# МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В.Ломоносова

# Факультет вычислительной математики и кибернетики

Компьютерный практикум по учебному курсу «ВВЕДЕНИЕ В ЧИСЛЕННЫЕ МЕТОДЫ»

Численные методы интерполирования и приближения функций ОТЧЁТ

о выполненном задании студента 209 учебной группы факультета ВМК МГУ Кольцова Кирилла Евгеньевича

# Содержание

|              | гения терполяции Лагранжа писание облемы вычислений прицентрическая форма зультаты вычислений |
|--------------|-----------------------------------------------------------------------------------------------|
|              | лисание                                                                                       |
|              | писание                                                                                       |
| 2.1.1 O      | роблемы вычислений                                                                            |
|              | рицентрическая форма                                                                          |
|              |                                                                                               |
|              | ЗУЛЬТАТЫ ВЫЧИСЛЕНИИ                                                                           |
|              | сследование на сходимость                                                                     |
| _            | терполяции кубическими сплайнами                                                              |
|              | писание                                                                                       |
|              | зультаты вычислений {                                                                         |
|              | еследование на сходимость                                                                     |
|              |                                                                                               |
|              | я реализация 10                                                                               |
| 3.1 Инициал  | изация                                                                                        |
| 3.2 Вычисле  | ние значениий                                                                                 |
| 3.3 Дополни  | гельные функции                                                                               |
| 4 Заключение | 12                                                                                            |
|              |                                                                                               |
|              | pa                                                                                            |

# 1 Постановка задачи

Задачей является построение интерполянтов разных типов заданных функий. Требуется построить полином Лагранжа для следующих функций  $f_i(x)$  на отрезке  $x \in [0,2]$ :

$$f_1(x) = \frac{1}{2^5 \cdot 5!} \frac{d^5}{dx^5} \left[ \left( x^2 - 1 \right)^5 \right],$$

$$f_2(x) = |\sin(4x)| e^{2x}$$
.

В качестве узлов интерполяции необходимо использовать узлы равномерной на [0,2] сетки для количества узлов n=3,5,9,17.

Также нужно исследовать сходимость интерполяции и найти максимальные отклонения

$$\max |L_n(x) - f_i(x)|$$

на равномерной сетке из 1001 узла, где  $L_n(x)$  - интерполянт. По пути построить графики исходных функций и их интерполянтов, подобрать более эффективный численный метод приближения функции для второй функции.

# 2 Методы решения

# 2.1 Метод интерполяции Лагранжа

#### 2.1.1 Описание

Метод интерполяции Лагранжа позволяет построить полином, проходящий через заданные узлы интерполяции. Пусть заданы узлы:

$$(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n),$$

где  $y_i = f(x_i)$ . Интерполяционный полином Лагранжа имеет вид:

$$L_n(x) = \sum_{i=0}^n y_i \phi_i(x),$$

где

$$\phi_i(x) = c_i \prod_{\substack{j=0\\j\neq i}}^n (x - x_j), c_i = \frac{1}{\prod_{\substack{j=0\\j\neq i}}^n (x_i - x_j)}, i = 0..n.$$

Построенный многочлен проходит через все узлы интерполирования:

$$f(x_i) = \sum_{k=0}^{n} f(x_k)\phi_k(x_i), i = 0..n.$$

Интерполяция Лагранжа применяется в астрономии для вычисления положения небесных тел и в инженерии для построения калибровочных кривых.

#### 2.1.2 Проблемы вычислений

Основные проблемы данного метода кроются в его основе — многочлене с высокой степенью.

При увеличении числа узлов интерполяции многочлен Лагранжа начинает вести себя нестабильно на краях интервала, что получило особое название — эффект Рунге.

Также для высоких степеней многочлена, возникающих при увеличении числа узлов, расчёты становятся численно неустойчивыми из-за ошибок округления.

Кроме того, если придерживаться определения, то при добавлении новых точек необходимо пересчитывать весь многочлен, что делает метод малоэффективным для задач с динамическим изменением данных.

#### 2.1.3 Барицентрическая форма

Барицентрическая форма полинома Лагранжа призвана решить некоторые проблемы, а именно пересчет многочлена при добавлении точки и численную неустойчивость.

Заметим, что если мы возьмём в качестве функции  $x^m$  и посчитаем значения  $x_i^m$  в узлах интерполирования, то получим формулу:

$$x^m = \sum_{i=0}^n x_i^m \cdot \phi_i(x).$$

Дифференцируя это тождество по x, будем иметь для m = 0..n:

$$\sum_{i=0}^{n} x_i^m \phi_i(x) = mx^{m-1},$$

из которой при m=0 вытекает

$$\sum_{i=0}^{n} \phi_i(x) = 1.$$

Далее, если ввести полином  $\omega_{n+1}(x) = \prod_{k=0}^{n} (x-x_k)$ , то можно записать для  $x \neq x_i$ 

$$\phi_i(x) = c_i \frac{\omega_{n+1}(x)}{x - x_i}.$$

Исходную формулу можно переписать в виде

$$L_n(x) = \omega_{n+1}(x) \sum_{i=0}^{n} \frac{c_i f_i}{x - x_i}.$$

С другой стороны, для m=0 имеем

$$1 = \omega_{n+1}(x) \sum_{i=0}^{n} \frac{c_i}{x - x_i}.$$

Поделив одно на другое, получим при  $x \neq x_i$ 

$$L_n(x) = \frac{\sum_{i=0}^{n} \frac{c_i f_i}{x - x_i}}{\sum_{i=0}^{n} \frac{c_i}{x - x_i}}.$$

Это представление является барицентрической формой. Подобный способ вычисления более экономичен и устойчив к ошибкам округления.

#### 2.1.4 Результаты вычислений

#### Для $f_1(x)$

Были проведены вычисления интерполянтов по узлам равномерной на [0,2] сетки для количества узлов n=3,5,9,17 и построены графики функций. Также для каждого интерполянта было посчитано максимальное отклонение на равномерной сетке из 1001 узла. Результаты приведены ниже:



Рис. 1: Графики  $f_1(x)$  и полинома лагранжа для количества узлов интерполяции n=3,5,9,17 на [0,2] Примечательно рассмотреть отрезок [0,1]:



Рис. 2: Графики  $f_1(x)$  и полинома лагранжа для количества узлов интерполяции n=3,5 на [0,1]

Максимальные отклонения для количества узлов интерполяции n=3,5,9,17 на сетке из 1001 узла приведены в таблице:

| n=3               | n=5                    | n = 9                | n = 17                 |
|-------------------|------------------------|----------------------|------------------------|
| 3.765905941283157 | 1.3244516594568267e-11 | 1.34718902700115e-11 | 1.3244516594568267e-11 |

Таблица 1: Отклонения значений полинома Лагранжа от значений  $f_1(x)$  в зависимости от количества узлов



Рис. 3: Графики  $f_2(x)$  и полинома Лагранжа для количества узлов интерполяции n=3,5,9,17 на [0,2]

|   | n=3               | n=5                | n = 9              | n = 17             |  |
|---|-------------------|--------------------|--------------------|--------------------|--|
| ĺ | 20.44686836622694 | 19.829961952477838 | 22.831417382271724 | 456.19184772051335 |  |

Таблица 2: Отклонения значений полинома Лагранжа от значений  $f_2(x)$  в зависимости от количества узлов

#### 2.1.5 Исследование на сходимость

Исследование на сходимость проводилось на сетке из 1001 узла, в каждом из которых сравнивалось значение функции и интреполянта. На графиках в левом столбце показана зависимость отклонения от количества узлов, вплоть до 80 узлов (для наглядности роста). В правом же столбце вплоть до 500. В первой строке исследуется функция  $f_1(x)$ , во второй —  $f_2(x)$ .



Рис. 4: Исследование полинома Лагранжа на сходимость на [0, 2]

Явно виден эффект Рунге, по которому при увеличении количества узлов растет отклонение.

#### 2.2 Метод интерполяции кубическими сплайнами

#### 2.2.1 Описание

Метод интерполяции кубическими сплайнами был выбран неспроста. Метод Лагранжа обаладает некоторыми серьёзными недостатками при интерполяции  $f_2(x)$ :

- Функция |sin(4x)| имеет резкие углы и изменения на некоторых участках, что приводит к высокой чувствительности и колебаниям, особенно вблизи точек пересечений и экстремумов.
- Метод расходится.
- Серьёзное несовпадение значений со значениями функции в большистве точек отрезка, в независимости от количества узлов.

Интерполяция кубическими сплайнами лишена этих недостатков. Построение соответствующего интерполянта выглядит следующим образом. На отрезке вводится сетка

$$(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n),$$

где  $y_i = f(x_i)$ . Сплайном, соответствующим данной функции  $f_i(x)$  и данным узлам, называется функция s(x), удовлетворяющая следующим условиям:

- 1. на каждом сегменте  $[x_{i-1}, x_i], i = 1..N$  функция s(x) является многочленом третьей степени;
- 2. функция s(x), а также ее первая и вторая производные непрерывны на [a, b];
- 3.  $s(x_i) = f(x_i), i = 0..N$

На каждом из отрезков  $[x_{i-1}, x_i], i = 1..N$  будем искать функцию  $s(x) = s_i(x)$  в виде многочлена третьей степени

$$s_i(x) = a_i + b_i(x - x_i) + \frac{c_i}{2}(x - x_i)^2 + \frac{d_i}{6}(x - x_i)^3,$$
  
$$x_{i-1} \le x \le x_i, i = 1..N.$$

Из условий интерполирования и непрерывности первой и второй производных получаем

$$a_i = f(x_i), i = 1..N,$$

$$h_i c_{i-1} + 2(h_i + h_{i+1})c_i + h_{i+1}c_{i+1} = 6(\frac{y_{i+1} - y_i}{h_{i+1}} - \frac{y_i - y_{i-1}}{h_i}), i = 1..N - 1, c_0 = c_N = 0,$$

$$d_i = \frac{c_i - c_{i-1}}{h_i}, i = 1..N,$$

$$b_i = \frac{h_i}{2}c_i - \frac{h_i^2}{6}d_i + \frac{y_i - y_{i-1}}{h_i}, i = 1..N$$

(граничные значения  $c_0$  и  $c_N$  выбраны нулевыми искусственно). Система линейных уравнений для коэффициентов  $c_i$  имеет трехдиагональную матрицу, а значит имеет единственное решение. Кроме того, наблюдается диагональное преобладание, что позволяет отыскать решение методом прогонки, которая в данном случае устойчива.

Сплайны, благодаря их плавности и устойчивости, широко используются в компьютерной графике для создания сглаженных кривых, в гидродинамике для моделирования жидкостей, а также в обработке данных и сигналов для заполнения пропусков и сглаживания функций.

# 2.2.2 Результаты вычислений

# Для $f_1(x)$

Результат для первой функции схож с результатом интерполирования методом Лагранжа:



Рис. 5: Графики  $f_1(x)$  и кубического сплайна для количества узлов интерполяции n=3,5,9,17 на [0,2]

| n=3               | n=5               | n = 9              | n = 17              |
|-------------------|-------------------|--------------------|---------------------|
| 16.81075862747487 | 4.352510044627834 | 2.7712309500427637 | 0.25238700112780066 |

Таблица 3: Отклонения значений сплайна от значений  $f_1(x)$  в зависимости от количества узлов

В то же время интерполирование кубическими сплайнами при тех же параметрах дало заметно более точный результат для  $f_2(x)$ :



Рис. 6: Графики  $f_2(x)$  и кубического сплайна для количества узлов интерполяции n=3,5,9,17 на [0,2]

| n=3               | n=5              | n=9               | n = 17             |
|-------------------|------------------|-------------------|--------------------|
| 18.51850834975229 | 8.16278232814281 | 4.166007445350302 | 3.4108455942021894 |

Таблица 4: Отклонения значений сплайна от значений  $f_2(x)$  в зависимости от количества узлов

# 2.2.3 Исследование на сходимость

Исследование на сходимость в случае интерполяции кубическими сплайнами проводилось по тому же образцу:



Рис. 7: Исследование сплайна на сходимость на [0,2]

Отчётливо видно, что в обоих случаях метод сходится. Также примечательно посмотреть на график сплайна при очень большом количестве узлов интерполяции, например при 1001:





Рис. 8: Графики  $f_1(x)$ ,  $f_2(x)$  и их сплайном при большом количестве узлов инерполяции на [0,2]

В обоих случаях график сплайна "закрашивает" график исходной функции, что означает весьма точное дублирование её значений.

# 3 Программная реализация

Программа, реализующая все компоненты работы написана на языке Python. Для отрисовки графиков функций использовалась библиотека MatPlotLib, для расчёта математических функций  $e^x$  и sin(x) использовалась встроенная библиотека math.

Все ключевые параметры настраиваются через глобальные переменные, определенные в самом начале программы.

Оба метода реализованы в виде классов LagrangeInterpolant и SplineInterpolant.

# 3.1 Инициализация

Класс содержит в себе две функции: инициализирующую (  $\_$ \_init $\_$ ) и возвращающую значение по данному на вход x (Calc). При создании объекта любого из классов происходит инициализация:

• В случае с полиномом Лагранжа происходит расчёт барицентрических весов, которые зависят только от узлов и значений исходной функции в них. В описанных выше формулах это коэффициенты  $c_i$ :

```
def __init__(self, nodes, values):

self.nodes = nodes

self.values = values

self.n = len(nodes)

# Предварительный расчет барицентрических весов

self.c = [1] * self.n

for j in range(self.n):

for k in range(self.n):

if k != j:

self.c[j] /= (self.nodes[j] - self.nodes[k])
```

• В случае со сплайном происходит расчёт коэффициентов для всех отрезков по формулам, в том числе решение трехдиагонального СЛАУ с помощью метода прогонки (функция RunThroughMethod, описана в коде работы):

```
def __init__(self, nodes, values):

self.nodes = nodes

self.values = values

self.N = len(nodes) - 1

nodes_amount = len(nodes)

# ΓΡΑΗΝΨΗЫΕ ЗΗΑΨΕΗΝЯ ΚΟΘΦΦΝΙΙΝΕΗΤΑ C ΗΥΛΙΕΒЫΕ

cO = 0
```

```
cN = 0
10
             111
11
                Все массивы имеют избыточный размер для реализации
12
                индексации ровно как в формулах.
13
                Bo ocex циклах и срезах, где фигурирует N (self.N),
14
                второй предел увеличен на единицу
15
                 в связи с оссобенностями работы python
16
17
            self.a = [0 for _ in range(nodes_amount)]
18
            self.b = [0 for _ in range(nodes_amount)]
            self.c = []
            self.d = [0 for _ in range(nodes_amount)]
            h = [0 for _ in range(nodes_amount)]
22
23
            # Подсчёт коэффициентов а
24
            for i in range(len(values)):
25
                self.a[i] = values[i]
26
27
            # Подсчёт коэффициентов с
28
            for i in range(1, self.N + 1):
29
                h[i] = nodes[i] - nodes[i - 1]
            temp_h = [0 for _ in range(nodes_amount)]
32
            temp_f = [0 for _ in range(nodes_amount)]
33
            for i in range(1, (self.N - 1) + 1):
34
                temp_h[i] = 2 * (h[i] + h[i + 1])
35
                temp_f[i] = (6 * ((values[i + 1] - values[i]) / h[i + 1] - (values[i] - values[i - 1]) / h[i]))
36
37
            temp_f[1] = h[1] * c0
38
            temp_f[self.N-1] -= h[self.N] * cN
            self.c = RunThroughMethod(h[2:(self.N-1)+1],
41
                                       temp_h[1:(self.N-1)+1],
42
                                       h[2:(self.N - 1) + 1],
43
                                       temp_f[1:(self.N-1)+1])
44
            self.c.insert(0, c0)
45
            self.c.append(cN)
46
47
            # Подсчёт коэффициентов d
48
            for i in range(1, self.N + 1):
                self.d[i] = (self.c[i] - self.c[i - 1]) / h[i]
            # Подсчёт коэффициентов в
            for i in range(1, self.N + 1):
53
                self.b[i] = h[i] * self.c[i] / 2
54
                self.b[i] = h[i]*h[i] * self.d[i] / 6
55
                self.b[i] += (values[i] - values[i - 1]) / h[i]
56
```

# 3.2 Вычисление значениий

Значения вычисляются по следующим правилам:

• B LagrangeInterpolant значение считается по барицентрической формуле. Предварительно происходит проверка двух вещественных чисел на равенство с заданной точностью:

```
# Подсчёт значения для случайного х

def Calc(self, x):

numerator = 0

denominator = 0

# Вычисляем числитель и знаменатель барицентрической формулы
for j in range(self.n):

# Проверка на совпадение с узлом
if abs(x - self.nodes[j]) < EPSILON:
return self.values[j]
```

```
term = self.c[j] / (x - self.nodes[j])
numerator += term * self.values[j]
denominator += term

return numerator / denominator
```

• B SplineInterpolant считается значение кубического полинома в заданными коэффициентами:

# 3.3 Дополнительные функции

Также реализованы некоторые вспомогательные функции: рисующая график, создающая сетку, исследующая на сходимость, решающая трехдиагональную СЛАУ.

# 4 Заключение

#### 4.1 Выводы

Метод интерполирования многочленами Лагранжа удобен для небольшого количества узлов благодаря простоте реализации, однако его применение ограничено из-за эффекта Рунге, численной нестабильности и высокой вычислительной сложности при увеличении числа узлов. Кубические сплайны, напротив, обсепечивают устойчивость к численным ошибкам и удобство работы с большим числом точек, однако требуют решения системы линейных уравнений и выбора граничных условий, что может влиять на точность интерполяции. Таким образом, выбор метода зависит от задачи, требуемой точности и количества узлов.

#### 4.2 Литература

Самарский А.А., Гулин А.В. Численные методы. — М.: Наука. стр 127-140

М.Р.Тимербаев, Численные методы. Приближение функций. Численное интегрирование: учебное пособие — Казанский Федеральный Универсиет: стр. 9-13