8 Bit Microprocessor 8085

Features of 8085

- It is 8 bit microprocessor i.e. it can accept or provide 8 bit data simultaneously
- It has 16 address lines hence it can access $2^{16} = 64K$ bytes of memory
- It has 8 data lines
- It requires a single +5V power supply
- It provides on chip clock generator
- Max operating clock frequency is 3MHz & minimum is 500KHz
- It provides 74 operation with following addressing modes: immediate, register, direct, indirect & implied.
- The data bus is multiplexed with lower order address bus

Address / Data Demultiplexing

Features of 8085

- It generates 8 bit I/O address, hence it can access $2^8 = 256$ input ports & 256 output ports.
- It performs arithmetic & logical operation
- It provides 5 hardware interrupts :TRAP, RST7.5, RST6.5, RST5.5 & INTR
- It provides one accumulator, one flag register, 6 general purpose registers (i.e. B,C,D,E,H & L)& two special purpose register.
- It provides two serial I/O lines viz SOD & SID

8085 Bus Structure

Pin Diagram of 8085

Group of 8085 Signals

- Address Bus
- Data Bus
- Status Signals
- Control Signals
- Clock Signals
- Reset Signals
- DMA Request Signals
- Interrupt Signals
- Serial I/O Ports

Group of 8085 Signals

- Interrupt control group
- Serial I/O control group
- Register group
- Instruction register, decoder, timing & control group
- Arithmetic & logical group

Interrupt Control Group (Summary Table)

Interrupt Type	Trigger	Priority	Maskable	Provide Acknowle- dgement	Vector Address
TRAP	Edge & Level	1	No	No	0024H
RST 7.5	Edge	2	Yes	No	003CH
RST 6.5	Level	3	Yes	No	0034H
RST 5.5	Level	4	Yes	No	002CH
INTR	Level	5	Yes	Yes	

Interrupt Structure

Serial I/O Control Group

Register Group

	Stack Pointer			
	Catally Deliver	(cm)		
Н	(8)	<u>I</u>		
Ď	(8)			
В	(8)	c		
ACCUMULATO	OR A (8)	FLAG REGIST		

Flag Register (PSW)

- Sign Flag
- Zero Flag
- Auxiliary Carry Flag
- Parity Flag
- Carry Flag

S	Z	X	AC	X	P	3
D 7	D6	D ₅	D_4	D3	D_2	I

Instruction Register, Decoder, Timing & Control Group

- Instruction Register –
- √ When an instruction is fetched from memory it is loaded in instruction register.

√ These contents are then provided to decoder for decoding.

Instruction Register, Decoder, Timing & Control Group

Instruction Decoder-

- ✓ It accepts bit pattern from instruction register, decodes it & gives decoded information to control logic.
- ✓ The information includes
 - what operation is to be performed,
 - who is going to perform it,
 - how many operand bytes the instruction contains, etc.

Instruction Register, Decoder, Timing & Control Group

- Timing & Control Unit-
- ✓ It accepts information from instruction decoder & generate microsteps to perform it.

✓ This block also accepts clock inputs, performs sequencing & synchronising operation.

Arithmetic & Logical Group

This group consist of ALU, Accumulator (Reg. A), Temporary register & Flag Register.

ALU (Arithmetic & Logic Unit)

ALU performs **arithmetic** operations such as **addition**, **subtraction** & **logical** operations such as **ANDing**, **ORing** & **EX-ORing**, etc.

Temporary Register

This register is not available for user. It is only used internally by microprocessor.

Arithmetic & Logical Group

Flag Register

✓ It is nothing but a group of flip-flops used to give status of different operations result.

✓ It will give status if an operation is performed in ALU.

The 8085 Addressing Modes

The various ways of specifying the data to be operated on, are called as **addressing modes**.

Following are addressing modes of 8085

- 1. Immediate addressing.
- 2. Register addressing.
- 3. Direct addressing.
- 4. Indirect addressing.
- 5. Implied addressing.

Immediate addressing

In this mode, data to be used is immediately given in the instruction itself.

Example: MVI B, 12H

Register addressing

In this mode, data to be operated is in general purpose register.

Example: MOV A, B

Direct addressing

In this addressing mode the operand is given by direct address where the data is present.

Example: LDA C200H

Indirect addressing

In this addressing mode the instruction does not have address of the data to be operated on. But instruction points where the address is stored

Example: MOV A, M

Implied addressing

It does not require any operand.

Example: STC, RAL, RAR

Thank You!