

멀티모달 감정인식 모델

답러닝팀김예찬윤지영채소연한지원홍지우

3주차 계획

♣ ② 3주차 계획

트랜스포머 모델 학습

- 고안된 트랜스포머 모델을 학습시켜 음성 분석 모델과 텍스트 분석 모델과의 정확도 비교
- 우울증 데이터를 받아서 분석 우울증과 감정의 분포를 확인
- 음성인식 모델과 연동 / 음성을 텍스트화하여 트랜스포머 모델로 분석
- 플랫폼을 만들어서 직접 테스트할 수 있도록 만들 예정!!

- 고안된 트랜스포머 모델을 학습시켜 음성 분석 모델과 텍스트 분석 모델과의 정확도 비교
- 우울증 데이터를 받아서 분석 -더 이상.. 할 수 없게
- 음성인식 모델과 연동 / 음성을 텍스트하여 트랜스포머 모델로 분석 되었습니다...
- 플랫폼을 만들어서 직접 테스트할 수 있도록 만들 예정!!

♣ ② 3주차 계획

트랜스포머 모델 학습

- 고안된 트랜스포머 모델을 학습시켜 음성 분석 모델과 텍스트 분석 모델과의 정확도 비교
- 우울증 데이터를 받아서 분석 우울증과 감정의 분포를 확인
- 음성인식 모델과 연동 / 음성을 텍스트화하여 트랜스포머 모델로 분석
- 플랫폼을 만들어서 직접 테스트할 수 있도록 만들 예정!!

♪ ② 3주차 계획

우울증 데이터가 라벨링된 데이터를 제공하는 사이트 연구 목적/윤리에 맞게 사용 하겠다는 서약서 제출 필요

데이터를 미리 신청해놓았음에도 불구하고 하는 사이트

도저히 오지 않는 데이터파일 등 목적/윤리에 맞게 사용

결국... 데이터를 제공하는 사이트

비상대책회의를 열게되고라에 맞게 사용

0. 새로운 주제 소개

2022 휴먼이해 인공지능 논문경진대회 참가

2. 모집분야 || : 멀티모달 감정 데이터셋 활용 감정 인식 기술 분야

저번 주제 때 활용하던 멀티모달을 이용하여 대회에 참가하기로 결정

새로운 주제의 장단점

장점

대회이기 때문에 데이터셋이 기본적으로 다 주어져있다. 멀티모달 아이디어를 그대로 가져갈 수 있다.

영어데이터의 특징

장점

대회이기 때문에 데이터셋이 기본적으로 다 주어져있다. 멀티모달 아이디어를 그대로 가져갈 수 있다.

단점

데이터의 수가 매우 불균형 주제를 새로 정한만큼 발표때까지 죽었다고 생각하고 해야함

영어데이터의 특징

장점

대회이기 때문에 데이터셋이 기본적으로 다 주어져있다. 멀티모달 아이디어를 그대로 가져갈 수 있다.

단점

데이터의 수가 매우 불균형

주제를 새로 정한만큼 발표때까지 죽었다고 생각하고 해야함

최종 목표

- 데이터 분석, EDA를 통해 어떻게 진행할 지 확인
- 불균형한 데이터를 전처리
- 멀티모달을 이용하여 발화자의 감정을 예측하는 모델 만들기

ETRI 한국어 감정 데이터셋 - KEMDy20(일반인 대상 자유발화)

[80명의 만19~39세 성인 대상]

5분 내외의 주제 영상 시청

2명이서 5분 내외의 자유대화

[성인 10명의 외부 감정 관찰자]

- 1. 7가지 감정 레이블
- 2. 5단계 각성도

3. 긍/부정도

평가

KEMDy20 데이터셋 구성

디렉토리	구성	설명
annotation	.CSV	발화에 대한 관찰자의 <mark>감정 레이블 평</mark> 가
wav	.wav / .txt	자유대화 발화 음성/텍스트 파일
EDA	.CSV	E4 장치로 수집한 <mark>피부전도도</mark> 데이터
IBI	.CSV	E4 장치로 수집한 <mark>심장박동수</mark> 데이터
TEMP	.CSV	E4 장치로 수집한 <mark>체온</mark> 데이터

텍스트 데이터 길이

텍스트의 길이를 전처리한 결과 대략 5~12단어로 구성되어 있는 것을 확인할 수 있음

음성 데이터 길이

음성의 길이를 전처리한 결과 대략 3초~8초로 구성되어 있는 것을 확인할 수 있음

감정분포

Neutral

Neutral(중립) 감정의 비율이

불균형적으로 큼

다수의 감정이 라벨링 된 데이터 존재

감정분포 - 세션별

감정분포 불균형 문제 다수 감정 라벨링

감정분포(Neutral) - 긍/부정도

(부정) 1-2-3-4-5 (긍정)

Neutral은

3에 가장 많이 분포되어 있으며 정규분포를 따름

감정분포 – 긍/부정도

(부정) 1-2-3-4-5 (긍정)

Angry는 부정, Happy는 긍정에 대체로 분포되어 있음

감정분포(Neutral) - 각성도

(이완) 1-2-3-4-5 (각성)

Neutral은

3~3.5에 가장 많이 분포되어 있으며 정규분포를 따름

감정분포 – 각성도

(이완) 1-2-3-4-5 (각성)

Sad는 이완, Happy는 중립부터 각성까지 분포되어 있음

2. 분석 흐름

2. 분석흐름

분석 흐름 - 음성 전처리

KEMDy20 – wav

Sess01_script01_User001F_001.wav

Sess01_script01_User001F_002.wav

Sess01_script03_User001F_012.wav

Sess01_script06_User002M_043.wav

Mel Spectrogram

Augmentation

감정 불균형 해소

▶ ② 4-1. 음성 감정 분류

분석 흐름 - 텍스트 전처리

./wav/~/.txt

- : 발화세그먼트의 음성 이외 사운드상황에 대한 태킹
 - c/: 휴지구간이 확보되지 않은 연속발성(0.3초 미만)
 - n/: 발성 이외의 단발적인 소음
 - N/ : 음성 구간의 50% 이상 잡음이 포함된 상황
 - u/: 단어의 내용을 알아 들을 수 없는 상황
 - I/: 발성중 음음 소리가 포함된 상황 (small 'L')
 - b/: 발성 중 숨소리, 김침 소리가 포함된 상황
 - -*: 단어 중 일부만 알아 듣거나 알아들었으나 애매한 상황
 - + : 발성 중 말을 반복적으로 더듬는 상황
 - / : 간투사

토큰화 Augmentation 감정 불균형 해소

Index base Encoding

▶ ② 2. 분석흐름

분석 흐름 – 바이오 전처리

KEMDy20 - 바이오

▶ EDA : 피부전도도

🖿 IBI : 심장박동수

TEMP : 체온

시계열 군집화

사용 여부 결정

▶ ② 2. 분석흐름

3. 음성 데이터 전처리

▶ ② 3. 음성 데이터 전처리

Mel Spectogram

[Librosa] 패키지

멜(mel) 필터 수 = 128

자르는 간격 = 512

음성 전처리에 대한 설명은 [딥러닝팀 주제분석 1주차] 에서!

▶ ② 3. 음성 데이터 전처리

데이터 증강(augmentation) – Random Frequency Masking

4. 텍스트 데이터 전처리

텍스트 데이터

Audio	Text	Emotion	Arousal	Valence	Segment
[[[-46.271706 - 56.406227	n/ 아 친구들도? l/	[0. 0. 0. 1. 0. 0. 0.]	2.8	3.8	Sess01_script01_User001F_001
[[[-54.41670275	l/ 나는 생일?	[0. 0. 0. 1. 0. 0. 0.]	3.1	3.3	Sess01_script01_User001F_002
[[[-5.5659237e+01 - 5.0546646e+0	생일날이면은 b/ 내가 고기를 되	[0. 0. 0. 1. 0. 0. 0.]	3.1	3.3	Sess01_script01_User001F_003
[[[-63.03308 - 58.875835 - 57.511215	b/ 선물이라 이 보통 돈으로 주···	[1. 0. 0. 0. 0. 0. 0.]	3.1	3.6	Sess01_script01_User001F_004
		:			
[[[-5.3404884e+01 - 5.4611393e+0	u/ 그걸 점점 발전을 시키잖아, 사람처럼 느껴지게.	[0. 0. 0. 1. 0. 0. 0.]	3.7	2.4	Sess40_script06_User080F_024
[[[-5.7383400e+01 - 5.5686134e+0	뭐 진짜 막 어떤 욕심이 가득 찬 사람은 내 가	[0. 0. 0. 1. 0. 0. 0.]	3.5	2.7	Sess40_script06_User080F_025

불용어 지정

텍스트 분석에 도움이 되지 않는 음성 관련 효과음들에 대한 표시들을 모두 불용어로 지정

불용어 리스트				
C/	휴지구간이 확보되지 않은 연속발성			
n/	발성 이외의 단발적 소음			
N/	음성 구간의 50% 이상 잡음이 포함			
u/	단어의 내용을 알아들을 수 없음			
1/	발성 중 음음 소리가 포함			
b/	발성 중 숨소리, 기침 소리가 포함			
*	단어 중 일부만 알아듣거나 애매한 상황			
+	발성 중 말을 반복적으로 더듬는 상황			
/	간투사			

4. 텍스트 데이터 전처리

불용어 제거

Text

n/ 아 친구들도? I/

I/ 나는 생일?

생일날이면은 b/ 내가 고기를 되...

b/ 선물이라 이 보통 돈으로 주…

u/ 그걸 점점 발전을 시키잖아, 사람처럼 느껴지게.

뭐 진짜 막 어떤 욕심이 가득 찬 사람은 내 가...

Text

아 친구들도?

나는 생일?

생일날이면은 내가 고기를 되...

선물이라 이 보통 돈으로 주…

그걸 점점 발전을 시키잖아, 사람처럼 느 껴지게.

뭐 진짜 막 어떤 욕심이 가득 찬 사람은 내 가...

텍스트 데이터 토큰화 (koBERT)

너는 대선 때 투표할 수 있어?

사전 훈련된 KoBERT 토크나이저

E _내년 _대선 할 _있어 _투표 _때

최종 텍스트 데이터

Text

어 나는 워낙 많아 가지고 고등 고등학교 3학년 3학년 한 중반쯤에...

근데 이제 진지 이거 진짜예요 진짜 꾸민 게 아니라.

그리고 그걸 또 그걸 또 빌려달라고 하는 남자애들이 있다는 거랑.

아 뭐였지 그.

그때도 아마 믿었었을 때였으니까 엄마 아빠가 했겠지 엄마가...

그냥 오히려 군대 둘 다 갔다 왔잖아...

Text

[_어, _나는, _워낙, _많아, _가지고, _고, 등, _, 고등학교, _3, ...

[_근, 데, _이제, _진, 지, _이, 거, _진짜, 예, 요, _진짜, _꾸,...

[_그리고, _그, 걸, _또, _그, 걸, _또, _빌려, 달라, 고, _하는, ...

[_아, _뭐, 였, 지, _그, .]

[_그때, 도, _아, 마, _, 믿, 었, 었, 을, _때, 였, 으니, 까, _...

[_그냥, _오히려, _군, 대, _둘, _다, _, 갔다, _, 왔, 잖, 아, ...

불균형한 텍스트 데이터

불균형한 텍스트 데이터

상위 5개 감정을 제외한 감정들 제거

4. 텍스트 데이터 전처리

불균형한 텍스트 데이터

상위 5개 감정을 제외한 감정들 제거

불균형한 텍스트 데이터

텍스트 데이터 증강방법

방법	문장
원래 문장	중심을 잃고 목소리도 잃고 비난받고 사람들과 멀어지는 착각 속에
SR (동의어 대체)	<mark>핵심</mark> 을 잃고 목소리도 잃고 <mark>비판</mark> 받고 <mark>인간</mark> 들과 멀어지는 <mark>혼란</mark> 속에
RI (단어 임의 대체)	<mark>돈</mark> 을 잃고 목소리도 잃고 비난받고 사람들과 멀어지는 착각 속에
RS (단어 위치 변경)	중심을 잃고 <mark>사람들과</mark> 잃고 비난받고 <mark>목소리도</mark> 멀어지는 착각 속에
RD (단어 임의 삭제)	중심도 목소리도 사람들과 멀어지는 착각

불균형한 텍스트 데이터

텍스트 데이터 증강방법

방법	문장
원래 문장 SR, RI 와 SR (동의어'대체)	중심을 잃고 목소리도 잃고 비난받고 사람들과 멀어지는 착각 속에 같은 단어 대체 방법은 문장의 의미를 왜곡할 수 있다 고 판단! 학생을 앓고 목소리도 잃고리는 인간들과 멀어지는 온단속에
RI (단어 임의 대체)	<mark>돈</mark> 을 잃고 목소리도 잃고 비난받고 사람들과 멀어지는 착각 속에
RS (단어 위치 변경)	중심을 잃고 <mark>사람들과</mark> 잃고 비난받고 <mark>목소리도</mark> 멀어지는 착각 속에
RD (단어 임의 삭제)	중심도 목소리도 사람들과 멀어지는 착각

불균형한 텍스트 데이터

텍스트 데이터 증강방법

방법	문장
원래 문장	중심을 잃고 목소리도 잃고 비난받고 사람들과 멀어지는 착각 속에
SR (동의어 대체)	핵심을 잃고 목소리도 잃고 <mark>비판</mark> 받고 <mark>인간</mark> 들과 멀어지는 <mark>혼란</mark> 속에
RI (단어 임의 대체)	<mark>돈</mark> 을 잃고 목소리도 잃고 비난받고 사람들과 멀어지는 착각 속에
RS (단어 위치 변경)	중심을 잃고 <mark>사람들과</mark> 잃고 비난받고 <mark>목소리도</mark> 멀어지는 착각 속에
RD (단어 임의 삭제)	중심도 목소리도 사람들과 멀어지는 착각

의미 왜곡 위험이 적은 RS, RD 선택

불균형한 텍스트 데이터

상위 5개 감정을 제외한 감정들 제거

라벨 별 250 % 증강!

바이오 데이터

Emotion	TEMP	IBI	EDA
[0. 0. 0. 1. 0. 0. 0.]	[34.55 34.55 34.55 34.55 34.55 34.55 34.55	[0.640625, 0.640625, 0.578125]	[4.412055, 4.536246, 4.661
[1. 0. 0. 0. 0. 0. 0.]	[34.59 34.59 34.59 34.59 34.59 34.59 34.59 34		[4.842703, 4.808134, 4.7940
[1. 0. 0. 1. 0. 0. 0.]	[34.61 34.61 34.61 34.61 34.61 34.61 34.61	[0.609375, 0.687500, 0.625000]	[5.233203, 4.979698, 4.932
[0. 1. 0. 1. 0. 0. 0.]	[34.63 34.63 34.63 34.63 34.63 34.63 34.63		[5.17896, 5.085496, 5.0752
[1. 1. 0. 0. 0. 0. 0. 0.]	[35.16 35.16 35.18 35.18 35.18 35.18 35.18	[0.687500, 0.593750, 0.609	[5.37357, 5.41198, 5.60915
	:		
[0. 0. 1. 1. 0. 0. 0.]	[35.21 35.21 35.18 35.18 35.18 35.18 35.21 35	[0.703125, 0.687500, 0.718	[2.717516, 2.961985, 3.0426
[0. 0. 0. 0. 0. 1. 0.]	[35.18 35.18 35.18 35.18 35.18 35.18 35.18	[0.640625]	[2.720076, 2.694477, 2.737
[0. 0. 0. 1. 0. 1. 0.]	[35.18 35.18 35.16 35.16 35.16 35.16 35.18 35	[0.671875]	[3.011903, 3.247412, 3.4778

바이오 데이터 – EDA(피부전도도)

	EDA CSV 파일 형태 - 📄 Sess01_script03_User002M.csv		
0	2020-0821-1212-52-000		
2.820783	2020-0821-1213-19-250		
2.55749	2020-0821-1213-21-500	Sess01_script03_User002M_001	
2.413964	2020-0821-1214-18-000	Sess01_script03_User002M_011	
	:		
2.493416	2020-0821-1215-19-750	Sess01_script03_User002M_019	
4.127432	2020-0821-1219-26-250		
샘플링 주기	데이터 측정 시간	해당 EDA값이 속하는 Segment ID	

대화 음성을 기반으로 측정

말을 하지 않을 때도 EDA 값이 찍힘

바이오 데이터 - EDA(피부전도도)

2020-08 11-1213-19-250 EDA CSV 파일	하다 Soam	nent ID에서
	Se 5501_script03_t ser002M_001	
Segment ID	Sess01_script03_l ser002M_0기	·벨 추출

바이오 데이터 - EDA(피부전도도)

EDA of Session 01 - Script 05 - User 002M

EDA of Session 29 - Script 01 - User 057F

바이오 데이터 - IBI(심장 박동수)

	IBI CSV 파일 형태 - 🦰 Sess18_script01_User035M.csv				
14.328125	0.921875	2020-0904-1017-19-328			
40	0.828125	2020-0904-1017-45-000			
395.84375	0.890625	2020-0904-1023-40-843	Sess18_script01_User035M_001		
446.9375	0.90625	2020-0904-1024-31-937	Sess18_script01_User035M_005		
	:				
681.984375	0.828125	2020-0904-1028-26-984	Sess18_script01_User035M_021		
726.03125	0.890625	2020-0904-1029-11-031			
샘플링 주기	IBI 값	데이터 측정 시간	해당 IBI값이 속하는 Segment ID		

바이오 데이터 - IBI(심장 박동수)

	ZUZU-U9U4-1U17-19-3Z8	
	EDA 파일과 같은 형태	
	2020-0904-1023-40-843	
	2020-0904-1024-31-937	
	같은 방식 으로 Plot 확인	Sess18, script01_User035M_021

바이오 데이터 - IBI(심장 박동수)

 \equiv

⑤ 5. 바이오 데이터 분석

1	「EMP CSV 파일 형태 - 📙 Sess20	_script05_User040M.csv
33.42	2020-0906-1134-34-000	
33.39	2020-0906-1134-42-250	
33.13	2020-0906-1139-34-750	Sess20_script05_User040M_001
33.11	2020-0906-1139-36-000	Sess20_script05_User040M_002
	÷	
33.05	2020-0906-1144-29-500	Sess20_script05_User040M_016
33.07	2020-0906-1145-25-750	
피부온도 값	데이터 측정 시간	해당 TEMP값이 속하는 Segment ID

Emotion	TEMP
[0. 0. 0. 1. 0. 0. 0.]	[34.55 34.55 34.55 34.55 34.55 34.55 34.55 34
[1. 0. 0. 0. 0. 0. 0.]	[34.59 34.59 34.59 34.59 34.59 34.59 34.59 34
[1. 0. 0. 1. 0. 0. 0.]	[34.61 34.61 34.61 34.61 34.61 34.61 34.61 34
[0. 1. 0. 1. 0. 0. 0.]	[34.63 34.63 34.63 34.63 34.63 34.63 34.63 34
[1. 1. 0. 0. 0. 0. 0.]	[35.16 35.16 35.18 35.18 35.18 35.18 35.18 35
	:
[0. 0. 1. 1. 0. 0. 0.]	[35.21 35.21 35.18 35.18 35.18 35.18 35.21 35
[0. 0. 0. 0. 0. 1. 0.]	[35.18 35.18 35.18 35.18 35.18 35.18 35.18 35
[0. 0. 0. 1. 0. 1. 0.]	[35.18 35.18 35.16 35.16 35.16 35.16 35.18 35

	Emotion
	[0. 0. 0. 1. 0. 0. 0.]
	[1. 0. 0. 0. 0. 0. 0.]
24개 -	[1. 0. 0. 1. 0. 0. 0.]
	[0. 1. 0. 1. 0. 0. 0.]
	[1. 1. 0. 0. 0. 0. 0.]
	[0. 0. 1. 1. 0. 0. 0.]
	[0. 1. 0. 0. 0. 0. 0.]
	:
	[0. 0. 0. 1. 0. 0. 1.]
	[0. 0. 1. 0. 0. 0. 0.]
	[0. 0. 0. 0. 1. 0. 0.]
	[0. 0. 0. 1. 1. 0. 0.]
	[0. 0. 0. 0. 0. 0. 1.]

	Emotion
	[0. 0. 0. 1. 0. 0. 0.]
	[1. 0. 0. 0. 0. 0. 0.]
24개 -	[1. 0. 0. 1. 0. 0. 0.]
	[0. 1. 0. 1. 0. 0. 0.]
	[1. 1. 0. 0. 0. 0. 0.]
	[0. 0. 1. 1. 0. 0. 0.]
	[0. 1. 0. 0. 0. 0. 0.]
	:
	[0. 0. 0. 1. 0. 0. 1.]
	[0. 0. 1. 0. 0. 0. 0.]
	[0. 0. 0. 0. 1. 0. 0.]
	[0. 0. 0. 1. 1. 0. 0.]
	[0. 0. 0. 0. 0. 0. 1.]

Emotion						
[0. 0. 0. 1. 0. 0. 0.] Neutral						
[0. 0. 0. 0. 0. 0. 1.]	Sad					
[1. 0. 0. 0. 0. 0. 0.]	Нарру					
[0. 0. 1. 0. 0. 0. 0.]	angry					
[0. 1. 0. 0. 0. 0. 0.]	Surprise					

바이오 데이터 - DTW

극댓값을

최적의 클러스터로 인식

극소값을 최적의 클러스터로 인식

바이오 데이터 - Silhouette

색깔 너비

군집에 속한 데이터 수

 \equiv

최종 데이터

Audio	Text	Emotion	Arousal	Valence	Segment	
[[[-46.271706 - 56.406227	n/ 아 친구들도? l/	[0. 0. 0. 1. 0. 0. 0.]	2.8	3.8	Sess01_script01_User001F_001	
[[[-54.41670275	l/ 나는 생일?	[0. 0. 0. 1. 0. 0. 0.]	3.1	3.3	Sess01_script01_User001F_002	
[[[-5.5659237e+01 - 5.0546646e+0	생일날이면은 b/ 내가 고기를 되	[0. 0. 0. 1. 0. 0. 0.]	3.1	3.3	Sess01_script01_User001F_003	
[[[-63.03308 - 58.875835 - 57.511215	b/ 선물이라 이 보통 돈으로 주…	[1. 0. 0. 0. 0. 0. 0.]	3.1	3.6	Sess01_script01_User001F_004	
· ·						
[[[-5.3404884e+01 - 5.4611393e+0	u/ 그걸 점점 발전을 시키잖아, 사람처럼 느껴지게.	[0. 0. 0. 1. 0. 0. 0.]	3.7	2.4	Sess40_script06_User080F_024	
[[[-5.7383400e+01 -5.5 686134e+0	뭐 진짜 막 어떤 욕심이 가득 찬 사람은 내 가	[0. 0. 0. 1. 0. 0. 0.]	3.5	2.7	Sess40_script06_User080F_025	

바이오 데이터(TEMP, IBI, EDA) 제거

6. 모델 설명

▶ ② 6. 모델 설명

모델 흐름

각각 사전학습 후 Multi-Modal 병합 → 감정 예측 레이어 추가 학습

음성

음성 - Feature Extraction

Convolutional Layer 4회 반복

Frequency 방향으로 Kernel 조정 = Frequency 간의 관계 추출 + 시간대별 정보 보존

음성 - Masking

- 실제 데이터와 Padding 구간을 구분해주는 Boolean Tensor
- 데이터와 곱하여 Padding 구간은 학습에서 제외
- Pad token에 Attention이 부여되지 않도록 Pad-masking 진행

음성 - Masking

Zero Padding 구간은 Attention 학습에서 배제

음성 – Multi Head Attention

각성도를 예측하기 위해 필요한 구간에 대한 Attention값 계산

음성 – Multi Head Attention

Mel Spectrogram

128차원 → 768차원

Self Attention

음성 - Arousal 예측

- LSTM의 장기 의존성 문제에 대한 해결책을 유지 하며 은닉 상태를 업데이트 하는 계산을 줄임
- 업데이트 게이트와 리셋 게이트로 구성
- LSTM보다 학습 속도가 빠르다고 알려져있음

텍스트 - Valence 예측

텍스트 - Valence 예측

21	34	2456	3894	 1	1	1	1	1
0	0	0	0	 0	0	0	1	1
0	0	0	0	 0	0	0	0	0

최종 임베딩 벡터 (64, 768)

GRU 모델로 예측

Multimodal Emotion Classifier

Multimodal Emotion Classifier

Audio Embedded Vector

Text Embedded Vector

[batch size, 512, 768]

[batch size, 64, 768]

[batch_size, 576, 768]) Tensor 생성

Multimodal Emotion Classifier

Multihead Attention Self attention 학습

LSTM

감정분류

7. 학습 결과

음성 싱글 모달리티- Arousal 예측 결과

Multihead Attention Layer의 반복 횟수에 따른 RMSE변화 → 7회일 때 최저

음성 싱글 모달리티- Arousal 예측 결과(n_layer=7)

Train	Valid
0.341884649	0.273954606
0.281943787	0.239045343
0.260837908	0.229711024
0.250174330	0.223605140
•	•
•	•
•	•
0.196662220	0.206742686
0.195157791	0.210485889
0.194336303	0.207206603
0.192330844	0.206007988

텍스트 싱글 모달리티- Valence 예측 결과

Multihead Attention Layer의 반복 횟수에 따른 RMSE변화 → 5회일 때 최저

텍스트 싱글 모달리티- Valence 예측 결과(n_layer=5)

Train	Valid			
0.91981	0.475089			
0.505456	0.468349			
0.484568	0.449671			
0.470203	0.443702			
•	•			
•	•			
•	•			
0.409979	0.431955			
0.410524	0.432256			
0.409952	0.431876			
0.408682	0.431883			

멀티 모달 - 정확도(Accuracy) 평가

정확도가 증가하는 것을 확인할 수 있음

멀티 모달 - RMSE Loss 평가

Loss가 **감소하는 것**을 확인할 수 있음

멀티 모달 - F1 Score

[?]F1 Score란?

- : 주로 분류 클래스 간 데이터가 심각한 **불균형**을 이루는 경우 사용
- 정밀도와 재현율의 평균

$$F_1 = 2 \cdot rac{1}{rac{1}{ ext{recall}} + rac{1}{ ext{precision}}} = 2 \cdot rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}}.$$

정밀도(precision): 예측한 것 중에 정답의 비율은? 재현율(recall): 찾아야 할 것 중에 실제로 찾은 비율은?

멀티 모달 - F1 Score

증가 폭이 작지만 F1 Score의 값 자체가 높음

멀티 모달 – Confusion matrix

- F1 Score: 87.54%
- 음성 n_layers = 6(2nd)
- 텍스트 n_layers = 6(2nd)

멀티 모달 – Confusion matrix

- F1 Score: 87.60%
- 음성 n_layers = 7(1st)
- 텍스트 n_layers = 6(2nd)

멀티 모달 – Confusion matrix

- F1 Score: 86.93%
- 음성 n_layers = 7(1st)
- 텍스트 n_layers = 5(1st)

멀티 모달 – Confusion matrix

F1 Score 값은 비교적 낮지만 유일하게 데이터 불균형에 상대적으로 **강건**함

8. 성과 & 한계

성과

불균형한 데이터임에도 불구하고 데이터 수가 적은 라벨들도 예측 성공

 \square

성과

데이터 수가 가장 많은 neutral 데이터의 경우 90.98%의 적중률을 보임

성과

데이터의 수가 그나마 많았던 happy는 84.44%, sad는 60%로 꽤 높은 적중률을 보임

한계

하지만 데이터 증강을 했음에도 불구하고 Surprise와 angry는 낮은 적중률을 보임

의의

실제로 데이터의 수가 **많이 불균형**한 경우 예측 결과가 높은 accuracy를 보여도 데이터의 수가 많은 라벨에서만 적중하고 나머지 라벨은 예측하지 못하는 경우가 많음

의의

멀티모달 기법과 데이터 증강을 이용하여 데이터의 수가 적은 라벨들도 예측을 해냈다는 것이 중요 포인트!!

감사합니다.