MATEMATIKA

EMELT SZINTŰ ÍRÁSBELI VIZSGA

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

OKTATÁSI HIVATAL

Fontos tudnivalók

Formai előírások:

- 1. Kérjük, hogy a dolgozatot a vizsgázó által használt színűtől **eltérő színű tollal, olvas- hatóan** javítsa ki.
- 2. A feladatok mellett található szürke téglalapok közül az elsőben a feladatra adható maximális pontszám van, a javító által adott **pontszám a** mellette levő **téglalapba** kerüljön.
- 3. **Kifogástalan megoldás** esetén kérjük, hogy a maximális pontszám feltüntetése mellett kipipálással jelezze, hogy az adott gondolati egységet látta, és jónak minősítette.
- 4. Hiányos/hibás megoldás esetén kérjük, hogy **a hiba jelzése** mellett az egyes **részpontszámokat** is írja rá a dolgozatra. Ha a dolgozat javítását jobban követhetővé teszi, akkor a vizsgázó által elvesztett részpontszámok jelzése is elfogadható. Ne maradjon olyan részlet a megoldásban, amelyről a javítás után nem nyilvánvaló, hogy helyes, hibás vagy fölösleges.
- 5. A javítás során alkalmazza az alábbi jelöléseket.
 - helyes lépés: kipipálás
 - elvi hiba: kétszeres aláhúzás
 - számolási hiba vagy más, nem elvi hiba: egyszeres aláhúzás
 - rossz kiinduló adattal végzett helyes lépés: szaggatott vagy áthúzott kipipálás
 - hiányos indoklás, hiányos felsorolás vagy más hiány: hiányiel
 - nem érthető rész: kérdőjel és/vagy hullámvonal
- 6. Az ábrán kívül **ceruzával** írt részeket ne értékelje.

Tartalmi kérések:

- Egyes feladatoknál több megoldás pontozását is megadtuk. Amennyiben azoktól eltérő megoldás születik, keresse meg ezen megoldásoknak az útmutató egyes részleteivel egyenértékű részeit, és ennek alapján pontozzon.
- 2. A pontozási útmutató pontjai tovább **bonthatók, hacsak az útmutató másképp nem rendelkezik**. Az adható pontszámok azonban csak egész pontok lehetnek.
- 3. Ha a megoldásban **számolási hiba**, pontatlanság van, akkor csak arra a részre nem jár pont, ahol a tanuló a hibát elkövette. Ha a hibás részeredménnyel helyes gondolatmenet alapján tovább dolgozik, és a megoldandó probléma lényegében nem változik meg, akkor a következő részpontszámokat meg kell adni.
- 4. **Elvi hibát** követően egy gondolati egységen belül (ezeket az útmutatóban kettős vonal jelzi) a formálisan helyes matematikai lépésekre sem jár pont. Ha azonban a tanuló az elvi hibával kapott rossz eredménnyel mint kiinduló adattal helyesen számol tovább a következő gondolati egységekben vagy részkérdésekben, akkor ezekre a részekre kapja meg a maximális pontot, ha a megoldandó probléma lényegében nem változott meg.
- 5. Ha az útmutatóban egy **megjegyzés** zárójelben szerepel, akkor ennek hiánya esetén is teljes értékű a megoldás.

- 6. **Mértékegység hiánya esetén** csak akkor jár pontlevonás, ha a hiányzó mértékegység válaszban vagy mértékegység-átváltásban szerepel (zárójel nélkül).
- 7. Egy feladatra adott többféle megoldási próbálkozás közül **a vizsgázó által megjelölt változat értékelhető**. A javítás során egyértelműen jelezze, hogy melyik változatot értékelte, és melyiket nem.
- 8. A megoldásokért **jutalompont** (az adott feladatra vagy feladatrészre előírt maximális pontszámot meghaladó pont) **nem adható**.
- 9. Egy feladatra vagy részfeladatra adott összpontszám **nem lehet negatív**.
- 10. Az olyan részszámításokért, részlépésekért **nem jár pontlevonás**, melyek hibásak, de amelyeket a feladat megoldásához a vizsgázó ténylegesen nem használ fel.
- 11. A gondolatmenet kifejtése során a zsebszámológép használata további matematikai indoklás nélkül – a következő műveletek elvégzésére fogadható el: összeadás,

kivonás, szorzás, osztás, hatványozás, gyökvonás, n!, $\binom{n}{k}$ kiszámítása, a függvénytáb-

lázatban fellelhető táblázatok helyettesítése (sin, cos, tg, log és ezek inverzei), a π és az e szám közelítő értékének megadása, nullára rendezett másodfokú egyenlet gyökeinek meghatározása. További matematikai indoklás nélkül használhatók a számológépek az átlag és a szórás kiszámítására abban az esetben, ha a feladat szövege kifejezetten nem követeli meg az ezzel kapcsolatos részletszámítások bemutatását is. **Egyéb esetekben a géppel elvégzett számítások indoklás nélküli lépéseknek számítanak, így azokért nem jár pont.**

- 12. Az **ábrák** bizonyító erejű felhasználása (például adatok leolvasása méréssel) nem elfogadható.
- 13. **Valószínűségek** megadásánál (ha a feladat szövege másképp nem rendelkezik) a százalékban megadott helyes válasz is elfogadható.
- 14. Ha egy feladat szövege nem ír elő kerekítési kötelezettséget, akkor az útmutatóban megadottól eltérő, észszerű és helyes kerekítésekkel kapott rész- és végeredmény is elfogadható.
- 15. A vizsgafeladatsor II. részében kitűzött 5 feladat közül csak 4 feladat megoldása értékelhető. A vizsgázó az erre a célra szolgáló négyzetben feltehetőleg megjelölte annak a feladatnak a sorszámát, amelynek értékelése nem fog beszámítani az összpontszámába. Ennek megfelelően a megjelölt feladatra esetlegesen adott megoldást nem is kell javítani. Ha a vizsgázó nem jelölte meg, hogy melyik feladat értékelését nem kéri, és a választás ténye a dolgozatból sem derül ki egyértelműen, akkor a nem értékelendő feladat automatikusan a kitűzött sorrend szerinti utolsó feladat lesz.

I.

1. a)		
Jelölje a cipők novemberi árát forintban x , y és z ($x \le y \le z$). A feladat szövege alapján megoldandó az		
alábbi egyenletrendszer:		
$\begin{cases} x + y + z = 45000 \end{cases}$	2 pont	
$\begin{cases} 0.5x + 0.8y + z = 37000 \end{cases}$		
1,3x + y + z = 48000.		
A harmadik egyenletből az elsőt kivonva:	1 pont	
0.3x = 3000, amiből $x = 10000$.	1 pont	
Ezt visszahelyettesítve, és az első egyenletből a má-		
sodikat kivonva: $5000 + 0.2y = 8000$,	1 pont	
amiből $y = 15 000$.		
Az első egyenletbe visszahelyettesítve:	1 pont	
$10\ 000 + 15\ 000 + z = 45\ 000$, amiből $z = 20\ 000$.	1 point	
Tehát a három cipő novemberi ára 10 000 Ft,	1 nont	
15 000 Ft és 20 000 Ft volt.	1 pont	
Ellenőrzés a szövegbe való behelyettesítéssel.	1 pont	
Összesen:	7 pont	

1. b) első megoldás		
A számtani sorozat differenciáját jelölje d,	1 pont	
ezzel a négy szám rendre 3 , $3 + d$, $3 + 2d$, 25 .	1 point	
Az utolsó három szám mértani sorozatot alkot, ezért		
3+2d _ 25	1 pont	$(3+2d)^2 = 25(3+d)$
$\frac{3+2d}{3+d} = \frac{25}{3+2d}.$		
$9 + 12d + 4d^2 = 75 + 25d$	2 nont	
Nullára rendezve: $4d^2 - 13d - 66 = 0$.	2 pont	
Ennek gyökei $d_1 = 6$ és $d_2 = -2,75$.	1 pont	
A másik két szám ekkor vagy a (3 + 6 =) 9 és		
a $(3 + 12 =) 15$, vagy pedig a $(3 - 2.75 =) 0.25$ és	1 pont	
a(3-5,5=)-2,5.		
Ellenőrzés: A 3, 9, 15 valóban egy (6 differenciájú)		
5		
számtani, a 9, 15, 25 valóban egy ($\frac{3}{3}$ hányadosú)		
mértani sorozat három egymást követő tagja.	1 pont	
A 3, 0,25, -2,5 valóban egy (-2,75 differenciájú)		
számtani, a 0,25, -2,5, 25 egy (-10 hányadosú) mér-		
tani sorozat három egymást követő tagja.		
Összesen:	7 pont	

1. b) második megoldás		
A mértani sorozat hányadosát jelölje q,		
ezzel a négy szám rendre 3, $\frac{25}{q^2}$, $\frac{25}{q}$, 25.	1 pont	
Az első három szám számtani sorozatot alkot, ezért		25 25 2
$\frac{25}{q^2} - 3 = \frac{25}{q} - \frac{25}{q^2}$.	1 pont	$2 \cdot \frac{25}{q^2} = \frac{25}{q} + 3$
$25 - 3q^2 = 25q - 25$	2 pont	
Nullára rendezve: $3q^2 + 25q - 50 = 0$.	•	
Ennek gyökei $q_1 = \frac{5}{3}$ és $q_2 = -10$.	1 pont	
A másik két szám ekkor vagy a 9 és a 15, vagy pedig	1 pont	
a 0,25 és a –2,5.	1	
Ellenőrzés: A 3, 9, 15 valóban egy (6 differenciájú) számtani, a 9, 15, 25 valóban egy ($\frac{5}{3}$ hányadosú) mértani sorozat három egymást követő tagja. A 3, 0,25, -2,5 valóban egy (-2,75 differenciájú) számtani, a 0,25, -2,5, 25 egy (-10 hányadosú) mértani sorozat három egymást követő tagja.	1 pont	
Összesen:	7 pont	

1. b) harmadik megoldás		
Ha a négy szám rendre 3, a , b , 25, akkor a feladat szövege alapján $b - a = a - 3$, tehát $b = 2a - 3$,	1 pont	$a = \frac{b+3}{2}$
továbbá $\frac{b}{a} = \frac{25}{b}$, tehát $b^2 = 25a$.	1 pont	
Itt b helyére $2a - 3$ -at helyettesítve: $(2a - 3)^2 = 25a$.	1 pont	Itt az a helyére $\frac{b+3}{2}$ -t
Nullára rendezve: $4a^2 - 37a + 9 = 0$.	1 pont	helyettesitve és rendezve: $b^2-12,5b-37,5=0.$
Ennek gyökei $a_1 = 9$ és $a_2 = 0.25$.	1 pont	
Innen $b_1 = 15$ és $b_2 = -2.5$.	1 pont	
Ellenőrzés: A 3, 9, 15 valóban egy (6 differenciájú) számtani, a 9, 15, 25 valóban egy ($\frac{5}{3}$ hányadosú) mértani sorozat három egymást követő tagja. A 3, 0,25, -2,5 valóban egy (-2,75 differenciájú) számtani, a 0,25, -2,5, 25 egy (-10 hányadosú) mértani sorozat három egymást követő tagja.	1 pont	
Összesen:	7 pont	

2. a)		
Behelyettesítve a megadott értékeket:		
$P(8) = \frac{E}{1 + 1, 5 \cdot 2^{-0.05 \cdot 8}} = 140,$	1 pont	
ahonnan $E = 140 \cdot (1+1, 5 \cdot 2^{-0,4}) \approx 299$, tehát a sziget eltartóképessége ebből a fajból kb. 300 egyed.	2 pont	Ha a vizsgázó válasza nem egész szám, akkor legfeljebb 1 pont jár.
Összesen:	3 pont	

2. b)		
$P(0) = \frac{1500}{1 + k \cdot 2^{-c \cdot 0}} = \frac{1500}{1 + k} = 200,$	1 pont	
ahonnan $1 + k = 7,5$, tehát $k = 6,5$.	1 pont	
$P(5) = \frac{1500}{1 + 6, 5 \cdot 2^{-5c}} = 350,$	1 pont	
ahonnan $1+6, 5 \cdot 2^{-5c} = \frac{1500}{350} = \frac{30}{7}$,	1 pont	$350 + 2275 \cdot 2^{-5c} = 1500$
tehát $2^{-5c} = \frac{\frac{30}{7} - 1}{6,5} \approx 0,5055.$	1 pont	$2^{-5c} = \frac{1150}{2275} = \frac{46}{91}$
$-5c = \log_2 0,5055 \approx -0.9842,$	1 pont	
ahonnan $c \approx 0,197$.	1 pont	
Összesen:	7 pont	

2. c) első megoldás		
Mivel $P(t) = \frac{E}{1 + k \cdot 2^{-ct}}$, így bizonyítandó, hogy nemnegatív t esetén $\frac{E}{1 + k \cdot 2^{-ct}} \le E$.	1 pont	
A tört nevezője pozitív, mert a 2-nek tetszőleges valós kitevős hatványa, valamint <i>k</i> is pozitív.	1 pont	
A (pozitív) <i>E</i> -vel osztva, a tört (pozitív) nevezőjével szorozva: $1 \le 1 + k \cdot 2^{-ct}$.	1 pont	
$0 \le k \cdot 2^{-ct}$, ami valóban teljesül. Ezzel a bizonyítandó állítást beláttuk (átalakításaink ekvivalensek voltak).	1 pont	
Összesen:	4 pont	

2. c) második megoldás		
Mivel $P(t) = \frac{E}{1 + k \cdot 2^{-ct}}$, így bizonyítandó, hogy nemnegatív t esetén $\frac{E}{1 + k \cdot 2^{-ct}} \le E$.	1 pont	
A $k \cdot 2^{-ct}$ kifejezés értéke pozitív, mert a 2-nek tetszőleges valós kitevős hatványa, valamint k is pozitív.	1 pont	
Így az $1+k\cdot 2^{-ct}$ kifejezés értéke nagyobb 1-nél.	1 pont	
Az $\frac{E}{1+k\cdot 2^{-ct}}$ tört nevezője tehát 1-nél nagyobb, a tört értéke így valóban kisebb <i>E</i> -nél (hiszen $E>0$).	1 pont	
Összesen:	4 pont	

3. a)		
$a_2 = a_1 + 2$		
$a_3 = a_2 + 3 = a_1 + 5$	2 pont	
$a_4 = a_3 + 4 = a_1 + 9$		
$a_1 + a_2 + a_3 + a_4 = 4a_1 + 16 = 360$	1 pont	
Innen $a_1 = 86$.	1 pont	
Így a négyszög belső szögei 86°, 88°, 91° és 95° (amelyek megfelelnek a feltételeknek).	1 pont	
Összesen:	5 pont	

3. b) első megoldás		
Az ABC háromszögben szinusztétellel:		
18 _ sin <i>BCA</i> ≺	1 pont	
$\frac{1}{20} = \frac{1}{\sin 70^{\circ}},$	_	
ahonnan $BCA \ll 57,75^{\circ}$ (tompaszög nem lehet,	1 pont	
mert rövidebb oldallal szemben kisebb szög van).	1 point	
Így $CAB \ll = (180^{\circ} - 70^{\circ} - 57,75^{\circ} =) 52,25^{\circ},$	1 pont	
és DAC < = (90° − 52,25° =) 37,75°.	т ропі	
		Az ABC háromszögben
Az ABC háromszögben koszinusztétellel:	14	szinusztétellel:
$BC^2 = 20^2 + 18^2 - 2 \cdot 20 \cdot 18 \cdot \cos 52,25^{\circ} \ (\approx 283,2),$	1 pont	$BC = \sin 52,25^{\circ}$
		${20}$ ${\sin 70^{\circ}}$,
ahonnan $BC \approx 16,83$ cm.	1 pont	
Az ACD háromszögben koszinusztétellel:	4	
$CD^2 = 20^2 + 15^2 - 2 \cdot 20 \cdot 15 \cdot \cos 37,75^{\circ} \ (\approx 150,6),$	1 pont	
ahonnan $CD \approx 12,27$ cm.	1 pont	
Összesen:	7 pont	

3. b) második megoldás		
Az ABD háromszögben Pitagorasz-tétellel:	1	
$BD = \sqrt{15^2 + 18^2} \approx 23,43 \text{ cm}.$	1 pont	
$tgABD \ll = \frac{15}{18},$	1 pont	
ahonnan ABD < ≈ 39,81°,	1 pont	
és így DBC < = (70° – 39,81° =) 30,19°.	1 pont	
Az ABC háromszögben koszinusztétellel:		
$20^2 = 18^2 + BC^2 - 2 \cdot 18 \cdot BC \cdot \cos 70^\circ.$	1 pont	
Rendezve: $BC^2 - 12,31 \cdot BC - 76 = 0,$		
ennek pozitív gyöke $BC \approx 16,83$ cm (a negatív gyök	1 pont	
\approx -4,52).	1 pont	
A DBC háromszögben koszinusztétellel:	1 ,	
$CD^2 = 23,43^2 + 16,83^2 - 2 \cdot 23,43 \cdot 16,83 \cdot \cos 30,19^\circ,$	1 pont	
ahonnan $CD \approx 12,27$ cm.	1 pont	
Összesen:	7 pont	

Megjegyzés: Ha a vizsgázó a válaszait mértékegység nélkül adja meg, akkor ezért a feladatban összesen 1 pontot veszítsen.

4. a) első megoldás		
A keresett kör középpontja az <i>AB</i> szakasz felezőmerőlegesének és az <i>y</i> tengelynek a metszéspontja.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
Az AB szakasz felezőpontja: $F_{AB}\left(\frac{5+7}{2}; \frac{14+6}{2}\right) = (6; 10).$	1 pont	
A felezőmerőleges egy normálvektora: $\overrightarrow{AB}(7-5;6-14) = (2;-8),$	1 pont	n (1; -4)
így az egyenlete: $2x - 8y = (2 \cdot 6 - 8 \cdot 10 =) -68$.	1 pont	x - 4y = -34
x = 0 esetén $y = 8,5$, tehát a kör középpontjának koordinátái (0; 8,5).	1 pont	
A kör sugara a középpont és például az A pont távolsága: $\sqrt{5^2 + (14 - 8, 5)^2} = \sqrt{55, 25} \ (\approx 7, 43)$.	1 pont	
A kör egyenlete $x^2 + (y - 8, 5)^2 = 55,25$.	1 pont	
Összesen:	7 pont	

4. a) második megoldás		
A keresett kör y tengelyre illeszkedő középpontja legyen a $C(0; v)$ pont.	1 pont	
$CA = CB$, tehát $\sqrt{5^2 + (14 - v)^2} = \sqrt{7^2 + (6 - v)^2}$,	1 pont	
amiből $25+196-28v+v^2=49+36-12v+v^2$.	1 pont	
Innen $16v = 136$, azaz $v = 8,5$. Tehát a kör középpontjának koordinátái (0; 8,5).	2 pont	
A kör sugara a középpont és például a <i>B</i> pont távolsága: $\sqrt{7^2 + (6-8,5)^2} = \sqrt{55,25}$ ($\approx 7,43$).	1 pont	
A kör egyenlete $x^2 + (y - 8, 5)^2 = 55, 25$.	1 pont	
Összesen:	7 pont	

4. b) első megoldás		
Mivel $B(7; 6)$ a parabola tengelypontja,		
ezért a parabola egyenlete: $y = \frac{1}{2p}(x-7)^2 + 6$.	1 pont	
Behelyettesítve az A pont koordinátáit:		
$14 = \frac{1}{2p}(5-7)^2 + 6.$	1 pont	
$8 = \frac{4}{2p},$	1 pont	
amiből $p = \frac{1}{4}$.	1 pont	
Összesen:	4 pont	

4. b) második megoldás		
Ha a "felfelé nyíló" parabola tengelypontja <i>B</i> (7; 6)		
és paramétere p , akkor fókuszpontja $\left(7; 6 + \frac{p}{2}\right)$,	1 pont	
vezéregyenesének egyenlete pedig $y = 6 - \frac{p}{2}$.		
Az A pont illeszkedik a parabolára, így egyenlő tá-		
volságra van a fókuszponttól és a (parabola alatt		
levő) vezéregyenestől:	1 pont	
$\sqrt{(5-7)^2 + \left(14 - \left(6 + \frac{p}{2}\right)\right)^2} = 14 - \left(6 - \frac{p}{2}\right).$	1 polit	
Négyzetre emelve (mindkét oldal pozitív):		
$68 - 8p + \frac{p^2}{4} = 64 + 8p + \frac{p^2}{4},$	1 pont	
amiből $p = \frac{1}{4}$.	1 pont	
Összesen:	4 pont	

4. b) harmadik megoldás		
Toljuk el (a (7; 6) vektorral) a koordináta-rendszert		
úgy, hogy az origó a <i>B</i> pont legyen. Ebben a koordi-	1 pont	
náta-rendszerben az <i>A</i> pont koordinátái (–2; 8).		
Az origó tengelypontú parabola egyenlete $y = \frac{1}{2p}x^2$.	1 pont	
Ebbe az A pont (új) koordinátáit behelyettesítve:		
$8 = \frac{1}{2p} \cdot (-2)^2,$	1 pont	
amiből $p = \frac{1}{4}$.	1 pont	
Összesen:	4 pont	

II.

5. a) első megoldás		
Ha az iskola fiú tanulóinak számát <i>n</i> -nel jelöljük, akkor a lányok száma 510 – <i>n</i> .	1 pont	
Megoldandó a következő egyenletrendszer:		
$n \cdot \frac{p}{100} = 13$	1 pont	
$(510-n) \cdot \frac{p+3}{100} = 20.$		
Rendezve az egyenleteket:		
np = 1300	1 pont	
$\int 510 p - np + 1530 - 3n = 2000.$		
A két egyenletet összeadva:	1 pont*	
510p + 1530 - 3n = 3300,	1 pont	
amiből $n = \frac{510p - 1770}{3} = 170p - 590.$	1 pont*	$p = \frac{n}{170} + \frac{59}{17}$
Ezt az első egyenletbe visszaírva: $(170 p - 590) \cdot p = 1300$, majd 10-zel osztva és nul-	1 pont*	$n \cdot \left(\frac{n}{170} + \frac{59}{17}\right) = 1300$
lára rendezve: $17p^2 - 59p - 130 = 0$.	T possi	$0 = n^2 + 590n - 221000$
A másodfokú egyenlet pozitív megoldása p = 5		$n_{\rm s} = 260 (n_{\rm s} = -850)$
(a másik megoldás $-\frac{26}{17}$), ahonnan $n = 260$.	1 pont	$n_1 = 260 \ (n_2 = -850)$ $p = 5$
Tehát a fiúk száma 260, a lányok száma pedig 250.	1 pont	
Ellenőrzés: $260 \cdot 0.05 = 13$ és $250 \cdot 0.08 = 20$ valóban.	1 pont	
Összesen:	9 pont	

Megjegyzés: A *-gal jelölt 3 pontot az alábbi gondolatmenetért is megkaphatja a vizsgázó.

Az első egyenletből $n = \frac{1300}{p}$.	1 pont	
Ezt a második egyenletbe visszaírva: $510p - 1300 + 1530 - 3 \cdot \frac{1300}{p} = 2000.$	1 pont	
Beszorozva p -vel és nullára rendezve: $510 p^2 - 1770 p - 3900 = 0$.	1 pont	

5. a) második megoldás		
Ha az iskola fiú tanulóinak számát <i>n</i> -nel jelöljük,	1	
akkor a lányok száma $510 - n$.	1 pont	
A 13 az <i>n</i> -nek $\frac{13}{n}$ ·100 százaléka,		
1	2 pont	
a 20 az $(510 - n)$ -nek a $\frac{20}{510 - n} \cdot 100$ százaléka.		
Így megoldandó a következő egyenlet:		
$\frac{13}{n} \cdot 100 + 3 = \frac{20}{510 - n} \cdot 100.$	1 pont	
A nevezőkkel mindkét oldalt megszorozva:	1 pont	
$1300 \cdot (510 - n) + 3n \cdot (510 - n) = 2000n.$	1 point	
Nullára rendezve: $0 = n^2 + 590n - 221000$.	1 pont	
A másodfokú egyenlet pozitív megoldása $n = 260$.	1 pont	
Tehát a fiúk száma 260, a lányok száma pedig 250.	1 pont	
Ellenőrzés: a 13 a 260-nak 5 százaléka,	1	
a 20 a 250-nek 8 százaléka, és 5 + 3 = 8 valóban.	1 pont	
Összesen:	9 pont	
5 b) 1 " 11"		
5. b) első megoldás		
A 13 fiú és a 20 lány közül 1 fiút és 2 lányt $\binom{13}{1}\binom{20}{2}$ (= 2470)-féleképpen lehet kiválasztani	2 pont	
(kedvező esetek száma).		
A 33 kitűnő tanuló közül 3-at $\binom{33}{3}$ (= 5456)-félekép-	1 pont	
pen lehet kiválasztani (összes eset száma).		
Tehát a keresett valószínűség $\frac{\binom{13}{1}\binom{20}{2}}{\binom{33}{3}} \approx 0,453.$	1 pont	
Összesen:	4 pont	
5. b) második megoldás		
Ha figyelembe vesszük a tanulók kiválasztásának		
sorrendjét, akkor annak a valószínűsége, hogy elő-		
ször fiút, majd ezután másodjára és harmadjára is	2 pont	
lányt választunk: $\frac{13}{33} \cdot \frac{20}{32} \cdot \frac{19}{31} \approx 0,151$.	1	
Mivel ugyanennyi annak a valószínűsége is, hogy a		
fiút másodjára vagy harmadjára választjuk, ezért a	2 pont	

kérdezett valószínűség $3 \cdot \frac{13 \cdot 20 \cdot 19}{33 \cdot 32 \cdot 31} \approx 0,453.$

Összesen:

4 pont

5. c)							
		tűnő tanul tt a minin		a maximum ,4 = 2,6.	15,	1 pont	
0	1	2	3	4	5	2 pont	
				Öss	zesen:	3 pont	

6. b)		
	1 pont	
Egy megfelelő függvény megadása,	2	I pont jár, ha a megadott függvény a háromból csak két szempont szerint
pl. $(\mathbf{R} \to \mathbf{R}) \ x \mapsto \left(\frac{1}{2}\right)^x \text{ vagy } (\mathbf{R} \to \mathbf{R}) \ x \mapsto x^2.$	2 pont	csak két szempont szerint megfelelő.
Összesen:	3 pont	

6. c) első megoldás		
A függvénygrafikon egy parabola, melynek tengelypontja $(2; -1)$, így a függvény hozzárendelési szabálya $x \mapsto (x-2)^2 -1$.	2 pont	
$(x-2)^2-1=x^2-4x+3,$	1 pont	
amiből $b = -4$ és $c = 3$.	1 pont	
Összesen:	4 pont	

6. c) második megoldás		
A függvény átalakítva: $x \mapsto \left(x + \frac{b}{2}\right)^2 - \frac{b^2}{4} + c$.	1 pont	
Ennek minimumhelye $x = -\frac{b}{2} = 2$, amiből $b = -4$.	1 pont	
A függvény minimumértéke $-\frac{(-4)^2}{4} + c = -1$,	1 pont	
amiből $c = 3$.	1 pont	
Összesen:	4 pont	

6. c) harmadik megoldás		
A függvény deriváltfüggvénye $x \mapsto 2x + b$.	1 pont	
A függvény a minimumát $x = 2$ -ben veszi fel, így a deriváltja itt nulla: $2 \cdot 2 + b = 0$, azaz $b = -4$.	1 pont	
Itt a függvényérték $2^2 - 4 \cdot 2 + c = -1$,	1 pont	
amiből $c = 3$.	1 pont	
Összesen:	4 pont	•

6. d)	
$\int_{0}^{p} \sin x dx = \left[-\cos x\right]_{0}^{p} =$	1 pont
$=-\cos p - (-\cos 0) = \frac{1}{2},$	1 pont
amiből $-\cos p + 1 = \frac{1}{2}$, tehát $\cos p = \frac{1}{2}$.	1 pont
A [0; 2π] intervallumon $p_1 = \frac{\pi}{3}$,	1 pont
$\text{és } p_2 = \frac{5\pi}{3}.$	1 pont
Összesen:	5 pont

7. a) első megoldás		
Az alaplap területe 36 dm², anyagköltsége 144 tallér.	1 pont	
A négy oldallapra így legfeljebb (300 – 144 =) 156 tallér marad, oldallaponként tehát (156:4 =) 39 tallér.	1 pont	
Egy oldallap területe ekkor $(39:3 =) 13 \text{ dm}^2$.	1 pont	
A doboz magassága így legfeljebb $\frac{13}{6}$ dm lehet.	1 pont	
Összesen:	4 pont	

7. a) második megoldás		
A doboz magasságát (dm-ben) jelölje m . A doboz anyagköltségére felírható a következő egyenlőtlenség: $6^2 \cdot 4 + 4 \cdot 6 \cdot m \cdot 3 \le 300$.	2 pont	Ha a vizsgázó egyenlőt- lenség helyett egyenlettel számol, a megfelelő pon- tok járnak.
$144 + 72m \le 300$, amiből $m \le \frac{13}{6}$. A doboz magassága így legfeljebb $\frac{13}{6}$ dm lehet.	2 pont	
Összesen:	4 pont	

7. b) első megoldás		
Jelölje a doboz alapélét a , magasságát b . A doboz elkészítésének költsége ekkor $a^2 \cdot 4 + 4ab \cdot 3 = 4a^2 + 12ab = 300$ tallér.	1 pont	
(Keressük a^2b maximumát.) Kifejezzük b -t: $b = \frac{300 - 4a^2}{12a} = \frac{25}{a} - \frac{a}{3}$,	1 pont	
és ezzel felírjuk a doboz térfogatát: $V = a^2b = a^2\left(\frac{25}{a} - \frac{a}{3}\right) = 25a - \frac{a^3}{3}.$	1 pont	
A pozitív valós számok halmazán értelmezett $f(a) = 25a - \frac{a^3}{3}$ függvénynek ott lehet szélsőértéke, ahol a deriváltja 0.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
$f'(a) = 25 - a^2$	1 pont	
$25-a^2 = 0$ -ból $(a > 0 \text{ miatt}) \ a = 5, \text{ majd } b = \frac{10}{3}.$	1 pont	
f''(a) = -2a < 0 miatt ez valóban maximumhelye f -nek.	1 pont	Az első deriváltfüggvény előjele a = 5-ben pozitív- ról negatívra változik.
A 300 tallérból elkészíthető maximális térfogatú doboz alapéle tehát 5 dm, magassága $\frac{10}{3}$ dm.	1 pont	$\frac{A \text{ maximális térfogat}}{250} \text{ dm}^3.$
Összesen:	8 pont	

7. b) második megoldás		
Jelölje a doboz alapélét a , magasságát b . A doboz elkészítésének költsége ekkor $a^2 \cdot 4 + 4ab \cdot 3 = 4a^2 + 12ab = 300$ tallér.	1 pont	
(Keressük a^2b maximumát.) A számtani és mértani közepek közötti összefüggést használva: $300 = 4a^2 + 12ab = 12 \cdot \frac{a^2 + \frac{3}{2}ab + \frac{3}{2}ab}{3} \ge 2 \cdot \frac{3}{2}ab \cdot \frac{3}{2}ab \cdot \frac{3}{2}ab$.	2 pont	
Azaz $25 \ge \sqrt[3]{\frac{9}{4}a^4b^2}$,	1 pont	
amiből rendezés után $\frac{250}{3} \ge a^2b = V$ adódik, vagyis a térfogat maximum $\frac{250}{3}$ dm³ lehet.	1 pont	
Ezt a maximumot fel is veszi a térfogat, ha a közepekben szereplő tagok egyenlők, vagyis ha $a^2 = \frac{3}{2}ab$, azaz $\frac{2}{3}a = b$.	1 pont	
$V = \frac{250}{3} = a^2b = a^2 \cdot \frac{2}{3}a = \frac{2a^3}{3},$	1 pont	$300 = 4a^2 + 12 \cdot \frac{2}{3}a^2 = 12a^2$
amiből (a doboz alapéle) $a = 5$ dm, (a doboz magassága) $b = \frac{10}{3}$ dm.	1 pont	
Összesen:	8 pont	

Megjegyzés: Ha a vizsgázó a válaszait mértékegység nélkül adja meg, akkor ezért a feladatban összesen 1 pontot veszítsen.

7. c)		
Tegyük fel először, hogy az alaplap kék. Lehet minden oldallap piros, vagy minden oldallap kék, ez 1-1 lehetőség.	1 pont	
Lehet egy vagy három piros oldallap, ez is 1-1 lehetőség.	1 pont	
És lehet két piros oldallap, ez 2 lehetőség (vagy egymás mellett, vagy egymással szemben vannak).	1 pont	
Mivel ugyanígy (2 + 2 + 2 =) 6 lehetőség van akkor is, ha az alaplap piros, ezért összesen 12 megfelelő színezés van.	1 pont	
Összesen:	4 pont	

Megjegyzés: Ha a vizsgázó rendezetten felsorolja az összes lehetőséget, és ez alapján helyes választ ad, akkor a teljes pontszám jár.

8. a) első megoldás		
Nem lehetséges.	1 pont	
G egy ötpontú fagráf, így 4 éle van.	1 pont	
Az ötpontú teljes gráfnak $\binom{5}{2}$ = 10 éle van.	1 pont	
G komplementerének így (10 – 4 =) 6 éle van, ezért nem lehet fagráf (mert annak csak 4 éle van).	1 pont	
Összesen:	4 pont	

8. a) második megoldás		
Nem lehetséges.	1 pont	
Izomorfia erejéig három különböző ötpontú fagráf		
létezik, mindhárom komplementere tartalmaz kört,		
így nem fagráf.		
	3 pont	
Összesen:	4 pont	

8. b)		
(a zöld éleket folytonos, a piros éleket pontozott vonallal jelöltük)	1 pont	
A hat pont közül hármat $\binom{6}{3}$ = 20-féleképpen vá-	1 pont	
laszthatunk ki (összes eset száma).		
A kedvező esetek száma 6 (zöld: 1-2-4, 1-2-6, 1-3-6; piros: 2-3-5, 3-4-5, 4-5-6).	2 pont	
A kérdezett valószínűség így $\frac{6}{20} = 0.3$.	1 pont	
Összesen:	5 pont	

8. c)		
Jelölje $P(n)$ annak a valószínűségét, hogy n húzásra		P(ZZZ) + P(PPP) =
van szükség. $(P(1) = P(2) = P(6) = 0)$		2 1 1
Három húzásra van szükség, ha a 2. és 3. húzás színe	1 pont	$=2\cdot{(6)}={10}$
megegyezik az 1. húzás színével: $P(3) = \frac{2}{5} \cdot \frac{1}{4} = \frac{1}{10}$.		$=2\cdot\frac{1}{\binom{6}{3}}=\frac{1}{10}$
4 húzásra van szükség és zöld a 4. húzás a PZZZ,		
ZPZZ vagy ZZPZ sorrendek esetén. Ugyanígy három	1 pont	
megfelelő sorrend van akkor, ha piros a 4. húzás.		
Minden ilyen húzási sorrend valószínűsége		
$\frac{3 \cdot 3 \cdot 2 \cdot 1}{6 \cdot 5 \cdot 4 \cdot 3} = \frac{1}{20}, \text{ tehát } P(4) = 6 \cdot \frac{1}{20} = \frac{3}{10}.$	1 pont	
$6 \cdot 5 \cdot 4 \cdot 3 20$		
5 húzásra akkor van szükség, ha az első 4 húzás kö-		
zött (a sorrendre való tekintet nélkül) 2-2 zöld és pi-	1 pont	
ros van.		3
Ennek a valószínűsége $P(5) = \frac{\binom{3}{2} \cdot \binom{3}{2}}{\binom{6}{4}} = \frac{3}{5}$.	1 pont	$P(5) = 1 - P(3) - P(4) = \frac{3}{5}$
A szükséges húzások számának várható értéke:		
$\sum_{i=3}^{5} P(i) \cdot i = \frac{1}{10} \cdot 3 + \frac{3}{10} \cdot 4 + \frac{3}{5} \cdot 5 = 4,5.$	2 pont	
Összesen:	7 pont	

9. a)		
(2) és (4) kizárják egymást, mert a 20-szal osztható számok 0-ra végződnek, így számjegyeik szorzata 0.	1 pont	
Tehát a másik két tulajdonságnak teljesülnie kell: a keresett szám biztosan húszjegyű, és számjegyeinek összege 20.	1 pont	
Az ilyen számok közül a legnagyobb a 992000,	1 pont	
mely teljesíti a 20-szal való oszthatósági feltételt is (számjegyeinek szorzata viszont nem 20, így valóban pontosan három feltétel teljesül).	1 pont	
Összesen:	4 pont	

9. b) első megoldás		
(Először \overline{A} elemszámát számítjuk ki.) Az első számjegy 8-féle lehet (nem lehet 0 és 7), a többi helyiérték mindegyikére 9-féle számjegyet írhatunk (egyik sem lehet 7),	1 pont	
$[\text{igy } \overline{A} = 8 \cdot 9^{19} \approx 1,08 \cdot 10^{19}.$	1 pont	

Összesen $ H = 9 \cdot 10^{19}$ darab húszjegyű szám van.	1 pont	
Ezt felhasználva: $ A = H - \overline{A} = 9 \cdot 10^{19} - 1,08 \cdot 10^{19} = 7,92 \cdot 10^{19},$	1 pont	
tehát $ A > \overline{A} $.	1 pont	
Összesen:	5 pont	

9. b) második megoldás		
(Először \overline{A} elemszámát számítjuk ki.) Az első számjegy 8-féle lehet (nem lehet 0 és 7), a többi helyiérték mindegyikére 9-féle számjegyet írhatunk (egyik sem lehet 7),	1 pont	
$ \operatorname{igy} \overline{A} = 8 \cdot 9^{19}.$	1 pont	
Megadjuk azon húszjegyű számok számát, amelyekben pontosan egy darab 7-es számjegy szerepel, de az nem a legnagyobb helyiértéken található (ezek a számok A valódi részhalmazát alkotják). Ha már ez nagyobb, mint $ \overline{A} $, akkor nyilván $ A > \overline{A} $.	1 pont	
Az első helyiértéken 0 és 7 nem lehet, a 7-es számjegy 19 helyen lehet, a többi helyiérték mindegyikére pedig 9-féle számjegyet írhatunk. Ez $19 \cdot 8 \cdot 9^{18}$ lehetőség, ami több, mint $ \overline{A} = 9 \cdot 8 \cdot 9^{18}$.	1 pont	
tehát $ A > \overline{A} $.	1 pont	
Összesen:	5 pont	

9. c)		
Komplementer módszerrel dolgozunk:	1 nont	
P(van benne 7-es) = 1 - P(nincs benne 7-es) =	1 pont	
$=1-\frac{8}{9}\cdot\left(\frac{9}{10}\right)^{n-1}.$	1 pont	
Így megoldandó az alábbi egyenlőtlenség:		
$1 - \frac{8}{9} \cdot \left(\frac{9}{10}\right)^{n-1} > 0,99.$	1 pont	
Rendezve: $\frac{9}{800} > 0,9^{n-1}$.	1 pont	
Mivel az $x \mapsto \log_{0,9} x$ függvény szigorúan monoton csökkenő,	1 pont	
$n > \log_{0.9} \frac{9}{800} + 1 \approx 43,59,$	1 pont	
tehát $n \ge 44 \ (n \in \mathbb{N})$.	1 pont	
Összesen:	7 pont	