The Great Hamster Hire

A) Incorrect solution

Below is my edited version (BLUE statement is changes from what ChatGPT provided.)

Assumption:

If boosted intelligence is greater than maximum capability, you can't boost it.

Decision Variables:

 $x_{i,j}$: A binary variable that equals 1 if junior engineer i is assigned to senior engineer j

 $\mathbf{y}_{i,k}$: A binary variable that equals 1 if junior engineer i is assigned to do contract k

 \boldsymbol{z}_{j} : A binary variable that equals 1 if senior engineer j is hired.

Define the parameters:

N: number of junior engineers. M: number of senior engineers.

 \emph{K} : number of contracts. \emph{C} : Large Constant number

 ${\it H}$: maximum number of junior engineers that a senior engineer can manage.

 d_k : difficulty of contract k.

 $\emph{r}_\emph{k}$: payment for contract \emph{k} .

 ϵ_i : intelligence value of junior engineer i .

 p_i : annual salary of junior engineer \emph{i}

 $i_{\scriptscriptstyle j}$: intelligence value of senior engineer $\,j$.

 P_i : annual salary of senior engineer j.

T: The boost in intelligence that a senior engineer can provide.

Objective Function

$$\sum_{k=1}^{K} (r_k \sum_{i=1}^{N} y_{i,k}) - \sum_{i=1}^{N} (p_i \sum_{k=1}^{K} y_{i,k}) - \sum_{j=1}^{M} (P_j \cdot z_j)$$

Constraints

1. Each junior engineer can be assigned to at most one senior engineer:

$$\sum_{i=1}^{M} x_{i,j} \le 1 \text{ for } i = 1, 2, ..., N$$

2. Each contract must be assigned to at most one junior engineer and vice versa.

$$\sum_{i=1}^{N} y_{i,k} \le 1 \text{ for } k = 1, 2, ..., K \text{ and } \sum_{k=1}^{K} y_{i,k} \le 1 \text{ for } i = 1, 2, ..., N$$

3. The intelligence boost should not exceed the senior engineer's intelligence:

$$\epsilon_i + T \cdot \sum_{j=1}^{M} x_{i,j} \le C(1 - \sum_{j=1}^{M} x_{i,j}) + \sum_{j=1}^{M} i_j x_{i,j}$$
 for $i = 1, 2, ..., N$

4. Each senior engineer can manage at most H junior engineers:

$$\sum_{i=1}^{N} x_{i,j} \le H \cdot z_{j} \text{ for } j = 1, 2, ..., M$$

5. The assigned engineering's intelligence must be greater than the contract difficulty:

$$\epsilon_i + T \sum_{j=1}^{M} x_{i,j} \ge \sum_{k=1}^{K} y_{i,k} d_k$$
 for $i = 1, 2, ..., N$

6. Binary constraints for decision variables:

$$x_{i,j} \in \{0,1\}$$
 for $i = 1,2,...,N$ and $j = 1,2,...M$

$$y_{i,k} \in \{0,1\}$$
 for $i = 1,2,...,N$ and $k = 1,2,...,K$

$$z_{i} \in \{0,1\}$$
 for $j = 1,2,...,M$

B) Just think as ChadGPT as a senior engineer with 240 USD annual salary, can boost $T_{\!\scriptscriptstyle AI}$ intelligence, upper boundary of boosted intelligence is Q , and can manage N junior engineer.

Assumption

ChadGPT cost is per person.

They are 3 choices of improvement:

Use only ChadGPT	Use ChadGPT then senior engineer.
------------------	-----------------------------------

Additional Decision Variables

 AI_{i} : A binary variable that equals 1 if junior engineer is using ChadGPT.

Objective

$$\sum_{k=1}^{K} (r_k \sum_{i=1}^{N} y_{i,k}) - \sum_{i=1}^{N} (p_i \sum_{j=1}^{K} y_{i,k}) - \sum_{j=1}^{M} (P_j \cdot z_j) - 240 \sum_{i=1}^{N} AI_i$$

Additional Constraints

Modify no.3

The intelligence boost should not exceed maximum capability:

$$\epsilon_i + T_{AI} \cdot AI_i \le C(1 - AI_i) + Q$$
 for $i = 1, 2, ..., N$

$$\epsilon_i + T_{AI} \cdot AI_i + T \cdot \sum_{i=1}^{M} x_{i,j} \le C(1 - \sum_{i=1}^{M} x_{i,j}) + \sum_{i=1}^{M} i_j x_{i,j}$$
 for $i = 1, 2, ..., N$

Modify no.5

1. The assigned engineering's intelligence must be greater than the contact difficulty:

$$\epsilon_i + T_{AI} \cdot AI_i + T \sum_{j=1}^{M} x_{i,j} \ge \sum_{k=1}^{K} y_{i,k} d_k$$
 for $i = 1, 2, ..., N$

Hiring Strategy: Since ChadGPT can boost N juniors, ChadGPT might be better options than senior that cost more than ChadGPT and able to boost less than ChadGPT.