

STABLE MATCHING PROBLEM

Why are we interested

- Multi agent system: collection of multiple intelligent agents which interact
- Ideally we would like intelligent agents to be able to communicate and interact with other agents
- Building societies of artificial agents by taking inspiration from groups of humans
 - economics, game theory, and social choice

Computational Social choice

- Computational social choice: an interdisciplinary field at the interface of
 - Artificial intelligence
 - Economics
 - Voting theory
 - **□** Game Theory
 - Social Choice
- Motivated mostly by the Internet
- We will see one problem in this area: matching problems, that are a mathematical abstraction of two-sided markets

Stable Matching theory won Nobel Prize in 2012

Alvin Roth

"for the theory of stable allocations and the practice of market design"

Stable Matching theory won Nobel Prize in 2012

Lloyd Shapley

He was Professor - University of California, Los Angeles

☐ Game theory

Roth: "I'm sure that

when I go to class this morning my students will pay more attention"

Alvin Roth

He is Professor of Economics -Stanford University

- ☐ Market design
- Mathematical models for strategic behaviour

- Matching problems under preferences have been studied widely in
 - Mathematics
 - Computer science
 - Economics

starting with the seminal paper by Gale and Shapley (1962)

- Matching problems with preferences occur in widespread applications such as assignment of
 - school-leavers to universities
 - junior doctors to hospitals
 - students to campus housing
 - children to schools
 - kidney transplant patients to donors
 - **-** ...

- □ The <u>common thread</u> is that
 - individuals have preferences over the possible outcomes and
 - the task is to find a matching of the participants that is in some sense optimal with respect to these preferences

□ List of Topics

- Two-sided matchings involving agents on both sides (e.g., college admissions, medical resident allocation, job markets, and school choice)
- Two-sided matchings involving agents and objects (e.g., house allocation, course allocation, project allocation, assigning papers to reviewers, and school choice)
- One-sided matchings (e.g., roommate problems, coalition formation games, and kidney exchange)
- Other recent applications (e.g., refugee resettlement, food banks, social housing, and daycare)

Practical scenarios

- Matching students with schools
- Matching doctors with hospitals
- Matching kidney donors and patients
- Matching sailors to ships
- Job hunting
- . . .

Applications of Matching Models under Preferences.pdf

Matching in Practice

European network for research on matching practices in education and related markets

Matching Practices in Europe for

- Elementary Schools
- Secondary Schools
- Higher Education
- Related Markets

Stable Matching Problems

- □ Two sets of agents
- Agents of one set express preferences over agents of the other set
- Goal: to choose a matching among the agents of the two sets based on their preferences
 - Matching: set of pairs (A1, A2), where
 - A1 comes from the first set
 - A2 comes from the second set

Stable Marriage formulation

- □ Two sets of agents: men and women
- Idealized model
 - Same number of men and women
 - All men totally order all women, and viceversa

Stable marriage problem

Two sets of agents: {Greg, Harry, Ian} {Amy, Bertha, Clare}

□ Given preferences of n men

□ Greg: Amy>Bertha>Clare

■ Harry: Bertha>Amy>Clare

□ Ian: Amy>Bertha>Clare

☐ Given preferences of n women

Amy: Harry>Greg>Ian

■ Bertha: Greg>Harry>Ian

□ Clare: Greg>Harry>Ian

□ Find a <u>stable</u> marriage

Stable marriage

- □ Marriage: is a one-to-one correspondence between men and women
 - □ Idealization: everyone marries at the same time
- Stable Marriage: a marriage with no pair (man, woman) not married to each other that would prefer to be together
 - **■** Blocking pair:

pair (m, w), where m is a man and w is a woman such that

- the marriage contains (m,w') and (m',w), but
- m prefers w to w', and
- w prefers m to m'
- □ Stable marriage: marriage with no blocking pairs
- □ Idealization: assumes no cost in breaking a match

An example of an unstable marriage

```
M = { (Greg, Clare), (Harry, Bertha), (lan, Amy) }
```

```
□ Harry: Bertha > Amy > Clare
```

Blocking pair:
makes the marriage not stable

| Ian: Amy > Bertha > Clare

```
Amy: Harry > Greg > lan
```

Greg:) Amy > Bertha > Clare

□ Clare: Greg > Harry > Ian

Bertha & Greg would prefer to be together

An example of a stable marriage

```
M = { (Greg, Amy), (Harry, Bertha), (Ian, Clare) }
```

- □ Greg: Amy > Bertha > Clare
- □ Harry: Bertha > Amy > Clare
- □ Ian: Amy > Bertha > Clare
- Amy: Harry > Greg > Ian
- Bertha: Greg > Harry > Ian
- Clare: Greg > Harry > lan

Men do ok, women less well

Another stable marriage

```
M = { (Greg, Bertha), (Harry, Amy), (Ian, Clare) }

□ Greg: Amy > Bertha > Clare
```

- □ Harry: Bertha > Amy > Clare
- □ Ian: Amy > Bertha > Clare
- Amy: Harry > Greg > Ian
- Bertha: Greg > Harry > Ian
- Clare: Greg > Harry > lan

Women do ok, men less well

Many stable marriages

- □ Given any stable marriage problem
 - There is at least one stable marriage
 - There may be many stable marriages especially in large Al domains

- Initialize every person to be free
- While exists a free man
 - □ Find best woman he has not proposed to yet
 - If this woman is free, declare them engaged
 - □ Else
 - If this woman prefers this proposal to her current partner then declare them engaged (and "free" her current partner)
 - Else this woman prefers her current partner and she rejects the proposal

- Initialize every person to be free
- While exists a free man
 - Find best woman he hasn't proposed to yet
 - If this woman is free, declare them engaged
 - □ Else
 - If this woman <u>prefers this</u> <u>proposal</u> to her current partner then declare them <u>engaged</u> (and "free" her current partner)
 - Else this woman <u>prefers her</u> <u>current partner</u> and she <u>rejects the proposal</u>

Two sets of agents: {Greg, Harry, Ian} {Amy, Bertha, Clare}

- □ Greg: Amy > Bertha > Clare
- ☐ Harry: Bertha > Amy > Clare
- □ Ian: Amy > Bertha > Clare
- Amy: Harry > Greg > Ian
- □ Bertha: Greg > Harry > Ian
- □ Clare: Greg > Harry > lan

- □ Greg proposes to Amy, who accepts \rightarrow (G,A)
- □ Harry proposes to Bertha,
 who accepts → (H,B)
- lan proposes to Amy
- Amy is with Greg, and she prefers Greg to lan, so she refuses
- lan proposes to Bertha
- Bertha is with Harry, and she <u>prefers Harry to Ian</u>, so she refuses
- □ lan proposes to Claire,who accepts → (I,C)

- □ Greg: Amy > Bertha > Clare
- □ Harry: Bertha > Amy > Clare
- □ Ian: Amy > Bertha > Clare
- Amy: Harry > Greg > Ian
- □ Bertha: Greg > Harry > Ian
- □ Clare: Greg > Harry > lan

M = { (Greg, Amy), (Harry, Bertha), (Ian, Clare) }

- □ Terminates with everyone married
- □ Terminates with a stable marriage

- Terminates with a stable marriage
 - Suppose there is a blocking pair (m,w) not married
 - □ Marriage contains (m,w') and (m',w)
 - m prefers w to w', and w prefers m to m'
 - □ Case 1. m never proposed to w
 - Not possible because men move down with the proposals, and w' is less preferred than w
 - Case 2. m had proposed to w
 - But w rejected him (immediately or later)
 - However, women only ever trade up
 - Hence w prefers m' to m
 - So the current pairing is stable

Other features of Gale Shapley algorithm

- □ Each of n men can make at most n proposals Hence GS runs in $O(n^2)$ time
- □ There may be **more than one** stable marriage
 - GS finds man optimal solution
 There is no stable matching in which any man does better
 - GS finds woman pessimal solution
 In all stable marriages, every woman does at least as well or better

Other stable marriages

- GS finds male-optimal (or female-optimal) marriage
- A set of agents is <u>favored</u> over the other one
- Other algorithms find "fairer" marriages
- □ Ex.: stable marriage which minimizes the maximum regret [Gusfield 1989]
 - regret of a man/woman = <u>distance</u> between his partner in the marriage and his most preferred woman/man

Example: SM formulation 3 rovers on a planet

- Are sent to a designated location and they have to perform an analysis
 - One drills
 - One takes pictures
 - One downlinks data

- ☐ Two sets:
 - □ {Rover1, Rover2, Rover3}
 - □ {Drill, Picture, Downlink}

Preferences of the 2 groups

Rovers (e.g. preference of the rovers' managers)

Rover1: Downlink>Picture>Drill

Rover2: Picture>Downlink>Drill

Rover3: Downlink>Picture>Drill

□ Tasks (e.g. mission coordinator)

Downlink: Rover2>Rover1>Rover3

Picture: Rover1>Rover2>Rover3

Drill: Rover1>Rover2>Rover3

Stable matching

- □ Find a stable matching
 - Each rover is assigned a task
 - Idealization: everyone is matched at the same time
 - No blocking pairs: (rover, task) <u>not matched</u> to each other <u>would prefer</u> to break their current matching and form a new one
 - Idealization: assumes no cost in breaking a match

An example of an unstable matching

M = { (Rover1, Downlink), (Rover2, Drill), (Rover3, Picture) }

Rover1: Downlink>Picture>Drill

Rover2:)Picture>Downlink>Drill

Rover3: Downlink>Picture>Drill

Blocking pair: makes the matching not stable

Downlink: Rover2>Rover1>Rover3

Picture: Rover1>Rover2>Rover3

Drill: Rover1>Rover2>Rover3

Two stable matchings

M1 = { (Rover1, Downlink), (Rover2, Picture), (Rover3, Drill) }

M2 = { (Rover1, Picture), (Rover2, Downlink), (Rover3, Drill) }

Rover1: Downlink>Picture>Drill

Rover2: Picture>Downlink>Drill

Rover3: Downlink>Picture>Drill

Downlink: Rover2>Rover1>Rover3

Picture: Rover1>Rover2>Rover3

Drill: Rover1>Rover2>Rover3

Rover1: Downlink>Picture>Drill

Rover2: Picture>Downlink>Drill

Rover3: Downlink>Picture>Drill

Downlink: Rover2>Rover1>Rover3

Picture: Rover1>Rover2>Rover3

Drill: Rover1>Rover2>Rover3

Rover Optimal

Task Optimal

Review: Stable Marriage formulation

- □ Two sets of agents: men and women
- Idealized model
 - Same number of men and women
 - All men totally order all women, and viceversa

Extensions: ties in preferences

- Eg.: A rover has equally good drill and camera
- Preference orderings: total orders with ties
- Stability
 - weakly stable marriage:
 - **no** un-matched couple such that <u>each one</u> **strictly prefers** the other to the current partner
 - strongly stable marriage:

no un-matched couple such that <u>one</u> strictly prefers the other, and <u>the other</u> likes it as much or more as the current partner

Extensions: ties in preferences

Existence

- Strongly stable marriage may not exist
 - O(n⁴) algorithm for deciding existence
- Weakly stable marriage always exists
 - Just <u>break ties</u> arbitrarily
 - Run GS, resulting marriage is weakly stable!
 - → Polynomial complexity

Extensions: incomplete preferences

- Model unacceptability of an option
 - One of the Rovers does not have a camera
- More possible blocking pairs
- (m,w) blocking pair if
 - m and w are unmatched and do not find each other unacceptable, or
 - m, w both prefer each other to current partners, or
 - one of the two is matched but acceptable to the other and prefers the other who is unmatched

Extensions: incomplete preferences

- GS algorithm
 - Extends easily
 - □ → Polynomial complexity

The set of unmatched elements is the same in every stable marriage

Extensions: ties & incomplete prefs

- Weakly stable marriages may have different sizes
 - Unlike with just ties where they are all complete
 - Or with just incompleteness where the cardinality is fixed

- Finding weakly stable marriage of maximal cardinality is NP-hard
 - Even if only men declare ties
 - □ Ties are of most of length two
 - The whole list is a tie

Strategy proofness

- GS is strategy proof (that is, non-manipulable) for men
 - Assuming male optimal algorithm
 - No man can do better than the male optimal solution

- However, women can profit from lying (that is, women can obtain a better partner by expressing different preferences from the true ones)
 - Assuming male optimal algorithm is run
 - Assuming they know complete preference lists

Manipulation by women

Greg: Amy > Bertha > Clare

Harry: Bertha > Amy > Clare

Ian: Amy > Bertha > Clare

Amy: Harry > Greg > Ian

Bertha: Greg > Harry > Ian

Clare: Greg > Harry > lan

□ Greg: Amy > Bertha > Clare

□ Harry: Bertha > Amy > Clare

□ Ian: Amy > Bertha > Clare

Amy lies

Amy: Harry > Ian > Greg

Bertha: Greg > Harry > Ian

□ Clare: Greg > Harry > lan

Result of running GS on true prefs

Result of running GS on manipulated prefs

Manipulation by women

- Greg proposes to Amy, who accepts
- Harry proposes to Bertha,
 who accepts
- lan proposes to Amy, who accepts (Greg left alone)
- Greg proposes to Bertha,
 who accepts (Harry left alone)
- Harry proposes to Amy, who accepts (lan left alone)
- Ian proposes to Bertha, who rejects
- Ian proposes to Clare, who accepts

```
    Greg: Amy > Bertha > Clare
    Harry: Bertha > Amy > Clare
    Ian: Amy > Bertha > Clare
    Amy lies
    Amy: Harry > Ian > Greg
    Bertha: Greg > Harry > Ian
    Clare: Greg > Harry > Ian
```

Stable marriage obtained:

M={(Greg,Bertha), (Harry,Amy), (lan,Clare)}

Impossibility of strategy-proofness

□ GS can be manipulated

Every stable marriage procedure (that is, every procedure that returns a stable marriage) can be manipulated if preference lists can be incomplete [Roth '82]

Impossibility of strategy proofness

Men: m1, m2

Women: w1, w2

Consider

■ m1: w1 > w2 w1: m2 > m1

■ m2: w2 > w1 w2: m1 > m2

Two stable marriages:

- {(m1,w1), (m2,w2)}
- {(m1,w2), (m2,w1)}

Suppose we get male optimal solution

■ {(m1,w1), (m2,w2)}

Impossibility of strategy proofness

- Consider
 m1: w1 > w2
 m2: w2 > w1
 w2: m1 > m2
- Two stable marriages:
 - {(m1,w1), (m2,w2)}
 - {(m1,w2), (m2,w1)}
- □ Suppose we get male optimal solution {(m1,w1), (m2,w2)}
- If woman w1 lies and says m1 is unacceptable
- Then we must get {(m2,w1), (m1,w2)} as this is the <u>only</u> stable marriage
- Any procedure that returns a stable matching can be manipulated if preference lists can be incomplete
- Other cases can be manipulated in a similar way

References for stable marriages

- Gale, Shapley. College Admissions and the Stability of Marriage. Amer. Math. Monthly, 69:9-14, 1981
- Roth. The Economics of Matching: Stability and Incentives. Mathematics of Operational Research, 7:617-628, 1982
- Gusfield, Irving. The Stable Marriage Problem: Structure and Algorithms. MIT Press,
 1989
- Gale, Sotomayor. Machiavelli and the stable matching problem. Amer. Math.
 Monthly, 92:261-268, 1985
- Gusfield. Three fast algorithms for four problems in stable marriage. SIAM J. of Computing, 16(1), 1987
- Teo, Sethuraman, Tan. Gale-Shapley Stable Marriage Problem Revisited: Stategic Issues and Applications. Management Science, 47(9): 1252-1267, 2001
- Pini, Rossi, Venable, Walsh. Manipulation complexity and gender neutrality in stable marriage procedures. Autonomous Agents and Multi-Agent Systems, 22(1):183-199, 2011