Processamento de Sinal (2014/15)

Exame de recurso – 4 de fevereiro de 2014

	Nome: NºCurso
	uração do exame: 2h30 para o exame completo (grupos I + II + III) e <u>1h30</u> para o exame parcial
(g	rupos I+II ou I+III)
Grupo I (para todos)	
re: S	assifique, neste enunciado, as questões que se seguem indicando se são verdadeiras (V) ou falsas (F). Duas spostas erradas anulam uma resposta correta. Atenção às siglas que se seguem: FTC - Série de Fourier em Tempo Contínuo FTD - Série de Fourier em Tempo Discreto TFTD - Transformada de Fourier em Tempo Discreto TFTD - Transformada de Fourier em Tempo Discreto
1.	As exponenciais são funções próprias dos sistemas LIT
2. 3.	Num processo de interpolação, a recuperação do sinal faz-se usando um filtro passa-alto Caso o sinal seja real e observe uma simetria par, então os coeficientes da sua SFTC terão sempre parte imaginária nula
4.	Da propriedade da dualidade da TFTC conclui-se que se um sinal do tipo constante tem um espetro do tipo impulso, então um sinal do tipo impulso terá um espetro do tipo constante.
5.	Se um sinal pode ser decimado sem gerar aliasing, então significa que foi sobreamostrado
6.	Um sistema causal tem sempre memória
7.	Num sistema LIT, se a sua entrada corresponder a um sinal triangular de frequência f ₀ , então a sua saída será um sinal igualmente triangular de frequência f ₀ , mas, possivelmente, com variação de amplitude e fase.
8.	Num sistema LIT definido pela sua resposta impulsional $h(t)$ se a entrada é o degrau de heaviside, então a saída é o integral de $h(t)$
9.	A decimação (após amostragem com período N) equivale a reduzir a frequência de amostragem de um fator de N
10.	Um sistema tem memória se, por exemplo, h[n]=1
11.	A resposta impulsional $h(t)$ da série (ou cascata) de dois sistemas LIT ($h_1(t)$ e $h_2(t)$ respetivamente) é definida como $h(t) = h_1(t) \cdot h_2(t)$.
12.	O resultado da TFTC de um sinal é sempre periódico, mesmo que o sinal não o seja
13.	Para evitar o efeito de <i>aliasing</i> devemos usar uma frequência de amostragem superior a duas vezes a maior frequência do sinal
14.	A recuperação de um sinal convenientemente amostrado pode ser efectuada por um filtro passa-baixo ideal, com frequência de corte igual a metade de f_a .
15.	O espetro de um sinal que foi amostrado é periódico apenas se a amostragem ocorrer em tempo discreto.

Grupo II (correspondente ao 1º teste)

Responda às seguintes questões numa folha separada. Todas as respostas carecem de uma justificação adequada.

 Considere o sistema LIT representado na figura, composto por dois subsistemas em série de respostas impulsionais h₁(t) e h₂(t).

Sabendo que:

$$h_1(t) = u(t-1) - u(t-4)$$

$$h_2(t) = 2\delta(t+1) + \delta(t-2)$$

Responda às seguintes questões,

trabalhando sempre no domínio do tempo:

a) Calcule a resposta impulsional, h(t), do sistema total, isto é, da série $h_1(t)$ e $h_2(t)$. Nota: caso não consiga responder, considere, para efeitos das questões seguintes, que:

$$h(t) = e^{-|t|}u(t+1)$$

- b) Analise, justificando, este sistema quanto à estabilidade e causalidade.
- c) Calcule a resposta do sistema, y(t), nos instantes 0 e 6 quando a entrada é $x(t) = e^t u(-t)$, isto é calcule y(0) e y(6).
- x[n] é um sinal periódico, em tempo discreto, de período 4. A sua evolução encontra-se representada na figura que se segue.

- a) Calcule os coeficientes da série de Fourier, a_k, que representam este sinal.
- **b)** Calcule a potência média do sinal y[n], sabendo que y[n]=x[n]*g[n-2], e que g[n], também de período 4, tem os coeficientes da sua série de Fourier dados pela expressão $g_k=\frac{1}{2}e^{-jk\pi}+\frac{1}{2}e^{\frac{jk\pi}{2}}$
- 3. Calcule os coeficientes que definem a série de Fourier do sinal periódico x(t), de período 4, em que um período é definido pela seguinte expressão:

$$x(t) = \begin{cases} \sin(\pi t/2), & \text{se } 0 \le t \le 2\\ 0, & \text{se } 2 \le t \le 4 \end{cases}$$

NOTAS: serão valorizadas as resoluções que não partem da equação de análise; o módulo dos coeficientes da série de Fourier do sinal $\sin(\omega_0 t)$ são ½ para os harmónicos 1 e -1 e zero para todos os restantes.

Grupo III (correspondente ao 2º teste)

Responda às seguintes questões numa folha separada. Todas as respostas carecem de uma justificação adequada.

4. Um sistema LIT estável tem a sua sua relação entre entrada, x(t), e saída, y(t), definida pela seguinte equação diferencial:

$$2\frac{d^2y(t)}{dt^2} + 12\frac{dy(t)}{dt} + 18y(t) = -3x(t) - \frac{dx(t)}{dt}$$

- a) Calcule a resposta em frequência deste sistema. NOTA: Caso não tenha conseguido responder a esta questão, considere que $H(j\omega)=\frac{e^{-j\omega}}{(1+j\omega)^3}$
- b) Calcule a resposta impulsional deste sistema.
- c) Calcule a resposta deste sistema, y(t), ao sinal $x(t) = e^{j3t}$.
- 5. Supondo que um sistema LIT discreto é representado pela seguinte resposta em frequência:

$$H(e^{j\Omega}) = \frac{3}{2e^{j2\Omega} + e^{j\Omega}}$$

- a) Calcule a resposta impulsional deste sistema.
- b) Calcule a resposta do sistema, y[n], quando a entrada é:

$$x[n] = \begin{cases} \left(-\frac{1}{2}\right)^{n+2}, \text{ se } n \ge -2\\ 0, \text{ se } n < -2 \end{cases}$$

6. A figura seguinte apresenta um sistema que processa sinais contínuos em tempo discreto (como por exemplo um microcontrolador que processa sinais amostrados). O período de amostragem é $T = \pi/A$.

Esboce os espetros $X_p(j\omega)$, $X(e^{j\Omega})$, $Y(e^{j\Omega})$, $Y_p(j\omega)$ e $Y_c(j\omega)$, e sabendo que o espetro da entrada, $X_c(j\omega)$, e que a resposta em frequência do sistema discreto, $H(e^{j\Omega})$, são os indicados acima.