MECH 6091 – Flight Control Systems

Final Course Project

F-16 Autopilot Design

Lizeth Buendia Rodrigo Lezama Daniel Delgado

December 16, 2011

AGENDA

- Theoretical Background
- F-16 Model and Linearization
- Controller Design
- Results and Conclusions
- Q&A

• Reference Frames

Aircraft Variables

Assumptions:

- 1. The aircraft is a rigid-body.
- 2. The earth is flat and non-rotating.
- 3. The mass is constant during the time interval over which the motion is considered.
- 4. The mass distribution is symmetric relative to the longitudinal plane.

Equations of Motions EOM

Force:
$$F = \frac{d}{dt}(mV)\Big]_B + \omega \times mV$$

Moment:
$$M = \frac{dH}{dt}\Big|_{B} + \omega \times H$$

Stability Requirements

$$C_{m_{\alpha}}$$
< 0

Longitudinal EOM

$$\begin{split} m \bigg(\dot{U} + QW - RV \bigg) &= -mg \sin \theta + \left(-D \cos \alpha + L \sin \alpha \right) + T \cos \phi_T \\ \dot{Q} I_{yy} - PR \Big(I_{zz} - I_{xx} \Big) + \Big(P^2 - R^2 \Big) I_{xz} &= M_A + M_T \\ m \bigg(\dot{W} + PV - QU \bigg) &= mg \cos \phi \cos \theta + \Big(-D \sin \alpha - L \cos \alpha \Big) - T \sin \phi_T \end{split}$$

Linearized Longitudinal EOM

$$\begin{split} & m \, u = -mg\theta \cos\Theta_1 + f_{A_x} + f_{T_x} \\ & \vdots \\ & I_{yy} \, q = m_A + m_T \\ & m \bigg(\dot{w} - U_1 q \bigg) = -mg\theta \sin\Theta_1 + f_{A_z} + f_{T_z} \end{split}$$

F-16 Nonlinear Model

- F-16 Russell Model:
 - 12 State Variables
 - 4 Input Variables
- F-16 Longitudinal Linear Model:
 - 5 State Variables
 - 1 Input Variables
- MATLAB linmod command used for linearization
- Low-Fidelity model

Longitudinal EOM in State Space Form

$$x(t) = \begin{bmatrix} h \\ \theta \\ Vt \\ \alpha \\ q \end{bmatrix} \qquad u(t) = \begin{bmatrix} \delta_e \end{bmatrix} \qquad y(t) = \begin{bmatrix} h \\ \theta \\ Vt \\ \alpha \\ q \end{bmatrix}$$

$$\begin{bmatrix} \dot{h} \\ \dot{\theta} \\ \dot{V}_t \\ \dot{\alpha} \\ \dot{q} \end{bmatrix} = A \begin{bmatrix} h \\ \theta \\ Vt \\ \alpha \\ q \end{bmatrix} + B[\mathcal{S}_e]$$

$$\begin{bmatrix} \dot{h} \\ \dot{\theta} \\ \dot{V}_{t} \\ \dot{\alpha} \\ \dot{q} \end{bmatrix} = A \begin{bmatrix} h \\ \theta \\ Vt \\ \alpha \\ q \end{bmatrix} + B[\mathcal{S}_{e}]$$

$$\begin{bmatrix} h \\ \theta \\ V_{t} \\ \alpha \\ q \end{bmatrix} = C \begin{bmatrix} h \\ \theta \\ Vt \\ \alpha \\ q \end{bmatrix} + D[\mathcal{S}_{e}]$$

Control Input Limits

	Control input Minimum value Maxi		Maximum value	Units	
	δ_t	10000	19000	Lbs	
Г	δ_{e}	-25	25	Deg	
	δ_a	-21.5	21.5	Deg	
	δ_r	-30	30	Deg	

Nonlinear vs. Linear Model

15k ft @ 600 ft/s 5 deg Elevator Disturbance Pitch rate

Controller Design

FLIGHT QUALITY REQUIREMENTS – MIL-F-8785C

- Flight Category B Cruise
- Level 1 Clearly adequate for mission flight phase

Parameter	Current	MIL Target	Desired
SP – ζ	0.464	[0.3, 2]	≥ 0.7
$SP - \omega_n$	1.63 rad/s	[1.1, 7] rad/s	≥ 3 rad/s
SP – τ	1.32 s		
P – ζ	0.057	> 0.04	≥ 0.3
$P - \omega_n$	0.066	NA	≥ 0.5 rad/s
Ρ – τ	262 s		≤ 7s (t _s ≤30s)

Controller Design – SAS

- Full-Feedback State (All states are available)
- Pole Placement Method

Necessary and Sufficient Condition for Arbitrary Pole

Controller Design – SAS

Controller Design – SAS

- Stability improvement achieved
- Excellent disturbance rejection
- New characteristics:

Parameter	Desired	Achieved	1
SP – ζ	≥ 0.7	0.7	V /
$SP - \omega_n$	≥ 3 rad/s	3 rad/s	1
P – ζ	≥ 0.3	0.287	
$P - \omega_n$	≥ 0.5 rad/s	0.522	V ,
P – τ	≤ 7s (t _s ≤30s)	6.67 s	

- Altitude Reference Trajectory
 - Up to 5k ft increase/decrease tracking
- Augmented A/C TF

$$\frac{h(s)}{\delta_e(s)} = \frac{0.9443 \, s^3 - 3.963 \, s^2 - 69.09 \, s - 0.2069}{s^5 + 4.501 \, s^4 + 10.53 \, s^3 + 3.852 \, s^2 + 2.454 \, s + 0.00245}$$

Desired Response Characteristics:

Overshoot <= 5%

Minimize oscillations

- PID Controller Design
- SISO tool + Manual Tuning

Attention to Actuator Saturation!

Anti-Windup included

Scenario:

- 1. 1000 ft altitude increase, followed by
- 2. +5deg perturbation, followed by
- 3. -5deg perturbation

Compare:

- Linearized Model + LTI Controller
- Nonlinear Model + LTI Controller

Conclusions

- A good linearization method is extremely important
- FFS eases SAS design -> In real life, not all states are available (estimators required)
- Nonlinear model shows longitudinal/lateral coupling
- Satisfactory overall results
- Future work: Scheduled PID and Lateral Motion

Q&A

