Suite de Fibonacci

On considère la suite (u_n) définie par : $u_0=0$, $u_1=1$ et $\forall n\in\mathbb{N}, u_{n+2}=u_{n+1}+u_n$. Cette suite est appelée suite de Fibonacci.

Partie I

- 1. Montrer que $\forall n \in \mathbb{N}, u_n \ge n-1$. Déterminer la limite de la suite (u_n) .
- 2.a Etablir que $\forall n \in \mathbb{N}^*, u_{n+1}u_{n-1}-u_n^2=(-1)^n$ (appelée relation de Simson).
- 2.b En déduire que $\forall n \in \mathbb{N}^*$, u_n et u_{n-1} sont premiers entre eux.
- 3.a Montrer que $\forall n \in \mathbb{N}, \forall p \in \mathbb{N}^*, u_{n+p} = u_n u_{p-1} + u_{n+1} u_p$.
- 3.b En déduire que $\forall n \in \mathbb{N}, \forall p \in \mathbb{N}^*, \operatorname{pgcd}(u_{n+n}, u_n) = \operatorname{pgcd}(u_n, u_n)$.
- 3.c Montrer que si r est le reste de la division euclidienne de $a\in\mathbb{N}$ par $b\in\mathbb{N}^*$ alors $\operatorname{pgcd}(u_a,u_b)=\operatorname{pgcd}(u_b,u_r)$.
- 3.d En s'inspirant de l'algorithme d'Euclide, établir $\forall n,p\in\mathbb{N}^*,\operatorname{pgcd}(u_n,u_p)=u_{\operatorname{pgcd}(n,p)}$.

Partie II

On note E le sous-ensemble de $\mathbb{R}^{\mathbb{N}}$ formé des suites réelles (a_n) telles que $\forall n \in \mathbb{N}, a_{n+2} = a_{n+1} + a_n$.

- 1. Montrer que E est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$.
- 2. On considère l'application $\varphi: E \to \mathbb{R}^2$ définie par $\varphi((a_n)) = (a_0, a_1)$. Montrer que φ est un isomorphisme de \mathbb{R} espace vectoriel . En déduire $\dim E$.
- 3.a Pour quels $q \in \mathbb{R}$ les suites (q^n) appartiennent-elles à E? On notera q_1 et q_2 les deux solutions trouvées.
- 3.b Montrer que les suites (q_1^n) et (q_2^n) forment une base de E.
- 3.c En déduire l'expression du terme général de la suite de Fibonacci.