Practice problems

1. You will be given a integer input n. All you need to do is to print the first n numbers. However, you have to do it using a function. Your function will return an array of first n odd integers. You need to dynamically allocate memory to the array in the main function and pass it as a parameter of the function. You have to use pointer arithmetic to access the array elements everywhere.

Sample input	Corresponding output
5	13579
7	1 3 5 7 9 11 13
2	13

2. Write a program to find the position of an element in a 2D matrix. You will be given two integer m, n denoting the row and column of the matrix. Then you have to take m*n integer as input (row wise). After that, you will take input a number k. You have to find the position of the number (row_no, column_no) in the matrix (assume both row and column start from 1). If the number is found multiple times, you need to print all the positions in a separate line. If the number is not found, you have to print -1.

You have to dynamically allocate the 2D array. In addition, you need to use pointer to access the matrix elements.

Sample input	Corresponding output
23	13
1 3 -1	
3 5 2	
-1	
23	12
1 3 -1	2 1
3 5 2	
3	
23	-1
1 3 -1	
3 5 2	
6	

3. Write a function char *mystrstr(char *str1, char *str2), which finds the first occurrence of the substring **str2** in the string **str1**. The terminating '\0' characters are not compared.

Parameters:

str1-- This is the main C string to be scanned.

str2 -- This is the small string to be searched with-in **str1** string.

Return Value:

This function returns a pointer to the first occurrence in **str1** of any of the entire sequence of characters specified in **str2**, or a null pointer if the sequence is not present in **str1**.

<u>Restriction:</u> You have to use Pointer syntax for implementing mystrstr function. You cannot declare any temporary char array in this function. You cannot use any function declared in <string.h>.

Sample Input	Sample Output
CSE 102 CSE B Section	CSE B Section
CSE B	
AAABCD	AABCD
AABC	
ABBCCDD	NULL
BBCCAA	
ABBBCDDD	DDD
DDD	

4. Given three points (D,A, B in sequence) of a parallelogram find the fourth one and the area of it. The algorithm is given for your conveniences.

$$O = (B+D) / 2$$
.
 $C = O + (O-A)$. Area = $(B-A) \times (D-A)$

Now, you have to implement the following steps to do the desired task.

- Implement a Point structure with two double attributes x, y.
- Implement Point addPoint(Point a, Point b) that returns the addition of two points.
- Implement Point subPoint(Point a, Point b) that returns the subtraction of two points.

- Implement Point scalePoint(Point a, double n) that returns the point after scaling by n.
- Implement a Parallelogram structure with three Point attributes A, B, D.
- Implement Point findFourthPoint(Parallelogram p) that returns the fourth point of the parallelogram p. Follow the method discussed above.
- Implement double crossPoint(Point a, Point b)that returns the cross product of point a and b.
- Implement double area(Parallelogram p)that returns the area of the parallelogram.