Boundary patrol using robotic networks without localization

Topology and Minimalism RSS Workshop, June 28, 2008

Francesco Bullo

Center for Control, Dynamical Systems and Computation University of California at Santa Barbara http://motion.mee.ucsb.edu

Ack: Sara Susca (PhD, UCSB), Sonia Martínez (UCSD)

Incomplete state of the art

AeroVironment Inc, "Raven" small unmanned aerial vehicle

iRobot Inc, "PackBot" unmanned ground vehicle

Distributed algorithms

automata-theoretic: "Distributed Algorithms" by N. Lynch, D. Peleg

numerical: "Parallel and Distributed Computation" by by Bertsekas and Tsitsiklis

Motion coordination

"rendezvous" by Suzuki and Yamashita

"consensus, flocking, agreement" by Jadbabaie, Olfati-Saber

"formation control" by Baillieul, Morse, Anderson

Research directions

Build: distributed systems embedded actuator/sensors networks

Develop distributed disciplines:

- (i) sensor fusion
- (ii) communications
- (iii) coordinated control
- (iv) task allocation and scheduling

Challenges

- (i) scalability
- (ii) performance
- (iii) robustness
- (iv) models

Environmental monitoring

Building monitoring and evac

Security systems

Scenario 1: Boundary estimation

Assumption: local sensing and tracking, interpolation via waypoints

Objective: estimate/interpolate moving boundary

adaptive polygonal approximation

Scenario 1: Interpolation theory

For strictly convex bodies (Gruber '80)

• sufficient condition for optimality: each two consecutive interpolation points p_k , p_{k+1} are separated by same line integral $\int_{p_k \to p_{k+1}} \kappa(\ell)^{1/3} d\ell$

• error estimate
$$pprox rac{1}{12n^2} \left(\int_{\partial Q} \kappa(\ell)^{1/3} d\ell \right)^3$$

Scenario 1: Estimate-Update and Pursuit

(i) projection step

(ii) update interpolation points for "pseudo-uniform" interpolation placement

(iii) accelerate/decelerate for uniform vehicle placement

Scenario 1: Performance/robustness

- (i) asynchronous distributed over ring
- (ii) convergence to equally distributed interpolation points and equally spaced vehicles
- (iii) time complexity: worst case $O(n^2\log(n))$, where $n=\frac{\# \text{ interpolation points}}{\# \text{ vehicles}}$
- (iv) ISS robust to: evolving boundary, interpolation, sensor noise

Scenario 1: translation into average consensus

• pseudo-distance between interpolation points (p_k, p_{k+1})

$$d(k) = \lambda \int_{p_k \to p_{k+1}} \kappa(\ell)^{1/3} d\ell + (1 - \lambda) \int_{p_k \to p_{k+1}} d\ell$$

• "go to center of Voronoi cell" update is peer-to-peer averaging rule

- linear model is:
 - stochastic matrices: switching, symmetric and nondegenerate
 - union of associated graphs over time is a ring (i.e., jointly connected graphs)
 - convergence rate as in Toeplitz tridagonal problem

Scenario 2: Synchronized boundary patrolling

- (i) some UAVs move along boundary of sensitive territory
- (ii) short-range communication and sensing
- (iii) surveillance objective: minimize service time for appearing events communication network connectivity

Example motion:

Analogy with mechanics and dynamics

- (i) robots with "communication impacts" analogous to beads on a ring
- (ii) classic subject in dynamical systems and geometric mechanics billiards in polygons, iterated impact dynamics, gas theory of hard spheres
- (iii) rich dynamics with even just 3 beads (distinct masses, elastic collisions) dynamics akin billiard flow inside acute triangle dense periodic and nonperiodic modes, chaotic collision sequences

SIAM REVIEW Vol. 47, No. 2, pp. 273-300 © 2005 Society for Industrial and Applied Mathematics

Iterated Impact Dynamics of N-Beads on a Ring*

Bryan Cooley[†] Paul K. Newton[†]

Abstract. When N-beads slide along a frictionless hoop, their collision sequence gives rise to a dynamical system that can be studied via matrix products. It is of general interest to understand the distribution of velocities and the corresponding eigenvalue spectrum that a given collision sequence can produce. We formulate the problem for general N and state some basic theorems regarding the eigenvalues of the collision matrices and their products. The

Boundary patrolling: synchronized bead oscillation

Desired synchronized behavior:

- starting from random initial positions and velocities
- every bead impacts its neighbor at the same point
- simultaneous impacts

Design specification for synchronization algorithm

Achieve: asymptotically stabilize synchronized motion Subject to:

- (i) arbitrary initial positions, velocities and directions of motion
- (ii) beads can measure traveled distance, however
 no absolute localization capability, no knowledge of circle length
- (iii) no knowledge about n, adaptation to changing n (even and odd)
- (iv) anynomous agents with memory and message sizes independent of n
- (v) smooth dependency upon effect of measurement and control noise

Fully-adaptive feedback synchronization

Slowdown-Impact-Speedup algorithm

Algorithm: (for presentation's sake, beads sense their position)

1st phase: compute average speed v and desired sweeping arcs

2nd phase for $f \in]\frac{1}{2}, 1[$, each bead:

- ullet moves at nominal speed v if inside its desired sweeping arc
- ullet slows down (fv) when moving away of its desired sweeping arc hesitate when early
- when impact, change direction
- speeds up when moving towards its desired sweeping arc

Simulations results: balanced synchronization

Balanced initial condition:

- \bullet n is even
- d_i is direction of motion
- $\sum_{i=1}^{n} d_i(0) = \sum_{i=1}^{n} d_i(t) = 0$
- \bullet n/2 move initially clockwise

First phase: average speed and sweeping arc

If an impact between bead i and i + 1 occurs:

- beads average nominal speeds: $v_i^+ = v_{i+1}^+ = 0.5(v_i + v_{i+1})$
- beads change their direction of motion if $d_i = -d_{i+1}$ (head-head type)
- beads update their desired sweeping arc

exponential average consensus

Challenges

- (i) how to prove balanced synchronization?
- (ii) what happens for unbalanced initial conditions $\sum_{i=1}^{n} d_i(0) \neq 0$?
- (iii) what happens for n is odd?
- (iv) how to describe the system with a single variable?

Modeling detour

- configuration space
 - (i) order-preserving dynamics $\theta_i \in \mathsf{Arc}(\theta_{i-1}, \theta_{i+1})$ on \mathbb{T}^n
 - (ii) $\Delta^n \times \{c, cc\}^n \times (\mathbb{R}_{>0})^n \times (arcs)^n \times \{away, towards\}^n$

- hybrid system with
 - (i) piecewise constant dynamics
 - (ii) event-triggered jumps: impact, cross boundary

Passage and return times

ullet passage time: $t_i^k=k$ th time when bead i passes by sweeping arc center

- return time: $\delta_i(t) =$ duration between last two passage times
- if impact between beads (i, i + 1) at time t, then

$$\begin{bmatrix} \delta_i \\ \delta_{i+1} \end{bmatrix} (t^+) = \underbrace{\begin{bmatrix} \frac{1-f}{1+f} & \frac{2f}{1+f} \\ \frac{2f}{1+f} & \frac{1-f}{1+f} \end{bmatrix}}_{\text{stochastic (irr + aperd)}} \begin{bmatrix} \delta_i \\ \delta_{i+1} \end{bmatrix} (t^-)$$

Convergence results: balanced synchronization

Balanced Synchronization Theorem: For balanced initial directions, assume

- (i) exact average speed and desired sweeping arcs
- (ii) initial conditions lead to well-defined 1st passage times

Then balanced synchronization is asymptotically stable

$$\lim_{t \to \infty} \delta(t) = \frac{2\pi}{Nv} \mathbf{1}_n, \qquad \lim_{k \to +\infty} ||T^k - \frac{\mathbf{1}_n \cdot T^k}{n} \mathbf{1}_n|| = 0$$

Conjectures arising from simulation results

Only assumption required is balanced initial conditions.

(i) analysis of cascade consensus algorithms

(ii) global attractivity of synchronous behavior

Simulations results: 1-unbalanced case

1-unbalanced initial condition:

- ullet n is odd
- $\sum_{i=1}^{n} d_i(0) = \sum_{i=1}^{n} d_i(t) = \pm 1$

1-unbalanced synchronization

(i)
$$f \in]\frac{1}{2}, \frac{n}{1+n}[$$

(ii) 1-unbalanced sync: beads meet at arcs boundaries
$$\pm \frac{2\pi}{n^2} \frac{f}{1-f}$$

1-unbalanced Synchronization Theorem: For $\sum_{i=1}^{n} d_{i}(0) = \pm 1$, assume

- (i) exact average speed and desired sweeping arcs
- (ii) initial conditions lead to well-defined 1st passage times

Then 1-unbalanced synchronization is asymptotically stable

$$\lim_{t \to \infty} \delta(t) = \frac{2\pi}{Nv} \mathbf{1}_n, \qquad \lim_{k \to +\infty} \left(T^{2k} - T^{2(k-1)} \right) = \frac{2\pi}{v} \mathbf{1}_n$$

General unbalanced case

Conjecture global asy-synchronization in the balanced and unbalanced case

D-unbalanced period orbits Theorem:

Let $\sum_{i=1}^{n} d_i(0) = \pm D$. If there exists an orbit along which beads i and i+1 meet at boundary $\pm \frac{2\pi}{n^2} \frac{f}{1-f}$, then $f < \frac{n/|D|}{1+n/|D|}$.

Emerging discipline: motion-enabled networks

- network modeling
 network, ctrl+comm algorithm, task, complexity
- coordination algorithm
 deployment, task allocation, boundary estimation

Open problems

- (i) algorithmic design for motion-enabled sensor networks scalable, adaptive, asynchronous, agent arrival/departure tasks: search, exploration, identify and track
- (ii) integration between motion coordination, communication, and estimation tasks
- (iii) Very few results available on:
 - (a) scalability analysis: time/energy/communication/control
 - (b) robotic networks over random geometric graphs
 - (c) complex sensing/actuation scenarios