Asymptotic Iteration Method for Hahn Difference Equations

Lucas MacQuarrie For Science Atlantic 2020

February 21, 2021

What's the Asymptotic Iteration Method?

A way to solve a special class of differential equations

$$y''(x) = \lambda_0(x)y'(x) + s_0(x)y(x)$$

What's the Asymptotic Iteration Method? AIM Sequence

Define $\lambda_n(x)$ to be

$$\lambda_n(x) = \lambda'_{n-1}(x) + s_{n-1}(x) + \lambda_0(x)\lambda_{n-1}(x)$$

and $s_n(x)$ to be

$$s_n(x) = s'_{n-1}(x) + s_0(x)\lambda_{n-1}(x).$$

What's the Asymptotic Iteration Method?

Terminating Condition and main conclusion

If
$$\frac{s_n(x)}{\lambda_n(x)} = \frac{s_{n-1}(x)}{\lambda_{n-1}(x)}$$
 then the solution is
$$y(x) = \exp\left(-\int_0^x \frac{s_n(t)}{\lambda_n(t)} dt\right) \times \left[C_2 + C_1 \int_0^x \exp\left(\int_0^t \left(\lambda_0(\tau) + 2\frac{s_n(\tau)}{\lambda_n(\tau)}\right) d\tau\right) dt\right]$$

The Hahn Difference Operator

The Hahn operator $\Delta_{q;w}$ was introduced by Wolfgang Hahn in 1948 and is defined as

$$\Delta_{q;w}y(x) = \frac{y(qx+w) - y(x)}{qx+w-x}, \quad 0 < q < 1, w > 0$$

It's a generalization of the q-derivative

$$D_q y(x) = \frac{y(qx) - y(x)}{qx - x}$$

and the finite difference operator

$$\Delta_w y(x) = \frac{y(x+w) - y(x)}{w}$$

The Hahn Difference Operator

We can even get the ordinary derivative by taking the limit of both these

Why was it created?

So what did Hahn do with this operator?

Why was it created?

Über Orthogonalpolynome, die q-Differenzengleichungen genügen.

Von Wolfgang Hahn in Berlin.

(Eingegangen am 9. 8. 1948.)

§ 1. Problemstellung.

Es sei $M_0, M_1, \ldots, M_n, \ldots$ eine Zahlenfolge. Die Hankelschen Determinanten

$$D_{0,n} = |M_{i+k}|$$
 $(i, k = 0, 1, ..., n-1)$

mögen für alle n von Null verschieden sein. Die Polynome

$$(1.1) p_n(x) = \frac{1}{D_{0,n}} \begin{vmatrix} M_0 & M_1 & \dots & M_n \\ M_1 & M_2 & \dots & M_{n+1} \\ \dots & \dots & \dots & \dots \\ M_{n-1} & M_n & \dots & M_{2n-1} \\ 1 & x & \dots & x^n \end{vmatrix}$$

genügen bekanntlich einer dreigliedrigen linearen Rekursionsformel

$$(1.2) p_n(x) = (x + \alpha_n) p_{n-1}(x) + \beta_n p_{n-2}(x).$$

Sind alle $D_{0,n}$ positiv (und damit alle β_n negativ), so existieren mindestens eine "Belegungsfunktion" $\psi(x)$ und ein reelles Intervall (a,b) derart, daß

$$\int_{x^{n}}^{b} d\psi(x) = M_{n}, \quad \int_{p_{n}}^{b} p_{n}(x) p_{m}(x) d\psi(x) = 0 \quad (m + n).$$

I'm not sure!

The Difference Equation

The second order linear homogeneous Hahn difference equation is

$$\Delta_{q;w}^2 y(x) = \lambda(x) \Delta_{q;w} y(x) + s(x) y(x)$$

In general there is no known solution

The extension of the Asymptotic Iteration Method(AIM) to Hahn operator is called qw-AIM.

Main Result

Let $x_i = q^i x + w \sum_{k=0}^{i-1} q^k$, the i^{th} composition of qx + w. The second order linear homogeneous Hahn difference equation

$$y(x) = \frac{1}{\prod_{i=0}^{\infty} \left[1 - q^{i}((q-1)x + w)\frac{s_{n-1}(x_{i})}{\lambda_{n-1}(x_{i})}\right]} + \sum_{i=0}^{\infty} \frac{\frac{q^{i}((q-1)x + w)}{\lambda_{n-1}(x_{i})}}{\prod_{j=0}^{i} \left[1 - q^{j}((q-1)x + w)\frac{s_{n-1}(x_{j})}{\lambda_{n-1}(x_{j})}\right] \prod_{j=0}^{\infty} \left[1 + q^{i+j}((q-1)x + w)\frac{\lambda_{n}(x_{i+j})}{\lambda_{n-1}(x_{i+j})}\right]}$$

for 0 < q < 1, w > 0 provided that

$$\frac{s_n(x)}{\lambda_n(x)} = \frac{s_{n-1}(x)}{\lambda_{n-1}(x)} \text{ equivalently } \delta_n := s_n(x)\lambda_{n-1}(x) - \lambda_n(x)s_{n-1}(x) = 0.$$

First $x_i = q^i x + w \sum_{k=0}^{i-1} q^k$ is just the i'th composition of qx + w

$$x_0 = x$$

 $x_1 = qx + w$
 $x_2 = q(qx + w) + w = q^2x + qw + w$
 $x_3 = q(q(qx + w) + w) + w = q^3x + q^2w + qw + w$
...

$$x_i = q^i x + w \sum_{k=0}^{i-1} q^k.$$

Note that if $i \to \infty$ and x_i converges then $x_i \to \frac{w}{1-a} := w_0$

How do we get there?

Start by differentiating the original equation

$$\Delta_{q:w}^2 y(x) = \lambda_0(x) \Delta_{q:w} y(x) + s_0(x) y(x)$$

$$\begin{split} \Delta_{q:w}^{3}y(x) &= \Delta_{q:w}[\lambda_{0}(x)\Delta_{q:w}y(x)] + \Delta_{q:w}[s_{0}(x)y(x)] \\ &= \lambda_{0}(qx+w)\Delta_{q:w}^{2}y(x) + \Delta_{q:w}y(x)\Delta_{q:w}\lambda_{0}(x) \\ &+ s_{0}(qx+w)\Delta_{q:w}y(x) + y(x)\Delta_{q:w}s_{0}(x) \\ &= \lambda_{0}(qx+w)[\lambda_{0}(x)\Delta_{q;w}y(x) + s_{0}(x)y(x)] \\ &+ \Delta_{q:w}y(x)\Delta_{q:w}\lambda_{0}(x) + s_{0}(qx+w)\Delta_{q:w}y(x) \\ &+ y(x)\Delta_{q:w}s_{0}(x) \\ &= \Delta_{q:w}y(x)[\Delta_{q:w}\lambda_{0}(x) + \lambda_{0}(qx+w)\lambda_{0}(x) + s_{0}(qx+w)] \\ &+ y(x)[\lambda_{0}(qx+w)s_{0}(x) + \Delta_{q:w}s_{0}(x)] \\ &= \lambda_{1}(x)\Delta_{q:w}y(x) + s_{1}(x)y(x) \end{split}$$

This is where we get our qw-AIM sequence

$$\Delta_{q:w}^{n+2}y(x) = \lambda_n(x)\Delta_{q:w}y(x) + s_n(x)y(x)$$

SO

$$\lambda_{n}(x) = \Delta_{q:w} \lambda_{n-1}(x) + \lambda_{n-1}(qx+w) \lambda_{0}(x) + s_{n-1}(qx+w) s_{n}(x) = \Delta_{q:w} s_{n-1}(x) + \lambda_{n-1}(qx+w) s_{0}(x)$$

Consider the ratio

$$\frac{\Delta_{q;w}^{n+2} y(x)}{\Delta_{q;w}^{n+1} y(x)} = \frac{\lambda_n(x) \Delta_{q;w} y(x) + s_n(x) y(x)}{\lambda_{n-1}(x) \Delta_{q;w} y(x) + s_{n-1}(x) y(x)}$$

$$= \frac{\lambda_n(x) \left[\Delta_{q;w} y(x) + \frac{s_n(x)}{\lambda_n(x)} (x) y(x) \right]}{\lambda_{n-1}(x) \left[\Delta_{q;w} y(x) + \frac{s_{n-1}(x)}{\lambda_{n-1}(x)} (x) y(x) \right]}.$$

If the *terminating condition* $\frac{s_n}{\lambda_n} = \frac{s_{n-1}}{\lambda_{n-1}}$ is satisfied we have

$$\frac{\Delta_{q;w}^{n+2} y(x)}{\Delta_{q;w}^{n+1} y(x)} = \frac{\lambda_n(x)}{\lambda_{n-1}(x)} \text{ or } \Delta_{q;w} \Delta_{q;w}^{n+1} y(x) = \frac{\lambda_n(x)}{\lambda_{n-1}(x)} \Delta_{q;w}^{n+1} y(x).$$

This is actually a first order difference equation in $\Delta_{q;w}^{n+1}y(x)$!

The first order homogeneous difference equation

We can actually solve the first order difference equation

$$\Delta_{q;w}^{n+1}y(x) = \frac{\Delta_{q;w}^{n+1}y(w_0)}{\prod_{i=0}^{\infty}[1+q^i((q-1)x+w)\frac{\lambda_n(x_i')}{\lambda_{n-1}(x_i')}]}.$$

With some more manipulation...

The first order homogeneous difference equation

$$\begin{split} \Delta_{q;w}^{n+1}y(x) &= \frac{\Delta_{q;w}^{n+1}y(w_0)}{\prod_{i=0}^{\infty}[1+q^i((q-1)x+w)\frac{\lambda_n(x_i')}{\lambda_{n-1}(x_i')}]} \\ \lambda_{n-1}(x)\Delta_{q;w}y(x) + s_{n-1}(x)y(x) &= \frac{\Delta_{q;w}^{n+1}y(w_0)}{\prod_{i=0}^{\infty}[1+q^i((q-1)x+w)\frac{\lambda_n(x_i')}{\lambda_{n-1}(x_i')}]} \\ \Delta_{q;w}y(x) &= -\frac{s_{n-1}(x)}{\lambda_{n-1}(x)}y(x) + \frac{\Delta_{q;w}^{n+1}y(w_0)}{\lambda_{n-1}(x)\prod_{i=0}^{\infty}[1+q^i((q-1)x+w)\frac{\lambda_n(x_i')}{\lambda_{n-1}(x_i')}]} \end{split}$$

This is a *non-homogeneous first order equation*. We can solve this too!

The first order non-homogeneous difference equation

We know the solution to the non-homogeneous case, thus

$$\Delta_{q:w}y(x) = -\frac{s_{n-1}(x)}{\lambda_{n-1}(x)}y(x) + \frac{\Delta_{q;w}^{n+1}y(w_0)}{\lambda_{n-1}(x)\prod_{i=0}^{\infty}[1+q^i((q-1)x+w)\frac{\lambda_n(x_i')}{\lambda_{n-1}(x_i')}]}$$

has solution

$$y(x) = \frac{y(w_0)}{\prod_{i=0}^{\infty} [1 - q^i((q-1)x + w) \frac{s_{n-1}(x_i')}{\lambda_{n-1}(x_i')}]}$$
$$- \sum_{i=0}^{\infty} \frac{\frac{q^i((q-1)x + w) \Delta_{q;w}^{n+1} y(w_0)}{\lambda_{n-1}(x_i') \prod_{i=0}^{\infty} \left[1 + q^i((q-1)x_i' + w) \frac{\lambda_n(x_i')}{\lambda_{n-1}(x_i')}\right]}}{\prod_{j=0}^{i} \left[1 - q^j((q-1)x + w) \frac{s_{n-1}(x_j')}{\lambda_{n-1}(x_j')}\right]}$$

which is the final solution.

qw-AIM What does this mean?

If we have a difference equation, we can check if it's qw-AIM sequence satisfies the terminating condition $\delta_n=0$. If it does then we have the solution!

Example 1

For q < 1

$$\Delta_{q;w}^2 y(x) = x \Delta_{q;w} y(x) - y(x)$$
$$\lambda_0(x) = x$$

and

$$s_0(x)=-1.$$

So $\lambda_1(x) = qx^2 + wx$ and $s_1(x) = -(qx + w)$. It follows that

$$\frac{s_0(x)}{\lambda_0(x)} = \frac{-1}{x} = \frac{-(qx+w)}{qx^2 + wx} = \frac{s_1(x)}{\lambda_1(x)}$$

Example 1

Our solution is

$$y(x) = \frac{1}{\prod_{i=0}^{\infty} \left[1 - q^{i}((q-1)x + w) \frac{s_{0}(x_{i})}{\lambda_{0}(x_{i})} \right]}$$

$$= \frac{1}{\prod_{i=0}^{\infty} \left[1 - q^{i}((q-1)x + w) \frac{-1}{x_{i}} \right]}$$

$$= \lim_{k \to \infty} \frac{1}{\prod_{i=0}^{k} \left[1 + \frac{q^{i}((q-1)x + w)}{(q^{i}x + w[i]_{q})} \right]}$$

$$= \lim_{k \to \infty} \frac{x}{q^{1+k} + [k+1]_{q}w}$$

$$= \frac{(1-q)x}{w}.$$

Hyper-geometric Equation

$$(ex^2+2\mathit{f} x+g)\Delta_{q;w}^2y(x)+(2\epsilon x+\gamma)\Delta_{q;w}y(x)+\tau y(x)=0$$

Hyper-geometric Equation

$$\Delta_{q;w}^2 y(x) = \underbrace{-\frac{2\epsilon x + \gamma}{ex^2 + 2fx + g}}_{\lambda_0(x)} \Delta_{q;w} y(x) \underbrace{-\frac{\tau}{ex^2 + 2fx + g}}_{s_0(x)} y(x)$$

Hyper-geometric Equation

$$\delta_1=s_1(x)\lambda_0(x)-\lambda_1(x)s_0(x)= au(2\epsilon+ au)$$
 so $\delta_1=0$ if $au=0$ or $au=-2\epsilon$

After substitution and simplification, the solution is

$$y(x) = x + \frac{\gamma}{2\epsilon}$$

Hyper-geometric equation

Going a step farthur
$$\delta_2 = \tau(2\epsilon + \tau)((1+q)(e+2\epsilon) + \tau)$$
 so if $\tau = -(1+q)(e+2\epsilon)$ we can get the solution

Hyper-geometric equation

$$y(x) = x^{2} + \frac{(2f+\gamma)(1+q)+2\epsilon w}{(1+q)e+2\epsilon q}x + \frac{2\epsilon gq + \gamma(2f_{\gamma}+2\epsilon w) + e((1+q)g + \gamma w)}{(e+2\epsilon)((1+q)e+2\epsilon q)}$$

And in general we can get a solution for each au as

$$au_n = -\left(\sum_{j=0}^{n-1} q^j\right) \left(2\epsilon + e\sum_{j=0}^{n-2} q^j\right)$$

Acknowledgments

Supervisors Dr. Nasser Saad and Dr. Shafiqul Islam School of Mathematical and Computational Sciences NSERC Summer Research Grant

References

- [1] Wolfgang Hahn.
 Über orthogonalpolynome, die q-differenzengleichungen genügen. *Mathematische Nachrichten*, 2(1-2):4–34, 1949.
- [2] Mahmoud Annaby, A. Hamza, and Khaled Aldwoah.

 Hahn difference operator and associated jackson-nörlund integrals.

 Journal of Optimization Theory and Applications, 154:133–153, 07 2012.
- [3] Hakan Çiftçi, Richard L Hall, and Nasser Saad.

 Asymptotic iteration method for eigenvalue problems.

 Journal of Physics A: Mathematical and General, 36(47):11807–11816, nov 2003.