Génération de Terrain par Géométrie Fractale

Du Crest de Villeneuve Augustin Gross Maxime Milliat Léo

Sommaire

- Fonctionnement et utilisation des fractales
- Algorithmes utilisés
- Résultats obtenus

Post Processing

Introduction : Fonctionnement et utilisation des fractales

<u>Définition</u>: Une fractale est une structure mathématique qui présente une certaine autosimilarité dans sa structure (invariance selon l'échelle) et est construite selon des méthodes itératives.

Triangle de Sierpinski

Flocon de Koch

Introduction : Fonctionnement et utilisation des fractales

Les fractales présentent de nombreux avantages pour la génération de terrain :

- Meilleurs résultats qu'une génération purement aléatoire
- Méthodes itératives adaptées à une implémentation algorithmique
- Aspect autosimilaire reproduisant fortement les milieux naturels

Algorithmes utilisés

Diamant-Carré

• Bruit de Perlin

Faulting

Exemple de bruit obtenu via une distribution aléatoire uniforme

Exemple de bruit obtenu via la méthode Diamant-carré

Grille de la surface 3D de taille $2^n + 1$

Exemple de bruit de Perlin

Disposition des vecteurs aléatoires sur la grille

- On calcule les vecteurs de distance entre le point considéré et les bords de la grille (en bleu).
- •On effectue le produit scalaire entre les gradients (en rouge) et les vecteurs distances.

L'étape d'après est l'interpolation. On utilise une interpolation de type smooth step qui vérifie la formule :

$$f(t) = 6t^5 - 15t^4 + 10t^3$$

On arrive ensuite à la partie réellement itérative de l'algorithme : on réitère le processus en augmentant la fréquence (grille plus fine). Chaque itération correspondant à une augmentation d'une octave (on double la fréquence à chaque fois). Cela correspond à la formule :

$$\phi_N(p) = A \sum_{k=0}^N \alpha^k \phi(2^k f_0 p)$$

Avec N le nombre d'octaves, ϕ une fonction aléatoire, α la persistance, A l'amplitude et f_0 la fréquence fondamentale .

Résultat avec 3 octaves

Résultat avec 9 octaves

Fréquence plus forte ($f_0 = 2$)

fréquence plus faible ($f_0 = 1$)

Persistance plus forte ($\alpha = 0.42$)

Persistance plus faible ($\alpha = 0.27$)

Méthode du Faulting

Méthode du Faulting

$$\phi(x) = \tan(\theta) x + b$$

$$f(p) = \sum_{i} f_{i}(p) = \sum_{i} a_{i}g \circ d(p, \phi_{i})$$

$$g(r) = \left(1 - \left(\frac{r}{R}\right)^2\right)^2 si r < R, (0 sinon)$$

$$d(p,\phi_i) = \frac{|\tan(\theta) x_0 - y_0 + b|}{\sqrt{\tan(\theta)^2 + 1}}$$

$$a_{n+1} = \frac{a_n}{2^H}$$
 , $D = 2 - H$

Rayon fort

Post Processing

Post Processing (Diamant-Carré)

Post Processing (Perlin)

Exposant égal à 2.5

Post Processing (Faulting)

Pas d'exposant

Exposant égal à 1.5

Conclusion

