Machine Learning Course

By Kaustubh Olpadkar

ML Libraries - NumPy

What is NumPy?

The NumPy is the fundamental library for scientific computing in Python.

It provides a high-performance multidimensional array object, and tools for working with these arrays.

Developed by: Travis Oliphant & community

An open-source project - written in : Python, C

Key Features

A powerful N-dimensional array object

Sophisticated Broadcasting functions

Tools for integrating C/C++ and Fortran code

Useful Linear algebra, Fourier transform, and random number capabilities

An efficient multi-dimensional container of generic data

Seamless and Speedy integration with a wide variety of databases due to support for arbitrarily defined data-types.

NumPy Arrays

NumPy's main object is the homogeneous multidimensional array.

Array of NumPy is called **ndarray**. It is also known by the alias **array**.

To use NumPy in your program, import the numpy package.

import numpy as np

np.array([1,2,3])	One dimensional array
np.array([(1,2,3),(4,5,6)])	Two dimensional array
np.zeros(3)	1D array of length 3 all values 0
np.ones((3,4))	3 x 4 array with all values 1
np.eye(5)	5 x 5 Identity matrix
np.linspace(0,100,6)	Array of 6 evenly divided values from 0 to 100
np.arange(0,10,3)	Array of values from 0 to less than 10 with step 3
np.full((2,3),8)	2 x 3 array with all values 8
np.random.randn(2)	Generate 2 random numbers between 0 – 1
np.random.rand(4,5)	4 x 5 array of random floats between 0-1
np.random.randint(5,size=(2,3))	2 x 3 array with random ints between 0-4

Creating Arrays

a.shape	Array Dimensions
len(a)	Length of Array
b.ndim	Number of array dimensions
e.size	Number of array elements
b.dtype	Data type of array elements
b.dtype.name	Name of data type
b.astype(int)	Convert an array to a different type

Array Properties

a + b	Addition
np.add(a, b)	
a - b	Subtraction
np.subtract(a, b)	
a * b	Multiplication
np.multiply(a, b)	
a / b	Division
np.divide(a, b)	
np.random.randn(2)	Generate 2 random numbers between 0 – 1
np.random.rand(4,5)	4 x 5 array of random floats between 0−1
np.random.randint(5,size=(2,3))	2 x 3 array with random ints between 0-4

Arithmetic Operations

a.sum()	Sum of Array elements
a.min()	Minimum of Array elements
a.max()	Maximum of Array elements
a.mean()	Mean / Average
np.median(a)	Median
np.corrcoef(a)	Correlation Coefficient
np.std(a)	Standard Deviation

Aggregate/Statistical Functions

Function	Description
abs, fabs	Compute the absolute value element-wise for integer, floating-point, or complex values
sqrt	Compute the square root of each element (equivalent to arr ** 0.5)
square	Compute the square of each element (equivalent to arr ** 2)
exp	Compute the exponent e ^x of each element
log, log10, log2, log1p	Natural logarithm (base e), log base 10, log base 2, and log(1 + x), respectively
sign	Compute the sign of each element: 1 (positive), 0 (zero), or -1 (negative)
ceil	Compute the ceiling of each element (i.e., the smallest integer greater than or equal to that number)
floor	Compute the floor of each element (i.e., the largest integer less than or equal to each element)
rint	Round elements to the nearest integer, preserving the dtype
modf	Return fractional and integral parts of array as a separate array
isnan	Return boolean array indicating whether each value is NaN (Not a Number)
isfinite, isinf	Return boolean array indicating whether each element is finite (non-inf, non-NaN) or infinite, respectively
cos, cosh, sin, sinh, tan, tanh	Regular and hyperbolic trigonometric functions
arccos, arccosh, arcsin, arcsinh, arctan, arctanh	Inverse trigonometric functions
logical_not	Compute truth value of not x element-wise (equivalent to ~arr).

Scientific Functions

Function	Description
diag	Return the diagonal (or off-diagonal) elements of a square matrix as a 1D array, or convert a 1D array into a square matrix with zeros on the off-diagonal
dot	Matrix multiplication
trace	Compute the sum of the diagonal elements
det	Compute the matrix determinant
eig	Compute the eigenvalues and eigenvectors of a square matrix
inv	Compute the inverse of a square matrix
pinv	Compute the Moore-Penrose pseudo-inverse of a matrix
qг	Compute the QR decomposition
svd	Compute the singular value decomposition (SVD)

Linear Algebra Functions - numpy.linalg

Function	Description
seed	Seed the random number generator
permutation	Return a random permutation of a sequence, or return a permuted range
shuffle	Randomly permute a sequence in-place
rand	Draw samples from a uniform distribution
randint	Draw random integers from a given low-to-high range
randn	Draw samples from a normal distribution with mean 0 and standard deviation 1 (MATLAB-like interface)
binomial	Draw samples from a binomial distribution
normal	Draw samples from a normal (Gaussian) distribution
beta	Draw samples from a beta distribution
chisquare	Draw samples from a chi-square distribution
gamma	Draw samples from a gamma distribution
uniform	Draw samples from a uniform [0, 1) distribution

Random Numbers & Probability Distributions - numpy.random

NumPy is Base

ML Libraries are built on its Top.

Thanks!

Contact:

Kaustubh Olpadkar 56, Narayan Orbis Sun Pharma Road Vadodara, 390012

kaustubh.olpadkar@gmail.com www.simulations.ml

