CSC 212: Data Structures and Abstractions 09: Priority Queues

Prof. Marco Alvarez

Department of Computer Science and Statistics University of Rhode Island

Spring 2025

Priority queues

Announcements

• Assignment 2

- purpose of the assignment is to learn how to solve problems with stacks, queues, and deques
- at least one of those data structures should be used on each of the problems
- ✓ designing a good algorithm is more important than coding
- try designing your own solution first, test it on paper

• Spring break plans?

- ✓ ideas for further developing your C++ skills
- **OOP, templates, pointers:** implement your own templated versions of stack, queue, deque, and priority queues (use rigorous testing)
- **problem solving:** solve as many Kattis/LeetCode problems as possible

Priority queues

Definition

- a <u>priority queue</u> is a linear data structure that functions like a queue but with priorities assigned to elements
- elements with **higher priority** are dequeued before elements with lower priority

Main Operations

- enqueue: add an element with an associated priority
- dequeue: remove and return the highest priority element

Applications

- ✓ algorithms for graphs
- ✓ event-driven simulation
- search methods in artificial intelligence
- ✓ job scheduling in operating systems, etc.

2

4

Implementation

- Key-value pairs
 - elements in a priority queue can be implemented as a collection of <key,value> pairs
 - key: determines priority, value: associated data

Operations (min-pq)	Return value
enqueue(5, A)	
enqueue(10, D)	
enqueue(3, B)	
dequeue()	(3, B)
enqueue(7, C)	
dequeue()	(5, A)
dequeue()	(7, C)
size()	1
isEmpty()	FALSE

Implementation

- Array-based (unsorted array)
 - \checkmark enqueue at the end O(1) cost (amortized cost if using a dynamic array)
 - \checkmark dequeue (extract max/min) O(n) cost
 - requires searching the entire array
- Array-based (sorted array)
 - \checkmark enqueue at position O(n) cost
 - requires finding position for insertion and shifting elements
 - \checkmark dequeue (extract max/min) O(1) cost
- Binary heap (array)
 - √ most common and efficient
 - \checkmark enqueue $O(\log n)$ cost
 - \checkmark dequeue (extract max/min) $O(\log n)$ cost
 - \checkmark can also build a binary heap from an array in O(n) cost

Implementation

- Using arrays
 - ✓ ensure enqueue and dequeue work efficiently
 - ✓ array can be fixed-length or a dynamic array (additional cost)
- Considerations
 - ✓ highest priority can be defined in different ways
 - in a max-priority queue, the highest priority is the largest priority
 - in a min-priority queue, the highest priority is the smallest priority
 - for equal priorities, the <u>order of elements</u> is determined by the underlying implementation
 - in some implementations, equal priority elements are served following FIFO order
 - in other implementations, the order of elements with the same priority is undefined
 - ✓ underflow: throw an error when calling dequeue on an empty queue
 - overflow: throw an error when calling enqueue on a full queue

```
std::priority queue
           Defined in header <queue>
          template<
               class T.
               class Container = std::vector<T>,
class Compare = std::less<typename Container::value_type>
         > class priority_queue;
       The priority queue of is a container adaptor that provides constant time lookup of the largest (by default) element, at the
       expense of logarithmic insertion and extraction.
       A user-provided Compare can be supplied to change the ordering, e.g. using std::greater<T> would cause the
       smallest element to appear as the top().
       Working with a priority queue is similar to managing a heap in some random access container, with the benefit of not
       being able to accidentally invalidate the heap.
  Member functions
                   constructs the priority_queue
 (constructor)
                                                                                 #include <iostream>
                    destructs the priority queue
                                                                                 #include <queue>
                     assigns values to the container adaptor
Element access
                                                                                       std::priority_queue<int> pq1;
                    accesses the top element
                                                                                      pq1.push(5);
std::cout << "pq1.size() = " << pq1.size() << '\n';</pre>
Capacity
                                                                                      std::priority_queue<int> pq2 {pq1};
std::cout << "pq2.size() = " << pq2.size() << '\n';</pre>
                    checks whether the container adaptor is empty
                    returns the number of elements
 size
                                                                                      std::vector<int> vec {3, 1, 4, 1, 5};
std::priority_queue<int> pq3 {std::less<int>(), vec};
std::cout << "pq3.size() = " << pq3.size() << '\n';</pre>
Modifiers
                    inserts element and sorts the underlying container
                    inserts a range of elements and sorts the underlying contained
                                                                                      for (std::cout << "pq3 : "; !pq3.empty(); pq3.pop())
   std::cout << pq3.top() << ' ';
std::cout << '\n';</pre>
                    constructs element in-place and sorts the underlying containe
 emplace (C++11)
                     removes the top element
 swap (C++11)
                                   https://en.cppreference.com/w/cpp/container/priority_queue/priority_queue/
```

Practice

• What is the output of this code?

```
#include <iostream>
#include <queue>
#include <utility> // for std::pair
int main() {
    // default priority_queue - max-heap behavior
    std::priority_queue<std::pair<int, std::string>> pq;
    pq.push(std::make_pair(3, "Job 1"));
    pq.push(std::make_pair(1, "Job 2"));
pq.push(std::make_pair(5, "Job 3"));
    pq.push(std::make_pair(2, "Job 4"));
    pq.push(std::make_pair(7, "Job 5"));
    pq.pop();
    pq.pop();
    pq.push(std::make_pair(7, "Job 6"));
pq.push(std::make_pair(7, "Job 7"));
    while (! pq.empty()) {
         std::pair<int, std::string> top = pq.top();
         std::cout << top.second << std::endl;</pre>
         pq.pop();
    return 0;
```

Binary heaps

Complete binary tree

- Binary tree
 - tree data structure in which each <u>node</u> has at most two children, referred to as the <u>left child</u> and the <u>right</u> child
- · Complete binary tree
 - binary tree in which every level, except possibly the last, is completely filled
 - all nodes in the last level are as far left as possible

The height of a complete binary tree with n nodes is $\lfloor \log_2 n \rfloor$

Practice

- Consider a complete binary tree of height h
 - what is n_{max} , the max number of nodes in the tree as a function of h?
 - hint: use a summation formula
 - what is n_{min} , the min number of nodes in the tree as a function of h?
- For a complete binary tree the following inequality holds: $n_{min} \le n < n_{max} + 1$
 - \checkmark take the logarithm (base 2) of this inequality and express h in terms of n

12

Binary heap

- Definition
 - ✓ **structure property**: a binary heap is a **complete binary tree**
 - <u>heap property</u>: each node's value is greater/smaller than or equal to its children's
 - a binary heap can be a **max-heap** (greater or equal) or a **min-heap** (smaller or equal)
- Considerations
 - \checkmark the height of a binary heap is $\lfloor \log_2 n \rfloor$
 - \checkmark the number of nodes at each level h is at most 2^h
 - the number of nodes in a heap is at most: $\sum_{i=0}^{h} 2^{i} = 2^{h+1} 1$

Max-heap example

- · Check:
 - √ structure property
 - √ heap-order property
- · Add 3 elements
- ✓ without violating properties

- · Change 2 values
 - ✓ that violate the heap property

Array representation

- A binary heap can be represented as an array
 - root is at index 0
 - ✓ **last element** is at index n-1
- For any node at index i:
 - \checkmark **left child** is at index 2i + 1
 - \checkmark right child is at index 2i + 2
 - \checkmark parent is at index (i-1)//2

Enqueue (max-heap)

• Algorithm (min-heap is analogous)

2. for each node from parent(n-1) to 1

steps 2-3-4 can be implemented as a function called

1. append the element to the end of the array

upHeap

- 3. if the element is greater than its parent, swap them
- 4. repeat 2-3 until the element is in the correct position (heap-order restored)
- Time complexity
 - \checkmark how many swaps are necessary? $O(\log n)$

https://visualgo.net/en/heap

1.6

Dequeue (max-heap)

- Algorithm (min-heap is analogous)
 - 1. replace the root with the last element

steps 3-4-5 can be implemented as a function called downHeap

- 2. remove the last element from the array
- 3. compare the root with its children
- 4. if the root is less than either child, swap it with the larger child
- 5. repeat 3-4 until the root is in the correct position (heap-order restored)
- Time complexity
 - \checkmark how many swaps are necessary? $O(\log n)$

https://visualgo.net/en/heap

18

Practice

- Dequeue
 - √ show resulting array
- Dequeue
 - ✓ show resulting array
- Dequeue
 - ✓ show resulting array

Performance

Method	Unsorted Array	Sorted Array	Binary Heap
Enqueue	0(1)	0(n)	O(log n)
Dequeue	0(n)	0(1)	O(log n)
Max	0(n)	0(1)	0(1)
Size	0(1)	0(1)	0(1)
IsEmpty	0(1)	0(1)	0(1)

20