

Graphs

- · Lists and trees are just a special case of another structure - the *graph*
- Graphs are the basis for all of computer science

3

Graphs

- Computer science is not about chips, processors, etc...
- ... this is just implementation technology

4

Where are Graphs Used?

- The easy answer is: everywhere
- In computer science
 - · state machines
 - · mazes and networks
- Other fields
 - · chemistry
 - physics
 - Government?

Motivation

- They are one of the pervasive data structures used in computer science
- Several real-life problems can be converted to problems on graphs
 - they are useful tool for modeling real-world problems
 - · allows us to abstract details and focus on the problem

5

Example Graph Set of edges E • (a, b) • (a, e) • (b, d) • (c, d) • (d, e)

10

Complete Graphs A complete graph is one in which all pairs of vertices are adjacent In other words, every vertex is connected to every other vertex

Complete Graphs

- The # of edges in a complete graph...
 - if *n* is the total number of vertices, then each vertex is incident to *n* 1 edges
 - we can compute $n \times (n-1)$ edges, but this would count each edge twice!
 - so, the number of edges = $n \times (n-1)/2$
- For a noncomplete graph...
 - number of edges $< n \times (n-1)/2$

13

14

Paths

 A path is a sequence of vertices $v_1, v_2, \dots v_k$ such that consecutive vertices v_n and v_{n+1} are adjacent

- This can represent
 - · a physical path
 - · logical connection
 - etc...

15

16

Paths

- In a simple path, all edges of a path are distinct
- The *length* of a path is measured by either the total number of edges or vertices

Connected and Unconnected

- A connected graph
 - · has a path from every vertex to all other vertex
 - so, everything is connected somehow
- An unconnected graph
 - · at least one vertex exists in which no path exists to another vertex
 - so, there are 2+ sub-graphs that are unlinked

17 18

Connected and Unconnected

- The connected component is the maximum connected subgraph of a given graph
- If the graph is connected, then the whole graph is one single connected component

Sacramento State - Cook - CSc 130

Pall 2021 Secremento State - Cook - CSc 130

19

Weighted Graph has values on each edge These values can be anything – and are defined by the ADT using the graph

Weighted Graphs
These weights are abstract and can represent anything
Examples
distances – driving, flight paths
costs
server latency times
etc...

21 22

Minimum Path ■ Often it is useful to find the minimum path – e.g. the smallest sum of edges ■ Example: minimum path from a to b is: a → e → d → b ■ We'll cover that soon!

Directed & Undirected

- Sometimes, an edge can be travelled both directions
- However, sometimes, they have a distinct source and destination
- Think of it as streets some are two-way, and some are one-way

27

Directed Graph

- A directed graph (digraph) is a graph where each edge has a source and target vertex
- This is the basis most of the data structures used today:
 - trees
 - · linked lists

28

Undirected Graphs

- Undirected graphs have edges that have the same meaning for both directions
- So, if there is an edge (a, b) then there is also an edge (b, a)

Directed Acyclic Graphs

- When a directed graph lacks cycles, it is called a Directed Acyclic Graph (DAG)
- Since edges only travel one way, this leads to some interesting graphs

29 30

33

35 36

Rooted Tree selects an arbitrary vertex as the root
Forest is a collection of trees

39 40

41 42

Typically when you search a tree, you can use a simple depth-first search However, graphs can contain cycles Your program can get stuck in an graph loop and never escape This has to be taken into account

45 46

So, to before you search... the vertices need to visited only ONCE otherwise, we have a loop Solution: vertex has a "visited" property before the search, each vertex is set to false when the search visits them, it is set true search never follows an edge to a visited vertex

47 48

Birth of Graph Theory Graph theory was created due to a perplexing question troubling mathematician Leonhard Euler Lived in Konigsberg • now "Kaliningrad" in Russia city occupied 2 islands plus areas on both banks • 7 bridges over the Pregel River

54 53

Birth of Graph Theory

- People wondered they could:
 - · leave home...
 - cross every bridge once
 - and return to their starting point
- This is known as the Konigsberg Bridge Problem & was unsolved in the 1700's

Konigsberg Bridge Problem

55 56

Konigsberg Bridge Problem The problem reduces to 4 points and several links to between the points From this, Euler created the first graph and began the study of their properties

57 58

The Solution to Konigsberg

- In 1736, Euler proved that no such traversal exists
- Eulerian circuit, in a graph...
 - is cycle containing all the edges in the graph
 - · and only traversing each edge once

62 61

The Solution to Konigsberg

- Euler proved:
 - a graph may have an Eulerian circuit if and only if there is no vertex with an odd number of edges
- Konigsberg Bridge Problem
 - · 4 vertices, all with an odd number of edges
 - · Sorry people of Konigsberg, there is no solution!

Alan Turing

- Mathematician, logician & cryptographer
- Father of Computer Science
 - · Highest award in Computer Science is the Turing Award
 - Developed Turing Machines

63 64

Major Work: Turing Machines

- Invented in 1937
- Logical model not an actual computer or machine
- Based on 2 graphs (and sets on each of the edge)

Major Work: Turing Machines

- One graph is simple array, but the other could be anything
- From this, he proved programming

66 65

Major Work: Turing Test

- Used in artificial intelligence
- Consists of a human operator texting a human or computer
- If the operator can't ascertain if it is a computer or human, the computer is "intelligent"
- No computer has passed it

Real World Examples The origin and the usage

67 68

Real World Examples

- How can we lay cable at minimum cost to make every network reachable from every other?
- What is the fastest route from the national capital to each state capital?
- How can n jobs be filled by npeople with maximum total utility?

The London Underground Subway

69 70

Maze Traversal

- One example of where a graph is useful is a maze traversal
- Basically, any maze can be represented with a graph
- ... and this is not so much different to how networks actually work
- ... a source must find a destination through various vertices

 This is a simple maze - though not to the mouse! We can help him find the cheese if we

convert this to a graph

Maze Traversal

71 72

Maze Traversal So, to help the mouse, we can get to depth-first search on the maze If we find it, we can print off the vertices post-order