Imie i nazwisko	Sylwester Macura
Kierunek	Informatyka Stosowana
Rok	3
Grupa	2
	Wyznaczanie pierwiastków równania nieliniowego metodami siecznych i Newtona. Badanie szybkości zbieżności metody.

1. Wstęp teoretyczny

W zadaniu używamy metody newtona i siecznych do znaleźenia pierwiastków równań nielinowych. Są to algorytmy iteracyjne. Oznacza to ,że aby otrzymać wynik musimy wykonać pewną ilość iteracji. Im więcej iteracji przeprowadzimy tym lepsze przybliżenie otrzymamy. Jakość metody można wyznaczyć za pomocą współczynnika zbieżności. Im jest on większy tym metoda jest szybciej zbieżna.

Metoda siecznych jest metodą dwupunktową , oznacza to że bierzemy dwa ostatnie przybliżenia i na ich podstawie wyznaczamy następne. Aby metoda była skuteczna muszą zostać spełnione następujące warunki

- 1. W przydziale [a,b] funkcja posiada tylko jeden jednokrotny pierwiastek.
- 2. Funkcja na przedziale [a,b] musi zmieniać znak
- 3. Pierwsza i druga pochodna nie zmieniają znaku.
- 4. Funkcja jest klasy C2.

Można to zobrazować następującą. Na dostatecznie małym odcinku funkcja zmienia się w sposób linowy oznacz to że możemy poprowadzić sieczną , punkt w którym sieczna przetnie odcinek jest przybliżonych rozwiązaniem .Zbieżność metody wynosi 1.618

Wzór rekurencyjny:

$$x_{k+1} = x_k - \frac{f(x_k) * (x_k - x_{k-1})}{f(x_k) - f(k_{k-1})}$$

Metoda Newtona jest metodą jednopunktową, bierzemy tylko jeden punkt ale musimy również nać pochodną funkcji aby metoda działała. W tej metodzie zamiast sieczynch wyznaczamy styczne.

Wizualizacja metody.

Wzór rekurencyjny:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$
 Parametr p wynosi 2.

2. Zadania do wykonania.

- Wyznaczenie miejsca zerowego dla funkcji $(\ln(x)-x)^6-1$ za pomocą metody Newtona i siecznych.
- Wyznaczenie miejsca zerowego dla funkcji x^3+2x^2-3x+4 za pomocą metody Newtona i siecznych.
- Wyznaczyć parametr zbieżności dla każdej metody.
- Narysować wykresy obu funkcji wraz z pochodnymi
- Sporządzić wykres p w zależności od numeru iteracji.

3. Wykonanie zadania

• Miejsce zerowe $x^3+2*x^2-3*x+4$ metodą Newtona

	Miejsce zerowe $x + 2$	*X -3*X+4 IIIeluuq	Newtolia	
Iteracja	f(x)	x	błąd	p
0	-2106.441882636708669	-13.611459327137151	-10.327181789830201	nan
1	-618.256503834706223	-9.384793518082638	-6.100515980775688	nan
2	-178.692277159196124	-6.620819046539316	-3.336541509232366	1.146337
3	-49.424393001039100	-4.869319593996495	-1.585042056689546	1.233471
4	-11.962347921297750	-3.853475879876372	-0.569198342569422	1.375930
5	-1.907187903337521	-3.395743329794636	-0.111465792487686	1.592083
6	-0.090621332838204	-3.289848712487743	-0.005571175180793	1.837529
7	-0.000242768300074	-3.284292502271366	-0.000014964964416	1.975777
8	-0.00000001746660	-3.284277537414622	-0.00000000107672	2.000479
9	0.00000000000009	-3.284277537306952	-0.000000000000002	0.929924
10	0.00000000000000	-3.284277537306952	-0.000000000000002	-0.020263
11	0.00000000000000	-3.284277537306952	-0.000000000000002	-0.000000
12	0.00000000000000	-3.284277537306952	-0.000000000000002	-nan
13	0.00000000000000	-3.284277537306952	-0.000000000000002	-nan
14	0.00000000000000	-3.284277537306952	-0.000000000000002	-nan
15	0.00000000000000	-3.284277537306952	-0.000000000000002	-nan
16	0.00000000000000	-3.284277537306952	-0.0000000000000002	-nan
17	0.00000000000000	-3.284277537306952	-0.0000000000000002	-nan
18	0.00000000000000	-3.284277537306952	-0.000000000000002	-nan
19	0.00000000000000	-3.284277537306952	-0.000000000000002	-nan

• Miejsce zerowe $x^3+2*x^2-3*x+4$ metodą siecznych

Iteracja	f(x)	x	bład	р
0	-2122.959238562557402	-13.644516881751990	-10.360239344445040	nan
1	-1037.232128870450651	-10.953050316149170	-7.668772778842220	nan
2	-419.205315564355828	-8.381800532752379	-5.097522995445429	1.357634
3	-180.422816327561975	-6.637731256732501	-3.353453719425551	1.025372
4	-73.999213060696889	-5.319921569441183	-2.035644032134233	1.192028
5	-29.399554374462952	-4.403612810576951	-1.119335273270001	1.198123
6	-10.581782340573284	-3.799593184114190	-0.515315646807240	1.297007
7	-3.097302317289593	-3.459935322112651	-0.175657784805701	1.387427
8	-0.579074266939768	-3.319374711383486	-0.035097174076536	1.496334
9	-0.045074690144274	-3.287052367659576	-0.002774830352626	1.575698
10	-0.000754586837253	-3.284324051587053	-0.000046514280103	1.611246
11	-0.000001012539922	-3.284277599723393	-0.000000062416443	1.617598
12	-0.00000000022798	-3.284277537308358	-0.0000000001408	1.617794
13	0.0000000000000	-3.284277537306952	-0.000000000000002	0.603019
14	0.0000000000000	-3.284277537306952	-0.000000000000002	0.000000
15	nan	-nan	-nan	-nan
16	nan	-nan	-nan	-nan
17	nan	-nan	-nan	-nan
18	nan	-nan	-nan	-nan
19	nan	-nan	-nan	-nan

• Miejsce zerowe $(\log(x)-x)^6-1$ metodą Newtona

Iteracja	f(x0	Х	błąd	р
0	16.070785191186879	2.534712853457671	1.534712853457671	-1.919586
1	5.554068109398177	2.118888880478948	1.1188888880478948	-0.737743
2	1.863744315878168	1.752994841231195	0.752994841231195	1.253241
3	0.578804236105512	1.452078944254464	0.452078944254464	1.288280
4	0.159331745142149	1.240300006188106	0.240300006188106	1.238665
5	0.040121148231648	1.119123760543584	0.119123760543584	1.110380
6	0.009866878123802	1.058329155436727	0.058329155436727	1.017579
7	0.002433066430067	1.028734738105560	0.028734738105560	0.991505
8	0.000603309295805	1.014246397112894	0.014246397112894	0.990971
9	0.000150165243578	1.007091434059172	0.007091434059172	0.994318
10	0.000037456361894	1.003537611592386	0.003537611592386	0.996874
11	0.000009353518749	1.001766776507570	0.001766776507570	0.998360
12	0.000002337144209	1.000882896269539	0.000882896269539	0.999149
13	0.000000584181604	1.000441343909259	0.000441343909259	0.999537
14	0.000000146056497	1.000220664129962	0.000220664129962	0.999711
15	0.000000036528069	1.000110349075809	0.000110349075809	0.999726
16	0.000000009140014	1.000055197676806	0.000055197676806	0.999617
17	0.000000002289105	1.000027623344009	0.000027623344009	0.999324
18	0.000000000574375	1.000013836920195	0.000013836920195	0.998644
19	0.00000000144628	1.000006943316101	0.000006943316101	0.997454

• Miejsce zerowe $(\log(x)-x)^6-1$ metodą siecznych

Iteracja	f(x)	Х	bład	р
0	16.243526613870952	2.539161186718001	1.539161186718001	-1.932557
1	8.736723881112683	2.289713587257920	1.289713587257920	-0.410023
2	3.974600443183228	1.999396274165512	0.999396274165512	1.442302
3	1.889237476926461	1.757089383905113	0.757089383905113	1.088799
4	0.843952802938374	1.537571119984295	0.537571119984295	1.233191
5	0.360158681554230	1.360334182772441	0.360334182772441	1.168240
6	0.144071888821004	1.228390823381668	0.228390823381668	1.139851
7	0.055376436648966	1.140420018852742	0.140420018852742	1.066773
8	0.020934150517808	1.085496011311683	0.085496011311683	1.020041
9	0.007900744372801	1.052112993804446	0.052112993804446	0.997757
10	0.002988775589459	1.031876481201142	0.031876481201142	0.992911
11	0.001133935043116	1.019563211807077	0.019563211807077	0.993229
12	0.000431191543195	1.012035638782651	0.012035638782651	0.995004
13	0.000164228616169	1.007416847105068	0.007416847105068	0.996582
14	0.000062615960669	1.004575487167817	0.004575487167817	0.997775
15	0.000023889993355	1.002824578472433	0.002824578472433	0.998578
16	0.000009118701029	1.001744445424768	0.001744445424768	0.999105
17	0.000003481501287	1.001077651340947	0.001077651340947	0.999440
18	0.000001329452335	1.000665843250544	0.000665843250544	0.999652
19	0.000000507719816	1.000411444192096	0.000411444192096	0.999784

• funkcja $x^3+2*x^2-3*x+4$ i jej pochodna

• funkcja $(\log(x)-x)^6-1$ i jej pochodna

• parametr p(i) dla $x^3+2*x^2-3*x+4$ metoda Newtona

• parametr p(i) dla $x^3+2*x^2-3*x+4$ metoda siecznych

• parametr p(i) dla $(\log(x)-x)^6-1$ metoda Newtona

• parametr p(i) dla $(\log(x)-x)^6-1$ metoda siecznych

4. Wnioski

Widać że metody wykonywały żądaną liczbę operacji nawet jeśli wynik został już znaleziony. Aby usprawnić wykonywanie algorytmu trzeba dodać warunek zakończenia. Procedura powinna się zakończyć jeśli poprzednie przybliżenie jest takie samo jak obecne lub wartość funkcji dla danego przybliżenia wynosi zero. Obie metody są zbieżne dla zadanych danych "ponieważ równica między wartością dokładną a przybliżoną maleje więc z każdą iteracją jesteśmy bliżej rozwiązania.