The space of Lorenzian flat tori in anti-de Sitter 3-space

María Amelia León-Guzmán

Departamento de Matemáticas Universidad de Murcia

Joint work with Pablo Mira and José Antonio Pastor

V International Meeting on Lorentzian Geometry

July 2009

Introduction

The geometry of \mathbb{H}^3_1 The characteristic

Main regults

A representation formula

The classificati results

Dajczer-Nomizi

Objective: To describe all the isometric immersions from \mathbb{L}^2 to \mathbb{H}^3_1

The geometry of \mathbb{H}^3_1 The characteristic parameters

Main results

A representation

The classificat

Dajczer-Nomizu

Objective: To describe all the isometric immersions from \mathbb{L}^2 to \mathbb{H}^3_1

Introduction

The geometry of \mathbb{H}^3_1

Main results

A representation formula

The classification results

Dajczer-Nomizu questions

Objective: To describe all the isometric immersions from \mathbb{L}^2 to \mathbb{H}^3_1

Departure point

Basic examples [Barros, Ferrández, Lucas, Meroño (1999)]
 Hopf cylinders and Hopf torus.

The geometry of H

Main results
A representatio

The classificatio results

Dajczer-Nomizu questions

Objective: To describe all the isometric immersions from \mathbb{L}^2 to \mathbb{H}^3_1

- Basic examples [Barros, Ferrández, Lucas, Meroño (1999)]
 Hopf cylinders and Hopf torus.
- Classic result [Dajczer, Nomizu (1981)]
 Construction of i.i. L² → ℍ₃³ as the product of two adequate curves in ℍ₃³ (one of them time-like and the other space-like).

A representation formula

The classificatio results

Dajczer-Nomizu questions

Objective: To describe all the isometric immersions from \mathbb{L}^2 to \mathbb{H}^3_1

- Basic examples [Barros, Ferrández, Lucas, Meroño (1999)]
 Hopf cylinders and Hopf torus.
- Classic result [Dajczer, Nomizu (1981)] Construction of i.i. $\mathbb{L}^2 \longrightarrow \mathbb{H}^3_1$ as the product of two adequate curves in \mathbb{H}^3_1 (one of them time-like and the other space-like). Open problems.

A representation formula

The classification results

Dajczer-Nomizi questions

Objective: To describe all the isometric immersions from \mathbb{L}^2 to \mathbb{H}^3_1

- Basic examples [Barros, Ferrández, Lucas, Meroño (1999)]
 Hopf cylinders and Hopf torus.
- Classic result [Dajczer, Nomizu (1981)] Construction of i.i. $\mathbb{L}^2 \longrightarrow \mathbb{H}^3_1$ as the product of two adequate curves in \mathbb{H}^3_1 (one of them time-like and the other space-like). Open problems.
- Are there other examples of i.i. $\mathbb{L}^2 \to \mathbb{H}^3_1$?

The geometry of \mathbb{H}^3_1

A representation formula

The classificatio results

Dajczer-Nomizu questions

Objective: To describe all the isometric immersions from \mathbb{L}^2 to \mathbb{H}^3_1

- Basic examples [Barros, Ferrández, Lucas, Meroño (1999)]
 Hopf cylinders and Hopf torus.
- Classic result [Dajczer, Nomizu (1981)] Construction of i.i. $\mathbb{L}^2 \longrightarrow \mathbb{H}^3_1$ as the product of two adequate curves in \mathbb{H}^3_1 (one of them time-like and the other space-like). Open problems.
- Are there other examples of i.i. $\mathbb{L}^2 \to \mathbb{H}^3_1$?
- Which of them are tori?

A representation formula

results

Dajczer-Nomizu questions

Objective: To describe all the isometric immersions from \mathbb{L}^2 to \mathbb{H}^3_1

- Basic examples [Barros, Ferrández, Lucas, Meroño (1999)]
 Hopf cylinders and Hopf torus.
- Classic result [Dajczer, Nomizu (1981)] Construction of i.i. $\mathbb{L}^2 \longrightarrow \mathbb{H}^3_1$ as the product of two adequate curves in \mathbb{H}^3_1 (one of them time-like and the other space-like). Open problems.
- Are there other examples of i.i. $\mathbb{L}^2 \to \mathbb{H}^3_1$?
- Which of them are tori?
- Solve Dajczer-Nomizu problems.

Introduction

The characteristic

A representation

Motivation: Isometric immersions from \mathbb{R}^2 to \mathbb{S}^3

Introduction

Our setting

The geometry of \mathbb{H}^3_1

parameters

Main results

A representatio formula

The classificati results

Dajczer-Nomizu questions

Motivation: Isometric immersions from \mathbb{R}^2 to \mathbb{S}^3

• Bianchi (1896) - Spivak(1975) General method to construct i.i. $\mathbb{R}^2 \longrightarrow \mathbb{S}^3$

Introduction

The geometry of \mathbb{H}^3_1 The characteristic parameters

Main resi

A representation formula

The classification results

Dajczer-Nomizu questions

Motivation: Isometric immersions from \mathbb{R}^2 to \mathbb{S}^3

Bianchi (1896) - Spivak(1975)
 General method to construct i.i. R² → S³
 Two asymptotic curves through each point.

Our setting

The geometry of \mathbb{H}^3_1

Main results

A representation

The classification results

Dajczer-Nomizu questions

Motivation: Isometric immersions from \mathbb{R}^2 to \mathbb{S}^3

Bianchi (1896) - Spivak(1975)
 General method to construct i.i. R² → S³

Two families of asymptotic curves that differ by a translation in \mathbb{S}^3 . One has torsion $\tau=1$, the other $\tau=-1$.

The geometry of \mathbb{H}^3_1 The characteristic

Main res

A representatio

The classification results

Dajczer-Nomizu guestions

Motivation: Isometric immersions from \mathbb{R}^2 to \mathbb{S}^3

Bianchi (1896) - Spivak(1975)

General method to construct i.i. $\mathbb{R}^2 \longrightarrow \mathbb{S}^3$

$$a_1(u), a_2(v)$$
 curves in \mathbb{S}^3 $f(u, v) = a_1(u)a_2(v)$
 a_1 with $\tau = 1$ \leadsto i.i. $D \subset \mathbb{R}^2 \longrightarrow \mathbb{S}^3$
 a_2 with $\tau = -1$ D neighbor of $(0, 0)$

The geometry of \mathbb{H}^3_1 The characteristic parameters

Main res

A representation formula

The classification results

Dajczer-Nomizu questions

Motivation: Isometric immersions from \mathbb{R}^2 to \mathbb{S}^3

Bianchi (1896) - Spivak(1975)
 General method to construct i.i. R² → S³

$$a_1(u), a_2(v)$$
 curves in \mathbb{S}^3 $f(u, v) = a_1(u)a_2(v)$ a_1 with $\tau = 1$ \leadsto i.i. $D \subset \mathbb{R}^2 \longrightarrow \mathbb{S}^3$ a_2 with $\tau = -1$ D neighbor of $(0, 0)$

Kitagawa (1988)
 Classification of i.i. R² → S³ in terms of pairs of curves in S²

Main res

A representation formula

The classification results

Dajczer-Nomizu questions

Motivation: Isometric immersions from \mathbb{R}^2 to \mathbb{S}^3

Bianchi (1896) - Spivak(1975)
 General method to construct i.i. R² → S³

$$a_1(u), a_2(v)$$
 curves in \mathbb{S}^3 $f(u, v) = a_1(u)a_2(v)$
 a_1 with $\tau = 1$ \leadsto i.i. $D \subset \mathbb{R}^2 \longrightarrow \mathbb{S}^3$
 a_2 with $\tau = -1$ D neighbor of $(0, 0)$

Kitagawa (1988)
 Classification of i.i. R² → S³ in terms of pairs of curves in S²
 Torus ⇔ these curves in S² are closed

Motivation: Isometric immersions from \mathbb{R}^2 to \mathbb{S}^3

 Bianchi (1896) - Spivak(1975) General method to construct i.i. $\mathbb{R}^2 \longrightarrow \mathbb{S}^3$

$$a_1(u), a_2(v)$$
 curves in \mathbb{S}^3 $f(u, v) = a_1(u)a_2(v)$ a_1 with $\tau = 1$ \leadsto i.i. $D \subset \mathbb{R}^2 \longrightarrow \mathbb{S}^3$ a_2 with $\tau = -1$ D neighbor of $(0, 0)$

Kitagawa (1988)

Classification of i.i. $\mathbb{R}^2 \longrightarrow \mathbb{S}^3$ in terms of pairs of curves in \mathbb{S}^2 Torus \Leftrightarrow these curves in \mathbb{S}^2 are closed Geometric method to construct curves with $\tau = \pm 1$ in \mathbb{S}^3 . No differential equation.

Motivation: Isometric immersions from \mathbb{R}^2 to \mathbb{S}^3

 Bianchi (1896) - Spivak(1975) General method to construct i.i. $\mathbb{R}^2 \longrightarrow \mathbb{S}^3$

$$a_1(u), a_2(v)$$
 curves in \mathbb{S}^3 $f(u, v) = a_1(u)a_2(v)$
 a_1 with $\tau = 1$ \leadsto i.i. $D \subset \mathbb{R}^2 \longrightarrow \mathbb{S}^3$
 a_2 with $\tau = -1$ D neighbor of $(0, 0)$

Kitagawa (1988)

Classification of i.i. $\mathbb{R}^2 \longrightarrow \mathbb{S}^3$ in terms of pairs of curves in \mathbb{S}^2 Torus \Leftrightarrow these curves in \mathbb{S}^2 are closed Geometric method to construct curves with $\tau = \pm 1$ in \mathbb{S}^3 . No differential equation.

 \triangleright Lie group structure on \mathbb{S}^3 so that $\langle \ , \ \rangle$ is bi-invariant.

Main res

A representation

The classification results

Dajczer-Nomizu questions

Motivation: Isometric immersions from \mathbb{R}^2 to \mathbb{S}^3

Bianchi (1896) - Spivak(1975)
 General method to construct i.i. R² → S³

$$a_1(u), a_2(v)$$
 curves in \mathbb{S}^3 $f(u, v) = a_1(u)a_2(v)$
 a_1 with $\tau = 1$ \leadsto i.i. $D \subset \mathbb{R}^2 \longrightarrow \mathbb{S}^3$
 a_2 with $\tau = -1$ D neighbor of $(0, 0)$

Kitagawa (1988)

Classification of i.i. $\mathbb{R}^2 \longrightarrow \mathbb{S}^3$ in terms of pairs of curves in \mathbb{S}^2 Torus \Leftrightarrow these curves in \mathbb{S}^2 are closed Geometric method to construct curves with $\tau=\pm 1$ in \mathbb{S}^3 . No differential equation.

- ▶ Lie group structure on \mathbb{S}^3 so that $\langle \ , \ \rangle$ is bi-invariant.

Motivation: Isometric immersions from \mathbb{R}^2 to \mathbb{S}^3

 Bianchi (1896) - Spivak(1975) General method to construct i.i. $\mathbb{R}^2 \longrightarrow \mathbb{S}^3$

$$a_1(u), a_2(v)$$
 curves in \mathbb{S}^3 $f(u, v) = a_1(u)a_2(v)$
 a_1 with $\tau = 1$ \leadsto i.i. $D \subset \mathbb{R}^2 \longrightarrow \mathbb{S}^3$
 a_2 with $\tau = -1$ D neighbor of $(0, 0)$

Kitagawa (1988)

Classification of i.i. $\mathbb{R}^2 \longrightarrow \mathbb{S}^3$ in terms of pairs of curves in \mathbb{S}^2 Torus \Leftrightarrow these curves in \mathbb{S}^2 are closed Geometric method to construct curves with $\tau = \pm 1$ in \mathbb{S}^3 . No differential equation.

- \triangleright Lie group structure on \mathbb{S}^3 so that $\langle \ , \ \rangle$ is bi-invariant.
- Tchebysheff parameters.
- \triangleright Hopf fibration $h: \mathbb{S}^3 \longrightarrow \mathbb{S}^2$.

The geometry of \mathbb{H}^3 The characteristic

A representation The classification

Strategy: Try to extend Kitagawa's ideas to the Lorentzian setting

Introduction

The geometry of \mathbb{H}^3_1 The characteristic

Main results

A representati

formula The classificati

results

Dajczer-Nomizu questions

Strategy: Try to extend Kitagawa's ideas to the Lorentzian setting

It looks good...

Introduction

The geometry of \mathbb{H}^3_1 The characteristic

Main results

A representatio formula

The classification results

Dajczer-Nomizu questions

Strategy: Try to extend Kitagawa's ideas to the Lorentzian setting

It looks good...

• Lie group structure on \mathbb{H}_1^3 so that $\langle \ , \ \rangle$ is bi-invariant.

Strategy: Try to extend Kitagawa's ideas to the Lorentzian setting

It looks good...

- Lie group structure on \mathbb{H}^3_1 so that $\langle \ , \ \rangle$ is bi-invariant.
- Hopf fibration $h: \mathbb{H}^3 \longrightarrow \mathbb{H}^2$.

Strategy: Try to extend Kitagawa's ideas to the Lorentzian setting

It looks good...

- Lie group structure on \mathbb{H}^3_1 so that \langle , \rangle is bi-invariant.
- Hopf fibration $h: \mathbb{H}^3 \longrightarrow \mathbb{H}^2$.
- A flat surface can be parametrized by its asymptotic curves.

A representation

Strategy: Try to extend Kitagawa's ideas to the Lorentzian setting

It looks good...

- Lie group structure on \mathbb{H}^3_1 so that $\langle \ , \ \rangle$ is bi-invariant.
- Hopf fibration $h: \mathbb{H}^3 \longrightarrow \mathbb{H}^2$.
- A flat surface can be parametrized by its asymptotic curves.

but not so good...

Main resul

A representation formula

The classificatio results

Dajczer-Nomizu questions

Strategy: Try to extend Kitagawa's ideas to the Lorentzian setting

It looks good...

- Lie group structure on \mathbb{H}_1^3 so that $\langle \ , \ \rangle$ is bi-invariant.
- Hopf fibration $h: \mathbb{H}_1^3 \longrightarrow \mathbb{H}^2$.
- A flat surface can be parametrized by its asymptotic curves.

but not so good...

 Asymptotic curves do not have, in general, constant causal character → We do not have Tchebysheff parameters. Main results

formula The classification

results

Dajczer-Nomizu questions

Strategy: Try to extend Kitagawa's ideas to the Lorentzian setting

It looks good...

- Lie group structure on \mathbb{H}_1^3 so that $\langle \ , \ \rangle$ is bi-invariant.
- Hopf fibration $h: \mathbb{H}_1^3 \longrightarrow \mathbb{H}^2$.
- A flat surface can be parametrized by its asymptotic curves.

but not so good...

- Asymptotic curves do not have, in general, constant causal character → We do not have Tchebysheff parameters.
- We cannot restrict ourselves to regular curves in \mathbb{H}^2 , we need to consider curves with wavefront singularities.

Lorenzian flat tori in \mathbb{H}_1^3

María Amelia León-Guzmán

Introduction

Our potting

The geometry of \mathbb{H}^3_1 The characteristic

Main results

A representation

The classificati results

Dajczer-Nomiz questions

A pseudo-quaternionic model

A representation

A pseudo-quaternionic model

• $\mathbb{R}^4_2 \rightsquigarrow \mathbb{R}^4$ with the metric $\langle , \rangle = -dx_0^2 - dx_1^2 + dx_2^2 + dx_3^2$, $\mathbb{H}_1^3 = \{ \boldsymbol{x} \in \mathbb{R}_2^4 : \langle \boldsymbol{x}, \boldsymbol{x} \rangle = -1 \}.$

•
$$\mathbb{R}^4_2 \rightsquigarrow \mathbb{R}^4$$
 with the metric $\langle \ , \ \rangle = -dx_0^2 - dx_1^2 + dx_2^2 + dx_3^2$, $\mathbb{H}^3_1 = \{ x \in \mathbb{R}^4_2 : \langle x, x \rangle = -1 \}$.

• We identify $\mathbb{R}_2^4 \equiv \{a + bi + cj + dk : a, b, c, d \in \mathbb{R}\}$

•
$$\mathbb{R}^4_2 \to \mathbb{R}^4$$
 with the metric $\langle \ , \ \rangle = -dx_0^2 - dx_1^2 + dx_2^2 + dx_3^2$, $\mathbb{H}^3_1 = \{ x \in \mathbb{R}^4_2 : \langle x, x \rangle = -1 \}$.

• We identify $\mathbb{R}^4_2 \equiv \{a + bi + cj + dk : a, b, c, d \in \mathbb{R}\}$

• Conjugation: $z = a + bi + cj + dk \leftrightarrow \overline{z} = a - bi - cj - dk$

•
$$\mathbb{R}^4_2 \rightsquigarrow \mathbb{R}^4$$
 with the metric $\langle \ , \ \rangle = -dx_0^2 - dx_1^2 + dx_2^2 + dx_3^2$, $\mathbb{H}^3_1 = \{ x \in \mathbb{R}^4_2 : \langle x, x \rangle = -1 \}$.

• We identify $\mathbb{R}^4_2 \equiv \{a + bi + cj + dk : a, b, c, d \in \mathbb{R}\}$

- Conjugation: $z = a + bi + cj + dk \leftrightarrow \overline{z} = a bi cj dk$
- $z \in \mathbb{H}^3_1 \Leftrightarrow z^{-1} = \overline{z}$

- $\begin{array}{l} \bullet \ \mathbb{R}^4_2 \ \leadsto \ \mathbb{R}^4 \ \text{with the metric} \ \langle \ , \ \rangle = \textit{d} x_0^2 \textit{d} x_1^2 + \textit{d} x_2^2 + \textit{d} x_3^2, \\ \mathbb{H}^3_1 = \{ \textbf{x} \in \mathbb{R}^4_2 : \langle \textbf{x}, \textbf{x} \rangle = -1 \}. \end{array}$
- We identify $\mathbb{R}^4_2 \equiv \{a+bi+cj+dk: a,b,c,d\in\mathbb{R}\}$

- Conjugation: $z = a + bi + cj + dk \implies \overline{z} = a bi cj dk$
- $\bullet \ z \in \mathbb{H}^3_1 \ \Leftrightarrow \ z^{-1} = \overline{z}$
- The Lie group structure induced on \mathbb{H}_1^3 by this product is the one for which $\langle \ , \ \rangle$ is bi-invariant.

i.e.
$$\langle x, y \rangle = \langle zx, zy \rangle = \langle xz, yz \rangle \ \forall \ x, y, z \in \mathbb{H}_1^3$$

Lorenzian flat tori in \mathbb{H}_1^3

María Amelia León-Guzmán

Introduction

Our setting

The geometry of H

parameters

Main result

A representation formula

results

Dajczer-Nomiz questions

The characteristic parameters

The characteristic parameters

Main results

A representation

The classification

Dajczer-Nomizu

The characteristic parameters

 $f(x,y): \mathbb{L}^2 \longrightarrow \mathbb{H}^3_1$ isometric immersion

N(x,y) unit normal, chosen so that $\{f,f_x,f_y,N\}$ +oriented in \mathbb{R}^4_2

The characteristic parameters

 $f(x,y): \mathbb{L}^2 \longrightarrow \mathbb{H}^3_1$ isometric immersion

N(x, y) unit normal, chosen so that $\{f, f_x, f_y, N\}$ +oriented in \mathbb{R}^4_2

$$f(x,y): \mathbb{L}^2 \longrightarrow \mathbb{H}^3_1$$

$$\begin{split} I &= -dx^2 + dy^2 \\ II &= \phi_{xx} dx^2 + 2\phi_{xy} dx dy + \phi_{yy} dy^2 \\ \text{with } \phi_{xx} \phi_{yy} - \phi_{xy}^2 &= -1. \end{split}$$

A representatio formula

The classification results

Dajczer-Nomizu questions

The characteristic parameters

 $f(x,y): \mathbb{L}^2 \longrightarrow \mathbb{H}^3_1$ isometric immersion

N(x, y) unit normal, chosen so that $\{f, f_x, f_y, N\}$ +oriented in \mathbb{R}^4_2

$$f(x,y): \mathbb{L}^2 \longrightarrow \mathbb{H}^3_1$$

$$\begin{split} I &= -dx^2 + dy^2 \\ II &= \phi_{xx} dx^2 + 2\phi_{xy} dx dy + \phi_{yy} dy^2 \\ \text{with } \phi_{xx} \phi_{yy} - \phi_{xy}^2 &= -1. \end{split}$$

In our case the asymptotic curves have in general varying causal character. We do not have Tchebysheff parameters.

Dajczer-Nomizu questions

The characteristic parameters

 $f(x,y): \mathbb{L}^2 \longrightarrow \mathbb{H}^3_1$ isometric immersion

N(x, y) unit normal, chosen so that $\{f, f_x, f_y, N\}$ +oriented in \mathbb{R}^4_2

$$f(x,y): \mathbb{L}^2 \longrightarrow \mathbb{H}^3_1$$

$$\begin{split} I &= -dx^2 + dy^2 \\ II &= \phi_{xx} dx^2 + 2\phi_{xy} dx dy + \phi_{yy} dy^2 \\ \text{with } \phi_{xx} \phi_{yy} - \phi_{xy}^2 &= -1. \end{split}$$

$$\widetilde{f}(x,y): \mathbb{R}^2 \longrightarrow \mathbb{S}^3$$

$$\begin{split} \widetilde{I} &= dx^2 + dy^2 \\ II &= \phi_{xx} dx^2 + 2\phi_{xy} dx dy + \phi_{yy} dy^2 \\ \text{with } \phi_{xx} \phi_{yy} - \phi_{xy}^2 &= -1. \end{split}$$

Dajczer-Nomizu

The characteristic parameters

 $f(x,y): \mathbb{L}^2 \longrightarrow \mathbb{H}^3_1$ isometric immersion

N(x,y) unit normal, chosen so that $\{f,f_x,f_y,N\}$ +oriented in \mathbb{R}^4_2

$$f(x,y): \mathbb{L}^2 \longrightarrow \mathbb{H}^3_1$$

$$\begin{split} I &= -dx^2 + dy^2 \\ II &= \phi_{xx} dx^2 + 2\phi_{xy} dxdy + \phi_{yy} dy^2 \\ \text{with } \phi_{xx} \phi_{yy} - \phi_{xy}^2 = -1. \end{split}$$

$$f(x,y): \mathbb{R}^2 \longrightarrow \mathbb{S}^3$$

$$\begin{split} \widetilde{I} &= dx^2 + dy^2 \\ II &= \phi_{xx} dx^2 + 2\phi_{xy} dx dy + \phi_{yy} dy^2 \\ \text{with } \phi_{xx} \phi_{yy} - \phi_{xy}^2 = -1. \end{split}$$

This correspondence is not *geometric*, it depends on the choice of the specific coordinates (x, y)

Dajczer-Nomizu questions

The characteristic parameters

 $f(x,y): \mathbb{L}^2 \longrightarrow \mathbb{H}^3_1$ isometric immersion

N(x, y) unit normal, chosen so that $\{f, f_x, f_y, N\}$ +oriented in \mathbb{R}^4_2

$$f(x,y): \mathbb{L}^2 \longrightarrow \mathbb{H}^3_1$$

$$\begin{split} I &= -dx^2 + dy^2 \\ II &= \phi_{xx} dx^2 + 2\phi_{xy} dx dy + \phi_{yy} dy^2 \\ \text{with } \phi_{xx} \phi_{yy} - \phi_{xy}^2 &= -1. \end{split}$$

$$\widetilde{f}(x,y):\mathbb{R}^2\longrightarrow\mathbb{S}^3$$

$$\begin{split} \widetilde{I} &= dx^2 + dy^2 \\ II &= \phi_{xx} dx^2 + 2\phi_{xy} dx dy + \phi_{yy} dy^2 \\ \text{with } \phi_{xx} \phi_{yy} - \phi_{xy}^2 &= -1. \end{split}$$

This correspondence is not *geometric*, it depends on the choice of the specific coordinates (x, y)

 \widetilde{f} complete flat surface in $\mathbb{S}^3 \to \text{globally defined Tchebysheff}$ coordinates (u, v)

Lorenzian flat tori in \mathbb{H}_1^3

María Amelia León-Guzmán

Introduction

Our notting

The geometry of H

parameters

Main results

A representation formula

results

Dajczer-Nomiz questions

The characteristic parameters

The classification results

Dajczer-Nomizu questions

The characteristic parameters

We can express the Lorentzian metric I in terms of the coordinates (u, v)

$$egin{array}{ll} I &=& -\cos(2\omega_1) du^2 - 2\cos(\omega_1 - \omega_2) du dv - \cos(2\omega_2) dv^2 \ II &=& 2\sin(\omega_1 + \omega_2) du dv \ && \omega_1(u), \, \omega_2(v) \in C^\infty(\mathbb{R}), && 0 < \omega_1(u) + \omega_2(v) < \pi \end{array}$$

Dajczer-Nomizu questions

The characteristic parameters

We can express the Lorentzian metric I in terms of the coordinates (u, v)

 $(u, v) \rightarrow \text{Characteristic parameters}$

Introductio

The geometry of H₁³
The characteristic

Main results
A representation

The classification results

Dajczer-Nomizu questions

The characteristic parameters

We can express the Lorentzian metric I in terms of the coordinates (u, v)

 $(u, v) \rightarrow \text{Characteristic parameters}$

Formula for the change of coordinates $(u, v) \rightarrow (x, y)$

$$\begin{cases} x(u,v) = \int \cos\omega_1 du + \int \cos\omega_2 dv \\ y(u,v) = \int \sin\omega_1 du - \int \sin\omega_2 dv \end{cases} [**]$$

Lorenzian flat tori in \mathbb{H}_1^3

María Amelia León-Guzmán

Introduction

Our notting

The geometry of H

parameters

Main results

A representation formula

results

Dajczer-Nomiz questions

The characteristic parameters

parameters

Main res

A representation

The classification results

Dajczer-Nomizu questions

The characteristic parameters

Proposition

$$\begin{array}{ll} \omega_1(u),\,\omega_2(v)\in C^\infty(\mathbb{R}) & \longleftrightarrow & \textit{f} \text{ flat Lorentzian surface in } \mathbb{H}^3_1 \\ 0<\omega_1(u)+\omega_2(v)<\pi & \textit{I} \text{ and } \textit{II} \text{ given by } [*] \end{array}$$

A representation

The classificatio results

Dajczer-Nomizu questions

The characteristic parameters

Proposition

$$\omega_1(u), \omega_2(v) \in C^{\infty}(\mathbb{R}) \longleftrightarrow f \text{ flat Lorentzian surface in } \mathbb{H}^3_1$$

 $0 < \omega_1(u) + \omega_2(v) < \pi \longleftrightarrow I \text{ and } II \text{ given by } [*]$

Completeness (i.e.
$$f: \mathbb{L}^2 \to \mathbb{H}^3_1$$
) \iff $(x(u, v), y(u, v))$ given by $[**]$ is a global diffeomorfism

The classification results

Dajczer-Nomizu questions

The characteristic parameters

Proposition

$$\omega_1(u), \omega_2(v) \in C^{\infty}(\mathbb{R}) \longleftrightarrow f \text{ flat Lorentzian surface in } \mathbb{H}^3_1$$

 $0 < \omega_1(u) + \omega_2(v) < \pi \longleftrightarrow I \text{ and } II \text{ given by } [*]$

Completeness (i.e.
$$f: \mathbb{L}^2 \to \mathbb{H}^3_*$$
) \iff $(x(u, v), y(u, v))$ given by $[**]$ is a global diffeomorfism

Sufficient condition:

$$0 < c_1 \le \omega_1(u) + \omega_2(v) \le c_2 < \pi$$

Lorenzian flat tori in \mathbb{H}_1^3

María Amelia León-Guzmán

Introduction

minoductio

The geometry of \mathbb{H}^3_1 The characteristic

Main results

A representation formula

The classification

Dajczer-Nomiz questions

A flat surface as a product of its asymptotic curves

A representation formula

The classification results

Dajczer-Nomizu questions

A flat surface as a product of its asymptotic curves

Theorem 1

Let $f(u,v): \mathbb{L}^2 \to \mathbb{H}^3_1$ be an isometric immersion, (u,v) its characteristic parameters. We assume w.l.o.g. that f(0,0)=1 and N(0,0)=j. Then, for $a_1(u):=f(u,0)$ and $a_2(v):=f(0,v)$,

$$f(u,v)=a_1(u)a_2(v),$$

And these curves verify $\langle a_1'(u), a_1(u)j \rangle = 0 = \langle a_2'(v), ja_2(v) \rangle$.

A representation formula

The classification results

Dajczer-Nomizu questions

A flat surface as a product of its asymptotic curves

Theorem 1

Let $f(u,v): \mathbb{L}^2 \to \mathbb{H}^3_1$ be an isometric immersion, (u,v) its characteristic parameters. We assume w.l.o.g. that f(0,0)=1 and N(0,0)=j. Then, for $a_1(u):=f(u,0)$ and $a_2(v):=f(0,v)$,

$$f(u,v)=a_1(u)a_2(v),$$

And these curves verify $\langle a'_1(u), a_1(u)j \rangle = 0 = \langle a'_2(v), ja_2(v) \rangle$.

For a fixed v_0 we define $\Gamma_1(u) = f(u, v_0)$, $\Gamma_2(u) = a_1(u)a_2(v_0)$

A representation formula

The classification results

Dajczer-Nomizu questions

A flat surface as a product of its asymptotic curves

Theorem 1

Let $f(u,v): \mathbb{L}^2 \to \mathbb{H}^3_1$ be an isometric immersion, (u,v) its characteristic parameters. We assume w.l.o.g. that f(0,0)=1 and N(0,0)=j. Then, for $a_1(u):=f(u,0)$ and $a_2(v):=f(0,v)$,

$$f(u,v)=a_1(u)a_2(v),$$

And these curves verify $\langle a_1'(u), a_1(u)j \rangle = 0 = \langle a_2'(v), ja_2(v) \rangle$.

For a fixed
$$v_0$$
 we define $\Gamma_1(u) = f(u, v_0)$, $\Gamma_2(u) = a_1(u)a_2(v_0)$
We construct frames $\{\vec{t_1}, \vec{n_1}, \vec{b_1}\}$ along Γ_1
 $\{\vec{t_2}, \vec{n_2}, \vec{b_2}\}$ along Γ_2

A representation formula

The classification results

Dajczer-Nomizu questions

A flat surface as a product of its asymptotic curves

Theorem 1

Let $f(u,v): \mathbb{L}^2 \to \mathbb{H}^3_1$ be an isometric immersion, (u,v) its characteristic parameters. We assume w.l.o.g. that f(0,0)=1 and N(0,0)=j. Then, for $a_1(u):=f(u,0)$ and $a_2(v):=f(0,v)$,

$$f(u,v)=a_1(u)a_2(v),$$

And these curves verify $\langle a_1'(u), a_1(u)j \rangle = 0 = \langle a_2'(v), ja_2(v) \rangle$.

For a fixed v_0 we define $\Gamma_1(u) = f(u, v_0)$, $\Gamma_2(u) = a_1(u)a_2(v_0)$ We construct frames $\{\vec{t_1}, \vec{n_1}, \vec{b_1}\}$ along Γ_1 $\{\vec{t_2}, \vec{n_2}, \vec{b_2}\}$ along Γ_2

- they coincide at u = 0
- they verify the same system of differential equation

A representation formula

The classification results

Dajczer-Nomizu questions

A flat surface as a product of its asymptotic curves

Theorem 1

Let $f(u,v): \mathbb{L}^2 \to \mathbb{H}^3_1$ be an isometric immersion, (u,v) its characteristic parameters. We assume w.l.o.g. that f(0,0)=1 and N(0,0)=j. Then, for $a_1(u):=f(u,0)$ and $a_2(v):=f(0,v)$,

$$f(u,v)=a_1(u)a_2(v),$$

And these curves verify $\langle a_1'(u), a_1(u)j \rangle = 0 = \langle a_2'(v), ja_2(v) \rangle$.

For a fixed v_0 we define $\Gamma_1(u) = \{\vec{t_1}, \vec{n_1}, \vec{b_1}\}$ We construct frames $\{\vec{t_2}, \vec{n_2}, \vec{b_2}\}$

 Γ_1 and Γ_2 do not have constant causal character. Thus, these frames are not the Frenet frame of each curve.

- they coincide at u = 0
- they verify the same system of differential equation

Lorenzian flat tori in \mathbb{H}_1^3

María Amelia León-Guzmán

Introduction

IIIIOddctio

The geometry of \mathbb{H}^3_1 The characteristic

Main results

A representation formula

The classificati results

Dajczer-Nomiz questions

The geometry of \mathbb{H}^3_1 The characteristic

Main result

A representation formula

The classificati

Dajczer-Nomi:

Conditions
$$\langle a_1', a_1 j \rangle = 0, \quad \langle a_2', j a_2 \rangle = 0.$$

Introduction

The geometry of \mathbb{H}^3_1 The characteristic

Main resu

A representation

formula
The classification

The classificatio results

Dajczer-Nomizu questions

Constructing flat surfaces by multiplying curves

$$\mbox{Conditions } \langle \emph{a}_{1}^{\prime}, \emph{a}_{1} \emph{j} \rangle = 0, \quad \langle \emph{a}_{2}^{\prime}, \emph{j} \emph{a}_{2} \rangle = 0.$$

• If a verifies $\langle a', aj \rangle = 0 \rightarrow \overline{a}$ verifies $\langle \overline{a}', j\overline{a} \rangle = 0$

A representation formula

Conditions
$$\langle a_1', a_1 j \rangle = 0, \quad \langle a_2', j a_2 \rangle = 0.$$

- If a verifies $\langle a', aj \rangle = 0 \rightarrow \overline{a}$ verifies $\langle \overline{a}', j\overline{a} \rangle = 0$
- Geometric interpretation of $\langle a', aj \rangle = 0$

A representation formula

The classificatio results

Dajczer-Nomizu questions

Conditions
$$\langle a_1', a_1 j \rangle = 0, \quad \langle a_2', j a_2 \rangle = 0.$$

- If a verifies $\langle a', aj \rangle = 0 \rightarrow \overline{a}$ verifies $\langle \overline{a}', j \overline{a} \rangle = 0$
- Geometric interpretation of $\langle a', aj \rangle = 0 \rightarrow \langle \overline{a}a', j \rangle = 0$

Introductio

The geometry of \mathbb{H}^3_1 The characteristic

Main resu

A representation formula

The classification results

Dajczer-Nomizu questions

Conditions
$$\langle a_1', a_1 j \rangle = 0, \quad \langle a_2', j a_2 \rangle = 0.$$

- If a verifies $\langle a', aj \rangle = 0 \rightarrow \overline{a}$ verifies $\langle \overline{a}', j \overline{a} \rangle = 0$
- Geometric interpretation of $\langle a',aj\rangle=0 \to \langle \overline{a}a',j\rangle=0$ What does $\overline{a}a'$ represent?

Introductio

The geometry of \mathbb{H}^3_1 The characteristic

Main resu

A representation formula

The classificatio results

Dajczer-Nomizu questions

Conditions
$$\langle a_1', a_1 j \rangle = 0, \quad \langle a_2', j a_2 \rangle = 0.$$

- If a verifies $\langle a', aj \rangle = 0 \rightarrow \overline{a}$ verifies $\langle \overline{a}', j \overline{a} \rangle = 0$
- Geometric interpretation of $\langle a',aj\rangle=0 \to \langle \overline{a}a',j\rangle=0$ What does $\overline{a}a'$ represent?

Introductio

The geometry of \mathbb{H}^3 The characteristic

Main resu

A representation formula

The classification results

Dajczer-Nomizu questions

Conditions
$$\langle a_1', a_1 j \rangle = 0, \quad \langle a_2', j a_2 \rangle = 0.$$

- If a verifies $\langle a', aj \rangle = 0 \rightarrow \overline{a}$ verifies $\langle \overline{a}', j \overline{a} \rangle = 0$
- Geometric interpretation of $\langle a',aj\rangle=0 \to \langle \overline{a}a',j\rangle=0$ What does $\overline{a}a'$ represent?

Introductio

The geometry of \mathbb{H}^3_1 The characteristic

Main resu

A representation formula

The classification results

Dajczer-Nomizu questions

Conditions
$$\langle a_1', a_1 j \rangle = 0, \quad \langle a_2', j a_2 \rangle = 0.$$

- If a verifies $\langle a', aj \rangle = 0 \rightarrow \overline{a}$ verifies $\langle \overline{a}', j \overline{a} \rangle = 0$
- Geometric interpretation of $\langle a',aj\rangle=0 \to \langle \overline{a}a',j\rangle=0$ What does $\overline{a}a'$ represent?

Introduction

The geometry of \mathbb{H}^3_1

Main resu

A representation formula

The classification

Dajczer-Nomizu questions

Conditions
$$\langle a_1', a_1 j \rangle = 0, \quad \langle a_2', j a_2 \rangle = 0.$$

- If a verifies $\langle a', aj \rangle = 0 \rightarrow \overline{a}$ verifies $\langle \overline{a}', j \overline{a} \rangle = 0$
- Geometric interpretation of $\langle a',aj\rangle=0 \rightarrow \langle \overline{a}a',j\rangle=0$ What does $\overline{a}a'$ represent?

Introductio

Our setting

The geometry of \mathbb{H}^3_1 The characteristic parameters

Main resu

A representation formula

The classificatio results

Dajczer-Nomizu questions

Conditions
$$\langle a_1', a_1 j \rangle = 0, \quad \langle a_2', j a_2 \rangle = 0.$$

- If a verifies $\langle a', aj \rangle = 0 \rightarrow \overline{a}$ verifies $\langle \overline{a}', j\overline{a} \rangle = 0$
- Geometric interpretation of $\langle a',aj\rangle=0 \to \langle \overline{a}a',j\rangle=0$ What does $\overline{a}a'$ represent?

Introductio

The geometry of \mathbb{H}^3_1 The characteristic

Main resu

A representation formula

The classification

Dajczer-Nomizu questions

Conditions
$$\langle a_1', a_1 j \rangle = 0, \quad \langle a_2', j a_2 \rangle = 0.$$

- If a verifies $\langle a', aj \rangle = 0 \rightarrow \overline{a}$ verifies $\langle \overline{a}', j\overline{a} \rangle = 0$
- Geometric interpretation of $\langle a',aj\rangle=0 \rightarrow \langle \overline{a}a',j\rangle=0$ What does $\overline{a}a'$ represent?

Introductio

The geometry of \mathbb{H}^3_1

Main resu

A representation formula

The classification results

Dajczer-Nomizu questions

Conditions
$$\langle a_1', a_1 j \rangle = 0, \quad \langle a_2', j a_2 \rangle = 0.$$

- If a verifies $\langle a', aj \rangle = 0 \rightarrow \overline{a}$ verifies $\langle \overline{a}', j\overline{a} \rangle = 0$
- Geometric interpretation of $\langle a',aj\rangle=0 \rightarrow \langle \overline{a}a',j\rangle=0$ What does $\overline{a}a'$ represent?

Introductio

The geometry of \mathbb{H}^3_1

Main resu

A representation formula

The classification results

Dajczer-Nomizu questions

Conditions
$$\langle a_1', a_1 j \rangle = 0, \quad \langle a_2', j a_2 \rangle = 0.$$

- If a verifies $\langle a', aj \rangle = 0 \rightarrow \overline{a}$ verifies $\langle \overline{a}', j \overline{a} \rangle = 0$
- Geometric interpretation of $\langle a',aj\rangle=0 \to \langle \overline{a}a',j\rangle=0$ What does $\overline{a}a'$ represent?

Introductio

The geometry of \mathbb{H}^3_1 The characteristic

Main resu

A representation formula

The classificatio results

Dajczer-Nomizu questions

Conditions
$$\langle a_1', a_1 j \rangle = 0, \quad \langle a_2', j a_2 \rangle = 0.$$

- If a verifies $\langle a', aj \rangle = 0 \rightarrow \overline{a}$ verifies $\langle \overline{a}', j \overline{a} \rangle = 0$
- Geometric interpretation of $\langle a',aj\rangle=0 \to \langle \overline{a}a',j\rangle=0$ What does $\overline{a}a'$ represent?

A representation formula

Conditions
$$\langle a_1', a_1 j \rangle = 0, \quad \langle a_2', j a_2 \rangle = 0.$$

- If a verifies $\langle a', aj \rangle = 0 \rightarrow \overline{a}$ verifies $\langle \overline{a}', j\overline{a} \rangle = 0$
- Geometric interpretation of $\langle a', aj \rangle = 0 \rightarrow \langle \overline{a}a', j \rangle = 0$ What does $\overline{a}a'$ represent?

A representation formula

The classification results

Dajczer-Nomizu questions

Conditions
$$\langle a_1', a_1 j \rangle = 0, \quad \langle a_2', j a_2 \rangle = 0.$$

- If a verifies $\langle a', aj \rangle = 0 \rightarrow \overline{a}$ verifies $\langle \overline{a}', j \overline{a} \rangle = 0$
- Geometric interpretation of $\langle a', aj \rangle = 0 \rightarrow \langle \overline{a}a', j \rangle = 0$ we can, then, write $\overline{a}a' = \lambda i + \mu k$, $\lambda, \mu \in C^{\infty}(\mathbb{R})$

A representation formula

Constructing flat surfaces by multiplying curves

Conditions
$$\langle a_1', a_1 j \rangle = 0, \quad \langle a_2', j a_2 \rangle = 0.$$

- If a verifies $\langle a', aj \rangle = 0 \rightarrow \overline{a}$ verifies $\langle \overline{a}', j\overline{a} \rangle = 0$
- Geometric interpretation of $\langle a', aj \rangle = 0 \rightarrow \langle \overline{a}a', j \rangle = 0$ we can, then, write $\bar{a}a' = \lambda i + \mu k$, $\lambda, \mu \in C^{\infty}(\mathbb{R})$
- In this situation, s is the asymptotic parameter of a if $\lambda^2 + \mu^2 \equiv 1$.

Main resu

A representation formula

results

Dajczer-Nomizu questions

Constructing flat surfaces by multiplying curves

Conditions
$$\langle a_1', a_1 j \rangle = 0, \quad \langle a_2', j a_2 \rangle = 0.$$

- If a verifies $\langle a', aj \rangle = 0 \rightarrow \overline{a}$ verifies $\langle \overline{a}', j\overline{a} \rangle = 0$
- Geometric interpretation of $\langle a', aj \rangle = 0 \rightarrow \langle \overline{a}a', j \rangle = 0$ we can, then, write $\overline{a}a' = \lambda i + \mu k$, $\lambda, \mu \in C^{\infty}(\mathbb{R})$
- In this situation, s is the **asymptotic parameter** of a if $\lambda^2 + \mu^2 \equiv 1$, i. e. if $\overline{a}a' = \cos(\omega^a)i + \sin(\omega^a)k$

Lorenzian flat tori in \mathbb{H}_1^3

María Amelia León-Guzmán

Introduction

IIIIOddctio

The geometry of \mathbb{H}^3_1 The characteristic

Main results

A representation formula

The classificati results

Dajczer-Nomiz questions

Constructing flat surfaces by multiplying curves

Main resu

A representation formula

The classification results

Daiczor-Nomi:

Dajczer-Nomizu questions

Constructing flat surfaces by multiplying curves

Theorem 2

 $a_1(u), a_2(v)$ regular curves, with $a_1(0) = 1 = a_2(0)$, satisfying:

i)
$$\langle a'_1, a_1 j \rangle = 0$$
, $\langle a'_2, a_2 j \rangle = 0$

ii) u, v are the asymptotic parameters of a_1 and a_2 , resp.

iii)
$$\omega_1 = \omega^{a_1}$$
 and $\omega_2 = \pi - \omega^{a_2}$ verify $0 < \omega_1(u) + \omega_2(v) < \pi \ \forall u, v$

iv) The map
$$(x(u, v), y(u, v))$$
 in $[**]$ is a global diffeomorphism.

Then, $f(u, v) = a_1(u)\overline{a_2(v)}$ describes an isometric immersion of \mathbb{L}^2 into \mathbb{H}^3 , and (u, v) are its global characteristic parameters.

A representation formula

Constructing flat surfaces by multiplying curves

Theorem 2

 $a_1(u), a_2(v)$ regular curves, with $a_1(0) = 1 = a_2(0)$, satisfying:

i)
$$\langle a'_1, a_1 j \rangle = 0$$
, $\langle a'_2, a_2 j \rangle = 0$

- ii) u, v are the asymptotic parameters of a_1 and a_2 , resp.
- iii) $\omega_1 = \omega^{a_1}$ and $\omega_2 = \pi \omega^{a_2}$ verify $0 < \omega_1(u) + \omega_2(v) < \pi \ \forall u, v$
- iv) The map (x(u, v), y(u, v)) in [**] is a global diffeomorphism.

Then, $f(u, v) = a_1(u)a_2(v)$ describes an isometric immersion of \mathbb{L}^2 into \mathbb{H}^3_1 , and (u, v) are its global characteristic parameters.

- ii) → adequate parameters
- iii) → regularity
- iv) → completeness

Lorenzian flat tori in \mathbb{H}_1^3

María Amelia León-Guzmán

Introduction

The geometry of \mathbb{H}^3_1 The characteristic

Main results

A representation formula

The classification results

Dajczer-Nomiz questions

Curves with wavefront singularities in \mathbb{H}^2

Introduction

The geometry of \mathbb{H}^3_1 The characteristic

Main resu

A representati

The classification results

Daiczer-Nemi

Dajczer-Nomizu questions

Curves with wavefront singularities in \mathbb{H}^2

Wavefront in \mathbb{H}^2 (front)

curve $\gamma:I\subset\mathbb{R}\to\mathbb{H}^2$ globally defined unitary normal ν

$$\langle \gamma, \nu \rangle = 0$$
, $\langle \gamma', \nu \rangle = 0$

The geometry of \mathbb{H}^3

The classification results

Curves with wavefront singularities in \mathbb{H}^2

Wavefront in \mathbb{H}^2 (front)

curve $\gamma: I \subset \mathbb{R} \to \mathbb{H}^2$ globally defined unitary normal ν

$$\langle \gamma,
u
angle = 0$$
, $\langle \gamma',
u
angle = 0$

The classification results

Curves with wavefront singularities in \mathbb{H}^2

Wavefront in \mathbb{H}^2 (front)

curve $\gamma: I \subset \mathbb{R} \to \mathbb{H}^2$ globally defined unitary normal ν

$$\langle \gamma,
u
angle = 0$$
, $\langle \gamma',
u
angle = 0$

Main resu

A representation

The classification results

Dajczer-Nomizu guestions

Curves with wavefront singularities in \mathbb{H}^2

Wavefront in \mathbb{H}^2 (front)

curve
$$\gamma:I\subset\mathbb{R}\to\mathbb{H}^2$$
 globally defined unitary normal ν $\langle\gamma,\nu\rangle=0,\ \ \langle\gamma',\nu\rangle=0$

For a front we can define the metric

$$\langle \gamma', \gamma' \rangle_{\mathcal{S}} = \langle \gamma', \gamma' \rangle + \langle \nu, \nu \rangle$$

Main resu

A representation

The classification results

Dajczer-Nomizu questions

Curves with wavefront singularities in \mathbb{H}^2

Wavefront in \mathbb{H}^2 (front)

curve
$$\gamma: I \subset \mathbb{R} \to \mathbb{H}^2$$
 globally defined unitary normal ν $\langle \gamma, \nu \rangle = 0, \quad \langle \gamma', \nu \rangle = 0$

For a front we can define the metric

$$\langle \gamma', \gamma' \rangle_{\mathcal{S}} = \langle \gamma', \gamma' \rangle + \langle \nu, \nu \rangle$$

 $\langle \gamma', \gamma' \rangle_{\mathcal{S}} > 0$ everywhere

Lorenzian flat tori in \mathbb{H}_1^3

María Amelia León-Guzmán

Introduction

Our setting

The geometry of \mathbb{H}^3_1 The characteristic

Main results

A representation

The classification results

Dajczer-Nomiz questions

Finding curves in \mathbb{H}_1^3 with $\langle a', aj \rangle = 0$

Introductio

The geometry of \mathbb{H}^3_1 The characteristic

Main resu

A representation

The classification results

Dajczer-Nomizu questions

Finding curves in \mathbb{H}_1^3 with $\langle a', aj \rangle = 0$

Hopf fibration

$$\begin{array}{cccc} h: & \mathbb{H}^3_1 & \longrightarrow & \mathbb{H}^2 \\ & z & \longmapsto & z \, i \, \overline{z} \end{array}$$

Main resi

A representation formula

The classification results

Dajczer-Nomizu questions

Finding curves in \mathbb{H}_1^3 with $\langle a', aj \rangle = 0$

Hopf fibration

$$h: \mathbb{H}_1^3 \longrightarrow \mathbb{H}^2$$

$$z \longmapsto zi\overline{z}$$

Lemma

For a regular curve a in \mathbb{H}_1^3 ,

$$\langle a', aj \rangle = 0 \iff \gamma := h(a) \text{ is a front in } \mathbb{H}^2 \text{ with } \nu = ak\overline{a}$$

María Amelia León-Guzmán

Introduction

The geometry of \mathbb{H}^3_1

Main res

A representation

The classification results

Dajczer-Nomizu questions

Finding curves in \mathbb{H}_1^3 with $\langle a', aj \rangle = 0$

Hopf fibration

$$h: \mathbb{H}^3_1 \longrightarrow \mathbb{H}^2$$

$$z \longmapsto zi \overline{z}$$

Lemma

For a regular curve a in \mathbb{H}_1^3 ,

$$\langle a', aj \rangle = 0 \iff \gamma := h(a) \text{ is a front in } \mathbb{H}^2 \text{ with } \nu = ak\overline{a}$$

ightarrow a is the asymptotic lift of γ

Main resu

formula

The classification results

Dajczer-Nomizu questions

Finding curves in \mathbb{H}_1^3 with $\langle a', aj \rangle = 0$

Hopf fibration

$$h: \mathbb{H}^3_1 \longrightarrow \mathbb{H}^2$$

$$z \longmapsto zi \overline{z}$$

Lemma

For a regular curve a in \mathbb{H}_1^3 ,

$$\langle a', aj \rangle = 0 \iff \gamma := h(a) \text{ is a front in } \mathbb{H}^2 \text{ with } \nu = ak\overline{a}$$

- ightarrow a is the asymptotic lift of γ
- s asymptotic parameter of a \Leftrightarrow s/2 arc-length parameter of γ with respect to $\langle \; , \; \rangle_{\mathcal{S}}$

Main resu

A representation formula

The classification results

Dajczer-Nomizu questions

Finding curves in \mathbb{H}_1^3 with $\langle a', aj \rangle = 0$

Hopf fibration

$$h: \mathbb{H}^3_1 \longrightarrow \mathbb{H}^2$$

$$z \longmapsto zi \overline{z}$$

Lemma

For a regular curve a in \mathbb{H}_1^3 ,

$$\langle a', aj \rangle = 0 \iff \gamma := h(a) \text{ is a front in } \mathbb{H}^2 \text{ with } \nu = ak\overline{a}$$

- ightarrow a is the asymptotic lift of γ
- s asymptotic parameter of $a \Leftrightarrow s/2$ arc-length parameter of γ with respect to $\langle \cdot, \cdot \rangle_S$
- $\bullet \ \omega^a = \cot^{-1}(k_q)$

María Amelia León-Guzmán

Introduction

The geometry of \mathbb{H}^3_1

Main resu

A representation

The classification results

Dajczer-Nomizu questions

Finding curves in \mathbb{H}_1^3 with $\langle a', aj \rangle = 0$

Hopf fibration

$$\begin{array}{cccc} h: & \mathbb{H}^3_1 & \longrightarrow & \mathbb{H}^2 \\ & z & \longmapsto & zi\,\overline{z} \end{array}$$

Lemma

For a regular curve a in \mathbb{H}_1^3 ,

$$\langle a', aj \rangle = 0 \iff \gamma := h(a)$$
 is a front in \mathbb{H}^2 with $\nu = ak\overline{a}$

- ightarrow a is the **asymptotic lift** of γ
- s asymptotic parameter of a \Leftrightarrow s/2 arc-length parameter of γ with respect to $\langle \ , \ \rangle_{\mathcal{S}}$
- $\bullet \ \omega^a = \cot^{-1}(k_g)$

Geodesic curvature of a front

$$k_g(s) = \left\{ egin{array}{ll} rac{\langle \gamma''(s),
u(s)
angle}{||\gamma'(s)||^2} & ext{if} \quad \gamma'(s)
eq 0 \ \infty & ext{if} \quad \gamma'(s) = 0 \end{array}
ight.$$

Lorenzian flat tori in \mathbb{H}_1^3

María Amelia León-Guzmán

Introduction

.....

The geometry of \mathbb{H}^3_1 The characteristic

Main results

A representation

The classification results

Dajczer-Nomiz questions

Flat surfaces in terms of pairs of fronts

Main results
A representation

The classification results

Dajczer-Nomiz

Dajczer-Nomizu questions

Flat surfaces in terms of pairs of fronts

Theorem 3 (Classification of complete examples)

 $\gamma_1(u), \gamma_2(v)$ fronts in \mathbb{H}^2 with $\gamma_i(0) = i$ and $\nu_i(0) = k$. If they verify:

- i) u/2, v/2 arc-length parameters of γ_1 , γ_2 with respect to $\langle \; , \; \rangle_{\mathcal{S}}$
- ii) $k_1(u) \neq k_2(v) \quad \forall \ u, v$
- iii) For $\omega_1(u) := \cot^{-1}(k_1(u))$ and $\omega_2(v) := \pi \cot^{-1}(k_2(v))$, the map (x(u, v), y(u, v)) in [**] is a global diffeomorphism.

Then, $f(u, v) = a_1(u)\overline{a_2(v)}$ is an isometric immersion of \mathbb{L}^2 into \mathbb{H}^3_1 , and (u, v) are its characteristic parameters.

Conversely, every isometric immersion of \mathbb{L}^2 into \mathbb{H}^3_1 can be recovered by this process.

Main results
A representation

The classification results

results

Dajczer-Nomizu questions

Flat surfaces in terms of pairs of fronts

Theorem 3 (Classification of complete examples)

 $\gamma_1(u), \gamma_2(v)$ fronts in \mathbb{H}^2 with $\gamma_i(0) = i$ and $\nu_i(0) = k$. If they verify:

- i) u/2, v/2 arc-length parameters of γ_1 , γ_2 with respect to $\langle \; , \; \rangle_{\mathcal{S}}$
- ii) $k_1(u) \neq k_2(v) \forall u, v$
- iii) For $\omega_1(u) := \cot^{-1}(k_1(u))$ and $\omega_2(v) := \pi \cot^{-1}(k_2(v))$, the map (x(u,v),y(u,v)) in [**] is a global diffeomorphism.

Then, $f(u, v) = a_1(u)\overline{a_2(v)}$ is an isometric immersion of \mathbb{L}^2 into \mathbb{H}^3_1 , and (u, v) are its characteristic parameters.

Conversely, every isometric immersion of \mathbb{L}^2 into \mathbb{H}^3_1 can be recovered by this process.

- i) → adequate parameters
- ii) → regularity
- iii) → completeness

María Amelia León-Guzmán

The geometry of \mathbb{H}^3

A representation

The classification results

Flat surfaces in terms of pairs of fronts

Theorem 3 (Classification of complete examples)

 $\gamma_1(u), \gamma_2(v)$ fronts in \mathbb{H}^2 with $\gamma_i(0) = i$ and $\nu_i(0) = k$. If they verify:

- i) u/2, v/2 arc-length parameters of γ_1 , γ_2 with respect to $\langle \cdot, \cdot \rangle_S$
- ii) $k_1(u) \neq k_2(v) \forall u, v$
- iii) For $\omega_1(u) := \cot^{-1}(k_1(u))$ and $\omega_2(v) := \pi \cot^{-1}(k_2(v))$, the map (x(u, v), y(u, v)) in [**] is a global diffeomorphism.

Then, $f(u, v) = a_1(u)\overline{a_2(v)}$ is an isometric immersion of \mathbb{L}^2 into \mathbb{H}^3_+ , and (u, v) are its characteristic parameters.

Conversely, every isometric immersion of \mathbb{L}^2 into \mathbb{H}^3 can be recovered by this process.

- i) → adequate parameters
- ii) → regularity
- iii) → completeness

No differential equation

Dajczer-Nomizu questions

Flat surfaces in terms of pairs of fronts

Theorem 3 (Classification of complete examples)

 $\gamma_1(u), \gamma_2(v)$ fronts in \mathbb{H}^2 with $\gamma_i(0) = i$ and $\nu_i(0) = k$. If they verify:

- i) u/2, v/2 arc-length parameters of $\gamma_{\rm 1},\,\gamma_{\rm 2}$ with respect to $\langle\ ,\,\rangle_{\cal S}$
- ii) $k_1(u) \neq k_2(v) \quad \forall \ u, v$
- iii) For $\omega_1(u) := \cot^{-1}(k_1(u))$ and $\omega_2(v) := \pi \cot^{-1}(k_2(v))$, the map (x(u,v),y(u,v)) in [**] is a global diffeomorphism.

Then, $f(u,v) = a_1(u)\overline{a_2(v)}$ is an isometric immersion of \mathbb{L}^2 into \mathbb{H}^3_1 , and (u,v) are its characteristic parameters.

Conversely, every isometric immersion of \mathbb{L}^2 into \mathbb{H}^3_1 can be recovered by this process.

Theorem 4 (Classification of flat tori)

Flat torus $\iff \gamma_1, \gamma_2$ are closed fronts in \mathbb{H}^2 with $k_1 \neq k_2$

Lorenzian flat tori in \mathbb{H}_1^3

María Amelia León-Guzmán

Introduction

THE OCCUPATION

The geometry of \mathbb{H}^3_1 The characteristic

Main results

A representation formula

results

Dajczer-Nomizu questions

The Dajczer-Nomizu questions

Main results

A representation

The classification results

Dajczer-Nomizu questions

The Dajczer-Nomizu questions

Dajczer-Nomizu

Method to construct flat surfaces in \mathbb{H}^3_1 as a product of two regular curves b_1 , b_2 , such that:

- b_1 time-like with $\tau = 1$
- b_2 space-like with $\tau = -1$

Main results

A representation

The classification results

Dajczer-Nomizu questions

The Dajczer-Nomizu questions

Dajczer-Nomizu

Method to construct flat surfaces in \mathbb{H}^3_1 as a product of two regular curves b_1 , b_2 , such that:

- b_1 time-like with $\tau = 1$
- b_2 space-like with $\tau = -1$
- **Q1** If the curves b_1 , b_2 are complete, is the resulting surface everywhere regular?

Main resu

A representation formula

The classification results

Dajczer-Nomizu questions

The Dajczer-Nomizu questions

Dajczer-Nomizu

Method to construct flat surfaces in \mathbb{H}^3_1 as a product of two regular curves b_1 , b_2 , such that:

- b_1 time-like with $\tau = 1$
- b_2 space-like with $\tau = -1$
- **Q1** If the curves b_1 , b_2 are complete, is the resulting surface everywhere regular?

If we think of this surface in terms of pairs of fronts $\gamma_1, \gamma_2 \in \mathbb{H}^2$ Regularity $\iff k_1 \neq k_2$ The classification results

Dajczer-Nomizu questions

The Dajczer-Nomizu questions

Dajczer-Nomizu

Method to construct flat surfaces in \mathbb{H}^3_1 as a product of two regular curves b_1 , b_2 , such that:

- b_1 time-like with $\tau = 1$
- b_2 space-like with $\tau = -1$
- **Q1** If the curves b_1 , b_2 are complete, is the resulting surface everywhere regular?

If we think of this surface in terms of pairs of fronts $\gamma_1, \gamma_2 \in \mathbb{H}^2$ Regularity $\iff k_1 \neq k_2$

$$b_1$$
 time-like b_2 space-like $\longrightarrow \begin{vmatrix} |k_1| > 1 \\ |k_2| < 1$ \longrightarrow Yes

Lorenzian flat tori in \mathbb{H}_1^3

María Amelia León-Guzmán

Introduction

THE OCCUPATION

The geometry of \mathbb{H}^3_1 The characteristic

Main results

A representation formula

results

Dajczer-Nomizu questions

The Dajczer-Nomizu questions

María Amelia León-Guzmán

Introduction

miloductio

The geometry of \mathbb{H}^3_1 The characteristic parameters

Main result

A representation formula

results

Dajczer-Nomizu questions

The Dajczer-Nomizu questions

Q2 It is also complete?

María Amelia León-Guzmán

Introduction

IIIIOddctio

The geometry of \mathbb{H}^3_1 The characteristic parameters

Main res

A representation

The classification

Dajczer-Nomizu questions

The Dajczer-Nomizu questions

Q2 It is also complete?

In general, the answer is ${\bf No}$

A representation formula

The classification results

Dajczer-Nomizu questions

The Dajczer-Nomizu questions

Q2 It is also complete?

In general, the answer is No

As in the riemmanian case, we can find some **sufficient conditions** that ensure the **completeness** of the flat surface.

$$0 < c_1 \le \omega_1(u) + \omega_2(v) \le c_2 < \pi$$

Daiczer-Nomizu auestions

The Dajczer-Nomizu questions

Q2 It is also complete?

In general, the answer is **No**

As in the riemmanian case, we can find some sufficient conditions that ensure the completeness of the flat surface.

$$0 < c_1 \leq \omega_1(u) + \omega_2(v) \leq c_2 < \pi$$

Q3 Can every flat surface in \mathbb{H}^3_+ be obtained as a product of two appropriate curves so that they are asymptotic curves of the surface?

Daiczer-Nomizu auestions

The Dajczer-Nomizu questions

Q2 It is also complete?

In general, the answer is **No**

As in the riemmanian case, we can find some sufficient **conditions** that ensure the **completeness** of the flat surface.

$$0 < c_1 \le \omega_1(u) + \omega_2(v) \le c_2 < \pi$$

Q3 Can every flat surface in \mathbb{H}^3_+ be obtained as a product of two appropriate curves so that they are asymptotic curves of the surface?

Yes. Theorem 1

Main results

formula
The classification

Dajczer-Nomizu questions

The Dajczer-Nomizu questions

Q2 It is also complete?

In general, the answer is No

As in the riemmanian case, we can find some **sufficient conditions** that ensure the **completeness** of the flat surface.

$$0 < c_1 \leq \omega_1(u) + \omega_2(v) \leq c_2 < \pi$$

Q3 Can every flat surface in \mathbb{H}_1^3 be obtained as a product of two appropriate curves so that they are asymptotic curves of the surface?

Yes, Theorem 1

Q4 These two curves can be chosen so that one of them is everywhere timelike and the other is everywhere spacelike?

The Dajczer-Nomizu questions

Q2 It is also complete?

In general, the answer is No

As in the riemmanian case, we can find some **sufficient conditions** that ensure the **completeness** of the flat surface.

$$0 < c_1 \leq \omega_1(u) + \omega_2(v) \leq c_2 < \pi$$

Q3 Can every flat surface in \mathbb{H}_1^3 be obtained as a product of two appropriate curves so that they are asymptotic curves of the surface?

Yes, Theorem 1

Q4 These two curves can be chosen so that one of them is everywhere timelike and the other is everywhere spacelike?

No, consider a flat surface generated from fronts γ_1, γ_2 both with $|k_i| > 1$ (or both with $|k_i| < 1$)

María Amelia León-Guzmán

The geometry of \mathbb{H}^3

Daiczer-Nomizu auestions

References

M. Barros, A. Ferrández, P. Lucas and M.A. Meroño, Solutions of the Betchov-Da Rios soliton equation in the anti-De Sitter 3-space. New Approaches in Nonlinear Analysis. Hadronic Press Inc., Palm Harbor, Florida, 1999, pp. 51-71.

L. Bianchi, Sulle superficie a curvatura nulla in geometria ellittica, Ann. Mat. Pura Appl., 24 (1896), 93-129.

M. Dajczer and K. Nomizu, On Flat Surfaces in S_1^3 and H_1^3 , Manifolds and Lie groups (Notre Dame, Ind., 1980), Progr. Math., 14, Birkäuser, Boston, Mass., 1981, pp. 71-108.

Y. Kitagawa, Periodicity of the asymptotic curves on flat tori in S^3 , J. Math. Soc. Japan 40 (1988), 457-476.

M.A. León-Guzmán, P. Mira, J. Pastor, The space of Lorentzian flat tori in anti-de-Sitter 3-space, preprint. (available at http://arxiv.org/abs/0905.3991)

M. Spivak, A comprehensive introduction to differential geometry, Vol. IV. Publish or Perish, Inc., Boston, Mass., 1975.

$$\begin{cases} x(u,v) = \int \cos\omega_1 du + \int \cos\omega_2 dv \\ y(u,v) = \int \sin\omega_1 du - \int \sin\omega_2 dv \end{cases} [**]$$

A sufficient condition for (x(u, v), y(u, v)) to be a global diffeomorfism is that:

$$0 < c_1 \le \omega_1(u) + \omega_2(v) \le c_2 < \pi$$
 $\forall (u, v) \in \mathbb{R}^2$