Логика высших порядков

P является биекцией из A в B

$$\forall x \forall y \forall z \ P(x,y) \land P(x,z) \rightarrow Eq(y,z)$$

$$\forall x \exists y \ A(x) \land B(y) \land P(x,y)$$

$$\forall y \exists x \ A(x) \land B(y) \land P(x,y)$$

$$\forall x \forall y \ \forall z P(x,z) \land P(y,z) \rightarrow Eq(x,y)$$

Логика высших порядков

P является биекцией из A в B

$$\forall x \forall y \forall z \ P(x,y) \land P(x,z) \rightarrow Eq(y,z)$$

$$\forall x \exists y \ A(x) \land B(y) \land P(x,y)$$

$$\forall y \exists x \ A(x) \land B(y) \land P(x,y)$$

$$\forall x \forall y \ \forall z P(x,z) \land P(y,z) \rightarrow Eq(x,y)$$

$\mathsf{Paв}$ номощность A и B :

$$\exists P \left[\forall x \forall y \forall z \ P(x,y) \land P(x,z) \rightarrow Eq(y,z) \right] \land \dots$$

▶ Необходимо доказать, что $\exists x P(x)$

- ▶ Необходимо доказать, что $\exists x P(x)$
- ▶ Предположим, что $\forall x \neg P(x)$

- ▶ Необходимо доказать, что $\exists x P(x)$
- ▶ Предположим, что $\forall x \neg P(x)$
- ▶ Придем к противоречию

- ▶ Необходимо доказать, что $\exists x P(x)$
- ▶ Предположим, что $\forall x \neg P(x)$
- ▶ Придем к противоречию
- ightharpoonup Следовательно, $\exists x P(x)$

- ▶ Необходимо доказать, что $\exists x P(x)$
- ▶ Предположим, что $\forall x \neg P(x)$
- ▶ Придем к противоречию
- ightharpoonup Следовательно, $\exists x P(x)$

Ho чему равен x?

- ► *KA* известно
- ▶ $\Diamond A A$ возможно

Модальные операторы:

- ► *KA* известно
- ▶ <A A возможно</p>

Α1	Принцип объективности знания	$\mathcal{K} \mathcal{A} o \mathcal{A}$
A2	Дистрибутивность знания и конъюнкции	$K(A \wedge B) o KA \wedge KB$
	_	

АЗ Принцип познаваемости мира $A o \diamond KA$

Модальные операторы:

- ► KA известно
- $\triangleright \Diamond A A$ возможно
- Принцип объективности знания
- Дистрибутивность знания и конъюнкции Α2
- А3 Принцип познаваемости мира
 - $A \rightarrow \diamond KA$

 $KA \rightarrow A$

 $K(A \wedge B) \rightarrow KA \wedge KB$

▶ Предположим, $A \land \neg KA$

- ► KA известно
- \triangleright ⋄A A возможно
- А1 Принцип объективности знания
- А2 Дистрибутивность знания и конъюнкции
- АЗ Принцип познаваемости мира
- ▶ Предположим, A ∧ ¬KA
- ► Πο A3, $\diamond K(A \land \neg KA)$

- $KA \rightarrow A$
- $K(A \wedge B) \rightarrow KA \wedge KB$
- $A \rightarrow \diamond KA$

- ▶ КА известно
- ▶ ⋄A A возможно
- А1 Принцип объективности знания
- А2 Дистрибутивность знания и конъюнкции
- АЗ Принцип познаваемости мира

- $KA \rightarrow A$
- $K(A \wedge B) \rightarrow KA \wedge KB$
- $A \rightarrow \diamond KA$

- ▶ Предположим, A ∧ ¬KA
- ▶ Πο A3, ⋄K(A ∧ ¬KA)
- ▶ Πο A2, \Diamond ($KA \land K(\neg KA)$)

- ► KA известно
- \triangleright ⋄A A возможно
- А1 Принцип объективности знания
- А2 Дистрибутивность знания и конъюнкции
- АЗ Принцип познаваемости мира

$$KA \rightarrow A$$

- $K(A \wedge B) \rightarrow KA \wedge KB$
- $A \rightarrow \diamond KA$

- ▶ Предположим, A ∧ ¬KA
- ▶ По A3, $\diamond K(A \land \neg KA)$
- ▶ Πο A2, \Diamond ($KA \land K(\neg KA)$)
- ► Πο Α1, ⋄(KA ∧ ¬KA)

Модальные операторы:

- ► KA известно
- \triangleright ⋄A A возможно
- А1 Принцип объективности знания
- А2 Дистрибутивность знания и конъюнкции
- АЗ Принцип познаваемости мира
 - познаваемости мира
- ▶ Предположим, A ∧ ¬KA
- ► Πο A3, $\diamond K(A \land \neg KA)$
- ► Πο A2, ⋄(KA ∧ K(¬KA))
- ▶ Πο A1, \Diamond ($KA \land \neg KA$)
- ▶ Противоречие. Все уже познано.

 $K(A \wedge B) \rightarrow KA \wedge KB$

Lotfi Zadeh Fuzzy sets (1965)

$$x,y\in\{0,1\}$$

$$x,y\in\{0,1\}$$

$$u,v\in[0,1]$$

$$x, y \in \{0, 1\}$$

$$\begin{array}{c|c} x & \neg x = \overline{x} \\ \hline 0 & 1 \\ 1 & 0 \end{array}$$

$$u, v \in [0, 1]$$

$$x, y \in \{0, 1\}$$

$$u, v \in [0, 1]$$

$$x \mid \neg x = \overline{x}$$

$$0 \quad 1$$

$$1 \quad 0$$

$$\neg u = (1 - u)$$

$$x, y \in \{0, 1\}$$
 $u, v \in [0, 1]$
$$\frac{x \mid \neg x = \overline{x}}{0 \mid 1}$$

$$\neg u = (1 - u)$$

$$\frac{x \mid y \mid x \land y \mid x \lor y}{0 \mid 0 \mid 0}$$

$$0 \mid 1 \mid 0 \mid 1$$

$$1 \mid 0 \mid 0 \mid 1$$

$$x, y \in \{0, 1\}$$
 $u, v \in [0, 1]$
$$\frac{x \mid \neg x = \overline{x}}{0 \mid 1}$$

$$\neg u = (1 - u)$$

$$\frac{x \mid y \mid x \land y \mid x \lor y}{0 \mid 0 \mid 0}$$

$$0 \mid 1 \quad u \land v = \min(u, v)$$

$$u \land v = \max(u, v)$$

$$1 \mid 1 \mid 1 \mid 1$$

$$x \lor y$$
 $u\widetilde{\lor}v = \max(u, v)$
 $x \land y$ $u\widetilde{\land}v = \max(u, v)$
 $x \lor y = y \lor x$ $\max(u, v) = \max(v, u)$

$$x \lor y$$

 $x \land y$
 $x \lor y = y \lor x$
 $x \lor y = y \land x$
 $u \lor v = \max(u, v)$
 $u \lor v = \max(u, v)$
 $max(u, v) = max(v, u)$
 $min(u, v) = min(u, v)$

$$x \lor y \qquad \qquad u \widetilde{\lor} v = \max(u, v) \\ x \land y \qquad \qquad u \widetilde{\land} v = \max(u, v)$$

$$x \lor y = y \lor x \qquad \qquad \max(u, v) = \max(v, u)$$

$$x \land y = y \land x \qquad \qquad \min(u, v) = \min(u, v)$$

$$x \lor (y \lor z) = (x \lor y) \lor z \qquad \max(u, \max(v, w)) = \max(\max(u, v), w)$$

$$x \lor y \qquad \qquad u \widetilde{\lor} v = \max(u, v) \\ x \land y \qquad \qquad u \widetilde{\land} v = \max(u, v)$$

$$x \lor y = y \lor x \qquad \qquad \max(u, v) = \max(v, u)$$

$$x \land y = y \land x \qquad \qquad \min(u, v) = \min(u, v)$$

$$x \lor (y \lor z) = (x \lor y) \lor z \qquad \max(u, \max(v, w)) = \max(\max(u, v), w)$$

$$x \land (y \land z) = (x \land y) \land z \qquad \min(u, \min(v, w)) = \min(\min(u, v), w)$$

$$x \lor y \qquad \qquad u \widetilde{\lor} v = \max(u, v) \\ x \land y \qquad \qquad u \widetilde{\land} v = \max(u, v)$$

$$x \lor y = y \lor x \qquad \qquad \max(u, v) = \max(v, u)$$

$$x \land y = y \land x \qquad \qquad \min(u, v) = \min(u, v)$$

$$x \lor (y \lor z) = (x \lor y) \lor z \qquad \max(u, \max(v, w)) = \max(\max(u, v), w)$$

$$x \land (y \land z) = (x \land y) \land z \qquad \min(u, \min(v, w)) = \min(\min(u, v), w)$$

$$\overline{x \lor y} = \overline{x} \land \overline{y} \qquad 1 - \max(u, v) = \min(1 - u, 1 - v)$$

$$x \lor y \qquad \qquad u \widetilde{\lor} v = \max(u, v) \\ x \land y \qquad \qquad u \widetilde{\land} v = \max(u, v)$$

$$x \lor y = y \lor x \qquad \qquad \max(u, v) = \min(v, u)$$

$$x \land y = y \land x \qquad \qquad \min(u, v) = \min(u, v)$$

$$x \lor (y \lor z) = (x \lor y) \lor z \qquad \qquad \max(u, \max(v, w)) = \max(\max(u, v), w)$$

$$x \land (y \land z) = (x \land y) \land z \qquad \qquad \min(u, \min(v, w)) = \min(\min(u, v), w)$$

$$\overline{x \lor y} = \overline{x} \land \overline{y} \qquad \qquad 1 - \max(u, v) = \min(1 - u, 1 - v)$$

$$\overline{x \land y} = \overline{x} \lor \overline{y} \qquad \qquad 1 - \min(u, v) = \max(1 - u, 1 - v)$$

$$x \lor y$$
 $u\widetilde{\lor}v = u + v - uv$ $x \land y$ $u\widetilde{\land}v = uv$

$$x \lor y$$

$$x \land y$$

$$u \widetilde{\lor} v = u + v - uv$$

$$u \widetilde{\land} v = uv$$

$$x \lor y = y \lor x$$

$$u + v - uv = v + u - vu$$

$$x \lor y$$

$$x \land y$$

$$u \lor v = u + v - uv$$

$$u \land v = uv$$

$$x \lor y = y \lor x$$

$$u + v - uv = v + u - vu$$

$$x \land y = y \land x$$

$$uv = vu$$

$$x \lor y \qquad \qquad u \widetilde{\lor} v = u + v - uv x \land y \qquad \qquad u \widetilde{\land} v = uv$$

$$x \lor y = y \lor x \qquad \qquad u + v - uv = v + u - vu$$

$$x \land y = y \land x \qquad \qquad uv = vu$$

$$x \lor (y \lor z) = (x \lor y) \lor z \qquad \qquad u + (v + w - vw) - u(v + u - vw) = = u + v + w - uv - uw - vw + uvw$$

$$x \lor y x \land y u \lor v = u + v - uv u \lor v = uv$$

$$x \lor y = y \lor x u + v - uv = v + u - vu$$

$$x \land y = y \land x uv = vu$$

$$x \lor (y \lor z) = (x \lor y) \lor z x \land (y \land z) = (x \land y) \land z$$

$$u + (v + w - vw) - u(v + u - vw) = uv$$

$$= u + v + w - uv - uw - vw + uvw$$

$$u(vw) = (uv)w$$

$$x \lor y \qquad u \widetilde{\lor} v = u + v - uv x \land y \qquad u \widetilde{\land} v = uv$$

$$x \lor y = y \lor x \qquad u + v - uv = v + u - vu$$

$$x \land y = y \land x \qquad uv = vu$$

$$x \lor (y \lor z) = (x \lor y) \lor z \qquad u + (v + w - vw) - u(v + u - vw) = = u + v + w - uv - uw - vw + uvw$$

$$x \land (y \land z) = (x \land y) \land z \qquad u(vw) = (uv)w$$

$$\overline{x \lor y} = \overline{x} \land \overline{y} \qquad 1 - (u + v - vw) = 1 - u - v + vw = = (1 - u)(1 - v)$$

Нормы и конормы

Функции T,S:[0,1] imes [0,1] o [0,1] называют нормой и конормой, если они:

- монотонны;
- 2. ассоциативны;
- 3. коммутативны;
- 4. связаны соотношениями де Моргана 1-T(u,v)=S(1-u,1-v) и 1-S(u,y)=T(1-u,1-v);
- 5. удовлетворяют граничным условиям T(0,0)=T(0,1)=T(1,0)=0, T(1,1)=1, S(1,1)=S(0,1)=T(1,0)=1, S(0,0)=0

Нечеткие множества

 $\mathbb{A}, A \subset \mathbb{A}, a \in A$

 $\mathbb{M},\ M\widetilde{\subset}\mathbb{M},\ m\widetilde{\in}M$

$$\mathbb{A}$$
, $A \subset \mathbb{A}$, $a \in A$

$$(a,A)\stackrel{\in}{\to} \{0,1\}$$

$$\mathbb{M}$$
, $M \widetilde{\subset} \mathbb{M}$, $m \widetilde{\in} M$

$$(m,M)\stackrel{\widetilde{\in}}{\to} [0,1]$$

 $\mu_M(m),\ \mu_M:\mathbb{M}\to [0,1]$

$$A, A \subset A, a \in A \qquad \qquad \mathbb{M}, M \widetilde{\subset} \mathbb{M}, m \widetilde{\in} M$$

$$(a, A) \stackrel{\epsilon}{\to} \{0, 1\} \qquad \qquad (m, M) \stackrel{\tilde{\epsilon}}{\to} [0, 1]$$

$$\mu_M(m), \mu_M : \mathbb{M} \to [0, 1]$$

$$A = \{a_1, a_2, \dots, a_n\} \qquad M = \left(\frac{\mu(m_1)}{m_1} + \frac{\mu(m_2)}{m_2} + \dots + \frac{\mu(m_n)}{m_n}\right)$$

$$\mathbb{A}, \ A \subset \mathbb{A}, \ a \in A \qquad \qquad \mathbb{M}, \ M \widetilde{\subset} \mathbb{M}, \ m \widetilde{\in} M$$

$$(a, A) \stackrel{\epsilon}{\to} \{0, 1\} \qquad \qquad (m, M) \stackrel{\widetilde{\epsilon}}{\to} [0, 1]$$

$$\mu_M(m), \ \mu_M : \mathbb{M} \to [0, 1]$$

$$A = \{a_1, a_2, \dots, a_n\} \qquad \qquad M = \left(\frac{\mu(m_1)}{m_1} + \frac{\mu(m_2)}{m_2} + \dots + \frac{\mu(m_n)}{m_n}\right)$$

$$B \subset A \Leftrightarrow \forall b \ (b \in B \to b \in A) \qquad \qquad N \widetilde{\subset} M \Leftrightarrow \forall m \ \mu_N(m) \leq \mu_M(m)$$

$$A, A \subset A, a \in A \qquad \qquad \mathbb{M}, M \widetilde{\subset} \mathbb{M}, m \widetilde{\in} M$$

$$(a, A) \stackrel{\epsilon}{\to} \{0, 1\} \qquad \qquad (m, M) \stackrel{\tilde{\epsilon}}{\to} [0, 1]$$

$$\mu_{M}(m), \mu_{M} : \mathbb{M} \to [0, 1]$$

$$A = \{a_{1}, a_{2}, \dots, a_{n}\} \qquad M = \left(\frac{\mu(m_{1})}{m_{1}} + \frac{\mu(m_{2})}{m_{2}} + \dots + \frac{\mu(m_{n})}{m_{n}}\right)$$

$$B \subset A \Leftrightarrow \forall b \ (b \in B \to b \in A) \qquad N \widetilde{\subset} M \Leftrightarrow \forall m \ \mu_{N}(m) \leq \mu_{M}(m)$$

$$c \in A \cap B \Leftrightarrow c \in A \land c \in B \qquad \mu_{M}(m) \cap \mu_{N}(m) = T(\mu_{M}(m), \mu_{N}(m))$$

$$A, A \subset A, a \in A \qquad M, M \subset M, m \in M$$

$$(a, A) \stackrel{\leq}{\to} \{0, 1\} \qquad (m, M) \stackrel{\tilde{\leftarrow}}{\to} [0, 1]$$

$$\mu_{M}(m), \mu_{M} : M \to [0, 1]$$

$$A = \{a_{1}, a_{2}, \dots, a_{n}\} \qquad M = \left(\frac{\mu(m_{1})}{m_{1}} + \frac{\mu(m_{2})}{m_{2}} + \dots + \frac{\mu(m_{n})}{m_{n}}\right)$$

$$B \subset A \Leftrightarrow \forall b \ (b \in B \to b \in A) \qquad N \subset M \Leftrightarrow \forall m \ \mu_{N}(m) \leq \mu_{M}(m)$$

$$c \in A \cap B \Leftrightarrow c \in A \land c \in B \qquad \mu_{M \cap N}(m) = \mu_{M}(m) \wedge \mu_{N}(m) = T(\mu_{M}(m), \mu_{N}(m))$$

$$c \in A \cup B \Leftrightarrow c \in A \lor c \in B \qquad \mu_{M \cap N}(m) = \mu_{M}(m) \wedge \mu_{N}(m) = S(\mu_{M}(m), \mu_{N}(m))$$

$$A = \{a_1, a_2, a_3\},\ B = \{b_1, b_2, b_3\},\ C = \{c_1, c_2\}$$

$$\rho \subset A \times B = \begin{array}{c|cccc}
 & b_1 & b_2 & b_3 \\
\hline
a_1 & 0 & 1 & 0 \\
a_2 & 1 & 0 & 1 \\
a_3 & 0 & 0 & 0
\end{array}$$

$$\sigma \subset B \times C = egin{array}{c|ccc} & c_1 & c_2 \\ \hline b_1 & 1 & 0 \\ b_2 & 0 & 1 \\ b_3 & 0 & 1 \\ \hline \end{array}$$

$$A = \{a_{1}, a_{2}, a_{3}\},\ B = \{b_{1}, b_{2}, b_{3}\},\ C = \{c_{1}, c_{2}\}$$

$$\rho(a) = \{b : (a, b) \in \rho\}$$

$$\rho(a_{1}) = \{b_{2}\},\ \rho(a_{2}) = \{b_{1}, b_{3}\},\ \rho(a_{3}) = \emptyset$$

$$\rho(a_{1}) = \{b_{2}\},\ \rho(a_{2}) = \{b_{1}, b_{3}\},\ \rho(a_{3}) = \emptyset$$

$$\sigma(b_{1}) = c_{1},\ \sigma(b_{2}) = c_{2},\ \sigma(b_{2}) = c_{2},\ \sigma(b_{3}) = c_{2}$$

$$\sigma(b_{3}) = c_{2}$$

$$A = \{a_{1}, a_{2}, a_{3}\},\ B = \{b_{1}, b_{2}, b_{3}\},\ C = \{c_{1}, c_{2}\}$$

$$\sigma^{-1} = \{(c, b) : (b, c) \in \sigma\}$$

$$\sigma^{-1}(c_{1}) = b_{1}$$

$$\sigma^{-1}(c_{2}) = \{b_{2}, b_{3}\}$$

$$\sigma^{-1}(c_{2}) = \{b_{2}, b_{3}\}$$

$$\sigma^{-1}(c_{2}) = \{b_{2}, b_{3}\}$$

$$\sigma^{-1}(c_{2}) = \{b_{2}, b_{3}\}$$

$$\sigma^{-1}(b_{1}) = a_{2}$$

$$\rho^{-1}(b_{2}) = a_{1}$$

$$\rho^{-1}(b_{3}) = a_{2}$$

$$\sigma^{-1}(c_{3}) = a_{2}$$

$$\sigma^{-1}(c_{4}) = b_{5}$$

$$\sigma^{-1}(c_{5}) = \{b_{5}, b_{5}\}$$

$$\sigma^{-1}(c_{5}) = \{b_{5}, b_{5}\}$$

$$\sigma^{-1}(c_{5}) = \{c_{5}, c_{5}\}$$

$$\sigma^{-1}(c$$

$$A = \{a_1, a_2, a_3\},\ B = \{b_1, b_2, b_3\},\ C = \{c_1, c_2\}$$

$$\rho \subset A \times B = \begin{array}{c|cccc}
 & b_1 & b_2 & b_3 \\
\hline
a_1 & 0 & 1 & 0 \\
a_2 & 1 & 0 & 1 \\
a_3 & 0 & 0 & 0
\end{array}$$

$$\sigma \subset B imes C = egin{array}{c|c} c_1 & c_2 \ \hline b_1 & 1 & 0 \ b_2 & 0 & 1 \ b_3 & 0 & 1 \ \hline \end{array}$$

$$\rho \circ \sigma = \{ (a, c) : \exists b \\ (a, b) \in \rho, (b, c) \in \sigma \}$$

$$\rho \circ \sigma = \frac{\begin{vmatrix} c_1 & c_2 \\ a_1 & 0 & 1 \\ a_2 & 1 & 1 \\ a_3 & 0 & 0 \end{vmatrix}$$

$$A \subset \mathbb{A}, \ \rho \subset \mathbb{A} \times \mathbb{B}$$

$$A \subset \mathbb{A}, \ \rho \subset \mathbb{A} \times \mathbb{B}$$

$$\rho(A) = \{b \in \mathbb{B} : \exists a \in A, (a, b) \in \rho\}$$

$$A \subset \mathbb{A}, \ \rho \subset \mathbb{A} \times \mathbb{B}$$

$$\rho(A) = \{b \in \mathbb{B} : \exists a \in A, (a, b) \in \rho\}$$

$$= \bigcup_{a \in \mathbb{A}} \{\underbrace{b, \ a \in A \land (a, b) \in \rho}_{\rho(A/a) \neq \rho(a)}\}$$

$$A \subset \mathbb{A}, \ \rho \subset \mathbb{A} \times \mathbb{B}$$

$$\rho(A) = \{b \in \mathbb{B} : \exists a \in A, (a, b) \in \rho\}$$

$$= \bigcup_{a \in \mathbb{A}} \{\underbrace{b, \ a \in A \land (a, b) \in \rho}_{\rho(A/a) \neq \rho(a)}\}$$

$$b \in \rho(A/a) \Leftrightarrow a \in A \land (a, b) \in \rho$$

$$A \subset \mathbb{A}, \ \rho \subset \mathbb{A} \times \mathbb{B}$$

$$\rho(A) = \{b \in \mathbb{B} : \exists a \in A, (a, b) \in \rho\}$$

$$= \bigcup_{a \in \mathbb{A}} \{\underbrace{b, \ a \in A \land (a, b) \in \rho}_{\rho(A/a) \neq \rho(a)}\}$$

$$b \in \rho(A/a) \Leftrightarrow a \in A \land (a, b) \in \rho$$

$$M \widetilde{\subset} \mathbb{M}, \ \sigma \widetilde{\subset} \mathbb{M} \times \mathbb{N}$$

$$A \subset \mathbb{A}, \ \rho \subset \mathbb{A} \times \mathbb{B}$$

$$\rho(A) = \{b \in \mathbb{B} : \exists a \in A, (a, b) \in \rho\}$$

$$= \bigcup_{a \in \mathbb{A}} \{\underbrace{b, \ a \in A \land (a, b) \in \rho}_{\rho(A/a) \neq \rho(a)}\}$$

$$b \in \rho(A/a) \Leftrightarrow a \in A \land (a, b) \in \rho$$

$$M \subset \mathbb{M}, \ \sigma \subset \mathbb{M} \times \mathbb{N}$$

$$n \in \sigma(M/m) = m \in M \curvearrowright (m, n) \in \sigma$$

$$A \subset \mathbb{A}, \ \rho \subset \mathbb{A} \times \mathbb{B}$$

$$\rho(A) = \{b \in \mathbb{B} : \exists a \in A, (a, b) \in \rho\}$$

$$= \bigcup_{a \in \mathbb{A}} \{\underbrace{b, \ a \in A \land (a, b) \in \rho}_{\rho(A/a) \neq \rho(a)}\}$$

$$b \in \rho(A/a) \Leftrightarrow a \in A \land (a, b) \in \rho$$

$$M \subset \mathbb{M}, \ \sigma \subset \mathbb{M} \times \mathbb{N}$$

$$n \in \sigma(M/m) = m \in M \land (m, n) \in \sigma$$

$$\mu_{\sigma(M/m)}(n) = T(\mu_{M}(m), \mu_{\sigma}(m, n))$$

$$A \subset \mathbb{A}, \ \rho \subset \mathbb{A} \times \mathbb{B}$$
 $ho(A) = \{b \in \mathbb{B} : \exists a \in A, (a, b) \in \rho\}$
 $= \bigcup_{a \in \mathbb{A}} \{\underbrace{b, \ a \in A \land (a, b) \in \rho}_{\rho(A/a) \neq \rho(a)}\}$
 $M \subset \mathbb{M}, \ \sigma \subset \mathbb{M} \times \mathbb{N}$
 $\mu_{\sigma(M/m)}(n) = T(\mu_{M}(m), \mu_{\sigma}(m, n))$
 $\sigma(M) = \bigcup_{m \in \mathbb{M}} \sigma(M/m)$

$$A \subset \mathbb{A}, \ \rho \subset \mathbb{A} \times \mathbb{B}$$

$$\rho(A) = \{b \in \mathbb{B} : \exists a \in A, (a, b) \in \rho\}$$

$$= \bigcup_{a \in \mathbb{A}} \{\underbrace{b, \ a \in A \land (a, b) \in \rho}_{\rho(A/a) \neq \rho(a)}\}$$

$$M \widetilde{\subset} \mathbb{M}, \ \sigma \widetilde{\subset} \mathbb{M} \times \mathbb{N}$$

$$\mu_{\sigma(M/m)}(n) = T(\mu_{M}(m), \mu_{\sigma}(m, n))$$

$$\sigma(M) = \bigcup_{m \in \mathbb{M}} \sigma(M/m)$$

$$\mu_{\sigma(M)}(n) = \underbrace{S}_{m \in \mathbb{M}} [T(\mu_{M}(m), \mu_{\sigma}(m, n))]$$

$$A \subset \mathbb{A}, \ \rho \subset \mathbb{A} \times \mathbb{B}$$

$$\rho(A) = \{b \in \mathbb{B} : \exists a \in A, (a, b) \in \rho\}$$

$$= \bigcup_{a \in \mathbb{A}} \{\underbrace{b, \ a \in A \land (a, b) \in \rho}_{\rho(A/a) \neq \rho(a)}\}$$

$$M \subset \mathbb{M}, \ \sigma \subset \mathbb{M} \times \mathbb{N}$$

$$\mu_{\sigma(M/m)}(n) = T(\mu_{M}(m), \mu_{\sigma}(m, n))$$

$$\sigma(M) = \bigcup_{m \in \mathbb{M}} \sigma(M/m)$$

$$\mu_{\sigma(M)}(n) = \sum_{m \in \mathbb{M}} [T(\mu_{M}(m), \mu_{\sigma}(m, n))]$$

$$\mu_{\sigma(M)}(n) = \max_{m \in \mathbb{M}} [\mu_{M}(m)\mu_{\sigma}(m, n)]$$

$$\mathbb{M} = \left\{ \begin{array}{c} \textcircled{2} & , & \textcircled{2} \\ \end{array} \right\}$$

$$\mathbb{C} = \left\{ \begin{array}{c} \textcircled{2} & , & \textcircled{2} \\ \end{array} \right\}$$

$$\rho \widetilde{\subset} \mathbb{C} \times \mathbb{M}$$

$$\mathbb{M} = \left\{ \begin{array}{c} \textcircled{2} & , & \textcircled{2} \\ \end{array} \right\}$$

$$\mathbb{C} = \left\{ \begin{array}{c} \textcircled{2} & , & \textcircled{2} \\ \end{array} \right\}$$

$$\rho \widetilde{\subset} \mathbb{C} \times \mathbb{M}$$

ρ		
	0.8	8.0
	0.8	0.2
	0.2	8.0
	0.2	0.2

$$\mathbb{M} = \left\{ \begin{array}{c} \textcircled{2} & , & \textcircled{2} \\ \end{array} \right\}$$

$$\mathbb{C} = \left\{ \begin{array}{c} \textcircled{2} & , & \textcircled{2} \\ \end{array} \right\}$$

$$\rho \widetilde{\subset} \mathbb{C} \times \mathbb{M}$$

$$\mu_{\rho(C)}(m) = \max_{c \in \mathbb{C}} \left[\mu_C(c) \mu_{\rho}(c, m) \right]$$

$$\mathbb{M} = \left\{ \begin{array}{c} \textcircled{2} & , & \textcircled{2} \\ \end{array} \right\}$$

$$\mathbb{C} = \left\{ \begin{array}{c} \textcircled{2} & , & \textcircled{2} \\ \end{array} \right\}$$

$$\rho \widetilde{\subset} \mathbb{C} \times \mathbb{M}$$

$$\mu_{
ho(C)}(m) = \max_{c \in \mathbb{C}} \left[\mu_C(c) \mu_{
ho}(c, m) \right]$$

$$\rho\left(\frac{1}{\clubsuit}\right) = \left(\frac{0.8}{\textcircled{0}} + \frac{0.2}{\textcircled{0}}\right)$$

$$\mu_{\rho(C)}(m) = \max_{c \in \mathbb{C}} \left[\mu_{C}(c) \mu_{\rho}(c, m) \right]$$

$$\rho\left(\frac{1}{2}\right) = \left(\frac{0.8}{2} + \frac{0.2}{2}\right)$$

$$\rho\left(\frac{1}{2}\right) = \left(\frac{0.8}{2} + \frac{0.8}{2}\right)$$

$$\mu_{\rho(C)}(m) = \max_{c \in \mathbb{C}} \left[\mu_{C}(c) \mu_{\rho}(c, m) \right]$$

$$\rho\left(\frac{1}{2}\right) = \left(\frac{0.8}{2} + \frac{0.2}{2}\right)$$

$$\rho\left(\frac{1}{2}\right) = \left(\frac{0.8}{2} + \frac{0.8}{2}\right)$$

$$\rho\left(\frac{1}{2}\right) = \left(\frac{0.2}{2} + \frac{0.2}{2}\right)$$

$$\mathbb{M} = \left\{ \begin{array}{c} \textcircled{2} & , & \textcircled{2} \\ \end{array} \right\}$$

$$\mathbb{C} = \left\{ \begin{array}{c} \textcircled{2} & , & \textcircled{2} \\ \end{array} \right\}$$

$$\rho \widetilde{\subset} \mathbb{C} \times \mathbb{M}$$

$$\mu_{\rho(C)}(m) = \max_{c \in \mathbb{C}} \left[\mu_C(c) \mu_{\rho}(c, m) \right]$$

$$\rho\left(\frac{0.7}{3} + \frac{0.3}{3}\right) =$$

$$\mu_{\rho(C)}(m) = \max_{c \in \mathbb{C}} \left[\mu_{C}(c) \mu_{\rho}(c, m) \right]$$

$$\rho \left(\frac{0.7}{\cancel{20}} + \frac{0.3}{\cancel{20}} \right) = \frac{1}{\cancel{20}}$$

$$\frac{\max(0.7 \cdot 0.2, 0.3 \cdot 0.2)}{\cancel{20}}$$

$$\frac{\max(0.7 \cdot 0.2, 0.3 \cdot 0.8)}{\cancel{20}}$$

$$\mu_{\rho(C)}(m) = \max_{c \in \mathbb{C}} \left[\mu_{C}(c) \mu_{\rho}(c, m) \right]$$

$$\rho\left(\frac{0.7}{\cancel{20}} + \frac{0.3}{\cancel{20}}\right) =$$

$$\left(\frac{\max(0.7 \cdot 0.2, 0.3 \cdot 0.2)}{\cancel{20}}\right)$$

$$= \left(\frac{0.16}{\cancel{20}} + \frac{0.24}{\cancel{20}}\right)$$

$$\mu_{\rho(C)}(m) = \max_{c \in \mathbb{C}} \left[\mu_{C}(c) \mu_{\rho}(c, m) \right]$$

$$\rho\left(\frac{0.8}{200} + \frac{0.2}{200}\right) = \left(\frac{\max(0.8 \cdot 0.2, 0.2 \cdot 0.2)}{200}\right)$$

$$\frac{\max(0.8 \cdot 0.2, 0.2 \cdot 0.8)}{200}$$

$$= \left(\frac{0.16}{200} + \frac{0.16}{2000}\right)$$

$$\mu_{
ho(C)}(m) = \underset{c \in \mathbb{C}}{\mathcal{S}} \left[\mu_{C}(c) \mu_{
ho}(c, m) \right]$$

$$\rho\left(\frac{0.8}{200} + \frac{0.2}{200}\right) = \\ \begin{pmatrix} 0.8 \cdot 0.2 + 0.2 \cdot 0.2 - \\ -0.8 \cdot 0.2 \cdot 0.2 \cdot 0.2 \end{pmatrix} \\ \frac{0.8 \cdot 0.2 + 0.2 \cdot 0.8 - \\ -0.8 \cdot 0.2 \cdot 0.8 \cdot 0.2 \end{pmatrix} \\ = \left(\frac{0.1936}{200} + \frac{0.2944}{200}\right)$$

Нечеткие отношения

$$\mathbb{M} = \left\{ \begin{array}{c} \textcircled{2} & , & \textcircled{2} \\ \end{array} \right\}$$

$$\mathbb{C} = \left\{ \begin{array}{c} \textcircled{2} & , & \textcircled{2} \\ \end{array} \right\}$$

$$\rho \widetilde{\subset} \mathbb{C} \times \mathbb{M}$$

$$\mu_{
ho(C)}(m) = \max_{c \in \mathbb{C}} \left[\mu_C(c) \mu_{
ho}(c, m) \right]$$

$$\rho\left(\frac{0.4}{\red M}+\frac{0.5}{\red M}\right)=$$

Нечеткие отношения

$$\mu_{\rho(C)}(m) = \max_{c \in \mathbb{C}} \left[\mu_C(c) \mu_{\rho}(c, m) \right]$$

$$\rho\left(\frac{0.4}{\text{M}} + \frac{0.5}{\text{M}}\right) = \left(\frac{\max(0.4 \cdot 0.2, 0.5 \cdot 0.8)}{\text{M}}\right)$$

$$\max(0.4 \cdot 0.8, 0.5 \cdot 0.2)$$

Нечеткие отношения

$$\mu_{\rho(C)}(m) = \max_{c \in \mathbb{C}} \left[\mu_{C}(c) \mu_{\rho}(c, m) \right]$$

$$\rho\left(\frac{0.4}{\cancel{\textcircled{a}}} + \frac{0.5}{\cancel{\textcircled{b}}}\right) =$$

$$\left(\frac{\max(0.4 \cdot 0.2, 0.5 \cdot 0.8)}{\cancel{\textcircled{a}}}\right)$$

$$\frac{\max(0.4 \cdot 0.8, 0.5 \cdot 0.2)}{\cancel{\textcircled{a}}}$$

$$= \left(\frac{0.4}{\cancel{\textcircled{a}}} + \frac{0.32}{\cancel{\textcircled{a}}}\right)$$

$$\mathbb{M} = \left\{ \begin{array}{c} \textcircled{2} & , \begin{array}{c} \textcircled{2} \\ \end{array} \right\}$$

$$\mathbb{C} = \left\{ \begin{array}{c} \textcircled{2} & , \begin{array}{c} \textcircled{2} \\ \end{array} \right\}, \begin{array}{c} \textcircled{2} \\ \end{array} \right\}$$

$$P \subset \mathbb{C} \times \mathbb{M}$$

$$P = \left\{ \begin{array}{c} \textcircled{2} \\ \end{array} \right\}, \begin{array}{c} \textcircled{3} \\ \end{array} \right\}$$

$$0.8 \quad 0.8$$

$$0.8 \quad 0.2$$

$$0.2 \quad 0.8$$

$$0.2 \quad 0.2$$

$$0.2 \quad 0.2$$

$\sigma\widetilde{\subset}\mathbb{M}\times\mathbb{H}$				
σ		5	18	
	0.5	0.7	0.3	
	0.5	0.3	0.7	
$\tau =$	$\rho \circ \sigma$,	$\tau\widetilde{\subset}\mathbb{C}$	$\times \mathbb{H}$	
au		5	10	
TO				

1	9					
		0.	8	0.	8	
		0.	8	0.:	2	
	Property of the second	0.	2	0.	8	
*		0.	2	0.:	2	
σ					18	
	0	.5	0.	7	0.3	_
	0	.5	0.	3	0.7	

ļ	9			The state of the s		
		0.	8	0.8	8	
		0	8	0.3	2	
		0	2	0.8	8	
N		0.	2	0.3	2	
σ						
	0	.5	0.	7	0.3	_
4.5	_	_		_		

$$au=
ho\circ\sigma$$
 $\mu_{ au}(c,h)=\max_{m\in\mathbb{M}}\left[\mu_{
ho}(c,m)\mu_{\sigma}(m,h)
ight]$

ρ		
	8.0	8.0
	8.0	0.2
	0.2	8.0
XO	0.2	0.2

σ			T
	0.5	0.7	0.3
	0.5	0.3	0.7

f)					
		0.	8	0.	8	
		0.	8	0.:	2	
	No.	0.:	2	0.	8	
		0.:	2	0.:	2	
σ				À	X	
48	_	_	^ -	, _	^	

$$\tau = \rho \circ \sigma$$

$$\mu_{\tau}(c, h) = \max_{m \in \mathbb{M}} \left[\mu_{\rho}(c, m) \mu_{\sigma}(m, h) \right]$$

$$\mu_{\tau} \left(\underbrace{ }_{m \in \mathbb{M}} \right) = \max_{m \in \mathbb{M}} \left[0.8 \cdot 0.7, 0.2 \cdot 0.3 \right] = 0.56$$

$$\mu_{\tau} \left(\underbrace{ }_{m \in \mathbb{M}} \right) = \max_{m \in \mathbb{M}} \left[0.8 \cdot 0.3, 0.2 \cdot 0.7 \right] = 0.24$$

ho			
	8.0	0.8	
	8.0	0.2	
	0.2	8.0	
	0.2	0.2	
	a		

σ			
	0.5	0.7	0.3
	0.5	0.3	0.7

ho			
	8.0	0.8	
	8.0	0.2	
	0.2	8.0	
	0.2	0.2	
	a		

σ			
	0.5	0.7	0.3
	0.5	0.3	0.7

ho			
	0.8	0.8	
	8.0	0.2	
	0.2	0.8	
T O	0.2	0.2	
σ			

σ		24	TA
	0.5	0.7	0.3
	0.5	0.3	0.7

ho			
	0.8	0.8	
	8.0	0.2	
	0.2	8.0	
*	0.2	0.2	
σ			

σ		2	18
	0.5	0.7	0.3
	0.5	0.3	0.7

	o			
		0.8	0	.8
		0.8	0	.2
		0.2	0	.8
K		0.2	0	.2
σ				
	0	.5	0.7	0.3
	0	.5	0.3	0.7

		$\tau =$	$\rho \circ \sigma$		
$\iota_{ au}(c)$	(c,h) =	$\max_{m \in \mathbb{M}} [p]$	$u_{ ho}(c, m)$	$\mu_{\sigma}(m)$, h)]
	au				
		0.4	0.56	0.56	
	₹0				

ŀ	9							
		0.8	0	.8				
		0.8	0	.2				
	19	0.2	0	8.				
		0.2	0	.2				
σ								
	0	.5	0.7	0.	3			
	0	.5	0.3	0.	7			

		$\tau = 0$	$\rho \circ \sigma$		
$\iota_{ au}(c)$	(x,h) =	$\max_{m\in\mathbb{M}}\left[\mu\right]$	$\iota_{ ho}(c,m)$	$\mu_{\sigma}(m,$	h)]
	au				
		0.4	0.56	0.56	
		0.4	0.58	0.24	

,	o			**		
		0.8	3 (8.0		
4		0.8	3 (0.2		
		0.2		0.8		
		0.2	2 (0.2		
σ						
	0.	.5	0.7	0	.3	
	0.	.5	0.3	0	.7	

		au = 1	$\rho \circ \sigma$		
$\mu_{ au}(c)$	(a, b) =	$\max_{m\in\mathbb{M}}[\mu]$	$u_{ ho}(c, m)$	$\mu_{\sigma}(m)$, h)
	au				
		0.4	0.56	0.56	
		0.4	0.58	0.24	
		0.4	0.24	0.58	
	7				

	ρ				A A		
-			0.	8	0	.8	
			0.	8	0	.2	
			0.	0.2		.8	
1	P		0.	2	0	.2	
σ							
		0	5	0.	7	0.3	3
4.5		٥	_	Λ	2	Λ-	,