Implementing Path Coloring Algorithms on Planar Graphs

Aven Bross

June 20, 2017

Abstract

A path coloring of a graph partitions its vertex set into color classes such that each class induces a disjoint union of paths. In this project we consider implementing several algorithms to compute path colorings of graphs embedded in the plane.

We present two algorithms to path color plane graphs with 3 colors based on a proof by Poh's in 1990. First we describe a naive algorithm that directly follows Poh's procedure, then we give a modified algorithm that runs in linear time.

Independent results of Hartman and Skrekovski describe a procedure that takes a plane graph G and a list of 3 colors for each vertex, and computes a path coloring of G such that each vertex recieves a color from its list. We present a linear time algorithm based on Hartman and Skrekovski's proofs.

A C++ implementation is provided for all three algorithms utilizing the Boost Graph Library.

1 Plane Graphs

We will be concerned only with simple plane graphs. Informally, a plane graph is a network drawn in the plane consisting of a set of points, and a set of lines between points such that no lines cross.

Formally a *simple graph* is a pair G = (V, E) consisting of a finite set V of *vertices* and a set E of two element subsets of V known as *edges*. We will refer to the the vertex and edge sets of a graph G by V(G) and E(G), respectively. All graphs in this project are simple.

As shorthand we will denote an edge $\{u,v\} \in E(G)$ simply as uv or vu. Furthermore, if it is clear by context that $v \in V(G)$ is a vertex, or $uv \in E(G)$ an edge, we will use the notation $v \in G$, or $uv \in G$.

Two vertices $u, v \in V(G)$ are adjacent if $uv \in E(G)$. Vertices u and v are known as the endpoints of uv. The edge uv is said to be incident to the vertices u and v.

Figure 1.1: Drawings of K_3 , K_4 , K_5 (nonplanar), a length 4 path, and a 6-cycle.

The vertices in G adjacent to a vertex v are known as the *neighbors* of v. The number of neighbors of a vertex v is its *degree*, denoted deg(v).

A graph H is a subgraph of G if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. If $S \subseteq V(G)$ the induced subgraph of S on G is the subgraph H defined by V(H) = S and $E(H) = \{uv \in E(G) \mid u, v \in S\}$. We say a subgraph H of a graph G is induced if it is the induced subgraph of its vertex set on G.

If $v \in V(G)$ we will use G - v to denote the subgraph obtained by removing v and its incident edges from G. Similarly, if H is a subgraph of a graph G, we define G - H to be the subgraph obtained by removing from G all vertices in H and all edges incident to a vertex in H.

A length n path consists of the vertices v_1, v_2, \ldots, v_n and the edges $v_1v_2, v_2v_3, \ldots, v_{n-1}v_n$. A length n cycle, or n-cycle, consists of a length n path and the additional edge v_1v_n . We will often denote a path or cycle G by simply listing its vertices in order, i.e. $G = v_1v_2 \ldots v_n$.

If a path $P = v_1 v_2 \dots v_n$ is a subgraph of a graph G, we say P is a $v_1 v_n$ -path in G. A graph G is connected if for every $u, v \in V(G)$, there exists a uv-path in G. If any k vertices may be removed from a graph G with G remaining connected, we say G is k-connected.

A drawing of a graph maps each vertex to a point in the plane and each edge to a curve connecting its endpoints. A planar embedding is a drawing where edge curves intersect only at their endpoints. We say a graph is planar if it admits a planar embedding. A planar graph together with a particular planar embedding is called a plane graph.

Let G be a plane graph. A face of G is a maximal region of the plane not containing any point used in the embedding. The unbounded face is known as the *outer face*. We will always refer to a face by the subgraph of vertices and edges that lie on its border.

For brevity, we have not fully formalized curves, regions, or borders. However, the above definitions and results are fairly standard and may be found in many graph theory texts, for example [24].

Theorem 1.1 (Euler's Formula). If G is a connected plane graph with n vertices, m edges, and f faces, then n - m + f = 2.

A simple corollary of Euler's Formula states that if $n \geq 3$, then $m \leq 3n - 6$. A planar graph is said to be *triangulated* if adding any new edge results in a nonplanar graph. Triangulated plane graphs with $n \geq 3$ vertices have exactly 3n - 6 edges.

A face is said to be a *triangle* if it is a 3-cycle. It is easy to see that all faces in a triangulated plane graph are triangles: if any face has more than three vertices then we may add an edge curve connecting two face vertices without crossing existing edges. Conversely if all faces in a plane graph are triangles, then it is triangulated.

If a plane graph has triangles for all but one face we shall say it is *weakly triangulated*. We will always assume the non-triangle face is the outer face. A 2-connected weakly triangulated plane graph has a cycle for its nontriangle face.

Suppose C is a cycle in a weakly triangulated plane graph G. Then the subgraph consisting of C and all interior vertices and edges is denoted $\operatorname{Int}(C)$. If $u, v \in V(C)$ then we denote the uv-path in C running clockwise around the cycle with C[u, v]. Finally, if $u, v \in V(C)$ we call any edge $uv \in E(G) \setminus E(C)$ a *chord* of the cycle C.

A rotation scheme for a graph G is a cyclic ordering of the incident edges around each vertex. Planar embeddings naturally induce a rotation scheme by the counterclockwise order in which edge curves are positioned around each vertex. In fact, with respect to graph algorithms, the induced rotation scheme contains all the useful information of an embedding. Therefore, while we may often visualize plane graphs with drawings, planar embeddings will always be represented solely by their induced rotation scheme.

2 A Brief History of Coloring Plane Graphs

A k-coloring of a graph maps each vertex to one of k possible colors. Equivalently, a k-coloring partitions the vertices of a graph into k disjoint sets called $color \ classes$. A coloring is proper if no pair of adjacent vertices receive the same color, or equivalently if the color classes all consist of nonadjacent vertices.

It is clear that not all planar graphs admit a proper 3-coloring: the complete graph on four vertices is planar and requires 4 colors. Whether all planar graphs admit a proper coloring with 4 colors, the Four Color Problem, remained one of the premier open questions in graph theory until it was verified by Appel and Haken in 1976 [1, 2].

A (k, l)-coloring, or a k-coloring with defect l, is a k-coloring such that each vertex has at most l same color neighbors. Generalizations of proper colorings were first introduced in 1968 by Chartrand et al. in [7]. Defective colorings in particular were introduced about simultaneously around 1985 by Cowen et al. [10], Jones et al. [16], and Jacobson et al. [3]. It was shown in [10] that all planar graphs admit a (3, 2)-coloring.

A path k-coloring is a k-coloring such that the induced subgraph of each color class consists of one or more disjoint paths. Note that path k-coloring is equivalent to (k, 2)-coloring with the added restriction that path coloring forbids cycles. It was conjectured by Broere et. al. [6] that all planar graphs may be path 3-colored. In

1990 Poh [19] and Goddard [14] independatnly proved the conjecture. Planar graphs that do not admit a path 3-coloring were described by Chartrand et. al. [9], and thus the result is best possible.

Poh's proof is constructive and may easily be adapted to an algorithm for path 3-coloring plane graphs. Here we describe a naive version of Poh's algorithm, as well as a modified algorithm that runs in $\mathcal{O}(n)$ time.

Let G be a graph. A list assignment for G is a map L assigning each vertex $v \in V(G)$ a list of colors. Given a list assignment L an L-list-coloring of G, first introduced by Erdös et al. in [12], maps each $v \in V(G)$ to a color in L(v). We say a graph G is k-choosable if given any list assignment L such that $|L(v)| \geq k$ for all $v \in V(G)$, G admits a proper L-list-coloring.

In 1994 Thomassen [22] proved that if G is planar, then G is 5-choosable. A planar graph that is not 4-choosable was described by Voigt [23] in 1993, so Thomassen's result is best possible.

We may equivalently define the properties (k, l)-choosable and path k-choosable. In 1997 Hartman [17] proved that all planar graphs are path 3-choosable. Hartman's result is best possible since path 3-coloring is a special case of path L-list-coloring with lists of size 3. In 1999 Hull and Eaton [11] and Skrekovski [21] independently proved that if G is a planar graph, then G is (3, 2)-choosable.

Hartman's proof provides a constructive procedure to construct a path L-list-coloring for a plane graph that has been given a list assignment L with lists of size at least 3. Interestingly, the proofs of Hartman and Skrekovski follow the same coloring algorithm, and thus Skrekovski unknowingly showed the stronger path 3-choosability result. We describe an algorithm based on Hartman and Skrekovski's work and show it runs in $\mathcal{O}(n)$ time.

3 Graph Representations and Time Complexity

Let G be a plane graph. Vertices will be represented by integers, that is, we shall assume $V(G) = \{0, 1, \dots, n-1\}$. We will always denote number of vertices in G with n and the number of edges with m.

The input size for each algorithm, given input graph G, will be the number of vertices n. However, since G is a plane graph, if $n \geq 3$ then $m \leq 3n - 6$. Thus $\mathcal{O}(m) = \mathcal{O}(n)$. Hence it is equivalent to take the input size to be the number of edges m.

We assume an integer RAM model of compution in which integers require fixed space and integer operations take constant time. The basic operation for all time complexity discussions will therefore be a single memory reference lookup, integer arithmetic operation, or integer comparison.

We will ignore the allocation of memory with respect to time complexity, such as in the creation of arrays or other data structures. The operations required to initialize elements in a structure are counted. In accordance with these assumptions, inserting or removing an element in a linked list or at the back of an array will require $\mathcal{O}(1)$ time.

Vertex properties will be stored in size n arrays indexed by vertices. Thus accessing or comparing vertex properties shall, in general, be constant time. Colors are assumed to be integers. A coloring of G will thus be represented by an integer vertex property.

For each $v \in V(G)$ we define a linked list called an *adjacency list* containing the neighbors of v ordered according to the rotation scheme of the embedding. The full plane graph G may then represented by a vertex property Adj storing the adjacency list for each vertex. That is, each vertex $v \in V(G)$ has the adjacency list Adj[v].

We will sometimes wish for the ability to quickly find a neighbor u in v's adjacency list directly from v's entry in u's list. To allow this lookup in $\mathcal{O}(1)$ time we will instead define a linked list of pairs $\mathrm{Adj}[v]$ for each $v \in V(G)$ called an augmented adjacency list. Each node in the list $\mathrm{Adj}[v]$ will store a neighboring vertex u as well as a reference to the node for v in $\mathrm{Adj}[u]$.

An augmented adjacency list representation of a graph G may be constructed from a standard adjacency list representation in $\mathcal{O}(m)$ time via the following algorithm due to Glenn Chappell.

Some algorithm entries, for example $Poh\ 3$ - $Coloring\ (4.1)$, will describe procedures on abstract graphs. Others, for example $Augment\ Adjacency\ Lists\ (3.1)$ below, will describe algorithms working with computer graph representations. We will provide time complexity analysis for all algorithms working with concrete representations.

Algorithm 3.1. (Augment Adjacency Lists)

Input: An adjacency list representation Adj of a graph G.

Output: An augmented adjacency list representation Adj' of G with the neighbors of each vertex listed in the same order as in Adj.

Description: We will begin by using Adj to construct an augmented adjacency list representation Adj' of G with the reference portion of each node uninitialized. Next we construct an array Wrk[v] of size deg(v) for each $v \in V(G)$.

We fill in Wrk as follows. For each v from 0 to n-1 let us walk through Adj'[v]. At each neighbor u in Adj'[v] let $r_{v,u}$ be the reference to u's position in Adj'[v] and append the pair $(v, r_{v,u})$ to Wrk[u].

After this process finishes each $u \in V(G)$ will have an array Wrk[u] containing the pairs $(v, r_{v,u})$ for each neighbor v, sorted in ascending order by the vertices v.

We will now initialize the references of each node of the augmented adjacency lists. Iterate through the vertices in descending order. Let v be the current vertex. For each $uw \in E(G)$ such that u < w and v < w we shall have initialized the reference for u in $\mathrm{Adj}'[w]$ and the reference for w in $\mathrm{Adj}'[u]$. We will also have removed the entry $(w, r_{w,u})$ from $\mathrm{Wrk}[u]$. It remains to handle edges $uv \in E(G)$ with v > u.

For each v from n-1 to 0 let us walk through $\operatorname{Wrk}[v]$. For i from 1 to $\deg(v)$ take $(u, r_{u,v}) = \operatorname{Wrk}[v][i]$. Note u < v by our assumptions above. Moreover, $\operatorname{Wrk}[u]$ contains no entries for neighbors greater than v so $(v, r_{v,u})$ is the last element of

Wrk[u]. Thus we may lookup $r_{v,u}$ to find u's node in Adj'[v] and initialize the reference with $r_{u,v}$. We may similarly initialize the reference for v's node in Adj'[u]. Finally, we remove $(v, r_{v,u})$ from Wrk[u].

Time Complexity: For each edge $uv \in E(G)$, u < v, we make a constant number of assignments to Adj' and Wrk, two reference lookups, and one entry removal from the back of Wrk[u]. Therefore the overall complexity of the algorithm is $\mathcal{O}(m)$.

If G is a planar graph without a given embedding we may still construct an adjacency list representation of G, with neighbors simply listed in arbitrary order. There exist numerous algorithms to then simultaneously find an embedding of G and construct an embedding ordered adjacency list representation of the corresponding plane graph in $\mathcal{O}(n)$ time [18, 8, 5, 4]. Additionally, there exist $\mathcal{O}(n)$ algorithms to add edges to the adjacency list representation in order to connect, 2-connect, or triangulate G while maintaining planarity [15, 20, 13]. Thus while the algorithms presented will often assume that input graphs are triangulated and plane embedded, arbitrary planar graphs may be modified in linear time to fit these criteria.

Each algorithm presented in this project will allocate some fixed number of vertex properties, independant of the size of the graph. The size of all other data structures constructed will be $\mathcal{O}(n)$ at all points during the operation of each algorithm. Therefore the size complexity of every algorithm is $\mathcal{O}(n)$.

4 Path Coloring – the Poh Algorithm

In this section we detail two algorithms for path 3-coloring plane graphs. We begin by describing the general procedure proposed by Poh [19].

Algorithm 4.1. (Poh 3-Coloring)

Input: A 2-connected weakly triangulated plane graph G with outer cycle $C = v_1v_2...v_k$ and a 2-coloring of C such that the color classes induce the paths $P = v_1v_2...v_l$ and $Q = v_kv_{k-1}...v_{l+1}$.

Output: We find an extension of the 2-coloring of C to a path 3-coloring of G such that no vertex in C receives a same color neighbor in G - C.

Description: If G - C is empty there are no vertices remaining to color. Otherwise the algorithm proceeds as follows.

Case 1: Suppose there is a chord of C, that is, an edge $v_i v_j \in E(G) \setminus E(C)$ with i < j. Since P and Q are induced paths it must be that $v_i \in P$ and $v_j \in Q$. Let C_1 by the cycle consisting of $C[v_j, v_i]$ and the edge $v_i v_j$, and C_2 the cycle consisting of $C[v_i, v_j]$ and the edge $v_i v_j$. Observe C_1 and C_2 are each 2-colored such that each color class induces a path. Thus we may apply the algorithm to path 3-color $Int(C_1)$ and $Int(C_2)$. Since the subgraphs $Int(C_1)$ and $Int(C_2)$ have only the vertices of the chord $v_i v_j$ in common, the combined coloring forms a path 3-coloring of G.

Figure 4.1: The case of a chord (left) and the case no chord exists (right).

Case 2: Suppose no chords of C exist. Let u be the neighbor of v_k immediately clockwise from v_1 and let w be the neighbor of v_l immediately clockwise from v_{l+1} . That is, $u, w \in \text{Int}(C)$ are the unique, but possibly not distinct, vertices such that uv_1v_k and uv_lv_{l+1} are each faces.

Since G is weakly triangulated, G - C is nonempty, and C has no chords, G - C is connected. Thus there exists a uw-path in G - C. Let T be the shortest such path, and note that therefore T is an induced path. Color T with the remaining color not used on P or Q.

Let C_1 be the cycle consisting of P, T, and the edges v_1u and v_lw . Similarly, let C_2 be the cycle consisting of T, Q, and the edges v_ku and $v_{l+1}w$. Then we may apply the algorithm to path 3-color $Int(C_1)$ and $Int(C_2)$. Since $Int(C_1)$ and $Int(C_2)$ have only the vertices of the path T in common, the combined coloring forms a path 3-coloring of G.

Given any plane graph G we may add edges until it is triangulated. Observe that any path coloring of G with the additional edges is also a path coloring of the original G. Therefore by path 2-coloring the outer triangle we may apply Poh's algorithm to path 3-color G. This observation yields the following result.

Theorem 4.1 (Poh [19] and Goddard [14]). All planar graphs are path 3-colorable.

In order to implement Poh's algorithm with adjacency lists there are two main obstacles. First, we must have a method to efficiently represent colored paths, as we will be recursively constructing paths and dividing the graph along them. Second, we will need an efficient algorithm to locate chords and uw-paths.

Let G be a 2-connected weakly triangulated plane graph with an adjacency list representation. Each call of the algorithm will be provided with a cycle C in G and produce a path 3-coloring of Int(C) according to the specifications of Poh's algorithm.

To represent induced paths in G we will simply use the color vertex property. Suppose $P = v_1 v_2 \dots v_k$ is an induced path in G that has been colored with c_P .

Figure 4.2: Dividing G along the edge $v_i v_j$ and the uw-path.

Assume the coloring constructed so far is a path coloring. If $v_i \in P$ then a neighbor u of v_i will have the color c_P if and only if $u \in P$, that is, $u = v_{i-1}$ or $u = v_{i+1}$. Therefore we may represent the entire path by storing just the vertices v_1 and v_k .

We will now describe the first version of Poh's algorithm on adjacency list graphs, using a breadth first search to find induced paths and chords.

Algorithm 4.2. (Poh – Breadth First Search)

Assumptions: Suppose $P = v_1 v_2 \dots v_l$ and $Q = v_k v_{k-1} \dots v_{l+1}$ are induced paths such that $C = v_1 v_2 \dots v_k$ is a cycle. Additionally, assume each path has been colored with a distinct color.

Input: The paths P and Q, represented by their endpoints as described above.

Output: We find an extension of the 2-coloring of C to a path 3-coloring of Int(C) such that no vertex in C receives a same color neighbor in Int(C) - C.

Description: Locate the position of v_k in $Adj[v_1]$. Proceeding one vertex further in $Adj[v_1]$ gives us a vertex u such that the cycle uv_1v_k is a triangle.

Case 1: Suppose $u \in C$. If u is in P, i.e. $u = v_2$, we apply the algorithm to the paths P - u and Q. Similarly if w is in Q we apply the algorithm to P and Q - u. In either case, if the two remaining paths each consist of single vertex then there are no remaining uncolored vertices and we terminate the algorithm.

Case 2: Suppose $u \notin C$. Perform a breadth first search from u, ignoring vertices in C. Terminate the search when we reach a vertex w with neighbors $v_i \in P$ and $v_j \in Q$ such that v_i is immediately past v_j in $\mathrm{Adj}[w]$. Such a vertex must exist because $\mathrm{Int}(C) - C$ is connected and $\mathrm{Int}(C)$ is weakly triangulated. Backtracking from w along the breadth first search and coloring vertices produces an induced uw-path T, colored with the remaining color not used on P or Q.

Figure 4.3: The collection of graphs $\{G_k\}$ on which Poh performs poorly.

Split P and Q to form the paths $P_1 = v_1 v_2 \dots v_i$, $P_2 = v_i p_{i+1} \dots v_l$, $Q_1 = v_k v_{k-1} \dots v_j$, and $Q_2 = v_j q_{j-1} \dots v_{l+1}$. Observe we have a cycle C_1 consisting of P_1 , T, and the edges $v_1 u$ and $v_i w$. Similarly we have a cycle C_2 consisting of T, Q_1 , and the edges $v_k u$ and $v_j w$. We apply the algorithm to P_1 and T to color $Int(C_1)$ and similarly to T and Q_1 to color $Int(C_2)$. If i = l and j = l + 1 we are done. Otherwise, we have the cycle C_3 consisting of P_2 , Q_2 and the edges $v_i v_j$ and $v_l v_{l+1}$, and we may apply the algorithm to color $Int(C_3)$.

Complexity: In the first step we rotate through $\mathrm{Adj}[v_1]$ to find v_k and get an orientation within the graph. This orientation must be performed at most once for each vertex, for a total of $\sum_{v=0}^{n-1} \deg(v) = 2m$ operations.

In the next step we perform a breadth first search from the vertex u. A breadth first search requires at most m lookups. Moreover, the vertex will u will be colored following the search. Thus we perform at most one breadth first search from each vertex, requiring at most nm operations. Therefore the complexity of the algorithm is at worst $\mathcal{O}(2m + nm) = \mathcal{O}(n^2)$.

We define the collection of graphs $\{G_k\}_{k\in\mathbb{N}}$, depicted in Figure 4.3. Note G_k has $n=\frac{k^2+k}{2}+3$. The number of operations required will be

$$\mathcal{O}\left(\sum_{i=1}^{k} \frac{i^2 + i}{2}\right) = \mathcal{O}(n^{3/2}).$$

Thus the complexity of the algorithm is at best $\mathcal{O}(n^{3/2})$. In particular, the algorithm is not linear.

Poh's proof requests that we find the shortest uv-path in Int(C). Thus it does not appear to admit a linear time algorithm.

However, the correctness of Poh's algorithm does not require that T be the shortest uw-path, only that T be an induced uw-path. We will show that Poh's algorithm is linear if we instead construct an induced path by walking along the existing path P.

Algorithm 4.3. (Poh – Face Walk)

Assumptions: Assume $P = v_1 v_2 \dots v_l$ and $Q = v_k v_{k-1} \dots v_{l+1}$ are induced paths, each colored with a distinct color, such that $C = v_1 v_2 \dots v_k$ is a cycle.

Input: The path P, represented by its endpoints, and the color of the path Q.

Output: We find an extension of the 2-coloring of C to a path 3-coloring of Int(C) such that no vertex in C receives a same color neighbor in Int(C) - C.

Description: If Int(C) - C is empty there is nothing to color and the algorithm terminates. Otherwise, we proceed as follows.

We will iterate through the vertices of P until we find a chord. All interior vertices visited will be marked to indicate they have a neighbor in P. For each i from 1 to l let us walk through $\mathrm{Adj}[v_i]$ from v_{i-1} to v_{i+1} , excluding v_{i-1} and v_{i+1} . For each neighbor u visited, if $u \notin C$, then $u \in \mathrm{Int}(C) - C$ and we mark it. If $u = v_j \in Q$ then $v_i v_j$ is a chord of C and we stop.

We now split P and Q to form the paths $P_1 = v_1 v_2 \dots v_i$, $P_2 = v_i p_{i+1} \dots v_l$, $Q_1 = v_k v_{k-1} \dots v_j$, and $Q_2 = v_j v_{j-1} \dots v_{l+1}$. Let us define C_1 and C_2 as usual and note C_1 is chordless. We may then apply $Path\ Trace\ (4.4)$ to color $Int(C_1)$, and apply $Face\ Walk\ (4.3)$ to color $Int(C_2)$.

Complexity: See Path Trace (4.4).

Algorithm 4.4. (Poh – Path Trace)

Assumptions: Let $P = v_1 v_2 \dots v_l$ and $Q = v_k v_{k-1} \dots v_{l+1}$ be induced paths, each colored with a distinct color, such that $C = v_1 v_2 \dots v_k$ is a chordless cycle. In addition, suppose all vertices in Int(C) - C with a neighbor in P have been marked.

Input: The vertex $u \in \text{Int}(C) - C$ such that the cycle uv_1v_k is a face, as well as the respective colors of the paths P and Q.

Output: We find an extension of the 2-coloring of C to a path 3-coloring of Int(C) such that no vertex in C receives a same color vertex in Int(C) - C.

Description: Initialize T as the path consisting of the single vertex u, coloring u with the remaining color. We will recursively add vertices to T until we reach the unique vertex w such that wv_lv_{l+1} is a face.

Suppose we have constructed the induced path $T = t_1 t_2 \dots t_d$, with $t_1 = u$. Iterate through $\mathrm{Adj}[t_d]$ beginning from t_{d-1} . If we visit a neighbor v that has a neighbor in P we color v, append T, and repeat this process with v as the new end vertex. If we visit $u \in P$ it must be that $t_d = w$ and the algorithm terminates. Note one of these two cases must occur since t_d has at least one neighbor in P.

Let $T = t_1 t_2 \dots t_d$ be the path constructed above. Suppose $t_i t_j$ is an edge with $t_i, t_j \in T$, i < j. If i = 1 let us define the vertex t_0 to be v_1 . Since each vertex in T has a neighbor in P, by planarity it must be that t_j is between t_{i-1} and t_{i+1} counterclockwise in $Adj[t_i]$. But by the construction of T, t_{i+1} is the first neighbor of t_i counterclockwie from t_{i-1} . Thus j = i + 1.

Therefore the only edges between vertices in T are the edges $t_1t_2, \ldots, t_{d-1}t_d$. So T is an induced path.

Figure 4.4: Coloring vertices above T in $Path\ Trace\ (4.4)$, the case v_i is the first neighbor of t_p counterclockwise from t_{p+1} that is in P.

We may apply $Face\ Walk\ (4.3)$ to color $Int(C_2)$. It remains to color any uncolored vertices in $Int(C_1)$. Notice that all vertices in $Int(C_1)$ have neighbors in P. Therefore any uncolored vertex in $Int(C_1)$ must lie in a path 2-colored chordless cycle of the form $v_iv_{i+1}\dots v_jt_{p+1}t_p$ or $v_iv_{i+1}\dots v_jt_p$. We will use the following procedure to locate all such cycles that contain uncolored vertices and color them using $Path\ Trace\ (4.4)$.

For each p from 1 to d let us iterate through $\operatorname{Adj}[t_p]$, starting with t_{p+1} . In the case p = d we will define $t_{p+1} = v_l$. Suppose we visit a neighbor $y \in \operatorname{Int}(C_1) - C_1$ followed counterclockwise by a neighbor $v_i \in P$. There are two possible cases.

Case 1: Suppose we have previously visited a neighbor of t_p in P, and let $v_j \in P$ be the most recent such neighbor visited. Note by planarity it must be that i < j. Note the cycle $C_y = v_i v_{i+1} \dots v_j t_p$ is chordles since P is an induced path. We may therefore apply $Path\ Trace\ (4.4)$ to color $Int(C_y)$ with the vertex y forming the face yt_pv_i .

Case 2: Suppose none of the neighbors of t_p between t_{p+1} and v_i counterclockwise around t_p are in P. Let j be the smallest integer such that $t_{p+1}v_j$ is an edge, noting again that i < j by planarity. Note since P is an induced path the cycle $C_y = t_p v_i v_{i+1} \dots v_j t_{p+1}$ is chordless by the our selection of v_j . Thus we may apply Path Trace (4.4) to color $Int(C_y)$ with the vertex y forming the face $yt_p v_i$.

Complexity: Let G be a plane graph that has been colored with Poh. Let P be a path induced by the path 3-coloring of G. Note each vertex is in exactly one such path.

Let $v \in P$. We iterated through Adj[v] exactly once during Face Walk (4.3). We iterated through Adj[v] at most twice during Path Trace (4.4): once to locate the starting neighbor, and once to find the next vertex to add to the path and find uncolored vertices above T.

Thus the time complexity of the algorithm is

$$\mathcal{O}\left(\sum_{v=0}^{n-1} 3 \cdot \deg(v)\right) = \mathcal{O}(6m) = \mathcal{O}(n).$$

5 Path List-Coloring – the Hartman-Skrekovski Algorithm

In this section we describe an algorithm for path list-coloring plane graphs with lists of size 3. The following algorithm on abstract graphs is due to the independent work of Hartman [17] and Skrekovski [21].

Note that the description of the algorithm given below is structured differently than the descriptions given by both Hartman and Skrekovski. This restructuring is, in many ways, less elegant than both original proofs, but helps illuminate how the algorithm will operate on a graph with an adjacency list representation.

Algorithm 5.1. (Hartman-Skrekovski – Path Color)

Input: Let G be a 2-connected weakly triangulated plane graph with outer cycle $C = v_1 v_2 \dots v_k$. Let $x = v_1$ and $y \in C - x$. Suppose L is a list assignment for G such that for each vertex $v \in G$

$$|L(v)| \ge 1$$
 if $v = x$ or $v = y$;
 $|L(v)| \ge 2$ if $v \in C - x - y$;
 $|L(v)| \ge 3$ otherwise.

We will call x and y the fixed vertices. Assume all vertices are uncolored except for potentially x and y. If x or y are colored assume L(x), L(y) contain only the color they have been assigned.

Output: A path L-list-coloring of G such that the fixed vertices x and y each receive at most one same color neighbor.

Description: If x is already colored let c be the color of x. Otherwise select arbitrary $c \in L(x)$. We will construct an induced path P, colored with c, and consisting of vertices from C. The path will begin at x and proceed clockwise along the outer face a far as possible towards y. Initialize P to consist of the single vertex x.

Suppose we have constructed an induced path $P = v_{j_1}v_{j_2}\dots v_{j_l}$ with $1 = j_1 < j_2 < \dots < j_l < k$. Let us select the largest integer i such that $v_i \in C[v_{j_l}, y]$ and $c \in L(v_i)$. If no such i exists we have finished constructing P. Otherwise we append v_i to P and repeat.

Let L' be a list assignment for G defined such that for $v \in G$

$$L'(v) = \begin{cases} \{c\}, & \text{if } v \in P; \\ L(v), & \text{otherwise.} \end{cases}$$

Let $P = v_{j_1}v_{j_2}\dots v_{j_l}$ be the path constructed above. For each vertex in $v_{j_i} \in P$, color v_i with c. Note if $y \in P$ then y may already be colored c.

Suppose $i \in \{1, ..., l-1\}$ such that $j_i + 1 < j_{i+1}$. We apply Remove Path (5.2) to path L'-list-color the subgraph bounded by the cycle consisting of $C[v_{j_i}, v_{j_{i+1}}]$ and the edge $v_{j_i}v_{j_{i+1}}$, with colored path $v_{j_{i+1}}v_{j_i}$, and fixed vertices v_{j_i+1} and $v_{j_{i+1}-1}$.

If $y \in P$ let us define $y' = v_{j_l+1}$, otherwise y' = y. We may apply Remove Path (5.2) to path L'-list-color the subgraph bounded by the cycle consisting of P and $C[v_{j_l}, v_{j_l}]$, with colored path P, and fixed vertices v_k and y'.

Pairwise all subgraphs above have only vertices in the path P in common. Moreover, by $Remove\ Path\ (5.2)$, no vertex with a neighbor in P will receive the color c. Therefore the combined coloring is a path L-list-coloring of G such that x,y receive at most one same color neighbor.

Algorithm 5.2. (Hartman-Skrekovski – Remove Path)

Input: Let G be a 2-connected weakly triangulated plane graph with outer cycle $C = v_1 v_2 \dots v_k$. Let $P = v_1 v_2 \dots v_l$ be an induced path in C. Let $x = v_k$ and $y \in C - P$. Let L be a list assignment for G such that for $v \in G$

$$L(v) = \{c\}$$
 if $v \in P$;
 $|L(v)| \ge 1$ if $v = x$ or $v = y$;
 $|L(v)| \ge 2$ if $v \in C - P - x - y$;
 $|L(v)| \ge 3$ otherwise.

Assume if |L(x)| = 1 then $c \notin L(x)$. Additionally, assume for every $v \in C[v_{l+1}, y]$, if v has a neighbor in P then $c \notin L(v)$.

We will once again refer to x and y as fixed vertices, although in this algorithm it may be the case that x = y. Assume all vertices are uncolored except for potentially x and y. If x or y are colored assume L(x), L(y) contain only the color they have been assigned.

Output: A path L-list-coloring of G such that x and y each receive at most one same color neighbor, and no vertex in G - P with a neighbor in P receives the color c. If x = y then x will receive no same colored neighbors in G.

Description: Note G is 2-connected and weakly triangulated. Thus to disconnect G by removing vertices from C we would need to remove vertices $v_i, v_j \in C$ such that $v_i v_j$ is a chord of C. Observe P is a subgraph of C and an induced path in G, so no vertices in P induce a chord of C. So G - P is connected.

Case 1: Suppose there is a chord of C with an endpoint in P. Let us select the smallest $i \in \{1, \ldots, l\}$ and largest $j \in \{l+2, \ldots, k-1\}$ such that $v_i \in P$ and $v_i v_j$ is a chord of C. Let C_1 be the cycle consisting of $C[v_j, v_i]$ and the edge $v_i v_j$. Similarly, let C_2 be the cycle consisting of $C[v_i, v_j]$ and the edge $v_i v_j$. Let $P_1 = v_1 v_2 \ldots v_i$ and $P_2 = v_i v_{i+1} \ldots v_l$.

Case 1.1: Suppose $y \in C[v_{l+2}, x]$ and $v_j \in C[v_{l+2}, y]$. Then $x, y \in C_1$. We will first apply Remove Path (5.2) to path L-list-color Int(C_1) with the colored path P_1 ,

and fixed vertices x and y. We then apply $Remove\ Path\ (5.2)$ to path L-list-color $Int(C_2)$ with colored path P_2 , and the single fixed vertex v_i .

The subgraphs $\operatorname{Int}(C_1)$ and $\operatorname{Int}(C_2)$ have only the chord v_iv_j in common. The vertex v_i is an endpoint of the colored path in both $\operatorname{Int}(C_1)$ and $\operatorname{Int}(C_2)$. Thus v_i will receive at most one same color neighbor in each. Since v_j is the single fixed vertex in $\operatorname{Int}(C_2)$, v_j will receive no same color neighbors in $\operatorname{Int}(C_2)$. Thus the combined coloring is a path L-list-coloring of G with x,y receiving the correct number of shared color neighbors.

Case 1.2: Otherwise $v_j \in C[y, v_{k-1}], v_j \neq y$. Again, we first apply Remove Path (5.2) to path L-list-color $Int(C_1)$ with the colored path P_1 , and fixed vertices x and v_j . We may then apply Remove Path (5.2) to path L-list-color $Int(C_2)$ with colored path P_2 , and fixed vertices v_j and y.

Again $\operatorname{Int}(C_1)$ and $\operatorname{Int}(C_2)$ have only the chord v_iv_j in common. In both $\operatorname{Int}(C_1)$ and $\operatorname{Int}(C_2)$ the vertex v_j is fixed vertex, and v_i is an endpoint of the colored path. Therefore v_i and v_j will both have at most one same color neighbor in each subgraph. Thus the combined coloring is a path L-list-coloring of G with x, y recieving the correct number of shared color neighbors.

Case 2: Suppose there are no chords of C with endpoints in P. Let L' be a list assignment for G - P defined by

$$L'(v) = \begin{cases} L(v) \setminus \{c\}, & \text{if } v \text{ has at least one neighbor in } P; \\ L(v), & \text{otherwise.} \end{cases}$$

Case 2.1: Suppose G - P is 2-connected. Let $v \in G - P$.

Suppose v is not on the outer face of G - P. Then v has no neighbors in P and $|L'(v)| = |L(v)| \ge 3$.

Suppose v is on the outer face of G-P, $v \notin C$. Then v has at least one neighbor in P and $|L'(v)| \ge |L(v)| - 1 \ge 2$.

Finally, suppose $v \in C$. Since there are no chords of C with endpoints in P the only vertices in C-P with neighbors in P are x and v_{l+1} . Recall we assumed that if $v \in C[v_{l+1}, y]$ and v has at least one neighbor in P then $c \notin L(v)$. Thus if $v \neq x$, $v \neq y$, then $|L'(v)| = |L(v)| \geq 2$. We ensured $c \notin L(x)$ if |L(x)| = 1. Thus if v = x or v = y, $|L'(v)| \geq 1$.

Therefore L' meets the requirements of $Path\ Color\ (5.1)$ if we assign fixed vertices x and y. By the definition of L', in an L'-list-coloring of G-P no vertex with a neighbor in P will receive the color c.

Case 2.1.1: Suppose $x \neq y$. Then we may apply Path Color (5.1) to path L'-list-color G - P with fixed vertices x and y, the new path starting at x.

Case 2.1.2: Suppose x = y. If x is uncolored select arbitrary $c_x \in L'(x)$, color x with c_x , and define $L'(x) = \{c_x\}$. Apply Remove Path (5.2) to path L'-list-color G - P with the colored path consisting of the single vertex x, and the vertices immediately preceding and subsequent to x on the outer cycle of G - P as fixed vertices. This ensures x receives no same colored neighbors in G.

Case 2.2: Finally, if G - P is not 2-connected, then G - P must be a complete graph on one or two vertices. It is simple to check we may L'-list-color G - P such that the requirements hold.

Let G be a plane graph and L a list assignment such that $|L(v)| \geq 3$ for all $v \in G$. We may add edges to G until it is triangulated. Then we may apply $Path\ Color\ (5.1)$, with arbitrary fixed vertices, to construct an L-list-coloring. This yields the following result.

Theorem 5.1 (Hartman [17]). All planar graphs are path 3-choosable.

In order to implement Hartman and Skrekovski's algorithm with adjacency lists there are two main challenges. First, we need to be able to remove paths and locate the subgraphs for recursive calls. Second, we must be able to track the location of vertices on the outer face with respect to the fixed vertices x, and y. For example: when adding a vertex to the path $P = v_{j_1}v_{j_2}...v_{j_l}$ in $Path\ Color\ (5.1)$, we need to know which neighbors of v_{j_l} lie in $C[v_{j_l}, y]$.

For now, let us assume we have solved the second challenge described above. That is, given vertices $u, v, w \in C$, assume we can determine whether $v \in C[u, w]$ in $\mathcal{O}(1)$ time.

Let G be a 2-connected weakly triangulated plane graph with an augmented adjacency list representation. Just as in Poh's algorithm, each call will be provided with a cycle $C = v_1 v_2 \dots v_k$ in G. The job of a particular recursive call is then to color the subgraph Int(C) such that the requirements of the Hartman-Skrekovski algorithm hold.

We will provide each vertex in G with a boolean vertex property to represent its state. All vertices in C will be have a state indicating they are on the outer face, and likewise vertices in Int(C) - C will have a state indicating they are not in C.

The list assignment L will be represented by vertex property storing a linked list of colors L[v] for each $v \in G$. We will denote the number of colors in the linked list by |L[v]|. We will produce a coloring of G by reducing the size of each color list to one. Thus we consider a vertex v colored if |L[v]| = 1.

For each vertex $v_i \in C$ we will store a vertex property $\operatorname{Nbr}[v_i]$ called a neighbor range. The neighbor range of v_i will contain a pair of references to nodes in $\operatorname{Adj}[v_i]$, that is $\operatorname{Nbr}[v_i] = (r_1, r_2)$. The first reference r_1 will point to the node for v_{i-1} in $\operatorname{Adj}[v_i]$ and the reference r_2 will point to the node for v_{i+1} . This will provide immediate access to the preceding and subsequent vertices of v_i in C, and also give start and stop nodes in $\operatorname{Adj}[v_i]$ bounding the set of neighbors of v_i in C that are contained in the subgraph $\operatorname{Int}(C)$.

Algorithm 5.3. (Hartman-Skrekovski – Path Color) **Assumptions:** Suppose $C = v_1 v_2 \dots v_k$ is a cycle, $x = v_1$, and $y \in C - x$. Assume for each $v \in Int(C)$

$$|L[v]| \ge 1$$
 if $v = x$ or $v = y$;
 $|L[v]| \ge 2$ if $v \in C - x - y$;
 $|L[v]| \ge 3$ otherwise.

Assume the vertices of $\operatorname{Int}(C)$ have been assigned according to whether they are in C or $\operatorname{Int}(C) - C$. Finally, assume for each $v_i \in C$ we have constructed $\operatorname{Nbr}[v_i]$ as described above.

Input: The fixed vertices x and y.

Output: A path L-list-coloring of Int(C) such that x and y each receive at most one same color neighbor.

Description: If x is colored let c be the color of x. Otherwise let c be the first color in L[x] and assign $L[x] = \{c\}$.

Initialize P to contain the single vertex x. We will now append vertices to P following the procedure of $Path\ Color\ (5.1)$.

Suppose we have constructed an induced path $P = v_{j_1}v_{j_2}...v_{j_l}$ with $1 = j_1 < j_2 < ... < j_l < k$. Let $v = v_{j_l}$ be the last vertex added to P. Let us iterate through Adj[v] counterclockwise from $v_{j_{l-1}}$, if l = 1 start from v_k . Let u be the current neighbor.

Case 1: If $u \notin C[v,y]$ or $c \notin L(u)$ then we ignore u and continue to the next vertex in $\mathrm{Adj}[v]$.

Case 2: Suppose $u = v_i \in C$, $u \in C[v, y]$, and $c \in L(u)$, that is, suppose we may add u to P. There are two cases to consider.

Case 2.1: Suppose the start node of Nbr[u] is not v. Then $u \neq v_{j_1+1}$. Let $Nbr[u] = (r_1, r_2)$ and $Nbr[v_{j_l}] = (s_1, s_2)$. Let r_v be the reference to the node for v in Adj[u] and s_u be the reference to the node for u in Adj[v].

Let us assign $Nbr[u] = (r_1, r_v)$ and $Nbr[v] = (s_u, s_2)$. We will then call *Remove Path* (5.4) on the cycle consisting of C[v, u] and the edge uv, with colored path uv, and fixed vertices v_{i-1} and $y = v_{j_i+1}$.

We then assign $Nbr[u] = (r_v, r_2)$ and $Nbr[v] = (s_1, s_u)$. Finally, color u with c, assign $L[u] = \{c\}$, append u to P, and attempt to continue the path from u.

Case 2.2: Suppose the start node of Nbr[u] is v. Then we may color u with c, assign $L[u] = \{c\}$, append u to P, and attempt to continue the path from u.

Let $P = v_{j_1}v_{j_2}...v_{j_l}$ be the path constructed above. If $y \in P$ let us define $y' = v_{j_l+1}$, otherwise y' = y. We may finally apply Remove Path (5.4) to the cycle formed by P and $C[v_{j_l}, v_{j_1}]$, with colored path P, and fixed vertices v_k and y'.

Complexity: See Remove Path (5.4).

Algorithm 5.4. (Hartman-Skrekovski – Remove Path)

Assumptions: Suppose $C = v_1 v_2 \dots v_k$ is a cycle. Let $P = v_1 v_2 \dots v_l$ be an induced path in C colored with some color c. Let $y \in C - P$ and $x \in C[y, v_k]$. Let L be a list

assignment for G such that for each $v \in G$

$$L[v] = \{c\}$$
 if $v \in P$;
 $|L[v]| \ge 1$ if $v = x$ or $v = y$;
 $|L[v]| \ge 2$ if $v \in C - P - y$;
 $|L[v]| \ge 3$ otherwise.

Assume for every $v \in C[x, v_k]$, $c \notin L(v)$. Additionally, assume for every $v \in C[v_{l+1}, y]$, if v has a neighbor in P then $c \notin L(v)$.

Input: The vertices v_1 , x, and y.

Output: A path L-list-coloring of G such that x and y each receive at most one same color neighbor, and no vertex in G - P with a neighbor in P receives the color c. If x = y then x will receive no same colored neighbors in G.

Description: We will remove the path P one vertex at a time. In this call we will be removing v_1 .

We iterate through $\operatorname{Adj}[v_1]$ beginning from v_k . We will continue until we hit neighbor $v_i \in C$, $i \neq k$. We define the cycles C_1 and C_2 as in (5.2). At this point we will have removed v_1 from the $\operatorname{Int}(C_1)$ by setting up each neighbors of v_1 as an outer face vertex. We will path L-color $\operatorname{Int}(C_1) - v_1$ and $\operatorname{Int}(C_2)$ accordingly.

Let us iterate counterclockwise through $Adj[v_1]$ beginning from v_k . Let u be the current neighbor of v_1 .

Case 1: Suppose $u \notin C$. Look through L[u] and remove the color c if it exists. After removing v_1 , u will be on the outer face. Thus we set the state of u to indicate it is on the outer face. Construct $Nbr[u] = (r_1, r_2)$ such that r_1 is a reference to the node immediately prior to v_1 in Adj[u] and r_2 is a reference to the node immediately subsequent to v_1 .

Case 2: Suppose $u \in C$. There are several cases to consider.

Case 2.1: Suppose $u = v_k$. Let $Nbr[u] = (r_1, r_2)$. By our assumptions r_2 is a reference to the node for v_1 in Adj[u]. Reassign r_2 to be a reference to the node immediately prior to v_1 in Adj[u]. This removes v_1 from the set of neighbors of u contained in the cycle.

Case 2.2: Suppose $u \neq v_k$. In this case the edge v_1u is either a chord of C or $u = v_2$. Let N be the v_ku -path consisting of the neighbors of v_1 . Let C_1 be the cycle consisting of N and $C[u, v_k]$. If $u \neq v_2$ let C_2 be the cycle consisting of $C[v_1, u]$ and the edge v_1u .

Let $Nbr[u] = (r_1, r_2)$ and $Nbr[v] = (s_1, s_2)$. Let r_v be the reference to the node for v in Adj[u] and s_u be the reference to the node for u in Adj[v].

In all cases below, before we apply an algorithm to color $Int(C_1)$ we will assign $Nbr[u] = (r_v, r_2)$ and $Nbr[v] = (s_1, s_v)$. Similarly, before applying an algorithm to color $Int(C_2)$ we will assign $Nbr[u] = (r_1, r_v)$ and $Nbr[v] = (s_u, s_2)$.

We will now path L-list-color $Int(C_1)$ and, if $u \neq v_2$, $Int(C_2)$. There are several cases to consider.

Case 2.2.1: Suppose $u \in C[x, v_1]$. Note in this case it must be that $u \neq v_2$. We will first apply Remove Path (5.4) to path L-list-color $Int(C_2)$ with fixed vertices x and y. Note this colors the vertex u. We will apply Remove Path (5.4) to remove the single colored vertex n, with the vertices immediately adjacent to n on C_1 as the fixed vertices. This ensures n receives no same color neighbors in $Int(C_1)$.

Case 2.2.2: Suppose $u \in C[y, x]$, $u \neq y$. Again it must be that $u \neq v_2$. We apply Color Path (5.3) to path L-list-color $Int(C_1)$ with fixed vertices x and u, the new path starting at x. Next we apply Remove Path (5.4) to $Int(C_2)$ with fixed vertices u and y.

Case 2.2.3: Suppose $u \in C[v_1, y]$, $u \neq v_2$. We apply Color Path (5.3) to path L-list-color Int(C_1) with fixed vertices x and y, the new path starting at x. We then apply Remove Path (5.4) to path L-list-color Int(C_2) with the single fixed vertex u. This ensures u receives no same color neighbors in Int(C_2).

Case 2.2.4: Suppose $u = v_2$. If $c \in L[u]$ then u is a path vertex and we apply Remove Path (5.4) to path L-list-color $Int(C_1)$ with fixed vertices x and y. Otherwise, we have reached the end of the path. We apply Color Path (5.3) to $Int(C_1)$ with fixed vertices x and y, the new path starting from x.

Complexity: Let $v \in G$. We iterate through Adj[v] at most once during *Color Path* (5.3) when looking for the next vertex to add to the path containing v. In *Remove Path* (5.4) we iterate through Adj[v] exactly once. We also iterate through Adj[v] once when we initially construct Nbr[v] to locate start and stop nodes. Therefore the overall complexity of the algorithm is

$$\mathcal{O}\left(\sum_{v=0}^{n-1} 3 \cdot \deg(v)\right) = \mathcal{O}(6m) = \mathcal{O}(n).$$

Recall however, the above algorithm and complexity analysis relied on an unproven assumption. In $Path\ Color\ (5.3)$ we assumed we could determine whether a given vertex $u \in C$ was in the path C[v,y], where v was the last vertex added to our colored path. Additionally, in $Remove\ Path\ (5.4)$ we assumed for $u \in C$ we could determine whether u was in $C[x,v_l],\ C[y,x],\$ or $C[v_1,y].$ We will now describe how this check may be acomplished in $\mathcal{O}(1)$ time.

Let us define an integer vertex property to store a location mark for each vertex on the outer cycle. Assume we are given the input for *Remove Path* (5.4). Also assume vertices in $C[v_1, y]$ have been assigned the mark n_1 , vertices in C[y, x] have the mark n_2 , and vertices in $C[y, v_k]$ have the mark n_3 .

Let us iterate through $\operatorname{Adj}[v_1]$ starting from v_k as in (5.4). Let u be the current neighbor. If $u \notin C$ we will assign u the mark n_1 . This is because u will be in $C_1[x, v_2]$ if there are no chords v_1v_i .

Now suppose we reach the end of the colored path, or we hit a chord v_1u with $u \in C[v_1, x]$. Then in the subsequent call to $Color\ Path\ (5.3)$ on $Int(C_1)$ we will need to treat vertices marked n_1 and n_2 as the same segment, since $C_1[x, y]$ consists of both $C_1[x, v_k]$ and $C_1[u, y]$. One solution is to walk along C_1 and remarking vertices,

but this is very inefficient. Another solution is to simply compare with both marks to check whether a vertex is in $C_1[x, y]$. However, we will be drawing further colored paths and generating further marks, and the collection of marks to compare too might grow very large.

The ultimate solution is to use a disjoint set structure for the marks. Vertex marks are then compared in the disjoint set structure, to see if both marks belong to the same set. To join the segments marked with n_1 and n_2 above we may simply perform a union operation in the disjoint set structure.

Note the mark n_1 for the segment $C_1[x, v_k]$ will always be a singleton set in the disjoint set structure. This is because the only vertices marked with n_1 are vertices that have been added to the outer face while removing vertices from the colored path. Thus each union operation performed, at least one of the two sets is always a singleton. Because of this, standard disjoint set optimizations allow set lookup operations in constant time. Therefore performing $\mathcal{O}(n)$ make set, union, and lookup operations in the disjoint set structure requires $\mathcal{O}(n)$ time. Hence the overall performance of the algorithm remains linear.

For full details on managing location marks and disjoint set operations, see the provided C++ implementation.

References

- [1] Appel, K., Haken, W., "Every planar map is four colorable. Part I: Discharging," *Illinois Journal of Mathematics*, vol. 21, pp. 429-490, 1977.
- [2] Appel, K., Haken, W., "Every planar map is four colorable. Part II: Reducibility," *Illinois Journal of Mathematics*, vol. 21, pp. 491-567, 1977.
- [3] Andrews, J., Jacobson, M., "On a generalization of chromatic number," *Congressus Numerantium*, vol. 47, pp. 33-48, 1989.
- [4] Booth, K., Lueker, C., "Testing for the consecutive ones property interval graphs and graph planarity using PQ-tree algorithms," *Journal of Computer and System Sciences*, vol. 13, pp. 335-379, 1976.
- [5] Boyer, J., Myrvold, W., "On the cutting edge: simplified $\mathcal{O}(n)$ planarity by edge addition," Journal of Graph Algorithms and Applications, vol. 8, pp. 241-273, 2004.
- [6] Broere, I., Mynhardt, C. M., "Generalized colorings of outerplanar and planar graphs," Graph theory with applications to algorithms and computer science (Kalmazoo, Mich., 1984) pp. 151-161, Wiley-Intersci. Publ., Wiley, New York. 1985.

- [7] Chartrand, G., Geller, D. P., Hedetniemi, S., "A generalization of the chromatic number," *Mathematical Proceedings of the Cambridge Philosophical Society*, vol. 64, Cambridge University Press, 1968.
- [8] Cederbaum, I., Even, S., Lempel, A., "An algorithm for planarity testing of graphs," *Theory of graphs: International Symposium*, pp.215-232, 1967.
- [9] Chartrand, G., Kronk, H. V., "The point-arboricity of planar graphs," *J. London. Math. Soc.*, vol. 44, pp. 612-616, 1969.
- [10] Cowen, L., Cowen, R., Woodall, D., "Defective colorings of graphs in surfaces: partitions into subgraphs of bounded valency," *Journal of Graph Theory*, vol. 10, pp. 187-195, 1986.
- [11] Eaton, N., Hull, N., "Defective list colorings of planar graphs," Bulletin of the Institute for Combinatorics and its Applications, 1999.
- [12] Erdös, P., Rubin, A., Taylor, H., "Choosability in graphs," *Congressus Numer-antium*, vol. 26, pp. 125-157, 1979.
- [13] Eswaran, K., Tarjan, R., "Augmentation problems," SIAM Journal of Computing, vol. 5, pp. 653-665, 1976.
- [14] Goddard, W., "Acyclic colorings of planar graphs," *Discrete Math*, vol. 91, pp. 91-94, 1991.
- [15] Hagerup, T., Uhrig, C., "Triangulating a planar graph," *Library of Efficient Datatypes and Algorithms*, software package, Max Planck Institute for Informatics, Saarbrücken, 1991.
- [16] Harary, F., Jones, K., "Conditional colorability II: bipartite variations," *Congressus Numerantium*, vol. 50, pp. 205-218, 1985.
- [17] Hartman, C., "Extremal Problems in Graph Theory," Ph.D. Thesis, Department of Mathematics University of Illinois at Urbana-Champaign, 1997.
- [18] Hopcroft, J., Tarjan, E., "Efficient planarity testing," *Journal of the ACM*, vol. 21, pp. 549-568, 1974.
- [19] Poh, K., "On the linear vertex-arboricity of a planar graph," *Journal of Graph Theory*, vol. 14, pp. 73-75, 1990.
- [20] Reed, R., "A new method for drawing a graph given the cyclic order of the edges at each vertex," *Congressus Numerantium*, vol. 56, pp.31-44, 1987.
- [21] Skrekovski, R., "List Improper Colourings of Planar Graphs," Combinatorics, Probability, and Computing, vol. 8, pp. 293-299, 1999.

- [22] Thomassen, C., "Every planar graph is 4-choosable," *Journal of Combinatorial Theory Series B*, 1994.
- [23] Voigt, M., "List colorings of planar graphs," *Discrete Mathematics*, vol. 120, pp. 215-219, 1993.
- [24] West, D., Introduction to Graph Theory, 2nd ed., Pearson, 2001.