

Universidade do Minho

Escola de Engenharia

SOLAR TRACKER SYSTEM - ANEXOS

Diego Soares Brandão	97769
Henrique Nogueira Magalhães	94939
João Pedro Machado da Silva	95610
José Pedro Azevedo Leite	95247
Rui Pedro Fernandes Pedroso	96868
Tiago Leal Pereira	96008

Projeto Integrador em Engenharia Eletrónica Industrial e Computadores 2

Projeto orientado por:

Professor Dr. Jaime Francisco Cruz Fonseca

Configuração da STM32-F767ZI

Figura 1 - Pinos utilizados da STM32F767ZI

Com um microcontrolador STM32-F767ZI, configurámos alguns periféricos para o controlo dos motores de acordo com as entradas fornecidas.

Foram utilizados:

- ✓ 1 ADC com múltiplos canais, três deles onde são feitas as leituras dos sensores de intensidade luminosa, um para o potenciómetro, um para o sensor de tensão e ainda um para o sensor de corrente;
- √ 4 Timers sendo, um para a contagem de tempo responsável pela amostragem do valor dos LDRs e os restantes para geração de sinais PWM, um para cada motor de passo e um para a gate do MOSFET presente no conversor BOOST;
- ✓ Como GPIO em modo input, utilizou-se dois pinos onde se verificam os estados dos sensores fim de curso e um para o sensor de temperatura;
- ✓ Como GPIO em modo *output*, utilizou-se também dois pinos para enviar os sinais de direção para os drivers;
- ✓ USART6 de forma a comunicar via porta série com a ESP32.

GPIO

Pin Name	Signal on Pin	GPIO output level	GPIO mode	GPIO Pull-up/Pul	Maximum output	. Fast Mode	User Label	Modified
PB9	n/a	Low	Output Push Pull	No pull-up and n	Low	Disable	DIR_BAIXO	~
PC9	n/a	Low	Output Push Pull	No pull-up and n	Low	n/a	DIR_CIMA	$\overline{\mathbf{v}}$
PD6	n/a	n/a	Input mode	No pull-up and n	n/a	n/a	FDC1	~
PD7	n/a	n/a	Input mode	No pull-up and n	n/a	n/a	FDC2	✓
PF10	n/a	Low	Output Push Pull	No pull-up and n	Low	n/a	DHT11	

Figura 2 – Pinos GPIO

ADC – Analog to digital converter

Figura 3 - Pinos do ADC

Foram utilizados 5 canais do ADC1 para os componentes acima referidos na aba "User Label".

Figura 4 - Canais utilizados para conversão

Figura 5 - Configuração do ADC

Ativamos o *Scan Conversion Mode* e o *Continuous Conversion Mode* com o propósito de converter os diferentes canais em sequência. Os restantes parâmetros ficaram por defeito.

PF3	ADC3_IN9	n/a /	Analog mode	No pull-up and	n/a	n/a	Potentiometer	7	
			7/						
			Fig	ura 6 - Pino do	potenció	ómetro			
V ADC_	Settings								
	Clock Prescaler	t i			PO	CLK2 divided b	y 4		
	Resolution				12 bits (15 ADC Clock cycles)				
	Data Alignment				Right alignment				
	Scan Conversion Mode				Disabled				
	Continuous Conversion Mode				Disabled				
	Discontinuous C	Conversion Mode			Di	sabled			
	DMA Continuou	s Requests			Di	sabled			

Figura 7 - Configuração do ADC do potenciómetro

EOC flag at the end of single channel conversion

Utilizamos o ADC3 para obter o valor do potenciómetro. Todos os parâmetros do mesmo foram deixados por defeito, com a exceção da ativação da *flag* de fim de conversão (EOC).

Timer

• Timer 1

End Of Conversion Selection

Figura 8 – Canal 1 do Timer 1 no modo PWM Generation e o clock source em Internal Clock

O PWM gerado pelo canal 1 do *Timer 1* é utilizado para controlar a gate do MOSFET presente no conversor BOOST.

Figura 9 – Configuração do Timer 1

O *Timer 1* foi configurado de modo a ser obtida uma frequência de 100Hz. Para isso, colocou-se o valor de *Prescaler* a 1080-1 e o valor de *AutoReload* a 1000-1. O pulso do PWM inicia a sua contagem em 0. Os restantes parâmetros ficaram por defeito.

• Timer 2

Figura 10 – Timer 2 em Internal Clock

Counter Settings

Prescaler (PSC - 16 bits value) 179
Counter Mode Up
Counter Period (AutoReload Register - 32 bits value) 59999
Internal Clock Division (CKD) No Division auto-reload preload Disable

Figura 11 – Configuração do Timer 2

O *Timer 2* é utilizado para a definir o e contar o período de amostragem. A frequência usada foi de 10Hz. Neste sentido foram alterados os valores de *Prescaler* e de *AutoReload* para 179 e 59999, respetivamente. Os restantes parâmetros ficaram por defeito.

Figura 12 – Ativar a Interrupt do Timer 2

A Interrupt do Timer 2 ativa a flag do período de amostragem.

Timer 3

Figura 13 - Canal 3 do Timer 3 no modo PWM Generation e o clock source em Internal Clock

O Timer 3 é utilizado nos PWM do motor de passo inferior.

Figura 14 – Configuração o Timer 3

A frequência utilizada foi de 200Hz. Assim foram alterados os valores de *Prescaler* e de *AutoReload* para 540-1 e 1000-1, respetivamente. O *PWM* dará início à sua contagem num valor de pulso de 500. Os restantes valores ficaram por defeito.

Timer 4

Figura 15 - Canal 3 do Timer 4 no modo PWM Generation e o clock source em Internal Clock

O Timer 4 é utilizado no PWM do motor de passo superior.

Figura 16 - Figura 14 – Configuração o Timer 4

O *Timer 4* foi configurado de modo a ser obtida uma frequência de 72Hz. Para isso, colocou-se o valor de *Prescaler* a 1500-1 e o valor de *AutoReload* a 1000-1. O pulso do PWM inicia a sua contagem em 500. Os restantes parâmetros ficaram por defeito.

Timer 6

Figura 17 – Configuração do Timer 6

O Timer 6 foi utilizado para executar uma contagem de tempo em microssegundos necessária na implementação do código do DHT11. Com este objetivo alteramos os valores de prescaler e AutoReload para 108-1 e 65536-1, respetivamente.

USART6

Figura 18 – Configuração da USART6

A USART6 é configurada em modo assíncrono e é utilizada na comunicação com a ESP32.