Module 3.5- Matrix Multiplication

Example 1: Sliding Average

Compute sliding average over a list

```
sub_size = 2
a = [4, 2, 5, 6, 2, 4]
out = [3, 3.5, 5.5, 4, 3]
```

Basic CUDA

Compute CUDA

Better CUDA

Two global reads per thread ::

Example 2: Reduction

Compute sum reduction over a list

```
a = [4, 2, 5, 6, 1, 2, 4, 1]
out = [26]
```

Algorithm

- Parallel Prefix Sum Computation
- Form a binary tree and sum elements

Associative Trick

Formula

$$a = 4 + 2 + 5 + 6 + 1 + 2 + 4 + 1$$

Same as

$$a = (((4+2) + (5+6)) + ((1+2) + (4+1)))$$

Thread Assignments

Round 1 (4 threads needed, 8 loads)

$$a = (((4+2)+(5+6))+((1+2)+(4+1)))$$

Round 2 (2 threads needed, 4 loads)

$$a = ((6+11)+(3+5))$$

Round 3 (1 thread needed, 2 loads)

$$a = (17 + 8)$$

Quiz

Quiz

Motivation: Computing Splits

Linear Split

$$\mathrm{lin}(x;w,b)=x_1 imes w_1+x_2 imes w_2+b$$

Dot Product

$$x \cdot w = x_1 imes w_1 + x_2 imes w_2 + \ldots + x_n imes w_n$$

Dot Product in NN

Computes 1 split for 1 data point

Batch Dot Product

Compute dot product for a *batch* of examples x^1, \dots, x^J

Batch Dot Product in NN

Computes 1 split for 5 data points

Math View

$$egin{aligned} ext{lin}(x;w,b) &= x_1 imes w_1 + x_2 imes w_2 + b \ h_1 &= ext{ReLU}(ext{lin}(x;w^0,b^0)) \ h_2 &= ext{ReLU}(ext{lin}(x;w^1,b^1)) \ m(x_1,x_2) &= ext{lin}(h;w,b) \end{aligned}$$

Parameters: $w_1, w_2, w_1^0, w_2^0, w_1^1, w_2^1, b, b^0, b^1$

Batch Dot Product for each split

• Computes 3 splits for 5 data points (15 dot products)

Matrix Multiply

- Key algorithm for deep learning
- Has properties of both zip and reduce

Matmul

Computed this in Module 2 already

Operator Fusion

User API

- Basic mathematical operations
- Chained together as boxes with broadcasting
- Optimize within each individually

Fusion

- Optimization across operator boundary
- Save speed or memory in by avoiding extra forward/backward
- Can open even great optimization gains

Automatic Fusion

- Compiled language can automatically fuse operators
- Major area of research
- Example: TVM, XLA, ONXX

Automatic Fusion

Manual Fusion

- Utilize a pre-fused operator when needed
- Standard libraries for implementations

Matmul Simple

Advantages

- No three dimensional intermediate
- No save for backwards
- Can use core matmul libraries (in the future)

Computations

Starter Code

- Walk through output.
- Find row and column of input
- Simultaneous zip / reduce.

Example: Matmul

Simple Matmul

```
A.shape == (I, J)
B.shape == (J, K)
out.shape == (I, K)
```

Simple Matmul Pseudocode

Compare to zip / reduce

Code

Complexities

- Indices to strides
- Minimizing index operations
- Broadcasting

Matmul Speedups

What can be parallelized?

CUDA Matrix Mul

CUDA Matrix Mul

Basic CUDA ::

Data Dependencies

- Which elements does out[i, j] depend on?
- How many are there?

Dependencies

Square Matrix

- Assume a, b, out are all 2x2 matrices
- Idea -> copy all needed values to shared?

Basic CUDA - Square Small

Basic CUDA ::

Data Dependencies

- If the matrix is big, out[i, j] may depend on 1000s of elements.
- Grows larger than block size.
- Idea: Move the shared memory.

Diagram

Large Square

Basic CUDA - Square Large

Basic CUDA ::

Non-Square - Dependencies

Challenges

- How do you handle the different size of the matrix?
- How does this interact with the block size?