

Data-Driven Context-Sensitivity for Points-to Analysis

<u>Sehun Jeong</u>, Minseok Jeon, Sungdeok Cha, and Hakjoo Oh

Korea University

OOPSLA 2017

Heuristics in Static Analysis

- Modern static analyzers use many heuristics
 - Partial context-sensitivity
 - Partial octagon analysis
 - Partial flow-sensitivity
 - Partial path-sensitivity
 - Partial unsoundness
- Designing such heuristics is an art

Automatic Heuristic Generation

Context-sensitivity heuristics Flow-sensitivity heuristics Path-sensitivity heuristics

• • •

- Automatic: Learning algorithms infer heuristics from data.
- Powerful: Machine-tuned heuristics outperform handtuned ones.
- Stable: Learned heuristics perform well across training data.

Context-sensitivity

```
class D {} class E {}
   class C {
   void dummy(){}
    Object id1(Object v){ return id2(v); }
    Object id2(Object v){ return v; }
   class B {
   void m (){
   C c = new C();
   D d = (D)c.id1(new D()); //Query 1
      E = (E)c.id1(new E()); //Query 2
      c.dummy();
   public class A {
     public static void main(String[] args){
16
      B b = new B();
17
      b.m();
18
      b.m();
```

- Context-insensitivity fails to prove queries.
 - It merges id1 invocations.

- 2-call-site sensitivity succeeds but not scale.
 - m and dummy are not worthy.

Selective 2-callsite-Sensitive Analysis

```
class D {} class E {}
   class C {
   void dummy(){}
    Object id1(Object v){ return id2(v); }
    Object id2(Object v){ return v; }
   class B {
   void m (){
   C c = new C();
    D d = (D)c.id1(new D()); //Query 1
      E = (E)c.id1(new E()); //Query 2
      c.dummy();
   public class A {
     public static void main(String[] args){
16
      B b = new B();
17
      b.m();
18
      b.m();
```

- Apply 2-callsite-sens: C.id2
- Apply 1-callsite-sens: C.id1
- Apply context-insens: main, B.m, C.dummy

Proves all queries.

Selective 2-callsite-Sensitive Analysis

```
class D {} class E {}

class C {
    void dummy(){}

Object id1(Object v){ return id2(v); }

Object id2(Object v){ return v; }

class B {
    void m (){
        C c = new C();

        D d = (D)c.id1(new D()); //Query 1
        E e = (E)c.id1(new E()); //Query 2
        c.dummy();
}
```

public class
public stat
B b = new

b.m(); b.m();

- Apply 2-callsite-sens: C.id2
- Apply 1-callsite-sens: C.id1
- Apply context-insens: main, B.m, C.dummy

Who decide?

Data-driven approach

This talk

Data-Driven Context Sensitivity

This talk

Data-Driven Context Sensitivity

Heuristic for applying 2-hybrid-object-sensitivity

Methods that require 2-hybrid-object-sensitivity
 1 ∧ ¬3 ∧ ¬6 ∧ 8 ∧ ¬9 ∧ ¬16 ∧ ¬17 ∧ ¬18 ∧ ¬19 ∧ ¬20 ∧ ... ∧ ¬24 ∧ ¬25

Methods that require 1-hybrid-object-sensitivity

$$(1 \land \neg 3 \land \neg 4 \land \neg 7 \land \neg 8 \land 6 \land \neg 9 \land \neg 15 \land \neg 16 \land \neg 17 \land ... \land \neg 24 \land \neg 25) \lor (\neg 3 \land \neg 4 \land \neg 7 \land \neg 8 \land \neg 9 \land 10 \land 11 \land 12 \land 13 \land \neg 16 \land ... \land \neg 24 \land \neg 25) \lor (\neg 3 \land \neg 9 \land 13 \land 14 \land 15 \land \neg 16 \land \neg 17 \land \neg 18 \land \neg 19 \land ... \land \neg 24 \land \neg 25) \lor (1 \land 2 \land \neg 3 \land 4 \land \neg 5 \land \neg 6 \land \neg 7 \land \neg 8 \land \neg 9 \land \neg 10 \land \neg 13 \land ... \land \neg 24 \land \neg 25)$$

Performance Highlight

Well-trained disjunctive heuristics tops hand-tuning.

Details

Data-Driven Context Sensitivity

1. Parameterized disjunctive heuristics.

$$H_{\Pi}: M_P \to \{0,1,...,k\}$$

2. Learning disjunctive heuristics for contextsensitivity.

$$F_P: A_P \rightarrow 2^Q \times Cost$$

- Context-sensitivity abstraction
- a $\in A_P: M_P \to \{0,1,...,k\}$
 - *k* is the maximum context depth
 - M_P is a set of methods in program P

$$F_P(M_P \rightarrow \{0\})$$

Context-insensitive analysis

$$F_P(M_P \rightarrow \{2\})$$

- Conventional 2-context-sensitive analysis
 - 2-object-sensitivity
 - 2-call-site-sensitivity
 - hybrid-2-object-sensitivity
 - 2-type sensitivity
 - ...

$$F_P(H_{\Pi})$$

• Ours uses machine-tuned heuristic H.

Parametric Disjunctive Heuristics

$$H_{\Pi}: M_P \to \{0, 1, ..., k\}$$

- Takes two steps:
- 1. Feature extraction: Represent M_P as feature sets.
- Decision making: Assign context-depth to each methods.

Atomic Features

Predicates over method definitions

$$\mathbb{A} = \{a_1, a_2, \dots, a_{25}\}$$

$$a_i:M_P\to\mathbb{B}$$

Atomic Features

"Does the method has a specific word in its signature string?"

				Sign	nature feature	es			
#1	"java"	#3	"sun"	#5	"void"	#7	"int"	#9	"String"
#2	"lang"	#4	"()"	#6	"security"	#8	"util"	#10	"init"

	Statement features						
#11	AssignStmt	#16	BreakpointStmt	#21	LookupStmt		
#12	IdentityStmt	#17	EnterMonitorStmt	#22	NopStmt		
#13	InvokeStmt	#18	ExitMonitorStmt	#23	RetStmt		
#14	ReturnStmt	#19	GotoStmt	#24	ReturnVoidStmt		
#15	ThrowStmt	#20	IfStmt	#25	TableSwitchStmt		

"Does the method has a specific type of statement in its body?"

(1) Feature Extraction

$$a(m) = \{a_i \in \mathbb{A} \mid a_i(m) = true\}$$

$$a(M1) = \{a_1\}$$

$$a(M2) = \{a_2\}$$

$$a(M3) = \{a_3, a_4\}$$

Represent methods into feature sets.

(2) Decision Making

Extracted Feature

M1 : $\{a_1\}$

M2 : $\{a_2\}$

M3 : $\{a_3, a_4\}$

Learned Parameter

 $\Pi = \langle f_2 = (a_1 \land \neg a_2),$ $f_1 = a_1 \lor a_2 \rangle$

 f_2 : {M1}

 f_1 : {M2, M1}

Context-sensitivity Abstraction

Learning Disjunctive Heuristics

 Our learning process searches good heuristic in iterative fashion.

Optimization Problem

- $\Pi = \langle f_1, f_2, \dots, f_k \rangle$
- Find Π that minimizes

$$\sum_{P \in P,gm} \operatorname{cost}(F_P(H_{\Pi}(P)))$$

while satisfying

$$\frac{\sum_{P \in Pgm} |\operatorname{proved}(F_P(H_{\Pi}(P)))|}{\sum_{P \in Pgm} |\operatorname{proved}(F_P(k))|} \ge \gamma$$

Problem Decomposition Reduces Search Space

Goal

Find Π that minimizes cost while satisfying target precision

Learning Π as a whole

$$\Pi = \langle f_1, f_2, \dots, f_{k-1}, f_k \rangle \longrightarrow |S|^k$$

Set of all possible Boolean formulas

$$\Pi = \langle true, ..., true, f_k \rangle$$

Problem Decomposition Reduces Search Space

Goal

Find Π that minimizes cost while satisfying target precision

Learning Π as a whole

$$\Pi = \langle f_1, f_2, \dots, f_{k-1}, f_k \rangle \longrightarrow |S|^k$$

Set of all possible Boolean formulas

$$\Pi = \langle true, ..., true, f_{k-1}, f_k \rangle$$

Problem Decomposition Reduces Search Space

Goal

Find Π that minimizes cost while satisfying target precision

Learning Π as a whole

$$\Pi = \langle f_1, f_2, \dots, f_{k-1}, f_k \rangle$$

Set of all possible Boolean formulas

$$\Pi = \langle true, f_2, \dots, f_{k-1}, f_k \rangle$$

Problem Decomposition Reduces Search Space

Goal

Find Π that minimizes cost while satisfying target precision

Learning Π as a whole

$$\Pi = \langle f_1, f_2, \dots, f_{k-1}, f_k \rangle$$

Set of all possible Boolean formulas

$$\Pi = \langle f_1, f_2, \dots, f_{k-1}, f_k \rangle$$

Problem Decomposition Reduces Search Space

Goal

Find Π that minimizes cost while satisfying target precision

Learning Π as a whole

$$\Pi = \langle f_1, f_2, \dots, f_{k-1}, f_k \rangle \longrightarrow |S|^k$$

Set of all possible Boolean formulas

$$\Pi = \langle f_1, f_2, \dots, f_{k-1}, f_k \rangle \longrightarrow k \cdot |S|$$

Has Same Power? Yes.

- We have a theorem for it.
- Please consult with our paper.

Illustration of Algorithm for Searching Boolean Formula *f*

Initial formula

The most general formula

	Proven Qs	Cost
a_1	Q1, Q3	20
$\neg a_1$	Q2	7
a_2	Q1, Q2, Q3	15
$\neg a_2$	Q1, Q2, Q4	10

Performance Table

GOAL: Find *f* that proves all queries

$$W = \{a_1, \neg a_1, a_2, \neg a_2\}$$

Refinement Targets

Iteration 1

	Proven Qs	Cost
a_1	Q1, Q3	20
$\neg a_1$	Q2	7
a_2	Q1, Q2, Q3	15
$\neg a_2$	Q1, Q2, Q4	10

Pick the most expensive clause

$$W = \{a_1, \neg a_1, a_2, \neg a_2\}$$

Iteration 1

	Proven Qs	Cost
a_1	Q1, Q3	20
$\neg a_1$	Q2	7
a_2	Q1, Q2, Q3	15
$\neg a_2$	Q1, Q2, Q4	10

Remove the clause from the workset

$$W = \{\mathbf{a_1}, \neg a_1, a_2, \neg a_2\}$$

Iteration 1

	Proven Qs	Cost
a_1	Q1, Q3	20
$\neg a_1$	Q2	7
a_2	Q1, Q2, Q3	15
$\neg a_2$	Q1, Q2, Q4	10

Refine the clause conservatively

$$W = \{ \neg a_1, a_2, \neg a_2 \}$$

Iteration 1

	Proven Qs	Cost
a_1	Q1, Q3	20
$\neg a_1$	Q2	7
a_2	Q1, Q2, Q3	15
$\neg a_2$	Q1, Q2, Q4	10

$$\frac{\sum_{P \in Pgm} |\operatorname{proved}(F_P(H_{\Pi}(P)))|}{\sum_{P \in Pgm} |\operatorname{proved}(F_P(k))|} = 1$$

Check whether the formula satisfies the precision goal

$$W = \{\neg a_1, a_2, \neg a_2\}$$

Iteration 1

	Proven Qs	Cost
a_1	Q1, Q3	20
$\neg a_1$	Q2	7
a_2	Q1, Q2, Q3	15
$\neg a_2$	Q1, Q2, Q4	10

$$F_P(H_{\Pi}(P)): \{Q1, Q2, Q3, Q4\}$$

Current formula proves all queries

$$W = \{ \neg a_1, a_2, \neg a_2 \}$$

Iteration 1

	Proven Qs	Cost
a_1	Q1, Q3	20
$\neg a_1$	Q2	7
a_2	Q1, Q2, Q3	15
$\neg a_2$	Q1, Q2, Q4	10

However, the refinement didn't refine the formula

$$W = \{\neg a_1, a_2, \neg a_2\}$$

Iteration 1

	Proven Qs	Cost
a_1	Q1, Q3	20
$\neg a_1$	Q2	7
a_2	Q1, Q2, Q3	15
$\neg a_2$	Q1, Q2, Q4	10

Drop the refined clause from the formula

$$W = \{\neg a_1, a_2, \neg a_2\}$$

Iteration 2

	Proven Qs	Cost
a_1	Q1, Q3	20
$\neg a_1$	Q2	7
a_2	Q1, Q2, Q3	15
$\neg a_2$	Q1, Q2, Q4	10

$$W = \{a_1, \neg a_1, a_2\}$$

Iteration 2

	Proven Qs	Cost
a_1	Q1, Q3	20
$\neg a_1$	Q2	7
a_2	Q1, Q2, Q3	15
$\neg a_2$	Q1, Q2, Q4	10

Again, pick the most expensive clause

$$W = \{a_1, \neg a_1, a_2\}$$

Iteration 2

	Proven Qs	Cost
a_1	Q1, Q3	20
$\neg a_1$	Q2	7
a_2	Q1, Q2, Q3	15
$\neg a_2$	Q1, Q2, Q4	10

Remove the clause from the workset

$$W = \{a_1, \neg a_1, \mathbf{a_2}\}$$

Iteration 2

	Proven Qs	Cost
a_1	Q1, Q3	20
$\neg a_1$	Q2	7
a_2	Q1, Q2, Q3	15
$\neg a_2$	Q1, Q2, Q4	10

Refine the clause conservatively

$$W = \{a_1, \neg a_1\}$$

$\sum_{P\in Pgm}$	$ \operatorname{proved}(F_P(H_\Pi(P))) $	_ 1
$\overline{\sum_{P \in Pg}}$	$m \operatorname{proved}(F_P(k)) $	— I

	Proven Qs	Cost
a_1	Q1, Q3	20
$\neg a_1$	Q2	7
a_2	Q1, Q2, Q3	15
$\neg a_2$	Q1, Q2, Q4	10

Check whether the formula satisfies the precision goal

$$W = \{a_1, \neg a_1\}$$

$F_P($	$H_{\Pi}(P)$	$: \{Q1,$	<i>Q</i> 2,	Q3,	Q4
--------	--------------	-----------	-------------	-----	----

	Proven Qs	Cost
a_1	Q1, Q3	20
$\neg a_1$	Q2	7
a_2	Q1, Q2, Q3	15
$\neg a_2$	Q1, Q2, Q4	10

Still, the formula proves all queries

$$W = \{a_1, \neg a_1\}$$

Iteration 2

	Proven Qs	Cost
a_1	Q1, Q3	20
$\neg a_1$	Q2	7
a_2	Q1, Q2, Q3	15
$\neg a_2$	Q1, Q2, Q4	10

Refined clause passes subset checking

$$W = \{a_1, \neg a_1\}$$

Iteration 2

	Proven Qs	Cost
a_1	Q1, Q3	20
$\neg a_1$	Q2	7
a_2	Q1, Q2, Q3	15
$\neg a_2$	Q1, Q2, Q4	10
$\boldsymbol{\mathcal{C}_1}$	Q1, Q2, Q4	13

Record the refined clause C_1

$$W = \{a_1, \neg a_1\}$$

Iteration 2

	Proven Qs	Cost
a_1	Q1, Q3	20
$\neg a_1$	Q2	7
a_2	Q1, Q2, Q3	15
$\neg a_2$	Q1, Q2, Q4	10
$\boldsymbol{\mathcal{C}_1}$	Q1, Q2, Q4	13

...and add C_1 to the workset for further refinement

$$W = \{a_1, \neg a_1, (\boldsymbol{a_1} \land \boldsymbol{a_2})\}$$

Iteration 3

	Proven Qs	Cost
a_1	Q1, Q3	20
$\neg a_1$	Q2	7
a_2	Q1, Q2, Q3	15
$\neg a_2$	Q1, Q2, Q4	10
C_1	Q1, Q2, Q4	13

$$W = \{a_1, \neg a_1, (a_1 \land a_2)\}$$

Iteration 3

	Proven Qs	Cost
a_1	Q1, Q3	20
$\neg a_1$	Q2	7
a_2	Q1, Q2, Q3	15
$\neg a_2$	Q1, Q2, Q4	10
$\boldsymbol{\mathcal{C}_1}$	Q1, Q2, Q4	13

Pick the most expensive clause

$$W = \{a_1, \neg a_1, (a_1 \land a_2)\}$$

Iteration 3

	Proven Qs	Cost
a_1	Q1, Q3	20
$\neg a_1$	Q2	7
a_2	Q1, Q2, Q3	15
$\neg a_2$	Q1, Q2, Q4	10
C ₁	Q1, Q2, Q4	13

Remove the clause from the workset

$$W = \{a_1, \neg a_1, \frac{(a_1 \land a_2)}{}\}$$

Iteration 3

	Proven Qs	Cost
a_1	Q1, Q3	20
$\neg a_1$	Q2	7
a_2	Q1, Q2, Q3	15
$\neg a_2$	Q1, Q2, Q4	10
<i>C</i> ₁	Q1, Q2, Q4	13

Refine the clause conservatively

$$W = \{a_1, \neg a_1\}$$

	Proven Qs	Cost
a_1	Q1, Q3	20
$\neg a_1$	Q2	7
a_2	Q1, Q2, Q3	15
$\neg a_i$	Q1, Q2, Q4	10
C_1	Q1, Q2, Q4	13

$$\frac{\sum_{P \in Pgm} |\operatorname{proved}(F_P(H_{\Pi}(P)))|}{\sum_{P \in Pgm} |\operatorname{proved}(F_P(k))|} = 1$$

Check whether the formula satisfies the precision goal

$$W = \{a_1, \neg a_1\}$$

	Proven Qs	Cost
a_1	Q1, Q3	20
$\neg a_1$	Q2	7
a_2	Q1, Q2, Q3	15
$\neg a_2$	Q1, Q2, Q4	10
<i>C</i> ₁	Q1, Q2, Q4	13

$$F_P(H_{\Pi}(P)): \{Q1, Q2, \frac{Q3}{Q3}, Q4\}$$

This refinement failed to prove all queries

$$W = \{a_1, \neg a_1\}$$

Iteration 3

	Proven Qs	Cost
a_1	Q1, Q3	20
$\neg a_1$	Q2	7
a_2	Q1, Q2, Q3	15
$\neg a_2$	Q1, Q2, Q4	10
<i>C</i> ₁	Q1, Q2, Q4	13

Revert to the last state

$$W = \{a_1, \neg a_1\}$$

After iteration 4 and 5...

$$(a_1) \wedge (a_2) \vee (a_2) \wedge (a_1)$$

	Proven Qs	Cost
a_1	Q1, Q3	20
$\neg a_1$	Q2	7
a_2	Q1, Q2, Q3	15
$\neg a_2$	Q1, Q2, Q4	10
C_1	Q1, Q2, Q4	13
C_2	Q1, Q2, Q3	

$$W = \{(\neg a_2 \land \neg a_1)\}\$$

	Proven Qs	Cost
a_1	Q1, Q3	20
$\neg a_1$	Q2	7
a_2	Q1, Q2, Q3	15
$\neg a_2$	Q1, Q2, Q4	10
C_1	Q1, Q2, Q4	13
<i>C</i> ₂	Q1, Q2, Q3	7

Pick the most expensive clause in the workset

$$W = \{(\neg a_2 \land \neg a_1)\}$$

Iteration 6

	Proven Qs	Cost
a_1	Q1, Q3	20
$\neg a_1$	Q2	7
a_2	Q1, Q2, Q3	15
$\neg a_2$	Q1, Q2, Q4	10
C_1	Q1, Q2, Q4	13
C_2	Q1, Q2, Q3	7

Remove the clause from the workset

$$W = \{ (\neg a_2 \land \neg a_1) \}$$

Iteration 6

	Proven Qs	Cost
a_1	Q1, Q3	20
$\neg a_1$	Q2	7
a_2	Q1, Q2, Q3	15
$\neg a_2$	Q1, Q2, Q4	10
C_1	Q1, Q2, Q4	13
<i>C</i> ₂	Q1, Q2, Q3	7

Refine the clause conservatively

$$W = \emptyset$$

$$\frac{\sum_{P \in Pgm} |\operatorname{proved}(F_P(H_{\Pi}(P)))|}{\sum_{P \in Pgm} |\operatorname{proved}(F_P(k))|} = 1$$

	Proven Qs	Cost
a_1	Q1, Q3	20
$\neg a_1$	Q2	7
a_2	Q1, Q2, Q3	15
$\neg a_2$	Q1, Q2, Q4	10
C_1	Q1, Q2, Q4	13
<i>C</i> ₂	Q1, Q2, Q3	7

Check whether the formula satisfies the precision goal

$$W = \emptyset$$

$F_P(H_{\Pi}($	(P)): $\{Q1,$	Q2,	23 ,	Q4
----------------	------------------	-----	-----------------	----

	Proven Qs	Cost
a_1	Q1, Q3	20
$\neg a_1$	Q2	7
a_2	Q1, Q2, Q3	15
$\neg a_2$	Q1, Q2, Q4	10
C_1	Q1, Q2, Q4	13
<i>C</i> ₂	Q1, Q2, Q3	7

This refinement failed to prove all queries

$$W = \emptyset$$

Iteration 6

	Proven Qs	Cost	
a_1	Q1, Q3	20	
$\neg a_1$	Q2	7	
a_2	Q1, Q2, Q3	15	
$\neg a_2$	Q1, Q2, Q4	10	
C_1	Q1, Q2, Q4	13	
<i>C</i> ₂	Q1, Q2, Q3	7	

Revert to the last state

$$W = \emptyset$$

END

	Proven Qs	Cost	
a_1	Q1, Q3	20	
$\neg a_1$	Q2	7	
a_2	Q1, Q2, Q3	15	
$\neg a_2$	Q1, Q2, Q4	10	
C_1	Q1, Q2, Q4	13	
C_2	Q1, Q2, Q3	7	

Algorithm ends when there is no refineable claus.

$$W = \emptyset$$

Experiments

Settings

- Data-Driven Doop
 - Our version of Doop points-to analysis framework
- Four context sensitivities, One human-tuned heuristic
 - Selective hybrid object, object, type, call-site
 - Introspective analysis
- DaCapo Benchmark suite
 - Four small programs for training
 - One large programs for validation
 - Five large programs for testing

Research Questions

RQ1: Effectiveness

RQ2: Model adequacy

RQ3: Learned Heuristics

RQ1: Performance

RQ2: vs. Linear Model

 On same time budget for training, disjunctive model outperforms non-disjunctive model

Benchmarks	Non-disjunctive		Disjunctive(Ours)	
	may-fail casts	time(s)	may-fail casts	time(s)
eclipse	946	25	596	21
chart	1,569	48	937	33
bloat	1,771	46	1,232	27
xalan	996	42	539	33
jython	2069	346	1.738	104
Total	7,352	346	5,042	218

RQ3: Learned Features

- Object vs. Type
- Object sensitivity strictly more precise than Type.
- Our learning algorithm revealed the relationship.

```
f_1 \text{ for } 2objH + Data = \begin{cases} (1 \land 2 \land \neg 3 \land \neg 6 \land \neg 7 \land \neg 8 \land \neg 9 \land \neg 16 \land \cdots \land \neg 22 \land \neg 23 \land \neg 24 \land \neg 25) \lor \\ (\neg 1 \land \neg 2 \land 8 \land 5 \land \neg 9 \land 11 \land 12 \land \cdots \land \neg 21 \land \neg 22 \land \neg 23 \land \neg 24 \land \neg 25) \lor \\ (\neg 3 \land \neg 4 \land \neg 7 \land \neg 8 \land \neg 9 \land 10 \land 11 \land \cdots \land \neg 21 \land \neg 22 \land \neg 23 \land \neg 24 \land \neg 25) \end{cases}
f_1 \text{ for } 2typeH + Data = \begin{cases} 1 \land 2 \land \neg 3 \land \neg 6 \land \neg 7 \land \neg 8 \land \neg 9 \land \neg 15 \land \neg 16 \land \cdots \land \neg 22 \land \neg 23 \land \neg 24 \land \neg 25 \end{cases}
```

RQ3: Learned Features

 Our algorithm revealed commonality among object-relaed context sensitivities.

```
f_2 for S2objH+Data: 1 \land \neg 3 \land \neg 6 \land 8 \land \neg 9 \land \neg 16 \land \neg 17 \land \neg 18 \land \cdots \land \neg 25

f_2 for 2objH+Data: 1 \land \neg 3 \land \neg 6 \land 8 \land \neg 9 \land \neg 16 \land \neg 17 \land \neg 18 \land \cdots \land \neg 25

f_2 for 2typeH+Data: 1 \land \neg 3 \land \neg 6 \land 8 \land \neg 9 \land \neg 16 \land \neg 17 \land \neg 18 \land \cdots \land \neg 25

f_2 for call-site-sensitivity: 1 \land \neg 6 \land \neg 7 \land 11 \land 12 \land 13 \land \neg 16 \land \neg 17 \land \neg 18 \land \cdots \land \neg 25
```

Conclusion

- Our approach uses a heuristic rule for contextsensitivity parameterized by Boolean formulas.
 - can express disjunctive properties of methods

- Good parameters for the heuristic can be learned from codebase by our learning algorithm
- The learned heuristics make context-sensitive points-to analysis more practical.