Топологическое пространство 1.1.1

Топологическое пространство

Пусть X - множество.

Множество T подмножеств в множестве X называется **топологией** на X, а пара (X,T) - топологическим пространством, если

- 1. $\emptyset, X \in T$
- 2. $\{U_i \in T | i \in J\}$, to $(U_1 \cup U_2 \cup \ldots \cup U_n) \in T$
- 3. $\forall U_1, U_2 \in T; \ U_1 \cap U_2 \in T$

Свойства

 $U \in T \equiv U - T$ - открытое подмножество X

 $A\subset X$ - замкнутое $\iff X-A\in T$

Объединение

$$A = igcup_{i \in J} A_i \iff x \in A \iff \exists i_0 \in J : x \in A_{i_0}$$

Пересечение

$$x \in \cap A_i \iff orall i \ x \in A_i$$

Открытое множество

Множество, лежащее в топологии

Замкнутое множество

F замкнуто в (X,T)

$$\exists U \in T: \ F = X \backslash U$$

Замкнутое множество является дополнением к открытому

Примеры

Nº1

X - произвольное множество

$$T_0 = \{\emptyset, X\}$$

Тогда T_0 - топология на X

Nº2

$$T_1 = S(X)$$
 - Топология на X

№3

 $X=R\equiv$ множество всех вещественных чисел

Определим $T\subset S(R)$ так $U\in T_e\iff orall x\in U, \exists \epsilon>0: (x-\epsilon;x+\epsilon)\in U$

$$U \subset R; \ U_i \in T_e$$

$$U=\mathop{\cup}\limits_{i\in J}U_i,\ U\in T_e$$

$$x \in U \implies \exists i_0 \in T_e : x \in U_{i_0}$$

$$U=U_0\cap U_1 \implies \exists \epsilon_1,\epsilon_2>0: (x-\epsilon_1;x+\epsilon_1)\in U_1, (x-\epsilon_2;x+\epsilon_2)\in U_2 \implies \epsilon=min(\epsilon_1,\epsilon_2), (x-\epsilon,x+\epsilon)\in U$$

Утверждение 1

 $a \in R \implies \{a\} \subset R$ - замкнутое и не открытое множество

Доказательство

Сначала докажем, что $\{a\}$ - замкнутое множество, т. е., что

$$R - \{a\}$$
 - открытое множество

$$R-\{a\}=(-\infty,a)\cup(a,+\infty)$$

$$\exists \epsilon > 0 : (x - \epsilon; x + \epsilon) \subset (-\infty, a)$$

Положим
$$\epsilon = |x - a|$$

Тогда
$$(x-\epsilon;x+\epsilon)\subset (-\infty;a)$$

$$U \in T \iff \forall x \in U \exists \epsilon > 0 : (x - \epsilon; x + \epsilon) \subset U$$

Утверждение 2

Пересечения открытых множеств может не быть открытым

Доказательство

Докажем, что в точке пространства (R, T_e) ,

т. е. на вещественной прямой

$$\bigcap_{n=1}^{\infty} (-\frac{1}{n}, \frac{1}{n}) = \{0\}$$

$$\{0\}\subset (-rac{1}{n};rac{1}{n})$$

Метрические пространства 1.1.2

Нормы векторов

Метрика

d: X imes X o R - метрика, если

1.
$$d(x, y) = d(y, x)$$

$$\mathsf{2.}\ d(x,y) + d(y,z) \geq d(x,z)$$

3.
$$d(x,y) \ge 0$$

$$d(x,y) = 0 \iff x = y$$
 (X,d) - метрическое пространство

Примеры

N₂1

Эйлерова метрика

$$d(x,y) = |x - y|$$

Nº2

$$egin{aligned} X &= R^n \ x \in R^n \iff x = \left(x^1, \ldots, x^n
ight) \ y \in R^n, y = \left(y^1, \ldots, y^n
ight) \ x + y &= \left(x^1 + y^1, \ldots, x^n + y^n
ight); \quad lpha \cdot = \left(lpha x^1, \ldots, lpha x^n
ight) \ \left(x, y
ight) &= x^1 y^1 + \ldots + x^n y^n \ \left|x
ight| &= \sqrt{(x, x)} &= \sqrt{(x^1)^2 + \ldots + (x^n)^2} \end{aligned}$$

Теорема 1

Определим d(x,y) = |x-y| в пространстве R^n и тогда $d: R^n imes R^n o R$ - метрика

Доказательство

1. Симметричность

Очевидна

2. Не отрицательность

Через
$$d(x,y)=|x-y|=\sqrt{\ldots}=|y-x|=d(y,x)$$
 $|x-y|=0\iff \sqrt{\ldots}=0\iff x^i=y^i$

3. Неравенство △

Имеется неравенство Коши-Бунковского-Шварца (КБШ)

$$|(x,y)| \leq |x| \cdot |y|$$

Поэтому,
$$d(x,z) = |x-z| = |x-y+y-z| \leq |x-y| + |y-z| = d(x,y) + d(y,z)$$

Определение шаров и сфер в метрическом пространстве 1.1.3

Замкнутый шар

(X,d) - метрическое пространство

$$\overline{B}(a,r) = \{x \in X : d(x,a) \leq r\}$$
 - шар с границей, радиуса r с центром в точке a

Открытый шар

 $B(a,r) = \{x \in X | d(x,a) < r\}$ - шар без границы, радиуса r с центром в точке a

Сфера

 $S(a,r)=\{x\in X|d(x,a)=r\}$ - сфера радиуса r с центром в точке a

Теорема о метрической топологии (1.1.4)

Пусть (X,d) - метрическое пространство.

$$T_d \subset S(X)$$

 $U\in T_d\iff orall a\in U\exists \epsilon_a>0:\ B(a,\epsilon_a)\subset U.$ Тогда (X,T_d) - топологическое пространство

Доказательство

По (T_{d_2})

$$U_i \in T_d, \; U = {\displaystyle igcup_{i \in J}} U_i$$

Если $a\in U,$ то $\exists i_0\in J;\ a\in U_{i_0}$

Так как $U_{i_0} \in T_d$, то $\exists \epsilon > 0$

$$B(a,\epsilon)\subset U_{i_0}\! o B(a,\epsilon)\subset U$$

По (T_{d_3})

$$U = U_1 \cap U_2$$

Если $a\in U$, то $a\in U_1,\; a\in U_2$, так как $U_1,U_2\in T_d$, то

$$\exists \epsilon_1 > 0: \ B(a_1, \epsilon_1) \subset U_1, \ \exists \epsilon_2 > 0: \ B(a_1, \epsilon_2) \subset U_2.$$

Положим, $\epsilon = \min\{\epsilon_1, \epsilon_2\}$

$$B(a_1,\epsilon)\subset B(a_1,\epsilon_1)\subset U_1 \quad B(a_1\epsilon)\subset U_2 \implies B(a_1,\epsilon)\subset U_1\cap U_2=U$$

□ Исправить индексы

Утверждение

Пусть (X,d) - метрическое пространство.

Тогда $B(a,r) \in T_d$, то есть является открытым множеством

 $\overline{B}(a,r)$ - замкнутое множество, т. е. $X,\overline{B}(a,r)\in T_d$

S(a,r) - замкнутое множество, т. е. $(X,S(a,r))\in T_d$

Уточнить, нет ли тут пересечения X и В

Определение окрестностей, внутренних точек, точек прикосновения 1.1.5

Внутренняя точка a множества A

Пусть (X,T) - топологические пространства.

$$A \subset X$$

$$a \in A$$

$$a \iff \exists U \in T: \ a \in U \subseteq A$$

A - окрестность точки a

Точка прикосновения a к B

 \iff любая окрестность точки a имеет $eq \emptyset$ пересечение с B

Предельная точка a множества B

 \iff Любая окрестность точки a содержит хотя бы 1 точку множества B, отличную от a т. е. $(A\cap B)\backslash\{a\}\neq\emptyset$

Граничная точка A

 $\iff a$ является точкой прикосновения одновременно множества A и Xackslash A

Пример

 $A = [1,2) \cup \{3\} \subset R \equiv X$ на R - метрическая топология

1. $a \in R$ - внутренняя точка $A \iff a \in (1,2)$

2.

- 1. является предельной точкой $A;\;\epsilon\in A$
- 2. $\not\in A$, 2 предельная точка множества A (и значит точка прикосновения)
- $3. \in A$ точка прикосновения, но не предельная точка
- 3. $a=\frac{3}{2}$ является предельной точкой, но является граничной точкой

 $a=1,\ a=2,\ a=3$ - граничные точки

Теорема 1.1.6

Пусть X, T - топологическое пространство.

 $A \subset X$

1.1

- 1. x точка прикосновения $A \iff x$ не является внутренней точкой множества $X \backslash A$
- 2. x внутренняя точка $A \iff x$ не является точкой прикосновения множества $X \backslash A$

2. 2

- 1. Пересечение конечного числа окрестностей точки $a \in X$ является областью a
- 2. Если A окрестность a $B\supset A$, то B окрестность точки a
- 3. Если $U \in T$, то есть U открытое множество, то U окрестность каждой своей точки
- 4. Каждая точка прикосновения замкнутого множества $C \subset X$, принадлежит C

Доказательство

1.1

1. (\Longrightarrow) Докажем, что $\forall U\in T$ не существует цепочки $x\in U\subset X\backslash A$ В с. д., если $x\in U\subset X\backslash A$, то $x\in U$. $U\cap A=\emptyset$, так как U - окрестность точки 2.

2. 2

1. Пусть A_1, A_2 - окрестности точки a.

Тогда $\exists U_1, U_2 \in T:$

$$a\in U_1\subset A_1\ a\in U_2\subset A_2\implies a\in U_1\cap U_2\subset A_1\cap A_2$$
 и т. о. $U_1\cap U_2=U\in T$, а $a\in U\subset A_1\cap A_2\implies A_1\cap A_2$ - окрестность a ??

- 2. Так как A окрестность, то $a\in U\subset A$ U ???? $\implies a\in U\subset A\subset B$, т. е. $a\in U\subset B\implies B$ открытое
- 3. Если $U \in T$, то $\ref{eq:condition}$ $a \in U \subset U$ $\ref{eq:condition}$, что U окрестность каждой своей точки a

□ Дописать доказательство

Внутренность A 1.1.7

Пусть (X,T) - топологическое пространство $A\subset X$

Множество всех внутренних точек множества A.

Обозначается как Int_xA

Множество всех точек прикосновения A называется замыканием A и обозначается как Cl_XA

Теорема 1.1.8

Пусть (X,T) - топологическое пространство

 $A \subset X$

1.1

- 1. x точка прикосновения $A \iff x$ не является внутренней точкой $X \backslash A$
- 2. x внутренняя точка $A \iff x$ не является точкой прикосновения $X \backslash A$
- 2.2
- 1. Пересечение конечного числа окрестностей точки x является окрестностью точки x
- 2. Если A окрестность точки $x,\, B\supset A$, то B окрестность точки x
- 3. Если $U \in T$, то есть U окрестность, то U является окрестностью каждой своей точки

Теорема 1.1.9

- 1. Замыкание множества $A\subset X$, где X топологическое пространство, совпадает с пересечением всех замкнутых множеств, содержащих A и таким образом, замыкание Cl_XA является замкнутым множеством
- 2. Внутренность Int_XA множества A совпадает с объединением всех открытых подмножеств множества множества A и таким образом является открытым подмножеством A