reconstruction chain.

Figure 6.12: ΔE (left), M_{BC} (right) and m_{KK} (bottom) for major contributions to the $B\bar{B}$ background in the signal cut region after the lepton veto. The double semileptonic background component is suppressed by a factor of 4-5.

Figure 6.13: ΔE (left), M_{BC} (right) and m_{KK} (bottom) for major contributions to the $B\bar{B}$ background in the control cut region after the lepton veto. The major component in this case are other $B \to D^*\ell + \nu, \, D \to K^+K^-$ decays, besides the control decay.

6.5 Data and MC Agreement

1149

1150

1151

With the final selection in place, we can check the data and MC agreement by checking the control decay region in on- and off- resonance data. Off-resonance samples provide the ability to check the agreement of the $q\bar{q}$ background component, while on-resonance samples can be used to check the validity of the control MC sample and, consequentially, the signal MC sample.

1152 6.5.1 Off-resonance Data

The off-resonance data were collected at 60 MeV below the $\Upsilon(4S)$ resonance peak 1153 energy in order to determine the non- $B\bar{B}$ background. It, therefore, offers a direct 1154 view of the $q\bar{q}$ background data sample, which we can compare to the off-resonance 1155 MC sample. Figure 6.14 shows ΔE , M_{BC} and the $q\bar{q}$ classifier output, $BDT_{q\bar{q}}$, for off-resonance data and MC in the control region, before any MVA cuts, where the 1157 MC sample was scaled down by a factor of 6, due to 6 streams of MC. Figures show 1158 good data and MC agreement of the off-resonance sample. More importantly than 1159 the normalization, the shape of data and MC also seems to be the same, so further 1160 corrections of ΔE and M_{BC} on MC are not necessary. This is also consistent by the 1161 flatness of the ratio function for ΔE and M_{BC} , shown in the same Figure. There 1162 seems to be a difference in the classifier performance for the continuum background 1163 suppression on data and MC. This leads to further differences between data and 1164 MC in the $q\bar{q}$ sample after the classifier cut, but we estimate that these differences 1165 are negligible, since a relatively small amount of continuum background passes the 1166 selection, compared to other background types. 1167

Figure 6.14: ΔE (left), M_{BC} (right) and the $q\bar{q}$ classifier output (bottom), for off-resonance data and MC in the control region before any MVA cuts.

6.5.2 On-resonance Data

We can repeat the check on on-resonance data. Figure 6.15 shows ΔE , M_{BC} and $BDT_{q\bar{q}}$, where one can see inconsistencies between data and MC on the lower spectrum, where continuum background is dominant. We see that MC is over-estimated in this region, most likely due to additional disagreements from other sources. On the other hand, data and MC seem to agree well in the upper part of the spectrum, where $B\bar{B}$ events are dominant. Overall, data and MC seem to agree well already off-the-shelf after all the pre-cuts and without any corrections. This means that the modeling of this MC sample is very precise in this particular region of data and that there are no significant differences between data an MC for the control sample and the signal sample.

Figure 6.15: ΔE (left), M_{BC} (right) and the $q\bar{q}$ classifier output (bottom), for on-resonance data and MC in the control region before any MVA cuts.

Chapter 7

Signal Extraction

In this chapter, the procedure for signal yield extraction is presented. We use the framework of RooFit [12] where we define 2D histogram templates in ΔE and M_{BC} , based on MC, for signal and several types of background. Using these templates, the independent full sample is fitted with the binned extended maximum likelihood (ML) fit, so that the individual template ratios and their sum describe the fitted sample as best as possible. In particle physics we are often dealing with low numbers of events and need to account for the Poisson nature of the data, therefore we use the likelihood fit, since it takes the Poisson errors into account, unlike the χ^2 fit, where the errors are assumed to be Gaussian. In this procedure, we attempt to find the parameter values that maximize the likelihood function, given the observations. If $P(n|\vec{\alpha})$ is the probability of measuring n candidates, where $\vec{\alpha}$ is a set of parameters on which P depends, we can define the likelihood function L for a series of such measurements (i.e., bins in histogram) n_i based on Poisson statistics as

$$L(\vec{\alpha}) = \prod_{i=1} P(n_i | \vec{\alpha}) = \prod_{i=1} \frac{\mu_i^{n_i} e^{-\mu_i}}{n_i!},$$
(7.1)

where μ_i is the expected value for each measurement. It is also common to search for the minimum of the negative value of $\ln L$, or negative log-likelihood (NLL), as

$$\mathcal{L}(\vec{\alpha}) = -\ln L(\vec{\alpha}) = -\sum_{i} \ln \left(\frac{\mu_i^{n_i} e^{-\mu_i}}{n_i!} \right) = \sum_{i} \ln(n_i!) + \mu_i - n_i \ln(\mu_i).$$
 (7.2)

Maximizing L or minimizing \mathcal{L} gives us a maximum likelihood estimate of the set of parameters $\vec{\alpha}_{ML}$ which best describe the observed data.

The ML method provides a method to estimate the fit uncertainty. This is especially useful if the log-likelihood has a non-parabolic shape, which leads to asymmetric errors. We calculate the errors using the MINOS algorithm from the MINUIT package [13], which is implemented in RooFit. The algorithm follows the log-likelihood function out of the minimum to find the appropriate intervals of confidence for each parameter, taking the parameter correlations into account.

To estimate the goodness of the likelihood fit, one option is to generate toy MC experiments and obtain the expected log-likelihood distribution. Likelihood fits, however, also offer another way to test the goodness of fit via the likelihood ratio (LR), where we compare the likelihood obtained under the ML parameters $\vec{\alpha}_{ML}$, to the likelihood obtained under the null hypothesis parameters $\vec{\alpha}_{H_0}$. This determines how likely the data is under one model than the other. We define the LR test as

$$\lambda = -2\ln\left(\frac{L(\vec{\alpha}_{ML})}{L(\vec{\alpha}_{H_0})}\right) = -2\left[\ln L(\vec{\alpha}_{ML}) - L(\vec{\alpha}_{H_0})\right] \sim \chi_q^2,\tag{7.3}$$

which asymptotically behaves as the χ_q^2 distribution with q=m-n degrees of freedom, where m and n are degrees of freedom of $L(\vec{\alpha}_{ML})$ and $L(\vec{\alpha}_{H_0})$, respectively. In 1211 particle physics we usually study a specific decay and try to perform measurements of the signal yield, so the null hypothesis in this case is that we expect to observe 1213 no signal. This means that for the null hypothesis we fix the expected signal yield 1214 parameter to zero, while leaving the other parameters of $\vec{\alpha}_{H_0}$ the same as in $\vec{\alpha}_{ML}$, 1215 which results in n = m - 1 degrees of freedom and in their difference q = m - n = 1. 1216 For such a simple LR test of a single parameter the LR test then follows the χ^2 1217 distribution with 1 degree of freedom. In this case we can define the fit significance 1218 from the χ^2 value in units of σ as

Significance =
$$\sqrt{\lambda} = \sqrt{\chi^2}$$
. (7.4)

7.1 Fit Setup

We perform 10 fits to each stream of MC, where 9 streams were used for the creation of the templates and the remaining stream was used as fitted data. When fitting real data, all available MC was used for creating the templates. The full signal MC sample was used for the signal template definition in case of MC as well as data fits. The signal part of the ulnu sample was not used in template construction, it was only used as a part of the fitted sample.

The same MC samples are used for template construction as described in chapter 228 2,

• signal MC,

1230

- 10 streams of charged and mixed $B\bar{B}$ background,
- 6 streams of $c\bar{c}$ (charm) and other $q\bar{q}$ (uds) background,
- ulnu sample, corresponding to 20× integrated luminosity of the full Belle dataset,
- rare sample, corresponding to 50× integrated luminosity of the full Belle dataset.

7.1.1 Control Fit

 1237 $B\bar{B}$ background composition in control region is shown in Figure 6.13. Due to the strict cut of the m_{KK} around the D^0 mass window, most of the decays with a D^0 proceed via $D^0 \to K^+K^-$ decay. In this case, the following fit templates are chosen

- signal template,
- $q\bar{q}$ template,
- $C_0: B^+ \to \bar{D}^0 \ell^+ \nu, D^0 \to K^- K^+ \text{ (control decay)},$
- $C_1: B \to \bar{D}^*\ell^+\nu, D^0 \to K^-K^+,$
- other $B\bar{B}$ BKG template.

In control fits, all template shapes are fixed and the yields of all templates are floated, except for the signal template, which is expected to be very close to zero and is fixed to the expected MC yield. Additionally, since the C_0 and C_1 decays are well known and measured, we make use of this fact in the form of a ratio N_{C_1}/N_{C_0} , which is fixed to the MC value in case of the MC fit and constrained to the measured value in case of fits to real data. The ratio is implemented based on the decay channels shown in Table 7.1 and is defined as

$$r_1 = \frac{\left(\sum_j N_{1j} \times \rho_{1j}\right)}{N_{00} \times \rho_{00}},\tag{7.5}$$

where j runs over all channels in the category C_1 and where ρ_{ij} is the branching ratio correction factor for the specific channel N_{ij} , which incorporates information from world measurements. It is defined as

$$\rho = \frac{\mathcal{B}^{PDG}}{\mathcal{B}^{GEN}},\tag{7.6}$$

where \mathcal{B}^{PDG} is the measured branching ratio and \mathcal{B}^{GEN} is the branching ratio value used in MC generation. The branching ratio correction factor has been implemented due to differences between measured and MC branching ratio values. Each branching ratio measurement serves as a constraint used in the fit. All branching ratio constraints in the control fit are shown in Table 7.2. The measured values are cited only for the B^0 decay mode, where isospin symmetry has been assumed. The corresponding B^+ branching ratios can be calculated as

$$\mathcal{B}(B^+) = \mathcal{B}(B^0) \times \tau_{B^+/B^0},$$
 (7.7)

where τ_{B^+/B^0} is the ratio of B-meson decay times, which is measured to be [4]

$$\tau_{B^+/B^0} = 1.076 \pm 0.004.$$
 (7.8)

Category	Channel	B Decay Mode	D Decay Mode	N_{MC}
C_0	N_{00}	$B^+ o \bar{D}^0 \ell^+ \nu$	$D^0 \to K^-K^+$	1182 ± 34
C	N_{10}	$B^+ o \bar{D}^{*0} \ell^+ \nu$	$D^0 o K^-K^+$	1455 ± 38
	N_{11}	$B^0 \to D^{*-}\ell^+\nu$	$D^0 o K^-K^+$	186 ± 16

Table 7.1: Well defined decay channels used for constraining the control fits.

In case of MC fits, the fitted sample is also generated with MC, so $\mathcal{B}_i^{PDG} = \mathcal{B}_i^{GEN}$ and Eq. (7.5) simplifies to a simple MC yield ratio. On fits to real data, expected MC yields and branching ratio measurements are implemented as independent Gaussian constraints in order to properly account for correlations in Eq. (7.5).

1263

1264

1265

1266

1	Decay		\mathcal{B}_{PDG}	ρ	Ref.
0	$B^0 \to D^- \ell^+ \nu$	2.13×10^{-2}	$(2.13 \pm 0.09) \times 10^{-2}$	1.00 ± 0.04	[4]
1			$(4.88 \pm 0.11) \times 10^{-2}$		
2	$B^+ o \bar{D}^0 \ell^+ \nu$	2.31×10^{-2}	$(2.29 \pm 0.10) \times 10^{-2}$	0.99 ± 0.04	[calc.]
3	$B^+ o D^{*0} \ell^+ \nu$	5.79×10^{-2}	$(5.25 \pm 0.12) \times 10^{-2}$	0.91 ± 0.02	[care.]
4	$D^0 o K^-K^+$	3.90×10^{-3}	$(3.97 \pm 0.07) \times 10^{-3}$	1.02 ± 0.02	[14]

Table 7.2: MC and measured values of branching ratios along with the calculated correction factors used for constraining the control fit.

1267 Smearing and Offset Parameters

With simulated data, we are able to perform detailed studies prior to looking at the measured data. However, simulated data often does not describe real data perfectly. Out of variables ΔE and M_{BC} , ΔE is especially prone to a lack of precision in energy measurements. This can introduce either overestimation of resolution on MC as well as a possible shift in the measured energy in either direction. Due to this fact, we perform a scan over two additional parameters of offset and smearing, applied on the ΔE variable. In case of the M_{BC} variable the mentioned effects are not as prominent, so the smearing and offset for the latter variable are omitted.

The following parameter phase space is scanned

- smearing factor in range [0.0,0.08] GeV in steps of 8×10^{-3} ,
- offset in range [0.0,0.003] GeV in steps of 1.5×10^{-4} ,

where for each parameter pair the likelihood ratio test is performed to estimate the goodness of the fit. Figure 7.1 shows the contour plot of the likelihood ratio λ , as defined in Eq. (7.3), for 2 d.o.f., for MC (left) and data (right). The scan over MC serves the purpose of a consistency check, where we expect the best fit to occur in the phase space where neither smearing nor offset are applied. In the case of data, we see that we obtain a better fit by introducing some level of smearing and offset. In both cases, the two parameters have shown no sign of significant correlation, so we treat them independently. The likelihood ratio test allows us to estimate the parameter values in the 1σ confidence interval, where we obtain the optimal parameter set

- Smearing: 40^{+15}_{-17} MeV,
- Offset: $6^{+4.6}_{-6}$ MeV.

We apply this transformation to our MC samples in all cases when fitting real data.

Figure 7.1: Likelihood ratio test of an additional smearing and offset parameter to MC (left) and data (right).

7.1.2 Signal Fit

The motivation for the choice of signal fit templates comes from Figure 6.12. The following histogram templates were defined

- signal template,
- $q\bar{q}$ template,
- a series of well defined templates from $B\bar{B}$ background:

```
1298  -C_0: B^+ \to \bar{D}^0 \ell^+ \nu, D^0 \to K^- K^+ \text{ (control decay)}, 
1299  -C_1: B \to \bar{D}^* \ell^+ \nu, D^0 \to K^- K^+, 
1300  -C_2: B \to \bar{D}^{(*)} \ell^+ \nu, D^0 \to K^- \pi^+, 
1301  -C_3: B \to \bar{D}^{(*)} \ell^+ \nu, D^0 \to K^- K^+ \pi^0, K^- \pi^+ \pi^0, 
1302  -C_4: B \to \bar{D}^{(*)} \ell^+ \nu, D^0 \to K^- \ell^+ \nu, 
1303  -C_5: B^0 \to D^{(*)} \ell^+ \nu, D^+ \to K^- K^+ \pi^+, K^- \pi^+ \pi^+, 
1304  -C_6: \text{ other } B \to \bar{D}^{(*)} \ell^+ \nu \text{ decays},
```

• remaining $B\bar{B}$ background template.

As mentioned in chapter 6, the majority of the background comes from BB events. Various processes (C_0 to C_6) contribute to this background which are well known and measured, so we make use of these measurements by fixing their yields in MC fits and appropriately constraining them in real data fits. The remaining $B\bar{B}$ background is merged into a single template. In this case, the shape of all templates is fixed as well, while the yields are floated for all templates except for the constrained background templates. The yield constraints are based on the channels shown in Table 7.3 and defined for each template category as

$$Y_i = \eta_{\text{norm.}} \times \frac{\left(\sum_j N_{ij} \times \rho_{ij}\right)}{\rho_{00}},\tag{7.9}$$

where j runs over all channels in the category C_i and where ρ_{ij} is defined in Eq. (7.6). The first factor, $\eta_{\text{norm.}}$, serves as a normalization factor in order to scale the number of generated $B\bar{B}$ events to the number of $B\bar{B}$ events in measured data. We define it as

$$\eta_{\text{norm.}} = \frac{N_{\text{control}}^D}{N_{\text{control}}^{MC}},$$
(7.10)

where N_{control}^D and N_{control}^{MC} are control yields in the control fit for data and MC, respectively.

1320

1321

1322

1325

1326

In addition to branching ratio constraints in Table 7.2, further constraints are defined in Table 7.4 due to more decay channels. In case of the category C_6 , we have no firm handle on the D meson decay, therefore no correction for this branching ratio can be introduced, so we set a correction factor of 1 with a 100% error for the D meson decay branching ratio. As most of the correction factors used for constraints have deviations (including the errors) from nominal values well below 100% this value is very conservative.

Category	Channel	B Decay Mode	D Decay Mode	Expected MC Yield
C_0	N_{00}	$B^+ \to \bar{D}^0 \ell^+ \nu$	$D^0 \to K^-K^+$	44 ± 7
C	N_{10}	$B^+ o \bar{D}^{*0} \ell^+ \nu$	$D^0 o K^-K^+$	53 ± 7
C_1	N_{11}	$B^0 \to D^{*-}\ell^+\nu$	$D^0 o K^-K^+$	6 ± 2
	N_{20}	$B^+ o \bar{D}^0 \ell^+ \nu$	$D^0 o K^-\pi^+$	23 ± 5
C_2	N_{21}	$B^+ \to \bar{D}^{*0} \ell^+ \nu$	$D^0 o K^- \pi^+$	41 ± 6
	N_{22}	$B^0 \to D^{*-}\ell^+\nu$	$D^0 \to K^- \pi^+$	6 ± 2
	N_{30}	$B^+ o \bar{D}^0 \ell^+ \nu$	$D^0 o K^-K^+\pi^0$	103 ± 10
	N_{31}	$B^+ \to \bar{D}^0 \ell^+ \nu$	$D^0 \to K^- \pi^+ \pi^0$	211 ± 15
C_3	N_{32}	$B^+ \to \bar{D}^{*0} \ell^+ \nu$	$D^0 o K^-K^+\pi^0$	135 ± 12
C_3	N_{33}	$B^+ \to \bar{D}^{*0} \ell^+ \nu$	$D^0 \to K^- \pi^+ \pi^0$	267 ± 16
	N_{34}	$B^0 \to D^{*-}\ell^+\nu$	$D^0 o K^-K^+\pi^0$	19 ± 4
	N_{35}	$B^0 \to D^{*-}\ell^+\nu$	$D^0 \to K^- \pi^+ \pi^0$	36 ± 6
	N_{40}	$B^+ o \bar{D}^0 \ell^+ \nu$	$D^0 o K^- e^+ \nu$	48 ± 7
	N_{41}	$B^+ \to \bar{D}^0 \ell^+ \nu$	$D^0 o K^- \mu^+ \nu$	7 ± 3
C_4	N_{42}	$B^+ \to \bar{D}^{*0} \ell^+ \nu$	$D^0 o K^- e^+ \nu$	98 ± 10
	N_{43}	$B^+ \to \bar{D}^{*0} \ell^+ \nu$	$D^0 o K^- \mu^+ \nu$	10 ± 3
	N_{44}	$B^0 \to D^{*-}\ell^+\nu$	$D^0 \to K^- e^+ \nu$	14 ± 4
	N_{45}	$B^0 \to D^{*-}\ell^+\nu$	$D^0 \to K^- \mu^+ \nu$	3 ± 2
	N_{50}	$B^0 \to D^- \ell^+ \nu$	$D^+ \to K^- K^+ \pi^+$	103 ± 10
C_5	N_{51}	$B^0 \to D^- \ell^+ \nu$	$D^+ o K^- \pi^+ \pi^+$	63 ± 8
05	N_{52}	$B^0 \to D^{*-}\ell^+\nu$	$D^+ \to K^- K^+ \pi^+$	31 ± 6
	N_{53}	$B^0 \to D^{*-}\ell^+\nu$	$D^+ o K^- \pi^+ \pi^+$	21 ± 5
	N_{60}	$B^+ o \bar{D}^0 \ell^+ \nu$		69 ± 8
	N_{61}	$B^+ \to \bar{D}^{*0} \ell^+ \nu$	Other D^0 and D^+	95 ± 10
C_6	N_{62}	$B^0 o D^- \ell^+ \nu$	decays	63 ± 8
	N_{63}	$B^0 \to D^{*-}\ell^+\nu$		36 ± 6

Table 7.3

ID	Decay	\mathcal{B}_{GEN}	\mathcal{B}_{PDG}	ho	Ref.
5	$D^0 \to K^- \pi^+$	3.82×10^{-2}	$(3.89 \pm 0.04) \times 10^{-2}$	1.02 ± 0.01	
6	$D^0 o K^-K^+\pi^0$	2.36×10^{-3}	$(3.37 \pm 0.15) \times 10^{-3}$	1.43 ± 0.06	
7	$D^0 \to K^- \pi^+ \pi^0$	13.08×10^{-2}	$(14.2 \pm 0.5) \times 10^{-2}$	1.09 ± 0.04	
8	$D^0 o K^- e^+ \nu$	3.41×10^{-2}	$(3.53 \pm 0.028) \times 10^{-2}$	1.04 ± 0.01	[14]
	, , , , , , , , , , , , , , , , , , ,	3.41×10^{-2}	$(3.31 \pm 0.13) \times 10^{-2}$	0.97 ± 0.04	
10	$D^+ \rightarrow K^- K^+ \pi^+$	9.06×10^{-3}	$(9.51 \pm 0.34) \times 10^{-3}$	1.05 ± 0.04	
11	$D^+ \to K^- \pi^+ \pi^+$	9.51×10^{-2}	$(8.98 \pm 0.28) \times 10^{-2}$	0.94 ± 0.03	

Table 7.4: Additional MC and measured values of D meson branching ratios along with the calculated correction factors used for constraining the signal fit.

7.2 Adaptive Binning Algorithm

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1345

1346

1347

1348

1354

1355

The fit templates contain areas of low statistics, which are populated with bins with zero content. This is a direct consequence of having a finite MC sample and represent a liability in ML fits. Due to low statistics in the edge regions, the locations of these empty bins can vary for the templates and the fitted sample. A problem occurs if all templates have an empty bin where the fitted sample does not. In the scope of ML fits, this effectively means that there are entries in bins where the probability of having them is 0. We will call such bins *problematic* because in these cases the fit does not converge.

The ideal solution for this problem would be to increase the MC statistics. Since this is not an option, we pursue other solutions, such as decreasing the number of bins. While this solves the problem, the drawback of it is a decrease in the template resolution in densely populated regions, where good resolution is most needed. The optimal solution here seems to be a choice of variable bins, with fine binning in the densely populated regions and larger bins in the regions with low statistics.

We have devised an algorithm, which compares the templates and the fitted sample, and defines a variable binning so that there are no more problematic bins in the end. Figure 7.2 shows an example of how the procedure works. The algorithm takes an argument for the initial number of uniform bins in each dimension and does the following

- 1. define uniform binning in both dimensions with the provided argument,
- 2. create a 2D histogram from MC templates with expected yields,
- 3. define an *optimal* region, where most of the 2D integral is contained and where all bins have a non-zero content (this region does not change throughout the process),
- 4. compare the histograms for the expected and the fitted sample, find the problematic bins,
 - 5. loop until all problematic bins disappear
 - a) find the problematic bin, which is nearest to the maximum bin,

b) change the binning from N to N-1 from that bin and in the direction away from the maximum bin.

Figure 7.2: Steps taken in the adaptive binning algorithm. Left image shows the initial 2D histogram with the defined optimal region and the problematic bins, the right image shows the final binning with the unchanged optimal region, while the problematic bins are gone due to the new binning choice.

An additional problem occurs in the plotting of the fitted templates and the sample with variable binning. It would seem that RooFit does not take the bin widths into account when plotting, while everything works as expected for the fit itself. This was bypassed by extracting the fitted yields and applying them to templates and samples with uniform binning, which were then used for drawing.

7.3 Toy MC Experiments

For the chosen final selection and fit procedure, toy MC pseudo-experiments were performed in order to confirm the behavior of the fit setup. The fit behavior is also checked as a function of the signal yield in the form of a linearity test. A detailed description of toy MC experiments is written in this section.

With toy MC experiments in this section, we study the yields, errors and the pulls of the signal fit by generating our own pseudo data sets, according to the MC. This significantly reduces the time we would need to produce the data sets in the standard way, while still reliably describing the underlying physics behind the pseudo data set. All available MC was used for pseudo data set generation as well as creating templates.

7.3.1 Pseudo Experiment: Expected Signal Yield

We constructed 3×10^3 pseudo data sets, where each data set was generated with the expected amount of each template category, distributed according to the Poisson

distribution. All fits were performed with the optimal initial uniform binning of 19×19 bins in ΔE and M_{BC} .

Figure 7.3 shows distributions of the fit yields, errors and the pull distribution of all pseudo fits. The fits seem to be under control, although there is a slight bias present in the negative direction, which can also be seen in the pull distribution plot. The latter follows a normal distribution with a mean of (-0.11 ± 0.02) and standard deviation of (1.01 ± 0.01) . The mean (\bar{X}) and the standard deviation (S) were calculated in the usual way, while their errors $\sigma_{\bar{X}}$ and σ_{S} were calculated as [15]

$$\sigma_{\bar{X}} = \frac{S}{\sqrt{N}}, \quad \sigma_S = \frac{S}{\sqrt{2(N-1)}}, \tag{7.11}$$

where N is the number of performed measurements.

Figure 7.3: Toy MC fits of pseudo data showing the fit yield (top), fit errors (center) and the pull distribution of the fits (bottom).

7.3.2 Pseudo Experiment: Linearity Test

Linearity test is used for determining the sensitivity of the fit to the amount of signal in the fitted sample. Since this is the first measurement of this decay channel, MC modeling is not reliable and could be very different from reality, so we need to perform this test in order to determine our sensitivity to smaller, as well as larger amounts of expected signal.

The pseudo data sets are generated in the same way as in the previous subsection, with the exception of signal, which is generated in various amounts. 50 steps from

[0.1, 10] in the logarithmic scale are taken for fractions of signal amount and for each fraction we generate 500 pseudo data sets according to Poisson statistics.

Figure 7.4 shows the difference between mean fit yield and the expected yield, mean pull and the mean significance at each signal fraction value. The expected MC result lies at the fraction value $10^0 = 1$. The plots show no significant bias with respect to the signal fraction, while the pulls seem to be described by the normal distributions throughout the fraction range. At expected value, we are at about 3.58σ significance.

Figure 7.4: Mean fit yield and expected yield difference (top), mean pull (center) and mean significance (bottom) as a function of signal fraction.

7.4 Fit Results

In this section, we present the first results of signal and control fits on MC as well as data, along with the control decay branching ratio measurement. We also show results of the signal fit on MC and data.

7.4.1 Signal MC Fit Results

With the signal fit setup described in section 7.1.2, we proceed to fit the 10 streams of MC. To compare both methods of $B\bar{B}$ bar suppression, two different samples were prepared and used in the fit. Since the choice of initial uniform binning is not obvious, we perform fits to all streams of MC for each initial binning choice in the

range $N \times N$, $N \in [4,30]$. Figure 7.5 shows the expected yield differences, pulls and fit significances for both final samples for each binning case. The difference between fitted an expected signal yield should be equal to 0 to ensure no bias is present in the fit, while the average pull distribution for each bin case should have a central value at 0, with a width of 1. While both fit results seem to have no significant bias with respect to the binning choice, the pull distribution seems to be closer to the normal distribution. The uBDT classifier fit setup outperforms the standard BDT fit setup in terms of significance by 1σ . This determines our choice of the final selection. The binning in ΔE and M_{BC} is chosen at the plateau of the significance, where no significant bias is present and is somewhere in the region of 20 bins in each dimension.

Figure 7.5: Fitted yield and expected yield difference (top), pulls (center) and fit significance (bottom) as a function of binning in ΔE and M_{BC} for the final sample, optimized with the standard BDT classifier (blue) and the uBDT classifier (orange).

For the chosen binning of 19×19 in ΔE and M_{BC} we perform the 10 stream MC fits, where an average stream fit is shown in Figure 7.6, while all fit results are shown in Figure 7.7. All stream fit results were fitted with a 0th-degree polynomial. The global result seems to describe the expected value in a precise manner, with the bias much smaller than the average statistical error. The normalized χ^2 value with 10-1=9 degrees of freedom of the global fit is $\chi_9^2=0.98$, while the average significance of the fits is around 3.56σ .

Figure 7.6: An example fit to one stream of MC. Left column shows the M_{BC} and the right column shows the ΔE distribution of the full fitted sample in the full fit region (top) and the signal region (bottom).

Figure 7.7: Fits to all 10 streams of MC and the global fit with a zero degree polynomial. The red line shows the mean value of the global fit and the gray band shows the 1σ confidence interval.

7.4.2 Control Fit Result

1431

1432

1433

1434

1435

With the control fit setup described in section 7.1.1, we proceed to fit the control sample after the final selection for 10 streams of MC and 1 stream of data. An average MC stream fit is shown in Figure 7.8 for MC and Figure 7.9 for data, while all fit results are shown in Figure 7.10, where all streams of MC are fitted with a 0th degree polynomial. The control fit results for split and joined lepton modes are shown in Table 7.5.

	N^{MC}	$N^{ m data}$
$\ell = e \text{ or } \mu$	1180 ± 11	1192 ± 44
$\ell = e$	590 ± 9	588 ± 28
$\ell = \mu$	591 ± 7	610 ± 30

Table 7.5: Control sample fit results for MC and data for various lepton final state modes.

Figure 7.8: Control fit result on stream 9 of MC. Left column shows the M_{BC} and the right column shows the ΔE distribution in the full fit window (top) and the signal window (bottom).

Figure 7.9: Control fit result on real data. Left column shows the M_{BC} and the right column shows the ΔE distribution in the full fit window (top) and the signal window (bottom).

Figure 7.10: Control fit to data and to all 10 streams of MC. The red line shows the mean value of the global MC fit with a 0th degree polynomial. The gray band shows the 1σ confidence interval around the global MC fit.

Branching Ratio Measurement for Control Decay

1441

1442

1443

1444

1445

After acquiring the fit results on MC and data, we are able to determine the branching ratio of the control decay, which is defined as

$$\mathcal{B}_{\text{control}}^{MC} = \frac{N_{\text{control}}^{\text{MC}} \times \epsilon_{MC}}{2N_{B\bar{B}}^{MC}},\tag{7.12}$$

$$\mathcal{B}_{\text{control}} = \frac{N_{\text{control}} \times \epsilon_{MC} \times \rho_{PID}}{2N_{B\bar{B}}},$$
(7.13)

where $N_{\rm control}^{\rm MC}$ and $N_{\rm control}$ are yields of the control fit on MC and data, ϵ_{MC} is the MC efficiency of the control sample, ρ_{PID} the PID correction factor, and $N_{B\bar{B}}^{MC}$ and $N_{B\bar{B}}$ are the numbers of $B\bar{B}$ meson pairs on MC and data, respectively. The factor of 2 in the denominator comes from the fact that there are 2 B mesons in each B meson pair (×1/2), where only about 50% of the B meson pairs are charged B^+B^- meson pairs (×2), and from the fact that we are interested in the branching ratio to the lepton final state of either e or μ , and not their sum (×1/2).

The control sample efficiency was determined on a separate signal MC sample of the control decay, where we generated $5 \times 10^6~B^+\bar{B}^-$ pairs, with one B always decaying via $B^+ \to \bar{D}^0 \ell^+ \nu$, $D^0 \to K^+ K^-$. After applying the final selection, the full and split efficiencies with regard to the lepton final state were determined to be

$$\epsilon_{MC} = (8.89 \pm 0.04) \times 10^{-3},$$

 $\epsilon_{MC}^e = (4.40 \pm 0.03) \times 10^{-3},$
 $\epsilon_{MC}^{\mu} = (4.49 \pm 0.03) \times 10^{-3},$

where the efficiency error was estimated based on a formula from [16].

$$\epsilon_{MC} = \frac{1}{N} \sqrt{n(1 - \frac{n}{N})},$$

where n is a subset of the full set N.

1448

1450

1451

1452

1453

1456

The PID correction factor is obtained by taking into account the known PID efficiency differences between data and MC. It is described in detail in sec:pid-efficiency-correction and is determined to be

$$\rho_{PID} = 0.99 \pm 0.02$$

for the e and μ mode, as well as both of them together.

The number of $B\bar{B}$ meson pairs can be counted on MC and has been measured for data by the collaboration. The values are

$$N_{B\bar{B}}^{MC} = 765.98 \times 10^6,$$

 $N_{B\bar{B}} = (771.58 \pm 10.56) \times 10^6.$

Finally, we can determine the branching ratios based on the calculations in Eq. (7.13). The obtained values are shown in Table 7.6 and graphically shown in Figure 7.11, along with the MC generated value and the current PDG world average. Both MC and measured determinations of the control decay branching ratio are in agreement with the expected and the world average values. One should note that the black error bars correspond to statistical uncertainty. Of all the systematic uncertainties, only the PID systematics are included in this results. Other contributions of systematics are not included since this measurement is not the goal of our analysis.

\mathcal{B}_{PDG}	$(9.10 \pm 0.42) \times 10^{-5}$		
\mathcal{B}_{GEN}	9.01×10^{-5}		
	\mathcal{B}^{MC} $\mathcal{B}^{ ext{data}}$		
$\ell = e \text{ or } \mu$	$(8.94 \pm 0.09) \times 10^{-5}$	$(9.06 \pm 0.40) \times 10^{-5}$	
$\ell = e$	$(9.04 \pm 0.15) \times 10^{-5}$	$(9.07 \pm 0.49) \times 10^{-5}$	
$\ell = \mu$	$(8.85 \pm 0.12) \times 10^{-5}$	$(9.12 \pm 0.50) \times 10^{-5}$	

Table 7.6: Control sample fit results for MC and data for various lepton final state modes.

Figure 7.11: Various branching ratio determinations for the control decay of our analysis.

7.4.3 Signal Fit to Data

Finally, after making sure that the analysis procedure makes sense on the control MC, control data and signal MC sample, we can continue to perform the signal extraction process on the full Belle $\Upsilon(4S)$ data sample. Figure 7.12 shows the fit result in projections of ΔE and M_{BC} for both fit regions. The extracted signal yield on data as well as the yields of the remaining contributions are shown in Table 7.7. Values of all the constraints are shown in Table 7.8.

Figure 7.12: Signal fit result on real data. Left column shows the M_{BC} and the right column shows the ΔE distribution in the full fit window (top) and the signal window (bottom).

Category	Fit Yield
Signal	476 ± 86
$q\bar{q}$ background	2315 ± 179
C_0	45 ± 7
C_1	57 ± 8
C_2	69 ± 9
C_3	910 ± 57
C_4	180 ± 16
C_5	223 ± 18
C_6	341 ± 107
Other $B\bar{B}$ background	16399 ± 246

Table 7.7: Yields of all signal fit contributions on data.

Constraint	Value	Constraint	Value
\mathcal{B}_0	0.049 ± 0.001	N_{30}	103 ± 10
\mathcal{B}_1	1.076 ± 0.004	N_{31}	211 ± 14
\mathcal{B}_2	0.021 ± 0.001	N_{32}	136 ± 12
\mathcal{B}_3	1.014 ± 0.018	N_{33}	267 ± 16
\mathcal{B}_4	1.018 ± 0.010	N_{34}	19 ± 4
\mathcal{B}_5	1.439 ± 0.063	N_{35}	35 ± 6
\mathcal{B}_6	1.092 ± 0.038	N_{40}	48 ± 7
\mathcal{B}_7	1.035 ± 0.008	N_{41}	7 ± 3
\mathcal{B}_8	0.971 ± 0.038	N_{42}	99 ± 10
\mathcal{B}_9	1.052 ± 0.038	N_{43}	10 ± 3
\mathcal{B}_{10}	0.945 ± 0.029	N_{44}	14 ± 4
\mathcal{B}_{11}	1.331 ± 0.441	N_{45}	3 ± 2
$N_{\rm control}^{MC}$	1179 ± 11	N_{50}	103 ± 10
$N_{ m control}$	1215 ± 43	N_{51}	63 ± 8
N_{00}	44 ± 7	N_{52}	31 ± 6
N_{10}	54 ± 7	N_{53}	21 ± 5
N_{11}	6 ± 2	N_{60}	69 ± 8
N_{20}	23 ± 5	N_{61}	94 ± 10
N_{21}	41 ± 6	N_{62}	63 ± 8
N_{22}	6 ± 2	N_{63}	35 ± 6

Table 7.8: Mean values and standard deviations of constraints after the fit.

In this fit setup we perform a random smearing of the ΔE variable according to the Poisson distribution. The result is similar to a convolution with a Gaussian function, but the application is different in the sense that it returns a slightly different result after each fit. We perform 500 data fits in order to obtain the mean values of the signal yield and fit error. The averaged result is

$$\bar{N}_{sig} = 487 \pm 86,$$

where the error represents the joint value of the statistical error as well as the systematic error of the Gaussian constraints used in the fit. This means that our initial fit is a good representation of the average fit result.

It is possible to estimate the contribution of the systematic uncertainty to the fit error above, which is found to be

1467

1468

$$\sigma_{stat} = 81, \quad \sigma_{sys}^{GC} = 29, \quad \delta_{sys}^{GC} = 6\%,$$
 (7.14)

where GC stands for Gaussian constraint. Further details about systematic uncertainties can be found in chapter 8.

Branching Ratio Calculation for Signal Decay

Similarly as for the control decay, we are able to calculate the branching ratio of the signal decay via the formulas

$$\mathcal{B}_{\text{sig}}^{MC} = \frac{N_{\text{sig}}^{\text{MC}} \times \epsilon_{MC}}{2N_{B\bar{B}}^{MC}},$$

$$\mathcal{B}_{\text{sig}} = \frac{N_{\text{sig}} \times \epsilon_{MC} \times \rho_{PID}}{2N_{B\bar{B}}},$$
(7.15)

$$\mathcal{B}_{\text{sig}} = \frac{N_{\text{sig}} \times \epsilon_{MC} \times \rho_{PID}}{2N_{B\bar{B}}},\tag{7.16}$$

where $N_{\rm sig}^{\rm MC}$ and $N_{\rm sig}$ are yields of the signal fit on MC and data, ϵ_{MC} is the MC efficiency of the signal sample, ρ_{PID} the PID correction factor, and $N_{B\bar{B}}^{MC}$ and $N_{B\bar{B}}$ are the numbers of $B\bar{B}$ meson pairs on MC and data, respectively.

The signal efficiency was determined on the same signal MC sample as was used throughout the analysis. The full signal efficiency is determined to be

$$\epsilon_{MC} = (1.030 \pm 0.007) \times 10^{-2},$$

where the efficiency error was calculated in the same manner as in section 7.4.2. The PID correction factors for signal and the numbers of BB meson pairs on MC 1476 and data are the same as in the case of control decay branching ration measurement 1477 Finally, we can determine the branching ratios based on the calculations in Eq. 1478 (7.16). The obtained values are shown in Table 7.9. We see that the measured value 1479 is twice as large as the MC value. The error in case of the MC result is statistical 1480 only, while the first and the second error in the data result are the statistical and the systematic errors, respectively. 1482

With the statistical significance of about 6σ this is the first observation of the charmless semileptonic decay $B^+ \to K^+ K^- \ell^+ \nu$. It indicates that the MC contribution to our simulated samples is underestimated. This analysis has shown that the branching fraction of the decay seems considerable enough in order to affect results in precision physics in cases where they are ignored.

\mathcal{B}_{GEN}	1.57×10^{-5}	
	\mathcal{B}^{MC} $\mathcal{B}^{\mathrm{data}}$	
$\ell = e \text{ or } \mu$	$(1.60 \pm 0.14) \times 10^{-5}$	$(3.09 \pm 0.52 \pm ^{+0.66}_{-0.47}) \times 10^{-5}$

Table 7.9: Signal decay fit results for MC and data.

Signal Distribution in m_{KK}

7.5 Conclusion

Χ 1490

1483

1484

1485

1486

Chapter 8

₂₂ Systematic Uncertainty

In this chapter, the systematic errors of the analysis are discussed. These uncertainties arise due to various reasons, some of them being the difference between real and
simulated data, or due to the nature of the approaches taken in a specific analysis.

Depending on their type, some uncertainties are generic and prepared beforehand
in order to be used in all analyses, while others are analysis specific and possible
sources need to be thought through thoroughly. All systematic uncertainties contributions which are cited in the final result in section 7.4.3 are summarized in the
end of this chapter.

8.1 PID Efficiency Correction

The PID selection efficiency for the three charged particles in our signal decay needs to be corrected on MC due to various differences when comparing to data. The Belle PID group has prepared correction factors and systematics tables for PID efficiencies for all charged particles. In case of kaon ID and lepton ID, the tables are binned in experiment numbers, particle momentum and in $\cos\theta$ of the particle direction, where, for each bin, a ratio of efficiencies between MC and data is provided, as well as the systematic errors. Each particle's correction factor and error is shown in Table 8.1, as well as the corresponding entry for all 3 particles. The entries are shown for both signal and control region.

The central values were obtained with a weighted average over all experiments, where 100% correlation for error calculation was assumed. A full correlation was also assumed when calculating the KK correction, as both K use the same PID information.

The final PID efficiency systematic error on the full MC sample is determined to be

$$\sigma_{\rm sys}^{\rm PID} = 10, \quad \delta_{\rm sys}^{\rm PID} = 2.0\%,$$
 (8.1)

for the signal as well as the control decay.

PID correction and systematics	Control decay	Signal decay
Same sign K (w.r.t the B meson)	1.005 ± 0.009	1.007 ± 0.010
Opposite sign K (w.r.t the B meson)	1.004 ± 0.009	1.006 ± 0.009
e	0.977 ± 0.011	0.976 ± 0.011
μ	0.985 ± 0.009	0.980 ± 0.009
ℓ	0.981 ± 0.007	0.980 ± 0.007
KKe	0.986 ± 0.021	0.988 ± 0.022
$KK\mu$	0.994 ± 0.020	0.993 ± 0.021
$KK\ell$	0.990 ± 0.019	0.990 ± 0.020

Table 8.1: PID correction factors and systematic error for various charged particles and their combinations.

1518 **8.2** Fit Bias

Signal and background templates in our analysis are not perfectly distinct from one another and may potentially cause some over- or underestimation of the signal fit yield. In order to study this problem, we estimate the bias from the binning study performed in section 7.4.1 as well as the linearity test toy MC study in section 7.3.2. The two bias functions describe a bias in each direction and are approximated as

$$f_{\min}(x) = -7.25 - 1.12x - \sigma_{f_{\min}}(x),$$
 (8.2)

$$\sigma_{f_{\min}}(x) = \sqrt{0.050x^2 - 0.175x + 0.410},$$
(8.3)

$$f_{\text{max}}(N_b) = 5.06 + \sigma_{f_{\text{max}}}(N_b),$$
 (8.4)

$$\sigma_{f_{\text{max}}}(N_b) = 5.00 + \sigma_{f_{\text{max}}}(N_b), \tag{8.4}$$

$$\sigma_{f_{\text{max}}}(N_b) = \sqrt{0.004N_b^2 - 0.113N_b + 1.112}$$

where x represents the signal yield fraction of the data fit and N_b represents the binning choice of the fit. Values of 1σ intervals have been added to the bias functions in order to be more conservative. The extracted signal yield on data with the fit setup of $N_b=19$ bins was determined to be $N_{sig}=487$, which leads to $x=N_{sig}/N_{sig}^{MC}=487/250\approx 2$. The bias interval is therefore

$$\sigma_{\text{sys}}^{\text{bias}} = ^{+6}_{-10}, \quad \delta_{\text{sys}}^{\text{bias}} = ^{+1.2\%}_{-2.1\%}.$$
 (8.6)

8.3 Gaussian Constraints

As mentioned in section 7.4.3, it is possible to estimate the size of the systematic error of the Gaussian constraints. By fixing the constraints to the nominal values, determined by the data fit, we obtain the pure statistical error, which can then be subtracted from the average fit error in order to determine the systematic uncertainty contribution due to using Gaussian constraints. For the fixed and non-fixed case we perform 500 fits and calculate with the mean values. The split errors are then

$$\bar{N}_{sig} = 487 \pm 86,$$
 (8.7)

$$\bar{N}_{sig}^{fix} = 485 \pm 81,$$
 (8.8)

$$\sigma_{stat} = 81, \quad \sigma_{sys}^{GC} = 29, \quad \delta_{sys}^{GC} = 6.0\%,$$
(8.9)

where GC stands for Gaussian constraint. We see that the constrained channels are very well defined and introduce little to none additional uncertainty. 1526

8.4 Fit Template Smearing and Offset

The smearing and offset of the ΔE variable was discussed in section 7.1.1, where we 1528 have estimated the central value of the parameters as well as their range in the 1σ 1529 confidence level. We have to perform a study of the effects of different smearing and 1530 offset parameter values on the final value of the signal yield. From section 7.1.1, the parameter values are 1532

- Smearing: 40^{+15}_{-17} MeV,
- Offset: $6^{+4.6}_{-6}$ MeV. 1534

1533

1541

1542

Since the two parameters are largely uncorrelated, we are able to perform the study 1535 in the form of signal fits with four different combinations of parameters in the given 1536 range. For each parameter setting 500 fits are performed and the following results 1537 are obtained 1538

- Set: [smearing, offset]: [23 MeV,6 MeV], Result: $\bar{N}_{sig} = 446$, 1539
- Result: $\bar{N}_{sig} = 538$, • Set: [smearing, offset]: [55 MeV,6 MeV], 1540
 - Result: $\bar{N}_{sig} = 547$, • Set: [smearing, offset]: [40 MeV,0 MeV],
 - Set: [smearing, offset]: [40 MeV,12.6 MeV], Result: $\bar{N}_{sig} = 439$,

which results in the following estimate of systematic uncertainties for smearing and offset parameters

$$\sigma_{\text{sys}}^{\text{sm.}} = ^{+53}_{-39}, \quad \delta_{\text{sys}}^{\text{sm.}} = ^{+10.9\%}_{-8.1\%},
\sigma_{\text{sys}}^{\text{off.}} = ^{+62}_{-46}, \quad \delta_{\text{sys}}^{\text{off.}} = ^{+12.8\%}_{-9.5\%}.$$
(8.10)

$$\sigma_{\text{sys}}^{\text{off.}} = {}^{+62}_{-46}, \quad \delta_{\text{sys}}^{\text{off.}} = {}^{+12.8\%}_{-9.5\%}.$$
 (8.11)

Effects of a Finite MC sample

The shape of signal and backgrounds templates in our analysis is fixed and only 1544 their normalization is considered as a floating parameter in the fit. Due to the 1545 finite size of the MC sample, the template shape introduces an additional source of 1546 uncertainty, as it may differ if produced in a separate, equal-sized MC sample. Since 1547 the bins in these 2D histogram templates are statistically independent, we take the content of each bin and vary the value according to the Poisson distribution. This procedure is repeated 500 times and the width of the fit yield distribution is taken 1550 as the uncertainty estimate. The resulting finite MC sample contribution of the 1551 systematic uncertainty is 1552

$$\sigma_{\text{sys}}^{MC} = 27, \quad \delta_{\text{sys}}^{MC} = 5.5\%.$$
 (8.12)

8.6 MVA Selection Efficiencies

Control sample fits allow us to check the behavior of optimized MVA cuts on MC as well as data and see if any of the MVA steps introduce a possible disagreement between the two. We compare control yields, their ratios and ratios of cut efficiencies (double ratios). The following cut scenarios are studied

- (a) final selection before any MVA step,
- (b) (a) + $BDT_{q\bar{q}}$ cut,
- (c) (a) + $uBDT_{B\bar{B}}$ cut,
- (d) (a) + $BDT_{q\bar{q}} + uBDT_{B\bar{B}}$ cut (final selection).

The results for control fit yields, their ratios, and double ratios are shown in Figure 8.1. The plot shows that the yield ratios and cut efficiency ratios are consistent with 1. This means that data and MC are in agreement before as well as after applying the final selection cuts. This is an important check since the behavior of our analysis on the control sample suggests that the final selection is not over-optimized to signal MC.

We estimate the systematic error due to the MVA selection steps as the standard deviation of double ratio entries around the nominal value for each step in the MVA selection, except for the final two values for e and μ modes, since we are performing the inclusive lepton measurement. The systematic error estimate for this contribution is

$$\sigma_{\text{sys.}}^{\text{MVA}} = 5, \quad \sigma_{\text{sys.}}^{\text{MVA}} = 1.0\%.$$
 (8.13)

Figure 8.1: Fit yields, their ratios and ratios of cut efficiencies (double ratios) for the control sample fits to data and MC.

8.7 Model Uncertainty Effects

The signal decay model used in the generation step was ISGW2 [17], which is known to result in unrealistic predictions and poor agreement with data, so it is not the most precise model for our signal MC sample. Due to this model unreliability, our analysis has been set up as model-independent as possible via means of not using variables, which exhibit model dependence. Such variables are i.e. squared momentum transfer to the lepton pair (q^2) , the invariant mass of the two kaon daughters (m_{KK}) or decay angle between any two charged particles in the final state. In order to test the effects of model dependency on our final result, we prepare two additional signal MC samples, produced with two extreme scenarios of decay model choice. In the first scenario we generate the signal MC sample with a generic phase-space decay mode PHSP [18], which results in continuum-like distributions of q^2 and m_{KK} . In the other scenario, only resonant-like contributions of model choice and present a

reasonable measure of the model uncertainty. Figure 8.2 shows the generated m_{KK} and q^2 distributions of the three mentioned decay models as well as distributions of ΔE and M_{BC} after the final selection. Figures show a good agreement of ΔE and M_{BC} , even if the signal model is very different. This proves that our analysis is model-independent to a satisfactory extent.

The systematic uncertainty due to the model dependence is estimated via using the different signal MC samples as signal templates in the fit. We perform 500 fits for each case. The differences between mean values of fit yields serve as an estimate of the model uncertainty.

Figure 8.2: m_{KK} (top left), q^2 (tip right), ΔE (bottom left) and M_{BC} (bottom right) for three different signal MC data sets with the standard ISGW2 decay model and two extreme cases of decay models, phase-space (PHSP) and resonant (RES) modes.

The resulting average signal yields for the three model choices are

$$\bar{N}_{sig} = 487,$$
 (8.14)

$$\begin{split} \bar{N}_{sig} &= 487, & (8.14) \\ \bar{N}_{sig}^{\text{PHSP}} &= 532, & (8.15) \\ \bar{N}_{sig}^{\text{res.}} &= 490. & (8.16) \end{split}$$

$$\bar{N}_{sig}^{\text{res.}} = 490.$$
 (8.16)

Any kind of different signal model will likely result in a worse resolution of the 2D distribution in ΔE and M_{BC} , which results in a larger yield, so the increase of the yields obtained with different models is expected. The systematic uncertainty due to model dependence is therefore estimated to be asymmetric with a value of

$$\sigma_{\text{sys}}^{\text{mod.}} = {}^{+47}_{-0}, \quad \delta_{\text{sys}}^{\text{mod.}} = {}^{+9.7\%}_{-0.0\%}.$$
 (8.17)

8.8 Summary of Systematics

1596

1597

The summary of all systematic uncertainties is shown in Table 8.2. The full estimate 1601 of the systematic uncertainty is summed up in quadrature and applied to the result in section 7.4.3.

Source	σ	δ [%]
PID	10	2
Fit Bias	$^{+6}_{-10}$	$+1.2 \\ -2.1$
Gaussian Constraints	29	6.0
Template Smearing	$+53 \\ -39$	$+10.9 \\ -8.1$
Template Offset	$^{+62}_{-46}$	$+12.8 \\ -9.5$
Finite MC Effects	27	5.5
MVA Selection	5	1.0
Model Dependence	$^{+47}_{-0}$	$^{+9.7}_{-0.0}$
Total	$+103 \\ -73$	$+21.3 \\ -15.1$

Table 8.2: Summary of systematic uncertainties in this analysis.

4 Bibliography

- Nicola Cabibbo. "Unitary symmetry and leptonic decays". In: *Physical Review* L 10.12 (1963), p. 531.
- 1607 [2] Makoto Kobayashi and Toshihide Maskawa. "CP-violation in the renormal-1608 izable theory of weak interaction". In: *Progress of Theoretical Physics* 49.2 1609 (1973), pp. 652–657.
- [3] Lincoln Wolfenstein. "Parametrization of the Kobayashi-Maskawa Matrix". In:
 1611 Phys. Rev. Lett. 51 (21 Feb. 1983), pp. 1945–1947. DOI: 10.1103/PhysRevLett.
 1612 51.1945. URL: https://link.aps.org/doi/10.1103/PhysRevLett.51.
 1613 1945.
- Y. Amhis et al. "Averages of b-hadron, c-hadron, and -lepton properties as of summer 2016". In: Eur. Phys. J. C77 (2017). updated results and plots available at https://hflav.web.cern.ch, p. 895. DOI: 10.1140/epjc/s10052-017-5058-4. arXiv: 1612.07233 [hep-ex].
- ¹⁶¹⁸ [5] P. Gambino, P. Giordano, et al. "Inclusive semileptonic B decays and the determination of —V(ub)—". In: *JHEP* 10 (2007), p. 058. DOI: 10.1088/
 ¹⁶²⁰ 1126-6708/2007/10/058. arXiv: 0707.2493 [hep-ph].
- 1621 [6] Torbjörn Sjöstrand, Stephen Mrenna, and Peter Skands. "PYTHIA 6.4 physics and manual". In: *Journal of High Energy Physics* 2006.05 (2006), p. 026.
- Thomas Keck. "Machine learning algorithms for the Belle II experiment and their validation on Belle data". Karlsruher Institut fr Technologie, Diss., 2017.

 Dr. Karlsruher Institut fr Technologie, 2017, 240 pages. URL: https://ekp-invenio.physik.uni-karlsruhe.de/record/48940.
- 1627 [8] DM Asner, M Athanas, et al. "Search for exclusive charmless hadronic B decays". In: *Physical Review D* 53.3 (1996), p. 1039.
- ¹⁶²⁹ [9] AJ Bevan, B Golob, et al. "The physics of the B factories". In: *The European Physical Journal C* 74.11 (2014), p. 3026.
- [10] P. del Amo Sanchez, J. P. Lees, et al. "Study of $B \to \pi l \nu$ and $B \to \rho l \nu$ decays and determination of $|V_{ub}|$ ". In: *Phys. Rev. D* 83 (3 Feb. 2011), p. 032007. DOI: 10.1103/PhysRevD.83.032007. URL: https://link.aps.org/doi/10. 1103/PhysRevD.83.032007.
- Justin Stevens and Mike Williams. "uBoost: A boosting method for producing uniform selection efficiencies from multivariate classifiers". In: *Journal of Instrumentation* 8.12 (2013), P12013.
- 1638 [12] Wouter Verkerke and David Kirkby. "The RooFit toolkit for data modeling". In: Statistical Problems in Particle Physics, Astrophysics and Cosmology.
 World Scientific, 2006, pp. 186–189.
- [13] F. James. "MINUIT Function Minimization and Error Analysis: Reference Manual Version 94.1". In: (1994).

- 1643 [14] M Tanabashi. "Review of particle physics". In: *Phys. Rev. D* 98 (2018), p. 030001.
- Sangtae Ahn and Jeffrey A Fessler. "Standard errors of mean, variance, and standard deviation estimators". In: *EECS Department, The University of Michigan* (2003), pp. 1–2.
- 1647 [16] Marc Paterno. Calculating efficiencies and their uncertainties. Tech. rep. Fermi 1648 National Accelerator Lab.(FNAL), Batavia, IL (United States), 2004.
- 1649 [17] Daryl Scora and Nathan Isgur. "Semileptonic meson decays in the quark model: An update". In: *Phys. Rev.* D52 (1995), pp. 2783–2812. DOI: 10.1103/PhysRevD.52.2783. arXiv: hep-ph/9503486 [hep-ph].
- [18] DJ Lange. "DJ Lange, Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152
 (2001)." In: Nucl. Instrum. Methods Phys. Res., Sect. A 462 (2001), p. 152.

Chapter 9

MVA Control Plots

9.1 ROE Clean-up π^0 Training

9.1.1 Variable Importance

	Name	Alias	Importance
0	chiProb	v_0	0.280
1	useCMSFrame(daughterAngleInBetween(0,1))	v_1	0.203
2	daughter(0,useCMSFrame(p))	v_2	0.073
3	InvM	v_3	0.072
4	daughter(1,clusterHighestE)	v_4	0.061
5	daughter(1,clusterTheta)	v_5	0.049
6	daughter(1,p)	v_6	0.047
7	daughter(0,clusterHighestE)	v_7	0.029
8	daughter(0,clusterTheta)	v_8	0.024
9	daughter(0,clusterE9E25)	v_9	0.018
10	daughter(0,minC2HDist)	v_{10}	0.018
11	daughter(1,minC2HDist)	v_{11}	0.017
12	daughter(1,clusterE9E25)	v_{12}	0.016
13	useRestFrame(daughterAngleInBetween(0,1))	v_{13}	0.014
14	daughter(1,clusterNHits)	v_{14}	0.013
15	daughter(0,clusterNHits)	v_{15}	0.011
16	daughter(0,clusterErrorE)	v_{16}	0.009
17	daughter(1,clusterErrorE)	v_{17}	0.009
18	SigMBF	v_{18}	0.007
19	useCMSFrame(p)	v_{19}	0.006
20	daughter(0,p)	v_{20}	0.005
21	SigM	v_{21}	0.005
22	daughter(1,useCMSFrame(p))	v_{22}	0.005
23	useLabFrame(daughterAngleInBetween(0,1))	v_{23}	0.005
24	p	v_{24}	0.003

Table 9.1: Variable names, aliases and importance in the scope of π^0 MVA training for ROE clean-up.

9.1.2 Variable Distributions

Figure 9.1: Feature distributions for MVA training of π^0 candidates in the scope of ROE clean-up.

Figure 9.1: Feature distributions for MVA training of π^0 candidates in the scope of ROE clean-up.

9.1.3 Hyper-parameter Optimization

Figure 9.2: Hyper-parameter optimization of nTrees and nLevels in the BDT forest training of π^0 candidates in the scope of the ROE clean-up.

1660 9.1.4 Results

Figure 9.3: Efficiency (\mathcal{E}) and purity (\mathcal{P}) of the MVA classifier output for π^0 candidates training on the train (solid) and test (dashed) samples.

Figure 9.4: ROC curves of the MVA classifier output for π^0 candidates training on the train (solid) and test (dashed) samples.

9.2 ROE Clean-up γ Training

9.2.1 Variable Importance

	Name	Alias	Importance
0	p	v_0	0.327
1	pi0p	v_1	0.243
2	clusterHighestE	v_2	0.226
3	minC2HDist	v_3	0.052
4	cosTheta	v_4	0.036
5	clusterE9E25	v_5	0.031
6	clusterNHits	v_6	0.025
7	clusterUncorrE	v_7	0.022
8	clusterR	v_8	0.015
9	useCMSFrame(p)	v_9	0.013
10	clusterErrorE	v_{10}	0.010
11	clusterReg	v_{11}	0.000

Table 9.2: Variable names, aliases and importance in the scope of γ MVA training for ROE clean-up.

9.2.2 Variable Distributions

Figure 9.5: Feature distributions for MVA training of γ candidates in the scope of ROE clean-up.

9.2.3 Hyper-parameter Optimization

Figure 9.6: Hyper-parameter optimization of nTrees and nLevels in the BDT forest training of γ candidates in the scope of the ROE clean-up.

9.2.4 Results

Figure 9.7: Efficiency (\mathcal{E}) and purity (\mathcal{P}) of the MVA classifier output for γ candidates training on the train (solid) and test (dashed) samples.

Figure 9.8: ROC curves of the MVA classifier output for γ candidates training on the train (solid) and test (dashed) samples.

9.3 ROE Clean-up Duplicate Pair Training

9.3.1 Variable Importance

	Name	Alias	Importance
0	useCMSFrame(daughterAngleInBetween(0,1))	v_0	0.132
1	daughter(0,phi0Err)	v_1	0.082
2	useLabFrame(daughterAngleInBetween(0,1))	v_2	0.055
3	daughter(1,d0)	v_3	0.051
4	daughter(1,phi0Err)	v_4	0.051
5	daughter(0,d0)	v_5	0.050
6	daughter(1,nCDCHits)	v_6	0.040
7	daughter(1,d0Err)	v_7	0.037
8	daughter(0,nCDCHits)	v_8	0.034
9	daughter(1,z0)	v_9	0.032
10	daughter(0,z0)	v_{10}	0.030
11	daughter(0,d0Err)	v_{11}	0.028
12	daughter(0,nSVDHits)	v_{12}	0.028
13	daughter(1,pz)	v_{13}	0.027
14	<pre>daughter(1,useCMSFrame(p))</pre>	v_{14}	0.024
15	extraInfo(decayModeID)	v_{15}	0.023
16	daughter(0,pz)	v_{16}	0.020
17	daughter(1,nSVDHits)	v_{17}	0.020
18	daughter(0,pValue)	v_{18}	0.020
19	daughter(1,tanlambda)	v_{19}	0.018
20	daughter(1,pValue)	v_{20}	0.018
21	daughter(0,tanlambda)	v_{21}	0.017

22	daughter(0,phi0)	v_{22}	0.016
23	daughter(1,phi0)	v_{23}	0.016
24	<pre>daughter(0,useCMSFrame(p))</pre>	v_{24}	0.015
25	daughter(0,z0Err)	v_{25}	0.014
26	daughter(1,omega)	v_{26}	0.013
27	daughter(0,omega)	v_{27}	0.013
28	daughter(1,z0Err)	v_{28}	0.012
29	<pre>daughter(0,pt)</pre>	v_{29}	0.011
30	<pre>daughter(0,omegaErr)</pre>	v_{30}	0.011
31	<pre>daughter(1,omegaErr)</pre>	v_{31}	0.010
32	<pre>daughter(1,pt)</pre>	v_{32}	0.009
33	daughter(0,tanlambdaErr)	v_{33}	0.009
34	daughter(1,tanlambdaErr)	v_{34}	0.009
35	useRestFrame(daughterAngleInBetween(0,1))	v_{35}	0.003
36	daughter(1,charge)	v_{36}	0.000
37	daughter(0,charge)	v_{37}	0.000

Table 9.3: Variable names, aliases and importance in the scope of duplicate track pair MVA training for ROE clean-up.

9.3.2 Variable Distributions

Figure 9.9: Feature distributions for MVA training of duplicate track pair candidates in the scope of ROE clean-up.

Figure 9.9: Feature distributions for MVA training of duplicate track pair candidates in the scope of ROE clean-up.

9.3.3 Hyper-parameter Optimization

Figure 9.10: Hyper-parameter optimization of nTrees and nLevels in the BDT forest training of duplicate track pair candidates in the scope of the ROE clean-up.

1670 **9.3.4** Results

Figure 9.11: Efficiency (\mathcal{E}) and purity (\mathcal{P}) of the MVA classifier output for duplicate track pair candidates training on the train (solid) and test (dashed) samples.

Figure 9.12: ROC curves of the MVA classifier output for duplicate track pair candidates training on the train (solid) and test (dashed) samples.

9.4 ROE Clean-up Duplicate Track Training

9.4.1 Variable Importance

	Name	Alias	Importance
0	extraInfo(d0Diff)	v_0	0.214
1	extraInfo(z0Diff)	v_1	0.087
2	d0	v_2	0.069
3	extraInfo(pValueDiff)	v_3	0.060
4	z0	v_4	0.058
5	phi0Err	v_5	0.056
6	extraInfo(pzDiff)	v_6	0.055
7	extraInfo(ptDiff)	v_7	0.045
8	z0Err	v_8	0.043
9	extraInfo(nCDCHitsDiff)	v_9	0.037
10	extraInfo(nSVDHitsDiff)	v_{10}	0.034
11	pt	v_{11}	0.032
12	d0Err	v_{12}	0.030
13	pValue	v_{13}	0.029
14	nCDCHits	v_{14}	0.028
15	nSVDHits	v_{15}	0.028
16	pz	v_{16}	0.025
17	cosTheta	v_{17}	0.024
18	phi0	v_{18}	0.023
19	useCMSFrame(p)	v_{19}	0.021

Table 9.4: Variable names, aliases and importance in the scope of duplicate track MVA training for ROE clean-up.

9.4.2 Variable Distributions

Figure 9.13: Feature distributions for MVA training of duplicate track candidates in the scope of ROE clean-up.

9.4.3 Hyper-parameter Optimization

Figure 9.14: Hyper-parameter optimization of nTrees and nLevels in the BDT forest training of duplicate track candidates in the scope of the ROE clean-up.

9.4.4 Results

Figure 9.15: Efficiency (\mathcal{E}) and purity (\mathcal{P}) of the MVA classifier output for duplicate track candidates training on the train (solid) and test (dashed) samples.

Figure 9.16: ROC curves of the MVA classifier output for duplicate track candidates training on the train (solid) and test (dashed) samples.

9.5 $qar{q}$ Suppression Training

9.5.1 Variable Importance

	Name	Alias	Importance
0	B_CosTBT0	v_0	0.291
1	B_hso02	v_1	0.096
2	B_ThrustB	v_2	0.096
3	B_roeFit_dz	v_3	0.075
4	B_R2	v_4	0.054
5	B_hso12	v_5	0.044
6	B_hoo2	v_6	0.032
7	B_Thrust0	v_7	0.027
8	$B_{-}qp$ Kaon	v_8	0.024
9	B_cc2_CcR0E	v_9	0.023
10	B_hoo0	v_{10}	0.019
11	B_cc3_CcR0E	v_{11}	0.019
12	B_cc4_CcR0E	v_{12}	0.016
13	B_CosTBz	v_{13}	0.015
14	B_hso01	v_{14}	0.015
15	B_cc1_CcROE	v_{15}	0.015
16	B_cc5_CcR0E	v_{16}	0.013
17	B_cc6_CcR0E	v_{17}	0.012
18	B_qpFastHadron	v_{18}	0.012
19	B_cc7_CcR0E	v_{19}	0.010
20	B_cc9_CcR0E	v_{20}	0.010
21	B_cc8_CcR0E	v_{21}	0.010

22	$B_{-}qpMaximumPstar$	v_{22}	0.008
23	B_hso10	v_{23}	0.008
24	B_hso04	v_{24}	0.007
25	$B_{-}qpLambda$	v_{25}	0.006
26	B_hoo1	v_{26}	0.006
27	$B_{-}qp$ KaonPion	v_{27}	0.006
28	B_hoo4	v_{28}	0.006
29	$B_qpSlowPion$	v_{29}	0.006
30	B_hso03	v_{30}	0.005
31	B_hso14	v_{31}	0.004
32	B_qpFSC	v_{32}	0.004
33	B_hoo3	v_{33}	0.004

Table 9.5: Variable names, aliases and importance in the scope of $q\bar{q}$ suppression MVA training.

9.5.2 Variable Distributions

Figure 9.17: Feature distributions for MVA training of $q\bar{q}$ background suppression.

Figure 9.17: Feature distributions for MVA training of $q\bar{q}$ background suppression.

9.5.3 Hyper-parameter Optimization

Figure 9.18: Hyper-parameter optimization of nTrees and nLevels in the BDT forest training of $q\bar{q}$ background suppression.

9.5.4 Results

Figure 9.19: Efficiency (\mathcal{E}) and purity (\mathcal{P}) of the MVA classifier output for $q\bar{q}$ background suppression training on the train (solid) and test (dashed) samples.

Figure 9.20: ROC curves of the MVA classifier output for $q\bar{q}$ background suppression training on the train (solid) and test (dashed) samples.

9.6 Standard $Bar{B}$ Suppression Training

9.6.1 Variable Importance

	Name	Alias	Importance
0	B_cosMomVtxKKlnu	v_0	0.372
1	B_ROE_PThetacms0	v_1	0.096
2	B_nROETrkO	v_2	0.079
3	B_K1FT	v_3	0.063
4	B_cosBY	v_4	0.051
5	B_roeFit_dz	v_5	0.047
6	B_xiZO	v_6	0.043
7	$B_{-}cosMomVtx$	v_7	0.038
8	B_chiProb	v_8	0.031
9	B_nKaonInROE	v_9	0.028
10	B_missM2Veto1	v_{10}	0.026
11	B_missM2Veto2	v_{11}	0.021
12	B_nROEDistTrk	v_{12}	0.018
13	$B_{-}cosMomVtxKK$	v_{13}	0.018
14	B_KOFT	v_{14}	0.017
15	B_QVeto1	v_{15}	0.016
16	B_missM20	v_{16}	0.015
17	B_TagVPvalue	v_{17}	0.012
18	B_QVeto2	v_{18}	0.010

Table 9.6: Variable names, aliases and importance in the scope of $B\bar{B}$ background suppression.

9.6.2 Variable Distributions

Figure 9.21: Feature distributions for MVA training of $B\bar{B}$ background suppression.

9.6.3 Hyper-parameter Optimization

Figure 9.22: Hyper-parameter optimization of nTrees and nLevels in the BDT forest training of $B\bar{B}$ background suppression.

9.6.4 Results

Figure 9.23: Efficiency (\mathcal{E}) and purity (\mathcal{P}) of the MVA classifier output for $B\bar{B}$ background suppression training on the train (solid) and test (dashed) samples.

Figure 9.24: ROC curves of the MVA classifier output for $B\bar{B}$ background suppression training on the train (solid) and test (dashed) samples.

9.7 Uniformity Boosted $Bar{B}$ Suppression Training

9.7.1 Hyper-parameter Optimization

Hyper-parameters were not optimized due to the large CPU time consumption of the algorithm. The following set up of the hyper-parameters was chosen

• nTrees: 300

1687

• nLevels: 4

9.7.2 Results

Figure 9.25: Efficiency (\mathcal{E}) and purity (\mathcal{P}) of the uniformity boosted MVA classifier output for $B\bar{B}$ background suppression training on the train (solid) and test (dashed) samples.

Figure 9.26: ROC curves of the uniformity boosted MVA classifier output for $B\bar{B}$ background suppression training on the train (solid) and test (dashed) samples.