學號:B06507002 系級: 材料三 姓名:林柏勳

1. (1%) 請說明這次使用的 model 架構,包含各層維度及連接方式。

我在訓練時第一層的 input 為(batch_size,channel,h,w)=(-1,1,48,48)

Layer	Output
Conv2d(1, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))	-1, 32, 48, 48
LeakyReLU(negative_slope=0.05)	-1, 32, 48, 48
BatchNorm2d(32, eps=le-05, momentum=0.1, affine=True, track_running_stats=True)	-1, 32, 48, 48
Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))	-1, 32, 48, 48
LeakyReLU(negative_slope=0.05)	-1, 32, 48, 48
BatchNorm2d(32, eps=le-05, momentum=0.1, affine=True, track_running_stats=True)	-1, 32, 48, 48
Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))	-1, 32, 48, 48
LeakyReLU(negative_slope=0.05)	-1, 32, 48, 48
BatchNorm2d(32, eps=le-05, momentum=0.1, affine=True, track_running_stats=True)	-1, 32, 48, 48
MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)	-1, 32, 24, 24
Dropout(p=0.1, inplace=False)	-1, 32, 24, 24
Conv2d(32, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))	-1, 128, 24, 24
LeakyReLU(negative_slope=0.05)	-1, 128, 24, 24
BatchNorm2d(128, eps=le-05, momentum=0.1, affine=True, track_running_stats=True)	-1, 128, 24, 24
Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))	-1, 128, 24, 24
LeakyReLU(negative_slope=0.05)	-1, 128, 24, 24
BatchNorm2d(128, eps=le-05, momentum=0.1, affine=True, track_running_stats=True)	-1, 128, 24, 24
Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))	-1, 128, 24, 24
LeakyReLU(negative_slope=0.05)	-1, 128, 24, 24
BatchNorm2d(128, eps=le-05, momentum=0.1, affine=True, track_running_stats=True)	-1, 128, 24, 24
MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)	-1, 128, 12, 12
Dropout(p=0.1, inplace=False)	-1, 128, 12, 12
Conv2d(128, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))	-1, 512, 12, 12
LeakyReLU(negative_slope=0.05)	-1, 512, 12, 12
BatchNorm2d(512, eps=le-05, momentum=0.1, affine=True, track_running_stats=True)	-1, 512, 12, 12
Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))	-1, 512, 12, 12
	-1, 512, 12, 12
LeakyReLU(negative_slope=0.05)	
LeakyReLU(negative_slope=0.05) BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)	-1, 512, 12, 12
BatchNorm2d(512, eps=le-05, momentum=0.1, affine=True,	-1, 512, 12, 12 -1, 512, 12, 12

BatchNorm2d(512, eps=le-05, momentum=0.1, affine=True,	-1, 512, 12, 12
track_running_stats=True)	
MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)	-1, 512, 6, 6
Linear(in_features=18432, out_features=512, bias=True)	-1, 512
ReLU()	-1, 512
BatchNormld(512, eps=le-05, momentum=0.1, affine=True,	-1, 512
track_running_stats=True)	
Linear(in_features=512, out_features=7, bias=True)	-1, 7

2. (1%) 請附上 model 的 training/validation history (loss and accuracy)。

3. (1%) 畫出 confusion matrix 分析哪些類別的圖片容易使 model 搞混,並簡單說明。

(ref: https://en.wikipedia.org/wiki/Confusion matrix)

從 Confusion Matrix 的對角線值可以看出,除了 Happy 跟 Surprise 這兩個類別之外,其餘類別均容易使 Model 搞混,它們的分類成功率低於六成,原因可能在於其他類別的資料,圖片裡面的表情不夠顯著,導致分類器很容易誤判成其他類別。

[關於第四及第五題]

可以使用簡單的 3-layer CNN model [64, 128, 512] 進行實作。

4. (1%) 畫出 CNN model 的 saliency map, 並簡單討論其現象。

(ref: https://reurl.cc/Qpjg8b)

這張圖片的類別為 Happy, 從 Saliency map 中可以看出,對於分類影響最大的部分為女孩的牙齒,其次為眼睛。

這張圖的類別為 Surprise,從 Saliency map 中可以看出,對於分類影響最大的部分為張的開開的嘴巴跟豎起的眉毛。

這張圖的類別為 Angry, 從 Saliency map 中可以看出,對分類影響最大的部分為,眼睛,開 開的嘴巴,跟聳立的肩膀。

5. (1%) 畫出最後一層的 filters 最容易被哪些 feature activate。

(ref: https://reurl.cc/ZnrgYg) (ref: https://reurl.cc/Qpjg8b)

6. (3%)Refer to math problem

https://hackmd.io/JIZ_0Q3dStSw0t0O0w6Ndw

HW3 Handwritten Assignment date No.
Tand written 135 grinent
I: (B, W, H, input - channels)
Conv 2D: (input - channels, output - channels,
ternel_size=(k1, k2), strike=(s1, s2),
padding = (P1, P2))
For each image in a batch, after passing
(M H) - (W+2P, H+2P2)
Assume after convolution, W+2P1 ≥ k, + (n-1)S1
we get an image W+2Pi-tisn-1
cize of (n.m) Si
$(n,m) \in \mathbb{Z}^2 \Theta \mid + + 2P_2 \geq k_2 + (m-1) S_2$
night height H+2P2-k2 = m-1
2
The solution of n, m are the largest integers
satisfying the inequality of D, O.
As a result, $n = \lfloor w + 2P_1 - k_1 \rfloor + 1$
o results 11 - [W 1 +]
m = H+2P2-k2 +1
S ₂
So, the output is
0: (B) W+211-k1 +1, H+212-k2 +1,
$\frac{1}{2}$
output channels)

