4.7.3. Касательная и нормаль к поверхности

Будем исследовать поверхность π с уравнением F(x, y, z(x, y)) = 0 (неявное задание)

Def. Прямая τ называется касательной прямой к поверхности π в точке P(x,y,z), если эта прямая касается какой-либо кривой, лежащей на π и проходящей через P

Nota. Кривая получается (обычно) сечением π какой-либо плоскостью

Nota. В одной точке может быть множество касательных, но это не всегда так

Nota. Договоримся различать два типа точек поверхности: обыкновенные и особые

Def. Поверхность π задана F(x, y, z(x, y)) = 0. Точка M называется обыкновенной, если существуют все $\frac{\partial F}{\partial x}$, $\frac{\partial F}{\partial y}$, они непрерывны и не все равны нулю

Def. Точка M называется особой, если $\frac{\partial F}{\partial x} = \frac{\partial F}{\partial y} = \frac{\partial F}{\partial z} = 0$ или хотя бы одна из производных не существует

Th. Все касательные прямые к π в обыкновенной точке M_0 лежат в одной плоскости

 \vec{s} — направляющий вектор касательной au, проведенной к кривой l в некоторой секущей плоскости

 $d\vec{s}$ – вектор малых приращений, то есть $d\vec{s}=(dx,dy,dz)$

 $d\vec{p}$ – проекция $d\vec{s}$ на Oxy, то есть $d\vec{p}=(dx,dy)$

Кривую l можно задать параметрическими уравнениями $\begin{cases} x = \varphi(t) \\ y = \xi(t) \\ z = \theta(t) \end{cases}$

Прямая τ имеет уравнение

$$\frac{x - x_0}{dx} = \frac{y - y_0}{dy} = \frac{z - z_0}{dz}$$

При отходе от M_0 на малое расстояние по поверхности (точнее по кривой l) задаем приращение $dt \neq 0$

Домножим уравнение на dt

$$\frac{x - x_0}{\frac{dx}{dt}} = \frac{y - y_0}{\frac{dy}{dt}} = \frac{z - z_0}{\frac{dz}{dt}}$$

Из условия обыкновенности точки M_0 следует дифференцируемость функции F. Кроме того, уравнение можно преобразовать к виду F(x(t),y(t),z(t))=0, где x(t),y(t),z(t) тоже дифференцируемы в точке M_0

Запишем F'_t , как вложенную:

$$F'_t = \frac{\partial F}{\partial x}\frac{dx}{dt} + \frac{\partial F}{\partial y}\frac{dy}{dt} + \frac{\partial F}{\partial z}\frac{dz}{dt} = 0$$

Или
$$\left(\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial z}\right) \cdot \left(\frac{dx}{dt}, \frac{dy}{dt}, \frac{dz}{dt}\right) = 0$$

Таким образом, $\vec{N} \cdot \frac{d\vec{s}}{dt} = 0$. То есть $\vec{N} \perp \frac{d\vec{s}}{dt}$, при том, что $d\vec{s}$ выбран произвольно (кривая l – кривая произвольного сечения)

Итак, вектор \vec{N} перпендикулярен любой касательной τ к поверхности π в точке M_0 . Следовательно, все касательные лежат в плоскости κ такой, что $\vec{N} \perp \kappa$

Def. Плоскость κ (содержащая все касательные прямые τ к π в точке M_0) называется касательной плоскостью к π в M_0

Def. Прямая в направлении \vec{N} через точку M_0 называется нормалью к π в M_0 \vec{N} – вектор нормали к поверхности в точке

Уравнение
$$(\pi)$$

$$F(x,y,z) = 0, \ \vec{N} = \left(\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial z}\right), \ M_0(x_0,y_0,z_0) \in \pi, \kappa, n$$
 Касательная плоскость (κ)
$$\frac{\partial F}{\partial x}(x-x_0) + \frac{\partial F}{\partial y}(y-y_0) + \frac{\partial F}{\partial z}(z-z_0) = 0$$
 Нормаль (n)
$$\frac{\partial F}{\partial x} = \frac{y-y_0}{\frac{\partial F}{\partial y}} = \frac{z-z_0}{\frac{\partial F}{\partial z}}$$

Nota. Получим вектор нормали в случае явного задания π z=z(x,y)

Пересечем π в точке M_0 плоскостями $x=x_0,y=y_0,$ в сечении получим кривые с касательными векторами \vec{m} и \vec{p} в точке M_0

Вектор нормали к π в M_0 $\vec{n} = \vec{m} \times \vec{p}$

Найдем \vec{m}, \vec{p} . В сечении $x = x_0$ введем вектор $d\vec{p}||\vec{p}$:

$$d\vec{p} = \left(0, dy, \frac{\partial z}{\partial y} dy\right) = \left(0, 1, \frac{\partial z}{\partial y}\right) dy$$

Аналогично найдем \vec{m} в сечении $y=y_0$:

$$\vec{m}||d\vec{m} = \left(dx, 0, \frac{\partial z}{\partial x}dx\right) = \left(1, 0, \frac{\partial z}{\partial x}\right)dx$$

Так как модуль \vec{n} не важен, а только направление,

то будем искать
$$\vec{n} = \left(1, 0, \frac{\partial z}{\partial x}\right) \times \left(0, 1, \frac{\partial z}{\partial y}\right)$$

$$\vec{n} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 0 & \frac{\partial z}{\partial x} \\ 0 & 1 & \frac{\partial z}{\partial y} \end{vmatrix} = \vec{i} \left(-\frac{\partial z}{\partial x} \right) - \vec{j} \frac{\partial z}{\partial y} + \vec{k} =$$

$$= \left(-\frac{\partial z}{\partial x}; -\frac{\partial z}{\partial y}; 1 \right)$$

Тогда уравнение κ :

$$z - z_0 = \frac{\partial z}{\partial x}(x - x_0) + \frac{\partial z}{\partial y}(y - y_0) = dz$$

Уравнение нормали n: $\frac{x-x_0}{-\frac{\partial z}{\partial x}} = \frac{y-y_0}{-\frac{\partial z}{\partial y}} = \frac{z-z_0}{1}$

Nota. Последние уравнения можно получить проще, если свести уравнение z=f(x,y) к уравнению z-f(x,y)=F(x,y,z)=0

Lab. Вывести уравнение κ и n, пользуясь предыдущим замечанием

Nota. Если найти $\vec{n} = \vec{p} \times \vec{m} = -(\vec{m} \times \vec{p})$, то получим также вектор нормали, но обращенный в противоположную сторону

Будем говорить, что $\vec{n^+}$ - положительный вектор нормали, если угол $\angle \gamma = \angle (\vec{n^+}, Oz) \in \left[0; \frac{\pi}{2}\right)$ $\vec{n^-}$ - отрицательный, если угол $\angle \gamma = \angle (\vec{n^-}, Oz) \in \left(\frac{\pi}{2}; \pi\right)$

Соответственно этому верхней стороной π называется та, у которой аппликата вектора нормали положительна

Нижней стороне соответствует \overrightarrow{n} . Если $\overrightarrow{n} \perp Oz$, то это боковая сторона

4.7.4. Экстремумы ФНП ($\Phi_2\Pi$)

Def. Точка $M_0(x_0,y_0)$ называется точкой максимума (минимума) функции z=z(x,y), если $\forall M \in U_\delta(M_0) \quad z(M_0) \geq z(M)$ (для минимума $z(M_0) \leq z(M)$)

Nota. То же, что $z(M) - z(M_0) = z - z_0 = \Delta z \le 0 \text{ (max)}, \quad \Delta z \ge 0 \text{ (min)}$

Мет. Для функции одной переменной формулировали необходимое условие экстремума (лемма Ферма), из этого условия получали точки, подозрительные на экстремум: критические $-f'(x_0) = 0$ или $\nexists f'(x_0)$ (для острого экстремума); стационарные $-\exists f'(x_0) = 0$ (частный случай критич.)

Далее при помощи достаточных условий (признаков) проверяли наличие экстремума в критических точках

Nota. Все термины переносятся на функции нескольких переменных. Необходимое условие и достаточное условие аналогичны

Th. Необходимое условие экстремума (гладкого):

 $z=z(x,y):\mathbb{R}^2 \to \mathbb{R}; \quad z_0$ - точка гладкого экстремума, то есть $\exists \frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$ в M_0 и $\forall M \in U_\delta(M_0) \ z_0 \leq z(M)$ или $z_0 \geq z(M)$

$$\operatorname{Tогда} \begin{cases} \frac{\partial z}{\partial x} \Big|_{M_0} = 0 \\ \frac{\partial z}{\partial y} \Big|_{M_0} = 0 \end{cases}$$

Аналогично лемме Ферма в сечениях $x = x_0$, $y = y_0$

Для существования острого экстремума нужно рассмотреть не существование или бесконечность $\frac{\partial z}{\partial x}$ или $\frac{\partial z}{\partial u}$

Если же функция трижды дифференцируема исследования на характер экстремума можно проводить с помощью вторых производных

Th. Достаточное условие (гладкого) экстремума

Пусть z = z(x, y) непрерывна в окрестности M_0 (критическая точка $\frac{\partial z}{\partial x}\Big|_{M_0} = 0, \frac{\partial z}{\partial y}\Big|_{M_0} = 0$) вместе со своими первыми и вторыми производными (можно потребовать трижды дифференцируемость)

Тогда, если
$$\frac{\partial^2 z}{\partial x^2} \stackrel{\text{обозн}}{=} A$$
, $\frac{\partial^2 z}{\partial x \partial y} \stackrel{\text{обозн}}{=} B$, $\frac{\partial^2 z}{\partial y^2} \stackrel{\text{обозн}}{=} C$, то

- 1. $AC B^2 > 0, A > 0 \Longrightarrow M_0$ точка минимума
- 2. $AC B^2 > 0, A < 0 \Longrightarrow M_0$ точка максимума
- 3. $AC B^2 < 0 \Longrightarrow$ в точке M_0 нет экстремума
- 4. $AC B^2 = 0 \implies$ нельзя утверждать наличие или отсутствие экстремума в точке (требуются дополнительные исследования)

Функция z дважды дифференцируема, тогда $(z_0 = z(M_0))$

$$\Delta z = z - z_0 = \frac{dz}{1!} \Big|_{M_0} + \frac{d^2 z}{2!} \Big|_{M_0} + o((\Delta \rho)^2)$$

$$\Delta \rho = \sqrt{(\Delta x)^2 + (\Delta y)^2} = \sqrt{(dx)^2 + (dy)^2}, \quad dx = \Delta \rho \cos \alpha, dy = \Delta \rho \sin \alpha$$

$$o((\Delta \rho)^2) = \lambda (\Delta \rho)^3$$

Заметим, что $dz\Big|_{M_0} = 0$, так как M_0 – критическая

$$d^2z = \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y}\right)^2 z = \left(\frac{\partial^2}{\partial x^2} + 2\frac{\partial^2}{\partial x \partial y} + \frac{\partial^2}{\partial y^2}\right) z = \frac{\partial^2 z}{\partial x^2} (dx)^2 + 2\frac{\partial^2 z}{\partial x \partial y} dx dy + \frac{\partial^2 z}{\partial y^2} (dy)^2 = A(dx)^2 + 2\frac{\partial^2 z}{\partial x \partial y} dx dy + \frac{\partial^2 z}{\partial y^2} (dy)^2 = A(dx)^2 + 2\frac{\partial^2 z}{\partial x \partial y} dx dy + \frac{\partial^2 z}{\partial y^2} (dy)^2 = A(dx)^2 + 2\frac{\partial^2 z}{\partial x \partial y} dx dy + \frac{\partial^2 z}{\partial y^2} (dy)^2 = A(dx)^2 + 2\frac{\partial^2 z}{\partial x \partial y} dx dy + \frac{\partial^2 z}{\partial y^2} (dy)^2 = A(dx)^2 + 2\frac{\partial^2 z}{\partial x \partial y} dx dy + \frac{\partial^2 z}{\partial y^2} (dy)^2 = A(dx)^2 + 2\frac{\partial^2 z}{\partial x \partial y} dx dy + \frac{\partial^2 z}{\partial y^2} (dy)^2 = A(dx)^2 + 2\frac{\partial^2 z}{\partial x \partial y} dx dy + \frac{\partial^2 z}{\partial y^2} (dy)^2 = A(dx)^2 + 2\frac{\partial^2 z}{\partial y^2} (dy)^2 + 2\frac{\partial^2 z}{\partial y^2} (dy)^2$$

$$2Bdxdy + C(dy)^{2} = A(\Delta \rho)^{2} \cos^{2} \alpha + 2B(\Delta \rho)^{2} \cos \alpha \sin \alpha + C(\Delta \rho)^{2} \sin^{2} \alpha$$

Тогда $\Delta z = \frac{1}{2} (\Delta \rho)^2 (A \cos^2 \alpha + 2B \cos \alpha \sin \alpha + C \sin^2 \alpha + 2\lambda \Delta \rho)$

Далее рассмотрим отдельно случаи $A \neq 0$ и A = 0

$$A \neq 0: A\cos^{2}\alpha + 2B\cos\alpha\sin\alpha + C\sin^{2}\alpha = \frac{A^{2}\cos^{2}\alpha + 2AB\cos\alpha\sin\alpha + B^{2}\sin^{2}\alpha + (AC - B^{2})\sin^{2}\alpha}{A} = \frac{(A\cos\alpha + B\sin\alpha)^{2} + (AC - B^{2})\sin^{2}\alpha}{A}$$

1. Пусть $AC - B^2 > 0$ (A > 0): Числитель неотрицательный и не равен нулю (иначе $\sin \alpha = 0$, то тогда $A\cos \alpha \neq 0$)

Итак, числитель и знаменатель больше нуля. Обозначим всю дробь за $k^2>0$ Вернемся к $\Delta z=\frac{1}{2}(\Delta\rho)^2(k^2+2\lambda\Delta\rho)$

Устремим $\Delta \rho \to 0$, начиная с какого-то $\delta \ \forall M \in U_{\delta}(M_0) \ k^2 + \lambda \Delta \rho > 0$

То есть $\Delta z > 0$ в $U_{\delta}(M_0) \Longrightarrow M_0$ – точка минимума (локально в $U_{\delta}(M_0)$)

2. Пусть $AC - B^2 > 0$ (A < 0), тогда $\Delta z = \frac{1}{2} (\Delta \rho)^2 (-k^2 + 2\lambda \Delta \rho) < 0$ при достаточно малом $\Delta \rho$

Аналогично $\Delta z < 0 \Longrightarrow M_0$ – точка максимума

3. Пусть $AC - B^2 < 0 \ (A > 0)$, тогда фиксируем направления $\alpha = 0 \Longrightarrow \sin \alpha = 0$ $\Delta z = \frac{1}{2} (\Delta \rho)^2 (A + 2\lambda \Delta \rho) > 0$ $A \qquad (AC - B^2) \sin^2 \alpha \qquad (\Delta \rho)^2 = 0$

 $\operatorname{tg} \alpha = -\frac{A}{B} \Longrightarrow \frac{(AC - B^2)\sin^2 \alpha}{A} = -k^2, \Delta z = \frac{(\Delta \rho)^2}{2}(-k^2 + 2\lambda \Delta \rho) < 0$

Вдоль разных путей $\alpha=0,$ tg $\alpha=-\frac{A}{B},$ разный знак $\Delta z \Longrightarrow$ нет экстремума Nota. Можно аналогично рассмотреть A<0

4. A=0, вернемся к выражению $\Delta z=\frac{1}{2}(\Delta\rho)^2(\sin\alpha(2B\cos\alpha+C\sin\alpha)+2\lambda\Delta\rho)$ Пусть α — бесконечно малая, тогда $\sin\alpha\approx0$, $C\sin\alpha\approx0$, $C\sin\alpha\approx0$, $C\sin\alpha\approx2$ зависит от $C\alpha$

То есть Δz колеблется вместе с α по знаку \Longrightarrow нет экстремума

Можно доказать при $A \neq 0$, например, выбрав $\operatorname{tg} \alpha = -\frac{A}{B}$, что знак Δz зависит от α