



# UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE  
United States Patent and Trademark Office  
Address: COMMISSIONER FOR PATENTS  
P.O. Box 1450  
Alexandria, Virginia 22313-1450  
[www.uspto.gov](http://www.uspto.gov)

| APPLICATION NO.                      | FILING DATE | FIRST NAMED INVENTOR   | ATTORNEY DOCKET NO.     | CONFIRMATION NO. |
|--------------------------------------|-------------|------------------------|-------------------------|------------------|
| 10/709,789                           | 05/28/2004  | Sam Shiaw-Shiang Jiang | 5413-0181PUS1           | 3788             |
| 64044                                | 7590        | 05/28/2008             | EXAMINER                |                  |
| BIRCH, STEWART, KOLASCH & BIRCH, LLP |             |                        | HOLLIDAY, JAIME MICHELE |                  |
| 8110 GATEHOUSE ROAD                  |             |                        |                         |                  |
| SUITE 100 EAST                       |             |                        | ART UNIT                | PAPER NUMBER     |
| FALLS CHURCH, VA 22315               |             |                        | 2617                    |                  |
|                                      |             |                        |                         |                  |
|                                      |             |                        | MAIL DATE               | DELIVERY MODE    |
|                                      |             |                        | 05/28/2008              | PAPER            |

**Please find below and/or attached an Office communication concerning this application or proceeding.**

The time period for reply, if any, is set in the attached communication.

|                              |                        |                         |  |
|------------------------------|------------------------|-------------------------|--|
| <b>Office Action Summary</b> | <b>Application No.</b> | <b>Applicant(s)</b>     |  |
|                              | 10/709,789             | JIANG, SAM SHIAW-SHIANG |  |
|                              | <b>Examiner</b>        | <b>Art Unit</b>         |  |
|                              | JAIME M. HOLLIDAY      | 2617                    |  |

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

#### Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

#### Status

- 1) Responsive to communication(s) filed on 08 April 2008.  
 2a) This action is FINAL.                    2b) This action is non-final.  
 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

#### Disposition of Claims

- 4) Claim(s) 1-14 is/are pending in the application.  
 4a) Of the above claim(s) 1-3 and 8-10 is/are withdrawn from consideration.  
 5) Claim(s) \_\_\_\_\_ is/are allowed.  
 6) Claim(s) 4-7 and 11-14 is/are rejected.  
 7) Claim(s) \_\_\_\_\_ is/are objected to.  
 8) Claim(s) \_\_\_\_\_ are subject to restriction and/or election requirement.

#### Application Papers

- 9) The specification is objected to by the Examiner.  
 10) The drawing(s) filed on \_\_\_\_\_ is/are: a) accepted or b) objected to by the Examiner.  
     Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).  
     Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).  
 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

#### Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).  
 a) All    b) Some \* c) None of:  
 1. Certified copies of the priority documents have been received.  
 2. Certified copies of the priority documents have been received in Application No. \_\_\_\_\_.  
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

\* See the attached detailed Office action for a list of the certified copies not received.

#### Attachment(s)

- |                                                                                      |                                                                   |
|--------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| 1) <input type="checkbox"/> Notice of References Cited (PTO-892)                     | 4) <input type="checkbox"/> Interview Summary (PTO-413)           |
| 2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948) | Paper No(s)/Mail Date. _____ .                                    |
| 3) <input type="checkbox"/> Information Disclosure Statement(s) (PTO/SB/08)          | 5) <input type="checkbox"/> Notice of Informal Patent Application |
| Paper No(s)/Mail Date _____.                                                         | 6) <input type="checkbox"/> Other: _____ .                        |

***Response to Arguments***

Applicant's arguments filed April 8, 2008 have been fully considered but they are not persuasive.

Applicant basically argues that Meyer et al. does not teach that the sender ignores a status report output from the receiver when a reset procedure is ongoing. Further, Meyer et al. does not teach that the second status report is ignored to prevent the sender from outputting a reset PDU when receiving a status report because the reset procedure has been started and is still ongoing. It is also argued that the PDU in Meyer is a data PDU and not a control PDU as the claimed reset PDU is. Also, Meyer et al. does not teach that the status report is ignored by checking whether a RESET ACK PDU has been received or not, and does not ignore status reports containing ACK only. Applicant also argues that Yi. et al. do not mention determining that the receiving status report contains a protocol error, and fail to disclose that the sender ignores further status reports. Also, there is no incentive in Yi et al. to ignore a status report.

With regards to the preceding arguments, Examiner respectfully disagrees. Meyer et al. disclose that the PDU with SN=2 is included in the second status report  $S_{12}$  since the receiver has not yet received it and is unaware that a retransmission is already on the way. In reply to the second status report  $S_{12}$  with the retransmission request for SN=2 and 4, the RLC transmitter only retransmits the PDU with SN=4. For sequence number SN=2 a check of the memory has the result that the first retransmission prohibit timer RPT1 is running for SN=2 (paragraphs 50-58). If the second status report only has SN=2, it would be inherent that the transmitter would

check its memory, recognize that a retransmission of this particular PDU has occurred, and disregard the entire report. Since there is a control for ignoring the second receiving status report, there is a controller that acts to disregard the report with SN=2 (controlling the sender to ignore at least a second receiving status report). In this scenario, the status report is ignored, and therefore the function is present in this invention. In response to applicant's argument that the references fail to show certain features of applicant's invention, it is noted that the features upon which applicant relies (i.e., that the second status report is ignored to prevent the sender from outputting a reset PDU when receiving a status report because the reset procedure has been started and is still ongoing; and that the status report is ignored by checking whether a RESET ACK PDU has been received or not) are not recited in the rejected claim(s). Although the claims are interpreted in light of the specification, limitations from the specification are not read into the claims. See *In re Van Geuns*, 988 F.2d 1181, 26 USPQ2d 1057 (Fed. Cir. 1993). These functions and conditional relationships are not claimed. Yi et al. clearly disclose a reset process, wherein a STATUS PDU is received, wherein it is determined that serial numbers are lost (error). Once this information is received, a reset instruction (RESET PDU) is sent after MaxMRW value is reached. Meyer et al. is not used to overcome the limitation of a RESET PDU, since the reset process and transmission of control information is disclosed by Yi et al., (abstract). Both, Yi et al. and Meyer et al. teach communication methods using the RLC layer. Since Yi et al. disclose the RLC reset procedure, and this procedure is well known in the art, it would be obvious for Meyer et al. to implement its invention, which occurs between RLC

entities, during a RLC reset. Further, Yi et al. is modified by Meyer et al., to overcome the limitation of "controlling the sender to ignore at least a second receiving status report." Therefore, Examiner maintains previous rejections.

***Claim Rejections - 35 USC § 103***

The text of those sections of Title 35, U.S. Code not included in this action can be found in a prior Office action.

1.     **Claims 4-7 and 11-14** are rejected under 35 U.S.C. 103(a) as being unpatentable over **Yi et al. (US 2003/0007459 A1)** in view of **Meyer et al. (US 2004/0148546 A1)**.

Consider **claim 4**, Yi et al. clearly show and disclose a method for re-transmitting data or control information in a radio link control layer relates to determining whether re-transmission will be ended by comparing a number of transmission with a critical value when the transmission of data or control information has successively failed, reading on the claimed "A method of controlling a reset procedure for a radio communication link between a sender and a receiver," (abstract). The sender RLC layer receives the state information with which success of transmission can be judged from the receiver and retransmits the RLC PDU, which requires re-transmission. The state information including the information of the lost PDU is loaded in the Status PDU and transmitted by the receiver. The Status PDU can be transmitted from the sender

to the receiver. For example, if the serial numbers of the received RLC PDU are #23, #24, #25, #32 and #34, the RLC PDUs having the serial numbers of #26 to #31 and #33 are presumed to be lost. The receiver checks the serial numbers of the received RLC PDU and transmits the status PDU including the information of positive acknowledgement or negative acknowledgement to the sender, thus to support the process of re-transmission of the sender, reading on the claimed "the receiver transmitting at least a receiving status report to the sender," (paragraphs 24, 25, 27). The sender sends a reset instruction for instructing reset of the radio link control layer to the receiver, when the number of transmission of the MRW instruction is the same as or larger than MaxMRW which is the critical value as sending of the MRW instruction which is control information is successively failed, and the MRW instruction which was sent right before is turned out to have failed, reading on the claimed "the sender receiving at least one receiving status report sent from the receiver, determining that the receiving status report contains protocol error, activating a reset procedure, and transmitting a RESET PDU to the receiver, and recognizing the reset procedure as ongoing before the sender receives a RESET ACK PDU outputted from the receiver," (paragraph 82).

However, Yi et al. fail to specifically disclose that the sender ignores further status reports.

In the same field of endeavor, Meyer et al. clearly show and disclose In a method for the transmission of data packets (D) from a transmitter (TR) to a

receiver (RE) identification of transmitted data packets are stored. Defective data packets (D) are detected by the receiver (RE), status messages (S) which request defective data packets for retransmission are sent from the receiver (RE) to the transmitter (TR) and retransmissions of requested data packets are performed according to the status messages (S), (abstract). Messages are sent between the RLC entities of the RLC transmitter TR and the RLC receiver RE. The RLC transmitter TR sends 3 PDUs with sequence numbers SN=1, 2 and 3. The PDU with SN=2 is lost, e.g. due to a disturbance during radio transmission, and does not reach the RLC receiver. By receiving the PDU with SN=3 the RLC receiver can detect the loss of the PDU with sequence number 2 if a transmission in the order of increasing sequence numbers is performed. The loss triggers a transmission of a first status report or status message S<sub>11</sub>, which requests a retransmission of the PDU with SN=2. In the first status report S<sub>11</sub>, the sequence number 3 is acknowledged (ACK=3) while sequence number 2 is reported as missing (NACK=2). At the same time, the RLC transmitter continues sending PDUs with SN=4, 5 and 6, of which the PDU with SN=4 is again lost during radio transmission. Upon receiving the first status report S<sub>11</sub>, the RLC transmitter retransmits the PDU with SN=2. The transmitter TR stores in a memory that sequence number SN=2 corresponds to a retransmission prohibit timer RPT1. When receiving the PDU with SN=5, the RLC receiver detects that the PDU with SN=4 is also lost and transmits a second status report S<sub>12</sub> which requests a retransmission both of the PDU with SN=2 and SN=4 by including the

information (NACK: 2, 4) while the reception of the PDU with sequence number 5 is acknowledged (ACK=5). The PDU with SN=2 is included in the second status report  $S_{12}$  since the receiver has not yet received it and is unaware that a retransmission is already on the way. In reply to the second status report  $S_{12}$  with the retransmission request for SN=2 and 4, the RLC transmitter only retransmits the PDU with SN=4. For sequence number SN=2 a check of the memory has the result that the first retransmission prohibit timer RPT1 is running for SN=2. The expiry threshold for this timer is not yet reached. Therefore, the PDU with SN=2 is not selected for retransmission. The poll bit is set in the retransmitted PDU with SN=4. The RLC transmitter starts a further retransmission prohibit timer RPT2 for SN=4, stores the correspondence between the timer and the PDU, reading on the claimed “controlling the sender to ignore at least a second receiving status report outputted from the receiver when the reset procedure is ongoing, wherein the second receiving status report is received later than the first receiving status report,” (paragraphs 50-58). If the second status report only has SN=2, it would be inherent that the transmitter would check its memory, recognize that a retransmission of this particular PDU has occurred, and disregard the entire report.

Therefore, it would have been obvious to a person of ordinary skill in the art at the time the invention was made to allow a transmitter to ignore a status report with a NACK for a PDU that has already been retransmitted as taught by

Meyer et al. in the method of Yi et al., in order to limit the delays due to retransmission.

Consider **claim 5**, Yi et al., as modified by Meyer et al., clearly show and disclose the claimed invention **as applied to claim 4 above**, and in addition, Yi et al. further disclose that the sender sends a reset instruction for instructing reset of the radio link control layer to the receiver, when the number of transmission of the MRW instruction is the same as or larger than MaxMRW which is the critical value as sending of the MRW instruction which is control information is successively failed, and the MRW instruction which was sent right before is turned out to have failed, reading on the claimed “the sender receiving at least one receiving status report sent from the receiver, determining that the receiving status report contains protocol error, transmitting a RESET PDU to the receiver,” (paragraph 82). When a positive response about the corresponding RESET PDU is received until the Timer\_RST is expired after sending the RESET PDU, the process of re-transmission is terminated. When the positive response about the corresponding RESET PDU is not received, the value of the VT (RST) is increased by 1. The value is then compared with the critical value (MaxRST). When the value of the VT (RST) is smaller than the critical value, the same RESET PDU is re-transmitted to the receiver. If the value of VT (RST) becomes the same as or larger than the critical value, this is reported to the upper layer, reading on the claimed “further comprises utilizing the sender to periodically output a RESET PDU to the receiver according to a predetermined period of time

before the number of transmissions of the RESET PDUs reaches a predetermined value and before the sender receives the RESET ACK PDU outputted from the receiver," (paragraph 96).

Consider **claim 6**, Yi et al., as modified by Meyer et al., clearly show and disclose the claimed invention **as applied to claim 5 above**, and in addition, Yi et al. further disclose that the sender drives Timer\_RST which is a related timer when the RESET PDU is transmitted, reading on the claimed "comprises utilizing the sender to start a timer for clocking the predetermined period of time when the sender outputs a RESET PDU," (paragraph 41).

Consider **claim 7**, Yi et al., as modified by Meyer et al., clearly show and disclose the claimed invention **as applied to claim 6 above**, and in addition, Yi et al. further disclose that the sender drives a Timer\_RST, reading on the claimed "timer is a timer Timer\_RST according to a 3GPP specification," (paragraph 41).

Consider **claim 11**, Yi et al. clearly show and disclose a method for re-transmitting data or control information in a radio link control layer relates to determining whether re-transmission will be ended by comparing a number of transmission with a critical value when the transmission of data or control information has successively failed, (abstract). The sender RLC layer receives the state information with which success of transmission can be judged from the receiver and retransmits the RLC PDU, which requires re-transmission. The state information including the information of the lost PDU is loaded in the Status

PDU and transmitted by the receiver. The Status PDU can be transmitted from the sender to the receiver. For example, if the serial numbers of the received RLC PDU are #23, #24, #25, #32 and #34, the RLC PDUs having the serial numbers of #26 to #31 and #33 are presumed to be lost. The receiver checks the serial numbers of the received RLC PDU and transmits the status PDU including the information of positive acknowledgement or negative acknowledgement to the sender, thus to support the process of re-transmission of the sender, (paragraphs 24, 25, 27). The sender sends a reset instruction for instructing reset of the radio link control layer to the receiver, when the number of transmission of the MRW instruction is the same as or larger than MaxMRW which is the critical value as sending of the MRW instruction which is control information is successively failed, and the MRW instruction which was sent right before is turned out to have failed, reading on the claimed "A sender in wireless communication with a receiver for receiving at least a first receiving status report sent from the receiver, the sender comprising: a communication interface for activating a reset procedure and transmitting a RESET PDU to the receiver when determining that the first receiving status report contains protocol error; and a decision logic electrically connected to the communication interface for recognizing the reset procedure as ongoing before the communication interface receives a RESET ACK PDU outputted from the receiver," (paragraph 82).

However, Yi et al. fail to specifically disclose that the sender ignores further status reports.

In the same field of endeavor, Meyer et al. clearly show and disclose In a method for the transmission of data packets (D) from a transmitter (TR) to a receiver (RE) identification of transmitted data packets are stored. Defective data packets (D) are detected by the receiver (RE), status messages (S) which request defective data packets for retransmission are sent from the receiver (RE) to the transmitter (TR) and retransmissions of requested data packets are performed according to the status messages (S), (abstract). Messages are sent between the RLC entities of the RLC transmitter TR and the RLC receiver RE. The RLC transmitter TR sends 3 PDUs with sequence numbers SN=1, 2 and 3. The PDU with SN=2 is lost, e.g. due to a disturbance during radio transmission, and does not reach the RLC receiver. By receiving the PDU with SN=3 the RLC receiver can detect the loss of the PDU with sequence number 2 if a transmission in the order of increasing sequence numbers is performed. The loss triggers a transmission of a first status report or status message S<sub>11</sub>, which requests a retransmission of the PDU with SN=2. In the first status report S<sub>11</sub>, the sequence number 3 is acknowledged (ACK=3) while sequence number 2 is reported as missing (NACK=2). At the same time, the RLC transmitter continues sending PDUs with SN=4, 5 and 6, of which the PDU with SN=4 is again lost during radio transmission. Upon receiving the first status report S<sub>11</sub>, the RLC transmitter retransmits the PDU with SN=2. The transmitter TR stores in a memory that sequence number SN=2 corresponds to a retransmission prohibit timer RPT1. When receiving the PDU with SN=5, the RLC receiver detects that

the PDU with SN=4 is also lost and transmits a second status report  $S_{12}$  which requests a retransmission both of the PDU with SN=2 and SN=4 by including the information (NACK: 2, 4) while the reception of the PDU with sequence number 5 is acknowledged (ACK=5). The PDU with SN=2 is included in the second status report  $S_{12}$  since the receiver has not yet received it and is unaware that a retransmission is already on the way. In reply to the second status report  $S_{12}$  with the retransmission request for SN=2 and 4, the RLC transmitter only retransmits the PDU with SN=4. For sequence number SN=2 a check of the memory has the result that the first retransmission prohibit timer RPT1 is running for SN=2. The expiry threshold for this timer is not yet reached. Therefore, the PDU with SN=2 is not selected for retransmission. The poll bit is set in the retransmitted PDU with SN=4. The RLC transmitter starts a further retransmission prohibit timer RPT2 for SN=4, stores the correspondence between the timer and the PDU, reading on the claimed "wherein the decision logic controls the communication interface to ignore at least a second receiving status report outputted from the receiver when the reset procedure is ongoing; wherein the second receiving status report is received later than the first receiving status report," (paragraphs 50-58). If the second status report only has SN=2, it would be inherent that the transmitter would check its memory, recognize that a retransmission of this particular PDU has occurred, and disregard the entire report.

Therefore, it would have been obvious to a person of ordinary skill in the art at the time the invention was made to allow a transmitter to ignore a status report with a NACK for a PDU that has already been retransmitted as taught by Meyer et al. in the method of Yi et al., in order to limit the delays due to retransmission.

Consider **claim 12**, Yi et al., as modified by Meyer et al., clearly show and disclose the claimed invention **as applied to claim 11 above**, and in addition, Yi et al. further disclose that the sender sends a reset instruction for instructing reset of the radio link control layer to the receiver, when the number of transmission of the MRW instruction is the same as or larger than MaxMRW which is the critical value as sending of the MRW instruction which is control information is successively failed, and the MRW instruction which was sent right before is turned out to have failed, reading on the claimed “the sender receiving at least one receiving status report sent from the receiver, determining that the receiving status report contains protocol error, transmitting a RESET PDU to the receiver,” (paragraph 82). When a positive response about the corresponding RESET PDU is received until the Timer\_RST is expired after sending the RESET PDU, the process of re-transmission is terminated. When the positive response about the corresponding RESET PDU is not received, the value of the VT (RST) is increased by 1. The value is then compared with the critical value (MaxRST). When the value of the VT (RST) is smaller than the critical value, the same RESET PDU is re-transmitted to the receiver. If the value of VT (RST) becomes

the same as or larger than the critical value, this is reported to the upper layer, reading on the claimed “periodically outputting a RESET PDU to the receiver according to a predetermined period of time before the number of transmissions of the RESET PDUs reaches a predetermined value,” (paragraph 96).

Consider **claim 13**, Yi et al., as modified by Meyer et al., clearly show and disclose the claimed invention **as applied to claim 12 above**, and in addition, Yi et al. further disclose that the sender drives Timer\_RST which is a related timer when the RESET PDU is transmitted, reading on the claimed “timer electrically connected to the communication interface for clocking the predetermined period of time, wherein the communication interface starts the timer when outputting a RESET PDU,” (paragraph 41).

Consider **claim 14**, Yi et al., as modified by Meyer et al., clearly show and disclose the claimed invention **as applied to claim 13 above**, and in addition, Yi et al. further disclose that the sender drives a Timer\_RST, reading on the claimed “timer is a timer Timer\_RST according to a 3GPP specification,” (paragraph 41).

### ***Conclusion***

Any inquiry concerning this communication or earlier communications from the examiner should be directed to JAIME M. HOLLIDAY whose telephone number is

(571)272-8618. The examiner can normally be reached on Monday through Friday 7:30am to 4:00pm.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, V. Paul Harper can be reached on (571) 272-7605. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/VINCENT P. HARPER/  
Supervisory Patent Examiner, Art Unit 2617

/Jaime M Holliday/  
Examiner, Art Unit 2617