# Électromagnétisme S08 Conducteurs en électrostatique I

## Iannis Aliferis

## Université Nice Sophia Antipolis

| Conducteurs en électrostatique                        | 2  |
|-------------------------------------------------------|----|
| Qu'est-ce qu'un conducteur?                           | 3  |
| Le champ électrique à l'intérieur d'un conducteur     | 4  |
| Le champ électrique à l'intérieur                     |    |
| En présence d'un champ électrique extérieur           | C  |
| Les charges électriques à l'intérieur d'un conducteur | 7  |
| Les charges à l'intérieur                             | 8  |
| Le champ électrique à la surface d'un conducteur      | g  |
| Le champ à la surface du conducteur                   | 10 |
| Le champ à la surface du conducteur                   | 11 |
| Les charges dans une cavité vide                      | 12 |
| Charges autour d'une cavité vide                      | 13 |
| Charges autour d'une cavité vide                      | 10 |
|                                                       | 14 |
| Charges autour d'une cavité chargée                   | 15 |
| Charges autour d'une cavité chargée                   | 16 |

### Conducteurs en électrostatique

#### Qu'est-ce qu'un conducteur?

- ▼ Conducteur (contraire : isolant ou « diélectrique »)
- ▼ Contient des porteurs de charge, libres à se déplacer
  - électrons libres dans le métal
  - ions dans les solutions ioniques
  - ▶ ions et électrons dans le plasma
- ▼ Les porteurs sont *libres* à se déplacer
- ▼ Équilibre électrostatique quand « il n'y a plus de mouvement » (autre que le mouvement thermique aléatoire)
  - ▶ Quel champ électrique?
  - ▶ Quelles charges?

7

2

## Le champ électrique à l'intérieur d'un conducteur

#### Le champ électrique à l'intérieur



- ▼ « À l'intérieur » : dans le conducteur
- ▼ Exemple : conducteur métallique
- ▼ Équilibre électrostatique :

les charges ne se déplacent plus (par définition)...

- ▼ ...alors qu'il y a des porteurs de charges libres!
- $oldsymbol{
  abla}$  Pas de mouvement parce que pas de force :  $ec{oldsymbol{F}} = q ec{oldsymbol{E}} = ec{oldsymbol{0}}$

 $ec{E}(ec{r}) = ec{0}$  à l'intérieur d'un conducteur







#### En présence d'un champ électrique extérieur



- ▼ Apparition de *charges induites*
- ▼ Création d'un champ électrique induit à l'intérieur
- ▼ Équilibre électrostatique : les charges ne se déplacent plus

$$ec{E} = ec{E}_{\sf ext} + ec{E}_{\sf ind} = ec{0}$$
 à l'intérieur d'un conducteur

▼ Les charges libres annulent le champ électrique extérieur!

6

## Les charges électriques à l'intérieur d'un conducteur

Les charges à l'intérieur



- lacktriangle Dans tous les cas, en équilibre électrostatique,  $ec{E}=ec{\mathbf{0}}$
- **▼** Loi de Gauss à l'intérieur du conducteur : forme intégrale :  $\oint_S \vec{E} \cdot \vec{n} \, \mathrm{d}S = 0 \Rightarrow Q_{\mathrm{int}} = 0$  forme locale :  $\mathrm{div}\,\vec{E} = 0 \Rightarrow \rho = 0$

L'intérieur du conducteur est *neutre*!

▼ On peut trouver des *charges uniquement sur la surface*,  $\rho_s$  (C m<sup>-2</sup>) (charges induites ou conducteur chargé) [conducteurs forme]



9

## Le champ électrique à la surface d'un conducteur

#### Le champ à la surface du conducteur

**▼** [Conducteurs champ intérieur] : E = 0

▼ [Conducteurs charges intérieur] :  $\rho = 0$ 

Des charges uniquement à la surface : densité  $\rho_s$  (C m<sup>-2</sup>)



- ▼ À l'équilibre électrostatique
   à la surface, les charges ne se déplacent plus...
- lacktriangledown ... pas de composante  $ec{E}$  tangentielle :

 $ec{m{E}} = E \hat{m{n}}$  à la surface du conducteur

#### Le champ à la surface du conducteur



▼ Loi de Gauss : un petit cylindre autour de la surface

$$\begin{split} \oint_{S} \vec{E}(\vec{r}) \cdot \hat{n}_{S} \, \mathrm{d}S &= \int_{S_{1}} E \hat{n} \cdot \underbrace{\hat{n}_{1}}_{\hat{n}} \, \mathrm{d}S + \int_{S_{2}} \vec{0} \cdot \underbrace{\hat{n}_{2}}_{-\hat{n}} \, \mathrm{d}S + \int_{S_{3}} \underbrace{\vec{E}(\vec{r}) \cdot \hat{n}_{3}}_{0} \, \mathrm{d}S \\ &= EA = \frac{Q_{\mathsf{int}}}{\epsilon_{0}} \quad \mathsf{où} \quad Q_{\mathsf{int}} = \rho_{s}A \end{split}$$

$$ec{m{E}}(ec{m{r}}) = rac{
ho_s(ec{m{r}})}{\epsilon_0} \hat{m{n}}$$



12

## Charges autour d'une cavité vide

▼ « Cavité » : la partie interne d'un conducteur creux



- ▼ Cavité vide (pas de charges)
- ▼ Loi de Gauss (forme intégrale) à l'intérieur du conducteur :
  - $E=0 \rightarrow \mathsf{flux} = 0 \rightarrow Q_{\mathsf{int}} = 0 \rightarrow Q_{\mathsf{surf\ int}} = 0$
- ▼ Pas de charges sur la surface interne si cavité vide!
- ▼ Même résultat en présence d'un champ électrique extérieur





# Les charges dans une cavité chargée

Charges autour d'une cavité chargée

lacktriangledown Cavité chargée :  $Q_{\rm cav} = +q$ 



- ▼ Charges induites sur la surface interne
- lacktriangle Loi de Gauss (forme intégrale) à l'intérieur du conducteur :

$$E=0,\,Q_{\rm int}=0,\,Q_{\rm cav}+Q_{\rm surf\;int}=0$$

$$Q_{\mathsf{surf\ int}} = -q$$

- ▼ Charges induites sur la surface externe
- $\label{eq:conducteur} {\bf V} \quad {\rm Conducteur\ neutre}: Q_{\rm surf\ ext} + Q_{\rm surf\ int} = 0$

$$Q_{\mathsf{surf}\;\mathsf{ext}} = +q$$

15





#### Charges autour d'une cavité chargée

**▼** Cavité chargée :  $Q_{cav} = +q$ 



- ▼ Comment se positionnent les charges induites sur la surface interne?
- $lackbox{ } Q_{
  m cav},\ Q_{
  m surf\ int}\ {
  m et}\ Q_{
  m surf\ ext}\ {
  m cr\'{e}ent}\ E=0\ {
  m dans}\ {
  m le}\ {
  m conducteur}$
- ▼ Et si le conducteur était *beaucoup* plus grand?
- $lackbox{ } Q_{\sf cav}$  et  $Q_{\sf surf\ int}$  créent E=0 dans le conducteur et aussi en dehors

Les charges induites  $Q_{\mathsf{surf}}$  int annulent l'effet de  $Q_{\mathsf{cav}}$ 

 $lackbox{ } Q_{
m surf\ ext}$  crée E=0 dans le conducteur et E 
eq 0 en dehors



