Your grade: 100%

Your latest: 100% • Your highest: 100% • To pass you need at least 60%. We keep your highest score.

Next item \rightarrow

1.	Which of the following is the most popular feature of Hugging Face?	1/1 point
	O Tokenizers library	
	O Building neural networks	
	Transformers library	
	O Datasets library	
	Correct The most popular feature of Hugging Face is its Transformers library, which offers several pre-trained models, such as BERT, GPT, and T5, ready for various NLP tasks.	
2.	Which of the following fine-tuning approaches do you apply if the model wants to learn to predict missing words in a large, unlabeled dataset, such as next words or masked words?	1/1 point
	O Supervised fine-tuning	
	Self-supervised fine-tuning	
	Reinforcement learning from human feedback (RLHF)	
	O Direct preference optimization (DPO)	
	Correct In self-supervised fine-tuning, the model learns to predict missing words in a large, unlabeled dataset, such as next words or masked words.	
3.	Consider the following code snippet:	1/1 point
	<pre>class Net(nn.Module): def _ init _ (self, num_class, vocab size, freeze=True, nhead=2, dim_feedforward=128, \ num_layers=2, dropout=0.1, activation="relu", classifier_dropout=0.1):</pre>	
	<pre>super()init()</pre>	
	<pre>self.emb = nn.Embedding.from_pretrained(glove_embedding.vectors,freeze=freeze) embedding_dim = self.emb.embedding_dim</pre>	
	<pre>self.pos_encoder = PositionalEncoding(d_model=embedding_dim, dropout=dropout, vocab_size=vocab_size,)</pre>	
	<pre>encoder layer = nn.TransformerEncoderLayer(d model=embedding_dim, nhead=nhead,</pre>	
	<pre>self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=num_layers,) self.classifier = nn.Linear(embedding_dim, num_class) self.d_model = embedding_dim</pre>	

Select the correct statement regarding the given code snippet.

- (a) This code snippet indicates the constructor that initializes the text classifier with configurations such as the number of classes, vocabulary size, and transformer settings.
- O This code snippet trains a transformer model using the provided optimizer and loss criterion.
- O This code snippet converts the dataset into map-style datasets and performs a random split.
- This code snippet takes in a text and a text pipeline, which preprocesses the text for machine learning.

The code snippet is a constructor that initializes the text classifier with configurations such as the number of classes, vocabulary size, and

transformer encoder, and a linear classifier for output.

0	It determines the number of neurons in the final layer.	
	it determines the number of neurons in the inlattayer.	
•	It simplifies and automates training tasks.	
0	It evaluates the model's performance.	
0	It extracts the text from the dataset.	