## Lista 3

## Część I i II

## Zadanie 1

Napisz funkcję, która zwraca p-wartość w omówionym na wykładzie warunkowym teście symetrii w przypadku tabeli  $2\times 2$ .

```
p <- function(n12, n21){
  part <- 0
  if(n12<(n12+n21)/2){
    for(i in 0:n12){
     part <- part + choose(n12+n21,i)*(1/2)^i*(1/2)^(n12+n21-i)
     }
     part <- 2*part
}

if(n12>(n12+n21)/2){
  for(i in 0:n12+n21){
  part <- part + choose(n12+n21,i)*(1/2)^i*(1/2)^(n12+n21-i)
     }
  part <- 2*part
}

if(n12==(n12+n21)/2){
  part <- 1
}

return(part)
}</pre>
```

## Zadanie 2

#### Zadanie 2.1

```
tabela <- matrix(c(1, 2, 5, 4), nrow = 2,
dimnames = list("Lek A" = c("Negatywna", "Pozytywna"),
"Lek B" = c("Negatywna", "Pozytywna")))
print(tabela)</pre>
```

## Lek B

Lek ANegatywnaPozytywnaNegatywna15Pozytywna24

```
#test McNemara
mcnemar.test(tabela, correct = TRUE)
```

McNemar's Chi-squared test with continuity correction

```
data: tabela
McNemar's chi-squared = 0.57143, df = 1, p-value = 0.4497
```

## Zadanie 2.2

- [1] 0.453125
- [1] 0.453125

## Zadanie 3

Przeprowadź symulacje w celu porównania mocy testu Z i testu  $Z_0$  przedstawionych na wykładzie. Rozważ różne długości prób.

# Wykres mocy testów Z i Z0 dla n=30



# Wykres mocy testów Z i Z0 dla n=100



## Wykres mocy testów Z i Z0 dla n=300



Widzimy, że dla mniejszych n test Z ma większą moc od testu  $Z_0$ . Dla większych n moce testów zbiliżają sie do siebie oraz rosną, szczególnie wokół p=0.5.

## Zadanie 4

McNemar's Chi-squared test with continuity correction

data: tabela

McNemar's chi-squared = 4.3214, df = 1, p-value = 0.03764

## Część III

## Zadanie 6

W pewnym badaniu porównywano skuteczność dwóch metod leczenia: Leczenie A to nowa procedura, a Leczenie B to stara procedura. Przeanalizuj dane przedstawione w Tabeli 3 (wyniki dla całej grupy pacjentów) oraz w Tabelach 4 i 5 (wyniki w podgrupach ze względu na dodatkową zmienną) i odpowiedz na pytanie, czy dla danych występuje paradoks Simpsona.

Table 1: Tabela 3: Dane dla całej grupy

| Metoda     | Poprawa | Brak poprawy |
|------------|---------|--------------|
| Leczenie A | 117     | 104          |
| Leczenie B | 177     | 44           |

Table 2: Tabela 4: Dane dla pacjentów z chorobami współistniejącymi.

| Metoda     | Poprawa | Brak poprawy |
|------------|---------|--------------|
| Leczenie A | 17      | 101          |
| Leczenie B | 2       | 36           |

Table 3: Tabela 5: Dane dla pacjentów bez chorób współistniejących.

| Metoda     | Poprawa | Brak poprawy |
|------------|---------|--------------|
| Leczenie A | 100     | 3            |
| Leczenie B | 175     | 8            |

```
wszyscy z chorobamu bez chorób
A 0.5294118 0.14406780 0.9708738
B 0.8009050 0.05263158 0.9562842
```

Chociaż leczenie B "wygrywa" patrząc na całą grupę badanych, po podziale na grupy ze względu na obecność chorób współistniejących możemy zauważyć, że to leczenie A ma większy odsetek wyzdrowień.

```
wszyscy z chorobamu bez chorób
2.740007e-09 2.248419e-01 7.675118e-01
```

W przeprowadzonym teście niezależności  $\chi^2$  dla całej grupy p-value jest bardzo małe, więc odrzucamy hipotezę  $H_0$  o niezależności. Jednak ten sam test wykonany osobno dla badanych grup - z chorobami współistniejącymi oraz bez chorób - w obu przypadkach daje p-value większą od poziomu istotności, a więc nie mamy podstaw do odrzucania hipotezy zerowej o niezależności zmiennych, to znaczy wyniku leczenia (poprawy) od przyjętego leczenia. To znaczy, że pozorny związek dla całej badanej grupy nie przekłada się na zalezność w podgrupach - a więc jest to klasyczny przypadek paradoksu Simpsona.

## Zadanie 7

Dla danych z listy 1, przyjmując za zmienną 1 zmienną CZY\_KIER, za zmienną 2 – zmienną PYT\_2 i za zmienną 3 – zmienną STAŻ, podaj interpretacje następujących modeli log-liniowych: [1 3], [13], [1 2 3], [12 13] oraz [1 23].

- [1 3] zmienne CZY\_KIER oraz STAŻ są niezależne,
- [13] zmienne CZY KIER oraz STAŻ nie są niezależne,
- [1 2 3] zmienne CZY KIER, PYT 2 oraz STAŻ są niezależne,
- [12 3] zmienne CZY\_KIER i PYT\_2 nie są niezależne, a zmienna STAŻ jest niezależna od nich obu,
- [12 13] zmienne CZY\_KIER i PYT\_2 nie są niezależne, CZY\_KIER i STAŻ nie są niezalezne, a PYT\_2 i STAŻ są warunkowo niezależne,
- [1 23] zmienna CZY\_KIER jest niezależna od pozostałych dwóch, PYT\_2 i STAŻ, które nie są od siebie niezależne.

## Część IV i V

## Zadanie 8

Przyjmując model log-liniowy [123] dla zmiennych opisanych w zadaniu 7 oszacuj prawdopobiebieństwa:

- że osoba pracująca na stanowisku kierowniczym jest zdecydowanie zadowolona ze szkoleń;
- że osoba o stażu pracy krótszym niż rok pracuje na stanowisku kierowniczym;
- że osoba o stażu pracy powyżej trzech lat nie pracuje na stanowisku kierowniczym.

Jakie byłyby oszacowania powyższych prawdopodobieństw przy założeniu modelu [12 23]? Zaczynamy od modelu [123]:

#### # A tibble: 4 x 5

|   | PYT_2       | freq_sum    | fitted_sum  | p_dane      | p_model     |
|---|-------------|-------------|-------------|-------------|-------------|
|   | <fct></fct> | <int></int> | <dbl></dbl> | <dbl></dbl> | <dbl></dbl> |
| 1 | -2          | 10          | 10.0        | 0.370       | 0.370       |
| 2 | -1          | 2           | 2.00        | 0.0741      | 0.0741      |
| 3 | 1           | 2           | 2.00        | 0.0741      | 0.0741      |
| 4 | 2           | 13          | 13.0        | 0.481       | 0.481       |

#### # A tibble: 2 x 5 CZY\_KIER freq\_sum fitted\_sum p\_dane p\_model <fct> <int> <dbl> <dbl> <dbl> 1 Nie 40 40.0 0.976 0.976 2 Tak 1.00 0.0244 0.0244 1 # A tibble: 2 x 5 CZY\_KIER freq\_sum fitted\_sum p\_dane p\_model <fct> <int> <dbl> <dbl> <dbl> 1 Nie 10 10.0 0.526 0.526 2 Tak 9 9.00 0.474 0.474

Model [123] dobrze oszacował potrzebne prawdopodobieństwa (w 1. tabeli interesuje nas wiersz z odpowiedzią "2" na PYT\_2, w 2. i 3. odpowiedź "Tak" w kolumnie CZY\_KIER). Zarówno szacowane liczności jak i prawdopodobieństwa są równe dla modelu i danych.

## # A tibble: 4 x 5

|   | PYT_2       | freq_sum    | fitted_sum  | p_dane      | p_model     |
|---|-------------|-------------|-------------|-------------|-------------|
|   | <fct></fct> | <int></int> | <dbl></dbl> | <dbl></dbl> | <dbl></dbl> |
| 1 | -2          | 10          | 10.0        | 0.370       | 0.370       |
| 2 | -1          | 2           | 2.00        | 0.0741      | 0.0741      |
| 3 | 1           | 2           | 2.00        | 0.0741      | 0.0741      |
| 4 | 2           | 13          | 13.0        | 0.481       | 0.481       |

#### # A tibble: 2 x 5

|   | CZY_KIER    | ireq_sum    | fitted_sum  | p_dane      | <pre>p_model</pre> |
|---|-------------|-------------|-------------|-------------|--------------------|
|   | <fct></fct> | <int></int> | <dbl></dbl> | <dbl></dbl> | <dbl></dbl>        |
| 1 | Nie         | 40          | 35.7        | 0.976       | 0.872              |
| 2 | Tak         | 1           | 5.25        | 0.0244      | 0.128              |

#### # A tibble: 2 x 5

|   | CZY_KIER    | freq_sum    | fitted_sum  | <pre>p_dane</pre> | p_model     |
|---|-------------|-------------|-------------|-------------------|-------------|
|   | <fct></fct> | <int></int> | <dbl></dbl> | <dbl></dbl>       | <dbl></dbl> |
| 1 | Nie         | 10          | 14.8        | 0.526             | 0.778       |
| 2 | Tak         | 9           | 4.22        | 0.474             | 0.222       |

Dla modelu [12 23] odpowiedź na pierwszy podpunkt się zgadza - wartości w danych są równe przewidywanym przez model. Jednak przy pytaniach, które łączą zmienne CZY\_KIER oraz STAŻ (podpunkt 2. i 3.) model przeszacował wyniki z dla osób o krótkim stażu oraz niedoszacował odpowiedzi w dla osób o długim stażu - wynika to z braku powiązanie między tymi zmiennymi. Jak widzimy, złe dobranie modelu skutkuje złym oszacowaniem badanych prawdopodobieństw.

## Zadania dodatkowe

## Zadanie 2\*

Na podstawie danych z listy 1 dokonaj wyboru modelu rozważając uwzględnienie zmiennych PYT 1, PYT 2 i PŁEĆ w oparciu o:

- testy,
- kryterium AIC,
- kryterium BIC.

Będzimy roważać modele  $[1\ 2\ 3]$ ,  $[12\ 13\ 23]$  oraz [123].

Analysis of Deviance Table

```
Model 1: Freq ~ PYT_1 + PYT_2 + PŁEĆ
Model 2: Freq ~ PYT_1 * PYT_2 + PYT_1 * PŁEĆ + PYT_2 * PŁEĆ
Model 3: Freq ~ PYT_1 * PYT_2 * PŁEĆ
  Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1
         31
               226.057
2
         12
                 7.365 19 218.692
                                     <2e-16 ***
3
          0
                 0.000 12
                             7.365
                                     0.8326
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

W tej analizie testujemy, czy model prostszy wystarcza  $(H_0)$ , czy potrzebny jest model bardziej złożony  $(H_1)$ . Testujemy, czy sensownie jest zmieniać model z [1 2 3] na [12 13 23] oraz [12 13 23] na [123]. Wykonujemy test istotności  $\chi^2$ .

#### Interpretacja:

Model 1 (niezależność) jest zbyt prosty, ponieważ po dodaniu interakcji dwójkowych (Model 2) dopasowanie znacznie się poprawia (p < 2e-16 więc odrzucamy  $H_0$ ).

Model 3 (pełny) nie poprawia istotnie dopasowania względem Modelu 2 (p = 0.8326, nie ma podstaw do odrzucenia  $H_0$ ), więc interakcja trójkowa nie jest potrzebna.

Ostateczny wybór: Model 2 – zawiera wszystkie istotne interakcje (dwójkowe), a jest prostszym modelem niż pełny.

```
Model AIC BIC

1 model_full 150.1856 217.7408

2 model_12_13_23 133.5509 180.8396

3 model_indep 314.2426 329.4425
```

Porównując **AIC** orac **BIC** widzimy, że dla obu kryteriów model [12 13 23] przymuje najmniejsze wartości, więc dla tego porównania jest najlepszy.

Zarówno testy chi-kwadrat, jak i kryteria AIC/BIC wskazują, że najlepszym modelem jest model z interakcjami dwójkowymi: Freq ~ PYT\_1\*PYT\_2 + PYT\_1\*PŁEĆ + PYT\_2\*PŁEĆ, oznaczany jako [12 13 23].