FreeJDAQ

Visuelle Programmiersprache zur Datenerfassung auf einem Raspberry Pi

David Gawron, Stefan Geretschlaeger, Leon Huck, Jan Kublbeck, Linus Ruhnke

23. September 2019

Problemstellung

Abbildung 1: Lieblingsfächer auf Grund des Interesses

Problemstellung

Einleitung

Projektvorstellung

Erweiterungsmöglickeiten von PhyPiDAQ

Von Prof. Dr. Günter Quast

Vorhandene Funktionen

Verarbeiten von Sensordaten durch einen Raspberry Pi

Erstellen von Messkonfigurationen durch Python Code und Yaml

Volle Funktionalität über das **Terminal/Commandozeile**

Ausführliche Dokumentation in der **Softwarebeschreibung**

Erweiterungs Potenzial

Erweiterung auf
Linux und Windows Computer

Vereinfachung durch Schülergerechten Konfigurationsbau

Kreieren einer

Grafischen Benutzeroberfläche

Integrieren einer leicht verständlichen Hilfe

Projektvorstellung

Abgrenzungen

Was unser Produkt nicht enthält:

- Direkte Ansprache der Sensoren (PhyPiDAQ)
- Visuelle Repräsentation der Messkonfiguration
- Abfangen von Fehlern beim Anschließen der Messtechnik
- Erklärungen auf physikalischer Ebene

Grundaufbau

Paketdiagramm

GitHub - FreeJDaq - Commits

Insgesamt 842 Commits, 54/64 Issues closed, (15.09, 18:00 Uhr)

GitHub - FreeJDaq - Lines of Code

Datei	Anzahl Zeilen
Anwendung	4013
Test	1539
Gesamt	5552
Gesamt (inklusive Kommentar- und Leerzeilen)	12776

Verteilt über 122 Mainklassen und 23 Testklassen

Unit-Tests

Insgesamt 107 Testcases, zzgl. 33 GUI - Klickstrecken

Testabdeckung

Insgesamt 80 Prozent Bedingungsüberdeckung.

Allgemein

SSHJ

Probleme

- Teamkommunikation in den ersten Phasen
- Nacharbeiten von Fehlern oder Vervollständigung
- $\bullet \ \, \mathsf{Technologiewahl} \, \to \, \mathsf{Technologiewechsel}$

Was haben wir gelernt

- ullet Phasen planen o Meilensteine, Deadlines setzen und Zuständigkeiten zuteilen
- Arbeitsverteilung gleichmäßig über den Zeitraum verteilen
- Meilensteine überprüfen und ggf. Ressourcen verschieben
- Vor der Implementierung die nötigen Tools aussuchen und in diese einarbeiten

Livedemo

Zusammenfassung

Zur Anwendung:

- Es wurde eine Basis geschaffen, welche Schülern und Physikinteressierten Menschen eine Plattform gibt Messläufe einfach und schnell durchzuführen
- Weitere Produkteigenschaften und Erweiterungen können dieser Basis hinzugefügt werden

Zur Gruppenarbeit:

- Trotz Schwierigkeiten während jeder Phase hat sich unsere Gruppendynamik dadurch positiv entwickelt
- Gewinnung wichtiger Erfahrung in der Projektplanung und Softwareentwicklung

Vielen Dank für Ihre Aufmerksamkeit

Free Java Data Acquisition

Quellen

- https://github.com/osl2/DAQ-Documents
- https://github.com/osl2/PhyPiDAQ
- https://github.com/GuenterQuast/PhyPiDAQ
- http://plantuml.com/de/
- https://junit.org/junit5/
- https://www.eclipse.org/ide/
- https://bitbucket.org/asomov/snakeyaml/src
- https://github.com/hierynomus/sshj
- https://maven.apache.org/
- https://www.eclemma.org/
- https://www.eclemma.org/jacoco/
- https://www.sonarlint.org/
- http://www.jfree.org/jfreechart/

Quellen

- Abbildung 1: https://ag4physik.files.wordpress.com/2017/03/ interessensforschung_strahl.pdf
- Abbildung 2: http://www.physikdidaktik.info/data/_uploaded/Delta_ Phi_B/2015/Caglar-Oeztuerk(2015)Interessenforschung_DeltaPhiB.pdf