a)
$$f(1,1) = f(2,3) + (1-2)f_x(x^* + y^*) + (1-3)f_y(x^*, y^*)$$

 $\Rightarrow 4 = 59 - (8x^{*3} + 3y^{*2}) - 2(6x^*y^* - 3y^{*2})$
 $\Rightarrow 55 = 8x^{*3} + 12x^*y^*$ (1)
Since (x^*, y^*) lies on AB , we have
 $y^* = 2x^* - 1(2)$
and (1) , (2) give
 $\varphi(x^*) = 8x^{*3} + 24x^{*2} - 12x^* - 55 = 0$

Since $\varphi(1) = -35 < 0$, $\varphi(2) = 81 > 0$ hold , x^* must lie between 1 and 2.

Example 0.1. Given

$$f(x,y) = \arctan \frac{y}{x}$$

- $f(x,y)=\arctan\frac{y}{x}$ a) obtain TAYLOR's Formula with R_3 at $A(1,\sqrt{3})$
- b) evaluate f(2,3)
- c) Show existence of (x^*, y^*) on the open line segment joining $A(1, \sqrt{3})$ to $B(\sqrt{3},1)$

Solution.

a)
$$f(x,y) = f(1,\sqrt{3}) + [(x-1)f_x(A) + (y-\sqrt{3})f_y(B)] + \frac{1}{2}[(x-1)^2 f_{xx}(A) + 2(x-1)(y-\sqrt{3})f_{xy}(A) + (y-\sqrt{3})^2 f_{yy}(A)] + R_3$$
 where
$$f(1,\sqrt{3}) = \frac{\pi}{3}, f_x(A) = -\frac{\sqrt{3}}{4}, f_y(A) = \frac{1}{4}, f_{xx}(A) = \frac{\sqrt{3}}{8}, f_{xy}(A) = \frac{1}{8}, f_{yy}(A) = -\frac{\sqrt{3}}{8}$$
$$f(x,y) = \frac{\pi}{3} + \left[-\frac{\sqrt{3}}{4}(x-1) + \frac{1}{4}(y-\sqrt{3})\right] + \frac{1}{2}\left[\frac{\sqrt{3}}{8}(x-1)^2 + \frac{1}{4}(x-1)(y-\sqrt{3}) - \frac{\sqrt{3}}{8}(y-\sqrt{3})^2\right] + R_3$$