

Commercial and Government Responsive Access
to Space Technology Exchange
CRASTE 2014

June 23-27, 2014 Huntsville AL

Edgar Zapata, Carey McCleskey
NASA Kennedy Space Center
John Martin, Roger Lepsch, Tosoc Hernani
Langley Research Center

Motivation

- Technology advancements have enabled small cheap satellites that can perform useful functions
- Potential customers include commercial, academia, civil government and DOD
- Currently, the main option for getting these payloads into LEO is through ride share, limiting launch opportunities
- A proposed alternative approach is dedicated nano-satellite launch vehicles operated at an affordable price
 - NASA to invest and enable the development of related technologies

First of many CubeSats deployed from the International Space Station by NanoRacks in February 2014.
nanoracks.com/nanoracks-deploys-two-small-satellites/

Key Takeaways

- Limited experience base for this class of launch vehicles
- Estimated to cost 10s of \$M per launch in business-as-usual approaches
- Launch vehicle scale reductions <u>alone</u> do not enable the goal of < \$2M recurring launch cost
- Preliminary analysis shows that nano-launcher technology investments can significantly improve dedicated nano-launch capabilities
- The <u>combination</u> of technologies and efficient commercial approaches <u>can enable the goal</u> of < \$2M recurring launch cost

Project Team, Objective

- Inter-center, inter-agency team formed
 - NASA LaRC SACD/VAB Performance, Design, Costing
 - John Martin (lead), Roger Lepsch, Hernani Tosoc
 - NASA KSC Life Cycle Cost (LCC) Estimation, Modeling
 - Edgar Zapata, Carey McCleskey, Robert Johnson, Eddie Santiago
 - Air Force Research Lab Costing Tools, Technology Data
 - Greg Moster, Bruce Thieman
- Identify primary cost drivers for small launch vehicles (nano-small payload class, 5-100 kg)
- Identify technology and concept opportunities to significantly reduce launch cost
- Determine feasibility of achieving goal of < \$2 M for a dedicated launch capability
 - Cost goal established in 2013 NESC nano-launcher assessment study conducted by R. Garcia
 - DARPA ALASA and US Army SWORDS each set goal of \$1M per launch

Related Investments

- Government
 - ALASA (DARPA) 45 kg, air-launch
 - SWORDS (Army) 25 kg, mobile ground launch
 - Super Strypi (Sandia-USAF/SMC) 300 kg, rail launch
- Commercial (partial listing)
 - Garvey Aerospace non-toxic liquid, rail launch
 - Scorpius pressure fed liquid
 - Raytheon solid (developing a \$2M small sat launcher to fly under wing of F-15)
 - Generation Orbit/Space Propulsion Group (SPG) hybrid
 - NEXT (NASA) 15 kg (3x3U,) \$2.1M single flight services contract
 - Ventions, Inc. micro turbo pumps, vortex combustion
 - Whittinghill Aerospace hybrid

Nano-satellite Market Summary

- Price-of-entry with traditional, larger satellites, and their larger launchers, coupled with NASA budgetary pressures, driving small-sat innovation
- Universities currently dominate the Nano-sat/cube-sat field
- NASA and 2DoD also creating demand
 - NASA Cube-Sat Launch Initiative (<u>CSLI</u>)
 - Most CSLI <u>awards to date</u> have been to universities
- DoD spurring supply/launchers (SWORDS, ALASA)
- Private sector also responding with supply/launchers (Garvey, Raytheon, etc.)
- Private sector small-sat/cube-sat field is growing fast
 - <u>Likely to dominate future market-and soon</u>
 - Demand being driven by increasing and envisioned small-sat capabilities
 - Small-sats as an increasingly accessible, participatory technology

Study Requirements

PARAMETER	VALUE / RANGE	NOTE
Target Orbit:	45° Inclination 400 km Altitude	Target values within range of interest 0° - 98° Incl., 350 – 650 km Alt.
Launch Latitude	38°	Wallops; close to target inclination Others: KSC, Vandenberg, Airlaunch
Payload mass on orbit	5 kg	Mass of free-flying, deployed spacecraft (range of 5 – 50 kg)
Insertion accuracy	±75 km orbit altitude ±1° Orbit inclination	Accuracies are not critical for many small and very small spacecraft - Need to understand sensitivity
Spacecraft accommodations	 Separation signal T-0 trickle charge Environmental control within fairing Narrowband telemetry on launch 	Desire minimal demands on launch vehicle - Need environment specs - Payload status for rapid calibration
Load/Environment Limits (Payload)	20 g axial acceleration 5 g lateral acceleration	Need to determine limits on payload
Launch cost (recurring)	<\$2M/launch <\$1M/launch (stretch goal)	Goal Assumes annual flight rate of 12
Responsiveness	<48 hours call-up time <24 hours call-up time (stretch goal)	Goal – Relates to military ops Source: ALASA and SWORDS
Launch Reliability	0.9	Can accept lower reliability due to very low satellite cost

Assumptions

- Assume state-of-the-art technologies and business-as-usual practices as a baseline for vehicle concepts
- Maintain payload capabilities through vehicle resizing
- Recurring launch cost goal assumed to include recurring manufacturing and operations (including launch), fixed and variable costs, but not upfront, non-recurring development
- Assume Poly Pico-satellite Orbital Deployer (P-POD)
 - Have deployed > 90% of all CubeSats to date
 - 100% of all CubeSats since 2006
- Standard payload accommodations
 - No services, no customizing
 - Akin to rideshare accommodations
 - "No trickle charging, spot purging or driving cleanliness requirements" (Re. Space-X Secondary Payloads Hosting)

Assessment Process – Reference, Historical, Sanity Checks

- Quantitative and Qualitative Reference Systems
 - NASA Scout (ACT and LCC top-down modeling, anchors/baselines)
 - Aerospace sub-systems (SEER bottoms-up modeling, baselines)
 - Pegasus XL, Minotaur, Surface-to-Air missiles (at Nano-Launcher scale, for costs, lot sizes, etc.), Atlas/Falcon (for contrasts in practices), and previous assessments (Kibbey).

Scout – Historical (inflation adjusted) Used in ACT and LCC Model

Surface-to-Air Missile Specification Costs, Scale, etc. used as Reference

Sub-systems datasets Used in SEER Model

Assessment Process – Baselines & Reference

- Define <u>baseline</u> concepts to conduct assessments
 - Span the range of relevant approaches and technologies for a dedicated 5kg payload nano-launcher
 - Reflect current approaches and state of art technologies
 - To be modeled to a fidelity sufficient for the technology trades of interest
- Develop <u>reference</u> concepts to benchmark assessment metrics
 - Identify cost drivers using reference concepts
- Perform technology trades/assessments on baseline concepts to address cost drivers
- Provide technology impacts and investment recommendations

Baseline Concept	Launch Mode	Baseline Features/Assumptions
4 stage solid motor design	Rail	Spin stabilized 1 st & 2 nd stages, Attitude control upper stages
3 stage pressure fed liquid	Pad	Pressure fed LOX/RP, TVC, Composite tanks/structure, etc.
3 stage hybrid motor design	Pad	HTPB fuel, Composite structure, TVC, etc.

Assessment Process – Baselines & Reference

- Baselines span a range of relevant approaches
 - Sufficient detail to allow assessment of the technology and life cycle drivers of interest
 - Phase I summer 2013 task centered mostly on Concept 1 – a 4 stage solid

 Reference concept Scout studied extensively

Scout
Historical
4-stage Solid

Payload: 200 kg

Assessment Process – Summary

Results - Example

Forward Work

Technology Assessment

Production Fixed Production Variable Integration Ops Fixed Ops Variable
Cost Driver
No. of stations No. of steps Unique Elements Infrastructure No. of steps

- Product Technology
 - Common avionics
 - COTS avionics
 - Non-toxic propellants
 - Hybrid/solid propulsion
 - Non-toxic RCS
- Manufacturing Technology
 - Composites —
 - Materials (Nano-tubes)
 - Out-of-autoclave composites
 - 3D Printing (DLMS, etc.)
 - Segmented Solid/Cartridge(?) Production
- Ops/Launch Technology
 - FTS (AFSS)
 - Automated/standard launch planning (AFSS)
- Manufacturing concepts
 - Automation/robotics
 - Cellular manufacturing
- Operations Concepts
 - Payload Integration/service level

- What does technology X do to this component of cost, affecting it's causes of cost, it's cost drivers?
- Responsiveness/flight rate capability (productivity) also co-related similarly
- Need involvement of the technology community

Forward Work

- Design and analyze all concepts identified in Phase I task to a higher level of fidelity including additional concepts
- Develop refined life cycle cost estimates for all concepts
- Continue to develop technology assessment/modeling process (including tech prioritization output formats)
- Gather and organize information on potential technologies to enable assessments at systems level
- Explore nano-satellite market segments and study various business case scenarios

In Closing

- Promising evidence that a dedicated nano-launcher can reach a recurring manufacturing + launch goal of ~\$1M-\$2M a launch.
- Our assessment points in specific directions suitable for NASA investments, technology:
 - To increase flight rate capability of a resulting infrastructure & organization
 - To reduce production/operations infrastructure and their fixed costs
- System level cost drivers should inform system level investments.
 - Technical: reduced scale of systems only get recurring costs so far.
 - Small scale does not assure low costs.
 - Distinct functional hardware/software requirements must be addressed.
 - Non-technical: market or flight rate assumptions only get recurring costs so far.
 - High flight rate does not assure low costs.
 - A highly productive infrastructure/organization will yield a low recurring cost, and a price, that should encourage more flight demand, but flight rate demand alone will not resolve recurring cost issues.

Backup

Launch Capability - Current

- Current dedicated small-sat launchers do not meet the needs of nanosat community
 - e.g., Pegasus XL/Minotaur (443-1735kg/LEO) @ \$40-\$50M/launch
 - Additionally, contract to launch time 18 months or more
- Rideshare opportunities are cheap but very constraining
 - As secondary payload, constrained to primary mission orbit and schedule
 - Current commercial rideshare rates:
 - \$100K \$600K for nanosat (1-10 kg),
 - \$600K-\$3M for microsat (10-100 kg),
 - \$3M-\$8M for smallsat (100-500 kg)
 - Contract to launch time still 18 months or more

Recurring Cost Insight

Concept 1 baseline for technology & life cycle assessment

 Baseline Design and Technology Assumptions

Payload Mass: 10 kg (5 kg target)Configuration: 4-Stage, Expendable

Launch Mode: Rail launch

Propulsion: All solidPropellants: HTPB

- Structures: All composite

Guidance & Cntrl: Spin/Fin stabilized + ACS

- FTS: Destruct (stages 3 & 4 only)

Vehicle Integration: Horizontal

Acquisition Concept: Traditional/Gov.

Manufacturing/Ops/Launch Approach:

Traditional/Business-As-Usual

Performance Characteristics

Dry Mass: 630 kg

Gross Mass: 8130 kg

Concept 2 baseline for technology & life cycle assessment

 Baseline Design and Technology Assumptions

Payload Mass: 9 kg (5 kg target)

Configuration: 2-Stage, Expendable

Launch Mode: Pad launch

Propulsion: Pressure-fed – He w/HX

Propellants: LOX, RP-1 (mix ratio 2.6)

- Structures: All composite

Guidance & Cntrl: TVC – Battery/EMA

FTS: Thrust cutoff + Destruct

Vehicle Integration: Horizontal

Acquisition Concept: Traditional/Gov.

Manufacturing/Ops/Launch Approach:

Traditional/Business-As-Usual

Performance Characteristics

- **Dry Mass:** 255 kg

Gross Mass: 1800 kg