Wor	cio.
AAGI	oja.

 \mathbf{A}

Imię i nazwisko:

Logika dla informatyków

Sprawdzian nr 1, 27 października 2010

Zadanie 1 (1 punkt). Powiemy, że formuła φ jest *uproszczeniem* formuły ψ jeśli φ i ψ są równoważne oraz φ zawiera mniej spójników logicznych niż ψ . Jeśli istnieje uproszczenie formuły

$$(p \lor q \lor r) \land (p \lor \neg q \lor r) \land (\neg p \lor q \lor r)$$

to w prostokat poniżej wpisz dowolne takie uproszczenie. W przeciwnym przypadku wpisz słowo "NIE".

L	_

Zadanie 2 (1 punkt). Jeśli istnieją takie formuły φ i ψ , że formuła $((p \lor q) \Rightarrow p) [p/\varphi, q/\psi]$ jest sprzeczna, to w prostokąty poniżej wpisz dowolne takie formuły. W przeciwnym przypadku w oba prostokąty wpisz słowo "NIE".

φ :		ψ :	
-------------	--	----------	--

Zadanie 3 (1 punkt). W prostokąt poniżej wpisz formułę w dysjunkcyjnej postaci normalnej i równoważną formule $(\neg p \Leftrightarrow q) \land r$.

Zadanie 4 (1 punkt). W prostokąt poniżej wpisz formułę (o ile taka formuła istnieje), która jest prawdziwa dla dokładnie tych wartościowań zmiennych p,q,r, w których co najmniej dwie zmienne są prawdziwe. Jeśli taka formuła nie istnieje, to wpisz słowo "NIE".

Zadanie 5 (1 punkt). Rozważmy spójnik logiczny \uparrow zdefiniowany tak, że formuła $p \uparrow q$ jest równoważna $\neg (p \land q)$. Jeśli istnieje formuła zbudowana ze zmiennych p, q, spójnika \uparrow i nawiasów, równoważna formule $p \Rightarrow q$, to w prostokąt poniżej wpisz dowolną dowolną taką formułę. W przeciwnym przypadku wpisz słowo "NIE".

1		
1		

Zadanie 6 (5 punktów). Rozważmy formuły zbudowane ze zmiennej p, spójnika \Leftrightarrow i nawiasów. Udowodnij, że jeśli w takiej formule zmienna p występuje parzystą liczbę razy, to formuła ta jest tautologią.

Wersja: C	Imię i nazwisko:	
-----------	------------------	--

Logika dla informatyków
Sprawdzian nr 1, 27 października 2010
Zadanie 1 (1 punkt). W prostokąt poniżej wpisz formułę (o ile taka formuła istnieje), która jes prawdziwa dla dokładnie tych wartościowań zmiennych $p,q,r,$ w których co najwyżej dwie zmienne s prawdziwe. Jeśli taka formuła nie istnieje, to wpisz słowo "NIE".
Zadanie 2 (1 punkt). W prostokąt poniżej wpisz formułę w koniunkcyjnej postaci normalnej i rów noważną formule $(\neg p \Rightarrow q) \lor r$.
Zadanie 3 (1 punkt). Powiemy, że formuła φ jest $uproszczeniem$ formuły ψ jeśli φ i ψ są równoważn
oraz φ zawiera mniej spójników logicznych niż ψ . Jeśli istnieje uproszczenie formuły
$(p \wedge \neg q \wedge \neg r) \vee (p \wedge q \wedge \neg r) \vee (\neg p \wedge q \wedge r)$
to w prostokąt poniżej wpisz dowolne takie uproszczenie. W przeciwnym przypadku wpisz słowo "NIE"
Zadanie 4 (1 punkt). Rozważmy spójnik logiczny \downarrow zdefiniowany tak, że formuła $p \downarrow q$ jest równo ważna $\neg (p \lor q)$. Jeśli istnieje formuła zbudowana ze zmiennych p, q , spójnika \downarrow i nawiasów, równoważn formule $\neg p \land q$, to w prostokąt poniżej wpisz dowolną dowolną taką formułę. W przeciwnym przypadki wpisz słowo "NIE".
Zadanie 5 (1 punkt). Jeśli istnieją takie formuły φ i ψ , że formuła $((p \land q) \Leftrightarrow (p \Rightarrow q))[p/\varphi, q/\psi]$ jest tautologią, to w prostokąty poniżej wpisz dowolne takie formuły. W przeciwnym przypadku w obprostokąty wpisz słowo "NIE".
$arphi$: ψ :

Zadanie 6 (5 punktów). Rozważmy formuły zbudowane ze zmiennych p_1, p_2, \ldots, p_{27} , spójnika \Leftrightarrow oraz nawiasów. Udowodnij, że każda taka formuła jest spełniona przez parzystą liczbę wartościowań zmiennych p_1, p_2, \ldots, p_{27} .