Assignment: Prediction Assignment Writeup

Antonio Maurandi López 21 de junio de 2016

Using devices such as Jawbone Up, Nike FuelBand, and Fitbit it is now possible to collect a large amount of data about personal activity relatively inexpensively. Our goal is to predict the manner in which they did the exercise. This is the "classe" variable in the training set. We will use data data from accelerometers on the belt, forearm, arm, and dumbell of 6 participants to predict the "classe" variable.

Loading and processing the data

Exploration of the data.

```
# download data from the source url
filepath <- "XXXXXX"
filepath <- "pml-training.csv"
train <- read.table(filepath, sep="," , header=T, dec=".")
filepath <- "XXX"
filepath <- "pml-testing.csv"
test <- read.table(filepath, sep="," , header=T, dec=".")</pre>
```

Missing values: NA

There are variables with a lot of NA values, we will use only those variables which are not NA always, let set the criteria at 80% of data available, not NA.

```
n <- nrow(train)
f.numofna <- function (vector){
   return( sum(is.na (vector)))
}

x <- as.vector(apply(train, 2, f.numofna)/n)
pander(table(x), caption = "Number of variables with a percentaje of missiing values: `0%` or `97%`")</pre>
```

Table 1: Number of variables with a percentaje of missiing values: 0% or 97%

0	0.979308938946081
93	67

```
varsnona <- (x<0.8)

n1 <- length(names(train) )
train <- train[ ,varsnona ]
test <- test[ ,varsnona ]</pre>
```

```
# kk<-lapply(train,data.class)
# pander(kk)
n2 <- length( names(train) )</pre>
```

We will keep 93 variables instead of the original 160 variables.

Outcome variable classe

It is interesting to check if there are any class more presnet tahn others

Table 2: absolute frecuency of classes of variebl classe

A	В	С	D	Е
5580	3797	3422	3216	3607

Table 3: percentage table

A	В	С	D	Е
28.44	19.35	17.44	16.39	18.38

We can see that there are 5 different clasifications and that all of them are arround 16% and 29% of the total data available.

Table 4: Preliminary descriptives of numerical variables in the training dataset.

	n	mean	sd	median	max	min
X	19622	9812	5665	9812	19622	1
raw_timestamp_part_1	19622	1322827119	204928	1322832920	1323095081	1322489605
$raw_timestamp_part_2$	19622	500656	288223	496380	998801	294
num_window	19622	430.6	247.9	424	864	1
${f roll_belt}$	19622	64.41	62.75	113	162	-28.9
$\operatorname{pitch_belt}$	19622	0.3053	22.35	5.28	60.3	-55.8
yaw_belt	19622	-11.21	95.19	-13	179	-180

	n	mean	sd	median	max	min
total_accel_belt	19622	11.31	7.742	17	29	0
${f gyros_belt_x}$	19622	-0.005592	0.2073	0.03	2.22	-1.04
${ m gyros_belt_y}$	19622	0.03959	0.07824	0.02	0.64	-0.64
$gyros_belt_z$	19622	-0.1305	0.2413	-0.1	1.62	-1.46
$accel_belt_x$	19622	-5.595	29.64	-15	85	-120
${\it accel_belt_y}$	19622	30.15	28.58	35	164	-69
$accel_belt_z$	19622	-72.59	100.4	-152	105	-275
$magnet_belt_x$	19622	55.6	64.18	35	485	-52
$magnet_belt_y$	19622	593.7	35.68	601	673	354
$magnet_belt_z$	19622	-345.5	65.21	-320	293	-623
roll_arm	19622	17.83	72.74	0	180	-180
pitch_arm	19622	-4.612	30.68	0	88.5	-88.8
yaw_arm	19622	-0.6188	71.36	0	180	-180
total_accel_arm	19622	25.51	10.52	27	66	1
$gyros_arm_x$	19622	0.04277	1.994	0.08	4.87	-6.37
gyros_arm_y	19622	-0.2571	0.8514	-0.24	2.84	-3.44
gyros_arm_z	19622	0.2695	0.5532	0.23	3.02	-2.33
accel_arm_x	19622	-60.24	182	-44	437	-404
accel_arm_y	19622	32.6	109.9	14	308	-318
accel_arm_z	19622	-71.25	134.7	-47	292	-636
magnet_arm_x	19622	191.7	443.6	289	782	-584
magnet_arm_y	19622	156.6	201.9	202	583	-392
magnet_arm_z	19622	306.5	326.6	444	694	-597
$\frac{1}{1}$ roll_dumbbell	19622	23.84	69.93	48.17	153.5	-153.7
pitch_dumbbell	19622	-10.78	36.99	-20.96	149.4	-149.6
yaw_dumbbell	19622	1.674	82.52	-3.324	155	-150.9
total_accel_dumbbell	19622	13.72	10.23	10	58	0
$gyros_dumbbell_x$	19622	0.1611	1.509	0.13	2.22	-204
gyros_dumbbell_y	19622	0.04606	0.61	0.03	52	-2.1
$gyros_dumbbell_z$	19622	-0.129	2.287	-0.13	317	-2.38
$accel_dumbbell_x$	19622	-28.62	67.32	-8	235	-419
$accel_dumbbell_y$	19622	52.63	80.75	41.5	315	-189
$accel_dumbbell_z$	19622	-38.32	109.5	-1	318	-334
$magnet_dumbbell_x$	19622	-328.5	339.7	-479	592	-643
${f magnet_dumbbell_y}$	19622	221	326.9	311	633	-3600
$magnet_dumbbell_z$	19622	46.05	140	13	452	-262
${f roll_forearm}$	19622	33.83	108	21.7	180	-180
${f pitch_forearm}$	19622	10.71	28.15	9.24	89.8	-72.5
$yaw_forearm$	19622	19.21	103.2	0	180	-180
${f total_accel_forearm}$	19622	34.72	10.06	36	108	0
$gyros_forearm_x$	19622	0.158	0.6486	0.05	3.97	-22
$gyros_forearm_y$	19622	0.07517	3.101	0.03	311	-7.02
$gyros_forearm_z$	19622	0.1512	1.754	0.08	231	-8.09
$accel_forearm_x$	19622	-61.65	180.6	-57	477	-498
$accel_forearm_y$	19622	163.7	200.1	201	923	-632
$accel_forearm_z$	19622	-55.29	138.4	-39	291	-446
$magnet_forearm_x$	19622	-312.6	347	-378	672	-1280
$magnet_forearm_y$	19622	380.1	509.4	591	1480	-896
magnet_forearm_z	19622	393.6	369.3	511	1090	-973

, caption="Preliminary descriptives of non numerical variables in the training dataset.")

Table 5: Preliminary descriptives of non numerical variables in the trainning dataset.

	n	miss	$\mathrm{miss}\%$	unique
user_name	19622	0	0	6
${ m cvtd_timestamp}$	19622	0	0	20
${f new_window}$	19622	0	0	2
kurtosis_roll_belt	19622	0	0	397
$kurtosis_picth_belt$	19622	0	0	317
kurtosis_yaw_belt	19622	0	0	2
$skewness_roll_belt$	19622	0	0	395
$skewness_roll_belt.1$	19622	0	0	338
$skewness_yaw_belt$	19622	0	0	2
max_yaw_belt	19622	0	0	68
min_yaw_belt	19622	0	0	68
amplitude_yaw_belt	19622	0	0	4
kurtosis_roll_arm	19622	0	0	330
kurtosis_picth_arm	19622	0	0	328
kurtosis_yaw_arm	19622	0	0	395
$skewness_roll_arm$	19622	0	0	331
skewness_pitch_arm	19622	0	0	328
skewness_yaw_arm	19622	0	0	395
kurtosis_roll_dumbbell	19622	0	0	398
kurtosis_picth_dumbbell	19622	0	0	401
kurtosis_yaw_dumbbell	19622	0	0	2
$skewness_roll_dumbbell$	19622	0	0	401
skewness_pitch_dumbbell	19622	0	0	402
skewness_yaw_dumbbell	19622	0	0	2
max_yaw_dumbbell	19622	0	0	73
min_yaw_dumbbell	19622	0	0	73
amplitude_yaw_dumbbell	19622	0	0	3
kurtosis_roll_forearm	19622	0	0	322
kurtosis_picth_forearm	19622	0	0	323
kurtosis_yaw_forearm	19622	0	0	2
skewness_roll_forearm	19622	0	0	323
skewness_pitch_forearm	19622	0	0	319
skewness_yaw_forearm	19622	0	0	2
max_yaw_forearm	19622	0	0	45
min_yaw_forearm	19622	0	0	45
amplitude_yaw_forearm	19622	0	0	3
classe	19622	0	0	5

Standaritation

It's interestil
ng to scale and center the data it to get models less influenced by the diferent scale of the predictor variables.

```
procValues <- preProcess( train, method = c("center", "scale") )
trainN <- predict( procValues, train )
testN <- predict( procValues, test )</pre>
```

We will work with the data set witout the classification variable classe.

There are varibles thar are not of the same type (class) in both datasets

```
# problema con las classes de las variables aml! 20160621
k1 <- sapply( trainN, class)
k2 <- sapply( testN, class )
kk <- data.frame( k1, k2, k0 = NA , stringsAsFactors = FALSE )
# str(kk)
# head(kk)
for (i in 1: nrow(kk)){
    if (kk$k1[i]==kk$k2[i]) { kk$k0[i] <- TRUE }
    else{ kk$k0[i]<- FALSE}
}
length(rownames(kk))</pre>
```

[1] 90

```
# rownames(kk)[kk$k0]
# there are variaboles than are not of the same type (class) in both datasets
pander(kk[kk$k0==FALSE,1:2], caption="Variables in datasets than are not of the same data class.")
```

Table 6: Variables in datasets thar are not of the same data class.

	k1	k2
kurtosis_roll_belt	factor	logical
${ m kurtosis_picth_belt}$	factor	logical
kurtosis_yaw_belt	factor	logical
$skewness_roll_belt$	factor	logical
$skewness_roll_belt.1$	factor	logical
$skewness_yaw_belt$	factor	logical
\max_yaw_belt	factor	logical
${f min_yaw_belt}$	factor	logical
${ m amplitude_yaw_belt}$	factor	logical
${f kurtosis_roll_arm}$	factor	logical
${ m kurtosis_picth_arm}$	factor	logical
kurtosis_yaw_arm	factor	logical
$skewness_roll_arm$	factor	logical
${f skewness_pitch_arm}$	factor	logical

	k1	k2
skewness_yaw_arm	factor	logical
$kurtosis_roll_dumbbell$	factor	logical
$kurtosis_picth_dumbbell$	factor	logical
kurtosis_yaw_dumbbell	factor	logical
$skewness_roll_dumbbell$	factor	logical
$skewness_pitch_dumbbell$	factor	logical
$skewness_yaw_dumbbell$	factor	logical
$\max_yaw_dumbbell$	factor	logical
${f min_yaw_dumbbell}$	factor	logical
${ m amplitude_yaw_dumbbell}$	factor	logical
$kurtosis_roll_forearm$	factor	logical
$kurtosis_picth_forearm$	factor	logical
kurtosis_yaw_forearm	factor	logical
${f skewness_roll_forearm}$	factor	logical
$skewness_pitch_forearm$	factor	logical
$skewness_yaw_forearm$	factor	logical
$\max_yaw_forearm$	factor	logical
${f min_yaw_forearm}$	factor	logical
${ m amplitude_yaw_forearm}$	factor	logical

```
vasrthatareidenticalinclass <- rownames(kk)[kk$k0] # in boyh dataframes
trainN <- trainN [ ,kk$k0]
trainN <- subset(trainN, select = vasrthatareidenticalinclass)
testN <- subset(testN , select = vasrthatareidenticalinclass)</pre>
```

We will work only with those variables that have the same class in both datasets: raw_timestamp_part_1, raw_timestamp_part_2, cvtd_timestamp, new_window, num_window, roll_belt, pitch_belt, yaw_belt, total_accel_belt_x, gyros_belt_y, gyros_belt_z, accel_belt_x, accel_belt_y, accel_belt_z, magnet_belt_x, magnet_belt_y, magnet_belt_z, roll_arm, pitch_arm, yaw_arm, total_accel_arm, gyros_arm_x, gyros_arm_y, gyros_arm_z, accel_arm_x, accel_arm_y, accel_arm_z, magnet_arm_x, magnet_arm_y, magnet_arm_z, roll_dumbbell, pitch_dumbbell, yaw_dumbbell, total_accel_dumbbell, gyros_dumbbell_x, gyros_dumbbell_y, gyros_dumbbell_z, accel_dumbbell_x, accel_dumbbell_y, accel_dumbbell_y, magnet_dumbbell_z, roll_forearm, pitch_forearm, yaw_forearm, total_accel_forearm_gyros_forearm_x, gyros_forearm_y, gyros_forearm_z, accel_forearm_x, accel_forearm_y, accel_forearm_z, magnet_forearm_x, magnet_forearm_y, magnet_forearm_z, magnet_forearm_z,

Still there are two variables with typoe factor: cvtd_timestamp, new_window. We will delete them because differences in number of levels and NA valyues are usually a problem for random forest.

```
# qitamos los factores
names(trainN[,sapply(trainN,is.factor)])

[1] "cvtd_timestamp" "new_window"

names(testN[,sapply(testN,is.factor)])
```

```
# trainN <- trainN[,-c(sapply(trainN,is.factor))]
# testN <- testN[,-c(sapply(testN,is.factor))]

trainN <- trainN[ ,-c(3:4) ]
testN <- testN[ ,-c(3:4) ]</pre>
```

Now we have a training data set with 55 variables and 19622 observations.

• Variables in the model: raw_timestamp_part_1, raw_timestamp_part_2, num_window, roll_belt, pitch_belt, yaw_belt, total_accel_belt, gyros_belt_x, gyros_belt_y, gyros_belt_z, accel_belt_x, accel_belt_z, magnet_belt_x, magnet_belt_y, magnet_belt_z, roll_arm, pitch_arm, yaw_arm, total_accel_arm, gyros_arm_x, gyros_arm_y, gyros_arm_z, accel_arm_x, accel_arm_y, accel_arm_z, magnet_arm_y, magnet_arm_z, roll_dumbbell, pitch_dumbbell, yaw_dumbbell, total_accel_dumbbell, gyros_dumbbell_x, gyros_dumbbell_y, gyros_dumbbell_z, accel_dumbbell_x, accel_dumbbell_y, accel_dumbbell_z, magnet_dumbbell_x, magnet_dumbbell_y, magnet_dumbbell_z, roll_forearm, pitch_forearm, yaw_forearm, total_accel_forearm, gyros_forearm_x, gyros_forearm_y, gyros_forearm_z, accel_forearm_x, accel_forearm_y, accel_forearm_z, magnet_forearm_z, magnet_forearm_z, magnet_forearm_z.

Fit a Model

Cross validation

We will use a 60% training set, 40% prove set of the total data set with clsification (classe).

```
set.seed( pi )
casostest1 <- createDataPartition( myclasse, p=0.6, list = FALSE )

train1 <- trainN [ casostest1, ] # trainning data set
train2 <- trainN [-casostest1, ] # proving data set</pre>
```

We will use to build a model a training data set of 11776 observations that is the 60% of the data in the original training dataset. We will test the model in a test data set of 7846 that is the remaining 40% of the data of the original training dataset.

We will use the function randomForest() from randomForest package to fit the model.

```
# library( "randomForest" )
# This function can not work with `factor` variables than have more than 54 levels
# , so we will limitate the factor to have no mor than 10 levels
# , using an _ad hoc_ function `flevels()`.
# so we create a function to select only those fcator variables
# with less than a certain numeber (nl) of levels
# mynl <- 9
# flevels <- function(v, nl = mynl ){
#    if (nlevels(v) < nl) return (TRUE)
#        else return(FALSE)
# }
system.time(
        rfo2 <- randomForest( myclasse[casostest1] ~. , data = train1
# rfo2 <- randomForest( myclasse[casostest1] ~. , data = train1[, sapply(train1, flevels)]</pre>
```

```
# , mtry = 7 # el default es raiz(p)/3, donde p es el num de vars # , subset = train , importance = TRUE )
```

user system elapsed $56.312\ 0.072\ 56.392$

```
# varsinmodel <- names( train1[,sapply(train1, flevels)] )
pander( importance( rfo2 ) )</pre>
```

Table 7: Table continues below

	A	В	С	D	Е	MeanDecreaseAccuracy
raw_timestamp_part_1	50.48	55.66	58.21	61.13	40.81	73.94
raw_timestamp_part_2	9.755	9.758	9.134	7.915	7.731	18.4
num_window	28.95	37.23	44.09	36.21	34.17	41.49
$\overline{\operatorname{roll}}$ belt	31.47	40.42	35.44	39.81	35.37	45.5
${f pitch_belt}$	24.54	35.23	30.03	28.86	27.02	38.1
yaw_belt	31.23	33.97	31.8	38.06	27.01	46.59
total_accel_belt	13.58	14.26	12.43	13.78	15.22	16.07
${f gyros_belt_x}$	12.62	13.8	15.8	11.04	13.45	19.44
${f gyros_belt_y}$	9.607	12.96	13.58	12.83	14.38	16.72
${f gyros_belt_z}$	16.09	21.29	20.3	18.56	20.21	23.24
$accel_belt_x$	12.73	16.34	15.72	13.81	13.29	18.67
$accel_belt_y$	10.36	12.05	11.51	14.22	12.34	14.24
${ m accel_belt_z}$	17.06	22.3	20.34	19.52	19.06	23.57
${f magnet_belt_x}$	13.7	21.26	20.4	17.45	20.19	25.13
${f magnet_belt_y}$	19.51	22.94	23.09	23.89	21.3	26.45
${f magnet_belt_z}$	18.5	21.85	20.94	24.89	20.19	25.36
roll_arm	16.68	24.61	22.39	22.87	19.51	27.06
${f pitch_arm}$	12.33	20.63	15.44	15.21	14.11	20.01
yaw_arm	16.57	19.56	19.17	20.58	16.94	22.96
${ m total_accel_arm}$	8.42	19.12	15.89	16.01	13.71	21.34
$gyros_arm_x$	12.28	17.29	12.6	16.71	15.25	18.34
$gyros_arm_y$	11.74	21.88	18.37	19.48	16.94	26.09
${f gyros_arm_z}$	10.37	14.07	10.28	13.16	11.85	21.75
$accel_arm_x$	12.8	14.75	14.18	17.05	12.82	15.55
$accel_arm_y$	13.38	17.02	14.1	16.34	14.81	21.52
$accel_arm_z$	10.01	14.16	15.62	15.5	11.49	15.57
$magnet_arm_x$	15.43	15.04	17.16	16.44	13.97	16.99
${f magnet_arm_y}$	12.15	15.57	17.02	17.85	12.88	16.23
${f magnet_arm_z}$	15.05	21.12	17.45	16.46	15.97	22.2
${ m roll_dumbbell}$	20.53	24.48	25.24	25.36	23.37	28.01
${f pitch_dumbbell}$	10.5	17.94	14.81	12.8	13.38	15.73
yaw_dumbbell	15.79	19.34	20.46	19.18	20.52	23.29
${f total_accel_dumbbell}$	15.4	19.76	18.74	20.25	18.83	22.69
$gyros_dumbbell_x$	13.49	18.46	17.46	15.41	15.47	27.32
$gyros_dumbbell_y$	15.81	17.45	21.15	17.16	15.61	19.66
${ m gyros_dumbbell_z}$	13.86	19.67	12.98	14.62	11.09	28.99
$accel_dumbbell_x$	16.23	22.24	18.73	17.95	19.38	23.18
$accel_dumbbell_y$	21.78	23.24	25.88	23.81	22.99	28.72

	A	В	С	D	Е	MeanDecreaseAccuracy
accel_dumbbell_z	16.47	21.62	22.61	21.46	22.58	25.49
$magnet_dumbbell_x$	20.08	21.86	23.87	22.71	20.67	23.63
$magnet_dumbbell_y$	25.53	31.98	35.21	30.1	25.82	34.41
${f magnet_dumbbell_z}$	36.55	30.84	36.36	31.24	30.31	38.98
${f roll_forearm}$	23.42	20.69	25.51	18.86	19.81	23.56
${f pitch_forearm}$	25.62	28.5	32.69	29.35	27.43	34.11
$yaw_forearm$	13.54	16.25	15.47	16.59	15.03	19.98
${f total_accel_forearm}$	14.21	15.37	16.01	12.72	15.43	19.9
$gyros_forearm_x$	9.025	13.86	14.26	12.9	13	22.44
$gyros_forearm_y$	11.22	19.28	17.99	15.9	15.58	22.87
$gyros_forearm_z$	9.701	18.26	16.87	13.43	12.07	25.18
$accel_forearm_x$	15.38	21.28	19.62	24.03	20.21	22.62
accel_forearm_y	14.46	17.18	17.39	15.92	17.22	21.3
${\it accel_forearm_z}$	12.69	15.43	18.48	16.39	15.78	19.2
$magnet_forearm_x$	12.74	17.22	16.22	15.44	17.08	18.84
$magnet_forearm_y$	14.53	17.17	17.02	16.26	16.33	19.67
$magnet_forearm_z$	16.72	21.06	18.98	20.4	19.46	25.25

	MeanDecreaseGini
raw_timestamp_part_1	1113
$raw_timestamp_part_2$	13.11
$\operatorname{num_window}$	671.1
$\operatorname{roll_belt}$	624.1
${f pitch_belt}$	343
yaw_belt	420.7
${f total_accel_belt}$	127.1
${f gyros_belt_x}$	43.5
${f gyros_belt_y}$	53.34
${f gyros_belt_z}$	139.2
$accel_belt_x$	64.63
${ m accel_belt_y}$	74.77
${ m accel_belt_z}$	224.8
$magnet_belt_x$	117.1
${ m magnet_belt_y}$	204.5
${f magnet_belt_z}$	187.2
roll_arm	154
pitch_arm	73.85
yaw_arm	103.4
${ m total_accel_arm}$	42.77
$gyros_arm_x$	51.75
$gyros_arm_y$	51.18
$gyros_arm_z$	25.59
accel_arm_x	111
accel_arm_y	67.32
$accel_arm_z$	57.67
$magnet_arm_x$	128.3
${f magnet_arm_y}$	111.3
$magnet_arm_z$	74.52
$roll_dumbbell$	213.1
$\operatorname{pitch_dumbbell}$	96.71
$yaw_dumbbell$	131.7

	MeanDecreaseGini
total_accel_dumbbell	138.5
${f gyros_dumbbell_x}$	50.82
${f gyros_dumbbell_y}$	122.5
${f gyros_dumbbell_z}$	33.97
$accel_dumbbell_x$	137.2
$accel_dumbbell_y$	218.8
$accel_dumbbell_z$	180.5
${f magnet_dumbbell_x}$	236.9
${f magnet_dumbbell_y}$	340.4
${f magnet_dumbbell_z}$	390.3
${ m roll_forearm}$	281.1
${f pitch_forearm}$	407.6
$yaw_forearm$	68.97
${f total_accel_forearm}$	45.39
${f gyros_forearm_x}$	32.97
${f gyros_forearm_y}$	48.6
${f gyros_forearm_z}$	31.7
$accel_forearm_x$	159.4
$accel_forearm_y$	60.36
$accel_forearm_z$	104
$magnet_forearm_x$	96.95
${f magnet_forearm_y}$	91.98
magnet_forearm_z	113.9

varImpPlot(rfo2)

rfo2

Testing the model with train2 (40% of the training data)

Now we will test or model with the training data set that represent de 40% of the original training data set: train2.

Accuracy	Kappa
0.9978	0.9973

```
pander(kk$table , caption = "Confusion table." )
```

Table 10: Confusion table.

	A	В	С	D	Е
A	2232	7	0	0	0
\mathbf{B}	0	1511	2	0	0
\mathbf{C}	0	0	1366	1	0
D	0	0	0	1285	7
${f E}$	0	0	0	0	1435

```
pander(t(kk$byClass) , caption = "model parameters by class." )
```

Table 11: model parameters by class.

	Class: A	Class: B	Class: C	Class: D	Class: E
Sensitivity	1	0.9954	0.9985	0.9992	0.9951
Specificity	0.9988	0.9997	0.9998	0.9989	1
Pos Pred Value	0.9969	0.9987	0.9993	0.9946	1
Neg Pred Value	1	0.9989	0.9997	0.9998	0.9989
Prevalence	0.2845	0.1935	0.1744	0.1639	0.1838
Detection Rate	0.2845	0.1926	0.1741	0.1638	0.1829
Detection Prevalence	0.2854	0.1928	0.1742	0.1647	0.1829
Balanced Accuracy	0.9994	0.9975	0.9992	0.9991	0.9976

```
# confusionMatrix(train2 prediction, myclasse[-casostest1])$overall['Accuracy']
```

We obtain a high accuracy 0.998, so we may think that we have a goog model for prediction.

Clasification of new cases

testN_prediction <- predict(rfo2, newdata=testN)
pander(data.frame(test\$user_name,testN_prediction))</pre>

test.user_name	testN_prediction
pedro	В
jeremy	A
jeremy	В
adelmo	\mathbf{A}
eurico	\mathbf{A}
jeremy	${f E}$
jeremy	D
jeremy	В
carlitos	\mathbf{A}
charles	\mathbf{A}
carlitos	В
jeremy	\mathbf{C}
eurico	В
jeremy	\mathbf{A}
jeremy	${f E}$
eurico	${f E}$
pedro	\mathbf{A}
carlitos	В
pedro	В
eurico	В

Sessioninfo()

sessionInfo()

R version 3.2.2 (2015-08-14) Platform: i686-pc-linux-gnu (32-bit) Running under: Ubuntu 15.10

locale: [1] LC CTYPE=es ES.UTF-8 LC NUMERIC=C

- [3] LC_TIME=es_ES.UTF-8 LC_COLLATE=es_ES.UTF-8
- [5] LC_MONETARY=es_ES.UTF-8 LC_MESSAGES=es_ES.UTF-8
- [7] LC_PAPER=es_ES.UTF-8 LC_NAME=C
- [9] LC ADDRESS=C LC TELEPHONE=C
- [11] LC MEASUREMENT=es ES.UTF-8 LC IDENTIFICATION=C

attached base packages: [1] stats graphics grDevices utils datasets methods base

other attached packages: [1] randomForest_4.6-12 xda_0.1 devtools_1.10.0

- [4] caret_6.0-68 ggplot2_2.0.0 lattice_0.20-33
- [7] pander_0.6.0

loaded via a namespace (and not attached): [1] codetools_0.2-14 digest_0.6.9 htmltools_0.3

- [4] minqa_1.2.4 splines_3.2.2 MatrixModels_0.4-1 [7] scales_0.3.0 grid_3.2.2 stringr_1.0.0
- $[10] \ e1071_1.6-7 \ knitr_1.12.3 \ lme4_1.1-11$
- [13] munsell_0.4.3 nnet_7.3-10 foreach_1.4.3
- [16] iterators 1.0.8 mgcv 1.8-7 Matrix 1.2-2
- [19] MASS_7.3-43 plyr_1.8.3 stats4_3.2.2

- [22]stringi_1.0-1 pbkrtest_0.4-5 magrittr_1.5
- [25] car_2.1-1 reshape2_1.4.1 rmarkdown_0.9.2
- [28] evaluate_0.8 gtable_0.1.2 colorspace_1.2-6
- [31] yaml_2.1.13 tools_3.2.2 parallel_3.2.2
- [34] nloptr_1.0.4 nlme_3.1-124 quantreg_5.19
- [37] class_7.3-13 formatR_1.2.1 memoise_1.0.0
- [40] Rcpp_0.12.3 SparseM_1.7