

10/579025

JAP20Rec0PCT/PTO 11 MAY 2006
1/6

SEQUENCE LISTING

<110> THERION BIOLOGICS CORPORATION

<120> CUSTOM VECTORS FOR TREATING AND PREVENTING PANCREATIC
CANCER

<130> 700953-53671-PCT

<140> PCT/US2004/038643

<141> 2004-11-12

<150> 60/519,354

<151> 2003-11-12

<160> 6

<170> PatentIn Ver. 3.3

<210> 1

<211> 1548

<212> DNA

<213> Homo sapiens

<400> 1

atgacaccgg gcacccagtc tcctttcttc ctgctgctgc tcctcacagt gcttacagtt 60
gttacgggtt ctggcatgc aagctctacc ccaggtggag aaaaggagac ttccggctacc 120
cagagaagtt cagtgcccag ctctactgag aagaatgctg tgagtatgac aagctccgta 180
ctctccagcc acagccccgg ttcaggctcc tccaccactc agggacagga tgtcaactcg 240
gcccccggca cggAACAGC ttcaggttca gtcgccttgt ggggacagga tgtcacctcg 300
gtaccagttt ctagaccagc tttaggttagc acagcaccc tcgtcatgg agtaactagt 360
gctccgtata ctcgtccagc tcctggcagt actgcacccac cggcacatgg cgtaacatca 420
gcacctgata caagacactgc acctggatct acagcggccgc ctgcgcacgg agtgacatcg 480
gcgcggcata cgcgcggccgc tcccggttagc accgcacccgc cgcgcacccgg tggtaacaagt 540
gcacccgata cccggccggc acccggaaatg accgcgtccac ctgcacacgg ggtcacaagc 600
gcgcggacaca ctcgacactgc gccagggtcg actgcacccctc cggcgcattgg tggacacctca 660
gctctgtacaa caaggccagc cccagcttagc actctgggtgc acaacggcactcctgcagg 720
gctaccacaa ccccgccag caagagcact ccattctcaa ttcccgacca ccactctgtat 780
actcctacca cccttgccag ccatagcacc aagactgatg ccagtagcactcaccatagc 840
acggtagctc ctctcaccc tcccaatcac agcacttctc cccagttgtc tactgggtc 900
tctttttttt tccgtcttt tcacattca aacctccagt ttaattcctc tctggaagat 960
cccgaccccg actactacca agagctgcag agagacattt ctgaaatgtt tttgcagatt 1020
tataaacaag ggggttttctt gggctctcc aatattaatg tcaggccagg atctgtggtg 1080
gtacaattga ctctggccctt ccgagaaggt accatcaatg tccacgcacgt ggagacacag 1140
ttcaatcgt ataaaacgga agcagcctct cgtatataacc tgacgatctc agacgtcagc 1200
gtgagtgatg tgccattttcc tttctctgcc cagtctgggg ctggggtgcc aggctggggc 1260
atcgcgctgc tgggtctggt ctgtgttctg gttgcgttgc ccattgtcta tctcattgcc 1320
ttggctgtct gtcagtgccg ccgaaagaac tacgggcagc tggacatctt tccagcccg 1380
gataacctacc atcctatgag cgagtagcccc acctaccaca cccatgggcgc ctatgtgccc 1440
cctagcagta ccgatcgtag cccctatgag aagggttctg caggtaatgg tggcagcagc 1500
ctctcttaca caaacccagc agtggcagcc acttctgcca acttgtag 1548

<210> 2

<211> 515

<212> PRT

<213> Homo sapiens

<400> 2
 Met Thr Pro Gly Thr Gln Ser Pro Phe Phe Leu Leu Leu Leu Thr
 1 5 10 15
 Val Leu Thr Val Val Thr Gly Ser Gly His Ala Ser Ser Thr Pro Gly
 20 25 30
 Gly Glu Lys Glu Thr Ser Ala Thr Gln Arg Ser Ser Val Pro Ser Ser
 35 40 45
 Thr Glu Lys Asn Ala Val Ser Met Thr Ser Ser Val Leu Ser Ser His
 50 55 60 80
 Ser Pro Gly Ser Gly Ser Ser Thr Thr Gln Gly Gln Asp Val Thr Leu
 65 70 75 80
 Ala Pro Ala Thr Glu Pro Ala Ser Gly Ser Ala Ala Leu Trp Gly Gln
 85 90 95
 Asp Val Thr Ser Val Pro Val Thr Arg Pro Ala Leu Gly Ser Thr Ala
 100 105 110
 Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro
 115 120 125
 Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser Ala Pro Glu Thr
 130 135 140
 Arg Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser
 145 150 155 160
 Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala His
 165 170 175
 Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr Ala
 180 185 190
 Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro
 195 200 205
 Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Thr
 210 215 220
 Arg Pro Ala Pro Ala Ser Thr Leu Val His Asn Gly Thr Ser Ala Arg
 225 230 235 240
 Ala Thr Thr Thr Pro Ala Ser Lys Ser Thr Pro Phe Ser Ile Pro Ser
 245 250 255
 His His Ser Asp Thr Pro Thr Thr Leu Ala Ser His Ser Thr Lys Thr
 260 265 270
 Asp Ala Ser Ser Thr His His Ser Thr Val Pro Pro Leu Thr Ser Ser
 275 280 285
 Asn His Ser Thr Ser Pro Gln Leu Ser Thr Gly Val Ser Phe Phe Phe
 290 295 300

Leu Ser Phe His Ile Ser Asn Leu Gln Phe Asn Ser Ser Leu Glu Asp
 305 310 315 320

Pro Ser Thr Asp Tyr Tyr Gln Glu Leu Gln Arg Asp Ile Ser Glu Met
 325 330 335

Phe Leu Gln Ile Tyr Lys Gln Gly Gly Phe Leu Gly Leu Ser Asn Ile
 340 345 350

Lys Phe Arg Pro Gly Ser Val Val Val Gln Leu Thr Leu Ala Phe Arg
 355 360 365

Glu Gly Thr Ile Asn Val His Asp Val Glu Thr Gln Phe Asn Gln Tyr
 370 375 380

Lys Thr Glu Ala Ala Ser Arg Tyr Asn Leu Thr Ile Ser Asp Val Ser
 385 390 395 400

Val Ser Asp Val Pro Phe Pro Phe Ser Ala Gln Ser Gly Ala Gly Val
 405 410 415

Pro Gly Trp Gly Ile Ala Leu Leu Val Leu Val Cys Val Leu Val Ala
 420 425 430

Leu Ala Ile Val Tyr Leu Ile Ala Leu Ala Val Cys Gln Cys Arg Arg
 435 440 445

Lys Asn Tyr Gly Gln Leu Asp Ile Phe Pro Ala Arg Asp Thr Tyr His
 450 455 460

Pro Met Ser Glu Tyr Pro Thr Tyr His Thr His Gly Arg Tyr Val Pro
 465 470 475 480

Pro Ser Ser Thr Asp Arg Ser Pro Tyr Glu Lys Val Ser Ala Gly Asn
 485 490 495

Gly Gly Ser Ser Leu Ser Tyr Thr Asn Pro Ala Val Ala Ala Thr Ser
 500 505 510

Ala Asn Leu
 515

<210> 3
 <211> 2106
 <212> DNA
 <213> Homo sapiens

<400> 3
 atggagtctc cctcgcccc tccccacaga tggtgcattc cctggcagag gtcctgctc 60
 acaggcctcac ttctaacctt ctggAACCCG cccaccactg ccaagctcac tattgaatcc 120
 acgccgttca atgtcgcaga gggaaaggag gtgcttctac ttgtccacaa tctgccccag 180
 catcttttg gctacagctg gtacaaaggt gaaagagtgg atggcaaccg tcaaattata 240
 ggatatgtaa taggaactca acaagctacc ccagggcccg catacagtgg tcgagagata 300
 atatacccca atgcacccct gctgatccag aacatcatcc agaatgacac aggattctac 360
 accctacacg tcataaagtc agatcttgc aatgaagaag caactggcca gttccgggta 420
 taccggAAC tccctaagcc ttctattagc tccaataata gtaaggctgt cgaagacaaa 480
 gatggcgctcg ctttacatcg cgagcccgaa actcaagacg caacatatct ctggtggtg 540

aacaaccagg ccctgcgtgt gtccccctaga ctccaactca gcaacggaaa tagaactctg 600
accctgttta acgtgaccag gaacgacaca gcaagctaca aatgcgaaac cccaaaatcca 660
gtcagcgcca ggaggtctga ttcaagtatt ctcaacgtgc tttagcgacc cgatgctct 720
acaatcagcc ctctaaacac aagctataga tcagggggaaa atctgaatct gagctgtcat 780
gccgctagca atcctcccgc ccaatacagc tgggttgtca atggcacttt ccaacagtcc 840
acccaggaac tggtcattcc caatattacc gtgaacaata gtggatccta cacgtgccaa 900
gctcacaataa gcgacaccgg actcaaccgc acaaccgtga cgacgattac cgtgtatgag 960
ccaccaaaaac cattcataaac tagtaacaat tctaaccagg ttgaggatga ggacgcagtt 1020
gcattaaactt gtgagccaga gattcaaaat accacttatt tatggtggtt caataaccaa 1080
agtttgcggg ttagccccacg cttgcagttt tctaattgata accgcacatt gacactcctg 1140
tccggttactc gcaatgtat aggaccttat gagtggtggca ttcaaatgaa attatccgtt 1200
gatcaactccg accctgttat ccttaatgtt ttgtatggcc cagacgaccc aactatatact 1260
ccatcatatac cctactaccg tccccggcgtg aacttggcc ttcttcgttca tgacgcattcc 1320
aacccccctg cacagtactc ctggctgtt gatggaaaca ttcaagcaga tactcaagag 1380
ttattttataa gcaacataac tgagaagaac agccgactct atacttgcctt ggcacaataac 1440
tcagccagtg gtcacagcag gactacagg aaaacaataa ctgtttccgc ggagctgccc 1500
aaggccctcca tctccagcaa caactccaaa cccgtggagg acaaggatgc tggcccttc 1560
acctgtgaac ctgaggctca gaacacaacc tacctgtgtt gggtaaatgg tcagagccctc 1620
ccagtcgtc ccaggctgca gctgtccat ggcaacacgaa ccctcactct attcaatgtc 1680
acaagaaatg acgcaagagc ctatgtatgt ggaatccaga actcagtgag tgcaaaaccgc 1740
agtgaccctag tcacccctgga gttctctat gggccggaca ccccccattat ttccccccca 1800
gactcgcttt acctttcggg agcggacctc aacctctctt gccactccgc cttaacccca 1860
tcccccgagt atttttggcg tatcaatggg ataccgcgac aacacacaca agttctcttt 1920
atcgccaaaa tcacgcacaa taataacggg acctatgcct gttttgtctc taacttggct 1980
actggccgca ataattccat agtcaagagc atcacagttct ctgcattctgg aacttctctt 2040
ggtctctcag ctggggccac tgtcggcatc atgattggag tgctgggtgg ggttgcctg 2100
atataq

<210> 4
<211> 371
<212> PRT
<213> *Homo sapiens*

```

<400> 4
Asn Ser Asn Pro Val Glu Asp Glu Asp Ala Val Ala Leu Thr Cys Glu
      1           5           10          15

Pro Glu Ile Gln Asn Thr Thr Tyr Leu Trp Trp Val Asn Asn Gln Ser
      20          25          30

Leu Pro Val Ser Pro Arg Leu Gln Leu Ser Asn Asp Asn Arg Thr Leu
      35          40          45

Thr Leu Leu Ser Val Thr Arg Asn Asp Val Gly Pro Tyr Glu Cys Gly
      50          55          60

Ile Gln Asn Glu Leu Ser Val Asp His Ser Asp Pro Val Ile Leu Asn
      65          70          75          80

Val Leu Tyr Gly Pro Asp Asp Pro Thr Ile Ser Pro Ser Tyr Thr Tyr
      85          90          95

Tyr Arg Pro Gly Val Asn Leu Ser Leu Ser Cys His Ala Ala Ser Asn
      100         105         110

Pro Pro Ala Gln Tyr Ser Trp Leu Ile Asp Gly Asn Ile Gln Gln His
      115         120         125

```

Thr Gln Glu Leu Phe Ile Ser Asn Ile Thr Glu Lys Asn Ser Gly Leu
 130 135 140

Tyr Thr Cys Gln Ala Asn Asn Ser Ala Ser Gly His Ser Arg Thr Thr
 145 150 155 160

Val Lys Thr Ile Thr Val Ser Ala Glu Leu Pro Lys Pro Ser Ile Ser
 165 170 175

Ser Asn Asn Ser Lys Pro Val Glu Asp Lys Asp Ala Val Ala Phe Thr
 180 185 190

Cys Glu Pro Glu Ala Gln Asn Thr Thr Tyr Leu Trp Trp Val Asn Gly
 195 200 205

Gln Ser Leu Pro Val Ser Pro Arg Leu Gln Leu Ser Asn Gly Asn Arg
 210 215 220

Thr Leu Thr Leu Phe Asn Val Thr Arg Asn Asp Ala Arg Ala Tyr Val
 225 230 235 240

Cys Gly Ile Gln Asn Ser Val Ser Ala Asn Arg Ser Asp Pro Val Thr
 245 250 255

Leu Asp Val Leu Tyr Gly Pro Asp Thr Pro Ile Ile Ser Pro Pro Asp
 260 265 270

Ser Ser Tyr Leu Ser Gly Ala Asp Leu Asn Leu Ser Cys His Ser Ala
 275 280 285

Ser Asn Pro Ser Pro Gln Tyr Ser Trp Arg Ile Asn Gly Ile Pro Gln
 290 295 300

Gln His Thr Gln Val Leu Phe Ile Ala Lys Ile Thr Pro Asn Asn Gly
 305 310 315 320

Thr Tyr Ala Cys Phe Val Ser Asn Leu Ala Thr Gly Arg Asn Asn Ser
 325 330 335

Ile Val Lys Ser Ile Thr Val Ser Ala Ser Gly Thr Ser Pro Gly Leu
 340 345 350

Ser Ala Gly Ala Thr Val Gly Ile Met Ile Gly Val Leu Val Gly Val
 355 360 365

Ala Leu Ile
 370

<210> 5
 <211> 31
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 primer

6/6

<400> 5
ggtaccggta ccatggaagg ggaaggggtt c 31

<210> 6
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer

<400> 6
cttggttcat ggtgacactg agctcgagct c 31