Chapter 2: Determinants

- Axioms for determinant function.
- Properties of determinant function.
- Existence and uniqueness of determinant function.
- \bullet det(AB) = det A det B.
- Invertibility of a matrix in terms of determinant.
- Omputation of determinant by Gauss-Jordan Method.
- Inverse of a matrix in terms of the cofactor matrix.
- **1** Cramer's Rule for solving n linear equations in n unknowns.

Axiomatic approach for the Determinant Function

1 Recall the formula for determinants of $k \times k$ matrices, for k = 1, 2, 3.

$$det[a] = a, \quad det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$$

and det
$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = a(ei - hf) - b(di - gf) + c(dh - eg).$$

- ② Our approach to determinants of $n \times n$ matrices is via their properties (rather than via an explicit formula as above).
- **②** Let *d* be a function that associates a scalar $d(A) \in \mathbb{F}$ with every $n \times n$ matrix *A* over \mathbb{F} . Here \mathbb{F} is either \mathbb{R} or \mathbb{C} .

Axioms for the determinant function

- If the columns of A are A_1, A_2, \ldots, A_n , we write $d(A) = d(A_1, A_2, \ldots, A_n)$.
- ② (i) d is called **multilinear** if for each $k=1,2,\ldots,n$; scalars α,β and $n\times 1$ column vectors $A_1,\ldots,A_{k-1},A_{k+1},\ldots,A_n,B,C$

$$d(A_1,...,A_{k-1},\alpha B + \beta C,A_{k+1},...,A_n) = \alpha d(A_1,...,A_{k-1},B,A_{k+1},...,A_n) + \beta d(A_1,...,A_{k-1},C,A_{k+1},...,A_n).$$

- (ii) d is called **alternating** if $d(A_1, A_2, \dots, A_n) = 0$ if $A_i = A_j$ for some $i \neq j$.
- (iii) d is called **normalized** if $d(I) = d(e_1, e_2, \dots, e_n) = 1$, where e_i is the i^{th} standard column vector with 1 in the i^{th} coordinate and 0's elsewhere.
- **1** A normalized, alternating, and multillinear function d on $n \times n$ matrices is called a **determinant function** of order n.

Properties of determinant function

- Our immediate objective is to show that there is only one determinant function of order n.
- **2 Lemma:** Suppose that $d(A_1, A_2, ..., A_n)$ is a multilinear alternating function on columns of $n \times n$ matrices. Then
 - (a) If some $A_k = 0$ then $d(A_1, A_2, ..., A_n) = 0$.
 - (b) $d(A_1, A_2, \ldots, A_k, A_{k+1}, \ldots, A_n) = -d(A_1, A_2, \ldots, A_{k+1}, A_k, \ldots, A_n).$
 - (c) $d(A_1, A_2, ..., A_i, ..., A_j, ..., A_n) = -d(A_1, A_2, ..., A_j, ..., A_i, ..., A_n).$
- **Proof:** (a) If $A_k = 0$ then by multilinearity $d(A_1, A_2, \dots, 0A_k, \dots, A_n) = 0 \ d(A_1, A_2, \dots, A_k, \dots, A_n) = 0.$
- **(b)** Put $A_k = B, A_{k+1} = C$. By the alternating property

$$0 = d(A_1, A_2, ..., B + C, B + C, ..., A_n)$$

$$= d(A_1, A_2, ..., B, B + C, ..., A_n) + d(A_1, A_2, ..., C, B + C, ..., A_n)$$

$$= d(A_1, A_2, ..., B, C, ..., A_n) + d(A_1, A_2, ..., C, B, ..., A_n)$$

$$\implies d(A_1, A_2, ..., B, C, ..., A_n) = -d(A_1, A_2, ..., C, B, ..., A_n).$$

(c) Follows from (b).

Formula for the determinant of a 2×2 matrix

• Suppose $d(A_1, A_2)$ is an alternating multilinear normalized function on 2×2 matrices $A = (A_1, A_2)$. Then

$$d\left[\begin{array}{cc} x & y \\ z & u \end{array}\right] = xu - yz.$$

- ② To derive this formula, write the first column as $A_1 = xe_1 + ze_2$ and the second column as $A_2 = ye_1 + ue_2$.
- Then using the axioms for determinate function we get

$$d(A_1, A_2) = d(xe_1 + ze_2, ye_1 + ue_2)$$

$$= d(xe_1 + ze_2, ye_1) + d(xe_1 + ze_2, ue_2)$$

$$= d(xe_1, ye_1) + d(ze_2, ye_1)$$

$$+d(xe_1, ue_2) + d(ze_2, ue_2)$$

$$= yzd(e_2, e_1) + xud(e_1, e_2)$$

$$= (xu - yz)d(e_1, e_2) = xu - yz.$$

Uniqueness of the determinant function

- **Quantized** Lemma: Suppose f is a multilinear alternating function on $n \times n$ matrices and $f(e_1, e_2, \dots, e_n) = 0$. Then f is identically zero.
- **Proof:** Let $A = (a_{ij})$ be an $n \times n$ matrix with columns A_1, \ldots, A_n . Write A_j as

$$A_j = a_{1j}e_1 + a_{2j}e_2 + \cdots + a_{nj}e_n.$$

Since f is multilinear we have

$$f(A_1,\ldots,A_n)=\sum_h a_{h(1)1}a_{h(2)2}\cdots a_{h(n)n} f(e_{h(1)},e_{h(2)},\ldots,e_{h(n)}),$$

where the sum is over all functions $h: \{1, 2, ..., n\} \rightarrow \{1, 2, ..., n\}$.

Since f is alternating we have

$$f(A_1,\ldots,A_n)=\sum_h a_{h(1)1}a_{h(2)2}\cdots a_{h(n)n}\ f(e_{h(1)},e_{h(2)},\ldots,e_{h(n)}),$$

where the sum is now over all bijections $h: \{1, 2, ..., n\} \rightarrow \{1, 2, ..., n\}$.

Uniqueness of the determinant function

O By using part (c) of the lemma above we see that we can write

$$f(A_1,\ldots,A_n) = \sum_h \pm a_{h(1)1} a_{h(2)2} \cdots a_{h(n)n} f(e_1,e_2,\ldots,e_n),$$

where the sum is over all bijections $h: \{1, 2, ..., n\} \rightarrow \{1, 2, ..., n\}$.

② Therefore f(A) = 0.

Theorem

Let f be an alternating multilinear function of order n and d a determinant function of order n. Then for all $n \times n$ matrices $A = (A_1, A_2, \dots, A_n)$,

$$f(A_1, A_2, \ldots, A_n) = d(A_1, A_2, \ldots, A_n) f(e_1, e_2, \ldots, e_n).$$

In particular, if f is also a determinant function then

$$f(A_1, A_2, \ldots, A_n) = d(A_1, A_2, \ldots, A_n).$$

Proof of uniqueness of determinant function

Proof: Consider the function

$$g(A_1, A_2, \ldots, A_n) = f(A_1, A_2, \ldots, A_n) - d(A_1, A_2, \ldots, A_n) f(e_1, e_2, \ldots, e_n).$$

② Since f, d are alternating and multilinear so is g. Since

$$g(e_1, e_2, \dots, e_n) = 0 \qquad \text{(why?)}$$

the result follows from the previous lemma.

- **3 Notation:** We shall denote the determinant of A by det A or |A|.
- **3** Setting det[a] = a shows the existence of the determinant function for n = 1.
- **3** Assume that we have shown the existence of the determinant function of order $(n-1) \times (n-1)$. The determinant of an $n \times n$ matrix A can be computed in terms of certain $(n-1) \times (n-1)$ determinants.
- Let $A_{ij} = \text{the } (n-1) \times (n-1)$ submatrix obtained from A by deleting the ith row and jth column of A.

Existence of determinant function

Theorem

Let $A = (a_{ij})$ be an $n \times n$ matrix. Then the function

$$f(A) = a_{11} \det A_{11} - a_{12} \det A_{12} + \cdots + (-1)^{n+1} a_{1n} \det A_{1n}$$

is multilinear, alternating, and normalized on $n \times n$ matrices, hence is the determinant function.

Proof: Denote the function f(A) by $f(A_1, A_2, \ldots, A_n)$. Suppose that the columns A_j and A_{j+1} of A are equal. Then A_{1i} have equal columns except when i = j or i = j + 1. By induction $\det A_{1i} = 0$ for $i \neq j, j + 1$. Thus

$$f(A) = a_{1j} \left[(-1)^{j+1} \det(A_{1j}) \right] + \left[(-1)^{j+2} a_{1j+1} \det(A_{1j+1}) \right].$$

- ② Since $A_j = A_{j+1}$, $a_{1j} = a_{1j+1}$ and $A_{1j} = A_{1j+1}$. Thus f(A) = 0. Therefore $f(A_1, A_2, \ldots, A_n)$ is alternating.
- If $A = (e_1, e_2, \dots, e_n)$ then $f(A) = 1 \det(A_{11}) = 1$, by induction. (Exercise) Show the multilinear property of $f(A_1, \dots, A_n)$.

Determinant of elementary and upper triangular matrices

- **Theorem:** (i) Let U be an upper triangular or a lower triangular matrix. Then det U = product of diagonal entries of U.
- ② (ii) Let E be an elementary matrix of the type $I + \alpha e_{ij}$, for some $i \neq j$. Then $\det E = 1$.
- **1** (iii) Let E be an elementary matrix of the type $I + e_{ij} + e_{ji} e_{ii} e_{jj}$, for some $i \neq j$. Then det E = -1.
- **(iv)** Let E be an elementary matrix of the type $I+(\alpha-1)e_{ii},\ \alpha\neq 0$. Then $\det E=\alpha$.
- **Proof:** (i) Let $U = (u_{ij})$ be upper triangular. Arguing as in the proof of one of the last lemma we see that

$$\det U = \sum_h u_{h(1)1} u_{h(2)2} \cdots u_{h(n)n} \det(e_{h(1)}, \dots, e_{h(n)})$$

where the sum is over all bijections $h: \{1, 2, \dots, n\} \rightarrow \{1, 2, \dots, n\}$.

Determinant and invertibility

ullet Since U is upper triangular, the only choice of h yielding a nonzero term is the identity function and hence

$$\det U = u_{11}u_{22}\cdots u_{nn}\det(e_1,\ldots,e_n) = u_{11}u_{22}\cdots u_{nn}.$$

- (ii) Follows from part (i).
- (iii) Observe that *E* is obtained from the identity matrix by interchanging columns *i* and *j*. The result follows since determinant is an alternating function.
- (iv) Follows form part (i).
- **1 Theorem:** Let A, B be two $n \times n$ matrices. Then

$$\det(AB) = \det A \det B.$$

- **§** Proof: Let D_i denote the ith column of a matrix D. Then $(AB)_i = AB_i$.
- Therefore we need to prove that

$$\det(AB_1, AB_2 \dots, AB_n) = \det(A_1, A_2, \dots, A_n) \det(B_1, \dots, B_n).$$

det(AB) = det A det B

- Keep A fixed and define $f(B_1, B_2, ..., B_n) = \det(AB_1, AB_2, ..., AB_n)$.
- ② We show that f is alternating and multilinear.
- **3** Let C be an $n \times 1$ column vector. Then

$$\begin{array}{lll} f(B_1,\ldots,B_i,\ldots,B_i,\ldots,B_n) & = & \det(AB_1,\ldots,AB_i,\ldots,AB_i,\ldots,AB_n) = 0 \\ f(B_1,\ldots,B_k+\alpha C,\ldots,B_n) & = & \det(AB_1,\ldots,A(B_k+\alpha C),\ldots,AB_n) \\ & = & \det(AB_1,\ldots,AB_k+\alpha AC,\ldots,AB_n) \\ & = & \det(AB_1,\ldots,AB_k,\ldots,AB_n) \\ & + & \det(AB_1,\ldots,\alpha AC,\ldots,AB_n) \\ & = & f(B_1,\ldots,B_n) + \alpha f(B_1,\ldots,C,\ldots,B_n). \end{array}$$

- Therefore $f(B_1, B_2, ..., B_n) = \det(B_1, ..., B_n) f(e_1, e_2, ..., e_n)$.
- Now note that $f(e_1, e_2, \ldots, e_n) = \det(Ae_1, \ldots, Ae_n) = \det(A_1, \ldots, A_n) = \det A$.
- Hence det(AB) = det A det B.

Determinant and invertibility

1 Lemma: (i) If A is an invertible matrix then $\det A \neq 0$ and

$$\det A^{-1} = \frac{1}{\det A}.$$

- ② (ii) det $A \neq 0$ implies A is invertible.
- (iii) Suppose A, B are square matrices with AB = I. Then A is invertible and $B = A^{-1}$.
- **Proof:** (i) Since $AA^{-1} = I$, det A^{-1} det $A = \det I = 1$.
- **3** (ii) Suppose A is not invertible. Then it follows that there is a nontrivial column vector x such that Ax = 0.
- ullet So some column of A is a linear combination of other columns (i.e., excluding itself) of A.
- lacktriangle It now follows from multilinearity and alternating properties that det A=0.
- **1** (iii) Taking determinants we have det $A \det B = 1$. So det $A \neq 0$ and A is invertible. Now $B = (A^{-1}A)B = A^{-1}(AB) = A^{-1}$.

Determinant of transpose of a matrix

1 Theorem: For any $n \times n$ matrix A,

$$\det A = \det A^t$$
.

Proof: If A is not invertible then A^t is also not invertible (why?) and both determinants are 0. So we may assume that A is invertible. Then we write

$$A = E_1 E_2 \cdots E_k$$

where E_1, \ldots, E_k are elementary matrices.

- Now transpose of an elementary matrix is also an elementary matrix (of the same type) and has the same determinant.
- The result follows by multiplicativity of determinant.
- **Orollary:** Let $A = (a_{ij})$ be an $n \times n$ matrix and let $1 \le k \le n$. Then

$$\det A = \sum_{i=1}^{n} (-1)^{k+i} a_{ik} \det A_{ik}.$$

OPERATE Proof: Exercise. (Use the theorem and properties of the det function.)

Computation of determinant by Gauss-Jordan elimination

- Let A be an $n \times n$ matrix.
- **3** Suppose $E = \text{the } n \times n \text{ elementary matrix for the row operation } R_i \to R_i + cR_j$
- **1** F = the $n \times n$ elementary matrix for the row operation $R_i \leftrightarrow R_j$
- **1** G = the $n \times n$ elementary matrix for the row operation $R_i \rightarrow cR_i$.
- **9** Suppose that U is the RCF of A. If c_1, c_2, \ldots, c_p are the multipliers used for the row operations $R_i \to cR_i$ and r row exchanges have been used to get U from A then for any alternating multilinear function d,

$$d(U) = (-1)^r c_1 c_2 \dots c_p \ d(A).$$

1 To see this, we simply note that (recall that $\det A^t = \det A$)

$$d(FA) = -d(A), d(EA) = d(A) \text{ and } d(GA) = cd(A).$$
 (why?)

• If $u_{11}, u_{22}, \ldots, u_{nn}$ are the diagonal entries of U, then

$$d(A) = (-1)^r (c_1 c_2, \ldots c_p)^{-1} u_{11} u_{22} \cdots u_{nn}.$$

The cofactor matrix

Oefinition: Let $A = (a_{ij})$ be an $n \times n$ matrix. The **cofactor** of a_{ij} , denoted by cof a_{ij} is defined as

$$cof a_{ij} = (-1)^{i+j} \det A_{ij}.$$

② The **cofactor matrix** of *A* denoted by cof *A* is the matrix

$$\operatorname{cof} A = (\operatorname{cof} a_{ij}).$$

Theorem

For any $n \times n$ matrix A,

$$A(\operatorname{cof} A)^t = (\operatorname{det} A)I = (\operatorname{cof} A)^t A.$$

In particular, if det A is nonzero then $A^{-1} = \frac{1}{\det A}(\cot A)^t$, hence A is invertible.

Matrix inverse and the cofactor matrix

1 Proof: The $(i,j)^{\text{th}}$ entry of $(\operatorname{cof} A)^t A$ is

$$\sum_{k=1}^{n} (\operatorname{cof} A)_{ik}^{t} a_{kj} = \sum_{k=1}^{n} (\operatorname{cof} a_{ki}) a_{kj} = a_{1j} \operatorname{cof} a_{1i} + a_{2j} \operatorname{cof} a_{2i} + \cdots + a_{nj} \operatorname{cof} a_{ni}.$$

- ② When i = j, it is easy to see that it is det A.
- **3** When $i \neq j$, consider the matrix B obtained by replacing j^{th} column of A by i^{th} column of A.
- So B has a repeated column and then the $(i,j)^{\text{th}}$ entry of $(\operatorname{cof} A)^t A$ actually represents $\det B$ (since $a_{kj} = a_{ki}$ for each $1 \leq k \leq n$) and hence is equal to 0.
- **1** The other equation $A(\operatorname{cof} A)^t = (\det A)I$ is proved similarly.
- Cramer's Rule: Suppose

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & & & & \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}.$$

Cramer's Rule

- **1** Suppose the coefficient matrix $A = (a_{ij})$ is invertible.
- ② Let C_j be the matrix obtained from A by replacing j^{th} column of A by $b = [b_1, b_2, \dots, b_n]^t$.
- **3** Then for j = 1, 2, ..., n,

$$x_j = \frac{\det C_j}{\det A}.$$

- **9 Proof:** Let A_1, \ldots, A_n be the columns of A.
- **9** Write $b = x_1A_1 + x_2A_2 + \cdots + x_nA_n$.
- **1** Then $\det(b, A_2, A_3, \dots, A_n) = x_1 \det A$ and hence $x_1 = \frac{\det C_1}{\det A}$.
- **②** By a similar computation we obtain $x_j = \frac{\det C_j}{\det A}$ for all $j = 1, 2, \ldots, n$.