Assignment Project Exam Help Data Integration — 2

https://powcoder.com

Faculty of Information Technology, Monash University, Australia

Add We Chat powcoder

Assignment Project Exam Help

- Data Level Integration Coder.com
 - Tuple-Level Integration
- Add WeChat powcoder

Data Integration

- What is Data Integration?
- SSI Phane in the state of the s • What is the goal of Data Integration?
 - Create a single representation that provides a more accurate description than https://powcoder.com

Add WeChat powcoder

Data Integration: Schema Integration

4 / 32

Integration System Assignment Project Exam Help https://pow.coder.com Add WeChat powcoder

Data always comes from different sources.

(Monash)

- Each source has its own schemas and references to objects, even though these sources might model the same domain.
- Often, users directly interacts with the mediation schema instead of local FIT5196

Schema Integration: Structure & Name Conflicts

Figure 2. The Schemas of Two Relational Databases S and T on House Listing, and the Semantic Correspondences between Them.

Figure is from "Semantic-Integration Research in the Database community" by AnHai Doan and Alon Y. Halevy

Schema Integration: Semantic Matching

Movies(id, title, year) SSpanish range takan Help

AGGREGATOR

DVD-VENDOR

Items (name, releaseInfo, classification, price) Example of two gate base schemas ye ema DVD VENDOR Telon is to a DVI vincor, while AGGREGATOR belongs to a shorping site that aggregates products from multiple vendors

Figure is from chapter 5 of "Principles of data integration"

• One-tAddtchWeChat powcoder

- Movies title ≈ Items name
- Movies year ≈ Items year
- ▶ Product rating ≈ Items classification
- One-to-Many match
 - ▶ Items price \approx Products basePrices \times (1 + Locations taxRate)

Outline

Assignment Project Exam Help

- Data-Level Integration

 Attrinttps://powcoder.com

 Tuple-Level Integration
- Add WeChat powcoder

Data-Level Integration

- Data-Level Integration: related to the integrated contents/values of data not the schema.
- Assignment Project Exam Help

 Attribute-level (columns)
 - Redundancy
 - Correlation
 - https://powcoder.com
 - Du<mark>#</mark>ication
 - Inconsistency

Add WeChat powcoder

Data-Level Integration: Attribute-Level Issues

• Problems: combining different data sources might result in a redundant

Assignment Project Exam Help

- When any of the attributes can be calculated from others
 - e.g., annual salary from fortnight payment
- When different values represent the same attribute but with different units nearly with high the same attribute but with different units nearly with the same attribute but with different units nearly with the same attribute but with different units nearly with the same attribute but with different units nearly with the same attribute but with different units nearly with the same attribute but with different units nearly with the same attribute but with different units nearly with the same attribute but with different units nearly with the same attribute but with different units nearly with the same attribute but with different units nearly with the same attribute but with different units nearly with the same attribute but with different units nearly with the same attribute but with different units nearly with the same attribute but with different units nearly with the same attribute but with the same attribute bu
- Techniques to find correlation between attributes
 - ► Chi-square Test for categorial varaibles
 - Correlation Conficient for Innerical attributes we Chair powcoder

- Chi-square test for categorial variables
- Test for independence compares two variables in a contingency table to see if the project Exam Help
 - Null Hypothesis: The two categorical variables are independent.
 - Alternative Hypothesis: The two categorical variables are dependent.
 - httips://prowcoder.com $x^2 = \sum_{i=1}^{\infty} \frac{(O_i E_i)^2}{E_i}$

wardd WeChat powcoder

- E is the expected frequency under the null hypothesis:

$$E = \frac{row_total \times column_total}{sample \ size}$$

• Chi-square test for categorial variables: Is gender independent of education

(Monash) FIT5196 11 / 32

• Chi-square test for categorial variables: Is gender independent of education

- Null Hypothesis: Gender and Education Level are independent.
- Alternative Hypothesis: Gender and Education Level are dependent

(Monash) FIT5196 11 / 32

MONASH University

Attribute-Level Issues: Chi-Sqaure Test

• Chi-square test for categorial variables: Is gender independent of education level?

Assignment...Project Exam Help

-4	>	Tign Selloot	Batherers	-Viasiels —	T In.d.	Total
	Female	60	54	46	41	201
1	Male		TVC001	53 O1°	57	194
J	Tuonal Di	s://po	WGOU			395

		High School	Bachelors	Masters	Ph.d.	Total
	Fe nal	W*e(lhat r	OW	cod	er
Ī	Male	49.114	48.132	48.623	48.132	194
	Total	100	98	99	98	395

$$50.886 = \frac{100 \times 200}{395}$$

(Monash) FIT5196 11 / 32

MONASH University

Attribute-Level Issues: Chi-Square Test

• Chi-square test for categorial variables: Is gender independent of education

$$\chi^2 = \frac{(60 - 50.886)^2}{50.886} + \frac{(54 - 49.868)^2}{49.868} + \dots = 8.006$$

(Monash) 11 / 32

• Chi-square test for categorial variables: Is gender independent of education level?

Assignment—Project Exam Help

١,	5	iig i Chool	Da in toys	lasters	CLF LG	tota
	Female	60	54	46	41	201
1	Male	7 1 10	44 1	53	57	194
J	Teal	s://po'	wcoa			395

		High School	Bachelors	Masters	Ph.d.	Total
	Anale	W/e	hast r) (%X X/	49.868	<u> </u>
4	Male	49.114	48.132	48.623	48.132	194
	Total	100	98	99	98	395

- $ightharpoonup \chi^2 = 8.006 > 7.815$ (The critical value of χ^2 with 3 degree of freedom)
- ▶ Reject the null hypothesis and conclude that the education level depends on gender at a 5% level of significance

(Monash) FIT5196 11 / 32

40

50

60

22.164 26.509 29.051 33.660 39.335 45.62 51.80 55.76 63.69

27.707

37.485

34.764 37.689 42.942 49.335 56.33 63.17 67.50 76.15

43.188 46.459 52.294 59.335 66.98 74.40 79.08

Chi-square test for categorial variables: Is gender independent of education lovol2

٨ ؞	level?				4	D		•		4 Tr TT-1
ΔS		P rcc nt	ge ^p oi its	s of the C	l -S uare	Dist but	io) 16	\mathbf{c}	t Exam Help
Degrees		7		Probability	y of a larger	value of x 2	_ `	J		
Freedon	0.99	0.95	0.90	0.75	0.50	0.25	0.10	0.05	0.01	_
1	0.000	0.004	0.016	0.102	0.455	1.32	2.71	3.84	6.63	
2	0.020	0.103	0.211	0.575	1.386	2.77	4.61	5.99	9.21	
3	0.115	0.352	0.584	1.212	2.366	4.11	6.25	7.81	11.34	
4	0.297	0.711	1.064	1.923	3.397	5.39	7.78	9.49	13.28	1
5	0.554	1.45	f 199	.67	4.351	6.6	9.2	7 200	5.09	ler.com
6	0.872	1.6 5	204	3,455	5 348	7 4	I WAV	2.59	1 .8	151.60111
7	1.239	2.167	835	4.25	6.346	9.0	12.02	14.07	18.48	
8	1.647	2.733	-4 490	5.071	7.344	10.22	13.36	15.51	20.09	$\chi^2 = 8.006$
9	2.088	3.325	4.168	5.899	8.343	11.39	14.68	16.92	21.67	χ σισσσ
10	2.558	3.940	4.865	6.737	9.342	12.55	15.99	18.31	23.21	► The demonstrate of Consideration
11	3.053	4.575	5.578	7.584	10.341	13.70	17.28	19.68	24.72	The degree of freedom:
12 13	3.571 4.107	5.226	6.304	8.438 9.29	11.340	14.85	18.55	21.03 22.36	26.22	(r-1)(c-1)=3
14	4.107	5.892	7.7/0	10.16	3.389	15.98	7	22.36	29.12	(r-1)(c-1)=3
15	5.229	7 61	., , , ,	11.037	1 839	19	21.0	6.0	30.58	
16	5.812	7.962	9,312	11.912	15,338	19.37	23.54	26.30	32.00	The critical value of χ^2 at a
17	6.408	8.672	10.085	12.792	16.338	20.49	24.77	27.59	33.41	E0/ 1 C C
18	7.015	9.390	10.865	13.675	17.338	21.60	25.99	28.87	34.80	5% level of significance:
19	7.633	10.117	11.651	14.562	18.338	22.72	27.20	30.14	36.19	7.015
20	8.260	10.851	12.443	15.452	19.337	23.83	28.41	31.41	37.57	7.815
22	9.542	12.338	14.041	17.240	21.337	26.04	30.81	33.92	40.29	
24	10.856	13.848	15.659	19.037	23.337	28.24	33.20	36.42	42.98	
26	12.198	15.379	17.292	20.843	25.336	30.43	35.56	38.89	45.64	
28	13.565	16.928	18.939	22.657	27.336	32.62	37.92	41.34	48.28	
30	14.953	18.493	20.599	24.478	29.336	34.80	40.26	43.77	50.89	

88.38 (Monash) FIT5196 11 / 32

• Chi-square test for categorial variables: Is gender independent of education

(Monash) FIT5196 11 / 32

Attribute-Level Issues: Correlation Coefficient

- Correlation Coefficient, r, also called Pearson correlation coefficient
- Assignment Project Exam Help

$$r = \frac{n \sum (xy) - (\sum x)(\sum y)}{\sqrt{n(\sum x^2) - (\sum x)^2} \sqrt{n(\sum y^2) - (\sum y)^2}}$$
• https://powcoder.com

- The value of r is such that -1 < r < +1
- Positive correlation: If x and y have a strong positive linear correlation, r is close to +1.

A Nelative circulation: Cx and y have a strong negative linear correlation, r is DOWCOGER

 No correlation: If there is no linear contellation or a weak linear correlation, r is close to 0.

(Monash) FIT5196 12 / 32

Attribute-Level Issues: Coefficient of determination

- Coefficient of determination
- Assing Gall for the variance (fluctuation) of one variable that is the linear association between x and y.
 - The coefficient of determination is a measure of how well the regression line represents the data. If the regression line passes exactly through every point dantie spatter plot is yould be able to explained of the variation. The further the line is away from the points, the less it is able to explain.

Add WeChat powcoder

(Monash) FIT5196 13/32

MONASH University

Attribute-Level Issues: Coefficient of determination

		x	y	xy	x^2	y^2
		313000	1340	419420000	97969000000	1795600
A ~ ~	•	2384000	3650	8701600000	5 58346E+12	1332 500
Ass	19n	4 2000	1980	(600 (0000	1 16964t 11	372 900
	151	420000	2000	840000000	1.764E+11	4000000
		550000	1940	1067000000	3.025E+11	3763600
		490000	880	431200000	2.401E+11	774400
		335000	1350	452250000	1.12225E+11	1822500
	1 4	482000	/ / 2710	130622000	2.32324E+11	7344100
	hfi	5250 0	/ 12 C 12 37	20/957500	2.14756 + 1	5904900
		F43090	/ UU Y5Y 0	91280000	4.006 21	2310400
		463000	1710	791730000	2.14369E+11	2924100
		1400000	2920	4088000000	1.96E+12	8526400
		588500	2330	1371205000	3.46332E+11	5428900
		365000	1090	397850000	1.33225E+11	1188100
	Δ	120000 0	2 23	3442000000	1-445+12	2468100
		242500	1 00	291000 00	5 8062500 0	440 00
		419000	1570	657830 00	1.75561E+11	2464900
		285000	2200	627000000	81225000000	4840000
		367500	3110	1142925000	1.35056E+11	9672100
	Sum	11739000	38790	28809665000	1.21209E+13	89715500

$$r = \frac{n\sum(xy) - (\sum x)(\sum y)}{\sqrt{n(\sum x^2) - (\sum x)^2}\sqrt{n(\sum y^2) - (\sum y)^2}} = 0.676747624$$

MONASH University

Attribute-Level Issues: Coefficient of determination

		x	у	xy	x^2	y^2
		313000	1340	419420000	97969000000	1795600
Λ	0	2384000	3650	8701600000	5 58346E+12	1332 500
Ass	וועו	4 2000	1980	600(0000	1 169646 11	372 900
	7011	420000	2000	840000000	1.764E+11	4000000
		550000	1940	1067000000	3.025E+11	3763600
		490000	880	431200000	2.401E+11	774400
		335000	1350	452250000	1.12225E+11	1822500
	1_44	482000	2710	130622000	2.32324E+11	7344100
	nti	52500	//pow	10/957500	2. 4756 £+11	5904900
	110	540000		972800000	4.09611	2310400
		463000	1710	791730000	2.14369E+11	2924100
		1400000	2920	4088000000	1.96E+12	8526400
		588500	2330	1371205000	3.46332E+11	5428900
	A	365000	1090	397850000	1.33225E+11	1188100
	Δ	20000	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	4:2000 00	1.745+72	
		242500	1 00	291000 00	5280 2 00 0	440 00
		419000	1570	657830	1.75561E+11	2464900
		285000	2200	627000000	81225000000	4840000
		367500	3110	1142925000	1.35056E+11	9672100
	Sum	11739000	38790	28809665000	1.21209E+13	89715500

 $r^2 = 0.676747624^2 = 0.457987347$

Attribute-Level Issues: Coefficient of determination

		x	y	xy	x^2	y^2
		313000	1340	419420000	97969000000	1795600
	0	2384000	3650	8701600000	5 58346E+12	1332 500
Ass	IPH	4 2000	1930	60060000	1 16964F 11	372 1900
	-5	420000	2000	840000000	1.764E+11	4000000
		550000	1940	1067000000	3.025E+11	3763600
		490000	880	431200000	2.401E+11	774400
		335000	1350	452250000	1.12225E+11	1822500
	1 44	482000	/ / 2710	130622000	2.32324E+11	7344100
	nti	52500	/ 17 (12)30	10 95 7 00	2. 4756 E+11	5904900
	116	540000		972800000	4.0961-11	2310400
		463000	1710	791730000	2.14369E+11	2924100
		1400000	2920	4088000000	1.96E+12	8526400
		588500	2330	1371205000	3.46332E+11	5428900
	_	365000	1090	397850000	1.33225E+11	1188100
	Λ	20000	2 10	4:200000	1.745+72	<u>84</u> (8) 60
		242500	1 00	29 1000 00	52807210010	440 00
		419000	1570	657830 00	1.75561E+11	2464900
		285000	2200	627000000	81225000000	4840000
		367500	3110	1142925000	1.35056E+11	9672100
	Sum	11739000	38790	28809665000	1.21209E+13	89715500

Correlation vs Causality

MONASH University

Attribute-Level Issues: Coefficient of determination

• Regression Sum of Squares (SSR) (or explained sum of squares)

Assignment Project, Exam Help

• Residual Sum of squares (RSS)

• Total And dua We Chat powcoder

$$TSS = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

R² is defined as

$$R^2 = 1 - \frac{RSS}{TSS}$$

MONASH University

Attribute-Level Issues: Coefficient of determination

• Regression Sum of Squares (SSR) (or explained sum of squares)

Assignment Project, Exam Help

- Residual Sum of squares (RSS) Powcoder.com $RSS = \sum_{i=1}^{n} (y_i \hat{y}_i)^2 = \sum_{i=1}^{n} e_i^2$
 - Total And duar We Chat powcoder

$$TSS = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

• Question:

$$TSS \stackrel{?}{=} SSR + RSS$$

Attribute-Level Issues: Coefficient of determination

Assignment Project Exam Help

∑https:½poweøder.com

$$Add = \underbrace{\sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 + \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + 2\sum_{i=1}^{n} (y_i - \hat{y}_i)(\hat{y}_i - \bar{y})}_{\text{echiat poweoder}}$$
(2)

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)(\hat{y}_i - \bar{y}) \stackrel{?}{=} 0$$
 (3)

(Monash) FIT5196 16 / 32

Data-Level Integration: Tuple-Level Integration

- Duplicates
- SSIGNMENT Project Exam Help
 - Duplicated records are not updated simultaneously.
 - Issues with tuple-level integration
 - Litter Control of Cont
 - Tuple Matching methods
 - SANGE Char powcoder

 Data Matching

Tuple-Level Integration: String Matching

• Problems: Given two sets of strings X and Y, find all pairs of strings (x, y),

Assignment Project Exam Help

Add We Chat powcoder

Tuple-Level Integration: String Matching

- Methods: Similarity Measures
- Assignmente classes Similarity Measures: View strings as sequences of the elp
 - The Needleman-Wunch measure
 - The Affine Gap measure
 - https://powcoder.com
 - Set-based Similarity Measures: View strings as sets or multi-sets of tokens, and use set-related properties to compute similarity scores.

And Clove Chat powcoder Hybrid Similarity Measures: combines sequence-based and set-based

- Hybrid Similarity Measures: combines sequence-based and set-based measures
 - The Generalised Jaccard measure
 - The Soft TF/IDF measure
- ▶ Phonetic Similarity Measure: matches strings based on their sound.

Tuple-Level Integration

String Matching: Edit Distance

- The minimum edit distance between two strings
- Assignment Project Exam Help
 - Deletion
 - Substitution
 - Need to transform one to another oder.com

Add WeChat powcoder

String Matching: Edit Distance

https://powcoder.com

Transform string $x_1, \ldots, x_i, \ldots, x_n$ to $y_1, \ldots, y_j, \ldots, y_m$

- Transform x_1, \ldots, x_{i-1} into y_1, \ldots, y_{j-1} , then substituting x_i with y_i if
- Transform x_1, \ldots, x_{i-1} into y_1, \ldots, y_{j-1} , then substituting x_i with y_i if $x_i \neq y_j$
- Deleting x_i , then transform x_1, \ldots, x_{i-1} into y_1, \ldots, y_j ,
- Transform x_1, \ldots, x_i into y_1, \ldots, y_{i-1} , then insert y_i

(Monash) FIT5196 21 / 32

String Matching: Edit Distance

Figure is from chapter 4 of "Principles of Data Integration"

String Matching: The Needleman-Wunch Measure

Add We Chat powcoder

Figure is from chapter 4 of "Principles of Data Integration"

String Matching: The Needleman-Wunch Measure

Add WeChat powcoder (c)

Figure is from chapter 4 of "Principles of ata Integration"

Tuple-Level Integration: The TF/IDF measures

Figure is from chapter 4 of "Principles of Data Integration"

Add
$$v(p, q) = \underbrace{\frac{e \operatorname{Chat}_{t}(powcoder)}{\sqrt{\sum_{t \in T} v_{p}(t)^{2}} \cdot \sqrt{\sum_{t \in T} v_{q}(t)^{2}}}}_{s(x, y) = \underbrace{\frac{2 \cdot 3}{\sqrt{2^{2} + 3^{2}}\sqrt{3^{2} + 3^{2}}}}$$

(Monash) FIT5196 24 / 32

Data Integration: Data Matching

(c)

https://powcoder.com

- Data Matching is challenging due to variations in
 - for an information of an infor

 - different naming conventions,
 - omissions
 - errors

(Monash) 25 / 32 FIT5196

MONASH University

(c)

Data Integration: Data Matching

https://powcoder.com

- Methods
 - Range of sed methods Chat powcoder
 - Supervised learning
 - Clustering
 - probabilistic approach

(Monash) FIT5196 25 / 32

Data Matching: Rule-Based

https://powcoder.com

ullet a linearly weighted combination of the individual similarity scores between xand yAdd WeChat powcoder $sim(x, y) = \sum_{i=1}^{n} \alpha_i sim_i(x, y)$

$$sim(x, y) = \sum_{i=1}^{n} \alpha_i sim_i(x, y)$$

A rule for the example in the figure

$$sim(x, y) = 0.3s_{name}(x, y), +0.3s_{phone}(x, y), +0.1s_{city}(x, y), +0.3s_{state}(x, y)$$

26 / 32 (Monash) FIT5196

Data Matching: Rule-Based

(c)

https://powcoder.com

where

$$z = -\sum_{i}^{n} \alpha_{i} sim_{i}(x, y)$$

Figure is from chapter 7 of "Principles of Data Integration"

(Monash)

FIT5196

• Supervised learning: learn a matching model with training data

Assignment Project Exam Help

where (x_i, y_i) indicates a tuple pair, and l_i indicates the boolean label.

- **Define** a set of features f_1, f_2, \ldots, f_m
- Interposition in protection of the feature of the
- Apply supervised learning algorithms
 Add WeChat powcoder

• Supervised learning: learn a matching model with training data

(b)

Figure is from chapter 7 of "Principles of Data Integration"

(Monash) FIT5196 28 / 32

Assignment Project Exam Help

Figure is from chapter 7 of "Principles of Data Integration"

- Clustering approach: tuples in the same cluster match
- Assimment Project Exam Help
 - Arriterative process: leverage what we have known so far (in the previous iterations) to build "better" entities.
 - Generating a canonical tuple: "merge" all matching tuples within each cluster that the control of the control o

Add WeChat powcoder

31 / 32

• Clustering approach: tuples in the same cluster match

Assignment Project Exam Help

Iteration 3: https://powcoder.com Iteration 2: d WeChat powcoder. (a) (b)

Figure is from chapter 7 of "Principles of Data Integration"

Summary

- Recap of schema integration
- Assignment Project Exam Help
 - Tuple level integration
 - Readings
 - bauters 4 and 7/ "Principles of Data Intigration"

 hapter D Data M thing Vnopsate Educides or Belord Linkage,
 - Entity Resolution, and Duplicate Detection"

Add WeChat powcoder