# In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

# In [2]:

```
#data input
df = pd.read_csv("../DATA/Ames_Housing_Data.csv")
```

# In [3]:

df.head()

# Out[3]:

|   | PID       | MS<br>SubClass | MS<br>Zoning | Lot<br>Frontage | Lot<br>Area | Street | Alley | Lot<br>Shape | Land<br>Contour | Utilities |  |
|---|-----------|----------------|--------------|-----------------|-------------|--------|-------|--------------|-----------------|-----------|--|
| 0 | 526301100 | 20             | RL           | 141.0           | 31770       | Pave   | NaN   | IR1          | Lvl             | AllPub    |  |
| 1 | 526350040 | 20             | RH           | 80.0            | 11622       | Pave   | NaN   | Reg          | LvI             | AllPub    |  |
| 2 | 526351010 | 20             | RL           | 81.0            | 14267       | Pave   | NaN   | IR1          | LvI             | AllPub    |  |
| 3 | 526353030 | 20             | RL           | 93.0            | 11160       | Pave   | NaN   | Reg          | LvI             | AllPub    |  |
| 4 | 527105010 | 60             | RL           | 74.0            | 13830       | Pave   | NaN   | IR1          | LvI             | AllPub    |  |

#### 5 rows × 81 columns

# In [4]:

#correlation between all features and sales price in sorted oder
#positive co-relation and value close to 1 means sales price closely depends on that parame
#in colrelation we can see sales price highly depends on Overall Qual
df.corr()['SalePrice'].sort\_values()

# Out[4]:

| PID                                          | -0.246521      |
|----------------------------------------------|----------------|
| Enclosed Porch                               | -0.128787      |
| Kitchen AbvGr                                |                |
| Overall Cond                                 | -0.101697      |
| MS SubClass                                  | -0.085092      |
| Low Qual Fin SF<br>Bsmt Half Bath            | -0.037660      |
| Bsmt Half Bath                               | -0.035835      |
| Yr Sold                                      | -0.030569      |
| Misc Val                                     | -0.015691      |
| BsmtFin SF 2                                 | 0.005891       |
| 3Ssn Porch                                   | 0.032225       |
| Mo Sold                                      | 0.035259       |
| Pool Area                                    | 0.068403       |
| Screen Porch                                 | 0.112151       |
| Screen Porch<br>Bedroom AbvGr<br>Bemt Unf SE | 0.143913       |
| Bsmt Unf SF                                  | 0.182855       |
| Lot Area                                     | 0.266549       |
| 2nd Flr SF                                   | 0.269373       |
| Bsmt Full Bath                               | 0.276050       |
| Half Bath                                    | 0.285056       |
| Open Porch SF                                | 0.312951       |
| Wood Deck SF                                 | 0.327143       |
| Lot Frontage                                 | 0.357318       |
| BsmtFin SF 1                                 | 0.432914       |
| Fireplaces                                   | 0.474558       |
|                                              | 0.495474       |
| Mas Vnr Area                                 | 0.508285       |
| Garage Yr Blt                                | 0.526965       |
| Year Remod/Add                               | 0.532974       |
| Full Bath                                    | 0.545604       |
| Year Built                                   | 0.558426       |
| 1st Flr SF                                   | 0.621676       |
| Total Bsmt SF                                | 0.632280       |
| Garage Area                                  | 0.640401       |
| Garage Cars                                  | 0.647877       |
| Gr Liv Area                                  | 0.706780       |
| Overall Qual                                 | 0.799262       |
| SalePrice                                    | 1.000000       |
| Name: SalePrice,                             | dtype: float64 |
|                                              |                |

## In [5]:

```
#since sales price highly depends on overall quality
sns.scatterplot(x='Overall Qual',y='SalePrice',data=df)
#We notice higher quality higher is sales price but their are few outlier points which we n
```

## Out[5]:

<AxesSubplot:xlabel='Overall Qual', ylabel='SalePrice'>



## In [6]:

#from above we notice there are 3 houses which have quality between 8-10 but are selling ve #Therefore they are doubtfull point

## In [7]:

df[(df['Overall Qual']>8) & (df['SalePrice']<200000)]</pre>

## Out[7]:

|      | PID       | MS<br>SubClass | MS<br>Zoning | Lot<br>Frontage | Lot<br>Area | Street | Alley | Lot<br>Shape | Land<br>Contour | Utilities |
|------|-----------|----------------|--------------|-----------------|-------------|--------|-------|--------------|-----------------|-----------|
| 1182 | 533350090 | 60             | RL           | NaN             | 24572       | Pave   | NaN   | IR1          | Lvl             | AllPub    |
| 1498 | 908154235 | 60             | RL           | 313.0           | 63887       | Pave   | NaN   | IR3          | Bnk             | AllPub    |
| 2180 | 908154195 | 20             | RL           | 128.0           | 39290       | Pave   | NaN   | IR1          | Bnk             | AllPub    |
| 2181 | 908154205 | 60             | RL           | 130.0           | 40094       | Pave   | NaN   | IR1          | Bnk             | AllPub    |

4 rows × 81 columns

**→** 

#### In [8]:

#The four suspectful rows are displayed above

## In [9]:

#Gr Liv Area is also highly correlated to sales price
sns.scatterplot(x='Gr Liv Area',y='SalePrice',data=df)

#### Out[9]:

<AxesSubplot:xlabel='Gr Liv Area', ylabel='SalePrice'>



## In [10]:

#We again notice that the above mentoined three houses here again show weird behaviour #The general trend is higher the Gr Liv Area more is the SalesPrice #But those three houses Have high Gr Liv Area But small selling price

#### In [11]:

```
df[(df['Gr Liv Area']>4000) & (df['SalePrice']<400000)]</pre>
```

## Out[11]:

|        | PID          | MS<br>SubClass | MS<br>Zoning | Lot<br>Frontage | Lot<br>Area | Street | Alley | Lot<br>Shape | Land<br>Contour | Utilitie |   |
|--------|--------------|----------------|--------------|-----------------|-------------|--------|-------|--------------|-----------------|----------|---|
| 1498   | 908154235    | 60             | RL           | 313.0           | 63887       | Pave   | NaN   | IR3          | Bnk             | AllPu    | L |
| 2180   | 908154195    | 20             | RL           | 128.0           | 39290       | Pave   | NaN   | IR1          | Bnk             | ΑIIPι    | L |
| 2181   | 908154205    | 60             | RL           | 130.0           | 40094       | Pave   | NaN   | IR1          | Bnk             | AllPu    |   |
| 3 rows | s × 81 colum | ins            |              |                 |             |        |       |              |                 |          | ~ |
| 4      |              |                |              |                 |             |        |       |              |                 | •        |   |

# In [12]:

#We get the three rows with high Gr Liv Area but low sales price. These three rows match th #There are outliers which should be removed

## In [13]:

```
df[(df['Gr Liv Area']>4000) & (df['SalePrice']<400000)].index</pre>
```

#### Out[13]:

Int64Index([1498, 2180, 2181], dtype='int64')

## In [14]:

```
ind_drop = df[(df['Gr Liv Area']>4000) & (df['SalePrice']<400000)].index</pre>
```

## In [15]:

```
#Those three rows dropped
df = df.drop(ind_drop,axis=0)
```

#### In [16]:

```
sns.scatterplot(x='Gr Liv Area',y='SalePrice',data=df)
```

## Out[16]:

<AxesSubplot:xlabel='Gr Liv Area', ylabel='SalePrice'>



## In [17]:

#Now the rest of the data set seems to follow the general trend

## In [18]:

sns.scatterplot(x='Overall Qual',y='SalePrice',data=df)

# Out[18]:

<AxesSubplot:xlabel='Overall Qual', ylabel='SalePrice'>



## In [19]:

#Rest of data seems to follow the general trend

#### In [ ]:

In [20]:

#WE DEALT WITH OUTLIERS NOW WE DEAL WITH MISSUNG DATA

# In [21]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 2927 entries, 0 to 2929
Data columns (total 81 columns):

| Data     | columns (total 8 |                |                   |
|----------|------------------|----------------|-------------------|
| #        | Column           | Non-Null Count | Dtype             |
|          |                  |                |                   |
| 0        | PID              | 2927 non-null  | int64             |
| 1        | MS SubClass      | 2927 non-null  | int64             |
| 2        | MS Zoning        | 2927 non-null  | object            |
| 3        | Lot Frontage     | 2437 non-null  | float64           |
| 4        | Lot Area         | 2927 non-null  | int64             |
| 5        | Street           | 2927 non-null  | object            |
| 6        | Alley            | 198 non-null   | object            |
| 7        | Lot Shape        | 2927 non-null  | object            |
| 8        | Land Contour     | 2927 non-null  | _                 |
|          |                  |                | object            |
| 9        | Utilities        | 2927 non-null  | object            |
| 10       | Lot Config       | 2927 non-null  | object            |
| 11       | Land Slope       | 2927 non-null  | object            |
| 12       | Neighborhood     | 2927 non-null  | object            |
| 13       | Condition 1      | 2927 non-null  | object            |
| 14       | Condition 2      | 2927 non-null  | object            |
| 15       | Bldg Type        | 2927 non-null  | object            |
| 16       | House Style      | 2927 non-null  | object            |
| 17       | Overall Qual     | 2927 non-null  | int64             |
| 18       | Overall Cond     | 2927 non-null  | int64             |
| 19       | Year Built       | 2927 non-null  | int64             |
| 20       | Year Remod/Add   | 2927 non-null  | int64             |
| 21       | Roof Style       | 2927 non-null  | object            |
| 22       | Roof Matl        | 2927 non-null  | object            |
| 23       | Exterior 1st     | 2927 non-null  | object            |
| 24       | Exterior 2nd     | 2927 non-null  | object            |
| 25       | Mas Vnr Type     | 2904 non-null  |                   |
| 26       |                  |                | object<br>float64 |
|          | Mas Vnr Area     |                |                   |
| 27       | Exter Qual       | 2927 non-null  | object            |
| 28       | Exter Cond       | 2927 non-null  | object            |
| 29       | Foundation       | 2927 non-null  | object            |
| 30       | Bsmt Qual        | 2847 non-null  | object            |
| 31       | Bsmt Cond        | 2847 non-null  | object            |
|          | Bsmt Exposure    | 2844 non-null  | object            |
| 33       | BsmtFin Type 1   | 2847 non-null  | object            |
| 34       | BsmtFin SF 1     | 2926 non-null  | float64           |
| 35       | BsmtFin Type 2   | 2846 non-null  | object            |
| 36       | BsmtFin SF 2     | 2926 non-null  | float64           |
| 37       | Bsmt Unf SF      | 2926 non-null  | float64           |
| 38       | Total Bsmt SF    | 2926 non-null  | float64           |
| 39       | Heating          | 2927 non-null  | object            |
| 40       | Heating QC       | 2927 non-null  | object            |
| 41       | Central Air      | 2927 non-null  | object            |
| 42       | Electrical       | 2926 non-null  | object            |
| 43       | 1st Flr SF       | 2927 non-null  | int64             |
| 44       | 2nd Flr SF       | 2927 non-null  | int64             |
|          |                  |                |                   |
| 45<br>46 | Low Qual Fin SF  | 2927 non-null  | int64             |
| 46       | Gr Liv Area      | 2927 non-null  | int64             |
| 47       | Bsmt Full Bath   | 2925 non-null  | float64           |
| 48       | Bsmt Half Bath   | 2925 non-null  | float64           |
| 49       | Full Bath        | 2927 non-null  | int64             |
| 50       | Half Bath        | 2927 non-null  | int64             |
| 51       | Bedroom AbvGr    | 2927 non-null  | int64             |
|          |                  |                |                   |

```
52 Kitchen AbvGr
                     2927 non-null
                                     int64
    Kitchen Qual
                     2927 non-null
                                     object
54
                     2927 non-null
    TotRms AbvGrd
                                     int64
55
    Functional
                     2927 non-null
                                     object
                                     int64
56 Fireplaces
                     2927 non-null
57 Fireplace Qu
                                     object
                     1505 non-null
58 Garage Type
                     2770 non-null
                                     object
                                     float64
59 Garage Yr Blt
                     2768 non-null
60 Garage Finish
                     2768 non-null
                                     object
61 Garage Cars
                     2926 non-null
                                     float64
                                     float64
62 Garage Area
                     2926 non-null
63 Garage Qual
                     2768 non-null
                                     object
64 Garage Cond
                     2768 non-null
                                     object
                                     object
65
    Paved Drive
                     2927 non-null
66 Wood Deck SF
                     2927 non-null
                                     int64
                                     int64
67
    Open Porch SF
                     2927 non-null
68 Enclosed Porch
                     2927 non-null
                                     int64
69
    3Ssn Porch
                     2927 non-null
                                     int64
70 Screen Porch
                     2927 non-null
                                     int64
71 Pool Area
                     2927 non-null
                                     int64
72 Pool QC
                     12 non-null
                                     object
73 Fence
                     572 non-null
                                     object
74 Misc Feature
                     105 non-null
                                     object
75 Misc Val
                                     int64
                     2927 non-null
76 Mo Sold
                     2927 non-null
                                     int64
77
    Yr Sold
                     2927 non-null
                                     int64
78
    Sale Type
                     2927 non-null
                                     object
79
    Sale Condition
                     2927 non-null
                                     object
80 SalePrice
                     2927 non-null
                                     int64
dtypes: float64(11), int64(27), object(43)
memory usage: 1.8+ MB
```

#### In [22]:

#We Notice that there for few features there are missing values

#### In [23]:

```
df = df.drop('PID',axis=1)
```

## In [24]:

df.head()

## Out[24]:

|   | MS<br>SubClass | MS<br>Zoning | Lot<br>Frontage | Lot<br>Area | Street | Alley | Lot<br>Shape | Land<br>Contour | Utilities | Lot<br>Config | <br>Po: |
|---|----------------|--------------|-----------------|-------------|--------|-------|--------------|-----------------|-----------|---------------|---------|
| 0 | 20             | RL           | 141.0           | 31770       | Pave   | NaN   | IR1          | Lvl             | AllPub    | Corner        | <br>    |
| 1 | 20             | RH           | 80.0            | 11622       | Pave   | NaN   | Reg          | Lvl             | AllPub    | Inside        |         |
| 2 | 20             | RL           | 81.0            | 14267       | Pave   | NaN   | IR1          | Lvl             | AllPub    | Corner        |         |
| 3 | 20             | RL           | 93.0            | 11160       | Pave   | NaN   | Reg          | Lvl             | AllPub    | Corner        |         |
| 4 | 60             | RL           | 74.0            | 13830       | Pave   | NaN   | IR1          | Lvl             | AllPub    | Inside        |         |

5 rows × 80 columns

In [25]:

df.isnull().sum()

# Out[25]:

MS SubClass 0 MS Zoning 0 Lot Frontage 490 Lot Area 0 Street 0 Mo Sold Yr Sold 0 Sale Type 0 Sale Condition 0 SalePrice Length: 80, dtype: int64

## In [26]:

#True treated as 0 and false as 1 therefore we get sum of how many rows for each feature ar #there are 80 features therefore we cannot see all

```
In [27]:
```

```
100* df.isnull().sum() / len(df)
```

## Out[27]:

MS SubClass 0.00000 MS Zoning 0.00000 Lot Frontage 16.74069 Lot Area 0.00000 Street 0.00000 Mo Sold 0.00000 Yr Sold 0.00000 Sale Type 0.00000 Sale Condition 0.00000 SalePrice 0.00000 Length: 80, dtype: float64

## In [28]:

#We now get what percentage of data is missing which would help us to evaluate better

## In [29]:

```
def percent_missing(df):
    percent_nan = 100* df.isnull().sum() / len(df)
    percent_nan = percent_nan[percent_nan>0].sort_values()
    return percent_nan
```

## In [30]:

```
percent_nan = percent_missing(df)
```

#### In [31]:

#### percent\_nan

## Out[31]:

Electrical 0.034165 Garage Area 0.034165 Total Bsmt SF 0.034165 Bsmt Unf SF 0.034165 BsmtFin SF 1 0.034165 BsmtFin SF 2 0.034165 Garage Cars 0.034165 Bsmt Full Bath 0.068329 Bsmt Half Bath 0.068329 Mas Vnr Area 0.785787 Mas Vnr Type 0.785787 BsmtFin Type 1 2.733174 Bsmt Qual 2.733174 Bsmt Cond 2.733174 BsmtFin Type 2 2.767339 Bsmt Exposure 2.835668 Garage Type 5.363854 Garage Finish 5.432183 Garage Qual 5.432183 Garage Cond 5.432183 Garage Yr Blt 5.432183 Lot Frontage 16.740690 Fireplace Qu 48.582166 Fence 80.457807 Alley 93.235395 Misc Feature 96.412709 99.590024 Pool QC dtype: float64

# In [32]:

#We get percentage of missing data in sorted manner using a function call

#### In [33]:

```
sns.barplot(x=percent_nan.index,y=percent_nan)
plt.xticks(rotation=90);
```



## In [34]:

#graphical representation of missing data

# In [35]:

```
sns.barplot(x=percent_nan.index,y=percent_nan)
plt.xticks(rotation=90);

# Set 1% Threshold
plt.ylim(0,1)
```

#### Out[35]:

(0.0, 1.0)



```
In [36]:
```

```
#I would not mind dropping rows with 1% missing data
```

## In [37]:

```
percent_nan[percent_nan < 1]</pre>
```

## Out[37]:

Electrical 0.034165 Garage Area 0.034165 Total Bsmt SF 0.034165 Bsmt Unf SF 0.034165 BsmtFin SF 1 0.034165 BsmtFin SF 2 0.034165 Garage Cars 0.034165 0.068329 Bsmt Full Bath Bsmt Half Bath 0.068329 Mas Vnr Area 0.785787 Mas Vnr Type 0.785787 dtype: float64

acype. Tiouco

#### In [38]:

```
#Features with less than 1% missing data
```

#### In [39]:

```
100/len(df)
```

#### Out[39]:

0.0341646737273659

#### In [40]:

#the above calculation tells that features like Electrical, Garage Area, Bsmt Unf SF etc ha #is missing data

#### In [41]:

```
df = df.dropna(axis = 0, subset = ['Electrical', 'Garage Area'])
```

## In [42]:

```
percent_nan = percent_missing(df)
```

#### In [43]:

```
percent_nan[percent_nan < 1]</pre>
```

## Out[43]:

Bsmt Unf SF 0.034188 Total Bsmt SF 0.034188 BsmtFin SF 2 0.034188 BsmtFin SF 1 0.034188 Bsmt Full Bath 0.068376 Bsmt Half Bath 0.068376 Mas Vnr Type 0.786325 Mas Vnr Area 0.786325

dtype: float64

#### In [44]:

#We notice by dropping electrical and garage area we also dropped many other features which #same row as above two features missing

## In [45]:

```
df[df['Bsmt Half Bath'].isnull()]
```

## Out[45]:

|      | MS<br>SubClass | MS<br>Zoning | Lot<br>Frontage | Lot<br>Area | Street | Alley | Lot<br>Shape | Land<br>Contour | Utilities | Lot<br>Config |  |
|------|----------------|--------------|-----------------|-------------|--------|-------|--------------|-----------------|-----------|---------------|--|
| 1341 | 20             | RM           | 99.0            | 5940        | Pave   | NaN   | IR1          | Lvl             | AllPub    | FR3           |  |
| 1497 | 20             | RL           | 123.0           | 47007       | Pave   | NaN   | IR1          | Lvl             | AllPub    | Inside        |  |

#### 2 rows × 80 columns

## In [46]:

df[df['Bsmt Full Bath'].isnull()]

## Out[46]:

|      | MS<br>SubClass | MS<br>Zoning | Lot<br>Frontage | Lot<br>Area | Street | Alley | Lot<br>Shape | Land<br>Contour | Utilities | Lot<br>Config |  |
|------|----------------|--------------|-----------------|-------------|--------|-------|--------------|-----------------|-----------|---------------|--|
| 1341 | 20             | RM           | 99.0            | 5940        | Pave   | NaN   | IR1          | Lvl             | AllPub    | FR3           |  |
| 1497 | 20             | RL           | 123.0           | 47007       | Pave   | NaN   | IR1          | Lvl             | AllPub    | Inside        |  |

#### 2 rows × 80 columns

**▼** 

#### In [47]:

#We notice that the same two rows are missing information for full bath and half bath

#### In [48]:

```
with open('../DATA/Ames Housing Feature Description.txt','r') as f:
    print(f.read())
MSSubClass: Identifies the type of dwelling involved in the sale.
        20
                1-STORY 1946 & NEWER ALL STYLES
        30
                1-STORY 1945 & OLDER
        40
                1-STORY W/FINISHED ATTIC ALL AGES
        45
                1-1/2 STORY - UNFINISHED ALL AGES
        50
                1-1/2 STORY FINISHED ALL AGES
        60
                2-STORY 1946 & NEWER
        70
                2-STORY 1945 & OLDER
        75
                2-1/2 STORY ALL AGES
                SPLIT OR MULTI-LEVEL
        80
        85
                SPLIT FOYER
        90
                DUPLEX - ALL STYLES AND AGES
       120
                1-STORY PUD (Planned Unit Development) - 1946 & NEWER
                1-1/2 STORY PUD - ALL AGES
       150
       160
                2-STORY PUD - 1946 & NEWER
                PUD - MULTILEVEL - INCL SPLIT LEV/FOYER
       180
       190
                2 FAMILY CONVERSION - ALL STYLES AND AGES
MC7-mine. Identifies the second series electification of the sele
```

#### In [49]:

#In data description we see NA for various basement parameters means there is no basement i #Therefore instead of dropping them for numerical basement values we can fill them with zer #And for string basement values we can fill them with none thus telling that there are no b

#### In [50]:

```
#BSMT numeric coloumn --> 0
bsmt_num_cols = ['BsmtFin SF 1', 'BsmtFin SF 2', 'Bsmt Unf SF','Total Bsmt SF', 'Bsmt Full
df[bsmt_num_cols] = df[bsmt_num_cols].fillna(0)
```

#### In [51]:

```
#BSMT string colom --> NONE
bsmt_str_cols = ['Bsmt Qual', 'Bsmt Cond', 'Bsmt Exposure', 'BsmtFin Type 1', 'BsmtFin Typ
df[bsmt_str_cols] = df[bsmt_str_cols].fillna('None')
```

#### In [52]:

```
percent_nan = percent_missing(df)
```

#### In [53]:

```
sns.barplot(x=percent_nan.index,y=percent_nan)
plt.xticks(rotation=90);
```



## In [54]:

#Now again in case of Mas VNR Type and Area when we refer dataframe detail we find there no #Therefore repeat same above process for them as well

## In [55]:

```
df['Mas Vnr Type'] = df['Mas Vnr Type'].fillna('None')
```

#### In [56]:

```
df['Mas Vnr Area'] = df['Mas Vnr Area'].fillna(0)
```

# In [57]:

```
percent_nan = percent_missing(df)
```

#### In [58]:

```
sns.barplot(x=percent_nan.index,y=percent_nan)
plt.xticks(rotation=90);
```



## In [60]:

#Now we are above the 1% thresholdd range for dropping rows, therefore we need to consider c

## In [61]:

#Now again for garage coloms NA n=means no garage exit therefore we repeat same above proce

## In [62]:

```
gar_str_cols = ['Garage Type', 'Garage Finish', 'Garage Qual', 'Garage Cond']
df[gar_str_cols] = df[gar_str_cols].fillna('None')
```

#### In [63]:

```
df['Garage Yr Blt'] = df['Garage Yr Blt'].fillna(0)
```

## In [64]:

```
percent_nan = percent_missing(df)
```

## In [65]:

```
sns.barplot(x=percent_nan.index,y=percent_nan)
plt.xticks(rotation=90);
```



# In [66]:

#Fence Alley Misc Feature Pool QC are missing more than 80% of data therefore it is better

# In [67]:

```
df = df.drop(['Pool QC','Misc Feature','Alley','Fence'],axis=1)
```

## In [68]:

percent\_nan = percent\_missing(df)

## In [69]:

```
sns.barplot(x=percent_nan.index,y=percent_nan)
plt.xticks(rotation=90);
```



# In [70]:

#In remaining two features we can neither drop rows because too many rows are missing #nore we can drop coloms because not that much data is missing

## In [75]:

```
df['Fireplace Qu'].value_counts()
```

## Out[75]:

Gd 741 TA 600 Fa 75 Po 46 Ex 43

Name: Fireplace Qu, dtype: int64

```
In [76]:
```

```
#We notice it is a string colom therefore we just fill None in missing values
```

```
In [77]:
```

```
df['Fireplace Qu'] = df['Fireplace Qu'].fillna("None")
```

# In [78]:

```
percent_nan = percent_missing(df)
```

# In [79]:

```
sns.barplot(x=percent_nan.index,y=percent_nan)
plt.xticks(rotation=90);
```



# In [80]:

```
df['Lot Frontage']
```

# Out[80]:

```
141.0
0
1
         80.0
2
         81.0
3
         93.0
         74.0
         37.0
2925
          NaN
2926
2927
         62.0
2928
         77.0
2929
```

Name: Lot Frontage, Length: 2925, dtype: float64

```
In [81]:
```

```
with open('.../DATA/Ames Housing Feature Description.txt','r') as f:
    print(f.read())
LotFrontage: Linear feet of street connected to property
LotArea: Lot size in square feet
Street: Type of road access to property
       Grvl
                 Gravel
       Pave
                 Paved
Alley: Type of alley access to property
       Grvl
                 Gravel
       Pave
                 Paved
       NA
                 No alley access
LotShape: General shape of property
       Reg
                 Regular
       IR1
                 Slightly irregular
In [82]:
#Thus we see Lot Frontage is Numeric data and it is Linear feet of street connected to prop
In [84]:
# Neighborhood: Physical locations within Ames city limits
# LotFrontage: Linear feet of street connected to property
# We will operate under the assumption that the Lot Frontage is related to what neighborhoo
In [85]:
df['Neighborhood'].unique()
Out[85]:
array(['NAmes', 'Gilbert', 'StoneBr', 'NWAmes', 'Somerst', 'BrDale',
       'NPkVill', 'NridgHt', 'Blmngtn', 'NoRidge', 'SawyerW', 'Sawyer', 'Greens', 'BrkSide', 'OldTown', 'IDOTRR', 'ClearCr', 'SWISU',
       'Edwards', 'CollgCr', 'Crawfor', 'Blueste', 'Mitchel', 'Timber',
        'MeadowV', 'Veenker', 'GrnHill', 'Landmrk'], dtype=object)
In [86]:
#All neighbourhoods
```

# In [87]:

```
plt.figure(figsize=(8,12))
sns.boxplot(x='Lot Frontage',y='Neighborhood',data=df,orient='h')
```

## Out[87]:

<AxesSubplot:xlabel='Lot Frontage', ylabel='Neighborhood'>



```
In [88]:
```

```
df.groupby('Neighborhood')['Lot Frontage']
```

#### Out[88]:

<pandas.core.groupby.generic.SeriesGroupBy object at 0x000001DBF36D8790>

## In [89]:

```
df.groupby('Neighborhood')['Lot Frontage'].mean()
```

## Out[89]:

## Neighborhood

46.900000 Blmngtn 27.300000 Blueste BrDale 21.500000 BrkSide 55.789474 ClearCr 88.150000 CollgCr 71.336364 Crawfor 69.951807 Edwards 64.794286 Gilbert 74.207207 41.000000 Greens GrnHill NaN IDOTRR 62.383721 Landmrk NaN 25.606061 MeadowV Mitchel 75.144444 NAmes 75.210667 **NPkVill** 28.142857 NWAmes 81.517647 NoRidge 91.629630 NridgHt 84.184049 OldTown 61.777293 **SWISU** 59.068182 74.551020 Sawyer 70.669811 SawyerW Somerst 64.549383 StoneBr 62.173913 Timber 81.303571 72.000000 Veenker

Name: Lot Frontage, dtype: float64

#### In [90]:

#Therefore now we have average lot frontage value for each neighbourhood #for missing data we fill it with average value of that neighbourhod

```
In [91]:
```

```
df.groupby('Neighborhood')['Lot Frontage'].transform(lambda val: val.fillna(val.mean()))
Out[91]:
0
        141.000000
1
         80.000000
         81.000000
2
3
         93.000000
         74.000000
2925
         37.000000
2926
         75.144444
2927
         62.000000
2928
         77.000000
2929
         74.000000
Name: Lot Frontage, Length: 2925, dtype: float64
In [92]:
df['Lot Frontage'] = df.groupby('Neighborhood')['Lot Frontage'].transform(lambda val: val.f
```

# In [93]:

```
#We filled the missing Lot Frontage values
```

# In [94]:

```
percent_nan = percent_missing(df)
```

#### In [95]:

```
sns.barplot(x=percent_nan.index,y=percent_nan)
plt.xticks(rotation=90);
```



# In [96]:

```
df['Lot Frontage'] = df['Lot Frontage'].fillna(0)
```

```
In [97]:
percent_nan = percent_missing(df)

In [98]:
percent_nan
Out[98]:
Series([], dtype: float64)

In [99]:
df.to_csv("../DATA/Ames_NO_Missing_Data.csv",index=False)

In [100]:
#Therefore all missing values dealt with and final csv saved

In []:
```