23 noiembrie 2019

Conf. dr. Adriana Buică

Ecuații și inecuații

Probleme rezolvate

- 1. Să se determine valorile parametrului $m \in \mathbb{R}$ astfel încât ecuația $\sqrt{2|x|-2x}=m-x$ să aibă trei soluții reale distincte.
 - **2.** Rezolvați în $\mathbb R$ inecuația $\sqrt{\log_2 \frac{3-2x}{1-x}} < 1$.
- **3.** Să se afle soluțiile reale ale ecuațiilor $\sqrt{2-x}-x=0$, respectiv, $\sqrt{2-x}-x=1$, și ale inecuației $\ln(\sqrt{2-x}-x)\leq 0$.

Probleme propuse

- 4. Să se determine mulțimea soluțiilor ecuației $|x^2 |x| = mx(x+1)$, discutând în funcție de parametrul $m \in \mathbb{R}$.
 - **5.** Să se determine $x, y \in \mathbb{R}$ astfel încât

$$xy + x + y = 11$$
$$xy(x + y) = 30.$$

- **6.** Să se rezolve în \mathbb{R} inecuația $\frac{x+1}{x^2-3x+5} \leq 1$.
- 7. Fie $f: D \to \mathbb{R}$, $f(x) = \log_3 x + \log_{\sqrt{x}} x \log_{\frac{1}{3}} x 6$. Să se determine domeniul maxim de definiție D. Să se rezolve ecuația f(x) = 0 și inecuația $f(x) \ge 0$.
 - 8. Rezolvați în \mathbb{R} ecuația $3^x + 4^x = 5^x$ și inecuația $3^x + 4^x > 5^x$.
 - 9. Rezolvați în $\mathbb R$ inecuația $\ (\sqrt{2}-1)^x+(3-2\sqrt{2})^x>2$.
 - **10.** Rezolvați în \mathbb{R} inecuația $\log_2(9-2^x) > 3-x$.
 - 11. Rezolvați în $\mathbb R$ inecuația $\lg(x^2-3)>\lg(x+3)$.
 - 12. Rezolvați în $\mathbb R$ inecuația $2\ln^2 x + 1 < 3\ln x$.
 - 13. Rezolvați în \mathbb{R} ecuația $2^x + \log_2 x 2 = 0$.
 - 14. Rezolvați în \mathbb{R} ecuația $2^x \log_2 x 4 = 0$.
 - 15. Să se arate că ecuația $x^3 + x = a$ are o singură soluție pentru orice $a \in \mathbb{R}$.

Rezultate utile

Fie $I, J \subset \mathbb{R}$ intervale nevide și $f: I \to J$ o funcție. Fie $a, b \in J$ cu $a \leq b$.

Dacă f e injectivă, atunci ecuația f(x) = a are cel mult soluție.

Dacă f e bijectivă, atunci ecuația f(x) = a are soluție unică, $x = f^{-1}(a)$.

Dacă f e strict monotonă, atunci f e injectivă.

Dacă f e injectivă și monotonă, atunci f e strict monotonă.

Dacă f e bijectivă și crescătoare / descrescătoare, atunci inversa ei are aceeași calitate.

Presupunem că f e bijectivă şi fie S_{\leq} , respectiv S_{\geq} , mulțimea soluțiilor inecuației $f(x) \leq a$, respectiv $f(x) \geq a$. Dacă f e crescătoare, atunci $S_{\leq} = (-\infty, f^{-1}(a)] \cap I$ şi $S_{\geq} = [f^{-1}(a), \infty) \cap I$. Dacă f e descrescătoare, atunci $S_{\leq} = [f^{-1}(a), \infty) \cap I$ şi $S_{\geq} = (-\infty, f^{-1}(a)] \cap I$.

Presupunem că f e bijectivă și fie S mulțimea soluțiilor inecuațiilor $a \leq f(x) \leq b$. Dacă f e crescătoare, atunci $S = [f^{-1}(a), f^{-1}(b)] \cap I$. Dacă f e descrescătoare, atunci $S = [f^{-1}(b), f^{-1}(a)] \cap I$.