清华大学本科生考试试题专用纸 ☆A☆卷

考试课程:	复变函数引论	≥ (闭卷,满分70分	〉)考试时间: 2011	年1月5日下午2:30	0-4:30
系别	班号	学号	姓名	考试教室	/ 教
注意: 选择	题、填空题直	直接答于试卷, 其	余题目答在专用答题	题纸上,且注明题 [!]	号。
			共21分。每小题只 、填错位置或者直		
不可能取到	的是:	ĪС内一条不经过 <i>i</i> , С. <u>і́т</u> ; D. 0.	及—i的Jordan闭曲约	붆, 则下面值中, ∮ _{C (z}	$\frac{z}{z+i)(z-i)^2}dz$
		引用: $x^2 + y^2 = 4$,则 i ; C. $4\pi i$;	• 0		
		数中,在复平面上处 $\sqrt{ Im(z) };$ C. $\sqrt{ F }$	上处不可导的是: $\overline{Re(z)Im(z) };$ D. $(z-$	$(-1)^2 \arg z$.	
取0且在单位	立圆周∂D上恒	[等于4,则下列表达	函数,且在闭单位圆 达式中 错误 的是: : 2; C. f'(0) = 0;)) ² 在D内恒不
			= $3yx^2 - y^3 (z = x + iy)$ - c ; D. $-iz^3 + c$.)确定的解析函数 <i>f</i> ((z) = u + iv是:
		$f(z)$ 满足 $\lim_{z\to 0} (f(z))$ C3; D. 不能码	$(z))^2 = -9$,则 $\lim_{z\to 0} R\epsilon$ 确定。	e(f(z))为:	
$\frac{\left[\begin{array}{c} \\ \end{array}\right]}{\text{A.}} \frac{7}{1-a^2}$	设 $a > 1$,则实; B. $\frac{2\pi}{a^2+1}$	积分 $\int_0^{2\pi} \frac{d\theta}{a + \cos \theta}$ 的信 ; C. $\frac{\pi}{\sqrt{a^2 - 1}}$;	拉为: D. $\frac{2\pi}{\sqrt{a^2-1}}$.		
得分[空题 (5小题7个空	,每个空3分,共21	分)	
1, z = 0是 $f($ 奇点)。	z)的2级零点,	,则 $z = 0$ 是 $\frac{\sin^2 z}{(f(z))^3}$ 之			(要求填何种

- 2、设 $f(z) = \frac{z^{n}+1}{(z+1)(z^{n}-1)}$,其中n为正整数,则 $Res[f(z), \infty] = \underline{\hspace{1cm}}$ 。

- 5、 $\sin \frac{1}{1-z-z^2}$ 在 $z_0=0$ 的Taylor展开式是 $\sum_{n=0}^{\infty} c_n z^n$,则此幂级数收敛半径为_____。

三、分析与计算题(3小题,共23分,注意:每题要有必要的分析与计算过程,只写答案没有过程不给分)

- 1、(7分) 设f(z)为整函数,若f(0) = A及f'(0) = B,计算积分 $I = \int_0^{2\pi} f(4e^{i\theta}) \cos^2 \frac{\theta}{2} d\theta$.
- 2、(7分)设 $f(z) = z \sinh \frac{z}{z-1}$,计算积分

$$I = \frac{1}{2\pi i} \oint_{|z|=2} f(z) dz,$$

并说明 ∞ 是函数f(z)的何种奇点。

3、(9分) 判断幂级数 $\sum_{n=1}^{+\infty} \frac{z^{2n}}{2n}$ 的收敛半径R,并求出其在|z| < R内和函数f(z)及和函数的导数函数f'(z).

四、分析证明题(5分)

设f(z)在z = 0的某个空心邻域 $B = \{z \in \mathbb{C} : 0 < |z| < R\} \ (R > 0)$ 内解析且以z = 0为奇点,已知存在复数列 $\{z_n\}_{n=0}^{\infty} \subset B$ 满足下列条件(1)(2)(3):

(1)
$$\lim_{n\to\infty} z_n = 0$$
, (2) $\lim_{n\to\infty} f'(z_n) = 1$, $\not \Sigma$ (3) $f(z_n) \equiv 2$, $\not \nabla f \forall n \in \mathbb{N}$,

试判断z = 0为f(z)的何种孤立奇点,并证明你的结论。

- 1. 请在交卷前仔细检查试卷和专用答题纸上自己的姓名、学号以及考试教室等信息是否已经完整填写;
- 2. 考试结束时,请将本试卷正面朝外沿竖中线折叠,然后同稿纸一道夹在专用答题纸里一并上交。