Discrete differential geometry in homotopy type theory

Greg Langmead

Carnegie Mellon University

April 2025

Summary •0000000

Summary

Summary

Summary

This work brings to HoTT

- connections, curvature, and vector fields
- the index of a vector field
- a theorem in dimension 2 that total curvature = total index

Classical \rightarrow HoTT

Summary

Let M be a smooth, oriented 2-manifold without boundary, F_A the curvature of a connection A on the tangent bundle, and X a vector field with isolated zeroes x_1, \ldots, x_n .

$$\frac{1}{2\pi} \int_{M} F_{A} = \sum_{i=1}^{n} \operatorname{index}_{X}(x_{i}) = \chi(M)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\sum_{\text{faces } F} \flat_{F} = \sum_{\text{faces } F} L_{F}^{X}$$

Classical index

Summary

Near an isolated zero there are only three possibilities: index 0, 1, -1.

Index is the winding number of the field as you move clockwise around the zero.

Poincaré-Hopf theorem

The total index of a vector field is the Euler characteristic.

Examples:

Summary

Rotation: index +1 at each pole = 2

Height: index +1 at each pole = 2

Gauss-Bonnet theorem

Summary

Total curvature divided by 2π is the Euler characteristic.

Curvature in 2D is a function $F_A: M \to \mathbb{R}$.

 $\int_M F_A$ sums the values at every point.

Positive and negative curvature cancel: 0

Constant curvature 1, area 4π : **2**

Plan

Summary 00000000

- Combinatorial manifolds
- Torsors and classifying maps
- Connections and curvature
- Vector fields
- Main theorem

HoTT background

- Symmetry,
 - Bezem, M., Buchholtz, U., Cagne, P., Dundas, B. I., and Grayson, D. R., (2021-) https://github.com/UniMath/SymmetryBook.
- Central H-spaces and banded types, Buchholtz, U., Christensen, J. D., Flaten, J. G. T., and Rijke, E. (2023) arXiv:2301.02636
- Nilpotent types and fracture squares in homotopy type theory, Scoccola, L. (2020) MSCS 30(5). arXiv:1903.03245

Combinatorial manifolds

Manifolds in HoTT

00000000000

- Recall the classical theory of simplicial complexes
- Define a realization procedure to construct types

Simplicial complexes

Definition

An abstract simplicial complex M of dimension n is an ordered list of sets $M \stackrel{\text{def}}{=} [M_0, \dots, M_n]$ consisting of

- a set M_0 of vertices
- sets M_{ν} of subsets of M_0 of cardinality k+1
- downward closed: if $F \in M_k$ and $G \subseteq F$, |G| = i + 1 then $G \in M_i$

We call the truncated list $M_{< k} \stackrel{\text{def}}{=} [M_0, \dots, M_k]$ the *k*-skeleton of *M*.

Definition

An abstract simplicial complex M of dimension n is an ordered list of sets $M \stackrel{\text{def}}{=} [M_0, \dots, M_n]$ consisting of

- a set M_0 of vertices
- sets M_k of subsets of M_0 of cardinality k+1
- downward closed: if $F \in M_k$ and $G \subseteq F$, |G| = j + 1 then $G \in M_j$

We call the truncated list $M_{\leq k} \stackrel{\text{def}}{=} [M_0, \dots, M_k]$ the *k*-skeleton of *M*.

Simplicial complexes

Example

The complete simplex of dimension n, denoted $\Delta(n)$, is the set $\{0,\ldots,n\}$ and its power set. The (n-1)-skeleton $\Delta(n)_{\leq (n-1)}$ is denoted $\partial\Delta(n)$ and will serve as a combinatorial (n-1)-sphere.

$$\Delta(1)$$
 is visually $0 \cdot - 1$, $\partial \Delta(1)$ is visually $0 \cdot - 1$

We will realize simplicial complexes by means of a sequence of pushouts.

Base case: the realization $\mathbb M$ of a 0-dimensional complex M is M_0 .

In particular the 0-sphere $\partial \Delta(1) \stackrel{\mathsf{def}}{=} \partial \Delta(1)_0$.

For a 1-dim complex $M \stackrel{\text{def}}{=} [M_0, M_1]$ the realization is given by

$$M_1 imes \partial \Delta(1) \stackrel{\mathsf{pr}_1}{\longrightarrow} M_1$$
 $A_0 \downarrow \qquad \qquad \downarrow^{*_{\mathbb{M}}} \downarrow^{*_{\mathbb{M}}}$
 $M_0 = \mathbb{M}_0 \stackrel{\mathsf{pr}_1}{\longrightarrow} \mathbb{M}_1$

For example the simplicial 1-sphere $\partial \Delta(2) \stackrel{\text{def}}{=} 0$ is given by

$$\partial\Delta(2)_1 imes \partial\Delta(1) \longrightarrow \partial\Delta(2)_1$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\partial\Delta(2)_0 \longrightarrow \partial\Delta(2)$$
i.e.

$$\{\{0,1\},\{1,2\},\{2,0\}\}\times\{0,1\} \longrightarrow \{\{0,1\},\{1,2\},\{2,0\}\}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\{0,1,2\} \longrightarrow \partial \Delta(2)$$

Or the 1-skeleton of the octahedron \mathbb{O} :

$$\{\{w,g\},\ldots\}\times\{0,1\}\longrightarrow \{\{w,g\},\ldots\}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\{w,g,\ldots\}\longrightarrow \mathbb{O}_1$$

To realize $M \stackrel{\text{def}}{=} [M_0, M_1, M_2]$ use $\partial \Delta(1), \partial \Delta(2)$:

$$M_1 imes \partial \Delta(1) \stackrel{\mathsf{pr}_1}{\longrightarrow} M_1 \ M_0 = \mathbb{M}_0 \stackrel{\mathbb{M}_1}{\longrightarrow} \mathbb{M}_1 \stackrel{\mathbb{M}_2}{\longrightarrow} \mathbb{M}_2 \ M_2 imes \partial \Delta(2) \stackrel{\mathsf{pr}_1}{\longrightarrow} M_2$$

The full octahedron \mathbb{O} :

The link of a vertex w in a 2-complex is: the sets not containing w but whose union with w is a face.

A combinatorial manifold is a simplicial complex all of whose links are * simplicial spheres.

This will be our model of the tangent space.

^{*}the (classical) geometric realization is homeomorphic to a sphere

Combinatorial manifolds ↔ smooth manifolds

Theorem (Whitehead (1940))

Every smooth n-manifold has a compatible structure of a combinatorial manifold: a simplicial complex of dimension n such that the link is a combinatorial (n-1)-sphere, i.e. its geometric realization is an (n-1)-sphere.

https://ncatlab.org/nlab/show/triangulation+theorem

Combinatorial manifolds ↔ smooth manifolds

Theorem (Whitehead (1940))

Every smooth n-manifold has a compatible structure of a combinatorial manifold: a simplicial complex of dimension n such that the link is a combinatorial (n-1)-sphere, i.e. its geometric realization is an (n-1)-sphere.

https://ncatlab.org/nlab/show/triangulation+theorem

Counterexample: Wikipedia says this is a simplicial complex, but we can see it fails the link condition:

What type families $\mathbb{M} \to \mathcal{U}$ will we consider? Families of torsors, also called principal bundles.

Let G be a (higher) group.

Let G be a (higher) group.

Definition

• A right *G*-object is a type *X* equipped with a homomorphism $\phi: G^{op} \to \operatorname{Aut}(X)$.

Let G be a (higher) group.

- A right G-object is a type X equipped with a homomorphism $\phi: G^{op} \to \operatorname{Aut}(X)$.
- X is furthermore a G-torsor if it is inhabited and the map $(\operatorname{pr}_1,\phi):X\times G\to X\times X$ is an equivalence.

Let G be a (higher) group.

- A right G-object is a type X equipped with a homomorphism $\phi: G^{op} \to Aut(X)$.
- X is furthermore a G-torsor if it is inhabited and the map $(pr_1, \phi): X \times G \to X \times X$ is an equivalence.
- The inverse is (pr_1, s) where $s: X \times X \to G$ is called subtraction (when G is commutative).

Let G be a (higher) group.

- A right *G*-object is a type *X* equipped with a homomorphism $\phi: G^{op} \to \operatorname{Aut}(X)$.
- X is furthermore a G-torsor if it is inhabited and the map $(\operatorname{pr}_1,\phi):X\times G\to X\times X$ is an equivalence.
- The inverse is (pr_1, s) where $s: X \times X \to G$ is called subtraction (when G is commutative).
- Let BG be the type of G-torsors.

Let G be a (higher) group.

- A right G-object is a type X equipped with a homomorphism $\phi: G^{op} \to Aut(X)$.
- X is furthermore a G-torsor if it is inhabited and the map $(pr_1, \phi): X \times G \to X \times X$ is an equivalence.
- The inverse is (pr_1, s) where $s: X \times X \to G$ is called subtraction (when G is commutative).
- Let BG be the type of G-torsors.
- Let G_{reg} be the G-torsor consisting of G acting on itself on the right.

Facts

Facts

 $oldsymbol{0}$ $\Omega(BG,G_{\text{reg}})\simeq G$ and composition of loops corresponds to multiplication in G.

Facts

- $\mathbf{0}$ $\Omega(BG, G_{\text{reg}}) \simeq G$ and composition of loops corresponds to multiplication in G.
- Ø BG is connected.

Facts

- $\mathbf{0}$ $\Omega(BG, G_{\text{reg}}) \simeq G$ and composition of loops corresponds to multiplication in G.
- \bigcirc *BG* is connected.
- **3** 1 & 2 \Longrightarrow BG is a K(G,1).

Facts

- **1** $\Omega(BG, G_{reg}) \simeq G$ and composition of loops corresponds to multiplication in G.
- \bigcirc BG is connected.
- $\mathbf{3} \ 1 \& 2 \implies BG \text{ is a } \mathsf{K}(G,1).$

See the Buchholtz et. al. H-spaces paper for more.

How to map into BS^1

To construct maps into BS^1 we lift a family of mere circles.

We will assume we have such a lift when we need it. (Remark: the lift is a choice of orientation.)

To construct maps into BS^1 we lift a family of mere circles.

We will assume we have such a lift when we need it. (Remark: the lift is a choice of orientation.)

Other names:

•
$$\mathsf{BAut}(S^1) = \mathsf{BO}(2) = \mathsf{EM}(\mathbb{Z},1)$$
 (where $\mathsf{EM}(G,n) \stackrel{\mathsf{def}}{=} \mathsf{BAut}(\mathsf{K}(G,n))$)

•
$$BS^1 = BSO(2) = K(\mathbb{Z}, 2)$$

Connections and curvature

Connections

Connections are extensions of a bundle to higher skeleta.

Recall link

The link of a vertex w in a 2-complex is: the sets not containing w but whose union with w is a face.

Define the tangent bundle on a combinatorial manifold to be $T_0 \stackrel{\text{def}}{=} \text{link} : \mathbb{M}_0 \to \mathsf{BAut}(S^1).$

Connections on the tangent bundle

An extension T_1 of T_0 to M_1 is called a connection on the tangent bundle.

$T_1: \mathbb{M}_1 \to \mathsf{BAut}(S^1)$ extending link

We will define T_1 on the edge wb, so we need a term $T_1(wb)$: $link(w) =_{BAut(S^1)} link(b)$.

We imagine tipping:

$$T_1(g: link(w)) \stackrel{\text{def}}{=} w: link(b), \ldots$$

Use this method to define T_1 on every edge.

$T_1: \mathbb{M}_1 \to \mathsf{BAut}(S^1)$ extending link

Denote the path $wb \cdot br \cdot rw$ by $\frac{\partial (wbr)}{\partial (wbr)}$. Consider $T_1(\partial (wbr))$:

We come back rotated by 1/4 turn. Call this rotation $R: link(w) =_{BAut(S^1)} link(w)$.

Let H_{wbr} : refl_w =_{w=mw} $\partial(wbr)$ be the filler homotopy of the face.

Let H_{wbr} : refl_w =_{w=nf,w} $\partial(wbr)$ be the filler homotopy of the face.

$$T_2$$
 must live in $T_1(\operatorname{refl}_w) =_{\operatorname{link}(w) =_{\operatorname{BAut}(S^1)}\operatorname{link}(w))} T_1(\partial(wbr)) = R$

Let H_{wbr} : refl_w =_{w=mw} $\partial(wbr)$ be the filler homotopy of the face.

$$T_2$$
 must live in $T_1(\text{refl}_w) =_{\text{link}(w) =_{\text{RAur}(s1)} | \text{link}(w))} T_1(\partial(wbr)) = R$

 T_2 must be a homotopy H_R : id = R between automorphisms of link(w).

Let H_{wbr} : refl_w =_{w=mw} $\partial(wbr)$ be the filler homotopy of the face.

$$T_2$$
 must live in $T_1(\text{refl}_w) =_{\text{(link}(w) =_{\text{RAur}(s1)} | \text{link}(w))} T_1(\partial(wbr)) = R$

 T_2 must be a homotopy H_R : id = R between automorphisms of link(w).

For example, a path $H_R(g)$: g = Rg = o. Choose go.

Original inspiration

The definition of a connection

Definition

If $\mathbb{M} \stackrel{\text{def}}{=} \mathbb{M}_0 \xrightarrow{\imath_0} \cdots \xrightarrow{\imath_{n-1}} \mathbb{M}_n$ is the realization of a combinatorial manifold and all the triangles commute in the diagram:

- The map f_k is a k-bundle on \mathbb{M} .
- The pair given by the map f_k and the proof $f_k \circ i_{k-1} = f_{k-1}$, i.e. that f_k extends f_{k-1} is called a k-connection on the (k-1)-bundle f_{k-1} .

The definition of curvature

Definition (cont.)

An extension consists of M_2 -many extensions to faces:

Here's the outer square for a single face F:

$$\{F\} imes \partial \Delta(2) \stackrel{\mathsf{pr}_1}{\longrightarrow} \{F\}$$
 $\mathbb{M}_1 \stackrel{\mathbb{A}_1}{\longrightarrow} \mathcal{U}$

The definition of curvature

Definition (cont.)

An extension consists of M_2 -many extensions to faces:

Here's the outer square for a single face F:

 $T_1(\partial(F))$ is the curvature at the face F and the filler \flat_F : id $= T_1(\partial F)$ is called a flatness structure for the face F.

The definition of curvature

Definition (cont.)

An extension consists of M_2 -many extensions to faces:

Here's the outer square for a single face F:

 $T_1(\partial(F))$ is the curvature at the face F and the filler \flat_F : id $= T_1(\partial F)$ is called a flatness structure for the face F.

The distinction between the path \flat_F and the endpoint $T_1(\partial(F))$ is small enough to be confusing.

Let $T: \mathbb{M} \to BS^1$ be an oriented tangent bundle on a 2-dim realization of a combinatorial manifold.

- Our bundles of mere circles can only model nonzero tangent vectors.
- A global section of this family would be a trivialization of T, so that's not a good definition.

Let $T: \mathbb{M} \to BS^1$ be an oriented tangent bundle on a 2-dim realization of a combinatorial manifold.

- Our bundles of mere circles can only model nonzero tangent vectors.
- A global section of this family would be a trivialization of T, so that's not a good definition.

Our solution:

Let $T: \mathbb{M} \to BS^1$ be an oriented tangent bundle on a 2-dim realization of a combinatorial manifold.

- Our bundles of mere circles can only model nonzero tangent vectors.
- A global section of this family would be a trivialization of T, so that's not a good definition.

Our solution:

• A vector field is a term $X : \prod_{m : M_1} Tm$.

Let $T: \mathbb{M} \to BS^1$ be an oriented tangent bundle on a 2-dim realization of a combinatorial manifold.

- Our bundles of mere circles can only model nonzero tangent vectors.
- A global section of this family would be a trivialization of T, so that's not a good definition.

Our solution:

- A vector field is a term $X : \prod_{m:\mathbb{M}_1} Tm$.
- It models a classical nonvanishing vector field on the 1-skeleton.

Let $T: \mathbb{M} \to BS^1$ be an oriented tangent bundle on a 2-dim realization of a combinatorial manifold.

- Our bundles of mere circles can only model nonzero tangent vectors.
- A global section of this family would be a trivialization of T, so that's not a good definition.

Our solution:

- A vector field is a term $X : \prod_{m:\mathbb{M}_1} Tm$.
- It models a classical nonvanishing vector field on the 1-skeleton.
- We model classical zeros by omitting the faces.

Reminder: pathovers

- Recall pathovers (dependent paths).
- There is an asymmetry: we pick a fiber to display π, the path over p.
- Dependent functions map paths to pathovers: $apd(X)(p) : tr_p(X(a)) = X(b)$ (simply denoted X(p)).

Next goal: define the index of a vector field on a face by computing $X(\partial F)$ around a face.

 T_3

- Denote by X_1 this vector $X(v_1)$: T_1 .
- •
- •

- Denote by X_1 this vector $X(v_1)$: T_1 .
- Say T₂₁ is trivial. Denote the transported vector as thinner.
- •
- •

- Denote by X_1 this vector $X(v_1)$: T_1 .
- Say T₂₁ is trivial. Denote the transported vector as thinner.
- Say T₃₂ rotates clockwise. Denote the twice-transported vector as dashed.

- Denote by X_1 this vector $X(v_1)$: T_1 .
- Say T₂₁ is trivial. Denote the transported vector as thinner.
- Say T₃₂ rotates clockwise. Denote the twice-transported vector as dashed.
- Say T₁₃ is trivial. The thrice-transported vecor is dotted.

• X on e_{12} is red, etc.

- *X* on *e*₁₂ is red, etc.
- We translated all pathover data to the end of the loop.

- X on e_{12} is red, etc.
- We translated all pathover data to the end of the loop.
- (Reminds me of scooping ice cream towards the last fiber.)

- X on e_{12} is red, etc.
- We translated all pathover data to the end of the loop.
- (Reminds me of scooping ice cream towards the last fiber.)
- The total pathover
 X(∂F) is called the
 swirling X_F of X at the
 face F.

Symbolic version

Index

$$\operatorname{tr}_F \stackrel{\text{def}}{=} \operatorname{tr}(\partial F) : T_1 =_{BS^1} T_1$$
 curvature

$$b_F \stackrel{\text{def}}{=} b(\partial F) \quad : \text{id} =_{(T_1 =_{BS^1} T_1)} \text{tr}_F \quad \text{flatness}$$

$$X_F \stackrel{\text{def}}{=} X(\partial F)$$
 : $\operatorname{tr}_F(X_1) = T_1 X_1$ swirling

Index

$$\operatorname{tr}_F \stackrel{\text{def}}{=} \operatorname{tr}(\partial F)$$
 : $T_1 =_{BS^1} T_1$ curvature

$$b_F \stackrel{\text{def}}{=} b(\partial F) \quad : id =_{(T_1 =_{BS^1} T_1)} tr_F \quad \text{flatness}$$

$$X_F \stackrel{\text{def}}{=} X(\partial F)$$
 : $\operatorname{tr}_F(X_1) =_{T_1} X_1$ swirling

Definition

The flattened swirling of the vector field X on the face F is the loop

$$L_F^X \stackrel{\mathsf{def}}{=} \flat_F(X_1) \cdot X_F : (X_1 =_{T_1} X_1).$$

The index of the vector field X on the face F is the integer I_F^X such that $\text{loop}_F^{I_F^X} =_{S^1} (L_F^X) - X_1$.

Carnegie Mellon University

$$\operatorname{tr}_F \stackrel{\text{def}}{=} \operatorname{tr}(\partial F)$$
 : $T_1 =_{BS^1} T_1$ curvature

$$b_F \stackrel{\text{def}}{=} b(\partial F) \quad : \text{id} =_{(T_1 =_{BS^1} T_1)} \text{tr}_F \quad \text{flatness}$$

$$X_F \stackrel{\text{def}}{=} X(\partial F)$$
 : $\operatorname{tr}_F(X_1) =_{T_1} X_1$ swirling

(Recall that T_1 being an S^1 -torsor means we can use subtraction to obtain an equivalence $s(-, X_1): T_1 \xrightarrow{x \mapsto x - X_1} S^1$.)

Definition

The flattened swirling of the vector field X on the face F is the loop

$$L_F^X \stackrel{\mathsf{def}}{=} \flat_F(X_1) \cdot X_F : (X_1 =_{T_1} X_1).$$

The index of the vector field X on the face F is the integer I_F^X such that $loop^{I_F^X} = S^1(L_F^X) - X_1$.

Main theorem

Simplifying swirling

Swirling involves concatenating dependent paths. Can we simplify that?

 T_1

```
T_{13}T_{32}T_{21}X_{1}
T_{13}T_{32}X_{21}:
\left\|T_{13}T_{32}X_{2}\right\|
T_{13}X_{32}:
\left\|T_{13}X_{3}\right\|
X_{13}:
\left\|X_{1}\right\|
```

 T_1

• Def: $\alpha_i \stackrel{\text{def}}{=} s(-, X_i) : T_i \stackrel{\sim}{\to} S^1$ (trivialization on 0-skeleton).

```
T_{13}T_{32}T_{21}X_{1}
T_{13}T_{32}X_{21}:
\left\|T_{13}T_{32}X_{2}\right\|
T_{13}X_{32}:
\left\|T_{13}X_{3}\right\|
X_{13}:
\left\|X_{14}\right\|
```

$$T_1$$
 $T_{13}T_{32}T_{21}X_1$
 $T_{13}T_{32}X_{21}$:
 $\left\| T_{13}T_{32}X_2 \right\|$
 $T_{13}X_{32}$:
 $\left\| T_{13}X_3 \right\|$
 X_{13} :
 $\left\| X_1 \right\|$

- Def: $\alpha_i \stackrel{\text{def}}{=} s(-, X_i) : T_i \stackrel{\sim}{\to} S^1$ (trivialization on 0-skeleton).
- Def: $\rho_{ii} \stackrel{\text{def}}{=} \alpha_i(T_{ii}(X_i))$ is the rotation of T_{ii} .

$$\begin{array}{ccc} \mathcal{T}_i & \xrightarrow{\mathcal{T}_{ji}} & \mathcal{T}_j \\ \text{base} \mapsto X_i \left(\stackrel{}{\alpha_i} \right) & & \downarrow \alpha_j \\ & & \downarrow \alpha_j \\ & S^1 & \xrightarrow{(-) + \rho_{ji}} & S^1 \end{array}$$

$$T_{13}T_{32}T_{21}X_{1}$$
 $T_{13}T_{32}X_{21}$:
 $\left\| T_{13}T_{32}X_{2} \right\|$
 $T_{13}X_{32}$:
 $\left\| T_{13}X_{33} \right\|$

 T_1

- Def: $\alpha_i \stackrel{\text{def}}{=} s(-, X_i) : T_i \stackrel{\sim}{\to} S^1$ (trivialization on 0-skeleton).
- Def: $\rho_{ji} \stackrel{\text{def}}{=} \alpha_j(T_{ji}(X_i))$ is the rotation of T_{ji} .

$$\begin{array}{ccc} \mathcal{T}_i & \xrightarrow{\mathcal{T}_{ji}} & \mathcal{T}_j \\ \text{base} \mapsto & X_i \left(\stackrel{\frown}{\alpha_i} \right) & \downarrow \alpha_j \stackrel{\frown}{\gamma} \text{base} \mapsto & X_j \\ & S^1 & \xrightarrow{(-) + \rho_{ji}} & S^1 \end{array}$$

• Lemma: $\rho_{ij} = -\rho_{ji}$ because in T_j : $\rho_{ij} + \rho_{ji} + X_j = \rho_{ij} + T_{ji}X_i = T_{ji}(\rho_{ij} + X_i) = T_{ji}T_{ij}X_j = X_j$.

 T_1

```
T_{13}T_{32}T_{21}X_{1}
T_{13}T_{32}X_{21}:
\left\|T_{13}T_{32}X_{2}\right\|
T_{13}X_{32}:
\left\|T_{13}X_{3}\right\|
X_{13}:
\left\|X_{13}\right\|
```

 T_1

• Define $\sigma_{ji} \stackrel{\text{def}}{=} \alpha_j(X_{ji}) : \rho_{ji} =_{S^1}$ base,.

```
T_{13}T_{32}T_{21}X_{1}
T_{13}T_{32}X_{21}:
\left\|T_{13}T_{32}X_{2}\right\|
T_{13}X_{32}:
\left\|T_{13}X_{3}\right\|
X_{13}:
\left\|X_{13}\right\|
```

 T_1

 $T_{13}T_{32}T_{21}X_1$

- Define $\sigma_{ji} \stackrel{\text{def}}{=} \alpha_j(X_{ji}) : \rho_{ji} =_{S^1} \text{base},.$
- Paths of the form $(a = S^1 \text{ base})$ can be added:
 - $+: (a = \mathsf{base}) \times (b = \mathsf{base}) \rightarrow (a + b = \mathsf{base}).$
 - $\bullet p+q=(p+b)\cdot q.$

```
T_{13}T_{32}X_{21}: \| T_{13}T_{32}X_{2}
T_{13}X_{32}: \| T_{13}X_{3}
X_{13}: \| X_{1}
```

 T_1

 $T_{13}T_{32}T_{21}X_1$

$$T_{13}T_{32}X_{21}$$
:
$$T_{13}T_{32}X_{2}$$

$$T_{13}X_{32}$$
:

$$T_{13}X_{3}$$

 X_1

added:
•
$$+: (a = base) \times (b = base) \rightarrow (a + b = base).$$

• $p + q = (p + b) \cdot q.$

• Lemma: $\sigma_{ij} + \sigma_{ji} = \text{refl}_{\text{base}}$.

 T_1

• Define
$$\sigma_{ji} \stackrel{\text{def}}{=} \alpha_j(X_{ji}) : \rho_{ji} =_{S^1} \text{base},.$$

 $T_{13}T_{32}T_{21}X_1$ $T_{13}T_{32}X_{21}$:

$$T_{13}T_{32}X_2$$

$$T_{13}X_{32}$$
:

$$X_{13}$$
:

Paths of the form (a = S1 base) can be added:
+: (a = base) × (b = base) →

$$(a + b = base).$$
• $p + q = (p + b) \cdot q$.

- Lemma: $\sigma_{ii} + \sigma_{ii} = \text{refl}_{\text{base}}$.
- Proof: $\operatorname{apd}(X)(\operatorname{refl}) = \operatorname{refl}$ $\Longrightarrow X_{ij} \cdot T_{ij}X_{ji} = \operatorname{refl}_{X_i}$ $\Longrightarrow \sigma_{ij} + \sigma_{ji} = \operatorname{refl}_{\mathsf{base}} (T_{ij} \text{ just translates } X_{ji} \text{ to cat with } X_{ij}).$

 T_1

 $T_{13}T_{32}T_{21}X_1$

 $T_{13}T_{32}X_{2}$

 $T_{13}T_{32}X_{21}$:

 $T_{13}X_{32}$:

- Define $\sigma_{ii} \stackrel{\text{def}}{=} \alpha_i(X_{ii}) : \rho_{ii} =_{S^1} \text{base}$.
- Paths of the form $(a = S^1 \text{ base})$ can be added:

- Lemma: $\sigma_{ii} + \sigma_{ii} = \text{refl}_{\text{base}}$.
- Proof: apd(X)(refl) = refl $\implies X_{ij} \cdot T_{ij}X_{ji} = refl_{X_i}$ $\implies \sigma_{ij} + \sigma_{ji} = refl_{base} (T_{ij} \text{ just translates } X_{ii} \text{ to cat with } X_{ii}).$

Pay off all our assumptions 2: no boundary, commutativity

Definition

 ∂F_i : $v_i = v_i$ be the triangular boundaries. The total swirling is

$$X_{\text{tot}} \stackrel{\text{def}}{=} \sigma_{\partial F_1} + \cdots + \sigma_{\partial F_n}$$

Pay off all our assumptions 2: no boundary, commutativity

Definition

Let F_1, \ldots, F_n be the faces of \mathbb{M} , $v_i : F_i$ be designated vertices, and $\partial F_i : v_i = v_i$ be the triangular boundaries. The total swirling is

$$X_{\mathsf{tot}} \stackrel{\mathsf{def}}{=} \sigma_{\partial F_1} + \dots + \sigma_{\partial F_n}$$

• We assume that this expression involves every edge once in each direction.

Pay off all our assumptions 2: no boundary, commutativity

Definition

Let F_1, \ldots, F_n be the faces of \mathbb{M} , $v_i : F_i$ be designated vertices, and ∂F_i : $v_i = v_i$ be the triangular boundaries. The total swirling is

$$X_{\mathsf{tot}} \stackrel{\mathsf{def}}{=} \sigma_{\partial F_1} + \dots + \sigma_{\partial F_n}$$

- We assume that this expression involves every edge once in each direction.
- S^1 is commutative, hence complete cancellation.

Consequence

$$\operatorname{tr}_F \stackrel{\text{def}}{=} \operatorname{tr}(\partial F)$$
 : $T_1 =_{BS^1} T_1$ curvature

$$b_F \stackrel{\text{def}}{=} b(\partial F)$$
 : id $=_{(T_1 =_{RS1} T_1)} \text{tr}_F$ flatness

$$X_F \stackrel{\mathsf{def}}{=} X(\partial F)$$
 : $\mathsf{tr}_F(X_1) =_{T_1} X_1$ swirling

$$L_F^X \stackrel{\text{def}}{=} \flat_F(X_1) \cdot X_F : (X_1 =_{T_1} X_1)$$
 flattened swirling

Consequence

$$\operatorname{tr}_F \stackrel{\operatorname{def}}{=} \operatorname{tr}(\partial F) \qquad : T_1 =_{BS^1} T_1 \qquad \text{curvature}$$

$$\flat_F \stackrel{\operatorname{def}}{=} \flat(\partial F) \qquad : \operatorname{id} =_{(T_1 =_{BS^1} T_1)} \operatorname{tr}_F \quad \text{flatness}$$

$$X_F \stackrel{\operatorname{def}}{=} X(\partial F) \qquad : \operatorname{tr}_F(X_1) =_{T_1} X_1 \qquad \text{swirling}$$

$$L_F^X \stackrel{\operatorname{def}}{=} \flat_F(X_1) \cdot X_F \qquad : (X_1 =_{T_1} X_1) \qquad \text{flattened swirling}$$

These can all be totaled in S^1 to give

$$\operatorname{tr}_{\mathsf{tot}} \stackrel{\mathrm{def}}{=} \sum_{i} \rho_{\partial F} = \operatorname{base}$$
 $X_{\mathsf{tot}} \stackrel{\mathrm{def}}{=} \sum_{i} \sigma_{\partial F} = \operatorname{refl}_{\mathsf{base}}$ $b_{\mathsf{tot}} \stackrel{\mathrm{def}}{=} \sum_{i} b_{\partial F} + \sigma_{\partial F} = \sum_{i} b_{\partial F}$

Consequence

$$\begin{array}{lll} \operatorname{tr}_F \stackrel{\operatorname{def}}{=} \operatorname{tr}(\partial F) & : T_1 =_{BS^1} T_1 & \operatorname{curvature} \\ \\ \flat_F \stackrel{\operatorname{def}}{=} \flat(\partial F) & : \operatorname{id} =_{(T_1 =_{BS^1} T_1)} \operatorname{tr}_F & \operatorname{flatness} \\ \\ X_F \stackrel{\operatorname{def}}{=} X(\partial F) & : \operatorname{tr}_F(X_1) =_{T_1} X_1 & \operatorname{swirling} \\ \\ L_F^X \stackrel{\operatorname{def}}{=} \flat_F(X_1) \cdot X_F & : (X_1 =_{T_1} X_1) & \operatorname{flattened swirling} \end{array}$$

These can all be totaled in S^1 to give

$$\operatorname{tr}_{\mathsf{tot}} \stackrel{\mathrm{def}}{=} \sum_{i} \rho_{\partial F} = \operatorname{base}$$
 $X_{\mathsf{tot}} \stackrel{\mathrm{def}}{=} \sum_{i} \sigma_{\partial F} = \operatorname{refl}_{\mathsf{base}}$ $b_{\mathsf{tot}} \stackrel{\mathrm{def}}{=} \sum_{i} b_{\partial F} + \sigma_{\partial F} = \sum_{i} b_{\partial F}$

So in our lingo: the total flatness equals the total flattened swirling.

Examples

Each face contributes $\flat_F = H_R$, a 1/4-rotation. Total: 2.

Examples

Each face contributes $b_F = H_R$, a 1/4-rotation. Total: 2.

For total index one obtains +1 from F_{wrg} , +1 from F_{ybo} , +0 from others. Total: 2.

Classical proof

[26.2] The difference $\Re(\Delta) - 2\pi \Im_F(s)$ can be found by summing over the edges K_j the change $\Phi(K_j)$ in the illustrated angle $\Delta F w_{||}$, i.e., the rotation of $w_{||}$ relative to F.

Figure: Needham, T. (2021) Visual Differential Geometry and Forms.

- The classical proof is discrete-flavored.
- " $\angle Fw_{||}$ " looked a lot like a pathover.
- Hopf's Φ is defined on edges, not loops. We imitated that too.

Thank you!