2.1 Gry E-F na grafach

W zadaniach poniżej wystarczy wskazać dwie struktury wraz z pomysłem na strategię wygrywającą dla duplik \forall tora w m-rundowej grze E-F. Napisanie porządnego dowodu to prawie samobójstwo. Nauczymy się to robić potem, jak poznamy lokalności Hanfa i Gaifmana. W zadaniach poniżej polecam rysować sobie kółka i kreski.

- ▶ **Zadanie 2.1.** Podaj intuicję czemu "istnienie kliki o rozmiarze przynajmniej n/2, gdzie n to liczba wierzchołków grafu" nie jest $\mathsf{FO}[\{E\}]$ -definiowalne.
- ▶ **Zadanie 2.2.** Podaj intuicję czemu spójność grafów nie jest $FO[\{E\}]$ -definiowalna.
- ightharpoonup Zadanie 2.3. Podaj intuicję czemu acykliczność nie jest $FO[\{E\}]$ -definiowalna.
- ▶ **Zadanie 2.4.** *Podaj intuicję czemu dwukolorowalność nie jest* $FO[{E}]$ -*definiowalna.*
- ▶ Zadanie 2.5. Podaj intuicję czemu "posiadanie cyklu Eulera" nie jest FO[{E}]-definiowalna.

Spójny graf ma cykl Eulera wtw każdy wierzchołek ma parzysty stopień.

▶ Zadanie 2.6. Podaj intuicję czemu "planarność" nie jest FO[{E}]-definiowalna.

Hint: Zastosuj twierdzenie Kuratowskiego oraz graf podobny do 5-elementowej kliki.

2.2 Gry E-F na porządkach

▶ **Zadanie 2.7.** Niech C to klasa wszystkich porządków liniowych. Jaki jest rozmiar $C/_{\equiv_2}$?

Dla porządku liniowego \mathfrak{L} (tj. $\{\leq\}$ -struktury interpretującej \leq jako porządek liniowy na uniwersum) oraz elementu $a\in L$, przez $\mathfrak{L}^{\leq a}$ oznaczamy ograniczenie \mathfrak{L} do elementów mniejszych-lub-równych a. Analogicznie definiujemy $\mathfrak{L}^{\geq a}$. Wykaż:

- ▶ Zadanie 2.8. Niech $\mathfrak{L}_1, \mathfrak{L}_2$ to skończone porządki liniowe oraz niech $a \in L_1, b \in L_2$ będą takie że $\mathfrak{L}_1^{\leq a} \equiv_k \mathfrak{L}_2^{\leq b}$ i $\mathfrak{L}_1^{\geq a} \equiv_k \mathfrak{L}_2^{\geq b}$. Pokaż, że $(\mathfrak{L}_1, a) \equiv_k (\mathfrak{L}_2, b)$. Przez (\mathfrak{L}_1, a) oznaczamy tu rozszerzenie \mathfrak{L}_1 o nowy symbol stalej a interpretowanej jako element a. Strukturę (\mathfrak{L}_2, b) definiujemy analogicznie.
- ▶ Zadanie 2.9. Wykorzystaj poprzednie zadanie by pokazać alternatywny dowód tego że każde dwa skończone porządki $\mathfrak{L}_1, \mathfrak{L}_2$ o mocach $|L_1| \geq 2^m, |L_2| \geq 2^m$ spełniają $\mathfrak{L}_1 \equiv_m \mathfrak{L}_2$.
- ▶ **Zadanie 2.10.** Niech $f: \mathbb{N} \to \mathbb{N}$ będzie minimalną funkcją taką, że $|L_1| \geq f(m)$ oraz $|L_2| \geq f(m)$ implikuje $\mathfrak{L}_1 \equiv_m \mathfrak{L}_2$ (gdzie $\mathfrak{L}_1, \mathfrak{L}_2$ są jak poprzednio). Wykaż, że f jest funkcją wykładniczą.