Классификация

Будем решать задачу бинарной классификации, то есть классификации на два класса.

Пример: классификация больных

- есть данные о пациентах
- хочется построить модель предсказания болен человек или здоров

Два типа данных

Первая выборка

Линейно разделимая выборка

Вторая выборка

Не является линейно разделимой

Многомерный случай

Линейно разделимая выборка

Формула линейной регрессии

$$a(x) = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_d x_d$$

- a(x) предсказание модели
- $x_1, x_2, ...$ признаки объекта
- w_0, w_1, w_2, \dots веса модели

Формула линейной регрессии

$$a(x) = (w, x)$$

Бинарный классификатор

$$a(x) = sign(w, x)$$

$$sign(w,x) = +1, ecли(w,x) > 0$$
И $sign(w,x) = -1, ecли(w,x) < 0$

Линейный классификатор

$$a(x) = sign(w, x)$$

Пример

Признаки пациента:

- х₁ возраст
- \bullet x_2 температура
- x_3 показатель давления

Классификатор:

$$a(x) = sign(w_0 + w_1x_1 + w_2x_2 + w_3x_3)$$

4 параметра - w_0 , w_1 , w_2 , w_3

Логистическая регрессия

Логистическая регрессия – это линейный классификатор! Попробуем применить его для решения задачи.

Практика!

https://colab.research.google.com/drive/1sas_HM WThGSiEZvN4hiqdxU6xLHKks7#scrollTo=z79gblw0bWJZ

Мягкая классификация

 нам хочется знать не только ответ, но и вероятность ответа

Бинарный линейный классификатор

Уверенность классификатора

Уверенность классификатора

Сигмоида

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Сигмоида переводит произвольное действительное число (расстояние от объекта до разделяющей границы) в отрезок [0; 1].

Предсказываем вероятность

$$a(x) = \sigma(w, x) = \frac{1}{1 + e^{-(w, x)}}$$

Использование сигмоиды позволяет получить число из отрезка [0; 1].

Логистическая регрессия

$$a(x) = \frac{1}{1 + e^{-(w,x)}}$$

Логистическая регрессия – это линейный классификатор, который умеет предсказывать вероятности классов!

Логистическая регрессия для модели оттока

- получаем не только класс (болен пациент или нет),
 но и вероятность того, что пациент болен
- получаем хорошо интерпретируемую модель, например,

$$a(x) = \sigma(1 + \mathbf{10} \cdot \mathbf{д}$$
авление — $\mathbf{5} \cdot \mathbf{т}$ емпература)

Пример: предсказание модели

id	Предсказанная вероятность	Правильный ответ	Предсказанный класс
1	0.6	-1	1
2	0.8	1	1
3	0.3	-1	-1
4	0.55	-1	1
5	0.1	-1	-1
6	0.96	1	1
7	0.33	1	-1
8	0.2	-1	-1
9	0.14	-1	-1
10	0.88	1	1

Практика!

https://colab.research.google.com/drive/1sas_HM WThGSiEZvN4hiqdxU6xLHKks7#scrollTo=z79gblw0bWJZ

Accuracy

• **Accuracy** – это доля правильных ответов алгоритма

Accuracy = 0.7

id	Предсказанная вероятность	Правильный ответ	Предсказанный класс
1	0.6	-1	1
2	0.8	1	1
3	0.3	-1	-1
4	0.55	-1	1
5	O.1	-1	-1
6	0.96	1	1
7	0.33	1	-1
8	0.2	-1	-1
9	0.14	-1	-1
10	0.88	1	1

Accuracy

• 1000 объектов:

950 – не мошенники (класс 0) 50 – мошенники (класс +1)

Модель: a(x) = 0

Accuracy?

Accuracy

• 1000 объектов:

950 – не мошенники (класс 0) 50 – мошенники (класс +1)

Модель: a(x) = 0

Accuracy = 0.95

Если классы несбалансированы, то accuracy не надо использовать!

Матрица ошибок

Confusion Matrix			
<u>Actual</u> <u>Predict</u>	0	1	
0	TN	FN	
1	FP	TP	

ROC-AUC: интуиция

• Пример:

р	класс	
0.5	0	
0.1	0	
0.25	0	
0.6	1	
0.2	1	
0.3	1	
0.0	0	

класс
1
0
1
0
1
0
0

- Нарисуем квадрат 1 на 1.
- Горизонтальную сторону квадрата разобъем на равные отрезки, число которых равно числу О в данных
- Вертикальную сторону разобъем на равные отрезки, число которых равно числу 1

- Нарисуем квадрат 1 на 1.
- Горизонтальную сторону квадрата разобъем на равные отрезки, число которых равно числу 0 в данных
- Вертикальную сторону разобъем на равные отрезки, число которых равно числу 1

р	класс
0.6	1
0.5	0
0.3	1
0.25	0
0.2	1
0.1	0
0.0	0

- Нарисуем квадрат 1 на 1.
- Горизонтальную сторону квадрата разобъем на равные отрезки, число которых равно числу О в данных
- Вертикальную сторону разобъем на равные отрезки, число которых равно числу 1

р	класс
0.6	1
0.5	0
0.3	1
0.25	0
0.2	1
0.1	0
0.0	0

- Нарисуем квадрат 1 на 1.
- Горизонтальную сторону квадрата разобъем на равные отрезки, число которых равно числу О в данных
- Вертикальную сторону разобъем на равные отрезки, число которых равно числу 1

р	класс
0.6	1
0.5	0
0.3	1
0.25	0
0.2	1
0.1	0
0.0	0

- Пойдем по отсортированной таблице по столбцу класс сверху вниз
- Будем стартовать из точки (0,0) на квадрате. И если мы встречаем 1, сдвигаемся на одну клеточку вверх, а если 0 то вправо
- В итоге мы придём в точку (1,1).

р	класс	
0.6	1	
0.5	0	
0.3	1	
0.25	0	
0.2	1	//
0.1	0	,
0.0	0	

Полученная кривая называется ROC-кривой, а метрика, равная площади под ней - AUC-ROC.

ROC-AUC: примеры

Практика!

https://colab.research.google.com/drive/1sas_HM WThGSiEZvN4hiqdxU6xLHKks7#scrollTo=z79gblw0bWJZ