PREDICTING PRICE OF PRE-OWNED CARS IN INDIA

BUSINESS CASE + QUESTION

Market size of pre-owned car India FY 2016-2022

statista 🗾 https://www-statista-com.eu1.proxy.openathens.net/statistics/1044753/india-pre-owned-car-market-size/

Facts

- ✓ Pre-Owned Car Market In India: \$32.14 billion in 2021
- ✓ Anticipated to grow to \$74.7 billion by 2027 (CAGR 15% for 2022-27)
- ✓ Sales of 4.4 million units of pre-owned in 2020 as compared to 2.8 million of new cars

Business Question:

Can historical data of past pre-owned car sales in India be used to predict the sale of a pre-owned car?

Business Case:

- ✓ Unorganized market
- ✓ Increasing demand since COVID-19 pandemic in 2020
- ✓ No standardized model to predict pricing
- ✓ No benchmarking standards

Analytical Goals

Predictive Accuracy

Variable Categories

Quantitative Categorical

ANALYTICAL QUESTION AND GOALS?

Predictors

New Car Price, Car Model, Kilometers Driver, Age of Vehicle, Owner Type, Transmission Type, Car Condition, Fuel Type

Outcome Variables

Selling Price of a Pre-Owned Car

Question: What are the main factors affecting the selling price of a pre-owned car in India? Developing a model to predict the price of a pre-owned car with an acceptable level of accuracy (70%+).

Data

DATA PRE-PROCESSING

 Current Price Standardization (1500+)

Data Cleaning Current Price Availability (28)

ata ormation

• Transmission Type (158)

DATA TRANSFORMATION

Standardization of the OLS model

Descriptive Statistics/Analytics

Correlation of different continuous variables

Descriptive Statistics/Analytics

Histogram & qq-plot for Selling Price (Y variable), New Price and Kilometers driven

Descriptive Statistics/Analytics

Box Plots

Boxplot for Selling Price by Owner

Boxplot for Selling Price by Fuel Type

Boxplot for Selling Price by Transmission Type

Box plot of Selling Price by Transmission Type

Modeling Methods and Specifications

MODELING METHODS AND SPECIFICATIONS

Comparison of RMSE among Models (10 FCV)

RMSE Result Summary

	X
PCR Full (7 comps)	141245.00
Std Fit	140544.37
OLS Fit	139821.76
PCR Fit (4 comps)	139794.00
OLS Full	135809.76
Std Full	134750.57
RF Fit	85727.19
RF Full	84380.08

Candidate Model – Random Forest Fit Model with 3 variables at a time

RMSE value: 86052.59

Candidate Model – Random Forest Full Model with 3 myariables at a time

RMSE value: 87122.86

R Square Value of All Models

R-SQUARE VALUE

Final Model – Random Forest Full Model with 4 variables at a time

Random Forest Tree with mtry = 4

CONCLUSIONS

- Random Forest best for predictive accuracy
 - Original Sale Price (Current.Price) and Age of Vehicle most important variables to include in model
 - Low interpretability of model
- Future research should look for larger data sets, both in quantity of vehicles and in predictors
 - Random forest models useful for models with more predictors

Random Forest Tree with mtry = 4

CHALLENGES AND LESSONS LEARNED

- ✓ Dealing with data with missing values/ incorrect values during data preprocessing and transformation
- ✓ Selecting the models based on initial assessment of OLS regression model
- ✓ Random forest computing requirements
- ✓ Project management and coordination in and around finals