.1 Conclusion Générale des Méthodes Itératives

.1.1 Tableau récapitulatif

A_i	p(J)	NbIterJacobi	p(GS)	NbIterGauss-Seidel
A_1	∞	742	∞	192
A_2	∞	252	∞	128
A_3	0.000001	19	0.00000	9
A_4	0.000001	35	0.000001	59
A_5	0.000001	25	0.000001	14
A_6	0.000002	26	0.000001	15
A_7	0.000001	26	0.000001	15
A_8	0.000002	26	0.000001	15
A_9	0.000002	35	0.000001	19
A_{10}	0.000002	88	0.000001	44
A_{11}	0.000001	120	0.000001	60
A_{12}	0.000001	140	0.000001	73

.1.2 Conclusion

Comme peuvent le démontrer les différents graphiques ainsi que le tableau ci-dessus, nous remarquerons que la Méthode de **Gauss-Seidel** reste majoritairement plus efficace que la méthode de **Jacobi**. Nous insisterons sur le fait que la Méthode de **Gauss-Seidel** est particulièrement adaptée pour le calcul parallèle alors que la méthode de **Jacobi** est plus adaptée sur des matrices creuses.