Plan

- 5 Visualisation courbes/surfaces isovaleur
 - Présentation
 - Courbes isovaleur
 - Données volumiques
 - Surfaces isovaleur

Principe

Courbe isovaleur = Courbe de niveau

Principe

Calcul des courbes de niveaux (isovaleur) d'une surface z = f(x, y)

Principe

Calcul des courbes de niveaux (isovaleur) d'une surface z = f(x, y) courbe isovaleur = {surface $z = f(x, y)} \cap {\text{plan } z = v}$

Principe

Calcul des courbes de niveaux (isovaleur) d'une surface z = f(x, y) courbe isovaleur = {surface $z = f(x, y)} \cap {\text{plan } z = v}$

Principe

Calcul des courbes de niveaux (isovaleur) d'une surface z = f(x, y) courbe isovaleur = {surface $z = f(x, y)} \cap {\text{plan } z = v}$

Principe

Calcul des courbes de niveaux (isovaleur) d'une surface z = f(x, y) courbe isovaleur = {surface $z = f(x, y)} \cap {\text{plan } z = v}$

Courbe isovaleur \equiv courbe implicite $\{f(x,y) = v\}$

Données scanner/IRM

Données scanner/IRM

Image d'une coupe (slice)

Données scanner/IRM

Pixel: position (i,j) et valeur $p_{i,j} \in [0,1]$

Données scanner/IRM

Pixel : point dans l'espace
$$(x = i, y = j, z = p_{i,j})$$

Données scanner/IRM

Pixel : point dans l'espace
$$(x = i, y = j, z = p_{i,j})$$

◆ロト ◆団 ト ◆ 豆 ト ◆ 豆 ・ 夕 Q (*)

Données scanner/IRM

Pixel : point dans l'espace
$$(x = i, y = j, z = p_{i,j})$$

4 D > 4 A > 4 B > 4 B > B = 900

Données scanner/IRM

Image

 \equiv

surface

Données scanner/IRM

Courbe isovaleur

_

intersection surface-plan

Données scanner/IRM

 ${\sf Image} \qquad \qquad \equiv \qquad \qquad {\sf surface}$

Données scanner/IRM

Courbe isovaleur

=

intersection surface-plan

Triangulation préalable - cas de maillages grilles régulières

Triangulation préalable - cas de maillages grilles régulières

Grille régulière : trianguler chaque face quadrangulaire

Triangulation préalable - cas de maillages grilles régulières

Grille régulière : trianguler chaque face quadrangulaire

→ découper chaque rectangle en deux (différentes stratégies possibles)

Calcul de courbes isovaleur Principe

Principe

Données : maillage triangulaire plan avec sommets $P_i = (x_i, y_i)$

Principe

Données : maillage triangulaire plan avec sommets $P_i = (x_i, y_i)$

et valeurs associées z;

Principe

Données : maillage triangulaire plan avec sommets $P_i = (x_i, y_i)$

et valeurs associées z;

→ déterminer une courbe isovaleur (linéaire par morceaux)

Algorithme

Algorithme

Données : maillage triangulaire plan avec sommets $P_i = (x_i, y_i)$

Algorithme

Données : maillage triangulaire plan avec sommets $P_i = (x_i, y_i)$ avec valeurs associées z_i et une isovaleur v

Algorithme

Données : maillage triangulaire plan avec sommets $P_i = (x_i, y_i)$ avec valeurs associées z_i et une isovaleur v

→ déterminer une courbe isovaleur (linéaire par morceaux)

Algorithme

Algorithme

(A) - Marquage des sommets P_i avec une marque binaire :

Algorithme

(A) - Marquage des sommets P_i avec une marque binaire :

Algorithme

(A) - Marquage des sommets P_i avec une marque binaire :

 \rightarrow partition des sommets en deux ensembles

Algorithme

Algorithme

(B) - Parcours des triangles et construction de la courbe isovaleur

Algorithme

(B) - Parcours des triangles et construction de la courbe isovaleur chaque triangle T=[S1,S2,S3]

Algorithme

(B) - Parcours des triangles et construction de la courbe isovaleur chaque triangle $T=[S1,S2,S3] \rightarrow 8$ marquages possibles

Algorithme

(B) - Parcours des triangles et construction de la courbe isovaleur chaque triangle $T = [S1, S2, S3] \rightarrow 8$ marquages possibles

 \rightarrow 2 config. possibles :

Algorithme

(B) - Parcours des triangles et construction de la courbe isovaleur chaque triangle $T = [S1, S2, S3] \rightarrow 8$ marquages possibles

→ 2 config. possibles : même signe / signes différents

◆ロト ◆問 > ◆ 恵 > ◆ 恵 > り Q ®

Algorithme

(B) - Parcours des triangles et construction de la courbe isovaleur config. même signe

Algorithme

(B) - Parcours des triangles et construction de la courbe isovaleur config. même signe

Algorithme

(B) - Parcours des triangles et construction de la courbe isovaleur config. même signe \rightarrow pas d'intersection avec le plan z=v

Algorithme

(B) - Parcours des triangles et construction de la courbe isovaleur config. même signe \rightarrow pas d'intersection avec le plan z=v

 \rightarrow pas de partie de courbe isovaleur pour cette config.

Algorithme

(B) - Parcours des triangles et construction de la courbe isovaleur config. signes différents

Algorithme

(B) - Parcours des triangles et construction de la courbe isovaleur config. signes différents

Algorithme

(B) - Parcours des triangles et construction de la courbe isovaleur config. signes différents \rightarrow intersection avec le plan z = v

Algorithme

(B) - Parcours des triangles et construction de la courbe isovaleur config. signes différents \rightarrow intersection avec le plan z=v

ightarrow partie de courbe isovaleur pour cette config. réduite à un segment [A,B]

Algorithme

(B) - Parcours des triangles et construction de la courbe isovaleur config. signes différents \rightarrow intersection avec le plan z=v

- ightarrow partie de courbe isovaleur pour cette config. réduite à un segment [A,B]
- \rightarrow calcul de 2 intersections plan $(z = v) \cap arete[P, Q]$

Algorithme

(B) - Parcours des triangles et construction de la courbe isovaleur calcul du point $I = plan(z = v) \cap arete[P, Q]$:

Algorithme

(B) - Parcours des triangles et construction de la courbe isovaleur calcul du point $I = \text{plan}(z = v) \cap \text{arete}[P, Q]$:

Algorithme

(B) - Parcours des triangles et construction de la courbe isovaleur calcul du point $I = \text{plan}(z = v) \cap \text{arete}[P, Q]$:

$$I = (1 - \lambda)P + \lambda Q$$

Algorithme

(B) - Parcours des triangles et construction de la courbe isovaleur calcul du point $I = plan(z = v) \cap arete[P, Q]$:

$$I = (1 - \lambda)P + \lambda Q$$
 avec $\lambda = (v - zP)/(zQ - zP)$

Algorithme

(B) - Parcours des triangles et construction de la courbe isovaleur pour chaque triangle : 0 ou 1 segment à calculer

Algorithme

(B) - Parcours des triangles et construction de la courbe isovaleur pour chaque triangle : 0 ou 1 segment à calculer

ensemble des segments calculés : courbe isovaleur

Algorithme

(C) - Stratégie de parcours des différents triangles

Algorithme

Algorithme

Algorithme

Algorithme

Algorithme

Algorithme

Algorithme

Algorithme

Algorithme

Algorithme

Algorithme

Algorithme

Algorithme

Algorithme

Algorithme

Algorithme

Algorithme

Algorithme

Algorithme

(C) - Stratégie de parcours des différents triangles(C1) - sans ordre particulier

Algorithme

(C) - Stratégie de parcours des différents triangles(C1) - sans ordre particulier

Algorithme

(C) - Stratégie de parcours des différents triangles (C1) - sans ordre particulier

ightarrow parcours de la courbe isovaleur impossible (pas de relation de voisinage entre les différents segments)

Algorithme

(C) - Stratégie de parcours des différents triangles

Algorithme

(C) - Stratégie de parcours des différents triangles(C2) - suivi de la courbe isovaleur

0) Triangulation initiale : aucune face marquée

Algorithme

(C) - Stratégie de parcours des différents triangles(C2) - suivi de la courbe isovaleur

1) Marquer les faces non intersectées par la courbe isovaleur (faces sans changement de signe)

Algorithme

(C) - Stratégie de parcours des différents triangles (C2) - suivi de la courbe isovaleur

1) Marquer les faces non intersectées par la courbe isovaleur (faces sans changement de signe)

Algorithme

- 2) Rechercher les composantes ouvertes
 - 2-A) Trouver une face non marquée avec changement de signe sur une arete externe La marquer

Algorithme

- 2) Rechercher les composantes ouvertes
 - 2-B) Par voisinages successifs suivant les arêtes intersectées, trouver les faces (avec changement de signe), les marquer et pour chacune calculer le segment de courbe correspondant

Algorithme

- 2) Rechercher les composantes ouvertes
 - 2-B) Par voisinages successifs suivant les arêtes intersectées, trouver les faces (avec changement de signe), les marquer et pour chacune calculer le segment de courbe correspondant

Algorithme

- 2) Rechercher les composantes ouvertes
 - 2-B) Par voisinages successifs suivant les arêtes intersectées, trouver les faces (avec changement de signe), les marquer et pour chacune calculer le segment de courbe correspondant

Algorithme

- 2) Rechercher les composantes ouvertes
 - 2-B) Par voisinages successifs suivant les arêtes intersectées, trouver les faces (avec changement de signe), les marquer et pour chacune calculer le segment de courbe correspondant

Algorithme

- 2) Rechercher les composantes ouvertes
 - 2-C) Jusqu'à trouver une autre face au bord avec changement de signe sur une arete externe La marquer

Algorithme

- 3) Rechercher les composantes fermées
 - 3-A) Trouver une face F0 non marquée avec changement de signe

Algorithme

(C) - Stratégie de parcours des différents triangles(C2) - suivi de la courbe isovaleur

Algorithme

(C) - Stratégie de parcours des différents triangles(C2) - suivi de la courbe isovaleur

Algorithme

(C) - Stratégie de parcours des différents triangles(C2) - suivi de la courbe isovaleur

Algorithme

(C) - Stratégie de parcours des différents triangles(C2) - suivi de la courbe isovaleur

Algorithme

(C) - Stratégie de parcours des différents triangles(C2) - suivi de la courbe isovaleur

Algorithme

(C) - Stratégie de parcours des différents triangles(C2) - suivi de la courbe isovaleur

Algorithme

(C) - Stratégie de parcours des différents triangles(C2) - suivi de la courbe isovaleur

Algorithme

(C) - Stratégie de parcours des différents triangles(C2) - suivi de la courbe isovaleur

Algorithme

(C) - Stratégie de parcours des différents triangles(C2) - suivi de la courbe isovaleur

Algorithme

- 3) Rechercher les composantes fermées
 - 3-C) Jusqu'à revenir à la face F0

Algorithme

(C) - Stratégie de parcours des différents triangles(C2) - suivi de la courbe isovaleur

ightarrow nécessité d'avoir une structure de données adaptée avec les relations d'adjacence entre faces.

Algorithme - écriture de l'algo. pour la stratégie (C1)

Algorithme - écriture de l'algo. pour la stratégie (C1)

Données:

- ullet triangulation ${\mathcal T}$
- valeur v
- **fonction** $I = intersection_arete_plan(P,Q,v)$

$$\lambda \leftarrow (v - zP)/(zQ - zP)$$
$$I \leftarrow (1 - \lambda) P + \lambda Q$$

Algorithme - écriture de l'algo. pour la stratégie (C1)

Données:

- ullet triangulation ${\mathcal T}$
- valeur v
- **fonction** $I = intersection_arete_plan(P,Q,v)$

$$\lambda \leftarrow (v - zP)/(zQ - zP)$$
$$I \leftarrow (1 - \lambda) P + \lambda Q$$

Résultat :

ullet courbe isovaleur ${\mathcal C}$ (liste de segments)

Algorithme - écriture de l'algo. pour la stratégie (C1)

Algorithme - écriture de l'algo. pour la stratégie (C1)

```
// (A) Marquage des sommets

pour_tout sommet S de T faire

| \mathbf{si} \ zS < v \ \mathbf{alors}
| marque(S) \leftarrow 0
| \mathbf{sinon}
| marque(S) \leftarrow 1
| \mathbf{fin_si}
```

Algorithme - écriture de l'algo. pour la stratégie (C1)

```
// (B) Parcours des triangles

pour_tout triangle T de T faire

// les trois sommets de T et leurs marques

S1 \leftarrow \text{sommet1}(T)

S2 \leftarrow \text{sommet2}(T)

S3 \leftarrow \text{sommet3}(T)

m1 \leftarrow \text{marque}(S1)

m2 \leftarrow \text{marque}(S2)

m3 \leftarrow \text{marque}(S3)
```

Algorithme - écriture de l'algo. pour la stratégie (C1)

```
// cas marque de S1 différente des marques de S2 et S3

si m1 \neq m2 et m1 \neq m3 alors

// calcul des deux intersections

A \leftarrow \text{intersection\_arete\_plan}(S1,S2,v)

B \leftarrow \text{intersection\_arete\_plan}(S1,S3,v)

\mathcal{C} \leftarrow \mathcal{C} \cup \{[A,B]\} // ajouter [A,B] à \mathcal{C}

fin_si
```

Algorithme - écriture de l'algo. pour la stratégie (C1)

```
// cas marque de S2 différente des marques de S3 et S1

si m2 \neq m3 et m2 \neq m1 alors

// calcul des deux intersections

A \leftarrow \text{intersection\_arete\_plan}(S2,S3,v)

B \leftarrow \text{intersection\_arete\_plan}(S2,S1,v)

\mathcal{C} \leftarrow \mathcal{C} \cup \{[A,B]\} // ajouter [A,B] à \mathcal{C}

fin_si
```

Algorithme - écriture de l'algo. pour la stratégie (C1)

```
// cas marque de S3 différente des marques de S1 et S2 si m3 \neq m1 et m3 \neq m2 alors
// calcul des deux intersections
A \leftarrow intersection\_arete\_plan(S3,S1,v)
     B \leftarrow \text{intersection\_arete\_plan}(S3,S2,v)
    \mathcal{C} \leftarrow \mathcal{C} \cup \{[A, B]\} // ajouter [A, B] à \mathcal{C}
     ' fin de traitement du triangle T
```

Exemples d'application

Courbes isovaleur d'une surface 3D

Exemples d'application

Courbes isovaleur sur des données IRM