

1. Stoodi

A solução da inequação trigonométrica tg $x \ge 1$, no intervalo $[0, 2_{\mathcal{H}}]$, é:

a.
$$\begin{pmatrix} x \in R | \frac{\pi}{4} \leq x \leq \frac{\pi}{2}ou\frac{5\pi}{4} \leq x \leq \frac{3\pi}{2} \end{pmatrix}$$
 b.
$$\begin{pmatrix} x \in R | \frac{\pi}{4} \leq x < \frac{\pi}{2}ou\frac{5\pi}{4} \leq x < \frac{3\pi}{2} \end{pmatrix}$$
 c.
$$\begin{pmatrix} x \in R | x \geq \frac{\pi}{4}oux \geq \frac{5\pi}{4} \end{pmatrix}$$
 d.
$$\begin{pmatrix} x \in R | 0 \leq x \leq \frac{\pi}{4}ou\frac{5\pi}{4} \leq x \leq \frac{3\pi}{2} \end{pmatrix}$$
 e.
$$\begin{pmatrix} x \in R | 0 \leq x \leq \frac{\pi}{4}ou\frac{5\pi}{4} \leq x < \frac{3\pi}{2} \end{pmatrix}$$

2. Stoodi

A solução da inequação trigonométrica $sen x > -\frac{1}{2}$, no intervalo $[0,2]_{\pi}$, é:

3. UEL 1996

Se x $\in [0,\ 2\pi]$, então cos x > 1/2 se, e somente se, x satisfazer à condição

- **a.** $\pi/3 < x < 5 \pi/3$
- **b.** $\pi/3 < x < \pi/2$
- c. π <x<2 π
- **d.** π /2<x<3 π /2 ou 5 π /3<x<2 π
- **e.** $0 \le x < \pi/3$ ou $5 \pi/3 < x \le 2 \pi$

4. MACKENZIE 2003

Quando resolvida no intervalo [0; 2 η :], o número de quadrantes nos quais a desigualdade 2 cos x < $\sqrt{3}$ apresenta soluções é:

- **a.** 0
- **b.** 1
- **c.** 2
- **d.** 3
- **e.** 4

5. Stoodi

A solução da inequação trigonométrica -1 < tg x $\leq \frac{\sqrt{3}}{3}$, no intervalo [0, 2 π], é:

a.
$$\begin{pmatrix} x \in R | \frac{7\pi}{4} < x \leq \frac{\pi}{6}ou\frac{3\pi}{4} < x \leq \frac{7\pi}{6} \end{pmatrix}$$
 b.
$$\begin{pmatrix} x \in R | \frac{\pi}{6} < x \leq \frac{3\pi}{4}ou\frac{7\pi}{6} < x \leq \frac{7\pi}{4} \end{pmatrix}$$
 c.
$$\begin{pmatrix} x \in R | 0 \leq x \leq \frac{\pi}{6}ou\frac{3\pi}{4} \leq x \leq \frac{7\pi}{6}ou\frac{7\pi}{4} \leq x \leq 2\pi \end{pmatrix}$$
 d.
$$\begin{pmatrix} x \in R | 0 \leq x \leq \frac{\pi}{6}ou\frac{3\pi}{4} < x \leq \frac{7\pi}{6}ou\frac{7\pi}{4} < x \leq 2\pi \end{pmatrix}$$
 e.
$$\begin{pmatrix} x \in R | x \neq \frac{\pi}{2}, x \neq \frac{3\pi}{2} \end{pmatrix}$$

6. UNESP 2014

O conjunto solução (S) para a inequação $2.\cos^2 x + \cos(2x) > 2$, em que $0 < x < \pi$ é dado por

a.
$$S = \left\{ x \in (0,\pi) | \ 0 < x < \frac{\pi}{6} \ ou \ \frac{5\pi}{6} < x < \pi \right\}$$
 b.
$$S = \left\{ x \in (0,\pi) | \ \frac{\pi}{3} < x < \frac{2\pi}{3} \right\}$$
 c.
$$S = \left\{ x \in (0,\pi) | \ 0 < x < \frac{\pi}{3} \ ou \ \frac{2\pi}{3} < x < \pi \right\}$$
 d.
$$S = \left\{ x \in (0,\pi) | \ \frac{\pi}{6} < x < \frac{5\pi}{6} \right\}$$
 e.
$$S = \left\{ x \in (0,\pi) | \ \frac{\pi}{6} < x < \frac{5\pi}{6} \right\}$$

7. UNESP 1991

O conjunto solução de Icos xI < (1/2), para 0 < x < 2 m; é definido por

a. (
$$\pi/3$$
) < x < (2 $\pi/3$) ou (4 $\pi/3$) < x < (5 $\pi/3$)

b. (
$$\pi/6$$
) < x < (5 $\pi/6$) ou (7 $\pi/6$) < x < (11 $\pi/6$)

c.
$$(\pi/3) < x < (2\pi/3) e (4\pi/3) < x < (5\pi/3)$$

d. (
$$\pi/6$$
) < x < (5 $\pi/6$) e (7 $\pi/6$) < x < (11 $\pi/6$)

e. (
$$\pi/6$$
) < x < (2 $\pi/3$) ou (4 $\pi/3$) < x < (11 $\pi/6$)

8. IFSC 2012

$$\cos x = \frac{-12}{13}, \pi < x < \frac{3\pi}{2} \text{ ex} \in$$

3º quadrante, então é CORRETO afirmar que o valor de tg(x) é

- **a.** -5/13
- **b.** -5/12
- **c.** 5/13
- **d.** 5/12
- e. 0,334

9. Stoodi

A solução da inequação trigonométrica $cosx \leq \frac{\sqrt{2}}{2}$. é:

$$\begin{aligned} &\text{a.} \left(x \in R | \frac{\pi}{4} \leq x \leq \frac{7\pi}{4} \right) \\ &\text{b.} \left(x \in R | \frac{\pi}{4} + 2k\pi \leq x \leq \frac{7\pi}{4} + 2k\pi \right) \\ &\text{c.} \\ \left(x \in R | 0 + 2k\pi < x < \frac{\pi}{4} + 2k\pi ou \frac{7\pi}{4} + 2k\pi < x < 2\pi + 2k\pi \right) \\ &\text{d.} \left(x \in R | 0 < x < \frac{\pi}{4} ou \frac{7\pi}{4} < x < 2\pi \right) \\ &\text{e.} \\ \left(x \in R | 0 + 2k\pi < x < \frac{\pi}{4} + 2k\pi ou \frac{3\pi}{4} + 2k\pi < x < 2\pi + 2k\pi \right) \end{aligned}$$

10. EPCAR (AFA) 2012

Sendo $x \in [0,2\pi]$, a interpretação gráfica no ciclo trigonométrico para o conjunto solução da inequação $-8sen^4x+10sen^2x-3<0\ {\rm \acute{e}}\ {\rm dada}\ {\rm por}$

11. UFRGS 1996

No intervalo real [0, 1/2], o conjunto solução da desigualdade senx cosx ≤ 1/4 é

- a. [0, 11/15]
- **b.** [0, η :/12]
- **c.** $[0, \eta / 10]$
- d. [0, 11:/8]
- e. [0, 11:/6]

12. CEFET-MG 2014

A solução da inequação

$$\begin{array}{l} 0 < (2\mathrm{sen}^2 x + \mathrm{sen} 2x)/(1+\mathrm{tg} x) < 1_{\mathrm{para}} \\ x \in [0,\pi/2[\,\mathrm{\acute{e}\,o\,conjunto} \end{array}$$

- a. $[0; \pi/4[$ b. $]0; \pi/4[$ c. $[0; \pi/2[$ d. $]0, \pi/2[$

$$e.[\pi, 4, \pi/2]$$

13. MACKENZIE 2014

Em R o domínio da função f, definida por

$$f(x) = \sqrt{(sen2x/senx)}$$
, é

$$\{x \in R \mid x \neq k\pi, k \in Z\}$$

a.
$$\{x \in R \mid x \neq k\pi, k \in Z\}$$
 b. $\{x \in R \mid 2k\pi < x < \pi + 2k\pi, k \in Z\}$ c.

c.
$$\{x \in R \mid \pi/2 + 2k\pi \le x \le 3\pi/2 + 2k\pi, k \in Z\}$$

 $\{x \in R \mid 2k\pi < x \le \pi/2 + 2k\pi \ \text{v} \ 3\pi/2 + 2k\pi \le x < 2\pi + 2k\pi, k \in Z\}$

 $\{x \in R \mid 2k\pi \le x \le 2 + 2k\pi \ \text{v} \ 3\pi/2 + 2k\pi \le x < 2\pi + 2k\pi, k \in Z\}$

14. ITA 2007

Seja x um número real no intervalo 0 < x < 11/2. Assinale a opção que indica o comprimento do menor intervalo que contém todas as soluções da desigualdade

$$\frac{1}{2}tg(\frac{\pi}{2} - x) - \sqrt{3}(\cos^2\frac{x}{2} - \frac{1}{2})sec(x) \ge 0$$

- a. $\pi/2$
- **b.** $\pi/3$
- c. $\pi/4$
- d. $\pi/6$
- e. $\pi/12$

15. Espcex (Aman) 2020

O conjunto solução da inequação 2cos2x+sen x > 2, no intervalo $[0, \pi]$, é

$$\frac{5\pi}{6}$$
, π

$$]$$
 0 , $\frac{\pi}{3}$ $[$ \mathbf{U} $]$ $\frac{2\pi}{3}$, π $[$

$$0, \frac{\pi}{3}$$

$$]$$
 0 , $\frac{\pi}{6}$ $[$ \mathbf{U} $]$ $\frac{5\pi}{6}$, π $[$

16. UEFS 2018

A figura mostra parte do gráfico da função

$$f(x) = \frac{senx}{cosx-2}$$

.No intervalo aberto $(0,2\pi)$ a solução de

$$sen\left(x
ight) >f\left(x
ight)$$
 é o conjunto

$$ig\{ x \in \mathbb{R} \, | \, 0 < x < rac{\pi}{2} ig\} \{ x \in \mathbb{R} \, | \, 0 < x < rac{\pi}{2} ig\}$$

b.

$$ig\{x \in \mathbb{R} \,|\, rac{\pi}{2} < x < \piig\}\{x \in \mathbb{R} \,|\, rac{\pi}{2} < x < \pi\}$$

$$\{x \in \mathbb{R} \, | \, 0 < x < \pi \} \{x \in \mathbb{R} \, | \, 0 < x < \pi \}$$

$$\{x \in \mathbb{R} \, | \, \pi < x < 2\pi\} \{x \in \mathbb{R} \, | \, \pi < x < 2\pi\}$$

$$\{x \in \mathbb{R} \, | \, 0 < x < 2\pi\} \{x \in \mathbb{R} \, | \, 0 < x < 2\pi\}$$

GABARITO: 1) b, 2) c, 3) e, 4) e, 5) d, 6) a, 7) a, 8) d, 9) b, **10)** b, **11)** b, **12)** b, **13)** d, **14)** d, **15)** e, **16)** c,