Санкт-Петербургский Политехнический Университет Петра Великого Физико-механический институт

Отчет по лабораторной работе №3 по математической статистике

Студент: Клыков Александр Юрьевич

Группа: 5030102/20101

Преподаватель: Баженов Александр Николаевич

Санкт-Петербург 2025 год

Задание

1 Коэффициент корреляции

1.1 Теоретическая справка

Двумерная случайная величина $\langle X, Y \rangle$ называется **распределенной нормально**, если ее плотность вероятности определяется по формуле:

$$(x, y, \overline{x}, \overline{y}, \sigma_x, \sigma_y, \rho) = \frac{\exp\left[-\frac{1}{2(1-\rho^2)} \left(\frac{(x-\overline{x})^2}{\sigma_x^2} - 2\rho \frac{(x-\overline{x})(y-\overline{y})}{\sigma_x \sigma_y} + \frac{(y-\overline{y})^2}{\sigma_y^2}\right)\right]}{2\pi\sigma_x \sigma_y \sqrt{1-\rho^2}}$$

Компоненты X, Y двумерной СВ также распределены нормально с матожиданиями $\overline{x}, \overline{y}$ и СКО σ_x, σ_y соответственно. Параметр ρ называется коэффициентом корреляции

Ковариацией двух СВ X, Y называется величина

$$(X,Y) = M[(X - \overline{x})(Y - \overline{y})]$$

Коэффициентом корреляции двух СВ X, Y называется величина

$$(X,Y) = \frac{(X,Y)}{\sigma_x \sigma_y}$$

•

Выборочным коэффициентом корреляции Пирсона называется величина

$$(X,Y) = \frac{(X,Y)}{s_X s_Y},$$

где $s_X^2, \, s_Y^2$ - выборочные дисперсии $X, \, Y.$

Выборочным квадрантным коэффициентом корреляции называется величина

$$(x,y) = \frac{(n_1 + n_3) - (n_2 + n_4)}{n},$$

где n_1, n_2, n_3, n_4 - количества точек с координатами $(x_i, y_i)^T$ попавшими соответственно в I, II, III, IV квадранты ДСК Ox'y', где x' = x - x, y' = y - y.

Обозначим ранги, соответствующие значениям переменной X через u, а ранги, соответствующие значениям переменной Y - v, тогда выборочным коэффициентом ранговой корреляции Спирмена называется величина

$$(x,y) = \frac{\frac{1}{n} \sum_{i=1}^{n} (u_i - \overline{u})(v - \overline{v})}{\sqrt{\frac{1}{n^2} \sum_{i=1}^{n} (u_i - \overline{u})^2 \sum_{j=1}^{n} (v_i - \overline{v})^2}},$$

где $\overline{u} = \overline{v} = \frac{n(n+1)}{2}$ - среднее значение рангов.

Уравнение проекции эллипса рассеивания на плоскость *Оху* имеет вид

$$\frac{(x-\overline{x})^2}{\sigma_x^2} - 2(x,y)\frac{(x-\overline{x})(y-\overline{y})}{\sigma_x\sigma_y} + \frac{(y-\overline{y})^2}{\sigma_y^2} = ,$$

центр эллипса находится в точке с координатами $(\overline{x}, \overline{y})^T$, оси симметрии составляют с осью Ox углы α , определяемые равенством

$$\alpha = \frac{1}{2} \arctan \frac{2(x, y)\sigma_x \sigma_y}{\sigma_x^2 - \sigma_y^2} + \frac{\pi k}{2}, k \in \mathbb{Z}$$

1.2 Постановка задачи

Сгенерировать двумерные выборки размерами 20, 60, 100 для нормального двумерного распределения (x, y, 0, 0, 1, 1,). Коэффициент корреляции взять равным 0, 0.5, 0.9. Каждая выборка генерируется 1000 раз и для нее вычисляются среднее значение, среднее значение квадрата и дисперсия коэффициентов корреляции Пирсона, Спирмена и ККК. Повторить все вычисления для смеси нормальных распределений:

$$f(x,y) = 0.9 \cdot (x, y, 0, 0, 1, 1, 0.9) + 0.1 \cdot (x, y, 0, 0, 10, 10, -0.9),$$

изобразить сгенерированные точки на плоскости и нарисовать эллипс равновероятности.

1.3 Результаты

Размер выборки	Метрика	$\rho = 0$	$\rho = 0.5$	$\rho = 0.9$
3*20	Среднее значение	-0.002	0.489	0.894
	Средний квадрат	0.056	0.269	0.802
	Дисперсия	0.056	0.030	0.002
3*60	Среднее значение	-0.004	0.495	0.898
	Средний квадрат	0.016	0.254	0.808
	Дисперсия	0.016	0.009	0.001
3*100	Среднее значение	0.006	0.499	0.898
	Средний квадрат	0.010	0.255	0.807
	Дисперсия	0.010	0.006	0.000

Таблица 1: Коэффициент Пирсона

Размер выборки	Метрика	$\rho = 0$	$\rho = 0.5$	$\rho = 0.9$
3*20	Среднее значение	0.496	0.669	0.856
	Средний квадрат	0.259	0.459	0.738
	Дисперсия	0.013	0.011	0.006
3*60	Среднее значение	0.499	0.667	0.857
	Средний квадрат	0.253	0.448	0.736
	Дисперсия	0.004	0.003	0.002
3*100	Среднее значение	0.501	0.668	0.857
	Средний квадрат	0.254	0.448	0.735
	Дисперсия	0.002	0.002	0.001

Таблица 2: Квадрантный коэффициент корреляции

Размер выборки	Метрика	$\rho = 0$	$\rho = 0.5$	$\rho = 0.9$
3*20	Среднее значение	-0.002	0.458	0.866
	Средний квадрат	0.055	0.244	0.755
	Дисперсия	0.055	0.034	0.005
3*60	Среднее значение	-0.004	0.476	0.884
	Средний квадрат	0.016	0.237	0.782
	Дисперсия	0.016	0.010	0.001
3*100	Среднее значение	0.006	0.479	0.886
	Средний квадрат	0.010	0.237	0.786
	Дисперсия	0.010	0.007	0.001

Таблица 3: Ранговый коэффициент Спирмена

Размер выборки	Пирсон	Квадрант	Спирмен
20	0.870	0.842	0.841
60	0.877	0.840	0.859
100	0.878	0.842	0.865

Таблица 4: Коэффициенты корреляции для смеси нормальных распределений

Рис. 1: Эллипс равновероятности смеси распределений, N=20

Рис. 2: Эллипс равновероятности смеси распределений, N=60

Рис. 3: Эллипс равновероятности смеси распределений, N=100

Выводы

В ходе выполнения лабораторной работы были исследованы зависимости между переменными в двумерных выборках, сгенерированных из нормального распределения с различными коэффициентами корреляции, а также из смеси нормальных распределений.

Для каждого случая были рассчитаны коэффициенты корреляции Пирсона, Спирмена и квадрантный коэффициент корреляции. Полученные значения показали:

- Все три коэффициента хорошо отражают силу линейной зависимости между переменными: при увеличении ρ их значения приближаются к 1.
- При $\rho = 0$ все коэффициенты в среднем близки к нулю, что соответствует отсутствию корреляции.
- Квадрантный и Спирменовский коэффициенты оказываются менее чувствительными к выбросам по сравнению с Пирсоновским.
- При увеличении объёма выборки (от N=20 до N=100) дисперсия коэффициентов уменьшается, а оценки становятся более точными и стабильными.
- Для смеси распределений коэффициенты корреляции сохраняют высокие значения, особенно у Спирмена, что демонстрирует его устойчивость к аномальным значениям.

Также на графиках были изображены эллипсы равновероятности, показывающие характер распределения точек. При $\rho=0.9$ эллипсы вытянуты вдоль прямой корреляции, тогда как при $\rho=0$ они приближаются к окружности.

Таким образом, работа наглядно демонстрирует поведение различных мер корреляции при разных типах и параметрах распределений.