IMAT

Analyse dp

 $\label{lem:probabilités} Application mécanique, optimisation probabilités, géométrie algébrique, codage orthographique, informatique. Numérique.$

imath.fr

Buchitte Guy, google scholar

1. Principes généraux en optimisation 2. Analyse convexe 3. Problèmes en dualité (en dimension infinie) 4. Application en transport optimal

Problèmes du calcul des variations.

Chapitre 1

Principes généraux en optimisation

1.1 initiation

On considère des problèmes du type : $\inf\{F(u)|u\in X\}$, où X—espace vectoriel (Banach de dimension infinie) $F:u\in X\to]-\infty,+\infty]$

- Existence d'un minimisation ù
- Unicité?
- Conditions d'optimalisés

Nécessaire ou suffisante ou des deux. Si dom $F \neq \emptyset$.

Remarque. Il existe une suite (u_n) dans X telle que $\lim_{n\to\infty} F(u_n) = \inf_X F$

Notations 1. dom $F = \{u \in X | F(u) < +\infty\}.$

Si dom $F \neq \emptyset \Rightarrow \inf F < +\infty$. $\forall \alpha > \inf_X F \exists u \in X \text{ tel que inf } X F \leq F(u) < \alpha$. (u_n) est une suite minimisante.

1.2 Cas $X = \mathbb{R}^N$

Soit $f: \mathbb{R}^N \to \mathbb{R}$ continue et C une partie fermée, non vide de \mathbb{R}^N .

Théorème 1. f atteint son minimum sur C sous l'une des conditions suivantes :

- (i) C est bornée
- (ii) $\lim_{\|x\|\to+\infty} f(x) \le +\infty$ (coercitive)

Démonstration. Soit (x_n) une suite minimalé i.e. $x_n \in C$ et $f(x_n) \to \alpha := \inf_X f$.

Cas i) $x_n \in C$ compact $\Rightarrow \exists x_{n_k}, \exists \bar{x} | x_{n_k} \to \bar{x}$. Alors $\alpha = \lim_{n \to \infty} f(x_{n_k}) = f(\bar{x})$ par continuité de f au pt \bar{x}

Cas ii) Soit $\beta > \alpha$. Puisque $f(x) \to +\infty$ qd $n||x|| \to \infty$: $\exists R > 0|f(x) > \beta si||x|| \ge R$. D'autre part $\exists N | \forall n \ge N f(x_n) \le \beta$. Donc on a $||x_n|| \le R$ $\forall n \ge N$ et la suite (x_n) est bornée. Donc $\exists x_{n_k}, \ \exists \bar{x} \in \mathbb{R}^N | x_{n_k} \to \bar{x}. \ x_{n_k} \in C$ fermé et $x_{n_k} \to \bar{x} \Rightarrow \bar{x} \in C$. donc on a: $\bar{x} \in C$ et $f(x) = \lim_{k \to \infty} f(x_{n_k}) = \alpha = \inf_C f$ Bien on a: $F: X \to]-\infty, +\infty$

F(x) = f(s) si $x \in C$ et $+\infty$ sinon, $X = \mathbb{R}^n$, $\inf_C f = \inf_X F$.

Remarque. Ici F n'est pas continue mais dans les cas i) et ii), on a $\lim_{\|x\| \to \infty} F(x) =$ $+\infty$. En optimisation f s'appelle le critère et C est la contrainte. $F = f + \delta_C$. Où $\delta_C = 0$ $si \ x \in C \ et +\infty \ sinon.$

Mais F vérifie la propriété $x_n \to x \Rightarrow \liminf_{n \to \infty} F(x_n) \ge F(x)$ ($\liminf_{n \to \infty} F(x) = \max_{n \to \infty} F(x)$)

 $\liminf_{n\to\infty} [f(x_n) + \delta_C(x_n)] \ge \underbrace{\liminf_{n\to\infty} f(x_n)}_{\to\infty} + \underbrace{\liminf_{n\to\infty} \delta_C(x_n)}_{\to\infty}) \\ \liminf_{n\to+\infty} \delta_C(x_n) \stackrel{?}{\ge} \delta_C(x).$ f(x)

<u>1er</u> cas $\liminf_{n\to\infty} \delta_C(x_n) < +\infty$. $\forall N \exists n > N \ x_n \in C \Rightarrow \exists x_{n_k} | x_{n_k} \in C \forall k \Rightarrow x \in C \ (C$ est fermé) $\Rightarrow \delta_C(x) = 0$. $\underline{\text{2me}}$ cas $\liminf_{n \to \infty} \delta_C(x_n) = +\infty$ trivial.

Autre preuve. $x \in C$ —trivial; $x \notin C \Rightarrow \exists N | x_n \notin C \ \forall n \geq N \Rightarrow \delta_C(x_n) = +\infty \ \forall n \geq N$.

Définition 1. $F:(X,d) \rightarrow]-\infty,+\infty]$ espace métrique est SEMI-CONTINUE Inférieure au point $x \in X$ si $\forall \alpha < F(x) \exists R > 0 \mid d(x,y) < R \Rightarrow F(y) > \alpha$ (ou bien $\exists V$ ouvert contenant x tel que $\inf_V F > \alpha$)

Définition 2. F est f.c.i sur X (f.s.c.—Fermer Semi-Continuons) si F est s.c.i. en tout point $x \in X$.

Lemme 1. F est s.c.i. sur X si et seulement si l'une des conditions suivantes est vérifié :

- 1. $\forall R \in \mathbb{R} | \{F \leq R\} \text{ est un ferm\'e de } X \text{ } (\{F \leq R\} = \{x \in X | F(u) \leq R\}) \}$
- 2. L'ensemble epi $F = \{(u, x) \in X \times \mathbb{R} | F(u) \leq \alpha\}$ est fermé dans $X \times \mathbb{R}$.
- 3. On a pour toute suite (u_n) dans X $u_n \to u \Rightarrow \liminf_{n \to \infty} F(u_n) \geq F(u)$

$$\begin{split} X &= \mathbb{R} \ F(x) = \begin{cases} 0, & \text{si } x \neq 0 \\ -1, & \text{si } x = 0 \end{cases} \\ & \text{epi} \, F = \{(x, \alpha), F(x) \leq \alpha\}. \ F_n(x) = \begin{cases} 0, & \text{si } x \leq 0 \text{ ou } x \geq \frac{1}{n} \\ 1 - n|x|, & \text{si } 0 \leq |x| \leq \frac{1}{n}. \end{cases} \end{split}$$

Théorème 2. Soit $F: X \to]-\infty, +\infty]$ où X est un e.v.n. local compact; F s.c.i. et coercive alors F atteint son minimum et l'ensemble ses solutions Argmin $F = \{u \in \mathcal{E} \mid v \in \mathcal{E}\}$

Démonstration. Soit α_n une suite de de réels telle que : $\alpha_{n+1} \leq \alpha_n$. $\alpha_n \to \inf_X F\alpha_n > 0$ $\inf_X F$. Posons $K_n = \{u \in X | F(u) \le \alpha_n\}$. On a :

- $-K_n \neq \emptyset \text{ (car } \alpha_n > \inf F)$
- $-K_{n+1} \subset K_n \ (\operatorname{car} \ \alpha_{n+1} < \alpha_n)$

 $X|F(x) = \inf F$ est un compact non vide.

- K_n fermé (car F est s.c.i.)
- Posons $K = \bigcap_{n=1}^{\infty} K_n$. Si $\lim_{\|u\| \to +\infty} F(u) = +\infty$, alors $\exists R > 0$. $K_n \subset \{\|u\| \leq R\}$ (c'est compact de X) $\forall n$. (car $\exists R > 0 |||u|| > r \Rightarrow F(u) > \alpha_n \forall n$) (K_n) et une suite \searrow de compacts non vides : K_n est fermé borné Donc $K = \bigcap K_n$ est donc un compact non vide. Or $K = \{u \in X | F(u) \le \alpha_n \forall n\} = \{u \in X | F(u) \le \inf_X F\} = \operatorname{Argmin} F$.

Problème 1. X Banach dim $X = +\infty \Rightarrow X$ non local compact; Idée: utiliser une topologie G plus faible que la topologie de la norme et telle que :

— F est G s.c.i. et $\forall \alpha | \{F \leq \alpha\}$ est G-compact.

1.3 Cas où X est un Hilbert

Rappel. X Hilbert avec produit scalaire $(u|v) ||u|| = \sqrt{(u|u)}$. Soit C convexe fermé non vide de X; $x \in X$ $f: y \in X \to ||x - y||$; $\inf_{u \in C} ||x - y|| = d(x, C)$ distance de x à C.

Théorème 3. $\exists !x^* \in C \ tel \ que \ \|x-x^*\| = d(x,C) = \inf_{y \in C} \|x-y\|.$ (ici $F(y) = \|x-y\| + \delta_C(y)$).

Remarque. F est s.c.i. et coercive. $(\lim_{\|y\|\to+\infty} \|x-y\|=+\infty)$ mais X n'est pas local compact.

 $\begin{array}{ll} \textit{D\'{e}monstration}. \ \text{Soit} \ (y_n) \ \text{une suite dans} \ C \ \text{telle que} \ \|x-y_n\| \to \alpha = d(x,C). \ \text{Alors on} \\ \text{montre que} \ (y_n) \ \text{est une suite de Cauchy en utilisant} : \|a-b\|^2 + \|a+b\|^2 = 2\|a\|^2 + 2\|b\|^2 \\ a = \frac{x-y_n}{2}, \ b = \frac{x-y_m}{2}. \ \text{donc} \ \frac{\|y_n-y_m\|^2}{4} + \left\|x-\frac{y_n+y_m}{2}\right\|^2 = \frac{\|x-y_n\|^2}{2} + \frac{\|x-y_m\|^2}{2} \to \alpha^2 \ (C \ \text{convexe} \ \frac{y_n+y_m}{2} \in C \ \text{et} \ \left\|x-\frac{y_n+y_m}{2}\right\| \geq \alpha) \end{array}$

$$x_1^*, \, x_2^* \text{ solutions} \Rightarrow x_1^* + x_2^*/2 \text{ solution. } 0 \leq \left\| x - \frac{x_1^* + x_2^*}{2} \right\| \leq \frac{1}{2} \| x - x_1^* \| + \frac{1}{2} \| x - x_1^* \| < \frac{1}{2} \alpha + \frac{1}{2} \alpha$$

 x^* est solution $\Leftrightarrow \operatorname{Re}((x^* - x | x^* - y)) \leq 0 \ \forall y \in C. \ X$ espace de Hilbert sur \mathbb{R} , a(u, v) forme bilinéaire symétrique : (a(v, u) = a(u, v)). Telle que

- $|a(u,v)| \le C||u|| ||v||$ (continuité) $\forall (a,v) \in X \times X$
- $-\exists k > 0 \ a(u, u) \ge k \|u\|^2 \ \forall u \in X$
- f une forme linéaire continue sur X ($f \in X^*$) (notation $\langle f, u \rangle$ au bien de f(v)).

Théorème 4 (Lax-Milgram). $\exists ! u \in X \text{ tel que } a(u,v) = \langle f,v \rangle \ \forall v \in X.$ De plus, si on pose $F(u) = \frac{1}{2}a(v,u) - \langle f,v \rangle$, on $a: F(u) \leq F(v) \ \forall v \in X \ (i.e. \ F(u) = \min_X F)$ et u est l'unique minimiser de F.

Remarque. F est continue d'après i) (exo) $\lim_{\|u\|\to\infty} F(u) = +\infty$ d'après (ii) (exo) $(F(u) \ge k\|u\|^2 - \langle f, u \rangle \ge k\|u\|_X^2 - \|f\|_{X^*}\|u\|_X)$ F est convexe.

Corollaire 1 (Stampacchia). Soit C un convexe fermé de X et $E(v) = \frac{1}{2}a(v,v) - \langle f,v \rangle$ (qui est convexe, continue, convexe sur X) ($F(v) = E(v) + \delta_C(v)$). Alors $\exists ! u \in C$ tel que $E(u) = \inf_{v \in C} E(v)u$ est caractérisée par l'inéquation : $a(u, v - u) \ge \langle f, v - u \rangle \, \forall v \in C$.

Remarque. On prenant C = X, on retrouve Lux-Milgran car $a(u, w) \ge \langle f, w \rangle \ \forall w \in X(w = v - u) \Rightarrow a(u, w) = \langle f, w \rangle$.

$$\begin{array}{l} a: X \times X \to \mathbb{R} \ f \in X^* \ \begin{cases} a(u,v) \leq M \|u\| \|v\| \\ a(u,v) \geq k \|u\|^2 \end{cases}. \\ \inf_{u \in C} \{ \frac{1}{2} a(u,u) - \langle f, u \rangle \} \ C \ \text{convexe ferm\'e de } X. \\ \exists ! \bar{u} \in C \ \text{tel que } \ \frac{1}{2} a(\bar{u},\bar{u}) - \langle f,\bar{u} \rangle \leq \frac{1}{2} a(v,v) - \langle f,v \rangle \ \ \forall v \in C. \ \text{Alors } a(\bar{u},v-\bar{u}) \geq \langle f,v-\bar{u} \rangle \ \ \forall v \in C. \end{cases}$$

Remarque. La fonctionnelle $F(v) = \frac{1}{2}a(v,v) - \langle f,v \rangle$ est continue sur X (exo). Elle est convexe (même strictement convexe). Elle es coercive car $F(v) \ge \frac{k}{2} ||v||_X^2 - ||f||_{X^*} ||v||_X \Rightarrow \lim_{\|v\|\to+\infty} F(v) = +\infty$. Si (u_n) est une suite minimisante sur C, alors (u_n) est bornée dans X. Mais on ne peut pas extraire une sous suite (u_{n_k}) telle que $u_{n_k} \to u$ dans X (X n'est pas loc compact).

Démonstration. (argument analogue à celui du Thm de projection dans un Hilbert) Posons $(u|v)_a = a(u,v)$. C'est une forme bilinéaire symétrique positive : $(u|u)_a \ge$

Posons $(u|v)_a = a(u,v)$. C'est une forme bilinéaire symétrique positive : $(u|u)_a \ge k||u||^2 > 0$ si $u \ne 0$. Donc c'est un produit scalaire sur X. Norme associée $||u||_a = \sqrt{(u|u)_a}$.

Les normes $\|\cdot\|$ et $\|\cdot\|_a$ sont équivalente car : $k\|u\|^2 \le \|u\|_a^2 \le M\|u\|^2$. En particulier $(X, \|\cdot\|_a)$ est un espace de Hilbert. La forme linéaire. $L: v \in X \to \langle f, v \rangle$ est continue dans $(X, \|\cdot\|_a)$. D'après Riesz :

$$\exists ! u_0 \in X \text{ tel que } (u_0|v)_a = \langle f, v \rangle \forall v \in X.$$

D'après le Th
m de projection (C est un convexe ferme de $(X, \|\cdot\|)$) :

$$\exists ! \bar{u} \in C \text{ tel que } ||u_0 - \bar{u}||_a = \inf_{u \in C} ||u_0 - v||_a.$$

En particulier, on aura:

$$a(\bar{u} - u_0, \bar{u} - u_0) = \inf_{u \in C} a(v - u_0, v - u_0)$$

$$\begin{array}{l} \text{Or } \frac{1}{2}a(v-u_0,v-u_0) = \frac{a(v,v)}{2} - a(v,u_0) + \frac{a(u_0,u_0)}{2} = \frac{1}{2}a(v,v) - \langle f,v \rangle + \frac{a(u_0,u_0)}{2} \text{ d'où } \\ \frac{1}{2}a(v,v) - \langle f,v \rangle \geq \frac{1}{2}a(\bar{u},\bar{u}) - \langle f,\bar{u} \rangle \ \forall v \in X. \ (\frac{1}{2}a(v-u_0,v-u_0) - \frac{a(u_0,u_0)}{2} \geq \frac{a(\bar{u}-u_0,\bar{u}-u_0)}{2} - \frac{a(u_0,u_0)}{2}) \end{array}$$

En fait on a : $\bar{u} \in \operatorname{Argmin}_C F \Leftrightarrow \bar{u} = \operatorname{proj}_C u_0$.

De plus toute suite minimisante (u_n) vérifie $||u_0 - u_n||_d \to \inf_{u \in C} ||u_0 - v||_a$ et donc de Cauchy pour $||\cdot||_a$ (donc aussi $||\cdot||$) $\bar{u}sol \Leftrightarrow \bar{u} = \operatorname{proj}_{C} u_0 \Leftrightarrow (u_0 - \bar{u}|u_0 - v)_{-} \leq 0 \forall v \in C \Leftrightarrow a(u_0 - \bar{u}|v - u_0) \leq 0 \ \forall v \in C$

 $\bar{u}sol \Leftrightarrow \bar{u} = \operatorname{proj}_C u_0 \Leftrightarrow (u_0 - \bar{u}|u_0 - v)_a \leq 0 \forall v \in C \Leftrightarrow a(u_0 - \bar{u}|v - u_0) \leq 0 \ \forall v \in C \Leftrightarrow a(\bar{u} - u_0|\bar{u} - v) \leq 0 \forall v \in C \Leftrightarrow a(\bar{u}, \bar{u} - v) \leq a(u_0, \bar{u} - v) \Leftrightarrow a(\bar{u}, v - \bar{u}) \geq a(u_0, v - \bar{u})$

$$\Leftrightarrow a(\bar{u}, v - \bar{u}) \ge \langle f, v - \bar{u} \rangle \ \forall v \in C.$$

Remarque. Si la contrante C est un sous espace vectoriel fermé V de X on obtient :

$$\bar{u}$$
 minimise $\frac{1}{2}a(v,v) - \langle f,v \rangle$ sur $X \Leftrightarrow a(\bar{u},v) = \langle f,w \rangle \ \forall w \in V$

Si V=X on obtient l'équation $a(\bar{u},w)=\langle f,w\rangle \ \forall w\in X.\ (A\bar{u}|w)=\langle f,w\rangle$ où A opérateur linéaire auto adjacent-continue de X dans $X.\Rightarrow A\bar{u}=f$

Rappel. $A \in s(X)$ $(A^* = A.)$ a(u,v) = (Au|v) bilinéaire symétrique $|a(u,v)| \le a(u,v)$

 $M\|u\|\|v\|$

Exemple 1. élémentaire. $X = \{u \in L^2(0,1) \mid u' \in L^2(0,1)\}\ u \in X \Leftrightarrow u \in L^2(0,1)$ et

 $\exists v \in L^2(0,1) \text{ tel que} : \int_0^1 u\varphi' \, dx = -\int_0^1 v\varphi \, dx$

 $\forall f \in C^1(0,1) \text{ et } \varphi(0) = \varphi(1) = 0.$ — si $u \in C^1$ on trouve v = u'

— si u est C continue, C^1 par morceaux u=1 si $x<\frac{1}{2}$ et -1 si $x>\frac{1}{2}\int_0^1 u\varphi'=\int_0^{\frac{1}{2}}u\varphi'+\int_{\frac{1}{2}}^1 u\varphi'=-\int_0^1 v\varphi+(u(\frac{1}{2}+0)-u(\frac{1}{2}-0))\varphi(\frac{1}{2}).$

 $(u|v) = \int_0^1 (uv + u'v') \, dx \, ||u||^2 = \int_0^1 (|u|^2 + |u'|^2) \, dx. \, u \in X \Rightarrow \exists \tilde{u} = u \text{ pp } |\tilde{u}(x) - u'v'|^2 + |u'v'|^2 + |u'v'|^2$

 $\tilde{u}(y)| \leq \|u'\|_{L^2(0,1)} \sqrt{|x-y|} \ x < y \ |u(x) - u(y)| = |\int_x^y u'(t) \, \mathrm{d}t| \leq \sqrt{|y-x|} \sqrt{\int_0^1 |u'|^2} \, \mathrm{d}t.$ $\inf_{x} \quad \left[\frac{1}{2} \int_0^1 |u'|^2 \, \mathrm{d}x - \int_0^1 fv \, \mathrm{d}x\right], \ f \in L^1(0,1).$

 $v \in X$ v(0) = v(1) = 0 $v \in X$ v(0) = v(1) = 0

Soit $H = \{u \in X \mid u(0) = u(1) = 0\}$. $u_n \xrightarrow{X} \Rightarrow u_n \to u$ uniformément sur [0,1]. C'est un sous espace fermé de X, donc un Hilbert.

Ici
$$a(u, v) = \int_0^1 u'v' dx$$

 $- |a(u, v)| \le ||x'||_{L^2} ||v||_{L^2} \le ||u||_H ||v||_H$

$$-a(u,u) = \int_0^1 |u'|^2 \, \mathrm{d}x \stackrel{!}{\geq} k \|u\|_H^2. \ u(x) = u(0) + \int_0^1 u'(t) \, \mathrm{d}t \Rightarrow |u(x)| \leq \|u'\|_{L^2} \sqrt{x} \leq \|u'\|_{L^2} \Rightarrow \int_0^1 |u(x)|^2 \, \mathrm{d}x \leq \|u'\|_{L^2} \Rightarrow \|u\|_{L^2} \leq \|u'\|_{L^2} \text{ si } u \in H, \text{ Donc } 2 \ a(u,u) \geq \int_0^1 u'^2 \, \mathrm{d}x + \int_0^1 u^2 \, \mathrm{d}x = \|u\|_H^2.$$

$$a(u,u) \geq \frac{1}{2} \|u\|_H^2$$

Lax Milgram $\Rightarrow \exists ! u \in H \mid \frac{1}{2} u'^2 - \int_0^1 f u' \, dx \le \frac{1}{2} \int_0^1 |v'|^2 - \int_0^1 f v \, dx \, \forall v \in H.$

Conclusion de la schuhenu $a(u,v)=\langle f,v\rangle \, \forall v\in H \, \int_0^1 u'v'\,\mathrm{d}x=\int_0^1 fv\,\mathrm{d}x, \forall v\in H(u(0)=v(1)=0).$

Supposons que la sol u est 2 fois dérivable sur $]0,1[\int_0^1 u'v' dx = [u'v]_0^1 - \int_0^1 u''v dx \Rightarrow -\int u''v dx = \int_0^1 fx dx \forall v \in H \Leftrightarrow -u'' = f$ Ainsi

$$\begin{cases} -u'' = f \text{ sur }]0, 1[\\ u(0) = u(1) = 0 \end{cases}$$

Posons
$$f(x) = \int_0^1 x f(t) dt - u' = F(x) + \lambda$$
. $u(0) = u(1) = 0 \Rightarrow \int_0^1 u'(t) dt = 0 \Rightarrow \lambda = -\int_0^1 F(x) dx$. $u(x) = u(0) + \int_0^x u'(t) dt \Rightarrow u(x) = x \int_0^1 F(t) dt - \int_0^x F(t) dt$.

1.4 Cas où X est un Banach (non Hilbert)

On considère une topologie C sur X telle que $\forall R \{u \in X | |u|| \leq R\}$ est C-compact.

Rappel. C est plus faible que la topologie associée a la norme.

1.4.1 Cas Importantes

— X est un Banach réflexif $(X^* = X)$ $x \in X \to \hat{x} \in X^{**}$ ou $\hat{x}(f) = f(x) \forall f \in X^*$ (évaluation de f au point x) $\|\hat{x}\|_{X^{**}} = \sup_{\|f\|_{X^*} \le 1} \hat{x}(f) = \sup_{\|f\|_{X^*} \le 1} f(x) = \|x\|_X$. L'application $x \in X \to \hat{x} \in X^{**}$ est une isométrie.

C=topologie faible de X. $x_n \stackrel{\text{faible}}{\to} x \stackrel{\text{def}}{\Leftrightarrow} \forall f \in X^* \ f(x_n) \to f(x)$

Ex. X Hilbert sur $\mathbb{R}(\cdot|\cdot)$. $f \in X^* \Rightarrow \exists y \in X \mid f(x_n) = (x_n|y)$

 $x_n \overset{\text{faible}}{\to} x \Leftrightarrow (x_n|y) \to (x|y) \ \forall y \in X. \ x_n \overset{\text{febi}}{\to} x \Leftrightarrow x_n \overset{\text{faible}}{\to} x \oplus \limsup_{n \to \infty} \|x_n\| \leq \|x\|.$

On a toujours : $x_n \stackrel{\text{faible}}{\to} x \Rightarrow \liminf_{n \to \infty} ||x_n|| \ge x$ La fondamentale $F(x) = \frac{1}{2}||x||^2 - f(x)$ est C s.c.i. pour tout $f \in X^*$.

Rappel. Dans un Banach réflexif pour tout R > 0, $\{x \in X \mid ||x|| \le R\}$ est faiblement-compact. De toute suite bornée (x_n) on peut extraire une sous-suite (x_{n_k}) telle que il existe $x \in X$ tel que $x_{n_k} \xrightarrow{faible} x$ qd $k \to \infty$.

Exercice 1. X Hilbert $\{e_n, n \in \mathbb{N}\}$ borne orthonormale $||e_n|| = 1$.

 $\forall y \in X \ (e_n|y) \Rightarrow \lim_{n \to \infty} (y|e_n) = 0 \forall y \in Ee_n \to 0 \text{ faiblement.}$

Exercise 2. $X = L^2(0,1)$ $f_n(x) = \sin(2\pi nx)$ $(f_n|g) = \int_0^1 f_n(x)g(x) dx \to \int_0^1 fg$ $|\int_0^1 g(x)\sin(2\pi nx) dx| = |\int_0^1 g'(x)\frac{\cos(2\pi nx)}{2\pi n} dx| \le \frac{C}{2\pi n} \to 0.$ $\int_0^1 g(x)\sin(2\pi nx) dx = \frac{1}{2}.$ $||f_n|| = \frac{1}{\sqrt{2}}$

$$L^{p}(\Omega) \ \Omega \subset \mathbb{R}^{N} u \in L^{p}(\Omega) \Leftrightarrow \int_{\Omega} |u|^{p} \, \mathrm{d}x < +\infty. \ \|u\|_{L^{p}} = (\int_{\Omega} |u|^{p} \, \mathrm{d}x)^{\frac{1}{p}} prel \in [1, +\infty[.]$$

$$L^{\infty}(\Omega) = \{u : \Omega \to \mathbb{R} \ \exists k \mid (u|u) \leq k\} \ \|u\|_{L^{\infty}(\Omega)} = \inf\{k \mid |u(x)| \leq kpp\}$$

Sii Ω est borne dans \mathbb{R}^N $L^p(\Omega) \subset L^q(\Omega)$ si $1 \leq q \leq p \leq +\infty$. $u \in L^\infty(\Omega) \Rightarrow \|u\|_{L^\infty(\Omega)} = \lim_{q \to \infty} \|u\|_{L^q(\Omega)}$ $L^p(\Omega)$ est Banach séparable $\forall p \in [1, +\infty]$. $L^p(\Omega)$ réflexif $\Leftrightarrow 1 . <math>(L^p(\Omega))^* \sim L^{p'}(\Omega)$ si $p \in [1, +\infty[$ et $p' = \frac{p}{p-1}$ $(\frac{1}{p} + \frac{1}{p'} = 1)$; $p' = \infty$ si p = 1.

$$(L^{p}(\Omega))^{*} \sim L^{p'}(\Omega) \text{ si } p \in [1, +\infty[. L^{p}(\Omega) \text{ reliex} 1 \Leftrightarrow 1
$$l \in (L^{p}(\Omega))^{*} \Rightarrow \exists g \in L^{p'}(\Omega) \mid l(f) = \int_{\Omega} fg \, \mathrm{d}x \, \forall f \in L^{p}(\Omega), (L^{p}(\Omega))^{**} \sim (L^{p'}) \sim L^{p}(\Omega)$$

$$\text{si } 1$$$$

faiblement dans
$$L^1(\mathbb{R})$$
 si (définition) $\forall v \in L^{\infty} \int_0^1 u_n v \, dx \to \int_0^1 uv \, dx$. Soit v continue sur $[0,1]$.
$$\int_0^1 u_n v \, dx = n \int_0^{\frac{1}{n}} v(x) \, dx. \text{ Donc } \int_0^1 u_n v \, dx \to v(0). \ \langle \delta_0, v \rangle = v(0). \text{ Si } u \text{ existe, on doit } v(0) = v(0).$$

 $L^1(\Omega)$ n'est pas réflexif $\Omega = \mathbb{R}$ $u_n(x) = \begin{cases} n \text{ si } 0 \leq x \leq \frac{1}{n} \\ 0 \text{ sinon} \end{cases} \|u_n\|_{L^1(\mathbb{R})} = 1.$ $u_n \to u$

avoir $u(0) = \int uv \, dx$. 2eme cas important. X est le dual d'un espace de Bansch séparable Y. $X = Y^*$ (ex.

Zeme cas important. X est le dual d'un espace de Bansch separable Y. $X=Y^*$ (ex. $X=L^{\infty}(\Omega), Y=L^{1}(\Omega)$))(ex. $X=M_b(\mathbb{R}), Y=C_0(\mathbb{R})$)
On choisit pour C la topologie *-faible Soit (f_n) suite dans X^* .

Définition 3.
$$f_n \stackrel{*}{\to} f \Leftrightarrow \forall x \in X \ f_n(x) \to f(x)$$
.

Théorème 5. $||f_n||_{X^*} \leq M \ \forall n \Rightarrow \exists f_{n_k}, \exists f \in X \ tel \ que \ f_{n_k} \stackrel{*}{\to} f.$

Exemple 1. Soit (u_n) une suite dans $L^{\infty}(\Omega)$ (Ω ouvert de \mathbb{R}^N). Telle que $|u_n(x)| \leq M$ pp $x \in \Omega$, $\forall n \in \mathbb{N}$. Alors $\exists u \in L^{\infty}(\Omega)$, $\exists u_{n_k} \mid \lim_{k \to \infty} \int_{\Omega} u_{n_k} v \, \mathrm{d}x = \int_{\Omega} uv \, \mathrm{d}x \ \forall v \in L^1(\Omega)$.

Exemple 2. Soit (ψ_n) une suite de mesures positives bornées sur [0,1]. Alors $\exists \psi$ mesure borne sur [0,1] telle que $\int_0^1 \varphi \, d\psi \to \int_0^1 \varphi \, d\psi \, \forall \varphi$ continue sur [0,1] $\psi_n = f_n \, dx \, \psi = \delta_0$ $\psi_n \stackrel{*}{\to} \delta_0, \psi$

X Banach G faible si X réflexif et *faible si $X = Y^{\perp}Y$ Banach séparable. Propreté $\|u_n\|_X \leq C \Rightarrow \exists u \in X \exists u_{nk} \mid u_{nk} \stackrel{G}{\rightarrow} u$ Notations : $\begin{cases} u_n \rightharpoonup u \text{ faible} \\ u_n \stackrel{*}{\rightharpoonup} u \text{ *faible} \end{cases}$

 $(u_n \rightharpoonup u \text{ rande}$

Théorème 6. Soit $F: X \to]-\infty, +\infty]$ telle que :

1. F est G s.c.i. (et $\exists u_0 \in X \ F(u_0) < +\infty$)

 $2. \lim_{\|u\| \to \infty} F(u) = +\infty$

Alors $\operatorname{Argmin} F$ est un G-compact non vide de X.

Remarque. La propriété i) est souvent difficile à établir même si F est continue par la topologie forte de X.

Exemple 3.
$$X = \{u \in C^0([0,1]) \mid u(0) = u(1) = 0 \mid u' \in L^2(0,1)\} \ I =]0,1[\|u\|_X = \sqrt{\int_0^1 |u|^2 + |u'|^2 \, \mathrm{d}x} \ (\text{ ou bien } \|u\| = (\int_0^1 |u'|^2 \, \mathrm{d}x)^{\frac{1}{2}}) \ (|u(x)| \le \int_0^1 |u'(x)| \, \mathrm{d}x) \le \|u'\|_{L^2} \Rightarrow \|u\|_{L^2} \le \|u'\|_{L^2})$$

X est Hilbert noté $H_0^1(I)$ (ou bien $W_0^{1,2}(I)$)

Choix de G. G topologie faible (X est réflexif) (ou G topologie associe a la convergence uniforme $u_n \stackrel{G}{\to} si \sup_I |u_n - u| \to 0$)

 $u_n \rightharpoonup u$ faiblement $\Leftrightarrow \operatorname{def} \begin{cases} u_n \rightharpoonup u \ L^2\text{-faible} \\ u'_n \rightharpoonup u' \ L^2\text{-faible} \end{cases}$

 $\overset{Rellich}{\Rightarrow} u_n \to u \text{ uniformément. } |u_n(x) - u_n(y)| \le \sqrt{|y - x|} ||u_n'||_{L^2}$

Théorème 7 (Ascoli). u_n continue sur un compact équicontinue et $\forall x(u_n(x))$ bornée dans $\mathbb{R} \Rightarrow \exists u_{nk}, \exists u \ continue \ | \ u_{nk} \rightarrow u \ uniformément.$

$$\inf_{u \in X} F(u)oF(u) = \int_0^1 |1 - u'|^2 dx + \int_0^1 u^2 dx$$

• On a bien que $\lim_{\|u\|_{Y}\to+\infty} F(u) = +\infty$

$$\int_0^1 |(u')^2 - 1| \, \mathrm{d}x \ge \int_0^1 |u'|^2 - 1$$
$$\ge ||u||_X^2 - 1$$

• F est elle faiblement s.c.i. Soit φ une fonction 1-périodique de classe C^1 telle que $\varphi(0)=\varphi(1)=0$ (par exemple $\varphi(x)=\sin 2\pi x$). Soit $u_n=\frac{1}{n}\varphi(nx)$. Alors $u_n(0)=u_n(1)=0$ ($\varphi(0)=\varphi(1)=0$). $u_n'=\varphi'(nx)\int_0^1|u_n|^2\,\mathrm{d}x=\frac{1}{n^2}\int_0^1|\varphi(nx)|^2\,\mathrm{d}x\leq \frac{C}{n^2}$ où $C=\sup|\varphi^2|\Rightarrow u_n\to 0$ uniformément et dans $L^2(I)$.

$$\int_0^1 |u_n'|^2 dx = \int_0^1 |\varphi'(nx)|^2 dx = \int_0^1 |\varphi'(y)|^2 dy$$

Donc (u_n) est bornée dans X. Soit (u_{nk}) une sous-suite telle que $u_{nk} \stackrel{G}{\to} u$ (G=faible sans X)

Alors on a u = 0 d'où $u_n \stackrel{G}{\to} 0$ $(u'_n \to 0 \text{ dans } L^2(I) \text{ faible})$

Exemple 4. $\psi: \mathbb{R} \to \mathbb{R}$ 1 périodique $\int_0^1 |\psi|^2 dx < +\infty$. Alors $\psi_n(x) = \psi(nx)$ est une suite bornée dans $L^2(0,1)$ et bornée dans $L^1(0,1)$ et $\psi_n \to c$ faiblement dans $L^2(0,1)$ où $c = \int_0^1 \psi(y) dy$. En particulier si $\psi = \varphi'$ où φ est 1-périodique, on a $\psi_n \to 0$ car $\int_0^1 \psi(y) dy = \int_0^1 \varphi'(y) dy = \varphi(1) - \varphi(0) = 0$. Conclusion $u_n \to 0$ faiblement dans X. Calculons:

$$\lim_{n \to \infty} \inf F(u_n) = \lim_{n \to \infty} \inf \int_0^1 |1 - (u'_n)^2|^2 dx$$

$$= \lim_{n \to \infty} \inf \int_0^1 |1 - |$$

$$= \lim_{n \to \infty} \inf \int_0^1 |1 - \varphi^2| dy$$

Si
$$F$$
 était G s.c.i., on aurait : $\int_0^1 |1 - (\varphi')^2| dx \ge 1$. $\forall \varphi$ 1-périodique avec $\varphi(0) = \varphi(1) = 0$.
Impossible (prendre $\varphi = \frac{1}{2} - |\frac{1}{2} - x|$).
• $\inf_{u \in X} F(u) = 0$
 $u_n = \frac{1}{n} \varphi(nx)$ où $\varphi(x) = x$ si $x < \frac{1}{2}$ et $1 - x$ si $x > \frac{1}{2}$ sur la période $[0, 1]$
Alors $F(u_n) \to 0$ qd $n \to \infty$ car $\int_0^1 |1 - |u'_n|^2| dx = 0$ et $\int u_n^2 = \to 0$.

Puisque $F \geq 0$, on a donc $\inf_X F = 0$. L'infinum n'est pas atteint car $F(u) = 0 \Rightarrow$ $\int_0^1 |1 - u'|^2 dx + \int_0^1 |u|^2 dx = 0 \Rightarrow u = 0$ pp et $u' = \pm 1$ pp impossible. Donc F(u) > 0 $0 \ \forall u \in X.$

Raidon Théorique
Exemple 5.
$$X = H_0^1(0,1)$$
 $F(u) = \frac{1}{2} \int_0^1 |u'|^2 + \int_0^1 g(u) dx$ où $g : \mathbb{R} \to [0,+\infty]$ est s.c.i.

Exemple 5. $X = H_0^1(0,1)$ $F(u) = \frac{1}{2} \int_0^1 |u'|^2 + \int_0^1 g(u) \, dx$ où $g: \mathbb{R} \to [0,+\infty]$ est s.c.i.

Exemple 5.
$$X = H_0^1(0,1)$$
 $F(u) = \frac{1}{2} \int_0^1 |u'|^2 + \int_0^1 g(u) \, dx$ où $g : \mathbb{R} \to [0,+\infty]$ est s.c.i. $G = \text{topologie faible } de X \left(u_n \stackrel{G}{\rightharpoonup} u \Rightarrow \begin{cases} u'_n \to u' \text{ faible } L^{(0,1)} \\ u_n \to u \text{ uniformément} \end{cases} \right)$

 $\Rightarrow \lim \inf_{n \to \infty} \int_0^1 g(u_n) dx \ge \int_0^1 (\lim \inf_n (g(u_n))) dx \ge \int g(x) dx$ (car $\lim \inf_{n \to \infty} g(u_n) \ge \int_0^1 g(u_n) dx$)

où $g: \mathbb{R} \to [0, +\infty]$ est s.c.i. Alors F vérifie : i G s.c.i.

i
$$G$$
 s.c.i. ii $\lim_{\|u\| \to +\infty} F(u) = +\infty \ (F(u) \ge \frac{1}{2} \|u'\|_{L^2}^2 \ge \frac{1}{4} \|u\|_X^2)$

Soit $u_n \stackrel{G}{\to} u$. Alors $u_n' \to u'$ faible $\Rightarrow \liminf_{n \to \infty} \int_0^1 |u_n'|^2 \ge \int_0^1 |u'|$. ($\liminf \|u_n'\| \ge u$) $\|u'\|$

$$g(u)$$
).

Exemple 6. Ω ouvert convexe et fermé de \mathbb{R}^d

Exemple 6. Wo overt convexe et ferme de
$$\mathbb{R}^{-}$$
 $k(x)$ continue : $\bar{\Omega} \to]0, +\infty[$. Soit $a, b \in \Omega$. $\sup\{u(b) - u(a) \mid u \in Lip(\Omega) | \nabla u(x) | \leq 1$

k(x) sur Ω } := $M_{k,\Omega}(a,b)$

Soit
$$\gamma(t): [0,1] \to \Omega \mid \gamma(0) = aet\gamma(1) = b$$

$$u(b) - u(a) = u(\gamma(1)) - u(\gamma(0)) = u(\gamma(t))|_0^1 = \int_0^1 (u \circ \gamma)'(t) dt$$

 $F(0) = \int_0^1 |1 - 0|^2 dx = 1$

où
$$C = \sup_{\bar{\Omega}} k(x)$$

 $L(\gamma) = \text{longer}$

 $L(\gamma)$ =longer de la courbe

On considère $X = Lip(\Omega) = \{u \text{ continue}, \ u(b) = 0 \mid \nabla u \in L^{\infty}(\Omega)\}$ $F: u \in X \to \begin{cases} u(a) \text{ si } |\nabla u| \le k|x| \text{ et } u(b) = 0 \\ & \text{for } x = 0 \end{cases}$

$$\begin{aligned} (\gamma(t))|_0^1 &= \int_0^1 (u \circ \gamma)'(t) \, \mathrm{d}t \\ &= \int_0^1 \nabla u(\gamma(t)) \cdot \gamma'(t) \, \mathrm{d}t \\ &\leq \int_0^1 k(\gamma(t))|\gamma'(t)| \, \mathrm{d}t \end{aligned}$$

 $\leq C \int_{0}^{1} |\gamma'(t)| dt$ $< CL(\gamma)$

Donc $M_{k,\Omega}(a,b) < +\infty$ s'il existe une courbe de longueur finie joignant $a \ ab.$

 $\inf_X F(u) = \inf\{u(a) \mid |\nabla u| \le k \text{ pp sur } \Omega \ u(b) = 0\} = -M_{k,\Omega}(a,b)$ $\|u\|_X \stackrel{\text{def}}{=} \|\nabla u\|_{L^{\infty}(\Omega)}$ (si $\nabla u = 0$ pp $\Rightarrow u = \text{const} \Rightarrow u = 0(\text{car } u(b) = 0)$) Choix de G $\|u_n\|_X \leq C \Rightarrow \|\nabla u_n\|_{L^\infty} \leq CL^\infty(\Omega) = (L^1(\Omega))^*$ Alors $\forall x |u_n(x) - u_n(y)| \leq C|x - y|$ pour y racine de x $\Rightarrow (u_n)$ est équicontinue au point x $u_n(b) = 0 \Rightarrow |u_n(x)| \le CL(\gamma)$ où φ est une courbe joignant b au point x. Alors d'après Ascoli : $\exists u_{uk} \ \exists u \ \text{continue} \ | \ u_{uk} \to u \ \text{uniformément sur} \ \bar{\Omega} \ || \nabla u_{nk} ||_{L^{\infty}} \le$ $M \Rightarrow \nabla u_{nk} \stackrel{*}{\rightharpoonup} u \text{ dans } L^{\infty}(\Omega) \text{ faible.}$ G= converge uniforme sur $\bar{\Omega}$. 1. $F(u) < +\infty \Rightarrow ||u||_X \le \sup_{\Omega} k = M \Rightarrow \lim_{||u|| \to \infty} F(u) = +\infty$ 2. F est G s.c.i. Soit (u_n) une suite telle que $u_n \to u$ uniformément et telle que $\liminf_{n\to\infty} F(u_n) < +\infty$ Il faut montrer que $\liminf F(u_n) \geq F(u)$. Quitte à extraire une sous suite, on peut supposer que $\liminf_n F(u_n) = \lim_{n \to \infty} F(u_n)$. Alors $F(u_n)$ est majoré pour n assez grand et donc $\sup_n \|u_n\|_X < +\infty$. Donc on a $u_n \to u$ uniformément $|\nabla u_n| \leq M$. On a donc $u_n(a) \to u(a)$. Montrons que $u \in X$ et $|\nabla u(x)| \le k(x)$ pp sur Ω . On sait que $\nabla u_n \stackrel{*}{\rightharpoonup} \nabla u$ dans $L^{\infty}(\Omega)$ $\Rightarrow \int_{\Omega} \nabla u_n \cdot v(x) \to \int_{\Omega} \nabla u(x) v(x)$ $\forall v \in (L^1(\Omega))^d \ v(x) = z \mathbb{1}_{B(x_0,\varepsilon)} z \in \mathbb{R}^2$ • $B(x_0,\varepsilon)$ boule centre dans $\Omega \Rightarrow \int_{B(x_0,\varepsilon)} (\nabla u_n(x),z) \to \int_{B(x_0,\varepsilon)} \nabla u(x),z$ $|\int_{B(x_0,\varepsilon)} \nabla u_n(x)z| \le \int_{B(x_0,\varepsilon)} \nabla |u_n(x)| |z| \, \mathrm{d}x \le (\int_{B(x_0,\varepsilon)} k(x) \, \mathrm{d}x) |z|$ d'où q
d $n\to\infty \mid \int_{B(x_0,\varepsilon)} \nabla u(x)z \mid \leq (\int_{B(x,\varepsilon)} k(x)) |z|$

 $\Rightarrow \frac{1}{B(x_0,\varepsilon)} |\int_{B(x_0,\varepsilon)} \nabla u_n(x) z \, \mathrm{d}x| \le \frac{1}{B(x_0,\varepsilon)} |\int_{B(x_0,\varepsilon)} k(x) \, \mathrm{d}x| z|$

D'après le Thm des points de Lebesgue pp $x_0 \in \Omega \lim_{\varepsilon \to 0} \frac{1}{B(x_0,\varepsilon)} \int_{B(x_0,\varepsilon)} \nabla u(x) z =$

 $\lim_{\varepsilon \to 0} \frac{1}{B} \int_{B(x_0,\varepsilon)} k(x) \, \mathrm{d}x = k(x_0)$ $\nabla u(x_0) z \le k(x_0) z \, \forall z \in \mathbb{R}^d ppx_0 \in \Omega \Rightarrow |\nabla u(x_0)| \le k(x_0)ppx_0 \in \Omega$ Conclusion $u_n(a) \to u(a) \, u_n(b) \, \forall x \Rightarrow u(b) = 0 \, |\nabla u| \le k(x)ppx \in \Omega$ Donc $u \in X$, avec $|\nabla u| \le k$ pp et F(u) = u(a).

Rappel. $F(u_n) = u_n(a)$. Donc $F(u_n) \to F(u)$ $F(u_n) \to \alpha$, $\alpha < +\infty$ $u_n \rightharpoonup u$ uniformément $\alpha = F(u)$

Ainsi F est G s.c.i. d'où existence d'une solution $u \in X$. On a : $M_{k,\Omega}(a,b) = \sup\{u(b) - a\}$

 $u(a) \mid |\nabla u| \le ksur\Omega\} = \inf(\int_0^1 k(\gamma(t))|\gamma'(t)| dt, \gamma \in Lip(0,1,\Omega) \ \gamma(0) = a \ \gamma(1) = b)$ On a déjà vu que $u(b) - u(a) \le \int_0^1 k(\gamma)|\gamma(a)| \sin u \in X$ et $\gamma \in Lip([0,1],\Omega) \ \gamma(0) = a$ et

 $\gamma(1) = b \Rightarrow M_{\Omega,k}(a,b) \leq \inf\{\int_0^1 k(\gamma)|\gamma'| dt, \ \gamma(0) = a \ \gamma(1) = b \ \}$ —distance géodésique. Posons $\bar{U}(x) = -\inf\{\int_0^1 k(\gamma(t))|\gamma'(t)| dt \ | \ \gamma(0) = x \ \gamma(1) = b \}$

Alors $\bar{u}(b) = 0$ $-\bar{u}(a) = d_{\Omega,k}(a,b)$ —distance géodésique entre a et b.

Si $|\nabla \bar{u}| \le k(x)$ pp sur Ω , alors $M_{\Omega,k}(a,b) \ge -\bar{u}(a) = d_{\Omega,k}(a,b)$

 $\nabla u(x_0)z$

 $u(x) = \lim_{\Omega, k} (u, 0) \ge -u(u) = u_{\Omega, k}(u, 0)$ $z\nabla \bar{u}(x) = \lim_{\Omega, k} \frac{\bar{u}(x+tx) - \bar{u}(x)}{t}$

 $|\bar{u}(x+tz) - \bar{u}(x)| \le \int_0^t k(x+tz)t|z| dz \Rightarrow \nabla \bar{u}(x)z \le k(x)|z|$

 $k(x) = k_1, k(x) = k_2$ $k_1|c - a| + k_2|b - c|$