CLOSURE PROPERTIES OF REGULAR SETS

Dr. A. Beulah AP/CSE

LEARNING OBJECTIVE

- To construct finite automata for any given pattern and find its equivalent regular expressions
 - To understand the properties of FA and RE

DEFINITION OF REGULAR EXPRESSION

- Let Σ be an alphabet. The regular expressions over Σ and the sets that they denote are defined recursively as follows:
- 1. φ is a regular expression and denotes the empty set.
- 2. ε is a regular expression and denotes the set $\{\varepsilon\}$
- 3. For each $a \in \Sigma$, 'a' is a regular expression and denotes the set $\{a\}$.
- 4. If r and s are regular expressions denoting the languages R and S respectively then (r + s), (rs), (r)* are regular expressions that denotes the sets RUS, RS and R* respectively.

- Regular sets are closed under union, concatenation, and closure
- Proof
 - If L_1 and L_2 are regular, then there are regular expressions r_1 and r_2 denoting the languages L_1 and L_2 , respectively.
 - By definition of RE "If r and s are regular expressions denoting the languages R and S respectively then (r + s), (rs), (r)* are regular expressions that denotes the sets RUS, RS and R* respectively"
 - Therefore (r_1+r_2) , (r_1, r_2) and (r_1^*) are regular expressions denoting the languages $L_1 \cup L_2, L_1$. L_2 and L_1^*

• The class of regular sets is closed under complementation. ie If L is a regular set over Σ , then L= Σ^* -L is a regular set

Proof

- Suppose that L is a regular over an alphabet Σ .
- There is a DFA M=(Q, Σ , δ , q₀, F) accepting L
- Design a DFA M' = (Q, Σ , δ , q₀, F'), where F' = Q F
- Now, we have that $L(M') = \sum^* L$.
- Hence, the complement of L is regular

Convert every final state into non-final, and every non-final state into a final state

Assumes q0 is a non-final state. If q0 is a final state, invert it.

- Regular sets are closed under intersection
- Proof
 - By DeMorgan's law: $L \cap M = (L \cup M)$
 - Since Regular Sets are closed under union and complementation, they are also closed under intersection

- $A_L = DFA$ for $L = \{Q_L, \sum, q_L, F_L, \delta_L\}$
- $A_M = DFA$ for $M = \{Q_M, \sum, q_M, F_M, \delta_M \}$
- Build $A_{L \cap M} = \{Q_L x Q_M, \sum, (q_L, q_M), F_L x F_M, \delta\}$ such that: $-\delta((p,q),a) = (\delta_L(p,a), \delta_M(q,a)),$ where p in Q_L , and q in Q_M
- This construction ensures that a string w will be accepted if and only if w reaches an accepting state in both input DFAs.

Regular sets are closed under set difference

Proof

• If L is regular then L^R is also regular

New ε-NFA for L^R

Make the old start state as the only new final state

What to do if q₀ was one of the final states in the input DFA?

DECISION PROPERTIES OF REGULAR SETS

INTRODUCTION

Any "decision problem" looks like this

MEMBERSHIP QUESTION

- Decision Problem: Given L, is w in L?
- Possible answers: Yes or No
- Approach:
 - 1. Build a DFA for L
 - 2. Input w to the DFA
 - 3. If the DFA ends in an accepting state, then yes; otherwise no.

EMPTINESS TEST

- Decision Problem: Is L=Ø?
- Approach:
 - 1. Build a DFA for L
 - 2. From the start state, run a reachability test, which returns:
 - 1. <u>success</u>: if there is at least one final state that is reachable from the start state
 - 2. <u>failure</u>: otherwise
 - 3. L=Ø if and only if the reachability test fails

FINITENESS

- Decision Problem: Is L finite or infinite?
- Approach:
 - 1. Build DFA for L
 - 2. Remove all states unreachable from the start state
 - 3. Remove all states that cannot lead to any accepting state.
 - 4. After removal, check for cycles in the resulting FA
 - 5. L is finite if there are no cycles; otherwise it is infinite

FINITENESS TEST - EXAMPLES

Ex 1) Is the language of this DFA finite or infinite?

Ex 2) Is the language of this DFA finite or infinite?

SUMMARY

- Closure Properties of Regular Sets
- Decision Properties of Regular Sets

TEST YOUR KNOWLEDGE

- Regular sets are closed under union, concatenation and kleene closure.
 - a) True
 - b) False
 - c) Depends on regular set
 - d) Can't say
- If L1 and L2 are regular sets then intersection of these two will be
 - a) Regular
 - b) Non Regular
 - c) Recursive
 - d) Non Recursive

TEST YOUR KNOWLEDGE

- Reverse of a DFA can be formed by
 - a) using PDA
 - b) making final state as non-final
 - c) making final as starting state and starting state as final state
 - d) None of the mentioned
- Complement of (a + b)* will be
 - a) phi
 - b) null
 - c) a
 - d) b

LEARNING OUTCOME

On successful completion of this topic, the student will be able to:

Understand equivalence of FA and RE(K3)

REFERENCE

 Hopcroft J.E., Motwani R. and Ullman J.D, "Introduction to Automata Theory, Languages and Computations", Second Edition, Pearson Education, 2008

