Corrigé de la feuille d'exercices 25

1 Matrice et application linéaire

Exercice 1. 1. Notons $\mathcal{B}_n = (1, X, ..., X^n)$ la base canonique de $\mathbb{R}_n[X]$ et $\mathcal{C} = (1)$ la base canonique de \mathbb{R} .

$$\operatorname{mat}_{\mathcal{B}_n,\mathcal{C}}(u) = \begin{pmatrix} 1 & \cdots & 1 \end{pmatrix} \in \mathcal{M}_{n+1,1}(\mathbb{R})$$

2. Notons $\mathcal{B}_3 = (1, X, X^2, X^3)$ la base canonique de $\mathbb{R}_3[X]$.

$$mat_{\mathcal{B}_3}(v) = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Exercice 2. 1. On a : $f(e_1) = f((1,0,0)) = (1,1)$, $f(e_2) = f((0,1,0)) = (1,-1)$ et $f(e_3) = f((0,0,1)) = (-1,2)$. On en déduit que la matrice de f dans les bases \mathcal{B} et \mathcal{C} est :

$$\operatorname{mat}_{\mathcal{B},\mathcal{C}}(f) = \begin{pmatrix} 1 & 1 & -1 \\ 1 & -1 & 2 \end{pmatrix}$$

- 2. $f_1'=(1,2)$ et $f_2'=(-1,1)$ ne sont pas colinéaires. Ainsi, (f_1',f_2') libre. De plus, cette famille se compose de deux vecteurs et dim $(\mathbb{K}^2)=2$ donc (f_1',f_2') est une base de \mathbb{K}^2 .
- 3. Cherchons alors les coordonnées de $f(e_1)$, $f(e_2)$, $f(e_3)$ dans la base \mathcal{C}' . Soit $\alpha, \beta \in \mathbb{K}$.

$$f(e_1) = \alpha e'_1 + \beta e'_2$$

$$\iff \begin{cases} \alpha - \beta = 1 \\ 2\alpha + \beta = 1 \end{cases}$$

$$\iff \begin{cases} \alpha = \frac{2}{3} \\ \beta = -\frac{1}{3} \end{cases}$$

Ainsi, $f(e_1) = \frac{1}{3}(-f_1' + 2f_2').$

De même, on a $f(e_2) = -f'_2$ et $f(e_3) = \frac{1}{3}(f'_1 + 4f'_2)$ On a donc :

$$\mathrm{mat}_{\mathcal{B},\mathcal{C}'}(f) = \frac{1}{3} \begin{pmatrix} -1 & 0 & 1\\ 2 & -3 & 4 \end{pmatrix}$$

Exercice 3. 1. Notons $\mathcal{B}_n = (1, X, ..., X_n^n)$ la base canonique de $\mathbb{R}_n[X]$ et $\mathcal{C} = (1)$ la base canonique de \mathbb{R} .

Soit
$$j \in [1, n+1]$$
, on a $u(X^{j-1}) = \int_0^1 t^{j-1} dt = \frac{1}{j}$.
Ainsi,

$$\operatorname{mat}_{\mathcal{B}_n,\mathcal{C}}(u) = \begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{3} & \cdots & \frac{1}{n+1} \end{pmatrix} \in \mathcal{M}_{n+1,1}(\mathbb{R})$$

2. Notons $\mathcal{B}_3 = (1, X, X^2, X^3)$ la base canonique de $\mathbb{C}_3[X]$. On a v(1) = 0, $u_3(X) = 1$, $v(X^2) = 1 + 2X$, $v(X^3) = 1 + 3X + 3X^2$. Ainsi,

$$\mathrm{mat}_{\mathcal{B}_3}(v) = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix} \in \mathcal{M}_{4,4}(\mathbb{C})$$

Exercice 4. Montrons que cette famille est libre.

Soit
$$\lambda_0, ..., \lambda_{n-1} \in \mathbb{K}$$
 tel que $\sum_{k=0}^{n-1} \lambda_k f^k(x) = 0$.

En composant avec f^{n-1} , on obtient : $\lambda_0 f^{n-1}(x) + \lambda_1 f^n(x) + \ldots + \lambda_{n-1} f^{2n-1}(x) = 0$. Or : $\forall q \geq n, \ f^q = 0$. Donc : $\lambda_0 f^{n-1}(x) = 0$. Or, $f^{n-1}(x) \neq 0$ donc $\lambda_0 = 0$.

On a alors l'égalité : $\sum_{k=1}^{n-1} \lambda_k f^k(x) = 0$. De la même manière en composant par f^{n-2} , on obtient : $\lambda_1 f^{n-1}(x) = 0$ puis

 $\lambda_1 = 0.$

En itérant, on obtient : $\forall i \in [0, n-1], \lambda_i = 0$.

Ainsi, la famille $(x, f(x), ..., \bar{f}^{n-1}(x))$ est libre. Or, cette famille est de cardinal $n = \dim E$, elle constitue donc une base de E.

De plus, on a : $\forall j \in [1, n], f(f^{j-1}(x)) = f^{j}(x)$.

Ainsi, la matrice de f dans cette base est :

$$\begin{pmatrix}
0 & 0 & \dots & \dots & 0 \\
1 & 0 & \ddots & & \vdots \\
\vdots & 1 & \ddots & \ddots & \vdots \\
\vdots & & \ddots & \ddots & 0 \\
0 & \dots & \dots & 1 & 0
\end{pmatrix}$$

Exercice 5. Soit $M_1, M_2 \in \mathcal{M}_2(\mathbb{K})$. Soit $\lambda, \mu \in \mathbb{K}$.

 $\phi(\lambda M_1 + \mu M_2) = A(\lambda M_1 + \mu M_2) = \lambda A M_1 + \mu A M_2 = \lambda \phi(M_1) + \mu \phi(M_2).$

Ainsi, ϕ est une application linéaire de $\mathcal{M}_2(\mathbb{K})$ dans $\mathcal{M}_2(\mathbb{K})$ donc ϕ est un endomorphisme.

Notons $\mathcal{B} = (E_{1,1}, E_{1,2}, E_{2,1}, E_{2,2})$ la base canonique de $\mathcal{M}_2(\mathbb{K})$.

Notons
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
.

On a:
$$\phi(E_{1,1}) = \begin{pmatrix} a & 0 \\ c & 0 \end{pmatrix} = aE_{1,1} + cE_{2,1}.$$

De même, on a
$$\phi(E_{1,2}) = \begin{pmatrix} 0 & a \\ 0 & c \end{pmatrix}$$
, $\phi(E_{2,1}) = \begin{pmatrix} b & 0 \\ d & 0 \end{pmatrix}$ et $\phi(E_{2,2}) = \begin{pmatrix} 0 & b \\ 0 & d \end{pmatrix}$. On a alors : $\operatorname{mat}_{\mathcal{B}}(\phi) = \begin{pmatrix} a & 0 & b & 0 \\ 0 & a & 0 & b \\ c & 0 & d & 0 \\ 0 & c & 0 & d \end{pmatrix}$

Exercice 6. Commençons par prouver que \mathcal{B}' est bien une base de E.

Soit
$$\lambda_1, ..., \lambda_n \in \mathbb{K}$$
 tels que $\sum_{j=1}^n \lambda_j e'_j = 0$.

Alors
$$\sum_{j=1}^{n} \lambda_j \left(\sum_{k=1}^{j} e_k \right) = 0.$$

Alors, en intervertissant les deux sommes, on obtient : $\sum_{k=1}^{n} \left(\sum_{j=k}^{n} \lambda_{j} \right) e_{k} = 0.$

Or, $(e_k)_{k \in [1,n]}$ est une famille libre donc : $\forall k \in [1,n], \left(\sum_{j=k}^n \lambda_j\right) = 0$.

En particulier, pour $k = n : \lambda_n = 0$.

Pour k = n - 1, $\lambda_n + \lambda_{n-1} = 0$ donc $\lambda_{n-1} = 0$.

En itérant, on obtient : $\forall k \in [1, n], \lambda_k = 0$.

Donc \mathcal{B}' est libre.

De plus, $Card(\mathcal{B}') = n = dim(E)$.

Ainsi, \mathcal{B}' est une base de E.

Déterminons la matrice de f dans la base \mathcal{B}' .

Par définition de f, on a :

$$\forall k \in [1, n], \ f(e_k) = \sum_{i \in [1, n] \setminus \{k\}} \beta e_i + \alpha e_i = \beta \sum_{i=1}^n e_i + (\alpha - \beta) e_k = \beta e'_n + (\alpha - \beta) e_k.$$

Soit $j \in [1, n]$.

$$f(e'_j) = \sum_{k=1}^{j} f(e_k)$$

$$= \sum_{k=1}^{j} (\beta e'_n + (\alpha - \beta) e_k)$$

$$= \beta j e'_n + (\alpha - \beta) \sum_{k=1}^{j} e_k$$

$$= \beta j e'_n + (\alpha - \beta) e'_j$$

On obtient ainsi:

$$\operatorname{mat}_{\mathcal{B}'}(f) = \begin{pmatrix} \beta - \alpha & 0 & \cdots & \cdots & 0 \\ 0 & \alpha - \beta & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & \alpha - \beta & 0 \\ \beta & 2\beta & \cdots & (n-1)\beta & \alpha - \beta + n\beta \end{pmatrix},$$

Exercice 7. f est l'unique application linéaire telle que $f(e_1) = e_1$, $f(e_4) = e_4$, $f(e_2) = 0$ et $f(e_3) = 0$. Ainsi, f est la projection sur Vect (e_1, e_4) parallèlement à Vect (e_2, e_3) .

Exercice 8. Notons \mathcal{B} la base canonique de \mathbb{R}^2 et $M = \operatorname{mat}_{\mathcal{B}}(f)$. On a:

$$M = \begin{pmatrix} 3 & 6 \\ -1 & -2 \end{pmatrix}.$$

On remarque que $M^2 = M$.

Ainsi, $\operatorname{mat}_{\mathcal{B}}(f \circ f) = \operatorname{mat}_{\mathcal{B}}(f)$ et donc $f \circ f = f$. Ainsi, f est bien un projecteur.

Exercice 9. Soit $P \in \mathbb{C}_4[X]$. On a : $(f \circ f)(P) = f(P(1-X)) = P(1-(1-X)) = P(X)$. Ainsi, $f \circ f = Id_{\mathbb{C}_A[X]}$. Notons \mathcal{B} la base canonique de $\mathbb{C}_4[X]$ et $A = \operatorname{mat}_{\mathcal{B}}(f)$.

On a $\operatorname{mat}_{\mathcal{B}}(f \circ f) = \operatorname{mat}_{\mathcal{B}}(Id) = I_5$.

Or, $\operatorname{mat}_{\mathcal{B}}(f \circ f) = \operatorname{mat}_{\mathcal{B}}(f) \times \operatorname{mat}_{\mathcal{B}}(f) = A^2$. Ainsi, $A^2 = I_5$ donc A est inversible et $A^{-1} = A$. Or, f(1) = 1,

$$f(X) = 1 - X,$$

$$f(X^2) = (1 - X)^2 = 1 - 2X + X^2$$

$$f(X^2) = (1 - X)^2 = 1 - 2X + X^2,$$

$$f(X^3) = (1 - X)^3 = 1 - 3X + 3X^2 - X^3$$

et
$$f(X^4) = (1-X)^4 = 1 - 4X + 6X^2 - 4X^3 + X^4$$
.

Ainsi.

$$A = A^{-1} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1\\ 0 & -1 & -2 & -3 & -4\\ 0 & 0 & 1 & 3 & 6\\ 0 & 0 & 0 & -1 & -4\\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

1. Soit $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{K}).$

$$A \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0 \iff \begin{cases} 2x - y - z = 0 \\ -x + 2y - z = 0 \\ -x - y + 2z = 0 \end{cases}$$

$$\iff \begin{cases} x - 2y + z = 0 \\ 2x - y - z = 0 \\ -x - y + 2z = 0 \end{cases}$$

$$\iff \begin{cases} x - 2y + z = 0 \\ 3y - 3z = 0 \\ -3y + 3z = 0 \end{cases}$$

$$\iff \begin{cases} x = z \\ y = z \end{cases}$$

Ainsi, Ker
$$A = \text{Vect}\left(\begin{pmatrix}1\\1\\1\end{pmatrix}\right)$$
, ainsi Ker $(f) = \text{Vect}\left((1,1,1)\right)$.

Comme
$$(1,1,1) \neq 0$$
, $((1,1,1))$ est une base de Ker f .

$$\operatorname{Im} A = \operatorname{Vect} \left(\begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \\ 2 \end{pmatrix} \right) = \operatorname{Vect} \left(\begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix} \right) \operatorname{car} \begin{pmatrix} -1 \\ -1 \\ 2 \end{pmatrix} = - \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix} - \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix}.$$

2. Posons $e_1 = (1, 1, 1), e_2 = (2, -1, -1), e_3 = (-1, 2, -1).$

Comme $e_1 \neq 0$, (e_1) est une base de Ker f. Comme e_2 et e_3 ne sont pas colinéaires, (e_2, e_3) est une base de Imf. Soit $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ tels que $\lambda_1 e_1 + \lambda_2 e_2 + \lambda_3 e_3 = 0$.

$$\lambda_1 e_1 + \lambda_2 e_2 + \lambda_3 e_3 = 0 \iff \begin{cases} \lambda_1 + 2\lambda_2 - \lambda_3 = 0 \\ \lambda_1 - \lambda_2 + 2\lambda_3 = 0 \\ \lambda_1 - \lambda_2 - \lambda_3 = 0 \end{cases}$$

$$\iff \begin{cases} \lambda_1 + 2\lambda_2 - \lambda_3 = 0 \\ \lambda_1 - \lambda_2 - \lambda_3 = 0 \end{cases}$$

$$\iff \begin{cases} \lambda_1 + 2\lambda_2 - \lambda_3 = 0 \\ -3\lambda_2 + 3\lambda_3 = 0 \end{cases}$$

$$L_2 \leftarrow L_2 - L_1$$

$$-3\lambda_2 = 0 \qquad L_3 \leftarrow L_3 - L_1$$

$$\iff \lambda_1 = \lambda_2 = \lambda_3 = 0$$

Donc (e_1, e_2, e_3) est libre. Comme Card $(e_1, e_2, e_3) = 3 = \dim(\mathbb{R}^3)$.

Ainsi, (e_1, e_2, e_3) est une base de \mathbb{R}^3 . Donc $\text{Vect}(e_1) \oplus \text{Vect}(e_2, e_3) = \mathbb{R}^3$.

Ainsi : Ker $f \oplus \text{Im} f = \mathbb{R}^3$.

De plus, $\mathcal{B} = (e_1, e_2, e_3)$ est une base de \mathbb{R}^3 réunion d'une base de ker f et d'une base de Im f.

De plus,
$$A \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix} = \begin{pmatrix} 6 \\ -3 \\ -3 \end{pmatrix} \operatorname{donc} f(e_2) = (6, -3, -3) = 3e_2.$$

De même, $A \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix} \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix} -3 \\ 6 \\ -3 \end{pmatrix} \operatorname{donc} f(e_3) = (-3, 6, -3) = 3e_3.$

D'où:

$$\mathrm{mat}_{\mathcal{B}}(f) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

Ainsi, on a : $\operatorname{mat}_{\mathcal{B}}(f) = 3I_3 \cdot \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

Soit $g \in \mathcal{L}(\mathbb{R}^3)$ tel que $\operatorname{mat}_{\mathcal{B}}(g) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

Alors, $f = (3Id_{\mathbb{R}^3}) \circ g$.

De plus, g est l'unique application linéaire telle que $g(e_1)=0$, $g(e_2)=e_2$ et $g(e_3)=e_3$. Donc g est la projection sur $Vect(e_2, e_3) = Im f$ parallèlement à $Vect(e_1) = \ker f$.

Donc f est la composée de l'homothétie de rapport 3 et de la projection sur Im f parallèlement à $\ker f$.

1. Par calcul, on a $A^2 = 0$ donc $f^2 = 0$. Exercice 11.

Ainsi, $\operatorname{Im}(f) \subset \operatorname{Ker}(f)$.

En effet : soit $y \in \text{Im}(f)$, il existe $x \in E$ tel que y = f(x).

On a alors : $f(y) = f^2(x) = 0$ donc $y \in \text{Ker}(f)$.

2. D'après la question précédente, $\operatorname{Im} f \subset \operatorname{Ker} f$, on a $\operatorname{rg}(f) \leq \dim(\operatorname{Ker} f)$. Ainsi , $2\operatorname{rg}(f) \leq \operatorname{rg}(f) + \dim(\operatorname{Ker} f)$. Or, d'après le théorème du rang, on a :dim (Ker f) + rg (f) = dim \mathbb{R}^3 = 3.

Ainsi, $2\operatorname{rg}(f) \leq 3$ donc $\operatorname{rg}(f) \leq \frac{3}{2}$

Or, $\operatorname{rg}(f) \in \mathbb{N}$. Ainsi, $\operatorname{rg}(f) \in \{0, \overline{1}\}$.

Or, $rg(f) = 0 ssi Im f = \{0\} ssi f = 0.$

Comme A n'est pas la matrice nulle, f n'est pas l'application nulle donc rg f=1. Le théorème du rang nous donne alors dim (Ker f) = 2.

La première colonne de A est $\begin{pmatrix} 3 \\ 2 \\ -1 \end{pmatrix}$. Comme cette colonne est non nul, elle forme une base de ImA.

Ainsi, $(3e_1 + 2e_2 - e_3)$ forme une base de Im f.

Soit
$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R})$$
, on a:

$$AX = 0 \iff \begin{cases} 3x - 3y + 6z = 0 \\ x - y + 2z = 0 \\ -x + y - 2z = 0 \end{cases}$$
$$\iff x - y + 2z = 0$$

Ainsi,

$$\operatorname{Ker} A = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{K}) \mid x - y + 2z = 0 \right\}$$
$$= \left\{ \begin{pmatrix} y - 2z \\ y \\ z \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{K}) \mid y, z \in \mathbb{K} \right\}$$
$$= \operatorname{Vect} \left(\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix} \right)$$

Or,
$$\begin{pmatrix} 1\\1\\0 \end{pmatrix}$$
 et $\begin{pmatrix} -2\\0\\1 \end{pmatrix}$ ne sont pas colinéaires. Ainsi, $\begin{pmatrix} \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} -2\\0\\1 \end{pmatrix} \end{pmatrix}$ forme une base de ker A .

Ainsi, $(e_1 + e_2, -2e_1 + e_3)$ forme une base de Ker f.

3. On cherche une base (u_1, u_2, u_3) telle que $f(u_1) = u_2, f(u_2) = f(u_3) = 0$.

Il faut donc que $u_2 \in \text{Im}(f) \cap \text{Ker}(f) = \text{Im}(f) \text{ car } \text{Im}(f) \subset \text{ker } f$.

Posons $u_2 = 3e_1 + 2e_2 - e_3$.

On cherche u_1 tel que $f(u_1) = u_2$. On pose $u_1 = e_1$ (vu la première colonne de A).

On cherche également $u_3 \in \ker f$.

De plus, (u_1, u_2, u_3) doit former une base de \mathbb{R}^3 .

On choisit donc pour u_3 un vecteur de ker f non colinéaire à u_2 .

Posons $u_3 = e_1 + e_2$.

Vérifions que la famille (u_1, u_2, u_3) est libre.

Soient $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{K}$ tels que $\lambda_1 u_1 + \lambda_2 u_2 + \lambda_3 u_3 = 0$.

On a $\lambda_1 e_1 + \lambda_2 (3e_1 + 2e_2 - e_3) + \lambda_3 (e_1 + e_2) = 0$.

Ainsi: $(\lambda_1 + 3\lambda_2 + \lambda_3)e_1 + (2\lambda_2 + \lambda_3)e_2 - \lambda_2 e_3 = 0.$

Or, (e_1, e_2, e_3) est libre.

Or,
$$(e_1, e_2, e_3)$$
 est libre.
Ainsi:
$$\begin{cases} \lambda_1 + 3\lambda_2 + \lambda_3 = 0 \\ 2\lambda_2 + \lambda_3 = 0 \end{cases}$$

$$\lambda_2 = 0$$
Ainsi:
$$\begin{cases} \lambda_1 = 0 \\ \lambda_2 = 0 \\ \lambda_3 = 0 \end{cases}$$

Ainsi, la famille $\mathcal{C} = (u_1, u_2, u_3)$ est libre et composée de 3 vecteurs. Or, dim $\mathbb{R}^3 = 3$. Ainsi, cette famille est est

De plus, dans cette base, on a : $f(u_1) = u_2$, $f(u_2) = 0$, $f(u_3) = 0$.

Ainsi,
$$\text{mat}_{\mathcal{C}}(f) = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Exercice 12.

cice 12. 1. Notons
$$B_c$$
 la base canonique de \mathbb{K}^n .

On a $\operatorname{mat}_{B_c}((u-id_E)\circ v)=(A-I_n)B=(A-I_n)\sum_{j=0}^{k-1}A^j=A^k-I_n^k=0$ (puisque A et I_n commutent).

Ainsi $(u - id_E) \circ v = 0$.

On montre de même que $v \circ (u - id_E) = 0$.

• Montrons que $\operatorname{Im}(v) = \operatorname{Ker}(u - id_E)$. Montrons tout d'abord que $\operatorname{Im}(v) \subset \operatorname{Ker}(u - id_E)$. Soit $y \in \text{Im}(v)$, il existe $x \in E$ tel que y = v(x).

On a alors : $(u - id_E)(y) = (u - id_E) \circ v(x) = 0$.

Donc $y \in \text{Ker}(u - id_E)$.

Montrons désormais que $\operatorname{Ker}(u - id_E) \subset \operatorname{Im}(v)$.

On a :
$$B = \sum_{j=0}^{k-1} A^j$$
 donc $v = \sum_{j=0}^{k-1} u^j$.
Soit $x \in \text{Ker}(u - id_E)$, on a $u(x) = x$.

Ainsi
$$v(x) = \sum_{j=0}^{k-1} u^j(x) = \sum_{j=0}^{k-1} x = kx$$
.
Ainsi, donc $x = v(k^{-1}x) \in \text{Im}(v)$.

Donc $\operatorname{Im}(v) = \operatorname{Ker}(u - id_E)$.

• Montrons que $\operatorname{Im}(u - id_E) = \operatorname{Ker}(v)$.

Montrons tout d'abord que $\operatorname{Im}(u - id_E) \subset \operatorname{Ker}(v)$.

Soit $y \in \text{Im}(u - id_E)$, il existe $x \in E$ tel que $y = (u - id_E)(x)$.

On a alors : $v(y) = v \circ (u - id_E)(x) = 0$.

Donc $y \in \text{Ker}(v)$.

Montrons désormais que $\operatorname{Ker}(v) \subset \operatorname{Im}(u - id_E)$.

Par le théorème du rang, on a : $\operatorname{rg}(v) + \dim(\operatorname{Ker}(v)) = \operatorname{rg}(u - id_E) + \dim(\operatorname{Ker}(u - id_E)) = n$.

Or, on a prouvé que $\operatorname{rg}(v) = \dim(\operatorname{Ker}(u - id_E))$, on déduit $\operatorname{rg}(u - id_E) = \dim(\operatorname{Ker}(v))$.

De plus, on avait $\operatorname{Im}(u - id_E) \subset \operatorname{Ker}(v)$ donc $\operatorname{Im}(u - id_E) = \operatorname{Ker}(v)$.

Montrons désormais que $\operatorname{Ker} v$ et $\operatorname{Im} v$ sont supplémentaires.

Tout d'abord, le théorème du rang donne $\dim(\operatorname{Ker}(v)) + \operatorname{rg}(v) = n$, donc pour montrer que $\operatorname{Im}(v)$ et $\operatorname{Ker}(v)$ sont supplémentaires, il suffit de montrer que leur intersection est réduit au singleton {0}.

Soit $x \in \text{Im}(v) \cap \text{Ker}(v)$.

On a alors $x \in \text{Im}(v) = \text{Ker}(u - id_E)$, donc u(x) = x.

On a alors v(x) = kx (démonstration au dessus).

Or $x \in \text{Ker}(v)$, donc x = 0 car $k \neq 0$.

Ainsi, $\operatorname{Im}(v) \cap \operatorname{Ker}(v) = \{0\}.$

Donc Im v et Ker v sont supplémentaires.

2. Soit (e_1, \ldots, e_r) une base de $\operatorname{Im}(v)$ et (e_{r+1}, \ldots, e_n) une base de $\operatorname{Ker}(v)$. D'après la question précédente, (e_1, \ldots, e_n) forme une base \mathcal{C} de E.

Soit $j \in [r+1, n]$, comme $e_j \in \text{Ker } v$, on a $v(e_j) = 0$.

Soit $j \in [1, r]$, comme $e_j \in \text{Im}(v) = \text{Ker}(u - id_E)$ et comme vu plus haut $v(e_j) = k(e_j)$. Ainsi :

$$\operatorname{mat}_C(v) = \left(\begin{array}{cc} kI_r & 0 \\ 0 & 0 \end{array} \right).$$

La somme des coefficients diagonaux de cette matrice est kr, où $r = \dim(\operatorname{Im}(v)) = \operatorname{rg}(v) = \operatorname{rg}(B)$.

Exercice 13. 1. Soient $P, Q \in \mathbb{R}_2[X]$, soient $\lambda_{\mu} \in \mathbb{R}$.

$$\begin{split} u(\lambda P + \mu Q) &= ((\lambda P + \mu Q)(0), (\lambda P + \mu Q)(1), (\lambda P + \mu Q)(2)) \\ &= (\lambda P(0) + \mu Q(0), \lambda P(1) + \mu Q(1), \lambda P(2) + \mu Q(2)) \\ &= \lambda (P(0), P(1), P(2)) + \mu (Q(0), Q(1), Q(2)) \\ &= \lambda u(P) + \mu u(Q) \end{split}$$

Ainsi, u est linéaire.

De plus, on a:

$$A = \text{mat}_{\mathcal{B},\mathcal{C}}(u) = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \end{pmatrix}$$

Montrons que A est inversible.

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 2 & 4 & 0 & 0 & 1 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & -1 & 1 & 0 \\ 0 & 2 & 4 & -1 & 0 & 1 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & -1 & 1 & 0 \\ 0 & 0 & 2 & 1 & -2 & 1 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & -1 & 1 & 0 \\ 0 & 0 & 1 & \frac{1}{2} & -1 & \frac{1}{2} \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & -\frac{3}{2} & 2 & -\frac{1}{2} \\ 0 & 0 & 1 & \frac{1}{2} & -1 & \frac{1}{2} \end{pmatrix}$$

Ainsi, $A \sim I_n$. On peut donc conclure que cette matrice est inversible et

$$A^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ -\frac{3}{2} & 2 & -\frac{1}{2} \\ \frac{1}{2} & -1 & \frac{1}{2} \end{pmatrix}$$

Ainsi, u est un isomorphisme et $mat_{\mathcal{C},\mathcal{B}}(u^{-1}) = A^{-1}$.

2. On connait u^{-1} par le biais d'une représentation matricielle. Soit $x = (a, b, c) \in \mathbb{R}^3$. On a : $\operatorname{mat}_{\mathcal{B}}(u^{-1}(x)) = A^{-1}\operatorname{mat}_{\mathcal{C}}(x)$. Ainsi,

$$\operatorname{mat}_{\mathcal{B}}(u^{-1}(x)) = A^{-1} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} \frac{a}{2}a + 2b - \frac{1}{2}c \\ \frac{1}{2}a - b + \frac{1}{2}c \end{pmatrix}$$

Ainsi,
$$u^{-1}: \mathbb{R}^3 \to \mathbb{R}_2[X]$$

 $(a,b,c) \mapsto a + \left(-\frac{3}{2}a + 2b - \frac{1}{2}c\right)X + \left(\frac{1}{2}a - b + \frac{1}{2}c\right)X^2$

Exercice 14. • Soit $P \in \mathbb{R}_n[X]$. $\deg(P) = \deg(P(X+1)) = \deg(P) \le n \text{ donc } f(P) \in \mathbb{R}_n[X].$

• Soient $\lambda, \mu \in \mathbb{R}$, soient $P, Q \in \mathbb{R}_n[X]$.

$$f(\lambda P + \mu Q) = (\lambda P + \mu Q)(X + 1) = \lambda P(X + 1) + \mu Q(X + 1) = \lambda f(P) + \mu f(Q).$$

Donc $f \in \mathcal{L}(\mathbb{R}_n[X])$.

• Soit $j \in [1, n+1]$,

$$f(X^{j-1}) = (X+1)^{j-1} = \sum_{l=0}^{j-1} {j-1 \choose l} X^l = \sum_{i=1}^{j} {j-1 \choose i-1} X^{i-1}.$$

Donc $\operatorname{mat}_{\mathcal{B}}(f) = (m_{i,j})$ avec :

$$\forall i, j \in [1, n+1], \ m_{i,j} = \begin{cases} \binom{j-1}{i-1} & \text{si } i \leq j \\ 0 & \text{sinon} \end{cases}$$

Ainsi, $\operatorname{mat}_{\mathcal{B}}(f) = A$.

• Posons $g: \mathbb{R}_n[X] \to \mathbb{R}_n[X]$ alors $g \circ f = f \circ g = Id_{\mathbb{R}_n[X]}$. 2. Donc f est bijective et $f^{-1} = g$. Ainsi, A est inversible et $A^{-1} = \text{mat}_{\mathcal{B}}(g)$.

• Soit $j \in [1, n+1]$,

$$g(X^{j-1}) = (X-1)^{j-1} = \sum_{l=0}^{j-1} {j-1 \choose l} (-1)^{j-1-l} X^l = \sum_{i=1}^{j} {j-1 \choose i-1} (-1)^{j-i} X^{i-1}.$$

Ainsi, $A^{-1} = (b_{i,j})$ avec :

$$\forall i, j \in [1, n+1], \ m_{i,j} = \left\{ \begin{array}{l} {j-1 \choose i-1} (-1)^{j-i} & \text{ si } i \leq j \\ 0 & \text{ sinon} \end{array} \right.$$

Ainsi, $\operatorname{mat}_{\mathcal{B}}(f) = A$.

2 Changement de base

Exercice 15. Pour déterminer la matrice de passage de la base \mathcal{B}_1 à la base \mathcal{B}_2 , il nous faut calculer les coordonnées de chaque vecteurs de \mathcal{B}_2 dans la base \mathcal{B}_1 . Soit $a, b, c \in \mathbb{R}$.

$$a(1,2,1) + b(2,3,3) + c(3,7,1) = (3,1,4)$$

$$\iff \begin{cases} a+2b+3c=3\\ 2a+3b+7c=1\\ a+3b+c=4 \end{cases}$$

$$\iff \begin{cases} a+2b+3c=3\\ -b+c=-5\\ b-2c=1 \end{cases}$$

$$\iff \begin{cases} a+2b+3c=3\\ b-2c=1\\ -c=-4 \end{cases}$$

$$\iff \begin{cases} a=-27\\ b=9\\ c=4 \end{cases}$$

Ainsi, (3, 1, 4) = -27(1, 2, 1) + 9(2, 3, 3) + 4(3, 7, 1).

On procède de même pour les autres vecteurs de \mathcal{B}_2 et on trouve : (5,3,2) = -59(1,2,1) + 17(2,3,3) + 10(3,7,1) et (1,-1,7) = 10(1,2,1) - 3(3,7,1).

Notons P la matrice de passage de \mathcal{B}_1 à \mathcal{B}_2 . On obtient finalement :

$$P = \begin{pmatrix} -27 & -59 & 10\\ 9 & 17 & 0\\ 4 & 10 & -3 \end{pmatrix}$$

Exercice 16. 1. Soit $\lambda_1, \lambda_2, \lambda_3, \lambda_4 \in \mathbb{R}$ tels que $\lambda_1(1,0,0,0) + \lambda_2(1,1,0,0) + \lambda_3(1,1,1,0) + \lambda_4(1,1,1,1) = 0$.

On a alors:
$$\begin{cases} \lambda_1, \lambda_2, \lambda_3, \lambda_4 \in \mathbb{R} \text{ tels que } \lambda_1(1, 0, 0, 0) + \lambda_2(1, 1, 0) \\ \lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 = 0 \\ \lambda_2 + \lambda_3 + \lambda_4 = 0 \\ \lambda_3 + \lambda_4 = 0 \end{cases}$$
 puis $\lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 = 0$.

Ainsi, \mathcal{B}' est une famille libre de \mathbb{R}^4 .

Or, elle se compose de 4 vecteurs et dim $(\mathbb{R}^4) = 4$ donc \mathcal{B}' est une base de \mathbb{R}^4 .

2. Posons $X = \text{mat}_{\mathcal{B}}(x) = \begin{pmatrix} 2 \\ -1 \\ 3 \\ 4 \end{pmatrix}$, $X' = \text{mat}_{\mathcal{B}'}(x)$, P la matrice de passage de \mathcal{B} à \mathcal{B}' et Q la matrice de passage

 $de \mathcal{B}' \grave{a} \mathcal{B}.$

On a X = PX'.

Ainsi,
$$X' = (P)^{-1} X$$
.

Or,
$$(P)^{-1} = Q = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
.

$$\begin{array}{l} {\rm car}\; (0,1,0,0) = -(1,0,0,0) + (1,1,0,0) \\ (0,0,1,0) = -(1,1,0,0) + (1,1,1,0) \\ {\rm et}\; (0,0,0,1) = -(1,1,1,0) + (1,1,1,1). \\ {\rm Finalement}, \end{array}$$

$$X' = QX = \begin{pmatrix} 3 \\ -4 \\ -1 \\ 4 \end{pmatrix}$$

Exercice 17. Notons $F = \{(x, y, z) \in \mathbb{R}^3 \mid x + y - z = 0\}$. On a alors :

$$F = \{(x, y, x + y) \mid x, y \in \mathbb{R}\}$$

= \{x(1, 0, 1) + y(0, 1, 1) \| x, y \in \mathbb{R}\}
= \text{Vect}(f_1, f_2)

où $f_1 = (1, 0, 1)$ et $f_2 = (0, 1, 1)$.

Ces deux vecteurs ne sont pas colinéaires. Ainsi, la famille (f_1, f_2) est libre donc (f_1, f_2) forme une base de F.

Notons $G = \text{Vect}((1,1,1)), f_3 = (1,1,1)$ et p la projection sur F parallèlement à G.

Comme p est la projection sur F parallèlement à G, on a $F \oplus G = E$ Ainsi, (f_1, f_2, f_3) est une base de \mathbb{R}^3 que l'on note \mathcal{B}' .

Notons \mathcal{B} la base canonique de \mathbb{R}^3 .

On a $p(f_1) = f_1$, $p(f_2) = f_2$ et $p(f_3) = 0$. Ainsi, on a :

$$\mathrm{mat}_{\mathcal{B}'}(p) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

De plus, notons P la matrice de \mathcal{B} à \mathcal{B}' . On a :

$$P = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

Par la formule de changement de base, on a $\operatorname{mat}_{\mathcal{B}'}(p) = P^{-1}\operatorname{mat}_{\mathcal{B}}(p)P$ donc $\operatorname{mat}_{\mathcal{B}}(p) = P\operatorname{mat}_{\mathcal{B}'}(p)P^{-1}$. Après calcul, on obtient :

$$Mat_{\mathcal{B}}(p) = \begin{pmatrix} 0 & -1 & 1 \\ -1 & 0 & 1 \\ -1 & -1 & 2 \end{pmatrix}$$

Pour vérifier la calcul, on sait que $\operatorname{mat}_{\mathcal{B}}(f_1) = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$. Notons $A = \operatorname{mat}_{\mathcal{B}}(p)$. On calcule $A\operatorname{mat}_{\mathcal{B}}(f_1) = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$.

Ainsi, $\operatorname{mat}_{\mathcal{B}}(p(f_1)) = A\operatorname{mat}_{\mathcal{B}}(f_1) = \operatorname{mat}_{\mathcal{B}}(f_1)$ donc $p(f_1) = f_1$ (cohérent avec le fait que p est un projecteur sur F parallèlement à G). On vérifie de même par le produit matriciel que l'on retrouve le fait que $p(f_2) = f_2$ et $p(f_3) = 0$.

Exercice 18. 1. Cette famille est une famille de polynômes non nuls de $\mathbb{R}_3[X]$ de degrés échelonnées. Elle forme donc une famille libre. De plus elle est composée de 4 vecteurs et dim $\mathbb{R}_3[X] = 4$. Ainsi, Elle forme donc une base de $\mathbb{R}_3[X]$

2. Notons P la matrice de passage de \mathcal{B} à \mathcal{B}' . On a $\mathcal{B}'=(1,X,-X+X^2,2X-3X^2+X^3)$. Ainsi,

$$P = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

3. Notons Q la matrice de passage de \mathcal{B}' à \mathcal{B} . **Méthode 1 :** On sait que $Q = P^{-1}$. Ainsi, il nous suffit par exemple de calculer l'inverse de la matrice précédente en utilisant la méthode de Gauss.

Donc
$$Q = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
.

Méthode 2 : Déterminons les coordonnées des vecteurs de la base \mathcal{B} dans la base \mathcal{B}' . On a :

$$1 = 1, X = X, X^2 = X^2 - X + X = X(X - 1) + X,$$

$$X^3 = X^3 - 3X^2 + 2X + 3(X^2 - X) + X = X(X - 1)(X - 2) - 3X(X - 1) - 5X.$$

On obtient ainsi:

$$Q = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

4. u(1) = 0, u(X) = 1, $u(X^2) = 2X$, $u(X^3) = 3X^2$. Ainsi, on obtient:

$$mat_{\mathcal{B}}(u) = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Déterminons désormais $\operatorname{mat}_{\mathcal{B}'}(u)$.

Méthode 1 : Notons $A = \text{mat}_{\mathcal{B}'}(u)$, $A' = \text{mat}_{\mathcal{B}'}(u)$. Par la formule de changement de base, on a : A' = QAP. Après calcul, on obtient :

$$mat_{\mathcal{B}'}(u) = \begin{pmatrix} 0 & 1 & -1 & 2\\ 0 & 0 & 2 & -3\\ 0 & 0 & 0 & 3\\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Méthode 2:

On a u(1) = 0,

u(X) = 1,

 $u(X(X-1)) = u(X^2 - X) = 2X - 1,$

 $u(X(X-1)(X-2)) = u(X^3 - 3X^2 + 2X) = 3X^2 - 6X + 2 = 3X(X-1) + 3X - 6X + 2 = 3X(X-1) - 3X + 2.$ On obtient ainsi:

$$\operatorname{mat}_{\mathcal{B}'}(u) = \begin{pmatrix} 0 & 1 & -1 & 2 \\ 0 & 0 & 2 & -3 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Exercice 19. 1. Soit $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$.

$$\lambda_1 v_1 + \lambda_2 v_2 + \lambda_3 v_3 = 0$$

$$\iff \begin{cases} \lambda_1 + \lambda_2 + \lambda_3 = 0 \\ \lambda_2 + 2\lambda_3 = 0 \\ 3\lambda_3 = 0 \end{cases}$$

$$\iff \begin{cases} \lambda_1 = 0 \\ \lambda_2 = 0 \\ \lambda_3 = 0 \end{cases}$$

Ainsi, la famille (v_1, v_2, v_3) est libre et composée de 3 vecteurs. Or, dim $(\mathbb{R}^3) = 3$. Ainsi (v_1, v_2, v_3) forme une base de \mathbb{R}^3 .

2. Par définition de la symétrie, $s(v_1) = v_1$, $s(v_2) = v_2$ et $s(v_3) = -v_3$. Donc

$$\mathrm{mat}_{\mathcal{B}}(s) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

3. Pour déterminer la matrice de s dans la base canonique de \mathbb{R}^3 , on va utiliser la formule de changement de base. Notons \mathcal{B}_c la base canonique de s.

Notons P la matrice de passage de \mathcal{B}_c à \mathcal{B} .

On a : $P = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 3 \end{pmatrix}$. On a alors : $\operatorname{mat}_{\mathcal{B}}(s) = P^{-1} \operatorname{mat}_{\mathcal{B}_c}(s) P$ donc $\operatorname{mat}_{\mathcal{B}_c}(s) = P \operatorname{mat}_{\mathcal{B}}(s) P^{-1}$.

$$\begin{pmatrix}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 2 & 0 & 1 & 0 \\
0 & 0 & 3 & 0 & 0 & 1
\end{pmatrix}$$

$$\sim L$$

$$\begin{pmatrix}
1 & 0 & -1 & 1 & -1 & 0 \\
0 & 1 & 2 & 0 & 1 & 0 \\
0 & 0 & 3 & 0 & 0 & 1
\end{pmatrix}$$

$$\sim L$$

$$\begin{pmatrix}
1 & 0 & -1 & 1 & -1 & 0 \\
0 & 1 & 2 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & \frac{1}{3}
\end{pmatrix}$$

$$\sim L$$

$$\begin{pmatrix}
1 & 0 & 0 & 1 & -1 & \frac{1}{3} \\
0 & 1 & 0 & 0 & 0 & -\frac{2}{3} \\
0 & 0 & 1 & 0 & 0 & \frac{1}{3}
\end{pmatrix}$$

On obtient ainsi:

$$P^{-1} = \begin{pmatrix} 1 & -1 & \frac{1}{3} \\ 0 & 0 & -\frac{2}{3} \\ 0 & 0 & \frac{1}{3} \end{pmatrix}$$

Puis,

$$\max_{\mathcal{B}_c}(s) = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 3 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \times \begin{pmatrix} 1 & -1 & \frac{1}{3} \\ 0 & 0 & -\frac{2}{3} \\ 0 & 0 & \frac{1}{3} \end{pmatrix} \\
= \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 3 \end{pmatrix} \times \begin{pmatrix} 1 & -1 & \frac{1}{3} \\ 0 & 0 & -\frac{2}{3} \\ 0 & 0 & -\frac{1}{3} \end{pmatrix} \\
= \begin{pmatrix} 1 & -1 & -\frac{2}{3} \\ 0 & 0 & -\frac{4}{3} \\ 0 & 0 & -1 \end{pmatrix}$$

4. Soit $u = (x, y, z) \in \mathbb{R}^3$. On sait que $\operatorname{mat}_{\mathcal{B}_c}(s(u)) = \operatorname{mat}_{\mathcal{B}_c}(s) \operatorname{mat}_{\mathcal{B}_c}(u) = \begin{pmatrix} 1 & -1 & -\frac{2}{3} \\ 0 & 0 & -\frac{4}{3} \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x - y - \frac{2}{3}z \\ -\frac{4}{3}z \\ -z \end{pmatrix}$.

Finalement, on obtient:

$$s: \quad \mathbb{R}^3 \quad \to \quad \mathbb{R}^3$$

$$(x, y, z) \quad \mapsto \quad \left(x - y - \frac{2}{3}z, -\frac{4}{3}z, -z\right)$$

Exercice 20.

cice 20. 1. \mathcal{B} est une famille de 3 vecteurs de \mathbb{R}^3 avec $\dim(\mathbb{R}^3) = 3$. Il nous suffit donc de prouver que cette famille est libre. Soit $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ tels que $\begin{cases} \lambda_1 + \lambda_2 = 0 \\ 3\lambda_1 + \lambda_3 = 0 \\ \lambda_1 - 2\lambda_2 - \lambda_3 = 0 \end{cases}$. On a alors : $\begin{cases} \lambda_1 + \lambda_2 = 0 \\ -3\lambda_2 + \lambda_3 = 0 \\ -3\lambda_2 - \lambda_3 = 0 \end{cases}$ puis

 $\begin{cases} \lambda_1 + \lambda_2 = 0 \\ -3\lambda_2 + \lambda_3 = 0 \\ -2\lambda_3 = 0 \end{cases} \text{ et enfin } \begin{cases} \lambda_1 = 0 \\ \lambda_2 = 0 \\ \lambda_3 = 0 \end{cases}. \text{ Ainsi, cette famille est libre. Elle constitue donc une base de } \mathbb{R}^3.$ 2. On a $u(1,0,0) = (10,-6,-2), \ u(0,1,0) = (-1,9,-1) \text{ et } u(0,0,1) = (-1,-3,11).$

Ainsi,
$$A = \begin{pmatrix} 10 & -1 & -1 \\ -6 & 9 & -3 \\ -2 & -1 & 11 \end{pmatrix}$$
.

3. On va utiliser la formule dé changement de base. Notons P la matrice de passage de \mathcal{B}_c à \mathcal{B} . On a :

$$P = \begin{pmatrix} 1 & 1 & 0 \\ 3 & 0 & 1 \\ 1 & -2 & -1 \end{pmatrix}$$

On sait alors que $B = P^{-1}AP$. Par la méthode de Gauss Jordan, on peut inverser P:

$$\begin{pmatrix} 1 & 1 & 0 & | & 1 & 0 & 0 \\ 3 & 0 & 1 & | & 0 & 1 & 0 \\ 1 & -2 & -1 & | & 0 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 0 & | & 1 & 0 & 0 \\ 0 & -3 & 1 & | & -3 & 1 & 0 \\ 0 & -3 & -1 & | & -1 & 0 & 1 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 1 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & -\frac{1}{3} & | & 1 & -\frac{1}{3} & 0 \\ 0 & -3 & -1 & | & -1 & 0 & 1 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 0 & \frac{1}{3} & | & 0 & \frac{1}{3} & 0 \\ 0 & 1 & -\frac{1}{3} & | & 1 & -\frac{1}{3} & 0 \\ 0 & 0 & -2 & | & 2 & -1 & 1 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 0 & \frac{1}{3} & | & 0 & \frac{1}{3} & 0 \\ 0 & 1 & -\frac{1}{3} & | & 1 & -\frac{1}{3} & 0 \\ 0 & 0 & 1 & | & -1 & \frac{1}{2} & -\frac{1}{2} \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 0 & 0 & | & 1/3 & 1/6 & 1/6 \\ 0 & 1 & 0 & | & 2/3 & -1/6 & -1/6 \\ 0 & 0 & 1 & | & -1 & 1/2 & -1/2 \end{pmatrix}$$

On obtient ainsi:

$$P^{-1} = \begin{pmatrix} 1/3 & 1/6 & 1/6 \\ 2/3 & -1/6 & -1/6 \\ -1 & 1/2 & -1/2 \end{pmatrix}$$

Ainsi:

$$B = P^{-1}AP = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 12 & 0 \\ 0 & 0 & 12 \end{pmatrix}$$

4. Soit $n \in \mathbb{N}$. Comme B est diagonale, on a $B^n = \begin{pmatrix} 6^n & 0 & 0 \\ 0 & 12^n & 0 \\ 0 & 0 & 12^n \end{pmatrix}$ et par récurrence $A^n = PB^nP^{-1}$.

Ainsi, après calcul, on obtient :

$$A^{n} = \frac{1}{6} \begin{pmatrix} (2.6^{n} + 4.12^{n}) & (6^{n} - 12^{n}) & (6^{n} - 12^{n}) \\ 6(6^{n} - 12^{n}) & 3(6^{n} + 12^{n}) & 3(6^{n} - 12^{n}) \\ 2(6^{n} - 12^{n}) & (6^{n} - 12^{n}) & (6^{n} + 5.12^{n}) \end{pmatrix}$$

Exercice 21. Notons \mathcal{B}_2 et \mathcal{B}_3 les bases canoniques de \mathbb{K}^2 et \mathbb{K}^3 .

Soit
$$(x, y, z) \in \mathbb{K}^3$$
, on a $\operatorname{mat}_{\mathcal{B}_2}(u(x)) = A \times \operatorname{mat}_{\mathcal{B}_3}(x) = A \times \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x - y \\ 2x - y + 2z \end{pmatrix}$.

Ainsi, l'application linéaire canoniquement associée à A est définie par :

$$\begin{array}{cccc} u: & \mathbb{K}^3 & \to & \mathbb{K}^2 \\ & (x,y,z) & \mapsto & (x-y,2x-y+2z) \end{array}$$

Exercice 22.

1. (a) Soit $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R})$, on a:

$$A \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 12x + 6y \\ -20x - 10x \\ -6x - 3y - z \end{pmatrix}$$

Ainsi, f(x, y, z) = (12x + 6y, -20x - 10y, -6x - 3y - z)(b) • Soit $x, y, z \in \mathbb{R}$.

$$A \begin{pmatrix} x \\ y \\ z \end{pmatrix} \iff \begin{cases} 12x + 6y = 0 \\ -20x - 10y = 0 \\ -6x - 3y - z = 0 \end{cases}$$

$$\iff \begin{cases} 2x + y = 0 \\ 2x + y = 0 \\ 6x + 3y + z = 0 \end{cases}$$

$$\iff \begin{cases} y = -2x \\ z = 0 \end{cases}$$

Ainsi, Ker
$$A = \text{Vect}\begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}$$
, ainsi, Ker $f = \text{Vect}((1, -2, 0))$.

Comme, $(1, -2, 0) \neq (0, 0, 0)$, ((1, -2, 0)) constitue une base de Ker f.

•
$$\operatorname{Im} A = \operatorname{Vect} \left(\begin{pmatrix} 12 \\ -20 \\ -6 \end{pmatrix}, \begin{pmatrix} 6 \\ -10 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right) = \operatorname{Vect} \left(\begin{pmatrix} 6 \\ -10 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right) \operatorname{car} \begin{pmatrix} 12 \\ -20 \\ -6 \end{pmatrix} = 2 \begin{pmatrix} 6 \\ -10 \\ -2 \end{pmatrix}.$$

Comme (6, -10, -3) et (0, 0, 1) ne sont pas colinéaires, ((6, -10, -3), (0, 0, 1)) forme une base de Im f.

(c) Ker $f \neq \{0\}$ donc f n'est pas injective donc n'est pas bijective.

Ainsi, A n'est pas inversible.

(a) Soit $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$

$$\lambda_1 e_1 + \lambda_2 e_2 + \lambda_3 e_3 = 0$$

$$\iff \begin{cases} \lambda_1 - 3\lambda_2 = 0 \\ -2\lambda_1 + 5\lambda_2 = 0 \\ \lambda_2 + \lambda_3 = 0 \end{cases}$$

$$\iff \begin{cases} \lambda_1 - 3\lambda_2 = 0 \\ -\lambda_2 = 0 \\ \lambda_2 + \lambda_3 = 0 \end{cases}$$

$$\iff \begin{cases} \lambda_1 = 0 \\ \lambda_2 = 0 \\ \lambda_3 = 0 \end{cases}$$

Ainsi, cette famille est libre. \mathcal{C} est donc une famille libre de 3 vecteurs de \mathbb{R}^3 . Elle forme donc une base de

(b) On a
$$P = \begin{pmatrix} 1 & -3 & 0 \\ -2 & 5 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$
.

On sait également que $Q = P^{-1}$

$$\begin{pmatrix}
1 & -3 & 0 & 1 & 0 & 0 \\
-2 & 5 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1
\end{pmatrix}$$

$$\sim \begin{bmatrix}
1 & -3 & 0 & 1 & 0 & 0 \\
0 & -1 & 0 & 2 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1
\end{bmatrix}$$

$$\sim \begin{bmatrix}
1 & -3 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 1
\end{bmatrix}$$

$$\sim \begin{bmatrix}
1 & -3 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & -2 & -1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1
\end{bmatrix}$$

$$\sim \begin{bmatrix}
1 & 0 & 0 & -5 & -3 & 0 \\
0 & 1 & 0 & -2 & -1 & 0 \\
0 & 0 & 1 & 2 & 1 & 1
\end{bmatrix}$$

Ainsi,

$$Q = \begin{pmatrix} -5 & -3 & 0 \\ -2 & -1 & 0 \\ 2 & 1 & 1 \end{pmatrix}$$

(c) Méthode 1:

On a:
$$A \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \operatorname{donc} f(e_1) = 0.$$

$$A \begin{pmatrix} -3 \\ 5 \\ 1 \end{pmatrix} = \begin{pmatrix} -6 \\ 10 \\ 2 \end{pmatrix} \operatorname{donc} f(e_1) = 2e_2.$$

$$A \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix} \operatorname{donc} f(e_3) = -e_3.$$
Donc:

$$D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

Méthode 2 : D'après la formule de changement de base, on a :

$$D = QAP = \begin{pmatrix} -5 & -3 & 0 \\ -2 & -1 & 0 \\ 2 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 12 & 6 & 0 \\ -20 & -10 & 0 \\ -6 & -3 & -1 \end{pmatrix} \times \begin{pmatrix} 1 & -3 & 0 \\ -2 & 5 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} -5 & -3 & 0 \\ -2 & -1 & 0 \\ 2 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 0 & -6 & 0 \\ 0 & 10 & 0 \\ 0 & 2 & -1 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

(d) D'après la formule de changement de base, on a : $A = PDP^{-1}$.

Montrons par récurrence que $\forall n \in \mathbb{N}^*, A^n = PD^nP^{-1}$.

Initialisation : $D = P^{-1}AP$ donc $A = PDP^{-1}$ et la propriété est vraie pour n = 1. Hérédité : Soit $n \in \mathbb{N}^*$, supposons que $A^n = PD^nP^{-1}$.

On a:

$$A^{n+1} = A^n \times A = PD^nP^{-1}PDP^{-1} = PD^nDP^{-1} = PD^{n+1}P^{-1}$$

Conclusion: $\forall n \in \mathbb{N}^*, A^n = PD^nP^{-1}.$

(e) Soit $n \in \mathbb{N}^*$. Comme D est diagonale, $D^n = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2^n & 0 \\ 0 & 0 & (-1)^n \end{pmatrix}$.

Donc

$$\begin{split} A^n &= \begin{pmatrix} 1 & -3 & 0 \\ -2 & 5 & 0 \\ 0 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2^n & 0 \\ 0 & 0 & (-1)^n \end{pmatrix} \times \begin{pmatrix} -5 & -3 & 0 \\ -2 & -1 & 0 \\ 2 & 1 & 1 \end{pmatrix} \\ &= \begin{pmatrix} 1 & -3 & 0 \\ -2 & 5 & 0 \\ 0 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 0 & 0 & 0 \\ -2.2^n & -2^n & 0 \\ 2.(-1)^n & (-1)^n & (-1)^n \end{pmatrix} \\ &= \begin{pmatrix} 6.2^n & 3.2^n & 0 \\ -5.2^{n+1} & -5.2^n & 0 \\ -2^{n+1} + 2.(-1)^n & -2^n + (-1)^n & (-1)^n \end{pmatrix} \end{split}$$

(f) Soit $x, y, z \in \mathbb{R}$. On a :

$$A^{n} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 6 \times 2^{n}x + 3 \times 2^{n}y \\ -5 \times 2^{n+1}x - 5 \times 2^{n}y \\ (-2^{n+1} + 2 \times (-1)^{n})x + (-2^{n} + (-1)^{n})y + (-1)^{n}z \end{pmatrix}$$

 $\mathrm{Donc}:$

$$\forall (x,y,z) \in \mathbb{R}^3, \ f^n(x,y,z) = \left(6.2^nx + 3.2^ny, -5.2^{n+1}x - 5.2^ny, (-2^{n+1} + 2.(-1)^n)x + (-2^n + (-1)^n)y + (-1)^nz\right).$$

Exercice 23. 1. • Soit $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R})$. On a :

$$AX - X = 0 \iff \begin{cases} -x + 2y - z = 0 \\ 3x - 3y = 0 \\ -2x + 2y = 0 \end{cases}$$

$$\iff \begin{cases} z = x \\ y = x \end{cases}$$

Ainsi, Ker
$$(A - I_3) = \left\{ \begin{pmatrix} x \\ x \\ x \end{pmatrix}, x \in \mathbb{R} \right\} = \text{Vect } \left(\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right).$$

Ainsi, Ker $(u - id_E) = \text{Vect}((1, 1, 1))$.

De plus, $(1,1,1) \neq (0,0,0)$.

Ainsi, ((1,1,1)) est une famille libre donc forme une base de Ker $(u-id_E)$.

• Soit
$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R})$$
. On a :

$$AX - 2X = 0 \iff \begin{cases} -2x + 2y - z = 0 \\ 3x - 4y = 0 \\ -2x + 2y - z = 0 \end{cases}$$

$$\iff \begin{cases} x = \frac{4}{3}y \\ z = -\frac{2}{3}y \end{cases}$$

Ainsi, Ker
$$(A - 2I_3) = \left\{ \begin{pmatrix} \frac{4}{3}y \\ y \\ -\frac{2}{3}y \end{pmatrix}, y \in \mathbb{R} \right\} = \text{Vect } \left(\begin{pmatrix} 4\\3\\-2 \end{pmatrix} \right).$$

Ainsi, Ker $(u - 2id_E) = \text{Vect } ((4, 3, -2)).$

De plus, $(4, 3, -2) \neq (0, 0, 0)$.

Ainsi, ((4,3,-2)) est une famille libre donc forme une base de Ker $(u-2id_E)$.

• Soit
$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R})$$
. On a :

$$AX + 4X = 0 \iff \begin{cases} 4x + 2y - z = 0 \\ 3x + 2y = 0 \\ -2x + 2y + 5z = 0 \end{cases}$$

$$\iff \begin{cases} x = -\frac{2}{3}y \\ z = -\frac{2}{3}y \end{cases}$$

Ainsi, Ker
$$(A+4I_3)=\left\{\begin{pmatrix}-\frac{2}{3}y\\y\\-\frac{2}{3}y\end{pmatrix},y\in\mathbb{R}\right\}=\mathrm{Vect}\ \left(\begin{pmatrix}2\\-3\\2\end{pmatrix}\right).$$

Ainsi, Ker $(u + 4id_E) = \text{Vect}((2, -3, 2))$

De plus, $(2, -3, 2) \neq (0, 0, 0)$.

Ainsi, ((2, -3, 2)) est une famille libre donc forme une base de Ker $(u + 4id_E)$.

2. Comme $e_1 \in \operatorname{Ker}(u - id_E) \setminus \{0\}$, il existe $x \in \mathbb{R}^*$ tel que $e_1 = (x, x, x)$. De même, comme $e_2 \in \operatorname{Ker}(u - 2id_E) \setminus \{0\}$, il existe $y \in \mathbb{R}^*$ tel que $e_2 = (4y, 3y, -2y)$. Enfin, comme $e_3 \in \operatorname{Ker}(u + 4id_E) \setminus \{0\}$, il existe $z \in \mathbb{R}^*$ tel que $e_3 = (2z, -3z, 2z)$. Soient $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ tel que $\lambda_1 e_1 + \lambda_2 e_2 + \lambda_3 e_3 = 0$. On a:

$$\begin{cases} \lambda_1 x + 4\lambda_2 y + 2\lambda_3 z = 0 \\ \lambda_1 x + 3\lambda_2 y - 3\lambda_3 z = 0 \\ \lambda_1 x - 2\lambda_2 y + 2\lambda_3 z = 0 \end{cases} \iff \begin{cases} \lambda_1 x + 4\lambda_2 y + 2\lambda_3 z = 0 \\ -\lambda_2 y - 5\lambda_3 z = 0 \\ -6\lambda_2 y = 0 \end{cases}$$
$$\iff \begin{cases} \lambda_1 x + 4\lambda_2 y + 2\lambda_3 z = 0 \\ -\lambda_2 y - 5\lambda_3 z = 0 \end{cases} \quad \text{car } y \neq 0$$
$$\lambda_2 = 0 \qquad \qquad \text{car } y \neq 0$$
$$\lambda_2 = 0 \qquad \qquad \text{car } y \neq 0 \text{ et } x \neq 0$$
$$\lambda_3 = 0 \qquad \qquad \text{car } y \neq 0 \text{ et } x \neq 0$$

Ainsi la famille (e_1, e_2, e_3) est libre. De plus, elle est composée de 3 vecteurs et dim $(\mathbb{R}^3) = 3$. Ainsi, (e_1, e_2, e_3) forme une base de \mathbb{R}^3 .

3. Comme
$$u(e_1) = e_1$$
, $u(e_2) = 2e_2$ et $u(e_3) = -4e_3$, on a $D = \text{mat}_C(u) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -4 \end{pmatrix}$.

Notons P la matrice de passage de \mathcal{B}_c à \mathcal{C} .

On a

$$P = \left(\begin{array}{ccc} 1 & 4 & 2 \\ 1 & 3 & -3 \\ 1 & -2 & 2 \end{array}\right).$$

Par la formule du changement de base, on a : $A = PDP^{-1}$. On montre alors par récurrence que : $\forall n \in \mathbb{N}, A^n = PD^nP^{-1}$.

Exercice 24. Soit $\lambda \in \mathbb{R}$. Soit $x = (x_1, x_2, x_3) \in \mathbb{R}^3$.

$$f(x) = \lambda x \iff \begin{cases} 2x_1 + x_2 + x_3 = \lambda x_1 \\ x_1 + 2x_2 + x_3 = \lambda x_2 \\ x_1 + x_2 + 2x_3 = \lambda x_3 \end{cases}$$

$$\iff \begin{cases} (2 - \lambda)x_1 + x_2 + x_3 = 0 \\ x_1 + (2 - \lambda)x_2 + x_3 = 0 \\ x_1 + x_2 + (2 - \lambda)x_3 = 0 \end{cases}$$

$$\iff \begin{cases} x_1 + x_2 + (2 - \lambda)x_3 = 0 \\ x_1 + (2 - \lambda)x_2 + x_3 = 0 \\ (2 - \lambda)x_1 + x_2 + x_3 = 0 \end{cases}$$

$$\iff \begin{cases} x_1 + x_2 + (2 - \lambda)x_3 = 0 \\ (1 - \lambda)x_1 - (1 - \lambda)x_2 = 0 \\ -(1 - \lambda)x_2 + (1 - (2 - \lambda)^2)x_3 = 0 \end{cases}$$

$$\iff \begin{cases} x_1 + x_2 + (2 - \lambda)x_3 = 0 \\ (1 - \lambda)x_1 - (1 - \lambda)x_2 = 0 \\ -(1 - \lambda)x_2 + (1 - \lambda)(\lambda - 3)x_3 = 0 \end{cases}$$

Si $\lambda = 1$

$$f(x) = \lambda x \iff x_1 + x_2 + x_3 = 0$$

Ainsi, \mathcal{S} admet une infinité de solutions (2 inconnues paramètres) donc en admet au moins une non nulle. Si $\lambda \neq 1$

$$f(x) = \lambda x \iff \begin{cases} x_1 + x_2 + (2 - \lambda)x_3 = 0 \\ x_2 - x_3 = 0 \\ -x_2 + (\lambda - 3)x_3 = 0 \end{cases}$$

$$\iff \begin{cases} x_1 + x_2 + (2 - \lambda)x_3 = 0 \\ x_2 - x_3 = 0 \\ (\lambda - 4)x_3 = 0 \end{cases}$$

Si $\lambda \notin \{1,4\}$

$$f(x) = \lambda x \iff \begin{cases} x_1 + x_2 + (2 - \lambda)x_3 = 0 \\ x_2 - x_3 = 0 \\ x_3 = 0 \end{cases}$$

$$\iff \begin{cases} x_1 = 0 \\ x_2 = 0 \\ x_3 = 0 \end{cases}$$

Ainsi, la seule solution est la solution nulle.

Si $\lambda = 4$

$$f(x) = \lambda x \quad \Longleftrightarrow \quad \begin{cases} x_1 + x_2 - 2x_3 = 0 \\ x_2 - x_3 = 0 \end{cases}$$

Ainsi, $f(x) = \lambda x$ admet une infinité des solutions (1 inconnue paramètre) donc en admet au moins une non nulle. Finalement, il existe $x \in \mathbb{R}^3 \setminus \{0\}$ tel que $f(x) = \lambda x$ ssi $\lambda \in \{1, 4\}$.

Notons $E_1 = \{x \in \mathbb{R}^3 \mid f(x) = x\} \text{ et } E_4 = \{x \in \mathbb{R}^3 \mid f(x) = 4x\}.$

 E_1 et E_4 sont des sous espaces vectoriels de \mathbb{R}^3 . Déterminons des bases de E_1 et E_4 .

Soit $x = (x_1, x_2, x_3) \in \mathbb{R}^3$.

$$x \in E_1 \iff f(x) = x$$

 $\iff x_1 + x_2 + x_3 = 0$

par les calculs précédents. Ainsi,

$$E_1 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 + x_2 + x_3 = 0\}$$
$$= \{(x_1, x_2, -x_1 - x_2) \mid x_1, x_2 \in \mathbb{R}\}$$
$$= \text{Vect } (e_1, e_2)$$

où $e_1 = (1, 0, -1)$ et $e_2 = (0, 1, -1)$.

Or, e_1 et e_2 ne sont pas colinéaires donc (e_1, e_2) est libre donc forme une base de E_1 . De même,

$$x \in E_4 \quad \Longleftrightarrow \quad f(x) = 4x$$

$$\iff \quad \begin{cases} x_1 + x_2 - 2x_3 = 0 \\ x_2 - x_3 = 0 \end{cases}$$

par les calculs précédents. Ainsi,

$$E_4 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 + x_2 - 2x_3 = 0, x_2 - x_3 = 0\}$$
$$= \{(x_3, x_3, x_3) \mid x_3 \in \mathbb{R}\}$$
$$= \text{Vect } (e_3)$$

où $e_3 = (1, 1, 1)$.

De plus, $e_3 \neq 0$ donc (e_3) forme une base de E_4 .

Montrons que (e_1, e_2, e_3) forme une base de \mathbb{R}^3 .

Soit $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ tels que $\lambda_1 e_1 + \lambda_2 e_2 + \lambda_3 e_3 = 0$. On a :

$$\lambda_1 e_1 + \lambda_2 e_2 + \lambda_3 e_3 = 0 \iff \begin{cases} \lambda_1 + \lambda_3 = 0 \\ \lambda_2 + \lambda_3 = 0 \\ -\lambda_1 - \lambda_2 + \lambda_3 = 0 \end{cases}$$

$$\iff \begin{cases} \lambda_1 + \lambda_3 = 0 \\ \lambda_2 + \lambda_3 = 0 \\ -\lambda_2 + 2\lambda_3 = 0 \end{cases}$$

$$\iff \begin{cases} \lambda_1 + \lambda_3 = 0 \\ \lambda_2 + \lambda_3 = 0 \\ \lambda_2 + \lambda_3 = 0 \\ 3\lambda_3 = 0 \end{cases}$$

$$\iff \lambda_1 = \lambda_2 = \lambda_3 = 0.$$

Ainsi, la famille de 3 vecteurs de \mathbb{R}^3 (e_1, e_2, e_3) est libre. Elle forme donc une base de \mathbb{R}^3 . Notons \mathcal{B}' cette base. On sait alors que $f(e_1) = e_1$, $f(e_2) = e_2$ et $f(e_3) = 4e_3$. Ainsi,

$$\mathrm{mat}_{\mathcal{B}'}(f) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix}$$

Notons $D = \operatorname{mat}_{\mathcal{B}'}(f)$. Notons \mathcal{B} la base canonique de \mathbb{R}^3 et P la matrice de passage de \mathcal{B} à \mathcal{B}' . On a

$$P = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & -1 & 1 \end{pmatrix}$$

De plus, par la formule de changement de base, on a $\operatorname{mat}_{\mathcal{B}'}(f) = P^{-1}\operatorname{mat}_{\mathcal{B}}(f)P$. Or, $A = \operatorname{mat}_{\mathcal{B}}(f)$ et $D = \operatorname{mat}_{\mathcal{B}'}(f)$ d'où $A = PDP^{-1}$.

Calculons P^{-1} :

$$\begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ -1 & -1 & 1 & 0 & 0 & 1 \end{pmatrix} \sim \mathcal{L} \quad \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & -1 & 2 & 1 & 0 & 1 \end{pmatrix}$$

$$\sim \mathcal{L} \quad \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 3 & 1 & 1 & 1 \end{pmatrix}$$

$$\sim \mathcal{L} \quad \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 3 & 1 & 1 & 1 \end{pmatrix}$$

$$\sim \mathcal{L} \quad \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}$$

$$\sim \mathcal{L} \quad \begin{pmatrix} 1 & 0 & 0 & \frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} \\ 0 & 1 & 0 & -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\ 0 & 0 & 1 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}$$

On obtient ainsi:

$$P^{-1} = \frac{1}{3} \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ 1 & 1 & 1 \end{pmatrix}$$

On a $A = PDP^{-1}$.

Ainsi, par récurrence, on obtient que : $\forall n \in \mathbb{N}, A^n = PD^nP^{-1}$. De plus, comme D est diagonale, on a :

$$\forall n \in \mathbb{N}, \ D^n = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4^n \end{pmatrix}.$$

Soit $n \in \mathbb{N}$.

$$A^{n} = \frac{1}{3} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & -1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4^{n} \end{pmatrix} \times \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ 1 & 1 & 1 \end{pmatrix}$$
$$= \frac{1}{3} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & -1 & 1 \end{pmatrix} \times \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ 4^{n} & 4^{n} & 4^{n} \end{pmatrix}$$
$$= \frac{1}{3} \begin{pmatrix} 4^{n} + 2 & 4^{n} - 1 & 4^{n} - 1 \\ 4^{n} - 1 & 4^{n} + 2 & 4^{n} - 1 \\ 4^{n} - 1 & 4^{n} - 1 & 4^{n} + 2 \end{pmatrix}$$

3 Rang d'une matrice

Exercice 25. Soit $x, y, z \in \mathbb{R}$. On a :

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \operatorname{Ker} A \quad \iff \quad A \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0$$

$$\iff \quad \begin{cases} x + 2y - z = 0 \\ 3x - y = 0 \\ 4x + y - z = 0 \end{cases}$$

$$\iff \quad \begin{cases} x + 2y - z = 0 \\ -7y + 3z = 0 \\ -7y + 3z = 0 \end{cases}$$

$$\iff \quad \begin{cases} x = -2y + z \\ y = \frac{3}{7}z \end{cases}$$

$$\iff \quad \begin{cases} x = \frac{1}{7}z \\ y = \frac{3}{2}z \end{cases}$$

Ainsi

$$\operatorname{Ker} A = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R}), \ A \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0_{3,1} \right\}$$
$$= \left\{ \begin{pmatrix} \frac{1}{7}z \\ \frac{3}{7}z \\ z \end{pmatrix}, z \in \mathbb{R} \right\}$$
$$= \operatorname{Vect} \left(\begin{pmatrix} 1 \\ 3 \\ 7 \end{pmatrix} \right).$$

Comme $\begin{pmatrix} 1\\3\\7 \end{pmatrix} \neq \begin{pmatrix} 0\\0\\0 \end{pmatrix}$, $\begin{pmatrix} \begin{pmatrix} 1\\3\\7 \end{pmatrix} \end{pmatrix}$ est une base de ker A donc Ker A est de dimension 1.

D'après le théorème du rang, $\operatorname{rg}(A) = 2$, et comme $C_1 = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$ et $C_2 = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$ ne sont pas colinéaires, donc (C_1, C_2) forme une famille libre et donc une base de $\operatorname{Im} A$.

Exercice 26. Soit $a \in \mathbb{R}$.

$$\begin{pmatrix}
1 & 1 & -1 & 1 \\
1 & 2 & a & 2 \\
2 & a & 2 & 3
\end{pmatrix}
\sim
\begin{pmatrix}
1 & 0 & 0 & 0 \\
1 & 1 & a+1 & 1 \\
2 & a-2 & 4 & 1
\end{pmatrix}
\quad
\begin{pmatrix}
C_2 \leftarrow C_2 - C_1 \\
C_3 \leftarrow C_3 + C_1 \\
C_4 \leftarrow C_4 - C_1
\end{pmatrix}$$

$$\sim
\begin{pmatrix}
1 & 0 & 0 & 0 \\
1 & 1 & a+1 & 1 \\
2 & 1 & 4 & a-2
\end{pmatrix}
\quad
\begin{pmatrix}
C_1 \leftrightarrow C_4 \\
C_4 \leftarrow C_4 - C_1
\end{pmatrix}$$

$$\sim
\begin{pmatrix}
1 & 0 & 0 & 0 \\
1 & 1 & a+1 & 1 \\
2 & 1 & 4 & a-2
\end{pmatrix}
\quad
\begin{pmatrix}
C_1 \leftrightarrow C_4 \\
C_4 \leftarrow C_4 - C_2
\end{pmatrix}$$

$$\sim
\begin{pmatrix}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
2 & 1 & 3-a & a-3
\end{pmatrix}
\quad
\begin{pmatrix}
C_3 \leftarrow C_3 - (a+1)C_2 \\
C_4 \leftarrow C_4 - C_2
\end{pmatrix}$$

$$\sim
\begin{pmatrix}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
2 & 1 & 3-a & a-3
\end{pmatrix}
\quad
\begin{pmatrix}
C_4 \leftarrow C_4 + C_3 \\
C_4 \leftarrow C_4 + C_3
\end{pmatrix}$$

- Si $a \neq 3$, rg (A) = 3.
- Si a = 3, rg (A) = 3.

Exercice 27.

$$\begin{pmatrix} -2 & 1 & -1 \\ 1 & 1 & 2 \\ 3 & -2 & 1 \end{pmatrix} \stackrel{\sim}{C} \quad \begin{pmatrix} 1 & -2 & -1 \\ 1 & 1 & 2 \\ 2 & 3 & 1 \end{pmatrix} \quad C_2 \leftrightarrow C_1$$

$$\stackrel{\sim}{C} \quad \begin{pmatrix} 1 & 0 & 0 \\ 1 & 3 & 3 \\ 2 & 7 & 3 \end{pmatrix} \quad C_2 \leftarrow C_2 + 2C_1$$

$$\stackrel{\sim}{C} \quad \begin{pmatrix} 1 & 0 & 0 \\ 1 & 3 & 3 \\ 2 & 3 & 7 \end{pmatrix} \quad C_3 \leftrightarrow C_3 + C_1$$

$$\stackrel{\sim}{C} \quad \begin{pmatrix} 1 & 0 & 0 \\ 1 & 3 & 3 \\ 2 & 3 & 7 \end{pmatrix} \quad C_3 \leftrightarrow C_2$$

$$\stackrel{\sim}{C} \quad \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 3 \\ 2 & 1 & 7 \end{pmatrix} \quad C_2 \leftarrow \frac{1}{3}C_2$$

$$\stackrel{\sim}{C} \quad \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 3 \\ 2 & 1 & 4 \end{pmatrix} \quad C_3 \leftarrow C_3 - 3C_2$$

Ainsi, rg(A) = 3.

$$B \sim C \begin{pmatrix} 1 & 0 & 0 \\ 2 & -2 & -1 \\ 1 & 2 & 1 \end{pmatrix} C_2 \leftarrow C_2 - C_1 \\ C_3 \leftarrow C_3 - C_1 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 0 & 0 \\ 2 & -1 & -2 \\ 1 & 1 & 2 \end{pmatrix} C_3 \leftrightarrow C_2$$

$$\sim \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & -2 \\ 1 & -1 & 2 \end{pmatrix} C_2 \leftarrow -C_2$$

$$\sim \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & -2 \\ 1 & -1 & 2 \end{pmatrix} C_3 \leftarrow C_3 + 2C_2$$

$$\sim \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & -1 & 0 \end{pmatrix} C_3 \leftarrow C_3 + 2C_2$$

Ainsi, rg(B) = 2.

Exercice 28. (D'après CCP option PC)

Si n < 2, c'est direct.

Supposons $n \geq 3$. Notons $C_1, ..., C_n$ les colonnes de A.

Soit $j \in [1, n]$. On a :

$$C_{j} = \begin{pmatrix} \sin(1+j) \\ \sin(2+j) \\ \vdots \\ \sin(n+j) \end{pmatrix} = \begin{pmatrix} \cos(j)\sin(1) + \sin(j)\cos(1) \\ \cos(j)\sin(2) + \sin(j)\cos(2) \\ \vdots \\ \cos(j)\sin(n) + \sin(j)\cos(n) \end{pmatrix}$$

Notons
$$X = \begin{pmatrix} \cos(1) \\ \vdots \\ \cos(n) \end{pmatrix}$$
 et $Y = \begin{pmatrix} \sin(1) \\ \vdots \\ \sin(n) \end{pmatrix}$. On a alors $C_j = \cos(j)X + \sin(j)Y$.

Ainsi : $\forall j \in [1, n], C_j \in \text{Vect}(X, Y).$

Ainsi, $\operatorname{Vect}(C_1, ..., C_n) \subset \operatorname{Vect}(X, Y)$ et donc $\operatorname{rg}(A) = \operatorname{rg}(C_1, ..., C_n) \leq \operatorname{rg}(X, Y) \leq 2$.

Exercice 29.

On a :

$$A = \begin{pmatrix} 1 & a & \cdots & \cdots & a \\ a & \ddots & & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & a \\ a & \cdots & \cdots & a & 1 \end{pmatrix}.$$

Ainsi, en effectuant les opérations élémentaires $C_i \leftarrow C_i - C_n$ pour $i \in [1, n-1]$, on obtient :

Si a=1

$$A \quad \underset{C}{\sim} \quad \begin{pmatrix} 0 & \cdots & 0 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & 1 \end{pmatrix}$$

donc $\operatorname{rg}(A) = 1$.

Si $a \neq 1$ En effectuant $C_i \leftarrow \frac{1}{1-a}C_i$ pour $i \in [1, n-1]$, on obtient :

$$A \sim C \begin{pmatrix} 1 & 0 & \cdots & 0 & a \\ 0 & 1 & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & \vdots \\ 0 & \cdots & 0 & 1 & a \\ -1 & -1 & \cdots & -1 & 1 \end{pmatrix}$$

Puis, en effectuant $C_n \leftarrow C_n - a \sum_{i=1}^{n-1} C_i$, on obtient :

$$A \sim C \begin{pmatrix} 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & \vdots \\ 0 & \cdots & 0 & 1 & 0 \\ -1 & -1 & \cdots & -1 & 1 + (n-1)a \end{pmatrix}$$

Ainsi,

• Si $a = \frac{-1}{n-1}$, rg (A) = n-1.

• Si $a \notin \{\frac{-1}{n-1}, 1\}$, rg (A) = n.

Exercice 30. Notons $\mathcal{B} = (1, X, X^2, X^3)$ la base canonique de $\mathbb{R}_3[X]$. On a : u(1) = 1, u(X) = X + 1, $u(X^2) = (X + 1)^2 = X^2 + 2X + 1$, $u(X^3) = (X + 1)^3 = X^3 + 3X^2 + 3X + 1$. Ainsi,

$$mat_{\mathcal{B}}(u) = \begin{pmatrix} 1 & 1 & 1 & 1\\ 0 & 1 & 2 & 3\\ 0 & 0 & 1 & 3\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

De même, v(1) = 1, v(X) = X - 1, $v(X^2) = (X - 1)^2 = X^2 - 2X + 1$, $v(X^3) = (X + 1)^3 = X^3 - 3X^2 + 3X - 1$. Donc:

$$mat_{\mathcal{B}}(v) = \begin{pmatrix} 1 & -1 & 1 & -1 \\ 0 & 1 & -2 & 3 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Soit $\lambda \in \mathbb{R}$, on a :

$$\max_{\mathcal{B}}(u + \lambda v) = \max_{\mathcal{B}}(u) + \lambda \max_{\mathcal{B}}(v) = \begin{pmatrix} 1 + \lambda & 1 - \lambda & 1 + \lambda & 1 - \lambda \\ 0 & 1 + \lambda & 2 - 2\lambda & 3 + 3\lambda \\ 0 & 0 & 1 + \lambda & 3 - 3\lambda \\ 0 & 0 & 0 & 1 + \lambda \end{pmatrix}$$

Ainsi:

- Si $\lambda \neq -1$, rg (A) = 4.
- Si $\lambda = -1$, on a :

$$\operatorname{mat}_{\mathcal{B}}(u+\lambda v) = \begin{pmatrix} 0 & 2 & 0 & 2\\ 0 & 0 & 4 & 0\\ 0 & 0 & 0 & 6\\ 0 & 0 & 0 & 0 \end{pmatrix}$$

et rg(A) = 3.

Exercice 31. 1. Raisonnons par double implication.

• Supposons qu'il existe $P \in GL_n(\mathbb{K})$, $Q \in GL_n(\mathbb{K})$ tels que $A = QJ_rP$. Alors:

$$rg(A) = rg(Q^{-1}J_rP) = rg(Q^{-1}J_r) = rg(J_r) = r.$$

. En effet, si on note C_1, \ldots, C_p les colonnes de J_r , on a :

$$rg(J_r) = \dim Vect(C_1, \dots, C_p) = \dim Vect(C_1, \dots, C_r) = r.$$

car $(C_1, ..., C_r)$ est libre.

• Supposons que rg(A) = r. Alors le nombre de pivot dans l'unique matrice R échelonnée réduite par lignes équivalente par ligne à A est égal à r. Notons $R = (b_{i,j})$. On a :

$$R = \begin{pmatrix} 1 & \cdots & 0 & & & 0 \\ 0 & & 1 & \cdots & & & \\ & & 0 & & & 0 \\ & & & & 1 & \cdots \\ & & & & 0 & 0 \\ 0 & & 0 & & & 0 & 0 \end{pmatrix}$$

avec $A \sim R$.

Par permutations des colonnes de R, on obtient la matrice :

Puis en effectuant des opérations élémentaires, on élimine les coefficients des p-r dernières colonnes à l'aide des r premières colonnes. On obtient :

$$R \sim \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & \cdots & \cdots & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \cdots & \cdots & 0 \end{pmatrix}$$

Ainsi $R \sim_{\mathcal{C}} J_r$. Or, comme $A \underset{L}{\sim} R$, il existe $Q \in \mathcal{M}_n(\mathbb{K})$ produit de matrices d'opérations élémentaires donc inversible tel que A = QR. De plus, $R \sim J_r$ donc il existe $P \in \mathcal{M}_p(\mathbb{K})$ produit de matrices d'opérations élémentaires donc inversible tel que $R = J_r P$.

On en déduit ainsi que $Q \in GL_n(\mathbb{K})$, $P \in GL_p(\mathbb{K})$ et $A = QR = QJ_rP$..

2. Notons r = rq(A).

D'après la proposition précédente, il existe $P \in GL_p(\mathbb{K}), Q \in GL_n(\mathbb{K})$ tels que $A = QJ_rP$. En prenant la transposée, on obtient ${}^tA={}^tP^tJ_r^tQ$.

Or ${}^tP \in GL_p(\mathbb{K}), {}^tQ \in GL_n(\mathbb{K})$ et ${}^tJ_r = \begin{pmatrix} I_r & 0_{r,n-r} \\ 0_{p-r,r} & 0_{p-r,n-r} \end{pmatrix}$.

Par la proposition précédente, on a donc $rg(^tA) = rg(^tA)$

Exercice 32. 1. Raisonnons par double implication.

• Supposons qu'il existe $X, Y \in \mathcal{M}_{n,1}(\mathbb{K}) \setminus \{0\}$ tel que $M = X^t Y$.

Notons $Y = (y_1 ... y_n)$. On a : $M = X^t Y = (y_1 X | ... | y_n X)$.

Ainsi, $\operatorname{Im}(M) = \operatorname{Vect}(y_1 X, ..., y_n X) \subset \operatorname{Vect}(X)$.

Donc $\operatorname{rg}(M) \leq 1$.

De plus, $Y \neq 0$ donc il existe $y_k \neq 0$. Ainsi, $X = \frac{1}{y_k} y_k X$ donc $\text{Vect}(X) \subset \text{Vect}(y_1 X | ... | y_n X)$.

D'où Vect $(X) = \text{Vect } (y_1 X | ... | y_n X)$.

Donc $\operatorname{rg}(M) = \dim(\operatorname{Vect}(X)) = 1 \operatorname{car} X \neq 0.$

• Supposons que $\operatorname{rg}(M) = 1$.

Notons $C_1, ..., C_n$ les colonnes de M.

Alors, dim $(Vect (C_1, ..., C_n)) = 1$.

Ainsi, il existe $X \in \mathcal{M}_{n,1}(\mathbb{K}) \setminus \{0\}$ tel que (X) soit une base $\text{Vect}(C_1, ..., C_n)$.

Donc pour tout $i \in [1, n]$, il existe $\alpha_i \in \mathbb{K}$ tel que $C_i = \alpha_i X$.

Ainsi, $M = (C_1|...|C_n) = (\alpha_1 X|...|\alpha_n X)$.

Posons $Y = (\alpha_1 \dots \alpha_n)$.

On obtient : $X^tY = (\alpha_1 X | ... | \alpha_n X) = M$.

2. Supposons que rg (M)=1. D'après la question précédente, il existe $X,Y\in\mathcal{M}_{n,1}(\mathbb{K})$ tel que $M=X^tY$. Soit $k\in\mathbb{N}^*$,

$$M^k = (X^t Y)^k$$
$$= X(^t Y X)^{k-1} t Y$$

On a ${}^tYX \in \mathcal{M}_{1,1}(\mathbb{K})$. On pose $\alpha = {}^tYX$. Alors:

$$M^{k} = X\alpha^{k-1}{}^{t}Y$$
$$= \alpha^{k-1}X^{t}Y$$
$$= \alpha^{k-1}M$$