પ્રશ્ન 1(અ) [3 ગુણ]

વ્યાખ્યા આપો: (અ) મીટર (બ) કેલ્વિન (ક) ચોકસાઇ.

જવાબ:

- **મીટર**: મીટર એ લંબાઈનો SI એકમ છે, જેને 1/299,792,458 સેકન્ડના સમયગાળા દરમિયાન પ્રકાશ દ્વારા શૂન્યાવકાશમાં કાપવામાં આવતા અંતર તરીકે વ્યાખ્યાયિત કરવામાં આવે છે.
- **કેલ્વિન**: કેલ્વિન એ થર્મોડાયનામિક તાપમાનનો SI એકમ છે, જે બોલ્ટ્ઝમાન અચળાંક k ની સ્થિર સંખ્યાત્મક કિંમત 1.380649 × 10^-23 J/K સેટ કરીને વ્યાખ્યાયિત કરવામાં આવે છે.
- **યોકસાઇ**: યોકસાઇ એ માપવામાં આવતી જથ્થાની સાચી અથવા માનક કિંમતથી માપેલી કિંમતની નજીકતાની ડિગ્રી છે.

મેમરી ટ્રીક: "MKA - Meter measures Kilometers Accurately"

પ્રશ્ન 1(બ) [4 ગુણ]

વર્નિયર કેલિપર્સની રચના સ્વચ્છ આકૃતિ દોરી સમજાવો.

જવાબ:

આકૃતિ:

વર્નિયર કેલિપર્સમાં શામેલ છે:

- મુખ્ય સ્કેલ: માનક એકમોમાં ચિહ્નિત કરેલ સ્થિર સ્કેલ (mm અથવા ઇંચ)
- વર્નિયર સ્કેલ: મુખ્ય સ્કેલ પર સરકી શકે તેવો હલનચલન સ્કેલ
- સ્થિર જડબું: મુખ્ય સ્કેલ સાથે જોડાયેલ
- હલનચલન જડબું: વર્નિચર સ્કેલ સાથે જોડાયેલ
- ઊંડાઈ પ્રોબ: ખાડાની ઊંડાઈ માપવા માટે
- બાહ્ય જડબાં: બાહ્ય પરિમાણો માપવા માટે
- અાંતરિક જડબાં: આંતરિક પરિમાણો માપવા માટે

મેમરી ટ્રીક: "FMMVJ - Fixed Main scale Makes Vernier Jaw move"

પ્રશ્ન 1(ક)(1) [4 ગુણ]

ભૌતિક રાશિ એટલે શું છે? દિશાની દૃષ્ટિએ તેના પ્રકારો સમજાવો.

જવાબ:

ભૌતિક રાશિ એ ભૌતિક સિસ્ટમની એક માપી શકાય તેવી સંપત્તિ છે જેને માપન દ્વારા માત્રાત્મક કરી શકાય છે.

દિશાના આદ્યારે ભૌતિક રાશિઓના પ્રકારો:

અદિશ રાશિઓ	સદિશ રાશિઓ
માત્ર પરિમાણ ધરાવે છે	પરિમાણ અને દિશા બંને ધરાવે છે
ઉદાહરણો: દળ, સમય, તાપમાન, ઊર્જા	ઉદાહરણો: વિસ્થાપન, વેગ, બળ, પ્રવેગ
સરળ સંખ્યાઓ દ્વારા રજૂ થાય છે	તીર અથવા નિર્દેશિત રેખા ખંડો દ્વારા રજૂ થાય છે
સરવાળો સરળ અંકગણિતને અનુસરે છે	સરવાળો સદિશ બીજગણિતને અનુસરે છે (સમાંતર ચતુષ્કોણનો નિયમ)
કોઈ દિશાત્મક ગુણધર્મો નથી	દિશા અને પરિમાણ દ્વારા સંપૂર્ણપણે નિર્દિષ્ટ છે

મેમરી ટ્રીક: "SMAVD - Scalars have Magnitude Alone, Vectors have Direction"

પ્રશ્ન 1(ક)(2) [3 ગુણ]

એક માઇક્રોમીટરની પેચ 0.5 mm છે. જો તેના વતુળાકાર ભાગ પર 100 વિભાગ છે, તો તેની લઘુતમ માપવત્તા શોદ્યો.

જવાબ:

ગણતરી:

લઘુતમ માપવત્તા (L.C.) = પેચ / વતુળાકાર સ્કેલ પરના વિભાગોની સંખ્યા L.C. = 0.5 mm / 100 = 0.005 mm

તેથી, માઇક્રોમીટર સ્કૂ ગેજની લઘુતમ માપવત્તા 0.005 mm છે.

મેમરી ટ્રીક: "PDL - Pitch Divided gives Least count"

પ્રશ્ન 1(ક) OR [7 ગુણ]

માઇક્રોમીટર સ્કૂ ગેજની ત્રુટીઓ આકૃતિ દોરી સમજાવો.

જવાબ:

આકૃતિ:

માઇક્રોમીટર સ્ક્રૂ ગેજની સામાન્ય ત્રુટીઓ:

- શૂન્ય ત્રુટિ: જ્યારે માપન ફલકો સંપર્કમાં હોય, ત્યારે થિમ્બલનો શૂન્ય ડેટમ લાઇન સાથે મેળ ખાતો નથી
 - ૦ **ધન શૂન્ય ત્રુટિ**: જ્યારે થિમ્બલ પરનું શૂન્યનું ચિહ્ન ડેટમ લાઇનની નીચે હોય
 - ૦ ઋણ શૂન્ય ત્રુટિ: જ્યારે થિમ્બલ પરનું શૂન્યનું ચિહ્ન ડેટમ લાઇનની ઉપર હોય
- બેકલેશ ત્રુટિ: સ્ક્રૂ અને નટ વચ્ચેનો ખેલ, આગળ અને પાછળના હલનચલનમાં અલગ રીડિંગ્સ થાય છે
- યંત્ર ત્રુટિ: ઉત્પાદન ખામીઓ અથવા ઘસારાને કારણે
- પેરેલેક્સ ત્રુટિ: જ્યારે દૃષ્ટિની લાઇન સ્કેલ રીડિંગને લંબરૂપ ન હોય

સુધારા સૂત્ર: સાચું રીડિંગ = અવલોકિત રીડિંગ - શૂન્ય ત્રુટિ

મેમરી ટ્રીક: "ZBIP - Zero, Backlash, Instrument and Parallax errors make measurements trip"

પ્રશ્ન 2(અ) [3 ગુણ]

કુલંબનો વ્યસ્ત વર્ગનો નિયમ સમજાવો.

જવાબ:

કુલંબનો વ્યસ્ત વર્ગનો નિયમ કહે છે કે બે બિંદુ ચાર્જ વચ્ચેનું ઇલેક્ટ્રોસ્ટેટિક બળ:

- યાર્જના પરિમાણના ગુણનફળના સીધા પ્રમાણમાં
- તેમની વચ્ચેના અંતરના વર્ગના વ્યસ્ત પ્રમાણમાં
- બે ચાર્જને જોડતી રેખા પર કાર્ય કરે છે

ગણિતીય અભિવ્યક્તિ: F = k(q₁q₂)/r²

જ્યાં:

- F = ચાર્જ વચ્ચેનું ઇલેક્ટ્રોસ્ટેટિક બળ
- k = કુલંબનો અચળાંક (9 × 10⁹ N·m²/C²)
- q₁, q₂ = બે ચાર્જના પરિમાણ
- r = ચાર્જ વચ્ચેનું અંતર

મેમરી ટ્રીક: "PDSA - Product of charges Directly, Square of distance inversely, Along the line"

પ્રશ્ન 2(બ) [4 ગુણ]

વિદ્યુત સ્થિતિમાનનો તફાવત સમજાવો.

જવાબ:

વિદ્યુત સ્થિતિમાનનો તફાવત (વોલ્ટેજ) એ વિદ્યુત ક્ષેત્રમાં બે બિંદુઓની વચ્ચે ધન ટેસ્ટ યાર્જને ખસેડવામાં એકમ ચાર્જ દીઠ થતું કાર્ય છે.

ગણિતીય અભિવ્યક્તિ: V = W/q

જ્યાં:

- V = સ્થિતિમાનનો તફાવત (વોલ્ટ)
- W = કરવામાં આવેલું કાર્ય (જૂલ)
- q = ચાર્જ (કૂલંબ)

મુખ્ય લક્ષણો:

- વોલ્ટમાં માપવામાં આવે છે (V)
- અદિશ રાશિ (માત્ર પરિમાણ ધરાવે છે)
- પથ-સ્વતંત્ર (માત્ર પ્રારંભિક અને અંતિમ સ્થિતિ પર આધારિત)
- એકમ ચાર્જ દીઠ ઊર્જાનું પ્રતિનિધિત્વ કરે છે

મેમરી ટ્રીક: "WPCS - Work Per Charge is what potential difference Says"

પ્રશ્ન 2(ક) [7 ગુણ]

કેપેસીટરનું શ્રેણીમાં તથા સમાંતર જોડાણમાટે સમતુત્ય કેપેસિટન્સ વર્ણવો.

જવાબ:

શ્રેણી જોડાણ:

આકૃતિ:

- જ્યારે કેપેસિટરો એકબીજાના છેડાથી જોડાયેલા હોય
- દરેક કેપેસિટર પર સમાન યાર્જ: Q = Q₁ = Q₂ = Q₃
- કુલ પોટેન્શિયલ તફાવત: V = V₁ + V₂ + V₃
- સમતુલ્ય કેપેસિટન્સ સૂત્ર: 1/C₂q = 1/C₁ + 1/C₂ + 1/C₃ + ...
- સમતુત્ય કેપેસિટન્સ સૌથી નાના વ્યક્તિગત કેપેસિટન્સ કરતાં ઓછી હોય છે

સમાંતર જોડાણ:

આકૃતિ:

- જ્યારે કેપેસિટરો એક જ બે બિંદુઓ વચ્ચે જોડાયેલા હોય
- દરેક કેપેસિટર પર સમાન પોટેન્શિયલ તફાવત: V = V₁ = V₂ = V₃
- કુલ ચાર્જ: Q = Q₁ + Q₂ + Q₃
- સમતુલ્ય કેપેસિટન્સ સૂત્ર: C₂q = C₁ + C₂ + C₃ + ...
- સમતુત્ય કેપેસિટન્સ સૌથી મોટા વ્યક્તિગત કેપેસિટન્સ કરતાં વધુ હોય છે

તુલનાત્મક કોષ્ટક:

પરિમાણ	શ્રેણી	સમાંતર
ચાર્જ	બધા કેપેસિટર પર સમાન	કેપેસિટન્સ અનુસાર વિતરિત
વોલ્ટેજ	કેપેસિટરો વચ્ચે વિભાજિત	બધા કેપેસિટર પર સમાન
સમતુલ્ય કેપેસિટન્સ	$1/C_{e}q = 1/C_{1} + 1/C_{2} +$	$C_{e}q = C_{1} + C_{2} +$
પરિણામી કેપેસિટન્સ	કોઈપણ વ્યક્તિગત C કરતાં નાની	કોઈપણ વ્યક્તિગત C કરતાં મોટી

મેમરી ટ્રીક: "RAPS - Reciprocals Add in Parallel Sum"

પ્રશ્ન 2(અ) OR [3 ગુણ]

વિદ્યુતક્ષેત્ર રેખાઓની લાક્ષણિકતાઓ લખો.

જવાલ:

વિદ્યુત ક્ષેત્ર રેખાઓની લાક્ષણિકતાઓ:

• દિશા: હંમેશા ધન ચાર્જથી ઋણ ચાર્જ તરફ બતાવે છે

• પ્રકૃતિ: ધન ચાર્જથી શરૂ થાય છે અને ઋણ ચાર્જ પર પૂરી થાય છે

• સાતત્ય: ક્યારેય એકબીજાને છેદતી નથી

• ઘનતા: નજીકની રેખાઓ વધુ મજબૂત વિધુત ક્ષેત્ર સૂચવે છે

• લંબતા: હંમેશા સમસ્થિતિમાન સપાટીઓને લંબ હોય છે

• આકાર: સમાન ક્ષેત્રો માટે સીધી રેખાઓ, અસમાન ક્ષેત્રો માટે વક

• **ખુલ્લા/બંધ**: હંમેશા ખુલ્લા વક્કો, ચુંબકીય ક્ષેત્ર રેખાઓથી વિપરીત

મેમરી ટ્રીક: "DNCPS - Direction, Never cross, Closeness shows strength, Perpendicular, Straight/curved"

પ્રશ્ન 2(બ) OR [4 ગુણ]

વિદ્યુત ફ્લક્સ વિશે નોંધ લખો.

જવાબ:

વિધુત ફ્લક્સ એ આપેલા ક્ષેત્રફળમાંથી પસાર થતા વિધુત ક્ષેત્રનું માપ છે.

ગણિતીય અભિવ્યક્તિ: Φ_{a} = E·A·cos θ

જ્યાં:

• Φၙ = વિદ્યુત ફ્લક્સ (N·m²/C અથવા V·m)

• E = વિધુત ક્ષેત્ર તીવ્રતા (N/C અથવા V/m)

• A = સપાટીનું ક્ષેત્રફળ (m²)

• 0 = વિદ્યુત ક્ષેત્ર અને સપાટીના લંબ વચ્ચેનો ખૂણો

મુખ્ય લક્ષણો:

• સદિશ રાશિ

- SI એકમ ન્યૂટન-મીટર-વર્ગ પ્રતિ ફૂલંબ (N·m²/C) અથવા વોલ્ટ-મીટર (V·m)
- સપાટીમાંથી પસાર થતી ક્ષેત્ર રેખાઓની સંખ્યાનું પ્રતિનિધિત્વ કરે છે
- ક્ષેત્ર સપાટીને લંબ હોય ત્યારે મહત્તમ (θ = 0°)
- ક્ષેત્ર સપાટીને સમાંતર હોય ત્યારે શૂન્ય (θ = 90°)

મેમરી ટ્રીક: "FACT - Flux = Area × Cosθ × Field sTreength"

પ્રશ્ન 2(ક) OR [7 ગુણ]

કેપેસિટર અને કેપેસિટન્સ પર નોંધ લખો.

જવાબ:

કેપેસિટર:

કેપેસિટર એ એક વિદ્યુત ઘટક છે જે વિદ્યુત ચાર્જ અને વિદ્યુત ક્ષેત્રમાં ઊર્જા સંગ્રહિત કરવા માટે રચાયેલ છે.

મૂળભૂત રચના:

```
Plate 1 Plate 2
/////// //////
////// ////// Dielectric
/////// ///////
/////// ///////
```

કેપેસિટન્સ:

આપેલા પોટેન્શિયલ તફાવત પર વિદ્યુત ચાર્જ સંગ્રહિત કરવાની કેપેસિટરની ક્ષમતા.

ગણિતીય અભિવ્યક્તિ: C = Q/V

જ્યાં:

- C = કેપેસિટન્સ (ફેરાડ)
- Q = વિદ્યુત ચાર્જ (કૂલંબ)
- V = પોટેન્શિયલ તફાવત (વોલ્ટ)

સમાંતર પ્લેટ કેપેસિટર માટે:

```
C = \varepsilon_0 \varepsilon_r A/d
```

જ્યાં:

- ε₀ = મુક્ત અવકાશની પરમિટિવિટી (8.85 × 10⁻¹² F/m)
- દૂ = ડાયઇલેક્ટ્રિકની સાપેક્ષ પરમિટિવિટી
- A = પ્લેટ્સ વચ્ચેના ઓવરલેપનું ક્ષેત્રફળ
- d = પ્લેટ્સ વચ્ચેનું અંતર

કેપેસિટન્સને અસર કરતા પરિબળો:

- પ્લેટ ક્ષેત્રકળ સાથે વધે છે
- પ્લેટ અલગતા સાથે ઘટે છે

• ડાયઇલેક્ટ્રિક અચળાંક સાથે વધે છે

કેપેસિટરના ઉપયોગો:

- ઊર્જા સંગ્રહ
- પાવર સપ્લાયમાં ફિલ્ટરિંગ
- સમય ગણતરી સર્કિટ્સ
- કપલિંગ અને ડિકપલિંગ
- પાવર ફેક્ટર સુધારણા

મેમરી ટ્રીક: "QVAD - Quotient of charge and Voltage, affected by Area and Distance"

પ્રશ્ન 3(અ) [3 ગુણ]

વ્યાખ્યા આપો: (અ) ઉષ્માગમન (બ) કિલોકેલરી (ક) થર્મોમીટર.

જવાબ:

- ઉષ્માગમન: માધ્યમની જરૂર વિના વિદ્યુતચુંબકીય તરંગોના રૂપમાં થર્મલ ઊર્જાનું સ્થાનાંતરણ, જે નિર્વાત અથવા પારદર્શક માધ્યમોમાં થાય છે.
- **કિલોકેલરી**: 1000 કૅલરીના બરાબર ગરમીની ઊર્જાનો એકમ, જ્યાં એક કૅલરી એ પ્રમાણભૂત પરિસ્થિતિઓમાં 1 ગ્રામ પાણીનું તાપમાન 1°C વધારવા માટે જરૂરી ગરમીની માત્રા છે.
- **થર્મોમીટર**: તાપમાન માપવા માટે વપરાતું સાધન જે ભૌતિક ગુણધર્મ (જેમ કે પારાનો વિસ્તાર) જે તાપમાન સાથે બદલાય છે તેના આધારે કાર્ય કરે છે.

મેમરી ટ્રીક: "RKT - Radiation needs no medium, Kilocalorie measures energy, Thermometer shows temperature"

પ્રશ્ન 3(બ) [4 ગુણ]

ઉષ્માવહનાંકનો નિયમ સમજાવો.

જવાબ:

ઉષ્માવહનાંકનો નિયમ (ફોરિયરનો નિયમ) કહે છે કે પદાર્થ દ્વારા ઉષ્મા પ્રવાહનો દર:

- વિભાગના ક્ષેત્રફળના સીધા પ્રમાણમાં
- તાપમાન ઢાળના સીધા પ્રમાણમાં
- પદાર્થના થર્મલ વાહકતા પર આધારિત

ગણિતીય અભિવ્યક્તિ: Q/t = -kA(dT/dx)

જ્યાં:

- Q/t = ઉષ્મા પ્રવાહનો દર (J/s અથવા W)
- k = પદાર્થની થર્મલ વાહકતા (W/m·K)
- A = આડછેદનું ક્ષેત્રફળ (m²)
- dT/dx = તાપમાન ઢાળ (K/m)

• નકારાત્મક ચિહ્ન સૂચવે છે કે ઉષ્મા ઉચ્ચ તાપમાનથી નીચા તાપમાન તરફ વહે છે

મેમરી ટ્રીક: "GAKT - Gradient And area with K gives heat Transfer"

પ્રશ્ન 3(ક)(1) [3 ગુણ]

1 વ્યક્તિને 102°F તાવ છે. તો તે સેલ્સિયસ અને કેલ્વિનમાં કેટલો હશે?

જવાબ:

ફેરનહીટથી સેલ્સિયસમાં રૂપાંતર:

 $C = (F - 32) \times 5/9$

 $C = (102 - 32) \times 5/9$

 $C = 70 \times 5/9$

C = 38.89°C

સેલ્સિયસથી કેલ્વિનમાં રૂપાંતર:

K = C + 273.15

K = 38.89 + 273.15

K = 312.04 K

તેથી, 102°F = 38.89°C = 312.04 K

ਮੇਮਣੀ ਟ੍ਰੀs: "FSK - From Fahrenheit Subtract 32, multiply by 5/9, then add 273.15 for Kelvin"

પ્રશ્ન 3(ક)(2) [4 ગુણ]

સેલ્સિયસ અને ફેરનહીટ માપક્રમ સમજાવો.

જવાબ:

સેલ્સિયસ અને ફેરનહીટ તાપમાન માપક્રમોની તુલના:

પરિમાણ	સેલ્સિયસ માપક્રમ	ફેરનહીટ માપક્રમ
પાણીનું હિમબિંદુ	0°C	32°F
પાણીનું ઉત્કલનબિંદુ	100°C	212°F
વિભાગોની સંખ્યા	100 વિભાગો	180 વિભાગો
વિકસાવનાર	એન્ડર્સ સેલ્સિયસ (1742)	ગેબ્રિયલ ફેરનહીટ (1724)
ઉપયોગ	વિશ્વભરના મોટાભાગના દેશોમાં	મુખ્યત્વે USA અને તેના પ્રદેશોમાં
સંબંધ	C = (F - 32) × 5/9	F = (C × 9/5) + 32

આકૃતિ:

મેમરી ટ્રીક: "FBIC - Fahrenheit has Bigger numbers, Interval of 180, Conversion needs 5/9 or 9/5"

પ્રશ્ન 3(અ) OR [3 ગુણ]

ઉષ્માદ્યારીતા ની વ્યાખ્યા, એકમ અને સૂત્ર લખો.

જવાબ:

વ્યાખ્યા: ઉષ્માધારીતા એ કોઈ પદાર્થના તાપમાનમાં એક ડિગ્રી (સેલ્સિયસ અથવા કેલ્વિન) વધારવા માટે જરૂરી ઉષ્મા ઊર્જાની માત્રા છે.

સૂત્ર: C = Q/ΔT

જ્યાં:

- C = ઉષ્માધારીતા (J/K અથવા J/°C)
- Q = આપવામાં આવેલી ઉષ્મા ઊર્જા (જૂલ)
- ΔT = તાપમાનમાં ફેરફાર (K અથવા °C)

એકમ: જૂલ પ્રતિ કેલ્વિન (J/K) અથવા જૂલ પ્રતિ ડિગ્રી સેલ્સિયસ (J/°C)

મેમરી ટ્રીક: "QTC - Quotient of heat and Temperature Change gives heat capacity"

પ્રશ્ન 3(બ) OR [4 ગુણ]

ઉષ્મા પ્રવાહની પદ્ધતિઓ સમજાવો

જવાબ:

ઉષ્મા પ્રવાહની ત્રણ પદ્ધતિઓ:

પદ્ધતિ	વ્યાખ્યા	ઉદાહરણો	માધ્યમની જરૂરિયાત
વહન	પદાર્થના મોટા ભાગના હલનચલન વિના સીધા અણુઓના	દ્યાતુના સળિયા દ્વારા ઉષ્મા,	હા (ઘન પદાર્થ
	અથડામણ દ્વારા ઉષ્માનું સ્થાનાંતરણ	રસોઈના વાસણ	પસંદગીયુક્ત)
સંવહન	ગરમ થયેલા કણોના એક વિસ્તારથી બીજા વિસ્તારમાં	ઉકળતું પાણી, રૂમ હીટર,	હા (પ્રવાહી - તરલ
	હલનચલન દ્વારા ઉષ્માનું સ્થાનાંતરણ	સમુદ્રી પવન	અથવા વાયુ)
વિકિરણ	માધ્યમની જરૂરિયાત વિના વિધુતચુંબકીય તરંગો દ્વારા ઉષ્માનું	સૌર વિકિરણ, માઇક્રોવેવ	ના (નિર્વાતમાં કાર્ય
	સ્થાનાંતરણ	હીટિંગ, ઇન્ફ્રારેડ હીટર	કરે છે)

મેમરી ટ્રીક: "CoCRa - Conduction needs Contact, Convection needs Currents, Radiation needs no medium"

પ્રશ્ન 3(ક) OR [7 ગુણ]

બાયમેટાલિક થર્મોમીટર સમજાવો.

જવાબ:

આકૃતિ:

કાર્ય સિદ્ધાંત:

- બે અલગ-અલગ ધાતુઓના અસમાન થર્મલ વિસ્તરણ પર આધારિત
- બે ધાતુની પટ્ટીઓ, જેમાં થર્મલ વિસ્તરણના અલગ-અલગ ગુણાંકો હોય છે, તેને એકસાથે જોડવામાં આવે છે
- ગરમ થતાં, એક ધાતુ બીજી કરતાં વધુ ફેલાય છે
- આ અસમાન વિસ્તરણને કારણે પટ્ટી ઓછા વિસ્તરણવાળી ધાતુ તરફ વળે છે
- વળવાની માત્રા તાપમાન કેરકારના પ્રમાણમાં હોય છે
- પટ્ટી સાથે જોડાયેલ એક પોઇન્ટર અંશાંકિત સ્કેલ પર તાપમાન દર્શાવે છે

ફાયદા:

- સરળ, મજબૂત બાંધકામ
- કોઈ પ્રવાહી કે વાયુની જરૂર નથી
- વિશાળ તાપમાન શ્રેણી
- યાંત્રિક આઘાતોનો પ્રતિકાર કરે છે
- થર્મોસ્ટેટ બનાવવા માટે વાપરી શકાય છે

મર્યાદાઓ:

- પ્રવાહી-ઇન-ગ્લાસ થર્મોમીટર કરતાં ઓછું થોક્કસ
- તાપમાન ફેરફારો માટે ધીમી પ્રતિક્રિયા
- સમય જતાં યાંત્રિક થાક વિષય

ઉપયોગો:

- ઘરના હીટિંગ/કૂલિંગ સિસ્ટમમાં થર્મોસ્ટેટ
- ઓટોમોબાઇલ કૂલિંગ સિસ્ટમ
- ઓવન તાપમાન નિયંત્રણો
- સર્કિટ બ્રેકર

મેમરી ટ્રીક: "BENDS - Bimetallic strips Expand, Not equally, Different metals, Show temperature"

પ્રશ્ન 4(અ) [3 ગુણ]

વ્યાખ્યા આપો: (અ) આવૃત્તિ (બ) ઇન્ફ્રાસોનિક તરંગો (ક) પડઘો.

જવાબ:

- **આવૃત્તિ**: એકમ સમયમાં પૂર્ણ થતા આંદોલનો અથવા ચક્રોની સંખ્યા, હર્ટ્ઝ (Hz)માં માપવામાં આવે છે.
- **ઇન્ફ્રાસોનિક તરંગો**: માનવ સાંભળવાની નીચલી મર્ચાંદા (20 Hz નીચે)ની આવૃત્તિઓવાળા ધ્વનિ તરંગો જે માણસો દ્વારા સાંભળી શકાતા નથી પરંતુ અન્ય પ્રાણીઓ દ્વારા શોધી શકાય છે.
- **પડદ્યો**: એક અવાજ જે શ્રોતા તરફ પાછો પરાવર્તિત થાય છે અને મૂળ ધ્વનિના અલગ પુનરાવર્તન તરીકે સાંભળવા માટે પૂરતા સમયના વિલંબ સાથે આવે છે.

મેમરી ટ્રીક: "FIE - Frequency counts cycles, Infrasonic is below hearing, Echo comes back after reflection"

પ્રશ્ન 4(બ) [4 ગુણ]

લંબગત તરંગ અને સંગત તરંગ વચ્ચેનો તફાવત આપો.

જવાબ:

લંબગત અને સંગત તરંગો વચ્ચે તુલના:

પરિમાણ	લંબગત તરંગો	સંગત તરંગો
કણના હલનચલનની દિશા	તરંગ પ્રસરણને સમાંતર	તરંગ પ્રસરણને લંબરૂપ
ઉદાહરણ	ધ્વનિ તરંગો, ભૂકંપમાં P-તરંગો	પ્રકાશ તરંગો, પાણીની સપાટી પર તરંગો, ભૂકંપમાં S-તરંગો
માધ્યમની જરૂરિયાત	ઘન, પ્રવાહી અને વાયુઓ દ્વારા પ્રવાસ કરી શકે છે	ઘન અને પ્રવાહીઓની સપાટી દ્વારા પ્રવાસ કરી શકે છે પરંતુ વાયુઓ દ્વારા નહીં
ઘટકો	સંકોયન અને વિરલીકરણ	શિખર અને ખીણ
ધુવીકરણ	ધ્રુવીકૃત થઈ શકતા નથી	ધ્રુવીકૃત થઈ શકે છે
લૃશ્યમાનતા	સંકોચિત અને વિસ્તૃત સ્પ્રીંગ અથવા સ્લિંકી જેવા	ઉપર-નીચે હલતી દોરડી જેવા

આકૃતિ:

```
Longitudinal: -->-->-->--> (Direction of propagation)
<--><-->< (Particle movement)

Transverse: -->-->-->--> (Direction of propagation)

† | | | | | (Particle movement)
```

મેમરી ટ્રીક: "PPCP - Particles move Parallel in Longitudinal, Perpendicular in Transverse, Compressions vs Crests, Polarization only in Transverse"

પ્રશ્ન 4(ક)(1) [4 ગુણ]

અલ્ટ્રાસોનિક તરંગોના ત્રણ ગુણધર્મો અને ઉપયોગો આપો.

જવાબ:

અલ્ટ્રાસોનિક તરંગોના ગુણધર્મો:

- 20,000 Hz ઉપરની આવૃત્તિ શ્રેણી (માનવ શ્રવણની બહાર)
- ટૂંકી તરંગલંબાઈઓ નાના પદાર્થોના શોધવા માટે મદદ કરે છે
- સાંભળી શકાય તેવા ધ્વનિની તુલનામાં ઉચ્ચ દિશાનિર્દેશતા
- યોક્કસ માધ્યમોમાં ઉચ્ચ પ્રવેશ
- અવરોદ્યોની આસપાસ ઓછું વિવર્તન
- પ્રવાહીઓમાં ગુહાકરણ થાય છે

અલ્ટ્રાસોનિક તરંગોના ઉપયોગો:

क्षेत्र	ઉપયોગો
તબીબી	સોનોગ્રાફી, કિડની સ્ટોન વિનાશ, ફિઝિયોથેરાપી
ઔદ્યોગિક	બિન-વિનાશક પરીક્ષણ, સફાઈ, વેલ્કિંગ, ડ્રિલિંગ
નેવિગેશન	SONAR, અંતર માપન, અવરોધ શોધ
અન્ય	કૂતરા સીટી, જીવજંતુ નિયંત્રણ, ધ્વનિ સ્થાનનિર્ધારણ

મેમરી ટ્રીક: "FWD-MNO - Frequency high, Wavelength short, Direction focused; Medical imaging, NDT testing, Ocean mapping"

પ્રશ્ન 4(ક)(2) [3 ગુણ]

ધ્વનિ તરંગના વેગ, તરંગલંબાઈ અને આવૃત્તિ વચ્ચેનો સંબંધ તારવો.

જવાબ:

સિદ્ધાંત:

એક તરંગને ધ્યાનમાં લો જેમાં:

• તરંગલંબાઈ (λ): સમાન બિંદુઓ વચ્ચેનું અંતર

- આવૃત્તિ (f): એક સેકન્ડમાં કોઈ બિંદુમાંથી પસાર થતા તરંગોની સંખ્યા
- આવર્તકાળ (T): એક ચક્ર પૂર્ણ કરવા માટેનો સમય

એક આવર્તકાળ (T) દરમિયાન, તરંગ એક તરંગલંબાઈ (λ)ના અંતરને કાપે છે.

તેથી, વેગ = અંતર/સમય = λ/T

આવૃત્તિ f = 1/T હોવાથી, આપણે લખી શકીએ:

 $v = \lambda \times f$

જ્યાં:

- v = તરંગનો વેગ (m/s)
- λ = વકંગલંભાઈ (m)
- f = ਆਪ੍ਰਹਿ (Hz)

આકૃતિ:

મેમરી ટ્રીક: "VLF - Velocity equals Lambda times Frequency"

પ્રશ્ન 4(અ) OR [3 ગુણ]

પ્રતિઘોષ સમય માટેનું સેબાઇનનું સૂત્ર સમજાવો.

જવાબ:

સેબાઇનનું સૂત્ર બંધ જગ્યામાં પ્રતિઘોષ સમયની ગણતરી કરે છે:

ਮ੍ਰਕ: $RT_{60} = 0.161 \times V/A$

જ્યાં:

- RT₆₀ = પ્રતિઘોષ સમય (સેકન્ડ) ધ્વનિને 60 dB ઘટાડવા માટે
- V = ३भनुं se (m³)
- A = કુલ ધ્વનિ શોષણ (m² sabins)
- 0.161 = અચળાંક (મેટ્રિક એકમોમાં ગણતરી માટે)

કુલ શોષણ (A) ની ગણતરી આ રીતે થાય છે:

$$\mathsf{A} = \alpha_1 \mathsf{S}_1 + \alpha_2 \mathsf{S}_2 + \alpha_3 \mathsf{S}_3 + \dots + \alpha_n \mathsf{S}_n$$

જ્યાં:

• α_i = પદાર્થ i નો શોષણ ગુણાંક

• S_i = પદાર્થ i નું સપાટી ક્ષેત્રફળ (m²)

ઉપયોગો:

- કોન્સર્ટ હોલ, ઓડિટોરિયમ, રેકોર્ડિંગ સ્ટુડિયોની ધ્વનિક ડિઝાઇન
- જરૂરી ધ્વનિક ઉપચારની નિર્ધારણ
- મૌજૂદા જગ્યાઓની ધ્વનિક ગુણવત્તાનું મૂલ્યાંકન

મેમરી ટ્રીક: "VAS - Volume And Surface absorption determine reverberation time"

પ્રશ્ન 4(બ) OR [4 ગુણ]

પ્રકાશનું વિવર્તન એટલે શું? તેના પ્રકાર આકૃતિ સાથે સમજાવો.

જવાબ:

વ્યાખ્યા: વિવર્તન એ અવરોદ્યોની આસપાસ અથવા ખુલ્લી જગ્યાઓમાંથી પ્રકાશ તરંગોનું વળવું છે, જે પ્રકાશના તરંગ સ્વભાવને દર્શાવે છે.

વિવર્તનના પ્રકારો:

1. ફ્રેસનેલ વિવર્તન:

- સ્ત્રોત અથવા સ્ક્રીન (અથવા બંને) અવરોધથી મર્યાદિત અંતરે
- ગોળાકાર તરંગાગ્રો
- વધુ જટિલ હસ્તક્ષેપ પેટર્ન

આકૃતિ:

2. ફ્રૌનહોફર વિવર્તન:

- સ્ત્રોત અને સ્ક્રીન અનંત અંતરે (અથવા અસરકારક રીતે લેન્સનો ઉપયોગ કરીને)
- સમતલ તરંગાગ્રો
- સરળ હસ્તક્ષેપ પેટર્ન
- પ્રાથમિક ભૌતિકશાસ્ત્રમાં વધુ સામાન્યપણે અભ્યાસ કરવામાં આવે છે

આકૃતિ:

ਮੇਮਣੀ ਟ੍ਰੀs: "FPSS - Fresnel has Finite distances, Spherical waves; Fraunhofer has Source at infinity, Straight (plane) waves"

પ્રશ્ન 4(ક)(1) OR [3 ગુણ]

એક રેડિયોતરંગની આવૃત્તિ 480 Hz અને ધ્વનિનો વેગ 330 m/s હોય તો તરંગલંબાઈ શોધો.

જવાબ:

આપેલ છે:

- ਆਪ੍ਰਜ਼ਿ (f) = 480 Hz
- ધ્વનિનો વેગ (v) = 330 m/s

શોધવાનું છે: તરંગલંબાઈ (λ)

ਮੁਖ਼: $\vee = \lambda \times f$

ગણતરી:

 $\lambda = v/f$

 $\lambda = 330 \text{ m/s} \div 480 \text{ Hz}$

 $\lambda = 0.6875 \text{ m}$

 $\lambda = 68.75 \text{ cm}$

તેથી, રેડિયો તરંગની તરંગલંબાઈ 0.6875 m અથવા 68.75 cm છે.

મેમરી ટ્રીક: "WFV - Wavelength equals Velocity divided by Frequency"

પ્રશ્ન 4(ક)(2) OR [4 ગુણ]

ધ્વનિ તરંગોના ગુણધર્મો આપો

જવાબ:

ધ્વનિ તરંગોના ગુણધર્મો:

ગુણઘર્મ	นย์า
તરંગ સ્વભાવ	ધ્વનિ એક યાંત્રિક, લંબગત તરંગ છે જેને માધ્યમની જરૂર પડે છે
આવૃત્તિ શ્રેણી	માનવો માટે સાંભળી શકાય તેવી શ્રેણી: 20 Hz થી 20,000 Hz
વેગ	રૂમ તાપમાને હવામાં ~343 m/s; માધ્યમ સાથે બદલાય છે
પરાવર્તન	સપાટીઓ પરથી પરાવર્તિત થાય છે, પડઘા અને પ્રતિધ્વનિ બનાવે છે
વક્રીભવન	અલગ-અલગ ઘનતાના માધ્યમોની વચ્ચે પસાર થતી વખતે દિશા બદલે છે
વિવર્તન	અવરોધોની આસપાસ અને ખુલ્લી જગ્યાઓમાંથી વળે છે
વ્યતિકરણ	તરંગો એકબીજા પર ઉપરાઇ રચનાત્મક અથવા વિનાશક વ્યતિકરણ બનાવી શકે છે
અનુનાદ	પદાર્થોની કુદરતી આવૃત્તિઓએ વર્ધન

ધ્વનિના વેગને અસર કરતા પરિબળો:

- વાયુઓમાં તાપમાન સાથે વધે છે
- વાયુઓ કરતાં પ્રવાહીઓમાં ઝડપી
- ઘન પદાર્થોમાં સૌથી ઝડપી
- આપેલા માધ્યમમાં આવૃત્તિ અને આયામથી સ્વતંત્ર

મેમરી ટ્રીક: "WARDS-FIR - Wave needs medium, Audible range limited, Reflected, Diffracted, Speed varies, Frequency determines pitch, Intensity determines loudness, Resonates at natural frequencies"

પ્રશ્ન 5(અ) [3 ગુણ]

લેસરનો અર્થ અને ગુણદ્યમોં જણાવો.

જવાબ:

LASER: Light Amplification by Stimulated Emission of Radiation (પ્રેરિત ઉત્સર્જન દ્વારા પ્રકાશનું વર્ધન)

લેસર પ્રકાશના ગુણધર્મો:

- એકવર્ણીય: એક તરંગલંબાઈ અથવા તરંગલંબાઈઓની ખૂબ સાંકડી પટ્ટી
- **સુસંબદ્ધ**: બધા તરંગો એકબીજા સાથે કળામાં હોય છે
- દિશાત્મક: નીચું વિચલન, ન્યૂનતમ ફેલાવા સાથે સીધી રેખામાં પ્રવાસ કરે છે
- તીવ્ર: નાના વિસ્તારમાં ઉચ્ચ ઊર્જા કેન્દ્રિકરણ
- સમાંતર: પ્રકાશ કિરણો ન્યૂનતમ વિચલન સાથે સમાંતર હોય છે

મેમરી ટ્રીક: "MCCDI - Monochromatic and Coherent, Collimated, Directional, Intense"

પ્રશ્ન 5(બ) [4 ગુણ]

ઓપ્ટિકલ કાઈબર વિષે માહિતી આપો.

જવાબ:

ઓપ્ટિકલ ફાઈબર: એક લવચીક, પારદર્શક ફાઈબર જે કાચ અથવા પ્લાસ્ટિકથી બનેલી હોય છે જે સંપૂર્ણ આંતરિક પરાવર્તન દ્વારા પ્રકાશ સિગ્નલો પ્રસારિત કરે છે.

રથના:

ઘટકો:

- કોર: કેન્દ્રીય વિસ્તાર જ્યાં પ્રકાશ પ્રવાસ કરે છે (ઉચ્ચ વક્રીભવનાંક)
- કલેડિંગ: કોરની આજુબાજુનું બાહ્ય ઓપ્ટિકલ પદાર્થ (નીચો વક્રીભવનાંક)
- બફર કોટિંગ: રક્ષણાત્મક બાહ્ય આવરણ

પ્રકારો:

- સિંગલ-મોડ: નાનો કોર (8-10 µm), ફક્ત એક મોડ વહન કરે છે
- મલ્ટી-મોડ: મોટો કોર (50-100 µm), બહુવિધ મોડ વહન કરે છે
 - ૦ **સ્ટેપ-ઇન્ડેક્સ**: વક્રીભવનાંકમાં અચાનક કેરકાર
 - ૦ **ગ્રેડેડ-ઇન્ડેક્સ**: વક્રીભવનાંકમાં ક્રમિક કેરકાર

ફાયદા:

- ઊંચી બેન્ડવિડ્થ અને ડેટા ટ્રાન્સમિશન દર
- ઇલેક્ટ્રોમેગ્નેટિક હસ્તક્ષેપથી મુક્ત
- લાંબા અંતર પર ઓછું સિગ્નલ ક્ષીણન
- નાનું કદ અને હલકું વજન
- વધારેલી સુરક્ષા (ટેપ કરવામાં મુશ્કેલ)

મેમરી ટ્રીક: "CCTLT - Core Carries light, Cladding keeps it in, Total internal reflection, Low loss transmission"

પ્રશ્ન 5(ક)(1) [7 ગુણ]

સ્નેલનો નિયમ સમજાવો.

જવાબ:

יוופיוווכי

સ્નેલનો નિયમ (વક્રીભવનનો નિયમ) કહે છે કે આપતિના ખૂણાના સાઇનનો વક્રીભવનના ખૂણાના સાઇન સાથેનો ગુણોત્તર કોઈપણ બે ચોક્કસ માધ્યમો માટે અચળ રહે છે. ਖ੍ਰਕ: $n_1 \sin(\theta_1) = n_2 \sin(\theta_2)$

જ્યાં:

- n₁ = માધ્યમ 1 નો વક્કીભવનાંક
- θ₁ = આપતિનો ખૂણો
- n₂ = માધ્યમ 2 નો વક્રીભવનાંક
- θ₂ = વક્રીભવનનો ખૂણો

આકૃતિ:

ઉદાહરણો:

- હવામાંથી પાણીમાં પ્રવેશ કરતી વખતે પ્રકાશનું વળવું
- પાણીની અંદરની વસ્તુઓનું દેખીતું વિસ્થાપન
- મેઘધનુષની રચના
- લેન્સ અને પ્રિઝમની ડિઝાઇન

વિશેષ કિસ્સાઓ:

- જ્યારે પ્રકાશ ઓછા ઘન માધ્યમથી વધુ ઘન માધ્યમમાં પ્રવાસ કરે છે (n₁ < n₂), તે લંબ તરફ વળે છે ($\theta_1 > \theta_2$)
- જ્યારે પ્રકાશ વધુ ઘન માધ્યમથી ઓછા ઘન માધ્યમમાં પ્રવાસ કરે છે ($n_1 > n_2$), તે લંબથી દૂર વળે છે ($\theta_1 < \theta_2$)
- જ્યારે આપતિનો ખૂણો 0° (લંબ આપતિ) હોય, ત્યારે કોઈ વક્રીભવન થતું નથી

મેમરી ટ્રીક: "SINS - Sine of incidence over sine of refraction equals N₁ over N₂"

પ્રશ્ન 5(ક)(2) [0 ગુણ]

એસેપ્ટન્સ એંગલ સમજાવો.

જવાબ:

એસેપ્ટન્સ એંગલ એ મહત્તમ ખૂણો છે જેના પર પ્રકાશ ઓપ્ટિકલ ફાઈબરમાં પ્રવેશી શકે છે અને હજુ પણ સંપૂર્ણ આંતરિક પરાવર્તન અનુભવી શકે છે.

ਮ੍ਰਮ: $\theta_a = \sin^{-1}(NA)$

જ્યાં:

- 0 વ = એસેપ્ટન્સ એંગલ
- NA = ન્યુમેરિકલ એપર્ચર

ન્યુમેરિકલ એપર્ચર (NA): NA = √(n₁² - n₂²)

જ્યાં:

- n₁ = કોરનો વક્રીભવનાંક
- n₂ = ક્લેડિંગનો વક્રીભવનાંક

આકૃતિ:

મહત્વ:

- ફાઈબરની પ્રકાશ-એકત્રિત કરવાની ક્ષમતા નક્કી કરે છે
- મોટો એસેપ્ટન્સ એંગલ એટલે વધુ પ્રકાશ ફાઈબરમાં પ્રવેશી શકે છે
- ફાઈબરની માહિતી-વહન ક્ષમતા સાથે સંબંધિત
- પ્રકાશ સ્ત્રોતો સાથે કપલિંગ કાર્યક્ષમતા માટે મહત્વપૂર્ણ

મેમરી ટ્રીક: "CAP - Core and cladding indices Affect the acceptance angle which determines the Path light can take"

પ્રશ્ન 5(અ) OR [3 ગુણ]

લેસરના ઉપયોગો લખો.

જવાબ:

લેસરના ઉપયોગો:

ક્ષેત્ર	ઉપયોગો
તબીબી	સર્જરી, આંખની સારવાર, કેન્સર થેરાપી, ત્વચાવિજ્ઞાન, દંત પ્રક્રિયાઓ
ઔદ્યોગિક	કટિંગ, વેલ્કિંગ, ડ્રિલિંગ, માર્કિંગ, પદાર્થ પ્રક્રિયા, 3D પ્રિન્ટિંગ
સંચાર	ફાઇબર ઓપ્ટિક ડેટા ટ્રાન્સમિશન, મુક્ત અવકાશ ઓપ્ટિકલ સંચાર
વૈજ્ઞાનિક	સ્પેક્ટ્રોસ્કોપી, હોલોગ્રાફી, ન્યુક્લિયર ફ્યુઝન, કણ ત્વરણ
ગ્રાહક	બારકોડ સ્કેનર, DVD/બ્લુ-રે પ્લેયર, લેસર પોઇન્ટર, પ્રિન્ટર
લશ્કરી	રેન્જ શોધ, લક્ષ્ય નિર્ધારણ, માર્ગદર્શક સિસ્ટમ, શસ્ત્રો

મેમરી ટ્રીક: "MICSM - Medical procedures, Industrial cutting, Communication systems, Scientific research, Military applications"

પ્રશ્ન 5(બ) OR [4 ગુણ]

પ્રકાશનું પૂર્ણ આંતરિક પરાવર્તન પર ટૂંક નોંધ લખો.

જવાબ:

પૂર્ણ આંતરિક પરાવર્તન (TIR) એ એક ઓપ્ટિકલ ઘટના છે જે ત્યારે થાય છે જ્યારે ઘન માધ્યમમાં પ્રવાસ કરતો પ્રકાશ ક્રાંતિક ખૂણા કરતાં મોટા ખૂણે ઓછા ઘન માધ્યમ સાથેની સીમાને અથડાય છે.

TIR માટે જરૂરી શરતો:

- પ્રકાશ ઘન માધ્યમથી ઓછા ઘન માધ્યમમાં પ્રવાસ કરવો જોઈએ (n₁ > n₂)
- આપતિનો ખૂણો ક્રાંતિક ખૂણા કરતાં વધુ હોવો જોઈએ (θ; > θc)

ક્રાંતિક ખૂણાનું સૂત્ર: $\theta c = \sin^{-1}(n_2/n_1)$

આકૃતિ:

ઉપયોગો:

- સંચાર માટે ઓપ્ટિકલ ફાઈબર
- પ્રિઝમ અને બાયનોક્યુલર
- હીરાની ચમક
- મૃગજળની રચના
- તબીબી ઇમેજિંગ માટે એન્ડોસ્કોપ

મેમરી ટ્રીક: "CANDO - Critical Angle needed, n_1 must be Denser than n_2 , Only works when angle is greater than critical, Angle determines reflection vs refraction"

પ્રશ્ન 5(ક)(1) OR [3 ગુણ]

પાણીમાં પ્રકાશનો વેગ 2.25×108 m/s અને હવામાં પ્રકાશનો વેગ 3×108 m/s હોય તો પાણીનો વક્રીભવનાંક શોદ્યો.

જવાબ:

આપેલ છે:

- પાણીમાં પ્રકાશનો વેગ (vw) = 2.25×10⁸ m/s
- હવામાં પ્રકાશનો વેગ (va) = 3×10⁸ m/s

શોધવાનું છે: પાણીનો વક્રીભવનાંક (nw)

सूत्र: n = c/v

હવાની સાપેક્ષે પાણીના વકીભવનાંકની ગણતરી માટે:

nw = va/vw

ગણતરી:

 $nw = 3 \times 10^8 \text{ m/s} \div 2.25 \times 10^8 \text{ m/s}$

 $nw = 3 \div 2.25$

nw = 1.33

તેથી, પાણીનો વક્રીભવનાંક 1.33 છે.

મેમરી ટ્રીક: "SVN - Speed of light in Vacuum divided by Speed in medium gives refractive iNdex"

પ્રશ્ન 5(ક)(2) OR [4 ગુણ]

સ્ટેપ ઈન્ડેક્ષ ફાઈબર વિષે નોંધ લખો.

જવાબ:

સ્ટેપ ઈન્ડેક્ષ ફાઈબર:

એક પ્રકારનો ઓપ્ટિકલ ફાઈબર જ્યાં વક્રીભવનાંક કોર અને ક્લેડિંગ વચ્ચે અચાનક બદલાય છે.

રચના:

આકૃતિ:

લક્ષણો:

- કોર-ક્લેડિંગ સીમા પર વક્રીભવનાંકમાં અચાનક ફેરફાર
- સિંગલ-મોડ અને મલ્ટી-મોડ બંને રૂપરેખાઓમાં ઉપલબ્ધ
- ગ્રેડેડ-ઇન્ડેક્સ ફાઈબર કરતાં સરળ બાંધકામ
- મલ્ટી-મોડ રૂપરેખામાં વધુ મોડલ ફેલાવો

પ્રકારો:

- સિંગલ-મોડ સ્ટેપ ઇન્ડેક્સ ફાઈબર:
 - o ખૂબ નાનો કોર વ્યાસ (8-10 µm)
 - ૦ ફક્ત પ્રકાશના એક મોડને પસાર થવાની મંજૂરી આપે છે
 - ૦ ઓછું સિગ્નલ વિકૃતિ
 - ૦ લાંબા અંતરના સંચાર માટે વપરાય છે

• મલ્ટી-મોડ સ્ટેપ ઇન્ડેક્સ ફાઈબર:

- ૦ મોટો કોર વ્યાસ (50-100 µm)
- ૦ બહુવિધ પ્રકાશ પથની મંજૂરી આપે છે
- ૦ ઉચ્ચ મોડલ ફેલાવો
- ૦ ટૂંકા અંતર માટે યોગ્ય

ફાયદા:

- સરળ અને સસ્તું ઉત્પાદન
- ટૂંકા અંતરના અનુપ્રયોગો માટે સારું
- મલ્ટી-મોડ સંસ્કરણોમાં પ્રકાશને કપલ કરવું સરળ
- સિંગલ-મોડ ફાઈબર કરતાં વળવાના નુકસાન પ્રત્યે ઓછું સંવેદનશીલ

મર્યાદાઓ:

- મલ્ટી-મોડ રૂપરેખામાં ઉચ્ચ મોડલ ફેલાવો
- અલગ-અલગ પથની લંબાઈને કારણે બેન્ડવિડ્થ મર્યાદાઓ
- ઉચ્ચ-ગતિ, લાંબા અંતરના પ્રસારણ માટે આદર્શ નથી

મેમરી ટ્રીક: "SACS - Step change at boundary, Abrupt index profile, Core guides light, Simple construction"