

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Факультет «Информатика и системы управления» Кафедра ИУ5 «Системы обработки информации и управления»

Курс «Технологии машинного обучения»

Отчет по лабораторной работе №2

«Обработка пропусков в данных, кодирование категориальных признаков, масштабирование данных»

Выполнила:

студент группы ИУ5-61Б

Павловская А.А.

21.04.2021

Проверил:

преподаватель каф. ИУ5

Гапанюк Ю.Е.

Цель лабораторной работы: изучение способов предварительной обработки данных для дальнейшего формирования моделей.

Задание:

Выбрать набор данных (датасет), содержащий категориальные признаки и пропуски в данных. Для выполнения следующих пунктов можно использовать несколько различных наборов данных (один для обработки пропусков, другой для категориальных признаков и т.д.)

Для выбранного датасета (датасетов) на основе материалов лекции решить следующие задачи:

- обработку пропусков в данных;
- кодирование категориальных признаков;
- масштабирование данных.

Набор данных: Human Resources Data Set

Текст программы и экранные формы с примерами выполнения программы (ячейки ноутбука):

ИУ5-61Б Павловская А.А. Лаб2 ТМО

```
In [3]:
```

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
sns.set(style="ticks")
```

Загрузка и первичный анализ данных

```
In [12]:
```

```
data = pd.read_csv('archive/HRDataset_v14.csv')
```

In [14]:

```
# размер набора данных data.shape
```

Out[14]:

(311, 36)

In [15]:

```
# типы колонок
data.dtypes
```

Out[15]:

Employee Name	object
EmpID	float64
MarriedID	float64
MaritalStatusID	float64
GenderID	float64
EmpStatusID	float64
DeptID	float64
PerfScoreID	float64
FromDiversityJobFairID	float64
Salary	float64
Termd	float64
PositionID	float64
Position	object
State	object
Zip	float64
DOB	object
Sex	object
MaritalDesc	object
CitizenDesc	object
HispanicLatino	object
RaceDesc	object
DateofHire	object
DateofTermination	object
TermReason	object
EmploymentStatus	object
Department	object
ManagerName	object
ManagerID	float64
RecruitmentSource	object
PerformanceScore	object
EngagementSurvey	float64
EmpSatisfaction	float64
SpecialProjectsCount	float64
LastPerformanceReview Date	object

DaysLateLast30 float64 Absences float64 dtype: object

In [13]:

Проверка на пропущенные значения data.isnull().sum()

Out[13]:

4 Employee Name 4 EmpID 4 MarriedID MaritalStatusID GenderID 4 EmpStatusID DeptID 4 PerfScoreID 4 4 FromDiversityJobFairID 4 Salary Termd 4 4 PositionID Position 4 State 4 4 Zip DOB 4 Sex 4 4 MaritalDesc 4 CitizenDesc 4 HispanicLatino RaceDesc 4 DateofHire 4 DateofTermination 211 TermReason 4 EmploymentStatus 4 4 Department 4 ManagerName 12 ManagerID RecruitmentSource 4 PerformanceScore 4 EngagementSurvey 4 EmpSatisfaction 4 SpecialProjectsCount 4 LastPerformanceReview Date 4 4 DaysLateLast30 4 Absences dtype: int64

In [16]:

Первые 5 строк датасета data.head()

Out[16]:

	Employee_Name	EmplD	MarriedID	MaritalStatusID	GenderID	EmpStatusID	DeptID	PerfScoreID	FromDiversity
Adinolfi	Wilson K	10026.0	0.0	0.0	1.0	1.0	5.0	4.0	
Ait Sidi	Karthikeyan	10084.0	1.0	1.0	1.0	5.0	3.0	3.0	
Akinkuolie	Sarah	10196.0	1.0	1.0	0.0	5.0	5.0	3.0	
Alagbe	Trina	10088.0	1.0	1.0	0.0	1.0	5.0	3.0	
Anderson	Carol	10069.0	0.0	2.0	0.0	5.0	5.0	3.0	

5 rows × 36 columns

total_count = data.shape[0]
print('Bcero ctpok: {}'.format(total_count))

Всего строк: 311

Обработка пропусков в данных

Удаление или заполнение нулями

```
In [18]:
```

```
# Удаление колонок, содержащих пустые значения data_new_1 = data.dropna(axis=1, how='any') (data.shape, data_new_1.shape)
```

Out[18]:

```
((311, 36), (311, 0))
```

In [19]:

```
# Удаление строк, содержащих пустые значения data_new_2 = data.dropna(axis=0, how='any') (data.shape, data_new_2.shape)
```

Out[19]:

```
((311, 36), (100, 36))
```

In [20]:

```
data.head()
```

Out[20]:

	Employee_Name	EmpID	MarriedID	MaritalStatusID	GenderID	EmpStatusID	DeptID	PerfScoreID	FromDiversity
Adinolfi	Wilson K	10026.0	0.0	0.0	1.0	1.0	5.0	4.0	
Ait Sidi	Karthikeyan	10084.0	1.0	1.0	1.0	5.0	3.0	3.0	
Akinkuolie	Sarah	10196.0	1.0	1.0	0.0	5.0	5.0	3.0	
Alagbe	Trina	10088.0	1.0	1.0	0.0	1.0	5.0	3.0	
Anderson	Carol	10069.0	0.0	2.0	0.0	5.0	5.0	3.0	

5 rows × 36 columns

In [21]:

```
# Заполнение всех пропущенных значений нулями
# В данном случае это некорректно, так как нулями заполняются в том числе категориальные колонки
data_new_3 = data.fillna(0)
data_new_3.head()
```

Out[21]:

	Employee_Name	EmplD	MarriedID	MaritalStatusID	GenderID	EmpStatusID	DeptID	PerfScoreID	From Diversity
Adinolfi	Wilson K	10026.0	0.0	0.0	1.0	1.0	5.0	4.0	
Ait Sidi	Karthikeyan	10084.0	1.0	1.0	1.0	5.0	3.0	3.0	
Akinkuolie	Sarah	10196.0	1.0	1.0	0.0	5.0	5.0	3.0	
Alagbe	Trina	10088.0	1.0	1.0	0.0	1.0	5.0	3.0	
∆nderson	Carol	10069 0	0.0	20	0.0	50	5.0	30	

Employee_Name EmplD MarriedID MaritalStatusID GenderID EmpStatusID DeptID PerfScoreID FromDiversity

5 rows × 36 columns

"Внедрение значений" - импьютация (imputation)

Обработка пропусков в числовых данных

```
In [22]:
```

```
# Выбор числовых колонок с пропущенными значениями
# Цикл по колонкам датасета
num cols = []
for col in data.columns:
   # Количество пустых значений
    temp null count = data[data[col].isnull()].shape[0]
    dt = str(data[col].dtype)
    if temp null count>0 and (dt=='float64' or dt=='int64'):
        num cols.append(col)
        temp perc = round((temp null count / total count) * 100.0, 2)
        print('Колонка \{\}. Тип данных \{\}. Количество пустых значений \{\}, \{\}%.'.format(co
1, dt, temp null count, temp perc))
Колонка EmpID. Тип данных float64. Количество пустых значений 4, 1.29%.
Колонка MarriedID. Тип данных float64. Количество пустых значений 4, 1.29%.
Колонка MaritalStatusID. Тип данных float64. Количество пустых значений 4, 1.29%.
Колонка GenderID. Тип данных float64. Количество пустых значений 4, 1.29%.
Колонка EmpStatusID. Тип данных float64. Количество пустых значений 4, 1.29%.
Колонка DeptID. Тип данных float64. Количество пустых значений 4, 1.29%.
Колонка PerfScoreID. Тип данных float64. Количество пустых значений 4, 1.29%.
Колонка FromDiversityJobFairID. Тип данных float64. Количество пустых значений 4, 1.29%.
Колонка Salary. Тип данных float64. Количество пустых значений 4, 1.29%.
Колонка Termd. Тип данных float64. Количество пустых значений 4, 1.29%.
Колонка PositionID. Тип данных float64. Количество пустых значений 4, 1.29%.
Колонка Zip. Тип данных float64. Количество пустых значений 4, 1.29%.
Колонка ManagerID. Тип данных float64. Количество пустых значений 12, 3.86%.
Колонка EngagementSurvey. Тип данных float64. Количество пустых значений 4, 1.29%.
Колонка EmpSatisfaction. Тип данных float64. Количество пустых значений 4, 1.29%.
Колонка SpecialProjectsCount. Тип данных float64. Количество пустых значений 4, 1.29%.
Колонка DaysLateLast30. Тип данных float64. Количество пустых значений 4, 1.29%.
Колонка Absences. Тип данных float64. Количество пустых значений 4, 1.29%.
```

In [23]:

```
# Фильтр по колонкам с пропущенными значениями data_num = data[num_cols] data_num
```

Out[23]:

	EmpID	MarriedID	MaritalStatusID	GenderID	EmpStatusID	DeptID	PerfScoreID	FromDiversityJobFairID	Salaı
Adinolfi	10026.0	0.0	0.0	1.0	1.0	5.0	4.0	0.0	62506
Ait Sidi	10084.0	1.0	1.0	1.0	5.0	3.0	3.0	0.0	104437
Akinkuolie	10196.0	1.0	1.0	0.0	5.0	5.0	3.0	0.0	64955
Alagbe	10088.0	1.0	1.0	0.0	1.0	5.0	3.0	0.0	64991
Anderson	10069.0	0.0	2.0	0.0	5.0	5.0	3.0	0.0	50825
Woodson	10135.0	0.0	0.0	1.0	1.0	5.0	3.0	0.0	65893
Ybarra	10301.0	0.0	0.0	0.0	5.0	5.0	1.0	0.0	48513
Zamora	10010.0	0.0	0.0	0.0	1.0	3.0	4.0	0.0	220450
Zhou	10043.0	0.0	0.0	0.0	1.0	3.0	3.0	0.0	89292

311 rows × 18 columns

In [24]:

```
# Tuctorpamma по признакам

for col in data_num:
    plt.hist(data[col], 50)
    plt.xlabel(col)
    plt.show()
```


In [26]:

```
# Используем встроенные средства импьютации библиотеки scikit-learn data_num_Absences = data_num[['Absences']] data_num_Absences.head()
```

Out[26]:

Absences

Adinolfi	1.0
Ait Sidi	17.0
Akinkuolie	3.0
Alagbe	15.0
Anderson	2.0

In [27]:

```
from sklearn.impute import SimpleImputer
from sklearn.impute import MissingIndicator
```

In [28]:

```
# Фильтр для проверки заполнения пустых значений indicator = MissingIndicator() mask_missing_values_only = indicator.fit_transform(data_num_Absences) mask_missing_values_only
```

Out[28]:

```
array([[False],
        [False],
        [False],
        [False],
        [False],
        [False],
       [False],
       [False],
       [False],
       [False],
       [False],
       [False],
       [False],
       [False],
       [False],
       [False],
```

```
[False],
[True],
[False],
[False],
```

```
[False],
[True],
[False],
[True],
[False],
```

[False],

```
[False],
```

[False],

```
[False],
[True],
[False],
```

[False],

```
[False],
       [False],
       [False],
       [False],
       [False],
       [False],
       [False]])
In [29]:
# Импьютация различными показателями центра распределения с помощью класса SimpleImputer
strategies=['mean', 'median', 'most frequent']
In [34]:
def test num impute(strategy param):
    imp num = SimpleImputer(strategy=strategy_param)
    data num imp = imp num.fit transform(data num Absences)
    return data_num_imp[mask_missing_values_only]
In [35]:
# Среднее значение
strategies[0], test num impute(strategies[0])
Out[35]:
('mean', array([10.22801303, 10.22801303, 10.22801303, 10.22801303]))
In [36]:
# Медиана
strategies[1], test_num_impute(strategies[1])
Out[36]:
('median', array([10., 10., 10., 10.]))
In [37]:
# Мода
strategies[2], test num impute(strategies[2])
Out[37]:
('most frequent', array([4., 4., 4., 4.]))
In [38]:
# Более сложная функция, которая позволяет задавать колонку и вид импьютации
def test num impute col(dataset, column, strategy param):
    temp_data = dataset[[column]]
    indicator = MissingIndicator()
    mask_missing_values_only = indicator.fit_transform(temp_data)
    imp num = SimpleImputer(strategy=strategy_param)
    data_num_imp = imp_num.fit_transform(temp_data)
    filled data = data num imp[mask missing values only]
    return column, strategy param, filled data.size, filled data[0], filled data[filled
data.size-1]
In [39]:
data[['Zip']].describe()
Out[39]:
```

Zip

--- -----

```
mean
      6612.508143
  std 17011.083885
      1013.000000
  min
 25%
      1895.500000
 50%
      2132.000000
 75%
      2355.000000
 max 98052.000000
In [40]:
test num impute col(data, 'Zip', strategies[0])
Out[40]:
('Zip', 'mean', 4, 6612.508143322476, 6612.508143322476)
In [41]:
test num impute col(data, 'Zip', strategies[1])
Out[41]:
('Zip', 'median', 4, 2132.0, 2132.0)
In [42]:
test num impute col(data, 'Zip', strategies[2])
Out[42]:
('Zip', 'most frequent', 4, 1886.0, 1886.0)
Обработка пропусков в категориальных данных
In [43]:
# Выбор категориальных колонок с пропущенными значениями
# Цикл по колонкам датасета
cat cols = []
for col in data.columns:
    # Количество пустых значений
    temp null count = data[data[col].isnull()].shape[0]
    dt = str(data[col].dtype)
    if temp null count>0 and (dt=='object'):
        cat cols.append(col)
        temp_perc = round((temp_null_count / total_count) * 100.0, 2)
        print('Колонка {}. Тип данных {}. Количество пустых значений {}, {}%.'.format(co
1, dt, temp null count, temp_perc))
Колонка Employee Name. Тип данных object. Количество пустых значений 4, 1.29%.
Колонка Position. Тип данных object. Количество пустых значений 4, 1.29%.
Колонка State. Тип данных object. Количество пустых значений 4, 1.29%.
Колонка DOB. Тип данных object. Количество пустых значений 4, 1.29%.
Колонка Sex. Тип данных object. Количество пустых значений 4, 1.29%.
Колонка MaritalDesc. Тип данных object. Количество пустых значений 4, 1.29%.
Колонка CitizenDesc. Тип данных object. Количество пустых значений 4, 1.29%.
Колонка HispanicLatino. Тип данных object. Количество пустых значений 4, 1.29%.
Колонка RaceDesc. Тип данных object. Количество пустых значений 4, 1.29%.
Колонка DateofHire. Тип данных object. Количество пустых значений 4, 1.29%.
Колонка DateofTermination. Тип данных object. Количество пустых значений 211, 67.85%.
Колонка TermReason. Тип данных object. Количество пустых значений 4, 1.29%.
Колонка EmploymentStatus. Тип данных object. Количество пустых значений 4, 1.29%.
Колонка Department. Тип данных object. Количество пустых значений 4, 1.29%.
Колонка ManagerName. Тип данных object. Количество пустых значений 4, 1.29%.
Колонка RecruitmentSource. Тип данных object. Количество пустых значений 4, 1.29%.
Колонка PerformanceScore. Тип данных object. Количество пустых значений 4, 1.29%.
Κοπουνο Tect DerformencePerview Deta Τωπ πουμών οbject Κοπωμεσπρο πυσπών συσμεμαά Λ
```

count

307.000000

```
MONIORNA BASCLETTOTHMANICENEVIEW_DAGE. IMIN MARRIMA ODJECC. MONIMIECTBO NYCIBIA SRAYERMIM 7, 1.27
In [44]:
# Импьютация категориальных признаков со стратегиями
# "most frequent" или "constant" с помощью класса SimpleImputer
cat temp data = data[['TermReason']]
cat temp data.head()
Out[44]:
              TermReason
  Adinolfi N/A-StillEmployed
   Ait Sidi
            career change
Akinkuolie
                   hours
   Alagbe N/A-StillEmployed
 Anderson
           return to school
In [45]:
cat temp data['TermReason'].unique()
Out[45]:
array(['N/A-StillEmployed', 'career change', 'hours', 'return to school',
        'Another position', 'unhappy', 'attendance', 'performance',
       'Learned that he is a gangster', 'retiring',
       'relocation out of area', 'more money', 'military', nan,
       'Fatal attraction', 'maternity leave - did not return', 'medical issues', 'gross misconduct'], dtype=object)
In [46]:
cat temp data[cat temp data['TermReason'].isnull()].shape
Out[46]:
(4, 1)
In [47]:
# Импьютация наиболее частыми значениями
imp2 = SimpleImputer(missing_values=np.nan, strategy='most_frequent')
data imp2 = imp2.fit transform(cat temp data)
data imp2
Out[47]:
array([['N/A-StillEmployed'],
       ['career change'],
       ['hours'],
       ['N/A-StillEmployed'],
       ['return to school'],
       ['N/A-StillEmployed'],
       ['N/A-StillEmployed'],
       ['N/A-StillEmployed'],
       ['N/A-StillEmployed'],
       ['N/A-StillEmployed'],
       ['Another position'],
       ['unhappy'],
        ['N/A-StillEmployed'],
       ['N/A-StillEmployed'],
       ['Another position'],
       ['attendance'],
       ['N/A-StillEmployed'],
       ['N/A-StillEmployed'],
       ['performance'],
       ['N/A-StillEmployed'],
       ['N/A-StillEmployed'].
```

```
..,.. ~~+++-mp+~1~~ ,,
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['career change'],
['Learned that he is a gangster'],
['N/A-StillEmployed'],
['retiring'],
['Another position'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['Another position'],
['N/A-StillEmployed'],
['relocation out of area'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['unhappy'],
['career change'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['performance'],
['N/A-StillEmployed'],
['unhappy'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['more money'],
['N/A-StillEmployed'],
['military'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['attendance'],
['N/A-StillEmployed'],
['attendance'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['military'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'].
```

```
['hours'],
['career change'],
['Fatal attraction'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['hours'],
['attendance'],
['military'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['career change'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['more money'],
['N/A-StillEmployed'],
['relocation out of area'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['retiring'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['hours'],
['N/A-StillEmployed'],
['relocation out of area'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['unhappy'],
['unhappy'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['more money'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['unhappy'],
['maternity leave - did not return'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['more money'],
['more money'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['attendance'],
['Another position'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['more money'],
['N/A-StillEmployed'],
['return to school'],
['N/A-StillEmployed'].
```

```
..,.. ~~+++-mp+~1~~ ,,
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['unhappy'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['more money'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['Another position'],
['hours'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['Another position'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['Another position'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['unhappy'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['return to school'],
['more money'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['performance'],
['unhappy'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['Another position'],
['Another position'],
['performance'],
['career change'],
['unhappy'],
['medical issues'],
['more money'],
['Another position'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['more money'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['Another position'],
['N/A-StillEmployed'],
['unhappy'],
['career change'],
['N/A-StillEmployed'],
['more money'],
['N/A-StillEmployed'],
['retiring'],
['N/A-StillEmployed'],
['return to school'],
['Another position'],
['attendance'],
['attendance'].
```

```
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['Another position'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['Another position'],
['N/A-StillEmployed'],
['hours'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['relocation out of area'],
['N/A-StillEmployed'],
['hours'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['maternity leave - did not return'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['career change'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['unhappy'],
['N/A-StillEmployed'],
['Another position'],
['Another position'],
['N/A-StillEmployed'],
['return to school'],
['military'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['medical issues'],
['medical issues'],
['unhappy'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['maternity leave - did not return'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['gross misconduct'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['Another position'],
['career change'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['hours'],
['unhappy'],
['Another position'],
['relocation out of area'],
['retiring'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['Another position'],
['N/A-StillEmployed'].
```

```
..,.. ~ ~ - - - - - - - - - - - - - , ,
       ['N/A-StillEmployed'],
       ['N/A-StillEmployed']], dtype=object)
In [48]:
# Пустые значения отсутствуют
np.unique(data imp2)
Out[48]:
array(['Another position', 'Fatal attraction',
       'Learned that he is a gangster', 'N/A-StillEmployed', 'attendance',
       'career change', 'gross misconduct', 'hours',
'maternity leave - did not return', 'medical issues', 'military',
       'more money', 'performance', 'relocation out of area', 'retiring',
       'return to school', 'unhappy'], dtype=object)
In [49]:
# Импьютация константой
imp3 = SimpleImputer(missing values=np.nan, strategy='constant', fill value='N/A')
data_imp3 = imp3.fit_transform(cat_temp_data)
data_imp3
Out[49]:
array([['N/A-StillEmployed'],
       ['career change'],
       ['hours'],
       ['N/A-StillEmployed'],
       ['return to school'],
       ['N/A-StillEmployed'],
       ['N/A-StillEmployed'],
       ['N/A-StillEmployed'],
       ['N/A-StillEmployed'],
       ['N/A-StillEmployed'],
       ['Another position'],
       ['unhappy'],
       ['N/A-StillEmployed'],
       ['N/A-StillEmployed'],
       ['Another position'],
       ['attendance'],
       ['N/A-StillEmployed'],
       ['N/A-StillEmployed'],
       ['performance'],
       ['N/A-StillEmployed'],
       ['N/A-StillEmployed'],
       ['N/A-StillEmployed'],
       ['N/A-StillEmployed'],
       ['N/A-StillEmployed'],
       ['career change'],
       ['Learned that he is a gangster'],
       ['N/A-StillEmployed'],
       ['retiring'],
       ['Another position'],
       ['N/A-StillEmployed'],
       ['N/A-StillEmployed'],
       ['N/A-StillEmployed'],
       ['Another position'],
       ['N/A-StillEmployed'],
       ['N/A-StillEmployed'],
```

```
['relocation out of area'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['unhappy'],
['career change'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['performance'],
['N/A-StillEmployed'],
['unhappy'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['more money'],
['N/A-StillEmployed'],
['military'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['attendance'],
['N/A'],
['attendance'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['military'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['hours'],
['career change'],
['Fatal attraction'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['hours'],
['attendance'],
['military'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['career change'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
F 137 /3 01 133 B
```

```
['N/A-StillEmployed'],
['more money'],
['N/A-StillEmployed'],
['relocation out of area'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['retiring'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['hours'],
['N/A-StillEmployed'],
['relocation out of area'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['unhappy'],
['unhappy'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['more money'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['unhappy'],
['maternity leave - did not return'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['more money'],
['more money'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['attendance'],
['Another position'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['more money'],
['N/A-StillEmployed'],
['return to school'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['unhappy'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['more money'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['Another position'],
['hours'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['Another position'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['Another position'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['unhappy'],
['N/A-StillEmployed'],
F 137 /3 01 133 B
```

```
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['return to school'],
['more money'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['performance'],
['unhappy'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['Another position'],
['Another position'],
['performance'],
['career change'],
['unhappy'],
['medical issues'],
['more money'],
['Another position'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['more money'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['Another position'],
['N/A-StillEmployed'],
['unhappy'],
['career change'],
['N/A-StillEmployed'],
['more money'],
['N/A-StillEmployed'],
['retiring'],
['N/A-StillEmployed'],
['return to school'],
['Another position'],
['attendance'],
['attendance'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['Another position'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['Another position'],
['N/A-StillEmployed'],
['hours'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['relocation out of area'],
['N/A-StillEmployed'],
['hours'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['maternity leave - did not return'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
['career change'],
['N/A-StillEmployed'],
['N/A-StillEmployed'],
F 137 /3 01 177 m
```

```
['N/A-StillEmployea'],
       ['N/A-StillEmployed'],
       ['N/A-StillEmployed'],
       ['unhappy'],
       ['N/A-StillEmployed'],
       ['Another position'],
       ['Another position'],
       ['N/A-StillEmployed'],
       ['return to school'],
       ['military'],
       ['N/A-StillEmployed'],
       ['N/A-StillEmployed'],
       ['N/A-StillEmployed'],
       ['medical issues'],
       ['medical issues'],
       ['unhappy'],
       ['N/A-StillEmployed'],
       ['N/A-StillEmployed'],
       ['maternity leave - did not return'],
       ['N/A-StillEmployed'],
       ['N/A-StillEmployed'],
       ['N/A'],
       ['gross misconduct'],
       ['N/A-StillEmployed'],
       ['N/A-StillEmployed'],
       ['Another position'],
       ['career change'],
       ['N/A-StillEmployed'],
       ['N/A-StillEmployed'],
       ['hours'],
       ['unhappy'],
       ['Another position'],
       ['relocation out of area'],
       ['retiring'],
       ['N/A-StillEmployed'],
       ['N/A-StillEmployed'],
       ['Another position'],
       ['N/A-StillEmployed'],
       ['N/A-StillEmployed'],
       ['N/A-StillEmployed']], dtype=object)
In [50]:
np.unique(data imp3)
Out[50]:
array(['Another position', 'Fatal attraction',
       'Learned that he is a gangster', 'N/A', 'N/A-StillEmployed',
       'attendance', 'career change', 'gross misconduct', 'hours',
       'maternity leave - did not return', 'medical issues', 'military', 'more money', 'performance', 'relocation out of area', 'retiring',
       'return to school', 'unhappy'], dtype=object)
In [52]:
data imp3[data imp3=='N/A'].size
Out [52]:
```

```
TIPOCOPACODALING NATOLOPHIA IDITIDIA TIPNOTIANOD D. INOLODDIO
In [53]:
cat enc = pd.DataFrame({'c1':data imp2.T[0]})
cat enc
Out [53]:
               С1
  0 N/A-StillEmployed
  1
      career change
  2
            hours
  3 N/A-StillEmployed
     return to school
306 N/A-StillEmployed
307
    Another position
308 N/A-StillEmployed
309 N/A-StillEmployed
310 N/A-StillEmployed
311 rows × 1 columns
Кодирование категорий целочисленными значениями - label encoding
In [54]:
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
In [55]:
le = LabelEncoder()
cat enc le = le.fit transform(cat enc['c1'])
In [56]:
cat_enc['c1'].unique()
Out[56]:
'Learned that he is a gangster', 'retiring',
       'relocation out of area', 'more money', 'military',
       'Fatal attraction', 'maternity leave - did not return',
       'medical issues', 'gross misconduct'], dtype=object)
In [57]:
np.unique(cat enc le)
Out[57]:
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16])
In [58]:
le.inverse transform([0, 1, 2, 3])
Out[58]:
array(['Another position', 'Fatal attraction',
       'Learned that he is a gangster', 'N/A-StillEmployed'], dtype=object)
```

Кодирование категорий наборами бинарных значений - one-hot encoding

```
In [59]:
ohe = OneHotEncoder()
cat enc ohe = ohe.fit transform(cat enc[['c1']])
In [60]:
cat enc.shape
Out[60]:
(311, 1)
In [61]:
cat enc ohe.shape
Out[61]:
(311, 17)
In [62]:
cat_enc_ohe
Out[62]:
<311x17 sparse matrix of type '<class 'numpy.float64'>'
with 311 stored elements in Compressed Sparse Row format>
In [63]:
cat enc ohe.todense()[0:10]
Out[63]:
0.],
    0.],
    [0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0.
    0.],
    0.],
    0.],
    0.],
    0.],
    0.],
    0.],
    0.]])
In [64]:
cat enc.head(10)
Out[64]:
      С1
0 N/A-StillEmployed
```

1

2

career change

hours

```
3 N/A-StillEmployed
```

- 4 return to school
- 5 N/A-StillEmployed
- 6 N/A-StillEmployed
- 7 N/A-StillEmployed
- 8 N/A-StillEmployed
- 9 N/A-StillEmployed

Pandas get_dummies - быстрый вариант one-hot кодирования

```
In [65]:
```

```
pd.get_dummies(cat_enc).head()
```

Out[65]:

	c1_Another position	c1_Fatal attraction	c1_Learned that he is a gangster	c1_N/A- StillEmployed		c1_career change	c1_gross misconduct	c1_hours	c1_maternity leave - did not return	c1_med iss
0	0	0	0	1	0	0	0	0	0	
1	0	0	0	0	0	1	0	0	0	
2	0	0	0	0	0	0	0	1	0	
3	0	0	0	1	0	0	0	0	0	
4	0	0	0	0	0	0	0	0	0	
4					18					•

```
In [66]:
```

```
pd.get_dummies(cat_temp_data, dummy_na=True).head()
```

Out[66]:

	TermReason_Another position	TermReason_Fatal attraction	TermReason_Learned that he is a gangster	TermReason_N/A- StillEmployed	TermReason_attendance	Term
Adinolfi	0	0	0	1	0	
Ait Sidi	0	0	0	0	0	
Akinkuolie	0	0	0	0	0	
Alagbe	0	0	0	1	0	
Anderson	0	0	0	0	0	
4						··· Þ

Масштабирование данных

```
In [67]:
```

```
from sklearn.preprocessing import MinMaxScaler, StandardScaler, Normalizer
```

MinMax Масштабирование

```
In [73]:
```

```
sc1 = MinMaxScaler()
sc1_data = sc1.fit_transform(data[['Salary']])
```

```
plt.hist(data['Salary'], 50)
plt.show()
```

In [75]:

50000

10

0

```
plt.hist(sc1_data, 50)
plt.show()
```

250000

150000

100000

200000

Масштабирование данных на основе **Z**-оценки - **StandardScaler**

In [76]:

```
sc2 = StandardScaler()
sc2_data = sc2.fit_transform(data[['Salary']])
```

In [77]:

```
plt.hist(sc2_data, 50)
plt.show()
```


In []: