Context-free grammars
Parse trees
CFGs and ambiguity
Relation with regular languages

Automata, Languages and Computation

Chapter 5 : Context-Free Grammars and Languages

Master Degree in Computer Engineering
University of Padua
Lecturer: Giorgio Satta

Lecture based on material originally developed by : Gösta Grahne, Concordia University Context-free grammars
Parse trees
CFGs and ambiguity
Relation with regular languages

Derivation trees

Context-free grammars
Parse trees
CFGs and ambiguity
Relation with regular languages

- Context-free grammars: we consider devices defining structures more complex than regular languages
- Parse trees : tree representation of a derivation
- 3 CFGs and ambiguity : some strings might have more than one parse tree
- Relation with regular languages: CFGs can simulate FAs or regular expressions

Informal example of CFL

```
Let L_{pal} = \{ w \mid w \in \Sigma^*, w = w^R \}, also called the language of all palindrome strings
```

Example: (ignore case, spaces, and punctuation characters)
"Madam I'm Adam" is a palindrome;

"A man, a plan, a canal, Panama!" is a palindrome

Informal example of CFL

Let $\Sigma = \{0,1\}$ and assume L_{pal} is a regular language

Let n be the constant from the pumping lemma. We pick

$$w = 0^n 10^n \in L_{pal}, \ w \geqslant n$$

Let w = xyz be such that $y \neq \epsilon$ and $|xy| \leqslant n$

If k = 0, $xz \notin L_{pal}$: the number 0's to the left of 1 is smaller than the number of 0's to its right

Informal example of CFL

We inductively define L_{pal}

Base ϵ , 0, and 1 are palindrome strings

Induction

If w is a palindrome strings, then 0w0 and 1w1 are also palindrome strings

Nothing else is a palindrome string

CFG example

CFGs are a formalism for recursively defining languages such as L_{pal} , using rewriting rules

1.
$$P \rightarrow \epsilon$$

2.
$$P \rightarrow 0$$

3.
$$P \rightarrow 1$$

4.
$$P \rightarrow 0P0$$

5.
$$P \rightarrow 1P1$$

P is a variable representing strings of a language. In this grammar P is also the initial symbol

Compare variables with recursive functions in programming languages

Definition

A context-free grammar (CFG for short) is a tuple

$$G = (V, T, P, S)$$

where

- V is a finite set of variables (also called nonterminals)
- T is a finite set of terminal symbols, representing the language alphabet
- P is a finite set of **productions** having the form $A \to \alpha$, where A (head, or left-hand side) is a variable and α (body or right-hand side) is a string in $(V \cup T)^*$
- S is a variable called **initial symbol**

Example

A CFG for palindrome strings is

$$G_{pal} = (\{P\}, \{0,1\}, A, P)$$

with

$$A = \{P \rightarrow \epsilon, P \rightarrow 0, P \rightarrow 1, P \rightarrow 0P0, P \rightarrow 1P1\}$$

Example SKIP

The language of all regular expressions over the alphabet $\{0,1\}$ can be defined by the CFG

$$G_{regEx} = (\{E\}, T, P, E)$$

where T is defined as (ϵ overloaded!)

$$\{\emptyset, \ \epsilon, \ \mathbf{0}, \ \mathbf{1}, \ +, \ ., \ *, \ (, \)\}$$

and P is defined as

$$\{E \to \varnothing, E \to \epsilon, E \to \mathbf{0}, E \to \mathbf{1}, E \to E.E, E \to E + E, E \to E^*, E \to (E)\}$$

Don't get confused: this defines the syntax of regular expressions, not the generated language

Example

Consider a simplified form of the **arithmetic expressions** as used in most common programming languages

+ and * are arithmetic operators; operands are **identifiers** generated by the regular expression

$$(a + b)(a + b + 0 + 1)^*$$

We use the CFG

$$G = (\{E, I\}, T, P, E)$$

where

- variabile *E* represents arithmetic expressions
- variabile / represents identifiers

Example

T is defined as

$$\{+, *, (,), a, b, 0, 1\}$$

P contains the following productions

1.
$$E \rightarrow I$$

2.
$$E \rightarrow E + E$$

3.
$$E \rightarrow E * E$$

4.
$$E \rightarrow (E)$$

5.
$$I \rightarrow a$$

6.
$$I \rightarrow b$$

7.
$$I \rightarrow I a$$

8.
$$I \rightarrow I b$$

9.
$$I \rightarrow I$$
 0

10.
$$I \to I$$
 1

We will later present several examples using this CFG

Compact notation

Usually, productions with a common head are grouped together

Example: Productions $A \to \alpha_1$, $A \to \alpha_2$, ..., $A \to \alpha_n$ can be written in a more compact notation

$$A \rightarrow \alpha_1 \mid \alpha_2 \mid \cdots \mid \alpha_n$$

Test

Define a CFG for each of the following languages

•
$$L = \{a^n b^n \mid n \geqslant 1\}$$
 S=ab, S=aSb

•
$$L = \{a^n b^m \mid n \geqslant m \geqslant 1\}$$
 S=ab, S=aSb, S=aS

Derivation

In order to generate strings using a CFG, we define a binary relation \Rightarrow over $(V \cup T)^*$, called **rewrites**

Let
$$G = (V, T, P, S)$$
 be a CFG, $A \in V$, $\{\alpha, \beta\} \subset (V \cup T)^*$. If $A \to \gamma \in P$ then

$$\alpha A\beta \underset{G}{\Rightarrow} \alpha \gamma \beta$$

and we say that $\alpha A\beta$ derives in one step $\alpha \gamma \beta$

If G is understood from the context, we use the simplified notation

$$\alpha A\beta \Rightarrow \alpha \gamma \beta$$

Derivation

We define $\stackrel{*}{\Rightarrow}$ as the reflexive and transitive closure of \Rightarrow

Base Let
$$\alpha \in (V \cup T)^*$$
. Then $\alpha \stackrel{*}{\Rightarrow} \alpha$

Induction If
$$\alpha \stackrel{*}{\Rightarrow} \beta$$
 and $\beta \Rightarrow \gamma$, then $\alpha \stackrel{*}{\Rightarrow} \gamma$

Relation
$$\stackrel{*}{\Rightarrow}$$
 is called **derivation**

We often write derivations by indicating all of the **intermediate steps**

Example

A possible derivation of a*(a+b00) from E in the CFG for arithmetic expressions :

$$E \Rightarrow E * E$$

$$\Rightarrow E * (E)$$

$$\Rightarrow I * (E)$$

$$\Rightarrow a * (E + I00)$$

$$\Rightarrow a * (E + b00)$$

$$\Rightarrow a * (E + b00)$$

$$\Rightarrow a * (E + E)$$

$$\Rightarrow a * (E + E)$$

$$\Rightarrow a * (E + E)$$

Contrast with regular expressions, which do not have derivations for individual strings

Example

At each step in a derivation there might be several variables to which we can apply the rewrite relation :

$$I * E \Rightarrow a * E \Rightarrow a * (E)$$

 $I * E \Rightarrow I * (E) \Rightarrow a * (E)$

Not all choices lead to a derivation of the desired string :

$$I * E \Rightarrow a * E \Rightarrow a * E + E$$

does not lead to a derivation of a * (a + b00)

Leftmost derivation

In derivations, we can avoid the choice of variables to be rewritten if we stick to some **canonical** derivation form

The relation \Rightarrow always rewrites the leftmost variable with some production

We also use the reflexive and transitive closure of \Rightarrow , written $\stackrel{*}{\Rightarrow}$, and call it **leftmost derivation**

Example

Leftmost derivation of a * (a + b00):

$$E \underset{lm}{\Rightarrow} E * E \underset{lm}{\Rightarrow} I * E \underset{lm}{\Rightarrow} a * E \underset{lm}{\Rightarrow} a * (E) \underset{lm}{\Rightarrow} a * (E + E)$$

$$\underset{lm}{\Rightarrow} a * (I + E) \underset{lm}{\Rightarrow} a * (a + E) \underset{lm}{\Rightarrow} a * (a + I) \underset{lm}{\Rightarrow} a * (a + I0)$$

$$\underset{lm}{\Rightarrow} a * (a + I00) \underset{lm}{\Rightarrow} a * (a + b00)$$

We conclude that $E \stackrel{*}{\underset{lm}{\Rightarrow}} a * (a + b00)$

Rightmost derivation

The relation \Rightarrow_{rm} always rewrites the rightmost variable with the body of a production

We use the reflexive and transitive closure of \Rightarrow_{rm} , written \Rightarrow_{rm} , called rightmost derivation

Example

Rightmost derivation:

$$E \underset{rm}{\Rightarrow} E * E \underset{rm}{\Rightarrow} E * (E) \underset{rm}{\Rightarrow} E * (E + E) \underset{rm}{\Rightarrow} E * (E + I)$$

$$\Rightarrow E * (E + I0) \underset{rm}{\Rightarrow} E * (E + I00) \underset{rm}{\Rightarrow} E * (E + b00)$$

$$\Rightarrow E * (I + b00) \underset{rm}{\Rightarrow} E * (a + b00) \underset{rm}{\Rightarrow} I * (a + b00)$$

$$\Rightarrow a * (a + b00)$$

We conclude that
$$E \stackrel{*}{\Rightarrow} a * (a + b00)$$

Notation for CFGs

We use the following conventions

- a, b, c, \ldots terminal symbols
- A, B, C, ... variables (nonterminal symbols)
- u, v, w, x, y, z terminal strings
- X, Y, Z terminal or nonterminal symbols
- $\alpha, \beta, \gamma, \ldots$ strings over terminal or nonterminal symbols

Let G = (V, T, P, S) be some CFG. The **generated language** of G is

$$L(G) = \{ w \in T^* \mid S \underset{G}{\overset{*}{\Rightarrow}} w \}$$

that is, the set of all strings in T^* that can be derived from the start symbol

L(G) is a **context-free language**, or CFL for short

Example: $L(G_{pal})$ is a CFL

Test

Consider the language L of all strings over "(" and ")" where parentheses are always well balanced (assume $\epsilon \notin L$)

for the following CFG

$$G = (\{S\}, \{(,)\}, P, S)$$

specify the set P such that L(G) = L

produce a derivation for string

$$w = (()()))$$

SKIP

$$G_{pal} = (\{P\}, \{0,1\}, A, P)$$
, where
$$A = \{P \to \epsilon \ |\ 0 \ |\ 1 \ |\ 0P0 \ |\ 1P1\}$$

Theorem
$$L(G_{pal}) = \{ w \mid w \in \{0, 1\}^*, w = w^R \}$$

Proof (\supseteq part) Assume $w = w^R$. Using induction on |w|, we show $w \in L(G_{pal})$

Base |w|=0 or |w|=1. Then w is $\epsilon,0$, or else 1. Since $P\to\epsilon$, $P\to 0$, and $P\to 1$ are productions of the grammar, we conclude that $P\stackrel{*}{\underset{G}{\Longrightarrow}} w$

Induction Assume now $|w| \ge 2$. Since $w = w^R$, we must have w = 0x0 or else w = 1x1, with $x = x^R$. From the inductive hypothesis we then have $P \stackrel{*}{\Rightarrow} x$.

If w = 0x0, we can write

$$P \Rightarrow 0P0 \stackrel{*}{\Rightarrow} 0x0 = w$$

Therefore $w \in L(G_{pal})$

Case w = 1x1 can be dealt with similarly

(
$$\subseteq$$
 part) Assume now $w \in L(G_{pal})$. We show $w = w^R$

Since $w \in L(G_{pal})$, we have $P \stackrel{*}{\Rightarrow} w$. We use induction on the number of steps of the derivation

Base The derivation $P \stackrel{*}{\Rightarrow} w$ has 1 step. Then w must be ϵ , 0, or 1. All the three generated strings are palindrome

Induction Let $n \ge 2$ be the number of steps in the derivation. At the first step only two cases are possible :

$$P \Rightarrow 0P0 \stackrel{*}{\Rightarrow} 0x0 = w$$

or else

$$P \Rightarrow 1P1 \stackrel{*}{\Rightarrow} 1x1 = w$$

In both cases, the second part of the derivation implies $P \stackrel{*}{\Rightarrow} x$ in n-1 steps (this will be explained later in more detail)

By the inductive hypothesis, x is a palindrome string. Then also w is a palindrome string

Proofs about CFGs

We need to show that a given CFG generates a desired language

For each variable A in the CFG, define some property \mathcal{P}_A for strings w over the alphabet

Show that, for every A, we have

 $A \stackrel{*}{\Rightarrow} w$ if and only if $\mathcal{P}_A(w)$ holds true

Proofs about CFGs

If part : if $\mathcal{P}_{A}(w)$ then $A \stackrel{*}{\Rightarrow} w$

Use mutual induction on |w|

- using \mathcal{P}_A definition, choose a factorization $w = x_1 x_2 \cdots x_k$ such that $\mathcal{P}_{\mathcal{B}_i}(x_i)$ holds for each i
- use the inductive hypothesis on $\mathcal{P}_{B_i}(x_i)$ to obtain $B_i \stackrel{*}{\Rightarrow} x_i$, for each i
- choose a production $A \rightarrow B_1 B_2 \cdots B_k$ and obtain

$$A \Rightarrow B_1 B_2 \cdots B_k$$

$$\stackrel{*}{\Rightarrow} x_1 B_2 \cdots B_k$$

$$\vdots$$

$$\stackrel{*}{\Rightarrow} x_1 x_2 \cdots x_k = w$$

Proofs about CFGs

Only if part : if $A \stackrel{*}{\Rightarrow} w$ then $\mathcal{P}_{A}(w)$ holds true

Use mutual induction on the length of derivation $A \stackrel{*}{\Rightarrow} w$

focus on the first production of the derivation

$$A \Rightarrow B_1 B_2 \cdots B_k$$

$$\stackrel{*}{\Rightarrow} x_1 B_2 \cdots B_k$$

$$\vdots$$

$$\stackrel{*}{\Rightarrow} x_1 x_2 \cdots x_k = w$$

- use the inductive hypothesis on $B_i \stackrel{*}{\Rightarrow} x_i$ to obtain that $\mathcal{P}_{B_i}(x_i)$ holds, for each i
- use \mathcal{P}_A definition to show that $\mathcal{P}_A(w)$ holds true

Sentential form

Let
$$G = (V, T, P, S)$$
 be a CFG and let $\alpha \in (V \cup T)^*$

- if $S \stackrel{*}{\Rightarrow} \alpha$ we say that α is a **sentential form**
- if $S \overset{*}{\underset{lm}{\Rightarrow}} \alpha$ we say that α is a **left sentential form**
- if $S \overset{*}{\underset{rm}{\Rightarrow}} \alpha$ we say that α is a **right sentential form**

Note: L(G) contains the sentential forms in T^*

Examples

Consider previous CFG G for a fragment of arithmetic expressions. Then E * (I + E) is a sentential form, since

$$E \Rightarrow E * E \Rightarrow E * (E) \Rightarrow E * (E + E) \Rightarrow E * (I + E)$$

This derivation is neither leftmost nor rightmost

a * E is a leftmost sentential form, since

$$E \Rightarrow E * E \Rightarrow I * E \Rightarrow a * E$$

E * (E + E) is a rightmost sentential form, since

$$E \Rightarrow E * E \Rightarrow E * (E) \Rightarrow E * (E + E)$$

Test

Define a CFG for each of the following languages, describing for each variable the set of generated strings

•
$$L = \{ w \mid w = x2x^R, x \in \{0,1\}^* \}$$

•
$$L = \{ w \mid w = a^i b^j c^k, i, j, k \ge 1, j \ne k \}$$

Test

Describe in words the language generated by the following CFG

$$G = (\{S, Z\}, \{0, 1\}, P, S)$$

where

$$P = \{S \rightarrow 0S1 \mid 0Z1, Z \rightarrow 0Z \mid \epsilon\}$$

Derivation composition

We can always compose two derivations $A \stackrel{*}{\Rightarrow} \alpha B \beta$ and $B \stackrel{*}{\Rightarrow} \gamma$ into a single derivation

$$A \stackrel{*}{\Rightarrow} \alpha B \beta \stackrel{*}{\Rightarrow} \alpha \gamma \beta$$

This follows from the hypothesis about rewriting being **independent** from the context (context-free)

Consider our CFG for generating arithmetic expressions. Starting with

$$E \Rightarrow E + E \Rightarrow E + (E)$$

 $E \Rightarrow I \Rightarrow Ib \Rightarrow ab$

we can compose at the rightmost occurrence of E, obtaining

$$E \Rightarrow E + E \Rightarrow E + (E) \Rightarrow E + (I) \Rightarrow E + (Ib) \Rightarrow E + (ab)$$

Derivation factorization

Assume
$$A\Rightarrow X_1X_2\cdots X_k\overset{*}{\Rightarrow} w$$
. We can **factorize** w as $w_1w_2\cdots w_k$ such that $X_i\overset{*}{\Rightarrow} w_i,\ 1\leqslant i\leqslant k$
As a special case, we can have $X_i=w_i\in T$

Substring w_i can be identified from derivation $A \stackrel{*}{\Rightarrow} w$ by considering **only** those derivation steps that rewrite X_i

Consider
$$E \Rightarrow E * E \stackrel{*}{\Rightarrow} a * b + a$$

We have

$$\underbrace{a}_{E} \underbrace{*}_{*} \underbrace{b+a}_{E}$$

and we can write

$$E \stackrel{*}{\Rightarrow} a$$

$$\stackrel{*}{*} \stackrel{*}{\Rightarrow} *$$

$$E \stackrel{*}{\Rightarrow} b + a$$

Parse trees

Parse trees are a graphical representation alternative to derivations

Intuitively, parse trees represent the **syntactic structure** of a string according to the grammar

In compilers, parse trees are the structure of choice when translating into executable code

Parse trees

Let G = (V, T, P, S) be a CFG. An ordered tree is a **parse tree** of G if :

- each internal node is labeled with a variable in V
- each leaf node is labeled with a symbol in $V \cup T \cup \{\epsilon\}$; each leaf labeled with ϵ is the only child of its parent
- if an internal node is labeled A and its children (from left to right) are labeled

$$X_1, X_2, \ldots, X_k$$

then
$$A \rightarrow X_1 X_2 \cdots X_k \in P$$

CFG for arithmetic expressions and parse tree associated with the derivation $E \Rightarrow E + E \Rightarrow I + E$

1.
$$E \rightarrow I$$

2.
$$E \rightarrow E + E$$

3.
$$E \rightarrow E * E$$

4.
$$E \rightarrow (E)$$

:

CFG for palindrome strings and parse tree associated with the derivation $P \Rightarrow 0P0 \Rightarrow 01P10 \Rightarrow 0110$

1.
$$P \rightarrow \epsilon$$

2.
$$P \rightarrow 0$$

3.
$$P \rightarrow 1$$

4.
$$P \rightarrow 0P0$$

5.
$$P \rightarrow 1P1$$

Parse tree terminology

We use the following terms associated with parse trees

- node and arc
- parent node and child node
- ancestor node and descendant node
- root node, inner node (including the root) and leaf node

Recall: For each internal node, the child nodes are ordered

Yeld of a parse tree

The **yield** of a parse tree is the string obtained by reading the leaves from left to right

Of special importance are the **complete** parse trees, where :

- the yield is a string of terminal symbols
- the root is labeled by the initial symbol

The set of yields of all complete parse trees is the language generated by the CFG

Complete parse tree. The yield is a * (a + b00)

Derivations and parse trees

Let G = (V, T, P, S) be a CFG, $A \in V$ and $w \in T^*$. The following statements are equivalent (statements must all be true or must all be false):

- $A \stackrel{*}{\Rightarrow} w$
- $A \stackrel{*}{\Rightarrow} w$
- $A \stackrel{*}{\Rightarrow} w$
- there exists a parse tree for G with root label A and yield w

Proof not required for these theorems

Relation between derivations and parse trees **is not** one-to-one (see next slides)

Derivations and parse trees

A parse tree can be associated with several derivations

Example: Consider the CFG with productions $S \to AB$, $A \to a$, $B \to b$. The parse tree

is associated with two derivations

$$S \Rightarrow AB \Rightarrow aB \Rightarrow ab$$

 $S \Rightarrow AB \Rightarrow Ab \Rightarrow ab$

Derivations and parse trees

A derivation can be associated with several parse trees

Example: Consider the CFG with productions $S \rightarrow SS \mid a$. The derivation

$$S \Rightarrow SS \Rightarrow SSS \Rightarrow aSS \Rightarrow aaS \Rightarrow aaa$$

is associated with two parse trees

In the CFG

1
$$F \rightarrow I$$

2.
$$E \rightarrow E + E$$

3.
$$E \rightarrow E * E$$

4.
$$E \rightarrow (E)$$

5.
$$l \rightarrow a$$

6.
$$I \rightarrow b$$

7.
$$I \rightarrow I a$$

8.
$$I \rightarrow I b$$

9.
$$I \rightarrow I$$
 0

10.
$$I \to I$$
 1

the sentential form E + E * E has two derivations

$$E \Rightarrow E + E \Rightarrow E + E * E$$

$$E \Rightarrow E * E \Rightarrow E + E * E$$

Associated parse trees for the derivations of E + E * E

The two derivations correspond to different **precedences** for operators sum and multiplication

The existence of different derivations for a string is not problematic, if these correspond to a single parse tree

Example: In our CFG for arithmetic expressions, the string a + b has at least two derivations

$$E \Rightarrow E + E \Rightarrow I + E \Rightarrow a + E \Rightarrow a + I \Rightarrow a + b$$

 $E \Rightarrow E + E \Rightarrow E + I \Rightarrow I + I \Rightarrow I + b \Rightarrow a + b$

However, the associated parse trees are the same, and string a+b is **not** ambiguous

Let G = (V, T, P, S) be a CFG. G is **ambiguous** if there exists a string in L(G) with more than one parse tree

If every string in L(G) has only one parse tree, G is said to be **unambiguous**

The ambiguity is **problematic** in many applications where the syntactic structure of a string is used to interpret its meaning

Example: compilers for programming languages

In the CFG for arithmetic expressions, the terminal string a + a * a has two parse trees

Context-free grammars
Parse trees
CFGs and ambiguity
Relation with regular languages

Canonical derivations

A parse tree is associated with a unique leftmost derivation

A leftmost derivation is associated with a unique parse tree

More than one leftmost derivations always imply more than one parse trees

Similary for rightmost derivations

Inherent ambiguity SKIP

A CFL L is **inherently ambiguous** when every CFG such that L(G) = L is ambiguous

Example: Let us consider the language

$$L = \{a^nb^nc^md^m \ | \ n\geqslant 1, \ m\geqslant 1\} \cup \{a^nb^mc^md^n \ | \ n\geqslant 1, \ m\geqslant 1\}$$

L can be generated by a CFG with the following productions

$$S \rightarrow AB \mid C$$

 $A \rightarrow aAb \mid ab$
 $B \rightarrow cBd \mid cd$
 $C \rightarrow aCd \mid aDd$
 $D \rightarrow bDc \mid bc$

Inherent ambiguity

There are two parse trees for the string aabbccdd

(a)

(b)

Inherent ambiguity

Associated leftmost derivations

$$S \Rightarrow_{lm} AB \Rightarrow_{lm} aAbB \Rightarrow_{lm} aabbB \Rightarrow_{lm} aabbcBd \Rightarrow_{lm} aabbccdd$$

 $S \Rightarrow_{lm} C \Rightarrow_{lm} aCd \Rightarrow_{lm} aaDdd \Rightarrow_{lm} aabDcdd \Rightarrow_{lm} aabbccdd$

It is possible to show that every CFG generating L provides a similar ambiguity for the string aabbccdd (not in the textbook)

Language L is therefore inherently ambiguous

Exercises

Provide an example showing that the CFG with productions

$$S \rightarrow aS \mid aSbS \mid \epsilon$$

is ambiguous. Hint: consider some string of length 3

• Provide an example showing that the CFG with productions

$$S \rightarrow aSbS \mid bSaS \mid \epsilon$$

is ambiguous. Hint: consider some string of length 4

Context-free grammars
Parse trees
CFGs and ambiguity
Relation with regular languages

Reguar languages and CFL

c'e' all'esame anche la dimostrazione

A regular language is always a CFL

From a regular expression or from an FA we can aways construct a CFG generating the same language

This is not in the textbook!

From regular expression to CFG

Let E be any regular expression. We use a variable for E (start symbol) and a variable for each subexpression of E

We use **structural induction** on the regular expression to build the productions of our CFG

- if E = a, then add production $E \rightarrow a$
- if $E = \epsilon$, then add production $E \to \epsilon$
- if $E = \emptyset$, then production set is empty
- if E = F + G, then add production $E \rightarrow F \mid G$
- if E = FG, then add production $E \rightarrow FG$
- if $E = F^*$, then add production $E \to FE \mid \epsilon$
- if E = (F), then add production $E \rightarrow F$

Regular expression : 0*1(0+1)*

Use left-associativity for concatenation

CFG:

$$E \rightarrow AR$$

$$R \rightarrow BC$$

$$A \rightarrow 0A \mid \epsilon \qquad \sim 0^*$$

$$B \rightarrow 1$$

$$C \rightarrow DC \mid \epsilon \qquad \sim D^*$$

$$D \rightarrow 0 \mid 1 \qquad \sim 0+1$$

From FA to CFG

We use a variable Q for each state q of the FA. Initial symbol is Q_0

For each transition from state p to state q under symbol a, add production $P \rightarrow a \ Q$

If q is a final state, add production $Q \rightarrow \epsilon$

Automaton:

CFG:

$$egin{aligned} Q_0 & o 1 Q_0 & | \ 0 Q_2 \ Q_2 & o 0 Q_2 & | \ 1 Q_1 \ Q_1 & o 0 Q_1 & | \ 1 Q_1 & | \ \epsilon \end{aligned}$$

String 1101 is accepted by the automaton. In the equivalent CFG, 1101 has the following derivation :

$$Q_0 \Rightarrow 1Q_0 \Rightarrow 11Q_0 \Rightarrow 110Q_2 \Rightarrow 1101Q_1 \Rightarrow 1101$$