(1) 9 > the number of boot failure before Periya · S. Kulkarni -> follows geometric distribution. Pgck) = (1-9) q - hypothesis space. la performance function: 1 parameter - Maximum likelihood estimation.

(3) Most likely parameter - maximum apostierior probability → Analytic optimization of gradient ascent.

P(D/9) = TT Pg(Ki)

i=1 > optimization criterion.

9 *= argmaxq P(D/q) Computing the derivative. $\frac{\partial P(D/q)}{\partial q} = \frac{\partial}{\partial q} \left(\frac{1}{1} P_q(K_i) \right) = \frac{\partial}{\partial q} \left(\frac{1}{1} P_q(K_i/q) \right)$ => fating log on both side! 3 (In. fi P(Kilq)) = 3 Eln P(Kilq) = \(\frac{1}{20} \) en PCKilq) = 50 en [Rg(1-9) *9] $= \underbrace{2}_{2} \left[\ln (1-q)^{E-1} + \ln q \right]$ $= \underbrace{\sum_{j=0}^{N} \left[(k-1) \ln (1-q) + \ln q \right]}_{= \underbrace{\sum_{j=0}^{N} (k-1) \ln (1-q)}_{= \underbrace{\sum_{j=0}^{N}$

$$= \sum \left[\frac{(k-1)}{1-q} + \frac{1}{q} \right] = \sum \left[\frac{1-k}{1-q} + \frac{1}{q} \right]$$

$$= \sum \left[\frac{1}{1-q} - \frac{k}{1-q} + \frac{1}{q} \right] = \frac{n}{1-q} - \frac{2ki}{1-q} + \frac{n}{2}$$
Thusfore: $\frac{\partial}{\partial q} \ln p(p/q) = \frac{n}{1-q} - \frac{2ki}{1-q} + \frac{n}{q}$

$$\frac{n}{1-q} - \frac{\sum ki}{1-q} + \frac{n}{q} = 0$$

$$-\frac{\sum ki}{1-q} = -\frac{n}{q} - \frac{n}{1-q}$$

$$-\frac{\sum ki}{1-q} = \frac{n}{q} \cdot \frac{1-q}{1-q}$$

$$= \frac{n(1-q) + nq}{q(1-q)}$$

$$= \frac{n}{q} \cdot \frac{n-nq}{q(1-q)}$$

(16) Data: 1,3,1,2,1,1,2,2,3,3

$$9 = \frac{n}{5ki} = \frac{n}{(1+3+1+2+1+1+2+2+3+3)}$$

$$9 = \frac{10}{19} = \frac{0.52.631}{19}$$

(C) Beta distribution Pa,B(9) = 92-(1-9)B-1 \Rightarrow argman P(q/D) = argman P(D/q) P(q)ignore PCD) (does not depend on q) 9map = argmany P(D/q)*P(q) = argmany [TT P(Ki/q)] * P(q) Apply log function. ln (9map) = argmax log P(9/D) = argmang flog P(ki/g) + log P(g)]
Beto $\Rightarrow \text{ differentiating 4 equating to 0} \\ \text{From. equation 0} \text{ in la } \text{ n.} \\ \frac{\partial}{\partial q} P(q|D) = \sum_{i=1}^{n} \frac{\partial}{\partial q} \left(\log TP(ki|q) + \frac{\partial}{\partial q}(\log P(q))\right)$ $=\frac{1}{2}\left[\frac{1}{1-q}-\frac{2\pi i+n}{1-q}\right]+\frac{\partial}{\partial q}\log P(q)-2$ Consider $\frac{\partial}{\partial q} \log P(q) = \frac{\partial \delta}{\partial q} \log \left[\frac{q^{\alpha - 1}(1 - q)^{\beta - 1}}{\beta(\alpha, \beta)} \right]$ = $\frac{\partial}{\partial q} \left[\log q^{\alpha + 1} + \log (1 - q)^{\beta - 1} - \log \beta(\alpha, \beta) \right]$ = $\frac{\partial}{\partial q} \left[(\alpha - 1) \log q + (\beta - 1) \log (1 - q) - \log \beta(\alpha, \beta) \right]$ = $\frac{\partial}{\partial q} \left[(\alpha - 1) \log q + (\beta - 1) \log (1 - q) - \log \beta(\alpha, \beta) \right]$

$$= \frac{\partial}{\partial q} \left[(\alpha - 1) \log q + (\beta - 1) \log (q + 1) - \log \beta (\alpha, \beta) \right]$$

$$= \frac{\partial}{\partial q} (\alpha - 1) \log q + \frac{\partial}{\partial q} (\beta - 1) \log (q + 1) - \frac{\partial}{\partial q} \log \beta (\alpha, \beta)$$

$$= (\alpha - 1) + \frac{\beta - 1}{2} (-1) + \frac{\beta - 1}{2} (-1) = \alpha - 1$$

$$= \frac{\alpha - 1}{2} + (\frac{\beta - 1}{2}) (-1) = \alpha - 1 + \frac{1 - \beta}{2} (-1) = \alpha - 1$$

$$= \frac{\alpha - 1}{2} + \frac{1}{1 - q} - \frac{\beta}{1 - q} = \alpha - \frac{1}{q} + \frac{1}{1 - q} - \frac{\beta}{1 - q} - \frac{\beta}{1 - q}$$

$$= \frac{\alpha - 1}{1 - q} + \frac{1}{1 - q} - \frac{\beta}{1 - q} + \frac{\alpha}{1 - q} - \frac{\alpha}{1 - q} + \frac{\alpha}{1 - q} - \frac{\alpha}{1 - q}$$

$$= \frac{\alpha}{1 - q} - \frac{\beta}{1 - q} + \frac{\alpha}{1 - q} - \frac{\alpha}{1 - q} + \frac{\alpha}{1 - q} + \frac{\alpha}{1 - q} + \frac{\alpha}{1 - q} + \frac{\alpha}{1 - q$$

ZKi=19 n=10 d=4.04 B=4.04 9= 10x4.04 19-2×10+10(4.04+4.04) $= \frac{40.4}{19-20+80.8} = \frac{40.4}{79.8} = \frac{0.50626}{19.8}$ (2a) KNN algorithm is the estimation/prediction of class based on k-nearest neighbors. 1step: Calculate carterian distance for each datapoint of test data against training set.

X = Training set of 12 rows.

Y = Test set for class attributes prediction. Cartesian distance formula = $= \frac{1}{2} \sqrt{(X_i - Y_i)^2}$ wher C is the features of trainingset.

n=4. there are 4 features = (Xheight - Yheight) f (Xhiameter - Idianeter) + (Xweight test set han 4. data points PICO-10085325871588, 0.10347665370087, 0.66000055127054,3.1061777 P2(0.097520805629366,0.1201052695695,0.75,1.4520706957674) P3 C0.076973086761957, 0.088622489628388,0.10604947426549, 3.5044594187921) P4(0.11843514045485,0.15,0.32839714871863, 5.6111022342157) * PI & 1st datapoint from training data. DI=(0.11782000530143,0.13836528670381, 0.3768383115941)
3.2559432114899)

CS CamScanner

Substituting the data values.

= \((0.11782000530143 - 0.10085325871588) 2+ (0.1383652867038) -0.10347666376087)2+(0.37683831159412-0.660000 55127054)2+ (3.2559432114899-3.1061777201591)2.

= 0.322669 55786,78

Similarly all distances are computed.

Similarly all distances are computed.

Ordetep: The K-nearest neighbour are classified with the step: The K-nearest neighbour dass with highest K minimum distance of choosing class with highest

occurences.

The following table shows contesian distance between point 1, point 2, point 3 and point 4 with. 12 training data

points points				
Training data	point	points poi	ut a	point 4
Plastic				2.36550154
Plastic	1 7938514	3.44839608	1.43046965	6.73408212
Metal				2.29794636
metal	1.30 8 2 227	2.91122947	0.78835544	1.34650569
Plastic				2.96854671
Ceramic	0.56691994	1.09834815	1.15525449	3.08929374
Metal	2-11322768	0.7367102	2.44 393625	4-5-5616494
Ceramic	0.2328421	1.37585618	0.80813182	2.81.003962
Ceranic	0.87 342832	0.7841341	1.40653167	3.39666661
Plastic	1.09294919	2.74229686	0.76169145	1.43830546
Cermic	1.46750984	0.26648641	1.91900233	3.97656176
plastic.	1.43127784	0.73818276	1.71439447	3.82950435
K=1	Plastic	Ceramic	Metal	Plastic
K=3	ambiguous.		Plastic	Plastic
V-5	appleignious	1		Plantic