

Mark Scheme (Results) January 2008

GCE

GCE Mathematics (6683/01)

January 2008 6683 Statistics S1 Mark Scheme

Question Number	Scheme	Marks
1. (a) (b)	$r = \frac{10 \times 56076 - 773 \times 724}{\sqrt{(10 \times 60475 - 773^2)(10 \times 53122 - 724^2)}}$ o.e. r = 0.155357	B1, B1 M1 A1ft A1 (5) B1g B1h
NB (a)	$S_{xx} = 60475 - \frac{(773)^2}{10} = 722.1, S_{yy} = 53122 - \frac{(724)^2}{10} = 704.4, S_{xy} = 56076 - \frac{773 \times 724}{10} = 110.8$ $1^{\text{st}} \text{ B1 for } \sum x \text{ and } 2^{\text{nd}} \text{ B1 for } \sum y \text{ , should be seen or implied.}$	(2) Total 7 marks
(b)	 M1 for at least one correct attempt at one of S_{xx}, S_{yy} or S_{xy} and then using in the correct formula 1st A1ft for a fully correct expression. (ft their Σx and their Σy) or 3 correct expressions for S_{xx}, S_{xy}, and S_{yy} but possibly incorrect values for these placed correctly in r. 2nd A1 for awrt 0.155 	
	If $ r > 0.5$ they can score B1g in (b) for saying that it (skills test) is not a good guide to performance but B0h since a second acceptable comment about both tests is not possible. Give B1 for one correct line, B1B1 for any 2. If the only comment is the test(s) <u>are</u> a good guide: scores B0B0 If the only comment is the tests are not good: scores B1B0 (second line)	
	The third line is for a comment that suggests that the interview test is OK but the skills test is not since one is positive and the other is negative. Treat 1 st B1 as B1g and 2 nd as B1h An answer of "no" alone scores B0B0	

Question Number	Scheme	Marks
2.		
(a)	mean is $\frac{2757}{12}$, = 229.75 AWRT 230	M1, A1
	sd is $\sqrt{\frac{724961}{12} - (229.75)^2}$, = 87.34045 AWRT 87.3	M1, A1
	[Accept $s = AWRT 91.2$]	
(b)	Ordered list is: 125, 160, 169, 171, 175, 186, 210, 243, 250, 258, 390, 420	(4)
	$Q_2 = \frac{1}{2} (186 + 210) = 198$	B1
	$Q_1 = \frac{1}{2} (169 + 171) = 170$	B1
	$Q_3 = \frac{1}{2}(250 + 258) = 254$	B 1
(c)	$Q_3 + 1.5(Q_3 - Q_1) = 254 + 1.5(254 - 170), = 380$ Accept AWRT (370-392) Patients F (420) and B (390) are outliers.	(3) M1, A1 B1ft B1ft
(d)	$\frac{Q_1 - 2Q_2 + Q_3}{Q_3 - Q_1} = \frac{170 - 2 \times 198 + 254}{254 - 170}, = 0.3$ AWRT 0.33	M1, A1
	Positive skew.	A1ft
		(3)
		Total 14 marks
(a)	1 st M1 for using $\frac{\sum x}{n}$ with a credible numerator and $n = 12$.	
	2 nd M1 for using a correct formula, root required but can ft their mean	
NB	Use of $s = \sqrt{8321.84} = 91.22$ is OK for M1A1 here.	
	Answers only from a calculator in (a) can score full marks	
(b)	1 st B1 for median= 198 only, 2 nd B1 for lower quartile 3 rd B1 for upper quartile	
S.C.	If all Q_1 and Q_3 are incorrect but an ordered list (with ≥ 6 correctly placed) is seen	
	and used then award B0B1 as a special case for these last two marks.	
(c)	M1 for a clear attempt using their quartiles in given formula, A1 for any value in the range 370 - 392	
	1 st B1ft for any one correct decision about B or F - ft their limit in range (258, 420) 2^{nd} B1ft for correct decision about both F and B - ft their limit in range (258, 420)	
	If more points are given score B0 here for the second B mark. (Can score M0A0B1B1 here)	
(d)	M1 for an attempt to use their figures in the correct formula – must be seen (≥ 2 correct substitutions)	
	1 st A1 for AWRT 0.33	
	2 nd A1ft for positive skew. Follow through their value/sign of skewness. Ignore any further calculations. "positive correlation" scores A0	

3.	Width Freq. Density	1 1 6 7	4 2	2 6	3 5.5	5 2	3 1.5	12 0.5	M1
						0.	.5 ×12	or 6	A1
	Total area is (1×0		×2)+	,= 70					
	$(90.5 - 78.5) \times \frac{1}{2} \times \frac{140}{\text{their } 70}$								M1
	"70 seen anywhere' Number of runners is 12								
									(5) Total 5 marks
	1st M1 for attempt at width of the correct bar (90.5 - 78.5) [Maybe on histogram or in table] 1st A1 for 0.5×12 or 6 (may be seen on the histogram. Must be related to the arm of the bar above 78.5 - 90.5. 2nd M1 for attempting area of correct bar× 140/(their 70) B1 for 70 seen anywhere in their working 2nd A1 for correct answer of 12. Minimum working required is 2×0.5×12 where the 2 should come from 140/70 Beware 90.5 - 78.5 = 12 (this scores M1A0M0B0A0) Common answer is 0.5×12 = 6 (this scores M1A1M0B0A0) If unsure send to review e.g. 2 × 0.5 × 12=12 without 70 being seen								

4.								
(a)	$S_{xy} =$	$= 1818.5 - \frac{41 \times 406}{10}, = 153.9$	(could be seen in (b))	AWRT 154	M1, A1			
	$S_{xx} =$	$=188 - \frac{41^2}{10} = 19.9$	(could be seen in (b))		A1			
(b)	$b = \frac{1}{2}$	153.9 199, = 7.733668		AWRT 7.73	M1, A1	(3		
	a = 2	$40.6 - b \times 4.1 (= 8.89796)$ 8.89 + 7.73x			M1 A1	(4		
(c)	A typical car will travel 7700 miles every year							
(d)		$5, y = 8.89 + 7.73 \times 5 (= 47.5 - 6)$ nileage predicted is	AWRT 48000		M1 A1 Total 10 ms	(2 ark		
		Accept calculation	ons for S_{xx} and S_{xy} in (a) or (b)					
(a)	M1 1 st A1 2 nd A1	for correct attempt or exp for one correct for both correct	pression for either					
(b)	Ignore	the epen marks for part (b	o) they should be awarded as	per this scheme				
	1 st M1 1 st A1 2 nd M1	for attempt at correct form	nula for a (minus required). Ft	their <i>b</i> .				
	2 nd A 1		a but making one slip in sub.eg	$\frac{1}{y} = 406 \text{ is OK}$				
	2 nd A1	for correct equation with Accept $a = 8.89$, and $b =$	2dp accuracy. 7.73 even if not written as fina	l equation.				
	Correct	for correct equation with Accept $a = 8.89$, and $b =$	2dp accuracy.	l equation.				
(c)		for correct equation with Accept $a = 8.89$, and $b = 6$ answers only (from calc) s	2dp accuracy. 7.73 even if not written as fina	l equation. 3/4 if AWRT 2dp				
(c) (d)	Correct	for correct equation with Accept $a = 8.89$, and $b = 6$ answers only (from calc) s	2dp accuracy. 7.73 even if not written as fina score 4/4 if correct to 2dp or 3 st 2 sf. Accept "7.7 thousand"	l equation. 3/4 if AWRT 2dp				

		T
6. (a)	200 or 200g	B1 (1)
(b)	P(190 < X < 210) = 0.6 or $P(X < 210) = 0.8$ or $P(X > 210) = 0.2$ or diagram (o.e.) Correct use of 0.8 or 0.2	
	210 – 200	
	$Z = (\pm) \frac{210 - 200}{\sigma}$	M1
	$\frac{10}{\sigma} = 0.8416$ 0.8416	B1
	$\sigma = 11.882129$ AWRT 11.9	A1
		(5)
(c)	$P(X<180) = P\left(Z<\frac{180-200}{\sigma}\right)$	M1
	= P(Z < -1.6832) $= 1 - 0.9535$	M1
	= 0.0465 or AWRT 0.046	A1
		(3) Total 9 marks
(a)	"mean = 200g" is B0 but "median = 200" or just "200" alone is B1	
	Standardization in (b) and (c). They must use σ not σ^2 or $\sqrt{\sigma}$.	
(b)	1 st M1 for a correct probability statement (as given or eg P(200 <x<210)=0.3 -="" and="" areas="" diagram="" have="" must="" o.e.)="" on="" or="" probability="" shaded="" shown<="" td="" values="" z-axis=""><td></td></x<210)=0.3>	
	for correct use of 0.8 or $p = 0.2$. Need a correct probability statement. May be implied by a suitable value for z seen (e.g. $z = 0.84$)	
	2^{nd} M1 for attempting to standardise. Values for x and μ used in formula.	
	Don't need $z = $ for this M1 nor a z -value, just mark standardization. B1 for $z = 0.8416$ (or better) [$z = 0.84$ usually just loses this mark in (a)]	
	2^{nd} A1 for AWRT 11.9	
(c)	1 st M1 for attempting to Standardise with 200 and their sd(>0) e.g. $(\pm)\frac{180-200}{\text{their }\sigma}$	
(0)	their σ NB on epen this is an A mark ignore and treat it as 2^{nd} M1	
	for $1 - a$ probability from tables provided compatible with their	
	probability statement. A1 for 0.0465 or AWRT 0.046 (Dependent on both Ms in part (c))	

7.(a)	P(R	$=3\cap B=0)=\frac{1}{4}\times$	$\frac{1}{4}$,= $\frac{1}{16}$					M1, A	1	
(b)									(2)	
(0)		3	0	3	6	9				
		2	0	2	4	6				
		1	0	1	2	3	All 0s All 1,2,3s All 4,6,9s	B1 B1 B1		
		0	0	0	0	0	7111 4,0,25		(3)	
		B R	0	1	2	3				
(c)	$a = \frac{1}{1}$	$\frac{7}{16}$, $b = c = d = \frac{1}{16}$						B1, B	1 B1	
(d)	$\mathrm{E}(T)$	$E(T) = \left(1 \times \frac{1}{16}\right) + \left(2 \times \frac{1}{8}\right) + \left(3 \times \frac{1}{8}\right) + \left(4 \times \frac{1}{16}\right) + \dots$							(3)	
		$= 2\frac{1}{4} \text{ or exact equivalent e.g. 2.25, } \frac{9}{4}$								
(e)	Var($(T) = \left(1^2 \times \frac{1}{16}\right) + \left(2^2 \times \frac{1}{16}\right) + \left$	- /	(-)	$-\left(4^2 \times \frac{1}{16}\right)$,	$\left(\frac{9}{4}\right)^2$ AWRT 7.19	M1A1		
		4 10 1	J 10					Total 1	14 marks	
(a)	M1	for $\frac{1}{4} \times \frac{1}{4}$								
(c)	1 st B1 2 nd B1	for $\frac{7}{16}$, for only one error	or in <i>b</i> , <i>c</i> ,	d(b=c=	$=d\neq \frac{1}{16}$ of	or $b = c =$	$\frac{1}{16} \neq d$ etc), 3^{rd} B1 all of	b, c, d	$=\frac{1}{16}$	
(d)	M1						correct ft. Must Attemp			
(e)	1 st M1	NB calculating E for attempt at E(•		er than 1 scores M0.			
	1 st A1	for $\frac{49}{4}$ (o.e.) or a	fully cor	rect expre	ession (all	non-zero	terms must be seen)			
	2 nd M1 2 nd A1	-	eir $[E(T)]$ on or AW	o] ² , Must i RT 7.19	be some a	ttempt to s	square $-\frac{9}{4}$ is M0 but $-\frac{9}{10}$	ould b	oe M1	