

# Zastosowanie logiki matematycznej w procesie weryfikacji wymagań oprogramowania

Testerzy oprogramowania lub osoby odpowiedzialne za zapewnienie jakości oprogramowania oprócz wykonywania testów mogą zostać zaangażowani do sprawdzania poprawności zdefiniowanych wymagań. W specyfikacji oprogramowania a konkretnie w opisie wymaganych funkcjonalności można wyróżnić różne rodzaje zdań, w tym zdania logiczne, które są często niezbędne do opisania działania aplikacji. Może zaistnieć taka sytuacja, że pewne zdania logiczne umieszczone w specyfikacji oprogramowania są ze sobą sprzeczne.

Ale stosując logikę matematyczną można wyłapać pewne nieścisłości, a przez to znacznie podnieść jakość oprogramowania, zanim zostanie ono wytworzone.

Pisząc artykuł autor zakłada, że czytelnik zna pojęcia funkcji zdaniowych stosowanych w logice matematycznej jak *zaprzeczenie zdania, koniunkcja zdań, alternatywa zdań, implikacja, równoważność zdań* oraz tabele prawdy dla tych funkcji.

# 1. Wstęp

Aby stosować logikę matematyczną, należy znać oraz rozumieć jej podstawowe pojęcia oraz znać podstawowe funkcje zdaniowe. W niniejszym rozdziale zostaną przypomniane wiadomości, które mają za zadanie uporządkowanie wiedzy czytelnika.

#### 1.1 Formy zdaniowe

**Definicja 1.** [1] Dla dowolnej przestrzeni (tutaj zbiór zawierający pewne dane)  $X \neq \emptyset$ , wyrażenie w(x), w którym występuje zmienna x i które staje się zdaniem prawdziwym lub fałszywym nazywamy funkcją zdaniową (formą zdaniową) jednej zmiennej, której zakresem zmienności jest przestrzeń X.

**Definicja 2.** [1] Funkcją zdaniową określoną w pewnym zbiorze nazywamy każde zdanie zawierające zmienną, takie, że po wstawieniu w miejsce zmiennej dowolnego elementu z tego zbioru zdanie to staje się zdaniem logicznym.

Uwaga 1! W jednym zdaniu logicznym może istnieć więcej niż jedna zmienna.

Mówimy, że dla dowolnej funkcji zdaniowej w(x) element dziedziny funkcji spełnia funkcję zdaniową wtedy i tylko wtedy, gdy po podstawieniu go do tej funkcji zdaniowej w miejsce zmiennej otrzymamy zdanie prawdziwe. Zbiór tych wszystkich wartości zmiennej  $x \in X$ , przy których funkcja



zdaniowa w(x), staje się zdaniem prawdziwym, czyli zbiór tych x, które spełniają tę funkcję zdaniową, oznaczamy  $\{x \in X: w(x)\}$ .

#### Przykład. 1

Dla formy zdaniowej w(x): x-12 < 9 dziedziną jest R- zbiór liczb rzeczywistych. Wstawiając za x liczbę 3, otrzymujemy -4 < 9, czyli zdanie logicznie prawdziwe. Wstawiając za x liczbę 30, otrzymujemy 18 < 9- zdanie logiczne fałszywe. Mówimy, że liczba 3 spełnia tę funkcję zdaniową, a liczba 30 jej nie spełnia.

#### Przykład 2.

Równanie r(x): 2x + 7 = 0 jest formą zdaniową jednej zmiennej x, której dziedziną jest zbiór liczb rzeczywistych, a elementem spełniającym liczba -3, 5.

#### 1.2 Reguly dowodzenia i twierdzenia

Przeprowadzanie rozumowania w dowodach matematycznych składa się na ogół z bardzo prostych kroków polegających na stwierdzeniu poprawności pewnych zdań, czy też funkcji zdaniowych. Te elementarne ogniwa rozumowań dedukcyjnych nazywają się **regułami dowodzenia** [2]. Dowody matematyczne przeprowadza się najczęściej w celu potwierdzenia prawdziwości twierdzenia, które definiuje się następująco:

**Definicja 3.** [3] Twierdzeniem jest każde zdanie prawdziwe w teorii nie jest będące aksjomatem (*aksjomat to przyjęty warunek, który jest zawsze prawdziwy*). Twierdzenia często przyjmują postać implikacji:

$$(p1 \land p2 \land ... \land pn) \Rightarrow q(1),$$

gdzie zdania  $p1, p2, \ldots pn$  nazywamy założeniami twierdzenia, a zdanie q - tezą twierdzenia. Inną postacią twierdzeń jest postać równoważności:  $p \Leftrightarrow q$ . Takie twierdzenia są równoważne parze twierdzeń:  $p \Rightarrow q$  i  $q \Rightarrow p$ . Tu zdania p i q przyjmują na zmianę rolę założenia i rolę tezy [2]. Reguła dowodzenia może być przedstawiona również w postaci:

$$\frac{p1, p2, \ldots, pn}{q} (2).$$

Po zastąpieniu przecinków koniunkcją, kreski ułamkowej implikacją powstaje wyrażenie (1). Jeśli można udowodnić, że utworzone zdanie jest **tautologią [3].** (zawsze zdaniem prawdziwym, niezależnie od wartości zmiennych), to reguła (2) jest regułą dowodzenia.

#### Przykład 3. (Reguła odrywania)

Reguła odrywania mówi, że jeżeli prawdziwe są zdania p oraz  $p \Rightarrow q$ , to prawdziwe jest zdanie q.



#### Przykład 4. (Reguła dowodu nie wprost)

udowodnić zdanie *p*. Przypuśćmy, że chcemy W tym celu zaprzeczamy i dowodzimy, że z zaprzeczenia zdania p wynika fałsz, w postaci zdania  $r \land \sim r$ . Jeżeli zdanie p ma implikacji  $q \Rightarrow s$ , to zaprzeczeniem tego zdania jest zdanie  $q \land \sim s$ . Ta własność wynika z tautologii  $(q \Rightarrow s) \Leftrightarrow (\sim p \lor s)$ . Czyli zakładamy prawdziwość założeń, fałszywość tezy i dowodzimy, że stąd wynika fałsz z założeniami.

Istnieje sporo reguł dowodzenia. Inne reguły dowodzenia oraz przykłady tautologii można znaleźć w pozycjach [3,4].

### 2. Kwantyfikatory, zasięg zmiennych

Często w definicjach, twierdzeniach lub wnioskach pojawiają się zwroty "Dla każdego x", "istnieje y", "istnieje x dla każdego y". Takie sformułowania są często związane z zasięgiem zmiennych występujących w funkcji zdaniowej. Takie wyrażenia są używane, aby określić pewne relacje pomiędzy zmiennymi. Pojawiają się one również w wymaganiach funkcjonalnych podczas projektowania wymagań. Wspomniane sformułowania są oznaczane znakami, które nazywane są w matematyce **kwantyfikatorami**:

**Definicja 4.** [4] Zwroty *dla każdego x, dla każdego y* nazywamy kwantyfikatorami ogólnymi (dużymi) i notujemy

$$\bigwedge_{x}$$
,  $\bigwedge_{y}$  (3).

Zwroty dla pewnego x, istnieje y nazywamy kwantyfikatorami szczegółowymi (małymi) oraz notujemy

$$\bigvee_{x}$$
,  $\bigvee_{y}$  (4).

Zwroty dla każdego x, dla wszystkich x są równoważne. Analogicznie zwroty istnieje x, dla pewnego x też są równoważne. Z pojęciem kwantyfikatorów związany jest ich zasięg oraz związanie zmiennej z kwantyfikatorem.

**Definicja 5.** [4] Zasięgiem kwantyfikatora (ogólnego lub szczegółowego) jest ta część wyrażenia, będąca również funkcją zdaniową, **ujęta w parę jednakowych nawiasów**, z których pierwszy występuje bezpośrednio po kwantyfikatorze. Zmienna x, występująca w danym wyrażeniu jest **zmienną wolną** tego wyrażenia wtedy i tylko wtedy, gdy nie występuje w zasięgu danego kwantyfikatora.

**Definicja 6.** [4] Zmienna x jest związana przez dany kwantyfikator, którego wskaźnikiem jest ta zmienna, wtedy i tylko wtedy, gdy występuje w jego zasięgu oraz w zasięgu tym jest zmienną wolną.



Przykład 5. W wyrażeniu

$$\bigwedge_{x} [(\underline{x} + 1 = 3) \Rightarrow \bigvee_{x} (2\underline{\underline{x}} = 4)] (5)$$

litera x podkreślona jeden raz jest zmienną związaną przez duży kwantyfikator, gdyż występuje w jego zasięgu zamkniętym nawiasami kwadratowymi i jest w tym zasięgu zmienną wolną. Ale zmienna x podkreślona dwa razy nie jest związana z kwantyfikatorem dużym, chociaż występuje w jego zasięgu, ale w tym zasięgu nie jest zmienną wolną (jest związana przez mały kwantyfikator).

Budowanie wyrażeń matematycznych opartych na kwantyfikatorach jest dokładniej opisane w pozycji [4]. Nie każde wyrażenie matematyczne musi być poprawnie zbudowane, dlatego chcąc stosować kwantyfikatory oraz dowodzić prawdziwości postawionych tez należy znać reguły tworzenia poprawnych wyrażeń. W przypadku dowodzenia prawdziwości wyrażeń matematycznych ważne są dwie własności związane z zaprzeczeniem kwantyfikatorów:

$$\sim (\bigwedge p(x)) \Leftrightarrow \sim \bigvee \sim p(x) (6),$$

oraz

$$\sim (\bigvee p(x)) \Leftrightarrow \sim \bigwedge \sim p(x)$$
 (7).

# 3. Zastosowanie teorii w praktyce

Określanie prawdziwości zdań oraz stosowanie reguł dowodzenia logiki matematycznej może okazać się przydatne podczas weryfikowania wymagań dla oprogramowania. **Nie oznacza to jednak, że zawsze można w ten sposób postępować**. Niżej przedstawione przykłady są próbą przekonania osób związanych z zapewnieniem jakości oprogramowania, że warto podjąć próby stosowania logiki matematycznej, przynajmniej w niektórych przypadkach. Za pomocą kilku przykładów zostanie zaprezentowany sposób postępowania dla dowodzenia poprawności wymagań.

**Przykład 5**. Załóżmy, że należy zaprogramować metodę, która oblicza premię za miesiąc pracy dla pracownika pewnego magazynu. Wymagania zdefiniowane dla tej funkcjonalności są podane w tabeli:

| а | Premia dla pracownika jest zależna od trzech wartości: czasu - $t$ , ilości - $x$ , długości - trasy - $l$ , za pomocą których obliczane jest wyrażenie $p=\frac{xl}{t}$ , |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| b | Premia nie może być większa niż 1000 zł,                                                                                                                                   |
| С | Jeśli $p \in [0, 10)$ , to nie należy się premia,                                                                                                                          |
| d | Funkcja licząca premię to dana jest wzorem $f(p) = \begin{cases} 0, \ p \in [0, 10) \\ 10 * p, \ p \geq 10 \end{cases}$                                                    |



Zdania a,b,d, można przyjąć jako założenia, natomiast zdanie c jako tezę pewnego twierdzenia. Logiczna postać wspomnianego twierdzenia ma postać:

$$(a \land c \land d) \Rightarrow b.(8)$$

Implikacja jest fałszywa tylko wtedy , gdy prawdziwy jest jej poprzednik  $(a \land c \land d)$ , a fałszywy następnik (b). Przyjęte postępowanie to metoda dowodzenia nie wprost. Chcąc sprawdzić, czy wymagania dla obliczania premii nie są ze sobą sprzeczne, zakładamy, że fałszywe jest zdanie b i będziemy próbowali dojść do sprzeczności z którymś ze zdań a, c, d. Zamiast formalnego dowodu można najpierw próbować znaleźć przykład, który pokazuje że wymagania są niepoprawne lub poprowadzić dowodzenie zgodnie z zasadami matematyki. W tym przykładzie założymy, że premia może być większa niż 1000 zł.

Krok 1:  $\sim b$  – Premia jest większa niż 1000 zł, np. 1500.

Krok 2: Wobec tego  $f(p) = 1500 = 10 * p = 1500 \Leftrightarrow p = 150$ .

Krok 3: Biorąc 
$$x = 15$$
,  $l = 10$ ,  $t = 1$ , a wtedy  $p = \frac{xl}{t} = 150$ .

Okazało się, że istnieją takie wartości zmiennych w zdaniu a, że twierdzenie (8) staje się nieprawdziwe. W takim przypadku wymagania muszą być uzupełnione o pewne ograniczenia dla wartości zmiennych lub zmienić przepis funkcji f.

**Przykład 6**. Załóżmy, że pewna platforma z telewizją cyfrową udostępnia zniżki dla długoletnich klientów, zgodnie z zasadami:

| W1 | Klienci, którzy korzystają z usług platformy co najmniej 2,5 roku dostają zniżkę 30% na pakiet z programami dla dzieci                                               |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| W2 | Klienci długoletni, którzy korzystają z usług platformy co najmniej 3,5 roku dostają zniżkę 30% na pakiet z programami sportowymi                                    |
| W3 | Klient długoletni ma zostać poinformowany, że należy mu się zniżka na oba pakiety (sport i programy dla dzieci) jeśli nie korzysta ze zniżki na programy dla dzieci. |

Zadaniem programistów jest napisanie małej aplikacji, która będzie informowała o możliwości skorzystania ze zniżek. Wymagania 1,2 należy przyjąć jako założenia, natomiast wymagania 3 jako tezę. Należy sprawdzić, czy w wyżej zdefiniowanych wymaganiach nie występuje sprzeczność. W tym celu również można zastosować metody logiki matematycznej, zaczynając od definiowania pojedynczych zdań:

- o: Klient korzysta z usług platformy co najmniej 2,5 roku,
- p: Klient korzysta z usług platformy co najmniej 3,5 roku,
- q: Klient ma prawo do zniżki na programy dla dzieci,
- r: Klient ma prawo do zniżki na pakiet sportowy,
- s: Klient nie korzysta ze zniżki na programy dla dzieci.



Twierdzenie, które należy wykazać ma postać:

$$[(o \Rightarrow q) \land (p \Rightarrow r)] \Rightarrow [(p \land s) \Rightarrow (q \land r)] (5).$$

Wobec tego:

$$[(o \Rightarrow q) \land (p \Rightarrow r)] = 1, [(p \land s) \Rightarrow (q \land r)] = 0.$$

Biorac następnik implikacji

$$(p \wedge s) = 1, (q \wedge r) = 0.$$

1. Przyjmujemy, że zdanie  $r=0,\ q=1.$  Zdania p,s muszą mieć wartość 1. Podstawiając wartości. Podstawiając znane wartości do zdania (5), otrzymujemy:

$$[(o \Rightarrow 1) \land (1 \Rightarrow 0)] \Rightarrow [(1 \land 1) \Rightarrow (1 \land 0)].$$

Niezależnie od wartości zdania o wyrażenie (5) jest prawdziwe, ponieważ fałszywy jest poprzednik  $[(o \Rightarrow 1) \land (1 \Rightarrow 0)]$ , a wtedy cała implikacja jest prawdziwa.

2. Przyjmujemy, że zdanie  $r=1,\ q=0.$  Zdania p,s również muszą mieć wartość 1. podstawiając wartości. Podstawiając znane wartości do zdania (5), otrzymujemy:

$$[(o \Rightarrow 0) \land (1 \Rightarrow 1)] \Rightarrow [(1 \land 1) \Rightarrow (0 \land 1)].$$

Jeśli o=0, to zdanie jest prawdziwe. Jeśli o=1, to niestety ale zdanie okazuje się fałszywe. Wobec tego istnieje sprzeczność w wymaganiach lub brakuje jakiegoś wymagania. Analizując sytuację, łatwo zauważyć, że prawdziwe jest wyrażenie  $p\Rightarrow o$ , ponieważ jeśli dana osoba jest klientem 3,5 roku, to na pewno jest klientem 2,5 roku.

Taka sytuacja powinna być sygnałem dla osoby piszącej wymagania do napisania warunku, że klient długoletni **również jest klientem nie krócej niż 2,5 roku** i taki warunek powinien zostać zaimplementowany w aplikacji. Dzięki prawdziwość zdanie p automatycznie czyni prawdziwym zdanie o. Problem wydaje się "banalny", ale często w praktyce zapomina się o rzeczach "banalnych".

**Przykład 7.** Niech dane będą następujące wymagania dla portalu internetowego oferującego możliwość zamówienia soków. Wymagania dotyczące portalu prezentuje następująca tabela:

| W1 | Portal umożliwia wybór opakowań, w których butelki z sokiem pakowane są po 2, 4, 6 albo 12 sztuk.                |
|----|------------------------------------------------------------------------------------------------------------------|
| W2 | Portal pozwala zamówić zalogowanemu użytkownikowi pakiet zawierający nie więcej<br>butelek, niż rozmiar pakietu. |
| W3 | Można zamawiać tylko całe pakiety.                                                                               |

Łatwo zauważyć, że wyżej przedstawione wymagania W1 oraz W2 mogą być różnie zinterpretowane przez osobę, która programuje lub testuje.



Niech X będzie zbiorem użytkowników, a Y zbiorem pakietów z sokami. Analizując wyżej przedstawione wymagania, można ułożyć wyrażenia:

q(y): pakiety  $y \in Y$  są pakowane po 2, 4, 6 albo 12 sztuk,

p(x,y): zalogowany każdy użytkownik  $x \in X$  może dokonać zakupu tylko całych pakietów  $y \in Y$ ,

r(x,y): każdy użytkownik  $x \in X$  może dokonać zakupu pakietu  $y \in Y$ , który zawiera nie więcej butelek niż rozmiar pakietu.

Językiem logiki matematycznej można zapisać zdanie q(y) następująco:

$$\bigwedge_{y \in Y} [2|y \vee 4|y \vee 6|y \vee 12|y] (6).$$

Dla każdego zalogowanego użytkownika istnieje do wyboru pakiet, który można kupić, a więc prawdziwe jest wyrażenie:

$$\bigwedge_{x \in X} \bigvee_{y \in Y} [(2|y \vee 4|y \vee 6|y \vee 12|y) \Rightarrow p(x,y)] (7)$$

oraz, zgodnie z założeniami, prawdziwe jest również wyrażenie:

$$\bigwedge_{x \in X} \bigvee_{y \in Y} [(2|y \vee 4|y \vee 6|y \vee 12|y) \Rightarrow r(x,y)] (8).$$

Niech symbol  $\overline{y}$  oznacza ilość elementów w pakiecie. Jeżeli wyrażenie (8) jest prawdziwe oraz q(y) jest prawdą, to również r(x,y) musi być prawdą, ponieważ implikacja:

$$(2|y \lor 4|y \lor 6|y \lor 12|y) \Rightarrow r(x,y)$$

byłaby fałszywa w przeciwnym przypadku. Jeśli r(x, y) jest prawdą, to:

$$\bigwedge_{y \in Y} (\overline{y} \le 2 \ \lor \ \overline{y} \le 4 \ \lor \ \overline{y} \le 6 \ \lor \ \overline{y} \le 12),$$

a to z kolei oznacza, że:

$$\bigvee_{y \in Y} (\overline{\overline{y}} = 1 \ \lor \ \overline{\overline{y}} = 3 \ \lor \ \overline{\overline{y}} = 5 \ \lor \ \overline{\overline{y}} = 7),$$

co jest sprzeczne ze zdaniem q(y), ponieważ nie istnieją pakiety, które mają 1, 3, 5 lub 7 butelek. Z wyżej przeprowadzonego rozumowania wynika, że nie powinny być napisane jednocześnie wymagania W1 oraz W2, ponieważ mogą być one różnie zinterpretowane.



#### 4. Podsumowanie

Celem napisania artykułu była propozycja podjęcia prób zastosowania logiki matematycznej podczas weryfikacji wymagań dla oprogramowania, skierowana do osób związanych z kontrolą jakości oprogramowania, tym także testerów W oprogramowania. Z artykułu wynika, że istnieją wymagania, które można opisać formami zdaniowymi, zamieniać te formy w zdania logiczne, przeprowadzać rozumowanie, które pozwala krok po kroku sprawdzić, czy wymagania są poprawnie zdefiniowane czy są zdefiniowane w taki sposób, że ich interpretacja może doprowadzić sprzeczności pomiędzy funkcjonalnościami w oprogramowaniu. Takie podejście wymaga jednak znajomości zasad logiki matematycznej oraz znajomości zasad poprawnego budowania wyrażeń zdaniowych.

Z artykułu nie wynika również, że logika matematyczna zawsze zadziała podczas weryfikacji poprawności wymagań. Takie "śmiałe" stwierdzenie wymagałoby dowodu, aby uznać je za prawdziwe.

## 5. Bibliografia

- [1] http://www.math.edu.pl/funkcja-zdaniowa, data dostępu 01.06.2016.
- [2] http://www.math.edu.pl/twierdzenia-reguly-dowodzenia, data dostępu 01.06.2016.
- [3] H. Rasiowa, Wstęp do matematyki współczesnej, PWN 2015.
- [4] J. Słupecki, K. Hałkowska, K. Piróg-Rzepecka, Logika i teoria mnogości, PWN, W-wa 1978.

#### **Autor**

Marek Żukowicz jest absolwentem matematyki na Uniwersytecie Rzeszowskim. Obecnie pracuje jako tester. Jego zainteresowania skupiają się wokół testowania, matematyki, zastosowania algorytmów ewolucyjnych oraz zastosowania matematyki w procesie testowania. Interesuje się również muzyką, grą na akordeonie oraz na perkusji.