Roll No. Total No. of Pages :03

Total No. of Questions :18

B.Tech.(Agriculture Engg./Automation & Robotics/Automation Engg./Civil Engg./Computer Science & Engg./Electrical & Electronics Engg./Electrical Engg./Electronics & Communication Engg./Electronics & Electrical Engg./Information Technology/Mechanical Engg.)/

B.Tech. (CSE/ECE) (PIT)(Sem.-1)

MATHEMATICS-I

Subject Code : BTAM-101-18 M.Code : 75353

Date of Examination: 01-07-22

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION B &C have FOUR questions each.
- 3. Attempt any FIVE questions from SECTION B& C carrying EIGHT marks each.
- 4. Select atleast TWO questions from SECTION B &C.

SECTION-A

Solve the following:

- 1) What is maximum value of function $f(x) = -x^2$.
- 2) Find the equation of normal line to the surface xyz = 6 at (1, 2, 3).
- 3) Show that the function $f(x,y) = \begin{cases} \frac{xy}{2y^2 + x^2}; & (x,y) \neq (0,0) \\ 0; & (x,y) = (0,0) \end{cases}$ is discontinuous at (0,0).
- 4) Evaluate $\lim_{x \to \frac{\pi}{2}} \frac{\log\left(x \frac{\pi}{2}\right)}{\tan x}$.
- 5) Calculate approximate value of $\sqrt{10}$ to two decimal places by Taylor's theorem.

1 | M-75353 (S1)-6

- Evaluate $\int_0^1 \int_1^a \frac{1}{xy} dy dx$.
- Examine the nature of the series $1 + \frac{1}{2} + \frac{1}{4} = \frac{1}{8} - - \infty$. 7)
- 8) Define orthogonal matrices with example.
- Show that (1, 1, 2) is an eigen vector of the matrix $A = \begin{bmatrix} 3 & 1 & -1 \\ 2 & 2 & -1 \\ 2 & 2 & 0 \end{bmatrix}$ corresponding to the 9) eigen value 2.
- Verify Cayley Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$.

- a) Verify Cauchy's mean value theorem for $f(x) = \log x$, $g(x) = \frac{1}{x}$ in [1, e].
 - b) Apply Maclaurin's theorem with Lagrange's remainder to function
- 12) Discuss the convergence of the following improper integral
 - a) $\int_0^\infty \frac{1}{h^2 x^2 + a^2} dx$ b) $\int_1^2 \frac{x+1}{\sqrt{x-1}} dx$.
- Show that the rectangular solid of maximum volume that can be inscribed in a given sphere is a cube.
- a) Evaluate by changing the order of integration of $\int_0^1 \int_x^{\sqrt{2-x^2}} \frac{x}{\sqrt{x^2-y^2}} dy dx$.
 - b) Find the volume enclosed between the cylinders $x^2 + y^2 = 2ax$ and $z^2 = 2ax$.

SECTION-C

- 15) a) Discuss the convergence or divergence of the series $\sum \frac{n^p}{(n+1)^q}$.
 - b) Test the convergence of $\sum_{n=2}^{\infty} \frac{1}{[\log(\log n)]^n}$.
- 16) a) Test the convergence of $1 + \frac{(1+\alpha)}{(1+\beta)} + \frac{(1+\alpha)(1+2\alpha)}{(1+\beta)(1+2\beta)} + \frac{(1+\alpha)(1+2\alpha)(1+3\alpha)}{(1+\beta)(1+2\beta)(1+3\beta)} + \dots$
 - b) Discuss the convergence or divergence of the series $\sum_{n=2}^{\infty} \frac{n+\sqrt{n}}{n^2-n}$.
- 17) a) Use Gauss Jordan method to find the inverse of a matrix $\begin{bmatrix} 2 & 4 & 3 & 2 \\ 3 & 6 & 5 & 2 \\ 2 & 5 & 2 & -3 \\ 4 & 5 & 14 & 14 \end{bmatrix}$
 - b) Find a matrix B which transforms $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$ into a diagonal form.
- 18) Determine the values of a and b for which the system $\begin{bmatrix} 3 & -2 & 1 \\ 5 & -8 & 9 \\ 2 & 1 & a \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} b \\ 3 \\ -1 \end{bmatrix}$ has
 - a) a unique solution,
 - b) no solution,
 - c) infinitely many solutions.

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.