# Разработка метода обработки видео, повышающего оценку метрики качества VMAF

Самарский университет

14.05.2024

Студент: Магомедагаев А.А.

1 05 2024

## Содержание

- Введение
- 2 Ход исследования
- 3 Обзор существующих методов
- Предложенный метод
- Модификация обучающей выборки
- Экспериментальная оценка
- Субъективная оценка
- Результаты
- Заключение

Студент: Магомедагаев А.А. (Самарский унРазработка метода обработки видео, пов

1.05.2024

0.14

# Введение

#### Важно!

Проведение субъективной оценки качества видео рядом экспертов — процесс дорогостоящий.

Получили широкое распространение разнообразные алгоритмы объективной оценки качества видео.

Цель работы — анализ устойчивости VMAF к состязательным атакам и предложение нового метода предобработки видео для улучшения его оценок.

## Ход исследования

Обзор существующих методов

Предложенный метод

Модификация обучающей выборки

Экспериментальная оценка

Наборы данных

Субъективная оценка

Объективная оценка

Результаты

Сравнение предложенных методов

## Обзор существующих методов

Многие объективные оценки качества являются дифференцируемыми по входным параметрам (например, LPIPS, SSIM).

Состязательная атака путем использования градиента оценки качества была предложена в работе "Maximum Differentiation (MAD)".

Метод "VMAF with video color" использует набор стандартных преобразований для изображений (повышение резкости, выравнивание гистограмм).

#### Предложенный метод

Метод основан на обучении промежуточной аппроксимации рассматриваемой оценки качества VMAF.

Задача — максимизация оценки качества по методу при сохранении качества кодирования.

Используется архитектура на базе U-Net для предобрабатывающей нейронной сети.

## Модификация обучающей выборки

Повышение значений VMAF на тестовой выборке после применения предложенного метода.

Некоторый процент примеров оказался сложным для модели, и предобработка не увеличивает, а уменьшает значение оценки качества VMAF.

# Объективная оценка

#### Методы оценки:

Субъективная оценка: анализ визуальных искажений.

Объективная оценка: числовое сравнение сжатия видео.

# Наборы данных:

Случайный набор.(случайное сэмплирование и масштабирование изображений.) Набор Vimeo 90К.( Vimeo 90К, содержащий 91701 видеопоследовательностей длиной 7 кадров.)

# Субъективная оценка

Модели на Pascal Voc создавали яркие цветные пятна и ложные цветовые границы.

Другие типы искажений включали цветные артефакты на некоторых границах изображений.

У сети, обученной на Vimeo 90K, отсутствуют ложные цветовые границы.



Студент: Магомедагаев А.А. (Самарский унРазработка метода обработки видео, повы: 14.05.2024 РИС.: Примеры изооражении для суоъективнои оценки

# Результаты

Фильтрация обучающей выборки оказала наибольшее влияние на эффективность.

Добавление SSIM-регуляризации позволило избавиться от цветовых пятен.

Наилучшая из обученных моделей показывает BSQ-Rate равный 0.541.

Студент: Магомедагаев А.А. (Самарский унРазработка метода обработки видео, повы

14.05.2024

# Спасибо за внимание!

Спасибо за внимание!