Labs/04-labs

GitHub Link

GitHub - Daniel Havránek (Dan5049)

1. Preparation tasks

Connection table - Nexys A7-50T - KW4-281ASB

Output pins	FPGA pin	FPGA package pin
CA	IO_L24N_T3_A00_D16_14	T10
СВ	IO_25_14	R10
СС	IO_25_15	K16
CD	IO_L17P_T2_A26_15	K13
CE	IO_L13P_T2_MRCC_14	P15
CF	IO_L19P_T3_A10_D26_14	T11
CG	IO_L4P_T0_D04_14	L18
DP	IO_L19N_T3_A21_VREF_15	H15
AN0	IO_L23P_T3_FOE_B_15	J17
AN1	IO_L23N_T3_FWE_B_15	J18
AN2	IO_L24P_T3_A01_D17_14	Т9
AN3	IO_L19P_T3_A22_15	J14
AN4	IO_L8N_T1_D12_14	P14
AN5	IO_L14P_T2_SRCC_14	T14
AN6	IO_L23P_T3_35	K2
AN7	IO_L23N_T3_A02_D18_14	U13

Decoder conversion table for common anode 7-segment display

Hex	Inputs	Α	В	C	D	E	F	G
0	0000	0	0	0	0	0	0	1
1	0001	1	0	0	1	1	1	1

Hex	Inputs	Α	В	C	D	E	F	G
2	0010	0	0	1	0	0	1	0
3	0011	0	0	0	0	1	1	0
4	0100	1	0	0	1	1	0	0
5	0101	0	1	0	0	1	0	0
6	0110	0	1	0	0	0	0	0
7	0111	0	0	0	1	1	1	1
8	1000	0	0	0	0	0	0	0
9	1001	0	0	0	0	1	0	0
А	1010	0	0	0	1	0	0	0
b	1011	1	1	0	0	0	0	0
С	1100	0	1	1	0	0	0	1
d	1101	1	0	0	0	0	1	0
E	1110	0	1	1	0	0	0	0
F	1111	0	1	1	1	0	0	0

2. Seven-segment display decoder

VHDL Architecture from hex_7seg.vhd

```
architecture Behavioral of hex_7seg is
begin
   p_7seg_decoder : process(hex_i)
   begin
       case hex_i is
           when "0000" =>
              seg_o <= "0000001"; -- 0
           when "0001" =>
               seg_o <= "1001111"; -- 1
           when "0010" =>
              seg_o <= "0010010"; -- 2
           when "0011" =>
              seg_o <= "0000110"; -- 3
           when "0100" =>
              seg_o <= "1001100"; -- 4
           when "0101" =>
              seg_o <= "0100100"; -- 5
           when "0110" =>
```

```
seg_o <= "0100000"; -- 6
           when "0111" =>
              seg_o <= "0001111"; -- 7
           when "1000" =>
               seg_o <= "0000000"; -- 8
           when "1001" =>
              seg_o <= "0000100"; -- 9
           when "1010" =>
              seg_o <= "0001000"; -- A
           when "1011" =>
              seg_o <= "1100000"; -- b
           when "1100" =>
              seg_o <= "0110001"; -- C
           when "1101" =>
              seg_o <= "1000010"; -- d
           when "1110" =>
              seg_o <= "0110000"; -- E
           when others =>
              seg_o <= "0111000"; -- F
       end case;
   end process p_7seg_decoder;
end Behavioral;
```

VHDL stimulus process from testbench

```
architecture Behavioral of tb_hex_7seg is
    signal s_hex_i : std_logic_vector (4 - 1 downto 0);
    signal s_seg_o : std_logic_vector (7 - 1 downto 0);
begin
    uut_hex_7seg : entity work.hex_7seg
        port map(
            hex_i => s_hex_i,
            seg_o => s_seg_o
        );
 p_stimulus : process
        begin
             report "Simulation started" severity note;
             s_hex_i <= "0000"; wait for 100 ns;</pre>
             s_hex_i <= "0001"; wait for 100 ns;</pre>
             s_hex_i <= "0010"; wait for 100 ns;</pre>
             s_hex_i <= "0011"; wait for 100 ns;</pre>
             s_hex_i <= "0100"; wait for 100 ns;</pre>
             s_hex_i <= "0101"; wait for 100 ns;</pre>
```

```
s_hex_i <= "0110"; wait for 100 ns;
s_hex_i <= "0111"; wait for 100 ns;
s_hex_i <= "1000"; wait for 100 ns;
s_hex_i <= "1001"; wait for 100 ns;
s_hex_i <= "1010"; wait for 100 ns;
s_hex_i <= "1011"; wait for 100 ns;
s_hex_i <= "1100"; wait for 100 ns;
s_hex_i <= "1100"; wait for 100 ns;
s_hex_i <= "1101"; wait for 100 ns;
s_hex_i <= "1110"; wait for 100 ns;
s_hex_i <= "1111"; wait for 100 ns;
</pre>
report "simulation end" severity note;
wait;
end process p_stimulus;
```

Simulated waveforms

VHDL code from source file top.vhd

```
-- Company:
-- Engineer:
-- Create Date: 03.03.2021 14:01:54
-- Design Name:
-- Module Name: top - Behavioral
-- Project Name:
-- Target Devices:
-- Tool Versions:
```

```
-- Description:
-- Dependencies:
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
library IEEE;
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity top is
    Port ( SW : in STD_LOGIC_VECTOR (4 - 1 downto 0);
            CA : out STD_LOGIC;
            CB : out STD_LOGIC;
            CC : out STD_LOGIC;
            CD : out STD_LOGIC;
            CE : out STD_LOGIC;
            CF : out STD_LOGIC;
            CG : out STD_LOGIC;
            LED: out STD_LOGIC_VECTOR (8 - 1 downto 0);
            AN : out STD_LOGIC_VECTOR (8 - 1 downto 0)
            );
end top;
architecture Behavioral of top is
begin
    -- Instance (copy) of hex_7seg entity
    hex2seg : entity work.hex_7seg
        port map(
             hex i
                    => SW,
             seg_o(6) \Rightarrow CA,
             seg_o(5) \Rightarrow CB,
             seg_o(4) \Rightarrow CC,
             seg_o(3) \Rightarrow CD,
             seg_o(2) \Rightarrow CE
             seg_o(1) \Rightarrow CF,
             seg_o(0) \Rightarrow CG
        );
```

```
-- Connect one common anode to 3.3V

AN <= b"1111_0111";

-- Display input value

LED(3 downto 0) <= SW;

LED(4) <= '1' when (SW = "0000") else '0';

LED(5) <= '1' when (SW > "1001") else '0';

LED(6) <= '1' when (SW(0) = '1') else '0';

LED(7) <= '1' when (SW = "0001") or (SW = "0100") or (SW = "1000") else '0';

end Behavioral;
```

3. LED(7:4) indicators

Truth table for LEDs

Hex	Inputs	LED4	LED5	LED6	LED7
0	0000	1	0	0	0
1	0001	0	0	1	1
2	0010	0	0	0	1
3	0011	0	0	1	0
4	0100	0	0	0	1
5	0101	0	0	1	0
6	0110	0	0	0	0
7	0111	0	0	1	0
8	1000	0	0	0	1
9	1001	0	0	1	0
А	1010	0	1	0	0
b	1011	0	1	1	0
С	1100	0	1	0	0
d	1101	0	1	1	0
E	1110	0	1	0	0
F	1111	0	1	1	0

VHDL code for LEDs

```
LED(4) <= '1' when (SW = "0000") else '0';
  LED(5) <= '1' when (SW > "1001") else '0';
  LED(6) <= '1' when (SW(0) = '1') else '0';
  LED(7) <= '1' when (SW = "0001") or (SW = "0010") or (SW = "0100") or (SW = "1000") else '0';</pre>
```

Simulated waveforms

