

Ce document a été numérisé par le <u>CRDP</u> de <u>Bordeaux</u> pour la Base Nationale des Sujets d'Examens de l'enseignement professionnel session 2011

Brevet de Technicien Supérieur Mise en Forme des Matériaux par Forgeage

Session 2011

Epreuve E 4 Etude des Systèmes d'outillage

Sous épreuve U 4.1 Comportement mécanique d'une machine et de son outillage

Temps alloué: 2H00

Coefficient: 1

DOCUMENTS REMIS AU CANDIDAT :

- Sujet de l'épreuve (pages 2 à 4).
- ANNEXE 1 : Plan de la pièce « Vilebrequin-K1 »
- ANNEXE 2 : Photos de la pièce et de la presse.
- ANNEXE 3 : Caractéristiques principales de la presse.
- ANNEXE 4 : Tableaux et graphiques 1 à 7 de la démarche de 'Calcul d'engin' (pages 8 à 13).

DOCUMENTS DISPONIBLES:

- Copies de rédaction
- Feuilles préimprimées de « Calcul prévisionnel de l'effort et de l'énergie »
- Feuilles de brouillon

DOCUMENTS PERSONNELS AUTORISES:

Tous

Estampage du « Vilebrequin-K1 »

sur la presse mécanique « BRET PAFR 32 »

Objectifs

- A- Vérifier la faisabilité mécanique de l'opération d'estampage finition de la pièce nommée
 - « Vilebrequin-K1 » sur la presse mécanique « BRET PAFR 32 ».
- B- Etude de l'élasticité de la presse et de ses effets.

Dossier technique

<u>La pièce</u> dont le dessin de définition est donné en ANNEXE 1 doit être fabriquée suivant la gamme :

- Débit du lopin (Ø 25, L 110 sans la tenue éventuelle) par cisaillage sur presse BLISS.
- Chauffage à 1250°C par induction sur chauffeuse CELES.
- Décalaminage, estampage ébauche et finition sur presse « BRET PAFR 32 ».
- Ebavurage sur presse BLISS.
- Grenaillage en parachèvement.

La masse du « Vilebrequin-K1 » (photos en ANNEXE 2) avoisine les 250 grammes.

La surface de la pièce au plan de joint est de 2200 mm² environ

<u>La presse</u> « **BRET PAFR 32** » (photo en ANNEXE 2) est ici décrite par les données du constructeur 'Caractéristiques principales' (ANNEXE 3), et quelques informations extraites du dossier technique de la machine :

- ➤ Le moteur électrique entraîne le volant d'inertie de la presse par l'intermédiaire de courroies. Les diamètres des poulies sont :
 - pour le moteur : Dm = 220 mm,
 - pour le volant : Dv =1030 mm.
- ➤ Le volant d'inertie, en acier, est assimilé à un cylindre de dimensions approximatives :
 - Diamètre : Dv = 1030 mm
 - Epaisseur : Ev = 260 mm.
- Le volant d'inertie entraîne un pignon qui engrène avec la roue dentée de l'embrayage. Le nombre de dents du pignon est de 18 et le nombre de dents de la roue dentée est de 115.

Travail demandé

A-1- Déterminer la force ultime de forgeage et l'énergie utile de forgeage de la pièce « Vilebrequin-K1 ». Pour faire ce calcul, considérer la température en fin de forgeage proche de 1050°C; la pièce est chauffée à 1250°C, mais il y a une forte perte de température due à la petite taille de la pièce.

N. B.: Le document « Calcul prévisionnel de l'effort et de l'énergie » sera complété des calculs et de la justification des choix opérés sur feuille de copie.

A-2- Schéma cinématique de la presse

Etablir le schéma cinématique de la presse en indiquant, après les avoir calculées, les vitesses de rotation des arbres ainsi que le nom des pièces. (Bâti, Vilebrequin, Moteur, Volant d'inertie...).

A-3- Comparer les besoins avec les capacités mécaniques de la machine et conclure.

Au besoin, les calculs nécessaires seront correctement présentés et expliqués.

B-4- Etude du comportement élastique de la presse

Pour déterminer ce comportement, on utilise la méthode des pions, avec un ou plusieurs pions de diamètre initial 30mm et de hauteur initiale 20 mm.

La courbe caractéristique d'effort en fonction de la hauteur d'écrasement de ces pions est donnée.

Cinq essais ont été réalisés :

1^{er} essai : 1 pion ; Hauteur visée 15,4 mm ; Hauteur mesurée sur le pion 18,1 mm.

2^{ème} essai: 1 pion; Hauteur visée 11,4 mm; Hauteur mesurée sur les pions 14,6 mm.

3^{ème} essai : 2 pions ; Hauteur visée 11,4 mm ; Hauteur mesurée sur les pions 15,4 mm.

4^{ème} essai: 3 pions; Hauteur visée 11,2 mm; Hauteur mesurée sur les pions 16,0 mm.

5^{ème} essai: 4 pions ; Hauteur visée 11,1 mm ; Hauteur mesurée sur les pions 16,5 mm.

Commenter les résultats de ces essais, puis tracer la courbe donnant l'effort sur la presse en fonction du cédage de la presse. Commenter la courbe obtenue.

Déterminer la raideur de la presse.

B-5- Détermination du réglage

Donner la valeur du serrage qu'il va falloir effectuer sur la presse pour compenser le cédage élastique de celle ci.

Donner votre démarche de réglage.

B-6- Evaluation de l'influence énergétique du cédage élastique

Estimer la quantité d'énergie à fournir pour bander élastiquement la presse et atteindre l'effort de forgeage pour le « **Vilebrequin-K1** ».

Après le bilan énergétique global, conclure sur la capacité de la presse à forger cette pièce.

Barême

A1 – noté sur 6

A2 – noté sur 2

A3 – noté sur 4

B4 – noté sur 4

B5 – noté sur 2

B6 – noté sur 2

Qualité F (M1/S3)
Longueurs, largeurs, hauteurs, épaisseurs : +1 / -0,5
Déport : 0,4
Saillie résiduelle de bavure ou plat d'ébavurage : 0,5
Rectitude et planéité : 0,6
Rayons : +50 % / -25 %

page 5/13

<u>Ka</u>	yons : · 	+ 50 %	_	25CrMo4					
Rep.	Nb.		Désignation		Observatio	ns	Matière		
Echelle 1:1		1:1	Session 2011	Dessiné par X. Y.		Académie d'Amiens			
				VILEBREQUIN-I			B. T. S. Mise en Forme des Matériaux par Forgeage EPREUVE E4 - Sous Epreuve E4.1		
Pièce estampée							P. C. C. F. /12		

Caractéristiques principales de La PRESSE MECANIQUE « BRET PAFR 32 »

Force maximale à 10 mm du Point Mort Bas Cadence à la volée Course fixe	50 coups/mn
Coulisseau équilibré à 5 bars Réglage de la position du coulisseau	100 mm
Hauteur maximale entre la table et le	
coulisseau au Point Mort Haut	900 mm
Largeur / Profondeur de la table	1000/900 mm
Largeur / Profondeur du coulisseau	800/800 mm
Course d'éjection supérieure (option)	100 mm
Puissance du moteur électrique	18 kW
Vitesse du moteur	1500 tr/mn
Couple d'embrayage (air à 5 bars)	
Couple de freinage	5000 Nm

ANNEXE 3

TABLEAU 1
Caractère de **complexité** (ou de simplicité) des gravures d'estampage

CRITERES			Classification par les contrainte	CONTR. EXER	AINTES CEES	
Par le fil age	Par I' ac uité	Fre in $(\epsilon \geq 1,5 \text{ mm})$	(en MPa ou N /mm²) En fonction de ses deux critère - filage par un orifice	Sur la pièce	Sur le cordon	
h/e	r/L ou 2r/D	λ/ε			р à 1050°	q à 950°
	0,036	3,75		Pièces extra simples	475	270
1	0,035	4		490	280	
	0,0335	4,25	halimbad DI	Pièces simples (pas de filage)	500	285
1,5	0,032	4,5			520	290
	0,0315	4,75		Pièces semi simples (filage	540	300
2	0,029	5	be	insignifiant)	560	310
	0,028	5,25	h h	Pièces semi complexes (léger filage)	580	320
2,5	0,027	5,5			600	330
	0,026	5,75		Pièces complexes (filage important)	625	350
3	0,025	6			650	360
	0,023	6,25	h	Pièces très complexes (filage très	690	370
3,5	0,022	6,5	prévoir arrêt de métal	important)	720	380

Largeur ou diamètre (en mm)	Valeurs de λ en mm	T h emoy
20 50 80 110 140 170 200 240 270 300 330 360 400	5 6 7 8 9 10 11 12 13 14 15 16	bevure proprement dite Company Company

TABLEAU 3

Ce tableau donne le % de bavure en vue de déterminer le nombre de chocs pour matricer une ébauche préfabriquée. La tenue, quand elle est prévue, n'intervient pas dans ce % (elle ne modifie pas le nombres de chocs).

L'utilisation de ce tableau se fait qu'en l'absence d'étude précise de fabrication.

ATTENTION: Le % de bavure indiqué ci dessous est celui de la bavure <u>sans compter le cordon</u>: % bavure = (Vol. bavure / Vol. pièce + toile + cordon) x 100

(a) (a) (b) (b) (87)	à 765 2	22 à 25%
8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		25 à 30%
2000 P 12	$\frac{1}{2}$	30 à 33%
		33 à
	9 à 2% 3	37%

BTS Mise en Forme des Matériaux par Forgeage - 2011

BTS Mise en Forme des Matériaux par Forgeage - 2011

	Tableau 7												
Influence de la vitesse						Influence de la température							
sur le travail mécanique utile au matriçage						de fin de matriçage sur le travail mécanique utile							
		Vitesse	Valeur d	u rapport		200							
	Engins	m/s	travai	l utile /		7.000							
			travail	minimal			0 0						
Presse à vitesse né	égligeable	≈ 0	1,00			1	, 2, 6						
							7	20					
Presse hydraulique	e très lente	< à 0,05	1,03	± 1 %				X 0,	0				
Presse hydraulique	e moins lente	< à 0,20	1,08	±1%				74.5		0.			
									the street	09.0			
Vites	0,7 à 0,8	1,28	± 2 %					7	0	_			
Maxipresse Vitess	Maxipresse Vitesse Tg ^{elle} de l'excentrique		1,30	± 2 %									
Vites	se Tg ^{elle} de l'excentrique	0,9 à 1,0	1,32	± 2 %		.							
Vitesse Tg ^{elle} de l'excentrique		1,0 à 1,1	1,34	± 2 %									
								للبلب		11500 120	-00		
Presse à vis Vitesse d'impact		0,8 à 0,9	1,36	± 4 %	9	950 ⁹⁵⁰	1000°	1050 ⁰	1100°	11500 120	00°		
Vitesse		0,9 à 1,0	1,39	± 4 %									
d'impact			·										
_													
Mouton	Hauteur de chute 1,00	4,40	1,77	± 4 %	900°	950°	1000°	1050°	1100°	1150°	1200°		
à	Hauteur de chute 1,20	4,85	1,92	± 5 %	900	930	1000	1030	1100	1130	1200		
chute libre	Hauteur de chute 1,40	5,25	2,10	± 5 %	I T () 1 (0) 1 10700								
ou Contre frappe Hauteur de chute 1,70		5,75	2,39	± 5 %	La Température de référence est de 1050°								
ou Course réduite Hauteur de chute 2,00		6,30	2,54	± 6 %	Les coefficients multiplicateurs de conversion sont :								
ou Double effet Hauteur de chute 2,20		6,55	2,72	± 6 %									
Hauteur de chute 2,35		-	2,82	± 6 %	1,710	1,430	1,195	1,000	0,835	0,697	0,585		