

Description

The VSM30N03 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

V_{DS} =30V,I_D =30A

 $R_{DS(ON)}$ <14m Ω @ V_{GS} =10V

 $R_{DS(ON)}$ <25m Ω @ V_{GS} =4.5V

- High density cell design for ultra low Rdson
- Fully characterized Avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

Application

- Power switching application
- Hard Switched and High Frequency Circuits
- Uninterruptible Power Supply

TO-252

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM30N03-T2	VSM30N03	TO-252	-	-	-

Absolute Maximum Ratings (T_c=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	30	V	
Gate-Source Voltage	V _G S	±20	V	
Drain Current-Continuous	I _D	30	А	
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	21	Α	
Pulsed Drain Current	I _{DM}	80	А	
Maximum Power Dissipation	P _D	40	W	
Derating factor		0.27	W/℃	
Single pulse avalanche energy (Note 5)	E _{AS}	72	mJ	
Operating Junction and Storage Temperature Range	T _J ,T _{STG}	-55 To 175	°C	

Thermal Characteristic

Thermal Resistance,Junction-to-Case ^(Note 2)	R _{eJC}	3.8	°C/W	
---	------------------	-----	------	--

Electrical Characteristics (T_c=25 ℃ unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics	•		•	•		•
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	30	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =30V,V _{GS} =0V	-	-	1	μΑ
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)	·			•		
Gate Threshold Voltage	V _{GS(th)}	V _{DS} =V _{GS} ,I _D =250μA	1.0	1.5	2.2	V
Drain Sauras On State Desistance	-	V _{GS} =10V, I _D =20A	-	10	14	mΩ
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =4.5V, I _D =15A	-	13	25	mΩ
Forward Transconductance	G FS	V _{DS} =5V,I _D =20A	26	-	-	S
Dynamic Characteristics (Note4)	·					
Input Capacitance	C _{lss}	\/ -45\/\/ -0\/	-	938	-	PF
Output Capacitance	C _{oss}	V_{DS} =15V, V_{GS} =0V, F=1.0MHz	-	142	-	PF
Reverse Transfer Capacitance	C _{rss}	F-1.UIVIDZ	-	99	-	PF
Switching Characteristics (Note 4)	·			•		
Turn-on Delay Time	t _{d(on)}	V_{DD} =15V, R_L =0.75 Ω V_{GS} =10V, R_G =3 Ω	-	5	-	nS
Turn-on Rise Time	t _r		-	12	-	nS
Turn-Off Delay Time	t _{d(off)}		-	19	-	nS
Turn-Off Fall Time	t _f		-	6	-	nS
Total Gate Charge	Qg	\/ -45\/ L -20A	-	17.5		nC
Gate-Source Charge	Q _{gs}	$V_{DS}=15V, I_{D}=20A,$	-	3		nC
Gate-Drain Charge	Q_{gd}	V _{GS} =10V	-	4.1		nC
Drain-Source Diode Characteristics	·			•		
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =20A	-		1.2	V
Diode Forward Current (Note 2)	Is		-	-	30	Α
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF =20A	-	19	-	nS
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note3)	-	10	-	nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- **3.** Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- **4.** Guaranteed by design, not subject to production
- **5.** EAS condition: Tj=25 $^{\circ}$ C,V_{DD}=30V,V_G=10V,L=0.5mH,Rg=25 Ω

Test circuit

1) E_{AS} test Circuits

2) Gate charge test Circuit:

3) Switch Time Test Circuit:

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-Junction Temperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 8 Safe Operation Area

Figure 9 BV_{DSS} vs Junction Temperature

Figure 10 $V_{\text{GS(th)}}$ vs Junction Temperature

Figure 11 Normalized Maximum Transient Thermal Impedance