HỘI TOÁN HỌC VIỆT NAM KỲ THI OLYMPIC TOÁN SINH VIÊN VÀ HỌC SINH NĂM 2022

Môn thi: Giải tích Thời gian làm bài: 180 phút

ĐÁP ÁN BẢNG A

Lời giải bài A.1

Ý	Cách	Bước	Nội dung	Điểm A.1
a			Tìm tất cả các số nguyên dương n sao cho $u_n>3/2$	2,00
		1	Khẳng định (u_n) đơn điệu tăng	1,00
			Từ định nghĩa	
			$u_{n+1} = \frac{1}{1!} + \dots + \frac{1}{n!} + \frac{1}{(n+1)!} > \frac{1}{1!} + \dots + \frac{1}{n!} = u_n$	1,00
			với mọi $n \geq 1$. Vậy ta suy ra $u_{n+1} > u_n$ với mọi $n \geq 1$.	
		2	Khẳng định $u_n > 3/2$ khi và chỉ khi $n \geq 3$	1,00
			Do $u_2=1+\frac{1}{2}=3/2$	1,00
			nên từ tính đơn điệu của (u_n) ta suy ra $u_n>3/2$ khi và chỉ khi $n\geq 3$.	
b			Chứng minh rằng dãy số $(u_n)_{n=1}^\infty$ hội tụ	2,00
		1	Khẳng định (u_n) bị chặn trên	1,00
			Sử dụng đánh giá $n! \geq n(n-1)$ để thấy	
			$u_n = rac{1}{1!} + \dots + rac{1}{n!} \le 1 + rac{1}{1 imes 2} + \dots + rac{1}{(n-1) imes n} < 2$	1,00
			với mọi $n \geq 2$.	
		2	Khẳng định (u_n) hội tụ	1,00
			Dãy (u_n) đơn điệu tăng và bị chặn trên nên hội tụ.	1,00
С			Chứng minh rằng giới hạn của dãy số $(u_n)_{n=1}^\infty$ là một số vô tỉ	2,00
			Phản chứng giả sử giới hạn của dãy là hữu tỉ, tức là	
			$\frac{1}{1!} + \dots + \frac{1}{n!} + \frac{1}{(n+1)!} + \dots = \frac{m}{n}$	
			với m,n nguyên tố cùng nhau. Nhân hai vế với $n!$ ta đi đến	
			$n! \left(\frac{1}{1!} + \dots + \frac{1}{n!}\right) + \underbrace{\frac{1}{n+1} + \frac{1}{(n+1)(n+2)} + \dots}_{S} = (n-1)!m.$	2,00
			Vậy $S \in \mathbb{N}^*$. Từ đây suy ra $nS \geq 1$, tức là $(n+1)S - 1 \geq S$, tức là	
			$rac{1}{n+2} + rac{1}{(n+2)(n+3)} + \cdots \geq rac{1}{n+1} + rac{1}{(n+1)(n+2)} + \cdots$	
			Đây là điều vô lý.	

HỘI TOÁN HỌC VIỆT NAM ĐỀ THI OLYMPIC TOÁN SINH VIÊN HỌC SINH NĂM 2022 Môn thi: Giải tích

Thời gian làm bài: 180 phút

ĐÁP ÁN BẢNG A

Lời giải bài A.2

Ý	Cách	Bước	Nội dung	Điểm A.2
a			Chứng minh f liên tục tại 0	2,00
		1	Tính giới hạn của $m{f}$ tại $m{0}$	1,00
			Với mọi x ta luôn có $0 \le f(x) = \sin^2 x \le x^2.$	1,00
		2	Do đó theo nguyên lý kẹp thì $\lim_{x \to 0} f(x) = 0$. Khẳng định tính liên tục của f tại 0	1,00
			Nhưng tinh thin hen tực của f tại 0 Ở bước trên ta đã có $\lim_{x\to 0}f(x)=0$. Nhưng $0\in\mathbb{Q}$ nên $f(0)=\sin^20=0$. Vậy f liên tục tại 0 .	1,00
ь			Hàm f có khả vi tại 0 không?	2,00
		1	Chuyển về khảo sát giới hạn của $f(x)/x$	1,00
			Ta khảo sát giới hạn	
			$\lim_{x o 0} rac{f(0+x) - f(0)}{x} = \lim_{x o 0} rac{f(x)}{x}.$	1,00
		2	Tính giới hạn của $f(x)/x$	1,00
			Rỗ ràng với $x eq 0$ thì $0 \le \left f(x)/x \right \le x$. Vậy	
			$\lim_{x\to 0}\frac{f(x)}{x}=0.$	1,00
			Từ đó hàm $m{f}$ khả vi tại $m{0}$.	
С			Tìm tất cả các điểm mà ở đó hàm f khả vi	2,00
		1	Khẳng định f không khả vi tại $x eq k\pi$ với $k \in \mathbb{Z}$	1,00
			Nhận xét: nếu $x eq k\pi$ với $k \in \mathbb{Z}$ thì $\sin x eq 0$. Có 2 trường hợp xảy ra:	
			Nếu $x\in\mathbb{Q}$. Trong trường hợp này $f(x)=\sin^2 x$. Lấy 1 dãy các điểm $x_n\notin\mathbb{Q}$ sao cho $x_n\to x$. Từ tính liên tục của hàm \sin ta thấy	
			$\lim_{n o \infty} f(x_n) = \lim_{n o \infty} (-\sin^2 x_n) = -\sin^2 x eq \sin^2 x = f(x).$	1.00
			Nếu $x \notin \mathbb{Q}$. Trong trường hợp này $f(x) = -\sin^2 x$. Lấy 1 dãy các điểm $x_n \in \mathbb{Q}$ sao cho $x_n \to x$. Từ tính liên tục của hàm sin ta thấy	1,00
			$\lim_{n\to\infty} f(x_n) = \lim_{n\to\infty} \sin^2 x_n = \sin^2 x \neq -\sin^2 x = f(x).$	
		2	Khẳng định f khả vi tại $k\pi$ với $k\in\mathbb{Z}$	1,00
			Cuối cùng chú ý rằng $f(k\pi)=0$ với mọi $k\in\mathbb{Z}$. Do	
			$\Big \frac{f(k\pi+x)-f(k\pi)}{x}\Big =\Big \frac{f(x)}{x}\Big ,$	1,00
			lý luận như ý (b) ta thấy tại các điểm $k\pi$ với $k\in\mathbb{Z}$ thì f khả vi với $f'(k\pi)=0$.	

HỘI TOÁN HỌC VIỆT NAM ĐỀ THI OLYMPIC TOÁN SINH VIÊN HỌC SINH NĂM 2022 Môn thi: Giải tích

Thời gian làm bài: 180 phút

ĐÁP ÁN BẢNG A

Lời giải bài A.3

Ý	Cách	Bước	Nội dung	Điểm A.3
a			Chứng minh rằng tồn tại dãy số $(x_n)_{n=1}^\infty$ dần ra $+\infty$ sao cho $f'(x_n) o 0$	2,00
		1	Sử dụng công thức giá trị trung bình	1,00
			Sử dụng công thức giá trị trung bình trên các đoạn $[n,n+1]$ ta thu được	
			$f'(x_n) = f(n+1) - f(n)$	
			với $x_n \in (n,n+1)$ nào đó.	
		2	Chỉ ra sự tồn tại một dãy $(x_n)_n$ cần tìm	1,00
			Hiển nhiên dãy $(x_n)_n$ xác định như ở bước trên tiến ra $+\infty$. Hơn nữa do $\lim_{x \to +\infty} f(x) = 0$ nên	1,00
			$\lim_{n o +\infty}f'(x_n)=0.$ Chứng minh rằng nếu f'' bị chặn trên $\mathbb R$ thì $\lim_{x o +\infty}f'(x)=0$	
b			Chứng minh rằng nêu f'' bị chặn trên $\mathbb R$ thì $\lim_{x o +\infty} f'(x) = 0$	2,00
		1	Đánh giá f^\prime thông qua khai triển Taylor	1,00
			Từ công thức Khai triển Taylor ta có	
			$f(x+h)=f(x)+f'(x)h+rac{f''(x+ heta h)}{2}h^2$	
			với $x,h>0$ và $\theta\in(0,1)$ phụ thuộc vào x và h . Do f'' bị chặn nên tồn tại $M>0$ sao cho $ f''(x) < M$ với mọi $x>0$. Khi đó từ công thức khai triển trên	1,00
			$ f'(x) \leq \frac{ f(x+h)-f(x) }{h} + \frac{Mh}{2}.$	
		2	Kết luận giới hạn của f^\prime	1,00
			Do $\lim_{x \to +\infty} f(x) = 0$ nên với mỗi $\varepsilon > 0$ tùy ý tồn tại $x_0 > 0$ sao cho $ f(x) < \frac{\varepsilon}{2} \forall x \ge x_0.$ Do đó $ f'(x) \le \frac{\varepsilon}{h} + \frac{Mh}{2} \forall x \ge x_0.$ Đến đây ta lấy $h = \sqrt{\frac{2\varepsilon}{M}}$ để thu được $ f'(x) \le \sqrt{2\varepsilon M} \forall x \ge x_0.$ Do $\varepsilon > 0$ tùy ý nên $\lim_{x \to +\infty} f'(x) = 0$.	1,00

c		Nếu f' bị chặn trên $\mathbb R$ thì $\lim_{x o +\infty} f'(x)$ có tồn tại không?	2,00
	1	Xây dựng hàm f thuộc $C^2(\mathbb{R})$ và $\lim_{x o +\infty} f(x) = 0$	
		Trước tiên ta xét hàm phụ $h(x)=\phi(x)\phi(1-x)$ trong đó	
		$\phi(x) = egin{cases} x^3 & ext{n\'eu} \ x \geq 0, \ 0 & ext{n\'eu} \ x < 0. \end{cases}$	
		$0 \text{n\'eu } x < 0.$	
		Hàm h xây dựng như trên có tính chất $h \in C^2(\mathbb{R}), h \equiv 0$ ngoài $[0,1]$, đối xứng qua $1/2$, và h' bị chặn. Tiếp theo ta xây dựng phản ví dụ cho bài toán như sau	
		$f(x) = \sum_{n=0}^{\infty} 2^{-n} h(2^n (x - 2^n)).$	
		Dễ kiểm tra hàm f xây dựng như trên được định nghĩa tốt. Giá trị hàm f chỉ khác không trên các khoảng có dạng	
		$\left(2^n,2^n+rac{1}{2^n} ight) n\in\mathbb{N}.$	
		Do hệ số 2^{-n} nên $\lim_{x o +\infty} f(x) = 0.$	
	2	Kết luận không tồn tại $\lim_{x o +\infty} f'(x)$	1,00
		Dễ kiểm tra với $m{f}$ như trên thì $m{f'}$ bị chặn vì $m{h'}$ bị chặn. Với các điểm	
		$x_n=2^n+\frac{1}{2}\frac{1}{2^n}$	
		thì gần x_n ta có	
		$f(x) = \frac{1}{2^n} h(2^n (x - 2^n))$	
		và do đó $f'(x_n)=h'(2^n(x_n-2^n))=0.$	
		Tuy nhiên, với các điểm	
		$y_n=2^n+\frac{1}{4}\frac{1}{2^n}$	
		thì gần y_n ta vẫn có	
		$f(x) = \frac{1}{2^n} h(2^n (x - 2^n))$	
		do đó $f'(y_n) = h'(2^n(y_n-2^n)) = rac{27}{512}.$	
		Nhận xét 1. Không khó để thấy f'' không bị chặn. Thật vậy	
		$f''(x_n) = 2^n h''(2^n(x_n - 2^n)) = -3 \cdot 2^{n-3}.$	
		Nhận xét 2. Hàm f xây dựng từ các tích phân Fresnel có dạng	
		$f(x) = \int_0^x \left[\sin(t^2) - \cos(t^2) \right] dt$	
		cũng là một phản ví dụ.	

Thời gian làm bài: 180 phút

ĐÁP ÁN BẢNG A

Lời giải bài A.4

Ý	Cách	Bước	Nội dung	Điểm A.4
			Xác định chiều dài ngắn nhất có thể có của thang AB	6,00
		1	Đặt bài toán	2,00
			Đặt $BD=x$ mét với $x\geq p/2$. Khi đó	
			$BM=\sqrt{x^2+h^2}.$	
			Vì $\Delta BDM \sim \Delta BCA$ ta suy ra	
			$MA = rac{DC}{DB} imes MB = rac{p/2 + q}{x} \sqrt{x^2 + h^2}.$	2,00
			Vậy $AB=MA+MB=\sqrt{x^2+h^2}rac{x+p/2+q}{x}=:f(x).$	
		2	Khảo sát hàm f trên $[p/2,\infty)$	2,00
			Tính toán để thu được $f'(x)=rac{2x^3-(p+2q)h^2}{2x^2\sqrt{x^2+h^2}}$ Rố ràng $f'(x)=0$ tại duy nhất	2,00
			$x=\left((\frac{p}{2}+q)h^2\right)^{1/3}=:x_0.$	
		3	Kết luận độ dài ngắn nhất của thang $m{AB}$	2,00
			Có 2 trường hợp xảy ra:	
			Trường hợp $4(p+2q)h^2 \leq p^3$: Khi đó hàm f đồng biến trên $[p/2,\infty)$ và vị trí thang AB cần tìm là khi $B\equiv N$, tức là khi thang tựa trên giá đỡ. Lúc này chiều dài của thang AB là $(p+q)\sqrt{1+(\frac{2h}{p})^2}.$	2,00
			Trường hợp $4(p+2q)h^2>p^3$: Khi đó hàm f nghịch biến trên $[p/2,x_0]$ và đồng	_,,,,
			biến trên $[x_0,\infty)$ và vị trí thang AB cần tìm là khi $BN=x_0-p/2$. Lúc này chiều dài của thang AB là	
			$\Big(x_0+rac{p}{2}+q\Big)\sqrt{1+ig(rac{h}{x_0}ig)^2}.$	

HỘI TOÁN HỌC VIỆT NAM ĐỀ THI OLYMPIC TOÁN SINH VIÊN HỌC SINH NĂM 2022 Môn thi: Giải tích

Thời gian làm bài: 180 phút

ĐÁP ÁN BẢNG A

Lời giải bài A.5

Ý	Cách	Bước	Nội dung	Điểm A.5
a		1	Chứng minh rằng nếu $f \in \mathcal{F}$ thì f liên tục	2,00
			Lấy $x\in[-1,1]$ và $\varepsilon>0$ bất kỳ. Ta chứng minh tồn tại $\delta>0$ (có thể phụ thuộc vào x và ε) sao cho $ f(x)-f(y) <\varepsilon$ với mọi $y\in[-1,1]$ thỏa mãn $ x-y <\delta$. Thật vậy ta lấy $\delta=\frac{\varepsilon}{2022}.$ Khi đó với $y\in[-1,1]$ bất kỳ thỏa mãn $ x-y <\delta$ ta sẽ có $ f(x)-f(y) \leq 2022 x-y <2022\delta=\varepsilon.$	2,00
b			Chứng minh rằng nếu $f \in \mathcal{F}$ thì $\int_{-1}^1 f(x) dx \geq rac{1}{2022}$	2,00
		1	Chứng minh $f(x) \geq \max(1+2022(x -1),0)$ với mọi $x \in [-1,1].$	1,00
		2	Rỗ ràng $\max(1+2022(x -1),0)=0 \forall x\in[-\frac{2021}{2022},\frac{2021}{2022}].$ Với $-1\leq x<-\frac{2021}{2022}$ ta có $f(x)\geq f(-1)- f(x)-f(-1) \geq 1-2022 x+1 =1+2022(x -1).$ Với $\frac{2021}{2022}< x\leq 1$ ta có $f(x)\geq f(1)- f(x)-f(1) \geq 1-2022 x-1 =1+2022(x -1).$ Tính tích phân $\int_{-1}^1 f(x)dx$	1,00
			Do $f \geq 0$ trên $[-1,1]$ nên	,,,,,
			$\int_{-1}^{1} f(x) dx \geq \int_{-1}^{-rac{2021}{2022}} ig(1 - 2022(x+1)ig) dx + \int_{rac{2021}{2022}}^{1} ig(1 + 2022(x-1)ig) dx \ = rac{1}{2022}.$	1,00
С			Dấu đẳng thức trong ý (b) có đạt được hay không?	2,00
			Dấu đẳng thức đạt được với hàm số $f(x)=\max(1+2022(x -1),0)$. Rỗ ràng hàm này thỏa mãn giả thiết $f(-1)=f(1)=1$ và $ f(x)-f(y) \leq 2022 x-y orall x,y\in [-1,1].$	2,00
			Cũng theo ý trên ta biết rằng $\int_{-1}^1 f(x) dx = rac{1}{2022}$.	