

FCC PART 15C TEST REPORT No. 2013EEB00530-BT

For

Shenzhen Sang Fei Consumer Communications Co., Ltd.

WG-Raptor

Model Name: Philips W3500

Market Name: W3500

With

Hardware Version: TMAO

Software Version:

Philips_T3500_WCDMA_4+8_GPS_V1.0_20131031

FCC ID: VQRCTW3500

Issued Date: Dec 6th, 2013

Test Laboratory:

FCC 2.948 Listed: No.310359 IC O.A.T.S listed: No.6629C-1

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of TMC Beijing.

TMC Beijing, Telecommunication Metrology Center of Ministry of Industry and Information Technology No. 52, Huayuan Bei Road, Haidian District, Beijing, P. R. China 100191

Tel:+86(0)10-62304633-2678, Fax:+86(0)10-62304633-2504 Email:welcome@emcite.com. www.emcite.com

CONTENTS

1. TI	EST LABORATORY	6
1.1.	TESTING LOCATION	6
1.2.	TESTING ENVIRONMENT	6
1.3.	PROJECT DATA	6
1.4.	SIGNATURE	6
2. CI	LIENT INFORMATION	7
2.1.	APPLICANT INFORMATION	7
2.2.	MANUFACTURER INFORMATION	7
3. E(QUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	8
3.1.	ABOUT EUT	8
3.2.	INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	8
3.3.	INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	8
4. RI	EFERENCE DOCUMENTS	9
4.1.	DOCUMENTS SUPPLIED BY APPLICANT	9
4.2.	REFERENCE DOCUMENTS FOR TESTING	
5. LA	ABORATORY ENVIRONMENT	10
6. SU	UMMARY OF TEST RESULTS	11
6.1.	SUMMARY OF TEST RESULTS	11
6.2.	STATEMENTS	11
6.3.	TERMS USED IN THE RESULT TABLE	11
7. TI	EST EQUIPMENTS UTILIZED	12
ANNE	X A: EUT PHOTOGRAPH	13
ANNE	X B: MEASUREMENT RESULTS	16
B.0 A	ANTENNA REQUIREMENT	16
B.1 l	MAXIMUM PEAK OUTPUT POWER	17
B.2 F	BAND EDGES COMPLIANCE	17
B.3 (CONDUCTED EMISSION	18
B.4 F	RADIATED EMISSION	19
B.5 (OCCUPIED 20DB BANDWIDTH	24
B.6	TIME OF OCCUPANCY (DWELL TIME)	24
B.7 N	NUMBER OF HOPPING CHANNELS	25
	CARRIER FREQUENCY SEPARATION	
B.9 A	AC Power line Conducted Emission	26
ANNE	X C: TEST FIGURE LIST	28
Fig	1 MAXIMUM PEAK OUTPUT POWER (GESK, CH.O. HOPPING OFF)	28

FIG. 2 MAXIMUM PEAK OUTPUT POWER (GFSK, CH 39, HOPPING OFF)	28
FIG. 3 MAXIMUM PEAK OUTPUT POWER (GFSK, CH 78, HOPPING OFF)	29
FIG. 4 MAXIMUM PEAK OUTPUT POWER (П/4 DQPSK, CH 0, HOPPING OFF)	29
FIG. 5 MAXIMUM PEAK OUTPUT POWER (П/4 DQPSK, CH 39, HOPPING OFF)	30
FIG. 6 MAXIMUM PEAK OUTPUT POWER (П/4 DQPSK, CH 78, HOPPING OFF)	30
FIG. 7 MAXIMUM PEAK OUTPUT POWER (8DPSK, CH0, HOPPING OFF)	31
FIG. 8 MAXIMUM PEAK OUTPUT POWER (8DPSK, CH39, HOPPING OFF)	31
FIG. 9 MAXIMUM PEAK OUTPUT POWER (8DPSK, CH78, HOPPING OFF)	32
FIG. 10BAND EDGES (GFSK, CH 0, HOPPING ON)	
FIG. 11 BAND EDGES (GFSK, CH 78, HOPPING ON)	33
FIG. 12BAND EDGES (П/4 DQPSK, CH 0, HOPPING ON)	33
FIG. 13BAND EDGES (П/4 DQPSK, CH 78, HOPPING ON)	34
FIG. 14BAND EDGES (8DPSK, CH 0, HOPPING ON)	34
FIG. 15BAND EDGES (8DPSK, CH 78, HOPPING ON)	35
FIG. 16BAND EDGES (GFSK, CH 0, HOPPING OFF)	35
FIG. 17BAND EDGES (GFSK, CH 78, HOPPING OFF)	36
FIG. 18BAND EDGES (П/4 DQPSK, CH 0, HOPPING OFF)	36
FIG. 19BAND EDGES (П/4 DQPSK, CH 78, HOPPING OFF)	37
FIG. 20BAND EDGES (8DPSK, CH 0, HOPPING OFF)	37
FIG. 21BAND EDGES (8DPSK, CH 78, HOPPING OFF)	38
FIG. 22CONDUCTED SPURIOUS EMISSION (GFSK, CH0, 2.402GHz)	38
FIG. 23CONDUCTED SPURIOUS EMISSION (GFSK, CH0, 30 MHz-3 GHz)	39
FIG. 24CONDUCTED SPURIOUS EMISSION (GFSK, CH0, 3GHz-18 GHz)	39
FIG. 25CONDUCTED SPURIOUS EMISSION (GFSK, CH39, 2.441GHz)	40
FIG. 26CONDUCTED SPURIOUS EMISSION (GFSK, CH39, 30 MHz-3 GHz)	40
FIG. 27CONDUCTED SPURIOUS EMISSION (GFSK, CH39, 3GHz-18 GHz)	41
FIG. 28CONDUCTED SPURIOUS EMISSION (GFSK, CH78, 2.480GHz)	41
FIG. 29CONDUCTED SPURIOUS EMISSION (GFSK, CH78, 30 MHz-3 GHz)	42
FIG. 30CONDUCTED SPURIOUS EMISSION (GFSK, CH78, 3GHz-18 GHz)	42
FIG. 31CONDUCTED SPURIOUS EMISSION (П/4 DQPSK, CH0, 2.402GHz)	43
FIG. 32CONDUCTED SPURIOUS EMISSION (П/4 DQPSK, CH0, 30 MHz-3 GHz)	43
Fig. 33Conducted Spurious Emission (п/4 DQPSK, Ch0, 3GHz-18 GHz)	44
FIG. 34CONDUCTED SPURIOUS EMISSION (П/4 DQPSK, CH39, 2.441GHz)	44
FIG. 35CONDUCTED SPURIOUS EMISSION (П/4 DQPSK, CH39, 30 MHz-3 GHz)	45
FIG. 36CONDUCTED SPURIOUS EMISSION (П/4 DQPSK, CH39, 3GHz-18 GHz)	45
FIG. 37CONDUCTED SPURIOUS EMISSION (П/4 DQPSK, CH78, 2.480GHz)	46
FIG. 38CONDUCTED SPURIOUS EMISSION (П/4 DQPSK, CH78, 30 MHz-3 GHz)	46
Fig. 39Conducted Spurious Emission (п/4 DQPSK, Ch78, 3GHz-18 GHz)	47
FIG. 40CONDUCTED SPURIOUS EMISSION (8DPSK, CH0, 2.402GHz)	47
FIG. 41CONDUCTED SPURIOUS EMISSION (8DPSK, CH0, 30 MHz-3 GHz)	48
FIG. 42CONDUCTED SPURIOUS EMISSION (8DPSK, CH0, 3GHz-18 GHz)	48
FIG. 43CONDUCTED SPURIOUS EMISSION (8DPSK, CH39, 2.441GHz)	49
FIG. 44 CONDUCTED SPURIOUS EMISSION (8DPSK, CH39, 30 MHz-3 GHz)	40

FIG. 4	45Conducted Spurious Emission (8DPSK, CH39, 3GHz-18 GHz)	.50
FIG. 4	46CONDUCTED SPURIOUS EMISSION (8DPSK, CH78, 2.480GHz)	.50
FIG. 4	47CONDUCTED SPURIOUS EMISSION (8DPSK, CH78, 30 MHz-3 GHz)	.51
FIG. 4	48CONDUCTED SPURIOUS EMISSION (8DPSK, CH78, 3GHz-18 GHz)	.51
FIG. 4	49Conducted Spurious Emission (All channel, 18 GHz-26 GHz)	.52
FIG. 5	50RADIATED SPURIOUS EMISSION (GFSK, CH0, 30MHz ~1 GHz)	.52
FIG. \$	51Radiated Spurious Emission (GFSK, Ch0, 1 GHz ~3 GHz)	.53
FIG. \$	52RADIATED SPURIOUS EMISSION (GFSK, CH0, 3 GHz ~18 GHz)	.53
FIG. \$	53RADIATED SPURIOUS EMISSION (GFSK, CH39, 30MHz ~1 GHz)	.54
FIG. \$	54Radiated Spurious Emission (GFSK, Ch39, 1 GHz ~3 GHz)	.54
FIG. 5	55RADIATED SPURIOUS EMISSION (GFSK, CH39, 3 GHz ~18 GHz)	.55
FIG. 5	56RADIATED SPURIOUS EMISSION (GFSK, CH78, 30MHz ~1 GHz)	.55
FIG. 5	57RADIATED SPURIOUS EMISSION (GFSK, CH78, 1 GHz ~3 GHz)	.56
FIG. 5	58RADIATED SPURIOUS EMISSION (GFSK, CH78, 3 GHz ~18 GHz)	.56
FIG. \$	59Radiated Spurious Emission (π/4 DQPSK, Ch0, 30MHz ~1 GHz)	.57
FIG. 6	60RADIATED SPURIOUS EMISSION (Π/4 DQPSK, CH0, 1 GHz ~3 GHz)	.57
FIG. 6	61Radiated Spurious Emission (π/4 DQPSK, Ch0, 3 GHz ~18 GHz)	.58
FIG. 6	62RADIATED SPURIOUS EMISSION (Π/4 DQPSK, CH39, 30MHz ~1 GHz)	.58
FIG. 6	63RADIATED SPURIOUS EMISSION (Π/4 DQPSK, CH39, 1 GHz ~3 GHz)	.59
FIG. 6	64Radiated Spurious Emission (π/4 DQPSK, Ch39, 3 GHz ~18 GHz)	.59
FIG. 6	65RADIATED SPURIOUS EMISSION (Π/4 DQPSK, CH78, 30MHz ~1 GHz)	.60
FIG. 6	66RADIATED SPURIOUS EMISSION (Π/4 DQPSK, CH78, 1 GHz ~3 GHz)	.60
FIG. 6	67RADIATED SPURIOUS EMISSION (Π/4 DQPSK, CH78, 3 GHz ~18 GHz)	.61
FIG. 6	68RADIATED SPURIOUS EMISSION (8DPSK, CH0, 30MHz ~1 GHz)	.61
FIG. 6	69RADIATED SPURIOUS EMISSION (8DPSK, CH0, 1 GHz ~3 GHz)	.62
FIG.	70RADIATED SPURIOUS EMISSION (8DPSK, CH0, 3 GHz ~18 GHz)	.62
FIG.	71Radiated Spurious Emission (8DPSK, Ch39, 30MHz ~1 GHz)	.63
FIG.	72RADIATED SPURIOUS EMISSION (8DPSK, CH39, 1 GHz ~3 GHz)	.63
FIG.	73RADIATED SPURIOUS EMISSION (8DPSK, CH39, 3 GHz ~18 GHz)	.64
FIG.	74RADIATED SPURIOUS EMISSION (8DPSK, CH78, 30MHz ~1 GHz)	.64
FIG.	75RADIATED SPURIOUS EMISSION (8DPSK, CH78, 1 GHz ~3 GHz)	.65
FIG.	76RADIATED SPURIOUS EMISSION (8DPSK, CH78, 3 GHz ~18 GHz)	.65
FIG.	77RADIATED SPURIOUS EMISSION (ALL CHANNEL, 18 GHz ~26 GHz)	.66
FIG.	78Occupied 20dB Bandwidth (GFSK, Ch 0)	.66
FIG.	79Occupied 20dB Bandwidth (GFSK, Ch 39)	.67
FIG. 8	80Occupied 20dB Bandwidth (GFSK, Ch 78)	.67
FIG. 8	81Occupied 20dB Bandwidth (п/4 DQPSK, Ch 0)	.68
FIG. 8	82Occupied 20dB Bandwidth (п/4 DQPSK, Ch 39)	.68
FIG. 8	83Occupied 20dB Bandwidth (п/4 DQPSK, Ch 78)	.69
FIG. 8	84Occupied 20dB Bandwidth (8DPSK, Ch 0)	.69
FIG. 8	85Occupied 20dB Bandwidth (8DPSK, Ch 39)	.70
FIG. 8	86Occupied 20dB Bandwidth (8DPSK, Ch 78)	.70
Fig.	87TIME OF OCCUPANCY(DWELL TIME) (GESK, CH39)	71

Fig. 88Number of Transmissions (GFSK, Ch39)	71
FIG. 89TIME OF OCCUPANCY(DWELL TIME) (П/4 DQPSK, CH39)	72
Fig. 90Number of Transmissions (п/4 DQPSK, CH39)	72
FIG. 91TIME OF OCCUPANCY(DWELL TIME) (8DPSK, CH39)	73
Fig. 92Number of Transmissions (8DPSK, CH39)	73
Fig. 93Hopping channel ch0~39 (GFSK, Ch39)	74
Fig. 94Hopping channel ch39~78 (GFSK, Ch39)	74
Fig. 95Hopping channel ch0~39 (π/4 DQPSK, Ch39)	75
Fig. 96Hopping channel ch39~78 (п/4 DQPSK, Ch39)	75
Fig. 97Hopping channel ch0~39 (8DPSK, Ch39)	76
Fig. 98Hopping channel ch39~78 (8DPSK, Ch39)	76
Fig. 99Carrier Frequency Separation (GFSK, CH39)	77
FIG. 100CARRIER FREQUENCY SEPARATION (П/4 DQPSK, CH39)	77
FIG. 101CARRIER FREQUENCY SEPARATION (8DPSK, CH39)	78
Fig. 102AC Power line Conducted Emission (Traffic, AE2)	79
FIG. 103AC POWER LINE CONDUCTED EMISSION (IDLE, AE2)	
Fig. 104AC Power line Conducted Emission (Traffic, AE3)	81
Fig. 105 AC Power line Conducted Emission (Idle, AE3)	82

1. Test Laboratory

1.1. Testing Location

Company Name:

TMC Shenzhen, Telecommunication Metrology Center of MIIT

Address:

No. 12 Building, Shangsha Innovation and Technology Park, Futian

District, Shenzhen, P. R. China

Postal Code:

518048

Telephone:

+86(0)755-33322000

Fax:

+86(0)755-33322001

1.2. Testing Environment

Normal Temperature:

15℃-30℃

Extreme Temperature:

-20℃/+55℃

Relative Humidity:

30%-60%

1.3. Project data

Project Leader:

Zhang Bojun

Test Engineer:

Tang Weisheng

Testing Start Date:

Nov 6th, 2013

Testing End Date:

Nov 20th, 2013

1.4. Signature

Tang Weisheng

(Prepared this test report)

Zhang Bojun

(Reviewed this test report)

Lu Minniu

Director of the laboratory

(Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name: Shenzhen Sang Fei Consumer Communications Co., Ltd.

Address /Post: 11 Science and Technology Road, Shenzhen Hi-tech Industrial Park

Nanshan District, Shenzhen, PRC

City: Shenzhen

Postal Code:

Country: China

Telephone: 0755-86138466 Fax: 0755-26503914

2.2. Manufacturer Information

Company Name: Shenzhen Sang Fei Consumer Communications Co., Ltd.

Address /Post: 11 Science and Technology Road, Shenzhen Hi-tech Industrial Park

Nanshan District, Shenzhen, PRC

City: Shenzhen

Postal Code: /

Country: China

Telephone: 0755-86138466 Fax: 0755-26503914

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Description WG-Raptor Model Name Philips W3500

Marketing Name W3500

Frequency Band ISM 2400MHz~2483.5MHz
Type of Modulation GFSK/π/4 DQPSK/8DPSK

Number of Channels 79

FCC ID VQRCTW3500

Note: Photographs of EUT are shown in ANNEX A of this test report.

3.2. Internal Identification of EUT used during the test

EUT	SN or IMEI	HW Version	SW Version
ID*			
EUT1	1	TMAO	Philips_T3500_WCDMA_4+8_GPS_V1.0_20131031

^{*}EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE used during the test

AE ID*	Description	Туре	SN
AE1	Li-ion Battery	AB2200AWML	/
AE2	Travel Charger	A31-500650	/
AE3	Travel Charger	3208SF	

^{*}AE ID: is used to identify the test accessory in the lab internally.

4. Reference Documents

4.1. Documents supplied by applicant

EUT feature information is supplied by the applicant or manufacturer, which is the basis of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version
FCC Part15	FCC CFR 47, Part 15, Subpart C:	Oct, 2012
	15.205 Restricted bands of operation;	Edition
	15.209 Radiated emission limits, general requirements;	
	15.247 Operation within the bands 902–928MHz,	
	2400-2483.5 MHz, and 5725-5850 MHz.	
ANSI C63.4	Methods of Measurement of Radio-Noise Emissions from	2009
	Low-Voltage Electrical and Electronic Equipment in the Range	
	of 9 kHz to 40 GHz	
FCC Public	Filing and Measurement Guidelines for Frequency Hopping	Mar, 2000
Notice DA 00-705	Spread Spectrum Systems	

5. <u>Laboratory Environment</u>

Half-anechoic chamber (11.20 meters×6.10 meters×5.60 meters) did not exceed following limits:

Temperature	Min. = 15 °C, Max. = 30 °C
Relative humidity	Min. = 30 %, Max. = 60 %
Shielding effectiveness	> 110 dB
Electrical insulation	> 2M Ω
Ground system resistance	< 0.5 Ω
Normalized Site Attenuation (NSA)	< ±3.5dB, with 3m of Measuring distance, 30MHz 1000MHz
Uniformity of field strength	Between 0 and 6 dB, from 80MHz to 3000 MHz

Fully-anechoic chamber (11.20 meters×6.10 meters×6.60 meters) did not exceed following limits:

Temperature	Min. = 15 °C, Max. = 30 °C
Relative humidity	Min. = 30 %, Max. = 60 %
Shielding effectiveness	> 110 dB
Electrical insulation	> 2M Ω
Ground system resistance	< 0.5 Ω
VSWR	Between 0 and 6 dB, from 30MHz to 18 000 MHz

Conduction Lab did not exceed following limits:

Temperature	Min.=15 ℃, Max.=30 ℃
Relative humidity	Min.=30 %, Max.= 60 %
Shielding effectiveness	> 80 dB
Electrical insulation	> 2M Ω
Ground system resistance	< 0.5 Ω

6. Summary of Test Results

6.1. Summary of Test Results

No	Test cases	Sub-clause of Part15C	Verdict
0	Antenna Requirement	15.203	Р
1	Maximum Peak Output Power	15.247 (b)	Р
2	Band Edges Compliance	15.247 (d)	Р
3	Conducted Spurious Emission	15.247 (d)	Р
4	Radiated Spurious Emission	15.247,15.205,15.209	Р
5	Occupied 20dB bandwidth	15.247(a)	1
6	Time of Occupancy(Dwell Time)	15.247(a)	Р
7	Number of Hopping Channel	15.247(a)	Р
8	Carrier Frequency Separation	15.247(a)	Р
9	AC Powerline Conducted Emission	15.107,15.207	Р

6.2. Statements

TMC has evaluated the test cases requested by the applicant/manufacturer as listed in section 6.1 of this report, for the EUT specified in section 3, according to the standards or reference documents listed in section 4.2

6.3. Terms used in the result table

Terms used in Verdict column

Р	Pass
NA	Not Available
F	Fail

Abbreviations

AC	Alternating Current	
BW	Band Width	
ISM	Industrial, Scientific and Medical	
RF	Radio Frequency	

7. Test Equipments Utilized

Conducted test system

No.	Equipment	Model	Serial Number	Manufacturer	Calibration Due date	Calibration Period
1	Vector Signal Analyzer	FSV40	100903	Rohde & Schwarz	2014-04-23	1 year
2	Bluetooth Tester	CBT32	100584	Rohde & Schwarz	2014-01-12	1 year

Radiated emission test system

	Radiated emission test system					
No.	Equipment Model Serial		Manufacturer	Calibration	Calibration	
			Number		Due date	Period
1	Chamber	FACT5-2.0	4166	ETS-Lindgren	2016-05-29	3 years
2	Test Receiver	ESCI	100701	Rohde & Schwarz	2014-07-31	1 year
3	Spectrum Analyzer	FSP40	100378	Rohde & Schwarz	2013-12-21	1 year
4	BiLog Antenna	VULB9163	9163-330	Schwarzbeck	2014-02-24	3 years
5	Dual-Ridge Waveguide	2464.05	00005704	ETC Lindage	2014 02 17	2
5	Horn Antenna	3164-05	00085724	ETS-Lindgren	2014-02-17	3 years
6	Test Receiver	ESCI	100702	Rohde & Schwarz	2014-07-31	1 year
7	LISN	ESH2-Z5	100196	Rohde & Schwarz	2014-01-23	1 year
8	Signal Generator	SMR40	100541	Rohde & Schwarz	2014-01-10	1 year
9	Dual-Ridge Waveguide	2447	00066577	CTC Lindaran	2016 04 01	2 40000
9	Horn Antenna	3117	00066577	ETS-Lindgren	2016-04-01	3 years
10	Loop Antenna	HLA6120	35779	TESEQ	2016-02-25	3 years
11	EMI Antenna	3160-09	00118383	ETS-Lindgren	2015-09-05	3 years

Anechoic chamber

Fully anechoic chamber by ETS-Lindgren.

ANNEX A: EUT photograph

Pic A-1 Mobile phone

Pic A-2 Mobile phone

Pic A-3 Battery

Pic A-4 Charger 1

Pic A-5 Charger 2

ANNEX B: MEASUREMENT RESULTS

B.0 Antenna requirement

Measurement Limit:

Standard	Requirement		
	An intentional radiator shall be designed to ensure that no antenna other than that		
	furnished by the responsible party shall be used with the device. The use of a		
	permanently attached antenna or of an antenna that uses a unique coupling to the		
	intentional radiator shall be considered sufficient to comply with the provisions of		
	this section. The manufacturer may design the unit so that a broken antenna can		
	be replaced by the user, but the use of a standard antenna jack or electrical		
FCC CRF Part	connector is prohibited. This requirement does not apply to carrier current devices		
15.203	or to devices operated under the provisions of §15.211, §15.213, §15.217,		
	§15.219, or §15.221. Further, this requirement does not apply to intentional		
	radiators that must be professionally installed, such as perimeter protection		
	systems and some field disturbance sensors, or to other intentional radiators		
	which, in accordance with §15.31(d), must be measured at the installation site.		
	However, the installer shall be responsible for ensuring that the proper antenna is		
	employed so that the limits in this part are not exceeded.		

Conclusion: The Directional gains of antenna used for transmitting is 3.0 dBi.

The RF transmitter uses an integrate antenna without connector.

B.1 Maximum Peak Output Power

Measurement Limit:

Standard	Limit (dBm)
FCC CRF Part 15.247(b)(1)	< 30

Measurement Results:

			Test Resu	ılt (dBm)		
Mode	2402MHz (Ch0)		2441MHz (Ch39)		2480 MHz (Ch78)	
GFSK	Fig.1	3.20	Fig.2	3.07	Fig.3	3.13
π/4 DQPSK	Fig.4	2.61	Fig.5	2.35	Fig.6	2.38
8DPSK	Fig.7	2.42	Fig.8	2.53	Fig.9	2.44

Conclusion: Pass

B.2 Band Edges Compliance

Measurement Limit:

Standard	Limit (dBc)
FCC 47 CFR Part 15.247 (d)	> 20

Measurement Result:

Mode	Channel	Hopping	Test Results	Conclusion
GFSK	0	ON	Fig.10	Р
GFSK	78	ON	Fig.11	Р
# /4 DODGK	0	ON	Fig.12	Р
π /4 DQPSK	78	ON	Fig.13	Р
ODDCK	0	ON	Fig.14	Р
8DPSK	78	ON	Fig.15	Р

Mode	Channel	Hopping	Test Results	Conclusion
GFSK	0	OFF	Fig.16	Р
GFSK	78	OFF	Fig.17	Р
π /4 DQPSK	0	OFF	Fig.18	Р
11/4 DQPSK	78	OFF	Fig.19	Р
8DPSK	0	OFF	Fig.20	Р
ODPSK	78	OFF	Fig.21	Р

See ANNEX C for test graphs.

B.3 Conducted Emission

Measurement Limit:

Standard	Limit
ECC 47 CED Dort 15 247 (d)	20dB below peak output power in 100 kHz
FCC 47 CFR Part 15.247 (d)	bandwidth

Measurement Results:

MODE	Channel	Frequency Range	Test Results	Conclusion
		2.402 GHz	Fig.22	Р
	0	30 MHz-3GHz	Fig.23	Р
		3GHz-18GHz	Fig.24	Р
		2.402 GHz	Fig.25	Р
GFSK	39	30 MHz-3 GHz	Fig.26	Р
		3GHz-18GHz	Fig.27	Р
		2.480 GHz	Fig.28	Р
	78	30 MHz-3GHz	Fig.29	Р
		3GHz-18GHz	Fig.30	Р
		2.402 GHz	Fig.31	Р
	0	30 MHz-3 GHz	Fig.32	Р
		3GHz-18GHz	Fig.33	Р
- /4	39	2.480 GHz	Fig.34	Р
π/4 DQPSK		30 MHz-3GHz	Fig.35	Р
DQPSK		3GHz-18Ghz	Fig.36	Р
		2.480 GHz	Fig.37	Р
	78	30 MHz-3GHz	Fig.38	Р
		3GHz-18Ghz	Fig.39	Р
		2.402 GHz	Fig.40	Р
	0	30 MHz-3GHz	Fig.41	Р
		3GHz-18GHz	Fig.42	Р
		2.402 GHz	Fig.43	Р
8DPSK	K 39	30 MHz-3GHz	Fig.44	Р
		3GHz-18GHz	Fig.45	Р
		2.480 GHz	Fig.46	Р
	78	30 MHz-3GHz	Fig.47	Р
		3GHz-18GHz	Fig.48	Р
1	All channel	18GHz-26GHz	Fig.49	Р

See ANNEX C for test graphs.

B.4 Radiated Emission

Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247, 15.205, 15.209	20dB below peak output power

In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Limit in restricted band:

Frequency of emission	Field etropath(u)//m)	Measurement		
(MHz)	Field strength(µV/m)	distance(meters)		
0.009-0.490	2400/F(kHz)	300		
0.490-1.705	24000/F(kHz)	30		
1.705-30.0	30	30		
30-88	100	3		
88-216	150	3		
216-960	200	3		
Above 960	500	3		

Test Condition

The EUT was placed on a non-conductive table. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

Frequency of emission	RBW/VBW	Sweep Time(s)
(MHz)		
30-1000	100KHz/300KHz	5
1000-4000	1MHz/1MHz	15
4000-18000	1MHz/1MHz	40
18000-26500	1MHz/1MHz	20

Note: According to the performance evaluation, the radiated emission margin of EUT is over 20dB in the band from 9kHz to 30MHz. Therefore, the measurement starts from 30MHz to tenth harmonic.

The measurement results include the horizontal polarization and vertical polarization measurements.

This test uses the limit of AV and Peak Detection.

Measurement Results:

Mode	Channel	Frequency Range	Test Results	Conclusion
		30 MHz ~1 GHz	Fig.50	Р
-	0	1 GHz ~ 3 GHz	Fig.51	Р
		3 GHz ~ 18 GHz	Fig.52	Р
		30 MHz ~1 GHz	Fig.53	Р
GFSK	39	1 GHz ~ 3 GHz	Fig.54	Р
		3 GHz ~ 18 GHz	Fig.55	Р
		30 MHz ~1 GHz	Fig.56	Р
	78	1 GHz ~ 3 GHz	Fig.57	Р
		3 GHz ~ 18 GHz	Fig.58	Р
		30 MHz ~1 GHz	Fig.59	Р
	0	1 GHz ~ 3 GHz	Fig.60	Р
		3 GHz ~ 18 GHz	Fig.61	Р
	39	30 MHz ~1 GHz	Fig.62	Р
π /4 DQPSK		1 GHz ~ 3 GHz	Fig.63	Р
		3 GHz ~ 18 GHz	Fig.64	Р
		30 MHz ~1 GHz		Р
	78	1 GHz ~ 3 GHz	Fig.66	Р
		3 GHz ~ 18 GHz	Fig.67	Р
		30 MHz ~1 GHz	Fig.68	Р
	0	1 GHz ~ 3 GHz	Fig.69	Р
		3 GHz ~ 18 GHz	Fig.70	Р
		30 MHz ~1 GHz	Fig.71	Р
8DPSK	39	1 GHz ~ 3 GHz	Fig.72	Р
		3 GHz ~ 18 GHz	Fig.73	Р
		30 MHz ~1 GHz	Fig.74	Р
	78	1 GHz ~ 3 GHz	Fig.75	Р
		3 GHz ~ 18 GHz	Fig.76	Р
/	All channels	18 GHz~ 26.5 GHz	Fig.77	Р

GFSK CH0 (1-18GHz)

Frequency (MHz)	Peak (dBµV/m)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
2357.000000	36.5	V	180.0	1.7	17.4	53.9
3602.875000	41.0	V	90.0	3.8	12.9	53.9
7559.625000	37.0	V	90.0	6.9	16.9	53.9
9608.000000	39.8	V	180.0	9.1	14.1	53.9
13458.000000	42.4	Н	180.0	11.4	11.5	53.9
16751.000000	48.6	V	90.0	14.3	5.3	53.9

GFSK CH39 (1-18GHz)

Frequency (MHz)	Peak (dBµV/m)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
2357.000000	35.9	V	0.0	1.7	18.0	53.9
3661.500000	37.3	V	0.0	3.8	16.6	53.9
7553.500000	36.5	Н	0.0	6.9	17.4	53.9
9923.875000	39.0	Н	180.0	9.3	14.9	53.9
13443.000000	41.7	Н	90.0	11.4	12.2	53.9
16734.000000	47.6	V	90.0	14.3	6.3	53.9

GFSK CH78 (1-18GHz)

Frequency (MHz)	Peak (dBµV/m)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
2357.000000	36.0	V	180.0	1.7	17.9	53.9
3719.250000	35.0	V	0.0	4.1	18.9	53.9
7561.375000	36.6	Н	0.0	7.0	17.3	53.9
10027.000000	39.2	V	180.0	9.4	14.7	53.9
12667.000000	41.6	Н	180.0	11.2	12.3	53.9
16747.000000	47.2	Н	0.0	14.3	6.7	53.9

π /4 DQPSK CH0 (1-18GHz)

Frequency (MHz)	Peak (dBµV/m)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
2357.000000	36.3	V	180.0	1.7	17.6	53.9
3602.875000	35.8	Н	90.0	3.8	18.1	53.9
7551.750000	36.9	Н	0.0	6.9	17.0	53.9
9918.625000	39.6	V	180.0	9.3	14.3	53.9
13449.000000	42.4	Н	180.0	11.4	11.5	53.9
16760.000000	48.3	Н	0.0	14.3	5.6	53.9

π /4 DQPSK CH39 (1-18GHz)

Frequency (MHz)	Peak (dBµV/m)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
2258.000000	36.4	Н	0.0	1.6	17.5	53.9
3661.500000	36.9	V	90.0	3.8	17.0	53.9
7561.375000	36.5	Н	0.0	7.0	17.4	53.9
10028.000000	39.1	V	180.0	9.4	14.8	53.9
13443.000000	41.9	Н	90.0	11.4	12.0	53.9
16777.000000	47.6	Н	90.0	14.3	6.3	53.9

π /4 DQPSK CH78 (1-18GHz)

Frequency (MHz)	Peak (dBµV/m)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
2258.000000	36.0	Н	0.0	1.6	17.9	53.9
3720.125000	35.2	V	0.0	4.1	18.7	53.9
7556.125000	36.6	V	180.0	6.9	17.3	53.9
10027.000000	39.1	Н	180.0	9.4	14.8	53.9
13448.000000	41.9	Н	90.0	11.4	12.0	53.9
16750.000000	47.7	Н	180.0	14.3	6.2	53.9

8DPSK CH0 (1-18GHz)

Frequency (MHz)	Peak (dBµV/m)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
2357.000000	36.2	V	0.0	1.7	17.7	53.9
3602.875000	38.1	V	90.0	3.8	15.8	53.9
7462.500000	36.9	V	0.0	6.9	17.0	53.9
9916.875000	39.5	V	0.0	9.3	14.4	53.9
13452.000000	42.3	Н	180.0	11.4	11.6	53.9
16734.000000	48.2	Н	180.0	14.3	5.7	53.9

8DPSK CH39 (1-18GHz)

Frequency (MHz)	Peak (dBµV/m)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
2357.000000	36.3	V	0.0	1.7	17.6	53.9
3660.625000	36.1	V	0.0	3.8	17.8	53.9
7558.750000	36.9	V	180.0	6.9	17.0	53.9
9883.625000	39.5	V	0.0	9.3	14.4	53.9
13449.000000	42.4	Н	180.0	11.4	11.5	53.9
16748.000000	48.2	V	90.0	14.3	5.7	53.9

8DPSK CH78 (1-18GHz)

Frequency (MHz)	Peak (dBµV/m)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
2357.000000	36.0	V	180.0	1.7	17.9	53.9
3719.250000	35.5	V	90.0	4.1	18.4	53.9
7459.875000	36.8	Н	90.0	6.9	17.1	53.9
9926.500000	39.4	V	180.0	9.3	14.5	53.9
13448.000000	42.1	V	180.0	11.4	11.8	53.9
16761.000000	48.2	Н	90.0	14.3	5.7	53.9

See ANNEX C for test graphs.

B.5 Occupied 20dB Bandwidth

Measurement Limit:

Standard	Limit (kHz)	
FCC 47 CFR Part 15.247 (a)	/	

Measurement Result:

Mode	Channel	Occupied 20dB Bandwidth (MHz)		conclusion
	0	Fig.78	1.129	
GFSK	39	Fig.79	1.129	1
	78	Fig.80	1.129	
	0	Fig.81	1.295	
π /4 DQPSK	39	Fig.82	1.303	1
	78	Fig.83	1.288	
	0	Fig.84	1.310	
8DPSK	39	Fig.85	1.324	1
	78	Fig.86	1.310	

See ANNEX C for test graphs.

Conclusion: PASS

B.6 Time of Occupancy (Dwell Time)

Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247(a)	< 400 ms

Measurement Results:

measurement results.							
Mode	Channel	Packet	Dwell Time	Dwell Time(ms)			
GFSK	00	DUE	Fig.87	221.0	В		
GFSK	39	DH5	Fig.88		Р		
π/4 DQPSK	20	2 DUE	Fig.89	178.8	Б		
11/4 DQFSK	39	Fig.90	2-DH5		Р		
8DPSK 39 3-DH5 -	39	3-DH5	Fig.91	199.0	В		
ODPSK			Fig.92		Р		

See ANNEX C for test graphs.

B.7 Number of Hopping Channels

Measurement Limit:

Standard	Limit	
FCC 47 CFR Part 15.247(a)	At least 15 non-overlapping channels	

Measurement Results:

Mode	Channel	Packet	Number of hopping channels		Test result	Conclusion
GFSK	39	DH5	Fig.93	Fig.94	79	Р
π/4 DQPSK	39	2-DH5	Fig.95	Fig.96	79	Р
8DPSK	39	3-DH5	Fig.97	Fig.98	79	Р

See ANNEX C for test graphs.

Conclusion: Pass

B.8 Carrier Frequency Separation

Measurement Limit:

Standard	Limit	
	By a minimum of 25 kHz or two-thirds of the 20 dB	
FCC 47 CFR Part 15.247(a)	bandwidth of the hopping channel, whichever is	
	greater	

Measurement Results:

Mode	Channel	Packet	Separation of hopping channels	Test result (MHz)	Conclusion
GFSK	39	DH5	Fig.99	1.006	Р
π /4 DQPSK	39	2-DH5	Fig.100	1.006	Р
8DPSK	39	3-DH5	Fig.101	1.006	Р

See ANNEX C for test graphs.

B.9 AC Power line Conducted Emission

Test Condition:

Voltage (V)	Frequency (Hz)
120	60

Measurement Result and limit:

BT (Quasi-peak Limit)-AE2

Frequency range	Quasi-peak	· · ·		Conclusion	
(MHz)	Limit (dBmV)			Conclusion	
0.15 to 0.5	66 to 56				
0.5 to 5	56	Fig.102	Fig.103	Р	
5 to 30	60				

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

BT (Average Limit)-AE2

Frequency range	Average-peak	Result (dBmV)		Conclusion	
(MHz)	Limit (dBmV)	Traffic	ldle	Conclusion	
0.15 to 0.5	56 to 46				
0.5 to 5	46	Fig.102	Fig.103	Р	
5 to 30	50				

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

BT (Quasi-peak Limit)-AE3

\					
Frequency range	Quasi-peak	Result (dBmV)		Conclusion	
(MHz)	Limit (dBmV)	Traffic	ldle	Conclusion	
0.15 to 0.5	67 to 56				
0.5 to 5	56	Fig.104	Fig.105	Р	
5 to 30	60				

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

BT (Average Limit)-AE3

Frequency range	Average-peak	Result (dBmV)		Canalysian
(MHz)	Limit (dBmV)	Traffic	ldle	Conclusion
0.15 to 0.5	56 to 46			
0.5 to 5	46	Fig.104	Fig.105	Р
5 to 30	50			

NOTE: The limit decreases linearly with the logarithm of the frequency in the range $0.15\,\mathrm{MHz}$ to $0.5\,\mathrm{MHz}$.

Note: The measurement results include the L1 and N measurements.

See ANNEX C for test graphs.

ANNEX C: TEST FIGURE LIST

Fig. 1 Maximum Peak Output Power (GFSK, Ch 0, Hopping OFF)

Fig. 2 Maximum Peak Output Power (GFSK, Ch 39, Hopping OFF)

Fig. 3 Maximum Peak Output Power (GFSK, Ch 78, Hopping OFF)

Fig. 4 Maximum Peak Output Power (π/4 DQPSK, Ch 0, Hopping OFF)

Fig. 5 Maximum Peak Output Power (π/4 DQPSK, Ch 39, Hopping OFF)

Fig. 6 Maximum Peak Output Power (π/4 DQPSK, Ch 78, Hopping OFF)

Fig. 7 Maximum Peak Output Power (8DPSK, Ch0, Hopping OFF)

Fig. 8 Maximum Peak Output Power (8DPSK, Ch39, Hopping OFF)

Fig. 9 Maximum Peak Output Power (8DPSK, Ch78, Hopping OFF)

Fig. 10 Band Edges (GFSK, Ch 0, Hopping ON)

Fig. 11 Band Edges (GFSK, Ch 78, Hopping ON)

Fig. 12 Band Edges (π/4 DQPSK, Ch 0, Hopping ON)

Fig. 13 Band Edges (π /4 DQPSK, Ch 78, Hopping ON)

Fig. 14 Band Edges (8DPSK, Ch 0, Hopping ON)

Fig. 15 Band Edges (8DPSK, Ch 78, Hopping ON)

Fig. 16 Band Edges (GFSK, Ch 0, Hopping OFF)

Fig. 17 Band Edges (GFSK, Ch 78, Hopping OFF)

Fig. 18 Band Edges (π/4 DQPSK, Ch 0, Hopping OFF)

Fig. 19 Band Edges (π/4 DQPSK, Ch 78, Hopping OFF)

Fig. 20 Band Edges (8DPSK, Ch 0, Hopping OFF)

Fig. 21 Band Edges (8DPSK, Ch 78, Hopping OFF)

Fig. 22 Conducted Spurious Emission (GFSK, Ch0, 2.402GHz)

Fig. 23 Conducted Spurious Emission (GFSK, Ch0, 30 MHz-3 GHz)

Fig. 24 Conducted Spurious Emission (GFSK, Ch0, 3GHz-18 GHz)

Fig. 25 Conducted Spurious Emission (GFSK, Ch39, 2.441GHz)

Fig. 26 Conducted Spurious Emission (GFSK, Ch39, 30 MHz-3 GHz)