305 Lecture 14 - Explosion

Brian Weatherson

July 8, 2020

Plan for Today

- We're going to talk two interesting consequences of the rules we've produced so far.
- The first is that the rules validate explosion, the idea that everything follows from a contradiction.
- The second is that they validate all four of what are called DeMorgan's Laws.

Explosion

What It is

Informal Argument			
An argument is valid if it is impossible for the premises to be true and the conclusion false.			

Informal Argument

- An argument is valid if it is impossible for the premises to be true and the conclusion false.
- In Explosion, it is impossible for the premises to be true.

Informal Argument

- An argument is valid if it is impossible for the premises to be true and the conclusion false.
- In Explosion, it is impossible for the premises to be true.
- So in Explosion, it is impossible for the premises to be true and the conclusion false.

Informal Argument

- An argument is valid if it is impossible for the premises to be true and the conclusion false.
- In Explosion, it is impossible for the premises to be true.
- So in Explosion, it is impossible for the premises to be true and the conclusion false.
- So **Explosion** is valid.

Prove **Explosion** in Carnap.

First Attempt

```
P, ¬P + Q

1. P :PR +
2. -P :PR +
3. Show: ~~Q +
4. | ~Q :AS +
5. :ID 1 | 2 +
6. Q :DNE 3 +
```

1.	Р	PR
2.	¬P	PR
3.	Show: ¬¬Q	
4.	¬Q	AS
5.		ID 1, 2
6.	Q	DNE 3

Figure 1: $P, \neg P \vdash Q$

Second Attempt

```
1.
                                                        Ρ
                                                                                     PR
\neg P, P \vdash Q
                                                   2. ¬P
                                                                                     PR
                                                   3. (P v Q)
                                                                                  ADD 1
   1. P
              :PR
             :PR
   2.~P
                                                                                MTP 2, 3
   3. P \/ Q :ADD 1
   4. Q
             :MTP 2, 3
Expand 🔯
```

Figure 2: $P, \neg P \vdash Q$

Choice Point

- 1. Reject Addition
- 2. Reject Disjunctive Syllogism
- 3. Accept Explosion
 - Most people who reject explosion also reject disjunctive syllogism.

1. Truth in a Database

Why Reject Explosion

- 1. Truth in a Database
- 2. Truth in a Story

Why Reject Explosion

- 1. Truth in a Database
- 2. Truth in a Story
- 3. There are actual true contradictions, but some things are not true.

DeMorgan Laws

First Equivalence

1.
$$\neg(P \lor Q)$$

Prove these are equivalent.

First Direction

```
\neg (P \lor Q) \vdash (\neg P \land \neg Q)
   1. Show: ~P /\ ~O
        ~(P \/ Q)
                       :PR
       Show: ~P
                       :AS
       P \/ Q
                       :ADD 4
       :ID 2 5
       Show: ~Q
                       :AS
       P \/ Q
                      :ADD 8
  10.
       :ID 2 9
  11. | ~P /\ ~Q :ADJ 3, 7
  12. :DD 11
Expand 🔛
```

1.	Show: (¬P ∧ ¬Q)	
2.	¬(P ∨ Q)	PR
3.	Show: ¬P	
4.	P	AS
5.	(P ∨ Q)	ADD 4
6.		ID 2, 5
7.	Show: ¬Q	
8.	Q	AS
9.	(P ∨ Q)	ADD 8
10.		ID 2, 9
11.	(¬P ∧ ¬Q)	ADJ 3, 7
12.		DD 11

Figure 3: $\neg(P \lor Q) \vdash \neg P \land \neg Q$

Second Direction

```
Show: ¬(P v Q)
2.
     (P v Q)
                                   AS
3.
     (¬P ∧ ¬Q)
                                   PR
4.
                                   S 3
     ¬P
5.
     ¬Q
                                   S 3
6.
     Q
                             MTP 2, 4
7.
                               ID 5, 6
```

Figure 4: $\neg P \land \neg Q \vdash \neg (P \lor Q)$

Second Equivalence

1.
$$\neg P \lor \neg Q$$

2. $\neg (P \land Q)$

2.
$$\neg(P \land Q)$$

First Direction

```
1.
    Show: \neg(P \land Q)
2.
     (P ∧ Q)
                                      AS
3.
     (¬P∨¬Q)
                                      PR
4.
                                     S 2
5.
     Q
                                     S 2
     ¬¬Q
                                   DNI 5
7.
     ¬Р
                                MTP 3, 6
8.
                                  ID 4, 7
```

Figure 5: $\neg(P \land Q) \vdash \neg P \lor \neg Q$

Second Direction

```
\neg (P \land Q) \vdash (\neg P \lor \neg Q)
  1. Show: ~P \/ ~0
        Show: ~~(~P \/ ~Q)
        | ~(~P \/ ~Q) :AS
        | ~(P /\ Q)
                          :PR
  5. | Show: ~~P
  6.| | | ~P
                      :AS
     | | ~P \/ ~Q :ADD 6
  8.1
      | :ID 3 7
  9.1
                     :DNE 5
  10.I
         Show: ~~0
  11.1
                       :AS
  12.
         | ~P \/ ~O :ADD 11
     | :ID 3 12
  13.
                    :DNE 10
  14.| |
  15.
           P /\ Q :ADJ 9, 14
  16.l
      :ID 4 15
 17.| ~P \/ ~O
                    :DNE 2
 18. :DD 17
Expand 🔯
```

1.	Show: (¬P∨¬Q)	
2.	Show: ¬¬(¬P ∨ ¬Q)	
3.	¬(¬P ∨ ¬Q)	AS
4.	¬(P ∧ Q)	PR
5.	Show: ¬¬P	
6.		AS
7.	(¬P∨¬Q)	ADD 6
8.		ID 3, 7
9.	P	DNE 5
10.	Show: ¬¬Q	
11.	¬Q	AS
12.	(¬P∨¬Q)	ADD 11
13.		ID 3, 12
14.	Q	DNE 10
15.	(P ∧ Q)	ADJ 9, 14
16.		ID 4, 15
17.	(¬P ∨ ¬Q)	DNE 2
18.		DD 17

Figure 6: $\neg(P \land Q) \vdash \neg P \lor \neg Q$

General Principle

To move a negation from outside the parentheses to inside it, you do two things.

- 1. Negate each of the parts.
- 2. Flip the conjunction/disjunction symbol upside down.

This process is reversible.

