Exercise 3.1 Let $\{U_s\}_{s\in S}$ be a family of sets such that $\bigcup_{s\in S} U_s = X$. Show that the family of sets: $V_{s_1,\ldots,s_n} = U_{s_1} \cap \ldots \cap U_{s_n}$, i.e., intersections of finitely many sets from $\{U_s\}_{s\in S}$, can be a base of X. You can use e.g., Theorem 2.3. from the lectures.

Exercise 3.2 For any two compact sets F, K in a metric space (X, d) we define the Hausdorff distance between those sets as:

$$d_H(F,K) = \max\{\sup_{x \in F} \inf_{y \in K} d(x,y), \sup_{x \in K} \inf_{y \in F} d(x,y)\}.$$

For any set U we define U_{ϵ} as:

$$U_{\epsilon} = \bigcup_{x \in U} B(x, \epsilon).$$

Show that

$$d_H(F,K) = \inf\{\epsilon \geq 0 : F \subset K_{\epsilon} \text{ and } K \subset F_{\epsilon}\}\$$

for any two compact sets F, K.

Exercise 3.3 Let F be a compact set in a metric space (X, d) and let $x \in X \setminus F$. Find relation between:

- 1. Hausdorff distance $d_H(\{x\}, F)$
- 2. distance of the point x from the set F in metric space X, i.e.,

$$d(x,F) = \inf_{y \in F} d(x,y)$$

3. diameter of the set F, i.e.,

$$diam(F) = \sup_{y,z \in F} d(y,z).$$

See what happens if diameter of F is big and distance from x to F is small.

Let \sim be equivalence relation:

$$x \sim y$$
 if $x = y$ or $x, y \in F$

How does a neighbourhood of [z] look like in the quotient space X/\sim , for $z\in F$?

Exercise 3.4 Let (X, T_X) and (Y, T_Y) be topological spaces. For a compact set $K \subset X$ and an open set $U \subset Y$ we define V(K, U) as the set of all continuous functions $f: (X, T_X) \to (Y, T_Y)$ such that $f(K) \subset U$.

Let F(X,Y) be the set of all continuous functions $f:(X,T_X)\to (Y,T_Y)$. Let T_F be the topology on F(X,Y) with base defined as the family of finite intersections $V(K_1,U_1)\cap\ldots\cap V(K_n,U_n)$. T_F is the compact-open topology on F(X,Y).

We say that a sequence $\{f_n\}$, where all $f_n \in F(X,Y)$, converges to a function $f \in F(X,Y)$ in compact-open topology, if for every open set $W \in T_F$ such that $f \in W$ there exists $N \in \mathbb{N}$ such that $f_n \in W$ for all n > N.

Let (X, d), (Y, ρ) be metric spaces. Prove that if $C \subset X$ is a compact set and f_n converges to f in compact-open topology, then f_n converges to f uniformly, i.e.,

$$\forall_{\epsilon>0} \quad \exists_{N\in\mathbb{N}} \quad \forall_{n>N} \quad \forall_{x\in C} \quad \rho(f(x), f_n(x)) < \epsilon.$$

You might need to use the uniform continuity of f on C, i.e., the following property:

$$\forall_{\epsilon>0} \quad \exists_{\delta>0} \quad d(x,y) < \delta \Rightarrow \rho(f(x),f(y)) < \epsilon.$$

To see that the above is true: let $\epsilon > 0$, for all $x \in C$ let U_x be an open set such that $f(U_x) \in B(f(x), \epsilon/2)$ (how do we know that such U_x exists?). Then $\{U_x\}_{x \in C}$ is open cover of C, let δ be the Lebesgue number of this cover.