Data Science Libraries

Data Science Libraries

Hier eine Übersicht über gängige Data Science Pakete, wie sie installiert und verwendet werden.

Library Name	Paket Name (pip install <name>)</name>	Code-Beispiel		Beschreibung
Jupyter	jupyter, jupyterlab	\$ jupyter notebook, \$ jupyter lab #	startet Notebook oder Lab	Führt eine interaktive Entwicklungsumgebung ein, die im Browser läuft. Erlaubt Ausführen von Code sowie Eingabe von formatiertem Text (Markdown). Notebooks haben eine eigene Endung .ipynb. Zellen können einzeln und wiederholt ausgeführt werden und die Ausgabe bleibt gespeichert.
Numpy	numpy	<pre>x.dtype.</pre>	aus bestehendem Operation Funktionen (sum,min,max,) Tibute In generieren (3x3 Matrix) Slice (2x2 Sub-Matrix)	Führt den Datentyp ndarray ein und erlaubt Arbeiten mit multidimensionalen arrays. Arrays sind typisiert und besitzen immer einen Datentyp. Erlaubt einfachen Zugriff auf mehrere Dimensionen über Slices. Führt elementweise Operationen als Standardverhalten ein. Numpy-Operationen sind um mehrere Größenordnungen schneller als Python.
Pandas	pandas		# Einlesen von CSV/TSV # Ersten n Elemente # Metainfo Spalten(typen) # Statistiken pro Spalte # Spaltenzugriff ü. Label # Zeilenzugriff ü. Label # Anlegen neuer Spalte # Gruppieren+Aggregieren # Gruppieren+Aggregieren # Spalten visualisieren	Führt den Datentyp DataFrame und Series ein und erlaubt Arbeiten auf tabellarischen Daten. Erlaubt zeilen- sowie spaltenbasierten Zugriff, Manipulation der Tabelle und bietet umfangreiche Transformationsmethoden. Baut auf numpy auf und ergänzt arrays um Label. Besitzt eigene Plotting-Funktionen.

Library	Paket	Code-Beispiel		Beschreibung
Name	Name			
	(pip install <name>)</name>			
Matplotlib	matplotlib	<pre>import matplotlib.pyplot as plt plt.plot(x,y) # Linienplot von (</pre>	# Linienplot von (x,y)	ein. Erlaubt einfache und komplexe visualisierungen. Kann über weitere Plots Parameter und Methoden 100% angepasst werden (Linestyle, marker, color). Fügt Plots so lange der aktuellen
		plt.scatter(x,y)	<pre># Scatterplot von (x,y) # Histogramm von x # neue Grafik mit Maßen 8x8</pre>	
		plt.hist(x)		
		plt.figure(figsize=(8,8))		
		fig, $ax = plt.subplots(2,2)$	# neue Grafik m. 2x2 Plots	
		plt.title("Titeltext")	# Titel	
		plt.xlabel("…")	# x-Achsenbeschriftung	
		plt.ylabel("")	# y-Achsenbeschriftung	
		fig.savefig("name.png")	# Grafik speichern	
Seaborn	seaborn	import seaborn as sns	# Paianial datament	Führt mächtige Visualisierungsmethoden für kategorische und numerische Variablen ein. Arbeitet mit pandas DataFrames zusammen und erlaubt Auswahl der gewünschten Spalten über deren Namen. Bietet high-level Figureplots und low- level Axenplots.
		sns.load_dataset("iris") sns.set_style("white")	# Beispieldatensatz # Ästhetik definieren	
		sns.relplot(df, kind="line")	# Linienplot f. alle Spalten	
		sns.retptot(df, kthd= tthe) sns.retptot(data=df, x="A", y="B")	# Scatterplot für A & B	
		sns.displot(df)	# Histogramm f. alle Spalten	
		<pre>sns.displot(data=df, x="A", kind="kde")</pre>	# Densityplot für A	
		sns.kdeplot(data=df, x="A", y="B")	# 2D-Densityplot für A & B	
		sns.catplot(data=df, kind="box")	# Boxplot für alle Spalten	
		<pre>sns.displot(data=df, x="A", col="B")</pre>	# Histogramm für A pro B	
scikit-learn	scikit-learn	from sklearn import linear_model	· · · · · · · · · · · · · · · · · · ·	Führt eine sehr verständliche und einfache API für Machine Learning ein. Erlaubt ein einheitliches Trainieren einer Großzahl von Machine Learning Algorithmen sowohl für supervised als auch unsupervised learning. Bietet darüber hinaus wertvolle Methoden für das Preprocessing, die Modellevaluierung sowie für Hyperparameteroptimierung.
		reg = linear_model.LinearRegression()	# Linear Regression Modell	
		reg.fit(X, y)	# trainiert das Modell	
		from sklearn import tree		
		<pre>clf = tree.DecisionTreeClassifier()</pre>	# Entscheidungsbaum Modell	
		clf = clf.fit(X, y)	# trainiert das Modell	
		from sklearn.cluster import KMeans		
		kmeans = KMeans(n_clusters=2)	# KMeans Modell m. 2 Cluster	
		kmeans.fit(X)	# trainiert das Modell	
		kmeans.predict(X)	# Vorhersage für neue Daten	
		from sklearn import preprocessing	tost split/	
		<pre>X_train, X_test, y_train, y_test = trair X, y, test_size=0.4)</pre>	= test_spii(# Train- und Testset	
		from sklearn.model_selection import cros		
		clf = svm.SVC(kernel='linear', C=1, random_state=42)		
		scores = cross_val_score(clf, X, y, cv=5		
		300 e5 - 0 035_vac_300 e(00 , A, y, 0v-5) # 0 035-vactuacton		