05 | Exploratory Data Analysis

Ivan Corneillet

Data Scientist

Learning Objectives

After this lesson, you should be able to:

- Identify variable types
- Use *pandas* to analyze datasets using basic summary statistics: mean, median, mode, max, min, quartile, inter-quartile range, variance, standard deviation, and correlation
- Create data visualizations including boxplots, histograms, and scatter plots to discern characteristics and trends in a dataset

Populations and Samples

Populations and Samples

A dataset may be considered either as a population or a sample, depending on the reason for its collection and analysis

- Students of a class are a population if the analysis describes the distribution of scores in that class
- But they are a sample the analysis infers
 from their scores the scores of other
 students (e.g., all students from that school)

Descriptive Statistics

Inferential Statistics

Exploratory Data Analysis is concerned with Descriptive Statistics (e.g., "what happened last quarter?" and "how many units were sold?")

Machine Learning modeling concerns itself with Inferential Statistics (e.g., "what if ...?", "what will happen next?", and "what if these trends continue?")

Types of Data Types of Measurement Scales

Types of Data

- Qualitative Data
 - Uses descriptive terms to measure or classify something of interest, e.g., education level

- Quantitative Data
 - Uses numerical values to describe something of interest, e.g., age

Types of Measurement Scales

Types of Measurement Scales (cont.)

	Nominal	Ordinal	Interval	Ratio
e.g.	Gender	Movie ratings	Temperature	Salary
Categorize?	✓ (male, female)	✓	✓	✓
Rank-order?	*	√ (★<2★<3★<4★)	✓	✓
Add and subtract?	*	* (4★-3★≠★)	√ (75°C is 50°C warmer than 25°C)	✓
Multiply and divide?	*	x (4★ not 4× better than 1★)	(75°C not 3× as warm as 25°C) (0°C doesn't mean no temperature!)	✓ (Salary of \$200K is 2× that of \$100K) (\$0 means no salary ⁽³⁾)

Measures of Central Tendency Measures of Dispersion

How would you summarize this data?

How would you summarize this data? (cont.)

Mean, Median, and Mode | Trade-offs

	Value is in the dataset	Value is easy to compute	Value is resistant to outliers	Corresponding measure of Dispersion	Used extensively by mathematical models
Mean	(Unlikely)		8	(Variance, standard deviation)	
Median	(50% chance)	(need to rank the values)		(Interquartile Range)	8
Mode	(Always)	(Need to count and rank the count)		(Not really)	(Mode might not be defined or you might have multiple values)

Measures of Central Tendency and Measures of Dispersion

- Measures of Central Tendency
 - (Or measures of location)
 - Answer the question: "What's the typical or common value for a variable?"
 - Mean, Median, Mode
- Measures of Dispersion
 - (Or measures of variability/spread)
 - Answer the question: "How far do values stray from the typical value?"
 - Variance, Standard Deviation, Range, Interquartile Range (IQR)

Mean, Variance, and Standard Deviation

Ordinal *	Nominal *	Interval ✓	Ratio ✓	
	Popu	lation	Sample	
(Arithmetic) Mean (a.k.a., the first moment) (Mean has unit of $X:[X]$)	$\overline{i=1}$	$x_i = E[X^1]$	$\bar{x} = \frac{1}{n} \sum_{\substack{i=1 \\ (\text{x-bar})}}^{n} x_i$	
Variance (a.k.a., the second moment) $[X^2]$	$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$ $= E[(X - \mu)^2]$ (sigma-squared)		$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$	
Standard Deviation [X]	$\sigma = \sqrt{\sigma^2}$ (sigma)		$s = \sqrt{s^2}$	

(mean, variance, and standard deviations are based on the values of x_i)

Median, Range, and Interquartile Range

Median

Median, Range, and Interquartile Range

Median, Range, and Interquartile Range (cont.)

Nominal *	Ordinal *	Interval √	Ratio ✓
Median	$median = \begin{cases} x_{p+1} & \text{if } n = 2p + 1 \\ \frac{x_p + x_{p+1}}{2} & \text{if } n = 2p \end{cases}$		
Range	$range = x_n - x_1$		
Percentile	$q_k = \begin{cases} x_{[p]} \ if \ p = \frac{nk}{100} \ not \ integer \\ \frac{x_p + x_{p+1}}{2} \ otherwise \end{cases}$		
Quartile	$Q_1 = q_{25}; Q_3 = q_{75}$		
Interquartile Range	$IQR = Q_3 - Q_1$		

(median, range, and interquartile range are based on the ranks of x_i ; x_i ranked from smallest to largest)

Boxplots

Boxplot #1 | Median, Range, Interquartile Range; no Outliers

Boxplot #2 | Median, Range, Interquartile Range; with Outliers

Outliers

Think twice before discarding outliers; they might be the most important points of your dataset

- Outliers are values that are "far" from the central tendency
- No formal definition among statisticians on how to define outliers (how do you define "far"?)
- However, general agreement that they be identified and dealt with appropriately (e.g., keep or discard)
 - They might be the most important points of your dataset

Histograms

Histograms. $x_1 = x_2 = x_3 < x_4 = x_5...$

Mode

Modes and Histograms

Nominal ✓ **Ordinal** ✓ **Interval** ✓ Ratio ✓ One Mode The Mode is the value(s) that occur(s) most often Multiple Modes No Mode

Plot the Data!

Don't rely on basic statistic properties and **plot the data!** 4 datasets (Anscombe's Quartet) that have nearly identical simple statistical properties, yet are very different

Property	Value
Mean of x _i	9
Sample variance of x _i	11
Mean of y _i	7.50
Sample variance of y _i	4.122 or 4.127
Correlation between x _i and y _i	0.816
Linear regression line in each case	y _i = 3.00 + 0.500 x _i

(Linear) Correlation

Correlation

• A measure of strength and direction for a **linear association** between two random variables

$$\rho_{X,Y} = \frac{E[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y}$$

- ρ = 0 means that the two variables don't have a linear association
 - It doesn't imply that they are independent!

Correlation (cont.)

 $\rho = -1$

 $\rho < 0$

ρ quantifies the strength and direction of movements of two random variables **Negative Correlation Positive Correlation** Weak Weak Strong Strong --.5 one variable moves in the same No Correlation direction by 50% the amount that the other variable moves Perfect positive Perfect negative Negative Positive No correlation correlation correlation correlation correlation $\rho = 0$

 $\rho > 0$

 $\rho = 1$

Slides © 2017 Ivan Corneillet Where Applicable Do Not Reproduce Without Permission