Multi-Reference Perturbation Theory

Bastien Mussard

bastien.mussard@colorado.edu
https://mussard.github.io/doc/talk_201704.pdf

TiO₂ structure

The systems of interest in **biological processes**, in **energy conversion** and **energy storage** are challenging for different reasons.

Strategies at our disposal are numerous.

- Orbitals ϕ , Slater determinants $|D\rangle$, wavefunctions $|\Psi\rangle$
- The basics
 - (HF) Hartree-Fock approximation(FCI) Full Configuration Interaction

(CI) Configuration of Interaction

- Single-reference methods (Dynamical correlation)
 - (CC) Coupled-Cluster
 - (PT) Perturbation Theory
 - Multi-reference methods (Static correlation)
 - (MCSCF) Multiconfigurational-SCF(CAS) Complete Active Space(MRPT) Uncontracted scheme v. Internally contracted scheme
- (another time?) WFT+DFT hybrid methods

The aim : express the wavefunction $|\Psi\rangle = \Psi(\mathbf{r}_1, \dots, \mathbf{r}_N)$.

- Orbitals : basis of $\mathcal{L}^2(\mathbb{R}^3, \mathbb{C}) = \{f : \mathbb{R}^3 \to \mathbb{C} \mid f \text{ is square integrable}\}$ An orbital (ϕ) is a wavefunction of a one-electron state.
- An infinite set $\{\phi\}_{\infty}$ of orbitals is a basis of $\mathcal{L}^2(\mathbb{R}^3,\mathbb{C})$.
 - A subset $\{\phi\}_{\mathbf{m}}$ is a basis of a subspace of $\mathcal{L}^2(\mathbb{R}^3,\mathbb{C})$.

- The infinite set $\{|D\rangle\}_{\infty}$ of all N-electron Slater determinants that can be made from a basis $\{\phi\}_{\infty}$ of $\mathcal{L}^2(\mathbb{R}^3,\mathbb{C})$ is a basis of $\mathcal{A}^2(\mathbb{R}^{3N},\mathbb{C})$.
 - A subset $\{|D\rangle\}_{M}$ is a basis of a subspace of $\mathcal{A}^{2}(\mathbb{R}^{3N},\mathbb{C})$.

Determinants: basis of $\mathcal{A}^2(\mathbb{R}^{3N}, \mathbb{C}) = \{ f \in \mathcal{L}^2(\mathbb{R}^{3N}, \mathbb{C}) / f \text{ is antisymmetric} \}$

A *N*-electrons **Slater determinant** ($|D\rangle$) is made from *N* given orbitals.

- Full Configuration Interaction (FCI) → all determinants

$$|\Psi_{\mathsf{FCI}}
angle = \sum_{l} \mathbf{c_l} \, |D_l
angle \quad \text{and} \quad \overline{E_{\mathsf{FCI}} = \min_{\{\mathbf{c_l}\}} \langle \Psi_{\mathsf{FCI}} | \hat{H} | \Psi_{\mathsf{FCI}}
angle}$$

This corresponds to diagonalizing the Hamiltonian in the space of all determinants.

- Hartree-Fock approximation (HF) → only one determinant

$$|\Psi_{\mathsf{HF}}
angle = |D_0(\{\phi_{\mathsf{i}}\})
angle \quad \mathsf{and} \quad \mathsf{E}_{\mathsf{HF}} = \min_{\{\phi_{\mathsf{i}}\}} \langle \Psi_{\mathsf{HF}}|\hat{H}|\Psi_{\mathsf{HF}}
angle$$

The determinants $|D_I\rangle$ are labelled wrt. the HF determinant : $|D_I\rangle = \hat{E}_I |D_0\rangle$ (excitations or configurations)

The **correlation energy** is what is missing in HF with respect to the exact energy.

 $\begin{array}{c|c} r^m & \text{unocc.} \\ \vdots & (\text{in } |D_0\rangle) \\ \hline \phi & \textit{virtual} \\ \hline \hline \phi_N & \text{occupied} \\ \hline \end{array}$

Situations where for all I, $c_I << c_0$

Those are situations where the **HF determinant** is a good starting point for the exact wavefunction: one can consider "single-reference post-**HF methods**".

These are approximations to $|\Psi_{\sf FCI}\rangle$ that assume the predominance of $|D_0\rangle$.

6 6 ... 61 (6

I∈sub

- Configuration of Interaction (CI) $|\Psi_{\text{CI}}\rangle = \sum c_l \; \hat{\textbf{E}}_{\textbf{I}} |D_0\rangle \quad \rightarrow \quad \text{truncated FCI, } \underline{\text{less determinants than FCI}}$

This arises in systems with a large HF gap (H_2 at equilibrium).

- Coupled-Cluster (CC)
$$|\Psi_{\text{CC}}\rangle = e^{t_l \cdot \hat{\mathbf{E}}_l} |D_0\rangle \qquad \rightarrow \quad \text{all the determinants of the FCI, but less parameters}$$

 $|\Psi_{CC}\rangle = e^{-|D_0\rangle}$ \rightarrow all the determinants of the PCI, but less parameter $|\Psi_{CC}\rangle = e^{-|D_0\rangle}$ CC can be seen as an effort to reduce the size of the parameter space of FCI

 $\hat{H} = \hat{H}_0 + \hat{\mathbf{V}}$ o is not garanteed to converge $\hat{H}_0 \ket{D_0} = E^{(0)} \ket{D_0}$

[7/17]

virtual

active

core

Those are situations where the HF determinant is NOT a good starting point

for the exact wavefunction.

Single-ref. methods would give too much importance to $|D_0\rangle$.

Situations where for some I, $c_1 \sim c_0$

This arises in systems with a small HF gap (H₂ at dissociation).

- Multiconfigurational-SCF (MCSCF) (a multideterminental extension to HF)

$$|\Psi_{\mathsf{MCSCF}}\rangle = \sum_{n} \mathbf{c}_{n} |D_{n}\rangle$$
 and $E_{\mathsf{MCSCF}} = \min_{\{\mathbf{c}_{n}, \phi_{i}\}} \langle \Psi_{\mathsf{MCSCF}} | \hat{\mathcal{H}} | \Psi_{\mathsf{MCSCF}} \rangle$

- Complete Active Space (CAS)
Includes all determinants that can be generated from an orbital subspace. (This is a FCI in this subspace).

The "out-of-active space" dynamical correlation is untreated, and one can use "multi-reference post-MCSCF methods" (such as MRCI, MRCC, MRPT....)

Single-reference methods

Multi-reference methods

- -HF: no correlation (by def.)
- -CISD is variational It recovers part of the dynam. correlation
- -CCSD(T) is not variational It is considered the "gold standard"
- -MP2 : often surprisingly good

- -CASSCF recovers the static correlation
- -MRPT is almost exact

Single-reference methods

Multi-reference methods

- -HF: no correlation (by def.)
- -CISD is variational It recovers part of the dynam. correlation
- -CCSD(T) is not variational It is considered the "gold standard"
- -MP2 : often surprisingly good

- -CASSCF recovers the static correlation
- -MRPT is almost exact

- We are doing Rayleigh-Schrödinger PT and want $\frac{\text{2nd- and 3rd-order corrections}}{E^{(2)}=\langle\Psi^{(0)}|\hat{V}|\Psi^{(1)}\rangle}$ $E^{(3)}=\langle\Psi^{(1)}|\hat{V}-E^{(1)}|\Psi^{(1)}\rangle$

- We express $|\Psi^{(1)}\rangle$ in a basis of "perturber wavefunctions" $b=\{|B\rangle\}$ and solve :

$$(E^{(0)} - \hat{H}_0) |\Psi^{(1)}\rangle = \hat{V} |\Psi^{(0)}\rangle \quad \stackrel{\forall I}{\Longleftrightarrow} \quad \sum_J \underbrace{\langle B_I | (E^{(0)} - \hat{H}_0) | B_J \rangle}_{A_{IJ}} \frac{\mathbf{d}_J}{\mathbf{d}_J} = \underbrace{\langle B_I | \hat{V} | \Psi^{(0)} \rangle}_{\mathbf{s}_I}$$

The basis
$$b = \{|\Psi_{I}^{(0)}\rangle\}$$
 is composed of the eigenvectors of \hat{H}_{0} that are not $|\Psi^{(0)}\rangle$:
$$A_{IJ} = \frac{\delta_{IJ}(E^{(0)} - E_{I}^{(0)})}{\delta_{IJ}(E^{(0)} - E_{I}^{(0)})}$$
$$\mathbf{d}_{I} = \frac{\langle \Psi_{I}^{(0)}|\hat{V}|\Psi^{(0)}\rangle}{E^{(0)} - E_{I}^{(0)}} \Big] |\Psi_{I}^{(0)}\rangle$$

In the single-reference case the determination of $|\Psi^{(1)}\rangle$ is not an issue.

In multi-reference PT it would entail inverting in a many-body space.

MRPT : Perturber space

- Any wavefunction of the space outside the CAS (connected to a determinant of the zero-th order wavefunction) is a perturber wavefunction.

- The zero-th order wavefunction reads :

 $|\Psi^{(0)}\rangle = \sum c_n |D_n\rangle = \sum c_n |D^c D_n^a D^v\rangle$ - A **perturber wavefunction** (labelled μ) will be of the form :

 $|\Psi_{\mu}^{\mathbf{c'a'v'}}\rangle = \sum c_{\mu,I}^{\mathbf{c'a'v'}} |D^{\mathbf{c'}}D_{I}^{\mathbf{a'}}D^{\mathbf{v'}}\rangle$ with : $|D^{c'}D_I^{a'}D^{v'}\rangle = \hat{\mathbf{E}}_{Ln}^{c'a'v'}|D_n\rangle$

In other words the perturber wavefunctions belong to the space $S = \bigoplus S^{(c)}$ where the spaces $S^{(c)}$ are spanned by the basis : $b^{(c)} = \{\hat{E}_{l,n}^{(c)} | D_n \}$ (c) = (c'a'v')

- All the objects interesting in this context are decomposed this way: $|\Psi^{(1)}\rangle = \sum |\Psi^{(1,c)}\rangle, \qquad \hat{V} = \sum \hat{V}^{(c)}, \qquad E_2 = \sum E_2^{(c)},$

The space $S^{(c)}$ is generated by **two-electron operators** $\hat{\mathbf{E}}_{\mathbf{l},\mathbf{n}}^{(c)}$.

The action of a two-electron operator on an object made of orbitals separated into core, active and virtual orbitals can be separated into 8 classes of excitations in terms of the changes of the occupation pattern.

	Names		c'	a [′]	v'	Operators		
1	CCVV	$V_{ij,ab}^{(0)}$	-2	0	+2	$\hat{E}_{I,n}^{(c)} ightarrow\hat{E}_{i}^{a}\hat{E}_{i}^{b}$	ϕ_{m}	
П	ACVV	$V_{i,ab}^{(-1)}$	-1	-1	+2	$\hat{E}_{l,n}^{(c)} ightarrow \hat{E}_{i}^{a} \hat{E}_{r}^{b}$	φ	1
Ш	CCAV	$V_{ij,a}^{(+1)}$	-2	+1	+1	$\hat{E}_{l,n}^{(c)} ightarrow \hat{E}_{i}^{a} \hat{E}_{i}^{r}$:	virtual
IV	AAVV	$V_{ab}^{(-2)}$	0	-2	+2	$\hat{E}_{l,n}^{(c)} ightarrow \hat{E}_{r}^{a} \hat{E}_{s}^{b}$	-	\ \
V	CCAA	$V_{ij}^{(+2)}$	-2	+2	0	$\hat{E}_{l,n}^{(c)} ightarrow \hat{E}_{l}^{r} \hat{E}_{l}^{s}$	_	active
VI	CAAV	$V_{i,a}^{(0)}$	-1	0	+1	$\hat{E}_{l,n}^{(c)} ightarrow \hat{E}_{i}^{a} \hat{E}_{s}^{r}, \hat{E}_{s}^{a} \hat{E}_{i}^{r}$	$\phi \ \phi_1$	core /
VIII	AAAV	$V_a^{(-1)}$	0	-1	+1	$\hat{E}_{l,n}^{(c)} ightarrow \hat{E}_{s}^{r} \hat{E}_{r}^{a}$, =	
VII	AAAC	$V_i^{(+1)}$	-1	+1	0	$\hat{E}_{l,n}^{(c)} ightarrow \hat{E}_t^r \hat{E}_i^s$		

- Uncontracted scheme

 $|\Psi^{(1,c)}\rangle$ is written in the basis $b_{\text{UC}}^{(c)} = b^{(c)} = \{\hat{E}_{l,n}^{(c)} | D_n \rangle\}$ of all possible double excitations to all the determinants composing $|\Psi^{(0)}\rangle$:

$$|\Psi^{(1,c)}
angle = \sum_{\mathbf{r},\mathbf{l}} \mathbf{d}_{\mathbf{l},\mathbf{n}}^{(c)} \Big(\hat{\mathbf{E}}_{\mathbf{l},\mathbf{n}}^{(c)} |D_{\mathbf{n}}
angle \Big)$$

[The class $\hat{E}_{l,\mathbf{n}}^{(c)} = \hat{E}_r^a \hat{E}_s^b$ (two actives to two virtuals) has $O(N_{\text{act.}} N_{\text{vir.}} \mathbf{N}_{\text{det.}})$ coef.]

- Contracted scheme

Another option is to consider the truncated basis $b_c^{(c)} = \{\hat{E}_I^{(c)} | \Psi^{(0)} \}$:

$$|\Psi^{(1,c)}\rangle = \sum_{l} \mathbf{d}_{l}^{(c)} \left(\hat{\mathbf{E}}_{l}^{(c)} \sum_{n} c_{n} |D_{n}\rangle\right)$$

This is a factorization (much like CC is a factorization of the parameters of FCI) and you could get (approximation to) the original coefficients : $d_{l,n}^{(c)} \approx d_{l}^{(c)}.c_n$.

[The class $\hat{E}_{i}^{(c)} = \hat{E}_{r}^{a}\hat{E}_{s}^{b}$ (two actives to two virtuals) has $O(N_{\text{act.}}N_{\text{vir.}})$ coefficients.]

		uncontracted	contracted	
	FCI	MRLCC2	MRLCC2	Δ
Atomization Energy				
C_2	-0.207	-0.204	-0.204	0.000
N_2	-0.320	-0.314	-0.314	0.000
F ₂	-0.044	-0.051	-0.051	0.000
Ionization Potential				
H_2O	-0.674	-0.674	-0.674	0.000
NH_3	-0.618	-0.612	-0.612	0.000
Cl_2		-0.411	-0.411	0.000
ОН	-0.449	-0.470	-0.452	-0.018
Electron Affinity				
CH ₃	-0.048	-0.049	-0.049	0.000
CN	0.100	0.100	0.100	0.000
NO	-0.053	-0.048	-0.048	0.000
SH		0.039	0.039	0.000

[Sharma, Knizia, Guo, Alavi JCTC 13 (2017)]

The engine : The coefficients d are found by solving Ad = s (for each class) :

$$A_{IJ} = \langle B_I | (E^{(0)} - \hat{H}_0) | B_J \rangle = \langle \Psi^{(0)} | \hat{E}_I^{\dagger} (E^{(0)} - \hat{H}_0) \hat{E}_J | \Psi^{(0)} \rangle$$

$$s_I = \langle B_I | \hat{V} | \Psi^{(0)} \rangle = \sum \langle \Psi^{(0)} | \hat{E}_I^{\dagger} \hat{E}_J | \Psi^{(0)} \rangle w_J$$

- The terms (like $\langle \Psi^{(0)}|\hat{E}_I^{\dagger}\hat{\mathbf{H}}_0\hat{E}_J|\Psi^{(0)}\rangle$) are fed to a Python library (sqa) that returns tensor contractions of 1- and 2-electrons integrals and RDMs :

- These tensor contraction informations are read are performed by a C++ program (icpt) that computes d by conjugate-gradient.
- All this is interfaced into the widely-used Python program PySCF.

- Fully internally contracted

- Cumulant approximation

- Cholesky decomposition

- Tensor contraction optimization

- Third-order

- Density Fitting

$$W_{pqrs} = \sum_{f L} ig(pr | f L ig) ig(f L | qs ig)$$

- (mid- to long-term project) F12 addition and Range-separation

$$RDM_{pqr...uvw...}^{(2n)} = \sum_{\mathbf{L}} A_{pqr...,\mathbf{L}}^{(n)} A_{\mathbf{L},uvw...}^{(n)}$$

 $E^{(3)} = \sum \langle \Psi_1^{(c_1)} | \hat{V}^{(c_{12})} | \Psi_1^{(c_2)} \rangle$

$$=\sum A_{-}^{(n)}$$

$$\mathsf{RDM}^{(k)} = \sum_{\sum \mathbf{i_n} = k} \left(\bigwedge \mathsf{RDM}^{(\mathbf{i_1})} \mathsf{RDM}^{(\mathbf{i_2})} \dots \mathsf{RDM}^{(\mathbf{i_n})} \right)$$

$$= \sum_{c_1 c_2 c_{12}}^{c_1 c_2 c_{12}} \sum_{l} d_l^{(c_1)} w_l^{(c_{12})} d_K^{(c_2)} \left\langle \hat{E}_l^{(c_1)\dagger} \hat{E}_l^{(c_{12})} \hat{E}_K^{(c_2)} \right\rangle$$

 $\hat{W}_{\text{ee}} = \lambda \hat{W}_{\text{ee}} + (1 - \lambda) \hat{W}_{\text{ee}} \qquad E = \min_{\Psi} \left\{ \langle \Psi | \hat{T} + \hat{V}_{\text{ne}} + \lambda \hat{W}_{\text{ee}} | \Psi \rangle + \bar{E}_{\text{Hxc}}^{\text{DFT}, \lambda} [n_{\Psi}] \right\}$

Hybrid method:

WFT+DFT range-separation (alternative multideterminant extension)

$$\hat{W}_{\text{ee}} = \hat{W}_{\text{ee}}^{\text{lr}} + \hat{W}_{\text{ee}}^{\text{sr}}$$

$$E = \min_{\Psi} \left\{ \langle \Psi | \hat{T} + \hat{V}_{\text{ne}} + \hat{W}_{\text{ee}}^{\text{lr}} | \Psi \rangle + E_{\text{Hxc}}^{\text{DFT,sr}} [n_{\Psi}] \right\}$$

Range-separation: $\hat{W}_{ ext{ee}}^{ ext{Ir}} + \hat{W}_{ ext{ee}}^{ ext{sr}} \ (= \hat{W}_{ ext{ee}})$

