Science

Canada Sciences

Pêches et Océans

CSAS

SCCS

Canadian Science Advisory Secretariat

Secrétariat canadien de consultation scientifique

Research Document 2012/111

Document de recherche 2012/111

Gulf Region

Région du Golfe

Assessment of the NAFO Division 4T southern Gulf of St. Lawrence herring stocks in 2011

Évaluation des stocks de hareng de la zone 4T de l'OPANO dans le sud du golfe du Saint-Laurent en 2011

C.H. LeBlanc, A. Mallet, C. MacDougall, C. Bourque, D. Swain Fisheries and Oceans Canada | Pêches et Océans Canada Gulf Fisheries Centre | Centre des pêches du Golfe P.O. Box 5030 | C.P. 5030 Moncton N.B. I N.-B. E1C 9B6

This series documents the scientific basis for the evaluation of aquatic resources and ecosystems in Canada. As such, it addresses the issues of the day in the time frames required and the documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations.

La présente série documente les fondements scientifiques des évaluations des ressources et des écosystèmes aquatiques du Canada. Elle traite des problèmes courants selon les échéanciers dictés. Les documents qu'elle contient ne doivent pas être considérés comme des énoncés définitifs sur les sujets traités, mais plutôt comme des rapports d'étape sur les études en cours.

Research documents are produced in the official language in which they are provided to the Secretariat.

Les documents de recherche sont publiés dans la langue officielle utilisée dans le manuscrit envoyé au Secrétariat.

This document is available on the Internet at:

Ce document est disponible sur l'Internet à: http://www.dfo-mpo.gc.ca/csas/

ISSN 1499-3848 (Printed / Imprimé) ISSN 1919-5044 (Online / En ligne) © Her Majesty the Queen in Right of Canada, 2012

TABLE OF CONTENTS / TABLE DES MATIÈRES

1. INTRODUCTION	
2. GENERAL DESCRIPTION / DESCRIPTION GÉNÉRALE	2
2.1 The Fishery	2
2.1 La Pêche	2
2.1.1 Landings	2
2.1.1 Les débarquements	
2.1.2 Spawning group assignment	3
2.1.2 Assignation du groupe de géniteurs	3
2.1.2.1 Changes in spawning group assignment	
2.1.2.1 Changements dans l'assignation du groupe de géniteurs	4
2.1.3 Industry input	
2.1.3 Contribution de l'industrie	6
2.1.4 Fishing effort	
2.1.4 Effort de pêche	7
2.1.5 Catch and weight-at-age matrices	8
2.1.5 Matrices des prises et du poids selon l'âge	
2.1.6 Age reading consistency test	
2.1.6 Test d'uniformité de la détermination de l'âge	
2.2 Gillnet Fishery Catch Rates	10
2.2 Taux de Capture aux Filets Maillants	10
2.3 Acoustic Survey	
2.3 Relevé Acoustique	11
2.4 Groundfish Bottom Trawl Survey	14
2.4 Relevé au Chalut de Fond	14
3. SPRING SPAWNER COMPONENT (SSC)	15
3. COMPOSANTE DES GÉNITEURS DE PRINTEMPS (CGP)	15
3.1 Spring Fishery	15
3.1 La Pêche du Printemps	15
3.2 Spring Spawner Component Abundance Indicators	
3.2 Indicateurs d'Abondance de la Composante des Géniteurs de Printemps	17
3.2.1 Gillnet fishery CPUE index	17
3.2.1 Indice des PUE de la pêche aux filets maillants	17
3.2.2 Acoustic survey index	
3.2.2 Indice du relevé acoustique	19
3.2.3 Gillnetter telephone survey opinion on abundance	
3.2.3 Opinion sur l'abondance du sondage téléphonique des pêcheurs	20
3.2.4 Comparison of abundance indices	
3.2.4 Comparaison des indices d'abondance	21
3.3 Spring Spawner Component Assessment	
3.3 Évaluation de la Composante des Géniteurs de Printemps	
3.3.1 Spring spawner component ADAPT calibration	
3.3.1 Étalonnage de la composante des géniteurs du printemps au moyen d'ADAPT	
3.3.2 Spring spawner component - assessment results	24
3.3.2 Composante des géniteurs de printemps - résultats de l'évaluation	24
3.3.3 Spring spawner component prospects	25
3.3.3 Composante des géniteurs de printemps perspectives d'avenir	
3.3.4 Spring spawner component two year projection	
3.3.4 Prévision pour deux années de la composante des géniteurs de printemps	27

3.3.4.1 Results	28
3.3.4.1 Résultats	
4. FALL SPAWNER COMPONENT (FSC)	28
4. COMPOSANTE DES GÉNITEURS D'ÁUTOMNE (CGA)	28
4.1 Fall Fishery	28
4.1 Pêche d'Automne	28
4.2 Fall Spawner Component Abundance Indicators	30
4.2 Indicateurs d'Abondance de la Composante des Géniteurs d'Automne	30
4.2.1 Gillnetter telephone survey opinion on abundance	30
4.2.1 Opinion sur l'abondance du sondage téléphonique des pêcheurs	30
4.2.2 Acoustic survey index	31
4.2.2 Indice du relevé acoustique	
4.2.3 Gillnet fishery CPUE index	
4.2.3 Indice des PUE de la pêche aux filets maillants	
4.3 Fall Spawner Component Assessment	
4.3 Évaluation de la Composante des Géniteurs d'Automne	
4.3.1 Simulations and models presented	
4.3.1 Simulations et modèles présentés	
4.3.2 MODEL 1 with CPUE only	
4.3.2 MODÈLE 1 avec PUE seulement	
4.3.2.1 ADAPT calibration MODEL 1	
4.3.2.1 Étalonnage d'ADAPT MODÈLE 1	35
4.3.2.2 MODEL 1 Fall spawner component assessment results	37
4.3.2.2 MODÈLE 1 Résultats de l'évaluation: composante des géniteurs d'automne	
4.3.2.3 MODEL 1 Fall spawner component prospects	
4.3.2.3 MODÈLE 1 Perspectives d'avenir: composante des géniteurs d'automne 4.3.2.4 MODEL 1 Fall spawner component two year projection	من ۱۸
4.3.2.4 MODEL 1 Pail spawner component two year projection	4 0
4.3.2.5 MODEL 1 results	
4.3.2.5 MODEL 1 results	
4.3.3 MODEL 2 with CPUE and acoustic indices	
4.3.3 MODÈLE 2 avec PUE et indice acoustique	
4.3.3.1 ADAPT calibration MODEL 2	
4.3.3.1 Étalonnage d'ADAPT MODÈLE 2	
4.3.3.2 MODEL 2 Fall spawner component assessment results	
4.3.3.2 MODÈLE 2 Résultats de l'évaluation: composante des géniteurs d'automne	
4.3.3.3 MODEL 2 Fall spawner component prospects	
4.3.3.3 MODÈLE 2 Perspectives d'avenir: composante des géniteurs d'automne	
4.3.3.4 MODEL 2 Fall spawner component two year projection	
4.3.3.4 MODÈLE 2 Prévision pour les deux prochaines années	46
4.3.3.5 MODEL 2 results	47
4.3.3.5 MODÈLE 2 résultats	47
4.3.4 Fall spawnwer component conclusion	48
4.3.4 Composante des géniteurs d'automne conclusion	48
5. REFERENCES / BIBLIOGRAPHIE	49
TABLES / TABLEAUX	
FIGURES	96
APPENDIX / APPENDICES	. 151

Correct citation for this publication:

LeBlanc, C.H., Mallet, A., MacDougall, C., Bourque, C., and Swain, D. 2012. Assessment of the NAFO Division 4T southern Gulf of St. Lawrence herring stocks in 2011. DFO Can. Sci. Advis. Sec. Res. Doc. 2012/111. vi + 167 p.

ABSTRACT

Assessments of the spring and fall spawning herring components from the southern Gulf of St. Lawrence are prepared every two years and form a part of the information base used to establish the annual total allowable catch (TAC).

The 2011 assessment of 4T herring spring spawner component was based on a sequential population analysis calibrated on both the age-disaggregated gillnet catch rate (CPUE) and acoustic survey indices. Reported landings of the spring spawner component in both the spring and the fall fisheries were 1,267 t in 2010 and 1,425 t in 2011. The spring spawner TAC was 2,000 t. The opinions of fixed gear harvesters from the telephone survey was that abundance of spring herring in 2010 and 2011 was higher than 2009. Mean gillnet catch rate in 2010 was the lowest in the time series; the 2011 gillnet catch rate was the second lowest. The index has been declining since 1997 and remains at a low level in the series that starts in 1990. The 2010 acoustic index was slightly higher than 2009, but declined again in 2011. The 2011 index remains low in the series that starts in 1994. The stock is considered to be within the critical zone but just below the limit reference point. Estimated abundance has increased in recent years from the low level estimated in 2006. Estimated fishing mortality rates in 2010 and 2011 are the lowest of the time series at less than 0.1. The abundances of recent recruiting year-classes (at age 4) are below average. A catch option of about 1,000 t in 2012 would provide a 90% probability of at least a 5% increase in biomass. Projections for the fisheries over the next two years show that the probability of an increase in biomass from January 2012 to January 2014 ranged from 79% with no catch to 21% with catches of 3,000 t each year.

The 2011 assessment of 4T herring fall spawner component was based on a sequential population analysis calibrated on an age-disaggregated gillnet catch rate (CPUE) index and an acoustic index for ages 2 and 3. Reported landings of the fall spawner component in both the spring and the fall fisheries were 47,004 t in 2010 and 38,408 t in 2011. The fall spawner TAC was 65,000 t. The opinion of fixed gear harvesters from the telephone survey is that the abundance of fall herring has been decreasing since 2006, with a slight increase in 2009 and decrease again into 2010 and 2011. Mean gillnet catch rate has generally decreased since 2006. The acoustic index has been declining since 2006 and remains at a low level in the series that starts in 1994. The exploitation rate in 2011 was 21%, below the F_{0.1} reference level of 25%. Estimated recruitment at age 4 was above average in 2008 and 2009, but below average in 2010 and 2011. Overall, the stock remains at a moderate level of abundance. The 2012 beginning-of-year spawning stock biomass is estimated to be about 183,800 t, above the upper stock reference (B_{USR}) level of 172,000 t. For 2012, a catch option of 42,842 t corresponds to a 50% chance that exploitation rate would be above the reference removal rate. There is a 90% probability of a 5% decline in biomass from 2011 for a catch option of 42,842 t. Projections for the fisheries over the next two years (2012-2013) show that the probability that SSB would be below B_{USR} in 2014 varied from 16% with catches of 20,000 t to 69% with 50,000 t of catch each year based on recent recruitment rates, and from 14% with catches of 20,000 t to 58% with 50,000 t of catch each year when based on recruitment rates over the past 20 years.

La présente publication doit être citée comme suit :

LeBlanc, C.H., Mallet, A., MacDougall, C., Bourque, C., et Swain, D. 2012. Évaluation des stocks de hareng de la zone 4T de l'OPANO dans le sud du golfe du Saint-Laurent en 2011. Secr. can. de consult. sci. du MPO. Doc. de rech. 2012/111. vi + 167 p.

RÉSUMÉ

Des évaluations des composantes de reproducteurs de printemps et d'automne du stock de hareng du sud du golfe du Saint-Laurent sont effectuées aux deux ans et font partie de la base d'information qui sert à établir le total admissible des captures (TAC).

L'état de la composante des reproducteurs de printemps dans 4T en 2011 a été déterminé en se fondant sur une analyse de population qui incluait à la fois les taux de prises-à-l'âge (PUE) au filet maillant et l'indice du relevé acoustique. Les débarquements déclarés de reproducteurs du printemps dans les pêches du printemps et d'automne se sont chiffrés à 1 267 t en 2010 et à 1 425 t en 2011, par rapport à un TAC de 2 000 t. Selon les opinions exprimées par les pêcheurs aux engins fixes dans le cadre du sondage téléphonique, le hareng du printemps était plus abondant en 2010 et en 2011 qu'en 2009. Le taux de prise moyen des pêcheurs aux filets maillants en 2010 était le plus bas dans la série chronologique et celui de 2011 venait au deuxième rang. L'indice est à la baisse depuis 1997 et demeure parmi les plus bas de la série chronologique commençant en 1990. L'indice d'abondance du relevé acoustique de 2010 était légèrement plus élevé qu'en 2009, mais a baissé de nouveau en 2011. L'indice de 2011 demeure à un niveau bas dans la série chronologique commençant en 1994. On considère que le stock se situe dans la zone critique juste au dessous du niveau de référence limite. L'abondance estimée a, toutefois, augmenté dans les dernières années en comparaison du faible niveau estimé en 2006. Les taux de mortalité par pêche estimés en 2010 et en 2011 sont les plus faibles de la série chronologique, à moins de 0.1. L'abondance des classes d'âge recrutées (à l'âge 4) est à un niveau inférieur à la moyenne. Des prises d'environ 1 000 t en 2012 se traduiraient par une probabilité de 90 % que la biomasse augmenterait d'au moins 5 %. Les prévisions faites sur les deux prochaines années indiquent que la probabilité d'une augmentation de la biomasse entre janvier 2012 et janvier 2014 allait de 79 % (aucune prise) à 21 % (prises annuelles de 3 000 t).

L'état de la composante des reproducteurs d'automne dans 4T en 2011 a été déterminé en se fondant sur une analyse de population qui incluait les taux de prises-à-l'âge (PUE) au filet maillant et par l'indice d'abondance du relevé acoustique pour les âges 2 et 3. Les débarquements déclarés de reproducteurs d'automne dans les pêches du printemps et d'automne se sont chiffrés à 47 004 t en 2010 et à 38 408 t en 2011, par rapport à un TAC de 65 000 t. L'opinion exprimée par les pêcheurs aux engins fixes lors du sondage téléphonique indique que l'abondance du hareng d'automne est à la baisse depuis 2006, mais qu'elle a légèrement augmenté en 2009 et diminué de nouveau en 2010 et en 2011. Le taux de prise moyen des pêcheurs aux filets maillants a diminué de façon générale depuis 2006. L'indice d'abondance du relevé acoustique est à la baisse depuis 2006 et demeure à un niveau bas de la série chronologique commençant en 1994. Le taux d'exploitation de 2011, à 21 %, était inférieur au niveau de référence F_{0.1} de 25 %. L'estimation du recrutement des âges 4 était supérieure à la moyenne en 2008 et en 2009, mais inférieure à la moyenne en 2010 et 2011. En général, l'abondance du stock demeure à un niveau modéré. Pour le début de l'année 2012, la biomasse du stock reproducteur est estimée à environ 183 800 t, soit audelà du niveau de référence supérieur (B_{NRS}) de 172 000 t. Des prises de 42 842 t en 2012 correspondent à une probabilité de 50 % que le taux d'exploitation soit supérieur au taux d'exploitation de référence. Il y a une probabilité de 90 % d'un déclin de 5 % dans la biomasse par rapport à 2011 dans le cas de prises de 42 842 t. Les prévisions faites sur les deux prochaines

années (2012-2013) montrent que la probabilité que la biomasse du stock reproducteur (BSR) soit inférieure à la B_{NRS} en 2014 varie entre 16 % (prises annuelles de 20 000 t) et 69 % (prises annuelles de 50 000 t) selon les taux de recrutement récents, et entre 14 % (prises annuelles de 20 000 t) et 58 % (prises annuelles de 50 000 t) selon les taux de recrutement des 20 dernières années.

1. INTRODUCTION

Atlantic herring in the southern Gulf of St. Lawrence (sGSL) is found in the area extending from the north shore of the Gaspé Peninsula to the northern tip of Cape Breton Island, including the Magdalen Islands. Adults overwinter off the north and east coast of Cape Breton in the Northwest Atlantic Fisheries Organization (NAFO) divisions 4T and 4Vn (Claytor 2001; Simon and Stobo 1983). Studies in the early 1970s indicated that southern Gulf herring also overwintered off the south coast of Newfoundland, but an exploratory fishery in 2006 has found no concentrations there (Wheeler et al. 2006).

Herring is a pelagic species which form schools particularly during feeding, spawning periods and annual migrations. Eggs are attached to the sea floor and large females can produce up to 360,000 eggs (Messieh 1988). First spawning occurs primarily at age four. The fork length at 50% maturity (L50) is estimated at 23.5 cm for sGSL herring (DFO 2007).

The herring population in the sGSL consists of two components, the spring spawner component (SSC) and the fall spawner component (FSC), with July 1st as a separation date. Spring spawning occurs primarily in April-May but extends into June at depths <10 m. Fall spawning occurs from mid-August to mid-October at depths of 5 to 20 m. The largest spring spawning beds are in coastal waters of the Northumberland Strait and Chaleur Bay. The largest fall spawning beds are in coastal waters off Miscou and Escuminac N.B., North Cape and Cape Bear P.E.I., and Pictou N.S.

1. INTRODUCTION

Le stock du hareng de l'Atlantique du sud du golfe du Saint-Laurent (sGSL) se retrouve dans la zone comprise entre la côte nord de la péninsule de Gaspé et l'extrémité nord de l'île du Cap-Breton, incluant les Îles-de-la-Madeleine. Les adultes passent l'hiver au large de la côte est du Cap-Breton, dans les divisions 4T et 4Vn de l'Organisation des Pêches de l'Atlantique Nord-Ouest (OPANO) (Claytor 2001; Simon et Stobo 1983). Des études au début des années 1970 indiquaient que le hareng du sud du Golfe passait aussi l'hiver près des côtes sud de Terre-Neuve. mais une pêche exploratoire en 2006 n'indiquait aucune présence de hareng dans ce secteur (Wheeler et al. 2006).

Le hareng est un poisson pélagique qui se déplace en bancs pour se nourrir, pour frayer et lors des migrations annuelles. Les oeufs, attachés au substrat, sont produits en plus grand nombre par les grandes femelles qui peuvent en produire jusqu'à 360 000 (Messieh 1988). La plupart des harengs frayent pour la première fois à quatre ans. La longueur à la fourche à laquelle 50 % des harengs sont considérés comme matures (L50) est de 23,5 cm pour le hareng du sGSL (MPO 2007).

La population de hareng du sGSL est constituée de deux composantes: les géniteurs de printemps (CGP) et les géniteurs d'automne (CGA), la date de séparation étant le 1er juillet. La fraye de printemps a généralement lieu en avril-mai, mais se prolonge jusqu'en juin à des profondeurs <10 m. La fraye d'automne se déroule entre la mi-août et la mi-octobre, à des profondeurs de 5 à 20 m. Les plus grandes frayères de géniteurs de printemps se trouvent dans les eaux côtières du détroit de Northumberland et de la baie des Chaleurs. Les plus grandes frayères de géniteurs d'automne se trouvent dans les eaux côtières au large de Miscou et d'Escuminac, N.-B., de North Cape et de Cape Bear, Î-P-É., et de Pictou, N.-É.

2. GENERAL DESCRIPTION

2.1 THE FISHERY

2.1.1 Landings

The sGSL herring is harvested primarily by an inshore gillnet fleet (fixed gear) and a purse seine fleet (mobile gear), both fishing in the NAFO division 4T and in some years 4Vn (Fig. 1). The purse seine fleet can consist of five large southern Gulf vessels (> 65'). However, some small Gulf seiners (< 65') can also participate in the inshore fishery as part of the gillnet fleet. Unless specifically stated as small seiners, the terms purse seiners or seiners refer to the purse seine fleet with vessels > 65'. During the spring and the fall fishing seasons, seiners are prohibited from fishing in several areas set aside exclusively for the gillnet fleet (Claytor et al. 1998).

Both spring and fall spawner components of herring are harvested in these fisheries. The percentage of spring and fall spawner components in the catch varies according to season and gear type. As a result, landings during the spring and fall fisheries must be separated into the appropriate spring and fall spawning groups to determine if the Total Allowable Catch (TAC) for these groups has been attained.

Prior to 1967, sGSL herring was exploited mainly by gillnets and average landings from 1935 to 1966 were 34,000 t. In the mid 1960s, a purse seine fishery was introduced and average landings by both fleets were 166,000 t from 1967 to 1972. A global allocation or TAC was introduced in 1972 at 166,000 t, and reduced to 40,000 t in 1973. Separate TAC for the spring and fall spawner components began in 1985. These TACs are first allotted by fishing season and later attributed to spring or fall spawner component landings based on biological samples taken during the

2. DESCRIPTION GÉNÉRALE

2.1 LA PÊCHE

2.1.1 Les débarquements

Le hareng du sGSL est exploité par une flottille qui pêche principalement aux filets maillants (engins fixes) et une flottille de senneurs (engins mobiles) qui pêchent dans la division 4T de l'OPANO et certaines années dans 4Vn (figure 1). La flottille de senneurs peut avoir jusqu'à cinq grands senneurs (> 65 pi). Néanmoins, certains petits senneurs du Golfe (< 65 pi) peuvent aussi participer à la pêche côtière et font partie de la flottille de filets maillants. À moins qu'il soit précisé qu'il s'agit de petits senneurs, le terme senneurs s'applique à la flottille de senneurs >65 pi. Au cours des saisons de pêche du printemps et de l'automne, la pêche est interdite aux senneurs dans plusieurs zones réservées exclusivement à la flottille de filets maillants (Claytor et al., 1998).

Deux composantes de géniteurs de hareng, celles du printemps et de l'automne, sont exploitées dans le cadre de ces pêches. Le pourcentage de reproducteurs de printemps et de reproducteurs d'automne dans les prises varie selon la saison et le type d'engin. Pour déterminer si le Total Admissible des Captures (TAC) alloué à chaque composante de reproducteurs a été atteint, il faut donc séparer et répartir les prises des pêches de printemps et d'automne entre ces deux composantes.

Avant 1967, le hareng du sGSL était pêché principalement aux filets maillants et la moyenne des débarquements entre 1935 et 1966 s'établissait à 34 000 t. Au milieu des années 1960, la senne a commencé à être utilisée et les débarquements moyens des deux flottes ont atteint 166 000 t entre 1967 et 1972. En 1972, une allocation ou un TAC global de 166 000 t a été établi, pour ensuite être abaissé à 40 000 t en 1973. Des TAC distincts pour le groupe des géniteurs de printemps et d'automne ont été fixés depuis 1985. Ces TAC sont décernés par saison de pêche et par la suite, sont attribués aux

fishery. Both the spring and the fall fishing season TACs were not exceeded in 2010 and 2011 (Table 1; Fig. 2).

Most of the 2010-2011 gillnet catches of the spring fishing season occurred in areas 16B and 16E. Most of the 2010-2011 gillnet catches during the fall fishing season came from area 16B (Table 2; Fig. 1). There was no seiner fishery catches in the spring of 2011; 302 tons were caught in the spring (Edge) seiner fishery in 2010. The fall 2010-2011 seiner fishery catches were all from unit area 4Tm and 4Tn of NAFO division 4T (Figs. 1 and 4).

Since 1981, the gillnet fixed gear fleet has accounted for most of the catch of spring and fall spawners (Table 3; Fig. 3). The recent 2007 to 2011 mean proportion of the total catch caught by the gillnet sector was 56% of the spring spawners and 93% of the fall spawners (Table 4).

The 2010 and 2011 TAC for the spring spawner component was 2,000 t. The combined 2010 and 2011 landings of the spring spawner component in both the spring and the fall fisheries were 1,221 t and 1,411 t. The TAC for the fall spawner component in 2010 and 2011 was 65,000 t. The combined 2010 and 2011 landings of the fall spawner component in both the spring and fall fisheries were 47,045 t and 38,426 t (Tables 3 and 4).

2.1.2 Spawning group assignment

At present, Gulf Region Science uses three techniques to assign herring samples to either spring (P) or autumn (A) spawning components based on gonad maturity stages (Cleary et al. 1982). These are:

débarquements des composantes de géniteurs de printemps ou d'automne basé sur les échantillons biologiques provenant de la pêche. Les TAC de la saison de pêche du printemps et de l'automne 2010 et 2011 n'ont pas été dépassés (tableau 1 et figure 2).

La plupart des prises de filets maillants de la saison de pêche printanière de 2010 et 2011 ont eu lieu dans les zones 16B et 16E. Quant aux prises de filets maillants de la saison de pêche automnale de 2010 et 2011, elles proviennent pour la plupart de la zone 16B (tableau 2 et figure 1). Au printemps 2011, il n'y a pas eu de captures par les grands senneurs, tandis que 302 tonnes furent capturées par les grands senneurs au printemps 2010. À l'automne 2010 et 2011, leurs prises provenaient toutes des sousdivisions 4Tm et 4Tn de la division 4T de l'OPANO (figures 1 et 4).

Depuis 1981, la flottille de pêche aux engins fixes a bénéficié de la plus grande partie des prises de géniteurs de printemps et d'automne (tableau 3; figure 3). La proportion moyenne (2007-2011) des captures totales prises par les engins fixes était de 56 % des géniteurs de printemps et de 93 % des géniteurs d'automne (tableau 4).

Le TAC pour la composante des géniteurs de printemps était de 2 000 t en 2010 et 2011. Les débarquements combinés de géniteurs de printemps dans les pêches du printemps et de l'automne en 2010 et 2011 étaient 1 221 t et 1 411 t. Le TAC de 2010 et 2011 pour la composante des géniteurs d'automne était de 65 000 t. Les débarquements combinés de géniteurs d'automne dans les pêches de printemps et d'automne en 2010 et 2011 étaient de 47 045 t et 38 426 t (tableaux 3 et 4).

2.1.2 Assignation de groupe de géniteurs

Dans la Région du Golfe secteur des sciences, on se sert actuellement de trois méthodes pour répartir les échantillons de hareng entre les composantes de géniteurs de printemps (P) ou d'automne (A). Ces méthodes sont basées sur les stades de maturité des gonades (Cleary et al., 1982) :

For immature herring of maturity stages 1 and 2 (juveniles), the season of hatching is based on the size at capture and visual examination of otolith characteristics (Messieh 1972). The spawning component assignment for juvenile herring is its hatching season (Cleary et al. 1982). Juveniles represent a small percentage of commercial catch, but are a higher proportion in the research survey samples.

Adult herring with ripe or spent gonads (maturity stages 6 and 7) are assigned their maturity stage by macroscopic laboratory examination of the gonads. The fish are assumed to belong to the spawning component of the season in which they were caught. These represent over 90% of the gillnet catches and 75% of the total yearly landings.

Adult herring with non-ripe gonads (maturity stages 3, 4, 5 and 8) are assigned their maturity stage by using a gonadosomatic index (GSI) based on a discriminant function model. The GSI is based on the length of the fish and its gonad weight (McQuinn 1989). Once the maturity stage is determined by GSI, the spawning component is assigned by using a maturity schedule decision rule (a table cross-referencing maturity stage assigned by GSI and the date of capture to assign a spawning component) (Cleary et al. 1982).

2.1.2.1 Changes in spawning group assignment

For specific months of the year, discrepancies in the assignment of spawning components were found between the GSI assignment of maturity stage by using the current maturity schedule decision rule and the laboratory detailed macroscopic observations. In particular, the Cabot Strait Edge seiner fishery samples from the month of May 2010 were not well classified by the GSI

Dans le cas des harengs immatures de stades de maturité 1 et 2 (juvéniles), on se sert de la taille à la capture et d'un examen visuel des caractéristiques des otolithes pour déterminer sa saison d'éclosion (Messieh 1972). Pour le hareng juvénile, l'assignation à une composante de géniteurs est sa saison d'éclosion (Cleary et al. 1982). Bien qu'ils ne constituent qu'un faible pourcentage des prises commerciales, les juvéniles sont davantage représentés dans les échantillons des relevés de recherche.

Un examen macroscopique des gonades en laboratoire détermine le stade de maturité de harengs adultes avec gonades mûres ou vidées (stades de maturité 6 et 7). Ces harengs sont considérés comme appartenant à la composante de géniteurs de la saison de la capture. Ces adultes constituent plus de 90 % des prises aux filets maillants et 75 % des prises annuelles totales.

Les équations sous-tendant un modèle d'analyse discriminante, reposant sur un index gonadosomatique (IGS), servent à établir le stade de maturité des gonades non pleines (stades de maturité 3, 4, 5 et 8). Le rapport IGS repose sur la longueur du poisson et le poids de ses gonades (McQuinn 1989). Une fois le stade de maturité des gonades déterminé par IGS, on assigne l'appartenance à une composante de géniteurs d'après un tableau de maturité et des règles de décision (relie la maturité assignée par IGS et la date de capture à une composante de géniteurs) (Cleary et al. 1982).

<u>2.1.2.1 Changements dans</u> <u>l'assignation de groupe de géniteurs</u>

Pour certains mois de l'année, des écarts dans l'assignation de groupe de géniteurs ont été décelés entre le stade de maturité des gonades déterminé par IGS d'après le tableau de maturité et des règles de décision et un examen macroscopique détaillé des gonades en laboratoire. De fait, les échantillons en provenance de la pêche des grands senneurs sur le bord du Détroit de Cabot en mai 2010 n'étaient pas bien classés par le processus de règle de décisions lié à

decision rule process.

Based on the laboratory macroscopic observations of 243 adult herring from these Edge seiner fishery biological samples, 94.5% of examined gonads were determined to be of maturity stage 3, which would classify them as fall spawners. However the GSI discriminant function reclassifies 52% of maturity stage 3 as stage 8 maturity, with the existing decision rule saying stage 8 maturity in May should be classified as spring spawners.

Further investigation showed that in the plotted monthly GSI distributions of spring and autumn spawning herring from NAFO Division 4T based on an exhaustive study by McQuinn (1989), herring with gonads of maturity stage 8 caught in April or May were definitely classified to the fall spawning component.

Based on these two independent sources of information, it was evident that there was an error in the existing decision rules for herring with gonads of maturity stage 8 caught in April or May.

Further additions were made to the decision rules to complete the schedule by month. Maturity stage 8 caught in July and August was assigned to the spring spawning component. Gonads with maturity stages 3 and 4 in June were subdivided between those caught before and after June 15.

The appropriate changes were made to the decision rules (a table cross-referencing maturity stage assigned by GSI and the date of capture to assign a spawning component) and these changes were applied to the entire fishery data series back to 1978. Results of the changes in the fishery catch-at-age are summarized in Appendix 1a and 1b.

l'IGS.

D'après l'examen macroscopique détaillé des gonades de 243 harengs adultes en provenance de la pêche des grands senneurs, 94,5 % des gonades examinées ont été déterminées comme étant au stade de maturité 3, ce qui indique leur appartenance au groupe de géniteurs d'automne. Cependant, le modèle d'analyse discriminante IGS reclasse 52% de ces stades de maturité 3 comme des stades de maturité 8 et les règles de décision actuelles dictent qu'un stade de maturité 8 au mois de mai devrait être classé comme un géniteur de printemps.

Une étude exhaustive menée par McQuinn (1989) démontre les distributions mensuelles des valeurs de l'IGS pour les géniteurs de printemps et d'automne du hareng de la Division 4T. Celle-ci indique clairement que les harengs capturés en avril et mai avec des gonades de stade de maturité 8 sont classés comme des géniteurs d'automne.

Basé sur ces deux sources d'information indépendantes, il était évident qu'une erreur existait dans les règles de décision utilisées pour les harengs capturés en avril et mai avec des gonades de stade de maturité 8.

Des changements additionnels ont été incorporés aux règles de décision. Les gonades de stade de maturité 8 capturées en juillet et août ont été classifiées comme des géniteurs de printemps. Les gonades de stade de maturité 3 et 4 capturées en juin ont été subdivisées entre celles capturées avant et après le 15 juin.

Les changements appropriés furent apportés aux règles de décision (reliant la maturité assignée par IGS et la date de capture à une composante de géniteurs). Ces changements furent appliqués sur la série chronologique des données de la pêcherie datant de 1978. Les résultats des changements dans les captures à l'âge de la pêcherie sont résumés dans les Appendices 1a et 1b.

2.1.3 Industry input

Industry input for the assessment was acquired during Gulf Small Pelagics Advisory Committee meetings and from a gillnetter telephone survey conducted every year between November and February.

The spring spawner fishery participants from the gillnet sector continued to express concern about the decline in abundance of spring spawners in most traditional spawning locations. The 4T spring gillnet fishery captured 67% of their spring allocation in 2010 and 59% of their spring allocation in 2011. The 4T fall gillnet fishery captured 85% of their fall allocation in 2010 and 74% of their fall allocation in 2011.

The telephone survey has been conducted yearly since 1986 to collect information on the gillnet fishery and opinions on abundance trends. The southern Gulf was divided into 8 areas corresponding to the areas where the major fisheries occur (Fig. 5). Active commercial licence holders were asked a series of questions concerning the number and size of nets they used, the frequency of fishing and how the abundance in the current year compared to the previous year and the medium-term trend. Some information on net data from the telephone survey was used to determine fishing effort. Methods used to conduct the telephone survey were described in LeBlanc and LeBlanc (1996).

By using the gillnetter opinions on the current year's abundance compared to the previous year, an index of opinion on the abundance was calculated for each area as well as an overall index for all areas combined.

2.1.3 Contribution de l'industrie

La contribution de l'industrie dans l'évaluation a été obtenue de deux différentes façons : au cours de réunions des comités des petits pélagiques du Golfe et du sondage téléphonique annuel pour les engins fixes réalisé entre novembre et février.

Pour la pêche des géniteurs de printemps, le secteur des pêcheurs aux filets maillants continue d'être inquiet de la diminution de l'abondance des géniteurs de printemps dans la plupart des zones de frai conventionnelles. La pêche aux filets maillants du printemps a capturé 67 % de leur allocation au printemps 2010 et 59 % de leur allocation au printemps 2011. La pêche aux filets maillants d'automne a capturé 85 % de leur allocation à l'automne 2010 et 74 % de leur allocation à l'automne 2011.

Chaque année depuis 1986, un sondage téléphonique permet de recueillir des renseignements sur la pêche aux filets maillants et des opinions sur les tendances de l'abondance. Le sud du Golfe est divisé en huit zones correspondant aux principales zones de pêche (figure 5). Les titulaires actifs de permis de pêche commerciales sont questionnés concernant le nombre et la taille des filets qu'ils utilisent, la fréquence de leur sorties de pêche, la comparabilité de l'abondance de hareng de l'année en cours avec les années précédentes et sur la tendance à moyen terme de l'abondance. Certaines données concernant les filets sont utilisées pour déterminer l'effort de pêche. Les méthodes utilisées lors du sondage téléphonique sont décrites dans LeBlanc et LeBlanc (1996).

Les opinions sur l'abondance entre l'année courante et l'année précédente des pêcheurs aux filets maillants ont été utilisées pour calculer un indice d'opinion sur l'abondance pour chaque zone ainsi qu'un indice global pour toutes les zones combinées.

For the 2010 gillnetter telephone survey, 250 candidates were randomly selected out of approximately 800 active commercial licences in both seasons combined. Of these 250 candidates, 168 responded to the questionnaire. Among those who responded to the 2010 telephone survey were 45 spring gillnetters and 123 fall gillnetters (Tables 5 and 6; Fig. 5).

For the 2011 gillnetter telephone survey, 236 candidates were randomly selected out of approximately 800 active commercial licences in both seasons combined. Of these 236 candidates, 213 responded to the questionnaire. Among those who responded to the 2011 telephone survey were 54 spring gillnetters and 181 fall gillnetters (Tables 5 and 6; Fig. 5).

Area fleet projects during the fall gillnet fishery combine the collection of acoustic data during commercial fishing and the sampling of variable mesh gillnets (Claytor and Allard 2001). The goal of these projects is to develop a time series of local abundance indices. Sampling of size and age composition was conducted with multiple mesh size experimental nets in addition to their regular commercial nets. In 2010 and 2011, five fall gillnetter boats participated and data analysis is ongoing.

2.1.4 Fishing effort

Fishing effort was calculated as the average number of gillnets deployed by season and area for the entire southern Gulf since 1978. From 1978 to 1985, the average number of nets used was collected by questionnaires done on wharves and by mail (Clay and Chouinard 1986). Since 1986, the effort measurement used to calculate the abundance indices based on gillnet fishery catch rates is the number of standard gillnets used in the spring and fall fisheries as estimated from the telephone survey (LeBlanc and

Pour le sondage 2010 des pêcheurs aux filets maillants, 250 candidats ont été choisis aléatoirement sur un total d'environ 800 permis actifs de pêche commerciale pour les deux saisons combinées. Parmi ces 250 candidats, 168 ont répondu au questionnaire. Parmi ceux qui ont répondu aux questions du sondage 2010, 45 pêcheurs étaient du printemps et 123 pêcheurs étaient de l'automne (tableaux 5 et 6 et figure 5).

Pour le sondage 2011 des pêcheurs aux filets maillants, 236 candidats furent choisis aléatoirement sur un total d'environ 800 permis actifs de pêche commerciale pour les deux saisons combinées. Parmi ces 236 candidats, 213 ont répondu au questionnaire. Parmi ceux qui ont répondu aux questions du sondage 2011, 54 pêcheurs étaient du printemps et 181 pêcheurs étaient de l'automne (tableaux 5 et 6 et figure 5).

Les projets des flottilles pendant la pêche d'automne aux filets maillants comprennent à la fois la collecte de données acoustiques pendant la pêche commerciale, ainsi que l'échantillonnage de hareng pris par des filets maillants à mailles variées (Claytor et Allard 2001). Le but de ces projets est de développer une série temporelle d'estimations d'abondance locale. L'échantillonnage de la composition en tailles et âges est fait avec des filets expérimentaux à maillage varié en plus de leurs filets ordinaires. En 2010 et 2011, cinq bateaux de filets maillants d'automne ont participé et les analyses des données sont en cours.

2.1.4 Effort de pêche

L'effort de pêche est estimé par le nombre moyen de filets maillants utilisés depuis 1978 dans l'ensemble du sud du Golfe par saison et région. De 1978 à 1985, le nombre moyen de filets utilisés a été obtenu par des sondages sur les quais ou par la poste (Clay et Chouinard, 1986). Depuis 1986, la mesure de l'effort servant à formuler les indices d'abondance est le nombre de filets maillants ordinaires utilisés au printemps et à l'automne évalué au moyen du sondage téléphonique (LeBlanc et LeBlanc, 1996) et, depuis 2005, de données provenant des

LeBlanc 1996) and, since 2005, from dockside observer data, where available. A standard net is 15 fathoms (27.4 m) in length (Table 7).

The percent of gillnet fishing days with no catch has been recorded for the past four years (Table 8). For the spring fishing season, the percentage of days with no catch is higher than the fall, except for 2011. This information was not recorded in years prior to 2006 and is not part of the effort data used to calculate catch per unit effort.

The depth of gillnets, in meshes, used by season and area was examined in the 2010 and 2011 telephone survey to verify changes that could affect fishing effort. In the spring 2010 and 2011 gillnet fishery, the mean net depth ranged from 57 to 100 meshes deep depending on area. In the fall 2010 and 2011 gillnet fishery, the mean net depth ranged from 80 to 118 meshes deep, depending on area (Table 9). The gillnet depth has been fairly constant in recent years in most areas.

The telephone survey data on number and length of gillnets used in 2010 and 2011 was compared to gillnet data collected by the dockside monitoring program (DMP), where these were available (Table 9). In general, the two sets of data give similar results in most areas where there were a sufficient number of respondents. The gillnet data chosen for the abundance index were those with the greatest number of records.

2.1.5 Catch and weight-at-age matrices

Separate catch-at-age and weight-at-age matrices were calculated for all 4T herring spring and fall spawner components, including those caught by purse seiners. These were derived using age-length keys and length-weight relationships for each principal fishing area and season. In some cases, fishing activity within an area differed through the season and separate

observateurs à quai lorsqu'elles sont disponibles. Un filet ordinaire est de 15 brasses (27,4 m) de longueur (tableau 7).

Le pourcentage de jours sans aucunes prises dans la pêche aux filets maillants a été comptabilisé depuis les quatre dernières années (tableau 8). Le pourcentage est plus élevé pour la saison du printemps qu'en automne, sauf pour 2011. Cette information n'a pas été enregistrée avant 2006 et ne fait donc pas partie des données utilisées pour calculer les prises par unité d'effort.

La profondeur des filets maillants en mailles utilisés par saison et région a été examinée lors des sondages téléphoniques de 2010 et 2011 afin de vérifier tous changements pouvant affecter l'effort de pêche. La profondeur moyenne des filets variait entre 57 et 100 mailles selon la région. Dans la pêche aux filets maillants d'automne, la profondeur moyenne des filets variait entre 80 et 118 mailles selon la région (tableau 9). La profondeur des filets maillants est restée relativement constante dans les récentes années

Les données du sondage téléphonique sur le nombre et la longueur des filets maillants utilisés en 2010 et 2011 ont été comparées aux données provenant du programme de vérification à quai (PVQ) lorsqu'elles étaient disponibles (tableau 9). En général, les données sont similaires dans la plupart des régions où le nombre de répondants était suffisant. Les données utilisées pour l'indice d'abondance étaient celles où le nombre de répondants était supérieur.

2.1.5 Matrices des prises et du poids selon l'âge

Des matrices distinctes des prises et du poids selon l'âge pour les géniteurs de printemps et d'automne ont été calculées pour tous les harengs de 4T, comprenant ceux capturés à la senne. Elles ont été calculées à partir des clés d'âge-longueur et des relations longueur-poids de chaque zone principale de pêche et de chaque saison. Dans certains cas, l'activité de pêche dans une zone varie au

keys and relationships were developed for those cases. When fewer than 30 fish were sampled for detailed analysis, the overall length-weight relationship and agelength key most similar and adjacent to in gear, geography, and time were used to estimate the catch-at-age.

2.1.6 Age reading consistency test

Starting in 2010, otolith age reading was done from digital photographs and read on a computer screen, as compared to previous aging done with a stereomicroscope. This new method enhanced the picture quality and made age reading more accurate. Also, a new reader was trained in 2010 to replace the primary reader. The new reader aged the 2011 otoliths.

Yearly age reading consistency tests are done in order to evaluate the consistency of age reading over time. A sub-sample of pairs of herring otoliths from years 1993, 1994, 1996 and 2003 was re-aged, and the new ages were compared to the reference ages. This test was conducted after the completion of age reading on most of the 2011 samples.

Otolith samples were randomly selected for age-groups 1 to 11+ and from years between 1993 and 2003, gear types used and type of sample (commercial and research). Some of the otoliths were removed from the test set due to their poor readability, which persisted even after a resurfacing of the mounting media. In total, a final set of over 200 otoliths was used. Results are presented for both the primary and newly trained reader. For this assessment, the ages of the primary reader are used for 2010 and the ages of the new reader are used for 2011.

cours de la saison et des clés et des relations distinctes ont été établies pour ces cas particuliers. Lorsque le nombre de poissons échantillonnés pour l'analyse détaillée était inférieur à 30, la relation longueur-poids et la clé d'âge-longueur global les plus similaires et adjacentes pour ce qui est de l'engin, de la géographie et du moment ont été utilisées pour estimer les prises selon l'âge.

2.1.6 Test d'uniformité de la détermination de l'âge

Débutant en 2010, la détermination d'âge des otolithes a été faite à partir de photographies digitales lues sur un écran d'ordinateur, comparativement aux années précédentes où la lecture d'âge était faite à partir d'un stéréomicroscope. Cette nouvelle méthode a amélioré la qualité de l'image et a rendu la détermination d'âge plus précise. De plus, un nouveau lecteur d'âge a été formé en 2010 pour remplacer le lecteur primaire. Ce nouveau lecteur a déterminé les âges pour l'année 2011.

Chaque année, un test est effectué afin d'évaluer la constance dans la détermination des âges. Un sous-échantillon de paires d'otolithes des années 1993, 1994, 1996 et 2003 a été âgé de nouveau et les résultats ont été comparés aux âges de référence. Ce test a eu lieu suivant la lecture d'âge de la majeure partie des échantillons de l'année 2011.

Des échantillons d'otolithes ont été sélectionnés par âge pour les groupes d'âges de 1 à 11+ afin d'obtenir une représentation à peu près égale des années entre 1993 et 2003 des zones, des engins et des types d'échantillons (pêche ou recherche). Certains échantillons ont été écartés à cause de leur mauvaise condition, même après une tentative d'améliorer le matériel de soutient. Au total, au-dessus de 200 otolithes ont été choisis au hasard pour le test. Les résultats sont présentés pour le lecteur primaire et le nouveau lecteur. Pour cette évaluation. les lectures d'âges du lecteur primaire sont utilisées pour 2010 et les lectures d'âges du nouveau lecteur sont utilisées pour 2011.

The results for the primary reader show an overall agreement of 87% and a coefficient of variation (CV) of 3.5%. (Table 10; Fig. 6). The CV is considered to be a more robust measure of the precision of age determination (Campana et al. 1995). From the reading bias plot, there was no bias present, and age determination is more variable for older (9+) herring (Table 10; Fig. 6).

The results for the new reader show an overall agreement of 88% and a coefficient of variation (CV) of 3.0%. (Table 10; Fig. 6). From the reading bias plot, there was no bias present, and age determination is more variable for older (9+) herring (Table 10; Fig. 6). The percentage of agreement between the two readers was 83% with a CV of 4.7 (Table 10; Fig. 6).

2.2 GILLNET FISHERY CATCH RATES

Gillnet catch and effort data are used to construct abundance indices for both the spring and fall spawning components of 4T herring. The gillnet fisheries take place on the spawning grounds and generally account for approximately 65% of the spring spawner catch, and more than 90% of the fall spawner catch. The remaining portion of the catch of both components is taken by the purse seine fleet fishing primarily on mixed aggregations prior to and during the migration out of the Gulf in the fall.

The catch data used to calculate the spring catch per unit of effort (CPUE) series consisted of data from a dockside monitoring program of the gillnet fishery, managed and compiled by the provincial government of N.B., for Escuminac and southeast N.B. from 1990 to 1996, and data from the DFO dockside monitoring of the 4T spring gillnet fishery from 1997 to 2011. Purchase slips were used for areas

Pour le lecteur primaire, le pourcentage de concordance total était de 87 % et le coefficient de variation (CV) moyen de cet ensemble de données était de 3,5 % (tableau 10 et figure 6). Le CV est considéré comme étant une mesure plus robuste de la précision de la détermination d'âges (Campana et al., 1995). Il n'y avait aucun biais apparent dans les résultats de comparaison, mais il y avait plus de variabilité dans la détermination d'âges des harengs plus vieux (9 ans +) (tableau 10 et figure 6).

Pour le nouveau lecteur, le pourcentage de concordance total était de 88 % et le coefficient de variation (CV) moyen de cet ensemble de données était de 3,0 % (tableau 10 et figure 6). Il n'y avait aucun biais apparent dans les résultats de comparaison, mais il y avait plus de variabilité dans la détermination d'âges des harengs plus vieux (9 ans +) (tableau 10 et figure 6). Le pourcentage de concordance entre les deux lecteurs était de 83 % avec un CV de 4,7 (tableau 10 et figure 6).

2.2 TAUX DE CAPTURE AUX FILETS MAILLANTS

Les données sur l'effort et les prises aux filets maillants sont utilisées pour calculer des indices d'abondance des géniteurs de printemps et d'automne dans 4T. En général, approximativement 65 % des prises de géniteurs de printemps et plus de 90 % de géniteurs d'automne sont attribuables aux pêches aux filets maillants, car elles ont lieu dans les frayères. Le reste des prises est attribuable aux pêches à la senne coulissante, qui visent les bancs mixtes de géniteurs avant et pendant leur migration hors-Golfe à l'automne.

Les données de captures utilisées pour calculer les prises par unité d'effort (PUE) du printemps ont été tirées des données de la vérification à quai de la pêche aux filets maillants d'Escuminac et du sud-est du N.-B. de 1990 à 1996, gérée par le gouvernement du N.-B., et des données de la vérification à quai du MPO des prises de la pêche aux filets maillants du printemps de 1997 à 2011. Des bordereaux d'achat ont été utilisés dans

without dockside monitoring records. Effort was calculated as the number of trips multiplied by the number of nets, which is determined from the annual telephone survey of active herring fishers or dockside monitoring data where available. The data were aggregated by year, fishery area and day. Spring catch and effort dockside monitoring data are available for 1990-2011.

For the fall CPUE series, catch data were taken from purchase slips and ZIF files collected by Statistics Branch available since 1978. Effort was calculated as the number of trips (purchase slips) multiplied by the number of nets or hauls, which were determined from the annual telephone survey of active herring fishers or dockside monitoring data where available. The data were aggregated by year, fishery area and day. Data on the fall number of nets in the fall fishery are available since 1978 and the number of hauls since 1986.

For both spring and fall, annual trends in gillnet CPUE were calculated using a generalised linear model (GLM).

2.3 ACOUSTIC SURVEY

Since 1991, annual fishery-independent acoustic surveys of early fall (September-October) concentrations of herring in the southern Gulf have been conducted. The surveys are usually concentrated in the areas of Chaleurs-Miscou and north of P.E.I. These areas are where NAFO Division 4T herring aggregate in the fall. The survey design uses random parallel transects within strata.

In 2010, the acoustic survey covered two major areas of the 4T stock with a total transect distance covered of 1,588 kms (Fig. 7a). The areas surveyed were Chaleurs-Miscou from September 21 to October 3 (Fig. 8a) and north P.E.I. from October 4 to 7 (Fig. 8b).

le cas des zones sans dossiers de vérification à quai. L'effort est le nombre de sorties multiplié par le nombre de filets déterminé d'après l'enquête téléphonique annuelle auprès des pêcheurs actifs ou des données des observateurs à quai lorsqu'elles sont disponibles. Les données ont été regroupées par année, zone et jour. Des données sur l'effort et les prises de printemps issues des dossiers de vérification à quai sont disponibles pour la période 1990 à 2011.

Les données de captures utilisées pour calculer les PUE d'automne ont été tirées des bordereaux d'achat et des ZIF de la Direction des Statistiques disponibles depuis 1978. L'effort a été calculé comme le nombre de sorties (d'après les bordereaux d'achat) multiplié par le nombre de filets ou de levées, déterminé d'après l'enquête téléphonique annuelle auprès des pêcheurs actifs ou des données des observateurs à quai lorsqu'elles sont disponibles. Des données pour l'automne sur le nombre de filets sont disponibles depuis 1978, et sur le nombre de levées depuis 1986.

Pour le printemps ainsi que l'automne, on a établi les tendances annuelles des PUE des filets maillants à l'aide d'un modèle linéaire généralisé (GLM).

2.3 RELEVÉ ACOUSTIQUE

Depuis 1991, des relevés acoustiques annuels indépendants de la pêche sont effectués sur les concentrations de hareng du début d'automne (septembre-octobre) dans le sud du Golfe. Les relevés sont concentrés dans les régions de Chaleurs-Miscou et au nord de l'Î.-P.-É. Ce sont les régions où les harengs de la division 4T de l'OPANO se concentrent. Il s'agit d'un relevé utilisant des transects parallèles aléatoires à l'intérieur de strates prédéterminées.

En 2010, le relevé acoustique a porté sur deux grandes zones du stock de 4T avec une distance recensée de 1 588 kms (figure 7a). Les zones couvertes étaient : Chaleurs-Miscou du 21 septembre au 3 octobre (figure 8a) et le nord de l'Î.-P.-É. du 4 au 7 octobre (figure 8b).

In 2011, the acoustic survey covered one area of the 4T stock with a total transect distance covered of 1,175 kms (Fig. 7b). The area surveyed was Chaleurs-Miscou from September 23 to October 4 (Fig. 9). Due to bad weather, the coverage of the north P.E.I. area was not possible in 2011.

Two vessels were used in the survey: an acoustic vessel to determine the presence of fish schools, and a fishing vessel to sample aggregates of fish. The acoustic vessel used was the CCGS F. G. Creed, with a hull-mounted 120 KHz transducer, and using a Femto DE9320 digital echosounder. The fishing vessel was the CCGS Calanus II, using a Nordsea midwater trawl, with horizontal and vertical openings of 11 and 7 m respectively, a length of 36.2 m and minimum mesh size of 4 cm in the codend.

Sampling was carried out wherever major concentrations were detected acoustically to determine species composition, biological characteristics and size distribution for the estimation of the target strength (appendices 3 and 4). Methods used are detailed in LeBlanc and Dale (1996). The 2010and 2011 survey results are presented in Appendices 5a to 5f.

The 2011 acoustic biomass index of the Chaleurs-Miscou area for the combined spring and fall spawner components has been similar in value since 2007, and is near the lowest value of the time series for all the Chaleurs-Miscou area strata and for the strata that have been surveyed every year since 1994 (Fig. 10). In recent years, there has been a decrease in herring densitiy and biomass in the Chaleurs-Miscou area (Fig. 11).

The acoustic numbers and biomass at age detected in the 2010 acoustic survey for Chaleurs-Miscou and north P.E.I. areas, as well as the 2011 acoustic survey for Chaleurs-Miscou, are summarised in

En 2011, le relevé acoustique a porté sur une zone du stock de 4T avec une distance recensée de 1 175 kms (figure 7b). La zone était Chaleurs-Miscou, couverte du 23 septembre au 4 octobre (figure 9). La mauvaise météo n'a pas permis la couverture du nord de l'Î.-P.-É. en 2011.

Deux navires ont été utilisés pour le relevé: un navire avec acoustique pour localiser les bancs de poissons et un navire de pêche pour prendre des échantillons de poissons. Le navire acoustique utilisé était le NGCC F. G. Creed, avec un transducteur en coque de 120 KHz et une échosondeuse digitale Femto DE9320. Les échantillons biologiques ont été prélevés à bord du NGCC Calanus II, à l'aide d'un chalut pélagique Nordsea avec ouvertures horizontale et verticale de 11 et 7 m respectivement, une longueur de 36,2 m et une grandeur minimale de mailles de 4 cm dans le cul du chalut.

L'échantillonnage a été effectué chaque fois que des concentrations importantes étaient signalées afin de déterminer les espèces présentes, les caractéristiques biologiques et la distribution des tailles pour l'estimation de l'indice de réflexion du poisson (appendices 3 et 4). Les méthodes utilisées sont détaillées dans LeBlanc et Dale (1996). Les résultats du relevé de 2010 et 2011 sont présentés dans les appendices 5a à 5f.

L'indice acoustique 2011 de la biomasse des géniteurs de printemps et d'automne combinés de la région Chaleurs-Miscou reste à une valeur similaire depuis 2007, et se situe parmi les valeurs les plus basses de la série temporelle pour toutes les strates de la région Chaleurs-Miscou et pour celles faisant l'objet d'un relevé annuel depuis 1994 (figure 10). Il y a eu une diminution dans la densité et la biomasse de hareng dans la région Chaleurs-Miscou au cours des récentes années (figure 11).

Les nombres et la biomasse à l'âge du relevé acoustique 2010 dans les régions de Chaleurs–Miscou et du nord de l'Î.-P.-É., ainsi que ceux du relevé acoustique 2011 dans la région de Chaleurs–Miscou, sont

Table 11.

In 2010, the biomass detected in the Chaleurs-Miscou area was estimated at 66,250 t, of which 26.4% (17,479 t) were spring spawners (by weight). In the north P.E.I. area, the estimated biomass was 79,556 t, of which 13.9% (11,025 t) were spring spawners (by weight). In 2011, the biomass detected in the Chaleurs-Miscou area was estimated at 54,230 t, of which 25.7% (13,928 t) were spring spawners (by weight).

In the last assessment, the acoustic survey catch-at-age program used an estimated species weight caught in the set as a weighting factor. This weighting favoured the larger set catches in a stratum. Since the tows were of no fixed duration or speed, it was decided to standardize the weight of herring caught per tow (species weight) to what would be caught in a tow of one nautical mile (one nautical mile is the approximate average distance towed). The distance towed was calculated in three ways; latitude and longitude coordinates were given precedence, next was ship speed and set duration, and lastly the estimated distance towed. If data were missing for all of these, then a default value of distance towed of one nautical mile was assumed.

In this assessment, we changed the method of weighting the sets (length frequency) made to improve the accuracy. Sets were not weighted to the amount of herring that would be caught in a tow of one nautical mile. Rather, the catch (length frequency) by set was weighted by the sum of acoustic herring densities recorded in the stratum or group of strata defined in the catch-at-age parameters as representing the biomass in that area. Using the herring densities recorded as the weighting factor was considered a better method as it does not depend on an estimated standardized amount of herring caught in a set of one nautical mile. With this method, sets made where herring densities were greater are given more weight, regardless of the set duration. It is

résumés au tableau 11.

En 2010, la biomasse estimée pour la région Chaleurs-Miscou se chiffrait à 66 250 t, avec 26,4 % (17 479 t) de géniteurs de printemps (par poids). Dans la région du nord de l'Î.-P.-É., la biomasse estimée était de 79 556 t, dont 13,9 % (11 025 t) étaient des géniteurs de printemps (par poids). En 2011, la biomasse estimée pour la région Chaleurs-Miscou se chiffrait à 54 230 t, avec 25,7 % (13 928 t) de géniteurs de printemps (par poids).

Dans l'évaluation précédente, les prises selon l'âge du relevé acoustique ont été pondérées par le poids estimé de la prise par trait de chalut. Ceci donnait plus de poids aux traits avec les prises les plus élevées. Il a été décidé d'uniformiser la prise d'un trait de chalut l'équivalent de ce qui serait capturé lors d'un trait d'un mille nautique de distance (un mille nautique est la distance moyenne des traits). La distance du trait avait été calculée par ordre de préférence comme suit : la priorité a été donnée aux coordonnées latitude et longitude, suivi de la vitesse du bateau et la durée réelle du trait, et en dernier lieu, l'estimé de la distance chalutée. Si ces informations n'étaient pas disponibles, la distance chalutée était arbitrairement inscrite à un mille nautique.

Dans cette évaluation, nous avons changé la méthode de pondérer les traits de chalut (longueur-fréquences) pour améliorer la précision. Les traits n'ont pas été pondérés par le poids capturé lors d'un trait d'un mille nautique de distance. Au lieu, les prises par trait (longueur-fréquences) ont été pondérées par la somme des densités acoustiques de hareng enregistrées dans la strate ou le groupe de strates définies dans les paramètres de capture-à-l'âge comme représentants de la biomasse dans cette région. L'utilisation des densités acoustiques de hareng enregistrées comme facteur de pondération est considérée comme une meilleure méthode puisqu'elle ne dépend pas d'un poids estimé de capture durant un trait d'un mille nautique de distance. Avec cette méthode, les traits effectués où les densités

considered an improvement over the method used in the last assessment.

This new weighting method was applied to the entire acoustic survey data series back to 1994 that is used for the catch-at-age calculation, thus changing the catch-at-age numbers by spawning group. Results of the changes in the acoustic survey catchat-age are summarized in Appendix 2a and 2b.

Catch-at-age by spawning group for the acoustic abundance index was calculated from Chaleurs-Miscou detailed samples collected from the same strata covered since 1994, paired with the acoustic biomass estimate for those strata. The data collected from north of P.E.I. has not been incorporated because of the shorter time series and inconsistency of coverage for this area over the years.

From this catch-at-age by spawning group, a SAS procedure (proc corr) was performed to determine any correlation of age-class abundance from one year to the next, as well as with a 2 and 3 year lag. Good correlation was found for the spring spawning component, the best being for a one year lag in numbers-at-age. The fall spawning component showed poor correlation (Table 12).

2.4 GROUNDFISH BOTTOM TRAWL SURVEY

The annual groundfish bottom trawl survey provides some information on the distribution of 4T herring throughout the sGSL in September. The survey has been conducted consistently during the month of September since 1971. During the last six years, herring were found primarily near shore in shallow waters, mostly west, north

de harengs enregistrés étaient supérieures auront un poids pondéré plus élevé, peu importe la durée du trait de chalut. Nous considérons cette approche comme une amélioration sur celle utilisée lors de l'évaluation précédente.

Cette méthode a été appliquée à toute la série chronologique de données des relevés acoustique depuis 1994 servant au calcul des prises selon l'âge, changeant donc les captures à l'âge par groupe de géniteur. Les résultats des changements des captures à l'âge du relevé acoustique sont résumés dans l'Appendice 2a et 2b.

Les prises selon l'âge pour chaque groupe de géniteurs utilisées dans cette évaluation du stock comme indice d'abondance acoustique ont été calculées à partir des échantillons détaillés de hareng provenant des mêmes strates de Chaleurs-Miscou échantillonnées depuis 1994 et pondérées par la biomasse détectée par l'acoustique dans ces mêmes strates. Les données recueillies au nord de l'Î.-P.-É. n'ont pas été utilisées car la série temporelle est plus courte et il y a inconstance dans les endroits couverts d'une année à l'autre.

De ces prises selon l'âge pour chaque groupe de géniteurs, une procédure SAS (proc corr) a été élaborée pour déterminer s'il existait une corrélation dans l'abondance des classes-d'âge d'une année à l'autre, ainsi qu'avec un décalage de 2 ou 3 ans. Une bonne corrélation existait pour les nombres-à-l'âge des géniteurs de printemps, la meilleure étant sur un décalage d'un an. Pour les géniteurs d'automne, la corrélation était faible (tableau 12).

2.4 RELEVE AU CHALUT DE FOND

Le relevé annuel des poissons de fond au chalut de fond fournit des renseignements sur la distribution du hareng de 4T dans le sGSL en septembre. Le relevé a été réalisé annuellement en septembre depuis 1971. Au cours des six dernières années, le hareng a été observé surtout en eaux peu profondes près des côtes, principalement à l'ouest, au

and east of P.E.I., in Northumberland Strait and in St. Georges Bay (Fig. 12).

In the September 2010 and 2011 groundfish surveys, herring were caught primarily near shore in waters < 30 fathoms, mostly north and east of P.E.I., west of Cape Breton, as well as in the Northumberland Strait and St. Georges Bay (Fig. 12). The length frequency distributions consisted of a proportion less than 19 cm (mostly spring spawned young of the year, and age 1 fall spawned herring), and a larger proportion from 19 to 26 cm which would mainly be age 2 and 3 herring (Fig. 13). The proportion at around 28 cm in 2010 would be age 4 and older herring. There were very few catches of herring larger than 30 cm.

We looked at the herring catch-at-age from the September bottom trawl survey to determine the feasibility of using them as an index of 4T herring abundance. A SAS procedure (proc corr) was performed to determine any correlation of age-class abundance from one year to the next, as well as with a 2 and 3 year lag. No correlation was found for the spring spawning component, while the fall spawning component showed poor correlation, with the best fit being on a 2 year lag. Both the spring spawner and fall spawner catch-at-age numbers from the groundfish survey showed little correlation with cohorts from one year to the next. Thus, they were not used as an abundance index in the population model formulation.

3. SPRING SPAWNER COMPONENT (SSC)

3.1 SPRING FISHERY

The opinions on abundance from the telephone survey of active gillnet fishers indicate a similar or a decrease in spring herring abundance for most areas except

nord et à l'est de l'Î.-P.-É., dans le détroit de Northumberland et dans la baie Saint-Georges (figure 12).

Dans les relevés de septembre 2010 et 2011, le hareng a été capturé près des côtes, surtout en eaux < 30 brasses, principalement au nord et à l'est de l'Î.-P.-É., à l'ouest du Cap-Breton, ainsi que dans le détroit de Northumberland et la baie Saint-Georges (figure 12). La distribution des fréquences de longueur consistait en une proportion de harengs mesurant moins que 19 cm (surtout des harengs du printemps de l'année et des harengs d'automne d'âge 1), et d'une proportion entre 19 et 26 cm qui seraient surtout des harengs d'âge 2 et 3 (figure 13). La proportion autour de 28 cm en 2010 correspond aux harengs d'âge 4 et plus. Il y a eu peu de captures de harengs de taille supérieure à 30 cm.

On a examiné les prises-à-l'âge récoltées dans le cadre de ces relevés au chalut de fond de septembre afin d'établir si elles pouvaient servir d'indice d'abondance du hareng dans 4T. Une procédure SAS (proc corr) a été élaborée pour déterminer s'il existait une corrélation de l'abondance des classes-d'âge d'une année à l'autre, ainsi qu'avec un décalage de 2 ou 3 ans. Aucune corrélation n'existait pour les nombres de géniteurs de printemps, tandis que pour les géniteurs d'automne, la corrélation était faible, avec les meilleurs résultats sur un décalage de 2 ans. Les captures selon l'âge du relevé de poissons de fond des géniteurs de printemps et d'automne indiquaient peu de corrélation avec les cohortes d'une année à l'autre. Par conséguence,, elles ne furent pas utilisées comme indice d'abondance dans le modèle de la population.

3. COMPOSANTE DES GÉNITEURS DE PRINTEMPS (CGP)

3.1 LA PÊCHE DU PRINTEMPS

Les résultats du sondage téléphonique des pêcheurs aux filets maillants actifs indiquent que l'opinion sur l'abondance du hareng de printemps était similaire ou avait diminué Southeast N.B.(Fig. 14). Overall, the opinion survey indicates that abundance has been declining since the mid 1990s in most areas except the Magdalen Islands (declining since 2003) and Nova Scotia.

When asked for comments on the spring gillnet fishery, answers varied by area. The most common comment was that there were too few fishing days or not enough quota due to the conservation measures put in place. Some respondents expressed the need to decrease the number of boats and mesh depth, while others commented that the spring gillnet fishery should be closed in spawning areas.

Most spring gillnets measure from 11 to 16 fathoms long and range from 60 to 100 meshes deep, with the total percentage of mesh sizes being from 2 ½ to 2 ½ inches. In the spring, nets are fished by anchoring overnight (set nets) and picked up the next morning (Tables 7 and 9).

The percentage of days with no catch in the spring gillnet fishery was 34% in 2010 and 26% in 2011 (Table 8). This high percentage is part of the effort data that should be taken into account when determining the gillnet catch per unit effort. Unfortunately, this information was not collected and is not available prior to 2006.

The landings and samples by area used to calculate catch-at-age in the 2010 and 2011 spring fishery are described in Table 13. The SSC catch-at-age and weight-at-age were determined for each gear type and for all gears combined (Tables 14 to 16). Catches of the SSC in 2011 were composed mostly of ages 5, 6 and 7 (Table 16; Figs. 15 and 16).

Mean weights-at-age for the SSC were

dans la plupart des zones sauf le sud-est du N.-B. (figure 14). Dans l'ensemble, l'opinion indique que l'abondance est en déclin depuis le milieu des années 1990 dans la plupart des régions sauf les Îles-de-la-Madeleine (en baisse depuis 2003) et la Nouvelle-Écosse.

Les commentaires des pêcheurs sur la saison de pêche du printemps aux filets maillants varient selon les régions. Les pêcheurs ont surtout indiqué qu'il y avait trop peu de jours de pêche et pas assez d'allocation à cause des mesures de conservation mises en place. D'autres ont suggéré une réduction dans le nombre de bateaux ainsi qu'une réduction dans la profondeur de filets, tandis que d'autres commentaires suggéraient la fermeture de la pêche du printemps aux filets maillants sur les frayères.

La plupart des filets maillants au printemps mesurent de 11 à 16 brasses de long et varient entre 60 et 100 mailles de profondeur, avec un maillage de 2 ¼ po à 2 ½ po pour la majorité. Au printemps, tous les filets sont mouillés pour y rester la nuit (filets ancrés) et sont retirés le lendemain matin (tableaux 7 et 9).

Le pourcentage de jours sans aucunes prises dans les filets maillants pour la saison du printemps était de 34 % en 2010 et de 26 % en 2011 (tableau 8). Ce haut pourcentage fait partie des données sur l'effort et devrait être considéré dans le calcul des prises par unité d'effort des filets maillants.

Malheureusement, cette information n'a pas été recueillie et n'est pas disponible avant 2006.

Les débarquements et les échantillons par zone utilisés pour calculer les prises selon l'âge lors de la pêche du printemps 2010 et 2011 sont décrits au tableau 13. Les prises-à-l'âge et les poids-à-l'âge de la CGP ont été formulés pour chaque engin de pêche et pour les engins combinés (tableaux 14 à 16). Les captures en 2011 étaient composées surtout des âges 5, 6 et 7 (tableau 16; figures 15 et 16).

Le poids moyen selon l'âge de la CGP a

lower in recent years than during the 1990s (Table 16; Fig. 17). The mean weights observed in recent years are declining for most ages. Lower mean weights are an indication of the status of the stock, and affect the stock biomass estimate when numbers are converted to weight.

3.2 SPRING SPAWNER COMPONENT ABUNDANCE INDICATORS

3.2.1 Gillnet fishery CPUE index

Two data sets were combined to derive the daily catch used in the calculation of the SSC gillnet abundance index. The first data set came from dockside monitoring of the gillnet fishery in Escuminac and southeast N.B. from 1990 to 1996 (managed and compiled by the provincial government of N.B.). The second data set consisted of the DFO dockside monitoring of the 4T spring gillnet fishery from 1997 to 2011. In addition, purchase slip data were included where dockside monitoring data were not available.

Since 1986, the number of standard gillnets (15 fathoms long) has been estimated from the telephone survey. Since 2005, the number of standard gillnets was also obtained from dockside monitoring data in areas where the number of records was greater than the number of telephone survey respondents. Daily effort was estimated by multiplying the number of trips by the average number of standard nets/fisher for each area (Table 17). The fishing effort for the season was obtained by adding the fishing effort for all days. Thus, the units of measurement for effort were net-days. The mesh size of gillnets used in the spring fishery has not changed significantly over time (21/4 to 21/2 inch mesh were most common).

diminué depuis quelques années, comparativement aux années 1990 (tableau 16 et figure 17). Les poids moyens observés ces dernières années sont en déclin pour la plupart des âges. Les changements dans le poids moyen sont une indication de l'état du stock et affectent l'estimation de la biomasse totale lorsque les nombres sont convertis en poids.

3.2 INDICATEURS D'ABONDANCE DE LA COMPOSANTE DES GENITEURS DE PRINTEMPS

3.2.1 Indice des PUE de la pêche aux filets maillants

Les indices d'abondance de la CGP des filets maillants ont été calculés à partir de captures journalières tirées de la combinaison de deux ensembles de données soient les données de la vérification à quai de la pêche aux filets maillants d'Escuminac et du sud-est du N.-B. de 1990 à 1996 (gérée par le gouvernement du N.-B.) et les données de la vérification à quai du MPO des prises de la pêche aux filets maillants du printemps de 1997 à 2011. Lorsque les données de vérification à quai n'étaient pas disponibles, les prises enregistrées sur les bordereaux d'achat ont été utilisées.

Depuis 1986, le nombre de filets maillants ordinaires (mesurant 15 brasses a été estimé par le sondage téléphonique. Depuis 2005, le nombre de filets maillants ordinaires a été obtenu par les données des observateurs à quai, lorsque le nombre dépassait le nombre de répondants du sondage téléphonique. L'effort quotidien a été déterminé en multipliant le nombre de sorties par le nombre moyen de filets ordinaires par pêcheur (tableau 17). L'effort total de la saison a été obtenu en faisant la somme de tous les efforts quotidiens. Ainsi, les unités de mesure de l'effort étaient les filets-jours. La longueur de maille des filets maillants utilisés au printemps n'a pas beaucoup varié au fil du temps, se situant généralement entre 21/4 po et 2½ po.

In recent years, it was noticed that landings from the late spring gillnet fishery (mainly June) have increased significantly and make up a larger amount of the total spring gillnet landings. A closer examination of the composition of the 2010 and 2011 spring season gillnet catches revealed that a proportion of the June catches were of the fall spawner component, while catches in April and May are mostly of the spring spawner component caught on the spawning grounds (Table 18). The June 2010 and 2011 catches in the east PEI - Gulf N.S. area (16FG) were composed on average of 75% fall spawners (Table 19). In light of this catch composition in June, it was concluded that the spring gillnet fishery CPUE index should not include catch data from June in order to better reflect the spring spawner component abundance.

Since the 2002 assessment, it was concluded that the catch-weighted index appears to be more consistent with the SSC stock trends (Poirier 2002; LeBlanc et al. 2003). Therefore, the gillnet CPUE series chosen to calibrate the 2011 SPA model for the SSC assessment included the April and May dockside monitoring data (1990-2011) from all areas, aggregated by day and area and weighted by the catch for that area.

To estimate annual gillnet CPUE abundance indices, we used a multiplicative model (GLM) with week, area and year (1990-2011) effects. The model formulation from GLMs was:

In(CPUE_{ijk})= α + β 1I+ β 2J+ β 3K+ ϵ where:

CPUE_{ijk} = CPUE in year i, area j, week k I is a matrix of 0 to 1 indicating year

Depuis quelques années, on a observé que les captures aux filets maillants provenant de la pêche printanière tardive (surtout juin) ont augmenté considérablement et constituent une plus grande proportion des captures totales du printemps. Une analyse de la composition des captures de juin 2010 et 2011 indique qu'une proportion des captures appartient à la composante des géniteurs d'automne, tandis que les captures en avril et mai proviennent majoritairement de la composante des géniteurs de printemps, capturés sur les fravères (tableau 18). Les captures aux filets maillants de juin 2010 et 2011 de la région est de l'Î.-P.-É. et Golfe N.-É. (16F et 16G) étaient composées en moyenne de 75% de géniteurs d'automne (tableau 19 et figure 1). Vu la composition des captures de juin, il a été conclu que l'indice des PUE de la pêche aux filets maillants du printemps ne devrait pas inclure les captures de juin afin de s'assurer que l'index soit plus représentatif de l'abondance de la composante des géniteurs de printemps.

Depuis l'évaluation de 2002, il a été conclu que l'indice pondéré par les prises semble mieux correspondre aux tendances du stock de la CGP (Poirier 2002 ; LeBlanc et al. 2003). Par conséquent, la série des PUE des filets maillants choisie pour étalonner le modèle ASP pour la CGP pour l'année 2011 incluait les données de vérification à quai d'avril et de mai de toutes les régions (1990-2011), regroupées par jour et région et pondérées par les prises de cette région.

Pour estimer l'indice d'abondance annuel des PUE des filets maillants, un modèle multiplicatif (GLM) fut utilisé, avec semaine, région et année (1990-2011) comme facteurs. La formule du modèle GLM était la suivante :

 $In(PUE_{ijk})=\alpha+\beta 1I+\beta 2J+\beta 3K+$ \in

où:

 PUE_{ijk} = PUE pour année i, zone j, semaine k I est une matrice de 0 à 1 indiquant l'année

J is a matrix of 0 to 1 indicating area
K is a matrix of 0 to 1 indicating week
E is the residual error

The model was significant, ($r^2 = 0.44$, p < 0.0001) (Table 20). The residuals provided no violations of assumption of normal distribution and revealed no points that may have unduly influenced the parameter estimates.

The estimated catch rates in kg/net/trip have been declining since 1997, with the 2010 and 2011 catch rates being the lowest in the time series (Fig. 18). An age-disaggregated abundance index for ages 4-10 and years 1990 to 2011 was calculated by dividing the gillnet catch-atage by the standardized effort from the multiplicative model (Table 21).

Internal consistency of the CPUE index by age for the SSC was examined with correlations and regressions of age-class abundance with a one year lag. The internal consistency of the regressions show a good fit (Fig. 19).

3.2.2 Acoustic survey index

A second standardized abundance index was generated from the annual acoustic survey. This index includes catch-at age data from Chaleurs-Miscou strata surveyed yearly since 1994. During this time period, the survey was conducted with the vessel CCGS F. G. Creed and all transects were covered at night.

The 2010 Chaleurs–Miscou acoustic survey catches of the SSC were dominated by the 2006 and 2007 year-class (ages 3 and 4 in 2010). The 2011 Chaleurs–Miscou acoustic survey catches of the SSC were dominated by the 2008 year-class (age 3 in 2011) (Table 22; Fig. 20).

J est une matrice de 0 à 1 indiquant la zone

K est une matrice de 0 à 1 indiquant la semaine

E est l'erreur résiduelle

Le modèle était significatif (r² = 0,44, p < 0,0001) (tableau 20). Les résidus ne démontrent aucune violation de supposition de distribution normale et n'ont révélé aucun point ayant influencé les paramètres estimés.

Les taux de capture estimés en kg/filet/jour ont diminué depuis 1997, les taux de capture de 2010 et 2011 étant les plus bas de la série chronologique (figure 18). Un indice d'abondance par âge (4 à 10 ans) pour les années 1990 à 2011 a été calculé en divisant les prises selon l'âge de la pêche aux engins fixes par l'effort normalisé du modèle multiplicatif (GLM) (tableau 21).

On a vérifié la cohérence interne de l'indice PUE des prises selon l'âge de la CGP avec des corrélations et régressions de l'abondance par classe d'âge avec un décalage d'une année. La cohérence interne des régressions montre un bon ajustement (figure 19).

3.2.2 Indice du relevé acoustique

Un second indice d'abondance normalisé tiré du relevé acoustique annuel a été calculé. Cet indice comprend les captures-à-l'âge des strates Chaleurs-Miscou qui ont fait l'objet d'un relevé annuel depuis 1994. Pendant cette période, le relevé a été effectué avec le navire NGCC F.G. Creed et tous les transects ont été faits la nuit.

Les prises de la CGP lors du relevé acoustique de Chaleurs-Miscou en 2010 étaient dominées par la classe d'âge de 2006 et 2007 (âges 3 et 4 en 2010). Les prises de la CGP lors du relevé acoustique de Chaleurs-Miscou en 2011 étaient dominées par la classe d'âge de 2008 (âge 3 en 2011) (tableau 22 et figure 20).

Internal consistency of the acoustic index by age for the SSC was examined with correlations and regressions of age-class abundance with a one to three year lag (Table 12). For all year lags, the internal consistency is generally good, with six of the seven regressions showing a good fit (Fig. 21).

The acoustic survey estimated catch rates (in numbers) of spring spawners of age 4 to 8 increased slightly in 2010 but decreased again in 2011, and remain at a low level in the time series (Fig. 22). The age-disaggregated abundance index includes ages 4-8 and years 1994 to 2011 (Tables 21 and 22).

3.2.3 Gillnetter telephone survey opinion on abundance

During the annual gillnetter telephone survey started in 1986, one question asked the harvesters to compare the abundance of herring in the current year to the previous year. The responses were scaled 1 to 10, 5 meaning no change from the previous year. To construct the index. the responses were re-scaled from -5 to +5, with 0 indicating no change of abundance. The annual opinion responses were averaged by area and then weighted by the catch in that area. A global yearly weighted average was calculated and yearly averages were added cumulatively. to give a trend of abundance from 1987 to the current year. A positive slope indicates harvester opinions consistent with an increasing stock abundance, and a negative slope indicates decreasing abundance.

By averaging the opinions on abundance for all areas compared to the opinions on abundance from the previous year of fishing, weighted by the catch in each area and year, the global 4T cumulative spring index of gillnetter opinion on abundance reached a peak in 1998, then declined abruptly until 2008, with a slight increase

On a vérifié la cohérence interne de l'indice acoustique des prises selon l'âge de la CGP avec des corrélations et des régressions de l'abondance par classe d'âge avec un décalage d'une à trois années (tableau 12). Pour tous les décalages, la cohérence interne est généralement bonne, six des sept régressions montrant un bon ajustement (figure 21).

Les estimations de taux de capture des géniteurs de printemps (en nombre) du relevé acoustique pour les âges 4 à 8 ont augmenté légèrement en 2010 mais diminué à nouveau en 2011, et demeurent à un niveau bas dans la série chronologique (figure 22). L'indice d'abondance par âge inclut les 4 à 8 ans et les années 1994 à 2011 (tableaux 21 et 22).

3.2.3 Opinion sur l'abondance du sondage téléphonique des pêcheurs de filets maillants

Lors du sondage téléphonique annuel qui a lieu depuis 1986, on demande aux pêcheurs aux filets maillants leur opinion sur l'abondance du hareng dans l'année courante comparativement à l'année précédente. Les réponses d'opinion sont comptabilisées sur une échelle de 1 à 10, 5 indiquant aucun changement de l'abondance sur l'année précédente. Pour construire l'indice, les réponses ont été recalées entre -5 et +5, le 0 indiquant aucun changement d'abondance. Les opinions annuelles sur l'abondance ont ainsi été obtenues pour chaque région en les pondérant par les prises de cette région. Un indice d'opinion annuel moyen a été calculé et le cumulatif de ces indices donne ainsi une série temporelle de 1987 à l'année courante. Une pente positive correspond à une opinion d'une augmentation d'abondance du stock et une pente négative à une opinion d'une diminution de l'abondance.

Pour toutes les régions, si l'on combine les opinions sur l'abondance par rapport à l'année précédente de pêche, pondérées par les prises par région et année, l'indice cumulatif global 4T d'opinion des pêcheurs aux filets maillants sur l'abondance du printemps a atteint un sommet en 1998, pour ensuite diminuer jusqu'en 2008 et augmente

since 2009 (Fig. 23).

In 2008, a review of the use of the gillnetter telephone survey opinion on abundance as an aggregated biomass index in the model was done. Conclusions were that respondents in the gillnet telephone survey provide an honest opinion of their perception of recent changes in herring abundance, but that opinion is not related in a constant manner to changes in the same respondent's herring catch rates. It was concluded that this index should not be used as an aggregated biomass index in the population model formulation.

3.2.4 Comparison of abundance indicators

The gillnetter telephone opinion on abundance survey shows a sharp decline after 1998, while the gillnet CPUE and acoustic survey indices indicate a more gradual decline. Since 2009 the gillnetter telephone opinion on abundance survey shows an increase, while the gillnet CPUE and acoustic survey indices indicate a decrease. Overall the indices remain at a low value in the time series (Fig. 24).

3.3 SPRING SPAWNER COMPONENT ASSESSMENT

The determination of resource status of 4T spring spawning herring was attempted using a population analysis model with ADAPT software (Gavaris 1999).

3.3.1 Spring spawner component ADAPT calibration

The 2009 assessment model used both the age-disaggregated gillnet CPUE index and the acoustic survey index, both proportional to abundance (LeBlanc et al. 2010). The internal weighting procedure was not used in the model trials for 2009. For the acoustic survey index, it was

légèrement depuis 2009 (figure 23).

En 2008, une revue de l'utilisation de l'indice d'opinion des pêcheurs aux filets maillants sur l'abondance provenant du sondage téléphonique en tant qu'indice global de biomasse dans le modèle avait été faite. Les conclusions étaient que les répondants du sondage téléphonique donnaient une perception juste des changements récents dans l'abondance du hareng, mais que cette opinion n'était pas reliée d'une manière constante aux changements dans les taux de capture du répondant. Il avait été conclu que cet indice ne devrait pas être utilisé comme indice global de biomasse dans le modèle de population.

<u>3.2.4 Comparaison des indicateurs</u> <u>d'abondance</u>

Le sondage téléphonique des pêcheurs aux filets maillants sur l'opinion d'abondance montre un déclin rapide après 1998, tandis que les indices des PUE des filets maillants et du relevé acoustique démontrent un déclin plus graduel. Depuis 2009, l'opinion d'abondance du sondage téléphonique a augmenté, tandis que les indices des PUE des filets maillants et du relevé acoustique démontrent une diminution. Néanmoins, les indices restent à un niveau bas dans la série chronologique (figure 24).

3.3 ÉVALUATION DE LA COMPOSANTE DES GENITEURS DE PRINTEMPS

L'état de la composante des reproducteurs de printemps dans 4T a été déterminé en se fondant sur une analyse de population avec le logiciel ADAPT (Gavaris 1999).

3.3.1 Étalonnage de la composante des géniteurs du printemps au moyen d'ADAPT

Dans le modèle d'évaluation 2009, les abondances par âge des indices des PUE des filets maillants et du relevé acoustique comme indices proportionnels à l'abondance ont été utilisées (LeBlanc et al. 2010). Les modalités de pondération interne n'ont pas été utilisées dans les essais du modèle

decided to use the ages 4 to 8 only, as the inclusion of the age 3 index resulted in an age 4 population estimate that was imprecise.

For the 2011 population analysis model trials, several estimates were attempted using different combinations of indices. Model calibration trials where a power function was attributed to the CPUE index were attempted. The results showed that the power estimates were different than one but that the estimates of catchability were much less precise than the proportional model. This calibration was not deemed usable as the final model application.

The model using both the age disaggregated gillnet CPUE index and the acoustic survey index, both proportional to abundance, was chosen as the best representation of stock status and is presented in this paper.

The 2011 assessment model input catchat-age included ages 4 to 11+. The gillnet CPUE series included ages 4 to 10. The acoustic survey index included ages 4 to 8. The formulation for the calibration was as follows:

Parameters

Terminal N estimates:

 $N_{i,2012}$, i = 5 to 10

 $N_{10,2011}$ $N_{10,2010}$ $N_{10,2009}$

Calibration coefficients:

Gillnet CPUE ages 4 to 10 Acoustic survey ages 4 to 8 d'évaluation pour 2009. Pour l'indice du relevé acoustique, il a été décidé d'utiliser les âges 4 à 8 seulement, car l'inclusion de l'indice des âges 3 donnait un estimé imprécis de la population d'âge 4, vu la variance élevée associée à cet estimé.

Pour les essais du modèle d'analyse de population en 2011, plusieurs estimés ont été calculés en utilisant différentes combinaisons d'indices. Un essai où l'indice des PUE était considéré comme une fonction puissance de l'abondance a été essayée. Les résultats indiquaient que les estimés de puissance étaient différents, mais que les estimés de capturabilité étaient beaucoup moins précis que le modèle proportionnel. Cette calibration a donc été rejetée comme application finale du modèle.

Le modèle incluant les indices d'abondance désagrégé par âge des PUE des filets maillants et du relevé acoustique, les deux proportionnels à l'abondance, a été choisi comme le plus représentatif de l'état du stock et est présenté dans ce document.

Dans le modèle d'évaluation 2011, les prisesà-l'âge incluent les âges 4 à 11+. L'indice des PUE inclut les âges 4 à 10. L'indice du relevé acoustique inclut les âges 4 à 8. La formule de l'analyse pour l'étalonnage était la suivante :

Paramètres

Estimations de N terminal:

 $N_{i,2012}$, i = 5 à 10

 $N_{10,2011}$ $N_{10,2010}$ $N_{10,2009}$

Coefficients d'étalonnage :

PUE des filets maillants, âges 4 à 10 Relevé acoustique, âges 4 à 8

Structure Imposed:

Error in catch-at-age assumed negligible

Natural mortality (M) = 0.2

Oldest age F: F10 using FIRST

method (Gavaris 1999)

F10 = average (F8+F9)

F11 = F10

CPUE and acoustic indices proportional to abundance

Input:

 C_{ik} , i = 2 to 11, k = 1978 to 2011

Gillnet CPUE_{ik}, i = 4 to 10, k = 1990 to 2011

Acoustic survey_{ik}, i = 4 to 8, k = 1994 to 2011

Objective Function:

Minimise sum of squared log normal residuals

Summary:

Number of observations: 244 Number of parameters: 22

The parameter variance was estimated analytically. Results indicated a model fit with a mean square residual of 0.68 (Table 23). The diagnostics for the model indicate that the relative error around the population estimates for ages 5 to 10 were between 0.29 and 0.61. There is a higher relative error on the age 5 estimate (0.61).

The residual plots for the agedisaggregated indices (Fig. 25) show some distinct patterns with year effects. Another representation of the fit of the model with the indices is the comparison of CPUE and acoustic indices corrected for catchability and the model estimates of population abundance (Fig. 26). Structure imposée :

L'erreur dans les prises selon l'âge est considérée négligeable

Mortalité naturelle (M) = 0,2

F pour l'âge le plus vieux: F10 calculé au moyen de la méthode FIRST (Gavaris 1999)

F10 = moyenne (F8+F9)

F11 = F10

Indices PUE et relevé acoustique proportionnels à l'abondance

Données:

 C_{ik} , i = 2 à 11, k = 1978 à 2011

PUE filets maillants_{ik}, i = 4 à 10, k = 1990 à 2011

Relevé acoustique_{ik}, i = 4 à 8, k = 1994 à 2011

Fonction objective:

Minimiser la somme des carrés des résidus (transformés en leur logarithme naturel)

Résumé:

Nombre d'observations : 244 Nombre de paramètres : 22

La variance des paramètres a été estimée de façon analytique. Les résultats indiquent que l'ajustement du modèle a un résidu carré moyen de 0,68 (tableau 23). L'analyse du modèle révèle que les erreurs relatives autour des estimés de la population d'âges 5 à 10 varient entre 0,29 et 0,61. Il y a une plus grande erreur relative sur l'estimé des âges 5 (0,61).

Le graphique des résidus pour les indices désagrégés par âge (figure 25) suggère certains effets année. Une autre représentation de la tendance des indices et des résultats du modèle est la comparaison des indices des PUE et du relevé acoustique ajustés pour la capturabilité et les estimés de l'abondance de la population du modèle (figure 26).

Both the gillnet CPUE and the acoustic survey indices indicate a decline in the SSC biomass since the 1990s. However, they do not show the same extent of decline. The CPUE index indicates a less steep decline than the acoustic survey. There are reasons to expect that changes in gillnet CPUE will underestimate the true changes in population abundance and biomass:

- 1) At high levels of abundance, gillnets may become saturated.
- 2) Zero catches are not included in the CPUE calculation.
- 3) Because the fishery targets spawning aggregations, relatively high catch rates can be maintained even at low levels of herring biomass.

On the other hand, there is no a priori reason to expect a bias in the acoustic survey index.

Based on Figures 25 and 26, the model appears to be averaging between the two indices and indicating an intermediate decline.

A retrospective analysis (Fig. 27) indicated a slight tendency to overestimate biomass since 2006 with the addition of the 2010-2011 data.

3.3.2 Spring spawner component - assessment results

The previous five years average survival ratio (number at age in a year-class / Spawning Stock Biomass producing that year-class) were used to estimate the average numbers of ages 2 to 4 in 2012 (Fig. 28). The results of this analysis suggest that population abundance of SSC herring in 4T has declined since 1995 and has been at a constant low level since 2002 (Fig. 29). The analysis indicates that both population abundance and biomass of ages 4+ SSC peaked in 1995, when the large 1991 year-class entered the fishery

Les indices des PUE des filets maillants et du relevé acoustique indiquent tous deux une diminution dans la biomasse de la CGP depuis les années 1990. Le déclin montré par ces indices n'est toutefois pas dans la même mesure. L'indice des PUE indique une diminution moins importante que l'indice du relevé acoustique. Il faut s'attendre à ce que des changements dans les PUE des filets maillants sous-estiment les changements réels dans l'abondance et la biomasse de la population :

- 1) À des hauts niveaux de biomasse, les filets maillants peuvent devenir saturés.
- 2) Les sorties sans prises ne sont pas inclues dans le calcul des PUE.
- 3) Puisque la pêche cible des agrégations en fraie, des PUE relativement élevées peuvent se maintenir même à de bas niveaux de biomasse de harengs.

Par contre, il n'y a pas de raisons à priori de s'attendre à un biais dans l'indice du relevé acoustique.

Basé sur les figures 25 et 26, le modèle semble indiquer un niveau intermédiaire de déclin en tenant compte des deux indices.

Avec l'ajout des données de 2010 et de 2011, une analyse rétrospective montre une légère tendance à surestimer la biomasse depuis 2006 (figure 27).

3.3.2 Composante des géniteurs de printemps - résultats de l'évaluation

La moyenne du taux de survie des âges 2 à 4 (nombre à l'âge / biomasse reproductrice pour cet âge) des cinq dernières années a été utilisée pour estimer le nombre des âges 2 à 4 en 2012 (figure 28). Les résultats de cette analyse semblent indiquer que l'abondance de la population de hareng de la CGP dans 4T a diminué depuis 1995 et reste à un niveau constamment bas depuis 2002 (figure 29). L'analyse révèle que l'abondance et la biomasse de la population des âges 4+ ont culminé en 1995, année où la forte classe d'âge de 1991 est entrée dans la pêche en

as 4 year-olds.

The population number at age 4 for 2012 was set at the number produced by the 2007-2011 mean survival ratio for age 4 multiplied by the estimated spawning stock biomass (SSB) in 2008 (Table 24). The 2012 beginning-of-year ages 4-11+ SSB was estimated to be about 18,330 t. (Table 25; Fig. 29). The confidence intervals of the 2.5th and 97.5th percentiles of the estimates of SSB in 2012, based on the bootstrap replicates, are 14,802 t and 29,056 t.

Average age 6 to 8 fishing mortalities from the ADAPT CPUE and acoustic calibration model suggest higher fishing mortalities for most ages from 1999 to 2005 and in 2007 (Table 26). The model suggests that the abundance of year-classes after 1991 were average or below average.

The reference level exploitation rate at F0.1 for the SSC was about 27% over fully recruited ages 6 to 8. The estimated exploitation rate has been above the reference level from 1999 to 2005 and in 2007, and below in 2006 and since 2008 (Fig. 29).

3.3.3 Spring spawner component prospects

Stock projections were conducted and input parameters are presented in Table 27. It was noted that, for partially recruited fish, calculating beginning of year weights at age based on the commercial weights at age biases the results in favor of the faster growing fish. Thus acoustic survey samples were used to calculate weights at age that are more representative of the partially recruited age classes (ages 2 to 4). The fishery weights at age used in the projections were the average of 2009 to 2011. The 2012 beginning-of-year weights at age were averaged from the 2009 to 2011 commercial and acoustic survey weights adjusted to the beginning of the year.

tant qu'âge 4.

Le nombre d'âge 4 pour 2012 a été estimé en multipliant le taux de survie moyen de 2007 à 2011 par la biomasse du stock reproducteur (BSR) estimée en 2008 (tableau 24). La BSR des âges 4-11+ pour le début de l'année 2012 est estimée à environ 18 330 t (tableau 25; figure 29). Les intervalles de confiance des percentiles 2.5 et 97.5 des estimés de la BSR en 2012, basés sur les répliques bootstrap, sont 14 802 t et 29 056 t.

La mortalité par pêche du modèle ADAPT (moyenne d'âge de 6 à 8 ans) de l'étalonnage avec les PUE et l'indice acoustique est plus élevée (pour la plupart des âges) entre 1999 et 2005 et en 2007 (tableau 26). Le modèle démontre que l'abondance des classes d'âge des années après 1991 est semblable ou inférieure à la moyenne.

Le taux d'exploitation de référence à F0,1 de la CGP est d'environ 27 % pour les groupes d'âge de 6 à 8 ans pleinement recrutés. Le taux d'exploitation estimé est au-dessus du taux de référence de 1999 à 2005 et en 2007, et inférieur en 2006 et depuis 2008 (figure 29).

3.3.3 Perspectives d'avenir pour les composante des géniteurs de printemps

Des projections des stocks ont été effectuées et les paramètres des données sont présentés au tableau 27. Il est à noter que le calcul des poids du début de l'année pour les recrues partielles d'après les poids dans la pêche commercial montre un biais en faveur des harengs qui croissent plus rapidement. Ainsi, les poids provenant des échantillons du relevé acoustique, étant considérés comme plus représentatifs, ont été utilisés pour les recrues partielles (âges 2 à 4). Les poids selon l'âge de la pêcherie correspondent aux valeurs moyennes des poids dans la pêche de 2009 à 2011. Les poids selon l'âge au début de l'année 2012 sont des moyennes de 2009 à 2011 des poids de la pêche et du relevé acoustique ajustés au début de

Partial recruitment was derived from fishing mortalities for 2009 to 2011.

The analysis suggested that fishing at F0.1 (corresponding to a fully-recruited F=0.35) would yield 5,000 t in 2012 for ages 2 to 11+ (Table 28). Fishing at F0.1 is considered a safe exploitation rate only when the spawning stock biomass level is in the healthy zone.

For the spring spawning component, the limit reference point (LRP (Blim)) and interim upper stock reference (USR) points are 22,000 and 54,000 t, respectively (DFO 2005). The current estimate of SSB (18,330 t) is below the LRP (Blim) (Fig. 30). Below this level of biomass, the application of the precautionary approach requires that removals from the stock should be kept to the lowest level possible.

The risk analyses conducted were:

- the probability of no decline in biomass.
- the probability of a 5% increase in biomass.
- the probability of a 5% decline in biomass.
- the probability of SSB being lower than 22,000 t (LRP (Blim)).

With a catch option of 1,000 t in 2012, there is a 90% probability that the biomass in 2013 will increase by 5%. Catch options less than 2,000 t would provide a low probability (<25%) of further decline in biomass from the current level of 18,330 t (Fig. 31). The Armstrong plot shows the biomass changes and exploitation rates expected, given catches between 0 and 9,000 t (Fig. 32).

l'année. Le recrutement partiel a été calculé à partir des données sur la mortalité par la pêche de 2009 à 2011.

L'analyse révèle que la pêche à F0,1 (correspondant à un recrutement complet, F=0,35) donnerait un rendement de 5 000 t en 2012 pour les âges 2 à 11+ (tableau 28). Pêcher à F0,1 est considéré comme un niveau d'exploitation acceptable seulement quand le niveau de biomasse de stock reproducteur est à un niveau sain.

Les limites inférieure (NRL (Blim)) et supérieure (NRS) de référence pour la biomasse des géniteurs de printemps sont de 22 000 t et 54 000 t, respectivement (MPO 2005). L'estimé actuel de la BSR de 18 330 t est au-dessous de la limite inférieure de référence Blim (figure 30). En dessous de ce niveau de biomasse, l'application de l'approche de précaution requiert que le taux d'exploitation soit réduit au plus bas possible.

Plusieurs analyses de risques ont été considérées :

- la probabilité d'aucun déclin dans la biomasse.
- la probabilité d'une augmentation de 5% dans la biomasse,
- la probabilité d'un déclin de 5 % dans la biomasse,
- la probabilité que la BSR soit en dessous de la limite inférieure de référence (Blim) de 22 000 t.

Des captures de l'ordre de 1 000 t en 2012 résulteraient en une probabilité de 90 % d'une augmentation de 5 % de la biomasse. Des captures de l'ordre de 2 000 t résulteraient en une faible probabilité (<25 %) d'un déclin de la biomasse actuelle de 18 330 t (figure 31). La figure Armstrong est une autre manière de visualiser les changements dans le taux d'exploitation et la biomasse pour des captures variant entre 0 et 9 000 t (figure 32).

3.3.4 Spring spawner component two year and longer projection

Risk analyses were conducted by projecting the population forward from the beginning of 2012 to the beginning of 2014 (or further), taking into account uncertainty in the population abundance at age in 2012 and recent variability in recruitment rates and beginning-of-year weights-atage. These projections rely on the assumption that recent levels of productivity (recruitment rates, weights at age, and natural mortality rate) will persist over the projection period.

This was done using the 1,000 bootstrap replicates of terminal population abundance at ages 5 to 11+ years produced when fitting the ADAPT model. Each of 1,000 projections was started by randomly selecting one of these bootstrap replicates. Estimates of abundances at ages 2, 3 and 4 years in 2012 and at age 2 in subsequent years were obtained using the spawning stock biomass (SSB) producing these year-classes (i.e., the SSB two, three or four years earlier) and a recruitment rate (recruits/SSB) randomly selected from those observed over the last 10 years.

Beginning-of-year weights-at-age were randomly selected from those estimated for 2009-2011; only the last three years were used due to recent declines in weight-at-age. Other inputs to the projections (natural mortality (M), beginning-of-year weights at age, maturity at age, partial recruitment to the fishery at age, and commercial weights at age) are given in Table 27. Various levels of catch were used in the projections, with the same level used in all years. The probability of a given event was estimated as the proportion of the projection iterations in which that event occurred. For example, the probability of an increase in SSB from 2012 to 2014 was the proportion of projections in which SSB in 2014 was

3.3.4 Prévision pour deux années et à moyen terme de la composante des géniteurs de printemps

Dans cette section, des prévisions du stock de hareng du printemps au cours des deux prochaines années sont présentées.
L'analyse projette la population du début de l'année 2012 au début de l'année 2014, en tenant compte de l'incertitude dans l'abondance de la population en 2012 et les variations récentes dans les taux de recrutement et les poids à l'âge du début de l'année. Ces projections présument que les niveaux récents de productivité (taux de recrutement, poids à l'âge et mortalité naturelle) seront les mêmes tout au long de la période projetée.

Les prévisions se basent sur le modèle de population présenté dans cette évaluation et utilisent 1 000 répliques de l'abondance des âges 5 à 11+ de la population de 2012. Chaque projection a été initialisée en choisissant au hasard une de ces répliques. Les estimés d'abondance des âges 2, 3 et 4 en 2012 et de l'âge 2 dans les années subséquentes a été calculé en utilisant la biomasse du stock reproducteur (BSR) qui a produit ces classes d'âge (i.e. la BSR deux, trois ou quatre ans auparavant) et un taux de recrutement (recrues/BSR) sélectionnés au hasard parmi ceux observés pendant les 10 dernières années.

Les poids à l'âge du début de l'année ont été pigés au hasard parmi ceux estimés pour 2009 à 2011(seulement les trois dernières années ont été choisies vu le déclin récent dans les poids à l'âge. Les autres données utilisées pour les prévisions telles que la mortalité naturelle (M), les poids à l'âge au début de l'année, le recrutement partiel à la pêche à l'âge et les poids moyens à l'âge) sont résumées au tableau 27. Des taux variables des captures ont été utilisés pour les prévisions, avec les mêmes niveaux utilisés pour toutes les années. La probabilité d'un événement donné a été estimée comme la proportion des itérations de prévisions dans laquelle l'évènement a eu lieu. Par exemple, la probabilité d'une augmentation dans la BSR de 2012 à 2014 correspond à la

greater than SSB in 2012.

3.3.4.1 Results

Projections were done with levels of catch between 0 and 3,000 t, in 500 t increments. The probability that SSB would be less than the limit reference point (LRP (Blim)) of 22,000 t at the start of 2014 varied from 50% with no catch to 86% with a catch of 3000 t in each year (Fig. 33). Based on the conditions assumed in the projections, there is no chance that SSB will be above the upper stock reference (USR) in 2014 at any level of catch, including no catch.

The probability that SSB would remain below the USR in ten years varied from 94% with no catch to 98% with a catch of 1,500 t each year and 100% with a catch of 3,000 t each year. The probability of an increase in biomass from 2012 to 2014 ranged from 79% with no catch to 21% with catches of 3,000 t each year (Fig. 33).

4. FALL SPAWNER COMPONENT (FSC)

4.1 FALL FISHERY

The opinions on abundance from the fall gillnet fishery telephone survey was that abundance was estimated lower in the Acadian Peninsula, Quebec and East P.E.I. areas, higher in West P.E.I., Escuminac and Nova Scotia (Fig. 34).

proportion des prévisions dans lesquelles la BSR en 2014 serait supérieure à la BSR de 2012.

3.3.4.1 Résultats

L'effet relatif de divers niveaux de captures, allant d'aucune capture (0 tonne) à des captures de 3 000 tonnes, par augmentation de 500 tonnes, est évalué. La probabilité que la BSR soit inférieure à la limite de référence (NRL (Blim)) de 22 000 t au début de 2014 varie de 50% avec aucune capture à 86% avec des captures de 3 00 t à chaque année (figure 33). Basé sur les conditions présumées dans les projections, il n'y a aucune chance que la BSR soit plus élevée que le niveau de référence supérieur (NRS) peu importe le niveau de capture et même s'il n'y a aucune capture.

La probabilité que la BSR soit en dessous du NRS dans 10 ans varie de 94%, s'il n'y a aucune capture, à 98% avec des captures de 1 500 t par année et à 100% avec des captures de 3 000 t par année. La probabilité d'une augmentation de la biomasse de 2012 à 2014 varie entre 79%, s'il n'y a aucune capture, à 21% avec des captures de 3 000 t par année (figure 33).

4. COMPOSANTE DES GÉNITEURS D'AUTOMNE (CGA)

4.1 PÊCHE D'AUTOMNE

Les réponses du sondage téléphonique sur les opinions de l'abondance dans la pêche d'automne aux filets maillants indiquent que l'abondance perçue était inférieure dans les régions de la Péninsule acadienne, Québec et l'est de î.-P.-É., et en hausse à l'ouest de î.-P.-É, Escuminac et Nouvelle-Écosse (figure 34).

Gillnetter's comments on the 2011 fall fishery varied by area. The most common comment was that the price was good in 2011. Gillnetters in some areas were concerned about a marked decrease in abundance, while other areas are seeing an increase in abundance. Certain areas commented that the season opening was too late, an increase in daytime fishing and too many tunas that scared the herring.

Other information from the gillnetter telephone survey indicated that 2 % inch was the most commonly used fall mesh size. In 2010 and 2011, most nets were 13 to 16 fathoms long and ranged from 85 to 120 meshes deep (Tables 7 and 9). In the fall, gillnetters search for spawning grounds and nets are set only when a school of sufficient size is found. In Quebec and the Acadian Peninsula, most gillnets were fished with one end tied to the vessel and the other anchored (modified nets). In other areas, most of the gillnets are anchored at both ends and two or more strings may be set (set nets) (Table 7).

The percentage of days with no catch in the fall gillnet fishery was 19.9% in 2010 and 27.3% in 2011 (Table 8). This high percentage is part of the effort data that should be taken into account when determining the gillnet catch per effort. Unfortunately, this information was not collected and is not available prior to 2006.

In the 2010 fall fishery, 72% of the total fall TAC was attained; seiners caught 30% of their allocation while the inshore gillnet fleet caught 85% of their allocation. In the 2011 fall fishery, 60% of the total fall TAC was attained; seiners caught 13.5% of

Les commentaires sur la saison de pêche d'automne 2011 aux filets maillants varient selon les régions. Les commentaires les plus récurrents portaient sur le bon prix du hareng en 2011. Les pêcheurs de filets maillants dans certaines régions étaient inquiets de la diminution marquée de l'abondance, tandis que dans d'autres régions les pêcheurs voyaient une augmentation de l'abondance. Certains ont souligné le début trop tardif de la saison, une augmentation dans la pêche durant le jour et la présence de nombreux thons qui effrayaient le hareng.

Le sondage téléphonique des pêcheurs aux filets maillants a aussi indiqué que le maillage le plus couramment utilisé dans le sud du Golfe pour la pêche de filets maillants d'automne est de 2 % po. En 2010 et 2011, la plupart des filets mesuraient de 13 à 16 brasses de long et la profondeur variait entre 85 et 120 mailles (tableaux 7 et 9). À l'automne, les frayères de géniteurs sont recherchées et les filets maillants sont mouillés uniquement lorsqu'un banc de taille suffisante est observé. Dans les régions du Québec et de la Péninsule acadienne, la plupart des filets étaient mouillés de manière à ce qu'une extrémité soit fixée au bateau et l'autre soit ancrée (filets modifiés). Dans les autres régions, la plupart des filets maillants sont ancrés aux deux extrémités et deux ou plusieurs séries de filets peuvent être mouillées (filets ancrés) (tableau 7).

Le pourcentage de jours sans aucunes prises dans la pêche aux filets maillants pour la saison d'automne était de 19,9 % en 2010 et 27,3% en 2011 (tableau 8). Ce haut pourcentage fait partie des données sur l'effort et doit être considéré dans le calcul des prises par unité d'effort des filets maillants. Malheureusement, cette information n'a pas été recueillie et n'est pas disponible avant 2006.

Dans la pêche d'automne 2010, 72 % du TAC global d'automne a été capturé ; les senneurs ont capturé 30 % de leur allocation tandis que les pêcheurs aux filets maillants ont capturé 85 % de leur allocation. Dans la pêche d'automne 2011, 60 % du TAC global

their allocation while the inshore gillnet fleet caught 74% of their allocation.

The landings and samples by area used to calculate catch-at-age in the fall fishery are described in Table 29a for 2010 and 29b for 2011.

The FSC catch-at-age and weights-at-age by gear type and for all gears combined are summarized in Tables 30 to 32; Figs. 35 to 37. Inshore gillnet fleet catches of the FSC in 2011 were dominated by the 2004 year-class (age 7 in 2011) and the 2005 year-class (age 6 in 2011).

In general, mean weights-at-age for the FSC had declined during the 1990s from the level they were during the 1980s, and continue to decline in recent years (Table 32; Fig. 37). Changes in mean weight are an indication of the status of the stock, and affect the stock biomass estimate when numbers are converted to weight.

4.2 FALL SPAWNER COMPONENT ABUNDANCE INDICATORS

4.2.1 Gillnetter telephone survey opinion on abundance

During the annual telephone survey, gillnetters are asked to relate their opinion on abundance of herring in the current year to the abundance they perceived in the previous year. To construct an index, the responses were scaled from -5 to +5, with 0 indicating no change of abundance. The annual opinion responses were averaged by area and then weighted by the catch in that area. A global yearly weighted average was calculated and yearly averages were added cumulatively. to give a trend of abundance from 1987 to the current year. A positive slope indicates gillnetter opinions consistent with an increasing stock abundance and a

d'automne a été capturé ; les senneurs ont capturé 13,5 % de leur allocation tandis que les pêcheurs aux filets maillants ont capturé 74 % de leur allocation.

Les débarquements et les échantillons utilisés pour calculer les prises selon l'âge de la pêche d'automne sont décrits au tableau 29a pour 2010 et 29b pour 2011.

Les prises-à-l'âge et les poids-à-l'âge de la CGA par engin de pêche et pour les engins combinés sont résumés aux tableaux 30 à 32 et aux figures 35 à 37. Les captures de la CGA par la flottille de filets maillants en 2011 ont été dominées par la classe d'âge de 2004 (âge 7 en 2011) et la classe d'âge de 2005 (âge 6 en 2011).

Les poids moyens selon l'âge de toute la CGA étaient généralement plus bas dans les années 1990 qu'ils ne l'étaient dans les années 1980, et continuent de diminuer dans les dernières années (tableau 32 et figure 37). Les variations dans le poids moyen sont une indication de l'état du stock et ont un effet sur la biomasse estimée lorsque les nombres sont convertis en poids.

4.2 INDICATEURS D'ABONDANCE DE LA COMPOSANTE DES GENITEURS D'AUTOMNE

4.2.1 Opinion des pêcheurs aux filets maillants sur l'abondance recueillie lors du sondage téléphonique

Lors du sondage téléphonique annuel, l'opinion des pêcheurs aux filets maillants sur leur perception de l'abondance du hareng dans l'année courante comparativement à l'année précédente a été sondée. Pour construire un indice, les réponses ont été recalées entre -5 et +5, le 0 n'indiquant aucun changement d'abondance. Les opinions annuelles sur l'abondance ont ainsi été obtenues pour chaque région en pondérant par les prises de cette région. Un indice d'opinion annuel moyen a ainsi été calculé et le cumulatif de ces indices donne une série temporelle de 1987 à l'année courante. Une pente positive correspond à une opinion d'une augmentation d'abondance negative slope indicates a decreasing abundance.

The global 4T fall index of gillnetter opinion on abundance had been on an increasing trend up to 2006, but has been declining since 2007 (Fig. 38).

In 2008, a review of the use of the telephone survey opinion index as an aggregated biomass index in the model was done. Conclusions were that respondents in the gillnet telephone survey provide an honest opinion of their perception of recent changes in herring abundance but that opinion is not related in a constant manner to changes in the same respondent's herring catch rates. It was concluded that this index should not be used as an aggregated biomass index in the population model formulation.

4.2.2 Acoustic survey index

A FSC abundance index from the acoustic survey was derived using catch-at-age data from those strata consistently surveyed in the Chaleurs-Miscou area from 1994 to 2011. The 2010 acoustic survey catches of the FSC were dominated by the 2006 year-class (age 4) followed by the 2007 year-class (age 3). The 2011 acoustic survey catches of the FSC were dominated by the 2007 year-class (age 4) followed by the 2006 year-class (age 5) (Table 33; Fig. 39).

The Chaleurs–Miscou acoustic survey FSC catch proportion of adult herring (4+) were compared to the seiner catches for the same area and time period to verify if the midwater trawl provides unbiased samples of the area and time period surveyed. In general, the acoustic survey FSC catch proportions are similar to the seiner catches. The same comparison between the acoustic survey FSC catch proportions of adult herring (4+) and the gillnet catch proportions indicates less similarity, especially in catches of older

du stock et une pente négative une opinion d'une diminution de l'abondance.

L'indice global 4T d'opinion des pêcheurs aux filets maillants sur l'abondance d'automne a indiqué une tendance à l'augmentation jusqu'en 2006, mais est en déclin depuis 2007 (figure 38).

En 2008, une revue de l'utilisation de l'indice d'opinion sur l'abondance du sondage téléphonique en tant qu'indice globale de biomasse dans le modèle avait été faite. Les conclusions étaient que les répondants du sondage téléphonique donnaient une perception juste des changements récents dans l'abondance du hareng, mais que cette opinion n'était pas reliée d'une manière constante aux changements dans les taux de capture du répondant. Il avait été conclu que cet indice ne devrait pas être utilisé comme indice global de biomasse dans le modèle de population.

4.2.2 Indice du relevé acoustique

Un indice d'abondance pour la CGA du relevé acoustique a été calculé en utilisant les captures-à-l'âge des strates de Chaleurs-Miscou qui ont fait constamment l'objet de relevés de 1994 à 2011. Dans le relevé acoustique de 2010, les prises du groupe de la CGA étaient dominées par la classe d'âge de 2006 (âge 4), suivie de la classe d'âge de 2007 (âge 3). Dans le relevé acoustique de 2011, les prises du groupe de la CGA étaient dominées par la classe d'âge de 2007 (âge 4), suivie de la classe d'âge de 2006 (âge 5) (tableau 33 et figure 39).

Les proportions de harengs adultes (4+) de la CGA capturées lors du relevé acoustique de Chaleurs-Miscou ont été comparées aux proportions capturées par les senneurs dans le même lieu et à la même période de l'année, afin de vérifier si les captures du chalut pélagique constituaient un échantillon représentatif de la période et de la zone couverte. En général, les proportions de la CGA capturées lors du relevé acoustique sont similaires aux proportions capturées par les senneurs. Une comparaison semblable entre les proportions de la CGA capturées lors du

herring.

Internal consistency of the acoustic index by age for the FSC was examined with correlations and regressions of age-class abundance with a one to three year lag (Table 12). The fall spawner catch-at-age from the acoustic survey still shows little correlation with cohorts from one year to the next (Fig. 40). In 2010 and 2011, the number of 4+ adult fall spawners and ages 4 to 8 numbers increased from levels observed in 2009 (Fig. 41).

A first fall spawner index of abundance from the acoustic survey ages 3 to 8 was tried in the population model but increased the mean square error and thus was not used as an age-desegregated abundance index based on the poor internal consistency.

A second fall spawner index of abundance from the acoustic survey juvenile ages 2 and 3 was included in one population model, used as an age-desegregated juvenile abundance index (Fig. 45). This age-desegregated juvenile abundance index includes years 1994 to 2011 (Table 38).

4.2.3 Gillnet fishery CPUE index

A FSC abundance index was derived from the catch per unit effort (CPUE) from the fall gillnet fishery. As in previous assessments, purchase slip or dockside monitoring data (assuming one day fishing for one purchase slip) were used for catch information. Starting in 1986, the number of standard nets (15 fathoms long) has been estimated from the telephone survey. Since 2005, the number of standard nets was also obtained from dockside monitoring data in areas where the number of records was greater than the number of telephone survey respondents (Table 34). In 2001, the index was modified to

relevé acoustique et les proportions capturées par les filets maillants présente moins de similarité entre les proportions, surtout dans la capture de harengs plus âgés.

On a vérifié la cohérence interne de l'indice acoustique des prises selon l'âge de la CGP avec des corrélations et régressions de l'abondance par classe d'âge avec un décalage d'une à trois années (tableau 12). L'indice acoustique des géniteurs d'automne selon l'âge est faiblement corrélé aux cohortes d'une année à l'autre (figure 40). En 2010 et 2011, le nombre de géniteurs d'automne adultes (âges 4+) ainsi que les nombres d'âges de 4 à 8 ont augmenté un peu par rapport à 2009 (figure 41).

L'utilisation d'un indice d'abondance des géniteurs d'automne du relevé acoustique (âges 3 à 8) dans le modèle de population a été tenté mais augmentait les résidus carrés moyens et donc n'a pas été utilisé comme indice d'abondance basé sur le manque de cohérence interne.

Un deuxième indice d'abondance des géniteurs d'automne du relevé acoustique (juvéniles d'âges 2 et 3) a été utilisé dans un modèle de population comme indice d'abondance juvénile (figure 45). Cet indice d'abondance juvénile comprend les années 1994 à 2011 (tableau 38).

4.2.3 Indice des PUE de la pêche aux filets maillants

Un indice d'abondance de la CGA a été calculé à partir des prises par unité d'effort (PUE) de la pêche automnale aux filets maillants. Comme pour les évaluations précédentes, les données des bordereaux d'achat ou des observations à quai (une journée de pêche par bordereau d'achat) ont servi à obtenir l'information sur les prises. Débutant en 1986, le nombre de filets ordinaires (mesurant 15 brasses) a été estimé par le sondage téléphonique. Depuis 2005, le nombre de filets ordinaires a aussi été obtenu par les données des observateurs à quai, lorsque le nombre dépassait le nombre de répondants du sondage téléphonique

incorporate all fishing areas (Poirier 2002).

In the fall gillnet fishery, 2 5/8 inch mesh was most common. Beginning in 1992, many fishers started using bigger mesh sizes but by 2002, the proportion of 2 5/8 inch mesh reverted to pre-1992 numbers. The percentage in 2009 was 97%, the highest in the time series, with the 2010 and 2011 percentages being 94% and 95% (Table 35).

The current gillnet CPUE index, which was accepted in the 2008 assessment as the best fit, is called CPUE. CPUE is defined as catches in kg/net*hauls/day (or kg/net*hauls/trip). The daily fishing effort was calculated by multiplying the number of standard nets by the number of hauls (Table 36, Fig. 42), and the number of trips taken that day. Thus, the units of measurement for effort are net*hauls-days or net*hauls-trips. The number of hauls per day has been derived from the telephone survey which began in 1986. The telephone survey question was: "How many times each day did you empty your nets in the fall?"

The fall spawner gillnet CPUE index at age shows that abundance of cohorts is usually well correlated from one year to the next (Fig. 43).

Since the 2002 assessment, it was concluded that the gillnet CPUE index, non-weighted by the catch, appears to be more consistent with the FSC stock trends (Poirier 2002; LeBlanc et al. 2003). Therefore, the CPUE series chosen to calibrate the 2011 SPA models for FSC was the CPUE series not weighted by the catch and unadjusted for mesh size changes.

A multiplicative model (GLM) using weekly periods, area (all statistical districts) and year (1986-2011) effects was used to

(tableau 34). L'indice a été modifié en 2001 de manière à inclure tous les secteurs de pêche (Poirier 2002).

Des filets à maille de 2 5/8 po sont le plus communément utilisés dans la pêche aux filets maillants en automne. À partir de 1992, plusieurs pêcheurs se servaient de filets à plus grandes mailles mais depuis 2002, la proportion de filets à mailles de 2 5/8 po est revenue au niveau d'avant 1992. En 2009, le pourcentage était de 97 %, le niveau le plus élevé de la série. En 2010 et 2011, les pourcentages étaient de 94 % et 95 % respectivement (tableau 35).

L'indice actuel des PUE des filets maillants. accepté dans l'évaluation de 2008 comme le meilleur indice, est nommé PUE. PUE est défini comme les prises en kg/filet*levées/jour (ou kg/filet*levées/sortie). L'effort quotidien est calculé en multipliant le nombre de filets ordinaires utilisés par le nombre de levées (tableau 36 et figure 42) et par le nombre de sorties de cette journée. L'unité de mesure de l'effort est donc le nombre de filets*levées par jour ou le nombre de filets*levées par sortie. Le nombre de levées par jour provient du sondage téléphonique débuté en 1986. La question posée était : "Combien de fois par jour avez-vous relevé vos filets durant la pêche d'automne?"

L'indice des PUE des filets maillants des géniteurs d'automne selon l'âge indique que l'abondance des cohortes est habituellement bien corrélée d'une année à l'autre (figure 43).

Depuis l'évaluation de l'année 2002, il avait été conclu que l'indice PUE des filets maillants non pondéré par les prises semblait mieux correspondre aux tendances du stock de la CGA (Poirier 2002; LeBlanc et al. 2003). Ainsi, les séries des PUE non pondérées par les prises et non corrigées pour les changements dans le maillage ont été choisies pour étalonner les modèles de l'ASP pour la CGA en 2011.

Un modèle multiplicatif (GLM) a été utilisé pour calculer l'indice d'abondance (PUE) des filets maillants avec l'année (1986-2011), la

estimate the annual gillnet CPUE abundance index. The model formulation for GLMs was:

In(CPUE_{ijk})= α + β 1I+ β 2J+ β 3K+ ϵ where:

CPUE_{ijk} = CPUE in year i, area j, week k I is a matrix of 0 to 1 indicating year J is a matrix of 0 to 1 indicating area K is a matrix of 0 to 1 indicating week $\mathfrak E$ is the residual error

The multiplicative model for CPUE, in which data were aggregated by statistical district and day, was statistically significant (p<0.0001, r2 = 0.46) (Table 37). Residual plots revealed no trends or violations of assumption of normal distribution but some year effects. The results indicate that the gillnet CPUE index in 2011 was the lowest since 1998 and in general decline since 2006 (Fig. 45).

The age-specific abundance index for ages 4 to 10 was derived by dividing the fall gillnet catch-at-age by the standardised effort, CPUE, from the model (Table 38). The CPUE age-specific abundance index included the years 1986 to 2011.

A comparison of the acoustic and gillnet catch rates (CPUE) for fall spawner ages 4 to 9 was conducted (Fig. 44). There was little correspondence between the CPUE abundance index and the acoustic abundance index, which mostly follow different trends.

4.3 FALL SPAWNER COMPONENT ASSESSMENT

4.3.1 Simulations and models presented

In the 2009 assessment (LeBlanc et al. 2010), the sequential population analysis (SPA) model was calibrated with the gillnet fishery CPUE index. The acoustic survey index of fall spawning herring was not used because of the lack of internal

région (par district statistique) et des périodes d'une semaine comme facteurs. La formulation de ce modèle est :

 $In(PUE_{ijk})=\alpha+\beta 1I+\beta 2J+\beta 3K+ \in$

où:

PUE_{ijk} = PUE pour année *i*, zone *j*, semaine *k* I est une matrice de 0 à 1 indiquant l'année J est une matrice de 0 à 1 indiquant la zone K est une matrice de 0 à 1 indiquant la semaine

€ est l'erreur résiduelle

Le modèle multiplicatif des PUE, dont les données sont groupées par district statistique et par jour, était statistiquement significatif (p<0,0001, r2 = 0,46) (tableau 37). Les graphiques des résidus ne révèlent aucune tendance ni aucune violation de supposition de distribution normale mais révélaient des effets année (figure 46). Selon les résultats, les taux de capture des filets maillants en 2011 sont les plus bas depuis 1998 et en déclin depuis 2006 (figure 45).

L'indice d'abondance par âge pour les âges 4 à 10 a été calculé en divisant les prises selon l'âge de la pêche aux engins fixes par l'effort normalisé (PUE) du modèle (tableau 38). L'indice d'abondance par âge PUE inclue les années 1986 à 2011.

Une comparaison des taux de capture de la pêche aux filets maillants (PUE) et du relevé acoustique pour les âges 4 à 9 a été réalisée (figure 44). Il y a peu de correspondance entre l'indice d'abondance PUE et l'indice du relevé acoustique. Ils ne suivent pas les mêmes tendances.

4.3 ÉVALUATION DE LA COMPOSANTE DES GENITEURS D'AUTOMNE

4.3.1 Simulations et modèles présentés

Dans l'évaluation de 2009 (LeBlanc et al. 2010), le modèle d'analyse séquentiel de population (ASP) avait été étalonné par les taux de capture des filets maillants (PUE). L'indice du relevé acoustique n'avait pas été retenu compte tenu de son incapacité à

consistency in tracking year-classes.

For this assessment, several trial formulations of the population analysis model were attempted using different combinations of indices, including the same model formulation accepted in 2009 where the CPUE index (nets*hauls) is considered proportional to abundance in the model.

As with the spring spawner assessment, model calibration trials where a power function was attributed to the CPUE index were attempted. The results showed that the power estimates were only different than one and marginally significant for older ages. Also, the estimates of catchability were less precise than the proportional model. This calibration was not deemed usable as the final model application.

Two FSC population model calibrations and results are presented in this paper. MODEL 1 was calibrated with the gillnet fishery CPUE index (ages 4-10) only, considered proportional to population abundance in the model. This is the same formulation used in the 2009 assessment.

MODEL 2 was calibrated with the gillnet fishery CPUE index (ages 4-10) and the acoustic survey juvenile index (ages 2-3), both considered proportional to population abundance in the model.

4.3.2 MODEL 1 with CPUE only

4.3.2.1 ADAPT calibration MODEL 1

The 2011 assessment MODEL 1 calibration is summarized. The CPUE index (nets*hauls) is considered proportional to abundance in the model. The input catch-at-age included ages 4 to 11+. The 2011 calibration of the FSC SPA used the gillnet CPUE abundance index

suivre les classes-d'âge d'une année à l'autre.

Pour cet évaluation, plusieurs essais du modèle d'analyse de population ont été tentés en utilisant différentes combinaisons d'indices, incluant la formulation acceptée en 2009 où l'indice des PUE (filets*levées) est considéré proportionnel à l'abondance dans le modèle.

Comme pour l'évaluation des géniteurs du printemps, des essais où l'indice des PUE était considéré comme une fonction puissance de l'abondance A été essayé. Les résultats indiquaient que les estimés de puissance étaient différents et peu significatifs pour les harengs plus âges. De plus, les estimés de capturabilité étaient moins précis que le modèle proportionnel. Cette calibration a donc été rejetée comme application finale du modèle.

Deux calibrations et résultats de modèles de population de la CGA sont présentés dans ce document. Le MODÈLE 1 a été étalonné avec l'indice PUE des taux de capture des filets maillants (âges 4-10), considéré proportionnel à l'abondance de la population dans le modèle. Cette formulation est la même que celle utilisée dans l'évaluation de 2009.

Le MODÈLE 2 a été étalonné avec l'indice PUE des taux de capture des filets maillants (âges 4-10) et l'indice acoustique des juvéniles (âges 2-3), tous deux considérés proportionnels à l'abondance de la population dans le modèle.

4.3.2 MODÈLE 1 avec PUE seulement

4.3.2.1 Étalonnage d'ADAPT MODÈLE 1

La formulation du MODÈLE 1 de population est résumée pour 2011. L'indice des PUE (filets*levées) est considéré comme proportionnel à l'abondance dans le modèle. Les prises-à-l'âge incluaient les âges 4 à 11+. L'étalonnage 2011 de l'ASP de la CGA a été fait avec l'indice d'abondance des PUE des

ages 4 to 10, not weighted by the catch. The software used to conduct the SPA was ADAPT (Gavaris 1999). This formulation was as follows:

filets maillants (âges 4 à 10) non pondéré par les prises. L'ASP a été effectuée avec le logiciel ADAPT (Gavaris 1999). La formule est la suivante :

Parameters

Paramètres

Terminal N estimates:

Estimations de N terminal:

 $N_{i,2012}$, i = 5 to 10

 $N_{i,2012}$, i = 5 à 10

Calibration coefficients:

Coefficients d'étalonnage :

Gillnet CPUE ages 4 to 10

PUE des filets maillants, âges 4 à 10

Structure Imposed:

Structure imposée :

Error in catch-at-age assumed negligible

L'erreur dans les prises selon l'âge est considérée comme négligeable

Natural mortality (M) = 0.2

Mortalité naturelle (M) = 0,2

Oldest age F: F11 using FIRST method (Gavaris 1999)

F pour l'âge le plus vieux, calculé au moyen de la méthode FIRST, (Gavaris 1999)

F10 = average (F8+F9)

F10 = moyenne (F8+F9)

F11 = F10

F11 = F10

CPUE index proportional to abundance

Indice PUE proportionnel à l'abondance

Input:

Données:

 C_{ik} , i = 2 to 11, k = 1978 to 2011

 C_{ik} , i=2 à 11, k = 1978 à 2011

Gillnet CPUE index_{ik}, i = 4 to 10, k = 1986 to 2011

PUE des filets maillants_{ik}, i = 4 à 10, k = 1986 à 2011

Objective Function:

Fonction objective :

Minimise sum of squared log normal residuals

Minimiser la somme des carrés des résidus (transformés en leur logarithme naturel)

Summary:

Résumé:

Number of observations

Nombre d'observations

CPUE = 182

PUE = 182

Number of parameters = 17

Nombre de paramètres = 17

The parameter variance was estimated analytically. The diagnostics for MODEL 1 using CPUE only (Table 39) indicate that the coefficient of variation (relative error) for age 5 was higher (0.46) than for other ages (0.26 – 0.36). Examination of the correlation matrix did not indicate any high

La variance des paramètres a été estimée de façon analytique. L'analyse du MODÈLE 1 utilisant seulement les PUE (tableau 39) révèle que le coefficient de variation (erreur relative) est plus élevé pour l'âge 5 (0,46) comparativement aux autres âges (0,26 – 0,36). L'examen de la matrice des

values that would render the parameter estimates suspect. The residual plots for the CPUE index MODEL 1 (Fig. 46) show year trends, with mostly positive residuals from 1997 to 2000 and negative residuals in the 1980s. Another representation of the fit of the model with the index is the comparison of CPUE model corrected for catchability and the model estimates of population abundance (Fig. 47).

There are reasons to expect that changes in CPUE will underestimate the true changes in population abundance and biomass:

- 1) At high levels of abundance, gillnets may become saturated.
- 2) Zero catches are not included in the CPUE calculation.
- 3) Because the fishery targets spawning aggregations, relatively high catch rates can be maintained even at low levels of herring biomass.

Retrospective patterns were present with the addition of the 2011 data in MODEL 1, suggesting some overestimation of abundance before 2004 and some underestimation for 2004 to 2006 (Fig. 48). No adjustments of population estimates were done for the beginning of 2012.

4.3.2.2 MODEL 1 Fall spawner component assessment results

The average survival ratio (number at age in a year-class / Spawning Stock Biomass (SSB) producing that year-class) for the previous five years were used to estimate the numbers of ages 2 to 4 in 2012 (Fig. 49).

The population number at age 4 for 2012 was set at the number produced by the 2007-2011 mean recruitment ratio for age 4 multiplied by the estimated SSB in 2008. Recruitment estimates (age 4) from the

corrélations ne révèle aucune valeur élevée qui pourrait invalider l'estimation des paramètres du modèle. Les graphiques des résidus pour l'indice PUE du MODÈLE 1 (figure 46) montrent certains effets selon l'année, avec des résidus majoritairement positifs de 1997 à 2000 et des résidus négatifs dans les années 1980. Une autre représentation de l'ajustement du modèle pour l'indice d'abondance PUE est la comparaison de PUE ajustée pour la capturabilité et la population estimée par le modèle (figure 47).

Il y a des raisons de s'attendre à ce que des changements dans les PUE sous-estiment les changements réels dans l'abondance et la biomasse de la population :

- 1) At high levels of abundance, gillnets may become saturated.
- 2) Zero catches are not included in the CPUE calculation.
- 3) Because the fishery targets spawning aggregations, relatively high catch rates can be maintained even at low levels of herring biomass.

Des tendances rétrospectives sont présentes avec l'ajout des données de 2011 dans le MODÈLE 1, ce qui laisse croire que le modèle surestimait l'abondance avant 2004 et la sous-estimait de 2004 à 2006 (figure 48). Aucun ajustement des nombres estimés n'a été appliqué aux effectifs du début de l'année 2012.

4.3.2.2 MODÈLE 1 Résultats de l'évaluation de la composante des géniteurs d'automne

La moyenne précédentes du taux de survie (des âges 2 à 4) (nombre-à-l'âge dans une classe d'âge / biomasse du stock reproducteur (BSR) pour cet âge) des cinq dernières années a été utilisée pour estimer le nombre des âges 2 à 4 en 2012 (figure 49).

Le nombre-à-l'âge 4 pour 2012 a été estimé en multipliant le taux de survie moyen (2007-2011) par l'estimation de la BSR en 2008. Les estimations de recrutement (âge 4) découlant de l'analyse du modèle PUE CPUE only model analysis suggest that the abundance of the 2000 and 2004 year-classes were above average but the 2006 and 2007 year-classes were well below average, with the 2007 year-class (age 4 in 2011) being the lowest in the time series (Table 40; Fig. 50).

The SPA MODEL 1 formulation indicates that population biomass of ages 4+ FSC peaked in 2008, when the large 2000 and 2004 year-classes contributed to the fishery. With the CPUE formulation, the 2012 beginning-of-year age 4+ biomass was estimated to be about 157,300 t (Table 41; Fig. 50). The confidence intervals of the 2.5th and 97.5th percentiles of the estimates of SSB in 2012, based on the bootstrap replicates, are 127,696 t and 195,422 t.

Overall, the average age 5 to 10 fishing mortalities for MODEL 1 were generally higher from 1995 to 2003 and again in 2005 and 2011 (Table 42).

The reference level exploitation rate for FSC was about 25% for fully-recruited age-groups (5+). The 2011 exploitation rate remains close to the target level (Fig. 50).

4.3.2.3 MODEL 1 Fall spawner component prospects

Stock projections were conducted for the ADAPT MODEL 1 formulated with the gillnet CPUE index for calibration. Estimated recruitment at age 4 has been above average from 1999 to 2005, and in 2008 and 2009, but well below in 2010 and 2011, 2011 being the lowest in the time series.

Input parameters for the CPUE MODEL 1 projections are presented in Table 43. It was noted that calculating beginning of year weights at age for partially recruited fish from the commercial weights at age biases the results in favor of the faster growing fish. Thus acoustic survey

laissent croire que les abondances des classes d'âge de 2000 et 2004 sont supérieures à la moyenne mais que les classes d'âge de 2006 et 2007 étaient bien en dessous de la moyenne, la classe d'âge de 2007 (âge 4 en 2011) étant la plus basse de la série temporelle (tableau 40; figure 50).

La formulation ASP du MODÈLE 1 révèle que la biomasse de la CGA des âges 4+ a culminé en 2008, année où la forte classe d'âge de 2000 et 2004 ont contribué au recrutement. Avec la formulation utilisant les PUE, la biomasse des harengs des âges 4+ au début de l'année 2012 est estimée à environ 157 300 t (tableau 41 et figure 50). Les intervalles de confiance des percentiles 2,5 et 97,5 des estimés de la BSR en 2012, basé sur les répliques bootstrap, sont 127 696 t et 195 422 t.

Les moyennes des âges 5 à 10 de la mortalité par pêche du hareng du MODÈLE 1 étaient généralement plus élevées entre 1995 et 2003, de même qu'en 2005 et 2011 (tableau 42).

Le taux d'exploitation de référence de la CGA est d'environ 25 % pour les groupes d'âge pleinement recrutés (5+). Le taux d'exploitation en 2011 était près du niveau ciblé (figure 50).

4.3.2.3 MODÈLE 1 Perspectives d'avenir de la composante des géniteurs d'automne

Les projections de stock ont été effectuées avec le MODÈLE 1 ADAPT utilisant l'indice des PUE pour l'étalonnage. Le recrutement approximatif à l'âge 4 a été supérieur à la moyenne de (1998 à 2005, en 2008 et 2009, mais bien en dessous en 2010 et 2011, 2011 étant le plus bas de la série temporelle.

Les paramètres des données pour l'établissement des projections du MODÈLE 1 utilisant les PUE sont indiqués au tableau 43. Il a été noté que le calcul des poids du début de l'année pour les recrues partielles d'après les poids dans la pêche commerciale donnait un biais en faveur des harengs qui croissent

samples were used to calculate weights at age that are more representative of the partially recruited age-classes (ages 2 to 4). The fishery weights at age used in the projections were the average of 2009 to 2011 fishery weights at age. The 2012 beginning-of-year weights-at-age were averaged from the 2009 to 2011 commercial and acoustic weights adjusted to the beginning of the year. Partial recruitment derived from fishing mortalities from this assessment suggest that younger ages are less available to the fishery than previously. Thus, the partial recruitment vector used in projections was based on the fishery in recent years (2009-2011).

The MODEL 1 projection using CPUE only indicates that fishing at F0.1 (corresponding to a fully recruited F=0.32) would yield 36,450 t in 2012 (Table 44).

In a RAP framework meeting held in December 2005, spawning stock biomass reference points were identified (DFO 2005). For the fall spawning component, the limit reference point (LRP (Blim)) and interim upper stock reference (BUSR) are 51,000 and 172,000 t, respectively. The removal rate reference has been set at F0.1, which corresponds to F = 0.32 or about 25% of the fully-recruited agegroups (5+). Fishing at F0.1 is usually considered a safe exploitation rate when the stock is healthy. The current estimate of SSB using the CPUE MODEL 1 projections (157,300 t) is slightly below the upper stock reference point of 172,000 t (Fig. 51). When the SSB declines below the USR, a harvesting strategy compliant with the PA would reduce the exploitation rate to promote stock growth to above the USR.

A risk analysis can provide some guidelines for decision making. For the current estimates of SSB using the MODEL 1 CPUE projections, the risk analysis considered the probability of

plus rapidement. Donc les poids provenant des échantillons du relevé acoustique, étant considérés comme plus représentatifs, ont été utilisés pour les recrues partielles (âges 2 à 4). Les poids selon l'âge provenant de la pêcherie correspondent aux valeurs moyennes des poids dans la pêche de 2009 à 2011. Les poids selon l'âge au début de l'année 2012 sont des moyennes de 2009 à 2011 des poids de la pêche et du relevé acoustique ajustés au début de l'année. Le recrutement partiel tiré de la mortalité par pêche de cette évaluation suggère que les plus jeunes âges sont moins présents dans la pêche qu'auparavant. Donc, le recrutement partiel tiré de la mortalité par pêche de cette évaluation a été basé sur les années récentes (2009-2011).

Selon la projection du MODÈLE 1 utilisant seulement les PUE, le niveau de pêche de la CGA à F0,1 (correspondant à un recrutement complet, F=0,32) pour 2012 est de 36 450 t (tableau 44).

Lors du processus régional d'évaluation qui a eu lieu en décembre 2005, des points de référence pour les stocks de biomasse reproducteurs avaient été déterminés (MPO 2005). Les limites inférieure et supérieure de référence pour la biomasse des géniteurs d'automne sont de 51 000 t et 172 000 t, respectivement. Le taux d'exploitation de référence à F0.1 de la CGA, correspondant à F = 0.32, est d'environ 25 % pour les groupes d'âge de 5 ans et plus pleinement recrutés. Pêcher au niveau F0.1 est considéré comme un taux d'exploitation sûre lorsque le stock est en bonne santé. La BSR estimée des projections du MODÈLE 1 utilisant les PUE (157 300 t) est un peu en dessous de la limite supérieure de référence de 172 000 t (figure 51). Lorsque la BSR se situe sous le NRS, une stratégie de pêche conforme à l'approche de précaution (AP) consisterait à réduire le taux d'exploitation pour faciliter la croissance du stock et porter celui-ci au-dessus du NRS.

Les analyses de risques peuvent fournir des lignes directrices pour le processus décisionnel. Pour les BSR estimées des projections du MODÈLE 1 utilisant les PUE, l'analyse de risque a considéré la probabilité exceeding F0.1, and those of obtaining a slight decline and a 5% decline in biomass and the probability of a 5% increase in biomass. For the CPUE projections, there is a low probability (< 25%) of a decline in biomass for catch options less than 35,000 t. A catch of 44,000 t will result in a 50% probability of about a 5% decline in 4+ spawning biomass for 2013 (Fig. 52). The Armstrong plot shows the biomass changes and exploitation rates expected given catches between 10,000 and 50,000 t (Fig. 53).

4.3.2.4 MODEL 1 Fall spawner component two year projection

Risk analyses were conducted by projecting the population forward from the beginning of 2012 to the beginning of 2014 (or further), taking into account uncertainty in the population abundance at age in 2012 and recent variability in recruitment rates and beginning-of-year weights-atage. These projections rely on the assumption that recent levels of productivity (recruitment rates, weights at age, and natural mortality rate) will persist over the projection period.

This was done using the 1,000 bootstrap replicates of terminal population abundance at ages 5 to 11+ years produced when fitting the ADAPT model. Each of 1,000 projections was started by randomly selecting one of these bootstrap replicates. Abundances at ages 2, 3 and 4 years in 2012 and at age 2 in subsequent years were obtained using the spawning stock biomass (SSB) producing these year-classes (i.e., the SSB two, three or four years earlier) and a recruitment rate (recruits/SSB) randomly selected from those observed over a recent period. For the projections of fall spawners, two approaches were taken: a) recruitment rates were sampled from the most recent 5 year values (a period including both high

de dépasser le niveau F0,1, la probabilité de peu de déclin et la probabilité de 5 % de déclin, et la probabilité d'une augmentation de 5 % de la biomasse. Pour les projections utilisant les PUE, il y a une faible probabilité (<25 %) d'un déclin de la biomasse si les captures sont de 35 000 t et moins. Des captures de 44 000 t résulteraient, avec 50 % de probabilité, en un déclin d'environ 5 % de la biomasse reproductrice en 2013 (figure 52). La figure Armstrong est une autre manière de visualiser les changements dans le taux d'exploitation et la biomasse pour des captures variant entre 10 000 et 50 000 t (figure 53).

4.3.2.4 MODÈLE 1 Prévision pour les deux prochaines années de la composante des géniteurs d'automne

Dans cette section, des prévisions du stock de hareng d'automne au cours des deux prochaines années sont présentées.
L'analyse projette la population du début de l'année 2012 au début de l'année 2014, en tenant compte de l'incertitude dans l'abondance de la population en 2012 et les variations récentes dans les taux de recrutement et les poids à l'âge du début de l'année. Ces projections présument que les niveaux récents de productivité (taux de recrutement, poids à l'âge et mortalité naturelle) seront les même pour la période de prévision.

Les prévisions se basent sur le modèle de population présenté dans cette évaluation et en utilisant 1 000 répliques de l'abondance des âges 5 à 11+ de la population de 2012. Chaque projection a été initialisée en choisissant au hasard une de ces répliques. Le recrutement des âges 2, 3 et 4 en 2012 et les âges 2 dans les années subséquentes a été calculé en utilisant la biomasse reproductrice qui a produit ces classes d'âge et un taux de recrutement (nombre-à-l'âge / biomasse reproductrice pour cet âge) sélectionnés au hasard parmi ceux observés pendant une période récente. Pour les géniteurs d'automne, deux approches ont été choisies : a) les taux de recrutement ont été échantillonnés parmi les 5 plus récentes années (période avec des taux bas et hauts)

and very low rates) or b) from the most recent 20 values (which includes prolonged periods of both low and high values).

Beginning-of-year weights-at-age were randomly selected from those estimated for 2009-2011; only the last three years were used due to recent declines in weight-at-age. Other inputs to the projections (natural mortality (M), beginning-of-year weights at age, maturity at age, partial recruitment to the fishery at age, and commercial weights at age) are given in Table 43. Various levels of catch were used in the projections, with the same level used in all years. The probability of a given event was estimated as the proportion of the projection iterations in which that event occurred. For example, the probability of an increase in SSB from 2012 to 2014 was the proportion of projections in which SSB in 2014 was greater than SSB in 2012.

4.3.2.5 MODEL 1 results

MODEL 1 projections were done with levels of catch between 20,000 t and 50,000 t in 5,000 t increments. Using recent recruitment rates (last 5 years), the probability that SSB would be below the LRP (BLIM) in 2014 was 1% or less at catches of 35,000 t or less, increasing to 7.5% at catches of 50,000 t (Fig. 54). Using recruitment rates over the past 20 years, this probability was 1% or less at all levels of catch.

The probability that SSB would be below the USR in 2014 varied from 48% with catches of 20,000 t to 81% with 50,000 t of catch each year based on recent (5 years) recruitment rates, and from 15% with catches of 20,000 t to 46% with 50,000 t of catch each year using recruitment rates over the past 20 years.

The probability of exceeding the F0.1

et b) parmi les 20 plus récentes années (période avec périodes prolongées de taux bas et hauts).

Les poids du début de l'année ont été pigés au hasard parmi ceux estimés pour 2009 à 2011; seulement les trois dernières années ont été choisies étant donné le déclin récent dans les poids à l'âge. Les autres données pour les prévisions (la mortalité naturelle (M), les poids à l'âge au début de l'année, le recrutement partiel à la pêche à l'âge, les poids moyens à l'âge) sont résumées au tableau 43. Des taux variables des captures ont été utilisés pour les prévisions, avec les mêmes niveaux utilisés pour toutes les années. La probabilité d'un événement donné a été estimée comme la proportion des itérations de prévisions dans laquelle l'évènement a eu lieu. Par exemple, la probabilité d'une augmentation dans la BSR de 2012 à 2014 correspond à la proportion des prévisions dans lesquelles la BSR en 2014 serait supérieure à la BSR de 2012.

4.3.2.5 Résultats du MODÈLE 1

L'effet relatif de divers niveaux de captures du MODÈLE 1, allant de captures de 20 000 t jusqu'à des captures de 50 000 t, par augmentations de 5 000 t, est évalué. En utilisant les taux de capture les plus récents (derniers 5 ans), la probabilité que la BSR soit inférieure au NRL (BLIM) en 2014 est de 1 % ou moins avec des captures de 35 000 t ou moins, augmentant à 7,5 % avec des captures de 50 000 t (figure 54). En utilisant les taux de capture sur les derniers 20 ans, cette probabilité était de 1 % ou moins à tous les niveaux de captures.

La probabilité que la BSR soit inférieure au NRS en 2014 varie de 48 % avec des captures de 20 000 t à 81 % avec des captures de 50 000 t par année basé sur les taux de capture les plus récents (derniers 5 ans). En utilisant les taux de capture sur les derniers 20 ans, cette probabilité était de 15 % avec des captures de 20 000 t et 46 % avec des captures de 50 000 t par année.

La probabilité de dépassé le niveau de

reference level in 2014 varied from 0.2% with catches of 20,000 t to 90% with 50,000 t of catch each year based on recent (5 years) recruitment rates, and from 0% with catches of 20,000 t to 68% with 50,000 t of catch each year based on recruitment rates over the past 20 years (Fig. 55).

<u>4.3.3 MODEL 2 with CPUE and acoustic indices</u>

4.3.3.1 ADAPT calibration MODEL 2

The 2011 assessment MODEL 2 calibration is summarized. The CPUE (nets*hauls) and acoustic juvenile indices are considered proportional to abundance in the model. The input catch-at-age included ages 4 to 11+. The calibration of the FSC SPA used the gillnet CPUE abundance index ages 4 to 10, not weighted by the catch, and the acoustic juvenile index ages 2 and 3. The software used to conduct the SPA was ADAPT (Gavaris 1999). This formulation was as follows:

Parameters

Terminal N estimates:

 $N_{i,2012}$, i = 3 to 10

Calibration coefficients:

Gillnet CPUE ages 4 to 10

Acoustic juvenile index ages 2 and 3

Structure Imposed:

Error in catch-at-age assumed negligible

Natural mortality (M) = 0.2

Oldest age F: F11 using FIRST method

(Gavaris 1999)

F10 = average (F8+F9)

F11 = F10

CPUE and acoustic juvenile indices proportional to abundance

référence F0,1 en 2014 varie de 0,2 % avec des captures de 20 000 t à 90 % avec des captures de 50 000 t par année basé sur les taux de capture les plus récents (derniers 5 ans). En utilisant les taux de capture sur les derniers 20 ans, cette probabilité était de 0 % avec des captures de 20 000 t et 68 % avec des captures de 50 000 t par année (figure 55).

4.3.3 MODÈLE 2 avec PUE et indice acoustique

4.3.3.1 Étalonnage d'ADAPT MODÈLE 2

La formulation du MODÈLE 2 de population est résumée pour 2011. L'indice des PUE (filets*levées) et l'indice acoustique des juvéniles sont considérés comme proportionnels à l'abondance dans le modèle. Les prises-à-l'âge incluaient les âges 4 à 11+. L'étalonnage 2011 de l'ASP de la CGA a été fait avec l'indice d'abondance des PUE des filets maillants (âges 4 à 10), non pondéré par les prises, et l'indice acoustique des juvéniles âges 2 et 3. L'ASP a été effectuée avec le logiciel ADAPT (Gavaris 1999). La formule est la suivante :

Paramètres

Estimations de N terminal :

 $N_{i,2012}$, i = 3 à 10

Coefficients d'étalonnage :

PUE des filets maillants, âges 4 à 10

Indice acoustique des juvéniles âges 2 et 3

Structure imposée :

L'erreur dans les prises selon l'âge est considérée comme négligeable

Mortalité naturelle (M) = 0,2

F pour l'âge le plus vieux, calculé au moyen de la méthode FIRST, (Gavaris 1999)

F10 = moyenne (F8+F9)

F11 = F10

Indices PUE et indice acoustique

proportionnels à l'abondance

Input:

 C_{ik} , i = 2 to 11, k = 1978 to 2011

Gillnet CPUE index_{ik}, i = 4 to 10, k = 1986 to 2011

Acoustic juvenile_{ik}, i = 2 to 3, k = 1994 to 2011

Objective Function:

Minimise sum of squared log normal residuals

Summary:

Number of observations

CPUE and acoustic = 218

Number of parameters = 19

The MODEL 2 parameter variance was estimated analytically. The diagnostics for the model using CPUE and juvenile acoustic indices (Table 45) indicate that the coefficient of variation (relative error) for age 3 was higher (0.60) than for other ages (0.34 - 0.42). Examination of the correlation matrix did not indicate any high values that would render the parameter estimates suspect. The residual plots for the CPUE index (Fig. 56) show year trends, with mostly positive residuals from 1997 to 2000 and negative residuals in the 1980s. Another representation of the fit of the MODEL 2 with the index is the comparison of CPUE and juvenile acoustic indices corrected for catchability and the MODEL 2 estimates of population abundance (Fig. 57).

Retrospective patterns were present in MODEL 2 with the addition of the 2011 data, suggesting some overestimation of abundance before 2004 and again from 2009 to 2011 (Fig. 58). No adjustments of population estimates were done for the beginning of 2012.

Données:

 C_{ik} , i=2 à 11, k = 1978 à 2011

PUE des filets maillants_{ik}, i = 4 à 10, k = 1986 à 2011

Acoustique juvéniles_{ik}, i = 2 à 3, k = 1994 à 2011

Fonction objective:

Minimiser la somme des carrés des résidus (transformés en leur logarithme naturel)

Résumé:

Nombre d'observations

PUE et acoustique = 218

Nombre de paramètres = 19

La variance des paramètres du MODÈLE 2 a été estimée de façon analytique. L'analyse du modèle utilisant les indices PUE et acoustique des juvéniles (tableau 45) révèle que le coefficient de variation (erreur relative) est plus élevé pour l'âge 3 (0,60) comparativement aux autres âges (0.34 -0.42). L'examen de la matrice des corrélations ne révèle aucune valeur élevée qui pourrait invalider l'estimation des paramètres du modèle. Les graphiques des résidus établis pour l'indice PUE (figure 56) montrent certains effets selon l'année, surtout des résidus majoritairement positifs de 1997 à 2000 et des résidus négatifs dans les années 1980. Une autre représentation de l'aiustement du MODÈLE 2 aux indices PUE et acoustique des juvéniles est la comparaison des indices PUE et acoustique des juvéniles ajustés pour la capturabilité et la population estimée par le MODÈLE 2 (figure 57).

Des tendances rétrospectives sont présents dans le MODÈLE 2 avec l'ajout des données de 2011, ce qui laisse croire que le modèle surestimait l'abondance avant 2004 et aussi de 2009 à 2011 (figure 58). Aucun ajustement des nombres estimés n'a été appliqué aux effectifs du début de l'année 2012.

4.3.3.2 MODEL 2 Fall spawner component assessment results

The average survival ratio (number at age in a year-class / Spawning Stock Biomass (SSB) producing that year-class) for the previous five years were used to estimate the numbers of ages 2 in 2012 (Fig. 59).

The population number at age 2 for 2012 was set at the number produced by the 2007-2011 mean recruitment ratio for age 2 multiplied by the estimated SSB in 2010. Recruitment estimates (age 4) from the CPUE and juvenile acoustic indices MODEL 2 analysis suggest that the abundance of the 2000 and 2004 year-classes were above average but the 2005 to 2007 year-classes were below average, with the 2008 year-class (age 4 in 2012) being the lowest since 1995 (Table 46; Fig. 60).

The MODEL 2 SPA formulation indicates that population biomass of ages 4+ FSC peaked in 2009, when the large 2004 and 2005 year-classes contributed to the fishery. With the CPUE and juvenile acoustic indices formulation, the 2012 beginning-of-year age 4+ biomass was estimated to be about 183,800 t (Table 47; Fig. 60).

Overall, the average age 5 to 10 fishing mortalities for MODEL 2 were generally higher from 1994 to 2003 than in the most recent years (Table 48).

The MODEL 2 reference level exploitation rate for FSC was about 25% for fully-recruited age-groups (5+). The 2011 exploitation rate remains just below the target level (Fig. 60).

4.3.3.3 MODEL 2 Fall spawner component prospects

Stock projections were conducted for the ADAPT MODEL 2 formulated with the

4.3.3.2 MODÈLE 2 Résultats des évaluations de la composante des géniteurs d'automne

La moyenne du taux de survie des âges 2 à 4 (nombre-à-l'âge dans une classe d'âge/ biomasse du stock reproducteur (BSR) pour cet âge) des cinq dernières années a été utilisée pour estimer le nombre des âges 2 en 2012 (figure 59).

Le nombre-à-l'âge 2 pour 2012 a été estimé en multipliant le taux de survie moyen (2007-2011) par l'estimation de la BSR en 2010. Les estimations de recrutement (âge 4) du MODÈLE 2 découlant de l'analyse des indices PUE et acoustique des juvéniles laissent croire que les abondances des classes d'âge de 2000 et 2004 sont supérieures à la moyenne mais que les classes d'âge de 2005 à 2007 étaient en dessous de la moyenne, la classe d'âge de 2008 (âge 4 en 2012) étant la plus basse depuis 1995 (tableau 46 et figure 60).

La formulation ASP du MODÈLE 2 révèle que la biomasse de la CGA des âges 4+ a culminé en 2009, année où la forte classe d'âge de 2004 et 2005 ont contribué au recrutement. Avec la formulation utilisant les indices PUE et acoustique des juvéniles, la biomasse des harengs des âges 4+ au début de l'année 2012 est estimée à environ 183 800 t (tableau 47 et figure 60).

Les moyennes de mortalité par pêche des âges 5 à 10 pour le MODÈLE 2 étaient généralement plus élevées entre 1994 et 2003 que dans les récentes années (tableau 48).

Le taux d'exploitation de référence de la CGA du MODÈLE 2 est d'environ 25 % pour les groupes d'âge pleinement recrutés (5+). Le taux d'exploitation en 2011 était juste en dessous du niveau ciblé (figure 60).

4.3.3.3 MODÈLE 2 Perspectives d'avenir de la composante des géniteurs d'automne

Les projections de stock ont été effectuées avec le MODÈLE 2 ADAPT utilisant des

gillnet CPUE and juvenile acoustic indices for calibration. Estimated recruitment at age 4 was above average from 1999 to 2005, and again in 2008 and 2009 but below average in 2010 and 2011.

Input parameters for the MODEL 2 CPUE and juvenile acoustic indices projections are presented in Table 49. It was noted that calculating beginning of year weights at age for partially recruited fish from the commercial weights at age biases the results in favor of the faster growing fish. Thus acoustic survey samples were used to calculate weights at age that are more representative of the partially recruited age-classes (ages 2 to 4). The fishery weights at age used in the projections were the average of 2009 to 2011 fishery weights at age. The 2012 beginning-ofyear weights-at-age were averaged from the 2009 to 2011 commercial and acoustic weights adjusted to the beginning of the year. Partial recruitment derived from fishing mortalities from this assessment suggest that younger ages are less available to the fishery than previously. Thus, the partial recruitment vector used in projections was based on the fishery in recent years (2009-2011).

The MODEL 2 projection using CPUE and juvenile acoustic indices indicates that fishing at F0.1 (corresponding to a fully recruited F=0.32) would yield 42,842 t in 2012 (Table 50).

In a RAP framework meeting held in December 2005, spawning stock biomass reference points were identified (DFO 2005). For the fall spawning component, the limit reference point (LRP (Blim)) and interim upper stock reference (BUSR) are 51,000 and 172,000 t, respectively. The removal rate reference has been set at F0.1, which corresponds to F = 0.32 or about 25% of the fully-recruited agegroups (5+). Fishing at F0.1 is usually considered a safe exploitation rate when the stock is healthy. The current estimate

indices PUE et acoustique des juvéniles pour l'étalonnage. Le recrutement estimé à l'âge 4 était supérieur à la moyenne de 1999 à 2005, en 2008 et 2009, mais inférieur à la moyenne en 2010 et 2011.

Les paramètres des données pour l'établissement des projections du MODÈLE 2 utilisant les indices PUE et acoustique des juvéniles sont indiqués au tableau 49. Il a été noté que le calcul des poids du début de l'année pour les recrues partielles d'après les poids dans la pêche commerciale donnait un biais en faveur des harengs qui croissent plus rapidement. Donc les poids provenant des échantillons du relevé acoustique, étant considérés comme plus représentatifs, ont été utilisés pour les recrues partielles (âges 2 à 4). Les poids selon l'âge provenant de la pêcherie correspondent aux valeurs moyennes des poids dans la pêche de 2009 à 2011. Les poids selon l'âge au début de l'année 2012 sont des moyennes de 2009 à 2011 des poids de la pêche et du relevé acoustique ajustés au début de l'année. Le recrutement partiel tiré de la mortalité par pêche de cette évaluation suggère que les plus jeunes âges sont moins présents dans la pêche qu'auparavant. Donc, le recrutement partiel tiré de la mortalité par pêche de cette évaluation a été basé sur les années récentes (2009-2011).

Selon la projection du MODÈLE 2 utilisant les indices PUE et acoustique des juvéniles, le niveau de pêche de la CGA à F0,1 (correspondant à un recrutement complet, F=0,32) pour 2012 est de 42 842 t (tableau 50).

Lors du processus régional d'évaluation qui a eu lieu en décembre 2005, des points de référence pour la biomasse des stocks reproducteurs avaient été déterminés (MPO 2005). Les limites inférieure (Blim) et supérieure (BNSR) de référence pour la biomasse des géniteurs d'automne sont de 51 000 t et 172 000 t, respectivement. Le taux d'exploitation de référence à F0,1 de la CGA, correspondant à F = 0,32, est d'environ 25 % pour les groupes d'âge de 5 ans et plus pleinement recrutés. Pêcher au niveau F0,1 est considéré comme un taux d'exploitation

of SSB using the CPUE and juvenile acoustic indices projections (183,800 t) is above the upper stock reference point of 172,000 t (Fig. 61).

A risk analysis can provide some guidelines for decision making. For the current estimates of SSB using the MODEL 2 CPUE and juvenile acoustic indices projections, the risk analysis considered the probability of exceeding F0.1, and those of obtaining a slight decline and a 5% decline in biomass and the probability of a 5% increase in biomass. For the MODEL 2 CPUE and juvenile acoustic indices projection, a catch option of 42,842 t in 2012 corresponds to a 50% chance that exploitation rate would be above the reference removal rate. There is a 50% probability of a 5% or greater decline in biomass from 2011 for a catch option greater than 42,842 t (Fig. 62). The Armstrong plot shows the biomass changes and exploitation rates expected given catches between 10,000 and 50,000 t (Fig. 63).

4.3.3.4 MODEL 2 Fall spawner component two year projection

Risk analyses were conducted for MODEL 2 by projecting the population forward from the beginning of 2012 to the beginning of 2014 (or further), taking into account uncertainty in the population abundance at age in 2012 and recent variability in recruitment rates and beginning-of-year weights-at-age. These projections rely on the assumption that recent levels of productivity (recruitment rates, weights at age, and natural mortality rate) will persist over the projection period.

These analyses were based on the population model presented in this evaluation and used 1,000 bootstrap

sûre lorsque le stock est en bonne santé. La BSR estimée des projections utilisant les indices PUE et acoustique des juvéniles (183 800 t) est au-dessus de la limite supérieure de référence de 172 000 t (figure 61).

Les analyses de risques peuvent fournir des lignes directrices pour le processus décisionnel. Pour les BSR estimées des projections du MODÈLE 2 utilisant les indices PUE et acoustique des juvéniles, l'analyse de risque a considéré la probabilité de dépasser le niveau F0,1, la probabilité de peu de déclin et la probabilité de 5 % de déclin, et la probabilité d'une augmentation de 5 % de la biomasse . Pour la projection du MODÈLE 2 utilisant les indices PUE et acoustique des juvéniles, des prises de 42 842 t en 2012 correspondent à une probabilité de 50 % que le taux d'exploitation soit supérieur au taux d'exploitation de référence. Il y a une probabilité de 50 % d'un déclin de 5 % ou plus dans la biomasse par rapport à 2011 dans le cas de prises supérieures à 42 842 t (figure 62). La figure Armstrong est une autre manière de visualiser les changements dans le taux d'exploitation et la biomasse pour des captures variant entre 10 000 et 50 000 t (figure 63).

4.3.3.4 MODÈLE 2 Prévision pour les deux prochaines années de la composante des géniteurs d'automne

Dans cette section, des prévisions du stock de hareng d'automne au cours des deux prochaines années sont présentées pour le MODÈLE 2. L'analyse projette la population du début de l'année 2012 au début de l'année 2014, en tenant compte de l'incertitude dans l'abondance de la population en 2012 et les variations récentes dans les taux de recrutement et les poids à l'âge du début de l'année. Ces projections présument que les niveaux récents de productivité (taux de recrutement, poids à l'âge et mortalité naturelle) seront les même pour toute la période de prévision.

Les prévisions se basent sur le modèle de population présenté dans cette évaluation et en utilisant 1 000 répliques de l'abondance replicates of terminal population abundance at ages 5 to 11+ from the 2012 population. Each of 1,000 projections was started by randomly selecting one of these bootstrap replicates. Abundances at ages 2 years in 2012 and at age 2 in subsequent years were obtained using the spawning stock biomass (SSB) producing these year-classes (i.e., the SSB two years earlier) and a recruitment rate (recruits (numbers at age)/SSB) randomly selected from those observed over a recent period. For the projections of fall spawners, two approaches were taken: a) recruitment rates were sampled from the most recent 5 year values (a period including both high and very low rates) or b) from the most recent 20 values (which includes prolonged periods of both low and high values).

des âges 5 à 11+ de la population de 2012. Chaque projection a été initialisée en choisissant au hasard une de ces répliques. Le recrutement des âges 2 en 2012 et les âges 2 dans les années subséquentes a été calculé en utilisant la biomasse reproductrice qui a produit ces classes d'âge et un taux de recrutement (nombre-à-l'âge (recrues) / BSR pour cet âge) sélectionnés au hasard parmi ceux observés pendant une période récente. Pour les géniteurs d'automne, deux approches ont été choisies : a) les taux de recrutement ont été échantillonnés parmi les 5 plus récentes années (période avec des taux bas et hauts) et b) parmi les 20 plus récentes années (période avec périodes prolongées de taux bas et hauts).

Beginning-of-year weights-at-age were randomly selected from those estimated for 2009-2011; only the last three years were used due to recent declines in weight-at-age. Other inputs to the projections (natural mortality (M), beginning-of-year weights at age, maturity at age, partial recruitment to the fishery at age, and commercial weights at age) are given in Table 49. Various levels of catch were used in the projections, with the same level used in all years. The probability of a given event was estimated as the proportion of the projection iterations in which that event occurred. For example, the probability of an increase in SSB from 2012 to 2014 was the proportion of projections in which SSB in 2014 was greater than SSB in 2012.

Les poids du début de l'année ont été pigés au hasard de ceux estimés pour 2009 à 2011; seulement les trois dernières années ont été choisies étant donné le déclin récent dans les poids à l'âge. Les autres données pour les prévisions (la mortalité naturelle (M), les poids à l'âge au début de l'année, la maturité à l'âge, le recrutement partiel à la pêche à l'âge, les poids moyens à l'âge) sont résumées au tableau 49. Des taux variables des captures ont été utilisés pour les prévisions, avec les mêmes niveaux utilisés pour toutes les années. La probabilité d'un événement donné a été estimée comme la proportion des itérations de prévisions dans laquelle l'évènement a eu lieu. Par exemple, la probabilité d'une augmentation dans la BSR de 2012 à 2014 correspond à la proportion des prévisions dans lesquelles la BSR en 2014 serait supérieure à la BSR de 2012.

4.3.3.5 MODEL 2 results

MODEL 2 projections were done with levels of catch between 20,000 t and 50,000 t in 5,000 t increments. Using recent (last 5 years) recruitment rates of age 2, the probability that SSB would be below Blim in 2014 was near zero at catches up to 50,000 t. Using recruitment

rates over the past 20 years, this

4.3.3.5 Résultats du MODÈLE 2

L'effet relatif de divers niveaux de captures du MODÈLE 2, allant de captures de 20 000 t jusqu'à des captures de 50 000 t, par augmentations de 5 000 t, est évalué. En utilisant des taux de recrutement récents (des cinq dernières années) de l'âge 2, la probabilité que la BSR soit inférieure au Blim en 2014 était presque nulle avec des prises

probability was near zero at all levels of catch up to 50,000 t.

The probability that SSB would be below BUSR in 2014 varied from 16% with catches of 20,000 t to 69% with 50,000 t of catch each year based on recent recruitment rates, and from 14% with catches of 20,000 t to 58% with 50,000 t of catch each year based on recruitment rates over the past 20 years (Fig. 64).

The probability of exceeding F0.1 in 2014 varied from near zero with catches of 20,000 t to 90% with 50,000 t of catch each year based on recent recruitment rates, and from 0% with catches of 20,000 t to 89% with 50,000 t of catch each year based on recruitment rates over the past 20 years (Fig. 65).

4.3.4 Fall spawner component conclusion

A review of the two fall spawner component assessment models (MODEL 1 and 2) was done at a meeting of the Science Regional Advisory Process held March 6 and 7, 2012 in Moncton, N.B.

The reviewers selected MODEL 2 as the best model to assess the current status of the fall spawner component as it includes information from the acoustic survey juvenile index (ages 2 and 3) to estimate the 2012 population numbers of ages 3 and 4, instead of relying solely on mean recruitment estimates from the most recent years (DFO 2012).

allant jusqu'à 50 000 t. Lorsqu'il s'agissait de taux de recrutement sur 20 ans, cette probabilité était presque nulle avec tous les niveaux de prises allant jusqu'à 50 000 t.

La probabilité que la BSR soit inférieure au BNSR en 2014 variait entre 16 % (prises de 20 000 t) et 69 % (prises annuelles de 50 000 t) avec les taux de recrutement utilisés, et entre 14 % (prises de 20 000 t) et 58 % (prises annuelles de 50 000 t) avec les taux de recrutement des 20 dernières années (figure 64).

La probabilité que F dépasse F0,1 en 2014 variait entre presque nulle (prises de 20 000 t) et 90 % (prises annuelles de 50 000 t) selon les taux recrutement récents, et entre 0 % (prises de 20 000 t) et 89 % (prises annuelles de 50 000 t) selon les taux de recrutement des 20 dernières années (figure 65).

4.3.4 Conclusion sur la composante des géniteurs d'automne

Une révision des deux modèles d'évaluation (MODÈLE 1 et 2) de la composante des géniteurs d'automne a eu lieu lors d'une réunion du Processus consultatif régional des sciences tenue du 6 au 7 mars 2012 à Moncton (N.-B.).

Les réviseurs ont choisi le MODÈLE 2 comme celui représentant le mieux l'évaluation actuelle de la composante des géniteurs d'automne parce qu'il inclut de l'information provenant de l'indice du relevé acoustique des juvéniles (âges 2 et 3) pour estimer le nombre d'âges 3 et 4 dans la population de 2012, au lieu de se fier uniquement sur un taux de recrutement moyen des années les plus récentes (MPO 2012).

5. REFERENCES

5. BIBLIOGRAPHIE

- Campana, S.E., Annand, M.C., and McMillan, J.I. 1995. Graphical and statistical methods for determining the consistency of age determinations. Trans. Am. Fish. Soc. 124: 131-138.
- Clay, D., and Chouinard, G. 1986. Southern Gulf of St. Lawrence herring: stock status report 1985. CAFSAC Res. Doc. 86/4. 50 p.
- Claytor, R. 2001. Fishery acoustic indices for assessing Atlantic herring populations. Can. Tech. Rep. Fish. Aquat. Sci. 2359. 213 p
- Claytor R.R., and Allard, J. 2001. Properties of abundance indices obtained from acoustic data collected by inshore herring gillnet boats. Can. J. Fish. Aquat. Sci. 58: 2502-2512.
- Claytor, R., LeBlanc, C., MacDougall, C., and Poirier, G. 1998. Assessment of the NAFO Division 4T southern Gulf of St. Lawrence herring stock, 1997. DFO Can. Sci. Advis. Sec. Res. Doc. 98/47. 154 p.
- Cleary, L., Hunt, J., Moores, J., and Tremblay, D. 1982. Herring aging workshop, St. John's, Newfoundland, March 1982. CAFSAC Res. Doc. 82/41. 10 p.
- DFO. 2005. Spawning Stock Biomass Reference Points for Southern Gulf of St. Lawrence Herring. DFO Can. Sci. Advis. Sec. Advis. Rep. 2005/070. 7 p.
- DFO. 2007. Size at 50% maturity for southern Gulf of St. Lawrence herring (NAFO 4T). DFO Can. Sci. Advis. Sec. Sci. Resp. 2007/019. 5 p.
- DFO. 2012. Assessment of Atlantic herring in the southern Gulf of St. Lawrence (NAFO Div. 4T). DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2012/014.
- Gavaris, S. 1999. ADAPT (ADAPTive Framework) User's Guide Version 2.1. DFO. St. Andrews Biological Station, St. Andrews, N.B., Canada. 25 p.
- LeBlanc, C., and Dale, J. 1996. Distribution and acoustic backscatter of herring in NAFO divisions 4T and 4Vn, Sept. 23 Oct. 08, 1995. DFO Atlantic Fisheries Res. Doc. 96/125. 28 p.
- LeBlanc, C., and LeBlanc, L. 1996. The 1995 NAFO Division 4T herring gillnet telephone survey. DFO Atlantic Fisheries Res. Doc. 96/77. 37 p.
- LeBlanc, C.H., Poirier, G.A., Chouinard, G., and MacDougall, C. 2003. Assessment of the NAFO 4T southern Gulf of St. Lawrence herring stocks in 2002. DFO Can. Sci. Advis. Sec. Res. Doc. 2003/040. 111 p.
- LeBlanc, C.H., Swain, D., MacDougall, C., and Bourque, C. 2010. Assessment of the NAFO 4T southern Gulf of St. Lawrence herring stocks in 2009. DFO Can. Sci. Advis. Sec. Res. Doc. 2010/059. viii + 143 p.
- McQuinn, I.H. 1989. Identification of spring- and autumn spawning herring (*Clupea harengus*) using maturity stages assigned from a gonadosomatic index model. Can. J. Fish. Aquat. Sci. 46: 969-980.
- Messieh, S.N. 1988. Spawning of Atlantic Herring in the Gulf of St. Lawrence. American Fisheries Society Symposium 5: 31-48.
- Messieh, S.N. 1972. Use of otoliths in identifying herring stocks in the southern Gulf of St. Lawrence and adjacent waters. J. Fish. Res. Bd. Canada 29: 1113-1118.
- MPO. 2005. Hareng du sud du golfe du Saint-Laurent Niveaux de références applicables à la biomasse du stock reproducteur. MPO, Secr. can. consult. sci. Avis. Sci. 2005/070. 7 p.

- MPO. 2007. Taille du hareng du sud du golfe du Saint-Laurent (division 4T de l'OPANO) à 50% de maturité. Secr. can. de consult. sci. du MPO. Rép. des Sci. 2007/019. 6 p.
- MPO. 2012. Évaluation du hareng du sud du golfe du Saint-Laurent (Div. 4T de l'OPANO). Secr. can. de consult. sci. du MPO, Avis sci. 2012/014.
- Poirier, G.A. 2002. Catch and effort data used in the assessment of herring populations in the southern Gulf of St. Lawrence. DFO Can. Sci. Advis. Sec. Res. Doc. 2002/061. 29 p.
- Simon J., and Stobo, W.T. 1983. The 1982-1983 4Vn herring biological update. CAFSAC Res. Doc. 83/49. 28 p.
- Wheeler, J.P., Squires, B., and Williams, P. 2006. An assessment of Newfoundland east and south coast herring stocks to the spring of 2006. DFO Can. Sci. Advis. Sec. Res. Doc. 2006/101. 93 p.

TABLES / TABLEAUX

Table 1. Preliminary herring catch (t) by season in the 2010 and 2011 fishery for 4T Southern Gulf of St. Lawrence. Catches are from ZIF and purchase slip files, from quota monitoring and logbook data. Tableau 1. Prises (t) préliminaires de hareng par saison en 2010 et 2011 pour la pêche 4T du sud du golfe du Saint-Laurent. Les prises ont été compilées au moyen des bordereaux d'achat, des fichiers de données brutes ZIF, de la surveillance des allocations et des cahiers de bord.

		Sharing Ta	AC Partagé	Inshor	re / Côtie	rs	Seiners (>	-65') / Se	nneurs
2010 – 2011 Fishing Season and Area Saison et Région	TAC (t)	Inshore Côtiers	Seiners Senneurs	Allocation	2010 Catch Prises	2011 Catch Prises	Allocation	2010 Catch Prises	2011 Catch Prises
Spring / Printemps 4T Fall / Automne 4T	2000 65000	77% 77%	23% 23%	1537 50090	1037 42434	914 36917	463 14910	302 4498	0 2002
Total (Spring + Fall) / (Printemps + Automne)	67000	77%	23%	51627	43471	37831	15373	4800	2002

2010-2011 SPRING FISHERY SEASONS / PÉCHE SAISONS PRINTANIÈRES 2010-2011

		TAC	Preliminary Catch (t) /	Prises préliminaires (t)
Area/Zone - Région/Zone	Season/Saison	(t)	2010	2011
INSHORE / CÔTIERS				
Isle Verte 16A	Jan – (May/mai)	4	14	6
Baie des Chaleurs 16B	Jan – (May/mai)	71	445	356
Escuminac 16C	Jan – (May/mai)	130	33	41
I. Madeleine-Magdalen 16D	Jan – (May/mai)	22	72	11
Southeast N.BWest P.E.I. 16E	Jan – (May/mai)	454	192	359
North. Strait-South Cape Breton	Jan – (May/mai)	7	97	84
16F	1 (B.A /	•	404	
East PEI-North Cape Breton 16G	Jan – (May/mai)	9	184	57
4Vn	Jan – (June/juin)	16		
16A – G (June – juin)	June – juin	62		
Reserve / réserve	Jan – (June/juin)	762		
Total Inshore / Côtiers		1537	1037	914
SEINERS / SENNEURS (>65') 4T	Jan 1 – Jun 30	463	302	0
Grand Total		2000	1339	914

2010-2011 FALL FISHERY SEASONS / PÊCHE SAISONS D'AUTOMNE 2010-2011 INSHORE / CÔTIERS

		TAC	Preliminary Catch (t) /	Prises préliminaires (t)
Area/Zone - Région/Zone	Season/Saison	(t)	2010	2011
Isle Verte 16A	Jul 1 - Dec 31	136	10	21
Baie des Chaleurs 16B	Jul 1 - Dec 31	23503	15793	15360
Escuminac 16C &	Jul 1 - Dec 31	8692	9547	8639
West P.E.I. 16E				
Magdalen 16D	Jul 1 - Dec 31	325	158	37
Pictou 16F	Jul 1 - Dec 31	8508	7968	8698
Fisherman's Bank 16G	Jul 1 - Dec 31	8508	8958	4162
Reserve	Jul 1 - Dec 31	93	-	-
4Vn	Jul 1 - Dec 31	325	-	-
Total Inshore / Côtiers		50090	42434	36917
SEINERS / SENNEURS (>65')				
Baie des Chaleurs / Miscou	Sep 1 - Dec 31			
	Inside / intérieur	7455	4469	2002
Remainder / Reste de 4T	Outside / extérieur	7455	29	0
Total Seiners / Senneurs		14910	4498	2002
Grand Total		65000	46932	38919

Table 2. Fixed gear herring catch (t) by season in 4T southern Gulf of St. Lawrence, based on ZIF raw data files, purchase slip files, dockside monitoring or logbook data.

Tableau 2. Prises de hareng (t) pour la pêche aux engins fixes par saison dans 4T basées sur des fichiers de données brutes ZIF, données d'observateurs à quai ou cahiers de bord.

Spring / printemps				Area /	Région			
Year / Année	16A	16B	16C	16D	16E	16F	16G	То
1991	26	2139	5159	193	5018	127	16	126
1992	115	2865	4348	243	4699	146	54	124
1993	106	2397	4543	885	6829	200	126	150
1994	311	1561	6284	218	10842	158	76	194
1995	66	1844	4909	1043	7988	96	27	159
1996	101	882	5423	1628	9016	231	579	178
1997	91	622	3085	1552	9921	49	499	158
1998	60	441	3024	1907	8104	176	611	143
1999	62	277	2343	2699	5534	162	628	117
2000	62	911	2336	3855	8372	127	526	161
2001	34	582	1287	2624	5242	270	556	105
2002	12	595	1106	2155	4053	499	590	90
2003	11	511	374	2806	4426	410	524	90
2004	20	694	325	3087	3696	564	516	89
2005	1	815	109	1095	2009	546	374	49
2006	7	835	73	160	611	597	377	26
2007	6	615	159	21	888	146	377	22
2008	13	499	58	71	859	76	114	16
2009	9	286	12	47	949	25	23	13
2010*	14	444	33	72	191	97	184	10
2011*	6	356	41	11	359	84	57	ç
3-10 Mean / moyenne	10	536	67	74	700	188	215	17
Fall / automne					Région			
Year / Année	16A	16B	16C	16D	16E	16F	16G	То
1991	34	17181	1559	1	3242	1906	3122	270
1992	46	23609	1789	18	2540	1919	3160	330
1993	103	14504	3060	618	2137	935	1776	231
1994	118	34414	4367	1459	2119	0	3590	541
1995	60	29992	4921	1901	5006	10141	4244	562
1996	86	21741	2841	1447	5179	7852	7978	471
1997	106	18460	2011	407	4447	6278	7331	390
1998	13	17831	1819	1213	6197	5498	7045	396
1999	6	21627	3897	389	4531	5957	8909	453
2000	16	24474	5403	291	4890	5048	10366	504
2001	3	21750	4750	0	3232	6749	9022	455
2002	23	18666	4655	0	3257	8007	7448	420
2003	3	21387	5756	0	2423	9116	9025	477
2004	2	14764	7056	8	2910	5477	6990	372
2005	2	24116	5052	0	4479	8916	9251	518
2006	5	21645	4637	14	4125	8960	8532	479
2007	15	19560	3099	34	4283	8684	7493	431
2008	11	18766	2820	71	5126	5332	6739	388
2009	14	19407	4197	117	4333	8317	8467	448
	40	15791	3754	158	5792	7968	8958	424
2010*	10	13/91	3734	100				
2010* 2011* 06-10 Mean / moyenne	10 21	15361	3127	37	5512	8698	4162	369

*Data for 2010-2011 are preliminary. Les données de 201020-11 sont préliminaires.

Table 3. Catches (t) of 4T herring in spring and fall, by gear (fixed and mobile) divided by spawning group (calculated by the Gonado Somatic Index method).

Tableau 3. Prises (t) de hareng de 4T au printemps et à l'automne, par engins (fixes et mobiles), divisées par groupe de géniteurs (d'après l'Indice Gonado-Somatique).

YEAR ANNÉE	SPAWNING GROUP GROUPE GÉNITEUR	4T SP PRINT		4T F. AUTC		4T CATCH/ PRISES	4Vn CATCH/ PRISES	4TVn CATCH/ PRISES	4T\/n TAC
AININEE	P=spring / printemps A=fall / automne	Fixed	Mobile	Fixed	Mobile	. PRISES	PRISES	PRISES	4TVn TAC
1979	Р	6468	12403	325	7643	26838	1742		
	Α	1157	1499	5750	12977	21383	1171		
	Total	7625	13901	6075	20620	48221	2913	51134	58,000
1980	P	6772	1405	545	9044	17766	1422		
	Α	494	12509	5999	5766	24768	2428		
	Total	7266	13914	6545	14810	42534	3851	46385	59,500
1981	P	6287	20	293	589	7190	822		
	Α	1212	1	10932	2599	14744	2594		
	Total	7500	21	11225	3189	21934	3416	25350	19,000
1982	P	5692	57	292	574	6615	834		
	Α	230	5	12691	2003	14930	2674		
	Total	5922	62	12983	2578	21545	3508	25054	18,000
1983	Р	7655	17	423	1466	9561	1307		
	Α	865	2	13415	2023	16305	2672		
	Total	8520	19	13838	3489	25866	3979	29845	25,000
1984	P	4434	3	303	895	5635	1376		
	Α	847	1	15672	1384	17903	2549		
	Total	5281	4	15975	2278	23538	3925	27463	22,500
1985	P	6720	0	1287	2154	10161	1082		
	A	498	0	22420	4867	27785	2388		
	Total	7218	0	23707	7021	37946	3470	41416	36,000
1986	P	7154	0	3181	6773	17108	2782		
	A	1397	0	36710	4143	42250	1568		
	Total	8551	0	39891	10916	59357	4350	63707	47,600
1987	P	10419	0	2538	9460	22417	1446		
	Α	1340	0	49585	4273	55198	917		
	Total	11759	0	52123	13733	77615	2363	79978	77,000
1988	Р	9166	0	2843	12036	24046	1766		
	Α	3719	0	38367	5496	47583	806		
	Total	12886	0	41210	17533	71629	2572	74201	83,100
1989	Р	9062	0	1691	8778	19531	1302		
	Α	2032	0	32157	5492	39681	815		
	Total	11093	0	33848	14270	59211	2117	61328	91,100
1990	Р	4083	1	2146	6756	12986	3088		
	Α	818	0	59138	3551	63508	1623		
	Total	4901	1	61284	10308	76494	4710	81204	91,100
1991	Р	12073	5	178	3319	15575	1902	17476	21000
	Α	817	13	26965	4741	32537	2888	35425	70,100
	Total	12890	18	27143	8060	48111	4790	52901	91,100
1992	Р	12291	641	322	3327	16581	493	17074	21,000
	Α	186	478	32760	3789	37214	3735	40949	70,100
	Total	12477	1119	33082	7116	53794	4228	58023	91,100
1993	Р	14643	1526	780	3741	20690	434	21123	21,000
	A	538	1190	22319	2487	26535	3517	30052	85,000
	Total	15182	2716	23099	6228	47224	3951	51175	106,000
1994	Р	18498	883	481	3357	23220	568	23787	21,000
	A	517	3049	53333	3603	60503	2681	63184	85,000
	Total	19016	3932	53813	6961	83722	3249	86971	106,000

Table 3 (cont'd). Catches (t) of 4T herring in spring and fall.

Tableau 3 (suite). Prises (t) de hareng de 4T au printemps et à l'automne.

YEAR/	SPAWNING GROUP GROUPE GÉNITEUR		PRING / TEMPS	4T F. AUTO		4T CATCH/	4Vn CATCH/ PRISES	4TVn CATCH/	4TVn TAC
ANNÉE	P=spring / printemps A=fall / automne	Fixed	Mobile	Fixed	Mobile	PRISES	PRISES	PRISES	41 111 1710
1995	Р	15137	950	2102	7671	25860	470	26330	21,00
	Α	836	875	54161	7595	63467	3674	67141	85,00
	Total	15972	1825	56264	15266	89327	4144	93471	106,00
1996	Р	15409	441	1365	3977	21193	1033	22226	15,1
	Α	668	1466	44408	4044	50585	3234	53819	58,74
	Total	16077	1907	45773	8021	71778	4268	76045	73,80
1997	Р	12846	614	98	3627	17184	231	17416	16,5
	Α	380	888	34974	2175	38418	3299	41717	50,0
	Total	13226	1502	35071	5803	55602	3531	59133	66,5
1998	Р	13382	297	121	1418	15218	2	15220	16,5
	Α	528	707	39009	3158	43402	50	43451	57,5
	Total	13910	1004	39130	4576	58619	52	58671	74,0
1999	Р	10256	688	176	3770	14889	0	14889	18,5
	Α	1625	4130	44615	5334	55704	0	55704	60,5
	Total	11881	4818	44791	9104	70594	0	70594	79,0
2000	Р	14586	10	706	2324	17626	0	17626	16,5
	Α	1596	538	49676	6373	58183	0	58183	71,0
	Total	16181	549	50383	8697	75809	0	75809	83,3
2001	Р	9938	459	736	2986	14120	0	14120	12,5
	Α	659	638	44786	7285	53368	0	53368	60,5
	Total	10597	1097	45522	10271	67488	0	67488	73,0
2002	P	8142	420	673	704	9939	0	9939	8,0
	A	966	464	41290	10898	53618	0	53618	51,5
	Total	9109	884	41962	11602	63556	0	63556	59,5
2003	P	8458	41	37	449	8986	0	8986	11,0
	A	608	60	47766	12779	61213	0	61213	62,0
	Total	9066	101	47803	13228	70199	0	70199	73,0
2004	P	7671	21	122	410	8223	0	8223	13,5
	A	374	31	35904	7090	43398	0	43398	73,0
	Total	8044	52	36025	7500	51621	0	51621	86,5
2005	P	3571	0	14	1084	4669	0	4669	11,0
2000	A	925	0	51715	7756	60396	0	60396	70,0
	Total	4496	0	51729	8840	65065	0	65065	81,0
2006	D	1409	0	293	745	2447	•		90
2006	A	1257	0	47630	4409	53296	0	2447 53296	688
	Total	2666	0	47030 47924	5154	55744	0	55744	778
2007	P	1734	0	10	2414				50
2007						4158	0	4158	
	A Total	496	0	43161	4426	48084	0	48084	688
2000	Total	2230	0	43171	6840	52242	0	52242	738
2008	P	1503	0	35	1473	3012	0	3012	25
	A	187	0	38831	2738	41756	0	41756	688
	Total	1690	0	38866	4212	44767	0	44767	713 25
2009	P .	1256	0	70	519	1844	0	1844	650
	A	94	0	44780	1939	46812	0	46812	
	Total	1349	0	44850	2457	48657	0	48657	675
2010	P .	674	5	2	540	1221	0	1221	20
prelim.	Α	363	297	42430	3956	47045	0	47045	650
	Total	1037	302	42432	4496	48267	0	48267	670
2011	Р	751	0	68	593	1411	0	1411	20
prelim.	Α	169	0	36848	1410	38426	0	38426	650
	Total	920	0	36915	2002	39837	0	39837	670

Table 4. Annual landings (t) of 4T herring by spawning group and fleet with corresponding TACs.

Tableau 4. Débarquements annuels (t) de hareng de 4T par groupe de géniteurs et flotte de pêche avec TAC correspondants.

	Spring spawi	ners / Géniteurs de	nrintemps		Spring TA	C
		ébarquements t	printempo		TAC printem	
Year	Gillnet	L. Seiner		% Gillnet	Gillnet	L. Seiner
Année	F. maillants	Senneurs	Total %	F. maillants	F. maillants	Senneurs
1996	16775	5452	22226	75	11638	3476
1997	12943	4473	17416	74	12705	3795
1998	13503	1718	15220	89	12705	3795
1999	10432	4457	14889	70	14245	4255
2000	15292	2334	17626	87	12705	3795
2001	10674	3446	14120	76	9625	2875
2002	8815	1124	9939	89	6160	1840
2003	8496	490	8986	95	8470	2530
2004	7792	431	8223	95	10395	3105
2005	3585	1084	4669	77	8470	2530
2006	1703	745	2447	70	6930	2070
2007	1744	2414	4158	42	3851	1149
2008	1538	1473	3012	51	1921	579
2009	1326	519	1844	72	1921	579
2010	676	545	1221	55	1537	463
2011	818	593	1411	58	1537	463
Mean/Moyenne						
2007-2011	1220	1109	2329	56		
		s / Géniteurs d'aut	omne		Fall TAC	
	_	ébarquements t		•	TAC automr	
Year	Gillnet	L. Seiner		% Gillnet	Gillnet	L. Seiner
Année	F. maillants	Senneurs		F. maillants	F. maillants	Senneurs
1996	45075	8744	53819	84	52976	15824
1997	35354	6363	41717			
1998		0044		85	45237	13512
1999	39537	3914	43451	91	38500	11500
	46240	9464	43451 55704	91 83	38500 44327	11500 13241
2000	46240 51272	9464 6911	43451 55704 58183	91 83 88	38500 44327 46585	11500 13241 13915
2000 2001	46240 51272 45445	9464 6911 7923	43451 55704 58183 53368	91 83 88 85	38500 44327 46585 54670	11500 13241 13915 16330
2000 2001 2002	46240 51272 45445 42256	9464 6911 7923 11362	43451 55704 58183 53368 53618	91 83 88 85 79	38500 44327 46585 54670 46585	11500 13241 13915 16330 13915
2000 2001 2002 2003	46240 51272 45445 42256 48374	9464 6911 7923 11362 12839	43451 55704 58183 53368 53618 61213	91 83 88 85 79 79	38500 44327 46585 54670 46585 39655	11500 13241 13915 16330 13915 11845
2000 2001 2002 2003 2004	46240 51272 45445 42256 48374 36277	9464 6911 7923 11362 12839 7121	43451 55704 58183 53368 53618 61213 43398	91 83 88 85 79 79 84	38500 44327 46585 54670 46585 39655 47740	11500 13241 13915 16330 13915 11845 14260
2000 2001 2002 2003 2004 2005	46240 51272 45445 42256 48374 36277 52640	9464 6911 7923 11362 12839 7121	43451 55704 58183 53368 53618 61213 43398 60396	91 83 88 85 79 79 84 87	38500 44327 46585 54670 46585 39655 47740 56210	11500 13241 13915 16330 13915 11845 14260 16790
2000 2001 2002 2003 2004 2005 2006	46240 51272 45445 42256 48374 36277 52640 48887	9464 6911 7923 11362 12839 7121 7756 4409	43451 55704 58183 53368 53618 61213 43398 60396 53296	91 83 88 85 79 79 84 87 92	38500 44327 46585 54670 46585 39655 47740 56210 53018	11500 13241 13915 16330 13915 11845 14260 16790 15782
2000 2001 2002 2003 2004 2005 2006 2007	46240 51272 45445 42256 48374 36277 52640 48887 43657	9464 6911 7923 11362 12839 7121 7756 4409	43451 55704 58183 53368 53618 61213 43398 60396 53296 48084	91 83 88 85 79 79 84 87 92 91	38500 44327 46585 54670 46585 39655 47740 56210 53018 53018	11500 13241 13915 16330 13915 11845 14260 16790 15782
2000 2001 2002 2003 2004 2005 2006 2007 2008	46240 51272 45445 42256 48374 36277 52640 48887 43657 39017	9464 6911 7923 11362 12839 7121 7756 4409 4426 2738	43451 55704 58183 53368 53618 61213 43398 60396 53296 48084 41756	91 83 88 85 79 79 84 87 92 91	38500 44327 46585 54670 46585 39655 47740 56210 53018 53018	11500 13241 13915 16330 13915 11845 14260 16790 15782 15782
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009	46240 51272 45445 42256 48374 36277 52640 48887 43657 39017 44874	9464 6911 7923 11362 12839 7121 7756 4409 4426 2738 1939	43451 55704 58183 53368 53618 61213 43398 60396 53296 48084 41756 46812	91 83 88 85 79 79 84 87 92 91 93	38500 44327 46585 54670 46585 39655 47740 56210 53018 53018 53018	11500 13241 13915 16330 13915 11845 14260 16790 15782 15782 15782
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010	46240 51272 45445 42256 48374 36277 52640 48887 43657 39017 44874 42793	9464 6911 7923 11362 12839 7121 7756 4409 4426 2738 1939 4253	43451 55704 58183 53368 53618 61213 43398 60396 53296 48084 41756 46812 47045	91 83 88 85 79 79 84 87 92 91 93 96	38500 44327 46585 54670 46585 39655 47740 56210 53018 53018 53018 50090 50090	11500 13241 13915 16330 13915 11845 14260 16790 15782 15782 14910 14910
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009	46240 51272 45445 42256 48374 36277 52640 48887 43657 39017 44874	9464 6911 7923 11362 12839 7121 7756 4409 4426 2738 1939	43451 55704 58183 53368 53618 61213 43398 60396 53296 48084 41756 46812	91 83 88 85 79 79 84 87 92 91 93	38500 44327 46585 54670 46585 39655 47740 56210 53018 53018 53018	11500 13241 13915 16330 13915 11845 14260 16790 15782 15782 15782

Table 5. Number of respondents by area homeport and area of fishing activity for spring gillnetters contacted during the telephone survey for 2010 and 2011. See Fig. 5 for area locations.

Tableau 5. Nombre de répondants par port d'attache et zone d'activité de pêche (figure 5) pour les filets maillants du printemps rejoints dans le cadre du sondage téléphonique en 2010 et en 2011.

2010			Fishing	Location / Rég	gion de pêc	he			
Home Port	Mag Is		Ac. Pen			NS	E.P.E.I.	W.P.E.I.	
Port d'attache	lles Mad	Quebec	Pén. Acad	Escuminac	Se N.B.	ΝÉ	îPÉ.	îPÉ.	Total
							est	ouest	
Mag Is\lles Mad	14	-	-	-	-	-	-	-	14
Quebec	-	15	-	-	-	-	-	-	15
Ac. Pen\Pén. Acad	-	-	2	-	-	-	-	-	2
Escuminac	-	-	-	1	-	-	-	-	1
Se N.B.	-	-	-	-	-	-	-	-	0
NS\NÉ	-	-	-	-	-	2	-	-	2
E.P.E.I.\ÎPÉ. est	-	-	-	-	-	-	2	-	2
W.P.E.I.\ ÎPÉ. ouest	-	-	-	-	1	-	-	8	9
Total	14	15	2	1	1	2	2	8	45
2011			Fishing	Location / Rég	gion de pêc	he			
Home Port	Mag Is		Ac. Pen			NS	E.P.E.I.	W.P.E.I.	
Port d'attache	lles Mad	Quebec	Pén. Acad	Escuminac	Se N.B.	ΝÉ	îPÉ.	îPÉ.	Total
							est	ouest	
Mag Is\lles Mad	8	-	-	-	-	-	-	-	8
Quebec	-	21	-	-	-	-	-	-	21
Ac. Pen\Pén. Acad	-	-	6	-	-	-	-	-	6
Escuminac	-	-	-	-	-	-	-	-	0
Se N.B.	-	-	-	-	5	-	-	-	5
NS\NÉ	-	-	-	-	-	1	-	-	1
E.P.E.I.\îPÉ. est	-	-	-	-	-	-	-	-	0
W.P.E.I.\ ÎPÉ. ouest	-	-	-	-	-	-	-	13	13

Table 6. Number of respondents by area homeport and area of fishing activity for fall gillnetters contacted during the telephone survey for 2010 and 2011. See Fig. 5 for area locations.

Tableau 6. Nombre de répondants par port d'attache et zone d'activité de pêche (figure 5) pour tous les filets maillants d'automne rejoints dans le cadre du sondage téléphonique en 2010 et en 2011.

2010			Fishing	Location / Rég	gion de pêc	he			i
Home Port Port d'attache	Mag Is Iles Mad	Quebec	Ac. Pen Pén. Acad	Escuminac	Se N.B.	NS NÉ	E.P.E.I. ÎPÉ. est	W.P.E.I. ÎPÉ. ouest	Total
Mag Is\lles Mad	3	-	-	-	-	-	-	-	3
Quebec	-	6	-	-	-	-	-	-	6
Ac. Pen\Pén. Acad	-	-	38	5	-	-	-	4	47
Escuminac	-	-	-	5	1	-	-	3	9
Se N.B.	-	-	-	-	0	-	-	-	0
NS\NÉ	-	-	-	-	-	27	-	-	27
E.P.E.I.\ÎPÉ. est	-	-	-	-	-	-	17	3	20
W.P.E.I.\ îPÉ. ouest	-	-	1	-	-	-	1	9	11
Total	3	6	39	10	1	27	18	19	123
2011			Fishing	Location / Rég	gion de pêc	he			
Home Port Port d'attache	Mag Is Iles Mad	Quebec	Ac. Pen Pén. Acad	Escuminac	Se N.B.	NS NÉ	E.P.E.I. ÎPÉ.	W.P.E.I. ÎPÉ.	Total
Port a attache	iles iviau	Quebec	Fell. Acau	ESCUITIIIIac	Se N.D.	INE	est	ouest	TOtal
Mag Is\lles Mad	1	-	-	-	-	-	-	-	1
Quebec	-	41	-	-	-	-	-	-	41
Ac. Pen\Pén. Acad	-	-	31	6	-	-	-	5	42
Escuminac	-	-	-	9	-	-	-	7	16
Se N.B.	-	-	-	1	1	-	-	-	2
NS\NÉ	-	-	-	-	-	35	-	-	35
E.P.E.I.\ÎPÉ. est	-	-	-	-	-	-	28	-	28
W.P.E.I.\ îPÉ. ouest	-	-	-	3	-	-	-	13	16
Total	1	41	31	19	1	35	28	25	181

Table 7. Average length of gillnets (fathoms) and percent distribution of gillnet types from the telephone survey used in the 2010 and 2011 herring fishery. See Figure 5 for area locations. Tableau 7. Longueur moyenne des filets maillants (brasses) et pourcentage de répartition des types de filets maillants utilisés pour la pêche du hareng en 2010 et 2011 selon le sondage téléphonique. Voir figure 5 pour l'emplacement des zones.

2010	Spri	ing / Printemps		Fa	all / Automne	
Area \ Région	Length / Longueur	*Set / Ancré %	*Modified % Modifié %	Longueur / Length	Set / Ancré %	Modified % Modifié %
Mag Is\lles Mad	16.4	100	-	15.2	72	28
Quebec	16.1	100	-	14.8	86	14
Ac. Pen\Pén. Acad	13.8	100	-	13.8	25	75
Escuminac	11.5	100	-	14.0	72	28
Se N.B.	15.5	100	-	15.0	100	-
NS\NÉ	-	-	-	15.7	95	5
E.P.E.I.\îPÉ. est	13.8	100	-	14.0	100	-
W.P.E.I.\ ÎPÉ. ouest	13.0	100	-	13.4	80	20
2011	Spri	ing / Printemps		Fa	all / Automne	
Area \ Région	Length / Longueur	*Set / Ancré %	*Modified % Modifié %	Longueur / Length	Set / Ancré %	Modified % Modifié %
Mag Is\lles Mad	15.1	100	-	15.0	-	100
Quebec	14.5	100	-	13.8	31	69
Ac. Pen\Pén. Acad	13.7	100	-	13.6	22	78
Escuminac	-	-	-	13.7	90	10
Se N.B.	15.0	100	-	15.0	100	-
NS\NÉ	-	-	-	15.6	95	5
E.P.E.I.\îPÉ. est	-	-	-	13.8	100	-
W.P.E.I.\ ÎPÉ. ouest	13.7	100	-	13.9	90	10

^{*}Set / ancré = anchored at both ends / ancré aux deux extrémités

Table 8. Telephone survey percent of fishing days with no gillnet catch for main fishing areas. See Figure 5 for area locations.

Tableau 8. Pourcentage de jours de pêche sans captures dans les filets maillants pour les zones principales, du sondage téléphonique. Voir figure 5 pour les zones.

	0 1 1 1 1	
Year	Spring / printemps	Fall / automne
Année	Areas / zones 1,2,3,4,5,8	Areas / zones 2,3,4,6,7,8
	%	%
2006	46.7	16.7
2007	40.0	28.8
2008	49.4	28.8
2009	23.2	17.5
2010	34.1	19.9
2011	26.2	27.3

^{*}Modified / modifiés = one end attached to boat / un bout attaché au bateau

Table 9. Gillnet data for 2010-2011, by season and area, obtained from the telephone survey and collected by the dockside monitoring program (DMP) where available. (Length in fathoms; n = number). Tableau 9. Données sur les filets maillants en 2010-2011, par saison et région, obtenues par sondage téléphonique et recueillies par le programme de vérification à quai (PVQ) lorsqu'elles sont disponibles. (Longueur en brasses; n=nombre).

Season / Area			2010			2010			2011			2011	
Saison / Zone		Telephone Sur	vey / So	ondage	DMP/	PVQ		Telephone Sur	vey / Sc	ndage	DMP/	PVQ	
Spring / Printemps	Gillnets / Filets Maillants	Mean / Moyenne	n	Std. error Erreur t	Mean/ Movenne	n	Std error Erreur t	Mean / Moyenne	n	Std. error Erreur t	Mean/ Moyenne	n	Std error Erreur t
Magdalen Is	Number/ Nombre*	11.6		0.4	13.5	58	0.6	12	8		oyenne		Lilouit
lles de la Madeleine	Length (fa) / Longueur (br)	16.4	7	0.1	10.0	- 00	0.0	15.1	- 8	0.7			
iles de la Madelelle	Depth (Meshes) / Profondeur (Mailles)	10.4	7	0				86.3	8	7.1			
Outher	, , , ,	17.3	13	1.1	19.1	0	1.1	18.2	21	1.3	19.3	15	1.1
Québec	Number/ Nombre* Length (fa) / Longueur (br)	16.1	14	0.5	13.1	3	1.1	14.5	21	0.3	19.3	10	1.1
<u>-</u>	Depth (Meshes) / Profondeur (Mailles)	92.9	14	1.2				83.2	19	4.4			
Assalias Danissula		21	14	1.2	10.0	0	1.0		18		10.0	15	- 11
Acadian Peninsula	Number/ Nombre*		-		18.8	9	1.2	15.3	- 1	2.8	19.2	15	1.1
Péninsule Acadienne	Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles)	13.8	2	1.3 6.5	14.8	9	0.4	13.7 59.3	7	1.4	14.9	15	0.07
<u> </u>	, , , , ,	56.5	2	0.0				09.0	- 1	1.4			
Escuminac	Number/ Nombre*	20.5	1								18.1	1	
	Length (fa) / Longueur (br)	11.5	1								14.3	1	
	Depth (Meshes) / Profondeur (Mailles)	80	1										
SE New Brunswick	Number/ Nombre*	21	1		22.8	2	5.5	21.8	4	0.5	21.3	23	0.2
Nouveau-Brunswick	Length (fa) / Longueur (br)	15.5	1		14.6	2	1.7	15	5	0.4	14.5	23	0.1
<u> </u>	Depth (Meshes) / Profondeur (Mailles)	80	1					60.8	5	5.2			
Nova Scotia	Number/ Nombre*												
Nouvelle-Écosse	Length (fa) / Longueur (br)												
	Depth (Meshes) / Profondeur (Mailles)		-								-		
East PEI	Number/ Nombre*	10.5	2	0	11.1	7	1.5				12.6	7	1.1
Est IPE.	Length (fa) / Longueur (br)	13.8	2	1.3	14.4	7	0.4				15.1	7	0.06
	Depth (Meshes) / Profondeur (Mailles)	87.5	2	2.5							_		
West PEI	Number/ Nombre*	18.9	8	1.6	19.6	41	0.3	22.5	12	0.4	19.4	53	0.45
Ouest IPE.	Length (fa) / Longueur (br)	13	8	0.4	13.2	41	0.1	13.7	12	0.4	13.1	53	0.2
	Depth (Meshes) / Profondeur (Mailles)	60.6	8	2.8				65.8	12	4.7			
Season / Area			2010			2010		'	2011			2011	
Saison / Zone		Telephone Surv	ey / Sono	dage	DMP/P	VQ		Telephone Surve	ey / Sond	lage	DMP/P	VQ	
Fall		Mean /	n	Std. error	Mean/	n	Std error	Mean /	n	Std. error	Manul		Std error
Automne	Gillnets / Filets Maillants					111		mcaii/		Stu. error	Mean/	n	Old Ciloi
Magdalen Is	Gillinets / Filets Maillants	Moyenne		Erreur t	Moyenne	"	Erreur t	Moyenne	"	Erreur t	Moyenne	n	Erreur t
	Number/ Nombre*	Moyenne 6	3			8	Erreur t 0.7		<u>_</u>			n 	
lles de la Madeleine			3	Erreur t	Moyenne	8		Moyenne				n 	
	Number/ Nombre*	6	3 3 3	Erreur t 1.5	Moyenne	8		Moyenne 5	1 1				
lles de la Madeleine	Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles)	6 15.2	3 3 3 6	Erreur t 1.5 0.8	Moyenne	8		Moyenne 5 15	1 1 1 33	Erreur t	Moyenne 		
	Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre*	6 15.2 91.7	3 3 3 6 6	Erreur t 1.5 0.8 6.3	Moyenne	8		Moyenne 5 15 100	1 1 1 1 33 41	Erreur t	Moyenne 		
lles de la Madeleine	Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles)	6 15.2 91.7 9.2	3 3 3 6 6 6	Erreur t 1.5 0.8 6.3 0.8	Moyenne	8		Moyenne 5 15 100 8		Erreur t	Moyenne 		
lles de la Madeleine Québec	Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles)	6 15.2 91.7 9.2 14.8	3 3 3 3 6 6 6 6	Erreur t 1.5 0.8 6.3 0.8 1.2 5.3	Moyenne	8 		Moyenne 5 15 100 8 13.8	41	0.3 0.2	Moyenne 	n	
lles de la Madeleine Québec Acadian Peninsula	Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre*	6 15.2 91.7 9.2 14.8 108.3	3 3 3 6 6 6 6 42	1.5 0.8 6.3 0.8 1.2 5.3	Moyenne 5.5 			Moyenne 5 5 15 100 8 13.8 118 8	41 41 36	0.3 0.2 1.7	Moyenne	n	Erreur t
lles de la Madeleine Québec	Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles)	6 15.2 91.7 9.2 14.8 108.3 7.3	33 33 33 66 66 64 42 43	1.5 0.8 6.3 0.8 1.2 5.3 0.2	Moyenne 5.5 	88		Moyenne 5 5 15 100 8 13.8 118 8 13.6	41 41 36 36	0.3 0.2 1.7 0.3	Moyenne	n	Erreur t
Québec Acadian Peninsula Péninsule Acadienne	Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number / Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles)	6 15.2 91.7 9.2 14.8 108.3	3 3 3 6 6 6 6 42	1.5 0.8 6.3 0.8 1.2 5.3	Moyenne 5.5		0.7 	Moyenne 5 5 15 100 8 13.8 118 8	41 41 36	0.3 0.2 1.7	Moyenne	n	Erreur t
lles de la Madeleine Québec Acadian Peninsula	Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre*	6 15.2 91.7 9.2 14.8 108.3 7.3 13.8 117.3	3 3 3 6 6 6 6 42 43 43	1.5 0.8 6.3 0.8 1.2 5.3 0.2 0.2 1.9	Moyenne 5.5 	2 16		Moyenne 5 15 100 8 13.8 118 8 117.8 8.9	41 41 36 36 36 17	0.3 0.2 1.7 0.3 0.2 1.7	Moyenne		0.7 0.2
Québec Acadian Peninsula Péninsule Acadienne	Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number / Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles)	6 15.2 91.7 9.2 14.8 108.3 7.3 13.8 117.3	33 33 33 66 66 62 42 43 43 100	Erreur t 1.5 0.8 6.3 0.8 1.2 5.3 0.2 0.2 1.9 0.6 0.6	Moyenne 5.5		0.7 	Moyenne 5 15 100 8 13.8 118 8 13.6 117.8 8.9 13.7	41 41 36 36 36 17 19	0.3 0.2 1.7 0.3 0.2 1.9 0.3	Moyenne	55	0.7 0.3
lles de la Madeleine Québec Acadian Peninsula Péninsule Acadienne Escuminac	Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles)	6 15.2 91.7 9.2 14.8 108.3 7.3 13.8 117.3 8.1 14 98.8	3 3 3 3 6 6 6 6 6 42 43 43	1.5 0.8 6.3 0.8 1.2 5.3 0.2 0.2 1.9	Moyenne 5.5		0.7 	Moyenne 5 15 100 8 13.8 118 8 13.6 117.8 8.9 13.7 98.4	41 41 36 36 36 17	0.3 0.2 1.7 0.3 0.2 1.7	Moyenne		0.7 0.2 0.05
lles de la Madeleine Québec Acadian Peninsula Péninsule Acadienne Escuminac SE New Brunswick	Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number (Mombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number / Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number / Nombre* Number / Nombre*	6 15.2 91.7 9.2 14.8 108.3 7.3 13.8 117.3 8.1 14 98.8	33 33 33 66 66 62 42 43 43 100	Erreur t 1.5 0.8 6.3 0.8 1.2 5.3 0.2 0.2 1.9 0.6 0.6	Moyenne 5.5		0.7 	Moyenne 5 15 100 8 13.8 118 8 117.8 8.9 13.7 98.4 6 6	41 41 36 36 36 17 19	0.3 0.2 1.7 0.3 0.2 1.9 0.3	Moyenne	5 5 5 19	0.7 0.2 0.05 0.01 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.
Iles de la Madeleine Québec Acadian Peninsula Péninsule Acadienne Escuminac SE New Brunswick Nouveau-Brunswick	Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles)	6 15.2 91.7 9.2 14.8 108.3 7.3 13.8 117.3 8.1 14 98.8 10 15	33 33 33 66 66 62 42 43 43 100	5.3 0.8 0.8 0.2 0.2 0.2 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	Moyenne 5.5		0.7 	Moyenne	41 41 36 36 36 17 19	0.3 0.2 1.7 0.3 0.2 1.9 0.3	Moyenne	5 5 5 19	0.7 0.2 0.05
lles de la Madeleine Québec Acadian Peninsula Péninsule Acadienne Escuminac SE New Brunswick Nouveau-Brunswick (July / Juillet)	Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles)	6 15.2 91.7 9.2 14.8 108.3 7.3 13.8 117.3 8.1 14 98.8 100 15	3 3 3 6 6 6 6 42 43 43 10 10 10 11 11	1.5 0.8 0.8 0.8 0.8 0.2 0.2 0.2 0.9 0.6 0.6 0.6 1.2	Moyenne 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.	2 2	0.7	Moyenne	41 41 36 36 36 17 19 19	0.3 0.3 0.2 1.9 0.3 0.4 2.5	Moyenne	5 5 5 19 19	0.7 0.2 0.05 0.05 0.05 0.05 0.05 0.05 0.05
lles de la Madeleine Québec Acadian Peninsula Péninsule Acadienne Escuminac SE New Brunswick Nouveau-Brunswick (July / Juillet) Nova Scotia	Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles)	6 15.2 91.7 9.2 14.8 108.3 7.3 13.8 117.3 8.1 14 98.8 10 15	33 33 33 66 66 62 42 43 43 100 100 110 111 111 112 126	1.5 0.8 0.8 0.8 0.8 0.2 1.9 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	Moyenne 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.	2 2 16 	0.7	Moyenne	41 41 36 36 36 17 19 19 1 1 1	0.3 0.2 1.9 0.3 0.4 2.5 0.3 0.3 0.3 0.4 0.3 0.3 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Moyenne	55 55 199 199	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
lles de la Madeleine Québec Acadian Peninsula Péninsule Acadienne Escuminac SE New Brunswick Nouveau-Brunswick (July / Juillet)	Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles)	6 15.2 91.7 9.2 14.8 108.3 7.3 13.8 117.3 8.1 14 98.8 100 15 15 100	33 33 33 66 66 66 66 422 43 43 100 100 11 11 11 12 26 27	1.5 0.8 0.8 0.8 0.2 0.2 0.2 0.2 0.6 0.6 0.6 0.6 0.4 0.4 0.1	Moyenne 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.	2 2	0.7	Moyenne 5 15 15 100 8 8 13.6 117.8 8.9 13.7 98.4 6 15 80 5.5 15.6	41 41 36 36 36 17 19 19 1 1 1 1 1 3 3 3 3 3 3 3 5 3 5 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1	0.3 0.2 0.2 1.9 0.3 0.3 0.4 0.4 0.5 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	Moyenne	5 5 5 19 19	0.7 0.2 0.05 0.05 0.05 0.05 0.05 0.05 0.05
lles de la Madeleine Québec Acadian Peninsula Péninsule Acadienne Escuminac SE New Brunswick Nouveau-Brunswick (July / Juillet) Nova Scotia Nouvelle-Écosse	Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles)	6 15.2 91.7 9.2 14.8 108.3 7.3 13.8 117.3 8.1 14 98.8 10 15 10 15 10 15.7	33333333333333333333333333333333333333	Erreur t		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.7 	Moyenne 5 15 100 8 13.6 117.8 8.9 13.7 98.4 6 15 80 5.5 15.6 90.2	41 41 36 36 36 17 19 19 1 1 1 1 33 35 35	Erreur t	Moyenne	55 55 19 19 30 30	0.7 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
lles de la Madeleine Québec Acadian Peninsula Péninsule Acadienne Escuminac SE New Brunswick Nouveau-Brunswick (July / Juille) Nova Scotia Nouvelle-Écosse East PEI	Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number / Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number / Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number / Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number / Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number / Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number / Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number / Nombre*	6 15.2 91.7 9.2 14.8 108.3 7.3 13.8 117.3 8.1 14 98.8 10 15 100 5.1 15.7 92.7	33333333333333333333333333333333333333	Erreur t		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.7 	Moyenne 5 15 100 8 13.6 117.8 8.9 13.7 98.4 6 15.6 5.5 15.6 90.2 9.1	41 41 36 36 36 17 19 19 1 1 1 1 33 35 32 28.0	Erreur t	Moyenne	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.7 0.3 0.2 0.2 0.02 0.02 0.02 0.02 0.02 0.
lles de la Madeleine Québec Acadian Peninsula Péninsule Acadienne Escuminac SE New Brunswick Nouveau-Brunswick (July / Juillet) Nova Scotia Nouvelle-Écosse	Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles)	6 15.2 91.7 9.2 14.8 108.3 7.3 13.8 117.3 8.1 14 98.8 10 15 100 5.1 15.7 92.7	33 33 33 33 33 33 33 42 43 43 100 100 101 101 111 111 111 111 112 126 127 127 127 127 127 127 127 127 127 127	1.5 0.8 0.8 0.8 1.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.7 	Moyenne 5 15 100 8 13.8 118 8 13.6 117.8 8.9 13.7 98.4 6 15 80 5.5 15.6 90.2 9.1 13.8	41 41 36 36 36 17 19 19 1 1 1 1 33 35 32 28.0	Erreur t	Moyenne	55 55 19 19 30 30	0.7 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
lles de la Madeleine Québec Acadian Peninsula Péninsule Acadienne Escuminac SE New Brunswick Nouveau-Brunswick (July / Juillet) Nova Scotia Nouvelle-Écosse East PEI Est 1-PE.	Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles)	6 15.2 91.7 9.2 14.8 108.3 7.3 13.8 117.3 8.1 14 98.8 10 15 100 5.1 15.7 92.7 9.1	33 33 33 33 33 33 33 44 43 43 100 100 101 111 111 111 112 126 157 157 158 158 158 158 158 158 158 158 158 158	1.5 0.8 0.8 0.2 0.2 0.2 0.2 0.0 0.6 0.6 0.4 0.1 0.4 0.1 0.5 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3		2 2 2 2 2 2 2 2 140 140 140	0.7 	Moyenne	41 41 36 36 36 17 19 19 1 1 1 1 33 35 32 28.0 28	Erreur t	Moyenne	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.7 0.2 0.2 0.02 0.02 0.07 0.07 0.07 0.0
lles de la Madeleine Québec Acadian Peninsula Péninsule Acadienne Escuminac SE New Brunswick Nouveau-Brunswick (July / Juillet) Nova Scotia Nouvelle-Écosse East PEI Est 1-PE. West PEI	Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles)	6 15.2 91.7 9.2 14.8 108.3 7.3 13.8 117.3 8.1 14 98.8 100 15 100 5.1 15.7 92.7 9.1 14 84.2	33 33 33 33 33 33 33 42 42 42 43 43 43 43 10 10 10 10 11 11 11 11 11 11 11 11 11	1.5 0.8 0.8 0.8 0.2 0.2 0.2 0.2 0.2 0.2 0.6 0.6 0.6 0.6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Moyenne 5.5 10 10 15 66 15 9.6 14.1	2 2 2 2 2 2 2 2 2 5 5 5 5 5 5 5 5 5 5 5	0.7 	Moyenne	41 41 36 36 36 17 19 19 1 1 1 1 1 33 35 32 28.0 28 27 23	Erreur t	Moyenne		0.7 0.2 0.2 0.02 0.02 0.02 0.02 0.02 0.0
lles de la Madeleine Québec Acadian Peninsula Péninsule Acadienne Escuminac SE New Brunswick Nouveau-Brunswick (July / Juillet) Nova Scotia Nouvelle-Écosse East PEI Est 1PE.	Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles)	6 15.2 91.7 9.2 14.8 108.3 7.3 13.8 117.3 8.1 14 98.8 10 15 100 5.1 15.7 92.7 9.1	33 33 33 33 33 33 33 44 43 43 100 100 101 111 111 111 112 126 157 157 158 158 158 158 158 158 158 158 158 158	1.5 0.8 0.8 0.2 0.2 0.2 0.2 0.0 0.6 0.6 0.4 0.1 0.4 0.1 0.5 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3		2 2 2 2 2 2 2 2 140 140 140	0.7 	Moyenne	41 41 36 36 36 17 19 19 1 1 1 1 33 35 32 28.0 28	Erreur t	Moyenne	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.7 0.2 0.2 0.02 0.02 0.07 0.07 0.07 0.0

*Average number of nets / Nombre moyen de filets

Table 10. Comparison of ages obtained during the validation test with the original ages assigned and between readers.

Tableau 10. Comparaison des âges obtenus lors du test de validation avec les âges originaux et entre les lecteurs.

Primary reader to	est ages / Lecteur	primaire r	electure d'â	ges								
Age original	Age in/en 2011											
Original Age	1	2	3	4	5	6	7	8	9	10	11	Tota
1	5											į
2		15	1									16
3			26									26
	()		1	25	2	1						26 29
5	[4	50							54
				7	1	17	2					20
7					'	3	21	1				25
8						3	7	14	2			23
							,	17	3	2		
10									3 1	3		2
11									ļ	3	4	-
		45	00	29	50	04	20	4.5	^		4	244
Tota	5	15	28 = 3.53	29	53	21	30	15	6	5	4	211
% Agreement / %	o d accord = 87	CV	= 3.53									
New reader test	ages / Nouveau le	cteur rele	cture d'âges	3								
Age original	Age in/en 2011											
Original Age	1	2	3	4	5	6	7	8	9	10	11	Tota
1	5											
2		15		1								16
3			25	1								26
	íl –		2	26	1							26 29
5			_		53		1					54
					1	19						54 20
-	<i>;</i>				'	3	20		1			24
8	,					3	20	18	3			25
g							2	10	1	2	4	23 5
10								ļ	3	1	'	
									3		ا	
11		45	07	00		00	00	40	•	3	1	046
Tota % Agreement / %		15	= 3.0	28	55	22	23	19	8	6	2	210
% Agreement / %	o d accord = 88	CV	= 3.0									
Primary reader	New reader - No	uveau lec	teur									
Lecteur primaire	Age in/en 2011											
Age in/en 2009	1	2	3	4	5	6	7	8	9	10	11	Tota
1	5		-		-	-						
2		15										15
3			26	2								28
	il		1	24	4							29
5	['	1	48	1	2					52
6				1	2	18	_					21
7				ı	1	3	20	5	1			30
					I	J	20 1	12				30
3							1		2	_		15 6
9								2	3	1		(
10									2	2	1	Ę
11										3	1	
Tota		15	27	28	55	22	23	19	8	6	2	210
% Agreement / %	6 d'accord = 83	CV	= 4.7									

Table 11. Acoustic survey: total numbers and biomass-at-age by area derived from acoustic signal and samples from midwater trawling from 2010 and 2011 surveys.

Tableau 11. Total des prises et biomasse à l'âge par région lors des relevés acoustiques déterminés d'après l'intensité du signal acoustique et l'échantillonnage au chalut pélagique des relevés de 2010 et 2011.

P = spring spawners / géniteurs de printemps A = fall spawners / géniteurs d'automne

Num	ber / nombres x 10	000		Biomass / biomasse (t)						
	Gaspé-Chaleur-N	Miscou	*P.E.IÎPÉ.	Gaspé-Chaleur-N	liscou	*P.E.IÎPÉ.				
Age	2010	2011	2010	2010	2011	2010				
Spring spawners	/ Géniteurs de prir	ntemps		Spring spawners / Géni	teurs de printe	mps				
0	0	0	0	0	0	0				
1	1398	0	0	76	0	0				
2	29739	21561	8145	2619	1661	819				
3	38542	41093	29171	4362	4527	3925				
4	39988	15998	33505	5621	2038	5143				
5	8136	16946	649	1378	2576	113				
6	8469	8716	0	1744	1539	0				
7	3930	4525	4894	856	877	1024				
8	2433	117	0	491	24	0				
9	1517	2112	0	333	419	0				
10	0	119	0	0	27	0				
11	0	1348	0	0	240	0				
Total P	134152	112534	76363	17479	13928	11025				
Fall spawners / G	éniteurs d'automn	 e		Fall spawners / Géniteu	rs d'automne					
. 1	0	0	0	. 0	0	0				
2	35034	32134	1484	2519	2236	92				
3	108389	42041	44687	11588	3904	4525				
4	114466	84935	133930	15010	10528	17446				
5	94712	73309	175989	14448	10293	26612				
6	25240	53093	107694	4116	8292	17776				
7	4023	19571	2721	766	3227	567				
8	1296	5082	6022	222	968	1302				
9	213	3291	1140	49	686	208				
10	213	893	0	49	174	0				
11	0	0	0	0	0	0				
Total A	383586	314350	473668	48771	40303	68532				
Total A&P	517738	426884	550030	66250	54230	79556				
%P	25.9	26.4	13.9	26.4	25.7	13.9				

^{*} P.E.I. not surveyed in 2011 / Î.-P.-É. N'a pas été recensé en 2011

Correlation of age-class abundance from one year (cpue) to the next (cpue1), 2 year Table 12. (CPUE) and 3 year (cpue3) lag. Data are from the same strata in the Chaleurs-Miscou acoustic survey covered since 1994.

Tableau 12. Corrélation de l'abondance des classes-d'âge d'une année (cpue) à l'autre (cpue1), décalage de 2 ans (CPUE) et 3 ans (cpue3). Les données proviennent des strates du relevé acoustique de la région Chaleurs-Miscou visitées depuis 1994.

Acoustic survey - Relevé acoustique 1994 - 2011	Acoustic surve	v - Relevé acoustiq	ue 1994 - 2011
---	----------------	---------------------	----------------

7 cpue

cpue3

Acoustic su	rvey - Relevé	acoustique 19	94 - 2011										
Spring spav	vners - génite	eurs de printem	ps										
Age	Variable 1	<u>Variable 2</u>	Numbers - nomb			Log (numbers - r	og (numbers - nombres x 1000)						
		<u> </u>	correlation	n	p value	correlation	n	p value					
3	cpue	cpue1	0.80	17	0.0001	0.61	17	0.0095					
4	cpue	cpue1	0.51	17	0.0385	0.50	17	0.0407					
5	cpue	cpue1	0.86	17	0.0000	0.65	17	0.0045					
6	cpue	cpue1	0.80	17	0.0001	0.79	16	0.0002					
7	cpue	cpue1	0.73	17	0.0008	0.52	14	0.0565					
8	cpue	cpue1	0.86	17	0.0000	0.85	13	0.0003					
9	cpue	cpue1	0.60	17	0.0109	0.13	10	0.7131					
3	cpue	cpue2	0.82	16	0.0001	0.49	16	0.0534					
4	cpue	cpue2	0.65	16	0.0065	0.57	16	0.0221					
5	cpue	cpue2	0.98	16	0.0000	0.77	15	0.0008					
6	cpue	cpue2	0.94	16	0.0000	0.64	14	0.0128					
7	cpue	cpue2	0.59	16	0.0167	0.72	11	0.0127					
8	cpue	cpue2	0.59	16	0.0154	0.15	9	0.6979					
3	cpue	cpue3	0.79	15	0.0004	0.59	15	0.0205					
4	cpue	cpue3	0.47	15	0.0772	0.56	14	0.0358					
5	cpue	cpue3	0.94	15	0.0000	0.63	13	0.0201					
6	cpue	cpue3	0.80	15	0.0004	0.67	11	0.0238					
7	cpue	cpue3	0.60	15	0.0183	0.58	8	0.1325					
•	ers - géniteurs												
<u>Age</u>	Variable 1	Variable 2	Numbers - nomb			Log (numbers - r							
			correlation	<u>n</u>	p value	correlation	<u>n</u>	p value					
3 cp		pue1	0.29	17	0.2570	0.45	17	0.0702					
4 cp		pue1	0.33	17	0.1995	0.42	17	0.0964					
5 cp		pue1	0.34	17	0.1854	0.40	17	0.1151					
6 cp		pue1	0.53	17	0.0299	0.37	17	0.1441					
7 cp		pue1	0.75	17	0.0005	0.19	17	0.4690					
8 cp		pue1	0.49	17	0.0474	0.34	16	0.2017					
9 cp		pue1	0.77	17	0.0003	0.66	15	0.0079					
3 cp		pue2	0.31	16	0.2505	0.28	16	0.2886					
4 cp		pue2	0.28	16	0.2978	0.50	16	0.0463					
5 cp		pue2	0.25	16	0.3442	0.30	16	0.2533					
6 cp		pue2	0.54	16	0.0310	0.07	16	0.7958					
7 cp		pue2	0.36	16	0.1702	0.13	15	0.6380					
8 cp		pue2	0.74	16	0.0011	0.65	16	0.0067					
3 cp		pue3	0.47	15	0.0771	0.38	15	0.1587					
4 cp		pue3	0.45	15	0.0902	0.57	15	0.0254					
5 cp		pue3	0.23	15	0.4036	0.50	15	0.0604					
6 cp		pue3	0.26	15	0.3481	-0.01	14	0.9856					
7 0		muo2	0.64	15	0.0101	0.00	15	0.4225					

0.64

15

0.0101

0.22

15

0.4325

Table 13. Spring fishery samples and landings by zone used to derive 2010 and 2011 catch and weight-at-age matrices for 4T herring.

Tableau 13. Échantillons et débarquements du printemps par zone utilisés pour calculer les matrices des prises et du poids selon l'âge de 2010 et 2011 pour le hareng de 4T.

Gear/ Region	Fishery Pêcherie	Zone	Number of samples Nombre d'échantillons	Landings Débarquements (t)
Engin/ Région 2010	rechene		Nombre d echantillons	Debarquements (t)
FIXED GEAR /	ENGINS FIXES GILLNETS - FILETS MAILLANTS			
		4T	6	160.0
North / nord North / nord	Gaspé - Chaleur (16AB) April/avril 1 - 18 Gaspé - Chaleur (16AB) April/avril 19 – June/juin	4Tmnopq	6 4	162.8 297.8
NOTHT / HOTA	Gaspe - Chaleur (16Ab) April/avril 19 – June/Juin	4Tmnopq	4	291.0
Middle / milieu	Escuminac (16C)-WP.E.I.(16E) April-June/avril-juin	4TI	1	82.3
South / sud	lles-de-la-Madeleine (16D) April-June/avril-juin	4Tf	4	72.0
South / sud	East P.E.I. – N.S. (16FG) April-June/avril-juin	4Tgj	7	330.0
South / sud	SE N.BSouth P.E.IN.S. (16EF) April /avril	4Th	7	29.2
South / sud	SE N.BSouth P.E.IN.S. (16EF) May-June/mai-juin	4Th	7	63.0
FIXED GEAR /	ENGINS FIXES TOTAL	4T	36	1037.1
MOBILE GEAF	R / ENGINS MOBILES PURSE SEINES - SEINES			
South / sud	Edge / Bordure Cabot (16D) May / mai	4Tf	8	302.0
Mobile Gear /	Engins mobiles total	4T	8	302.0
2011				
FIXED GEAR /	ENGINS FIXES GILLNETS - FILETS MAILLANTS			
North / nord	Gaspé - Chaleur (16AB) April/avril– May/mai 10	4Tmnopq	2	303.8
North / nord	Gaspé - Chaleur (16AB) May 11-June/mai 11-juin	4Tmnopq	2	58.9
Middle / milieu	Escuminac (16C)-WP.E.I.(16E) April-May/avril-mai	4TI	1	124.2
Middle / milieu	Escuminac (16C)-WP.E.I.(16E) June/juin	4TI	0 used 4Th	27.2
South / sud	Iles-de-la-Madeleine (16D) April-June/avril-juin	4Tf	0 used all 4T	11.3
South / sud	East P.E.I. – N.S. (16FG) April-June/avril-juin	4Tgj	7	144.4
South / sud	SE N.BSouth P.E.IN.S. (16EF) April-June/avril-juin	4Th	8	244.7
FIXED GEAR /	ENGINS FIXES TOTAL	4T	20	914.5
Mobile Goer /	Engins mobiles total	4T	0	0
widdlie Geal /	Engina modies total	41	U	

Table 14. Spring spawner catch-at-age (A) and weight-at-age (B) for 4T herring fixed gear fishery.

Tableau 14. Captures (A) et poids (B) à l'âge de géniteurs de printemps pour la pêche aux engins fixes dans 4T.

Spring	Spring spawner - Fixed gears / Géniteurs de printemps - Engins fixes																								
	Numbe	ers (x 1	000) - N	lombres	(x 1000))	•	•						B) Weig	ht (Kg)	- Poids	(Kg)								mean
AGE	1	2	3	4	5	6	7	8	9	10	11+	Total	AGE	1	2	: 3	4	5	6	7	8	9	10	11+	moyenne
1978	0	44	6026	25253	1042	2123	660	243	370	1561	752	38072	1978	-	0.1542	0.1482	0.1866	0.2154	0.2513	0.2825	0.3180	0.3080	0.3373	0.3644	0.1983
1979	100	112	7352	2544	17558	540	842	127	127	327	1421	31050	1979	0.0199	0.1614	0.1628	0.1975	0.2262	0.2427	0.3125	0.3351	0.3515	0.3262	0.3601	0.2188
1980	0	217	9420	6744	2378	9068	1424	807	612	442	720	31832	1980	-	0.1841	0.1669	0.1887	0.2314	0.2784	0.3040	0.3341	0.3588	0.3689	0.3787	0.2299
1981	3	438	11843	7099	1941	1399	3052	415	422	171	882	27664	1981	0.0274	0.1556	0.1782	0.2324	0.2667	0.3184	0.3428	0.3505	0.3738	0.4108	0.4191	0.2379
1982	11	216	23577	4191	988	421	299	315	143	88	618	30868	1982	0.0379	0.1865	0.1732	0.2070	0.2614	0.3111	0.3699	0.3853	0.3958	0.4159	0.4494	0.1939
1983	0	155	13547	26208	2142	472	76	0	0	8	0	42608	1983	-	0.1696	0.1481	0.2056	0.2361	0.2585	0.3428	-	-	0.3606	-	0.1896
1984	16	39	3377	12083	7529	409	59	14	7	4	0	23538	1984	0.0630	0.1044	0.1740	0.1957	0.2166	0.2891	0.3399	0.4042	0.4901	0.3686	-	0.2013
1985	0	39	4921	12685	13742	4630	614	100	32	71	0	36833	1985	-	0.2127	0.1695	0.1984	0.2292	0.2660	0.3152	0.3146	0.3294	0.4317	-	0.2174
1986	0	11	2712	13905	12357	10348	2783	391	20	233	349	43109	1986	-	0.1108	0.1833	0.2104	0.2423	0.2606	0.3070	0.3477	0.3360	0.3642	0.3923	0.2397
1987	0	10	1232	6164	20071	11410	9674	4080	947	512	258	54357	1987	-	0.0905	0.1918	0.1962	0.2184	0.2494	0.2670	0.2805	0.3166	0.3096	0.3774	0.2384
1988	60	549	3536	6298	9353	14600	6944	5246	935	68	269	47859	1988	0.0398	0.0800	0.1601	0.1967	0.2373	0.2654	0.2903	0.3074	0.3350	0.3689	0.3595	0.2509
1989	0	0	3941	15672	4836	4912	6957	4326	2598	1025	279	44546	1989	-		0.1647	0.2023	0.2293	0.2574	0.2907	0.3007	0.3141	0.3280	0.3001	0.2414
1990	0	128	1925	7387	4109	2178	2532	3928	1827	733	306	25053	1990	-	0.1531	0.1688	0.2028	0.2409	0.2730	0.2971	0.2901	0.3114	0.3219	0.3394	0.2486
1991	0	0	6070	11715	14140	9142	3166	2897	4448	1640	1097	54314	1991	-		0.1463	0.1819	0.2190	0.2460	0.2597	0.2917	0.3025	0.3197	0.3191	0.2256
1992	0	0	2160	30046	11543	7579	3460	1593	1956	1423	2263	62023	1992	-		0.1446	0.1717	0.2011	0.2315	0.2553	0.2742	0.2908	0.2986	0.3317	0.2034
1993	0	8	231	5488	40374	18381	4900	2409	1375	708	2724	76597	1993	-	0.1347	0.1272	0.1638	0.1862	0.2070	0.2438	0.2519	0.2684	0.2941	0.2917	0.2014
1994	0	0	2061	5847	24642	48553	9048	3595	1221	438	1032	96438	1994	-		0.1408	0.1561	0.1773	0.2002	0.2182	0.2489	0.3141	0.2722	0.3042	0.1968
1995	0	0	200	13345	10782	17781	28929	6408	1788	1156	2271	82661	1995	-			0.1598								0.2086
1996	0	0	416	1682	48104	9123	14154	9414	3102	590	1087	87672	1996	-			0.1819								0.1913
1997	0	2	107	5440	4069	37818	6961	4149	3938	1015	179	63678	1997	-			0.1621								0.2033
1998	0	0	785	7744	15786	2264	29871	3421	2449	1966	875	65159	1998	-		0.1366	0.1612	0.1850	0.2058	0.2205	0.2403	0.2459	0.2573	0.2783	0.2072
1999	0	89	1724	6599	9410	10297	2255	16045	2583	1342	1155	51499	1999	-	0.1206	0.1203	0.1494	0.1757	0.2037	0.2204	0.2304	0.2438	0.2543	0.2691	0.2026
2000	0	12	2141	11977	15975	15248	7568	4457	11675	2912	1756	73722	2000	-	0.1135	0.1315	0.1581	0.1838	0.2072	0.2251	0.2504	0.2534	0.2618	0.2728	0.2074
2001	0	0	910	11316	13082	9859	4920	3360	1387	6593	1735	53163	2001	-			0.1581								0.2008
2002	0	1	2509	7044	18352	7626	3608	2075	1152	1052	1214	44633	2002	-			0.1648								0.1975
2003	0	0	285	10766	11071	12832	3925	2483	998	686	759	43803	2003	-			0.1604								0.1939
2004	0	21	1607	2606	15101	5400	8500	3223	1164	413	1005	39040	2004	-	0.1297	0.1343	0.1493	0.1779	0.2031	0.2285	0.2380	0.2539	0.2615	0.2878	0.1996
2005	0	0	72	3639	3209	5784	2561	2023	566	125	174	18153	2005				0.1520								0.1975
2006	0	1	720	1299	4653	1652	528	285	387	28	73	9626	2006				0.1465								0.1769
2007	0	1	864	2037	1563	2323	1738	803	196	149	110	9784	2007				0.1520								0.1783
2008	0	71	177	2812	3111	1139	1261	269	52	23	12	8928	2008				0.1579								0.1723
2009	0	23	411	1060	2445	3033	344	349	91	6	14	7775	2009	-			0.1548								0.1705
2010	0	0	173	853	607	973	512	249	255	2	7	3630	2010	-			0.1555								0.1862
2011	0	0	29	172	935	946	753	407	675	240	7	4164	2011	-		0.1298	0.1495	0.1711	0.1778	0.1984	0.2198	0.2368	0.2499	0.2464	0.1964

Table 15. Spring spawner catch-at-age (A) and weight-at-age (B) for 4T herring mobile gear fishery.

Tableau 15. Captures (A) et poids (B) à l'âge de harengs géniteurs de printemps pour les engins mobiles 4T.

Spring	Spring spawner - Mobile gears / Géniteurs de printemps - Engins mobiles																								
	A) Numb	ers (x 1	000) - 1	lombres	(x 1000)	•	•						B) Weig	ht (Kg)	- Poids	(Kg)								mean
AGE	1	2	3	4	5	6	7	8	9	10	11+	Total	AGE	1	2	: 3	4	5	6	7	8	9	10	11+	moyenne
1978	1390	14933	3664	24366	3053	4619	1293	734	565	2877	599	58093	1978	0.0784	0.1305	0.1822	0.2622	0.2479	0.2807	0.3014	0.3084	0.3522	0.3807	0.3894	0.2291
1979	11644	14535	4553	4800	25927	4014	6971	2139	1638	1501	12300	90021	1979	0.1069	0.1734	0.1931	0.2121	0.2613	0.2586	0.3033	0.3048	0.3397	0.3420	0.3641	0.2420
1980	737	11101	10404	1790	1878	11154	8852	4207	2229	751	286	53389	1980	0.1144	0.1585	0.1653	0.2172	0.2619	0.2731	0.2581	0.2645	0.2752	0.3642	0.3410	0.2223
1981	0	362	1105	939	9	881	347	699	264	417	7	5031	1981	0.0274	0.1578	0.2025	0.2741	0.2716	0.4250	0.3063	0.2838	0.2900	0.3156	0.4168	0.2845
1982	0	2343	3816	400	53	10	89	165	210	2	19	7109	1982	0.0379	0.1325	0.2251	0.2655	0.2529	0.3154	0.4634	0.3081	0.3394	0.4360	0.4505	0.2061
1983	0	1349	8017	3838	449	1	65	71	89	0	0	13878	1983	-	0.1445	0.1881	0.2314	0.2775	0.2695	0.3151	0.2433	0.4110	-	-	0.2011
1984	0	619	1831	4190	2901	291	0	71	41	0	0	9943	1984	0.0630	0.1214	0.1920	0.2294	0.2621	0.2908	0.3000	0.3798	0.3511	0.3756	-	0.2287
1985	601	1132	4581	2451	3085	1153	77	0	0	0	294	13373	1985	0.0828	0.1373	0.2213	0.2439	0.2973	0.3129	0.3836	-	-	-	0.3837	0.2420
1986	0	4194	3982	9551	7647	7410	3070	212	514	0	60	36640	1986	-	0.1442	0.1959	0.2487	0.2829	0.3146	0.3387	0.3491	0.3150	-	0.3921	0.2608
1987	0	1476	1977	2945	10495	7260	7060	3696	0	0	93	35002	1987	-	0.1559	0.1892	0.2511	0.3041	0.3317	0.3585	0.3746	-	-	0.5265	0.3116
1988	2710	6291	2125	1546	2730	11772	9514	5399	2434	0	2155	46676					0.2510							0.4416	0.2957
1989	374	425	2982	4949	1644	4682	10289	4223	2285	430	118	32401					0.2583								0.3111
1990	46	5182	6250	7301	4236	2645	1504	5841	2964	737	318	37024					0.2461								0.2659
1991	32	1825	9393	3064	2640	1271	654	1000	890	653	1307	22730					0.2153								0.2299
1992	5	860	2808	7350	3461	2489	707	448	790	527	453	19896					0.2004								0.2242
1993	35	3093	2374	6696	5403	2662	1577	974	1309	902	2289	27315					0.1789								0.2087
1994	0	52	4057	2255	3477	5930	2435	1349	647	166	1251	21620	1994				0.1882								0.2224
1995	0	1418	1588	17081	5809	4899	7749	1675	1024	280	1708	43231	1995				0.1818								0.2103
1996	6	385	2942	919	11291	3589	2107	1965	370	388	138	24100					0.2054								0.2262
1997	83	419	1405	3457	1246	7719	911	1610	1444	146	466	18906					0.1916								0.2366
1998	5	298	796	1930	1524	213	1767	461	337	374	254	7959					0.1710								0.2158
1999	267	1771	2841	4854	3057	1516	933	2949	987	480	579	20234					0.1875								0.2203
2000	294	1314	3254	3739	1485	891	354	305	491	70	92	12290					0.1864								0.1899
2001	557	4259	3721	4852	2521	1130	1157	448	195	288	148	19276					0.1896								0.1787
2002	55	744	3135	1060	729	195	554	109	42	7	42	6671					0.1756								0.1685
2003	26	209	654	869	327	279	270	9	5	40	22	2709					0.1766								0.1810
2004	103	487	825	433	360	135	234	17	10	1	17	2621					0.1616						0.2900	0.3666	0.1643
2005	372	1816	1864	2571	259	336	52	0	71 6	0 5	0	7340					0.1629					0.2609	- 0000	-	0.1477
2006	61	236	898	521	1825 1786	620	138	24	-	-		4333					0.1714							0.4004	0.1719
2007	524 268	3651 3474	3605 1888	2396 765	1209	2368	700 774	256 137	15	0 16	113	15414					0.1771 0.1823							0.1984	0.1566 0.1595
2008 2009	208 7	3474 441	1670	227	171	587 172	774 441	137	93 0	16 173	28 38	9239 3358					0.1823						0.3495		0.1595
2019	0	86	379	637	327	793	720	70	15	0	30	3026	2010				0.1908							0.2120	0.1843
2010	21	645	804	679	567	455	436	53	119	399	24	4202					0.1001								0.1602

Table 16. Spring spawner catch-at-age (A) and weight-at-age (B) for 4T herring fishery all gears combined.

Tableau 16. Captures (A) et poids à l'âge (B) de hareng géniteurs de printemps de la pêche 4Tpour tous les engins combinés.

Spring spawner - All gears / Géniteurs de printemps - Tous les engins																									
	A) Numb													B) Weig	ht (Kg)	- Poids	(Kg)								mean
AGE	1	2	3	4	5	6	7	8	9	10	11+	Total	AGE	1	2	2 ;	3 4	5	6	7	8	9	10	11+	moyenne
1978	1390	14977	9690	49618	4095	6741	1953	977	935	4438	1350	96165	1978	0.0784	0.1306	0.1610	0.2237	0.2396	0.2714	0.2950	0.3108	0.3347	0.3655	0.3755	0.2169
1979	11745	14647	11905	7343	43485	4553	7814	2266	1764	1828	13721	121072	1979	0.1061	0.1733	0.1744	0.2070	0.2471	0.2567	0.3043	0.3065	0.3406	0.3392	0.3637	0.2361
1980	737	11318	19824	8534	4256	20222	10276	5014	2841	1194	1006	85221	1980	0.1144	0.1590	0.166	0.1947	0.2449	0.2755	0.2644	0.2757	0.2932	0.3659	0.3680	0.2252
1981	3	800	12948	8038	1950	2280	3399	1113	686	588	889	32696	1981	0.0274	0.1566	0.1803	0.2373	0.2668	0.3596	0.3390	0.3086	0.3415	0.3433	0.4191	0.2451
1982	12	2559	27393	4591	1042	431	388	480	353	91	637	37977	1982	0.0379	0.1371	0.1804	0.2121	0.2610	0.3112	0.3914	0.3588	0.3622	0.4164	0.4495	0.1962
1983	0	1504	21564	30046	2591	473	140	71	89	8	0	56486	1983	-	0.1471	0.1630	0.2089	0.2433	0.2585	0.3301	0.2433	0.4110	0.3606	-	0.1924
1984	16	658	5208	16272	10430	700	59	85	48	4	0	33481	1984	0.0630	0.1204	0.1803	0.2044	0.2293	0.2898	0.3399	0.3838	0.3713	0.3686	-	0.2094
1985	601	1171	9501	15137	16826	5782	691	100	32	71	294	50205	1985	0.0828	0.1398	0.1945	0.2058	0.2417	0.2753	0.3229	0.3146	0.3294	0.4317	0.3837	0.2240
1986	0	4205	6694	23456	20004	17758	5853	603	534	233	408	79749	1986	-	0.1441	0.1908	0.2260	0.2578	0.2831	0.3236	0.3482	0.3158	0.3642	0.3923	0.2494
1987	0	1486	3209	9109	30565	18670	16734	7777	947	512	351	89359	1987	-	0.1554	0.1902	0.2139	0.2478	0.2814	0.3056	0.3252	0.3166	0.3096	0.4168	0.2670
1988	2770	6840	5661	7844	12083	26372	16458	10645	3369	68	2425	94535	1988	0.0807	0.1121	0.1659	0.2074	0.2517	0.2974	0.3186	0.3509	0.3908	0.3689	0.4325	0.2730
1989	374	425	6923	20621	6480	9594	17246	8549	4883	1455	397	76948	1989	0.0898	0.1415	0.185	0.2157	0.2397	0.2843	0.3217	0.3312	0.3471	0.3526	0.3494	0.2707
1990	46	5310			8345	4823	4036	9769	4791	1470	624	62077					0.2243								0.2589
1991	32	1825	15463		16779	10413	3820	3897	5338	2293	2404	77044	1991	0.0815	0.1433	3 0.167°	0.1889	0.2236	0.2483	0.2703	0.3026	0.3116	0.3280	0.3635	0.2268
1992	5	860	4969	37396	15003	10067	4167	2041	2745	1950	2716	81919					0.1773								0.2084
1993	35	3101	2605	12183	45777	21043	6477	3383	2685	1610	5013	103912					0.1721								0.2033
1994	0	52	6118	8102	28119	54484	11483	4945	1868	604	2282	118058	1994				0.1650								0.2015
1995	0	1418	1788	30426	16591	22681	36678	8083	2812	1436	3979	125891	1995				0.1721								0.2091
1996	6	385	3358	2601	59395	12712	16261	11380	3472	978	1226	111773					0.1902								0.1989
1997	83	420	1513	8897	5315	45537	7872	5759	5383	1161	644	82584					0.1735								0.2109
1998	5	298	1581	9674	17309	2477	31638	3881	2786	2339	1129	73118					0.1631								0.2082
1999	267	1860	4565	11453	12467	11813	3188	18994	3570	1822	1734	71733					0.1656								0.2076
2000	294	1326	5395	15716	17460	16139	7923	4762	12166	2982	1848	86011					0.1649								0.2049
2001	557	4259	4631	16168	15603	10989	6077	3808	1582	6881	1883	72440					0.1676								0.1949
2002	55	745	5644	8104	19080	7822	4162	2183	1193	1059	1256	51303					0.1662								0.1937
2003	26	209	938	11636	11398	13111	4195	2492	1002	726	780	46513					0.1616								0.1932
2004	103	508	2433	3038	15461	5535	8734	3240	1175	413	1022	41661					0.1511								0.1974
2005	372	1816	1935	6210	3468	6120	2613	2023	636	125	174	25493					0.1565								0.1832
2006	61	237	1618	1820	6478	2272	666	309	393	33	73	13959					0.1537								0.1753
2007	524	3652	4469	4433	3348	4692	2439	1059	210	149	223	25197					0.1655								0.1650
2008	268	3546	2065	3576	4320	1726	2035	406	146	40	41	18168					0.1631								0.1658
2009	7	464	2080	1286	2616	3205	785	366	91	179	52	11133					0.1611								0.1657
2010	0	86	552	1491	933	1766	1232	318	270	2	8	6656	2010				0.1574								0.1835
2011	21	645	832	851	1502	1401	1190	460	794	639	31	8366	2011	0.0577	0.0809	0.1235	0.1302	0.1689	0.1709	0.1982	0.2191	0.2298	U.1958	0.2042	0.1686

Table 17. Average number of standard gillnets used by fishers during the spring fishery (1 standard net = 15 fathoms) from telephone survey. Bold underlined values taken from dockside monitoring data where number of records are higher than the number from the telephone survey.

Tableau 17. Nombre moyen de filets maillants ordinaires utilisés par les pêcheurs durant la pêche du printemps (1 filet ordinaire = 15 brasses) provenant du sondage téléphonique. Les valeurs en caractères gras soulignés proviennent des données des observateurs à quai lorsque celle-ci sont plus nombreuses que les données du sondage téléphonique.

		Acadian Peninsula /		West P.E.I. /	Southeast	
Year /	Gaspé /	Péninsule		Ouest de	New Brunswick /	Magdalen Islands /
Année	Gaspésie	acadienne	Escuminac	'ÎPÉ.	Sud-est du NB.	lles de la Madeleine
1986	9		25	34	26	
1987	17		21		30	
1988	13		21	27	29	
1989	20		22	29	28	
1990	25		23	20	28	
1991	20		24	27	28	
1992	19		23	23	23	
1993	16		23	23	23	
1994	16		21	21	24	
1995	7		22	18	21	
1996	5		20	17	27	12
1997	15		19	17	25	10
1998	14		25	18	24	15
1999	16	19	24	21	28	14
2000	21	11	29	25	28	18
2001	20	20	27	24	28	18
2002	22	21	29	22	29	16
2003	19	9	29	26	29	20
2004	20	17	29	28	31	23
2005	20	10 14 24	28	<u>27</u>	29	24
2006	27	<u>14</u>	<u>27</u>	<u>23</u>	28	21
2007	23		27 18 23 * 23 * 23	<u>18</u>	<u>20</u>	<u>17</u>
2008	19	9 15	<u>23</u>	<u>19</u>	<u>23</u>	<u>12</u>
2009	16		* <u>23</u>	<u>17</u>	<u>22</u>	<u>14</u>
2010	20	<u>18</u> 19	* <u>23</u>	27 23 18 19 17 17	20 23 22 22 21	17 12 14 14 12
2011	18	<u>19</u>	21	<u>17</u>	<u>21</u>	12

^{*}previous year value used because of lack of respondents / valeur de l'année précédente utilisée faute de répondants

Table 18. 2010 and 2011 spring season gillnet fishery preliminary landings (t) (commercial and bait) by month and area.

Tableau 18. Débarquements (t) (commercial et appât) pour la saison du printemps 2010 et 2011 par les filets maillants, par mois et par zone.

2010	April /	avril	May /	mai	June	/ juin	Spring
Area		bait		bait		bait	printemps
Zone	comm	appât	comm	appât	comm	appât	Total
16A	7.2	0.0	6.3	0.0	0.0	0.0	13.5
16B	301.9	6.6	134.3	1.6	0.0	1.0	445.4
16C	18.8	0.7	13.6	0.0	0.0	0.0	33.1
16D	60.8	8.5	2.7	0.0	0.0	0.0	72.0
16E	37.8	59.9	60.8	9.6	12.7	11.5	192.4
16F	0.0	3.0	0.0	4.2	62.2	27.5	96.9
16G	0.0	2.2	0.0	0.7	172.0	8.4	183.2
Total	426.5	80.9	217.7	16.1	247.0	48.4	1036.6
2011	April /	avril	May /	mai	June	/ juin	Total
16A	3.4		1.6		1.2		6.1
16B	182.0	4.7	131.4	2.5	33.9	1.6	356.1
16C	14.0	15.4	1.3	10.1	0.0	0.0	40.8
16D	9.5	1.0	0.2	0.0	0.0	0.4	11.2
16E	214.8	12.2	88.7	3.2	38.0	2.2	359.1
16F	0.0	2.3	0.0	1.5	46.2	33.7	83.6
16G	0.0	0.6	0.0	0.3	44.1	12.0	57.0
Total	423.7	36.2	223.1	17.6	163.3	49.9	913.9

Table 19. Percent of fall spawning component present in gillnet fishery from biological samples taken in the month of June.

Tableau 19. Pourcentage de la composante des géniteurs d'automne provenant des échantillons biologiques recueillis par les filets maillants en juin.

	East PEI - NS	West PEI - NB		North Strait
Yea	ır Est ÎPÉ - N-É	Ouest ÎPÉ N-B	Chaleurs	Détroit North.
Anné	e 4Tg	4TI	4Tmn	4Th
200	0 52	53	59	1
200	1 38		67	0
200	2 29	55	0	3
200	3 24	70		0
200	4 58	59		
200	5 60			
200	6 70	69		
200	7 49		13	
200	8 68			
200	9 68			
201	0 76			
201	1 74		72	

Results from the multiplicative model of spring spawners (April and May) gillnet CPUE for all Table 20. areas.

Tableau 20. Résultats du modèle multiplicatif des PUE des géniteurs de printemps pour les filets maillants (en avril et mai) pour toutes les régions.

The GLM Procedure

		Class Level Information										
Class	Levels	Values										
year	22		1992 1993 1994			2000 2001	2002 2003					
week area	13 8		2006 2007 2008 3 14 15 16 17 18 6 7 8									
Number of Ob Number of Ob			4240 2197									
Dependent Va	riable: cpu	е										
Weight: wt												
Source Model Error Corrected To	tal	DF 37 2159 2196	Sum of Squares 6.77951940 8.58036535 15.35988475	Mean Square 0.18323025 0.00397423	F Value 46.10	Pr > F < .0001						
R-Square 0.441378	Coeff Var 1.298968	Root N 0.0630	-									
Source year week area		DF 21 9 7	Type III SS 2.57273664 0.66844333 1.65099447	Mean Square 0.12251127 0.07427148 0.23585635	F Value 30.83 18.69 59.35	Pr > F <.0001 <.0001 <.0001						
year	Ismean	CPL	JE kg / net-trip	year	Ismean	CPUE k	g / net-trip					
année	moyennels	PUE	kg / filet-sortie	année	moyennels	PUE kg /	filet-sortie					
1990	4.8		127.1	2001	4.8		125.4					
1991	5.5		246.1	2002	4.6		103.6					
1992	5.7		285.9	2003	4.9		134.4					
1993	5.4		219.8	2004	4.5		93.6					
1994	5.2		188.8	2005	4.4		78.9					
1995	5.4		218.9	2006	4.5		85.2					
1996	5.2		188.3	2007	4.4		84.2					
1997	5.4		223.8	2008	4.6		94.9					
1998	5.1		160.8	2009	4.7		112.1					
1999	4.8		127.0	2010	3.8		46.1					
2000	5.0		142.7	2011	4.1		62.8					

Table 21. Spring spawner April-May gillnet catch rate at age (CPUE) for all fishing areas combined and acoustic survey index in catch rate at age used in the ADAPT-SPA population models.

Tableau 21. Taux de capture selon l'âge (PUE) des géniteurs de printemps en avril-mai pour les filets maillants de toutes régions de pêche combinées et la prise selon l'âge de l'indice du relevé acoustique utilisés dans les modèles de population ADAPT-ASP.

Ag	e 4	5	6	7	8	9	10
	T (number / net-trip) / PUE FIL	ETS MAILLA	ANTS (nombre	e / filet-sorti	e)	
1990	150.7	83.8	44.4	5 1.7	80.1	37.3	14.9
1991	235.3	283.9	183.6	63.6	58.2	89.3	32.9
1992	681.2	261.7	171.8	78.4	36.1	44.3	32.3
1993	78.2	575.3	261.9	69.8	34.3	19.6	10.1
1994	58.2	245.1	483.0	90.0	35.8	12.1	4.4
1995	169.4	136.9	225.7	367.3	81.3	22.7	14.7
1996	18.9	539.9	102.4	158.9	105.7	34.8	6.6
1997	94.1	70.4	654.1	120.4	71.8	68.1	17.6
1998	92.2	188.0	27.0	355.8	40.7	29.2	23.4
1999	80.4	114.6	125.4	27.5	195.4	31.5	16.3
2000	111.8	149.1	142.3	70.6	41.6	108.9	27.2
2001	132.9	153.6	115.8	57.8	39.5	16.3	77.4
2002	82.7	215.6	89.6	42.4	24.4	13.5	12.4
2003	170.4	175.2	203.1	62.1	39.3	15.8	10.9
2004	31.3	181.4	64.9	102.1	38.7	14.0	5.0
2005	80.1	70.6	127.3	56.4	44.5	12.4	2.8
2006	65.0	232.9	82.7	26.4	14.3	19.4	1.4
2007	98.3	75.4	112.2	83.9	38.8	9.4	7.2
2008	173.4	191.9	70.3	77.8	16.6	3.2	1.4
2009	89.6	206.8	256.6	29.1	29.5	7.7	0.5
2010	58.2	41.4	66.4	34.9	16.9	17.4	0.1
2011	13.2	71.8	72.7	57.9	31.2	51.8	18.4
	mber x 10 ⁵) / ACO						
1994	1001	1096	1043	281	64		
1995	769	214	249	206	50		
1996	160	1600	405	265	300		
1997	700	100	850	55	128		
1998	318	197	56	379	64		
1999	479	198	63	37	180		
2000	246	68	54	16	48		
2001	70	43	16	18	1		_
2002	23	88	35	8	17		_
2003	290	162	134	13	19		
2004	13	13	6	0	0		
2005	312	15	28	6	2		
2006	208	185	18	9	0		
2007	35	79	46	0	1		
2008	67	63	25	9	15		
2009	162	71	24	12	18		
2010	392	81	83	39	24		
2011	145	168	85	45	1		
	1.15			10	-		

Table 22. Acoustic survey spring spawners numbers-at-age (x1000) and biomass-at-age (t) for same strata covered in Chaleurs-Miscou since 1994. Strata names are identified in Appendix 5b. Tableau 22. Nombre (x 1 000) et biomasse (t) selon l'âge des géniteurs de printemps du relevé acoustique pour les mêmes strates de Chaleurs-Miscou faisant l'objet d'un relevé depuis 1994. Les strates sont identifiées au tableau de l'appendice 5b.

Numbers / Nombres (x1000)	Number	s / No	mbres	(x1000)
---------------------------	--------	--------	-------	---------

Age	0	1	2	3	4	5	6	7	8	9	10	11+	Total	4+
1994	98865	3051	2548	231972	100087	109649	104274	28059	6389	7213	1020	3644	696770	360334
1995	2554	8959	46535	7724	76887	21389	24905	20645	4959	736	74	17	215383	149611
1996	68453	41784	278013	139355	16008	159956	40479	26474	29966	5851	3603	107	810048	282444
1997	0	2889	101589	68210	70032	9970	84978	5522	12833	14800	2648	2424	375894	203206
1998	30645	98770	151583	28563	31795	19716	5616	37904	6423	5438	3585	859	420898	111337
1999	28424	61163	238373	107078	47912	19836	6278	3667	18015	2748	1380	1564	536436	101400
2000	347612	27362	20037	29123	24640	6843	5361	1647	4821	2155	448	540	470589	46455
2001	768324	120686	27425	4997	6963	4343	1605	1844	119	500	440	455	937701	16269
2002	1074	217789	49751	12341	2289	8815	3494	847	1684	271	123	0	298478	17524
2003	0	83479	127660	24039	29016	16234	13418	1260	1878	346	1397	2052	300779	65600
2004	684	12340	229459	51870	1258	1328	556	0	0	0	0	0	297495	3143
2005	10	1473	15235	34207	31238	1542	2839	588	248	0	0	0	87380	36455
2006	20	28519	56533	15600	20794	18487	1770	885	0	257	0	0	142865	42193
2007	124	7037	22288	29720	3502	7938	4570	29	96	0	0	16	75320	16150
2008	0	16960	36332	11782	6672	6321	2459	941	1523	42	0	0	83033	17959
2009	0	133	36674	35845	16153	7076	2438	1224	1773	0	0	0	101316	28664
2010	0	1392	29137	37871	39179	8136	8291	3930	2351	1517	0	0	131805	63405
2011	0	0	15387	38411	14515	16819	8456	4525	117	2112	119	1348	101808	48010

Biomass / Bioma	asse	(I)
-----------------	------	-----

Age	0	1	2	3	4	5	6	7	8	9	10	11+	Total	4+
1994	1038	136	244	36526	17115	21725	22366	6049	1887	1840	322	1065	110335	72369
1995	24	499	5296	1084	14131	4374	5540	4952	1347	228	25	6	37501	30603
1996	2127	2268	28877	20996	2935	34991	9021	6868	8364	1697	1290	44	119480	65209
1997	0	172	11950	9895	13283	2102	20383	1423	3620	4820	875	877	69405	47383
1998	460	5963	13981	3723	5368	4045	1272	9285	1656	1467	1059	267	48537	24419
1999	384	3085	23733	14666	8631	4058	1633	1008	5285	837	426	454	64183	22330
2000	2990	1539	2430	4533	4426	1466	1238	438	1388	610	124	176	21352	9865
2001	18567	6197	2823	747	1298	887	377	447	32	132	134	139	31760	3445
2002	16	12361	4436	1971	460	2063	844	221	506	78	37	0	22993	4207
2003	0	5268	12635	3731	5393	3597	3288	326	556	109	393	725	36011	14387
2004	14	653	21219	6680	164	271	129	0	0	0	0	0	29123	563
2005	0	89	1323	4441	4754	219	572	141	65	0	0	0	11601	5750
2006	0	1664	4651	2123	3547	2986	385	185	0	83	0	0	15626	7187
2007	1	453	1922	4001	589	1191	716	5	16	0	0	3	8895	2520
2008	0	988	3846	1558	1005	1105	419	187	268	9	0	0	9386	2993
2009	0	9	3673	4938	2236	1316	456	262	357	0	0	0	13244	4627
2010	0	75	2571	4293	5523	1378	1708	856	477	333	0	0	17212	10274
2011	0	0	1191	4247	1904	2564	1507	877	24	419	27	240	12999	7562

Table 23. Diagnostics of spring spawner ADAPT-VPA results using gillnet CPUE and acoustic survey age-disaggregated population number indices (parameters are in linear scale).

Tableau 23. Données diagnostiques pour l'étalonnage du modèle ADAPT-ASP des géniteurs de printemps, les taux de captures des filets maillants et le relevé acoustique ont été utilisés comme indices à l'âge des effectifs de la population (les paramètres sont sur une échelle linéaire).

APPROXIMATE STATISTICS ASSUMING LINEARITY NEAR SOLUTION STATISTIQUES APPROXIMATIVES SUPPPOSANT UNE RELATION LINÉAIRE PRÈS DE LA SOLUTION

Mean square residual / Résiduel carré moyen =

0.6778

Age	Parameter	Standard	Relative	Bias /	Relative bias /
	estimate/	error /	error /	biais	Biais relatif
		erreur-type	erreur		
	estimé		relative		
Population estimates in 2012	/ Valeur estimée	s de population	on en 2012		
N[2009 10]	557	246	0.442	52	0.094
N[2010 10]	716	312	0.435	60	0.084
N[2011 10]	3588	1215	0.339	180	0.050
N[2012 5]	14766	9018	0.611	2755	0.187
N[2012 6]	30975	13614	0.440	2997	0.097
N[2012 7]	14761	5590	0.379	1024	0.069
N[2012 8]	11601	4126	0.356	670	0.058
N[2012 9]	2766	1136	0.411	190	0.069
N[2012 10]	3095	1190	0.384	172	0.056
Catchability / Capturabilité					
Gillnet CPUE disaggregated a	ages 4-10 / PUE	filets maillant	s âges 4-10		
q CPUE age 4	0.0016	0.0003	0.181	0.000021	0.013
q CPUE age 5	0.0040	0.0007	0.179	0.000053	0.013
q CPUE age 6	0.0057	0.0010	0.178	0.000076	0.013
q CPUE age 7	0.0062	0.0011	0.179	0.000086	0.014
q CPUE age 8	0.0069	0.0012	0.180	0.000107	0.015
q CPUE age 9	0.0075	0.0014	0.182	0.000130	0.017
q CPUE age 10	0.0057	0.0011	0.186	0.000120	0.021
Acoustic survey disaggregate	d ages 4-8 / Rele	evé acoustiqu	e âges 4-8		
q Acoust. age 4	0.0045	0.0009	0.201	0.000074	0.016
q Acoust. age 5	0.0042	0.0008	0.199	0.000069	0.016
q Acoust. age 6	0.0042	0.0008	0.199	0.000070	0.017
q Acoust. age 7	0.0037	0.0008	0.211	0.000078	0.021
q Acoust. age 8	0.0040	0.0009	0.213	0.000091	0.023

Table 24. Spring spawner population numbers (x 1000) from the ADAPT calibration using gillnet CPUE and acoustic survey age-disaggregated population number indices.

Tableau 24. Effectifs de la population (x 1000) des géniteurs du printemps à partir de l'étalonnage ADAPT par les taux de captures des filets maillants et le relevé acoustique comme indices à l'âge des effectifs de la population.

Age	2	3	4	5	6	7	8	9	10	11+	Total 4-11
1978	55654	40139	152941	30161	27429	11231	5825	6843	29134	8862	272426
1979	65559	32115	24154	80721	21005	16400	7437	3890	4760	25896	184263
1980	53284	40506	15631	13187	27370	13103	6453	4056	1609	11241	92650
1981	200244	33446	15479	5201	6980	4596	1708	880	812	8562	44218
1982	266060	163223	15793	5510	2512	3670	769	413	118	6355	35140
1983	253863	215521	108975	8809	3574	1669	2655	204	30	4645	130561
1984	319825	206487	157012	62241	4887	2500	1240	2110	87	3820	233897
1985	129929	261256	164355	113881	41569	3371	1993	939	1684	3194	330986
1986	86021	105320	205322	120913	78083	28825	2138	1542	740	3665	441228
1987	134675	66633	80189	146962	80985	47964	18335	1209	784	3029	379457
1988	162033	108920	51658	57443	92831	49521	24273	8058	159	2352	286295
1989	215479	126488	84068	35230	36163	52328	25789	10360	3584	69	247591
1990	537298	176036	97312	50298	23012	20990	27379	13449	4123	1633	238196
1991	252690	435107	136748	66443	33667	14503	13554	13663	6718	2837	288133
1992	172007	205236	342276	98637	39324	18222	8443	7599	6409	3672	524582
1993	589113	140051	163547	246523	67246	23151	11173	5078	3762	4111	524591
1994	68897	479524	112311	122911	160641	36179	13139	6112	1766	1641	454700
1995	133001	56361	387076	84644	75352	82681	19321	6329	3328	904	659635
1996	115365	107611	44530	289467	54374	41340	34921	8591	2670	1441	477334
1997	110156	94105	85073	34111	183570	33091	19293	18386	3927	1421	378872
1998	109536	89809	75680	61631	23142	109376	20017	10628	10221	2761	313456
1999	141963	89411	72101	53245	34919	16714	61150	12897	6199	7517	264742
2000	67655	114550	69084	48719	32387	18000	10816	33025	7353	8035	227419
2001	85766	54194	88916	42432	24245	12123	7657	4600	16142	8270	204385
2002		66376	40194	58247	20765	10034	4507	2873	2348	12142	151110
2003	63607	25440	49254	25618	30580	9997	4493	1742	1285	9785	132754
2004	38620	51889	19982	29867	10790	13316	4434	1461	536	7714	88100
2005		31160	40287	13624	10675	3901	3168	774	167	5471	78067
2006	61584	34153	23766	27392	8039	3299	882	801	78	4348	68605
2007	51569	50207	26502	17816	16604	4542	2102	445	305	3528	71844
2008		38927	37076	17707	11574	9382	1547	777	177	2805	81045
2009		57753	30007	27131	10615	7922	5851	902	504	2368	85300
2010		19674	45406	23407	19854	5815	5778	4460	656	2144	107520
2011	49536	37182	15609	35829	18322	14663	3653	4444	3408	2284	98212
2012	63919 ¹	39974 ²	29691 ³	12012	27979	13737	10932	2576	2923	4057	103907

SSB 2010 multiplied by mean (2005-2009) age 2 survival ratio (number / SSB)
BSR 2010 multipliée par le taux moyen (2005-2009) de survie (nombre / BSR) des âges 2

SSB 2009 multiplied by mean (2006-2010) age 3 survival ratio (number / SSB)

BSR 2009 multipliée par le taux moyen (2006-2010) de survie (nombre / BSR) des âges 3

SSB 2008 multiplied by mean (2007-2011) age 4 survival ratio (number / SSB)

BSR 2008 multipliée par le taux moyen (2007-2011) de survie (nombre / BSR) des âges 4

Table 25. Spring spawner biomass (t) from the ADAPT calibration using gillnet CPUE and acoustic survey age-disaggregated population number indices.

Tableau 25. Biomasse de la population (t) des géniteurs du printemps à partir de l'étalonnage ADAPT. Les taux de captures des filets maillants et le relevé acoustique ont été utilisés comme indices à l'âge des effectifs de la population.

Age	2	3	4	5	6	7	8	9	10	11+	Total 4-11
1978	6290	5700	32557	6983	7032	3251	1730	2275	10673	3181	67682
1979	7641	4847	4410	18981	5210	4713	2236	1266	1604	9441	47860
1980	6920	6872	2880	2969	7141	3414	1869	1216	568	3971	24029
1981	26806	5662	3073	1185	2071	1405	488	270	258	3353	12103
1982	16305	27437	3088	1371	724	1377	268	138	44	2496	9507
1983	18955	32211	21158	2001	928	535	819	78	11	1826	27357
1984	26948	33631	28656	13621	1298	741	441	634	34	1501	46926
1985	12194	39982	31663	25309	10443	1031	652	334	674	1201	71307
1986	9397	17201	43044	27851	20424	8604	717	486	256	1508	102890
1987	14621	11032	16200	34779	21813	14108	5948	401	245	1180	94675
1988	17592	17492	10261	13329	25199	14829	7949	2873	54	861	75354
1989	23025	18222	15906	7855	9674	16185	8378	3616	1330	25	62969
1990	66801	28868	19832	11935	6011	6237	8797	4488	1469	575	59345
1991	26786	73791	25908	14881	8570	4023	4156	4320	2231	1034	65123
1992	16792	29715	58915	19656	9140	4644	2343	2294	1989	1227	100208
1993	45986	18522	25948	44913	14148	5641	2929	1421	1138	1287	97424
1994	6924	61545	17644	21693	31381	7904	3286	1717	493	511	84628
1995	11971	8303	62370	14873	14599	17792	4617	1698	1004	272	117225
1996	10383	14291	7526	51311	10627	8705	8168	2114	758	426	89635
1997	10499	12526	14514	6466	35830	7005	4442	4627	975	429	74286
1998	9435	11869	11963	11125	4560	23545	4623	2645	2690	773	61926
1999	13467	11164	11013	9362	6960	3690	14123	3252	1613	2062	52075
2000	6139	15177	10595	8566	6452	3948	2649	8174	1926	2196	44507
2001	7682	7496	14014	7438	4717	2657	1799	1193	4178	2217	38214
2002	2582	8680	6256	10350	4057	2167	1085	737	640	3355	28647
2003	4925	3112	7549	4484	5982	2143	1040	441	342	2744	24725
2004	3586	6066	2922	5074	2092	2872	1025	356	138	2122	16601
2005	3952	3947	5923	2205	2025	827	762	190	44	1554	13530
2006	5732	4412	3545	4488	1490	700	207	201	21	1110	11763
2007	4436	6321	4022	2925	3010	889	458	113	76	886	12377
2008	6519	5011	5676	3004	2113	1882	333	173	49	717	13947
2009	2302	7745	4521	4480	1852	1490	1231	222	109	597	14502
2010	2709	2463	6736	3814	3604	1117	1211	1000	169	506	18158
2011	3506	4282	2066	5843	3075	2898	785	1034	737	529	16967
2012	4775	4989	4269	1967	4885	2646	2313	604	673	973	18331

Table 26. Spring spawner fishing mortality for the ADAPT calibration using gillnet CPUE and acoustic survey age-disaggregated population number indices.

Tableau 26. Mortalité par la pêche des géniteurs du printemps à partir de l'étalonnage ADAPT. Les taux de captures des filets maillants et le relevé acoustique ont été utilisés comme indices à l'âge des effectifs de la population.

Age	2	3	4	5	6	7	8	9	10	11+ A	v (6-8)
1978	0.35	0.308	0.439	0.162	0.314	0.212	0.204	0.163	0.183	0.183	0.243
1979	0.282	0.52	0.405	0.882	0.272	0.733	0.406	0.683	0.545	0.859	0.470
1980	0.266	0.762	0.9	0.436	1.584	1.837	1.793	1.409	1.601	0.104	1.738
1981	0.004	0.55	0.833	0.528	0.443	1.588	1.22	1.811	1.515	0.121	1.084
1982	0.011	0.204	0.384	0.233	0.209	0.124	1.129	2.406	1.767	0.117	0.487
1983	0.007	0.117	0.36	0.389	0.157	0.097	0.03	0.649	0.339	0	0.095
1984	0.002	0.028	0.121	0.204	0.171	0.026	0.079	0.025	0.052	0	0.092
1985	0.01	0.041	0.107	0.177	0.166	0.255	0.057	0.038	0.048	0.107	0.159
1986	0.055	0.073	0.134	0.201	0.287	0.252	0.37	0.477	0.423	0.131	0.303
1987	0.012	0.055	0.134	0.259	0.292	0.481	0.622	1.831	1.226	0.136	0.465
1988	0.048	0.059	0.183	0.263	0.373	0.452	0.651	0.61	0.631	100	0.492
1989	0.002	0.062	0.314	0.226	0.344	0.448	0.451	0.721	0.586	100	0.414
1990	0.011	0.053	0.182	0.201	0.262	0.237	0.495	0.494	0.495	0.541	0.331
1991	0.008	0.04	0.127	0.325	0.414	0.341	0.379	0.557	0.468	2.328	0.378
1992	0.006	0.027	0.128	0.183	0.33	0.289	0.308	0.503	0.406	1.589	0.309
1993	0.006	0.021	0.086	0.228	0.42	0.366	0.403	0.856	0.63	100	0.396
1994	0.001	0.014	0.083	0.289	0.464	0.427	0.53	0.408	0.469	100	0.474
1995	0.012	0.036	0.091	0.243	0.4	0.662	0.611	0.663	0.637	100	0.558
1996	0.004	0.035	0.067	0.255	0.297	0.562	0.442	0.583	0.512	2.361	0.434
1997	0.004	0.018	0.122	0.188	0.318	0.303	0.396	0.387	0.392	0.682	0.339
1998	0.003	0.02	0.152	0.368	0.125	0.381	0.24	0.339	0.289	0.592	0.249
1999	0.015	0.058	0.192	0.297	0.463	0.235	0.416	0.362	0.389	0.292	0.371
2000	0.022	0.053	0.287	0.498	0.783	0.655	0.655	0.516	0.585	0.291	0.698
2001	0.056	0.099	0.223	0.515	0.682	0.79	0.78	0.472	0.626	0.288	0.751
2002	0.026	0.098	0.25	0.444	0.531	0.603	0.75	0.605	0.678	0.121	0.628
2003	0.004	0.042	0.3	0.665	0.631	0.613	0.923	0.979	0.951	0.092	0.722
2004	0.015	0.053	0.183	0.829	0.817	1.236	1.545	1.97	1.758	0.158	1.199
2005	0.047	0.071	0.186	0.328	0.974	1.287	1.175	2.1	1.638	0.036	1.145
2006	0.004	0.054	0.088	0.301	0.371	0.251	0.484	0.765	0.624	0.019	0.369
2007	0.081	0.103	0.203	0.231	0.371	0.877	0.796	0.723	0.759	0.072	0.681
2008	0.054	0.06	0.112	0.312	0.179	0.272	0.34	0.231	0.286	0.016	0.264
2009	0.021	0.041	0.048	0.112	0.402	0.116	0.071	0.118	0.492	0.025	0.196
2010	0.002	0.031	0.037	0.045	0.103	0.265	0.063	0.069	0.003	0.004	0.144
2011	0.014	0.025	0.062	0.047	0.088	0.094	0.149	0.219	0.231	0.015	0.110

Table 27. Spring spawner input parameters for the 2012 catch projections from the ADAPT calibration using gillnet CPUE and acoustic survey age-disaggregated population number indices, ages 2 to 11+. Tableau 27. Paramètres de base pour les projections des prises de 2012 des géniteurs du printemps à partir de l'étalonnage ADAP. Les taux de captures des filets maillants et le relevé acoustique ont été utilisés comme indices à l'âge des effectifs de la population, âges 2 à 11+.

Age	Maturity	Natural	Beg. Of year	Average	Partial	Population
	Maturité	Mortality	Weights	Weights	Recruitment	numbers
		Mortalité	Poids début d'année	Poids	Recrutement	Nombres '000
		Naturelle	Kg	Moyen	Partiel	January / Janvier
				Kg		2012
2	0	0.2	0.068	0.102	0.15	63919
3	0	0.2	0.105	0.133	0.19	39974
4	1	0.2	0.131	0.150	0.36	29691
5	1	0.2	0.164	0.167	1	12012
6	1	0.2	0.175	0.181	1	27979
7	1	0.2	0.193	0.198	1	13737
8	1	0.2	0.212	0.222	1	10932
9	1	0.2	0.234	0.241	1	2576
10	1	0.2	0.237	0.241	1	2923
11+	1	0.2	0.240	0.241	1	4057

Table 28. Spring spawner catch and population projections from the ADAPT calibration using gillnet CPUE and acoustic survey age-disaggregated population number indices for ages 2 to 11+. Tableau 28. Projections des prises et de la population des géniteurs de printemps à partir de l'étalonnage ADAPT. Les taux de captures des filets maillants et le relevé acoustique ont été utilisés comme indices à l'âge des effectifs de la population, âges 2 à 11+.

	Catch (numbers) / Captures (nombres) (X 1000)	Catch (biomass) / Captures (biomasse) (t)	Population (numbers / nombres) (X 1000)	Population (biomass / biomasse) (t)
Age	2012	2012	2013	2013
2	2966	302	2013	4306
3	2334	310	63319	5214
4	3192	479	49656	4012
5	3234	540	30622	3515
6	7532	1363	21431	1213
7	3698	732	6930	3115
8	2943	653	16142	1680
9	694	167	7926	1476
10	787	190	6307	352
11+	1092	263	1486	967
Ages				
2 +	28472	5001	207846	25849
3 +	25506	4698	144527	21543
4 +	23172	4388	94871	16329

Table 29a. Fall fishery samples and landings by zone used to derive 2010 catch and weight-at-age matrices for 4T herring.

Tableau 29a. Échantillons et débarquements par zone de la pêche d'automne utilisés pour déterminer les matrices des prises et du poids selon l'âge en 2010 pour le hareng de 4T.

Gear/ Region Engin/ Région	Fishery Pêcherie	Zone	Samples Échantillons	Landings/ Débarquements (t)
FIXED GEAR /	ENGINS FIXES GILLNETS / FILETS MAILLANTS			, ,,
North / nord	St-Laurent/St. Lawrence (16A) fall / automne	4Topq	1	10.0
North / nord	Gaspé/Chaleur (16B) August / août 9 - 15	4Tmn	3	3904.3
North / nord	Gaspé/Chaleur (16B) August / août 16 - 28	4Tmn	7	5440.9
North / nord	Gaspé/Chaleur (16B) August / août 29 – Sept. 11	4Tmn	5	4356.5
North / nord	Gaspé/Chaleur (16B) Sept. 12 +	4Tmn	3	2092.0
Middle / milieu	Escuminac-WP.E.I. (16CE) July / juillet – August / août 26	4TI	4	2683.3
Middle / milieu		4TI	5	3784.2
Middle / milieu	Escuminac-WP.E.I. (16CE) Sept. 4 +	4TI	9	3023.9
South / sud	I. de la Madeleine (16D) fall / automne	4Tf	2	157.8
South / sud	East P.E.I. / Est ÎPÉ. (16G) July – juillet	4Tgj	2	677.2
South / sud	East P.E.I. / Est ÎPÉ. (16G) August / août – Sept. 2	4Tgj	4	4381.9
South / sud	East P.E.I. / Est îPÉ. (16G) Sept. 3 +	4Tgj	6	3930.4
South / sud	Pictou (16F) July / juillet – Sept. 17	4Th	3	6833.0
South / sud	Pictou (16F) Sept. 18 +	4Th	1	1158.2
FIXED GEAR /	ENGINS FIXES TOTAL	4T	55	42433.6
MORII F GFAF	R / ENGINS MOBILES PURSE SEINE / SENNE COULISSANT	'F		
North / nord	East of / est de Grande-Anse (16B) Sept. / Nov. 3	4Tmn	5	834.3
North / nord	East of / est de Grande-Anse (16B) Nov. 4 - 30	4Tmn	6	2154.3
North / nord	East of / est de Grande-Anse (16B) Dec.	4Tmn	6	1509.4
	Engins mobiles total	4T	17	4498.0
Fall - all gear	s / Tous les engines - automne	4T	72	46931.6

Table 29b. Fall fishery samples and landings by zone used to derive 2011 catch and weight-at-age matrices for 4T herring.

Tableau 29b. Échantillons et débarquements par zone de la pêche d'automne utilisés pour déterminer les matrices des prises et du poids selon l'âge en 2011 pour le hareng de 4T.

Gear/ Region Engin/ Région	Fishery Pêcherie	Zone	Samples Échantillons	Landings/ Débarquements (t)
FIXED GEAR /	ENGINS FIXES - GILLNETS / FILETS MAILLANTS			
North / nord	Gaspé/Chaleur (16AB) July / juillet – August / août 26	4Tmnopq	5	4624.7
North / nord	Gaspé/Chaleur (16AB) August / août 27 – Sept. 3	4Tmnopq	2	4273.8
North / nord	Gaspé/Chaleur (16AB) Sept. 4 - 10	4Tmnopq	3	3643.3
North / nord	Gaspé/Chaleur (16AB) Sept. 11 +	4Tmnopq	4	2843.2
Middle / milieu	Escuminac-WP.E.I. (16CE) July / juillet – August / août 27	4TI	1	1961.7
Middle / milieu	Escuminac-WP.E.I. (16CE) August / août 28 – Sept. 3	4TI	1	2092.2
Middle / milieu	Escuminac-WP.E.I. (16CE) Sept. 4 +	4TI	3	4493.8
South / sud	I. de la Madeleine (16D) fall / automne	4Tf	3	36.8
South / sud	North Lake P.E.I. / ÎPÉ. (16G) August / août 31 – Sept. 10	4Tgj	1	714.3
South / sud	North Lake P.E.I. / ÎPÉ. (16G) Sept. 11 +	4Tgj	1	1271.9
South / sud	East P.E.I. / Est ÎPÉ. (16G) July / juillet – August / août 15	4Tgj	3	360.0
South / sud	Fisherman's Bank P.E.I. / ÎPÉ. (16G) August / août 16 +	4Tgj	3	1835.5
South / sud	Pictou (16F) July / juillet – August / août 16	4Th	3	128.6
South / sud	Pictou (16F) August / août 17 – Sept. 9	4Th	2	3087.0
South / sud	Pictou (16F) Sept. 10 - 15	4Th	2	3303.7
South / sud	Pictou (16F) Sept. 16 +	4Th	2	2247.4
FIXED GEAR /	ENGINS FIXES TOTAL	4T	39	36917.9
MOBILE GEAR	R / ENGINS MOBILES - PURSE SEINE / SENNE COULISSANT	E		
North / nord	East of / est de Grande-Anse (16B) Sept. / Nov. 30	4Tmn	6	561.4
North / nord	East of / est de Grande-Anse (16B) Dec.	4Tmn	6	1440.7
Mobile Gear /	Engins mobiles total	4T	12	2002.1
Fall - all gear	s / Tous les engines - automne	4T	51	38920.0

Table 30. Fall spawner catch-at-age (A) and weight-at-age (B) for 4T herring fixed gear fishery.

Tableau 30. Captures (A) et poids à l'âge (B) de hareng géniteurs d'automne de 4T pour les engins fixes.

Fall spa	awner ·	- Fixed	d gear	s / Gér	niteurs	d'auto	mne -	Engine	s fixes																	
	A) Numbe	ers (x 1	1 - (000	lombres	(x 1000	0)								B) Weig	jht (ł	Kg) -	Poids	(Kg)								mean
AGE	1	2	3	4	5	6	7	8	9	10	11+	Total	AGE	1		2	3	4	5	6	7	8	9	10	11+	moyenne
1978	0	41	2241	5405	3831	885	949	4833	80	140	2341	20746	1978	-	0.07	766	0.1408	0.2420	0.2780	0.3125	0.3112	0.3707	0.3928	0.3613	0.4283	0.2959
1979	910	16	579	11579	5711	2864	724	1036	915	322	632	25288	1979	0.0230	0.13	319	0.1936	0.2432	0.2819	0.3118	0.3544	0.3938	0.4175	0.4327	0.4233	0.2731
1980	0	64	7884	4374	6283	1105	2348	484	556	409	173	23679	1980	-	0.2	116	0.2072	0.2439	0.3170	0.3496	0.3106	0.3577	0.4542	0.4173	0.4391	0.2742
1981	0	66	6095	24399	6935	2792	1231	1217	172	281	322	43510	1981	-	0.17	743	0.2200	0.2584	0.3104	0.3588	0.3927	0.4063	0.4585	0.4693	0.4520	0.2791
1982	0	0	2108	14307	16990	5183	2815	1137	396	121	129	43186	1982	-		-	0.2240	0.2671	0.3025	0.3351	0.3754	0.3808	0.3961	0.3844	0.4471	0.2992
1983	0	0	821	20721	10277	13817	2380	1808	573	63	263	50723	1983	-		-	0.1913	0.2419	0.2809	0.3161	0.3471	0.3744	0.3720	0.4248	0.4340	0.2815
1984	0	0	891	24352	15093	8985	6422	1574	571	230	101	58218	1984	-		-	0.2229	0.2448	0.2825	0.3178	0.3478	0.3988	0.4142	0.4028	0.5062	0.2837
1985	0	0	199	6555	29974	15570	8683	7684	2542	746	35	71989	1985	-		-	0.2119	0.2404	0.2892	0.3303	0.3626	0.3842	0.4120	0.4376	0.4659	0.3184
1986	0	383	1535	31954	16807	36455	19831	9356	4014	580	980	121895	1986	-	0.17	747	0.2000	0.2461	0.2897	0.3221	0.3685	0.3898	0.4039	0.4427	0.4350	0.3126
1987	0	16	8641	36322	29218	20947	36964	15570	10053	4562	2100	164393	1987	-	0.17	738	0.2363	0.2480	0.2814	0.3128	0.3441	0.3710	0.3895	0.3916	0.4316	0.3098
1988	0	0	1346	21922	44378	21681	14350	15582	8043	2998	2618	132919	1988	-		-	0.2294	0.2605	0.2870	0.3210	0.3460	0.3765	0.4016	0.3976	0.4276	0.3166
1989	0	0	332	14260	23308	30767	15186	6947	8752	3449	2557	105557	1989	-		-	0.2180	0.2539	0.2912	0.3226	0.3458	0.3735	0.3902	0.4142	0.4284	0.3239
1990	0	14	3446	22450	20679	28712	59355	18217	10181	10648	6677	180380	1990	-	0.14	480	0.1961	0.2445	0.2832	0.3245	0.3479	0.3697	0.3919	0.4087	0.4323	0.3324
1991	0	0	160	39661	10594	8060	10947	13617	5100	2963	5036	96137	1991	-		-	0.1933	0.2308	0.2627	0.2931	0.3334	0.3512	0.3653	0.3771	0.4055	0.2890
1992	0	0	23	11368	54218	13042	7389	8589	9518	4219	6988	115355	1992	-		-	0.1993	0.2238	0.2543	0.2817	0.3082	0.3429	0.3511	0.3645	0.4055	0.2856
1993	0	0	82	2703	30919	36647	5829	2921	2977	1513	2551	86142	1993	-		-	0.1718	0.2196	0.2403	0.2640	0.2803	0.3271	0.3477	0.3474	0.3899	0.2653
1994	0	0	0	8866	12217	48466	70721	12083	9869	8923	14875	186021	1994	-		- ;	#DIV/0!	0.2101	0.2372	0.2594	0.2877	0.3159	0.3432	0.3590	0.3873	0.2895
1995	0	0	24	3853	41867	17237	51184	49433	9090	6467	15099	194254	1995	-	0.10	033	0.1844	0.2070	0.2309	0.2504	0.2798	0.2980	0.3347	0.3587	0.3843	0.2831
1996	0	0	4	19658	19632	46515	10509	23236	23961	4955	10878	159349	1996	-		-	0.1720	0.2210	0.2448	0.2573	0.2818	0.3068	0.3241	0.3625	0.3953	0.2829
1997	0	0	1106	17513	64208	13459	21133	3890	6859	6469	3968	138605	1997	-		-	0.1761	0.2055	0.2345	0.2596	0.2728	0.3100	0.3285	0.3406	0.3976	0.2551
1998	0	0	59	23256	32702	47339	11459	17637	3134	5994	8757	150336	1998	-		-	0.1592	0.2121	0.2331	0.2588	0.2848	0.2919	0.3251	0.3388	0.3721	0.2630
1999	0	0	265	38385	68890	39101	23455	5285	7283	1792	3441	187895	1999	-		-	0.1642	0.2107	0.2366	0.2494	0.2746	0.2993	0.3006	0.3508	0.3549	0.2461
2000	0	0	356	36338	108837	41591	11871	8524	1797	2010	1105	212429	2000	-		-	0.1689	0.2114	0.2325	0.2582	0.2762	0.3017	0.3206	0.3272	0.3664	0.2414
2001	0	0	954	30198	64970	60448	21007	4671	2361	608	1345	186562	2001	-		-	0.1697	0.2097	0.2337	0.2526	0.2734	0.2972	0.3114	0.3392	0.3146	0.2436
2002	0	1	487	48068	38902	40482	29832	7787	1927	1543	951	169979	2002	-	0.03	314	0.1865	0.2184	0.2393	0.2562	0.2783	0.2912	0.3150	0.3173	0.3356	0.2486
2003	0	0	419	22302	78098	28410	28940	26198	5985	1884	1485	193722	2003	-		-	0.1632	0.2075	0.2314	0.2543	0.2686	0.2905	0.3095	0.3312	0.3488	0.2497
2004	0	0	16	34187	39004	40265	15157	13024	7602	2158	921	152334	2004	-		-	0.1462	0.2023	0.2225	0.2420	0.2616	0.2840	0.3013	0.3118	0.3375	0.2381
2005	0	0	3	7813	83076	54562	44002	13856	11128	4652	635	219729	2005	-		-	0.1880	0.1970	0.2244	0.2377	0.2495	0.2727	0.2840	0.2948	0.3212	0.2396
2006	0	0	55	10615	53320	70794	31427	19658	9990	5392	1885	203137	2006	-		-	0.1676	0.1981	0.2200	0.2392	0.2520	0.2620	0.2868	0.2928	0.3115	0.2407
2007	0	0	716	6563	27935	57737	58441	24205	7408	4559	1953	189518	2007	-		-	0.1490	0.1960	0.2036	0.2239	0.2389	0.2464	0.2603	0.2685	0.2905	0.2304
2008	0	0	2121	35457	16066	29793	32568	38194	10187	5695	4015	174097	2008	-	0.09	927	0.1300	0.1786	0.2120	0.2236	0.2366	0.2467	0.2515	0.2649	0.2837	0.2241
2009	0	0	1044	33189	73772	24332	38549	16509	6561	6072	3108	203137	2009	-		-	0.1510	0.1874	0.2015	0.2308	0.2460	0.2603	0.2695	0.2688	0.2694	0.2209
2010	0	0	10	6618	49052	71842	20460	19768	13550	6656	3278	191234	2010	-		-	0.1322	0.1726	0.2045	0.2146	0.2366	0.2533	0.2614	0.2793	0.2904	0.2238
2011	0	0	3	2860	13092	42735	62018	15888	11075	9415	6499	163584	2011	-		-	0.1107	0.1798	0.1881	0.2134	0.2225	0.2487	0.2632	0.2639	0.2729	0.2263

Table 31. Fall spawner catch-at-age (A) and weight-at-age (B) for 4T herring fishery mobile gears.

Tableau 31. Captures (A) et poids à l'âge (B) de hareng géniteurs d'automne de 4Tpour les engins mobiles.

Fall spa	wner	- Mob	ile gea	rs / Gé	niteurs	s d'aut	omne	- Engin	s mob	iles															
Δ.) Numb	ers (x 1	1 - (000	lombres	(x 1000))								B) Weig	ht (Kg)	- Poids	(Kg)								mean
AGE	1	2	3	4	5	6	7	8	9	10	11+	Total	AGE	1	2	3	4	5	6	7	8	9	10	11+	moyenne
1978	0	1351	21407	23331	21495	4337	5052	15023	1844	1268	17790	112898	1978	-	0.1001	0.1487	0.2142	0.2527	0.2780	0.2931	0.3312	0.3323	0.3156	0.3883	0.2598
1979	156	5951	8965	7073	4946	7233	2077	3241	3851	1660	11889	57042	1979	0.0673	0.1233	0.1795	0.2321	0.2658	0.2928	0.2908	0.3403	0.3647	0.3547	0.3799	0.2743
1980	151	2944	41338	15803	21870	10293	4861	1793	2584	1745	1850	105231	1980	0.0326	0.1082	0.1389	0.1744	0.2244	0.2453	0.2897	0.3385	0.3786	0.3880	0.4228	0.1967
1981	18	1118	10011	11787	1076	297	447	31	187	0	0	24972	1981	0.0798	0.1110	0.1814	0.2261	0.2558	0.3136	0.3656	0.2342	0.2614	0.4702	-	0.2080
1982	0	1018	8889	3585	6962	841	135	156	104	26	263	21978	1982	-	0.0948	0.1681	0.2206	0.2589	0.2786	0.3744	0.3341	0.3553	0.4551	0.4343	0.2131
1983	0	222	5708	6865	2643	4141	720	167	224	30	91	20811	1983	-	0.1028	0.1701	0.2134	0.2456	0.2831	0.3160	0.3754	0.3485	0.2223	0.4557	0.2257
1984	0	398	1075	4824	4988	2748	1795	386	88	11	39	16353	1984		0.0955	0.1461	0.2084	0.2484	0.2786	0.3048	0.3292	0.3728	0.3916	0.4327	0.2405
1985	0	331	1904	2489	7414	6556	2955	2205	1837	574	0	26263	1985	-	0.0897	0.1898	0.2150	0.2578	0.2805	0.3107	0.3265	0.3817	0.4187	-	0.2762
1986	0	347	2524	2619	3115	5966	3526	1565	1614	208	218	21701	1986	-	0.1156	0.1584	0.2068	0.2516	0.2763	0.3064	0.3281	0.3350	0.3624	0.4038	0.2632
1987	0	1633	3373	2290	1037	1337	3663	3895	871	870	373	19342	1987	-	0.1113	0.1724	0.2181	0.2496	0.2842	0.3185	0.3414	0.3510	0.3908	0.3927	0.2683
1988	98	3951	2499	2766	3249	1559	3239	2822	1074	1402	1629		1988									0.3415			0.2595
1989	0	828	1073	2202	4390	4541	1899	2252	2706	1557	1182		1989									0.3269			0.2787
1990	0	71	4463	3357	3653	2019	1981	1549	2084	988	296	20461	1990									0.3286			0.2529
1991	0	0	5138	18139	4009	1188	1942	1452	382	712	2282	35246	1991									0.3097			0.2168
1992	0	44	662	5408	13353	3001	2043	1442	1695	1330	4868	33846	1992									0.2902			0.2364
1993	0	311	4383	2693	4587	7513	2282	1874	1767	2377	3285	31072	1993									0.3101			0.2315
1994	0	15	287	8493	3669	10253	13275	1696	1803	1365	2728	43584	1994									0.2742			0.2142
1995	0	22	2365	3798	20405	6426	9793	10346	2030	943	2486	58614	1995									0.2710			0.2072
1996	0	389	2713	13239	5743	10708	4085	3218	2094	830	1082	44103	1996									0.2689			0.1983
1997	0	429	4878	6312	9862	2434	4615	899	1380	788	916		1997									0.2619			0.1957
1998	0	51	1553	3198	3528	3734	737	2408	340	1088	1268	17905	1998									0.3033			0.2186
1999	0	713	8064	12841	9250	4870	5969	2899	2228	643	1345		1999									0.2892			0.1939
2000	0	1029	6801	12522	12091	3670	1740	1041	306	320	254	39774	2000									0.2626			0.1738
2001	146	2026	12826	7415	9713	8790	2662	1827	1064	250	330	47050	2001									0.2510			0.1684
2002	0	1030	4482	14029	11196	9305	7609	1910	552	802	394	51310	2002									0.3209			0.2214
2003	0	201	8565	15653	11982	7392	7828	7594	2503	852	675		2003									0.2765			0.2030
2004	0	519	4592	15304	6675	4522	2932	2145	1778	506	333	39306	2004									0.2647			0.1812
2005	0	956	4466	17820	14883	4929	1228	684	674	271	154	46063	2005									0.2843			0.1684
2006	0	1042	2355	3670	8741	5832	1575	519	330	242	54	24359	2006									0.2641			0.1810
2007	0	1491	15237	5020	2838	3437	1735	511	108	46	23	30447	2007									0.2262			0.1454
2008	0	1385	8080	5566	1678	834	607	771	3	24	0	18948	2008									0.2101	0.2178	-	0.1445
2009	0	179	4648	5917	2313	295	211	51	5 177	0	0	13618	2009					0.1658					0.0000	0.2002	0.1423
2010	16	6	1677	6895	9814	7232	1111	663	177	96	1	27689	2010									0.1965			0.1536
2011	0	1316	644	2179	2507	2537	1114	217	8	67	6	10595	2011	-	0.0693	U.1050	0.1241	U.14U6	U.1516	U.1677	0.1874	0.2000	U.1860	0.2342	0.1330

Table 32. Fall spawner catch-at-age (A) and weight-at-age (B) for 4T herring fishery, all gears.

Tableau 32. Captures (A) et poids à l'âge (B) de hareng géniteurs d'automne de 4T pour tous les engins.

Fall sp	Fall spawner - All gears / Géniteurs d'automne - Tous les engins																								
	A) Numb	ers (x 1	1 - (000	Nombres	s (x 1000))								B) Weig	ght (Kg)	- Poids	(Kg)								mean
AGE	1	2	3	4	5	6	7	8	9	10	11+	Total	AGE	1	2	3	4	5	6	7	8	9	10	11+	moyenne
1978	0	1392	23648	28735	25326	5221	6001	19857	1924	1408	20131	133643	1978	-	0.0994	0.1480	0.2194	0.2565	0.2838	0.2960	0.3408	0.3348	0.3201	0.3929	0.2654
1979	1067	5967	9544	18651	10658	10097	2801	4277	4765	1981	12522	82330	1979	0.0295	0.1233	0.1804	0.2390	0.2744	0.2982	0.3072	0.3533	0.3748	0.3674	0.3821	0.2739
1980	151	3008	49222	20176	28154	11398	7208	2276	3140	2154	2022	128910	1980	0.0326	0.1104	0.1498	0.1895	0.2451	0.2554	0.2965	0.3425	0.3920	0.3935	0.4242	0.2110
1981	18	1184	16105	36186	8011	3088	1678	1249	359	281	322	68481	1981	0.0798	0.1145	0.1960	0.2479	0.3030	0.3544	0.3855	0.4020	0.3560	0.4693	0.4520	0.2532
1982	0	1018	10996	17892	23952	6024	2950	1293	500	147	392	65163	1982	-	0.0948	0.1788	0.2578	0.2898	0.3272	0.3753	0.3752	0.3877	0.3967	0.4385	0.2702
1983	0	222	6529	27586	12919	17958	3100	1975	797	93	355	71534	1983	-	0.1028	0.1728	0.2348	0.2737	0.3085	0.3399	0.3745	0.3654	0.3602	0.4396	0.2653
1984	0	398	1966	29176	20081	11733	8217	1960	659	241	140	74571	1984	-	0.0955	0.1809	0.2388	0.2740	0.3086	0.3384	0.3850	0.4086	0.4023	0.4856	0.2743
1985	0	331	2103	9044	37388	22126	11638	9888	4378	1320	35	98252	1985	-	0.0897	0.1919	0.2334	0.2829	0.3155	0.3494	0.3713	0.3993	0.4294	0.4659	0.3071
1986	0	730	4059	34573	19922	42420	23357	10921	5628	788	1198	143597	1986	-	0.1466	0.1741	0.2431	0.2837	0.3156	0.3592	0.3810	0.3841	0.4215	0.4293	0.3051
1987	0	1649	12014	38613	30255	22285	40626	19465	10923	5432	2474	183735	1987	-	0.1119	0.2183	0.2462	0.2803	0.3111	0.3418	0.3650	0.3865	0.3915	0.4257	0.3054
1988	98	3951	3845	24688	47627	23240	17589	18404	9117	4400	4248	157206	1988	0.0737	0.0949	0.1824	0.2560	0.2852	0.3200	0.3425	0.3710	0.3945	0.4029	0.4102	0.3078
1989	0	828	1405	16462	27698	35308	17085	9199	11458	5006	3739	128187	1989	-	0.0988	0.1732	0.2484	0.2846	0.3170	0.3428	0.3611	0.3752	0.3972	0.4122	0.3159
1990	0	85	7909	25808	24332	30730	61336	19765	12265	11636	6973	200841	1990	-	0.1123	0.1819	0.2403	0.2761	0.3221	0.3467	0.3661	0.3811	0.4027	0.4304	0.3243
1991	0	0	5298	57800	14603	9249	12889	15069	5482	3675	7319	131384	1991	-	-	0.1505	0.2184	0.2514	0.2892	0.3252	0.3469	0.3614	0.3675	0.3975	0.2696
1992	0	44	685	16777	67571	16043	9432	10031	11213	5550	11855	149201	1992	-	0.0715	0.1300	0.2067	0.2457	0.2734	0.2980	0.3341	0.3419	0.3494	0.3767	0.2745
1993	0	311	4465	5396	35507	44160	8111	4794	4743	3891	5836	117214	1993	-	0.0759	0.1285	0.1877	0.2350	0.2573	0.2741	0.3084	0.3337	0.3323	0.3696	0.2564
1994	0	15	287	17359	15886	58718	83996	13779	11672	10288	17604	229605	1994	-	0.0864	0.1341	0.1848	0.2225	0.2497	0.2774	0.3094	0.3326	0.3515	0.3794	0.2752
1995	0	22	2390	7651	62272	23663	60977	59780	11119	7409	17585	252868	1995	-	0.0724	0.1185	0.1854	0.2133	0.2361	0.2708	0.2877	0.3231	0.3525	0.3782	0.2655
1996	0	389	2717	32897	25375	57224	14594	26455	26055	5786	11960	203452	1996	-	0.0894	0.1328	0.1985	0.2308	0.2484	0.2651	0.2996	0.3196	0.3522	0.3895	0.2645
1997	0	429	5983	23825	74070	15893	25748	4789	8239	7257	4884	171117	1997	-	0.0816	0.1477	0.1948	0.2288	0.2541	0.2644	0.2971	0.3174	0.3358	0.3866	0.2438
1998	0	51	1612	26453	36230	51073	12196	20045	3473	7082	10026	168241	1998	-	0.0757	0.1271	0.2064	0.2287	0.2563	0.2826	0.2861	0.3230	0.3328	0.3741	0.2583
1999	0	713	8328	51226	78140	43971	29424	8184	9512	2435	4785	236717	1999	-	0.0715	0.1290	0.1968	0.2310	0.2455	0.2693	0.2894	0.2979	0.3418	0.3551	0.2353
2000	0	1029	7157	48860	120928	45260	13611	9565	2104	2330	1359	252203	2000	-	0.0767	0.1325	0.1986	0.2277	0.2541	0.2705	0.2974	0.3122	0.3200	0.3574	0.2307
2001	146	2026	13781	37614	74684	69238	23668	6497	3425	858	1675	233613	2001	0.0233	0.0785	0.1299	0.1991	0.2272	0.2459	0.2668	0.2812	0.2927	0.3095	0.3106	0.2284
2002	0	1031	4969	62098	50098	49787	37441	9697	2479	2345	1345	221289	2002	-	0.0838	0.1518	0.2115	0.2355	0.2541	0.2770	0.2909	0.3163	0.3212	0.3429	0.2423
2003	0	201	8985	37955	90080	35802	36768	33792	8489	2736	2161	256968	2003	-	0.0810	0.1389	0.1915	0.2269	0.2470	0.2625	0.2836	0.2997	0.3270	0.3368	0.2382
2004	0	519	4608	49490	45679	44787	18089	15169	9380	2664	1254	191640	2004	-	0.0801	0.1309	0.1893	0.2164	0.2382	0.2555	0.2788	0.2944	0.3054	0.3250	0.2265
2005	0	956	4469	25633	97959	59491	45229	14540	11802	4923	789	265792	2005	-	0.0783	0.1249	0.1653	0.2172	0.2347	0.2489	0.2731	0.2840	0.2952	0.3267	0.2272
2006	0	1042	2410	14286	62061	76625	33002	20176	10320	5634	1939	227495	2006	-	0.0789	0.1331	0.1893	0.2145	0.2367	0.2503	0.2611	0.2861	0.2932	0.3124	0.2343
2007	0	1491	15953	11584	30774	61173	60176	24716	7516	4606	1977	219964	2007	-	0.0859	0.1277	0.1769	0.2001	0.2217	0.2378	0.2458	0.2598	0.2684	0.2895	0.2186
2008	0	1385	10202	41023	17744	30627	33175	38965	10190	5719	4015	193046	2008	-	0.0930	0.1324	0.1750	0.2070	0.2224	0.2357	0.2457	0.2514	0.2647	0.2837	0.2163
2009	0	179	5692	39106	76085	24627	38760	16560	6566	6072	3108	216755	2009	-	0.0920	0.1279	0.1811	0.2004	0.2301	0.2457	0.2602	0.2694	0.2688	0.2694	0.2160
2010	16	6	1688	13513	58866	79074	21571	20432	13728	6751	3279	218923	2010	0.0453	0.0934	0.1188	0.1545	0.1962	0.2102	0.2335	0.2515	0.2606	0.2783	0.2904	0.2149
2011	0	1316	647	5039	15599	45272	63132	16105	11083	9482	6505	174179	2011	-	0.0693	0.1050	0.1557	0.1805	0.2099	0.2215	0.2479	0.2632	0.2634	0.2728	0.2206

Table 33. Fall spawners numbers-at-age (X 1000) and biomass-at-age (t) from the acoustic survey; same strata covered in Chaleurs-Miscou since 1994. Stratum are identified in Appendix 5b.

Tableau 33. Nombre (X 1 000) et biomasse (t) selon l'âge des géniteurs d'automne pour les mêmes strates de Chaleurs-Miscou faisant l'objet d'un relevé acoustique depuis 1994. Les strates sont identifiées à l'appendice 5b.

Numbers / Nombres

Age	1	2	3	4	5	6	7	8	9	10	11+	Total	4+
1994	1672	2157	4442	201387	61956	33090	17255	2309	0	12	1918	326198	317926
1995	386	12349	22326	11645	50030	9306	15773	23592	1762	767	868	148803	113743
1996	50815	225769	241001	163904	21951	72902	16442	9671	4046	961	1405	808868	291283
1997	0	66808	306768	200366	69384	8383	32111	9572	8225	3820	1304	706741	333165
1998	2013	66600	190598	74419	45341	27959	5228	22791	3178	5052	4298	447477	188266
1999	3843	59703	308283	191388	63421	32461	15972	2502	4774	4719	819	687887	316057
2000	79504	55502	127954	188246	137871	40048	13236	6624	2368	3731	2288	657371	394412
2001	83592	96857	32803	12930	10047	8640	1367	817	214	125	76	247468	34216
2002	1227	166012	32158	31345	20360	27785	16128	4708	689	93	144	300647	101251
2003	611	50128	255384	67523	19953	5758	6693	7959	1644	699	0	416354	110230
2004	0	29536	69627	53080	10888	2238	63	278	0	734	0	166443	67280
2005	21	29089	62771	253848	138439	31786	10934	4140	4135	1762	1939	538863	446983
2006	0	220736	75112	43095	75211	50965	7324	1405	802	543	0	475193	179345
2007	0	78619	147272	42055	19589	11057	7524	139	712	571	0	307537	81647
2008	8	71725	90952	50361	7565	4737	5166	3304	517	229	0	234565	71879
2009	0	71658	112022	80911	39829	5644	1569	833	134	37	0	312637	128957
2010	0	34571	107008	113649	94276	25024	4023	1292	213	213	0	380269	238689
2011	0	31279	40407	82908	72700	52965	19571	5082	3291	893	0	309096	237411

Biomass / Biomasse (t)

Age	1	2	3	4	5	6	7	8	9	10	11+	Total	4+
1994	34	157	540	30231	9957	6582	3603	551	0	3	608	52264	51535
1995	19	803	2569	1882	9009	1711	3538	5654	484	229	275	26175	22782
1996	1859	17599	29408	24826	3959	14575	3534	2329	1127	270	406	99894	51025
1997	0	4688	41513	31449	12682	1768	6959	1970	2066	1036	337	104469	58265
1998	37	4838	21929	11505	7972	5845	1245	5292	814	1399	1360	62235	35434
1999	78	4097	37552	28717	11786	6624	3750	652	1244	1000	239	95739	54012
2000	1367	4137	17712	31877	27887	9135	3362	1835	662	1085	851	99908	76695
2001	2261	6773	3923	2006	1766	1710	293	189	53	38	23	19039	6078
2002	22	11855	4006	4771	3852	5493	3737	1140	186	24	42	35131	19245
2003	40	3736	30926	10589	3503	1213	1562	1970	445	201	0	54177	19483
2004	0	2315	8477	7771	1687	434	14	62	0	174	0	20936	10142
2005	1	2218	7765	37164	23685	6207	2207	1141	1167	544	572	82670	72686
2006	0	17329	9113	6446	13042	9689	1466	310	195	140	0	57739	31289
2007	0	6436	18111	5929	3043	1995	1467	33	163	118	0	37307	12748
2008	0	6040	11960	7370	1230	822	943	590	106	45	0	29106	11106
2009	0	6343	13197	11539	6260	940	296	159	19	8	0	38756	19222
2010	0	2484	11441	14899	14388	4085	766	221	49	49	0	48387	34457
2011	0	2177	3767	10279	10203	8280	3227	968	686	174	0	39756	33818

Table 34. Average number of standard nets used during the fall inshore fishery (1 standard net = 15 fathoms) from telephone survey and dockside monitoring program (DMP) data. Bold underlined values taken from DMP where the number of records are higher than the telephone survey.

Tableau 34. Nombre moyen de filets ordinaires utilisés pour la pêche côtière d'automne (1 filet ordinaire = 15 brasses) provenant du sondage téléphonique et du programme des observateurs à quai (PVQ). Les valeurs en caractères gras soulignées proviennent du PVQ lorsque les données sont plus nombreuses que celles du sondage téléphonique.

Year / Année	Acadian Peninsula / Péninsule	Escuminac	Nova Scotia Novelle Écosse	East P.E.I. Est Î.P.É.	West P.E.I. Ouest Î.P.É.
1000	acadienne				
1986	5	9	7	9	8
1987	5	9	7	7	7
1988	5	6	6	7	7
1989	5	9	6	6	6
1990	5	11	6	7	7
1991	5	7	6	7	7
1992	5	9	5	5	11
1993	6	7	4	5	7
1994	5	8	5	7	10
1995	5	8	6	7	7
1996	5	8	6	6	6
1997	5	8	5	7	7
1998	5	7	6	8	7
1999	6	8	6	8	9
2000	5	9	6	8	8
2001	5	9	7	8	9
2002	6	9	7	8	9
2003	5	8	6	8	8
2004	6	8	7	10	10
2005	6	8	6	8	8
2006	6	8	5	8	
2007	6	10	4	8	<u>12</u> 7
2008	6	10 10	6	8	7
2009	6	10 10	<u>5</u>	<u> </u>	- 7
2010	6	10 10	<u>6</u> <u>5</u> 6	<u>.</u> <u>9</u>	<u>-</u>
2011	7	10 10 10 10 10	6	<u>5</u> 9	7 9 9

Table 35. Percentage of nets that are 2 ½" in the fall gillnet fishery weighted by landings per area. Tableau 35. Pourcentage de filets ayant un maillage de 2 ½ po pour la pêche d'automne pondéré par les débarquements par zone.

Year /	%	Year /	%
Année		Année	
1986	75	1999	64
1987	92	2000	70
1988	91	2001	72
1989	89	2002	79
1990	81	2003	81
1991	79	2004	82
1992	68	2005	87
1993	63	2006	91
1994	61	2007	88
1995	54	2008	96
1996	56	2009	97
1997	58	2010	94
1998	60	2011	95

Table 36. Average number of standard gillnets of 15 fathoms (nets) and number of net-hauls (net*hauls) used in the main fishing areas of the fall inshore fishery; from the telephone survey. Tableau 36. Nombre moyen de filets maillants ordinaires de 15 brasses (filets) et de filets-levées (filets*levées) utilisés dans les zones principales de la pêche côtière d'automne provenant du sondage téléphonique.

							West PEI		Nova Scotia		East PEI	
	Gaspé		Chaleur		Escuminac		ÎPÉ ouest		Nouvelle Éco	sse	ÎPÉ est	
Year	nets	nets*hauls	nets	nets*hauls	nets	nets*hauls	nets	nets*hauls	nets	nets*hauls	nets	nets*hauls
Année	filets	filets*levées		filets*levées	filets	filets*levées				filets*levées		filets*levées
1986				7.7	9.4	9.4	7.8	7.8		9.6		9.0
1987	-	8.6		13.2	8.6	10.0		8.6		10.0		8.5
1988				12.1	6.4	18.9	-	13.6		10.2		9.7
1989				12.8	8.6	29.2		8.5		6.4	6.1	8.0
1990	-			20.6		50.6		15.1	5.8	9.0		8.7
1991	4.8	10.9	5.0	17.8	7.1	21.8	6.8	16.0	5.5	8.2	6.8	9.9
1992	4.4	13.8	4.9	15.5	8.7	23.9	10.9	15.2	4.5	5.3		6.8
1993				18.8	7.0	24.4	7.1	8.4	4.3	5.5		5.9
1994				17.8	8.2	25.4		14.1	5.3	8.5		9.6
1995	-	11.8		18.4	8.3	29.1	7.1	11.2	-	13.4		12.4
1996				17.2	8.0	24.1	6.1	8.9		11.1	5.9	8.1
1997				13.3		22.1	6.8	7.8		9.0		8.9
1998	_	19.1	5.3	22.1	7.0	23.1	6.8	13.5		20.6		9.3
1999	_	16.0		23.0	7.9	30.1	8.9	21.5		13.1	8.2	14.5
2000	-			15.9		15.9	-	12.0	-	10.1	8.3	17.8
2001	5.2	13.4	5.3	21.1	8.6	20.3		12.5	6.5	17.6	8.0	10.5
2002	-	12.7	5.5	19.6	8.9	23.3		15.5		14.4		13.1
2003				22.3	7.8	28.0	-	12.0		11.0		11.1
2004				23.2	7.5	17.4	9.5	11.9		10.3		13.7
2005	6.8	20.7	5.6	18.5	8.4	15.4	8.0	12.9	6.5	8.4	8.4	9.5
2006	-		5.8	19.1	7.5	19.2		15.0		5.6		12.0
2007				23.0	7.2	10.5		8.7	4.4	4.8		9.8
2008	5.6	17.2		21.0		15.0	_	14.8	5.0	9.6		13.9
2009		18.2		26.1	7.5	37.1	8.1	21.9		9.7	8.9	10.0
2010				26.3		20.7	7.6	13.8		8.2	8.3	10.2
2011	7.2	22.8	7.2	28.0	8.2	18.9	8.2	22.3	5.5	12.4	8.4	11.9

Table 37. Results of GLM fall spawner catch and effort data (CPUE kg/net*hauls-day) from landing statistics and telephone survey.

Tableau 37. Résultats du modèle multiplicatif des PUE (kg/filet*levées-jour) des géniteurs d'automne des filets maillants provenant des débarquements comptabilisés et du sondage téléphonique.

Class Levels Values Niveaux Valeurs

year / année 27 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

area / zone 8 12345678

week / semaine 18 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 48

Number of Observations Read / observations lues 3614 Number of Observations Used / observations utilisées 3588

Dependent Variable / Variable dépendante: CPUE / PUE

Source Di		Sum of Squares	Mean Square	F Value	Pr > F
Model / modèle 4 Error / erreur 326 Corrected Total 331		1279.328514 1482.999189 2762.327702	27.219756 0.453655	60.00	<.0001
R-Square 0.463134	Coeff Var 11.91430	Root MSE C 0.673539	PUE Mean / PUI	E moyenno 5.653202	
Source year / année week / sema area / zone		Type III SS 225.3081685 697.0450176 389.7545139	Mean Square 9.3878404 43.5653136 55.6792163	F Value 20.69 96.03 122.73	Pr > F <.0001 <.0001 <.0001

year	CPUE / PUE	year	CPUE / PUE
année	kg/net*hauls-day / filet*levées-jour	année	kg/net*hauls-day / filet*levées-jour
1986	174.4	1999	98.6
1987	135.6	2000	145.7
1988	115.1	2001	122.9
1989	179.9	2002	134.8
1990	108.4	2003	118.3
1991	152.4	2004	102.2
1992	142.6	2005	162.8
1993	130.3	2006	188.3
1994	100.6	2007	181.0
1995	74.2	2008	124.9
1996	85.3	2009	133.4
1997	129.8	2010	120.5
1998	95.9	2011	96.4

Table 38. Fall spawner catch rate at age index from gillnets (CPUE) and acoustic survey used in the ADAPT-VPA population models.

Tableau 38. Indice des géniteurs d'automne selon le taux de capture selon l'âge aux filets

maillants (PUE) et du relevé acoustique utilisés dans les modèles de population ADAPT-ASP.

	CPUE (Num	ber / net*ha	uls-day) / PU	JE (Nombre	/ filets*levée	es-jour)	
Age	4	5	6	7	8	9	10
1986	146.2	76.9	166.8	90.8	42.8	18.4	2.7
1987	96.7	77.8	55.8	98.4	41.5	26.8	12.1
1988	60.0	121.4	59.3	39.3	42.6	22.0	8.2
1989	75.0	122.6	161.9	79.9	36.6	46.0	18.1
1990	40.6	37.4	51.9	107.4	32.9	18.4	19.3
1991	217.6	58.1	44.2	60.1	74.7	28.0	16.3
1992	49.2	234.8	56.5	32.0	37.2	41.2	18.3
1993	15.4	176.3	209.0	33.2	16.7	17.0	8.6
1994	16.6	22.8	90.6	132.1	22.6	18.4	16.7
1995	5.2	56.5	23.3	69.1	66.7	12.3	8.7
1996	37.2	37.1	88.0	19.9	44.0	45.3	9.4
1997	64.3	235.7	49.4	77.6	14.3	25.2	23.7
1998	56.4	79.3	114.8	27.8	42.8	7.6	14.5
1999	81.8	146.9	83.4	50.0	11.3	15.5	3.8
2000	103.2	309.2	118.2	33.7	24.2	5.1	5.7
2001	81.6	175.6	163.4	56.8	12.6	6.4	1.6
2002	153.3	124.1	129.1	95.2	24.8	6.1	4.9
2003	54.5	190.9	69.5	70.7	64.0	14.6	4.6
2004	96.3	109.8	113.4	42.7	36.7	21.4	6.1
2005	24.2	256.9	168.7	136.1	42.8	34.4	14.4
2006	40.9	205.4	272.7	121.1	75.7	38.5	20.8
2007	27.2	115.8	239.3	242.2	100.3	30.7	18.9
2008	113.5	51.4	95.3	104.2	122.2	32.6	18.2
2009	98.7	219.4	72.4	114.6	49.1	19.5	18.1
2010	18.6	138.1	202.3	57.6	55.7	38.2	18.7
2011	7.4	34.1	111.3	161.5	41.4	28.8	24.5

	Acoustic (mi	llions) / Aco	ustique (mil	lions)				
Age	2	3	4	5	6	7	8	9
1994	2.2	4.4	201.4	62.0	33.1	17.3	2.3	0.0
1995	12.3	22.3	11.6	50.0	9.3	15.8	23.6	1.8
1996	225.8	241.0	163.9	22.0	72.9	16.4	9.7	4.0
1997	66.8	306.8	200.4	69.4	8.4	32.1	9.6	8.2
1998	66.6	190.6	74.4	45.3	28.0	5.2	22.8	3.2
1999	59.7	308.3	191.4	63.4	32.5	16.0	2.5	4.8
2000	55.5	128.0	188.2	137.9	40.0	13.2	6.6	2.4
2001	96.9	32.8	12.9	10.0	8.6	1.4	8.0	0.2
2002	166.0	32.2	31.3	20.4	27.8	16.1	4.7	0.7
2003	50.1	255.4	67.5	20.0	5.8	6.7	8.0	1.6
2004	29.5	69.6	53.1	10.9	2.2	0.1	0.3	0.0
2005	29.1	62.8	253.8	138.4	31.8	10.9	4.1	4.1
2006	220.7	75.1	43.1	75.2	51.0	7.3	1.4	8.0
2007	78.6	147.3	42.1	19.6	11.1	7.5	0.1	0.7
2008	71.7	91.0	50.4	7.6	4.7	5.2	3.3	0.5
2009	71.7	112.0	80.9	39.8	5.6	1.6	8.0	0.1
2010	34.6	107.0	113.6	94.3	25.0	4.0	1.3	0.2
2011	31.3	40.4	82.9	72.7	53.0	19.6	5.1	3.3

Table 39. MODEL 1: Diagnostics of fall spawner ADAPT-VPA results using only the gillnet CPUE agedisaggregated indices in the model formulations (parameters are in linear scale). Tableau 39. MODÈLE 1: Données diagnostiques pour l'étalonnage du modèle ADAPT-ASP des géniteurs d'automne en utilisant seulement l'indice des PUE en nombre-à-l'âge des filets maillants (les paramètres sont sur une échelle linéaire).

APPROXIMATE STATISTICS ASSUMING LINEARITY NEAR SOLUTION STATISTIQUES APPROXIMATIVES SUPPPOSANT UNE RELATION LINÉAIRE PRÈS DE LA SOLUTION

CPUE (Number / net*hauls-day) / PUE (Nombre / filets*levées-jour)

MEAN SQUA	ARE RESIDUALS /	CARRÉS MOYE	ENS DES RÉ	SIDUS: 0.190)
Age /	Parameter estimate /	Standard error /	Relative error /	Bias /	Relative bias
Âge	Estimé du paramètre	Erreur type	Erreur relative	Biais	Biais relatif
	Population estin	nates in 2012 /	Valeur esti	mée de populat	ion en 2012
5	34703	15889	0.458	3596	0.104
6	54230	19749	0.364	3254	0.060
7	142430	46997	0.330	6544	0.046
8	129415	43714	0.338	5700	0.044
9	29683	8509	0.287	1197	0.040
10	37382	9839	0.263	1219	0.033
	Catchability (Gill	net CPUE) /ca	pturabilité (PUE filets mailla	ants)
4	0.000197	0.000018	0.089	0.000000	0.002
5	0.000584	0.000051	0.088	0.000002	0.003
6	0.000828	0.000073	0.088	0.000003	0.003
7	0.001023	0.000090	0.088	0.000004	0.004
8	0.001031	0.000091	0.089	0.000004	0.004
9	0.000953	0.000085	0.089	0.000004	0.005
10	0.000953	0.000084	0.089	0.000005	0.005

Table 40. MODEL 1: Fall spawner population numbers (x1000) at beginning of year from ADAPT calibration using only the gillnet CPUE age disaggregated indices in the model. Tableau 40. MODÈLE 1 : Effectifs de la population (x1000) des géniteurs d'automne au début de l'année à partir de la formulation ADAPT utilisant seulement les indices des PUE en nombre-à-l'âge des filets maillants.

Age	2	3	4	5	6	7	8	9	10	11+	Total 4-11
1978	136403	135162	79597	57539	14721	18461	32397	7050	2980	42612	255357
1979	416248	110420	89375	39426	24477	7374	9733	8902	4044	18102	201433
1980	350831	335406	81797	56399	22708	11009	3530	4147	3045	5299	187934
1981	494852	284519	230273	48840	21069	8428	2630	873	633	3120	315866
1982	694858	404081	218412	155947	32774	14468	5391	1039	394	2531	430956
1983	379565	567982	320905	162684	106109	21412	9192	3251	404	1910	625867
1984	488820	310561	459128	237857	121542	70708	14738	5750	1946	1492	913161
1985	730393	399852	252490	349578	176631	88931	50485	10301	4114	2471	935001
1986	452883	597696	325472	198557	252507	124675	62325	32437	4519	4176	1004668
1987	293491	370130	485686	235308	144604	168546	81057	41197	21491	5334	1183223
1988	309936	238801	292191	362819	165393	98323	101482	48870	23918	14873	1107869
1989	1062836	250186	192041	216960	254140	114477	64669	66523	31807	23986	964603
1990	649850	869428	203566	142384	152675	176265	78339	44660	44150	37805	879844
1991	199409	531975	704684	143411	94670	97355	89345	46380	25551	50372	1251768
1992	523882	163262	430760	524816	104250	69170	68095	59583	33032	52258	1341964
1993	193248	428879	133048	337532	368799	70905	48135	46717	38693	54174	1098003
1994	512638	157937	347104	104060	244339	262150	50741	35087	33972	67264	1144717
1995	328436	419699	129049	268518	70891	147275	139296	29169	18262	57841	860301
1996	508066	268881	341462	98753	163866	36825	66041	60605	13927	39901	821380
1997	854391	415618	217687	249904	58056	82880	17090	30398	26327	28163	710505
1998	666914	699128	334876	156751	138129	33260	44757	9692	17489	33700	768654
1999	504391	545977	570942	250314	95768	67348	16307	18736	4824	26576	1050815
2000	745990	412316	439487	421254	134841	39140	28843	6054	6860	19231	1095710
2001	724838	609835	331113	315781	236338	69823	19847	15039	3071	18047	1009059
2002	976201	591617	486847	237190	191411	131353	35950	10423	9233	15009	1117416
2003	727789	798315	479887	342643	149138	111990	73930	20724	6306	16528	1201146
2004	585465	595682	645490	358664	199618	89926	58720	30349	9374	14302	1406443
2005	357672	478870	483541	483842	252490	123166	57353	34449	16432	15862	1467135
2006	1034778	291973	388029	372758	308016	153248	60329	33893	17626	21310	1355209
2007	677619	846264	236871	304795	249315	183330	95790	31304	18489	25077	1144971
2008	176064	553441	678456	183479	221801	149150	96139	56223	18875	29747	1433870
2009	67427	142898	443906	518458	134221	154004	92284	43852	36860	31059	1454644
2010	441584	55043	111857	328174	355949	87728	91262	60651	29989	47339	1112949
2011	502271	361533	43541	79403	215704	220327	52441	56349	37315	54283	759363
2012	386343 ¹	410036 ²	295414 ³	31107	50976	135886	123715	28486	36163	60613	762360

SSB 2010 multiplied by mean (2005-2009) age 2 survival ratio (number / SSB) BSR 2010 multipliée par le taux moyen (2005-2009) de survie (nombre / BSR) des âges 2

SSB 2009 multipliée by mean (2006-2010) age 3 survival ratio (number / SSB)

BSR 2009 multipliée par le taux moyen (2006-2010) de survie (nombre / BSR) des âges 3

³ SSB 2008 multiplied by mean (2007-2011) age 4 survival ratio (number / SSB) BSR 2008 multipliée par le taux moyen (2007-2011) de survie (nombre / BSR) des âges 4

Table 41. MODEL 1: Fall spawner population biomass (t) at beginning of year from ADAPT calibration using only the gillnet CPUE age disaggregated indices in the model.

Tableau 41. MODÈLE 1: Biomasse (t) de la population des géniteurs d'automne au début de l'année en utilisant seulement les indices des PUE en nombre-à-l'âge des filets maillants.

Age	2	3	4	5	6	7	8	9	10	11+	Total 4-11
1978	10069	15736	15617	13688	4016	5001	10530	2253	873	16566	68544
1979	46565	14789	16806	9674	6769	2178	3147	3182	1418	6331	49505
1980	29063	45591	15123	13649	6012	3273	1145	1543	1170	2092	44007
1981	45356	41846	44378	11703	6210	2645	908	305	271	1316	67736
1982	48773	57833	49089	41799	10320	5277	2050	410	148	1148	110242
1983	29405	72683	65765	43212	31727	7140	3446	1204	151	798	153442
1984	32926	42345	93255	60335	35322	22845	5331	2249	746	624	220707
1985	47023	54120	51879	90861	51936	29202	17895	4039	1723	1070	248605
1986	54431	74695	70294	51092	75459	41971	22740	12250	1854	1793	277453
1987	25738	66230	100556	61426	42961	55359	29350	15808	8334	2259	316052
1988	21769	34125	69076	96143	49537	32096	36139	18546	9438	5960	316934
1989	77398	32079	40880	58558	76414	37916	22744	24821	12591	9775	283699
1990	63032	116543	41537	37292	46228	58431	27750	16568	17162	15631	260598
1991	14988	69168	140435	35250	26755	31509	30984	16869	9562	20152	311515
1992	27940	18439	75978	121556	27331	20307	22443	20521	11738	19442	319315
1993	11035	41115	20782	74378	92725	19410	14592	15599	13044	19469	269998
1994	37813	15936	53500	21266	59186	70036	14776	11237	11635	23884	265520
1995	17566	42476	20348	53319	16250	38300	39352	9222	6253	21087	204131
1996	35322	26370	52377	20427	37720	9214	18813	18379	4698	14786	176413
1997	55823	47759	35016	53249	14061	21240	4796	9374	8626	10393	156756
1998	38677	71197	58473	33086	33443	8913	12310	3002	5684	11945	166856
1999	26497	53949	90301	54652	22690	17691	4663	5470	1603	9136	206207
2000	43930	40140	70344	89170	32671	10085	8162	1820	2118	6722	221091
2001	40874	60851	53791	67083	55927	18181	5474	4437	955	5690	211537
2002	63596	64569	80699	51366	45987	34284	10015	3109	2831	4889	233180
2003	46365	86133	81831	75060	35969	28923	20723	6119	2028	5436	256091
2004	37589	61348	104643	73014	46404	22589	15888	8769	2836	4662	278806
2005	21461	47909	71145	98092	56903	29991	15150	9694	4844	5011	290830
2006	64167	29804	59664	70189	69833	37144	15380	9474	5086	6471	273241
2007	51547	84930	36350	59324	54367	43496	23759	8154	5123	7306	237880
2008	14184	53666	110158	34152	45197	32227	21306	13480	4952	8208	269679
2009	5459	15338	80253	97837	30892	37389	23722	11944	9721	8293	300051
2010	22572	5754	15724	61866	73058	20337	22687	15793	8211	13227	230904
2011	26164	23118	5922	13257	43781	47549	12617	14496	9776	14956	162354
2012	30959	42500	45038	5643	10847	31272	30774	7501	9638	16607	157319

MODEL 1: Fall spawner fishing mortality for the ADAPT calibration using only the gillnet Table 42. CPUE age disaggregated indices in the model.

Tableau 42. MODÈLE 1: Mortalité par la pêche des géniteurs d'automne à partir de l'étalonnage ADAPT utilisant seulement les indices des PUE en nombre-à-l'âge des filets maillants.

Age	2	3	4	5	6	7	8	9	10	11+	Av (5-10)
1978	0.011	0.214	0.503	0.655	0.491	0.440	1.092	0.356	0.724	0.724	0.699
1979	0.016	0.100	0.260	0.352	0.599	0.537	0.653	0.873	0.763	1.373	0.529
1980	0.010	0.176	0.316	0.785	0.791	1.232	1.197	1.680	1.438	0.540	0.906
1981	0.003	0.064	0.190	0.199	0.176	0.247	0.729	0.596	0.663	0.121	0.223
1982	0.002	0.030	0.095	0.185	0.226	0.254	0.306	0.744	0.525	0.187	0.203
1983	0.001	0.013	0.099	0.092	0.206	0.173	0.269	0.313	0.291	0.228	0.146
1984	0.001	0.007	0.073	0.098	0.112	0.137	0.158	0.135	0.147	0.109	0.110
1985	0.001	0.006	0.040	0.125	0.148	0.156	0.242	0.624	0.433	0.016	0.153
1986	0.002	0.008	0.124	0.117	0.204	0.231	0.214	0.212	0.213	0.378	0.185
1987	0.006	0.036	0.092	0.153	0.186	0.307	0.306	0.344	0.325	0.705	0.232
1988	0.014	0.018	0.098	0.156	0.168	0.219	0.222	0.229	0.226	0.376	0.181
1989	0.001	0.006	0.099	0.151	0.166	0.179	0.170	0.210	0.190	0.188	0.169
1990	0.000	0.010	0.150	0.208	0.250	0.479	0.324	0.358	0.341	0.227	0.327
1991	0.000	0.011	0.095	0.119	0.114	0.157	0.205	0.139	0.172	0.174	0.146
1992	0.000	0.005	0.044	0.153	0.185	0.163	0.177	0.232	0.204	0.286	0.167
1993	0.002	0.012	0.046	0.123	0.141	0.135	0.116	0.119	0.117	0.126	0.130
1994	0.000	0.002	0.057	0.184	0.306	0.432	0.354	0.453	0.403	0.338	0.349
1995	0.000	0.006	0.068	0.294	0.455	0.602	0.632	0.539	0.586	0.405	0.467
1996	0.001	0.011	0.112	0.331	0.482	0.568	0.576	0.634	0.605	0.398	0.494
1997	0.001	0.016	0.128	0.393	0.357	0.416	0.367	0.353	0.360	0.212	0.387
1998	0.000	0.003	0.091	0.293	0.518	0.513	0.671	0.498	0.584	0.395	0.449
1999	0.002	0.017	0.104	0.419	0.695	0.648	0.791	0.805	0.798	0.221	0.545
2000	0.002	0.019	0.131	0.378	0.458	0.479	0.451	0.479	0.465	0.081	0.406
2001	0.003	0.025	0.134	0.301	0.387	0.464	0.444	0.288	0.366	0.108	0.353
2002	0.001	0.009	0.151	0.264	0.336	0.375	0.351	0.303	0.327	0.104	0.317
2003	0.000	0.012	0.091	0.340	0.306	0.446	0.690	0.593	0.642	0.155	0.397
2004	0.001	0.009	0.088	0.151	0.283	0.250	0.333	0.414	0.373	0.102	0.226
2005	0.003	0.010	0.060	0.252	0.299	0.514	0.326	0.470	0.398	0.056	0.312
2006	0.001	0.009	0.041	0.202	0.319	0.270	0.456	0.406	0.431	0.106	0.279
2007	0.002	0.021	0.055	0.118	0.314	0.445	0.333	0.306	0.319	0.091	0.275
2008	0.009	0.021	0.069	0.113	0.165	0.280	0.585	0.222	0.404	0.161	0.242
2009	0.003	0.045	0.102	0.176	0.225	0.323	0.220	0.180	0.200	0.117	0.211
2010	0.000	0.034	0.143	0.220	0.280	0.315	0.282	0.286	0.284	0.079	0.263
2011	0.003	0.002	0.136	0.243	0.262	0.377	0.410	0.244	0.327	0.141	0.312

Table 43. MODEL 1: Input parameters for 2012 fall spawner catch projections from the ADAPT calibration using only the gillnet CPUE age disaggregated index in the model formulations.

Tableau 43. MODÈLE 1: Paramètres d'entrée pour les projections des géniteurs d'automne 2012 des prises à partir de l'étalonnage ADAPT utilisant seulement l'indice des PUE en nombre-à-l'âge des filets maillants.

CPUE (Number / net*hauls-day) / PUE (Nombre / filets*levées-jour)

			•			Population
		Natural		Beginning of year		(numbers /
	Maturity	mortality	Partial	weights /		nombres)
	1	/	recruitment /	poids début de		x 10 ³
	maturité	Mortalité	Recrutement	l'année	/ poids moyen	January / janvier
Age		naturelle	partiel	(kg)	(kg)	2012
2	0	0.2	0.026	0.051	0.085	386343
3	0	0.2	0.14	0.089	0.117	410036
4	1	0.2	0.44	0.123	0.164	295414
5	1	0.2	1	0.181	0.192	31107
6	1	0.2	1	0.213	0.217	50976
7	1	0.2	1	0.230	0.234	135886
8	1	0.2	1	0.249	0.253	123715
9	1	0.2	1	0.263	0.264	28486
10	1	0.2	1	0.267	0.270	36163
11+	1	0.2	1	0.274	0.278	60613

Table 44. MODEL 1: Fall spawner catch and population projections from the ADAPT calibration using only the gillnet CPUE age disaggregated index in the model formulations.

Tableau 44. MODÈLE 1 : Projections des captures et de la population des géniteurs d'automne à partir de l'étalonnage ADAPT utilisant seulement l'indice des PUE en nombre-à-l'âge des filets maillants.

CPUE (Number / net*hauls-day) / PUE (Nombre / filets*levées-jour)

	Catch (numbers) /	Catch (biomass) /	Population	Population
Age	Captures (nombres)	Captures	(numbers / nombres)	(biomass / biomasse) (t)
	$(x 10^3)$	(biomasse) (t)	$(x 10^3)$	
	2012	2012	2013	2013
2	2902	247	386343	19703
3	16294	1906	313690	27918
4	35248	5781	321001	39483
5	7762	1490	210099	38028
6	12720	2760	18494	3939
7	33907	7934	30306	6970
8	30870	7810	80787	20116
9	7108	1876	73551	19344
10	9024	2436	16935	4522
11+	15124	4205	57535	15765
2+		36446		195789
3+		36199		176085
4+		34293		148167

Table 45. MODEL 2: Diagnostics of fall spawner ADAPT-VPA results using the gillnet CPUE age-disaggregated indices and the acoustic survey index (ages 2-3) in the model formulations (parameters are in linear scale).

Tableau 45. MODÈLE 2 : Données diagnostiques pour l'étalonnage du modèle ADAPT-ASP des géniteurs d'automne avec l'indice des PUE en nombre-à-l'âge des filets maillants et l'index acoustique (âges 2-3) (les paramètres sont sur une échelle linéaire).

APPROXIMATE STATISTICS ASSUMING LINEARITY NEAR SOLUTION STATISTIQUES APPROXIMATIVES SUPPPOSANT UNE RELATION LINÉAIRE PRÈS DE LA SOLUTION

CPUE (Number / net*hauls-day), ACOUSTIC (ages 2-3) PUE (Nombre / filets*levées-jour), ACOUSTIQUE (âges 2-3)

MEAN SQUARE RESIDUALS	/ CARRÉS MOY	<u>'ENS DES R</u>	ÉSIDUS:	0.337	
Age	Parameter	Standard	Relative	Bias /	Relative bias /
	_estimate/	error /	error /	biais	Biais relatif
	Paramètre	erreur-type	erreur		
-	estimé		relative		
Population estimates in 2012 /	Valeur estimées	de population	on en 2012		
N[2012 3]	272324	163267	0.6	49746	0.183
N[2012 4]	205654	87416	0.425	19170	0.093
N[2012 5]	176811	62430	0.353	11254	0.064
N[2012 6]	125565	42580	0.339	6723	0.054
N[2012 7]	148064	55799	0.377	8346	0.056
N[2012 8]	153260	60214	0.393	8718	0.057
N[2012 9]	30242	11122	0.368	1915	0.063
N[2012 10]	34226	11767	0.344	1869	0.055
Catchability / Capturabilité					
Gillnet CPUE disaggregated ag	ges 4-10 / PUE f	ilets maillant	s âges 4-10		
q CPUE age 4	0.00018	0.00002	0.117	0.000001	0.005
q CPUE age 5	0.00056	0.00007	0.116	0.000003	0.006
q CPUE age 6	0.00083	0.00010	0.116	0.000005	0.006
q CPUE age 7	0.00102	0.00012	0.117	0.000007	0.007
q CPUE age 8	0.00104	0.00012	0.118	0.000007	0.007
q CPUE age 9	0.00096	0.00011	0.118	0.000008	0.008
q CPUE age 10	0.00096	0.00011	0.118	0.000008	0.009
Acoustic survey disaggregated	ages 2-3 / Rele	evé acoustiqu	ue âges 2-3		
q Acoust. age 2	0.00011	0.00002	0.148	0.000001	0.008
q Acoust. age 3	0.00022	0.00003	0.144	0.000002	0.007

Table 46. MODEL 2: Fall spawner population numbers (x1000) at beginning of year from ADAPT calibration using the gillnet CPUE age disaggregated indices and the acoustic survey index (ages 2-3) in the model.

Tableau 46. MODÈLE 2 : Effectifs de la population (x1000) des géniteurs d'automne au début de l'année à partir de la formulation ADAPT d'après les indices des PUE en nombre-à-l'âge des filets maillants et l'index acoustique (âges 2-3).

Age	2	3	4	5	6	7	8	9	10	11+	Total 4-11
1978	136403	135162	79597	57539	14721	18461	32397	7050	2980	42612	255357
1979	416247	110420	89375	39426	24477	7374	9733	8902	4044	18102	201433
1980	350830	335405	81797	56399	22708	11009	3530	4147	3045	5299	187934
1981	494850	284518	230273	48840	21069	8428	2630	873	633	3120	315866
1982	694855	404079	218411	155947	32774	14468	5391	1039	394	2531	430955
1983	379563	567979	320904	162683	106108	21412	9192	3251	404	1910	625864
1984	488816	310559	459126	237856	121541	70707	14738	5750	1946	1492	913156
1985	730388	399849	252489	349576	176630	88931	50485	10301	4114	2471	934997
1986	452878	597692	325470	198556	252506	124674	62324	32437	4519	4176	1004662
1987	293487	370126	485683	235306	144603	168545	81056	41197	21491	5334	1183215
1988	309931	238797	292187	362816	165391	98322	101481	48869	23918	14873	1107857
1989	1062815	250182	192038	216958	254137	114476	64668	66522	31806	23986	964591
1990	649831	869412	203562	142382	152672	176263	78337	44660	44149	37804	879829
1991	199400	531960	704671	143408	94668	97353	89343	46379	25551	50371	1251744
1992	523853	163254	430747	524805	104247	69169	68093	59582	33031	52257	1341931
1993	193228	428855	133042	337522	368790	70903	48133	46716	38692	54173	1097971
1994	512551	157921	347084	104055	244331	262142	50740	35086	33971	67262	1144671
1995	328356	419628	129036	268502	70887	147268	139289	29168	18261	57838	860249
1996	507842	268815	341404	98742	163853	36822	66035	60600	13926	39898	821280
1997	853800	415434	217634	249856	58047	82869	17087	30394	26323	28160	710370
1998	665981	698645	334726	156707	138090	33253	44749	9690	17485	33694	768394
1999	502902	545213	570546	250191	95732	67316	16301	18729	4822	26568	1050205
2000	743902	411097	438862	420929	134741	39111	28817	6049	6854	19223	1094586
2001	719736	608126	330115	315269	236073	69741	19823	15018	3067	18035	1007141
2002	969566	587440	485448	236373	190993	131136	35883	10404	9216	14996	1114449
2003	721545	792882	476467	341498	148470	111648	73754	20670	6290	16504	1195301
2004	566517	590570	641042	355865	198683	89380	58441	30205	9330	14269	1397215
2005	357027	463356	479356	480201	250199	122401	56906	34221	16315	15799	1455398
2006	1104189	291445	375328	369332	305039	151375	59705	33528	17440	21163	1332910
2007	688059	903093	236438	294397	246512	180896	94258	30796	18191	24804	1126292
2008	327199	561988	724983	183125	213289	146858	94153	54971	18459	29280	1465118
2009	312427	266637	450904	556549	133931	147039	90411	42235	35836	30338	1487243
2010	279079	255632	213164	333903	387120	87491	85570	59119	28667	45911	1240945
2011	273310	228485	207769	162332	220391	245818	52247	51695	36062	52032	1028346
2012	516103*	222578	186483	165557	118841	139719	144542	28327	32357	57747	873573

^{*} SSB 2010 multiplied by mean (2005-2009) age 2 survival ratio (number / SSB) BSR 2010 multipliée par le taux moyen (2005-2009) de survie (nombre / BSR) des âges 2

Table 47. MODEL 2: Fall spawner population biomass (t) at beginning of year from ADAPT calibration using the gillnet CPUE age disaggregated indices and the acoustic survey index (ages 2-3) in the model. Tableau 47. MODÈLE 2: Biomasse (t) de la population des géniteurs d'automne au début de l'année d'après les indices des PUE en nombre-à-l'âge des filets maillants et l'index acoustique (âges 2-3).

Age	2	3	4	5	6	7	8	9	10	11+	Total 4-11
1978	10069	15736	15617	13688	4016	5001	10530	2253	873	16566	68544
1979	46565	14789	16806	9674	6769	2178	3147	3182	1418	6331	49505
1980	29063	45591	15123	13649	6012	3273	1145	1543	1170	2092	44007
1981	45356	41846	44378	11703	6210	2645	908	305	271	1316	67736
1982	48773	57833	49089	41799	10320	5277	2050	410	148	1148	110241
1983	29404	72683	65765	43211	31726	7140	3446	1204	151	798	153441
1984	32926	42345	93254	60335	35322	22844	5331	2249	746	624	220706
1985	47023	54120	51878	90861	51936	29202	17895	4039	1723	1070	248604
1986	54430	74694	70293	51092	75458	41971	22740	12250	1854	1793	277451
1987	25738	66229	100555	61425	42960	55358	29350	15808	8334	2259	316050
1988	21769	34125	69075	96142	49536	32096	36139	18545	9438	5960	316931
1989	77396	32079	40879	58557	76413	37916	22744	24821	12591	9775	283696
1990	63030	116541	41536	37291	46227	58430	27749	16568	17161	15631	260593
1991	14988	69166	140432	35249	26754	31509	30983	16869	9562	20151	311509
1992	27939	18438	75975	121554	27330	20307	22443	20521	11737	19442	319307
1993	11034	41113	20781	74376	92722	19410	14592	15598	13044	19469	269991
1994	37806	15934	53497	21265	59184	70034	14775	11237	11634	23883	265510
1995	17561	42468	20346	53316	16249	38298	39350	9222	6253	21086	204120
1996	35306	26363	52368	20424	37717	9213	18811	18378	4698	14785	176393
1997	55784	47738	35008	53239	14059	21237	4795	9373	8624	10392	156728
1998	38623	71148	58447	33077	33433	8912	12308	3002	5683	11943	166803
1999	26418	53873	90239	54625	22681	17683	4662	5468	1602	9133	206093
2000	43807	40021	70244	89101	32647	10078	8154	1818	2116	6719	220877
2001	40586	60680	53629	66974	55864	18160	5467	4430	953	5686	211165
2002	63164	64113	80467	51189	45886	34227	9996	3103	2826	4885	232580
2003	45967	85547	81248	74809	35808	28835	20674	6103	2023	5428	254929
2004	36372	60822	103922	72444	46186	22452	15812	8728	2823	4652	277019
2005	21422	46357	70529	97354	56386	29805	15032	9630	4809	4991	288536
2006	68471	29751	57711	69544	69158	36690	15221	9372	5033	6427	269155
2007	52341	90633	36284	57300	53756	42919	23379	8021	5041	7226	233926
2008	26359	54495	117712	34086	43463	31731	20866	13179	4842	8079	273959
2009	25295	28619	81518	105025	30826	35698	23241	11504	9451	8100	305362
2010	22102	26724	29966	62946	79456	20282	21272	15394	7849	12828	249993
2011	21931	22637	28258	27104	44732	53050	12570	13298	9448	14336	202796
2012	41357	23070	28431	30031	25288	32155	35954	7459	8623	15821	183763

Table 48. MODEL 2: Fall spawner fishing mortality for the ADAPT calibration using the gillnet CPUE age disaggregated indices and the acoustic survey index (ages 2-3) in the model.

Tableau 48. MODÈLE 2: Mortalité par la pêche des géniteurs d'automne à partir de l'étalonnage ADAPT d'après les indices des PUE en nombre-à-l'âge des filets maillants et l'index acoustique (âges 2-3).

Age	2	3	4	5	6	7	8	9	10	11+	Av (5-10)
1978	0.011	0.214	0.503	0.655	0.491	0.440	1.092	0.356	0.724	0.724	0.699
1979	0.016	0.100	0.260	0.352	0.599	0.537	0.653	0.873	0.763	1.373	0.529
1980	0.010	0.176	0.316	0.785	0.791	1.232	1.197	1.680	1.438	0.540	0.906
1981	0.003	0.064	0.190	0.199	0.176	0.247	0.729	0.596	0.663	0.121	0.223
1982	0.002	0.030	0.095	0.185	0.226	0.254	0.306	0.744	0.525	0.187	0.203
1983	0.001	0.013	0.099	0.092	0.206	0.173	0.269	0.313	0.291	0.228	0.146
1984	0.001	0.007	0.073	0.098	0.112	0.137	0.158	0.135	0.147	0.109	0.110
1985	0.001	0.006	0.040	0.125	0.148	0.156	0.242	0.624	0.433	0.016	0.153
1986	0.002	0.008	0.124	0.117	0.204	0.231	0.214	0.212	0.213	0.378	0.185
1987	0.006	0.036	0.092	0.153	0.186	0.307	0.306	0.344	0.325	0.705	0.232
1988	0.014	0.018	0.098	0.156	0.168	0.219	0.222	0.229	0.226	0.376	0.181
1989	0.001	0.006	0.099	0.151	0.166	0.179	0.170	0.210	0.190	0.188	0.169
1990	0.000	0.010	0.150	0.208	0.250	0.479	0.324	0.358	0.341	0.227	0.327
1991	0.000	0.011	0.095	0.119	0.114	0.157	0.205	0.139	0.172	0.174	0.146
1992	0.000	0.005	0.044	0.153	0.185	0.163	0.177	0.232	0.204	0.287	0.167
1993	0.002	0.012	0.046	0.123	0.141	0.135	0.116	0.119	0.117	0.126	0.130
1994	0.000	0.002	0.057	0.184	0.306	0.432	0.354	0.453	0.403	0.338	0.349
1995	0.000	0.006	0.068	0.294	0.455	0.602	0.632	0.539	0.586	0.405	0.467
1996	0.001	0.011	0.112	0.331	0.482	0.568	0.576	0.634	0.605	0.398	0.494
1997	0.001	0.016	0.128	0.393	0.357	0.416	0.367	0.353	0.360	0.212	0.387
1998	0.000	0.003	0.091	0.293	0.518	0.513	0.671	0.498	0.584	0.395	0.449
1999	0.002	0.017	0.104	0.419	0.695	0.648	0.791	0.805	0.798	0.221	0.545
2000	0.002	0.019	0.131	0.378	0.459	0.480	0.452	0.479	0.466	0.081	0.407
2001	0.003	0.025	0.134	0.301	0.388	0.465	0.445	0.288	0.366	0.108	0.354
2002	0.001	0.009	0.152	0.265	0.337	0.376	0.352	0.303	0.327	0.104	0.318
2003	0.000	0.013	0.092	0.342	0.307	0.447	0.693	0.595	0.644	0.156	0.398
2004	0.001	0.009	0.089	0.152	0.284	0.251	0.335	0.416	0.376	0.102	0.227
2005	0.003	0.011	0.061	0.254	0.302	0.518	0.329	0.474	0.402	0.057	0.315
2006	0.001	0.009	0.043	0.204	0.323	0.274	0.462	0.411	0.437	0.106	0.282
2007	0.002	0.020	0.056	0.122	0.318	0.453	0.339	0.312	0.326	0.092	0.282
2008	0.005	0.020	0.064	0.113	0.172	0.285	0.602	0.228	0.415	0.164	0.248
2009	0.001	0.024	0.100	0.163	0.226	0.341	0.225	0.188	0.206	0.120	0.206
2010	0.000	0.007	0.072	0.215	0.254	0.316	0.304	0.294	0.299	0.082	0.254
2011	0.005	0.003	0.027	0.112	0.256	0.331	0.412	0.269	0.340	0.148	0.265

Table 49. MODEL 2: Input parameters for 2012 fall spawner catch projections from the ADAPT calibration using the gillnet CPUE age disaggregated index and the acoustic survey index (ages 2-3) in the model formulations.

Tableau 49. MODÈLE 2 : Paramètres d'entrée pour les projections des géniteurs d'automne 2012 des prises à partir de l'étalonnage ADAPT d'après l'indice des PUE en nombre-à-l'âge des filets maillants et l'index acoustique (âges 2-3).

CPUE (Number / net*hauls-day), ACOUSTIC (ages 2-3) PUE (Nombre / filets*levées-jour), ACOUSTIQUE (âges 2-3)

						Population
		Natural		Beginning of year		(numbers /
	Maturity	mortality	Partial	weights /		nombres)
	/	/	recruitment /	Poids début de .	Average weight	x 10 ³
	Maturité	Mortalité	Recrutement	l'année l	/ Poids moyen	January / Janvier
Age		naturelle	partiel	(kg)	(kg)	2012
2	0	0.2	0.013	0.051	0.085	516103
3	0	0.2	0.08	0.089	0.117	222578
4	1	0.2	0.28	0.123	0.164	186483
5	1	0.2	1	0.181	0.192	165557
6	1	0.2	1	0.213	0.217	118841
7	1	0.2	1	0.230	0.234	139719
8	1	0.2	1	0.249	0.253	144542
9	1	0.2	1	0.263	0.264	28327
10	1	0.2	1	0.267	0.270	32357
11+	1	0.2	1	0.274	0.278	57747

Table 50. MODEL 2: Fall spawner catch and population projections from the ADAPT calibration using the gillnet CPUE age disaggregated index and the acoustic survey index (ages 2-3) in the model formulations.

Tableau 50. MODÈLE 2 : Projections des captures et de la population des géniteurs d'automne à partir de l'étalonnage ADAPT d'après l'indice des PUE en nombre-à-l'âge des filets maillants et l'index acoustique (âges 2-3).

CPUE (Number / net*hauls-day), ACOUSTIC (ages 2-3) PUE (Nombre / filets*levées-jour), ACOUSTIQUE (âges 2-3)

	Catch (numbers) /	Catch (biomass) /	Population	Population
Age	Captures (nombres)	Captures	(numbers / nombres)	(biomass / biomasse) (t)
	$(x 10^3)$	(biomasse) (t)	$(x 10^3)$	
	2012	2012	2013	2013
2	1942	165	516103	26321
3	5101	597	420795	37451
4	14507	2379	177626	21848
5	41311	7932	139595	25267
6	29654	6435	98427	20965
7	34863	8158	70654	16250
8	36067	9125	83066	20683
9	7068	1866	85933	22600
10	8074	2180	16841	4497
11+	14409	4006	53569	14678
2+		42842		210560
3+		42677		184239
4+		42081		146788

FIGURES

Figure 1. Southern Gulf of St. Lawrence herring fishery management zones (upper) and Northwest Atlantic Fisheries Organization (NAFO) divisions 4T and 4Vn with 4T unit areas (lower). Figure 1. Zones de gestion de la pêche au hareng dans le sud du golfe du Saint-Laurent (haut) et divisions 4T et 4Vn avec sous-divisions de 4T de l'Organisation des Pêches de l'Atlantique Nord-Ouest (OPANO).

Figure 2. Combined spring and fall 4T herring landings compared to the overall spring and fall 4T TAC (last year's data are preliminary).

Figure 2. Débarquements combinés de hareng de printemps et d'automne de 4T avec le TAC global du printemps et de l'automne (données de la dernière année sont préliminaires).

Figure 3. Spring and fall seasons combined 4T herring landings by fleet sector.
Figure 3. Débarquements combinés des saisons du printemps et de l'automne du hareng de 4T par flottille de pêche.

Figure 4. Location of sets by large seiners under quota monitoring in the 2010 and 2011 fishery (triangles=fall, diamonds=spring).

Figure 4. Emplacement des déploiements de sennes des grands senneurs dans 4T en 2010 et 2011 (triangles=automne, losanges=printemps).

Figure 5. Southern Gulf of St. Lawrence geographic areas used in the telephone survey of the herring gillnet fishery.

Figure 5. Divisions géographiques du sud du golfe du Saint-Laurent utilisées lors du sondage téléphonique des pêcheurs de hareng aux filets maillants.

Figure 6. Comparison of ages obtained during the validation test with the original ages assigned and between readers. Bars indicate 95% confidence intervals.

Figure 6. Comparaison des âges obtenus lors du test de validation avec les âges originaux et entre les lecteurs. Les lignes indiquent l'intervalle de confiance à 95%.

Figure 7a. Surveyed transects covered during the 2010 acoustic survey (lines). Figure 7a. Transects effectués lors du relevé acoustique 2010 (lignes).

Figure 7b. Surveyed transects covered during the 2011 acoustic survey (lines).

Figure 7b. Transects effectués lors du relevé acoustique 2011 (lignes).

Figure 8a. 2010 acoustic survey relative biomass ranges detected in the Chaleurs-Miscou area (circles).
Figure 8a. Échelle de biomasse relative établie au cours du relevé acoustique 2010 dans la zone Chaleurs-Miscou (cercles).

Figure 8b. 2010 Acoustic survey relative biomass ranges detected in north Prince Edward Island (circles). Figure 8b. Estimations de biomasse relative du relevé acoustique 2010 du nord de l'Île-du-Prince-Édouard (cercles).

Figure 9. 2011 acoustic survey relative biomass ranges detected in the Chaleurs-Miscou area (circles).

Figure 9. Échelle de biomasse relative établie au cours du relevé acoustique 2011 dans la zone Chaleurs-Miscou (cercles).

Figure 10. Acoustic survey biomass index, combined spring and fall spawners, of all strata from Chaleurs-Miscou (solid line) compared to Chaleurs-Miscou strata consistently surveyed in each year since 1994 (dotted line)(error bars ± 2 S.E.).

Figure 10. Indice de la biomasse du relevé acoustique des géniteurs de printemps et d'automne, combinés de toutes les strates Chaleurs-Miscou (ligne continue) comparativement aux strates Chaleurs-Miscou qui ont fait constamment l'objet d'un relevéannuel depuis 1994 (ligne pointillée) (± 2 erreurs-type).

Figure 11. Acoustic survey Chaleurs-Miscou herring distribution, density and biomass estimates 2006-2011. Yellow circles represent 0 to 0.15 kg per m^2 ; red circles represent 0.15 to 10 kg per m^2 . Figure 11. Distribution, densité et estimée de biomasse du hareng dans Chaleurs-Miscou, relevé acoustique 2006-2011. Les cercles jaunes représentent 0,1 à 0,15 kg par m^2 ; les cercles rouges représentent 0,15 à 10 kg par m^2 .

Figure 12. Atlantic herring catches (kg/tow) in the southern Gulf of St. Lawrence September bottom-trawl surveys from 2006 to 2011.

Figure 12. Prises de hareng (kg/trait) dans les relevés au chalut de fond de septembre effectués dans le sud du golfe du Saint-Laurent de 2006 à 2011.

Figure 13. Length frequencies (mean number per tow) of Atlantic herring in the southern Gulf of St. Lawrence September bottom-trawl surveys in 4T from 2006-2011. The vertical line indicates the regulated minimum size in the fishery (26 cm total length).

Figure 13. Distributions des fréquences de longueur (nombre moyen par trait) du hareng dans les relevés de septembre au chalut de fond du Sud du golfe du Saint-Laurent dans 4T de 2006 à 2011. Le trait vertical indique la taille réglementaire minimale (26 cm longueur totale).

Figure 14. Spring cumulative indices of opinion on abundance by area from the telephone survey. Figure 14. Indices cumulatifs d'opinion sur l'abondance au printemps par région d'après le sondage téléphonique.

Figure 15. Catch-at-age of spring spawner component from the fishery, all gears combined. Bubbles represent numbers-at-age of total catch, line represents most recent strong year-class (1991). Figure 15. Prises selon l'âge de la composante des géniteurs de printemps dans la pêche pour tous les engins. La taille des cercles représente le nombre-à l'âge de la prise total, la ligne indique la plus récente forte classe-d'âge (1991).

Figure 16. Catch-at-age (2004 to 2011) of spring spawner component from the fishery, all gears combined. The clear part of the bars are mobile gear catches, and the grey part are fixed gear catches. Figure 16. Prises selon l'âge (2004 à 2011) de la composante des géniteurs de printemps dans la pêche. Les sections claires des barres représentent les prises des engins mobiles et les sections grises des barres celles des engins fixes.

Figure 17. Mean weight-at-age of spring spawners for fixed and mobile commercial gears and the acoustic survey, ages 3 (bottom line) to 10 (top line).

Figure 17. Poids moyen selon l'âge des géniteurs de printemps pour les engins de pêche fixes et mobiles ainsi que pour le relevé acoustique, âges 3 (ligne du bas) à 10 (ligne du haut).

Figure 18. Gillnet catch rates (CPUE) of spring spawners from all areas with fishing activity reported through dockside monitoring in April and May (aggregated by day and area and weighted by the catch for that area). Error bars indicate approximate 95% confidence intervals.

Figure 18. Taux de capture des filets maillants (PUE) des géniteurs de printemps de toutes les régions avec débarquements comptabilisés par vérification à quai en avril et mai (pondérés par les prises et regroupés par jour et par région) avec intervalles de confiance approximative (95%).

Figure 19. Regression of age-class abundance of spring spawners from one year to the next. The data are from gillnet catch rates CPUE (kg/net-day) as numbers of herring.

Figure 19. Régression de l'abondance des classes-d'âge des géniteurs de printemps avec un délai d'un an. Les données proviennent des taux de capture PUE (kg/filet-jour) des filets maillants en nombre.

Figure 20. Numbers-at-age (2004 to 2011) of the spring spawner component for same strata covered in the Chaleurs-Miscou area during the acoustic survey.

Figure 20. Nombre selon l'âge (2004 à 2011) de la composante des géniteurs de printemps selon le relevé acoustique, pour les mêmes strates de la zone Chaleurs-Miscou.

Figure 21. Spring spawner regression of age-class abundance (numbers x 10 5) from one year to the next. The data are from catch-at-age of the acoustic survey Chaleurs-Miscou same stratum surveyed from 1994 to 2011.

Figure 21. Régression de l'abondance des classes-d'âge (nombres x 10⁵) d'une année à l'autre pour les géniteurs de printemps. Les données proviennent des prises selon l'âge du relevé acoustique pour les strates de Chaleurs-Miscou de 1994 à 2011.

Figure 22. Acoustic survey index of spring spawner component from strata consistently surveyed in each year since 1994 (number in millions of fish).

Figure 22. Indice des géniteurs de printemps dans le relevé acoustique dans les strates qui ont fait l'objet d'un relevé annuel depuis 1994 (nombre en millions de poissons).

Figure 23. Spring index of opinion on abundance from the telephone survey for all areas combined, weighted by the catch in each area.

Figure 23. Indice d'opinion sur l'abondance au printemps d'après le sondage téléphonique de toutes les régions combinées, pondéré par les prises dans chaque région.

Figure 24. Gillnet catch rates (CPUE kg/net-day), acoustic survey index (age 4-8 numbers), and telephone survey opinion index of the spring spawner component.

Figure 24. Taux de capture des filets maillants (PUE kg/filet-sortie), indice du relevé acoustique (nombre d'âges 4-8), et l'indice d'opinion du sondage de la composante des géniteurs de printemps.

Figure 25. Residuals for the ADAPT calibration of the spring spawner SPA using the age disaggregated gillnet CPUE and acoustic survey indices. Circles indicate relative residual size (black + white –). Figure 25. Résidus de l'étalonnage ADAPT de l'ASP des géniteurs de printemps avec l'indice par âge des PUE et du relevé acoustique. Les cercles indiquent la valeur relative des résidus (noir + blanc -).

Figure 26. Comparison of CPUE and acoustic indices, corrected for catchability, and the model estimates of population abundance for 4T spring spawner herring component.

Figure 26. Comparaison des indices des PUE et du relevé acoustique, ajustés pour la capturabilité, et les estimés de l'abondance de la population du modèle pour la composante des géniteurs du printemps du hareng 4T.

Figure 27. Retrospective patterns (ages 5 – 10) in the spring spawner ADAPT-SPA using the agedisaggregated gillnet CPUE and acoustic survey indices. Figure 27. Tendances rétrospectives (âges 5 – 10) dans ADAPT-ASP des géniteurs de printemps avec l'indice par âge des PUE et du relevé acoustique.

Figure 28. Survival ratio (age n abundance in year t / SSB in year t-n) for spring spawner recruits.

Figure 28. Taux de survie (abondance de l'âge n pour l'année t / BSR pour l'année t-n) pour les recrues des géniteurs de printemps.

Figure 29. Spring population numbers (ages 4+) and recruitment at age 4 (top: age 4 in 2012 = SSB 2008 x mean age 4 survival ratio from 2007-2011) ages 4+ biomass (center) and exploitation rate (ages 6-8) (bottom) from the ADAPT calibration.

Figure 29. Effectifs de la population du printemps (âges 4+) et recrutement à quatre ans (haut : âge 4 en 2012 = BSR en 2008 x ratio de la moyenne de survie des âges 4 de 2007-2011) biomasse des âges 4+ (centre) et taux d'exploitation (âges 6-8) (bas) par étalonnage ADAPT.

Figure 30. Spring spawning herring stock biomass trajectory and limit reference points. Arrow represents 2012 SSB estimate.

Figure 30. Trajectoire de la biomasse reproductive et les points de référence limites pour les harengs géniteurs de printemps. La flèche indique l'estimé de la BSR pour 2012.

Figure 31. Risk analyses for spring spawning herring using ages 4+.
Figure 31. Analyse de risque pour les harengs géniteurs du printemps avec âges 4+.

SSB/BSR < 22000 t (Blim)

Figure 32. Exploitation rate and change in biomass for various levels of catch for spring spawning herring.

Figure 32. Changements dans le taux d'exploitation et la biomasse pour différents niveaux de prises des harengs géniteurs de printemps.

Figure 33. Probability that spawning stock biomass (SSB) of the spring-spawning component will be below Blim (left panel) and of an increase in SSB relative to 2012 (right panel) in 2013 and 2014 at various catch levels.

Figure 33. La probabilité que la biomasse du stock reproducteur (BSR) des reproducteurs de printemps soit en dessous de Blim (à gauche) et que la BSR soit plus élevée en 2013 et 2014 qu'en 2012 (à droite), avec des niveaux de prises fixes en 2012 et 2013.

Figure 34. Fall cumulative indices of opinion on abundance by area from the telephone survey. Figure 34. Indices cumulatifs d'opinion sur l'abondance par région à l'automne d'après le sondage téléphonique.

Figure 35. Catch-at-age of fall spawner component from the fishery, all gears combined. Bubble size is proportional to numbers-at-age of total catch.

Figure 35. Prises selon l'âge de la composante des géniteurs d'automne dans le cadre de la pêche pour tous les engins combinés. La taille de cercles est proportionelle aux nombres-à-l'âge de les prises totales.

Figure 36. Catch-at-age (2004 to 2011) of fall spawner component from the fishery, all gears combined. Clear portion of bars are mobile gear catches, grey portion of bars are fixed gear catches. Figure 36. Prises selon l'âge (2004 à 2011) de la composante des géniteurs d'automne de la pêche, pour tous les engins combinés. Les barres claires représente les prises des engins mobiles, les barres grises celles des engins fixes.

Figure 37. Mean weight-at-age of fall spawners for fixed and mobile commercial gears and the acoustic survey ages 3 (bottom line) to 10 (top line).

Figure 37. Poids moyens selon l'âge des géniteurs d'automne pour les engins de pêche fixes et mobiles ainsi que le relevé acoustique âges 3 (ligne du bas) à 10 (ligne du haut).

Figure 38. Fall index of opinion on abundance from the telephone survey, for all areas combined, weighted by the catch in each area.

Figure 38. Indice d'opinion sur l'abondance à l'automne d'après le sondage téléphonique pour toutes les régions, pondéré par les prises dans chaque région.

Figure 39. Numbers-at-age (2004 to 2011) of fall spawner component from acoustic survey, Chaleurs-Miscou area, for same strata consistently surveyed since 1994.

Figure 39. Nombre selon l'âge (2004 à 2011) de la composante des géniteurs d'automne selon le

relevé acoustique, pour la zone Chaleurs-Miscou, incluant les strates faisant l'objet d'un relevé annuel depuis 1994.

Figure 40. Regression of age-class abundance of fall spawners from one year to the next. The data are from acoustic survey Chaleurs-Miscou same strata surveyed from 1994 to 2011. Catch-at-age in numbers ($x ext{ } 10^5$).

Figure 40. Régression de l'abondance des classes-d'âge des géniteurs d'automne avec un délai d'un an. Les données proviennent des prises selon l'âge du relevé acoustique pour les strates de Chaleurs-Miscou entre 1994 à 2011, en nombres (x 10 5).

Figure 41. Acoustic survey index of fall spawner component (millions of fish). Data from Chaleurs-Miscou strata consistently surveyed each year since 1994.

Figure 41. Indice des géniteurs d'automne dans le relevé acoustique (millions de poissons). Les données proviennent des strates de Chaleurs-Miscou qui ont fait l'objet d'un relevé annuel depuis 1994.

Figure 42. Average number of standard gillnets of 15 fathoms (nets) and number of net-hauls (net*hauls) from the telephone survey used in the main fishing areas of the fall inshore gillnet fishery. Figure 42. Nombre moyen de filets maillants ordinaires de 15 brasses (filets) et de filets-levées (filets*levées) utilisés dans les zones principales de la pêche d'automne côtière aux filets maillants provenant du sondage téléphonique.

Figure 43. Regression of age-class abundance of fall spawners from one year to the next. The data are from gillnet catch rates CPUE (kg/net*hauls-day) as numbers of herring.

Figure 43. Régression de l'abondance des classes-d'âge des géniteurs d'automne avec un délai d'un an. Les données proviennent des taux de capture PUE (kg/filet*levées-jour) des filets maillants en nombre.

Figure 44. Comparison of fall gillnet CPUE index with acoustic survey index.
Figure 44. Comparaison de l'indice PUE des filets maillants d'automne avec l'indice du relevé acoustique.

Figure 45. Fall spawner acoustic survey juvenile index (ages 2-3) (top)and gillnet catch rate (CPUE) index for 4T herring (bottom). Error bars indicate approximate 95% confidence intervals. Figure 45. Indice acoustique des juvéniles (âges 2-3) des géniteurs d'automne (haut) et indice des taux de capture des filets maillants (PUE) avec intervalles de confiance approximative de 95% (bas).

Figure 46. MODEL 1: Residuals for the ADAPT calibration of the fall spawner SPA using only the age disaggregated gillnet CPUE indices. Circles indicate relative residual size (black + white –).

Figure 46. MODÈLE 1: Résidus de l'étalonnage ADAPT de l'ASP des géniteurs d'automne utilisant seulement les indices par âge des PUE. Les cercles indiquent la valeur relative des résidus (noir +, blanc –).

Figure 47. MODEL 1: Comparison of CPUE index, corrected for catchability, and model estimates of population abundance for 4T herring fall spawner component.

Figure 47. MODÈLE 1: Comparaison de l'indice des PUE, ajustés pour la capturabilité, et les estimés de l'abondance de la population du modèle pour la composante des géniteurs d'automne du hareng 4T.

Figure 48. MODEL 1: Retrospective patterns in the fall spawner ADAPT-VPA using only the age disaggregated gillnet CPUE indices (triangles = 2012).

Figure 48. MODÈLE 1: Tendance rétrospective dans ADAPT-ASP des géniteurs d'automne utilisant seulement les indices par âge des PUE (triangles = 2012).

Figure 49. MODEL 1: Survival ratio (age n abundance in year t / SSB in year t-n) for fall spawner recruits.

Figure 49. MODÈLE 1: Taux de survie (abondance de l'âge n pour l'année t / BSR pour l'année t-n)

pour les recrus des géniteurs d'automne.

Figure 50. MODEL 1: Fall spawner population numbers (4+) and recruitment at age 4 (top), biomass (center) and age 5+ exploitation rate (bottom) from the 2010 numbers from the ADAPT calibration with only the gillnet CPUE index.

Figure 50. MODÈLE 1: Effectifs de la population (4+) des géniteurs d'automne et le recrutement à 4 ans (haut), biomasse (centre) et taux d'exploitation 5+ (bas) de l'étalonnage ADAPT utilisant seulement l'indice des PUE des filets maillants.

Figure 51. MODEL 1: Fall spawning herring spawning stock biomass trajectories and limit reference points. Arrow indicates 2012 SSB estimate.

Figure 51. MODÈLE 1: Trajectoires de la biomasse reproductive et les points de référence limites pour les harengs géniteurs d'automne. La flèche indique l'estimé de la BSR en 2012.

Figure 52. MODEL 1: Risk analyses for fall spawning herring using ages 4 to 11+.

Figure 52. MODÈLE 1: Analyse de risque pour les harengs géniteurs d'automne avec âges 4 à 11+.

probability of >5% decline in 4+ biomass - probabilité d'une diminution de >5% de la biomasse 4+
 probability of >5% increase in 4+ biomass - probabilité d'une augmentation >5% de la biomasse 4+

Figure 53. MODEL 1: Exploitation rate and change in biomass for various levels of catch for fall spawning herring.

Figure 53. MODÈLE 1: Changements dans le taux d'exploitation et dans la biomasse pour différents niveaux de prises des harengs géniteurs d'automne.

Figure 54. MODEL 1: Probability that spawning stock biomass (SSB) of the fall-spawning stock component will be below the upper stock reference (USR = 172000 t) at the beginning of 2013 and 2014 at various levels of catch in 2012 and 2013, using recruitment rates over the past 5 (a) or 20 (b) years. Figure 54. MODÈLE 1: La probabilité que la BSR de la composante des géniteurs d'automne soit en dessous du niveau de référence supérieur (NRS = 172000) au début des années 2013 et 2014 avec des options de captures variés mais égales dans les saisons de pêche de 2012 et 2013, en utilisant les taux de recrutement des dernières 5 (a) ou 20 (b) années.

Figure 55. MODEL 1: Probability that the rate of fishing mortality F on the fall-spawning stock component will be greater than $F_{0.1}$ in 2012 and 2013 at various levels of catch, using recruitment rates over the past 5 (a) or 20 (b) years.

Figure 55. MODÈLE 1: La probabilité que la mortalité par pêche F dans les classes d'âge pleinement recrutées dépasse $F_{0,1}$ en 2012 et 2013 avec différentes options de captures variées mais égales, en utilisant les taux de recrutement des dernières 5 (a) ou 20 (b) années.

Figure 56. MODEL 2: Residuals for the ADAPT calibration of the fall spawner SPA using the age disaggregated gillnet CPUE and acosutic indices. Circles indicate relative residual size (black + white –). Figure 56. MODÈLE 2: Résidus de l'étalonnage ADAPT de l'ASP des géniteurs d'automne utilisant les indices par âge des PUEet du relevé acoustique. Les cercles indiquent la valeur relative des résidus (noir +, blanc –).

Figure 57. MODEL 2: Comparison of CPUE and acoustic indices, corrected for catchability, and model estimates of population abundance for 4T herring fall spawner component.

Figure 57. MODÈLE 2: Comparaison des indices des PUE et du relevé acoustique, ajustés pour la capturabilité, et les estimés de l'abondance de la population du modèle pour la composante des géniteurs d'automne du hareng 4T.

Figure 58. MODEL 2: Retrospective patterns in the fall spawner ADAPT-VPA using the age disaggregated gillnet CPUE and acoustic (ages 2-3) indices (triangles = 2012).

Figure 58. MODÈLE 2: Tendance rétrospective dans ADAPT-ASP des géniteurs d'automne utilisant les indices par âge des PUE et du relevé acoustique (âges 2-3) (triangles = 2012).

Figure 59. MODEL 2: Survival ratio (age n abundance in year t / SSB in year t-n) for fall spawner recruits.

Figure 59. MODÈLE 2: Taux de survie (abondance de l'âge n pour l'année t / BSR pour l'année t-n) pour les recrus des géniteurs d'automne.

Figure 60. MODEL 2: Fall spawner population numbers (4+) and recruitment at age 4 (top), biomass (center) and age 5+ exploitation rate (bottom) from the 2010 numbers from the ADAPT calibration with the gillnet CPUE and acoustic (ages 2-3) indices.

Figure 60. MODÈLE 2: Effectifs de la population (4+) des géniteurs d'automne et le recrutement à 4 ans (haut), biomasse (centre) et le taux d'exploitation 5+ (bas) de l'étalonnage ADAPT utilisant les indices des PUE des filets maillants et du relevé acoustique (âges 2-3).

Figure 61. MODEL 2: Fall spawning herring spawning stock biomass trajectories and limit reference points. Arrow indicates 2012 SSB estimate.

Figure 61. MODÈLE 2: Trajectoires de la biomasse reproductive et les points de référence limites pour les harengs géniteurs d'automne. La flèche indique l'estimé de la BSR en 2012.

probability or oxocoding rear probability do depactor rear

- probabilty of a decrease in 4+ biomass probabilité d'une diminution de la biomasse 4+
- probabilty of >5% decline in 4+ biomass probabilité d'une diminution de >5% de la biomasse 4+
- = = probability of >5% increase in 4+ biomass probabilité d'une augmentation >5% de la biomasse 4+

Figure 62. MODEL 2: Risk analyses for fall spawning herring using ages 4 to 11+.

Figure 62. MODÈLE 2: Analyse de risque pour les harengs géniteurs d'automne avec âges 4 à 11+.

Figure 63. MODEL 2: Exploitation rate and change in biomass for various levels of catch for fall spawning herring.

Figure 63. MODÈLE 2: Changements dans le taux d'exploitation et dans la biomasse pour différents niveaux de prises des harengs géniteurs d'automne.

Figure 64. MODEL 2: Probability that spawning stock biomass (SSB) of the fall-spawning stock component will be below the upper stock reference (USR = 172,000 t) at the beginning of 2013 and 2014 at various levels of catch in 2012 and 2013, using recruitment rates over the past 5 (a) or 20 (b) years. Figure 64. MODÈLE 2: La probabilité que la biomasse du stock reproducteur (BSR) soit en dessous du niveau de référence supérieur (NRS = 172 000 t)) au début de 2013 et 2014 par rapport à 2012 à différents niveaux de prises fixes en 2012 et 2013, en utilisant les taux de recrutement moyen des deniers 5 (a) et 20 (b) ans.

Figure 65. MODEL 2: Probability that the rate of fishing mortality (F) on the fall-spawning stock component will be greater than F0.1 in 2012 and 2013 at various levels of catch, using recruitment rates over the past 5 (a) or 20 (b) years.

Figure 65. MODÈLE 2: La probabilité que la mortalité par pêche des âges pleinement recrutés dépassera le taux d'exploitation de référence à F0,1 à différents niveaux de prises fixes en 2012 et 2013, en utilisant les taux de recrutement moyen des deniers 5 (a) et 20 (b) ans.

APPENDIX / APPENDICES

Appendix 1a. Herring fishery catch-at-age difference (new-old) after changes to the GSI decision rules on spawning group assignment.

Appendice 1a. Différences dans les captures à l'âge de la pêche commerciale (nouveau-anciens) après les changements apportés aux règles de décision de l'IGS.

Number / Nombre (X1000)

	Spring spawners / Géniteurs de printemps									Fall spawners / Géniteurs d'automne									
Gear / Engin	Fixed / Fixe		ı	Nobile			All / Tous				Fixed / Fixe			Mobile			All / Tous		
	New	Old	Difference	New	Old	Difference	New	Old	Difference		New	Old	Difference	New	Old	Difference	New	Old	Difference
Year / Année	Nouveau	Vieux	Différence	Nouveau	Vieux	Différence	Nouveau	Vieux	Différence		Nouveau	Vieux	Différence	Nouveau	Vieux	Différence	Nouveau	Vieux	Différence
1978	38072	39459	-1387	58093	71731	-13637	96165	111189	-15024		20746	19389	1356	112898	99241	13657	133643	118630	15013
1979	31050	32052	-1002	90021	93871	-3849	121072	125923	-4851		25288	24280	1008	57042	55764	1278	82330	80044	2286
1980	31832	33805	-1974	53389	74356	-20966	85221	108161	-22940		23679	21840	1839	105231	84192	21039	128910	106032	22878
1981	27664	28431	-766	5031	5031	0	32696	33462	-766		43510	42710	800	24972	24971	0	68481	67681	800
1982	30868	31380	-512	7109	7123	-14	37977	38504	-527		43186	42690	496	21978	21963	14	65163	64654	510
1983	42608	44990	-2382	13878	13448	430	56486	58438	-1952		50723	47958	2765	20811	21245	-435	71534	69203	2331
1984	23538	26461	-2923	9943	9944	-1	33481	36405	-2924		58218	55697	2521	16353	16352	1	74571	72049	2522
1985	36833	37744	-911	13373	12779	594	50205	50523	-317		71989	71057	932	26263	26870	-607	98252	97926	325
1986	43109	45044	-1935	36640	36569	71	79749	81614	-1864		121895	120000	1895	21701	21770	-69	143597	141771	1826
1987	54357	57926	-3569	35002	33655	1347	89359	91581	-2222		164393	161727	2666	19342	20764	-1421	183735	182490	1245
1988	47859	58277	-10419	46676	44881	1795	94535	103158	-8624		132919	122543	10376	24288	26073	-1786	157206	148616	8590
1989	44546	49594	-5047	32401	31513	888	76948	81107	-4159		105557	101038	4519	22630	23437	-807	128187	124476	3712
1990	25053	24790	264	37024	37024	0	62077	61814	263		180380	180527	-148	20461	20461	0	200841	200988	-147
1991	54314	57045	-2731	22730	19988	2742	77044	77033	11		96137	93523	2615	35246	38028	-2781	131384	131550	-167
1992	62023	62477	-454	19896	18863	1033	81919	81340	579		115355	115100	255	33846	34925	-1079	149201	150024	-824
1993	76597	77629	-1031	27315	26854	461	103912	104482	-570		86142	85131	1011	31072	31554	-482	117214	116685	529
1994	96438	97562	-1124	21620	30041	-8421	118058	127603	-9545		186021	185062	959	43584	34815	8769	229605	219877	9728
1995	82661	85398	-2737	43231	43336	-105	125891	128734	-2842		194254	191591	2663	58614	58556	58	252868	250147	2721
1996	87672	87466	206	24100	27050	-2950	111773	114516	-2744		159349	159549	-200	44103	41134	2969	203452	200683	2769
1997	63678	65595	-1917	18906	20651	-1745	82584	86246	-3662		138605	136701	1904	32512	30735	1777	171117	167435	3682
1998	65159	67300	-2141	7959	7829	130	73118	75129	-2011		150336	148507	1829	17905	18030	-125	168241	166537	1704
1999	51499	56235	-4736	20234	27283	-7050	71733	83519	-11786		187895	183491	4404	48821	41769	7052	236717	225260	11456
2000	73722	75099	-1377	12290	13296	-1006	86011	88395	-2384		212429	211058	1372	39774	38739	1035	252203	249797	2406
2001	53163	56692	-3529	19276	18814	462	72440	75506	-3066		186562	183068	3495	47050	47638	-588	233613	230705	2907
2002	44633	47042	-2409	6671	6547	123	51303	53589	-2286		169979	167637	2343	51310	51423	-113	221289	219059	2230
2003	43803	45741	-1938	2709	2434	276	46513	48175	-1662		193722	191835	1887	63246	63529	-283	256968	255364	1605
2004	39040	39934	-894	2621	2546	75	41661	42480	-819		152334	151493	840	39306	39377	-71	191640	190871	769
2005	18153	19431	-1277	7340	7143	197	25493	26574	-1080		219729	218339	1389	46063	45913	150	265792	264252	1540
2006	9626	12086	-2460	4333	4232	102	13959	16317	-2358		203137	200735	2401	24359	24462	-103	227495	225197	2299
2007	9784	10466	-682	15414	14112	1302	25197	24578	620		189518	187965	1553	30447	31769	-1322	219964	219734	231
2008	8928	8072	856	9239	8503	736	18168	16575	1593		174097	172249	1848	18948	19679	-730	193046	191928	1118
2009	7775	7419	355	3358	2713	645	11133	10133	1000		203137	203789	-652	13618	12106	1512	216755	215895	860

^{* 2007} to 2009 new catch-at-age was redone using new increased landings data / Les nouvelles captures à l'âge de 2007 à 2009 furent calculées avec des nouveaux données de débarquements plus élevés

Appendix 1b. Herring fishery catch-at-age difference (old left column and new right column for each year) after changes to the GSI decision rules on spawning group assignment.

Appendice 1b. Différences dans les captures à l'âge de la commerciale (anciens: colonne de gauche et nouveaux: colonne droite pour chaque année) après les changements apportés aux règles de décisions de l'IGS.

Appendix 2a. Herring acoustic survey catch-at-age difference (new-old) after changes to the weighting of the catch by trawl set.

Appendice 2a. Différences dans les captures à l'âge du relevé acoustique (nouveau-anciens) après les changements apportés dans la méthode de pondérer les captures des traits de chalut.

Total biomass (t)	Total biomass (t) by spawning group / Biomasse totale (t) par groupe de géniteurs											
	Old / Anciens	i			New / Nouve	au						
Sawning group	Spring	Fall			Spring	Fall						
Géniteurs	Printemps	Automne	Total		Printemps	Automne	Total					
1994	108383	54181	162564		110335	52264	162599					
1995	39099	24569	63669		37501	26175	63676					
1996	120020	99357	219377		119480	99894	219374					
1997	62491	111355	173846		69405	104469	173874					
1998	49143	61622	110764		48537	62235	110772					
1999	64647	95265	159912		64183	95739	159922					
2000	17542	103710	121252		21352	99908	121260					
2001	22438	28381	50818		31760	19039	50799					
2002	28248	29888	58136		22993	35131	58124					
2003	34655	55525	90180		36011	54177	90188					
2004	23791	26266	50057		29123	20936	50059					
2005	13053	81214	94267		11601	82670	94271					
2006	15718	57649	73367		15626	57739	73365					
2007	9515	36675	46191		8895	37307	46202					
2008	8997	29488	38485		9386	29106	38492					
2009	14816	37187	52003		13244	38756	52001					

Acoustic Survey index / Indice du relevé acoustique	
Difference new-old / Différences nouveau-anciens	
Numbers at age / Nombres à l'âge (x 1000)	

Numbers at age / N						
Spring spawners /	Geniteurs de		/ Â			
Year /			ge / Âge	-	•	T-4-1
Année	4	5	6	7	8	Total
1994	-11939	3967	15438	14835	4027	26329
1995	-4225	3465	-7531	-1232	1146	-8378
1996	-2812	-18589	1988	-3721	6687	-16448
1997	26918	6799	8618	-7540	-9147	25648
1998	-3331	-2267	-897	-2657	63 707	-9090
1999	9123	1018	236	-67	787	11097
2000	3224	-321	-908	-900	-21	1074
2001	-13715	-7788	262	-948	119	-22069
2002	-161	2951	2293	309	1156	6548
2003	-553	1089	830	340	359	2066
2004	-413	-1060	-671	0	0	-2145
2005	-1419	162	-1157	-44	217	-2241
2006	-2920	-1874	21	143 8	0	-4630
2007	1151	1659	1600	-3	3 0	4421
2008 2009	-986 -5490	-2946 -2703	-321 -486			-4257 11207
Fall spawners / Géi			-400	-1507	-1022	-11207
i ali spawiieis / Gei	4	5	6	7	8	Total
1994	-4554	7124	544	-2996	-5515	-5396
1995	2112	1917	1574	999	-1959	4642
1996	-48848	-18346	4139	1545	-2449	-63959
1997	59534	10125	-3388	2456	-7698	61029
1998	-7522	3125	4132	1224	1020	1979
1999	-2580	14331	4067	2701	1267	19786
2000	-15096	1087	1349	570	-2803	-14893
2001	-16820	-7400	-7347	-387	151	-31804
2002	9147	14434	24976	13192	4222	65972
2003	-1833	205	1293	749	237	651
2004	-22317	-7424	-2490	-307	-336	-32874
2005	-21149	-8907	6080	3694	4027	-16256
2006	-5249	-5580	-2363	383	-205	-13015
2007	13874	7719	3688	2103	116	27501
2008	-6320	-187	-63	190	29	-6351
2009	1727	3407	-712	-711	11	3721

Appendix 2b. Herring acoustic survey catch-at-age numbers (ages 4+) difference (old left column and new right column for each year) after changes to the weighting of the catch by trawl set.

Appendice 2b. Différences dans les captures à l'âge en nombre (âges 4+) du relevé acoustique (anciens : colonne de gauche et nouveaux : colonne de droite pour chaque année) après les changements apportés dans la méthode de pondérer les captures des traits de chalut.

Appendix 3. 2010 and 2011 Herring acoustic survey midwater trawl set locations (triangles) and strata covered (boxes).

Appendice 3. Relevé acoustique du hareng, lieu des traits de chalut pélagique (triangles) et strates recensées (boîtes) en 2010 et 2011.

Appendix 4. Herring acoustic survey fishing set information and main species caught, by mean length (cm) and estimated weight caught (kg).

Appendice 4. Information sur les prises des traits de chaluts, les espèces principales capturées, la longueur moyenne (cm) et les estimés du poids capturé (kg) par le relevé acoustique du hareng.

Year \ Année 2010

Month	Day	Set #	Sample	NAFO	Depth	Duration	Latitude	Longitude	Herring		Mackere	1	Gaspere	au	Caplin		Cod		Smelt		White hake	
mois	jour	trait#	Échant.	OPANO	Profondeur	Durée			Hareng		Maquere	au	Gaspare	au	Capelan		Morue		Éperlan		Merluche bla	anche
					m.	min.			cm.	Kg.	cm.	Kg.	cm.	Kg.	cm.	Kg.	cm.	Kg.	cm.	Kg.	cm.	Kg.
9	21	5	86	4TN	108	20	482075	642256		-		-	-		6.1	2						
9	21	6	87	4TM	45	9	475946	651878	24.7	28												
9	24	7	88	4TM	21	10	475284	654305	24.3	4000	27.1	80										
9	26	8	89	4TM	28	2	474706	651971	26.5	700	19.8	20	20.0	0.5								
9	26	9	90	4TM	34	6	474867	651587	28.9	300												
9	27	10	91	4TM	42	10	475061	651107	27.4	10	27.0	2	26.5	0.2								
9	27	11	92	4TM	46	5	475163	650839	27.2	300												
9	27	12	93	4TM	48	2	475309	650097	26.1	6	17.9	6	16.8	0.5								
10	3	13	94	4TN	44	20	475902	640400									6.5	0.1				
10	4	14	95	4TN	53	30	475728	640439	28.9	70					11.5	0.1	5.8	0.2	26.4	81		
10	4	15	96	4TN	39	5	475573	640980	26.5	27					12.0	0.1	6.1	0.2				
10	4	16	97	4TN	35	5	475548	641205	25.8	6							7.2	0.1				
10	4	17	98	4TN	43	3	474640	641579	27.3	1	25.8	4										
10	4	18	99	4TL	31	9	471225	640192	27.2	114	19.5	1	21.8	1								
10	4	19	100	4TL	31	3	471467	640122	27.5	20	22.8	4	23.0	0.2								
10	4	20	101	4TL	31	2	471473	640108	27.7	57	21.8	2	22.0	1								
10	4	21	102	4TL	32	40	471427	635884	28.2	171			23.3	1								
10	5	22	103	4TG	38	19	463047	615139	24.3	6	25.0	1					6.7	0.3				
10	5	23	104	4TG	51	9	463600	615937	24.9	28	26.5	0.2					5.5	265			4.5	0.1
10	6	24	105	4TG	35	6	463184	622510	27.4	150	19.2	3	23.6	18							7.5	0.1

Year \ Année 2011

Month	Day	Set#	Sample	NAFO	Depth	Duration	Latitude	Longitude	Herring		Mackere	e/	Gaspere	au	Caplin		Cod		Smelt		White hake	
mois	jour	trait#	Échant.	OPANO	Profondeur	Durée			Hareng		Maquere	eau	Gaspare	au	Capelan		Morue		Éperlan		Merluche bla	anche
					m.	min.			cm.	Kg.	cm.	Kg.	cm.	Kg.	cm.	Kg.	cm.	Kg.	cm.	Kg.	cm.	Kg.
9	23	2	38	4TO	32	8	485289	641203	22.4	300		-				-						
9	24	3	39	4TN	51	3	483258	641231	25.3	300												
9	24	4	40	4TN	31	4	482303	642891	26.7	300												
9	25	5	41	4TN	64	8	481979	643583	22.8	200			24.5	2								
9	25	6	42	4TM	32	2	480718	645803	28.2	1800												
9	26	7	43	4TM	27	7	475786	652876	27.0	1500												
9	26	8	44	4TM	28	7	475833	653054	27.4	1500												
9	27	9	45	4TM	26	5	475508	654437	23.0	150	21.8	1							19.6	1		
9	27	10	46	4TM	31	12	475403	654218		300	17.8	5					19.7	1	16.4	3		
9	27	11	47	4TM	31	11	475308	654124	24.0	700	17.6	3					29.3	5	15.7	2		
9	29	12	48	4TM	27	14	474502	652584		500	17.9	5							16.8	0.1		
9	29	13	49	4TM	29	23	474586	652400	27.2	200												
9	30	14	50	4TM	33	25	474858	651645		700	31.0	5										
9	30	15	51	4TM	30	6	475119	650641	28.2	600							3.8	21				
9	30	16	52	4TM	33	13	475221	650072		200	19.5	5	27.2	5								
9	30	17	53	4TM	31	12	475846	644285	23.5	200												
9	30	18	54	4TN	33	4	480188	643609		200												
10	3	19	55	4TN	39	10	480953	641667	23.2	300												
10	3	20	56	4TN	35	8	480603	640755		250												
10	4	21	57	4TN	34	5	480345			200												
10	4	22	58	4TN	33	14	475852	640928	23.6	119												

Appendix 5a. 1997 to 2011 fall herring acoustic survey number of transects, herring biomass (tonnes) and mean density (kg/m2) in the southern Gulf of St. Lawrence.

Appendice 5a. Nnombre de transects, biomasse (tonnes) et densité moyenne (kg/m2) lors du relevé acoustique d'automne du hareng de 1997 à 2011 dans le sud du Golfe.

Date	Area / Région	Transects	Kg/m ²	Tons - tonnes	CV
2011					
Sept 22 Oct. 3	CHALEURS-MISCOU	155	0.019	54236	0.12
2010					
Sept 21 Oct. 3	CHALEURS-MISCOU	148	0.019	66245	0.14
Oct. 4 - 7	P.E.I.	31	0.040	79565	0.36
2009					
Sept 28 Oct. 7	CHALEURS-MISCOU	120	0.015	52009	0.20
Sept.23 - 27	P.E.I.	34	0.007	13122	0.19
2008					
Sept 23 Oct. 7	CHALEURS-MISCOU	173	0.010	46297	0.16
Oct. 8 - 10	P.E.I.	21	0.012	23785	0.58
2007					
Sept 22 Oct. 2	CHALEURS-MISCOU	140	0.013	58401	0.24
Oct. 4 - 11	P.E.I.	44	0.017	39204	0.25
2006					
Sept 23 Oct. 3	CHALEURS-MISCOU	145	0.018	73673	0.19
Oct. 5 - 9	P.E.I.	37	0.045	147824	0.21
2005					
Sept 22 Oct. 3	CHALEURS-MISCOU	180	0.019	94579	0.09
Oct. 4 - 10	P.E.I.	31	0.033	78467	0.60
2004					
Sept 23 Oct. 2	CHALEURS-MISCOU	170	0.011	47970	0.12
Oct. 3 - 9	P.E.I.	34	0.016	176035	0.17
2003					
Sept 24 Oct. 6	CHALEURS-MISCOU	168	0.027	127460	0.21
Oct. 7 - 12	P.E.I.	47	0.054	176035	0.14
2002					
Oct. 2-	CHALEURS-MISCOU	112	0.016	72085	0.22
Oct. 13	PEI	25	0.027	42213	0.18
2001 Sept.28-	CHALEURS-MISCOU	146	0.010	52203	0.12
	PEI * herring and mackerel mixed, no				
Oct. 14	samples estimated from 2000 size	29	0.017	32392	0.16
Nov. 11-13	CAPE BRETON INSHORE	30	0.076	72712	0.23
2000	CHALEURS-MISCOU	136	0.022	123671	0.29
Sept. 14-	PEI	38	0.023	64696	0.59
Oct. 05	CAPE BRETON INSHORE	0			
1999	CHALEURS-MISCOU	151	0.031	164753	0.12
Sept. 18 -	PEI	20	0.061	63481	0.28
Sept. 30	CAPE BRETON INSHORE	0			
1998	CHALEURS-MISCOU	151	0.035	146831	0.15
Sept. 19 -	PEI	0			
10-Oct	CAPE BRETON INSHORE	52	0.031	43933	0.17
1997	CHALEURS-MISCOU	156	0.029	193656	0.27
Sept. 21 -	PEI-MAGDALEN ISLANDS	64	0.011	70373	0.09
11-Oct	CAPE BRETON INSHORE	42	0.016	17463	0.38

Appendix 5b. Herring biomass densities and estimates by stratum and area from the acoustic survey conducted between September 21 to October 7, 2010.

Appendice 5b. Densité et estimation de la biomasse de hareng par strate et par zone selon le releve

Appendice 5b. Densité et estimation de la biomasse de hareng par strate et par zone selon le relevé acoustique du 21 septembre au 7 octobre 2010.

Area and Stratum	Ave	erage TS	Stratum Area	Weighted	Biomass / e	Biomass	Index per Stra	atum
Région et Strate	TS	moyen	Aire de strate	Mean Sa	Density	Indice	e de biomasse)
•		•		Sa moyen	Densité	Total	SE	SE% of / du
		(dB/kg)	(km²)	(dB/m ²)	(kg/m ²)	(tons)	(tons)	Total
GASPÉ		(- 3/	, ,	(-)	() /	(/	(== = /	
Malbaie		-34.86	95.6	-78.823	0.00004	4	5	135
Anse_Beaufils		-34.86	96	-56.569	0.00675	648	155	24
TOTAL			191.6			652		
MEAN / MOYENNE					0.003			
C.V.						0.238		
CHALEUR-MISCOU	SAME S	STRATA /	STRATES INDEX	ŒS				
Gde_riviere		-34.86	106.4	-57.96	0.0049	522	203	39
Newport		-34.86	124.9	-67.69	0.0005	65	25	38
Shigawake		-34.86	265.6	-49.95	0.0310	8231	1661	20
Newcarlisle		-34.86	169	-50.42	0.0278	4701	1476	31
Newrichmond		-34.86	111.6	-1027.90	0.0000	0	0	4
Belledune		-35.03	266	-46.75	0.0673	17904	7971	45
Nepisiguit		-35.03	211.3	-46.53	0.0707	14947	3217	22
Maisonnette		-35.2	145	-50.35	0.0306	4436	989	22
West miscou		-35.2	330.5	-62.08	0.0021	678	232	34
North miscou		-34.99	295.7	-59.75	0.0033	989	379	38
Miscou_nw		-34.99	444	-53.39	0.0145	6426	1834	29
Miscou_ne		-34.99	352.8	-56.24	0.0075	2648	1016	38
Miscou sw		-34.99	552.2	-58.70	0.0043	2349	402	17
Miscou_se		-34.99	521.3	-59.86	0.0033	1700	440	26
TOTAL			3896.3			65594		
MEAN / MOYENNE					0.019			
C.V.						0.14		
PEI / ÎPÉ.								
Peinw		-35.08	376.5	-46.91	0.0657	24719	11851	48
Northcape		-35.08	409.8	-51.20	0.0244	10014	6264	63
Cascumpec		-35.08	334	-45.24	0.0964	32198	25548	79
Savageharbour		-34.74	180	-52.60	0.0164	2946	1152	39
Monticello		-34.74	292	-53.81	0.0124	3614	1810	50
Eastpoint		-34.74	276.5	-51.32	0.0220	6074	2191	36
TOTAL			1868.8			79565		
MEAN / MOYENNE					0.040			
C.V.						0.365		

Appendix 5c. Herring biomass densities and estimates by stratum and area from the acoustic survey conducted between September 22 to October 3, 2011.

Appendice 5c. Densité et estimation de la biomasse de hareng par strate et par zone selon le relevé acoustique du 22 septembre au 3 octobre 2011.

Area and Stratum	Ave	erage TS	Stratum Area	Weighted	Biomass / e	Biomass	Index per Stra	atum
Région et Strate	TS	moyen	Aire de strate	Mean Sa	Density	Indice	e de biomasse	е
				Sa moyen	Densité	Total	SE	SE% of / du
		(dB/kg)	(km²)	(dB/m^2)	(kg/m²)	(tons)	(tons)	Total
GASPÉ								
Riviere_au_renard		-34.25	124.6	-59.23	0.0032	396	176	44
Cap_bon_ami		-34.25	69.0	-60.53	0.0024	163	162	100
Malbaie		-34.25	95.6	-57.77	0.0045	426	165	39
Anse_beaufils		-34.25	96.0	-57.16	0.0051	492	384	78
TOTAL			385.2			1476		
MEAN / MOYENNE					0.004			
C.V.						0.326		
CHALEUR-MISCOU S	SAME S	TRATA /	STRATES INDEX	ŒS				
Gde riviere		-34.66	106.4	-59.53	0.0033	347	103	30
Newport		-34.66	124.9	-52.61	0.0161	2006	436	22
Shigawake		-34.66	265.6	-53.40	0.0134	3549	1053	30
Newcarlisle		-35.00	169.0	-46.37	0.0730	12330	5471	44
Newrichmond		-35.00	111.6	-52.64	0.0172	1920	417	22
Belledune		-34.30	266.0	-50.87	0.0220	5862	734	13
Nepisiguit		-34.99	211.3	-50.00	0.0316	6669	709	11
Maisonnette		-34.90	145.0	-47.21	0.0588	8523	1770	21
West miscou		-34.90	330.5	-56.01	0.0077	2561	576	22
North miscou		-34.76	295.7	-57.51	0.0053	1573	659	42
Miscou nw		-34.76	444.0	-55.02	0.0094	4186	1961	47
Miscou_ne		-34.76	352.8	-61.66	0.0020	721	354	49
Miscou_sw		-34.76	552.2	-58.52	0.0042	2325	958	41
Miscou_se		-34.76	521.3	-69.23	0.0004	186	73	39
TOTAL			3896.3			52760		
MEAN / MOYENNE					0.019			
C.V.						0.122		

Appendix 5d. Transect backscatter and biomass density in the Chaleurs-Miscou area from the acoustic survey held from September 21 to October 03, 2010.

Appendice 5d. Densité de la biomasse et rétrodiffusion par transect dans la zone Chaleurs-Miscou

selon le relevé acoustique du	21 septembre au 3 octobre 2	2010.

Stratum / Strate	Transect Number / Nombre	Transect Length / Longueur (km)	Target Strength Force cible (dB/kg)	Average Sa Sa Moyen (dB/m²)	Biomass (e) Density /Densité (kg/m²)	Set Number Numéro
Malbaie	C510701H	3.3	-34.86	-71.30	0.000	
	C510702H	11.7	-34.86	-1030.67	0.000	
	C510703H	10.6	-34.86	-78.87	0.000	
	C510704H	3.6	-34.86	-1025.56	0.000	
Anse_Beaufils	C510705H	2.9	-34.86	-1024.57	0.000	
	C510706H	6.7	-34.86	-55.07	0.010	
	C510707H	7.1	-34.86	-56.25	0.007	
	C510708H	7.1	-34.86	-57.13	0.006	
	C510709H	4.6	-34.86	-56.19	0.007	
Gde_Riviere	C510710H	5.2	-34.86	-64.59	0.001	
	C510711H	5.7	-34.86	-58.08	0.005	
	C510712H	5.6	-34.86	-58.16	0.005	
	C510713H	5.4	-34.86	-53.86	0.013	
	C510714H	5.5	-34.86	-53.86	0.013	
	C510715H	3.8	-34.86	-1025.81	0.000	
	C510716H	3.7	-34.86	-1025.74	0.000	
	C510717H	5.0	-34.86	-1027.00	0.000	
Newport	C510718H	5.4	-34.86	-1027.32	0.000	
	C510719H	6.6	-34.86	-1028.22	0.000	
	C510720H	7.7	-34.86	-68.92	0.000	
	C510721H	6.5	-34.86	-67.55	0.001	
	C510722H	6.4	-34.86	-61.95	0.002	
	C510723H	6.5	-34.86	-68.21	0.000	
	C510724H	5.7	-34.86	-67.57	0.001	
	C510725H	4.6	-34.86	-73.64	0.000	
	C510726H	4.6	-34.86	-67.58	0.001	
Shigawake	C510727H	3.9	-34.86	-68.29	0.000	
-	C510728H	4.9	-34.86	-56.19	0.007	
	C510729H	5.2	-34.86	-60.56	0.003	
	C510730H	5.5	-34.86	-57.91	0.005	
	C510731H	6.1	-34.86	-55.22	0.009	
	C510732H	7.3	-34.86	-54.38	0.011	
	C510733H	5.9	-34.86	-48.84	0.040	
	C510734H	8.1	-34.86	-48.02	0.048	
	C510735H	7.9	-34.86	-46.78	0.064	
	C510736H	7.2	-34.86	-46.04	0.076	
	C510737H	7.2	-34.86	-49.60	0.034	
	C510738H	6.6	-34.86	-48.06	0.048	
	C510739H	6.7	-34.86	-46.93	0.062	
	C510740H	6.3	-34.86	-51.20	0.023	
	C510741H	6.8	-34.86	-53.01	0.015	
	C510742H	7.0	-34.86	-56.14	0.007	
NewCarlisle	C510743H	8.8	-34.86	-54.22	0.012	
	C510744H	5.8	-34.86	-51.01	0.024	
	C510745H	6.0	-34.86	-48.37	0.045	

Appendix 5d (cont). Transect backscatter and biomass density in the Chaleurs-Miscou area from the acoustic survey held from September 21 to October 03, 2010.

Appendice 5d (suite). Densité de la biomasse et rétrodiffusion par transect dans la zone Chaleurs-Miscou selon le relevé acoustique 21 septembre au 3 octobre 2010.

C510746H C510747H C510748H C510749H	4.8 6.5	-34.86	-46.49	(kg/m²)	
C510748H C510749H			-40.49	0.069	1
C510749H		-34.86	-50.04	0.030	
	5.5	-34.86	-46.11	0.075	
	5.5	-34.86	-48.98	0.039	
C510750H C510751H	5.3 4.9	-34.86 -34.86	-81.94 -81.23	0.000 0.000	
C510771H		-35.03	-39.16	0.387	2
C510772H	7.1	-35.03	-41.17	0.243	
C510773H	7.5	-35.03	-51.26	0.024	
C510774H	9.5	-35.03	-52.94	0.016	
C510775H	10.7	-35.03	-46.72	0.068	
C510776H	9.0	-35.03	-1029.56	0.000	
C510777H	9.8	-35.03	-45.39	0.092	
C510778H	11.1	-35.03	-48.96	0.040	
C510779H	9.7	-35.03	-48.07	0.050	
C510780H	9.5	-35.03	-46.71	0.068	
C510781H	9.3	-35.03	-44.18	0.122	
C510782H	8.0	-35.03	-50.86	0.026	
C510783H	7.9		-55.26	0.009	
C510784H	6.8		-50.10	0.031	
C510785H	7.7		-43.89	0.130	3
					-
					4
					7
	C510752H C510753H C510755H C510756H C510757H C510758H C510759H C510760H C510761H C510762H C510763H C510763H C510766H C510766H C510767H C5107767H C5107767H C510776H C510770H C510771H C510772H C510773H C510774H C510775H C510775H C510776H C5107779H C5107779H C5107779H C510778H	C510752H 6.7 C510753H 7.3 C510754H 5.5 C510755H 6.7 C510756H 6.4 C510757H 6.1 C510758H 6.0 C510759H 5.8 C510760H 5.4 C510761H 5.4 C510762H 6.8 C510763H 6.0 C510764H 6.3 C510765H 5.5 C510766H 6.7 C510767H 5.6 C510768H 6.1 C510776H 7.7 C510770H 7.7 C510772H 7.1 C510773H 7.5 C510775H 10.7 C510776H 9.0 C510777H 9.8 C510778H 11.1 C510779H 9.7 C510780H 9.5 C510781H 9.3 C510782H 8.0 C510783H 7.9 C510784H 6.8 C510785H 7.7 C510786H 7.5 </td <td>C510752H 6.7 -34.86 C510753H 7.3 -34.86 C510754H 5.5 -34.86 C510755H 6.7 -34.86 C510756H 6.4 -34.86 C510757H 6.1 -34.86 C510758H 6.0 -34.86 C510759H 5.8 -34.86 C510760H 5.4 -34.86 C510760H 5.4 -34.86 C510761H 5.4 -35.03 C510762H 6.8 -35.03 C510763H 6.0 -35.03 C510764H 6.3 -35.03 C510765H 5.5 -35.03 C510766H 6.7 -35.03 C510767H 5.6 -35.03 C510768H 6.1 -35.03 C510770H 7.7 -35.03 C510772H 7.1 -35.03 C510772H 7.1 -35.03 C510775H 10.7 -35.03 C510776H 9.0</td> <td>C510752H 6.7 -34.86 -88.96 C510753H 7.3 -34.86 -1028.66 C510754H 5.5 -34.86 -1027.42 C510755H 6.7 -34.86 -1028.27 C510756H 6.4 -34.86 -1028.05 C510758H 6.0 -34.86 -1027.84 C510759H 5.8 -34.86 -1027.67 C510760H 5.4 -34.86 -1027.28 C510761H 5.4 -34.86 -1027.28 C510762H 6.8 -35.03 -51.52 C510762H 6.8 -35.03 -1028.31 C510763H 6.0 -35.03 -1027.76 C510764H 6.3 -35.03 -1027.37 C510765H 5.5 -35.03 -1027.37 C510766H 6.7 -35.03 -1027.37 C510766H 6.7 -35.03 -1027.49 C510769H 7.7 -35.03 -1027.85 C510770H 7.7 -35.03<!--</td--><td>C510752H 6.7 -34.86 -88.96 0.000 C510753H 7.3 -34.86 -1028.66 0.000 C510754H 5.5 -34.86 -1028.27 0.000 C510755H 6.7 -34.86 -1028.05 0.000 C510756H 6.4 -34.86 -1027.84 0.000 C510758H 6.0 -34.86 -1027.67 0.000 C510759H 5.8 -34.86 -1027.28 0.000 C510760H 5.4 -34.86 -1027.28 0.000 C510760H 5.4 -34.86 -1027.28 0.000 C510761H 5.4 -35.03 -51.52 0.022 C510762H 6.8 -35.03 -1027.28 0.000 C510762H 6.8 -35.03 -1027.76 0.000 C510762H 6.8 -35.03 -1027.99 0.000 C510764H 6.3 -35.03 -1027.99 0.000 C510766H 6.7 -35.03 -1027.49<!--</td--></td></td>	C510752H 6.7 -34.86 C510753H 7.3 -34.86 C510754H 5.5 -34.86 C510755H 6.7 -34.86 C510756H 6.4 -34.86 C510757H 6.1 -34.86 C510758H 6.0 -34.86 C510759H 5.8 -34.86 C510760H 5.4 -34.86 C510760H 5.4 -34.86 C510761H 5.4 -35.03 C510762H 6.8 -35.03 C510763H 6.0 -35.03 C510764H 6.3 -35.03 C510765H 5.5 -35.03 C510766H 6.7 -35.03 C510767H 5.6 -35.03 C510768H 6.1 -35.03 C510770H 7.7 -35.03 C510772H 7.1 -35.03 C510772H 7.1 -35.03 C510775H 10.7 -35.03 C510776H 9.0	C510752H 6.7 -34.86 -88.96 C510753H 7.3 -34.86 -1028.66 C510754H 5.5 -34.86 -1027.42 C510755H 6.7 -34.86 -1028.27 C510756H 6.4 -34.86 -1028.05 C510758H 6.0 -34.86 -1027.84 C510759H 5.8 -34.86 -1027.67 C510760H 5.4 -34.86 -1027.28 C510761H 5.4 -34.86 -1027.28 C510762H 6.8 -35.03 -51.52 C510762H 6.8 -35.03 -1028.31 C510763H 6.0 -35.03 -1027.76 C510764H 6.3 -35.03 -1027.37 C510765H 5.5 -35.03 -1027.37 C510766H 6.7 -35.03 -1027.37 C510766H 6.7 -35.03 -1027.49 C510769H 7.7 -35.03 -1027.85 C510770H 7.7 -35.03 </td <td>C510752H 6.7 -34.86 -88.96 0.000 C510753H 7.3 -34.86 -1028.66 0.000 C510754H 5.5 -34.86 -1028.27 0.000 C510755H 6.7 -34.86 -1028.05 0.000 C510756H 6.4 -34.86 -1027.84 0.000 C510758H 6.0 -34.86 -1027.67 0.000 C510759H 5.8 -34.86 -1027.28 0.000 C510760H 5.4 -34.86 -1027.28 0.000 C510760H 5.4 -34.86 -1027.28 0.000 C510761H 5.4 -35.03 -51.52 0.022 C510762H 6.8 -35.03 -1027.28 0.000 C510762H 6.8 -35.03 -1027.76 0.000 C510762H 6.8 -35.03 -1027.99 0.000 C510764H 6.3 -35.03 -1027.99 0.000 C510766H 6.7 -35.03 -1027.49<!--</td--></td>	C510752H 6.7 -34.86 -88.96 0.000 C510753H 7.3 -34.86 -1028.66 0.000 C510754H 5.5 -34.86 -1028.27 0.000 C510755H 6.7 -34.86 -1028.05 0.000 C510756H 6.4 -34.86 -1027.84 0.000 C510758H 6.0 -34.86 -1027.67 0.000 C510759H 5.8 -34.86 -1027.28 0.000 C510760H 5.4 -34.86 -1027.28 0.000 C510760H 5.4 -34.86 -1027.28 0.000 C510761H 5.4 -35.03 -51.52 0.022 C510762H 6.8 -35.03 -1027.28 0.000 C510762H 6.8 -35.03 -1027.76 0.000 C510762H 6.8 -35.03 -1027.99 0.000 C510764H 6.3 -35.03 -1027.99 0.000 C510766H 6.7 -35.03 -1027.49 </td

Appendix 5d (cont). Transect backscatter and biomass density in the Chaleurs-Miscou area from the acoustic survey held from September 21 to October 03, 2010.

Appendice 5d (suite). Densité de la biomasse et rétrodiffusion par transect dans la zone Chaleurs-Miscou selon le relevé acoustique 21 septembre au 3 octobre 2010.

Stratum / Strate	Transect Number / Nombre	Transect Length / Longueur (km)	Target Strength Force cible (dB/kg)	Average Sa Sa moyen (dB/m²)	Biomass (e) Density / Densité (kg/m²)	Set Number Numéro
Maisonnette	C510792H	5.4	-35.2	-48.23	0.050	5
	C510793H	5.5	-35.2	-50.79	0.028	
	C510794H	5.4	-35.2	-46.27	0.078	6
	C510795H	6.1	-35.2	-55.47	0.009	
	C510796H	6.6	-35.2	-47.28	0.062	
	C510797H	6.3	-35.2	-52.86	0.017	
	C510798H	6.1	-35.2	-52.22	0.020	
	C510799H	9.0	-35.2	-57.77	0.006	
	C510800H	9.0	-35.2	-54.87	0.011	7
West_Miscou	C510801H	8.8	-35.2	-61.02	0.003	
_	C510802H	8.2	-35.2	-58.99	0.004	
	C510803H	8.8	-35.2	-61.68	0.002	
	C510804H	8.6	-35.2	-55.29	0.010	
	C510805H	8.9	-35.2	-60.57	0.003	
	C510806H	12.1	-35.2	-63.84	0.001	
	C510807H	14.5	-35.2	-67.20	0.001	
	C510808H	14.2	-35.2	-63.37	0.002	
	C510809H	14.1	-35.2	-65.38	0.001	
	C510810H	11.6	-35.2	-65.29	0.001	
	C510811H	8.5	-35.2	-67.01	0.001	
	C510812H	7.2	-35.2	-67.08	0.001	
	C510813H	7.8	-35.2	-69.02	0.000	
North_Miscou	C510814H	7.3	-34.99	-1028.61	0.000	
_	C510815H	9.9	-34.99	-1029.97	0.000	
	C510816H	10.0	-34.99	-1030.02	0.000	
	C510817H	10.2	-34.99	-1030.07	0.000	
	C510818H	10.5	-34.99	-57.02	0.006	
	C510819H	10.7	-34.99	-54.10	0.012	
	C510820H	9.8	-34.99	-59.44	0.004	
	C510821H	10.2	-34.99	-58.35	0.005	
	C510822H	10.6	-34.99	-58.07	0.005	
	C510823H	9.9	-34.99	-1029.94	0.000	
Miscou_nw	C510824H	13.8	-34.99	-51.07	0.025	
	C510825H	13.3	-34.99	-49.31	0.037	
	C510826H	13.1	-34.99	-58.29	0.005	
	C510827H	13.3	-34.99	-56.04	0.008	
	C510828H	13.3	-34.99	-54.67	0.011	
	C510829H	13.2	-34.99	-60.44	0.003	
	C510830H	13.8	-34.99	-50.07	0.031	
	C510831H	13.8	-34.99	-51.78	0.021	
	C510832H	13.7	-34.99	-59.46	0.004	
	C510833H	13.4	-34.99	-70.03	0.000	
Miscou_ne	C510834H	11.7	-34.99	-52.15	0.019	
	C510835H	9.9	-34.99	-63.75	0.001	
	C510836H	10.0	-34.99	-58.69	0.004	
	C510837H	9.9	-34.99	-65.22	0.001	
	C510838H	9.9	-34.99	-57.51	0.006	
	C510839H	9.8	-34.99	-54.35	0.000	8
Miscou_sw	C510839H C510840H	15.2	-34.99	-54.35	0.012	0
IVII3COU_SVV	C510841H	13.0	-34.99	-62.31	0.004	
						9
	C510844H	13.1	-34.99 34.00	-57.02 57.05	0.006	9
	C510845H	12.5	-34.99	-57.95	0.005	

Appendix 5d (cont). Transect backscatter and biomass density in the Chaleurs-Miscou area from the acoustic survey held from September 21 to October 03, 2010.

Appendice 5d (suite). Densité de la biomasse et rétrodiffusion par transect dans la zone Chaleurs-Miscou selon le relevé acoustique 21 septembre au 3 octobre 2010.

Stratum / Strate	Transect Number / Nombre	Transect Length / Longueur (km)	Target Strength Force cible (dB/kg)	Average Sa Sa moyen (dB/m²)	Biomass (e) Density / Densité (kg/m²)	Set Number Numéro
Miscou_sw	C510848H	13.4	-34.99	-59.07	0.004	
Miscou_se	C510842H	10.2	-34.99	-60.60	0.003	10
	C510843H	11.0	-34.99	-57.33	0.006	11
	C510846H	12.5	-34.99	-61.16	0.002	
	C510847H	12.9	-34.99	-61.39	0.002	

Appendix 5e. Transect backscatter and biomass density in the north P.E.I. area from the acoustic survey held from October 4 to 7, 2010.

Appendice 5e. Densité de la biomasse et rétrodiffusion par transect dans la zone de l'Î.-P.-É. selon le relevé acoustique du 4 au 7 octobre 2010.

Stratum / Strate	Transect	Transect	Target Strength	Average Sa	Biomass (e)	Set
	Number Nombre Leng	gth /Longueur (km)	Force cible (dB/kg)	Sa moyen (dB/m²)	Density / Densité (kg/m²)	Number Numéro
Peinw	C510849H	17.7	-35.08	-56.20	0.008	
	C510850H	17.2	-35.08	-49.16	0.039	12
	C510851H	16.4	-35.08	-43.47	0.145	13
	C510852H	13.8	-35.08	-67.98	0.001	
	C510853H	15.0	-35.08	-43.68	0.138	14
NorthCape	C510854H	9.6	-35.08	-47.06	0.063	15
	C510855H	14.2	-35.08	-58.30	0.005	
	C510856H	17.7	-35.08	-66.91	0.001	
	C510857H	16.5	-35.08	-48.64	0.044	
Cascumpec	C510858H	18.4	-35.08	-41.39	0.234	
	C510859H	15.8	-35.08	-62.17	0.002	
	C510860H	11.8	-35.08	-56.28	0.008	
SavageHarbour	C510875H	11.8	-34.74	-51.82	0.020	
•	C510876H	8.3	-34.74	-48.69	0.040	
	C510877H	8.6	-34.74	-54.64	0.010	
	C510878H	9.0	-34.74	-56.83	0.006	
	C510879H	9.1	-34.74	-56.66	0.006	
Monticello	C510867H	10.5	-34.74	-47.35	0.055	
	C510868H	10.7	-34.74	-56.62	0.006	
	C510869H	10.9	-34.74	-56.92	0.006	
	C510870H	10.5	-34.74	-52.66	0.016	16
	C510871H	10.7	-34.74	-58.25	0.004	
	C510872H	11.4	-34.74	-58.26	0.004	
	C510873H	11.0	-34.74	-59.45	0.003	
	C510874H	10.9	-34.74	-57.68	0.005	
EastPoint	C510861H	16.5	-34.74	-51.06	0.023	
	C510862H	13.3	-34.74	-47.18	0.057	17
	C510863H	13.1	-34.74	-52.94	0.015	
	C510864H	9.8	-34.74	-55.85	0.008	
	C510865H	10.5	-34.74	-61.90	0.002	18
	C510866H	10.8	-34.74	-52.35	0.017	

Appendix 5f. Transect backscatter and biomass density in the Chaleurs-Miscou area from the acoustic survey held from September 22 to October 03, 2011.

Appendice 5f. Densité de la biomasse et rétrodiffusion par transect dans la zone Chaleurs-Miscou selon le relevé acoustique du 22 septembre au 3 octobre 2011.

Stratum / Strate	Transect Number / Nombre	Transect Length / Longueur (km)	Target Strength Force cible (dB/kg)		Biomass (e) Density /Densité (kg/m²)	Set Number Numéro
Riviere_au_Renard	C611501H	5.6	-34.25	-55.09	0.008	
	C611502H	5.4	-34.25	-61.27	0.002	
	C611503H	4.7	-34.25	-65.24	0.001	
	C611504H	4.1	-34.25	-55.72	0.007	1
	C611505H	5.8	-34.25	-65.27	0.001	
	C611506H	5.6	-34.25	-65.15	0.001	
Cap_Bon_Ami	C611507H	4.7	-34.25	-74.53	0.000	
	C611508H	6.0	-34.25	-70.28	0.000	
	C611509H	5.1	-34.25	-77.84	0.000	
	C611510H	4.9	-34.25	-54.47	0.010	
Malbaie	C611511H	3.4	-34.25	-65.24	0.001	
	C611512H	12.0	-34.25	-58.32	0.004	
	C611513H	10.3	-34.25	-55.34	0.008	2
	C611514H	3.7	-34.25	-68.92	0.000	
Anse_Beaufils	C611515H	2.9	-34.25	-71.03	0.000	
	C611516H	6.7	-34.25	-64.57	0.001	
	C611517H	7.2	-34.25	-61.11	0.002	
	C611518H	7.2	-34.25	-59.45	0.003	
	C611519H	4.9	-34.25	-50.95	0.021	
Gde_Riviere	C611520H	6.4	-34.66	-55.89	0.008	
	C611521H	5.4	-34.66	-68.09	0.000	
	C611522H	6.0	-34.66	-62.46	0.002	
	C611523H	6.3	-34.66	-63.49	0.001	
	C611524H	5.9	-34.66	-56.17	0.007	3
	C611525H	5.3	-34.66	-59.59	0.003	
	C611526H	4.8	-34.66	-64.36	0.001	
	C611527H	3.6	-34.66	-60.36	0.003	
Newport	C611528H	4.5	-34.66	-58.46	0.004	
	C611529H	6.9	-34.66	-55.18	0.009	
	C611530H	7.7	-34.66	-51.91	0.019	
	C611531H	7.5	-34.66	-54.12	0.011	
	C611532H	7.2	-34.66	-54.72	0.010	
	C611533H	5.4	-34.66	-50.07	0.029	4
	C611534H	4.9	-34.66	-50.03	0.029	
	C611535H	4.3	-34.66	-50.78	0.024	
	C611536H	4.2	-34.66	-49.76	0.031	
	C611537H	4.6	-34.66	-63.68	0.001	
Shigawake	C611538H	5.1	-34.66	-59.13	0.004	
	C611539H	5.7	-34.66	-57.70	0.005	
	C611540H	6.0	-34.66	-60.39	0.003	
	C611541H	5.9	-34.66	-54.35	0.011	
	C611542H	6.0	-34.66	-49.61	0.032	
	C611543H	6.0	-34.66	-52.89	0.015	
	C611544H	8.4	-34.66	-46.92	0.059	5
	C611545H	8.1	-34.66	-56.90	0.006	

Appendix 5f (cont). Transect backscatter and biomass density in the Chaleurs-Miscou area from the acoustic survey held from September 22 to October 03, 2011.

Appendice 5f (suite). Densité de la biomasse et rétrodiffusion par transect dans la zone Chaleurs-

Miscou selon le relevé acoustique 22 septembre au 3 octobre 2011.

Stratum / Strate	Transect Number /Nombre L		Target Strength Force cible (dB/kg)	Average Sa Sa moyen (dB/m²)	Biomass (e) Density / Densité (kg/m²)	Set Number Numéro
Shigawake	C611546H	8.2	-34.66	-52.53	0.016	
	C611547H	6.5	-34.66	-54.27	0.011	
	C611548H	6.6	-34.66	-54.22	0.011	
	C611549H	6.4	-34.66	-55.27	0.009	
	C611550H	6.5	-34.66	-59.43	0.003	
	C611551H C611552H	6.3 6.6	-34.66 -34.66	-1027.99 -1028.17	0.000 0.000	
NewCarlisle	C611553H	4.6	-35.00	-1026.61	0.000	
NewGamble	C611554H	5.7	-35.00	-81.92	0.000	
	C611555H	6.1	-35.00	-66.03	0.001	
	C611556H	6.0	-35.00	-52.96	0.016	
	C611557H	6.4	-35.00	-52.76	0.017	
	C611558H	5.3	-35.00	-45.07	0.099	_
	C611559H	5.4	-35.00	-40.07	0.311	6
	C611560H	6.5	-35.00	-42.24	0.189	7
	C611561H	5.7	-35.00	-48.18	0.048	
	C611562H	5.6	-35.00	-48.10	0.049	
NewRichmond	C611563H	6.0	-35.00	-51.31	0.023	
	C611564H	5.3	-35.00	-51.43	0.023	
	C611565H	5.8	-35.00	-50.22	0.030	
	C611566H	5.9	-35.00	-52.12	0.019	
	C611567H	5.6	-35.00	-53.10	0.015	
	C611568H	5.3	-35.00	-58.37	0.005	
	C611569H	5.7	-35.00	-59.43	0.004	
Belledune	C611570H	6.0	-34.30	-53.64	0.012	
	C611571H	6.4	-34.30	-53.56	0.012	
	C611572H	7.0	-34.30	-51.70	0.018	
	C611573H	6.4	-34.30	-55.98	0.007	
	C611574H	6.5	-34.30	-50.68	0.023	
	C611575H	6.3	-34.30	-47.16	0.052	8
	C611576H	8.1	-34.30	-53.97	0.011	Ü
	C611577H	7.9	-34.30	-53.15	0.013	
	C611578H	7.7	-34.30	-51.74	0.018	
			-34.30			
	C611579H	7.1		-50.23	0.026	0
	C611580H	7.3	-34.30	-49.58	0.030	9
	C611581H	8.0	-34.30	-49.09	0.033	10
	C611582H	8.0	-34.30	-51.03	0.021	
	C611583H	7.8	-34.30	-50.23	0.026	
	C611584H	7.8	-34.30	-49.68	0.029	
	C611585H	7.8	-34.30	-50.72	0.023	
Nepisiguit	C611586H	10.9	-34.99	-52.41	0.018	
	C611587H	11.2	-34.99	-50.85	0.026	
	C611588H	10.0	-34.99	-51.70	0.021	
	C611589H	9.1	-34.99	-51.43	0.023	
	C611590H	10.0	-34.99	-52.24	0.019	
	C611591H	9.1	-34.99	-50.24	0.030	

Appendix 5f (cont). Transect backscatter and biomass density in the Chaleurs-Miscou area from the acoustic survey held from September 22 to October 03, 2011.

Appendice 5f (suite). Densité de la biomasse et rétrodiffusion par transect dans la zone Chaleurs-

Miscou selon le relevé acoustique 22 septembre au 3 octobre 2011.

Stratum / Strate	Transect Number / Nombre	Transect Length / Longueur (km)	Target Strength Force cible (dB/kg)	Average Sa Sa moyen (dB/m²)	Biomass (e) Density / Densité (kg/m²)	Set Number Numéro
Nepisiguit	C611592H	9.0	-34.99	-49.71	0.034	
	C611593H	8.4	-34.99	-50.26	0.030	
	C611594H	8.4	-34.99	-48.61	0.044	11
	C611595H	8.1	-34.99	-51.52	0.022	
	C611596H	7.5	-34.99	-48.37	0.046	12
	C611597H	6.6	-34.99	-48.92	0.040	
	C611598H	6.9	-34.99	-50.80	0.026	
	C611599H	7.3	-34.99	-49.53	0.035	
	C611600H	6.5	-34.99	-46.82	0.066	13
	C611601H	5.8	-34.99	-47.75	0.053	
Maisonnette	C611602H	5.5	-34.90	-47.64	0.053	
Maisornictic	C611603H	5.0	-34.90	-45.46	0.088	
	C611604H	4.7	-34.90	-69.45	0.000	
	C611605H	4.9	-34.90	-43.82	0.128	14
	C611606H	4.8	-34.90	-49.87	0.128	14
	C611607H	5.3	-34.90	-51.36	0.023	
	C611608H	6.1	-34.90	-46.01	0.078	
	C611609H	6.0	-34.90	-46.64	0.067	4.5
	C611610H	6.1	-34.90	-44.30	0.115	15
	C611611H	6.1	-34.90	-50.39	0.028	
	C611612H	6.6	-34.90	-49.83	0.032	
West_miscou	C611613H	6.8	-34.90	-54.82	0.010	
	C611614H	9.1	-34.90	-54.66	0.011	
	C611615H	12.9	-34.90	-56.93	0.006	
	C611616H	9.4	-34.90	-52.69	0.017	
	C611617H	8.7	-34.90	-55.87	0.008	
	C611618H	7.2	-34.90	-52.72	0.017	16
	C611619H	5.8	-34.90	-59.65	0.003	
	C611620H	6.1	-34.90	-60.79	0.003	
	C611621H	6.9	-34.90	-56.94	0.006	17
	C611622H	6.8	-34.90	-71.76	0.000	
	C611623H	7.1	-34.90	-74.17	0.000	
North_miscou	C611624H	5.0	-34.76	-1026.99	0.000	
	C611625H	9.9	-34.76	-73.87	0.000	
	C611626H	9.5	-34.76	-71.18	0.000	
	C611627H	10.8	-34.76	-72.43	0.000	
	C611628H	10.7	-34.76	-76.30	0.000	
	C611629H	10.9	-34.76	-1030.37	0.000	
	C611630H	11.3	-34.76	-1030.51	0.000	
	C611631H	9.9	-34.76	-1029.97	0.000	
	C611640H	13.5	-34.76	-54.03	0.012	
	C611655H	21.3	-34.76	-51.68	0.020	18
Miscou_nw	C611632H	12.5	-34.76	-1030.97	0.000	
	C611635H	12.9	-34.76	-1031.10	0.000	
	C611636H	12.8	-34.76	-1031.07	0.000	
	C611639H	13.0	-34.76	-52.61	0.016	
	C611650H	12.4	-34.76	-62.04	0.002	
	C611651H	13.4	-34.76	-52.14	0.018	19
	C611654H	12.7	-34.76	-50.20	0.018	20

Appendix 5f (cont). Transect backscatter and biomass density in the Chaleurs-Miscou area from the acoustic survey held from September 22 to October 03, 2011.

Appendice 5f (suite). Densité de la biomasse et rétrodiffusion par transect dans la zone Chaleurs-Miscou selon le relevé acoustique 22 septembre au 3 octobre 2011.

Stratum / Strate	Transect Number / Nombre	Transect Length / Longueur (km)	Target Strength Force cible (dB/kg)	Average Sa Sa moyen (dB/m²)	Biomass (e) Density / Densité (kg/m²)	Set Number Numéro
Miscou_ne	C611633H	10.3	-34.76	-1030.12	0.000	
	C611634H	10.0	-34.76	-64.68	0.001	
	C611637H	10.6	-34.76	-1030.26	0.000	
	C611638H	10.4	-34.76	-62.37	0.002	
	C611649H	10.3	-34.76	-65.55	0.001	
	C611652H	9.9	-34.76	-59.64	0.003	
	C611653H	10.4	-34.76	-56.01	0.008	21
Miscou_sw	C611642H	12.8	-34.76	-56.96	0.006	
_	C611643H	11.8	-34.76	-55.54	0.008	
	C611646H	13.2	-34.76	-63.41	0.001	
	C611647H	12.5	-34.76	-63.12	0.001	
Miscou_se	C611641H	12.2	-34.76	-72.62	0.000	
	C611644H	12.6	-34.76	-69.22	0.000	
	C611645H	10.4	-34.76	-72.67	0.000	
	C611648H	10.9	-34.76	-65.96	0.001	