Autoproduct Functions and Applications

Preliminary definitions:

```
matrices are indicated by upper case letters e.g. A
vectors are indicated by bold letters e.g. x
scalars are indicated by standard letters e.g. x
`Ax` indicates the matrix product of A and x
`s * A` indicates the scaling of the coefficients of the matrix A by the scalar value in a scalar value in a scalar value in a scalar indicates in a scalar by indicates the dot product of the vectors y and x
x_0, x_i indicates the i-th element of the vector x
`xy` and `x_i y_i` indicate the scalar multiplication of x and y and x_i, y_i respectively.
`x + y` indicates the scalar addition of x and y
`A + B` indicates the entry-wise scalar addition of the entries of A and B
F(A, x) indicates the application of the function F with the arguments A, x
s^2 indicates the exponentiation of the scalar s by the value 2 (i.e. squaring)
```

Autoproduct functions

Consider the following transformation that maps a matrix and a vector to a scalar:

```
Ax . x
```

the dot product between a vector x and a transformation of itself Ax.

This type of transformation is referred to as an "autoproduct".

Algebraic structure

Autoproduct functions have some usable algebraic structure.

Viewing the transformation as the dot product between a vector x and some vector y = Ax:

```
Ax . x = y . x
= x_0 y_0 + x_1 y_1 + ...
= ax + by + ...
```

```
Bx . x = z . x
= x_0 z_0 + x_1 z_1 + ...
= dx + ey + ...
Ax . x + Bx . x = (y . x) + (z . x)
= (y + z) . x  # dot product is distributive
= (A + B)x . x  # matrix product distributes over matrix
```

Rewriting using function notation $F(A, x) \rightarrow Ax \cdot x$:

```
F(A, x) + F(B, x) = F(A + B, x)
```

Scalar multiplication distributes over the left matrix argument:

```
s * F(A, x) = F(s * A, x)
```

Scalar multiplication distributes a square root of the scalar over the right vector argument:

```
s^2 * F(A, x) = F(A, s * x)
```

This is a consequence of s * x being multiplied with a transformation of itself:

```
A(s * x) . (s * x)

s * Ax . (s * x)

(s * y) . (s * x)

sa, sb, ... . sx, sy, ...

ssax + ssby + ...
```

Polynomial defined by the matrix

Section is still under construction.

First look at permutation matrices.

Then random matrices with coefficients in (-1, 0, 1).

Then random matrices with random coefficients.

Types of autoproduct functions

- · Permutation matrices
- Signed permutation matrices
- Generalized permutation matrices
- Random matrices with coefficients in (-1, 0, 1)
- Random matrices with small random coefficients
- Random matrices
- Higher order variants
 - Product of subset sums
 - Sum of subset products
- Public fixed matrix, private vector
- Private matrix, public fixed vector
- Tensor autoproduct (uses an array of matrices instead of 1 matrix)
 - Further generalizations of either argument to N dimensions

Basic attack on permutation matrix variant

Put all possible pairs of coefficients from the vector (quadratic monomials) into a matrix for LLL.

LLL matrix size: O(n^2), where n is the dimension of the target secret permutation matrix.

Cost of LLL in terms of dimension:

```
O(n^4) (or O(n^5)?)
O(n^(4 * 2)) (or O(n^(5 * 2))?)
O(n^8) (or O(n^10))
```

A quadratic advantage.

If $n=2^16$, then $2^16^8 = 2^128$ and the attack will cost too much to compute. But such a matrix is still large.

Signed permutation matrix variant

Same attack as before, with more pairs because coefficients come from (-1, 0, 1) instead of (0, 1)

LLL matrix size:

```
O(2n^2)
```

Cost of LLL:

```
O((2n^2)^4) = O(2^8 n^8)
```

If $n=2^15$, then $2^8 * (2^15^8) = 2^8 * 2^120 = 2^128$

Still a quadratic advantage, with a scaling factor. Saved 32,768 * log2(coefficient size) bits of space.

But this is still large.

Random matrices with coefficients in (-1, 0, 1)

Each vector in the matrix is independent. This is distinct from the permutation matrix based variants. Previously a process of elimination limited the advantage to being quadratic.

There are 3ⁿ vectors of dimension n with coefficients in (-1, 0, 1).

LLL matrix size:

```
0(3^(n^2))
```

Cost of LLL:

```
0(3^{(n^2)^4}) = 0(3^{(4(n^2))})
```

If n=2^3=8, then

```
3^(4(8^2)) = 3^(4 \* 64) = 3^(256) = 2^(1.58 \* 256)
```

This attack is clearly inefficient here.

At this point, the matrix only has 64 coefficients in 8 rows/columns.

Guessing a good number of rows/columns is feasible.

The dimension should be chosen large enough to block these attacks too.

```
- How many rows/columns are needed to help another attack?
```

Randomly generated rows have a probability of colliding.

Given some row vector v of dimension n, what is the probability that a uniformly random row is identical to v?

```
There are 3^n possible row vectors
They are sampled uniformly
Only one of them is equal to v
1/(3^n)
```

Each redundant row removes 3ⁿ combinations from the attack matrix.

- If all rows are the same ...
- If all rows are mostly the same ...
- ...
- If all rows are distinct ...
- What about linearly dependent rows instead of equal rows?

In order to block this completely, make rows long enough to to provide an acceptable probability of collisions:

```
3^n >= 2^k
```

Where k is the number of bits of security expected. If k=256:

```
3^n ~= 2^(n1.58) >= 2^256
3^162 ~= 2^(162 * 1.58) >= 2^256
```

Autoproduct-based homomorphic hashing

A "weak" hash function works as a hash for random inputs. The tensor autoproduct can be used to instantiate this construction.

```
F(M, k) \rightarrow Mk \cdot k \rightarrow t

F(M1, k) + F(M2, k) = F(M1 + M2, k)
```

where:

```
- M is a tensor (an array of matrices) whose coefficients are the bits of the message - "message" in this case means some randomized information, e.g. ciphertext.
- k is a fixed vector
- t is the output vector (or possibly a scalar if M is only a matrix)
```

By keeping k secret, the construction becomes a keyed hash function.

Can use it as a MAC

Applicability

Ciphertext that is proven to be indistinguishable from random is suitable for use as an input.

- Can hash ciphertexts from partially homomorphic schemes without breaking the structure
- Can create MACs for ciphertexts from partially homomorphic schemes without breaking the

structure

It can be used to verify that a sum contains only elements from a prescribed set of values.