Math 170A Introduction to Numerical Analysis – Fall 2016

Final Exam Review

Topics:

- 1.2, 8.1 Convert ODEs, spring carts into Ax = b.
 - 1.3 Perform forward and backward substitution.
 - 1.4 Calculate Cholesky Decomposition given a spd A. Symmetric positive definite matrix theory.
 - 1.5 Banded and sparse matrix theory.
 - 8.2 Perform Jacobi and Gauss-Seidel.
 - 2.1 Calculate vector and matrix norms. Vector and matrix norm theory.
 - 8.3 Calculate convergence rates for iterative methods given Ax = b. Iterative method theory.
 - 5.2 Calculate eigenvalues and eigenvectors directly.
 - 5.3 Perform the power method.
 - 1.7 Calculate LU without pivoting given A such that A = LU.
 - 1.8 Calculate LUP with pivoting given A such that $A = P^T L U$.
 - 2.2 Calculate condition numbers.
- 2.3, 2.4 Use perturbation error bounds to bound relative error.
 - 3.1 Calculate the best fit line and/or parabola given data.
 - 3.2 Calculate reflector matrices. Calculate *QR* decomposition given simples matrices *A*.
 - 3.3 Use *QR* decomposition to find least squares solution.

Sample questions:

1.3 Given
$$L = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}$$
, and $b = \begin{bmatrix} 14 \\ 23 \\ 18 \end{bmatrix}$, solve $Ly = b$ for y .

1.4a Given
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 8 & 8 \\ 3 & 8 & 11 \end{bmatrix}$$
. Calculate R such that $A = R^T R$.

1.4b Prove that an $n \times n$ symmetric matrix A is spd if A has n positive real eigenvalues and n orthonormal real eigenvectors.

- 8.2 Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, $b = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$. Starting with $x^{(0)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, calculate two iteration of Jacobi's method and Gauss-Seidel method.
- 2.1a Let $A = \begin{bmatrix} 2 & -4 \\ 8 & 1 \end{bmatrix}$, $x = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$. Calculate $\|A\|_1$, $\|A\|_\infty$, $\|x\|_1$, $\|x\|_2$, $\|x\|_\infty$. How would you calculate $\|A\|_2$?
- 2.1b Prove $||x||_2 \le ||x||_1$ and $||x||_1 \le \sqrt{n} ||x||_2$ for all vectors $x \in \mathbb{R}^n$.
- 8.3a Let $A = \begin{bmatrix} 4 & 1 \\ 1 & 4 \end{bmatrix}$, calculate the convergence rate of Gauss-Seidel method and Jacobi's method applied to Ax = b.
- 8.3b Prove that $e^{(k+1)} = M^{-1}Ne^{(k)}$ for any iterative method defined by $Mx^{(k+1)} = Nx^{(k)} + b$ to solve Ax = b with A = M N.
- 5.2a Calculate the eigenvalues and eigenvectors of $A = \begin{bmatrix} 1.8 & -0.4 \\ -0.4 & 1.2 \end{bmatrix}$ by direct calculation.
- 5.2b Approximate the largest eigenvalue and corresponding eigenvector of $A = \begin{bmatrix} 4 & 1 \\ 1 & 5 \end{bmatrix}$ with two iterations of the power method starting with an initial guess of ones.
- 1.7 Calculate LU without pivoting such that LU = A with $A = \begin{bmatrix} 3 & 1 & 2 \\ 6 & 4 & 6 \\ 6 & 6 & 12 \end{bmatrix}$.
- 1.8 Calculate P^TLU with pivoting such that LU = PA with $A = \begin{bmatrix} 3 & 1 & 2 \\ 6 & 4 & 6 \\ 6 & 6 & 12 \end{bmatrix}$.
- 2.2a Calculate $\kappa_1(A)$ for $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.
- 2.2b Prove that $\kappa_1(A) \ge 1$ for all matrices A.
- 2.3a We know that $\frac{\|\delta x\|}{\|x\|} \le \kappa(A) \frac{\|\delta b\|}{\|b\|}$. Bound the relative error $\frac{\|x-\hat{x}\|_{\infty}}{\|x\|_{\infty}}$ of the approximate solution $\hat{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ for Ax = b with $A = \begin{bmatrix} 49 & 50 \\ 50 & 50 \end{bmatrix}$ and $b = \begin{bmatrix} 99.005 \\ 100 \end{bmatrix}$.
- 2.3b Prove that $\frac{\|\delta x\|}{\|x\|} \le \kappa(A) \frac{\|\delta b\|}{\|b\|}$.
 - 3.1 Given the points (1,1), (2,3), (3,4) and (4,4), calculate the equation of the line that best approximates this data, i.e., find the least squares line that minimizes the residual 2-norm.
- 3.3 Let $A = \begin{bmatrix} 0 & 3 \\ 0.6 & 1.2 \\ 0.8 & 1.6 \end{bmatrix}$, $Q = \begin{bmatrix} 0 & 1 & 0 \\ 0.6 & 0 & 0.8 \\ 0.8 & 0 & -0.6 \end{bmatrix}$, $R = \begin{bmatrix} 1 & 2 \\ 0 & 3 \\ 0 & 0 \end{bmatrix}$, $b = \begin{bmatrix} 15 \\ 10 \\ 10 \end{bmatrix}$ with A = QR. Calculate the least squares solution of Ax = b.
- 3.2 Calculate the *QR* decomposition of $A = \begin{bmatrix} 4 & 1 \\ 3 & 2 \end{bmatrix}$.