# Prioritized Sweeping Neural DynaQ: Boost Learning by Dreaming

Alexander Osiik alexander.osiik@student.uni-luebeck.de

Seminar Cyber-Physical Systems (WS 2019/20) Institute of Computer Engineering, University of Lübeck

December 18, 2019

#### Abstract

Hier beschreiben welche Hintergründe und Analogien aus der Biologie Reinforcement Learning hat.

State of the Art.

Was Zielsetzung im Original-Paper war, wie sie erreicht wurde und wie es im Projekt umgesetzt wurde.

#### 1 Introduction

- Hier beschreiben welche Hintergründe und Analogien aus der Biologie Reinforcement Learning hat
- State of the Art, medizinische Aspekte, Forschungshintergründe
- Was Zielsetzung im Original-Paper, Übertragen der hippocambal replays auf RL.
  - "... replay refers to the re-occurrence of a sequence of cell activations that also occurred during activity, but the replay has a much faster time scale."
- Aufbau des Experiments

# 2 Reinforcement Learning

see Fig. 1

- Einführung Markov Decision Problem
- Erklärung der Notation für state, action, transition function, learning rate, discount factor
- Unterschiede value iteration, policy extraction, prioritized sweeping
- spätestens hier müsste die Bellman Gleichung stehen:

$$V^*(s) = \max_{a \in A} \sum_{s' \in S} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$



Figure 1: Basic Q-Learning.

• Erklärung Q-Learning, Vorteile, Nachteile

$$Q(s,a) \leftarrow Q(s,a) + \alpha[r + \gamma \max_{a' \in A} Q(s',a') - Q(s,a)]$$

- Exploration/Exploitation TradeOff und Techniken
- HIER: Idee des Papers: künstliche Erweiterung des State space umd RL für vergangenheitsabhängige Probleme anwendbar zu machen.

### 3 GALMO

• Vorstellung der Ergebnisse des Original Paper (GALMO)

# 4 Project

- Umsetzung von Q-Learning in Python
- DQN
- Implementierung GALMO?

#### 5 Results

#### 6 Conclusion

## References

Manuele Brambilla, Eliseo Ferrante, Mauro Birattari, and Marco Dorigo. Swarm robotics: a review from the swarm engineering perspective. Swarm Intelligence, 7(1):1-41, 2013. ISSN 1935-3812. doi: 10.1007/s11721-012-0075-2. URL http://dx.doi.org/10.1007/s11721-012-0075-2.

Heiko Hamann. Swarm Robotics: A Formal Approach. Springer US, New York, USA, 2018.