Gaussian Processes to Predict Gene Expression for Induced Pluripotent Stem Cells Differentiation

NIRMAL KRISHNAN

Introduction- Data

- •10 Induced Pluripotent Stem Cells (iPSCs) differentiated into cardiomyocyte cells
- •16 day process between iPSC to fully differentiated, beating cardiomyocyte
- Gene expression from RNA sequencing recorded at each time step
- •154 total samples
- •15,794 genes

Introduction- Prior Work / Goals for this Project

- Battle/Gilad lab interested in understanding stages of differentiation using gene expression results
- Prior work: predicting time using gene expression ("pseudotime" prediction)
- Useful for understanding the differentiation process, predicting how quickly a cell will become a cardiomyocyte
- Instead of modeling time, this project focuses on modeling gene expression
- Goal: model gene expression of iPSC cells using Gaussian Processes and compare predictive accuracy to traditional models

Methods- Gaussian Processes

- Gaussian Processes (GP) have quickly gained acclaim in scientific community for flexibility and predictive accuracy
- •Every point in some continuous input space is associated with a normally distributed random variable
- Parameterized by mean and kernel function
- Mean function usually set to 0 if there is no informative prior. Mean function heavily outweigh effects of kernel function and GPs can be fully fitted using just the kernel function.

Methods- Choosing Kernel Function

- Radial-basis function (RBF), also known as squared exponential kernel
 - Infinitely differentiable
 - Very smooth
- Matern kernel
 - Generalization of RBF
 - Extra parameter u can control smoothness
 - Allows for adaptability of true underlying functional relation
- Exp-Sine-Squared kernel
 - Allows for modeling periodic functions
- Standard non-informative priors set for all kernel functions

$$k(x_i, x_j) = \exp\left(-\frac{1}{2}d(x_i/l, x_j/l)^2\right)$$

$$k(x_i, x_j) = \sigma^2 \frac{1}{\Gamma(\nu) 2^{\nu - 1}} \left(\gamma \sqrt{2\nu} d(x_i/l, x_j/l) \right)^{\nu} K_{\nu} \left(\gamma \sqrt{2\nu} d(x_i/l, x_j/l) \right),$$

$$k(x_i, x_j) = \exp(-2(\sin(\pi/p * d(x_i, x_j))/l)^2)$$

Method-Data Preprocessing

- Data is quantile normalized
- •SVA run on the gene expression matrix—21 latent factors unrelated to time
- •Using 21 factors, trained linear model to predict expression for each gene

$$Y = X B$$

- X -> 21 Latent Factors for each sample
- Y -> Expression of a single gene for all samples
- B -> Learned Coefficients
- •Subtracted predicted expression from the original expression matrix—effectively "regressing out" covariates

Methods- Training Models to Predict Expression

- •Selected top 100 genes with the most variance across samples from original expression matrix (due to extensive training time)
- Baseline model: Linear Regression
- •Gaussian process model kernels: RBF, Matern, Exp-Sine-Squared

For each gene:

- For each cell line:
 - For each time step:
 - Fit model using all data (on this gene and cell line) except for current time step
 - Train model hyper-parameters using:
 - X-> time [0: 15], except current time step
 - Y-> gene expression
 - Predict on current time step and record absolute prediction error

Results- Fully Fitted Model vs Predictions

Predictions for Gene ENSG00000106631 on Sample 18499

Results- Prediction Error Across Models

Model 1	Model 2	Rank Sums Test Statistic	p-value
Linear Regression	RBF GP	-35.31	2.90E-73
Linear Regression	Matern GP	-9.30	1.29E-20
Linear Regression	Exp-Sine-Sq GP	-61.62	0

Results- Filtering Out Noise

 Theory: individual gene expression measurements for genes tend to be noisy

•Potential solution:

- Cluster genes using kmeans on expression across samples
- Calculate mean vector of expression in each cluster, effectively filtering out noisy genes
- Re-run analysis on mean vectors of each cluster

•Implementation:

- Retrieved genes with top 1000 variance now
- Cluster using k=100 and calculate mean vectors

Results- Prediction Error Across Models for Cluster Means

Model 1	Model 2	Rank Sums Test Statistic	p-value
Linear Regression	RBF GP	-35.17	4.40E-271
Linear Regression	Matern GP	-9.80	6.00E-23
Linear Regression	Exp-Sine-Sq GP	-49.55	0

Conclusions

- •In iPSC differentiation, gene expression is best modeled by simple methods like linear regression
- •Gaussian Processes tend to overfit in this domain—they are overly flexible, resulting in poor predictive accuracies
- •Of the kernel functions, the Matern function best models this process
- •Further research:
 - Using low-order polynomial-basis functions and comparing the results with models
 - Sparse Gaussian Process Approximation using Pseudo-Inputs
 - Selects M datapoints where M << N which best generalize the actual data
 - Combats overfitting and could potentially improve results
 - Also interesting in understanding differentiation process, selecting time points that are more important could lend itself to better understanding differentiation process