Análisis Inteligente de Datos: Segundo Parcial

Claudio Sebastián Castillo

10 de mayo de 2022

ANOVA

Datos

Observaciones por grupo:

Se cumplen los supuestos para su implementación?

Anova

fit del modelo

coeficientes

p-value

F-value

Plot ANOVA

Conclusión

Testear homosedasticidad

Test de Bartlett

 $sensibilidad\ al\ supuesto\ de\ normalidad$

Testear normalidad

Testear normalidad analizando residuos

Anova y después: post-hoc

Tukey's Honest Significant Differences (HSD)

Cuando ANOVA no funciona: test de Kruskal-Wallis

ANOVA multivariante

Datos

Gafico

Test Anovam

Tamaño del efecto

.01: Small effect size .06: Medium effect size .14 or higher: Large effect size

Analisis Discriminante Lineal (LDA)

Datos

Explorando discriminación por pares de variable

Ver qué par de variables separa bien las Sobrevida vivo= 1, muerto= -1

Homogeneidad de la Varianza: Histograma VariablexGrupo

evida vivo= 1, muertevida vivo= 1, muertevida vivo= 1, muertevida vivo= 1, muertevida vivo= 1, muert

revida vivo= 1, muerrevida vivo= 1, muerrevida

Medias de las variables por Grupo

Las variables son muy parecidas.

Boxplot

Box por grupo

Box por variable

Vectores medios de ambos grupos

```
## # A tibble: 10 x 3
##
  # Groups:
               grupo [2]
##
      grupo variables
                                              medias
                                                <dbl>
##
      <fct> <chr>
##
            Extensión alar
                                                242.
    1 -1
##
    2 -1
            Largo de la quilla del esternón
                                                20.8
            Largo del húmero
                                                 18.4
##
    3 -1
    4 -1
            Largo del pico y cabeza
                                                31.5
##
##
    5 -1
            Largo total
                                                158.
##
    6 1
            Extensión alar
                                                241
            Largo de la quilla del esternón
                                                 20.8
                                                 18.5
            Largo del húmero
##
    8 1
##
    9 1
            Largo del pico y cabeza
                                                 31.4
            Largo total
## 10 1
                                                157.
```

Viendo los gráficos de las distribuciones de datos en las variables por grupo y los respectivos vectores medios no parece útil realizar un análisis discriminante.

Subseleccionamos variables para el análisis

Seleccionamos para el análisis las variables cuyas medias resultan más discriminantes: largo total y extension alar

Contraste de Normalidad Univariante Shapiro-Wilk

datos_tidy[["Sobrevida vivo= 1, muerto= -1"]]	variable	p_value_Shapiro.test
-1	Largo total	0.10038
-1	Extensión alar	0.70606
1	Largo total	0.16530
1	Extensión alar	0.08237

[1] "No hay evidencia de falta de normalidad univariante en ninguna variable predictora por grupo"

```
## # A tibble: 0 x 3
## # Groups: datos_tidy[["Sobrevida vivo= 1, muerto= -1"]] [0]
## # ... with 3 variables: datos_tidy[["Sobrevida vivo= 1, muerto= -1"]] <fct>,
## # variable <fct>, p_value_Shapiro.test <dbl>
```

Contraste de Normalidad MultiVariante

Outliers

Chi-Square Q-Q Plot

Robust Squared Mahalanobis Distance

Test de Royston

Chi-Square Q-Q Plot


```
## Test H p value MVN
## 1 Royston 4.457852 0.1009865 YES
## [1] "No hay evidencia de falta de normalidad multivariante a nivel de significancia 0.05"
```

Test de Henze-Zirkler

```
## Test HZ p value MVN
## 1 Henze-Zirkler 0.6637743 0.1823398 YES
## [1] "No hay evidencia de falta de normalidad multivariante a nivel de significancia 0.05 "
```

Contraste de Matriz de Covarianza

```
##
## Box's M-test for Homogeneity of Covariance Matrices
##
## data: temp
## Chi-Sq (approx.) = 2.0318, df = 3, p-value = 0.5658
## [1] "Se puede aceptar que la matriz de covarianza es igual en todos los grupos"
```

Estimación de parámetros de la función de densidad $(u^{(X)},E)$ y cálculo de la función discriminante según aproximación de Fisher via Ida()

Call:

```
## lda(temp, datos[[{
## {
##
         variable_factor_lda
## }
## }]])
##
## Prior probabilities of groups:
        -1
## 0.5714286 0.4285714
##
## Group means:
## Largo total Extensión alar
## -1 158.4286 241.5714
## 1 157.3810
                     241.0000
##
## Coefficients of linear discriminants:
## Largo total -0.3787943
## Extensión alar 0.1312623
```

Evaluación del error: Accuracy Table

```
## Clase predicha
## Clase real -1 1
## -1 25 3
## 1 15 6
## [1] "trainig_error = 36.734693877551 %"
```

Visualización de las clasificaciones

Partition Plot

Analisis Discriminante Cuadrático (QDA)>falta de homocedasticidad/outliers LDA

Explorando discriminación por pares de variable

Contraste de Normalidad Univariante Shapiro-Wilk

Contraste de Normalidad MultiVariante

Outliers

Test de Royston

Test de Henze-Zirkler

Contraste de Matriz de Covarianza

Parámetros de la función de densidad función discriminante según aproximación de Fisher via qda()

Evaluación del error: Accuracy Table

Visualización de las clasificaciones

Analisis Discriminante Cuadrático Robusto (RQDA)>falta normalidad

Máquinas de Soporte Vectorial

Datos

```
## 'data.frame': 150 obs. of 5 variables:
## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
## $ Species : Factor w/ 3 levels "setosa", "versicolor", ..: 1 1 1 1 1 1 1 1 1 1 ...
```

Grafico datos

Boxplot

Box por variable

(a) Analice cuales valores medios son diferentes en las especies: petal length and width

```
## [1] 120 5
## [1] 30 5
```

Busqueda de mejor hiperparametro C (coste)

```
##
## Parameter tuning of 'svm':
   - sampling method: 10-fold cross validation
##
##
##
  - best parameters:
##
    cost
##
##
  - best performance: 0.01666667
##
   - Detailed performance results:
##
##
       cost
                 error dispersion
      0.001 0.81666667 0.07657805
      0.010 0.13333333 0.09781565
      0.100 0.04166667 0.04392052
     1.000 0.01666667 0.03513642
## 5 5.000 0.04166667 0.04392052
```

```
## 6 10.000 0.03333333 0.04303315
## 7 15.000 0.05000000 0.04303315
## 8 20.000 0.05000000 0.04303315
```

Mejor modelo según hiperparametro

```
##
## Call:
## best.tune(method = svm, train.x = temp, train.y = datos_train[[{
##
##
           variable_factor_svm
##
  []], ranges = list(cost = c(0.001, 0.01, 0.1, 1, 5, 10, 15, 20)),
       kernel = "linear", scale = TRUE)
##
##
##
## Parameters:
##
      SVM-Type: C-classification
##
   SVM-Kernel:
                 linear
##
          cost:
               1
## Number of Support Vectors:
##
   (2 13 10)
##
##
##
## Number of Classes: 3
##
## Levels:
## setosa versicolor virginica
## [1] 19 34 42 44 46 47
```

Predicciones del Modelo

```
##
               real
## prediccion
                setosa versicolor virginica
##
                     10
                                 0
                                            0
     setosa
##
     versicolor
                      0
                                10
                                            1
                      0
                                 0
     virginica
## [1] "Observaciones de test mal clasificadas: 3.33 %"
## [1] "Observaciones de test bien clasificadas: 96.67 %"
```

Los bien clasificados por especies son: 100% en setosa y virginica, y 90% en versicolor. El error en versicolor y virgínica es lógico porque son los grupos con mayor similitud en sus datos.

Analisis Discriminante Lineal (LDA)

Datos

```
## tibble [37 x 3] (S3: tbl_df/tbl/data.frame)
## $ Longitud: num [1:37] 59 59.5 60 60.5 61 61 61.5 61.5 62 63 ...
## $ Latitud : num [1:37] 17 21 12 16 13 15 17 19 14 15 ...
## $ Clase : Factor w/ 2 levels "BARO", "TROP": 1 1 2 1 2 2 1 1 2 2 ...
```

Explorando discriminación por pares de variable

Ver qué par de variables separa bien las Clase

Homogeneidad de la Varianza: Histograma VariablexGrupo Medias de las variables por Grupo

Las variables son muy parecidas.

##Boxplot

Box por grupo

Box por variable

Histogramas

0.00 0.08 Density

64

66

68

70

72

62

58

Density

0.00 0.10

60

62

60

Clase BARO

Clase BARO

Clase TROP

Longitud

68

70

72

Clase TROP

Longitud

66

Vectores medios de ambos grupos

64

```
## # A tibble: 4 x 3
## # Groups:
              grupo [2]
##
     grupo variables medias
     <fct> <chr>
                      <dbl>
## 1 BARO Latitud
                       18.5
                       64.9
## 2 BARO
         Longitud
           Latitud
                       14.2
## 3 TROP
                       65.8
## 4 TROP Longitud
```

Contraste de Normalidad Univariante Shapiro-Wilk

datos_tidy[["Clase"]]	variable	p_value_Shapiro.test
BARO	Longitud	0.59928
BARO	Latitud	0.03158
TROP	Longitud	0.46410
TROP	Latitud	0.12715

[1] "HO debe rechazarse: hay evidencia de falta de normalidad en los siguientes casos"

```
## # A tibble: 1 x 3
               datos_tidy[["Clase"]] [1]
## # Groups:
     `datos_tidy[["Clase"]]` variable p_value_Shapiro.test
##
##
     <fct>
                              <fct>
                                                       <dbl>
## 1 BARO
                                                      0.0316
                              Latitud
```

Chi-Square Q-Q Plot

Test de Royston

Chi-Square Q-Q Plot


```
## Test H p value MVN
## 1 Royston 3.764152 0.1522745 YES
## [1] "No hay evidencia de falta de normalidad multivariante a nivel de significancia 0.05"
```

Test de Henze-Zirkler

```
## Test HZ p value MVN
## 1 Henze-Zirkler 0.1868302 0.9883121 YES
## [1] "No hay evidencia de falta de normalidad multivariante a nivel de significancia 0.05 "
```

Contraste de Matriz de Covarianza

```
##
## Box's M-test for Homogeneity of Covariance Matrices
##
## data: temp
## Chi-Sq (approx.) = 0.15631, df = 3, p-value = 0.9843
## [1] "Se puede aceptar que la matriz de covarianza es igual en todos los grupos"
```

Estimación de parámetros de la función de densidad $(u^{(X)},E)$ y cálculo de la función discriminante según aproximación de Fisher via Ida()

Call:

```
## lda(temp, datos[[{
## {
##
          variable_factor_lda
##
      }
## }]])
##
## Prior probabilities of groups:
       BARO
                TROP
## 0.4594595 0.5405405
##
## Group means:
       Longitud Latitud
## BARO 64.94118 18.52941
## TROP 65.85000 14.25000
## Coefficients of linear discriminants:
##
                  LD1
## Longitud 0.1220731
## Latitud -0.6331236
```

Evaluación del error: Accuracy Table

```
## Clase predicha
## Clase real BARO TROP
## BARO 17 0
## TROP 0 20
## [1] "trainig_error = 0 %"
```

Visualización de las clasificaciones

Partition Plot

El test no parece significativo, las observaciones son linealmente separables. No hay normalidad univariante según el Test de Shapiro.