SUBSTRATE FOR OPTICAL DEVICE, OPTICAL DEVICE AND METHOD FOR MANUFACTURING OPTICAL DEVICE

Patent number:

JP2002362943

Publication date:

2002-12-18

Inventor:

GOTO MAKOTO

Applicant:

ASAHI TECHNO GLASS CORP

Classification:

- international:

C03C19/00; C03C17/34; C23C14/06; C23C14/08; G02B1/11;

G02B5/28

- european:

C03C17/34D2

Application number: JP20010173569 20010608 Priority number(s): JP20010173569 20010608

Report a data error here

Abstract of JP2002362943

PROBLEM TO BE SOLVED: To provide a substrate for an optical display device producing no cloudy picture in a picture device. SOLUTION: The substrate for the optical display device has surface roughness with <=0.9 nm Ra (arithmetic mean roughness) and <=1.5 nm Rms (root- mean-square roughness). A material selected from visibility compensating glass, colored glass, quartz glass, crystalline quartz and transparent plate glass is used as a substrate material. An optical functional film such as a multi-layered film comprising a high refractive index dielectric thin film and a low refractive index dielectric thin film alternately laminated is formed on at least one surface of the substrate.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2002-362943 (P2002-362943A)

(43)公開日 平成14年12月18日(2002.12.18)

(51) Int.Cl.7		識別記号		FΙ			テーマコード(参考)		
C03C				C03C	19/00			Z	2H048
	17/34				17/34			Z	2K009
C 2 3 C	•			C 2 3 C	14/06			G	4G059
	14/08				14/08			E	4K029
	•			•				J	
			ete-de sisted	+	砂での粉で	ΔT	(A 6	再)	島数百戸嬉く

審査請求 未請求 請求項の数7 OL (全 6 貝)

(21) 出願番号

特願2001-173569(P2001-173569)

平成13年6月8日(2001.6.8)

(71)出願人 000158208

旭テクノグラス株式会社

千葉県船橋市行田一丁目50番1号

(72) 発明者 後藤 誠

静岡県榛原郡吉田町川尻3583番地の5 旭

テクノグラス株式会社静岡工場内

(74)代理人 100077849

弁理士 須山 佐一

最終頁に続く

(54) 【発明の名称】 光学デバイス用基板と光学デバイスおよび光学デバイスの製造方法

(57)【要約】

【課題】 画像装置において画像の曇りが生じない光学 デバイス用基板を提供する。

【解決手段】 本発明の光学デバイス用基板は、Raが 0.9 n m 以下でかつ R m s が 1.5 n m 以下の表面粗 さを有する。基板材料としては、視感度補正ガラス、色 ガラス、石英ガラス、水晶および透明板ガラスから選択 される材料が使用される。この基板の少なくとも一面 に、高屈折率の誘電体薄膜と低屈折率の誘電体薄膜とを 交互に積層した多層膜のような光学的機能膜が形成され る。

【特許請求の範囲】

表面に誘電体の多層膜が形成されて光学 【請求項1】 デバイスとして画像装置に使用される基板であり、算術 平均粗さ(Ra)が0.9 n m以下でかつ二乗平均粗さ (Rms)が1.5nm以下である表面粗さを有するこ とを特徴とする光学デバイス用基板。

【請求項2】 前記基板が、視感度補正ガラス、色ガラ ス、石英ガラス、水晶および透明板ガラスから選択され る材料から成る基板であることを特徴とする請求項1記 載の光学デバイス用ガラス基板。

【請求項3】 請求項1または2記載の光学デバイス用 基板の少なくとも一面に、高い屈折率を有する誘電体の 薄膜と低い屈折率を有する誘電体の薄膜とを交互に積層 した多層膜が形成されていることを特徴とする光学デバ イス。

【請求項4】 請求項1または2記載の光学デバイス用 基板の少なくとも一面に、光学的機能を有する膜が形成 されていることを特徴とする光学デバイス。

【請求項5】 前記光学的機能を有する膜が、反射防止 膜または選択波長透過膜またはこれらを組み合わせた膜 20 であることを特徴とする請求項4記載の光学デバイス。

【請求項6】 前記光学的機能膜を有する膜が、酸化チ タン(TiO2)、酸化ジルコニウム(ZrO2)、酸 化タンタル(Ta2 〇5)、酸化イットリウム(Y2 〇 3)、二酸化ケイ素(SiO2)、酸化アルミニウム (Al₂O₃)、酸化ニオブ(Nb₂O₅)、酸化ラン タン(La2O3)、フッ化マグネシウム(Mg F2)、フッ化ストロンチウム(SrF2)、硫化亜鉛 (ZnS) およびこれらの物質のうちの2種以上からな る混合物、からなる群から選択される2種以上の薄膜が 積層された膜であることを特徴とする請求項4記載の光 学デバイス。

【請求項7】 ガラス素材をガラス基板に成形する成形 工程と、前記ガラス基板の表面を研磨する研磨工程と、 前記ガラス基板の研磨された面上に、誘電体の多層膜を 形成する工程とを有し、前記研磨工程において、単位面 積当たりの荷重を30~150g/cm²としかつ定盤 回転数を30~90rpmとして研磨加工を行い、前記 ガラス基板の表面の算術平均粗さ(Ra)を0.9nm 以下とし、かつ二乗平均粗さ(Rms)を1.5nm以 下とすることを特徴とする光学デバイスの製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、CCD撮像装置や プロジェクタ装置などの画像装置に用いられる光学フィ ルタのような光学デバイスとその製造方法、および光学 デバイスに好適する基板に関する。

[0002]

【従来の技術】近年、CCD撮像装置やプロジェクタ装 置などの画像装置において、解像度が著しく高められて 50 る前のガラス等の基板の表面に、♡洗浄不足による研磨

いる。従来から、CCD撮像装置では、CCD素子の感 度を人間の目と同じ感度にする目的で、光学系に視感度 補正ガラスが使用されているが、さらに視感度を自然に 近づけ色再現性を高める目的で、視感度補正ガラスに近 赤外線をカットする多層膜が設けられている。また、装 置の薄型化のため、視感度補正ガラスを用いず、水晶の ローパスフィルターに近赤外線をカットする多層膜を設 けることも行われている。

【0003】プロジェクタ装置、特に液晶プロジェクタ では、光学多層膜を使用したRGBダイクロイックフィ ルタやビームスピリッタ、あるいは液晶用防塵ガラスに 反射防止膜を有するものなど、種々の光学多層膜を有す るデバイスが使用されている。さらに光通信の分野で も、光アイソレータのような種々の光学多層膜を有する デバイスが使用されている。

【0004】従来から、光学多層膜を有する製品は、メ ガネの反射防止膜、照明用のコールドミラー、ハロゲン ランプ用のホットミラー、理化学用の干渉フィルタ等と して幅広く使用されており、画像装置用の光学多層膜を 有するデバイスも、このような製品と同様に製造されて

【0005】すなわち、画像装置用の光学多層膜を有す るデバイスは、ガラス等の基板の表面を、酸化セリウム を用いた研磨材で研磨し鏡面に仕上げた後、水洗いをし て研磨材を除去し、次いで温風乾燥または蒸気乾燥した 後、基板表面に例えば真空蒸着により光学多層膜を成膜 することにより製造される。

[0006]

【発明が解決しようとする課題】しかしながら、こうし て製造される光学多層膜を有するデバイスを画像装置の 光学系に使用するには、以下に示す問題があった。

【0007】CCD撮像装置を例に採ると、画素が10 μm程度と極めて小さいため、直径が10μm以上の異 物があると、画像に欠陥を生じる。

【0008】そのような大きさの異物である研磨機から の金属片や研磨キズの除去を目的として、研磨装置内の 掃除の頻度を上げたり、洗浄工程でスクラブ洗浄した 後、洗剤洗浄→市水リンス→純水リンス→IPA(イソ プロピルアルコール) 等による蒸気洗浄を行うなどの対 策が行われてきた。また、洗浄出口以降を全てクリーン ルームとしたり、静電気によるゴミ付着を防止する目的 で徐電装置を用いたりと、各種の対策が試みられてき

【0009】しかしながら、CCD素子の解像度が高ま るにつれて、画像のコントラスト低下やムラ(以下、総 称して曇りと称する。)が生じ、これが製品の歩留まり を著しく低下させていた。

【0010】上記原因としては、まず以下の2点が推測 された。すなわち、光学多層膜を真空蒸着により成膜す

材等の汚れが残っていること、**②**洗浄の際の乾燥ジミがあること、の2点が原因として考えられた。

【0011】 ①②に対する対策として、研磨工程および 洗浄工程に高純度の水(超純水)を使用するとともに、 乾燥工程でも不純物の少ない I P A を使用することによ り、20万ルクスの照明下でも、研磨材等の汚れや乾燥 ジミが観察されないガラス等の基板を得た。そして、得 られた基板の表面に、真空蒸着により酸化チタン/酸化 ケイ素の多層膜を成膜した後、CCD撮像装置内に組込 み評価を行った。評価結果は、必ずしも一定せず、画像 10 に曇りが生じるものがあるかと思うと全くクリアなもの も見られた。したがって、前記した①研磨材等の汚れの 残留や②乾燥ジミが、画像の曇りの原因とは考えられな い。

【0012】次に、真空蒸着前のガラス基板の表面を原子間力顕微鏡(以下、AFMと記す。)で観察すると、極微小の突起や細かなキズが観察された。そして、そのような微小突起等を有するガラス基板の表面に、真空蒸着などにより光学多層膜を成膜すると、突起部より膜が成長して大きな突起となり、その結果画像の曇りが生じ 20ると推測される。

【0013】また、光学的薄膜は、数nmの単位で干渉しかつ角度特性を有するため、基板表面に極微小の突起があると、薄膜を重ねるごとに干渉の歪みが増加していくことが推測される。

【0014】本発明は、上記の事情に鑑みてなされたもので、基板の表面状態に着目し、研磨加工により基板の表面粗さを一定の値以下にすることで、画像装置において画像の曇りが生じない光学デバイスを提供することを目的とする。

[0015]

【課題を解決するための手段】本発明の光学デバイス用基板は、請求項1に記載するように、表面に誘電体の多層膜が形成されて光学デバイスとして画像装置に使用される基板であり、算術平均粗さ(Ra)が0.9 n m以下でかつ二乗平均粗さ(Rms)が1.5 n m以下である表面粗さを有することを特徴とする。

【0016】本発明においては、請求項2に記載するように、視感度補正ガラス、色ガラス、石英ガラス、水晶および透明板ガラスから選択される材料から成る基板を 40 使用することができる。

【0017】本発明の光学デバイスは、請求項3に記載するように、請求項1または2に記載する光学デバイス用基板の少なくとも一面に、高い屈折率を有する誘電体の薄膜と低い屈折率を有する誘電体の薄膜とを交互に積層した多層膜が形成されていることを特徴とする。

【0018】また、本発明の光学デバイスは、請求項4 に記載するように、請求項1または2記載の光学デバイ ス用基板の少なくとも一面に、光学的機能を有する膜が 形成されていることを特徴とする。 【0019】この光学デバイスにおいては、請求項5に記載するように、光学的機能を有する膜を、反射防止膜または選択波長透過膜またはこれらを組み合わせた膜とすることができる。ここで、選択波長透過膜としては、赤外線カット膜、赤外線透過膜、紫外線カット膜、紫外線透過膜、可視光透過膜、可視光反射膜、あるいはRGBフィルタ膜などを用いることができる。

【0020】また、本発明の光学デバイスにおいては、請求項6に記載するように、光学的機能を有する膜を、酸化チタン(TiO_2)、酸化ジルコニウム(ZrO_2)、酸化タンタル(Ta_2O_5)、酸化イットリウム、二酸化ケイ素(SiO_2)、酸化アルミニウム(Al_2O_3)、酸化ニオブ(Nb_2O_5)、酸化ランタン、フッ化マグネシウム(MgF_2)、フッ化ストロンチウム(SrF_2)、硫化亜鉛(ZnS)およびこれらの物質のうちの2種以上からなる混合物からなる群、から選択される2種以上の薄膜が積層された膜とすることができる。

【0021】本発明の光学デバイスの製造方法は、請求項7に記載するように、ガラス素材をガラス基板に成形する成形工程と、前記ガラス基板の張面を研磨する研磨工程と、前記ガラス基板の研磨された面上に、誘電体の多層膜を形成する工程とを有し、前記研磨工程において、単位面積当たりの荷重を30~150g/cm²としかつ定盤回転数を30~90rpmとして研磨加工を行い、前記ガラス基板の表面の算術平均粗さ(Ra)を0.9nm以下とし、かつ二乗平均粗さ(Rms)を1.5nm以下とすることを特徴とする。

【0022】本発明の光学デバイスにおいては、視感度 30 補正ガラス、色ガラス、石英ガラス、水晶あるいは透明 板ガラスから構成され、表面の算術平均粗さ(Ra)が 0.9 n m 以下でかつ二乗平均粗さ(R m s)が1.5 nm以下である基板が用いられる。なお、表面に積層数 が少ない(1~5層)反射防止膜が設けられる基板で は、Raが1.1nm以下でかつRmsが1.8nm以 下としても良い。さらに、赤外カット多層膜やコールド ミラー等のダイクロイック膜を被覆・形成する基板で は、RaがO. 6nm以下でかつRmsがO. 8nm以 下とすることが好ましく、さらにRaが0.4nm以下 でRmsがO.6nm以下とすることがより好ましい。 【0023】前記した表面粗さを有する基板は、AFM による観察でも、表面に微小の突起やキズが存在せず、 極めて優れた表面平滑性と平面性を有している。そし て、このような表面平滑性と平面性が極めて高い基板の 少なくとも一面に、高屈折率の誘電体薄膜と低屈折率の 誘電体薄膜とを交互に積層した多層膜のような、光学的 機能膜が形成されているので、画像に曇りが生じること がなく、クリアな画像を得ることができる。

【0024】ここで、算術平均表面粗さ(Ra)は、J 50 IS B0601に定義されている。また二乗平均粗さ 5

(Rms)は、表面曲線と平均線との差の二乗の平均値の平方根として規定される。算術平均表面粗さ(Ra)による限定だけでは、基板の表面(光学面)に異常突起があっても、Raの値がかえって小さくなる場合があるが、Raの他にRmsの値を算定し、両方の値で限定することにより、異常突起の存在を見逃すことなく、優れた表面平滑性と平面性を有する基板を規定することができる。

【0025】そして、本発明においては、ガラス基板の 表面を研磨加工する研磨工程において、単位面積当たり 10 の荷重を $30\sim150$ g/c m² とし、かつ定盤回転数 を $30\sim90$ r p m として研磨加工を行うことにより、 ガラス基板表面のRaを0.9 n m以下とし、かつRm sを1.5 n m以下とすることができる。

[0026]

【発明の実施の形態】以下、本発明の実施例について説明する。

【0027】実施例1

視感度補正ガラスであるフツリン酸塩系ガラスを母材として用い、直径74mm、厚さ1.4mmに加工した素 20 材を、まず両面研磨機を用いて#400のアルミナ砥粒で表裏面のラッピング加工を行った後、側面に所定の面取り加工を行った。

【0028】次いで、両面研磨機を使用し、#1000のアルミナ砥粒を用いて表面と裏面のラッピング処理を行った。引き続いて、上下定盤にポリッシャ用のポリウレタンパッド(ロデールニッタ社製MHC15A)を用い、研磨材として酸化セリウムを用いて1次ポリッシュを行った。さらに表面の平滑度を得るため、研磨材として粒径1.2μmの酸化セリウムを用い、ポリッシャに 30スウェードウレタンパッド(ロデールニッタ社製ポリテックス)を使用して最終ポリッシュを行った。

【0029】ここで、最終ポリッシュは、定盤の回転数を10~90rpm、単位面積当たりの荷重を30~2

00g/cm²、研磨時間を10~20分間として実施した。また、研磨材の温度が22~23℃に保たれるように、冷却しながら研磨を行った。その後、中性洗剤、純水、純水、純水、純水、IPA、IPA、IPA(蒸気乾燥)の各洗浄槽に順次浸漬して洗浄した。

【0030】次いで、こうして得られたガラス基板の表面粗さ(RaおよびRms)を、それぞれAFM(デジタルインスツルメンツ(株)社製;商品名NanoScope)により測定した。測定結果を、最終ポリッシュにおける定盤回転数および単位面積当たりの荷重と関連させ、図1および図2にそれぞれ示す。

【0031】これらのグラフから、最終ポリッシュで単位面積当たりの荷重が低いほどかつ定盤回転数が高いほど、RaおよびRmsの値が小さく(低く)なり、表面粗さが良くなることがわかる。

【0032】次に、最終ポリッシュ後一連の洗浄工程を 経て得られたガラス基板の片面に、真空蒸着法により酸 化チタンの薄膜と酸化ケイ素の薄膜とを交互に計15層 積層し、近赤外カット多層膜を形成した。

0 【0033】真空蒸着は、到達真空度を1×10⁻⁵ T orr(1.33×10⁻³ Pa)とし、基板加熱温度 300℃として実施した。また、酸化チタンと酸化ケイ 素は電子ビーム加熱により蒸着し、膜厚制御は水晶振動 を用いて行った。

【0034】次いで、こうして得られた近赤外カット多層膜付きガラス基板を、CCD撮像装置(カザマエンジニアリング社製KDX-920P)内に組込み、基板面に周囲8箇所から光ファイバ投光器により強い光を当て、CCDカメラで画像の曇りの数を調べた。評価結果を、研磨条件およびガラス基板の表面粗さの測定結果とともに、表1に示す。

[0035]

【表1】

1.76

1.89

20

20

1.23

1.21

70

9 0

Rmsが1.5 nmを越えるガラス基板を使用したもの は、ほぼ全数が画像に曇りが生じたのに対して、Raが 9 n m以下でRmsが1.5 n m以下のガラス基板 を使用したものは、全数曇りがなく画像がクリアである ことがわかる。

【0037】実施例2

石英ガラス基板を用い、最終ポリッシュの単位面積当た りの荷重および定盤回転数を、30~150g/cm² および30~90rpmの範囲でそれぞれ変化させ、実 施例1と同様にして研磨を実施した。その後、中性洗 削、純水、純水、純水、純水、IPA、IPA、IPA (蒸気乾燥)の各洗浄槽に順次浸漬して洗浄し、石英ガ ラス基板を得た。

【0038】得られた基板の表面粗さを実施例1と同様 にして測定したところ、Ra≦O.9nmかつRms≦ 1.5nmであった。

【0039】次に、こうして得られた石英ガラス基板の 表裏面に、真空蒸着法により酸化アルミニウム/(酸化 ランタン+酸化チタン)/フッ化マグネシウムの3層を 積層した多層膜(反射防止膜)を形成した。次いで、得 40 して測定したところ、Ra≦0.9nmかつRms≦ られた反射防止膜付き石英ガラス基板を、LCD(液晶 表示装置)に組込み、画像の曇りを調べたところ、全数 曇りがなくクリアであった。

【0040】なお、実施例の反射防止膜を成膜した基板 に関しては、ガラス基板のRal.lnm、Rmsl. 8ヵmでも曇りは確認されなかった。この傾向は、基板 の材質にかかわらず見られ、形成される光学薄膜の積層 数が少ないために、基板の突起に起因する干渉の歪めの 程度が小さいためと考えられる。

【0041】実施例3

【0036】表1から、Raが0.9nmを越え、かつ 20*BK-7ガラス基板を用い、最終ポリッシュの単位面積 当たりの荷重を50g/cm²、定盤回転数を30rp mとして、実施例1と同様にして研磨し次いで洗浄を行 った。得られたガラス基板の表面粗さを実施例1と同様 にして測定したところ、RaがO.74nmでありかつ Rmsが1.07nmであった。

NG NG

【0042】次に、こうして得られたガラス基板の表裏 面に、真空蒸着法により酸化チタンの薄膜と酸化ケイ素 の薄膜とを交互に計38層積層し、3波長タイプの近赤 外カット多層膜を形成した。

【0043】次いで、得られた近赤外カット多層膜付き 30 ガラス基板を、実施例1と同様にCCD撮像装置内に組 込み、画像の曇りを調べたところ、全数曇りがなくクリ アな画像が得られた。

【0044】実施例4

赤色ガラスであるR62ガラス(波長590nm以下の 光を吸収) の基板を用い、最終ポリッシュの単位面積当 たりの荷重を50g/cm²、定盤回転数を30rpm として実施例1と同様にして研磨した後、洗浄を行っ た。得られたガラス基板の表面粗さを実施例1と同様に 1.5 nmであった。

【0045】次に、こうして得られたガラス基板の表裏 面に、真空蒸着法により酸化チタンの薄膜と酸化ケイ素 の薄膜とを交互に計22層積層し、赤外カット多層膜を 形成した。こうして、波長620nmを透過のピークと するバンドパスフィルタが得られた。

【0046】次いで、得られたバンドパスフィルタを、 実施例1と同様にCCD撮像装置内に組込み、画像の曇 りを調べたところ、全数曇りがなくクリアな画像が得ら

*50 *1*tc.

【0047】実施例5

水晶基板を用い、最終ポリッシュの単位面積当たりの荷 重を100g/cm²、定盤回転数を60rpmとして 実施例1と同様にして研磨した後、洗浄を行った。得ら - れた基板の表面粗さを実施例1と同様にして測定したと ころ、Ra≤0.9nmかつRms≤1.5nmであっ た。

【0048】次に、こうして得られた水晶基板の表裏面 に、真空蒸着法により酸化チタンの薄膜と酸化ケイ素の 薄膜とを交互に計42層積層し、赤外カット多層膜を形 10 【図面の簡単な説明】 成した。

【0049】次いで、得られた赤外カット多層膜付き水 晶基板を、実施例1と同様にCCD撮像装置内に組込 み、画像の曇りを調べたところ、全数曇りがなくクリア な画像が得られた。

[0050]

【発明の効果】以上の説明から明らかなように、本発明 の光デバイス用基板は、AFMによる観察でも表面に極 微小の突起やキズが存在せず、極めて優れた平滑性と平 面性を有している。そして、このような表面平滑性と平 面性が極めて高い基板の少なくとも一面に、光学的機能 膜を形成することにより、画像装置に用いる光学多層膜 付き光デバイスの品質を著しく向上させることができ、 曇りのないクリアな画像を得ることができる。

【図1】実施例1において、得られるガラス基板のRa の測定結果を示すグラフ。

【図2】実施例1において、得られるガラス基板のRm sの測定結果を示すグラフ。

【図2】

フロントページの続き

(51) Int. Cl. 7

識別記号

G02B 1/11

5/28

FΙ

G02B 5/28

1/10

テーマコード(参考)

Fターム(参考) 2H048 GA01 GA04 GA09 GA14 GA19

GA33 GA60 GA61

2K009 BB02 BB04 CC02 CC03 CC06

DD08 DD16 FF00

4G059 AA01 AA11 AA18 AA20 AB03

ACO4 ACO7 EAO1 EAO4 EAO5

EA09 EA10 EB03 GA01 GA02

GA04 GA12

4K029 AA09 BA42 BA43 BA44 BA48

BA51 BB02 BC07 CA01 FA03