Notes on Tensor Products and the Exterior Algebra For Math 245

K. Purbhoo

July 16, 2012

1 Tensor Products

1.1 Axiomatic definition of the tensor product

In linear algebra we have many types of products. For example,

• The scalar product: $V \times \mathbb{F} \to V$

• The dot product: $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$

• The cross product: $\mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^3$

• Matrix products: $\mathsf{M}_{m \times k} \times \mathsf{M}_{k \times n} \to \mathsf{M}_{m \times n}$

Note that the three vector spaces involved aren't necessarily the same. What these examples have in common is that in each case, the product is a bilinear map. The tensor product is just another example of a product like this. If V_1 and V_2 are any two vector spaces over a field \mathbb{F} , the tensor product is a bilinear map:

$$V_1 \times V_2 \to V_1 \otimes V_2$$
,

where $V_1 \otimes V_2$ is a vector space over \mathbb{F} . The tricky part is that in order to define this map, we first need to construct this vector space $V_1 \otimes V_2$.

We give two definitions. The first is an axiomatic definition, in which we specify the properties that $V_1 \otimes V_2$ and the bilinear map must have. In some sense, this is all we need to work with tensor products in a practical way. Later we'll show that such a space actually exists, by constructing it.

Definition 1.1. Let V_1, V_2 be vector spaces over a field \mathbb{F} . A pair (Y, μ) , where Y is a vector space over \mathbb{F} and $\mu: V_1 \times V_2 \to Y$ is a bilinear map, is called the **tensor product** of V_1 and V_2 if the following condition holds:

(*) Whenever β_1 is a basis for V_1 and β_2 is a basis for V_2 , then

$$\mu(\beta_1 \times \beta_2) := \{ \mu(x_1, x_2) \mid x_1 \in \beta_1, \ x_2 \in \beta_2 \}$$

is a basis for Y.