Chapter 3: Linear Regression

Question 1.

Describe the null hypotheses to which the p-values in Table 3.4 correspond. Explain what conclusions you can draw based on these p-values.

Answer:

Each p-value in Table 3.4 tests the null hypothesis for an individual regression coefficient in the multiple linear regression model:

$$H_0$$
: $\beta_i = 0$

This means we are testing whether the predictor X_j (e.g., TV, radio, newspaper) has **no** association with the response variable (sales), assuming all other predictors are held constant.

- A small p-value (typically < 0.05) indicates strong evidence against the null hypothesis, suggesting that the predictor is statistically significantly associated with the response.
- A **large p-value** means there is **insufficient evidence** to conclude a relationship between the predictor and the response.

Conclusions from Table 3.4:

- The p-values for **TV** and **radio** are small, so we reject the null hypotheses H_0 : $\beta_{TV} = 0$ and H_0 : $\beta_{radio} = 0$. These predictors are significantly associated with sales.
- The p-value for **newspaper** is large, so we **fail to reject** H_0 : $\beta_{newspaper} = 0$. There is **no strong evidence** that newspaper advertising is associated with sales, once TV and radio are accounted for

Question 2.

Carefully explain the differences between the KNN classifier and KNN regression methods.

Answer

KNN regression: Predicts a **quantitative** output by averaging the responses of the K nearest neighbors.

$$\hat{f}(x_0) = \frac{1}{K} \sum_{x_i \in \mathbb{N}} y_i$$

KNN classification: Predicts a **qualitative** output by majority vote among the K nearest neighbors.

Question 3

$$X_1 = GPA$$

$$X_2 = IQ$$

 X_3 = Level (1 for College, 0 for High School)

$$X_4 = \text{GPA} \times \text{IQ}$$

$$X_5 = \text{GPA} \times \text{Level}$$

$$\hat{Y} = 50 + 20X1 + 0.07X2 + 35X3 + 0.01X4 - 10X5$$

Answers:

(a)

It can be shown that:

$$y_{college} = y_{hs} + 35 - 10 \cdot GPA$$

If GPA < 3.5, then college grads earn more.

If GPA > 3.5, then high school grads earn more.

Therefore, the correct answer is actually iii:

High school graduates earn more on average than college graduates provided that the GPA is high enough.

(b)

$$\hat{Y} = 50 + 20(4.0) + 0.07(110) + 35(1) + 0.01(440) - 10(4.0)$$
$$= 50 + 80 + 7.7 + 35 + 4.4 - 40 = 137.1$$

Predicted Salary is \$137.100

(c) False. The size of a coefficient does **not** indicate its statistical significance or the strength of evidence for interaction. Even a small coefficient can be **statistically significant** if its standard error is small.

To determine whether there is an interaction effect, you must look at:

- The **p-value** for the interaction term
- The **context** of the variables: small coefficients can still imply large effects if the variables are on large scales (e.g., $GPA \times IQ = 4.0 \times 110 = 440$)

So, without knowing the standard error and p-value, we **cannot** conclude there is little evidence of interaction just because the coefficient is small.

Question 4

Answer

(a) If the true relationship is linear:

Training error:

Yes, adding the cubic term X^3 will always **reduce** the training error (or at least keep it the same), because the model becomes **more flexible**. A cubic model can fit linear relationships perfectly, and the extra flexibility allows it to capture random fluctuations (overfitting) in the training data.

Test error:

No, the test error is likely to **increase**. Since the true relationship is linear, including a X^3 term introduces **unnecessary flexibility**, which can lead the model to fit noise rather than the underlying pattern. This increases the **variance** of the model without reducing its **bias**, leading to worse generalization to new data.

May 2025

In summary: Adding X^3 reduces training error but likely **increases test error** when the true relationship is linear.

(b) If the true relationship is not linear:

Training error:

Again, adding the cubic term will **reduce** or **maintain** the same training error due to the added flexibility of the model.

Test error:

The effect on test error depends on how **non-linear** the true relationship is:

- If the relationship is only slightly non-linear, the cubic term might help capture some curvature and reduce bias, leading to better test performance.
- If the relationship is **not well approximated** by a cubic polynomial, the model may still suffer from **bias** or introduce **variance** due to overfitting.

In this case, adding X^3 may improve test error if the added flexibility captures the **structure** of the true relationship. But if it adds unnecessary complexity or doesn't match the form of the true function, it could also hurt generalization.

Question 5

Consider the fitted values that result from performing linear regression **without an intercept**. In this setting, the *i*th fitted value takes the form:

$$\widehat{y}_{i} = x_{i}\widehat{\beta}$$

where

$$\hat{\beta} = \frac{\sum_{i=1}^{n} x_i y_i}{\sum_{i=1}^{n} x_i^2}$$

What is ai'a {i'}ai'?

Answer:

We are given that:

Substitute $\hat{\beta}$ into the equation for $\hat{y_i}$

An Introduction to Statistical Learning with Applications in Python Solutions: Ioannis Mastoras May 2025

$$\widehat{y}_{i} = x_{i} \cdot \frac{\sum_{j=1}^{n} x_{j} y_{j}}{\sum_{j=1}^{n} x_{j}^{2}} = \sum_{j=1}^{n} \left(\frac{x_{i} x_{j}}{\sum_{k=1}^{n} x_{k}^{2}} \right)$$

We can now identify:

$$a_j = \frac{x_i x_j}{\sum_{k=1}^n x_k^2}$$

Question 6

Trivial algebra just substitute what is given

Question 7

pass