Project Euler Theorems

Zach Taylor

April 18, 2019

1.
$$\sum_{k=1}^{n} k = \frac{n*(n+1)}{2}$$
 for all $n \ge 1$.

Proof. The formula clearly holds when n=1 and n=2. Now suppose the formula holds when $n=m\geq 2$. Then

$$\sum_{k=1}^{m+1} k = \sum_{k=1}^{m} k + m + 1 = \frac{m * (m+1)}{2} + m + 1 = \frac{(m+1) * (m+2)}{2}$$

Thus the formula holds for n=m+1, so by the principle of induction it holds for all $n \geq 1$.

2. Let $a, b, c \in \mathbb{Z}$. Then $b \mid a$ and $c \mid a$ if and only if $lcm(b, c) \mid a$.

Proof. Set $n = \operatorname{lcm}(b, c)$, and suppose $b \mid a$ and $c \mid a$. By the division algorithm, a = pn + r for some $p, r \in \mathbb{Z}$, where $0 \le r < n$. Thus, since $b \mid a$ and $b \mid n$, we have $b \mid r$. By the same reasoning, we also have $c \mid r$. Since r is a common multiple of b and c and r < n, r must be 0. Thus a = pn, that is, $n \mid a$. Conversely, let $k, j \in \mathbb{Z}$ such that n = kb and n = jc. Then if $n \mid a$, we have, for some $m \in \mathbb{Z}$, a = mn = (mk)b = (mj)c, and thus $c \mid a$ and $b \mid a$.

- 3. Let $a, b \in \mathbb{Z}$. The following hold:
- If a is odd and b is even, a + b is odd.
- If a and b are odd, a + b is even.

Proof. Note that if $a, b \in \mathbb{Z}$ where a is odd and b is even, then a = 2k + 1 and b = 2l for $k, l \in \mathbb{Z}$, so a + b = 2(k + l) + 1 is odd. On the other hand, if both a and b are odd, then we can write b = 2l + 1 and a + b = 2(k + l + 1) is even.

4. Let $\{F_n\}_0^{\infty}$ be the sequence of Fibonacci numbers. If F_k is even, then the next even Fibonacci number is F_{k+3} .

Proof. The first 5 Fibonacci numbers are 1, 2, 3, 5, and 8. Clearly the result holds here, since $F_2 = 2$ is even and $F_{2+3} = F_5 = 8$ is also even. Now suppose that the pattern even, odd, odd, even holds for F_k through F_{k+3} . By theorem 3, $F_{k+4} = F_{k+3} + F_{k+2}$ is odd, which implies that $F_{k+5} = F_{k+4} + F_{k+3}$ is odd, which implies that $F_{k+6} = F_{k+5} + F_{k+4}$ is even. Thus the pattern holds for F_{k+3} through F_{k+6} , so by the principle of induction the pattern holds for the entire sequence.

5. Let $\{E_n\}_1^{\infty}$ be the sequence of even Fibonacci numbers. Then $E_n = 4E_{n-1} + E_{n-2}$.

Proof. If $\{F_n\}_0^{\infty}$ is the Fibonacci sequence,

$$\begin{split} F_n &= F_{n-1} + F_{n-2} \\ &= F_{n-2} + F_{n-3} + F_{n-3} + F_{n-4} \\ &= 2F_{n-3} + F_{n-2} + F_{n-4} \\ &= 2F_{n-3} + F_{n-3} + F_{n-4} + F_{n-5} + F_{n-6} \\ &= 3F_{n-3} + F_{n-4} + F_{n-5} + F_{n-6} \\ &= 4F_{n-3} + F_{n-6} \end{split}$$

Thus, by theorem 4, $E_n = 4E_{n-1} + E_{n-2}$.