IAL – 7. přednáška

Řazení I.

5. a 6. listopadu 2024

Obsah přednášky

- Základní pojmy
 - Historie
 - Terminologie
 - Vlastnosti řadicích algoritmů
- Řazení podle více klíčů
- Řazení bez přesunu položek
 - MacLarenova metoda
- Klasifikace algoritmů řazení
- Řazení na principu výběru
 - Bubble sort a jeho varianty
 - Heap sort

Řazení – historie

Herman Hollerith použil *třídicí* stroj pro sčítání obyvatelstva
 U.S.A. v r. 1890.

Řazení – historie

- Třídicí stroj byl použit pro seřazení děrných štítků podle hodnoty čísla zapsaného pomocí dekadických číslic. Číslice byly reprezentované dírou na dané pozici v daném sloupci.
 - Štítek Hollerith měl 90 sloupců a obdélníkové dírky.
 - Štítek Aritma viz obr. měl 80 sloupců a kulaté dírky.
 Číslice 0 se neděrovala.

Řazení – historie

Příklad řazení na třídicím stroji:

- Seřazení štítků podle velikosti klíče, který byl reprezentován číslem vyděrovaným ve sloupcích 10, 11 a 12 proběhlo ve třech etapách (dáno počtem sloupců čísla).
- V první etapě se štítky třídicím strojem roztřídily do 10 skupin od 0 do 9 podle sloupce s nejnižší prioritou tedy podle sloupce 12.
- Z 10 balíčků štítků se vytvořil jeden tak, že *nulový* balíček byl vespod, *jedničkový* byl nad ním ... a *devítkový* byl nahoře.
- Tento balík štítků se vložil do zásobníku a začala druhá etapa: třídění podle sloupce 11 se stejným postupem.
- Na konci poslední etapy byl získán balík seřazených štítků.
- Řazení bylo provedeno tříděním.

Řazení tříděním – příklad

Předpokládejme, že chceme seřadit následující množinu klíčů: {342, 835, 942, 178, 256, 493, 884, 635, 728}
Řazení provedeme opakovaným tříděním:

Podle vzrůstající priority

342	728	178
942	835	256
493	635	342
884	342	493
835	942	635
635	256	728
256	178	835
178	884	884
728	493	942

Podle klesající priority

178	728	342
256	635	942
342	835	493
493	342	884
635	942	635
728	256	835
835	178	256
884	884	728
942	493	178

Terminologie

Třídění (angl. sorting) položek neuspořádané množiny je uspořádání do tříd podle hodnoty daného atributu – klíče položky.

Pozn.: Mezi třídami nemusí být definovaná relace uspořádání! (Třídíme směs jablek, hrušek a švestek do tří tříd.)

Pozn.: Protože Hollerith dosahoval řazení pomocí třídění na třídicím stroji, používá se v praxi pro řazení v češtině i v angličtině nepřesné terminologie třídění (sorting).

Terminologie

- Řazení (ordering, sequencing) je uspořádání položek podle relace lineárního uspořádání nad klíči.
 - **Dohoda:** Nebude-li explicitně stanoveno jinak, budeme předpokládat seřazení **od nejmenšího k největšímu**.
- Setřídění (merging) je vytváření souboru seřazených položek sjednocením několika souborů položek téhož typu, které jsou již seřazeny.

Vlastnosti řadicích algoritmů

- Přirozenost algoritmus se chová přirozeně pokud:
 - je doba potřebná k seřazení náhodně uspořádaného pole větší, než k seřazení již uspořádaného pole
 - a doba potřebná k seřazení opačně seřazeného pole je větší,
 než doba k seřazení náhodně uspořádaného pole.
 - Jinak říkáme, že se algoritmus nechová přirozeně.
- Stabilita vyjadřuje, zda mechanismus algoritmu zachovává relativní pořadí klíčů se stejnou hodnotou.
 - Příklad: nestabilní algoritmus může uspořádat sekvenci: 7,5',3,1,5'',9,2,5''',8,4,6 s výsledkem: 1,2,3,4,5'',5',5''',6,7,8,9.
 - Stabilní algoritmus vytvoří: 1,2,3,4,5',5",5",6,7,8,9.

- V praxi je řazení podle více klíčů velmi časté. Jako příklad mohou sloužit:
 - Řazení podle data narození, kde datum sestává ze tří číselných klíčů: rok, měsíc a den.
 - Řazení studentů podle čtyř klíčů: studijní program, ročník, studijní průměr a jméno. Úkolem je např. vytvořit seznam po programech, v programu po ročnících, v ročníku podle studijního průměru a studenty se stejným průměrem seřadit abecedně podle jména.
- Problém lze řešit třemi způsoby:
 - Složená relace uspořádání
 - Opakované řazení
 - Aglomerovaný klíč

Vytvoření složené relace uspořádání:

Opakované řazení:

- Neuspořádanou množinu položek lze řadit postupně (opakovaně) podle vzrůstající priority jednotlivých klíčů. Podmínkou je použití stabilní řadicí metody!
- Příklad: Skupinu osob lze seřadit podle stáří tak, že se:
 - 1. Nejprve seřadí podle dne data narození
 - 2. pak se seřadí podle měsíce data narození
 - 3. a na konec se seřadí podle roku data narození.
- Tento způsob se podobá řazení děrných štítků v Hollerithově metodě.

□ Aglomerovaný klíč:

- Uspořádaná N-tice klíčů se konvertuje na vhodný typ, nad nímž je definována relace uspořádání.
- Vhodným typem může být např. typ řetězec.
- Příklad aglomerovaného klíče: Rodné číslo (Lze pro řazení použít bez úpravy jako řetězec jen pro stejné pohlaví. Má tvar: RRMMDDXXXX, ale ženy mají MM zvýšené o 50.)

Napište funkci, která ze zadaného pole osob vytvoří seřazený seznam podle narozenin v roce. Při shodném datu narozenin má starší přednost.

```
typedef struct tdateborn
{
   int year, month, day;
}TDateBorn;

typedef struct tperson
{
   char *name;
   TDateBorn dateBorn;
}TPerson;
```

Napište funkci libovolného algoritmu řazení pole, který znáte z prvního ročníku tak, aby se při volání funkce jedním vhodným parametrem ovládala složka, která bude klíčem řazení. Nechť array je pole prvků typu TPerson. Pak funkce:

void Sort (TArray array, TXX XX)

bude řadit jednou podle složky **year**, jindy podle složky **month** a jindy podle složky **day**, v závislosti na parametru **XX**. Nalezněte pro tento účel vhodný typ a deklarujte ho. Trojí volání této procedury pokaždé podle jiné složky může vytvořit seznam podle stáří nebo seznam podle narozenin.

- Napište funkci
 bool FirstOlder (char *RC1, char *RC2)
- Napište funkci bool EarlierBirthday (char *RC1, char *RC2)
- kde RC1 a RC2 jsou rodná čísla. U osob narozených ve stejný den má starší přednost před mladší, u stejně starých osob pak má přednost žena před mužem, a při stejném pohlaví rozhoduje pořadové číslo rodného čísla XXXX.

Jsou dány typy:

```
typedef enum {bc,ing,phd}TProgram;

typedef struct tstudent
{
   char *name;
   TProgram program;
   int year;
   float study_average;
}TStudent;
```

- Vytvořte aglomerovaný (integrovaný) klíč pro vytvoření seznamů:
 - Podle studijního programu, v programu podle ročníku, v ročníku podle průměru, se stejným průměrem podle jména.
 - Podle průměru, se stejným průměrem podle programu, ve studijním programu podle ročníku, v ročníku podle jména.
- Nápověda: Aglomerovaný klíč bude typu řetězec. Průměr můžete převést na celé číslo např.: 2.75 ⇒ 275. Řetězec můžete omezit např. na 20 znaků.

- Nejčastěji prováděnými operacemi v algoritmech řazení jsou přesuny položek v poli a porovnávací operace.
- □ V případě dlouhých položek jsou přesuny časově velmi náročné
 ⇒ řazení polí bez přesunu položek.
- Implementace:
 - K řazenému poli vytvoříme pomocné pole (tzv. pořadník, location).
 - Po dokončení řazení pořadník udává, v jakém pořadí by měly být seřazeny položky původního pole (na první pozici pořadníku je index prvního prvku seřazeného pole atd.).
- Chceme-li mít na konci seřazené pole:
 - Přeskládáme prvky do výstupního pole s využitím pořadníku.
 - Prvky zřetězíme a přeskládáme do výstupního pole, nebo přeskládáme v poli samotném.

Pořadník se inicializuje se hodnotami shodnými s indexem.

Řazení polí bez p. p. – implementace

Datové typy: typedef struct telement{ TData data; TKey key; }TElement #define MAX ... typedef TElement TArray[MAX]; typedef int TLocation[MAX]; TArray array; TLocation location; Inicializace: for $i \leftarrow (0, MAX-1)$: location[i] ← i

Každá relace mezi dvěma prvky pole v normálním algoritmu řazení se v odpovídajícím algoritmu pro řazení bez přesunu položek transformuje tímto způsobem:

array[i].key > array[j].key

array[location[i]].key > array[location[j]].key

Každá výměna dvou prvků i a j pole v algoritmu řazení s přesunem se v zápisu algoritmu řazení bez přesunu transformuje takto:

```
array[i] ↔ array[j]

location[i] ↔ location[j]
```

Pozn.: operace ↔ reprezentuje výměnu.

Pole seřazené bez výměny položek lze průchodem vložit do výstupního seřazeného pole outArray cyklem:

```
for i ← (0, MAX-1):
    outArray[i] ← array[location[i]]
```

 Pole seřazené pomocí pořadníku lze také zřetězit (prostřednictvím ukazatelů – indexů na další položku) a vytvořit seřazený seznam.

Zřetězení prvků

□ Zřetězení prvků pole seřazeného bez přesunu položek:

Zřetězení prvků

Zřetězení lze provést následujícím kódem:

Seřazenou zřetězenou posloupnost lze opět převést pomocí cyklu do seřazeného cílového pole nebo přeskládat prvky.

Klasifikace algoritmů řazení

- □ Podle přístupu k paměti:
 - metody vnitřního řazení (řazení polí) přímý (náhodný) přístup
 - metody vnějšího řazení (řazení souborů a seznamů) –
 sekvenční přístup
- □ Podle typu procesoru:
 - sériové (jeden procesor) jedna operace v daném okamžiku
 - paralelní (více procesorů) více souběžných operací

Klasifikace algoritmů řazení

- □ Podle principu řazení:
 - Princip výběru (selection) přesouvají maximum/minimum do výstupní posloupnosti.
 - Princip vkládání (insertion) vkládají postupně prvky do seřazené výstupní posloupnosti.
 - Princip rozdělování (partition) rozdělují postupně množinu prvků na dvě podmnožiny tak, že prvky jedné jsou menší než prvky druhé.
 - Princip slučování (merging) setřiďují se postupně dvě seřazené posloupnosti do jedné.
 - Jiné principy ...

Smluvené konvence

Metody řazení polí budeme vysvětlovat na zjednodušené struktuře s jednosložkovými položkami představovanými klíčem typu int:

```
typedef int TArray[MAX];
...
TArray A;
```

 Toto pole bude vstup/výstupním parametrem funkce řazení nebo globálním objektem.

Řazení na principu výběru (Select sort)

- Jádrem metody je nalezení extrémního prvku v zadaném segmentu pole a jeho výměna na konec (začátek) seřazené části pole.
- □ Takto je nalezeno MAX−1 minim (maxim), která jsou umístěna na svoji pozici.
- Princip metody:

```
for i ← (0, MAX-2):
    ... // Najdi nejmenší prvek mezi indexy i a MAX-1.
    ... // Jeho index ulož do pomocné proměnné indexMin.
    A[i] ↔ A[indexMin]
```

Select sort

```
procedure SelectSort (TArray A)
  for i ← (0, MAX-2):
    indexMin ← i // Poloha pomocného minima
    min ← A[i] // Pomocné minimum
    for j ← (i+1, MAX-1):
        if min > A[j]:
            min ← A[j]
            indexMin ← j
        A[i] ↔ A[indexMin]
```

Select sort – zhodnocení

Metoda je nestabilní. Vyměněný první prvek se může dostat za prvek se shodnou hodnotou.

- Má kvadratickou časovou složitost.
- Experimentálně byly naměřeny výsledky:
 - N je počet prvků
 - OSP je opačně seřazené pole
 - NUP je náhodně uspořádané pole

N	128	256	512
OSP	64	254	968
NUP	50	212	774

Select sort – naměřené výsledky graficky

Metoda *bublinového výběru* – Bubble sort

- Princip stejný jako u metody Select sort.
- □ Liší se metodou nalezení extrému a jeho přesunu:
 - Porovnává se každá dvojice a v případě obráceného uspořádání se přehodí.
 - Při pohybu zleva doprava se tak maximum dostane na poslední pozici. Minimum se posune o jedno místo směrem ke své konečné pozici.

Bubble sort – varianta zprava

```
procedure BubbleSort (TArray A)
  // průchod zprava - minimum doleva
  i ← 1
  do:
    finish ← true
    for j ← (MAX-1, i) -1: // bublinový cyklus
        if A[j-1] > A[j]:
            A[j-1] ↔ A[j]
            finish ← false
    i ← i+1
  while (not finish) and (i < MAX)</pre>
```

Bubble sort – varianta zleva

```
procedure BubbleSort2 (TArray A)

// průchod zleva - maximum doprava
auxN ← MAX-1
continue ← true
while continue and (auxN > 0):
    continue ← false
    for i ← (0, auxN-1): // bublinový cyklus
        if A[i+1] < A[i]:
            A[i+1] ↔ A[i]
            continue ← true //výměna - nelze skončit
auxN ← auxN-1</pre>
```

Bubble sort – zhodnocení

- Bublinový výběr je metoda stabilní a přirozená. Je to jedna z mála metod použitelná pro vícenásobné řazení podle více klíčů!
- Má časovou složitost kvadratickou.
- Je to nejrychlejší metoda v případě, že pole je již seřazené!
- Experimentálně naměřené hodnoty:

n	256	512
NUP	338	1562
OSP	558	2224

Bubble sort – naměřené výsledky graficky

Bubble sort – varianty

- Od Bubble sortu byla odvozena řada vylepšených variant:
 - Ripple sort: pamatuje si polohu první výměny a je-li větší než 1, neprochází dvojicemi, u nichž je jasné, že se nebudou vyměňovat.
 - Shaker sort: střídá směr probublávání zleva a zprava (používá houpačkovou metodu) a skončí uprostřed.
 - Shuttle sort: zavede při výměně dvojice menší prvek na své místo a teprve pak pokračuje dál. Končí tím, že nevymění nejpravější dvojici.
- Pozn.: Varianty bohužel nemají významnější efekt z pohledu časové složitosti algoritmů. Používají ale zajímavé programátorské techniky.

Řazení hromadou – Heap sort

- Hromada (halda, heap) je struktura stromového typu, pro niž platí, že mezi otcovským uzlem a všemi jeho synovskými uzly platí stejná relace uspořádání (např. otec je větší než všichni synové).
- Nejčastější případ hromady je binární hromada, která je založená na binárním stromu, pro který navíc platí:
 - Všechny hladiny kromě poslední jsou plně obsazené.
 - Poslední hladina je zaplněna zleva.

Rekonstrukce hromady

Významnou operací nad hromadou je její rekonstrukce poté, co se poruší pravidlo hromady v jednom uzlu.

- Nejvýznamnějším případem je porušení v kořeni.
- Operace Sift (prosetí nebo také zatřesení hromadou):
 - Operace, která znovuustaví hromadu porušenou v kořeni.
 - Prvek z kořene se postupnými výměnami propadne na své místo a do kořene se dostane prvek splňující pravidla hromady.
 - Operace má v nejhorším případě složitost log₂ n.

Heap sort – princip

- Hromada má v kořeni vždy maximální nebo minimální prvek.
- Prvek z kořene představuje extrémní prvek v dané množině a může být vložen na své místo do výstupního pole.
- Jakou hodnotou můžeme nahradit prvek v koření hodnotou nejnižšího a nejpravějšího uzlu.
- Hromada pak bude porušena v kořeni to ale umíme napravit zatřesením v čase log₂n.
- Provedeme-li odebrání prvku a zatřesení hromadou pro všechny prvky, získáme seřazenou posloupnost s linearitmickou složitostí n*log₂ n.
- Problém jak vytvořit heap?

Implementace hromady polem

- Hromadu lze implementovat polem:
 - Protože musí být zaplněny všechny hladiny kromě poslední a poslední musí být zaplněna zleva, můžeme strom ukládat do pole po hladinách.
 - Pak platí pro otcovský a synovské uzly vztah: když je otcovský uzel na indexu i, pak je levý syn na indexu 2i+1 a pravý syn na indexu 2i+2.

Vytvoření hromady

- Při využití operace Sift lze hromadu ustavit takto:
 - Vždy potřebujeme hromadu, která je porušena pouze v kořeni.
 - Začneme s nejnižším a nejpravějším otcovským uzlem ten je kořenem hromady (podstromu), která je porušená v kořeni. Operací Sift opravíme.
 - Dále postupujeme po všech otcovských uzlech doleva a nahoru až k hlavnímu kořeni.
- Jak najdeme potřebné otcovské uzly?
 - Má-li pole MAX prvků (indexováno od 0 do MAX-1), pak nejnižší a nejpravější otcovský uzel odpovídající hromady má index:
 (MAX div 2) 1
 - Následující otcovské uzly leží na předchozích indexech.
 - Celkem musíme opravit n/2 hromad, celé ustavení hromady zvládneme v čase $n/2*log_2n$.

Vytvoření hromady

														14
12	11	6	40	8	20	13	25	15	18	5	30	28	14	10

Neuspořádané pole

Vytvoření 2 hromad (zprava doleva) na 2. úrovni

Vytvoření 4 hromad (zprava doleva) na předposlední úrovni

V posledním kroku lze ze 2 hromad vytvořit jedinou hromadu

44 z 54

Vytvoření hromady

```
// ustavení hromady
left ← (MAX div 2)-1 // nejnižší a nejpravější otec
right ← MAX-1
for i ← (left, 0)<sup>-1</sup>:
    SiftDown(A,i,right)
```

Pozn.: Parametry metody SiftDown: pole s prvky, index kořene a index nejnižšího nejpravějšího syna.

Heap sort

```
procedure HeapSort (TArray A)
  // ustavení hromady
  left \leftarrow (MAX div 2)-1 // nejnižší a nejpravější otec
  right ← MAX-1
  for i \leftarrow (left, 0)^{-1}:
      SiftDown (A, i, right)
  // vlastní cyklus Heap-sortu
  for right \leftarrow (MAX-1, 1)<sup>-1</sup>:
      A[0] \leftrightarrow A[right]
                 // výměna kořene s akt. posledním prvkem
      SiftDown (A, 0, right-1) // znovuustavení hromady
```

Prosetí prvku

- Při implementaci binárního stromu polem je důležité poznat konec větve (terminální uzel nebo uzel, který nemá pravého syna):
 - Je-li 2*i+1 > Max−1, je uzel i terminální.
 - Je-li 2*i+1 = Max-1, má uzel i jen levého syna.
 - Je-li 2*i+1 < Max−1, má uzel i oba syny.</p>

```
procedure SiftDown (TArray A, int left, int right)
// left je index kořenového uzlu, který porušuje heap,
// right je index posledního prvku heapu
  i ← left
  j \leftarrow 2*i+1
                                  // index levého syna
  temp \leftarrow A[i]
                                   // pomocná proměnná
  continue ← j ≤ right
                             // řídicí proměnná cyklu
  while continue:
     if j < right:</pre>
                                   // uzel má oba syny
        if A[j] < A[j+1] // pravý syn je větší
           j ← j+1 // pokračujeme tedy s ním
     if temp ≥ A[j]: // temp našel své místo = konec
        continue ← false
     else: // temp padá níž, A[j] jde o úroveň výš
        A[i] \leftarrow A[j]
                        // syn je otcem v dalším cyklu
        i ← j
        j ← 2*i+1
                                      // nový levý syn
        continue ← j ≤ right // pokračujeme až na list
  A[i] ← temp // konečná pozice "propadajícího" kořene
```

Heap sort – zhodnocení

- Heap sort je řadicí metoda s linearitmickou složitostí, protože sift umí rekonstruovat hromadu (najít extrém mezi N prvky) s logaritmickou složitostí.
- Heap sort je nestabilní a nechová se přirozeně.
- Naměřené hodnoty:

N	256	1024
SP	42	210
NUP	38	186
OSP	40	196

Heap sort – naměřené výsledky graficky

K procvičení

□ Je dána hromada o N prvcích typu int v poli H. Napište funkci, která rekonstruuje (znovuustaví) hromadu porušenou zápisem libovolné hodnoty na index 0≤K<N.</p>

Další využití hromady

- Prioritní frontu lze implementovat binární hromadou:
 - Prvky jsou organizovány na základě jejich priority
 - V koření bude vždy prvek s maximální/minimální prioritou.
 - Operace Front (nalezení maxima/minima) odpovídá čtení hodnoty z kořene: O(1)
 - Operace Remove prvek z kořene musí být odebrán a nahrazen jiným prvkem. Hromada bude porušena a je potřeba ji napravit: O(log n)
 - Operace Insert prvek je vložen na nejnižší hladinu na první volné místo a musí vybublat nahoru: O(log n)
- Pozn.: Pozor, takto implementovaná prioritní fronta neumí bez dalšího rozšíření zachovat vzájemné pořadí prvků se stejnou prioritou.

Prioritní fronta

Heap operations

Prioritní fronta

- Možné způsoby implementace prioritní fronty:
 - Implementace nesetříděným polem nebo spojovým seznamem:
 - Vložení prvku: O(1)
 - Odebrání/nalezení prvku s nejvyšší prioritou: O(n)
 - Implementace setříděným polem nebo seznamem:
 - □ Vložení prvku: *O(n)*
 - Odebrání/nalezení prvku s nejvyšší prioritou: O(1)
 - Implementace (binární) haldou:
 - □ Vložení prvku: O(log n)
 - Odebrání libovolného prvku s nejvyšší prioritou: O(log n)
 - Nalezení prvku s nejvyšší prioritou: O(1)