1.Identify your problem statement:

Based on the given statement, we need to predict the Insurance charges.

2.) Tell basic info about the dataset (Total number of rows, columns)

Given dataset is mentioned the ages, bmi, children, sex, somking status.

Total Number of Rows :1338

Total Number of Columns :6

3.) Mention the pre-processing method if you're doing any (like converting string to number – nominal data)

pre-processing method: Nominal Data

4.) Develop a good model with r2_score. You can use any machine learning algorithm; you can create many models. Finally, you must come up with final model.

Final Model: Random Forest(n estimators=100, criterion='poisson',

5.All the research values (r2_score of the models) should be documented. (You can make tabulation or screenshot of the results.)

i) Multiple Liner Model

Multiple Linear r2_score	0.789479035
--------------------------	-------------

ii)SVMR Model

SVMR				
Kernel	С	R2		
Linear	0.01	0.038716223		
Linear	0.1	0.038716223		
Linear	1	-0.010102665		
Linear	10	0.462468414		
Linear	100	0.628879286		
Rbf	100	0.320031783		
Rbf	10	-0.032273294		
Rbf	0.1	-0.089074515		
Rbf	0.01	-0.089645537		
Poly	0.01	-0.089568285		
Poly	0.1	-0.088302377		
Poly	10	0.038716223		
Poly	100	0.617956962		
Sigmoid	100	0.527610355		
Sigmoid	10	0.039307144		
Sigmoid	0.1	-0.088269915		
Sigmoid	0.01	-0.089565016		

$iii) Decision_Tree_Model$

Decision Tree					
Criterion	splitter	R2			
squared_error	best	0.694775596			
squared_error	random	0.696096406			
friedman_mse	best	0.688181321			
friedman_mse	random	0.693510661			
absolute_error	best	0.655280103			
absolute_error	random	0.631079204			
Poisson	best	0.718231189			
Poisson	random	0.685400154			

R² Value =0.718231189

$iv) Random_Forest_Model$

Random Forest					
n_estimators	criterion	R2			
10	squared_error	0.854571403			
50	squared_error	0.854571403			
100	squared_error	0.856178502			
10	friedman_mse	0.84401946			
50	friedman_mse	0.854827452			
100	friedman_mse	0.856577205			
10	absolute_error	0.839536985			
50	absolute_error	0.855411224			
100	absolute_error	0.849985594			
10	poisson	0.84875122			
50	poisson	0.857534008			
100	poisson	0.858311806			

R² Value =0.858311806

6.) Mention your final model, justify why u have chosen the same.

Final Model : Random_Forest_Model

After evaluating different algorithms, it was determined that the random forest algorithm consistently delivered the most optimal results. As a result, it has been selected as the final model for this project.