Hw Assignment # 1.

Chapter 2.)

Problems

PROBLEM 2.3

Two structural members B and C are bolted to bracket A. Knowing that both members are in tension and that P=10 kN and Q=15 kN, determine graphically the magnitude and direction of the resultant force exerted on the bracket using (a) the parallelogram law, (b) the triangle rule.

PROBLEM 2.5

A stake is being pulled out of the ground by means of two ropes as shown. Knowing that $\alpha = 30^{\circ}$, determine by trigonometry (a) the magnitude of the force **P** so that the resultant force exerted on the stake is vertical, (b) the corresponding magnitude of the resultant.

PROBLEM 2.28

Cable AC exerts on beam AB a force \mathbf{P} directed along line AC. Knowing that \mathbf{P} must have a 350-lb vertical component, determine (a) the magnitude of the force \mathbf{P} , (b) its horizontal component.

PROBLEM 2.35

Knowing that $\alpha = 35^{\circ}$, determine the resultant of the three forces shown.

PROBLEM 2.44

Two cables are tied together at C and are loaded as shown. Knowing that $\alpha = 30^{\circ}$, determine the tension (a) in cable AC, (b) in cable BC.

PROBLEM 2.80

Determine the magnitude and direction of the force $\mathbf{F} = (320 \text{ N})\mathbf{i} + (400 \text{ N})\mathbf{j} - (250 \text{ N})\mathbf{k}$.

PROBLEM 2.85

A frame ABC is supported in part by cable DBE that passes through a frictionless ring at B. Knowing that the tension in the cable is 385 N, determine the components of the force exerted by the cable on the support at D.

PROBLEM 2.91

Find the magnitude and direction of the resultant of the two forces shown knowing that P = 300 N and Q = 400 N.

PROBLEM 2.107

Three cables are connected at A, where the forces **P** and **Q** are applied as shown. Knowing that Q = 0, find the value of P for which the tension in cable AD is 305 N.

PROBLEM 2.134

Knowing that the tension in cable AC is 2130 N, determine the components of the force exerted on the plate at C.