Star- Delta connection

Used to step down voltage ie end of transmission line

Star- Delta connection

Advantages

- 1. The primary side is star connected. Hence fewer number of turns are required. This makes the connection economical
- 2. The neutral available on the primary can be earthed to avoid distortion.
- 3. Large unbalanced loads can be handled satisfactory.

Star- Delta connection

Disadvantages

The secondary voltage is not in phase with the primary. (30 ° phase difference)

Hence it is not possible to operate this connection in parallel with star-star or delta-delta connected transformer.

Delta - Star connection

> This connection is used to step up voltage ie. Beginning of high tension line

Delta - Star connection

Features

- secondary Phase voltage is 1/√3 times of line voltage
- neutral in secondary can be grounded for 3 phase4 wire system
- ➤ Neutral shifting and 3rd harmonics are there
- Phase shift of 30° between secondary and primary currents and voltages

If the resonant frequency in a series RLC circuit is 50kHz along with a bandwidth of 1kHz, find the quality factor.

- a) 5
- b) 50
- c) 100
- d) 500

At resonance condition, the voltage across the capacitor and inductor is _____ the source voltage.

- a) Greater than
- b) Less than
- c) Equal to
- d) Much less than

Basis For Comparison	Single Phase	Three Phase
Definition	The power supply through one conductor.	The power supply through three conductors.
Wave Shape	O* 180° Clerati Cole be	0° 120° 240° Circuit Globie
Number of wire.	Require two wires for completing the circuit.	Requires four wires for completing the circuit.
Voltage	Carry 230V	Carry 415V
Phase Name	Split phase	No other name
Power Transfer Capability	Minimum	Maximum
Network	Simple	Complicated
Power Failure	Occurs	Do not occur
Loss	Maximum	Minimum

What is the voltage across the inductor when the source voltage is 200V and the Q factor is 10?

- a) 100V
- b) 20V
- c) 2000V
- d) 0V

Quality factor is also known as _____

- a) Voltage magnification
- b) Current magnification
- c) Resistance magnification
- d) Impedance magnification

Calculate the resonant frequency and Q-factor (Quality factor) of a series L-C-R circuit containing a pure inductor of inductance 4 H, capacitor of capacitance $27\mu F$ and resistor of resistance $8\cdot4\Omega$

A series L–R–C circuit has a sinusoidal input voltage of maximum value 12 V. If inductance, L = 20 mH, resistance, R = 80 Ω , and capacitance, C = 400 nF, determine (a) the resonant frequency, (b) the value of the p.d. across the capacitor at the resonant frequency, (

Find the Q factor when the voltage across the capacitor is 1000V and the source voltage is 100V.

- a) 10
- b) 20
- c) 30
- d) 40

93.	 The reactance offered by a capacitor to alternating current of frequency 50 Hz is 10Ω. If frequency is increased to 1 reactance becomesohm. 			If frequency is increased to 100 Hz	
	(A) 20	(B) 5	(C) 2.5	(D) 40	
94.	A complex current wave is g	given by $i = 5 + 5sin(100\pi t)$ a	ampere. Its average value is	amperes.	
	(A) 10	(B) 0	(C) 5	(D) $\sqrt{50}$	
95.	In a purely Inductive circuit, Voltagethe current by 90degrees.				
	(A) lags	(B) leads	(C) Both A and B	(D) None	
96.	In purely resistive circuit Vo	ltage and current are in	phase.		
	(A) lags	(B) leads	(C) same	(D) Different	
97.	Impedance is given by the ve	ector sum of			
	(A) conductance and suceptance(C) Resistance and reactance		(B) resistance and conductance		
			(D) Suceptance and resistance		
98.	Admittance is given by the vector sum of				
(A) conductance and suceptance		(B) resistance and conductance			
	(C) Resistance and reactance		(D) Suceptance and resistance		
99.	How much voltage is require	ed for 86 mA to flow through	a 100 mH inductor at 50Hz?		
	(A) 7.2 V	(B) 2.7 V	(C) 20.7 V	(D) 70.2 V	
100.	What is the capacitive reactance of a 1 μ Farad capacitance at 60Hz?				
	(A) 2.652Ω	(B) 2652Ω	(C) 2652 F	(D) 2.652 kF	

93
94
C
95
B
96
C
97
C
98
A
99
B

В

100

101.	Capacitive suceptance is positive and Inductive suceptance is negative. Is it true or false?				
	(A) True	(B) False	(C) Neutral	(D) None	
102.	Power factor in series RLC	is given by			
	(A) cos(angle between V and I)		(B) Realpower/Apparent power		
	(C) R/Z		(D) All the above		
103.	In a series RL circuit, V_L	V_R by 90 degrees.			
	(A) lags	(B) leads	(C) equals	(D) none	
104.	At resonance, In series RLC	circuit, the current passing	through the resistor is		
	(A) Maximum	(B) Minimum	(C) Meadium	(D) 1	
105.	At resonance, In parallel RI	LC circuit, the current passing	g through the resistor is		
	(A) Maximum	(B) Minimum	(C) Meadium	(D) 1	
106.	At resonance, Impedance fo	r the parallel RLC circuit is			
	(A) Maximum	(B) Minimum	(C) Meadium	(D) 1	
107.	At resonance, Impedance fo	r the series RLC circuit is			
	(A) Maximum	(B) Minimum	(C) Meadium	(D) 1	
108.	Power in an AC circuit is gi	iven by			
	(A) $VIcos\phi$ W	(B) $VIsin\phi$ VAR	(C) Real power in the circu	it(D) Both a and c	
109.	Reactive power in a circuit	is given by			
	(A) $VIcos\phi$	(B) $VIsin\phi$	(C) VI	(D) None	
110.	The phase angle of series R	LC circuit is lagging if			
	(A) $X_L > X_C$	(B) $X_L < X_C$	(C) $X_L = X_C$	(D) None	

101 Α 102 103 В 104 Α 105 В 106 Α 107 В 108 109 110 Α

111.	Power factor of an RC circuit	it is		
	(A) Lies between 0 and 1 $$	(B) Negative value	(C) zero	(D) Unity
112.	he voltage applied across an RL circuit is equal toof VR and VL.			
	(A) arithmetic sum	(B) algebraic sum	(C) phasor sum	(D) sum of the squares
113.	At half power points of resonance curve, the current is ———times the maximum current.			
	(A) $\frac{1}{2}$	(B) $\frac{1}{\sqrt{2}}$	(C) $\sqrt{2}$	(D) 2
114.	what is the power factor of 120)?	a series RLC circuit having v	voltage V(t) = 20sin(10t + 15)	(50) and current $I(t) = 10sin(10t +$
	(A)~0.866 (lag)	(B) $0.866(lead)$	(C) 0.5(lag)	(D) $0.5(lead)$
115.	At resonance frequency, Power factor in series or parallel RLC is			
	(A) Lies between 0 and 1 $$	(B) Negative value	(C) zero	(D) Unity
116.	The frequency at which Indu	The frequency at which Inductive reactance X_L is equal to Capacitive reactance X_C is known as		
	(A) Indian star frequency	(B) PK Frequency	(C) Resonant frequency	(D) Power star frequency
117.	RMS value of voltage for ha	If wave rectifier output is		
	(A) $\frac{V_m}{\pi}$	(B) $\frac{2V_m}{\pi}$	(C) $\frac{V_m}{2}$	(D) $\frac{V_m}{\sqrt{2}}$
118.	RMS value of voltage for ful	l wave rectifier output is		
	(A) $\frac{V_m}{\pi}$	(B) $\frac{2V_m}{\pi}$	(C) $\frac{V_m}{2}$	(D) $\frac{V_m}{\sqrt{2}}$
119.	Average value of voltage for	half wave rectifier output is		
	(A) $\frac{V_m}{\pi}$	(B) $\frac{2V_m}{\pi}$	(C) $\frac{V_m}{2}$	(D) $\frac{V_m}{\sqrt{2}}$
120.	Average value of voltage for	full wave wave rectifier output	ıt is	
	(A) $\frac{V_m}{\pi}$	(B) $\frac{2V_m}{\pi}$	(C) $\frac{V_m}{2}$	(D) $\frac{V_m}{\sqrt{2}}$
121.	Form factor for an sinusoida	l signal		
	(A) $\frac{Averagevalue}{RMSvalue}$	(B) $\frac{Peakvalue}{RMSvalue}$	(C) $\frac{RMSvalue}{Averagevaluevalue}$	(D) $\frac{Averagevalue}{Peakvalue}$

111	Α	
112	С	
113	В	
114	Α	
115	D	
116	С	
117	С	
118	D	
119	Α	
120	В	

Quality factor(Q) is defined as.....

(A) $2\pi \frac{maximumstoredenergy}{energy dissipoted percuele}$ (B) Resistance

(C) Powerfactor

(D) All the above

136. Quality factor for series RLC circuit is given by:

(A) 1/V

(B) $\frac{1}{R}\sqrt{\frac{L}{C}}$

(C) $R\sqrt{\frac{C}{L}}$

(D) $R\sqrt{\frac{C}{L}}$

137. Quality factor for parallel RLC circuit is given by:

(A) ½√€

(B) 1√4

(C) $R\sqrt{\frac{c}{t}}$

(D) $R\sqrt{\frac{C}{L}}$

138. what is the relation between bandwidth, resonance frequency and quality factor

(A) Qualityfactor = resonance frequency
Bandwidth

(B) $Quality factor = \frac{resonance frequency}{Bandwidth}$

(C) Quality factor = resonance frequency

(D) Quality factor = $\frac{eesonance frequency}{Bandwidth}$

135 D

136 E

137 C

138 ABCD