Trabalho Prático 1

DCC215 - Algoritmos 1

Igor Joaquim da Silva Costa

1. Introdução

O problema proposto foi verificar se é possível satisfazer todos seguidores de um político, a partir de uma série de propostas que podem ser aceitas ou não. Mais precisamente, são apresentados um número de seguidores de algum político, e quantas propostas o político possui, cada seguidor escolhe no máximo duas propostas para aceitar, e duas propostas para recusar. Um seguidor fica satisfeito se ao menos uma das suas propostas é aceita e ao menos uma das propostas é rejeitada, o problema é resolvido se existe uma combinação de aceitação/rejeição de propostas que satisfaça todos seguidores.

Para resolver o problema citado, cada proposta do político foi tratado como um literal booleano e toda requisição de usuário como uma cláusula de uma CNF, onde os literais são as propostas que o usuário quer promover, ou rejeitar, no caso da rejeição, são tomados os valores negativos do literais. Nesse sentido, o problema apresentado é reduzido à uma instância do problema 2SAT. Diante disso, é conhecido um algoritmo polinomial capaz de resolver uma instância de SAT, a partir de uma modelagem em grafo.

Diante do exposto, a documentação presente possui como objetivo detalhar como o sistema foi modelado (Seção 2), o quão eficiente ele pode ser (Seção 3). Por fim, o projeto é sumarizado junto com os aprendizados gerados durante a produção do trabalho(Seção 4).

2. Modelagem

Esta seção tem como objetivo discutir as decisões que levaram à atual modelagem do programa.

2.1 2SAT

Como elucidado na seção 1, o problema apresentado pode ser reduzido ao problema 2SAT, onde cada par (x,y) de proposta que algum usuário quer que seja promovido, se torna a cláusula (X ou Y), e cada par (x,y) de propostas para rejeitar se torna a cláusula $(\sim X \text{ ou } \sim Y)$.

Dessa forma, o problema pode ser todo escrito em uma única fórmula na forma normal conjuntiva de 2 literais, ou seja, uma instância de 2SAT.

2.2 Resolver 2SAT

A fim de resolver o problema 2SAT, foi utilizado uma outra redução, onde 2SAT pode ser resolvido por um problema de conectividade em grafos. Qualquer cláusula (X ou Y) pode ser reescrita pela forma (Se \sim X então Y ou Se \sim Y então X), nesse sentido, podemos modelar o problema usando grafos da seguinte forma: para cada cláusula (X ou Y) de 2SAT, crie uma aresta de (\sim X,Y) e (\sim Y,X) em um grafo G. Para representar um vértice \sim X, sabendo que existem N literais, o index que representa \sim X é X + N, logo , todo index maior que N representa um literal negativo.

Nesse grafo, qualquer caminho entre 2 vértices U e V representa que, se U for falso, então V deve ser verdadeiro. Logo, se existe caminho entre X e ~X e caminho entre ~X e X, para algum literal X, X deve ser verdadeiro e falso ao mesmo tempo, logo existe uma contradição e a fórmula não é satisfatível.

2.3 Encontrar Componente conexo

Como o problema foi reduzido a verificar se, para todo X, não existe caminho de X para ~X e vice-versa, basta utilizar um algoritmo que encontra todos os componentes fortemente conexos de um grafo, existe X e ~X no mesmo componente se e somente se a fórmula for satisfatível. Dessa forma, foi implementado o algoritmo de Kosaraju para encontrar componentes fortemente conexos, que consiste em rodar uma DFS para cada nó do grafo G, marcar qual a ordem que os vértices foram visitados e executar uma outra DFS no grafo reverso de G, na ordem decrescente em que os elementos foram visitados em G. Todos pares mutuamente alcançáveis estarão em um mesmo componente, a partir disso, basta verificar se existem X e ~X no mesmo componente, para algum literal X.

2.4 Estrutura de Dados

Para representar o grafo, foi tomada uma lista de adjacência para cada vértice presente, onde existe aresta entre (X,Y) se Y pertence a lista de adjacência de X. Essa decisão foi tomada pois, em grande parte dos casos, o grafo é pouco denso, fazendo a representação em

matriz de adjacência mais cara em espaço e tempo de execução. Nesse mesmo sentido, existe uma lista de adjacência para o grafo reverso.

Além disso, para executar o Kosaraju, foi usado um tipo vetor para simular uma pilha e armazenar a ordem que os elementos são descobertos na primeira DFS.

3. Análise de complexidade

3.1 Espaço

Seja N o número de usuários e M o número de propostas. Inicialmente, é criado 2*M vetores vazios para representar o grafo sem nenhuma aresta, no pior dos casos, cada vetor possuirá 2*M -1 elementos. Assim, a complexidade de espaço se torna $O(M^2)$ na quantidade de propostas.

3.2 Tempo

Para análise de tempo, considere N o número de usuários e M o número de propostas.

3.2.1 Kosaraju

Para se realizar a busca por componente conexos, são feitas 2 DFS, onde a complexidade de cada DFS é de $O(2M + (2M)^2)$. Logo, verificar se a fórmula é satisfatível cresce quadraticamente em função do número de propostas.

4. Conclusões

Com o intuito de saber se existe um conjunto de propostas que agrade todos os seguidores de algum político simultaneamente, foi implementado um programa que utiliza algoritmos de componente conexos para resolver o problema.

Durante o projeto do sistema foram levadas em consideração não só aspectos práticos da implementação de uma modelagem computacional, mas também como a linguagem de programação escolhida poderia ser uma ferramenta útil para chegar no objetivo esperado. Toda a questão de mapear um mini-mundo de interesse em um modelo computacional robusto se mostrou bastante produtiva, levando o aluno a pensar em formas criativas de se resolver e entender o problema, tendo como resultado um extenso aprendizado sobre como representar um grafo pode facilitar, ou atrapalhar, na implementação e na execução de determinados

algoritmos. Por fim, o tempo extra usado para projetar o sistema trouxe várias recompensas

no sentido da implementação, sendo um aspecto a ser levado para trabalhos futuros.

Nesse sentido, todo o fluxo de trabalho foi essencial para a consolidação de conteúdos

aprendidos em sala, além de apresentar, de forma prática, como softwares maiores, mais

consistentes e robustos são projetados e implementados.

5. Instruções para compilação e execução:

5.1 Compilação

Existem partes do programa que são compatíveis apenas às versões mais recentes da

linguagem c++, dito isso, deve-se seguir as seguintes configurações para a compilação:

Linguagem: C++

Compilador: Gnu g++

Flags de compilação: -std=c++11 -g

Versão da linguagem: standard C++11

Sistema operacional (preferência): distribuições baseadas no kernel Linux 5.15.

O comando para compilar o programa automaticamente está presente no arquivo "Makefile"

e sua execução é chamada pelo comando "make all". Deste modo, o executável "tp01" estará

compilado e pronto para ser utilizado.

5.2 Execução

Seguem as instruções para a execução manual:

1. Certifique-se que o compilável foi gerado de maneira correta, se algum problema

ocorrer, execute o comando "make all" presente no "Makefile".

2. Uma vez que os passos anteriores foram cumpridos, execute o programa com o

./tp01 < caso Teste01.txt) comando:

3. A saída será impressa no terminal.