

Index

Ur	t - 3> Relation			
1)	Method − 1 → Relation	4		
2)	Method – 2 → Properties of Relation	.11		

Unit - 3 → Relation

Introduction

- → In Discrete Mathematics, a relation is a fundamental concept that describes how elements from one set are connected to elements of another (or the same) set.
- → In computer science, a relation is not just a mathematical concept it's a powerful tool used to model connections, structures, and rules across a wide range of applications.
- → Relations are **mathematical models** for **real-world connections**. Whether you're organizing data, modeling networks, managing users, or designing algorithms, relations help you **structure interactions** logically and efficiently.
- → Relations in **computer science** are used for:
 - Organizing and manipulating data (Databases).
 - Modelling complex networks (Graphs).
 - Managing permissions and access control.
 - Defining state transitions and computational logic (Finite State Machines).
 - Representing task dependencies (Scheduling).
 - Analyzing languages and grammar structure.
 - Solving pathfinding and algorithmic problems.

Method - 1 ---> Relation

Cartesian Product

- → Cartesian product of sets is set of ordered pair.
- → Cartesian product of sets A and B is denoted by **A** × **B** which is read as "A cross B" and defined as follow:

$$A \times B = \{ (a, b) : a \in A \text{ and } b \in B \}$$

 \rightarrow Cartesian product of sets B and A is denoted by **B** \times **A** which is read as "B cross A" and defined as follow:

$$B \times A = \{ (b, a) : b \in B \text{ and } a \in A \}$$

 \rightarrow For example:

Let
$$A = \{a, b\}$$
 and $B = \{1, 2\}$.

• Cartesian product of set A and B is

$$A \times B = \{a, b\} \times \{1, 2\}$$

= \{(a,1), (a,2), (b,1), (b,2)\}

Similarly, cartesian product of set B and A is

$$B \times A = \{1, 2\} \times \{a, b\}$$

= \{(1,a), (1,b), (2,a), (2,b)\}

- → Properties of Cartesian product
 - (1) If $A = \phi$ or $B = \phi$, then $A \times B = \phi$.
 - (2) If |A| = m and |B| = n, then $|A \times B| = m \cdot n$.
 - (3) Generally, $A \times B \neq B \times A$.
 - (4) $A \times B = B \times A$ if and only if A = B.

Relation or Binary Relation

- → Let A and B be two non-empty sets.
- \rightarrow **Subset** of Cartesian product **A** \times **B** is known as relation from A to B.
- \rightarrow It is denoted by **R** and read as "relation R".

i.e.

$$R = \{ (a, b) \mid a \in A \text{ and } b \in B \} \subseteq A \times B$$

 \rightarrow Note that, if |A| = p and |B| = q,

then total number of relations from A to B or B to A is **2**^{pq}.

- \rightarrow In any relation ordered pair of the form (a, a) is known as diagonal pair.
- \rightarrow For example:
 - Let $A = \{ 1, 2, 3 \}$ and $B = \{ x, y \}$. $A \times B = \{ (1, x), (1, y), (2, x), (2, y), (3, x), (3, y) \}$. Let, $R = \{ (1, x), (2, y), (3, x), (3, y) \}$

This diagram is known as **Arrow Diagram** of relation R.

- \rightarrow For any relation R,
 - If $(a, b) \in R$, then it is denoted by \mathbf{aRb} and read as "a is related to b".
 - If $(a, b) \notin R$, then it is denoted by $a \not R b$ and read as "a is **not** related to b".
- \rightarrow For example:
 - R = { (1, x), (2, y), (3, x), (3, y) }
 (1, x) ∈ R so, it is denoted as 1Rx.
 (1, y) ∉ R so, it is denoted as 1Ry.

Relation on a Set:

 \rightarrow Relation on a set A is a relation from A to A.

i.e.,
$$R \subseteq A \times A$$

- \rightarrow For example:
 - Let $A = \{ 1, 2, 3 \}$

So, relation R on a set A can be

$$R = \{ (1, 1), (1, 3), (2, 3), (3, 2), (3, 3) \}$$

Here, diagonal pairs are (1, 1) and (3, 3).

Examples of Method-1: Relation

Н	1	Let $A = \{x, y, z\} \& B = \{1, 2\}$. Find the number of relations from A to B.
		Answer: 64
С	2	If $A = \{ 1, 2, 4 \}$, $B = \{ 3, 5 \}$, then which of the following are relations
		from A to B? Give reason in support of your answer.
		$(1) R_1 = \{ (2,3), (4,5), (1,3) \}$
		(2) $R_2 = \{ (2,3), (3, 2), (1, 5), (4, 3) \}$
		Answer: R_1 is a relation as $R_1 \subseteq A \times B$, while R_2 is not a relation
		because (3, 2) ∉ A × B
С	3	If a relation $R = \{ (0, 0), (2, 4), (-1, -2), (3, 6), (1, 2) \}$, then
		(1) write domain of R, (2) write range of R
		(3) write R in set – builder from
		(4) represent R by an arrow diagram
		Answer: (1) Domain of $R = \{ 0, 2, -1, 3, 1 \}$
		(2) Range of $R = \{ 0, 4, -2, 6, 2 \}$
		(3) Set – builder form of $R = \{(x, y) : x \in \mathbb{Z}, -1 \le x \le 3, y = 2x \}$
		(4)
		R

С	4	If $A = \{ 1, 2, 3 \}$, $B = \{ 1, 2, 3, 4 \}$ and $R = \{ (x, y) : (x, y) \in A \times B, y = x + A \}$
		1 }, then
		(1) find $A \times B$ (2) write R in roster from
		(3) write domain and range of R
		(4) represent R by an arrow diagram
		Answer: (1) { (1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), } (3, 1), (3, 2), (3, 3), (3, 4)
		(2) { $(1,2)$, $(2,3)$, $(3,4)$ }
		(3) $D_R = \{ 1, 2, 3 \} \& R_R = \{ 2, 3, 4 \}$
		(4)
		$ \begin{array}{c c} 1 & 2 \\ 2 & 3 \\ 4 & P \end{array} $
	_	A B
H	5	If $R = \{ (x,y) : x^2 + y^2 = 100 ; x,y \in \mathbb{W} \}$, then find the domain and the
		range of R.
		Answer: $D_R = \{ 0, 6, 8, 10 \} \& R_R = \{ 0, 6, 8, 10 \}$
Н	6	Write the following relations in the roster form:
		(i) $R_1 = \{(x, x^3) : x \text{ is a prime number less than } 10\}$
		(ii) $R_2 = \{ (x-2, x^2) : x \text{ is a prime number less than } 10 \}$
		Answer: $R_1 = \{ (2, 8), (3, 27), (5, 125), (7, 343) \}$
		$R_2 = \{ (0, 4), (1, 9), (3, 25), (5, 49) \}$
Н	7	Let R be the relation on \mathbb{N} defined by $R = \{ (a, b) : a, b \in \mathbb{N} \& a + 3b = 12 \},$
		then (i) list the elements of R, (ii) find the domain and range of R.
		Answer: (i) $R = \{ (9, 1), (6, 2), (3, 3) \}$
		(ii) $D(R) = \{3, 6, 9\} \& R(R) = \{1, 2, 3\}$

Н	8	Let $A = \{ \text{ eggs, milk, corn } \}$ and $B = \{ \text{ cows, goats, hens } \}$.
		Define a relation $R = \{ (a, b) : "a \text{ is produced by b"}; a \in A, b \in B \}.$
		Depict this relationship using roster form. Write down domain and range of
		relation.
		Answer: R = { (eggs, hens), (milk, cows), (milk, goats) }
		$Domain = D_R = \{ eggs, milk \}$
		Range = R_R = { cows, goats, hens }
Н	9	Determine the domain and range of the relation R defined by
		$R = \{ (x, x+5) : x \in \{ 0, 1, 2, 3, 4, 5 \} \}.$
		Depict this relationship using roster form. Write down domain and range of
		relation.
		Answer: $R = \{ (0, 5), (1, 6), (2, 7), (3, 8), (4, 9), (5, 10) \}$
		Domain = $D_R = \{ 0, 1, 2, 3, 4, 5 \}$
		Range = $R_R = \{ 5, 6, 7, 8, 9, 10 \}$
T	10	Let $A = \{ 1, 2, 3, 5 \}$ and $B = \{ 4, 6, 9 \}$. Define a relation R from A to B by
		$R = \{ (x, y) : \text{ the difference of } x \text{ and } y \text{ is odd } ; x \in A, y \in B \}. \text{ Write } R \text{ in a}$
		roster form.
		Answer:
		$R = \{ (1, 4), (1, 6), (2, 9), (3, 4), (3, 6), (5, 4), (5, 6) \}$

C 11 The adjoining diagram shows a relation between the sets **P** and **Q**. Write this relation in roster and set builder form. What is domain and range?

Answer:

In Roster Form: $\{\,(4,\,2),\,(4,\,-2),\,(9,\,3),\,(9,\,-3),\,(25,\,5),\,(25,\,-5)\,\}$

In Set – Builder Form: $R = \{ (x, y) : x = y^2, x \in P, y \in Q \}$

$$D_R = \{\,4,\ 9,\ 25\,\}\,\&\,R_R = \{\,-2,\,2,\,-3,\,3,\,-5,\,5\,\}$$

H 12 The adjoining diagram shows a relationship between the sets P and Q. Write this relation in roster and set – builder form.

Answer: In Roster Form $\implies \{ (5,3), (6,4), (7,5) \}$

In Set – Builder Form \rightsquigarrow $\{ (x,y) : y = x - 2, x \in \mathbb{N}, 5 \le x \le 7 \}$

T Let $R = \{(x,y) : x,y \in \mathbb{Z}, y = 2x - 4\}$. If (a, -2) and $(4, b^2)$ belong to R, find the values of a and b.

Answer: a = 1, $b = \pm 2$

Method - 2 → Properties of Relation

Properties of Relation

- → There are several properties that are used to classify relations on a set.
 - (1) Reflexive Relation
 - (2) Irreflexive Relation
 - (3) Symmetric Relation
 - (4) Asymmetric Relation
 - (5) Anti-symmetric Relation
 - (6) Transitive Relation

Reflexive Relation

- \rightarrow A relation R on a set A is **reflexive** if $(a, a) \in \mathbb{R}$, $\forall a \in A$. [" \forall " means "for every"]
- \rightarrow For example:
 - Let R_1 and R_2 be relations on a set $A = \{ 1, 2, 3, 4 \}$.
 - $R_1 = \{ (1, 1), (1, 2), (1, 4), (2, 2), (2, 3), (3, 3), (3, 4), (4, 4) \}$ Here, (1, 1), (2, 2), (3, 3), (4, 4) $\in R_1$ Hence, R_1 is reflexive.
 - $R_2 = \{ (1, 1), (1, 4), (2, 2), (2, 4), (3, 3), (3, 1) \}$ Here, $(4, 4) \notin R_2$ Hence, R_2 is **not** reflexive.

Irreflexive Relation

- \rightarrow A relation R on a set A is **irreflexive** if (a, a) ∉ R, \forall a ∈ A.
- \rightarrow For example:
 - Let R_1 and R_2 be relations on a set $A = \{1, 2, 3, 4\}$.
 - $R_1 = \{ (1, 2), (1, 4), (2, 3), (3, 4) \}$ Here, $(1, 1), (2, 2), (3, 3), (4, 4) \notin R_1$. Hence, R_1 is irreflexive.

• $R_2 = \{ (2, 3), (2, 4), (4, 4) \}$ Here, $(4, 4) \in R_1$. Hence, R_2 is **not** irreflexive.

Symmetric Relation

- → A relation R on a set A is **symmetric** if whenever $(\mathbf{a}, \mathbf{b}) \in \mathbf{R}$, then $(\mathbf{b}, \mathbf{a}) \in \mathbf{R}$, $\forall \mathbf{a}, \mathbf{b} \in \mathbf{R}$.
- \rightarrow For example:
 - Let R_1 and R_2 be relations on a set $A = \{1, 2, 3, 4\}$.
 - $R_1 = \{ (1, 2), (2, 1), (2, 3), (3, 2), (3, 3) \}$ Here, $(1, 2), (2, 1) \in R_1, (2, 3), (3, 2) \in R_1 \text{ and } (3, 3) \in R_1.$ Hence, R_1 is symmetric.
 - $R_2 = \{ (2, 1), (2, 3) \}$ Here, $(2, 1) \in R_2$ but $(1, 2) \notin R_2$. Hence, R_2 is **not** symmetric.

Asymmetric Relation

- → A relation R on a set A is **asymmetric** if whenever $(\mathbf{a}, \mathbf{b}) \in \mathbf{R}$, then $(\mathbf{b}, \mathbf{a}) \notin \mathbf{R}$, $\forall \mathbf{a}, \mathbf{b} \in \mathbf{R}$.
- → Asymmetric relation does not contain diagonal pairs.
- \rightarrow For example:
 - Let R_1 and R_2 be relations on a set $A = \{1, 2, 3, 4\}$.
 - $R_1 = \{ (1, 2), (2, 3), (3, 2) \}$ Here, $(2, 3), (3, 2) \in R_1$. Hence, R_1 is **not** asymmetric.
 - $R_2 = \{ (2, 1), (2, 3) \}$ Here, $(2, 1) \in R_2$ but $(1, 2) \notin R_2$ and $(2, 3) \in R_2$ but $(3, 2) \notin R_2$. Hence, R_2 is asymmetric.

Antisymmetric Relation

- → A relation R on a set A is **antisymmetric** if whenever $(a, b) \in R$ and $(b, a) \in R$, then a = b, $\forall a, b \in R$.
- \rightarrow If $(a, b) \in R$ and $(b, a) \notin R$, then there is no need to discuss a = b or $a \ne b$.

OR

- \rightarrow A relation R on a set A is antisymmetric if whenever $(\mathbf{a}, \mathbf{b}) \in \mathbf{R}$ and $\mathbf{a} \neq \mathbf{b}$, then $(\mathbf{b}, \mathbf{a}) \notin \mathbf{R}$, \forall a, b ∈ R.
- → Antisymmetric relation may contain diagonal pairs.
- \rightarrow For example:
 - Let R_1 and R_2 be relations on a set $A = \{1, 2, 3, 4\}$.
 - $R_1 = \{ (1, 2), (2, 3), (2, 2) \}$ Here, $(1, 2) \in R_1$ but $(2, 1) \notin R_1$, $(2, 3) \in R_1$ but $(3, 2) \notin R_1$. So, no need to discuss a = b.

Hence, R₁ is antisymmetric.

• $R_2 = \{ (2, 1), (1, 2) \}$ Here, $(2, 1), (1, 2) \in R_2$ but $1 \neq 2$. Hence, R_2 is **not** antisymmetric.

Transitive Relation

- → A relation R on a set A is **transitive** if whenever $(a, b) \in \mathbb{R}$ and $(b, c) \in \mathbb{R}$, then $(a, c) \in \mathbb{R}$, \forall a, b, $c \in \mathbb{R}$.
- \rightarrow If (a, b) ∈ R and (b, c) \notin R, then there is no need to discuss (a, c) ∈ R or (a, c) \notin R.
- \rightarrow For example:
 - Let R_1 , R_2 and R_3 be relations on a set $A = \{ 1, 2, 3, 4 \}$.
 - R₁ = { (1, 2), (2, 3), (2, 2) } Here, (1, 2), (2, 3) \in R₁ but (1, 3) \notin R₁. Hence, R₁ is **not** transitive.
 - $R_2 = \{ (2, 1), (3, 2), (3, 1) \}$ Here, for (3, 2), (2, 1) $\in R_2$, (3, 1) $\in R_2$. Hence, R_2 is transitive.

R₃ = { (2, 3), (2, 1), (4, 1)}
 Here, for (a, b) ∈ R₂, (b, c) ∉ R₂.
 So, there is no need to discuss about (a, c).
 Hence, R₃ is transitive.

Examples of Method-2: Properties of Relation

С	1	For each of these relations on the set $A = \{1, 2, 3, 4\}$, determine whether it
		is reflexive, irreflexive, symmetric, asymmetric, antisymmetric or transitive.

(1)
$$R_1 = \{ (1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4) \}$$

(2)
$$R_2 = \{ (1, 1), (2, 2), (3, 3), (4, 4) \}$$

Answer: R₁ is reflexive, symmetric and transitive

R₂ is reflexive, symmetric, antisymmetric and transitive

H 2 For each of these relations on the set { 1, 2, 3, 4 }, determine whether it is reflexive, irreflexive, symmetric, asymmetric, antisymmetric or transitive.

(1)
$$R_1 = \{ (1, 1), (2, 2), (3, 3) \}$$

(2)
$$R_2 = \{ (1, 1), (1, 3), (1, 2), (3, 1), (3, 2), (3, 3), (4, 4) \}$$

(3)
$$R_3 = \{ (1, 2), (1, 3), (1, 4), (2, 3), (3, 1), (4, 1), (3, 4) \}$$

$$(4) R_4 = A \times A$$

Answer: $R_1 \rightsquigarrow Reflexive$, Symmetric, Transitive

 $R_2 \rightsquigarrow Transitive$

R₃ ---> Irreflexive

R₄ ----> Reflexive, Irreflexive, Symmetric, Asymmetric,

Antisymmetric, Transitive

C 3 The given diagram shows a relation on the set A. Write this relation in tabular form and determine whether it is reflexive, irreflexive, symmetric, asymmetric, antisymmetric or transitive.

Answer: R is only irreflexive relation.

C Let $A = \{1, 2, 3, 4, 5, 6\}$ and define a relation R on A as $R = \{(x, y) \mid y \text{ is divisible by } x\}$

Check whether R is reflexive, symmetric or transitive.

Answer: R is reflexive and transitive but not symmetric.

Check whether R is reflexive, irreflexive, symmetric, asymmetric, antisymmetric or transitive.

Answer: R is irreflexive, asymmetric and antisymmetric

H Calculate A Let R be the relation on the set of integers such that aRb if and only if a = b or a = -b. Check whether R is reflexive, symmetric, transitive or not.

Answer: R is reflexive, symmetric and transitive

T Check whether R is reflexive, symmetric, transitive or not. Relation $R = \{ (x, y) : x + 4y = 10 ; x, y \in \mathbb{N} \}$

Answer: R is transitive but neither reflexive nor symmetric.

С	8	Determine whether the relation R on the set A of all people is reflexive,
		symmetric, asymmetric, antisymmetric or transitive, where xRy if and only if
		x is a father of y.
		Answer: R is only asymmetric and antisymmetric
Н	9	Determine whether the relation R on the set of all set of all people is reflexive,
		symmetric, antisymmetric or transitive, where aRb if and only if
		(1) a is taller than b.
		(2) a is 3 inches shorter than b.
		(3) a and b were born on the same day.
		(4) a has the same first name as b.
		(5) a is grandparent of b.
		(6) a is brother of b.
		Answer: (1) R is transitive and antisymmetric
		(2) R is antisymmetric
		(3) R is reflexive, symmetric and transitive
		(4) R is reflexive, symmetric and transitive
		(5) R is antisymmetric
		(6) R is transitive
Т	10	Determine whether the relation R on the set of all Web pages are reflexive,
		symmetric, asymmetric, antisymmetric, and/or transitive, where (a, b) ∈
		R if and only if
		a) everyone who has visited Web page a has also visited Web page b.
		b) there are no common links found on both Web page a and Web page b.
		c) there is at least one common link on Web page a and Web page b.
		d) there is a Web page that includes links to both Web page a and Web page
		b.
		Answer: a) reflexive and transitive b), c), d) symmetric only

Т	11	Determine whether the relation R on the set of all integers is reflexive,
		symmetric, antisymmetric or transitive, where $(x, y) \in R$ if and only if
		(1) $x \neq y$ (2) $xy \ge 1$ (3) $x = y^2$ (4) $xy = 0$
		Angewore (1) Die gewonstrie
		Answer: (1) R is symmetric (2) R is symmetric and transitive
		(3) R is antisymmetric (4) R is symmetric
Т	12	Let relation R defined on \mathbb{R} as $R = \{ (a, b) : a \leq b^3; a, b \in \mathbb{R} \}.$
		Check whether R is reflexive, symmetric, transitive or not.
		Answer: R is neither reflexive nor symmetric nor transitive
Т	13	Let R be a relation defined as $R = \{ (a, b) \in \mathbb{R}^2 : a - b \le 3 \}$.
		Determine whether R is reflexive, symmetric, antisymmetric and transitive.
		2 ocer mine vinetner iv is remember of symmetric, and symmetric and transfer oc
		Answer: R is reflexive only
С	14	Prove that if a relation R on a set A is transitive and irreflexive, then it is
		asymmetric.
Н	15	Prove that if a relation R on a set A is transitive and asymmetric, then it is
		irreflexive.
Т	16	Prove that if a relation R on a set A is both symmetric and antisymmetric,
1	10	then R is a subset of the identity relation on A.
Т	17	Give an example of a relation which is
		(a) reflexive and transitive but not symmetric
		(b) symmetric and transitive but not reflexivec
		(c) reflexive and symmetric but not transitive
		(d) reflexive and transitive but neither symmetric nor antisymmetric
		(e) neither symmetric nor antisymmetric
		Hint: Refer Theory
		Hint: Refer Theory