Exercise 11.1

Q.1 One angle of a parallelogram in 130°. Find the measures of its remaining angles.

In parallelogram

$$m\angle B = 130^{\circ}$$

$$\angle D = \angle B$$

(Opposite angles of a parallelogram)

$$m\angle D = m\angle B = 130^{\circ}$$

We know that

$$\angle A + \angle B = 180$$

$$\angle A + 130 = 180$$

$$\angle A = 180-130$$

$$\angle A = 50^{\circ}$$

If
$$\angle D = \angle B$$

Then

$$\angle C = \angle A$$

$$\angle C = 50^{\circ}$$

Q.2 One exterior angle formed on producing one side of a parallelogram is 40°. Find the measures of its interior angles.

ABCD is a parallelogram. \overline{BA} is produced towards A.

$$m\angle DAM = 40^{\circ}$$

$$m\angle DAB = ?$$

$$m\angle D = ?$$

$$m\angle B = ?$$

$$m\angle C = ?$$

$$\angle DAM + \angle DAB = 180^{\circ}$$

$$40^{\circ} + \angle DAB = 180^{\circ}$$

$$\angle DAB = 180^{\circ} - 40^{\circ}$$

$$\angle DAB = 140^{\circ}$$

$$\angle DAB + \angle B = 180^{\circ}$$

$$140^{\circ} + \angle B = 180^{\circ}$$

$$\angle B = 180^{\circ} - 140^{\circ}$$

$$\angle B = 40^{\circ}$$

$$\angle D = \angle B = 40^{\circ}$$

$$\angle D = 40^{\circ}$$

$$\angle C = \angle DAB$$

$$∠$$
C = 140°

Theorem 11.1.2

Statement: If two opposite sides of quadrilateral are congruent and parallel, it is a parallelogram

Given In quadrilateral *ABCD*,

 $\overline{AB} \cong \overline{DC}$ and $\overline{AB} \parallel \overline{DC}$

To prove

ABCD is a parallelogram

Construction

Join the point B to D and in the figure name the angles as

Statements	Reasons
$In \Delta ABD \leftrightarrow \Delta CDB$	
$\overline{AB} \cong \overline{DC}$	Given
∠2 ≅ ∠1	Alternate angles
$\overline{BD} \cong \overline{BD}$	Common
$\therefore \Delta ABD \cong \Delta CDB$	SAS postulate
Now $\angle 4 \cong \angle 3$ (i)	(Corresponding angles of congruent triangles)
$\therefore \overline{AD} \parallel \overline{BC}$ (ii)	from (i)
and $\overline{AD} = \overline{BC}$ (iii)	corresponding of sides of congruent triangles
Also $\overline{AB} \parallel \overline{DC}$ (iv)	Given
Hence ABCD is a parallelogram	From (ii)-(iv)

Last Updated: September 2020

Report any mistake at freeilm786@gmail.com

[WEBSITE: WWW.FREEILM.COM] [EMAIL: FREEILM786@GMAIL.COM] [PAGE: 2 OF 2]