MA204: Mathematics IV Complex Analysis: Analytic Functions

Gautam Kalita IIIT Guwahati

Definition

A function $f: S \subseteq \mathbb{C} \to \mathbb{C}$ is called **analytic** at a point $z_0 \in \mathbb{C}$ if there exist r > 0 such that f is differentiable at every point $z \in B_r(z_0)$. If f(z) is not analytic at z_0 , then z_0 is called a **singular** point of f(z).

For example, $f(z) = |z|^2$ is differentiable at z = 0, but nowhere differentiable.

Problem: Find the points at which the following functions are analytic and the singular points.

- (a) $f(z) = \bar{z}$
- (b) $f(z) = e^{iz}$ and $g(z) = e^{-i\overline{z}}$
- (c) $f(z) = \frac{1}{z}$
- (d) $f(z) = \cos z$

Definition

A function $f:S\subseteq\mathbb{C}\to\mathbb{C}$ is called **analytic** at a point $z_0\in\mathbb{C}$ if there exist r>0 such that f is differentiable at every point $z\in B_r(z_0)$. If f(z) is not analytic at z_0 , then z_0 is called a **singular** point of f(z).

For example, $f(z) = |z|^2$ is differentiable at z = 0, but nowhere differentiable.

Problem: Find the points at which the following functions are analytic and the singular points.

- (a) $f(z) = \bar{z}$
- (b) $f(z) = e^{iz}$ and $g(z) = e^{-i\overline{z}}$
- (c) $f(z) = \frac{1}{z}$
- (d) $f(z) = \cos z$

It is easy to see that if a function is analytic at a point z_0 , then the function is obviously differentiable at that point. However, the converse is not true.

Definition

A function $f: S \subseteq \mathbb{C} \to \mathbb{C}$ is called **analytic** at a point $z_0 \in \mathbb{C}$ if there exist r > 0 such that f is differentiable at every point $z \in B_r(z_0)$. If f(z) is not analytic at z_0 , then z_0 is called a **singular** point of f(z).

For example, $f(z) = |z|^2$ is differentiable at z = 0, but nowhere differentiable.

Problem: Find the points at which the following functions are analytic and the singular points.

- (a) $f(z) = \bar{z}$
- (b) $f(z) = e^{iz}$ and $g(z) = e^{-i\overline{z}}$
- (c) $f(z) = \frac{1}{z}$
- (d) $f(z) = \cos z$

It is easy to see that if a function is analytic at a point z_0 , then the function is obviously differentiable at that point. However, the converse is not true.

A function is called analytic in an open set $U\subseteq\mathbb{C}$ if it is analytic at each point $z\in U$.

A function which is analytic on the whole complex plane $\ensuremath{\mathbb{C}}$ is called an entire function.

Note the following:

- (a) If f and g are analytic in an open set D. Then $f\pm g$, fg, $\frac{f}{g}$ $(g\neq 0)$, αf $(\alpha\in\mathbb{C})$ are analytic on D.
- (b) Composition of two analytic functions is also analytic.
- (c) If f is analytic on an open set D, then f satisfies CR-Equation at every point on the open set D.
- (d) If f(x,y) = u(x,y) + iv(x,y) satisfies CR-Equation at every point on a open set D and u, v have continuous first order partial derivatives at every point on D, then f is analytic on D.

Problem: Let f be an analytic function in a domain D. If any of the real part, imaginary part, argument, modulus, or derivative of f is constant on D, then f is constant in D.

Problem: Let f be an analytic function in a domain D. If any of the real part, imaginary part, argument, modulus, or derivative of f is constant on D, then f is constant in D.

Problem: If a function f and its conjugate are both analytic on a domain D, then f is constant.

Harmonic function

Definition

A real valued function $\phi(x,y)$ is said to be harmonic in a domain D if all the partial derivatives up to second order exists and are continuous on D such that they satisfy the Laplace equation $\phi_{xx}(x,y) + \phi_{yy}(x,y) = 0$ at each point of D.

For example, $x^2 - y^2$, $e^x \cos y$, and $\frac{x^2 - y^2}{(x^2 + y^2)^2}$ $((x, y) \neq (0, 0))$ are harmonic functions. However $x^2 + y^2$ and $x \sin y$ $((x, y) \neq (0, 0))$ are not harmonic.

Harmonic function

Definition

A real valued function $\phi(x,y)$ is said to be harmonic in a domain D if all the partial derivatives up to second order exists and are continuous on D such that they satisfy the Laplace equation $\phi_{xx}(x,y) + \phi_{yy}(x,y) = 0$ at each point of D.

For example, $x^2 - y^2$, $e^x \cos y$, and $\frac{x^2 - y^2}{(x^2 + y^2)^2}$ ($(x, y) \neq (0, 0)$) are harmonic functions. However $x^2 + y^2$ and $x \sin y$ ($(x, y) \neq (0, 0)$) are not harmonic.

Theorem

If f(z) = u(x, y) + iv(x, y) is analytic in a domain D, then the functions u(x, y) and v(x, y) are harmonic in D.

Harmonic function

Definition

A real valued function $\phi(x,y)$ is said to be harmonic in a domain D if all the partial derivatives up to second order exists and are continuous on D such that they satisfy the Laplace equation $\phi_{xx}(x,y) + \phi_{yy}(x,y) = 0$ at each point of D.

For example, $x^2 - y^2$, $e^x \cos y$, and $\frac{x^2 - y^2}{(x^2 + y^2)^2}$ $((x, y) \neq (0, 0))$ are harmonic functions. However $x^2 + y^2$ and $x \sin y$ $((x, y) \neq (0, 0))$ are not harmonic.

Theorem

If f(z) = u(x, y) + iv(x, y) is analytic in a domain D, then the functions u(x, y) and v(x, y) are harmonic in D.

The converse of the above theorem is not true. For example, u(x,y)=x and v(x,y)=-y are harmonic functions everywhere, but $f(z)=x-iy=\bar{z}$ is nowhere analytic .

Let D be a domain and $u:D\to\mathbb{R}$ is harmonic.

Let D be a domain and $u:D\to\mathbb{R}$ is harmonic.

Question: Does there exists a harmonic function $v:D o\mathbb{R}$ such that

f(z) = u(x, y) + iv(x, y) is analytic in D?

Let D be a domain and $u:D\to\mathbb{R}$ is harmonic.

Question: Does there exists a harmonic function $v: D \to \mathbb{R}$ such that f(z) = u(x, y) + iv(x, y) is analytic in D?

Definition

If there are two harmonic functions u(x,y) and v(x,y) such that f(z) = u(x,y) + iv(x,y) is analytic, then v is called the harmonic conjugate of u.

Let D be a domain and $u:D\to\mathbb{R}$ is harmonic.

Question: Does there exists a harmonic function $v: D \to \mathbb{R}$ such that f(z) = u(x, y) + iv(x, y) is analytic in D?

Definition

If there are two harmonic functions u(x,y) and v(x,y) such that f(z) = u(x,y) + iv(x,y) is analytic, then v is called the harmonic conjugate of u.

Questions:

(a) If v is harmonic conjugate of u, then is u a harmonic conjugate of v?

Let D be a domain and $u:D\to\mathbb{R}$ is harmonic.

Question: Does there exists a harmonic function $v: D \to \mathbb{R}$ such that f(z) = u(x, y) + iv(x, y) is analytic in D?

Definition

If there are two harmonic functions u(x,y) and v(x,y) such that f(z) = u(x,y) + iv(x,y) is analytic, then v is called the harmonic conjugate of u.

Questions:

- (a) If v is harmonic conjugate of u, then is u a harmonic conjugate of v?
- (b) Under what condition u and v are harmonic conjugate to each other?

Problem: Find harmonic conjugate of the following functions, if exists.

- (a) $u(x,y) = e^{-y} \cos x$
- (b) u(x, y) = 2x(1 y)
- (c) $u(x, y) = \log(x^2 + y^2)^{\frac{1}{2}}$

Thank You

Any Question!!!