Skript Modelltheorie

Lukas Metzger

22. Oktober 2018

0 Motivation

Aus der Linearen Algebra

- K-Vektorräume, Untervektorräume, Homomorphismen
- Gruppen, Untergruppen, Homomorphismen
- Ringe, Unterringe, Homomorphismen
- Körper, Teilkörper, Homomorphismen

Entwicklungsschritte

- Suche nach allgemeiner Theorie \Rightarrow universelle Algebra.
- Modelltheorie (universelle Algebra + Logik)
- Kategorientheorie

Beispiel von Ax

Sei K ein Körper, und $P(X) \in K[X]$. P definiert eine Abbildung $\tilde{P}: K \to K$.

P hat die Hopf-Eigenschaft, wenn gilt:

Wenn \tilde{P} injektiv ist, dann ist \tilde{P} surjektiv.

Jedes Polynom hat über einem endlichen Körper die Hopf-Eigenschaft.

Formalisierung der Hopf-Eigenschaft

$$\forall y \forall z (P(y = P(z) \to y = z)$$

 $\forall w \exists v P(v) = w$

Für jedes n

$$\forall x_0, \dots, x_n \left(\forall y \forall z \left(\sum_{i=0}^n x_i y^i = \sum_{i=0}^n x_i z^i \to y = z \right) \to \forall w \exists v \sum_{i=0}^n x_i v^i = w \right)$$

Logik

$$\underset{\text{log. äquivalent}}{\sim} \forall x_0, \dots \forall x_n \forall w \exists v \exists y \exists z \left(\sum_{i=0}^n x_i y^i = \sum_{i=0}^n x_i z^i \right) \to \sum_{i=0}^n x_i v^i = w$$

Beispiel 0.1.

$$\mathbb{F}_{p^n} \models_{\text{erfüllt}} HE(n) \underset{\forall \exists -\text{Pr\"{a}servation}}{\Rightarrow} \underbrace{\bigcup_{n \in \mathbb{N}} \mathbb{F}_{p^n}}_{\text{n} \in \mathbb{N}} \models HE(n)$$

$$\tilde{\mathbb{F}}_{p} = \text{der algebraische Abschluss von } \mathbf{F}_{\mathbf{p}}$$

Beispiel 0.2. Aus dem Kompaktheitssatz folgt: $\mathbb{C} = \lim_{p \to \infty} \tilde{\mathbb{F}}_p$

1 Grundbegriffe

1.1 *L*-Strukturen

Beispiel 1.1. Der angeordnete Körper der reellen Zahlen (\mathbb{R} , $\underbrace{+,\cdot}_{\text{zweistellig}}$, $\underbrace{-}_{\text{einstellig}}$, $\underbrace{0,1}_{\text{konstanten}}$, $\underbrace{-}_{\text{zweistellige Relation}}$

Definition 1.2 (\mathcal{L} -Struktur). Sei \mathcal{L} eine Menge von

- Funktionszeichen f_i $(i \in I)$
- Relationszeichen $R_j \quad (j \in J)$

Jedes Zeichen hat ein festes $n \in \mathbb{N}$ als Stelligkeit (arity).

 \mathcal{L} heißt Sprache / Signatur / similarity type.

Eine \mathcal{L} -Struktur $\mathfrak A$ besteht aus

- einer nicht-leeren Menge A (Universum, Träger, Grundmenge)
- einer n-stellige Funktion $f^{\mathfrak{A}}:A^n\to A$ für jedes n-stellige Funktionszeichen $f\in\mathcal{L}$
- einer n-stellige Relation $R^{\mathfrak{A}} \subseteq A^n$ für jedes n-stellige Relationszeichen $R \in \mathcal{L}$

 $\underline{n=0}$

$$A^0 = \{\emptyset\}$$

0-stellige Funktion in $\mathfrak{A}: f^{\mathfrak{A}}: \{\emptyset\} \to A$ ist eindeutig bestimmt durch $f(\emptyset) \in A$. Daher entsprechen 0-stellige Funktionen den Konstanten.

0-stellige Relationen in \mathfrak{A} :

$$R^{\mathfrak{A}} \subseteq \{\emptyset\}$$
 $\begin{cases} \text{entweder} & R = \{\emptyset\} \stackrel{.}{=} \text{wahr} \\ \text{oder} & R = \emptyset \stackrel{.}{=} \text{falsch} \end{cases}$

Daher entsprechen 0-stellige Relationszeichen den Aussagenvariablen

a) Zu jeder Menge $A \neq \emptyset$ und jeder Sprache \mathcal{L} kann ich eine \mathcal{L} -Struktur Beispiel 1.3. mit Träger A finden!

b) $\mathcal{L} = \{R\}, R$ 2-stelliges Relationssymbol

$$\mathfrak{Q}_1 = (\mathbb{Q}, <),$$
 d.h. $R^{\mathfrak{Q}_1} = \{(q_1, q_2) \in \mathbb{Q}^2 \mid q_1 < q_2\}$

$$\mathfrak{Q}_2 = (\mathbb{Q}, <),$$
 d.h. $R^{\mathfrak{Q}_2} = \{(q_1, q_2) \in \mathbb{Q}^2 \mid q_1 < q_2\}$

sind zwei verschiedene \mathcal{L} -Strukturen auf \mathbb{Q} .

c)
$$\mathcal{L}_{HGr} = \{\circ\} \text{ und } \mathcal{L}_{Gr} = \{\circ, {}^{-1}, e\}$$

Gruppen sind \mathcal{L}_{Gr} -Strukturen \mathfrak{G} mit:

- o[®] ist assoziativ
- $e^{\mathfrak{G}} \circ^{\mathfrak{G}} g = g \circ^{\mathfrak{G}} e^{\mathfrak{G}} = g$ für alle $g \in G$
- $\bullet \ q \circ^{\mathfrak{G}} q^{-1^{\mathfrak{G}}} = q^{-1^{\mathfrak{G}}} = e^{\mathfrak{G}}$

Alternativ sind Gruppen \mathcal{L}_{HGr} -Strukturen \mathfrak{G} mit

- o[®] ist assoziativ
- es gibt ein neutrales Element

• es gibt inverse Elemente

Definition 1.4. Seien $\mathfrak A$ und $\mathfrak B$ $\mathcal L$ -Strukturen. $h:A\to B$ heißt

a) \mathcal{L} -Homomorphismus, falls

$$h(f^{\mathfrak{A}}(a_1,\ldots,a_n)) = f^{\mathfrak{B}}(h(a_1),\ldots,h(a_n))$$

für alle n und $a_1, \ldots, a_n \in A$, und n-stellige $f \in \mathcal{L}$ und

$$(a_1,\ldots,a_n)\in R^{\mathfrak{A}}\Rightarrow (h(a_1),\ldots,h(a_n))\in R^{\mathfrak{B}}$$

für alle n und $a_1, \ldots, a_n \in A$, und n-stellige $R \in \mathcal{L}$.

- b) Starker Homomorphismus, falls zusätzlich ⇔ im zweiten Teil gilt.
- c) \mathcal{L} -Einbettung falls h injektiver starker \mathcal{L} -Homomorphismus ist.
- d) \mathcal{L} -Isomorphismus falls h bijektiver starker \mathcal{L} -Homomorphismus ist und h^{-1} ebenfalls.
- e) \mathfrak{A} und \mathfrak{B} heißen \mathcal{L} -Isomorph falls es ein \mathcal{L} -Isomorphismus $h: \mathfrak{A} \to \mathfrak{B}$ gibt.
- f) Ein \mathcal{L} -Isomorphismus $h: \mathfrak{A} \to \mathfrak{A}$ heißt \mathcal{L} -Automorphismus.
- g) Falls $A \subseteq B$, dann heißt \mathfrak{A} \mathcal{L} -Unterstruktur von \mathfrak{B} beziehungsweise \mathfrak{B} \mathcal{L} -Oberstruktur von \mathfrak{A} , falls die Identität $id_A : A \to B$ eine \mathcal{L} -Einbettung ist.

Bemerkung. Falls $\mathcal{L}' \subseteq \mathcal{L}$, dann wird jede \mathcal{L} -Struktur \mathfrak{A} durch vergessen zu einer \mathcal{L}' -Struktur $\mathfrak{A}_{\uparrow \mathcal{L}'}$ (Redukt von \mathfrak{A}).

Bemerkung. Jeder Halbgruppenhomomorphismus zwischen Gruppen ist ein Gruppenhomomorphismus.

Falls $\mathfrak{G}_1, \mathfrak{G}_2$ \mathcal{L}_{Gr} -Strukturen sind und $h: G_1 \to G_2$ L_{HGr} Homomorphismus (genau genommen $G_1_{\upharpoonright \mathcal{L}_{HGr}}$ und $G_2_{\upharpoonright \mathcal{L}_{HGr}}$) dann ist h automatisch ein \mathcal{L}_{Gr} -Homomorphismus.

Dies stimmt nicht für Monoide statt Gruppen.

Bemerkung.

- 1) Wenn $h: \mathfrak{A} \to \mathfrak{B}$ ein injektiver Homomorphismus ist (d.h. es existiert Sprache \mathcal{L} , die im Hintergrund fest ist, $\mathfrak{A}, \mathfrak{B}$ sind \mathcal{L} -Strukturen, h ist \mathcal{L} -Homomorphismus) dann existiert auf h(A) eine \mathcal{L} -Struktur $h(\mathfrak{A})$, so dass $h: \mathfrak{A} \xrightarrow{\sim} h(\mathfrak{A})$, aber $h(\mathfrak{A})$ ist nicht notwendigerweise Unterstruktur von \mathfrak{B} .
- 2) Der Schnitt von \mathcal{L} -Unterstrukturen ist wieder eine \mathcal{L} -Unterstruktur.

Folgerung 1.5. Wenn $\mathfrak A$ eine $\mathcal L$ -Struktur und $C \subset A$ ist, dann existiert die von C erzeugte $\mathcal L$ -Unterstruktur $\langle C \rangle_{\mathcal L} = \langle C \rangle$ das heißt die kleinste Unterstruktur von $\mathfrak A$, deren Trägermenge C enthält.

Die Trägermenge von $\langle C \rangle$ erhält man dadurch, dass man C unter den Funktionen $f^{\mathfrak{A}}$ abschließt.

$$R^{\langle C \rangle}$$
 ist dann $R^{\mathfrak{A}} \cap \langle C \rangle \times \cdots \times \langle C \rangle$

1.2 \mathcal{L} -Formeln

Verwendete Symbole:

• Funktions- und Relationszeichen aus \mathcal{L} :

$$f_i, R_i, \ldots, +, \circ, \leq$$

- Gleichheitszeichen: \doteq (Zieglersche Konvention)
- Klammern: ()
- Quantoren: $\forall \exists$
- Individuenvariablen: v_0, v_1, \dots

Definition 1.6 (\mathcal{L} -Terme). \mathcal{L} -Terme sind:

- Individuenvariablen
- Wenn f ein n-stelliges Funktionszeichen in \mathcal{L} ist und τ_1, \ldots, τ_n sind \mathcal{L} -Terme dann ist $f\tau_1 \ldots \tau_n$ ein \mathcal{L} -Term.

Bemerkung.

- Es gilt die eindeutige Lesbarkeit der Terme
- Bei Zeichen wie $+, \cdot$ schreibt man traditionell $v_1 + v_2$ statt $+v_1v_2$ muss aber bei Verschachtelungen klammern.

Definition 1.7 (Auswertung von Termen in Strukturen). Eine Belegung der Individuenvariablen mit Elementen einer Struktur für eine \mathcal{L} -Struktur \mathfrak{A} ist eine Abbildung $\beta: \{v_0, v_1, \dots\} \to A$.

Die Auswertung von einem Term in einer Struktur bezüglich einer Belegung $\tau^{\mathfrak{A}}[\beta]$ ist induktiv definiert durch:

$$v_i^{\mathfrak{A}}[\beta] := \beta(v_i)$$

$$f\tau_1 \dots \tau_n^{\mathfrak{A}}[\beta] := f^{\mathfrak{A}}(\tau_1^{\mathfrak{A}}[\beta], \dots, \tau_n^{\mathfrak{A}}[\beta])$$

Definition 1.8 (\mathcal{L} -Formeln). \mathcal{L} -Formeln sind

- ⊥ ⊤
- $\tau_1 \doteq \tau_2$ für \mathcal{L} -Terme τ_1, τ_2
- $R\tau_1 \dots \tau_n$ für \mathcal{L} -Terme τ_1, \dots, τ_n und n-stelliges $R \in \mathcal{L}$

Definition 1.9 (Auswertung von \mathcal{L} -Formeln in Strukturen). \mathfrak{A} ist Modell von φ unter β oder formal $\mathfrak{A} \models \varphi[\beta]$

- stets gilt $\mathfrak{A} \models \top[\beta]$
- nie gilt $\mathfrak{A} \models \bot [\beta]$
- $\mathfrak{A} \models \lceil \tau_1 \doteq \tau_2 \rceil [\beta] \Leftrightarrow \tau_1^{\mathfrak{A}} [\beta] = \tau_2^{\mathfrak{A}} [\beta]$
- $\mathfrak{A} \models R\tau_1 \dots \tau_n[\beta] \Leftrightarrow (\tau_1^{\mathfrak{A}}[\beta], \dots, \tau_n^{\mathfrak{A}}[\beta]) \in R^{\mathfrak{A}}$
- Wenn $\varphi, \varphi_1, \varphi_2$ \mathcal{L} -Formeln sind, dann auch

$$\neg \varphi \qquad \qquad \mathfrak{A} \models \neg \varphi[\beta] \Leftrightarrow \mathfrak{A} \not\models \varphi[\beta] \\
(\varphi_1 \land \varphi_2) \qquad \qquad \mathfrak{A} \models (\varphi_1 \land \varphi_2)[\beta] \Leftrightarrow \mathfrak{A} \models \varphi_1[\beta] \text{ und } \mathfrak{A} \models \varphi_2[\beta] \\
(\varphi_1 \lor \varphi_2) \qquad \qquad \mathfrak{A} \models (\varphi_1 \lor \varphi_2)[\beta] \Leftrightarrow \mathfrak{A} \models \varphi_1[\beta] \text{ oder } \mathfrak{A} \models \varphi_2[\beta] \\
(\varphi_1 \to \varphi_2) \qquad \qquad \mathfrak{A} \models (\varphi_1 \to \varphi_2)[\beta] \Leftrightarrow \text{Wenn } \mathfrak{A} \models \varphi_1[\beta] \text{ dann } \mathfrak{A} \models \varphi_2[\beta] \\
(\varphi_1 \leftrightarrow \varphi_2) \qquad \qquad \mathfrak{A} \models (\varphi_1 \leftrightarrow \varphi_2)[\beta] \Leftrightarrow (\mathfrak{A} \models \varphi_1[\beta] \Leftrightarrow \mathfrak{A} \models \varphi_2[\beta]) \\
\exists v_i \varphi \qquad \qquad \text{Es gibt ein } a \in A \text{ so dass } \mathfrak{A} \models \varphi \left[\beta \frac{a}{v_i}\right] \\
\forall v_i \varphi \qquad \qquad \text{Für alle } a \in A \text{ gilt dass } \mathfrak{A} \models \varphi \left[\beta \frac{a}{v_i}\right]$$

Beispiel 1.10.
$$\forall v_0 ((\forall v_1 \underbrace{Rv_0v_1}_{\text{Wirkungsbereich } \forall v_1}) \lor Rv_1v_0)$$

Variablen im Wirkungsbereich eines Quantors heißen gebundene Variablen, alle anderen heißen freie Variablen.

Bemerkung. $\tau^{\mathfrak{A}}[\beta]$ beziehungsweise $\mathfrak{A} \models \varphi[\beta]$ hängt nur insofern von β ab, als man wissen muss, was β mit den freien Variablen macht.

Definition 1.11 (\mathcal{L} -Aussage). Eine \mathcal{L} -Aussage (\mathcal{L} -Satz, geschlossene Formel) ist eine \mathcal{L} -Formel ohne freie Variablen.

Satz 1.12. Für \mathcal{L} -Aussagen φ ist $\mathfrak{A} \models \varphi[\beta]$ unabhängig von β .

Man schreibt:

$$\mathfrak{A} \models \varphi$$
$$\mathfrak{A} \not\models \varphi$$

Definition 1.13.

- 1) Eine \mathcal{L} -Formel φ ist allgemeingültig ($\models \varphi, \vdash \varphi$), falls $\mathfrak{A} \models \varphi[\beta]$ für alle \mathfrak{A} und β .
- 2) \mathcal{L} -Formeln φ und ψ sind logisch äquivalent ($\varphi \sim \psi$), falls

$$\mathfrak{A} \models \varphi[\beta] \Leftrightarrow \mathfrak{A} \models \psi[\beta]$$

für alle \mathfrak{A} und β .

3) ψ folgt aus $\phi = \{ \varphi_i \mid i \in I \}$, falls:

$$\mathfrak{A} \models \varphi_i[\beta]$$
 für alle $i \in I \implies \mathfrak{A} \models \psi[\beta]$ für alle \mathfrak{A} und β

Bemerkung. $\varphi \sim \psi \quad \Leftrightarrow \quad \vdash (\varphi \leftrightarrow \psi)$

Bemerkung. Für $\mathcal{L} \subseteq \mathcal{L}'$ und eine \mathcal{L} -Formel φ gilt: $\vdash_{\mathcal{L}} \varphi \Rightarrow \vdash_{\mathcal{L}'} \varphi$

Satz 1.14. Jede \mathcal{L} -Formel φ ist äquivalent zu einer \mathcal{L} -Formel in der folgenden Form:

$$\underbrace{Q_1 v_{i_1} \dots Q_n v_{i_n}}_{\text{pränexe Normalform}} \underbrace{\bigvee_{j \in J} \bigwedge_{k \in K_j} (\neg) \varphi_1 i, j}_{\text{disjunktive Normalform}}$$

mit $Q_i \in \{\exists, \forall\}$.

1.3 Theorien

Definition 1.15. 1) Eine \mathcal{L} -Theorie T ist eine Menge von \mathcal{L} -Aussagen.

- 2) Eine Struktur \mathfrak{A} ist Modell einer Theorie T, $\mathfrak{A} \models T$, falls $\mathfrak{A} \models \varphi$ für jedes $\varphi \in T$..
- 3) $\operatorname{Mod}(T) = \{ \mathfrak{A} \ \mathcal{L}\text{-Struktur} \mid \mathfrak{A} \models T \}$ heißt Modellklasse von T. Achtung: $\operatorname{Mod}(T)$ ist im Allgemeinen keine Menge!
- 4) T ist konsistent (bzw. Widerspruchsfrei) falls T mindestens ein Modell hat (d.h. $\text{Mod}(T) \neq \emptyset$).
- 5) Eine Klasse \mathcal{K} von \mathcal{L} -Strukturen heißt elementar, falls es eine Theorie T gibt mit $\operatorname{Mod}(T) = \mathcal{K}$.
- 6) Sei A L-Struktur. Dann ist

$$Th(\mathfrak{A}) := \{ \varphi \ \mathcal{L}\text{-Aussage} \mid \mathfrak{A} \models \varphi \}$$

die vollständige Theorie von \mathfrak{A} .

7) Zwei \mathcal{L} -Strukturen $\mathfrak{A}, \mathfrak{B}$ heißen elementar äquivalent, $\mathfrak{A} \equiv \mathfrak{B}$, falls $\mathrm{Th}(\mathfrak{A}) = \mathrm{Th}(\mathfrak{B})$.

Beispiel 1.16.

- 1) Wenn \mathfrak{A} endlich ist und $\mathfrak{B} \equiv \mathfrak{A}$, dann ist \mathfrak{B} bereits isomorph zu \mathfrak{A} .
- 2) $(\mathbb{Q}, +, -, \cdot, 0, 1) \not\equiv (\mathbb{R}, +, -, \cdot, 0, 1)$, da

$$(\mathbb{Q}, +, -, \cdot, 0, 1) \not\models \exists v_0(v_0 \cdot v_0 = 1 + 1) (\mathbb{R}, +, -, \cdot, 0, 1) \models \exists v_0(v_0 \cdot v_0 = 1 + 1)$$

3) $(\overline{\mathbb{Q}} \cap \mathbb{R}, +, -, \cdot, 0, 1) \equiv (\mathbb{R}, +, -, \cdot, 0, 1) \text{ mit } \overline{\mathbb{Q}} = \{c \in \mathbb{C} \mid \text{ es gibt ein } P \in \mathbb{Q}[X] \text{ so dass } P(c) = 0\}$ (algebraischer Abschluss von \mathbb{Q}) (Beweis dazu ist nicht trivial)

Definition 1.17. Seien T, T' \mathcal{L} -Theorien, φ \mathcal{L} -Aussage

1) $T \vdash \varphi$, falls gilt

$$\mathfrak{A} \models T \implies \mathfrak{A} \models \varphi$$

für alle \mathfrak{A} .

- 2) $T^{\vdash} \coloneqq \{ \varphi \ \mathcal{L}$ -Aussage $n \mid T \vdash \varphi \}$ heißt der deduktive Abschluss von T.
- 3) T ist deduktiv abgeschlossen : $\Leftrightarrow T = T^{\vdash}$.
- 4) T und T' heißen äquivalent $T \equiv T'$ falls $T^{\vdash} = T'^{\vdash}$.

Bemerkung.

•
$$T \subseteq T^{\vdash} = T^{\vdash}$$

- $\mathfrak{A} \models T \Rightarrow \mathfrak{A} \models T^{\vdash}$ beziehungsweise $Mod(T) = Mod(T^{\vdash})$
- T^{\vdash} ist die maximale Theorie $T'\supseteq T$ mit der Eigenschaft $\mathrm{Mod}(T)=\mathrm{Mod}(T^{\vdash})$ Bemerkung. Wenn $\mathfrak{A}\models\varphi$ und $\varphi'\sim\varphi$, dann gilt $\mathfrak{A}\models\varphi'$.

Daher unterscheidet man ab sofort logisch äquivalente Formeln nicht mehr.

Formal: definiere $\mathfrak{A}\models\varphi/\sim$ für Äquivalenzklassen $[\varphi]=\varphi/\sim=\{\varphi'\mid\varphi\sim\varphi'\}$

Satz 1.18. Die \mathcal{L} -Formeln bis auf logische Äquivalenz bilden eine boolesche Algebra $\mathcal{F}_{\infty}(\mathcal{L})$. Die Formeln deren freie Variablen in $\{v_0, \ldots, v_{n-1}\}$ enthalten sind bilden eine boolesche Algebra $\mathcal{F}_n(\mathcal{L})$ das bedeutet:

 $\mathcal{F}_i(\mathcal{L})$ ist eine partielle Ordnung $[\varphi] \leq [\psi]$ falls $\vdash (\varphi \to \psi)$ mit

- \bullet einem maximalen Element $[\top]$
- einem minimalen Element $[\bot]$
- je zwei Elemente $[\varphi], [\psi]$ haben
 - ein Supremum $[(\varphi \lor \psi)]$
 - ein Infimum $[(\varphi \wedge \psi)]$
- \bullet jedes Element $[\varphi]$ hat ein Komplement $\neg \varphi$ das heißt

$$-\ [(\varphi \wedge \neg \varphi)] = [\bot]$$
 und

$$-\ [(\varphi \vee \neg \varphi)] = [\top]$$

Die Boolesche Algebra ist dann die Struktur $(\mathcal{F}_i(\mathcal{L}), \wedge, \vee, \neg, \top, \bot)$ wobei $[\varphi] \wedge [\psi] = [(\varphi \wedge \psi)]$ etc.