Anime Recommender System

Abishek Ganesh Aditya Trilok Muralidharan Padmavathi Karunaiananda Sekar

Under the guidance of Dr. Sridhar Nerur

Table of Contents

Introduction	1
Dataset Description	1
Dataset Preprocessing	1
Alternating Least Squares	2
Metrics of ALS	3
Similarity Algorithms	4
Cosine Similarity	4
Jaccard Similarity	6
Euclidean Distance	6
Manhattan Distance	7
Comparison between the Similarity Algorithms	8
Challenges	9
Future Scope	9
References	10

Introduction

Recommender System seeks to predict the "rating" or "preference" that a user would give to an item. Recommender systems typically produce a list of recommendations in one of two ways — through collaborative filtering or content-based filtering approach. Collaborative filtering approaches building a model from a user's past behavior as well as similar decisions made by other users. This model is then used to predict items (or ratings for items) that the user may have an interest in. Content-based filtering approaches utilize a series of discrete characteristics of an item to recommend additional items with similar properties.

Our project focuses on building the best recommendation system for anime fans. Some of the algorithms we use for recommendation of top animes are the Similarity algorithms and the Alternating Least Squares (ALS) algorithm. We perform "genre" based recommendation using similarity algorithms and "rating" based recommendation using ALS.

Dataset Description

We obtained our dataset from a Kaggle competition that is currently active^[2]. This data set contains information on user preference data from 73,516 users on 12,294 anime. Each user can add anime to their completed list and give it a rating and this data set is a compilation of those ratings. There are two files – anime.csv and rating.csv which are used for building our recommendation system.

Content of anime.csv:

anime_id - myanimelist.net's unique id identifying an anime.

name - full name of anime.

genre - comma separated list of genres for this anime.

type - movie, TV, OVA, etc.

episodes - how many episodes in this show. (1 if movie).

rating - average rating out of 10 for this anime.

members - number of community members that are in this anime's "group".

Content of rating.csv:

user id - non-identifiable randomly generated user id.

anime_id - the anime that this user has rated.

rating - rating out of 10 this user has assigned (-1 if the user watched it but didn't assign a rating).

Dataset Preprocessing

To use the data for analysis, we performed preprocessing activities which are listed below:

♦ Removed "name" column from anime.csv

- ◆ Deleted missing values from "episodes", "genre" and "ratings" column in anime.csv
- ♦ Removed rating values of -1 from rating.csv
- Created a new file called anime_name.csv which contains anime_id and name for mapping purpose

Alternating Least Squares

The basic idea of how ALS works is that we have a model predictor which takes input and recommends an output.

Fig. 1

The input for building our predictor model are:

- ♦ User ID
- Anime ID
- ♦ User Rating

The output generated by the ALS predictor model encompasses:

- ♦ Predicted ratings (which are not visible to end user)
- **♦** Recommendations

ALS takes the input and forms a sparse matrix of user ID vs anime IDs. This matrix is filled with a rating value that a user gives an anime that he/she watched. If the user has not watched an anime, the rating value will be empty in the input matrix and this value is the one that ALS will be predicting (refer Fig. 1). The prediction is based on user preferences that are determined by ALS.

After predicting the ratings of animes that a user has not watched, recommendations are made by choosing anime IDs that have a high rating value from the output matrix. For example, in Fig. 1, we see that the first User ID will be recommended the anime that has a rating of 3.8 followed by the anime that has a recommendation of 3.2. This is how ALS recommends animes in our project.

Metrics of ALS

To evaluate our ALS model, we use the metric score called "Root Mean Squared Error (RMSE)". RMSE is the error metric and is calculated as the difference between the predicted rating and the actual rating. Hence, lower the RMSE score, the better our model is at predicting ratings.

We achieve a low RMSE score by dividing the dataset into training and testing sets and finding the RMSE score for the testing set. If the RMSE score is low, then we know that our model will be able to make the best recommendations to users.

There are various parameters that contribute to the low RMSE score. A few of them that we used that gave us a low RMSE score are explained below:

- ♦ alpha Indicates confidence of the rating with default as 1.0
- ◆ nonnegative Indicates that the ratings are non-zero and positive and hence default is FALSE
- rank Indicates the number of latent factors we use to train the model. The default is 10.
- maxIter Indicates the number of iterations we use to train the model. The default is 10.
- ♦ RegParam Indicates the regularization parameter that defaults to 1.0

Below are the metrics for different combination of parameters:

alpha	nonnegative	rank	maxiter	regParam	RMSE
1	FALSE	10	40	0.1	1.125891
1	FALSE	10	50	0.1	1.124501
1	FALSE	10	60	0.1	1.12264
1	FALSE	10	75	0.1	1.123311
1	FALSE	10	90	0.1	1.124913
1	FALSE	10	100	0.1	1.123787
1	FALSE	30	50	0.1	1.1112
1	FALSE	50	50	0.1	1.107503
1	FALSE	100	10	0.1	1.151631
1	TRUE	20	40	0.1	1.115722
1	TRUE	20	40	0.1	1.1188285
1	TRUE	15	40	0.1	1.122352

Fig. 2

From fig. 2, we see that the model with lowest RMSE score is the highlighted one and we use this model to run Cross Validation and make predictions of animes for different user IDs.

The cross-validation metrics is shown below:

maxiter	regParam	RMSE	
	[0.1,0.2,0.3]		
[2,3,4]	[0.1,0.2,0.3]	1.207455	

Finally, the top recommendations based on ALS for User ID 11024 is shown below:

++		+	+	+	+-	+-
name	anime_id	prediction	rating	anime_id	user_id a	u
++		+	+	+	+-	+-
Boku no Pico	1639	14.574396	9	1639	14454	
Death Note	1535	11.523261	8	1535	42309	
Gintama°	28977	11.360651	10	28977	32172	
Ginga Eiyuu Densetsu	820	11.319762	9	820	66941	
Code Geass: Hangy	1575	11.262725	10	1575	59134	
Sword Art Online	11757	11.223665	10	11757	63126	
Cowboy Bebop	1	11.17156	10	1	13370	
No Game No Life	19815	11.09791	10	19815	37358	
Gintama'	9969	11.07065	10	9969	15541	
Monster	19	11.070261	10	19	59579	
Sword Art Online	11757	11.069681	10	11757	46035	1

Similarity Algorithms

We used ALS to make rating based recommendations for other users. However, to make genre based recommendations, we have tried a few similarity algorithms.

The similarity measure is the measure of how much alike two data objects are. Similarity measure is the distance with dimensions representing features of the objects. If this distance is small, it will be the high degree of similarity where large distance will be the low degree of similarity. The relative values of each element must be normalized, or one feature could end up dominating the distance calculation. Similarity are measured in the range 0 to 1 [0,1].

Two main considerations about similarity:

Similarity = 1 if X = Y

Similarity = 0 if $X \neq Y$

where X, Y are two objects

Cosine Similarity

The algorithm works on the idea that the cosine of the angle between two vectors should be as minimal as possible. Vectors are based on genres associated with a specific anime_id.

The description of the two vectors used for cosine similarity are:

- Genres associated with the first anime id
- ♦ Genres associated with the second anime_id

Cosine Similarity

The cosine of the angle between the two vectors described above are calculated and the same process is repeated for genres with respect to each anime_id with every other anime_id in the whole dataset. Thus, we get several values of cosine similarity. As we know, $\cos 0 = 1$. We pick up all the vectors where $\cos 0 = 1$ or where the cosine of the angle between the two vectors is close to 1.

Finally, we pick all the anime_id's with the lowest angle between them and make use of them for recommending animes to users. The idea is that the animes being recommended will be very similar to each other thus implying that it will suit a specific user's preferences.

The metrics used to implement cosine similarity are as shown below:

3	2	1	0	
Dragon Ball GT: Goku Gaiden! Yuuki no Akashi w	987	1.000000	987	0
Dragon Ball Z Movie 11: Super Senshi Gekiha!!	904	1.000000	904	1
Dragon Ball Kai (2014)	22777	1.000000	22777	2
Dragon Ball Z Movie 15: Fukkatsu no F	25389	1.000000	25389	3
Dragon Ball Z: Summer Vacation Special	22695	1.000000	22695	4
Dragon Ball Kai	6033	1.000000	6033	5
Dragon Ball Z: Atsumare! Gokuu World	6714	1.000000	6714	6
Dragon Ball Z	813	1.000000	813	7
Dragon Ball Z Movie 10: Kiken na Futari! Super	903	0.935414	903	8
Dragon Ball Z: Zenbu Misemasu Toshi Wasure Dra	22699	0.935414	22699	9
Dragon Ball: Episode of Bardock	12231	0.935414	12231	10
Dragon Ball	223	0.925820	223	11
One Piece Movie 9: Episode of Chopper Plus - F	3848	0.925820	3848	12
One Piece Film: Strong World Episode 0	8740	0.925820	8740	13
Dragon Ball Z Movie 14: Kami to Kami	14837	0.925820	14837	14
One Piece: Umi no Heso no Daibouken-hen	1094	0.925820	1094	15
One Piece Movie 2: Nejimaki-jima no Daibouken	460	0.925820	460	16
One Piece: Episode of Luffy - Hand Island no B	16239	0.925820	16239	17
One Piece: Adventure of Nebulandia	32051	0.925820	32051	18
One Piece: Oounabara ni Hirake! Dekkai Dekkai	1237	0.925820	1237	19

Fig. 3

Fig. 3 indicates the metrics for a specific anime by name "Dragon Ball Z". As the figure indicates, the recommendations are based on genres with respect to Dragon Ball Z.

Jaccard Similarity

Another similarity algorithm we have implemented is the Jaccard similarity algorithm. The formula used to compute Jaccard similarity is:

Jaccard similarity index = Intersection of the two vectors/ Union of the two vectors

Fig. 4

Vectors are based on genres associated with a specific anime_id. The description of the two vectors used for Jaccard similarity are:

- ♦ Genres associated with the first anime id
- Genres associated with the second anime_id

The vectors are typecasted to sets to ensure that there are no repeating elements. Then, the Jaccard similarity value is calculated whose value lies between 0 & 1.

Jaccard similarity index is computed for the genres of each anime_id with every other anime_id. Thus, we get several values of Jaccard similarity indexes. Finally, we take all the values closer to 1 and those equal to 1 to make recommendations as the value of 1 indicates that the animes are very similar to each other and would suit a user's preferences.

Euclidean Distance

The Euclidean distance between two vectors is the length of the path connecting them. The Pythagorean theorem gives this distance between two vectors. The formula for calculating the Euclidean distance is:

$$\sqrt{\sum_{i=1}^{k} (x_i - y_i)^2}$$

Vectors are based on genres associated with a specific anime_id. The description of the two vectors used for Euclidean Distance are:

- ♦ Genres associated with the first anime_id
- Genres associated with the second anime id

Euclidean distance is computed for the genres of each anime_id with every other anime_id. Thus, we get several values of Euclidean distance. Finally, we take all the values closer to 1 and those equal to 1 to make recommendations as the value of 1 indicates that the animes are very similar to each other and would suit a user's preferences.

Manhattan Distance

Manhattan distance is a metric in which the distance between two vectors is the sum of the absolute differences of their Cartesian coordinates. In simple terms, it is the total sum of the difference between the vector on the x-coordinate and the vector on the y-coordinate. The formula to calculate the Manhattan distance is given by:

Manhattan distance = |x1 - x2| + |y1 - y2|

Manhattan Distance

Vectors are based on genres associated with a specific anime_id. The description of the two vectors used for Euclidean Distance are:

- ♦ Genres associated with the first anime_id
- ♦ Genres associated with the second anime_id

Manhattan distance is computed for the genres of each anime_id with every other anime_id. Thus, we get several values of Manhattan distance. Finally, we take all the values closer to 1 and those equal to 1 to make recommendations as the value of 1 indicates that the animes are very similar to each other and would suit a user's preferences.

Comparison between the Similarity Algorithms

Following is the summary table showing the similarity between two anime IDs.

+	+-	+		+		+
anime_	id1 a	anime_id2	cosine_similarity	jaccard_similarity	manhattan_distances	euclidean_distances
+	+-	+				+
32	281	32281	1.0	1.0	0.0	0.0
32	281	5114	0.1889822365046136	0.7906976744186046	27167.0	27167.0
32	281	28977	0.0	0.7441860465116279	3304.0	3304.0
32	281	9253	0.0	0.8604651162790697	23028.0	23028.0
32	281	9969	0.0	0.7441860465116279	22312.0	22312.0
32	281	32935	0.4472135954999579	0.8837209302325582	654.0	654.0
32	281	11061	0.0	0.813953488372093	21220.0	21220.0
32	281	820	0.25	0.8604651162790697	31461.0	31461.0
32	281	15335	0.0	0.7441860465116279	16946.0	16946.0
32	281	15417	0.0	0.7441860465116279	16864.0	16864.0
32	281	4181	0.6708203932499369	0.9302325581395349	28100.0	28100.0
32	281	28851	0.5773502691896258	0.9302325581395349	3430.0	3430.0
32	281	918	0.0	0.7441860465116279	31363.0	31363.0
32	281	2904	0.20412414523193154	0.813953488372093	29377.0	29377.0
32	281	28891	0.4472135954999579	0.8837209302325582	3390.0	3390.0
32	281	199	0.5773502691896258	0.9302325581395349	32082.0	32082.0
32	281	23273	0.6708203932499369	0.9302325581395349	9008.0	9008.0
32	281	24701	0.1889822365046136	0.7906976744186046	7580.0	7580.0

The inference we draw from the comparison is that the similarity algorithms give us the same recommendations for the top 25 animes after which there are slight variations with the recommendations between different algorithms.

Challenges

We identified some challenges with respect to the data available.

- ♦ The number of records under consideration was reduced by almost a million values because of the rating missing for animes that were watched by the users (rating value of −1). We removed these 1 million records as ALS needed a rating value for new recommendations. By doing this, we believe we have lost some critical information which could have served to make better recommendations.
- ♦ The N * N item matrix generated for Similarity algorithms is too huge (approximately 140 million) to handle.
- ♦ The regularization parameters we considered were randomly chosen. The validity of parameters used for our dataset cannot be ascertained.

Future Scope

There is lot of scope for improvement in terms of better recommendations that are listed below:

- ◆ Figuring out ways to handle data with respect to watched animes but not rated (rating value of 1 for animes).
- We have used "rating" for ALS and "genre" for similarity algorithms to make recommendations. However, inclusion of other predictors to make recommendations might result in a better recommender system.
- ♦ The similarity based recommendation can be extended to other textual similarities between two animes.
- ♦ We can implement plot based similarities instead of textual similarities and data for the plot can be extracted from forum discussions.

References

- [1] https://en.wikipedia.org/wiki/Recommender_system
- [2] https://www.kaggle.com/CooperUnion/anime-recommendations-database
- [3] https://www.youtube.com/watch?v=TSv6eLAOt78
- [4] https://i2.wp.com/dataaspirant.com/wp-content/uploads/2015/04/cosine.png
- [5] Dr. Sridhar Nerur's Data Science lectures
- [6] http://dataconomy.com/wp-content/uploads/2015/04/Five-most-popular-similarity-measures-implementation-in-python-6.png
- [7] http://dataaspirant.com/2015/04/11/five-most-popular-similarity-measures-implementation-in-python/
- [8] https://i1.wp.com/dataaspirant.com/wp-content/uploads/2015/04/euclidean.png
- [9] https://spark.apache.org/docs/preview/ml-collaborative-filtering.html
- [10] https://www.elenacuoco.com/2016/12/22/alternating-least-squares-als-spark-ml/
- [11] http://alex.smola.org/teaching/10-701-15/recommender.html
- [12] http://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.cosine similarity.html
- [13] http://scikit-learn.org/stable/modules/metrics.html
- [14] http://scikit-learn.org/stable/modules/generated/sklearn.metrics.jaccard similarity score.html