II. Systembusse

- Verbindung: Prozessor(en) ←→ Speicher, EA
 - Speicher → Speicherverwaltung (Virtualisierung)
 - Memory Management Unit (MMU): Umrechnung virtuelle Programm-, Daten-Adressen in physische
 - Pufferung → Cache (Cachekohärenz)
 - EA-System: Grafik (wenn vorhanden), Festspeicher (HD), Netzwerk,
 Video, sonstiges
- Hauptplatine: Prozessor, Speicher, MMU, EA-Interfaces, Signalisierung (Interrupt, DMA)
- starke Geschwindigkeitsunterschiede: Prozessor, Speicher, EA
- elektrischer Anschluss: Prozessor Schaltkreise
- **Firmware** (SW!): Schnittstelle zur Hauptplatine, Boot-Lader

II.1. Bus Hierarchie

Hierarchisch weiter vom Prozessor entfernt

- hierarchisch verbunden
- Geschwindigkeit
- Prozessor Bus: höchste Anforderung
- Cache Bus (backside): extra Verbindung zum System-Cache Pentium II, Pro, danach Cache mit Speicher-Bus verbunden
- **Memory Bus**: Speicher ←→ Chipset, Prozessor
 - manchmal mit Prozessor Bus identisch
- Lokaler EA-Bus: Hochgeschwindigkeit Video, NW, HD
 Bsp: VESA Local Bus, Accelerated Graphics Port AGP, Peripheral
 Component Interconnect Bus PCI
- Standard EA-Bus: ISA

Bsp: Tastatur, Maus, Drucker, Kompatibilität, BIOS

II.2. Software

- Hauptplatine: **BIOS** basic input output system
 - altgriechisch: ² -; Â Leben
 - Open Firmware: SPARC, PowerPC
 - Extensible Firmware Interface: Intel, MS
 - Simple Firmware Interface (SFI): Smartphone, MID
 - nichtflüchtiger Speicher: Programm zum Laden Bootcode
 - Master Boot Record
 - Kommunikationsprotokolle
 - weitere Aufgaben
 - Power On Self-Test
 - Konfiguration, Initialisierung der HW (Extended System Configuration Data)
- Gerätetreiber: für Geräte der Hauptplatine, Erweiterungskarten
- Betriebssystem: HAL, Verwaltung und Betrieb der Ressourcen

Pfade

II.3. Kommunikationspfade

- höchste Kommunikationsleistung: Prozessor Speicher
 - Programme: Algorithmus zur Gewinnung von Information
 - Daten: Träger der Informationen
- Informationen und Daten müssen in das System gelangen
 - EA: sehr langsam
 - Programmabarbeitung viel schneller (Faktor 10 ... 100)
- > Flaschenhals EA
 - ➤ Datenquellen langsam (Temperatursensor)
 - ➤ Bus-System langsam (10 GBE, Grafik)
 - ➤ Berührungspunkt: Speicher

- I. Grundlagen; II. Systembusse
- 6. PC Bus
- 7. PCI
- 8. Backside
- 9. Frontside
- 10. QuickPath
- 11. PCIe

6. PC BUS: Industry Standard Architecture

- Anfang der 80er Jahre: XT-, ISA- (AT-)Bus
- Verlängerung des Prozessorbus:

Systembus, kein höheres Protokoll

- Datenleitungen: 8 (8088) bis 64 (Pentium)
- Adressleitungen: 20 (8086) bis 32 (386)
- Steuerleitungen:

Takt 4,7 MHz (8088) bis 16 MHz,

Read, Write, I/O, MemR/W, Refresh, IRQ, DRQ, Reset

- nur eins der über Adapter angeschlossenen Geräte kann zugreifen
 - Speicher, Graphikkarte, Festplatte, Peripherie

- I. Grundlagen; II. Systembusse
- 6. PC Bus
- 7. PCI
- 8. Backside
- 9. Frontside
- 10. QuickPath
- 11. PCIe

6. PC BUS: Industry Standard Architecture

- Ende 80er Anfang 90er Jahre: schnellere 386er CPU
- Trennung EA-Bus von Systembus
- Systembus
 - Verlängerung des Prozessorbus
 - 32 Bit, 25 MHz
- Beschränkung für
 - Graphik
 - Integrated Device Electronics (IDE) standardisiert: ATAPI

Advanced Technology Attachment with Packet Interface

• Konkurrenz: RAM – ISA-Bridge, nicht mehr mit EA-Geräten

- I. Grundlagen; II. Systembusse
- 6. PC Bus
- 7. PCI
- 8. Backside
- 9. Frontside
- 10. QuickPath
- 11. PCIe

7. PCI Bus

- Peripherial Component Interconnect: Einführung 1993
 - PCI bis ins Kleinste plattform-unabhängig standardisiert
- Brücke direkt am Systembus angeschlossen
- Entkoppelung der Geschwindigkeit: Prozessor, Peripherie
- 32 Bit, 33 MHz \rightarrow 132 MB/s
- Parallelisierung
 - PCI-Brücke: DMA
 - Konkurrenz: RAM PCI-Brücke
 - Speichereinbindung PCI-Geräte
 Nachteil: PCI Geschwindigkeit
- Abstraktion
 - 256 Byte Konfig-Speicher

- I. Grundlagen; II. Systembusse
- 6. PC Bus
- 7. **PCI**
- 8. Backside
- 9. Frontside
- 10. QuickPath
- 11. PCIe

7. PCI Bus – im Detail

• 12 PCI Kommandos:

- I/O-, Mem- und Config.-R/W, Interrupt Acknoledge, Special Cycle

- I. Grundlagen; II. Systembusse
- 6. PC Bus
- 7. PCI
- 8. Backside
- 9. Frontside
- 10. QuickPath
- 11. PCIe

7. PCI Bus – im Detail

- 12 PCI Kommandos:
 - I/O-, Mem- und Config.-R/W, Interrupt Acknoledge, Special Cycle
- Konfigurationsspeicher: 64 Byte vordefiniert
 - Infos zur Identifikation: Hersteller, Geräteklasse ...
 - Basis-Adress-Register: 6* 4B
 - 32 o. 64 bit für ein oder mehrere Speicher- und EA-Bereiche
 - z.B.: 2x 64 bit Speicheradressen, 2x 32 bit EA-Adressen
 - Status, Steuerung: Status-, Kommando-, Interrupt, Latenz ... Register

- I. Grundlagen; II. Systembusse
- 6. PC Bus
- 7. PCI
- 8. Backside
- 9. Frontside
- 10. QuickPath
- 11. PCIe

8. Backside Bus – L2-Cache

- Separater Bus f
 ür Cache
 - Cache → Backside
 - Pentium Pro integriert
 - extern ½ Prozessortakt
- FSB
 - Bsp: 66 MHz * 8B \rightarrow 508,6 MB/s
- Graphik (Pentium oft PCI)
- Peripherie an PCI-Brücke

- I. Grundlagen; II. Systembusse
- 6. PC Bus
- 7. PCI
- 8. Backside
- 9. Frontside
- 10. QuickPath
- 11. PCIe

9. Frontside Bus – Chipset

- Frontside- oder Prozessor-Bus
- Atom, Celeron, Pentium, Core 2, Xeon
- Nordbrücke:
 - Speicherkontroller, RAM, Cache
 - Graphik, PCI-Brücke
- Südbrücke: PCI, Peripherie

- I. Grundlagen; II. Systembusse
- 6. PC Bus
- 7. PCI
- 8. Backside
- 9. Frontside
- 10. QuickPath
- 11. PCIe

10. Frontside Bus – Bandbreite

- hohe Flexibilität und geringe Kosten
- Bandbreite: Taktrate * Datenbreite * Transfers per Zyklus

Pentium 4: 100 MHz * 8 Byte * 4 = 3.200 MB/s

Core2Extreme (2008): 400 MHz * 8 Byte * 4 = 12,8 GB/s

- Gunning transceiver logic (GTL 1993): 0,4 1,2 V, 100MHz
 - später auch AGTL+: bis zu 1,6 GHz
- Quad data rate (QDR): Daten an 4 Stellen gültig
 - 4 Transfers je Takt * Bustakt 400 MHz = 1.600 MT/s
- Kritik: Flaschenhals, alte Technologie, begrenzt Systemleistung,
 Problem mit mehreren Prozessoren

- I. Grundlagen; II. Systembusse
- 6. PC Bus
- 7. PCI
- 8. Backside
- 9. Frontside
- 10. QuickPath
- 11. PCIe

10. QuickPath Interconnect (QPI)

 Intel Nachfolger des Front Side Bus Nehalem-Architektur 2008

- auf CPU integrierte
 Speicherkontroller
- Punkt-zu-Punkt Verbindung
- AMD: Hypertransport K8
 Architektur ab 2008
- IBM: Power ab 5. Generation (Power5 2004)
- kein Bus: Routing-Mechanismus
 - Verbindungssystem Prozessoren und andere Komponenten
 - Cachekohärenz

- I. Grundlagen; II. Systembusse
- 6. PC Bus
- 7. PCI
- 8. Backside
- 9. Frontside
- 10. QuickPath
- 11. PCIe

10. QuickPath Interconnect (CSI)

- besteht aus Lanes: 21 serielle, unidirektionale Datenverbindung
- 16+4 symmetrische Leiter, differenzielle Signale im DDR-Verfahren
 - 4 Bit Header-Info, 16 Bit Daten
 - auch halbe und viertel Breite möglich → z.B. Selbstheilung
- Common System Interface (CSI): 2 unidirektionale QPI-Links
- 2,4 bzw. 3,2 GHz Takt \rightarrow 4,8 bzw. 6,4 GT/s x16/20 x2 \rightarrow 25,6 GB/s
- Paketorientierung
 - phit (physical unit): Daten je Transfer (je Taktflanke)
 - flit (flow control unit): 80 Bit − 4 phit (4*2 B Nutzdaten+4*4b Header)
 - packet: Kommunikationseinheit der Protokollebene
- Crossbar-Router im Prozessor: erhöht Latenz aber Richtungen parallel

- I. Grundlagen; II. Systembusse
- 6. PC Bus
- 7. PCI
- 8. Backside
- 9. Frontside
- 10. QuickPath
- 11. PCIe

10. QuickPath Interconnect (Schichten)

- 5 Abstraktionsebenen
 - 1. Physikalische Ebene: mechanisch und elektrisch, analog und digital
 - 2. Verbindungs-Ebene: zuverlässige Übertragung und Flusssteuerung für eine Verbindung
 - 3. Wege-Ebene: Wegewahl durch Netzwerk
 - 4. Transport-Ebene: End-zu-End-Übertragung nur in großen Systemen
 - 5. Protokoll-Ebene: Regeln für den Austausch von Paketen
 - modifiziertes MESI Kohärenz-Protokoll
- Overhead für 64 Byte Cache-Line 4/36 = 11%
 - 1 Header flit = 4 phits
 - 64 Byte Nutzdaten = 32 phits = 8 flits
 - insgesamt: 36 phits = 9 flits \rightarrow 4,5 Takte
 - Latenz: 6.4 GT/s: 32 * 0.15625 ns = 5.62 ns

- I. Grundlagen; II. Systembusse
- 6. PC Bus
- 7. PCI
- Backside
- 9. Frontside
- 10. QuickPath
- 11. PCIe

10. QuickPath Interconnect (IO-Hub)

- Bsp: X58 IO-Hub
 - kein Speicherkontroller (MCH)
 - kein I/O-Controller Hub (ICH)
- 40 PCIe Lanes: x16 Link 8GB/s
 - 2x 16 Lanes + 4 Lanes
 - alle Kombinationen: x1, x2, x4, x8
- Anschluss Südbrücke ICH10 möglich
 - x4 Direct Media Interface (DMI)
 - PCIe ähnlich
 - 1 GB/s in jede Richtung
- Xenon 5500
 - 1 o. 2. IOH 5520
 - skaliert weiter

