Circular Partitions with Applications to Visualization and Embeddings

Anastasios Sidiropoulos (MIT)

Joint work with Krzysztof Onak (MIT)

Metric spaces

Metric space M=(X,D)

- Positive definiteness
 - D(p,q) = 0 iff p = q
- Symmetry

$$D(p,q) = D(q,p)$$

Triangle inequality

$$D(p,q) \leq D(p,r) + D(r,q)$$

Metric spaces

Metric embeddings

[Bourgain '85]

Metric embeddings

- Given spaces M=(X,D), M'=(X',D')
- Mapping f:X→X'
- Distortion c if:

$$D(x_1,x_2) \le D'(f(x_1),f(x_2)) \le c \cdot D(x_1,x_2)$$

Motivation

- Geometric interpretation
- Succinct data representation
 - Embedding into low-dimensional spaces
- Visualization
 - Embedding into the plane
 - Multi-dimensional scaling
- Optimization
 - Embedding into "easy" spaces
- Phylogenetic reconstruction
 - Embedding into trees

Known results

Host space	Distortion	Citation
O(log n) –dimensional L ₂ (also true for L _p)	O(log n)	[Bourgain '85], [Johnson- Lindenstrauss], [Alon], [Linial, London, Rabinovich '94], [Abraham, Bartal, Neiman '06]
d-dimensional L ₂	$ ilde{ ext{O}}$ (n ^{2/d})	[Matousek '90]

Absolute vs. relative embeddings

- Small dimension \rightarrow high distortion $(n^{\Omega(1/d)})$
 - E.g. embedding a cycle into the line
- What if a particular metric embeds with small distortion?
- Computational problem:

Approximate best possible distortion

Relative embeddings into R^d

Input	Host	Distortion	Citation
ultrametrics	R ^d	OPT ^{O(d)}	[Badoiu, Chuzhoy, Indyk, S '06]
ultrametrics	R ^d	$OPT ext{-}log^{O(d)}\Delta$	[Onak, S '08]

Input	Host	Hardness	Citation
ultrametrics	R ^d	NP-hard	[Badoiu, Chuzhoy, Indyk, S '06]
general	R ^d	$\Omega(n^{1/17d}) \cdot OPT$	[Matousek, S '08]

Embedding ultrametrics into Rd

Ultrametrics

- I(u): label of u
- D(u,v)=I(nca(u,v))

A lower bound on the optimal

- Many disjoint "areas"
- Small distortion → small total "area"

Lower bound: Main idea

[Badoiu, Chuzhoy, Indyk, S'07]

Estimate volumes via Brunn-Minkowski inequality

$$Vol(leaf) = O(1)$$

$$Vol(v) = \sum_{i=1}^{k} \left(\sqrt{Vol(u_i)} + l(v) \right)^2$$

Lemma:
$$OPT = \Omega(\sqrt{Vol(v)} / l(v))$$

Why does this work?

Approximation: Main idea

Hierarchical partitions

Hierarchical partitions

Theorem: [Onak, S '08]

There exist hierarchical partitions with poly-logarithmic aspect ratio.

The algorithm: Summary

- Estimate volumes
- Compute Hierarchical Partition
- Place each point in the center of its polygon

Our distortion = $OPT \cdot log^{O(1)} \Delta$

Hierarchical partitions and Treemap

[Onak, S '08]

Hierarchical partitions and Treemap

[Shneiderman '91]

Further directions

- Is this modified Treemap useful in practice?
- For d \geq 3, NP-hard to distinguish between distortion 100 and $\Omega(n^{0.01/d})$ [Matousek, S '08]
- Intriguing open problem:
 - Embedding into R^d , $d \le 2$.

Is there an algorithm achieving distortion OPT^{O(1)}?

Questions?

Computing circular partitions

It suffices to show how to perform one split:

Case 1: a is small

Computing circular partitions

It suffices to show how to perform one split:

Case 2: a is large

Cut along the diameter

