Week 4: Decisions in Settings with High Uncertainty

- ♦ Session 1 Decision Trees
 - O Example: Furniture maker IDEA Chooses a Supplier
- ◆ Session 2 Using Simulation within Decision Trees
 - O Example: More Complex Demand Distributions for IDEA
- ◆ Session 3 Using Optimization Together with Simulation
 - O Example: IDEA Chooses Order Quantities
- ◆ Session 4 Wrap Up
 - O Example: Back to the Newsvendor Problem

OPS Analytics MOOC, Week 4 Session 3

Updated demand model for IDEA's Krusbär tent

- ◆ 50%-50% chance that demand will be strong or weak
- If weak, demand is uniformly distributed: 2,000-8,000 units
- If strong, demand is uniformly distributed: 6,000-14,000 units
- ◆ In either case, call the random variable for demand, D

OPS Analytics MOOC, Week 4 Session 3

.

Other elements of IDEA's problem remained the same

- ◆ Price of 150€ per unit
- Order quantity, fixed charge, and unit cost for each supplier

	Sweden (S)	Poland (P)
Order Quantity	5,000 units	10,000 units
Fixed Charge	0€	50,000€
Unit Cost	120€	100€

OPS Analytics MOOC, Week 4 Session 3

^

But suppose IDEA could choose the order quantity

- ◆ In the original problem, IDEA had to use 100% of a supplier's capacity
 - O All 5,000 units from supplier S
 - O All 10,000 units from supplier P
- ◆ Supplier P now offers IDEA the following contract
 - O The up-front charge would increase from 50,000€ to 100,000€
 - O IDEA would need to place a first order of at least 4,000 units
 - A second order could vary anywhere from 0 to 6,000 units
- ◆ IDEA would place the second order in response to market conditions
 - The timing would be shortly after the start of the summer selling season
 - O IDEA would know with certainty if the market were weak or strong
- ◆ Call the total quantity IDEA orders Q
 - O With the new contract IDEA chooses a Q between 4,000 and 10,000 units

OPS Analytics MOOC, Week 4 Session 3

If IDEA chooses supplier P and the market is weak...

- ◆ IDEA pays a fixed cost of 100,000€
- ◆ IDEA decides on a total order quantity Q between 4,000 and 10,000
 Order cost = 100€ * Q
- ◆ Demand D is uniformly distributed between 2,000 and 8,000 uniits
- ◆ IDEA earns 150€ revenue for each unit sold
 - O If D ≤ Q then revenue = 150€ * D
 - O If D > Q then revenue = 150€ * Q
 - O Revenue = 150€ * min{D, Q}
- ◆ IDEA's Profit = -100,000€ 100€*Q + 150€ * min{D, Q}
- ◆ This is almost identical to the profit formula from last session
 - O But last time the fixed cost was 50,000€
 - O And last time Q was fixed at 10,000 units

OPS Analytics MOOC, Week 4 Session 3

5

						good C
	Α	В	С	D	E	F
1	IDEA Optimization.xlsx					
2				=\$B\$5*MIN(=\$B\$5*MIN(\$B\$3,B10)	
3	Order Quantity (Q) =	10000	units	1		
4	Fixed Cost =	100000	euros	=\$B\$3*\$B\$	6	
5	Price =	150	euros per unit	7-4545 451		-D10-E10
6	Unit Cost =	100	euros per unit			7
7				=\$B\$4		\
8	Sample	Demand		1		\
9	Number	Sample (D)	Revenue $\sqrt{}$	Fixed Cost	Variable Cost	Profit 🗸
10	1	2,744.90	411,734.37	100,000.00	1,000,000.00	(688,265.63)
11	2	2,039.00	305,850.40	100,000.00	1,000,000.00	(794,149.60)
12	3	4,336.68	650,502.03	100,000.00	1,000,000.00	(449,497.97)
13	4	3,603.69	540,553.00	100,000.00	1,000,000.00	(559,447.00)
14	5	6,221.81	933,271.28	100,000.00	1,000,000.00	(166,728.72)
15	6	3,413.07	511,960.20	100,000.00	1,000,000.00	(588,039.80)
16	7	4,796.84	719,525.74	100,000.00	1,000,000.00	(380,474.26)
17	8	6,487.69	973,152.87	100,000.00	1,000,000.00	(126,847.13)
18	9	2,742.70	411,404.77	100,000.00	1,000,000.00	(688,595.23)
19	10	4,436.11	665,416.43	100,000.00	1,000,000.00	(434,583.57)
20			=AV	ERAGE(F10:F19	_	
21	average =	4,082.25		Average Profit =		(487,662.89)
22	std. deviation =	1,471.92		=STDEV(F10:F	19)	>2 20,788.48
23						

The problem is not linear...but we could solve it The objective is to the maximize the average of the profits across Solver Parameters the samples Set Objective: Max Min Min ■ O Value Of: ◆ The revenue in each sample is By Changing Variable Cells: 150 * min{D, Q}, which is not \$8\$3 linear (in a not very nice way) Subject to the Constraints: But we are lucky that Excel's solver can solve it....it might not always work. not linear! ◆ In an optional advanced session Variables Non-Negative we will "clean up" the formulation Select a Solving Method: GRG Nonlinear to eliminate the problem with nonlinearity. OPS Analytics MOOC, Week 4 Session 3 9

Note that Q = 4,000 is only optimal for that sample

- ◆ If we were to run the same optimization on a different set of 10 samples
 Then we might get a different optimal Q.
- ◆ Why? As Sergei showed you in Week 3...
 - O A set of 10 samples is quite small
 - O We need more samples for more precise, stable estimates from the simulation
- ◆ This is (typically) true for an optimal solution too
 With 1,000 samples, the optimal Q's tend not to change much across samples
- ◆ The spreadsheet's optimal solution is just an estimate of the optimal Q
 - O To find the truly optimal Q using simulation
 - O We'd need to include an infinite number of samples

OPS Analytics MOOC, Week 4 Session 3

11

Optimal solution for 1000 samples - weak market

	А	В	С	D	E	F
1	IDEA.xlsx					
2						
3	Order Quantity (Q) =	4,137.82	units			
4	Fixed Cost =	100,000	euros			
5	Price =	150	euros per unit			
6	Unit Cost =	100	euros per unit			
7						
8	Sample	Demand				
9	Number	Sample (D)	Revenue	Fixed Cost	Variable Cost	Profit
10	1	2,744.90	411,734.37	100,000.00	413,781.82	(102,047.45)
11	2	2,039.00	305,850.40	100,000.00	413,781.82	(207,931.42)
12	3	4,336.68	620,672.73	100,000.00	413,781.82	106,890.91
13	4	3,603.69	540,553.00	100,000.00	413,781.82	26,771.17
14	5	6,221.81	620,672.73	100,000.00	413,781.82	106,890.91
15	6	3,413.07	511,960.20	100,000.00	413,781.82	(1,821.62)
16	7	4,796.84	620,672.73	100,000.00	413,781.82	106,890.91
17	8	6,487.69	620,672.73	100,000.00	413,781.82	106,890.91
1008	999	2,642.54	396,380.50	100,000.00	413,781.82	(117,401.32)
1009	1000	3,713.92	557,087.92	100,000.00	413,781.82	43,306.10
1010						
1011	average =	5,044.06		Į.	Average Profit =	51,646.29
1012	std. deviation =	1,712.70				94,281.34

6

	А	В	С	D	E	F
1	IDEA.xlsx					
2						
3	Order Quantity (Q) =	8,850.43	units			
4	Fixed Cost =	100000	euros			
5	Price =	150	euros per unit			
6	Unit Cost =	100	euros per unit			
7						
8	Sample	Demand				
9	Number	Sample (D)	Revenue	Fixed Cost	Variable Cost	Profit
10	1	6,993.19	1,048,979.16	100,000.00	885,042.53	63,936.62
11	2	6,052.00	907,800.53	100,000.00	885,042.53	(77,242.00)
12	3	9,115.57	1,327,563.80	100,000.00	885,042.53	342,521.27
13	4	8,138.25	1,220,737.33	100,000.00	885,042.53	235,694.79
14	5	11,629.08	1,327,563.80	100,000.00	885,042.53	342,521.27
15	6	7,884.09	1,182,613.61	100,000.00	885,042.53	197,571.07
16	7	9,729.12	1,327,563.80	100,000.00	885,042.53	342,521.27
17	8	11,983.58	1,327,563.80	100,000.00	885,042.53	342,521.27
1008	999	6,856.72	1,028,507.34	100,000.00	885,042.53	43,464.80
1009	1000	8,285.23	1,242,783.90	100,000.00	885,042.53	257,741.36
1010						
1011	average =	10,058.75		P	Average Profit =	268,861.72
1012	std. deviation =	2,283.61				125,708.51

Wrap-up for Session 3 of Week 4

- ♦ How did IDEA's problem change from last session to this one?
- ◆ As before, we simulated the outcomes for weak and strong markets
 - O Demand model had a 50%/50% chance the market would be weak or strong
 - O For each case we simulated uniformly distributed demand
- ◆ This time the structure of the decision problem became more complex
 - O First IDEA needed to decided on a supplier: S, P, or none
 - O For supplier P, IDEA could then decide on an order quantity
- Rather than running a separate simulation for each possible Q
 - O We used a common set of simulated demands for all possible Q's
 - O We optimized to find an "approximately optimal" Q
- In fact, we essentially solved Senthil's newsvendor problem from Week 1
 - O In the next session we'll go back to it to see

OPS Analytics MOOC, Week 4 Session 3