Lezione N+1

Federico De Sisti 2025-05-13

0.1 Sollevamenti di cammini

Esempi

1. $\rho: \mathbb{R} \to S^1$ solito rivestimento, $\alpha: [0,1] \to S^1$ $\mathbf{t} \to (\cos(2\pi t), \sin(2\pi t))$ $\alpha \in \Omega(S^1, (1,0), (1,0))$ I numeri $t \in \mathbb{R}$ t.c. $\rho(t) = a$ sono gli interi. Possiamo sollevare α partendo da

$$\alpha_0^{\uparrow}: [0,1] \to \mathbb{R} \to S^1$$

$$t \to (\cos(2\pi t), \sin(2\pi t)).$$

$$t \to ?$$

dove "?" è tale che composto con ρ fa α quindi $\alpha_0^{\uparrow}(t) = t$ Posso partire da qualunque $n \in \mathbb{Z}$:

 $\alpha_3^t(t) = t + 3$

Composto con ρ da α e parte da 3

Potrei usare

$$\beta:[0,1] \to S^1$$

 $t \to (\cos(-6\pi t), \sin(-6\pi t))$.

Esempi di sollevamento:

$$\beta_5^{\uparrow}(t) = 5 - 3t$$

Teorema 1 (Sollevamento delle omotopie di cammini)

Sia $p: E \to X$ un rivestimento, $F: [0,1] \times [0,1] \to X$ continua, $e \in E$ tale che p(e) = F(0,0).

Allora esiste un unico sollevamento $g:[0,1]\times[0,1]\to E$ di F tale che G(0,0)=e.

Dimostrazione

L'unicità segue dal teorema di unicità dei sollevamenti (quello di $Y \xrightarrow{f} X$ è Y connesso). Dimostriamo l'esistenza di G.

Considero F(-,0) è un cammino $[0,1] \to X$ e anche F(0,-) è un cammino $[0,1] \to X$

Solleviamo partendo da e, otteniamo i sollevamenti

$$\alpha:[0,1]\to E.$$

$$\beta:[0,1]\to E.$$

Soddisfano

$$p(\alpha(t)) = F(t, 0)$$

$$\begin{array}{l} p(\beta(t)) = F(0,t) \\ e\ coincidono\ per\ t = 0 \\ Definiamo\ L: ([0,1] \times \{0\}) \cup (\{0\} \times [0,1]) \subseteq Q = [0,1] \times [0,1] \\ Definiamo \end{array}$$

$$g: L \to E$$

$$(t,s) \to \begin{cases} \alpha(t) & se \ s = 0 \\ \beta(s) & se \ t = 0 \end{cases}.$$

g è continua e solleva

$$F|_L:L\to X.$$

Quindi vogliamo dimostrare che esiste G sottoinsieme di F che coincide con g su $L\subseteq Q$

Passo 1:

Supponiamo l'immagine di F contenuta in un aperto banalizzante $V \subseteq X$. Sia $p^{-1}(V) = \bigcup_{i \in I} U_i$ come nella definizione.

 $L \ \dot{e} \ connesso, \ g(L) \ \dot{e} \ connesso, \ e \ contenuto \ in \ p^{-1}(V)$

Per connessione esiste un unico $i_0 \in I$ tale che $g(L) \subseteq U_{i_0}$

Sia $s: V \to U_{i_0}$ la sezione locale, poniamo $G = s \circ F$ questa solleva F

Coincide con g su L per l'unicità dei sollevamenti.

Passo 2: caso generale.

Non supponiamo Im(F) contenuta in un aperto banalizzante.

Dal teorema del numero di Lebesgue esiste $n \in \mathbb{Z}_{\geq 1}$ tale che

$$\left[\frac{i-1}{n}, \frac{i}{n}\right] \times \left[\frac{i-1}{n}, \frac{i}{n}\right] = Q_{i,j}.$$

un singolo aperto banalizzante $V_{i,h} \subseteq X$

Se sollevo ogni quadratino in ordine con continuità, posso "appiccicarlo" a quelli vecchi, così che la mia funzione non abbia "salti" e sia quindi discontinua Per il passo 1, posso sollevare $F|_{Q_{i,j}}$

Per assicurare che questi sollevamenti si incollino, ordiniamo i $Q_{i,j}$ la coppia

definiamo
$$(i,j) \leq (h,k) \Leftrightarrow \begin{cases} i+k < h+k \\ i+j=h+k, & i \leq k \end{cases}$$
 Aggiungi foto 6:00 13 maggio.

Vale: i lati inferiore e sinistro di $Q_{i,j}$ sono contenuti in

$$L \cup \bigcup_{(a,b)<(i,j)} Q_{a,b}.$$

Patiamo da $Q_{1,1}$: per il passo 1 esiste, un sollevamento:

$$\tilde{G}_{1,1}: Q_{1,1} \to E.$$

tale che $\tilde{G}(0,0)=e,\ e\ \tilde{G}$ solleva $F|_{Q_{1,1}}:Q_{1,1}\to X$ Per l'unicità dei sollevamenti, $g\ e\ \tilde{G}_{1,1}$ si incollano a un sollevamento $G_{1,1}: L \cup Q_{1,1} \to E \ di \ F|_{L \cup Q_{1,1}}$

Il quadrato successivo è $Q_{2,1}$, per il passo 1 esiste $\tilde{G}_{2,1}:Q_{2,1}\to E$ che solleva $F|_{G_{2,1}}$ e tale che $G_{2,1}(\frac{1}{n},0) = G_{1,1}(\frac{1}{n},0)$

Di nuovo $G_{2,1}eG_{1,1}$ si incollano a un sollevamento

$$G_{2,1}: L \cup Q_{1,1} \cup Q_{2,1} \to E.$$

che solleva:

 $F|_{L\cup Q_{1,1}\cup Q_{2,1}}$ iterando sollevo $F|_{Q_{i,j}}$ a un'applicazione $G_{i,j}:Q_{i,j}\to E$ che si incolla alla precedente ottenendo

$$G_{i,j}: L \cup \left(\bigcup_{(a,b) \le (i,j)} Q_{(a,b)}\right) \to E.$$

Il sollevamento richiesto di $F \in G_{n,n}: Q \to E$.

Teorema 2

Sia $p: E \to X$ un rivestimento, scegliamo $a, b \in X$ e $\alpha, \beta \in \Omega(X, a, b)$ scegliamo $e \in E$ tale che p(e) = a considero i sollevamenti $\alpha_e^{\uparrow}, \beta_e^{\uparrow}$. Allora sono equivalenti

1.
$$\alpha \sim \beta$$

2.
$$\alpha_e^{\uparrow}(1) = \beta_e^{\uparrow}(1) \ e \ \alpha_e^{\uparrow} \sim \beta_e^{\uparrow}$$

Dimostrazione

 $(2) \Rightarrow (1) \ \hat{e} \ facile$

se $\alpha_e^{\uparrow}(1) = \beta_e^{\uparrow}(1)$ ed esiste un omomorfismo di cammini G di α_e^{\uparrow} a β_e^{\uparrow}

allora $p \circ G = F : [0,1] \times [0,1] \rightarrow X$

è un omotopia di cammini da α a β

(verifica per esercizio)

 $(1) \Rightarrow (2)$

Sia F omotopia di cammini in X da α a β .

Per il teorema precedente posso sollevare F a $G:[0,1]\times[0,1]\to E$

tale che G(0,0) = e.

Dobbiamo dimostrare che G è omotopia di cammini da α_e^{\uparrow} a β_e^{\uparrow} , e che $\alpha_e^{\uparrow}(1) =$ $\beta_e^{\uparrow}(1)$.

Foto 6:40

A) $F(-,0) = \alpha$, G(-,0) è sollevamento di $F(-,0) = \alpha$

 $e \ parte \ da \ G(0,0) = e$

segue $G(-,0) = \alpha_e^{\uparrow}$ per l'unicità dei sollevamenti.

B) G(0,-) solleva F(0,-) partendo da G(0,0)=e

 $Ma\ F(0,-)=1_a\ perché\ F\ \grave{e}\ omotopia\ di\ cammino.$

Quindi G(0,-) solleva 1_a partendo da e, ma anche 1_e solleva 1_a partendo da e

Per l'unicità $G(0,-)=1_e$

Analogamente $F(1, -) = 1_b$

e il cammino G(1,-) parte da $G(1,0)=\alpha_e^{\uparrow}(1)$ e solleva 1_b come prima G(1,-) è costante e vale $G(1,0)=1_{\alpha_e^{\uparrow}(1)}$

C) G(-,1) solleva $F(-,1) = \beta$, parte da G(0,1) = punto finale di $G(0,-) = 1_e$ quindi G(-,1) pare da e, quindi per l'unicità $G(-,1) = \beta_e^{\uparrow}$ Seque:

$$\beta_e^{\uparrow}(1) = G(1,1) = 1_{\alpha_e^{\uparrow}(1)}(1) = \alpha_e^{\uparrow}(1)$$

inoltre G è omotopia di cammini da α_e^{\uparrow} a β_e^{\uparrow}

Usiamo subito questo teorema per calcolare il primo gruppo fondamentale non banale, quello di $S^1\,$

Corollario 1

$$\pi_1(S^1) \cong \mathbb{Z}.$$

 $Precisamente, sia\ a=(1,0)\ definiamo$

$$\alpha^{(n)}:[0,1]\to S^1$$

$$t \to (\cos(2\pi nt), \sin(2\pi nt))$$

Definiamo

$$\Sigma: Z \to \pi(S^1, a)$$

$$n \to [a^{(n)}]$$

Allora Σ è isomorfismo di gruppi

Dimostrazione

Assumiamo Σ omomorfismo, dimostriamo che è iniettivo, siano $n,m\in\mathbb{Z}$, assumiamo $\Sigma(n)=\Sigma(m)$

 $cio\grave{e} \ \alpha^{(n)} \sim \alpha^{(m)}.$

Considero il rivestimento solito $\rho: \mathbb{R} \to S^1$ solleviamo $\alpha^{(n)}$ e $\alpha^{(m)}$ partendo da $0 \in \mathbb{R}$

$$(\alpha^{(n)})_0^{\uparrow}(t) = nt.$$

$$(\alpha^{(m)})_0^{\uparrow}(t) = mt.$$

Per il teorema, questi hanno stesso punto finale: $n \cdot 1 = m \cdot 1$ cioè n = m