Kinematic Model for a Three-Wheeled Robot with 120° Wheel Separation

Group3 MIA Phase 2

September 12, 2023

Forward Kinematics

The forward kinematics describe how the robot's wheel velocities (v_1, v_2, v_3) , linear velocities (V_x, V_y) , and total angular velocity (ω) are related.

Wheel Velocities (v_1, v_2, v_3)

The linear velocity of each wheel (v_i) is related to its angular velocity (ω_i) by $v_i = R \cdot \omega_i$, where R is the wheel radius.

Robot Velocities (V_x, V_y)

The robot's linear velocities in the x and y directions are determined by combining the individual wheel velocities. Since the wheels are positioned at 120° angles to each other, we can calculate V_x and V_y as follows:

Wheel(Linear) Velocities (v_1, v_2, v_3)

For wheel 1 (W1):

$$V_{W1X} = (-)V_{W1}\cos(\alpha)$$
$$V_{W1Y} = (+)V_{W1}\sin(\alpha)$$

For wheel 2 (W2):

$$V_{W2X} = (-)V_{W2}\cos(\alpha)$$

$$V_{W2Y} = (+)V_{W2}\sin(\alpha)$$

For wheel 3 (W3):

$$V_X = V_{W3} - V_{W1}\cos(\alpha) - V_{W2}\cos(\alpha)$$

$$V_Y = V_{W1}\sin(\alpha) - V_{W2}\sin(\alpha)$$

Figure 1: Kinematics of robot with three wheels

Robot Velocities (V_x, V_y)

The robot velocities in the Cartesian coordinates (V_x,V_y) are calculated based on the following equations:

$$V_{Wi}(1,2,3) = \omega \cdot r$$

 $\omega = \text{Angular velocity of the omni-directional wheel (rad/sec)}$

r = Omni-directional wheel radius (cm)

 $V_{\theta} = \text{Robot movement velocity}$

Given the wheels are symmetrically arranged 120 degrees apart, we have $~\alpha=60^{\circ}$

$$V_X = V_{W3} - \frac{V_{W1}}{2} - \frac{V_{W2}}{2}$$

$$V_Y = V_{W1} \left(\frac{\sqrt{3}}{2}\right) - V_{W2} \left(\frac{\sqrt{3}}{2}\right)$$

Total Angular Velocity (ω)

$$\omega = \frac{V_{W1}}{L} + \frac{V_{W2}}{L} + \frac{V_{W3}}{L}$$

Inverse Kinematics

The inverse kinematics allow us to determine the individual wheel angular velocities $(\omega_1, \omega_2, \omega_3)$ based on desired robot velocities (V_x, V_y) and total angular velocity (ω) .

Wheel Angular Velocities $(\omega_1, \omega_2, \omega_3)$

Given the desired robot velocities (V_x, V_y) and total angular velocity (ω) , the inverse kinematic equations express the individual wheel angular velocities in terms of these desired values:

$$\omega_1 = -\frac{1}{2} \cdot V_y + \frac{\sqrt{3}}{2} \cdot L \cdot \omega$$

$$\omega_2 = -\frac{1}{2} \cdot V_y - \frac{\sqrt{3}}{2} \cdot L \cdot \omega$$

$$\omega_3 = V_x$$

$$\begin{bmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{bmatrix} = \frac{1}{r} \begin{bmatrix} 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ 0 & -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} V_x \\ V_y \\ L \cdot \omega \end{bmatrix}$$

robot motion to the required wheel angular velocities or vice versa.

These equations account for the 120° wheel separation and relate the desired