

Environmental impacts of the space industry

Launches (0-80 km)

Hydrogen Kerosene Methane Hypergolic

 H_2O CO CO_2 BC Thermal NO_x Fuel NO_x Solid Chlorine Al_2O_3

Stratospheric O₃ depletion

$$X + O_3 \rightarrow XO + O_2$$

 $XO + O \rightarrow X + O_2$

$$O_3 + O \rightarrow 2O_2$$

Driven by NO_x, Cl_v, and Al₂O₃

Impact of a decade of increasing 2019 rocket launch and re-entry emissions

O₃ loss over 60-90°N is ~10% of recovery from Montreal Protocol.

Reentries (60-80 km)

Payloads Components Capsules **Rocket Bodies Debris**

Thermal NO_x

BC emissions drive positive radiative forcing (375x more efficient than surface sources).

Recent developments in the space industry

Onset of the satellite megaconstellation (SMC) era

SpaceX Starlink

Eutelsat OneWeb

SMCs are contributing to rapidly increasing launch rates and re-entry mass.

Understanding of emission chemistry has developed

with altitude depending on oxygen availability

[JSR, 11/09/24]

[Murphy et al., 2023]

Modelling space industry emissions in a 3D atmospheric chemistry model

Developing 3D emission inventories of rocket launches and re-entries

Launch emissions (all atmospheric layers)

Annual propellant consumption increased from 36-63 Gg in 2020-2022.

Re-entry emissions (60-80 km)

Reusable Expendable

Re-entering Objects (2020-2022)

Annual re-entry mass (5 Gg) is now ~40% of natural influx (18-26% SMC). 2 kt unablated mass returns to Earth.

[Ross et al. 2014, Barker et al., 2024]

Vertical distribution of emissions for all rocket launches and re-entries (2022)

Modelling space industry emissions in a 3D atmospheric chemistry model

Emissions projected to 2029

Impact of space industry emissions on stratospheric composition

Stratospheric ozone depletion remains low (0.03%) at the end of the decade compared to surface sources (~2% in 2022).

Minimal O_3 loss or increases in ozone depleting emissions (Cl_y , NO_x) from SMCs.

[Barker et al., in draft]

Uptake of particulate emissions by stratospheric sulfate

*UCL

Annual mean aerosol concentration (2020-2029)

BC (r = 0.035 μ m) particles slowly settle, and mesospheric concentration increases in spring-summer.

Larger Al_2O_3 particles (r = 0.14-4.5 µm) rapidly settle, but concentration increases are still limited to the mesosphere and upper stratosphere.

Monthly mean stratospheric liquid aerosol surface area

Uptake to sulfate removes BC and Al₂O₃ below the upper stratosphere, reducing potential to deplete ozone but increasing SLA surface area.

Alumina size distribution affects ozone depletion

Annual mean change in O₃ concentration in 2023

Negligible (0.0002%) global change in ozone, but ozone depletion shifts towards the midstratosphere

Impact of space industry emissions on radiative forcing

Annual Mean Radiative Forcing in 2022 at Tropopause

SW absorption of SW by black carbon dominates, enhanced by sulfate coating

-1.68 mWm⁻²
-0.54 mWm⁻²
-0.54 mWm⁻²
-0 www Jersey and Jersey

Temperature Change in 2022

Overall effect is warming of the stratosphere and a negative flux at the tropopause.

Summary

*UCL

- Developed an emission inventory for all rocket launches and reentry mass for 2020-2022.
- Modelling shows that SMCs cause negligible O₃ depletion compared to other mission types (~13% of total), due to kerosene fuel.
- Rocket launch and re-entry emissions cause stratospheric warming and tropospheric cooling.
- Sensitivity simulations demonstrate that the size distribution of re-entry derived Al_2O_3 affects the location of ozone depletion.

Contact: Connor Barker (connor.barker@ucl.ac.uk)

Emission Inventory published in Nature Scientific Data

Rocket Launch and Re-entry Emission Trackers

[Images from SpaceX, OneWeb, ULA, and media reports]