1. Aim: To Verify Kischnoff's Voltage Law (KVL)

2. Apparatus:

ppara	tus:	1	Quantity
S-NO	Equipment name	specification of Range	,
1.	Regulated Variable	0-30V, 0-2A	
2.	Digital multimetes	0-30V	6
3.	Resistos	of different values	6
4.	connecting wises		

4. Steps for experiment:

- 1. The ciscuit is connected as shown in Fig.
- 2. The VoHage of DC supply was set at 12 V OC supply.
- 3. Different values of R, to R6 were taken and readings of V, to V6 were moted down.
- 4. Accordingly, only one set of reading was taken at 12 V Oc suppry.
- 5. The observations were second in Table.

5. Calculations/Theorems /Formulas used etc

- · Applying KVL in Loop ABGH, V= V1+V4
- · Applying KUL in loop BCFG, V4=V2+V5
- · Applying KUL in loop CDEF, Vg=V3+V6
- · Calculations are done for all the readings being taken

6. Observations/Discussions:

Sv-No	Voltmeter VI (V)	$\sqrt{011}$ Meters $\sqrt{2}$ (V)	Voltmeter V3 (V)	Voltmetes V4(V)	Voltmetes V5 (V)	Voltmetez
- 1	7.33	2.44	0.92	4.74	1.88	0.94

7. Percentage error (if any or applicable):

> 1. exxoz = 8.8%.

NotCored

8. Result/Output/Writing Summary:

$$V = V_1 + V_4$$
 $V = V_2 + V_5$
 $V = V_1 + V_4$
 $V = V_2 + V_5$
 $V = V_1 + V_4$
 $V = V_2 + V_5$
 $V = V_1 + V_4$
 $V = V_2 + V_5$
 $V = V_1 + V_4$
 $V = V_2 + V_5$
 $V = V_1 + V_4$
 $V = V_2 + V_5$
 $V = V_1 + V_4$
 $V = V_2 + V_5$
 $V = V_1 + V_4$
 $V = V_2 + V_5$
 $V = V_1 + V_2$
 $V = V_1 + V_2$
 $V = V_1 + V_2$
 $V = V_2 + V_3$
 $V = V_1 + V_4$
 $V = V_2 + V_5$
 $V = V_1 + V_2$
 $V = V_2 + V_3$
 $V = V_1 + V_2$
 $V = V_1 + V_2$
 $V = V_2 + V_3$
 $V = V_1 + V_2$
 $V = V_1 + V_2$
 $V = V_2 + V_3$
 $V = V_1 + V_2$
 $V = V_1 + V_2$
 $V = V_2 + V_3$
 $V = V_1 + V_2$
 $V = V_1 + V_2$
 $V = V_2 + V_3$
 $V = V_1 + V_2$
 $V = V_1 + V_2$
 $V = V_1 + V_2$
 $V = V_2 + V_3$
 $V = V_1 + V_2$
 $V = V_1 + V_$

9. Graphs (If Any): Image /Soft copy of graph paper to be attached here

Learning outcomes (What I have learnt):

- 1. Test and Verify KVL daw.
- 2. Designing of sexies & parallel circuit.
- 3. The measurement of Resistance
- 4. Applying Kirchhoff's Nottage Law
- 5. The measurement of Voltage of current.