

Gliederung

- Transformationen und Matrizen (wdh.)
 - Rechnen mit Matrizen
 - 3D-Transformationen
 - Zusammengesetzte Transformationen
 - Umrechnung zwischen Koordinatensystemen
- Scenegraph
 - Koordinatensysteme: Modell, Kamera und Welt
 - Hierarchisches Modellieren
 - Scenegraph-Semantik
 - Traversierung und Zusammensetzen von Transformationen
 - Raytracing mit Scenegraph
 - Implementierung und das Kompositum-Muster

Schlick-Approximation

- Schlick-Approximation 1 der Fresnel-Gleichungen
 - Speziell für die Verwendung in der Computergrafik
 - Einfach zu berechnen und ausreichend gut
 - R = Relektionsfähigkeit, T = Transmissionsfähigkeit

$$R = R_0 + (1 - R_0)(1 - \cos^2 \theta_i)^5,$$

$$T = 1 R$$

$$R_0 = \left(\frac{\eta_2 - \eta_1}{\eta_2 + \eta_1}\right)^2.$$

• Nochmal zur Erinnerung: T = 0 und R = 1 wenn folgende Bedingung verletzt ist:

$$\left(\frac{\eta_1}{\eta_2}\right)^2 \left(1 - \cos^2 \theta_i\right) \le 1$$

1) Christophe Schlick, A Customizable Reflectance Model for Everyday Rendering, Fourth Eurographics Workshop on Rendering, 1993.

Rechnen mit Matrizen (1)

- Matrix A mit m Zeilen und n Spalten
 - Element a_{ij} ist in Zeile i, Spalte j
- Transponierte A^T
 - Vertausche Zeilen mit Spalten

$$\mathbf{A}_{(m,n)} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

$$\mathbf{A}_{(m,n)}^{\mathsf{T}} = \begin{bmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \vdots & \vdots & \vdots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{mn} \end{bmatrix}$$

Beispiel:

$$\mathbf{A} = \begin{bmatrix} 8\\23\\14\\1 \end{bmatrix} \equiv \mathbf{A}^{\mathsf{T}} = \begin{bmatrix} 8\\23\\14\\1 \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} 8&23&14&1 \end{bmatrix}$$

Rechnen mit Matrizen (2)

- Addition zweier Matrizen
 - Elementweise Addition $(\mathbf{A}+\mathbf{B})_{ij} = \mathbf{a}_{ij} + \mathbf{b}_{ij}$
 - Eigenschaften:
 - (A+B) + C = A + (B+C) (assoziativ) - A+B=B+A (kommutiativ)
- Multiplikation zweier Matrizen
 - Berechnung:

Berechnung:
$$\mathbf{C}_{(m,q)} = \mathbf{A}_{(m,n)} \mathbf{B}_{(n,q)} \qquad \Rightarrow \qquad \mathbf{C}_{ij} = \sum_{k=1}^n a_{ik} b_{kj}$$

- Zeilen- und Spaltenanzahl müssen kompatibel sein
- "Zeile der ersten Matrix, Spalte der zweiten Matrix"
- Eigenschaften:
 - (AB)C = A(BC)

(assoziativ)

- AB ≠ BA

(nicht kommutativ)

Falk'sches Schema

Rechnen mit Matrizen (3)

- I: Identität bzgl. der Multiplikation
 - $\bullet \mathbf{AI} = \mathbf{IA} = \mathbf{A}$

$$\mathbf{I} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}$$

- A⁻¹: Inverse bzgl. der Multiplikation
 - Wenn für $A_{(m,m)}$ gilt: P=AQ
 - gibt es dann ein $\mathbf{B}_{(m,m)}$ mit $\mathbf{Q} = \mathbf{BP}$?
 - Wenn ja, dann ist $\mathbf{B} = \mathbf{A}^{-1}$ die Inverse von \mathbf{A}
 - Dann gilt Q = BP = B(AQ) = (BA)Q
 - Also ist $(\mathbf{B}\mathbf{A}) = \mathbf{I}$, also $(\mathbf{A}^{-1}\mathbf{A}) = (\mathbf{A}\mathbf{A}^{-1}) = \mathbf{I}$

Wie kann die Inverse berechnet werden? → später

Lineare Abbildung / Funktion / Operator im R3

- Lineare Abbildung $F: R^3 \rightarrow R^3$. Für \mathbf{u}, \mathbf{v} aus R^3 und s aus R gilt:
 - Additivität: $F(\mathbf{u} + \mathbf{v}) = F(\mathbf{u}) + F(\mathbf{v})$
 - Homogenität: $F(s \cdot \mathbf{u}) = s \cdot F(\mathbf{u})$
- x', y' und z' werden als lineare Kombinationen von x, y und z berechnet:

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = F(x, y, z) = \begin{pmatrix} a_{11}x + a_{12}y + a_{12}z \\ a_{21}x + a_{22}y + a_{22}z \\ a_{21}x + a_{22}y + a_{22}z \end{pmatrix}$$

Daher ist die Matrix-Schreibweise anwendbar:

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = F(x, y, z) = \begin{bmatrix} a_{11}a_{12}a_{12} \\ a_{21}a_{22}a_{22} \\ a_{21}a_{22}a_{22} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \mathbf{A}_{(3,3)} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

• Verkürzte Schreibweise mit Vektor $\mathbf{u} = (\mathbf{u}_x, \mathbf{u}_y, \mathbf{u}_z)^T$:

$$\mathbf{u}' = F(\mathbf{u}) = \mathbf{A}\mathbf{u}$$

Wiederholen:

Multiplikation Matrix-Vektor

Beispiele für 3D-Transformationen

- Rotation
- Skalierung
- Spiegelung
- Scherung

Wiederholen:

- Berechnung der Operatoren
- Darstellung in 3x3-Matrixform

Affine Erweiterung auf Homogene Koordinaten

• Erweitere die lineare Abbildung um einen additiven Term:

$$F(x,y,z) = \begin{bmatrix} a_{11} & a_{12} & a_{12} \\ a_{21} & a_{22} & a_{22} \\ a_{21} & a_{22} & a_{22} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \\ t_z \end{bmatrix}$$

Schreibweise mittels 4x4-Matrix:

$$F(x,y,z,w) = \begin{bmatrix} a_{11} & a_{12} & a_{12} \\ a_{21} & a_{22} & a_{22} \\ a_{21} & a_{22} & a_{22} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ t_y \\ t_z \\ w \end{bmatrix}$$

Rotation, Translation Skalierung, Zeige:

Diese Matrix liefert die gewünschte Abbildung

Homogene Koordinaten

- Was ist die Bedeutung der w-Koordinate?
 - Könnte man Sie für die erwähnten Operationen nicht einfach immer ignorieren?

ja, könnte man im Prinzip!

- Kann jedoch auch sehr elegant zur Unterscheidung von Punkten und Richtungen verwendet werden. Vereinbarung:
 - Positionsvektor (Punkt): w = 1
 - Richtungsvektor: w = 0
- Nun transformiert dieselbe Matrix *Punkte* anders als *Richungen*:
 - Translation eines Punktes: Punkt wird verschoben

nachrechnen!

(später)

- Translation einer Richtung: Richtung bleibt unverändert
- Bei der perspektivischen Projektion hat w noch weitere Bedeutung
 - Bei der Projektion entstehen w-Koordindaten mit beliebigen Werten
 - Danach alle Koordinaten des resultierenden Vektors wieder durch w teilen

Rechnen mit Vektoren in homogenen Koordinaten (1)

Subtraktion Punkt – Punkt

$$\begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix} - \begin{bmatrix} q_x \\ q_y \\ q_z \\ 1 \end{bmatrix} = \begin{bmatrix} p_x - q_x \\ p_y - q_y \\ p_z - q_z \\ 0 \end{bmatrix}$$

Addition Richtung + Richtung

$$\begin{bmatrix} u_x \\ u_y \\ u_z \\ 0 \end{bmatrix} + \begin{bmatrix} v_x \\ v_y \\ v_z \\ 0 \end{bmatrix} = \begin{bmatrix} u_x + v_x \\ u_y + v_y \\ u_z + v_z \\ 0 \end{bmatrix}$$

Addition Punkt + Richtung

$$\begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix} + \begin{bmatrix} u_x \\ u_y \\ u_z \\ 0 \end{bmatrix} = \begin{bmatrix} p_x + u_x \\ p_y + u_y \\ p_z + u_z \\ 1 \end{bmatrix}$$

Multiplikation Skalar • Richtung

$$s \begin{bmatrix} u_x \\ u_y \\ u_z \\ 0 \end{bmatrix} = \begin{bmatrix} su_x \\ su_y \\ su_z \\ 0 \end{bmatrix}$$

Rechnen mit Vektoren in homogenen Koordinaten (2)

Skalarprodukt zweier Richtungsvektoren

$$\begin{bmatrix} u_x \\ u_y \\ u_z \\ 0 \end{bmatrix} \cdot \begin{bmatrix} v_x \\ v_y \\ v_z \\ 0 \end{bmatrix} = u_x v_x + u_y v_y + u_z v_z + 0$$

Andere Operationen (z.B. Addition Punkt+Punkt) sind eigentlich nicht definiert! Darauf kommen wir bei der Shading Language noch einmal zurück...

- Implementierung Vektoren / Matrizen
 - Vektoren werden i.d.R. nur mit 3 Komponenten gespeichert
 - Je nach Kontext wird die richtige Operation verwendet
 - → weniger Speicherbedarf
 - → schnellere Berechnung

// transform a position vector
Matrix.transformPosition(p: Vector): Vector;
// transform a direction vector
Matrix.transformDirection(d: Vector): Vector;

- Motivation
 - Einfache Transformationen beziehen sich immer auf den Ursprung
 - In sehr vielen Fällen möchte man jedoch ein Objekt bzgl. eines bestimmten Fixpunktes oder einer Achse transformieren.
 - Dafür bedient man sich zusammengesetzter Transformationen.

Objekt soll skaliert werden so wie in (2a) dargestellt. Skalierung (2b) verschiebt jedoch das Objekt!

Objekt soll 90° um seine Mittelachse gedreht werden (2a). Rotation um die Z-Achse (2b) verschiebt es jedoch.

Kartesisches Koordinatensystem

- Wenn nichts anderes angegeben, betrachten wir Koordinaten meist im kartesischen Koordinatensystem
 - Drei Basisvektoren
 - $\mathbf{x} = (1,0,0)^{\mathrm{T}}$
 - **y** = $(0,1,1)^T$
 - $\mathbf{z} = (0,0,1)^{\mathrm{T}}$
 - Diese Basis ist orthonormal
 - Diese Basis kann ein linkshändiges oder ein rechtshändiges System aufspannen; üblicherweise verwenden wir ein rechtshändiges

- Die Komponenten eines Vektors sind die Projektionen des Vektors auf den jeweiligen Basisvektor
 - $\mathbf{u} = (1, 2, 3)^{\mathrm{T}}$ bedeutet: $\mathbf{u} \cdot \mathbf{x} = 1$, $\mathbf{u} \cdot \mathbf{y} = 2$, $\mathbf{u} \cdot \mathbf{z} = 3$
 - Das Skalarprodukt **u·x** ist die Länge der Projektion von **u** auf **x**.

Zeichnung: Projektion

- Bisherige Vorstellung:
 - Eine Transformation "manipuliert" Punkte und Vektoren
 - Dabei bleiben wir immer im gleichen Koordinatensystem
- Alternative Vorstellung:
 - Eine Transformation bildet Punkte von einem in ein anderes Koordinatensystem ab
 - Dabei bleibt die Struktur der Menge von Punkten, die transformiert werden erhalten. Lediglich die Basisvektoren werden transformiert.
- Das schöne dabei:
 - Für die Beschreibung der Transformation zwischen zwei Koordinatensystem genügt eine einzige 4x4-Matrix

Zeichnung: zwei Koordinatensysteme

Transformation zwischen Koordinatensytemen (2) Kamera verschieben Instancing Verschiebe Kamera um v • Modelliere ein Objekt in einem geeigneten Koordinatensystem oder: verschiebe Objekte um -v • Plaziere es mehrfach an Kamera rotieren verschiedenen Orten in • Rotiere Kamera um ω um die Yunterschiedlicher Orientierung und Größe (Skalierung) • Oder: rotiere Objekte um - ω um die Y-Achse Kamera: Implementierung Generiere Kamera-Strahlen wie gewohnt vom Ursprung Zeichnung: Transformiere den Strahl, bevor Instancing er an die Szene übergeben wird

Motivation / Übersicht

- Bisher: Modellierung der Szene in Weltkoordinaten
 - Für Kugeln und Ebenen vielleicht ok
 - Für komplexere Geometrie nicht akzeptabel:
 - Koordinate jedes Vertices muß einzeln modelliert werden
 - Schwer, den Überblick zu behalten
- Ziel
 - Anschauliche Modellierung der Szenen-Aufteilung
 - Welches Objekt ist wo, welche Objekte gehören zusammen
 - Mehrfach-Instanzierung eines einmal modellierten Objekts
 - Einfache Methoden, um Objekte selektiv dynamisch zu transformieren
 - Verschieben, rotieren, skalieren, ...
 - Effiziente Berechnung und Repräsentation von Transformationen

Übliche Koordinatensysteme

14

- Weltkoordinaten W
 - Globales Referenzsystem f
 ür alle Objekte
- Objekt-/ Modell-/ lokale Koordinaten O
 - Lokales System, in dem das Objekt modelliert wird
- Kamera-/ Augenkoordinaten C
 - Lokales System, in welchem die Kamera modelliert wird (wie vorgestellt: Auge bei 0, Blick entlang -z; y ist Up-Vektor)
- Transformationskette
 - Modell → Welt → Auge
 - Matrizen M, V
 - MV = "Modelview-Matrix"
 - Umgekehrter Weg geht über die Inverse V-1M-1

Modell-Transformation

Kamera-/ View-

 $O \xrightarrow{M \longrightarrow W} W \xrightarrow{V} C$

Wintersemester 2011

Hierarchische Modellierung mit einem Szenegraph

Definition (Szenengraph):

Ein Szenengraph ist eine Datenstruktur für Transformations-Hierarchien.

Grundidee:

- Modelliere die Geometrie der Objekte in lokalen Koordinaten.
- Spezifiere die räumliche Lage und Skalierung der Objekte durch Transformationen.
- Gruppiere zusammenhängende Transformationen hierarchisch.

Hinweise

- Typischerweise als gerichteter azyklischer Graph (DAG, Directed Acyclic Graph) modelliert.
- Oft wird der Graph um weitere Attribute wie z.B. Materialien oder Objektverhalten erweitert.
- Manchmal hält ein Szenengraph den gesamten Zustand der Applikation.

Ähnliche Konzepte

HTML Box-Modell

** Knoten ** Jeder Knoten repräsentiert eine (transformierte) Sub-Szene. ** Innerer Knoten ** Gruppiert mehrere Objekte bzw. Szenenteile ** Blattknoten ** Enthält die Objekte mit ihrer Geometriedefinition ** Kante ** Koordinaten-Transformation zwischen Elternteil und Kind

Wintersemester 2011

Raytracing von Szenengraphen: Transformationsabfolge

- Erzeugung der Primärstrahlen
 - ullet Erzeuge im Kamera-System C und transformiere Strahl in Weltkoordinaten W
- Rekursive Traversierung des Szenegraphen
 - Akkumuliere Transformationen während der Traversierung
 - Transformation $M: O \rightarrow W$
 - Transformation M^{-1} : $W \rightarrow O$
 - Transformiere den Strahl in lokale Objektkoordinaten O
 - lacktriangle Berechne den Schnittpunkt in den lokalen Koordinaten O
 - lacktriangle Transformiere den Trefferpunkt zurück nach W
- Beleuchtungsberechnung
 - lacktriangle Berechne die Beleuchtung im Trefferpunkt in Weltkoordinaten W

Raytracing von Szenengraphen: Rekursive Traversierung

- Rekursiver Abstieg
 - Elegante Traversierung eines DAG mittels rekursivem Abstieg
 - Der Zustand wird implizit auf dem Prozeß-Stack mitgeführt
 - Üblicherweise erfolgt der Abstiegt Depth-First
 - d.h. Kinder werden vor ihren Eltern abgearbeitet
- Implementierung
 - Kann auch ohne Rekursion implementiert werden
 - Dabei muß der Stack explizit verwaltet werden

```
Raytracing-Algorithmus ohne Szenengraph

// calculate color by tracing rays from the camera into the scene raytrace(scene, camera, image)
{
    // loop over all pixels in image for all (i,j) from (0,0) to (image.width-1, image.height-1) do
    {
        // generate ray from eye point through pixel center ray ← generate_ray(i, j, image.width, image.height, camera);
        // find first intersection point with scene objects hit ← intersect(ray, scene);
        // calculate light intensity/color at hit point color ← shade(hit, ray, scene);
        // set corresponding pixel color in image image.pixel(i,j) ← color;
    }
}
```

Raytracing-Algorithmus mit Szenengraph (3) // calculate color by tracing rays from the camera into the scene raytrace(scene, camera, image) { // loop over all pixels in image for all (i,j) from (0,0) to (image.width-1, image.height-1) do // generate ray in world coordinates rayWC ← generate_ray(i, j, image.width, image.height, camera); // start recursive descent to calculate intersections hitWC ← scene.root().intersectRec(rayWC, Matrix.Id, Matrix.Id); // calculate light intensity/color in world coordinates color ← shade (hitWC, rayWC, scene); // set corresponding pixel color in image image.pixel(i,j) ← color; } }

```
Algorithmus: Traversierung der inneren Knoten

// recursive scene graph traversal for inner nodes
node.intersectRec(rayWC: Ray, toWorld: Matrix, fromWorld: Matrix)
{
    // accumulate transformation from this node to world coords
    toWorld • toWorld • this.transform();

    // accumulate inverse transformation from world to this node
    fromWorld • this.inverseTransform() • fromWorld;

    // recursively descend down the scene graph
    hit • Hit.Infinity;
    for all child in this.children() do {
        hitChild • child.intersectRec(rayWC, toWorld, fromWorld);
        // compare which hit is closer to the ray origin
        if (hitChild.isCloserThan(hit))
            hit = hitChild;
    }
    return hit;
}
```


