1. (1) YAESO(3), A正交相似于(cond -sind o) 即关 于过渡正交阵的直角坐标系, A相当于旋转. {b1, b2, b3} $\{b_1,b_2,b_3\}$ \longrightarrow $\{b_1',b_2',b_3\}$ $\mathcal{V}_X^{\mathcal{A}} = (\alpha_1,\beta_2,\beta_3)$ 任一直角坐标系(右手系)即处,处,处,处对时间和始坐标 系(4, 62, 63)通过三次旋转得到。 首先,令人,人们平面交{e1, e2}平面上单位向量为火。 则 $\gamma_0 \perp \lambda_3$, $\gamma_0 \perp \ell_3$, 新力= d. $\ell_3 \times \lambda_3$ (外积) ℓ_3'' ℓ_3' ℓ_4'' ℓ_5'' ℓ_5'' ℓ_5'' ℓ_6'' ℓ_7'' ℓ 多是 ex和最的夹角, 型B是 的和最的夹角 人 尺。(从). $\{\dot{\alpha}_1,\dot{\alpha}_2,\dot{\alpha}_3\}$ 又是Yo和人来角. 注意. Rro(β)=Res(y) Res(β) Res(ツ) Raz(2) = Rez(V) Re,(B) Rez(2) Re,(B) Rez(V) => {e1, e2, e3} Re3(ν) Re(β) Re3(ω) { λ1, λ2, λ3} PP $A = R_{e_3}(y)R_{e_1}(\beta)R_{e_3}(\alpha)$

2. (1) 由 Euler 定理 ∀ a ∈ Z, a ∈ Zp, (a) = 1 Up=Zp* 设在EUp阶数最大o(ā)=m,若m=p-1 则Up是循环群、否则,存在TEUp o(T)=k, k必须是 m的因子,因为。(ab)=[m,k]且m最大,这样m|p-1 且火加二下在Up中有P-1个根。火加一时及中有P-1 个根,这不可能(通过带金除法,判功可得) 注: G-个有限群 |G|=n. m|n,可能 xm= B 在G中有超过m个解(根)例如四元群{e,a,b,ab| $a^2 = b^2 = (ab)^2 = e$ }. 的元素 \overline{a} 和 \overline{p} \overline{p} 检查 $\overset{\bullet}{a}$ = $|(\text{mod }P^2), \overset{\bullet}{a}P^2 = |(\text{mod }P^3), ..., \overset{\bullet}{a}|^{p^{r-1}} = |(\text{mod }P^r)$ 即面pr-1 (在UprCZpr中)且 o(ā)=pr-1. 在Up中取一生成之后,则bP=1(modp)设b在Upr 中阶为 l, $b'=1 \pmod{p^r}$ 即有 p-1/l 令 l=(p-1)mbm在Upr中阶为P-1. 则Upr=<ā.6>(因为P奇数 p-1和 pr-1至素).

(3) $H = \{ \overline{a} \in U_{2r} \mid a = 1 \pmod{4} \} = \{ \overline{4k+1} \mid 0 \leq 4k+1 < 2 \} \}$ $= \{ \overline{4k+1} \mid 0 \le k < 2^{r-2} \} \quad \text{In } |H| = 2^{r-2}$ 注 | Uzr | = 2^{r-1} 设 $\alpha \in \mathbb{N}$ $\alpha = (2^2 + 1) \pmod{2^3}$ 则 $\alpha^2 = 2^3 + 1 \pmod{2^4}$ $\alpha^{2^{2}} \equiv 2^{4} + 1 \pmod{2^{5}}, \dots, \quad \alpha^{2^{r-2}} \equiv 2^{r} + 1 \pmod{2^{r+1}}$ $\Rightarrow o(a) = 2^{r-2}$. If $H = \langle a \rangle$ (4) 任意、 $a \in U_{2r}$, $(a, 2^{r})=1$, 则 $a \equiv 1 \pmod{4}$ 或 a =-1 (mod4). 定义 M= {±1} × H→ U,r ひ(生1, 页) = 土页 这是一个群同态且满射,两边阶数相同,因而同构. (5)中国剩余定理展示 Zn 平 Zprx ··· Zpx是一个同的 限制到 Un上,检查定义合理,是满射. (6) 由(5)显然

Dan的正规子群 $D_{2n} = \langle a, b | a^n = 1, b^2 = 1, bab = a^{-1} \rangle$ = { ai | i \ Zn } U { aib | i \ Zn } 设H → Dzn 若 Yaib & H,则H是{ai/i∈Zn} 的子群. H=<a*> ba*b=a*EH. 脚{ai,ai} ViEZn是Dan的正规子群·若用了2.见州一块或m. m/n. K/n. 它是正规的. 井日aib ∈ H D2n, ⇒ a (aib) a ∈ H. 即a b ∈ H $\forall j$ 若z $\uparrow n$, (2,n)=1 豆在Zn中可逆,存在 \overline{t} z·E=T 今j=t(k-i) ∀k, 则akbeH ∀k€Z. \Rightarrow b, a \in $H = D_{2n}$.