Destripando a Keras

O cómo visualizar y entender redes neuronales

Congreso esLibre, 2019, Granada

Miguel Lopez

@WizMik12 /Wizmik12 Estudiante de doctorado **mlopezp@ugr.es**

¿Quiénes somos?

@bortizmath /thebooort
 Estudiante de doctorado
 bortiz@ugr.es

¿Qué vais a ver?

01

05

Entendiendo redes neuronales artificiales

Entendiendo redes neuronales convolucionales

03

04

Entendiendo las redes neuronales recurrentes

Conclusiones, link al repo y a las demos, enlaces, y sorpresas

Redes Neuronales

Regresión lineal en ID

Datos generados usando: y = 5x + 0.04 + ruido

	X Data	Y	
0	0.000000	-0.830142	
1	0.000001	-0.376774	
2	0.000002	-1.657340	
3	0.000003	0.286073	
4	0.000004	-2.033165	

iii1 millón de datos entre 0 y 1!!!

Regresión lineal en ID

Red neuronal artificial (perceptrón):

Modelo a usar: Y = mX + b

Regresión lineal en ID

Resultado del perceptrón simple


```
model_m = model.get_weights()[0]
model_b = model.get_weights()[1]
model.get_weights()

: [array([[ 5.00645161]], dtype=float32), array([ 0.03365948], dtype=float32)]
```

Regresión no lineal en ID

Resultado del perceptrón multicapa:

Regresión no lineal en ID

iiTENEMOS QUE AÑADIR NO LINEALIDADES!!

Redes Neuronales Convolucionales

Redes convolucionales profundas

Redes convolucionales profundas

Convolución:

model.summary()			
Layer (type)	Output	Shape	Param #
conv2d_1 (Conv2D)	(None,	26, 26, 16)	160
max_pooling2d_1 (MaxPooling2	(None,	8, 8, 16)	0
conv2d_2 (Conv2D)	(None,	6, 6, 8)	1160
flatten_1 (Flatten)	(None,	288)	0
dense_1 (Dense)	(None,	10)	2890
Total params: 4,210 Trainable params: 4,210 Non-trainable params: 0	=====		

¡A visualizar!

Filtros aprendidos:

Visualización TSNE de los datos:

Visualización TSNE de la primera

capa convolucional:

Visualización TSNE de la segunda capa:

Redes Neuronales Recurrentes

¿Qué son?

¿Problema inicial?

LSTM!

¡A visualizar!

BLSTM = Bidirectional(LSTM(encoder_units, return_sequences=True))

Conclusiones

Keras es una herramienta poderosísima que nos permite implementar de <u>forma rápida y sencilla pruebas de</u> <u>concepto</u> que transforman ideas en resultados.

Keras

Fun isn't something one considers when optimising a neural network. But this... does put a smile on my face.

Redes Neuronales

Por favor, aprendamos que hay detrás de ellas antes de usarlas para todo. Esto reducirá riesgos innecesarios y producirá avances interesantes.

¡Gracias por su atención!

Enlaces y demases

- Visualizations of Recurrent Neural Networks
- How to Visualize Your Recurrent Neural Network with Attention in Keras
- Understanding LSTM Networks
- Visualizing intermediate activation in Convolutional Neural Networks with Keras

¿Os interesa el tema? ¡Tenemos un podcast!

@TheFluxions

https://github.com/wizmik12/en-las-tripas-de-keras

