Aula VII: 1 de 14

Aula 07 – Circuitos Síncronos

Aula VII: 2 de 14

Tópicos da aula

- Conceitos de sincronismo
- Flip-flops
- Registradores
- Máquinas de estado

Aula VII: 3 de 14

Conceitos iniciais

Operação de um latch e um flip-flop.

Aula VII: 4 de 14

Conceitos iniciais

```
(ck'EVENT AND ck ='1') -- borda de subida
(ck'EVENT AND ck ='0') -- borda de descida
(NOT ck'STABLE AND ck ='1') -- borda de subida
(NOT ck'STABLE AND ck ='0') -- borda de descida
```

Teste da ocorrência de bordas de subida e descida.

Aula VII: 5 de 14

Conceitos iniciais

Exemplos de operações de inicialização em flip-flops.

Aula VII: 6 de 14

Exercícios

- Implemente um Flip-flop tipo D com reset síncrono
- Implemente um Flip-flop tipo D com reset assíncrono

Aula VII: 7 de 14

Exercícios

74AC11074 DUAL POSITIVE-EDGE-TRIGGERED D-TYPE FLIP-FLOP WITH CLEAR AND PRESET

SCAS499A - DECEMBER 1986 - REVISED APRIL 1996

- Center-Pin V_{CC} and GND Configurations Minimize High-Speed Switching Noise
- EPIC™ (Enhanced-Performance Implanted CMOS) 1-µm Process
- 500-mA Typical Latch-Up Immunity at 125°C
- Package Options Include Plastic Small-Outline (D) and Thin Shrink Small-Outline (PW) Packages, and Standard Plastic 300-mil DIPs (N)

description

This device contains two independent positive-edge-triggered D-type flip-flops. A low level at the preset (PRE) or clear (CLR) input sets or resets the outputs regardless of the levels of the other inputs. When PRE and CLR are inactive (high), data at the data (D) input that meets the setup-time requirements are transferred to the outputs on the low-to-high transition of the clock (CLK) pulse. Clock triggering occurs at a voltage level and is not directly related to the rise time of the clock pulse. Following the hold-time interval, data at the D input may be changed without affecting the levels at the outputs.

The 74AC11074 is characterized for operation from -40°C to 85°C.

FUNCTION TABLE

INPUTS				OUTPUT	
PRE	CLR	CLK	D	Q	Q
L	Н	X	Х	Н	L
Н	L	X	X	L	н
L	L	X	X	нт	нt
Н	Н	†	Н	Н	L
Н	Н	†	L	L	н
н	н	L	X	QO	Qo

[†] This configuration is nonstable; that is, it does not persist when PRE or CLR returns to its inactive (high) level.

Aula VII: 8 de 14

Registradores

- Podem ser entendidos como uma sequência de flip-flops tipo D em paralelo
- Importantes como forma de memorização de dados

Aula VII: 9 de 14

Exercícios

- Implemente um registrador com carregamento (LOAD) assíncrono
- Implemente um registrador com carregamento (LOAD) síncrono

Aula VII: 10 de 14

Máquinas de Estados

Aula VII: 11 de 14

Máquinas de Estados

Exemplo: diagrama de estado e carta de tempo de máquinas *Mealy* e *Moore*.

Aula VII: 12 de 14

```
U_MACHINE : process(i CLK, i RST)
 75
 76
           begin
 77
               if (i RST = '1') then
 78
                   w EN
                               <= '0';
                   w_CLR_BUSY <= '1';
 79
 80
                   w STATE
                             <= st IDLE;
 81
 82
               elsif rising edge (i CLK) then
 83
                   case w STATE is
 84
                           when st IDLE =>
                               w_CLR_BUSY <= '0';
 85
 86
                               if (i_REQ = '1') then
 87
                                   w EN <= '1';
 88
 89
                                   w STATE <= st UPDATE;
 90
                               else
 91
                                   w STATE <= st IDLE;
 92
                               end if;
 93
                           when st UPDATE =>
 94
                               w EN <= '0';
 95
                               if (w BUSY = '1') then
 96
                                  w CLR BUSY <= '1';
                                   w STATE <= st IDLE;
 97
 98
                               else
 99
                                   w STATE <= st UPDATE;
                               end if;
100
101
                           when others =>
102
                               w STATE <= st IDLE;
103
                   end case:
104
               end if;
105
           end process U MACHINE;
```


Aula VII: 13 de 14

Exercícios

Implemente uma máquina de estados que opere como cronômetro e apresente as seguintes funcionalidades: (1) START, (2) STOP, (3) RESTART

Aula VII: 14 de 14

FIM AULA VII