Threat Modeling Report

Created on 25/05/2025 3:46:55 PM

Threat Model Name:

Owner: Reviewer: Contributors: Description: Assumptions:

External Dependencies:

Threat Model Summary:

Not Started 85
Not Applicable 0
Needs Investigation 0
Mitigation Implemented 0
Total 85
Total Migrated 0

Diagram: Diagram 1

Diagram 1 Diagram Summary:

Not Started 85
Not Applicable 0
Needs Investigation 0
Mitigation Implemented 0
Total 85
Total Migrated 0

Interaction: Course Registration

1. An adversary can perform action on behalf of other user due to lack of controls against cross domain requests [State: Not Started] [Priority: High]

Category: Denial of Service

Description: Failure to restrict requests originating from third party domains may result in unauthorized actions

or access of data

Justification: <no mitigation provided>

Possible Ensure that authenticated ASP.NET pages incorporate UI Redressing or clickjacking defences. **Mitigation(s):** Refer: https://aka.ms/tmtconfigmgmt#ui-defenses">https://aka.ms/tmtconfigmgmt#ui-defenses">https://aka.ms/tmtconfigmgmt#ui-defenses">https://aka.ms/tmtconfigmgmt#ui-defenses">https://aka.ms/tmtconfigmgmt#ui-defenses">https://aka.ms/tmtconfigmgmt#ui-defenses">https://aka.ms/tmtconfigmgmt#ui-defenses">https://aka.ms/tmtconfigmgmt#ui-defenses">https://aka.ms/tmtconfigmgmt#ui-defenses">https://aka.ms/tmtconfigmgmt#ui-defenses

defenses Ensure that only trusted origins are allowed if CORS is enabled on ASP.NET Web

Applications. Refer: <a href="https://aka.ms/tmtconfigmgmt#cors-

aspnet">https://aka.ms/tmtconfigmgmt#cors-aspnet Mitigate against Cross-Site Request Forgery (CSRF) attacks on ASP.NET web pages. Refer: <a href="https://aka.ms/tmtsmgmt#csrf-

asp">https://aka.ms/tmtsmgmt#csrf-asp

SDL Phase: Implementation

2. An adversary may bypass critical steps or perform actions on behalf of other users (victims) due to improper validation logic [State: Not Started] [Priority: High]

Category: Elevation of Privileges

Description: Failure to restrict the privileges and access rights to the application to individuals who require the

privileges or access rights may result into unauthorized use of data due to inappropriate rights

settings and validation.

Justification: <no mitigation provided>

Possible Ensure that administrative interfaces are appropriately locked down. Refer: <a

Mitigation(s): href="https://aka.ms/tmtauthn#admin-interface-lockdown">https://aka.ms/tmtauthn#admin-

interface-lockdown Enforce sequential step order when processing business logic flows. Refer: https://aka.ms/tmtauthz#sequential-logic Ensure that proper authorization is in place and principle of least privileges is followed.

Refer: <a href="https://aka.ms/tmtauthz#principle-least-

privilege">https://aka.ms/tmtauthz#principle-least-privilege Business logic and resource access authorization decisions should not be based on incoming request parameters. Refer: https://aka.ms/tmtauthz#logic-request-parameters">https://aka.ms/tmtauthz#logic-request-parameters Ensure that content and resources are not enumerable or accessible via forceful

browsing. Refer: https://aka.ms/tmtauthz#enumerable-browsing

SDL Phase: Implementation

3. An adversary can reverse weakly encrypted or hashed content [State: Not Started] [Priority: High]

Category: Information Disclosure

Description: An adversary can reverse weakly encrypted or hashed content

Justification: <no mitigation provided>

Possible Do not expose security details in error messages. Refer: <a

Mitigation(s): href="https://aka.ms/tmtxmgmt#messages">https://aka.ms/tmtxmgmt#messages Implement

Default error handling page. Refer: https://aka.ms/tmtxmgmt#default Set Deployment

Method to Retail in IIS. Refer: https://aka.ms/tmtxmgmt#deployment Use only

approved symmetric block ciphers and key lengths. Refer: https://aka.ms/tmtcrypto#cipher-length Use

approved block cipher modes and initialization vectors for symmetric ciphers. Refer: https://aka.ms/tmtcrypto#vector-ciphers Use

approved asymmetric algorithms, key lengths, and padding. Refer: https://aka.ms/tmtcrypto#padding Use approved

random number generators. Refer: https://aka.ms/tmtcrypto#numgen Do not use

symmetric stream ciphers. Refer: <a href="https://aka.ms/tmtcrypto#stream-

ciphers">https://aka.ms/tmtcrypto#stream-ciphers Use approved MAC/HMAC/keyed hash algorithms. Refer: https://aka.ms/tmtcrypto#mac-hash

hash Use only approved cryptographic hash functions. Refer: https://aka.ms/tmtcrypto#hash-functions Verify

X.509 certificates used to authenticate SSL, TLS, and DTLS connections. Refer: https://aka.ms/tmtcommsec#x509-ssltls

SDL Phase: Implementation

4. An adversary may gain access to sensitive data from log files [State: Not Started] [Priority: High]

Category: Information Disclosure

Description: An adversary may gain access to sensitive data from log files

Justification: <no mitigation provided>

Possible Ensure that the application does not log sensitive user data. Refer: <a

Mitigation(s): href="https://aka.ms/tmtauditlog#log-sensitive-data">https://aka.ms/tmtauditlog#log-sensitive-

data Ensure that Audit and Log Files have Restricted Access. Refer: https://aka.ms/tmtauditlog#log-restricted-

access

SDL Phase: Implementation

5. An adversary may gain access to unmasked sensitive data such as credit card numbers [State: Not Started] [Priority: High]

Category: Information Disclosure

Description: An adversary may gain access to unmasked sensitive data such as credit card numbers

Justification: <no mitigation provided>

Possible Ensure that sensitive data displayed on the user screen is masked. Refer: https://aka.ms/tmtdata#data-mask

SDL Phase: Implementation

6. An adversary can gain access to certain pages or the site as a whole. [State: Not Started] [Priority: Medium]

Category: Information Disclosure

Description: Robots.txt is often found in your site's root directory and exists to regulate the bots that crawl your site. This is where you can grant or deny permission to all or some specific search engine robots

to access certain pages or your site as a whole. The standard for this file was developed in 1994 and is known as the Robots Exclusion Standard or Robots Exclusion Protocol. Detailed info about

the robots.txt protocol can be found at robotstxt.org.

Justification: <no mitigation provided>

Possible Ensure that administrative interfaces are appropriately locked down. Refer: <a

Mitigation(s): href="https://aka.ms/tmtauthn#admin-interface-lockdown">https://aka.ms/tmtauthn#admin-interface-lockdown

interface-lockdown

SDL Phase: Implementation

7. An adversary can gain access to sensitive data by sniffing traffic to Web Application [State: Not Started] [Priority: High]

Category: Information Disclosure

Description: An adversary may conduct man in the middle attack and downgrade TLS connection to clear text protocol, or forcing browser communication to pass through a proxy server that he controls. This

may happen because the application may use mixed content or HTTP Strict Transport Security

policy is not ensured.

Justification: <no mitigation provided>

Possible Applications available over HTTPS must use secure cookies. Refer: <a

Mitigation(s): href="https://aka.ms/tmtsmgmt#https-secure-cookies">https://aka.ms/tmtsmgmt#https-secure-

cookies Enable HTTP Strict Transport Security (HSTS). Refer: https://aka.ms/tmtcommsec#http-hsts

SDL Phase: Implementation

8. An adversary can gain access to sensitive information through error messages [State: Not Started] [Priority: High]

Category: Information Disclosure

Description: An adversary can gain access to sensitive data such as the following, through verbose error

messages - Server names - Connection strings - Usernames - Passwords - SQL procedures - Details of dynamic SQL failures - Stack trace and lines of code - Variables stored in memory - Drive and folder locations - Application install points - Host configuration settings - Other internal

application details

Justification: <no mitigation provided>

Possible Do not expose security details in error messages. Refer: <a

Mitigation(s): href="https://aka.ms/tmtxmgmt#messages">https://aka.ms/tmtxmgmt#messages Implement

Default error handling page. Refer: https://aka.ms/tmtxmgmt#default Set Deployment

Method to Retail in IIS. Refer: https://aka.ms/tmtxmgmt#deployment

Exceptions should fail safely. Refer: https://aka.ms/tmtxmgmt#fail ASP.NET applications must

disable tracing and debugging prior to deployment. Refer: https://aka.ms/tmtconfigmgmt#trace-deploy

Implement controls to prevent username enumeration. Refer: https://aka.ms/tmtauthn#controls-

username-enum

SDL Phase: Implementation

9. An adversary may gain access to sensitive data from uncleared browser cache [State: Not Started]

[Priority: High]

Category: Information Disclosure

Description: An adversary may gain access to sensitive data from uncleared browser cache

Justification: <no mitigation provided>

Possible Ensure that sensitive content is not cached on the browser. Refer: <a

Mitigation(s): href="https://aka.ms/tmtdata#cache-browser">https://aka.ms/tmtdata#cache-browser

SDL Phase: Implementation

10. Attacker can deny the malicious act and remove the attack foot prints leading to repudiation issues [State: Not Started] [Priority: Medium]

Category: Repudiation

Description: Proper logging of all security events and user actions builds traceability in a system and denies

any possible repudiation issues. In the absence of proper auditing and logging controls, it would

become impossible to implement any accountability in a system

Justification: <no mitigation provided>

Possible Ensure that auditing and logging is enforced on the application. Refer: <a

Mitigation(s): href="https://aka.ms/tmtauditlog#auditing">https://aka.ms/tmtauditlog#auditing Ensure that log

rotation and separation are in place. Refer: <a href="https://aka.ms/tmtauditlog#log-

rotation">https://aka.ms/tmtauditlog#log-rotation Ensure that Audit and Log Files have

Restricted Access. Refer: <a href="https://aka.ms/tmtauditlog#log-restricted-

access">https://aka.ms/tmtauditlog#log-restricted-access Ensure that User Management

Events are Logged. Refer: https://aka.ms/tmtauditlog#user-management

SDL Phase: Implementation

11. An adversary can get access to a user's session due to improper logout and timeout [State: Not Started] [Priority: High]

Category: Spoofing

Description: The session cookies is the identifier by which the server knows the identity of current user for

each incoming request. If the attacker is able to steal the user token he would be able to access

all user data and perform all actions on behalf of user.

Justification: <no mitigation provided>

Possible Set up session for inactivity lifetime. Refer: <a href="https://aka.ms/tmtsmgmt#inactivity-

Mitigation(s): lifetime">https://aka.ms/tmtsmgmt#inactivity-lifetime Implement proper logout from the

application. Refer: <a href="https://aka.ms/tmtsmgmt#proper-app-

logout">https://aka.ms/tmtsmgmt#proper-app-logout

SDL Phase: Implementation

12. An adversary can get access to a user's session due to insecure coding practices [State: Not Started] [Priority: High]

Category: Spoofing

Description: The session cookies is the identifier by which the server knows the identity of current user for each

incoming request. If the attacker is able to steal the user token he would be able to access all user

data and perform all actions on behalf of user.

Justification: <no mitigation provided>

Possible Enable ValidateRequest attribute on ASP.NET Pages. Refer: <a

Mitigation(s): href="https://aka.ms/tmtconfigmgmt#validate-aspnet">https://aka.ms/tmtconfigmgmt#validate-

aspnet Encode untrusted web output prior to rendering. Refer: https://aka.ms/tmtinputval#rendering Avoid using

Html.Raw in Razor views. Refer: <a href="https://aka.ms/tmtinputval#html-

razor">https://aka.ms/tmtinputval#html-razor Sanitization should be applied on form fields that

accept all characters e.g, rich text editor . Refer: https://aka.ms/tmtinputval#richtext Do not assign

DOM elements to sinks that do not have inbuilt encoding. Refer: https://aka.ms/tmtinputval#inbuilt-encode

SDL Phase: Implementation

13. An adversary can spoof the target web application due to insecure TLS certificate configuration [State: Not Started] [Priority: High]

Category: Spoofing

Description: Ensure that TLS certificate parameters are configured with correct values

Justification: <no mitigation provided>

Possible Verify X.509 certificates used to authenticate SSL, TLS, and DTLS connections. Refer: https://aka.ms/tmtcommsec#x509-ssltls

SDL Phase: Implementation

14. An adversary can steal sensitive data like user credentials [State: Not Started] [Priority: High]

Category: Spoofing

Description: Attackers can exploit weaknesses in system to steal user credentials. Downstream and upstream

components are often accessed by using credentials stored in configuration stores. Attackers may steal the upstream or downstream component credentials. Attackers may steal credentials if, Credentials are stored and sent in clear text, Weak input validation coupled with dynamic sql

queries, Password retrieval mechanism are poor,

Justification: <no mitigation provided>

Possible Explicitly disable the autocomplete HTML attribute in sensitive forms and inputs. Refer: <a

Mitigation(s): href="https://aka.ms/tmtdata#autocomplete-input">https://aka.ms/tmtdata#autocomplete-input

Perform input validation and filtering on all string type Model properties. Refer: https://aka.ms/tmtinputval#typemodel Validate all

redirects within the application are closed or done safely. Refer: https://aka.ms/tmtinputval#redirect-safe Enable step up or adaptive authentication. Refer: <a href="https://aka.ms/tmtauthn#step-up-

adaptive-authn">https://aka.ms/tmtauthn#step-up-adaptive-authn Implement forgot password

functionalities securely. Refer: <a href="https://aka.ms/tmtauthn#forgot-pword-

fxn">https://aka.ms/tmtauthn#forgot-pword-fxn Ensure that password and account policy are

implemented. Refer: <a href="https://aka.ms/tmtauthn#pword-account-

policy">https://aka.ms/tmtauthn#pword-account-policy Implement input validation on all string

type parameters accepted by Controller methods. Refer: https://aka.ms/tmtinputval#string-method

SDL Phase: Implementation

15. Attackers can steal user session cookies due to insecure cookie attributes [State: Not Started] [Priority: High]

Category: Spoofing

Description: The session cookies is the identifier by which the server knows the identity of current user for

each incoming request. If the attacker is able to steal the user token he would be able to access

all user data and perform all actions on behalf of user.

Justification: <no mitigation provided>

Possible Applications available over HTTPS must use secure cookies. Refer: https://aka.ms/tmtsmgmt#https-secure-Mitigation(s):

cookies All http based application should specify http only for cookie definition. Refer: https://aka.ms/tmtsmgmt#cookie-definition

SDL Phase: Implementation

16. An adversary can create a fake website and launch phishing attacks [State: Not Started] [Priority: High]

Spoofing **Category:**

Description: Phishing is attempted to obtain sensitive information such as usernames, passwords, and credit

card details (and sometimes, indirectly, money), often for malicious reasons, by masquerading as

a Web Server which is a trustworthy entity in electronic communication

<no mitigation provided> Justification:

Possible Use Multi-Factor Authentication (2FA) for login. Verify X.509 certificates used to authenticate SSL,

TLS, and DTLS connections. Refer: https://aka.ms/tmtcommsec#x509-ssltls Ensure that Mitigation(s): authenticated ASP.NET pages incorporate UI Redressing or clickjacking defences. Refer:

https://aka.ms/tmtconfigmgmt#ui-defenses Validate all redirects within the application are closed

or done safely. Refer: https://aka.ms/tmtinputval#redirect-safe

SDL Phase: Implementation

17. An adversary may spoof Student and gain access to Web Application [State: Not Started] [Priority: High]

Spoofing Category:

Description: If proper authentication is not in place, an adversary can spoof a source process or external

entity and gain unauthorized access to the Web Application

Justification: <no mitigation provided>

Possible Consider using a standard authentication mechanism to authenticate to Web Application. Refer:

Mitigation(s): https://aka.ms/tmtauthn#standard-

authn-web-app

SDL Phase: Design

18. An adversary can deface the target web application by injecting malicious code or uploading dangerous files [State: Not Started] [Priority: High]

Category: Tampering

Description: Website defacement is an attack on a website where the attacker changes the visual appearance

of the site or a webpage.

Justification: <no mitigation provided>

Possible Implement Content Security Policy (CSP), and disable inline javascript. Refer: <a

Mitigation(s): href="https://aka.ms/tmtconfigmgmt#csp-js">https://aka.ms/tmtconfigmgmt#csp-js Enable

browser's XSS filter. Refer: <a href="https://aka.ms/tmtconfigmgmt#xss-

filter">https://aka.ms/tmtconfigmgmt#xss-filter Access third party javascripts from trusted sources only. Refer: <a href="https://aka.ms/tmtconfigmqmt#is-

trusted">https://aka.ms/tmtconfigmgmt#js-trusted Enable ValidateRequest attribute on

ASP.NET Pages. Refer: <a href="https://aka.ms/tmtconfigmgmt#validate-

aspnet">https://aka.ms/tmtconfigmgmt#validate-aspnet Ensure that each page that could contain user controllable content opts out of automatic MIME sniffing. Refer: https://aka.ms/tmtinputval#out-sniffing Use

locally-hosted latest versions of JavaScript libraries . Refer: https://aka.ms/tmtconfigmgmt#local-js Ensure appropriate controls are in place when accepting files from users. Refer: https://aka.ms/tmtinputval#controls-users

Disable automatic MIME sniffing. Refer: https://aka.ms/tmtconfigmgmt#mime-sniff Encode untrusted web output prior to rendering. Refer: https://aka.ms/tmtinputval#rendering Perform input validation and filtering on all string type Model properties. Refer: https://aka.ms/tmtinputval#typemodel Ensure that the system has inbuilt defences against misuse. Refer: https://aka.ms/tmtauditlog#inbuilt-defenses Enable HTTP Strict Transport Security (HSTS). Refer: https://aka.ms/tmtcommsec#http-hsts">https://aka.ms/tmtcommsec#http-hsts Implement input validation on all string type parameters accepted by Controller methods. Refer: https://aka.ms/tmtinputval#string-method Avoid using Html.Raw in Razor views. Refer: https://aka.ms/tmtinputval#html-razor Sanitization should be applied on form fields that accept all characters e.g., rich text editor. Refer:

https://aka.ms/tmtinputval#richtext Do not assign DOM elements to sinks that do not have inbuilt encoding . Refer: https://aka.ms/tmtinputval#inbuilt-encode

SDL Phase: Implementation

19. An attacker steals messages off the network and replays them in order to steal a user's session [State: Not Started] [Priority: High]

Category: Tampering

Description: An attacker steals messages off the network and replays them in order to steal a user's

session

Justification: <no mitigation provided>

Possible Mitigation(s):

SDL Phase: Implementation

20. An adversary can gain access to sensitive data by performing SQL injection through Web App [State: Not Started] [Priority: High]

Category: Tampering

Description: SQL injection is an attack in which malicious code is inserted into strings that are later passed to

an instance of SQL Server for parsing and execution. The primary form of SQL injection consists of direct insertion of code into user-input variables that are concatenated with SQL commands and executed. A less direct attack injects malicious code into strings that are destined for storage in a table or as metadata. When the stored strings are subsequently concatenated into a dynamic SQL

command, the malicious code is executed.

Justification: <no mitigation provided>

Possible Ensure that type-safe parameters are used in Web Application for data access. Refer: <a

Mitigation(s): href="https://aka.ms/tmtinputval#typesafe">https://aka.ms/tmtinputval#typesafe

SDL Phase: Implementation

21. An adversary can gain access to sensitive data stored in Web App's config files [State: Not Started] [Priority: High]

Category: Tampering

Description: An adversary can gain access to the config files. and if sensitive data is stored in it, it would be

compromised.

Justification: <no mitigation provided>

Possible Encrypt sections of Web App's configuration files that contain sensitive data. Refer: https://aka.ms/tmtdata#encrypt-data

SDL Phase: Implementation

Interaction: Create

22. An adversary can gain unauthorized access to Azure MySQL DB instances due to weak network security configuration [State: Not Started] [Priority: High]

Category: Elevation of Privileges

Description: An adversary can gain unauthorized access to Course Database instances due to weak

network security configuration.

Justification: <no mitigation provided>

Possible Restrict access to Azure MySQL DB instances by configuring server-level firewall rules to only

Mitigation(s): permit connections from selected IP addresses where possible. Refer: https://aka.ms/tmt-th150

SDL Phase: Implementation

23. An adversary may read and/or tamper with the data transmitted to Azure MySQL DB due to weak configuration [State: Not Started] [Priority: High]

Category: Tampering

Description: An adversary may read and/or tamper with the data transmitted to Course Database due to weak

configuration.

Justification: <no mitigation provided>

Possible Enforce communication between clients and Azure MySQL DB to be over SSL/TLS by enabling

Mitigation(s): the Enforce SSL connection feature on the server. Check that the connection strings used to

connect to MySQL databases have the right configuration (e.g. ssl = true or sslmode=require or sslmode=true are set). Refer: https://aka.ms/tmt-th151a Configure MySQL server to use a verifiable SSL certificate (needed for SSL/TLS communication).

Refer: https://aka.ms/tmt-th151b

SDL Phase: Implementation

24. An adversary can gain long term, persistent access to an Azure MySQL DB instance through the compromise of local user account password(s) [State: Not Started] [Priority: High]

Category: Elevation of Privileges

Description: An adversary can gain long term, persistent access to Course Database instance through the

compromise of local user account password(s).

Justification: <no mitigation provided>

Possible It is recommended to rotate user account passwords (e.g. those used in connection strings)

Mitigation(s): regularly, in accordance with your organization's policies. Store secrets in a secret storage

solution (e.g. Azure Key Vault).

SDL Phase: Implementation

Interaction: Delete

25. An adversary can gain unauthorized access to Azure MySQL DB instances due to weak network security configuration [State: Not Started] [Priority: High]

Category: Elevation of Privileges

Description: An adversary can gain unauthorized access to Course Database instances due to weak

network security configuration.

Justification: <no mitigation provided>

Possible Restrict access to Azure MySQL DB instances by configuring server-level firewall rules to only

Mitigation(s): permit connections from selected IP addresses where possible. Refer: https://aka.ms/tmt-th150

SDL Phase: Implementation

26. An adversary may read and/or tamper with the data transmitted to Azure MySQL DB due to weak configuration [State: Not Started] [Priority: High]

Category: Tampering

Description: An adversary may read and/or tamper with the data transmitted to Course Database due to weak

configuration.

Justification: <no mitigation provided>

Possible Enforce communication between clients and Azure MySQL DB to be over SSL/TLS by enabling

Mitigation(s): the Enforce SSL connection feature on the server. Check that the connection strings used to

connect to MySQL databases have the right configuration (e.g. ssl = true or sslmode=require or sslmode=true are set). Refer: https://aka.ms/tmt-th151a Configure MySQL server to use a verifiable SSL certificate (needed for SSL/TLS communication).

Refer: https://aka.ms/tmt-th151b

SDL Phase: Implementation

27. An adversary can gain long term, persistent access to an Azure MySQL DB instance through the compromise of local user account password(s) [State: Not Started] [Priority: High]

Category: Elevation of Privileges

Description: An adversary can gain long term, persistent access to Course Database instance through the

compromise of local user account password(s).

Justification: <no mitigation provided>

PossibleIt is recommended to rotate user account passwords (e.g. those used in connection strings)

Mitigation(s): regularly, in accordance with your organization's policies. Store secrets in a secret storage

solution (e.g. Azure Key Vault).

SDL Phase: Implementation

Interaction: Drop Course

28. An adversary can get access to a user's session due to insecure coding practices [State: Not Started] [Priority: High]

Category: Spoofing

Description: The session cookies is the identifier by which the server knows the identity of current user for each

incoming request. If the attacker is able to steal the user token he would be able to access all user

data and perform all actions on behalf of user.

Justification: <no mitigation provided>

Possible Enable ValidateRequest attribute on ASP.NET Pages. Refer: <a

Mitigation(s): href="https://aka.ms/tmtconfigmgmt#validate-aspnet">https://aka.ms/tmtconfigmgmt#validate-

aspnet Encode untrusted web output prior to rendering. Refer: https://aka.ms/tmtinputval#rendering Avoid using

Html.Raw in Razor views. Refer: <a href="https://aka.ms/tmtinputval#html-

razor">https://aka.ms/tmtinputval#html-razor Sanitization should be applied on form fields that

accept all characters e.g, rich text editor . Refer: https://aka.ms/tmtinputval#richtext Do not assign

DOM elements to sinks that do not have inbuilt encoding . Refer: https://aka.ms/tmtinputval#inbuilt-encode

SDL Phase: Implementation

29. An adversary can get access to a user's session due to improper logout and timeout [State: Not Started] [Priority: High]

Category: Spoofing

Description: The session cookies is the identifier by which the server knows the identity of current user for

each incoming request. If the attacker is able to steal the user token he would be able to access

all user data and perform all actions on behalf of user.

Justification: <no mitigation provided>

Possible Set up session for inactivity lifetime. Refer: <a href="https://aka.ms/tmtsmgmt#inactivity-

Mitigation(s): lifetime">https://aka.ms/tmtsmgmt#inactivity-lifetime Implement proper logout from the

application. Refer: <a href="https://aka.ms/tmtsmgmt#proper-app-

logout">https://aka.ms/tmtsmgmt#proper-app-logout

SDL Phase: Implementation

30. Attacker can deny the malicious act and remove the attack foot prints leading to repudiation issues [State: Not Started] [Priority: Medium]

Category: Repudiation

Description: Proper logging of all security events and user actions builds traceability in a system and denies

any possible repudiation issues. In the absence of proper auditing and logging controls, it would

become impossible to implement any accountability in a system

Justification: <no mitigation provided>

Possible Ensure that auditing and logging is enforced on the application. Refer: <a

Mitigation(s): href="https://aka.ms/tmtauditlog#auditing">https://aka.ms/tmtauditlog#auditing Ensure that log

rotation and separation are in place. Refer: <a href="https://aka.ms/tmtauditlog#log-

rotation">https://aka.ms/tmtauditlog#log-rotation Ensure that Audit and Log Files have

Restricted Access. Refer: <a href="https://aka.ms/tmtauditlog#log-restricted-

access">https://aka.ms/tmtauditlog#log-restricted-access Ensure that User Management

Events are Logged. Refer: https://aka.ms/tmtauditlog#user-management

SDL Phase: Implementation

31. An adversary may gain access to sensitive data from uncleared browser cache [State: Not Started]

[Priority: High]

Category: Information Disclosure

Description: An adversary may gain access to sensitive data from uncleared browser cache

Justification: <no mitigation provided>

Possible Ensure that sensitive content is not cached on the browser. Refer: <a

Mitigation(s): href="https://aka.ms/tmtdata#cache-browser">https://aka.ms/tmtdata#cache-browser

SDL Phase: Implementation

32. An adversary can gain access to sensitive information through error messages [State: Not Started]

[Priority: High]

Category: Information Disclosure

Description: An adversary can gain access to sensitive data such as the following, through verbose error

messages - Server names - Connection strings - Usernames - Passwords - SQL procedures - Details of dynamic SQL failures - Stack trace and lines of code - Variables stored in memory - Drive and folder locations - Application install points - Host configuration settings - Other internal

application details

Justification: <no mitigation provided>

Possible Do not expose security details in error messages. Refer: <a

Mitigation(s): href="https://aka.ms/tmtxmgmt#messages">https://aka.ms/tmtxmgmt#messages Implement

Default error handling page. Refer: https://aka.ms/tmtxmgmt#default Set Deployment

Method to Retail in IIS. Refer: https://aka.ms/tmtxmgmt#deployment

Exceptions should fail safely. Refer: https://aka.ms/tmtxmgmt#fail ASP.NET applications must

disable tracing and debugging prior to deployment. Refer: https://aka.ms/tmtconfigmgmt#trace-deploy

Implement controls to prevent username enumeration. Refer: https://aka.ms/tmtauthn#controls-

username-enum

SDL Phase: Implementation

33. An adversary can gain access to sensitive data by sniffing traffic to Web Application [State: Not Started] [Priority: High]

Category: Information Disclosure

Description: An adversary may conduct man in the middle attack and downgrade TLS connection to clear text

protocol, or forcing browser communication to pass through a proxy server that he controls. This may happen because the application may use mixed content or HTTP Strict Transport Security

policy is not ensured.

Justification: <no mitigation provided>

Possible Applications available over HTTPS must use secure cookies. Refer: <a

Mitigation(s): href="https://aka.ms/tmtsmgmt#https-secure-cookies">https://aka.ms/tmtsmgmt#https-secure-

cookies Enable HTTP Strict Transport Security (HSTS). Refer: https://aka.ms/tmtcommsec#http-hsts

SDL Phase: Implementation

34. An adversary can gain access to certain pages or the site as a whole. [State: Not Started] [Priority: Medium]

Category: Information Disclosure

Description: Robots.txt is often found in your site's root directory and exists to regulate the bots that crawl your

site. This is where you can grant or deny permission to all or some specific search engine robots to access certain pages or your site as a whole. The standard for this file was developed in 1994 and is known as the Robots Exclusion Standard or Robots Exclusion Protocol. Detailed info about

the robots.txt protocol can be found at robotstxt.org.

Justification: <no mitigation provided>

Possible Ensure that administrative interfaces are appropriately locked down. Refer: <a

Mitigation(s): href="https://aka.ms/tmtauthn#admin-interface-lockdown">https://aka.ms/tmtauthn#admin-interface-lockdown

interface-lockdown

SDL Phase: Implementation

35. An adversary may gain access to unmasked sensitive data such as credit card numbers [State: Not Started] [Priority: High]

Category: Information Disclosure

Description: An adversary may gain access to unmasked sensitive data such as credit card numbers

Justification: <no mitigation provided>

Possible Ensure that sensitive data displayed on the user screen is masked. Refer: <a

Mitigation(s): href="https://aka.ms/tmtdata#data-mask">https://aka.ms/tmtdata#data-mask

SDL Phase: Implementation

36. An adversary may gain access to sensitive data from log files [State: Not Started] [Priority: High]

Category: Information Disclosure

Description: An adversary may gain access to sensitive data from log files

Justification: <no mitigation provided>

Possible Ensure that the application does not log sensitive user data. Refer: <a

Mitigation(s): href="https://aka.ms/tmtauditlog#log-sensitive-data">https://aka.ms/tmtauditlog#log-sensitive-

data Ensure that Audit and Log Files have Restricted Access. Refer: https://aka.ms/tmtauditlog#log-restricted-

access

SDL Phase: Implementation

37. An adversary can reverse weakly encrypted or hashed content [State: Not Started] [Priority: High]

Category: Information Disclosure

Description: An adversary can reverse weakly encrypted or hashed content

Justification: <no mitigation provided>

Possible Do not expose security details in error messages. Refer: <a

Mitigation(s): href="https://aka.ms/tmtxmgmt#messages">https://aka.ms/tmtxmgmt#messages Implement

Default error handling page. Refer: https://aka.ms/tmtxmgmt#default Set Deployment

Method to Retail in IIS. Refer: https://aka.ms/tmtxmgmt#deployment Use only

approved symmetric block ciphers and key lengths. Refer: https://aka.ms/tmtcrypto#cipher-length Use

approved block cipher modes and initialization vectors for symmetric ciphers. Refer: https://aka.ms/tmtcrypto#vector-ciphers Use

approved asymmetric algorithms, key lengths, and padding. Refer: https://aka.ms/tmtcrypto#padding Use approved

random number generators. Refer: https://aka.ms/tmtcrypto#numgen Do not use

symmetric stream ciphers. Refer: <a href="https://aka.ms/tmtcrypto#stream-

ciphers">https://aka.ms/tmtcrypto#stream-ciphers Use approved MAC/HMAC/keyed hash algorithms. Refer: https://aka.ms/tmtcrypto#mac-hash

hash Use only approved cryptographic hash functions. Refer: https://aka.ms/tmtcrypto#hash-functions Verify

X.509 certificates used to authenticate SSL, TLS, and DTLS connections. Refer: https://aka.ms/tmtcommsec#x509-ssltls

SDL Phase: Implementation

38. An adversary may bypass critical steps or perform actions on behalf of other users (victims) due to improper validation logic [State: Not Started] [Priority: High]

Category: Elevation of Privileges

Description: Failure to restrict the privileges and access rights to the application to individuals who require the

privileges or access rights may result into unauthorized use of data due to inappropriate rights

settings and validation.

Justification: <no mitigation provided>

Possible Ensure that administrative interfaces are appropriately locked down. Refer: <a

Mitigation(s): href="https://aka.ms/tmtauthn#admin-interface-lockdown">https://aka.ms/tmtauthn#admin-interface-lockdown

interface-lockdown Enforce sequential step order when processing business logic flows. Refer: https://aka.ms/tmtauthz#sequential-logic Ensure that proper authorization is in place and principle of least privileges is followed.

Refer: <a href="https://aka.ms/tmtauthz#principle-least-

privilege">https://aka.ms/tmtauthz#principle-least-privilege Business logic and resource access authorization decisions should not be based on incoming request parameters. Refer: https://aka.ms/tmtauthz#logic-request-parameters<//a> Ensure that content and resources are not enumerable or accessible via forceful

browsing. Refer: <a href="https://aka.ms/tmtauthz#enumerable-

browsing">https://aka.ms/tmtauthz#enumerable-browsing

SDL Phase: Implementation

39. An adversary can perform action on behalf of other user due to lack of controls against cross domain requests [State: Not Started] [Priority: High]

Category: Denial of Service

Description: Failure to restrict requests originating from third party domains may result in unauthorized actions

or access of data

Justification: <no mitigation provided>

Possible Ensure that authenticated ASP.NET pages incorporate UI Redressing or clickjacking defences.

Mitigation(s): Refer: https://aka.ms/tmtconfigmgmt#ui-

defenses Ensure that only trusted origins are allowed if CORS is enabled on ASP.NET Web

Applications. Refer: <a href="https://aka.ms/tmtconfigmgmt#cors-

aspnet">https://aka.ms/tmtconfigmgmt#cors-aspnet Mitigate against Cross-Site Request Forgery (CSRF) attacks on ASP.NET web pages. Refer: <a href="https://aka.ms/tmtsmgmt#csrf-

asp">https://aka.ms/tmtsmgmt#csrf-asp

SDL Phase: Implementation

40. An adversary can spoof the target web application due to insecure TLS certificate configuration [State: Not Started] [Priority: High]

Category: Spoofing

Description: Ensure that TLS certificate parameters are configured with correct values

Justification: <no mitigation provided>

Possible Verify X.509 certificates used to authenticate SSL, TLS, and DTLS connections. Refer:

Mitigation(s): https://aka.ms/tmtcommsec#x509-ssltls

SDL Phase: Implementation

41. An adversary can create a fake website and launch phishing attacks [State: Not Started] [Priority: High]

J .

Category: Spoofing

Description: Phishing is attempted to obtain sensitive information such as usernames, passwords, and credit

card details (and sometimes, indirectly, money), often for malicious reasons, by masquerading as

a Web Server which is a trustworthy entity in electronic communication

Justification: <no mitigation provided>

Possible Use Multi-Factor Authentication (2FA) for login. Verify X.509 certificates used to authenticate SSL,

Mitigation(s): TLS, and DTLS connections. Refer: https://aka.ms/tmtcommsec#x509-ssltls Ensure that

authenticated ASP.NET pages incorporate UI Redressing or clickjacking defences. Refer:

https://aka.ms/tmtconfigmgmt#ui-defenses Validate all redirects within the application are closed

or done safely. Refer: https://aka.ms/tmtinputval#redirect-safe

SDL Phase: Implementation

42. An adversary can steal sensitive data like user credentials [State: Not Started] [Priority: High]

Category: Spoofing

Description: Attackers can exploit weaknesses in system to steal user credentials. Downstream and upstream

components are often accessed by using credentials stored in configuration stores. Attackers may steal the upstream or downstream component credentials. Attackers may steal credentials if, Credentials are stored and sent in clear text, Weak input validation coupled with dynamic sql

queries, Password retrieval mechanism are poor,

Justification: <no mitigation provided>

Possible Explicitly disable the autocomplete HTML attribute in sensitive forms and inputs. Refer: <a Mitigation(s): href="https://aka.ms/tmtdata#autocomplete-input">https://aka.ms/tmtdata#autocomplete-input

Perform input validation and filtering on all string type Model properties. Refer: https://aka.ms/tmtinputval#typemodel Validate all

redirects within the application are closed or done safely. Refer: https://aka.ms/tmtinputval#redirect-safe Enable step up or adaptive authentication. Refer: https://aka.ms/tmtauthn#step-up-adaptive-authn Implement forgot password functionalities securely. Refer: <a href="https://aka.ms/tmtauthn#forgot-pword-

fxn">https://aka.ms/tmtauthn#forgot-pword-fxn Ensure that password and account policy are implemented. Refer: <a href="https://aka.ms/tmtauthn#pword-account-

policy">https://aka.ms/tmtauthn#pword-account-policy Implement input validation on all string type parameters accepted by Controller methods. Refer: https://aka.ms/tmtinputval#string-method

SDL Phase: Implementation

43. Attackers can steal user session cookies due to insecure cookie attributes [State: Not Started] [Priority: High]

Spoofing **Category:**

Description: The session cookies is the identifier by which the server knows the identity of current user for

each incoming request. If the attacker is able to steal the user token he would be able to access all user data and perform all actions on behalf of user.

Justification: <no mitigation provided>

Possible Applications available over HTTPS must use secure cookies. Refer: <a

Mitigation(s): href="https://aka.ms/tmtsmgmt#https-secure-cookies">https://aka.ms/tmtsmgmt#https-secure-

cookies All http based application should specify http only for cookie definition. Refer: https://aka.ms/tmtsmgmt#cookie-definition

SDL Phase: Implementation

44. An adversary may spoof Student and gain access to Web Application [State: Not Started] [Priority: High]

Category: Spoofing

If proper authentication is not in place, an adversary can spoof a source process or external **Description:** entity and gain unauthorized access to the Web Application

Justification: <no mitigation provided>

Possible Consider using a standard authentication mechanism to authenticate to Web Application. Refer:

https://aka.ms/tmtauthn#standard-

authn-web-app

SDL Phase: Design

Mitigation(s):

45. An adversary can deface the target web application by injecting malicious code or uploading [State: Not Started] [Priority: High] dangerous files

Category: **Tampering**

Description: Website defacement is an attack on a website where the attacker changes the visual appearance

of the site or a webpage.

Justification: <no mitigation provided>

Possible Implement Content Security Policy (CSP), and disable inline javascript. Refer: <a

Mitigation(s): href="https://aka.ms/tmtconfigmgmt#csp-js">https://aka.ms/tmtconfigmgmt#csp-js Enable browser's XSS filter. Refer: <a href="https://aka.ms/tmtconfigmgmt#xss-

filter">https://aka.ms/tmtconfigmgmt#xss-filter Access third party javascripts from trusted

sources only. Refer: <a href="https://aka.ms/tmtconfigmgmt#js-

trusted">https://aka.ms/tmtconfigmgmt#js-trusted Enable ValidateRequest attribute on ASP.NET Pages. Refer: https://aka.ms/tmtconfigmgmt#validate-

aspnet">https://aka.ms/tmtconfigmgmt#validate-aspnet Ensure that each page that could contain user controllable content opts out of automatic MIME sniffing . Refer: https://aka.ms/tmtinputval#out-sniffing Use locally-hosted latest versions of JavaScript libraries . Refer: https://aka.ms/tmtconfigmgmt#local-js Ensure appropriate controls are in place when accepting files from users. Refer: https://aka.ms/tmtinputval#controls-users Disable automatic MIME sniffing. Refer: <a href="https://aka.ms/tmtconfigmgmt#mime-"https://aka.

sniff">https://aka.ms/tmtconfigmgmt#mime-sniff Encode untrusted web output prior to rendering. Refer: https://aka.ms/tmtinputval#rendering Perform input validation and filtering on all string type Model properties. Refer: https://aka.ms/tmtinputval#typemodel Ensure that the system has inbuilt defences against misuse. Refer: https://aka.ms/tmtauditlog#inbuilt-defenses Enable HTTP Strict Transport Security (HSTS). Refer: https://aka.ms/tmtcommsec#http-hsts Implement input validation on all string type parameters accepted by Controller methods. Refer: https://aka.ms/tmtinputval#string-method Avoid using Html.Raw in Razor views. Refer: https://aka.ms/tmtinputval#html-razor Sanitization should be applied on form fields that accept all characters e.g, rich text editor . Refer: https://aka.ms/tmtinputval#richtext Do not assign DOM elements to sinks that do not have inbuilt encoding . Refer: https://aka.ms/tmtinputval#inbuilt-encode

SDL Phase: Implementation

46. An attacker steals messages off the network and replays them in order to steal a user's session [State: Not Started] [Priority: High]

Category: Tampering

Description: An attacker steals messages off the network and replays them in order to steal a user's

session

Justification: <no mitigation provided>

Possible

Mitigation(s):

SDL Phase: Implementation

47. An adversary can gain access to sensitive data by performing SQL injection through Web App [State: Not Started] [Priority: High]

Category: Tampering

Description: SQL injection is an attack in which malicious code is inserted into strings that are later passed to

an instance of SQL Server for parsing and execution. The primary form of SQL injection consists of direct insertion of code into user-input variables that are concatenated with SQL commands and executed. A less direct attack injects malicious code into strings that are destined for storage in a table or as metadata. When the stored strings are subsequently concatenated into a dynamic SQL

command, the malicious code is executed.

Justification: <no mitigation provided>

Possible Ensure that type-safe parameters are used in Web Application for data access. Refer: <a

Mitigation(s): href="https://aka.ms/tmtinputval#typesafe">https://aka.ms/tmtinputval#typesafe

SDL Phase: Implementation

48. An adversary can gain access to sensitive data stored in Web App's config files [State: Not Started] [Priority: High]

Category: Tampering

Description: An adversary can gain access to the config files. and if sensitive data is stored in it, it would be

compromised.

Justification: <no mitigation provided>

Possible Encrypt sections of Web App's configuration files that contain sensitive data. Refer: https://aka.ms/tmtdata#encrypt-data

SDL Phase: Implementation

Interaction: Login Request

49. An adversary can perform action on behalf of other user due to lack of controls against cross domain requests [State: Not Started] [Priority: High]

Category: Denial of Service

Description: Failure to restrict requests originating from third party domains may result in unauthorized actions

or access of data

Justification: <no mitigation provided>

Possible Ensure that authenticated ASP.NET pages incorporate UI Redressing or clickjacking defences.

Mitigation(s): Refer: https://aka.ms/tmtconfigmgmt#ui-

defenses Ensure that only trusted origins are allowed if CORS is enabled on ASP.NET Web

Applications. Refer: <a href="https://aka.ms/tmtconfigmgmt#cors-

aspnet">https://aka.ms/tmtconfigmgmt#cors-aspnet Mitigate against Cross-Site Request Forgery (CSRF) attacks on ASP.NET web pages. Refer: <a href="https://aka.ms/tmtsmgmt#csrf-

asp">https://aka.ms/tmtsmgmt#csrf-asp

SDL Phase: Implementation

50. An adversary may bypass critical steps or perform actions on behalf of other users (victims) due to improper validation logic [State: Not Started] [Priority: High]

Category: Elevation of Privileges

Description: Failure to restrict the privileges and access rights to the application to individuals who require the

privileges or access rights may result into unauthorized use of data due to inappropriate rights

settings and validation.

Justification: <no mitigation provided>

Possible Ensure that administrative interfaces are appropriately locked down. Refer: <a

Mitigation(s): href="https://aka.ms/tmtauthn#admin-interface-lockdown">https://aka.ms/tmtauthn#admin-interface-lockdown

interface-lockdown Enforce sequential step order when processing business logic flows. Refer: https://aka.ms/tmtauthz#sequential-logic Ensure that proper authorization is in place and principle of least privileges is followed.

Refer: <a href="https://aka.ms/tmtauthz#principle-least-

privilege">https://aka.ms/tmtauthz#principle-least-privilege Business logic and resource access authorization decisions should not be based on incoming request parameters. Refer: https://aka.ms/tmtauthz#logic-request-parameters Ensure that content and resources are not enumerable or accessible via forceful

browsing. Refer: https://aka.ms/tmtauthz#enumerable-browsing

SDL Phase: Implementation

51. An adversary can reverse weakly encrypted or hashed content [State: Not Started] [Priority: High]

Category: Information Disclosure

Description: An adversary can reverse weakly encrypted or hashed content

Justification: <no mitigation provided>

Possible Do not expose security details in error messages. Refer: <a

Mitigation(s): href="https://aka.ms/tmtxmgmt#messages">https://aka.ms/tmtxmgmt#messages Implement

Default error handling page. Refer: https://aka.ms/tmtxmgmt#default Set Deployment

Method to Retail in IIS. Refer: https://aka.ms/tmtxmgmt#deployment Use only

approved symmetric block ciphers and key lengths. Refer: https://aka.ms/tmtcrypto#cipher-length Use

approved block cipher modes and initialization vectors for symmetric ciphers. Refer: https://aka.ms/tmtcrypto#vector-ciphers Use approved asymmetric algorithms, key lengths, and padding. Refer: https://aka.ms/tmtcrypto#padding Use approved

random number generators. Refer: https://aka.ms/tmtcrypto#numgen Do not use

symmetric stream ciphers. Refer: <a href="https://aka.ms/tmtcrypto#stream-

ciphers">https://aka.ms/tmtcrypto#stream-ciphers Use approved MAC/HMAC/keyed hash algorithms. Refer: https://aka.ms/tmtcrypto#mac-hash

hash Use only approved cryptographic hash functions. Refer: https://aka.ms/tmtcrypto#hash-functions Verify

X.509 certificates used to authenticate SSL, TLS, and DTLS connections. Refer: https://aka.ms/tmtcommsec#x509-ssltls

SDL Phase: Implementation

52. An adversary may gain access to sensitive data from log files [State: Not Started] [Priority: High]

Category: Information Disclosure

Description: An adversary may gain access to sensitive data from log files

Justification: <no mitigation provided>

Possible Ensure that the application does not log sensitive user data. Refer: <a

Mitigation(s): href="https://aka.ms/tmtauditlog#log-sensitive-data">https://aka.ms/tmtauditlog#log-sensitive-

data Ensure that Audit and Log Files have Restricted Access. Refer: https://aka.ms/tmtauditlog#log-restricted-

access

SDL Phase: Implementation

53. An adversary may gain access to unmasked sensitive data such as credit card numbers [State: Not Started] [Priority: High]

Started [i nonty. mgm]

Category: Information Disclosure

Description: An adversary may gain access to unmasked sensitive data such as credit card numbers

Justification: <no mitigation provided>

Possible Ensure that sensitive data displayed on the user screen is masked. Refer: https://aka.ms/tmtdata#data-mask

SDL Phase: Implementation

54. An adversary can gain access to certain pages or the site as a whole. [State: Not Started] [Priority:

Medium]

Category: Information Disclosure

Description: Robots.txt is often found in your site's root directory and exists to regulate the bots that crawl your

site. This is where you can grant or deny permission to all or some specific search engine robots to access certain pages or your site as a whole. The standard for this file was developed in 1994 and is known as the Robots Exclusion Standard or Robots Exclusion Protocol. Detailed info about

the robots.txt protocol can be found at robotstxt.org.

Justification: <no mitigation provided>

Possible Ensure that administrative interfaces are appropriately locked down. Refer: <a

Mitigation(s): href="https://aka.ms/tmtauthn#admin-interface-lockdown">https://aka.ms/tmtauthn#admin-interface-lockdown

interface-lockdown

SDL Phase: Implementation

55. An adversary can gain access to sensitive data by sniffing traffic to Web Application [State: Not

Started] [Priority: High]

Category: Information Disclosure

Description: An adversary may conduct man in the middle attack and downgrade TLS connection to clear text

protocol, or forcing browser communication to pass through a proxy server that he controls. This may happen because the application may use mixed content or HTTP Strict Transport Security

policy is not ensured.

Justification: <no mitigation provided>

Possible Applications available over HTTPS must use secure cookies. Refer: <a

Mitigation(s): href="https://aka.ms/tmtsmgmt#https-secure-cookies">https://aka.ms/tmtsmgmt#https-secure-

cookies Enable HTTP Strict Transport Security (HSTS). Refer: https://aka.ms/tmtcommsec#http-hsts

SDL Phase: Implementation

56. An adversary can gain access to sensitive information through error messages [State: Not Started]

[Priority: High]

Category: Information Disclosure

Description: An adversary can gain access to sensitive data such as the following, through verbose error

messages - Server names - Connection strings - Usernames - Passwords - SQL procedures -

Details of dynamic SQL failures - Stack trace and lines of code - Variables stored in memory -

Drive and folder locations - Application install points - Host configuration settings - Other internal

application details

Justification: <no mitigation provided>

Possible Do not expose security details in error messages. Refer: <a

Mitigation(s): href="https://aka.ms/tmtxmgmt#messages">https://aka.ms/tmtxmgmt#messages Implement

Default error handling page. Refer: https://aka.ms/tmtxmgmt#default Set Deployment

Method to Retail in IIS. Refer: https://aka.ms/tmtxmgmt#deployment

Exceptions should fail safely. Refer: https://aka.ms/tmtxmgmt#fail ASP.NET applications must

disable tracing and debugging prior to deployment. Refer: https://aka.ms/tmtconfigmgmt#trace-deploy

Implement controls to prevent username enumeration. Refer: https://aka.ms/tmtauthn#controls-

username-enum

SDL Phase: Implementation

57. An adversary may gain access to sensitive data from uncleared browser cache [State: Not Started]

[Priority: High]

Category: Information Disclosure

Description: An adversary may gain access to sensitive data from uncleared browser cache

Justification: <no mitigation provided>

Possible Ensure that sensitive content is not cached on the browser. Refer: <a

Mitigation(s): href="https://aka.ms/tmtdata#cache-browser">https://aka.ms/tmtdata#cache-browser

SDL Phase: Implementation

58. Attacker can deny the malicious act and remove the attack foot prints leading to repudiation issues [State: Not Started] [Priority: Medium]

Category: Repudiation

Description: Proper logging of all security events and user actions builds traceability in a system and denies

any possible repudiation issues. In the absence of proper auditing and logging controls, it would

become impossible to implement any accountability in a system

Justification: <no mitigation provided>

Possible Ensure that auditing and logging is enforced on the application. Refer: <a

Mitigation(s): href="https://aka.ms/tmtauditlog#auditing">https://aka.ms/tmtauditlog#auditing Ensure that log

rotation and separation are in place. Refer: <a href="https://aka.ms/tmtauditlog#log-

rotation">https://aka.ms/tmtauditlog#log-rotation Ensure that Audit and Log Files have

Restricted Access. Refer: <a href="https://aka.ms/tmtauditlog#log-restricted-

access">https://aka.ms/tmtauditlog#log-restricted-access Ensure that User Management

Events are Logged. Refer: https://aka.ms/tmtauditlog#user-management

SDL Phase: Implementation

59. An adversary can get access to a user's session due to improper logout and timeout [State: Not Started] [Priority: High]

Category: Spoofing

Description: The session cookies is the identifier by which the server knows the identity of current user for

each incoming request. If the attacker is able to steal the user token he would be able to access

all user data and perform all actions on behalf of user.

Justification: <no mitigation provided>

Possible Set up session for inactivity lifetime. Refer: <a href="https://aka.ms/tmtsmgmt#inactivity-

lifetime">https://aka.ms/tmtsmgmt#inactivity-lifetime Implement proper logout from the Mitigation(s):

application. Refer: <a href="https://aka.ms/tmtsmgmt#proper-app-

logout">https://aka.ms/tmtsmgmt#proper-app-logout

SDL Phase: Implementation

60. An adversary can get access to a user's session due to insecure coding practices [State: Not

Started] [Priority: High]

Category: Spoofing

Description: The session cookies is the identifier by which the server knows the identity of current user for each

incoming request. If the attacker is able to steal the user token he would be able to access all user

data and perform all actions on behalf of user.

Justification: <no mitigation provided>

Possible Enable ValidateRequest attribute on ASP.NET Pages. Refer: <a

Mitigation(s): href="https://aka.ms/tmtconfigmgmt#validate-aspnet">https://aka.ms/tmtconfigmgmt#validate-

aspnet Encode untrusted web output prior to rendering. Refer: https://aka.ms/tmtinputval#rendering Avoid using

Html.Raw in Razor views. Refer: <a href="https://aka.ms/tmtinputval#html-

razor">https://aka.ms/tmtinputval#html-razor Sanitization should be applied on form fields that

accept all characters e.g, rich text editor . Refer: https://aka.ms/tmtinputval#richtext Do not assign

DOM elements to sinks that do not have inbuilt encoding. Refer: https://aka.ms/tmtinputval#inbuilt-encode

Implementation SDL Phase:

61. An adversary can spoof the target web application due to insecure TLS certificate configuration [State: Not Started] [Priority: High]

Spoofing Category:

Description: Ensure that TLS certificate parameters are configured with correct values

Justification: <no mitigation provided>

Possible Verify X.509 certificates used to authenticate SSL, TLS, and DTLS connections. Refer: <a

Mitigation(s): href="https://aka.ms/tmtcommsec#x509-ssltls">https://aka.ms/tmtcommsec#x509-ssltls

SDL Phase: Implementation

62. An adversary can steal sensitive data like user credentials [State: Not Started] [Priority: High]

Category: Spoofing

Description: Attackers can exploit weaknesses in system to steal user credentials. Downstream and upstream

components are often accessed by using credentials stored in configuration stores. Attackers may steal the upstream or downstream component credentials. Attackers may steal credentials if, Credentials are stored and sent in clear text, Weak input validation coupled with dynamic sql

queries, Password retrieval mechanism are poor,

Justification: <no mitigation provided>

Possible Explicitly disable the autocomplete HTML attribute in sensitive forms and inputs. Refer: <a

Mitigation(s): href="https://aka.ms/tmtdata#autocomplete-input">https://aka.ms/tmtdata#autocomplete-input

Perform input validation and filtering on all string type Model properties. Refer: https://aka.ms/tmtinputval#typemodel Validate all

redirects within the application are closed or done safely. Refer: https://aka.ms/tmtinputval#redirect-safe

Enable step up or adaptive authentication. Refer: <a href="https://aka.ms/tmtauthn#step-up-

adaptive-authn">https://aka.ms/tmtauthn#step-up-adaptive-authn Implement forgot password functionalities securely. Refer: <a href="https://aka.ms/tmtauthn#forgot-pword-

fxn">https://aka.ms/tmtauthn#forgot-pword-fxn Ensure that password and account policy are implemented. Refer: <a href="https://aka.ms/tmtauthn#pword-account-

policy">https://aka.ms/tmtauthn#pword-account-policy Implement input validation on all string type parameters accepted by Controller methods. Refer: https://aka.ms/tmtinputval#string-method

SDL Phase: **Implementation**

63. Attackers can steal user session cookies due to insecure cookie attributes [State: Not Started] [Priority: High]

Spoofing Category:

Description: The session cookies is the identifier by which the server knows the identity of current user for

each incoming request. If the attacker is able to steal the user token he would be able to access

all user data and perform all actions on behalf of user.

<no mitigation provided> Justification:

Applications available over HTTPS must use secure cookies. Refer: <a **Possible**

href="https://aka.ms/tmtsmgmt#https-secure-cookies">https://aka.ms/tmtsmgmt#https-secure-Mitigation(s):

cookies All http based application should specify http only for cookie definition. Refer: https://aka.ms/tmtsmgmt#cookie-definition

SDL Phase: Implementation

64. An adversary can create a fake website and launch phishing attacks [State: Not Started] [Priority: High]

Category: Spoofing

Description: Phishing is attempted to obtain sensitive information such as usernames, passwords, and credit

card details (and sometimes, indirectly, money), often for malicious reasons, by masquerading as

a Web Server which is a trustworthy entity in electronic communication

Justification: <no mitigation provided>

Possible Use Multi-Factor Authentication (2FA) for login. Verify X.509 certificates used to authenticate SSL,

TLS, and DTLS connections. Refer: https://aka.ms/tmtcommsec#x509-ssltls Ensure that Mitigation(s):

authenticated ASP.NET pages incorporate UI Redressing or clickjacking defences. Refer:

https://aka.ms/tmtconfigmgmt#ui-defenses Validate all redirects within the application are closed

or done safely. Refer: https://aka.ms/tmtinputval#redirect-safe

SDL Phase: **Implementation**

65. An adversary may spoof Student and gain access to Web Application [State: Not Started] [Priority: High]

Category: Spoofing

Description: If proper authentication is not in place, an adversary can spoof a source process or external

entity and gain unauthorized access to the Web Application

Justification: <no mitigation provided>

Possible Consider using a standard authentication mechanism to authenticate to Web Application. Refer:

https://aka.ms/tmtauthn#standard-Mitigation(s):

authn-web-app

SDL Phase: Design

66. An adversary can deface the target web application by injecting malicious code or uploading dangerous files [State: Not Started] [Priority: High]

Category: Tampering

Description: Website defacement is an attack on a website where the attacker changes the visual appearance

of the site or a webpage.

Justification: <no mitigation provided>

Possible Implement Content Security Policy (CSP), and disable inline javascript. Refer: <a

Mitigation(s): href="https://aka.ms/tmtconfigmgmt#csp-js">https://aka.ms/tmtconfigmgmt#csp-js Enable

browser's XSS filter. Refer: <a href="https://aka.ms/tmtconfigmgmt#xss-

filter">https://aka.ms/tmtconfigmgmt#xss-filter Access third party javascripts from trusted

sources only. Refer: <a href="https://aka.ms/tmtconfigmgmt#js-

trusted">https://aka.ms/tmtconfigmgmt#js-trusted Enable ValidateRequest attribute on

ASP.NET Pages. Refer: <a href="https://aka.ms/tmtconfigmgmt#validate-

aspnet">https://aka.ms/tmtconfigmgmt#validate-aspnet Ensure that each page that could

contain user controllable content opts out of automatic MIME sniffing . Refer: https://aka.ms/tmtinputval#out-sniffing Use

locally-hosted latest versions of JavaScript libraries . Refer: https://aka.ms/tmtconfigmgmt#local-js Ensure

appropriate controls are in place when accepting files from users. Refer: https://aka.ms/tmtinputval#controls-users

Disable automatic MIME sniffing. Refer: https://aka.ms/tmtconfigmgmt#mime-sniff Encode untrusted web output prior to

rendering. Refer: https://aka.ms/tmtinputval#rendering Perform

input validation and filtering on all string type Model properties. Refer: https://aka.ms/tmtinputval#typemodel Ensure

that the system has inbuilt defences against misuse. Refer: https://aka.ms/tmtauditlog#inbuilt-defenses Enable HTTP Strict Transport Security (HSTS). Refer: https://aka.ms/tmtcommsec#http-hsts Implement input validation on all string type parameters accepted by Controller methods. Refer: https://aka.ms/tmtinputval#string-method Avoid using Html.Raw in Razor views. Refer: https://aka.ms/tmtinputval#html-razor

Sanitization should be applied on form fields that accept all characters e.g, rich text editor. Refer: https://aka.ms/tmtinputval#richtext Do not assign

DOM elements to sinks that do not have inbuilt encoding . Refer: https://aka.ms/tmtinputval#inbuilt-encode

SDL Phase: Implementation

67. An attacker steals messages off the network and replays them in order to steal a user's session [State: Not Started] [Priority: High]

Category: Tampering

Description: An attacker steals messages off the network and replays them in order to steal a user's

session

Justification: <no mitigation provided>

Possible

Mitigation(s):

SDL Phase: Implementation

68. An adversary can gain access to sensitive data by performing SQL injection through Web App [State: Not Started] [Priority: High]

Category: Tampering

Description: SQL injection is an attack in which malicious code is inserted into strings that are later passed to

an instance of SQL Server for parsing and execution. The primary form of SQL injection consists of direct insertion of code into user-input variables that are concatenated with SQL commands and

executed. A less direct attack injects malicious code into strings that are destined for storage in a table or as metadata. When the stored strings are subsequently concatenated into a dynamic SQL

command, the malicious code is executed.

Justification: <no mitigation provided>

Possible Ensure that type-safe parameters are used in Web Application for data access. Refer: <a

Mitigation(s): href="https://aka.ms/tmtinputval#typesafe">https://aka.ms/tmtinputval#typesafe

SDL Phase: Implementation

69. An adversary can gain access to sensitive data stored in Web App's config files [State: Not Started]

[Priority: High]

Category: Tampering

Description: An adversary can gain access to the config files, and if sensitive data is stored in it, it would be

compromised.

Justification: <no mitigation provided>

Possible Encrypt sections of Web App's configuration files that contain sensitive data. Refer: https://aka.ms/tmtdata#encrypt-data Mitigation(s):

SDL Phase: Implementation

Interaction: Read

70. An adversary can gain unauthorized access to Azure MySQL DB instances due to weak network [State: Not Started] [Priority: High] security configuration

Elevation of Privileges Category:

Description: An adversary can gain unauthorized access to Course Database instances due to weak

network security configuration.

Justification: <no mitigation provided>

Possible Restrict access to Azure MySQL DB instances by configuring server-level firewall rules to only

permit connections from selected IP addresses where possible. Refer: <a Mitigation(s):

href="https://aka.ms/tmt-th150">https://aka.ms/tmt-th150

SDL Phase: **Implementation**

71. An adversary may read and/or tamper with the data transmitted to Azure MySQL DB due to weak configuration [State: Not Started] [Priority: High]

Tampering Category:

Description: An adversary may read and/or tamper with the data transmitted to Course Database due to weak

configuration.

Justification: <no mitigation provided>

Possible Enforce communication between clients and Azure MySQL DB to be over SSL/TLS by enabling

Mitigation(s): the Enforce SSL connection feature on the server. Check that the connection strings used to

connect to MySQL databases have the right configuration (e.g. ssl = true or sslmode=require or

sslmode=true are set). Refer: https://aka.ms/tmt-th151a Configure MySQL server to use a verifiable SSL certificate (needed for SSL/TLS communication).

Refer: https://aka.ms/tmt-th151b

SDL Phase: Implementation

72. An adversary can gain long term, persistent access to an Azure MySQL DB instance through the [State: Not Started] [Priority: High] compromise of local user account password(s)

Elevation of Privileges Category:

Description: An adversary can gain long term, persistent access to Course Database instance through the

compromise of local user account password(s).

<no mitigation provided> Justification:

Possible It is recommended to rotate user account passwords (e.g. those used in connection strings) Mitigation(s):

regularly, in accordance with your organization's policies. Store secrets in a secret storage

solution (e.g. Azure Key Vault).

SDL Phase: Implementation

Interaction: Returns Data

73. An adversary can gain access to sensitive data stored in Web App's config files [State: Not Started] [Priority: High]

Category: Tampering

Description: An adversary can gain access to the config files. and if sensitive data is stored in it, it would be

compromised.

Justification: <no mitigation provided>

Encrypt sections of Web App's configuration files that contain sensitive data. Refer: <a **Possible** Mitigation(s): href="https://aka.ms/tmtdata#encrypt-data">https://aka.ms/tmtdata#encrypt-data

SDL Phase: Implementation

74. An adversary can gain access to sensitive data by performing SQL injection through Web App [State: Not Started] [Priority: High]

Category: Tampering

Description: SQL injection is an attack in which malicious code is inserted into strings that are later passed to

an instance of SQL Server for parsing and execution. The primary form of SQL injection consists of direct insertion of code into user-input variables that are concatenated with SQL commands and executed. A less direct attack injects malicious code into strings that are destined for storage in a table or as metadata. When the stored strings are subsequently concatenated into a dynamic SQL

command, the malicious code is executed.

Justification: <no mitigation provided>

Possible Ensure that type-safe parameters are used in Web Application for data access. Refer: <a

Mitigation(s): href="https://aka.ms/tmtinputval#typesafe">https://aka.ms/tmtinputval#typesafe

SDL Phase: Implementation

75. An adversary may spoof Course Database and gain access to Web Application [State: Not Started]

[Priority: High]

Category: Spoofing

Description: If proper authentication is not in place, an adversary can spoof a source process or external

entity and gain unauthorized access to the Web Application

Justification: <no mitigation provided>

Possible Consider using a standard authentication mechanism to authenticate to Web Application. Refer:

Mitigation(s): https://aka.ms/tmtauthn#standard-

authn-web-app

SDL Phase: Design

76. An adversary can create a fake website and launch phishing attacks [State: Not Started] [Priority: High]

J .

Mitigation(s):

Category: Spoofing

Description: Phishing is attempted to obtain sensitive information such as usernames, passwords, and credit

card details (and sometimes, indirectly, money), often for malicious reasons, by masquerading as

a Web Server which is a trustworthy entity in electronic communication

Justification: <no mitigation provided>

Possible Verify X.509 certificates used to authenticate SSL, TLS, and DTLS connections. Refer: https://aka.ms/tmtcommsec#x509-ssltls Ensure that authenticated ASP.NET pages incorporate UI Redressing or clickjacking defences. Refer: https://aka.ms/tmtconfigmgmt#ui-defenses">https://aka.ms/tmtconfigmgmt#ui-defenses">https://aka.ms/tmtconfigmgmt#ui-defenses">https://aka.ms/tmtconfigmgmt#ui-defenses">https://aka.ms/tmtconfigmgmt#ui-defenses

defenses Validate all redirects within the application are closed or done safely. Refer: https://aka.ms/tmtinputval#redirect-safe

SDL Phase: Implementation

77. An adversary can steal sensitive data like user credentials [State: Not Started] [Priority: High]

Category: Spoofing

Description: Attackers can exploit weaknesses in system to steal user credentials. Downstream and upstream

components are often accessed by using credentials stored in configuration stores. Attackers may steal the upstream or downstream component credentials. Attackers may steal credentials if, Credentials are stored and sent in clear text, Weak input validation coupled with dynamic sql

queries, Password retrieval mechanism are poor,

Justification: <no mitigation provided>

Possible Explicitly disable the autocomplete HTML attribute in sensitive forms and inputs. Refer: <a

Mitigation(s): href="https://aka.ms/tmtdata#autocomplete-input">https://aka.ms/tmtdata#autocomplete-input

Perform input validation and filtering on all string type Model properties. Refer: https://aka.ms/tmtinputval#typemodel Validate all

redirects within the application are closed or done safely. Refer: https://aka.ms/tmtinputval#redirect-safe Enable step up or adaptive authentication. Refer: https://aka.ms/tmtauthn#step-up-adaptive-authn Implement forgot password functionalities securely. Refer: <a href="https://aka.ms/tmtauthn#forgot-pword-

fxn">https://aka.ms/tmtauthn#forgot-pword-fxn Ensure that password and account policy are

implemented. Refer: <a href="https://aka.ms/tmtauthn#pword-account-

policy">https://aka.ms/tmtauthn#pword-account-policy Implement input validation on all string

type parameters accepted by Controller methods. Refer: https://aka.ms/tmtinputval#string-method

SDL Phase: Implementation

78. An adversary can spoof the target web application due to insecure TLS certificate configuration [State: Not Started] [Priority: High]

Category: Spoofing

Description: Ensure that TLS certificate parameters are configured with correct values

Justification: <no mitigation provided>

Possible Verify X.509 certificates used to authenticate SSL, TLS, and DTLS connections. Refer: https://aka.ms/tmtcommsec#x509-ssltls Mitigation(s):

SDL Phase: **Implementation**

79. Attacker can deny the malicious act and remove the attack foot prints leading to repudiation issues [State: Not Started] [Priority: Medium]

Repudiation **Category:**

Description: Proper logging of all security events and user actions builds traceability in a system and denies

any possible repudiation issues. In the absence of proper auditing and logging controls, it would

become impossible to implement any accountability in a system

Justification: <no mitigation provided>

Possible Ensure that auditing and logging is enforced on the application. Refer: <a

Mitigation(s): href="https://aka.ms/tmtauditlog#auditing">https://aka.ms/tmtauditlog#auditing Ensure that log

rotation and separation are in place. Refer: <a href="https://aka.ms/tmtauditlog#log-

rotation">https://aka.ms/tmtauditlog#log-rotation Ensure that Audit and Log Files have

Restricted Access. Refer: <a href="https://aka.ms/tmtauditlog#log-restricted-

access">https://aka.ms/tmtauditlog#log-restricted-access Ensure that User Management

Events are Logged. Refer: https://aka.ms/tmtauditlog#user-management

SDL Phase: **Implementation**

80. An adversary can gain access to sensitive information through error messages [State: Not Started] [Priority: High]

Information Disclosure **Category:**

Description: An adversary can gain access to sensitive data such as the following, through verbose error

> messages - Server names - Connection strings - Usernames - Passwords - SQL procedures -Details of dynamic SQL failures - Stack trace and lines of code - Variables stored in memory -Drive and folder locations - Application install points - Host configuration settings - Other internal

application details

Justification: <no mitigation provided>

Possible Do not expose security details in error messages. Refer: <a

Mitigation(s): href="https://aka.ms/tmtxmgmt#messages">https://aka.ms/tmtxmgmt#messages Implement

Default error handling page. Refer: https://aka.ms/tmtxmgmt#default Set Deployment

Method to Retail in IIS. Refer: https://aka.ms/tmtxmgmt#deployment

Exceptions should fail safely. Refer: https://aka.ms/tmtxmgmt#fail ASP.NET applications must

disable tracing and debugging prior to deployment. Refer: https://aka.ms/tmtconfigmgmt#trace-deploy

Implement controls to prevent username enumeration. Refer: https://aka.ms/tmtauthn#controls-

username-enum

SDL Phase: Implementation

81. An adversary may gain access to sensitive data from log files [State: Not Started] [Priority: High]

Category: Information Disclosure

Description: An adversary may gain access to sensitive data from log files

Justification: <no mitigation provided>

Possible Ensure that the application does not log sensitive user data. Refer: <a

Mitigation(s): href="https://aka.ms/tmtauditlog#log-sensitive-data">https://aka.ms/tmtauditlog#log-sensitive-

data Ensure that Audit and Log Files have Restricted Access. Refer: https://aka.ms/tmtauditlog#log-restricted-

access

SDL Phase: Implementation

82. An adversary can reverse weakly encrypted or hashed content [State: Not Started] [Priority: High]

Category: Information Disclosure

Description: An adversary can reverse weakly encrypted or hashed content

Justification: <no mitigation provided>

Possible Do not expose security details in error messages. Refer: <a

Mitigation(s): href="https://aka.ms/tmtxmgmt#messages">https://aka.ms/tmtxmgmt#messages Implement

Default error handling page. Refer: https://aka.ms/tmtxmgmt#default Set Deployment

Method to Retail in IIS. Refer: https://aka.ms/tmtxmgmt#deployment Use only

approved symmetric block ciphers and key lengths. Refer: https://aka.ms/tmtcrypto#cipher-length Use

approved block cipher modes and initialization vectors for symmetric ciphers. Refer: https://aka.ms/tmtcrypto#vector-ciphers Use

approved asymmetric algorithms, key lengths, and padding. Refer: https://aka.ms/tmtcrypto#padding Use approved

random number generators. Refer: https://aka.ms/tmtcrypto#numgen Do not use

symmetric stream ciphers. Refer: <a href="https://aka.ms/tmtcrypto#stream-

ciphers">https://aka.ms/tmtcrypto#stream-ciphers Use approved MAC/HMAC/keyed hash algorithms. Refer: https://aka.ms/tmtcrypto#mac-hash

hash Use only approved cryptographic hash functions. Refer: https://aka.ms/tmtcrypto#hash-functions Verify

X.509 certificates used to authenticate SSL, TLS, and DTLS connections. Refer: https://aka.ms/tmtcommsec#x509-ssltls

SDL Phase: Implementation

Interaction: Update

83. An adversary can gain unauthorized access to Azure MySQL DB instances due to weak network security configuration [State: Not Started] [Priority: High]

Category: Elevation of Privileges

Description: An adversary can gain unauthorized access to Course Database instances due to weak

network security configuration.

Justification: <no mitigation provided>

Possible Implement role-based access control and input validation Restrict access to Azure MySQL DB

Mitigation(s): instances by configuring server-level firewall rules to only permit connections from selected IP

addresses where possible. Refer: https://aka.ms/tmt-th150

SDL Phase: Implementation

84. An adversary may read and/or tamper with the data transmitted to Azure MySQL DB due to weak configuration [State: Not Started] [Priority: High]

Category: Tampering

Description: An adversary may read and/or tamper with the data transmitted to Course Database due to weak

configuration.

Justification: <no mitigation provided>

Possible Enforce communication between clients and Azure MySQL DB to be over SSL/TLS by enabling

Mitigation(s): the Enforce SSL connection feature on the server. Check that the connection strings used to

connect to MySQL databases have the right configuration (e.g. ssl = true or sslmode=require or sslmode=true are set). Refer: https://aka.ms/tmt-th151a Configure MySQL server to use a verifiable SSL certificate (needed for SSL/TLS communication).

Refer: https://aka.ms/tmt-th151b

SDL Phase: Implementation

85. An adversary can gain long term, persistent access to an Azure MySQL DB instance through the compromise of local user account password(s) [State: Not Started] [Priority: High]

Category: Elevation of Privileges

Description: An adversary can gain long term, persistent access to Course Database instance through the

compromise of local user account password(s).

Justification: <no mitigation provided>

Possible It is recommended to rotate user account passwords (e.g. those used in connection strings)

Mitigation(s): regularly, in accordance with your organization's policies. Store secrets in a secret storage

solution (e.g. Azure Key Vault).

SDL Phase: Implementation