Estimators & Estimation (and DAGs too)

Annie Chen 1/10/2020

Some admin

- Push problem sets to GitHub
- Office hours: Tuesdays 2:45pm to 3:45pm
- other admin stuff?

An Alternative Causal Model: Causal Graphs

· The old paradigm: structural equation modeling (SEM) and path analysis

- 1. Postulate a causal mechanism and draw a corresponding path diagram
- 2. Translate it into a (typically linear) system of equations:

$$Y = \alpha_0 + \alpha_1 X + \alpha_2 Z + \epsilon_{\alpha}$$

$$X = \beta_0 + \beta_1 Z + \beta_2 W + \beta_3 V + \epsilon_{\beta} \quad \cdots$$

- 3. Estimate β , α , etc. typically assuming normality and exogeneity
- However: Strong distributional/functional form assumptions and no language to distinguish causation from association

Pearl's Attack

- Judea Pearl (1936–) proposed a new causal inference framework based on nonparametric structural equation modeling (NPSEM)
- Computer scientist, working on Artificial Intelligence
- Causality (2000, Cambridge UP)
- Pearl's framework builds on SEMs and revives it as a formal language of causality.

Anatomy of a Causal Directed Acyclic Graph (DAG)

- · Composed of nodes (\bullet = observed or \circ = unobserved variables) and directed edges (\longrightarrow = possible causal relationship).
- Exogenous variables that are not explicitly modelled can be omitted from a graph
- It is missing edges that encode causal assumptions: missing arrows encode exclusion restrictions

• The corresponding structural equations:

$$z = f_z(u_z), x = f_x(z, u_x), \text{ and } y = f_y(x, u_y)$$

How do we get from:

do() Operator and Causal Effects

- Treatments (interventions) are represented by the do() operator
- For example, $do(x_0)$ holds X at x_0 exogenously ($x = x_0$)
- The pre-intervention distribution: P(x, y, z)
- The post-intervention distribution: $P(y, z \mid do(x_0))$

- Then, the ATE is defined as $\mathbb{E}[Y \mid do(x_1)] \mathbb{E}[Y \mid do(x_0)]$
- · Identification: Can $P(y \mid do(x))$ be estimated from data governed by the preintervention distribution P(x, y, z)?

Why DAGs?

Fundamental equivalence of causal graphs and potential outcomes:

$$z = f_z(u_z)$$
, $x = f_x(z, u_x)$, and $y = f_y(x, u_y)$

$$= Z_i, X_{Zi}, \text{ and } Y_{Xi}$$

• Potential outcomes framework (Neyman-Rubin model) is the dominant framework for causal inference in the social sciences.

Why DAGs?

- DAGs are a great way of encoding your causal assumptions.
- · I.e. Party id as the "unmoved-mover" (e.g., Campbell et al., 1966; Green and Palmquist, 1994; Miller and Shanks, 1996; Green et al., 2004)?
- OR can short-term factors like issue positions ¹, candidate characteristics ², and economic perceptions ³, at least under some conditions, move party id?

^{1.} Carsey and Layman, 2006; Highton and Kam, 2011

^{2.} Page and Jones, 1979

^{3.} Fiorina, 1981; MacKuen et al., 1989

Estimand, Estimators, and Estimates

What are these?

$$Y = \beta_0 + \beta_1 X_1 + u$$

$$Y = \hat{\beta_0} + \hat{\beta_1} X_1 + \hat{u}$$

$$\hat{\beta} = (X'X)^{-1}X'y$$

Estimand, Estimators, and Estimates

 θ : An unknown value that describes a population relationship. The concept we want to estimate.

$$ATE = \mathbb{E}[Y_{1i} - Y_{0i}]$$

 $\widehat{\theta}(Y)$: A rule (i.e., function) for combining data to produce a numerical value for a population parameter (estimand);

$$\widehat{ATE} = \frac{1}{n_1} \sum_{i=1}^{n} D_i Y_i - \frac{1}{n_0} \sum_{i=1}^{n} (1 - D_i) Y_i$$

 $\widehat{\theta}(Y=y)$: The numerical value(s) taken on by an estimator for a particular sample of data.

Estimation and Sampling Distribution

- Estimators produce estimates. Under repeated random sampling, they produce many estimates.
- Assuming repeated random sampling, we can calculate the uncertainty around our point estimates.
- Under repeated sampling, we also have a distribution of an estimate: a sampling distribution (the probability distribution of a statistic).

Sampling Distribution of the Mean

Estimand	Estimator	Sampling Distribution
$\mathbb{E}(X) = \mu$	$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$	$\bar{X}_n \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$

```
set.seed(01102020)
X \leftarrow rbinom(1000, 1, 0.5)
mean.estimator = function(X) {
  # Calculate the size of the sample, n.
  n \le length(X)
  # Apply the estimator to the sample data.
  mu.hat <- (1/n) * sum(X)
  return(mu.hat)
# Estimate mean
mean.estimator(X)
## [1] 0.491
```

This is the sampling distribution of our estimator.

mu samp <- replicate(10000, mean.estimator(rbinom(1000, 1, 0.5)))</pre>

Law of Large Numbers and Central Limit Theorem

Law of Large Numbers: If X_1, \ldots, X_n are drawn independently from the distribution of X (randomly sampled), then the sample estimator for the mean converges in probability to the population average of X^4

.

 Central Limit Theorem: The sampling distribution of the sample means approaches a Normal distribution as the sample size increases (no matter what the underlying population distribution is).

(Desirable) Properties of Estimators

Unbiasedness

$$\mathbb{E}[\hat{\mu}] = \mu$$

· (Relative) Efficiency

$$\mathbb{V}[\hat{\mu_1}] < \mathbb{V}[\hat{\mu_2}]$$

Consistency

$$\hat{\mu} \stackrel{p}{\rightarrow} \mu$$

Asymptotic Normality

$$\hat{\mu} \stackrel{approx.}{\sim} \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$$

Review of potential outcomes

- D_i : Indicator of treatment intake for unit i, where $i=1,\ldots,N$; for now, $D_i \in \{0,1\}$.
- Y_i : Variable of interest, whose value is observed, which may be affected by the treatment.

Review of potential outcomes

Which of these are observed?

	Y = 1	Y = 0
D = 1	$\mathbb{E}[Y_i(1) D_i=1]$	$\mathbb{E}[Y_i(0) D_i=1]$
D = 0	$\mathbb{E}[Y_i(1) D_i=0]$	$\mathbb{E}[Y_i(0) D_i=0]$

Review of potential outcomes

Which of these are observed?

	Y = 1	Y = 0
D = 1	$\mathbb{E}[Y_i(1) D_i=1]$	$\mathbb{E}[Y_i(0) D_i=1]$
D = 0	$\mathbb{E}[Y_i(1) D_i=0]$	$\mathbb{E}[Y_i(0) D_i=0]$

- This problem has a name...
- The Fundamental Problem of Causal Inference!
- · Can't we just use this naive estimator? $\mathbb{E}[Y_i|D_i=1]-\mathbb{E}[Y_i|D_i=0]$
- · It depends.

Selection Bias

Data from National Health Interview Survey (NHIS) 2005. Health status measured from 1 (poor health) to 5 (excellent health).

Group	Sample Size	Avg Health Status	Std Error
Hospital	7,774	3.21	0.014
No Hospital	90,049	3.93	0.003

Going to the hospital makes people sick!? O_o

Quiz yourself!

Are the following equalities always true?

- $Y_{di} = Y_i(d)$
- · Yes.
- $\cdot \mathbb{E}[Y_i(0)|D_i = 1] = \mathbb{E}[Y_i(0)|D_i = 0]$
- · Nope.
- $Y_i(d_i) = Y_i(d_i, d_{i-1}, d_{i+1})$
- · Nope.
- $\cdot \mathbb{E}[Y_i(1) Y_i(0)] = Y_i(1) Y_i(0)$
- · Nope again.

GitHub markdown