Элементарная алгебра

Виды выражений

Одночлен (*моном*) — произведение переменных и коэффициентов; *многочлен* (*полином*) — сумма одночленов.

Двучлен (бином) — многочлен из двух одночленов; *трёхчлен* (*трином*) — многочлен из трёх одночленов.

Многочлен P от одной переменной x можно представить так:

$$P = \sum_{k=0}^{n} a_k x^{n-k}$$

Малая теорема Безу

Для многочлена P =: P(x) справедливо:

$$P(x) = f(x)(x - r) + P(r)$$

Это следует из деления многочлена с остатком. Значит,

$$(x-r)\mid P(x)\iff P(r)=0.$$

Свойства неравенств

Отношение сравнения mранзитивно; неравенства можно cкладывать (не вычитать), а также nepemhoжать и возводить в натуральную степень k (без cmehb shaka):

$$\begin{cases} a < b \\ c \le d \end{cases} \implies \begin{cases} a + c < b + d \\ ac < bd \\ a^k < b^k \end{cases}$$

При умножении на отрицательное число знак неравенства *инвертируется*:

$$a < b \iff am > bm, \quad m \in \mathbb{R}^-$$

Неравенство Коши

Пусть $a, b \in \mathbb{R}^+$. Тогда верно (О.Л. Коши):

$$\frac{a+b}{2} \ge \sqrt{ab}$$

Доказательство.

$$\frac{a+b}{2} \ge \sqrt{ab} \iff a+b \ge 2\sqrt{ab} \iff a-2\sqrt{ab}+b \ge 0 \iff (\sqrt{a}-\sqrt{b})^2 \ge 0 \blacksquare$$

Неравенство Бернулли

Пусть $n \ge 2$, x > 0. Тогда верно (Я. Бернулли):

$$(1+x)^n > 1 + nx$$

Доказательство. Проверим базис индукции n = 2:

$$(1+x)^2 > 1+2x \iff 1+2x+x^2 > 1+2x$$

Проверим индукционный шаг n+1. Пусть утверждение верно для некоторого n>2, тогда:

$$(1+x)^n > 1 + nx \iff (1+x)^{n+1} > (1+nx)(1+x) \iff (1+x)^{n+1} > 1 + (n+1)x + nx^2 \iff (1+x)^{n+1} > 1 + (n+1)x \blacksquare$$

Свойства функций

 Φ ункция f возрастает, когда

$$\forall x_1, x_2 \in D_f, \; x_1 < x_2 \implies f(x_1) < f(x_2).$$

Mаксимумом функции f называется такая точка x_0 , что

$$\forall \varepsilon > 0 \ \exists U_{\varepsilon}(x_0) : \forall x \in U \ f(x) < f(x_0).$$

Функция f убываеm, когда

$$\forall x_1, x_2 \in D_f, \; x_1 < x_2 \implies f(x_1) > f(x_2).$$

Mинимумом функции f называется такая точка x_0 , что

$$\forall \varepsilon > 0 \; \exists U_{\varepsilon}(x_0) \colon \forall x \in U \, f(x) > f(x_0).$$

Функция f чётна, когда

$$\forall x \in D_f \implies f(-x) = f(x).$$

Функция f нечётна, когда

$$\forall x \in D_f \implies f(-x) = -f(x).$$

Функция f nepuoduчна, когда

$$\forall x \in D_f \ \exists T \neq 0 \colon f(x) = f(x \pm T),$$

где T — **период** функции; наименьший положительный период называется *основным*.

Функция модуля

Абсолютная величина (*модуль*) — чётная функция $f: \mathbb{R} \to \mathbb{R}_0^+$, которая задаётся формулой:

$$f(x) = |x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

Она $\partial u c m p u \delta y m u в н a$ относительно умножения, отчасти — относительно сложения: $|a+b| \le |a| + |b|$.

Степенная функция

Возведение в чётную степень — чётная функция; график — *парабола*:

$$f \colon \mathbb{R} \xrightarrow{x \mapsto x^n} \mathbb{R}_0^+, \ n \in \mathbb{N}$$

Обратная функция к $f\mid_{\mathbb{R}^+_0}$ — арифметический корень:

$$f^{-1} \colon \mathbb{R}_0^+ \xrightarrow{x \mapsto {}^n\!\sqrt{x}} \mathbb{R}_0^+$$

Возведение в нечётную степень — нечётная функция; график — *кубическая парабола*:

$$g: \mathbb{R} \xrightarrow{x \mapsto x^n} \mathbb{R}, n \in \mathbb{N}$$

Обратная функция к д — арифметический корень:

$$g^{-1}\colon \mathbb{R} \xrightarrow{x\mapsto \sqrt[n]{x}} \mathbb{R}$$

Функция знака

Функция знака (*сигнум-функция*) — нечётная функция $\mathrm{sgn}\colon \mathbb{R} \to \{-1;0;1\}$, которая определяет знак аргумента:

$$\operatorname{sgn} x = \begin{cases} 1, & x > 0 \\ 0, & x = 0 \\ -1, & x < 0 \end{cases}$$

Условия выпуклости функции

Функция f выпукла **вверх** на отрезке [a;b], когда для отрезка g с концами в точках $\langle a;f(a)\rangle$, $\langle b;f(b)\rangle$ справедливо:

$$\forall x \in [a;b] \, f(x) \ge g(x)$$

Функция f выпукла **вниз** на отрезке [a;b], когда для отрезка g с концами в точках $\langle a;f(a)\rangle$, $\langle b;f(b)\rangle$ справедливо:

$$\forall x \in [a;b] f(x) \leq g(x)$$

Функция f выпукла вверх \iff функция -f выпукла вниз.

Функция f выпукла вверх на [a;b], если для $a \le x \le b$ верно:

$$\operatorname{tg} a_{bx} \le \operatorname{tg} a_{ab} \le \operatorname{tg} a_{ax} \qquad \operatorname{tg} a_{mn} := \operatorname{tg}(\overrightarrow{oX}; \overrightarrow{mn})$$

Функция натурального логарифма

Функция натурального логарифма — значение интеграла:

$$\ln x = \int_1^x \frac{\mathrm{d}t}{t}, \quad \ln \colon \mathbb{R}^+ \to \mathbb{R}$$

Свойства:

$$\ln ax = \ln a + \ln x$$

$$\ln x^{\frac{m}{n}} = \frac{m}{n} \ln x$$

Логарифмическая функция

Логарифмическая функция по основанию a — отношение:

$$\log_a x = \frac{\ln x}{\ln a}, \quad \log_a \colon \mathbb{R}^+ \to \mathbb{R}, \quad a \neq 1$$

Свойства:

$$\log_a a^{\frac{m}{n}} = \frac{m}{n}$$

$$\log_a b = \frac{\log_c b}{\log_c a}, \quad c \neq 1$$

$$\log_a a^x = x$$

$$a^{\log_a b} = b$$

 $\log_a b = \frac{1}{\log_b a}, \quad a, b \neq 1$

Элементарная теория чисел

Делимость

Пусть $a,b \in \mathbb{Z}$. Тогда a — **делитель** b, когда

$$ax = b, x \in \mathbb{Z} \iff a \mid b \iff |a| \le |b|$$

Отношение делимости *транзитивно*, такое выражение можно *перемножить* с другим:

$$\times \begin{cases} a \mid b \\ c \mid d \end{cases} \implies ac \mid bd$$

Общий делитель чисел делит их линейную комбинацию:

$$a \mid b, c \implies a \mid bx + cy, \quad x, y \in \mathbb{Z}$$

Заметим, что $a = bx + cy^*$, когда $(b, c) \mid a$.

Доказательство. Пусть d := (b, c), тогда:

$$d \mid b, c \implies d \mid (bx + cy) \implies d \mid a \blacksquare$$

Коэффициенты Безу (x,y) неуникальны и легко выражаются $(\partial o \kappa a s \omega b a e m c s n o d c m a h o b k o u b e k o$

$$(x + mk, y - ak), k \in \mathbb{Z}$$

^{*} Такое уравнение называют соотношением Безу, а х и у — коэффициентами Безу (Э. Безу).

Наибольший общий делитель

Hаибольший общий делитель* для $\{a_k\}_{k\in\mathbb{N}}$ — такое $gcd(\{a_k\}),$ что

 $\exists d \colon d \mid \gcd(\{a_k\}) \mid \{a_k\}.$

Упрощённая запись $gcd(\{a_k\}) = (\{a_k\}).$

Этот бинарный оператор коммутативен, ассоциативен и дистрибутивен.

Наименьшее общее кратное

Hаименьшее общее кратное** для $\{a_k\}_{k\in\mathbb{N}}$ — такое $lcm(\{a_k\})$, что

$$\exists m \colon \{a_k\} \mid lcm(\{a_k\}) \mid m.$$

Упрощённая запись $lcm(\{a_k\}) = [\{a_k\}].$

Этот бинарный оператор коммутативен и ассоциативен, однако не дистрибутивен.

Двойственность

НОД и НОК двойственны друг другу:

$$(a,b) \cdot [a,b] = ab$$

Доказательство. Пусть m := [a, b], тогда:

 $a,b \mid m \iff ab \mid am,bm \iff ab \mid (am,bm) \iff ab \mid (a,b)m$ Так как $(a,b) \mid [a,b] \mid ab$, то $ab/(a,b) \mid [a,b]$.

Значит, $ab/(a,b) \le [a,b]$. Но [a,b] — наименьшее общее кратное a,b. Следовательно, $ab/(a,b) \ne [a,b]$, поэтому:

$$ab/(a,b) = [a,b] \iff ab = (a,b) \cdot [a,b]$$

^{*} Сокращённо НОД, или Greatest Common Divisor (GCD).

^{**} Сокращённо HOK, или Least Common Multiple (LCM).

Модульная арифметика

Конгруэнтность

Два целых числа **конгруэнтны** (сравнимы) по модулю m, когда их разность кратна m ($K.\Phi$. Γ aycc):

$$a \equiv b \pmod{m} \iff m \mid (a - b) \iff a = b + mk, k \in \mathbb{Z}$$

Отношение конгруэнтности mранзитивно, поэтому числа образуют cucmemy ocmamoчных классов \mathbf{Z}_m по модулю m. Например, \mathbf{Z}_3 :

$$\{\dots,-6,-3,\mathbf{0},3,6,\dots\}$$
 класс r_0 $\{\dots,-5,-2,\mathbf{1},4,7,\dots\}$ класс r_1 $\{\dots,-4,-1,\mathbf{2},5,8,\dots\}$ класс r_2

Свойства сравнения

Конгруэнтные числа можно *складывать*, *перемножать* и передавать *многочлену* $f \in \mathbb{Z}[x]$:

$$\begin{cases} a \equiv b \pmod{m} \\ c \equiv d \pmod{m} \end{cases} \implies \begin{cases} a+c \equiv b+d \pmod{m} \\ ac \equiv bd \pmod{m} \\ f(a) \equiv f(b) \pmod{m} \end{cases}$$

Конгруэнтные числа можно *умножать* (делить) на одно число с *увеличением* (сокращением) модуля:

$$a \equiv b \pmod{m} \iff ad \equiv bd \pmod{md}$$

 $ad \equiv bd \pmod{m} \iff a \equiv b \pmod{\frac{m}{(m,d)}}$

Из транзитивности делимости следует:

$$a \equiv b \pmod{m}$$
, $n \mid m \implies a \equiv b \pmod{n}$

Признаки делимости

$$\overline{a_1 a_2 \dots a_n} = \sum_{i=0}^{n-1} a_{n-i} 10^i$$

— При модуле $m=2^k; 5^k; 10^k$ одночлены $a_{n-i}10^i \equiv a_{n-i}0 =$ $= 0 \ (i \ge k)$. Значит, число $\overline{a_1 a_2 ... a_n}$ кратно m, когда последние k цифры кратны m:

$$\overline{a_1 a_2 \dots a_n} \equiv 0 \iff \overline{a_{n-k+1} \dots a_{n-1} a_n} \equiv 0$$

— При модуле m=3;9 одночлены $a_{n-i}10^i\equiv a_{n-i}1^i=a_{n-i}.$ Значит, число $\overline{a_1 a_2 \dots a_n}$ кратно m, когда сумма цифр кратна m:

$$\overline{a_1 a_2 \dots a_n} \equiv 0 \iff a_1 + a_2 + \dots + a_n \equiv 0$$

— При модуле m=11 одночлены $a_{n-i}10^i\equiv a_{n-i}(-1)^i.$ Значит, число $\overline{a_1 a_2 \dots a_n}$ кратно 11, когда знакочередующаяся сумма цифр кратна 11:

$$\overline{a_1 a_2 \dots a_n} \equiv 0 \iff a_1 - a_2 + \dots - a_n \equiv 0$$

— При модуле m = 7 вычтем из числа n последнюю цифру; останется $\lfloor n/10 \rfloor$. Последняя цифра равна $n-10 \lfloor n/10 \rfloor$. Вычтем из числа удвоенную последнюю цифру:

$$\left\lfloor \frac{n}{10} \right\rfloor - 2(n - 10 \left\lfloor \frac{n}{10} \right\rfloor) \equiv 0 \iff 21 \left\lfloor \frac{n}{10} \right\rfloor - 2n \equiv 0$$

Одночлен $21|n/10| \equiv 0$. Значит, число $\overline{a_1 a_2 ... a_n}$ кратно 7, когда удвоенная разность последней цифры числа и самого числа без этой цифры кратна 7:

$$\overline{a_1 a_2 \dots a_n} \equiv 0 \iff \overline{a_1 a_2 \dots a_{n-1}} - 2a_n \equiv 0$$

Функция Эйлера

Функция $\phi(m)$ считает количество положительных целых чисел, меньших m и взаимно простых с ним (∂ ля малых и простых т целесообразно перебрать вручную):

$$\phi(m) = m \prod_{p|m} \left(1 - \frac{1}{p}\right)$$

p — простой делитель m; 1/p — часть чисел, кратных p;

1-1/p — часть чисел, взаимно простых с p.

Функция Эйлера мультипликативна (только для взаимно простых натуральных чисел).

Теорема Эйлера

Теорема. Пусть $a \in \mathbb{Z}$, (a, m) = 1. Тогда верно (Л. Эйлер):

$$a^{\phi(m)} \equiv 1 \pmod{m}, \quad a \not\equiv 0 \pmod{m}$$

Доказательство. Введём систему остаточных классов \mathbf{Z}_m . В ней есть m классов: r_0, r_1, \dots, r_{m-1} .

Пусть множество Φ содержит в себе $\phi(m)$ остатков, взаимно простых с m. Домножим каждый элемент на a и образуем новое множество Φ_a . Заметим, что:

Элементы Φ_a из разных классов. Φ и Φ_a конгруэнтны.

Допустим, это не так. Тогда: Пусть $ar_k \equiv r_l, r_l \in \mathbf{Z}_m$.

$$ar_k \equiv ar_l \implies r_k \equiv r_l$$
 Так как $m \nmid ar_k$, то:

Ho
$$r_k \not\equiv r_l \implies ar_k \not\equiv ar_l \square$$
 $r_l \in \Phi \implies \Phi \equiv \Phi_a \square$

Перемножим элементы множеств Φ и Φ_a :

$$\begin{split} &r_0r_1\dots r_{\phi(m)}\equiv ar_0ar_1\dots ar_{\phi(m)} \implies \\ &r_0r_1\dots r_{\phi(m)}\equiv a^{\phi(m)}r_0r_1\dots r_{\phi(m)} \implies a^{\phi(m)}\equiv 1 \;\blacksquare \end{split}$$

Следствие. Пусть $a\in\mathbb{Z},\;b\in\mathbb{N},\;(m,a)=1.$ Тогда:

$$a^b \equiv a^b \mod \phi^{(m)} \pmod{m}, \quad a \not\equiv 0 \pmod{m}$$

Доказательство. Представим b в арифметическом виде:

$$b = \phi(m) \left| \frac{b}{\phi(m)} \right| + b \mod \phi(m)$$

 $\phi(m)$ — модуль деления. $\lfloor b/\phi(m) \rfloor$ — целое частное.

 $b \mod \phi(m)$ — остаток.

Подставим полученное выражение:

$$a^{\phi(m)\lfloor b/\phi(m)\rfloor+b \mod \phi(m)} = (a^{\phi(m)})^{\lfloor b/\phi(m)\rfloor}a^{b \mod \phi(m)}$$

Так как $a^{\phi(m)}\equiv 1$, получается $a^b\equiv a^b \mod {\phi(m)}$. \blacksquare

Алгоритм Евклида

Пусть $a, b \in \mathbb{N}^0$ (a > b), тогда:

$$(a,b) = (a \bmod b, b)$$

Доказательство. Допустим, $m \mid (a - b), b$:

$$+ \begin{cases} a - b \equiv 0 \pmod{m} \\ b \equiv 0 \pmod{m} \end{cases} \implies \begin{cases} a \equiv 0 \pmod{m} \\ b \equiv 0 \pmod{m} \end{cases}$$

Получаем, что любой общий делитель m у a-b, b есть у a, b. Следовательно, (a,b)=(a-b,b).

При повторе вычитания получится остаток от деления на b:

$$(a,b) = (a \bmod b, b) \blacksquare$$

Мультипликативная инверсия

Пусть $ab \equiv 1 \pmod{m}$ — линейное сравнение, где b — **мультипликативная инверсия** числа a по модулю m:

$$b \equiv a^{-1} \equiv \frac{1}{a} \pmod{m}$$
, $(a, m) = 1$

«Дробные» числа можно *складывать*, *перемножать* и *сокращать* как рациональные:

$$\begin{cases} \frac{a}{b} + \frac{c}{d} \equiv \frac{ad + bc}{cd} \pmod{m} \\ \frac{a}{b} \times \frac{c}{d} \equiv \frac{ac}{bd} \pmod{m} \\ \frac{eg}{fg} \equiv \frac{e}{f} \pmod{m} \end{cases}$$

Линейное сравнение

 \mathcal{J} инейное сравнение вида $ax \equiv b \pmod{m}$ разрешимо относительно x, когда $(m,a) \mid b$. (по соотношению Besy)

План решения:

- упростить линейное сравнение;
- рассчитать (m, a) по алгоритму Евклида;
- выразить (m, a) через полученные остатки;
- домножить соотношение Безу на b.

Пример. Решить линейное сравнение: $4x \equiv 4 \pmod{6}$.

Упростим сравнение:

$$4x \equiv 4 \pmod{6} \mid \cdot 1/2$$
$$2x \equiv 2 \pmod{3}$$

Применим алгоритм Евклида в алгебраическом виде:

«Прямой» алгоритм: «Обратный» алгоритм:

$$3 = 2 \cdot 1 + 1$$
 $1 = 3 \cdot 1 + 2 \cdot (-1) \mid \cdot 2$
 $2 = 1 \cdot 2 + 0$ $2 = 3 \cdot 2 + 2 \cdot (-2)$

Итак, коэффициенты Безу найдены: x = -2, y = 2.

Omeem: x = -2.

Китайская теорема об остатках

Сравнения можно объединять в систему:

$$\begin{cases} x \equiv a_1 \pmod{m_1} \\ \dots \\ x \equiv a_n \pmod{m_n} \end{cases}$$

Она разрешима относительно x по модулю $[m_1,\ldots,m_n]$, когда разрешима каждая пара сравнений, в частности $(m_1,m_2)\mid a_1-a_2.$

Доказательство. Рассмотрим пару сравнений из системы:

$$\begin{cases} x \equiv a_1 \pmod{m_1} \\ x \equiv a_2 \pmod{m_2} \end{cases} \iff \begin{cases} x = a_1 + m_1 j, & j \in \mathbb{Z} \\ x = a_2 - m_2 k, & k \in \mathbb{Z} \end{cases} \iff m_1 j + m_2 k = a_2 - a_1$$

Данное соотношение Безу имеет целые коэффициенты j,k, когда $(m_1,m_2)\mid (a_1-a_2).$ \square

По индукции, система будет разрешима относительно x, когда будет разрешима каждая пара сравнений.

Допустим, $x\equiv y\equiv a_i\pmod{m_i}$, $i\in\{i\}_{i=1}^n$ — решение всей системы. Значит, $m_i\mid x-y\implies [m_1,\dots,m_n]\mid x-y\iff x\equiv y\pmod{[m_1,\dots,m_n]}$. \blacksquare

План решения каждой пары сравнений:

- упростить линейные сравнения;
- преобразовать их в соотношения Безу, приравнять их;
- решить полученное выражение как линейное сравнение.

Пример. Решить систему сравнений:

$$\begin{cases} x \equiv 2 & \pmod{3} \\ x \equiv 2 & \pmod{4} \\ 2x \equiv -3 & \pmod{5} \end{cases}$$

Упростим последнее сравнение:

$$2x \equiv -3 \pmod{5} \iff x \equiv 1 \pmod{5}$$

Преобразуем первую пару сравнений в соотношения Безу:

$$\begin{cases} x \equiv 2 \pmod{3} \\ x \equiv 2 \pmod{4} \end{cases} \iff \begin{cases} x = 2 + 3j, & j \in \mathbb{Z} \\ x = 2 + 4k, & k \in \mathbb{Z} \end{cases}$$

Приравняем их и решим как сравнение:

$$2+3j=2+4k \iff 2 \equiv 2+k \pmod{3} \iff k \equiv 0 \pmod{3}$$

Значит, $x = 2 + 4k \equiv 2 \pmod{12}$ — решение первой пары.

Аналогично решив следующую (u последнюю) пару, получим решение всей системы: $x \equiv 26 \pmod{60}$.

Omsem: $x \equiv 26 \pmod{60}$.

Сравнение по составному модулю

Пусть $f \in \mathbb{Z}[x]$. Тогда для $m = p_1^{\alpha_1} \dots p_r^{\alpha_r}$ разрешимо

$$f(x) \equiv 0 \pmod{m}$$
,

если разрешимы $f(x) \equiv 0 \pmod{p_i^{\alpha_i}}$, $i \in [1;r] \cap \mathbb{Z}$.

Доказательство \Longrightarrow . Пусть $x \in \mathbb{Z}$ — решение

$$f(x) \equiv 0 \pmod{m}, p_i^{\alpha_i} \mid m \implies f(x) \equiv 0 \pmod{p_i^{\alpha_i}}.$$

Доказательство \Leftarrow . Пусть x_i — решение

$$f(x_i) \equiv 0 \ \left(\bmod p_i^{\alpha_i} \right)$$

По китайской теореме об остатках:

$$\forall i_1, i_2 \in [1; r], \ i_1 \neq i_2 \ (p_{i1}^{\alpha_{i1}}, p_{i2}^{\alpha_{i2}}) = 1 \implies$$

$$\exists x \colon x \equiv x_i \pmod{p_i^{\alpha_i}} \implies f(x) \equiv 0 \pmod{[p_1^{\alpha_1}, \dots, p_r^{\alpha_r}]} \implies f(x) \equiv 0 \pmod{m} \blacksquare$$

Сравнение по степени простого модуля

Пусть $f \in \mathbb{Z}[x]$. Тогда для простого p разрешимо

$$f(x) \equiv 0 \pmod{p^{\alpha}},$$

если разрешимы $f(x) \equiv 0 \pmod{p^i}$, $i \in [1; \alpha] \cap \mathbb{Z}$.

Доказательство. Аналогично прошлому пункту.

Лемма Гензеля

Пусть для $f \in \mathbb{Z}[x]$ верно (К. Гензель):

$$f(a) \equiv 0 \pmod{p^{\alpha}}, \quad f'(a) \not\equiv 0 \pmod{p}$$

Тогда существует такое уникальное t, что:

$$f(a+tp^{\alpha}) \equiv 0 \pmod{p^{\alpha+1}}$$

Доказательство. Пусть a — решение $f(x) \equiv 0 \pmod{p^a}$, которое можно представить в виде $x = a + tp^a$.

По теореме Тейлора:

$$f(a + tp^{\alpha}) = f(a) + tp^{\alpha}f'(a) + t^{2}p^{2\alpha}f''(a)/2! + \dots + t^{n}p^{n\alpha}f^{(n)}(a)/n! \equiv f(a) + tp^{\alpha}f'(a) \pmod{p^{\alpha+1}} \blacksquare$$

Следствие. Пусть для $f \in \mathbb{Z}[x]$ верно

$$f(x_{\alpha}) \equiv 0 \pmod{p^{\alpha}}, \quad f'(x_{\alpha}) \not\equiv 0 \pmod{p^{\alpha}}.$$

Тогда решение сравнения по модулю $p^{\alpha+1}$ имеет вид:

$$x_{\alpha+1} \equiv x_{\alpha} - \frac{f(x_{\alpha})}{f'(x_{\alpha})} \pmod{p^{\alpha+1}}$$

Доказательство. По лемме Гензеля:

$$f(x_{\alpha}) + tp^{\alpha}f'(x_{\alpha}) \equiv 0 \pmod{p^{\alpha+1}} \iff tp^{\alpha} \equiv -\frac{f(x_{\alpha})}{f'(x_{\alpha})} \pmod{p^{\alpha+1}} \iff x_{\alpha} + tp^{\alpha} \equiv x_{\alpha+1} \equiv x_{\alpha} - \frac{f(x_{\alpha})}{f'(x_{\alpha})} \pmod{p^{\alpha+1}} \blacksquare$$

Тригонометрия

Основные функции

Единичной называется окружность, которая задаётся уравнением $x^2 + y^2 = 1$.

Тригонометрические функции соотносят *координаты* точки единичной окружности и *градусную меру дуги*, образуемой ей с начальным радиусом.

Синус — нечётная функция с периодом 2π ; график — cunycouda:

$$\sin \colon \mathbb{R} \xrightarrow{\alpha \mapsto y} [-1;1]$$

Обратная нечётная функция к $\sin |_{[-\pi/2;\pi/2]}$ — **арксинус**:

$$\sin^{-1} = \arcsin: [-1; 1] \xrightarrow{\alpha \mapsto y} [-\pi/2; \pi/2]$$

Косинус — чётная функция с периодом 2π ; график — cunycouda со смещением влево на $\pi/2$ («косинусоида»):

$$\cos \colon \mathbb{R} \xrightarrow{\alpha \mapsto x} [-1; 1]$$

Обратная функция к $\cos|_{[0:\pi]}$ — арккосинус:

$$\cos^{-1} = \arccos \colon [-1; 1] \xrightarrow{\alpha \mapsto x} [0; \pi]$$

Тангенс — нечётная функция с периодом π ; график — manzencouda:

tg:
$$\mathbb{R} \setminus \{\pi/2 + \pi n \mid n \in \mathbb{Z}\} \xrightarrow{\alpha \mapsto y/x} \mathbb{R}$$

Обратная нечётная функция к $\operatorname{tg}|_{(-\pi/2;\pi/2)}$ — **арктангенс**:

$$tg^{-1} = arctg \colon \mathbb{R} \xrightarrow{y/x \mapsto \alpha} (-\pi/2; \pi/2)$$

Котангенс — нечётная функция с периодом π ; график — mancenterouda с симметрией относительно оси Ox и смещением вправо на $\pi/2$ («котангенсоида»):

ctg:
$$\mathbb{R}\setminus\{\pi n\mid n\in\mathbb{Z}\}\xrightarrow{\alpha\mapsto x/y}\mathbb{R}$$

Обратная функция к ${\rm ctg}|_{(0;\pi)}$ — **арккотангенс**:

$$\operatorname{ctg}^{-1} = \operatorname{arcctg} \colon \mathbb{R} \xrightarrow{x/y \mapsto \alpha} (0; \pi)$$

Основные тождества

Из определений тригонометрических функций следует:

$$\sin^2 \alpha + \cos^2 \alpha = 1$$
 $\arccos x = \arcsin(\sqrt{1 - x^2})$
 $1 + \operatorname{tg}^2 \alpha = 1/\cos^2 \alpha$ $\arccos x = \arctan(\sqrt{1 - x^2}/x)$
 $1 + \operatorname{ctg}^2 \alpha = 1/\sin^2 \alpha$ $\arcsin y = \operatorname{arcctg}(\sqrt{1 - y^2}/y)$

Сумма и разность двух углов

Из скалярного произведения векторов следует:

$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$$
$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \sin \beta \cos \alpha$$
$$tg(\alpha \pm \beta) = \frac{tg \alpha \pm tg \beta}{1 \mp tg \alpha tg \beta} \qquad ctg(\alpha \pm \beta) = \frac{ctg \alpha ctg \beta \mp 1}{ctg \alpha \pm ctg \beta}$$

Доказательство. Пусть $\vec{A} = \langle \cos \alpha; \sin \alpha \rangle$, $\vec{B} = \langle \cos \beta; \sin \beta \rangle$. Рассмотрим их скалярное произведение:

$$+ \begin{cases}
\vec{A} \cdot \vec{B} = \cos \alpha \cos \beta + \sin \alpha \sin \beta \\
\vec{A} \cdot \vec{B} = ||\vec{A}|| ||\vec{B}|| \cos (\alpha - \beta) = \cos (\alpha - \beta)
\end{cases} \implies \cos (\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta \square$$

Затем полезно применить эти четыре формулы:

$$\alpha + \beta = \alpha - (-\beta)$$

$$\sin(\alpha - \beta) = \cos((\pi/2 - \alpha) + \beta)$$

$$tg \alpha = \sin \alpha / \cos \alpha \qquad ctg \alpha = \cos \alpha / \sin \alpha \blacksquare$$

Двойной угол

Из формул суммы и разности двух углов следует:

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha \qquad \sin 2\alpha = 2\sin \alpha \cos \alpha$$

$$tg 2\alpha = \frac{2 tg \alpha}{1 - tg^2 \alpha} \qquad ctg 2\alpha = \frac{ctg^2 \alpha - 1}{2 ctg \alpha}$$

$$(\sin \alpha \pm \cos \alpha)^2 = 1 \pm \sin 2\alpha$$

Формулы приведения

Из формул суммы и разности двух углов следуют формулы приведения, которые имеют вид:

$$f(\pi n/2 \pm \alpha) = \pm cof(\alpha), n \in \mathbb{Z}$$

Конечная функция и её знак определяются по графику; стрелками обозначены места смены функции на *кофункцию*.

Следствие. Для обратных функций верно:

$$\arcsin x + \arccos x = \pi/2$$
 $\arccos x + \arccos(-x) = \pi$
 $\arctan x + \arctan x = \pi/2$ $\arctan x + \arctan(-x) = \pi$

Формулы понижения степени

Из формул двойного угла и основного тригонометрического тождества следует:

$$\cos^{2} \frac{\alpha}{2} = \frac{\cos \alpha + 1}{2} \qquad \operatorname{tg}^{2} \frac{\alpha}{2} = \frac{1 - \cos \alpha}{\cos \alpha + 1}$$
$$\sin^{2} \frac{\alpha}{2} = \frac{1 - \cos \alpha}{2} \qquad \operatorname{ctg}^{2} \frac{\alpha}{2} = \frac{1 - \cos \alpha}{\cos \alpha + 1}$$

Из них легко выводятся формулы половинного угла.

Сумма и разность двух функций

Из формул суммы и разности двух углов следует:

$$\sin \alpha \pm \sin \beta = 2 \sin \frac{\alpha \pm \beta}{2} \cos \frac{\alpha \mp \beta}{2}$$
$$\cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$
$$\cos \alpha - \cos \beta = -2 \sin \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$

 $a\sin \alpha + b\cos \alpha = c\sin(\alpha + \phi) = c\cos(\alpha - \phi), c = \sqrt{a^2 + b^2}$

Из них можно вывести формулы произведения двух функций.

Доказательство. Рассмотрим сумму синусов:

$$\sin(x+y) + \sin(x-y) =$$

 $\sin x \cos y + \sin y \cos x + \sin x \cos y - \sin y \cos x = 2 \sin x \cos y$ Введём обозначения:

$$\begin{cases} x + y = \alpha \\ x - y = \beta \end{cases} \iff \begin{cases} 2x = \alpha + \beta \\ 2y = \alpha - \beta \end{cases} \iff \begin{cases} x = \frac{\alpha + \beta}{2} \\ y = \frac{\alpha - \beta}{2} \end{cases}$$

Таким образом,

$$\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}. \square$$

Похожие формулы доказываются аналогично. □

Рассмотрим синус суммы двух углов:

$$c\sin(\alpha + \phi) = c\sin\alpha\cos\phi + c\sin\phi\cos\alpha$$

Обозначим $a = c \cos \phi$, $b = c \sin \phi$ и найдём сумму квадратов:

$$a^2 + b^2 = c^2(\sin^2\phi + \cos^2\phi) = c^2 \iff c = \sqrt{(a^2 + b^2)} \ \Box$$

Случай с косинусом доказывается аналогично.

Подстановка Вейерштрасса

Тригонометрические функции от α можно выразить через тангенс от $\alpha/2$ (*К. Вейерштрасс*):

$$\sin \alpha = \frac{2 \operatorname{tg} \frac{\alpha}{2}}{1 + \operatorname{tg}^2 \frac{\alpha}{2}} \qquad \cos \alpha = \frac{1 - \operatorname{tg}^2 \frac{\alpha}{2}}{1 + \operatorname{tg}^2 \frac{\alpha}{2}}$$

Доказательство. Распишем каждую функцию:

$$\sin \alpha = \frac{2\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}}{\sin^2\frac{\alpha}{2} + \cos^2\frac{\alpha}{2}} = \frac{2\tan\frac{\alpha}{2}}{1 + \tan^2\frac{\alpha}{2}} \square$$

$$\cos\alpha = \frac{\cos^2\frac{\alpha}{2} - \sin^2\frac{\alpha}{2}}{\sin^2\frac{\alpha}{2} + \cos^2\frac{\alpha}{2}} = \frac{1 - tg^2\frac{\alpha}{2}}{1 + tg^2\frac{\alpha}{2}} \blacksquare$$

Общая алгебра

Соответствие

Соответствие (бинарное отношение) между множествами X и Y — произвольное множество $\rho \subseteq X \times Y$.

Упрощённая запись $x \in X$, $y \in Y$, $\langle x, y \rangle \in \rho =: x \rho y$.

 $X\supseteq D_{\rho}$ — область определения (npoofpas) соответствия; $Y\supseteq E_{\rho}$ — область значений (ofpas) соответствия.

Соответствие ρ инъективно, когда

$$\forall x_1, x_2 \in D_\rho \ \exists y \in E_\rho \colon x_1 \rho y, \ x_2 \rho y \iff x_1 = x_2.$$

Соответствие ρ функционально, когда

$$\forall x \in D_{\rho} \; \exists ! y \in E_{\rho} \colon x \rho y.$$

Такое соответствие называется **отображением** (функцией) и обозначается:

$$\rho: X \xrightarrow{x \mapsto y} Y$$

Соответствие ρ сюръективно, когда

$$\forall y \in Y \ \exists x \in D_{\rho} \colon x \mapsto y.$$

Соответствие ρ всюду определено, когда

$$\forall x \in X \ \exists y \in E_{\rho} \colon x \mapsto y.$$

Свойства соответствий

Пусть $* \subseteq X \times X$, $\circ \subseteq X \times X$ — произвольные соответствия.

Соответствие * ассоциативно, когда

$$\forall x, y, z \in X \implies (x * y) * z = x * (y * z).$$

Соответствие * коммутативно, когда

$$\forall x, y \in X \implies x * y = y * x.$$

Соответствие * дистрибутивно относительно о, когда

$$\forall x, y, z \in X \implies \begin{cases} x * (y \circ z) = x * y \circ x * z \\ (y \circ z) * x = y * x \circ z * x \end{cases}.$$

Композиция отображений

Для отображений $f\colon X\to Y,\ g\colon Y\to Z$ существует $h\colon X\to Z,$ которое называется их **композицией**.

Упрощённая запись $\forall x \in X \ h(x) = g(f(x)) = (g \circ f)(x)$.

Композиция ассоциативна, однако не коммутативна.

Ограничение и продолжение

Oграничением отображения $f\colon X\to Y$ на $S\subseteq D_f$ называется такое $f|_S\colon S\to Y,$ что

$$\forall s \in S : f|_{S}(s) = f(s).$$

В свою очередь, f является npodonжением отображения $f|_S$.

Метрическое пространство

Mетрическое пространство — алгебраическая структура $\langle M; d \rangle$, где d — метрика.

Метрика d множества M — функция $d: M \times M \to R_0^+$, которая определяет расстояние между его двумя элементами.

Например, *евклидова метрика* использует теорему Пифагора в *n*-мерном пространстве:

$$d(x,y) = \sqrt{\sum_{k=1}^{n} (x_k - y_k)^2}$$

Для метрического пространства $\langle M; d \rangle$, $x,y,z \in M$ выполняются следующие *аксиомы*:

- $-d(x,y) = 0 \iff x = y moж \partial ecm o;$
- -d(x,y) = d(y,x) cuммempus;
- $-d(x,y) \le d(x,z) + d(y,z)$ «неравенство треугольника».

Алгебраическая операция

Отображение $*: X^n \to X$ называется n-местной алгебраической операцией на X.

Hейmральным называется такой элемент $e \in X$, что

$$\forall x \in X \implies e * x = x$$
 и $x * e = x$.

Левым или **правым** *нейтральным* называется такой элемент $e \in X$, что

$$\forall x \in X \implies e * x = x$$
 или $x * e = x$.

Если x * y = e, то x — **левый** обратный элемент к y, а y — **правый** обратный к x.

Стоит отметить, что если $y: X \to Y$ и $x: Y \to X$ — отображения, то y инъективно, а x сюръективно.

Доказательство. По условию, множество X накладывается на себя. Значит, f всюду определено.

Так как д функционально, то

$$\forall x_1, x_2 \in X \ \exists y \in E_f \colon x_1 f y, \ x_2 f y \iff x_1 = x_2,$$

то есть f инъективно. \square

Когда X накладывается на себя, то

$$\forall x \in E_g \ \exists y \in D_g \colon x \mapsto y,$$

то есть *д сюръективно*. ■

Элементы x и y **взаимно** обратны, когда x * y = y * x = e.

Алгебраическая структура

Алгебраическая структура (cucmema) — множество X с введёнными на нём алгебраическими операциями:

$$\langle X; *_1, *_2, ..., *_n \rangle$$

 Π олугруппа — алгебраическая структура $\langle X; * \rangle$ с двухместной ассоциативной операцией *.

Группа — полугруппа, для которой существуют нейтральный и обратный элементы.

Кольцо — коммутативная аддитивная группа, мультипликативная полугруппа, где \times дистрибутивно относительно +.

 Π оле — коммутативное кольцо с обратным элементом для imes.

Числовые системы

 $Cucmema\ натуральных\ чuceл$ — коммутативная аддитивная и мультипликативная полугруппа $(\mathbb{N}; +, \times)$.

Cucmema целых чисел — коммутативное кольцо $(\mathbb{Z}; +, \times)$.

Система рациональных чисел — упорядоченное поле $(\mathbb{Q}; +, \times)$.

Система действительных чисел — непрерывное упорядоченное поле $\langle \mathbb{R}; +, \times \rangle$.

Проективно расширенная числовая прямая — расширение множества действительных чисел $\widehat{\mathbb{R}} = \mathbb{R} \cup \{\infty\}$:

$$a \pm \infty = \infty \pm a = \infty, \quad a \neq \infty$$
$$b \cdot \infty = \infty \cdot b = \infty, \quad b \neq 0$$
$$\frac{a}{\infty} = 0 \qquad \frac{b}{0} = \infty$$

Комплексные числа

Система компле́ксных чисел — непрерывное поле $(\mathbb{C}; +, \times)$, в котором существует такая мнимая единица i, что $i^2 = -1$:

$$(a,b) \pm (c,d) = (a \pm c, b \pm d)$$

 $(a,b) (c,d) = (ac - bd, bc + ad)$
 $1/z = \bar{z}/z\bar{z} = \bar{z}/|z|^2$

z = a + bi — комплексное число;

 $ar{z}=a-bi$ — комплексное число, conpяжённое к z.

Операция сопряжения $\partial ucmpuбутивна$ относительно $+, \times.$

Алгебраическая форма числа $z=(a,b)\in\mathbb{C}-a+bi$:

 $a =: \Re e z$ — действительная часть z;

 $b =: \Im m z$ — мнимая часть z.

Извлечение квадратного корня из z = a + bi:

$$\sqrt{z} = \pm \left(\sqrt{\frac{|z|+a}{2}} + \operatorname{sgn}(b) i\sqrt{\frac{|z|-a}{2}}\right)$$

Доказательство. По определению нужно найти такое v, что

$$v^2 = (x + yi)^2 = x^2 + 2xyi - y^2 = a + bi = z.$$

Получаем систему уравнений:

$$\begin{cases} x^2 - y^2 = a \\ 2xy = b \end{cases} \iff + \begin{cases} (x^2 - y^2)^2 = a^2 \\ 4x^2y^2 = b^2 \end{cases} \iff (x^2 + y^2)^2 = |z|^2$$

Извлечём корень из обеих частей уравнения:

$$\pm \begin{cases} x^2 + y^2 = |z| \\ x^2 - y^2 = a \end{cases} \iff \begin{cases} 2x^2 = |z| + a \\ 2y^2 = |z| - a \end{cases} \iff$$
$$x = \pm \sqrt{\frac{|z| + a}{2}}, \quad y = \pm \sqrt{\frac{|z| - a}{2}}$$

Так как xy = b/2, то при $b \ge 0 \implies \operatorname{sgn} x = \operatorname{sgn} y$, иначе $\operatorname{sgn} x = -\operatorname{sgn} y$. В общем виде это записывается так:

$$v = \pm \left(\sqrt{\frac{|z|+a}{2}} + \operatorname{sgn}(b) i\sqrt{\frac{|z|-a}{2}}\right) \blacksquare$$

Тригонометрическая форма числа $z \in \mathbb{C} - r(\cos \phi + i \sin \phi)$, где r — модуль числа z, ϕ =: $\arg z \in (-\pi; \pi]$ — его аргумент (угол между вектором числа z и начальным радиусом):

$$\phi = \begin{cases} \arctan(\Im\operatorname{m} z/\Re\operatorname{e} z), & x > 0\\ \arctan(\Im\operatorname{m} z/\Re\operatorname{e} z) + \pi, & x < 0, \ y \geq 0\\ \arctan(\Im\operatorname{m} z/\Re\operatorname{e} z) - \pi, & x < 0, \ y < 0\\ \operatorname{sgn}(\Im\operatorname{m} z) \ \pi/2, & x = 0, \ y \neq 0 \end{cases}$$

Произведение чисел $z_1, z_2 \in \mathbb{C}$ — число с модулем $|z_1 z_2| = ||z_1| \cdot |z_2||$ и аргументом $\arg(z_1 z_2) = \arg z_1 + \arg z_2$.

Следствие. Возведение в степень числа $z = r(\cos \phi + i \sin \phi)$:

$$z^n = r^n (\cos n\phi + i \sin n\phi), n \in \mathbb{Z}$$

Частное чисел $z_1, z_2 \in \mathbb{C}$ — число с модулем $|z_1/z_2| = ||z_1|/|z_2||$ и аргументом $\arg(z_1/z_2) = \arg z_1 - \arg z_2$.

Извлечение корня n степени из $z = r(\cos \phi + i \sin \phi)$:

$$\sqrt[n]{z} = \sqrt[n]{r} \left(\cos \frac{\phi + 2\pi k}{n} + i \sin \frac{\phi + 2\pi k}{n} \right), \ k \in \{m\}_{m=0}^{n-1}$$

Доказательство. По определению нужно найти такое v, что

$$v^n = \rho^n(\cos n\alpha + i\sin n\alpha) = r(\cos\phi + i\sin\phi) = z$$

Получаем систему уравнений:

$$\begin{cases} \rho^n = r \\ n\alpha = \phi + 2\pi k \end{cases} \iff \begin{cases} \rho = \sqrt[n]{r} \\ \alpha = (\phi + 2\pi k)/n, \ k \in \mathbb{Z} \end{cases}$$

Значит,

$$v = \sqrt[n]{r} \left(\cos \frac{\phi + 2\pi k}{n} + i \sin \frac{\phi + 2\pi k}{n} \right). \blacksquare$$

Предел последовательности

Предел

Предел последовательности $\{x_n\}$ — такое a, что

$$\forall \varepsilon > 0 \; \exists N \colon \forall n > N \; x_n \in U_{\varepsilon}(a).$$

Упрощённая запись $\lim_{n\to\infty} x_n = a$ или $n\to\infty, x_n\to a$.

Этот оператор дистрибутивен относительно сложения, умножения.

Частичным называется предел подпоследовательности.

Свойства предела

Сходимость \Longrightarrow ограниченность.

Доказательство. Пусть $\lim_{n\to\infty}x_n=a$. По определению:

$$\forall \varepsilon > 0 \; \exists N \colon \forall n > N \; x_n \in U_{\varepsilon}(a)$$

По «дистрибуции» модуля относительно сложения:

$$|x_n| = |x_n - a + a| \le |x_n - a| + |a| < \varepsilon + |a|$$

Положим, что $\forall m \leq N \ L = \max(\left|\{x_m\}\right|, \varepsilon + |a|) \implies |x_n| \leq L$.

Пусть $n \to \infty, x_n \to a, y_n \to b$. Выполняя $npe \partial e n b h b i u nepexo \partial,$ при $x_n \le y_n$ или $x_n < y_n$ сохраняется неравенство $a \le b$.

Доказательство. По определению предела:

$$\forall \varepsilon > 0 \ \exists N \colon \forall n > N \ x_n \in U_{\varepsilon}(a), \ y_n \in U_{\varepsilon}(b)$$

Следовательно,

$$+ \begin{cases} x_n \leq y_n \\ a - x_n < \varepsilon \\ y_n - b < \varepsilon \end{cases} \iff \begin{cases} y_n - x_n \geq 0 \\ y_n - x_n < 2\varepsilon + b - a \end{cases} \iff \frac{a - b}{2} < \varepsilon$$

Так как ε — сколь угодно малое положительное число, то $a-b \leq 0 \iff a \leq b$. \square

При $x_n < y_n$ доказательство аналогично. \blacksquare

Пусть $n\to\infty, x_n, y_n\to a$. Тогда при $\forall \{z_n\}\colon x_n\le z_n\le y_n$ справедливо $z_n\to a$. (теорема о промежуточной функции)

Доказательство. По определению предела:

$$\forall \varepsilon > 0 \; \exists N \colon \forall n > N \; x_n, y_n \in U_{\varepsilon}(a)$$

Следовательно,

$$a - \varepsilon < x_n \le z_n \le y_n < a + \varepsilon \implies z_n \in U_\varepsilon(a) \implies \lim_{n \to \infty} z_n = a. \;\blacksquare$$

Условие Коши

Последовательность $\{x_n\}$ удовлетворяет условию Коши (является фундаментальной), если

$$\forall \varepsilon > 0 \ \exists N \colon \forall n, m > N \ |x_n - x_m| < \varepsilon.$$

Фундаментальность \Longrightarrow ограниченность.

Доказательство. По условию Коши:

$$\forall \varepsilon > 0 \ \exists N \colon \forall n, m > N \ |x_n - x_m| < \varepsilon$$

По «дистрибуции» модуля относительно сложения:

$$\begin{cases} |x_n - x_m| < \varepsilon \\ |x_n| = |x_n - x_m + x_m| \end{cases} \iff \begin{cases} |x_n - x_m| < \varepsilon \\ |x_n| \le |x_n - x_m| + |x_m| \end{cases} \iff$$

$$|x_n| < \varepsilon + |x_m|$$

Положим, что $\forall k \leq N \ L = \max(\left|\left\{x_k\right\}\right|, \varepsilon + \left|x_m\right|) \implies \left|x_n\right| \leq L.$

Принцип компактности отрезка

Ограниченность ⇒ частичная сходимость:

$$\forall \{x_n\} \in [a;b] \ \exists \{n_k\} \uparrow \colon \lim_{k \to \infty} x_{n_k} = \xi$$

Доказательство. По принципу Кантора:

$$\forall k \in \mathbb{N} \ \exists ! \xi \in [a_k; b_k] \subset [a_{k-1}; b_{k-1}] \iff \lim_{k \to \infty} a_k = \lim_{k \to \infty} b_n = \xi$$

Образуем подпоследовательность:

$$\{x_{n_k} \mid \{n_k\} \uparrow, \, x_{n_k} \in [a_k; b_k]\}$$

По теореме о промежуточной функции:

$$a_k \le x_{n_k} \le b_k \implies \lim_{k \to \infty} x_{n_k} = \xi \blacksquare$$

Частичный предел фундаментальной последовательности является её пределом.

Доказательство. Пусть $\{x_n\}$ фундаментальна \implies она ограничена.

По принципу компактности отрезка $\lim_{k\to\infty} x_{n_k} = a$.

По условию Коши:

$$\forall \varepsilon/2 > 0 \ \exists N : \forall n, m > N \ |x_n - x_m| < \varepsilon/2$$

Зафиксируем n. При $x_m = x_{n_k} > N$ перейдём к пределу:

$$|x_n - a| \le \varepsilon/2 < \varepsilon \iff \lim_{k \to \infty} x_n = a \blacksquare$$

Критерий Коши

Сходимость \iff фундаментальность.

Доказательство ⇒ . По определению предела:

$$\forall \varepsilon > 0 \; \exists N \colon \forall n > N \; x_n \in U_{\varepsilon/2}(a)$$

Значит,
$$\forall n, m > N \ |x_n - x_m| = |(x_n - a) + (a - x_m)|.$$

По «дистрибуции» модуля относительно сложения:

$$|x_n - x_m| \le |x_n - a| + |x_m - a| < \varepsilon/2 + \varepsilon/2 = \varepsilon$$

Доказательство \Leftarrow . Пусть $\{x_n\}$ фундаментальна \Rightarrow она ограничена \Rightarrow по принципу компактности отрезка она частично сходится к c \Rightarrow по условию Коши и принципу компактности отрезка она сходится к c.

Теорема Вейершстрасса

Монотонность ⇒ сходимость:

$$\begin{cases} \forall \{x_n\} / \lim_{n \to \infty} x_n = \sup\{x_n\} \\ \forall \{y_n\} \backslash \lim_{n \to \infty} y_n = \inf\{y_n\} \end{cases}$$

Доказательство. По определению точной верхней границы:

$$\forall n \in \mathbb{N} \ x_n \le \sup\{x_n\}$$

Так как последовательность неубывает, то

$$\forall \epsilon > 0 \; \exists N \colon \forall n > N \; x_n \in U_{\epsilon}(\sup\{x_n\}) \implies$$

$$\lim_{n\to\infty} x_n = \sup\{x_n\}. \ \Box$$

Для $\{y_n\} \searrow$ доказательство аналогично. \blacksquare

Предел функции

Предел

Предел функции $f: X \to Y$ в точке $x_0 \in X$ по Komu — такое $a \in Y$, что $(O.Л.\ Komu)$

$$\forall \varepsilon > 0 \; \exists \delta > 0 \colon \forall x \in \underbrace{\mathring{U}_{\delta}(x_0) \subseteq D_f}_{\mathsf{I}}, \, \underbrace{f(x) \in U_{\varepsilon}(a)}_{\mathsf{II}}.$$

- I функция f определена в какой-либо проколотой δ -окрестности точки x_0 ;
- II функция f имеет образ в какой-либо проколотой ε -окрестности точки a.

Предел функции $f: X \to Y$ в точке $x_0 \in X$ по Гейне — такое $a \in Y$, что (Э. Гейне)

$$\forall \{x_n\} \in D_f \colon \lim_{n \to \infty} x_n = x_0 \ (x_n \neq x_0) \implies \lim_{n \to \infty} f(x_n) = a.$$

Упрощённая запись $\forall x \in X \lim_{x \to x_0} f(x) = a$ или $x \to x_0$, $f(x) \to a$.

Критерий Коши

Сходимость ⇔ выполнение условия Коши:

$$\forall \varepsilon > 0 \; \exists \delta > 0 \colon \forall x', x'' \in \mathring{U}_{\delta}(x_0) \; \left| f(x') - f(x'') \right| < \varepsilon$$

Доказательство ⇒ . По определению предела:

$$\forall \varepsilon > 0 \; \exists \delta > 0 \colon \mathring{U}_{\delta}(x_0) \subseteq D_f, \; U_{\varepsilon/2}(a) \cap E_f \neq \emptyset$$

Пусть $x', x'' \in \mathring{U}_{\delta}(x_0)$; по неравенству треугольника:

$$|f(x') - f(x'')| \le |f(x') - a| + |f(x'') - a| < \varepsilon/2 + \varepsilon/2 = \varepsilon \blacksquare$$

Доказательство ← . По условию Коши:

$$\exists \{x_n\} \in D_f \colon \lim_{n \to \infty} x_n = x_0, \ x_n \neq x_0$$

Последовательности $\{f(x_n)\}$ фундаментальны \implies сходятся.

По фундаментальности и сходимости к одной точке x_0 :

$$\lim_{x \to x_0} f(x) = a \blacksquare$$

Предел композиции функций

Пусть $f: X \to Y, g: Y \to Z$. Тогда:

$$\begin{cases} \lim_{x \to x_0} f(x) = y_0 \\ \lim_{x \to x_0} g(x) = z_0 \end{cases} \iff \begin{cases} \lim_{x \to x_0} (g \circ f)(x) = z_0 \\ f(x) \neq y_0 \end{cases}$$

Доказательство. Пусть $g \circ f = \varphi$; по определению предела:

$$\begin{cases} \forall \varepsilon > 0 \; \exists \delta > 0 \colon \mathring{U}_{\delta}(y_0) \subseteq D_g, \; U_{\varepsilon}(z_0) \cap E_g \neq \emptyset \\ \forall \delta > 0 \; \exists \sigma > 0 \colon \mathring{U}_{\sigma}(x_0) \subseteq D_f, \; U_{\delta}(y_0) \cap E_f \neq \emptyset \end{cases}$$

Из $\mathring{U}_{\delta}(y_0) \cap U_{\delta}(y_0) = \mathring{U}_{\delta}(y_0)$ следует:

$$\begin{cases} \forall \varepsilon > 0 \; \exists \sigma > 0 \colon \mathring{U}_{\sigma}(x_0) \subseteq D_f, \; U_{\varepsilon}(\varphi(x)) \cap E_g \neq \emptyset \\ y \neq y_0 \iff f(x) \neq y_0 \end{cases} \iff \lim_{x \to x_0} \varphi(x) = z_0, \; f(x) \neq y_0. \; \blacksquare$$

Бесконечно малая функция

Функция g бесконечно мала относительно f при $x \to x_0$, если

$$g(x) = \varepsilon(x)f(x) := \underset{x \to x_0}{o(f)}, \qquad \lim_{x \to x_0} \varepsilon(x) = 0.$$

Верно следующее утверждение:

$$\lim_{x\to x_0} f(x) = a \iff f(x) = a + \mathop{o}_{x\to x_0}(x)$$

Доказательство ⇒ . По определению предела:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \colon 0 < |x - x_0| < \delta, \ |f(x) - a| < \varepsilon$$

По теореме о промежуточной функции:

$$0 \le |f(x) - a| < \varepsilon \implies \lim_{x \to x_0} (f(x) - a) = 0 \iff$$
$$f(x) - a = \underset{x \to x_0}{o(x)} \iff f(x) = a + \underset{x \to x_0}{o(x)} \blacksquare$$

Доказательство — . По условию:

$$f(x) = a + o(x) \iff |f(x) - a| = |o(x)|$$

По определению бесконечно малой функции:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \colon 0 < |x - x_0| < \delta, \ |o(x)| < \varepsilon$$

По определению предела:

$$|f(x) - a| < \varepsilon \iff \lim_{x \to x_0} f(x) = a \blacksquare$$

Односторонний предел

Правосторонним называется предел функции, который определён в терминах правосторонних ε -окрестностей (неубывающих последовательностей):

$$\lim_{x \to x_0 + 0} f(x) = a \quad \text{или} \quad x \to x_0 + 0, \, f(x) \to a$$

Левосторонним называется предел функции, который определён в терминах левосторонних ε -окрестностей (невозрастающих последовательностей).

$$\lim_{x\to x_0-0} f(x) = a \quad \text{или} \quad x\to x_0-0, \, f(x)\to a$$

Сущестование предела равносильно существованию равных односторонних пределов:

$$\lim_{x \to x_0} f(x) \iff \lim_{x \to x_0 + 0} f(x) = \lim_{x \to x_0 - 0} f(x)$$

Непрерывность

Пусть $\forall \varepsilon > 0 \ U_{\varepsilon}(x_0) \subseteq D_f$. Тогда:

$$x-x_0=:\Delta x$$
 — приращение аргумента в точке $x_0;$ $f(x)-f(x_0)=:\Delta f$ — приращение функции в точке $x_0.$

Функция f непрерывна в точке x_0 , если

$$\lim_{x \to x_0} f(x) = f(x_0) \quad \text{или} \quad \Delta x \to 0, \ \Delta f \to 0.$$

Определения непрерывности справа и слева точки x_0 связаны с правосторонними и левосторонними пределами.

Непрерывными в точке x_0 являются сумма, произведение и композиция непрерывных в ней функций.

Теорема Вейерштрасса

Пусть $f \in C[a;b]$. Тогда в некоторых точках отрезка функция достигает своих точных верхней и нижней границ на [a;b].

Доказательство. Пусть $\sup f([a;b]) =: M, \inf f([a;b]) =: m.$

По определению точных верхней и нижней границ:

$$\forall x \in [a;b] f(x) \in [m;M]$$

По принципу компактности отрезка:

$$\lim_{n \to \infty} f(x_n) = M \qquad \lim_{k \to \infty} x_{n_k} = \xi$$

По определению непрерывности:

$$\lim_{k \to \infty} f(x_{n_k}) = f(\xi) \implies f(\xi) = M \blacksquare$$

Теорема о промежуточном значении

Пусть f непрерывна на промежутке $X \ni a, b$. Тогда:

$$\forall c \in [f(a); f(b)] \ \exists \xi \in [a; b] \colon c = f(\xi)$$

Доказательство. По принципу Кантора:

$$\forall n \in \mathbb{N} \ \exists \xi \in [a_n; b_n] \subset [a_{n-1}; b_{n-1}] \subseteq X \implies n \to \infty, \ a_n, b_n \to \xi$$

По определению непрерывности функции на промежутке:

$$n \to \infty$$
, $f(a_n), f(b_n) \to f(\xi)$

По теореме о промежуточной функции:

$$f(a_n) \le c \le f(b_n) \implies c = f(\xi) \blacksquare$$

Дифференциальное исчисление

Производная

Функция f имеет в точке x_0 производную (дифференцируема в ней), если (Ж.Л. Лагранж)

$$\forall \epsilon > 0 \ U_{\epsilon}(x_0) \cap D_f \neq \emptyset, \ \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x} =: f'(x_0).$$

Этот оператор дистрибутивен относительно сложения:

$$(f \cdot g)' = f'g + fg'$$
$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$
$$(f \circ g)' = (f' \circ g)g'$$

Свойства производной

Дифференцируемость \Longrightarrow непрерывность.

Доказательство. По определению производной:

$$\lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x} = f'(x_0) \iff \frac{\Delta f}{\Delta x} = f'(x_0) + o(\Delta x) \iff$$

$$\Delta f = \Delta x (f'(x_0) + o(\Delta x)) \implies \Delta x \to 0, \ \Delta f \to 0 \blacksquare$$

Приращение дифференцируемой функции легко представить в виде:

$$\Delta f = f'(x_0) \Delta x + o(\Delta x) \Delta x$$

Дифференциал функции — линейная часть её приращения:

$$dy := f'(x_0) \Delta x$$

Значит, формула производной имеет вид:

$$f'(x_0) = \frac{\mathrm{d}y}{\Delta x} = \frac{\mathrm{d}y}{\mathrm{d}x} \quad (\Delta x = \mathrm{d}x)$$

Производные элементарных функций

Таблица производных элементарных функций:

$$C' = 0 (x^n)' = nx^{n-1}$$

$$\sin' \alpha = \cos \alpha \cos' \alpha = -\sin \alpha$$

$$tg' \alpha = \frac{1}{\cos^2 \alpha} ctg' \alpha = -\frac{1}{\sin^2 \alpha}$$

$$\arcsin' x = \frac{1}{\sqrt{1 - x^2}} arccs' x = -\frac{1}{\sqrt{1 - x^2}}$$

$$arctg' x = \frac{1}{1 + x^2} arcctg' x = -\frac{1}{1 + x^2}$$

Промежутки монотонности

Если функция f дифференцируема в точке x_0 , то

$$\begin{cases} f'(x_0) > 0 \implies f \uparrow \text{ около } x_0 \\ f'(x_0) < 0 \implies f \downarrow \text{ около } x_0 \end{cases}$$

Доказательство. По определению производной:

$$f'(x_0) > 0 \iff \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x} > 0 \iff \frac{\Delta f}{\Delta x} > o(\Delta x)$$

При достаточно малом Δx верно:

$$\frac{\Delta f}{\Delta x} > 0 \iff \begin{bmatrix} \Delta f, \Delta x > 0 \\ \Delta f, \Delta x < 0 \end{bmatrix} \iff f \uparrow$$
 около $x_0 \square$

Для $f'(x_0) < 0$ доказательство аналогично.

Условие существования экстремума

Точка локального экстремума \implies критическая точка.

Доказательство. По определению локального максимума:

$$\exists \delta > 0 \colon \forall x \in \mathring{U}_{\delta}(x_0) \ f(x_0) > f(x)$$

Производная в точке x_0 либо существует, либо нет. \square

Допустим, она существует; по определению производной:

$$\lim_{x \to x_0} \frac{\Delta f}{\Delta x} = f'(x_0)$$

По предельному переходу:

$$\begin{bmatrix} \Delta x > 0 \implies \Delta f / \Delta x < 0 \implies f'(x_0) \le 0 \\ \Delta x < 0 \implies \Delta f / \Delta x > 0 \implies f'(x_0) \ge 0 \end{cases} \iff 0 \le f'(x_0) \le 0 \iff f'(x_0) \le 0 \iff 0 \le f'(x_0) \le 0 \le f'(x_0) \le 0 \iff 0 \le f'(x_0) \le \le f'$$

Для локального минимума доказательство аналогично. ■ Если в критической точке производная меняет знак, она является локальным экстремумом.

Доказательство. По определению критической точки:

$$\begin{cases}
f'(x_0) = 0 \\
f'(x_0) = \text{undefined}
\end{cases}$$

Допустим для определённости:

$$\begin{cases} \exists \delta > 0 \colon \forall x \in \mathring{U}_{\delta_{-}}(x_0) \ f'(x) > 0 \\ \exists \delta > 0 \colon \forall x \in \mathring{U}_{\delta_{+}}(x_0) \ f'(x) < 0 \end{cases}$$

По промежуткам монотонности:

$$\begin{cases} f\!\uparrow \text{ на }U_{\delta^-}(x_0)\\ f\!\downarrow \text{ на }U_{\delta^+}(x_0) \end{cases} \iff x_0 - \text{локальный максимум }\square$$

Для локального минимума доказательство аналогично. ■

Теорема Ролля

Пусть f дифференцируема на (a;b), непрерывна на f[a;b], и f(a) = f(b). Тогда: (M. Pолль)

$$\exists \xi \in (a;b) \colon f'(\xi) = 0$$

Доказательство. По теореме Вейерштрасса:

$$f(m) = \inf f([a;b]) \qquad f(M) = \sup f([a;b])$$

При f(a) = f(b) = f(m) по условию существования экстремума:

$$f'(M) = 0 \square$$

При f(m) = f(M) функция — константа на [a;b], производная которой равна нулю. ■

Теорема Лагранжа

Пусть f дифференцируема на (a;b) и непрерывна на f[a;b]. Тогда: $(\mathcal{K}.\mathcal{J}.\ \mathcal{J}$ агранж)

$$\exists \xi \in (a;b) : f'(\xi) = \frac{f(b) - f(a)}{b - a}$$

Доказательство. Пусть $\varphi(x) := f(x) - \lambda x$; подберём λ так, чтобы $\varphi(a) = \varphi(b)$:

$$f(a) - \lambda a = f(b) - \lambda b \iff (b - a)\lambda = f(b) - f(a) \iff$$
$$\lambda = \frac{f(b) - f(a)}{b - a}$$

По теореме Ролля:

$$\exists \xi \in (a;b) \colon \varphi'(\xi) = 0 \iff f'(\xi) - \lambda = 0 \iff$$
$$\lambda = f'(\xi) \implies f'(\xi) = \frac{f(b) - f(a)}{b - a} \blacksquare$$

Условие постоянства функции

Пусть f непрерывна на [a;b] и состоит из стационарных точек на (a;b). Тогда f([a;b])=C.

Доказательство. По теореме Лагранжа:

$$\forall x', x'' \in [a; b] \ \exists \xi \in (x'; x'') : f'(\xi) = \frac{f(x'') - f(x')}{x'' - x'}$$

По определению стационарной точки:

$$f'(\xi) = 0 \implies \frac{f(x'') - f(x')}{x'' - x'} = 0 \iff f(x'') = f(x') \blacksquare$$

Пусть f, g непрерывны на [a;b] и f'=g'. Тогда:

$$\forall x \in [a;b] f(x) - g(x) = C$$

Доказательство. Пусть $\varphi := f - g$; по условию:

$$\forall x \in (a;b) \ \varphi'(x) = f'(x) - g'(x) = 0$$

По условию постоянства функции:

$$\varphi'(x) = 0 \iff \varphi(x) = C \iff f(x) - g(x) = C \blacksquare$$

Теория графов

Ориентированный граф

Граф (ориентированный граф или орграф) — упорядоченная пара $G = \langle V, E \rangle$, где

V — непустое множество вершин (узлов);

E — конечное множество $p\ddot{e}\delta ep$, $E\subseteq V\times V$.

 Π оря ∂ ок графа G — число его вершин n=|V|.

Pазмеp графа G — число его рёбер m=|E|.

Ребро $e = \langle v, w \rangle$ задаётся вершинами v, w, где v — начало ребра, а w — его конец; вершины v, w являются $coce \partial humu$.

Входящая валентность вершины v графа G — число рёбер, чей конец в v:

$$indeg(v) = |\{\langle u, v \rangle \mid \langle u, v \rangle \in E\}|$$

 $\mathit{Исходящая}\ \mathit{валентность}\ \mathit{вершины}\ \mathit{v}\ \mathit{графа}\ \mathit{G}$ — число рёбер, чьё начало в v :

$$\mathrm{outdeg}(v) = \left| \{ \langle v, u \rangle \mid \langle v, u \rangle \in E \} \right|$$

Bалентность вершины v графа G — сумма входящей и исходящей валентностей вершины:

$$deg(v) = indeg(v) + outdeg(v)$$

Cвойство. Пусть $G=\langle V,E \rangle$ — граф с n вершинами и m рёбрами, причём $V=\{v_1,\ldots,v_n\}$. Тогда:

$$\sum_{i=1}^{n} \text{indeg}(v_i) = \sum_{i=1}^{n} \text{outdeg}(v_i) = m$$

 Π одграф $G=\langle V,E
angle,$ порождённый на $W\subset V,$ — граф вида $G_W=\langle W,E\cap W\times W
angle.$

Последовательность вершин

 $\mathit{Mapшpym}$ от вершины v_i до вершины v_j графа G — последовательность вершин или рёбер:

$$\begin{cases} \begin{bmatrix} [v_i, v_{i+1}, \dots, v_{j-1}, v_j] & \text{вершины} \\ [e_i, e_{i+1}, \dots, e_{j-1}, e_j] & \text{рёбра} \\ e_k = \langle v_{k-1}, v_k \rangle, k \in \{i+1, \dots, j\} \end{cases}$$

Закрытым называется такой маршрут, где начальная и конечная вершины совпадают.

Цепь — маршрут без повтора рёбер; *простая цепь* — маршрут без повтора рёбер и вершин (кроме, возможно, первой и последней вершины); цикл — закрытая простая цепь.

Ациклическим (лесом) называется граф без циклов.

Неориентированный граф

Неорграф (неориентированный граф) — такой граф $G = \langle V, E \rangle$, что $\forall v, w \in V \ \langle v, w \rangle \in E \implies \langle w, v \rangle \in E$.

Bалентность вершины v неорграфа — число рёбер, которые связаны с v.

Связным называется такой неорграф, между любыми вершинами которого есть маршрут.

Компонент связности неорграфа — связный подграф, который не входит в состав такого же подграфа.

Связность графа

Связным называется такой орграф, у которого аналогичный неорграф связный.

Орграф $G = \langle V, E \rangle$ называется $\mathit{сильно}$ $\mathit{связным}$, если

$$\forall v,w \in V \exists \begin{cases} \text{маршрут от v до w} \\ \text{маршрут от w до v} \end{cases}$$

Компонент сильной связности графа — сильно связный подграф, который не входит в состав такого же подграфа.

Виды неориентированных графов

Неориентированный граф $G = \langle V, E \rangle =: K_n, \ n = |V|$ называется *полным*, если $\forall v, w \in V, v \neq w \ \langle v, w \rangle \in E$.

Неориентированный граф $G = \langle V, E \rangle$ называется однородным, если $\forall v, w \in V \deg(v) = \deg(w)$.

Свободное дерево

Дерево (свободное) — компонент связности леса $T = \langle V, E \rangle$.

Cвойство. Пусть $T=\langle V,E \rangle$. Тогда |E|=|V|-1.

 Π оддерево $T = \langle V, E \rangle$, порождённое на $W \subset V$, — дерево вида:

$$T_W = \langle W, E \cap W \times W \rangle$$

Корневое дерево

Корневое дерево (ориентированное дерево или ордерево)

- такой орграф, у которого:
- аналогичный неорграф есть свободное дерево;
- есть единственная вершина с нулевой входящей валентностью, или *корень*.

Пусть $T = \langle V, E \rangle$ — дерево, $\langle v, w \rangle \in E$:

 $v=: \mathrm{parent}_w - po\partial umeль$ $w \in \mathrm{children}_v - peб\"{e}$ нок вершины v.

Корневым называется узел без родителей. *Листовым* называется узел без детей.

Родственными называются вершины с общими родителями.

 Π ервый в памяти ребёнок узла v — first_v , $nocne\partial huй$ — last_v ; $cne\partial y \omega \mu u \ddot{u}$ в памяти родственник узла v — next_v .

Уровень вершины v дерева T — длина простой цепи от root_T до v; обозначается depth_v .

Способы представления графа

Mатрица смежности для $G = \langle V, E \rangle$ — булева матрица V^2 , элементы которой равны логическому значению выражения:

$$\langle v, w \rangle \in E \mid v, w \in V$$

Матрица занимает $\mathcal{O}(V^2)$ места; проверка смежности проходит за $\mathcal{O}(1)$.

 $Cnuco\kappa$ cmeжнocmu для $G = \langle V, E \rangle$ — множество вершин $v \in V$, которым соответствует другое множество вершин:

$$\{w \in V \mid \langle v, w \rangle \in E\}$$

Список занимает $\mathcal{O}(|V|+|E|)$ места; проверка смежности проходит за $\mathcal{O}(\mathrm{outdeg}(v))$.

Способы представления дерева

 $Maccus\ podumeneй\ для\ T=\langle V,E \rangle$ — массив вершин $v\in V$, которым соответствует их родитель.

Массив занимает $\mathcal{O}(|V|)$ места; вывод родителя и порядка дерева проходят за $\mathcal{O}(1)$.

«Первый ребёнок, следующий родственник» для $T = \langle V, E \rangle$ — такая упорядоченная пара массивов вершин $\langle F, N \rangle$, что

F — массив из первых детей для всех вершин;

N — массив из следующих родственников для всех вершин.

Массив занимает $\mathcal{O}(|V|)$ места; вывод первого ребёнка, следующего родственника и порядка дерева проходят за $\mathcal{O}(1)$.

Редактирование дерева

К **элементарным операциям** редактирования дерева относятся:

- удаление листового узла v с ребром (parent $_v, v$): $v \mapsto \lambda$;
- вставка листового узла v с ребром (parent, v): $\lambda \mapsto v$;
- замещение вершины v другой вершиной $w: v \mapsto w$.

Пусть $T_1 = \langle V_1, E_1 \rangle, \, T_2 = \langle V_2, E_2 \rangle$ — корневые деревья.

Tрансформация T_1 в T_2 — упорядоченное биективное отображение $E\subseteq V_1\cup\{\lambda\}\times V_2\cup\{\lambda\}$.

Биективное отображение T_1 в T_2 — такое $M \subseteq W_1 \times W_2$

для $W_1 \subseteq V_1$, $W_2 \subseteq V_2$, что:

$$\begin{cases} \langle \operatorname{root}_{T_1}, \operatorname{root}_{T_2} \rangle \in M \neq \emptyset \\ \langle \operatorname{parent}_v, \operatorname{parent}_w \rangle \in M \iff \langle v, w \rangle \in M \\ v_2 = \operatorname{next}_{v_1}, \ w_2 = \operatorname{next}_{w_1} \iff \langle v_1, w_1 \rangle, \langle v_2, w_2 \rangle \in M \end{cases}$$

 \mathcal{I} емма. Пусть M — отображение T_1 в T_2 . Тогда:

$$\forall \langle v, w \rangle \in M \text{ depth}_v = \text{depth}_w$$

Cmoumocmb элементарной операции над T_1 и T_2 задаётся метрикой $\gamma\colon V_1\cup V_2\cup\{\lambda\}\times V_1\cup V_2\cup\{\lambda\}\to\mathbb{R}_0^+.$

Cmoumocmь трансформации T_1 в T_2 (E) задаётся метрикой:

$$\gamma(E) = \sum_{\langle v, w \rangle \in E} \gamma(v, w)$$

 $Peдакционная дистанция между <math>T_1$ и T_2 — функция:

$$\gamma_{\min} = \min(\{\gamma(E) \mid \forall E\})$$

Редакционный граф для T_1 и T_2 — неорграф $G = \langle V, E \rangle$ с вершинами вида $vw, v \in V_1 \cup \{v_0\}, w \in V_2 \cup \{w_0\} \ (v_0, w_0 - MHUMBLE y3ЛЫ)$, рёбра которого определяются по правилу:

$$\begin{cases} \operatorname{depth}_{v_{i+1}} \geq \operatorname{depth}_{w_{j+1}} \Longleftrightarrow \langle v_i w_j, v_{i+1} w_j \rangle \in E \ (v_{i+1} \mapsto \lambda) \\ \operatorname{depth}_{v_{i+1}} = \operatorname{depth}_{w_{j+1}} \Longleftrightarrow \langle v_i w_j, v_{i+1} w_{j+1} \rangle \in E \ (v_{i+1} \mapsto w_{j+1}) \\ \operatorname{depth}_{v_{i+1}} \leq \operatorname{depth}_{w_{j+1}} \Longleftrightarrow \langle v_i w_j, v_i w_{j+1} \rangle \in E \ (\lambda \mapsto w_{j+1}) \end{cases}$$

 ${\it Лемма}$. Пусть G — редакционный граф для T_1 и T_2 . Тогда маршрут P от v_0w_0 до $v_{n_1}w_{n_2}$ задаёт трансформацию:

$$\begin{split} E &= \{ \langle v_{i+1}, \lambda \rangle \mid \langle v_i w_j, v_{i+1} w_j \rangle \in P \} \cup \dots \\ \dots \{ \langle v_{i+1} w_{j+1} \rangle \mid \langle v_i w_j, v_{i+1} w_{j+1} \rangle \in P \} \cup \dots \\ \dots \{ \langle \lambda, w_{i+1} \rangle \mid \langle v_i w_i, v_i w_{i+1} \rangle \in P \} \end{split}$$

Алгоритм редактирования дерева занимает $\mathcal{O}(n_1n_2)$ места, используя $\mathcal{O}(n_1n_2)$ времени.

Обход дерева

 $Oбxo\partial$ дерева $T = \langle V, E \rangle$ — биективное отображение:

order:
$$V \rightarrow \{1, \dots, |V|\}$$

 Π рямым называется такой обход дерева $T = \langle V, E \rangle$, что:

$$\begin{cases} \operatorname{order}(\operatorname{root}_T) = 1 \\ \operatorname{order}(\operatorname{first}_v) = \operatorname{order}(v) + 1, \ \operatorname{first}_v \neq \emptyset \\ \operatorname{order}(\operatorname{next}_v) = \operatorname{order}(v) + \operatorname{size}(v), \ \operatorname{next}_v \neq \emptyset \end{cases}$$

Алгоритм прямого обхода дерева занимает линейное место, используя линейное время.

Поиск с возвратом

Поиск с возвратом — метод нахождения решений задачи полным перебором всех допустимых расстановок элементов конечного множества:

- в качестве *частичного решения* используется пустое упорядоченное множество M, которое расширяется до полного по одному элементу за операцию;
- если решение *полное* или *не удовлетворяет условию*, алгоритм приступает к другому частичному решению.

Пусть $T_1 = \langle V_1, E_1 \rangle, \, T_2 = \langle V_2, E_2 \rangle$ — корневые деревья.

 $\mathit{Kan}\partial u\partial am$ для $v\in V_1$ — элемент множества

$$C_v := \{w \mid w \in V_2, \; \operatorname{depth}_v = \operatorname{depth}_w\} \cup \{\lambda\}.$$

 $Bosepamhoe\ \partial epeso$ для T_1 и T_2 — такое дерево $T=\langle V,E\rangle$ с мнимым корнем, что:

- I всякая простая цепь возвратного дерева от корня до листа без корня соответствует уникальному отображению T_1 в T_2 ;
- II индекс узлов одной простой цепи от корня до листа без корня *строго возрастает*;
- III всякий узел простой цепи от корня до листа без корня является $\kappa a h \partial u \partial a m o m$ для соответствующего узла T_1 .

Итерация построения полного решения M для условия P:

$$\begin{cases} \forall c \in C_{W.\mathrm{last}()} \ W := W \cup \{c\} \\ T(M) := M \ \text{— частичное решение} \\ M \wedge P(M) \wedge T(M) \neq \emptyset \implies \text{расширить M} \\ M \wedge P(M) \wedge T(M) = \emptyset \implies \text{следующее M} \end{cases}$$

 \mathcal{A} ерево ветвей и границ для T_1 и T_2 — такое возвратное дерево для T_1 и T_2 , что $P:=P\wedge R$, где:

$$R(M_i) = \begin{cases} \alpha_{\min} = \emptyset \implies \alpha_{\min} := \max \\ \alpha_{\min} \geq \gamma(M_i) \implies \text{True, } \alpha_{\min} := \gamma(M_i) \\ \alpha_{\min} < \gamma(M_i) \implies \text{False} \end{cases}$$

«Разделяй и властвуй»

«Разделяй и властвуй» — метод рекурсивного нахождения решений задачи:

- задача делится на меньшие, *независимые* друг от друга подзадачи, пока они не будут сведены к *тривиальным*;
- решения тривиальных подзадач *комбинируются* в единое к исходной задаче.

Пусть
$$T_1=\langle V_1,E_1\rangle,\,T_2=\langle V_2,E_2\rangle$$
 — корневые деревья, $A_1=T_{1W_1},A_2=T_{2W_2},B_1=T_1\backslash A_1,B_2=T_2\backslash A_2$ — их поддеревья:
$$\{W_1=\{v_m\in V_1\mid \mathrm{order}(v_m)<\mathrm{order}(v)\}$$

$$\begin{cases} W_1 = \{v_m \in V_1 \mid \operatorname{order}(v_m) < \operatorname{order}(v)\} \\ W_2 = \{w_n \in V_2 \mid \operatorname{order}(w_p) < \operatorname{order}(w)\} \\ v := \operatorname{last}_{v_i}, \ w := \operatorname{last}_{w_k} \end{cases}$$

 \mathcal{A} ерево «разделяй и властвуй» для T_1 и T_2 — такое ордерево $T=\langle V,E \rangle$ с вершинами вида $v_iv_iw_kw_l$, что:

$$\begin{cases} v_i, v_j \in V_1, \ w_k, w_l \in V_2 \\ \operatorname{root}_T = v_1 v_{n_1} w_1 w_{n_2} \ (T_1 \to T_2) \end{cases}$$

Шаг рекурсивного построения решения M:

$$\begin{cases} v_i = v_j, \ w_k = w_l \implies v_i \mapsto w_k, \text{ комбинировать} \\ v_i \neq v_j, \ w_k = w_l \implies A_1 \to T_2 \ (B_1 \to \lambda) \\ v_i = v_j, \ w_k \neq w_l \implies T_1 \to A_2 \ (\lambda \to B_2) \\ v_i \neq v_j, \ w_k \neq w_l \implies \begin{bmatrix} A_1 \to A_2 \ \text{или} \ A_1 \to T_2 \\ B_1 \to B_2 \ \text{или} \ T_1 \to A_2 \end{cases}$$

Динамическое программирование

Динамическое программирование — метод рекурсивного нахождения решений задачи:

- задача делится на меньшие, *зависимые* друг от друга подзадачи, пока они не будут сведены к *тривиальным*;
- решения тривиальных подзадач *комбинируются* в единое к исходной задаче.

Мемоизация (*«сверху вниз»*) — кеширование и повторное использование ранее подсчитанных результатов.

Табуляция (*«снизу вверх»*) — заполнение кеша на основе тривиальных подзадач.

Лучшее решение выбирается из матрицы лучших решений его подграфов (у них по рекурсии есть свои матрицы):

Алгоритм табуляции занимает $\mathcal{O}(n_1n_2)$ места, используя $\mathcal{O}(n_1n_2)$ времени.

Теория алгоритмов

Динамическое программирование

Динамическое программирование — метод решения задач на оптимизацию *по принципу оптимальности*:

«оптимальная структура имеет оптимальные подструктуры» (Р. Беллман)

Уравнение Беллмана

Введём задачу на оптимизацию вида:

Оптимум — оптимальное значение целевой функции (выбор d^* оптимизирует H):

$$H^* := H(d^*) \qquad d^* := \arg \inf_{d \in \Delta} \{H(d)\}$$

Пусть H — целевая функция нескольких переменных.

Оптимум такой задачи можно найти либо полным перебором, либо последовательным принятием решений:

$$\begin{split} H^* &= \underset{(d_1,\ldots,d_n) \in \Delta}{\text{opt}} \{ H(d_1,\ldots,d_n) \} \\ &= \underset{d_1 \in D_1}{\text{opt}} \{ \underset{d_2 \in D_2}{\text{opt}} \{ \underset{d_n \in D_n}{\text{opt}} \{ h(d_1,\ldots,d_n) \} \} \ldots \} \} \\ &= \underset{d_1 \in D_1}{\text{opt}} \{ H(d_1,d_2^*(d_1),\ldots,d_n^*(d_1)) \} \end{split}$$

$$\Delta=D_1 imes\cdots imes D_n$$
 — пространство решений; $D_n(d_1,\ldots,d_{n-1})$ — множество решений, которое зависит от предыдущих $\langle d_1,\ldots,d_{n-1} \rangle$ решений; $d_i^*(d_1,\ldots,d_{i-1})$ — локальный выбор d , оптимизирующий H .

Распределение ресурсов

В задаче на *оптимальное распределение ресурсов* требуется разделить ограниченное число ресурсов на множество их

потребителей, у которых есть стоимость.

Общая формула:

$$f(k,m) = \min_{d \in \{0,\dots,m\}} \{C(k,d) + f(k+1,m-d)\}$$

Теория множеств

Открытое множество

 ε -окрестность точки $x_0 \in X$ метрического пространства $\langle X, d \rangle$ — такое множество точек $x \in X$, что $d(x_0, x) < \varepsilon$.

Упрощённая запись $\{x \mid d(x_0, x) < \varepsilon\} =: U_{\varepsilon}(x_0)$.

Особые случаи:

$$U_{\varepsilon}(+\infty) := (1/\varepsilon; +\infty)$$

 $U_{\varepsilon}(-\infty) := (-\infty; -1/\varepsilon)$

 Π роколотой называется ε -окрестность точки x_0 без неё:

$$\overset{\circ}{U}_{\varepsilon}(x_0):=U_{\varepsilon}(x_0)\backslash\{x_0\}$$

Правосторонней (левосторонней) называется ε -окрестность точки x_0 без левой (правой) половины:

$$U_{\varepsilon+}(x_0) := [x_0; \varepsilon)$$
 $U_{\varepsilon-}(x_0) := (\varepsilon; x_0]$

Ограниченное множество

Множество M ограничено csepxy, если

$$\forall m \in M \ \exists C \in \mathbb{R} : m \leq C.$$

Точной (*минимальной*, англ. supremum) называется такая верхняя граница множества $M — \sup M$, что

$$\forall \varepsilon > 0 \ \exists m \in M : m \in U_{\varepsilon_{-}}(\sup M).$$

Множество M ограничено chusy, если

$$\forall m \in M \ \exists C \in \mathbb{R} : m \ge C.$$

Точной (*максимальной*, англ. infimum) называется такая нижняя граница множества $M — \inf M$, что

$$\forall \varepsilon > 0 \; \exists m \in M : m \in U_{\varepsilon+}(\inf M).$$

Принцип Кантора

Последовательность вложенных отрезков содержит точки ξ , которые принадлежат им всем:

$$\forall n \in \mathbb{N} \ \exists \xi \in [a_n; b_n] \subset [a_{n-1}; b_{n-1}]$$

Если $n \to \infty$, $(b_n - a_n) \to 0$, то ξ единственна:

$$\lim_{n \to \infty} a_n = \sup\{a_n\} = \lim_{n \to \infty} b_n = \inf\{b_n\} = \xi$$

Доказательство. По теореме Вейерштрасса:

$$\lim_{n \to \infty} a_n = \sup\{a_n\} \qquad \lim_{n \to \infty} b_n = \inf\{b_n\}$$

Значит, $\forall (n \in \mathbb{N}, \ \xi \in [\sup\{a_n\};\inf\{b_n\}]) \ \xi \in [a_n;b_n].$ \square

Если $\inf\{b_n\} = \sup\{a_n\}$, то ξ единственна:

$$0=\inf\{b_n\}-\sup\{a_n\}=\lim_{n\to\infty}b_n-\lim_{n\to\infty}a_n=\lim_{n\to\infty}(b_n-a_n)\ \blacksquare$$

Локальный экстремум

Локальный **максимум** функции f — такая точка x_0 , что

$$\exists \delta > 0 \colon \sup U_{\delta}(x_0) = f(x_0).$$

Локальный **минимум** функции f — такая точка x_0 , что

$$\exists \delta > 0 \colon \inf U_{\delta}(x_0) = f(x_0).$$

Их объединяют в точки локального экстремума.

Kритической называется такая точка x_0 , что

$$\begin{bmatrix} f'(x_0) = 0 \ (cmaционарна) \\ f'(x_0) = \text{undefined} \end{bmatrix}$$

Комбинаторика

Принципы подсчёта

Правило сложения. Пусть S — конечное множество, образованное объединением подмножеств S_1, \ldots, S_k . Тогда:

$$|S| = |S_1| + \dots + |S_k|$$

Правило умножения. Пусть S — конечное множество, кото-рое есть декартово произведение $S_1 \times \cdots \times S_k$. Тогда:

$$|S| = |S_1| \times \cdots \times |S_k|$$

Правило вычитания. Пусть S — подмножество конечного множества T, \bar{S} — его комплемент. Тогда:

$$|S| = |T| - |\bar{S}|$$

Принцип Дирихле. Пусть S_1, \dots, S_m — конечные непересекающиеся множества, причём:

$$|S_1| + \dots + |S_m| = n$$

Тогда существуют такие $i,j \in [1;m] \cap \mathbb{N}$, что:

$$|S_i| \ge \left\lceil \frac{n}{m} \right\rceil \quad |S_j| \le \left\lceil \frac{n}{m} \right\rceil$$

Основные понятия

Пусть X — конечное множество, n:=|X|, $[m]:=[1;m]\cap \mathbb{N}.$

Упорядоченное разбиение m элементов из X — соответствие

$$s: [m] \rightarrow X$$
.

Hеупорядоченное разбиение <math>m элементов из X — множество S мощностью m с элементами из X.

Перестановка — упорядоченное биективное разбиение:

$$P_n \colon [n] \to X, \quad P_n = n!$$

k-Размещение — упорядоченное инъективное разбиение:

$$A_n^k \colon [k] \to X, \quad A_n^k = \frac{P_n}{P_{n-k}}$$

k-Сочетание — неупорядоченное инъективное разбиение:

$$C_n^k \colon [k] \to X, \quad C_n^k = \frac{A_n^k}{P_k}, \quad C_n^k \equiv \binom{n}{k}$$

Полиномиальная теорема

Полиномиальными называются коэффициенты $\binom{n}{k_1,\dots,k_r}$ многочлена при $k_1,\dots,k_r\in\mathbb{N}_0$:

$$(x_1 + \dots + x_r)^n = \sum_{\substack{k_1, \dots, k_r \ge 0 \\ k_1 + \dots + k_r = n}} \binom{n}{k_1, \dots, k_r} x_1^{k_1} \dots x_r^{k_r}$$

Теорема. Для $k_1,\ldots,k_r\geq 0$ с $k_1+\cdots+k_r=n$ справедливо:

$$\begin{pmatrix} n \\ k_1, \dots, k_r \end{pmatrix} = \begin{pmatrix} n \\ k_1 \end{pmatrix} \begin{pmatrix} n - k_1 \\ k_2 \end{pmatrix} \dots \begin{pmatrix} n - k_1 - \dots - k_{r-1} \\ k_r \end{pmatrix}$$

$$= \frac{n!}{k_1! \cdot \dots \cdot k_r!}$$

Доказательство. Раскроем скобки:

$$(x_1 + \dots + x_r)^n = \sum_{i_1=1}^r \dots \sum_{i_n=1}^r x_{i_1} \dots x_{i_n}$$

Одночлен $x_1 \dots x_r$ равен $x_1^{k_1} \dots x_r^{k_r}$, если среди индексов i_1,\dots,i_n ровно k_j равны $j\in [1;r]\cap \mathbb{Z}$.

Выбор k_j индексов происходит среди $n-k_1-\cdots-k_{j-1}$ оставшихся. Поэтому таких упорядоченных выборок $\binom{n-k_1-\cdots-k_{j-1}}{k_j}$:

$$\binom{n}{k_1,\dots,k_r} = \binom{n}{k_1} \binom{n-k_1}{k_2} \dots \binom{n-k_1-\dots-k_{r-1}}{k_r} \, \square$$

По формуле сочетаний:

$$\begin{split} \frac{n!}{k_1! \cdot (n-k_1)!} \cdot \frac{(n-k_1)!}{k_2! \cdot (n-k_1-k_2)!} \cdot \cdots \cdot \frac{(n-k_1-k_r-1)!}{k_r! \cdot (n-k_1-\cdots-k_r)} \\ &= \frac{n!}{k_1! \cdot \cdots \cdot k_r! \cdot 0!} = \frac{n!}{k_1! \cdot \cdots \cdot k_r!} \blacksquare \end{split}$$

Формула Паскаля

Для $n \ge 1$ и $0 \le k \le n$ справедливо:

$$\binom{n}{k_1,\ldots,k_r} = \sum_{i=1}^r \binom{n-1}{k_1,\ldots,k_i-1,\ldots,k_r}$$

Доказательство. Раскроем скобки:

$$(x_1 + \dots + x_r)^n = \sum_{\substack{k_1, \dots, k_r \\ k_1 + \dots + k_r = n}} \binom{n}{k_1, \dots, k_r} x_1^{k_1} \dots x_r^{k_r}$$

Раскроем скобки иначе:

$$\begin{aligned} &(x_1+\dots+x_r)^n = (x_1+\dots+x_r)\,(x_1+\dots+x_r)^{n-1} \\ = &(x_1+\dots+x_r) \,\cdot\, \sum_{\substack{k'_1,\dots,k'_r\\k'_1+\dots+k'_r=n-1}} \binom{n-1}{k'_1,\dots,k'_r} x_1^{k'_1}\dots x_r^{k'_r} \\ = &\sum_{i=1}^r \sum_{\substack{k'_1,\dots,k'_r\\k'_2+\dots+k'_r=n-1}} \binom{n-1}{k'_1,\dots,k'_r} x_1^{k'_1}\dots x_i^{k'_i+1}\dots x_r^{k'_r} \end{aligned}$$

Произведём замену индексов $k_i := k'_i + 1, k_j := k'_j \ (i \neq j)$:

$$(x_1 + \dots + x_r)^n = \sum_{\substack{k_1, \dots, k_r \\ k_1 + \dots + k_r = n - 1}} \sum_{i=1}^r \binom{n-1}{k_1, \dots, k_i - 1, \dots, k_r} x_1^{k_1} \dots x_r^{k_r} \blacksquare$$

Принцип включения-исключения

Пусть $A_1, ..., A_n$ — конечные множества. Тогда верно:

$$\left| \bigcup_{i=1}^{n} A_i \right| = \sum_{k=1}^{n} (-1)^{k+1} \left| \bigcap_{j=1}^{n} A_j \right|$$

Доказательство. Пусть $x \in \bigcup_i^n A_i$, причём x содержится в k множествах A_1, \ldots, A_k .

Левая часть формулы — 1. Докажем, что правая часть тоже:

 $\binom{k}{1}$ раз x встречается во множествах мощностью 1;

 $\binom{k}{k}$ раз x встречается во множествых мощностью k.

Подставляем биномиальные коэффициенты в формулу:

$$\binom{k}{1} - \binom{k}{2} + \dots + (-1)^{k+1} \binom{k}{k} = \sum_{i=1}^{k} \binom{k}{i} (-1)^{i+1}$$

По определению биномиальных коэффициентов:

$$\sum_{i=1}^k \binom{k}{i} (-1)^{i+1} = \binom{k}{0} - \sum_{i=0}^k (-1)^i 1^{k-i} = \binom{k}{0} - (1-1)^k = 1 \blacksquare$$

Правило биекции

Пусть $f: X \to Y$ — биективное соответствие, где X, Y — конечные множества. Тогда:

$$|X| = |Y|$$

Задача. Сколько подмножеств имеет п-множество?

Решение. Пусть Y - n-множество.

Пусть $\overline{x_1 \dots x_n}$ — бинарная n-строка, где x_i указывает на наличие i-го элемента в произвольном множестве $\mathcal{P}(Y)$.

Пусть $f: X \to \mathcal{P}(Y)$ — соответствие, где X — множество всех возможных бинарных n-строк. Очевидно, что:

$$f$$
 — биекция $\implies |Y| = |X|$

По правилу умножения:

$$|X| = 2^n \implies |\mathcal{P}(Y)| = 2^n$$

Ombem: $|\mathcal{P}(Y)| = 2^n$.

Биномиальные коэффициенты

Свойство 1. Для $n \in \mathbb{N}$ и $r \in [0; n] \cap \mathbb{Z}$ верно:

$$\binom{n}{r} = \binom{n}{n-r}$$

Доказательство. Пусть A-n-множество, из которого нужно выбрать B-r-подмножество.

По определению биномиальных коэффициентов:

число неупорядоченных выборок
$$B = \binom{n}{r}$$

С другой стороны, рассмотрим комплемент $A \setminus B$:

число неупорядоченных выборок
$$A \setminus B$$
 = $\binom{n}{n-r}$

Пусть $f: A_1 \to A_2$ — биективное соответствие, $A_1 = A_2 = A$.

Любой элемент $x \in B \subset A_1$ можно сопоставить $x \in A \setminus B \subset A_2$. Значит, числа таких сопоставлений равны:

$$\binom{n}{r} = \binom{n}{n-r} \blacksquare$$

Свойство 2. Для $n \in \mathbb{N}$ верно:

$$\sum_{r=0}^{n} \binom{n}{r} = 2^n$$

Доказательство. Пусть A - n-множество, для которого посчитаем $|\mathcal{P}(A)|$.

С одной стороны, $|\mathcal{P}(A)| = 2^n$ по доказанному.

С другой стороны, посчитаем $|\mathcal{P}(A)|$ через биномиальные коэффициенты: есть $\binom{n}{r}$ способов выбрать r-подмножество.

По правилу сложения:

$$|\mathcal{P}(A)| = \sum_{r=0}^{n} \binom{n}{r} \implies \sum_{r=0}^{n} \binom{n}{r} = 2^{n} \blacksquare$$

Метод шаров и перегородок

Число способов составить r-мультимножество из n-множества равно:

$$\begin{pmatrix} \binom{n}{r} \end{pmatrix} := \binom{n+r-1}{r} = \begin{pmatrix} \binom{n}{k-1} \end{pmatrix} + \begin{pmatrix} \binom{n-1}{k} \end{pmatrix}$$

Доказательство. Для подсчёта числа всех возможных r-мультимножеств введём n-1 $neperopo\partial o\kappa$ — считается, что элементы между двумя соседними перегородками равны.

Таким образом, число способов заполнить n+r-1 позиций с выбором r шаров (или вставкой n-1 перегородок) равно:

$$\binom{n+r-1}{r}$$

По формуле Паскаля:

$$\begin{pmatrix} \binom{n}{k-1} \end{pmatrix} + \begin{pmatrix} \binom{n-1}{k} \end{pmatrix} = \begin{pmatrix} n+k-2\\k-1 \end{pmatrix} + \begin{pmatrix} n+k-2\\k \end{pmatrix}$$

$$= \begin{pmatrix} n+k-1\\k \end{pmatrix} \blacksquare$$

Задача. Посчитать число неотрицательных целых решений $3x_1 + 3x_2 + 3x_3 + 7x_4 = 22$.

Решение. Методом полного перебора, $x_4 \in \{0, 1, 2, 3\}$.

По методу шаров и перегородок:

$$\begin{bmatrix} x_4 = 0 \implies 3(x_1 + x_2 + x_3) = 22 \iff \text{ решений нет} \ x_4 = 1 \implies 3(x_1 + x_2 + x_3) = 15 \iff x_1 + x_2 + x_3 = 5 \ x_4 = 2 \implies 3(x_1 + x_2 + x_3) = 8 \iff \text{ решений нет} \ x_4 = 3 \implies 3(x_1 + x_2 + x_3) = 1 \iff \text{ решений нет} \ \iff \begin{pmatrix} 3 \\ 5 \end{pmatrix} = \begin{pmatrix} 7 \\ 5 \end{pmatrix} = 21$$

Ответ: 21 решение.

Правило деления

Пусть $f: X \to Y$ — отображение k- κ -одному, где X, Y — конечные множества. Тогда:

$$|X| = 4|Y|$$

Задача. Сколько существует рассадок 4 рыцарей вокруг стола? Две рассадки эквивалентны, если одну можно получить из другой поворотом.

Решение. Пусть $A=\{x_1,x_2,x_3,x_4\}$ — множество рыцарей, X — множество 4-строк вида $\overline{x_j\dots x_k},\ 1\leq j,k\leq 4,\ i\neq j.$

Пусть $f: X \to Y$ — соответствие, где Y — множество всех возможных рассадок для A. Очевидно, что:

$$f - n$$
-к-одному $\implies 4|Y| = |X| \iff |Y| = |X|/4$

По правилу умножения:

$$|X| = 4 \cdot 3 \cdot 2 \cdot 1 = P_4 = 24 \implies |Y| = 24/4 = 6$$

Ответ: |Y| = 6.

Число Стирлинга

Число Стирлинга второго порядка — количество способов разбить n-множество на k подмножеств:

$$C(n,k) \equiv \begin{Bmatrix} n \\ k \end{Bmatrix} = k \begin{Bmatrix} n-1 \\ k \end{Bmatrix} + \begin{Bmatrix} n-1 \\ k-1 \end{Bmatrix}$$

Частные случаи:

$$\begin{Bmatrix} n \\ 0 \end{Bmatrix} = 0 \qquad \begin{Bmatrix} n \\ 1 \end{Bmatrix} = 1 \qquad \begin{Bmatrix} n \\ n \end{Bmatrix} = 1 \qquad \begin{Bmatrix} n \\ n-1 \end{Bmatrix} = \binom{n}{2}$$

Доказательство. Скоро... наверное.