[>

Question 1a

$$t_1 := \frac{(V_0 - V_E)}{a}$$

$$t_1 := \frac{V_0 - V_E}{a} \tag{1}$$

$$V_b(t) := V_b\theta + V_pc(t)$$

$$V b := t \mapsto V b\theta + V pc(t)$$
 (3)

$$t_2(t) := \frac{V_b(t)}{q} + t - \frac{V_\theta}{q}$$

$$t_2 := t \mapsto \frac{V_- b(t)}{a} + t - \frac{V_- \theta}{a} \tag{4}$$

$$x(t) := \frac{m}{2} \cdot t^2 + u_pc\theta \cdot t + x_0$$

$$x := t \mapsto \frac{1}{2} \cdot m \cdot t^2 + u pc\theta \cdot t + x \theta$$
 (5)

[>

$$V_{\theta_func} := t_{f} \mapsto solve \left(x_{(}t_{f}) = \left(\frac{V_{\theta}}{2} - \frac{V_{E}}{2} \right) \cdot t_{1} + V_{E} \cdot t_{1} + V_{\theta} \cdot (t_{2}(t_{f}) - t_{1}) - \frac{a \cdot t_{f}^{2}}{2} \right) \cdot t_{1} + V_{\theta} \cdot (t_{2}(t_{f}) - t_{1}) - \frac{a \cdot t_{f}^{2}}{2} \cdot t_{1} + V_{\theta} \cdot (t_{2}(t_{f}) - t_{1}) - \frac{a \cdot t_{f}^{2}}{2} \cdot t_{1} + V_{\theta} \cdot (t_{2}(t_{f}) - t_{1}) - \frac{a \cdot t_{f}^{2}}{2} \cdot t_{1} + V_{\theta} \cdot (t_{2}(t_{f}) - t_{1}) - \frac{a \cdot t_{f}^{2}}{2} \cdot t_{1} + V_{\theta} \cdot (t_{2}(t_{f}) - t_{1}) - \frac{a \cdot t_{f}^{2}}{2} \cdot t_{1} + V_{\theta} \cdot (t_{2}(t_{f}) - t_{1}) - \frac{a \cdot t_{f}^{2}}{2} \cdot t_{1} + V_{\theta} \cdot (t_{2}(t_{f}) - t_{1}) - \frac{a \cdot t_{f}^{2}}{2} \cdot t_{1} + V_{\theta} \cdot (t_{2}(t_{f}) - t_{1}) - \frac{a \cdot t_{f}^{2}}{2} \cdot t_{1} + V_{\theta} \cdot (t_{2}(t_{f}) - t_{1}) - \frac{a \cdot t_{f}^{2}}{2} \cdot t_{1} + V_{\theta} \cdot (t_{2}(t_{f}) - t_{1}) - \frac{a \cdot t_{f}^{2}}{2} \cdot t_{1} + V_{\theta} \cdot (t_{2}(t_{f}) - t_{1}) - \frac{a \cdot t_{f}^{2}}{2} \cdot t_{1} + V_{\theta} \cdot (t_{2}(t_{f}) - t_{1}) - \frac{a \cdot t_{f}^{2}}{2} \cdot t_{1} + V_{\theta} \cdot (t_{2}(t_{f}) - t_{1}) - \frac{a \cdot t_{f}^{2}}{2} \cdot t_{1} + V_{\theta} \cdot (t_{2}(t_{f}) - t_{1}) - \frac{a \cdot t_{f}^{2}}{2} \cdot t_{1} + V_{\theta} \cdot (t_{2}(t_{f}) - t_{1}) - \frac{a \cdot t_{f}^{2}}{2} \cdot t_{1} + V_{\theta} \cdot (t_{f}) - t_{f}^{2} \cdot t_{1} + V_{\theta} \cdot (t_{f}) - t_{f}^{2} \cdot t_{1} + V_{\theta} \cdot (t_{f}) - t_{f}^{2} \cdot t_{f}^{2$$

> $V_0_val_out(t_f) := piecewise(V_0_func(t_f)[2] > 42100, V_0_func(t_f)[2], V_0_func(t_f)[2] \le 42100, 42100)$

$$V_0_val_out := t_f \mapsto \begin{cases} V_0_func_(t_f)_2 & 42100 < V_0_func_(t_f)_2 \\ 42100 & V_0_func_(t_f)_2 \le 42100 \end{cases}$$
(8)

 $V_0_{val_back(t_f)} := piecewise(V_0_{func(t_f)}[2] > 42100, V_0_{func(t_f)}[2], V_0_{func(t_f)}[2] \le 65800, 65800)$

$$V_0_val_back := t_f \mapsto \begin{cases} V_0_func_(t_f)_2 & 42100 < V_0_func_(t_f)_2 \\ 65800 & V_0_func_(t_f)_2 \le 65800 \end{cases} \tag{9}$$

 $V_0_val(1e5\cdot yr_sec)$

```
V_0_val(100000. yr_sec)
                                                         (10)
```

```
> V_0 func(t_f)[2]

t_f a m t_f V_E V_b u_pc0

\frac{v_b u_pc0}{2} + \frac{v_b u_pc0}{2}
                                                                                                                                                                    (11)
        -\frac{1}{2}(a^2 t_f^2 - m^2 t_f^2 + 2 V_E a t_f + 2 V_E m t_f + 2 V_b 0 a t_f
       -2 \ V\_b0 \ m \ t\_f - 2 \ u\_pc0 \ t\_f \ a - 2 \ m \ t\_f \ u\_pc0 - V\_E^2 + 2 \ V\_E \ V\_b0 + 2 \ V\_E \ u\_pc0 - V\_b0^2 - 2 \ V\_b0 \ u\_pc0 - 4 \ x\_0 \ a - u\_pc0^2)^{1/2}
```

Rocket Equations

```
Question 1b
```

Question to

$$V_{-max}(t,f,m_mir_m_tot) := \operatorname{sqrt}\left(\left(\left(m_mir_m_tot * \frac{(1+R)}{2} * L_star\right) / (2 * \operatorname{Pi} * c * \operatorname{rho})\right) * (1$$

$$/r_{-}0) + V_{-}b(t_{-}f);$$

$$V_{-max} := (t_{-}f,m_mir_m_tot) \mapsto \sqrt{\frac{m_mir_m_tot \cdot \left(\frac{1}{2} + \frac{2}{2}\right) \cdot L_star}{2 \cdot \pi \cdot c \cdot \rho \cdot r_\theta}} + V_{-}b(t_{-}f)$$

$$V_{-max}(t_{-}f,m_mir_m_tot) = V_{-}max(t_{-}f,m_mir_m_tot) + m \cdot t_{-}f + V_{-}b\theta + u_{-}pc\theta$$

$$V_{-}max(t_{-}f,m_mir_m_tot) := \operatorname{solve}\left(t_{-}f = \frac{X(t_f)}{V_max(t_f,m_mir_m_tot)}, t_{-}f\right) | 1$$

$$final_time_sail(m_mir_m_tot) \mapsto \operatorname{solve}\left(t_{-}f = \frac{X(t_f)}{V_max(t_f,m_mir_m_tot)}, t_{-}f\right) | 1$$

$$final_time_sail(mr)$$

$$V_{-}max(t_f,m_mir_m_tot) = V_{-}max(t_f,m_mir_m_tot) + V_{-}f\right) | 1$$

$$V_{-}max(t_f,m_mir_m_tot) + V_{-}f\right) | 1$$

$$V_{-}max(t_f,m_m_tot) + V_{-}f\right) | 1$$

$$V_{-}max(t_f,m_tot) + V_{-}f\right) | 1$$

$$V_{-}max$$