Information Security Summary

Fabian Bösiger

March 8, 2021

Contents

1	Introduction				
2	Historical Ciphers				
2.1 Caesars's Shift Cipher					1
		2.1.1	Vulnerabilities		1
	2.2 Substitution Cipher				1
		2.2.1	Vulnerabilities		1
	2.3 Vigenere Cipher				2
		2.3.1	Vulnerabilities		2
3	Info	rmatio	on-Theoretic Security		2
	3.1	One-T	ime Pad		2
		3.1.1	Correctness		2
		3.1.2	Perfect Secrecy		3
		3.1.3	Vulnerabilities		3
4	Computational Security				
	4.1	Choser	n-Plaintext Attack		3
5	Pseudorandom Functions				
6	Block Ciphers				
	6.1 Shannon's Confusion and Diffusion Principle				

6.2	Confusion-Diffusion Paradigm	5
6.3	Data Encryption Standard (DES)	5
	6.3.1 Vulnerabilities	6

1 Introduction

Key space: \mathcal{K}

Plaintext space: \mathcal{M} Ciphertext space: \mathcal{C}

Encryption algorithm: $\operatorname{Enc}_k(m) : \mathcal{K} \times \mathcal{M} \to \mathcal{C}$ Decryption algorithm: $\operatorname{Dec}_k(c) : \mathcal{K} \times \mathcal{C} \to \mathcal{M}$

Encryption scheme: $(\operatorname{Enc}_k, \operatorname{Dec}_k)$ Correctness: $\forall k : \operatorname{Dec}_k(\operatorname{Enc}_k(m)) = m$

2 Historical Ciphers

2.1 Caesars's Shift Cipher

$$\mathcal{M} = \{A, \dots, Z\} = \{0, \dots, 25\}$$

$$\mathcal{K} = \{0, \dots, 25\}$$

$$\operatorname{Enc}_k(m_0, \dots, m_n) = (m_0 + k \mod 25, \dots, m_n + k \mod 25)$$

$$\operatorname{Dec}_k(c_0, \dots, c_n) = (c_0 - k \mod 25, \dots, c_n - k \mod 25)$$

2.1.1 Vulnerabilities

Brute force attack.

2.2 Substitution Cipher

$$\mathcal{M} = \{A, \dots, Z\} = \{0, \dots, 25\}$$

$$\mathcal{K} = \{0, \dots, 25\}$$

$$\operatorname{Enc}_k(m_0, \dots, m_n) = (\pi(m_0), \dots, \pi(m_n))$$

$$\operatorname{Dec}_k(c_0, \dots, c_n) = (\pi^{-1}(c_0), \dots, \pi^{-1}(c_n))$$

2.2.1 Vulnerabilities

Statistical patterns of the language.

2.3 Vigenere Cipher

TODO

2.3.1 Vulnerabilities

3 Information-Theoretic Security

If the key k is chosen randomly and $c := \operatorname{Enc}_k(m)$ is given to the adversary, the adversary should not learn any additional information about the plaintext m.

An encryption scheme is perfectly secret if for some random variables M, C and every m, c: $P(M=m) = P(M=m \mid C=c)$.

Equivalently: M and C are independet.

Equivalently: The distribution of C does not depend on M.

Equivalently: For every m_0 , m_1 we have that $\operatorname{Enc}(k, m_0)$ and $\operatorname{Enc}(K, m_1)$ have the same distribution.

In every perfectly secret encryption scheme, we have $|\mathcal{K}| \geq |\mathcal{M}|$.

3.1 One-Time Pad

$$\mathcal{M} = \mathcal{K} = \{0, 1\}^t$$

 $\operatorname{Enc}_k(m) = k \operatorname{xor} m$
 $\operatorname{Dec}_k(c) = k \operatorname{xor} c$

3.1.1 Correctness

$$\operatorname{Dec}_k(\operatorname{Enc}_k(m)) = k \operatorname{xor}(k \operatorname{xor} m)$$

3.1.2 Perfect Secrecy

$$P(C = c \mid M = m) \tag{1}$$

$$= P(M \operatorname{xor} K = c | M = m) \tag{2}$$

$$= P(m \operatorname{xor} K = c) \tag{3}$$

$$= P(K = m \operatorname{xor} c) \tag{4}$$

$$=2^{-t} \tag{5}$$

$$= P(C = c \mid M = m_0) = P(C = c \mid M = m_1)$$
(6)

3.1.3 Vulnerabilities

Perfectly secret. But the key is as long as the message and cannot be reused.

4 Computational Security

A system X is (t, ϵ) -secure if every Turing Machine that operates in time t can break X with probability of at most ϵ .

A function $\mu: \mathbb{N} \to \mathbb{R}$ is negligible, if for every natural number c there exists n_0 such that for all $x > n_0$: $|\mu(x)| < \frac{1}{x^c}$

M and C are independet from the point of view of a computationally limited adversary with high probability.

More formally: X is secure if for all probabilistic poly-time turing machines M, P(M breaks the scheme X) is negligible.

Equivalently: No poly-time adversary can distinguish the distributions $\operatorname{Enc}(K, m_0) = \operatorname{Enc}(K, m_1)$ with non-negligible probability.

4.1 Chosen-Plaintext Attack

Learning phase: Adversary can repeatedly send message m that is encrypted using some unknown k and receives c = Enc(k, m).

Challenge phase: Adversary sends m_0 and m_1 , receives $c = \text{Enc}(k, m_b)$ for some unknown b, has to guess b.

CPA-security: Every randomized poly-time adversary guesses b correctly with probability of at most $\frac{1}{2} + \epsilon(n)$ where ϵ is negligible.

CPA-secure encryptions have to be randomized or have a state.

If a CPA-secure encryption exists with $|k| \leq |m|$, then $P \neq NP$.

5 Pseudorandom Functions

Select random permutation $F: \{0,1\}^m \to \{0,1\}^m$, give it to both parties similar to secret key.

Problem: F requires $m * 2^m$ space.

Solution: Pseudorandom functions using a key $F_k: \{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\}^*$.

A keyed permutation F_k is pseudorandom if it cannot be distinguished from a completely random function. More formally assume two scenarios where a distinguisher D tries to distinguish random from pseudorandom function:

Scenario 0: D sends t random messages which are encrypted using the same pseudorandom function F_k with random keys.

Scenario 1: D sends t random messages which are encrypted using a true random function F.

 F_k is a pseudorandom function if all probabilistic poly-time distinguishers D cannot distinguish scenarios 0 and 1 with a non-negligible advantage.

If a distinguisher additionaly has access to the inverted function F, we get the definition of a strong pseudorandom function.

6 Block Ciphers

Block ciphers are pseudorandom permutations F_k . They use a key of K bits to specify a random subset of 2^K mappings. If the section of mappings is random, the resulting cypher will be a good approximation of the ideal block cypher.

6.1 Shannon's Confusion and Diffusion Principle

Diffusion: Ciphertext bits should depend on the plaintext bits in a complex way. If a plaintext bit is changed, ciphertext bits should change with $p = \frac{1}{2}$.

Confusion: Each bit of the ciphertext should depend on the whole key. If one bit of the key is changed, the ciphertext should change entirely.

6.2 Confusion-Diffusion Paradigm

Confusion: Implement large $F_k(m)$ using smaller $f_i(k, m_i)$, called substitution boxes. $F_k(m_1m_2...m_n) = f_1(k, m_1)f_2(k, m_2)...f_n(k, m_n)$.

Diffusion: Permute (Mix) the output F_k .

Key idea: Run the confusion and diffusion multiple times.

6.3 Data Encryption Standard (DES)

Input \to Initial Permutation $IP \to$ Feistel Network depending on $k \to$ Final Permutation $IP^{-1} \to$ Output

TODO

A 3-round feistel network is a pseudorandom permutation.

A 4-round feistel network is a strong pseudorandom permutation.

To fully describe a feistel network we need to describe a key schedule algoritm and the pseudorandom permutation function f.

6.3.1 Vulnerabilities

Key is too short, brute force attack is possible.

Unclear role of the NSA in the design.