标量

$$c = a + b$$
$$c = a \cdot b$$
$$c = \sin a$$

• 长度

$$|a| = \begin{cases} a & \text{if } a > 0 \\ -a & \text{otherwise} \end{cases}$$
$$|a + b| \le |a| + |b|$$
$$|a \cdot b| = |a| \cdot |b|$$

向量

• 简单操作

$$c = a + b$$
 where $c_i = a_i + b_i$
 $c = \alpha \cdot b$ where $c_i = \alpha b_i$

 $c = \sin a$ where $c_i = \sin a_i$

• 长度

$$||a||_{2} = \left[\sum_{i=1}^{m} a_{i}^{2}\right]^{\frac{1}{2}}$$

$$||a|| \ge 0 \text{ for all } a$$

$$||a + b|| \le ||a|| + ||b||$$

$$||a \cdot b|| = |a| \cdot ||b||$$

向量

$$c = a + b$$

$$c = \alpha \cdot b$$

数学家的'parallel for all do'

向量

• 点乘
$$a^{\top}b = \sum_{i} a_{i}b_{i}$$

•
$$\mathbb{E}^{\stackrel{\sim}{\nearrow}}$$
 $a^{\top}b = \sum_{i} a_{i}b_{i} = 0$

• 简单操作

$$C = A + B$$
 where $C_{ij} = A_{ij} + B_{ij}$
 $C = \alpha \cdot B$ where $C_{ij} = \alpha B_{ij}$
 $C = \sin A$ where $C_{ij} = \sin A_{ij}$

• 乘法 (矩阵乘以向量)

• 乘法 (矩阵乘以矩阵)

$$C = AB$$
 where $C_{ik} = \sum A_{ij}B_{jk}$

• 范数

$$c = A \cdot b$$
 hence $||c|| \le ||A|| \cdot ||b||$

- 取决于如何衡量 b 和 c 的长度
- 常见范数
 - 矩阵范数: 最小的满足的上面公式的值
 - Frobenius 范数

$$\|A\|_{\text{Frob}} = \left[\sum_{ij} A_{ij}^2\right]^{\frac{1}{2}}$$

特殊矩阵

• 对称和反对称

正定

$$||x||^2 = x^\top x \ge 0$$
 generalizes to $x^\top Ax \ge 0$

特殊矩阵

- 正交矩阵
 - 所以行都相互正交
 - 所有行都有单位长度 U with $\sum_{i} U_{ij} U_{kj} = \delta_{ik}$
 - ·可以写成 $UU^{\mathsf{T}} = \mathbf{1}$
- 置换矩阵

P where $P_{ij} = 1$ if and only if $j = \pi(i)$

• 置换矩阵是正交矩阵

- 特征向量和特征值
 - 不被矩阵改变方向的向量

• 对称矩阵总是可以找到特征向量