

Joint Filtering of Intensity Images and Neuromorphic Events for High-Resolution Noise-Robust Imaging

Peiqi Duan^{2*}

Aggelos Katsaggelos¹ Oliver Cossairt¹ Tiejun Huang² ¹Northwestern University ²Peking University *Equation contrubution

Boxin Shi²

RGB cam event cam

High speed (1us latency) 30/60FPS ~60dB HDR (120dB) Low power (10mW) >1W HD UHD 4/8k Low resolution (240x180)

Less noisy noisy

How does event camera work?

Proposal: RGB + Event hybrid camera

camera

Event camera view

calibration

RGB camera view

Captured data: regular frame-rate images and events

Guided Event Filtering (GEF): a unifying framework

Input

Zihao W. Wang^{1*}

an intensity image a stream of events

Motion model

Assuming events are generated by moving edges

Step 1: Motion compensation by Joint Contrast Maximization

- maximizes the contrast of the histogram jointly formed by the image and events
- registers events with image edges
- estimates optical flow robust to event noise

Step 2: Joint/guided image filtering

- extracts mutual structure from image and events
- recursively upsamples by 2x, until 8x

Filter output

Guided event upsampling

(a) Img+events(b) MC events (c) $1\times$

(d) 2 ×

(e) 4×

(f) 8 ×

Applications

GEF can improve performance for event-based algorithms

#1: video frame synthesis

w/o GEF

w/ GEF

#2: image motion deblur

Blurry image

deblur w/o GEF

w/ GEF

#3: HDR image reconstruction

LDR image

HDR w/o GEF

w/ GEF

#4: corner detection and tracking

