RISHABH C. PATEL

ECE 3056 LAB0

DUE: 24 August 2018

Part I: Microcode for the expression: R1 = 3R2 + 4M[100]

X	Y	Z	rwe	im	im	аи	~a/s	lu	lf	su	st	ld	st	r/~w	msel	description
				en	va	en		en		en		en	en			
X	X	3	1	1	100	0	X	1	1100	0	XX	0	0	X	0	R3 = 100
3	X	3	1	0	X	0	X	0	X	0	XX	1	0	1	1	R3 = M[R3]
3	X	3	1	1	-2	0	X	0	X	1	1	0	0	X	0	R3 = 4R3
2	X	5	1	1	-1	0	X	0	X	1	1	0	0	X	0	R5 = 2R2
5	2	2	1	0	X	1	0	0	X	0	XX	0	0	X	0	R2 = R5 + R2
2	3	1	1	0	X	1	0	0	X	0	XX	0	0	X	0	R1 = R2 + R3

Part II:

.data

This is the start of the original array.

Original: .word 200, 270, 250, 100

.word 205, 230, 105, 235

.word 190, 95, 90, 205

.word 80, 205, 110, 215

The next statement allocates room for the other array.

The array takes up 4*16=64 bytes.

#

Second: .space 64

.align 2

.globl main

.text

main: # Your fully commented program starts here.

addi \$t0, \$0, 0 # i = 0

addi \$t2, \$0, 4 # counter = 4

la \$t3, Original

```
la $t4, Second
Loop1: beq t0, t2, Exit # if i = counter, Exit
    addi $t1, $0, 0
                       # j = 0
Loop2: beq t1, t2, Inc # if j = counter, Loop1
    #Operation -> Second[i][j] = Original[j][i]
    mul $t5, $t0, 4
                       #4*i
    mul $t6, $t1, 4
                       #4*j
                     #4*i+j
    add $t5, $t5, $t1
                      #4*j+i
    add $t6, $t6, $t0
                      #4*(4*i+j)
    mul $t5, $t5, 4
    mul $t6, $t6, 4 \# 4 * (4 * j + i)
    lw $t7, Original($t5) # load Original[4 * (4 * i + j)] in $t7
    sw $t7, Second($t6) # Store in $7
    addi $t1, $t1, 1
                       # increment j
    j Loop2
Inc: addi $t0, $t0, 1
                        # increment i
    j Loop1
Exit: li $v0, 10
                      #terminate program
   syscall
```