

CS 310: Algorithms

Lecture 15

Instructor: Naveed Anwar Bhatti

Chapter 4: **Greedy Algorithms**

Section 4.4: Shortest Path Algorithm **Dijkstra Algorithm**

- Midterm marking not complete but scene bad hai
- Expect **next three quizzes** on following dates:

Assignment 3 will be released soon

- *V* : Set of vertices
- *E* : Set of edges (directed edges)
- $w : cost/weight function: w : E \rightarrow \mathbb{R}$
- weights could be lengths, airfare, toll, energy
- Denoted by G = (V, E, w)

Weighted Adjacency Matrix

	S	Α		C		Ε	F	G
S	0	3	0 4	4	9	0	0	0
Α	0	0	4	0	0	0	0	0
В	0	0	0	0	0	6	0	8
C D E F G	÷							

Weighted Adjacency Lists

Single-pair shortest path problem

• Problem: Given a digraph G = (V, E, w), source $s \in V$, and destination $d \in V$, find a shortest directed path from s to d.

25

• Problem: Given a digraph G = (V, E, w), source $s \in V$, find a shortest directed path from s to every node.

Why can't we use BFS?

Cost = 20

Cost = 20

Edge splitting: Transforming a weighted graph into an unweighted one

Dijkstra's algorithm for shortest path

Dijkstra's algorithm solves this problem for both **directed** and **undirected** graphs

Initially $E = \{A\}$ and iteratively add one vertex to E

Which vertex from E` to add to E?

The vertex $\boldsymbol{v} \in \boldsymbol{E}$ that is closest to \boldsymbol{A}

$$\pi(v) = \min_{e = (u,v) : u \in S} d[u] + \ell_e$$

the length of a shortest path from s to some node u in explored part E, followed by a single edge e = (u, v)

add v to E, and set $d[v] \leftarrow \pi(v)$.

$$\pi(v) = \min_{e = (u,v) : u \in S} d[u] + \ell_e$$

$$\pi(v) = \min_{e = (u,v) : u \in S} d[u] + \ell_e$$

$$\pi(v) = \min_{e = (u,v) : u \in S} d[u] + \ell_e$$

Algorithm Dijkstra's Algorithm for Shortest Paths from s to all vertices

```
d[1 \dots n] \leftarrow [\infty \dots \infty]
P[1 \dots n] \leftarrow [null \dots null]
d[s] \leftarrow 0 \quad E \leftarrow \{s\}
\text{while } E \neq V \text{ do}
\text{Select } e = (u, v), \ u \in E, v \notin E \text{ with minimum } d[u] + w(uv) 
E \leftarrow E \cup \{v\}
d[v] \leftarrow d[u] + w(uv)
P[v] \leftarrow u
```


Algorithm Dijkstra's Algorithm for Shortest Paths from s to all vertices

```
d[1 \dots n] \leftarrow [\infty \dots \infty]
P[1 \dots n] \leftarrow [null \dots null]
d[s] \leftarrow 0 \quad E \leftarrow \{s\}
\text{while } E \neq V \text{ do}
\text{Select } e = (u, v), \ u \in E, v \notin E \text{ with minimum } d[u] + w(uv)
E \leftarrow E \cup \{v\}
d[v] \leftarrow d[u] + w(uv)
P[v] \leftarrow u
```


Dijkstra's algorithm: Proof of correctness

- **Proof:** [by induction on |S|]
- Base case: |S| = 1 is easy since $S = \{ s \}$ and d[s] = 0.
- Inductive hypothesis: Assume that for some k, the shortest path distance to the first k vertices added to E (let's call this subset E_k) is correct. We will prove that the d[v] for the k+1th vertex v (next closest vertex) added to E is also correct.

Steps:

- When vertex v added to S_k , it's chosen because it has the smallest d[v] value among all vertices not in E_k
- Now, either the shortest path from s to v only goes through E_k , or it goes through at least one other node w (not in E_k)
- If the shortest path passes through w then d[w] < d[v], it contradicts our inductive hypothesis
- Therefore, when the algorithm adds v to E_k , d[v] correctly represents the shortest path from s to v

Live Poll 1: Dijkstra Algorithm

What paths do we get if we run Dijkstra on vertex A?

https://forms.office.com/ r/bdpy1hjsK7

Scan the QR or use link to join

https://forms.office.com/ r/bdpy1hjsK7

Copy link

Treemap

Bar

1 of 1 >

Dijkstra cannot handle *negative edges*

Algorithm Dijkstra's Algorithm for Shortest Paths from s to all vertices

```
d[1 \dots n] \leftarrow [\infty \dots \infty]
P[1 \dots n] \leftarrow [null \dots null]
d[s] \leftarrow 0 \quad E \leftarrow \{s\}
\mathbf{while} \ E \neq V \ \mathbf{do}
\mathrm{Select} \ e = (u, v), \ u \in E, v \notin E \ \text{with minimum} \ d[u] + w(uv)
E \leftarrow E \cup \{v\}
d[v] \leftarrow d[u] + w(uv)
P[v] \leftarrow u
```


Dijkstra cannot handle *negative edges*

Algorithm Dijkstra's Algorithm for Shortest Paths from s to all vertices

```
d[1 \dots n] \leftarrow [\infty \dots \infty]
P[1 \dots n] \leftarrow [null \dots null]
d[s] \leftarrow 0 \quad E \leftarrow \{s\}
\text{while } E \neq V \text{ do}
\text{Select } e = (u, v), \ u \in E, v \notin E \text{ with minimum } d[u] + w(uv)
E \leftarrow E \cup \{v\}
d[v] \leftarrow d[u] + w(uv)
P[v] \leftarrow u
```


Dijkstra cannot handle *negative edges*

Algorithm Dijkstra's Algorithm for Shortest Paths from s to all vertices

```
d[1 ... n] \leftarrow [\infty ... \infty]
P[1 ... n] \leftarrow [null ... null]
d[s] \leftarrow 0 \quad E \leftarrow \{s\}
\mathbf{while} \ E \neq V \ \mathbf{do}
\mathrm{Select} \ e = (u, v), \ u \in E, v \notin E \ \text{ with minimum } d[u] + w(uv)
E \leftarrow E \cup \{v\}
d[v] \leftarrow d[u] + w(uv)
P[v] \leftarrow u
```


Can we improve the time complexity of Dijkstra?

 $R \leftarrow R \cup \{v\}$

 $P[v] \leftarrow u$

 $d[v] \leftarrow d[u] + w(uv)$

Algorithm Dijkstra's Algorithm for Shortest Paths from s to all vertices $d[1 \dots n] \leftarrow [\infty \dots \infty]$ $P[1 \dots n] \leftarrow [null \dots null]$ $d[s] \leftarrow 0 \quad R \leftarrow \{s\}$ while $R \neq V$ do Select $e = (u, v), \ u \in R, v \notin R$, with minimum d[u] + w(uv)

This operation is very expensive

Using Priority Queue

if (distance[u] + weight(u, v) < distance[V])
 distance[V]= distance[u] + weight(u, v)</pre>

Dijkstra's algorithm (for single-source shortest paths problem)

```
for each vertex v in graph:
          distance[v] = \infty
          predecessor[v] = undefined
distance[s] = 0
                                                 2O(V) + O(V) (O(\log V) + \text{out-degree(u)} O(\log V))
                                                 2O(V) + O(V \log V) + O(V)(\text{out-degree(u)}) O(\log V)
PQ = empty priority queue
for each vertex v in graph:
    PQ.insert(v, distance[v])
                                         \begin{array}{cc} O(V) & 2O(V) + O(V\log V) + O(E) O(\log V)) \end{array}
                                                2O(V) + O(V + E) (log V))
while PQ is not empty:
          u = PQ.extract-min()  O(log V)
          for each out-degree(u,v) of u:
               alt = distance[u] + weight(u, v)
               if alt < distance[v]:</pre>
                                                                 out-degree(u)
                    distance[v] = alt
                    predecessor[v] = u
                   PQ.decrease-key(v, alt)
```


This lecture Dedicated to...

"What is the shortest way to travel from Rotterdam to Groningen? It is the algorithm for the shortest path which I designed in about 20 minutes. One morning I was shopping with my young fiancée, and tired, we sat down on the cafe terrace to drink a cup of coffee and I was just thinking about whether I could do this, and then designed the algorithm for the shortest path."

Edsger W. Dijkstra Turing award 1972

This lecture Dedicated to...

- "Do only what only you can do."
- "The use of COBOL cripples the mind; its teaching should, therefore, be regarded as a criminal offence."
- "It is practically impossible to teach good programming to students that have had a prior exposure to BASIC: as potential programmers they are mentally mutilated beyond hope of regeneration."
- "APL is a mistake, carried through to perfection. It is the language of the future for the programming techniques of the past: it creates a new generation of coding bums."

Edsger W. Dijkstra Turing award 1972

Thanks a lot

If you are taking a Nap, wake up.....Lecture Over