

PRESENTACIÓN 4 MDS7201

SOLUCIÓN AL PROBLEMA Y RESULTADOS

ENTIDADES MINSAL

DANIEL CARMONA, MARTÍN SEPÚLVEDA, MONSERRAT PRADO, CAMILO CARVAJAL

ENTIDADES MINSAL

TABLA DE CONTENIDO

/1 RESUMEN

- Existen recetas médicas que pueden carecer de cierta información importante, llevando a errores de medicación y a un empeoramiento en el estado del paciente.
- Las recetas electrónicas pueden contener campos de texto libre.
- Esto dificulta la verificación de la completitud de la prescripción.
- Reconocimiento de entidades facilita la detección de errores.

RESUMEN DESCRIPCIÓN DEL PROYECTO

- Dado un campo de texto libre, utilizar algoritmos de NLP para reconocer entidades y completar columnas de manera automática en los datos de un paciente.
- Detectar errores de completitud o gramática en las indicaciones.
- Refraseo de la información para evitar errores de administración de medicamentos.

RESUMEN DATOS

• 1.5 [M] de prescripciones, con un total de 20 atributos por cada una

	CODIGO_MEDICAMENTO	PRES_DENOMINACION	RESUMEN	IND_ADMINISTRACION_1	IND_ADMINISTRACION_2
1526553	FACC09001	CAPTOPRIL 25 MG COMPRIMIDO	1 COMPRIMIDO ORAL cada 8 horas	NaN	NaN
1526554	FANN02016	PARACETAMOL 500 MG COMPRIMIDO	2 COMPRIMIDO ORAL cada 8 horas	NaN	NaN
1526555	FAAA10002	INSULINA CRISTALINA HUMANA 100 U.I./ML SOLUCIO	2 UNIDAD INTRAVENOSA cada 6 horas	NaN	NaN

- En ciertos atributos se cuenta con un gran porcentaje de valores vacíos o NaN.
- Estos no se consideran relevantes para el entrenamiento del modelo.

RESUMEN LITERATURA

Introduction to the CoNLL-2003 shared task: language-independent named entity recognition CoNLL

Bose ... Ghosh A Survey on Recent Named Entity Recognition and Relationship Extraction Techniques on Clinical Texts Applied Sciences

The Chilean Waiting List Corpus: a new resource for clinical Named Entity Recognition in Spanish

2020

Association for Computational Linguistics

Báez ... Dunstan

Contexto Chileno

NER: Named Entity Recognition

Texto Clínico

RESUMEN LITERATURA

Texto Clínico

Báez ... Dunstan 2020

The Chilean Waiting List Corpus: a new resource for clinical Named Entity Recognition in Spanish

Association for Computational Linguistics

Conocimiento previo

Combining Contextualized Embeddings and Prior Knowledge for Clinical Named Entity Recognition: Evaluation Study.

JMIR medical informatics

Jiang ... Liu

Akbik ... Vollgraf

FLAIR: An Easy-to-Use Framework for State-of-the-Art NLP

Association for Computational Linguistics

Kazama Torisawa 2007
4 266

Exploiting Wikipedia as External Knowledge for Named Entity Recognition

EMNLP

Devlin ... Toutanova

BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding
Association for Computational Linguistics

2019

Modelos de lenguaje

DATA FALTANTE Y ADICIONAL

- Se agregó una nueva columna de Principios activos siguiendo el código HLF.
- Gran parte de los datos faltantes corresponden a los atributos Indicación de Administración 1 y 2, los cuales son utilizados para casos especiales de administración.
- Datos faltantes en códigos de medicamentos: 18379
- Datos faltantes en Principio activo:
 50437

No todos los códigos de medicamento en las prescripciones tienen código HLF asociado.

VISUALIZACIÓN DE DATOS

PALABRAS COMUNES EN TEXTO LIBRE: RESUMEN DE LA PRESCRIPCIÓN

Cantidad de valores nulos en columna: 1

Total de 1473779 filas duplicadas (96.5%)

Cantidad de valores únicos: 52777 (3.5%)

PLANTEAMIENTO DE SOLUCIÓN

El problema se convierte en una clasificación para cada token en la secuencia.

PRINCIPIO_ACTIVO FORMA-FARMA ADMIN

HIDRALAZINA 50 MG COMPRIMIDO 13 MG ORAL

PERIODICITY DURATION

cada 12 horas durante 15 dias

PREPARACIÓN DE LOS DATOS

- Se define el texto libre como las columnas: PRES_DENOMINACION y RESUMEN.
- Otras columnas útiles
 PRINCIPIO_ACTIVO y FORMA_FARMA
- Número de Ejemplos únicos etiquetados se reduce a 108.049

PREPARACIÓN DE LOS DATOS

- Se etiquetan los datos a través de reglas.
- Definen 5 entidades:
 - ACTIVE_PRINCIPLE
 - FORMA_FARMA
 - ADMIN
 - PERIODICITY
 - o DURATION.

PARACETAMOL	B-ACTVPRNCP
500	B-FORMA_FARMA
MG	I-FORMA_FARMA
COMPRIMIDO	I-FORMA_FARMA
1	B-ADMIN
COMPRIMIDO	I-ADMIN
ORAL	I-ADMIN
CADA	B-PERIODICITY
6	I-PERIODICITY
HORAS	I-PERIODICITY
DURANTE	B-DURATION
3	I-DURATION
DIAS	I-DURATION

ETIQUETADO DE DATOS MANUAL

- Se utilizó la herramienta Label Studio.
- Se etiquetaron 1000 recetas.
- Cada integrante etiquetó 250 datos.

MODELO REGEX

- Se utlizan 2 conjuntos de Principio Activo y Forma Farma
- Se reconocen expresiones regulares de Periodicidad,
 Duración y Admin.

['TRAMADOL'	'B-ACTIVE_PRINCIPLE']
['100'	'O']
['MG/ML'	'O']
['SOLUCIÓN'	'B-FORMA_FARMA']
['ORAL'	'I-FORMA_FARMA']
['FRASCO'	'O']
['10'	'O']
['ML'	'O']
['0,2'	'O']
['ML'	'O']
['ORAL'	'B-ADMIN']
['CADA'	'B-PERIODICITY']
['8'	'I-PERIODICITY']
['HORAS'	'I-PERIODICITY']
['DURANTE'	'B-DURATION']
['15'	'I-DURATION']
['DIAS'	'I-DURATION']

MODELO RNN

- Recurrent Neural Network (RNN)
- Una capa de embedding, 3 capas de LSTM y una capa lineal.
- A todas se les aplica dropout de 0.5.
- Entrada: vectores one-hot.
- Métricas a utilizar: recall, precision y puntuación F1.

MODELO RNN

MODELO BETO

- Modelo basado en Transformers
- Un modelo de 12 capas pre-entrenado
- Fine-tunning con datos clínicos
- Entrada: tokenizador, embeddings iniciales y codificación posicional
- Fine-tunning para entidades
- Métricas a utilizar: recall, precision y puntuación F1.

MODELO BETO

HIDRALAZINA 50 MG COMPRIMIDO 13 MG ORAL CADA 12 HORAS DURANTE 15 DIAS

/4 RESULTADOS

Modelo	F1 Score	Precision	Recall
RNN - Test (Expresiones regulares)	89%	96%	83%
RegEx - Test (Expresiones regulares)	59%	94%	48%
RNN - Test (Etiquetados Manualmente)	68%	74%	64%
BETO - Test (Etiquetados Manualmente)	75%	68%	82%

Hablando con Expertos

Se requiere de mayor precisión en el campo de Administración, por lo que se separa en Cantidad, Unidad de Medida y Vía de Administración.

CONCLUSIONES Y TRABAJO FUTURO

- Fue posible obtener resultados reales desde datos manualmente etiquetados y obtenidos de expresiones regulares.
- En general modelos con redes logran mejores métricas que Expresiones regulares
- Es necesario ejecutar iteraciones mejorando hiperparamentros de las Redes usadas y agregar estrategias como fine tunning y cross validation.
- Mejorar la especificidad de las etiquetas para observar su comportamiento en las Redes

/5 PLAN DE TRABAJO

PROYECTO DEFINIDO

ENTIDADES MINSAL

DANIEL CARMONA, MARTÍN SEPÚLVEDA, MONSERRAT PRADO, CAMILO CARVAJAL

75 REFERENCIAS

• Sang, E. F., De Meulder, F.

Introduction to the CoNLL-2003 shared task: Language-independent named entity recognition.

In Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003 (142–147), 2003.

• Bose, P., Srinivasan, S., Sleeman IV, W. C., Palta, J., Kapoor, R., Ghosh, P.

A survey on recent named entity recognition and relationship extraction techniques on clinical texts. In Applied Sciences (11(18), 8319.), 2021.

• Báez, P., Villena, F., Rojas, M., Durán, M., Dunstan, J. (2020, November).

The Chilean Waiting List Corpus: a new resource for clinical named entity recognition in Spanish. InProceedings of the 3rd clinical natural language processing workshop (pp. 291-300)., 2020.

• Báez, P., Bravo-Marquez, F., Dunstan, J., Rojas, M., Villena, F.

Automatic Extraction of Nested Entities in Clinical Referrals in Spanish.

In ACM Transactions on Computing for Healthcare, (3(3), 1-22.) - 2022.

• Rojas, M., Dunstan, J., Villena, F.

Clinical Flair: A Pre-Trained Language Model for Spanish Clinical Natural Language Processing.

In Proceedings of the 4th Clinical Natural Language Processing Workshop, (pp. 87-92)., 2022.

• Jiang, M., Sanger, T., Liu, X.

Combining contextualized embeddings and prior knowledge for clinical named entity recognition: evaluation study. In JMIR medical informatics, (7(4), e14850.) - 2019