Potential Fields, Divergence

Steven Cheung 17 October 2022

Application of the gradient: Potential Vector Field:

A vector field is called **potential** if this field can be represented in the form:

$$f = -grad(U) = -\nabla U$$

where U(x, y, z) is a scalar function. This function is called the **scalar potential** of the field.

Applications of the gradient: Level Curves

Let f(x,y) = C be the equation for a level curve that passes through $\overrightarrow{r_0} = (x_0, y_0)$ ∇f exists and the $\nabla f \neq 0$

parametrize the level curve as $\underline{r}(t) = (x(t), y(t))$, with $\overrightarrow{r}(t_0) = (x_0, y_0)$

$$\frac{d}{dt}f(\overrightarrow{r}(t)) = \nabla f(\overrightarrow{r}(t)) \cdot \overrightarrow{r}'(t) = \frac{d}{dt}C = 0$$

 $\nabla f(\overrightarrow{r_0}(t)) \cdot \overrightarrow{a}(\overrightarrow{a_0}) = 0$ Gradient is perpendicular to the level curve!

Applications of the gradient: Tangent Plane

Problem: a surface is given by the equation f(x, y, z) = c, where c is a constant, Assume that ∇f exists and that $\nabla f(x_0, y_0, z_0) \neq \underline{0}$ at a point (x_0, y_0, z_0) . Find the tangent plane of the surface at the point (x_0, y_0, z_0) .

Solution:

$$\nabla f(x_0, y_0, z_0) \cdot (x - x_0, y - y_0, z - z_0) = 0$$

Important Idea: $\nabla f(x_0, y_0, z_0)$ is perpendicular to the tangent plane of the surface f(x, y, z) = C

The normal line to a surface f(x, y, z) = C passing through the point (x_0, y_0, z_0) is determined by:

$$\frac{x - x_0}{f_x'} = \frac{y - y_0}{f_y'} = \frac{z - z_0}{f_z'}$$

Divergence of a Vector Field:

Let $\underline{F} = (F_1, F_2, F_3)$ be a differentiable 3-dimensional vector field of 3 variables. We define the divergence of the vector field \underline{F} , as

$$divf = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}$$

We can also use the " ∇ " **notation for the divergence**. We have

$$\nabla \cdot \underline{F} = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}$$

Thus, formally, the divergence is the scalar product of ∇ and \underline{F} !

The divergence is a measure of the <u>rate of change</u> of a vector field in the radial direction!

Properties of the Divergence:

Let $\underline{F},\underline{G}:\mathbb{R}^n\to\mathbb{R}^n,\,n=2,3$ vector fields, and $\phi:\mathbb{R}^n\to\mathbb{R}$ a scalar function. Then

- $\nabla \cdot (\underline{F} + \underline{G}) = \nabla \cdot \underline{F} + \nabla \cdot \underline{G}$
- $\nabla \cdot (\lambda \underline{F}) = \lambda \nabla \cdot \underline{F} \text{ for } \lambda \in \mathbb{R}$
- $\nabla \cdot (\phi \underline{F}) = (\nabla \phi) \cdot \underline{F} + \phi(\nabla \cdot \underline{F})$
- \underline{F} is a constant then $\nabla \cdot \underline{F} = 0$. The converse is **NOT true**
- A vector field \underline{F} such taht $\nabla \cdot \underline{F} = 0$ is called **incompressible**