Probabilistic graphical models, Assignment 3

Siddharth Bhat (20161105)

March 21st, 2020

6.8, Q1:

Monotonicity of VC dimension

Let $\mathcal{H}' \subseteq \mathcal{H}$. Show that $VCdim(\mathcal{H}') \leq VCdim(\mathcal{H})$.

Answer

Recall that the definition of VCdimis is that $VCdim(\mathcal{H})$ is the maximal size of a set $C \subseteq \mathcal{X}$ which can be *shattered* by \mathcal{H} .

Expanding the definition of shattering, we get that the $VCdim(\mathcal{H})$ is the maximal size of any set $C \subseteq X$ such that \mathcal{H} restricted to C is the set of all functions from C to $\{0, 1\}$.

Now, If $C \subseteq \mathcal{X}$ is shattered by $\mathcal{H}' \subseteq \mathcal{H}$, then this means that:

$$|\{f|_C : f \in H'\}| = 2^{|C|}$$

Since $\mathcal{H}' \subseteq \mathcal{H}$, we can replace \mathcal{H}' with \mathcal{H} in the above formula to arrive at:

$$|\{f|_C: f \in H\}| = 2^{|C|}$$

So, clearly, $VCdim(\mathcal{H}') \leq VCdim(\mathcal{H})$. However, there might be a set that is *larger* than C that can be shattered by \mathcal{H} . This lets us get the strict equality $VCdim(\mathcal{H}) < VCdim(\mathcal{H})$ in certain cases — that is, we *cannot* assert that $VCdim(\mathcal{H}) \leq VCdim(\mathcal{H}')$. For example, if we choose $\mathcal{H}' = \emptyset$ where \mathcal{H} is a hypothesis class with $VCdim(\mathcal{H}) = 1$. Then $VCdim(\emptyset) = 0 < 1 = VCdim(\mathcal{H})$.

6.8, Q2:

Given a finite domain \mathcal{X} , and a finite number $k \leq |\mathcal{X}|$ s, find and prove the VC dimension of:

A. Functions that assign 1 to exactly k elements of \mathcal{X}

$$\mathcal{H} \equiv \left\{ h \in \{0,1\}^X : |\{x : h(x) = 1\}| = k \right\}.$$

Solution

VC dimension is k/2.

B. Functions that assign 1 to at most k elements of \mathcal{X} Solution

VC dimension is k.

6.8, Q3:

Let \mathcal{X} be the boolean hypercube $\{0,1\}^n$. We define parity to be:

$$h_I: \mathcal{X} \to \{0, 1\}; h_I((x_1, x_2, \dots, x_n)) \equiv \sum_{i \in I} (x_i) \mod 2$$

What is the VC dimensions of the set of all parity functions? That is,

$$\mathcal{H}_{parity,n} \equiv \{h_I : I \subseteq \{1,2,\ldots n\}\}$$

Solution

Once again, unwrapping the definition, our hypothesis class can compute the sum modulo 2 of all of the subsets of $\vec{x} \in \mathcal{X}$. We need to use this to find the largest set $C \subseteq \mathcal{X} \equiv \{0,1\}^n$ such that $|\mathcal{H}_C| = 2^{|C|}$.

We can interpret elements $(h \in H)$ as a vector $h_I \in \{0,1\}^n$, where h_I is a vector with 1's at each index $i \in I$, and 0 at other indexes. That is:

$$h_I \in \{0,1\}^n$$
 $h_I[i] \equiv \mathbb{1}[i \in I] = \begin{cases} 1 & i \in I \\ 0 & \text{otherwise} \end{cases}$

We can reinterpret the function $h_I(x)$ as $h^T x$ where we have a vector space over the galois field GF_2 , where \oplus denotes XOR (recall that addition mod 2 is XOR).

$$h_I(x) = \bigoplus_{i \in I} x_i = \bigoplus_{i=1}^n \mathbb{1}[i \in I] x_i = \bigoplus_{i=1}^n h_I[i] x[i] = h_I^T x$$

Now, we can reinterpret the question of finding the VC dimension as finding the largest collection of vectors $C \subseteq \mathcal{X} = \{0,1\}^n$ such that the function C_{act} has full image, where the function C_{act} is:

$$C_{act}: \mathcal{H} \to \{0, 1\}^{|C|}$$

$$C_{act}: \{0, 1\}^n \to \{0, 1\}^{|C|}$$

$$C_{act}(h) \equiv (h(c_0), h(c_1), h(c_2), \dots h(c_n))$$

$$= (h^T c_0, h^T c_1, \dots, h^T c_n)$$

$$= h^T (c_0, c_1, \dots c_n)$$

If we regard $(c_0, c_1, c_2, \dots c_n) \subseteq \mathbb{R}^{n \times |C|}$ as a matrix, then we can see that C_{act} is a linear function.

Now, if the set C shatters \mathcal{H} , then:

- 1 The function C_{act} will produce every element in $\{0,1\}^{|C|}$
- 2 the function C_{act} will have full image.
- 3 This is only possible when the dimension of the domain is less than or equal to the dimension of the range.
- 4 the largest set that can be shattered is the largest matrix $C \subseteq R^{n \times |C|}$ such that the function C_{act} has full range.
- 5 Thus, $|C| \leq n$ for C_{act} to have full range.
- 6 We can achieve |C| = n by picking $C = I_{n \times n}$. In other words, the element c_i will be the ith row of the identity matrix. That is $c_i[j] = \mathbb{1}[i=j] = \begin{cases} 1 & \text{i} = \text{j} \\ 0 & \text{otherwise} \end{cases}$. Clearly, this C is shattered since the function C_{act} is the identity function which will produce every single output in $\{0,1\}^{|C|} = \{0,1\}^n = \{0,1\}^{|\mathcal{H}|}$.
- 7 |C| = n is the largest possible, since C_{act} is a function, and the size of its image is at most the size of the domain. Since the domain \mathcal{H} has 2^n elements, the image too can have at most 2^n elements, which it does when |C| = n, since $|\{0,1\}^{|C|}| = 2^{|C|}$.
- 7.5 |C| = n is the largest possible, since C_{act} is linear. For a linear function to be surjective, we need Dim(domain)Dim(range). Hence, $Dim(Domain) = Dim(\mathcal{H}) = n \geq Dim(range) = Dim(\{0,1\}^{|C|}) = c$. That is, $n \geq |C|$.

Hence, we conclude that $VCdim(\mathcal{H}) = n$.

6.8, Q5:

Let \mathcal{H}^d be the class of axis-aligned bounding boxes in \mathbb{R}^d . Show that the VC dimensions of \mathcal{H}^d is 2d.

Solution

Formally, we have

$$h_{\vec{l},\vec{r}}(\vec{p}) \equiv \begin{cases} 1 & l[i] \leq p[i] \leq r[i] \text{ for all } i \in \{1,2,\ldots,n\} \\ 0 & \text{otherwise} \end{cases} \qquad \mathcal{H}^d \equiv \left\{ h_{\vec{l},\vec{r}} : \mathbb{R}^d \to \{0,1\} \mid \forall \vec{l},\vec{r} \in \mathbb{R}^d \right\}$$

We claim that the set of points:

$$\begin{split} S &\equiv S^+ \cup S^- \\ S^+ &\equiv \{p[i] \equiv 1, p[j \neq i] \equiv 0 : i \in [d], p \in \mathbb{R}^d\} \\ S^- &\equiv \{p[i] \equiv -1, p[j \neq i] \equiv 0 : i \in [d], p \in \mathbb{R}^d\} \end{split}$$

shatters the hypothesis class \mathcal{H}^d .

We first show that $|H^d|$ restricted to S expresses all functions $S \to \{0,1\}$.

We will proceed by induction on the dimension n. In the case of (n = 2), we have already shown this as part of the course (shattering of 4 points by rectangles). We assume that this possible for n = d - 1. We need to show that this possible for n = d.

Let us say that we are currently trying to shatter a set T. If the points in T lie in a (d-1) subspace of

To show that a set of size 2d + 1 cannot be shatt

6.8, Q9:

Let \mathcal{H}_{si} (si for signed interval) be the class of signed intervals. That is: $\mathcal{H} \equiv \{h_{a,b,s} : a \leq b, s = \pm 1\}$ where

$$h_{a,b,s}(x) \equiv \begin{cases} s & a \le x \le b \\ -s & \text{otherwise} \end{cases}$$

Solution

We will first show that $VCdim(\mathcal{H}_{si})$ is 3 by exhaustive enumeration. We will then show a slicker method, by proving that if a hypothesis space \mathcal{H} has $VCdim(\mathcal{H}) = n$, then the VC dimension of the space that is $\mathcal{H}' \equiv \mathcal{H} \times 0$, 1 where the $\{0,1\}$ controls whether we should negate the output of $h \in \mathcal{H}$ will have $VCdim(\mathcal{H}') = \mathcal{H} + 1$. Now, clearly the above hypothesis class H_{si} is $\mathcal{H}_{interval} \times 0$, 1. We know that $VCdim(H_{interval}) = 2$, and hence $VCdim(H_{si}) = 3$.

Exhaustive enumeration

Let us consider all possibilities for three points $\{1,3,5\}$. We will write down for each subset the classifier to be used, thereby showing that this set is shattered. For a subset, we will need to pick a classifier that has value +1 on elements $s \in S$, and has value -1 on elements $s' \notin S$.

Hence, the set is shattered.

Consider any set of size 4. For concreteness, we pick the set $\{1,3,5,7\}$. Since we will only make use of the *ordering* of the elements, hence our argument will work for any set of size 4 (and higher). We claim that the subset $\{3,7\} \subseteq \{1,3,5,7\}$ cannot be classified by any hypothesis $h \in \mathcal{H}$ correctly. That is, no hypothesis $h \in \mathcal{H}$ can be such that h(1) = 1, h(3) = -1, h(5) = 1, h(7) = -1.

This is because every function $h_{a,b,s} \in H$ can change its value twice, when hopping from the boundary of being to the left of (a,b) to entering (a,b), and then again exiting (a,b) from the right:

$$h_{a,b,s}(x < a) = -s \mapsto h_{a,b,s}(a \le x \le b) = s \quad \text{change 1}$$

$$h_{a,b,s}(a \le x \le b) = s \mapsto h_{a,b,s}(x \ge b) = -s \quad \text{change 2}$$

However, in the case outlined above, to detect $\{3,7\}$, we would need to change sign three times: once from $1 \mapsto 3$, once again from $3 \mapsto 5$, and finally from $5 \mapsto 7$.

So, sets of size 4 cannot be shattered by \mathcal{H} . For even larger sets, we can concentrate what happens on any 4 elements and replicate the same argument.

Hence, $VCdim(\mathcal{H}) = 3$.

Augmentation

Let us consider a set \mathcal{X} , and a hypothesis class $\mathcal{H} \equiv \{f : \mathcal{X} \to \pm 1\}$. Let $VCdim(\mathcal{H}) = n$, and $|\mathcal{X}| > 2^n$ (if not, then X is already fully classified by \mathcal{H} , and there is no point studying how to make \mathcal{H} stronger).

We will now consider an augmented classifier space $\mathcal{H}' \equiv \mathcal{H} \times \{+1, -1\}$, with the action of elements of $(h, sqn) \in \mathcal{H}'$ being defined as:

$$act: \mathcal{H}' \to (\mathcal{X} \to \pm 1) \quad act(h, sqn)(x) \equiv h(x) \times sqn$$

we will often abbreviate (h, s)(x) instead of writing act(h, s)(x). We will now show that $VCdim(\mathcal{H}') = VCdim(\mathcal{H}) + 1$. this is the best we can hope for, since VCdim increases logarithmically for sizes in \mathcal{H} :

$$VCdim(\mathcal{H}') \le \log_2(|\mathcal{H}'|) = \log_2(2 \times |\mathcal{H}|) \le 1 + \log_2(|\mathcal{H}|) \stackrel{at best}{=} 1 + VCdim(\mathcal{H})$$

To show that we can shatter subsets $S \subseteq \mathcal{X}$ such that |S| = n + 1, pick any subset $S \subseteq X$ of size n + 1

For each value $v \in \{+1, -1\}^{|S|} = \{+1, -1\}^{n+1}$, we will need to produce a hypothesis $(h, sgn) = h' \in \mathcal{H}'$ such that (h, sgn)(S) = v.

TODO