Principles of Mathematical Analysis

1 Measure Theory

1.1 Riemann Integral

For a bounded function $f:[a,b] \to \mathbb{R}$ and any partition of the interval [a,b], $P=\{a=x_0 < x_1 < \ldots < x_n = b\}$, we consider on each subinterval $I_j = [x_{j-1}, x_j], \quad j=1,\ldots,n$, the quantities:

$$M_j = \sup_{x \in I_j} f(x), \quad m_j = \inf_{x \in I_j} f(x).$$

We also define the upper and lower sums of f with respect to the partition P as:

$$U_f(P) = \sum_{j=1}^n M_j(x_j - x_{j-1}), \quad L_f(P) = \sum_{j=1}^n m_j(x_j - x_{j-1}).$$

For any two partitions P and Q of [a, b], we have:

$$L_f(P) \leq \text{Area under } f \leq U_f(Q).$$

If P has a value I such that:

$$\sup_{P} L_f(P) = I = \inf_{P} U_f(P),$$

then we say that f is Riemann integrable on [a,b] and define the Riemann integral of f over [a,b] as:

$$\int_{a}^{b} f(x) \, dx = I.$$

Continuous functions on closed intervals are Riemann integrable.

1.2 The Lebesgue Integral

A bounded function $f:[a,b] \to \mathbb{R}$ is said to be *Lebesgue integrable* on [a,b] if the set of points where f is discontinuous has zero measure.

A set $B \subset \mathbb{R}$ has measure zero if for every $\varepsilon > 0$, it can be covered by a countable collection of open intervals $\{(a_n, b_n)\}$ such that:

$$B \subset \bigcup_{n=1}^{\infty} (a_n, b_n)$$
 and $\sum_{n=1}^{\infty} (b_n - a_n) < \varepsilon$.

1.2.1 Example: Dirichlet Function

The Dirichlet function:

$$f(x) = \chi_{\mathbb{Q}}(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q}, \\ 0 & \text{if } x \notin \mathbb{Q}, \end{cases}$$

On the interval [0,1]:

We see that f is not Riemann integrable since it is discontinuous everywhere. But consider,

$$\mathbb{Q} = \{q_1, q_2, q_3, \ldots\}$$

and define:

$$f_1(x) = \chi_{\{q_1\}}(x) \to \text{integrable on } [0,1]$$

 $f_2(x) = \chi_{\{q_1,q_2\}}(x) \to \text{integrable on } [0,1]$

.

$$f_n(x) = \chi_{\{q_1,q_2,\dots,q_n\}}(x) \to \text{integrable on } [0,1]$$

Then,

$$\lim_{n \to \infty} f_n(x) = \chi_{\mathbb{Q}}(x).$$

1.2.2 Characteristic Function

For any set $A \subset \mathbb{R}$, the characteristic function $\chi_A : \mathbb{R} \to \{0,1\}$ is defined as:

$$\chi_A(x) = \begin{cases} 1 & \text{if } x \in A, \\ 0 & \text{if } x \notin A. \end{cases}$$

$$\int_0^1 f_1(x) \, dx = 0 = \int_0^1 f_2(x) \, dx = \dots = \int_0^1 f_n(x) \, dx = 0.$$

Example

Let

$$f_n(x) = \begin{cases} x^n & \text{if } 0 \le x < 1, \\ 0 & \text{if } 1 \le x. \end{cases}$$

Then, with $f_n(x)$ continuous on \mathbb{R} , we have:

$$\lim_{n \to \infty} f_n(x) = \begin{cases} 0 & \text{if } 0 \le x < 1, \\ 1 & \text{if } x \le 1. \end{cases}$$

so we can see that there is a discontinuity at x = 1.

Example

Let

$$f_n(x) = \begin{cases} -1 & \text{if } x \le -\frac{1}{n}, \\ \sin\left(\frac{n\pi x}{2}\right) & \text{if } -\frac{1}{n} \le x \le \frac{1}{n}, \\ 1 & \text{if } \frac{1}{n} \le x. \end{cases}$$

Then, with $f_n(x)$ continuous and differentiable on \mathbb{R} , we have:

$$\lim_{n \to \infty} f_n(x) = \begin{cases} -1 & \text{if } x < 0, \\ 0 & \text{if } x = 0, \\ 1 & \text{if } x > 0. \end{cases}$$

Example

The Dirichlet function is not integrable but it is the limit of a sequence of integrable functions, all with integral equal to zero.

We need to define a new kind of convergence.

1.3 Convergences

A sequence of functions $\{f_n\}_{n\in\mathbb{N}}$ converges punctually to a function f on Dom(f) if:

$$\lim_{n \to \infty} f_n(x) = f(x), \quad \forall x \in Dom(f).$$

$$\forall \varepsilon > 0, \quad \forall x \in Dom(f), \quad \exists N(\varepsilon, x) \in \mathbb{N} : n > N \implies |f_n(x) - f(x)| < \varepsilon.$$

A sequence of functions $\{f_n\}_{n\in\mathbb{N}}$ converges uniformly to a function f on Dom(f) if:

$$\forall \varepsilon, \exists N : n > N \implies |f_n(x) - f(x)| < \varepsilon, \forall x \in Dom(f).$$

Example

Let

$$f_n(x) = \frac{1}{n}\sin(nx), \quad x \in \mathbb{R}. \to^{n \to \infty} f(x) = 0.$$

1.3.1 Uniform Convergence

1. If $\{f_n\}_{n\in\mathbb{N}}$ converges uniformly to f on [a,b] and each f_n is continuous, then:

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \int_{a}^{b} f_n(x) dx.$$

- 2. If $\{f_n\}_{n\in\mathbb{N}}$ converges uniformly to f on [a,b] and each f_n is continuous in [a,b], then f is continuous on [a,b].
- 3. If $\{f_n\}_{n\in\mathbb{N}}$ is a sequence of differentiable functions on [a,b] that converges punctually to some continuous function f on [a,b] and if the sequence of derivatives $\{f'_n\}_{n\in\mathbb{N}}$ converges uniformly to some continuous function g, then f is differentiable on (a,b) and:

$$f'(x) = g(x) = \lim_{n \to \infty} f'_n(x).$$

1.3.2 Henri Lebesgue (1875-1941)

How can we count money in bills?

- 1. Add each amount as the bills come in. (Riemann)
- 2. Make groups by denomination and count each group. (Lebesgue)

This is the idea behind the Lebesgue integral.

1.4 Cantor Ternary Set

Step 1: [0,1]

Step 2: Remove middle third

Step 3: Remove middle thirds of remaining

The Cantor set C is obtained by removing the open middle third of each remaining interval at each step. Then,

$$C = [0,1] \setminus J = \bigcup_{n=1}^{\infty} J_n,$$

where J is the union of all removed intervals and J_n is the set remaining after n steps. For the measure of C:

$$|J| = \sum_{n=1}^{\infty} |J_n| = \sum_{n=1}^{\infty} \frac{2^{n-1}}{3^n} = \frac{1}{3} + \frac{2}{9} + \frac{4}{27} + \dots = 1.$$

Thus, the measure of the Cantor set C is:

$$|C| = |[0,1]| - |J| = 1 - 1 = 0.$$

The Cantor set is not empty; it contains points such as 0, 1, and all endpoints of the removed intervals. It has the following properties:

- It does not contain any intervals.
- It is closed and bounded, hence compact.
- It is a perfect set, which means it is closed and every point is an accumulation point.
- It is uncountable, because there is a bijection between the Cantor set and the interval [0, 1] using ternary representation:

$$\Phi: [0,1] \to C,$$

where each $x \in C$ is expressed in base 3, and has the form:

$$x = \sum_{n=1}^{\infty} \frac{a_n}{3^n}, \quad a_n \in \{0, 2\}.$$

Then, for each $x \in [0,1]$ we define:

$$x = \sum_{n=1}^{\infty} \frac{b_n}{2^n}, \quad b_n \in \{0, 1\}.$$

We can then define:

$$\Phi(x) = \sum_{n=1}^{\infty} \frac{2b_n}{3^n}.$$

Now, $2b_n \in \{0,2\}$ so $\Phi(x) \in C$. This function is bijective, hence C is uncountable.

2 Measurable Spaces and Topological Spaces

A Topological Space (X, \mathcal{T}) is a collection \mathcal{T} of subsets of a set X in a topology such that:

- The empty set \emptyset and the whole set X are in \mathcal{T} .
- The union of any collection of sets in \mathcal{T} is also in \mathcal{T} .
- The intersection of any finite number of sets in \mathcal{T} is also in \mathcal{T} .

Example: The Real Line

Let $X = \mathbb{R}$ and \mathcal{T} be the collection of all open intervals (a, b) where a < b and $a, b \in \mathbb{R}$. Then $(\mathbb{R}, \mathcal{T})$ is a topological space. One can observe that if, for instance, we take the intersection of open intervals like:

$$\bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n} \right) = \{0\},\$$

which is not an open set, hence the requirement for finite intersections.

The sets in a topology \mathcal{T} are called *open sets*. For example, with $X = \overline{\mathbb{R}} = [-\infty, \infty]$, the open sets are all intervals of the form (a, b) where a < b. Then, we say that $(\overline{\mathbb{R}}, \mathcal{T})$ is a topological space.

2.1 Metric Spaces

A set X is a metric space if there exists a distance function $d: X \times X \to [0, \infty)$, such that for all $x, y, z \in X$:

- d(x,y) = 0 if and only if x = y (identity of indiscernibles).
- d(x,y) = d(y,x) (symmetry).
- $d(x,z) \le d(x,y) + d(y,z)$ (triangle inequality).

An open ball of center $x \in X$ and radius r > 0 is defined as:

$$B(x,r) = \{ y \in X : d(x,y) < r \}.$$

2.2 Continuity

A function $f:[a,b]\subset\mathbb{R}\to\mathbb{R}$ is continuous at a point $x_0\in[a,b]$ if for every $\varepsilon>0$, there exists a $\delta>0$ such that for all $x\in[a,b]$:

$$|x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon.$$

2.2.1 Neighborhoods

A neighborhood of a set A is any open set that contains A. If (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) are topological spaces, and $f: X \to Y$ is a mapping, then f is continuous at a point $x_0 \in X$ if for every neighborhood V of $f(x_0)$ in Y, there exists a neighborhood U of x_0 in X such that:

$$f(U) \subset V$$
.

Observation

This is equivalent to the ε - δ definition on the \mathbb{R}^n spaces.

2.2.2 Global Continuity

If (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) are topological spaces and $f: X \to Y$ is a mapping, then f is globally continuous if:

$$f^{-1}(V) = \{x \in X : f(x) \in V\} \in \mathcal{T}_X, \quad \forall V \in \mathcal{T}_Y.$$

where $f^{-1}(V)$ is the preimage of V under f.

So, f is continuous if the preimage of every open set in Y is an open set in X.

2.2.3 Proposition

If (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) are topological spaces and $f: X \to Y$ is a mapping, then f is continuous if it is continuous at every point $x \in X$.

2.3 Measurable Spaces

A collection \mathcal{A} of subsets of a space X is a σ -algebra if:

- 1. $\emptyset \in \mathcal{A}$.
- 2. If $A \in \mathcal{A}$, then $A^C \in \mathcal{A}$.
- 3. If $\{A_j\}_{j\in\mathbb{N}}$ is a countable collection with each $A_j\in\mathcal{A}$, then:

$$\bigcup_{j=1}^{\infty} A_j \in \mathcal{A}$$

The sets of \mathcal{A} are called measurable sets. The pair (X, \mathcal{A}) is called a measurable space. If the third property holds for finite collections, then \mathcal{A} is called an algebra.

Example

Is \mathbb{R} with the topology of the usual open sets a σ -algebra? No, because

$$(a,b) \in \mathcal{T}$$
 but $(a,b)^C = (-\infty, a] \cup [b,\infty) \notin \mathcal{T}$.

Example

The collection $\mathcal{P}(X)$, the power set of X, is a σ -algebra on X. On X, the collection $\{\emptyset, X\}$ is the smallest σ -algebra.

2.3.1 Properties of measurable spaces

If (X, \mathcal{A}) is a measurable space, then:

- 1. If $\emptyset \in \mathcal{A}$, then $\emptyset^C = X \in \mathcal{A}$.
- 2. If $A_1, A_2, \ldots, A_n \in \mathcal{A}$, then:

$$\bigcup_{j=1}^{n} A_j \in \mathcal{A}.$$

3. If $\{A_j\}_{j\in\mathbb{N}}$ is a countable collection with each $A_j\in\mathcal{A}$ then, following the second property of σ -algebras:

$$A_i^C \in \mathcal{A}, \quad \forall j \in \mathbb{N}.$$

Then, by the third property of σ -algebras:

$$\bigcup_{j=1}^{\infty} A_j^C \in \mathcal{A}.$$

Finally, by the second property again:

$$\left(\bigcup_{j=1}^{\infty} A_j^C\right)^C = \bigcap_{j=1}^{\infty} A_j \in \mathcal{A}.$$

4. If $A, B \in \mathcal{A}$, then:

$$A \setminus B = A \cap B^C \in \mathcal{A}.$$

8

2.3.2 Proposition

If $S \subset \mathcal{P}(X)$, then $\sigma(S)$ is called the σ -algebra generated by S:

$$\sigma(S) = \mathcal{A}_S = \bigcap \{\mathcal{A} : \mathcal{A} \text{ is a } \sigma\text{-algebra and } S \subseteq \mathcal{A} \subseteq \mathcal{P}(X)\}.$$

Example

Let $X = \{1, 2, 3, 4\}$ and $S = \{\{1\}, \{3, 4\}\}$. Then:

$$\sigma(S) = \{\emptyset, X, \{1\}, \{2, 3, 4\}, \{3, 4\}, \{1, 2\}, \{2\}, \{1, 3, 4\}\}.$$

2.3.3 Borel σ -algebra

The Borel σ -algebra on X, denoted by $\mathcal{B}(X)$, is the σ -algebra generated by the open sets of X,

$$\mathcal{B}(X) = \sigma(\mathcal{T}(X)).$$

Its elements are called *Borel sets*.

Example

The Borel σ -algebra on \mathbb{R} , $\mathcal{B}(\mathbb{R})$, contains all open intervals, closed intervals, countable sets, and complements of these sets. Examples of these Borel sets include:

$$(a,b), \quad [a,b], \quad (a,b], \quad [a,b), \quad \mathbb{Q}, \quad \mathbb{R} \setminus \mathbb{Q}, \quad \{x\}, \quad \mathbb{R}, \quad \emptyset.$$