

Final datasheet

EasyPACK[™] 1B module with CoolMOS[™] CFD7A Automotive MOSFET and PressFIT / NTC

Features

- Electrical features
 - V_{DSS} = 650 V
 - $I_{DN} = 35 A / I_{DRM} = 70 A$
 - Low switching losses
 - Low inductive design
 - Integrated snubber
- Mechanical features
 - PressFIT contact technology
 - Integrated NTC temperature sensor
 - Rugged mounting due to integrated mounting clamps

Potential applications

- Automotive auxillary applications
- · DC charger for EV
- High-frequency switching application

Product validation

• Qualified according to AQG 324, release no.: 02.1/2019

Description

F4-35MR07W1D7S8_B11/A EasyPACK[™] 1B module

Table of contents

	Description
	Features
	Potential applications
	Product validation
	Table of contents
1	Package
2	MOSFET 3
3	Body diode (MOSFET)
4	Capacitor
5	NTC-Thermistor
6	Characteristics diagrams7
7	Circuit diagram
8	Package outlines
9	Module label code
	Revision history
	Disclaimer 16

F4-35MR07W1D7S8_B11/A EasyPACK[™] 1B module

1 Package

1 Package

Table 1 Insulation coordination

Parameter	Symbol	Note or test condition	Values	Unit
Isolation test voltage	V _{ISOL}	RMS, $f = 50 \text{ Hz}, t = 1 \text{ min}$	2.5	kV
Internal isolation		basic insulation (class 1, IEC 61140)	Al ₂ O ₃	
Creepage distance	d_{Creep}	terminal to heatsink	11.5	mm
Creepage distance	d_{Creep}	terminal to terminal	6.3	mm
Clearance	d _{Clear}	terminal to heatsink	10.0	mm
Clearance	d _{Clear}	terminal to terminal	4.2	mm
Comparative tracking index	СТІ		> 200	
Relative thermal index (electrical)	RTI	housing	140	°C

Table 2 Characteristic values

Parameter	Symbol	Note or test condition	Values			Unit
			Min.	Тур.	Max.	
Module lead resistance, terminals - chip	R _{CC'+EE'}	T _H = 25 °C, per switch		3.3		mΩ
Storage temperature	$T_{\rm stg}$		-40		125	°C
Mounting force per clamp	F		20		50	N
Weight	G			24		g

Note: The current under continuous operation is limited to 25 A rms per connector pin.

2 MOSFET

Table 3 Maximum rated values

Parameter	Symbol	Note or test condition		Values	Unit
Drain-source voltage	V_{DSS}		T _{vj} = 25 °C	650	V
			T _{vj} = -40 °C	605	
Implemented drain current	I _{DN}			35	А
Continuous DC drain current	I _{DDC}	$T_{\rm vj}$ = 150 °C, $V_{\rm GS}$ = 10 V	T _H = 65 °C	30	А
Repetitive peak drain current	I _{DRM}	verified by design, t _p lim	ited by T _{vjmax}	70	А
Gate-source voltage, max. transient voltage	V_{GS}	$f_{\text{repetition}} \le 100 \text{ kHz}, t_{\text{pulse}}$	≤ 2 ns	±30	V

(table continues...)

F4-35MR07W1D7S8_B11/A EasyPACK[™] 1B module

2 MOSFET

Table 3 (continued) Maximum rated values

Parameter	Symbol	Note or test condition	Values	Unit
Gate-source voltage, max. static voltage	V_{GS}		±20	V
dv/dt ruggedness	dv/dt	V _{DS} = 0400 V	120	V/ns

Table 4 Characteristic values

Parameter	Symbol	Note or test condition			Values		Unit
				Min.	Тур.	Max.	
Drain-source on-resistance	R _{DS(on)}	I _D = 35 A	$V_{\rm GS} = 10 \text{ V},$ $T_{\rm vj} = 25 ^{\circ}\text{C}$		30	39.4	mΩ
			$V_{\rm GS} = 10 \text{ V},$ $T_{\rm vj} = 125 ^{\circ}\text{C}$		53		
			$V_{\rm GS} = 10 \text{ V},$ $T_{\rm vj} = 150 ^{\circ}\text{C}$		61		
Gate threshold voltage	V _{GS(th)}	$I_{\rm D} = 1.74 \text{ mA}, V_{\rm DS} = V_{\rm GS}, T_{\rm V}$	_{/j} = 25 °C	3.55	4	4.45	V
Total gate charge	Q_{G}	$V_{\rm DD}$ = 400 V, $V_{\rm GS}$ = 10 V			0.141		μC
Internal gate resistor	R _{Gint}	T _{vj} = 25 °C			3.8		Ω
Input capacitance	C _{ISS}	$f = 100 \text{ kHz}, V_{DS} = 400 \text{ V},$ $V_{GS} = 0 \text{ V}$	T _{vj} = 25 °C		6.95		nF
Output capacitance	C _{OSS}	$f = 100 \text{ kHz}, V_{DS} = 400 \text{ V},$ $V_{GS} = 0 \text{ V}$	T _{vj} = 25 °C		0.092		nF
Reverse transfer capacitance	C _{rss}	$f = 100 \text{ kHz}, V_{DS} = 400 \text{ V},$ $V_{GS} = 0 \text{ V}$	T _{vj} = 25 °C		0.021		nF
C _{OSS} stored energy	E _{OSS}	$V_{\rm DS}$ = 400 V, $V_{\rm GS}$ = 10 V, $T_{\rm vj}$	= 25 °C		17.9		μJ
Drain-source leakage current	I _{DSS}	$V_{\rm DS} = 650 \text{ V}, V_{\rm GS} = 0 \text{ V}$	T _{vj} = 25 °C			10	μA
Gate-source leakage current	I _{GSS}	$V_{\rm DS} = 0 \text{ V}, T_{\rm vj} = 25 ^{\circ}\text{C}$	V _{GS} = 20 V			100	nA
Turn-on delay time	t _{d on}	$I_{\rm D} = 35 \text{A}, R_{\rm Gon} = 12 \Omega,$	T _{vj} = 25 °C		146		ns
(inductive load)		$V_{\rm DD} = 400 \text{ V}, V_{\rm GS} = 0/10 \text{ V}$	T _{vj} = 125 °C		145		
			<i>T</i> _{vj} = 150 °C		145		
Rise time (inductive load)	t _r	$I_{\rm D} = 35 \text{A}, R_{\rm Gon} = 12 \Omega,$	<i>T</i> _{vj} = 25 °C		11.5		ns
		$V_{\rm DD} = 400 \text{ V}, V_{\rm GS} = 0/10 \text{ V}$	T _{vj} = 125 °C		12.4		
			T _{vj} = 150 °C		12.8		
Turn-off delay time	t _{d off}	$I_{\rm D} = 35 \text{A}, R_{\rm Goff} = 0 \Omega,$	<i>T</i> _{vj} = 25 °C		106		ns
(inductive load)		$V_{\rm DD} = 400 \text{ V}, V_{\rm GS} = 0/10 \text{ V}$	T _{vj} = 125 °C		114		
			T _{vj} = 150 °C		117		

(table continues...)

EasyPACK[™] 1B module

3 Body diode (MOSFET)

Table 4 (continued) Characteristic values

Parameter	Symbol	Note or test condition			Values		Unit
				Min.	Тур.	Max.	
Fall time (inductive load)	t _f	$I_{\rm D}$ = 35 A, $R_{\rm Goff}$ = 0 Ω , $V_{\rm DD}$ = 400 V, $V_{\rm GS}$ = 0/10 V	T _{vj} = 25 °C		4.7		ns
		$V_{\rm DD} = 400 \text{ V}, V_{\rm GS} = 0/10 \text{ V}$	T _{vj} = 125 °C		5.6		
			T _{vj} = 150 °C		5.9		
Thermal resistance, junction to heat sink	R _{thJH}	per MOSFET, $\lambda_{\text{grease}} = 1 \text{ W}$	//(m·K)		0.992		K/W
Temperature under switching conditions	T _{vj op}			-40		150	°C

3 Body diode (MOSFET)

Table 5 Maximum rated values

Parameter	Symbol	Note or test condition		Values	Unit
DC body diode forward current	I _{SD}	$T_{\rm vj} = 25 {\rm ^{\circ}C}, V_{\rm GS} = 0 {\rm V}$	T _H = 65 °C	35	А
dv/dt ruggedness	dv/dt	$V_{\rm DS} = 0400 \text{ V}, I_{\rm SD} \le 35 \text{ A}$	T _{vj} = 25 °C	70	V/ns
di/dt ruggedness	di/dt	$V_{\rm DS} = 0400 \text{V}, I_{\rm SD} \le 35 \text{A}$	T _{vj} = 25 °C	1300	A/µs

Table 6 Characteristic values

Parameter	Symbol	Note or test condition	Values			Unit	
				Min.	Тур.	Max.	
Forward voltage	V_{SD}	$I_{SD} = 35 \text{ A}, V_{GS} = 0 \text{ V}$	T _{vj} = 25 °C		1.05	1.35	V
			T _{vj} = 125 °C		0.92		
			T _{vj} = 150 °C		0.88		1

4 Capacitor

Table 7Characteristic values

Parameter	Symbol	Symbol Note or test condition	Values			Unit
			Min.	Тур.	Max.	
Rated DC voltage	V_{DC}	T = 25 °C		630		V
Capacitance value	C _{nom}	T = 25 °C		66		nF
Temperature range	$T_{\rm cap}$		-40		125	°C

EasyPACK[™] 1B module

5 NTC-Thermistor

5 NTC-Thermistor

Table 8 Characteristic values

Parameter	Symbol	Note or test condition		Values		Unit
			Min.	Тур.	Max.	
Rated resistance	R ₂₅	T _{NTC} = 25 °C	9.7	10	10.3	kΩ
Power dissipation	P ₂₅	T _{NTC} = 25 °C			20	mW
B-value	B _{25/50}	$R_2 = R_{25} \exp[B_{25/50}(1/T_2-1/(298,15 \text{ K}))]$		3447		K
B-value	B _{25/80}	$R_2 = R_{25} \exp[B_{25/80}(1/T_2-1/(298,15 \text{ K}))]$		3487		K
B-value	B _{25/100}	$R_2 = R_{25} \exp[B_{25/100}(1/T_2-1/(298,15 \text{ K}))]$		3510		K

Note: For an analytical description of the NTC characteristics please refer to AN2009-10, chapter 4

EasyPACK[™] 1B module

6 Characteristics diagrams

Characteristics diagrams 6

Output characteristic (typical), MOSFET

 $I_D = f(V_{DS})$ $V_{GS} = 10 V$

Output characteristic field (typical), MOSFET

 $I_D = f(V_{DS})$ $T_{vj} = 25 \,^{\circ}C$

Output characteristic field (typical), MOSFET

 $I_D = f(V_{DS})$

Drain source on-resistance (typical), MOSFET

 $R_{DS(on)} = f(I_D)$

 $V_{GS} = 10 V$

EasyPACK[™] 1B module

Drain source on-resistance (typical), MOSFET

$$\mathsf{R}_{\mathsf{DS}(\mathsf{on})} = \mathsf{f}(\mathsf{T}_{\mathsf{v}\mathsf{j}})$$

 $I_D = 35 A$

Transfer characteristic (typical), MOSFET

$$I_D = f(V_{GS})$$

 $V_{DS} = 20 V$

Gate-source threshold voltage (typical), MOSFET

$$V_{GS(th)} = f(T_{vj})$$

 $V_{GS} = V_{DS}$

Gate charge characteristic (typical), MOSFET

$$V_{GS} = f(Q_G)$$

$$I_D = 35 A$$
, $T_{vi} = 25 °C$

EasyPACK[™] 1B module

6 Characteristics diagrams

Capacity characteristic (typical), MOSFET

$$C = f(V_{DS})$$

$$T_{vi} = 25 \, ^{\circ}\text{C}, f = 100 \, \text{kHz}, V_{GS} = 0 \, \text{V}$$

Switching times (typical), MOSFET

 $t = f(I_D)$

$$R_{Goff}$$
 = 0 Ω , R_{Gon} = 12 Ω , V_{DD} = 400 V, T_{vj} = 150 °C, V_{GS} = 0/10 V

Switching times (typical), MOSFET

$$V_{DD} = 400 \text{ V}, I_D = 35 \text{ A}, T_{vj} = 150 \,^{\circ}\text{C}, V_{GS} = 0/10 \text{ V}$$

Voltage slope (typical), MOSFET

 $dv/dt = f(R_G)$

 $V_{DD} = 400 \text{ V}, I_D = 35 \text{ A}, V_{GS} = 0/10 \text{ V}$

EasyPACK[™] 1B module

Reverse bias safe operating area (RBSOA), MOSFET

 $I_D = f(V_{DS})$

$$R_{Goff} = 0 \Omega$$
, $T_{vj} = 150 \,^{\circ}$ C, $V_{GS} = 0/10 \,^{\circ}$ V

Transient thermal impedance, MOSFET

 $Z_{th} = f(t)$

Forward characteristic body diode (typical), MOSFET

 $I_{SD} = f(V_{SD})$

$$T_{vi} = 25 \,^{\circ}C$$

Forward characteristic body diode (typical), MOSFET

 $I_{SD} = f(V_{SD})$

$$T_{vj} = 150 \, ^{\circ}C$$

EasyPACK[™] 1B module

6 Characteristics diagrams

Forward voltage of body diode (typical), MOSFET

$$V_{SD} = f(T_{vj})$$

$$I_{SD} = 35 \Delta$$

Temperature characteristic (typical), NTC-Thermistor

$$R = f(T_{NTC})$$

7 Circuit diagram

7 Circuit diagram

Figure 1

8 Package outlines

8 Package outlines

Figure 2

EasyPACK[™] 1B module

9 Module label code

9 Module label code

Code format	Data Matrix		Barcode 0	Code128
Encoding	ASCII text		Code Set	A
Symbol size	16x16		23 digits	
Standard	IEC24720 and IEC16022		IEC8859-1	
Code content	Content Module serial number Module material number Production order number Date code (production year) Date code (production week)	Digit 1-5 6-11 12-19 20-21 22-23		Example 71549 142846 55054991 15 30
Example	71549142846550549911530			16550549911530

Figure 3

EasyPACK[™] 1B module

Revision history

Revision history

Document revision	Date of release	Description of changes
0.10	2022-03-17	Initial version
0.20	2022-06-20	Preliminary datasheet
1.00	2022-06-21	Final datasheet
1.10	2023-08-22	10424AERRA

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2023-08-22 Published by Infineon Technologies AG 81726 Munich, Germany

© 2023 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document?

 ${\bf Email: erratum@infineon.com}$

Document reference IFX-ABC458-004

Important notice

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.