

- ► Embedded System (Marwedel 2011): Embedded systems are information processing systems embedded into enclosing products
- Cyber-Physical Systems (Lee & Seshia 2017): A CPS is an integration of computation with physical processes whose behavior is defined by both cyber and physical parts of the system
 - ▶ "cyber" means ≈ "control" (from Greek)

/im'bedid/

See definitions in:

adjective

(of an object) fixed firmly and deeply in a surrounding mass; implanted.
"a gold ring with nine embedded stones"

- Key points:
 - there is a physical process to be controlled
 - e.g. the movement of an automatic door, a car window, an elevator, a washing machine
 - there is some computational device who controls it
 - the processing is close to the physical process:
 - spatially: done right there (embedded)
 - behavioral: dedicated / specific to a particular process
 - e.g. not with a general purpose computer, not on the cloud

- Synonyms (more or less):
 - ► Embedded Systems
 - ► Internet of Things (IoT)
 - ► Industrial Internet
 - Systems of Systems
 - ► Industry 4.0
 - ► Internet of Everything (IoE)
 - Smart
 - ≈ Cyber-Physical Systems

► Image from Lee&Seshia 2017

► Image from Lee&Seshia 2017

Found everywhere

- ► Embedded systems are everywhere:
 - Automotive (Transportation industry)
 - Telecommunications
 - Medicine
 - Consumer electronics

Common characteristics

- ▶ Embedded systems share common characteristics:
 - must be dependable
 - reliability: probability that a system will not fail
 - maintainability: probability that a failed system can be repaired
 - ▶ safety: does not cause any harm even in worst-case conditions
 - security: allows authentication and confidentiality of data
 - must be efficient
 - low power consumption
 - low weight
 - low cost
 - no unnecessary resources used

Common characteristics

- Embedded systems share common characteristics:
 - must satisfy strict timing constraints
 - most embedded systems operate in real-time
 - sometimes must guarantee response in a given time window
 - requirement example: "If pinch is detected, the motor must be stopped within 60ms" (automatic door closure)
 - must be fault-tolerant
 - assume that components may fail
 - detect failures, enter safe mode

Embedded systems vs PC

► Aren't embedded systems just "small PC's"? No.

		Embedded	PC-like
ĺ	Architectures	Frequently heterogeneous	Mostly homogeneous
		very compact	not compact (x86 etc)
	x86 compatibility	Less relevant	Very relevant
	Architecture fixed?	Sometimes not	Yes
	Model of computa-	C+multiple models (data flow,	Mostly von Neumann
	tion (MoCs)	discrete events,)	(C, C++, Java)
ı	Optim. objectives	Multiple (energy, size,)	Average performance dominates
,	Real-time relevant	Yes, very!	Hardly
	Applications	Several concurrent apps.	Mostly single application
	Apps. known at	Most, if not all	Only some (e.g. WORD)
	design time	>	

Figure 1: Embedded Systems vs PC

► Image from Marwedel 2011

Structure of an embedded system

► Typical structure of an embedded system (CPS)

Image from Lee&Seshia 2017

Structure of an embedded system

- Main components:
 - the physical process (known as the "plant")
 - sensors: acquire information from the process
 - actuators: act on the process
 - computation: may be split between different devices
 - communications: between separate devices

The design process

- Iterative, multiple steps:
 - Modeling: "the process of gaining a deeper understanding of a system through imitation. It specifies what a system does."
 - **Design**: "the structured creation of artifacts. It specifies how a system does what it does."
 - ► Analysis: "the process of gaining a deeper understanding of a system through dissection. It specifies why a system does what it does."
 - ... and iterate again.

The V-Cycle

Common System Development Cycle in automotive industry (from a SW point of view):

Image from Marwedel 2011

The V-Cycle

Steps:

- ► Requirements specifications
- ► System Architecture & Design
 - part of the Design and Modelling is done here
- SW Architecture & Design
 - part of the Design and Modelling is done here
- Implementation
- Tests & Validation
 - all tests are done against the corresponding documents from the other branch

Other processes

► For System & Software: Waterfall, Agile

For Hardware: Gajski's Y-chart

Figure 2: Gajski Y Chart and design path

Image from Marwedel 2011

What we cover

What we cover in this course:

- ► Modeling:
 - Modeling continuous dynamics with differential equations
 - Modeling discrete dynamics with finite state machines (FSM)
 - ► FSM concurrency, hierarchy
- Design:
 - Basics scheduling
- ► Analysis: