MIT 6.1100 Top-Down Parsing

- Martin Rinard
- Massachusetts Institute of Technology

Orientation

- Language specification
 - Lexical structure regular expressions
 - Syntactic structure grammar
- This Lecture recursive descent parsers
 - Code parser as set of mutually recursive procedures
 - Structure of program matches structure of grammar

Starting Point

- Assume lexical analysis has produced a sequence of tokens
 - Each token has a type and value
 - Types correspond to terminals
 - Values to contents of token read in
- Examples
 - Int 549 integer token with value 549 read in
 - if if keyword, no need for a value
 - AddOp + add operator, value +

Example

```
Boolean Term()
   if (token = Int n) token = NextToken(); return(TermPrime())
   else return(false)
Boolean TermPrime()
   if (token = *)
         token = NextToken();
         if (token = Int n) token = NextToken(); return(TermPrime())
         else return(false)
   else if (token = /)
         token = NextToken();
         if (token = Int n) token = NextToken(); return(TermPrime())
         else return(false)
   else return(true)
                                           Term → Int Term'
                                           \overline{\text{Term}'} \rightarrow * \text{Int } \overline{\text{Term}'}
                                           Term' \rightarrow / Int Term'
                                           \overline{\text{Term'}} \rightarrow \varepsilon
```

Basic Approach

- Start with Start symbol
- Build a leftmost derivation
 - If leftmost symbol is nonterminal, choose a production and apply it
 - If leftmost symbol is terminal, match against input
 - If all terminals match, have found a parse!
 - Key: find correct productions for nonterminals

Graphical Illustration of Leftmost Derivation

Sentential Form

Grammar for Parsing Example

```
Start → Expr
Expr → Expr + Term
Expr → Expr - Term
Expr → Term
Term → Term * Int
Term → Term / Int
Term → Int
```

- Set of tokens is
 { +, -, *, /, Int }, where Int =
 [0-9][0-9]*
- For convenience, may represent each Int n token by n

Remaining Input

2-2*2

Sentential Form

Start

Current Position in Parse Tree

Remaining Input

2-2*2

Sentential Form

Expr - Term

 $Expr \rightarrow Expr + Term$

Expr → Expr - Term

Expr → Term

Applied Production

Expr → Expr - Term

Remaining Input

2-2*2

Sentential Form

Term - Term

Applied Production

Expr → Term

Remaining Input

2-2*2

Sentential Form

Int - Term

Applied Production

Term → Int

Remaining Input

2-2*2

Sentential Form

2 - Term

Remaining Input

2*2

Sentential Form

2 - Term

Remaining Input

2*2

Sentential Form

2 - Term*Int

Applied Production

Term → Term * Int

Remaining Input

2*2

Sentential Form

2 - Int * Int

Applied Production

Term → Int

Remaining Input

2*2

Sentential Form

2 - 2* Int

Remaining Input

*2

Sentential Form

2 - 2* Int

Summary

- Three Actions (Mechanisms)
 - Apply production to expand current nonterminal in parse tree
 - Match current terminal (consuming input)
 - Accept the parse as correct
- Parser generates preorder traversal of parse tree
 - visit parents before children
 - visit siblings from left to right

Policy Problem

- Which production to use for each nonterminal?
- Classical Separation of Policy and Mechanism
- One Approach: Backtracking
 - Treat it as a search problem
 - At each choice point, try next alternative
 - If it is clear that current try fails, go back to previous choice and try something different
- General technique for searching
- Used a lot in classical AI and natural language processing (parsing, speech recognition)

Parse
Tree Start

Remaining Input

2-2*2

Sentential Form

Start

Parse
Tree Start

L
Expr

Remaining Input

2-2*2

Sentential Form

Expr

Applied Production

 $Start \rightarrow Expr$

Remaining Input

2-2*2

Sentential Form

Expr + Term

Applied Production

 $Expr \rightarrow Expr + Term$

Remaining Input

2-2*2

Sentential Form

Term + Term

Applied Production

 $Expr \rightarrow Term$

Remaining Input

2-2*2

Sentential Form

Int + Term

Applied Production

 $Term \rightarrow Int$

Remaining Input

-2*2

Sentential Form

2 - Term

Applied Production

 $Term \rightarrow Int$

Parse
Tree Start

Expr

So Backtrack! Remaining Input

2-2*2

Sentential Form

Expr

Applied Production

 $Start \rightarrow Expr$

Remaining Input

2-2*2

Sentential Form

Expr - Term

Applied Production

 $Expr \rightarrow Expr - Term$

Remaining Input

2-2*2

Sentential Form

Term - Term

Applied Production

 $Expr \rightarrow Term$

Remaining Input

2-2*2

Sentential Form

Int - Term

Applied Production

 $Term \rightarrow Int$

Left Recursion + Top-Down Parsing = Infinite Loop

- Example Production: Term → Term*Num
- Potential parsing steps:

General Search Issues

- Three components
 - Search space (parse trees)
 - Search algorithm (parsing algorithm)
 - Goal to find (parse tree for input program)
- Would like to (but can't always) ensure that
 - Find goal (hopefully quickly) if it exists
 - Search terminates if it does not
- Handled in various ways in various contexts
 - Finite search space makes it easy
 - Exploration strategies for infinite search space
 - Sometimes one goal more important (model checking)
- For parsing, hack grammar to remove left recursion

Eliminating Left Recursion

- Start with productions of form
 - $A \rightarrow A \alpha$
 - \bullet A \rightarrow β
 - α , β sequences of terminals and nonterminals that do not start with A
- Repeated application of A →A α builds parse tree like this:

Eliminating Left Recursion

Replacement productions

$$-A \rightarrow A \alpha$$

$$A \rightarrow \beta R$$

$$-A \rightarrow \beta$$
 $R \rightarrow \alpha R$

$$R \rightarrow \alpha R$$

$$R \rightarrow \epsilon$$

 $-A \rightarrow A \alpha$ $A \rightarrow \beta R$ R is a new nonterminal

New Parse Tree

Old Parse Tree

Hacked Grammar

Original Grammar Fragment

Term → Term * Int

Term → Term / Int

Term → Int

New Grammar Fragment

Term → Int Term'

Term' → * Int Term'

Term' → / Int Term'

Term' $\rightarrow \epsilon$

Parse Tree Comparisons

Original Grammar

New Grammar

Eliminating Left Recursion

- Changes search space exploration algorithm
 - Eliminates direct infinite recursion
 - But grammar less intuitive
- Sets things up for predictive parsing

Predictive Parsing

- Alternative to backtracking
- Useful for programming languages, which can be designed to make parsing easier
- Basic idea
 - Look ahead in input stream
 - Decide which production to apply based on next tokens in input stream
 - We will use one token of lookahead

Predictive Parsing Example Grammar

```
Start → Expr
```

$$Expr' \rightarrow + Term Expr'$$

$$Expr' \rightarrow \epsilon$$

```
Term → Int Term'
```

$$Term' \rightarrow \epsilon$$

Choice Points

- Assume Term' is current position in parse tree
- Have three possible productions to apply

```
Term' → * Int Term'
Term' → / Int Term'
Term' → ε
```

- Use next token to decide
 - If next token is *, apply Term' → * Int Term'
 - If next token is /, apply Term' → / Int Term'
 - Otherwise, apply Term' $\rightarrow \epsilon$

Predictive Parsing + Hand Coding = Recursive Descent Parser

- One procedure per nonterminal NT
 - Productions NT $\rightarrow \beta_1$, ..., NT $\rightarrow \beta_n$
 - Procedure examines the current input symbol T to determine which production to apply
 - If $T \in First(\beta_k)$
 - Apply production k
 - Consume terminals in β_k (check for correct terminal)
 - ullet Recursively call procedures for nonterminals in β_k
 - Current input symbol stored in global variable token
- Procedures return
 - true if parse succeeds
 - false if parse fails

Example

```
Boolean Term()
   if (token = Int n) token = NextToken(); return(TermPrime())
   else return(false)
Boolean TermPrime()
   if (token = *)
         token = NextToken();
         if (token = Int n) token = NextToken();    return(TermPrime())
         else return(false)
   else if (token = /)
         token = NextToken();
         if (token = Int n) token = NextToken(); return(TermPrime())
         else return(false)
   else return(true)
                                           Term → Int Term'
                                           \overline{\text{Term}'} \rightarrow * \text{Int } \overline{\text{Term}'}
                                            Term' \rightarrow / Int Term'
                                           \overline{\text{Term'}} \rightarrow \varepsilon
```

Multiple Productions With Same Prefix in RHS

Example Grammar

```
NT \rightarrow if then
NT \rightarrow if then else
```

- Assume NT is current position in parse tree, and if is the next token
- Unclear which production to apply
 - Multiple k such that T∈First(β_k)
 - if ∈ First(if then)
 - if ∈ First(if then else)

Solution: Left Factor the Grammar

 New Grammar Factors Common Prefix Into Single Production

```
NT \rightarrow if then NT'
NT' \rightarrow else
NT' \rightarrow \epsilon
```

- No choice when next token is if!
- All choices have been unified in one production.

Nonterminals

What about productions with nonterminals?

```
NT \rightarrow NT_1 \alpha_1
NT \rightarrow NT_2 \alpha_2
```

- Must choose based on possible first terminals that NT₁ and NT₂ can generate
- What if NT₁ or NT₂ can generate ε?
 - Must choose based on $lpha_1$ and $lpha_2$

NT derives ε

- Two rules
 - NT $\rightarrow \epsilon$ implies NT derives ϵ
 - NT \rightarrow NT₁ ... NT_n and for all 1 \leq i \leq n NT_i derives ϵ implies NT derives ϵ

Fixed Point Algorithm for Derives ε

```
for all nonterminals NT

set NT derives ε to be false

for all productions of the form NT → ε

set NT derives ε to be true

while (some NT derives ε changed in last iteration)

for all productions of the form NT → NT₁ ... NT<sub>n</sub>

if (for all 1≤i ≤n NT<sub>i</sub> derives ε)

set NT derives ε to be true
```

$First(\beta)$

- T∈ First(β) if T can appear as the first symbol in a derivation starting from β
 - 1) T∈First(T)
 - 2) First(S) \subseteq First(S β)
 - 3) NT derives ε implies First(β) \subseteq First(NT β)
 - 4) NT \rightarrow S β implies First(S β) \subseteq First(NT)

Notation

 T is a terminal, NT is a nonterminal, S is a terminal or nonterminal, and β is a sequence of terminals or nonterminals

Rules + Request Generate System of Subset Inclusion Constraints

```
Grammar
Term' → * Int Term'
Term' → / Int Term'
Term' → ε
```

Rules

- 1) T∈First(T)
- 2) First(S) \subseteq First(S β)
- 3) NT derives ε implies First(β) \subseteq First(NT β)
- 4) NT \rightarrow S β implies First(S β) \subseteq First(NT)

```
Request: What is First(Term')?
                 Constraints
First(* Int Term') ⊆ First(Term')
First(/ Int Term') ⊆ First(Term')
First(*) \subseteq First(* Int Term')
First(/) \subseteq First(/ Int Term')
*∈First(*)
/ ∈First(/)
```

```
Constraints
First(* Int Term') \subseteq First(Term')
First(/ Int Term') ⊆ First(Term')
First(*) \subseteq First(* Int Term')
First(/) \subseteq First(/ Int Term')
*∈First(*)
/ ∈First(/)
             Grammar
     Term' \rightarrow * Int Term'
     Term' → / Int Term'
     Term' \rightarrow \epsilon
```

```
Solution

First(Term') = {}

First(* Int Term') = {}

First(/ Int Term') = {}

First(*) = {}

First(/) = {}
```

Initialize Sets to {}

```
Constraints
First(* Int Term') \subseteq First(Term')
First(/ Int Term') ⊆ First(Term')
First(*) \subseteq First(* Int Term')
First(/) \subseteq First(/ Int Term')
*∈First(*)
/ ∈First(/)
            Grammar
     Term' \rightarrow * Int Term'
```

Term' \rightarrow / Int Term'

Term' $\rightarrow \epsilon$

```
Solution

First(Term') = {}

First(* Int Term') = {}

First(/ Int Term') = {}

First(*) = {*}

First(/) = {/}
```

Propagate Constraints Until Fixed Point

```
Constraints
First(* Int Term') \subseteq First(Term')
First(/ Int Term') ⊆ First(Term')
First(*) \subseteq First(* Int Term')
First(/) \subseteq First(/ Int Term')
*∈First(*)
/ ∈First(/)
            Grammar
     Term' \rightarrow * Int Term'
```

Term' \rightarrow / Int Term'

Term' $\rightarrow \epsilon$

```
Solution

First(Term') = {}

First(* Int Term') = {*}

First(/ Int Term') = {/}

First(*) = {*}

First(/) = {/}
```

Propagate Constraints Until Fixed Point

```
Constraints
First(* Int Term') \subseteq First(Term')
First(/ Int Term') ⊆ First(Term')
First(*) \subseteq First(* Int Term')
First(/) \subseteq First(/ Int Term')
*∈First(*)
/ ∈First(/)
            Grammar
     Term' \rightarrow * Int Term'
```

Term' \rightarrow / Int Term'

Term' $\rightarrow \epsilon$

```
Solution

First(Term') = {*,/}

First(* Int Term') = {*}

First(/ Int Term') = {/}

First(*) = {*}

First(/) = {/}
```

Propagate Constraints Until Fixed Point

Building A Parse Tree

- Have each procedure return the section of the parse tree for the part of the string it parsed
- Use exceptions to make code structure clean

Building Parse Tree In Example

```
Term()
   if (token = Int n)
        oldToken = token; token = NextToken();
        node = TermPrime();
        if (node == NULL) return oldToken;
        else return(new TermNode(oldToken, node);
   else throw SyntaxError
TermPrime()
   if (token = *) \parallel (token = /)
        first = token; next = NextToken();
        if (next = Int n)
                 token = NextToken();
                 return(new TermPrimeNode(first, next, TermPrime())
        else throw SyntaxError
   else return(NULL)
```

Parse Tree for 2*3*4

Why Use Hand-Coded Parser?

- Why not use parser generator?
- What do you do if your parser doesn't work?
 - Recursive descent parser write more code
 - Parser generator
 - Hack grammar
 - But if parser generator doesn't work, nothing you can do
- If you have complicated grammar
 - Increase chance of going outside comfort zone of parser generator
 - Your parser may NEVER work

Bottom Line

- Recursive descent parser properties
 - Probably more work
 - But less risk of a disaster you can almost always make a recursive descent parser work
 - May have easier time dealing with resulting code
 - Single language system
 - No need to deal with potentially flaky parser generator
 - No integration issues with automatically generated code
- If your parser development time is small compared to rest of project, or you have a really complicated language, use hand-coded recursive descent parser

Summary

- Top-Down Parsing
- Use Lookahead to Avoid Backtracking
- Parser is
 - Hand-Coded
 - Set of Mutually Recursive Procedures

Direct Generation of Abstract Tree

- TermPrime builds an incomplete tree
 - Missing leftmost child
 - Returns root and incomplete node
- (root, incomplete) = TermPrime()
 - Called with token = *
 - Remaining tokens = 3 * 4

Input to parse 2*3*4

```
Term()
  if (token = Int n)
    leftmostInt = token; token = NextToken(); \( \)
    (root, incomplete) = TermPrime();
    if (root == NULL) return leftmostInt;
    incomplete.leftChild = leftmostInt;
    return root;
  else throw SyntaxError
```

Input to parse 2*3*4

token
$$\longrightarrow$$
 Int 2

Input to parse 2*3*4

token
$$\longrightarrow$$
 Int 2

```
Term()
  if (token = Int n)
       leftmostInt = token; token = NextToken();
       (root, incomplete) = TermPrime();
       if (root == NULL) return leftmostInt;
       incomplete.leftChild = leftmostInt;
       return root;
  else throw SyntaxError
                              root
                                                       Int
                   incomplete
                                                Int
            leftmostInt-
```

Input to parse

2*3*4

```
Term()
  if (token = Int n)
       leftmostInt = token; token = NextToken();
       (root, incomplete) = TermPrime();
       if (root == NULL) return leftmostInt;
       incomplete.leftChild = leftmostInt;
       return root;
  else throw SyntaxError
                               root
                                                       Int
                   incomplete
                                                Int
            leftmostInt-
```

Input to parse

2*3*4

```
Term()
  if (token = Int n)
       leftmostInt = token; token = NextToken();
       (root, incomplete) = TermPrime();
       if (root == NULL) return leftmostInt;
       incomplete.leftChild = leftmostInt;
       return root;
  else throw SyntaxError
                              root
                                                      Int
                                        Term
                   incomplete
                                                Int
            leftmostInt
```

Input to parse

2*3*4

Code for TermPrime

```
TermPrime()
   if (token = *) || (token = /)
                                                               Missing left child
         op = token; next = NextToken();
                                                               to be filled in by
         if (next = Int n)
                                                                     caller
                  token = NextToken();
                  (root, incomplete) = TermPrime();
                  if (root == NULL)
                            root = new ExprNode(NULL, op, next);
                            return (root, root);
                            newChild = new ExprNode(NULL, op, next);
                  else
                            incomplete.leftChild = newChild;
                            return(root, newChild);
         else throw SyntaxError
   else return(NULL,NULL)
```