Formale Grundlagen der Informatik II 2. Übungsblatt

Fachbereich Mathematik Prof. Dr. Martin Ziegler Davorin Lešnik, Ph.D. Stéphane Le Roux, Ph.D.

Sommersemester 2013 10. 06. 2013

Gruppenübung

Aufgabe G4 (Sheffer- und Pierce-Operator)

Definiere die folgenden Junktoren: sei der Sheffer-Operator (auch: NAND) gegeben durch

$$p \uparrow q := \neg (p \land q)$$
 (äquivalent: $\neg p \lor \neg q$)

und der Pierce-Operator (auch: NOR) durch

$$p \downarrow q := \neg (p \lor q)$$
 (äquivalent: $\neg p \land \neg q$).

Beachte: Man kann $p \downarrow q$ lesen als "weder p noch q".

- (a) Geben Sie die Wahrheitstafeln für ↑ und ↓ an.
- (b) Beweisen Sie $p \uparrow q \equiv ((p \downarrow p) \downarrow (q \downarrow q)) \downarrow ((p \downarrow p) \downarrow (q \downarrow q))$ (also kann man \uparrow durch \downarrow ausdrücken).
- (c) Drücken Sie ↓ durch ↑ aus.

Lösung:

(a)

p	q	$p \uparrow q$	$p \downarrow q$
0	0	1	1
0	1	1	0
1	0	1	0
1	1	0	0

- (b) Beachte, dass $a \downarrow a \equiv \neg a$, also $((p \downarrow p) \downarrow (q \downarrow q)) \downarrow ((p \downarrow p) \downarrow (q \downarrow q)) \equiv (\neg p \downarrow \neg q) \downarrow (\neg p \downarrow \neg q)) \equiv \neg (\neg p \downarrow \neg q) \equiv \neg (p \land q)$. Man kann natürlich die Teilaufgabe auch durch Vergleichen von Wahrheitstafeln lösen.
- (c) Man zeigt wie oben, dass $p \downarrow q \equiv ((p \uparrow p) \uparrow (q \uparrow q)) \uparrow ((p \uparrow p) \uparrow (q \uparrow q))$ gilt.

Aufgabe G5 (Disjunktive und konjunktive Normalform) Geben Sie die DNF und KNF für die folgende Formel an:

$$(q \rightarrow p) \land (p \lor \neg r)$$

Lösung: Wir können die normalen Formen aus der Wahrheitstafel ablesen:

p	q	r	$q \rightarrow p$	$p \vee \neg r$	$(q \to p) \land (p \lor \neg r)$
0	0	0	1	1	1
0	0	1	1	0	0
0	1	0	0	1	0
0	1	1	0	0	0
1	0	0	1	1	1
1	0	1	1	1	1
1	1	0	1	1	1
1	1	1	1	1	1

DNF: $(\neg p \land \neg q \land \neg r) \lor (p \land \neg q \land \neg r) \lor (p \land \neg q \land r) \lor (p \land q \land \neg r) \lor (p \land q \land r)$ (man kann das zu $(\neg q \land \neg r) \lor p$ vereinfachen).

KNF: $(p \lor q \lor \neg r) \land (p \lor \neg q \lor r) \land (p \lor \neg q \lor \neg r)$ (man kann das zu $(p \lor \neg r) \land (p \lor \neg q)$ vereinfachen). Viel schneller bekommen wir das Ergebnis mit direkter Umformung:

$$(q \to p) \land (p \lor \neg r) \equiv \underbrace{(p \lor \neg q) \land (p \lor \neg r)}_{\text{KNF}} \equiv \underbrace{p \lor (\neg q \land \neg r)}_{\text{DNF}}.$$

Aufgabe G6 (DNF vs. KNF)

Für $n \ge 1$ sei

$$\varphi_n(p_1,q_1,p_2,q_2,\ldots,p_n,q_n) := \bigwedge_{i=1}^n \neg(p_i \longleftrightarrow q_i)$$

(siehe Beispiel 3.9 im Skript). Zeigen Sie, dass

- (a) φ_n genau 2^n verschiedene Modelle hat (welche?);
- (b) φ_n äquivalent zu einer Formel in KNF ist, welche 2n Konjunktionsglieder besitzt;
- (c) Geben Sie eine zu φ_n äquivalente Formel in DNF an. Wie lange ist diese Formel ausgeschrieben, asymptotisch in n?

Lösung:

(a) Für jedes $i \leq n$ muss genau eine der Variablen p_i und q_i wahr sein. Das heißt, dass man die Wahrheitswerte der p_i frei wählen kann und die Werte der q_i durch diese Wahl festgelegt sind. Also gibt es genau so viele Modelle, wie es Funktionen $\{1,\ldots,n\}\to\mathbb{B}$ gibt (solche Funktion $b=(b_1,\ldots,b_n)$ entspricht dem Modell $(b_1,1-b_1,b_2,1-b_2,\ldots,b_n,1-b_n)$). Dies sind 2^n .

(b)
$$\varphi_n \equiv \bigwedge_{i=1}^n \Big((\neg p_i \lor \neg q_i) \land (p_i \lor q_i) \Big), da \neg (a \longleftrightarrow b) \equiv (\neg a \lor \neg b) \land (a \lor b).$$

(c) Mithilfe (a) können wir eine DNF schreiben, die ein Disjunktionsglied für jedes Modell von φ_n hat. Um sie leichter zu schreiben, führen wir die folgende Notation ein: $\neg^k \varphi$ bedeutet k-mal negiertes φ , also $\neg\neg \dots \neg \varphi$; insbesondere $\neg^0 \varphi = \varphi$ und $\neg^1 \varphi = \neg \varphi$. Dann

$$\varphi_n \equiv \bigvee_{b \in \mathbb{R}^n} \bigwedge_{i=1}^n \neg^{b_i} p_i \wedge \neg^{1-b_i} q_i.$$

Diese DNF hat 2^n Disjunktionsglieder mit 2n Konjunktionsglieder je.

Bemerkung: Diese Formel ist auch auf Vorlesungsfolien (Seite 24) in anderer Notation gegeben. Man kann zeigen, dass diese Formel die kürzeste DNF für φ_n ist.

Hausübung

Aufgabe H4 (Kommutativität und Assoziativität)

(2 Punkte)

Zeigen Sie, dass \oplus (für die Definition siehe **Aufgabe H1**) kommutativ und assoziativ ist, das heißt, $p \oplus q \equiv q \oplus p$ und $(p \oplus q) \oplus r \equiv p \oplus (q \oplus r)$ gelten.

Bemerkung: Das bedeutet, dass man in Ausdrücken, wo \oplus der einzige Junktor ist, die Aussagen in beliebiger Reihenfolge und ohne Klammern schreiben kann. (Dasselbe gilt natürlich auch für \land und \lor .)

Lösung: Wahrheitstafeln:

1 P.

p	q	$p \oplus q$	$q\oplus p$
0	0	0	0
0	1	1	1
1	0	1	1
1	1	0	0

1 P.

p	q	r	$p \oplus q$	$(p\oplus q)\oplus r$	$q \oplus r$	$p\oplus (q\oplus r)$
0	0	0	0	0	0	0
0	0	1	0	1	1	1
0	1	0	1	1	1	1
0	1	1	1	0	0	0
1	0	0	1	1	0	1
1	0	1	1	0	1	0
1	1	0	0	0	1	0
1	1	1	0	1	0	1

Direkte Umformung funktioniert auch.

Aufgabe H5 (Disjunktive und konjunktive Normalform)

(3 Punkte)

Gegeben sei die Boolesche Funktion

$$f(x, y, u, v) := \begin{cases} 1 & \text{wenn genau ein oder genau drei von } x, y, u, v \text{ gleich 1 sind,} \\ 0 & \text{sonst.} \end{cases}$$

- (a) Geben Sie DNF für f(x, y, u, v) an.
- (b) Geben Sie KNF für f(x, y, u, v) an.
- (c) Geben Sie eine Formel φ , sodass $f=f_{\varphi}$ und φ nur den Junktor \oplus benutzt.

Lösung:

(a) 1 P
$$(x \land \neg y \land \neg u \land \neg v) \lor (\neg x \land y \land \neg u \land \neg v) \lor (\neg x \land \neg y \land u \land \neg v) \lor (\neg x \land \neg y \land u \land v) \lor (\neg x \land \neg y \land u \land v) \lor (x \land y \land u \land v) \lor (x \land y \land u \land \neg v)$$

(b) 1 P
$$(x \lor y \lor u \lor v) \land (\neg x \lor \neg y \lor \neg u \lor \neg v) \land (x \lor y \lor \neg u \lor \neg v) \land (x \lor \neg y \lor u \lor \neg v) \land (x \lor \neg y \lor u \lor \neg v) \land (\neg x \lor y \lor \neg u \lor v) \land (\neg x \lor \neg y \lor u \lor v)$$

(c) $1 P x \oplus y \oplus u \oplus v$ (Wir können die Klammern auslassen per **Aufgabe H4**.)

Aufgabe H6 (Vollständige Systeme von Junktoren)

(5 Punkte)

Für jede der folgenden Junktorenmengen beweisen oder widerlegen Sie, dass sie vollständige Systeme von Junktoren sind.

(a)
$$\{\neg, \rightarrow\}$$

(b) $\{\to, 0\}$		
(c) {↑}		
(d) {↔}		
(e) {∧,∨}		
Lösung:		
	•	n Junktoren → und ¬ die Junktoren ¬ und ausdrücken, d.h. $\{\rightarrow, \neg\}$ ist vollständig.
(b) 1 P Man beachtet $\neg \varphi \equiv \varphi \rightarrow $ und 0 die Junktoren \neg und	-	Teilaufgabe können wir mit den Junktoren ist vollständig.
(c) 1 P Man zeigt, dass $\varphi \uparrow \varphi \equiv -$	$\neg arphi$, woraus folgt, dass ($arphi$	$\uparrow \varphi) \uparrow (\psi \uparrow \psi) \equiv \neg \neg \varphi \lor \neg \neg \psi \equiv \varphi \lor \psi.$
	für die Belegung $\mathfrak{I}\colon p\mapsto$	rmeln, die nur den Junktor ↔ benutzen, 1, die jeder Variable den Wahrheitswert 1
• Nehmen wir an, dass $\varphi =$	$\varphi_0 \longleftrightarrow \varphi_1$ und dass die Au	ssage für die kleineren Formeln φ_0 und φ_1 e Belegung $\mathfrak{I}\colon p\mapsto 1$, die jeder Variable die
·		$0: p \mapsto 1$, die jeder Variable die Wahrheitsent zu der atomaren Formel 0. Die Menge
(e) 1 P. Diese Teilaufgabe wird d	urch ähnliche Methode wi	e für ↔ gelöst.
Minitest		
Aufgabe M4 (Erfüllbarkeit und Allg Kreuzen Sie alle Aussagen an, die ir		
(a) Seien φ , ψ zwei erfüllbare For	· ·	
- /2	□ erfüllbar,	□ allgamaingültig
$ eg arphi$ $ arphi \wedge \psi$	□ erfüllbar,	□ allgemeingültig, □ allgemeingültig,
$\varphi \land \psi$ $\varphi \lor \psi$	□ erfüllbar,	□ allgemeingültig.
7 . 7	,	888-
(b) Seien φ , ψ zwei allgemeingült	ige Formeln. Dann ist	
eg arphi	□ erfüllbar,	□ allgemeingültig,
$arphi \wedge \psi$	□ erfüllbar,	□ allgemeingültig,
$\varphi \lor \psi$	□ erfüllbar,	□ allgemeingültig.
, ,		
(c) Sei φ erfüllbar und ψ allgemei	ngültig. Dann ist	
$arphi \wedge \psi$	□ erfüllbar,	□ allgemeingültig,
$\varphi \lor \psi$	□ erfüllbar,	□ allgemeingültig.
Lösung:		

(a) Seien φ , ψ zwei erfüllbar	e Formeln. Da	nn ist				
eg arphi		erfüllbar,		□ allgemei	ngültig,	
$\varphi \wedge \psi$		□ erfüllbar,		□ allgemeingültig,		
$\varphi \vee \psi$	\boxtimes	erfüllbar,		□ allgemeingültig.		
(b) Seien φ , ψ zwei allgemei	ngültige Form	eln. Dann ist				
eg arphi		erfüllbar,		□ allgemei	ngültig,	
$\varphi \wedge \psi$	\boxtimes	erfüllbar,		⊠ allgemeingültig,		
$\varphi \vee \psi$		erfüllbar,		⊠ allgemeingültig.		
(c) Sei φ erfüllbar und ψ all	gemeingültig.	Dann ist				
$arphi \wedge \psi$		erfüllbar,		□ allgemei	ngültig,	
$\varphi \vee \psi$		oxtimes erfüllbar, $oxtimes$ allgemeingültig.				
Aufgabe M5 (Vollständige Sy Kreuzen Sie die folgenden Me			steme von	Junktoren s	ind.	
$\square \; \{\neg, \land, \lor\}$	$\square \ \{\neg, \wedge\}$	$\square \ \{\neg, \lor\}$	$\square\ \{\neg\}$	□ {0}	\square Ø	
Lösung:						
$\boxtimes \{\neg, \land, \lor\}$	$\boxtimes \{\neg, \land\}$	$\boxtimes \{\neg, \lor\}$	$\square\ \{\neg\}$	□ {0}	\square Ø	
Begründung: Für die ersten dr						

Begründung: Für die ersten drei Mengen, siehe Skript, Abschnitt 3.3. Offensichtlich kann man nicht mit dem einstelligen Junktor ¬ oder nullstelligen 0 mehrstellige Junktoren ausdrücken. Die leere Menge funktioniert natürlich auch nicht; man braucht etwas, um die Junktoren auszudrücken.