The impact of syntrophic interaction on microbial communities

Léo Buchenel & Alberto Pascual-García

ETH Zürich

May 25, 2020

Presentation plan

- Introduction to the model
 - Syntrophic interaction
 - Processes at play
 - Dynamical Equations
 - Metaparameters framework
- Peasibility
 - Physical Requirements
 - Feasibility profile
 - Fully feasible region
- Oynamical stability
- 4 Structural stability

Syntrophic interaction

INSERT DRAWING OF SYNTROPHIC MCs

Processes at play

INSERT EXPLANATION OF ALL DIFFERENT PROCESSES AT PLAY (DRAWING)

Dynamical Equations

Temporal evolution of the resources R_{μ} ($\mu = 1, ..., N_R$) and the consumers S_i $(i = 1, ..., N_S)$:

$$\begin{cases} \dot{R}_{\mu} = \left(\sum_{j=1}^{N_S} \gamma_{j\mu} S_j - m_{\mu}\right) R_{\mu} + \sum_{j=1}^{N_S} \alpha_{\mu j} S_j + I_{\mu} \\ \dot{S}_i = \left(\sum_{\nu=1}^{N_R} \sigma_{i\nu} \gamma_{i\nu} R_{\nu} - d_i - \sum_{\nu=1}^{N_R} \alpha_{\nu i}\right) S_i \end{cases}$$
(1a)

$$\dot{S}_i = \left(\sum_{\nu=1}^{N_R} \sigma_{i\nu} \gamma_{i\nu} R_{\nu} - d_i - \sum_{\nu=1}^{N_R} \alpha_{\nu i}\right) S_i \tag{1b}$$

Metaparameters framework

INSERT DIAGRAM WHERE EXPLAIN METAPARAMETERS

Feasibility

Physical Requirements

Impose two conditions:

- Conservation of biomass
- Positivity of the parameters
- \rightarrow restrictions on parameters \rightarrow restrictions on metaparameters

Feasibility

Feasibility profile

Without syntrophy: full feasibility for γ_0 below curve $\sim S_0$

8 / 11

Feasibility

Fully feasible region

Addition of syntrophy \rightarrow only high γ_0 , low S_0 remain feasible

Dynamical stability

Structural stability

Backup slides – Feasibility

Physical Requirements

 We impose that – at equilibrium – no biomass can be created out of nothing, which is translated mathematically by the constraint:

$$\sum_{\nu=1}^{N_R} (1 - \sigma_{i\nu}) \gamma_{i\nu} R_{\nu}^* \ge \sum_{\nu=1}^{N_R} \alpha_{\nu i} \quad \forall i = 1, \dots, N_S.$$
 (2)

• We need every parameter in the model to be positive. In total there are $3N_R + 2N_S + 3N_RN_S$ parameters, constrained by the $N_R + N_S$ fixed points equations. So we pick $2N_R + N_S + 3N_RN_S$ positive parameters and we make sure they verify:

$$\begin{cases}
d_{i} = \sum_{\nu=1}^{N_{R}} \left(\sigma_{i\nu} \gamma_{i\nu} R_{\nu}^{*} - \alpha_{\nu i} \right) > 0 & \forall i = 1, \dots, N_{S}, \\
m_{\mu} = \frac{I_{\mu} - \sum_{j=1}^{N_{S}} \left(\gamma_{j\mu} R_{\mu}^{*} - \alpha_{\mu j} \right) S_{j}^{*}}{R_{\mu}^{*}} > 0 & \forall \mu = 1, \dots, N_{R}.
\end{cases} (3a)$$

Backup slides - Feasibility

Theoretical predictions

• Fully feasible region: Transforming Eqs.(2) and (3) in their metaparameters form, we get an equation that roughly describes the fully feasible zone:

$$\min(1 - \sigma_0, \sigma_0)\gamma_0 R_0 \gtrsim \max_i \left\{ \frac{\deg(A, i)}{\deg(G, i)} \right\} \alpha_0$$
 (4a)

$$\gamma_0 R_0 \lessapprox \min_{\nu} \left\{ \frac{I_0}{\deg(G, \nu) S_0} + \frac{\deg(A, \nu)}{\deg(G, \nu)} \alpha_0 \right\}$$
(4b)