

Vishay Siliconix

P-Channel 20-V (D-S) MOSFET

PRODUCT SUMMARY						
V _{DS} (V)	$R_{DS(on)}(\Omega)$	I _D (A)	Q _g (Typ.)			
	0.022 at $V_{GS} = -4.5 \text{ V}$	- 12 ^a				
- 20	0.029 at V _{GS} = - 2.5 V	- 12 ^a	20 nC			
	0.041 at V _{GS} = - 1.8 V	- 12 ^a				

FEATURES

- Halogen-free
- TrenchFET® Power MOSFET
- New thermally Enhanced PowerPAK® ChipFET® Package
 - Small Footprint Area

 - Low On-Resistance
 - Thin 0.8 mm Profile

APPLICATIONS

PowerPAK ChipFET Single

Load Switch, Battery Switch, PA Switch and Charger

Ordering Information: Si5481DU-T1-GE3 (Lead (Pb)-free and Halogen-free)

P-Channel MOSFET

Parameter		Symbol	Limit	Unit	
Drain-Source Voltage		V _{DS}	- 20	V	
Gate-Source Voltage		V _{GS}	± 8	v	
	T _C = 25 °C		- 12 ^a		
Continuous Drain Current (T _{.1} = 150 °C)	T _C = 70 °C	l _D	- 12 ^a		
Continuous Brain Current (1) = 130 C)	T _A = 25 °C	'b	- 9.7 ^{b, c}		
	T _A = 70 °C		- 7.8 ^{b, c}	Α	
Pulsed Drain Current		I _{DM}	I _{DM} - 20		
Continuous Source-Drain Diode Current	T _C = 25 °C	I.	- 14.8		
Continuous Source-Drain Diode Current	T _A = 25 °C	l _s –	- 2.6 ^{b, c}		
	T _C = 25 °C		17.8		
Maximum Power Dissipation	T _C = 70 °C	P _D	11.4	w	
Maximum Power Dissipation	T _A = 25 °C	'	3.1 ^{b, c}		
	T _A = 70 °C		2 ^{b, c}		
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 55 to 150		
Soldering Recommendations (Peak Temperature) ^{d, e}			260	°C	

THERMAL RESISTANCE RATINGS					
Parameter		Symbol	Typical	Maximum	Unit
Maximum Junction-to-Ambient ^{b, f}	t ≤ 5 s	R _{thJA}	30	40	°C/W
Maximum Junction-to-Case (Drain)	Steady State	R _{thJC}	5.5	7	C/VV

- Notes:
 a. Package limited.
 b. Surface mounted on 1" x 1" FR4 board. t = 5 s.

 See Solder Profile (http://www.vishay.com/ppg?73257). The PowerPAK ChipFET is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.
- Rework Conditions: manual soldering with a soldering iron is not recommended for leadless components.
- Maximum under steady state conditions is 90 °C/W.

Vishay Siliconix

SPECIFICATIONS T _J = 25 °C	SPECIFICATIONS $T_J = 25$ °C, unless otherwise noted							
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit		
Static								
Drain-Source Breakdown Voltage	V _{DS}	V _{GS} = 0 V, I _D = - 250 μA				V		
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	I _D = - 250 μA		- 15.5		mV/°C		
V _{GS(th)} Temperature Coefficient	$\Delta V_{GS(th)}/T_J$			2.5				
Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	- 0.4		- 1	V		
Gate-Source Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 8 \text{ V}$			± 100	nA		
Zoro Coto Voltago Droin Current	l	V _{DS} = - 20 V, V _{GS} = 0 V			- 1	μΑ		
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = -20 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55 ^{\circ}\text{C}$			- 10			
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \le 5 \text{ V}, V_{GS} = -4.5 \text{ V}$	20			Α		
	, ,	$V_{GS} = -4.5 \text{ V}, I_D = -6.5 \text{ A}$		0.018	0.022			
Drain-Source On-State Resistance ^a	R _{DS(on)}	V _{GS} = - 2.5 V, I _D = - 5.7 A		0.024	0.029	Ω		
	,	V _{GS} = - 1.8 V, I _D = 2.4 A		0.033	0.041			
Forward Transconductance ^a	9 _{fs}	V _{DS} = - 10 V, I _D = - 6.5 A		25		S		
Dynamic ^b			<u> </u>	L	L	l.		
Input Capacitance	C _{iss}			1610				
Output Capacitance	C _{oss}	$V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$		300		pF		
Reverse Transfer Capacitance	C _{rss}			200				
		$V_{DS} = -10 \text{ V}, V_{GS} = -8 \text{ V}, I_{D} = -9.7 \text{ A}$	33		50			
Total Gate Charge	Q _g			20	30	nC		
Gate-Source Charge		$V_{DS} = -10 \text{ V}, V_{GS} = -4.5 \text{ V}, I_{D} = -9.7 \text{ A}$		2.8				
Gate-Drain Charge	Q _{gd}			5.1				
Gate Resistance	R _q	f = 1 MHz		8		Ω		
Turn-On Delay Time	t _{d(on)}			13	20			
Rise Time	t _r	$V_{DD} = -10 \text{ V}, R_1 = 1.3 \Omega$		50	75	-		
Turn-Off DelayTime	t _{d(off)}	$I_D \cong -7.8 \text{ A}, V_{GEN} = -4.5 \text{ V}, R_q = 1 \Omega$		90	135			
Fall Time	t _f	, and the second		167	250			
Turn-On Delay Time	t _{d(on)}			6	15	ns		
Rise Time	t _r	$V_{DD} = -10 \text{ V}, R_1 = 1.3 \Omega$		25	40	-		
Turn-Off DelayTime	t _{d(off)}	$I_{D} \cong -7.8 \text{ A}, V_{GEN} = -8 \text{ V}, R_{a} = 1 \Omega$		90	135			
Fall Time	t _f	g		167	250			
Drain-Source Body Diode Characteris	•							
Continous Source-Drain Diode Current	I _S	T _C = 25 °C			- 14.8			
Pulse Diode Forward Current ^a		-			20	A		
Body Diode Voltage	V _{SD}	I _S = - 7.8 A, V _{GS} = 0 V		- 0.8	- 1.2	V		
Body Diode Reverse Recovery Time	t _{rr}	5 . 40		30	60	ns		
Body Diode Reverse Recovery Charge	Q _{rr}	\dashv		17	30	nC		
Reverse Recovery Fall Time	ta	$I_F = -7.8 \text{ A}, \text{ dI/dt} = 100 \text{ A/}\mu\text{s}, T_J = 25 ^{\circ}\text{C}$		14		1		
Reverse Recovery Rise Time	t _b			16		ns		

Notes:

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

a. Pulse test; pulse width $\leq 300~\mu s,$ duty cycle $\leq 2~\%.$

b. Guaranteed by design, not subject to production testing.

Vishay Siliconix

12

8

 $V_{GS} = 2.5 \text{ V}$

 $V_{GS} = 4.5 \text{ V}$

16

20

V_{GS} = 1.8 V

4

0.04

0.02

0.00

0

V_{DS} - Drain-to-Source Voltage (V)

Capacitance

On-Resistance vs. Junction Temperature

Vishay Siliconix

VISHAY

TYPICAL CHARACTERISTICS $T_A = 25$ °C, unless otherwise noted

Source-Drain Diode Forward Voltage

On-Resistance vs. Gate-to-Source Voltage

T_J - Temperature (°C)

Threshold Voltage

50

75

100

125

Single Pulse Power, Junction-to-Ambient

 $$V_{DS}$$ - Drain-to-Source Voltage (V) * V_{GS} > minimum V_{GS} at which $R_{DS(on)}$ is specified

Safe Operating Area, Junction-to-Ambient

0.3

- 50

- 25

0

Vishay Siliconix

TYPICAL CHARACTERISTICS $T_A = 25$ °C, unless otherwise noted

^{*} The power dissipation P_D is based on $T_{J(max)} = 150$ °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit

Vishay Siliconix

VISHAY

TYPICAL CHARACTERISTICS $T_A = 25$ °C, unless otherwise noted

Normalized Thermal Transient Impedance, Junction-to-Ambient

Normalized Thermal Transient Impedance, Junction-to-Case

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see https://www.vishay.com/ppg?73777.

PowerPAK® ChipFET® Case Outline

Backside view of single pad

Side view of single

Side view of dual

Detail Z

Backside view of dual pad

DIM.		MILLIMETERS			INCHES			
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.		
Α	0.70	0.75	0.85	0.028	0.030	0.033		
A1	0	-	0.05	0	-	0.002		
b	0.25	0.30	0.35	0.010	0.012	0.014		
С	0.15	0.20	0.25	0.006	0.008	0.010		
D	2.92	3.00	3.08	0.115	0.118	0.121		
D1	1.75	1.87	2.00	0.069	0.074	0.079		
D2	1.07	1.20	1.32	0.042	0.047	0.052		
D3	0.20	0.25	0.30	0.008	0.010	0.012		
Е	1.82	1.90	1.98	0.072	0.075	0.078		
E1	1.38	1.50	1.63	0.054	0.059	0.064		
E2	0.92	1.05	1.17	0.036	0.041	0.046		
E3	0.45	0.50	0.55	0.018	0.020	0.022		
е	0.65 BSC			0.026 BSC				
Н	0.15	0.20	0.25	0.006	0.008	0.010		
K	0.25	-	-	0.010	-	-		
K1	0.30	-	-	0.012	-	-		
K2	0.20	-	-	0.008	-	-		
K3	0.20	-	-	0.008	-	-		
L	0.30	0.35	0.40	0.012	0.014	0.016		

Note

DWG: 5940

• Millimeters will govern

RECOMMENDED MINIMUM PADS FOR PowerPAK® ChipFET® Single

Recommended Minimum Pads Dimensions in mm/(Inches)

Return to Index

APPLICATION NOTE

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

Revision: 02-Oct-12 Document Number: 91000