ACE Examination Paper 4 Year 12 Mathematics Extension 1 Yearly Examination Worked solutions and marking guidelines

Section	Section I			
	Solution	Criteria		
1.	$\cos \theta = \frac{\underline{u} \cdot \underline{v}}{ \underline{u} \underline{v} } = \frac{-2 \times 4 + 6 \times (-2)}{\sqrt{40} \times \sqrt{20}}$	1 Mark: D		
	$\cos\theta = -\frac{20}{20\sqrt{2}}$			
	$\theta = 135^{\circ}$			
2.	$x = 70t 1$ $y = -5t^2 2$	1 Mark: D		
	Making t the subject of equation (1) $t = \frac{x}{70}$			
	Substitute $\frac{x}{70}$ for t into equation (2)			
	$y = -5\left(\frac{x}{70}\right)^2 = -\frac{x^2}{980}$			
	$x^2 = -980y$			
3.	$A = \int_{a}^{b} y dx = \int_{1}^{3} x^{3} - x^{2} dx$	1 Mark: B		
	$= \left[\frac{1}{4}x^4 - \frac{1}{3}x^3\right]_1^3$			
	$= \left[\left(\frac{1}{4} 3^4 - \frac{1}{3} 3^3 \right) - \left(\frac{1}{4} 1^4 - \frac{1}{3} 1^3 \right) \right]$			
	$=11\frac{1}{3}$ square units			
4.	Line 2	1 Mark: B		
	$1^{3} + 2^{3} + \dots + k^{3} + (k+1)^{3} = (1+2+\dots+k+(k+1))^{2}$			
5.	$A - 3^{rd}$ quadrant, $B - 2^{nd}$ quadrant	1 Mark: A		
	$\sin(A+B) = \sin A \cos B + \cos A \sin B$			
	$= (-t) \times (-t) + (-\sqrt{1-t^2}) \times \sqrt{1-t^2}$			
	$= t^{2} - 1 + t^{2}$ $= 2t^{2} - 1$			

6. Let p be the probability of winning. $p = 0.2, n = 25$ $P(X = x) = {}^{25}C_X \ 0.2^x 0.8^{25-x}$ 7. $u = 2x + 1$ $du = 2dx$ when $x = 1, u = 3$ and $x = 0, u = 1$		Solution	Criteria
7. $u = 2x + 1$	6.	Let p be the probability of winning.	1 Mark: C
7. $u = 2x + 1$ $du = 2dx$ when $x = 1$, $u = 3$ and $x = 0$, $u = 1$ $\int_0^1 \frac{4x}{2x + 1} dx = \int_1^3 \frac{2(u - 1)}{u} \times \frac{1}{2} du = \int_1^3 1 - \frac{1}{u} du$ $= [u - \ln u]_1^3$ $= (3 - \ln 3) - (1 - \ln 1)$ $= 2 - \ln 3$ 8. $\frac{3\sin^2 x - 4\cos x + 1 = 0}{3(\cos^2 x) - 4\cos x + 1} = 0$ $\frac{3\cos^2 x + 4\cos x - 4 = 0}{3\cos x - 2)(\cos x + 2) = 0}$ $\frac{3\cos x - 2}{3} = 0$ $\cos x - 2 = 0$ or $\cos x + 2 = 0$ (No solution) $\cos x = \frac{2}{3}$ $x \approx 0.841$ 9. $\frac{dy}{dx} = \frac{2x + 1}{4}$ $\frac{dx}{dx} = 2x + 1$		p = 0.2, n = 25	
$du = 2dx$ $when x = 1, u = 3 \text{ and } x = 0, u = 1 \int_{0}^{1} \frac{4x}{2x+1} dx = \int_{1}^{3} \frac{2(u-1)}{u} \times \frac{1}{2} du = \int_{1}^{3} 1 - \frac{1}{u} du = [u - \ln u]_{1}^{3} = (3 - \ln 3) - (1 - \ln 1) = 2 - \ln 3 8. 3\sin^{2}x - 4\cos x + 1 = 0 3(1 - \cos^{2}x) - 4\cos x + 1 = 0 3\cos^{2}x + 4\cos x - 4 = 0 (3\cos x - 2)(\cos x + 2) = 0 3\cos x - 2 = 0 \text{ or } \cos x + 2 = 0 \text{ (No solution)} \cos x = \frac{2}{3} x \approx 0.841 1 Mark: A 4y = x^{2} + x + C Now y = 0, x = 2 \Rightarrow C = -6 4y = x^{2} + x - 6 y = \frac{1}{4}(x^{2} + x - 6) 10. \int (\cos^{2}x + 2\sec^{2}x) dx = \int \frac{1}{2}(1 + \cos 2x) + 2\sec^{2}x dx 1 Mark: C$		$P(X = x) = {}^{25}C_x \ 0.2^x 0.8^{25-x}$	
$du = 2dx$ $when x = 1, u = 3 \text{ and } x = 0, u = 1 \int_{0}^{1} \frac{4x}{2x+1} dx = \int_{1}^{3} \frac{2(u-1)}{u} \times \frac{1}{2} du = \int_{1}^{3} 1 - \frac{1}{u} du = [u - \ln u]_{1}^{3} = (3 - \ln 3) - (1 - \ln 1) = 2 - \ln 3 8. 3\sin^{2}x - 4\cos x + 1 = 0 3(1 - \cos^{2}x) - 4\cos x + 1 = 0 3\cos^{2}x + 4\cos x - 4 = 0 (3\cos x - 2)(\cos x + 2) = 0 3\cos x - 2 = 0 \text{ or } \cos x + 2 = 0 \text{ (No solution)} \cos x = \frac{2}{3} x \approx 0.841 9. \frac{dy}{dx} = \frac{2x+1}{4} \int 4dy = \int 2x + 1 dx 4y = x^{2} + x + C Now \ y = 0, \ x = 2 \Rightarrow C = -6 4y = x^{2} + x - 6 y = \frac{1}{4}(x^{2} + x - 6) 10. \int (\cos^{2}x + 2\sec^{2}x)dx = \int \frac{1}{2}(1 + \cos 2x) + 2\sec^{2}x dx 1 Mark: C$			
when $x = 1$, $u = 3$ and $x = 0$, $u = 1$ $ \int_{0}^{1} \frac{4x}{2x+1} dx = \int_{1}^{3} \frac{2(u-1)}{u} \times \frac{1}{2} du = \int_{1}^{3} 1 - \frac{1}{u} du $ $ = [u - \ln u]_{1}^{3} $ $ = (3 - \ln 3) - (1 - \ln 1) $ $ = 2 - \ln 3 $ 8. $3\sin^{2}x - 4\cos x + 1 = 0$ $3(1 - \cos^{2}x) - 4\cos x + 1 = 0$ $3\cos^{2}x + 4\cos x - 4 = 0$ $(3\cos x - 2)(\cos x + 2) = 0$ $3\cos x - 2 = 0$ or $\cos x + 2 = 0$ (No solution) $\cos x = \frac{2}{3}$ $x \approx 0.841$ 9. $\frac{dy}{dx} = \frac{2x+1}{4}$ $\int 4dy = \int 2x + 1 dx$ $4y = x^{2} + x + C$ Now $y = 0$, $x = 2 \Rightarrow C = -6$ $4y = x^{2} + x - 6$ $y = \frac{1}{4}(x^{2} + x - 6)$ 10. $\int (\cos^{2}x + 2\sec^{2}x) dx = \int \frac{1}{2}(1 + \cos^{2}x) + 2\sec^{2}x dx$ 1 Mark: C	7.	u = 2x + 1	1 Mark: B
$\int_{0}^{1} \frac{4x}{2x+1} dx = \int_{1}^{3} \frac{2(u-1)}{u} \times \frac{1}{2} du = \int_{1}^{3} 1 - \frac{1}{u} du$ $= [u - \ln u]_{1}^{3}$ $= (3 - \ln 3) - (1 - \ln 1)$ $= 2 - \ln 3$ 8. $3\sin^{2}x - 4\cos x + 1 = 0$ $3(1 - \cos^{2}x) - 4\cos x + 1 = 0$ $3\cos^{2}x + 4\cos x - 4 = 0$ $(3\cos x - 2)(\cos x + 2) = 0$ $3\cos x - 2 = 0 \text{ or } \cos x + 2 = 0 \text{ (No solution)}$ $\cos x = \frac{2}{3}$ $x \approx 0.841$ 9. $\frac{dy}{dx} = \frac{2x+1}{4}$ $\int 4dy = \int 2x + 1 dx$ $4y = x^{2} + x + C$ Now $y = 0$, $x = 2 \Rightarrow C = -6$ $4y = x^{2} + x - 6$ $y = \frac{1}{4}(x^{2} + x - 6)$ 10. $\int (\cos^{2}x + 2\sec^{2}x) dx = \int \frac{1}{2}(1 + \cos^{2}x) + 2\sec^{2}x dx$ 1 Mark: C		du = 2dx	
$= [u - \ln u]_{1}^{3}$ $= (3 - \ln 3) - (1 - \ln 1)$ $= 2 - \ln 3$ 8. $3\sin^{2}x - 4\cos x + 1 = 0$ $3(1 - \cos^{2}x) - 4\cos x + 1 = 0$ $3\cos^{2}x + 4\cos x - 4 = 0$ $(3\cos x - 2)(\cos x + 2) = 0$ $3\cos x - 2 = 0 \text{ or } \cos x + 2 = 0 \text{ (No solution)}$ $\cos x = \frac{2}{3}$ $x \approx 0.841$ 9. $\frac{dy}{dx} = \frac{2x + 1}{4}$ $\int 4dy = \int 2x + 1 dx$ $4y = x^{2} + x + C$ $\text{Now } y = 0, x = 2 \Rightarrow C = -6$ $4y = x^{2} + x - 6$ $y = \frac{1}{4}(x^{2} + x - 6)$ 10. $\int (\cos^{2}x + 2\sec^{2}x)dx = \int \frac{1}{2}(1 + \cos 2x) + 2\sec^{2}xdx$ 1 Mark: C		when $x = 1$, $u = 3$ and $x = 0$, $u = 1$	
$= (3 - \ln 3) - (1 - \ln 1)$ $= 2 - \ln 3$ 8. $3\sin^{2}x - 4\cos x + 1 = 0$ $3(1 - \cos^{2}x) - 4\cos x + 1 = 0$ $3\cos^{2}x + 4\cos x - 4 = 0$ $(3\cos x - 2)(\cos x + 2) = 0$ $3\cos x - 2 = 0 \text{ or } \cos x + 2 = 0 \text{ (No solution)}$ $\cos x = \frac{2}{3}$ $x \approx 0.841$ 9. $\frac{dy}{dx} = \frac{2x + 1}{4}$ $\int 4dy = \int 2x + 1 dx$ $4y = x^{2} + x + C$ $\text{Now } y = 0, x = 2 \Rightarrow C = -6$ $4y = x^{2} + x - 6$ $y = \frac{1}{4}(x^{2} + x - 6)$ 10. $\int (\cos^{2}x + 2\sec^{2}x)dx = \int \frac{1}{2}(1 + \cos 2x) + 2\sec^{2}xdx$ 1 Mark: C		$\int_0^1 \frac{4x}{2x+1} dx = \int_1^3 \frac{2(u-1)}{u} \times \frac{1}{2} du = \int_1^3 1 - \frac{1}{u} du$	
8. $3\sin^2 x - 4\cos x + 1 = 0$ $3(1 - \cos^2 x) - 4\cos x + 1 = 0$ $3\cos^2 x + 4\cos x - 4 = 0$ $(3\cos x - 2)(\cos x + 2) = 0$ $3\cos x - 2 = 0$ or $\cos x + 2 = 0$ (No solution) $\cos x = \frac{2}{3}$ $x \approx 0.841$ 9. $\frac{dy}{dx} = \frac{2x + 1}{4}$ $\int 4dy = \int 2x + 1 dx$ $4y = x^2 + x + C$ Now $y = 0$, $x = 2 \Rightarrow C = -6$ $4y = x^2 + x - 6$ $y = \frac{1}{4}(x^2 + x - 6)$ 10. $\int (\cos^2 x + 2\sec^2 x) dx = \int \frac{1}{2}(1 + \cos 2x) + 2\sec^2 x dx$ 1 Mark: C		$= [u - \ln u]_1^3$	
8. $3\sin^2 x - 4\cos x + 1 = 0$ $3(1 - \cos^2 x) - 4\cos x + 1 = 0$ $3\cos^2 x + 4\cos x - 4 = 0$ $(3\cos x - 2)(\cos x + 2) = 0$ $3\cos x - 2 = 0 \text{ or } \cos x + 2 = 0 \text{ (No solution)}$ $\cos x = \frac{2}{3}$ $x \approx 0.841$ 1 Mark: A $ \int 4dy = \int 2x + 1 dx $ $4y = x^2 + x + C $ Now $y = 0$, $x = 2 \Rightarrow C = -6$ $4y = x^2 + x - 6$ $y = \frac{1}{4}(x^2 + x - 6)$ 10. $ \int (\cos^2 x + 2\sec^2 x) dx = \int \frac{1}{2}(1 + \cos 2x) + 2\sec^2 x dx $ 1 Mark: C		$= (3 - \ln 3) - (1 - \ln 1)$	
$3(1 - \cos^{2}x) - 4\cos x + 1 = 0$ $3\cos^{2}x + 4\cos x - 4 = 0$ $(3\cos x - 2)(\cos x + 2) = 0$ $3\cos x - 2 = 0 \text{ or } \cos x + 2 = 0 \text{ (No solution)}$ $\cos x = \frac{2}{3}$ $x \approx 0.841$ 9. $\frac{dy}{dx} = \frac{2x + 1}{4}$ $\int 4dy = \int 2x + 1 dx$ $4y = x^{2} + x + C$ $\text{Now } y = 0, x = 2 \Rightarrow C = -6$ $4y = x^{2} + x - 6$ $y = \frac{1}{4}(x^{2} + x - 6)$ 10. $\int (\cos^{2}x + 2\sec^{2}x)dx = \int \frac{1}{2}(1 + \cos 2x) + 2\sec^{2}xdx$ 1 Mark: C		$= 2 - \ln 3$	
$3(1 - \cos^{2}x) - 4\cos x + 1 = 0$ $3\cos^{2}x + 4\cos x - 4 = 0$ $(3\cos x - 2)(\cos x + 2) = 0$ $3\cos x - 2 = 0 \text{ or } \cos x + 2 = 0 \text{ (No solution)}$ $\cos x = \frac{2}{3}$ $x \approx 0.841$ 9. $\frac{dy}{dx} = \frac{2x + 1}{4}$ $\int 4dy = \int 2x + 1 dx$ $4y = x^{2} + x + C$ $\text{Now } y = 0, x = 2 \Rightarrow C = -6$ $4y = x^{2} + x - 6$ $y = \frac{1}{4}(x^{2} + x - 6)$ 10. $\int (\cos^{2}x + 2\sec^{2}x)dx = \int \frac{1}{2}(1 + \cos 2x) + 2\sec^{2}xdx$ 1 Mark: C			
$3\cos^{2}x + 4\cos x - 4 = 0$ $(3\cos x - 2)(\cos x + 2) = 0$ $3\cos x - 2 = 0 \text{ or } \cos x + 2 = 0 \text{ (No solution)}$ $\cos x = \frac{2}{3}$ $x \approx 0.841$ 9. $\frac{dy}{dx} = \frac{2x + 1}{4}$ $\int 4dy = \int 2x + 1 dx$ $4y = x^{2} + x + C$ $\text{Now } y = 0, \ x = 2 \Rightarrow C = -6$ $4y = x^{2} + x - 6$ $y = \frac{1}{4}(x^{2} + x - 6)$ 10. $\int (\cos^{2}x + 2\sec^{2}x)dx = \int \frac{1}{2}(1 + \cos 2x) + 2\sec^{2}xdx$ 1 Mark: C	8.	$3\sin^2 x - 4\cos x + 1 = 0$	1 Mark: C
$(3\cos x - 2)(\cos x + 2) = 0$ $3\cos x - 2 = 0 \text{ or } \cos x + 2 = 0 \text{ (No solution)}$ $\cos x = \frac{2}{3}$ $x \approx 0.841$ 9. $\frac{dy}{dx} = \frac{2x+1}{4}$ $\int 4dy = \int 2x + 1 dx$ $4y = x^2 + x + C$ $\text{Now } y = 0, x = 2 \Rightarrow C = -6$ $4y = x^2 + x - 6$ $y = \frac{1}{4}(x^2 + x - 6)$ 10. $\int (\cos^2 x + 2\sec^2 x) dx = \int \frac{1}{2}(1 + \cos 2x) + 2\sec^2 x dx$ 1 Mark: C		$3(1 - \cos^2 x) - 4\cos x + 1 = 0$	
$3\cos x - 2 = 0 \text{ or } \cos x + 2 = 0 \text{ (No solution)}$ $\cos x = \frac{2}{3}$ $x \approx 0.841$ 9. $\frac{dy}{dx} = \frac{2x+1}{4}$ $\int 4dy = \int 2x + 1 dx$ $4y = x^2 + x + C$ $\text{Now } y = 0, x = 2 \Rightarrow C = -6$ $4y = x^2 + x - 6$ $y = \frac{1}{4}(x^2 + x - 6)$ 10. $\int (\cos^2 x + 2\sec^2 x) dx = \int \frac{1}{2}(1 + \cos 2x) + 2\sec^2 x dx$ 1 Mark: C		$3\cos^2 x + 4\cos x - 4 = 0$	
$\cos x = \frac{2}{3}$ $x \approx 0.841$ 9. $\frac{dy}{dx} = \frac{2x+1}{4}$ $\int 4dy = \int 2x + 1 dx$ $4y = x^2 + x + C$ Now $y = 0$, $x = 2 \Rightarrow C = -6$ $4y = x^2 + x - 6$ $y = \frac{1}{4}(x^2 + x - 6)$ 10. $\int (\cos^2 x + 2\sec^2 x) dx = \int \frac{1}{2}(1 + \cos 2x) + 2\sec^2 x dx$ 1 Mark: C		$(3\cos x - 2)(\cos x + 2) = 0$	
$x \approx 0.841$ 9. $\frac{dy}{dx} = \frac{2x+1}{4}$ $\int 4dy = \int 2x + 1 dx$ $4y = x^2 + x + C$ Now $y = 0$, $x = 2 \Rightarrow C = -6$ $4y = x^2 + x - 6$ $y = \frac{1}{4}(x^2 + x - 6)$ 10. $\int (\cos^2 x + 2\sec^2 x) dx = \int \frac{1}{2}(1 + \cos 2x) + 2\sec^2 x dx$ 1 Mark: C		$3\cos x - 2 = 0 \text{ or } \cos x + 2 = 0 \text{ (No solution)}$	
9. $\frac{dy}{dx} = \frac{2x+1}{4}$ $\int 4dy = \int 2x + 1 dx$ $4y = x^2 + x + C$ Now $y = 0$, $x = 2 \Rightarrow C = -6$ $4y = x^2 + x - 6$ $y = \frac{1}{4}(x^2 + x - 6)$ 10. $\int (\cos^2 x + 2\sec^2 x) dx = \int \frac{1}{2}(1 + \cos 2x) + 2\sec^2 x dx$ 1 Mark: C		$\cos x = \frac{2}{3}$	
$ \frac{1}{dx} = \frac{1}{4} $ $ \int 4dy = \int 2x + 1 dx $ $ 4y = x^2 + x + C $ Now $y = 0$, $x = 2 \Rightarrow C = -6$ $ 4y = x^2 + x - 6 $ $ y = \frac{1}{4}(x^2 + x - 6) $ $ 10. \int (\cos^2 x + 2\sec^2 x) dx = \int \frac{1}{2}(1 + \cos 2x) + 2\sec^2 x dx $ $ 1 \text{ Mark: } C $		$x \approx 0.841$	
$ \frac{1}{dx} = \frac{1}{4} $ $ \int 4dy = \int 2x + 1 dx $ $ 4y = x^2 + x + C $ Now $y = 0$, $x = 2 \Rightarrow C = -6$ $ 4y = x^2 + x - 6 $ $ y = \frac{1}{4}(x^2 + x - 6) $ $ 10. \int (\cos^2 x + 2\sec^2 x) dx = \int \frac{1}{2}(1 + \cos 2x) + 2\sec^2 x dx $ $ 1 \text{ Mark: C} $	9.	dy = 2x + 1	1 Mark: A
$4y = x^{2} + x + C$ Now $y = 0$, $x = 2 \Rightarrow C = -6$ $4y = x^{2} + x - 6$ $y = \frac{1}{4}(x^{2} + x - 6)$ $10. \int (\cos^{2}x + 2\sec^{2}x)dx = \int \frac{1}{2}(1 + \cos 2x) + 2\sec^{2}xdx$ 1 Mark: C		$\frac{1}{dx} = \frac{1}{4}$	
Now $y = 0$, $x = 2 \Rightarrow C = -6$ $4y = x^2 + x - 6$ $y = \frac{1}{4}(x^2 + x - 6)$ 10. $\int (\cos^2 x + 2\sec^2 x) dx = \int \frac{1}{2}(1 + \cos 2x) + 2\sec^2 x dx$ 1 Mark: C		$\int 4dy = \int 2x + 1 dx$	
$4y = x^{2} + x - 6$ $y = \frac{1}{4}(x^{2} + x - 6)$ $10. \int (\cos^{2}x + 2\sec^{2}x)dx = \int \frac{1}{2}(1 + \cos 2x) + 2\sec^{2}xdx$ 1 Mark: C		$4y = x^2 + x + C$	
$y = \frac{1}{4}(x^2 + x - 6)$ 10. $\int (\cos^2 x + 2\sec^2 x) dx = \int \frac{1}{2}(1 + \cos 2x) + 2\sec^2 x dx$ 1 Mark: C		Now $y = 0$, $x = 2 \Rightarrow C = -6$	
10. $\int (\cos^2 x + 2\sec^2 x) dx = \int \frac{1}{2} (1 + \cos 2x) + 2\sec^2 x dx$ 1 Mark: C		$4y = x^2 + x - 6$	
		$y = \frac{1}{4}(x^2 + x - 6)$	
		-	
	10.	$\int (\cos^2 x + 2\sec^2 x) dx = \int \frac{1}{2} (1 + \cos 2x) + 2\sec^2 x dx$	1 Mark: C
2" 4" 4" " 2" " 1" " 1" " 1" " 1" " 1" "		$= \frac{1}{2}x + \frac{1}{4}\sin 2x + 2\tan x + C$	

Section	ı II	
11(a) (i)	Bernoulli trial. There are only two outcomes: either 6 or not 6 Total outcomes: $6 \times 6 = 36$ Successful outcomes: $(1,5)$ $(2,4)$ $(3,3)$ $(4,2)$ $(5,1)$ $p = \frac{5}{36}$	1 Mark: Correct answer.:
11(a) (ii)	$Var(X) = p(1-p)$ $= \frac{5}{36} \times \left(1 - \frac{5}{36}\right)$ $= \frac{155}{1296}$	1 Mark: Correct answer.
11(b)	$\sin^2\theta = \cos\theta \text{ for } 0^\circ \le \theta \le 360^\circ$ $2\sin\theta\cos\theta = \cos\theta$ $2\sin\theta\cos\theta - \cos\theta = 0$ $\cos\theta(2\sin\theta - 1) = 0$ $\cos\theta = 0 \text{ or } \sin\theta = \frac{1}{2}$ $\theta = 30^\circ, 90^\circ, 150^\circ, 270^\circ$	2 Marks: Correct answer. 1 Mark: Factorises the equation or finds one correct solution.
11(c)	$\int_{\frac{3}{\sqrt{2}}}^{3} \frac{4dx}{\sqrt{9 - x^2}} = 4 \left[\sin^{-1} \frac{x}{3} \right]_{\frac{3}{\sqrt{2}}}^{3}$ $= 4 \left[\left(\sin^{-1} \frac{3}{3} \right) - \left(\sin^{-1} \frac{1}{\sqrt{2}} \right) \right]$ $= 4 \left[\frac{\pi}{2} - \frac{\pi}{4} \right]$ $= \pi$	2 Marks: Correct answer. 1 Mark: Identifies the integration as a sin ⁻¹ x function.
11(d) (i)	$\cos x - \sqrt{3}\sin x = R\cos(x + \alpha) = R\cos x \cos \alpha - R\sin x \sin \alpha$ $R\cos \alpha = 1 \text{ (1)}$ $R\sin \alpha = \sqrt{3} \text{ (2)}$ Equation (2) divided by equation (1) $\tan \alpha = \sqrt{3}$ $\alpha = \frac{\pi}{3}$ Squaring and adding the equations $R^2 = 1^2 + (\sqrt{3})^2$ or $R = 2$ $\therefore \cos x - \sqrt{3}\sin x = 2\cos\left(x + \frac{\pi}{3}\right)$	2 Marks: Correct answer. 1 Mark: Finds either α or R.
11(d) (ii)	$\cos x - \sqrt{3}\sin x = -2 \text{ for } 0 \le x \le 2\pi$ $2\cos\left(x + \frac{\pi}{3}\right) = -2 \text{ for } \frac{\pi}{3} \le x + \frac{\pi}{3} \le 2\pi + \frac{\pi}{3}$ $\cos\left(x + \frac{\pi}{3}\right) = -1$ $x + \frac{\pi}{3} = \pi$ $x = \frac{2\pi}{3}$	1 Mark: Correct answer.

11(e)	$V = \pi \int_{b}^{b} y^{2} dx = \pi \int_{-3}^{1} 3 - 2x - x^{2} dx$	2 Marks: Correct answer.
	$= \pi \left[3x - x^2 - \frac{x^3}{3} \right]_{-3}^{1}$ $= \left[\left(2 - 1^2 - \frac{1^3}{3} \right) - \left(2 + (-3)^2 - (-3)^3 \right) \right]$	1 Mark: Sets up the integral to determine the volume.
	$= \pi \left[\left(3 - 1^2 - \frac{1^3}{3} \right) - \left(3 \times (-3) - (-3)^2 - \frac{(-3)^3}{3} \right) \right]$ $= \frac{32\pi}{3} \text{ cubic units}$	
12(a) (i)	When $t \Rightarrow \infty$ $P \Rightarrow \frac{500}{1 + k \times 0} \Rightarrow 500$ The change in the population approaches the initial population of 500. Koalas eventually die out.	1 Mark: Correct answer.
12(a) (ii)	Initially $t = 0$ and $P = 1$ $1 = \frac{500}{1 + ke^{-1.5 \times 0}}$ $1 + k = 500$ $k = 499$	1 Mark: Correct answer.
12(a) (iii)	When 100 koalas remain the change in population is 400. $400 = \frac{500}{1 + ke^{-1 \cdot 5t}}$ $1 + 499e^{-1 \cdot 5t} = 1.25$ $499e^{-1 \cdot 5t} = 0.25$ $e^{-1 \cdot 5t} = \frac{0.25}{499}$ $\ln e^{-1 \cdot 5t} = \ln \frac{0.25}{499}$ $t = -\frac{1}{1.5} \times \ln \frac{0.25}{499}$ $= 5.0659$ $\approx 5 \text{ months}$	3 Marks: Correct answer. 2 Marks: Makes significant progress towards the solution. 1 Mark: Calculates <i>P</i> or shows some understanding.
12(a) (iv)	$P = \frac{500}{1 + ke^{-1.5t}} = 500 \times (1 + ke^{-1.5t})^{-1}$ $\frac{dP}{dt} = 500 \times -1(1 + ke^{-1.5t})^{-2} \times (-1.5ke^{-1.5t})$ $= \frac{1.5}{1 + ke^{-1.5t}} \times \frac{500ke^{-1.5t}}{1 + ke^{-1.5t}}$ $= \frac{1500}{1000 \times (1 + ke^{-1.5t})} \times \frac{500ke^{-1.5t}}{1 + ke^{-1.5t}}$ $= \frac{3}{1000} \times \frac{500}{1 + ke^{-1.5t}} \times \frac{500\left(\frac{500}{P} - 1\right)}{1 + ke^{-1.5t}}$ $= \frac{3}{1000} \times P \times P\left(\frac{500}{P} - 1\right)$ $= \frac{3P}{1000}(500 - P)$	3 Marks: Correct answer. 2 Marks: Makes significant progress towards the solution. 1 Mark: Finds $\frac{dP}{dt}$ or shows some understanding.

12(b) (i)	LHS = $\frac{\sec^2 \theta}{\tan \theta}$ = $\frac{1}{\cos^2 \theta} \div \frac{\sin \theta}{\cos \theta}$ = $\frac{1}{\cos^2 \theta} \times \frac{\cos \theta}{\sin \theta}$ = $\frac{1}{\sin \theta \cos \theta}$ = RHS	1 Mark: Correct answer.
12(b) (ii)	$u = \tan\theta$ $du = \sec^2\theta d\theta$ When $\theta = \frac{\pi}{6}$, $u = \frac{1}{\sqrt{3}}$ and $\theta = \frac{\pi}{3}$, $u = \sqrt{3}$ $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1}{\sin\theta \cos\theta} d\theta = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sec^2\theta}{\tan\theta} d\theta$ $= \int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}} \frac{\sec^2\theta}{u} \times \frac{1}{\sec^2\theta} du$ $= \int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}} \frac{1}{u} du$ $= [\ln u]_{\frac{1}{\sqrt{3}}}^{\frac{\pi}{3}}$ $= \ln\sqrt{3} - \ln\frac{1}{\sqrt{3}}$ $= \ln 3$	2 Marks: Correct answer. 1 Mark: Finds $\ln\sqrt{3} - \ln\frac{1}{\sqrt{3}}$ and changes the limits.
12(c)	$\cos(75^\circ) = \cos(30^\circ + 45^\circ)$ $= \cos 30^\circ \cos 45^\circ - \sin 30^\circ \sin 45^\circ$ $= \left(\frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{2}}\right) - \left(\frac{1}{2} \times \frac{1}{\sqrt{2}}\right)$ $= \frac{\sqrt{3} - 1}{2\sqrt{2}}$ $= \frac{\sqrt{6} - \sqrt{2}}{4}$	2 Marks: Correct answer. 1 Mark: Uses the compound angle formula with at least one correct value.
13(a) (i)	$\overrightarrow{OQ} = \overrightarrow{u} + \overrightarrow{v}$	1 Mark: Correct answer.
13(a) (ii)	$\overrightarrow{QO} = -\overrightarrow{OQ}$ $= -(\underline{u} + \underline{v})$	1 Mark: Correct answer.

13(c) (iii)	$\overrightarrow{OM} = \frac{1}{2} \overrightarrow{OQ}$	1 Mark: Correct answer.
	$=\frac{1}{2}(\dot{u}+\dot{v})$	
13(a) (iv)	$\overrightarrow{PM} = \frac{1}{2}(\underline{u} + \underline{v}) - \underline{u}$	1 Mark: Correct answer.
	$=\frac{1}{2}(\underline{v}-\underline{u})$	
13(a) (v)	$\overrightarrow{QM} = \frac{1}{2}(\cancel{v} - \cancel{u}) - \cancel{v}$	1 Mark: Correct answer.
	$=-\frac{1}{2}(\underline{u}+\underline{v})$	
13(a) (iv)	$\overrightarrow{PM} + \overrightarrow{MQ} = \frac{1}{2}(y - y) - \left[-\frac{1}{2}(y + y) \right]$ $= y$	1 Mark: Correct answer.
13(b)	Step 1: To prove true for <i>n</i> = 1	
13(0)	$7^1 - 1 = 6$	3 marks: Correct answer.
	Result is true for $n = 1$ Step 2: Assume true for $n = k$	2 1 0
	$7^k - 1 = 6m$	2 marks: Proves the result true for
	where m is an integer Step 3: To prove true for $n = k + 1$	n = 1 and attemptsto use the result of
	$7^{k+1} - 1 = 6p$	n = k to prove the
	where p is an integer LHS = $7^{k+1} - 1$	result for $n = k + 1$
	$=7(7^k)-1$	H = K · I
	=7(6m+1)-1	1 mark: Proves the result true for
	=7(6m)+7-1	n = 1.
	=6(7m+1)	
	=6p	
	= RHS	
	Step 4: True by induction	
13(c)	$u = 3x^3 + 1$	2 Marks: Correct
	$\frac{du}{dx} = 9x^2 \text{ or } \frac{1}{9}du = x^2dx$	answer.
	$\int_0^1 x^2 \sqrt{3x^3 + 1} dx = \int_1^4 \frac{1}{9} \sqrt{u} du = \frac{1}{9} \int_1^4 u^{\frac{1}{2}} du$	1 Mark: Sets up the integral using the substitution
	$=\frac{1}{9} \left[\frac{2}{3} u^{\frac{3}{2}} \right]_{1}^{4}$	$u = 3x^3 + 1.$
	$=\frac{2}{27}\left[4^{\frac{3}{2}}-1^{\frac{3}{2}}\right]$	
	$= \frac{2}{27} \times (8-1) = \frac{14}{27}$	

13(d) To find the point of intersection between $y = \sqrt{x}$, and y = -x + 2

$$y = -x + 2$$
 1

$$y = \sqrt{x} (2)$$

Substitute -x + 2 for *y* into equation ②

$$-x + 2 = \sqrt{x}$$

$$x^2 - 4x + 4 = x$$

$$x^2 - 3x + 4 = 0$$

$$(x-1)(x-4)=0$$

x = 1 and y = 1 (from the diagram x = 4 is not a solution)

∴ Point of intersection is (1, 1)

$$V = \pi \int_{b}^{b} y^{2} dx$$

$$= \pi \int_{1}^{2} (\sqrt{x})^{2} - (-x + 2)^{2} dx + \pi \int_{2}^{9} (\sqrt{x})^{2} dx$$

$$= \pi \int_{1}^{2} -x^{2} + 5x - 4 dx + \pi \int_{2}^{9} x dx$$

$$= \pi \left[-\frac{x^{3}}{3} + \frac{5x^{2}}{2} - 4x \right]_{1}^{2} + \pi \left[\frac{x^{2}}{2} \right]_{2}^{9}$$

$$= \pi \left[\left(-\frac{8}{3} + \frac{20}{2} - 8 \right) - \left(-\frac{1}{3} + \frac{5}{2} - 4 \right) + \left(\frac{81}{2} \right) - \left(\frac{4}{2} \right) \right]$$

$$= \frac{119\pi}{3} \text{ cubic units}$$

4 Marks: Correct answer.

3 Marks: Makes significant progress towards the solution.

2 Marks: Correctly sets up the integral.

1 Mark: Finds the point of intersection between $y = \sqrt{x}$, and y = -x + 2.

13(e) $\cos\theta = -\frac{2}{3}$ and $\tan\theta > 0$

∴ Angle in the 3rd quadrant

 $\frac{3}{\theta}$

2 Marks: Correct answer.

1 Mark: Shows some understanding.

 $\sin 2\theta = 2\sin\theta\cos\theta$ $= 2 \times -\frac{\sqrt{5}}{3} \times -\frac{2}{3}$ $= \frac{4\sqrt{5}}{9}$

14(a) (i)	v v		2 Marks: Correct answer.
	Cliff 80 m	→ x	1 Mark: Finds horizontal or vertical parametric equations or shows some
	Horizontally $a_x = \ddot{x} = 0$ $v_x = \dot{x} = c_1$ At t = 0, $v_x = V \cos\theta$ $\Rightarrow c_1 = V \cos\theta$	Vertically $a_y = \ddot{y} = -10$ $v_y = \dot{y} = -10t + c_3$ At $t = 0$, $v_y = V\sin\theta$ $\Rightarrow c_3 = 0$	understanding of the problem.
	$v_x = V\cos\theta$ $x = Vt\cos\theta + c_2$ When $t = 0, x = 0 \Rightarrow c_2 = 0$ $x = Vt\cos\theta$	$v_y = \dot{y} = -10t + V\sin\theta$ $y = -5t^2 + Vt\sin\theta + c_4$ When $t = 0$ $y = 0 \Rightarrow c_4 = 0$ $y = -5t^2 + Vt\sin\theta$	
14(b) (ii)	Greatest height when $\dot{y} = 0$ at $t = \dot{y} = -10t + V\sin\theta$ $0 = -10 \times 3 + V\sin\theta$ $V\sin\theta = 30$	3	1 Mark: Correct answer.
14(b) (iii)	Stone reaches the ground when y $y = -5t^{2} + Vt\sin\theta$ $-80 = -5t^{2} + 30t$ $t^{2} - 6t - 16 = 0$ $(t - 8)(t + 2) = 0$ $to t = 8 (t \text{ must be positive})$	=-80	1 Mark: Correct answer.
14(b) (iv)	Stone reaches the ground when x $x = Vt\cos\theta$ $320 = V \times 8 \times \cos\theta$ $V\cos\theta = 40$	= 320 at <i>t</i> = 8	1 Mark: Correct answer.
14(b) (v)	$V^{2} = \dot{x}^{2} + \dot{y}^{2}$ $= (V\cos\theta)^{2} + (V\sin\theta)^{2}$ $= 40^{2} + 30^{2}$ $V = 50$	$\tan \theta = \frac{V \sin \theta}{V \cos \theta}$ $= \frac{30}{40}$ $\theta = 36.8698 \dots$ $\approx 36^{\circ}52'$	2 Marks: Correct answer. 1 Mark: Finds V or θ .
14(b)	$\int_0^{\frac{\pi}{12}} 2\sin^2 x dx = \int_0^{\frac{\pi}{12}} 2 \times \frac{1}{2} (1 - c)$	$\cos 2x)dx$	2 Marks: Correct answer.
	$= \left[x - \frac{1}{2} \sin 2x \right]_0^{\frac{\pi}{12}}$ $= \left(\frac{\pi}{12} - \frac{1}{2} \sin \frac{\pi}{6} \right) - \frac{\pi}{12}$ $= \frac{\pi}{12} - \frac{1}{4}$ $= \frac{\pi - 3}{12}$	$\left(0-\frac{1}{4}\sin 0\right)$	1 Mark: Applies the double angle identity.

14(c)	Step 1: To prove true for $n = 1$ LHS = $4 \times 1 - 3 = 1$ RHS = $2(1)^2 - 1 = 1$ Result is true for $n = 1$ Step 2: Assume true for $n = k$ $S_k = 2k^2 - k$ Step 3: To prove true for $n = k + 1$ $S_{k+1} = 2(k+1)^2 - (k+1)$ $S_k + T_{k+1} = S_{k+1}$ LHS = $2k^2 - k + 4(k+1) - 3$ = $2k^2 + 4k + 2 - k - 1$ = $2(k^2 + 2k + 1) - (k + 1)$ = $2(k+1)^2 - (k+1)$ = RHS Step 4: True by induction	3 marks: Correct answer. 2 marks: Proves the result true for $n = 1$ and attempts to use the result of $n = k$ to prove the result for $n = k + 1$ 1 mark: Proves the result true for $n = 1$.
14(d)	Let p be the probability of rolling a six. $p = \frac{1}{6}, n = 12$ $E(X) = np$ $= 12 \times \frac{1}{6} = 2$	2 Marks: Correct answer. 1 Mark: Shows some understanding.
14(e)	$\overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{OP}$ $= (-3\underline{\imath} + 4\underline{\jmath}) - (4\underline{\imath} + 3\underline{\jmath})$ $= -7\underline{\imath} + \underline{\jmath}$ $ \overrightarrow{PQ} = \sqrt{(-7)^2 + 1^2}$ $= \sqrt{50}$ $= 5\sqrt{2}$	answer. 1 Mark: Finds \overrightarrow{PQ} .
14(f)	Let p be the probability of throwing a six. $p = \frac{1}{6}, n = 5$ $P(X = x) = {}^5C_x \left(\frac{1}{6}\right)^x \left(\frac{5}{6}\right)^{5-x}$ Require the probability of zero sixes or one six. $(X \le 1) = {}^5C_0 \left(\frac{1}{6}\right)^0 \left(\frac{5}{6}\right)^5 + {}^5C_1 \left(\frac{1}{6}\right)^1 \left(\frac{5}{6}\right)^4$ $= \frac{3125}{3888}$	3 Marks: Correct answer. 2 Marks: Makes significant progress towards the solution. 1 Mark: Finds the general rule for the probability distribution.