Prof. Dr. J.W. Kolar Übung Nr. 7

Name, Vorname	Testat

Einfache Elektrische Netzwerke

Aufgabe 1: Messbereichserweiterung bei einer Strommessung

Mittels eines Strommessgerätes soll der Quellenstrom (Kurzschlussstrom) I_q und der Innenwiderstand R_q einer realen Stromquelle ermittelt werden (**Fig. 1**). Damit der Strom durch das interne Messgerät I_{MW} nicht überschreitet, wird die Widerstandskette mit den Widerständen R_1 , R_2 , R_3 und R_{mwi} eingeführt. Je nach Messbereich MB wird der zu messende Strom I über eine andere Verbindung geleitet.

Fig.1: Netzwerk mit Quelle und Strommessgerät

Benutzen Sie für die Berechnungen folgende Werte: MB1 = $100 \, \text{mA}$, MB2 = $1 \, \text{A}$, MB3 = $10 \, \text{A}$, I_{MW} = $5 \, \text{mA}$ und R_{mwi} = $100 \, \Omega$

- a) Berechnen Sie R_1 , R_2 , R_3 und die Eingangswiderstände R_{e1} , R_{e2} , R_{e3} des Strommessgerätes in den drei Messbereichen.
- **b)** Berechnen Sie die maximalen Leistungen $P_{1,max}$, $P_{2,max}$ und $P_{3,max}$, die an den drei Widerständen R_1 , R_2 und R_3 auftreten.
- Berechnen Sie den Kurzschlusstrom I_q und den Innenwiderstand R_q der Quelle, wenn der mit dem Messgerät gemessene Strom I im MB1 I_1 =47.62 mA und im MB2 I_2 =49.74 mA beträgt. Durch welches Spannungsquellen-Ersatzschaltbild (Quellenspannung und Innenwiderstand) könnte die Quelle äquivalent dargestellt werden?

Prof. Dr. J.W. Kolar Übung Nr. 7

Aufgabe 2: Temperaturmessung

Mit der in **Fig. 2** dargestellten Brückenschaltung soll ein Temperaturmessgerät aufgebaut werden. Zur Anzeige wird ein Spannungsmessinstrument verwendet. Zwischen der Spannung U_M und der gemessenen Temperatur \mathcal{G}_{mess} wird bei der Anzeige ein linearer Zusammenhang angenommen, d.h. $U_M = m\,\mathcal{G}_{mess} + q$ mit m, q = konstant. Der Zusammenhang zwischen U_M und der tatsächlichen Temperatur \mathcal{G} ist jedoch nicht linear, weshalb ein arbeitspunktabhängiger, absoluter Temperaturmessfehler $F_{\mathcal{G}} = \mathcal{G}_{mess} - \mathcal{G} = \Delta\mathcal{G}$ auftritt. Analog kann eine Spannungsdifferenz $F_U = U_{M_{erw}} - U_M$ definiert werden, die die Differenz der erwarteten Spannung $(U_{M_{erw}} = m\,\mathcal{G} + q)$ zu der tatsächlich gemessenen Spannung angibt.

Fig.2: Brückenschaltung zur Temperaturmessung

Die Temperaturmessung soll in einem Bereich von -20°C bis 40°C einsetzbar sein, wobei sie bei g_{start} =-20°C einen Wert von U_{M_start} =0V und bei g_{end} =40°C einen Wert von U_{M_end} =3V liefern soll. Für die Messung wird ein temperaturabhängiger Widerstand eingesetzt, dessen Widerstands-Temperatur-Kennlinie durch

$$R(\mathcal{G}) = R_0 (1 + \alpha (\mathcal{G} - \mathcal{G}_0))$$

mit den Parametern

 R_0 = 2000 Ω Widerstand bei g_0 g_0 = 20° C Bezugstemperatur α = 8·10⁻³ K⁻¹ Temperaturkoeffizient

beschrieben wird.

- a) Berechnen Sie R_1 und U_E derart, dass bei der Messung der Temperaturwerte ϑ_{start} =-20°C und ϑ_{end} =40°C kein Fehler auftritt, d.h. der tatsächliche und der angezeigte Temperaturwert übereinstimmen.
- b) Ermitteln Sie die Temperatur \mathcal{G} , bei welcher die absolute Spannungsdifferenz F_U und damit der Temperaturmessfehler am grössten ist.
- c) Berechnen Sie nun diese grösste absolute Spannungsdifferenz F_{U_max} und den dazugehörigen grössten Temperaturmessfehler $\Delta \theta_{max}$.

Prof. Dr. J.W. Kolar Übung Nr. 7

Aufgabe 3: Berechnung von Gleichstromkreisen

Nachfolgende Abbildungen (siehe **Fig.3**) zeigen Netzwerke aus Widerständen und Gleichspannungsquellen.

Fig.3: Netzwerke

Lösen Sie die Aufgaben **a)** bis **c)**, indem Sie Bauelementegruppen zusammenfassen und die Schaltungen anschaulicher darstellen. Letztlich soll nur eine einzige Masche verbleiben. Berechnen Sie dann über die Spannungs- bzw. Stromteiler-Formeln die gesuchten Grössen.

- a) Das Widerstandsnetzwerk $R_1=30\,\Omega$, $R_2=50\,\Omega$, $R_3=40\,\Omega$, $R_4=50\,\Omega$ und $R_5=10\,\Omega$ liegt an der Spannung $U=24\,V$. Berechnen Sie die Ströme I_1 bis I_4 , sowie die Spannungen U_2 und U_5 (**Fig.3a**)).
- b) Die Schaltung enthält die Widerstände R_1 =90Ω, R_2 =50Ω, R_3 =40Ω und R_4 =60Ω und die Spannungsquelle U=48V (**Fig.3b**)). Bestimmen Sie den Zweigstrom I_x .
- c) Die Spannungsquelle liefert die Spannung U=48V, weiters wird die Schaltung durch die Widerstände R_1 =50 Ω , R_2 =45 Ω , R_3 =40 Ω , R_4 =50 Ω und R_5 =60 Ω gebildet (**Fig.3c**)). Wie gross ist der Zweigstrom I_x ?
- d) Lösen Sie nun Aufgabe c), indem Sie ausgehende von Fig. 3c) die gesuchten Grössen direkt (d.h. ohne Zusammenfassung von Bauelementen) über Knoten- und Maschengleichungen berechnen.