Inteligentni multiagentski sustavi

2. međuispit

- **1.** (**7 bodova**) Neki kolegij upisalo je troje studenata. Kao uvjet za polaganje kolegija studenti trebaju riješiti zadatak za domaću zadaću, pri čemu smiju i surađivati. Zadatak je takav da ga nijedan od studenata ne može riješiti sam, tj. student koji pokuša samostalno riješiti zadatak ostvarit će 0 bodova. Bilo koja dva studenta zajedničkim radom na zadatku ostvarit će ukupno 4 boda, a suradnjom svih triju studenata bit će ostvareno ukupno *m* bodova. Studenti potom mogu međusobno raspodijeliti ostvarene bodove kako god žele.
- (a) Prikažite problem kao igru u karakterističnom obliku.
- (b) Dokažite da je za sve m < 6 jezgra prazna.
- (c) Odredite jezgru za m = 6.
- (d) Odredite Shapleyjevu vrijednost za svakog igrača za jezgru, pri m = 6.
- **2.** (**6 bodova**) U tablici je prikazana igra u normalnom obliku. Akcije agenta 1 su u retcima, a akcije agenta 2 u stupcima.

	L	R	
U	(2, 1)	(3, 1)	
D	(4, 0)	(1, 3)	

- (a) Odredite model protivnika obaju agenata, uz pretpostavku da se učenje obavlja kroz 6 iteracija te da su incijalne vrijednosti težinske funkcije agenta 1 za akcije (L, R) agenta 2 jednake (2.5, 1), a težinska funkcija agenta 2 za akcije (U, D) iznosi (1, 1).
- (b) Pretpostavimo da inicijalne vrijednosti težinskih funkcija agenata nisu precizno poznate, ali je poznato da se nalaze u intervalu [1,10]. Odgovorite koje od četiriju mogućih zajedničkih akcija mogu biti odigrane u milijuntom koraku fiktivne igre. Ukratko obrazložite odgovor.
- **3.** (**6 bodova**) Razmatramo aksiomatske koncepte rješenja pri problemu pregovaranja. Odgovorite:
- (a) Je li moguće da Pareto optimalan dogovor nije utilitarističko rješenje? Ako je odgovor potvrdan, navedite primjer; ako je negativan, obrazložite.
- (b) Je li moguće da utilitarističko rješenje nije Pareto optimalno? Ako je odgovor potvrdan, navedite primjer; ako je negativan, obrazložite.
- (c) Je li moguće da ravnopravno rješenje društvene dobrobiti nije Pareto optimalno? Ako je odgovor potvrdan, navedite primjer; ako je negativan, obrazložite.

4. (**6 bodova**) Problem višeagentske alokacije zadataka prikazan je tablicom.

δ	$s_1(\delta)$	$s_{j}(\delta)$	$c_1(\delta)$	$c_{j}(\delta)$	$U_1(\delta) = 8 - c_1(\delta)$	$U_{j}(\delta) = 8 - c_{j}(\delta)$
δ^1	0	$\{t_1, t_2, t_3\}$	0	8	8	0
δ^2	$\{t_1\}$	$\{t_2, t_3\}$	1	4	7	4
δ^3	$\{t_2\}$	$\{t_1, t_3\}$	2	5	6	3
δ^2 δ^3 δ^4 δ^5 δ^6	$\{t_3\}$	$\{t_2, t_3\}$	4	7	4	1
δ^5	$\{t_2, t_3\}$	$\{t_{1}\}$	6	4	2	4
δ^6	$\{t_1, t_3\}$	$\{t_2\}$	5	3	3	5
δ^7	$\{t_1, t_2\}$	$\{t_3\}$	3	1	5	7
δ^8	$\{t_1, t_2, t_3\}$	0	7	0	1	8

- (a) Grafički vizualizirajte problem, uz pretpostavku da je moguća zamjena samo jednog zadatka u koraku.
- (b) Krene li se od početnog dogovora δ^1 , koji će dogovor dostići pohlepni algoritam u osnovnom slučaju, a koji ako se uvede mogućnost kompenzacije novčanim plaćanjem? Obrazložite.