FONCTIONS LINEAIRES, FONCTIONS AFFINES

1) Fonctions linéaires

a) Rappels sur les tableaux de proportionnalité:

х	12	5	- 3	7	x 0,4
y	4,8	2	- 1,2	2,8	

Le tableau est un tableau de proportionnalité, car les nombres de la suite y, s'obtiennent en multipliant chaque nombre de la suite x par un même nombre k. $k = \frac{y}{x} = \frac{2}{5} = \frac{4}{10} = 0.4$. k s'appelle le coefficient de proportionnalité de la suite x à la suite y.

b) <u>Définitions</u>:

On dit que le nombre y est l'image du nombre x par **l'application (ou fonction) linéaire** f de **coefficient a**, si y = a x.

On écrit : $f: x \mapsto y = f(x) = ax$

Exemple: Calculer l'image de $\frac{2}{5}$ par la fonction linéaire f de coefficient $\frac{3}{4}$.

Calculer x pour que $\frac{3}{2}$ soit l'image de x par la fonction f précédente.

c) Représentation graphique:

Si f est l'application linéaire de coefficient a, alors on peut construire un tableau de proportionnalité à l'aide de :

On peut alors représenter graphiquement ce tableau par les points $A:(x_A;y_A)$ et $B:(x_B;y_B)$ alignés avec l'origine, dans un repère.

La représentation graphique de la fonction f est l'ensemble de tous les points M dont les coordonnées sont

 $M: (x_M; y_M), avec y_M = f(x_M) = a x_M.$

Propriété : La représentation graphique de la fonction linéaire f de coefficient a est la **droite** (d) passant par l'origine et par le point A : (1 ; a). Le nombre a s'appelle le *coefficient directeur de la droite* (d).

d) <u>Application</u>: Tracer, dans le même repère, les représentations graphiques $f: x \mapsto y = f(x) = 1.5x$ et $g: x \mapsto y = g(x) = -2x$

2) Fonctions affines

Le nombre y est l'image du nombre x par la fonction (ou application) affine f a) Définition:

définie par les nombres a et b (dans cet ordre), si y = a x + b.

On écrit : $f: x \mapsto y = f(x) = ax + b$.

Soit $f: x \mapsto y = f(x) = -3x + 4$, la fonction affine définie par - 3 et 4. Exemple:

Calculer l'image de $\frac{4}{3}$. Calculer le nombre x pour que -5 soit l'image de x.

y y_A

В

M

 x_{A}

b) Représentation graphique :

La représentation graphique de la fonction affine $f: x \mapsto y = f(x) = ax + b$ est **la droite** (d) passant par le point A : (x; ax + b) et par le point B (0; b), où x est un nombre quelconque.

a s'appelle le coefficient directeur de la droite (d) et b s'appelle l'ordonnée à l'origine de la droite (d).

Dans le triangle HAB rectangle en H,

$$\tan HBA = \frac{HA}{HB} = \frac{y_A - y_B}{x_A - x_B}.$$

Mais A $(x_A; y_A) \in C f \Leftrightarrow y_A = f(x_A) = ax_A + b$ et B $(x_B; y_B) \in C f \Leftrightarrow y_B = f(x_B) = ax_B + b$

Donc tan HBA =
$$\frac{y_A - y_B}{x_A - x_B} = \frac{(ax_A + b) - (ax_B + b)}{x_A - x_B}$$
.

Donc si
$$x_A - x_B \neq 0$$
, alors tan HBA = $\frac{y_A - y_B}{x_\Delta - x_B} = a$.

De même, dans le triangle KBM rectangle en K, tan KBA = $\frac{y - y_B}{x - x_B} = a$.

Les 2 angles HBA et KBA sont égaux.

Donc les 2 droites (BA) et (BM) sont parallèles avec un point commun. Elles sont confondues. Les points B, A et M sont alignés.

L'ensemble des points M (x; ax + b), autrement dit, la représentation graphique de la fonction affine $f: x \mapsto y = f(x) = ax + b$ est donc la droite (d) = (AB).

De plus le coefficient directeur est $a = \frac{y_A - y_B}{x_A - x_B}$. Propriété : On dit que l'accroissement de y = f(x), $y_A - y_B = f(x_A) - f(x_B)$, est proportionnel à l'accroissement de x, x_A – x_B .

Le coefficient de proportionnalité est le coefficient directeur de la représentation

graphique (d) de la fonction f.
$$a = \frac{f(x_A) - f(x_B)}{x_A - x_B}.$$

c) Applications:

Exemple 1: Tracer dans le même repère, les représentations graphiques des fonctions $f: x \mapsto y = f(x) = -3x + 2$ et $g: x \mapsto g(x) = 2x - 5$.

La représentation graphique de f est la droite d_f passant par le point B (0 ; 2) et par le point A (1 ; – 3 x 1 + 2) soit A (1 ; – 1).

La représentation graphique de g est la droite d_g passant par le point B' (0; -5) et par le point A' $(2; 2 \times 2 - 5)$ soit A' (1; -1).

Exemple 2 : Déterminer la fonction affine *f* dont la représentation graphique est la droite (*d*).

f est une fonction affine, donc *f* est définie par f(x) = ax + b.

Les points A (-3; -5) et B (1; 1) sont sur la représentation graphique de f.

Donc
$$y_A = f(-3) = -5$$
 et $y_B = f(1) = 1$. Donc $a = \frac{y_A - y_B}{x_A - x_B} = \frac{-5 - 1}{-3 - 1} = \frac{-6}{-4}$. Donc $a = \frac{3}{2} = 1,5$.

Donc
$$f(x) = \frac{3}{2}x + b$$
. Donc $f(1) = \frac{3}{2} \times 1 + b = 1$. Donc $b = 1 - \frac{3}{2} = \frac{2}{2} - \frac{3}{2} = -\frac{1}{2}$.

Finalement **la fonction** f **est définie par** $f(x) = \frac{3}{2}x - \frac{1}{2}$.