Introducción GERG 2008 Comparación de incertidumbres Conclusiones Referencias

Ecuaciones de estado multiparamétricas - GERG 2008

Federico Benelli

IPQA

28 de Junio 2021

Ecuaciones de estado Ecuaciones de estado multiparamétricas

Introducción

Introducción

El conocimiento de propiedades termodinámicas de gases naturales y mezclas de sus compuestos es de indispensable importancia para la ingeniería básica de procesos técnicos.

El procesado, transporte y almacenamiento de gases naturales requiere el cálculo de propiedades para un amplio espectro de composiciones y condiciones de operación.

Estas propiedades pueden ser calculadas mediante **Ecuaciones de estado**

Introducción

Ecuaciones de estado (EOS)

- EOS Cúbicas
 - Peng-Robinson
 - Redlich-Kwong
 - Soave-Redlich-Kwong
- EOS Moleculares
 - SAFT
- EOS Multiparamétricas
 - AGA8

$$Z = 1 + \frac{\delta B}{K^3} - \delta \sum_{n=0}^{18} C_n^* T^{u_n} (b_n - c_n k_n \delta^{k_n}) \delta^{b_n} \exp(-c_n \delta^{k_n})$$
 (1)

GERG

$$\alpha(\rho, \tau, \overline{x}) = \alpha^{o}(\rho, T, \overline{x}) + \sum_{i=1}^{N} x_{i} \alpha_{oi}^{r}(\delta, \tau) + \Delta \alpha^{r}(\delta, \tau, \overline{x})$$
 (2)

Ecuaciones de estado multiparamétricas

Antecedentes

Ecuaciones de estado multiparamétricas

Estructura General

Son ecuaciones que se basan en el ajuste de datos experimentales para describir la energía libre de Helmholtz residual.

Estructura General

$$\frac{A}{RT} = \alpha(\delta, \tau, \overline{x}) = \alpha^{o}(\rho, T, \overline{x}) + \alpha^{r}(\delta, \tau, \overline{x})$$
(3)

Introducción
GERG 2008
Comparación de incertidumbres
Conclusiones

Origen Estructura Ajuste a datos experimentale:

GERG 2008

Ecuación GERG

Origen

Ecuación AGA8-DC92 (1) limitada a rangos acotados ($250K \le T \le 350K$ y p < 30MPa). Además, presenta mayores incertidumbres al tratar con mezclas inusuales.

Objetivos GERG

- Válida en toda la región de fluidos.
- Incertidumbres \leq a 0,1% en ρ y w.
- Incertidumbres \leq a 1% en otras propiedades.
- Aceptable en rangos con datos de baja calidad.
- Estructura simple.

Ecuación GERG 2008

Estructura

Funciones Reductoras

 $\rho(\overline{x}), \tau(\overline{x})$

Son utilizadas para determinar las variables reducidas de mezclas. Se obtienen ajustando parámetros a datos de mezclas.

Condiciones

- $x_i \rightarrow 0$ debe conectar suavemente a los parámetros de la sustancia pura.
- Describir tanto mezclas binarias como multicomponentes.
- Su forma matemática no debe depender del orden de los componentes.
- Flexible como para describir formas simétricas y asimétricas en mezclas equimolares.
- Deben asegurar valores físicamente razonables al

Funciones Reductoras

Las funciones reductoras se utilizan para posteriormente obtener la densidad reducida δ y la temperatura reducida τ .

GERG-2008 utiliza funciones basadas en reglas de mezclado cuadráticas.

$$\frac{1}{\rho_r(\overline{x})} = \sum_{i=1}^N \sum_{j=1}^N x_i x_j \beta_{\nu,ij} \gamma_{\nu,ij} \frac{x_i + x_j}{\beta_{\nu,ij}^2 x_i + x_j} \frac{1}{8} \left(\frac{1}{\rho_{c,i}^{1/3}} + \frac{1}{\rho_{c,j}^{1/3}} + \right)^3$$
(4)

$$T_r(\overline{x}) = \sum_{i=1}^{N} \sum_{j=1}^{N} x_i x_j \beta_{T,ij} \gamma_{T,ij} \frac{x_i + x_j}{\beta_{T,ij}^2 x_i + x_j} (T_{c,i} \cdot T_{c,j})^{0.5}$$
 (5)

En casos donde no haya datos de calidad, los parámetros de ajuste se ajustan a 1, convirtiendo la ecuación a una regla de mezclado clásica.

Término ideal

 $\alpha^0(\rho,T,\overline{x})$ - Término ideal

$$\alpha^{o}(\rho, T, \overline{x}) = \sum_{i=1}^{N} x_{i} [\alpha_{oi}^{o}(\rho, T) + \ln x_{i}]$$
(6)

 x_i Fracción molar compuesto i.

 $\alpha_{oi}^{o}(\rho,T)$ Energía de Helmholtz compuesto puro.

 $\ln x_i$ Entropía de mezclado.

Término ideal

 $\alpha_{oi}^o(\rho,T)$ - Sustancia Pura

 $\alpha_{oi}^o(\rho,T)$ corresponde a la energía libre de Helmholtz de la sustancia pura. Se obtiene a partir de la definición de la energía libre de Helmholtz:

$$a^{o}(\rho, T) = h^{o}(T) - RT - Ts^{o}(\rho, T)$$

$$\tag{7}$$

Que en el caso de un gas ideal se resuelve como:

$$a^{o}(\rho, T) = \left[\int_{T_{0}}^{T} c_{p}^{o} dT + h_{0}^{o} \right] - RT - T \left[\int_{T_{0}}^{T} \frac{c_{p}^{o} - R}{T} dT - R \ln \left(\frac{\rho}{\rho_{o}^{o}} \right) + s_{0}^{o} \right]$$
(8)

Término ideal

 $\alpha_{oi}^o(\rho,T)$ - Sustancia Pura

Jaeschke y Schley 1996 determinaron coeficientes para el cálculo de c_p . Con la aplicación de estos coeficientes en la integración anterior se obtiene:

$$\alpha_{oi}^{o}(\rho, T) = \ln\left(\frac{\rho}{\rho_{c,i}}\right) + \frac{R^*}{R} \left[n_{oi,1}^o + n_{oi,2} \frac{T_{c,i}}{T} + n_{oi,3}^o \ln\frac{T_{c,i}}{T}\right]$$

$$+ \sum_{k=4,6} n_{oi,k}^o \ln\left(\left|\sinh\left(\vartheta_{oi,k}^o \frac{T_{c,i}}{T}\right)\right|\right)$$

$$- \sum_{k=4,6} n_{oi,k}^o \ln\left(\cosh\left(\vartheta_{oi,k}^o \frac{T_{c,i}}{T}\right)\right)$$
(9)

$$\sum_{i=1}^{N} x_{i} \alpha_{oi}^{r}(\delta, \tau) + \Delta \alpha^{r}(\delta, \tau, \overline{x})$$

• El primer término corresponde a la combinación lineal de los compuesots puros.

$$\sum_{i=1}^{N} x_i \alpha_{oi}^r(\delta, \tau)$$

■ El segundo término corresponde a una función denominada "Departure Function"

$$\Delta \alpha^r(\delta, \tau, \overline{x})$$

 $\alpha^r_{oi}(\delta, au)$ - Forma funcional

Para poder realizar el ajuste de datos experimentales, es necesario establecer una estructura matemática que describa a la energía residual $\alpha^r_{oi}(\delta,\tau)$.

Se planteó una forma funcional como una combinación de sumatorias de dos tipos de términos:

Términos polinómicos

$$\alpha_i^r = n_i \delta^{d_i} \tau^{t_i} \tag{10}$$

Términos Exponenciales

$$\alpha_i^r = n_i \delta^{d_i} \tau^{t_i} e^{-\delta^{c_i}} \tag{11}$$

 $\alpha^r_{oi}(\delta, au)$ - Forma funcional

Para poder realizar el ajuste de datos experimentales, es necesario establecer una estructura matemática que describa a la energía residual $\alpha^r_{oi}(\delta,\tau)$.

Se planteó una forma funcional como una combinación de sumatorias de dos tipos de términos:

Términos polinómicos

$$\alpha_i^r = n_i \delta^{d_i} \tau^{t_i} \tag{10}$$

Términos Exponenciales

$$\alpha_i^r = n_i \delta^{d_i} \tau^{t_i} e^{-\delta^{c_i}} \tag{11}$$

Forma funcional

$$\alpha^{r}(\delta, \tau) = \sum_{k=1}^{K_{Pol}} n_{k} \delta^{d_{k}} \tau^{t_{k}} + \sum_{k=K_{Pol}+1}^{K_{Pol}+K_{Exp}} n_{k} \delta^{d_{k}} \tau^{t_{k}} e^{-\delta^{c_{k}}}$$
(12)

 $\Delta \alpha^r(\delta, \tau, \overline{x})$ - Departure Function

 $\Delta\alpha^r(\delta,\tau,\overline{x})$ fue utilizada por primera vez por Tillner-Roth 1993 y Lemmon 1996 con el propósito de mejorar la precisión de modelos multi-fluidos.

 $\Delta lpha^r(\delta, au, \overline{x})$ - Departure Function

Originalmente se utilizaban en mezclas binarias:

$$\Delta \alpha^r(\delta, \tau, \overline{x}) = f^{\Delta}(x_1, x_2) \cdot \alpha_{12}^r(\rho, \tau)$$
(13)

 $\Delta \alpha^r(\delta, \tau, \overline{x})$ - Departure Function

Originalmente se utilizaban en mezclas binarias:

$$\Delta \alpha^r(\delta, \tau, \overline{x}) = f^{\Delta}(x_1, x_2) \cdot \alpha_{12}^r(\rho, \tau) \tag{13}$$

Forma Generalizada:

$$\Delta \alpha^r(\delta, \tau, \overline{x}) = \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} x_i x_j F_{ij} \alpha_{ij}^r(\delta, \tau)$$
(14)

 $\Delta \alpha^r(\delta, \tau, \overline{x})$ - Departure Function

Originalmente se utilizaban en mezclas binarias:

$$\Delta \alpha^r(\delta, \tau, \overline{x}) = f^{\Delta}(x_1, x_2) \cdot \alpha_{12}^r(\rho, \tau) \tag{13}$$

Forma Generalizada:

$$\Delta \alpha^r(\delta, \tau, \overline{x}) = \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} x_i x_j F_{ij} \alpha_{ij}^r(\delta, \tau)$$
(14)

Forma funcional de α_{ij}^r :

$$\alpha_{ij}^{r} = \sum_{k=1}^{K_{Pol,ij}} n_{ij,k} \delta^{d_{ij,k}} \tau^{t_{ij,k}} + \sum_{k=K_{Pol,ij}+1}^{K_{Pol,ij}+K_{exp,ij}} n_{ij,k} \delta^{d_{ij,k}} \tau^{t_{ij,k}}$$

$$\exp\left[-\eta_{ij,k} \left(\delta - \varepsilon_{ij,k}\right)^{2} - \beta_{ij,k} \left(\delta - \gamma_{ij,k}\right)\right]$$
(15)

Ajuste de datos experimentales

Tanto la energía de Helmholtz residual (α^r) como la función de salida $(\Delta \alpha^r)$ requieren un proceso de ajuste de parámetros:

- Selección de datos.
- 2 Ponderación de datos.
- 3 Precorrelación de cantidades auxiliares.
- 4 Ajuste linear según mínimos cuadrados.
- 5 Ajuste no-linear.

Ajuste a datos experimentales

Desde antes de 1985, el grupo GERG expande continuamente su base de datos relacionada a propiedades de mezclas y compuestos puros.

Base de datos

Rangos de datos

La base de datos utilizada por GERG cubre tanto regiones de gas homogéneo, líquido y supercrítico como también estados de equilibrio líquido-vapor en rangos de 16 < T < 2500 K y P < 2000 MPa.

Tipos de datos

- $\blacksquare p\rho T$
- lacktriangle Capacidad calorífica isocórica c_v
- Velocidad del sonido: w
- Capacidad calorífica isobárica: c_p
- Diferencias de entalpía: Δh
- **Densidad de líquido saturado:** ρ'
- VLE: *pTxy*

Base de datos

Tipos de datos

Estos datos se distribuyen como:

- **■** 70 % $p\rho T$.
- 21 % Puntos VLE.
- 9 % Otras propiedades.

Base de datos

Incertidumbres de mediciones

(0,03 a 0,1)
(0,00 a 0,1)
(1 a 2)
(0,02 a 0,01)
(1 a 2)
(0,2 a 0,5)
(0.4.00)
(0,1 a 0,3)

Métodos de ajuste

Métodos de ajuste

Cálculo de propiedades medibles

La energía libre de Helmholtz no es medible, pero si se pueden obtener variables medibles a través de sus derivadas:

$$\frac{p(\delta, \tau, \overline{x})}{\rho RT} = 1 + \delta \alpha_{\delta}^{r} \tag{16}$$

$$\frac{w^2(\delta, \tau, \overline{x})}{RT}M = 1 + 2\delta\alpha_{\delta}^r + \delta^2\alpha_{\delta\delta}^r - \frac{(1 + \delta\alpha_{\delta}^r - \delta\tau\alpha_{\delta\tau}^r)^2}{\tau^2(\alpha_{\tau\tau}^o + \alpha_{\tau\tau}^r)}$$
(17)

$$\frac{c_v(\delta, \tau, \overline{x})}{R} = -\tau^2 (\alpha_{\tau\tau}^o + \alpha_{\tau\tau}^r)$$
 (18)

$$Z(\delta, \tau, \overline{x}) = 1 + \delta \alpha_{\delta}^{r} \tag{19}$$

Métodos de ajuste

Cálculo de propiedades medibles

Cálculo de VLE

$$\varphi_i^{'}/\varphi_i^{''} = x_i^{''}/x_i^{'} \tag{20}$$

$$K_i = x_i^{"}/x_i^{'} \tag{21}$$

$$f_i = x_i \rho RT \exp\left(\frac{\partial n\alpha^r}{\partial n_i}\right)_{T,V,n_j}$$
 (22)

$$\ln \varphi_i = \left(\frac{\partial n\alpha^r}{\partial n_i}\right)_{T,V,n_j} - \ln Z \tag{23}$$

$$x_{i} = (1 - \beta)x_{i}^{'} + \beta x_{i}^{''} \tag{24}$$

Introducción GERG 2008 Comparación de incertidumbres Conclusiones Referencias

Comparación de incertidumbres

Introducción GERG 2008 Comparación de incertidumbres Conclusiones Referencias

Comparación de incertidumbres

Se compararon datos experimentales con datos calculados con la ecuación GERG y otras ecuaciones de estado.

Densidad

Densidad calculada en gases naturales.

Densidad

Densidad calculada en gases naturales.

Velocidad del sonido

Velocidad del sonido en mezcla Metano-Nitrógeno.

Velocidad del sonido

Velocidad del sonido en gases naturales.

Punto de rocío

Punto de rocío en mezcla de metano, butano, isobutano y pentano.

Y mezcla sintética de $C_1, N_2, CO_2, C_2, C_3, C_4, iC_4, C_5, iC_5, C_6, C_7, C_8$

☐ Morch et al. 192 ☐ GERG-2008, eq 8

Peng and Robinson³

× Avila et al. 186

——— GERG-2008, eq 8

——— Peng and Robinson³

Punto burbuja

Punto de burbuja en mezcla Metano-Nitrógeno

Conclusiones

Comparada a otras ecuaciones de estado, la ecuación GERG 2008 logra una descripción precisa de propiedades de diversas mezclas sobre rangos de temperatura, presión y composición más amplios.

Rangos de validez Se dividieron dos secciones:

Rango Normal Puntos entre:

$$90K \le T \le 450K$$

$$p \le 35MPa$$

Entre estos rangos las desviaciones se encontraron entre 0.1 y 0.5 % para la mayoría de las propiedades.

Rango Extendido Puntos entre

$$60K \le T \le 700K$$

$$p \le 70MPa$$

Al expandir el rango hay ciertas mezclas en donde la incertidumbre de mediciones de densidad alcanza el 1 %. Se considera que puede ser utili-

Referencias

- Jaeschke y Schley (1996). "Ideal-gas thermodynamic properties for natural-gas applications". En.
- Kunz y col. (2007). The GERG-2004 Wide-Range Equation of State for Natural Gases and Other Mixtures.
- Lemmon, W. E. (1996). "A generalized model for the prediction of the thermodynamic properties of mixtures including vapor-liquide equilibrium". En.
- Tillner-Roth (1993). "Die thermodynamicshcen Eigenschaften von R152a R134a und ihren Gemischen-Messungen und Fundamentalgleischungen". En.
- Wagner, Kunz; (2012). "The GERG-2008 Wide-Range Equation of State for Natural Gases and Other Mixtures: An Expansion of GERG-2004". En.

Introducción GERG 2008 Comparación de incertidumbres Conclusiones Referencias

Muchas gracias!