1.3 Algorithms and Convergence

- Algorithm: procedure that unambiguously describes a finite sequence of of steps in a specified order (can typically be written as pseudocode => no specific language required)
 - stable: small changes to input -> small changes to output
 - -conditionally stable: stable for some input
 - -unstable: not stable for any input

Let E₀>0 be error at initial step

En be error at nth step

Algorithm has:

-Linear error growth: if E, \approx c.n.E., c>0 constant

-Exponential error growth: if En \approx c^n.En, c>1 constant

Rmk. Linear error growth \rightarrow stable Exponential error growth \rightarrow unstable

Convergence Rate of Sequences

Let $\{\alpha_n\}_{n=1}^{\infty}$ be a sequence such that $\alpha_n \to \alpha$ as $n \to \infty$.

Q. How quickly is an approaching a?

Use a second known sequence {βn} to describe convergence behavior of {an}.

Def. Let $\alpha_n \rightarrow \alpha$ and $\beta_n \rightarrow \beta$ as $n \rightarrow \infty$.

If there exists K>0 and integer no such that |an-a| = K|Bn| for all nzno,

then an converges to a with rate/order of O(bn), written as an= a+O(bn)

Rmk. 1: βn is usually chosen as n^p , p>0(generally interested in largest possible p st $\alpha_n = \alpha + O(n^p)$)

Rmk. 2: If 0 < q < p and $\alpha_n = \alpha + O(n^p)$, then $\alpha_n = \alpha + O(n^q)$ e.g. $|\alpha_n - \alpha| \le K |\frac{1}{n^s}| \le K |\frac{1}{n^s}|$ $|\alpha_n - \alpha| \le K |\frac{1}{n^s}| \le K |\frac{1}{n^s}|$

$$a_{n} = \frac{n+1}{n^{2}} \qquad (\alpha = 0)$$

$$|\alpha_{n} - 0| = \left| \frac{n+1}{n^{2}} \right| = \left| \frac{1}{n} + \frac{1}{n^{2}} \right| \le 2 \left| \frac{1}{n} \right|$$

$$\rightarrow \alpha_{n} = 0 + O(\frac{1}{n})$$

$$\hat{\alpha}_{n} = \frac{n+1}{n^{3}} \qquad (\alpha = 0)$$

$$|\hat{\alpha}_{n} - 0| = \left| \frac{n+1}{n^{3}} \right| = \left| \frac{1}{n^{2}} + \frac{1}{n^{3}} \right| \le 2 \left| \frac{1}{n^{2}} \right|$$

$$\rightarrow \hat{\alpha}_{n} = 0 + O(\frac{1}{n^{2}})$$

$$\{\hat{\alpha}_{n}\} \quad \text{converges faster!}$$

Similarly for functions:

○. How fast is F approaching L? (as $h \rightarrow 0$)

Use a known function G(h), where $\lim_{n \to \infty} G(h) = 0$.

Def. Let $\lim_{h\to 0} F(h)=L$, $\lim_{h\to 0} G(h)=0$. If there exists K>0, ho>0 such that $|F(h)-L|\leq K|G(h)|$ for h<ho, then we write F(h)=L+O(G(h)).

Rmk. G(h) is usually chosen as h^p , p>0(generally interested in max $\{p: F(h)=L+O(h^p)\}$)

Ex. Analyze the convergence rate of $F(h)=\sin(h)-h\cos(h)$ as $h\to 0$ (L=0)

Note: by Taylor's Thm, $sin(h) = h - \frac{h^3}{6} cos(3)$ where $0 \le 1 \le h$ $cos(h) = 1 - \frac{h^2}{2} cos(n)$ where $0 \le n \le h$ $|sin(h) - hcos(h)| = |h - \frac{h^3}{6} cos(3) - h + \frac{h^3}{2} cos(n)|$ $\le |\frac{h^3}{6} cos(3)| + |\frac{h^2}{2} cos(n)|$ $\le (\frac{1}{6} + \frac{1}{2})|h^3|$

 \rightarrow sin(h) - hcos(h) = 0+0(h3)