

Campus Zona Leste

Albert França Josuá Costa
Curso:
Disciplina:
Nome:
Data:

LISTA 01

- a) Individual; b) Utilize C, Java ou Python; c) Entregar o executável ou equivalente; d) Entregar o código fonte; e) Entregar relatório sucinto (1 página), f) Cada item deve ser implementado em uma função ou método, g) Os valores de entrada serão fornecidos em um arquivo .CSV. A entrada de dados deve ser feita pela leitura do arquivo .CSV. e h) É proibido o uso de funções ou métodos prontos, com exceção de entrada e saída de dados. Todo o código deve ser implementado pelo aluno.
- 1. (2.5 pontos) Considere os conjuntos fornecidos como entrada (anexo1.csv). Implemente um programa para:
 - (a) Verificar se A = B.
 - (b) Verificar se $A \subseteq B$.
 - (c) Verificar se $B \subseteq A$.
 - (d) Calcular |A|.
 - (e) Calcular |B|.
 - (f) Calcular AxB.
 - (g) Calcular $A \cup B$.
 - (h) Calcular $|A \cup B|$.
 - (i) Calcular $A \cap B$.
 - (j) Calcular $|A \cap B|$.
 - (k) Calcular A B.
 - (1) Calcular B A.
- 2. (2.5 pontos) Considere os conjuntos fornecidos como entrada (anexo2.csv) e a função $f(x) = \frac{x^3}{x^2} + 3$. Implemente um programa para verificar se f(x) é injetora, bijetora ou sobrejetora.
- 3. **(2.5 pontos)** Para cada valor fornecido como entrada (anexo3.csv) implemente os somatórios solicitados. **Dica: Utilize as fórmulas fechadas**.
 - (a) $\sum_{k=1}^{n} 1$
 - (b) $\sum_{k=1}^{n} k$
 - (c) $\sum_{k=1}^{n} k^2$
 - (d) $\sum_{k=1}^{n} k^3$
 - (e) $\sum_{k=1}^{n} k^4$
 - (f) $\sum_{k=1}^{n} k^5$
 - (g) $\sum_{k=1}^{n} k^6$

Campus
Manaus Zona Leste

Albert França Josuá Costa
Curso:
Disciplina:
Nome:
Data:

- 4. (2.5 pontos) Encontre e implemente a função que gera as sequências abaixo até o n-ésimo termo. Considere n=20
 - (a) $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, ..., n$
 - (b) 1, 3, 5, 7, 9, ..., n
 - (c) $1, 4, 9, 16, 25, 36, \dots, n$
 - (d) 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ..., n