

hosted by SBA Research Wien

Topic for today: CommentSense

Send us announcements & job openings!

Welcome by the Meetup organizers:

Thomas Lidy iGroove

René Donner mva.ai

Jan Schlüter JKU Linz

Alex Schindler AIT & TU Wien

Pavol Harar ISTA & ACALAI

Welcome to SBA Research

Research Group Security & Privacy, Uni Wien

Rudolf Mayer & the MLDM Team

Security & Privacy @ SBA & Uni Wien

- -140 employees combined
- Scientific Lead: Edgar Weippl
- Research topics
 - Mathematics for Testing, Reliability and Information Security
 - Networks and Critical Infrastructures Security
 - Systems and (I)IoT Security
 - Decentralized Systems & Distributed Ledgers
 - Complexity and Resilience
- More details:
 - https://www.sba-research.org/research, https://sec.cs.univie.ac.at/

Why do we host the Vienna Deep Learning Meetup?

- Machine Learning and Data Management Group
 - Privacy-preserving Machine Learning
 - Federated Learning, Synthetic Data, Differential Privacy, ...
 - Security of Machine Learning / Adversarial ML
 - Evasion attacks (adversarial examples), data poisoning, ...
 - Protection of ML assets
 - (Training) Data, models, outputs (e.g. genAl), ...
 - Machine Learning for security
 - Intrusion / malware / anomaly detection, ...

https://www.sba-research.org/mldm/

18:30 Welcome by the organizers
Welcome by our host: **SBA Research**

18:45 CommentSense: An On-Device Al Browser Extension for Real-Time YouTube Comment Understanding

Marc Kroll

19:10 Hot Topics
Announcements

19:30 Networking & Discussions

Hot Topics

Interesting recent research, feel free to contribute!

top papers from ISMIR 2025

top papers from ISMIR 2025 some interesting ISMIR papers

The Al Music Arms Race: On the Detection of Al-Generated Music

Laura Cros Vila, Bob Sturm, Luca Casini, David Dalmazzo

- collected 10k human-made, 10k suno, 10k udio songs
- computed general audio + CLAP features

2D UMAP:

The Al Music Arms Race: On the Detection of Al-Generated Music

Laura Cros Vila, Bob Sturm, Luca Casini, David Dalmazzo

- collected 10k human-made, 10k suno, 10k udio songs
- computed general audio + CLAP features

2D UMAP:

Classifier:

The Al Music Arms Race: On the Detection of Al-Generated Music

Laura Cros Vila, Bob Sturm, Luca Casini, David Dalmazzo

- collected 10k human-made, 10k suno, 10k udio songs
- computed general audio + CLAP features

2D UMAP:

Classifier:

But:

Performance breaks when downsampling audio to 22.05 kHz

Does not generalize to unseen services

IRCAM Amplify updates often – arms race

Darius Afchar, Gabriel Meseguer Brocal, Kamil Akesbi, Romain Hennequin

Neural audio codecs in music generation models use transposed strided convolutions

Transposed convolutions lead to <u>checkerboard artifacts in images</u>

Darius Afchar, Gabriel Meseguer Brocal, Kamil Akesbi, Romain Hennequin

Finding: Transposed convolutions lead to similar artifacts in spectra

Darius Afchar, Gabriel Meseguer Brocal, Kamil Akesbi, Romain Hennequin

Finding: Transposed convolutions lead to similar artifacts in spectra

Idea: Train a linear regressor to differentiate original audio vs. output of neural audio codec, works on par with existing, more complex models

Class	Our	Reported from [17]
Real	99.87	99.7
Synthetic		
\hookrightarrow DAC (14kbps)	99.68	99.3
\hookrightarrow Encodec (24kbps)	99.81	99.7
→ Musika!	99.97	100.0

Class	Our	Reported from [16]
Real	99.97	99
Synthetic		
\hookrightarrow Suno v3.5	100.00	100
\hookrightarrow Suno $v3^{\dagger}$	100.00	96
\hookrightarrow Suno $v2^{\dagger}$	99.90	78
\hookrightarrow Udio 130	100.00	100
$\hookrightarrow Udio 32^{\dagger}$	39.83	96

Darius Afchar, Gabriel Meseguer Brocal, Kamil Akesbi, Romain Hennequin

Work done by Deezer

Fun facts:

up to 25% of music uploaded to Deezer is generated by Al

Darius Afchar, Gabriel Meseguer Brocal, Kamil Akesbi, Romain Hennequin

Work done by Deezer

Fun facts:

up to 25% of music uploaded to Deezer is generated by Al

up to 70% of streams of Al-generated music is by bots

Al-Generated Song Detection via Lyrics Transcripts

Markus Frohmann, Elena Epure, Gabriel Meseguer Brocal, Markus Schedl, Romain Hennequin

Work done by Deezer with JKU Linz

Somewhat worse than audio-based (90% vs. 97%), but generalizes across different services

User-Guided Generative Source Separation.

Yutong Wen, Minje Kim, Paris Smaragdis

Off-the-shelf systems: four predefined stems (e.g., Spleeter, Demucs)

User-Guided Generative Source Separation.

Yutong Wen, Minje Kim, Paris Smaragdis

Off-the-shelf systems: four predefined stems (e.g., Spleeter, Demucs)

VDBO Setup

Vocals

Neural
Network

Drums

Others

Their system: select part to extract by mimicking it (humming, other instrument)

User-Guided Generative Source Separation .

Yutong Wen, Minje Kim, Paris Smaragdis

Off-the-shelf systems: four predefined stems (e.g., Spleeter, Demucs)

VDBO Setup

Vocals

Neural
Network

Drums

Others

Their system: select part to extract by mimicking it (humming, other instrument)

Model: Conditioned diffusion U-Net

<u>Demo</u>:

Data: Synthesized mimicry from audio-aligned MIDI

David Marttila, Joshua D. Reiss

PESTO: self-supervised deep learning approach for pitch estimation

David Marttila, Joshua D. Reiss

SWIPE: old spectral-candidate-based pitch estimation approach

David Marttila, Joshua D. Reiss

Findings:

Replacing audio frontend in PESTO with SWIPE improves results

	# params	Trained on	Raw Pitch Accuracy	
Method			MIR-1K	MDB-stem-synth
		MIR-1K	96.1%	94.6%
PESTO	28.9k	MDB-stem-synth	93.5%	95.5%
SWIPE-full	28.2k	MIR-1K	97.0%	89.7%
		MDB-stem-synth	96.1%	96.4%

David Marttila, Joshua D. Reiss

Findings:

Replacing audio frontend in PESTO with SWIPE improves results

Shrinking model from 28k parameters to 647 parameters further improves results

		Trained on	Raw Pitch Accuracy	
Method	# params		MIR-1K	MDB-stem-synth
PESTO	28.9k	MIR-1K	96.1%	94.6%
FESTO		MDB-stem-synth	93.5%	95.5%
-		MIR-1K	97.0%	89.7%
SWIPE-full	28.2k	MDB-stem-synth	96.1%	96.4%
SWIPE-tiny	647	MIR-1K	96.6%	90.1%
		MDB-stem-synth	96.4%	96.5%

David Marttila, Joshua D. Reiss

Findings:

Replacing audio frontend in PESTO with SWIPE improves results

Shrinking model from 28k parameters to 647 parameters further improves results

SWIPE alone works almost as well → Performance was misreported in many pitch estimation papers

		Trained on	Raw Pitch Accuracy	
Method	# params		MIR-1K	MDB-stem-synth
SWIPE	-	-	96.2%	96.1%
PESTO	28.9k	MIR-1K	96.1%	94.6%
		MDB-stem-synth	93.5%	95.5%
CAMPE 6 11	20.21	MIR-1K	97.0%	89.7%
SWIPE-full	28.2k	MDB-stem-synth	96.1%	96.4%
SWIPE-tiny	647	MIR-1K	96.6%	90.1%
		MDB-stem-synth	96.4%	96.5%

Announcements

Resources - all past talks & slides: github.com/vdlm

Send us SPEAKER suggestions, job & event announcements:

Call for Speakers!

Do you work on Deep Learning? In academia or industry?

We'd like to hear your story!

We are looking for speakers for **future meetups**.

Short talks (20-30 min) or **long talks** (40-60 min) welcome.

Talk to us in the break or send us an email!

Next Meetup:

October 23, 2025

Any suggestions for speakers or venues?

contact@vdlm.at

Send us SPEAKER suggestions, job & event announcements: