Effects of Shielding Gas on Microstructure in Wire Arc Additive Manufactured Steel

Background

- Grade 91 (G91) is a 9 weight % Cr steel that derives its high-strength from a ferritic/martensitic structure and MX (M=Nb,V/X=C,N) carbonitride precipitates¹
- Wire arc additive manufacturing (WAAM) is a promising technique to **fabricate G91 with an increased density of MX precipitates** for advanced nuclear reactor components^{2,3,4}

Objective

- Determine the MX precipitation behavior in G91 caused by using CO_2 - and N_2 -containing shielding gases during WAAM

Methods

Final Sample Matrix

Build 99/1						
ASB	HT1045	HT1100				
Build 95/5						
ASB	HT1045	HT1100				

Results-Shielding Gas Effect on ASB Composition

	O (wt.%)	C (wt.%)	N (wt.%)	Build 99/1: 62% increase in N
Wire	0.008	0.08	0.04	Build 95/5:
ASB 99/1	0.0178	0.072	0.0648	16.25% increase
ASB 95/5	0.0316	0.093	0.0386	in C

Results-Shielding Gas Effect on MX Precipitation

ASB HT1045 HT1100 Wrought G91⁵

Build 99/1 Build 95/5 Build 99/1 Build 95/5 Build 99/1 Build 95/5 14 ± 3 20 ± 4 1.8 ± 0.3 2.1 ± 0.4 9.6 ± 1.8 3.1 ± 0.6 0.2

Discussion

ASB

- -99/1:3.8x more VN than 95/5
- N₂ gas drove VN precipitation
- -95/5: 2.3x more (Nb,V)(C,N) than 99/1
- CO₂ gas drove (Nb,V)(C,N) precipitation

HT1045

- Nb-rich MX agglomerated and coarsened (2nd peak)
- V-rich MX dissolved and re-precipitated (1st peak)

HT1100

- All MX dissolved during austenitization
- Higher N content of 99/1 caused increased MX
 precipitate density and smaller precipitate sizes

Wire arc AM increased
beneficial precipitate
number density by 1-2 orders
of magnitude over traditional
wrought steel

 CO_2 and N_2 gas additions to an inert shielding gas during WAAM:

Modified C and N content

Affected carbonitride

precipitation composition

T.M. Kelsy Green*, Kevin G. Field

University of Michigan-Ann Arbor
Niyanth Sridharan
Lincoln Electric Co.

Xiang Chen

Oak Ridge National Laboratory
*tmkgreen@umich.edu

References

- [1] R.L. Klueh, Elevated-Temperature Ferritic and Martensitic Steels and Their Application To Future, 2004.
- [2] N. Sridharan, K. Field, A Road Map for the Advanced Manufacturing of Ferritic-Martensitic Steels, Fusion Sci. Technol. 75 (2019) 264–274. https://doi.org/10.1080/15361055.2019.1577124.
- [3] K. Li, M.A. Klecka, S. Chen, W. Xiong, Wire-arc additive manufacturing and post-heat treatment optimization on microstructure and mechanical properties of Grade 91 steel, Addit. Manuf. (2020) 101734. https://doi.org/10.1016/j.addma.2020.101734.
- [4] C. Gao, X. Chen, X. Chen, C. Su, Microstructure and mechanical properties of asdeposited and heat-treated additive manufactured 9Cr steel, Mater. Sci. Technol. (United Kingdom). 35 (2019) 2234–2242. https://doi.org/10.1080/02670836.2019.1668603.
- [5] B.A. Shassere, Y. Yamamoto, S.S. Babu, Toward Improving the Type IV Cracking Resistance in Cr-Mo Steel Weld Through Thermo-Mechanical Processing, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 47 (2016) 2188–2200. https://doi.org/10.1007/s11661-016-3387-9.