電子工学10

津山工業高等専門学校 情報工学科 講師電気通信大学 先進理工学科 協力研究員藤田一寿

真空管

- **用途**
 - ▶増幅
 - ▶ 整流

真空管でコンピュータを作る

- ► ENIAC (1946年)
 - ▶ 真空管17468本
 - ダイオード7200個
 - ▶ リレー1500個
 - ▶ 抵抗70000個
 - ・ コンデンサ10000個

▶ 設置スペース167m2

真空管の欠点

- ▶ 場所をとる
- ▶ 耐久性がない
- 製造コストが高い
- ・高温になる

トランジスタが解決する

トランジスタの発明

- ▶ トランジスタ(transistor)
 - ▶ トランス(trans)とレジスタ(resistor)を融合させた 造語
 - スイッチング、増幅の機能を持つ
- ・ベル研究所
 - ・半導体で増幅器を作りたい
 - 総指揮 ウィリアム・ショックレー
 - ・表面の性質と整流特性の評価 ウォルター・ブラッテン
 - ・半導体内部の性質 ジェラルド・ピアソン
 - ▶ 表面と内部の理論的研究 ジョン・バーディーン

ベル研究所とは

- ▶ AT&Tが1925年作った研究所
 - ▶ 様々な発見,発明を行う
 - ・ 熱雑音(ジョンソンノイズ)を発見
 - ▶ 物質波の研究 (ノーベル賞)
 - トランジスタ
 - ▶ 情報理論
 - ▶ カルノ一図(1953)
 - レーザー
 - MOS FET
 - ▶ 宇宙マイクロ波背景放射(ノーベル賞)
 - ▶ UNIX(リッチーとトンプソン)
 - CCD
 - C言語(リッチー)
 - 光通信
 - K&R
 - セルラー方式
 - ▶ 無線LAN
 - , など

- バーディーンが表面の研究に専念するよう提案
- ▶ 1947年偶然半導体の増幅作用を発見(接点型トランジスタ)
 - ブラッテン、バーディーン
- 1947年接合型トランジスタの発明
 - ショックレー
- 1956年ノーベル物理学賞
 - バーディーン、ショックレー、ブラッテン

接点型トランジスタ

ショックレーのその後

- 1955年 ショックレー半導体研究所所長
 - 人柄的にうまくいかない
- 1957年8人の裏切り者が出る
 - フェアチャイルドセミコンダクター設立
- 1968年集積回路のビジネスをやるためノイス、 ムーアがインテル設立

- ショックレーは優生学にハマり社会的に爪弾 き者に
- 葬式には息子すら来ない

バーディーンのその後

- 1951年イリノイ大学教授
 - ・超電導の研究
- ▶ 1957年バーディーン、クーパー、シェリーファー によりBCS理論発表
- 1972年ノーベル物理学賞受賞
 - ノーベル物理学賞を2度受賞したのはバーディーンのみ

バイポーラトランジスタ

▶ P型半導体とn型半導体をサンドイッチ状に接合したもの

B: ベース

E: エミッタ

C: コレクタ

機能

・ベースコレクタ間かける電圧を制御することで、エミッタコレクタ間の電流の流れを制御する。

npnトランジスタ

n型半導体

p型半導体

n型半導体

接合面付近のキャリアは熱拡散により移動する.

接合面付近のキャリアは中和され、接合面付近のキャリアは少なくなる.

平衡状態のエネルギーバンド

VCE=0, VBE>0

VCE=0, VBE>0

ベースエミッタ間では順バイアスになっているため、 空乏層は狭まる(障壁が低くなる)。

VCE=0, VBE<0

ベースエミッタ間では逆バイアスになっているため、 空乏層は広がる(障壁が高くなる)。

VCE>0, VBE=0

逆バイアスと なるため、障 壁が高くなる。 順バイアスと なるため、障 壁が低くなる。

VCE>0, VBE>0

障壁が低いので 飛び越えやすい。

VCE>0, VBE<0

ベースエミッタ間で逆バイアスがかかるため、障壁が高くなる。そのため、電流が流れにくくなる。

電界効果トランジスタ

- ユニポラトランジスタ
- ▶ 接合型FET
- Schottky Brier FET
- Metal Semiconductor FET
- ► MOS型FET

接合型FET

接合面付近では、拡散により電子とホールが結合

接合部に空乏層ができる

VG<0, VDS=0

ゲートソース間のpn接合では順バイアスとなり空乏層が狭まる。空乏層はドレインソース間に電流を流すとき障壁となるため、空乏層の大きさを制御することで電流の流れを制御できる。

ドレインソース間にバイアスをかけた時

ドレイン側がプラスなのでn型半導体のキャリアである電子が減る。減ることでドレインに近い側の空 乏層が広がる。

ピンチオフ

VDSをさらに大きくすると、広がった空乏層が接触する。このことをピンチオフという。 空乏層の部分にはキャリアが少ないため

ピンチオフが起こるまでは、オームの法則にしたがって電流が流れる。ピンチオフが起こると、空乏層を電子が飛び越える必要がある。そのため電流は一定にしか流れなくなる。

(中島, 藤原, 電子工学基礎)