ASSIGNMENT 4

LAPLACE TRANSFORMATION

1. Find the Laplace transform of

(a)
$$\frac{\cos\sqrt{t}}{\sqrt{t}}$$

Answer:
$$\sqrt{\frac{\pi}{s}} e^{-1/4S}$$

Answer:
$$\frac{2}{S(S^2-4)}$$
, $S > 2$

(c)
$$f(t) = \begin{cases} 0, & 0 \le t < \pi \\ \sin t, & t \ge \pi \end{cases}$$

$$0 \le t < \pi$$
$$t > \pi$$

Answer:
$$\frac{-e^{-S\pi}}{(S^2+1)}$$

Answer:
$$\frac{48}{(S^2+4)(S^2+36)}$$
, $S > 0$

(e)
$$\mathcal{L}[t \sin at]$$

Answer:
$$\frac{2aS}{(S^2+a^2)^2}$$

(f)
$$\mathcal{L}[t^n e^{at}]$$

Answer:
$$\frac{n!}{(S-a)^{n+1}}$$
, $S > a$

(g) Find the Laplace transform of $\frac{\sin at}{t}$. Does the Laplace transform of $\frac{\cos at}{t}$ exist?

Answer: $\mathcal{L}\left[\frac{\sin at}{t}\right] = \cot^{-1}\frac{s}{a}$; $\mathcal{L}\left[\frac{\cos at}{t}\right]$ does not exist.

2. Find
$$\mathcal{L}[G(t)]$$
, where $G(t) = \begin{cases} \cos\left(t - \frac{2\pi}{3}\right), & t > \frac{2\pi}{3} \\ 0, & t < \frac{2\pi}{3} \end{cases}$

Answer:
$$\frac{Se^{-2\pi S/3}}{(S^2+1)}$$
, $S > 0$

3. If
$$\mathcal{L}[f(t)] = \frac{(S^2 - S + 1)}{(2S + 1)^2(S - 2)}$$
 then prove that $\mathcal{L}[f(2t)] = \frac{(S^2 - 2S + 4)}{4(S + 1)^2(S - 2)}$

4. If
$$\mathcal{L}[\sin\sqrt{t}] = \frac{\sqrt{\pi}}{2S^{3/2}}e^{-1/4S}$$
 then show that $\mathcal{L}\left[\frac{\cos\sqrt{t}}{\sqrt{t}}\right] = \sqrt{\frac{\pi}{S}}e^{-1/4S}$

5. Find:

(a)
$$\mathcal{L}^{-1} \left[\frac{3S-2}{S^{5/2}} - \frac{7}{2S+2} \right]$$

(a)
$$\mathcal{L}^{-1} \left[\frac{3S-2}{S^{5/2}} - \frac{7}{2S+2} \right]$$
 Answer: $6 \left(\frac{t}{\pi} \right)^{1/2} - \frac{8t}{3} \left(\frac{t}{\pi} \right)^{\frac{1}{2}} - \frac{7}{3} e^{-2t/3}$ (b) $\mathcal{L}^{-1} \left[\frac{2S^2 - 6S + 5}{S^3 - 6S^2 + 11S - 6} \right]$ Answer: $\frac{e^t}{2} - e^{2t} + \frac{5e^{3t}}{3}$ (c) $\mathcal{L}^{-1} \left[\frac{S^2}{S^4 + 4a^2} \right]$ Answer: $\frac{1}{2a} \left(\cosh at \sin at + \sinh at \cot at \right)$

(b)
$$\mathcal{L}^{-1}\left[\frac{2S^2-6S+5}{S^3-6S^2+11S-6}\right]$$

Answer:
$$\frac{e^t}{2} - e^{2t} + \frac{5e^3}{3}$$

(c)
$$\mathcal{L}^{-1} \left[\frac{S^2}{S^4 + 4a^2} \right]$$

Answer:
$$\frac{1}{2a} (\cosh at \sin at + \sinh at \cos at)$$

(d)
$$\mathcal{L}^{-1} \left[\frac{e^{-4S}}{(S-3)^4} \right]$$

Answer:
$$\frac{1}{6}(t-4)^3e^{3(t-4)}H(t-4)$$

(e)
$$\mathcal{L}^{-1}\left[\log\frac{1+S}{S}\right]$$

Answer:
$$\frac{1-e^{-t}}{t}$$

6. State and prove Convolution theorem and hence solve the following:

(a)
$$\mathcal{L}^{-1}\left[\frac{S}{(S^2+a^2)^2}\right]$$

(b) Find f(t) as the solution of integral equation

$$f(t) = t + e^{-2t} + \int_0^t f(\tau)e^{2(t-\tau)}d\tau$$

Answer:
$$f(t) = \frac{1}{45} (14e^{3t} - 5 + 30t + 36e^{-2t})$$

7. Find the solution of initial value problem

$$y'' + 8y' + 17y = f(t), y(0) = 0, y'(0) = 0$$

Where f(t) is a periodic function $f(t) = \begin{cases} 1, & 0 < t < \pi \\ 0, & \pi < t < 2\pi \end{cases}$ and $f(t + 2\pi) = f(t)$

Answer:
$$y(t) = \frac{1}{34}[(-1)^n + 1] - \frac{A^{n+1}-1}{A-1}g(t), n = 0,1,2,...,A = e^{4\pi}$$
 and $g(t) = e^{-4t}(4\sin t + \cos t)/17$.

8. Solve $(D+1)^2y = t$, if y(0) = -3, y'(1) = -1.

Answer: $y(t) = t - 2 + (t - 1)e^{-t}$.

- 9. Solve $(tD^2 + (1-2t)D 2)y = 0$ if y(0) = 1, y'(0) = 2. Answer: $y(t) = e^{-2t}$.
- 10. Solve $\frac{dx}{dt} = 2x 3y$, $\frac{dy}{dt} = y 2x$ if x(0) = 8 and y(0) = 3. Answer: $x(t) = 3e^{4t} + 5e^{-t}$, $y(t) = 5e^{-t} - 2e^{4t}$.
