Forecasting Street and Sidewalk Cleaning Services in San Francisco

Jared Schober and Peter Amerkhanian

San Francisco 311

"Street and sidewalk cleaning requests are generated internally and through calls received by the City's 311 customer service center. [...] Public Works' Radio Room triages the request to the appropriate crew." (source)

We examine call counts at the hour level between

1/1/2009 and 12/31/2022:

	Descriptive Statistics
count	122712.000000
mean	17.626622
std	22.591759
min	0.000000
25%	2.000000
50%	8.000000
75%	25.000000
max	553.000000
Name:	calls, dtype: float64
Sum: 2	2162998

Goals and Applications

Our goal: Use machine learning to predict the number of requests that the city will receive in any given hour.

Policy applications: Understand how much staffing will be needed for the 311 call center and public works street cleaning teams at a given time, anticipate sidewalk and street cleaning costs.

SF Public Works Clean Corridors

Approach and Challenges

- 311 grew considerably during this time period.
- We were concerned it would be difficult to forecast within year trends with such a strong secular trend across years.
- We focused on capturing hour-level patterns in our modeling

Lagged Dataset (48 hours picked via exploration)

	calls	lag_1	lag_2	lag_3	lag_4	lag_5	lag_6	lag_7	lag_8	lag_9	 lag_39	lag_40	lag_41	lag_42	lag_43	lag_44	lag_45	lag_46	lag_47	lag_48
datetime																				
2009-01-03 00:00:00	0	6.0	0.0	1.0	1.0	3.0	5.0	19.0	20.0	19.0	6.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2009-01-03 01:00:00	0	0.0	6.0	0.0	1.0	1.0	3.0	5.0	19.0	20.0	4.0	6.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2009-01-03 02:00:00	1	0.0	0.0	6.0	0.0	1.0	1.0	3.0	5.0	19.0	10.0	4.0	6.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0
2009-01-03 03:00:00	3	1.0	0.0	0.0	6.0	0.0	1.0	1.0	3.0	5.0	8.0	10.0	4.0	6.0	1.0	0.0	0.0	0.0	0.0	0.0
2009-01-03 04:00:00	0	3.0	1.0	0.0	0.0	6.0	0.0	1.0	1.0	3.0	 5.0	8.0	10.0	4.0	6.0	1.0	0.0	0.0	0.0	0.0

Lagged Dataset (48 hours picked via exploration)

	calls	lag_1	lag_2	lag_3	lag_4	lag_5	lag_6	lag_7	lag_8	lag_9	 lag_39	lag_40	lag_41	lag_42	lag_43	lag_44	lag_45	lag_46	lag_47	lag_48
datetime																				
2009-01-03 00:00:00	0	6.0	0.0	1.0	1.0	3.0	5.0	19.0	20.0	19.0	6.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2009-01-03 01:00:00	0	0.0	6.0	0.0	1.0	1.0	3.0	5.0	19.0	20.0	4.0	6.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2009-01-03 02:00:00	1	0.0	0.0	6.0	0.0	1.0	1.0	3.0	5.0	19.0	10.0	4.0	6.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0
2009-01-03 03:00:00	3	1.0	0.0	0.0	6.0	0.0	1.0	1.0	3.0	5.0	8.0	10.0	4.0	6.0	1.0	0.0	0.0	0.0	0.0	0.0
2009-01-03 04:00:00	0	3.0	1.0	0.0	0.0	6.0	0.0	1.0	1.0	3.0	 5.0	8.0	10.0	4.0	6.0	1.0	0.0	0.0	0.0	0.0

Lagged Dataset (48 hours picked via exploration)

	calls	lag_1	lag_2	lag_3	lag_4	lag_5	lag_6	lag_7	lag_8	lag_9	 lag_39	lag_40	lag_41	lag_42	lag_43	lag_44	lag_45	lag_46	lag_47	lag_48
datetime																				
2009-01-03 00:00:00	0	6.0	0.0	1.0	1.0	3.0	5.0	19.0	20.0	19.0	6.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2009-01-03 01:00:00	0	0.0	6.0	0.0	1.0	1.0	3.0	5.0	19.0	20.0	4.0	6.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2009-01-03 02:00:00	1	0.0	0.0	6.0	0.0	1.0	1.0	3.0	5.0	19.0	10.0	4.0	6.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0
2009-01-03 03:00:00	3	1.0	0.0	0.0	6.0	0.0	1.0	1.0	3.0	5.0	8.0	10.0	4.0	6.0	1.0	0.0	0.0	0.0	0.0	0.0
2009-01-03 04:00:00	0	3.0	1.0	0.0	0.0	6.0	0.0	1.0	1.0	3.0	 5.0	8.0	10.0	4.0	6.0	1.0	0.0	0.0	0.0	0.0

Lagged Dataset (48 hours picked via exploration)

	calls	lag 1	lag 2	lag 3	lag 4	lag 5	lag 6	lag 7	lag 8	lag 9	 lag 39	lag 40	lag 41	lag 42	lag 43	lag 44	lag 45	lag 46	lag 47	lag_48
datetime		-		J _	_ _		J _	-	J _	-		J _	J _	J _	J _					
2009-01-03 00:00:00	0	6.0	0.0	1.0	1.0	3.0	5.0	19.0	20.0	19.0	6.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2009-01-03 01:00:00	0	0.0	6.0	0.0	1.0	1.0	3.0	5.0	19.0	20.0	4.0	6.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2009-01-03 02:00:00	1	0.0	0.0	6.0	0.0	1.0	1.0	3.0	5.0	19.0	10.0	4.0	6.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0
2009-01-03 03:00:00	3	1.0	0.0	0.0	6.0	0.0	1.0	1.0	3.0	5.0	8.0	10.0	4.0	6.0	1.0	0.0	0.0	0.0	0.0	0.0
2009-01-03 04:00:00	0	3.0	1.0	0.0	0.0	6.0	0.0	1.0	1.0	3.0	5.0	8.0	10.0	4.0	6.0	1.0	0.0	0.0	0.0	0.0

Summary

Model	Avg RMSE	Avg R^2	Avg max residual
Baseline	12.58	0.379	171
Linear regression	8.29	0.595	157.33
Ridge Regression (CV) (a=0.0001)	8.29	0.595	157.34
ARIMA	11.37	0.56	161.376
Random Forest (max_depth=None, estimators=200, etc.)	7.943	0.607	154.093
RNN	62.13	0.18	398.465

Average metrics are computed across year-folds. All models have optimized hyperparameters for each fold's predictions

Linear regression

- Consistent underestimates in the test period – heteroskedastic
- Fairly accurate overall
- Perhaps lots of linear relationships in the data?
 Parametric model more suited to small (~8k) training data?

(80-20 train test split pictured for clarity)

ARIMA setup

- Autocorrelation significant hourly at the week level (and beyond)
- Partial autocorrelation significant hourly up to about 2 days
- Challenge: intense computational requirements as time lag increases
- Because of this, we restricted our ARIMA model to 2 days
- We normalized the data by each year and clipped outliers to be within 3 standard deviations

ARIMA hyperparameter tuning

- Our model uses the Auto
 Regressive (AR) and Integrative
 (I) parts of the ARIMA model
- Because of this, we tuned the number of lagged observations (p) and the degree of differencing (d)
- We evaluated ARIMA models for
 p=1 → 48 and d=1 → 2, evaluating
 RMSE and AIC

Note: RMSE graph reflects normalized data

ARIMA results

- Average RMSE across yearly models: 11.62
- Positive trend in call volume data reflected in heteroskedasticity of the error term
- Normalization and outlier clipping improved RMSE but may exacerbate ARIMA issues with predicting volume spikes

Recurrent Neural Network

- Tried LSTM, but hypothesized that data is too small, stuck to RNN
- Through hyperparameter exploration, we found that deeper architectures were more effective, but computationally costly – final RNN took 55 minutes to cross validate for performance that was much weaker than simple linear regression.

```
model = Sequential()
model.add(SimpleRNN(200,
activation='relu', return_sequences=True,
input_shape=(n_steps, 1)),)
model.add(Dropout(0.5))
model.add(SimpleRNN(units=150,
activation='relu', return sequences=True))
model.add(Dropout(0.5))
model.add(SimpleRNN(units=100, activation='relu',
return sequences=True))
model.add(Dropout(0.5))
model.add(SimpleRNN(units=50, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1))
model.compile(optimizer='adam', loss='mse')
```

Random Forest Regression

- Our best model
- Easy to parallelize
- Focuses on similar features to the ARIMA

Next Steps

- Train optimal model at the census tract level (even smaller data) to let forecasting pick up geographic variation ⇒
- Further exploration of why RNN underperforms

