Cours: Architecture Bigdata

Projet M2

Durée: 1 mois

Date de début: 11/03/2025

Date de fin: 11/04/2025

Rendu:

- Un document PDF présentant tout le projet
- O Un fichier PowerPoint de présentation
- O Une vidéo montrant les composants et le process

En groupe de 3

Barème

Présentation des	Déroulés présentation	Contenu du projet	Touche personnelle
documents	vidéo		
2	3	12	3

Enoncé:

Soit une structure disposant d'un système de vente des livres.

L'objectif est de faire les transformations nécessaires afin de produire des OBT des ventes.

 $\overline{\text{NB}}$: les composants suivants ne sont pas obligatoires. Dans le cas d'utilisation d'un autre outil ou composant, préciser la raison.

Composants:

A Datawarehouse:

- o SNOWFLAKE
- O Cloud: Free trial (1 mois) ou payant
- O Contiendra les données brutes, stagging, warehouse et marts (OBT)
- O Bien évidement vous pouvez choisir un autre datawarehouse

Processing:

- o DBT
- O Package: dbt-core, dbt-snowflake
- o Installation via un environnement python en local ou DOCKER
- O Permettra de faire les transformations nécessaires
- NB: vous pouvez choisir d'utiliser SPARK ou SNOWPARK au lieu de DBT

Orchestration:

- o AIRFLOW
- o Installation via un environnement python en local ou DOCKER
- O Permettra d'orchestrer les différentes transformations

Structure BD:

Scripts SQL:

- o Fichier PostgreSQL: postgres_diagram_bigdata_m2.sql
- o Fichier MySQL: mysql_diagram_bigdata_m2.sql
- $\verb| O Les champs ventes.date_edit et factures.date_edit sont aux format « YYYYMMDD » \\$

Résultat attendu dans SNOWFLAKE:

Steps:

- 1. Avec Snowflake, créer une base de données nommée BOOKSHOP
- Avec snowflake, créer 04 schémas dans la base de données BOOKSHOP: RAW, STAGGING, WAREHOUSE, MARTS
- 3. Dans le schéma RAW, créer les tables ci-dessus et les alimenter avec les données de votre choix (Respecter la structure et le format des données).
- 4. Installez en local DBT et AIRFLOW
- 5. Transformation RAW -> STAGGING (préparation des données) avec DBT :
 - a. Depuis RAW.ventes, convertir la colonne ventes.date_edit au format DATE et déposer le résultat dans la table STAGGING.stg_ventes
 - b. Depuis RAW.factures, convertir la colonne fatures.date_edit au format DATE et déposer le résultat dans la table STAGGING.stg_factures
 - c. Depuis RAW.*, Copier les données des tables category, books, customers respectivement vers STAGGING.stg_category, STAGGING.stg_books, STAGGING.stg_customers
 - d. Finalement le schéma STAGGING devrait contenir 05 tables commençant par stg_
- 6. Transformation STAGGING -> WAREHOUSE avec DBT:
 - a. Créer WAREHOUSE.dim_customers, WAREHOUSE.dim_category,
 WAREHOUSE.dim_books qui sont des copies respectives de stg_customers, stg_category,
 stg_books
 - b. Créer la table WAREHOUSE.dim_customers basée sur STAGGING.stg_customers avec l'ajout de la colonne « nom » : VARCHAR = first_name + ' ' + last_name représentant la concaténation des colonnes first_name et last_name.
 - c. Créer la table WAREHOUSE.fact_ventes basée sur STAGGING.stg_ventes avec l'ajout des colonnes « années » : INT, « mois » :VARCHAR('janvier', 'fevrier', ...), « jour » :VARCHAR ('lundi', 'mardi', ...) représentant les extractions du champ STAGGING.stg_ventes.date_edit.

- d. Créer la table WAREHOUSE.fact_factures basée sur STAGGING.stg_factures avec l'ajout des colonnes « années » : INT, « mois » :VARCHAR('janvier', 'fevrier', ...), « jour » :VARCHAR ('lundi', 'mardi', ...) représentant l'extraction du champs STAGGING.stg_factures.date_edit.
- e. Créer les tables WAREHOUSE.fact_books_annees, WAREHOUSE.fact_books_mois, WAREHOUSE.fact_books_jour représentant la liste des livres vendu par années, mois et jour
- f. Finalement le schéma WAREHOUSE devrait contenir 03 tables commençant par dim_ et 05 tables commençant par fact_
- 7. Transformation WAREHOUSE -> MARTS avec DBT:
 - a. L'objectif est d'avoir une seule table nommée MARTS.obt_sales contenant toutes les informations nécessaires pour identifier une ligne de vente.
 - b. L'identifiant de la table MARTS.obt sales doit provenir de WAREHOUSE.fact ventes
 - c. Champs de la table MARTS.obt_sales (les infos proviennent des tables du schéma WAREHOUSE): fact_ventes[id, annees, mois, jour, pu, qte] + fact_factures[id, code, qte_totale, total_amount, total_paid] + dim_category[intitule] + dim_books[code, intitule, isbn_10, isbn_13] + dim_customers[code, nom]

Touche Personnelle:

- 1. <u>Ingestion</u>:
 - a. Créer une bd locale (PostgreSQL ou MySQL)
 - b. Insérer ou alimenter les données.
 - c. Mettre en place un pipeline d'ingestion (**de votre choix**) pour déposer les données brutes dans SNOWFLAKE (BOOKSHOP.RAW)
- 2. Visualisation au choix (mettre en œuvre une solution) afin de mettre en avant les données MARTS et WAREHOUSE :
 - a. Options possibles de mise en place un système de visualisation :
 - i. Application: streamlit, nicegui, notebook
 - ii. Powerbi, kibana
 - iii. Créer un compte sur https://www.tableau.com/ (payant) et connecter avec snowflake
 - b. Ajouter un maximum de graphes dans votre Dashboard

Bonne Chance