Database Management Systems

Sumayyea Salahuddin (Lecturer)
Dept. of Computer Systems Eng.
UET Peshawar

Overview

- Introduction to the Database
 - Database Definitions
 - Databases & Traditional File Processing Systems
 - Advantages of Database Approach
 - Costs & Risks of the Database Approach
 - Functions of Database Management Systems (DBMS)
 - Range of Database Applications
 - Components of the Database Environment
 - Evolution of Database Systems

Definitions

• <u>Data:</u>

- Meaningful facts, text, graphics, images, sound, video segments
- Usually in certain context e.g. Class Roster

Figure 1-1a: Data in Context

Definitions

• Information:

Data processed to be useful in decision making and interpretation

Figure 1-1b: Summarized Data/Information

Database & Its Terminologies

- <u>Database</u>: An organized collection of logically related data
- Field (data item):
 - Smallest unit of information in database
 - It is collection of related characters (numeric or alphabetic) that define a characteristic of an entity (person, place or thing)

Record:

- Fields are grouped together to form records.
- It is collection of related (logically connected) fields
- File: collection of similar types of records

Example – A Customer Table

Degree(5)

Definitions (Cont.)

 <u>Database Management System (DBMS)</u>: a system software that facilitates the management of a database and controls the access to the data stored in the database

Definitions (Cont.)

- <u>Database System:</u> system consisting of a database, a DBMS, hardware and people
- <u>Database Design:</u> The design of the database structure that will be used to store and manage data (not the design of the DBMS)
- <u>Data Dictionary (DD) or Metadata</u>: describes the characteristics of data stored in a database and the interrelationships among data

Table 1-1: Metadata

Description of the properties or characteristics of the data, including data types, field sizes, allowable values, and documentation

TABLE 1-1	Example	Metadata	for	Class Roster
-----------	---------	-----------------	-----	--------------

Data Item	Metadata					
Name	Туре	Length	Min	Max	Description	Source
Course	Alphanumeric	30			Course ID and name	Academic Unit
Section	Integer	1	1	9	Section number	Registrar
Semester	Alphanumeric	10			Semester and year	Registrar
Name	Alphanumeric	30			Student name	Student IS
ID	Integer	9			Student ID (SSN)	Student IS
Major	Alphanumeric	4			Student major	Student IS
GPA	Decimal	3	0.0	4.0	Student grade point average	Academic Unit

Figure 1-2: Three File Processing Systems at Pine Valley Furniture

Disadvantages of File Processing

- Program-Data Dependence
 - All programs maintain metadata for each file they use
- Data Redundancy (Duplication of data)
 - Different systems/programs have separate copies of the same data
- Limited Data Sharing
 - No centralized control of data
- Lengthy Development Times
 - Programmers must design their own file formats
- Excessive Program Maintenance
 - 80% of information systems budget

Figure 1-2: Three File Processing Systems at Pine Valley Furniture

Duplicate Data

Problems with Data Dependency

- Each application programmer must maintain their own data
- Each application program needs to include code for the metadata of each file
- Each application program must have its own processing routines for reading, inserting, updating and deleting data
- Lack of coordination and central control
- Non-standard file formats

Problems with Data Redundancy

- Waste of space to have duplicate data
- Causes more maintenance headaches
- The Biggest Problem
 - When data changes in one file, could cause inconsistencies
 - Compromises data integrity

Solution: The DATABASE Approach

Requires a Database Management System (DBMS)

Database Management System

 A DBMS is a data storage and retrieval system which permits data to be stored non-redundantly while making it appear to the user as if the data is well-integrated.

Database Management System

Advantages of Database Approach

- Program-Data Independence
 - Metadata stored in DBMS, so applications don't need to worry about data formats
 - Data queries/updates managed by DBMS so programs don't need to process data access routines
 - Results in: increased application development and maintenance productivity
- Minimal Data Redundancy
 - Leads to increased data integrity/consistency
- Improved Data Sharing
 - Different users get different views of the data
- Enforcement of Standards
 - All data access is done in same way
- Improved Data Quality
 - Constraints, data validation rules

Advantages of Database Approach (Cont.)

- Better Data Accessibility/Responsiveness
 - Use of standard data query language (SQL)
- Security, Backup/Recovery, Concurrency
 - Disaster recovery is easy

Database Vs. File Systems

The Database Approach

- The enterprise data model is a graphical model that shows the high-level entities for the organization and the relationships among those entities.
- Enterprise data model is represented with the help of a E-R diagram that shows the entities, attributes, relations, connectivities and cardinalities.

Segment from Enterprise Data Model

Figure 1-3b: Segment from Enterprise Data Model

Physical Tables in MS Access

- Each table row (tuple) represents a single entity occurrence within the entity set.
- Each table column represents an attribute, and each column has a distinct name.
- Each column/row intersection represents a single data value.
- All values in a column must confirm to the same data format.
- The order of the row and columns is immaterial to the DBMS.
- Each table must have an attribute or a combination of attributes that uniquely identifies each row.
 Database Management Systems, Spring 2021, DCSE.

Physical Tables in MySQL

Customer

Product

Pine Valley Furniture Company (PVFC)

Metadata in MySQL

Customer

Order

Order Line

Costs & Risks of the Database Approach

- Up-front Costs
 - Installation Management Cost and Complexity
 - Conversion Cost
- Ongoing Costs
 - Requires New, Specialized Personnel
 - Need for Explicit Backup & Recovery
- Organizational Conflicts
 - Old habits die hard

Components of the Database Environment

- CASE Tools computer-aided software engineering
- Repository centralized storehouse of metadata
- Database Management System (DBMS) software for managing the database
- Database storehouse of the data
- Application Programs software using the data
- User Interface text and graphical displays to users
- Data Administrators personnel responsible for maintaining the database
- System Developers personnel responsible for designing databases and software
- End Users people who use the applications and databases

Figure 1-5:
Components
of the
Database
Environment

The Range of Database Applications

- Personal Databases (Standalone desktop database)
- Two-Tier Client/Server Databases (Local area network with <100 users)
- Multi-Tier Client/Server Database (Local area network with <1000 users)
- Enterprise Database wide-area network (more than thousands of users)

Typical Data from a Personal Computer Database

Customer

Contact History for Customer

Date	Time	Contact	Comments
08/04/2000	10:00 AM	Roberts	Review proposal
08/19/2000	08:00 AM	Roberts	Revise schedule
09/10/2000	09:00 AM	Pearson	Sign contract
09/21/2000	02:00 PM	Roberts	Follow up

Figure 1-6: Two-Tier Database with Local Area Network

Figure 1-7: Three-Tier Database with Local Area Network

An Enterprise Data Warehouse

Summary of Database Applications

TABLE 1-5 Summary of Database Applications					
Type of Database / Application	Typical Number of Users	Typical Size of Database			
Personal	1	Megabytes			
Two-tier	5–100	Megabytes–gigabytes			
Three-tier	100–1000	Gigabytes			
Enterprise resource planning	>100	Gigabytes-terabytes			
Data warehousing	>100	Terabytes–petabytes			

Figure 1-13: Client/Server System for Pine Valley Furniture Company

A dedicated computer which provides database services to other computer programs or computers. Examples: Microsoft SQL Server, Oracle, DB2, and Informix.

Evolution of Database Systems

- Flat files 1960s 1980s
- Hierarchical 1970s 1990s
- Network 1970s 1990s
- Relational 1980s present

Figure 1-8a: Evolution of Database Technologies

- Object-oriented 1990s present
- Object-relational 1990s present
- Data warehousing 1980s present
- Web-enabled 1990s present
- Cloud 2000s present

Evolution of Database Systems (Cont.)

Figure 1-8b: Database Systems

Concept Map

Summary

- Introduced various terms
- Discussed traditional file processing system and its disadvantages
- Covered database approach, its advantages, and various costs
- Introduced Enterprise Data Model and its various constructs
- Discussed components of database environment
- Range of database applications
- Evolution of database systems