IMECC-UNICAMP

Departamento de Matemática

EXAME DE QUALIFICAÇÃO DE MESTRADO

Análise no \mathbb{R}^n

01/08/2005

OS PONTOS 1-2-3 SÃO OBRIGATORIOS ESCOLHA EXATAMENTE DOIS (2) DOS PONTOS 4-5-6

- 1. Sejam $f: U \subseteq \mathbb{R}^n \to \mathbb{R}$ de classe C^2 , $\mathbf{a} \in U$ com $f'(\mathbf{a}) = 0$, e $\mathcal{H}: \mathbb{R}^n \to \mathbb{R}$ a forma quadrática Hessiana de f no ponto \mathbf{a} , ou seja, para $\mathbf{v} \in \mathbb{R}^n$: $\mathcal{H}(\mathbf{v}) = \langle A\mathbf{v}, \mathbf{v} \rangle$ com $A = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}(\mathbf{a})\right)$. Mostre que se \mathcal{H} é negativa então \mathbf{a} é um ponto máximo local não-degenerado de f.
- 2- (Princípio de Cavalieri) Sejam A e B conjuntos Jordan-mensuráveis no \mathbb{R}^3 . Suponha que os conjuntos em \mathbb{R}^2 ,

$$A_z = \{(x, y) \in \mathbb{R}^2 : (x, y, z) \in A\}, \ B_z = \{(x, y) \in \mathbb{R}^2 : (x, y, z) \in B\}$$

para $z \in \mathbb{R}$, também sejam Jordan-mensuráveis. Mostre que se $m(A_z) = m(B_z)$ para cada z então m(A) = m(B).

3-Considere o seguinte 2-cubo singular no \mathbb{R}^3 : $c:~[0,1]^2 \to \mathbb{R}^3, c(s,t) = (x(s,t),y(s,t),z(s,t)),$

$$x(s,t) = \cosh(t), \ y(s,t) = senh(t)\cos(\pi s), \ z(s,t) = senh(t)\sin(\pi s)$$

considere também a 2-forma diferenciável $\omega = x^2 dx \wedge dy$.

- (i) Calcule ∂c e faça um esboço de todas as faces.
- (ii) Obtenha uma 1-forma ϕ tal que $d\phi = \omega$.
- (iii) Verifique o teorema de Stokes, $\int_c \omega = \int_{\partial c} \phi$, calculando cada um dos termos pela definição.

4- Determine os pontos críticos da função $f: \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}$, $f(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle$, restrita à esfera unitaria $|\mathbf{x}|^2 + |\mathbf{y}|^2 = 1$ e mostre como daí se obtém a desigualdade de Schwarz, $|\langle \mathbf{x}, \mathbf{y} \rangle| \leq |\mathbf{x}| |\mathbf{y}|$.

5- Seja Ω uma região simplesmente conexa do plano \mathbb{R}^2 (ou seja Ω não tem "buracos"). Considere para $f, g: \Omega \to \mathbb{R}$ funções de classe C^1 o sistema differencial

$$\begin{cases} \dot{x}(t) = f(x(t), y(t)), \\ \dot{y}(t) = g(x(t), y(t)). \end{cases}$$
 (*)

Suponha que o divergente de $f, g, div(f, g) = f_x + g_y$, é sempre positivo ou sempre negativo em Ω . Mostre que o sistema (*) não tem solução periódica contida em Ω .

(Sugestão: Use o Teorema de Green)

- 6- a) Seja uma função continuamente diferenciável $f: \mathbb{R}^m \to \mathbb{R}^n$ com m > n, mostre que f não é injetora.
- b) Seja A um conjunto Jordan-mensurável em \mathbb{R}^n e $\epsilon>0$, mostre que existe um conjunto compacto e Jordan-mensurável $C,C\subset A$, tal que $\int_{A-C}1<\epsilon$.

Exame de qualificação Mestrado - Topologia - Dezembro 2005

NOME:

RA:

1) Seja X um conjunto infinito, com a topologia cofinita, ou seja $\tau = \{\emptyset\} \cup \{\mathcal{U} \subset X : X - \mathcal{U} \text{ \'e finito}\}.$

Determine se:

- a) X é um espaço T_1 .
- b) X é Hausdorff.
- c) X é compacto.
- d) X é conexo.
- 2) Sejam $A \in B$ os seguintes subconjuntos de \mathbb{R}^2 :

$$A = \{(x, \sin(1/x)) : 0 < x < 1\},\$$

$$B = A \cup \{(0, y) : -1 \le y \le 1\}.$$

- a) Prove que A é conexo.
- b) Prove que B é conexo.
- 3) Seja X um espaço topológico normal. Sejam U_1 e U_2 dois abertos de X tais que $X=U_1\cup U_2$. Usando o lema de Urysohn prove que existem funções contínuas $f_1,f_2:X\to [0,1]$ tais que:
 - $f_1(x) + f_2(y) = 1$ para todo $x \in X$,
 - $f_1(x) = 0$ para todo $x \in X U_1$, e
 - f₂(x) = 0 para todo x ∈ X − U₂.
- 4) Seja X um espaço topológico, seja $y_0 \in \mathbb{R}^n$, e seja Y um conjunto y_0 -estrelado de \mathbb{R}^n , ou seja $(1-t)y_0+ty\in Y$ para todo $y\in Y,\,t\in[0,1]$. Dadas $f,g\in C(X,Y)$, prove que f e g são homotópicas entre si.
- 5) Sejam X e Y espaços topológicos, com X localmente compacto e Y Hausdorff. Seja $f: X \to Y$ uma função sobrejetiva, contínua e aberta. Dado um compacto $L \subset Y$, prove que existe um compacto $K \subset X$ tal que f(K) = L.

Exame de qualificação Mestrado - Topologia -Dezembro 2005

NOME:

RA:

Seja X um conjunto infinito, com a topologia cofinita, ou seja

 $A = \{(x, \text{sen}(1/x)) : 0 < x < 1\}.$

$$\tau = {\emptyset} \cup {\mathcal{U} \subset X : X - \mathcal{U} \text{ \'e finito}}.$$

Determine se:

- a) X é um espaço T_1 .
 - b) X é Hausdorff.
 - c) X é compacto.
 - d) X é conexo.
 - $B = A \cup \{(0, y) : -1 < y < 1\}.$

a) Prove que
$$A$$
 é conexo.

b) Prove que B é conexo.

- Seja X um espaço topológico normal. Sejam U₁ e U₂ dois abertos de X tais que $X = U_1 \cup U_2$. Usando o lema de Urysohn prove que
 - f₁(x) + f₂(y) = 1 para todo x ∈ X, • $f_1(x) = 0$ para todo $x \in X - U_1$, e

existem funções contínuas $f_1, f_2 : X \to [0, 1]$ tais que:

2) Sejam A e B os seguintes subconjuntos de \mathbb{R}^2 :

- f₂(x) = 0 para todo x ∈ X − U₂.
- Seja X um espaço topológico, seja y₀ ∈ Rⁿ, e seja Y um conjunto y_0 -estrelado de \mathbb{R}^n , ou seja $(1-t)y_0+ty\in Y$ para todo $y\in Y, t\in [0,1]$. Dadas $f, g \in C(X, Y)$, prove que $f \in g$ são homotópicas entre si.
- Sejam X e Y espaços topológicos, com X localmente compacto e Y Hausdorff. Seja $f:X\to Y$ uma função sobrejetiva, contínua e aberta. Dado um compacto $L \subset Y$, prove que existe um compacto $K \subset X$ tal que f(K) = L.

nome:

EQM do IMECC, Análise no \mathbb{R}^n , dezembro/2005

OS PONTOS 1-2-3 SÃO OBRIGATORIOS ESCOLHA EXATAMENTE DOIS (2) DOS PONTOS 4-5-6

(1) (a) Sejam $x \ge 0$, $y \ge 0$ e p > 0, q > 0 com $\frac{1}{p} + \frac{1}{q} = 1$. Mostre que

$$xy \le \frac{x^p}{p} + \frac{y^q}{q}.$$

(Sugestão: Minimize $f(x,y) = \frac{x^p}{p} + \frac{y^q}{q}$ sujeito ao vínculo xy = 1).

(b) Dado $\mathbf{v} = (v_1, ..., v_m) \in \mathbb{R}^m$, ponha $|\mathbf{v}|_p = (\Sigma_i |v_i|^p)^{1/p}$. Use a designaldade acima para provar que se, $\frac{1}{p} + \frac{1}{q} = 1$ então, dados $\mathbf{u}, \mathbf{v} \in \mathbb{R}^m$ vale a Designaldade de Hölder, $\langle \mathbf{u}, \mathbf{v} \rangle \leq |\mathbf{u}|_p |\mathbf{v}|_q$.

(2) Enuncie e demonstre a forma local das submersões.

Considere o seguinte 2-cubo singular no R²,

$$c: [0,1]^2 \to \mathbb{R}^2$$

$$c(s,t) = (x(s,t), y(s,t))$$

$$x(s,t) = s \operatorname{senh}(t)$$

$$y(s,t) = s \operatorname{cosh}(t)$$

considere também a 2-forma diferenciável $\omega = dx \wedge dy$.

- (i) calcule ∂c e faça um esboço de todas as faces.
- (ii) obtenha uma 1-forma ϕ tal que $d\phi = \omega$.
- (iii) verifique o teorema de Stokes, $\int_c \omega = \int_{\partial c} \phi$, calculando cada um dos termos pela definição.

(4) Mostre que o teorema de Stokes enunciado na sua forma geral, $\int_{\alpha} d\phi = \int_{\partial \alpha} \phi$, com o emprego de formas, implica no teorema da divergência de Gauss. Mostre que a 2-forma ω no \mathbb{R}^3 , dada por:

que a 2-forma
$$\omega$$
 no \mathbb{R}^3 , dada por:
$$\omega = \frac{x \, dy \wedge dz + y \, dz \wedge dx + z \, dx \wedge dy}{\omega}$$

 $\omega = \frac{x \, dy \wedge dz + y \, dz \wedge dx + z \, dx \wedge dy}{(x^2 + y^2 + z^2)^{3/2}}$

é fechada mas não é exata.

(5) Seja $C \subseteq A$ para algum rectângulo fechado $A \subseteq \mathbb{R}^n$. Mostre que a função característica $\chi_C:A\to\mathbb{R}$ é integravel se, e somente se, a fronteira de C tem medida nula.

(6) Seja $f = f(x,t) : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ de classe C^1 talque f(0,0) = 0 e $f_t(0,0) \neq 1$. Prove que a equação differencial,

tem uma única solução
$$\xi$$
 de classe C^1 definida em uma pequena vizinhança do

 $f_t(x, \xi(x))\xi'(x) + f_x(x, \xi(x)) = \xi'(x),$

tem uma única solução ξ de classe C^* definida em uma pequena vizinhança do zero with $\xi(0) = 0$.

(Sugestão: Considere a função H(x,t) = f(x,t) - t)

IMECC-UNICAMP Departamento de Matemática EXAME DE QUALIFICAÇÃO DE MESTRADO Análise no \mathbb{R}^n , 05/05/2005

 (2,0) Calcule a derivada da função determinante det : Rⁿ × · · · × Rⁿ → Rⁿ

$$det(\mathbf{v}_1, \dots, \mathbf{v}_n) \equiv det \begin{bmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_n \end{bmatrix}; \quad \mathbf{v}_1 \in \mathbb{R}^n, \dots, \mathbf{v}_n \in \mathbb{R}^n.$$

2. (2,0) Seja $f: \mathbb{R}^n \to \mathbb{R}^m$ uma aplicação de classe C^1 . Prove que

$$f(y) - f(x) = \int_0^1 f'(x + t(y - x)) dt (y - x)$$

para quaisquer $x, y \in \mathbb{R}^n$.

- 3. (2,0) Seja $f = f(x,t) : \mathbb{R}^{n+1} \to \mathbb{R}$ uma aplicação de classe C^1 tal que f(0,0) = 0 e $f_t(0,0) \neq 1$. Prove que a equação f(x,y) t = 0 define t implicitamente como uma função de x (localmente). Calcule $\nabla_x t$.
- 4. (2,0) Seja $f: \mathbb{R}^{n+m} \to \mathbb{R}^n$ uma submersão de classe C^1 . Prove que f é uma aplicação aberta.
- 5. Seja f = (f₁, · · · , f_n) : ℝⁿ → ℝⁿ uma aplicação de classe C¹.
 a) (1,0) Calcule a diferencial exterior da forma
 ω = ∑_{i=1}ⁿ (-1)ⁱ⁺¹ f_i df₁ ∧ · · · ∧ df̄_i ∧ · · · ∧ df̄_n.
 b) (1,0) Denote por J(x) = det[f'(x)] o determinante jacobiano de f no ponto x ∈ ℝⁿ. Seja D ⊂ ℝⁿ um domínio compacto com fronteira ∂D suave (pode supor de classe C[∞]). Se f(x) = 0 para todo x ∈ ∂D, prove que ∫_D J(x) dx = 0.

Exame de qualificação - Topologia Geral - Agosto 2005

NOME:

RA:

1) Sejam X e Y espaços topológicos. Dados $A \subset X$ e $B \subset Y$, prove que:

1a)
$$\overline{A \times B} = \overline{A} \times \overline{B}$$
.

1b)
$$(A \times B)^{\circ} = A^{\circ} \times B^{\circ}$$
.

- 2) Seja $\{X_i:i\in I\}$ uma família de espaços topológicos. Seja $A_i\subset X_i$ para cada $i\in I$.
 - 2a) Prove que $\overline{(\Pi_{i\in I}A_i)}=\Pi_{i\in I}\overline{A_i}$.
 - 2b) Prove que (Π_{i∈I}A_i)° ⊂ Π_{i∈I}A_i°.
 - 2c) Exiba um exemplo onde (Π_{i∈I}A_i)° ≠ Π_{i∈I}A_i°.
- 3) Seja O(2) o conjunto de todas as matrizes reais $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ tais que $\det(A) = \pm 1$. Considere O(2) como subespaço de \mathbb{R}^4 .
 - 3a) Prove que a função $O(2) \ni A \mapsto \det(A) \in \mathbb{R}$ é contínua.
 - 3b) Prove que O(2) é desconexo.
- 4) Sejam X e y espaços topológicos, com Y Hausdorff. Sejam $f:X\to Y$ e $g:Y\to X$ funções contínuas tais que $g\circ f(x)=x$ para todo $x\in X$.
 - a) Prove que X é Hausdorff.
 - b) Prove que f(X) é fechado em Y.
- 5) Seja X um espaço topológico, e seja C um subconjunto de X que é conexo, aberto e fechado. Prove que C é uma componente conexa de X.

EXAME DE QUALIFICAÇÃO

Álgebra linear Dezembro, 2005

Resolver 5 exercícios

- 1. Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ uma transformação linear dada por T(i) = i j e T(j) = i + 3j.
 - a) Escrever a matriz de T, A, na base (canônica) i, j de \mathbb{R}^2 .
 - b) Encontrar a forma de Jordan de T e a respectiva base de Jordan.
 - c) Calcular a matriz A100.
- a) Seja A ∈ M_n(C) uma matriz nilpotente. Quais as raízes características de A?
 - b) Se $A, B \in M_n(\mathbb{C})$, mostrar que o traço de AB BA é igual a 0.
- c) Seja $A \in M_4(\mathbb{R})$ uma matriz cujos autovalores são $1 + \sqrt{-1}$, $2 \sqrt{-1}$, $3 \sqrt{-1}$, e $4 \sqrt{-1}$. Demonstre que det $A = 40 10\sqrt{-1}$.
- d) Mostrar que o espaço vetorial $M_n(\mathbb{C})$ sobre os complexos não possui base que consiste de matrizes nilpotentes.
- Responder falsa ou verdadeira a cada uma das afirmações abaixo. Justificar as suas respostas.
- a) Se $A \in M_n(\mathbb{C})$ e $A^k = I_n$ para algum k. A forma canônica de Jordan de A pode conter bloco $\begin{pmatrix} \alpha & 1 \\ 0 & \alpha \end{pmatrix}$ com $\alpha \in \mathbb{C}$ e $\alpha^k = 1$?
- b) Se V é um espaço vetorial com dim $V=n<\infty$ e T é um operador linear em V, então ker $T\cap \operatorname{im} T=0$.
 - c) Todo operador linear T em \mathbb{R}^3 possui subespaço invariante $V \neq 0$, \mathbb{R}^3 .
- d) Seja f(X) o polinômio característico de uma matriz $A \in M_n(\mathbb{C})$. Se $f(0) \neq 0$, então det $A \neq 0$.
- e) Sabendo-se que a uma matriz $A \in M_n(\mathbb{C})$ e sua inversa A^{-1} têm todos os coeficientes números inteiros, podemos dizer que det $A = \det A^{-1}$?
- 4. Seja V um espaço vetorial de dimensão finita sobre \mathbb{R} com produto interno $\langle \ , \ \rangle$. Mostre que para todo subespaço W de V temos $V = W \oplus W^{\perp}$, onde $W^{\perp} = \{v \in V \mid \langle v, w \rangle = 0$, para todo $w \in W\}$, é o complemento ortogonal de W.
 - 5. Seja V um espaço vetorial de dimensão finita sobre $\mathbb C.$
 - a) Definir produto interno (também chamado de produto escalar) em V.
- c) Dado um operador linear T: V → V Em que condições podemos dizer que exite uma base ortonormal de V na qual a matriz de T é diagonal?.
- d) Definir o dual \tilde{V} de V e determinar sua dimensão em função da dimensão de V.
- 6. Seja $A \in M_n(\mathbb{C})$ uma matriz, e seja p = p(A) o posto de A. Denotamos por $p^* = p(A^*)$ onde A^* é a adjunta de A. (Recordamos que $AA^* = A^*A = (\det A)I_n$.) Calcular p^* em função de p.

EXAME DE QUALIFICAÇÃO Álgebra linear Dezembro, 2005

Resolver 5 exercícios

- 1. Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ uma transformação linear dada por T(i) = i j e T(j) = i + 3j.
 - a) Escrever a matriz de T, A, na base (canônica) i, j de \mathbb{R}^2 .
 - b) Encontrar a forma de Jordan de T e a respectiva base de Jordan.
 - c) Calcular a matriz A¹⁰⁰.
- a) Seja A ∈ M_n(C) uma matriz nilpotente. Quais as raízes características de A?
 - b) Se $A, B \in M_n(\mathbb{C})$, mostrar que o traço de AB BA é igual a 0.
- c) Seja $A \in M_4(\mathbb{R})$ uma matriz cujos autovalores são $1 + \sqrt{-1}$, $2 \sqrt{-1}$, $3 \sqrt{-1}$, e $4 \sqrt{-1}$. Demonstre que det $A = 40 10\sqrt{-1}$.
- d) Mostrar que o espaço vetorial $M_n(\mathbb{C})$ sobre os complexos não possui base que consiste de matrizes nilpotentes.
- Responder falsa ou verdadeira a cada uma das afirmações abaixo. Justificar as suas respostas.
- a) Se $A \in M_n(\mathbb{C})$ e $A^k = I_n$ para algum k. A forma canônica de Jordan de A pode conter bloco $\begin{pmatrix} \alpha & 1 \\ 0 & \alpha \end{pmatrix}$ com $\alpha \in \mathbb{C}$ e $\alpha^k = 1$?
- b) Se V é um espaço vetorial com dim $V=n<\infty$ e T é um operador linear em V, então ker $T\cap \operatorname{im} T=0$.
 - c) Todo operador linear T em \mathbb{R}^3 possui subespaço invariante $V \neq 0$, \mathbb{R}^3 .
- d) Seja f(X) o polinômio característico de uma matriz A ∈ M_n(C). Se f(0) ≠ 0, então det A ≠ 0.
- e) Sabendo-se que a uma matriz $A \in M_n(\mathbb{C})$ e sua inversa A^{-1} têm todos os coeficientes números inteiros, podemos dizer que det $A = \det A^{-1}$?
- 4. Seja V um espaço vetorial de dimensão finita sobre \mathbb{R} com produto interno $\langle \ , \ \rangle$. Mostre que para todo subespaço W de V temos $V=W\oplus W^{\perp}$, onde $W^{\perp}=\{v\in V\mid \langle v,w\rangle=0, \text{ para todo }w\in W\}$, é o complemento ortogonal de W.
 - Seja V um espaço vetorial de dimensão finita sobre C.
 - a) Definir produto interno (também chamado de produto escalar) em V.
- c) Dado um operador linear T: V → V Em que condições podemos dizer que exite uma base ortonormal de V na qual a matriz de T é diagonal?.
- d). Definir o dual \widetilde{V} de V e determinar sua dimensão em função da dimensão de V.
- 6. Seja A ∈ M_n(C) uma matriz, e seja p = p(A) o posto de A. Denotamos por p* = p(A*) onde A* é a adjunta de A. (Recordamos que AA* = A*A = (det A)I_n.) Calcular p* em função de p.

Exame Qualificação - Álgebra Linear - 03/08/2005

1. Dado o espaço vetorial \mathbb{C}^3 sobre os complexos seja $T: \mathbb{C}^3 \to \mathbb{C}^3$ o operador

$$T(x, y, z) = (ax + bz, ay + cz, az),$$

onde a, b e c são números complexos.

- (a) Encontrar a matriz de T na base canônica.
- (b) Achar uma base de Jordan (em função de a, b, c) para T, e a matriz de T em relação à base de Jordan.
- 2. Dada a forma quadrática $\varphi : \mathbb{R}^2 \to \mathbb{R}$ definida por $\varphi(x,y) := 2x^2 y^2 + 3xy$ econtre uma base ortonormal $\{e_1, e_2\}$ e escalares a e b tais que para todo vetor do \mathbb{R}^2 , $(x,y) = \alpha e_1 + \beta e_2$, se tenha $\varphi(x,y) = a\alpha^2 + b\beta^2$.
- Responder falsa ou verdadeira a cada uma das perguntas abaixo. (Respostas sem a devida justificativa não serão consideradas.)
 - a) Se dim V = n então $V \otimes V \cong M_n$.
- b) Se T é um operador ortogonal em \mathbb{R}^n , então existe uma base ortonormal, que consiste de autovetores de T.
- c) Todo subespaço próprio de um espaço V de dimensão n é uma interseção finita de subespaços de dimensão n-1.
- d) A matriz de um operador T de um espaço vetorial V em relação a uma base \mathcal{C} é igual a matriz, tomada em relação a mesma base, da bilinear $B(u,v)=\langle u,T(v)\rangle$, onde $\langle \ ,\ \rangle$ é um produto escalar sobre V.
 - e) Os autovetores de um operador invertível T coincidem com os autovetores de T^{-1} .
- f) Seja $J=J(\lambda,k)$ um bloco de Jordan $k\times k$ com λ na diagonal principal (e 1 na diagonal acima da principal). Então a forma canônica de Jordan de J^2 consiste de um bloco de Jordan.
- g) Seja $T: \mathbb{C}^n \to \mathbb{C}^n$ um operador linear tal que $T^k = I$ para algum $k \geq 1$, então na forma canônica de Jordan de T há bloco $k \times k$.
 - 4. Seja $T: \mathbb{R}^n \to \mathbb{R}^n$ uma transformação linear.
- a) Mostrar que T é uma involução (isto é $T^2 = T$) se e somente se \mathbb{R}^n é uma soma direta de subespaços V_0 e V_1 tais que $T|_{V_0} = \mathrm{Id}$, onde Id é a transformação identidade, e $T|_{V_1} = -\mathrm{Id}$.
 - b) Mostrar que existe uma base de \mathbb{R}^n que consiste de autovetores de T.
 - c) Demonstre que T é normal se e somente se V_0 é ortogonal a V_1 .
- d) Sejam T_1, T_2, \ldots, T_k involuções, distintas duas a duas, em \mathbb{R}^n tais que $T_iT_j = T_jT_i$ para quaisquer $i \in j$. Mostrar que $k \leq 2^n$.

Boa Prova