MA311 (Scientific computing)-IITG

04-10-18

1. Use Euler's method to approximate the solutions for each of the following initial-value problems.

a.
$$y' = y/t - (y/t)^2$$
, $1 \le t \le 2$, $y(1) = 1$, with $h = 0.1$

b.
$$y' = 1 + y/t + (y/t)^2$$
, $1 \le t \le 3$, $y(1) = 0$, with $h = 0.2$

c.
$$y' = -(y+1)(y+3)$$
, $0 \le t \le 2$, $y(0) = -2$, with $h = 0.2$

d.
$$y' = -5y + 5t^2 + 2t$$
, $0 \le t \le 1$, $y(0) = \frac{1}{3}$, with $h = 0.1$

The exact solutions to the corresponding IVP are obtained as;

$$\mathbf{a.} \quad y(t) = \frac{t}{1 + \ln t}$$

$$\mathbf{b.} \quad y(t) = t \tan(\ln t)$$

a.
$$y(t) = \frac{t}{1 + \ln t}$$

c. $y(t) = -3 + \frac{2}{1 + e^{-2t}}$

b.
$$y(t) = t \tan(\ln t)$$

d. $y(t) = t^2 + \frac{1}{3}e^{-5t}$

2. Use the result of question 1 and linear interpolation to approximate the following values of y(t). Compare the approximations obtained to the actual values obtained using the exact solutions given above.

a.
$$y(1.25)$$
 and $y(1.93)$

b.
$$y(2.1)$$
 and $y(2.75)$

c.
$$y(1.3)$$
 and $y(1.93)$

d.
$$y(0.54)$$
 and $y(0.94)$

3. For each case in question 1 compute the approximate order of convergence and draw the hvs error plot in log-log scale. Also find the optimum value of h after which the error blows up.