SECTION 7.1: PARAMETRIC EQUATIONS

(1) Sketch the parametric equations below. Give the orientation of the curve.

(a)
$$x(t) = t - 1$$
, $y(t) = 2t + 4$

Ł	-2	-1	0	1	2	3
×	-3	-2	-1	0	1	2
4	0	2	4	6	8	10

$$t = x+1$$

 $y = 2t+4 = 2(x+1)+4$

y = 2x+6

Nok: Need to pay
attention to see the
direction after eliminating
the parameter!

(b)
$$x(t) = \cos(t), \ y(t) = \sin(t)$$

	Ł	0	I	至	T	翌	21
•	×	ı	12/2	0	-1	0	1
	7	0	12/2	1	0	-1	0

use:
$$- \sin^2 t + \cos^2 t = 1$$

$$- x^2 + y^2 = 1$$
circle.

t	-2	-1	0	/	2	3
×	-8	-1	0	1	8	27
4	-3	-1	<u> </u>	3	5	7

$$y = 2t+1$$

$$So t = \frac{y-1}{2}$$

$$So x = (\frac{y-1}{2})^3 \text{ or }$$

$$X(y) = \frac{1}{8}(y-1)$$
(whic, Shifted up 1 unit)

(d)
$$x(t) = 2 + \cos(t), y(t) = 2\sin(t)$$

	Ł	D	型型	T	37	21	
	×	3	2	1	2	0	
_	ц	0	2	٥	-2	δ	

Again use
$$\cos^2 t + \sin^2 t = 1$$

And,

$$cos(4) = x-2$$

 $sin(4) = \frac{4}{3}$

So
$$(x-2)^2 + y^2 = 1$$
 wan ellipse

(3) Find two different ways to parametrize $y = x^2$.

$$X = -t$$

$$Y = t^{2}$$

what is the Impact

(4) For the parametric equations $x(t) = t^2$, $y(t) = e^{t^2}$, eliminate the parameter and sketch the graph. State the domain.

$$X=t^2$$
, $y=e^{x}$

but this paranetrization

the graph is followed down to y=1 then back up again.

(5) Use technology to sketch the parametric equations below.

(a)
$$x(t) = 1 - \sin(t), y(t) = 1 - \cos(t)$$

(b)
$$x(t) = 3\cos(t) + \cos(3t), y(t) = 3\sin(t) - \sin(3t)$$