1^{ère}spe

1. 0.5×7

2. Affirmation :

Le point $A(1\,;\,0)$ appartient à la parabole d'équation $y=x^2-1$ \Box Vrai \Box Faux

3. Développer et réduire l'expression (x+1)(x-1).

4.
$$4 + \frac{1}{3}$$

- **5.** 30 % de 70
- **6.** Écriture décimale de $\frac{11}{4}$

7. Multiplier une quantité par 0,74 revient à la diminuer de : . . . %

- **8.** (u_n) est une suite géométrique telle que $u_0 = 8$ et $u_1 = -48$ La raison de cette suite est : . . .
- **9.** Compléter par deux entiers consécutifs :

$$\dots < \sqrt{83} < \dots$$

10. Solution de l'équation 7x + 3 = 2

$$\frac{17\pi}{7} = 2\pi + \dots$$

12. Factoriser $-2(2x-3)+(2x-3)^2$.

13. Déterminer l'équation réduite de la droite (AB).

14. Soit la suite (u_n) définie par $u_0=4$ et pour $n\in\mathbb{N}$, $u_{n+1}=-3u_n+2$. $u_2=\ldots$

15.
$$P(A \cap B) = 0.15$$

$$P(A) = 0.3 ; P(B) = 0.5$$

A et B sont indépendants.

□ Vrai □ Faux

16. Le discriminant du trinôme $x^2 - 3x - 2$ est ...

- **17.** Un sportif court 3 500 m en 15 min. Quelle est sa vitesse en km/h?
- **18.** $f(x) = \frac{1}{2}x^2 + 3x 7$ $f'(x) = \dots$
- **19.** Solutions de (x-2)(x-4) > 0
- **20.** Soit $f:x\longmapsto x(x-8)$ La représentation graphique \mathcal{C}_f a pour axe de symétrie la droite d'équation :

 $\square \ x = 8 \qquad \square \ x = 4 \qquad \square \ x = -4$

Mon temps : . . .

Mon score : . . . /10

1. On peut calculer ainsi :

$$0.5 \times 7 = 0.1 \times 5 \times 7$$

= 0.1×35
= 3.5

2. Le point A est sur la parabole si son ordonnée est égale à l'image de son abscisse.

$$f(1) = 1^2 - 1$$

=0

Le point A est bien sur la parabole.

L'affirmation est VraiE

3. $(x+1)(x-1) = x^2 - x + x - 1$ = $x^2 - 1$

Le terme en x^2 vient de $x \times 1x = x^2$.

Le terme en x vient de la somme de $x \times (-1)$ et de $1 \times 1x$.

Le terme constant vient de $1 \times (-1) = -1$.

$$4 + \frac{1}{3} = \frac{4 \times 3}{3} + \frac{1}{3}$$

$$= \frac{12}{3} + \frac{1}{3}$$

$$= \frac{13}{3}$$

5. 30% de 70 = 21

Prendre 30% de 70 revient à prendre $3 \times 10\%$ de 70.

Comme 10 % de 70 vaut 7 (pour prendre 10 % d'une quantité, on la divise par 10), alors 30 % de $70=3\times 7=21$.

- 6. $\frac{11}{4} = 2,75$
- 7. Comme 0.74 1 = -0.26, multiplier par 0.74 revient à diminuer de 26 %.
- 8. La raison de la suite est donnée par le quotient $\frac{u_1}{u_0} = \frac{-48}{8} = -6$.
- **9.** Comme 81 < 83 < 100, alors $9 < \sqrt{83} < 10$.
- 10. On procède par étapes successives :

On commence par isoler 7x dans le membre de gauche en retranchant 3 dans chacun des membres, puis on divise par 7 pour obtenir la solution :

$$7x + 3 = 2$$
$$7x = 2 - 3$$
$$7x = -1$$

La solution de l'équation est : $\frac{-1}{7}$.

11.
$$\frac{17\pi}{7} = \frac{14\pi}{7} + \frac{3\pi}{7} = 2\pi + \frac{3\pi}{7}$$

12. (2x-3) est un facteur commun.

$$-2(2x-3) + (2x-3)^2 = (2x-3)(-2 + (2x-3))$$
$$= (2x-3)(2x-5)$$

13. En utilisant les deux points A et B, on détermine le coefficient directeur m de la droite :

$$m = \frac{y_B - y_A}{x_B - x_A} = \frac{2}{3}.$$

L' ordonnée à l'origine est 0, ainsi l'équation réduite de la droite est

$$y = \frac{2}{3}x.$$

14. On calcule d'abord u_1 :

$$u_1 = -3 \times u_0 + 2$$

$$u_1 = -3 \times 4 + 2$$

$$= -10$$

On obtient donc pour u_2 :

$$u_2 = -3 \times u_1 + 2$$

$$u_2 = -3 \times (-10) + 2$$

$$=32$$

15. A et B sont indépendants si $P(A \cap B) = P(A) \times P(B)$.

Comme:

$$P(A) \times P(B) = 0.3 \times 0.5$$

$$= 0.15$$

On obtient l'égalité $P(A \cap B) = P(A) \times P(B)$.

Les événements A et B sont donc indépendants.

L'affirmation est VraiE.

16.
$$\Delta = b^2 - 4ac$$
 avec $a = 1$, $b = -3$ et $c = -2$.
$$\Delta = (-3)^2 - 4 \times 1 \times (-2)$$
$$= 17$$

17. En 1 heure, il parcourt 4 fois plus de distance qu'en 15 minutes, soit $4 \times 3500 = 14000$ m.

Sa vitesse est donc 14 km/h.

18. On détermine la fonction dérivée :

$$f'(x) = \frac{1}{2} \times 2x - 7$$
$$= x + 3$$

19. (x-2)(x-4) est l'expression factorisée d'une fonction polynôme du second degré de la forme $a(x-x_1)(x-x_2)$.

Les racines sont $x_1 = 2$ et $x_2 = 4$.

Le polynôme est du signe de a=1 (donc positif) sauf entre ses racines. L'ensemble solution est donc : $]-\infty; 2[\cup]4; +\infty[$.

20. Les racines de ce polynôme du second degré sont $x_1 = 8$ et $x_2 = 0$. L'axe de symétrie est donné par la moyenne des racines : $x = \frac{x_1 + x_2}{2}$,

soit
$$x = \frac{8+0}{2}$$
, c'est-à-dire $\mathbf{x} = \mathbf{4}$.