## **Thesis Background Presentation**

Emerson Ford

October 5, 2020

University of Utah School of Computing



#### **Container Overview**

- Increasingly popular framework to distribute and deploy applications.
- Tools like Kubernetes have become popular for container orchestration.

## **Container Requirements**

- Isolation
  - namespaces
  - cgroups
  - network policy
- Portability
  - migration
- Performance
  - low isolation overhead

## **Container Networking Requirements**

- Control Plane Policies
  - firewall
  - routing
  - vlans
- Data Plane Policies
  - QoS
  - metering
  - fairness

### **Container Network Overlay Performance**



- Current networking isolation requires pretty significant performance sacrifices.
- Less than ideal for HPC applications.

source: A Performance Comparison of Container Networking Alternatives by Ubaid Abbasi, El Houssine Bourhim, Mouhamad Dieye, and Halima Elbiaze

#### **RDMA Overview**

- Form of kernel bypass networking
- libibverbs is the "narrow waist" of RDMA operations
- Extremely low latency, high throughput





source: FreeFlow Paper Figure 3

## **RDMA Two-Sided Ops**



 $<sup>^{0}</sup>$ Every object in the protection domain is mapped in the application's virtual address space. The HCA can access every object in the protection domain.

## **RDMA One-Sided Ops**



 $<sup>^{0}</sup>$ Every object in the protection domain is mapped in the application's virtual address space. The HCA can access every object in the protection domain.

opcode is one of IBV\_WR\_RDMA\_WRITE, IBV\_WR\_RDMA\_READ, IBV\_WR\_ATOMIC\_CMP\_AND\_SWP, IBV\_WR\_SEND

#### **Status Quo**

- RDMA significantly improves HPC application performance.
- Containers are quickly becoming a common framework for application distribution and deployment, but container networking isolation is slow.
- Note: similar research is being done for RDMA use in VMs in the cloud

#### **Problem Statement**

How can we enable the use RDMA in containers while preserving container requirements and performance?

# Software Approach

## **Software Approach Overview**

## Microkernel / Paravirtualized Approach:

- FreeFlow
- MasQ

#### Virtualized RDMA:

SoftRoCE

#### FreeFlow Architecture

- RDMA client (FreeFlow Library / FFL)
- RDMA server (FreeFlow Router / FFR)
- Communicate with IPC and shared memory
- Only need LD\_PRELOAD to make a FreeFlow compatible application



#### **RDMA Send in FreeFlow**





## FreeFlow Library — Router Communication

- IPC communication
  - Latency can be  $\geq 5\mu s$
- Fastpath
  - Move TX Queue and RX Queue to shared memory with FreeFlow router
  - FreeFlow router spin reads these queue pairs (with cache flushes)

## FreeFlow Challenges & Solutions

- Use shared memory to support and speed up one-sided operations.
  - Requires malloc highjack to page align memory.
  - New functions ibv\_malloc and ibv\_free to avoid this.
  - ffrouter must replace laddr with laddr'
- Utilize libibverb's built in struct flattening to avoid deep copies in RPC.
- Multiple Unix sockets for parallel RDMA queue pairs to avoid head of line blocking.

#### **FreeFlow Benefits**

- Control plane policy enforcement on queue pairs.
  - QoS and network overlay enforcements
- RDMA vNIC can be assigned a private IP, allowing for non-live container migration.
  - ffrouter can query network overlays to get private IP -> public IP translation.
- FreeFlow library can run TCP over RDMA using rsocket in libibverbs.

#### FreeFlow Performance



- Approx 33% increase in latency for small messages
- Small message sizes bound in tput due to Fastpath single thread bottleneck
- Non-Fastpath CPU util overhead scales with actual load
  - Fastpath requires at least a single CPU core
- Applications finish at close to host RDMA speeds

# Hardware Approach

#### **SRIOV**



- Not portable.
- Control plane policy enforcement relies on switch reconfiguration.

#### **MACVLAN**



- Control plane policy enforcement relies on switch reconfiguration?
- "GID table entries are created whenever an IP address is configured on one of the Ethernet devices of the NIC's ports."

#### **RDMA Shared Device**

- RDMA namespaces
- RDMA cgroups
- ConnectX6 NICs allow for hardware rules?