Question 1(a) [3 marks]

Explain effect of negative feedback on gain and stability.

Answer:

Negative feedback significantly improves amplifier performance by reducing gain but enhancing stability and other parameters.

Table:

Parameter	Effect of Negative Feedback	
Gain	Reduces overall gain	
Stability	Increases stability	
Bandwidth	Increases bandwidth	

• Gain reduction: Makes amplifier more predictable

• Stability improvement: Reduces oscillations and distortions

• Better control: Provides consistent performance

Mnemonic: "Gain Goes Down, Stability Stays Strong"

Question 1(b) [4 marks]

State different types of feedback amplifier and advantages of negative feedback amplifier.

Answer:

Four basic feedback topologies exist based on input and output connections.

Table:

Туре	Input Connection	Output Connection
Voltage Series	Series	Voltage
Voltage Shunt	Shunt	Voltage
Current Series	Series	Current
Current Shunt	Shunt	Current

Advantages:

• Reduced distortion: Minimizes harmonic content

• Increased bandwidth: Better frequency response

• Improved stability: Consistent operation

Mnemonic: "Very Smart Current Control"

Question 1(c) [7 marks]

Derive an equation for overall gain of negative feedback voltage amplifier.

Answer:

For negative feedback amplifier, output is fed back to input in opposite phase.

Circuit Analysis:

Let A = Open loop gain, β = Feedback factor

Diagram:

Derivation:

- Input to amplifier: Vi βVo
- Output: Vo = A(Vi βVo)
- Vo = AVi AβVo
- Vo + AβVo = AVi
- Vo(1 + Aβ) = AVi
- Overall Gain: Af = A/(1 + Aβ)

Key Points:

- **Denominator** (1 + Aβ): Called loop gain
- Stability factor: Determines system response
- Gain reduction: Traded for better performance

Mnemonic: "Always Divide by (1 + Loop)"

Question 1(c OR) [7 marks]

Draw and explain current shunt type negative feedback amplifier and Derive the formula of input impedance and output impedance of it.

Answer:

Current shunt feedback samples output current and feeds back voltage in shunt with input.

Analysis:

• Feedback type: Current sampling, voltage mixing

• Input impedance: Decreases due to shunt feedback

• Output impedance: Decreases due to current sampling

Formulas:

• Input Impedance: Zif = Zi/(1 + Aβ)

• Output Impedance: Zof = Zo/(1 + Aβ)

Characteristics:

• Low input impedance: Good for current sources

• Low output impedance: Good for voltage output

• Current-to-voltage converter: Useful in applications

Mnemonic: "Current Shunt Lowers Both Impedances"

Question 2(a) [3 marks]

Explain Barkhausen criteria for oscillations.

Answer:

For sustained oscillations in feedback circuits, two conditions must be satisfied simultaneously.

Table:

Criteria	Condition	Description
Magnitude	Αβ = 1	Loop gain unity
Phase	∠Aβ = 0° or 360°	Zero phase shift

• Unity loop gain: Ensures signal maintains amplitude

• Zero phase shift: Ensures positive feedback

• Sustained oscillation: Both conditions create self-sustaining signals

Mnemonic: "One Magnitude, Zero Phase"

Question 2(b) [4 marks]

Explain use of tank circuit with neat diagram.

Answer:

Tank circuit provides frequency selective positive feedback for oscillator circuits.

Circuit Diagram:

Operation:

At resonant frequency, LC tank circuit exhibits:

Table:

Parameter	Value	Effect
Reactance	XL = XC	Resonance
Impedance	Maximum	High selectivity
Phase	0°	Unity feedback

• Energy storage: L and C exchange energy

• Frequency selection: Sharp resonance characteristic

• Oscillation sustenance: Provides positive feedback

Mnemonic: "Tank Stores Energy, Selects Frequency"

Question 2(c) [7 marks]

Draw and explain the Hartley Oscillator. Also state equation of oscillation frequency of it.

Answer:

Hartley oscillator uses tapped inductor in tank circuit for frequency generation.

Operation:

• Tapped inductor: L1 and L2 provide feedback

• Tank circuit: L1+L2 with C determines frequency

• Positive feedback: Phase shift through L1-L2 coupling

Frequency Formula: $f = 1/[2\pi \sqrt{(L1+L2)C)}]$

Key Features:

• Good frequency stability: Inductor-based tuning

• **Easy tuning**: Variable inductor or capacitor

• RF applications: Suitable for high frequencies

Mnemonic: "Hartley Has Tapped inductor"

Question 2(a OR) [3 marks]

Explain term oscillator as positive feedback amplifier.

Answer:

Oscillator generates AC signals using positive feedback without external input signal.

Table:

Parameter	Amplifier	Oscillator
Input	External signal	No external input
Feedback	May use negative	Uses positive
Output	Amplified input	Self-generated AC

• Self-sustaining: Positive feedback maintains oscillation

• Barkhausen criteria: Loop gain = 1, phase = 0°

• **Signal generation**: Creates AC from DC supply

Mnemonic: "Positive feedback Powers Perpetual signals"

Question 2(b OR) [4 marks]

Draw and explain the Crystal Oscillator.

Answer:

Crystal oscillator uses piezoelectric effect of quartz crystal for high stability.

Characteristics:

Table:

Property	Value	Advantage
Stability	±0.01%	Very high
Q factor	>10,000	Sharp resonance
Temperature	Low drift	Stable frequency

- Piezoelectric effect: Mechanical vibration creates electrical signal
- **High Q**: Very stable frequency generation
- Clock applications: Used in digital systems

Mnemonic: "Crystal Creates Constant frequency"

Question 2(c OR) [7 marks]

Draw the Structure, symbol, equivalent circuit of UJT and explain it in brief.

Answer:

UJT (Unijunction Transistor) is three-terminal device with unique switching characteristics.

Structure:

Symbol:

Equivalent Circuit:

```
B2 +---R2---+
|
E +-----+
|
B1 +---R1---+
```

Operation:

• Intrinsic standoff ratio: $\eta = R1/(R1+R2)$

• **Peak point voltage**: VP = ηVBB + VD

• Negative resistance: After peak point

Applications:

• **Relaxation oscillator**: Sawtooth wave generation

• **Trigger circuits**: SCR firing circuits

• Timing applications: RC charging circuits

Mnemonic: "UJT Uses Unique Junction Technology"

Question 3(a) [3 marks]

Classify power amplifier based on operating point.

Answer:

Power amplifiers are classified based on transistor conduction angle and bias point.

Class	Conduction Angle	Efficiency	Application
Class A	360°	25-50%	Audio, low power
Class B	180°	78.5%	Push-pull
Class AB	180°-360°	60-70%	Audio power
Class C	<180°	>90%	RF, tuned

• Bias point: Determines operating class

• **Efficiency trade-off**: Higher efficiency, more distortion

• **Application specific**: Choose based on requirements

Mnemonic: "All Big Amplifiers Can deliver power"

Question 3(b) [4 marks]

Draw and Explain Complementary symmetry push-pull power amplifier.

Answer:

Uses NPN and PNP transistors for efficient power amplification without center-tapped transformer.

Circuit Diagram:

Operation:

• Positive half-cycle: NPN conducts, PNP off

• Negative half-cycle: PNP conducts, NPN off

• Complementary action: Both transistors handle alternate half-cycles

Advantages:

• No transformer: Direct coupling to load

• **High efficiency**: Class B operation

• Compact design: Fewer components

• Good power transfer: Direct coupling

Mnemonic: "Complementary transistors Complete the cycle"

Question 3(c) [7 marks]

Derive an equation for Efficiency of class B push pull amplifier.

Answer:

Class B push-pull amplifier has each transistor conducting for 180° of input cycle.

Analysis:

For sinusoidal input: $Vi = Vm \sin \omega t$

Output Power:

• Peak output voltage: Vom = Vcc

• RMS output voltage: Vo(rms) = Vcc/√2

• Po = Vo2(rms)/RL = Vcc2/2RL

Input Power:

• DC current (average): $Idc = 2Im/\pi$

• Where Im = Vcc/RL

• Pin = $Vcc \times Idc = 2VccIm/\pi = 2Vcc^2/\pi RL$

Efficiency Calculation:

 $\eta = Po/Pin = (Vcc^2/2RL)/(2Vcc^2/\pi RL)$ $\eta = \pi/4 = 0.785 = 78.5\%$

Key Points:

• Maximum theoretical efficiency: 78.5%

• Class B advantage: Much higher than Class A (25%)

• Practical efficiency: Slightly lower due to losses

Mnemonic: "Push-Pull Provides Pi/4 efficiency"

Question 3(a OR) [3 marks]

Differentiate between voltage and power amplifier.

Answer:

Voltage and power amplifiers serve different purposes in electronic systems.

Parameter	Voltage Amplifier	Power Amplifier
Purpose	Increase voltage	Increase power
Load	High impedance	Low impedance
Efficiency	Not critical	Very important
Distortion	Must be low	Moderate acceptable
Coupling	RC/Direct	Transformer

- **Design priority**: Voltage gain vs power delivery
- Application: Signal processing vs driving loads
- Circuit complexity: Simple vs complex power stages

Mnemonic: "Voltage amplifies signal, Power drives load"

Question 3(b OR) [4 marks]

Explain Class AB power amplifier with diagram.

Answer:

Class AB operates between Class A and Class B, reducing crossover distortion.

Circuit Diagram:

Operation:

• Slight forward bias: Both transistors slightly on

• Conduction angle: >180° but <360°

• Overlap conduction: Eliminates crossover distortion

Characteristics:

Parameter	Value	Benefit
Efficiency	60-70%	Better than Class A
Distortion	Low	Better than Class B
Bias	Slight forward	Compromise solution

Mnemonic: "AB Avoids Bad crossover distortion"

Question 3(c OR) [7 marks]

Derive an equation for Efficiency of series fed class A power amplifier.

Answer:

Series fed Class A amplifier has DC supply connected in series with load.

Circuit Analysis:

• DC supply voltage: Vcc

• Quiescent current: lcq = Vcc/2RL (for maximum power)

• Quiescent voltage: Vceq = Vcc/2

AC Analysis:

• Maximum output voltage swing: Vom = Vcc/2

• Output power: Po = Vom²/2RL = Vcc²/8RL

DC Power:

• **DC current**: Idc = Icq = Vcc/2RL

• Input power: Pin = Vcc × Idc = Vcc²/2RL

Efficiency:

 $\eta = Po/Pin = (Vcc^2/8RL)/(Vcc^2/2RL)$

 $\eta = 1/4 = 0.25 = 25\%$

Key Points:

• Maximum theoretical efficiency: 25%

• Power wastage: 75% lost as heat

• **Design limitation**: Poor efficiency but good linearity

Mnemonic: "Class A Achieves quarter efficiency"

Question 4(a) [3 marks]

Draw pin diagram of IC 741 OP-AMP and explain it.

Answer:

IC 741 is 8-pin dual-in-line package operational amplifier with industry standard pinout.

Pin Diagram:

Pin Configuration:

Table:

Pin	Function	Description
1	Offset Null	Offset adjustment
2	Inverting Input	Negative input
3	Non-inverting Input	Positive input
4	-Vcc	Negative supply
5	Offset Null	Offset adjustment
6	Output	Amplifier output
7	+Vcc	Positive supply
8	NC	No connection

Mnemonic: "Null, Negative, Positive, Negative supply, Null, Output, Positive supply, Nothing"

Question 4(b) [4 marks]

Define the following OP-AMP parameters. 1. Input offset voltage 2. CMRR

Answer:

These parameters define the non-ideal characteristics of practical operational amplifiers.

1. Input Offset Voltage (Vio):

• **Definition**: DC voltage applied between inputs to make output zero

• Typical value: 1-5 mV for 741

• **Cause**: Mismatch in input transistors

• **Effect**: Output error in DC applications

2. Common Mode Rejection Ratio (CMRR):

• **Definition**: Ability to reject common signals at both inputs

• Formula: CMRR = Ad/Acm

• Typical value: 90 dB for 741

• Importance: Noise immunity

Table:

Parameter	Symbol	Unit	Ideal	741 Typical
Input Offset Voltage	Vio	mV	0	2
CMRR	-	dB	∞	90

Mnemonic: "Offset creates Output error, CMRR Rejects common signals"

Question 4(c) [7 marks]

Explain inverting amplifier using IC 741 in detail.

Answer:

Inverting amplifier uses negative feedback with input applied to inverting terminal.

Circuit Diagram:

Analysis:

Using virtual short concept:

• **V+ = V- = 0V** (virtual ground)

• Input current: I1 = Vin/R1

• Feedback current: If = Vout/Rf

• Current balance: I1 = If (no current into op-amp)

Derivation:

Vin/R1 = -Vout/Rf

• Voltage Gain: Av = -Rf/R1

Characteristics:

Parameter	Expression	Notes
Voltage Gain	-Rf/R1	Negative sign
Input Impedance	R1	Low impedance
Output Impedance	~0Ω	Very low
Bandwidth	f = GBW/ Av	Gain-bandwidth product

Applications:

• Signal inversion: Phase reversal

• Scale factor: Programmable gain

• AC amplification: With coupling capacitors

Mnemonic: "Inverting Input gives Inverted output"

Question 4(a OR) [3 marks]

List characteristics of ideal OP-AMP.

Answer:

Ideal op-amp represents perfect amplifier with theoretical limits for all parameters.

Table:

Parameter	Ideal Value	Practical Impact
Open Loop Gain	∞	Perfect amplification
Input Impedance	∞	No input current
Output Impedance	0Ω	Perfect voltage source
Bandwidth	∞	No frequency limitation
CMRR	∞	Perfect noise rejection
Slew Rate	∞	No slew rate limiting
Input Offset	0V	No DC errors

• Perfect performance: All parameters optimized

Design simplification: Analysis becomes easier

• **Practical approximation**: Close to ideal in many applications

Mnemonic: "Infinite Input, Zero Output, Perfect Performance"

Question 4(b OR) [4 marks]

Draw and explain summing amplifier using Op-amp.

Answer:

Summing amplifier adds multiple input voltages with programmable gain for each input.

Circuit Diagram:

```
V1 ---R1---+

|
V2 ---R2---+--- (-) IC741 --- Vout

|
V3 ---R3---+
|
Rf

(+) -------GND
```

Analysis:

Using virtual ground concept (V- = 0V):

- Current through R1: I1 = V1/R1
- Current through R2: I2 = V2/R2
- Current through R3: I3 = V3/R3
- **Total input current**: lin = I1 + I2 + I3

Output Equation:

Vout = -Rf(V1/R1 + V2/R2 + V3/R3)

Special Cases:

- Equal resistors: Vout = -(Rf/R)(V1 + V2 + V3)
- **Unity gain**: Rf = R, Vout = -(V1 + V2 + V3)

Applications:

- Audio mixing: Multiple signal combination
- **Digital-to-analog**: Weighted resistor DAC
- Signal processing: Mathematical operations

Mnemonic: "Sum inputs, Scale by resistor ratios"

Question 4(c OR) [7 marks]

Explain differential amplifier using IC 741 in detail.

Answer

Differential amplifier amplifies the difference between two input signals while rejecting common signals.

Analysis:

For the non-inverting input:

• V+ = V2 × R3/(R2+R3)

For the inverting input using virtual short:

• V- = V+ = V2 × R3/(R2+R3)

Using current balance:

• (V1-V-)/R1 = (V--Vout)/Rf

Output Equation:

When R1 = R2 and R3 = Rf:

Vout = (Rf/R1)(V2 - V1)

Key Features:

Table:

Parameter	Value	Advantage
Differential Gain	Rf/R1	Amplifies difference
Common Mode Gain	~0	Rejects common signals
CMRR	Very high	Excellent noise immunity

Applications:

• Instrumentation: Sensor signal processing

• Noise rejection: Differential signal transmission

• Bridge circuits: Strain gauge measurements

Mnemonic: "Difference amplified, Common rejected"

Question 5(a) [3 marks]

Draw the circuit of integrator using Op-amp and its input and output waveforms.

Answer:

Op-amp integrator performs mathematical integration of input signal using RC feedback.

Waveforms:

Operation:

• Integration function: Vout = -(1/RC) \(\text{Vin dt} \)

• Square wave input: Produces triangular output

• Ramp generation: Constant input gives linear ramp

Mnemonic: "Integration creates Triangular from square"

Question 5(b) [4 marks]

State advantage and disadvantage of push-pull arrangement of power amplifier

Answer:

Push-pull configuration uses two transistors operating in complementary fashion for power amplification.

Advantages:

Table:

Advantage	Benefit	Application
High Efficiency	Up to 78.5%	Battery operated
No Transformer	Compact design	Portable devices
Low Distortion	Better linearity	Audio systems
Heat Distribution	Shared between transistors	Thermal management

Disadvantages:

Disadvantage	Problem	Solution
Crossover Distortion	Dead zone at zero crossing	Class AB bias
Component Matching	Requires matched transistors	Careful selection
Thermal Runaway	Temperature coefficient mismatch	Thermal coupling

Applications:

• Audio amplifiers: High fidelity systems

• Motor drivers: DC motor control

• RF amplifiers: Communication systems

Mnemonic: "Push-Pull Provides Power but Problems exist"

Question 5(c) [7 marks]

Draw and explain astable multivibrator using 555 timer IC.

Answer:

Astable multivibrator generates continuous square wave output without external trigger using 555 timer.

Circuit Diagram:

```
+Vcc

|
RA
|
+--+--+ (7)
|
|
RB (2)+(6) 555 (3)--- Output
|
|
C (1) (4)
|
|
GND GND +Vcc
```

Pin Connections:

- Pin 1: Ground
- Pin 2: Trigger (connected to pin 6)
- Pin 3: Output
- Pin 4: Reset (+Vcc)
- Pin 6: Threshold
- Pin 7: Discharge
- Pin 8: +Vcc

Operation:

1. Charging phase: C charges through RA + RB

2. Threshold reached: At 2/3 Vcc, output goes LOW

3. Discharging phase: C discharges through RB

4. Trigger reached: At 1/3 Vcc, output goes HIGH

5. Cycle repeats: Continuous oscillation

Timing Equations:

• **HIGH time**: t1 = 0.693(RA + RB)C

• **LOW time**: t2 = 0.693(RB)C

• **Total period**: T = t1 + t2 = 0.693(RA + 2RB)C

• **Frequency**: f = 1.44/[(RA + 2RB)C]

• **Duty cycle**: D = (RA + RB)/(RA + 2RB) × 100%

Applications:

• Clock generation: Digital systems

• LED flasher: Blinking circuits

• Tone generation: Audio oscillators

• PWM generation: Motor speed control

Mnemonic: "Astable Always oscillates Automatically"

Question 5(a OR) [3 marks]

Draw the block diagram of Op-amp and explain it.

Answer:

Op-amp internal structure consists of multiple stages for high gain and performance.

Block Diagram:

Stage Functions:

Stage	Function	Characteristics
Differential Input	High input impedance	Low offset, high CMRR
Intermediate Amplifier	High voltage gain	Most of the gain
Level Shifter	DC level adjustment	Couples AC stages
Output Stage	Low output impedance	Current buffer

• **High gain**: Typically 100,000 or more

• Wide bandwidth: MHz range capability

• Low output impedance: Drives various loads

Mnemonic: "Differential Input, Intermediate gain, Level shift, Output buffer"

Question 5(b OR) [4 marks]

Explain about the terms related to power amplifier. i) Efficiency ii) Distortion.

Answer:

These parameters determine power amplifier performance and suitability for applications.

i) Efficiency (η):

• **Definition**: Ratio of AC output power to DC input power

• **Formula**: $\eta = Po(AC)/Pin(DC) \times 100\%$

• Importance: Determines heat dissipation and battery life

Efficiency Comparison:

Table:

Class	Efficiency	Application
Α	25%	Low power, high fidelity
В	78.5%	Push-pull amplifiers
AB	60-70%	Audio amplifiers
С	>90%	RF applications

ii) Distortion:

• **Definition**: Unwanted changes in output signal shape

• **Types**: Harmonic, intermodulation, crossover

• Measurement: Total Harmonic Distortion (THD)

Distortion Sources:

• **Nonlinearity**: Transistor characteristics

• Crossover: Dead zone in push-pull

• Thermal effects: Temperature variations

Mnemonic: "Efficiency measures Energy use, Distortion shows signal Degradation"

Question 5(c OR) [7 marks]

Draw pin diagram of 555 timer IC. Also draw circuit diagram of two stage sequential timer using 555 timer IC.

Answer:

555 timer is versatile IC used for timing applications with standard 8-pin package.

Pin Diagram:

Pin Functions:

Table:

Pin	Name	Function
1	Ground	Common ground
2	Trigger	Starts timing cycle
3	Output	Timer output
4	Reset	Resets timer
5	Control	Voltage reference
6	Threshold	Stops timing cycle
7	Discharge	Discharges timing capacitor
8	Vcc	Supply voltage

Two Stage Sequential Timer Circuit:

```
First Stage (555A):
   +Vcc
    R1
  +--+--+ (7)
      R2
      (2)+(6) 555A (3)---+
               C1
         (1)
              (4)
          GND
         GND
               +Vcc
Second Stage (555B):
  +Vcc
    R3
  +--+- (7)
      (2) 555B (3)--- Output
      C2
     (6) (1)
              (4)
      GND---+--GND +Vcc
```

Operation:

1. First timer: Operates in monostable mode

2. **Trigger applied**: First timer gives output pulse

3. **Output duration**: T1 = $1.1 \times R2 \times C1$

4. **Second timer**: Triggered by first timer's output

5. **Sequential operation**: Second timer starts after first completes

6. **Total delay**: T1 + T2 where T2 = $1.1 \times R4 \times C2$

Applications:

• Delay circuits: Sequential switching

• Traffic lights: Timed sequence control

• Industrial automation: Process timing

• Motor control: Start-stop sequences

Timing Equations:

• Stage 1 delay: T1 = 1.1 R2 C1

• Stage 2 delay: T2 = 1.1 R4 C2

• Total sequence time: Ttotal = T1 + T2

Key Features:

- Independent timing: Each stage separately adjustable
- **Sequential operation**: No overlap between stages
- Reliable switching: Clean digital transitions
- Easy design: Simple component calculation

Mnemonic: "Sequential Stages Start Separately"