SEM para medición económica y social 2024-1

Dr. Héctor Nájera PUED-UNAM

Los principios de la incertidumbre:

Stewart (2019) "The future is uncertain, but the science of uncertainty is the science of the future."

GOOGLE RESULTS FOR VARIOUS PHRASES:

Aceptar la incertidumbre es una condición necesaria del buen análisis estadístico

Cuantificarla es el siguiente gran paso.

¿Incertidumbre?

I DON'T KNOW HOW TO PROPAGATE ERROR CORRECTLY, SO I JUST PUT ERROR BARS ON ALL MY ERROR BARS.

Curso sobre incertidumbre y medición

No es un curso convencional de estadística

No es un curso de recetas de cocina/estadística:

- Fórmula
- Receta y supuestos
- Interpretación

Principios del curso (Gelman et al., 2013):

"Statistics is said to be the science of defaults. One of our challenges is to defaultize things."

"The full name of theoretical statistics is the theory of applied statistics."

"Inference is not the inverse of a hypothesis test."

"As you know from teaching introductory statistics, 30 is infinity."

"It's like the joint distribution is a movie, and all you care about is the star, like Robert Downey Jr. or whatever."

"You can't stand on the beach of the sea of uncertainty with the waves lapping at your ankles.

You have to jump into the sea and stick your head underwater and blow some bubbles."

"Better to have analyzed and lost than never to have analyzed the data at all."

¿Qué es el error estándar?

La desviación estándar del parámetro de interés

66

68

$$\mu = 67.1$$

$$sd = .7$$

se =
$$.7 / sqrt(46) = .1$$

$$ci = 67.1 [66.9 - 67.3]$$

$$Y = \alpha + \beta_1 W + \beta_2 E + e$$

Noten que en realidad W viene de $\widehat{\theta}$.

Noten que Y viene también de $\hat{\theta}_y$

Noten que E viene también de $\hat{\theta}_E$

$Y = \alpha + \beta_1 W + \beta_2 E + e$

WILLIAM H. GREENE

Noten que en realidad W viene de $\widehat{\theta}$.

Noten que Y viene también de $\hat{\theta}_y$

Noten que E viene también de $\hat{\theta}_E$

Números y rankings

Rank	Bib Name	NOC Code		\bigstar		I	TT	\overline{M}	Total
1	164 UCHIMURA Kohei	JPN	15.100	15.066	15.333	16.266	15.325	15.600	92.690
2	144 NGUYEN Marcel	GER	15.300	13.666	15.366	15.666	15.833	15.200	91.031
3	213 LEYVA Danell	USA	15.366	13.500	14.733	15.566	15.833	15.700	90.698
4	201 KUKSENKOV Mykola	UKR	14.633	14.600	15.200	15.533	15.400	15.066	90.432
5	193 BELYAVSKIY David	RUS	14.466	14.866	14.833	16.200	15.166	14.766	90.297
6	162 TANAKA Kazuhito	JPN	14.166	13.433	15,200	15.533	15.500	15.575	89.407
7	134 THOMAS Kristian	GBR	15.566	14.566	14.633	14.908	14.733	15.000	89.406
8	215 OROZCO John	USA	15.433	12.566	15.200	15.900	15.266	14.966	89.331
9	113 GONZALEZ Fabian	ESP	14.600	14.733	13.966	16.133	14.400	15.166	88.998
10	251 SASAKI JUNIOR Sergio	BRA	14.233	14.366	14.233	16.100	15.200	14.833	88.965
11	205 VERNIAIEV Oleg	UKR	14.533	13.966	14.866	16.233	15.033	14.300	88.931
12	222 SHATILOV Alexander	ISR	15.600	14.266	14.200	15.133	14.400	14.833	88.432
13	132 PURVIS Daniel	GBR	15.166	14.266	14.800	16.000	13.600	14.500	88.332
14	194 GARIBOV Emin	RUS	14.475	14.233	14.866	14.833	15.366	14.233	88.006
15	142 HAMBUCHEN Fabian	GER	15.200	13.266	14.800	14.766	15.400	14.333	87.765
16	125 TOMMASONE Cyril	FRA	13.500	15.333	14.400	15.358	15.000	14.066	87.657
17	245 CAPELLI Claudio	SUI	14.866	14.366	14.166	14.566	14.850	14.500	87.314
18	155 POZZO Enrico	ITA	14.700	13.900	14.000	15.466	14.533	14.433	87.032
19	227 JEFFERIS Joshua	AUS	14.066	13.533	14.800	15.433	14.900	14 133	86.865
20	174 KIM Soo Myun	KOR	12.266	13.700	14.200	16.000	14.641	14.966	85.773
21	254 VERBAEYS Jimmy	BEL	13.933	14.033	14.000	15.266	14.833	13.166	85.231
22	154 OTTAVI Paolo	ITA	12.466	14.033	15.016	15.000	14.100	14.033	84.648
23	112 GOMEZ FUERTES Javier	ESP	14.266	12.433	14.800	15.466	14.733	12.733	84.431
24	258 KULESZA Roman	POL	13.866	13.000	13.866	14.400	15.100	13.933	84.165

¿Qué significa estar 8 puntos abajo?

¿Qué nos permite hacer conclusiones sobre estos scores?

¿De verdad 2,766?

¿Números absolutos?

¿Víctima de homicidio doloso?

¿Víctima?

¿Homicidio doloso?

Números y rankings

No es muy distinto a lo que nos interesa hacer en distintas disciplinas

En qué términos A > B y por tanto debe entrar a la UNAM?

Score B

Score A

La medición está en el corazón de la ciencia

- Nos permite concluir si cierto tratamiento es útil para abatir una enfermedad
- Podemos afirmar si el clima está cambiando y si es producto de la actividad humana
- Que la tecnología funcione y se comporte como esperamos que lo haga
- Diagnóstico de anticuerpos
- Flora y fauna en expansión o extinción
- Registrar señales de que las cosas están cambiando o permanecen en su estado actual
- Clasificar a las personas que aprovecharán de mejor manera los recursos universitarios
- Identificar si alguien tiene depresión aguda
- Si existen desigualdades sociales

CONCEPTOS/Abstracciones

Expectativas racionales

Precariedad laboral

Bienestar económico Pobreza

Igualdad de oportunidades

Capital social

Desarrollo

Inversión social

Corrupción Inflación

Igualdad de género

Capital cultural Productividad

Pobreza multidimensional

Habilidad matemática

Bienestar social

Desempleo

Clase social

Felicidad

Informalidad

Calidad de un servicio

Inversión

Desarrollo

Preguntas

¿Cuál es la prevalencia de estos fenómenos?

¿Cuál es su distribución poblacional, territorial o temporal?

¿Cómo se relacionan unos fenómenos con otros?

¿Por qué el curso?

PUED

Algunos ejemplos

¿Cómo sé que el índice resultante sirve para los propósitos de mi investigación?

Muchas ideas y muchos índices

¿Bajo qué criterios sabemos que podemos usarlos?

¿QUÉ ES EL ÍNDICE DE REZAGO SOCIAL?

Índice de Desarrollo Social de la Ciudad de México por manzana, 2020

Índice de Bienestar Económico Sostenible (IBES)

Índice de progreso social

¿Cuál es la medida real de la informalidad?

CORRUPTION PERCEPTIONS INDEX Hacia un nuevo sistema

Índice de Desarrollo Humano (IDH): qué « Social Welfare Index cómo se calcula

WELFARE INDEX PMI 2021

de indicadores de bienestar

Mismo fenómeno diferentes resultados

Estados Unidos Mexicanos

Distribución del porcentaje de la población por indicadores de pobreza, vulnerabilidad y no vulnerabilidad

^{*} Para un mejor análisis de la información 2022, consultar las notas técnicas.

www.coneval.org.mx

Estados Unidos Mexicanos

Indicadores de carencia social

		2016	2018	2020	2022
₽	Rezago educativo	18.5%	19.0%	19.2%	19.4%
-	Carencia por acceso a los servicios de salud	15.6%	16.2%	28.2%	39.1%
T	Carencia por acceso a la seguridad social	54.1%	53.5%	52.0%	50.2%
8	Carencia por calidad y espacios de la vivienda	12.0%	11.0%	9.3%	9.1%
8	Carencia por acceso a los servicios básicos en la vivienda	19.2%	19.6%	17.9%	17.8%
101	Carencia por acceso a la alimentación nutritiva y de calidad	21.9%	22.2%	22.5%	18.2%

* Para un mejor análisis de la información 2022, consultar las notas técnicas.

COLEAST

CONEVAL

www.coneval.org.mx

Estados Unidos Mexicanos

Líneas de Pobreza por Ingresos

www.coneval.org.mx

Población con ingreso inferior a la línea de **pobreza** por ingresos

2016 2018 2020 2022° 50.8% 49.9% 52.8% 43.5% Población con ingreso inferior a la línea de **pobreza extrema** por ingresos

 2016
 2018
 2020
 2022*

 14.9%
 14.0%
 17.2%
 12.1%

^{*} Para un mejor análisis de la información 2022, consultar las notas técnicas.

Índice de Marginación

Fuente:

Elaboración propia con datos de:

Conapo. Índice de Marginación por entidad federativa y municipio 2010.
México. 2011. Base electrónica de datos. Fecha de consulta: mayo de 2014.

Índice de marginación (CONAPO, 2010)

¿Bajo qué criterios concluyo que los municipios en rojo tienen mayor marginación que los de color tenue?

¿Qué me dice que esas cinco categorías son la mejor manera de representar los datos?

¿Hay algún indicador del índice que explica la variabilidad observada?

¿Cuál es la relación entre el concepto de marginación y el mapa?

Índice de desarrollo humano

¿Bajo qué criterios puedo concluir que México, Chile, Argentina y Brasil tienen el mismo nivel de desarrollo humano?

¿El índice ordena lo que quiero que ordene (Mayor a menor desarrollo humano)?

Clasificación e inferencia

¿Qué me permite hacer inferencia sobre si la pobreza cayó, incrementó o se quedó igual?

¿Qué me permite hacer conclusiones sobre el patrón/distribución de la pobreza?

Múltiples variables y relaciones

Muchas veces nos interesa saber si un fenómeno se relaciona con otro (signo y magnitud de la relación)

¿Cómo puedo confiar en esos coeficientes?

	Entry wage	10 years after	Entry wage	10 years after	Perceived
	secondary	secondary	tertiary	tertiary	returns to
	education	education	education	education	schooling
Female	-0.252**	-0.347***	-0.252***	-0.395***	0.136
	(0.083)	(0.089)	(0.076)	(0.080)	(0.096)
Age	0.059	0.119*	0.047	0.018	-0.041
	(0.056)	(0.059)	(0.055)	(0.052)	(0.066)
Immigrant	0.086	0.064	0.101	0.086	0.076
	(0.096)	(0.088)	(0.071)	(0.083)	(0.134)
Father's education	0.266	0.377**	0.441**	0.211	-0.231
low	(0.179)	(0.142)	(0.162)	(0.147)	(0.329)
Father's education	0.189**	0.164*	-0.017	-0.044	-0.177
medium	(0.072)	(0.068)	(0.071)	(0.072)	(0.118)
Mother's education	-0.032	-0.159	-0.132	-0.189	0.240
low	(0.122)	(0.149)	(0.133)	(0.167)	(0.279)
Mother's education	0.051	0.113	0.121	0.008	0.058
medium	(0.067)	(0.067)	(0.067)	(0.070)	(0.105)
Not proceeding to	-0.065	-0.048	-0.198**	-0.178*	-0.542***
University	(0.097)	(0.103)	(0.076)	(0.078)	(0.115)
Next-to-last year	0.115	0.106	0.090	-0.009	-0.189
students	(0.096)	(0.103)	(0.105)	(0.101)	(0.108)
Probability of	-0.007**	-0.007**	-0.001	-0.001	0.006
completion	(0.002)	(0.002)	(0.002)	(0.002)	(0.004)
Constant	7.025***	7.214***	7.296***	8.112***	3.222***
	(0.440)	(0.460)	(0.432)	(0.431)	(0.570)
R2	0.055	0.078	0.042	0.061	0.070

Muchos datos no implica mejor medición

PUED

Depende qué hago con los datos para vincularlos al espacio de teorías y conceptos.

Pero es ciencias sociales...

SEM y medición socioeconómica

Andrew Gelman: ¿Qué tema en estadística está ausente en la mayoría de los textos?

Variación, comparación o medición

La mayoría de los textos en estadística cubren análisis de datos y muestreo, pero raramente lo integran con medición

SEM es, probablemente, el mejor marco analítico para estimar el error de medición socio-económica.

SEM

- Structural Equation Modelling
- Más de 100 años de constante evolución que han dado origen a un marco unificado con modelos no excluyentes sino complementarios:
 - Análisis factorial
 - Modelos de senderos
 - Modelos de ecuaciones múltiples
 - Modelos anidados o multinivel

Objetivo

Desarrollar las capacidades críticas y analíticas de los estudiantes para la producción y escrutinio de índices sociales e indicadores económicos.

Expectativas del curso

Al final del curso la es que los alumnos sean capaces de:

Entender por qué es importante trabajar con medidas falsables en ciencias sociales Identificar la diferencia entre distintas tradiciones en medición

Comprender por qué la medición basada en modelos (teórico-estadísticos) es la mejor manera de abordar el problema en cuestión

Distinguir entre un método de agregación y una metodología de escrutinio empírico

Comprender las implicaciones de una mala medición en estadística inferencial

Apreciar la relevancia de la teoría de la medida para producir y examinar índices sociales

Comprender los vínculos entre la teoría de la medida, variables latentes y ecuaciones estructurales Entender por qué los principios de confiabilidad y validez son una necesidad necesaria para una calidad mínima de medición

Implementar análisis de *ecuaciones estructurales* de confiabilidad y validez usando: **R-software** Interpretar los resultados de los análisis de una forma crítica Identificar los usos apropiados e inapropiados de ecuaciones estructurales

Plan de trabajo

- Observación, medición y error
 - Qué es medir y qué es error de medición
- Principios de medición
 - Error de medición, su historia y estimación
- Principios de medición: Confiabilidad
 - Conceptos y métodos de cálculo
 - Clásica y ecuaciones estructurales
- Principios de medición: Validez
 - Conceptos y métodos de cálculo
 - Clásica y ecuaciones estructurales
- Ecuaciones estructurales para el análisis de datos
 - Modelos de relaciones múltiples (Path analysis)
 - Modelos de clasificación (Latent Class)
 - Modelos multinivel

Características de las sesiones

- Las sesiones combinan discusión, teoría y aplicación con el programa R.
- Los docentes impartirán cada sesión (prepararán un archivo.ppt) y se dedicará siempre un espacio para discusión, ejercicios en grupo y/o implementación de análisis usando el programa R.

Bibliografía básica

Evaluación

Dos ejercicios:

1. Ejercicio sobre confiabilidad con SEM (50%)

2. Ejercicio sobre validez con SEM (50%)

Materiales

• Github:

https://github.com/hectornajera83/SEM2024I

Próxima clase

Lecturas para la siguiente sesión

- Esencial
 - Fry, Hanna 2021. What data can't do. The New Yorker: https://www.newyorker.com/magazine/2021/03/29/what-data-cant-do
 - Loken, E., & Gelman, A. (2017). Measurement error and the replication crisis. *Science*, 355(6325), 584-585.

CONTACTO

Dr. Héctor Nájera Investigador (SNI-I)

Programa Universitario de Estudios del Desarrollo (PUED) Universidad Nacional Autónoma de México (UNAM)

Campus Central, Ciudad Universitaria, Ciudad de México, México.

Tel. (+52) 55 5623 0222, Ext. 82613 y 82616

Tel. (+52) 55 5622 0889

Email: hecatalan@hotmail.com

iBienvenidos estudiantes!

