$12n_{0152} \ (K12n_{0152})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle u^{42} - u^{41} + \dots - u^3 + b, \ -u^{42} + u^{41} + \dots + a - 1, \ u^{44} - 2u^{43} + \dots - 2u + 1 \rangle \\ I_2^u &= \langle b + u, \ -u^3 + a - u + 1, \ u^4 + u^2 - u + 1 \rangle \\ I_3^u &= \langle -u^5 - u^4 - 2u^3 - 2u^2 + b - 2u - 1, \ u^4 + u^2 + a, \ u^6 + u^5 + 2u^4 + 2u^3 + 2u^2 + 2u + 1 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 54 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle u^{42} - u^{41} + \dots - u^3 + b, -u^{42} + u^{41} + \dots + a - 1, u^{44} - 2u^{43} + \dots - 2u + 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{42} - u^{41} + \dots + 4u^{3} + 1 \\ -u^{42} + u^{41} + \dots - 5u^{4} + u^{3} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{43} + 3u^{42} + \dots - 2u + 2 \\ u^{43} - 3u^{42} + \dots - u^{2} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{3} \\ u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{8} + u^{6} + u^{4} + 1 \\ u^{10} + 2u^{8} + 3u^{6} + 2u^{4} + u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{39} - u^{38} + \dots + u + 1 \\ u^{41} - u^{40} + \dots + u^{3} + u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{3} \\ u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{11} - 2u^{9} - 2u^{7} + u^{3} \\ u^{11} + 3u^{9} + 4u^{7} + 3u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{21} + 4u^{19} + 9u^{17} + 12u^{15} + 12u^{13} + 10u^{11} + 9u^{9} + 6u^{7} + 3u^{5} + u \\ u^{23} + 5u^{21} + \dots + 2u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^{43} 8u^{42} + \cdots + 11u 10$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{44} + 5u^{43} + \dots + 5u + 1$
c_2, c_4	$u^{44} - 11u^{43} + \dots - 9u + 1$
c_3, c_7	$u^{44} - u^{43} + \dots - 2048u + 1024$
c_5	$u^{44} + 10u^{43} + \dots + 510u + 61$
c_6, c_{10}	$u^{44} + 2u^{43} + \dots + 2u + 1$
<i>c</i> ₈	$u^{44} + 2u^{43} + \dots - 12568908u + 4045417$
c_9	$u^{44} - 2u^{43} + \dots - 48u + 72$
c_{11}	$u^{44} - 22u^{43} + \dots - 2u + 1$
c_{12}	$u^{44} - 2u^{43} + \dots - 2u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{44} + 79y^{43} + \dots + 63y + 1$
c_2, c_4	$y^{44} - 5y^{43} + \dots - 5y + 1$
c_{3}, c_{7}	$y^{44} - 63y^{43} + \dots - 17301504y + 1048576$
<i>c</i> ₅	$y^{44} - 10y^{43} + \dots + 42582y + 3721$
c_6,c_{10}	$y^{44} + 22y^{43} + \dots + 2y + 1$
<i>C</i> ₈	$y^{44} + 118y^{43} + \dots + 59158715268238y + 16365398703889$
<i>c</i> ₉	$y^{44} - 18y^{43} + \dots - 39312y + 5184$
c_{11}	$y^{44} + 2y^{43} + \dots + 22y + 1$
c_{12}	$y^{44} + 58y^{43} + \dots + 2y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.650835 + 0.753787I		
a = 0.08846 - 1.78587I	7.53342 + 6.30806I	-1.89413 - 5.29683I
b = 0.081004 + 0.538151I		
u = -0.650835 - 0.753787I		
a = 0.08846 + 1.78587I	7.53342 - 6.30806I	-1.89413 + 5.29683I
b = 0.081004 - 0.538151I		
u = -0.632673 + 0.802636I		
a = 0.267451 + 1.071980I	7.68178 - 1.36168I	-1.47660 - 0.85903I
b = -0.836036 - 0.256227I		
u = -0.632673 - 0.802636I		
a = 0.267451 - 1.071980I	7.68178 + 1.36168I	-1.47660 + 0.85903I
b = -0.836036 + 0.256227I		
u = 0.524889 + 0.986478I		
a = 0.205755 - 0.498882I	-0.15574 - 2.57093I	0.70156 + 2.32156I
b = -0.239518 + 0.643052I		
u = 0.524889 - 0.986478I		
a = 0.205755 + 0.498882I	-0.15574 + 2.57093I	0.70156 - 2.32156I
b = -0.239518 - 0.643052I		
u = -0.238245 + 1.098530I		
a = -1.052800 - 0.393118I	4.15035 - 1.19914I	5.43856 + 1.99279I
b = 0.056688 + 0.785185I		
u = -0.238245 - 1.098530I		
a = -1.052800 + 0.393118I	4.15035 + 1.19914I	5.43856 - 1.99279I
b = 0.056688 - 0.785185I		
u = 0.401111 + 1.053070I		
a = -0.924275 - 0.254329I	1.12314 - 1.53132I	0.534904 + 0.918296I
b = 0.940261 + 0.336917I		
u = 0.401111 - 1.053070I		
a = -0.924275 + 0.254329I	1.12314 + 1.53132I	0.534904 - 0.918296I
b = 0.940261 - 0.336917I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.806426 + 0.270607I		
a = 0.528240 - 1.204320I	10.03900 + 8.32938I	-1.08270 - 4.13842I
b = 2.74166 + 0.03423I		
u = 0.806426 - 0.270607I		
a = 0.528240 + 1.204320I	10.03900 - 8.32938I	-1.08270 + 4.13842I
b = 2.74166 - 0.03423I		
u = 0.605593 + 0.584352I		
a = -0.793404 + 0.445925I	-1.33551 - 1.91461I	-1.93635 + 4.43568I
b = 0.360026 - 0.418150I		
u = 0.605593 - 0.584352I		
a = -0.793404 - 0.445925I	-1.33551 + 1.91461I	-1.93635 - 4.43568I
b = 0.360026 + 0.418150I		
u = -0.470021 + 1.059020I		
a = -2.48227 + 1.10683I	-0.51801 + 3.33956I	1.74785 - 5.30450I
b = 2.56335 + 1.29163I		
u = -0.470021 - 1.059020I		
a = -2.48227 - 1.10683I	-0.51801 - 3.33956I	1.74785 + 5.30450I
b = 2.56335 - 1.29163I		
u = 0.801520 + 0.234624I		
a = -0.402454 + 0.655071I	10.56280 + 0.28731I	-0.340463 + 0.065100I
b = -2.50289 + 0.41075I		
u = 0.801520 - 0.234624I		
a = -0.402454 - 0.655071I	10.56280 - 0.28731I	-0.340463 - 0.065100I
b = -2.50289 - 0.41075I		
u = -0.344708 + 1.132750I		
a = 1.04475 - 1.24375I	5.34462 + 1.30032I	5.86228 - 1.34664I
b = -1.275840 - 0.094053I		
u = -0.344708 - 1.132750I		
a = 1.04475 + 1.24375I	5.34462 - 1.30032I	5.86228 + 1.34664I
b = -1.275840 + 0.094053I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.727737 + 0.345386I		
a = -0.556447 + 0.549889I	-0.21118 - 3.75271I	-0.89242 + 4.60335I
b = 0.899472 + 0.608886I		
u = -0.727737 - 0.345386I		
a = -0.556447 - 0.549889I	-0.21118 + 3.75271I	-0.89242 - 4.60335I
b = 0.899472 - 0.608886I		
u = 0.499458 + 1.093510I		
a = 0.163389 - 0.118925I	0.35556 - 5.50410I	-0.95894 + 5.50541I
b = -0.476367 - 0.549957I		
u = 0.499458 - 1.093510I		
a = 0.163389 + 0.118925I	0.35556 + 5.50410I	-0.95894 - 5.50541I
b = -0.476367 + 0.549957I		
u = 0.394783 + 0.687947I		
a = -0.636590 - 0.714238I	-0.07264 - 1.54976I	-0.86288 + 5.32741I
b = 0.329853 + 0.582166I		
u = 0.394783 - 0.687947I		
a = -0.636590 + 0.714238I	-0.07264 + 1.54976I	-0.86288 - 5.32741I
b = 0.329853 - 0.582166I		
u = 0.271461 + 1.191670I		
a = -2.91510 - 0.51878I	14.6335 + 5.0175I	4.32906 - 1.77222I
b = 2.28357 - 1.65853I		
u = 0.271461 - 1.191670I		
a = -2.91510 + 0.51878I	14.6335 - 5.0175I	4.32906 + 1.77222I
b = 2.28357 + 1.65853I		
u = 0.299244 + 1.194400I		
a = 3.17931 + 0.29031I	14.9926 - 3.1935I	4.68937 + 2.57372I
b = -2.39631 + 1.63518I		
u = 0.299244 - 1.194400I		
a = 3.17931 - 0.29031I	14.9926 + 3.1935I	4.68937 - 2.57372I
b = -2.39631 - 1.63518I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.561031 + 1.111280I		
a = -0.12864 + 1.49829I	2.02214 + 8.66027I	0 8.67025I
b = 1.09429 - 1.16042I		
u = -0.561031 - 1.111280I		
a = -0.12864 - 1.49829I	2.02214 - 8.66027I	0. + 8.67025I
b = 1.09429 + 1.16042I		
u = -0.514177 + 1.135410I		
a = 2.03093 - 0.39666I	4.18522 + 6.56824I	3.58280 - 6.10314I
b = -1.75747 - 1.02929I		
u = -0.514177 - 1.135410I		
a = 2.03093 + 0.39666I	4.18522 - 6.56824I	3.58280 + 6.10314I
b = -1.75747 + 1.02929I		
u = -0.690430 + 0.212080I		
a = -0.519384 - 0.455199I	1.55771 - 1.98048I	0.55925 + 2.67881I
b = -1.075590 + 0.770658I		
u = -0.690430 - 0.212080I		
a = -0.519384 + 0.455199I	1.55771 + 1.98048I	0.55925 - 2.67881I
b = -1.075590 - 0.770658I		
u = 0.559852 + 1.158950I		
a = -2.47252 - 2.48487I	12.6669 - 13.4080I	0. + 7.64627I
b = 3.85040 - 0.10977I		
u = 0.559852 - 1.158950I		
a = -2.47252 + 2.48487I	12.6669 + 13.4080I	0 7.64627I
b = 3.85040 + 0.10977I		
u = 0.544747 + 1.166240I		
a = 1.89623 + 2.56346I	13.3130 - 5.2801I	0
b = -3.21064 - 0.17517I		
u = 0.544747 - 1.166240I		
a = 1.89623 - 2.56346I	13.3130 + 5.2801I	0
b = -3.21064 + 0.17517I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.433758 + 0.454843I		
a = 1.52940 + 1.29138I	-2.34698 + 0.55015I	-4.01438 + 2.82078I
b = 1.02671 - 0.97590I		
u = -0.433758 - 0.454843I		
a = 1.52940 - 1.29138I	-2.34698 - 0.55015I	-4.01438 - 2.82078I
b = 1.02671 + 0.97590I		
u = 0.554531 + 0.293565I		
a = 0.44996 + 1.43424I	-1.89085 + 1.22646I	-5.83511 - 0.82987I
b = 0.043378 - 0.204320I		
u = 0.554531 - 0.293565I		
a = 0.44996 - 1.43424I	-1.89085 - 1.22646I	-5.83511 + 0.82987I
b = 0.043378 + 0.204320I		

II.
$$I_2^u = \langle b+u, -u^3+a-u+1, u^4+u^2-u+1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{3} + u - 1 \\ -u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{3} + u - 1 \\ -u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{3} \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{3} + u^{2} - u + 1 \\ -u^{2} + u - 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 2u^{3} - u^{2} + 2u - 2 \\ u^{2} - 2u + 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{3} \\ u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{3} - u^{2} + u - 1 \\ u^{2} - u + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $5u^3 + 4u^2 + u 6$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^4$
c_3, c_7	u^4
c_4	$(u+1)^4$
c_5	$u^4 + 2u^3 + 3u^2 + u + 1$
c_6	$u^4 + u^2 - u + 1$
c_8, c_{10}, c_{12}	$u^4 + u^2 + u + 1$
<i>c</i> ₉	$u^4 + 3u^3 + 4u^2 + 3u + 2$
c_{11}	$u^4 - 2u^3 + 3u^2 - u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^4$
c_3, c_7	y^4
c_5,c_{11}	$y^4 + 2y^3 + 7y^2 + 5y + 1$
c_6, c_8, c_{10} c_{12}	$y^4 + 2y^3 + 3y^2 + y + 1$
<i>C</i> 9	$y^4 - y^3 + 2y^2 + 7y + 4$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.547424 + 0.585652I		
a = -0.851808 + 0.911292I	-2.62503 - 1.39709I	-7.62200 + 4.77865I
b = -0.547424 - 0.585652I		
u = 0.547424 - 0.585652I		
a = -0.851808 - 0.911292I	-2.62503 + 1.39709I	-7.62200 - 4.77865I
b = -0.547424 + 0.585652I		
u = -0.547424 + 1.120870I		
a = 0.351808 + 0.720342I	0.98010 + 7.64338I	-0.87800 - 5.79053I
b = 0.547424 - 1.120870I		
u = -0.547424 - 1.120870I		
a = 0.351808 - 0.720342I	0.98010 - 7.64338I	-0.87800 + 5.79053I
b = 0.547424 + 1.120870I		

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{5} + u^{4} + 2u^{3} + 2u^{2} + 2u + 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{5} + u^{4} + 2u^{3} + 2u^{2} + 2u + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{3} \\ u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{4} + u^{2} + u + 1 \\ -2u^{5} - u^{4} - 3u^{3} - 2u^{2} - 3u - 2 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{4} + u^{2} + u + 1 \\ 3u^{5} + 2u^{4} + 5u^{3} + 4u^{2} + 5u + 3 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{3} \\ u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{3} \\ 2u^{5} + u^{4} + 3u^{3} + 2u^{2} + 3u + 2 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ 2u^{5} + u^{4} + 3u^{3} + 2u^{2} + 3u + 2 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $u^4 + 5u^3 + u^2 + 4u 1$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^6$
c_{3}, c_{7}	u^6
c_4	$(u+1)^6$
c_5	$u^6 + 3u^5 + 4u^4 + 2u^3 + 1$
c_6	$u^6 + u^5 + 2u^4 + 2u^3 + 2u^2 + 2u + 1$
c_8, c_{10}, c_{12}	$u^6 - u^5 + 2u^4 - 2u^3 + 2u^2 - 2u + 1$
<i>c</i> ₉	$(u^3 - u^2 + 1)^2$
c_{11}	$u^6 - 3u^5 + 4u^4 - 2u^3 + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^6$
c_3, c_7	y^6
c_5, c_{11}	$y^6 - y^5 + 4y^4 - 2y^3 + 8y^2 + 1$
c_6, c_8, c_{10} c_{12}	$y^6 + 3y^5 + 4y^4 + 2y^3 + 1$
<i>C</i> 9	$(y^3 - y^2 + 2y - 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.498832 + 1.001300I		
a = 1.183530 + 0.507021I	-1.37919 - 2.82812I	-7.06955 + 2.21599I
b = -1.39861 + 0.80012I		
u = 0.498832 - 1.001300I		
a = 1.183530 - 0.507021I	-1.37919 + 2.82812I	-7.06955 - 2.21599I
b = -1.39861 - 0.80012I		
u = -0.284920 + 1.115140I		
a = 0.215080 - 0.841795I	2.75839	2.84423 - 0.27335I
b = -0.784920 + 0.841795I		
u = -0.284920 - 1.115140I		
a = 0.215080 + 0.841795I	2.75839	2.84423 + 0.27335I
b = -0.784920 - 0.841795I		
u = -0.713912 + 0.305839I		
a = -0.398606 + 0.800120I	-1.37919 - 2.82812I	-4.27468 + 2.61835I
b = 0.183526 + 0.507021I		
u = -0.713912 - 0.305839I		
a = -0.398606 - 0.800120I	-1.37919 + 2.82812I	-4.27468 - 2.61835I
b = 0.183526 - 0.507021I		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^{10})(u^{44} + 5u^{43} + \dots + 5u + 1)$
c_2	$((u-1)^{10})(u^{44}-11u^{43}+\cdots-9u+1)$
c_3, c_7	$u^{10}(u^{44} - u^{43} + \dots - 2048u + 1024)$
c_4	$((u+1)^{10})(u^{44}-11u^{43}+\cdots-9u+1)$
c_5	$(u^4 + 2u^3 + 3u^2 + u + 1)(u^6 + 3u^5 + 4u^4 + 2u^3 + 1)$ $\cdot (u^{44} + 10u^{43} + \dots + 510u + 61)$
c_6	$(u^4 + u^2 - u + 1)(u^6 + u^5 + 2u^4 + 2u^3 + 2u^2 + 2u + 1)$ $\cdot (u^{44} + 2u^{43} + \dots + 2u + 1)$
<i>c</i> ₈	$(u^4 + u^2 + u + 1)(u^6 - u^5 + 2u^4 - 2u^3 + 2u^2 - 2u + 1)$ $\cdot (u^{44} + 2u^{43} + \dots - 12568908u + 4045417)$
c_9	$((u^3 - u^2 + 1)^2)(u^4 + 3u^3 + \dots + 3u + 2)(u^{44} - 2u^{43} + \dots - 48u + 72)$
c_{10}	$(u^4 + u^2 + u + 1)(u^6 - u^5 + 2u^4 - 2u^3 + 2u^2 - 2u + 1)$ $\cdot (u^{44} + 2u^{43} + \dots + 2u + 1)$
c_{11}	$(u^4 - 2u^3 + 3u^2 - u + 1)(u^6 - 3u^5 + 4u^4 - 2u^3 + 1)$ $\cdot (u^{44} - 22u^{43} + \dots - 2u + 1)$
c_{12}	$(u^4 + u^2 + u + 1)(u^6 - u^5 + 2u^4 - 2u^3 + 2u^2 - 2u + 1)$ $\cdot (u^{44} - 2u^{43} + \dots - 2u + 1)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^{10})(y^{44} + 79y^{43} + \dots + 63y + 1)$
c_2, c_4	$((y-1)^{10})(y^{44} - 5y^{43} + \dots - 5y + 1)$
c_3, c_7	$y^{10}(y^{44} - 63y^{43} + \dots - 1.73015 \times 10^7 y + 1048576)$
c_5	$(y^4 + 2y^3 + 7y^2 + 5y + 1)(y^6 - y^5 + 4y^4 - 2y^3 + 8y^2 + 1)$ $\cdot (y^{44} - 10y^{43} + \dots + 42582y + 3721)$
c_6, c_{10}	$(y^4 + 2y^3 + 3y^2 + y + 1)(y^6 + 3y^5 + 4y^4 + 2y^3 + 1)$ $\cdot (y^{44} + 22y^{43} + \dots + 2y + 1)$
<i>c</i> ₈	$(y^4 + 2y^3 + 3y^2 + y + 1)(y^6 + 3y^5 + 4y^4 + 2y^3 + 1)$ $\cdot (y^{44} + 118y^{43} + \dots + 59158715268238y + 16365398703889)$
<i>c</i> ₉	$(y^3 - y^2 + 2y - 1)^2 (y^4 - y^3 + 2y^2 + 7y + 4)$ $\cdot (y^{44} - 18y^{43} + \dots - 39312y + 5184)$
c_{11}	$(y^4 + 2y^3 + 7y^2 + 5y + 1)(y^6 - y^5 + 4y^4 - 2y^3 + 8y^2 + 1)$ $\cdot (y^{44} + 2y^{43} + \dots + 22y + 1)$
c_{12}	$(y^4 + 2y^3 + 3y^2 + y + 1)(y^6 + 3y^5 + 4y^4 + 2y^3 + 1)$ $\cdot (y^{44} + 58y^{43} + \dots + 2y + 1)$