Improving the resolving power of the preparation Penning trap

SHIPTRAP

Josephine van Driel Supervisor: Dr Manuel J. Gutiérrez Monday 11th September 2023

GSI Summer School

Overview

- 1. SHIPTRAP
- 2. Research & Motivation
 - 3. Parameters
 - 4. Results
- 5. Conclusion and Outlook

The ion path through SHIPTRAP

- Mass measurements of heavy & superheavy elements
- Low yields: < 1 ion per hour
 Cryogenic stopping gas cell improves efficiency
- Phase-Imaging Ion-Cyclotron-Resonance (PI-ICR) technique many-fold more precise and sensitive than previous techniques

The SHIPTRAP Penning traps

- · Preparation trap (PT)
- mass selection

- · Measurement trap (MT)
- freq. measurement
- · Detector
- position projection

Research: SHIPTRAP preparation trap

Focus of this research:

- \rightarrow optimization of preparation trap (PT)
- \rightarrow using ¹³³Cs⁺ ions

What happens in a Penning trap?

Only \vec{B} :

cyclotron freq.
$$u_{\rm C} = rac{q}{m} rac{|ec{B}|}{2\pi}$$

- Mass dependent
- Conduct high-precision frequency measurements
- \Rightarrow High-precision mass measurement

Requires axial confinement...

What happens in a Penning trap?

with $\vec{E} \& \vec{B}$:

$$\nu_{\rm C} = \nu_{\rm Z}^2 + \nu_{-}^2 + \nu_{+}^2$$
$$\approx \nu_{-} + \nu_{+}$$

 ν_- = magnetron freq.

 ν_+ = modified cyclotron freq.

Frequencies depend on U, \vec{B}, m only

Figure adapted from L. S. Brown and G. Gabrielse, Rev. Mod. Phys., vol. 58, pp. 233–311, 1 Jan. 1986.

The sequence in the PT

- 1. Injection
 - · beam-line / surface ions or laser ablation
- 2. Axial cooling
 - energy loss through thermalization with buffer gas
- 3. Applied magnetron excitation
 - · all ions driven out to larger radius
- 4. Applied centering
 - recentering of ions of interest
- 5. Ejection
 - recentered ions pass through diaphragm towards MT

How to prepare an ion in the PT - parameters

Five parameters:

- 1 Helium buffer gas
- 2 Axial cooling time
- 3 Magnetron driving
- 4 Cyclotron driving
- 5 Cyclotron cooling

Figure adapted from L. S. Brown and G. Gabrielse, Rev. Mod. Phys., vol. 58, pp. 233–311, 1 Jan. 1986.

How to prepare an ion in the PT: injection & axial cooling time

Mass selection in PT:

Initial condition dependency

- $\rightarrow \text{injection method}$
- → must be studied for each ion source

Buffer gas: Helium

- → cyclotron/axial amplitude decrease
- → magnetron radius increases *slowly*

How to prepare an ion in the PT: magnetron driving - amplitude

Apply dipolar magnetron driving RF field to drive ions out

- ν_{-} **not** mass dependent
- \rightarrow all ions are driven out

How to prepare an ion in the PT: cyclotron driving - amplitude and duration

Apply quadrupolar cyclotron driving RF field to recenter selected ions

 $u_{\rm C} \ \emph{is} \ {\rm mass} \ {\rm dependent}$ $\rightarrow \ {\rm specific} \ {\rm mass} \ {\rm recentered}$

Figure adapted from G. Savard, S. Becker, et al., Physics Letters A 158 (1991), vol. 158, no. 5, pp. 247–252, Jul. 1991.

How to prepare an ion in the PT: mass selection

IF mass resolving power is high enough...

Research & Motivation

The performance of the PT

PT should:

- · provide repeatable initial conditions for MT
- · select one single species
- · remove all other species same atomic number (isobaric contaminants)
- ⇒ Improve performance of MT

Two observables which this research optimizes:

1 Mass resolving power (MRP)

2 Spot size

The mass resolving power

 \bigcirc MRP = $m/\Delta m$

Examples:

- ① Db-257, Rf-257 ⇒ $\Delta m \approx 4600 \cdot 10^{-6} \text{ u}$ ⇒ MRP $\geq \frac{257 \text{ u}}{4600 \cdot 10^{-6} \text{ u}} \approx 56000$
- (2) Pb-207, Tl-207 $\Rightarrow \Delta m \approx 1500 \cdot 10^{-6} \text{ u}$ $\Rightarrow \text{MRP} \ge \frac{207 \text{ u}}{1500 \cdot 10^{-6} \text{ u}} \approx 140 000$

Experimental mass resolving power

 $\mathsf{MRP}_{\mathsf{exp}} = \nu_{\mathit{C}} \, / \, \mathsf{FWHM}$

Frequency scan around $u_{\rm C}$

(Normal operation at ν_c - freq. scan only to determine MRP)

The spot size

2 Spot size

Distribution of hits on detector

Determined by centering of ions in PT (MT not in use)

MT measurement method requires small spot size

Spot size from the detector

Gaussian distribution of counts

$$r = \sqrt{x_{\text{FWHM}}^2 + y_{\text{FWHM}}^2}$$

Spot size

Well-centered ions produce a smaller spot size

Requires optimization of all parameters

Figure adapted from G. Savard, S. Becker, et al., Physics Letters A 158 (1991), vol. 158, no. 5, pp. 247–252, Jul. 1991.

Parameters

1: Helium buffer gas flow

1: Helium buffer gas flow

Energy dissipation through collisions Pressure in trap determined by gas flow

Axial cooling time

2: Initial axial motion

Large axial amplitude

- \Rightarrow less time spent in the center of the trap
- \Rightarrow less time spent in RF fields
- ⇒ higher centering amplitude required
- \Rightarrow smaller resolving power

Amplitude diminishes in buffer gas

⇒ reduced effect on MRP/spot size

Initial amplitude depends on injection

⇒ alter injection method to minimize axial amplitude from the start

3, 4, 5: Magnetron driving - amplitude / Cyclotron driving - amplitude & duration

3, 4, 5: Magnetron driving - amplitude / Cyclotron driving - amplitude & duration

Magn. driving amplitude:

$$\nu_- \neq f(m)$$

All ions driven out

Cycl. driving amplitude: Recenter ions of specific mass $\nu_c = f(m)$

Cycl. driving duration: short-lived isotopes ⇒ shortest cooling time

Results

Axial cooling time

Effects are negligible

Magnetron driving - amplitude

0.5 V lons not driven out far enough

2.0 V MRP decreases

1.0 V Sufficient

Conclusion:

- Run a scan to optimize
- Calibrate for individual ion sources

Cyclotron driving - amplitude

Cyclotron driving - amplitude

Low amplitudes

- ⇒ small FWHM
- ⇒ large MRP

Saturation:

High amplitude

 \Rightarrow off-resonance

ions centered

Conclusion:

Low amplitudes

Cyclotron driving -amplitude & duration

Cyclotron driving - amplitude & duration

Low amplitudes

- ⇒ less centering
- \Rightarrow larger spot size

Shorter cyclotron cooling

- ⇒ not enough energy loss
- ⇒ larger spot size

Conclusion:

- Longest cooling time
- Lowest cyclotron amplitude possible

Helium gas flow

Helium gas flow

High gas flow:

⇒ lower MRP

Low gas flow:

⇒ lower ion count Efficiency important!

Cyclotron driving more apparent than gas flow

Conclusion:

Mid-range gas flow

Overview

Competing interests!

Higher cyclotron amplitude:

 $\Rightarrow \mathsf{smaller} \; \mathsf{spot} \; \mathsf{size}$

Lower cyclotron amplitude:

 \Rightarrow larger MRP

Longer cooling time:

 \Rightarrow smaller spot size

Gas flow:

 trends dominated by other parameters

Conclusion and Outlook

Conclusion

- Compromise between spot size and mass resolving power
- 1 Mid-range helium gas flow (more testing)
- 2 Adjust ion injection to remove initial axial motion
- Magnetron driving amplitude adjusted per ion source (more testing)
- 4 Lowest cyclotron driving amplitude
- 5 Longest cyclotron driving duration

Conclusion

Sufficient for MRP = 56 000 using 450 ms, 0.2 V for next beam time

More research to reach MRP = 140 000

Axial cooling time

Axial cooling time vs MRP

No apparent correlation

Conclusion:

- · Axial motion is damped
- Adjust for each ion source

Axial cooling time

Axial cooling time vs Spot size

No apparent correlation

Conclusion:

- · Axial motion is damped
- Adjust for each ion source

