Разработка мобильного приложения для распознавания автомобильных деталей по их изображениям

Исполнитель: Касумов Самир Расимович, 4 курс, группа ПрИн-467

Научный руководитель: Гилка В.В., кандидат технических наук, доцент

Почему тема важна в современных условиях?

Современные технологии

Современные технологии мобильных приложений и машинного обучения значительно упрощают идентификацию объектов.

Оперативность и точность

Разработка приложения для распознавания автомобильных деталей позволяет пользователям оперативно и точно определить нужные компоненты по фотографии, что особенно актуально для автомастерских, дистрибьюторов автозапчастей и конечных пользователей.

Какая проблема существует в заданной предметной области?

1 Рост автомобильного рынка

В условиях роста автомобильного рынка и усложнения современных транспортных средств возрастает потребность в эффективных цифровых решениях для обслуживания и ремонта.

Традиционные методы

Традиционные методы подбора автозапчастей требуют значительных временных затрат и часто не гарантируют точности, что особенно актуально для пользователей, не обладающих глубокими знаниями в данной области.

Основные сложности и ограничения в предметной области:

Временные затраты

Традиционные методы подбора автозапчастей требуют значительного времени.

Человеческие ошибки

Ручные методы подвержены ошибкам из-за усталости или невнимательности.

Необходимость специальных знаний

Пользователи без глубоких знаний испытывают трудности в определении нужных запчастей.

Ограниченная доступность информации

Трудности в получении точной информации о редких или устаревших запчастях.

Цель:

Сокращение временных затрат на идентификацию и подбор автозапчастей путем разработки инструмента для автоматического распознавания автомобильных деталей по изображениям.

Задачи:

- Провести обзор существующих методов распознавания автомобильных запчастей.
- Анализировать подходы к распознаванию объектов на изображениях и выбрать наиболее подходящие алгоритмы.
- Адаптировать выбранные алгоритмы для распознавания и классификации автомобильных деталей.
- Создать удобный интерфейс для взаимодействия с инструментом распознавания.
- Провести тестирование инструмента и оптимизировать его работу для достижения высокой точности и быстродействия

Объект исследования:

Процессы автоматической идентификации и классификации объектов по изображениям.

Предмет исследования:

Методы и алгоритмы распознавания изображений, применяемые в мобильных приложениях для автомобильной индустрии.

Сейчас задача распознавания автомобильных деталей решается с помощью:

Ручной идентификации

Ручные методы и консультации требуют много времени.

Штрих-кодов и QRкодов

Проблемы с чтением кодов и меток.

RFID-METOK

Коды могут содержать недостаточно информации.

Компьютерного зрения

Некоторые методы требуют значительных вычислительных ресурсов.

Сравнение программ для идентификации автозапчастей

PartFinder

Высокая точность распознавания, удобный интерфейс, интеграция с базами данных

AutoPartScan

Быстрая идентификация, поддержка различных форматов изображений, простота использования

CarPartID

Автоматическая идентификация, работа в сложных условиях, одновременное считывание нескольких меток

VehicleVision

Автоматизация процесса, высокая точность, работа в реальном времени

MechanicConsult

Высокая точность, гибкость, консультация с профессионалами

ImageSearchAuto

Доступность, широкий охват, быстрота

CatalogMatch

Точность, доступность, полнота информации

MarkID

Точность, простота использования, полнота информации

PartFinder

Ограниченная функциональность, зависимость от качества изображений, высокая стоимость

AutoPartScan

Необходимость нанесения кодов, проблемы с чтением в условиях загрязнения, ограниченная информация

CarPartID

Высокая стоимость, ограниченная дальность действия, необходимость интеграции с существующими системами

VehicleVision

Необходимость обучения моделей, зависимость от качества изображений, вычислительные ресурсы

MechanicConsult

Временные затраты, зависимость от опыта, человеческие ошибки

ImageSearchAuto

Точность, ограниченная информация, зависимость от интернета

CatalogMatch

Временные затраты, зависимость от каталога, ограниченная актуальность

MarkID

Зависимость от маркировки, ограниченная актуальность, проблемы с чтением

Существующие программы не удовлетворяют полностью требованиям или целям работы по следующим причинам:

Использование свёрточных нейронных сетей (CNN) с фреймворком TensorFlow и Keras для автоматического распознавания автомобильных деталей по изображениям.

