

(19) 日本国特許庁 (JP) (12) 公開特許公報 (A) (11)特許出願公開番号
特開2002-303980 (P2002-303980A)
(43)公開日 平成14年10月16日 (2002.10.16)

(51)国名Cl' G 03 F 7/099 C 08 F 20/12 G 03 F 7/094 H 01 L 21/027	出願記号 P1 6 0 1 C 0 8 F 20/12 G 0 3 F 7/004 H 0 1 L 21/30	特許2001-108627(P2001-108627) 平成13年4月6日(2001.4.6)	(71)出願人 富士写真フィルム株式会社 神奈川県足柄市中畠210番地 (72)発明者 鹿森 学 真フィルム株式会社内 児玉 邦彦 真フィルム株式会社内 (74)代理人 100105647 弁理士 小堀 昌平 (4名)
--	---	--	--

〔54〕発明の名稱 ボジ型フォトレジスト組成物

〔57〕要約

〔課題〕半導体デバイスの製造において、現地欠陥の問題を改善し、更にハーフトーン露光適正にも優れたボジ型フォトレジスト組成物を提供すること。

〔解決手段〕少なくとも(A1)スルホニウムのスルホン酸塩化合物と(A2)N-ヒドロキシミドのスルホネート化合物又はジスルホニルジアメタノン化合物を含む、活性光線又は放射線の照射により酸を発生する化合物、(B)下記一般式(1-1)～(1-4)の少なくとも1種の基で保護されたアルカリ可溶性基を有する樹脂を有する樹脂を含むことを特徴とするボジ型フォトレジスト組成物。

〔請求項1〕

(A)少なくとも(A1)スルホニウムのスルホン酸塩化合物と(A2)N-ヒドロキシミドのスルホネート化合物又はジスルホニルジアメタノン化合物を含む、活性光線又は放射線の照射により酸を発生する化合物、(B)下記一般式(1-1)～(1-4)の少なくとも1種の基で保護されたアルカリ可溶性基を有する樹脂を含む、活性光線又は放射線の照射により分解しアルカリに対するボジ型が増加する樹脂を含有することを特徴とするボジ型フォトレジスト組成物。

審査請求 未請求 請求項の数7 OL (全 58 頁)

(1-1) $\text{R}_1 \text{R}_2 \text{R}_3 \text{R}_4 \text{R}_5 \text{R}_6 \text{O} \text{C}(\text{O}) \text{C}(\text{O}) \text{R}_7 \text{R}_8 \text{R}_9 \text{R}_{10} \text{R}_{11} \text{R}_{12} \text{R}_{13} \text{R}_{14} \text{R}_{15} \text{R}_{16} \text{R}_{17} \text{R}_{18} \text{R}_{19} \text{R}_{20}$ (pV)

(1-2) $\text{R}_1 \text{R}_2 \text{R}_3 \text{R}_4 \text{R}_5 \text{R}_6 \text{O} \text{C}(\text{O}) \text{C}(\text{O}) \text{R}_7 \text{R}_8 \text{R}_9 \text{R}_{10} \text{R}_{11} \text{R}_{12} \text{R}_{13} \text{R}_{14} \text{R}_{15} \text{R}_{16} \text{R}_{17} \text{R}_{18} \text{R}_{19} \text{R}_{20}$ (pV)

(1-3) $\text{R}_1 \text{R}_2 \text{R}_3 \text{R}_4 \text{R}_5 \text{R}_6 \text{O} \text{C}(\text{O}) \text{C}(\text{O}) \text{R}_7 \text{R}_8 \text{R}_9 \text{R}_{10} \text{R}_{11} \text{R}_{12} \text{R}_{13} \text{R}_{14} \text{R}_{15} \text{R}_{16} \text{R}_{17} \text{R}_{18} \text{R}_{19} \text{R}_{20}$ (pV)

(1-4) $\text{R}_1 \text{R}_2 \text{R}_3 \text{R}_4 \text{R}_5 \text{R}_6 \text{O} \text{C}(\text{O}) \text{C}(\text{O}) \text{R}_7 \text{R}_8 \text{R}_9 \text{R}_{10} \text{R}_{11} \text{R}_{12} \text{R}_{13} \text{R}_{14} \text{R}_{15} \text{R}_{16} \text{R}_{17} \text{R}_{18} \text{R}_{19} \text{R}_{20}$ (pV)

最佳頁に続く

〔請求項2〕 ボジ型フォトレジスト組成物

〔請求項1〕(B)の樹脂が、更に下記一般式(1-1)～(1-4)で表される脂環式脱水素保護基を含む基のうちの少なくとも1種の基で保護されたアルカリ可溶性基を有する樹脂を有することを特徴とする請求項1に記載のボジ型フォトレジスト組成物。

〔化2〕

(5)〔解説〕半導体デバイスの製造において、現地欠陥の問題を改善し、更にハーフトーン露光適正にも優れたボジ型フォトレジスト組成物を提供すること。

〔解説手段〕少なくとも(A1)スルホニウムのスルホン酸塩化合物と(A2)N-ヒドロキシミドのスルホネート化合物又はジスルホニルジアメタノン化合物を含む、活性光線又は放射線の照射により酸を発生する化合物、供給のラクトン保護を有する樹脂を含有する、酸の作用により分解しアルカリに対する溶解性が増加する樹脂、を含有することを特徴とするボジ型フォトレジスト組成物。

(2)

〔請求項3〕 前記一般式(1-1)～(pVII)で表される脂環式脱水素保護基を含む基、下記一般式(1-1)で表される基であることを特徴とする請求項2に記載のボジ型フォトレジスト組成物。

〔請求項4〕 前記一般式(1-1)～(pVII)で表される脂環式脱水素保護基を含む基、下記一般式(1-1)で表される基であることを特徴とする請求項2に記載のボジ型フォトレジスト組成物。

〔請求項5〕 前記一般式(1-1)～(pVII)で表される脂環式脱水素保護基を含む基、下記一般式(1-1)で表される基であることを特徴とする請求項2に記載のボジ型フォトレジスト組成物。

[0027]

[化10]

[0028] 芳香環を有さないスルホニウム塩(以下、酸発生剤(11)といふ)とは、次式(11)で表されるスルホニウムをカチオンとする塩である。

[0029]

[化11]

基、エチル基、プロピル基、ブチル基、ベンチル基、

シクロヘキシル基、ノルボニル基)を有する基)が

できる。R^{1a}～R^{1c}としての2-オキソアルキル基は、直

鎖、分岐、環状のいずれであってもよく、好ましくは、

上記のアルキル基の2位に>C=Oを有する基を有する

ことができる。R^{1a}～R^{1c}としてのアルコキシカルボニ

ル基、メチル基、エチル基、エチル基、プロ

ピル基、ブチル基、ヘンチル基)を有することができる。R^{1a}～R^{1c}は、ハロゲン原子、アルコキシ基(例え

ば炭素数1～5)、水酸基、シアノ基、ニトロ基によ

りて更に置換されていてよい。R^{1a}～R^{1c}のうち2つが

結合して環構造を形成してもよく、環内に酰素原子、硫

黄原素、エステル結合、アミド結合、カルボニル基を含

んでよい。R^{1a}～R^{1c}の内の2つが結合して形成

する基としては、アルキレン基(例えば、ブチレン基、

ベンゼレン基)を挙げることができる。光反応性の観点

から、R^{1a}～R^{1c}のうち2つが結合して形成する基が好まし

い。

[0031] R^{1a}～R^{1c}としてのアルキル基は、直鎖、分岐、環状のいずれであってもよく、好ましくは、炭素数1～3の直鎖又は分岐アルキル基(例えば、メチル基、

[0032] 芳香環を有さないスルホニウム塩のアニオン(10)としては、スルホン酸アノニオンであり、好ましくは1

(9) 15 位がアノ基、電子吸引性基によって置換されたアルカンスルホン酸
アニオン、電子吸引性基はビニル基、又はアルコキシカルボニル基
であり、さらに好ましくは炭素数1～8のバーフロロ
アルカンスルホン酸アニオンであり、最も好ましくはバ
ーフロブタシンスルホン酸アニオン、バーフロオクタ
シンスルホン酸アニオンである。これら用いることにより
酸の加水分解が制御され像力が向上する。尚、電子吸引
性基としては、フッ素原子、臭素原子、ニト
ロ基、アノ基、アルコキシカルボニル基、アシロキシ
基、アルキル基等を用げることができる。一般式 (11) で
表される化合物R₁～R₄の少なくともひとつが、一
般式 (11) で表される他の化合物のR₁～R₄の少なく
ともひとつと結合する構造をとらねばよい。

[0033] 以下に、本発明で使用できる芳香族を有さ
ないスルホニウム盐の具体例を示すが、本発明はこれら
に限定されるものではない。

(化12) 16 位がアノ基、アルコキシカルボニル基、アシロキシ
基、アルキル基等を用げることができる。一般式 (11) で
表される化合物R₁～R₄の少なくともひとつが、一
般式 (11) で表される他の化合物のR₁～R₄の少なく
ともひとつと結合する構造をとらねばよい。

(化13) 17 位がアノ基、2-オキソアルキル基、アルコキシカルボニル
基、アリル基、又はビニル基を有す。R₁～R₄としてのアルキル基は、R₁～
R₄としてのアルキル基と同様のものを有する。R₁～R₄としてのアルキ
ル基は、R₁～R₄としてのアルキル基と同様のものを有する。R₁～R₄としてのアルキ
ル基は、R₁～R₄としてのアルキル基と同様のものを有する。R₁～R₄としてのアルキ
ル基は、R₁～R₄としてのアルキル基と同様のものを有する。

(II-1)

(II-2)

(II-3)

(II-4)

(II-5)

(II-6)

(II-7)

(II-8)

(II-9)

(II-10)

(II-11)

(II-12)

(II-13)

(II-14)

(II-15)

(II-16)

(II-17)

(II-18)

(II-19)

(II-20)

(II-21)

(II-22)

(II-23)

(II-24)

(II-25)

(II-26)

(II-27)

(II-28)

(II-29)

(II-30)

(II-31)

(II-32)

(II-33)

(II-34)

(II-35)

(II-36)

(II-37)

(II-38)

(II-39)

(II-40)

(II-41)

(II-42)

(II-43)

(II-44)

(II-45)

(II-46)

(II-47)

(II-48)

(II-49)

(II-50)

(II-51)

(II-52)

(II-53)

(II-54)

(II-55)

(II-56)

(II-57)

(II-58)

(II-59)

(II-60)

(II-61)

(II-62)

(II-63)

(II-64)

(II-65)

(II-66)

(II-67)

(II-68)

(II-69)

(II-70)

特開2002-303980

特開2002-303980

19

21

22

(III-1)

(III-2)

(III-11)

(III-12)

(M2-1-1)

(M2-1-2)

(M2-1-3)

(M2-1-4)

(M2-1-5)

(M2-1-6)

(M2-1-7)

(M2-1-8)

(M2-1-9)

(M2-1-10)

(M2-1-11)

(M2-1-12)

(M2-1-13)

(M2-1-14)

(M2-1-15)

(M2-1-16)

(M2-1-17)

(M2-1-18)

(M2-1-19)

(M2-1-20)

(M2-1-21)

(M2-1-22)

(M2-1-23)

(M2-1-24)

(M2-1-25)

(M2-1-26)

(M2-1-27)

(M2-1-28)

(M2-1-29)

(M2-1-30)

(M2-1-31)

(M2-1-32)

(M2-1-33)

(M2-1-34)

(M2-1-35)

(M2-1-36)

(M2-1-37)

(M2-1-38)

(M2-1-39)

(M2-1-40)

(M2-1-41)

(M2-1-42)

(M2-1-43)

(M2-1-44)

(M2-1-45)

(M2-1-46)

(M2-1-47)

(M2-1-48)

(M2-1-49)

(M2-1-50)

(M2-1-51)

(M2-1-52)

(M2-1-53)

(M2-1-54)

(M2-1-55)

(M2-1-56)

(M2-1-57)

(M2-1-58)

(M2-1-59)

(M2-1-60)

(M2-1-61)

(M2-1-62)

(M2-1-63)

(M2-1-64)

(M2-1-65)

(M2-1-66)

(M2-1-67)

(M2-1-68)

(M2-1-69)

(M2-1-70)

(M2-1-71)

(M2-1-72)

(M2-1-73)

(M2-1-74)

(M2-1-75)

(M2-1-76)

(M2-1-77)

(15)

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187
<img alt

[化32]

10801

[化33]

1008

[化33]

1008

中国 2002-303980

中国 2002-303980

中国 2002-303980

(19)
35

(20)
37

[0082]
[E35]

38

[0082]
[E35]

[0082]
[E35]

[0082]
[E35]

[0082]
[E35]

[0082]
[E35]

[0081]
[E34]

47

エトキシ基、プロポキシ基、ブトキシ基、ブトキシ基等の炭素数1～4個のものを挙げることができる。シクロアルキル基、シクロヘキシル基等が挙げられる。アルケニル基、ベニル基、クロロベニル基、ヘキセニル基等が挙げられる。アルケニル基としては、炭素2～6個のアルケニル基が挙げられ、具体的にはビニル基、クロロビニル基、アリル基、ブチニル基、ベンゼニル基、ヘキセニル基等が挙げられる。アルケニル基として、R₁₂～R₁₄は、アセチル基、エチルカルボニル基、ブロピルカルボニル基等が挙げられる。ハロゲン原子としては、塩素原子、臭素原子、フッ素原子、チオ原子等が挙げられる。
[00911] 一般式 (p 1) ～ (p V) で示される構造の基でも、好ましくは上記一般式 (p 1) ～ (p V) で示される基である。一般式 (1) 中のR₁₁のアルキル基、R₁₃～R₁₆におけるハロゲン原子、アルキル基、シクロアルキル基、アルケニル基、アルコキシ基、アルキル基、アルコキシカルボニル基、アルケニル基、アルコキシ基、アルコキシカルボニル基等が挙げられる。

[0092] 上記構造における一般式 (p 1) ～ (p V) で示される構造で保護されたアルカリ可溶性基としでは、この技術分野において公知の類の基が挙げられる。具体的には、カルボン酸基、スルホン酸基、スルホン基、チオアルキル基等が挙げられ、好ましくはカルボン酸基、スルホン酸基である。上記構造における一般式 (p 1) ～ (p V) で示される構造で保護されたアルカリ可溶性基としては、好ましくは下記一般式 (p V 1) ～ (p X 1) で示される基が挙げられる。
[0093] [化4.1]
* 20
$$-\text{C}-\text{O}-\text{C}-\text{R}_{19}-\text{C}-\text{R}_{20}-\text{C}-\text{R}_{21}$$
 ... (p A)
R₁₇ R₁₈ R₂₂ R₂₃ R₂₄ R₂₅ R₂₆

[0094] ここで、R₁₁～R₁₆ならびにR₂₁は、それぞれ前記定義に同じである。上記構造を構成する、一般式 (p 1) ～ (p V) で示される構造で保護されたアルカリ可溶性基を有する繰り返し単位としては、下記一般式 (p A) で示される繰り返し単位が好ましい。
[化4.2]
* 20
$$-\text{C}-\text{O}-\text{C}-\text{R}_{19}-\text{C}-\text{R}_{20}-\text{C}-\text{R}_{21}$$
 ... (p A)

[0096] 一般式 (p A) 中；R₁は、水素原子、ハロゲン原子又は炭素数1～4の置換もしくは非置換の直鎖もしくは分岐のアルキル基を表す。該該のR₁は、各々同じでも異なってよい。このR₁のハロゲン原子、アルキル基は、後述の一般式 (a) のRと同様の例を挙げることができる。A'は、前記と同様である。R₂は、

特開2002-303980
50
[26]

[化4.3]

48

[化4.4]

特開2002-303980
51

[化4.5]

31

33

35

37

39

41

32

34

36

38

40

42

35

32

34

38

40

42

31

33

35

38

40

42

32

34

36

38

40

42

31

33

35

38

40

42

32

34

36

38

40

42

31

33

35

38

40

42

32

34

36

38

40

42

31

33

35

38

40

42

32

34

36

38

40

42

31

33

35

38

40

42

32

34

36

38

40

42

31

33

35

38

40

42

32

34

36

38

40

42

31

33

35

38

40

42

32

34

36

38

40

42

31

33

35

38

40

42

32

34

36

38

40

42

31

33

35

38

40

42

32

34

36

38

40

42

31

33

35

38

40

42

32

34

36

38

40

42

31

33

35

38

40

42

32

34

36

38

40

42

31

33

35

38

40

42

32

34

36

38

40

42

31

33

35

38

40

42

32

34

36

38

40

42

31

33

35

38

40

42

32

34

36

38

40

42

31

33

35

38

40

42

32

34

36

38

40

42

31

33

35

38

40

42

32

34

36

38

40

42

31

33

35

38

40

42

32

34

36

38

40

42

31

33

35

38

40

42

32

34

36

38

40

42

31

33

35

38

40

42

32

34

36

38

40

42

31

33

35

38

40

42

32

34

36

38

40

42

31

33

35

38

40

42

32

34

36

38

40

42

31

33

35

38

40

42

32

34

36

38

40

42

31

33

35

38

40

42

32

34

36

38

40

42

31

33

35

38

40

42

32

34

36

38

40

42

31

33

35

38

40

42

32

34

36

38

40

42

31

33

35

38

40

42

32

34

36

38

40

42

31

33

35

38

40

42

32

34

36

38

40

42

31

33

35

38

40

42

32

34

36

38

40

42

31

33

35

38

40

42

32

34

36

38

[154]

[0117]

[0119] 以下、一般式 (111-d) で示される様 50 り返し構造出立の具体例を示すが、本発明の内容がこれ

物語 2002-303980

物語 2002-303980

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1969
1970
1971
197

117

り、前記樹脂に要求される性質、特に(1)塗布粘剤に対する溶解性、(2)難燃性(ガラス移点)、(3)アルカリ現像性、(4)膜へり(吸湿性、アルカリ可溶性遷移)、(5)未燃光部の基板への密着性、(6)ドライイシング耐性、の幾種類が可能となる。

[01351]

[化62]

[01361]

[化631]

特服 2002-303980

特開2002-303980

附录 87

特服 2002-303980

特開2002-303980

83

特開2002-303980

84

85

86

87

88

89

[0137]

[0138]

[0139]

[0137]

[0138]

[0139]

特開2002-303980
87 (45)

[0139]

[1661]

[1667]

[0140]

特開2002-303980
90 (46)

专利 2002-303980

91 (47)

92 (48)

专利 2002-303980

93

94

[0141]

[0141]

91 (47)

92 (48)

专利 2002-303980

93

94

[0142]

[0142]

[01431]

14701

142711

[0144]

(18)

卷之三

100

102

$$\begin{array}{c} \text{CH}_3 \\ | \\ \text{C} \\ | \\ \text{CH}_3 \\ | \\ \text{C} \\ | \\ \text{CH}_3 \end{array}$$

$-\left(\text{CH}_2-\overset{\text{CH}_3}{\underset{\text{CH}_3}{\text{C}}\right)_m-$	$-\left(\text{CH}_2-\overset{\text{CH}_3}{\underset{\text{CH}_3}{\text{C}}\right)_n-$	$-\left(\text{CH}_2-\overset{\text{CH}_3}{\underset{\text{CH}_3}{\text{C}}\right)_p-$
---	---	---

 (34)

CH ₃		O
CH ₃		O
(50)		O
CH ₃		O
CH ₃		O
H ₃ C		CH ₃

1014

14101

112

 (52)

(68)

(69)

(70)

(71)

(72)

(73)

(74)

(75)

(76)

(77)

(78)

(79)

(80)

(81)

(82)

(83)

(84)

(85)

(86)

(87)

(88)

(89)

(90)

(91)

(92)

(93)

(94)

(95)

(96)

(97)

(98)

(99)

(100)

(101)

(102)

(103)

(104)

(105)

(106)

(107)

(108)

(109)

(110)

(111)

(112)

(113)

(114)

(115)

(116)

(117)

(118)

(119)

(120)

(121)

(122)

(123)

(124)

(125)

(126)

(127)

(128)

(129)

(130)

(131)

(132)

(133)

(134)

(135)

(136)

(137)

(138)

(139)

(140)

(141)

(142)

(143)

(144)

(145)

(146)

(147)

(148)

(149)

(150)

(151)

(152)

(153)

(154)

(155)

(156)

(157)

(158)

(159)

(160)

(161)

(162)

(163)

(164)

(165)

(166)

(167)

(168)

(169)

(170)

(171)

(172)

(173)

(174)

(175)

(176)

(177)

(178)

(179)

(180)

(181)

(182)

(183)

(184)

(185)

(186)

(187)

(188)

(189)

(190)

(191)

(192)

(193)

(194)

(195)

(196)

(197)

(198)

(199)

(200)

(201)

(202)

(203)

(204)

(205)

(206)

(207)

(208)

(209)

(210)

(211)

(212)

(213)

(214)

(215)

(216)

(217)

(218)

(219)

(220)

(221)

(222)

(223)

(224)

(225)

(226)

(227)

(228)

(229)

(230)

(231)

(232)

(233)

(234)

(235)

(236)

(237)

(238)

(239)

(240)

(241)

(242)

(243)

(244)

(245)

(246)

(247)

(248)

(249)

(250)

(251)

(252)

(253)

(254)

(255)

(256)

(257)

(258)

(259)

(260)

(261)

(262)

(263)

(264)

(265)

(266)

(267)

(268)

(269)

(270)

(271)

(272)

(273)

(274)

(275)

10146

[1048] 上式中, m , n , p , また, n_1 , n_2 , n_3 はいずれも繰り返し数のモル比を示す。 (11-1) ～ (11-4) のいずれかで表される基を有する繰り返し単位を n で示し, 2 個以上組み合わせた場合を n , n_1 , n_2 などで区別した。 (p I) ～ (p V) 1 で表される脂肪族式放熱水素構造を含む基を有する繰り返し単位 m で示した。一般式 (11-1-0) ～ (11-1-

好みしく、より好みしくは5.0～9.9、9.7重量%である。

[0150] 本発明のボジ型レジスチ組成物には、必要に応じて更に酸分解性樹脂阻止化合物、染料、可塑剤、界面活性剤、光增感剤、有機塗基性化合物、及び現像液に対する溶解性を促進させることができる。

[0151] 本発明で用いることのできる(C)酸阻止抑制剤は、露光後加熱及び現像処理までの感度、解像度の変動を抑制する点で好い。また、感度、好みしくは有機塗基性化合物である。有機塗基性化合物は、以下の構造を有する含塗基性化合物等が挙げられる。

[0152]

〔化7-51〕

R^{24}

$\text{R}^{250}-\text{N}-\text{R}^{252}$

… (A)

R^{254}

R^{255}

R^{256}

R^{257}

R^{258}

R^{259}

R^{260}

R^{261}

R^{262}

R^{263}

R^{264}

R^{265}

R^{266}

R^{267}

R^{268}

R^{269}

R^{270}

R^{271}

R^{272}

R^{273}

R^{274}

R^{275}

R^{276}

R^{277}

R^{278}

R^{279}

R^{280}

R^{281}

R^{282}

R^{283}

R^{284}

R^{285}

R^{286}

R^{287}

R^{288}

R^{289}

R^{290}

R^{291}

R^{292}

R^{293}

ここで、R²⁴～R²⁹およびR²⁹¹～R²⁹³は、同一または異なり、水素原子、炭素数1～2のアルキル基、炭素数1～12のアミノアルキル基、炭素数1～12のヒドロキシアルキル基、炭素数1～2のアルコキシアルキル基、または炭素数6～20の置換もしくは未置換アルキル基であり、これらは更に置換されていてもよい。ここでR²⁴～R²⁹は互いに結合して環を形成してよい。

[0154]

〔化7-6〕

$\text{R}^{294}-\text{N}-\text{C}-\text{R}^{295}$

… (B)

$\text{R}^{296}-\text{N}-\text{C}-\text{R}^{297}$

… (C)

$\text{R}^{298}-\text{N}-\text{C}-\text{R}^{299}$

… (D)

$\text{R}^{299}-\text{N}-\text{C}-\text{R}^{300}$

$\text{R}^{301}-\text{N}-\text{C}-\text{R}^{302}$

$\text{R}^{303}-\text{N}-\text{C}-\text{R}^{304}$

$\text{R}^{305}-\text{N}-\text{C}-\text{R}^{306}$

$\text{R}^{307}-\text{N}-\text{C}-\text{R}^{308}$

$\text{R}^{309}-\text{N}-\text{C}-\text{R}^{310}$

$\text{R}^{311}-\text{N}-\text{C}-\text{R}^{312}$

$\text{R}^{313}-\text{N}-\text{C}-\text{R}^{314}$

$\text{R}^{315}-\text{N}-\text{C}-\text{R}^{316}$

$\text{R}^{317}-\text{N}-\text{C}-\text{R}^{318}$

$\text{R}^{319}-\text{N}-\text{C}-\text{R}^{320}$

$\text{R}^{321}-\text{N}-\text{C}-\text{R}^{322}$

$\text{R}^{323}-\text{N}-\text{C}-\text{R}^{324}$

$\text{R}^{325}-\text{N}-\text{C}-\text{R}^{326}$

$\text{R}^{327}-\text{N}-\text{C}-\text{R}^{328}$

$\text{R}^{329}-\text{N}-\text{C}-\text{R}^{330}$

$\text{R}^{331}-\text{N}-\text{C}-\text{R}^{332}$

$\text{R}^{333}-\text{N}-\text{C}-\text{R}^{334}$

$\text{R}^{335}-\text{N}-\text{C}-\text{R}^{336}$

$\text{R}^{337}-\text{N}-\text{C}-\text{R}^{338}$

$\text{R}^{339}-\text{N}-\text{C}-\text{R}^{340}$

$\text{R}^{341}-\text{N}-\text{C}-\text{R}^{342}$

$\text{R}^{343}-\text{N}-\text{C}-\text{R}^{344}$

$\text{R}^{345}-\text{N}-\text{C}-\text{R}^{346}$

$\text{R}^{347}-\text{N}-\text{C}-\text{R}^{348}$

ここで、R²⁹⁴～R³⁴⁷は、同一または異なり、水素原子、炭素数1～2のアルキル基、炭素数1～12のアミノアルキル基、炭素数1～12のヒドロキシアルキル基、炭素数1～2のアルコキシアルキル基、または炭素数6～20の置換もしくは未置換アルキル基であり、これらは更に置換されていてもよい。ここでR²⁹⁴～R³⁴⁷は互いに結合して環を形成してよい。

[0155]

〔化7-7〕

$\text{R}^{349}-\text{N}-\text{C}-\text{R}^{350}$

$\text{R}^{351}-\text{N}-\text{C}-\text{R}^{352}$

$\text{R}^{353}-\text{N}-\text{C}-\text{R}^{354}$

$\text{R}^{355}-\text{N}-\text{C}-\text{R}^{356}$

$\text{R}^{357}-\text{N}-\text{C}-\text{R}^{358}$

$\text{R}^{359}-\text{N}-\text{C}-\text{R}^{360}$

$\text{R}^{361}-\text{N}-\text{C}-\text{R}^{362}$

$\text{R}^{363}-\text{N}-\text{C}-\text{R}^{364}$

$\text{R}^{365}-\text{N}-\text{C}-\text{R}^{366}$

$\text{R}^{367}-\text{N}-\text{C}-\text{R}^{368}$

$\text{R}^{369}-\text{N}-\text{C}-\text{R}^{370}$

$\text{R}^{371}-\text{N}-\text{C}-\text{R}^{372}$

$\text{R}^{373}-\text{N}-\text{C}-\text{R}^{374}$

$\text{R}^{375}-\text{N}-\text{C}-\text{R}^{376}$

$\text{R}^{377}-\text{N}-\text{C}-\text{R}^{378}$

$\text{R}^{379}-\text{N}-\text{C}-\text{R}^{380}$

$\text{R}^{381}-\text{N}-\text{C}-\text{R}^{382}$

$\text{R}^{383}-\text{N}-\text{C}-\text{R}^{384}$

$\text{R}^{385}-\text{N}-\text{C}-\text{R}^{386}$

$\text{R}^{387}-\text{N}-\text{C}-\text{R}^{388}$

$\text{R}^{389}-\text{N}-\text{C}-\text{R}^{390}$

$\text{R}^{391}-\text{N}-\text{C}-\text{R}^{392}$

$\text{R}^{393}-\text{N}-\text{C}-\text{R}^{394}$

$\text{R}^{395}-\text{N}-\text{C}-\text{R}^{396}$

$\text{R}^{397}-\text{N}-\text{C}-\text{R}^{398}$

$\text{R}^{399}-\text{N}-\text{C}-\text{R}^{400}$

$\text{R}^{401}-\text{N}-\text{C}-\text{R}^{402}$

$\text{R}^{403}-\text{N}-\text{C}-\text{R}^{404}$

$\text{R}^{405}-\text{N}-\text{C}-\text{R}^{406}$

$\text{R}^{407}-\text{N}-\text{C}-\text{R}^{408}$

$\text{R}^{409}-\text{N}-\text{C}-\text{R}^{410}$

$\text{R}^{411}-\text{N}-\text{C}-\text{R}^{412}$

ここで、R³⁴⁹～R⁴¹¹は、同一または異なり、水素原子、炭素数1～2のアルキル基、炭素数1～12のアミノアルキル基、炭素数1～12のヒドロキシアルキル基、炭素数1～2のアルコキシアルキル基、または炭素数6～20の置換もしくは未置換アルキル基であり、これらは更に置換されていてもよい。ここでR³⁴⁹～R⁴¹¹は互いに結合して環を形成してよい。

[0156]

〔化7-8〕

$\text{R}^{413}-\text{N}-\text{C}-\text{R}^{414}$

$\text{R}^{415}-\text{N}-\text{C}-\text{R}^{416}$

$\text{R}^{417}-\text{N}-\text{C}-\text{R}^{418}$

$\text{R}^{419}-\text{N}-\text{C}-\text{R}^{420}$

$\text{R}^{421}-\text{N}-\text{C}-\text{R}^{422}$

$\text{R}^{423}-\text{N}-\text{C}-\text{R}^{424}$

$\text{R}^{425}-\text{N}-\text{C}-\text{R}^{426}$

$\text{R}^{427}-\text{N}-\text{C}-\text{R}^{428}$

$\text{R}^{429}-\text{N}-\text{C}-\text{R}^{430}$

$\text{R}^{431}-\text{N}-\text{C}-\text{R}^{432}$

$\text{R}^{433}-\text{N}-\text{C}-\text{R}^{434}$

$\text{R}^{435}-\text{N}-\text{C}-\text{R}^{436}$

$\text{R}^{437}-\text{N}-\text{C}-\text{R}^{438}$

$\text{R}^{439}-\text{N}-\text{C}-\text{R}^{440}$

$\text{R}^{441}-\text{N}-\text{C}-\text{R}^{442}$

$\text{R}^{443}-\text{N}-\text{C}-\text{R}^{444}$

$\text{R}^{445}-\text{N}-\text{C}-\text{R}^{446}$

$\text{R}^{447}-\text{N}-\text{C}-\text{R}^{448}$

$\text{R}^{449}-\text{N}-\text{C}-\text{R}^{450}$

$\text{R}^{451}-\text{N}-\text{C}-\text{R}^{452}$

$\text{R}^{453}-\text{N}-\text{C}-\text{R}^{454}$

$\text{R}^{455}-\text{N}-\text{C}-\text{R}^{456}$

$\text{R}^{457}-\text{N}-\text{C}-\text{R}^{458}$

$\text{R}^{459}-\text{N}-\text{C}-\text{R}^{460}$

$\text{R}^{461}-\text{N}-\text{C}-\text{R}^{462}$

$\text{R}^{463}-\text{N}-\text{C}-\text{R}^{464}$

$\text{R}^{465}-\text{N}-\text{C}-\text{R}^{466}$

$\text{R}^{467}-\text{N}-\text{C}-\text{R}^{468}$

$\text{R}^{469}-\text{N}-\text{C}-\text{R}^{470}$

$\text{R}^{471}-\text{N}-\text{C}-\text{R}^{472}$

$\text{R}^{473}-\text{N}-\text{C}-\text{R}^{474}$

ここで、R⁴¹³～R⁴⁷³は、同一または異なり、水素原子、炭素数1～2のアルキル基、炭素数1～12のアミノアルキル基、炭素数1～12のヒドロキシアルキル基、炭素数1～2のアルコキシアルキル基、または炭素数6～20の置換もしくは未置換アルキル基であり、これらは更に置換されていてもよい。ここでR⁴¹³～R⁴⁷³は互いに結合して環を形成してよい。

[0157]

〔化7-9〕

$\text{R}^{475}-\text{N}-\text{C}-\text{R}^{476}$

$\text{R}^{477}-\text{N}-\text{C}-\text{R}^{478}$

$\text{R}^{479}-\text{N}-\text{C}-\text{R}^{480}$

$\text{R}^{481}-\text{N}-\text{C}-\text{R}^{482}$

$\text{R}^{483}-\text{N}-\text{C}-\text{R}^{484}$

$\text{R}^{485}-\text{N}-\text{C}-\text{R}^{486}$

$\text{R}^{487}-\text{N}-\text{C}-\text{R}^{488}$

$\text{R}^{489}-\text{N}-\text{C}-\text{R}^{490}$

$\text{R}^{491}-\text{N}-\text{C}-\text{R}^{492}$

$\text{R}^{493}-\text{N}-\text{C}-\text{R}^{494}$

$\text{R}^{495}-\text{N}-\text{C}-\text{R}^{496}$

$\text{R}^{497}-\text{N}-\text{C}-\text{R}^{498}$

$\text{R}^{499}-\text{N}-\text{C}-\text{R}^{500}$

$\text{R}^{501}-\text{N}-\text{C}-\text{R}^{502}$

$\text{R}^{503}-\text{N}-\text{C}-\text{R}^{504}$

$\text{R}^{505}-\text{N}-\text{C}-\text{R}^{506}$

$\text{R}^{507}-\text{N}-\text{C}-\text{R}^{508}$

$\text{R}^{509}-\text{N}-\text{C}-\text{R}^{510}$

$\text{R}^{511}-\text{N}-\text{C}-\text{R}^{512}$

$\text{R}^{513}-\text{N}-\text{C}-\text{R}^{514}$

$\text{R}^{515}-\text{N}-\text{C}-\text{R}^{516}$

$\text{R}^{517}-\text{N}-\text{C}-\text{R}^{518}$

$\text{R}^{519}-\text{N}-\text{C}-\text{R}^{520}$

$\text{R}^{521}-\text{N}-\text{C}-\text{R}^{522}$

$\text{R}^{523}-\text{N}-\text{C}-\text{R}^{524}$

では、チタン、二酸化チタン、氯化チタン、酸化クロム、カーボン、オーシリコン等の無機型と、吸光剤となる有機膜型が用いができる。前者は、例えば特公平7-6961-1記載のジフェニルアミン導体とホレムアルデヒド変性メラミン樹脂との組合体、アルカリ可溶性樹脂、吸光剤からなるものや、米国特許5,294,980記載の熱水マレイン酸共聚合体とジアミン型吸光剤の反応物、特開平6-118631記載の樹脂ハイブリッドとメチロールメラミン系熱可塑性樹脂を含むするもの、特開平6-118650記載のカルボン酸基とエポキシ基と吸光基を同一分子内に有するアクリル樹脂型反応性樹脂、特開平8-87115記載のメチローナラミンとベンゾフェノン系吸光剤からなるもの、特開平8-179509記載のポリビニルアルコール樹脂に低分子吸光剤を添加したもの等が挙げられる。また、有機反応性樹脂として、ブリューウー・サイエンス社製のDUV3.0シリーズや、DUV4.0シリーズ、シブレー社製のAC-2、AC-3等を使用することもできる。

[0164] 上記レジスト液を精密集束回路装置の製造に使用されるような基板(例:シリコン/二酸化シリコン被覆)上に(必要により上記反応性樹脂を複数回塗布した後)、スピナー、コータ等の適当な露布方法により露布後、所定のマスクを通して露光し、ベークを行い現象することにより良好なレジストパターンを得ることができる。ここで露光光としては、好ましくは150 nm～250 nmの波長の光である。具体的には、Kr Fエキシマーレーザー(248 nm)、Ar Fエキシマーレーザー(193 nm)、F2エキシマーレーザー(157 nm)、X線、電子ビーム等が挙げられる。

[0165] 現象としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、アンモニア水等の無機アルカリ類、エチルアミン、n-ブロピルアミン等の第一アミン類、ジフェニルアミン、ジヒドロアミン等の第二アミン類、トリエチルアミン、メチルエチルアミン等の第三アミン類、ジメチルエタノールアミン、トリエタノールアミン等のアルコールアミン類、トライメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロ

シド等の第四級アンモニウム鹽、ビロール、ビペリジン等の環状アミン類等のアルカリ性水溶性を使用することができる。更に、上記アルカリ性水溶性アルコール類、界面活性剤を適量添加して使用することもできる。

[0166] [実施例] 以下、本発明を実施例によって更に具体的に説明するが、本発明は以下の実施例に限定されるものではない。

[実施例] 以下、本発明を実施例によって更に具体的に説明するが、本発明は以下の実施例に限定されるものではない。

10 合成例1. 本発明の割合例(1)の合成
10-1 メチル-2-アクリルメタクリレートと、6-endo-ヒドロキシビンゴロ[2,2,1]ヘプタノン-2-endo-ヒドロキシビンゴロ[2,2,1]ヘプタノン-2-メタクリレートとモル比5.0/5.0の割合で性込み、N,N-ジメチルアセトアミド/テトラヒドロフラン=5/5に溶解し、固形分濃度2.0%の溶液100m

lを調製した。6-endo-ヒドロキシビンゴロ[2,2,1]ヘプタノン-2-メチル-2-アクリルメタクリレートと、6-endo-ヒドロキシビンゴロ[2,2,1]ヘプタノン-2-メタクリレートとモル比5.0/5.0の割合で性込み、N,N-ジメチルアセトアミド/テトラヒドロフ

ラン=5/5に溶解し、固形分濃度2.0%の溶液100m

lを調製した。6-endo-ヒドロキシビンゴロ[2,2,1]ヘプタノン-2-メチル-2-アクリルメタクリレートと、6-endo-ヒドロキシビンゴロ[2,2,1]ヘプタノン-2-メタクリレートとモル比5.0/5.0の割合で性込み、N,N-ジメチルアセトアミド/テトラヒドロフ

ラン=5/5に溶解し、固形分濃度2.0%の溶液100mlを調製した。6-endo-ヒドロキシビンゴロ[2,2,1]ヘプタノン-2-メチル-2-アクリルメタクリレートと、6-endo-ヒドロキシビンゴロ[2,2,1]ヘプタノン-2-メタクリレートとモル比5.0/5.0の割合で性込み、N,N-ジメチルアセトアミド/テトラヒドロフ

合成分	本発明の割合 (割合例N)	相成比 モル比 molar ratio	分子量
1	(1)	6.0/4.8	8,400
2	(5)	6.0/4.8	8,400
3	(8)	6.0/5.0	10,200
4	(8)	6.2/4.8	8,500
5	(17)	4.9/5.1	7,800
6	(20)	4.9/3.1/2.0	12,600
7	(22)	4.0/3.0/3.0	11,000
8	(23)	4.0/3.0/3.0	10,500
9	(28)	5.1/2.8/2.1	9,700
10	(38)	4.7/4.5/8	8,900
11	(45)	4.6/4.4/10	9,300
12	(54)	5.0/4.3/7	7,100

[0169] 実施例1～18、比較例1～2
[感光性樹脂の調整と精制] 上記合成例で合成した樹脂と表記の各割合で、固形分1.4wt%の割合で表記の各割合で合成した溶剤に溶解した後、0.1 μmのミクロ [表2]
[表2] に示す。

[0170] [0169] 実施例1～18、比較例1～2
[感光性樹脂の調整と精制] 上記合成例で合成した樹脂と表記の各割合で、固形分1.4wt%の割合で表記の各割合で合成した溶剤に溶解した後、0.1 μmのミクロ [表2]
[表2] に示す。

*ポジ型レジストを調整した、使用した本発明の成分を表す。

実施例	感光性樹脂 (A)(g)	感光性樹脂 (B)(g)	溶剤 (100)	溶剤 (g)	感光性樹脂 (B)(g)	溶剤 (100)	感光性樹脂 (B)(g)	溶剤 (100)
1	(1)	(1)	(2)	(1)	(1)	(0.05)	(1)	(0.02)
2	(1)	(2)	(2)	(1)	(1)	(0.02)	(1)	(0.02)
3	(1)	(2)	(2)	(1)	(1)	(0.02)	(1)	(0.02)
4	(1)	(1)	(2)	(1)	(1)	(0.02)	(1)	(0.02)
5	(1)	(1)	(2)	(1)	(1)	(0.02)	(1)	(0.02)
6	(1)	(1)	(2)	(1)	(1)	(0.02)	(1)	(0.02)
7	(1)	(1)	(2)	(1)	(1)	(0.02)	(1)	(0.02)
8	(1)	(1)	(2)	(1)	(1)	(0.02)	(1)	(0.02)
9	(1)	(1)	(2)	(1)	(1)	(0.02)	(1)	(0.02)
10	(1)	(1)	(2)	(1)	(1)	(0.02)	(1)	(0.02)
11	(1)	(1)	(2)	(1)	(1)	(0.02)	(1)	(0.02)
12	(1)	(1)	(2)	(1)	(1)	(0.02)	(1)	(0.02)
13	(1)	(1)	(2)	(1)	(1)	(0.02)	(1)	(0.02)
14	(1)	(1)	(2)	(1)	(1)	(0.02)	(1)	(0.02)
15	(1)	(1)	(2)	(1)	(1)	(0.02)	(1)	(0.02)
16	(1)	(1)	(2)	(1)	(1)	(0.02)	(1)	(0.02)
17	(1)	(1)	(2)	(1)	(1)	(0.02)	(1)	(0.02)
18	(1)	(1)	(2)	(1)	(1)	(0.02)	(1)	(0.02)
19	(1)	(1)	(2)	(1)	(1)	(0.02)	(1)	(0.02)
20	(1)	(1)	(2)	(1)	(1)	(0.02)	(1)	(0.02)
21	(1)	(1)	(2)	(1)	(1)	(0.02)	(1)	(0.02)
22	(1)	(1)	(2)	(1)	(1)	(0.02)	(1)	(0.02)
23	(1)	(1)	(2)	(1)	(1)	(0.02)	(1)	(0.02)
24	(1)	(1)	(2)	(1)	(1)	(0.02)	(1)	(0.02)
25	(1)	(1)	(2)	(1)	(1)	(0.02)	(1)	(0.02)
26	(1)	(1)	(2)	(1)	(1)	(0.02)	(1)	(0.02)
27	(1)	(1)	(2)	(1)	(1)	(0.02)	(1)	(0.02)
28	(1)	(1)	(2)	(1)	(1)	(0.02)	(1)	(0.02)
29	(1)	(1)	(2)	(1)	(1)	(0.02)	(1)	(0.02)
30	(1)	(1)	(2)	(1)	(1)	(0.02)	(1)	(0.02)
31	(1)	(1)	(2)	(1)	(1)	(0.02)	(1)	(0.02)
32	(1)	(1)	(2)	(1)	(1)	(0.02)	(1)	(0.02)
33	(1)	(1)	(2)	(1)	(1)	(0.02)	(1)	(0.02)
34	(1)	(1)	(2)	(1)	(1)	(0.02)	(1)	(0.02)
35	(1)	(1)	(2)	(1)	(1)	(0.02)	(1)	(0.02)
36	(1)	(1)	(2)	(1)	(1)	(0.02)	(1)	(0.02)
37	(1)	(1)	(2)	(1)	(1)	(0.02)	(1)	(0.02)
38	(1)	(1)	(2)	(1)	(1)	(0.02)	(1)	(0.02)
39	(1)	(1)	(2)	(1)	(1)	(0.02)	(1)	(0.02)
40	[表1]							

[0171] 表2中、感光性樹脂としては、
B1 : DBN : 1, 5-ジアザビンゴロ [4, 3, 0] B3 : DCMA : ジシクロヘキシルメチルアミン
B2 : TPI : 2, 4, 6-トリフェニルイミダゾール
B4 : 2, 6-ジイソプロピルアミン
B5 : 2, 6-ジイソプロピルアミン
B6 : 2, 6-ジイソプロピルアミン
B7 : 2, 6-ジイソプロピルアミン
B8 : 2, 6-ジイソプロピルアミン
B9 : 2, 6-ジイソプロピルアミン
B10 : 2, 6-ジイソプロピルアミン
B11 : 2, 6-ジイソプロピルアミン
B12 : 2, 6-ジイソプロピルアミン
B13 : 2, 6-ジイソプロピルアミン
B14 : 2, 6-ジイソプロピルアミン
B15 : 2, 6-ジイソプロピルアミン
B16 : 2, 6-ジイソプロピルアミン
B17 : 2, 6-ジイソプロピルアミン
B18 : 2, 6-ジイソプロピルアミン
B19 : 2, 6-ジイソプロピルアミン
B20 : 2, 6-ジイソプロピルアミン
B21 : 2, 6-ジイソプロピルアミン
B22 : 2, 6-ジイソプロピルアミン
B23 : 2, 6-ジイソプロピルアミン
B24 : 2, 6-ジイソプロピルアミン
B25 : 2, 6-ジイソプロピルアミン
B26 : 2, 6-ジイソプロピルアミン
B27 : 2, 6-ジイソプロピルアミン
B28 : 2, 6-ジイソプロピルアミン
B29 : 2, 6-ジイソプロピルアミン
B30 : 2, 6-ジイソプロピルアミン
B31 : 2, 6-ジイソプロピルアミン
B32 : 2, 6-ジイソプロピルアミン
B33 : 2, 6-ジイソプロピルアミン
B34 : 2, 6-ジイソプロピルアミン
B35 : 2, 6-ジイソプロピルアミン
B36 : 2, 6-ジイソプロピルアミン
B37 : 2, 6-ジイソプロピルアミン
B38 : 2, 6-ジイソプロピルアミン
B39 : 2, 6-ジイソプロピルアミン
B40 : 2, 6-ジイソプロピルアミン
B41 : 2, 6-ジイソプロピルアミン
B42 : 2, 6-ジイソプロピルアミン
B43 : 2, 6-ジイソプロピルアミン
B44 : 2, 6-ジイソプロピルアミン
B45 : 2, 6-ジイソプロピルアミン
B46 : 2, 6-ジイソプロピルアミン
B47 : 2, 6-ジイソプロピルアミン
B48 : 2, 6-ジイソプロピルアミン
B49 : 2, 6-ジイソプロピルアミン
B50 : 2, 6-ジイソプロピルアミン
B51 : 2, 6-ジイソプロピルアミン
B52 : 2, 6-ジイソプロピルアミン
B53 : 2, 6-ジイソプロピルアミン
B54 : 2, 6-ジイソプロピルアミン
B55 : 2, 6-ジイソプロピルアミン
B56 : 2, 6-ジイソプロピルアミン
B57 : 2, 6-ジイソプロピルアミン
B58 : 2, 6-ジイソプロピルアミン
B59 : 2, 6-ジイソプロピルアミン
B60 : 2, 6-ジイソプロピルアミン
B61 : 2, 6-ジイソプロピルアミン
B62 : 2, 6-ジイソプロピルアミン
B63 : 2, 6-ジイソプロピルアミン
B64 : 2, 6-ジイソプロピルアミン
B65 : 2, 6-ジイソプロピルアミン
B66 : 2, 6-ジイソプロピルアミン
B67 : 2, 6-ジイソプロピルアミン
B68 : 2, 6-ジイソプロピルアミン
B69 : 2, 6-ジイソプロピルアミン
B70 : 2, 6-ジイソプロピルアミン
B71 : 2, 6-ジイソプロピルアミン
B72 : 2, 6-ジイソプロピルアミン
B73 : 2, 6-ジイソプロピルアミン
B74 : 2, 6-ジイソプロピルアミン
B75 : 2, 6-ジイソプロピルアミン
B76 : 2, 6-ジイソプロピルアミン
B77 : 2, 6-ジイソプロピルアミン
B78 : 2, 6-ジイソプロピルアミン
B79 : 2, 6-ジイソプロピルアミン
B80 : 2, 6-ジイソプロピルアミン
B81 : 2, 6-ジイソプロピルアミン
B82 : 2, 6-ジイソプロピルアミン
B83 : 2, 6-ジイソプロピルアミン
B84 : 2, 6-ジイソプロピルアミン
B85 : 2, 6-ジイソプロピルアミン
B86 : 2, 6-

(5) B5:TPSA;トリフェニルスルホニウムアセテート
B6:トリメトキシエチルアミン
を用いた。

【0172】表2中、界面活性剤としては、W1:メガファックF176(大日本インキ(株)製)
(ブッキ系)
W2:メガファックR08(大日本インキ(株)製)
(ブッキ及びシリコン系)

W3:ボリシロキサンボリマーKP-341(信越化学
工業(株)製)(シリコン系)
W4:トロイナルS-366(トロイケミカル(株)
製)(シリコン系)

【0173】また、溶剤としては、PGMEA:プロピレングリコールモノメチルエーテル
アセテート
PGME:プロピレングリコールモノメチルエーテル
CH:シクロヘキサン
BL:チクロラクトン
を用いた。

【0174】(評価試験)得られたポジ型フォトマスクの評価を用いてシリコンウエハー上に塗
布し、130°Cで90秒間乾燥、約0.4μmのポジ型
フォトマスクを作成し、それにArFエキシマレー
ザー(波長193nm, NA=0.6, f=1.51社製Ar
Fステッパーで露光した)で露光した。露光後
の加熱処理を120°Cで90秒間行い、2.38%のテラメチ
ルアンモニウムヒドロキシド水溶液で現像、蒸留水で
洗浄し、レジストバーンプロファイルを得た。このよ
うにして得られたシリコンウエハーのレジストバーン
を走査型顕微鏡で観察し、レジストを下記のように評価
した。

【0175】(感度)感度は、0.15μmのラインア
ンドスペースバーンを再現する最低露光量で評価し
た。

【0176】(解像力)解像力は、0.15μmのラインアンドスペ
ースバーンを再現する最低露光量で再現できる、限界
解像力で評価した。

【0177】(現像欠陥)感光性組成物をスピンドル
ターボヘキサメチルシリカサン処理を施したシリコ
ン基板上に均一に塗布し、120°Cで90秒間ホットブ
レート上で加熱、乾燥を行い、0.50μmのレジスト
膜を形成した。このレジスト膜を、マスクを通してAr
Fエキシマレーザー光で露光し、露光後直ぐに110°C
で90秒間ホットブレート上で加熱した。更に2.38
質量%濃度のテラメチルアンモニウムヒドロキシド水
溶液で2.3°Cで60秒間現像し、30秒間純水にてリソ
ングした後、乾燥した。このようにして得られたコントラ
クトホールバーンの形成されたサンプルを、KLA21
1.2機(KLA-Tencor(株)製)により現像欠陥数を
測定した([Threshold2, Pixel] Size=0, 3.9)。

【0178】(評価試験)得られたポジ型フォトマスク
を用いてシリコンウエハー上に塗
布し、130°Cで90秒間乾燥、約0.4μmのポジ型
フォトマスクを作成し、それにArFエキシマレー
ザー(波長193nm, NA=0.6, f=1.51社製Ar
Fステッパーで露光した)で露光した。露光後
の加熱処理を120°Cで90秒間行い、2.38%のテラメチ
ルアンモニウムヒドロキシド水溶液で現像、蒸留水で
洗浄し、レジストバーンプロファイルを得た。このよ
うにして得られたシリコンウエハーのレジストバーン
を走査型顕微鏡で観察し、レジストを下記のように評価
した。

測定例	露光量 (mJ/cm ²)	露光時間 (μm)	解像力	現像欠陥数	ハーフトーン露光適性
1	13	0.15	6	0	0
2	14	0.15	7	0	0
3	12	0.20	8	0	0
4	11	0.15	6	0	0
5	14	0.20	6	0	0
6	13	0.20	7	0	0
7	14	0.20	6	0	0
8	13	0.15	7	0	0
9	14	0.15	7	0	0
10	15	0.15	7	0	0
11	16	0.15	8	0	0
12	14	0.20	9	0	0
13	13	0.15	7	0	0
14	14	0.20	7	0	0
15	15	0.15	6	0	0
16	14	0.20	7	0	0
17	14	0.15	6	0	0
18	13	0.15	7	0	0
比較例1	17	0.25	39	x	
比較例2	38	0.35	37	x	

【0179】表3の結果から明らかのように、本発明のポジ型レジスト組成物はそのすべてについて満足がいくレベルにある。すなわち、ArFエキシマレーザー露光を始めとする通常外線を用いたソフターフィーである。

【0180】【発明の効果】本発明は、通常外光、特にArFエキシマレーザー光による好適で、感度が優れ、現像欠陥の問題を改善し、更にハーフトーン露光適正にも適したボン型オトレジスト組成物を提供することができる。

フロントページの続き

(72)発明者 佐藤 健一郎

静岡県焼津郡吉田町川尻4000番地 富士写

真フィルム株式会社内

(73)発明者 岩合 利明

静岡県焼津郡吉田町川尻4000番地 富士写

真フィルム株式会社内

Dターム(審査) 2H25 A001 A002 A004 A016 A024

AC08 AD03 B000 B007 B010

BG00 CB14 C341 C345 C304

CC20 FA17

4U00 AC08 AL00 AL08

AM21R BA03R BA05R BA08R

BA12R BA20R BA22R BA56R

BA58R BC00P BC00R BC530

BC53R CA04 CA05 HE22

JA38

1

2

1

"NFR ArF"、NA=0.65、 σ =0.6) を用い、露光盤を取替的に強化させてラインアンドスベーストバーンを露光した。露光後は、ホットプレート上にて30°Cで60秒間ガストエキスボジヤーベークを行い、さらに2、38重量%テトラメチルアソニウムヒドロキシド水溶液で6.0秒間のバドル現像を行った。現像後のアイトフィールドバーンを走査型電子顕微鏡で観察し、以下の方法で実効感度及び解像度を調べて、その結果を表3に示した。なお、ここでのアイトフィールドバーンとは、条件がクロム層(露光層)で、その他の内側にガラス面(透光部)をベースとしてライン状にクロム層(遮光層)を用いた。

例 No.	樹脂	酸発生剤	アリーヴ	接触角	実効感度	解像度
実施例1 n 2	A	C(0.1部)	150°C	56°	54 mJ/cm ²	0.18 μm
	B	D(0.2部)	130°C	55°	30 mJ/cm ²	0.16 μm

実施例1 n 2	X	C(0.1部)	150°C	60°	66 mJ/cm ²	0.19 μm
	Y	D(0.2部)	130°C	59°	30 mJ/cm ²	0.16 μm

【00062】表1からわかるように、本報明で規定する樹脂を用いたレジストをArFエキシマレーザー露光に通用した場合、比較例に比べて、感度及び解像度を損なうことなく、レジスト塗膜と水の接触角が小さくなる。したがって、現像液とのなじみが良好になり、線幅の均一性の向上や現像欠陥の低減に効果がある。

【00063】**【実用の効果】**本報明の化学増感型シジ型レジスト組成物は、レジスト塗膜としたときの親水性が高く、塗膜と水の接触角を小さくする。また基板への接着性に優れ、ドライエッチング耐性や感度、解像度などのレジスト諸性能も良好である。したがってこの組成物は、KrfエキシマレーザーやArFエキシマレーザーなどを用いた露光においており、それによって高い性能のレジストバーンを与える。

フロントページの続き

(72)発明者 高田 佳幸
大阪市北区春日出中3丁目1番98号 住
友化学工業株式会社内

Fチーム(参考) 2H025 A01 A02 A04 A09 A14
A16 A038 A003 B000 B010
B000 C010 C014 C041

THIS PAGE BLANK (USPTO)