

VLSI Testing 積體電路測試

Memory Testing

Professor James Chien-Mo Li 李建模
Lab. of Dependable Systems
Graduate Institute of Electronics Engineering
National Taiwan University

Course Roadmap (Design Topics)

Why Am I Learning This?

- Testing memory is important
 - Because many memories are needed in modern designs
- Memory testing is very different from logic testing

"The advantage of a bad memory is that one enjoys several times the same good things for the first time"

(Friedrich Nietzsche)

Outline

- Introduction
- Memory Fault Models
- Memory Test Algorithms
- Memory Fault Simulation (*not in exam)
- Memory Test Generation (*not in exam)
- Memory BIST (*not in exam)

Memory Testing

- Testing of memory is crucial for quality. Research started 1960's
 - Memory accounts for ~30% of semiconductor market (2019)
- Popular memory test items
 - Off-chip tests
 - * DC parametric test: e.g. leakage current, output voltage level
 - * AC parametric test: e.g. rise time, fall time
 - Functional test: e.g. march test (see 16.3)
 - Retention test: measure retention time of DRAM
 - Reliability test (Burn-in)
 - On-chip tests
 - * Error Detection and Correction (EDAC): on-line testing
 - Built-in Self Test (BIST)
 - * Built-in Self Diagnosis & Repair (BISDR)
- BIST important for System-on-chip (SOC) with embedded memories

Typical Memory Test Flow

Memory Diagnosis/Repair can Improve Yield

Types of Memories

	type	area	speed	retention	application	test method
•	SRAM	largest 6T	fastest <1ns	as long as power	embedded SRAM cache, registers	BIST
•	DRAM	medium 1T+1C	medium ~10ns	< sec.	embedded DRAM	BIST/ ATE
					on-board memory	ATE
	Flash	smallest 1T	slowest ~100μs	years	SSD, USB drive	ATE

Floating Gate Transistor [wikipedia]

DRAM Functional Model

Outline

- Introduction
- Memory Fault Models (focus on RAM)
 - Static faults
 - Single cell fault, Double cell fault, Address-decoder fault
 - Dynamic faults
 - Recovery fault, Retention fault
- Memory Test Algorithms
- Memory Fault Simulation (*not in exam)
- Memory Test Generation (*not in exam)
- Memory BIST (*not in exam)

RAM Fault Models

- Functional testing is commonly used for memories
 - Scan testing for logic is not applicable to memory. (Why? FFT)
- Functional fault models are behavior model for faulty memories
 - based on real defects, not imagination
- Popular RAM functional fault models
 - 1. Static fault models: faulty behavior does NOT change with time
 - single cell, double cell, address decoder
 - 2. Dynamic fault models: faulty behavior changes with time
 - recovery, data retention
- NOTE: many other RAM fault models (neighborhood pattern sensitive faults ...)

Different Memories Need Different Fault Models

RAM Fault Models (1) – single cell

- Stuck-At Fault (SAF)
 - a cell is always 0, SA0
 - a cell is always 1, SA1
- Stuck-Open Fault (SOF)
 - a cell cannot be accessed due to broken wire
- Transition Fault (TF)
 - a cell fails to
 - * Rise from 0 to 1 <↑/0>
 - * Fall from 1 to 0 $< \sqrt{1}$

```
NOTATION: <S/F>: a fault in a cell [van de Goor 91]
```

- S is value or operation activating fault , S∈{0, 1, ↑, ↓, ↑, ∀}
 - * ↑ is rising; ↓ is falling; ↑ is either ↑ or ↓; ∀ means any condition
- F is faulty value of cell , F∈ {0,1, ↑}
 - * 1 is complement

RAM Fault Models (2) – double cell

- Coupling Fault (CF): Victim cell is affected by Aggressor cell
 - 1.State Coupling Fault (CF_{st})
 - * if aggressor cell is in given state, victim cell is forced to 0 or 1
 - * 4 types: <0; 0/1> or <0; 1/0> or <1; 1/0> or <1; 0/1>
 - 2.Inversion Coupling Fault (CF_{in})
 - if aggressor cell rise/fall, victim cell is complemented
 - * 2 types: <↑; ∀/\$ > or < ↓; ∀/\$ >
 - 3.Idempotent Coupling Fault (CF_{id})
 - if aggressor cell rise/fall, victim cell is forced to 0 or 1
 - * 4 types: < ↑; 0/1> or < ↑; 1/0> or < ↓ ; 0/1 > or < ↓ ; 1/0 >

NOTATION: $\langle S_1; S_2/F \rangle$ faults in 2 cells

- S₁ is value or operation activating fault in aggressor
- S₂ is value or operation activating fault in victim
- F is faulty value of victim

CF Examples

QUIZ

Q: Consider $CF_{in} < \downarrow$, \uparrow >. Fill in values for two cases. Can we detect faults in both cases?

ANS:

ad dr	content
Α	1
V	1

ad dr	content	
Α	0	
V	?	

ad dr	content	
٧	1	
Α	1	

ad dr	content
V	0
Α	?

Address Order Matters

RAM Fault Models (3) – AF

- Address-Decoder Fault (AF) Four faulty behavior:
 - 1. Given a certain address, no cell will be accessed
 - 2. A certain cell is never accessed by any address
 - 3. A certain cell can be accessed by multiple addresses
 - **★4.** Given a certain address, multiple cells are accessed
 - > AND-type
 - OR-type

Only Consider #4 AF

AF Examples

QUIZ

Q1: Given OR-type AF between A₁ and A₂. Fault detected?

Q2: Given AND-type AF. Find a test to detect fault.

RAM Fault Models (4) – dynamic faults

- Data Retention Fault (DRF): data changed after a certain time
 - DRAM
 - 1. Charge leakage loose data in capacitor
 - 2. Refresh logic fails to refresh correctly
 - SRAM
 - Defective pull-up device inducing excessive leakage current which changes the state of cell
- Sense amplifier recovery fault
 - Sense amp. saturated after reading/writing a long string of 0 or 1
- Write recovery fault
 - A write followed by a read/write at a different location results in reading or writing at the same location due to slow address decoder

Time Consuming to Test Dynamic Faults

Summary

- Memory test important. Good diagnosis/repair can improve yield
- Popular RAM functional fault models
 - Static fault models
 - Single cell: Stuck-at (SAF), Stuck-open (SOF), Transition (TF)
 - Double cell coupling faults: CF_{in}, CF_{id}, CF_{st}
 - Address decoder fault (AF): AND-type OR-type
 - Dynamic fault models
 - Data retention faults (DRF). Recovery faults
- Fault model must be realistic
 - Different memories need different fault models

FFT

- Q1: Scan testing for logic is not applicable to memory.
 - Why no scan?
- Q2: AF has four faulty behavior.
 - We only consider #4. The others are easy to test, why?
 - 1. Given a certain address, no cell will be accessed
 - 2. A certain cell is never accessed by any address
 - 3. A certain cell can be accessed by multiple addresses
 - **☆4.** Given a certain address, multiple cells are accessed