Machine Learning

Lecture 8: Learning in BN

Sibei Yang
SIST, ShanghaiTech
Email: yangsb@shanghaitech.edu.cn

Review: Bayesian Network

Let $X = (X_1, \dots, X_n)$ be random variables.

A **Bayesian network** is a directed acyclic graph (DAG) that specifies a joint distribution over X as a product of local conditional distributions, one for each node:

$$\mathbb{P}(X_1 = x_1, \dots, X_n = x_n) = \prod_{i=1}^n p(x_i \mid x_{\mathsf{Parents}(i)})$$

Review: Probabilistic Inference

Bayesian network:

$$\mathbb{P}(X = x) = \prod_{i=1}^{n} p(x_i \mid x_{\mathsf{Parents}(i)})$$

Probabilistic inference:

$$\mathbb{P}(Q \mid E = e)$$

Algorithms:

- Variable elimination: general, exact
- Forward-backward: HMMs, exact
- Gibbs sampling, particle filtering: general, approximate

Outline

- Supervised Learning
- Laplace smoothing
- Unsupervised learning with EM

Learning: Where do parameters come from?

b p(b)1 ?0 ?

e p(e)1 ?0 ?

1. Supervised Learning

Training data-

 $\mathcal{D}_{\mathsf{train}}$ (an example is an assignment to X)

-Parameters-

 θ (local conditional probabilities)

Example: one variable

Setup:

ullet One variable R representing the rating of a movie $\{1,2,3,4,5\}$

$$oxed{R}$$
 $\mathbb{P}(R=r)=p(r)$

Parameters:

$$\theta = (p(1), p(2), p(3), p(4), p(5))$$

Training data:

$$\mathcal{D}_{\mathsf{train}} = \{1, 3, 4, 4, 4, 4, 4, 5, 5, 5\}$$

Example: one variable

Learning:

$$\mathcal{D}_{\mathsf{train}} \quad \Rightarrow \quad heta$$

Intuition: $p(r) \propto$ number of occurrences of r in $\mathcal{D}_{\mathsf{train}}$

Example:

$$\mathcal{D}_{\mathsf{train}} = \{1, 3, 4, 4, 4, 4, 4, 5, 5, 5\}$$

Example: two variables

Variables:

- Genre $G \in \{drama, comedy\}$
- Rating $R \in \{1, 2, 3, 4, 5\}$

$$\bigcirc G \longrightarrow \bigcirc R = g, R = r) = p_G(g)p_R(r \mid g)$$

$$\mathcal{D}_{\mathsf{train}} = \{(\mathsf{d}, 4), (\mathsf{d}, 4), (\mathsf{d}, 5), (\mathsf{c}, 1), (\mathsf{c}, 5)\}$$

Parameters: $\theta = (p_G, p_R)$

Example: two variables

$$\bigcirc G \longrightarrow \bigcirc R = g, R = r) = p_G(g)p_R(r \mid g)$$

$$\mathcal{D}_{\mathsf{train}} = \{(\mathsf{d}, 4), (\mathsf{d}, 4), (\mathsf{d}, 5), (\mathsf{c}, 1), (\mathsf{c}, 5)\}$$

Intuitive strategy: Estimate each local conditional distribution (p_G and p_R) separately

$$egin{array}{cccc} g & p_G(g) \ \mathsf{d} & 3/5 \ \mathsf{c} & 2/5 \end{array}$$

Example: v-structure

Variables:

- Genre $G \in \{drama, comedy\}$
- Won award $A \in \{0, 1\}$
- Rating $R \in \{1, 2, 3, 4, 5\}$

$$\mathbb{P}(G = g, A = a, R = r) = p_G(g)p_A(a)p_R(r \mid g, a)$$

Example: v-structure

$$\mathcal{D}_{\mathsf{train}} = \{(\mathsf{d}, 0, 3), (\mathsf{d}, 1, 5), (\mathsf{c}, 0, 1), (\mathsf{c}, 0, 5), (\mathsf{c}, 1, 4)\}$$

Parameters: $\theta = (p_G, p_A, p_R)$

$$heta$$
: $egin{array}{cccc} g & p_G(g) \ d & 3/5 \ c & 2/5 \ \end{array}$

$$egin{array}{ccc} a & p_A(a) & & \ 0 & 3/5 & \ 1 & 2/5 & & \ \end{array}$$

Example: inverted-v structure

Variables:

- Genre $G \in \{drama, comedy\}$
- Jim's rating $R_1 \in \{1, 2, 3, 4, 5\}$
- Martha's rating $R_2 \in \{1, 2, 3, 4, 5\}$

$$\mathbb{P}(G = g, R_1 = r_1, R_2 = r_2) = p_G(g)p_{R_1}(r_1 \mid g)p_{R_2}(r_2 \mid g)$$

Example: inverted-v structure

$$\mathcal{D}_{\mathsf{train}} = \{(\mathsf{d}, 4, 5), (\mathsf{d}, 4, 4), (\mathsf{d}, 5, 3), (\mathsf{c}, 1, 2), (\mathsf{c}, 5, 4)\}$$

Parameters: $\theta = (p_G, p_R)$

$$heta$$
: $egin{array}{cccc} g & p_G(g) \ d & 3/5 \ c & 2/5 \ \end{array}$

Parameter sharing

The local conditional distributions of different variables use the same parameters.

Result: more reliable estimates, less expressive

Example: naive bayes

Variables:

- Genre $Y \in \{\text{comedy}, \text{drama}\}$
- Movie review (sequence of words): W_1, \ldots, W_L

$$\mathbb{P}(Y=y,W_1=w_1,\ldots,W_L=w_L)=p_{\mathsf{genre}}(y)\prod_{j=1}^L p_{\mathsf{word}}(w_j\mid y)$$

Parameters: $\theta = (p_{genre}, p_{word})$

Question

If Y can take on 2 values and each W_j can take on D values, how many parameters are there?

Example: HMMs

Variables:

- H_1, \ldots, H_n (e.g., actual positions)
- E_1, \ldots, E_n (e.g., sensor readings)

$$\mathbb{P}(H=h,E=e) = p_{\mathsf{start}}(h_1) \prod_{i=2}^n p_{\mathsf{trans}}(h_i \mid h_{i-1}) \prod_{i=1}^n p_{\mathsf{emit}}(e_i \mid h_i)$$

Parameters: $\theta = (p_{\text{start}}, p_{\text{trans}}, p_{\text{emit}})$

 $\mathcal{D}_{\mathsf{train}}$ is a set of full assignments to (H, E)

General case

Bayesian network: variables X_1, \ldots, X_n

Parameters: collection of distributions $\theta = \{p_d : d \in D\}$ (e.g., $D = \{\text{start}, \text{trans}, \text{emit}\}$)

Each variable X_i is generated from distribution p_{d_i} :

$$\mathbb{P}(X_1 = x_1, \dots, X_n = x_n) = \prod_{i=1}^n p_{\mathbf{d_i}}(x_i \mid x_{\mathsf{Parents}(i)})$$

Parameter sharing: d_i could be same for multiple i

General case: learning algorithm

Input: training examples $\mathcal{D}_{\mathsf{train}}$ of full assignments

Output: parameters $\theta = \{p_d : d \in D\}$

Count:

```
For each x \in \mathcal{D}_{\mathsf{train}}:

For each variable x_i:

Increment \mathsf{count}_{d_i}(x_{\mathsf{Parents}(i)}, x_i)
```

Normalize:

```
For each d and local assignment x_{\mathsf{Parents}(i)}:
 \mathsf{Set}\ p_d(x_i \mid x_{\mathsf{Parents}(i)}) \propto \mathsf{count}_d(x_{\mathsf{Parents}(i)}, x_i)
```

Maximum likelihood

Maximum likelihood objective:

$$\max_{\theta} \prod_{x \in \mathcal{D}_{\mathsf{train}}} \mathbb{P}(X = x; \theta)$$

Algorithm on previous slide exactly computes maximum likelihood parameters (closed form solution).

Maximum likelihood

$$\mathcal{D}_{\mathsf{train}} = \{ (\mathsf{d}, 4), (\mathsf{d}, 5), (\mathsf{c}, 5) \}$$

$$\max_{p_G(\cdot)}(p_G(\mathsf{d})p_G(\mathsf{d})p_G(\mathsf{c}))\max_{p_R(\cdot\mid\mathsf{c})}p_R(5\mid\mathsf{c})\max_{p_R(\cdot\mid\mathsf{d})}(p_R(4\mid\mathsf{d})p_R(5\mid\mathsf{d}))$$

- ullet Key: decomposes into subproblems, one for each distribution d and assignment x_{Parents}
- For each subproblem, solve in closed form

Give Birth	Can Fly	Live in Water	Have Legs	Class
yes	no	yes	no	?

Name	Give Birth	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	yes	mammals
python	no	no	no	no	non-mammals
salmon	no	no	yes	no	non-mammals
whale	yes	no	yes	no	mammals
frog	no	no	sometimes	yes	non-mammals
komodo	no	no	no	yes	non-mammals
bat	yes	yes	no	yes	mammals
pigeon	no	yes	no	yes	non-mammals
cat	yes	no	no	yes	mammals
leopard shark	yes	no	yes	no	non-mammals
turtle	no	no	sometimes	yes	non-mammals
penguin	no	no	sometimes	yes	non-mammals
porcupine	yes	no	no	yes	mammals
eel	no	no	yes	no	non-mammals
salamander	no	no	sometimes	yes	non-mammals
gila monster	no	no	no	yes	non-mammals
platypus	no	no	no	yes	mammals
owl	no	yes	no	yes	non-mammals
dolphin	yes	no	yes	no	mammals
eagle	no	yes	no	yes	non-mammals

Given
$$\mathbf{x} = (x_1, \cdots x_p)^T$$

Goal is to predict class ω

Specifically, we want to find the value of ω that maximizes

$$P(\omega|\mathbf{x}) = P(\omega|x_1, \dots x_p)$$

$$P(\omega|x_1, \dots x_p) \propto P(x_1, \dots x_p|\omega)P(\omega)$$

Independence assumption among features

$$P(x_1, \dots x_p | \omega) = P(x_1 | \omega) \dots P(x_p | \omega)$$

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Class:
$$P(\omega_k) = \frac{N_{\omega_k}}{N}$$

e.g., $P(\text{No}) = 7/10$, $P(\text{Yes}) = 3/10$

For discrete attributes:

$$P(x_i|\omega_k) = \frac{|x_{ik}|}{N_{\omega_k}}$$

where $|x_{ik}|$ is number of instances having attribute x_i and belongs to class ω_k Examples: P(Status=Married|No) = 4/7

P(Refund=Yes|Yes)=0

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Normal distribution:

$$P(x_i \mid \omega_j) = \frac{1}{\sqrt{2\pi\sigma_{ij}^2}} \exp\left(-\frac{(x_i - \mu_{ij})^2}{2\sigma_{ij}^2}\right)$$

One for each (x_i, ω_i) pair

$$P(Income = 120 \mid No) = \frac{1}{\sqrt{2\pi}(54.54)} \exp\left(-\frac{(120 - 110)^2}{2(2975)}\right) = 0.0072$$

Given a Test Record:

$$X = (Refund = No, Married, Income = 120K)$$

naive Bayes Classifier:

```
P(Refund=Yes|No) = 3/7
```

P(Refund=No|No) = 4/7

P(Refund=Yes|Yes) = 0

P(Refund=No|Yes) = 1

P(Marital Status=Single|No) = 2/7

P(Marital Status=Divorced|No)=1/7

P(Marital Status=Married|No) = 4/7

P(Marital Status=Single|Yes) = 2/7

P(Marital Status=Divorced|Yes)=1/7

P(Marital Status=Married|Yes) = 0

For taxable income:

If class=No: sample mean=110

sample variance=2975

If class=Yes: sample mean=90

sample variance=25

P(X|Class=No) = P(Refund=No|Class=No)

× P(Married | Class=No)

 \times P(Income=120K| Class=No)

 $= 4/7 \times 4/7 \times 0.0072 = 0.0024$

P(X|Class=Yes) = P(Refund=No| Class=Yes)

× P(Married | Class=Yes)

× P(Income=120K| Class=Yes)

 $= 1 \times 0 \times 1.2 \times 10^{-9} = 0$

Since P(X|No)P(No) > P(X|Yes)P(Yes)

Therefore P(No|X) > P(Yes|X)

=> Class = No

Name	Give Birth	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	yes	mammals
python	no	no	no	no	non-mammals
salmon	no	no	yes	no	non-mammals
whale	yes	no	yes	no	mammals
frog	no	no	sometimes	yes	non-mammals
komodo	no	no	no	yes	non-mammals
bat	yes	yes	no	yes	mammals
pigeon	no	yes	no	yes	non-mammals
cat	yes	no	no	yes	mammals
leopard shark	yes	no	yes	no	non-mammals
turtle	no	no	sometimes	yes	non-mammals
penguin	no	no	sometimes	yes	non-mammals
porcupine	yes	no	no	yes	mammals
eel	no	no	yes	no	non-mammals
salamander	no	no	sometimes	yes	non-mammals
gila monster	no	no	no	yes	non-mammals
platypus	no	no	no	yes	mammals
owl	no	yes	no	yes	non-mammals
dolphin	yes	no	yes	no	mammals
eagle	no	yes	no	yes	non-mammals

A: attributes

M: mammals

N: non-mammals

$$P(A \mid M) = \frac{6}{7} \times \frac{6}{7} \times \frac{2}{7} \times \frac{2}{7} = 0.06$$

$$P(A \mid N) = \frac{1}{13} \times \frac{10}{13} \times \frac{3}{13} \times \frac{4}{13} = 0.0042$$

$$P(A \mid M)P(M) = 0.06 \times \frac{7}{20} = 0.021$$

$$P(A \mid N)P(N) = 0.004 \times \frac{13}{20} = 0.0027$$

Give Birth	Can Fly	Live in Water	Have Legs	Class
yes	no	yes	no	?

P(A|M)P(M) > P(A|N)P(N)

=> Mammals

2. Laplace smoothing - Scenario 1

Setup:

- You have a coin with an unknown probability of heads p(H).
- You flip it 100 times, resulting in 23 heads, 77 tails.
- What is estimate of p(H)?

Maximum likelihood estimate:

$$p(H) = 0.23$$
 $p(T) = 0.77$

Scenario 2

Setup:

- You flip a coin once and get heads.
- What is estimate of p(H)?

Maximum likelihood estimate:

$$p(H) = 1$$
 $p(T) = 0$

Intuition: This is a bad estimate; real p(H) should be closer to half

When have less data, maximum likelihood overfits, want a more reasonable estimate...

Regularization: Laplace smoothing

Maximum likelihood:

$$p(\mathsf{H}) = \frac{1}{1}$$
 $p(\mathsf{T}) = \frac{0}{1}$

Maximum likelihood with Laplace smoothing:

$$p(\mathsf{H}) = \frac{1+1}{1+2} = \frac{2}{3}$$
 $p(\mathsf{T}) = \frac{0+1}{1+2} = \frac{1}{3}$

Example: two variables

$$\mathcal{D}_{\mathsf{train}} = \{(\mathsf{d}, 4), (\mathsf{d}, 5), (\mathsf{c}, 5)\}$$

Amount of smoothing: $\lambda = 1$

$$heta$$
: $egin{array}{cccc} g & p_G(g) \ d & 3/5 \ c & 2/5 \ \end{array}$

g	r	$p_R(r \mid g)$
d	1	1/7
d	2	1/7
d	3	1/7
d	4	2/7
d	5	2/7
С	1	1/6
С	2	1/6
С	3	1/6
С	4	1/6
С	5	2/6

Regularization: Laplace smoothing

For each distribution d and partial assignment $(x_{\mathsf{Parents}(i)}, x_i)$, add λ to $\mathsf{count}_d(x_{\mathsf{Parents}(i)}, x_i)$.

Then normalize to get probability estimates.

Interpretation: hallucinate λ occurrences of each local assignment

Larger $\lambda \Rightarrow$ more smoothing \Rightarrow probabilities closer to uniform.

Data wins out in the end:

$$p(\mathsf{H}) = \frac{1+1}{1+2} = \frac{2}{3}$$
 $p(\mathsf{H}) = \frac{998+1}{998+2} = 0.999$

3. Unsupervised Learning with EM: Motivation

What if we don't observe some of the variables?

$$\mathcal{D}_{\mathsf{train}} = \{(?, 4, 5), (?, 4, 4), (?, 5, 3), (?, 1, 2), (?, 5, 4)\}$$

Maximum marginal likelihood

Variables: H is hidden, E = e is observed

Example:

Maximum marginal likelihood objective:

$$\begin{aligned} & \max_{\theta} \prod_{e \in \mathcal{D}_{\mathsf{train}}} \mathbb{P}(E = e; \theta) \\ &= \max_{\theta} \prod_{e \in \mathcal{D}_{\mathsf{train}}} \sum_{h} \mathbb{P}(H = h, E = e; \theta) \end{aligned}$$

Expectation Maximization

Inspiration: K-means

Variables: H is hidden, E is observed (to be e)

E-step:

- Compute $q(h) = \mathbb{P}(H = h \mid E = e; \theta)$ for each h (use any probabilistic inference algorithm)
- Create weighted points: (h,e) with weight q(h)

M-step:

• Compute maximum likelihood (just count and normalize) to get θ

Repeat until convergence.

Example: one iteration of EM

$$\mathcal{D}_{\mathsf{train}} = \{(?, 2, 2), (?, 1, 2)\}$$

$$egin{array}{cccc} g & p_G(g) \ {\sf c} & {\sf 0.5} \ {\sf d} & {\sf 0.5} \end{array}$$

$$g = \theta$$
 count $p_G(g)$
c $0.69 + 0.5 = 0.59$
d $0.31 + 0.5 = 0.41$

Application: decipherment

Copiale cipher (105-page encrypted volume from 1730s):

Substitution ciphers

Letter substitution table (unknown):

Plain: abcdefghijklmnopqrstuvwxyz

Cipher: plokmijnuhbygvtfcrdxeszaqw

Plaintext (unknown): hello world

Ciphertext (known): nmyyt ztryk

Application: decipherment as an HMM

Variables:

- H_1, \ldots, H_n (e.g., characters of plaintext)
- E_1, \ldots, E_n (e.g., characters of ciphertext)

$$\mathbb{P}(H=h,E=e) = p_{\mathsf{start}}(h_1) \prod_{i=2}^n p_{\mathsf{trans}}(h_i \mid h_{i-1}) \prod_{i=1}^n p_{\mathsf{emit}}(e_i \mid h_i)$$

Parameters: $\theta = (p_{\text{start}}, p_{\text{trans}}, p_{\text{emit}})$

Application: decipherment as an HMM

Strategy:

- p_{start} : set to uniform
- p_{trans} : estimate on tons of English text
- p_{emit} : substitution table, from EM

Intuition: rely on language model (p_{trans}) to favor plaintexts h that look like English

Application: decipherment as an HMM

E-step: forward-backward algorithm computes

$$q_i(h) \stackrel{\mathsf{def}}{=} \mathbb{P}(H_i = h \mid E_1 = e_1, \dots E_n = e_n)$$

M-step: count (fractional) and normalize

$$\operatorname{count}_{\mathsf{emit}}(h, e) = \sum_{i=1}^{n} q_i(h) \cdot [e_i = e]$$

$$p_{\mathsf{emit}}(e \mid h) \propto \mathsf{count}_{\mathsf{emit}}(h, e)$$

[semi-live solution]

Summary

(Bayesian network without parameters) + training examples

$$Q \mid E \Rightarrow \begin{vmatrix} & \text{Parameters } \theta \\ & \text{(of Bayesian network)} \end{vmatrix} \Rightarrow \mathbb{P}(Q \mid E; \theta)$$