MA211 Problem Set 3

Note Ti	tle04/12/2008
Q1	Solve the IVP
	y'' + 4y' + 5y = 0 $y(0) = 0$, $y'(0) = 1$
	Soln: First find the general solution
	Solv: First find the general solution The auxillary equation is R2+4R+5=0 This has 2 complex Root (0=16-20<0)
	$R = -2 \pm i \qquad = k \pm i \omega$
	$y = e^{-2x} \left(A \cos(x) + B \sin(x) \right)$
	g= (A cos(2) + 6 sin(x))
	Now use the initial conditions y(0)=0 & y'(0)=1
	to find A & B
	y(0) = 1(A+O) = 0 So $A=0$
	$y'(x) = \frac{d}{dx} \left[Be^{-2x} \sin(x) \right]$
	$= B\left(-2e^{-2x}\right)\sin(x) - e^{-2x}\cos(x)$
	50 y'(0) = B = 1 50 B=1
	ANS: $y = e^{-2x} \sin(x)$

	equations:
	(i) $y'' - 6y' + 9y = 3x^2$.
	(ii) $2y'' + 5y' - 3y = e^x + x$.
	,
	· ·
(1)	y=h+u where h is the general solution
	to h"-6h'+9h=0
	to $h'' - 6h' + 9h = 0$ Le co a porticular solution to $u'' - 6u' + 9u = 3x^2$
	To solve for h: Auxillory Eqn is $R^2 - 6R + 9 = 0$ = (R - 3)(R - 3) = 0
	=) (R-3)(R-3)=0
	this has just one solution: R=3. So $h = Ae^{-3x} + Bxe^{-3x}$
	$h = Ae^{-3x} + Bxe^{-3x}$
Nex	t find $u = q_0 + q_1 x + q_2 x^2$ that solves $u'' - 6u + 9u = 3x^2$ $q_1 + 2q_2 x$, $u'' = 2q_2$ So we need $q_2 - 6(q_1 + 2q_2 x) + 9(q_0 + q_1 x + q_2 x^2) = 3x^2$
น =	$9, +292 \times u'' = 292 = 50$ we need
2	$q_2 - 6(q_1 + 2q_2 x) + 9(q_0 + q_1 x + q_2 x^2) = 3x^2$
Ga	thering the coefs of x2, x' & x0, we get
	$(2(9q_2) + x(9q_1 - 12q_2) + (9q_0 - 6q_1 + 2q_2) = 3x^2$
	$50992=3 \Rightarrow 92=\frac{1}{3}$
	Next $9q_1 - 12q_2 = 0 \Rightarrow 9_1 = \frac{1}{4}(4) = \frac{1}{4}$ and $990 - 69_1 + 2q_2 = 0 \Rightarrow 9_5 = \frac{1}{4}(\frac{3}{3} - \frac{2}{3}) = \frac{2}{9}$
	and 990 - 69, +29, =0 =) 90= 19 (3-2) = 29
	So $u = \frac{2}{9}q + \frac{4}{9}x + \frac{1}{3}x^2$
	ANS: y=h+u=Ae^3x+Bxe^3x+29+49x+3x2

2. Find general solution to the following differential

Q2 (ii) $2y'' + 5y' - 3y = e^{x} + x$ y=h+u+v where h is the general solution to 24" + 5h' - 3h =0 and us one porticular solutions to $2u'' + 5u' - 3u = e^{x}$ 4 2v'' + 5v' - 3v = xTo solve for h: $0=5^2-4ac=25+24=4970$. So there ore 2 real roots: $R = \frac{1}{2}$ and R = -3 $S_0 \quad h = Ae^{x/2} + Be^{-3x}$ Next find a porticulor solu to 2x"+5 x'-3x = ex u has the form u=Mex so u'= u"= Mex substituting into the DE gives $2me^{x} + 5me^{x} - 3me^{x} = e^{x}$. So $m = \frac{1}{4}$ u= 1/4 ex Next, find v = 90 + 9, x that solves 20"+51-3v=x = 2(0) + 5 (9,) - 3(90 + 9, 2c) = 2C 50 9,= ~ 13 & 9p= -13. 5/3 = -5/a. Giving v= - 5/9 - 1/3 2C Ans: y=h+u+v= Aex2+Be-3x + 4ex - 5q-3x

